LUBRICATION AND MAINTENANCE

CONTENTS

page		page
GENERAL INFORMATION	MAINTENANCE SCHEDULES	4

GENERAL INFORMATION

INDEX

page	page
GENERAL INFORMATION	INTRODUCTION
CLASSIFICATION OF LUBRICANTS 2	PARTS AND LUBRICANT
FLUID CAPACITIES 3	RECOMMENDATIONS
INTERNATIONAL SYMBOLS	

GENERAL INFORMATION

INTRODUCTION

Service and maintenance procedures for components and systems listed in Schedule "A" or "B" can be found by using the Group Tab Locator index at the front of this manual. If it is not clear which group contains the information needed, refer to the index at the back of this manual.

There are two maintenance schedules that show proper service based on the conditions that the vehicle is subjected to.

Schedule "A" , lists scheduled maintenance to be performed when the vehicle is used for general transportation.

Schedule " ${f B}$ ", lists maintenance intervals for vehicles that are operated under the conditions listed at the beginning of the Maintenance Schedule section.

Use the schedule that best describes your driving conditions.

Where time and mileage are listed, follow the interval that occurs first.

PARTS AND LUBRICANT RECOMMENDATIONS

When service is required, Chrysler Corporation recommends that only Mopar® brand parts, lubricants and chemicals be used. Mopar provides the best engineered products for servicing Chrysler Corporation vehicles.

INTERNATIONAL SYMBOLS

Chrysler Corporation uses international symbols to identify engine compartment lubricant and fluid inspection and fill locations (Fig. 1).

Fig. 1 International Symbols

CLASSIFICATION OF LUBRICANTS

Only lubricants bearing designations defined by the following organization should be used to service a Chrysler Corporation vehicle.

- Society of Automotive Engineers (SAE)
- American Petroleum Institute (API) (Fig. 2)
- National Lubricating Grease Institute (NLGI) (Fig. 3)

ENGINE OIL

SAE VISCOSITY RATING INDICATES ENGINE OIL VISCOSITY

An SAE viscosity grade is used to specify the viscosity of engine oil. SAE 30 specifies a single viscosity engine oil. Engine oils also have multiple viscosities. These are specified with a dual SAE viscosity grade which indicates the cold-to-hot temperature viscosity range.

- SAE 30 = single grade engine oil.
- SAE 10W-30 = multiple grade engine oil.

Chrysler Corporation only recommends multiple grade engine oils.

API QUALITY CLASSIFICATION

This symbol (Fig. 2) on the front of an oil container means that the oil has been certified by the American Petroleum Institute (API) to meet all the lubrication requirements specified by Chrysler Corporation.

Refer to Group 9, Engine for gasoline engine oil specification.

9400-9

Fig. 2 API Symbol

GEAR LUBRICANTS

SAE ratings also apply to multiple grade gear lubricants. In addition, API classification defines the lubricants usage.

LUBRICANTS AND GREASES

Lubricating grease is rated for quality and usage by the NLGI. All approved products have the NLGI symbol (Fig. 3) on the label. At the bottom NLGI symbol is the usage and quality identification letters. Wheel bearing lubricant is identified by the letter "G". Chassis lubricant is identified by the latter "L". The letter following the usage letter indicates the quality of the lubricant. The following symbols indicate the highest quality.

Fig. 3 NLGI Symbol

FLUID CAPACITIES

FUEL TANK

All	. 76.4 L (20.2 gal.)
-----	----------------------

ENGINE OIL

2.5L												3.8	L	(4.0	qts.)
4.0L												5.7	L	(6.0)	qts.)

COOLING SYSTEM

2.5L 9.5 L (10 qts.)	*
4.0L	*

*Includes 2.2 L (2.3 qts) for coolant recovery reservoir

**Includes 0.9 L (1.0 qt) for coolant recovery reservoir.

AUTOMATIC TRANSMISSION

Dry fill capacity*

AW4	7.8 L (16.5 pts.)
30RH	4.67 L (9.86pts.)

*Depending on type and size of internal cooler, length and inside diameter of cooler lines, or use of an auxiliary cooler, these figures may vary. Refer to Group 21, Transmission for proper fluid fill procedure.

MANUAL TRANSMISSION

AX5 (4X2)
AX5 (4X4)
AX15 (4X2)
AX15 (4X4) 3.15 L (3.3 qts.)
TRANSFER CASE
SELEC-TRAC 242 1.3 L (2.85 pts.)
COMMAND-TRAC 231 1.0 L (2.2 pts.)
FRONT AXLE
181–FBI 1.48 L (3.13 pts.)
REAR AXLE
194–RBI 1.66 L (3.5 pts.*)

* When equipped with TRAC-LOK, include 3.5 ounces of Friction Modifier Additive.

8-1/4 2.08 L (4.4 pts.**)

** When equipped with TRAC-LOK, include 4 ounces of Friction Modifier Additive.

POWER STEERING

Power steering fluid capacities are dependent on engine/chassis options as well as steering gear/cooler options. Depending on type and size of internal cooler, length and inside diameter of cooler lines, or use of an auxiliary cooler, these capacities may vary. Refer to Section 19 of the service manual for proper fill and bleed procedures.

MAINTENANCE SCHEDULES

INDEX

page

GENERAL INFORMATION

MAINTENANCE SCHEDULES

There are two maintenance schedules that show proper service for the Cherokee.

First is Schedule " \mathbf{A} ". It lists all the scheduled maintenance to be performed under "normal" operating conditions.

Second is Schedule " ${f B}$ " . It is a schedule for vehicles that are operated under these conditions:

- Frequent short trips driving less than 5 miles (8 km)
 - Frequent driving in dusty conditions
 - Frequent trailer towing
 - Extensive idling
- More than 50% of driving is at sustained high speeds during hot weather, above 90°F (32°C)
 - Off-road driving
 - Desert operation

Use the schedule that best describes the driving conditions.

Where time and mileage are listed, follow the interval that occurs first.

At Each Stop For Fuel

- Check engine oil level, add as required.
- Check windshield washer solvent and add if required.

Once A Month

- Check tire pressure and look for unusual wear or damage.
- Inspect battery and clean and tighten terminals as required. Check electrolyte level and add water as needed.
- Check fluid levels of coolant reservoir, power steering, brake master cylinder, and transmission and add as needed.
- Check all lights and all other electrical items for correct operation.

At Each Oil Change

- Inspect exhaust system.
- Inspect brake hoses.

- Rotate the tires at each oil change interval shown on Schedule "A" (7,500 miles) or every other interval shown on Schedule "B" (6,000 miles).
 - Check coolant level, hoses, and clamps.
- After completion of off-road operation, the underside of the vehicle should be thoroughly inspected. Examine threaded fasteners for looseness.

EMISSION CONTROL SYSTEM MAINTENANCE

The scheduled emission maintenance listed in **bold type** on the Maintenance Schedules, must be done at the mileage specified to assure the continued proper functioning of the emission control system. These, and all other maintenance services included in this manual, should be done to provide the best vehicle performance and reliability. More frequent maintenance may be needed for vehicles in severe operating conditions such as dusty areas and very short trip driving.

FLUID FILL LOCATIONS AND LUBRICATION POINTS

The fluid fill/check locations and lubrication points are located in each applicable group.

SCHEDULE "A"

7,500 Miles (12 000 km) or at 6 months

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage (4x4 only).

15,000 Miles (24 000 km) or at 12 months

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.
- Lubricate steering and suspension ball joints.

22,500 Miles (36 000 km) or at 18 months

- Change engine oil.
- Replace engine oil filter.
- Inspect brake linings.
- Lubricate steering linkage (4x4 only).

30,000 Miles (48 000 km) or at 24 months

- Change engine oil.
- Replace engine oil filter.
- Replace air cleaner element.
- Replace spark plugs.
- · Inspect drive belt, adjust tension as necessary.
- Lubricate steering linkage.
- Drain and refill automatic transmission fluid.
- Drain and refill transfer case fluid.
- Lubricate steering and suspension ball joints.

37,500 Miles (60 000 km) or at 30 months

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage (4x4 only).
- Drain and refill manual transmission fluid.

45,000 Miles (72 000 km) or at 36 months

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.
- Inspect brake linings.
- Flush and replace engine coolant at 36 months, regardless of mileage.
 - Lubricate steering and suspension ball joints.

52,500 Miles (84 000 km) or at 42 months

- Change engine oil.
- Replace engine oil filter.
- Flush and replace engine coolant if not done at 36 months.
 - Lubricate steering linkage (4x4 only).

60,000 Miles (96 000 km) or at 48 months

- Change engine oil.
- Replace engine oil filter.
- Replace engine air cleaner element.
- Replace ignition cables.
- · Replace spark plugs.
- Inspect drive belt, adjust tension as necessary.
- Lubricate steering linkage.
- Drain and refill automatic transmission fluid.
- Drain and refill transfer case fluid.
- Lubricate steering and suspension ball joints.

67,500 Miles (108 000 km) or at 54 months

- Change engine oil.
- Replace engine oil filter.
- Inspect brake linings.
- Lubricate steering linkage (4x4 only).

75,000 Miles (120 000 km) or at 60 months

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.

- \bullet Flush and replace engine coolant if it has been 30,000 miles (48 000 km) or 24 months since last change.
 - Lubricate steering and suspension ball joints.
 - Drain and refill manual transmission fluid.

82,500 Miles (133 000 km) or at 66 months

- Change engine oil.
- Replace engine oil filter.
- Flush and replace engine coolant if it has been 30,000 miles (48 000 km) or 24 months since last change.
 - Lubricate steering linkage (4x4 only).

90,000 Miles (144 000 km) or at 72 months

- Change engine oil.
- Replace engine oil filter.
- Replace engine air cleaner element.
- Replace spark plugs.
- Inspect drive belt, adjust tension as necessary.
- Lubricate steering linkage.
- Drain and refill automatic transmission fluid.
- Drain and refill transfer case fluid.
- Inspect brake linings.
- Lubricate steering and suspension ball joints.

97,500 Miles (156 000 km) or at 78 months

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage (4x4 only).

105,000 Miles (168 000 km) or at 84 months

- · Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.
- Flush and replace engine coolant if it has been 30,000 miles (48 000 km) or 24 months since last change.
 - Lubricate steering and suspension ball joints.

112,500 Miles (180 000 km) or at 90 months

- Change engine oil.
- Replace engine oil filter.
- Inspect brake linings.
- Flush and replace engine coolant if it has been 30,000 miles (48 000 km) or 24 months since last change.
 - Lubricate steering linkage (4x4 only).
 - Drain and refill manual transmission fluid.

120,000 Miles (192 000 km) or at 96 months

- Change engine oil.
- Replace engine oil filter.
- Replace engine air cleaner element.
- Replace ignition cables.
- Replace spark plugs.
- Inspect drive belt, adjust tension as necessary.

- Lubricate steering linkage.
- Drain and refill automatic transmission fluid.
- Drain and refill transfer case fluid.
- Lubricate steering and suspension ball joints.

Important: Inspection and service should also be performed any time a malfunction is observed or suspected.

SCHEDULE "B"

3,000 Miles (5 000 km)

- · Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.

6,000 Miles (10 000 km)

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.
- Lubricate steering and suspension ball joints.

9,000 Miles (14 000 km)

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.

12,000 Miles (19 000 km)

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.
- Drain and refill automatic transmission fluid.
- Drain and refill front and rear axles.‡
- Inspect brake linings.
- Lubricate steering and suspension ball joints.

15,000 Miles (24 000 km)

- · Change engine oil.
- Replace engine oil filter.
- Inspect engine air cleaner element, replace as necessary.
 - Lubricate steering linkage.

18,000 Miles (29 000 km)

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.
- Lubricate steering and suspension ball joints.
- Drain and refill manual transmission fluid.

21,000 Miles (34 000 km)

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.

24,000 Miles (38 000 km)

- Change engine oil.
- Replace engine oil filter.

- Lubricate steering linkage.
- Drain and refill automatic transmission fluid.
- Drain and refill front and rear axles.‡
- Inspect brake linings.
- Lubricate steering and suspension ball joints.

27,000 Miles (43 000 km)

- · Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.

30,000 Miles (48 000 km)

- · Change engine oil.
- Replace engine oil filter.
- · Replace engine air cleaner element.
- Replace spark plugs.
- Inspect drive belt, adjust tension as necessary.
- Lubricate steering linkage.
- Drain and refill transfer case fluid.
- Lubricate steering and suspension ball joints.

33,000 Miles (53 000 km)

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.

36,000 Miles (58 000 km)

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.
- Drain and refill automatic transmission fluid.
- Drain and refill front and rear axles.‡
- Inspect brake linings.
- Lubricate steering and suspension ball joints.
- Drain and refill manual transmission fluid.

39,000 Miles (62 000 km)

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.

42,000 Miles (67 000 km)

- · Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.
- Lubricate steering and suspension ball joints.

45,000 Miles (72 000 km)

- Change engine oil.
- Replace engine oil filter.
- Inspect engine air cleaner element, replace as necessary.
 - Lubricate steering linkage.

48,000 Miles (77 000 km)

- Change engine oil.
- Replace engine oil filter.

- Lubricate steering linkage.
- Drain and refill automatic transmission fluid.
- Drain and refill front and rear axles.‡
- Inspect brake linings.
- Lubricate steering and suspension ball joints.

51,000 Miles (82 000 km)

- · Change engine oil.
- Replace engine oil filter.
- Flush and replace engine coolant.
- Lubricate steering linkage.

54,000 Miles (86 000 km)

- Change engine oil.
- Replace engine oil filter.
- · Lubricate steering linkage.
- Lubricate steering and suspension ball joints.
- Drain and refill manual transmission fluid.

57,000 Miles (91 000 km)

- Change engine oil.
- Replace engine oil filter.
- · Lubricate steering linkage.

60,000 Miles (96 000 km)

- Change engine oil.
- Replace engine oil filter.
- Replace engine air cleaner element.
- Replace ignition cables.
- Replace spark plugs.
- Inspect drive belt, adjust tension as necessary.
- Lubricate steering linkage.
- Drain and refill automatic transmission fluid.
- Drain and refill transfer case fluid.
- Drain and refill front and rear axles.‡
- Inspect brake linings.
- · Lubricate steering and suspension ball joints.

63,000 Miles (101 000 km)

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.

66,000 Miles (106 000 km)

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.
- Lubricate steering and suspension ball joints.

69,000 Miles (110 000 km)

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.

72,000 Miles (115 000 km)

- Change engine oil.
- Replace engine oil filter.

- Lubricate steering linkage.
- Drain and refill automatic transmission fluid.
- Drain and refill front and rear axles.‡
- Inspect brake linings.
- Lubricate steering and suspension ball joints.
- Drain and refill manual transmission fluid.

75,000 Miles (120 000 km)

- Change engine oil.
- Replace engine oil filter.
- Inspect engine air cleaner element, replace as necessary.
 - · Lubricate steering linkage.

78,000 Miles (125 000 km)

- · Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.
- Lubricate steering and suspension ball joints.

81,000 Miles (134 000 km)

- · Change engine oil.
- Replace engine oil filter.
- Flush and replace engine coolant if it has been 30,000 miles (48 000 km) since last change.
 - Lubricate steering linkage.

84,000 Miles (134 000 km)

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.
- Drain and refill automatic transmission fluid.
- Drain and refill front and rear axles.‡
- Inspect brake linings.
- Lubricate steering and suspension ball joints.

87,000 Miles (139 000 km)

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.

90,000 Miles (144 000 km)

- · Change engine oil.
- Replace engine oil filter.
- Replace engine air cleaner element.
- · Replace spark plugs.
- Inspect drive belt, adjust tension as necessary.
- Lubricate steering linkage.
- Drain and refill transfer case fluid.
- Lubricate steering and suspension ball joints.
- Drain and refill manual transmission fluid.

93,000 Miles (149 000 km)

- Change engine oil.
- · Replace engine oil filter.
- Lubricate steering linkage.

96,000 Miles (154 000 km)

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.
- Drain and refill automatic transmission fluid.
- Drain and refill front and rear axles.‡
- Inspect brake linings.
- Lubricate steering and suspension ball joints.

99,000 Miles (158 000 km)

- · Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.

102,000 Miles (163 000 km)

- · Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.
- Lubricate steering and suspension ball joints.

105,000 Miles (168 000 km)

- · Change engine oil.
- Replace engine oil filter.
- Inspect engine air cleaner element, replace as necessary.
 - Lubricate steering linkage.

108,000 Miles (173 000 km)

- · Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.
- Drain and refill automatic transmission fluid.
- Drain and refill front and rear axles.‡
- Inspect brake linings.
- · Lubricate steering and suspension ball joints.
- Drain and refill manual transmission fluid.

111,000 Miles (178 000 km)

- Change engine oil.
- Replace engine oil filter.

- Flush and replace engine coolant if it has been 30,000 miles (48 000 km) since last change.
 - Lubricate steering linkage.

114,000 Miles (182 000 km)

- · Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.
- Lubricate steering and suspension ball joints.

117,000 Miles (187 000 km)

- Change engine oil.
- Replace engine oil filter.
- Lubricate steering linkage.

120,000 Miles (192 000 km)

- · Change engine oil.
- Replace engine oil filter.
- Replace engine air cleaner element.
- Replace ignition cables.
- · Replace spark plugs.
- Inspect drive belt, adjust tension as necessary.
- Lubricate steering linkage.
- Drain and refill automatic transmission fluid.
- Drain and refill transfer case fluid.
- Drain and refill front and rear axles.‡
- Inspect brake linings.
- Lubricate steering and suspension ball joints.

‡Off-highway operation, trailer towing, taxi, limousine, bus, snow plowing, or other types of commercial service or prolonged operation with heavy loading, especially in hot weather, require front and rear axle service indicated with a ‡ in Schedule "B". Perform these services if the vehicle is usually operated under these conditions.

Important: Inspection and service should also be performed any time a malfunction is observed or suspected.

2000

JUMP STARTING, TOWING AND HOISTING

INDEX

2000

page	page
SERVICE PROCEDURES	JUMP STARTING PROCEDURE 9
EMERGENCY TOW HOOKS	TOWING RECOMMENDATIONS 10
FOUR-WHEEL-DRIVE VEHICLE TOWING 11 HOISTING RECOMMENDATIONS 11	TWO-WHEEL-DRIVE VEHICLE TOWING 10

SERVICE PROCEDURES

JUMP STARTING PROCEDURE

WARNING: REVIEW ALL SAFETY PRECAUTIONS AND WARNINGS IN GROUP 8A, BATTERY/START-ING/CHARGING SYSTEMS DIAGNOSTICS. DO NOT JUMP START A FROZEN BATTERY, PERSONAL INJURY CAN RESULT. DO NOT JUMP START WHEN MAINTENANCE FREE BATTERY INDICATOR DOT IS YELLOW OR BRIGHT COLOR. DO NOT JUMP START A VEHICLE WHEN THE BATTERY FLUID IS BELOW THE TOP OF LEAD PLATES. DO NOT ALLOW JUMPER CABLE CLAMPS TO TOUCH EACH OTHER WHEN CONNECTED TO A BOOSTER SOURCE. DO NOT USE OPEN FLAME NEAR BAT-TERY. REMOVE METALLIC JEWELRY WORN ON HANDS OR WRISTS TO AVOID INJURY BY ACCI-DENTAL ARCING OF BATTERY CURRENT. WHEN USING A HIGH OUTPUT BOOSTING DEVICE, DO NOT ALLOW BATTERY VOLTAGE TO EXCEED 16 VOLTS. REFER TO INSTRUCTIONS PROVIDED WITH DEVICE BEING USED.

CAUTION: When using another vehicle as a booster, do not allow vehicles to touch. Electrical systems can be damaged on either vehicle.

TO JUMP START A DISABLED VEHICLE:

- (1) Raise hood on disabled vehicle and visually inspect engine compartment for:
 - Battery cable clamp condition, clean if necessary.
 - Frozen battery.
 - Yellow or bright color test indicator, if equipped.
 - Low battery fluid level.
 - Generator drive belt condition and tension.
 - Fuel fumes or leakage, correct if necessary.

CAUTION: If the cause of starting problem on disabled vehicle is severe, damage to booster vehicle charging system can result.

- (2) When using another vehicle as a booster source, turn off all accessories, place gear selector in park or neutral, set park brake and operate engine at 1200 rpm.
- (3) On disabled vehicle, place gear selector in park or neutral and set park brake. Turn off all accessories.
- (4) Connect jumper cables to booster battery. RED clamp to positive terminal (+). BLACK clamp to negative terminal (-). DO NOT allow clamps at opposite end of cables to touch, electrical arc will result. Review all warnings in this procedure.
- (5) On disabled vehicle, connect RED jumper cable clamp to positive (+) terminal. Connect BLACK jumper cable clamp to engine ground as close to the ground cable attaching point as possible (Fig. 1).

Fig. 1 Jumper Cable Connections—Typical

CAUTION: Do not crank starter motor on disabled vehicle for more than 15 seconds, starter will overheat and could fail.

SERVICE PROCEDURES (Continued)

(6) Allow battery in disabled vehicle to charge to at least 12.4 volts (75% charge) before attempting to start engine. If engine does not start within 15 seconds, stop cranking engine and allow starter to cool (15 min.), before cranking again.

DISCONNECT CABLE CLAMPS AS FOLLOWS:

- Disconnect BLACK cable clamp from engine ground on disabled vehicle.
- When using a Booster vehicle, disconnect BLACK cable clamp from battery negative terminal. Disconnect RED cable clamp from battery positive terminal.
- Disconnect RED cable clamp from battery positive terminal on disabled vehicle.

TOWING RECOMMENDATIONS

A vehicle equipped with an SAE approved Wheellift towing device can be used to tow all Cherokee vehicles (Fig. 2). When towing a 4WD vehicle, use tow dollies under the opposite end of the vehicle. A vehicle with a flat-bed device can also be used to transport a disabled vehicle.

Fig. 2 Tow Vehicles With Approved Equipment

NOTE: A vehicle equipped with a SAE approved sling type towing device can be used to tow a Cherokee with the rear end lifted, provided the Cherokee is not equipped with a factory installed trailer tow package. Damage to the harness connector bracket may result from sling contact.

SAFETY PRECAUTIONS

- Secure loose and protruding parts.
- Always use a safety chain system that is independent of the lifting and towing equipment.
- Do not allow towing equipment to contact the disabled vehicle's fuel tank.
- Do not allow anyone under the disabled vehicle while it is lifted by the towing device.

- Do not allow passengers to ride in a vehicle being towed.
- Always observe state and local laws regarding towing regulations.
- Do not tow a vehicle in a manner that could jeopardize the safety of the operator, pedestrians or other motorists.
- Do not attach tow chains, T-hooks, J-hooks, or a tow sling to a bumper, steering linkage, drive shafts or a non-reinforced frame hole.

GROUND CLEARANCE

CAUTION: If vehicle is towed with wheels removed, install lug nuts to retain brake drums.

A towed vehicle should be raised until lifted wheels are a minimum 100 mm (4 in) from the ground. Be sure there is adequate ground clearance at the opposite end of the vehicle, especially when towing over rough terrain or steep rises in the road. If necessary, remove the wheels from the lifted end of the vehicle and lower the vehicle closer to the ground, to increase the ground clearance at the opposite end of the vehicle. Install lug nuts on wheel attaching studs to retain brake drums.

FLAT-BED TOWING RAMP ANGLE

If a vehicle with flat-bed towing equipment is used, the approach ramp angle should not exceed 15 degrees.

TWO-WHEEL-DRIVE VEHICLE TOWING

TOWING-REAR END LIFTED (SLING-TYPE)

WARNING: WHEN TOWING A DISABLED VEHICLE AND THE DRIVE WHEELS ARE SECURED IN A WHEEL LIFT OR TOW DOLLIES, ENSURE THE TRANSMISSION IS IN THE PARK POSITION (AUTOMATIC TRANSMISSION) OR A FORWARD DRIVE GEAR (MANUAL TRANSMISSION).

CAUTION: Do not use steering column lock to secure steering wheel during towing operation.

2WD XJ vehicles can be towed with the front wheels on the surface for extended distances at speeds not exceeding 48 km/h (30 mph). If the vehicle is equipped with a factory installed trailer tow package, use a SAE approved wheel lift device.

- (1) Attach J-hooks around the axle shaft tube outboard of the shock absorber.
- (2) Place the sling crossbar under and forward of the bumper.
 - (3) Attach safety chains around the frame rails.

SERVICE PROCEDURES (Continued)

- (4) Turn the ignition switch to the OFF position to unlock the steering wheel.
- (5) Secure steering wheel in the straight ahead position with a clamp device designed for towing.
- (6) Verify that steering components are in good condition.
 - (7) Shift the transmission to NEUTRAL.

TOWING-REAR END LIFTED (WHEEL LIFT)

- (1) Raise front of vehicle off ground and install tow dollies under front wheels.
 - (2) Attach wheel lift to rear wheels.
 - (3) Place transmission in neutral.
 - (4) Raise vehicle to towing height.
- (5) Place transmission in park (automatic transmission) or fist gear (manual transmission).

TOWING-FRONT END LIFTED

To prevent damage to front fascia components, use only a Wheel-Lift type towing device or Flat-Bed hauling equipment.

If using the wheel-lift towing method:

- (1) Raise rear of vehicle off ground and install tow dollies under rear wheels.
 - (2) Attach wheel lift to front wheels.
 - (3) Place transmission in neutral.
 - (4) Raise vehicle to towing height.
- (5) Place transmission in park (automatic transmission) or fist gear (manual transmission).

FOUR-WHEEL-DRIVE VEHICLE TOWING

Chrysler Corporation recommends that a 4WD vehicle be transported on a flat bed device. A wheel lift or sling type device can be used provided all wheels are lifted off the ground using tow dollies.

If the vehicle is equipped with a factory installed trailer tow package, use a SAE approved wheel lift device.

WARNING: WHEN TOWING A DISABLED VEHICLE AND THE DRIVE WHEELS ARE SECURED IN A WHEEL LIFT OR TOW DOLLIES, ENSURE THE TRANSMISSION IS IN THE PARK POSITION (AUTOMATIC TRANSMISSION) OR A FORWARD DRIVE GEAR (MANUAL TRANSMISSION).

TOWING-REAR END LIFTED (SLING TYPE)

- (1) Raise front of vehicle off ground and install tow dollies under front wheels.
- (2) Attach J-hooks around rear axle shaft tube outboard of shock absorber.
- (3) Place sling crossbar under and forward of bumper.
 - (4) Attach safety chains around frame rails.
- (5) Turn ignition switch to OFF position to unlock steering wheel.

- (6) Secure steering wheel in the straight ahead position with a clamp device designed for towing.
 - (7) Shift transfer case to neutral.

TOWING-REAR END LIFTED (WHEEL LIFT)

- (1) Raise front of vehicle off ground and install tow dollies under front wheels.
 - (2) Attach wheel lift to rear wheels.
 - (3) Place transmission in neutral.
 - (4) Raise vehicle to towing height.
- (5) Place transmission in park (automatic transmission) or first gear (manual transmission).

TOWING-FRONT END LIFTED

To prevent damage to front fascia components, use only a Wheel-Lift type towing device or Flat-Bed hauling equipment.

- (1) Raise the rear of the vehicle off the ground and install tow dollies under rear wheels.
 - (2) Attach wheel lift to front wheels.
 - (3) Place transmission in neutral.
 - (4) Raise vehicle to towing height.
- (5) Place transmission in park (automatic transmission) or first gear (manual transmission).

EMERGENCY TOW HOOKS

WARNING: REMAIN AT A SAFE DISTANCE FROM A VEHICLE THAT IS BEING TOWED VIA ITS TOW HOOKS. THE TOW STRAPS/CHAINS COULD BREAK AND CAUSE SERIOUS INJURY.

Some Jeep vehicles are equipped with front and rear emergency tow hooks. The tow hooks should be used for **EMERGENCY** purposes only.

CAUTION: DO NOT use emergency tow hooks for tow truck hook-up or highway towing.

HOISTING RECOMMENDATIONS

Refer to the Owner's Manual for emergency vehicle lifting procedures.

FLOOR JACK

When properly positioned, a floor jack can be used to lift a Jeep vehicle (Fig. 3) and (Fig. 4). Support the vehicle in the raised position with jack stands at the front and rear ends of the frame rails.

CAUTION: Do not attempt to lift a Jeep vehicle with a floor jack positioned under:

- An axle tube.
- A body side sill.
- A steering linkage component.
- · A drive shaft.

SERVICE PROCEDURES (Continued)

Fig. 3 Vehicle Lifting Locations

- The engine or transmission oil pan.
- The fuel tank.
- A front suspension arm.

NOTE: Use the correct sub-frame rail or frame rail lifting locations only.

HOIST

A vehicle can be lifted with:

- A single-post, frame-contact hoist.
- A twin-post, chassis hoist.
- A ramp-type, drive-on hoist.

NOTE: When a frame-contact type hoist is used, verify that the lifting pads are positioned properly.

Fig. 4 Correct Vehicle Lifting Locations

WARNING: THE HOISTING AND JACK LIFTING POINTS PROVIDED ARE FOR A COMPLETE VEHICLE. WHEN A CHASSIS OR DRIVETRAIN COMPONENT IS REMOVED FROM A VEHICLE, THE CENTER OF GRAVITY IS ALTERED MAKING SOME HOISTING CONDITIONS UNSTABLE. PROPERLY SUPPORT OR SECURE VEHICLE TO HOISTING DEVICE WHEN THESE CONDITIONS EXIST.

LUBRICATION AND MAINTENANCE

CONTENTS

page	page
GENERAL INFORMATION	MAINTENANCE SCHEDULE 2
GENERAL IN	FORMATION
IND	PEX
page	page
SPECIFICATIONS ENGINE OIL—DIESEL ENGINES	FLUID CAPACITIES 1
SPECIFICATIONS	MANUAL TRANSMISSION
ENGINE OIL—DIESEL ENGINES Use only Diesel Engine Oil meeting standard MIL- 2104C or API Classification SG/CD or CCMC PD2. SAE VISCOSITY GRADE CAUTION: Low viscosity oils must have the proper API quality or the CCMC G5 designation. To assure of properly formulated engine oils, it is recommended that SAE Grade 15W-40 engine oils that meet Chrysler material standard MS-6395, be used. European Grade 10W-40 oils are also acceptable. Oils of the SAE 5W-30 or 10W-30 grade number	Recommended lubricant for AX15 transmissions is Mopar® 75W-90, API Grade GL-3 gear lubricant, or equivalent. Correct lubricant level is from the bottom edge, to no more than 6 mm (1/4 in.) below the bottom edge of the fill plug hole. Approximate dry fill lubricant capacity is: • 3.10 liters (3.27 qts.) for 4-wheel drive applications. • 3.15 liters (3.32 qts.) for 2-wheel drive applications. TRANSFER CASE COMMAND-TRAC 231
are preferred when minimum temperatures consistently fall below -12°C.	FRONT AXLE Model 181
FLUID CAPACITIES	REAR AXLE
FUEL TANK Diesel Engine Equipped Vehicles	Model 194
2.5L Diesel	

MAINTENANCE SCHEDULE—DIESEL ENGINE . . 2

The following are engine related Maintenance

items which are unique to Diesel engine-equipped

vehicles. Refer to the 1997 XJ Service Manual for

gasoline engine and non-engine related Maintenance

The service intervals are based on odometer read-

• Visually inspect radiator for obstruction. Clean

Inspect battery cable connection and excessive

Inspect for presence of water in fuel filter/water

· Inspect for fuel, oil or coolant leaks.

separator, drain if necessary.

• Change engine oil. Change engine oil filter.

as necessary.

SCHEDULE—A

1 000 KM

MAINTENANCE SCHEDULE—DIESEL ENGINE

GENERAL INFORMATION

GENERAL INFORMATION

page

• Check correct torque, intake manifold mounting

· Check correct torque, exhaust manifold mount-

Check correct torque, turbocharger mounting

Check correct torque, water manifold bolts.

Check all fluid levels.

MAINTENANCE SCHEDULE

INDEX

nuts.

nuts.

ing nuts.

page

ings in kilometers. There are two maintenance schedules that show proper service intervals. Use the schedule that best describes the conditions the vehicle is operated under. Schedule-A lists all the scheduled maintenance to be performed under normal operating conditions. Schedule-B is the schedule for vehicles that are operated under one or more of the following conditions: • Day and night temperatures are below freezing. • Stop and go driving. • Long periods of engine idling. • Driving in dusty conditions. • Short trips of less than 8 kilometers (5 miles). • Operation at sustained high speeds during hot weather above 32°C (90°F). • Taxi, police or delivery service. • Trailer towing.	 Change engine oil. Change engine oil filter. 20 000 KM Change engine oil. Change engine oil filter. Replace air filter element. Check drive belt tension. Check glow plug operation. Retorque cylinder head bolts.* * Engines equipped with a steel head gasket do not need this service procedure performed. Refer to Group 9, Engines for head gasket identification. 30 000 KM Change engine oil. Change engine oil filter.
AT EACH STOP FOR FUEL OR SCHEDULED SERVICE STOP • Check engine oil level. • Check engine coolant level. • Inspect drive belt. • Visually inspect intercooler for obstruction. Clean as necessary.	 40 000 KM Change engine oil. Change engine oil filter. Replace air filter element. Check drive belt tension. Check glow plug operation. Replace fuel filter/water separator element.**

50 000 KM

• Change engine oil.

• Change engine oil filter.

60 000 KM

- Change engine oil.
- Change engine oil filter.
- Replace air filter element.
- Check glow plug operation.
- Replace drive belt.
- Check engine smoke.
- Replace engine coolant.

70 000 KM

- Change engine oil.
- Change engine oil filter.

80 000 KM

- · Change engine oil.
- Change engine oil filter.
- Replace air filter element.
- Check drive belt tension.
- Check glow plug operation.
- Replace fuel filter/water separator element.**

90 000 KM

- Change engine oil.
- Change engine oil filter.

100 000 KM

- Change engine oil.
- Change engine oil filter.
- Replace air filter element.
- Check drive belt tension.
- · Check glow plug operation.

EVERY 40 000 KM AFTER 80 000 KM

- Replace fuel filter/water separator element.**
- **The fuel filter/water separator element should be replaced once a year if the vehicle is driven less than 40 000 km annually or if power loss from fuel starvation is detected.

EVERY 10 000 KM AFTER 100 000 KM

- Change engine oil.
- Change engine oil filter.

EVERY 20 000 KM AFTER 100 000 KM

- Change engine oil.
- · Change engine oil filter.
- Replace air filter element.
- Check drive belt tension.
- Check glow plug operation.

SCHEDULE—B

500 KM

• Check correct torque, intake manifold mounting nuts.

- Check correct torque, exhaust manifold mounting nuts.
- Check correct torque, turbocharger mounting nuts.
 - Check correct torque, water manifold bolts.

1 000 KM

- Change engine oil.
- Change engine oil filter.
- Check all fluid levels.

5 000 KM

- Change engine oil.
- Change engine oil filter.

10 000 KM

- Change engine oil.
- Change engine oil filter.
- Replace air filter element.
- Check drive belt tension.
- Check glow plug operation.

15 000 KM

- Change engine oil.
- Change engine oil filter.

20 000 KM

- Change engine oil.
- Change engine oil filter.
- Replace air filter element.
- Check drive belt tension.
- · Check glow plug operation.
- Retorque cylinder head bolts.*
- * Engines equipped with a steel head gasket do not need this service procedure performed. Refer to Group 9, Engines for head gasket identification.

25 000 KM

- Change engine oil.
- Change engine oil filter.

30 000 KM

- Change engine oil.
- Change engine oil filter.
- Replace air filter element.
- · Check glow plug operation.
- Replace drive belt.
- Check engine smoke.
- Replace engine coolant.

35 000 KM

- Change engine oil.
- Change engine oil filter.

40 000 KM

- Change engine oil.
- Change engine oil filter.
- Replace air filter element.
- · Check drive belt tension.
- · Check glow plug operation.
- Replace fuel filter/water separator element.

45 000 KM

- Change engine oil.
- · Change engine oil filter.

50 000 KM

- Change engine oil.
- Change engine oil filter.
- Replace air filter element.
- Check drive belt tension.
- Check glow plug operation.

55 000 KM

- Change engine oil.
- Change engine oil filter.

60 000 KM

- · Change engine oil.
- Change engine oil filter.
- Replace air filter element.
- Check drive belt tension.
- · Check glow plug operation.
- Replace fuel filter/water separator element.

65 000 KM

- Change engine oil.
- Change engine oil filter.

70 000 KM

- Change engine oil.
- Change engine oil filter.
- Replace air filter element.
- Check drive belt tension.
- · Check glow plug operation.

75 000 KM

- Change engine oil.
- · Change engine oil filter.

80 000 KM

- Change engine oil.
- · Change engine oil filter.

- Replace air filter element.
- Check glow plug operation.
- Replace drive belt.
- Check engine smoke.
- Replace engine coolant.

85 000 KM

- Change engine oil.
- Change engine oil filter.

90 000 KM

- Change engine oil.
- Change engine oil filter.
- Replace air filter element.
- Check drive belt tension.
- · Check glow plug operation.

95 000 KM

- Change engine oil.
- Change engine oil filter.

100 000 KM

- Change engine oil.
- Change engine oil filter.
- Replace air filter element.
- Check drive belt tension.
- Check glow plug operation.
- Replace fuel filter/water separator element.

EVERY 5 000 KM AFTER 100 000 KM

- Change engine oil.
- Change engine oil filter.

EVERY 10 000 KM AFTER 100 000 KM

- Change engine oil.
- Change engine oil filter.
- Replace air filter element.
- Check drive belt tension.
- Check glow plug operation.

EVERY 20 000 KM AFTER 100 000 KM

• Replace fuel filter/water separator element.

XJ ------ EXHAUST SYSTEM 11 - 1

EXHAUST SYSTEM

CONTENTS

page	page
GENERAL INFORMATION CATALYTIC CONVERTER	MUFFLER AND EXHAUST TAILPIPE 4 SPECIFICATIONS
REMOVAL AND INSTALLATION	
CATALYTIC CONVERTER	

GENERAL INFORMATION

EXHAUST SYSTEM

The basic exhaust system consists of an engine exhaust manifold, exhaust pipe with oxygen sensor, catalytic converter with oxygen sensor, muffler and exhaust tailpipe (Fig. 1).

80abd2b9

Fig. 1 Exhaust System—2.5L/4.0L

The exhaust system uses a single muffler with a catalytic converter consisting of dual ceramic monoliths.

The 4.0L engines use a seal between the engine exhaust manifold and exhaust pipe to assure a tight seal and strain free connections.

The exhaust system must be properly aligned to prevent stress, leakage and body contact. If the system contacts any body panel, it may amplify objectionable noises originating from the engine or body.

When inspecting an exhaust system, critically inspect for cracked or loose joints, stripped screw or bolt threads, corrosion damage and worn, cracked or broken hangers. Replace all components that are badly corroded or damaged. DO NOT attempt to repair.

When replacement is required, use original equipment parts (or their equivalent). This will assure proper alignment and provide acceptable exhaust noise levels.

CAUTION: Avoid application of rust prevention compounds or undercoating materials to exhaust system floor pan exhaust heat shields. Light over spray near the edges is permitted. Application of coating will result in excessive floor pan temperatures and objectionable fumes.

CATALYTIC CONVERTER

The stainless steel catalytic converter body is designed to last the life of the vehicle. Excessive heat can result in bulging or other distortion, but excessive heat will not be the fault of the converter. If unburned fuel enters the converter, overheating may occur. If a converter is heat-damaged, correct the cause of the damage at the same time the converter is replaced. Also, inspect all other components of the exhaust system for heat damage.

Unleaded gasoline must be used to avoid contaminating the catalyst core.

DIAGNOSIS AND TESTING

EXHAUST SYSTEM

EXHAUST SYSTEM DIAGNOSIS CHART

CONDITION	POSSIBLE CAUSE	CORRECTION
EXCESSIVE EXHAUST NOISE OR LEAKING EXHAUST GASES	1. Leaks at pipe joints.	Tighten clamps/bolts at leaking joints.
	2. Rusted or blown out muffler.	Replace muffler. Inspect exhaust system.
	Broken or rusted out exhaust pipe.	3. Replace exhaust pipe.
	Exhaust pipe leaking at manifold flange.	Tighten/replace flange attaching nuts/bolts.
	5. Exhaust manifold cracked or broken.	5. Replace exhaust manifold.
	Leak between exhaust manifold and cylinder head.	6. Tighten exhaust manifold to cylinder head bolts.
	7. Catalytic converter rusted or blown out.	7. Replace catalytic converter assy.
	8. Restriction in exhaust system.	Remove restriction, if possible. Replace restricted part if necessary.

When servicing and replacing exhaust system components, disconnect the oxygen sensor connector(s). Allowing the exhaust to hang by the oxygen sensor wires will damage the harness and/or sensor.

REMOVAL AND INSTALLATION

EXHAUST PIPE

WARNING: IF TORCHES ARE USED WHEN WORKING ON THE EXHAUST SYSTEM, DO NOT ALLOW THE FLAME NEAR THE FUEL LINES.

CAUTION: When servicing exhaust system components, disconnect the oxygen sensor connector. Allowing the exhaust system to hang by the oxygen sensor harness will damage the wiring and/or sensor.

REMOVAL

- (1) Raise and support the vehicle.
- (2) Saturate the bolts and nuts with heat valve lubricant (Fig. 2). Allow 5 minutes for penetration.
- (3) Disconnect the oxygen sensor connector (Fig. 3).
- (4) Disconnect the exhaust pipe from the engine exhaust manifold. Discard the seal (4.0L engine, only).
- (5) Support the transmission and remove the rear crossmember.

(6) Remove the clamp nuts and clamp (Fig. 2). To remove the exhaust pipe from the catalytic converter, apply heat until the metal becomes cherry red. Disconnect the exhaust pipe from the catalytic converter (Fig. 2). Remove the exhaust pipe.

INSTALLATION

- (1) Assemble exhaust pipe to manifold and catalytic converter loosely to permit proper alignment of all parts.
- (2) Use a new clamp and tighten the nuts to 61 $N{\cdot}m$ (45 ft. lbs.) torque.
- (3) Connect the exhaust pipe to the engine exhaust manifold. Install a new seal between the exhaust manifold and the exhaust pipe (4.0L engine only). Tighten the nuts to 31 N·m (23 ft. lbs.) torque (Fig. 2).
- (4) Install the rear crossmember. Install and tighten the four (4) crossmember to rear mount nuts to 22 N·m (16 ft. lbs.) Install and tighten the crossmember to sill bolts to 42 N·m (31 ft. lbs.) torque. Remove the support from the transmission.
- (5) Coat the oxygen sensor with anti-seize compound. Install the sensor and tighten the nut to 27 $N\cdot m$ (20 ft. lbs.) torque.
 - (6) Lower the vehicle.

Fig. 2 Exhaust Pipe Removal—2.5L/4.0L

Fig. 3 Oxygen Sensor Location—2.5L/4.0L

(7) Start the engine and inspect for exhaust leaks and exhaust system contact with the body panels. Adjust the alignment, if needed.

CATALYTIC CONVERTER

WARNING: IF TORCHES ARE USED WHEN WORK-ING ON THE EXHAUST SYSTEM, DO NOT ALLOW THE FLAME NEAR THE FUEL LINES. CAUTION: When servicing exhaust system components, disconnect the oxygen sensor connector. Allowing the exhaust system to hang by the oxygen sensor harness will damage the wiring and/or sensor.

REMOVAL

- (1) Raise and support the vehicle.
- (2) Remove the clamps from the catalytic converter and muffler connection (Fig. 4).
- (3) Disconnect and remove the oxygen sensor from the catalytic converter.
- (4) Heat the catalytic converter and muffler connection with an oxyacetylene torch until the metal becomes cherry red.
- (5) While the metal is still cherry red, twist the muffler assembly back and forth to separate it from the catalytic converter.
- (6) Disconnect the exhaust pipe from the catalytic converter (Fig. 4). If needed, heat up the pipes to separate.

INSTALLATION

- (1) Connect the catalytic converter to the exhaust pipe and the muffler/tailpipe assy. (Fig. 4). Use a new clamp and tighten the nuts to 61 N·m (45 ft. lbs.) torque.
- (2) Install the muffler onto the catalytic converter until the alignment tab is inserted into the alignment slot.

Fig. 4 Catalytic Converter to Muffler and Exhaust Pipe Connection

- (3) Install a new clamp at the muffler and catalytic converter connection (Fig. 4). Tighten the clamp nut to 61 N·m (45 ft. lbs.) torque.
- (4) Coat the oxygen sensor with anti-seize compound. Install the sensor and tighten the nut to $27 \text{ N} \cdot \text{m}$ (20 ft. lbs.) torque.
 - (5) Lower the vehicle.
- (6) Start the engine and inspect for exhaust leaks and exhaust system contact with the body panels. Adjust the alignment, if needed.

MUFFLER AND EXHAUST TAILPIPE

All original equipment exhaust systems are manufactured with the exhaust tailpipe welded to the muffler. Service replacement mufflers and exhaust tailpipes are either clamped together or welded together.

WARNING: IF TORCHES ARE USED WHEN WORKING ON THE EXHAUST SYSTEM, DO NOT ALLOW THE FLAME NEAR THE FUEL LINE.

CAUTION: When servicing exhaust system components, disconnect the oxygen sensor connector. Allowing the exhaust system to hang by the oxygen sensor harness will damage the wiring and/or sensor.

REMOVAL

- (1) Raise and support the vehicle.
- (2) Disconnect front tailpipe hanger from the insulator (Fig. 5).

(3) Remove the front exhaust clamp from the catalytic converter and muffler connection (Fig. 6).

Fig. 5 Front Exhaust Tailpipe Hanger

Fig. 6 Catalytic Converter to Muffler Connection

- (4) Heat the catalytic converter-to-muffler connection with an oxyacetylene torch until the metal becomes cherry red.
- (5) While the metal is still cherry red, remove the exhaust muffler/tailpipe assembly from the catalytic converter.
- (6) Slide the muffler/tailpipe assy. rearward and out of the rear exhaust tailpipe mounting bracket (Fig. 7).
 - (7) Remove the muffler from the exhaust tailpipe:
- To remove an original equipment exhaust muffler/tailpipe combination, cut the exhaust tailpipe

Fig. 7 Rear Exhaust Tailpipe Mounting Bracket

close to the muffler. Collapse the part remaining in the muffler and remove.

• To remove a service exhaust tailpipe/muffler combination, apply heat until the metal becomes cherry red. Remove the exhaust tailpipe/muffler clamp and twist the exhaust tailpipe out of the muffler.

INSTALLATION

- (1) Install the muffler onto the catalytic converter. Install the clamp and tighten the nut finger tight.
- (2) Install the exhaust tailpipe into the rear of the muffler.
- (3) Install the exhaust tailpipe/muffler assembly on the rear exhaust tailpipe mounting bracket. Make sure that the exhaust tailpipe has sufficient clearance from the floor pan.
- (4) Install front tailpipe hanger into the insulator (Fig. 5).
- $(\bar{5})$ Align the muffler and tighten the nuts on the muffler-to-catalytic converter clamp to 61 N·m (45 ft. lbs.) torque (Fig. 6).

- (6) Align the tailpipe and install a new clamp at the muffler to tailpipe connection.
- (7) Tighten the muffler to tailpipe clamp to 61 N·m (45 ft. lbs.)
 - (8) Lower the vehicle.
- (9) Start the engine and inspect for exhaust leaks and exhaust system contact with the body panels. Adjust the alignment, if needed.

SPECIFICATIONS

TOROUE SPECIFICATIONS

Description	Torque
Catalytic Converter/Exhaust Pipe	
Exhaust Clamp Nut 61 N·m (4	45 ft. lbs.)
Crossmember to Sill	
Bolts	31 ft. lbs.)
Crossmember to Transmission Mount	
Nuts	16 ft. lbs.)
Exhaust Pipe to Manifold	
Nuts	23 ft. lbs.)
Exhaust Manifold-2.5L Engine	
Bolt #1 41 N·m (3	30 ft. lbs.)
Exhaust Manifold-2.5L Engine	
Nuts #6&7 31 N·m (2	23 ft. lbs.)
Exhaust Manifold-4.0L Engine	
Nuts #6&7 31 N·m (2	
Bolt #3	24 ft. lbs.)
Intake Manifold-2.5L Engine	
Bolt #2–5	
Intake & Exhaust Manifold-2.5L Engin	
Bolts #2–5	
Intake & Exhaust Manifold-4.0L Engin	
Nuts/Bolts #1,2,4,5,8–11 33 N·m (2	24 ft. lbs.)
Muffler to Catalytic Converter	
Exhaust Clamp Nut 61 N·m (4	45 ft. lbs.)
Oxygen Sensors	
Nut	20 ft. lbs.)
Rear Tail Pipe Hanger	
Nuts	40 ft. lbs.)

EXHAUST SYSTEM AND TURBOCHARGER

CONTENTS

page	page
EXHAUST SYSTEM	EXHAUST PIPE

GENERAL INFORMATION

EXHAUST SYSTEM

The basic exhaust system consists of an engine exhaust manifold, exhaust pipe, exhaust heat shield(s), muffler and exhaust tailpipe.

The exhaust system uses a single muffler.

The exhaust system must be properly aligned to prevent stress, leakage and body contact. If the system contacts any body panel, it may amplify objectionable noises originating from the engine or body.

When inspecting an exhaust system, critically inspect for cracked or loose joints, stripped screw or bolt threads, corrosion damage and worn, cracked or broken hangers. Replace all components that are badly corroded or damaged. DO NOT attempt to repair.

When replacement is required, use original equipment parts (or equivalent). This will assure proper alignment and provide acceptable exhaust noise levels.

CAUTION: Avoid application of rust prevention compounds or undercoating materials to exhaust system floor pan exhaust heat shields. Light overspray near the edges is permitted. Application of coating will result in excessive floor pan temperatures and objectionable fumes.

EXHAUST HEAT SHIELDS

Exhaust heat shields are needed to protect both the vehicle and the environment from the high temperatures (Fig. 1).

DO NOT allow the engine to operate at fast idle for extended periods (over 5 minutes). This condition may result in excessive temperatures in the exhaust system and on the floor pan.

Fig. 1 Heat Shields

REMOVAL AND INSTALLATION

EXHAUST PIPE

WARNING: IF TORCHES ARE USED WHEN WORK-ING ON THE EXHAUST SYSTEM, DO NOT ALLOW THE FLAME NEAR THE FUEL LINES.

REMOVAL

- (1) Raise and support the vehicle.
- (2) Saturate the bolts and nuts at turbo down pipe to exhaust pipe with heat valve lubricant. Allow 5 minutes for penetration.
- (3) Disconnect bolts from exhaust pipe to turbo down pipe (Fig. 2).

Fig. 2 Exhaust Down Pipe to Front Exhaust Pipe

(4) Remove the clamp nuts at muffler (Fig. 3). To remove the exhaust pipe from the muffler, apply heat until the metal becomes cherry red. Disconnect the exhaust pipe from the muffler. Remove the exhaust pipe.

Fig. 3 Front Pipe to Muffler

INSTALLATION

- (1) Assemble exhaust pipe to muffler, loosely to permit proper alignment of all parts.
- (2) Connect the exhaust pipe to the turbo down pipe manifold. Tighten the bolts to 22.5 N·m torque.
- (3) Use a new clamp and tighten the nuts to 43 $N \!\cdot\! m$ torque.
 - (4) Lower the vehicle.
- (5) Start the engine and inspect for exhaust leaks and exhaust system contact with the body panels. Adjust the alignment, if needed.

MUFFLER AND EXHAUST TAILPIPE

All original equipment exhaust systems are manufactured with the exhaust tailpipe welded to the muffler. Service replacement mufflers and exhaust tailpipes are either clamped together or welded together.

WARNING: IF TORCHES ARE USED WHEN WORKING ON THE EXHAUST SYSTEM, DO NOT ALLOW THE FLAME NEAR THE FUEL LINES.

REMOVAL

- (1) Raise and support the vehicle.
- (2) Remove the front muffler clamp from the exhaust pipe and muffler connection.
- (3) Remove the rear exhaust tailpipe hanger clamp and remove the exhaust tailpipe from the front exhaust tailpipe hanger.
- (4) Remove the exhaust tailpipe assembly from the muffler.

INSTALLATION

- (1) Install the muffler onto the exhaust pipe. Install the clamp and tighten the nuts finger tight.
- (2) Install the exhaust tailpipe into the rear of the muffler.
- (3) Install the exhaust tailpipe/muffler assembly on the rear exhaust tailpipe hanger. Make sure that the exhaust tailpipe has sufficient clearance from the floor pan.
- (4) Install the remaining clamps and the front exhaust tailpipe hanger.
- (5) Tighten the nuts on the muffler-to-exhaust pipe clamp to 43 $N {\cdot} m$ torque.
- (6) Tighten the nuts on the muffler-to-exhaust pipe clamp to 43 N·m torque.
 - (7) Lower the vehicle.
- (8) Start the engine and inspect for exhaust leaks and exhaust system contact with the body panels. Adjust the alignment, if needed.

EXHAUST MANIFOLD AND TURBOCHARGER (LHD)

REMOVAL

- (1) Disconnect the negative battery cable.
- (2) Disconnect the breather hose from air cleaner outlet hose (Fig. 4).

Fig. 4 Engine Compartment

- (3) Remove the air filter cover and hose from turbocharger, remove the assembly (Fig. 4).
- (4) Remove the EGR vacuum supply hose from the EGR valve.
- (5) Remove the innercooler inlet and outlet hoses from the engine (Fig. 4).
- (6) Remove the (2) bolts holding the EGR tube to the EGR valve.
- (7) Remove the intake manifold elbow and EGR valve as an assembly.
 - (8) Raise the vehicle on a hoist.
- (9) Drain the cooling system. Refer to Group 7, Cooling System for procedure.
- (10) Remove the exhaust system support clamp (Fig. 5).
- (11) Disconnect the exhaust system at the (3) bolt flange (Fig. 5).

CAUTION: Heatshield is very sharp. Wear gloves to prevent injury.

- (12) Unstrap the exhaust downpipe heatshield (Fig. 6).
- (13) Disconnect the turbocharger oil return hose from the engine block (Fig. 7).

80b9a496

Fig. 5 Exhaust System Inlet Pipe Connection

Fig. 6 Exhaust Downpipe Heatshield

- (14) Lower the vehicle from the hoist.
- (15) Remove the EGR tube from exhaust manifold.
- (16) Remove the (2) exhaust manifold heatshield retaining bolts and remove the heatshield.
- (17) Remove the heater core supply hoses from the vehicle.
- (18) Remove the oil pressure supply line bango bolt from the turbocharger.

Fig. 7 Turbocharger Oil Return Hose

CAUTION: Heatshield is very sharp. Wear gloves to prevent injury.

- (19) Remove the exhaust downpipe heatshield by pulling straight up.
- (20) Remove the (5) bolts from exhaust manifold downpipe and remove pipe.
- (21) Remove the (8) exhaust manifold retaining bolts, it is necessary to access the bolt behind the manifold outlet from the underneath of the vehicle.
- (22) Remove the exhaust manifold and turbocharger assembly from the vehicle.
- (23) Place assembly in a vice to remove the (3) exhaust manifold to turbocharger retaining nuts (Fig. 8).

Cleaning

All old gaskets should be inspected for any tears or signs of prior leakage. If any gaskets show such indications, they should be replaced with new gaskets. All gasket mating surfaces must be cleaned of old gasket material to produce a smooth and dirt free sealing surface for the new gasket.

INSTALLATION

- (1) Transfer the oil return hose to the new turbocharger (Fig. 9).
- (2) Install the turbo on the exhaust manifold (Fig. 9). Torque the nuts to 32 N⋅m (23 ft. lbs.).
- (3) Install the exhaust manifold and turbocharger assembly in the vehicle.
- (4) Install the (8) exhaust manifold retaining nuts. Torque nuts to 32 N·m (23 ft. lbs.).

Fig. 8 Turbocharger / Exhaust Manifold Assembly

Fig. 9 Turbocharger / Exhaust Manifold Assembly

(5) Install the exhaust manifold downpipe. Torque bolts to $32~N\cdot m$ (23 ft. lbs.).

CAUTION: Heatshield is very sharp. Wear gloves to prevent injury.

(6) Slide the exhaust downpipe heatshield down over pipe. Do not attempt to strap heatshield in position at this time, wait until vehicle is raised on hoist.

- (7) Install the oil pressure supply line on turbocharger. Torque bango bolt fitting to $27~{\rm N\cdot m}$ (20 ft. lbs.).
 - (8) Install the heater core supply hoses.
- (9) Position and install the exhaust manifold heat-shield. Torque bolts to 11 N·m (97 in. lbs.).
 - (10) Raise the vehicle on a hoist.
- (11) Install the turbocharger oil return hose on the engine block (Fig. 10).

Fig. 10 Turbocharger Oil Return Hose

- (12) Strap the exhaust downpipe heatshield in its original position.
- (13) Connect the exhaust system at the (3) bolt flange (Fig. 11). Torque the bolts to 23 N·m (17 ft. lbs.).
- (14) Install the exhaust system support clamp (Fig. 11). Torque nuts to 23 N⋅m (17 ft. lbs.).
 - (15) Lower the vehicle from the hoist.
- (16) Install the intake manifold elbow and EGR valve as an assembly. Torque bolts to 27 N·m (20 ft. lbs.).
- (17) Install the (2) bolts holding the EGR tube to the EGR valve. Torque bolts to 27 N·m (20 ft. lbs.).
- (18) Install the innercooler inlet and outlet hoses on the engine (Fig. 12).
- (19) Install the EGR vacuum supply hose on the EGR valve.
- (20) Install the air filter cover and outlet hose on turbocharger (Fig. 12).
- (21) Connect the breather hose on the air cleaner outlet hose (Fig. 12).
- (22) Fill the cooling system. Refer to Group 7, Cooling System for procedure.
 - (23) Connect the negative battery cable

80b9a496

Fig. 11 Exhaust System Inlet Pipe Connection

Fig. 12 Engine Compartment

(24) Start the engine and check for leaks.

EXHAUST MANIFOLD AND TURBOCHARGER (RHD)

REMOVAL

- (1) Disconnect the negative battery cable.
- (2) Disconnect the breather hose from the air cleaner outlet hose.

- (3) Remove the air filter cover and the hose from the turbocharger, remove the assembly.
 - (4) Raise the vehicle on a hoist.
- (5) Drain the cooling system. Refer to Group 7, Cooling System for the procedure.
- (6) Remove the exhaust system support clamp (Fig. 13).

80b9a496

Fig. 13 Exhaust System Inlet Pipe Connection

(7) Disconnect the exhaust system at the (3) bolt flange (Fig. 13).

CAUTION: Heatshield is very sharp. Wear gloves to prevent injury.

(8) Unstrap the exhaust downpipe heatshield (Fig. 14).

CAUTION: Heatshield is very sharp. Wear gloves to prevent injury.

- (9) Remove the exhaust downpipe heatshield by pulling straight down.
- (10) Disconnect the turbocharger oil return hose from the engine block (Fig. 15).
 - (11) Lower the vehicle from the hoist.
- (12) Disconnect the heater core coolant supply and the brake vacuum supply hoses from the right side of the engine. Remove the steel line support bracket from the top of the rocker cover and position the assembly out of the way.
- (13) Remove the EGR vacuum supply hose from the EGR valve.
- (14) Remove the innercooler inlet and outlet hoses from the engine.

Fig. 14 Exhaust Downpipe Heatshield

Fig. 15 Turbocharger Oil Return Hose

- (15) Remove the (2) bolts holding the EGR tube to the EGR valve.
- (16) Remove the intake manifold elbow and the EGR valve as an assembly.
- (17) Remove the EGR tube from the exhaust manifold.
- (18) Remove the (2) exhaust manifold heatshield retaining bolts and remove the heatshield (Fig. 16).
- (19) Remove the oil pressure supply line from the turbocharger (Fig. 16).

Fig. 16 2.5L Turbo Diesel — Heatshields

- (20) Remove the clutch master cylinder heatshield (Fig. 16).
- (21) Remove the wastegate actuator vacuum supply hose from the actuator (Fig. 17).

Fig. 17 R.H.D. Turbo Position & Orientation

- (22) Remove the turbocharger oil pressure supply line from the engine block (Fig. 17).
- (23) Working inside of the vehicle, remove the Knee Blocker. Refer to Group 8E, Instrument Panel Systems for the procedure.

- (24) Disconnect the neutral safety switch electrical connector at the clutch pedal.
- (25) Remove the (2) clutch master cylinder retaining nuts from the bulkhead.
- (26) Working from the inside of the engine compartment, remove the clutch master cylinder from the bulkhead and position the cylinder and line assembly out of the way.
- (27) Remove the (5) bolts from the exhaust manifold downpipe and remove the pipe.
- (28) Remove the (8) exhaust manifold retaining bolts, it is necessary to access the bolt behind the manifold outlet from the underneath of the vehicle.
- (29) Remove the steering shaft pinchbolt and slide the shaft straight off of the gearbox input shaft. Position aside.
- (30) Remove the exhaust manifold and the turbocharger assembly from the vehicle.
- (31) Place the turbo assembly in a vice to remove the (3) exhaust manifold to turbocharger retaining nuts (Fig. 18).

Fig. 18 Turbocharger / Exhaust Manifold Assembly Cleaning

All old gaskets should be inspected for any tears or signs of prior leakage. If any gasket shows such indications, it must be replaced with a new gasket. All gasket mating surfaces must be cleaned of all old gasket material to produce a smooth and dirt free sealing surface for the new gasket.

INSTALLATION

(1) Install the turbocharger on the exhaust manifold (Fig. 19). Torque nuts to 32 N·m (23 ft. lbs.).

Fig. 19 Turbocharger / Exhaust Manifold Assembly

- (2) Install the exhaust manifold and turbocharger assembly in the vehicle.
- (3) Install the (8) exhaust manifold retaining nuts, it is necessary to access the bolt behind the manifold outlet from the underneath of the vehicle. Torque nuts to $32~N\cdot m$ (23 ft. lbs.).
- (4) Install the exhaust manifold downpipe. Torque the bolts to 32 N·m (23 ft. lbs.).

Fig. 20 R.H.D. Turbo Position & Orientation

- (5) Position the turbocharger oil pressure supply line in its original position (Fig. 20). Torque the turbo fitting to $27~\mathrm{N}\cdot\mathrm{m}$ (20 ft. lbs.).
- (6) Install the wastegate actuator vacuum supply hose on the actuator (Fig. 20).
- (7) Install the exhaust manifold heatshield (Fig. 21). Torque bolts to 11 N·m (97 in. lbs.).

Fig. 21 2.5L Turbo Diesel — Heatshields

- (8) Install the EGR tube on the exhaust manifold. Leave loose at this time.
 - (9) Raise the vehicle on a hoist.

CAUTION: Heatshield is very sharp. Wear gloves to prevent injury.

- (10) Slide the exhaust downpipe heatshield up over the pipe and strap it in its original position (Fig. 22).
- (11) Install the steering shaft. Torque the pinch bolt to 49 N·m (36 ft. lbs.).
- (12) Install the turbocharger oil return hose on the engine block (Fig. 23).
- (13) Connect the exhaust system at the (3) bolt flange (Fig. 24). Torque the bolts to 23 N·m (17 ft. lbs.).
- (14) Install the exhaust system support clamp (Fig. 24). Torque nuts to 23 N·m (17 ft. lbs.).
 - (15) Lower the vehicle on hoist.
- (16) Install the clutch master cylinder through the bulkhead.
- (17) Working from the inside of the vehicle, Install the (2) clutch master cylinder retaining nuts.
- (18) Connect the neutral safety switch at the clutch pedal.

Fig. 22 Exhaust Downpipe Heatshield

Fig. 23 Turbocharger Oil Return Hose

(19) Install the Knee Blocker. Refer to Group 8E, Instrument Panel Systems for procedure.

80b9a496

Fig. 24 Exhaust System Inlet Pipe Connection

- (20) Install the clutch master cylinder heatshield.
- (21) Install the intake manifold elbow and the EGR valve as an assembly. Torque the intake elbow bolts to $27 \text{ N} \cdot \text{m}$ (20 ft. lbs.).
- (22) Install the (2) bolts holding the EGR tube to the EGR valve. Torque to bolts 27 N·m (20 ft. lbs.).
- (23) Torque the EGR tube on the exhaust manifold to $28 \text{ N} \cdot \text{m}$ (21 ft. lbs.).
- (24) Install the innercooler inlet and outlet hoses on the engine.
- (25) Install the EGR vacuum supply hose on the EGR valve.
- (26) Install the air filter cover and outlet hose on the turbocharger.
- (27) Connect the breather hose on the air cleaner outlet hose.
- (28) Install the heater core coolant supply and the brake vacuum supply lines in there original position.
 - (29) Connect the negative battery cable.
- (30) Fill the cooling system. Refer to Group 7, Cooling System for the procedure.
 - (31) Start the engine and check for leaks.

INTAKE MANIFOLD

REMOVAL

- (1) Remove exhaust manifold and turbocharger assembly.
 - (2) Remove water manifold.
 - (3) Remove intake manifold.

CLEANING

Clean the intake manifold and cylinder head mating surfaces. **DO NOT allow foreign material to enter either the intake manifold or the ports in the cylinder head.**

INSTALLATION

- (1) Install the new intake manifold gasket.
- (2) Position the intake manifold in place and finger tighten the mounting nuts.
- (3) Tighten the fasteners in sequence and to the specified torque 30 N·m.
- (4) Position the water manifold in place and finger tighten the mounting nuts.
- (5) Tighten the fasteners to the specified torque 12 N·m.
- (6) Install exhaust manifold and turbocharger assembly.
- (7) Install charge air cooler hose to intake manifold.
 - (8) Connect the battery negative cable.
 - (9) Start engine and check for leaks.

SPECIFICATIONS

TORQUE SPECIFICATIONS

Description Torque
EGR
Attaching Nuts 28 N·m
EGR
Tube Nut
EGR
Tube Flange Bolts 26 N·m
Exhaust Manifold
Nuts
Exhaust Manifold
Heat Shield Nuts
Exhaust Pipe
Support Clamp Bolts
Exhaust Pipe
Support Clamp Screw 22.5 N·m
Intake Manifold
Nuts
Muffler-to-Exhaust Pipe
Clamp Nuts 43 N·m
Tail Pipe Clamp
Hanger bolt
Turbocharger-to-Exhaust manifold
Nuts
Turbocharger
Oil Feed Line
Turbocharger Down Pipe-to-Exhaust Pipe
Bolts/Nuts
Turbocharger Down Pipe-to-Turbocharger
Bolts

FRAME AND BUMPERS

CONTENTS

page	page
BUMPERS 1	FRAME 5

BUMPERS

INDEX

page	page
	REAR BUMPER END CAP

REMOVAL AND INSTALLATION

FRONT BUMPER END CAP

REMOVAL

- (1) Remove the rivet attaching the end cap to the air deflector.
- (2) Remove the bolts and nuts attaching the end cap to the bumper (Fig. 1).
- (3) Pull back the wheelhouse liner and remove the screws attaching the end cap to the front fender.
- (4) Lifting the end cap from the bottom, tilt slightly upward and slide it outward to disengage the retainer tab from the bumper (Fig. 2).
 - (5) Separate the end cap from the bumper.

INSTALLATION

- (1) Position the end cap on the bumper and engage the retaining tab.
- (2) Install the screws attaching the end cap to the front fender.
- (3) Install the bolts attaching the end cap to the bumper. Tighten the nut to 9 N·m (7 ft. lbs.) torque.
- (4) Install the rivet attaching the end cap to air deflector.

FRONT BUMPER

REMOVAL

- (1) Remove bumper end caps.
- (2) If equipped, disengage fog lamp wire harness connectors.
 - (3) Disconnect vacuum line from reservoir (Fig. 3).
- (4) Remove Torx-head bolts that attach bumper to mounting brackets (Fig. 1).
 - (5) Remove bumper from vehicle.
- (6) If necessary, remove bolts attaching bumper mounting brackets to frame.

INSTALLATION

- (1) If removed, install bolts attaching bumper mounting brackets to frame. Tighten bolts to 55 N·m (41 ft. lbs.) torque.
 - (2) Position bumper on front of vehicle.
- (3) Install Torx-head bolts that attach bumper to mounting brackets. Tighten bolts to 55 N·m (41 ft. lbs.) torque.
 - (4) Connect vacuum line to reservoir.
- (5) If equipped, engage fog lamp wire harness connectors.
 - (6) Install bumper end caps.

Fig. 1 Front Bumper

Fig. 2 Bumper End Cap

FRONT TOW HOOK

REMOVAL

- (1) Remove bolts attaching tow hook to tow hook reinforcement (Fig. 4).
 - (2) Separate tow hook from reinforcement.
- (3) If necessary, remove bolt attaching tow hook reinforcement to frame.

INSTALLATION

- (1) If removed, install bolt attaching tow hook reinforcement to frame. Tighten bolt to 30 N·m (22 ft. lbs.) torque.
 - (2) Position tow hook on reinforcement.

Fig. 3 Vacuum Reservoir

(3) Install bolts attaching tow hook to tow hook reinforcement. Tighten bolts to 100 N·m (74 ft. lbs.) torque.

REAR BUMPER END CAP

REMOVAL

- (1) Remove the bolts and nuts attaching the underside of the end cap to the bumper (Fig. 5).
- (2) Remove the screw attaching the front of the end cap to the underside of the quarter panel.

Fig. 4 Front Tow Hook

- (3) Lift the end cap slightly upward and slide it rearward to release it from the retainer.
 - (4) Separate the end cap from the vehicle.

INSTALLATION

XJ -

- (1) Position the end cap on the rear of the retainer and the outer edge of the bumper.
- (2) Slide the end cap forward onto the retainer. Ensure the end cap overlaps the lip of the rear wheelhouse liner.
- (3) Install the screw attaching the front of the end cap to the underside of the quarter panel.

(4) Install the bolts and nuts attaching the underside of the end cap to the bumper.

REAR BUMPER

REMOVAL

- (1) For vehicles equipped with a trailer hitch, remove hitch before removing bumper. If necessary, refer to removal procedure within Group 13, Frame and Bumpers.
 - (2) Remove bumper end caps.
- (3) Remove upper nuts that attach bumper to bumper support brackets (Fig. 5).
- (4) Remove lower bolts that attach bumper to bumper support brackets.
 - (5) Remove bumper from vehicle.
- (6) If necessary, remove bumper support brackets from the rear sill.

INSTALLATION

- (1) If removed, install bumper support brackets on the rear sill. Tighten bolts to 55 N·m (41 ft. lbs.) torque.
 - (2) Position bumper on support brackets.
- (3) Install bolts that attach bumper to bumper support brackets. Tighten nuts to 55 $N \cdot m$ (41 ft. lbs.) torque.
 - (4) Install bumper end caps.
 - (5) If removed, install trailer hitch.

Fig. 5 Rear Bumper

REAR TOW HOOK

REMOVAL

- (1) Remove bolts that attach tow hook bracket and tow hook to frame rail (Fig. 6).
 - (2) Remove bracket and tow hook from frame rail.

INSTALLATION

- (1) Position bracket and tow hook on frame rail.
- (2) Install bolts that attach tow hook bracket and tow hook to frame rail. Tighten bolts to 94 N·m (70 ft. lbs.) torque.

Fig. 6 Rear Tow Hook

page

FRAME

INDEX

page

TRANSFER CASE SKID PLATE	5
SPECIFICATIONS	
FRAME TORQUE SPECIFICATIONS	8
TRANSFER CASE SKID PLATE	
REMOVAL	
	SPECIFICATIONS FRAME DIMENSIONS

REMOVAL

- (1) Remove the screws that attach skid plate to side sills.
- (2) Remove the nuts that attach the skid plate to the crossmember (Fig. 1).
 - (3) Remove the skid plate from the vehicle.

Fig. 1 Front Skid Plate

INSTALLATION

- (1) Position the skid plate at front crossmember and side sills.
- (2) Install the nuts to attach the skid plate to crossmember.
- (3) Install the screws to attach skid plate to side sills.

- (1) Support skid plate.
- (2) Remove bolts that attach skid plate to transmission support crossmember and frame sill (Fig. 2).
 - (3) Remove support and skid plate from vehicle.

Fig. 2 Transfer Case Skid Plate

INSTALLATION

- (1) Position and support skid plate at frame sill and transmission support crossmember.
- (2) Attach skid plate to frame sill and crossmember with bolts. Tighten bolts to 22 N·m (16 ft. lbs.) torque.

FUEL TANK SKID PLATE

REMOVAL

- (1) Position a support under skid plate.
- (2) Remove bolts that attach skid plate to underbody side rails (Fig. 3).
 - (3) Remove support and skid plate from vehicle.

INSTALLATION

(1) Position and support skid plate under fuel tank.

Fig. 3 Fuel Tank Skid Plate

- (2) Install bolts to attach skid plate to underbody rails. Tighten bolts to 74 N·m (55 ft. lbs.) torque.
 - (3) Remove support from under skid plate.

TRAILER HITCH

REMOVAL

- (1) If necessary, remove the trailer tow wire harness connector from the hitch (Fig. 4).
 - (2) Support the hitch.
- (3) Remove the bolts that attach the trailer hitch to the frame sills and reinforcement brackets (Fig. 5).
 - (4) If equipped, remove the fuel tank skid plate.

NOTE: The reinforcement brackets are held on the frame sills with two blind rivets.

Fig. 4 Trailer Hitch Harness Connector

INSTALLATION

Fig. 5 Trailer Hitch

- (1) Install frame reinforcement brackets, if removed. Slide the brackets through the vehicle rear sill openings and attach to the frame sills with blind rivets.
- (2) Using an adequate lifting device, position hitch at the proper location for installation on vehicle and support it.
- (3) If equipped, position fuel tank skid plate on vehicle frame sills.
- (4) Loosely install the bolts to attach the trailer hitch (and the skid plate) to frame sills and reinforcement brackets.
- (5) Tighten all bolts/nuts to 74 N·m (55 ft. lbs.) torque.
 - (6) Remove the lift/support.
- (7) If removed, attach the trailer wire harness connector to the hitch.

SPECIFICATIONS

FRAME DIMENSIONS

Frame dimensions are listed in millimeter scale. All dimensions are from center to center of Principal Locating Point (PLP), or from center to center of PLP and fastener location (Fig. 6).

SPECIFICATIONS

(Continued)

13 -

SPECIFICATIONS (Continued)

FRAME TORQUE SPECIFICATIONS

DESCRIPTION	TORQUE
Front Skid Plate Screw	42 N⋅m
	(31 ft. lbs.)
Front Skid Plate Nut	17 N⋅m
	(125 in. lbs.)
Transfer Case Skid Plate Bolt	22 N·m
	(16 ft. lbs.)
Fuel Tank Skid Plate Bolt	,
	(55 ft. lbs.)
	(55 1t. 155.)
Front Bumper End Cap to	0 N
Mounting Bracket Nut	9 N·m
	(7 ft. lbs.)
Front Bumper Mounting	
Bracket to Frame Bolt	
	(41 ft. lbs.)
Front Bumper to	
Mounting Bracket Bolt	55 N⋅m
0	(41 ft. lbs.)
Front Tow Hook Bolt	
	(74 ft. lbs.)
Front Tow Hook	(74 10. 105.)
	20 N m
Reinforcement Bolt	, 3U IN·III
D D	(22 ft. lbs.)
Rear Bumper to	= =
Mtg. Bracket Nut	
	(41 ft. lbs.)
Rear Bumper Mtg. Bracket to	
Rear Sill Bolt	55 N⋅m
	(41 ft. lbs.)
Rear Tow Hook Bolt	
	(70 ft. lbs.)
Trailer Tow	(. 0 10. 155.)
Reinforcement Brkt Bolt	74 N.m
	(55 ft. lbs.)
	(33 It. IDS.)

XJ — FRAME AND BUMPERS 13 - 1

FRAME AND BUMPERS

CONTENTS

pa		page	
ER	SWING AWAY SPARE TIRE CARRIER	2	FRAME
	ARE TIRE CARRIER	SWING AWAY SPA	

INDEX

page

DISASSEMBLY AND ASSEMBLY

SWING AWAY SPARE TIRE CARRIER MOUNTING

Fig. 1 Spare Tire Carrier Mounting

80aef29c

FRAME

INDEX

page

GENERAL INFORMATION

EMERGENCY TOW EYES

If your vehicle is equipped with emergency tow eyes, one is mounted in the front and one in the rear.

The front tow eye has two holes, the front hole is for towing use only and the rear angled hole is for shipping use only.

CAUTION: Do not use the angled hole for towing. You could damage your vehicle.

WARNING: Stand clear of vehicles when pulling with tow eyes. Tow straps and chains may break, causing serious injury.

CAUTION: Tow eyes are for emergency use only, to rescue a vehicle stranded off road. Do not use tow eyes for tow truck hookup or highway towing. You could damage your vehicle.

Fig. 1 Emergency Tow Eyes

XJ ------- FUEL SYSTEM 14 - 1

FUEL SYSTEM

CONTENTS

page		page
FUEL DELIVERY SYSTEM 1	FUEL INJECTION SYSTEM	23

FUEL DELIVERY SYSTEM

INDEX

page	page
DESCRIPTION AND OPERATION FUEL DELIVERY SYSTEM	PROCEDURE 10 FUEL TUBES/LINES/HOSES AND CLAMPS 10 QUICK-CONNECT FITTINGS 11 REMOVAL AND INSTALLATION ACCELERATOR PEDAL 20 FUEL FILTER/FUEL PRESSURE REGULATOR 13 FUEL GAUGE SENDING UNIT 15 FUEL INJECTOR RAIL—2.5L ENGINE 16 FUEL INJECTOR RAIL—4.0L ENGINE 17 FUEL INJECTORS 18 FUEL PUMP INLET FILTER 15 FUEL PUMP MODULE 14
FUEL PUMP AMPERAGE TEST	FUEL TANK CAPACITY
FUEL PUMP PRESSURE TEST—ALL ENGINES WITH PRESSURE TEST PORT	

DESCRIPTION AND OPERATION

PCM REPLACEMENT

USE THE DRB SCAN TOOL TO REPROGRAM THE NEW POWERTRAIN CONTROL MODULE (PCM) WITH THE VEHICLES ORIGINAL IDENTIFICATION NUMBER (VIN) AND THE VEHICLES ORIGINAL MILEAGE. IF THIS STEP IS NOT DONE, A DIAGNOSTIC TROUBLE CODE (DTC) MAY BE SET.

FUEL REQUIREMENTS

Your engine is designed to meet all emissions regulations and provide excellent fuel economy and performance when using high quality unleaded gasoline having an octane rating of 87. The use of premium gasoline is not recommended. The use of premium gasoline will provide no benefit over high quality regular gasoline, and in some circumstances may result in poorer performance.

Light spark knock at low engine speeds is not harmful to your engine. However, continued heavy spark knock at high speeds can cause damage and immediate service is required. Engine damage result-

DESCRIPTION AND OPERATION (Continued)

ing from operation with a heavy spark knock may not be covered by the new vehicle warranty.

Poor quality gasoline can cause problems such as hard starting, stalling and hesitations. If you experience these symptoms, try another brand of gasoline before considering service for the vehicle.

The American Automobile Manufacturers Association, AAMA, has issued gasoline specifications to define the minimum fuel properties necessary to deliver enhanced performance and durability for your vehicle. Chrysler recommends the use of gasoline that meet the AAMA specifications if they are available.

REFORMULATED GASOLINE

Many areas of the country require the use of cleaner burning gasoline referred to as "reformulated" gasoline. Reformulated gasoline contain oxygenates, and are specifically blended to reduce vehicle emissions and improve air quality.

Chrysler strongly supports the use of reformulated gasoline. Properly blended reformulated gasoline will provide excellent performance and durability for the engine and fuel system components.

GASOLINE/OXYGENATE BLENDS

Some fuel suppliers blend unleaded gasoline with oxygenates such as 10% ethanol, MTBE, and ETBE. Oxygenates are required in some areas of the country during the winter months to reduce carbon monoxide emissions. Fuels blended with these oxygenates may be used in your vehicle.

CAUTION: DO NOT use gasoline containing METH-ANOL. Gasoline containing methanol may damage critical fuel system components.

MMT

MMT is a manganese-containing metallic additive that is blended into some gasoline to increase octane. Gasoline blended with MMT provide no performance advantage beyond gasoline of the same octane number without MMT. Gasoline blended with MMT reduce spark plug life and reduce emission system performance in some vehicles. Chrysler recommends that gasoline without MMT be used in your vehicle. The MMT content of gasoline may not be indicated on the gasoline pump; therefore, you should ask your gasoline retailer whether or not his/her gasoline contains MMT.

It is even more important to look for gasoline without MMT in Canada because MMT can be used at levels higher than allowed in the United States. MMT is prohibited in Federal and California reformulated gasoline.

SULFUR IN GASOLINE

If you live in the northeast United States, your vehicle may have been designed to meet California low emission standards with clean-burning, low-sulfur, California gasoline. Gasoline sold outside of California is permitted to have higher sulfur levels which may affect the performance of the vehicle's catalytic converter. This may cause the Check Engine or Service Engine Soon light to illuminate.

Illumination of either light while operating on high sulfur gasoline does not necessarily mean your emission control system is malfunctioning. Chrysler recommends that you try a different brand of unleaded gasoline having lower sulfur to determine if the problem is fuel related prior to returning your vehicle to an authorized dealer for service.

CAUTION: If the Check Engine or Service Engine Soon light is flashing, immediate service is required; see on-board diagnostics system section.

MATERIALS ADDED TO FUEL

All gasoline sold in the United States and Canada are required to contain effective detergent additives. Use of additional detergents or other additives is not needed under normal conditions.

FUEL SYSTEM CAUTIONS

CAUTION: Follow these guidelines to maintain your vehicle's performance:

- The use of leaded gas is prohibited by Federal law. Using leaded gasoline can impair engine performance, damage the emission control system, and could result in loss of warranty coverage.
- An out-of-tune engine, or certain fuel or ignition malfunctions, can cause the catalytic converter to overheat. If you notice a pungent burning odor or some light smoke, your engine may be out of tune or malfunctioning and may require immediate service. Contact your dealer for service assistance.
- When pulling a heavy load or driving a fully loaded vehicle when the humidity is low and the temperature is high, use a premium unleaded fuel to help prevent spark knock. If spark knock persists, lighten the load, or engine piston damage may result.
- The use of fuel additives which are now being sold as octane enhancers is not recommended. Most of these products contain high concentrations of methanol. Fuel system damage or vehicle performance problems resulting from the use of such fuels or additives is not the responsibility of Chrysler Corporation and may not be covered under the new vehicle warranty.

XJ — FUEL SYSTEM 14 - 3

DESCRIPTION AND OPERATION (Continued)

NOTE: Intentional tampering with emissions control systems can result in civil penalties being assessed against you.

FUEL DELIVERY SYSTEM

The fuel delivery system consists of:

- the fuel pump module containing the electric fuel pump, fuel filter/fuel pressure regulator, fuel gauge sending unit (fuel level sensor) and a separate fuel filter located at bottom of pump module
 - fuel tubes/lines/hoses
 - · quick-connect fittings
 - fuel injector rail
 - fuel injectors
 - fuel tank
 - · fuel tank filler/vent tube assembly
 - fuel tank filler tube cap
 - accelerator pedal
 - throttle cable

Fuel is returned through the fuel pump module and back into the fuel tank through the fuel filter/ fuel pressure regulator. A separate fuel return line from the engine to the tank is not used.

The fuel tank assembly consists of: the fuel tank, fuel pump module assembly, fuel pump module lock-nut/gasket, and rollover valve (refer to Group 25, Emission Control System for rollover valve information).

A fuel filler/vent tube assembly using a pressure/vacuum fuel filler cap is used. The fuel filler tube contains a spring-loaded flap (door) located below the fuel fill cap. The flap is used as a secondary way of sealing the fuel tank if the fuel fill cap has not been properly tightened. The flap is used as part of the EVAP monitor system when the vehicle is equipped with a Leak Detection Pump (LDP). The flap will be installed to all fuel filler tubes (equipped/not equipped with LDP and EVAP monitor system).

Also to be considered part of the fuel system is the evaporation control system. This is designed to reduce the emission of fuel vapors into the atmosphere. The description and function of the Evaporative Control System is found in Group 25, Emission Control Systems.

Both fuel filters (at bottom of fuel pump module and within fuel pressure regulator) are designed for extended service. They do not require normal scheduled maintenance. Filters should only be replaced if a diagnostic procedure indicates to do so.

FUEL PUMP MODULE

The fuel pump module is installed in the top of the fuel tank (Fig. 1) or (Fig. 2). The fuel pump module contains the following components:

• A combination fuel filter/fuel pressure regulator

- A separate fuel pick-up filter (strainer)
- An electric fuel pump
- A threaded locknut to retain module to tank
- A gasket between tank flange and module
- Fuel gauge sending unit (fuel level sensor)
- Fuel supply tube (line) connection

The fuel gauge sending unit, pick-up filter and fuel filter/fuel pressure regulator may be serviced separately. If the electrical fuel pump requires service, the entire fuel pump module must be replaced.

Fig. 1 Fuel Tank/Fuel Pump Module (Top View)

Fig. 2 Fuel Pump Module Components

FUEL PUMP

DESCRIPTION

The electric fuel pump is located inside of the fuel pump module.

DESCRIPTION AND OPERATION (Continued)

OPERATION

The fuel pump used in this system has a permanent magnet electric motor. Fuel is drawn in through a filter at the bottom of the module and pushed through the electric motor gearset to the pump outlet.

Check Valve Operation: The pump outlet contains a one-way check valve to prevent fuel flow back into the tank and to maintain fuel supply line pressure (engine warm) when pump is not operational. It is also used to keep the fuel supply line full of gasoline when pump is not operational. After the vehicle has cooled down, fuel pressure may drop to 0 psi (cold fluid contracts), but liquid gasoline will remain in fuel supply line between the check valve and fuel injectors. Fuel pressure that has dropped to 0 psi on a cooled down vehicle (engine off) is a normal condition. Refer to the Fuel Pressure Leak Down Test for more information.

Voltage to operate the electric pump is supplied through the fuel pump relay.

FUEL GAUGE SENDING UNIT

DESCRIPTION

The fuel gauge sending unit (fuel level sensor) is attached to the side of the fuel pump module. The sending unit consists of a float, an arm, and a variable resistor (track).

OPERATION

The resistor track is used to send electrical signals to the Powertrain Control Module (PCM) for fuel gauge operation and for OBD II emission requirements.

For fuel gauge operation: As fuel level increases, the float and arm move up. This decreases the sending unit resistance, causing the fuel gauge to read full. As fuel level decreases, the float and arm move down. This increases the sending unit resistance causing the fuel gauge to read empty.

After this fuel level signal is sent to the PCM, the PCM will transmit the data across the CCD bus circuits to the instrument panel. Here it is translated into the appropriate fuel gauge level reading.

For OBD II emission monitor requirements: A voltage signal is sent from the resistor track on the sending unit to the PCM to indicate fuel level. The purpose of this feature is to prevent the OBD II system from recording/setting false misfire and fuel system monitor trouble codes. The feature is activated if the fuel level in the tank is less than approximately 15 percent of its rated capacity. If equipped with a Leak Detection Pump (EVAP system monitor), this feature will also be activated if the fuel level in the tank is more than approximately 85 percent of its rated capacity.

FUEL FILTER/FUEL PRESSURE REGULATOR

A combination fuel filter and fuel pressure regulator is used on all engines. It is located on the top of fuel pump module (Fig. 1). A separate frame mounted fuel filter is not used with any engine.

Fuel Pressure Regulator Operation: The pressure regulator is a mechanical device that is not controlled by engine vacuum or the Powertrain Control Module (PCM).

The regulator is calibrated to maintain fuel system operating pressure of approximately 339 kPa \pm 34 kPa (49.2 psi \pm 5 psi) at the fuel injectors. It contains a diaphragm, calibrated springs and a fuel return valve. The internal fuel filter is also part of the assembly.

Fig. 3 Fuel Filter/Fuel Pressure Regulator

Fuel is supplied to the filter/regulator by the electric fuel pump through an opening tube at the bottom of filter/regulator (Fig. 3).

The regulator acts as a check valve to maintain some fuel pressure when the engine is not operating. This will help to start the engine. A second check valve is located at the outlet end of the electric fuel pump. Refer to Fuel Pump—Description and Operation for more information. Also refer to the Fuel Pressure Leak Down Test and the Fuel Pump Pressure Tests.

If fuel pressure at the pressure regulator exceeds approximately 49 psi, an internal diaphragm closes and excess fuel is routed back into the tank through the pressure regulator. A separate fuel return line is not used.

XJ — FUEL SYSTEM 14 - 5

DESCRIPTION AND OPERATION (Continued)

FUEL TANK

DESCRIPTION

The fuel tank is constructed of a plastic material. Its main functions are for fuel storage and for placement of the fuel pump module.

OPERATION

All models pass a full 360 degree rollover test without fuel leakage. To accomplish this, fuel and vapor flow controls are required for all fuel tank connections.

A rollover valve(s) is mounted into the top of the fuel tank (or pump module). Refer to Emission Control System for rollover valve information.

An evaporation control system is connected to the rollover valve(s) to reduce emissions of fuel vapors into the atmosphere. When fuel evaporates from the fuel tank, vapors pass through vent hoses or tubes to a charcoal canister where they are temporarily held. When the engine is running, the vapors are drawn into the intake manifold. Certain models are also equipped with a self-diagnosing system using a Leak Detection Pump (LDP). Refer to Emission Control System for additional information.

ROLLOVER VALVE(S)

Refer to Group 25, Emission Control System for information.

FUEL INJECTORS

The fuel injectors (Fig. 4) are electrical solenoids. The injector contains a pintle that closes off an orifice at the nozzle end. When electric current is supplied to the injector, the armature and needle move a short distance against a spring, allowing fuel to flow out the orifice. Because the fuel is under high pressure, a fine spray is developed in the shape of a pencil stream. The spraying action atomizes the fuel, adding it to the air entering the combustion chamber.

An individual fuel injector is used for each individual cylinder. The top (fuel entry) end of the injector is attached into an opening on the fuel rail.

The nozzle (outlet) ends of the injectors are positioned into openings in the intake manifold just above the intake valve ports of the cylinder head. The engine wiring harness connector for each fuel injector is equipped with an attached numerical tag (INJ 1, INJ 2 etc.). This is used to identify each fuel injector.

The injectors are energized individually in a sequential order by the powertrain control module (PCM). The PCM will adjust injector pulse width by switching the ground path to each individual injector on and off. Injector pulse width is the period of time that the injector is energized. The PCM will adjust

Fig. 4 Fuel Injector—Typical

injector pulse width based on various inputs it receives.

During start up, battery voltage is supplied to the injectors through the ASD relay. When the engine is operating, voltage is supplied by the charging system. The PCM determines injector pulse width based on various inputs.

FUEL RAIL/FUEL DAMPER—2.5L ENGINE

The fuel rail supplies the necessary fuel to each individual fuel injector and is mounted to the intake manifold (Fig. 5). On the 2.5L engine, a **fuel damper** is located at the front of the fuel rail (Fig. 5). The damper is used only to help control fuel pressure pulsations. These pulsations are the result of the firing of the fuel injectors. It is **not used** as a fuel pressure regulator. The fuel pressure regulator is **not mounted** to the fuel rail on any engine. It is located on the fuel tank mounted fuel pump module. Refer to Fuel Filter/Fuel Pressure Regulator in this group for information.

Depending on vehicle model/engine, the fuel rail may/may not be equipped with a fuel pressure test port. Refer to the Fuel Pump Pressure Test for additional information.

The fuel rail is not repairable.

FUEL RAIL—4.0L ENGINE

The fuel rail supplies the necessary fuel to each individual fuel injector and is mounted to the intake manifold (Fig. 6). The fuel pressure regulator is not mounted to the fuel rail on any 4.0L engine. It is located on the fuel tank mounted fuel pump module. Refer to Fuel Filter/Fuel Pressure Regulator in this group for information.

Depending on vehicle model/engine, the fuel rail may/may not be equipped with a fuel pressure test port. Refer to the Fuel Pump Pressure Test for additional information.

DESCRIPTION AND OPERATION (Continued)

Fig. 5 Fuel Rail/Fuel Damper—2.5L Engine

The fuel rail is not repairable.

FUEL TANK FILLER TUBE CAP

The loss of any fuel or vapor out of filler neck is prevented by the use of a pressure-vacuum fuel tank filler tube cap. Relief valves inside the cap will release fuel tank pressure at predetermined pressures. Fuel tank vacuum will also be released at predetermined values. This cap must be replaced by a similar unit if replacement is necessary. This is in order for the system to remain effective.

CAUTION: Remove fuel tank filler tube cap before servicing any fuel system component. This is done to help relieve tank pressure. If equipped with a California emissions package and a Leak Detection Pump (LDP), the secondary seal below the fill cap

must be pressed (opened) to relieve fuel tank pressure.

QUICK-CONNECT FITTINGS

Different types of quick-connect fittings are used to attach various fuel system components. These are: a single-tab type, a two-tab type or a plastic retainer ring type. Some are equipped with safety latch clips. Refer to the Removal/Installation section for more information.

CAUTION: The interior components (o-rings, spacers) of quick-connect fitting are not serviced separately, but new pull tabs are available for some types. Do not attempt to repair damaged fittings or fuel lines/tubes. If repair is necessary, replace the complete fuel tube assembly.

DIAGNOSIS AND TESTING

FUEL PUMP PRESSURE TEST—ALL ENGINES WITH PRESSURE TEST PORT

Use this test in conjunction with the Fuel Pump Capacity Test, Fuel Pressure Leak Down Test and Fuel Pump Amperage Test found elsewhere in this group.

Check Valve Operation: The electric fuel pump outlet contains a one-way check valve to prevent fuel flow back into the tank and to maintain fuel supply line pressure (engine warm) when pump is not operational. It is also used to keep the fuel supply line full of gasoline when pump is not operational. After the vehicle has cooled down, fuel pressure may drop to 0 psi (cold fluid contracts), but liquid gasoline will remain in fuel supply line between the check valve and fuel injectors. Fuel pressure that has dropped to 0 psi on a cooled down vehicle (engine off) is a normal condition. When the electric fuel pump is activated, fuel pressure should immediately (1–2 seconds) rise to specification.

All fuel systems are equipped with a fuel tank module mounted, combination fuel filter/fuel pressure regulator. The fuel pressure regulator is not controlled by engine vacuum.

WARNING: THE FUEL SYSTEM IS UNDER CONSTANT FUEL PRESSURE EVEN WITH THE ENGINE OFF. BEFORE DISCONNECTING FUEL LINE AT FUEL RAIL, THIS PRESSURE MUST BE RELEASED. REFER TO THE FUEL SYSTEM PRESSURE RELEASE PROCEDURE.

(1) Remove protective cap at fuel rail test port. Connect the 0-414 kPa (0-60 psi) fuel pressure gauge

XJ — FUEL SYSTEM 14 - 7

DIAGNOSIS AND TESTING (Continued)

(from gauge set 5069) to test port pressure fitting on fuel rail (Fig. 7).

Fig. 7 Fuel Pressure Test Gauge (Typical Gauge Installation at Test Port)

- (2) Start and warm engine and note pressure gauge reading. Fuel pressure should be 339 kPa \pm 34 kPa (49.2 psi \pm 5 psi) at idle.
- (3) If engine runs, but pressure is below 44.2 psi, check for a kinked fuel supply line somewhere between fuel rail and fuel pump module. If line is not kinked, but specifications for either the Fuel Pump Capacity, Fuel Pump Amperage or Fuel Pressure Leak Down Tests were not met, replace fuel pump module assembly. Refer to Fuel Pump Module Removal/Installation.
- (4) If operating pressure is above 54.2 psi, electric fuel pump is OK, but fuel pressure regulator is defective. Replace fuel filter/fuel pressure regulator. Refer to Fuel Filter/Fuel Pressure Regulator Removal/Installation for more information.
 - (5) Install protective cap to fuel rail test port.

FUEL PUMP CAPACITY TEST

Before performing this test, verify fuel pump pressure. Refer to Fuel Pump Pressure Test. Use this test in conjunction with the Fuel Pressure Leak Down Test.

- (1) Release fuel system pressure. Refer to Fuel Pressure Release Procedure.
- (2) Disconnect fuel supply line at fuel rail. Refer to Quick-Connect Fittings. Some engines may require air cleaner housing removal before line disconnection.
- (3) Obtain correct Fuel Line Pressure Test Adapter Tool Hose. Tool number 6539 is used for 5/16" fuel lines and tool number 6631 is used for 3/8" fuel lines.
- (4) Connect correct Fuel Line Pressure Test Adapter Tool Hose into disconnected fuel supply line. Insert other end of Adaptor Tool Hose into a graduated container.
 - (5) Remove fuel fill cap.

- (6) To activate fuel pump and pressurize system, obtain DRB scan tool and actuate ASD Fuel System
- (7) A good fuel pump will deliver at least 1/4 liter of fuel in 7 seconds. Do not operate fuel pump for longer than 7 seconds with fuel line disconnected as fuel pump module reservoir may run empty.
 - (a) If capacity is lower than specification, but fuel pump can be heard operating through fuel fill cap opening, check for a kinked/damaged fuel supply line somewhere between fuel rail and fuel pump module.
 - (b) If line is not kinked/damaged, and fuel pressure is OK, but capacity is low, replace fuel filter/fuel pressure regulator. The filter/regulator may be serviced separately on certain applications. Refer to Fuel Filter/Fuel Pressure Regulator Removal/Installation for additional information.
 - (c) If both fuel pressure and capacity are low, replace fuel pump module assembly. Refer to Fuel Pump Module Removal/Installation.

FUEL PRESSURE LEAK DOWN TEST

Use this test in conjunction with the Fuel Pump Pressure Test and Fuel Pump Capacity Test.

Check Valve Operation: The electric fuel pump outlet contains a one-way check valve to prevent fuel flow back into the tank and to maintain fuel supply line pressure (engine warm) when pump is not operational. It is also used to keep the fuel supply line full of gasoline when pump is not operational. After the vehicle has cooled down, fuel pressure may drop to 0 psi (cold fluid contracts), but liquid gasoline will remain in fuel supply line between the check valve and fuel injectors. Fuel pressure that has dropped to 0 psi on a cooled down vehicle (engine off) is a normal condition. When the electric fuel pump is activated, fuel pressure should immediately (1–2 seconds) rise to specification.

Abnormally long periods of cranking to restart a **hot** engine that has been shut down for a short period of time may be caused by:

- Fuel pressure bleeding past a fuel injector(s).
- Fuel pressure bleeding past the check valve in the fuel pump module.
- (1) Disconnect the fuel inlet line at fuel rail. Refer to Fuel Tubes/Lines/Hoses and Clamps in this section of the group for procedures. On some engines, air cleaner housing removal may be necessary before fuel line disconnection.
- (2) Obtain correct Fuel Line Pressure Test Adapter Tool Hose. Tool number 6539 is used for 5/16" fuel lines and tool number 6631 is used for 3/8" fuel lines.
- (3) Connect correct Fuel Line Pressure Test Adapter Tool Hose between disconnected fuel line and fuel rail (Fig. 8).

DIAGNOSIS AND TESTING (Continued)

Fig. 8 Connecting Adapter Tool—Typical

- (4) Connect the 0-414 kPa (0-60 psi) fuel pressure test gauge (from Gauge Set 5069) to the test port on the appropriate Adaptor Tool. The fittings on both tools must be in good condition and free from any small leaks before performing the proceeding test.
- (5) Start engine and bring to normal operating temperature.
- (6) Observe test gauge. Normal operating pressure should be 339 kPa \pm 34 kPa (49.2 psi \pm 5 psi).
 - (7) Shut engine off.
- (8) Pressure should not fall below **30 psi for five** minutes.
- (9) If pressure falls below 30 psi, it must be determined if a fuel injector, the check valve within the fuel pump module, or a fuel tube/line is leaking.
- (10) Again, start engine and bring to normal operating temperature.
 - (11) Shut engine off.
- (12) **Testing for fuel injector or fuel rail leakage:** Clamp off the rubber hose portion of Adaptor Tool between the fuel rail and the test port "T" on Adapter Tool. If pressure now holds at or above 30 psi, a fuel injector or the fuel rail is leaking.
- (13) Testing for fuel pump check valve, filter/regulator check valve or fuel tube/line leakage: Clamp off the rubber hose portion of Adaptor Tool between the vehicle fuel line and test port "T" on Adapter Tool. If pressure now holds at or above 30 psi, a leak may be found at a fuel tube/line. If no leaks are found at fuel tubes or lines, one of the check valves in either the electric fuel pump or filter/regulator may be leaking.

Note: A quick loss of pressure usually indicates a defective check valve in the filter/regulator. A slow loss of pressure usually indicates a defective check valve in the electric fuel pump.

The electric fuel pump is not serviced separately. Replace the fuel pump module assembly. The filter/regulator may be replaced separately on certain applications. Refer to Fuel Filter/Fuel Pressure Regulator Removal/Installation for additional information.

FUEL PUMP AMPERAGE TEST

This amperage (current draw) test is to be done in conjunction with the Fuel Pump Pressure Test, Fuel Pump Capacity Test and Fuel Pressure Leak Down Test. Before performing the amperage test, be sure the temperature of the fuel tank is above 50° F (10° C).

The DRB Scan Tool along with the DRB Low Current Shunt (LCS) adapter (Fig. 9) and its test leads will be used to check fuel pump amperage specifications

80add391

Fig. 9 Low Current Shunt Adapter

- (1) Be sure fuel tank contains fuel before starting test. If tank is empty or near empty, amperage readings will be incorrect.
 - (2) Obtain LCS adapter.
- (3) Plug cable from LCS adapter into DRB scan tool at SET 1 receptacle.
- (4) Plug DRB into vehicle 16-way connector (data link connector).
- (5) Connect (-) and (+) test cable leads into LCS adapter receptacles. Use **10 amp (10A +)** receptacle and common (-) receptacles.

DIAGNOSIS AND TESTING (Continued)

- (6) Gain access to MAIN MENU on DRB screen.
- (7) Press DVOM button on DRB.
- (8) Using left/right arrow keys, highlight CHANNEL 1 function on DRB screen.
 - (9) Press ENTER three times.
- (10) Using up/down arrow keys, highlight RANGE on DRB screen (screen will default to 2 amp scale).
- (11) Press ENTER to change 2 amp scale to 10 amp scale. This step must be done to prevent damage to DRB scan tool or LCS adapter (blown fuse).
- (12) Remove cover from Power Distribution Center (PDC).
- (13) Remove fuel pump relay from PDC. Refer to label on PDC cover for relay location.

WARNING: BEFORE PROCEEDING TO NEXT STEP, NOTE THE FUEL PUMP WILL BE ACTIVATED AND SYSTEM PRESSURE WILL BE PRESENT. THIS WILL OCCUR AFTER CONNECTING TEST LEADS FROM LCS ADAPTER INTO FUEL PUMP RELAY CAVITIES. THE FUEL PUMP WILL OPERATE EVEN WITH IGNITION KEY IN OFF POSITION. BEFORE ATTACHING TEST LEADS, BE SURE ALL FUEL LINES AND FUEL SYSTEM COMPONENTS ARE CONNECTED.

CAUTION: TO PREVENT POSSIBLE DAMAGE TO THE VEHICLE ELECTRICAL SYSTEM AND LCS ADAPTER, THE TEST LEADS MUST BE CONNECTED INTO RELAY CAVITIES EXACTLY AS SHOWN IN FOLLOWING STEPS.

Depending upon vehicle model, year or engine configuration, three different types of relays may be used: Type-1, type-2 and type-3.

- (14) If equipped with **type-1 relay** (Fig. 10), attach test leads from LCS adapter into PDC relay cavities number 30 and 87. For location of these cavities, refer to numbers stamped to bottom of relay (Fig. 10).
- (15) If equipped with **type-2 relay** (Fig. 11), attach test leads from LCS adapter into PDC relay cavities number 30 and 87. For location of these cavities, refer to numbers stamped to bottom of relay (Fig. 11).
- (16) If equipped with **type-3 relay** (Fig. 12), attach test leads from LCS adapter into PDC relay cavities number 3 and 5. For location of these cavities, refer to numbers stamped to bottom of relay (Fig. 12).
- (17) When LCS adapter test leads are attached into relay cavities, fuel pump **will be activated.** Determine fuel pump amperage on DRB screen. Amperage should be below 10.0 amps. If amperage is below 10.0 amps, and specifications for the Fuel Pump Pressure,

Fig. 12 Type–3 Relay

Fuel Pump Capacity and Fuel Pressure Leak Down tests were met, the fuel pump module is OK.

DIAGNOSIS AND TESTING (Continued)

- (18) If amperage is more than 10.0 amps, replace fuel pump module assembly. The electric fuel pump is not serviced separately.
- (19) Disconnect test leads from relay cavities immediately after testing.

FUEL GAUGE SENDING UNIT

The fuel gauge sending unit contains a variable resistor (track). As the float moves up or down, electrical resistance will change. Refer to Instrument Panel and Gauges for Fuel Gauge testing. To test the gauge sending unit only, it must be removed from vehicle. The unit is part of the fuel pump module. Refer to Fuel Pump Module Removal/Installation for procedures. Measure the resistance across the sending unit terminals. With float in up position, resistance should be 20 ohms (+/- 5%). With float in down position, resistance should be 270 ohms (+/- 5%).

FUEL INJECTOR TEST

To perform a complete test of the fuel injectors and their circuitry, use the DRB scan tool and refer to the appropriate Powertrain Diagnostics Procedures manual. To test the injector only, refer to the following:

Disconnect the fuel injector wire harness connector from the injector. The injector is equipped with 2 electrical terminals (pins). Place an ohmmeter across the terminals. Resistance reading should be approximately 12 ohms ± 1.2 ohms at 20°C (68°F).

SERVICE PROCEDURES

FUEL SYSTEM PRESSURE RELEASE PROCEDURE

Use following procedure if fuel rail is or is not equipped with fuel pressure test port.

- (1) Remove fuel fill cap.
- (2) The fuel filler tube contains a spring-loaded flap (door) located below fuel fill cap. The flap is used as a secondary way of sealing fuel tank if fuel fill cap has not been properly tightened. It is part of EVAP monitor system when vehicle is equipped with a Leak Detection Pump (LDP). The vehicle may be equipped with flap installed into fuel filler tube even though vehicle is not equipped with LDP and EVAP monitor system. Place a nonmetallic object into fuel fill tube and press on flap to relieve any tank pressure.
- (3) Remove Fuel Pump relay from Power Distribution Center (PDC). For location of relay, refer to label on underside of PDC cover.
 - (4) Start and run engine until it stalls.
- (5) Attempt restarting engine until it will no longer run.
 - (6) Turn ignition key to OFF position.

CAUTION: Steps 1, 2, 3 and 4 must be performed to relieve high pressure fuel from within fuel rail. Do not attempt to use following steps to relieve this pressure as excessive fuel will be forced into a cylinder chamber.

- (7) Unplug connector from any fuel injector.
- (8) Attach one end of a jumper wire with alligator clips (18 gauge or smaller) to either injector terminal.
- (9) Connect other end of jumper wire to positive side of battery.
- (10) Connect one end of a second jumper wire to remaining injector terminal.

CAUTION: Powering an injector for more than a few seconds will permanently damage the injector.

- (11) Momentarily touch other end of jumper wire to negative terminal of battery for no more than a few seconds.
- (12) Place a rag or towel below fuel line quick-connect fitting at fuel rail.
- (13) Disconnect quick-connect fitting at fuel rail. Refer to Quick-Connect Fittings.
 - (14) Return fuel pump relay to PDC.
- (15) One or more Diagnostic Trouble Codes (DTC's) may have been stored in PCM memory due to fuel pump relay removal. The DRB scan tool must be used to erase a DTC.

FUEL TUBES/LINES/HOSES AND CLAMPS

OPERATION

Also refer to Quick-Connect Fittings.

WARNING: THE FUEL SYSTEM IS UNDER A CONSTANT PRESSURE (EVEN WITH THE ENGINE OFF). BEFORE SERVICING ANY FUEL SYSTEM HOSES, FITTINGS OR LINES, THE FUEL SYSTEM PRESSURE MUST BE RELEASED. REFER TO THE FUEL SYSTEM PRESSURE RELEASE PROCEDURE IN THIS GROUP.

Inspect all hose connections such as clamps, couplings and fittings to make sure they are secure and leaks are not present. The component should be replaced immediately if there is any evidence of degradation that could result in failure.

Never attempt to repair a plastic fuel line/tube. Replace as necessary.

Avoid contact of any fuel tubes/hoses with other vehicle components that could cause abrasions or scuffing. Be sure that the plastic fuel lines/tubes are properly routed to prevent pinching and to avoid heat sources.

The lines/tubes/hoses used on fuel injected vehicles are of a special construction. This is due to the

SERVICE PROCEDURES (Continued)

higher fuel pressures and the possibility of contaminated fuel in this system. If it is necessary to replace these lines/tubes/hoses, only those marked EFM/EFI may be used.

If equipped: The hose clamps used to secure rubber hoses on fuel injected vehicles are of a special rolled edge construction. This construction is used to prevent the edge of the clamp from cutting into the hose. Only these rolled edge type clamps may be used in this system. All other types of clamps may cut into the hoses and cause high-pressure fuel leaks.

Use new original equipment type hose clamps. Tighten hose clamps to 3 N·m (25 in. lbs.) torque.

QUICK-CONNECT FITTINGS

Also refer to Fuel Tubes/Lines/Hoses and Clamps. Different types of quick-connect fittings are used to attach various fuel system components, lines and tubes. These are: a single-tab type, a two-tab type or a plastic retainer ring type. Safety latch clips are used on certain components/lines. Certain fittings may require use of a special tool for disconnection.

DISCONNECTING

WARNING: THE FUEL SYSTEM IS UNDER A CONSTANT PRESSURE (EVEN WITH ENGINE OFF). BEFORE SERVICING ANY FUEL SYSTEM HOSE, FITTING OR LINE, FUEL SYSTEM PRESSURE MUST BE RELEASED. REFER TO FUEL SYSTEM PRESSURE RELEASE PROCEDURE.

CAUTION: The interior components (o-rings, spacers) of some types of quick-connect fitting are not serviced separately. If service parts are not available, do not attempt to repair a damaged fitting or fuel line. If repair is necessary, replace complete fuel line assembly.

- (1) Perform fuel pressure release procedure. Refer to Fuel Pressure Release Procedure in this group.
 - (2) Disconnect negative battery cable from battery.
- (3) Clean fitting of any foreign material before disassembly.
- (4) **Single-Tab Type Fitting:** This type of fitting is equipped with a single pull tab (Fig. 13). The tab is removable. After tab is removed, quick-connect fitting can be separated from fuel system component.
 - (a) Press release tab on side of fitting to release pull tab (Fig. 14). If release tab is not pressed prior to releasing pull tab, pull tab will be damaged.
 - (b) While pressing release tab on side of fitting, use screwdriver to pry up pull tab (Fig. 14).
 - (c) Raise pull tab until it separates from quick-connect fitting (Fig. 15).

(5) **Two-Tab Type Fitting:** This type of fitting is equipped with tabs located on both sides of fitting (Fig. 16). The tabs are supplied for disconnecting quick-connect fitting from component being serviced.

Fig. 13 Single-Tab Type Fitting

Fig. 14 Disconnecting Single-Tab Type Fitting

- (a) To disconnect quick-connect fitting, squeeze plastic retainer tabs (Fig. 16) against sides of quick-connect fitting with your fingers. Tool use is not required for removal and may damage plastic retainer.
- (b) Pull fitting from fuel system component being serviced.
- (c) The plastic retainer will remain on component being serviced after fitting is disconnected. The o-rings and spacer will remain in quick-connect fitting connector body.
- (6) **Plastic Retainer Ring Type Fitting:** This type of fitting can be identified by the use of a full-round plastic retainer ring (Fig. 17) usually black in color.
 - (a) To release fuel system component from quickconnect fitting, firmly push fitting towards compo-

SERVICE PROCEDURES (Continued)

Fig. 15 Removing Pull Tab

Fig. 16 Typical Two-Tab Type Quick-Connect Fitting

nent being serviced while firmly pushing plastic retainer ring into fitting (Fig. 17). With plastic ring depressed, pull fitting from component. The plastic retainer ring must be pressed squarely into fitting body. If this retainer is cocked during removal, it may be difficult to disconnect fitting. Use an open-end wrench on shoulder of plastic retainer ring to aid in disconnection.

- (b) After disconnection, plastic retainer ring will remain with quick-connect fitting connector body.
- (c) Inspect fitting connector body, plastic retainer ring and fuel system component for damage. Replace as necessary.
- (7) **Latch Clips:** Depending on vehicle model and engine, 2 different types of safety latch clips are used (Fig. 18) or (Fig. 19). Type-1 is tethered to fuel line and type-2 is not. A special tool will be necessary to disconnect fuel line after latch clip is removed. The latch clip may be used on certain fuel line/fuel rail connection, or to join fuel lines together.

INSTALLATION

Fig. 17 Plastic Retainer Ring Type Fitting

Fig. 18 Latch Clip—Type 1

- (a) Type 1: Pry up on latch clip with a screw-driver (Fig. 18).
- (b) Type 2: Separate and unlatch 2 small arms on end of clip (Fig. 19) and swing away from fuel line.
- (c) Slide latch clip toward fuel rail while lifting with screwdriver.
- (d) Insert special fuel line removal tool (Snap-On number FIH 9055-1 or equivalent) into fuel line (Fig. 20). Use tool to release locking fingers in end of line.
- (e) With special tool still inserted, pull fuel line from fuel rail.

SERVICE PROCEDURES (Continued)

Fig. 19 Latch Clip—Type 2

Fig. 20 Fuel Line Disconnection Using Special Tool

- (f) After disconnection, locking fingers will remain within quick-connect fitting at end of fuel line.
- (8) Disconnect quick-connect fitting from fuel system component being serviced.

CONNECTING

- (1) Inspect quick-connect fitting body and fuel system component for damage. Replace as necessary.
- (2) Prior to connecting quick-connect fitting to component being serviced, check condition of fitting and component. Clean parts with a lint-free cloth. Lubricate with clean engine oil.
- (3) Insert quick-connect fitting into fuel tube or fuel system component until built-on stop on fuel tube or component rests against back of fitting.

- (4) Continue pushing until a click is felt.
- (5) Single-tab type fitting: Push new tab down until it locks into place in quick-connect fitting.
- (6) Verify a locked condition by firmly pulling on fuel tube and fitting (15-30 lbs.).
- (7) Latch Clip Equipped: Install latch clip (snaps into position). If latch clip will not fit, this indicates fuel line is not properly installed to fuel rail (or other fuel line). Recheck fuel line connection.
 - (8) Connect negative cable to battery.
 - (9) Start engine and check for leaks.

REMOVAL AND INSTALLATION

FUEL FILTER/FUEL PRESSURE REGULATOR

The combination Fuel Filter/Fuel Pressure Regulator is located on the fuel pump module. The fuel pump module is located on top of fuel tank.

The filter/regulator may be removed without removing fuel pump module although fuel tank must be removed.

REMOVAL

- (1) Remove fuel tank. Refer to Fuel Tank Removal/Installation.
 - (2) Clean area around filter/regulator.
- (3) Disconnect fuel line at filter/regulator. Refer to Quick-Connect Fittings in this group for procedures.
- (4) Remove retainer clamp from top of filter/regulator (Fig. 21). Clamp snaps to tabs on pump module. Discard old clamp.
- (5) Pry filter/regulator from top of pump module with 2 screwdrivers. Unit is snapped into module.
 - (6) Discard gasket below filter/regulator (Fig. 22).
- (7) Before discarding filter/regulator assembly, inspect assembly to verify that o-rings (Fig. 23) are intact. If the smallest of the two o-rings can not be found on bottom of filter/regulator, it may be necessary to remove it from the fuel inlet passage in fuel pump module.

INSTALLATION

- (1) Clean recessed area in pump module where filter/regulator is to be installed.
- (2) Obtain new filter/regulator (two new o-rings should already be installed) .
- (3) Apply a small amount of clean engine oil to o-rings. Do not install o-rings separately into fuel pump module. They will be damaged when installing filter/regulator.
 - (4) Install new gasket to top of fuel pump module.
- (5) Press new filter/regulator into top of pump module until it snaps into position (a positive click must be heard or felt).

Fig. 21 Fuel Filter/Fuel Pressure Regulator

Fig. 22 Fuel Filter/Fuel Pressure Regulator Gasket

- (6) The arrow (Fig. 21) molded into top of fuel pump module should be pointed towards front of vehicle (12 o'clock position).
- (7) Rotate filter/regulator until fuel supply tube (fitting) is pointed towards front of vehicle (12 o'clock position).
- (8) Install new retainer clamp (clamp snaps over top of filter/regulator and locks to flanges on pump module).
- (9) Connect fuel line at filter/regulator. Refer to Quick-Connect Fittings in this group for procedures.
- (10) Install fuel tank. Refer to Fuel Tank Removal/Installation.

Fig. 23 Fuel Filter/Fuel Pressure Regulator O-Rings FUEL PUMP MODULE

Fuel tank removal will be necessary for fuel pump module removal.

REMOVAL

WARNING: THE FUEL SYSTEM IS UNDER A CONSTANT PRESSURE EVEN WITH ENGINE OFF. BEFORE SERVICING THE FUEL PUMP MODULE, FUEL SYSTEM PRESSURE MUST BE RELEASED.

- (1) Drain fuel tank and remove tank. Refer to the Fuel Tank Removal/Installation section of this group.
- (2) Thoroughly wash and clean area around pump module to prevent contaminants from entering tank.
- (3) Disconnect fuel line at filter/regulator. Refer to Quick-Connect Fittings in this group for procedures.
- (4) The plastic fuel pump module locknut is threaded onto fuel tank (Fig. 24). Install Special Tool 6856 to fuel pump module locknut and remove locknut (Fig. 25). The fuel pump module will spring up when locknut is removed.
 - (5) Remove module from fuel tank.

INSTALLATION

CAUTION: Whenever fuel pump module is serviced, module gasket must be replaced.

- (1) Thoroughly clean locknut threads and mating fuel tank threads. Use a soap/water solution. Do not use carburetor cleaner to clean threads.
- (2) Using a new gasket, position gasket and fuel pump module into opening in fuel tank.
- (3) Apply clean water to gasket and locknut threads.

REMOVAL AND INSTALLATION (Continued)

Fig. 24 Top View of Fuel Tank and Fuel Pump

Module

Fig. 25 Locknut Removal/Installation—Typical

- (4) Position locknut over top of fuel pump module.
- (5) Rotate module until molded arrow (Fig. 24) is pointed toward front of vehicle (12 o'clock position). This step must be done to prevent float/float rod assembly from contacting sides of fuel tank.
 - (6) Install Special Tool 6856 to locknut.
 - (7) Tighten locknut to 74 N·m (55 ft. lbs.) torque.
- (8) Rotate fuel filter/fuel pressure regulator until its fitting is pointed toward front of vehicle (12 o'clock position).
- (9) Connect fuel line at filter/regulator. Refer to Quick-Connect Fittings in this group for procedures.
- (10) Install fuel tank. Refer to Fuel Tank Installation in this section.

FUEL PUMP INLET FILTER

The fuel pump inlet filter (strainer) is located on the bottom of fuel pump module (Fig. 26). The fuel pump module is located on top of fuel tank.

Fig. 26 Fuel Pump Inlet Filter

REMOVAL

- (1) Remove fuel tank. Refer to Fuel Tank Removal/Installation.
- (2) Remove fuel pump module. Refer to Fuel Pump Module Removal/Installation.
- (3) Remove filter by prying from bottom of module with 2 screwdrivers. Filter is snapped to module.
 - (4) Clean bottom of pump module.

INSTALLATION

- (1) Snap new filter to bottom of module.
- (2) Install fuel pump module. Refer to Fuel Pump Module Removal/Installation.
- (3) Install fuel tank. Refer to Fuel Tank Removal/Installation.

FUEL GAUGE SENDING UNIT

The fuel gauge sending unit (fuel level sensor) and float assembly is located on the side of fuel pump module (Fig. 27). The fuel pump module is located within the fuel tank.

REMOVAL

- (1) Remove fuel tank. Refer to Fuel Tank Removal/Installation.
- (2) Remove fuel pump module. Refer to Fuel Pump Module Removal/Installation.
- (3) Remove electrical wire connector at sending unit terminals.
- (4) Press on release tab (Fig. 28) to remove sending unit from pump module.

Fig. 27 Fuel Gauge Sending Unit Location

Fig. 28 Fuel Gauge Sending Unit Release Tab INSTALLATION

- (1) Position sending unit to pump module and snap into place.
 - (2) Connect electrical connector to terminals.
- (3) Install fuel pump module. Refer to Fuel Pump Module Removal/Installation.
- (4) Install fuel tank. Refer to Fuel Tank Removal/Installation.

FUEL INJECTOR RAIL—2.5L ENGINE

REMOVAL

WARNING: THE FUEL SYSTEM IS UNDER CONSTANT FUEL PRESSURE EVEN WITH ENGINE OFF. THIS PRESSURE MUST BE RELEASED BEFORE SERVICING FUEL RAIL.

- (1) Remove fuel tank filler tube cap.
- (2) Perform Fuel System Pressure Release Procedure as described in this Group.
 - (3) Disconnect negative battery cable from battery.
- (4) Remove air tube at top of throttle body. Note: Some engine/vehicles may require removal of air cleaner ducts at throttle body.
- (5) Remove injector harness electrical connectors at each injector. Each injector connector should have a numerical tag attached identifying its corresponding cylinder (Fig. 29). If not, identify each connector before removal.

Fig. 29 Fuel Rail Mounting—2.5L Engine

- (6) Disconnect fuel supply line latch clip and fuel line at fuel rail. Refer to Quick-Connect Fittings in this group for procedures.
- (7) Disconnect throttle cable at throttle body. Refer to Throttle Cable Removal/Installation in this group for procedures.
- (8) Disconnect speed control cable at throttle body (if equipped). Refer to Speed Control Cable in Group 8H, Speed Control System for procedures.
- (9) Disconnect automatic transmission cable at throttle body (if equipped).
- (10) Remove cable routing bracket (Fig. 29) at intake manifold.
- (11) Remove nut securing crankshaft position sensor pigtail harness to fuel rail mounting stud. Remove clamp and harness from fuel rail mounting stud.
- (12) Clean dirt/debris from each fuel injector at intake manifold.
- (13) Remove fuel rail mounting nuts/bolts (Fig. 29).
- (14) Remove fuel rail by gently rocking until all the fuel injectors are out of intake manifold.

INSTALLATION

X.J.

- (1) Clean each injector bore at intake manifold.
- (2) Apply a small amount of clean engine oil to each injector o-ring. This will aid in installation.
- (3) Position tips of all fuel injectors into the corresponding injector bore in intake manifold. Seat injectors into manifold.
- (4) Install and tighten fuel rail mounting bolts to 11 ± 3 N·m (100 ± 25 in. lbs.) torque.
- (5) Position crankshaft position sensor pigtail wire harness clamp and wire harness to fuel rail mounting stud. Install nut securing harness to fuel rail mounting stud.
- (6) Connect tagged injector harness connectors to appropriate injector.
- (7) Connect fuel line and fuel line latch clip to fuel rail. Refer Quick-Connect Fittings in this group for procedures.
- (8) Install protective cap to pressure test port fitting (if equipped).
- (9) Install cable routing bracket to intake manifold.
 - (10) Connect throttle cable at throttle body.
- (11) Connect speed control cable at throttle body (if equipped).
- (12) Connect automatic transmission cable at throttle body (if equipped).
- (13) Install air tube (or duct) at top of throttle body.
 - (14) Install fuel tank cap.
 - (15) Connect negative battery cable to battery.
 - (16) Start engine and check for fuel leaks.

FUEL INJECTOR RAIL—4.0L ENGINE

REMOVAL

WARNING: THE FUEL SYSTEM IS UNDER CONSTANT FUEL PRESSURE EVEN WITH ENGINE OFF. THIS PRESSURE MUST BE RELEASED BEFORE SERVICING FUEL RAIL.

- (1) Remove fuel tank filler tube cap.
- (2) Perform Fuel System Pressure Release Procedure as described in this Group.
 - (3) Disconnect negative battery cable from battery.
- (4) Remove air tube at top of throttle body. Note: Some engine/vehicles may require removal of air cleaner ducts at throttle body.
- (5) Remove injector harness electrical connectors at each injector. Each injector connector should have a numerical tag attached identifying its corresponding cylinder (Fig. 30). If not, identify each connector before removal.

Fig. 30 Fuel Rail Mounting-4.0L Engine

- (6) Disconnect fuel supply line latch clip and fuel line at fuel rail. Refer to Quick-Connect Fittings in this group for procedures.
- (7) Disconnect throttle cable at throttle body. Refer to Throttle Cable Removal/Installation in this group for procedures.
- (8) Disconnect speed control cable at throttle body (if equipped). Refer to Speed Control Cable in Group 8H, Speed Control System for procedures.
- (9) Disconnect automatic transmission cable at throttle body (if equipped).
- (10) Remove cable routing bracket (Fig. 30) at intake manifold.
- (11) Remove nut securing crankshaft position sensor pigtail harness to fuel rail mounting stud. Remove clamp and harness from fuel rail mounting stud.
- (12) Clean dirt/debris from each fuel injector at intake manifold.
- (13) Remove fuel rail mounting nuts/bolts (Fig. 30).
- (14) Remove fuel rail by gently rocking until all the fuel injectors are out of intake manifold.

INSTALLATION

- (1) Clean each injector bore at intake manifold.
- (2) Apply a small amount of clean engine oil to each injector o-ring. This will aid in installation.
- (3) Position tips of all fuel injectors into the corresponding injector bore in intake manifold. Seat injectors into manifold.
- (4) Install and tighten fuel rail mounting bolts to 11 ± 3 N·m (100 ± 25 in. lbs.) torque.
- (5) Position crankshaft position sensor pigtail wire harness clamp and wire harness to fuel rail mount-

ing stud. Install nut securing harness to fuel rail mounting stud.

- (6) Connect tagged injector harness connectors to appropriate injector.
- (7) Connect fuel line and fuel line latch clip to fuel rail. Refer Quick-Connect Fittings in this group for procedures.
- (8) Install protective cap to pressure test port fitting (if equipped).
- (9) Install cable routing bracket to intake manifold.
 - (10) Connect throttle cable at throttle body.
- (11) Connect speed control cable at throttle body (if equipped).
- (12) Connect automatic transmission cable at throttle body (if equipped).
- (13) Install air tube (or duct) at top of throttle body.
 - (14) Install fuel tank cap.
 - (15) Connect negative battery cable to battery.
 - (16) Start engine and check for fuel leaks.

FUEL INJECTORS

REMOVAL

- (1) Remove fuel rail. Refer to Fuel Injector Rail Removal in this section.
- (2) Remove clip(s) that retain fuel injector(s) to fuel rail (Fig. 31) or (Fig. 32).

Fig. 31 Injector Mounting

INSTALLATION

- (1) Install fuel injector(s) into fuel rail assembly and install retaining clip(s).
- (2) If same injector(s) is being reinstalled, install new o-ring(s).
- (3) Apply a small amount of clean engine oil to each injector o-ring. This will aid in installation.
- (4) Install fuel rail. Refer to Fuel Rail Installation in this section.
 - (5) Start engine and check for fuel leaks.

Fig. 32 Injector Retaining Clips—Typical Injector FUEL TANK

WARNING: THE FUEL SYSTEM IS UNDER CONSTANT FUEL PRESSURE EVEN WITH THE ENGINE OFF. THIS PRESSURE MUST BE RELEASED BEFORE SERVICING FUEL TANK.

Two different procedures may be used to drain fuel tank (lowering tank or using DRB scan tool).

The quickest draining procedure involves lowering the fuel tank.

As an alternative procedure, the electric fuel pump may be activated allowing tank to be drained at fuel rail connection. Refer to DRB scan tool for fuel pump activation procedures. Before disconnecting fuel line at fuel rail, release fuel pressure. Refer to the Fuel System Pressure Release Procedure in this group for procedures. Attach end of special test hose tool number 6541, 6539, 6631 or 6923 at fuel rail disconnection (tool number will depend on model and/or engine application). Position opposite end of this hose tool to an approved gasoline draining station. Activate fuel pump and drain tank until empty.

If electric fuel pump is not operating, tank must be lowered for fuel draining. Refer to following procedures.

REMOVAL

- (1) Disconnect negative battery cable at battery.
- (2) Release fuel system pressure. Refer to the Fuel System Pressure Release Procedure in this group.
 - (3) Raise and support vehicle.

- (4) If Equipped: Remove fuel tank skid plate. Refer to Group 23, Body for procedures.
- (5) Remove 4 fuel hose shield mounting bolts and remove fuel hose shield (Fig. 33) from body.

Fig. 33 Fuel Hose Shield

(6) Remove fuel tank fill hose and vent hose clamps at fuel tank filler tube (Fig. 34). Remove both hoses at fuel filler tube (Fig. 34).

Fig. 34 Fuel Fill and Vent Hoses

(7) Remove exhaust tailpipe heat shield mounting bolts and remove shield.

CAUTION: To protect fuel tank from exhaust heat, this shield must reinstalled after tank installation.

(8) Place a hydraulic jack to bottom of fuel tank.

Fig. 35 Fuel Tank Connections at Front of Fuel Tank

Fig. 36 Fuel Tank Mounting Straps/Nuts
WARNING: PLACE A SHOP TOWEL AROUND FUEL
LINES TO CATCH ANY EXCESS FUEL.

- (9) Disconnect fuel supply line from fuel extension line near front of fuel tank (Fig. 35). Refer to Fuel Tubes/Lines/Hoses and Clamps in this group. Also refer to Quick-Connect Fittings for procedures.
- (10) Disconnect EVAP canister vent line near front of tank (Fig. 35).
- (11) Disconnect fuel pump module electrical connector (pigtail harness) near front of tank (Fig. 35). Harness connector is clipped to body.
- (12) Remove two fuel tank strap nuts (Fig. 36). Position both tank support straps away from tank.
- (13) Carefully lower right side of tank while feeding both fuel hoses through access hole in body. Fuel

FUEL SYSTEM -

14 - 20

Fig. 37 Fuel Fill/Vent Hose Index Marks

Tank Full And Not Drained Using DRB Scan Tool: To prevent fuel loss through hoses, keep left side of tank higher than right side while lowering. Do not allow hose openings to drop lower than top of tank.

- (14) Continue lowering tank until clear of vehicle. Place tank on floor with left side (hose side) higher than right side.
- (15) Drain tank by removing fuel fill hose at tank. Fuel fill hose is largest of 2 hoses (Fig. 37). Insert the drain hose (from an approved gasoline draining station) into hose opening. Drain tank until empty.
- (16) If fuel pump module removal is necessary, refer to Fuel Pump Module Removal/Installation in this group for procedures.

INSTALLATION

- (1) If fuel pump module is being installed, refer to Fuel Pump Module Removal/Installation in this group for procedures.
- (2) Install fuel fill/vent hoses to tank fittings. To prevent hose from kinking, rotate each hose until index mark on hose is aligned to index tang on fuel tank (Fig. 37).
- (3) Install hose clamps to hoses. Position clamps between index marks on each hose (Fig. 37).
 - (4) Position fuel tank to hydraulic jack.
- (5) Raise tank into position while guiding fuel fill and vent hoses into and through access hole in body.
 - (6) Continue raising tank until positioned to body.
- (7) Attach two fuel tank mounting straps and mounting nuts. Tighten nuts to 10 N·m (90 in. lbs.) torque. Do not over tighten nuts.
- (8) Install both fuel hoses to fuel fill tube. Tighten both retaining clamps.

- (9) Position fuel hose shield to body. Install and tighten 4 mounting bolts.
- (10) Connect fuel pump module pigtail harness electrical connector near front of tank.
- (11) Connect fuel pump module supply line near front of tank. Refer to Quick-Connect Fittings for procedures.
 - (12) Connect EVAP hose near front of tank.
 - (13) Install exhaust tailpipe heat shield.
 - (14) Install fuel tank skid plate (if equipped).
- (15) Lower vehicle and connect battery cable to battery.

FUEL TANK FILLER TUBE CAP

If replacement of the fuel tank filler tube cap is necessary, it must be replaced with an identical cap to be sure of correct system operation.

CAUTION: Remove the fuel tank filler tube cap to relieve fuel tank pressure. The cap must be removed prior to disconnecting any fuel system component or before draining the fuel tank.

ACCELERATOR PEDAL

The accelerator pedal is connected to the throttle body linkage by the throttle cable. The cable is protected by a plastic sheathing and is connected to the throttle body linkage by a ball socket. It is connected to the upper part of the accelerator pedal arm by a plastic retainer (clip) (Fig. 38). This retainer (clip) snaps into the top of the accelerator pedal arm. Retainer tabs (built into the cable sheathing) (Fig. 38) fasten the cable to the dash panel.

Dual throttle return springs (attached to the throttle shaft) are used to close the throttle.

CAUTION: Never attempt to remove or alter these springs.

CAUTION: Be careful not to damage or kink the cable core wire (within the cable sheathing) while servicing the accelerator pedal or throttle cable.

REMOVAL

- (1) From inside the vehicle, hold up accelerator pedal. Remove plastic cable retainer (clip) and throttle cable core wire from upper end of accelerator pedal arm (Fig. 38). Plastic cable retainer (clip) snaps into pedal arm.
- (2) Remove accelerator pedal mounting bracket nuts. Remove accelerator pedal assembly.

Fig. 38 Accelerator Pedal Mounting—Typical

INSTALLATION

- (1) Place accelerator pedal assembly over studs protruding from floor pan. Tighten mounting nuts to $5~\rm N{\cdot}m$ (36 in. lbs.) torque.
- (2) Slide throttle cable into opening in top of pedal arm. Push plastic cable retainer (clip) into accelerator pedal arm opening until it snaps into place.
- (3) Before starting engine, operate accelerator pedal to check for any binding.

THROTTLE CABLE

REMOVAL

- (1) From inside vehicle, hold up accelerator pedal. Remove plastic cable retainer (clip) and throttle cable core wire from upper end of accelerator pedal arm (Fig. 38). Plastic cable retainer (clip) snaps into pedal arm.
 - (2) Remove cable core wire at pedal arm.
- (3) From inside vehicle, pinch both sides of cable housing retainer tabs (Fig. 38) at dash panel. Remove cable housing from dash panel and pull into engine compartment.
- (4) Remove cable from cable guide on engine cylinder head (valve) cover (Fig. 39).
- (5) Remove throttle cable ball end socket at throttle body linkage (snaps off) (Fig. 40).
- (6) Remove throttle cable from throttle body mounting bracket by compressing squeeze tabs (Fig. 39) and pushing cable through hole in bracket.
 - (7) Remove throttle cable from vehicle.

Fig. 39 Cable Guide and Squeeze Tabs—Typical

Fig. 40 Throttle (Accelerator) Cable at Throttle Body—Typical

INSTALLATION

- (1) Slide throttle cable through hole in throttle body bracket until retainer tabs lock into bracket.
- (2) Connect cable ball end to throttle body linkage ball (snaps on).
- (3) Snap cable into cable guide on engine cylinder head (valve) cover.
- (4) Push other end of cable through opening in dash panel until retaining tabs lock into panel.
- (5) From inside drivers compartment, slide throttle cable core wire into opening in top of accelerator pedal arm. Push cable retainer (clip) into pedal arm opening until it snaps in place.
- (6) Before starting engine, operate accelerator pedal to check for any binding.

14 - 22 FUEL SYSTEM — XJ

SPECIFICATIONS

FUEL TANK CAPACITY

	Models	Liters	U.S. Gallons
	All	76	20
Naminal refill conscition are shown A variation may			variation may

Nominal refill capacities are shown. A variation may be observed from vehicle to vehicle due to manufacturing tolerance and refill procedure.

FUEL SYSTEM PRESSURE

339 kPa \pm 34 kPa (49.2 psi \pm 5 psi).

TORQUE CHART

DESCRIPTION	ORQUE
Accelerator Pedal Bracket Mounting Nuts .	5 N·m
(3	6 in. lbs.)
Fuel Hose Clamps 3 N·m (2	5 in. lbs.)
Fuel Rail Mounting Bolts 11 N·m (10	0 in. lbs.)
Fuel Tank Mounting Strap Nuts	. 10 N·m
(9	0 in. lbs.)
Fuel Pump Module Locknut 74 N·m (5	5 ft. lbs.)

FUEL INJECTION SYSTEM

INDEX

page	page
DESCRIPTION AND OPERATION AIR CONDITIONING (A/C) CLUTCH RELAY— PCM OUTPUT	MODES OF OPERATION
INPUT	OUTPUT
CRANKSHAFT POSITION SENSOR—PCM INPUT	TRANSMISSION PARK/NEUTRAL SWITCH— PCM INPUT
ENGINE COOLANT TEMPERATURE SENSOR— PCM INPUT	ENGINE COOLANT TEMPERATURE SENSOR
FUEL INJECTORS—PCM OUTPUT	SENSOR
OUTPUT	CHECK PROCEDURE
IGNITION COIL—PCM OUTPUT	AUTOMATIC SHUTDOWN (ASD) RELAY 45 DUTY CYCLE EVAP CANISTER PURGE SOLENOID
LEAK DETECTION PUMP—PCM OUTPUT 35 MALFUNCTION INDICATOR LAMP—ECM/PCM OUTPUT	IDLE AIR CONTROL (IAC) MOTOR

OXYGEN SENSOR	48
POWER STEERING PRESSURE SWITCH—2.5L	
ENGINE	48
POWERTRAIN CONTROL MODULE (PCM)	47
THROTTLE BODY	45
THROTTLE POSITION SENSOR (TPS)	46

DESCRIPTION AND OPERATION

POWERTRAIN CONTROL MODULE (PCM)

The Powertrain Control Module (PCM) (Fig. 1) operates the fuel system. The PCM was formerly referred to as the SBEC or engine controller. The PCM is a pre-programmed, triple microprocessor digital computer. It regulates ignition timing, air-fuel ratio, emission control devices, charging system, certain transmission features, speed control, air conditioning compressor clutch engagement and idle speed. The PCM can adapt its programming to meet changing operating conditions.

Fig. 1 PCM Location

The PCM receives input signals from various switches and sensors. Based on these inputs, the PCM regulates various engine and vehicle operations through different system components. These components are referred to as Powertrain Control Module (PCM) Outputs. The sensors and switches that provide inputs to the PCM are considered Powertrain Control Module (PCM) Inputs.

The PCM adjusts ignition timing based upon inputs it receives from sensors that react to: engine rpm, manifold absolute pressure, engine coolant temperature, throttle position, transmission gear selection (automatic transmission), vehicle speed, power steering pump pressure (2.5L engine only), and the brake switch.

The PCM adjusts idle speed based on inputs it receives from sensors that react to: throttle position, vehicle speed, transmission gear selection, engine

VEHICLE SPEED SENSOR	50
SPECIFICATIONS	
TORQUE CHART	51
SPECIAL TOOLS	
FUEL SYSTEM	52

coolant temperature and from inputs it receives from the air conditioning clutch switch and brake switch.

Based on inputs that it receives, the PCM adjusts ignition coil dwell. The PCM also adjusts the generator charge rate through control of the generator field and provides speed control operation.

NOTE: PCM Inputs:

- A/C request (if equipped with factory A/C)
- A/C select (if equipped with factory A/C)
- Auto shutdown (ASD) sense
- Battery temperature
- Battery voltage
- Brake switch
- CCD bus (+) circuits
- CCD bus (-) circuits
- Camshaft position sensor signal
- Crankshaft position sensor
- Data link connection for DRB scan tool
- Engine coolant temperature sensor
- \bullet Extended idle switch (4.0L engine with police package)
 - Fuel level
 - Generator (battery voltage) output
- Ignition circuit sense (ignition switch in on/off/crank/run position)
 - Intake manifold air temperature sensor
 - Leak detection pump (switch) sense (if equipped)
 - Manifold absolute pressure (MAP) sensor
 - Oil pressure
 - Oxygen sensors
 - Park/neutral switch (auto. trans. only)
 - Power ground
- Power steering pressure switch (2.5L engine only)
 - Sensor return
 - Signal ground
 - Speed control multiplexed single wire input
 - Throttle position sensor
 - Vehicle speed sensor

NOTE: PCM Outputs:

- A/C clutch relay
- Auto shutdown (ASD) relay
- CCD bus (+/-) circuits for: speedometer, voltmeter, fuel gauge, oil pressure gauge/lamp, engine temp. gauge and speed control warn. lamp
 - Data link connection for DRB scan tool

DESCRIPTION AND OPERATION (Continued)

- EGR valve control solenoid (if equipped)
- EVAP canister purge solenoid
- Five volt sensor supply (primary)
- Five volt sensor supply (secondary)
- Fuel injectors
- · Fuel pump relay
- Generator field driver (-)
- Generator field driver (+)
- Idle air control (IAC) motor
- Ignition coil
- Leak detection pump (if equipped)
- Malfunction indicator lamp (Check engine lamp). Driven through CCD circuits.
 - Radiator cooling fan relay
 - Speed control vacuum solenoid
 - Speed control vent solenoid
- Tachometer (if equipped). Driven through CCD circuits.
 - Transmission convertor clutch circuit

MODES OF OPERATION

As input signals to the powertrain control module (PCM) change, the PCM adjusts its response to the output devices. For example, the PCM must calculate different injector pulse width and ignition timing for idle than it does for wide open throttle (WOT).

The PCM will operate in two different modes: **Open Loop and Closed Loop**.

During Open Loop modes, the powertrain control module (PCM) receives input signals and responds only according to preset PCM programming. Input from the oxygen (O2S) sensors is not monitored during Open Loop modes.

During Closed Loop modes, the PCM will monitor the oxygen (O2S) sensors input. This input indicates to the PCM whether or not the calculated injector pulse width results in the ideal air-fuel ratio. This ratio is 14.7 parts air-to-1 part fuel. By monitoring the exhaust oxygen content through the O2S sensor, the PCM can fine tune the injector pulse width. This is done to achieve optimum fuel economy combined with low emission engine performance.

The fuel injection system has the following modes of operation:

- Ignition switch ON
- Engine start-up (crank)
- Engine warm-up
- Idle
- Cruise
- Acceleration
- Deceleration
- Wide open throttle (WOT)
- Ignition switch OFF

The ignition switch On, engine start-up (crank), engine warm-up, acceleration, deceleration and wide open throttle modes are Open Loop modes. The idle

and cruise modes, (with the engine at operating temperature) are Closed Loop modes.

IGNITION SWITCH (KEY-ON) MODE

This is an Open Loop mode. When the fuel system is activated by the ignition switch, the following actions occur:

- \bullet The powertrain control module (PCM) pre-positions the idle air control (IAC) motor.
- The PCM determines atmospheric air pressure from the MAP sensor input to determine basic fuel strategy.
- The PCM monitors the engine coolant temperature sensor input. The PCM modifies fuel strategy based on this input.
- Intake manifold air temperature sensor input is monitored.
 - Throttle position sensor (TPS) is monitored.
- The auto shutdown (ASD) relay is energized by the PCM for approximately three seconds.
- The fuel pump is energized through the fuel pump relay by the PCM. The fuel pump will operate for approximately three seconds unless the engine is operating or the starter motor is engaged.
- The O2S sensor heater element is energized via the ASD relay. The O2S sensor input is not used by the PCM to calibrate air-fuel ratio during this mode of operation.

ENGINE START-UP MODE

This is an Open Loop mode. The following actions occur when the starter motor is engaged.

The powertrain control module (PCM) receives inputs from:

- Battery voltage
- Engine coolant temperature sensor
- Crankshaft position sensor
- Intake manifold air temperature sensor
- Manifold absolute pressure (MAP) sensor
- Throttle position sensor (TPS)
- · Camshaft position sensor signal

The PCM monitors the crankshaft position sensor. If the PCM does not receive a crankshaft position sensor signal within 3 seconds of cranking the engine, it will shut down the fuel injection system.

The fuel pump is activated by the PCM through the fuel pump relay.

Voltage is applied to the fuel injectors with the ASD relay via the PCM. The PCM will then control the injection sequence and injector pulse width by turning the ground circuit to each individual injector on and off.

The PCM determines the proper ignition timing according to input received from the crankshaft position sensor.

DESCRIPTION AND OPERATION (Continued)

ENGINE WARM-UP MODE

This is an Open Loop mode. During engine warmup, the powertrain control module (PCM) receives inputs from:

- Battery voltage
- Crankshaft position sensor
- Engine coolant temperature sensor
- Intake manifold air temperature sensor
- Manifold absolute pressure (MAP) sensor
- Throttle position sensor (TPS)
- Camshaft position sensor signal (in the distributor)
- Park/neutral switch (gear indicator signal—auto. trans. only)
 - Air conditioning select signal (if equipped)
 - Air conditioning request signal (if equipped) Based on these inputs the following occurs:
- Voltage is applied to the fuel injectors with the ASD relay via the PCM. The PCM will then control the injection sequence and injector pulse width by
- the injection sequence and injector pulse width by turning the ground circuit to each individual injector on and off.
- The PCM adjusts engine idle speed through the idle air control (IAC) motor and adjusts ignition timing.
- The PCM operates the A/C compressor clutch through the A/C compressor clutch relay. This is done if A/C has been selected by the vehicle operator and specified pressures are met at the high and low-pressure A/C switches. Refer to Group 24, Heating and Air Conditioning for additional information.
- When engine has reached operating temperature, the PCM will begin monitoring O2S sensor input. The system will then leave the warm-up mode and go into closed loop operation.

IDLE MODE

When the engine is at operating temperature, this is a Closed Loop mode. At idle speed, the powertrain control module (PCM) receives inputs from:

- Air conditioning select signal (if equipped)
- Air conditioning request signal (if equipped)
- Battery voltage
- Crankshaft position sensor
- Engine coolant temperature sensor
- Extended idle switch (4.0L engine with police package only)
 - Intake manifold air temperature sensor
 - Manifold absolute pressure (MAP) sensor
 - Throttle position sensor (TPS)
- Camshaft position sensor signal (in the distributor)
 - Battery voltage
- Park/neutral switch (gear indicator signal—auto. trans. only)
 - Oxygen sensors

• Power steering pressure switch (2.5L engine only)

Based on these inputs, the following occurs:

- Voltage is applied to the fuel injectors with the ASD relay via the PCM. The PCM will then control injection sequence and injector pulse width by turning the ground circuit to each individual injector on and off.
- The PCM monitors the O2S sensor input and adjusts air-fuel ratio by varying injector pulse width. It also adjusts engine idle speed through the idle air control (IAC) motor.
- The PCM adjusts ignition timing by increasing and decreasing spark advance.
- The PCM operates the A/C compressor clutch through the A/C compressor clutch relay. This is done if A/C has been selected by the vehicle operator and specified pressures are met at the high and low–pressure A/C switches. Refer to Group 24, Heating and Air Conditioning for additional information.

The optional Extended Idle Switch is used to raise and hold the engine idle speed to approximately 1000 rpm. This is when the shifter is in either the Park or Neutral position and throttle pedal is not used. A rocker-type switch (extended idle switch) is mounted to the instrument panel. This switch will supply a ground circuit (input) to the powertrain control module (PCM). The switch is available only with 4.0L engine when supplied with optional police package.

On 2.5L 4-cylinder engines, a power steering pressure switch is used to supply an input to the PCM when steering pump pressure is high. This will raise engine speed. Refer to Power Steering Pressure Switch in this group for additional information. **The 4.0L 6-cylinder engine does not use this switch.**

CRUISE MODE

When the engine is at operating temperature, this is a Closed Loop mode. At cruising speed, the power-train control module (PCM) receives inputs from:

- Air conditioning select signal (if equipped)
- Air conditioning request signal (if equipped)
- Battery voltage
- Engine coolant temperature sensor
- · Crankshaft position sensor
- Intake manifold air temperature sensor
- Manifold absolute pressure (MAP) sensor
- Throttle position sensor (TPS)
- Camshaft position sensor signal (in the distributor)
- Park/neutral switch (gear indicator signal—auto. trans. only)
 - Oxygen (O2S) sensors

Based on these inputs, the following occurs:

XJ — FUEL SYSTEM 14 - 27

DESCRIPTION AND OPERATION (Continued)

- Voltage is applied to the fuel injectors with the ASD relay via the PCM. The PCM will then adjust the injector pulse width by turning the ground circuit to each individual injector on and off.
- The PCM monitors the O2S sensor input and adjusts air-fuel ratio. It also adjusts engine idle speed through the idle air control (IAC) motor.
- The PCM adjusts ignition timing by turning the ground path to the coil on and off.
- The PCM operates the A/C compressor clutch through the clutch relay. This happens if A/C has been selected by the vehicle operator and requested by the A/C thermostat.

ACCELERATION MODE

This is an Open Loop mode. The powertrain control module (PCM) recognizes an abrupt increase in throttle position or MAP pressure as a demand for increased engine output and vehicle acceleration. The PCM increases injector pulse width in response to increased throttle opening.

DECELERATION MODE

When the engine is at operating temperature, this is an Open Loop mode. During hard deceleration, the powertrain control module (PCM) receives the following inputs.

- Air conditioning select signal (if equipped)
- Air conditioning request signal (if equipped)
- Battery voltage
- Engine coolant temperature sensor
- · Crankshaft position sensor
- Intake manifold air temperature sensor
- Manifold absolute pressure (MAP) sensor
- Throttle position sensor (TPS)
- Camshaft position sensor signal (in the distributor)
- Park/neutral switch (gear indicator signal—auto. trans. only)
 - Vehicle speed sensor

If the vehicle is under hard deceleration with the proper rpm and closed throttle conditions, the PCM will ignore the oxygen sensor input signal. The PCM will enter a fuel cut-off strategy in which it will not supply a ground to the injectors. If a hard deceleration does not exist, the PCM will determine the proper injector pulse width and continue injection.

Based on the above inputs, the PCM will adjust engine idle speed through the idle air control (IAC) motor.

The PCM adjusts ignition timing by turning the ground path to the coil on and off.

WIDE OPEN THROTTLE MODE

This is an Open Loop mode. During wide open throttle operation, the powertrain control module (PCM) receives the following inputs.

- Battery voltage
- Crankshaft position sensor
- Engine coolant temperature sensor
- Intake manifold air temperature sensor
- Manifold absolute pressure (MAP) sensor
- Throttle position sensor (TPS)
- Camshaft position sensor signal (in the distributor)

During wide open throttle conditions, the following occurs:

- Voltage is applied to the fuel injectors with the ASD relay via the PCM. The PCM will then control the injection sequence and injector pulse width by turning the ground circuit to each individual injector on and off. The PCM ignores the oxygen sensor input signal and provides a predetermined amount of additional fuel. This is done by adjusting injector pulse width.
- The PCM adjusts ignition timing by turning the ground path to the coil on and off.

IGNITION SWITCH OFF MODE

When ignition switch is turned to OFF position, the PCM stops operating the injectors, ignition coil, ASD relay and fuel pump relay.

AIR CONDITIONING (A/C) CONTROLS—PCM INPUT

OPERATION

The A/C control system information applies to factory installed air conditioning units.

A/C SELECT SIGNAL: When the A/C switch is in the ON position, an input signal is sent to the Powertrain Control Module (PCM). The signal informs the PCM that the A/C has been selected. The PCM adjusts idle speed to a pre-programmed rpm through the idle air control (IAC) motor to compensate for increased engine load.

A/C REQUEST SIGNAL: Once A/C has been selected, the PCM receives the A/C request signal from the clutch cycling pressure switch. The input indicates that the evaporator pressure is in the proper range for A/C application. The PCM uses this input to cycle the A/C compressor clutch (through the A/C relay). It will also determine the correct engine idle speed through the idle air control (IAC) motor position.

If the A/C low-pressure switch or high-pressure switch opens (indicating a low or high refrigerant pressure), the PCM will not receive an A/C request signal. The PCM will then remove the ground from

DESCRIPTION AND OPERATION (Continued)

the A/C relay. This will deactivate the A/C compressor clutch.

If the switch opens, (indicating that evaporator is not in proper pressure range), the PCM will not receive the A/C request signal. The PCM will then remove the ground from the A/C relay, deactivating the A/C compressor clutch.

AUTOMATIC SHUTDOWN (ASD) RELAY SENSE—PCM INPUT

A 12 volt signal at this input indicates to the PCM that the ASD has been activated. The ASD relay is located in the Power Distribution Center (PDC). The PDC is located in the engine compartment (Fig. 2). Refer to label on PDC cover for relay location. The relay is used to connect the oxygen sensor heater elements, ignition coil and fuel injectors to 12 volt + power supply.

Fig. 2 Power Distribution Center (PDC)

This input is used only to sense that the ASD relay is energized. If the powertrain control module (PCM) does not see 12 volts at this input when the ASD should be activated, it will set a diagnostic trouble code (DTC).

BATTERY TEMPERATURE SENSOR—PCM INPUT

OPERATION

Provides a signal to the PCM corresponding to the battery temperature.

BATTERY VOLTAGE—PCM INPUT

OPERATION

The battery voltage input provides power to the Powertrain Control Module (PCM). It also informs the PCM what voltage level is supplied to the ignition coil and fuel injectors.

If battery voltage is low, the PCM will increase injector pulse width (period of time that the injector is energized). This is done to compensate for the reduced flow through injector caused by the lowered voltage.

BRAKE SWITCH—PCM INPUT

OPERATION

When the brake light switch is activated, the Powertrain Control Module (PCM) receives an input indicating that the brakes are being applied. After receiving this input, the PCM maintains idle speed to a scheduled rpm through control of the Idle Air Control (IAC) motor. The brake switch input is also used to disable vent and vacuum solenoid output signals to the speed control servo.

FIVE VOLT SENSOR SUPPLY—PRIMARY

OPERATION

Supplies the required 5 volt power source to the crankshaft position sensor, camshaft position sensor, MAP sensor and throttle position sensor.

FIVE VOLT SENSOR SUPPLY—SECONDARY

OPERATION

Supplies the required 5 volt source to certain sensors.

FUEL LEVEL SENSOR—PCM INPUT

OPERATION

The Powertrain Control Module (PCM) supplies power to the fuel level sensor (fuel gauge sending unit). The fuel level sensor will then return a signal to the PCM to indicate fuel level. The purpose of this feature is to prevent a false setting of misfire and fuel system monitor trouble codes. This is if the fuel level is less than approximately 15 percent, or, if equipped with a Leak Detection Pump (LDP), more than approximately 85 percent of its rated capacity. This input is also used to send a signal to the PCM for fuel gauge operation via the CCD or J1850 bus circuits.

XJ — FUEL SYSTEM 14 - 29

DESCRIPTION AND OPERATION (Continued)

CAMSHAFT POSITION SENSOR—PCM INPUT

A sync signal is provide by the camshaft position sensor located in the distributor (Fig. 3). The sync signal from this sensor works in conjunction with the crankshaft position sensor to provide the Powertrain Control Module (PCM) with inputs. This is done to establish and maintain correct injector firing order.

Refer to Camshaft Position Sensor in Group 8D, Ignition System for more information.

Fig. 3 Camshaft Position Sensor—Typical CRANKSHAFT POSITION SENSOR—PCM INPUT

This sensor is a hall effect device that detects notches in the flywheel (manual transmission) or flexplate (automatic transmission).

This sensor is used to indicate to the powertrain control module (PCM) that a spark and or fuel injection event is to be required. The output from this sensor, in conjunction with the camshaft position sensor signal, is used to differentiate between fuel injection and spark events.

The sensor is bolted to the transmission bellhousing (Fig. 4).

Refer to Group 8D, Ignition System for more crankshaft position sensor information.

The engine will not operate if the PCM does not receive a crankshaft position sensor input.

ENGINE COOLANT TEMPERATURE SENSOR—PCM INPUT

The engine coolant temperature sensor is installed in the thermostat housing (Fig. 5) and protrudes into the water jacket. The sensor provides an input voltage to the Powertrain Control Module (PCM) relating coolant temperature. The PCM uses this input along with inputs from other sensors to determine injector pulse width and ignition timing. As coolant temperature varies, the coolant temperature sensor's resis-

Fig. 4 Crankshaft Position Sensor—Typical

tance changes. The change in resistance results in a different input voltage to the PCM.

When the engine is cold, the PCM will operate in Open Loop cycle. It will demand slightly richer airfuel mixtures and higher idle speeds. This is done until normal operating temperatures are reached.

Refer to Open Loop/Closed Loop Modes of Operation in this section of the group for more information.

Fig. 5 Engine Coolant Temperature Sensor—Typical

DESCRIPTION AND OPERATION (Continued)

EXTENDED IDLE SWITCH—PCM INPUT

OPTIONAL POLICE PACKAGE WITH 4.0L ENGINE ONLY

The extended idle switch is used to raise the engine idle speed to approximately 1000 rpm. This is when the shifter is in either the Park or Neutral position. A rocker-type switch (extended idle switch) is mounted to the instrument panel. This switch will supply a ground circuit to the powertrain control module (PCM). The switch is available only with 4.0L engine when supplied with the optional police package.

For testing and diagnosis of this switch and its circuit, refer to the Diagnosis and Testing section of this group.

GENERATOR OUTPUT—PCM INPUT

OPERATION

Provides a charging system voltage input to the Powertrain Control Module (PCM). It is sensed at the battery input to the PCM.

OXYGEN SENSOR (HO2S)—PCM INPUT

Two heated O2S sensors are used. The sensors produce voltages from 0 to 1 volt, depending upon the oxygen content of the exhaust gas in the exhaust manifold. When a large amount of oxygen is present (caused by a lean air/fuel mixture), the sensors produces a low voltage. When there is a lesser amount present (rich air/fuel mixture) it produces a higher voltage. By monitoring the oxygen content and converting it to electrical voltage, the sensors act as a rich-lean switch.

The oxygen sensors are equipped with a heating element that keeps the sensors at proper operating temperature during all operating modes. Maintaining correct sensor temperature at all times allows the system to enter into closed loop operation sooner. Also, it allows the system to remain in closed loop operation during periods of extended idle.

In Closed Loop operation, the PCM monitors the O2S sensor input (along with other inputs) and adjusts the injector pulse width accordingly. During Open Loop operation, the PCM ignores the O2S sensor input. The PCM adjusts injector pulse width based on preprogrammed (fixed) values and inputs from other sensors.

The Automatic Shutdown (ASD) relay supplies battery voltage to both the upstream and downstream heated oxygen sensors. The oxygen sensors are equipped with a heating element. The heating elements reduce the time required for the sensors to reach operating temperature.

UPSTREAM HEATED OXYGEN SENSOR

The upstream O2S sensor is located in the exhaust downpipe (Fig. 6). It provides an input voltage to the PCM. The input tells the PCM the oxygen content of the exhaust gas. The PCM uses this information to fine tune the air/fuel ratio by adjusting injector pulse width.

80524e39

Fig. 6 Heated Oxygen Sensors

DOWNSTREAM HEATED OXYGEN SENSOR

The downstream heated oxygen sensor is located near the outlet end of the catalytic convertor (Fig. 6). The downstream heated oxygen sensor input is used to detect catalytic convertor deterioration. As the convertor deteriorates, the input from the downstream sensor begins to match the upstream sensor input except for a slight time delay. By comparing the downstream heated oxygen sensor input to the input from the upstream sensor, the PCM calculates catalytic convertor efficiency.

When the catalytic converter efficiency drops below emission standards, the PCM stores a diagnostic trouble code and illuminates the Malfunction Indicator Lamp (MIL). For more information, refer to Group 25, Emission Control Systems.

IGNITION CIRCUIT SENSE—PCM INPUT

OPERATION

The ignition circuit sense input tells the Power-train Control Module (PCM) the ignition switch has energized the ignition circuit.

INTAKE MANIFOLD AIR TEMPERATURE SENSOR—PCM INPUT

The intake manifold air temperature sensor is installed in the intake manifold with the sensor element extending into the air stream (Fig. 7) or (Fig. 8). The sensor provides an input voltage to the Powertrain Control Module (PCM) indicating intake man-

XJ — FUEL SYSTEM 14 - 31

DESCRIPTION AND OPERATION (Continued)

ifold air temperature. The input is used along with inputs from other sensors to determine injector pulse width. As the temperature of the air-fuel stream in the manifold varies, the sensor resistance changes. This results in a different input voltage to the PCM.

Fig. 7 Intake Man. Air Temp. Sensor Location—4.0L Engine

LEAK DETECTION PUMP (SWITCH) SENSE—

Fig. 8 Intake Man. Air Temp. Sensor Location—2.5L Engine

PCM INPUT

Provides an input to the PCM that the leak detection pump (LDP) has been activated. Refer to Group 25, Emission Control System for LDP information.

MANIFOLD ABSOLUTE PRESSURE (MAP) SENSOR—PCM INPUT

The MAP sensor reacts to absolute pressure in the intake manifold. It provides an input voltage to the Powertrain Control Module (PCM). As engine load changes, manifold pressure varies. The change in manifold pressure causes MAP sensor voltage to change. The change in MAP sensor voltage results in a different input voltage to the PCM. The input voltage level supplies the PCM with information about ambient barometric pressure during engine load while the engine is running. The PCM uses this input along with inputs from other sensors to adjust air-fuel mixture.

The MAP sensor is mounted on the side of the engine throttle body (Fig. 7). The sensor is connected to the throttle body with a rubber L-shaped fitting.

OIL PRESSURE SENSOR—PCM INPUT

DESCRIPTION

The engine oil pressure sensor (sending unit) is located in an engine oil pressure gallery.

OPERATION

A signal is sent from the oil pressure sensor to the Powertrain Control Module (PCM) relating to engine oil pressure.

POWER GROUND

OPERATION

The power ground is used to control ground circuits for the following Powertrain Control Module (PCM) loads:

- · Generator field winding
- Fuel injectors
- Ignition coil(s)
- · Certain relays/solenoids

POWER STEERING PRESSURE SWITCH—PCM INPUT

A pressure sensing switch is included in the power steering system (mounted on the high-pressure line). This switch will be used only on vehicles equipped with a 2.5L engine and power steering. The switch (Fig. 9) provides an input to the Powertrain Control Module (PCM). This input is provided during periods of high pump load and low engine rpm; such as during parking maneuvers. The PCM will then increase the idle speed through the Idle Air Control (IAC) motor. This is done to prevent the engine from stalling under the increased load.

When steering pump pressure exceeds 3275 kPa \pm 690 kPa (475 psi \pm 100 psi), the normally closed

switch will open and the PCM will increase the engine idle speed. This will prevent the engine from stalling.

When pump pressure drops to approximately 1379 kPa (200 psi), the switch circuit will re-close and engine idle speed will return to its previous setting.

Fig. 9 Power Steering Pump Pressure Switch—2.5L Engine

SENSOR RETURN—PCM INPUT

OPERATION

Sensor Return provides a low noise ground reference for all engine control system sensors.

SPEED CONTROL SWITCHES—PCM INPUT

Two separate speed control switch modules are mounted on the steering wheel to the left and right side of the driver's airbag module. Within the two switch modules, five **momentary** contact switches, supporting seven different speed control functions are used. The outputs from these switches are filtered into one input. The Powertrain Control Module (PCM) determines which output has been applied through **resistive multiplexing.** The input circuit voltage is measured by the PCM to determine which switch function has been selected.

A speed control indicator lamp, located on the instrument panel cluster is energized by the PCM via the CCD Bus. This occurs when speed control system power has been turned ON, and the engine is running.

The two switch modules are labeled: ON/OFF, SET, RESUME/ACCEL, CANCEL and COAST. Refer to Group 8H, Speed Control System for more information.

TRANSMISSION PARK/NEUTRAL SWITCH—PCM INPUT

The park/neutral switch is located on the transmission housing and provides an input to the Powertrain Control Module (PCM). This will indicate that the automatic transmission is in Park, Neutral or a drive gear selection. This input is used to determine idle speed (varying with gear selection), fuel injector pulse width and ignition timing advance. Refer to Group 21, Transmissions, for testing, replacement and adjustment information. It is also used as a condition for speed control operation.

THROTTLE POSITION SENSOR (TPS)—PCM INPUT

The TPS is mounted on the throttle body (Fig. 7). The TPS is a variable resistor that provides the Powertrain Control Module (PCM) with an input signal (voltage) that represents throttle blade position. The sensor is connected to the throttle blade shaft. As the position of the throttle blade changes, the resistance of the TPS changes.

The PCM supplies approximately 5 volts to the TPS. The TPS output voltage (input signal to the PCM) represents the throttle blade position. The PCM receives an input signal voltage from the TPS. This will vary in an approximate range of from .26 volts at minimum throttle opening (idle), to 4.49 volts at wide open throttle. Along with inputs from other sensors, the PCM uses the TPS input to determine current engine operating conditions. In response to engine operating conditions, the PCM will adjust fuel injector pulse width and ignition timing.

VEHICLE SPEED AND DISTANCE SENSOR—PCM INPUT

The vehicle speed sensor is located on the speed-ometer pinion gear adapter (Fig. 10) or (Fig. 11). The pinion gear adapter is located on the extension housing of the transmission (drivers side—2WD), or on the transfer case (4WD). The sensor input is used by the powertrain control module (PCM) to determine vehicle speed and distance traveled.

The speed sensor generates 8 pulses per sensor revolution. These signals, in conjunction with a closed throttle signal from the throttle position sensor, indicate a closed throttle deceleration to the PCM. When the vehicle is stopped at idle, a closed throttle signal is received by the PCM (but a speed sensor signal is not received).

Under deceleration conditions, the PCM adjusts the idle air control (IAC) motor to maintain a desired MAP value. Under idle conditions, the PCM adjusts the IAC motor to maintain a desired engine speed.

XJ — FUEL SYSTEM 14 - 33

DESCRIPTION AND OPERATION (Continued)

J9414-60

Fig. 10 Vehicle Speed Sensor Location—2WD— Typical

Fig. 11 Vehicle Speed Sensor Location—4WD— Typical

AIR CONDITIONING (A/C) CLUTCH RELAY—PCM OUTPUT

The A/C relay is located in the Power Distribution Center (PDC). The PDC is located in the engine compartment (Fig. 12). Refer to label on PDC cover for relay location.

Fig. 12 Power Distribution Center (PDC)

The powertrain control module (PCM) activates the A/C compressor through the A/C clutch relay. The PCM regulates A/C compressor operation by switching the ground circuit for the A/C clutch relay on and off.

When the PCM receives a request for A/C from A/C evaporator switch, it will adjust idle air control (IAC) motor position. This is done to increase idle speed. The PCM will then activate the A/C clutch through the A/C clutch relay. The PCM adjusts idle air control (IAC) stepper motor position to compensate for increased engine load from the A/C compressor.

By switching the ground path for the relay on and off, the PCM is able to cycle the A/C compressor clutch. This is based on changes in engine operating conditions. The PCM will also de-energize the relay if coolant temperature exceeds 125°C (257°F).

AUTO SHUTDOWN (ASD) RELAY—PCM OUTPUT

DESCRIPTION

The ASD relay is located in the Power Distribution Center (PDC).

OPERATION

The ASD supplies battery voltage to the fuel injectors and ignition coil(s). With certain emissions packages it also supplys voltage to the oxygen sensor heating elements. The ground circuit for the coil in the ASD relay is controlled by the Powertrain Control Module (PCM). The PCM operates the relay by switching the ground circuit on and off.

CCD BUS (+/-) CIRCUITS-PCM OUTPUTS

The Powertrain Control Module (PCM) sends certain output signals through the CCD bus circuits. These signals are used to control certain instrument panel located items and to determine certain identification numbers.

Refer to Group 8E, Instrument Panel and Gauges for additional information.

DATA LINK CONNECTOR—PCM INPUT AND OUTPUT

The 16-way data link connector (diagnostic scan tool connector) links the Diagnostic Readout Box (DRB) scan tool or the Mopar Diagnostic System (MDS) with the powertrain control module (PCM). The data link connector is located under the instrument panel to the left of the steering column (Fig. 13). For operation of the DRB scan tool, refer to the appropriate Powertrain Diagnostic Procedures service manual.

Fig. 13 Data Link Connector Location

DUTY CYCLE EVAP PURGE SOLENOID VALVE-PCM OUTPUT

Refer to Group 25, Emission Control System for information.

FUEL INJECTORS—PCM OUTPUT

Six individual fuel injectors are used with the 4.0L 6-cylinder engine (Fig. 14). Four individual fuel injectors are used with the 2.5L 4-cylinder engine (Fig. 15). The fuel injectors are attached to the fuel rail.

The nozzle ends of the injectors are positioned into openings in the intake manifold just above the intake valve ports of the cylinder head. The engine wiring harness connector for each fuel injector is equipped with an attached numerical tag (INJ 1, INJ 2 etc.). This is used to identify each fuel injector.

The injectors are energized individually in a sequential order by the powertrain control module (PCM). The PCM will adjust injector pulse width by switching the ground path to each individual injector on and off. Injector pulse width is the period of time that the injector is energized. The PCM will adjust injector pulse width based on various inputs it receives.

During start up, battery voltage is supplied to the injectors through the ASD relay. When the engine is operating, voltage is supplied by the charging system. The PCM determines injector pulse width based on various inputs.

Fig. 14 Fuel Rail and Injectors—4.0L 6-Cyl. Engine

Fig. 15 Fuel Rail and Injectors—2.5L 4-Cyl. Engine

XJ — FUEL SYSTEM 14 - 35

DESCRIPTION AND OPERATION (Continued)

FUEL PUMP RELAY-PCM OUTPUT

DESCRIPTION

The fuel pump relay is located in the Power Distribution Center (PDC).

OPERATION

The PCM energizes the electric fuel pump through the fuel pump relay. Battery voltage is applied to the fuel pump relay when the ignition key is ON. The relay is energized when a ground signal is provided by the PCM.

The fuel pump will operate for approximately three seconds unless the engine is operating or the starter motor is engaged.

GENERATOR FIELD SOURCE (+)—PCM OUTPUT

OPERATION

This output from the Powertrain Control Module (PCM) regulates charging system voltage to the generator field source (+) circuit. The voltage range is 12.9 to 15.0 volts. Models of previous years had used the ASD relay (directly) to apply the 12 volt + power supply to the generator field source (+) circuit.

GENERATOR FIELD DRIVER (-)-PCM OUTPUT

OPRATION

This output from the Powertrain Control Module (PCM) regulates charging system ground control to the generator field driver (-) circuit.

GENERATOR LAMP—PCM OUTPUT

If the powertrain control module (PCM) senses a low charging condition in the charging system, it will illuminate the generator lamp (if equipped) on the instrument panel. For example, during low idle with all accessories turned on, the lamp may momentarily go on. Refer to Groups 8A and 8C for charging system information.

IDLE AIR CONTROL (IAC) MOTOR—PCM OUTPUT

The IAC motor is mounted on the throttle body (Fig. 7) and is controlled by the Powertrain Control Module (PCM).

The throttle body has an air control passage that provides air for the engine at idle (the throttle plate is closed). The IAC motor pintle protrudes into the air control passage and regulates air flow through it. Based on various sensor inputs, the PCM adjusts engine idle speed by moving the IAC motor pintle in and out of the air control passage. The IAC motor is

positioned when the ignition key is turned to the On position.

A (factory adjusted) set screw is used to mechanically limit the position of the throttle body throttle plate. **Never attempt to adjust the engine idle speed using this screw.** All idle speed functions are controlled by the PCM.

IGNITION COIL—PCM OUTPUT

System voltage from the Automatic Shutdown (ASD) relay is supplied to the ignition coil positive terminal. The Powertrain Control Module (PCM) operates the ignition coil. **Ignition timing is not adjustable.** The PCM adjusts ignition timing to meet changing engine operating conditions.

Refer to Group 8D, Ignition System for additional information.

LEAK DETECTION PUMP—PCM OUTPUT

Certain engines with certain emissions packages are equipped with a leak detection pump (LDP). The LDP is activated through this PCM output. Refer to Group 25, Emission Control System for additional information.

RADIATOR FAN RELAY—PCM OUTPUT

An electric radiator cooling fan is used with certain models/engines. It is controlled by the powertrain control module (PCM) through the radiator fan relay. The relay is energized when coolant temperature is above 103°C (217°F). It will then de-energize when coolant temperature drops to 98°C (208°F). Refer to Group 7, Cooling Systems for more information.

The relay is located in the power distribution center (PDC) (Fig. 12).

MALFUNCTION INDICATOR LAMP—ECM/PCM OUTPUT

Refer to Group 25, Emission Control System for information.

SPEED CONTROL SOLENOIDS—PCM OUTPUT

Speed control operation is regulated by the power-train control module (PCM). The PCM controls the vacuum to the throttle actuator through the speed control vacuum and vent solenoids. Refer to Group 8H for Speed Control Information.

TACHOMETER—PCM OUTPUT

The powertrain control module (PCM) supplies engine rpm values to the instrument cluster tachometer. Refer to Group 8E for tachometer information.

THROTTLE BODY

Filtered air from the air cleaner enters the intake manifold through the throttle body (Fig. 16). Fuel

does not enter the intake manifold through the throttle body. Fuel is sprayed into the manifold by the fuel injectors. The throttle body is mounted on the intake manifold. It contains an air control passage (Fig. 16) controlled by an Idle Air Control (IAC) motor. The air control passage is used to supply air for idle conditions. A throttle valve (plate) is used to supply air for above idle conditions.

Fig. 16 Throttle Body (4.0L Engine Shown)

The Throttle Position Sensor (TPS), IAC motor and Manifold Absolute Pressure sensor (MAP) are attached to the throttle body. The accelerator pedal cable, speed control cable (when equipped) and automatic transmission control cable (when equipped) are connected to the throttle arm.

A (factory adjusted) set screw is used to mechanically limit the position of the throttle body throttle plate. **Never attempt to adjust the engine idle speed using this screw.** All idle speed functions are controlled by the PCM.

DIAGNOSIS AND TESTING

VISUAL INSPECTION

A visual inspection for loose, disconnected or incorrectly routed wires and hoses should be made. This should be done before attempting to diagnose or service the fuel injection system. A visual check will help spot these faults and save unnecessary test and diagnostic time. A thorough visual inspection will include the following checks:

- (1) Verify the three 32-way electrical connectors are fully inserted into the connector of the power-train control module (PCM) (Fig. 17).
- (2) Inspect battery cable connections. Be sure they are clean and tight.

Fig. 17 Powertrain Control Module (PCM)

(3) Inspect fuel pump relay and air conditioning compressor clutch relay (if equipped). Inspect ASD relay connections. Inspect starter motor relay connections. Inspect relays for signs of physical damage and corrosion. The relays are located in Power Distribution Center (PDC) (Fig. 18). Refer to label on PDC cover for relay location.

Fig. 18 Power Distribution Center (PDC)

- (4) Inspect ignition coil connections. Verify coil secondary cable is firmly connected to coil (Fig. 19) or (Fig. 20).
- (5) Verify distributor cap is correctly attached to distributor. Be sure spark plug cables are firmly connected to distributor cap and spark plugs are in their correct firing order. Be sure coil cable is firmly connected to distributor cap and coil. Be sure camshaft

Fig. 19 Ignition Coil—2.5L Engine

Fig. 20 Ignition Coil—4.0L Engine

position sensor wire connector (at distributor) is firmly connected to harness connector. Inspect spark plug condition. Connect vehicle to an oscilloscope and inspect spark events for fouled or damaged spark plugs or cables. Refer to Group 8D, Ignition System for additional information.

- (6) Verify generator output wire, generator connector and ground wire are firmly connected to generator.
- (7) Inspect system body grounds for loose or dirty connections. Refer to Group 8, Wiring for ground locations.
- (8) Verify crankcase ventilation (CCV) operation. Refer to Group 25, Emission Control System for additional information.

- (9) Inspect fuel tube quick-connect fitting-to-fuel rail connections.
- (10) Verify hose connections to all ports of vacuum fittings on intake manifold are tight and not leaking.
- (11) Inspect accelerator cable, transmission throttle cable (if equipped) and cruise control cable connections (if equipped). Check their connections to throttle arm of throttle body for any binding or restrictions.
- (12) If equipped with vacuum brake booster, verify vacuum booster hose is firmly connected to fitting on intake manifold. Also check connection to brake vacuum booster.
- (13) Inspect air cleaner inlet and air cleaner element for dirt or restrictions.
- (14) Inspect radiator grille area, radiator fins and air conditioning condenser for restrictions.
- (15) Verify intake manifold air temperature sensor wire connector is firmly connected to harness connector (Fig. 21) or (Fig. 22).

Fig. 21 Intake Manifold Air Temp. Sensor Location— 2.5L Engine

- (16) Verify MAP sensor electrical connector is firmly connected to MAP sensor (Fig. 22). Also verify rubber L-shaped fitting from MAP sensor to throttle body is firmly connected (Fig. 23).
- (17) Verify fuel injector wire harness connectors are firmly connected to injectors in correct order. Each harness connector is numerically tagged with injector number (INJ 1, INJ 2 etc.) of its corresponding fuel injector and cylinder number.
- (18) Verify harness connectors are firmly connected to idle air control (IAC) motor and throttle position sensor (TPS) (Fig. 22).
- (19) Verify wire harness connector is firmly connected to engine coolant temperature sensor (Fig. 24).

Fig. 22 Sensor Locations—4.0L Engine

Fig. 23 Rubber L-Shaped Fitting—MAP Sensor-to-Throttle Body

- (20) Raise and support vehicle.
- (21) Verify both oxygen sensor wire connectors are firmly connected to sensors. Inspect sensors and connectors for damage (Fig. 25).
- (22) Inspect for pinched or leaking fuel tubes. Inspect for pinched, cracked or leaking fuel hoses.
- (23) Inspect for exhaust system restrictions such as pinched exhaust pipes, collapsed muffler or plugged catalytic convertor.
- (24) If equipped with automatic transmission, verify electrical harness is firmly connected to park/neutral switch. Refer to Automatic Transmission section of Group 21.
- (25) Verify electrical harness connector is firmly connected to vehicle speed sensor (Fig. 26) or (Fig. 27).

Fig. 24 Engine Coolant Temperature Sensor— Typical

80524e39

Fig. 25 Location of Oxygen Sensors

- (26) 2.5L 4-Cylinder Engine Only: Verify good electrical connection at power steering pressure switch (Fig. 28). This switch is not used with 4.0L engines.
- (27) Verify good electrical connections at fuel pump module connector at front of fuel tank (Fig. 29).
- (28) Verify good EVAP canister vent line connection at front of fuel tank (Fig. 29).
- (29) Verify good fuel supply line connection at front of fuel tank (Fig. 29).
 - (30) Inspect all fuel lines/hoses for cracks or leaks.
- (31) Inspect transmission torque convertor housing (automatic transmission) or clutch housing (manual transmission) for damage to timing ring on drive plate/flywheel.
- (32) Verify battery cable and solenoid feed wire connections to starter solenoid are tight and clean. Inspect for chaffed wires or wires rubbing up against other components.

XJ — FUEL SYSTEM 14 - 39

DIAGNOSIS AND TESTING (Continued)

Fig. 26 Vehicle Speed Sensor—2WD

J9414-60

Fig. 27 Vehicle Speed Sensor—4WD

ASD AND FUEL PUMP RELAYS

The following description of operation and tests apply only to the Automatic Shutdown (ASD) and fuel pump relays. The terminals on the bottom of each relay are numbered (Fig. 30) or (Fig. 31).

Fig. 28 Power Steering Pressure Switch—2.5L Engine

Fig. 29 Fuel Tank Connections at Front of Fuel Tank OPERATION

- Terminal number 30 is connected to battery voltage. For both the ASD and fuel pump relays, terminal 30 is connected to battery voltage at all times.
- The PCM grounds the coil side of the relay through terminal number 85.
- Terminal number 86 supplies voltage to the coil side of the relay.
- When the PCM de-energizes the ASD and fuel pump relays, terminal number 87A connects to terminal 30. This is the Off position. In the off position, voltage is not supplied to the rest of the circuit. Terminal 87A is the center terminal on the relay.

9514-16

Fig. 30 ASD and Fuel Pump Relay Terminals

TERMINAL LEGEND		
NUMBER	IDENTIFICATION	
30	COMMON FEED	
85	COIL GROUND	
86	COIL BATTERY	
87	NORMALLY OPEN	
87A	NORMALLY CLOSED	

Fig. 31 ASD and Fuel Pump Relay Terminals

• When the PCM energizes the ASD and fuel pump relays, terminal 87 connects to terminal 30. This is the On position. Terminal 87 supplies voltage to the rest of the circuit.

TESTING

The following procedure applies to the ASD and fuel pump relays.

- (1) Remove relay from connector before testing.
- (2) With the relay removed from the vehicle, use an ohmmeter to check the resistance between terminals 85 and 86. The resistance should be between 75 ± 5 ohms.
- (3) Connect the ohmmeter between terminals 30 and 87A. The ohmmeter should show continuity between terminals 30 and 87A.
- (4) Connect the ohmmeter between terminals 87 and 30. The ohmmeter should not show continuity at this time
- (5) Connect one end of a jumper wire (16 gauge or smaller) to relay terminal 85. Connect the other end

of the jumper wire to the ground side of a 12 volt power source.

(6) Connect one end of another jumper wire (16 gauge or smaller) to the power side of the 12 volt power source. Do not attach the other end of the jumper wire to the relay at this time.

WARNING: DO NOT ALLOW OHMMETER TO CONTACT TERMINALS 85 OR 86 DURING THIS TEST.

- (7) Attach the other end of the jumper wire to relay terminal 86. This activates the relay. The ohmmeter should now show continuity between relay terminals 87 and 30. The ohmmeter should not show continuity between relay terminals 87A and 30.
 - (8) Disconnect jumper wires.
- (9) Replace the relay if it did not pass the continuity and resistance tests. If the relay passed the tests, it operates properly. Check the remainder of the ASD and fuel pump relay circuits. Refer to the Wiring Diagrams.

MANIFOLD ABSOLUTE PRESSURE (MAP) SENSOR TEST

To perform a complete test of MAP sensor (Fig. 32) and its circuitry, refer to DRB scan tool and appropriate Powertrain Diagnostics Procedures manual. To test the MAP sensor only, refer to the following:

(1) Inspect rubber L-shaped fitting from MAP sensor to throttle body (Fig. 33). Repair as necessary.

Fig. 32 Sensor Location (4.0L Engine Shown)

CAUTION: When testing the MAP sensor, be sure that the harness wires are not damaged by the test meter probes.

(2) Test MAP sensor output voltage at MAP sensor connector between terminals A and B (Fig. 34). With

DIAGNOSIS AND TESTING (Continued)

Fig. 33 Rubber L-Shaped Fitting—MAP Sensor-to-Throttle Body

ignition switch ON and engine OFF, output voltage should be 4-to-5 volts. The voltage should drop to 1.5-to-2.1 volts with a hot, neutral idle speed condition.

A = GROUND B = OUTPUT VOLTAGE SIGNAL C = 5-VOLT SUPPLY

Fig. 34 MAP Sensor Connector Terminals—Typical

- (3) Test Powertrain Control Module (PCM) cavity A-27 for same voltage described above to verify wire harness condition. Repair as necessary.
- (4) Test MAP sensor supply voltage at sensor connector between terminals A and C (Fig. 34) with ignition ON. The voltage should be approximately 5 volts (± 0.5 V). Five volts (± 0.5 V) should also be at cavity A-17 of the PCM wire harness connector. Repair or replace wire harness as necessary.
- (5) Test the MAP sensor ground circuit at sensor connector terminal—A (Fig. 34) and PCM connector A-4. Repair wire harness if necessary.

Refer to Group 8W, Wiring Diagrams for cavity locations.

OXYGEN (02S) SENSORS

To perform a complete test of the O2S sensors and their circuitry, refer to the DRB scan tool and appropriate Powertrain Diagnostics Procedures manual. To test the O2S sensors only, refer to the following:

The upstream O2S sensor is located on the exhaust downpipe (Fig. 35).

The downstream O2S sensor is located near the outlet end of the catalytic converter (Fig. 35).

80524e39

Fig. 35 Oxygen Sensor Location

Each O2S heating element can be tested with an ohmmeter as follows:

Disconnect the O2S sensor connector. Connect the ohmmeter test leads across the white wire terminals of the sensor connector. Resistance should be between 4.5 \pm .5 ohms and 7 ohms. Replace the sensor if the ohmmeter displays an infinity (open) reading.

ENGINE COOLANT TEMPERATURE SENSOR

To perform a complete test of the engine coolant temperature sensor and its circuitry, refer to DRB scan tool and appropriate Powertrain Diagnostics Procedures manual. To test the sensor only, refer to the following:

- (1) Disconnect wire harness connector from coolant temperature sensor (Fig. 36).
- (2) Test the resistance of sensor with a high input impedance (digital) volt-ohmmeter. Refer to SENSOR RESISTANCE (OHMS)—COOLANT TEMPERATURE SENSOR/INTAKE AIR TEMPERATURE SENSOR chart. The resistance (as measured across sensor terminals) should be within range shown in chart. If not, replace sensor.
- (3) Test continuity of the wire harness between the PCM wire harness connector and the coolant sensor connector terminals. Refer to Group 8, Wiring for terminal/cavity locations. Repair the wire harness if an open circuit is indicated.

Fig. 36 Engine Coolant Temperature Sensor— Typical

SENSOR RESISTANCE (OHMS)—COOLANT TEMPERATURE SENSOR/INTAKE AIR TEMPERATURE SENSOR

TEMPER	RATURE	RESISTAN	CE (OHMS)
°CEL.	°FAHR.	MIN.	MAX.
-40	-40	291,490	381,710
-20	-4	85,850	108,390
-10	14	49,250	61,430
0	32	29,330	35,990
10	50	17,990	21,810
20	68	11,370	13,610
25	77	9,120	10,880
30	86	7,370	8,750
40	104	4,900	5,750
50	122	3,330	3,880
60	140	2,310	2,670
70	158	1,630	1,870
80	176	1,170	1,340
90	194	860	970
100	212	640	720
110	230	480	540
120	248	370	410

IDLE AIR CONTROL (IAC) MOTOR

To perform a complete test of the IAC motor and its circuitry, refer to DRB scan tool and appropriate Powertrain Diagnostics Procedures manual.

INTAKE MANIFOLD AIR TEMPERATURE SENSOR

To perform a complete test of the intake manifold air temperature sensor and its circuitry, refer to DRB tester and appropriate Powertrain Diagnostics Procedures manual. To test the sensor only, refer to the following:

(1) Disconnect wire harness connector from intake manifold air temperature sensor (Fig. 37) or (Fig. 38).

Fig. 37 Intake Manifold Air Temperature Sensor— 4.0L Engine

- (2) Test the resistance of sensor with a high input impedance (digital) volt-ohmmeter. Refer to SENSOR RESISTANCE (OHMS)—COOLANT TEMPERATURE SENSOR/INTAKE AIR TEMPERATURE SENSOR chart. The resistance (as measured across sensor terminals) should be within range shown in chart. If not, replace sensor.
- (3) Test resistance of wire harness. Do this between PCM wire harness connector A-15 and sensor connector terminal. Also check between PCM connector A-4 to sensor connector terminal. Repair wire harness as necessary if resistance is greater than 1 ohm.

POWER STEERING PRESSURE SWITCH

2.5L 4-Cylinder Engine Only

This switch (Fig. 39) provides an input to the Powertrain Control Module (PCM). The input is provided

XJ — FUEL SYSTEM 14 - 43

DIAGNOSIS AND TESTING (Continued)

Fig. 38 Intake Manifold Air Temperature Sensor— 2.5L Engine

during periods of high pump load and low engine rpm; such as during parking maneuvers. The PCM will then increase idle speed through the Idle Air Control (IAC) motor. This is done to prevent the engine from stalling under the increased load.

When steering pump pressure exceeds 3275 kPa \pm 690 kPa (475 psi \pm 100 psi), the normally closed switch circuit will open and the PCM will increase the engine idle speed.

When power steering pump pressure drops to approximately 1379 kPa (200 psi), the switch circuit will re-close and idle speed will return to normal.

To test switch:

- (1) Disconnect electrical connector at switch.
- (2) Connect a pair of jumper wires to switch terminals. Route and secure jumper wires away from fan blades and fan belt.
- (3) Connect an ohmmeter to jumper wires and observe continuity. Circuit should be closed with engine not running. If continuity is observed, switch is OK. If switch circuit is open, replace switch.
- (4) Start engine and observe ohmmeter. With engine at idle speed, continuity should be observed until steering wheel has been turned to left or right position. Do not hold steering wheel in full left or right position for more than a few seconds. Damage to power steering pump may occur.
- (5) If continuity is still observed after turning wheel (circuit did not open) , replace switch.

VEHICLE SPEED SENSOR

To perform a complete test of the sensor and its circuitry, refer to DRB scan tool and appropriate Powertrain Diagnostics Procedures manual.

Fig. 39 Power Steering Pump Pressure Switch—2.5L Engine

EXTENDED IDLE SWITCH TEST

OPTIONAL POLICE PACKAGE ONLY

The extended idle switch is used to raise engine idle speed to approximately 1000 rpm when the shifter is in either Park or Neutral position. A rocker-type switch (extended idle switch) is mounted to instrument panel. This switch is available only with 4.0L engine when supplied with optional police package.

The extended idle switch will control a ground circuit going to the powertrain control module (PCM). When a ground signal (through the switch) has been received at pin/cavity A-12 (circuit K78) of the PCM, engine idle speed will increase.

- (1) Bring engine to normal operating temperature and turn extended idle switch to ON position. Engine idle speed should now increase to approximately 1000 rpm when shifter is in either Park or Neutral position.
- (2) If idle speed does not increase, unplug 4-way electrical connector from switch.
- (3) Check circuit Z1L for ground. Ground should be present at all times. If not, repair open circuit to ground. Refer to Group 8W, Wiring Diagrams for circuit and wiring information.
- (4) If ground is present at Z1L, check continuity of switch between circuits Z1L and K78. If continuity is not present, replace switch. If switch is OK proceed to next step.
- (5) With 4-way electrical connector still unplugged from switch, apply a good ground to circuit K78. Engine idle speed should increase. If not, proceed to next step.

(6) Ground pin/cavity A-12 directly at PCM using a small paper clip. Be careful not to damage wiring with paper clip. If engine idle speed increases, it can be assumed that PCM is functioning correctly. Repair open circuit in circuit K78. If engine idle speed will not increase after applying a ground to pin/cavity A-12 (circuit K78) directly at PCM, replace PCM.

THROTTLE POSITION SENSOR (TPS)

To perform a complete test of the TPS (Fig. 37) and its circuitry, refer to the DRB scan tool and appropriate Powertrain Diagnostics Procedures manual. To test the TPS only, refer to the following:

The TPS can be tested with a digital voltmeter. The center terminal of the TPS is the output terminal.

With the ignition key in the ON position, check the TPS output voltage at the center terminal wire of the connector. Check this at idle (throttle plate closed) and at Wide Open Throttle (WOT). At idle, TPS output voltage should be greater than .26 volts but less than .95 volts. At wide open throttle, TPS output voltage must be less than 4.49 volts. The output voltage should increase gradually as the throttle plate is slowly opened from idle to WOT.

THROTTLE BODY MINIMUM AIR FLOW CHECK PROCEDURE

The following test procedure has been developed to check throttle body calibrations for correct idle conditions. The procedure should be used to diagnose the throttle body for conditions that may cause idle problems. This procedure should be used only after normal diagnostic procedures have failed to produce results that indicate a throttle body related problem. Be sure to check for proper operation of the idle air control motor before performing this test.

A special fixed orifice tool (number 6714) (Fig. 40) must be used for the following test. This tool has a fixed internal diameter of 0.185".

SPECIAL TOOL 6714

J9414-7

Fig. 40 6714 Fixed Orifice Tool

- (1) Start the engine and bring to operating temperature. Be sure all accessories are off before performing this test.
- (2) Shut off engine and remove air duct at throttle body.
- (3) **2.5L 4-Cylinder Engine:** Near front/top of valve cover, disconnect CCV tube at fixed orifice fitting (Fig. 41). Insert Special Tool 6714 into end of disconnected CCV tube (insert either end of tool into tube). Let tool and tube hang disconnected at side of engine.
- (4) **4.0L 6-Cylinder Engine:** Disconnect CCV tube (Fig. 42) at intake manifold fitting. Attach a short piece of rubber hose to special tool 6714 (insert rubber hose to either end of tool). Install rubber hose/tool to intake manifold fitting. Let CCV tube hang disconnected at side of engine.

Fig. 41 Install Orifice Tool 2.5L 4-Cylinder Engine

- (5) Connect DRB scan tool to 16-way data link connector. This connector is located at lower edge of instrument panel near steering column. Refer to appropriate Powertrain Diagnostic Procedures service manual for DRB operation.
 - (6) Start engine and allow to warm up.
- (7) Using the DRB scan tool, scroll through menus as follows: select—Stand Alone DRB III, select 1999 Diagnostics, select—Engine, select—System Test, select—Minimum Air Flow.
- (8) The DRB scan tool will count down to stabilize idle rpm and display minimum air flow idle rpm. The idle rpm should be between **500 and 900 rpm.** If idle speed is outside these specifications, replace throttle body. Refer to Throttle Body Removal/Installation.
 - (9) Disconnect DRB scan tool from vehicle.

DIAGNOSIS AND TESTING (Continued)

Fig. 42 Install Orifice Tool 4.0L 6-Cylinder Engine

- (10) Remove orifice tool and connect CCV tube to engine.
 - (11) Install air duct to throttle body.

REMOVAL AND INSTALLATION

AUTOMATIC SHUTDOWN (ASD) RELAY

The ASD relay is located in the Power Distribution Center (PDC) (Fig. 43). Refer to label on PDC cover for relay location.

REMOVAL

- (1) Remove PDC cover.
- (2) Remove relay from PDC.
- (3) Check condition of relay terminals and PDC connector terminals for damage or corrosion. Repair if necessary before installing relay.
- (4) Check for pin height (pin height should be the same for all terminals within the PDC connector). Repair if necessary before installing relay.

INSTALLATION

- (1) Install relay to PDC.
- (2) Install cover to PDC.

FUEL PUMP RELAY

The fuel pump relay is located in the Power Distribution Center (PDC) (Fig. 43). Refer to label on PDC cover for relay location.

Fig. 43 Power Distribution Center (PDC)

REMOVAL

- (1) Remove PDC cover.
- (2) Remove relay from PDC.
- (3) Check condition of relay terminals and PDC connector terminals for damage or corrosion. Repair if necessary before installing relay.
- (4) Check for pin height (pin height should be the same for all terminals within the PDC connector). Repair if necessary before installing relay.

INSTALLATION

- (1) Install relay to PDC.
- (2) Install cover to PDC.

THROTTLE BODY

A (factory adjusted) set screw is used to mechanically limit the position of the throttle body throttle plate. **Never attempt to adjust the engine idle speed using this screw.** All idle speed functions are controlled by the Powertrain Control Module (PCM).

REMOVAL

- (1) Remove air cleaner tube at throttle body.
- (2) Disconnect throttle body electrical connectors at MAP sensor, IAC motor and TPS (Fig. 44) or (Fig. 45).
- (3) Remove all control cables from throttle body (lever) arm. Refer to the Accelerator Pedal and Throttle Cable section of this group for additional information.
 - (4) Remove four throttle body mounting bolts.
 - (5) Remove throttle body from intake manifold.

Fig. 44 Throttle Body and Sensor Locations—4.0L Engine

Fig. 45 Throttle Body and Sensor Locations—2.5L Engine

(6) Discard old throttle body-to-intake manifold gasket.

INSTALLATION

- (1) Clean mating surfaces of throttle body and intake manifold.
- (2) Install new throttle body-to-intake manifold gasket.
 - (3) Install throttle body to intake manifold.
- (4) Install four mounting bolts. Tighten bolts to 11 $N \cdot m$ (100 in. lbs.) torque.
 - (5) Install control cables.
 - (6) Install electrical connectors.
 - (7) Install air cleaner at throttle body.

THROTTLE POSITION SENSOR (TPS)

The TPS is mounted to the throttle body (Fig. 44) or (Fig. 45).

REMOVAL

- (1) Disconnect TPS electrical connector.
- (2) Remove TPS mounting screws (Fig. 46).
- (3) Remove TPS.

Fig. 46 TPS Mounting Screws

INSTALLATION

The throttle shaft end of the throttle body slides into a socket in the TPS (Fig. 47). The TPS must be installed so that it can be rotated a few degrees. (If the sensor will not rotate, install the sensor with the throttle shaft on the other side of the socket tangs). The TPS will be under slight tension when rotated.

Fig. 47 Throttle Position Sensor—Installation

- (1) Install TPS and retaining screws.
- (2) Tighten screws to 7 N·m (60 in. lbs.) torque.
- (3) Connect TPS electrical connector to TPS.
- (4) Manually operate throttle (by hand) to check for any TPS binding before starting engine.

IDLE AIR CONTROL (IAC) MOTOR

The IAC motor is located on the side of the throttle body (Fig. 44) or (Fig. 45).

REMOVAL

- (1) Remove air cleaner tube at throttle body.
- (2) Disconnect electrical connector from IAC motor.
- (3) Remove two mounting bolts (screws) (Fig. 48).
- (4) Remove IAC motor from throttle body.

Fig. 48 Mounting Bolts (Screws)—IAC Motor

INSTALLATION

- (1) Install IAC motor to throttle body.
- (2) Install and tighten two mounting bolts (screws) to 7 N⋅m (60 in. lbs.) torque.
 - (3) Install electrical connector.
 - (4) Install air cleaner tube to throttle body.

MANIFOLD ABSOLUTE PRESSURE (MAP) SENSOR

The MAP sensor is mounted to the side of the throttle body (Fig. 44) or (Fig. 45). An L-shaped rubber fitting is used to connect the MAP sensor to throttle body (Fig. 49).

REMOVAL

- (1) Remove air cleaner intake tube at throttle body.
- (2) Remove two MAP sensor mounting bolts (screws) (Fig. 49).
- (3) While removing MAP sensor, slide the rubber L-shaped fitting (Fig. 49) from throttle body.
- (4) Remove rubber L-shaped fitting from MAP sensor.

INSTALLATION

- (1) Install rubber L-shaped fitting to MAP sensor.
- (2) Position sensor to throttle body while guiding rubber fitting over throttle body vacuum nipple.

Fig. 49 MAP Sensor Mounting

- (3) Install MAP sensor mounting bolts (screws). Tighten screws to 3 N·m (25 in. lbs.) torque.
 - (4) Install air cleaner intake tube.

DUTY CYCLE EVAP CANISTER PURGE SOLENOID

Refer to Group 25, Emission Control System for removal/installation procedures.

POWERTRAIN CONTROL MODULE (PCM)

The PCM is located in the engine compartment next to the air cleaner assembly (Fig. 50).

Fig. 50 PCM Location

REMOVAL

To avoid possible voltage spike damage to the PCM, ignition key must be off, and negative battery cable must be disconnected before unplugging PCM connectors.

(1) Disconnect negative battery cable at battery.

804d8eb

Fig. 51 PCM Mounting

- (2) Remove cover over electrical connectors. Cover snaps onto PCM.
- (3) Carefully unplug the three 32-way connectors (Fig. 51) from PCM.
- (4) Remove three PCM mounting bolts and remove PCM from vehicle.

INSTALLATION

- (1) Install PCM and mounting bolts to vehicle.
- (2) Tighten bolts to 4 N·m (35 in. lbs.).
- (3) Check pin connectors in the PCM and the three 32-way connectors for corrosion or damage. Also, the pin heights in connectors should all be same. Repair as necessary before installing connectors.
 - (4) Install three 32-way connectors.
- (5) Install cover over electrical connectors. Cover snaps onto PCM.
 - (6) Install battery cable.
- (7) Use the DRB scan tool to reprogram new PCM with vehicles original Identification Number (VIN) and original vehicle mileage.

POWER STEERING PRESSURE SWITCH—2.5L ENGINE

This switch is not used with 4.0L six-cylinder engines.

The power steering pressure switch is installed in the power steering high-pressure hose (Fig. 52).

REMOVAL

(1) Disconnect electrical connector from power steering pressure switch.

Fig. 52 Power Steering Pressure Switch

- (2) Place a small container or shop towel beneath switch to collect any excess fluid.
- (3) Remove switch. Use back-up wrench on power steering line to prevent line bending.

INSTALLATION

- (1) Install power steering switch into power steering line.
 - (2) Tighten to 14-22 N·m (124-195 in. lbs.) torque.
 - (3) Connect electrical connector to switch.
- (4) Check power steering fluid and add as necessary.
- (5) Start engine and again check power steering fluid. Add fluid if necessary.

OXYGEN SENSOR

The upstream O2S sensor is located in exhaust downpipe. The downstream sensor is located near outlet end of catalytic converter. Refer to (Fig. 53).

80524e39

Fig. 53 Oxygen Sensor Locations

REMOVAL

WARNING: THE EXHAUST MANIFOLD, EXHAUST PIPES AND CATALYTIC CONVERTER BECOME VERY HOT DURING ENGINE OPERATION. ALLOW ENGINE TO COOL BEFORE REMOVING OXYGEN SENSOR.

- (1) Raise and support vehicle.
- (2) Disconnect wire connector from O2S sensor.

CAUTION: When disconnecting sensor electrical connector, do not pull directly on wire going into sensor.

(3) Remove O2S sensor. Snap-On oxygen sensor wrench (number YA 8875) may be used for removal and installation.

INSTALLATION

Threads of new oxygen sensors are factory coated with anti-seize compound to aid in removal. **DO NOT add any additional anti-seize compound to threads of a new oxygen sensor.**

- (1) Install O2S sensor. Tighten to 30 N·m (22 ft. lbs.) torque.
 - (2) Connect O2S sensor wire connector.
 - (3) Lower vehicle.

AIR CLEANER ELEMENT (FILTER)

REMOVAL

- (1) Unlock air tube clamp (Fig. 54) at air cleaner cover. To unlock clamp, attach adjustable pliers to clamp and rotate pliers as shown in (Fig. 55).
 - (2) Remove air tube at cover.
- (3) Pry back three clips retaining air cleaner cover to air cleaner housing.
- (4) Remove housing cover and remove air cleaner element.
- (5) Clean inside of housing before replacing element.

INSTALLATION

- (1) Install air cleaner element into housing.
- (2) Install air cleaner cover to housing (three clips). Be sure cover is properly seated to air cleaner housing.
- (3) Install air tube and clamp to cover. Compress clamp snugly with adjustable pliers as shown in (Fig. 56).

Fig. 54 Air Cleaner Housing and Element (Filter)

Fig. 55 Clamp Removal

Fig. 56 Clamp Installation

ENGINE COOLANT TEMPERATURE SENSOR

WARNING: HOT, PRESSURIZED COOLANT CAN CAUSE INJURY BY SCALDING. COOLING SYSTEM MUST BE PARTIALLY DRAINED BEFORE REMOVING THE COOLANT TEMPERATURE SENSOR. REFER TO GROUP 7, COOLING.

The coolant temperature sensor is installed in the thermostat housing (Fig. 57).

Fig. 57 Engine Coolant Temperature Sensor— Typical

REMOVAL

- (1) Partially drain cooling system until coolant level is below cylinder head. Observe the **WARN-INGS** in Group 7, Cooling.
- (2) Disconnect coolant temperature sensor wire connector.
 - (3) Remove sensor from thermostat housing.

INSTALLATION

- (1) Apply sealant to sensor threads (new replacement sensors will have sealant already applied).
- (2) Install coolant temperature sensor into thermostat housing. Tighten to 11 N·m (8 ft. lbs.) torque.
 - (3) Connect wire connector.
- (4) Fill cooling system. Refer to Group 7, Cooling System.

INTAKE MANIFOLD AIR TEMPERATURE SENSOR

The intake manifold air temperature (IAT) sensor is installed into intake manifold plenum near throttle body (Fig. 58) or (Fig. 59).

Fig. 58 IAT Sensor Location—4.0L Engine

Fig. 59 IAT Sensor Location—2.5L Engine

REMOVAL

- (1) Disconnect electrical connector from IAT sensor.
 - (2) Remove sensor from intake manifold.

INSTALLATION

- (1) Install IAT sensor into intake manifold. Tighten sensor to 28 N·m (20 ft. lbs.) torque.
 - (2) Connect electrical connector to sensor.

VEHICLE SPEED SENSOR

The vehicle speed sensor is located on the speedometer pinion gear adapter (Fig. 60) or (Fig. 61). The pinion gear adapter is located on the extension housing of transmission (drivers side). XJ — FUEL SYSTEM 14 - 51

REMOVAL AND INSTALLATION (Continued)

J9414-60

Fig. 60 Vehicle Speed Sensor Location—2WD— Typical

Fig. 61 Vehicle Speed Sensor Location—4WD— Typical

REMOVAL

- (1) Raise and support vehicle.
- (2) Disconnect electrical connector from sensor.
- (3) Remove sensor mounting bolt (Fig. 62).
- (4) Remove sensor (pull straight out) from speedometer pinion gear adapter (Fig. 62). Do not remove gear adapter from transmission.

Fig. 62 Sensor Removal/Installation

INSTALLATION

- (1) Clean inside of speedometer pinion gear adapter before installing speed sensor.
- (2) Install sensor into speedometer gear adapter and install mounting bolt. Before tightening bolt, verify speed sensor is fully seated (mounted flush) to speedometer pinion gear adapter.
- (3) Tighten sensor mounting bolt to 2.2 N·m (20 in. lbs.) torque.
 - (4) Connect electrical connector to sensor.

SPECIFICATIONS

TORQUE CHART

DESCRIPTION TORQUE
Air Cleaner Housing Mount. Bolts 8 N·m
(71 in. lbs.)
Engine Coolant Temperature Sensor 11 N·m
(96 in. lbs.)
IAC Motor-To-Throttle Body Bolts 7 N·m
(60 in. lbs.)
Intake Manifold Air Temp. Sensor 28 N·m
(20 ft. lbs.)
MAP Sensor Mounting Screws 3 N·m (25 in. lbs.)
Oxygen Sensor 30 N·m (22 ft. lbs.)
PCM Mounting Screws 4 N·m (35 in. lbs.)
Power Steering Pressure Switch 14–22 N·m
(124–195 in. lbs.)
Throttle Body Mounting Bolts . 11 N·m (100 in. lbs.)
Throttle Position Sensor Mounting Screws \dots 7 N·m
(60 in. lbs.)

SPECIFICATIONS (Continued)

DESCRIPTION	TORQUE	
Vehicle Speed Sensor Mounting Bolt .	2.2 N⋅m	
	(20 in. lbs.)	

SPECIAL TOOLS

FUEL SYSTEM

Spanner Wrench, Fuel Pump Module Locknut—6856

Adapters, Fuel Pressure Test-6539 and/or 6631

Fitting, Air Metering—6714

O2S (Oxygen Sensor) Remover/Installer—C-4907

Test Kit, Fuel Pressure—5069

Test Kit, Fuel Pressure—C-4799-B

Fuel Line Removal Tool—6782

FUEL SYSTEM—2.5L DIESEL ENGINE

CONTENTS

page	page
FUEL DELIVERY SYSTEM— 2.5L DIESEL ENGINE	GENERAL INFORMATION

GENERAL INFORMATION

INDEX

page)	page
GENERAL INFORMATION FUEL REQUIREMENTS—2.5L DIESEL 1	FUEL SHUTDOWN SOLENOID	1

GENERAL INFORMATION

FUEL SHUTDOWN SOLENOID

The fuel shutdown solenoid is controlled and operated by the MSA.

The fuel shutdown (shut-off) solenoid is used to electrically shut off the diesel fuel supply to the high-pressure fuel injection pump. The solenoid is mounted to the rear of the injection pump.

The solenoid controls starting and stopping of the engine regardless of the position of the accelerator

pedal. When the ignition (key) switch is OFF, the solenoid is shut off and fuel flow is not allowed to the fuel injection pump. When the key is placed in the ON or START positions, fuel supply is allowed at the injection pump.

FUEL REQUIREMENTS—2.5L DIESEL

Premium quality diesel fuel with a minimum Cetane rating of 50 or higher is required.

FUEL DELIVERY SYSTEM—2.5L DIESEL ENGINE

INDEX

page	pag
DESCRIPTION AND OPERATION	FUEL SUPPLY RESTRICTIONS 1
FUEL DRAIN TUBES 6	GENERAL INFORMATION
FUEL FILTER/WATER SEPARATOR	HIGH-PRESSURE FUEL LINE LEAK TEST 1
FUEL GAUGE SENDING UNIT 3	VISUAL INSPECTION
FUEL HEATER 6	SERVICE PROCEDURES
FUEL HEATER RELAY 7	AIR BLEED PROCEDURES
FUEL INJECTION PUMP 4	FUEL INJECTION PUMP TIMING
FUEL INJECTORS 4	REMOVAL AND INSTALLATION
FUEL SHUTDOWN SOLENOID	ACCELERATOR PEDAL 1
FUEL SYSTEM PRESSURE WARNING 2	AIR CLEANER ELEMENT
FUEL TANK 2	FUEL DRAIN TUBES
FUEL TANK MODULE 3	FUEL FILTER/WATER SEPARATOR 1
FUEL TUBES/LINES/HOSES AND CLAMPS—	FUEL HEATER 1
LOW-PRESSURE TYPE 5	FUEL HEATER RELAY 1
HIGH-PRESSURE FUEL LINES 6	FUEL INJECTION PUMP 1
INTRODUCTION 2	FUEL INJECTORS 1
QUICK-CONNECT FITTINGS—LOW PRESSURE	
TYPE 5	FUEL RESERVOIR MODULE 2
DIAGNOSIS AND TESTING	FUEL TANK 2
AIR IN FUEL SYSTEM 10	HIGH-PRESSURE LINES 2
FUEL HEATER RELAY TEST 10	SPECIFICATIONS
FUEL INJECTION PUMP TEST	FUEL INJECTOR FIRING SEQUENCE 2
FUEL INJECTOR / NEEDLE MOVEMENT	FUEL SYSTEM PRESSURE 2
SENSOR TEST 11	FUEL TANK CAPACITY
FUEL INJECTOR TEST 10	IDLE SPEED
FUEL SHUTDOWN SOLENOID TEST 12	

DESCRIPTION AND OPERATION

INTRODUCTION

This Fuel Delivery section will cover components not controlled by the PCM. For components controlled by the PCM, refer to the Fuel Injection System—2.5L Diesel Engine section of this group.

The fuel heater relay, fuel heater and fuel gauge are not operated by the PCM. These components are controlled by the ignition (key) switch. All other fuel system electrical components necessary to operate the engine are controlled or regulated by the PCM.

FUEL SYSTEM PRESSURE WARNING

WARNING: HIGH-PRESSURE FUEL LINES DELIVER DIESEL FUEL UNDER EXTREME PRESSURE FROM THE INJECTION PUMP TO THE FUEL INJECTORS. THIS MAY BE AS HIGH AS 45,000 KPA (6526 PSI). USE EXTREME CAUTION WHEN INSPECTING FOR

HIGH-PRESSURE FUEL LEAKS. INSPECT FOR HIGH-PRESSURE FUEL LEAKS WITH A SHEET OF CARDBOARD (Fig. 1). HIGH FUEL INJECTION PRESSURE CAN CAUSE PERSONAL INJURY IF CONTACT IS MADE WITH THE SKIN.

FUEL TANK

The fuel tank and tank mounting used with the diesel powered engine is the same as used with gasoline powered models, although the fuel tank module is different.

The fuel tank contains the fuel tank module and two rollover valves. Two fuel lines are routed to the fuel tank module. One line is used for fuel supply to the fuel filter/water separator. The other is used to return excess fuel back to the fuel tank.

The fuel tank module contains the fuel gauge electrical sending unit. An electrical fuel pump is not used with the diesel engine.

Fig. 1 Typical Fuel Pressure Test at Injector

FUEL TANK MODULE

An electric fuel pump is not attached to the fuel tank module for diesel powered engines. Fuel is siphoned by the fuel injection pump.

The fuel tank module is installed in the top of the fuel tank. The fuel tank module contains the following components:

- Fuel reservoir
- A separate in-tank fuel filter
- · Electric fuel gauge sending unit
- Fuel supply line connection
- Fuel return line connection

FUEL GAUGE SENDING UNIT

The fuel gauge sending unit is attached to the side of the fuel pump module. The sending unit consists of a float, an arm, and a variable resistor (track). The track is used to send an electrical signal used for fuel gauge operation.

As the fuel level increases, the float and arm move up. This decreases the sending unit resistance, causing the PCM to send a signal to the fuel gauge on the instrument panel to read full. As the fuel level decreases, the float and arm move down. This increases the sending unit resistance, causing the PCM to send a signal to the fuel gauge on the instrument panel to read empty.

FUEL FILTER/WATER SEPARATOR

The fuel filter/water separator assembly is located in the engine compartment near the strut tower (Fig. 2).

Fig. 2 Fuel Filter/Water Separator Location

The combination fuel filter/water separator protects the fuel injection pump by helping to remove water and contaminants from the fuel. Moisture collects at the bottom of the filter/separator in a plastic bowl.

The fuel filter/water separator assembly contains the fuel filter, fuel heater element, and fuel drain

For information on the fuel heater, refer to Fuel Heater in this group.

Refer to the maintenance schedules in Group 0 in this manual for the recommended fuel filter replacement intervals.

For periodic draining of water from the bowl, refer to Fuel Filter/Water Separator Removal/Installation in this group.

FUEL SHUTDOWN SOLENOID

The fuel shutdown solenoid is controlled and operated by the MSA.

The fuel shutdown (shut-off) solenoid is used to electrically shut off the diesel fuel supply to the high-pressure fuel injection pump. The solenoid is mounted to the rear of the injection pump.

The solenoid controls starting and stopping of the engine regardless of the position of the accelerator pedal. When the ignition (key) switch is OFF, the solenoid is shut off and fuel flow is not allowed to the fuel injection pump. When the key is placed in the ON or START positions, fuel supply is allowed at the injection pump.

FUEL INJECTION PUMP

The fuel injection pump is a mechanical distributor-type, Bosch VP36 series (Fig. 3). A gear on the end of the injection pump shaft meshes with the drive gear at the front of engine. The pump is mechanically timed to the engine. The MSA can make adjustments to the timing of the injection pump.

Fig. 3 Fuel Injection Pump

The injection pump contains the fuel shutdown solenoid, fuel temperature sensor, control sleeve sensor, fuel quantity actuator and the fuel timing solenoid (Fig. 3).

In the electronically controlled injection pump, the pump plunger works the same as the pump plunger in a mechanically controlled injection pump, but the amount of fuel and the time the fuel is injected is controlled by the vehicle's MSA, instead of by a mechanical governor assembly. A solenoid controlled by the MSA is used in place of the mechanical governor assembly, and it moves a control sleeve inside the pump that regulates the amount of fuel being injected. There is no mechanical connection between the accelerator pedal and the electronically controlled injection pump. Instead, a sensor connected to the accelerator pedal sends a signal to the MSA that represents the actual position of the accelerator pedal. The MSA uses this input, along with input from other sensors to move the control sleeve to deliver the appropriate amount of fuel. This system is known as "Drive-By-Wire".

The actual time that the fuel is delivered is very important to the diesel combustion process. The MSA monitors outputs from the engine speed sensor (flywheel position in degrees), and the fuel injector sensor (mechanical movement within the #1 cylinder

fuel injector). Outputs from the Accelerator Pedal Position sensor, engine speed sensor (engine rpm) and engine coolant temperature sensor are also used. The MSA will then compare its set values to these outputs to electrically adjust the amount of fuel timing (amount of advance) within the injection pump. This is referred to as "Closed Loop" operation. The MSA monitors fuel timing by comparing its set value to when the injector #1 opens. If the value is greater than a preset value a fault will be set.

Actual electric fuel timing (amount of advance) is accomplished by the fuel timing solenoid mounted to the bottom of the injection pump (Fig. 3). Fuel timing will be adjusted by the MSA, which controls the fuel timing solenoid.

An overflow valve is attached into the fuel return line at the rear of the fuel injection pump (Fig. 3). This valve serves two purposes. One is to ensure that a certain amount of residual pressure is maintained within the pump when the engine is switched off. This will prevent the fuel timing mechanism within the injection pump from returning to its zero position. The other purpose is to allow excess fuel to be returned to the fuel tank through the fuel return line. The pressure values within this valve are preset and can not be adjusted.

The fuel injection pump supplies high-pressure fuel of approximately 45,000 kPa (6526 psi) to each injector in precise metered amounts at the correct time.

For mechanical injection pump timing, refer to Fuel Injection Pump Timing in the Service Procedures section of this group.

FUEL INJECTORS

Fuel drain tubes (Fig. 4) are used to route excess fuel back to the overflow valve at the rear of the injection pump. This excess fuel is then returned to the fuel tank through the fuel return line.

The injectors are connected to the fuel injection pump by the high-pressure fuel lines. A separate injector is used for each of the four cylinders. An injector containing a sensor (Fig. 5) is used on the cylinder number one injector. This injector is called instrumented injector #1 or needle movement sensor. It is used to tell the MSA when the #1 injector's internal spring-loaded valve seat has been forced open by pressurized fuel being delivered to the cylinder, which is at the end of its compression stroke. When the instrumented injector's valve seat is force open, it sends a small voltage spike pulse to the MSA. This tells the MSA that cylinder #1 is firing. It is not used with the other three injectors.

Fuel enters the injector at the fuel inlet (top of injector) and is routed to the needle valve bore. When fuel pressure rises to approximately 15,000–15,800

Fig. 4 Fuel Injectors and Drain Tubes

Fig. 5 Fuel Injector Sensor

kPa (2175–2291 psi), the needle valve spring tension is overcome. The needle valve rises and fuel flows through the spray holes in the nozzle tip into the combustion chamber. The pressure required to lift the needle valve is the injector opening pressure setting. This is referred to as the "pop-off" pressure setting.

Fuel pressure in the injector circuit decreases after injection. The injector needle valve is immediately closed by the needle valve spring and fuel flow into the combustion chamber is stopped. Exhaust gases are prevented from entering the injector nozzle by the needle valve.

A copper washer (gasket) is used at the base of each injector (Fig. 5) to prevent combustion gases from escaping.

Fuel injector firing sequence is 1-3-4-2.

FUEL TUBES/LINES/HOSES AND CLAMPS— LOW-PRESSURE TYPE

Also refer to the proceeding section on Quick–Connect Fittings.

Inspect all hose connections such as clamps, couplings and fittings to make sure they are secure and leaks are not present. The component should be replaced immediately if there is any evidence of degradation that could result in failure.

Never attempt to repair a plastic fuel line/tube or a quick-connect fitting. Replace complete line/tube as necessary.

Avoid contact of any fuel tubes/hoses with other vehicle components that could cause abrasions or scuffing. Be sure that the fuel lines/tubes are properly routed to prevent pinching and to avoid heat sources.

The lines/tubes/hoses are of a special construction. If it is necessary to replace these lines/tubes/hoses, use only original equipment type.

The hose clamps used to secure the rubber hoses are of a special rolled edge construction. This construction is used to prevent the edge of the clamp from cutting into the hose. Only these rolled edge type clamps may be used in this system. All other types of clamps may cut into the hoses and cause fuel leaks.

Where a rubber hose is joined to a metal tube (staked), do not attempt to repair. Replace entire line/tube assembly.

Use new original equipment type hose clamps. Tighten hose clamps to 2 N·m (20 in. lbs.) torque.

QUICK-CONNECT FITTINGS—LOW PRESSURE TYPE

Different types of quick-connect fittings are used to attach various fuel system components. These are: a single-tab type, a two-tab type or a plastic retainer ring type (Fig. 6). Refer to Quick-Connect Fittings in the Removal/Installation section for more information.

CAUTION: The interior components (o-rings, spacers) of quick-connect fitting are not serviced separately, but new pull tabs are available for some types. Do not attempt to repair damaged fittings or fuel lines/tubes. If repair is necessary, replace the complete fuel tube assembly.

Fig. 6 Plastic Retainer Ring-Type Fitting HIGH-PRESSURE FUEL LINES

CAUTION: The high-pressure fuel lines must be held securely in place in their holders. The lines cannot contact each other or other components. Do not attempt to weld high-pressure fuel lines or to repair lines that are damaged. Only use the recommended lines when replacement of high-pressure fuel line is necessary.

High-pressure fuel lines deliver fuel under pressure of up to approximately 45,000 kPa (6526 psi) from the injection pump to the fuel injectors. The lines expand and contract from the high-pressure fuel pulses generated during the injection process. All high-pressure fuel lines are of the same length and inside diameter. Correct high-pressure fuel line usage and installation is critical to smooth engine operation.

WARNING: USE EXTREME CAUTION WHEN INSPECTING FOR HIGH-PRESSURE FUEL LEAKS. INSPECT FOR HIGH-PRESSURE FUEL LEAKS WITH A SHEET OF CARDBOARD. HIGH FUEL INJECTION PRESSURE CAN CAUSE PERSONAL INJURY IF CONTACT IS MADE WITH THE SKIN.

FUEL DRAIN TUBES

These rubber tubes are low-pressure type.

Some excess fuel is continually vented from the fuel injection pump. During injection, a small amount of fuel flows past the injector nozzle and is not injected into the combustion chamber. This fuel drains into the fuel drain tubes (Fig. 7) and back to the tee banjo fitting, which is connected to the same line as the overflow valve, which allows a variable quantity to return to the fuel tank. The overflow valve is calibrated to open at a preset pressure. Excess fuel not required by the pump to maintain the minimum pump cavity pressure is then returned through the overflow valve and on to the fuel tank through the fuel return line.

Fig. 7 Fuel Drain Tubes

FUEL HEATER

The fuel heater is used to prevent diesel fuel from waxing during cold weather operation. The fuel heater is located in the bottom plastic bowl of the fuel filter/water separator (Fig. 8).

The element inside the heater assembly is made of a Positive Temperature Coefficient (PTC) material, and has power applied to it by the fuel heater relay anytime the ignition key is in the "on" position. PTC material has a high resistance to current flow when its temperature is high, which means that it will not generate heat when the temperature is above a certain value. When the temperature is below 7°C (45° F), the resistance of the PTC element is lowered, and allows current to flow through the fuel heater element warming the fuel. When the temperature is above 29°C (85° F), the PTC element's resistance rises, and current flow through the heater element stops.

Voltage to operate the fuel heater is supplied from the ignition (key) switch and through the fuel heater relay. Refer to the following Fuel Heater Relay for

Fig. 8 Fuel Heater Temperature Sensor and Element Location

additional information. The fuel heater and fuel heater relay are not controlled by the Powertrain Control Module (ECM).

Current draw for the heater element is 150 watts at 14 volts (DC).

FUEL HEATER RELAY

Voltage to operate the fuel heater is supplied from the ignition (key) switch through the fuel heater relay. The PCM or MSA is not used to control this relay.

The fuel heater relay is located in the PDC. The PDC is located next to the battery in the engine compartment. For the location of the relay within the PDC, refer to label on PDC cover.

DIAGNOSIS AND TESTING

GENERAL INFORMATION

This section of the group will cover a general diagnosis of diesel engine fuel system components.

Diagnostic Trouble Codes: Refer to On-Board Diagnostics in Group 25, Emission Control System for a list of Diagnostic Trouble Codes (DTC's) for certain fuel system components.

The PCM and MSA must be tested with the DRBIII scan tool. The DRBIII should be the first step in any diagnosis of engine performance complaints. Refer to the 1997 ZJ/ZG 2.5L Diesel Powertrain Diagnostic Procedures manual for diagnosis and testing of the diesel engine control system.

VISUAL INSPECTION

A visual inspection for loose, disconnected, or incorrectly routed wires and hoses should be made before attempting to diagnose or service the diesel fuel injection system. A visual check will help find these conditions. It also saves unnecessary test and diagnostic time. A thorough visual inspection of the fuel injection system includes the following checks:

- (1) Be sure that the battery connections are tight and not corroded.
- (2) Be sure that the 60 way connector is fully engaged with the PCM (Fig. 9).
- (3) Be sure that the 68 way connector is fully engaged with the MSA (Fig. 10).

Fig. 9 PCM Location—Typical

- (4) Verify that the electrical connections for the ASD relay are clean and free of corrosion. This relay is located in the PDC. For the location of the relay within the PDC, refer to label on PDC cover.
- (5) Verify that the electrical connections for the fuel heater relay are clean and free of corrosion. This relay is located in the PDC. For the location of the relay within the PDC, refer to label on PDC cover.
- (6) Be sure the electrical connectors at the ends of the glow plugs (Fig. 11) are tight and free of corrosion.
- (7) Be sure that the electrical connections at the glow plug relay are tight and not corroded. The glow plug relay is located in the engine compartment on the left–inner fender (Fig. 12).
- (8) Inspect the starter motor and starter solenoid connections for tightness and corrosion.

Fig. 10 MSA Location—Typical

Fig. 11 Glow Plug Connector

- (9) Verify that the Fuel Injection Pump electrical connector is firmly connected. Inspect the connector for corrosion or damaged wires. The solenoid is mounted to the rear of the injection pump (Fig. 13).
- (10) Verify that the fuel heater electrical connector is firmly attached to the filter bowl at the bottom of the fuel filter/water separator. Inspect the connector for corrosion or damaged wires.
- (11) Verify that the electrical pigtail connector (sensor connector) (Fig. 14) for the fuel injector sensor is firmly connected to the engine wiring harness. Inspect the connector for corrosion or damaged wires. This sensor is used on the #1 cylinder injector only.
- (12) Inspect for exhaust system restrictions such as pinched exhaust pipes or a collapsed or plugged muffler.
- (13) Verify that the harness connector is firmly connected to the vehicle speed sensor (Fig. 15) or (Fig. 16).

Fig. 12 Glow Plug Relay Location

Fig. 13 Fuel Shutdown Solenoid Location

- (14) Verify turbocharger wastegate operation. Refer to Group 11, Exhaust System and Intake Manifold Group for information.
- (15) Verify that the harness connector is firmly connected to the engine coolant temperature sensor. The sensor is located on the side of cylinder head near the rear of fuel injection pump (Fig. 17).
- (16) Check for air in the fuel system. Refer to the Air Bleed Procedure.
- (17) Inspect all fuel supply and return lines for signs of leakage.

Fig. 14 Fuel Injector Sensor

Fig. 15 Vehicle Speed Sensor—2 Wheel Drive

- (18) Be sure that the ground connections are tight and free of corrosion. Refer to Group 8, Wiring for locations of ground connections.
- (19) Inspect the air cleaner element (filter) for restrictions.
- (20) Be sure that the turbocharger output hose is properly connected to the charge air cooler (intercooler) inlet tube. Verify that the charge air cooler output hose is properly connected to the cooler and the intake manifold. Refer to Group 11, Exhaust System and Intake Manifold for information.
- (21) Be sure that the vacuum hoses to the vacuum pump are connected and not leaking. The vacuum

80a35409

Fig. 16 Vehicle Speed Sensor—4 Wheel Drive

Fig. 17 Engine Coolant Temperature Sensor Location

pump is located in the front of engine (internal) and is driven from the crankshaft gear (Fig. 18). Disconnect the hose and check for minimum vacuum from the pump. Refer to Group 5, Brake System for specifications and procedures.

- (22) Be sure that the accessory drive belt is not damaged or slipping.
- (23) Verify there is a good connection at the engine speed sensor. Refer to the Fuel Injection System in this section for location of the engine speed sensor location.

Fig. 18 Vaccum Pump at Front of Engine

(24) Verify there is a good connection at the Boost Pressure Sensor, which is a part of the air intake assembly.

AIR IN FUEL SYSTEM

Air will enter the fuel system whenever the fuel supply lines, fuel filter/water separator, fuel filter bowl, injection pump, high-pressure lines or injectors are removed or disconnected. Air will also enter the fuel system whenever the fuel tank has been run empty.

Air trapped in the fuel system can result in hard starting, a rough running engine, engine misfire, low power, excessive smoke and fuel knock. After service is performed, air must be bled from the system before starting the engine.

Inspect the fuel system from the fuel tank to the injectors for loose connections. Leaking fuel is an indicator of loose connections or defective seals. Air can also enter the fuel system between the fuel tank and the injection pump. Inspect the fuel tank and fuel lines for damage that might allow air into the system.

For air bleeding, refer to Air Bleed Procedure in the Service Procedures section of this group.

FUEL HEATER RELAY TEST

The fuel heater relay is located in the Power Distribution Center (PDC). Refer to Relays—Operation/Testing in Fuel Injection System section of this group for test procedures.

FUEL INJECTOR TEST

The fuel injection nozzles, located on the engine cylinder head, spray fuel under high pressure into the individual combustion chambers. Pressurized fuel, delivered by the fuel injection pump, unseats a spring-loaded needle valve inside the injector, and the fuel is atomized as it escapes through the injector opening into the engine's combustion chamber. If the fuel injector does not operate properly, the engine may misfire, or cause other driveability problems.

A leak in the injection pump-to-injector high-pressure fuel line can cause many of the same symptoms as a malfunctioning injector. Inspect for a leak in the high-pressure lines before checking for a malfunctioning fuel injector.

WARNING: THE INJECTION PUMP SUPPLIES HIGH-PRESSURE FUEL OF UP TO APPROXIMATELY 45,000 KPA (6526 PSI) TO EACH INDIVIDUAL INJECTOR THROUGH THE HIGH-PRESSURE LINES. FUEL UNDER THIS AMOUNT OF PRESSURE CAN PENETRATE THE SKIN AND CAUSE PERSONAL INJURY. WEAR SAFETY GOGGLES AND ADEQUATE PROTECTIVE CLOTHING. AVOID CONTACT WITH FUEL SPRAY WHEN BLEEDING HIGH-PRESSURE FUEL LINES.

WARNING: DO NOT BLEED AIR FROM THE FUEL SYSTEM OF A HOT ENGINE. DO NOT ALLOW FUEL TO SPRAY ONTO THE EXHAUST MANIFOLD WHEN BLEEDING AIR FROM THE FUEL SYSTEM.

To determine which fuel injector is malfunctioning, run the engine and loosen the high–pressure fuel line nut at the injector (Fig. 19). Listen for a change in engine speed. If engine speed drops, the injector was operating normally. If engine speed remains the same, the injector may be malfunctioning. After testing, tighten the line nut to 30 N·m (22 ft. lbs.) torque. Test all injectors in the same manner one at a time.

Once an injector has been found to be malfunctioning, remove it from the engine and test it. Refer to the Removal/Installation section of this group for procedures.

After the injector has been removed, install it to a bench-mount injector tester. Refer to operating instructions supplied with tester for procedures.

The opening pressure or "pop" pressure should be 15,000–15,800 kPa (2175–2291 psi). If the fuel injector needle valve is opening ("popping") to early or to late, replace the injector.

Fig. 19 Typical Inspection of Fuel Injector

FUEL INJECTOR / NEEDLE MOVEMENT SENSOR TEST

The needle movement sensor is used only on the number-1 cylinder fuel injector (Fig. 20). It is not used on the injectors for cylinders number 2, 3, or 4.

Fig. 20 Needle Movement Sensor Location

Testing the needle movement sensor requires the use of a DRB Scan tool. Refer to the Powertrain Diagnostic Procedures manual for additional information.

FUEL INJECTION PUMP TEST

The injection pump is not to be serviced or the warranty may be voided. If the injection pump requires service, the complete assembly must be replaced.

Incorrect injection pump timing (mechanical or electrical) can cause poor performance, excessive smoke and emissions and poor fuel economy.

A defective fuel injection pump, defective fuel timing solenoid or misadjusted mechanical pump timing can cause starting problems or prevent the engine from revving up. It can also cause:

- Engine surge at idle
- Rough idle (warm engine)
- Low power
- Excessive fuel consumption
- Poor performance
- Low power
- Black smoke from the exhaust
- Blue or white fog like exhaust
- Incorrect idle or maximum speed

The electronically controlled fuel pump has no mechanical governor like older mechanically controlled fuel pumps. Do not remove the top cover of the fuel pump, or the screws fastening the wiring pigtail to the side of the pump. The warranty of the injection pump and the engine may be void if those seals have been removed or tampered with.

FUEL SUPPLY RESTRICTIONS

LOW-PRESSURE LINES

Restricted or Plugged supply lines or fuel filter can cause a timing fault that will cause the ECM to operate the engine in a "Limp Home" mode. See the introduction of the Fuel Injection System in this group for more information on the Limp Home mode. Fuel supply line restrictions can cause starting problems and prevent the engine from revving up. The starting problems include; low power and blue or white fog like exhaust. Test all fuel supply lines for restrictions or blockage. Flush or replace as necessary. Bleed the fuel system of air once a fuel supply line has been replaced. Refer to the Air Bleed Procedure section of this group for procedures.

HIGH-PRESSURE LINES

Restricted (kinked or bent) high-pressure lines can cause starting problems, poor engine performance and black smoke from exhaust.

Examine all high-pressure lines for any damage. Each radius on each high-pressure line must be smooth and free of any bends or kinks.

Replace damaged, restricted or leaking high-pressure fuel lines with the correct replacement line.

CAUTION: The high-pressure fuel lines must be clamped securely in place in the holders. The lines cannot contact each other or other components. Do not attempt to weld high-pressure fuel lines or to repair lines that are damaged. Only use the recommended lines when replacement of high-pressure fuel line is necessary.

FUEL SHUTDOWN SOLENOID TEST

Refer to 1997 ZJ/ZG 2.5L Diesel Powertrain Diagnostic Manual for the Fuel Shutdown Solenoid test.

HIGH-PRESSURE FUEL LINE LEAK TEST

High-pressure fuel line leaks can cause starting problems and poor engine performance.

WARNING: DUE TO EXTREME FUEL PRESSURES OF UP TO 45,000 KPA (6526 PSI), USE EXTREME CAUTION WHEN INSPECTING FOR HIGH-PRESSURE FUEL LEAKS. DO NOT GET YOUR HAND, OR ANY PART OF YOUR BODY NEAR A SUSPECTED LEAK. INSPECT FOR HIGH-PRESSURE FUEL LEAKS WITH A SHEET OF CARDBOARD. HIGH FUEL INJECTION PRESSURE CAN CAUSE PERSONAL INJURY IF CONTACT IS MADE WITH THE SKIN.

Start the engine. Move the cardboard over the high-pressure fuel lines and check for fuel spray onto the cardboard (Fig. 21). If a high-pressure line connection is leaking, bleed the system and tighten the connection. Refer to the Air Bleed Procedure in this group for procedures. Replace damaged, restricted or leaking high-pressure fuel lines with the correct replacement line.

Fig. 21 Typical Fuel Pressure Test at Injector

CAUTION: The high-pressure fuel lines must be clamped securely in place in the holders. The lines cannot contact each other or other components. Do not attempt to weld high-pressure fuel lines or to repair lines that are damaged. Only use the recommended lines when replacement of high-pressure fuel line is necessary.

SERVICE PROCEDURES

AIR BLEED PROCEDURES

AIR BLEEDING AT FUEL FILTER

A certain amount of air may become trapped in the fuel system when fuel system components are serviced or replaced. Bleed the system as needed after fuel system service according to the following procedures.

WARNING: DO NOT BLEED AIR FROM THE FUEL SYSTEM OF A HOT ENGINE. DO NOT ALLOW FUEL TO SPRAY ONTO THE EXHAUST MANIFOLD WHEN BLEEDING AIR FROM THE FUEL SYSTEM.

Some air enters the fuel system when the fuel filter or injection pump supply line is changed. This small amount of air is vented automatically from the injection pump through the fuel drain manifold tubes if the filter was changed according to instructions. Ensure the bowl of the fuel filter/water separator is full of fuel.

It may be necessary to manually bleed the system if:

- The bowl of the fuel filter/water separator is not partially filled before installation of a new filter
 - The injection pump is replaced
- High-pressure fuel line connections are loosened or lines replaced
- Initial engine start-up or start-up after an extended period of no engine operation
 - Running fuel tank empty

FUEL INJECTION PUMP BLEEDING

- (1) If the fuel injection pump has been replaced, air should be bled at the overflow valve before attempting to start engine.
 - (a) Loosen the overflow valve (Fig. 22) at the rear of the injection pump.
 - (b) Place a towel below the valve.

WARNING: WHEN CRANKING THE ENGINE TO BLEED AIR FROM THE INJECTION PUMP, THE ENGINE MAY START. PLACE THE TRANSMISSION IN NEUTRAL OR PARK AND SET PARKING BRAKE BEFORE ENGAGING THE STARTER MOTOR.

CAUTION: Do not engage the starter motor for more than 30 seconds at a time. Allow 2 minutes between cranking intervals.

SERVICE PROCEDURES (Continued)

Fig. 22 Overflow Valve

- (2) Crank the engine for 30 seconds at a time to allow air trapped in the injection pump to vent out the fuel injector drain tubes. Continue this procedure until the engine starts. Observe the previous WARN-ING and CAUTION.
 - (3) Tighten overflow valve.

HIGH-PRESSURE FUEL LINE BLEEDING

WARNING: THE INJECTION PUMP SUPPLIES HIGH-PRESSURE FUEL OF APPROXIMATELY 59,000 KPA (8,557 PSI) TO EACH INDIVIDUAL INJECTOR THROUGH THE HIGH-PRESSURE LINES. FUEL UNDER THIS AMOUNT OF PRESSURE CAN PENETRATE THE SKIN AND CAUSE PERSONAL INJURY. WEAR SAFETY GOGGLES AND ADEQUATE PROTECTIVE CLOTHING AND AVOID CONTACT WITH FUEL SPRAY WHEN BLEEDING HIGH-PRESSURE FUEL LINES.

WARNING: DO NOT BLEED AIR FROM THE FUEL SYSTEM OF A HOT ENGINE. DO NOT ALLOW FUEL TO SPRAY ONTO THE EXHAUST MANIFOLD WHEN BLEEDING AIR FROM THE FUEL SYSTEM.

Bleed air from one injector at time.

- (1) Loosen the high-pressure fuel line fitting at the injector (Fig. 23).
- (2) Crank the engine until all air has been bled from the line. Do not operate the starter motor for longer than 30 seconds. Wait 2 minutes between cranking intervals.
- (3) Start the engine and bleed one injector at a time until the engine runs smoothly.

Fig. 23 Bleeding High-Pressure Fuel Line—Typical FUEL INJECTION PUMP TIMING

Refer to Removal/Installation and Adjusting Fuel Pump Timing in this Group.

REMOVAL AND INSTALLATION

ACCELERATOR PEDAL

REMOVAL

- (1) Disconnect electrical connector.
- (2) Remove accelerator pedal mounting bracket nuts. Remove accelerator pedal assembly.

INSTALLATION

- (1) Place accelerator pedal assembly over studs protruding from floor pan. Tighten mounting nuts to 5 N·m (46 in. lbs.) torque.
 - (2) Connect electrical connector.
- (3) Before starting the engine, operate the accelerator pedal to check for any binding.

AIR CLEANER ELEMENT

REMOVAL

- (1) Remove hose clamp at Mass Air Flow Sensor.
- (2) Remove hose from Mass Air Flow Sensor.
- (3) Loosen 2 clamps holding air cleaner housing halves together.
 - (4) Remove left side of air cleaner housing.
 - (5) Remove element from air cleaner housing.

INSTALLATION

- (1) Install a new element in housing.
- (2) Position left side of housing.
- (3) Snap clamps into place.
- (4) Install hoses and clamps.

Fig. 24 Accelerator Pedal Mounting-Typical

FUEL DRAIN TUBES

The fuel drain tubes (Fig. 25) are low-pressure type.

Pull each tube from the injector for removal. Push on for installation. Clamps are not required for these tubes.

80ba77fa

Fig. 25 Fuel Injectors and Drain Tubes

FUEL FILTER/WATER SEPARATOR

The fuel filter/water separator is located in the engine compartment on the left side near the shock tower. (Fig. 26).

Fig. 26 Fuel Filter/Water Separator Location

The fuel filter/water separator assembly contains the fuel filter, fuel heater element, and fuel drain valve (Fig. 26).

DRAINING WATER FROM FILTER BOWL

Moisture (water) collects at the bottom of the filter/separator in a plastic bowl. Water entering the fuel injection pump can cause serious damage to the pump. Note that the bulb will be illuminated for approximately 2 seconds each time the key is initially placed in the ON position. This is done for a bulb check.

WARNING: DO NOT ATTEMPT TO DRAIN WATER FROM THE FILTER/SEPARATOR WITH THE ENGINE HOT.

- (1) The bottom of the filter/separator bowl is equipped with a drain valve (Fig. 26). The drain valve is equipped with a fitting. Attach a piece of rubber hose to this fitting. This hose is to be used as a drain hose.
 - (2) Place a drain pan under the drain hose.
- (3) With the engine not running, open the drain valve (unscrew—drain valve has right hand threads) from the filter/separator bowl. To gain access to this fitting, the two filter—to—mounting bracket nuts (Fig. 26) may have to be loosened a few turns.
- (4) Hold the drain open until clean fuel exits the drain.
 - (5) After draining, close drain valve.
 - (6) Remove rubber drain hose.
- (7) Dispose of mixture in drain pan according to applicable local or federal regulations.

FUEL FILTER REMOVAL

- (1) Drain all fuel and/or water from fuel filter/water separator assembly. Refer to the previous Draining Water From Filter Bowl.
- (2) Unplug the electrical connectors at bottom of plastic bowl.
- (3) Remove plastic bowl from bottom of fuel filter (unscrews).
- (4) Remove fuel filter from bottom of filter base (unscrews).

FUEL FILTER INSTALLATION

- (1) Clean bottom of fuel filter base.
- (2) Apply clean diesel fuel to new fuel filter gasket.
- (3) Install and tighten filter to filter base. The beveled part of the rubber gasket should be facing up towards the filter base.
- (4) Clean the inside of bowl with a soap and water mixture before installation. Carefully clean any residue between the two metal probes at the top of the water—in—fuel sensor. Do not use chemical cleaners as damage to the plastic bowl may result.
- (5) Pour diesel fuel into the plastic bowl before installing bowl to bottom of fuel filter. Do this to help prevent air from entering fuel injection pump while attempting to starting engine.
 - (6) Install filter bowl to bottom of filter.
- (7) Install the electrical connectors at bottom of bowl.
- (8) Tighten the filter–to–mounting bracket nuts (Fig. 26) to 28 N·m (250 in. lbs.) torque.

FUEL HEATER

If the fuel heater element needs replacement, the plastic filter bowl assembly must be replaced. Refer to Fuel Filter/Water Separator for information.

FUEL HEATER RELAY

The fuel heater relay is located in the PDC. For the location of the relay within the PDC (Fig. 27), refer to label on PDC cover.

FUEL LEVEL SENSOR

The fuel level sensor is located on the side of the fuel pump module (Fig. 28).

REMOVAL

- (1) Remove fuel tank. Refer to Fuel Tank Removal/Installation.
- (2) Remove fuel pump module. Refer to Fuel Pump Module Removal/Installation.
- (3) Remove electrical wire connector at sending unit terminals.
- (4) Press on release tab (Fig. 29) to remove sending unit from pump module.

Fig. 27 Power Distribution Center (PDC) Location

Fig. 28 Fuel Level Sensor

FUEL INJECTION PUMP

REMOVAL

- (1) Disconnect the negative battery cable.
- (2) Thoroughly clean the area around the injection pump and fuel lines of all dirt, grease and other contaminants. **Due to the close internal tolerances of the injection pump, this step must be performed before removing pump.**

Fig. 29 Fuel Level Sensor Release Tab

- (3) Remove the engine accessory drive belt. Refer to Group 7, Cooling System for procedures.
 - (4) Remove the generator assembly.
- (5) Remove the rubber fuel return and supply hoses from the metal lines at the pump (Fig. 30).

Fig. 30 Fuel Injection Pump

- (6) Remove the electrical connector at engine coolant temperature sensor.
- (7) Disconnect the Fuel Injection Pump electrical connector at fuel pump (Fig. 30).
- (8) Disconnect the main engine wiring harness from the glow plugs.

- (9) Disconnect the four high-pressure fuel lines from the fuel injection pump. Also disconnect fuel lines at the fuel injectors. For procedures, refer to High-Pressure Fuel Lines in this group. Place a rag beneath the fittings to catch excess fuel.
 - (10) Remove the plug from timing gear cover.
- (11) The "Top Dead Center" (TDC) compression firing stroke for the #1 cylinder can be determined as follows:
 - (a) Using a socket attached to the front of the crankshaft, rotate the engine clockwise until special alignment tool VM# 1035 can be inserted through the hole in the bottom of the clutch housing, stopping the flywheel rotation. This position is TDC or 180° away from TDC. **Engine must be at TDC #1 compression firing stroke.**
 - (b) To verify that you are at TDC. Remove the oil fill cap from the cylinder head cover and the alignment tool from the clutch housing.
 - (c) Rotate the crankshaft one-quarter turn clockwise and counter-clockwise while observing the rocker arm through the oil fill cap hole. If the rocker arm moves you are not at TDC.
 - (d) If TDC was found continue, if not rotate the crankshaft one revolution until the alignment tool can be re-installed in the flywheel. You are now at TDC for the #1 cylinder compression firing stroke. Mark the damper and timing cover for reference to TDC. Remove the alignment tool from the clutch housing.
- (12) Remove access plug and plug washer at rear of pump (Fig. 31). Thread special dial indicator and adapter tool VM.1011 (Fig. 32) into this opening. Hand tighten only.
- (13) Slightly rotate the engine in a counter-clockwise direction until the dial gauge indicator stops moving (20°-25° before TDC).
- (14) Remove injection pump drive gear nut (Fig. 33).
- (15) A special 3-piece gear removal tool set VM.1003 (Fig. 34) must be used to remove the injection pump drive gear from the pump shaft.
 - (a) Thread the adapter (Fig. 35) into the timing cover.
 - (b) Thread the gear puller into the injection pump drive gear (Fig. 35). This tool is also used to hold the gear in synchronization during pump removal.
 - (c) Remove the three injection pump-to-gear cover mounting nuts (Fig. 36). **CAUTION: This step must be done to prevent injection pump damage.**
 - (d) Install the drive bolt into the gear puller (Fig. 35). Tighten the drive bolt to press (remove) the drive gear from injection pump shaft while

Fig. 31 Access Plug at Rear of Pump

Fig. 32 Installing Dial Indicator and Special Adapter
Tools

driving injection pump rearward from timing gear cover mounting studs.

(16) Remove pump from engine. **Do not rotate** engine while gear puller is installed. Engine damage will occur.

INSTALLATION/ADJUSTING PUMP TIMING

(1) Clean the mating surfaces of injection pump and timing gear cover.

Fig. 33 Removing Pump Drive Gear Nut

Fig. 34 Pump Gear Tools

- (2) Install a new injection pump-to-timing gear cover gasket.
- (3) Remove the gear removing bolt (drive bolt) from gear puller. CAUTION: Do not remove the special gear puller or timing cover adapter tools from timing cover at this time. Gear misalignment will result.
- (4) Place the key way on the pump shaft to the 11 o'clock position as viewed from the front of pump. Install the pump into the rear of timing gear cover while aligning key way on pump shaft into pump gear.
- (5) Install and snug the 3 injection pump mounting nuts. This is not the final tightening sequence.
- (6) Remove the special gear puller and adapter tools from timing gear cover.

Fig. 35 Installing Pump Drive Gear Removal Tools

Fig. 36 Injection Pump Mounting Nuts

- (7) Install the injection pump drive gear nut. Tighten nut to 88 N·m (65 ft. lbs.) torque.
- (8) Remove the access plug and plug washer at rear of pump (Fig. 37). Thread special dial indicator adapter tool VM.1011 (Fig. 38) into this opening. Hand tighten only.
- (9) Attach special dial indicator tool VM.1013 into the adapter tool (Fig. 38).
- (10) Using a socket attached to the front of the crankshaft, rotate the engine in a counter-clockwise direction until the dial gage indicator stops moving (20–25° before TDC).
- (11) Set the dial indicator to 0mm. Be sure the tip of the dial indicator is touching the tip inside the adapter tool.

Fig. 37 Access Plug at Rear of Pump

Fig. 38 Installing Dial Indicator and Special Adapter
Tools

- (12) The "Top Dead Center" (TDC) compression firing stroke can be determined as follows:
 - (a) Rotate the engine clockwise until special alignment tool VM# 1035 can be inserted through the hole in the bottom of the clutch housing, stopping the flywheel rotation. This position is TDC or 180° away from TDC. **Engine must be at TDC #1 compression firing stroke**.

- (b) To verify that you are at TDC. Remove the oil fill cap from the rocker cover and the alignment tool from the clutch housing.
- (c) Rotate the crankshaft one-quarter turn clockwise and counter-clockwise while observing the rocker arm through the oil fill cap hole. If the rocker arm moves you are not at TDC.
- (d) If TDC was found continue, if not rotate the crankshaft one revolution until the alignment tool can be re-installed in the flywheel. You are now at TDC.
- (13) The gauge reading should be at 0.60 mm. If not, the pump must be rotated for adjustment:
 - (a) Loosen the three injection pump mounting nuts at the mounting flanges. These flanges are equipped with slotted holes. The slotted holes are used to rotate and position the injection pump for fuel timing. Loosen the three nuts just enough to rotate the pump.
 - (b) Rotate the pump until 0.60 mm is indicated on the dial indicator gauge. If while rotating the pump the 0.60mm specification is passed do not attempt to rotate the pump in the opposite direction. You must rotate the pump back below the 0.60mm specification and start the procedure over from the start of the TDC procedure. This will prevent a false reading due to gear backlash.
 - (c) Tighten the three pump mounting nuts to 30 $N\!\cdot\! m$ (22 ft. lbs.) torque.
 - (d) Recheck the dial indicator after tightening the pump mounting nuts. Gauge should still be reading 0.60 mm.
 - (14) Remove dial indicator and adapter tools.
- (15) Install access plug and washer to rear of injection pump.
 - (16) Install plug at timing gear cover.
- (17) Install and connect the four high-pressure fuel lines to the fuel injection pump. Also connect fuel lines at the fuel injectors. For procedures, refer to High-Pressure Fuel Lines in this group.
- (18) Install electrical connector at engine coolant temperature sensor.
- (19) Connect electrical connector at fuel shutdown solenoid.
- (20) Connect the main engine wiring harness to the glow plugs.
- (21) Connect the fuel timing solenoid pigtail harness to the engine wiring harness.
- (22) Connect the overflow valve/banjo fitting (fuel return line assembly). Replace copper gaskets before installing.
- (23) Connect the rubber fuel return and supply hoses to metal lines at pump. Tighten hose clamps to $2 \text{ N} \cdot \text{m}$ (20 in. lbs.) torque.
 - (24) Install generator assembly.

- (25) Install engine accessory drive belt. Refer to Group 7, Cooling System for procedures.
 - (26) Install negative battery cable to battery.
- (27) Start the engine and bring to normal operating temperature.
 - (28) Check for fuel leaks.

FUEL INJECTORS

Four fuel injectors are used on each engine. Of these four, two different types are used. The fuel injector used on cylinder number one is equipped with a fuel injector sensor (Fig. 39). The other three fuel injectors are identical. Do not place the fuel injector equipped with the fuel injector sensor into any other location except the cylinder number one position.

Fig. 39 Fuel Injector Sensor — #1 Cylinder REMOVAL

- (1) Disconnect negative battery cable at battery.
- (2) Thoroughly clean the area around the injector with compressed air.
- (3) Remove the fuel drain hoses (tubes) at each injector (Fig. 40) being serviced. Each of these hoses is slip-fit to the fitting on injector.
- (4) Remove the high-pressure fuel line at injector being removed. Refer to High-Pressure Fuel Lines in this group for procedures.
- (5) Remove the injector using special socket tool number VM.1012A. When removing cylinder number one injector, thread the wiring harness through the access hole on the special socket (Fig. 41).
- (6) Remove and discard the copper washer (seal) at bottom of injector (Fig. 39).

Fig. 40 Fuel Injector—Typical

Fig. 41 Wiring Harness Through Socket

INSTALLATION

- (1) Clean the injector threads in cylinder head.
- (2) Install new copper washer (seal) to injector.
- (3) Install injector to engine. Tighten to 70 N·m (52 ft. lbs.) torque.
- (4) Install high–pressure fuel lines. Refer to High–Pressure Fuel Lines in this group for procedures.
- (5) Install fuel drain hoses (tubes) to each injector. Do not use clamps at fuel drain hoses.
 - (6) Connect negative battery cable to battery.
- (7) Bleed the air from the high-pressure lines. Refer to the Air Bleed Procedure section of this group.

FUEL TANK

REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Insert fuel siphon hose into fuel filler neck and push it into the tank.

- (3) Drain fuel tank dry into holding tank or a properly labeled **diesel** safety container.
 - (4) Raise vehicle on hoist.
- (5) Disconnect both the fuel fill and fuel vent rubber hoses at the fuel tank.
- (6) Disconnect fuel supply and return lines from the steel supply line (Fig. 42).

Fig. 42 Fuel Tank Connections at Front of Tank

Fig. 43 Fuel Fill/Vent Hose Index Marks

The fuel reservoir module electrical connector has a retainer that locks it in place.

- (7) Slide electrical connector lock to unlock.
- (8) Push down on connector retainer (Fig. 44) and pull connector off module.
- (9) Use a transmission jack to support fuel tank. Remove bolts from fuel tank straps.

Fig. 44 Module Connector Retainer and Lock

- (10) Lower tank slightly. Carefully remove filler hose from tank.
- (11) Lower the fuel tank. Remove clamp and remove fuel filler tube vent hose. Remove fuel tank from vehicle.

INSTALLATION

- (1) Position fuel tank on transmission jack. Connect fuel filler tube vent hose and replace clamp.
- (2) Raise tank into position and carefully work filler tube into tank. A light coating of clean engine oil on the tube end may be used to aid assembly.
- (3) Feed filler vent line thorough frame rail. Careful not to cross lines.
- (4) Tighten strap bolts to 9 N·m (80 in. lbs.). Remove transmission jack.

CAUTION: Ensure straps are not twisted or bent before or after tightening strap nuts.

- (5) Connect module electrical connector. Place retainer in locked position.
- (6) Lubricate the fuel supply and return lines with clean 30 weight engine oil, install the quick connect fuel fitting. Refer to Tube/Fitting Assembly in the Fuel Delivery section of this Group.
- (7) Attach filler line to filler tube. Pull on connector to make sure of connection.
- (8) Fill fuel tank, replace cap, and connect battery negative cable.

FUEL RESERVOIR MODULE

REMOVAL

WARNING: THE FUEL RESERVOIR OF THE FUEL MODULE DOES NOT EMPTY OUT WHEN THE TANK IS DRAINED. THE FUEL IN THE RESERVOIR WILL SPILL OUT WHEN THE MODULE IS REMOVED.

- (1) Disconnect negative cable from battery.
- (2) Drain fuel tank dry into holding tank or a properly labeled **diesel** safety container.
 - (3) Raise vehicle on hoist.
- (4) Use a transmission jack to support the fuel tank. Remove bolts from fuel tank straps. Lower tank slightly.
- (5) Clean area around fuel reservoir module and tank to keep dirt and foreign material out of tank.
- (6) Disconnect fuel lines from fuel module by depressing quick connect retainers with thumb and fore finger.
- (7) Slide module electrical connector lock to unlock.
- (8) Push down on connector retainer and pull connector off module.
- (9) Using Special Tool 6856, remove plastic locknut counterclockwise to release pump module (Fig. 45).

Fig. 45 Fuel Reservoir Module Lock Nut Removal

- (10) Carefully remove module and o-ring from tank.
 - (11) Discard old o-ring.

INSTALLATION

- (1) Thoroughly clean locknut threads and mating fule tank threads. Use a soap/water solution. **Do not use carburetor cleaner to clean threads.**
- (2) Apply clean water to the o-ring seal and place on the mating fuel tank threads.
- (3) Wipe seal area of tank clean and place a new o-ring seal in position on pump.
- (4) Position fuel reservoir module in tank with locknut.
 - (5) Tighten locknut to 75 N·m (55 ft. lbs.).
 - (6) Connect fuel lines.
- (7) Plug in electrical connector. Slide connector lock into position.
- (8) Raise fuel tank, install bolts into fuel tank straps and tighten.
 - (9) Lower vehicle on hoist.

- (10) Connect negative cable from battery.
- (11) Fill fuel tank. Check for leaks.
- (12) Install fuel filler cap.

HIGH-PRESSURE LINES

All high-pressure fuel lines are of the same length and inside diameter. Correct high-pressure fuel line usage and installation is critical to smooth engine operation.

CAUTION: The high-pressure fuel lines must be clamped securely in place in the holders. The lines cannot contact each other or other components. Do not attempt to weld high-pressure fuel lines or to repair lines that are damaged. Only use the recommended lines when replacement of high-pressure fuel line is necessary.

REMOVAL

- (1) Disconnect negative battery cable from battery.
- (2) Remove the necessary clamps holding the lines to the engine.
- (3) Clean the area around each fuel line connection. Disconnect each line at the top of each fuel injector (Fig. 46).

Fig. 46 Fuel Lines at Fuel Injectors

(4) Disconnect each high-pressure line fitting at each fuel injection pump delivery valve.

(5) Very carefully remove each line from the engine. Note the position (firing order) of each line while removing. **Do not bend the line while removing.**

CAUTION: Be sure that the high-pressure fuel lines are installed in the same order that they were removed. Prevent the injection pump delivery valve holders from turning when removing or installing high-pressure lines from injection pump.

INSTALLATION

- (1) Carefully position each high-pressure fuel line to the fuel injector and fuel injection pump delivery valve holder in the correct firing order. Also position each line in the correct line holder.
 - (2) Loosely install the line clamp/holder bolts.
- (3) Tighten each line at the delivery valve to 30 $N \cdot m$ (22 ft. lbs.) torque.
- (4) Tighten each line at the fuel injector to 30 N·m (22 ft. lbs.) torque.

Be sure the lines are not contacting each other or any other component.

- (5) Tighten the clamp bracket bolts to 24 N·m (18 ft. lbs.) torque.
- (6) Bleed air from the fuel system. Refer to the Air Bleed Procedure section of this group.

SPECIFICATIONS

FUEL TANK CAPACITY

75 Liters (20.0 Gals.)

Nominal refill capacities are shown. A variation may be observed from vehicle to vehicle due to manufacturing tolerances, ambient temperatures and refill procedures.

IDLE SPEED

900 rpm ± 25 **rpm** with engine at normal operating temperature.

FUEL INJECTOR FIRING SEQUENCE

1-3-4-2

FUEL SYSTEM PRESSURE

Peak Injection Pressure/Fuel Injection Pump Operating Pressure: 40,000–45,000 kPa (5801–6526 psi).

Opening Pressure of Fuel Injector:

15,000-15,800 kPa (2175-2291 psi).

FUEL INJECTION SYSTEM—2.5L DIESEL ENGINE

INDEX

page	page
GENERAL INFORMATION	SENSOR RETURN—ECM/PCM INPUT
INTRODUCTION	(ANALOG GROUND)
DESCRIPTION AND OPERATION	SPEED CONTROL—ECM INPUT 28
AIR CONDITIONING (A/C) CONTROLS—	SPEED CONTROL—PCM OUTPUTS 28
ECM INPUTS 27	TACHOMETER—PCM OUTPUT
AIR CONDITIONING RELAY—ECM OUTPUT 28	TIMING SOLENOID—ECM OUTPUT 29
ASD RELAY—ECM INPUT 28	VEHICLE SPEED SENSOR—ECM INPUT 27
BATTERY VOLTAGE—PCM INPUT 25	VEHICLE THEFT ALARM
BOOST / PRESSURE SENSOR	DIAGNOSIS AND TESTING
BRAKE SWITCH—ECM INPUT 27	ASD RELAY TEST 30
DATA LINK CONNECTOR—PCM AND ECM	BOOST / PRESSURE SENSOR 33
INPUT AND OUTPUT 27	DIAGNOSTIC TROUBLE CODES
ELECTRIC VACUUM MODULATOR (EVM)—	DIESEL DIAGNOSTICS
ECM OUTPUT	ENGINE COOLANT TEMPERATURE
ENGINE COOLANT GAUGE—PCM OUTPUT 28	SENSOR TEST 30
ENGINE COOLANT TEMPERATURE SENSOR—	
ECM/PCM INPUT	GLOW PLUG RELAY TEST
ENGINE OIL PRESSURE GAUGE—	GLOW PLUG TEST 31
PCM OUTPUT 28	RELAYS—OPERATION/TESTING 32
ENGINE SPEED/CRANK POSITION SENSOR—	VEHICLE SPEED SENSOR TEST
ECM INPUT	REMOVAL AND INSTALLATION
FIVE VOLT POWER—ECM/PCM OUTPUT 28	A/C CLUTCH RELAY 34
FUEL INJECTOR SENSOR—GROUND 26	ASD RELAY
GLOW PLUG LAMP—PCM OUTPUT 28	ENGINE COOLANT TEMPERATURE SENSOR 34
GLOW PLUG RELAY—ECM OUTPUT 29	ENGINE SPEED SENSOR
GLOW PLUGS	GLOW PLUG RELAY
IGNITION CIRCUIT SENSE—MSA/PCM INPUT . 25	GLOW PLUGS
IGNITION CIRCUIT SENSE—PCM INPUT 26	POWERTRAIN CONTROL MODULE (PCM) 35
NEEDLE MOVEMENT OR INSTRUMENTED	VEHICLE SPEED SENSOR
FIRST INJECTOR—ECM INPUT	SPECIFICATIONS
POWER GROUND	GLOW PLUG CURRENT DRAW 37
POWERTRAIN CONTROL MODULE (PCM) 24	TORQUE CHART—2 5L DIESEL 37

GENERAL INFORMATION

INTRODUCTION

This section will cover components either regulated or controlled by the ECM controller and the Power-train Control Module (PCM). The fuel heater relay and fuel heater are not operated by the ECM controller or the PCM. These components are controlled by the ignition (key) switch. All other fuel system electrical components necessary to operate the engine are controlled or regulated by the ECM controller, which interfaces with the PCM. Refer to the following description for more information.

Certain fuel system component failures may cause a no start, or prevent the engine from running. It is important to know that the ECM has a feature where, if possible, it will ignore the failed sensor, set a code related to the sensor, and operate the engine in a "Limp Home" mode. When the ECM is operating in a "Limp Home" mode, the Check Engine Lamp on the instrument panel may be constantly illuminated, and the engine will most likely have a noticeable loss of performance. An example of this would be an Accelerator Pedal Position Sensor failure, and in that situation, the engine would run at a constant 1100 RPM, regardless of the actual position of the pedal. This is the most extreme of the three "Limp Home" modes.

When the Check Engine Lamp is illuminated constantly with the key on and the engine running, it usually indicates a problem has been detected some-

GENERAL INFORMATION (Continued)

where within the fuel system. The DRBIII scan tool is the best method for communicating with the ECM and PCM to diagnose faults within the system.

DESCRIPTION AND OPERATION

POWERTRAIN CONTROL MODULE (PCM)

On LHD vehicles, the ECM is mounted behind the lower Instrument Panel to the right of the accelerator pedal (Fig. 1). On RHD vehicles, the ECM is mounted behind the lower Instrument Panel to the left of the clutch pedal. The Powertrain Control Module (PCM) is mounted in the engine compartment. (Fig. 2).

Fig. 1 ECM Controller Location

The ECM Controller is a pre-programmed, digital computer. It will either directly operate or partially regulate the:

- Speed Control
- Speed Control lamp
- Fuel Timing Solenoid
- Check Engine Light
- Glow Plug Relay
- Glow Plugs
- Glow Plug Lamp
- ASD Relay
- Air Conditioning
- Tachometer
- Electric Vacuum Modulator (EVM)

The ECM can adapt its programming to meet changing operating conditions.

The ECM receives input signals from various switches and sensors. Based on these inputs, the ECM regulates various engine and vehicle operations through different system components. These components are referred to as **ECM Outputs.** The sensors

Fig. 2 PCM Location

and switches that provide inputs to the ECM are considered **ECM Inputs.**

ECM Inputs are:

- Air Conditioning Selection
- Theft Alarm
- ASD Relay
- Control Sleeve Position Sensor
- Fuel Temperature Sensor
- Mass Air Flow Sensor
- Accelerator Pedal Position Sensor
- Engine Coolant Temperature Sensor
- Low Idle Position Switch
- 5 Volt Supply
- Vehicle Speed Sensor
- Engine Speed/Crank Position Sensor (rpm)
- Needle Movement Sensor
- Starter Signal
- Brake Switch
- Speed Control Switch
- Power Ground
- Ignition (key) Switch Sense

ECM Outputs:

After inputs are received by the ECM and PCM, certain sensors, switches and components are controlled or regulated by the ECM and PCM. These are considered **ECM Outputs.** These outputs are for:

- A/C Clutch Relay (for A/C clutch operation)
- Speed Control Lamp
- ASD Relay
- 5 Volts Supply
- Fuel Quantity Actuator
- Fuel Timing Solenoid
- Fuel Shutdown Solenoid

- Glow Plug Lamp
- Check Engine Lamp ("On/Off" signal)
- Electric Vacuum Modulator (EVM)
- · Glow Plug Relay
- Tachometer

The PCM sends and recieves signals to and from the ECM controller. **PCM inputs are:**

- Power Gound
- 5 Volts Supply
- Vehicle Speed Sensor
- Water-In-Fuel Sensor
- Coolant Temperature Sensor
- Low Coolant Sensor
- Sensor Return
- Fuel Level Sensor
- Oil Pressure Sensor
- Tachometer Signal
- Glow Plug Lamp
- Check Engine Lamp ("On/Off" signal)
- Brake On/Off Switch
- Battery Voltage
- ASD Relay

PCM Outputs:

- A/C On Signal
- Vehicle Theft Alarm "Ok to Run" signal
- Body Control Module CCD Bus (+)
- Body Control Module CCD Bus (-)
- Scan Tool Data Link Recieve
- Scan Tool Data Link Transmit
- Low Coolant Lamp
- Generator Control

BOOST / PRESSURE SENSOR

The Boost Pressure Sensor is mounted to the top of the intake manifold (Fig. 3). It is a sensor that measures both manifold vacuum and turbo boost, and it also contains an integrated intake air temperature sensor. The Boost Pressure Sensor takes the place of the Mass Air Flow (MAF). In the Intake Air Temperature Sensor component, there is a ceramic element that changes its resistance based on temperature. The ceramic element is part of an electronic circuit connected to the PCM, and has a voltage applied to it. The ceramic element is exposed to the air inside the intake. This air has a cooling effect on the ceramic element, and its resistance changes. This causes the voltage flowing through the intake air temperature circuit to vary. The voltage signal produced by the Intake Air Temperature Sensor changes inversely to the temperature, and is measured by the PCM. As a general rule, when the temperature of the air in the intake is high, the voltage signal produced by the Intake Air Temperature Sensor is low. The component of the Boost Pressure Sensor that measures manifold vacuum and turbo boost produces a voltage signal that is proportional to the pressure in

the intake manifold. When the intake manifold pressure is low, the voltage is low, and when the pressure is high, the voltage is high. The PCM uses the voltage signals from the Boost Pressure Sensor, and the Intake Air Temperature Sensor to determine the amount of air flowing through the intake manifold.

Fig. 3 Boost Pressure Sensor Location

VEHICLE THEFT ALARM

The PCM can learn if the vehicle has a Vehicle Theft Alarm (VTA) system. Once it detects the vehicle having VTA, **the controller can ONLY BE USED ON VEHICLES WITH VTA.**

If the PCM is put it on a vehicle without VTA the Glow Plug Lamp will start to blink and the vehicle will not start.

The PCM cannot be flashed to remove the VTA.

BATTERY VOLTAGE—PCM INPUT

The battery voltage input provides power to the PCM. It also informs the PCM what voltage level is being supplied by the generator once the vehicle is running.

The battery input also provides the voltage that is needed to keep the PCM memory alive. The memory stores Diagnostic Trouble Code (DTC) messages. Trouble codes will still be stored even if the battary voltage is lost.

SENSOR RETURN—ECM/PCM INPUT (ANALOG GROUND)

Sensor Return provides a low noise Analog ground reference for all system sensors.

IGNITION CIRCUIT SENSE—MSA/PCM INPUT

The ignition circuit sense input signals the MSA and PCM that the ignition (key) switch has been

turned to the ON position. This signal initiates the glow plug control routine to begin the "pre-heat" cycle.

IGNITION CIRCUIT SENSE—PCM INPUT

The ignition circuit sense input signals the PCM that the ignition (key) switch has been turned to the ON position. This signal initiates the glow plug control routine to begin the "pre-heat" cycle.

POWER GROUND

Provides a common ground for power devices (solenoid and relay devices).

NEEDLE MOVEMENT OR INSTRUMENTED FIRST INJECTOR—ECM INPUT

This input from the ECM supplies a constant 30 mA electrical current source for the first injector sensor. It will vary the voltage to this sensor when it senses a mechanical movement within the injector needle (pintle) of the number–1 cylinder fuel injector. When this voltage has been determined by the ECM, it will then control an output to the fuel timing solenoid (the fuel timing solenoid is located on the fuel injection pump). Also refer to Fuel Injection Pump for additional information.

The first injector sensor is a magnetic (inductive) type.

The first injector sensor is used only on the fuel injector for the number-1 cylinder (Fig. 4). It is not used on the injectors for cylinders number 2, 3, or 4.

FUEL INJECTOR SENSOR—GROUND

Fig. 4 Fuel Injector Sensor

Provides a low noise ground for the fuel injector sensor only.

ENGINE COOLANT TEMPERATURE SENSOR—ECM/PCM INPUT

The 0-5 volt input from this sensor tells the ECM and PCM the temperature of the engine coolant. Based on the voltage received at the ECM, it will then determine operation of the fuel timing solenoid, glow plug relay, electrical vacuum modulator (emission component) and generator (charging system).

The sensor is located on the side of the #3 cylinder head near the rear of fuel injection pump (Fig. 5).

Fig. 5 Engine Coolant Temperature Sensor Location ENGINE SPEED/CRANK POSITION SENSOR—ECM INPUT

The engine speed sensor is mounted to the transmission bellhousing at the left/rear side of the engine block (Fig. 6).

Fig. 6 Engine Speed Sensor Location

The engine speed sensor produces its own output signal. If this signal is not received, the ECM will not allow the engine to start.

The engine speed sensor input is used in conjunction with the first injector sensor to establish fuel injection pump timing.

The flywheel has four notches at its outer edge (Fig. 7). Each notch is spaced equally every 90° . The notches cause a pulse to be generated when they pass under the speed sensor (Fig. 7). These pulses are the input to the ECM. The input from this sensor determines crankshaft position (in degrees) by monitoring the notches.

Fig. 7 Speed Sensor Operation

The sensor also generates an rpm signal to the ECM. This signal is used as an input for the control of the generator field, vehicle speed control, and instrument panel mounted tachometer.

If the engine speed sensor should fail, the system is unable to compensate for the problem and the car will stop.

AIR CONDITIONING (A/C) CONTROLS—ECM INPUTS

The A/C control system information applies to factory installed air conditioning units.

A/C REQUEST SIGNAL: When either the A/C or Defrost mode has been selected and the A/C low and high-pressure switches are closed, an input signal is sent to the ECM. The ECM uses this input to cycle the A/C compressor through the A/C relay.

If the A/C low or high-pressure switch opens, the ECM will not receive an A/C request signal. The

PCM will then remove the ground from the A/C relay. This will deactivate the A/C compressor clutch. Also, if the engine coolant reaches a temperature outside normal of its normal range, or it overheats, the ECM will deactivate the A/C clutch.

BRAKE SWITCH—ECM INPUT

When the brake light switch is activated, the ECM receives an input indicating that the brakes are being applied. After receiving this input, the ECM is used to control the speed control system. There is a Primary and a Secondary brake switch. The Secondary brake switch is closed until the brake pedal is pressed.

DATA LINK CONNECTOR—PCM AND ECM INPUT AND OUTPUT

The 16-way data link connector (diagnostic scan tool connector) links the Diagnostic Readout Box (DRB) scan tool with the PCM and ECM. The data link connector is located under the instrument panel near the bottom of steering column (Fig. 8).

80a07536

Fig. 8 Data Link Connector Location

VEHICLE SPEED SENSOR—ECM INPUT

The vehicle speed sensor is located in the extension housing of the transmission (2WD) (Fig. 9) or on the transfer case extension housing (Fig. 10). The sensor input is used by the ECM to determine vehicle speed and distance traveled.

The speed sensor generates 8 pulses per sensor revolution. These signals, in conjunction with a closed throttle signal from the accelerator pedal position sensor, indicate an idle deceleration to the ECM. When the vehicle is stopped at idle, a released pedal signal is received by the ECM (but a speed sensor signal is not received).

J9414-60

Fig. 9 Vehicle Speed Sensor—Typical

80a35409

Fig. 10 Vehicle Speed Sensor—4 Wheel Drive

In addition to determining distance and vehicle speed, the output from the sensor is used to control speed control operation.

SPEED CONTROL—ECM INPUT

The speed control system provides five separate inputs to the ECM: On/Off, Set, Resume/Accel, Cancel, and Decel. The On/Off input informs the ECM that the speed control system has been activated. The Set input informs the ECM that a fixed vehicle

speed has been selected. The Resume input indicates to the ECM that the previous fixed speed is requested.

Speed control operation will start at 50 km/h-142 km/h (35-85 mph). The upper range of operation is not restricted by vehicle speed. Inputs that effect speed control operation are vehicle speed sensor and accelerator pedal position sensor.

Refer to Group 8H for further speed control information.

ASD RELAY—ECM INPUT

A 12 volt signal at this input indicates to the ECM that the ASD relay has been activated. The ASD relay is located in the PDC. The PDC is located next to the battery in the engine compartment. For the location of the relay within the PDC, refer to label on PDC cover.

This input is used only to sense that the ASD relay is energized. If the ECM does not see 12 volts (+) at this input when the ASD relay should be activated, it will set a Diagnostic Trouble Code (DTC).

FIVE VOLT POWER—ECM/PCM OUTPUT

This circuit supplies approximately 5 volts to power the Accelerator Pedal Position Sensor, and the Boost / Pressure Sensor.

ENGINE COOLANT GAUGE—PCM OUTPUT

Refer to the Instrument Panel and Gauges group for additional information.

ENGINE OIL PRESSURE GAUGE—PCM OUTPUT

Refer to the Instrument Panel and Gauges group for additional information.

GLOW PLUG LAMP—PCM OUTPUT

The Glow Plug lamp (malfunction indicator lamp) illuminates on the message center each time the ignition (key) switch is turned on. It will stay on for about two seconds as a bulb test.

00

Fig. 11 Glow Plug Lamp Symbol

SPEED CONTROL—PCM OUTPUTS

These two circuits control the fuel quantity actuator to regulate vehicle speed. Refer to Group 8H for Speed Control information.

AIR CONDITIONING RELAY—ECM OUTPUT

This circuit controls a ground signal for operation of the A/C clutch relay. Also refer to Air Conditioning

(A/C) Controls—ECM Input for additional information.

The A/C relay is located in the Power Distribution Center (PDC). The PDC is located next to the battery in the engine compartment. For the location of the relay within the PDC, refer to label on PDC cover.

TIMING SOLENOID—ECM OUTPUT

The timing solenoid is located on the bottom of the fuel injection pump (Fig. 12).

Fig. 12 Timing Solenoid

This 12(+) volt, pulse width modulated (duty-cycle) output controls the amount of fuel timing (advance) in the fuel injection pump. The higher the duty-cycle, the lower the advance. The lower the duty-cycle, the more advanced the fuel timing.

The duty-cycle is determined by the ECM from inputs it receives from the fuel injector sensor and engine speed sensor.

TACHOMETER—PCM OUTPUT

The PCM recieves engine rpm values from the ECM controller, and then supplies engine rpm values to the Body Controller that then supplies the instrument cluster mounted tachometer (if equipped). Refer to Group 8E for tachometer information.

GLOW PLUG RELAY—ECM OUTPUT

When the ignition (key) switch is placed in the ON position, a signal is sent to the ECM relating current engine coolant temperature. This signal is sent from the engine coolant temperature sensor.

After receiving this signal, the ECM will determine if, when and for how long a period the glow plug relay should be activated. This is done before, during and after the engine is started. Whenever the glow

Fig. 13 Glow Plug Relay Location

plug relay is activated, it will control the 12V+ 100 amp circuit for the operation of the four glow plugs.

With a cold engine, the glow plug relay and glow plugs may be activated for a maximum time of 200 seconds. Refer to the following Glow Plug Control chart for a temperature/time comparison of glow plug relay operation.

In this chart, Pre-Heat and Post-Heat times are mentioned. Pre-heat is the amount of time the glow plug relay circuit is activated when the ignition (key) switch is ON, but the engine has yet to be started. Post-heat is the amount of time the glow plug relay circuit is activated after the engine is operating. The Glow Plug lamp will not be illuminated during the post-heat cycle.

GLOW PLUG CONTROL

ENGINE COOLANT TEMPERATURE KEY ON	WAIT-TO-START LAMP ON (SECONDS)	PRE-HEAT CYCLE (GLOW PLUGS ON) (SECONDS)	POST-HEAT CYCLE (SECONDS)
-30 C	15 SEC.	45 SEC.	200 SEC.
-10 C	8 SEC.	35 SEC.	180 SEC.
+10 C	6 SEC.	25 SEC.	118 SEC.
+30 C	5 SEC.	20 SEC.	70 SEC.
+40 C	4 SEC.	16 SEC.	60 SEC.
+70 C	3 SEC.	16 SEC.	20 SEC.

GLOW PLUGS

Glow plugs are used to help start a cold or cool engine. The plug will heat up and glow to heat the combustion chamber of each cylinder. An individual plug is used for each cylinder. Each plug is threaded into the cylinder head above the fuel injector (Fig. 14).

Fig. 14 Glow Plug

Each plug will momentarily draw approximately 25 amps of electrical current during the initial key-on cycle. This is on a cold or cool engine. After heating, the current draw will drop to approximately 9–12 amps per plug.

Total momentary current draw for all four plugs is approximately 100 amps on a cold engine dropping to a total of approximately 40 amps after the plugs are heated.

Electrical operation of the glow plugs are controlled by the glow plug relay. Refer to the previous Glow Plug Relay—ECM Output for additional information.

ELECTRIC VACUUM MODULATOR (EVM)—ECM OUTPUT

This circuit controls operation of the Electric Vacuum Modulator (EVM). The EVM controls operation of the EGR valve.

Refer to Group 25, Emission Control System for information. See Electric Vacuum Modulator.

DIAGNOSIS AND TESTING

DIESEL DIAGNOSTICS

The ECM controllers perform engine off diagnostic tests, which may be heard for about 60 seconds after turning the key off.

ASD RELAY TEST

To perform a test of the relay and its related circuitry, refer to the DRB scan tool. To test the relay only, refer to Relays—Operation/Testing in this section of the group.

Diagnostic Trouble Codes: Refer to On-Board Diagnostics in Group 25, Emission Control System for a list of Diagnostic Trouble Codes (DTC's) for certain fuel system components.

ENGINE SPEED SENSOR TEST

To perform a test of the engine speed sensor and its related circuitry, refer to the DRB scan tool.

Diagnostic Trouble Codes: Refer to On-Board Diagnostics in Group 25, Emission Control System for a list of Diagnostic Trouble Codes (DTC's) for certain fuel system components.

ENGINE COOLANT TEMPERATURE SENSOR TEST

The sensor is located on the side of cylinder head near the rear of fuel injection pump (Fig. 15).

Fig. 15 Engine Coolant Temperature Sensor

Location

For a list of Diagnostic Trouble Codes (DTC's) for certain fuel system components, refer to On-Board Diagnostics in Group 25, Emission Control System. To test the sensor only, refer to the following:

- (1) Disconnect wire harness connector from coolant temperature sensor.
- (2) Test the resistance of the sensor with a high input impedance (digital) volt-ohmmeter. The resistance (as measured across the sensor terminals) should be less than 1340 ohms with the engine warm. Refer to the following Sensor Resistance

(OHMS) chart. Replace the sensor if it is not within the range of resistance specified in the chart.

SENSOR RESISTANCE (OHMS)

TEMPE	RATURE	RESISTANO	E (OHMS)
С	F	MIN	MAX
-40 -20 -10 0 10 20 25 30 40 50 60 70 80 90 100 110	-40 -4 14 32 50 68 77 86 104 122 140 158 176 194 212 230 248	291,490 85,850 49,250 29,330 17,990 11,370 9,120 7,370 4,900 3,330 2,310 1,630 1,170 860 640 480 370	381,710 108,390 61,430 35,990 21,810 13,610 10,880 8,750 5,750 3,880 2,670 1,870 1,340 970 720 540 410

J928D-4

- (3) Test continuity of the wire harness. Do this between the ECM wire harness connector and the sensor connector terminal. Also test continuity of wire harness to the sensor connector terminal. Refer to Group 8W for wiring connector and circuitry information. Repair the wire harness if an open circuit is indicated.
- (4) After tests are completed, connect electrical connector to sensor.

GLOW PLUG TEST

Hard starting or a rough idle after starting may be caused by one or more defective glow plugs. Before testing the glow plugs, a test of the glow plug relays should be performed. This will ensure that 12V+ is available at the plugs when starting the engine. Refer to the Glow Plug Relay Test for information.

For accurate test results, the glow plugs should be removed from the engine. The plugs must be checked when cold. Do not check the plugs if the engine has recently been operated. If plugs are checked when warm, incorrect amp gauge readings will result.

Use Churchill Glow Plug Tester DX.900 or an equivalent (Fig. 16) for the following tests. This tester is equipped with 4 timer lamps.

- (1) Remove the glow plugs from the engine. Refer to Glow Plug Removal/Installation.
- (2) Attach the red lead of the tester to the 12V+ (positive) side of the battery.

Fig. 16 Typical Glow Plug Tester

- (3) Attach the black lead of the tester to the 12V–(negative) side of the battery.
- (4) Fit the glow plug into the top of the tester and secure it with the spring loaded bar (Fig. 16).
- (5) Attach the third lead wire of the tester to the electrical terminal at the end of the glow plug.
- (6) When performing the test, the tester button (Fig. 16) should be held continuously without release for 20 seconds as indicated by the 4 timer lamps. Each illuminated lamp represents a 5 second time lapse.
 - (a) Press and hold the tester button (Fig. 16) and note the amp gauge reading. The gauge reading should indicate a momentary, initial current draw (surge) of approximately 25 amps. After the initial surge, the amp gauge reading should begin to fall off. The glow plug tip should start to glow an orange color after 5 seconds. If the tip did not glow after 5 seconds, replace the glow plug. Before discarding the glow plug, check the position of the circuit breaker on the bottom of the plug tester. It may have to be reset. Reset if necessary.
 - (b) Continue to hold the tester button while observing the amp gauge and the 4 timer lamps. When all 4 lamps are illuminated, indicating a 20 second time lapse, the amp gauge reading should indicate a $9{\text -}12$ amp current draw. If not, replace the glow plug. Refer to Glow Plug Removal/Installation.
- (7) Check each glow plug in this manner using one 20 second cycle. If the glow plug is to be retested, it must first be allowed to cool to room temperature.

WARNING: THE GLOW PLUG WILL BECOME EXTREMELY HOT (GLOWING) DURING THESE TESTS. BURNS COULD RESULT IF IMPROPERLY HANDLED. ALLOW THE GLOW PLUG TO COOL BEFORE REMOVING FROM TESTER.

(8) Remove the glow plug from the tester.

GLOW PLUG RELAY TEST

The glow plug relay is located in the engine compartment on the left-inner fender (Fig. 17).

Fig. 17 Glow Plug Relay Location

When the ignition (key) switch is placed in the ON position, a signal is sent to the ECM relating current engine coolant temperature. This signal is sent from the engine coolant temperature sensor.

After receiving this signal, the ECM will determine if, when and for how long a period the glow plug relay should be activated. This is done before, during and after the engine is started. Whenever the glow plug relay is activated, it will control the 12V+100 amp circuit for the operation of the four glow plugs.

The Glow Plug lamp is tied to this circuit. Lamp operation is also controlled by the ECM.

With a cold engine, the glow plug relay and glow plugs may be activated for a maximum time of 200 seconds. Refer to the Glow Plug Control chart for a temperature/time comparison of glow plug relay operation.

In this chart, Pre-Heat and Post-Heat times are mentioned. Pre-heat is the amount of time the glow plug relay circuit is activated when the ignition (key) switch is ON, but the engine has yet to be started. Post-heat is the amount of time the glow plug relay circuit is activated after the engine is operating. The Glow Plug lamp will not be illuminated during the post-heat cycle.

TESTING:

Disconnect and isolate the electrical connectors (Fig. 18) at all four glow plugs. With the engine cool or cold, and the key in the ON position, check for 10–12 volts + at each electrical connector. 10–12 volts + should be at each connector whenever the ECM is operating in the pre-heat or post-heat cycles (refer to the following Glow Plug Control chart). Be very careful not to allow any of the four disconnected glow plug electrical connectors to contact a metal surface. When the key is turned to the ON position, approximately 100 amps at 12 volts is supplied to these connectors. If 10–12 volts + is not available at each connector, check continuity of wiring harness directly to the relay. If continuity is good directly to the relay, the fault is either with the relay or the relay input from the ECM. To test the relay only, refer to Relays-Operation/Testing in this section of the group. If the relay test is good, refer to the DRB scan tool.

Diagnostic Trouble Codes: Refer to On-Board Diagnostics in Group 25, Emission Control System for a list of Diagnostic Trouble Codes (DTC's) for certain fuel system components.

Fig. 18 Wiring Connection at Glow Plug

RELAYS—OPERATION/TESTING

The following description of operation and tests apply only to the ASD and other relays. The terminals on the bottom of each relay are numbered (Fig. 19).

OPERATION

- Terminal number 30 is connected to battery voltage. For both the ASD and other relays, terminal 30 is connected to battery voltage at all times.
- The ECM grounds the coil side of the relay through terminal number 85.
- Terminal number 86 supplies voltage to the coil side of the relay.

GLOW PLUG CONTROL

ENGINE COOLANT TEMPERATURE KEY ON	WAIT-TO-START LAMP ON (SECONDS)	PRE-HEAT CYCLE (GLOW PLUGS ON) (SECONDS)	POST-HEAT CYCLE (SECONDS)
-30 C	15 SEC.	45 SEC.	200 SEC.
-10 C	8 SEC.	35 SEC.	180 SEC.
+10 C	6 SEC.	25 SEC.	118 SEC.
+30 C	5 SEC.	20 SEC.	70 SEC.
+40 C	4 SEC.	16 SEC.	60 SEC.
+70 C	3 SEC.	16 SEC.	20 SEC.

Fig. 19 Glow Plug Relay Location

- When the PCM de-energizes the ASD and other relays, terminal number 87A connects to terminal 30. This is the Off position. In the off position, voltage is not supplied to the rest of the circuit. Terminal 87A is the center terminal on the relay.
- When the ECM energizes the ASD and other relays, terminal 87 connects to terminal 30. This is the On position. Terminal 87 supplies voltage to the rest of the circuit.

TESTING

The following procedure applies to the ASD and other relays.

- (1) Remove relay from connector before testing.
- (2) With the relay removed from the vehicle, use an ohmmeter to check the resistance between termi-

- nals 85 and 86. The resistance should be between 75 ± 5 ohms.
- (3) Connect the ohmmeter between terminals 30 and 87A. The ohmmeter should show continuity between terminals 30 and 87A.
- (4) Connect the ohmmeter between terminals 87 and 30. The ohmmeter should not show continuity at this time.
- (5) Connect one end of a jumper wire (16 gauge or smaller) to relay terminal 85. Connect the other end of the jumper wire to the ground side of a 12 volt power source.
- (6) Connect one end of another jumper wire (16 gauge or smaller) to the power side of the 12 volt power source. **Do not attach the other end of the jumper wire to the relay at this time.**

WARNING: DO NOT ALLOW OHMMETER TO CONTACT TERMINALS 85 OR 86 DURING THIS TEST.

- (7) Attach the other end of the jumper wire to relay terminal 86. This activates the relay. The ohmmeter should now show continuity between relay terminals 87 and 30. The ohmmeter should not show continuity between relay terminals 87A and 30.
 - (8) Disconnect jumper wires.
- (9) Replace the relay if it did not pass the continuity and resistance tests. If the relay passed the tests, it operates properly. Check the remainder of the ASD and other relay circuits. Refer to group 8W, Wiring Diagrams.

BOOST / PRESSURE SENSOR

Fig. 20 Boost Pressure Sensor Location

If the boost pressure sensor fails, the PCM records a DTC into memory and continues to operate the

engine in one of the three "limp-in" modes. When the PCM is operating in this mode, a loss of power will be present, as if the turbocharger was not operating. The best method for diagnosing faults with the boost pressure sensor is with the DRB III scan tool. **Diagnostic Trouble Codes:** Refer to On-Board Diagnostics in Group 25, Emission Control System for a list of Diagnostic Trouble Codes (DTC's) for certain fuel system components.

VEHICLE SPEED SENSOR TEST

To perform a test of the sensor and its related circuitry, refer to DRB scan tool.

Diagnostic Trouble Codes: Refer to On-Board Diagnostics in Group 25, Emission Control System for a list of Diagnostic Trouble Codes (DTC's) for certain fuel system components.

DIAGNOSTIC TROUBLE CODES

For a list of Diagnostic Trouble Codes (DTC's), refer to Group 25, Emission Control System for information. See On-Board Diagnostics.

REMOVAL AND INSTALLATION

ASD RELAY

The ASD relay is located in the PDC. For the location of the relay within the PDC, refer to label on PDC cover.

A/C CLUTCH RELAY

The A/C clutch relay is located in the PDC. For the location of the relay within the PDC, refer to label on PDC cover.

ENGINE SPEED SENSOR

The engine speed sensor is mounted to the transmission bellhousing at the rear of the engine block (Fig. 21).

REMOVAL

- (1) Disconnect the harness (on the sensor) from the main electrical harness.
 - (2) Remove the sensor mounting bolts.
 - (3) Remove the sensor.

INSTALLATION

- (1) Install the sensor flush against the opening in the transmission housing.
- (2) Install and tighten the sensor mounting bolt to 19 N·m (14 ft. lbs.) torque.
 - (3) Connect the electrical connector to the sensor.

Fig. 21 Engine Speed Sensor

ENGINE COOLANT TEMPERATURE SENSOR

The sensor is located on the side of cylinder head near the rear of fuel injection pump.

REMOVAL

WARNING: HOT, PRESSURIZED COOLANT CAN CAUSE INJURY BY SCALDING. COOLING SYSTEM MUST BE PARTIALLY DRAINED BEFORE REMOVING THE COOLANT TEMPERATURE SENSOR. REFER TO GROUP 7, COOLING.

- (1) Partially drain cooling system. Refer to Group 7, Cooling.
 - (2) Disconnect electrical connector from sensor.
 - (3) Remove sensor from cylinder head.

INSTALLATION

- (1) Install a new copper gasket to sensor.
- (2) Install sensor to cylinder head.
- (3) Tighten sensor to 18 N·m (13 ft. lbs.) torque.
- (4) Connect electrical connector to sensor.
- (5) Replace any lost engine coolant. Refer to Group 7, Cooling System.

GLOW PLUGS

The glow plugs are located above each fuel injector (Fig. 22). Four individual plugs are used.

REMOVAL

- (1) Disconnect the negative battery cable at the battery.
- (2) Clean the area around the glow plug with compressed air before removal.
- (3) Disconnect electrical connector (Fig. 23) at glow plug.
- (4) Remove the glow plug (Fig. 22) from cylinder head.

Fig. 22 Glow Plug

Fig. 23 Glow Plug Electrical Connector

INSTALLATION

- (1) Apply high-temperature anti-seize compound to glow plug threads before installation.
- (2) Install the glow plug into the cylinder head. Tighten to 23 N⋅m (203 in. lbs.) torque.
 - (3) Connect battery cable to battery.

GLOW PLUG RELAY

The glow plug relay is located in the engine compartment on the left-inner fender (Fig. 24).

REMOVAL

- (1) Disconnect the negative battery cable at the battery.
 - (2) Remove relay mounting bolt.
- (3) Disconnect electrical connector at relay and remove relay.

INSTALLATION

(1) Check condition of electrical connector for damage or corrosion. Repair as necessary.

Fig. 24 Glow Plug Relay Location

- (2) Install electrical connector to relay.
- (3) Install relay to inner fender.
- (4) Connect battery cable to battery.

POWERTRAIN CONTROL MODULE (PCM)

The PCM is mounted to a bracket mounted to the inner side of the right fender well behind the air cleaner assembly (Fig. 25).

Fig. 25 PCM Location

REMOVAL

(1) Disconnect the negative battery cable at the battery.

- (2) Loosen the 60-Way connector (Fig. 25). The electrical connector has a sliding bar which moves inward to lock or outward to unlock.
- (3) Remove the electrical connector by pulling straight out.
 - (4) Remove PCM.

INSTALLATION

- (1) After the PCM electrical connector has been separated from the PCM, inspect the pins for corrosion, being spread apart, bent or misaligned. Also inspect the pin heights in the connector. If the pin heights are different, this would indicate a pin has separated from the connector. Repair as necessary.
- (2) Engage 60-way connector into PCM. Move slide bar to lock connector.
 - (3) Connect negative cable to battery.

VEHICLE SPEED SENSOR

The vehicle speed sensor (Fig. 26) is located on the extension housing of the transmission for 2 wheel drive vehicle, or on the transfer case housing for 4 wheel drive vehicles (Fig. 27).

J9414-60

Fig. 26 Vehicle Speed Sensor Location—2 Wheel Drive

REMOVAL

- (1) Raise and support vehicle.
- (2) Clean the area around the sensor before removal.
- (3) Disconnect the electrical connector from the sensor (Fig. 28).
 - (4) Remove the sensor mounting bolt (Fig. 28).

80a35409

EXTENSION

Fig. 27 Vehicle Speed Sensor Location—4WD

Fig. 28 Sensor Removal/Installation—Typical

(5) Pull the sensor from the speedometer pinion gear adapter for removal.

INSTALLATION

SENSOR

- (1) Install new sensor into speedometer gear adapter.
- (2) Tighten sensor mounting bolt. To prevent damage to sensor or speedometer adapter, be sure the sensor is mounted flush to the adapter before tightening.
 - (3) Connect electrical connector to sensor.

SPECIFICATIONS

GLOW PLUG CURRENT DRAW

Initial Current Draw: Approximately 22–25

amps per plug.

After 20 seconds of operation: Approximately

9-12 amps per plug.

TORQUE CHART—2.5L DIESEL

DESCRIPTION	TORQUE	DESCRIPTION	TORQUE
Accelerator Pedal Bracket Mounting Nuts	5 N•m (46 in. lbs.)	Fuel Injection Pump Mounting Nuts	.30 N·m (22 ft. lbs.)
Banjo-Type Fittings	. 19 N•m (14 ft. lbs.)	Fuel Injection Pump Drive Gear	. 88 N•m (65 ft. lbs.)
Engine Coolant Temperature Sensor	18 N·m (13 ft. lbs.)	Fuel Line Clamp Bracket Bolts	. 24 N·m (18 ft. lbs.)
Engine Speed Sensor Bolts	19 N·m (14 ft. lbs.)	Fuel Tank Nuts	11 N·m (100 in. lbs.)
Fuel Hose (Tube) Clamps For Rubber Hose	2 N·m (20 in. lbs.)	Glow Plugs	. 23 N·m (203 in.lbs.)
Fuel Injector	. 70 N·m (52 ft. lbs.)	Powertrain Control Module Mounting Bolts	1 N·m (9 in. lbs.)
Fuel Injector Line At Injector	30 N•m (22 ft. lbs.)	Throttle Position Sensor Mounting Bolts	7 N•m (60 in. lbs.)
Fuel Injector Line At Injector Pump	30 N·m (22 ft. lbs.)	Vehicle Speed Sensor Mounting Bolt	3 N·m (26 in. lbs.)

80a13879

STEERING

CONTENTS

page	page
	STEERING LINKAGE

POWER STEERING

INDEX

page	page
GENERAL INFORMATION STEERING SYSTEM	DIAGNOSIS AND TESTING POWER STEERING SYSTEM DIAGNOSIS CHARTS

GENERAL INFORMATION

STEERING SYSTEM

The power steering system has a hydraulic pump. The pump is a constant flow rate and displacement, vane-type pump. The pump on the 4.0L engine has a reservoir mounted to it (Fig. 1). The 2.5L engine has a remote mounted reservoir.

The steering gear used is a recirculating ball type gear. The gear acts as a rolling thread between the worm shaft and the rack piston. When the steering wheel is turned the worm shaft turns which moves the rack piston. The rack piston movement turns the pitman shaft which is connected to the steering linkage by the pitman arm. This gear is used on all models.

The power steering system consists of:

- Hydraulic pump
- · Recirculating ball steering gear
- Steering column
- Steering linkage

Fig. 1 Power Steering Gear & Pump - 4.0L

NOTE: Right hand drive (RHD) and left hand drive (LHD) service procedures and torque specifications for steering linkage, gear and column are the same. The power steering pump procedures are different. Refer to appropriate service procedures regarding each component in the system.

DIAGNOSIS AND TESTING

POWER STEERING SYSTEM DIAGNOSIS CHARTS

STEERING NOISE

There is some noise in all power steering systems. One of the most common is a hissing sound evident at a standstill parking. Or when the steering wheel is at the end of it's travel. Hiss is a high frequency noise similar to that of a water tap being closed slowly. The noise is present in all valves that have a high velocity fluid passing through an orifice. There is no relationship between this noise and steering performance.

CONDITION	POSSIBLE CAUSES	CORRECTION
OBJECTIONAL HISS OR WHISTLE	Steering intermediate shaft to dash panel seal.	Check and repair seal at dash panel.
	2. Noisy valve in power steering gear.	2. Replace steering gear.
RATTLE OR CLUNK	Gear mounting bolts loose.	Tighten bolts to specification.
	Loose or damaged suspension components.	2. Inspect and repair suspension.
	3. Loose or damaged steering linkage.	Inspect and repair steering linkage.
	4. Internal gear noise.	4. Replace gear.
	5. Pressure hose in contact with other components.	5. Reposition hose.
CHIRP OR SQUEAL	1. Loose belt.	1. Adjust or replace.
WHINE OR GROWL	Low fluid level. Pressure hose in contact with other	Fill to proper level. Reposition hose.
	components. 3. Internal pump noise.	3. Replace pump.
SUCKING AIR SOUND	Loose return line clamp. O-ring missing or damaged on hose fitting.	Replace clamp. Replace o-ring.
	3. Low fluid level.4. Air leak between pump and reservoir.	Fill to proper level. Repair as necessary.
SCRUBBING OR KNOCKING	Wrong tire size. Wrong gear.	Verify tire size. Verify gear.

DIAGNOSIS AND TESTING (Continued)

BINDING AND STICKING

CONDITION	POSSIBLE CAUSE	CORRECTION
DIFFICULT TO TURN WHEEL	1. Low fluid level.	1. Fill to proper level.
STICKS OR BINDS	2. Tire pressure.	2. Adjust tire pressure.
	3. Steering component.	3. Inspect and lube.
	4. Loose belt.	4. Adjust or replace.
	5. Low pump pressure.	Pressure test and replace if necessary.
	6. Column shaft coupler binding.	6. Replace coupler.
	7. Steering gear worn or out of adjustment.	7. Repair or replace gear.

INSUFFICIENT ASST. OR POOR RETURN TO CENTER

CONDITION	POSSIBLE CAUSE	CORRECTION
HARD TURNING OR MOMENTARY	1. Tire pressure.	1. Adjust tire pressure.
INCREASE IN TURNING EFFORT	2. Low fluid level.	2. Fill to proper level.
	3. Loose belt.	3. Adjust or replace.
	4. Lack of lubrication.	Inspect and lubricate steering and suspension compnents.
	5. Low pump pressure.	Pressure test and repair as necessary.
	6. Internal gear leak.	6. Pressure and flow test, and repair as necessary.
STEERING WHEEL	1. Tire pressure.	1. Adjust tire pressure.
DOES NOT WANT TO RETURN TO	2. Wheel alignment.	2. Align front end.
CENTER POSITION	3. Lack of lubrication.	3. Inspect and lubricate steering and suspension compnents.
	4. High friction in steering gear.	4. Test and adjust as necessary.

19 - 4 STEERING — XJ

DIAGNOSIS AND TESTING (Continued)

LOOSE STEERING AND VEHICLE LEAD

CONDITION	POSSIBLE CAUSE	CORRECTION
EXCESSIVE PLAY IN STEERING WHEEL	Worn or loose suspension or steering components.	1. Repair as necessary.
	2. Worn or loose wheel bearings.	2. Repair as necessary.
	3. Steering gear mounting.	Tighten gear mounting bolts to specification.
	4. Gear out of adjustment.	4. Adjust gear to specification.
	5. Worn or loose steering coupler.	5. Repair as necessary.
VEHICLE PULLS OR LEADS TO	1. Tire Pressure.	1. Adjust tire pressure.
ONE SIDE	2. Radial tire lead.	2. Cross front tires.
	3. Brakes dragging.	3. Repair as necessary.
	4. Wheel alignment.	4. Align vehicle.
	5. Weak or broken spring.	5. Replace spring.
	Loose or worn steering or suspension components.	6. Repair as necessary.

19 - 5 STEERING

POWER STEERING PUMP

INDEX

page	page
DESCRIPTION AND OPERATION	PUMP RESERVOIR-2.5L 8
POWER STEERING PUMP 5	DISASSEMBLY AND ASSEMBLY
DIAGNOSIS AND TESTING	PUMP PULLEY 8
POWER FLOW AND PRESSURE 5	PUMP RESERVOIR 9
PUMP LEAKAGE DIAGNOSIS 6	FLOW CONTROL VALVE 9
SERVICE PROCEDURES	SPECIFICATIONS
POWER STEERING PUMP - INITIAL	TORQUE CHART
OPERATION 6	SPECIAL TOOLS
REMOVAL AND INSTALLATION	POWER STEERING PUMP 10
POWER STEERING PLIMP 7	

DESCRIPTION AND OPERATION

POWER STEERING PUMP

Hydraulic pressure is provided for operation of the power steering gear by a belt driven power steering pump. The power steering pump is a constant flow rate and displacement, vane-type pump. The internal parts in the housing operate submerged in fluid. The flow control orifice is part of the high pressure line fitting. The pressure relief valve inside the flow control valve limits the pump pressure. The reservoir is attached to the pump body with spring clips on the 4.0L engine. On the 2.5L engine the reservoir is separate from the pump.

The power steering pump is connected to the steering gear by the pressure and return hoses. The pump shaft has a pressed-on drive pulley that is belt driven by the crankshaft pulley (Fig. 1).

NOTE: Power steering pumps have different pressure rates and are not interchangeable with other pumps.

DIAGNOSIS AND TESTING

POWER FLOW AND PRESSURE

The following procedure is used to test the operation of the power steering system on the vehicle. This test will provide the gallons per minute (GPM) or flow rate of the power steering pump along with the maximum relief pressure. Perform test any time a power steering system problem is present. This test will determine if the power steering pump or power steering gear is not functioning properly. The following pressure and flow test is performed using Power Steering Analyzer Tool Kit 6815 (Fig. 2) and Adapter Kit 6893.

Fig. 1 Pump With Integral Reservoir

FLOW AND PRESSURE TEST

- (1) Check the power steering belt to ensure it is in good condition and adjusted properly.
- (2) Connect pressure gauge hose from the Power Steering Analyzer to Tube 6865.
- (3) Connect Adapter 6826 to Power Steering Analyzer test valve end.
- (4) Disconnect high pressure hose at gear or pump. Use a container for dripping fluid.
 - (5) Connect Tube 6865 to the pump hose fitting.
- (6) Connect the power steering hose from the steering gear to Adapter 6826.

DIAGNOSIS AND TESTING (Continued)

Fig. 2 Power Steering Analyzer

- (7) Open the test valve completely.
- (8) Start engine and let idle long enough to circulate power steering fluid through flow/pressure test gauge and to get air out of the fluid. Then shut off engine.
- (9) Check fluid level, add fluid as necessary. Start engine again and let idle.
- (10) Gauge should read below 862 kPa (125 psi), if above, inspect the hoses for restrictions and repair as necessary. The initial pressure reading should be in the range of 345-552 kPa (50-80 psi).
- (11) Increase the engine speed to 1500 RPM and read the flow meter. The reading should be 2.4 2.8 GPM, if the reading is below this specification the pump should be replaced.

CAUTION: The next step involves testing maximum pump pressure output and flow control valve operation. Do not leave valve closed for more than three seconds as the pump could be damaged.

- (12) Close valve fully three times and record highest pressure indicated each time. All three readings must be above specifications and within 345 kPa (50 psi) of each other.
- Pressures above specifications but not within 345 kPa (50 psi) of each other, replace pump.
- \bullet Pressures within 345 kPa (50 psi) of each other but below specifications, replace pump.
- (13) Open the test valve, turn steering wheel extreme left and right positions against the stops. Record the highest indicated pressure at each position. Compare readings to specifications. If highest output pressures are not the same against either stop, the gear is leaking internally and must be repaired.

CAUTION: Do not force the pump to operate against the stops for more than 2 to 3 seconds at a time because, pump damage will result.

PUMP SPECIFICATIONS

ENGINE	RELIEF PRESSURE ± 50	FLOW RATE (GPM)
2.5L	9653 kPa (1400 psi)	1500 RPM
4.0L	9653 kPa (1400 psi)	2.4 - 2.8 GPM

PUMP LEAKAGE DIAGNOSIS

- BUSHING (BEARING) WORN, SEAL WORN. REPLACE PUMP.
- 2. REPLACE RESERVOIR O-RING SEAL.
- 3. TORQUE HOSE FITTING NUT TO SPECIFICATIONS. IF LEAKAGE PERSISTS, REPLACE O-RING SEAL.
- TORQUE FITTING TO SPECIFICATIONS. IF LEAKAGE PERSISTS, REPLACE O-RING SEAL.
- 5. REPLACE PUMP.
- 6. CHECK OIL LEVEL: IF LEAKAGE PERSISTS WITH THE LEVEL CORRECT AND CAP TIGHT, REPLACE THE CAP.

80a1c3c3

SERVICE PROCEDURES

POWER STEERING PUMP – INITIAL OPERATION

WARNING: THE FLUID LEVEL SHOULD BE CHECKED WITH ENGINE OFF TO PREVENT INJURY FROM MOVING COMPONENTS.

CAUTION: Use MOPAR Power Steering Fluid or equivalent. Do not use automatic transmission fluid and do not overfill.

SERVICE PROCEDURES (Continued)

Wipe filler cap clean, then check the fluid level. The dipstick should indicate **COLD** when the fluid is at normal temperature.

- (1) Fill the pump fluid reservoir to the proper level and let the fluid settle for at least two minutes.
- (2) Start the engine and let run for a few seconds then turn engine off.
- (3) Add fluid if necessary. Repeat the above procedure until the fluid level remains constant after running the engine.
 - (4) Raise the front wheels off the ground.
- (5) Slowly turn the steering wheel right and left, lightly contacting the wheel stops at least 20 times.
 - (6) Check the fluid level add if necessary.
- (7) Lower the vehicle, start the engine and turn the steering wheel slowly from lock to lock.
- (8) Stop the engine and check the fluid level and refill as required.
- (9) If the fluid is extremely foamy or milky looking, allow the vehicle to stand a few minutes and repeat the procedure.

CAUTION: Do not run a vehicle with foamy fluid for an extended period. This may cause pump damage.

REMOVAL AND INSTALLATION

POWER STEERING PUMP

NOTE: The power steering pump is mounted in the same position on LHD and RHD vehicles. On 4.0L RHD vehicles the front bracket is different. The service procedures are the same.

REMOVAL

- (1) Remove serpentine drive belt, refer to Group 7 Cooling.
- (2) Remove pressure and return hoses from pump, and drain pump.
- (3) Remove 3 pump mounting bolts through pulley access holes .
- (4) Loosen the 3 pump bracket bolts (Fig. 3) and (Fig. 4).
 - (5) Tilt pump downward and remove from engine.
 - (6) Remove pulley from pump.

INSTALLATION

- (1) Install pulley on pump.
- (2) Install pump on engine.
- (3) Tighten pump bracket bolts to 47 N·m (35 ft. lbs.).

Fig. 4 Pump Mounting 4.0L RHD

- (4) Install 3 pump mounting bolts and tighten to 27 N·m (20 ft. lbs.).
 - (5) Install the pressure and return hoses to pump.
 - (6) Install drive belt, refer to Group 7 Cooling.
- (7) Add power steering fluid and perform Power Steering Pump Initial Operation.

PUMP RESERVOIR-2.5L

REMOVAL

- (1) Remove the hoses from the bottom of the reservoir and drain the reservoir.
- (2) Remove the push-in fastener from the top of the fan shroud.
 - (3) Slide reservoir up off the fan shroud.

INSTALLATION

- (1) Slide reservoir down onto fan shroud.
- (2) Install the push-in fastener in the top of fan shroud.
 - (3) Install the pump hoses.
- (4) Fill reservoir to proper level. Refer to Power Steering Pump Initial Operation.

DISASSEMBLY AND ASSEMBLY

PUMP PULLEY

DISASSEMBLY

- (1) Remove pump assembly.
- (2) Remove pulley from pump with Puller C-4333 (Fig. 5).

XJ

80500554

Fig. 5 Pulley Removal

ASSEMBLY

- (1) Replace pulley if bent, cracked, or loose.
- (2) Install pulley on pump with Installer C-4063-B (Fig. 6) flush with the end of the shaft. Ensure the tool and pulley remain aligned with the pump shaft.
 - (3) Install pump assembly.
- (4) With Serpentine Belt, run engine until warm (5 min.) and note any belt chirp. If chirp exists, move pulley outward approximately 0.5 mm (0.020 in.). If noise increases, press on 1.0 mm (0.040 in.). Be careful that pulley does not contact mounting bolts.

DISASSEMBLY AND ASSEMBLY (Continued)

Fig. 6 Pulley Installation

PUMP RESERVOIR

DISASSEMBLY

- (1) Remove power steering pump.
- (2) Clean exterior of pump.
- (3) Clamp the pump body in a soft jaw vice.
- (4) Pry up tab and slide the retaining clips off (Fig. 7).

NOTE: Use new retaining clips for installtion.

Fig. 7 Pump Reservoir Clips

(5) Remove fluid reservoir from pump body. Remove and discard O-ring seal.

ASSEMBLY

- (1) Lubricate new O-ring Seal with Mopar Power Steering Fluid or equivalent.
 - (2) Install O-ring seal in housing.
 - (3) Install reservoir onto housing.
- (4) Slide and tap in **new** reservoir retainer clips until tab locks to housing.
 - (5) Install power steering pump.
- (6) Add power steering fluid, refer to Pump Initial Operation.

FLOW CONTROL VALVE

DISASSEMBLY

- (1) Clean area around fitting to prevent dirt from entering pump. Remove pressure hose from pump fitting.
- (2) Remove fitting from pump housing (Fig. 8). Prevent flow control valve and spring from sliding out of housing bore.

Fig. 8 Flow Control Valve

(3) Remove and discard O-ring seal.

ASSEMBLY

- (1) Install spring and flow control valve into pump housing bore. Be sure the hex nut end of the valve is facing in toward pump.
 - (2) Install O-ring seal onto fitting.
- (3) Install flow control valve in pump housing and tighten to 75 N·m (55 ft. lbs.).
 - (4) Install pressure hose to valve.

19 - 10 STEERING — XJ

SPECIFICATIONS

TORQUE CHART

DESCRIPTION	TORQUE
Power Steering Pump	
Bracket to Pump	$\dots \dots 28\ N{\cdot}m$
	(21 ft. lbs.)
Bracket to Engine	47 N⋅m
· ·	(35 ft. lbs.)
Flow Control Valve	75 N⋅m
	(55 ft. lbs.)
Pressure Line	28 N⋅m
	(21 ft. lbs.)

SPECIAL TOOLS

POWER STEERING PUMP

Analyzer Set, Power Steering Flow/Pressure 6815

Installer, Power Steering Pulley C-4063-B

Adapters, Power Steering Flow/Pressure Tester 6893

Puller C-4333

POWER STEERING GEAR

INDEX

page	page
DESCRIPTION AND OPERATION	SPOOL VALVE
POWER STEERING GEAR	
DIAGNOSIS AND TESTING	ADJUSTMENTS
POWER STEERING GEAR LEAKAGE	STEERING GEAR
DIAGNOSIS	SPECIFICATIONS
REMOVAL AND INSTALLATION	POWER STEERING GEAR 21
STEERING GEAR	TORQUE CHART
DISASSEMBLY AND ASSEMBLY	SPECIAL TOOLS
HOUSING END PLUG	POWER STEERING GEAR
PITMAN SHAFT/SEALS/BEARING 14	

DESCRIPTION AND OPERATION

POWER STEERING GEAR

The power steering gear is a recirculating ball type gear (Fig. 1). The gear acts as a rolling thread between the worm shaft and rack piston. The worm shaft is supported by a thrust bearing at the lower end and a bearing assembly at the upper end. When the worm shaft is turned the rack piston moves. The

rack piston teeth mesh with the pitman shaft. Turning the worm shaft turns the pitman shaft, which turns the steering linkage.

CAUTION: Components attached with a nut and cotter pin must be torqued to specification. Then if the slot in the nut does not line up with the cotter pin hole, tighten nut until it is aligned. Never loosen the nut to align the cotter pin hole.

DESCRIPTION AND OPERATION (Continued)

Fig. 1 Recirculating Ball Type Gear

XJ — STEERING 19 - 13

DIAGNOSIS AND TESTING

POWER STEERING GEAR LEAKAGE DIAGNOSIS

- 1. SIDE COVER LEAK TORQUE SIDE COVER BOLTS TO SPECIFICATION. REPLACE THE SIDE COVER SEAL IF THE LEAKAGE PERSISTS.
- 2. ADJUSTER PLUG SEAL -REPLACE THE ADJUSTER PLUG SEALS.
- 3. PRESSURE LINE FITTING -TORQUE THE HOSE FITTING NUT TO SPECIFICATIONS. IF LEAKAGE PERSISTS, REPLACE THE SEAL.
- 4. PITMAN SHAFT SEALS -REPLACE THE SEALS.
- 5. TOP COVER SEAL REPLACE THE SEAL. 80a1c3c2

REMOVAL AND INSTALLATION

STEERING GEAR

REMOVAL

- (1) Place the front wheels in the straight ahead position with the steering wheel centered.
- (2) Disconnect and cap the fluid hoses from steering gear.
- (3) Remove the column coupler shaft from the gear.
 - (4) Remove pitman arm from gear.
- (5) Remove the steering gear retaining bolts and remove the gear (Fig. 2).

INSTALLATION

- (1) Align the column coupler shaft to steering gear.
- (2) Install steering gear (and bracket) on the frame rail and tighten bolts to 95 N·m (70 ft. lbs.)
- (3) Align and install the pitman arm and tighten nut to 251 N·m (185 ft. lbs.).
- (4) Connect fluid hoses to steering gear and tighten to 28 N·m (21 ft. lbs.).
 - (5) Fill power steering system to proper level.

Fig. 2 Steering Gear Mounting (LHD)

DISASSEMBLY AND ASSEMBLY

HOUSING END PLUG

DISASSEMBLY

(1) Unseat and remove retaining ring from groove with a punch through the hole in the end of the housing (Fig. 3).

Fig. 3 End Plug Retaining Ring

(2) Slowly rotate stub shaft with 12 point socket COUNTER-CLOCKWISE to force the end plug out from housing.

CAUTION: Do not turn stub shaft any further than necessary. The rack piston balls will drop out of the rack piston circuit if the stub shaft is turned too far.

(3) Remove O-ring from the housing (Fig. 4).

Fig. 4 End Plug Components

ASSEMBLY

- (1) Lubricate O-ring with power steering fluid and install into the housing.
- (2) Install end plug by tapping the plug lightly with a plastic mallet into the housing.
- (3) Install retaining ring so one end of the ring covers the housing access hole (Fig. 5).

Fig. 5 Installing The Retaining Ring

PITMAN SHAFT/SEALS/BEARING

DISASSEMBLY

- (1) Clean exposed end of pitman shaft and housing with a wire brush.
 - (2) Remove preload adjuster nut (Fig. 6).
- (3) Rotate the stub shaft with a 12 point socket from stop to stop and count the number of turns.
- (4) Center the stub shaft by rotating it from the stop 1/2 of the total amount of turns.
- (5) Remove side cover bolts and remove side cover, gasket and pitman shaft as an assembly (Fig. 6).

NOTE: The pitman shaft will not clear the housing if it is not centered.

Fig. 6 Side Cover and Pitman Shaft

- (6) Remove pitman shaft from the side cover.
- (7) Remove dust seal from the housing with a seal pick (Fig. 7).

CAUTION: Use care not to score the housing bore when prying out seals and washer.

- (8) Remove retaining ring with snap ring pliers.
- (9) Remove washer from the housing.
- (10) Remove oil seal from the housing with a seal pick.
- (11) Remove pitman shaft bearing from housing with a bearing driver and handle (Fig. 8).

DISASSEMBLY AND ASSEMBLY (Continued)

Fig. 7 Pitman Shaft Seals & Bearing

Fig. 8 Needle Bearing Removal

ASSEMBLY

- (1) Install pitman shaft bearing into housing with a bearing driver and handle.
- (2) Coat the oil seal and washer with **special grease** supplied with the new seal.
 - (3) Install the oil seal with a driver and handle.
 - (4) Install backup washer.
 - (5) Install the retainer ring with snap ring pliers.
- (6) Coat the dust seal with **special grease** supplied with the new seal.
 - (7) Install dust seal with a driver and handle.
- (8) Install pitman shaft to side cover by screwing shaft in until it fully seats to side cover.

- (9) Install preload adjuster nut. Do not tighten nut until after Over-Center Rotation Torque adjustment has been made.
- (10) Install gasket to side cover and bend tabs around edges of side cover (Fig. 6).
- (11) Install pitman shaft assembly and side cover to housing.
- (12) Install side cover bolts and tighten to 60 N·m (44 ft. lbs.).
 - (13) Perform over-center rotation torque adjustment.

SPOOL VALVE

DISASSEMBLY

- (1) Remove lock nut (Fig. 9).
- (2) Remove adjuster nut with Spanner Wrench C-4381.
- (3) Remove thrust support assembly out of the housing (Fig. 10).
- (4) Pull stub shaft and valve assembly from the housing (Fig. 11).

Fig. 9 Lock Nut and Adjuster Nut

Fig. 10 Thrust Support Assembly

Fig. 11 Valve Assembly With Stub Shaft

(5) Remove stub shaft from valve assembly by lightly tapping shaft on a block of wood to loosen shaft. Then disengage stub shaft pin from hole in spool valve and separate the valve assembly from stub shaft (Fig. 12).

Fig. 12 Stub Shaft

- (6) Remove spool valve from valve body by pulling and rotating the spool valve from the valve body (Fig. 13).
- (7) Remove spool valve O-ring and valve body teflon rings and O-rings underneath the teflon rings (Fig. 14).
- (8) Remove the O-ring between the worm shaft and the stub shaft.

Fig. 13 Spool Valve

Fig. 14 Valve Seals

ASSEMBLY

NOTE: Clean and dry all components, then lubricate with power steering fluid.

- (1) Install spool valve spool O-ring.
- (2) Install spool valve in valve body by pushing and rotating. Hole in spool valve for stub shaft pin must be accessible from opposite end of valve body.
- (3) Install stub shaft in valve spool and engage locating pin on stub shaft into spool valve hole (Fig. 15).

NOTE: Notch in stub shaft cap must fully engage valve body pin and seat against valve body shoulder.

Fig. 15 Stub Shaft Installation

- (4) Install O-rings and teflon rings over the O-rings on valve body.
- (5) Install O-ring into the back of the stub shaft cap (Fig. 16).

Fig. 16 Stub Shaft Cap O-Ring

- (6) Install stub shaft and valve assembly in the housing. Line up worm shaft to slots in the valve assembly.
 - (7) Install thrust support assembly.

NOTE: The thrust support is serviced as an assembly. If any component of the thrust support is damaged the assembly must be replaced.

- (8) Install adjuster nut and lock nut.
- (9) Adjust Thrust Bearing Preload and Over-Center Rotating Torque.

RACK PISTON AND WORM SHAFT

DISASSEMBLY

- (1) Remove housing end plug.
- (2) Remove rack piston plug (Fig. 17).
- (3) Remove side cover and pitman shaft.

Fig. 17 Rack Piston End Plug

- (4) Turn stub shaft COUNTERCLOCKWISE until the rack piston begins to come out of the housing.
- (5) Insert Arbor C-4175 into bore of rack piston (Fig. 18) and hold tool tightly against worm shaft.
- (6) Turn the stub shaft with a 12 point socket COUNTERCLOCKWISE, this will force the rack piston onto the tool and hold the rack piston balls in place.

Fig. 18 Rack Piston with Arbor

- (7) Remove the rack piston and tool together from housing.
 - (8) Remove tool from rack piston.
 - (9) Remove rack piston balls.
- (10) Remove clamp bolts, clamp and ball guide (Fig. 19).
- (11) Remove teflon ring and O-ring from the rack piston (Fig. 20).

Fig. 19 Rack Piston

Fig. 20 Rack Piston Teflon Ring and O-Ring

- (12) Remove the adjuster lock nut and adjuster nut from the stub shaft.
- (13) Pull the stub shaft with the spool valve and thrust support assembly out of the housing.
- (14) Remove the worm shaft from the housing (Fig. 21).

80aa4bf5

Fig. 21 Worm Shaft

ASSEMBLY

NOTE: Clean and dry all components and lubricate with power steering fluid.

- (1) Check for scores, nicks or burrs on the rack piston finished surface. Slight wear is normal on the worm gear surfaces.
- (2) Install O-ring and teflon ring on the rack piston.
- (3) Install worm shaft in the rack piston and align worm shaft spiral groove with rack piston ball guide hole (Fig. 22).

Fig. 22 Installing Balls in Rack Piston

CAUTION: The rack piston balls must be installed alternately into the rack piston and ball guide. This maintains worm shaft preload. There are 12 black balls and 12 silver (Chrome) balls. The black balls are smaller than the silver balls.

- (4) Lubricate and install rack piston balls through return guide hole while turning worm shaft COUNTERCLOCKWISE (Fig. 22).
- (5) Install remaining balls in guide using grease to hold the balls in place (Fig. 23).

Fig. 23 Balls in the Return Guide

- (6) Install the guide onto rack piston and install clamp and clamp bolts. Tighten bolts to 58 N·m (43 ft. lbs.).
- (7) Insert Arbor C-4175 into bore of rack piston and hold tool tightly against worm shaft.
- (8) Turn the worm shaft COUNTERCLOCKWISE while pushing on the arbor. This will force the rack piston onto the arbor and hold the rack piston balls in place.
- (9) Install the races and thrust bearing on the worm shaft and install shaft in the housing (Fig. 21).
- (10) Install the stub shaft with spool valve, thrust support assembly and adjuster nut in the housing.
- (11) Install the rack piston and arbor tool into the housing.
- (12) Hold arbor tightly against worm shaft and turn stub shaft CLOCKWISE until rack piston is seated on worm shaft.
- (13) Install pitman shaft and side cover in the housing.
- (14) Install rack piston plug and tighten to 150 $N \cdot m$ (111 ft. lbs.).
 - (15) Install housing end plug.
- (16) Adjust worm shaft thrust bearing preload and over-center rotating torque.

ADJUSTMENTS

STEERING GEAR

CAUTION: Steering gear must be adjusted in the proper order. If adjustments are not performed in order, gear damage and improper steering response may result.

NOTE: Adjusting the steering gear in the vehicle is not recommended. Remove gear from the vehicle and drain the fluid. Then mount gear in a vise to perform adjustments.

WORM THRUST BEARING PRELOAD

(1) Mount the gear carefully into a vise.

CAUTION: Do not overtighten the vise on the gear case. This may affect the adjustment

- (2) Remove adjuster plug locknut (Fig. 24).
- (3) Rotate the stub shaft back and forth with a 12 point socket to drain the remaining fluid.

Fig. 24 Adjuster Lock Nut

- (4) Turn the adjuster in with Spanner Wrench C-4381. Tighten the plug and thrust bearing in the housing until firmly bottomed in the housing about $34~\mathrm{N\cdot m}$ (25 ft. lbs.).
- (5) Place an index mark on the housing even with one of the holes in adjuster plug (Fig. 25).
- (6) Measure back (counterclockwise) 5.08 mm (0.20 in) and mark housing (Fig. 26).
- (7) Rotate adjustment cap back (counterclockwise) with spanner wrench until hole is aligned with the second mark (Fig. 27).

ADJUSTMENTS (Continued)

J8919-58

Fig. 25 Alignment Marking On Housing

Fig. 26 Second Marking On Housing

(8) Install and tighten locknut to 108 N·m (80 ft. lbs.). Be sure adjustment cap does not turn while tightening the locknut.

OVER-CENTER

NOTE: Before performing this procedure, the worm bearing preload adjustment must be performed.

(1) Rotate the stub shaft with a 12 point socket from stop to stop and count the number of turns.

J9219-30

Fig. 27 Aligning To The Second Mark

(2) Starting at either stop, turn the stub shaft back 1/2 the total number of turns. This is the center of the gear travel (Fig. 28).

Fig. 28 Steering Gear Centered

(3) Place the torque wrench in the vertical position on the stub shaft. Rotate the wrench 45 degrees each side of the center and record the highest rotational torque in this range (Fig. 29). This is the Over-Center Rotating Torque.

ADJUSTMENTS (Continued)

NOTE: The stub shaft must rotate smoothly without sticking or binding.

- (4) Rotate the stud shaft between 90° and 180° to the left of center and record the left off-center preload. Repeat this to the right of center and record the right off-center preload. The average of these two recorded readings is the Preload Rotating Torque.
- (5) The Over-Center Rotating Torque should be $0.45\text{-}0.9~\text{N}\cdot\text{m}$ (4-8 in. lbs.) **higher** than the Preload Rotating Torque.
- (6) If an adjustment to the Over-Center Rotating Torque is necessary, first loosen the adjuster lock nut. Then turn the pitman shaft adjuster screw back (COUNTERCLOCKWISE) until fully extended, then turn back in (CLOCKWISE) one full turn.

Fig. 29 Checking Over-center Rotation Torque

(7) Remeasure Over-Center Rotating Torque. If necessary turn the adjuster screw and repeat measurement until correct Over-Center Rotating Torque is reached.

NOTE: To increase the Over-Center Rotating Torque turn the screw CLOCKWISE.

(8) Prevent the adjuster screw from turning while tightening adjuster lock nut. Tighten the adjuster lock nut to 49 N·m (36 ft. lbs.).

SPECIFICATIONS

POWER STEERING GEAR

Steering Gear

Type	Recirculating Ball
Gear Ratio	
RHD	14:1
LHD	14:1
Worm Shaft Bearing	
Preload	0.45–1.13 N⋅m
	(4–10 in. lbs.)
Pitman Shaft Overcenter l	Drag
New Gear (under 400 miles	s) 0.45–0.90 N·m
	(4–8 in. lbs.)
	+ Worm Shaft Preload
Used Gear (over 400 miles)	0.5–0.6 N⋅m
	(4–5 in. lbs.)
	+ Worm Shaft Preload

TORQUE CHART

DESCRIPTION	TORQUE
Power Steering Gear	
Adjustment Cap Locknut	108 N·m
	(80 ft. lbs.)
Adjustment Screw Locknut	49 N⋅m
	(36 ft. lbs.)
Gear to Frame Bolts	95 N⋅m
	(70 ft. lbs.)
Pitman Shaft Nut	251 N⋅m
	(185 ft. lbs.)
Rack Piston Plug	102 N·m
	(75 ft. lbs.)
Side Cover Bolts	60 N⋅m
	(44 ft. lbs.)
Pressure Line	28 N·m
	(21 ft. lbs.)
Return Line	28 N·m
	(21 ft. lbs.)
Return Guide Clamp Bolt	58 N⋅m
	(43 ft. lbs.)

SPECIAL TOOLS

POWER STEERING GEAR

Remover/Installer, Steering Plug C-4381

Remover, Pitman Arm C-4150A

Remover/Installer Steering Rack Piston C-4175

STEERING LINKAGE

INDEX

page	page
GENERAL INFORMATION	DRAG LINK
STEERING LINKAGE	STEERING DAMPER
SERVICE PROCEDURES	SPECIFICATIONS
STEERING LINKAGE 23	TORQUE CHART
REMOVAL AND INSTALLATION	SPECIAL TOOLS
TIE ROD 24	STEERING LINKAGE 26
PITMAN ARM	

GENERAL INFORMATION

STEERING LINKAGE

The steering linkage consist of a pitman arm, drag link, tie rod, tie rod ends and a steering damper (Fig. 1) and (Fig. 2). The service procedures and torque specifications are the same for LHD and RHD vehicles.

CAUTION: Components attached with a nut and cotter pin must be torqued to specification. Then if the slot in the nut does not line up with the cotter pin hole, tighten nut until it is aligned. Never loosen the nut to align the cotter pin hole.

SFRVICE PROCEDURES

STEERING LINKAGE

The tie rod end and ball stud seals should be inspected during all oil changes. If a seal is damaged, it should be replaced. Before installing a new seal, inspect ball stud at the throat opening. Check for lubricant loss, contamination, ball stud wear or corrosion. If these conditions exist, replace the tie rod. A replacement seal can be installed if lubricant is in good condition. Otherwise, a complete replacement ball stud end should be installed.

CAUTION: If any steering components are replaced or serviced an alignment must be performed, to ensure the vehicle meets all alignment specifications.

Fig. 1 Steering Linkage—LHD

SERVICE PROCEDURES (Continued)

Fig. 2 Steering Linkage—RHD

CAUTION: Components attached with a nut and cotter pin must be torqued to specification. Then if the slot in the nut does not line up with the cotter pin hole, tighten nut until it is aligned. Never loosen the nut to align the cotter pin hole.

REMOVAL AND INSTALLATION

TIE ROD

CAUTION: Use a Puller tool C-3894-A for tie rod removal. Failure to use this tool could damage the ball stud and seal (Fig. 3).

Fig. 3 Ball Stud Puller

REMOVAL

(1) Remove the cotter pins and nuts at the tie rod ball studs and drag link.

J9502-6

- (2) Loosen the ball studs with a puller tool to remove the tie rod.
- (3) Loosen clamp bolts and unthread the tie rod end from the tube.

INSTALLATION

(1) Thread the tie rod end into the tube and position the clamp to it's original position (Fig. 4). Tighten the clamp bolts to 27 N·m (20 ft. lbs.).

Fig. 4 Tie Rod/Drag Link Clamps

(2) Install the tie rod on the drag link and steering knuckle. Install the retaining nuts.

REMOVAL AND INSTALLATION (Continued)

(3) Tighten the ball stud nut on the steering knuckle to 47 N·m (35 ft. lbs.). Tighten the ball stud nut to drag link to 88 N·m (65 ft. lbs.). Install new cotter pins.

PITMAN ARM

REMOVAL

- (1) Remove the cotter pin and nut from the drag link at the pitman arm.
- (2) Remove the drag link ball stud from the pitman arm with a puller.
- (3) Remove the nut and washer from the steering gear shaft. Mark the pitman shaft and pitman arm for installation reference. Remove the pitman arm from steering gear with Puller C-4150-A (Fig. 5).

Fig. 5 Pitman Arm Puller

INSTALLATION

- (1) Align and install the pitman arm on steering gear shaft.
- (2) Install the washer and nut on the shaft and tighten nut to $251~{
 m N\cdot m}$ (185 ft. lbs.).
- (3) Install drag link ball stud to pitman arm install nut and tighten to 74 N·m (55 ft. lbs.). Install a new cotter pin.

DRAG LINK

REMOVAL

- (1) Remove cotter pins and nuts from drag link
- (2) Remove the steering damper ball stud from the drag link.
 - (3) Remove tie rod from drag link

(4) Remove drag link from the steering knuckle and pitman arm.

INSTALLATION

- (1) Install the drag link onto steering knuckle and pitman arm.
- (2) Install nut at steering knuckle and tighten to $47~\mathrm{N\cdot m}$ (35 ft. lbs.). Install new cotter pins.
- (3) Install nut at pitman arm and tighten to 75 N·m (55 ft. lbs.). Install new cotter pins.
- (4) Install tie rod onto drag link and install nut. Tighten nut to 75 N·m (55 ft. lbs.) and install new cotter pins.
- (5) Install steering damper onto drag link and install nut. Tighten nut to 75 N·m (55 ft. lbs.) and install a new cotter pin.

STEERING DAMPER

REMOVAL

- (1) Remove the steering damper retaining bolt from the axle bracket.
- (2) Remove the cotter pin and nut from the ball stud at the drag link.
- (3) Remove the steering damper ball stud from the drag link with Puller C-3894-A.

INSTALLATION

- (1) Install steering damper onto the axle bracket and drag link.
- (2) Install steering damper bolt in axle bracket and tighten nut to 75 N·m (55 ft. lbs.).
- (3) Install ball stud nut at the drag link and tighten nut to 75 N·m (55 ft. lbs.). Install a new cotter pin.

SPECIFICATIONS

TORQUE CHART

DESCRIPTION TORQUE
Pitman Arm
Shaft 251 N·m (185 ft. lbs.)
Drag Link
Ball Studs 74 N·m (55 ft. lbs.)
Clamp 49 N·m (36 ft. lbs.)
Tie Rod Ends
Ball Studs 74 N·m (55 ft. lbs.)
Clamp 27 N·m (20 ft. lbs.)
Tie Rod
Ball Stud
Steering Damper
Frame 74 N·m (55 ft. lbs.)
Drag Link 74 N·m (55 ft. lbs.)

19 - 26 STEERING — XJ

SPECIAL TOOLS

STEERING LINKAGE

Puller C-3894-A

Remover Pitman C-4150A

STEERING COLUMN

INDEX

nage

page		pago
GENERAL INFORMATION	SPECIFICATIONS	
STEERING COLUMN	TORQUE CHART	
REMOVAL AND INSTALLATION		
STEERING COLUMN		

GENERAL INFORMATION

STEERING COLUMN

The standard non-tilt and tilt steering column has been designed to be serviced as an assembly. The key cylinder, switches, clock spring, trim shrouds and steering wheel are serviced separately. On the non-tilt column the upper mounting bracket is also serviced separately.

The column is mounted to the column support bracket studs and secured by four nuts. The column is connected to the steering gear by a one piece collapsible shaft with a coupler at each end. The couplers secure the shaft to the steering column and steering gear.

SERVICE PRECAUTIONS

Safety goggles should be worn at all times when working on steering columns.

To service the steering wheel, switches or airbag, refer to Group 8M and follow all WARNINGS and CAUTIONS.

WARNING: THE AIRBAG SYSTEM IS A SENSITIVE, COMPLEX ELECTRO-MECHANICAL UNIT. BEFORE ATTEMPTING TO DIAGNOSE. REMOVE OR INSTALL THE AIRBAG SYSTEM COMPONENTS YOU MUST FIRST DISCONNECT AND ISOLATE THE BATTERY NEGATIVE (GROUND) CABLE. THEN WAIT TWO MINUTES FOR THE SYSTEM CAPACITOR TO DIS-CHARGE, FAILURE TO DO SO COULD RESULT IN ACCIDENTAL DEPLOYMENT OF THE AIRBAG AND POSSIBLE PERSONAL INJURY. THE FASTENERS, SCREWS, AND BOLTS, ORIGINALLY USED FOR THE AIRBAG COMPONENTS, HAVE SPECIAL COAT-INGS AND ARE SPECIFICALLY DESIGNED FOR THE AIRBAG SYSTEM. THEY MUST NEVER REPLACED WITH ANY SUBSTITUTES. ANYTIME A NEW FASTENER IS NEEDED, REPLACE WITH THE CORRECT FASTENERS PROVIDED IN THE SERVICE PACKAGE OR FASTENERS LISTED IN THE PARTS BOOKS.

REMOVAL AND INSTALLATION

nage

STEERING COLUMN

WARNING: BEFORE SERVICING THE STEERING COLUMN THE AIRBAG SYSTEM MUST BE DISARMED. REFER TO GROUP 8M RESTRAINT SYSTEMS FOR SERVICE PROCEDURES. FAILURE TO DO SO MAY RESULT IN ACCIDENTAL DEPLOYMENT OF THE AIRBAG AND POSSIBLE PERSONAL INJURY.

REMOVAL

- (1) Position front wheels straight ahead.
- (2) Remove and isolate the negative battery ground cable.
- (3) Remove the airbag, refer to Group 8M Restraint Systems for service procedures.

NOTE: If equipped with cruise control, disconnect clock spring harness from cruise switch harness on the steering wheel.

(4) Remove the steering wheel with an appropriate puller (Fig. 1).

CAUTION: Ensure the puller bolts are fully engaged into the steering wheel and not into the clock-spring, before attempting to remove the wheel. Failure to do so may damage the steering wheel.

- (5) Turn ignition cylinder to the on position and remove cylinder by pressing release through lower shroud access hole (Fig. 2).
- (6) Remove knee blocker cover and knee blocker, Refer to Group 8E Instrument Panel Systems.
- (7) Remove screws from the lower column shroud (Fig. 3) and remove lower shroud.
- (8) Remove the steering coupler bolt and column mounting nuts (Fig. 4) then lower column off the mounting stud.
 - (9) Remove upper column shroud (Fig. 3).

REMOVAL AND INSTALLATION (Continued)

Fig. 1 Steering Wheel

Fig. 2 Key Cylinder Release Access Hole

Fig. 3 Column Shrouds

(10) Disconnect and remove the wiring harness from the column (Fig. 5).

NOTE: If vehicle is equipped with automatic transmission, remove shifter interlock cable. Refer to

80aac1bb

Fig. 4 Tilt Steering Column Mounting

Fig. 5 Steering Column Harness

Group 21 Transmission and Transfer Case for procedure.

- (11) Remove column.
- (12) Remove nut and bolt from the upper column mounting bracket on non-tilt column (Fig. 6). Remove the bracket from the column and **note the mounting location and orientation of the bracket.** .
- (13) Remove clock spring, switches, (SKIM if equipped) and ignition key cylinder, refer to Group 8 Electrical for service procedures.

INSTALLATION

- (1) Install upper column mounting bracket on non-tilt column. Install the mounting bolt and tighten the nut to $17~\mathrm{N\cdot m}$ (150 in. lbs.).
- (2) Install switches, refer to Group 8 Electrical for service procedures.
- (3) Align and install column into the steering coupler.
- (4) Install column harness and connect harness to switches.

XJ — STEERING 19 - 29

REMOVAL AND INSTALLATION (Continued)

Fig. 6 Non-Tilt Column

NOTE: If vehicle is equipped with automatic transmission install shifter interlock cable. Refer to Group 21 Transmission and Transfer Case for procedure.

- (5) Install upper column shrouds.
- (6) Install column onto the mounting studs.
- (7) Install mounting nuts and tighten to 23 N·m (17 ft. lbs.).
- (8) Install steering column coupler bolt and tighten to 49 N·m (36 ft. lbs.).
- (9) Center the clock spring and install it on the column, refer to Group 8 Electrical for service procedures.

- (10) Install lower column shroud and install mounting screws.
 - (11) Install ignition cylinder.
- (12) Install knee blocker and knee blocker cover, Refer to Group 8E Instrument Panel Systems.
- (13) Install steering wheel and tighten nut to 54 $N \cdot m$ (40 ft. lbs.).

NOTE: If equipped with cruise control, connect clock spring harness to cruise switch harness on the steering wheel.

- (14) Install airbag, refer to Group 8M Restraint Systems for service procedures.
 - (15) Install negative battery terminal.

SPECIFICATIONS

TORQUE CHART

DESCRIPTION	TORQUE
Tilt Steering Column	
Steering Wheel Nut	54 N·m (40 ft. lbs.)
Mounting Nuts	23 N·m (17 ft. lbs.)
Coupler Bolt	49 N·m (36 ft. lbs.)
Non-Tilt Steering Column	
Steering Wheel Nut	54 N·m (40 ft. lbs.)
Mounting Nuts	23 N·m (17 ft. lbs.)
Coupler Bolt	49 N·m (36 ft. lbs.)
Upper Bracket Nut 17	7 N·m (150 in. lbs.)

STEERING

CONTENTS

page		ра	gе
POWER STEERING PUMP—2.5L VM DIESEL 2 POWER STEERING—2.5L VM DIESEL 1	STEERING COLUMN		8

POWER STEERING—2.5L VM DIESEL

INDEX

page

GENERAL INFORMATION

POWER STEERING PUMP 1

GENERAL INFORMATION

POWER STEERING PUMP

The power steering pump used with the 2.5L VM Diesel engine operates the same way as the power steering pump used with the 2.5/4.0L gasoline engines. Refer to the Description and Operation section for the 2.5/4.0L gasoline engine power steering pump for more information.

POWER STEERING PUMP—2.5L VM DIESEL

INDEX

page	page
SERVICE PROCEDURES POWER STEERING PUMP – INITIAL OPERATION	REMOVAL AND INSTALLATION POWER STEERING PUMP — LHD
SERVICE PROCEDURES	REMOVAL AND INSTALLATION
POWER STEERING PUMP – INITIAL	POWER STEERING PUMP — LHD

OPERATION WARNING: THE FLUID LEVEL SH

WARNING: THE FLUID LEVEL SHOULD BE CHECKED WITH ENGINE OFF TO PREVENT INJURY FROM MOVING COMPONENTS.

CAUTION: Use MOPAR Power Steering Fluid or equivalent. Do not use automatic transmission fluid and do not overfill.

Wipe filler cap clean, then check the fluid level. The dipstick should indicate **COLD** when the fluid is at normal ambient temperature.

- (1) Fill the pump fluid reservoir to the proper level and let the fluid settle for at least two minutes.
- (2) Start the engine and let run for a few seconds then turn engine off.
- (3) Add fluid if necessary. Repeat the above procedure until the fluid level remains constant after running the engine.
 - (4) Raise the front wheels off the ground.
- (5) Slowly turn the steering wheel right and left, lightly contacting the wheel stops at least 20 times.
 - (6) Check the fluid level add if necessary.
- (7) Lower the vehicle, start the engine and turn the steering wheel slowly from lock to lock.
- (8) Stop the engine and check the fluid level and refill as required.
- (9) If the fluid is extremely foamy or milky looking, allow the vehicle to stand a few minutes and repeat the procedure.

CAUTION: Do not run a vehicle with foamy fluid for an extended period. This may cause pump damage.

Removal

- (1) Disconnect the negative battery cable.
- (2) Remove the A/C line support bracket from the rear of the rocker cover.
- (3) Disconnect the A/C compressor electrical connector.
- (4) Remove the (2) engine mount upper sill plate nuts (Fig. 1).

80b9a4c1

Fig. 1 Engine Mount Sill Plate Nuts

(5) Make sure the steering wheel is in the unlocked position.

XJ — STEERING 19 - 3

REMOVAL AND INSTALLATION (Continued)

- (6) Raise the vehicle on a hoist.
- (7) Remove the steering shaft pinch bolt and slide the steering shaft straight off the gearbox input shaft, position the shaft aside.

CAUTION: Avoid turning the steering shaft while disconnected from the steering gearbox. Damage to steering column clockspring could occur.

- (8) Remove the power steering fluid supply hose from the pump and let the fluid drain.
- (9) Loosen the (4) H-Block retaining bolts. Do not remove the bolts at this time.
- (10) Remove the accessory drive belt from the power steering pump pulley. Refer to Group 7, Cooling System for procedure.
- (11) Remove the power steering pump pulley. Use a hex socket to secure the pump shaft while removing the pulley nut with a box wrench (Fig. 2).

Fig. 2 Removing the Power Steering Pump Pulley NOTE: Mark the position of the H-Block in relation to the A/C Compressor so it may be reinstalled in the same position.

- (12) Remove the (2) bolts retaining the H-Block to the power steering pump shaft coupler.
- (13) Loosen the coupler pinch bolt and slide the coupler towards the pump.
- (14) Remove the power steering pump pressure line from the steering gear. This is more accessible, but will require you to install the pressure line on the new pump prior to installation.

- (15) Remove the remaining 2 bolts from the H-Block and remove the H-Block from the compressor.
- (16) Support the A/C compressor with mechanics wire before proceding to the next step.
- (17) Remove the (4) A/C compressor retaining bolts.
- (18) Remove the left engine mount throughbolt nut only. Do not remove the bolt at this time.
- (19) Position a jack stand and raise weight off left engine mount.
- (20) Remove the track bar support bracket retaining bolts and remove bracket (Fig. 3).

Fig. 3 Engine Mount Retaining Bolts

- (21) Remove the lower engine mount bolt from the sill plate (Fig. 3).
- (22) Remove the (4) engine mount bracket bolts from the engine block.
 - (23) Remove the engine mount throughbolt.
- (24) Remove the engine mount and engine mount bracket from the vehicle.
- (25) Remove the (2) power steering pump retaining nuts (Fig. 4).
- (26) Remove the power steering pump from the vehicle.

Installation

WARNING: Power steering system fluid may be contaminated with metal shavings, overheated or improper fluid. All fluid should be drained from the system. After component replacement, system should be flushed and filled with Mopar Power Steering Fluid, or equivalent.

REMOVAL AND INSTALLATION (Continued)

Fig. 4 Power Steering Pump

- (1) Transfer the pressure line to the new pump, making sure line is in original position.
- (2) Transfer the coupler to the new pump leaving pinch bolt lose at this time (Fig. 5).
 - (3) Install the power steering pump (Fig. 5).

Fig. 5 Power Steering Pump

- (4) Install the engine mount and the engine mount bracket in the vehicle.
- (5) Install the engine mount throughbolt and leave loose at this time.

(6) Install, but do not torque the engine mount and track bar support bracket bolts (Fig. 6).

Fig. 6 Engine Mount Retaining Bolts

- (7) Install the (4) engine mount bracket to engine block retaining bolts. Torque bolts to 47 N·m (35 ft. lbs.).
- (8) Torque the engine mount sill plate bolts to 41 $N \cdot m$ (30 ft. lbs.).
- (9) Torque the larger trackbar support bracket bolts to 125 N·m (92ft. lbs.).
 - (10) Remove the jack stand.
- (11) Install the H-Block on the A/C compressor in its original position and leave the bolts loose at this time.
 - (12) Position and install the A/C compressor.
- (13) Slide the drive coupler in its original position and install the remaining (2) H-Block bolts.
- (14) Install the power steering pump pulley (Fig. 7). Torque nut to 166 N·m (120 ft. lbs.).
- (15) Install the accessory drive belt. See Group 7, Cooling System for procedure.
 - (16) Torque all the H-Block bolts.
- (17) Install the steering shaft. Torque the steering shaft pinch bolt to 49 N·m (36 ft. lbs.).
- (18) Install the pressure line on steering gear. Torque nut to 28 N·m (21 ft. lbs.).
- (19) Install the power steering fluid supply hose on the pump.
 - (20) Lower the vehicle from the hoist.
- (21) Install and torque the engine mount upper sill plate nuts to 41 N·m (30 ft. lbs.) (Fig. 8).
- (22) Connect the A/C compressor electrical connector.

REMOVAL AND INSTALLATION (Continued)

Fig. 7 Installing Pump Pulley

Fig. 8 Engine Mount Sill Plate Nuts

- (23) Install the A/C line support bracket bolt at the rear of the valve cover.
- (24) Fill the power steering fluid. See Group 19, Steering for Power Steering Pump-Initial operation procedure.
 - (25) Connect the negative battery cable.

POWER STEERING PUMP — RHD

Removal

- (1) Disconnect the negative battery cable.
- (2) Remove the refrigerent line support bracket bolt from the top of the radiator.
- (3) Remove the A/C filter-drier assembly support bracket nuts from left fender well.
- (4) Disconnect the A/C compressor electrical connector.
 - (5) Raise the vehicle on a hoist.
- (6) Remove the power steering fluid supply hose from pump and drain fluid.
- (7) Remove power steering line support bracket bolt from below radiator.
 - (8) Remove the engine mount upper sill plate nuts.
- (9) Loosen the (4) H-Block retaining bolts. Do not remove at this time.
- (10) Remove the accessory drive belt from the power steering pump pulley. See Group 7, Cooling System for procedure.
- (11) Remove the power steering pump pulley. Use a hex socket to secure the pump shaft while removing the pulley nut with a box wrench (Fig. 9).

80b9a4c2

Fig. 9 Removing Pump Pulley

NOTE: Mark position of the H-Block in relation to the A/C Compressor so it can be installed in the same position.

- (12) Remove the (2) bolts retaining the H-Block to the power steering pump shaft coupler.
- (13) Loosen the coupler pinch bolt and slide coupler towards pump.

REMOVAL AND INSTALLATION (Continued)

- (14) Remove the left engine mount throughbolt nut only. Do not remove the bolt at this time.
- (15) Remove the remaining 2 bolts from the H-Block and remove the H-Block from the compressor.
- (16) Position a jack stand and raise weight off left engine mount.
 - (17) Remove the (2) engine mount sill plate bolts.
- (18) Remove the (4) engine mount bracket bolts from the engine block.
 - (19) Remove the engine mount throughbolt.
- (20) Remove the engine mount and engine mount bracket from vehicle.
- (21) Remove the (2) power steering pump retaining nuts (Fig. 10).

Fig. 10 Power Steering Pump

- (22) Slide pump off mounting studs and position so pressure line can be removed. This will require you to install pressure line on the new pump prior to installing it in the engine block.
- (23) Remove the power steering pump from the vehicle.

Installation

WARNING: Power steering system fluid may be contaminated with metal shavings, overheated or improper fluid. All fluid should be drained from the system. After component replacement, system should be flushed and filled with Mopar Power Steering Fluid, or equivalent.

- (1) Install the pressure line on pump in original position.
- (2) Transfer the drive coupler to new pump leaving pinch bolt lose at this time (Fig. 11).
- (3) Install the power steering pump in the engine block. Torque retaining nuts to 24 N⋅m (18 ft. lbs.) (Fig. 11).

Fig. 11 Power Steering Pump

- (4) Install the engine mount and engine mount bracket in vehicle.
- (5) Install the engine mount throughbolt and leave loose at this time.
- (6) Install, do not torque engine mount sill plate nuts and bolts.
- (7) Install (4) engine mount bracket to engine block retaining bolts and Torque to 61 N·m (45 ft. lbs.).
- (8) Torque the engine mount sill plate nuts to 41 $N \cdot m$ (30 ft. lbs.).
- (9) Torque the engine mount sill plate bolts to 41 $N \cdot m$ (30 ft. lbs.).
 - (10) Remove jack stand.
- (11) Install the H-Block on the A/C compressor in the original position and leave bolts loose at this time.
 - (12) Position and install A/C compressor.
- (13) Slide the drive coupler into its original position and start remaining (2) H-Block bolts.
- (14) Install the power steering pump pulley (Fig. 12). Torque nut to 166 N·m (120 ft. lbs.).

XJ — STEERING 19 - 7

REMOVAL AND INSTALLATION (Continued)

Fig. 12 Installing Pump Pulley

- (15) Install the accessory drive belt. See Group 7, Cooling for procedure.
 - (16) Torque all the H-Block bolts.
- (17) Torque the engine mount throughbolt nut to $65~\mathrm{N\cdot m}$ (48 ft. lbs.).
- (18) Install the power steering fluid supply hose on pump.
- (19) Install the power steering line support bracket bolt.
 - (20) Lower the vehicle from hoist.
- (21) Install the refrigerent line support bracket and bolt on the top of the radiator.
- (22) Install the A/C filter-drier assembly support bracket nuts on the left fender well.
- (23) Reconnect the A/C compressor electrical connector.
- (24) Re-fill the power steering fluid. Refer to Group 19, Steering for Power Steering Pump-Initial Operation for procedure.
 - (25) Connect the negative battery cable.

page

STEERING COLUMN

INDEX

page

GENERAL INFORMATION	REMOVAL AND INSTALLATION
STEERING COLUMN 8	STEERING COLUMN 9
DIAGNOSIS AND TESTING	SPECIFICATIONS
IGNITION SWITCH 9	TORQUE CHART

GENERAL INFORMATION

STEERING COLUMN

The tilt and standard column (Fig. 1) has been designed to be serviced as an assembly; less wiring, switches, shrouds, steering wheel, etc. Most steering column components can be serviced without removing the steering column from the vehicle.

SERVICE PRECAUTIONS

Safety goggles should be worn at all times when working on steering columns.

To service the steering wheel, switches or airbag, refer to Group 8 M and follow all WARNINGS and CAUTIONS.

WARNING: THE AIRBAG SYSTEM IS A SENSITIVE, COMPLEX ELECTRO-MECHANICAL UNIT. BEFORE

ATTEMPTING TO DIAGNOSE, REMOVE OR INSTALL THE AIRBAG SYSTEM COMPONENTS YOU MUST FIRST DISARM THE AIRBAG FIRING MECHANISM. FAILURE TO DO SO COULD RESULT IN ACCIDENTAL DEPLOYMENT OF THE AIRBAG AND POSSIBLE PERSONAL INJURY.

WARNING: THE FASTENERS, SCREWS, AND BOLTS, ORIGINALLY USED FOR THE AIRBAG COMPONENTS, HAVE SPECIAL COATINGS AND ARE SPECIFICALLY DESIGNED FOR THE AIRBAG SYSTEM. THEY MUST NEVER BE REPLACED WITH ANY SUBSTITUTES. ANYTIME A NEW FASTENER IS NEEDED, REPLACE WITH THE CORRECT FASTENERS PROVIDED IN THE SERVICE PACKAGE OR FASTENERS LISTED IN THE PARTS BOOKS.

Fig. 1 Steering Column

XJ — STEERING 19 - 9

GENERAL INFORMATION (Continued)

CAUTION: Do not attempt to remove the pivot pins to disassemble the tilting mechanism. Do not remove ignition locking link, shaft lock plate or plate retainer. This will damage the column (Fig. 2) and (Fig. 3).

Fig. 2 Observe Cautions

Fig. 3 Observe Cautions
DIAGNOSIS AND TESTING

IGNITION SWITCH

TEST AND REPAIR

If the ignition switch effort is excessive, remove the ignition switch from the steering column. Refer to Group 8D Ignition System. Using a key cylinder, check the turning effort of the switch. If the ignition switch binds look for the following conditions.

- (1) Look for rough areas or flash in the casting and if found remove with a file (Fig. 4).
- (2) With the ignition switch removed, slide the slider in its slot in the sleeve and verify a loose fit over the length of the slot. If the slider binds in the

Fig. 4 Steering Column Flash Removal And Non-Serviceable Components

slot at any point lightly file the slider or slot until clearance is achieved.

(3) If no binding is found, lightly file the ramp on the ignition switch, (The ramp fits into the casting) until binding no longer occurs.

REMOVAL AND INSTALLATION

STEERING COLUMN

WARNING: BEFORE SERVICING THE STEERING COLUMN THE AIRBAG SYSTEM MUST BE DISARMED, REFER TO GROUP 8M RESTRAINT SYSTEMS FOR SERVICE PROCEDURES. FAILURE TO DO SO MAY RESULT IN ACCIDENTAL DEPLOYMENT OF THE AIRBAG AND POSSIBLE PERSONAL INJURY.

REMOVAL

- (1) Position the front wheels **straight ahead** .
- (2) Remove the negative (ground) cable from the battery.
- (3) Disarm and remove airbag, steering wheel and clockspring, refer to group 8M Restraint Systems for service procedures.
 - (4) Remove lower instrument panel/knee blocker.
- (5) Remove column coupler upper pinch bolt (Fig. 5).
 - (6) Remove relay box.
 - (7) Remove tilt lever (if equipped) from column.
- (8) Remove upper and lower steering column shrouds.
 - (9) Remove lower fixed column shroud.
 - (10) Remove column braces (Fig. 6).
- (11) Remove column bracket mounting nuts and lower column.

REMOVAL AND INSTALLATION (Continued)

Fig. 5 Steering Column

Fig. 6 Steering Column Braces

- (12) Remove upper fixed column shroud.
- (13) Remove multi-function switch tamper proof mounting screws and connector screw. Connector screw will stay in the connector.
- (14) Unplug wiring harness from the column switches (Fig. 7).
- (15) Remove the wiring harness from steering column.

- (16) Remove ignition switch.
- (17) Remove interlock cable from the steering column, refer to Group 21 Automatic Transmission Shifter/Ignition Interlock.
 - (18) Remove the column.

INSTALLATION

- (1) Align and install the column to the coupler. **Do** not apply force at the top of the steering column shaft.
 - (2) Ensure the ground clip is position (Fig. 8).
- (3) Install interlock cable from the steering column, refer to Group 21 Automatic Transmission Shifter/Ignition Interlock.
- (4) Install wiring harness connections to steering column. Ensure the wiring is not pinched and all connections are correctly locked in place.
- (5) Install wiring harness connector onto multi function switch. Tighten function switch wiring harness connector retaining bolt to 2 N·m (17 in. lbs.).
- (6) Plug in wiring harness connector to remaining switches.
 - (7) Install ignition switch.
 - (8) Install upper fixed column shroud cover.
- (9) Install shaft coupler pinch bolt loose, load column up to panel bracket.

XJ — STEERING 19 - 11

REMOVAL AND INSTALLATION (Continued)

Fig. 7 Steering Column Wiring Harness

RN832

Fig. 8 Ground Clip & Spacer

- (10) Be sure both spacers are fully seated in the column support bracket. Tighten the column panel bracket support nuts to 12 $N\cdot m$ (105 in. lbs.).
- (11) Tighten the coupler pinch bolt to 47 N·m (35 ft. lbs.).
 - (12) Install lower fixed shroud.
- (13) Install upper and lower shrouds. Install the tilt lever (if equipped).
 - (14) Install relay box.

- (15) Install lower instrument panel/knee blocker.
- (16) Install clockspring, steering wheel and airbag. Refer to Group 8M Restraint Systems for service procedures.
- (17) Remove the column shaft shipping lock pin (installed in service column).
 - (18) Connect the battery ground (negative) cable.

SPECIFICATIONS

TORQUE CHART

DESCRIPTION	TORQUE
Tilt Steering Column	
Steering Wheel Nut	54 N·m (40 ft. lbs.)
Mounting Nuts	23 N·m (17 ft. lbs.)
Coupler Bolt	49 N·m (36 ft. lbs.)
Non-Tilt Steering Column	
Steering Wheel Nut	54 N·m (40 ft. lbs.)
Mounting Nuts	23 N·m (17 ft. lbs.)
Coupler Bolt	49 N·m (36 ft. lbs.)
Upper Bracket Nut 17	7 N·m (150 in. lbs.)

SUSPENSION

CONTENTS

page		р	age
ALIGNMENT 1 FRONT SUSPENSION 7	REAR SUSPENSION		14

ALIGNMENT

INDEX

page	page
GENERAL INFORMATION WHEEL ALIGNMENT	SPECIFICATIONS ALIGNMENT 6

GENERAL INFORMATION

WHEEL ALIGNMENT

Wheel alignment involves the correct positioning of the wheels in relation to the vehicle. The positioning is accomplished through suspension and steering linkage adjustments. An alignment is considered essential for efficient steering, good directional stability and to minimize tire wear. The most important measurements of an alignment are caster, camber and toe position (Fig. 1).

- **CASTER** is the forward or rearward tilt of the steering knuckle from vertical. Tilting the top of the knuckle rearward provides positive caster. Tilting the top of the knuckle forward provides negative caster. Caster is a directional stability angle. This angle enables the front wheels to return to a straight ahead position after turns.
- **CAMBER** is the inward or outward tilt of the wheel relative to the center of the vehicle. Tilting the top of the wheel inward provides negative camber. Tilting the top of the wheel outward provides positive camber. Incorrect camber will cause wear on the inside or outside edge of the tire. The angle is not adjustable, damaged component(s) must be replaced to correct the camber angle.
- WHEEL TOE POSITION is the difference between the leading inside edges and trailing inside

edges of the front tires. Incorrect wheel toe position is the most common cause of unstable steering and uneven tire wear. The wheel toe position is the **final** front wheel alignment adjustment.

- STEERING AXIS INCLINATION ANGLE is measured in degrees and is the angle that the steering knuckles are tilted. The inclination angle has a fixed relationship with the camber angle. It will not change except when a spindle or ball stud is damaged or bent. The angle is not adjustable, damaged component(s) must be replaced to correct the steering axis inclination angle.
- THRUST ANGLE is the angle of the rear axle relative to the centerline of the vehicle. Incorrect thrust angle can cause off-center steering and excessive tire wear. This angle is not adjustable, damaged component(s) must be replaced to correct the thrust angle.

CAUTION: Never attempt to modify suspension or steering components by heating or bending.

NOTE: Periodic lubrication of the front suspension/ steering system components may be required. Rubber bushings must never be lubricated. Refer to Group 0, Lubrication And Maintenance for the recommended maintenance schedule. 2 - 2 SUSPENSION — XJ

GENERAL INFORMATION (Continued)

Fig. 1 Wheel Alignment Measurements

DIAGNOSIS AND TESTING

SUSPENSION AND STEERING SYSTEM

CONDITION	POSSIBLE CAUSES	CORRECTION	
FRONT END NOISE	1. Loose or worn wheel bearings.	1. Adjust or replace wheel bearings.	
	Loose or worn steering or suspension components.	Tighten or replace components as necessary.	
EXCESSIVE PLAY IN	1. Loose or worn wheel bearings.	Adjust or replace wheel bearings.	
STEERING	Loose or worn steering or suspension components.	Tighten or replace components as necessary.	
	3. Loose or worn steering gear.	3. Adjust or replace steering gear.	
FRONT WHEELS SHIMMY	1. Loose or worn wheel bearings.	Adjust or replace wheel bearings.	
	Loose or worn steering or suspension components.	Tighten or replace components as necessary.	
	3. Tires worn or out of balance.	3. Replace or balance tires.	
	4. Alignment.	4. Align vehicle to specifications.	
	5. Leaking steering dampener.	5. Replace steering dampener.	
VEHICLE INSTABILITY	1. Loose or worn wheel bearings.	Adjust or replace wheel bearings.	
	Loose or worn steering or suspension components.	Tighten or replace components as necessary.	
	3. Tire pressure.	3. Adjust tire pressure.	
	4. Alignment.	4. Align vehicle to specifications.	
EXCESSIVE STEERING	1. Loose or worn steering gear.	Adjust or replace steering gear.	
EFFORT	2. Power steering fluid low.	2. Add fluid and repair leak.	
	3. Column coupler binding.	3. Replace coupler.	
	4. Tire pressure.	4. Adjust tire pressure.	
	5. Alignment.	5. Align vehicle to specifications.	
VEHICLE PULLS TO ONE	1. Tire pressure.	1. Adjust tire pressure.	
SIDE	2. Alignment.	Align vehicle to specifications.	
	3. Loose or worn steering or suspension components.	Tighten or replace components as necessary.	
	4. Radial tire lead.	Rotate or replace tire as necessary.	
	5. Brake pull.	5. Repair brake as necessary.	
	6. Weak or broken spring.	6. Replace spring.	

SERVICE PROCEDURES

PRE-ALIGNMENT

Before starting wheel alignment, the following inspection and necessary corrections must be completed. Refer to Suspension and Steering System Diagnosis Chart for additional information.

- (1) Inspect tires for size and tread wear.
- (2) Set tire air pressure.
- (3) Inspect front wheel bearings for wear.
- (4) Inspect front wheels for excessive radial or lateral runout and balance.
- (5) Inspect ball studs, linkage pivot points and steering gear for looseness, roughness or binding.
- (6) Inspect suspension components for wear and noise.

WHEEL ALIGNMENT

Before each alignment reading, the vehicle should be jounced (rear first, then front). Grasp each bumper at the center and jounce the vehicle up and down several times. Always release the bumper in the down position. Set the front end alignment to specifications with the vehicle at its NORMAL RIDE HEIGHT.

CAMBER

The wheel camber angle is preset. This angle is not adjustable and cannot be altered.

CASTER

Before checking the caster of the front axle for correct angle, be sure the axle is not bent or twisted.

Road test the vehicle, make left and right turns. If the steering wheel returns to the center position unassisted, the caster angle is correct. If steering wheel does not return toward the center position unassisted, an incorrect caster angle is probable.

Caster can be adjusted by installing the appropriate size shims (Fig. 2).

NOTE: Changing caster angle will also change the front propeller shaft angle. The propeller shaft angle has priority over caster. Refer to Group 3 Differential & Driveline for additional information.

J8916-22

Fig. 2 Caster Adjustment

TOE POSITION (LHD)

NOTE: The wheel toe position adjustment is the final adjustment. The engine must remain running during the entire toe position adjustment.

- (1) Start the engine and turn wheels both ways before straightening the wheels. Secure the steering wheel with the front wheels in the straight-ahead position.
- (2) Loosen the adjustment sleeve clamp bolts (Fig. 3).
- (3) Adjust the right wheel toe position with the drag link. Turn the sleeve until the right wheel is at correct TOE-IN specifications. Position the clamp bolts as shown (Fig. 4) and tighten to 49 N·m (36 ft. lbs.).

NOTE: Make sure the toe setting does not change during clamp tightening.

(4) Adjust the left wheel toe position with the tie rod. Turn the sleeve until the left wheel is at specifications. Position the clamp bolts as shown (Fig. 4) and tighten to 27 N·m (20 ft. lbs.).

NOTE: Make sure the toe setting does not change during clamp tightening.

- (5) Verify the right toe setting and turn off engine.
- (6) Road test the vehicle on a flat level road to verify the steering wheel is centered.

NOTE: Once the toe setting is correct, the steering wheel can be re-centered by adjusting only the drag link.

SERVICE PROCEDURES (Continued)

Fig. 3 Steering Linkage (LHD)

Fig. 4 Drag Link and Tie Rod Clamp (LHD)
TOE POSITION (RHD)

NOTE: The wheel toe position adjustment is the final adjustment. The engine must remain running during the entire toe position adjustment.

- (1) Start the engine and turn wheels both ways before straightening the wheels. Secure the steering wheel with the front wheels in the straight-ahead position.
- (2) Loosen the adjustment sleeve clamp bolts (Fig. 5).
- (3) Adjust the left wheel toe position with the drag link. Turn the sleeve until the left wheel is at the correct TOE-IN specifications. Position the clamp

bolts to their original position and tighten to 49 $N \cdot m$ (36 ft. lbs.).

NOTE: Make sure the toe setting does not change during clamp tightening.

(4) Adjust the right wheel toe position with the tie rod. Turn the sleeve until the right wheel is at correct TOE-IN specifications. Position the clamp bolts to their original position and tighten to $27~\text{N}\cdot\text{m}$ (20 ft. lbs.).

NOTE: Make sure the toe setting does not change during clamp tightening.

- (5) Verify the right toe setting and turn off engine.
- (6) Road test the vehicle on a flat level road to verify the steering wheel is centered.

NOTE: Once the toe setting is correct, the steering wheel can be re-centered by adjusting only the drag link.

2 - 6 SUSPENSION — XJ

SPECIFICATIONS (Continued)

Fig. 5 Steering Linkage (RHD)

SPECIFICATIONS

ALIGNMENT

NOTE: All alignment specifications are in degrees.

ADJUSTMENT	PREFERRED	RANGE	MAX RT/LT DIFFERENCE
CASTER	+ 7.0°	+ 5.25° to + 8.5°	1.25°

ADJUSTMENT	PREFERRED	RANGE	MAX RT/LT DIFFERENCE
CAMBER (fixed angle)	– 0.25°	– 0.75° to + 0.5°	1.0°
TOTAL TOE-IN	+ 0.25°	0° to + 0.45°	.05°
THRUST ANGLE 0° ± 0.15°			

FRONT SUSPENSION

INDEX

page	page
FRONT AXLE BUSHING	DESCRIPTION AND OPERATION
STABILIZER BAR11	SUSPENSION COMPONENTS
TRACK BAR	DIAGNOSIS AND TESTING
FRONT HUB BEARING	SHOCK DIAGNOSIS 8
WHEEL MOUNTING STUDS-FRONT 12	REMOVAL AND INSTALLATION
SPECIFICATIONS	SHOCK ABSORBER 9
TORQUE CHART	COIL SPRING/JOUNCE BUMPER 9
SPECIAL TOOLS	STEERING KNUCKLE 9
FRONT SUSPENSION	LOWER SUSPENSION ARM 10
	UPPER SUSPENSION ARM

DESCRIPTION AND OPERATION

SUSPENSION COMPONENTS

The front suspension is a link/coil design (Fig. 1). This suspension is use on Left Hand Drive (LHD) and Right Hand Drive (RHD) vehicles. The suspension is comprised of:

• Drive axle (4WD), tube axle (2WD)

- Dual-action shock absorbers
- Coil springs
- Upper and lower suspension arms
- Stabilizer bar
- Track bar
- Jounce bumpers

Link/Coil Suspension: This suspension allows each wheel to adapt to different road surfaces with-

Fig. 1 Suspension Components (LHD)

DESCRIPTION AND OPERATION (Continued)

out greatly affecting the opposite wheel. Wheels are attached to a hub/bearings which bolts to the knuckles. The hub/bearing is not serviceable and is replaced as a unit. Steering knuckles pivot on replaceable ball studs attached to the axle tube yokes.

Shock Absorbers: The shocks dampen jounce and rebound of the vehicle over various road conditions. The top of the shock absorbers are bolted to the body. The bottom of the shocks are bolted to the axle spring bracket.

Coil Springs: The springs control ride quality and maintain proper ride height. The coil springs mount up in the fender shield to a bracket which is part of the unitized body. A rubber isolator is located between the top of the spring and the body. The bottom of the spring seats on a axle pad and is retained with a clip.

Upper & Lower Suspension Arms: The suspension arms are different lengths, with bushings at both ends. They bolt the axle assembly to the body. The lower arms use shims at the body mount to allow for adjustment of caster and drive shaft pinion angle. The suspension arm travel is limited through the use of jounce bumpers in compression and shocks absorbers in rebound.

Stabilizer Bar: The stabilizer bar is used to minimize vehicle body roll during turns. The spring steel bar helps to control the vehicle body in relationship to the suspension. The bar extends across the front underside of the chassis and connects to the body rails. Links are connected from the bar to the axle brackets. Stabilizer bar mounts are isolated by rubber bushings.

Track Bar: The track bar is used to locate the axle laterally. The bar is attached to a body rail bracket with a ball stud and isolated with a bushing at the axle bracket.

CAUTION: Components attached with a nut and cotter pin must be torqued to specification. Then if the slot in the nut does not line up with the cotter pin hole, tighten nut until it is aligned. Never loosen the nut to align the cotter pin hole.

CAUTION: Suspension components with rubber/ urethane bushings (except stabilizer bar) should be tightened with the vehicle at normal ride height. It is important to have the springs supporting the weight of the vehicle when the fasteners are torqued. If springs are not at their normal ride position, vehicle ride comfort could be affected and premature bushing wear may occur.

NOTE: Periodic lubrication of the front suspension/ steering system components may be required. Rubber bushings must never be lubricated. Refer to Group 0, Lubrication And Maintenance for the recommended maintenance schedule.

DIAGNOSIS AND TESTING

SHOCK DIAGNOSIS

A knocking or rattling noise from a shock absorber may be caused by movement between mounting bushings and metal brackets or attaching components. These noises can usually be stopped by tightening the attaching nuts. If the noise persists, inspect for damaged and worn bushings, and attaching components. Repair as necessary if any of these conditions exist.

A squeaking noise from the shock absorber may be caused by the hydraulic valving and may be intermittent. This condition is not repairable and the shock absorber must be replaced.

The shock absorbers are not refillable or adjustable. If a malfunction occurs, the shock absorber must be replaced. To test a shock absorber, hold it in an upright position and force the piston in and out of the cylinder four or five times. The action throughout each stroke should be smooth and even.

The shock absorber bushings do not require any type of lubrication. Do not attempt to stop bushing noise by lubricating them. Grease and mineral oil-base lubricants will deteriorate the bushing.

REMOVAL AND INSTALLATION

SHOCK ABSORBER

REMOVAL

- (1) Remove the nut, retainer and grommet from the upper stud in the engine compartment (Fig. 2).
- (2) Remove the lower nuts and bolts from the axle bracket.
 - (3) Remove the shock absorber.

INSTALLATION

- (1) Position the lower retainer and grommet on the shock stud. Insert the shock absorber through the shock tower hole.
- (2) Install the lower bolts and nuts. Tighten nuts to 23 N·m (17 ft. lbs.).
- (3) Install the upper grommet and retainer on the stud. Install the nut and tighten to 10 N·m (8 ft. lbs.).

COIL SPRING/JOUNCE BUMPER

REMOVAL

- (1) Raise and support the vehicle. Position a hydraulic jack under the axle to support it.
 - (2) Remove the wheel and tire assemblies.
- (3) Mark and disconnect the front propeller shaft from the axle.
- (4) Remove lower suspension arms mounting nuts and bolts from the axle (Fig. 2).

- (5) Remove the stabilizer bar link and shock absorber from the axle.
- (6) Remove the track bar from the body rail bracket.
 - (7) Remove the drag link from the pitman arm.
- (8) Lower the axle until the spring is free from the upper mount. Remove the coil spring clip and remove the spring.
 - (9) Pull jounce bumper out of mount.

INSTALLATION

- (1) Install jounce bumper into mount.
- (2) Position the coil spring on the axle pad. Install the spring clip and bolt. Tighten bolt to 21 N·m (16 ft. lbs.).
- (3) Raise the axle into position until the spring seats in the upper mount.
- (4) Install the stabilizer bar links and shock absorbers to the axle bracket.
 - (5) Install the track bar to the body rail bracket.
- (6) Install the lower suspension arms to the axle. Install mounting bolts and nuts finger tight.
 - (7) Install the front propeller shaft to the axle.
 - (8) Install the wheel and tire assemblies.
 - (9) Remove the supports and lower the vehicle.
- (10) Tighten lower suspension arms nuts to 115 N·m (85 ft. lbs.).

STEERING KNUCKLE

For service procedures on the steering knuckle and ball joints refer to Group 3 Differentials And Driveline.

Fig. 2 Coil Spring & Shock Absorber

LOWER SUSPENSION ARM

REMOVAL

- (1) Raise and support the vehicle.
- (2) Remove the lower suspension arm nut and bolt from the axle bracket.
- (3) Remove the nut and bolt from the rear bracket and remove the lower suspension arm (Fig. 3).

Fig. 3 Upper and Lower Suspension Arms

INSTALLATION

- (1) Position the lower suspension arm at the axle bracket and rear bracket.
 - (2) Install the bolts and finger tighten the nuts.
 - (3) Remove support and lower the vehicle.
- (4) Tighten the front and rear nuts to 115 N·m (85 ft. lbs.).

UPPER SUSPENSION ARM

REMOVAL

- (1) Raise and support the vehicle.
- (2) Remove the upper suspension arm nut and bolt at the axle bracket.
- (3) Remove the nut and bolt at the frame rail and remove the upper suspension arm (Fig. 3).

INSTALLATION

- (1) Position the upper suspension arm at the axle and frame rail.
 - (2) Install the bolts and finger tighten the nuts.
 - (3) Remove the supports and lower the vehicle.

(4) Tighten the nut at the axle to 75 N·m (55 ft. lbs.). Tighten the nut at the frame bracket to 90 N·m (66 ft. lbs.).

FRONT AXLE BUSHING

REMOVAL

- (1) Remove the upper suspension arm from axle.
- (2) Position Spacer 7932-3 over the axle bushing on a 4x2 vehicle and right side on a 4x4 vehicle.
- (3) Place Receiver 7932-1 over flanged end of the bushing. (Fig. 4).
- (4) Place small end of Remover/Install 7932-2 against other side of the bushing.
- (5) Install bolt 7604 through remover, bushing and receiver.
- (6) Install Long Nut 7603 and tighten nut too pull bushing out of the axle bracket.

Fig. 4 Bushing Removal

(7) Remove nut, bolt, receiver, remover and bushing.

NOTE: On 4x2 vehicle and right side of 4x4 vehicle, leave Spacer 7932-3 in position for bushing installation.

- (1) Place Receiver 7932-10n the other side of the axle bracket.
- (2) Position new bushing up to the axle bracket, and large end of Remover/Install 7932-2 against the bushing (Fig. 5).
- (3) Install bolt 7604 through receiver, bushing and installer.
- (4) Install Long Nut 7603 and tighten nut to draw the bushing into the axle bracket.
- (5) Remove tools and install the upper suspension arm.

Fig. 5 Bushing Installation

STABILIZER BAR

REMOVAL

- (1) Raise and support the vehicle.
- (2) Remove nuts, retainers and grommets from the links at the stabilizer bar (Fig. 6).

Fig. 6 Stabilizer Bar (LHD)

- (3) Remove the links mounting nuts and bolts from the axle brackets.
- (4) Remove the stabilizer bar clamps from the body rails. Remove the stabilizer bar.

INSTALLATION

(1) Inspect stabilizer bar bushings. Replace bushings if cracked, cut, distorted, or worn.

- (2) Position the stabilizer bar on the body rail and install the bushings and clamps. Ensure the bar is centered with equal spacing on both sides. Tighten the bolts to $75~N\cdot m$ (40 ft. lbs.).
- (3) Install the links and grommets onto the stabilizer bar and axle brackets.
- (4) Tighten the link nuts at the axle bracket to 95 $N \cdot m$ (70 ft. lbs.).
- (5) Tighten the link nuts at the stabilizer bar to 36 N·m (27 ft. lbs.).
 - (6) Remove the supports and lower the vehicle.

TRACK BAR

REMOVAL

- (1) Raise and support the vehicle.
- (2) Remove the cotter pin and nut from the ball stud end at the body rail bracket.
- (3) Use a universal puller tool to separate the ball stud from the frame rail bracket.
- (4) Remove the bolt and flag nut from the axle shaft tube bracket (Fig. 7).
 - (5) Remove the track bar.

Fig. 7 Track Bar (LHD)

- (1) Install the track bar at axle tube bracket. Loosely install the retaining bolt and flag nut.
- (2) It may be necessary to pry the axle assembly over to install the track bar at the body rail. Install track bar at the body rail bracket. Install the retaining nut on the stud.
 - (3) Remove the supports and lower the vehicle.
- (4) Tighten the retaining bolt at the axle shaft tube bracket to $100~\mathrm{N\cdot m}$ (74 ft. lbs.).

Fig. 8 Hub Bearing & Knuckle

(5) Tighten the ball stud nut to 81 N·m (60 ft. lbs.). Install a new cotter pin.

FRONT HUB BEARING

REMOVAL

- (1) Raise and support the vehicle.
- (2) Remove the wheel and tire assembly.
- (3) Remove the brake caliper, rotor and ABS wheel speed sensor, refer to Group 5 Brakes.
- (4) Remove the cotter pin, nut retainer and axle hub nut (Fig. 8).
- (5) Remove the hub bearing mounting bolts from the back of the steering knuckle. Remove hub bearing from the steering knuckle and off the axle shaft.

INSTALLATION

- (1) Install the hub bearing and brake dust shield to the knuckle.
- (2) Install the hub bearing to knuckle bolts and tighten to $102~{\rm N\cdot m}$ (75 ft. lbs.).
- (3) Install the hub washer and nut. Tighten the hub nut to 237 N·m (175 ft. lbs.). Install the nut retainer and a new cotter pin.
- (4) Install the brake rotor, caliper and ABS wheel speed sensor, refer to Group 5 Brakes.
 - (5) Install the wheel and tire assembly.
 - (6) Remove support and lower the vehicle.

WHEEL MOUNTING STUDS-FRONT

REMOVAL

- (1) Raise and support vehicle.
- (2) Remove wheel and tire assembly.
- (3) Remove brake caliper and rotor, refer to Group 5 Brakes for procedure.
- (4) Remove stud from hub with Remover C-4150A (Fig. 9).

Fig. 9 Wheel Stud Removal

- (1) Install new stud into hub flange.
- (2) Install three washers onto stud, then install lug nut with the flat side of the nut against the washers.

REMOVAL AND INSTALLATION (Continued)

- (3) Tighten lug nut until the stud is pulled into the hub flange. Verify that the stud is properly seated into the flange.
 - (4) Remove lug nut and washers.
- (5) Install the brake rotor and caliper, refer to Group 5 Brakes for procedure.
- (6) Install wheel and tire assembly, use new lug nut on stud or studs that were replaced.
 - (7) Remove support and lower vehicle.

SPECIFICATIONS

TORQUE CHART

DESCRIPTION TORQUE
Shock Absorber
Upper Nut
Lower Nut 23 N⋅m (17 ft. lbs.)
Suspension Arm Upper
Front Nut 74 N·m (55 ft. lbs.)
Rear Nut 89 N·m (66 ft. lbs.)
Suspension Arm Lower
Front Nut
Rear Nut
Stabilizer Bar
Clamp Bolt
Link Upper Nut 36 N·m (27 ft. lbs.)
Link Lower Nut 95 N·m (70 ft. lbs.)
Track Bar
Ball Stud Nut 81 N·m (60 ft. lbs.)
Axle Bracket Bolt 100 N·m (74 ft. lbs.)
Track Bar Bracket
Bolts 125 N·m (92 ft. lbs.)
Nut 100 N·m (74 ft. lbs.)
Support Bolts 42 N·m (31 ft. lbs.)
Hub/Bearing
Bolts 102 N·m (75 ft. lbs.)
Axle Nut 237 N·m (175 ft. lbs.)

SPECIAL TOOLS

FRONT SUSPENSION

Remover/Installer Suspension Bushing 7932

Nut, Long 7603

Bolt, Special 7604

Remover C-4150A

Remover Tie Rod End MB-990635

REAR SUSPENSION

INDEX

page	page
DESCRIPTION AND OPERATION SUSPENSION COMPONENT	STABILIZER BAR
DIAGNOSIS AND TESTING	LEAF SPRING AND SHACKLE BUSHING 16
SPRING AND SHOCK DIAGNOSIS 14	SPECIFICATIONS
REMOVAL AND INSTALLATION	TORQUE CHART
SHOCK ABSORBER	

DESCRIPTION AND OPERATION

SUSPENSION COMPONENT

The rear suspension is comprised of:

- Drive Axle
- Leaf Springs
- Dual-Action Shock Absorbers
- Stabilizer Bar (optional)
- Jounce Bumpers

Leaf Springs: The rear suspension system uses a multi-leaf springs and a solid drive axle. The forward end of the springs are mounted to the body rail hangers through rubber bushings. The rearward end of the springs are attached to the body by the use of shackles. The spring and shackles use rubber bushings. The bushing help to isolate road noise. The shackles allow the springs to change their length as the vehicle moves over various road conditions.

Shock Absorbers: Ride control is accomplished through the use of dual-action shock absorbers. The shocks dampen the jounce and rebound as the vehicle travels over various road conditions. The top of the shock absorbers are bolted to the body crossmember. The bottom of the shocks are bolted to the axle bracket.

Stabilizer Bar: The stabilizer bar is used to minimize vehicle body roll. The spring steel bar helps to control the vehicle body in relationship to the suspension. The bar extends across the underside of the vehicle and is bolted to the axle. Links at the end of the bar are bolted to the frame.

Jounce Bumpers: The jounce bumpers are used to limit the spring and axle travel. They are bolted to the frame rail above the axle.

CAUTION: Suspension components with rubber/ urethane bushings (except stabilizer bar) should be tightened with the vehicle at normal ride height. It is important to have the springs supporting the weight of the vehicle when the fasteners are torqued. If springs are not at their normal ride position, vehicle ride comfort could be affected and premature bushing wear may occur.

DIAGNOSIS AND TESTING

SPRING AND SHOCK DIAGNOSIS

A knocking or rattling noise from a shock absorber may be caused by movement between mounting bushings and metal brackets or attaching components. These noises can usually be stopped by tightening the attaching nuts. If the noise persists, inspect for damaged and worn bushings, and attaching components. Repair as necessary if any of these conditions exist.

A squeaking noise from the shock absorber may be caused by the hydraulic valving and may be intermittent. This condition is not repairable and the shock absorber must be replaced.

The shock absorbers are not refillable or adjustable. If a malfunction occurs, the shock absorber must be replaced. To test a shock absorber, hold it in an upright position and force the piston in and out of the cylinder four or five times. The action throughout each stroke should be smooth and even.

The spring eye and shock absorber bushings do not require any type of lubrication. Do not attempt to stop spring bushing noise by lubricating them. Grease and mineral oil-base lubricants will deteriorate the bushing rubber.

If the vehicle is used for severe, off-road operation, the springs should be examined periodically. Check for broken and shifted leafs, loose and missing clips, and broken center bolts. Refer to Spring and Shock Absorber Diagnosis chart for additional information.

DIAGNOSIS AND TESTING (Continued)

SPRING AND SHOCK ABSORBER DIAGNOSIS

CONDITION	POSSIBLE CAUSES	CORRECTION
SPRING SAGS	1. Broken leaf.	Replace spring.
	2. Spring fatigue.	2. Replace spring.
SPRING NOISE	Loose spring clamp bolts.	1. Tighten to specification.
	2. Worn bushings.	2. Replace bushings.
	3. Worn or missing spring tip inserts.	3. Replace spring tip inserts.
SHOCK NOISE	Loose mounting fastener.	1. Tighten to specification.
	2. Worn bushings.	2. Replace shock.
	3. Leaking shock.	3. Replace shock.

REMOVAL AND INSTALLATION

SHOCK ABSORBER

REMOVAL

- (1) Remove the shock absorber upper bolts from the body bracket (Fig. 1).
- (2) Remove lower attaching nut and washer from the bracket stud. Remove the shock absorber.

INSTALLATION

- (1) Install the shock absorber lower eye on the spring bracket stud. Install the shock absorber and upper bolts on the body bracket.
 - (2) Tighten the lower nut to 62 N·m (46 ft. lbs.).
 - (3) Tighten the upper bolts to 23 N·m (17 ft. lbs.).

STABILIZER BAR

REMOVAL

(1) Raise and support the vehicle.

J9503-6

Fig. 1 Rear Suspension Components

- (2) Disconnect stabilizer bar links from spring brackets (Fig. 2).
- (3) Disconnect the stabilizer bar brackets from the body rails. Remove the stabilizer bar and links.

Fig. 2 Stabilizer Bar

INSTALLATION

- (1) Position the stabilizer bar links at the spring brackets. Install the attaching bolts and nuts and tighten to 74 N·m (55 ft. lbs.).
- (2) Attach the stabilizer bar to the body rail brackets with the bolts. Tighten to $54 \text{ N} \cdot \text{m}$ (40 ft. lbs.).
 - (3) Remove the supports and lower the vehicle.

LEAF SPRING

REMOVAL

- (1) Raise vehicle at body rails.
- (2) Remove the wheel and tire assemblies.
- (3) Support axle with hydraulic jack to relieve axle weight.
- (4) Disconnect the stabilizer bar link from the spring bracket stud.
- (5) Remove nuts, U-bolts and spring bracket from axle.
- (6) Remove nut and bolt attaching spring front eye to shackle.
 - (7) Remove nut and bolt from spring rear eye.
 - (8) Remove spring from vehicle.

INSTALLATION

(1) Position the spring front eye in the bracket. Loosely install the attaching bolt and nut. Do not tighten at this time. (2) Position the rear eye in the shackle bracket. Loosely install the attaching bolt and nut. Do not tighten at this time.

XJ

- (3) Position the axle. Install the spring bracket, U-bolts and nuts. Tighten the nuts to 70 N·m (52 ft. lbs.).
- (4) Connect the stabilizer bar link to the spring bracket.
 - (5) Remove the hydraulic jack.
 - (6) Lower the vehicle.
- (7) Tighten the spring front eye attaching bolts to 156 N·m (115 ft. lbs.).
- (8) Tighten the spring rear eye attaching bolts to $108~\mathrm{N}\cdot\mathrm{m}$ (80 ft. lbs.).
- (9) Tighten the stabilizer bar link to 74 N·m (55 ft. lbs.).

LEAF SPRING AND SHACKLE BUSHING

For front bushings bend tabs DOWN before removal. Use an appropriate driver tool and force the original bushing out of the spring eye.

(1) Assemble tools shown (Fig. 3). Tighten nut at the socket wrench end of the threaded rod until the bushing is forced out.

Fig. 3 Spring Eye Bushing Removal

- (2) Assemble and align the bushing installation tools.
- (3) Align the bushing with the spring eye or shackle eye and tighten the nut at the socket wrench end of the threaded rod. Tighten until the bushing is forced into the spring eye.

REMOVAL AND INSTALLATION (Continued)

NOTE: The bushing must be centered in the spring eye. The ends of the bushing must be flush or slightly recessed within the end surfaces of the spring eye.

(4) For front bushings bend tabs up after installation.

SPECIFICATIONS

TORQUE CHART

DESCRIPTION TORQUE
Shock Absorber
Upper Bolt 23 N⋅m (17 ft. lbs.)
Lower Nut 62 N·m (46 ft. lbs.)
Stabilizer Bar
Clamp Bolt 54 N·m (40 ft. lbs.)
Link Upper Bolt 12 N·m (9 ft. lbs.)
Link Lower Nut 74 N·m (55 ft. lbs.)
Spring
U-Bolt Nut
Front Pivot Bolt 156 N·m (115 ft. lbs.)
Upper Shackle Bolt 156 N·m (115 ft. lbs.)
Lower Shackle Bolt 108 N·m (80 ft. lbs.)

TRANSMISSION AND TRANSFER CASE

CONTENTS

N

AX5 MANUAL TRANSMISSION

INDEX

page	page
GENERAL INFORMATION	DISASSEMBLY AND ASSEMBLY
AX5 MANUAL TRANSMISSION	ADAPTER/EXTENSION HOUSING AND FRONT
GEAR RATIOS	BEARING RETAINER 8
RECOMMENDED LUBRICANT	COUNTERSHAFT
TRANSMISSION ASSEMBLY INFORMATION 2	INPUT SHAFT
TRANSMISSION IDENTIFICATION	OUTPUT SHAFT 27
DIAGNOSIS AND TESTING	SEMI-SYNCHRONIZED REVERSE
HARD SHIFTING 3	IDLER GEAR
LOW LUBRICANT LEVEL	SHIFT MECHANISM AND GEARTRAIN 15
TRANSMISSION NOISE 4	CLEANING AND INSPECTION
REMOVAL AND INSTALLATION	AX5 MANUAL TRANSMISSION COMPONENTS 32
ADAPTER HOUSING SEAL 7	SPECIFICATIONS
EXTENSION HOUSING SEAL 7	TORQUE 35
FRONT BEARING RETAINER SEAL 6	SPECIAL TOOLS
TRANSMISSION 4	AX5 35
GENERAL INFORMATION	ture. The next series of numbers is the transmission

AX5 MANUAL TRANSMISSION

The AX5 is a five speed manual transmission with fifth gear being the overdrive range. An adapter housing is used to attach the transmission to the transfer case on 4-wheel drive applications. A standard style extension housing is used for the 2-wheel drive applications. The shift mechanism is integral to the transmission assembly and mounted in the shift tower portion of the adapter/extension housing (Fig.

TRANSMISSION IDENTIFICATION

The AX5 identification code is on the bottom surface of the transmission case near the fill plug (Fig. 2). The first number is year of manufacture. The second and third numbers indicate month of manufac-

serial number.

GEAR RATIOS

Gear ratios for the AX5 manual transmission are as follows:

• First gear: 3.93:1 • Second gear: 2.33:1 • Third gear: 1.45:1 • Fourth gear: 1.00:1 • Fifth gear: 0.85:1 • Reverse gear: 4.74:1

RECOMMENDED LUBRICANT

Recommended lubricant for AX5 transmissions is Mopar® 75W-90, API Grade GL-3 gear lubricant, or equivalent.

80abfee7

GENERAL INFORMATION (Continued)

Fig. 1 AX5 Manual Transmission

80abfee5

Fig. 2 Transmission Identification

Correct lubricant level is from the bottom edge, to no more than 6 mm (1/4 in.) below the bottom edge of the fill plug hole.

The fill plug is on the passenger side of the adapter housing (Fig. 3). The drain plug is on the bottom of the case.

Approximate dry fill lubricant capacity is:

• 3.3 liters (3.49 quarts) for 4–wheel drive applications.

ullet 3.5 liters (3.70 quarts) for 2-wheel drive applications.

J8921-4

Fig. 3 Fill Plug Location

TRANSMISSION ASSEMBLY INFORMATION

Lubricate the transmission components with Mopar® 75W-90, GL 3 gear lubricant during assembly. Use petroleum jelly to lubricate seal lips and/or hold parts in place during installation.

Refer to (Fig. 4) during assembly for AX5 gear assembly identification.

GENERAL INFORMATION (Continued)

Fig. 4 Geartrain Components

DIAGNOSIS AND TESTING

LOW LUBRICANT LEVEL

A low transmission lubricant level is generally the result of a leak, inadequate lubricant fill, or an incorrect lubricant level check.

Leaks can occur at the mating surfaces of the gear case, intermediate plate and adaptor or extension housing, or from the front/rear seals. A suspected leak could also be the result of an overfill condition.

Leaks at the rear of the extension or adapter housing will be from the housing oil seals. Leaks at component mating surfaces will probably be the result of inadequate sealer, gaps in the sealer, incorrect bolt tightening, or use of a non–recommended sealer.

A leak at the front of the transmission will be from either the front bearing retainer or retainer seal. Lubricant may be seen dripping from the clutch housing after extended operation. If the leak is severe, it may also contaminate the clutch disc causing the disc to slip, grab, and/or chatter.

A correct lubricant level check can only be made when the vehicle is level. Also allow the lubricant to settle for a minute or so before checking. These recommendations will ensure an accurate check and avoid an underfill or overfill condition. Always check the lubricant level after any addition of fluid to avoid an incorrect lubricant level condition.

HARD SHIFTING

Hard shifting is usually caused by a low lubricant level, improper, or contaminated lubricants. The consequence of using non-recommended lubricants is noise, excessive wear, internal bind, and hard shifting. Substantial lubricant leaks can result in gear, shift rail, synchro, and bearing damage. If a leak goes undetected for an extended period, the first indications of component damage are usually hard shifting and noise.

Component damage, incorrect clutch adjustment, or a damaged clutch pressure plate or disc are additional probable causes of increased shift effort. Incorrect adjustment or a worn/damaged pressure plate or disc can cause incorrect release. If the clutch problem is advanced, gear clash during shifts can result. Worn or damaged synchro rings can cause gear clash when shifting into any forward gear. In some new or rebuilt transmissions, new synchro rings may tend to stick slightly causing hard or noisy shifts. In most cases, this condition will decline as the rings wear-in

DIAGNOSIS AND TESTING (Continued)

TRANSMISSION NOISE

Most manual transmissions make some noise during normal operation. Rotating gears generate a mild whine that is audible, but generally only at extreme speeds.

Severe, highly audible transmission noise is generally the initial indicator of a lubricant problem. Insufficient, improper, or contaminated lubricant will promote rapid wear of gears, synchros, shift rails, forks and bearings. The overheating caused by a lubricant problem, can also lead to gear breakage.

REMOVAL AND INSTALLATION

TRANSMISSION

REMOVAL

- (1) Shift transmission into first or third gear.
- (2) Raise and support vehicle on suitable safety stands.
- (3) Disconnect necessary exhaust system components.
 - (4) Remove skid plate, if equipped.
 - (5) Remove slave cylinder from clutch housing.
- (6) Mark rear propeller shaft and rear axle yokes for installation alignment (Fig. 5).

Fig. 5 Marking Propeller Shaft And Axle Yokes

- (7) Mark front propeller shaft, axle, and transfer case yokes for installation alignment, if equipped.
 - (8) Remove propeller shaft(s).
- (9) Unclip wire harnesses from transmission and transfer case, if equipped.
- (10) Disconnect transfer case vent hose, if equipped.
- (11) Disengage any wire connectors attached to transmission or transfer case, if equipped, components.
- (12) Support transfer case, if equipped, with transmission jack.

- (13) Secure transfer case, if equipped, to jack with safety chains.
- (14) Disconnect transfer case shift linkage at transfer case, if equipped.
- (15) Remove nuts attaching transfer case to transmission, if equipped.
 - (16) Remove transfer case, if equipped.
- (17) Remove crankshaft position sensor (Fig. 6), (Fig. 7).

Fig. 6 Crankshaft Position Sensor—2.5L Engine

Fig. 7 Crankshaft Position Sensor —4.0L Engine

CAUTION: It is important that the crankshaft position sensor be removed prior to transmission removal. The sensor can easily be damaged if left in place during removal operations.

- (18) Support engine with adjustable jack stand. Position wood block between jack and oil pan to avoid damaging pan.
 - (19) Support transmission with transmission jack.
- (20) Secure transmission to jack with safety chains.
- (21) Disconnect rear cushion and bracket from transmission.
 - (22) Remove rear crossmember.
 - (23) Disconnect transmission shift lever as follows:
 - (a) Lower transmission-transfer case assembly approximately 7–8 cm (3 in.) for access to shift lever.
 - (b) Reach up and around transmission case and unseat shift lever dust boot from transmission shift tower (Fig. 8). Move boot upward on shift lever for access to retainer that secures lever in shift tower.
 - (c) Reach up and around transmission case and press shift lever retainer downward with finger pressure. Turn retainer counterclockwise to release it
 - (d) Lift lever and retainer out of shift tower (Fig. 8). Do not remove the shift lever from the floor console shifter boots. Leave the lever in place for transmission installation.

Fig. 8 Removing/Installing Shift Lever

- (24) Remove clutch housing brace rod.
- (25) Remove clutch housing-to-engine bolts.
- (26) Pull transmission jack rearward until input shaft clears clutch. Then slide transmission out from under vehicle.
- (27) Remove clutch release bearing, release fork, and retainer clip.
- (28) Remove clutch housing from transmission (Fig. 9).

Fig. 9 Clutch Housing

- (1) Install clutch housing on transmission. Tighten housing bolts to 37 N·m (27 ft. lbs.) torque.
- (2) Lubricate contact surfaces of release fork pivot ball stud and release fork with high temp grease.
 - (3) Install release bearing, fork, and retainer clip.
- (4) Position and secure transmission on transmission jack.
- (5) Lightly lubricate pilot bearing and transmission input shaft splines with Mopar® high temp grease.
- (6) Raise transmission and align transmission input shaft and clutch disc splines. Then slide transmission into place.
- (7) Install and tighten clutch housing-to-engine bolts to 38 N·m (28 ft. lbs.) torque (Fig. 9). Be sure the housing is properly seated on engine block before tightening bolts.
 - (8) Install clutch housing brace rod.
- (9) Lower transmission approximately 7–8 cm (3 in.) for access to shift tower. Be sure transmission is in first or third gear.
- (10) Reach up and around transmission and insert shift lever in shift tower. Press lever retainer downward and turn it clockwise to lock it in place. Then install lever dust boot on shift tower.

- (11) Install rear crossmember. Tighten crossmember-to-frame bolts to 41 N·m (31 ft. lbs.) torque.
- (12) Install fasteners to hold rear cushion and bracket to transmission. Then tighten transmission-to-rear support bolts/nuts to 45 N·m (33 ft. lbs.) torque.
- (13) Remove support stands from engine and transmission.
 - (14) Install and connect crankshaft position sensor.
- (15) Position transfer case on transmission jack, if equipped.
- (16) Secure transfer case to jack with safety chains, if equipped.
- (17) Raise transfer case, if equipped, and align transfer case input shaft to the transmission output shaft.
- (18) Slide transfer case forward until case is seated on transmission, if necessary.
- (19) Install nuts to attach transfer case to transmission, if equipped. Tighten transfer case-to-transmission nuts to 35 N·m (26 ft. lbs.) torque.
- (20) Connect transfer case shift linkage at transfer case, if equipped.
 - (21) Connect transfer case vent hose, if equipped.
- (22) Secure wire harnesses in clips/tie straps on transmission and transfer case, if equipped.
- (23) Engage wire connectors attached to all necessary transmission or transfer case, if equipped, components.
- (24) Install rear propeller shaft slip yoke to transmission or transfer case, if equipped, output shaft.
- (25) Align marks on rear propeller shaft and rear axle yokes (Fig. 10).

J9316-2

Fig. 10 Align Propeller Shaft And Rear Axle Yokes
Alignment Marks

- (26) Install and tighten propeller shaft U–joint clamp bolts to 19 N·m (170 in. lbs.) torque.
- (27) Align marks on front propeller shaft, axle, and transfer case yokes, if equipped.

- (28) Install and tighten propeller shaft U-joint clamp bolts to 19 N·m (170 in. lbs.) torque.
 - (29) Install slave cylinder in clutch housing.
- (30) Install skid plate, if equipped. Tighten bolts to 42 N·m (31 ft. lbs.) torque. Tighten stud nuts to 17 N·m (150 in. lbs.) torque.
- (31) Fill transmission and transfer case, if equipped, with recommended lubricants. Refer to the Lubricant Recommendation sections of the appropriate component for correct fluid.
 - (32) Lower vehicle.

FRONT BEARING RETAINER SEAL

REMOVAL

- (1) Remove release bearing and lever from the transmission.
- (2) Remove the bolts holding the front bearing retainer to the transmission case.
- (3) Remove the front bearing retainer from the transmission case.
- (4) Using a suitable pry tool, remove the front bearing retainer seal.

INSTALLATION

(1) Using Tool Handle C-4171 and Seal Installer 8211, install new seal in to the front bearing retainer (Fig. 11).

Fig. 11 Install Front Bearing Retainer Seal

- (2) Remove any residual gasket material from the sealing surfaces of the bearing retainer and the transmission case.
- (3) Install new front bearing retainer gasket to the front bearing retainer.

- (4) Install the front bearing retainer onto the transmission case.
- (5) Install the bolts to hold the bearing retainer onto the transmission case.
 - (6) Tighten the bolts to 17 N·m (12 ft. lbs.).
- (7) Install release bearing and lever onto the transmission.

EXTENSION HOUSING SEAL

REMOVAL

- (1) Raise and support vehicle.
- (2) Remove propeller shaft. Refer to Group 3, Differential and Driveline, for proper procedures.
- (3) Using a suitable seal puller or screw with a slide hammer, remove the extension housing seal (Fig. 12).

Fig. 12 Remove Extension Housing Seal

INSTALLATION

- (1) Clean seal bore of extension housing of any residual sealer material from original seal.
- (2) Using Tool Handle C-4171 and Seal Installer 8212, install new extension housing seal so that the seal is located 0 \pm 0.5 mm (0 \pm 0.02 in.) to the face of the extension housing (Fig. 13).
- (3) Install propeller shaft. Refer to Group 3, Differential and Driveline, for proper procedures.
- (4) Check and add fluid to transmission as necessary. Refer to the Recommended Lubricant section for proper fluid requirements.
 - (5) Lower vehicle.

ADAPTER HOUSING SEAL

REMOVAL

- (1) Hoist and support vehicle.
- (2) Remove transfer case.
- (3) Using a suitable pry tool, or a slide hammer mounted screw, remove the adapter housing seal (Fig. 14).

Fig. 13 Install Extension Housing Seal

Fig. 14 Remove Adapter Housing Seal

- (1) Clean seal bore of adapter housing of any residual sealer material from original seal.
- (2) Using Tool Handle C-4171 and Seal Installer 8208, install new seal so that the seal is located 0 \pm 0.2 mm (0 \pm 0.008 in.) to the seal bore face of adapter housing (Fig. 15).
 - (3) Install transfer case.
- (4) Check and add fluid to transmission as necessary. Refer to the Recommended Lubricant section for proper fluid requirements.
 - (5) Lower vehicle.

Fig. 15 Install Adapter Housing Seal
DISASSEMBLY AND ASSEMBLY

ADAPTER/EXTENSION HOUSING AND FRONT BEARING RETAINER

DISASSEMBLY

- (1) Drain transmission lubricant, if necessary.
- (2) Remove release bearing and lever.
- (3) Remove clutch housing bolts and remove housing (Fig. 18).
- (4) Remove vehicle speed sensor and speedometer adapter, if necessary.
 - (5) Remove bolts holding shift tower to transmission case.
 - (6) Remove shift tower from transmission case (Fig. 16).
- (7) Remove shift tower gasket from shift tower or transmission case (Fig. 17).

Fig. 16 Remove Shift Tower

Fig. 17 Remove Shift Tower Gasket

- (8) Remove detent ball plug (Fig. 19).
- (9) Remove detent spring and ball with pencil magnet (Fig. 20), (Fig. 21).

Fig. 18 Clutch Housing

Fig. 19 Remove Detent Ball Plug

- (10) Remove shift arm retainer bolt (Fig. 22).
- (11) Remove shift arm restrictor pins (Fig. 23).
- (12) Remove shift lever shaft plug (Fig. 24).
- (13) Remove shifter shaft with large magnet (Fig. 25).
- (14) Remove the shift arm from the adapter housing.
 - (15) Remove adapter/extension housing bolts.

Fig. 21 Remove Detent Ball

80abfeef

Fig. 22 Shift Arm Retainer Bolt Removal

Fig. 23 Shift Arm Rstrictor Pins

Fig. 24 Removing Shift Lever Shaft Plug

Fig. 25 Remove Shifter Shaft

- (16) Loosen adapter/extension housing by tapping it loose with plastic mallet (Fig. 26).
 - (17) Remove adapter/extension housing (Fig. 27).
 - (18) On 4x2 transmissions;
 - (a) Remove speedometer gear retaining snapring from output shaft.
 - (b) Remove speedometer gear from output shaft and remove speedometer gear lock ball from output shaft.
 - (c) Remove speedometer drive gear locating snap-ring (Fig. 28).
- (19) Remove the bolts holding the front bearing retainer to the transmission case.
- (20) Remove the bearing retainer from transmission case (Fig. 29).

Fig. 26 Loosen Adapter/Extension Housing

Fig. 27 Remove Adapter/Extension Housing-Typical

J8921-1119

Fig. 28 Speedometer Drive Gear Assembly

- (21) Remove input shaft bearing snap-ring (Fig. 30).
 - (22) Remove countershaft front bearing snap-ring.

Fig. 29 Remove Front Bearing Retainer

Fig. 30 Remove Input Shaft Bearing Snap-ring

- (23) Separate intermediate plate and transmission case by tapping them loose with plastic mallet (Fig. 31).
- (24) Separate the intermediate plate from the transmission case (Fig. 32).

ASSEMBLY

- (1) Remove any residual sealer from transmission case, intermediate plate, and adapter/extension housing.
- (2) Apply a 1/8 to 3/16 inch wide bead of Threebond® Liquid Gasket TB1281, P/N 83504038, as shown, making sure to keep sealer bead to inside of bolt holes (Fig. 33).
- (3) Align geartrain and shift rails with mating holes in transmission case and install transmission case to the intermediate plate (Fig. 34). Verify that the transmission case is seated on the intermediate plate locating pins.

Fig. 31 Separate Intermediate Plate and Transmission Case

Fig. 32 Remove Intermediate Plate from Transmission Case

Fig. 33 Apply Sealer to Transmission Gear Case

Fig. 34 Install Transmission Gear Case to the Intermediate Plate

(4) Install new front bearing snap rings (Fig. 35).

Fig. 35 Install Front Bearing Snap-rings

- (5) Install front bearing retainer gasket to front bearing retainer.
- (6) Install the front bearing retainer (Fig. 36) and tighten bolts to 17 N·m (12 ft. lbs.).
 - (7) On 4x2 transmissions;
 - (a) Install speedometer drive gear locating snapring (Fig. 37).
 - (b) Install speedometer gear lock ball in output shaft and install speedometer gear onto output shaft.
 - (c) Install speedometer gear retaining snap-ring onto output shaft.

Fig. 36 Install Front Bearing Retainer

- (8) Apply a 1/8 to 3/16 inch wide bead of Threebond® Liquid Gasket TB1281, P/N 83504038, to sealing surface of adapter/extension housing, making sure to keep sealer bead to inside of bolt holes.
- (9) Install adapter or extension housing on intermediate plate (Fig. 38). Tighten housing bolts to 34 $N \cdot m$ (25 ft. lbs.) torque.
- (10) Position shift arm in shifter tower opening of adapter or extension housing (Fig. 39). Be sure that the shifter arm is engaged into the shift rails.

J8921-1119

Fig. 37 Speedometer Drive Gear Assembly

- (11) Start shifter arm shaft in hole in back of adapter or extension housing. Align shift arm and shifter arm shaft and insert shifter arm shaft through the shifter arm and into the forward portion of the adapter or extension housing (Fig. 40).
- (12) Rotate the shifter arm shaft until the hole in the shift arm is aligned with the hole in the shaft.
- (13) Install the shift arm retainer bolt and tighten to 38 N·m (28 ft. lbs.) (Fig. 41).
- (14) Install and tighten shifter arm shaft plug to $18~\mathrm{N\cdot m}$ (13 ft. lbs.) torque (Fig. 42).
- (15) Install shift restrictor pins in shift tower and tighten to 27 N·m (20 ft. lbs.) (Fig. 43).

Fig. 38 Install Adapter/Extension Housing-Typical

Fig. 39 Position Shift Arm in Adapter or Extension Housing

Fig. 40 Install Shifter Arm Shaft

Fig. 41 Install Shift Arm Retainer Bolt

Fig. 42 Shifter Arm Shaft Plug Installation

Fig. 43 Install Shifter Restrictor Pins

- (16) Install shift detent ball in detent opening of case (Fig. 44).
 - (17) Install detent spring in case (Fig. 45).
- (18) Install detent plug and tighten to 19 N·m (14 ft. lbs.) (Fig. 46).

Fig. 44 Install Detent Ball

80abfeef

- (19) Install shift tower gasket onto shift tower.
- (20) Install the shift tower oil deflector and gasket onto the adapter or extension housing.
- (21) Install shift tower onto transmission case (Fig. 47).
- (22) Install bolts to hold shift tower to transmission case. Tighten tower bolts to 18 N·m (13 ft. lbs.) torque.
- (23) Install new metal o-ring onto the backup lamp switch.
- (24) Install backup lamp switch (Fig. 48). Tighten switch to 44 N·m (32.5 ft. lbs.) torque.

Fig. 46 Install Detent Ball Plug

SHIFT TOWER SWITCH

Fig. 48 Install Backup Lamp Switch

J8921-100

- (25) Install new seal in adapter/extension housing.
- (26) Install vehicle speed sensor, if necessary.

(27) Install clutch housing, release bearing, release fork and retainer clip.

SHIFT MECHANISM AND GEARTRAIN

DISASSEMBLY

(1) Install suitable bolts and washers in intermediate plate (Fig. 49). Then clamp plate and gear assembly in vise. Use enough washers to prevent bolts from touching. Also be sure vise jaws are clamped on bolt heads.

J8921-15

Fig. 49 Positioning Intermediate Plate In Vise

- (2) Remove countershaft fifth gear retaining snapring (Fig. 50).
- (3) Remove bolt holding fifth gear shift fork to shift rail (Fig. 51).
- (4) Remove fifth gear blocker ring from countershaft assembly with Puller L-4407 (Fig. 52).
 - (5) Remove fifth gear synchro ring (Fig. 53).
- (6) Remove the countershaft fifth gear assembly from countershaft (Fig. 54).
- (7) Remove fifth gear thrust ring from countershaft (Fig. 55).
- (8) Remove fifth gear thrust ring lock ball from countershaft (Fig. 56).

Fig. 50 Remove Fifth Gear Snap-ring

Fig. 51 Remove Shift Fork Retainer Bolt

NOTE: There are many lock balls, check balls, interlock balls, and interlock pins used in various places in the transmission. Whenever a pin or ball is removed, it should be identified in such a way that it can be reinstalled in the same location from which it was removed.

- (9) Remove bolt holding reverse idler gear shaft lock plate to the intermediate plate.
- (10) Remove reverse idler gear shaft and reverse idler gear assembly (Fig. 57).

NOTE: Be sure to retrieve the pin and compression spring from the reverse idler shaft.

Fig. 53 Remove Fifth Gear Synchro Ring

Fig. 54 Remove Fifth Gear and Synchro Assembly

Fig. 55 Remove Fifth Gear Thrust Ring

Fig. 56 Remove Fifth Gear Thrust Ring Lock Ball

(11) Remove bolts holding output shaft rear bearing retainer to the intermediate plate and remove retainer (Fig. 58).

Fig. 57 Remove Reverse Idler Shaft

(12) Remove bolts holding 1–2 and 3–4 shift forks to the shift rails (Fig. 59) and discard bolts.

Fig. 58 Remove Output Shaft Rear Bearing Retainer

(13) Remove bolts holding reverse shift arm bracket to intermediate plate (Fig. 60).

Fig. 59 Remove Shift Fork To Shift Rail Bolts

- (14) Remove snap-ring holding output shaft rear bearing into the intermediate plate (Fig. 61).
 - (15) Remove countershaft rear bearing snap-ring.
- (16) With aid of an assistant, support the mainshaft and countershaft. Tap on the rear of the mainshaft and countershaft with a suitable plastic mallet. This will release the countershaft from the countershaft rear bearing and the mainshaft rear bearing from the intermediate plate. The countershaft will release from the countershaft bearing first and can be removed by moving the countershaft rearward and downward (Fig. 62).

Fig. 60 Remove Reverse Shift Arm Bracket Bolts

Fig. 61 Remove Output Shaft Rear Bearing Snap-ring

- (17) Remove the mainshaft by moving the mainshaft forward until the mainshaft rear bearing is clear of the intermediate plate and then rotating the mainshaft downward out of the shift forks (Fig. 63).
- (18) Remove the 3–4 shift fork from the 3–4 shift rail (Fig. 64).

Fig. 62 Remove Countershaft and Countershaft Rear Bearing

Fig. 63 Remove Mainshaft

- (19) Remove the snap-ring from near the end of the 1-2 shift rail to allow the removal of the 1-2 shift fork.
- (20) Remove the 1–2 shift fork from the 1–2 and the 3–4 shift rails (Fig. 65).
- (21) Remove threaded plugs from intermediate plate. Then remove lock ball and spring from plug holes with pencil magnet (Fig. 66). Note that the bottom spring is shorter in length than the other two springs.
- (22) Remove the intermediate plate from the vise, rotate the plate 180°, and reinstall the plate in the vise using the same bolt and washer mounting setup.

CAUTION: The interlock balls and pins are different sizes and shapes. Be sure to correctly identify which position an item is removed from to ensure that it is reinstalled in the same location.

Fig. 64 Remove 3-4 Shift Fork

Fig. 65 Remove 1-2 Shift Fork

- (23) Remove fifth gear shift rail (Fig. 67).
- (24) Remove fifth gear check ball (Fig. 68) and interlock pin.
- (25) Remove reverse shift head and rail assembly (Fig. 69).
- (26) Remove snap-ring holding reverse shift rail into intermediate plate.
- (27) Remove reverse shift rail and reverse shift fork and arm assembly from intermediate plate (Fig. 70).

Fig. 66 Remove Lock Ball And Spring

Fig. 67 Remove Fifth Gear Shift Rail

- (28) Remove interlock pin from reverse shift rail (Fig. 71).
 - (29) Remove reverse elongated check ball (Fig. 72).
 - (30) Remove snap-ring on 3-4 shift rail.
 - (31) Remove 1-2 shift rail from intermediate plate.
- (32) Remove interlock pin from 1–2 shift rail (Fig. 73).
- (33) Remove 1–2 shift rail elongated check ball from intermediate plate (Fig. 74).
 - (34) Remove 3-4 shift rail from intermediate plate.

Fig. 68 Remove Fifth Gear Check Ball

Fig. 69 Remove Reverse Shift Head And Rail Assembly

Fig. 70 Remove Reverse Shift Rail

Fig. 71 Remove Interlock Pin From Reverse Shift Rail

Fig. 72 Remove Reverse Check Ball

ASSEMBLY

Refer to (Fig. 75) while assembling and installing the shift rail components. Also, verify that all shift rail components are in their neutral position when installing the check balls and interlock pins.

(1) Install the 3–4 shift rail into the intermediate plate.

Fig. 73 Remove 1–2 Shift Rail Interlock Pin

Fig. 74 Remove 1-2 Check Ball

- (2) Install the 1–2 elongated check ball into the intermediate plate (Fig. 76).
- (3) Install the interlock pin into the 1-2 shift rail (Fig. 77).
- (4) Install the 1–2 shift rail into the intermediate plate.

Fig. 75 Shift Rail Components

Fig. 76 Install 1-2 Check Ball

- (5) Install snap-ring onto 3-4 shift rail.
- (6) Install the reverse check ball into the intermediate plate (Fig. 78).

Fig. 77 Install 1-2 Shift Rail Interlock Pin

- (7) Install the interlock pin into the reverse shift rail (Fig. 79).
- (8) Assemble the reverse arm bracket to the reverse fork (Fig. 80).

Fig. 78 Install Reverse Check Ball

Fig. 79 Install Reverse Interlock Pin

- (9) Install reverse shift rail into intermediate plate and position reverse arm bracket to intermediate plate (Fig. 81).
- (10) Install snap-ring onto reverse shift rail (Fig. 82).
- (11) Install reverse shift head and rail assembly into the intermediate plate.
- (12) Install the fifth gear interlock ball and check ball (Fig. 83).
 - (13) Install fifth gear shift rail (Fig. 84).
- (14) Remove the intermediate plate from the vise, rotate the plate 180° , and reinstall the plate in the

Fig. 80 Install Reverse Arm Bracket to Fork

Fig. 81 Install Reverse Shift Rail

Fig. 82 Install Reverse Snap-ring

vise using the same bolt and washer mounting setup.

(15) Install the shift rail detent balls in the intermediate plate.

Fig. 83 Install Fifth Gear Check Ball

Fig. 84 Install Fifth Gear Shift Rail

- (16) Install the shift rail detent springs in the intermediate plate. Note that the bottom detent spring is shorter than the others.
- (17) Install the shift rail detent plugs in the intermediate plate.
- (18) Install the 1–2 shift fork onto the 1–2 and 3–4 shift rails (Fig. 85).

Fig. 85 Install 1-2 Shift Fork

- (19) Install the snap-ring onto the 1-2 shift rail.
- (20) Install the 3–4 shift fork onto the 3–4 shift rail (Fig. 86).

Fig. 86 Install 3-4 Shift Fork

- (21) Install mainshaft into the intermediate plate by guiding the output shaft through opening in intermediate plate until the shift forks are aligned with the appropriate synchronizer sleeves. The mainshaft rear bearing will be started in the intermediate plate but not fully driven in at this point.
- (22) While an assistant supports the mainshaft, align rear of countershaft with inner race of countershaft rear bearing.
- (23) Raise countershaft upward until gears mesh with the mating gears on the mainshaft.
- (24) Using a suitable rubber mallet, tap on the input shaft and the front of the countershaft equally to install the mainshaft rear bearing into the intermediate plate and the rear of the countershaft into the rear countershaft bearing. It may be necessary to occasionally hold the countershaft into the intermediate plate and tap the countershaft rear bearing onto the countershaft and into the intermediate plate.
- (25) Install snap-rings onto the rear mainshaft and countershaft bearings.
- (26) Install the bolts to hold the reverse shift arm bracket to the intermediate plate.
- (27) Install new bolts to hold the shift forks to the shift rails (Fig. 87).
- (28) Position the mainshaft rear bearing retainer over the output shaft and onto the intermediate plate.
- (29) Install new bolts to hold the bearing retainer to the intermediate plate.

Fig. 87 Install Shift Fork Bolts

- (30) Move the reverse shift arm into the reverse gear position. The reverse gear position is with the arm moved away from the intermediate plate (Fig. 88).
- (31) Install the reverse idler gear assembly into position on the mainshaft and reverse shift arm.
- (32) Install the compression spring and pin into the reverse idler gear shaft (Fig. 89).
- (33) Install the reverse idler shaft through the intermediate plate and reverse idler gear assembly (Fig. 90) until the idler shaft pin contacts the gear assembly. Make sure that the notched cut-out in the idler shaft is to the rear of the transmission.

Fig. 88 Reverse Shift Arm Position

(34) Align the pin with the alignment notch in the reverse idler gear assembly (Fig. 91). The alignment notch in the reverse idler gear race/hub is a small relief cut above one of the main longitudinal slots. Be sure that the pin is aligned with the proper slot, the opposite slot has an oil drain hole which the pin will drop into. The assembly will then be locked onto the

Fig. 89 Install Compression Spring And Pin

Fig. 90 Install Reverse Idler Shaft

shaft and will need to be disassembled in order to be removed.

(35) Depress compression spring and pin in reverse idler gear shaft (Fig. 92).

Fig. 91 Align Idler Shaft Pin

80b099ce

Fig. 92 Depress Pin In Reverse Idler Gear Shaft

- (36) Install the reverse idler gear shaft the remainder of the way through the reverse idler gear assembly.
- (37) Position the reverse idler gear shaft lock plate onto the intermediate plate.
- (38) Install a new bolt to hold the idler gear shaft lock plate to the intermediate plate.
- (39) Install the fifth gear thrust ring lock ball to the countershaft (Fig. 93).
- (40) Install the fifth gear thrust ring onto the countershaft and over the lock ball (Fig. 94).

Fig. 93 Install Fifth Gear Thrust Ring Lock Ball

- (41) Install fifth gear shift fork to the countershaft fifth gear assembly.
- (42) Install the countershaft fifth gear bearings into the countershaft fifth gear assembly.
- (43) Position the countershaft fifth gear assembly on the countershaft. Ensure that the fifth gear fork is installed onto the fifth gear shift rail.
 - (44) Install the fifth gear synchro ring.
- (45) Position the fifth gear blocker ring onto the countershaft.

Fig. 94 Install Fifth Gear Thrust Ring

- (46) Using a suitable mallet and spacer, tap the fifth gear blocker ring onto the countershaft.
- (47) Install new bolt to hold fifth gear shift fork to the fifth gear shift rail (Fig. 95).

Fig. 95 Install Fifth Gear Retainer Bolt

- (48) Measure countershaft fifth gear thrust clearance.
- (49) Select a snap-ring so that the thrust clearance is 0.10-0.30 mm (0.004-0.010 in.).
- (50) Install snap-ring to hold fifth gear blocker ring onto countershaft.
- (51) Remove intermediate plate from vise and remove bolts and washers from intermediate.

COUNTERSHAFT

DISASSEMBLY

- (1) Remove select fit snap-ring holding the countershaft front bearing onto the countershaft (Fig. 96).
- (2) Using Bearing Splitter P-334, a suitable spacer on center of countershaft, and a shop press, remove the countershaft front bearing from the countershaft.

I.D. MARK		G THICKNESS M (IN.)
1	2.05 - 2.10	(0.0807 - 0.0827)
2	2.10 - 2.15	(0.0827 - 0.0846)
3	2.15 - 2.20	(0.0846 - 0.0866)
4	2.20 - 2.25	(0.0866 - 0.0886)
5	2.25 - 2.30	(0.0886 - 0.0906)
6	2.30 - 2.35	(0.0906 - 0.0925)

80ac6a0a

Fig. 96 Countershaft Front Bearing Snap-ring

ASSEMBLY

- (1) Remove any nicks or burrs on countershaft hub with fine emery or crocus cloth.
- (2) Position countershaft front bearing on end of countershaft.
- (3) Using Special Tool 8109 and a shop press, press bearing onto countershaft.
- (4) Select the thickest snap-ring that will fit into the snap-ring groove of the countershaft (Fig. 96).
- (5) Install snap-ring to hold countershaft front bearing onto countershaft.

INPUT SHAFT

DISASSEMBLY

- (1) Verify that the 3–4 synchronizer is in the neutral position.
- (2) Separate input shaft from output shaft (Fig. 97). Note that the output shaft pilot bearing is an uncaged roller type bearing.
- (3) Remove the output shaft pilot bearing rollers from the input shaft and the output shaft.
- (4) Remove the fourth gear synchronizer ring from the input shaft (Fig. 98).

Fig. 97 Separate Input and Output Shafts

Fig. 98 Input Shaft Components

- (5) Remove the select fit snap-ring holding the input shaft bearing onto the input shaft.
- (6) Using Bearing Splitter P-334 and a shop press, remove the bearing from the input shaft.

ASSEMBLY

- (1) Position input shaft bearing onto input shaft.
- (2) Using Driver L-4507, drive bearing onto input shaft.
- (3) Select the thickest snap-ring that will fit into the snap-ring groove of the input shaft (Fig. 99).
- (4) Lubricate output shaft pilot bearing bore of input shaft with petroleum jelly.
- (5) Install output shaft pilot bearing rollers in input shaft bore (Fig. 100). Ensure to use sufficient petroleum jelly to hold rollers in position.
- (6) Install the fourth gear synchronizer ring onto the input shaft.
- (7) Install input shaft to output shaft. Use care when mating the two shafts not to displace any output shaft pilot bearing rollers.

I.D. Mark	Snap Ring Thickness mm (in.)
0	2.05-2.10 (0.0807-0.0827)
1	2.10-2.15 (0.0827-0.0846)
2	2.15-2.20 (0.0846-0.0866)
3	2.20-2.25 (0.0866-0.0886)
4	2.25-2.30 (0.0886-0.0906)
5	2.30-2.35 (0.0906-0.0925)

J8921-50

Fig. 99 Select Input Shaft Bearing Snap-ring

Fig. 100 Install Output Shaft Pilot Bearing Rollers **OUTPUT SHAFT**

DISASSEMBLY

- (1) Remove input shaft and output shaft pilot bearing rollers from output shaft.
- (2) Measure and note thrust clearance of output shaft gears (Fig. 101). Clearance should be 0.10 -0.25 mm (0.004 - 0.010 in.).

J8921-36

Fig. 101 Check Output Shaft Gear Thrust Clearance

- (3) Remove output shaft fifth gear snap ring with two screwdrivers (Fig. 102).
- (4) Using Bearing Splitter P-334 or suitable press plates positioned under first gear, press fifth gear, rear bearing, first gear, and first gear bearing inner race off output shaft (Fig. 103).

Fig. 102 Remove Fifth Gear Snap-ring

Fig. 103 Remove Fifth Gear, First Gear Bearing, And Race

- (5) Remove first gear needle roller bearing from output shaft.
- (6) Remove first gear bearing inner race lock ball with pencil magnet (Fig. 104).
 - (7) Remove first gear synchronizer ring.
- (8) Using Bearing Splitter P-334 or suitable press plates positioned under second gear, press 1–2 synchronizer, reverse gear, and second gear from output shaft (Fig. 105).

Fig. 104 Remove First Gear Bearing Inner Race Lock Ball

Fig. 105 Remove Second Gear, Reverse Gear, And 1–2 Synchronizer

- (9) Remove second gear needle roller bearing from the output shaft or second gear.
- (10) Remove select fit snap-ring holding the 3–4 synchronizer onto the output shaft (Fig. 106).
- (11) Using Bearing Splitter P-334 or suitable press plates positioned under third gear, press the 3–4 synchronizer and third gear from output shaft (Fig. 107).

Fig. 106 Remove 3-4 Synchronizer Snap Ring

Fig. 107 Remove 3-4 Synchronizer And Third Gear

(12) Remove third gear needle roller bearing from output shaft or gear.

ASSEMBLY

- (1) Lubricate transmission components with specified gear lubricant.
- (2) If necessary, assemble 1–2 and 3–4 synchronizer hubs, sleeves, springs and key inserts (Fig. 108).
- (3) Install third gear needle bearing onto the output shaft.

Fig. 108 Synchronizer Identification

- (4) Install third gear over bearing and onto output shaft flange.
- (5) Install third gear synchronizer ring to third gear.
- (6) Position the 3–4 synchronizer onto the output shaft.
- (7) Using Adapter 6747-1A and a shop press, press the 3–4 synchronizer onto the output shaft.
- (8) Select the thickest snap-ring that will fit into the snap-ring groove of the output shaft (Fig. 109).

I.D. Mark	Snap Ring Thickness mm (in.)
C-1	1.75-1.80 (0.0689-0.0709)
D	1.80-1.85 (0.0709-0.0728)
D-1	1.85-1.90 (0.0728-0.0748)
E	1.90-1.95 (0.0748-0.0768)
E-1	1.95-2.00 (0.0768-0.0787)
F	2.00-2.05 (0.0788-0.0807)
F-1	2.05-2.10 (0.0807-0.0827)

J8921-55

Fig. 109 Select 3-4 Synchronizer Snap-ring

- (9) Install snap-ring to hold 3-4 synchronizer onto output shaft.
- (10) Verify third gear thrust clearance with feeler gauge (Fig. 110). Clearance should be 0.10-0.25~mm (0.004-0.010~in.). If clearance is out of specification, refer to Cleaning and Inspection section within this group.

Fig. 110 Check Third Gear Clearance

- (11) Install second gear needle bearing onto output shaft.
- (12) Install second gear over bearing and onto output shaft flange.
- (13) Install second gear synchronizer ring onto second gear.

Fig. 111 Install First Gear Bearing Inner Race Lock Ball

- (14) Position 1–2 synchronizer assembly onto splines of output shaft.
- (15) Using Driver MD-998805, Adapter 6747-1A, and a shop press, press the 1-2 synchronizer onto the output shaft.
- (16) Install first gear synchronizer ring into 1–2 synchronizer.
- (17) Install first gear bearing inner race lock ball in output shaft (Fig. 111).
- (18) Install first gear needle bearing onto output shaft (Fig. 112).
- (19) Install first gear onto output shaft and over bearing.
- (20) Install first gear bearing inner race onto output shaft and inside first gear bearing. Rotate bearing race until race installs over lock ball.
- (21) Position output shaft rear bearing onto output shaft. Ensure that the snap ring groove in bearing outer race is toward rear of output shaft.
- (22) Using Driver L-4507 and suitable mallet, drive bearing onto output shaft.
- (23) Install snap-ring onto output shaft rear bearing outer race.

J8921-59

Fig. 112 First Gear Components

(24) Check first–second gear thrust clearance (Fig. 113). Standard clearance is 0.10-0.25~mm (0.004-0.010~in.). If clearance is out of specification, refer to Cleaning and Inspection section within this group.

J8921-61

Fig. 113 Check First-Second Gear Thrust Clearance

- (25) Position fifth gear onto output shaft with the gear's short shoulder toward the rear of shaft. Ensure that the gear and output shaft splines are aligned.
- (26) Using Adapter 6747-1A, Driver L-4507, and a shop press, press fifth gear onto output shaft.
- (27) Select the thickest snap-ring that will fit into the snap-ring groove of the output shaft (Fig. 114).
- (28) Install snap-ring to hold fifth gear onto output shaft.

I.D. Mark	Snap Ring Thickness mm (in.)
A B C D E F G H J K L	2.67-2.72 (0.1051-0.1071) 2.73-2.78 (0.1075-0.1094) 2.79-2.84 (0.1098-0.1118) 2.85-2.90 (0.1122-0.1142) 2.91-2.96 (0.1146-0.1165) 2.97-3.02 (0.1169-0.1189) 3.03-3.08 (0.1193-0.1213) 3.09-3.14 (0.1217-0.1236) 3.15-3.20 (0.1240-0.1260) 3.21-3.26 (0.1264-0.1283) 3.27-3.32 (0.1287-0.1307)

J8921-63

Fig. 114 Select/Install Fifth Gear Snap Ring

SEMI-SYNCHRONIZED REVERSE IDLER GEAR

DISASSEMBLY

- (1) Remove snap-ring holding the reverse idler gear onto the reverse idler gear hub/race (Fig. 115).
- (2) Remove the plate washer from the reverse idler gear hub/race (Fig. 116).

Fig. 115 Remove Reverse Idler Gear Snap-ring

Fig. 116 Remove Reverse Idler Gear Plate Washer

- (3) Remove the reverse idler gear from the reverse idler gear hub/race (Fig. 117).
- (4) Remove the reverse idler gear synchronizer ring from the reverse idler gear hub/race (Fig. 118).

ASSEMBLY

- (1) Install the reverse idler gear synchronizer ring onto the reverse idler gear hub/race. Apply a film of 75W-90 GL-3 transmission oil to the contact surface of the synchronizer ring prior to assembly.
- (2) Install the reverse idler gear onto the reverse idler gear hub/race. Apply a film of 75W-90 GL-3 transmission oil to the reverse idler gear bushing prior to assembly. Verify that the teeth on the syn-

Fig. 117 Remove Reverse Idler Gear

Fig. 118 Remove Reverse Idler Gear Synchronizer Ring

chronizer ring are properly engaged into the recesses of the reverse idler gear.

- (3) Install the plate washer over the reverse idler gear hub/race and onto the reverse idler gear.
- (4) Install the snap-ring to hold the reerse idler gear onto the reverse idler hub/race.

CLEANING AND INSPECTION

AX5 MANUAL TRANSMISSION COMPONENTS

GENERAL INFORMATION

Clean the transmission components in solvent. Dry the cases, gears, shift mechanism and shafts with compressed air. Dry the bearings with clean, dry shop towels only. Never use compressed air on the bearings. This could cause severe damage to the bearing roller and race surfaces.

If output shaft or inner race flange thickness is within specification but any gear thrust clearance is

CLEANING AND INSPECTION (Continued)

out of specification, replace the necessary gear and gear needle bearing as an assembly.

GEAR CASE, ADAPTER/EXTENSION HOUSING, INTERMEDIATE PLATE

Clean the case, housing, and intermediate plate with solvent and dry with compressed air. Replace the case if cracked, porous, or if any of the bearing and gear bores are damaged.

Inspect the threads in the case, housing, and plate. Minor thread damage can be repaired with steel thread inserts, if necessary. Do not attempt to repair any threads which show evidence of cracks around the threaded hole.

OUTPUT SHAFT

Check thickness of the output shaft and inner bearing race flanges with a micrometer or vernier calipers (Fig. 119).

Fig. 119 Check Shaft And Bearing Race Flange Thickness

- Minimum thickness for shaft flange is 4.80 mm (0.189 in.)
- Minimum thickness for first gear bearing inner race flange is 3.99 mm (0.157 in.)

Measure diameter of the output shaft journal surfaces with a micrometer. Replace the shaft if either of these surfaces are worn beyond specified limits.

- Second gear surface minimum diameter is 37.964 mm (1.495 in.)
- Third gear surface minimum diameter is 34.984 mm (1.377 in.)

Measure diameter of the first gear bearing inner race. Minimum diameter is 38.985 mm (1.535 in.).

Measure output shaft runout with a dial indicator (Fig. 120). Runout should not exceed 0.05 mm (0.002 in.).

Fig. 120 Check Output Shaft Runout

Replace output shaft or first gear inner bearing race if measurement of any surface is out of specification. Do not attempt to repair out of specification components.

COUNTERSHAFT

Inspect the countershaft gear teeth. Replace the countershaft if any teeth are worn or damaged. Inspect the bearing surfaces and replace shaft if any surface shows damage or wear.

Check condition of the countershaft front bearing. Replace the bearing if worn, noisy, or damaged.

GEAR AND SYNCHRONIZER

Install the needle bearing and inner race in the first gear. Then check oil clearance between the gear and inner race (Fig. 121). Clearance should be 0.009 - 0.032 mm (0.0004 - 0.0013 in.).

Install the needle bearings and the second, third and counter fifth gears on the output shaft. Then check oil clearance between the gears and shaft with a dial indicator (Fig. 122). Oil clearance for all three gears is 0.009 - 0.0013 mm (0.0004 - 0.0013 in.).

Check synchronizer ring wear (Fig. 123). Insert each ring in matching gear. Measure clearance between each ring and gear with feeler gauge. Replace ring if clearance exceeds 2.0 mm (0.078 in.).

CLEANING AND INSPECTION (Continued)

Fig. 121 Check Gear-To-Race Clearance

Fig. 122 Check Gear-To-Shaft Oil Clearance

Check shift fork-to-synchronizer hub clearance with a feeler gauge (Fig. 124). Replace the fork if clearance exceeds 1.0 mm (0.039 in.).

(1) Inspect all mainshaft gear teeth. Replace any gear which shows any worn or damaged teeth.

Fig. 123 Check Synchronizer Ring Wear

Fig. 124 Check Fork-To-Hub Clearance

SPECIFICATIONS

TORQUE

DESCRIPTION TORQU	Ε
Plugs, Access 19 N·m (14 ft.lbs	s.)
Bolts, Adapter Housing 34 N·m (25 ft.lbs	
Switch, Back-up Light 44 N·m (32.5 ft.lbs	s.)
Plugs, Drain and Fill 44 N·m (32.5 ft.lbs	s.)
Bolts, Front Bearing Retainer 17 N·m (12 ft.lbs	s.)
Plugs, Interlock and Detent 19 N·m (14 ft.lbs	s.)
Screws, Propeller Shaft Clamp 16-23 N	m
(140–200 in.lbs	s.)
Bolts, Rear Mount to Transmission 33-60 N	m
(24–44 ft.lbs	s.)
Nut, Rear Mount Clevis 54-75 N·m (40-55 ft.lbs	s.)
Nuts, Rear Mount to Crossmember 33–49 N	m
(24–36 ft.lbs	s.)
Pins, Restrictor 27.4 N·m (20 ft.lbs	
Bolts, Reverse Shift Arm Bracket 18 No	m
(13 ft.lbs	,
Screw, Shift Arm Set 38 N·m (28 ft.lbs	
Screws, Shift Fork Set 20 N·m (15 ft.lbs	s.)
Nut, Shift Knob 20–34 N·m (15–25 ft.lbs	
Screws, Shifter Floor Cover 2–3 N	m
(17–30 in.lbs	
Bolts, Shift Tower 18 N·m (13 ft.lbs	
Nuts, Transfer Case Mounting 30–41 N	m
(22–30 ft.lbs	s.)

AX5

C-3339 Dial Indicator Set

C-3995-A Installer, Extension Housing Seal

C-4171 Handle, Universal Tool

8211 Installer, Seal

8212 Installer, Seal

SPECIAL TOOLS (Continued)

8208 Installer, Seal

L-4507 Tube, Driver

P-334 Splitter, Bearing

6747-1A Adapter, Fixture

8109 Cup, Installer

MD-998805 Installer, Seal

2222

AX15 MANUAL TRANSMISSION

INDEX

2222

page	٢	Jago
GENERAL INFORMATION	DISASSEMBLY AND ASSEMBLY	
AX15 MANUAL TRANSMISSION 37	ADAPTER/EXTENSION HOUSING AND FRONT	
RECOMMENDED LUBRICANT 37	BEARING RETAINER	. 44
TRANSMISSION ASSEMBLY INFORMATION 38	COUNTERSHAFT	. 63
TRANSMISSION GEAR RATIOS 37	INPUT SHAFT	. 64
TRANSMISSION IDENTIFICATION 37	OUTPUT SHAFT	. 64
DIAGNOSIS AND TESTING	SHIFT MECHANISM AND GEARTRAIN	. 51
HARD SHIFTING	CLEANING AND INSPECTION	
LOW LUBRICANT LEVEL	AX15 MANUAL TRANSMISSION	
TRANSMISSION NOISE 40	COMPONENTS	. 69
REMOVAL AND INSTALLATION	SPECIFICATIONS	
ADAPTER HOUSING SEAL 43	TORQUE	. 71
EXTENSION HOUSING SEAL 43	SPECIAL TOOLS	
FRONT BEARING RETAINER SEAL 42	AX15	. 71
TRANSMISSION 40		

GENERAL INFORMATION

AX15 MANUAL TRANSMISSION

The AX15 is a 5-speed, synchromesh, manual transmission. Fifth gear is an overdrive range with a ratio of 0.79:1. An adapter housing is used to attach the transmission to the transfer case on 4-wheel drive models. A standard extension housing is used on 2-wheel drive models. The shift mechanism is integral and mounted in the shift tower portion of the adapter housing (Fig. 1).

TRANSMISSION IDENTIFICATION

The AX15 identification code numbers are on the bottom surface of the intermediate plate (Fig. 2).

The first number is year of manufacture. The second and third numbers indicate month of manufacture. The next series of numbers is the transmission serial number.

TRANSMISSION GEAR RATIOS

Gear ratios for the AX15 manual transmission are as follows:

First gear: 3.83:1
Second gear: 2.33:1
Third gear: 1.44:1
Fourth gear: 1.00:1
Fifth gear: 0.79:1
Reverse: 4.22:1

RECOMMENDED LUBRICANT

Recommended lubricant for AX15 transmissions is Mopar $^{\circledR}$ 75W-90, API Grade GL-3 gear lubricant, or equivalent.

Correct lubricant level is from the bottom edge, to no more than 6 mm (1/4 in.) below the bottom edge of the fill plug hole.

The fill plug is located on the driver's side of the transmission case (Fig. 3). The drain plug is located on the passenger side of the transmission case near the bottom (Fig. 4).

J8921-1023

GENERAL INFORMATION (Continued)

Fig. 1 AX15 Manual Transmission

Fig. 2 Identification Code Number Location

Approximate dry fill lubricant capacity is:

- 3.10 liters (3.27 qts.) for 4-wheel drive applications.
- 3.15 liters (3.32 qts.) for 2–wheel drive applications.

TRANSMISSION ASSEMBLY INFORMATION

Lubricate the transmission components with Mopar® 75W-90, GL 3 gear lubricant during assembly. Use petroleum jelly to lubricate seal lips and/or hold parts in place during installation.

Refer to (Fig. 5) during assembly for AX15 gear assembly identification.

Fig. 3 Fill Plug Location

DIAGNOSIS AND TESTING

LOW LUBRICANT LEVEL

A low transmission lubricant level is generally the result of a leak, inadequate lubricant fill, or an incorrect lubricant level check.

Leaks can occur at the mating surfaces of the gear case, intermediate plate and adaptor or extension housing, or from the front/rear seals. A suspected leak could also be the result of an overfill condition.

Leaks at the rear of the extension or adapter housing will be from the housing oil seals. Leaks at component mating surfaces will probably be the result of inadequate sealer, gaps in the sealer, incorrect bolt tightening, or use of a non–recommended sealer.

DIAGNOSIS AND TESTING (Continued)

Fig. 4 Drain Plug Location

A leak at the front of the transmission will be from either the front bearing retainer or retainer seal. Lubricant may be seen dripping from the clutch housing after extended operation. If the leak is severe, it may also contaminate the clutch disc causing the disc to slip, grab, and/or chatter.

A correct lubricant level check can only be made when the vehicle is level. Also allow the lubricant to settle for a minute or so before checking. These recommendations will ensure an accurate check and avoid an underfill or overfill condition. Always check the lubricant level after any addition of fluid to avoid an incorrect lubricant level condition.

HARD SHIFTING

Hard shifting is usually caused by a low lubricant level, improper, or contaminated lubricants. The consequence of using non-recommended lubricants is noise, excessive wear, internal bind, and hard shifting. Substantial lubricant leaks can result in gear, shift rail, synchro, and bearing damage. If a leak goes undetected for an extended period, the first indications of component damage are usually hard shifting and noise.

Component damage, incorrect clutch adjustment, or a damaged clutch pressure plate or disc are additional probable causes of increased shift effort. Incorrect adjustment or a worn/damaged pressure plate or disc can cause incorrect release. If the clutch problem is advanced, gear clash during shifts can result. Worn or damaged synchro rings can cause gear clash when shifting into any forward gear. In some new or rebuilt transmissions, new synchro rings may tend to stick slightly causing hard or noisy shifts. In most cases, this condition will decline as the rings wearin.

Fig. 5 Output Shaft and Gears

DIAGNOSIS AND TESTING (Continued)

TRANSMISSION NOISE

Most manual transmissions make some noise during normal operation. Rotating gears generate a mild whine that is audible, but generally only at extreme speeds.

Severe, highly audible transmission noise is generally the initial indicator of a lubricant problem. Insufficient, improper, or contaminated lubricant will promote rapid wear of gears, synchros, shift rails, forks and bearings. The overheating caused by a lubricant problem, can also lead to gear breakage.

REMOVAL AND INSTALLATION

TRANSMISSION

REMOVAL

- (1) Shift transmission into first or third gear.
- (2) Raise and support vehicle on suitable safety stands.
- (3) Disconnect necessary exhaust system components.
 - (4) Remove skid plate, if equipped.
 - (5) Remove slave cylinder from clutch housing.
- (6) Mark rear propeller shaft and rear axle yokes for installation alignment (Fig. 6).

Fig. 6 Marking Propeller Shaft And Axle Yokes

- (7) Mark front propeller shaft, axle, and transfer case yokes for installation alignment, if equipped.
 - (8) Remove propeller shaft(s).
- (9) Unclip wire harnesses from transmission and transfer case, if equipped.
- (10) Disconnect transfer case vent hose, if equipped.
- (11) Disengage any wire connectors attached to transmission or transfer case, if equipped, components.
- (12) Support transfer case, if equipped, with transmission jack.

- (13) Secure transfer case, if equipped, to jack with safety chains.
- (14) Disconnect transfer case shift linkage at transfer case, if equipped.
- (15) Remove nuts attaching transfer case to transmission, if equipped.
 - (16) Remove transfer case, if equipped.
- (17) Remove crankshaft position sensor (Fig. 7), (Fig. 8).

Fig. 7 Crankshaft Position Sensor—2.5L Engine

Fig. 8 Crankshaft Position Sensor —4.0L Engine

CAUTION: It is important that the crankshaft position sensor be removed prior to transmission removal. The sensor can easily be damaged if left in place during removal operations.

- (18) Support engine with adjustable jack stand. Position wood block between jack and oil pan to avoid damaging pan.
 - (19) Support transmission with transmission jack.
- (20) Secure transmission to jack with safety chains.
- (21) Disconnect rear cushion and bracket from transmission.
 - (22) Remove rear crossmember.
 - (23) Disconnect transmission shift lever as follows:
 - (a) Lower transmission-transfer case assembly approximately 7–8 cm (3 in.) for access to shift lever.
 - (b) Reach up and around transmission case and unseat shift lever dust boot from transmission shift tower (Fig. 9). Move boot upward on shift lever for access to retainer that secures lever in shift tower.
 - (c) Reach up and around transmission case and press shift lever retainer downward with finger pressure. Turn retainer counterclockwise to release it
 - (d) Lift lever and retainer out of shift tower (Fig. 9). Do not remove the shift lever from the floor console shifter boots. Leave the lever in place for transmission installation.

Fig. 9 Removing/Installing Shift Lever

- (24) Remove clutch housing brace rod.
- (25) Remove clutch housing-to-engine bolts.
- (26) Pull transmission jack rearward until input shaft clears clutch. Then slide transmission out from under vehicle.
- (27) Remove clutch release bearing, release fork, and retainer clip.
- (28) Remove clutch housing from transmission (Fig. 10).

Fig. 10 Clutch Housing

INSTALLATION

- (1) Install clutch housing on transmission. Tighten housing bolts to 37 N·m (27 ft. lbs.) torque.
- (2) Lubricate contact surfaces of release fork pivot ball stud and release fork with high temp grease.
 - (3) Install release bearing, fork, and retainer clip.
- (4) Position and secure transmission on transmission jack.
- (5) Lightly lubricate pilot bearing and transmission input shaft splines with Mopar® high temp grease.
- (6) Raise transmission and align transmission input shaft and clutch disc splines. Then slide transmission into place.
- (7) Install and tighten clutch housing-to-engine bolts to 38 N·m (28 ft. lbs.) torque (Fig. 10). **Be sure the housing is properly seated on engine block before tightening bolts.**
 - (8) Install clutch housing brace rod.
- (9) Lower transmission approximately 7–8 cm (3 in.) for access to shift tower. Be sure transmission is in first or third gear.
- (10) Reach up and around transmission and insert shift lever in shift tower. Press lever retainer downward and turn it clockwise to lock it in place. Then install lever dust boot on shift tower.

- (11) Install rear crossmember. Tighten crossmember-to-frame bolts to 41 N·m (31 ft. lbs.) torque.
- (12) Install fasteners to hold rear cushion and bracket to transmission. Then tighten transmission-to-rear support bolts/nuts to 45 N·m (33 ft. lbs.) torque.
- (13) Remove support stands from engine and transmission.
 - (14) Install and connect crankshaft position sensor.
- (15) Position transfer case on transmission jack, if equipped.
- (16) Secure transfer case to jack with safety chains, if equipped.
- (17) Raise transfer case, if equipped, and align transfer case input shaft to the transmission output shaft.
- (18) Slide transfer case forward until case is seated on transmission, if necessary.
- (19) Install nuts to attach transfer case to transmission, if equipped. Tighten transfer case-to-transmission nuts to 35 N·m (26 ft. lbs.) torque.
- (20) Connect transfer case shift linkage at transfer case, if equipped.
 - (21) Connect transfer case vent hose, if equipped.
- (22) Secure wire harnesses in clips/tie straps on transmission and transfer case, if equipped.
- (23) Engage wire connectors attached to all necessary transmission or transfer case, if equipped, components.
- (24) Install rear propeller shaft slip yoke to transmission or transfer case, if equipped, output shaft.
- (25) Align marks on rear propeller shaft and rear axle yokes (Fig. 11).

REFERENCE MARKS

J9316-2

Fig. 11 Align Propeller Shaft And Rear Axle Yokes
Alignment Marks

- (26) Install and tighten propeller shaft U–joint clamp bolts to 19 N·m (170 in. lbs.) torque.
- (27) Align marks on front propeller shaft, axle, and transfer case yokes, if equipped.
- (28) Install and tighten propeller shaft U–joint clamp bolts to 19 N·m (170 in. lbs.) torque.

- (29) Install slave cylinder in clutch housing.
- (30) Install skid plate, if equipped. Tighten bolts to 42 N·m (31 ft. lbs.) torque. Tighten stud nuts to 17 N·m (150 in. lbs.) torque.
- (31) Fill transmission and transfer case, if equipped, with recommended lubricants. Refer to the Lubricant Recommendation sections of the appropriate component for correct fluid.
 - (32) Lower vehicle.

FRONT BEARING RETAINER SEAL

REMOVAL

- (1) Remove release bearing and lever from the transmission.
- (2) Remove the bolts holding the front bearing retainer to the transmission case.
- (3) Remove the front bearing retainer from the transmission case.
- (4) Using a suitable pry tool, remove the front bearing retainer seal.

INSTALLATION

(1) Using Tool Handle C-4171 and Seal Installer 8209, install new seal in to the front bearing retainer (Fig. 12).

Fig. 12 Install Front Bearing Retainer Seal

- (2) Remove any residual gasket material from the sealing surfaces of the bearing retainer and the transmission case.
- (3) Install new front bearing retainer gasket to the front bearing retainer.
- (4) Install the front bearing retainer onto the transmission case.

- (5) Install the bolts to hold the bearing retainer onto the transmission case.
 - (6) Tighten the bolts to 17 N·m (12 ft. lbs.).
- (7) Install release bearing and lever onto the transmission.

EXTENSION HOUSING SEAL

REMOVAL

- (1) Raise and support vehicle.
- (2) Remove propeller shaft. Refer to Group 3, Differential and Driveline, for proper procedures.
- (3) Using a suitable seal puller or screw with a slide hammer, remove the extension housing seal (Fig. 13).

Fig. 13 Remove Extension Housing Seal

INSTALLATION

- (1) Clean seal bore of extension housing of any residual sealer material from original seal.
- (2) Using Tool Handle C-4171 and Seal Installer 8212, install new extension housing seal so that the seal is located 0 \pm 0.5 mm (0 \pm 0.02 in.) to the face of the extension housing (Fig. 14).

Fig. 14 Install Extension Housing Seal

- (3) Install propeller shaft. Refer to Group 3, Differential and Driveline, for proper procedures.
- (4) Check and add fluid to transmission as necessary. Refer to the Recommended Lubricant section for proper fluid requirements.
 - (5) Lower vehicle.

ADAPTER HOUSING SEAL

REMOVAL

- (1) Hoist and support vehicle.
- (2) Remove transfer case.
- (3) Using a suitable pry tool, or a slide hammer mounted screw, remove the adapter housing seal (Fig. 15).

Fig. 15 Remove Adapter Housing Seal

INSTALLATION

- (1) Clean seal bore of adapter housing of any residual sealer material from original seal.
- (2) Using Tool Handle C-4171 and Seal Installer 8208, install new seal so that the seal is located 0 \pm 0.2 mm (0 \pm 0.008 in.) to the seal bore face of adapter housing (Fig. 16).
 - (3) Install transfer case.
- (4) Check and add fluid to transmission as necessary. Refer to the Recommended Lubricant section for proper fluid requirements.
 - (5) Lower vehicle.

Fig. 16 Install Adapter Housing Seal
DISASSEMBLY AND ASSEMBLY

ADAPTER/EXTENSION HOUSING AND FRONT BEARING RETAINER

DISASSEMBLY

- (1) Drain transmission lubricant, if necessary.
- (2) Remove release bearing and lever.
- (3) Remove clutch housing bolts and remove housing (Fig. 19).
- (4) Remove vehicle speed sensor and speedometer adapter, if necessary.
- (5) Remove bolts holding shift tower to transmission case.
- (6) Remove shift tower from transmission case (Fig. 17).

Fig. 17 Remove Shift Tower

(7) Remove shift tower gasket from shift tower or transmission case (Fig. 18).

Fig. 18 Remove Shift Tower Gasket

- (8) Remove reverse shift head detent ball plug (Fig. 20).
- (9) Remove detent ball spring and ball with pencil magnet (Fig. 21), (Fig. 22).

Fig. 20 Remove Detent Ball Plug

Fig. 23 Shift Arm Retainer Bolt Removal

Fig. 21 Remove Detent Spring

Fig. 24 Shift Arm Rstrictor Pins

- (10) Remove shift arm retainer bolt (Fig. 23).
- (11) Remove shift arm restrictor pins (Fig. 24).
- (12) Remove shift lever shaft plug (Fig. 25).
- (13) Remove shifter shaft with large magnet (Fig. 26).

Fig. 25 Removing Shift Lever Shaft Plug

Fig. 26 Remove Shifter Shaft

- (15) Remove adapter/extension housing bolts (Fig. 27).
- (16) Loosen adapter/extension housing by tapping it loose with plastic mallet (Fig. 28).
 - (17) Remove adapter/extension housing (Fig. 29).
 - (18) On 4x2 transmissions;
 - (a) Remove speedometer gear retaining snapring from output shaft.
 - (b) Remove speedometer gear from output shaft and remove speedometer gear lock ball from output shaft.
 - (c) Remove speedometer drive gear locating snap-ring (Fig. 30).
- (19) Remove the bolts holding the front bearing retainer to the transmission case.
- (20) Remove the bearing retainer from transmission case (Fig. 31).
- (21) Remove input shaft bearing snap-ring (Fig. 32).
- (22) Remove cluster gear bearing snap-ring (Fig. 33).
- (23) Separate intermediate plate and transfer case by tapping them loose with plastic mallet (Fig. 34).
- (24) Separate the intermediate plate from the transmission case (Fig. 35).

Fig. 27 Adapter/Extension Housing Bolts

Fig. 28 Loosen Adapter/Extension Housing

Fig. 29 Remove Adapter/Extension Housing

Fig. 30 Speedometer Drive Gear Assembly

ASSEMBLY

(1) Remove any residual sealer from transmission case, intermediate plate, adapter/extension housing, and front bearing retainer.

Fig. 31 Remove Front Bearing Retainer

Fig. 32 Remove Input Shaft Bearing Snap-ring

Fig. 33 Remove Cluster Gear Snap-ring

(2) Apply a 1/8 to 3/16 inch wide bead of Threebond® Liquid Gasket TB1281, P/N 83504038, as shown, making sure to keep sealer bead to inside of bolt holes (Fig. 36).

Fig. 34 Separate Intermediate Plate and Transmission Case

Fig. 35 Remove Intermediate Plate from Transmission Case

(3) Align geartrain and shift rails with mating holes in transmission case and install transmission case to the intermediate plate (Fig. 37). Verify that the transmission case is seated on the intermediate plate.

Fig. 36 Apply Sealer to Transmission Gear Case

Fig. 37 Install Transmission Gear Case to the Intermediate Plate

(4) Install new front bearing snap rings (Fig. 38).

Fig. 38 Install Front Bearing Snap-rings

- (5) Apply 1/8 inch wide bead of Threebond® Liquid Gasket TB1281, P/N 83504038, to the front bearing retainer sealing surface.
- (6) Install the front bearing retainer (Fig. 39) and tighten bolts to 17 N·m (12 ft. lbs.).
 - (7) On 4x2 transmissions;
 - (a) Install speedometer drive gear locating snapring (Fig. 40).
 - (b) Install speedometer gear lock ball in output shaft and install speedometer gear onto output shaft
 - (c) Install speedometer gear retaining snap-ring onto output shaft.

Fig. 39 Install Front Bearing Retainer

- (8) Apply a 1/8 to 3/16 inch wide bead of Threebond® Liquid Gasket TB1281, P/N 83504038, to sealing surface of adapter/extension housing, making sure to keep sealer bead to inside of bolt holes.
- (9) Install adapter or extension housing on intermediate plate (Fig. 41). Tighten housing bolts to $37 \text{ N} \cdot \text{m}$ (27 ft. lbs.) torque.
- (10) Position shift arm in shifter tower opening of adapter[e]xtension housing (Fig. 42). Be sure that the shifter arm is engaged into the shift rails.

J8921-1119

Fig. 40 Speedometer Drive Gear Assembly

- (11) Start shifter arm shaft in hole in back of adapter[e]xtension housing. Align shift arm and shifter arm shaft and insert shifter arm shaft through the shifter arm and into the forward portion of the adapter[e]xtension housing (Fig. 43).
- (12) Rotate the shifter arm shaft until the hole in the shift arm is aligned with the hole in the shaft.
- (13) Install the shift arm retainer bolt and tighten to 38 N·m (28 ft. lbs.) (Fig. 44).
- (14) Install and tighten shifter arm shaft plug to 18 N·m (13 ft. lbs.) torque (Fig. 45).

Fig. 41 Install Adapter/Extension Housing

Fig. 42 Position Shift Arm in Transmission Case

Fig. 43 Install Shifter Arm Shaft

Fig. 44 Install Shift Arm Retainer Bolt

Fig. 45 Shifter Arm Shaft Plug Installation

- (15) Install shifter restrictor pins in shift tower and tighten to 27 N·m (20 ft. lbs.) (Fig. 46).
- (16) Install shift detent ball in detent opening (Fig. 47).
 - (17) Install detent spring (Fig. 48).
- (18) Install detent plug and tighten to 19 N·m (14 ft. lbs.) (Fig. 49).

Fig. 46 Install Shifter Restrictor Pins

Fig. 47 Install Detent Ball

Fig. 48 Install Detent Spring

Fig. 49 Install Detent Ball Plug

- (19) Install shift tower and new gasket on housing (Fig. 50). Tighten tower bolts to 18 N·m (13 ft. lbs.) torque.
- (20) Install new metal o-ring to the backup lamp switch.
- (21) Install backup lamp switch (Fig. 50). Tighten switch to 37 N·m (27 ft. lbs.) torque.
 - (22) Install new seal in adapter/extension housing.
 - (23) Install vehicle speed sensor, if necessary.
- (24) Install clutch housing, release bearing, release fork and retainer clip.

J8921-100

Fig. 50 Installing Shift Tower And Backup Lamp
Switch

SHIFT MECHANISM AND GEARTRAIN

DISASSEMBLY

(1) Install suitable bolts and washers in intermediate plate (Fig. 51). Then clamp plate and gear assembly in vise. Use enough washers to prevent bolts from touching. Also be sure vise jaws are clamped on bolt heads.

Fig. 51 Positioning Intermediate Plate In Vise

- (2) Measure thrust clearance between countershaft fifth gear and thrust ring with feeler gauge. Clearance should be 0.10 to 0.40 mm (0.003 to 0.019 in.). If clearance exceeds limits, gear and/or ring will have to be replaced.
- (3) Remove countershaft fifth gear retaining snapring (Fig. 52).

Fig. 52 Remove Fifth Gear Snap-ring

(4) Remove bolt holding fifth gear shift fork to shift rail (Fig. 53).

Fig. 53 Remove Fifth Gear Shift Fork Retainer Bolt

- (5) Move fifth gear shift rail forward until the rail is clear of the shift fork.
- (6) Remove the fifth gear shift fork from the synchronizer sleeve (Fig. 54).

Fig. 54 Remove Fifth Gear Shift Fork

- (7) Remove the reverse shift head and rail assembly from the intermediate plate (Fig. 55).
- (8) Remove fifth gear blocker ring from countershaft assembly with Puller L-4407 (Fig. 56).

Fig. 55 Remove Reverse Shift Head Assembly

- (9) Remove fifth gear synchro ring (Fig. 57).
- (10) Remove the countershaft fifth gear assembly from countershaft (Fig. 58).

Fig. 56 Remove Fifth Gear Blocker Ring

Fig. 57 Remove Fifth Gear Synchro Ring

- (11) Remove fifth gear thrust ring from countershaft (Fig. 59).
- (12) Remove fifth gear thrust ring lock ball from countershaft (Fig. 60).

NOTE: There are many lock balls, check balls, interlock balls, and interlock pins used in various places in the transmission. Whenever a pin or ball is removed, it should be identified in such a way that it can be reinstalled in the same location from which it was removed.

Fig. 58 Remove Fifth Gear And Synchro Assembly

Fig. 59 Remove Fifth Gear Thrust Ring

Fig. 60 Remove Fifth Gear Thrust Ring Lock Ball

(13) Remove bolts holding output shaft rear bearing retainer to intermediate plate (Fig. 61).

Fig. 61 Remove Output Shaft Rear Bearing Retainer
Bolts

(14) Remove rear bearing retainer (Fig. 62).

Fig. 62 Remove Output Shaft Rear Bearing Retainer

- (15) Remove reverse idler gear shaft and gear (Fig. 63).
- (16) Remove bolts holding reverse shift arm bracket to intermediate plate (Fig. 64).
- (17) Remove threaded lock ball plugs from intermediate plate (Fig. 65).
- (18) Then remove lock ball and spring from plug holes with pencil magnet (Fig. 66).

Fig. 63 Remove Reverse Idler Shaft And Gear

Fig. 64 Reverse Shift Arm Components

Fig. 65 Lock Ball Plug Locations

Fig. 68 Remove Fifth Gear Shift Rail Lock Ball

- (19) Remove the fifth gear shift rail (Fig. 67).
- (20) Retrieve the fifth gear shift rail lock ball from the intermediate plate using a magnet (Fig. 68).

Fig. 66 Remove Lock Ball And Spring

Fig. 67 Shift Rail Identification

(21) Remove the 1–2 and 3–4 shift rail c-rings using two equally sized screwdrivers (Fig. 69).

Fig. 69 Remove Shift Rail C-rings

(22) Remove bolts holding 1–2 and 3–4 shift forks to the shift rails (Fig. 70) and discard bolts.

Fig. 70 Remove Shift Fork To Shift Rail Bolts

(23) Remove the 3-4 shift rail from the 1-2 and 3-4 shift forks and the intermediate plate (Fig. 71).

Fig. 71 Remove 3-4 Shift Rail

(24) Remove the 3–4 shift rail interlock plug from the intermediate plate with a small magnet (Fig. 72).

(25) Remove the 3-4 shift fork (Fig. 73).

Fig. 72 Remove 3-4 Shift Rail Interlock Plug

Fig. 73 Remove Shift Forks

- (26) Remove the 1-2 shift rail from the 1-2 shift fork and the intermediate plate (Fig. 74).
- (27) Remove the 1–2 shift rail interlock pin from the 1–2 shift rail (Fig. 75).
- (28) Remove the 1–2 shift rail interlock plug from the intermediate plate (Fig. 76).
 - (29) Remove the 1-2 shift fork (Fig. 73).

Fig. 74 Remove 1-2 Shift Rail

Fig. 75 Remove 1-2 Shift Rail Interlock Pin

Fig. 76 Remove 1–2 Shift Rail Interlock Plug

- (30) Remove the c-ring holding the reverse shift rail into the intermediate plate using two equally sized screwdrivers (Fig. 77).
- (31) Remove the reverse shift rail and fork from the intermediate plate (Fig. 78).
- (32) Remove the interlock pin from the reverse shift rail (Fig. 79).
- (33) Remove snap-ring holding output shaft rear bearing into the intermediate plate (Fig. 80).
 - (34) Remove countershaft rear bearing snap-ring.
- (35) With aid of an assistant, support the mainshaft and countershaft. Tap on the rear of the mainshaft and countershaft with a suitable rubber mallet. This will release the countershaft from the countershaft rear bearing and the mainshaft rear bearing from the intermediate plate. The mainshaft will release from the intermediate plate first and can be removed by moving the mainshaft rearward and upward (Fig. 81).

Fig. 77 Remove Reverse Shift Rail C-ring

Fig. 78 Remove Reverse Shift Rail

- (36) Remove the countershaft by moving the countershaft rearward until the countershaft is clear of the intermediate plate.
- (37) Remove the countershaft rear bearing from the intermediate plate.

ASSEMBLY

(1) Lubricate countershaft journal and rear bearing with petroleum jelly or gear lubricant.

Fig. 79 Remove Reverse Shift Rail Interlock Pin

Fig. 80 Remove Output Shaft Rear Bearing Snap-ring

Fig. 81 Remove Mainshaft

(2) Position the mainshaft into the intermediate plate.

- (3) Tap the mainshaft assembly rear bearing into the intermediate plate with a suitable rubber mallet.
- (4) Install the countershaft thru the countershaft rear bearing journal of the intermediate plate.
- (5) Align and mesh the mainshaft and countershaft gears as much as possible.
- (6) Install the countershaft bearing over the countershaft bearing boss and into the intermediate plate. Be sure to leave the snap-ring groove in the bearing facing the rear of the unit. It may be necessary to tap on the bearing with a plastic mallet to fully seat the bearing into intermediate plate.
- (7) Verify that the mainshaft and countershaft gears are correctly meshed and rotate properly.
- (8) Install snap-ring to hold output shaft rear bearing into the intermediate plate (Fig. 66).
 - (9) Install countershaft rear bearing snap-ring.

NOTE: Coat all shift components with petroleum jelly during assembly. Petroleum jelly will hold components in position during installation.

- (10) Install interlock pin in reverse shift rail (Fig. 82).
- (11) Install the reverse shift rail in the intermediate plate (Fig. 83).

Fig. 82 Install Reverse Shift Rail Interlock Pin

- (12) Install c-ring to hold the reverse shift rail into the intermediate plate.
- (13) Install the 1–2 and 3–4 shift forks into the synchronizer sleeves (Fig. 84).
- (14) Install 1–2 shift rail interlock plug in the intermediate plate (Fig. 85).
 - (15) Install interlock pin in 1–2 shift rail (Fig. 86).
- (16) Install 1–2 shift rail through intermediate plate and 1–2 shift fork (Fig. 87).

Fig. 83 Install Reverse Shift Rail

Fig. 84 Install Shift Forks

- (17) Install 3–4 shift rail interlock plug into the intermediate plate (Fig. 88).
- (18) Install the 3–4 shift rail through the intermediate plate, 1–2 and 3–4 shift forks (Fig. 89).

Fig. 85 Install 1-2 Shift Rail Interlock Plug

Fig. 86 Install 1-2 Shift Rail Interlock Pin

Fig. 87 Install 1-2 Shift Rail

- (19) Install new bolts to hold the shift forks to the shift rails (Fig. 90).
- (20) Install c-rings to 1-2 and 3-4 shift rails (Fig. 91).

Fig. 88 Install 3-4 Shift Rail Interlock Plug

Fig. 89 Install 3-4 Shift Rail

Fig. 90 Install Shift Fork To Shift Rail Bolts

- (21) Install the fifth gear shift rail lock ball in the intermediate plate (Fig. 94).
- (22) Install the fifth gear shift rail into the intermediate plate.

- (23) Install reverse idler gear and idler gear shaft (Fig. 92). Verify that the notch in the idler shaft is to the rear of the transmission.
- (24) Position output shaft rear bearing retainer on intermediate plate and into reverse idler shaft notch.
- (25) Install new bolts to hold retainer to intermediate plate (Fig. 93).

Fig. 92 Install Reverse Idler Gear And Shaft

- (26) Install the fifth gear thrust ring lock ball into the countershaft (Fig. 95).
- (27) Install fifth gear thrust ring onto countershaft and over lock ball (Fig. 96).
- (28) Install countershaft fifth gear bearing halves into countershaft fifth gear assembly (Fig. 97).
- (29) Install countershaft fifth gear assembly onto countershaft (Fig. 98).
 - (30) Install fifth gear synchronizer ring (Fig. 99).
- (31) Position fifth gear blocker ring onto countershaft. Verify that blocker ring and countershaft splines are aligned.
- (32) Using a suitable driver and mallet, seat the blocker ring onto the countershaft.
- (33) Select the thickest snap-ring the will fit into the snap-ring groove of the countershaft.

Fig. 93 Install Output Shaft Rear Bearing Retainer

Fig. 94 Install Fifth Gear Shift Rail Lock Ball

Fig. 95 Install Fifth Gear Thrust Ring Lock Ball

(34) Install snap-ring to hold the countershaft fifth gear assembly onto the countershaft (Fig. 100).

Fig. 96 Install Fifth Gear Thrust Ring

Fig. 97 Install Countershaft Fifth Gear Bearings

Fig. 98 Install Countershaft Fifth Gear Assembly

(35) Install the reverse shift head and rail assembly (Fig. 101).

Fig. 99 Install Fifth Gear Synchronizer Ring

I.D. MARK	SNAP RING THICKNESS	MM (IN.)
Α	2.85 - 2.90	(0.1122 - 0.1142)
B	2.90 - 2.95	(0.1142 - 0.1161)
c	2.95 - 3.00	(0.1161 - 0.1181)
D	3.00 - 3.05	(0.1181 - 0.1201)
E	3.05 - 3.10	(0.1201 - 0.1220)
F	3.10 - 3.15	(0.1220 - 0.1240)
G	3.15 - 3.20	(0.1240 - 0.1260)
н	3.20 - 3.25	(0.1260 - 0.1280)
		I8921-111 <i>4</i>

Fig. 100 Install Fifth Gear Snap-ring

- (36) Move reverse shift rail forward as far as possible and install fifth gear shift fork onto synchronizer sleeve (Fig. 102).
- (37) Install new bolt to hold fifth gear shift fork to shift rail (Fig. 103).
- (38) Install detent balls and springs into openings in the intermediate plate (Fig. 104).
- (39) Install new lock ball plugs into the intermediate plate. Tighten plugs to 19 N·m (14 ft. lbs.).

Fig. 101 Install Reverse Shift Head And Rail Assembly

Fig. 102 Install Fifth Gear Shift Fork

Fig. 103 Install Fifth Gear Shift Fork Retainer Bolt

(40) Install bolts to hold reverse shift arm to the intermediate plate. Tighten bolts to 18 N·m (13 ft. lbs.).

Fig. 104 Install Detent Balls And Springs

COUNTERSHAFT

DISASSEMBLY

- (1) Remove select fit snap-ring holding the countershaft front bearing onto the countershaft (Fig. 105).
- (2) Using Bearing Splitter P-334, a suitable spacer on center of countershaft, and a shop press, remove the countershaft front bearing from the countershaft.

ASSEMBLY

- (1) Remove any nicks or burrs on countershaft hub with fine emery or crocus cloth.
- (2) Position countershaft front bearing on end of countershaft. Be sure the snap-ring groove in bearing is facing forward.
- (3) Using Special Tool 8109 and a shop press, press bearing onto countershaft.
- (4) Select the thickest snap-ring that will fit into the snap-ring groove of the countershaft (Fig. 105).
- (5) Install snap-ring to hold countershaft front bearing onto countershaft.

80ac6a0b

Fig. 105 Countershaft Front Bearing Snap-ring INPUT SHAFT

DISASSEMBLY

- (1) Verify that the 3–4 synchronizer is in the neutral position.
- (2) Separate input shaft from output shaft (Fig. 106).

Fig. 106 Separate Input and Output Shafts

- (3) Remove the output shaft pilot bearing from the input shaft or output shaft (Fig. 107).
- (4) Remove the fourth gear synchronizer ring from the input shaft (Fig. 108).
- (5) Remove the select fit snap-ring holding the input shaft bearing onto the input shaft.
- (6) Using Bearing Splitter P-334 and a shop press, remove the bearing from the input shaft.

Fig. 107 Remove Output Shaft Pilot Bearing

Fig. 108 Input Shaft Components

ASSEMBLY

- (1) Position input shaft bearing onto input shaft. Be sure that the snap-ring groove in the bearing is facing forward.
- (2) Using Driver 6052, drive bearing onto input shaft.
- (3) Select the thickest snap-ring that will fit into the snap-ring groove of the input shaft (Fig. 109).
- (4) Lubricate output shaft pilot bearing bore of input shaft with petroleum jelly.
- (5) Install output shaft pilot bearing in input shaft bore (Fig. 107).
- (6) Install the fourth gear synchronizer ring onto the input shaft.
 - (7) Install input shaft to output shaft.

OUTPUT SHAFT

Refer to (Fig. 110) for parts identification during disassembly and assembly of the output shaft.

Е

F

G

DISASSEMBLY AND ASSEMBLY (Continued)

Fig. 109 Select Input Shaft Bearing Snap-ring DISASSEMBLY

(0.0906 - 0.0925) (0.0925 - 0.0945)

0.0945 - 0.0965

J8921-1097

2.30 - 2.35

2.35 - 2.40

2.40 - 2.45

(1) Remove input shaft and output shaft pilot bearing from output shaft (Fig. 111), if necessary.

(2) Measure and note thrust clearance of output shaft gears (Fig. 112). First gear clearance should be 0.10-0.40~mm (0.004-0.0197~in.). Second and third gear clearance should be 0.10-0.30~mm (0.003-0.0118~in.).

Fig. 111 Remove Output Shaft Pilot Bearing

- (3) Remove output shaft fifth gear snap ring with two screwdrivers (Fig. 113).
- (4) Using Bearing Splitter P-334 or suitable press plates positioned under first gear, press fifth gear,

Fig. 110 Output Shaft And Gears

Fig. 112 Check Output Shaft Gear Thrust Clearance

Fig. 113 Remove Fifth Gear Snap-ring

rear bearing, first gear, and first gear thrust washer off output shaft (Fig. 114).

- (5) Remove first gear thrust washer locating pin from output shaft.
- (6) Remove first gear needle roller bearing from output shaft.
 - (7) Remove first gear spacer from output shaft.
 - (8) Remove first gear synchronizer ring.
- (9) Remove select fit snap-ring holding the 1–2 synchronizer/reverse gear onto the output shaft.

Fig. 114 Remove Fifth Gear, First Gear Bearing, And Thrust Washer

(10) Using Bearing Splitter P-334 or suitable press plates positioned under second gear, press 1–2 synchronizer/reverse gear and second gear from output shaft (Fig. 115).

Fig. 115 Remove Second Gear And 1–2 Synchronizer/Reverse Gear

(11) Remove second gear needle roller bearing from the output shaft or second gear.

(12) Remove select fit snap-ring holding the 3-4 synchronizer onto the output shaft (Fig. 116).

Fig. 116 Remove 3-4 Synchronizer Snap Ring

(13) Using Bearing Splitter P-334 or suitable press plates positioned under third gear, press the 3-4 synchronizer and third gear from output shaft (Fig. 117).

Fig. 117 Remove 3-4 Synchronizer And Third Gear

(14) Remove third gear needle roller bearing from output shaft or gear.

ASSEMBLY

- (1) Lubricate transmission components with specified gear lubricant during assembly.
- (2) If necessary, assemble 1-2 and 3-4 synchronizer hubs, sleeves, springs and key inserts (Fig. 118).

Fig. 118 Synchronizer Identification

- (3) Install third gear needle bearing onto the output shaft.
- (4) Install third gear over bearing and onto output shaft flange.
- (5) Install third gear synchronizer ring to third gear.
- (6) Position the 3–4 synchronizer onto the output shaft.
- (7) Using Adapter 6761 and a shop press, press the 3-4 synchronizer onto the output shaft.
- (8) Select the thickest snap-ring that will fit into the snap-ring groove of the output shaft (Fig. 119).
- (9) Install snap-ring to hold 3–4 synchronizer onto output shaft.
- (10) Verify third gear thrust clearance with feeler gauge (Fig. 120). Clearance should be 0.10 - 0.30 mm (0.003 - 0.0118 in.). If clearance is out of specification, refer to Cleaning and Inspection section within this group.
- (11) Install second gear needle bearing onto output
- (12) Install second gear over bearing and onto output shaft flange.
- (13) Install second gear synchronizer ring onto second gear.
- (14) Position 1–2 synchronizer/reverse gear assembly onto splines of output shaft.
- (15) Using Driver MD-998805, Adapter 6761, and a shop press, press the 1–2 synchronizer/reverse gear onto the output shaft.
- (16) Select the thickest snap-ring that will fit into the snap-ring groove of the output shaft (Fig. 121).

I.D. MARK	SNAP RING THICKNESS	MM (IN.)
Α	1.80 - 1.85	(0.0709 - 0.0728)
В	1.85 - 1.90	(0.0728 - 0.0748)
c	1.90 - 1.95	(0.0748 - 0.0768)
D	1.95 - 2.00	(0.0768 - 0.0787)
E	2.00 - 2.05	(0.0787 - 0.0807)
F	2.05 - 2.10	(0.0807 - 0.0827)
G	2.10 - 2.1 <u>5</u>	(0.0827 - 0.0846)
		10001 1101

J8921-1101

Fig. 119 Select 3-4 Synchronizer Snap-ring

Fig. 120 Check Third Gear Clearance

- (17) Install snap-ring to hold 1–2 synchronizer/reverse gear onto output shaft.
- (18) Install first gear synchronizer ring into 1-2 synchronizer/reverse gear.
- (19) Install the first gear spacer onto the input shaft and against the 1-2 synchronizer/reverse gear snap-ring.
- (20) Install first gear needle bearing onto output shaft (Fig. 122).
- (21) Install first gear onto output shaft and over bearing.
- (22) Install the first gear thrust washer locating pin into the output shaft.

I.D. MARK	SNAP RING THICKNESS	MM (IN.)
В	2.35 - 2.40	(0.0925 - 0.0945)
c	2.40 - 2.45	(0.0945 - 0.0965)
D	2.45 - 2.50	(0.0965 - 0.0984)
E	2.50 - 2.55	(0.0984 - 0.1004)
F	2.55 - 2.60	(0.1004 - 0.1024)
G	2.60 - 2.65	(0.1024 - 0.1043)
		18921_1102

J8921-1102

Fig. 121 Second Gear And Synchronizer Assembly

- (23) Install the first gear thrust washer onto the output shaft. Rotate the thrust washer until the washer locating pin aligns with the notch in the washer.
- (24) Position output shaft rear bearing onto output shaft. Ensure that the snap ring groove in bearing outer race is toward rear of output shaft.
- (25) Using Driver L-4507 and suitable mallet, drive bearing onto output shaft.
- (26) Install snap-ring onto output shaft rear bearing outer race.

Fig. 122 First And Fifth Gear Components

(27) Check first and second gear thrust clearance (Fig. 123). First gear clearance should be 0.10 - 0.40 mm (0.003 - 0.0197 in.). Second gear clearance should be 0.10 - 0.30 mm (0.003 - 0.0118 in.). If

clearance is out of specification, refer to Cleaning and Inspection section within this group.

J8921-1092

Fig. 123 Check First-Second Gear Thrust Clearance

- (28) Position fifth gear onto output shaft with the gear's long shoulder toward the rear of shaft. Ensure that the gear and output shaft splines are aligned.
- (29) Using Adapter 6761, Driver L-4507, and a shop press, press fifth gear onto output shaft.
- (30) Select the thickest snap-ring that will fit into the snap-ring groove of the output shaft (Fig. 124).
- (31) Install snap-ring to hold fifth gear onto output shaft.
- (32) Install output shaft pilot bearing into the input shaft.
 - (33) Install the input shaft to the output shafts.

CLEANING AND INSPECTION

AX15 MANUAL TRANSMISSION COMPONENTS

GENERAL INFORMATION

Clean the transmission components in solvent. Dry the cases, gears, shift mechanism and shafts with compressed air. Dry the bearings with clean, dry shop towels only. Never use compressed air on the bearings. This could cause severe damage to the bearing roller and race surfaces.

If output shaft flange thickness is within specification but any gear thrust clearance is out of specification, replace the necessary gear and gear needle bearing as an assembly.

I.D. MARK	SNAP RING THICKNESS	MM (IN.)
Α	2.75 - 2.80	(0.1083 - 0.1102)
В	2.80 - 2.85	(0.1002 - 0.1122)
С	2.85 - 2.90	(0.1122 - 0.1142)
D	2.90 - 2.95	(0.1142 - 0.1161)
C D E F	2.95 - 3.00	(0.1161 - 0.1181)
F	3.00 - 3.05	(0.1181 - 0.1201)
G	3.05 - 3.10	(0.1201 - 0.1220)
H,	3.10 - 3.15	(0.1220 - 0.1240)
J	3.15 - 3.20	(0.1240 - 0.1260)
K	3.20 - 3.25	(0.1260 - 0.1280)
L	3.25 - 3.30	(0.1280 - 0.1299)
Μ	3.30 - 3.35	(0.1299 - 0.1319)

J8921-1104

Fig. 124 Select/Install Fifth Gear Snap Ring
GEAR CASE ADAPTER/EXTENSION HOUSING

GEAR CASE, ADAPTER/EXTENSION HOUSING, INTERMEDIATE PLATE

Clean the case, housing, and intermediate plate with solvent and dry with compressed air. Replace the case if cracked, porous, or if any of the bearing and gear bores are damaged.

Inspect the threads in the case, housing, and plate. Minor thread damage can be repaired with steel thread inserts, if necessary. Do not attempt to repair any threads which show evidence of cracks around the threaded hole.

OUTPUT SHAFT

Check thickness of the output shaft flange with a micrometer or vernier calipers (Fig. 125). Minimum allowable flange thickness is 4.70 mm (0.185 in.).

Check diameter of the first, second, and third gear bearing surfaces on the output shaft. Minimum diameters are as follows:

- First gear bearing surface is 38.86 mm (1.529 in.).
- Second gear bearing surface is 46.86 mm (1.844 in.).
- \bullet Third gear bearing surface is 37.86 mm (1.490 in.).

CLEANING AND INSPECTION (Continued)

Fig. 125 Check Output Shaft Tolerances

Measure output shaft runout with a dial indicator and V-blocks (Fig. 125). Runout should not exceed 0.06 mm (0.0024 in.).

Replace output shaft if measurement of any surface is out of specification. Do not attempt to repair out of specification components.

COUNTERSHAFT

Inspect the countershaft gear teeth. Replace the countershaft if any teeth are worn or damaged. Inspect the bearing surfaces and replace shaft if any surface shows damage or wear.

Check condition of the countershaft front bearing. Replace the bearing if worn, noisy, or damaged.

GEAR AND SYNCHRONIZER

Install the needle bearings in the first, second, third and counter fifth gears. Install the gears on the output shaft. Then check oil clearance between the gears and shaft with a dial indicator (Fig. 126). Oil clearance for all three gears is 0.16 mm (0.0063 in.) maximum.

Fig. 126 Check Gear-To-Shaft Oil Clearance

Check synchronizer ring wear (Fig. 127). Insert each ring in matching gear. Measure clearance between each ring and gear with feeler gauge. Clearance should be 0.06 - 1.6 mm (0.024 - 0.063 in.).

Fig. 127 Check Synchronizer Ring Wear

Check shift fork-to-synchronizer hub clearance with a feeler gauge (Fig. 128). Replace the fork if clearance exceeds 1.0 mm (0.039 in.).

Fig. 128 Check Fork-To-Hub Clearance

Check the condition of the reverse idler gear bushing (Fig. 129). Replace the gear if the bushing is damaged or worn.

SPECIFICATIONS (Continued)

Fig. 129 Reverse Idler Gear Bushing

SPECIFICATIONS

TORQUE

DESCRIPTION TORQUE
Plugs, Access 19 N·m (14 ft.lbs.)
Bolts, Adapter Housing 34 N·m (25 ft.lbs.)
Switch, Back-up Light 44 N·m (32.5 ft.lbs.)
Plugs, Drain and Fill 44 N·m (32.5 ft.lbs.)
Bolts, Front Bearing Retainer 17 N·m (12 ft.lbs.)
Plugs, Interlock and Detent 19 N·m (14 ft.lbs.)
Screws, Propeller Shaft Clamp 16–23 N·m
(140–200 in.lbs.)
Bolts, Rear Mount to Transmission $\dots 33-60 \text{ N} \cdot \text{m}$
(24–44 ft.lbs.)
Nut, Rear Mount Clevis 54–75 N·m (40–55 ft.lbs.)
Nuts, Rear Mount to Crossmember $\ \ldots\ 33-49\ N\cdot m$
(24–36 ft.lbs.)
Pins, Restrictor 27.4 N·m (20 ft.lbs.)
Bolts, Reverse Shift Arm Bracket 18 N·m
(13 ft.lbs.)
Screw, Shift Arm Set 38 N·m (28 ft.lbs.)
Screws, Shift Fork Set 20 N·m (15 ft.lbs.)
Nut, Shift Knob 20–34 N⋅m (15–25 ft.lbs.)
Screws, Shifter Floor Cover \hdots 2–3 $N{\cdot}m$
(17–30 in.lbs.)
Bolts, Shift Tower 18 N·m (13 ft.lbs.)
Nuts, Transfer Case Mounting 30–41 $N {\cdot} m$
(22–30 ft.lbs.)

SPECIAL TOOLS

AX15

C-3339 Dial Indicator Set

C-4171 Handle, Universal Tool

8209 Installer, Seal

8212 Installer, Seal

SPECIAL TOOLS (Continued)

8208 Installer, Seal

L-4407A Puller, Gear

P-334 Splitter, Bearing

8109 Cup, Installer

6052 Tube, Driver

6761 Adapter, Installer

MD-998805 Tube, Driver

L-4507 Tube, Driver

AUTOMATIC TRANSMISSION—30RH

INDEX

page	page
GENERAL INFORMATION	PARK LOCK
30RH AUTOMATIC TRANSMISSION 74	PARK/NEUTRAL POSITION SWITCH 99
CAUSES OF BURNT FLUID	SPEEDOMETER ADAPTER
EFFECTS OF INCORRECT FLUID LEVEL 74	TORQUE CONVERTER 96
FLUID CONTAMINATION	TRANSMISSION
GEARSHIFT MECHANISM	VALVE BODY
RECOMMENDED FLUID	YOKE SEAL REPLACEMENT
TORQUE CONVERTER—ELECTRONIC	DISASSEMBLY AND ASSEMBLY
CLUTCH 76	FRONT CLUTCH
TRANSMISSION GEAR RATIOS	FRONT SERVO PISTON
TRANSMISSION IDENTIFICATION	GOVERNOR AND PARK GEAR
DESCRIPTION AND OPERATION	OIL PUMP AND REACTION SHAFT SUPPORT 123
BRAKE TRANSMISSION SHIFT INTERLOCK	OVERRUNNING CLUTCH/LOW-REVERSE
MECHANISM	DRUM
CONVERTER CLUTCH ENGAGEMENT	PLANETARY GEARTRAIN/OUTPUT SHAFT 130
CONVERTER DRAINBACK VALVE	REAR CLUTCH
HYDRAULIC CONTROL SYSTEM	REAR SERVO PISTON
DIAGNOSIS AND TESTING	TRANSMISSION
AIR TESTING TRANSMISSION CLUTCH AND	VALVE BODY
BAND OPERATION 82	CLEANING AND INSPECTION
ANALYZING ROAD TEST	EXTENSION HOUSING AND PARK LOCK 136
AUTOMATIC TRANSMISSION DIAGNOSIS 77	FRONT CLUTCH
CONVERTER HOUSING FLUID LEAK	FRONT SERVO
DIAGNOSIS	GOVERNOR AND PARK GEAR
CONVERTER STALL TEST	OIL PUMP AND REACTION SHAFT
DIAGNOSIS CHARTS	SUPPORT
GEARSHIFT CABLE	OVERRUNNING CLUTCH/LOW-REVERSE
HYDRAULIC PRESSURE TEST	DRUM/OVERDRIVE PISTON RETAINER 138
PARK/NEUTRAL POSITION SWITCH	PLANETARY GEARTRAIN/OUTPUT SHAFT 140
PRELIMINARY DIAGNOSIS	REAR CLUTCH
ROAD TESTING	REAR SERVO
STALL TEST ANALYSIS	TRANSMISSION
THROTTLE VALVE CABLE	VALVE BODY
SERVICE PROCEDURES	ADJUSTMENTS
ALUMINUM THREAD REPAIR	BRAKE TRANSMISSION SHIFT INTERLOCK
CONVERTER DRAINBACK CHECK VALVE	
SERVICE	FRONT BAND ADJUSTMENT
FLUID AND FILTER REPLACEMENT 91	GEARSHIFT CABLE
FLUID LEVEL CHECK	REAR BAND ADJUSTMENT
FLUSHING COOLERS AND TUBES 93	TRANSMISSION THROTTLE VALVE CABLE
OIL PUMP VOLUME CHECK 92	ADJUSTMENT
TRANSMISSION FILL PROCEDURE	VALVE BODY
REMOVAL AND INSTALLATION	SCHEMATICS AND DIAGRAMS
BRAKE TRANSMISSION SHIFT INTERLOCK 100	HYDRAULIC SCHEMATICS
EXTENSION HOUSING	SPECIFICATIONS
EXTENSION HOUSING BUSHING	30RH AUTOMATIC TRANSMISSION 157
GEARSHIFT CABLE	TORQUE
GOVERNOR AND PARK GEAR	SPECIAL TOOLS
OUTPUT SHAFT REAR BEARING 102	30RH TRANSMISSIONS 158

GENERAL INFORMATION

30RH AUTOMATIC TRANSMISSION

The 30RH automatic transmission is used with the 2.5L engine (Fig. 1). The 30RH is a three speed transmissions with a lock-up clutch in the torque converter. The torque converter clutch is controlled by the Powertrain Control Module (PCM). The torque converter clutch is hydraulically applied and is released when fluid is vented from the hydraulic circuit by the torque converter control (TCC) solenoid on the valve body. The torque converter clutch engages in third gear when the vehicle is cruising on a level plane after the vehicle has warmed up. The torque converter clutch will disengage when the vehicle begins to go uphill or the accelerator is applied. The torque converter clutch feature increases fuel economy and reduces the transmission fluid temperature. The 30RH transmission is cooled by an integral fluid cooler inside the radiator.

TRANSMISSION IDENTIFICATION

Transmission identification numbers are stamped on the left side of the case just above the oil pan gasket surface (Fig. 2). Refer to this information when ordering replacement parts.

RECOMMENDED FLUID

Mopar[®] ATF Plus 3, Type 7176 automatic transmission fluid is the recommended fluid for Chrysler automatic transmissions.

Dexron II fluid IS NOT recommended. Clutch chatter can result from the use of improper fluid.

EFFECTS OF INCORRECT FLUID LEVEL

A low fluid level allows the pump to take in air along with the fluid. Air in the fluid will cause fluid pressures to be low and develop slower than normal. If the transmission is overfilled, the gears churn the fluid into foam. This aerates the fluid and causing the same conditions occurring with a low level. In either case, air bubbles cause fluid overheating, oxidation and varnish buildup which interferes with valve, clutch and servo operation. Foaming also causes fluid expansion which can result in fluid overflow from the transmission vent or fill tube. Fluid overflow can easily be mistaken for a leak if inspection is not careful.

CAUSES OF BURNT FLUID

Burnt, discolored fluid is a result of overheating which has two primary causes.

(1) A result of restricted fluid flow through the main and/or auxiliary cooler. This condition is usually the result of a faulty or improperly installed

drainback valve, a damaged main cooler, or severe restrictions in the coolers and lines caused by debris or kinked lines.

(2) Heavy duty operation with a vehicle not properly equipped for this type of operation. Trailer towing or similar high load operation will overheat the transmission fluid if the vehicle is improperly equipped. Such vehicles should have an auxiliary transmission fluid cooler, a heavy duty cooling system, and the engine/axle ratio combination needed to handle heavy loads.

FLUID CONTAMINATION

Transmission fluid contamination is generally a result of:

- adding incorrect fluid
- failure to clean dipstick and fill tube when checking level
 - engine coolant entering the fluid
 - internal failure that generates debris
- overheat that generates sludge (fluid breakdown)
- failure to reverse flush cooler and lines after repair
- failure to replace contaminated converter after repair.

The use of non recommended fluids can result in transmission failure. The usual results are erratic shifts, slippage, abnormal wear and eventual failure due to fluid breakdown and sludge formation. Avoid this condition by using recommended fluids only.

The dipstick cap and fill tube should be wiped clean before checking fluid level. Dirt, grease and other foreign material on the cap and tube could fall into the tube if not removed beforehand. Take the time to wipe the cap and tube clean before withdrawing the dipstick.

Engine coolant in the transmission fluid is generally caused by a cooler malfunction. The only remedy is to replace the radiator as the cooler in the radiator is not a serviceable part. If coolant has circulated through the transmission for some time, an overhaul may also be necessary; especially if shift problems had developed.

The transmission cooler and lines should be reverse flushed whenever a malfunction generates sludge and/or debris. The torque converter should also be replaced at the same time.

Failure to flush the cooler and lines will result in recontamination. Flushing applies to auxiliary coolers as well. The torque converter should also be replaced whenever a failure generates sludge and debris. This is necessary because normal converter flushing procedures will not remove all contaminants.

GENERAL INFORMATION (Continued)

- (1) CONVERTER
- 2 OIL PUMP
- (3) FRONT CLUTCH
- 4 REAR CLUTCH
- (5) FRONT PLANETARY GEAR SET
- (6) REAR PLANETARY GEAR SET
- (7) LOW AND REVERSE (REAR) BAND
- (8) OVERRUNNING CLUTCH
- (9) GOVERNOR
- (10) BEARING

- (11) OUTPUT SHAFT
- (12) SEAL
- (13) ADAPTER HOUSING
- (14) PARK LOCK ROD
- (15) VALVE BODY
- (16) SUN GEAR DRIVING SHELL
- (17) OIL FILTER
- (18) KICK DOWN (FRONT) BAND
- (19) INPUT SHAFT
- (20) PARK GEAR
- (21) CONVERTER CLUTCH

80a13873

Fig. 1 30RH Automatic Transmission

GENERAL INFORMATION (Continued)

Fig. 2 Transmission Part And Serial Number Location

TOROUE CONVERTER—ELECTRONIC CLUTCH

The torque converter is a hydraulic device that couples the engine crankshaft to the transmission. The torque converter consists of an outer shell with an internal turbine, a stator, an overrunning clutch, an impeller and an electronically applied converter clutch. Torque multiplication is created when the stator directs the hydraulic flow from the turbine to rotate the impeller in the direction the engine crankshaft is turning. The turbine transfers power to the planetary gear sets in the transmission. The transfer of power into the impeller assists torque multiplication. At low vehicle speed, the overrunning clutch holds the stator (during torque multiplication) and allows the stator to free wheel at high vehicle speed. The converter clutch provides reduced engine speed and greater fuel economy when engaged. Clutch engagement also provides reduced transmission fluid temperatures. The converter clutch engages in third gear. The torque converter hub drives the transmission oil (fluid) pump.

The torque converter is a sealed, welded unit that is not repairable and is serviced as an assembly.

CAUTION: The torque converter must be replaced if a transmission failure resulted in large amounts of metal or fiber contamination in the fluid. If the fluid is contaminated, flush the fluid cooler and lines.

TRANSMISSION GEAR RATIOS

Forward gear ratios are:

- 2.74:1 (first gear)
- 1.54:1 (second gear)
- 1.00:1 (third gear)

GEARSHIFT MECHANISM

The shift mechanism is cable operated and provides six shift positions. The shift indicator is located on the console next to the gear shift. The shift positions are:

- Park (P)
- Reverse (R)
- Neutral (N)
- Drive (D)
- Manual Second (2)
- Manual Low (1)

Manual low (1) range provides first gear only. Over run braking is also provided in this range. Manual second (2) range provides first and second gear only. Drive range provides first, second, and third gear ranges.

DESCRIPTION AND OPERATION

HYDRAULIC CONTROL SYSTEM

The transmission hydraulic control system performs four basic functions.

- pressure supply
- pressure regulation
- flow control and lubrication
- clutch/band application

PRESSURE SUPPLY

The oil pump develops fluid pressure for clutch/band application and for lubrication. The pump is driven by the torque converter. The converter is driven by a driveplate attached to the engine crankshaft.

Pressure Regulation

The pressure regulator valve maintains line (operating) pressure. The amount of pressure developed is controlled by throttle pressure which is dependent on the degree of throttle opening. The regulator valve is located in the valve body.

The throttle valve determines throttle pressure and shift speed. Governor pressure increases in proportion to vehicle speed. The throttle valve controls upshift and downshift speeds by regulating pressure according to throttle position.

Flow Control And Lubrication

The manual valve is operated by the gearshift linkage and provides the operating range selected by the driver.

The switch valve controls line pressure to the converter clutch. The valve also directs oil to the cooling and lubrication circuits. The switch valve regulates oil pressure to the torque converter by limiting maximum oil pressure to 130 psi.

DESCRIPTION AND OPERATION (Continued)

The 1-2 shift valve provide 1-2 and 2-1 shifts and the 2-3 shift valve provide 2-3 and 3-2 shifts.

The 1-2 shift control valve transmits 1-2 shift pressure to the accumulator piston. This controls kickdown band capacity on 1-2 upshifts and 3-2 downshifts.

The 2-3 valve throttle pressure plug provides 3-2 downshifts at varying throttle openings depending on vehicle speed.

The kickdown valve provides forced downshifts depending on vehicle speed. Downshifts occur when the throttle is opened beyond downshift detent position. Detent is reached just before wide open throttle position.

The limit valve determines maximum speed at which a 3-2 part throttle kickdown can be made. Some transmissions do not have the limit valve and maximum speed for a 3-2 kickdown is at the detent position.

The shuttle valve has two functions. First is fast front band release and smooth engagement during "lift foot" 2-3 upshifts. Second is to regulate front clutch release and band application during 3-2 downshifts.

The fail safe valve restricts feed to the converter clutch if front clutch pressure drops. It permits clutch engagement only in direct (third) gear and provides fast clutch release during kickdown.

Clutch/Band Application

The front/rear clutch pistons and servo pistons are actuated by line pressure. When line pressure is removed, the pistons are released by spring tension.

On 2-3 upshifts, the front servo piston is released by spring tension and hydraulic pressure. The accumulator controls hydraulic pressure on the apply side of the front servo during 1-2 upshifts and at all throttle openings.

CONVERTER CLUTCH ENGAGEMENT

Converter clutch engagement in third gear is controlled by sensor inputs to the powertrain control module. Inputs that determine clutch engagement are: coolant temperature, vehicle speed and throttle position. The torque converter clutch is engaged by the clutch solenoid on the valve body. The clutch will engage at approximately 56 km/h (35 mph) with light throttle, after the shift to third gear.

CONVERTER DRAINBACK VALVE

The drainback valve is located in the transmission cooler outlet (pressure) line. The valve prevents fluid from draining from the converter into the cooler and lines when the vehicle is shut down for lengthy periods. Production valves have a hose nipple at one end, while the opposite end is threaded for a flare fitting.

All valves have an arrow (or similar mark) to indicate direction of flow through the valve.

BRAKE TRANSMISSION SHIFT INTERLOCK MECHANISM

The Brake Transmission Shifter/Ignition Interlock (BTSI), is a cable and solenoid operated system. It interconnects the automatic transmission floor mounted shifter to the steering column ignition switch (Fig. 3). The system locks the shifter into the PARK position. The Interlock system is engaged whenever the ignition switch is in the LOCK or ACCESSORY position. An additional electrically activated feature will prevent shifting out of the PARK position unless the brake pedal is depressed at least one-half an inch. A magnetic holding device in line with the park/brake interlock cable is energized when the ignition is in the RUN position. When the key is in the RUN position and the brake pedal is depressed, the shifter is unlocked and will move into any position. The interlock system also prevents the ignition switch from being turned to the LOCK or ACCESSORY position (Fig. 4) unless the shifter is fully locked into the PARK position.

DIAGNOSIS AND TESTING

AUTOMATIC TRANSMISSION DIAGNOSIS

Automatic transmission problems can be a result of poor engine performance, incorrect fluid level, incorrect linkage or cable adjustment, band or hydraulic control pressure adjustments, hydraulic system malfunctions or electrical/mechanical component malfunctions. Begin diagnosis by checking the easily accessible items such as: fluid level and condition, linkage adjustments and electrical connections. A road test will determine if further diagnosis is necessary.

PRELIMINARY DIAGNOSIS

Two basic procedures are required. One procedure for vehicles that are drivable and an alternate procedure for disabled vehicles (will not back up or move forward).

VEHICLE IS DRIVEABLE

- (1) Check for transmission fault codes using DRB scan tool.
 - (2) Check fluid level and condition.
- (3) Adjust throttle and gearshift linkage if complaint was based on delayed, erratic, or harsh shifts.
- (4) Road test and note how transmission upshifts, downshifts, and engages.
- (5) Perform stall test if complaint is based on sluggish acceleration. Or, if abnormal throttle opening is

Fig. 3 Ignition Interlock Cable Routing

Fig. 4 Ignition Key Cylinder Actuation

needed to maintain normal speeds with a properly tuned engine.

- (6) Perform hydraulic pressure test if shift problems were noted during road test.
- (7) Perform air-pressure test to check clutch-band operation.

VEHICLE IS DISABLED

- (1) Check fluid level and condition.
- (2) Check for broken or disconnected gearshift or throttle linkage.
- (3) Check for cracked, leaking cooler lines, or loose or missing pressure-port plugs.

- (4) Raise and support vehicle on safety stands, start engine, shift transmission into gear, and note following:
 - (a) If propeller shaft turns but wheels do not, problem is with differential or axle shafts.
 - (b) If propeller shaft does not turn and transmission is noisy, stop engine. Remove oil pan, and check for debris. If pan is clear, remove transmission and check for damaged drive plate, converter, oil pump, or input shaft.
 - (c) If propeller shaft does not turn and transmission is not noisy, perform hydraulic-pressure test to determine if problem is hydraulic or mechanical.

PARK/NEUTRAL POSITION SWITCH

The center terminal of the park/neutral position switch is the starter-circuit terminal. It provides the ground for the starter solenoid circuit through the selector lever in PARK and NEUTRAL positions only. The outer terminals on the switch are for the backup lamp circuit.

SWITCH TEST

To test the switch, remove the wiring connector. Test for continuity between the center terminal and the transmission case. Continuity should exist only when the transmission is in PARK or NEUTRAL.

Shift the transmission into REVERSE and test continuity at the switch outer terminals. Continuity should exist only when the transmission is in REVERSE. Continuity should not exist between the outer terminals and the case.

Check gearshift linkage adjustment before replacing a switch that tests faulty.

GEARSHIFT CABLE

- (1) The floor shifter lever and gate positions should be in alignment with all transmission PARK, NEUTRAL, and gear detent positions.
- (2) Engine starts must be possible with floor shift lever in PARK or NEUTRAL gate positions only. Engine starts must not be possible in any other gear position.
- (3) With floor shift lever handle push-button not depressed and lever in:
 - (a) PARK position—Apply forward force on center of handle and remove pressure. Engine starts must be possible.
 - (b) PARK position—Apply rearward force on center of handle and remove pressure. Engine starts must be possible.
 - (c) NEUTRAL position—Normal position. Engine starts must be possible.
 - (d) NEUTRAL position—Engine running and brakes applied, apply forward force on center of shift handle. Transmission shall not be able to shift from neutral to reverse.

THROTTLE VALVE CABLE

Transmission throttle valve cable adjustment is extremely important to proper operation. This adjustment positions the throttle valve, which controls shift speed, quality, and part-throttle downshift sensitivity.

If cable setting is too loose, early shifts and slippage between shifts may occur. If the setting is too tight, shifts may be delayed and part throttle downshifts may be very sensitive. Refer to the Adjustments section for the proper adjustment procedure.

ROAD TESTING

Before road testing, be sure the fluid level and control cable adjustments have been checked and adjusted if necessary. Verify that diagnostic trouble codes have been resolved.

Observe engine performance during the road test. A poorly tuned engine will not allow accurate analysis of transmission operation.

Operate the transmission in all gear ranges. Check for shift variations and engine flare which indicates slippage. Note if shifts are harsh, spongy, delayed, early, or if part throttle downshifts are sensitive.

Slippage indicated by engine flare, usually means clutch, band or overrunning clutch problems. If the

condition is advanced, an overhaul will be necessary to restore normal operation.

A slipping clutch or band can often be determined by comparing which internal units are applied in the various gear ranges. The Clutch and Band Application chart provides a basis for analyzing road test results.

	Gearshift Lever Position								
DRIVE	PRN		D		2		1		
ELEMENTS				1	2	3	1	2	
FRONT CLUTCH		•				•			
FRONT BAND (KICKDOWN)					•			•	
REAR CLUTCH				•	•	•	•	•	•
REAR BAND (LOW-REV.)		•							•
OVER- RUNNING CLUTCH				•			•		•

J9021-33

Fig. 5 Clutch And Band Application

ANALYZING ROAD TEST

Refer to the Clutch and Band Application chart and note which elements are in use in the various gear ranges.

Verify that the rear clutch is applied in all forward ranges (D, 2, 1). The transmission overrunning clutch is applied in first gear (D, 2 and 1 ranges) only. The rear band is applied in 1 and R range only.

Verify that the overdrive clutch is applied only in fourth gear and the overdrive direct clutch and overrunning clutch are applied in all ranges except fourth gear. For example: If slippage occurs in first gear in D and 2 range but not in 1 range, the transmission overrunning clutch is faulty. Similarly, if slippage occurs in any two forward gears, the rear clutch is slipping.

Applying the same method of analysis, verify that the front and rear clutches are applied simultaneously only in D range third gear. If the transmission slips in third gear, either the front clutch or the rear clutch is slipping.

If slippage occurs during the third gear and the direct clutch were to fail, the transmission would lose both reverse gear and overrun braking in 2 position (manual second gear). If the transmission slips in any other forward gears, the transmission rear clutch is probably slipping.

This process of elimination can be used to identify a slipping unit and check operation. Proper use of the Clutch and Band Application Chart is the key.

Although road test analysis will help determine the slipping unit, the actual cause of a malfunction usually cannot be determined until hydraulic and air pressure tests are performed. Practically any condition can be caused by leaking hydraulic circuits or sticking valves.

Unless a malfunction is obvious, such as no drive in D range first gear, do not disassemble the transmission. Perform the hydraulic and air pressure tests to help determine the probable cause.

HYDRAULIC PRESSURE TEST

Hydraulic test pressures range from a low of one psi (6.895 kPa) governor pressure, to 300 psi (2068 kPa) at the rear servo pressure port in reverse.

An accurate tachometer and two test gauges are required for the pressure test. Test Gauge C-3292 has a 100 psi range and is used at the accumulator, governor, and front servo pressure ports. Test Gauge C-3293-SP has a 300 psi range and is used at the rear servo port and overdrive test ports where pressures are higher. In cases where two test gauges are required, the 300 psi gauge can be used at any of the other test ports.

Pressure Test Port Locations

Pressure test ports locations are provided at the accumulator, front servo, and rear servo, governor passage, and overdrive clutch pressure passage (Fig. 6), (Fig. 7) and (Fig. 8).

Line pressure is checked at the accumulator port on the right side of the case. The front servo pressure port is at the right side of the case just behind the filler tube opening.

Fig. 6 Pressure Test Ports At Side Of Case

Connect a tachometer to the engine. Position the tachometer so it can be observed from under the vehicle. Raise the vehicle on a hoist that will allow the wheels to rotate freely.

Fig. 7 Pressure Test Ports At Rear Of Case—2WD

Fig. 8 Pressure Test Ports At Rear Of Case—4WD PRESSURE TEST PROCEDURE

Test One - Transmission In 1 Range

This test checks pump output, pressure regulation, and condition of the rear clutch and servo circuit. Test Gauges C-3292 and C-3293-SP are required for this test. Gauge C-3292 has a 100 psi range. Gauge C-3293-SP has a 300 psi range.

- (1) Connect 100 psi Gauge C-3292 to accumulator port.
- (2) Connect 300 psi Gauge C-3293-SP to rear servo port (Fig. 6) and (Fig. 7).
- (3) Disconnect throttle and gearshift rods from manual and throttle levers.
 - (4) Start and run engine at 1000 rpm.
- (5) Move shift lever (on manual lever shaft) all the way forward into 1 range.
- (6) Move transmission throttle lever from full forward to full rearward position and note pressures on both gauges.
- (7) Line pressure at accumulator port should be 54-60 psi (372-414 kPa) with throttle lever forward and gradually increase to 90-96 psi (621-662 kPa) as lever is moved rearward.
- (8) Rear servo pressure should be same as line pressure within 3 psi (20.68 kPa).

Test Two - Transmission In 2 Range

This test checks pump output and pressure regulation. Use 100 psi Test Gauge C-3292 for this test.

(1) Connect test gauge to accumulator pressure port (Fig. 6) and (Fig. 7).

- (2) Start and run engine at 1000 rpm.
- (3) Move shift lever on valve body manual lever shaft, one detent rearward from full forward position. This is 2 range.
- (4) Move transmission throttle lever from full forward to full rearward position and read pressure at both gauges.
- (5) Line pressure should be 54-60 psi (372-414 kPa) with throttle lever forward and gradually increase to 90-96 psi (621-662 kPa) as lever is moved rearward.

Test Three - Transmission In D Range

This test checks pressure regulation and condition of the clutch circuits. Use both pressure Test Gauges C-3292 and C-3293-SP for this test.

- (1) Connect test gauges to accumulator and front servo ports (Fig. 6) and (Fig. 7). Use either test gauge at the two ports.
 - (2) Start and run engine at 1600 rpm for this test.
- (3) Move selector lever to D range. This is two detents rearward from full forward position.
- (4) Read pressures on both gauges as transmission throttle lever is moved from full forward to full rearward position.
- (5) Line pressure should be 54-60 psi (372-414 kPa) with throttle lever forward and gradually increase as lever is moved rearward.
- (6) Front servo is pressurized only in D range and should be same as line pressure within 3 psi (21 kPa) up to downshift point.

Test Four - Transmission In Reverse

This test checks pump output, pressure regulation and the front clutch and rear servo circuits. Use 300 psi Test Gauge C-3293-SP for this test.

- (1) Connect 300 psi gauge to rear servo port (Fig. 6) and (Fig. 7).
 - (2) Start and run engine at 1600 rpm for test.
- (3) Move valve body selector lever four detents rearward from the full forward position. This is Reverse range.
- (4) Move throttle lever all way forward then all way rearward and note gauge readings.
- (5) Pressure should be 145 175 psi (1000-1207 kPa) with lever forward and increase to 230 280 psi (1586-1931 kPa) as lever is moved rearward.

Test Five - Governor Pressure

This test checks governor operation by measuring governor pressure response to changes in engine speed. It is usually not necessary to check governor operation unless shift speeds are incorrect or if the transmission will not downshift.

- (1) Connect 100 psi Test Gauge C-3292 to governor pressure port (Fig. 6) and (Fig. 7).
 - (2) Move shift lever to D range.

- (3) Start and run engine at curb idle speed and note pressure. At idle and with vehicle stopped, pressure should be zero to 1.5 psi maximum. If pressure exceeds this figure, governor valve or weights are sticking open.
- (4) Slowly increase engine speed and observe speedometer and pressure test gauge. Governor pressure should increase in proportion to vehicle speed.
- (5) Pressure rise should be smooth and drop back to 0 to 1.5 psi when wheels stop rotating.
- (6) Compare results of pressure tests with analysis charts (Fig. 9).

TEST CONDITION	INDICATION
Line pressure OK during any one test	Pump and regulator valve OK
Line pressure OK in R but low in D, 2, 1	Leakage in rear clutch area (servo, clutch seals, governor support seal rings on park gear)
Pressure OK in 1, 2 but low in D3 and R	Leakage in front clutch area (servo, clutch seals, retainer bore, pump seal rings)
Pressure OK in 2 but low in R and 1	Leakage in rear servo
Front servo pressure in 2	Leakage in servo (broken servo ring or cracked servo piston)
Pressure low in all positions	Clogged filter, stuck pressure regulator valve, worn or defective pump
Governor pressure too high at idle speed	Governor valve sticking open
Governor pressure low at all mph figures	Governor valve sticking closed
Lubrication pressure low at all throttle positions	Clogged drainback valve, oil cooler or lines, seal rings leaking, output shaft plugged with debris, worn bushings in pump or clutch retainer
	J9521-129

Fig. 9 Pressure Test Analysis

CONVERTER STALL TEST

Stall testing involves determining maximum engine speed obtainable at full throttle with the rear wheels locked and the transmission in D range. This test checks the holding ability of the converter overrunning and transmission clutches.

WARNING: NEVER ALLOW ANYONE TO STAND DIRECTLY IN LINE WITH THE VEHICLE FRONT OR REAR DURING A STALL TEST. ALWAYS BLOCK THE WHEELS AND FULLY APPLY THE SERVICE AND PARKING BRAKES DURING THE TEST.

STALL TEST PROCEDURE

- (1) Connect tachometer to engine. Position tachometer so it can be viewed from driver's seat.
- (2) Drive vehicle to bring transmission fluid up to normal operating temperature. Vehicle can be driven on road or on chassis dynamometer, if available.
- (3) Check transmission fluid level. Add fluid if necessary.
 - (4) Block front wheels.
 - (5) Fully apply service and parking brakes.
- (6) Open throttle completely and record maximum engine speed registered on tachometer. It takes 4-10 seconds to reach max rpm. Once max rpm has been achieved, do not hold wide open throttle for more than 4-5 seconds.

CAUTION: Stalling the converter causes a rapid increase in fluid temperature. To avoid fluid overheating, hold the engine at maximum rpm for no more than 5 seconds. If engine exceeds 2500 rpm during the test, release the accelerator pedal immediately; transmission clutch slippage is occurring.

(7) If a second stall test is required, cool down fluid before proceeding. Shift into NEUTRAL and run engine at 1000 rpm for 20-30 seconds to cool fluid.

STALL TEST ANALYSIS

Stall Speed Too High

If the stall speed exceeds 2500 rpm, transmission clutch slippage is indicated.

Stall Speed Low

Low stall speed with a properly tuned engine indicate a torque converter overrunning clutch problem. The condition should be confirmed by road testing. A stall speed 250-350 rpm below normal indicates the converter overrunning clutch is slipping. The vehicle also exhibits poor acceleration but operates normally once highway cruise speeds are reached. Torque converter replacement will be necessary.

Stall Speed Normal But Acceleration Poor

If stall speeds are normal (1800-2300 rpm) but abnormal throttle opening is required for acceleration, or to maintain cruise speed, the converter overrunning clutch is seized. The torque converter will have to be replaced.

Converter Noise During Test

A whining noise caused by fluid flow is normal during a stall test. However, loud metallic noises indicate a damaged converter. To confirm that the noise is originating from the converter, operate the vehicle at light throttle in DRIVE and NEUTRAL on a hoist

and listen for noise coming from the converter housing.

AIR TESTING TRANSMISSION CLUTCH AND BAND OPERATION

Air-pressure testing can be used to check transmission front/rear clutch and band operation. The test can be conducted with the transmission either in the vehicle or on the work bench, as a final check, after overhaul.

Air-pressure testing requires that the oil pan and valve body be removed from the transmission. The servo and clutch apply passages are shown (Fig. 10).

Fig. 10 Air Pressure Test Passages

Front Clutch Air Test

Place one or two fingers on the clutch housing and apply air pressure through front clutch apply passage. Piston movement can be felt and a soft thump heard as the clutch applies.

Rear Clutch Air Test

Place one or two fingers on the clutch housing and apply air pressure through rear clutch apply passage. Piston movement can be felt and a soft thump heard as the clutch applies.

Front Servo Apply Air Test

Apply air pressure to the front servo apply passage. The servo rod should extend and cause the band to tighten around the drum. Spring pressure should release the servo when air pressure is removed.

Rear Servo Air Test

Apply air pressure to the rear servo apply passage. The servo rod should extend and cause the band to tighten around the drum. Spring pressure should release the servo when air pressure is removed.

CONVERTER HOUSING FLUID LEAK DIAGNOSIS

When diagnosing converter housing fluid leaks, two items must be established before repair.

- (1) Verify that a leak condition actually exists.
- (2) Determined the true source of the leak.

Some suspected converter housing fluid leaks may not be leaks at all. They may only be the result of residual fluid in the converter housing, or excess fluid spilled during factory fill or fill after repair. Converter housing leaks have several potential sources. Through careful observation, a leak source can be identified before removing the transmission for repair. Pump seal leaks tend to move along the drive hub and onto the rear of the converter. Pump O-ring or pump body leaks follow the same path as a seal leak (Fig. 11). Pump vent or pump attaching bolt leaks are generally deposited on the inside of the converter housing and not on the converter itself (Fig. 11). Pump seal or gasket leaks usually travel down the inside of the converter housing. Front band lever pin plug leaks are generally deposited on the housing and not on the converter.

Fig. 11 Converter Housing Leak Paths

TORQUE CONVERTER LEAK POINTS

Possible sources of converter leaks are:

- (1) Leaks at the weld joint around the outside diameter weld (Fig. 12).
 - (2) Leaks at the converter hub weld (Fig. 12).

CONVERTER HOUSING AREA LEAK CORRECTION

(1) Remove converter.

Fig. 12 Converter Leak Points—Typical

- (2) Tighten front band adjusting screw until band is tight around front clutch retainer. This prevents front/rear clutches from coming out when oil pump is removed.
- (3) Remove oil pump and remove pump seal. Inspect pump housing drainback and vent holes for obstructions. Clear holes with solvent and wire.
- (4) Inspect pump bushing and converter hub. If bushing is scored, replace it. If converter hub is scored, either polish it with crocus cloth or replace converter.
- (5) Install new pump seal, O-ring, and gasket. Replace oil pump if cracked, porous or damaged in any way. Be sure to loosen the front band before installing the oil pump, damage to the oil pump seal may occur if the band is still tightened to the front clutch retainer.
- (6) Loosen kickdown lever pin access plug three turns. Apply Loctite 592, or Permatex No. 2 to plug threads and tighten plug to 17 N·m (150 in. lbs.) torque.
 - (7) Adjust front band.
- (8) Lubricate pump seal and converter hub with transmission fluid or petroleum jelly and install converter.
- (9) Install transmission and converter housing dust shield.
 - (10) Lower vehicle.

DIAGNOSIS CHARTS

The diagnosis charts provide additional reference when diagnosing a transmission fault. The charts provide general information on a variety of transmission, overdrive unit and converter clutch fault conditions.

The hydraulic flow charts, in the Schematics and Diagrams section of this group, outline fluid flow and hydraulic circuitry. Circuit operation is provided for neutral, third, fourth and reverse gear ranges. Normal working pressures are also supplied for each of the gear ranges.

DIAGNOSIS CHART

CONDITION	POSSIBLE CAUSES	CORRECTION		
HARSH ENGAGEMENT	1. Fluid Level Low.	1. Add Fluid.		
FROM NEUTRAL TO DRIVE OR REVERSE	2. Throttle Linkage Misadjusted.	2. Adjust linkage - setting may be too long.		
DRIVE OR REVERSE	3. Mount and Driveline Bolts Loose.	3. Check engine mount, transmission mount, propeller shaft, rear spring to body bolts, rear control arms, crossmember and axle bolt torque. Tighten loose bolts and replace missing bolts.		
	4. U-Joint Worn/Broken.	Remove propeller shaft and replace U-Joint.		
	5. Axle Backlash Incorrect.	5. Check per Service Manual. Correct as needed.		
	6. Hydraulic Pressure Incorrect.	6. Check pressure. Remove, overhaul or adjust valve body as needed.		
	7. Band Misadjusted.	7. Adjust rear band.		
	8. Valve Body Check Balls Missing.	8. Inspect valve body for proper check ball installation.		
	9. Axle Pinion Flange Loose.	Replace nut and check pinion threads before installing new nut. Replace pinion gear if threads are damaged.		
	10. Clutch, band or planetary component Damaged.	10. Remove, disassemble and repair transmission as necessary.		
	11. Converter Clutch (if equipped) Faulty.	11. Replace converter and flush cooler and line before installing new converter.		
DELAYED ENGAGEMENT FROM NEUTRAL TO DRIVE OR REVERSE	1. Fluid Level Low.	Correct level and check for leaks.		
	2. Filter Clogged.	2. Change filter.		
BRIVE OR REVERSE	3. Gearshift Linkage Misadjusted.	Adjust linkage and repair linkage if worn or damaged.		
	4. Rear Band Misadjusted.	4. Adjust band.		
	5. Valve Body Filter Plugged.	5. Replace fluid and filter. If oil pan and old fluid were full of clutch disc material and/or metal particles, overhaul will be necessary.		
	6. Oil Pump Gears Worn/Damaged.	6. Remove transmission and replace oil pump.		
	7. Hydraulic Pressure Incorrect.	7. Perform pressure test, remove transmission and repair as needed.		
	8. Reaction Shaft Seal Rings Worn/Broken.	8. Remove transmission, remove oil pump and replace seal rings.		
	9. Rear Clutch/Input Shaft, Rear Clutch Seal Rings Damaged.	9. Remove and disassemble transmission and repair as necessary.		
	10. Governor Valve Stuck.	10. Remove and inspect governor components. Replace worn or damaged parts.		
	11. Regulator Valve Stuck.	11. Clean.		
	12. Cooler Plugged.	12. Flush transmission cooler and inspect convertor drainback valve.		

CONDITION	POSSIBLE CAUSES	CORRECTION
NO DRIVE RANGE (REVERSE OK)	1. Fluid Level Low.	Add fluid and check for leaks if drive is restored.
	Gearshift Linkage/Cable Loose/Misadjusted.	Repair or replace linkage components.
	3. Rear Clutch Burnt.	Remove and disassemble transmission and rear clutch and seals. Repair/replace worn or damaged parts as needed.
	4. Valve Body Malfunction.	Remove and disassemble valve body. Replace assembly if any valves or bores are damaged.
	5. Transmission Overrunning Clutch Broken.	Remove and disassemble transmission. Replace overrunning clutch.
	6. Input Shaft Seal Rings Worn/ Damaged.	Remove and disassemble transmission. Replace seal rings and any other worn or damaged parts.
	7. Front Planetary Failed Broken.	7. Remove and repair.
NO DRIVE OR REVERSE (VEHICLE WILL NOT	1. Fluid Level Low.	Add fluid and check for leaks if drive is restored.
MOVE)	Gearshift Linkage/Cable Loose/Misadjusted.	Inspect, adjust and reassemble linkage as needed. Replace worn/damaged parts.
	3. U-Joint/Axle/Transfer Case Broken.	3. Perform preliminary inspection procedure for vehicle that will not move. Refer to procedure in diagnosis section.
	4. Filter Plugged.	4. Remove and disassemble transmission. Repair or replace failed components as needed. Replace filter. If filter and fluid contained clutch material or metal particles, an overhaul may be necessary. Perform lube flow test. Flush oil. Replace cooler as necessary.
	5. Oil Pump Damaged.	Perform pressure test to confirm low pressure. Replace pump body assembly if necessary.
	6. Valve Body Malfunctioned.	6. Check press and inspect valve body. Replace valve body (as assembly) if any valve or bore is damaged. Clean and reassemble correctly if all parts are in good condition.
	7. Transmission Internal Component Damaged.	7. Remove and disassemble transmission. Repair or replace failed components as needed. Remove and disassemble transmission. Repair or replace failed components as needed.
	8. Park Sprag not Releasing.	8. Remove, disassemble, repair.
	9. Torque Converter Damage.	Check Stall Speed, Worn/Damaged/ Stuck. Inspect and replace as required.

CONDITION	POSSIBLE CAUSES	CORRECTION			
SHIFTS DELAYED OR ERRATIC (SHIFTS ALSO	1. Fluid Level Low/High.	Correct fluid level and check for leaks if low.			
HARSH AT TIMES)	2. Throttle Linkage Misadjusted.	Adjust linkage as described in service section.			
	3. Throttle Linkage Binding.	3. Check cable for binding. Check for return to closed throttle at transmission.			
	Gearshift Linkage/Cable Misadjusted.	Adjust linkage/cable as described in service section.			
	5. Fluid Filter Clogged.	5. Replace filter. If filter and fluid contained clutch material or metal particles, an overhaul may be necessary. Perform lube flow test.			
	6. Governor Valve Sticking.	6. Inspect, clean or repair.			
	7. Governor Seal Rings Worn/ Damaged.	7. Inspect/replace.			
	8. Clutch or Servo Failure.	8. Remove valve body and air test clutch, and band servo operation. Disassemble and repair transmission as needed.			
	9. Front Band Misadjusted.	9. Adjust band.			
	10. Pump Suction Passage Leak.	10. Check for excessive foam on dipstick after normal driving. Check for loose pump bolts, defective gasket. Replace pump assembly if needed.			
NO REVERSE (D RANGES OK)	Gearshift Linkage/Cable Misadjusted/Damaged.	Repair or replace linkage parts as needed.			
	2. Park Sprag Sticking.	2. Inspect and replace as necessary.			
	3. Rear Band Misadjusted/Worn.	3. Adjust band; replace.			
	4. Valve Body Malfunction.	4. Remove and service valve body. Replace valve body if any valves or valve bores are worn or damaged.			
	5. Rear Servo Malfunction.	Remove and disassemble transmission. Replace worn/damaged servo parts as necessary.			
	6. Front Clutch Burnt.	6. Remove and disassemble transmission. Replace worn, damaged clutch parts as required.			
HAS FIRST/REVERSE ONLY (NO 1-2 OR 2-3	Governor Valve, Shaft, Weights or Body Damaged/Stuck.	Remove governor assembly and clean or repair as necessary.			
UPSHIFT)	2. Valve Body Malfunction.	2. Stuck 1-2 shift valve or governor plug.			
	Front Servo/Kickdown Band Damaged/Burned.	3. Repair/replace.			
MOVES IN 2ND OR 3RD GEAR, ABRUPTLY	Valve Body Malfunction.	Remove, clean and inspect. Look for stuck 1-2 valve or governor plug.			
DOWNSHIFTS TO LOW	2. Governor Valve Sticking.	2. Remove, clean and inspect. Replace faulty parts.			

CONDITION	POSSIBLE CAUSES	CORRECTION
NO LOW GEAR (MOVES IN 2ND OR 3RD GEAR	Governor Valve Sticking.	Remove governor, clean, inspect and repair as required.
ONLY)	2. Valve Body Malfunction.	2. Remove, clean and inspect. Look for sticking 1-2 shift valve, 2-3 shift valve, governor plug or broken springs.
	3. Front Servo Piston Cocked in Bore.	3. Inspect servo and repair as required.
	4. Front Band Linkage Malfunction.	Inspect linkage and look for bind in linkage.
NO KICKDOWN OR	Throttle Linkage Misadjusted.	1. Adjust linkage.
NORMAL DOWNSHIFT	Accelerator Pedal Travel Restricted.	Floor mat under pedal, accelerator cable worn or brackets bent.
	3. Governor/Valve Body Hydraulic Pressures Too High or Too Low Due to Sticking Governor, Valve Body Malfunction or Incorrect Hydraulic Control Pressure Adjustments.	3. Perform hydraulic pressure tests to determine cause and repair as required. Correct valve body pressure adjustments as required.
	4. Valve Body Malfunction.	4. Perform hydraulic pressure tests to determine cause and repair as required. Correct valve body pressure adjustments as required.
	5. Valve Body Malfunction.	5. Sticking 1-2, 2-3 shift valves, or governor plugs.
STUCK IN LOW GEAR (WILL NOT UPSHIFT)	Throttle Linkage Misadjusted/ Stuck.	Adjust linkage and repair linkage if worn or damaged. Check for binding cable or missing return spring.
	2. Gearshift Linkage Misadjusted.	Adjust linkage and repair linkage if worn or damaged.
	3. Governor/Valve Body, Governor Valve Stuck Closed; Loose Output Shaft Support or Governor Housing Bolts, Leaking Seal Rings or Valve Body Problem (i.e., Stuck 1- 2 Shift Valve/Gov. Plug).	3. Check line and governor pressures to determine cause. Correct as required.
	4. Front Band Out of Adjustment .	4. Adjust Band.
	5. Clutch or Servo Malfunction.	5. Air pressure check operation of clutches and bands. Repair faulty component.
CREEPS IN NEUTRAL	Gearshift Linkage Misadjusted.	1. Adjust linkage.
	Rear Clutch Dragging/Warped Welded.	2. Disassemble and repair.
	3. Valve Body Malfunction.	Perform hydraulic pressure test to determine cause and repair as required.

CONDITION	POSSIBLE CAUSES	CORRECTION
BUZZING NOISE	1. Fluid Level Low.	1. Add fluid and check for leaks.
	2. Shift Cable Misassembled.	Route cable away from engine and bell housing.
	3. Valve Body Misassembled.	3. Remove, disassemble, inspect valve body. Reassemble correctly if necessary. Replace assembly if valves or springs are damaged. Check for loose bolts or screws.
	4. Pump Passages Leaking.	4. Check pump for porous casting, scores on mating surfaces and excess rotor clearance. Repair as required. Loose pump bolts.
	5. Cooling System Cooler Plugged.	5. Flow check cooler circuit. Repair as needed.
	6.Overrunning Clutch Damaged.	6. Replace clutch.
SLIPS IN REVERSE ONLY	1. Fluid Level Low.	1. Add fluid and check for leaks.
	2. Gearshift Linkage Misadjusted.	2. Adjust linkage.
	3. Rear Band Misadjusted.	3. Adjust band.
	4. Rear Band Worn.	4. Replace as required.
	5. Hydraulic Pressure Too Low.	Perform hydraulic pressure tests to determine cause.
	6. Rear Servo Leaking.	6. Air pressure check clutch-servo operation and repair as required.
	7. Band Linkage Binding.	7. Inspect and repair as required.
SLIPS IN FORWARD DRIVE RANGES	1. Fluid Level Low.	1. Add fluid and check for leaks.
	2. Fluid Foaming.	2. Check for high oil level, bad pump gasket or seals, dirt between pump halves and loose pump bolts. Replace pump if necessary.
	3. Throttle Linkage Misadjusted.	3. Adjust linkage.
	4. Gearshift Linkage Misadjusted.	4. Adjust linkage.
	5. Rear Clutch Worn.	5. Inspect and replace as needed.
	6. Low Hydraulic Pressure Due to Worn Pump, Incorrect Control Pressure Adjustments, Valve Body Warpage or Malfunction, Sticking Governor, Leaking Seal Rings, Clutch Seals Leaking, Servo Leaks, Clogged Filter or Cooler Lines.	6. Perform hydraulic and air pressure tests to determine cause.
	7. Rear Clutch Malfunction, Leaking Seals or Worn Plates.	7. Air pressure check clutch-servo operation and repair as required.
	8. Overrunning Clutch Worn, Not Holding (Slips in 1 Only).	8. Replace Clutch.
SLIPS IN LOW GEAR "D" ONLY, BUT NOT IN 1 POSITION	Overrunning Clutch Faulty.	Replace overrunning clutch.

CONDITION	POSSIBLE CAUSES	CORRECTION
GROWLING, GRATING OR SCRAPING NOISES	1. Drive Plate Broken.	1. Replace.
	Torque Converter Bolts Hitting Dust Shield.	2. Dust shield bent. Replace or repair.
	Planetary Gear Set Broken/ Seized.	3. Check for debris in oil pan and repair as required.
	4. Overrunning Clutch Worn/Broken.	Inspect and check for debris in oil pan. Repair as required.
	5. Oil Pump Components Scored/ Binding.	5. Remove, inspect and repair as required.
	6. Output Shaft Bearing or Bushing Damaged.	6. Remove, inspect and repair as required.
	7. Clutch Operation Faulty.	7. Perform air pressure check and repair as required.
	8. Front and Rear Bands Misadjusted.	8. Adjust bands.
DRAGS OR LOCKS UP	1. Fluid Level Low.	Check and adjust level.
	2. Clutch Dragging/Failed.	2. Air pressure check clutch operation and repair as required.
	3. Front or Rear Band Misadjusted.	3. Adjust bands.
	4. Case Leaks Internally.	4. Check for leakage between passages in case.
	5. Servo Band or Linkage Malfunction.	5. Air pressure check servo operation and repair as required.
	6. Overrunning Clutch Worn.	Remove and inspect clutch. Repair as required.
	7. Planetary Gears Broken.	7. Remove, inspect and repair as required (look for debris in oil pan).
	8. Converter Clutch Dragging.	8. Check for plugged cooler. Perform flow check. Inspect pump for excessive side clearance. Replace pump as required.
WHINE/NOISE RELATED TO ENGINE SPEED	1. Fluid Level Low.	Add fluid and check for leaks.
	2. Shift Cable Incorrect Routing.	Check shift cable for correct routing. Should not touch engine or bell housing.
TORQUE CONVERTER LOCKS UP IN SECOND AND/OR THIRD GEAR	Lockup Solenoid, Relay or Wiring Shorted/Open.	Test solenoid, relay and wiring for continuity, shorts or grounds. Replace solenoid and relay if faulty. Repair wiring and connectors as necessary.
HARSH 1-2 OR 2-3 SHIFTS	Lockup Solenoid Malfunction.	Remove valve body and replace solenoid assembly.

CONDITION	POSSIBLE CAUSES	CORRECTION
NO START IN PARK OR NEUTRAL	Gearshift Linkage/Cable Misadjusted.	Adjust linkage/cable.
	2. Neutral Switch Wire Open/Cut.	Check continuity with test lamp. Repair as required.
	3. Neutral Switch Faulty.	Refer to service section for test and replacement procedure.
	4. Neutral Switch Connect Faulty.	4. Connectors spread open. Repair.
	5. Valve Body Manual Lever Assembly Bent/Worn/Broken.	5. Inspect lever assembly and replace if damaged.
NO REVERSE (OR SLIPS IN REVERSE)	Direct Clutch Pack (front clutch) Worn.	Disassemble unit and rebuild clutch pack.
	2. Rear Band Misadjusted.	2. Adjust band.
	3. Front Clutch Malfunctioned/Burnt.	Air pressure test clutch operation. Remove and rebuild if necessary.
OIL LEAKS (ITEMS LISTED REPRESENT POSSIBLE LEAK POINTS AND SHOULD ALL BE CHECKED.	Speedometer Adapter Leaks.	Replace both adapter seals.
	2. Fluid Lines and Fittings Loose/ Leaks/Damaged.	2. Tighten fittings. If leaks persist, replace fittings and lines if necessary.
	3. Filler Tube (where tube enters case) Leaks/Damaged.	Replace O-ring seal. Inspect tube for cracks in tube.
	4. Pressure Port Plug Loose Loose/Damaged.	4. Tighten to correct torque. Replace plug or reseal if leak persists.
	5. Pan Gasket Leaks.	5. Tighten pan screws to 150 inch pounds. If leaks persist, replace gasket. Do no over tighten screws.
	6. Valve Body Manual Lever Shaft Seal Leaks/Worn.	6. Replace shaft seal.
	7. Rear Bearing Access Plate Leaks.	7. Replace gasket. Tighten screws.
	Gasket Damaged or Bolts are Loose.	8. Replace bolts or gasket or tighten both.
	Adapter/Extension Gasket Damaged Leaks/Damaged.	9. Replace gasket.
	10. Neutral Switch Leaks/Damaged.	10. Replace switch and gasket.
	11. Converter Housing Area Leaks.	11. Check for leaks at seal caused by worn seal or burr on converter hub (cutting seal), worn bushing, missing oil return, oil in front pump housing or hole plugged. Check for leaks past O-ring seal on pump or past pump-to-case bolts; pump housing porous, oil coming out vent due to overfill or leak past front band shaft access plug.
	12. Pump Seal Leaks/Worn/ Damaged.	12. Replace seal.
	13. Torque Converter Weld Leak/Cracked Hub.	13. Replace converter.
	14. Case Porosity Leaks.	14. Replace case.

SERVICE PROCEDURES

FLUID LEVEL CHECK

Transmission fluid level should be checked monthly under normal operation. If the vehicle is used for trailer towing or similar heavy load hauling, check fluid level and condition weekly. Fluid level is checked with the engine running at curb idle speed, the transmission in NEUTRAL and the transmission fluid at normal operating temperature.

FLUID LEVEL CHECK PROCEDURE

- (1) Transmission fluid must be at normal operating temperature for accurate fluid level check. Drive vehicle if necessary to bring fluid temperature up to normal hot operating temperature of 82°C (180°F).
 - (2) Position vehicle on level surface.
 - (3) Start and run engine at curb idle speed.
 - (4) Apply parking brakes.
- (5) Shift transmission momentarily into all gear ranges. Then shift transmission back to Neutral.
- (6) Clean top of filler tube and dipstick to keep dirt from entering tube.
- (7) Remove dipstick (Fig. 13) and check fluid level as follows:
 - (a) Correct acceptable level is in crosshatch area.
 - (b) Correct maximum level is to MAX arrow mark.
 - (c) Incorrect level is at or below MIN line.
 - (d) If fluid is low, add only enough Mopar® ATF Plus 3 to restore correct level. Do not overfill.

CAUTION: Do not overfill the transmission. Overfilling may cause leakage out the pump vent which can be mistaken for a pump seal leak. Overfilling will also cause fluid aeration and foaming as the excess fluid is picked up and churned by the gear train. This will significantly reduce fluid life.

Fig. 13 Dipstick Fluid Level Marks—Typical

FLUID AND FILTER REPLACEMENT

Refer to the Maintenance Schedules in Group 0, Lubrication and Maintenance, for proper service intervals. The service fluid fill after a filter change is approximately 3.8 liters (4.0 quarts).

REMOVAL

- (1) Hoist and support vehicle on safety stands.
- (2) Place a large diameter shallow drain pan beneath the transmission pan.
- (3) Remove bolts holding front and sides of pan to transmission (Fig. 14).
- (4) Loosen bolts holding rear of pan to transmission.
- (5) Slowly separate front of pan away from transmission allowing the fluid to drain into drain pan.
- (6) Hold up pan and remove remaining bolts holding pan to transmission.
- (7) While holding pan level, lower pan away from transmission.
 - (8) Pour remaining fluid in pan into drain pan.
- (9) Remove screws holding filter to valve body (Fig. 15).
- (10) Separate filter from valve body and pour fluid in filter into drain pan.
 - (11) Dispose used trans fluid and filter properly.

Fig. 14 Transmission Pan

Fig. 15 Transmission Filter

SERVICE PROCEDURES (Continued)

INSPECTION

Inspect bottom of pan and magnet for excessive amounts of metal or fiber contamination. A light coating of clutch or band material on the bottom of the pan does not indicate a problem unless accompanied by slipping condition or shift lag. If fluid and pan are contaminated with excessive amounts or debris, refer to the diagnosis section of this group.

Check the adjustment of the front and rear bands, adjust if necessary. Refer to Adjustment section of this group for proper procedure.

CLEANING

- (1) Using a suitable solvent, clean pan and magnet
- (2) Using a suitable gasket scraper, clean gasket material from gasket surface of transmission case and the gasket flange around the pan.

INSTALLATION

- (1) Place replacement filter in position on valve body.
- (2) Install screws to hold filter to valve body (Fig. 15). Tighten screws to 4 N⋅m (35 in. lbs.) torque.
- (3) Place new gasket in position on pan. and install pan on transmission.
 - (4) Place pan in position on transmission.
- (5) Install screws to hold pan to transmission (Fig. 14). Tighten bolts to 17 N·m (150 in. lbs.) torque.
- (6) Lower vehicle and fill transmission with Mopar® ATF Plus 3, type 7176 fluid.

TRANSMISSION FILL PROCEDURE

To avoid overfilling transmission after a fluid change or overhaul, perform the following procedure:

- (1) Remove dipstick and insert clean funnel in transmission fill tube.
- (2) Add following initial quantity of Mopar® ATF Plus 3 to transmission:
 - (a) If only fluid and filter were changed, add **3 pints (1-1/2 quarts)** of ATF Plus 3 to transmission.
 - (b) If transmission was completely overhauled, torque converter was replaced or drained, and cooler was flushed, add **12 pints (6 quarts)** of ATF Plus 3 to transmission.
 - (3) Apply parking brakes.
- (4) Start and run engine at normal curb idle speed.
- (5) Apply service brakes, shift transmission through all gear ranges then back to NEUTRAL, set parking brake, and leave engine running at curb idle speed.
- (6) Remove funnel, insert dipstick and check fluid level. If level is low, **add fluid to bring level to MIN mark on dipstick.** Check to see if the oil level

is equal on both sides of the dipstick. If one side is noticably higher than the other, the dipstick has picked up some oil from the dipstick tube. Allow the oil to drain down the dipstick tube and re-check.

- (7) Drive vehicle until transmission fluid is at normal operating temperature.
- (8) With the engine running at curb idle speed, the gear selector in NEUTRAL, and the parking brake applied, check the transmission fluid level.

CAUTION: Do not overfill transmission, fluid foaming and shifting problems can result.

(9) Add fluid to bring level up to MAX arrow mark.

When fluid level is correct, shut engine off, release park brake, remove funnel, and install dipstick in fill tube.

CONVERTER DRAINBACK CHECK VALVE SERVICE

The converter drainback check valve is located in the cooler outlet (pressure) line near the radiator tank. The valve prevents fluid drainback when the vehicle is parked for lengthy periods. The valve check ball is spring loaded and has an opening pressure of approximately 2 psi.

The valve is serviced as an assembly; it is not repairable. Do not clean the valve if restricted, or contaminated by sludge, or debris. If the valve fails, or if a transmission malfunction occurs that generates significant amounts of sludge and/or clutch particles and metal shavings, the valve must be replaced.

The valve must be removed whenever the cooler and lines are reverse flushed. The valve can be flow tested when necessary. The procedure is exactly the same as for flow testing a cooler.

If the valve is restricted, installed backwards, or in the wrong line, it will cause an overheating condition and possible transmission failure.

CAUTION: The drainback valve is a one-way flow device. It must be properly oriented in terms of flow direction for the cooler to function properly. The valve must be installed in the pressure line. Otherwise flow will be blocked and would cause an overheating condition and eventual transmission failure.

OIL PUMP VOLUME CHECK

After the new or repaired transmission has been installed, fill to the proper level with Mopar® ATF PLUS 3 (Type 7176) automatic transmission fluid. The volume should be checked using the following procedure:

SERVICE PROCEDURES (Continued)

(1) Disconnect the **From cooler** line at the transmission and place a collecting container under the disconnected line.

CAUTION: With the fluid set at the proper level, fluid collection should not exceed (1) quart or internal damage to the transmission may occur.

- (2) Run the engine **at curb idle speed** , with the shift selector in neutral.
- (3) If fluid flow is intermittent or it takes more than 20 seconds to collect one quart of ATF PLUS 3, disconnect the **To Cooler** line at the transaxle.
- (4) Refill the transaxle to proper level and recheck pump volume.
- (5) If flow is found to be within acceptable limits, replace the cooler. Then fill transmission to the proper level, using Mopar® ATF PLUS 3 (Type 7176) automatic transmission fluid.
- (6) If fluid flow is still found to be inadequate, check the line pressure using the Transaxle Hydraulic Pressure Test procedure.

FLUSHING COOLERS AND TUBES

When a transmission failure has contaminated the fluid, the oil cooler(s) must be flushed. The torque converter must also be replaced. This will insure that metal particles or sludged oil are not later transferred back into the reconditioned (or replaced) transmission.

The only recommended procedure for flushing coolers and lines is to use Tool 6906 Cooler Flusher.

WARNING: WEAR PROTECTIVE EYEWEAR THAT MEETS THE REQUIREMENTS OF OSHA AND ANSI Z87.1–1968. WEAR STANDARD INDUSTRIAL RUBBER GLOVES.

KEEP LIGHTED CIGARETTES, SPARKS, FLAMES, AND OTHER IGNITION SOURCES AWAY FROM THE AREA TO PREVENT THE IGNITION OF COMBUSTIBLE LIQUIDS AND GASES. KEEP A CLASS (B) FIRE EXTINGUISHER IN THE AREA WHERE THE FLUSHER WILL BE USED.

KEEP THE AREA WELL VENTILATED.

DO NOT LET FLUSHING SOLVENT COME IN CONTACT WITH YOUR EYES OR SKIN: IF EYE CONTAMINATION OCCURS, FLUSH EYES WITH WATER FOR 15 TO 20 SECONDS. REMOVE CONTAMINATED CLOTHING AND WASH AFFECTED SKIN WITH SOAP AND WATER. SEEK MEDICAL ATTENTION.

COOLER FLUSH USING TOOL 6906

(1) Remove cover plate filler plug on Tool 6906. Fill reservoir 1/2 to 3/4 full of fresh flushing solution. Flushing solvents are petroleum based solutions generally used to clean automatic transmission compo-

nents. **DO NOT** use solvents containing acids, water, gasoline, or any other corrosive liquids.

- (2) Reinstall filler plug on Tool 6906.
- (3) Verify pump power switch is turned OFF. Connect red alligator clip to positive (+) battery post. Connect black (-) alligator clip to a good ground.
 - (4) Disconnect the cooler lines at the transmission.

NOTE: When flushing transmission cooler and lines, ALWAYS reverse flush.

NOTE: The converter drainback valve must be removed and an appropriate replacement hose installed to bridge the space between the transmission cooler line and the cooler fitting. Failure to remove the drainback valve will preventreverse flushing the system.

- (5) Connect the BLUE pressure line to the OUT-LET (From) cooler line.
- (6) Connect the CLEAR return line to the INLET (To) cooler line.
- (7) Turn pump ON for two to three minutes to flush cooler(s) and lines. Monitor pressure readings and clear return lines. Pressure readings should stabilize below 20 psi. for vehicles equipped with a single cooler and 30 psi. for vehicles equipped with dual coolers. If flow is intermittent or exceeds these pressures, replace cooler.
 - (8) Turn pump OFF.
- (9) Disconnect CLEAR suction line from reservoir at cover plate. Disconnect CLEAR return line at cover plate, and place it in a drain pan.
- (10) Turn pump ON for 30 seconds to purge flushing solution from cooler and lines. Turn pump OFF.
- (11) Place CLEAR suction line into a one quart container of Mopar® ATF Plus 3, type 7176 automatic transmission fluid.
- (12) Turn pump ON until all transmission fluid is removed from the one quart container and lines. This purges any residual cleaning solvent from the transmission cooler and lines. Turn pump OFF.
- (13) Disconnect alligator clips from battery. Reconnect flusher lines to cover plate, and remove flushing adapters from cooler lines.

ALUMINUM THREAD REPAIR

Damaged or worn threads in the aluminum transmission case and valve body can be repaired by the use of Heli-Coils, or equivalent. This repair consists of drilling out the worn-out damaged threads. Then tap the hole with a special Heli-Coil tap, or equivalent, and installing a Heli-Coil insert, or equivalent, into the hole. This brings the hole back to its original thread size.

SERVICE PROCEDURES (Continued)

Heli-Coil, or equivalent, tools and inserts are readily available from most automotive parts suppliers.

REMOVAL AND INSTALLATION

TRANSMISSION

CAUTION: The transmission and torque converter must be removed as an assembly to avoid component damage. The converter drive plate, pump bushing, or oil seal can be damaged if the converter is left attached to the driveplate during removal.

REMOVAL

- (1) Disconnect battery negative cable.
- (2) Disconnect and lower or remove necessary exhaust components.
 - (3) Remove engine-to-transmission bending braces.
 - (4) Disconnect fluid cooler lines at transmission.
 - (5) Remove starter motor.
- (6) Disconnect and remove crankshaft position sensor. Retain sensor attaching bolts.

CAUTION: The crankshaft position sensor can be damaged during transmission removal (or installation) if the sensor is still bolted to the engine block. To avoid damage, remove the sensor before removing the transmission.

Fig. 16 Crankshaft Position Sensor—2.5L Engine

- (7) Remove torque converter access cover.
- (8) If transmission is being removed for overhaul, remove transmission oil pan, drain fluid and reinstall pan.
 - (9) Remove skid plate for access, if necessary.
- (10) Remove fill tube bracket bolts and pull tube out of transmission. Retain fill tube seal. On 4×4

Fig. 17 Crankshaft Position Sensor—4.0L Engine

models, it will also be necessary to remove bolt attaching transfer case vent tube to converter housing.

- (11) Mark torque converter and drive plate for assembly alignment. Note that bolt holes in crankshaft flange, drive plate and torque converter all have one offset hole.
- (12) Rotate crankshaft in clockwise direction until converter bolts are accessible. Then remove bolts one at a time. Rotate crankshaft with socket wrench on dampener bolt.
- (13) Mark propeller shaft and axle yokes for assembly alignment. Then disconnect and remove propeller shaft. On 4 x 4 models, remove both propeller shafts.
- (14) Disconnect wires from park/neutral position switch and vehicle speed sensor.
- (15) Disconnect gearshift cable from transmission manual valve lever.
- (16) Disconnect throttle valve cable from transmission bracket and throttle valve lever.
- (17) On 4 x 4 models, disconnect shift rod from transfer case shift lever or remove shift lever from transfer case.
- (18) Support rear of engine with safety stand or jack.
- (19) Raise transmission slightly with service jack to relieve load on crossmember and supports.
- (20) Remove bolts securing rear support and cushion to transmission and crossmember. Raise transmission slightly, slide exhaust hanger arm from bracket and remove rear support.

REMOVAL AND INSTALLATION (Continued)

- (21) Remove bolts attaching crossmember to frame and remove crossmember.
- (22) Disconnect transfer case vent hose. Then disconnect vacuum switch harness.
 - (23) On 4 x 4 models, remove transfer case.
 - (24) Remove all converter housing bolts.
- (25) Carefully work transmission and torque converter assembly rearward off engine block dowels.
- (26) Hold torque converter in place during transmission removal.
- (27) Lower transmission and remove assembly from under the vehicle.
- (28) To remove torque converter, carefully slide torque converter out of the transmission.

INSTALLATION

- (1) Check torque converter hub and hub drive notches for sharp edges burrs, scratches, or nicks. Polish the hub and notches with 320/400 grit paper and crocus cloth if necessary. The hub must be smooth to avoid damaging pump seal at installation.
- (2) Lubricate converter drive hub and oil pump seal lip with transmission fluid.
- (3) Lubricate converter pilot hub with transmission fluid.
 - (4) Align converter and oil pump.
- (5) Carefully insert converter in oil pump. Then rotate converter back and forth until fully seated in pump gears.
- (6) Check converter seating with steel scale and straightedge (Fig. 18). Surface of converter lugs should be 1/2 in. to rear of straightedge when converter is fully seated.
 - (7) Temporarily secure converter with C-clamp.

Fig. 18 Typical Method Of Checking Converter Seating

- (8) Position transmission on jack and secure it with safety chains.
- (9) Check condition of converter driveplate. Replace the plate if cracked, distorted or damaged. Also be sure transmission dowel pins are seated in engine block and protrude far enough to hold transmission in alignment.
- (10) Raise transmission and align converter with drive plate and converter housing with engine block.
- (11) Move transmission forward. Then raise, lower or tilt transmission to align converter housing with engine block dowels.
- (12) Rotate converter so alignment marks scribed on converter are aligned with mark on driveplate.
- (13) Carefully work transmission forward and over engine block dowels until converter hub is seated in crankshaft.
- (14) Install and tighten bolts that attach transmission converter housing to engine block (Fig. 19).

CAUTION: Be sure the converter housing is fully seated on the engine block dowels before tightening any bolts.

- (15) Install torque converter attaching bolts. Tighten bolts to following torque.
 - 54 N·m (40 ft. lbs.) with 9.5 in. 3-lug converter
 - 74 N·m (55 ft. lbs.) with 9.5 in. 4-lug converter
 - 74 N·m (55 ft. lbs.) with 10.0 in. 4-lug converter
- \bullet 31 N·m (270 in. lbs.) with 10.75 in. 4-lug converter
 - (16) Install crankshaft position sensor.
- (17) Install transmission fill tube and seal. Install new fill tube seal in transmission before installation.
- (18) Connect transmission cooler lines to transmission.
 - (19) Install transfer case onto transmission.
- (20) Install rear crossmember and attach transmission rear support to crossmember.
 - (21) Remove engine support fixture.
 - (22) Remove transmission jack.
 - (23) Connect vehicle speed sensor wires.
 - (24) Connect wires to park/neutral position switch.
 - (25) Install crankshaft position sensor.
 - (26) Install converter housing access cover.
- (27) Install exhaust pipes and support brackets, if removed.
 - (28) Install starter motor and cooler line bracket.
- (29) Install new plastic retainer grommet on any shift linkage rod or lever that was disconnected. Grommets should not be reused. Use pry tool to remove rod from grommet and cut away old grommet. Use pliers to snap new grommet into lever and to snap rod into grommet at assembly.
- (30) Connect gearshift and linkage and throttle cable.
 - (31) Connect transfer case shift linkage.

REMOVAL AND INSTALLATION (Continued)

Fig. 19 Transmission Attachment

- (32) Adjust gearshift linkage and throttle valve cable if necessary.
 - (33) Align and connect propeller shaft(s).
- (34) Install skid plate, rear cushion and bracket, if removed.
- (35) Fill transfer case to bottom edge of fill plug hole.
- (36) Lower vehicle and fill transmission to correct level with Mopar® ATF Plus 3, type 7176 fluid.

TORQUE CONVERTER

REMOVAL

- (1) Remove transmission and torque converter from vehicle.
- (2) Place a suitable drain pan under the converter housing end of the transmission.

CAUTION: Verify that transmission is secure on the lifting device or work surface, the center of gravity of the transmission will shift when the torque converter is removed creating an unstable condition.

The torque converter is a heavy unit. Use caution when separating the torque converter from the transmission.

- (3) Pull the torque converter forward until the center hub clears the oil pump seal.
- (4) Separate the torque converter from the transmission.

INSTALLATION

Check converter hub and drive notches for sharp edges, burrs, scratches, or nicks. Polish the hub and notches with 320/400 grit paper or crocus cloth if necessary. The hub must be smooth to avoid damaging the pump seal at installation.

- (1) Lubricate converter hub and oil pump seal lip with transmission fluid.
- (2) Place torque converter in position on transmission.

CAUTION: Do not damage oil pump seal or bushing while inserting torque converter into the front of the transmission.

- (3) Align torque converter to oil pump seal opening.
 - (4) Insert torque converter hub into oil pump.
- (5) While pushing torque converter inward, rotate converter until converter is fully seated in the oil pump gears.

- (6) Check converter seating with a scale and straightedge (Fig. 20). Surface of converter lugs should be 1/2 in. to rear of straightedge when converter is fully seated.
- (7) If necessary, temporarily secure converter with C-clamp attached to the converter housing.
 - (8) Install the transmission in the vehicle.
- (9) Fill the transmission with the recommended fluid.

Fig. 20 Checking Torque Converter Seating

YOKE SEAL REPLACEMENT

REMOVAL

- (1) Raise vehicle.
- (2) Mark propeller shaft and axle yoke for alignment reference.
 - (3) Disconnect and remove propeller shaft.
- (4) Remove old seal with Seal Remover C-3985-B (Fig. 21) from extension housing.

INSTALLATION

- (1) Place seal in position on extension housing.
- (2) Drive seal into extension housing with Seal Installer C-3995-A or C-3972 (Fig. 22).
- (3) Carefully guide propeller shaft slip yoke into housing and onto output shaft splines. Align marks made at removal and connect propeller shaft to rear axle pinion yoke.

EXTENSION HOUSING BUSHING

REMOVAL

- (1) Remove housing yoke seal.
- (2) Insert Remover 6957 into extension housing. Tighten tool to bushing and remove bushing (Fig. 23).

Fig. 21 Removing Extension Housing Yoke Seal

Fig. 22 Installing Extension Housing Yoke Seal

Fig. 23 Bushing Removal—Typical

- (1) Align bushing oil hole with oil slot in extension housing.
- (2) Tap bushing into place with Installer 6951 and Handle C-4171.
- (3) Install new oil seal in housing using Seal Installer C-3995–A (Fig. 24).

Fig. 24 Extension Housing Seal Installation EXTENSION HOUSING

REMOVAL

- (1) Hoist and support vehicle on safety stands.
- (2) Support transmission with a suitable lifting device.
- (3) Remove transmission skid plate. Refer to Group 13, Frame and Bumpers, for proper procedure.
- (4) Remove propeller shafts. Refer to Group 3, Differential and Driveline, for proper procedure.
 - (5) Remove transfer case.
- (6) Remove bolts holding extension housing to transmission case (Fig. 25).
 - (7) Separate extension housing from transmission.
- (8) Slide extension housing rearward and off output shaft (Fig. 25).

Fig. 25 Extension Housing

INSTALLATION

Clear gasket material from sealing surfaces on extension housing and rear of transmission. Replace output shaft bearing, if necessary.

- (1) Install new rear seal in extension housing. Use Tool Handle C-4171 and Seal Installer C-3860-A to install seal.
- (2) Place extension housing gasket in position on rear of transmission.
- (3) Slide extension housing forward and over output shaft (Fig. 25).
- (4) Guide park shaft into park sprag and push extension housing forward until rod passes through opening behind sprag. It may be necessary to use a wire to hold sprag to the side for rod to pass through.
- (5) Install bolts to hold extension housing to rear of transmission.
 - (6) Install transfer case.
 - (7) Install propeller shafts.
 - (8) Install rear transmission mount and skid plate.
- (9) Lower vehicle and verify transmission fluid level. Add fluid as necessary.

SPEEDOMETER ADAPTER

Rear axle gear ratio and tire size determine speedometer pinion requirements.

REMOVAL

- (1) Raise vehicle.
- (2) Disconnect wires from vehicle speed sensor.
- (3) Remove adapter clamp and screw (Fig. 26).
- (4) Remove speed sensor and speedometer adapter as assembly.
- (5) Remove speed sensor retaining screw and remove sensor from adapter.
 - (6) Remove speedometer pinion from adapter.
- (7) Inspect sensor and adapter O-rings (Fig. 26). Remove and discard O-rings if worn or damaged.
- (8) Inspect terminal pins in speed sensor. Clean pins with Mopar® electrical spray cleaner if dirty or oxidized. Replace sensor if faulty, or pins are loose, severely corroded, or damaged.

- (1) Thoroughly clean adapter flange and adapter mounting surface in housing. Surfaces must be clean for proper adapter alignment and speedometer operation.
- (2) Install new O-rings on speed sensor and speed-ometer adapter if necessary (Fig. 26).
- (3) Lubricate sensor and adapter O-rings with transmission fluid.
- (4) Install vehicle speed sensor in speedometer adapter. Tighten sensor attaching screw to 2-3 N·m (15-27 in. lbs.) torque.
 - (5) Install speedometer pinion in adapter.
- (6) Count number of teeth on speedometer pinion. Do this before installing assembly in housing. Then lubricate pinion teeth with transmission fluid.

Fig. 26 Speedometer Pinion Adapter Components

- (7) Note index numbers on adapter body (Fig. 27). These numbers will correspond to number of teeth on pinion.
 - (8) Install speedometer assembly in housing.
- (9) Rotate adapter until required range numbers are at 6 o'clock position. Be sure range index numbers correspond to number of teeth on pinion gear.
- (10) Install speedometer adapter clamp and retaining screw. Tighten clamp screw to 10-12 N·m (90-110 in. lbs.) torque.
 - (11) Connect wires to vehicle speed sensor.
- (12) Lower vehicle and top off transmission fluid level, if necessary.

J9321-386

Fig. 27 Index Numbers On Speedometer Pinion Adapter

PARK/NEUTRAL POSITION SWITCH

REMOVAL

- (1) Raise vehicle and position drain pan under switch.
 - (2) Disconnect switch wires.
 - (3) Remove switch from case.

INSTALLATION

(1) Move shift lever to Park and Neutral positions. Verify that switch operating lever fingers are centered in switch opening in case (Fig. 28).

Fig. 28 Park/Neutral Position Switch

(2) Install new seal on switch and install switch in case. Tighten switch to 34 N·m (25 ft. lbs.) torque.

- (3) Test continuity of new switch with 12V test lamp.
 - (4) Connect switch wires and lower vehicle.
 - (5) Top off transmission fluid level.

GEARSHIFT CABLE

REMOVAL

- (1) Shift transmission into Park.
- (2) Remove shift lever bezel and necessary console parts for access to shift lever assembly.
- (3) Disconnect cable at shift lever and feed cable through dash panel opening to underside of vehicle.
 - (4) Raise vehicle.
- (5) Disengage cable eyelet at transmission shift lever and pull cable adjuster out of mounting bracket. Then remove old cable from vehicle.

INSTALLATION

- (1) Route cable through hole in dash panel. Fully seat cable grommet into dash panel.
- (2) Place the auto transmission manual shift control lever in "Park" detent (rearmost) position and rotate prop shaft to ensure transmission is in park.
- (3) Connect shift cable to shifter mechanism by snapping cable retaining ears into shifter bracket and press cable end fitting onto lever ball stud.
- (4) Place the floor shifter lever in park position. Ensure that the pawl is seated within the confines of the adjustment gauge clip.
- (5) Snap the cable into the transmission bracket so the retaining ears are engaged and connect cable end fitting onto the manual control lever ball stud.
- (6) Lock shift cable into position by pushing upward on the adjusting lock button.
- (7) Remove and discard the shift cable adjustment gauge clip from the park gate of the shifter.

BRAKE TRANSMISSION SHIFT INTERLOCK

REMOVAL

- (1) Remove lower steering column cover. Refer to Group 8E, Instrument Panel and Gauges, for proper procedure.
- (2) Remove lower steering column shroud. Refer to Group 19, Steering, for proper procedure.
- (3) Remove tie strap near the solenoid retaining the brake transmission interlock cable to the steering column.
 - (4) Disengage wire connector from solenoid.
- (5) With the ignition removed or in the unlocked position, disengage lock tab holding cable end to steering column (Fig. 29).
 - (6) Pull cable end from steering column.
- (7) Remove the floor console and related trim. Refer to Group 23, Body, for proper procedure.

(8) Disconnect the cable eyelet from the bellcrank (Fig. 30).

Fig. 29 Brake/Park Interlock Cable

(9) Disconnect and remove the cable from the shift bracket.

INSTALLATION

- (1) Route replacement cable behind instrument panel and under floor console area to shift mechanism (Fig. 30).
- (2) Insert cable end into opening in steering column hub under ignition lock. Push cable inward until lock tab engages.
- (3) Connect the cable end eyelet onto shifter bellcrank pin.
 - (4) Place gear selector in PARK.
- (5) Push the spring-loaded cable adjuster forward and snap cable into bracket.
- (6) Adjust the brake transmission shifter interlock cable. Refer to the Adjustment portion of this section for proper procedures.
- (7) Verify that the cable adjuster lock clamp is pushed downward to the locked position.
 - (8) Test the park-lock cable operation.
 - (9) Install the floor console and related trim.
- (10) Install tie strap to hold cable to base of steering column.
- (11) Install lower steering column shroud and ignition lock.
 - (12) Install lower steering column cover.

VALVE BODY

REMOVAL

- (1) Raise vehicle.
- (2) Remove oil pan and drain fluid.
- (3) Loosen clamp bolts and remove throttle and manual valve levers from manual lever shaft.
 - (4) Remove park/neutral position switch.
 - (5) Remove filter from valve body.

Fig. 30 Cable and Shifter

(6) Depress retaining clip and pull solenoid wire from case connector (Fig. 31).

Fig. 31 Solenoid Wire Connector

- (7) Remove valve body attaching screws.
- (8) Lower valve body enough to remove accumulator piston and piston spring (Fig. 32).
 - (9) Pull valve body forward to disengage park rod.
- (10) Push manual lever shaft and solenoid case connector out of transmission case.

(11) Lower valve body, rotate it away from case, pull park lock rod out of sprag, and remove valve body (Fig. 33).

Fig. 32 Accumulator Piston And Springs

- (1) Verify that park/neutral position switch is **NOT** installed. Valve body cannot be installed with switch in place. Remove switch if necessary.
- (2) Install new seals on accumulator piston if necessary, and install piston in case. Use small amount of petroleum jelly to hold piston in place.
- (3) Place valve body manual lever in low (1 position) to ease inserting park rod into sprag.

Fig. 33 Valve Body

- (4) Use screwdriver to push park sprag into engagement with park gear. This makes clearance for knob on lock rod to move past sprag when valve body is installed. Rotate output shaft to verify sprag engagement.
- (5) Position accumulator spring between accumulator piston and valve body.
- (6) Position valve body on transmission and work knob on park lock rod past sprag. Be sure accumulator piston and spring remain in position.
- (7) Hold valve body in position and install valve body screws finger tight.
 - (8) Install park/neutral position switch.
- (9) Tighten valve body screws alternately and evenly to 11 N⋅m (100 in. lbs.) torque.
- (10) Install new fluid filter on valve body. Install and tighten filter screws to 4 N·m (35 in. lbs.) torque.
 - (11) Connect solenoid wire to case connector.
- (12) Install manual and throttle levers on throttle lever shaft. Tighten lever clamp screws and check for free operation. Shaft and levers must operate freely without any bind.
- (13) Install oil pan and new gasket. Tighten pan bolts to 17 N·m (150 in. lbs.) torque. Install gasket dry; do not use sealer.
- (14) Connect park/neutral position switch and converter clutch solenoid wires.
- (15) Install speedometer pinion gear, adapter and speed sensor.
 - (16) Lower vehicle.
- (17) Fill transmission with Mopar $^{\scriptsize \circledR}$ ATF Plus 3, Type 7176 fluid.
- (18) Adjust gearshift and throttle cable if necessary.

OUTPUT SHAFT REAR BEARING

REMOVAL

(1) Remove extension housing.

- (2) Remove snap ring that retains rear bearing on output shaft (Fig. 34).
 - (3) Remove bearing from output shaft.

INSTALLATION

- (1) Install bearing on output shaft. Be sure retaining ring groove in outer circumference of bearing is toward the governor.
- (2) Install rear bearing retaining snap ring (Fig. 34).
 - (3) Install extension housing.

Fig. 34 Output Shaft Rear Bearing—Typical
GOVERNOR AND PARK GEAR

REMOVAL

- (1) Hoist and support vehicle on safety stands.
- (2) Mark propeller shaft and axle yoke for assembly reference. Then disconnect and remove shaft.
- (3) Disconnect parking brake cable at equalizer and disconnect exhaust components as necessary.
- (4) Support transmission on a suitable lifting device.
- (5) Remove skid plate and rear transmission mount.
 - (6) Remove extension housing.
- (7) Loosen but do not remove bolts that hold governor body to park gear.
- (8) Rotate transmission output shaft until governor weight assembly is accessible.
- (9) Remove E-clip at end of governor valve shaft (Fig. 35).
- (10) Remove governor valve and shaft from governor body (Fig. 35).
- (11) Remove snap rings and spacer that retain governor body and park gear assembly on output shaft (Fig. 36).
- (12) Remove bolts holding governor body to park gear (Fig. 37).
 - (13) Separate governor from park gear.
 - (14) Pull park gear from rear support.

- (1) Install park gear into rear support so crown on curved boss is in line with hole through output shaft.
 - (2) Install governor filter in park gear.

Fig. 35 Governor Valve

Fig. 36 Snap Rings And Spacer

Fig. 37 Governor Body

- (3) Slip governor body over output shaft and align port to filter.
- (4) Install bolts to hold governor body to park gear. Tighten bolts to 11 N·m (95 in. lbs.) torque (Fig. 37).

- (5) Install governor body-park gear snap rings and washer on output shaft as follows:
 - (a) Install thin snap ring first. Then install thrust washer second, and thick snap ring last (Fig. 36).
 - (b) Verify correct position of snap rings. **Be sure** flat side of each snap ring is toward governor body.
- (6) Insert governor valve and shaft through governor and install E-clip (Fig. 35).
- (7) Install extension housing and gasket on transmission. Tighten housing bolts to 32 N·m (24 ft. lbs.).
 - (8) Install rear transmission mount and skid plate.
- (9) Install speed sensor and speedometer components and connect speed sensor wires.
- (10) Connect exhaust components and brake cable, if removed.
 - (11) Install propeller shaft.
 - (12) Remove supports and lower vehicle.
- (13) Check transmission fluid level. Add fluid if necessary.

PARK LOCK

REMOVAL

- (1) Raise vehicle and remove propeller shaft.
- (2) Remove extension housing.
- (3) Slide sprag shaft out of extension housing and remove sprag and spring (Fig. 38).
- (4) Remove snap ring and slide reaction plug and pin assembly out of housing.
- (5) If park rod requires service, it will be necessary to remove valve body.

- (1) Inspect sprag shaft for scores and free movement in housing and sprag. Inspect sprag and control rod springs for distortion and loss of tension. replace worn, damaged parts as necessary.
- (2) Inspect square lug on sprag for broken edges. Check lugs on park gear for damage. Inspect knob on end of control rod for wear grooves, or being seized on rod. Replace rod if bent, if knob is worn/grooved, or it has seized on rod. Replace park gear if lugs are damaged. Replace the park lock rod if it is suspected that the rod is not the correct length.
- (3) Install reaction plug and pin assembly in housing and secure with new snap ring (Fig. 38).
- (4) Position sprag and spring in housing and insert sprag shaft. Be sure square lug on sprag is toward park gear. Also be sure spring is positioned so it moves sprag away from gear.
 - (5) Install extension housing.
 - (6) Install propeller shaft and lower vehicle.
- (7) Check transmission fluid level. Add fluid if necessary.

Fig. 38 Park Lock

DISASSEMBLY AND ASSEMBLY

GOVERNOR AND PARK GEAR

DISASSEMBLY

- (1) Remove governor body from transmission.
- (2) Clean and inspect governor filter (Fig. 39).
- (3) Remove snap ring and washer that secure governor weight assembly in body (Fig. 40).
- (4) Remove governor weight assembly from governor body bore.
- (5) Slide intermediate and inner weight from outer weight.
- (6) Position intermediate weight on suitable size socket (Fig. 41).
- (7) Push inner weight downward with nut driver. Then remove inner weight snap ring with Miller Plier Tool 6823 (Fig. 41).
- (8) Remove inner weight and spring from intermediate weight.

Fig. 39 Governor Filter

Fig. 40 Snap Ring, Washer, and Outer Weight

Fig. 41 Inner Weight Snap Ring

ASSEMBLY

CAUTION: Exercise care when installing the rings. They are easily broken if overspread or twisted during installation.

If it was necessary to remove the park gear, inspect the seal rings and bore in rear support. Install new seal rings on park gear hub only if original rings are damaged, or worn. Install ring with interlock ends first and ring with plain ends last. Slip each ring on hub and seat them in grooves. Verify that rear ring ends are securely interlocked before proceeding. If the bore in rear support is damaged, replace the rear support.

80a47367

Fig. 42 Intermediate and Inner Governor Weights

- (1) Lubricate governor components with Mopar® ATF Plus 3, Type 7176 transmission fluid before assembly.
- (2) Clean and inspect governor weights and bores for scoring or wear. Replace the governor body and weights if damaged. Refer to Cleaning and Inspection section of this group for proper procedure.
 - (3) Insert spring into intermediate weight.
- (4) Insert inner weight into intermediate weight and install snap-ring (Fig. 42). Verify snap-ring is fully seated in groove in intermediate weight (Fig. 41).
- (5) Assemble governor weights into governor body (Fig. 40).
- (6) Install washer and snap ring to hold weights in governor body.
 - (7) Install governor body in transmission.

VALVE BODY

DISASSEMBLY

Position the valve body on a clean work surface to avoid contamination.

CAUTION: Do not clamp any part of the valve body assembly (Fig. 43) in a vise. This practice will distort the valve body and transfer plate resulting in valve bind. Slide valves and plugs out carefully. Do not use force at any time. The valves and valve body will be damaged if force is used. Also tag or mark the valve body springs for reference as they are removed. Do not allow them to become intermixed.

(1) Remove screws attaching adjusting screw bracket to valve body and transfer plate. Hold bracket firmly against spring force while removing last screw.

- (2) Remove adjusting screw bracket, line pressure adjusting screw (Fig. 44).
- (3) Remove switch valve and spring, pressure regulator valve and spring, kickdown valve and spring, and throttle valve from valve body (Fig. 44).
- (4) Secure detent ball and spring in housing with Retainer Tool 6583 (Fig. 45).
- (5) Remove manual shaft E-clip, washer, and seal (Fig. 46).
- (6) Pull manual shaft and park rod assembly upward out of valve body and off throttle lever (Fig. 46).
- (7) Remove manual valve from valve body (Fig. 47).
- (8) Remove Retainer Tool 6583. Then remove and retain detent ball and spring (Fig. 46).
 - (9) Remove throttle lever (Fig. 46).

Fig. 43 Valve Body Assembly

Fig. 44 Adjusting Screw Bracket, Springs, Valve Removal

(10) Remove park rod E-clip and separate rod from manual lever (Fig. 48).

Fig. 45 Securing Detent Ball And Spring With Retainer Tool

Fig. 46 Manual And Throttle Levers

Fig. 47 Manual Valve

- (11) Remove converter clutch solenoid from separator plate (Fig. 49). A T25 torx bit is required to remove solenoid attaching screw.
- (12) Remove screws attaching converter clutch module to valve body and remove module and connecting tube (Fig. 50).
- (13) Remove screws attaching end cover plate to torque converter module (Fig. 51).

- (14) Remove converter clutch valve, fail safe valve, and springs (Fig. 51).
- (15) Turn valve body over so transfer plate is facing upward (Fig. 52). With valve body in this position, valve body check balls will remain in place and not fall out when transfer plate is removed.
- (16) Remove screws attaching transfer plate to valve body (Fig. 52).
- (17) Remove transfer plate and separator plate from valve body (Fig. 52). Note position of filter and clutch solenoid for reference. Remove valve body check balls.
- (18) Position transfer plate on bench so separator plate, and filter are facing up. This will avoid having rear clutch and rear servo check balls fall out when plates are separated.

Fig. 48 Park Rod

Fig. 49 Converter Clutch Solenoid

- (19) Remove screws attaching separator plate to transfer plate (Fig. 53).
- (20) Note position of filter, rear clutch servo and rear servo check balls for assembly reference (Fig. 53) and (Fig. 54).

J9121-178

Fig. 50 Clutch Module And Connecting Tube

Fig. 51 Converter Clutch and Fail Safe Valves

Fig. 52 Valve Body Transfer Plate Screws (21) Remove shuttle valve end plate (Fig. 55).

(22) Remove shuttle valve E-clip and remove secondary spring and spring guides from end of valve (Fig. 56).

Fig. 53 Transfer And Separator Plates

Fig. 54 Rear Servo and Rear Clutch Check Balls

Fig. 55 Shuttle Valve End Plate

(23) Remove governor plug end plate (Fig. 57).

Fig. 56 Shuttle Valve E-Clip And Secondary Spring

- (24) Remove 1-2 and 2-3 shift valve governor plugs from valve body (Fig. 57).
- (25) Remove shuttle valve throttle plug, primary spring and shuttle valve from valve body (Fig. 57).
- (26) Remove screws attaching kickdown limit valve body to valve body (Fig. 57).
- (27) Remove 1-2 shift control valve and spring from valve body (Fig. 57).

- (28) Remove 2-3 shift valve and spring from valve body (Fig. 57).
- (29) Remove 1-2 shift valve and spring from valve body (Fig. 57).
- (30) Remove throttle pressure plug from kickdown limit valve body (Fig. 57).
- (31) Remove retainer from end of kickdown limit valve body (Fig. 57).
- (32) Remove kickdown limit valve and spring from kickdown limit valve body (Fig. 57).
- (33) Remove regulator valve end plate from valve body (Fig. 57).
- (34) Remove regulator valve line pressure plug, pressure plug sleeve, regulator valve throttle pressure plug and spring (Fig. 57).

ASSEMBLY

Clean and inspect all valve body components for damage or wear. Refer to the Cleaning and Inspection section of this group for proper procedure.

Fig. 57 Control Valves, Shift Valves, And Governor Plugs

CAUTION: Do not force valves or plugs into place during reassembly. If the valve body bores, valves, and plugs are free of distortion or burrs, the valve body components should all slide into place easily. In addition, do not overtighten the transfer plate and valve body screws during reassembly. Overtightening can distort the valve body resulting in valve sticking, cross leakage and unsatisfactory operation. Tighten valve body screws to recommended torque only.

- (1) Lubricate valve body bores, valves and plugs with Mopar® ATF Plus 3, Type 7176, transmission fluid.
- (2) Install regulator valve line pressure plug, pressure plug sleeve, regulator valve throttle pressure plug, and spring into valve body (Fig. 57). Verify valve components slide freely.
- (3) Install regulator valve end plate on valve body (Fig. 57).
- (4) Install kickdown limit valve and spring in kickdown limit valve body (Fig. 57). Verify valve components slide freely.
- (5) Compress spring into kickdown limit valve body.
- (6) Install retainer in grooves at end of kickdown limit valve body (Fig. 57).
- (7) Install throttle pressure plug in kickdown limit valve body (Fig. 57).
- (8) Install 1-2 shift valve and spring into valve body (Fig. 57).
- (9) Install 2-3 shift valve and spring into valve body (Fig. 57).
- (10) Install 1-2 shift control valve and spring into valve body (Fig. 57).
 - (11) Verify valve components slide freely.
- (12) Place kickdown limit valve body and end plate in position on valve body and compress springs (Fig. 57).
- (13) Install screws to attach kickdown limit valve body to valve body (Fig. 57).
- (14) Install shuttle valve throttle plug, primary spring and shuttle valve into valve body (Fig. 57). Verify valve components slide freely.
- (15) Install 1-2 and 2-3 shift valve governor plugs into valve body (Fig. 57). Verify valve components slide freely.
- (16) Place governor plug end plate in position on valve body and compress spring.
- (17) Install screws to attach governor plug end plate to valve body (Fig. 57).
- (18) Assemble shuttle valve spring and guides (Fig. 57). Place spring and guides in position on shuttle valve stem.
- (19) Compress spring and install E-clip in groove on shuttle valve stem (Fig. 58).

- (20) Place shuttle valve end plate in position on valve body (Fig. 59).
- (21) Install screws to attach shuttle valve end plate to valve body (Fig. 59).

Fig. 58 Shuttle Valve E-Clip And Secondary Spring

Fig. 59 Shuttle Valve End Plate

- (22) Install rear clutch servo and rear servo check balls in proper cavities in transfer plate (Fig. 60).
- (23) Insert filter into opening in separator plate (Fig. 61).
- (24) Place separator plate in position on transfer plate and install screws to attach separator plate to transfer plate (Fig. 61).
- (25) Place one 11/32 in. check ball and six 1/4 in. check balls in the proper cavities in the valve body (Fig. 62).
- (26) Place transfer plate in position on valve body (Fig. 63).
- (27) Install screws to attach transfer plate to valve body (Fig. 63).
- (28) Turn valve body over to expose the separator plate.

Fig. 60 Rear Servo and Rear Clutch Check Balls

Fig. 61 Transfer And Separator Plates

- (29) Insert converter clutch valve and spring into converter clutch valve module (Fig. 64). Verify valve components slide freely.
- (30) Insert spring and fail-safe valve into converter clutch valve module (Fig. 64). Verify valve components slide freely.
- (31) Place cover plate in position on converter clutch valve module (Fig. 64).
- (32) Install screws to attach cover to converter clutch valve module (Fig. 64).
- (33) Insert connecting tube into converter clutch valve module (Fig. 64).
- (34) Insert connecting tube into valve body opening (Fig. 65).
- (35) Place converter clutch valve module in position on separator plate. Install screws to attach converter clutch module to valve body (Fig. 65).
- (36) If necessary, install a new O-ring on converter clutch solenoid (Fig. 66).
- (37) Insert converter clutch solenoid into transfer plate (Fig. 66).

Fig. 62 Correct Position Of Valve Body Check Balls

Fig. 63 Valve Body Transfer Plate Screws

- (38) Install screw to attach solenoid to transfer plate (Fig. 66).
- (39) If necessary, insert park rod end into manual lever and install E-clip (Fig. 67).
- (40) Insert detent spring and ball into opening in valve body and install Retainer Tool 6583 (Fig. 68).
 - (41) Install manual valve into valve body (Fig. 69).
- (42) Insert throttle lever through transfer plate side of valve body and upward (Fig. 70).

Fig. 64 Converter Clutch Valve Module

J9121-178

Fig. 65 Clutch Module And Connecting Tube

Fig. 66 Converter Clutch Solenoid

- (43) Insert throttle lever into groove in manual valve (Fig. 71).
- (44) Install seal, washer, and E-clip to retain manual shaft to valve body (Fig. 70).
- (45) Install switch valve and spring, pressure regulator valve and spring, kickdown valve and spring, and throttle valve into valve body (Fig. 72).

Fig. 67 Park Rod

- (46) Place adjusting screw bracket and line pressure adjusting screw in position on valve body and compress springs (Fig. 44).
- (47) Install screws to attach adjuster bracket to valve body.

Fig. 68 Securing Detent Ball And Spring With Retainer Tool

Fig. 69 Manual Valve

Fig. 70 Manual And Throttle Levers

Fig. 71 Manual Valve And Throttle Lever Alignment

Fig. 72 Adjusting Screw Bracket, Springs, and Valves

TRANSMISSION

DISASSEMBLY

- (1) Remove transmission from vehicle.
- (2) Install a suitable tail shaft housing plug to avoid contaminating internal components with cleaning solvents.
- (3) Clean exterior of transmission with suitable solvent or pressure washer.
 - (4) Remove torque converter from transmission.
- (5) Remove throttle and shift levers from valve body manual shaft and throttle lever shaft.
- (6) Mount transmission in repair stand C-3750-B or similar type stand (Fig. 73).
 - (7) Remove extension housing.
 - (8) Remove fluid pan.
- (9) Remove park/neutral position switch and seal (Fig. 74).
 - (10) Remove valve body.
- (11) Remove accumulator spring and piston (Fig. 75).

Fig. 73 Repair Stand

Fig. 74 Park/Neutral Position Switch

Fig. 75 Accumulator Piston And Spring

- (12) Loosen front band adjusting screw lock nut (Fig. 76) 4-5 turns. Then tighten band adjusting screw until band is tight around front clutch. This prevents front/rear clutches from coming out with pump and possibly damaging clutch or pump components.
 - (13) Remove oil pump bolts.
- (14) Thread bolts of Slide Hammer Tools C-3752 into threaded holes in pump body flange (Fig. 77).
- (15) Bump slide hammer weights outward to remove pump and reaction shaft support assembly from case (Fig. 77).
- (16) Loosen front band adjusting screw until band is completely loose (Fig. 76).
- (17) Squeeze front band together and remove band strut (Fig. 78).

Fig. 76 Front Band Adjusting Screw Lock Nut

- (18) Remove front and rear clutch units as an assembly. Grasp input shaft, hold clutch units together and remove them from case (Fig. 79).
- (19) Lift front clutch off rear clutch (Fig. 80). Set clutch units aside for overhaul.
- (20) Remove output shaft thrust washer from output shaft (or from rear clutch hub) (Fig. 81).
- (21) Remove output shaft thrust plate and washer from output shaft hub (Fig. 81).

Fig. 77 Oil Pump/Reaction Shaft Support

Fig. 78 Front Band Strut

- (22) Remove front band from case (Fig. 82).
- (23) Remove extension housing from transmission case.
- (24) Remove governor body and park gear from output shaft.
- (25) Remove output shaft and planetary geartrain as assembly (Fig. 83). Support geartrain with both hands during removal. Do not allow machined surfaces on output shaft to become nicked or scratched.
- (26) Loosen rear band adjusting screw 4-5 turns (Fig. 84).
- (27) Remove snap ring that secures low-reverse drum to rear support hub, however do not remove drum (Fig. 85).
- (28) Remove bolts attaching rear support to transmission case and pull support from low-reverse drum (Fig. 86).
- (29) Remove bolts attaching overrunning clutch cam and low-reverse drum to transmission case (Fig. 87).

Fig. 79 Front/Rear Clutch Assemblies

Fig. 80 Separating Front Clutch From Rear Clutch

- (30) Using snap-ring plier, pull rear band anchor pin (located on the servo side of the rear support) from transmission case.
- (31) Remove rear band and link from transmission (Fig. 88).
 - (32) Separate link from rear band (Fig. 89).
- (33) If necessary remove front and rear band servo levers. All transmission components can be serviced without removing the levers.
 - (a) Using a 1/4 inch drive extension remove front band reaction pin access plug (Fig. 90).
 - (b) Remove front band reaction pin with pencil magnet. Pin is accessible from converter housing side of case (Fig. 91).
 - (c) Remove front band lever (Fig. 92).

Fig. 81 Output Shaft Thrust Plate and Washer

Fig. 82 Front Band

Fig. 83 Planetary Geartrain

- (d) Using snap-ring plier, pull rear band lever pivot from transmission case (Fig. 93).
- (e) Separate rear band servo lever from transmission.

Fig. 84 Rear Band Adjuster Location

Fig. 85 Low-Reverse Drum Snap Ring

Fig. 86 Rear Support

(34) Compress front servo rod guide about 1/8 in. with large C-clamp and Tool C-4470, or Spring Compressor Tool C-3422-B (Fig. 94).

Fig. 87 Overrunning Clutch Cam Bolt Locations

Fig. 88 Rear Band and Link

J9421-186

Fig. 89 Rear Band and Link

- (35) Remove front servo rod guide snap ring (Fig. 94). Exercise caution when removing snap ring. Servo bore can be scratched or nicked if care is not exercised.
- (36) Remove compressor tools and remove front servo rod guide, spring and servo piston.
- (37) Compress rear servo spring retainer about 1/16 in. with C-clamp and Tool C-4470 or SP-5560 (Fig. 95). Valve Spring Compressor C-3422-B can also be used to compress spring retainer.

Fig. 90 Front Band Reaction Pin Access Plug

Fig. 91 Front Band Reaction Pin

Fig. 92 Front Band Lever

(38) Remove rear servo spring retainer snap ring. Then remove compressor tools and remove rear servo spring and piston.

ASSEMBLY

- (1) Install rear servo piston, spring and spring retainer. Compress rear servo spring and retainer with Compressor Tool C-3422-B (Fig. 95) or a large C-clamp.
- (2) Install front servo piston, spring, and rod guide. Compress front servo rod guide with Valve

Fig. 93 Rear Band Servo Lever Pin

Fig. 94 Compressing Front Servo

Spring Compressor C-3422-B and install servo snap ring (Fig. 94).

- (3) Assemble link bar to band. Notched side of link toward band (Fig. 93).
- (4) Insert rear band through pan opening in transmission case.
 - (5) Insert hook on band onto adjuster lever.
- (6) Align holes in link bar with hole in transmission case outboard of rear support opening (Fig. 92).
 - (7) Insert anchor pin into case through link bar.
- (8) Examine bolt holes in overrunning clutch cam. Note that one hole is **not threaded** (Fig. 96). This hole must align with blank area in clutch cam bolt circle.

NOTE: The bolt holes in cam are slightly countersunk on one side. This side of cam faces rearward (toward rear support).

Fig. 95 Compressing Rear Servo Spring

- (9) Lubricate overrunning clutch rollers, springs and cam with Mopar® ATF Plus 3, type 7176, transmission fluid.
- (10) Position overrunning clutch on a clean, flat work surface with countersunk holes downward.
- (11) Place rear of low-reverse drum over overrunning clutch and align clutch rollers to hub of drum.
- (12) While slightly pivoting low-reverse drum, push hub of drum into overrunning clutch. Verify that countersunk holes are facing outward. Cam should be able to rotate in the drum clockwise only.
- (13) Insert a suitable awl through the rear support mounting hole closest to the pan sealing face. The awl should be next to the wide space area at the back of transmission case.
- (14) Insert low-reverse drum and overrunning clutch into front of transmission case and into rear hand.
- (15) Insert awl tip into the threaded hole next to the non-threaded hole in the overrunning clutch cam. Verify that non-threaded hole is aligned with wide space area on transmission case.
- (16) Push low-reverse drum rearward to close gap between cam and case.
- (17) Install overrunning clutch cam bolts. **Clutch cam bolts are shorter than rear support bolts.** Tighten cam bolts to 17 N⋅m (150 in. lbs. or 13 ft. lbs.) torque.
- (18) Hold low-reverse drum in position so rear support will not push it out of overrunning clutch.
- (19) Insert rear support into opening at rear of transmission case (Fig. 97).
- (20) Align support with the embossed arrow in the direction of the pan face.

Fig. 96 Clutch Cam Alignment

- (21) Install and tighten rear support bolts to 17 $N{\cdot}m$ (150 in. lbs.) torque.
- (22) Install snap ring to retain low-reverse drum to hub of rear support (Fig. 98).

Fig. 97 Rear Support

Fig. 98 Low-Reverse Drum Snap Ring

- (23) Lubricate output shaft, rear support bore and low-reverse drum hub with transmission fluid.
- (24) Install assembled output shaft and planetary geartrain in case (Fig. 99).
- (25) Align drive lugs on rear planetary gear with slots in low-reverse drum (Fig. 99). Then seat planetary assembly in drum.
 - (26) Install governor on output shaft.

Fig. 99 Output Shaft And Planetary Geartrain

- (27) Turn and secure transmission so that front opening is upward.
 - (28) Assemble front and rear clutches together.
 - (a) Check input shaft seal rings (Fig. 100). Verify that diagonal-cut ends of Teflon seal ring are properly joined and ends of metal ring are correctly hooked together. Also be sure rings are installed in sequence shown.
 - (b) Align teeth on clutch discs in line.
 - (c) Insert input shaft on rear clutch into center of front clutch (Fig. 101).
 - (d) Engage teeth on rear clutch hub into teeth on clutch (Fig. 103). Rotate front clutch retainer back and forth until completely seated on rear clutch.
- (29) Install output shaft thrust plate on shaft hub in planetary geartrain driving shell (Fig. 102). Use petroleum jelly to hold thrust plate in place.
- (30) Check rear clutch thrust washer. Use additional petroleum jelly to hold washer in place if necessary.
- (31) Coat output shaft thrust washer with petroleum jelly. Install washer in rear clutch hub (Fig. 104). Use enough petroleum jelly to hold washer in place. Be sure grooved side of washer faces rearward (toward output shaft) as shown. Also note that washer only fits one way in clutch hub.
- (32) Align drive teeth on rear clutch discs with small screwdriver (Fig. 105). This will make installation into front of planetary geartrain easier.

Fig. 100 Input Shaft Seal Ring Location

Fig. 101 Front and Rear Clutches

Fig. 102 Output Shaft Thrust Plate

- (33) Insert front band into opening at front of transmission case (Fig. 106).
- (34) Install front and rear clutch units as assembly (Fig. 107). Align rear clutch with front annulus gear

Fig. 103 Assembling Front And Rear Clutch Units

Fig. 104 Output Shaft Thrust Washer

Fig. 105 Aligning Rear Clutch Disc Lugs and install assembly in driving shell. Be sure output shaft thrust washer and thrust plate are not displaced during installation.

(35) Carefully work assembled clutches back and forth to engage and seat rear clutch discs on front annulus gear. Verify that front clutch drive lugs are fully engaged in slots of driving shell after installation.

Fig. 106 Front Band

Fig. 107 Installing Front/Rear Clutch

- (36) Engage front band on adjusting screw and hold band in place.
- (37) Install strut between band lever and front band (Fig. 108).
- (38) Tighten front band adjusting screw until band just grips clutch retainer. Verify that front/rear clutches are still seated before continuing.
- (39) Verify that reaction shaft support hub seal rings are hooked together (Fig. 109).
- (40) Coat front clutch thrust washer with petroleum jelly to hold it in place. Then install washer over reaction shaft hub and seat it on pump (Fig. 110).

CAUTION: The thrust washer bore (I.D.), is chamfered on one side. Make sure the chamfered side is installed so it faces the pump.

Fig. 108 Front Band Linkage Installation

Fig. 109 Reaction Shaft Support Seal Rings

Fig. 110 Front Clutch Thrust Washer Installation

- (41) Thread two Pilot Stud Tools C-3288-B into bolt holes in oil pump flange (Fig. 111).
 - (42) Align and install oil pump gasket (Fig. 111).
- (43) Lubricate oil pump seals with Mopar® Door-Ease, or Ru-Glyde, Door Eze, or ATF Plus 3.
- (44) Install oil pump (Fig. 112). Align and position pump on pilot studs. Slide pump down studs and work it into front clutch hub and case by hand. Then install two or three pump bolts to hold pump in place.
- (45) Remove pilot stud tools and install remaining oil pump bolts. Tighten bolts alternately in diagonal pattern to 20 N·m (15 ft. lbs.).

Fig. 111 Installing Pilot Studs And Oil Pump Gasket

Fig. 112 Installing Oil Pump And Reaction Shaft Support

(46) Measure input shaft end play (Fig. 113).

NOTE: If end play is incorrect, transmission is incorrectly assembled, or output shaft thrust washer and/or thrust plate are worn and need to be changed.

- (a) Attach dial indicator (C-3339) to converter housing. Position indicator plunger against input shaft and zero indicator.
- (b) Move input shaft in and out and record reading. End play should be 0.56 2.31 mm (0.022 0.091 in.).

Fig. 113 Checking Input Shaft End Play

- (47) Position transmission on work surface with pan face upward.
 - (48) Install valve body.
 - (49) Adjust front and rear bands.
 - (50) Install fluid filter and pan.
 - (51) Install rear extension housing.
 - (52) Install torque converter.

OVERRUNNING CLUTCH/LOW-REVERSE DRUM

DISASSEMBLY

- (1) If the clutch assembly came out with the low-reverse drum, thread two clutch cam bolts into the cam. Then lift the cam out of the drum with the bolts (Fig. 114). Rotate the cam back and forth to ease removal if necessary.
- (2) Remove the clutch roller and spring assembly from the overrunning clutch race.

ASSEMBLY

- (1) Assemble clutch rollers and springs in retainer if necessary (Fig. 115).
- (2) Install overrunning clutch roller, spring and retainer assembly in clutch cam (Fig. 116).
- (3) Temporarily assemble and check overrunning clutch operation as follows:
 - (a) Assemble cam and clutch.

Fig. 114 Removing Overrunning Clutch From Low-Reverse Drum

- (b) Install clutch assembly on low-reverse drum with twisting motion (Fig. 117).
- (c) Install drum-clutch assembly in case and install clutch cam bolts.
- (d) Install rear support and support attaching bolts.
- (e) Check low-reverse drum rotation. **Drum** should rotate freely in clockwise direction and lock when turned in counterclockwise direction (as viewed from front of case).

Fig. 115 Overrunning Clutch Rollers, Springs, Retainer

FRONT SERVO PISTON

DISASSEMBLY

- (1) Remove seal ring from rod guide (Fig. 119).
- (2) Remove small snap ring from servo piston rod. Then remove piston rod, spring and washer from piston.

Fig. 116 Assembling Overrunning Clutch And Cam

Fig. 117 Temporary Assembly Of Clutch And Drum To Check Operation

(3) Remove and discard servo component O-ring and seal rings.

ASSEMBLY

- (1) Lubricate new O-ring and seal rings with petroleum jelly and install them on piston, guide and rod.
- (2) Install rod in piston. Install spring and washer on rod. Compress spring and install snap ring (Fig. 119).
- (3) Set servo components aside for installation during transmission reassembly.

J9121-140

Fig. 118 Assembled Overrunning Clutch

Fig. 119 Front Servo

REAR SERVO PISTON

DISASSEMBLY

- (1) Remove small snap ring and remove plug and spring from servo piston (Fig. 120).
 - (2) Remove and discard servo piston seal ring.

ASSEMBLY

- (1) Lubricate piston and guide seals with petroleum jelly. Lubricate other servo parts with Mopar® ATF Plus 3, Type 7176, transmission fluid.
 - (2) Install new seal ring on servo piston.
- (3) Assemble piston, plug, spring and new snap ring.
 - (4) Lubricate piston seal lip with petroleum jelly.

Fig. 120 Rear Servo Components
OIL PUMP AND REACTION SHAFT SUPPORT

DISASSEMBLY

- (1) Remove seal ring from housing and reaction shaft support (Fig. 121).
- (2) Mark pump housing and support assembly for alignment reference.
- (3) Remove bolts attaching pump body to support (Fig. 122).

Fig. 121 Removing Pump Seal Ring

Fig. 122 Pump Support Bolts

- (4) Separate support from pump housing (Fig. 123).
- (5) Remove inner and outer gears from reaction shaft support (Fig. 124).

- (6) If pump seal was not removed during transmission disassembly, remove seal with punch and hammer.
- (7) Remove front clutch thrust washer from support hub (Fig. 125).

J9321-213

Fig. 123 Separating Pump Housing From Reaction Shaft Support

Fig. 124 Pump Gear Removal

Fig. 125 Support Hub Thrust Washer

OIL PUMP BUSHING REPLACEMENT

- (1) Remove pump bushing with Tool Handle C-4171 and Bushing Remover SP-3551 from Tool Set C-3887-J (Fig. 126).
- (2) Install new pump bushing with Tool Handle C-4171 and Bushing Installer SP-5117 (Fig. 126). Bushing should be flush with pump housing bore.

(3) Stake new pump bushing in two places with blunt punch (Fig. 127). Remove burrs from stake points with knife blade afterward.

Fig. 126 Removing Oil Pump Bushing

Fig. 127 Staking Oil Pump Bushing

REACTION SHAFT SUPPORT BUSHING REMOVAL

- (1) Assemble Bushing Remover Tools SP-1191, 3633 and 5324 (Fig. 128). **Do not clamp any part of reaction shaft or support in vise.**
- (2) Hold Cup Tool SP-3633 firmly against reaction shaft and thread remover SP-5324 into bushing as far as possible by hand. Then thread remover tool 3-4 additional turns into bushing with a wrench.
- (3) Turn remover tool hex nut down against remover cup to pull bushing from shaft. Clean all chips from shaft after bushing removal.
- (4) Lightly grip old bushing in vise or with pliers and back remover tool out of bushing.

- (5) Assemble Bushing Installer Tools C-4171 and SP-5325 (Fig. 128).
 - (6) Slide new bushing onto Installer Tool SP-5325.
- (7) Position reaction shaft support upright on a clean smooth surface.
- (8) Align bushing in bore. Then tap bushing into place until Bushing Installer SP-5325 bottoms.
- (9) Clean reaction shaft support thoroughly after installing bushing.

Fig. 128 Replacing Reaction Shaft Support Bushing ASSEMBLY

- (1) Lubricate gear bore in pump housing with transmission fluid.
 - (2) Lubricate pump gears with transmission fluid.
- (3) Support pump housing on wood blocks (Fig. 129).
- (4) Install outer gear in pump housing (Fig. 129). Gear can be installed either way (it is not a one-way fit).
 - (5) Install pump inner gear (Fig. 130).

CAUTION: The pump inner gear is a one way fit. The bore on one side of the gear inside diameter (I.D.) is chamfered. Be sure the chamfered side faces forward (to front of pump).

- (6) Install new thrust washer on hub of reaction shaft support. Lubricate washer with transmission fluid or petroleum jelly.
- (7) If reaction shaft seal rings are being replaced, install new seal rings on support hub (Fig. 131). Lubricate seal rings with transmission fluid or petroleum jelly after installation. Squeeze each ring until ring ends are securely hooked together.

Fig. 129 Supporting Pump And Installing Outer Gear

Fig. 130 Pump Inner Gear Installation

CAUTION: The reaction shaft support seal rings will break if overspread, or twisted. If new rings are being installed, spread them only enough for installation. Also be very sure the ring ends are securely hooked together after installation. Otherwise, the rings will either prevent pump installation, or break during installation.

Fig. 131 Hub Seal Ring Position

- (8) Install reaction shaft support on pump housing (Fig. 132).
- (9) Align reaction support on pump housing. Use alignment marks made at disassembly. Or, rotate support until bolt holes in support and pump housing are all aligned (holes are offset for one-way fit).

Fig. 132 Assembling Reaction Shaft Support And Pump Housing

- (10) Install all bolts that attach support to pump housing. Then tighten bolts finger tight.
- (11) Tighten support-to-pump bolts to required torque as follows:
 - (a) Reverse pump assembly and install it in transmission case. Position pump so bolts are facing out and are accessible.
 - (b) Secure pump assembly in case with 2 or 3 bolts, or with pilot studs.
 - (c) Tighten support-to-pump bolts to 20 N·m (15 ft. lbs.).
 - (d) Remove pump assembly from transmission case.
- (12) Install new oil seal in pump with Special Tool C-4193 and Tool Handle C-4171 (Fig. 133). Be sure seal lip faces inward.
- (13) Install new seal ring around pump housing. Be sure seal is properly seated in groove.
- (14) Lubricate lip of pump oil seal and O-ring seal with transmission fluid.

Fig. 133 Pump Oil Seal Installation

J9321-222

Fig. 134 Front Clutch Components

FRONT CLUTCH

DISASSEMBLY

- (1) Remove waved snap ring and remove pressure plate, clutch plates and clutch discs (Fig. 134).
- (2) Compress clutch piston spring with Compressor Tool C-3575-A (Fig. 135). Be sure legs of tool are seated squarely on spring retainer before compressing spring.
- (3) Remove retainer snap ring and remove compressor tool.
- (4) Remove spring retainer and clutch spring. Note position of retainer on spring for assembly reference.
- (5) Remove clutch piston from clutch retainer. Remove piston by rotating it up and out of retainer.
- (6) Remove seals from clutch piston and clutch retainer hub. Discard both seals as they are not reusable.

ASSEMBLY

- (1) Soak clutch discs in transmission fluid while assembling other clutch parts.
- (2) Install new seals on piston and in hub of retainer. Be sure lip of each seal faces interior of clutch retainer.
- (3) Lubricate lips of piston and retainer seals with liberal quantity of Mopar® Door Ease, or Ru-Glyde.

Then lubricate retainer hub, bore and piston with light coat of transmission fluid.

(4) Install clutch piston in retainer (Fig. 136). Use twisting motion to seat piston in bottom of retainer. A thin strip of plastic (about 0.020" thick), can be used to guide seals into place if necessary.

CAUTION: Never push the clutch piston straight in. This will fold the seals over causing leakage and clutch slip. In addition, never use any type of metal tool to help ease the piston seals into place. Metal tools will cut, shave, or score the seals.

- (5) Position spring in clutch piston (Fig. 137).
- (6) Position spring retainer on top of piston spring (Fig. 138). Make sure retainer is properly installed. Small raised tabs should be facing upward. Semicircular lugs on underside of retainer are for positioning retainer in spring.
- (7) Compress piston spring and retainer with Compressor Tool C-3575-A (Fig. 135). Then install new snap ring to secure spring retainer and spring.
- (8) Install clutch plates and discs (Fig. 134). Install steel plate then disc until all plates and discs are installed. The front clutch uses 4 clutch discs.

Fig. 135 Compressing Front Clutch Piston Spring

Fig. 136 Front Clutch Piston Installation

Fig. 137 Clutch Piston Spring Installation

- (9) Install pressure plate and waved snap ring (Fig. 134).
- (10) Using a suitable gauge bar and dial indicator, measure clutch plate clearance (Fig. 139).

Fig. 138 Correct Spring Retainer Installed Position

- (a) Position gauge bar across the clutch drum with the dial indicator pointer on the pressure plate (Fig. 139).
- (b) Using two small screw drivers, lift the pressure plate and compress the waved snap-ring. This will assure that the snap-ring is at the top of the groove.
- (c) Release the pressure plate and zero the dial indicator.
- (d) Lift the pressure plate until it contacts the waved snap-ring and record the dial indicator reading.

Clearance should be 1.70 to 3.40 mm (0.067 to 0.134 in.). If clearance is incorrect, clutch discs, plates pressure plates and snap ring may have to be changed.

Fig. 139 Measuring Front Clutch Pack Clearance REAR CLUTCH

DISASSEMBLY

- (1) Remove thrust washer from forward side of clutch retainer.
 - (2) Remove input shaft front/rear seal rings.
- (3) Remove selective clutch pack snap ring (Fig. 140).

Fig. 140 Rear Clutch Components

- (4) Remove top pressure plate, clutch discs, steel plates, bottom pressure plate and wave snap ring and wave spring (Fig. 140).
 - (5) Remove clutch piston with rotating motion.
 - (6) Remove and discard piston seals.
- (7) Remove input shaft snap-ring (Fig. 141). It may be necessary to press the input shaft in slightly to relieve tension on the snap-ring.
- (8) Press input shaft out of retainer with shop press and suitable size press tool. Use a suitably sized press tool to support the retainer as close to the input shaft as possible.

ASSEMBLY

- (1) Soak clutch discs in transmission fluid while assembling other clutch parts.
- (2) Install new seal rings on clutch retainer hub and input shaft if necessary (Fig. 142).
 - (a) Be sure clutch hub seal ring is fully seated in groove and is not twisted.
- (3) Lubricate splined end of input shaft and clutch retainer with transmission fluid. Then press input shaft into retainer. Use a suitably sized press tool to support retainer as close to input shaft as possible.
 - (4) Install input shaft snap-ring (Fig. 141).
- (5) Invert retainer and press input shaft in opposite direction until snap-ring is seated.

Fig. 141 Removing/Installing Input Shaft Snap-Ring

- (6) Install new seals on clutch piston. Be sure lip of each seal faces interior of clutch retainer.
- (7) Lubricate lip of piston seals with generous quantity of Mopar® Door Ease. Then lubricate retainer hub and bore with light coat of transmission fluid.
- (8) Install clutch piston in retainer. Use twisting motion to seat piston in bottom of retainer. A thin

strip of plastic (about 0.020" thick), can be used to guide seals into place if necessary.

CAUTION: Never push the clutch piston straight in. This will fold the seals over causing leakage and clutch slip. In addition, never use any type of metal tool to help ease the piston seals into place. Metal tools will cut, shave, or score the seals.

- (9) Install piston spring in retainer and on top of piston (Fig. 145). Concave side of spring faces downward (toward piston).
- (10) Install wave spring in retainer (Fig. 145). Be sure spring is completely seated in retainer groove.

J9121-538

Fig. 142 Rear Clutch Retainer And Input Shaft Seal Ring Installation

- (11) Install bottom pressure plate (Fig. 140). Ridged side of plate faces downward (toward piston) and flat side toward clutch pack.
- (12) Install first clutch disc in retainer on top of bottom pressure plate. Then install a clutch plate followed by a clutch disc until entire clutch pack is installed (4 discs and 3 plates are required) (Fig. 140).
 - (13) Install top pressure plate.
- (14) Install selective snap ring. Be sure snap ring is fully seated in retainer groove.
- (15) Using a suitable gauge bar and dial indicator, measure clutch pack clearance (Fig. 146).
 - (a) Position gauge bar across the clutch drum with the dial indicator pointer on the pressure plate (Fig. 146).
 - (b) Using two small screw drivers, lift the pressure plate and release it.
 - (c) Zero the dial indicator.

Fig. 143 Input Shaft Seal Ring Identification

Fig. 144 Pressing Input Shaft Into Rear Clutch Retainer

(d) Lift the pressure plate until it contacts the snap-ring and record the dial indicator reading.

Clearance should be 0.64 - 1.14 mm (0.025 - 0.045 in.). If clearance is incorrect, steel plates, discs, selective snap ring and pressure plates may have to be changed.

The selective snap ring thicknesses are:

• .107-.109 in.

Fig. 145 Piston Spring/Wave Spring Position

- .098-.100 in.
- .095-.097 in.
- .083-.085 in.
- .076-.078 in.
- .071-.073 in.
- .060-.062 in.
- (16) Coat rear clutch thrust washer with petroleum jelly and install washer over input shaft and into clutch retainer (Fig. 147). Use enough petroleum jelly to hold washer in place.

Fig. 146 Checking Rear Clutch Pack Clearance
PLANETARY GEARTRAIN/OUTPUT SHAFT

DISASSEMBLY

- (1) Remove planetary snap ring (Fig. 148).
- (2) Remove front annulus and planetary assembly from driving shell (Fig. 148).
- (3) Remove snap ring that retains front planetary gear in annulus gear (Fig. 149).
- (4) Remove tabbed thrust washer and tabbed thrust plate from hub of front annulus (Fig. 150).

Fig. 147 Installing Rear Clutch Thrust Washer

- (5) Separate front annulus and planetary gears (Fig. 150).
- (6) Remove front planetary gear front thrust washer from annulus gear hub.
- (7) Separate and remove driving shell, rear planetary and rear annulus from output shaft (Fig. 151).
- (8) Remove front planetary rear thrust washer from driving shell.
- (9) Remove tabbed thrust washers from rear planetary gear.
- (10) Remove lock ring that retains sun gear in driving shell. Then remove sun gear, spacer and thrust plates.

J9421-175

Fig. 148 Front Annulus And Planetary Assembly Removal

ASSEMBLY

- (1) Lubricate output shaft and planetary components with transmission fluid. Use petroleum jelly to lubricate and hold thrust washers and plates in position.
- (2) Assemble rear annulus gear and support if disassembled. Be sure support snap ring is seated and

Fig. 149 Front Planetary Snap Ring Removal

J9421-177

Fig. 150 Front Planetary And Annulus Gear Disassembly

J9421-178

Fig. 151 Removing Driving Shell, Rear Planetary
And Rear Annulus

that shoulder-side of support faces rearward (Fig. 152).

(3) Install rear thrust washer on rear planetary gear. Use enough petroleum jelly to hold washer in place. Also be sure all four washer tabs are properly engaged in gear slots.

- (4) Install rear annulus over and onto rear planetary gear (Fig. 152).
- (5) Install assembled rear planetary and annulus gear on output shaft (Fig. 153). Verify that assembly is fully seated on shaft.
- (6) Install front thrust washer on rear planetary gear (Fig. 154). Use enough petroleum jelly to hold washer on gear. Be sure all four washer tabs are seated in slots.
 - (7) Install spacer on sun gear (Fig. 155).
- (8) Install thrust plate on sun gear (Fig. 156). Note that driving shell thrust plates are interchangeable. Use either plate on sun gear and at front/rear of shell.

Fig. 152 Assembling Rear Annulus And Planetary
Gear

Fig. 153 Installing Rear Annulus And Planetary On Output Shaft

- (9) Hold sun gear in place and install thrust plate over sun gear at rear of driving shell (Fig. 157).
- (10) Position wood block on bench and support sun gear on block (Fig. 158). This makes it easier to align and install sun gear lock ring. Keep wood block

Fig. 154 Installing Rear Planetary Front Thrust Washer

Fig. 155 Installing Spacer On Sun Gear

Fig. 156 Installing Driving Shell Front Thrust Plate
On Sun Gear

handy as it will also be used for geartrain end play check.

- (11) Align rear thrust plate on driving shell and install sun gear lock ring. Be sure ring is fully seated in sun gear ring groove (Fig. 159).
- (12) Install assembled driving shell and sun gear on output shaft (Fig. 160).
- (13) Install rear thrust washer on front planetary gear (Fig. 161). Use enough petroleum jelly to hold washer in place and be sure all four washer tabs are seated.

Fig. 157 Installing Driving Shell Rear Thrust Plate

Fig. 158 Supporting Sun Gear On Wood Block

- (14) Install front planetary gear on output shaft and in driving shell (Fig. 162).
- (15) Install front thrust washer on front planetary gear. Use enough petroleum jelly to hold washer in place and be sure all four washer tabs are seated.
- (16) Assemble front annulus gear and support, if necessary. Be sure support snap ring is seated.
- (17) Install front annulus on front planetary (Fig. 162).
- (18) Position thrust plate on front annulus gear support (Fig. 163). Note that plate has two tabs on it. These tabs fit in notches of annulus hub.

DISASSEMBLY AND ASSEMBLY (Continued)

Fig. 159 Installing Sun Gear Lock Ring

Fig. 160 Installing Assembled Sun Gear And Driving Shell On Output Shaft

Fig. 161 Installing Rear Thrust Washer On Front Planetary Gear

- (19) Install thrust washer in front annulus (Fig. 164). Align flat on washer with flat on planetary hub. Also be sure washer tab is facing up.
- (20) Install front annulus snap ring (Fig. 165). Use snap ring pliers to avoid distorting ring during installation. Also be sure ring is fully seated.
- (21) Install planetary selective snap ring with snap ring pliers (Fig. 166). Be sure ring is fully seated.
- (22) Turn planetary geartrain assembly over so driving shell is facing workbench. Then support geartrain on wood block positioned under forward end of output shaft. This allows geartrain components to move forward for accurate end play check.
- (23) Check planetary geartrain end play with feeler gauge (Fig. 167). Gauge goes between shoulder on output shaft and end of rear annulus support.
- (24) Geartrain end play should be 0.12 to 1.22 mm (0.005 to 0.048 in.). If end play is incorrect, snap ring (or thrust washers) may have to be replaced. Snap ring is available in three different thicknesses for adjustment purposes.

Fig. 162 Installing Front Planetary And Annulus Gears

Fig. 163 Positioning Thrust Plate On Front Annulus Support

DISASSEMBLY AND ASSEMBLY (Continued)

Fig. 164 Installing Front Annulus Thrust Washer

Fig. 165 Installing Front Annulus Snap Ring

Fig. 166 Installing Planetary Selective Snap Ring

Fig. 167 Checking Planetary Geartrain End Play
CLEANING AND INSPECTION

GOVERNOR AND PARK GEAR

Thoroughly clean all the governor parts in a suitable cleaning solution but do not use any type of caustic cleaning agents.

The governor weight components (Fig. 168) and the governor valve (Fig. 169), must slide freely in their bores when clean and dry. Minor surface scratches and burrs can be smoothed with crocus cloth.

The aluminum governor valve and outer weight have a hard coating on them. Check condition of this coating carefully. Do not reuse either part if the coating is damaged.

Inspect the governor weight spring for distortion. Replace the spring, if distorted, collapsed, or broken. Clean the filter in solvent and dry it with compressed air. Replace the filter, if damaged. Inspect the park gear for chipped or worn gear teeth or damaged ring grooves. Replace the gear, if damaged.

Check the teeth on the park gear for wear or damage. Replace the gear if necessary. Inspect the metal seal rings on the park gear hub. Replace the rings only if severely worn, or broken.

Fig. 168 Governor Weights

Fig. 169 Governor Components

EXTENSION HOUSING AND PARK LOCK

Clean the housing and park lock components in solvent and dry them with compressed air.

Examine the park lock components in the housing. If replacement is necessary, remove the shaft with parallel jaw snap ring pliers (Fig. 170) and remove the sprag and spring. Then remove the spring clip and reaction plug (Fig. 171). Compress the reaction plug spring clip only enough to remove and install it. Do not distort the clip during removal or installation.

Be sure a replacement sprag is installed so the sprag locking lug will face the park gear (Fig. 172). Also be sure the spring is correctly positioned as shown (Fig. 172). The sprag may not retract if the spring is improperly installed.

Fig. 170 Park Sprag, Shaft And Spring

VALVE BODY

Serviceable valve body components are:

- · park lock rod and E-clip
- switch valve and spring
- pressure adjusting screw bracket
- throttle valve lever
- manual lever
- manual lever shaft seal, washer, E-clip and detent ball
 - fluid filter
 - converter clutch solenoid

The remaining valve body components are serviced only as part of a complete valve body assembly.

Clean the valve body components in a parts cleaning solution only. Do not use gasoline, kerosene, or any type of caustic solution. Dry the parts with com-

Fig. 171 Park Sprag Reaction Plug And Spring

Location

Fig. 172 Correct Position Of Sprag And Spring

pressed air. Make sure all passages are clean and free from obstructions.

NOTE: Do not use rags or shop towels to wipe off valve body components. Lint from these materials will adhere to the valve body components. Lint will interfere with valve operation and may clog filters and fluid passages.

Inspect the throttle and manual valve levers and shafts. Do not attempt to straighten a bent shaft or correct a loose lever. Replace these components if worn, bent, loose or damaged in any way.

Inspect all of the valve body mating surfaces for scratches, nicks, burrs, or distortion. Use a straightedge to check surface flatness. Minor scratches may be removed with crocus cloth using only very light pressure.

Minor distortion of a valve body mating surface may be corrected by smoothing the surface with crocus cloth. The cloth should be in sheet form and be positioned on a surface plate, sheet of plate glass, or equally flat surface. However, if distortion is severe or any surfaces are heavily scored, the valve body will have to be replaced.

CAUTION: Many of the valve body valves and plugs are made of coated aluminum. Aluminum components can be identified by the dark color of the special coating applied to the surface (or by testing with a magnet). DO NOT polish or sand aluminum valves or plugs with any type of material, or under any circumstances. This practice might damage the special coating and cause the valves and plugs to stick and bind.

Inspect the valves and plugs for scratches, burrs, nicks, or scores. Also inspect the coating on the aluminum valves and plugs (Fig. 173). If the coating is damaged or worn through, the valve (or valve body) should be replaced.

Aluminum valves and plugs should not be sanded or polished under any circumstances. However, minor burrs or scratches on steel valves and plugs can be removed with crocus cloth but do not round off the valve or plug edges. Squareness of these edges is vitally important. These edges prevent foreign matter from lodging between the valves, plugs and bore.

Inspect all the valve and plug bores in the valve body. Use a penlight to view the bore interiors. Replace the valve body if any bores are distorted or scored. Inspect all of the valve body springs. The springs must be free of distortion, warpage or broken coils.

Trial fit each valve and plug in its bore to check freedom of operation. When clean and dry, the valves and plugs should drop freely into the bores. Valve body bores do not change dimensionally with use. If the valve body functioned correctly when new, it will continue to operate properly after cleaning and inspection. It should not be necessary to replace a valve body assembly unless it is damaged in handling.

TRANSMISSION

Clean the case in a solvent tank. Flush the case bores and fluid passages thoroughly with solvent. Dry the case and all fluid passages with compressed air. Be sure all solvent is removed from the case and that all fluid passages are clear.

NOTE: Do not use shop towels or rags to dry the case (or any other transmission component) unless they are made from lint-free materials. Lint will readily adhere to case surfaces and transmission components and will circulate throughout the transmission after assembly. A sufficient quantity of lint can block fluid passages and interfere with valve body operation.

Inspect the case for cracks, porous spots, worn servo bores, or damaged threads. However, the case will have to be replaced if it exhibits damage or wear.

Lubricate the front band adjusting screw and locknut with petroleum jelly and thread it part way into the case. Be sure the screw turns freely and does not bind. Install the locknut on the screw after checking screw thread operation.

Inspect all the transmission bushings during overhaul. Bushing condition is important as worn, scored bushings contribute to low pressures, clutch slip and accelerated wear of other components. Replace worn, or scored bushings, or if doubt exists about bushing condition.

Use recommended tools to replace bushings. The tools are sized and designed to remove, install and seat bushings correctly. The bushing replacement tools are included in Bushing Tool Sets C-3887-B, or C-3887-J.

Pre-sized service bushings are available for replacement purposes. Only the sun gear bushings are not serviced. Replace the gear as an assembly if the bushings are severely scored, or worn.

Heli-Coil inserts are recommended for repairing damaged, stripped or worn threads in aluminum parts. Stainless steel inserts are preferred.

The use of crocus cloth is permissible where necessary, providing it is used carefully. When used on valves, use extreme care to avoid rounding off sharp edges. Sharp edges are vital as they prevent foreign matter from getting between the valve and valve bore.

Do not reuse oil seals, gaskets, seal rings, or O-rings during overhaul. Replace these parts as a matter of course. Also do not reuse snap rings or E-clips that are bent or distorted. Replace these parts as well.

Lubricate transmission parts with Mopar® ATF Plus 3, Type 7176 transmission fluid during assembly. Use Mopar® Door Ease, or Ru-Glyde to lubricate

Fig. 173 Valve Body Components

piston seals and O-rings. Use petroleum jelly on thrust washers and to hold parts in place during reassembly.

OVERRUNNING CLUTCH/LOW-REVERSE DRUM/OVERDRIVE PISTON RETAINER

Clean the overrunning clutch assembly, clutch cam, low-reverse drum, and overdrive piston retainer in solvent. Dry them with compressed air after cleaning.

Inspect condition of each clutch part after cleaning. Replace the overrunning clutch roller and spring assembly if any rollers or springs are worn or damaged, or if the roller cage is distorted, or damaged. Replace the cam if worn, cracked or damaged.

Replace the low-reverse drum if the clutch race, roller surface or inside diameter is scored, worn or damaged. Do not remove the clutch race from the low-reverse drum under any circumstances. Replace the drum and race as an assembly if either component is damaged.

Examine the overdrive piston retainer carefully for wear, cracks, scoring or other damage. Be sure the retainer hub is a snug fit in the case and drum. Replace the retainer if worn or damaged.

FRONT SERVO

Clean the servo piston components with solvent and dry them with compressed air. Wipe the band clean with lint free shop towels.

Replace the front band if distorted, lining is burned, flaking off, or worn to the point where the grooves in the lining material are no longer visible.

Inspect the servo components (Fig. 174). Replace the springs if collapsed, distorted or broken. Replace the guide, rod and piston if cracked, bent, or worn. Discard the servo snap ring if distorted or warped.

Check the servo piston bore for wear. If the bore is severely scored, or damaged, it will be necessary to replace the case.

Replace any servo component if doubt exists about condition. Do not reuse suspect parts.

REAR SERVO

Remove and discard the servo piston seal ring (Fig. 175). Then clean the servo components with solvent and dry with compressed air. Replace either spring if collapsed, distorted or broken. Replace the plug and piston if cracked, bent, or worn. Discard the servo snap rings and use a new ones at assembly.

Fig. 174

Fig. 175 Rear Servo Components

OIL PUMP AND REACTION SHAFT SUPPORT

- (1) Clean pump and support components with solvent and dry them with compressed air.
- (2) Check condition of the seal rings and thrust washer on the reaction shaft support. The seal rings do not need to be replaced unless cracked, broken, or severely worn.
- (3) Inspect the pump and support components. Replace the pump or support if the seal ring grooves or machined surfaces are worn, scored, pitted, or damaged. Replace the pump gears if pitted, worn chipped, or damaged.
- (4) Inspect the pump bushing. Then check the reaction shaft support bushing. Replace either bushing only if heavily worn, scored or damaged. It is not necessary to replace the bushings unless they are actually damaged.
- (5) Install the gears in the pump body and measure pump component clearances as follows:
 - (a) Clearance between outer gear and reaction shaft housing should be 0.010 to 0.063 mm (0.0004 to 0.0025 in.). Clearance between inner gear and reaction shaft housing should be 0.010 to 0.063 mm (0.0004 to 0.0025 in.). Both clearances can be measured at the same time by:
 - (I) Installing the pump gears in the pump housing.

- (II) Position an appropriate piece of Plastigage across both gears.
- (III) Align the plastigage to a flat area on the reaction shaft housing.
- (IV) Install the reaction shaft to the pump housing.
- (V) Separate the reaction shaft housing from the pump housing and measure the Plastigage[®] following the instructions supplied with it.
- (b) Clearance between inner gear tooth and outer gear should be 0.08 to 0.19 mm (0.0035 to 0.0075 in.). Measure clearance with an appropriate feeler gauge.
- (c) Clearance between outer gear and pump housing should also be 0.010 to 0.19 mm (0.0035 to 0.0075 in.). Measure clearance with an appropriate feeler gauge.

FRONT CLUTCH

Clean and inspect the front clutch components. Replace the clutch discs if warped, worn, scored, burned or charred, or if the facing is flaking off. Replace the steel plates if heavily scored, warped, or broken. Be sure the driving lugs on the plates are in good condition. The lugs must not be bent, cracked or damaged in any way.

Replace the clutch spring and spring retainer if either is distorted, warped or broken.

Check the lug grooves in the clutch retainer. The steel plates should slide freely in the slots. Replace the retainer if the grooves are worn or damaged.

Check action of the check ball in the retainer (Fig. 176). The ball must move freely and not stick.

NOTE: Inspect the clutch retainer bushings carefully (Fig. 177). The retainer bushings are NOT serviceable. It will be necessary to replace the retainer if either bushing is scored, or worn.

Inspect the piston and retainer seal surfaces for nicks or scratches. Minor scratches can be removed with crocus cloth. However, replace the piston and/or retainer if the seal surfaces are seriously scored.

REAR CLUTCH

Clean the clutch components with solvent and dry them with compressed air.

Check condition of the input shaft seal rings. It is not necessary to remove or replace rings unless they are broken, cracked, or no longer securely hooked together.

Inspect the input shaft splines and machined surfaces. Very minor nicks or scratches can be smoothed off with crocus cloth. replace the shaft if the splines are damaged, or any of the machined surfaces are severely scored.

Fig. 176 Front Clutch Piston Retainer Check Ball Location

Fig. 177 Retainer Bushing Location/Inspection

Replace the clutch discs if warped, worn, scored, burned/charred, the lugs are damaged, or if the facing is flaking off.

Replace the steel plates and the pressure plate if heavily scored, warped, or broken. Be sure the driving lugs on the discs and plates are also in good condition. The lugs must not be bent, cracked or damaged in any way.

Replace the piston spring and wave spring if either part is distorted, warped or broken.

Check the lug grooves in the clutch retainer. The steel plates should slide freely in the slots. Replace the retainer if the grooves are worn or damaged. Also check action of the retainer check ball. The ball must move freely and not stick.

Inspect the piston and retainer seal surfaces for nicks or scratches. Minor scratches can be removed with crocus cloth. However, replace the piston and/or retainer if the seal surfaces are seriously damaged.

Check thrust washer condition. Washer thickness should be 1.55 to 1.60 mm (0.061 to 0.063 in.). Replace the washer if worn or damaged.

Check condition of the two seal rings on the input shaft and the single seal ring on the piston retainer hub. Replace the seal rings only if severely worn, cracked, or cannot be hooked together.

PLANETARY GEARTRAIN/OUTPUT SHAFT

Clean the intermediate shaft and planetary components in solvent and dry them with compressed air. Do not spin the planetary pinion gears with compressed air.

Inspect the planetary gear sets and annulus gears. The planetary pinions, shafts, washers, and retaining pins are serviceable. However, if a pinion carrier is damaged, the entire planetary gear set must be replaced as an assembly.

Replace the annulus gears if the teeth are chipped, broken, or worn, or the gear is cracked. Replace the planetary thrust plates and the tabbed thrust washers if cracked, scored or worn.

Inspect the machined surfaces of the output shaft. Be sure the oil passages are open and clear. Replace the shaft if scored, pitted, or damaged.

Inspect the sun gear and driving shell. If either component is worn or damaged, remove the sun gear rear retaining ring and separate the sun gear and thrust plate from the driving shell. Then replace the necessary component.

Replace the sun gear as an assembly if the gear teeth are chipped or worn. Also replace the gear as an assembly if the bushings are scored or worn. The sun gear bushings are not serviceable. Replace the thrust plate if worn, or severely scored. Replace the driving shell if distorted, cracked, or damaged in any way.

Replace all snap rings during geartrain assembly. Reusing snap rings is not recommended.

ADJUSTMENTS

GEARSHIFT CABLE

Check adjustment by starting the engine in Park and Neutral. Adjustment is OK if the engine starts only in these positions. Adjustment is incorrect if the engine starts in one but not both positions. If the engine starts in any position other than Park or Neutral, or if the engine will not start at all, the park/neutral position switch may be faulty.

Gearshift Adjustment Procedure

- (1) Shift transmission into Park.
- (2) Raise vehicle.

- (3) Release cable adjuster clamp (at transmission end of cable) to unlock cable.
- (4) Unsnap cable from cable mounting bracket on transmission (Fig. 178).
 - (5) Slide cable eyelet off transmission shift lever.
- (6) Verify transmission shift lever is in Park detent by moving lever fully rearward. Last rearward detent is Park position.
- (7) Verify positive engagement of transmission park lock by attempting to rotate propeller shaft. Shaft will not rotate when park lock is engaged.
 - (8) Slide cable eyelt onto transmission shift lever.
- (9) Snap shift cable adjuster into mounting bracket on transmission.
- (10) Lock shift cable by pressing cable adjuster clamp down until it snaps into place.
- (11) Lower vehicle and check engine starting. Engine should start only in Park and Neutral.

Fig. 178 Shift Cable Attachment At Transmission-Typical

BRAKE TRANSMISSION SHIFT INTERLOCK CABLE ADJUSTMENT

- (1) Shift transmission into PARK.
- (2) Remove shift lever bezel and console screws. Raise bezel and console for access to cable.
- (3) Pull cable lock button up to release cable (Fig. 179).
 - (4) Turn ignition switch to LOCK position.
- (5) Use a spacer to create a one millimeter gap between the shifter pawl and top of the shift gate.
- (6) Pull cable forward. Then release cable and press cable lock button down until it snaps in place.
 - (7) Check adjustment as follows:

Fig. 179 Park Lock Cable Attachment

- (a) Check movement of release shift handle button (floor shift) or release lever (column shift). You should not be able to press button inward or move column lever.
 - (b) Turn ignition switch to RUN position.
 - (c) Shifting out of park should not be possible.
- (d) Apply the brake and attempt to shift out of PARK. Shifting should be possible.
- (e) While the transmission is shifted out of PARK, release the brake and attempt to shift through all gears. Release the shift button at least once during this procedure. The ignition key should not go to the LOCK position.
- (f) Return transmission to the PARK position without applying the brake.
- (8) Move shift lever back to PARK and check ignition switch operation. You should be able to turn switch to LOCK position and shift lever release button/lever should not move.

TRANSMISSION THROTTLE VALVE CABLE ADJUSTMENT

The transmission throttle valve is operated by a cam on the throttle lever. The throttle lever is operated by an adjustable cable (Fig. 180). The cable is attached to an arm mounted on the throttle lever shaft. A retaining clip at the engine-end of the cable is removed to provide for cable adjustment. The retaining clip is then installed back onto the throttle valve cable to lock in the adjustment.

A correctly adjusted throttle valve cable will cause the throttle lever on the transmission to move simultaneously with the throttle body lever from the idle position. Proper adjustment will allow simultaneous movement without causing the transmission throttle lever to either move ahead of, or lag behind the lever on the throttle body.

Fig. 180 Throttle Cable Attachment At Engine

Checking Throttle Valve Cable Adjustment

- (1) Turn ignition key to OFF position.
- (2) Remove air cleaner.
- (3) Verify that lever on throttle body is at curb idle position. Then verify that transmission throttle lever (Fig. 181) is also at idle (fully forward) position.

Fig. 181 Throttle Cable Attachment At Transmission

- (4) Slide cable off attachment stud on throttle body lever.
- (5) Compare position of cable end to attachment stud on throttle body lever:
- Cable end and attachment stud should be aligned (or centered on one another) to within 1 mm (0.039 in.) in either direction.
- If cable end and attachment stud are misaligned (off center), cable will have to be adjusted as described in Throttle Valve Cable Adjustment procedure.
- (6) Reconnect cable end to attachment stud. Then with aid of a helper, observe movement of transmission throttle lever and lever on throttle body.

- If both levers move simultaneously from idle to half-throttle and back to idle position, adjustment is correct.
- If transmission throttle lever moves ahead of, or lags behind throttle body lever, cable adjustment will be necessary. Or, if throttle body lever prevents transmission lever from returning to closed position, cable adjustment will be necessary.

Throttle Valve Cable Adjustment Procedure

- (1) Turn ignition switch to OFF position.
- (2) Remove air cleaner if necessary.
- (3) Disconnect cable end from attachment stud. Carefully slide cable off stud. Do not pry or pull cable off.
- (4) Verify that transmission throttle lever is in fully closed position. Then be sure lever on throttle body is at curb idle position.
- (5) Insert a small screwdriver under edge of retaining clip and remove retaining clip.
- (6) Center cable end on attachment stud to within 1 mm (0.039 in.).

NOTE: Be sure that as the cable is pulled forward and centered on the throttle lever stud, the cable housing moves smoothly with the cable. Due to the angle at which the cable housing enters the spring housing, the cable housing may bind slightly and create an incorrect adjustment.

- (7) Install retaining clip onto cable housing.
- (8) Check cable adjustment. Verify transmission throttle lever and lever on throttle body move simultaneously.

FRONT BAND ADJUSTMENT

The front (kickdown) band adjusting screw is located on the left side of the transmission case above the manual valve and throttle valve levers.

- (1) Raise vehicle.
- (2) Loosen band adjusting screw locknut (Fig. 182). Then back locknut off 3-5 turns. Be sure adjusting screw turns freely in case. Apply lubricant to screw threads if necessary.
- (3) Tighten band adjusting screw to 8 N·m (72 in. lbs.) torque with Inch Pound Torque Wrench C-3380-A, a 3-in. extension and 5/16 socket.

CAUTION: If Adapter C-3705 is needed to reach the adjusting screw (Fig. 183), tighten the screw to only 5 N·m (47-50 in. lbs.) torque.

- (4) Back off front band adjusting screw 2-1/2 turns.
- (5) Hold adjuster screw in position and tighten locknut to 41 N·m (30 ft. lbs.) torque.
 - (6) Lower vehicle.

Fig. 182 Front Band Adjustment Screw Location

Fig. 183 Band Adjustment Adapter Tool

REAR BAND ADJUSTMENT

The transmission oil pan must be removed for access to the rear band adjusting screw.

- (1) Raise vehicle.
- (2) Remove transmission oil pan and drain fluid.
- (3) Loosen band adjusting screw locknut 5-6 turns. Be sure adjusting screw turns freely in lever.
- (4) Tighten adjusting screw to 5 N·m (41 in. lbs.) (Fig. 184).
 - (5) Back off adjusting screw 7 turns.
- (6) Hold adjusting screw in place and tighten lock-nut to $34~\mathrm{N\cdot m}$ (25 ft. lbs.) torque.
- (7) Position new gasket on oil pan and install pan on transmission. Tighten pan bolts to 17 N·m (13 ft. lbs.) torque.
- (8) Lower vehicle and refill transmission with Mopar® ATF Plus 3, Type 7176, fluid.

VALVE BODY

CONTROL PRESSURE ADJUSTMENTS

There are two control pressure adjustments on the valve body:

- Line Pressure
- Throttle Pressure

Fig. 184 Rear Band Adjustment Screw Location

Line and throttle pressures are interdependent because each affects shift quality and timing. As a result, both adjustments must be performed properly and in the correct sequence. Adjust line pressure first and throttle pressure last.

LINE PRESSURE ADJUSTMENT

Measure distance from the valve body to the inner edge of the adjusting screw with an accurate steel scale (Fig. 185).

Distance should be 33.4 mm (1-5/16 in.).

If adjustment is required, turn the adjusting screw in, or out, to obtain required distance setting.

NOTE: The 33.4 mm (1-5/16 in.) setting is an approximate setting. Manufacturing tolerances may make it necessary to vary from this dimension to obtain desired pressure.

One complete turn of the adjusting screw changes line pressure approximately 1-2/3 psi (9 kPa).

Turning the adjusting screw counterclockwise increases pressure while turning the screw clockwise decreases pressure.

Fig. 185 Line Pressure Adjustment

THROTTLE PRESSURE ADJUSTMENT

Insert Gauge Tool C-3763 between the throttle lever cam and the kickdown valve stem (Fig. 186).

Push the gauge tool inward to compress the kick-down valve against the spring and bottom the throt-tle valve.

Maintain pressure against kickdown valve spring. Turn throttle lever stop screw until the screw head touches throttle lever tang and the throttle lever cam touches gauge tool.

NOTE: The kickdown valve spring must be fully compressed and the kickdown valve completely bottomed to obtain correct adjustment.

J9521-109

Fig. 186 Throttle Pressure Adjustment SCHEMATICS AND DIAGRAMS

HYDRAULIC SCHEMATICS

HYDRAULIC FLOW IN D-THIRD GEAR

HYDRAULIC FLOW IN D-THIRD GEAR (CONVERTER CLUTCH APPLIED)

HYDRAULIC FLOW AT PART THROTTLE 3-2 KICKDOWN

HYDRAULIC FLOW IN REVERSE

J9421-163

J9421-164

SPECIFICATIONS

30RH AUTOMATIC TRANSMISSION

GENERAL

COMPONENT	METRIC	INCH
Oil pump gear tip clearance	0.089-0.190 mm	0.0035-0.0075 in.
Planetary end play	0.125-1.19 mm	0.001-0.047 in.
Input shaft end play	0.56-2.31 mm	0.022-0.091 in.
Clutch pack clearance/Front 4-disc.	1.70-3.40 mm	0.067-0.134 in.
Clutch pack clearance/Rear 4-disc.	0.559-0.940 mm	0.022-0.037 in.
Front clutch spring usage	1 spring	
30RH-Front Band adjustment from 72 in. lbs.	Back off 2.5 turns	
30RH-Rear Band adjustment from 41 in. lbs.	Back off 7 turns	
Recommended fluid	Mopar®, ATF Plus 3, Type 7176	

THRUST WASHER/SPACER/SNAP RING DIMENSIONS

COMPONENT	METRIC	INCH
Front clutch thrust washer (reaction shaft support hub)	1.55 mm	0.061 in.
Rear clutch thrust washer (clutch retainer)	1.55 mm	0.061 in.
Output shaft thrust plate (output shaft pilot hub)	1.5-1.6mm	0.060-0.063 in.
Output shaft thrust washer (rear clutch hub)	1.3-1.4 mm	0.052-0.054 in.
	1.7-1.8 mm	0.068-0.070 in.
	2.1-2.2 mm	0.083-0.086 in.
Rear clutch pack snap ring	1.5-1.6 mm	0.06-0.062 in.
	1.7-1.8 mm	0.068-0.070 in.
	1.9-2.0 mm	0.076-0.078 in.
Planta	1.0-1.1 mm	0.040-0.044 in.
Planetary geartrain snap ring (at front of output shaft)	1.6-1.7 mm	0.062-0.066 in.
(at none of output onally	2.1-2.2 mm	0.082-0.086 in.

PRESSURE TEST—ALL

ITEM	RANGE	PRESSURE
Line pressure (at accumulator)	Closed throttle	372-414 kPa (54-60 psi).
Front servo	Third gear only	No more than 21 kPa (3 psi) lower than line pressure.
Rear servo	1 range	No more than 21 kPa (3 psi) lower than line pressure.
	R range	1103 kPa (160 psi) at idle, builds to 1862 kPa (270 psi) at 1600 rpm.
Governor	D range closed throttle	Pressure should respond smoothly to changes in mph and return to 0-7 kPa (0-1.5 psi) when stopped with transmission in D, 1, 2. Pressure above 7 kPa (1.5 psi) at stand still will prevent transmission from downshifting.

SPECIFICATIONS (Continued)

TORQUE

DESCRIPTION	TORQUE
Bolt, torque convertor	31 N·m (23 ft. lbs.)
Bolt/nut, crossmember	68 N·m (50 ft. lbs.)
Bolt, driveplate to crankshaft	75 N·m (55 ft. lbs.)
Plug, front band reaction	17 N·m (13 ft. lbs.)
Locknut, front band adj	34 N·m (25 ft. lbs.)
Switch, park/neutral	34 N·m (25 ft. lbs.)
Bolt, fluid pan	17 N·m (13 ft. lbs.)
Bolt, oil pump	20 N·m (15 ft. lbs.)
Bolt, overrunning clutch cam	17 N·m (13 ft. lbs.)
Plug, pressure test port	14 N·m (10 ft. lbs.)
Bolt, reaction shaft support	20 N·m (15 ft. lbs.)
Locknut, rear band	41 N·m (30 ft. lbs.)
Bolt. speedometer adapter	. 11 N·m (8 ft. lbs.)
Screw, fluid filter	4 N·m (35 in. lbs.)
Bolt, valve body to case 12	2 N·m (100 in. lbs.)

SPECIAL TOOLS

30RH TRANSMISSIONS

Remover-6957

Installer-6951

Retainer, Detent Ball and Spring-6583

Snap-ring Plier—6823

Pilot Stud—C-3288-B

Pressure Gauge—C-3292

Pressure Gauge—C-3293SP

Spring Compressor—C-3575-A

Dial Indicator—C-3339

Spring Compressor—C-3863-A

Spring Compressor—C-3422-B

Adapter, Band Adjuster—C-3705

Fixture, Engine Support—C-3487-A

Transmission Repair Stand—C-3750-B

Puller, Slide Hammer—C-3752

Cup, Remover—SP-3633

Gauge, Throttle Setting—C-3763

Remover, Bushing—SP-5301

Seal Installer—C-3860-A

Installer, Bushing—SP-5118

Bushing Remover/Installer—C-3887-J

Installer, Bushing—SP-5302

Remover, Bushing—SP-3550

Remover, Bushing—SP-3629

Installer, Bushing—SP-5511

Snap-ring Plier—C-3915

Seal Remover—C-3985-B

Bushing, Remover—6957

Flusher, Oil Cooler—6906

Installer—C-3995-A

Universal Handle—C-4171

Remover/Installer—C-4470

Nut, Bushing Remover—SP-1191

AW-4 AUTOMATIC TRANSMISSION

INDEX

page	page
GENERAL INFORMATION	TRANSMISSION SOLENOID TESTING 180
AW-4 AUTOMATIC TRANSMISSION 164	SERVICE PROCEDURES
CAUSES OF BURNT FLUID	ALUMINUM THREAD REPAIR
EFFECTS OF INCORRECT FLUID LEVEL 164	CHECKING FLUID CONDITION
FLUID CONTAMINATION	CHECKING FLUID LEVEL
RECOMMENDED FLUID CAPACITY 164	FLUSHING COOLERS AND TUBES 186
TRANSMISSION IDENTIFICATION 164	OIL PUMP VOLUME CHECK
TRANSMISSION RANGES AND SHIFT LEVER	REFILLING AFTER OVERHAUL OR FLUID/
POSITIONS	FILTER CHANGE
DESCRIPTION AND OPERATION	TRANSMISSION CONTROL MODULE (TCM)
BRAKE TRANSMISSION SHIFT INTERLOCK	SERVICE
MECHANISM	REMOVAL AND INSTALLATION
ELECTRONIC CONTROLS	ACCUMULATOR PISTONS AND SPRINGS 199
FIRST/SECOND/THIRD/REVERSE GEAR	ADAPTER HOUSING SEAL
COMPONENTS	BRAKE TRANSMISSION SHIFT INTERLOCK 193
FOURTH GEAR OVERDRIVE	GEARSHIFT CABLE
COMPONENTS	MANUAL VALVE SHAFT SEAL
GEARTRAIN OPERATION AND APPLICATION	OIL PUMP SEAL
CHARTS	PARK ROD AND PAWL
HYDRAULIC SYSTEM	PARK/NEUTRAL POSITION SWITCH 191
OIL PUMP	SECOND COAST BRAKE SERVO
SENSORS	SOLENOID HARNESS ADAPTER SEAL 196
TORQUE CONVERTER	SPEED SENSOR
TRANSMISSION CONTROL MODULE (TCM) 166	SPEED SENSOR ROTOR-SPEEDOMETER
TRANSMISSION COOLER	DRIVE GEAR
TRANSMISSION VALVE BODY	SPEEDOMETER ADAPTER
COMPONENTS	TORQUE CONVERTER
TRANSMISSION VALVE BODY SOLENOIDS 166	TRANSMISSION AND TORQUE
DIAGNOSIS AND TESTING	CONVERTER
FLOW TESTING TRANSMISSION MAIN	TRANSMISSION CONTROL MODULE 196
COOLER	TRANSMISSION THROTTLE CABLE 202
GEARSHIFT CABLE	TRANSMISSION VALVE BODY
GENERAL DIAGNOSIS INFORMATION 177	TRANSMISSION VALVE BODY SOLENOIDS 193
HYDRAULIC PRESSURE TEST	DISASSEMBLY AND ASSEMBLY
MANUAL SHIFTING TEST	DIRECT CLUTCH
PARK/NEUTRAL POSITION SWITCH 183	FORWARD CLUTCH
PRELIMINARY INSPECTION AND	FRONT PLANETARY GEAR
ADJUSTMENT 177	OIL PUMP
PRESSURE TEST ANALYSIS	OVERDRIVE PLANETARY GEAR AND
SERVICE DIAGNOSIS	CLUTCH
SPEED SENSOR TESTING 183	OVERDRIVE SUPPORT
STALL SPEED TEST ANALYSIS 180	PLANETARY/BRAKE PACK/OUTPUT SHAFT 260
TEST PROCEDURE	SECOND BRAKE
THROTTLE VALVE CABLE	SUN GEAR AND NO. 1 ONE–WAY CLUTCH 254
TIME LAG TEST	TRANSMISSION
TIME LAG TEST ANALYSIS 180	TRANSMISSION VALVE BODY
TORQUE CONVERTER STALL TEST 179	CLEANING AND INSPECTION
TORQUE CONVERTER STATOR CLUTCH	TRANSMISSION PARTS CLEANING AND
INSPECTION 184	
1130.11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IINGELVIIVIN /D/

ADJ	USTNIENTS	
BR	AKE TRANSMISSION SHIFT INTERLOCK	
(CABLE ADJUSTMENT	267
GE	ARSHIFT CABLE	267
TR	ANSMISSION THROTTLE VALVE CABLE	
A	ADJUSTMENT	268

GENERAL INFORMATION

AW-4 AUTOMATIC TRANSMISSION

The AW-4 is a 4-speed, electronically controlled automatic transmission (Fig. 1).

The running gear consists of an oil pump, planetary gear sets, clutch and brake units, hydraulic accumulators, a valve body with electrical solenoids, and a transmission control module (TCM). Cables are used to provide shift and throttle pressure control information. A park/neutral position switch permits engine starting in the Park and Neutral ranges only.

The valve body solenoids are controlled by signals from the transmission control module (TCM). Signal sequence is determined by inputs from various sensors to the TCM.

Fourth gear is an 0.75:1 ratio overdrive range. First, second, third and reverse gear are conventional ranges. Third gear ratio is 1:1. A separate planetary gear set provides overdrive operation in fourth gear.

TRANSMISSION IDENTIFICATION

The transmission I.D. plate is attached to the case (Fig. 2). The plate contains the transmission serial and model numbers. Refer to the information on this plate when ordering service parts.

SPECIFICATIONS	
AW-4 AUTOMATIC TRANSMISSION	269
SPECIAL TOOLS	
AW-4	278

J8921-400

Fig. 2 Transmission Identification

RECOMMENDED FLUID CAPACITY

Recommended and preferred fluid for the AW-4 transmission is Mopar Dexron IIE/Mercon.

Mopar Dexron II can be used but only in emergency situations where Mercon fluid is not available.

Approximate refill capacity for the AW-4 is 8.0 liters (16.9 pints).

EFFECTS OF INCORRECT FLUID LEVEL

A low fluid level allows the pump to take in air along with the fluid. Air in the fluid will cause fluid pressures to be low and develop slower than normal.

GENERAL INFORMATION (Continued)

If the transmission is overfilled, the gears churn the fluid into foam. This aerates the fluid and causing the same conditions occurring with a low level. In either case, air bubbles cause fluid overheating, oxidation and varnish buildup which interferes with valve, clutch and servo operation. Foaming also causes fluid expansion which can result in fluid overflow from the transmission vent or fill tube. Fluid overflow can easily be mistaken for a leak if inspection is not careful.

CAUSES OF BURNT FLUID

Burnt, discolored fluid is a result of overheating which has two primary causes.

- (1) A result of restricted fluid flow through the main and/or auxiliary cooler. This condition is usually the result of a faulty or improperly installed drainback valve, a damaged main cooler, or severe restrictions in the coolers and lines caused by debris or kinked lines.
- (2) Heavy duty operation with a vehicle not properly equipped for this type of operation. Trailer towing or similar high load operation will overheat the transmission fluid if the vehicle is improperly equipped. Such vehicles should have an auxiliary transmission fluid cooler, a heavy duty cooling system, and the engine/axle ratio combination needed to handle heavy loads.

FLUID CONTAMINATION

Transmission fluid contamination is generally a result of:

- adding incorrect fluid
- failure to clean dipstick and fill tube when checking level
 - engine coolant entering the fluid
 - internal failure that generates debris
- overheat that generates sludge (fluid break-down)
- failure to reverse flush cooler and lines after repair
- failure to replace contaminated converter after repair

The use of non recommended fluids can result in transmission failure. The usual results are erratic shifts, slippage, abnormal wear and eventual failure due to fluid breakdown and sludge formation. Avoid this condition by using recommended fluids only.

The dipstick cap and fill tube should be wiped clean before checking fluid level. Dirt, grease and other foreign material on the cap and tube could fall into the tube if not removed beforehand. Take the time to wipe the cap and tube clean before withdrawing the dipstick.

Engine coolant in the transmission fluid is generally caused by a cooler malfunction. The only remedy

is to replace the radiator as the cooler in the radiator is not a serviceable part. If coolant has circulated through the transmission for some time, an overhaul may also be necessary; especially if shift problems had developed.

The transmission cooler and lines should be reverse flushed whenever a malfunction generates sludge and/or debris. The torque converter should also be replaced at the same time.

Failure to flush the cooler and lines will result in recontamination. Flushing applies to auxiliary coolers as well. The torque converter should also be replaced whenever a failure generates sludge and debris. This is necessary because normal converter flushing procedures will not remove all contaminants.

TRANSMISSION RANGES AND SHIFT LEVER POSITIONS

The AW-4 transmission has six ranges and shift lever positions. Park, Reverse and Neutral are conventional and mechanically operated. The 1-2, 3 and D ranges provide electronically controlled shifting.

The 1-2 position provides first and second gear only. The 3 position provides first, second and third gear.

The D range provides first through fourth gear. Overdrive fourth gear range is available only when the shift lever is in D position (Fig. 3).

Fig. 3 AW-4 Shift Lever Positions And Transmission Ranges

DESCRIPTION AND OPERATION

ELECTRONIC CONTROLS

21 - 166

The AW-4 is electronically controlled in 1, 2, 3 and D ranges. Controls consist of the transmission control module (TCM), valve body solenoids and various sensors. The sensors monitor vehicle speed, throttle opening, shift lever position and brake pedal application.

TRANSMISSION CONTROL MODULE (TCM)

The module determines shift and converter clutch engagement timing based on signals from sensors. The valve body solenoids are activated, or deactivated accordingly.

The TCM has a self diagnostic program. Component and circuitry malfunctions can be diagnosed with the DRB scan tool. Once a malfunction is noted and stored in control module memory, it is retained even after the problem has been corrected. To cancel a stored malfunction, disconnect and reconnect the "Trans." fuse in the module harness.

TRANSMISSION VALVE BODY SOLENOIDS

The solenoids are mounted on the valve body and operated by the TCM. The solenoids control operation of the converter clutch and shift valves in response to input signals from the module.

SENSORS

Sensors include:

- throttle position sensor (TPS)
- transmission speed sensor
- vehicle speed sensor
- park/neutral position switch
- brake switch

The throttle position sensor is mounted on the throttle body. It electronically determines throttle position and relays this information to the transmission control module to determine shift points and converter clutch engagement.

The transmission speed sensor consists of a rotor and magnet on the transmission output shaft and a switch in the extension housing or adapter. The sensor switch is activated each time the rotor and magnet complete one revolution. Sensor signals are sent to the transmission control module.

The park/neutral position switch is mounted on the valve body manual shaft. The switch signals shift linkage and manual valve position to the transmission control module through an interconnecting harness. The switch prevents engine starting in all gears other than Park or Neutral.

The brake switch is in circuit with the torque converter clutch solenoid. The switch disengages the converter clutch whenever the brakes are applied.

The switch is mounted on the brake pedal bracket and signals the transmission control module when the pedal is pressed or released.

TOROUE CONVERTER

A three element torque converter is used for all applications. The converter contains an impeller, stator, and turbine.

The AW-4 converters are all equipped with a converter clutch mechanism. The clutch consists of a sliding clutch piston, clutch springs and the clutch disc material (Fig. 4). The clutch provides optimum torque transfer and economy when engaged.

80aef248

Fig. 4 Torque Converter (With Clutch)

The clutch disc is attached to the converter front cover. The clutch piston and clutch springs are attached to the turbine hub. The springs dampen engine firing impulses and loads during the initial phase of converter clutch engagement.

Clutch engagement is controlled by transmission valve body solenoid number three and by the converter clutch relay valve. The solenoid channels line pressure to the clutch through the relay valve at clutch engagement speeds.

Torque converter clutch engagement occurs in second gear in 1-2 position; third gear in 3 position and third and fourth gear in D position.

FOURTH GEAR OVERDRIVE COMPONENTS

The overdrive system consists of the input shaft, one—way clutch, planetary sun gear, ring gear, planetary carrier, overdrive clutch and overdrive brake (Fig. 5). The overdrive elements are controlled and

DESCRIPTION AND OPERATION (Continued)

J8921-402

Fig. 5 Fourth Gear Overdrive Components

applied through transmission valve body solenoid number two.

In fourth gear, the overdrive brake prevents the overdrive sun gear from turning. The overdrive input shaft and planetary carrier rotate as a unit. The sun gear and overdrive direct clutch drum are in mesh and operate as a single unit. The direct clutch splines function as the hub for the overdrive brake. The one–way clutch outer race is in mesh with the planetary carrier. The inner race is fixed to the sun gear shaft.

FIRST/SECOND/THIRD/REVERSE GEAR COMPONENTS

First through third and reverse gear components are outlined in (Fig. 6).

The input shaft is meshed with the direct clutch hub and the forward clutch drum. These elements rotate as a unit. The forward clutch hub rotates as a unit with the front planetary ring gear. The direct clutch drum is meshed with the forward end of the planetary sun gear.

The second brake hub serves as the outer race of one-way clutch No. 1. The clutch inner race is locked with the front/rear sun gear. The inner race of one-way clutch No. 2 is splined to the transmission case

Fig. 6 First/Second/Third/Reverse Gear Components

DESCRIPTION AND OPERATION (Continued)

and is locked. The outer race rotates as a unit with the rear planetary carrier.

The rear planetary ring gear is splined to the output shaft. The front planetary carrier and rear carrier ring gear are meshed and rotate as a unit with the output shaft.

The Component Function Chart describes basic function of various geartrain elements. The Component Application Chart indicates which elements (including valve body solenoids), are applied in the various gear ranges.

GEARTRAIN OPERATION AND APPLICATION CHARTS

Operation and application of the first through fourth and reverse gear elements are outlined in the function and application charts.

COMPONENT FUNCTION CHART

COMPONENT NAME	COMPONENT FUNCTION
Overdrive Direct Clutch	Connects overdrive sun gear and overdrive carrier.
Overdrive Brake	Prevents overdrive sun gear from turning either clockwise or counter-clockwise.
Overdrive One-Way Clutch	When transmission is driven by engine, connects overdrive sun gear and overdrive carrier.
Forward Clutch	Connects input shaft and front ring gear.
Direct Clutch	Connects input shaft to the front and rear ring gears.
Second Coast Brake	Prevents front and rear sun gear from turning either clockwise or counter-clockwise.
Second Brake	Prevents outer race of number 1 one-way clutch from turning either clockwise or counter-clockwise, thus preventing the front and rear sun gears from turning counter-clockwise.
First/Reverse Brake	Prevents the rear planetary carrier from turning either clockwise or counter-clockwise.
Number 1 One-way Clutch	When second brake is operating, prevents the front and rear sun gears from turning counter-clockwise.
Number 2 One-Way Clutch	Prevents the rear planetary carrier from turning counter-clockwise.

HYDRAULIC SYSTEM

body section (Fig. 8). The remaining control and shift

COMPONENT APPLICATION CHART

Shift Lever Position	Gear	Valve Body Solenoid No. 1	Valve Body Solenoid No. 2	OVERDRIVE	FORWARD	DIRECT	OVERDRIVE	SECOND COAST BRAKE	SECOND	FIRST/ REVERSE BRAKE	OVERDRIVE ONE-WAY CLUTCH	NO.1 ONE-WAY CLUTCH	NO.2 ONE-WAY CLUTCH
Р	Park	ON	OFF	•					-				
R	Reverse	ON	OFF	•		•				•	•		
N	Neutral	ON	OFF	•									
	First	ON	OFF	•	•						•		•
D	Second	ON	ON	•	• _				•		•	•	
b	Third	OFF	ON	•	•	•			•		•		
	OD	OFF	OFF		•	•	•		•				
3	First	ON	OFF	•	•						•		•
	Second	ON	ON	•	•			•	•		•	•	
	Third	OFF	ON	•	•	•			•		•		
1-2	First	ON	OFF	•	•					•	•		•
	Second	ON	ON	•	•			•	•		•	•	

●=Applied J8921-405

The hydraulic system consists of the pump, valve body and solenoids, and four hydraulic accumulators. The oil pump provides lubrication and operating pressure.

The valve body controls application of the clutches, brakes, second coast band, and the converter clutch. The valve body solenoids control sequencing of the 1–2, 2–3 and 3–4 shift valves. The solenoids are activated by signals from the transmission control module.

The accumulators are used in the clutch and brake feed circuits to control initial apply pressure. Spring loaded accumulator pistons modulate the initial surge of apply pressure for smooth engagement.

OIL PUMP

A gear–type oil pump is used. The pump gears are mounted in the pump body. The pump drive gear is operated by the torque converter hub. Drive tangs on the hub engage in drive slots in the drive gear.

TRANSMISSION VALVE BODY COMPONENTS

Transmission operating pressure is supplied to the clutch and brake apply circuits through the transmission valve body. The valve body consists of an upper body, lower body, separator plate and upper and lower gaskets (Fig. 7). The various spool valves, sleeves, plugs and springs are located within the two body sections.

The manual valve, 1–2 shift valve, primary regulator valve, accumulator control valve, check balls, solenoids and oil strainers are located in the lower

Fig. 7 Two-Section Transmission Valve Body valves plus check balls and one additional oil strainer are located in the upper body section (Fig. 9).

Fig. 8 Upper Body Components

Fig. 9 Lower Body Components

MANUAL VALVE

The manual valve is operated by the gearshift linkage. The valve diverts fluid to the apply circuits according to shift lever position (Fig. 10).

PRIMARY REGULATOR VALVE

The primary regulator valve (Fig. 11) modulates line pressure to the clutches and brakes according to

engine load. The valve is actuated by throttle valve pressure.

During high load operation, the valve increases line pressure to maintain positive clutch and brake engagement. At light load, the valve decreases line pressure just enough to maintain smooth engagement.

Fig. 10 Manual Valve

Fig. 11 Primary Regulator Valve

THROTTLE VALVE AND DOWNSHIFT PLUG

The throttle valve and downshift plug (Fig. 12) control throttle pressure to the primary regulator valve.

Fig. 12 Throttle Valve And Downshift Plug

The downshift plug and throttle valve are operated by the throttle valve cam and throttle cable in response to engine throttle position. Throttle valve pressure is also modulated by the cut-back valve in second, third and fourth gear ranges.

CUT-BACK VALVE

The cut-back valve (Fig. 13) helps prevent excessive pump pressure buildup in second, third and fourth gear. The valve is actuated by throttle pressure and by line pressure from the second brake. The valve also helps regulate line pressure by controlling the amount of cut-back pressure to the throttle valve.

SECONDARY REGULATOR VALVE

The secondary regulator valve (Fig. 14) regulates converter clutch and transmission lubrication pressure. When primary regulator valve pressure exceeds requirements for clutch engagement or transmission lubrication, the secondary regulator valve is moved upward exposing the drain port. Excess pressure

Fig. 13 Cut-Back Valve

then bleeds off as needed. As pressure drops, spring tension moves the valve downward closing the drain port.

Fig. 14 Secondary Regulator Valve

CONVERTER CLUTCH RELAY VALVE

The converter clutch relay valve (Fig. 15) controls fluid flow to the converter clutch. The valve is operated by line pressure from the 1–2 shift valve and is controlled by solenoid valve number three.

Fig. 15 Converter Clutch Relay Valve

1-2 SHIFT VALVE

The 1-2 shift valve (Fig. 16) controls the 1-2 upshifts and downshifts. The valve is operated by the No. 2 valve body solenoid and line pressure from the manual valve, second coast modulator valve and the 2-3 shift valve.

When the transmission control module deactivates the solenoid, line pressure at the top of the valve moves the valve down closing the second brake accumulator feed port. As the solenoid is activated and the drain port opens, spring force moves the valve up exposing the second brake feed port for the shift to second gear.

2-3 SHIFT VALVE

The 2–3 shift valve (Fig. 17) controls the 2–3 upshifts and downshifts. The valve is actuated by the No. 1 valve body solenoid and by line pressure from the manual valve and primary regulator valve.

When the TCM activates solenoid No. 1, line pressure at the top of the 2–3 valve is released through the solenoid drain port. Spring tension moves the valve up to hold the valve in second gear position. As the solenoid is deactivated, line pressure then moves the valve down exposing the direct clutch feed port for the shift to third gear.

Fig. 16 1-2 Shift Valve

Fig. 17 2-3 Shift Valve

3-4 SHIFT VALVE

The 3–4 shift valve (Fig. 18) is operated by the No. 2 solenoid and by line pressure from the manual valve, 2–3 valve and primary regulator valve.

Energizing the No. 2 solenoid causes line pressure at the top of the 3–4 valve to be released through the solenoid valve drain port. Spring tension moves the valve up exposing the overdrive clutch accumulator feed port to apply the clutch.

De-energizing the solenoid causes the drain port to close. Line pressure then moves the valve down exposing the overdrive brake accumulator feed port for the shift to fourth gear.

In the 1–2 or 3 gearshift lever positions, line pressure from the 2–3 shift valve is applied to the lower end of the 3–4 valve. This holds the valve upward, closing off the overdrive brake feed port preventing a shift into fourth gear.

Fig. 18 3-4 Shift Valve

SECOND COAST MODULATOR VALVE

The second coast modulator valve (Fig. 19) momentarily reduces line pressure from the 1–2 shift valve. This cushions application of the second coast brake. The valve is operative when the shift lever and manual valve are in the 3 position.

Fig. 19 Second Coast Modulator Valve

LOW COAST MODULATOR VALVE

The low coast modulator valve (Fig. 20) momentarily reduces line pressure from the 2–3 shift valve;

this action cushions application of the first/reverse brake. The modulator valve operates when the shift lever and manual valve are in the 1–2 position.

Fig. 20 Low Coast Modulator Valve

ACCUMULATOR CONTROL VALVE

The accumulator control valve (Fig. 21) cushions the transmission clutch and brake applications. This is achieved by reducing back pressure to the accumulators when throttle opening is small. The valve is operated by line and throttle pressure.

Fig. 21 Accumulator Control Valve

ACCUMULATORS

Four accumulators are used to cushion clutch and brake application. The accumulators (Fig. 22), consist of spring loaded pistons. The pistons dampen the initial surge of apply pressure to provide smooth engagement during shifts.

Control pressure from the accumulator control valve is continuously applied to the back pressure side of the accumulator pistons. This pressure plus spring tension holds the pistons down. As line pressure from the shift valves enters the opposite end of the piston bore, control pressure and spring tension momentarily delay application of full line pressure to cushion engagement. The accumulators are all located in the transmission case (Fig. 22).

TRANSMISSION VALVE BODY SOLENOIDS

Three solenoids are used (Fig. 23). The No. 1 and 2 solenoids control shift valve operation by applying or releasing line pressure. The signal to apply or release pressure is provided by the transmission control module.

The No. 3 solenoid controls operation of the torque converter clutch. The solenoid operates in response to signals from the transmission control module.

Fig. 22 Accumulators

Fig. 23 Transmission Valve Body Solenoids

When the No. 1 and 2 solenoids are activated, the solenoid plunger is moved off its seat opening the drain port to release line pressure. When either solenoid is deactivated, the plunger closes the drain port.

The No. 3 solenoid operates in reverse. When the solenoid is deactivated, the solenoid plunger is moved off its seat opening the drain port to release line pressure. When the solenoid is activated, the plunger closes the drain port.

TRANSMISSION COOLER

MAIN COOLER

The transmission main cooler is located in the radiator. The main cooler can be flushed when necessary, however, the cooler is not a repairable component. If the cooler is damaged, plugged, or leaking, the radiator will have to be replaced.

AUXILIARY COOLER

The auxiliary cooler is mounted in front of the radiator at the driver side of the vehicle (Fig. 24). The cooler can be flushed when necessary, while mounted in the vehicle. The cooler can also be removed for access, repair, or replacement as needed.

The main and auxiliary coolers should both be flushed whenever a transmission or converter clutch malfunction generates sludge, debris, or particles of clutch friction material.

COOLER SERVICE

The main cooler (and radiator) and the auxiliary cooler can be removed for service or access to other components. Auxiliary cooler removal requires that the front bumper and radiator support be removed for access to the cooler lines and attaching bracket.

BRAKE TRANSMISSION SHIFT INTERLOCK MECHANISM

The Brake Transmission Shifter/Ignition Interlock (BTSI), is a cable and solenoid operated system. It interconnects the automatic transmission floor mounted shifter to the steering column ignition switch (Fig. 25). The system locks the shifter into the PARK position. The Interlock system is engaged whenever the ignition switch is in the LOCK or ACCESSORY position. An additional electrically activated feature will prevent shifting out of the PARK position unless the brake pedal is depressed at least one-half an inch. A magnetic holding device in line with the park/brake interlock cable is energized when the ignition is in the RUN position. When the key is in the RUN position and the brake pedal is depressed, the shifter is unlocked and will move into any position. The interlock system also prevents the ignition switch from being turned to the LOCK or

Fig. 24 Auxiliary Cooler Mounting (Left Hand Drive)

Fig. 25 Ignition Interlock Cable Routing

ACCESSORY position (Fig. 26) unless the shifter is fully locked into the PARK position.

Fig. 26 Ignition Key Cylinder Actuation
DIAGNOSIS AND TESTING

GENERAL DIAGNOSIS INFORMATION

Shift points are controlled by the transmission control module (TCM). Before attempting repair, determine if a malfunction is electrical or mechanical.

The TCM used with the AW-4 transmission has a self-diagnostic program compatible with the DRBIII scan tool. The tester will identify faults in the electrical control system.

Diagnosis should begin with the Preliminary Inspection And Adjustment procedure. It is will help determine if a problem is mechanical or electrical. The first procedure step is Initial Inspection and Adjustment.

PRELIMINARY INSPECTION AND ADJUSTMENT

- (1) Check and adjust transmission shift cable if necessary.
- (2) Verify transmission throttle cable operation. Repair or replace cable if necessary.
- (3) Check engine throttle operation. Operate accelerator pedal and observe injector throttle plate movement. Adjust linkage if throttle plate does not reach wide open position.
- (4) Check transmission fluid level when fluid is at normal operating temperature. Start engine. Shift transmission through all gear ranges then back to Neutral. Correct level is to Full or Add mark on dipstick with engine at curb idle speed.
- (5) Check and adjust park/neutral position switch if necessary.
- (6) Check throttle position sensor adjustment and operation. Adjust the sensor if necessary.

J8921-423

Preliminary Diagnosis Check Procedure

MANUAL SHIFTING TEST

- (1) This test determines if problem is related to mechanical or electrical component.
- (2) Stop engine and disconnect transmission control module or module fuse.
- (3) Road test vehicle. Shift transmission into each gear range. Transmission should operate as follows:
 - · lock in Park
 - back up in Reverse
 - not move in Neutral
- provide first gear only with shift lever in 1–2 position
- operate in third gear only with shift lever in 3 position
 - operate in overdrive fourth gear in D position.
- (4) If transmission operates as described, proceed to next step. However, if forward gear ranges were

difficult to distinguish (all feel the same), or vehicle would not back up, refer to diagnosis charts. Do not perform stall or time lag tests.

CAUTION: Do not over speed the engine during the next test step. Ease off the throttle and allow the vehicle to slow before downshifting.

- (5) Continue road test. Manually downshift transmission from D to 3, and from 3 to 1–2 position. Then manually upshift transmission through forward ranges again.
- (6) If transmission operation is OK, perform stall, time lag and pressure tests. If transmission shifting problem is encountered, refer to diagnosis charts.
- (7) If a problem still exists, continue testing with DRB scan tool.

HYDRAULIC PRESSURE TEST

Pressure Test Procedure

- (1) Connect pressure test gauge to test port on passenger side of transmission (Fig. 27). Use Adapter 7554 to connect gauge. Be sure test gauge has minimum capacity of 300 psi (2100 kPa).
- (2) Be sure transmission fluid is at normal operating temperature.

J8921-424

Fig. 27 Pressure Test Gauge Connection

(3) Apply parking brakes and block wheels.

WARNING: DO NOT ALLOW ANYONE TO STAND AT THE FRONT OR REAR OF THE VEHICLE WHILE PERFORMING THE FOLLOWING STEPS IN THE PRESSURE TEST.

- (4) Check and adjust engine curb idle speed.
- (5) Apply (and hold) service brakes.
- (6) Shift transmission into D range and note line pressure with engine at curb idle speed. Pressure should be 61-to-70 psi (421-to-481 kPa).
- (7) Press accelerator pedal to wide open throttle position and note line pressure. Pressure should be 173-to-209 psi (1196-to-1442 kPa).

CAUTION: Do not hold wide open throttle for more than 3-4 seconds at a time.

- (8) Shift transmission into Reverse and note line pressure with engine at curb idle speed. Pressure should be 75-to-90 psi (519-to-618 kPa).
- (9) Press accelerator to wide open throttle position and note line pressure in Reverse. Pressure should be 213-to-263 psi (1471-to-1814 kPa).

CAUTION: Do not hold wide open throttle for more than 4 seconds.

(10) If line pressure is not within specifications, adjust transmission throttle cable and repeat pressure test.

PRESSURE TEST ANALYSIS

If pressures in D and Reverse are higher than specified in test, check for the following:

- throttle cable loose, worn, binding or out of adjustment
- throttle valve, downshift plug, throttle cam, or primary regulator valve are sticking, worn or damaged

If pressures in D and Reverse are lower than specified in test, check for following:

- throttle cable loose, worn, binding or out of adjustment
- throttle valve, downshift plug, or throttle cam sticking, worn or damaged
- primary regulator valve sticking, worn, or damaged
 - · oil pump gears or housing worn, or damaged
 - overdrive clutch worn, or damaged

If pressures are low in D range only, check for following:

- forward clutch worn or damaged
- \bullet fluid leakage in D range circuit (component seal and O-rings)

If pressures are low in Reverse only, check for following:

- shift cable and manual valve out of adjustment
- fluid leakage in reverse circuit (component seal and O-rings)
 - · direct clutch worn or damaged
 - first/reverse brake worn or damaged.

TORQUE CONVERTER STALL TEST

Stall testing checks the holding ability of the transmission clutches and brakes and of the torque converter stator overrunning clutch. Stall speeds are checked in both Drive and Reverse ranges with the AW-4 transmission.

- (1) Before starting test, be sure fluid level is correct and fluid is at normal operating temperature.
- (2) Connect tachometer to engine. Position tachometer so it can be viewed from drivers seat.
 - (3) Apply parking brakes and block wheels.
 - (4) Apply and hold service brakes.
 - (5) Shift transfer case into 2H position.
 - (6) Start engine.

WARNING: DO NOT ALLOW ANYONE TO STAND AT THE FRONT OR REAR OF THE VEHICLE DURING THE TEST.

- (7) Shift transmission into D range.
- (8) Open throttle completely and record maximum engine rpm registered on tachometer. It takes anywhere from 4 to 10 seconds to reach maximum rpm. However, once maximum rpm has been achieved, do not hold wide open throttle for more than 3-4 seconds.

CAUTION: Stalling the converter causes a rapid increase in fluid temperature. To avoid fluid overheating, hold wide open throttle for no more than 4 seconds after reaching peak rpm. In addition, if more than one stall test is required, run the engine at 1000 rpm with the transmission in Neutral for at least 20 seconds to cool the fluid.

- (9) Stall speed should be in 2100–2400 rpm range in Drive.
- (10) Release throttle, shift transmission into Neutral, and run engine for 20–30 seconds to cool fluid.
 - (11) Shift transmission into Reverse.
 - (12) Repeat stall test.
- (13) Stall speed in Reverse should also be in 2100–2400 rpm range.
- (14) Release accelerator pedal, shift transmission into Neutral, and run engine for 20–30 seconds to cool fluid.

STALL SPEED TEST ANALYSIS

If engine rpm is lower than specified in D and Reverse, check for the following:

- engine output/performance insufficient
- stator overrunning clutch in torque converter not holding if engine speed was 1500 rpm or less.

If stall speed in D range is higher than specified, check for the following:

- line pressure low
- forward clutch slipping
- No. 2 one-way clutch not holding
- overdrive one-way clutch not holding

If stall speed in Reverse was higher than specified, check for the following:

- line pressure low
- direct clutch slipping
- first/ reverse brake slipping
- overdrive one-way clutch not holding

If stall speeds were higher than specified in both D and Reverse, check for the following:

- low fluid level
- line pressure low
- overdrive one-way clutch not holding.

TIME LAG TEST

This test checks general condition of the overdrive clutch, forward clutch, rear clutch and first/reverse brake. Condition is indicated by the amount of time required for clutch/brake engagement with the engine at curb idle speed. Engagement time is measured for D and Reverse positions. A stop watch is recommended for test accuracy.

TEST PROCEDURE

- (1) Check and adjust transmission fluid level if necessary.
- (2) Bring transmission to normal operating temperature.
- (3) Apply parking brakes and turn off air conditioning unit.
 - (4) Shift transfer case into 2H range.
- (5) Start engine and check curb idle speed. Adjust speed if necessary. Curb idle must be correct to ensure accurate test results.
- (6) Shift transmission into Neutral and set stop watch.
- (7) During following test steps, start stop watch as soon as shift lever reaches D and Reverse ranges.
- (8) Shift transmission into D range and record time it takes for engagement. Repeat test two more times.
- (9) Reset stop watch and shift transmission back to Neutral.
- (10) Shift transmission into Reverse and record time it takes for engagement. Repeat test two more times
- (11) Engagement time in D range should be a maximum of 1.2 seconds. Engagement time for Reverse should be a maximum of 1.5 seconds.

TIME LAG TEST ANALYSIS

If engagement time is longer than specified for D range, check for the following:

- shift cable misadjusted
- line pressure low
- forward clutch worn
- overdrive clutch worn or damaged.

If engagement time is longer than specified for Reverse, check for the following:

- shift cable misadjusted
- line pressure low
- direct clutch worn
- first/reverse brake worn
- overdrive clutch worn or damaged.

SERVICE DIAGNOSIS

TRANSMISSION SOLENOID TESTING

Test solenoid resistance with an ohmmeter. Connect the ohmmeter leads to the solenoid mounting bracket and to the solenoid wire terminal (Fig. 28).

Solenoid resistance should be 11-15 ohms. Replace the solenoid if resistance is above or below the specified range.

DIAGNOSIS TABLE

CONDITION	POSSIBLE CAUSE	CORRECTION		
VEHICLE WILL NOT BACK UP OR MOVE FORWARD	Shift cable out of adjustment or damaged Valve body or primary regulator faulty Park lock pawl faulty Torque converter faulty Converter drive plate broken Oil pump intake screen blocked Transmission faulty	Adjust cable or replace cable Inspect/repair valve body Repair park pawl Replace torque converter Replace drive plate Clean screen Disassemble and repair transmission		
SHIFT LEVER POSITION INCORRECT	Shift cable out of adjustment Manual valve and lever faulty	Adjust cable Repair valve body		
HARSH ENGAGEMENT	Throttle cable out of adjustment Valve body or primary regulator faulty Accumulator pistons faulty Transmission faulty	Adjust throttle cable Repair valve body Repair pistons Disassemble and repair transmission		
DELAYED 1-2, 2-3 OR 3-4 UP-SHIFT, OR DOWN-SHIFTS FROM 4-3 OR 3-2 AND SHIFTS BACK TO 4 OR 3	Electronic control problem Valve body faulty Solenoid faulty	Locate problem with DRB Tester Repair valve body Repair solenoid		
SLIPS ON 1-2, 2-3 OR 3-4 UP-SHIFT, OR SLIPS OR SHUDDERS DURING ACCELERATION	Shift cable out of adjustment Throttle cable out of adjustment Valve body faulty Solenoid faulty Transmission faulty	Adjust cable Adjust cable Repair valve body Replace solenoid Disassemble and repair transmission		
DRAG OR BIND ON 1-2, 2-3 OR 3-4 UP-SHIFT	Shift cable out of adjustment Valve body faulty Transmission faulty	Adjust cable Repair valve body Disassemble and repair transmission		
CONVERTER CLUTCH DOES NOT ENGAGE IN 2ND, 3RD OR 4TH	Electronic control problem Valve body faulty Solenoid faulty Transmission faulty	Check with DRB Tester Repair valve body Replace solenoid Disassemble and repair transmission		
HARSH DOWN-SHIFT	Throttle cable out of adjustment Throttle cable and cam faulty Accumulator pistons faulty Valve body faulty Transmission faulty	Adjust cable Replace cable and cam Repair pistons Repair valve body Disassemble and repair transmission		
NO DOWN-SHIFT WHEN COASTING	Valve body faulty Solenoid faulty Electronic control problem	Repair valve body Replace solenoid Locate problem with DRB Tester		

DIAGNOSIS TABLE CONTINUED

CONDITION	POSSIBLE CAUSE	CORRECTION			
DOWN-SHIFT LATE OR EARLY DURING COAST	Throttle cable faulty Valve body faulty Transmission faulty Solenoid faulty Electronic control problem	Replace cable Repair valve body Disassemble and repair transmission Replace solenoid Locate problem with DRB Tester			
NO 4-3, 3-2 OR 2-1 KICKDOWN	Solenoid faulty Electronic control problem Valve body faulty	Replace solenoid Locate problem with DRB Tester Repair valve body			
NO ENGINE BRAKING IN 1-2 POSITION	Solenoid faulty Electronic control problem Valve body faulty Transmission faulty	Replace solenoid Locate problem with DRB Tester Repair valve body Disassemble and repair transmission			
VEHICLE DOES NOT HOLD IN PARK	Shift cable out of adjustment Parking lock pawl cam and spring faulty	Adjust cable Replace cam and spring			
OVERHEAT DURING NORMAL	Low fluid level	Add fluid and check for leaks			
OPERATION (FLUID DISCOLORED, SMELLS BURNED)	Fluid cooler, lines blocked, or cooler cracked (oil in engine coolant)	Flush cooler and lines and replace radiator if transmission fluid has entered coolant			
OVERHEAT DURING COMMERCIAL OPERATION OR WHILE TRAILER TOWING (FLUID DARK AND BURNED WITH SOME SLUDGE FORMATION)	Vehicle not properly equipped for trailer towing or commercial use	Be sure vehicle is equipped with recommended optional components (i.e., HD springs, transmission, axle, larger CID engine, auxiliary cooler, correct axle ratio, etc.). If vehicle is not so equipped, it should not be used for severe service operation			
	Vehicle not equipped with auxiliary fluid cooler	Drain fluid, change filter, and install auxiliary cooler			
	Extensive idling time or operation in heavy traffic in hot weather	Cut down on idling time; shift into neutral every so often and run engine at 1000 rpm to help circulate fluid through cooler			
	Tow vehicle overloaded (exceeding vehicle tow capacity)	Be sure vehicle is properly equipped to handle load; do not tow Class III-type loads with a vehicle that is only rated for Class I or II operation			
	Air flow to auxiliary cooler blocked by snow plow, front mounted spare tire, bug screen, or similar item	Remove or reposition item causing air flow blockage			
OIL COMES OUT FILLER TUBE	Transmission overfilled	Drain fluid to correct level; remove neutral switch and drain through switch hole with suction gun			
	Breather vent in oil pump blocked	Inspect and clear blockage			
	Fluid cooler or cooler lines plugged	Flush cooler and lines			

J8921-435

Fig. 28 Testing Transmission Valve Body Solenoid PARK/NEUTRAL POSITION SWITCH

SWITCH TESTING

Test switch continuity with an ohmmeter. Disconnect the switch and check continuity at the connector terminal positions and in the gear ranges indicated in Figure 3. Switch continuity should be as follows:

- Continuity should exist between terminals B and C with the transmission in Park and Neutral only (Fig. 29).
- Continuity should exist between terminals A and E with the transmission in Reverse (Fig. 29).
- Continuity should exist between terminals A and G with the transmission in third gear (Fig. 29).
- Continuity should exist between terminals A and H with the transmission in first and/or second gear (Fig. 29).
 - Continuity should not exist in D position.

GEARSHIFT CABLE

- (1) The floor shifter lever and gate positions should be in alignment with all transmission PARK, NEUTRAL, and gear detent positions.
- (2) Engine starts must be possible with floor shift lever in PARK or NEUTRAL gate positions only. Engine starts must not be possible in any other gear position.
- (3) With floor shift lever handle push-button not depressed and lever in:
 - (a) PARK position—Apply forward force on center of handle and remove pressure. Engine starts must be possible.
 - (b) PARK position—Apply rearward force on center of handle and remove pressure. Engine starts must be possible.

	В	С	Α	Е	G	Н
Р	0-	$\overline{}$				
R			\Diamond	ightharpoons		
N	0—	-0				
D						
3			0		-	
1-2			0-			-0

J8921-429

Fig. 29 Park/Neutral Position Switch Terminals And Testing

- (c) NEUTRAL position—Normal position. Engine starts must be possible.
- (d) NEUTRAL position—Engine running and brakes applied, apply forward force on center of shift handle. Transmission shall not be able to shift from neutral to reverse.

THROTTLE VALVE CABLE

Transmission throttle valve cable adjustment is extremely important to proper operation. This adjustment positions the throttle valve, which controls shift speed, quality, and part-throttle downshift sensitivity.

If cable setting is too loose, early shifts and slippage between shifts may occur. If the setting is too tight, shifts may be delayed and part throttle downshifts may be very sensitive. Refer to the Adjustments section for the proper adjustment procedure.

SPEED SENSOR TESTING

Test the speed sensor with an ohmmeter. Place the ohmmeter leads on the terminals in the sensor connector (Fig. 30).

Rotate the transmission output shaft and observe the ohmmeter needle. The needle should deflect indicating the switch is opening/closing as the rotor moves past the sensor (Fig. 30). Replace the sensor if the ohmmeter does not display any kind of reading.

If a digital ohmmeter is being used, the sensor should generate an ohmmeter readout each time the switch opens and closes.

Fig. 30 Speed Sensor Testing

FLOW TESTING TRANSMISSION MAIN COOLER

Cooler flow is checked by measuring the amount of fluid flow through the cooler in a 20 second time period. The test is performed with the engine running and transmission in neutral. Fluid is then pumped through the cooler by the transmission oil pump.

- (1) Disconnect cooler inlet line at transmission fitting.
- (2) Securely attach hose to end of inlet line and position line in a one quart test container.
 - (3) Add extra quart of fluid to transmission.
 - (4) Use stopwatch to check flow test time.
- (5) Shift transmission into neutral and set parking brake.
- (6) Start and run engine at curb idle speed and immediately note cooler flow. Approximately one quart of fluid should flow into test container in 20 second period.
- (7) If cooler flow is intermittent, flows less than one quart in 20 seconds, or does not flow at all, cooler is faulty and must be replaced.

TORQUE CONVERTER STATOR CLUTCH INSPECTION

- (1) Insert Rotating Tool 7547 into converter hub and seat tool in one-way clutch (Fig. 31).
- (2) Insert Stopper Tool 7548 in one converter hub notch and into outer race of rotating tool.
- (3) Turn rotating tool clockwise. Converter clutch should rotate freely and smoothly. Less than 2.5 $N\!\cdot\!m$

J8921-470

Fig. 31 Checking Operation Of Torque Converter Stator One–Way Clutch

(22 in. lbs.) of torque should be required to rotate clutch in clockwise direction.

- (4) Turn rotating tool in counterclockwise direction. Converter clutch should lock.
- (5) Replace converter if clutch binds or will not lock.

SERVICE PROCEDURES

CHECKING FLUID LEVEL

- (1) Be sure transmission fluid is at normal operating temperature. Normal operating temperature is reached after approximately 15 miles (25 km) of operation.
- (2) Position vehicle on level surface. This is important for an accurate fluid level check.
- (3) Shift transmission through all gear ranges and back to Park.
 - (4) Apply parking brakes.
 - (5) Verify that transmission is in Park.
- (6) Wipe off dipstick handle to prevent dirt from entering fill tube. Then remove dipstick and check fluid level and condition.
- (7) Correct fluid level is to FULL mark on dipstick when fluid is at normal operating temperature (Fig. 32).

J8921-427

Fig. 32 Transmission Fluid Level

- (8) If fluid level is low, top off level with Mopar Dexron IIE/Mercon. Mopar Dexron II can be used but only if Mercon is not available. **Do not overfill transmission.** Add only enough fluid to bring level to Full mark.
- (9) If too much fluid was added, excess amount can be removed with suction gun and appropriate diameter plastic tubing. Tubing only has to be long enough to extend into oil pan.

CHECKING FLUID CONDITION

Inspect the appearance of the fluid during the fluid level check. Fluid color should range from dark red to pink and be free of foreign material, or particles. If the fluid is dark brown or black in color and smells burnt, the fluid has been overheated and must be changed.

Transmission operation should also be checked if the fluid is severely discolored and contains quantities of foreign material, metal particles, or clutch disc friction material.

A small quantity of friction material or metal particles in the oil pan is normal. The particles are usually generated during the break-in period and indicate normal seating of the various transmission components.

REFILLING AFTER OVERHAUL OR FLUID/ FILTER CHANGE

The best way to refill the transmission after a fluid change or overhaul is as follows:

- (1) If transmission has been overhauled, install transmission in vehicle.
- (2) Remove dipstick and insert clean funnel in transmission fill tube.
- (3) Add following initial quantity of Mopar Dexron IIE/Mercon to transmission:
- (4) If fluid/filter change was performed, add **4 pints (2 quarts)** of fluid to transmission.
 - (a) If transmission was completely overhauled and torque converter was replaced or drained, add **10 pints (5 quarts)** of fluid to transmission.
 - (b) Remove funnel and install dipstick.
- (5) Operate vehicle until fluid reaches normal operating temperature.
 - (6) Apply parking brakes.
- (7) Let engine run at normal curb idle speed, apply service brakes. Then shift transmission through all gear ranges and back to PARK (leave engine running).
- (8) Remove dipstick and check fluid level. Add only enough fluid to bring level to Full mark on dipstick. Do not overfill. If too much fluid is added, excess amount can be removed with suction gun and plastic tubing. Tubing only has to be long enough to extend into oil pan.
- (9) When fluid level is correct, shut engine off, release park brake, remove funnel, and reseat dipstick in fill tube.

TRANSMISSION CONTROL MODULE (TCM) SERVICE

Use the DRB scan tool to diagnose transmission control module function whenever a fault is suspected. Replace the module only when the scan tool indicates the module is actually faulty.

OIL PUMP VOLUME CHECK

After the new or repaired transmission has been installed, fill to the proper level with Mopar® ATF PLUS 3 (Type 7176) automatic transmission fluid. The volume should be checked using the following procedure:

SERVICE PROCEDURES (Continued)

(1) Disconnect the **From cooler** line at the transmission and place a collecting container under the disconnected line.

CAUTION: With the fluid set at the proper level, fluid collection should not exceed (1) quart or internal damage to the transmission may occur.

- (2) Run the engine **at curb idle speed** , with the shift selector in neutral.
- (3) If fluid flow is intermittent or it takes more than 20 seconds to collect one quart of ATF PLUS 3, disconnect the **To Cooler** line at the transaxle.
- (4) Refill the transaxle to proper level and recheck pump volume.
- (5) If flow is found to be within acceptable limits, replace the cooler. Then fill transmission to the proper level, using Mopar® ATF PLUS 3 (Type 7176) automatic transmission fluid.
- (6) If fluid flow is still found to be inadequate, check the line pressure using the Transaxle Hydraulic Pressure Test procedure.

FLUSHING COOLERS AND TUBES

When a transmission failure has contaminated the fluid, the oil cooler(s) must be flushed. The torque converter must also be replaced. This will insure that metal particles or sludged oil are not later transferred back into the reconditioned (or replaced) transmission.

The only recommended procedure for flushing coolers and lines is to use Tool 6906 Cooler Flusher.

WARNING: WEAR PROTECTIVE EYEWEAR THAT MEETS THE REQUIREMENTS OF OSHA AND ANSI Z87.1–1968. WEAR STANDARD INDUSTRIAL RUBBER GLOVES.

KEEP LIGHTED CIGARETTES, SPARKS, FLAMES, AND OTHER IGNITION SOURCES AWAY FROM THE AREA TO PREVENT THE IGNITION OF COMBUSTIBLE LIQUIDS AND GASES. KEEP A CLASS (B) FIRE EXTINGUISHER IN THE AREA WHERE THE FLUSHER WILL BE USED.

KEEP THE AREA WELL VENTILATED.

DO NOT LET FLUSHING SOLVENT COME IN CONTACT WITH YOUR EYES OR SKIN: IF EYE CONTAMINATION OCCURS, FLUSH EYES WITH WATER FOR 15 TO 20 SECONDS. REMOVE CONTAMINATED CLOTHING AND WASH AFFECTED SKIN WITH SOAP AND WATER. SEEK MEDICAL ATTENTION.

COOLER FLUSH USING TOOL 6906

(1) Remove cover plate filler plug on Tool 6906. Fill reservoir 1/2 to 3/4 full of fresh flushing solution. Flushing solvents are petroleum based solutions generally used to clean automatic transmission compo-

nents. **DO NOT** use solvents containing acids, water, gasoline, or any other corrosive liquids.

- (2) Reinstall filler plug on Tool 6906.
- (3) Verify pump power switch is turned OFF. Connect red alligator clip to positive (+) battery post. Connect black (-) alligator clip to a good ground.
 - (4) Disconnect the cooler lines at the transmission.

NOTE: When flushing transmission cooler and lines, ALWAYS reverse flush.

NOTE: The converter drainback valve must be removed and an appropriate replacement hose installed to bridge the space between the transmission cooler line and the cooler fitting. Failure to remove the drainback valve will preventreverse flushing the system.

- (5) Connect the BLUE pressure line to the OUT-LET (From) cooler line.
- (6) Connect the CLEAR return line to the INLET (To) cooler line
- (7) Turn pump ON for two to three minutes to flush cooler(s) and lines. Monitor pressure readings and clear return lines. Pressure readings should stabilize below 20 psi. for vehicles equipped with a single cooler and 30 psi. for vehicles equipped with dual coolers. If flow is intermittent or exceeds these pressures, replace cooler.
 - (8) Turn pump OFF.
- (9) Disconnect CLEAR suction line from reservoir at cover plate. Disconnect CLEAR return line at cover plate, and place it in a drain pan.
- (10) Turn pump ON for 30 seconds to purge flushing solution from cooler and lines. Turn pump OFF.
- (11) Place CLEAR suction line into a one quart container of Mopar® ATF Plus 3, type 7176 automatic transmission fluid.
- (12) Turn pump ON until all transmission fluid is removed from the one quart container and lines. This purges any residual cleaning solvent from the transmission cooler and lines. Turn pump OFF.
- (13) Disconnect alligator clips from battery. Reconnect flusher lines to cover plate, and remove flushing adapters from cooler lines.

ALUMINUM THREAD REPAIR

Damaged or worn threads in the aluminum transmission case and valve body can be repaired by the use of Heli-Coils, or equivalent. This repair consists of drilling out the worn-out damaged threads. Then tap the hole with a special Heli-Coil tap, or equivalent, and installing a Heli-Coil insert, or equivalent, into the hole. This brings the hole back to its original thread size.

SERVICE PROCEDURES (Continued)

Heli-Coil, or equivalent, tools and inserts are readily available from most automotive parts suppliers.

REMOVAL AND INSTALLATION

TRANSMISSION AND TORQUE CONVERTER

REMOVAL

- (1) Raise vehicle.
- (2) Drain transmission fluid and reinstall oil pan drain plug.
- (3) On models with 2-piece fill tube, remove upper half of tube (Fig. 33).

Fig. 33 Transmission Fill Tube (Two-Piece)

- (4) Disconnect cooler lines at transmission.
- (5) Support engine with safety stand and support transmission with jack.
- (6) Disconnect transmission and transfer case shift linkage.
 - (7) Remove necessary exhaust components.
 - (8) Disconnect vehicle speed sensor wires
- (9) Mark position of front and rear propeller shafts for alignment reference. Then remove shafts from vehicle.
 - (10) Remove rear crossmember.
- (11) Disconnect transmission shift cable at transmission. Then disconnect transmission throttle valve cable at engine.
 - (12) Disconnect necessary vacuum and fluid hoses.
 - (13) Remove transfer case from transmission.
- (14) Disconnect and remove crankshaft position sensor (Fig. 34).

CAUTION: The crankshaft position sensor can be damaged during transmission removal (or installation) if the sensor is still bolted to the engine block. To avoid damage, remove the sensor before removing the transmission.

Fig. 34 Crankshaft Position Sensor

- (15) Remove starter motor.
- (16) Remove bolts attaching converter to drive plate.
- (17) Remove bolts attaching converter housing to engine.
- (18) Secure transmission to jack with safety chains.
- (19) Pull transmission rearward for access to converter. Then secure converter in pump with C-clamp or strap bolted to converter housing.
 - (20) Remove transmission from under vehicle.
- (21) Remove torque converter if converter or oil pump seal are to be serviced.

INSTALLATION

- (1) Mount transmission on transmission jack. Then secure transmission to jack with safety chains.
- (2) Lubricate converter drive hub and oil pump seal lip with transmission fluid. Then install converter. Be sure converter is fully seated in oil pump gears before proceeding. Hold converter in place with C-clamp or strap attached to converter housing.
- (3) Align and position transmission and converter on engine.
- (4) Remove clamp or strap used to hold torque converter in place.
- (5) Move transmission forward seat and it on engine. Be sure torque converter hub is fully seated.
- (6) Install converter housing-to-engine bolts (Fig. 35).
 - (7) Install converter-to-drive plate bolts.
 - (8) Install and connect starter motor.
 - (9) Install and connect crankshaft position sensor.

Fig. 35 Transmission Mounting

- (10) Install transfer case on transmission.
- (11) Connect transfer case shift linkage and vacuum hoses.
 - (12) Connect exhaust components.
- (13) Install rear crossmember and remove jack used to support transmission assembly.
 - (14) Connect speed sensor wire harness to sensor.
- (15) Connect wire harness to park/neutral position switch.
- (16) Align and connect front and rear propeller shafts.
- (17) Connect transmission wire harnesses and transfer case vacuum and wire harnesses.
 - (18) Connect transmission cooler lines.
 - (19) Connect transmission throttle cable at engine.
- (20) Install new O-ring seal on upper half of transmission fill tube. Then connect upper and lower tube halves.
 - (21) Lower vehicle.
- (22) Fill transmission with Mopar Dexron IIE/Mercon automatic transmission fluid.

TORQUE CONVERTER

REMOVAL

(1) Remove transmission and torque converter from vehicle.

(2) Place a suitable drain pan under the converter housing end of the transmission.

CAUTION: Verify that transmission is secure on the lifting device or work surface, the center of gravity of the transmission will shift when the torque converter is removed creating an unstable condition.

The torque converter is a heavy unit. Use caution when separating the torque converter from the transmission.

- (3) Pull the torque converter forward until the center hub clears the oil pump seal.
- (4) Separate the torque converter from the transmission.

INSTALLATION

Check converter hub and drive notches for sharp edges, burrs, scratches, or nicks. Polish the hub and notches with 320/400 grit paper or crocus cloth if necessary. The hub must be smooth to avoid damaging the pump seal at installation.

- (1) Lubricate converter hub and oil pump seal lip with transmission fluid.
- (2) Place torque converter in position on transmission.

CAUTION: Do not damage oil pump seal or bushing while inserting torque converter into the front of the transmission.

- (3) Align torque converter to oil pump seal opening.
 - (4) Insert torque converter hub into oil pump.
- (5) While pushing torque converter inward, rotate converter until converter is fully seated in the oil pump gears.
- (6) Check converter seating with a scale and straightedge (Fig. 36). Surface of converter lugs should be 1/2 in. to rear of straightedge when converter is fully seated.
- (7) If necessary, temporarily secure converter with C-clamp attached to the converter housing.
 - (8) Install the transmission in the vehicle.
- (9) Fill the transmission with the recommended fluid.

Fig. 36 Checking Torque Converter Seating
ADAPTER HOUSING SEAL

REMOVAL

- (1) Raise vehicle.
- (2) Disconnect or remove components necessary to gain access to seal (e.g. propeller shaft, crossmember, shift linkage, transfer case, exhaust components, hoses, wires).
- (3) On 4X2 vehicles, remove dust shield from the adapter housing by tapping gently with a brass drift and hammer (Fig. 37).
- (4) On 4X2 vehicles, remove the adapter housing seal with Seal Puller 7550.
- (5) On 4X4 vehicles, remove the adapter housing seal using a slide hammer mounted screw.

Fig. 37 Adapter Housing Seals

INSTALLATION

- (1) Install new adapter housing seal with Seal Installer 7888.
- (2) On 4X2 vehicles, install dust shield using Special Tool D-187-B.
- (3) Reinstall components removed to gain access to seal.
 - (4) Top off transmission fluid if necessary.

SPEED SENSOR

REMOVAL

- (1) Disconnect sensor wire harness connector.
- (2) Remove sensor retainer bolt and remove sensor (Fig. 38).
 - (3) Remove and discard speed sensor O-ring.

INSTALLATION

- (1) Install new O-ring on speed sensor and install sensor in transmission case.
- (2) Install sensor bracket and retainer bolt. Tighten bolt to 7.4 N·m (65 in. lbs.) torque.
 - (3) Connect sensor wire harness connector.

SPEEDOMETER ADAPTER

Rear axle gear ratio and tire size determine speedometer pinion requirements.

REMOVAL

- (1) Raise vehicle.
- (2) Disconnect wires from vehicle speed sensor.
- (3) Remove adapter clamp and screw (Fig. 39).

Fig. 38 Transmission Speed Sensor Removal/ Installation

- (4) Remove speed sensor and speedometer adapter as assembly.
- (5) Remove speed sensor retaining screw and remove sensor from adapter.
 - (6) Remove speedometer pinion from adapter.
- (7) Inspect sensor and adapter O-rings (Fig. 39). Remove and discard O-rings if worn or damaged.
- (8) Inspect terminal pins in speed sensor. Clean pins with Mopar® electrical spray cleaner if dirty or oxidized. Replace sensor if faulty, or pins are loose, severely corroded, or damaged.

INSTALLATION

- (1) Thoroughly clean adapter flange and adapter mounting surface in housing. Surfaces must be clean for proper adapter alignment and speedometer operation.
- (2) Install new O-rings on speed sensor and speed-ometer adapter if necessary (Fig. 39).
- (3) Lubricate sensor and adapter O-rings with transmission fluid.
- (4) Install vehicle speed sensor in speedometer adapter. Tighten sensor attaching screw to 2-3 N·m (15-27 in. lbs.) torque.
 - (5) Install speedometer pinion in adapter.
- (6) Count number of teeth on speedometer pinion. Do this before installing assembly in housing. Then lubricate pinion teeth with transmission fluid.
- (7) Note index numbers on adapter body (Fig. 40). These numbers will correspond to number of teeth on pinion.
 - (8) Install speedometer assembly in housing.

- (9) Rotate adapter until required range numbers are at 6 o'clock position. Be sure range index numbers correspond to number of teeth on pinion gear.
- (10) Install speedometer adapter clamp and retaining screw. Tighten clamp screw to 10-12 N·m (90-110 in. lbs.) torque.
 - (11) Connect wires to vehicle speed sensor.
- (12) Lower vehicle and top off transmission fluid level, if necessary.

SPEED SENSOR ROTOR-SPEEDOMETER DRIVE GEAR

REMOVAL

- (1) Raise vehicle.
- (2) Remove components necessary to gain access to rotor and drive gear such as propeller shaft, transfer case, crossmember, and shift linkage.
- (3) Disengage wire connector from the output speed sensor.
- (4) Remove the bolt holding the output speed sensor to the adapter housing.
- (5) Remove the output speed sensor from the adapter housing.
- (6) Remove the bolts holding the adapter housing to the transmission case.
- (7) Tap the adapter housing at the joint line gently with a rubber mallet to separate the adapter housing from the transmission case.
- (8) Remove the adapter housing from the transmission case.
- (9) Remove speedometer drive gear snap ring (Fig. 41).
- (10) Remove the speedometer drive gear and spacer, if equipped.
- (11) Remove rotor from the output shaft. It may be necessary to use a wood dowel or hammer handle (Fig. 42) to gently pry the rotor from the output shaft. Be sure to retrieve the rotor locating key from the output shaft or rotor.

INSTALLATION

- (1) Clean sealing surfaces of transmission case and extension/adaptor housing.
- (2) Install rotor, spacer (if equipped) and drive gear on output shaft. Then install drive gear snap ring (Fig. 41).
- (3) Apply 1/8 3/16 inch wide bead of Threebond® Liquid Gasket TB1281, P/N 83504038, to transmission case sealing surface and install extension/adapter housing on case.
- (4) Tighten adaptor housing bolts to 34 N·m (25 ft. lbs.) torque.
- (5) Install components removed to gain access to rotor and drive gear.

Fig. 39 Speedometer Pinion Adapter Components

Fig. 40 Index Numbers On Speedometer Pinion Adapter

REMOVAL

- (1) Raise vehicle.
- (2) Disconnect switch wire harness connector.
- (3) Pry washer lock tabs upward and remove switch attaching nut and tabbed washer (Fig. 43).
 - (4) Remove switch adjusting bolt (Fig. 43).
 - (5) Slide switch off manual valve shaft.

INSTALLATION

(1) Disconnect shift linkage rod from shift lever on left side of transmission.

J8921-464

Fig. 41 Removing/Installation Speedometer Drive Gear

- (2) Rotate manual shift lever all the way rearward. Then rotate lever forward two detent positions to Neutral.
- (3) Install switch on manual valve shaft and install switch adjusting bolt finger tight. Do not tighten bolt at this time.
- (4) Install tabbed washer on manual valve shaft and install switch attaching nut. Tighten nut to 6.9 N·m (61 in. lbs.) torque but do not bend washer lock tabs over nut at this time.

Fig. 42 Removing Speed Sensor Rotor

Fig. 43 Park/Neutral Position Switch Removal/ Installation

- (5) Verify that transmission is in Neutral.
- (6) Rotate switch to align neutral standard line with vertical groove on manual valve shaft (Fig. 44).
- (7) Align switch standard line with groove or flat on manual valve shaft.
- (8) Tighten switch adjusting bolt to 13 N·m (9 ft. lbs.) torque.
- (9) Bend at least two washer lock tabs over switch attaching nut to secure it.

J8921-431

Fig. 44 Park/Neutral Position Switch Adjustment

- (10) Connect shift linkage rod to shift lever on left side of case.
- (11) Connect switch wires to harness and lower vehicle.
- (12) Check switch operation. Engine should start in Park and Neutral only.

GEARSHIFT CABLE

REMOVAL

- (1) Shift transmission into Park.
- (2) Remove shift lever bezel and necessary console parts for access to shift lever assembly.
- (3) Disconnect cable at shift lever and feed cable through dash panel opening to underside of vehicle.
 - (4) Raise vehicle.
- (5) Disengage cable eyelet at transmission shift lever and pull cable adjuster out of mounting bracket. Then remove old cable from vehicle.

INSTALLATION

- (1) Route cable through hole in dash panel. Fully seat cable grommet into dash panel.
- (2) Place the auto transmission manual shift control lever in "Park" detent (rearmost) position and rotate prop shaft to ensure transmission is in park.
- (3) Connect shift cable to shifter mechanism by snapping cable retaining ears into shifter bracket and press cable end fitting onto lever ball stud.
- (4) Place the floor shifter lever in park position. Ensure that the pawl is seated within the confines of the adjustment gauge clip.
- (5) Snap the cable into the transmission bracket so the retaining ears are engaged and connect cable end fitting onto the manual control lever ball stud.

- (6) Lock shift cable into position by pushing upward on the adjusting lock button.
- (7) Remove and discard the shift cable adjustment gauge clip from the park gate of the shifter.

BRAKE TRANSMISSION SHIFT INTERLOCK

REMOVAL

- (1) Remove lower steering column cover. Refer to Group 8E, Instrument Panel and Gauges, for proper procedure.
- (2) Remove lower steering column shroud. Refer to Group 19, Steering, for proper procedure.
- (3) Remove tie strap near the solenoid retaining the brake transmission interlock cable to the steering column.
 - (4) Disengage wire connector from solenoid.
- (5) With the ignition removed or in the unlocked position, disengage lock tab holding cable end to steering column (Fig. 45).
 - (6) Pull cable end from steering column.
- (7) Remove the floor console and related trim. Refer to Group 23, Body, for proper procedure.
- (8) Disconnect the cable eyelet from the bellcrank (Fig. 46).

Fig. 45 Brake/Park Interlock Cable

(9) Disconnect and remove the cable from the shift bracket.

INSTALLATION

- (1) Route replacement cable behind instrument panel and under floor console area to shift mechanism (Fig. 46).
- (2) Insert cable end into opening in steering column hub under ignition lock. Push cable inward until lock tab engages.
- (3) Connect the cable end eyelet onto shifter bellcrank pin.
 - (4) Place gear selector in PARK.

- (5) Push the spring-loaded cable adjuster forward and snap cable into bracket.
- (6) Adjust the brake transmission shifter interlock cable. Refer to the Adjustment portion of this section for proper procedures.
- (7) Verify that the cable adjuster lock clamp is pushed downward to the locked position.
 - (8) Test the park-lock cable operation.
 - (9) Install the floor console and related trim.
- (10) Install tie strap to hold cable to base of steering column.
- (11) Install lower steering column shroud and ignition lock.
 - (12) Install lower steering column cover.

TRANSMISSION VALVE BODY SOLENOIDS

REMOVAL

- (1) Remove transmission oil pan drain plug and drain fluid.
 - (2) Remove pan bolts and remove oil pan.
- (3) Remove oil screen bolts and remove screen (Fig. 47) and gasket. Discard the gasket.
 - (4) Disconnect solenoid wire connector (Fig. 48).
- (5) If all solenoids are being removed, mark or tag wires for assembly reference before disconnecting them.
- (6) Remove bolt attaching solenoids to valve body and remove solenoids (Fig. 49). Do not allow any valve body components to fall out when solenoids are removed.
- (7) Clean oil filter and pan with solvent and dry with compressed air.
- (8) Remove old sealer material from oil pan and transmission case.

INSTALLATION

- (1) Position solenoids on valve body and install solenoid bolts. Tighten bolts to 10 N·m (7 ft. lbs.) torque.
 - (2) Connect feed wires to solenoids.
- (3) Install new gaskets on oil screen and install screen. Tighten screen bolts to 10 N·m (7 ft. lbs.) torque.
- (4) Apply bead of Threebond® Liquid Gasket TB1281, P/N 83504038, sealer to oil pan sealing surface. Sealer bead should be at least 3.0 mm (1/8 in.) wide.
- (5) Install oil pan on transmission. Tighten pan bolts to $7~\mathrm{N\cdot m}$ (65 in. lbs.) torque.
- (6) Install and tighten oil pan drain plug to 20 $N{\cdot}m$ (15 ft. lbs.) torque.
- (7) Fill transmission with Mopar® Dexron IIE/Mercon.

Fig. 46 Cable and Shifter

Fig. 47 Oil Screen Removal/Installation

TRANSMISSION VALVE BODY

REMOVAL

- (1) Remove oil pan plug and drain transmission fluid.
- (2) Remove oil pan and oil screen. Clean pan and screen in solvent and dry them with compressed air.
- (3) Disconnect solenoid wire connectors (Fig. 50). Mark wires for assembly reference.

J8921-433

Fig. 48 Solenoid Wire Connectors

- (4) Remove valve body oil tubes (Fig. 51). Carefully pry tubes out of valve body with screwdriver.
- (5) Disconnect throttle cable from throttle cam (Fig. 52).

Fig. 49 Transmission Valve Body Solenoids

J8921-433

Fig. 50 Solenoid Wire Connectors

- (6) Remove valve body bolts. Bolt locations are outlined in (Fig. 53).
- (7) Lower valve body and remove overdrive clutch accumulator springs, direct clutch accumulator springs and second brake accumulator spring (Fig. 54).
- (8) Remove valve body and check ball and spring (Fig. 55).

INSTALLATION

- (1) Connect cable to throttle cam (Fig. 52).
- (2) Install check ball and spring (Fig. 55).
- (3) Position accumulator springs and spacers on valve body.
- (4) Align valve body manual valve with shift sector (Fig. 56) and carefully position valve body on case.
- (5) Install valve body bolts (Fig. 53). Tighten bolts evenly to 10 N⋅m (7 ft. lbs.) torque.

J8921-437

Fig. 51 Removing Transmission Valve Body Oil
Tubes

J8921-438

Fig. 52 Removing/Installing Throttle Cable

- (6) Install valve body oil tubes. Be sure tube ends (L) and (M) are installed as shown in (Fig. 57).
- (7) Remove old sealer material from oil pan and transmission case.
- (8) Clean oil screen and oil pan with solvent (if not done previously). Dry both components with compressed air only. Do not use shop towels.
- (9) Install new gaskets on oil screen and install screen on case. Tighten screen attaching bolts to 10 $N\cdot m$ (7 ft. lbs.) torque.
- (10) Apply bead of Threebond® Liquid Gasket TB1281, P/N 83504038 to sealing surface of oil pan. Sealer bead should be at least 3 mm (1/8 in.) wide.

=BOLT LOCATIONS

J8921-439

Fig. 53 Transmission Valve Body Bolt Locations

Fig. 54 Accumulator Springs

Then install oil pan and tighten pan bolts to 7.4 N·m (65 in. lbs.) torque.

- (11) Install new gasket on oil pan drain plug and install plug in pan. Tighten plug to 20 N·m (15 ft. lbs.) torque.
- (12) Fill transmission with Mopar® Dexron IIE/Mercon.

TRANSMISSION CONTROL MODULE

The transmission control module is mounted under the instrument panel. On left hand drive models, it is at the driver side of the lower finish panel (Fig. 58). On right hand drive models, it is at the passenger side of the lower finish panel (Fig. 59).

J8921-441

Fig. 55 Removing/Installing Check Ball And Spring

Fig. 56 Shift Sector And Manual Valve Alignment

To remove the module, disconnect the wire harness, remove the mounting screws and remove the module from the finish panel. Tighten the module mounting screws securely after installation. Also be sure the wire harness is not twisted, kinked or touching any body panels.

SOLENOID HARNESS ADAPTER SEAL

REMOVAL

- (1) Remove oil pan and oil screen.
- (2) Disconnect solenoid wire connectors (Fig. 60).

J8921-443

Fig. 57 Installing Transmission Valve Body Oil Tubes

Fig. 58 TCM Location (Left Hand Drive)

Fig. 59 TCM Location (Right Hand Drive)

- (3) Remove bracket securing solenoid harness adaptor (Fig. 61) to case.
 - (4) Pull harness adapter and wires out of case.
 - (5) Remove and discard adapter O-ring.

INSTALLATION

- (1) Lubricate new O-ring and install it on adapter.
- (2) Install solenoid wire harness and adapter in case.
 - (3) Install adapter bracket and bracket bolt.

J8921-433

Fig. 60 Solenoid Wire Connectors

J8921-436

Fig. 61 Harness Adapter Removal/Installation

- (4) Connect wires to solenoids.
- (5) Install oil screen.
- (6) Apply bead of Threebond® Liquid Gasket TB1281, P/N 83504038, to oil pan seal surface. Sealer bead should be at least 3 mm (1/8 in.) wide.
- (7) Install oil pan on transmission. Tighten pan bolts to $7\ N \cdot m$ (65 in. lbs.) torque.
- (8) Install and tighten oil pan drain plug to 20 $N{\cdot}m$ (15 ft. lbs.) torque.
- (9) Fill transmission with Mopar Dexron IIE/Mercon.

MANUAL VALVE SHAFT SEAL

REMOVAL

J8921-444

Fig. 62 Manual Valve Shaft And Seals

- (1) Remove park/neutral position switch and disconnect transmission shift lever (Fig. 62).
 - (2) Remove oil pan and valve body.
- (3) Remove bolts attaching park rod bracket to case (Fig. 63).

J8921-445

Fig. 63 Removing/Installing Park Rod Bracket

(4) Remove park rod from shift sector (Fig. 64).

Fig. 64 Removing/Installing Park Rod

- (5) Cut spacer sleeve with chisel and remove it from manual valve shaft (Fig. 65).
- (6) Remove pin from shaft and sector with pin punch.

Fig. 65 Cutting Spacer Sleeve

- (7) Remove shaft and sector from case.
- (8) Pry shaft seals out of case (Fig. 66).

INSTALLATION

- (1) Inspect the manual valve shaft and sector. Replace either component if worn or damaged.
- (2) Coat replacement shaft seals with petroleum jelly and seat them in the case using an appropriately sized driver/socket (Fig. 67).

J8921-448

Fig. 66 Removing Manual Valve Shaft Seals

J8921-449

Fig. 67 Installing Manual Valve Shaft Seals

- (3) Install new spacer sleeve on sector (Fig. 68).
- (4) Lubricate manual valve shaft with petroleum jelly and install it through the left side of the transmission case.
- (5) Lubricate sector and sleeve with petroleum jelly and install them on shaft.
- (6) Install the manual valve shaft through the remainder of the transmission case.
- (7) Align hole in spacer sleeve with notch in sector. Then install shift sector roll pin. Tap pin into sector and shaft and securely stake sleeve to sector and shaft.

Fig. 68 Installing Spacer Sleeve On Sector

- (8) Connect park rod to sector (Fig. 64).
- (9) Install park rod bracket (Fig. 69). Tighten bracket bolts to 10 N⋅m (7 ft. lbs.) torque.

J8921-451

Fig. 69 Installing Park Rod Bracket

- (10) Install valve body, oil screen and oil pan.
- (11) Install park/neutral position switch.

ACCUMULATOR PISTONS AND SPRINGS

REMOVAL

- (1) Remove valve body.
- (2) Remove accumulator pistons with compressed air (Fig. 70). Apply air through small feed hole next

to each piston bore. Catch each piston in a shop towel as it exits bore.

Fig. 70 Accumulator Piston Removal

CAUTION: Use only enough air pressure to ease each piston out of the bore. In addition, remove the pistons one at a time and tag the pistons and springs for assembly reference. Do not intermix them.

(3) Remove and discard piston O-ring seals. Then clean pistons and springs with solvent.

INSTALLATION

- (1) Inspect pistons, springs and piston bores. Replace worn damaged pistons. Replace broken, collapsed or distorted springs. Replace case if piston bores are damaged.
- (2) If small cushion spring in any piston must be replaced, remove spring retainer clip and remove spring from piston (Fig. 71). A small hooked tool or small thin blade screwdriver can be used to remove clip. A thin wall, deep socket, or pin punch can be used to seat clip after spring replacement.
- (3) Install new O-ring seals on pistons. Lubricate seals and pistons and piston bores with transmission fluid.
 - (4) Install pistons and springs (Fig. 72).
 - (5) Install valve body, oil screen and oil pan.

SECOND COAST BRAKE SERVO

REMOVAL

(1) Remove valve body.

J9121-414

Fig. 71 Small Cushion Spring Retention

- A. OVERDRIVE CLUTCH ACCUMULATOR PISTON AND SPRINGS
- B. OVERDRIVE BRAKE ACCUMULATOR PISTON AND SPRINGS
- C. DIRECT CLUTCH ACCUMULATOR PISTON AND SPRINGS
- D. SECOND BRAKE ACCUMULATOR PISTON AND SPRINGS

J9121-378

Fig. 72 Accumulator Pistons, Springs And Spacers

- (2) Remove servo piston cover snap ring with snap ring pliers (Fig. 73).
- (3) Remove servo piston and cover with compressed air. Apply compressed air through oil hole in servo boss to ease piston out of bore (Fig. 74).
- (4) Remove and discard seal and O-rings from cover and piston (Fig. 75). Inspect E-ring, piston, spring and retainer, piston rod and piston spring. Replace worn or damaged parts.

Fig. 73 Removing/Installing Servo Piston Cover Snap Ring

Fig. 74 Removing Servo Cover And Piston

INSTALLATION

- (1) Install new seals on cover and piston.
- (2) Lubricate servo components with transmission fluid.
- (3) Assemble and install servo components in case. Be sure servo piston rod is properly engaged in the second coast brake band.
- (4) Compress cover and piston and install cover snap ring.

Fig. 75 Second Coast Brake Servo Components

(5) Install valve body, oil screen and oil pan.

PARK ROD AND PAWL

REMOVAL

- (1) Remove valve body as outlined in this section.
- (2) Remove bolts attaching park rod bracket to case (Fig. 76).

Fig. 76 Removing/Installing Park Rod Bracket

Fig. 77 Removing/Installing Park Rod

- (3) Remove park rod from manual valve shaft sector (Fig. 77).
 - (4) Remove park rod.
 - (5) Remove park pawl, pin and spring (Fig. 78).

INSTALLATION

- (1) Examine park rod, pawl, pin and spring. Replace any component that is worn or damaged.
- (2) Install pawl in case. Insert pin and install spring. Be sure spring is positioned as shown in Figure 35.
- (3) Install park rod and bracket (Fig. 76). Tighten bracket bolts to 10 N·m (7 ft. lbs.) torque.
 - (4) Install valve body, oil screen and oil pan.

Fig. 78 Removing/Installing Park Pawl, Pin And Spring

TRANSMISSION THROTTLE CABLE

REMOVAL

(1) In engine compartment, disconnect cable from throttle linkage. Then compress cable mounting ears and remove cable from engine bracket (Fig. 79).

Fig. 79 Transmission Throttle Cable Attachment

- (2) Raise vehicle.
- (3) Remove transmission oil pan.
- (4) Disengage cable from throttle valve cam (Fig. 80).

J8921-438

Fig. 80 Removing/Installing Transmission Throttle Cable

(5) Remove cable bracket bolt and remove cable and bracket from case (Fig. 81).

Fig. 81 Removing/Installing Transmission Throttle
Cable And Bracket

(6) Remove and discard cable seal.

INSTALLATION

- (1) Lubricate and install new seal on cable.
- (2) Insert cable in transmission case.
- (3) Attach cable to throttle cam (Fig. 80).

- (4) Install cable bracket on case and tighten attaching bolt to 10 N·m (7 ft. lbs.) torque (Fig. 81).
- (5) Install pan and tighten pan bolts to 7 N⋅m (65 in. lbs.) torque.
- (6) Install new gasket on oil pan drain plug. Install and tighten plug to 20 N⋅m (15 ft. lbs.) torque.
- (7) Connect cable to engine bracket and throttle linkage.
- (8) Fill transmission with Mopar $^{\tiny{\circledR}}$ Dexron/Mercon IIE.
- (9) Adjust the cable as described in cable adjustment procedure.

OIL PUMP SEAL

REMOVAL

- (1) Remove converter.
- (2) Remove old seal. Use blunt punch to collapse seal and pry seal out of pump housing. Do not scratch or damage seal bore.

INSTALLATION

(1) Lubricate lip of new seal with transmission fluid and install seal in pump with tool 7549 (Fig. 82).

Fig. 82 Installing Oil Pump Seal

- (2) Lubricate converter drive hub with transmission fluid.
 - (3) Align and install converter n oil pump.

DISASSEMBLY AND ASSEMBLY

TRANSMISSION

DISASSEMBLY

- (1) Remove torque converter.
- (2) Remove clamps attaching wire harness and throttle cable (Fig. 83) to transmission.

Fig. 83 Typical Harness And Cable Clamp Attachment

- (3) Remove shift lever from manual valve shaft at left side of transmission.
 - (4) Remove park/neutral position switch.
 - (5) Remove speed sensor.
- (6) Remove converter housing bolts and remove housing (Fig. 84) from case.

J8921-476

Fig. 84 Converter Housing Removal

- (7) Remove adapter housing, speedometer drive gear, and speed sensor rotor.
- (8) Remove transmission oil pan, oil screen and screen gaskets (Fig. 85).

Fig. 85 Removing Oil Screen

(9) Remove valve body oil feed tubes (Fig. 86).

Fig. 86 Valve Body Oil Tube Removal

- (10) Disconnect valve body solenoid wires (Fig. 87).
- (11) Remove harness bracket bolt and remove harness and bracket (Fig. 88).

J8921-439

DISASSEMBLY AND ASSEMBLY (Continued)

J8921-433

J8921-436

Fig. 88 Removing Bracket And Harness

- (12) Remove valve body bolts (Fig. 89).
- (13) Disconnect throttle cable from throttle cam (Fig. 90).

Fig. 89 Valve Body Bolt Locations

Fig. 90 Disconnecting Throttle Cable

(14) Remove valve body from case. Then remove accumulator springs, check ball, and spring (Fig. 91).

J9121-381

Fig. 91 Removing Accumulator Springs, Spacers
And Check Ball

- (15) Remove second brake and clutch accumulator pistons with compressed air (Fig. 92). Apply air pressure through feed port and ease the pistons and springs out of the bore. Note and identify the original location of all springs.
- (16) Remove overdrive brake accumulator piston with compressed air (Fig. 92). Note and identify the original location of all springs.
- (17) Remove overdrive clutch accumulator piston with compressed air (Fig. 92).
 - (18) Remove throttle cable.
- (19) Remove oil pump bolts and remove pump with bridge-type Puller 7536 (Fig. 93).
 - (20) Remove race from oil pump (Fig. 94).
- (21) Remove overdrive planetary gear and clutch assembly (Fig. 95).
- (22) Remove race from overdrive planetary (Fig. 96).

Fig. 92 Accumulator Piston Removal

Fig. 93 Oil Pump Removal

Fig. 94 Oil Pump Race Removal

J8921-483

Fig. 95 Removing Overdrive Planetary And Clutch Assembly

Fig. 96 Fourth Gear Planetary Race Removal

(23) Remove thrust bearing, race and overdrive planetary ring gear (Fig. 97).

Fig. 97 Removing Bearing, Race And Planetary Ring Gear

- (24) Measure stroke length of overdrive brake piston as follows:
 - (a) Mount dial indicator on case using Miller Tool C-3339 and a suitable bolt threaded into the transmission case.
 - (b) Verify that the dial indicator is mounted solidly and square to the direction of the piston travel.
 - (c) Apply 57-114 psi air pressure through piston apply port and note piston stroke on dial indicator. Stroke length should be: 1.40-1.70 mm (0.055-0.0699 in.).
 - (d) Record the reading for use during re-assembly.
 - (e) Remove the dial indicator set-up from the transmission.
- (25) Measure stroke length of second coast brake piston rod as follows:
 - (a) Install a small wire tie strap around the second coast brake piston rod tight against the transmission case.
 - (b) Apply 57–114 psi air pressure through piston feed hole and check stroke length with Gauge Tool 7552.
 - (c) Stroke length should be 1.5 3.0 mm (0.059 0.118 in.).
 - (d) Record the reading for use during re-assembly.
- (26) Remove the bolt holding the input speed sensor to the transmission case.

- (27) Remove the input speed sensor from the transmission case.
- (28) Remove overdrive brake pack snap ring (Fig. 98).

J8921-487

Fig. 98 Removing Overdrive Brake Pack Snap Ring

- (29) Remove overdrive brake pack discs and plates. Inspect and replace as necessary.
- (30) Remove overdrive support lower race and upper bearing and race assembly (Fig. 99).

Fig. 99 Overdrive Support Bearing/Race Removal

(31) Remove overdrive support snap ring with Snap Ring Plier Tool 7540 (Fig. 100).

J8921-491

Fig. 100 Overdrive Support Snap Ring Removal/ Installation

(32) Remove overdrive support bolts (Fig. 101).

Fig. 101 Overdrive Support Bolt Removal

- (33) Remove overdrive support (Fig. 102) with bridge-type Puller 7536.
- (34) Remove race from hub of overdrive support (Fig. 103).

J8921-492

Fig. 102 Removing Overdrive Support

Fig. 103 Remove Overdrive Support Race

- (35) Remove second coast brake piston snap ring with Snap Ring Plier Tool 7540. Then remove piston cover and piston assembly.
- (36) Disassemble second coast brake piston (Fig. 104), if necessary.

Fig. 104 Second Coast Brake Piston Components

(37) Remove direct and forward clutch assembly (Fig. 105).

J8921-496

Fig. 105 Removing Direct And Forward Clutch Assembly

- (38) Remove thrust bearing and race from clutch hub (Fig. 106).
- (39) Remove second coast brake band E-ring from band pin and remove pin and brake band (Fig. 107).
- (40) Remove front planetary bearing race and remove front planetary ring gear (Fig. 108).

Fig. 106 Bearing And Race Removal From Clutch Hub

Fig. 107 Second Coast Brake Band Removal

J8921-499

Fig. 108 Front Planetary Ring Gear Removal

(41) Remove thrust bearing and rear race from ring gear (Fig. 109).

J8921-500

Fig. 109 Removing Ring Gear Bearing And Rear Race

- (42) Remove planetary thrust race.
- (43) Push forward on output shaft to relieve the load on the planetary snap ring.

(44) Remove planetary snap ring and remove planetary gear (Fig. 110).

J8921-502

Fig. 110 Removing Planetary Snap Ring And Gear

(45) Remove sun gear, input drum, one-way clutch, and thrust washer as assembly (Fig. 111).

J8921-503

Fig. 111 Removing Sun Gear, Input Drum And One–Way Clutch

(46) Measure second brake clutch pack clearance (Fig. 112). Clearance should be 0.62-1.98~mm (0.0244-0.0780~in.). Record measurement for use during re-assembly.

Fig. 112 Checking Second Brake Clutch Pack Clearance

(47) Remove second brake clutch pack snap ring (Fig. 113).

J8921-505

Fig. 113 Removing Second Brake Clutch Pack Snap Ring

(48) Remove second brake clutch pack (Fig. 114). Inspect and replace as necessary.

Fig. 114 Removing/Measuring Second Brake Clutch
Disc Thickness

- (49) Remove bolts attaching park rod bracket to case. Then disconnect park rod from manual shaft lever and remove rod and bracket (Fig. 115).
- (50) Remove park pawl spring, pin and pawl (Fig. 116).
- (51) Measure clearance of first-reverse brake clutch pack (Fig. 117). Clearance should be: 0.70 1.2 mm (0.028 0.047 in.). record measurement for use during re-assembly.
 - (52) Remove second brake piston sleeve (Fig. 118).
 - (53) Remove second brake snap-ring.
- (54) Remove rear planetary gear, second brake drum and output shaft as an assembly (Fig. 119).
- (55) Remove planetary and brake drum thrust bearing and race assembly (Fig. 120).

Fig. 115 Removing Park Rod And Bracket

Fig. 116 Removing Park Pawl, Pin And Spring

(56) Remove second brake drum gasket from case with screwdriver.

J8921-508

Fig. 117 Checking First–Reverse Brake Clutch Pack Clearance

J8921-509

Fig. 118 Removing Second Brake Piston Sleeve

(57) Measure inside diameter of transmission case rear bushing with bore gauge or inside micrometer (Fig. 121). Maximum allowable diameter is 38.18 mm (1.5031 in.). Replace transmission case if bushing I.D. is greater than specified. Bushing is not serviceable.

Fig. 119 Removing Rear Planetary, Second Brake
Drum And Output Shaft

J8921-616

Fig. 120 Removing/Installing Bearing And Race
Assembly

(58) Check first/reverse brake piston operation with compressed air (Fig. 122). Piston should move smoothly and not bind or stick. If piston operation is incorrect, case or piston may require replacement.

Fig. 121 Checking Rear Bushing Inside Diameter

Fig. 122 Checking First–Reverse Brake Piston
Operation

(59) Compress piston return springs with Tool 7539 and remove piston snap ring (Fig. 123).

J8921-618

Fig. 123 Removing/Installing Piston Snap Ring

- (60) Remove Tool 7539 and remove piston return springs.
- (61) Remove No. 2 first-reverse brake piston with compressed air. Apply air through same transmission feed hole used for checking piston operation.
- (62) Remove reaction sleeve with Sleeve Remover Tool 7542 (Fig. 124). Insert tool flanges under sleeve and lift tool and sleeve out of case.

J8921-619

Fig. 124 Removing/Installing Reaction Sleeve

(63) Remove No. 1 first/reverse brake piston with Piston Puller 7543 (Fig. 125). Slip tool under piston and lift tool and piston out of case.

J8921-620

Fig. 125 Removing/Installing First–Reverse Brake
No.1 Piston

ASSEMBLY

- (1) During assembly, lubricate components with transmission fluid or petroleum jelly as indicated.
- (2) Verify thrust bearing and race installation during assembly. Refer to the Thrust Bearing Chart (Fig. 126) for bearing and race location and correct positioning.
- (3) Install new seals onto the No.1 first-reverse brake piston. Lubricate seals with transmission fluid.
- (4) Install the No.1 first-reverse brake piston into the transmission case.
- (5) Install new seal onto the first-reverse brake piston reaction sleeve. Lubricate seals with transmission fluid.

Fig. 126 Thrust Bearing Chart

- (6) Install the first-reverse brake piston reaction sleeve into the transmission case.
- (7) Install new seal onto the No. 2 first-reverse brake piston. Lubricate seals with transmission fluid.
- (8) Install the No. 2 first-reverse brake piston into the transmission case.
- (9) Install the spring plate into the No. 2 first-reverse brake piston.
- (10) Install Spring Compressor 7539 onto the first-reverse brake piston.
- (11) Compress the first-reverse brake piston spring and install the first-reverse brake piston snap-ring.
 - (12) Remove Spring Compressor 7539.
- (13) Install rear planetary gear, second brake drum and output shaft as outlined in following steps:

- (14) Verify No. 10 thrust bearing and race (Fig. 126). Bearing and race outer diameter is 57.7 mm (2.272 in.) and inside diameter is 39.2 mm (1.543 in.).
- (15) Coat thrust bearing and race assembly with petroleum jelly and install in case (Fig. 127). Race faces down. Bearing rollers face up.
- (16) Align teeth of second brake drum and clutch pack (Fig. 128).
- (17) Align rear planetary-output shaft assembly teeth with case slots and install assembly in case (Fig. 129).
- (18) Install rear planetary snap ring with snap ring pliers. Chamfered side of snap ring faces up and toward case front (Fig. 130).

Fig. 127 Installing Thrust Bearing And No. 10 Race

Fig. 128 Aligning Second Brake Drum And Clutch Pack Teeth

(19) Check first–reverse brake pack clearance with feeler gauge (Fig. 131). Clearance should be 0.70 – 1.20 mm (0.028 – 0.047 in.). If clearance is incorrect, planetary assembly, thrust bearing or snap ring is not properly seated in case. Remove and reinstall components if necessary.

Fig. 129 Output Shaft/Rear Planetary Assembly Installation

Fig. 130 Planetary Snap Ring Installation

- (20) Install second brake piston sleeve (Fig. 132). Sleeve lip faces up and toward case front as shown.
 - (21) Install second brake drum gasket.
- (22) Install park lock pawl, spring and pin (Fig. 133).
 - (23) Install the manual valve shift assembly.
- (24) Connect park lock rod to manual valve shift sector (Fig. 134).

Fig. 131 Checking First–Reverse Brake Pack Clearance

J8921-675

Fig. 132 Second Brake Piston Sleeve Installation

- (25) Position park lock rod bracket on case and tighten bracket attaching bolts to 10 N·m (7 ft. lbs.) torque (Fig. 135).
- (26) Verify park lock operation. Move shift sector to Park position. Park pawl should be firmly engaged (locked) in planetary ring gear (Fig. 136).

Fig. 133 Park Lock Pin, Spring And Pawl Installation

Fig. 134 Park Lock Rod Installation

(27) Install No. 1 one-way clutch (Fig. 137). Short flanged side of clutch faces up and toward case front. (28) Install second brake pack (Fig. 138). Install disc then plate. Continue installation sequence until five discs and five plates are installed.

Fig. 135 Park Rod Bracket Installation

J8921-680

Fig. 136 Checking Park Pawl Engagement

Fig. 137 Installing No. 1 One-Way Clutch

Fig. 138 Second Brake Pack Installation

- (29) Install second brake pack retainer with rounded edge of retainer facing disc.
 - (30) Install second brake pack snap ring.
- (31) Check brake pack clearance with feeler gauge (Fig. 139). Clearance should be 0.062-1.98 mm (0.024-0.078 in.). If brake pack clearance is not correct, brake pack components are not seated. Reassemble brake pack if necessary.

J8921-683

Fig. 139 Checking Second Brake Pack Clearance

- (32) Install planetary sun gear and input drum (Fig. 140). Be sure drum thrust washer tabs are seated in drum. Use petroleum jelly to hold thrust washer in position if necessary.
- (33) Install front planetary gear on sun gear (Fig. 141).
- (34) Support output shaft with wood blocks (Fig. 142).

Fig. 140 Installing Sun Gear And Input Drum

Fig. 141 Installing Front Planetary Gear

- (35) Install planetary snap ring on sun gear with snap ring plier tool 7541 (Fig. 143).
- (36) Install tabbed thrust race on front planetary gear. Washer tabs face down and toward gear. Race outer diameter is 47.8 mm (1.882 in.). Inside diameter is 34.3 mm (1.350 in.).

J8921-686

Fig. 142 Supporting Output Shaft

J8921-687

Fig. 143 Installing Front Planetary Snap Ring

(37) Install second coast brake band (Fig. 144).

Fig. 144 Installing Second Coast Brake Band

- (38) Install pin in second coast brake band. Then install retaining ring on pin (Fig. 145).
- (39) Install thrust bearing and race in forward-direct clutch (Fig. 146). Coat bearing/race with petroleum jelly to hold them in place.
- (40) Verify forward-direct clutch thrust bearing size.
- Race outer diameter is 48.9 mm (1.925 in.) and inside diameter is 26.0 mm (1.024 in.).
- \bullet Bearing outer diameter is 46.7 mm (1.839 in.) and inside diameter is 26.0 mm (1.024 in.).
- (41) Coat front planetary ring gear race with petroleum jelly and install it in ring gear (Fig. 147).
- (42) Verify ring gear race size. Outer diameter is 47.0 mm (1.850 in.) and inside diameter is 26.5 mm (1.045 in.).
- (43) Align forward–direct clutch disc splines with screwdriver (Fig. 148).
- (44) Align and install front planetary ring gear in forward-direct clutch (Fig. 149).
- (45) Coat bearing and race with petroleum jelly and install them in ring gear (Fig. 150). Verify bearing/race size.

Fig. 145 Installing Second Coast Brake Band Retaining Pin

J8921-691

Fig. 146 Installing Forward–Direct Clutch Thrust Bearing And Race

Fig. 147 Installing Planetary Ring Gear Race

Fig. 148 Aligning Forward-Direct Clutch Splines

Fig. 149 Installing Front Planetary Ring Gear

J8921-695

Fig. 150 Installing Ring Gear Bearing And Race

- Bearing outer diameter is 47.7 mm (1.878 in.) and inside diameter is 32.6 mm (1.283 in.).
- Race outer diameter is 53.6 mm (2.110 in.) and inside diameter is 30.6 mm (1.205 in.).
- (46) Install assembled planetary gear/forward-direct clutch (Fig. 151).
- (47) Check clearance between sun gear input drum and direct clutch drum (Fig. 152). Clearance should be 9.8-11.8~mm (0.386-0.465~in.). If clearance is incorrect, planetary gear/forward–direct clutch assembly is not seated or is improperly assembled. Remove, and correct if necessary.

Fig. 151 Installing Front Planetary And Forward-Direct Clutch Assembly

Fig. 152 Checking Input Drum-To-Direct Clutch Drum Clearance

- (48) Coat thrust bearing and race assembly with petroleum jelly and install it on clutch shaft. Bearing faces up and toward case front as shown. Verify bearing/race size. Bearing and race outer diameter is 47.8 mm (1.882 in.) and inside diameter is 33.6 mm (1.301 in.).
- (49) Assemble second coast brake piston components (Fig. 153).
- (50) Install assembled second coast brake piston in case. Verify that the piston rod contacts the second coast brake band.

Fig. 153 Assembling Second Coast Brake Piston

- (51) Install replacement seals on second coast brake piston cover and install cover in case.
- (52) Install second coast brake piston snap ring with snap ring plier tool (Fig. 154).

Fig. 154 Installing Second Coast Brake Piston Snap Rina

- (53) Check second coast brake piston stroke as follows:
 - (a) Install a small wire tie strap around the second coast brake piston rod tight against the transmission case.
 - (b) Apply 57–114 psi air pressure through piston feed hole and check stroke length with Gauge Tool
 - (c) Stroke length should be 1.5 3.0 mm (0.059 - 0.118 in.).
 - (d) If stroke length is incorrect, piston, cover or snap ring is not seated. Reassemble and check stroke again if necessary.
- (54) Coat thrust race and tabbed washer with petroleum jelly and install them on overdrive support (Fig. 157). Verify race size. Race outer diameter is 50.9 mm (2.004 in.) and inside diameter is 36.2 mm (1.426 in.).

J8921-701

Fig. 155 Marking Brake Piston Rod

Fig. 156 Checking Second Coast Brake Piston Stroke

- (55) Install overdrive support in case. Use two long bolts to help align and guide support into position (Fig. 158).
- (56) Install overdrive support snap ring with Snap Ring Plier Tool 7540 (Fig. 159). Chamfered side of snap ring faces up and toward case front. Snap ring ends must be aligned with case opening with ring ends approximately 24 mm (0.94 in.) from center line of case opening.
- (57) Install and tighten overdrive support bolts to 25 N·m (19 ft. lbs.) torque (Fig. 160).

Fig. 157 Installing Overdrive Support Thrust Race
And Washer

Fig. 158 Installing Overdrive Support

- (58) Check output shaft end play with dial indicator (Fig. 161). End play should be 0.27-0.86~mm (0.0106-0.0339~in.).
- (59) If output shaft end play is incorrect, one or more of installed components is not seated. Reassemble as necessary and check end play again.
- (60) Install overdrive brake clutch pack (Fig. 162). Install thickest clutch plate first. Rounded edge of plate faces up. Install first disc followed by another plate until four discs and three plates are installed.

J8921-708

J8921-705

Fig. 159 Installing Overdrive Support Snap Ring

J8921-706

Fig. 160 Installing Overdrive Support Bolts

Fig. 161 Checking Output Shaft End Play

Fig. 162 Installing Overdrive Brake Clutch Pack

(61) Install stepped ring retainer plate with flat side facing disc. Then install brake pack snap ring (Fig. 163).

Fig. 163 Installing Overdrive Brake Snap Ring

- (62) Check overdrive brake piston stroke as follows:
 - (a) Mount dial indicator on case using Miller Tool C-3339 and a suitable bolt threaded into the transmission case.
 - (b) Verify that the dial indicator is mounted solidly and square to the direction of the piston travel.

- (c) Apply 57–114 psi air pressure through piston apply port and note piston stroke on dial indicator. Stroke length should be: 1.40-1.70~mm (0.055-0.0699~in.).
- (d) If stroke is incorrect, brake pack or piston is installed incorrectly. Check and correct as necessary and measure piston stroke again.
- (e) Remove the dial indicator set-up from the transmission.
- (63) Coat overdrive lower race, thrust bearing and upper race with petroleum jelly and install them in overdrive support (Fig. 164). Be sure races and bearing are assembled and installed as shown.

Fig. 164 Installing Overdrive Support Thrust Bearing
And Races

- (64) Verify bearing/race sizes before proceeding. Bearing race sizes are:
- Outer diameter of lower race is 47.8 mm (1.882 in.) and inside diameter is 34.3 mm (1.350 in.).
- Outer diameter of bearing is 47.7 mm (1.878 in.) and inside diameter is 32.7 mm (1.287 in.).
- Outer diameter of upper race is 47.8 mm (1.882 in.) and inside diameter is 30.7 mm (1.209 in.).
- (65) Install overdrive planetary ring gear in support (Fig. 165).
- (66) Coat ring gear thrust race and thrust bearing assembly with petroleum jelly and install them in gear (Fig. 166).
 - (67) Verify bearing/race size before proceeding.
- \bullet Outer diameter of ring gear race–bearing is 47.8 mm (1.882 in.) and inside diameter is 24.2 mm (0.953 in.).
- Outer diameter of bearing is 46.8 mm (1.844 in.) and inside diameter is 26.0 mm (1.024 in.).
- (68) Coat tabbed thrust race with petroleum jelly and install it on planetary gear (Fig. 167). Race outer

J8921-713

Fig. 165 Installing Overdrive Planetary Ring Gear

Fig. 166 Installing Ring Gear Thrust Bearing And Race

diameter is 41.8 mm (1.646 in.) and inside diameter is 27.1 mm (1.067 in.).

- (69) Install assembled overdrive planetary gear and clutch (Fig. 168).
- (70) Coat thrust bearing and race assembly with petroleum jelly and install it on clutch input shaft (Fig. 169). Bearing and race outer diameter is 50.2 mm (1.976 in.) and inside diameter is 28.9 mm (1.138 in.).
- (71) Coat thrust bearing race with petroleum jelly and install it in oil pump (Fig. 170). Bearing race

Fig. 167 Installing Planetary thrust Race

Fig. 168 Installing Overdrive Planetary And Clutch Assembly

outer diameter is 47.2 mm (1.858 in.) and inside diameter is 28.1 mm (1.106 in.).

- (72) Lubricate and install replacement O-ring on oil pump body.
- (73) Install oil pump in case. Align pump and case bolt holes and carefully ease pump into place.

CAUTION: Do not use force to seat the pump. The seal rings on the stator shaft could be damaged if they bind or stick to the direct clutch drum.

- (74) Tighten oil pump bolts to 22 N·m (16 ft. lbs.) torque.
- (75) Verify input shaft rotation. Shaft should rotate smoothly and not bind.

Fig. 169 Installing Input Shaft Thrust Bearing And Race Assembly

Fig. 170 Installing Oil Pump Thrust Race

- (76) Lubricate and install new O-ring on transmission throttle cable adapter and install cable in case (Fig. 171).
- (77) Check clutch and brake operation. Operate clutches and brakes with compressed air applied through feed holes in case (Fig. 172). Listen for clutch and brake application. If you do not hear a clutch or brake apply, disassemble transmission and repair fault before proceeding. It is necessary to block the overdrive clutch accumulator feed hole No. 8 (Fig. 172) in order to check direct clutch operation.

Fig. 171 Installing Transmission Throttle Cable

- 1. OVERDRIVE DIRECT CLUTCH FEED
- 2. DIRECT CLUTCH FEED
- 3. FORWARD CLUTCH FEED
 4. OVERDRIVE BRAKE FEED
 5. SECOND COAST BRAKE FEED
- 6. SECOND BRAKE FEED
- 7. FIRST-REVERSE BRAKE FEED
- 8. OVERDRIVE CLUTCH ACCUMULATOR PISTON HOLE (BLOCK THIS HOLE WHEN CHECKING DIRECT CLUTCH OPERATION)

J8921-721

Fig. 172 Clutch And Brake Feed Hole Locations

- (78) Lubricate and install new O-rings on accumulator pistons (Fig. 173).
- (79) Assemble and install accumulator pistons and springs (Fig. 173).
- (80) Install new check ball body and spring (Fig. 174).
 - (81) Position valve body on case (Fig. 175).
 - (82) Install detent spring (Fig. 175).

- (A) SECOND BRAKE ACCUMULATOR PISTON
- **B** DIRECT CLUTCH ACCUMULATOR PISTON
- © OVERDRIVE BRAKE ACCUMULATOR PISTON
- OVERDRIVE CLUTCH ACCUMULATOR PISTON

Fig. 173 Accumulator Piston And Spring Installation

Fig. 174 Installing Check Ball Body And Spring

- (83) Align manual valve, detent spring and shift sector (Fig. 175).
- (84) Connect transmission throttle cable to throttle valve cam (Fig. 176).

Fig. 175 Aligning Manual Valve, Shift Sector And Detent Spring

J8921-725

Fig. 176 Connecting Transmission Throttle Cable

- (85) Install and tighten valve body–to–case bolts to 10 N·m (7 ft. lbs.) torque.
- (86) Connect valve body solenoid wires to solenoids (Fig. 177).
- (87) Install new O-ring on solenoid harness adapter and secure adapter to case.
- (88) Install valve body oil tubes (Fig. 178). Tap tubes into place with a plastic mallet. Be sure the flanged tube ends and straight tube ends are installed as shown.
- (89) Install new gaskets on oil screen and install screen on valve body. Tighten screen bolts to 10 N·m (7 ft. lbs.) torque.

J8921-433

Fig. 177 Connecting Valve Body Solenoid Wires

J8921-443

Fig. 178 Installing Valve Body Oil Tubes

- (90) Install magnet in oil pan. Be sure magnet does not interfere with valve body oil tubes.
- (91) Apply Threebond® Liquid Gasket TB1281, P/N 83504038, to sealing surface of oil pan. Sealer bead should be at least 3 mm (1/8 in.) wide. Install pan on case and tighten pan bolts to 7 N·m (65 in. lbs.) torque.
- (92) Install transmission speed sensor rotor and key on output shaft (Fig. 179).
- (93) Install spacer and speedometer drive gear on output shaft. Then install retaining snap ring (Fig. 180).
- (94) Apply bead of Threebond® Liquid Gasket TB1281, P/N 83504038, to sealing surface at rear of case (Fig. 181).

J8921-726

Fig. 179 Installing Transmission Speed Sensor Rotor And Key

Fig. 180 Installing Spacer And Speedometer Drive Gear

- (95) Install adapter housing on transmission. Tighten adapter bolts to 34 N⋅m (25 ft. lbs.) torque.
- (96) Install transmission speed sensor (Fig. 182). Tighten sensor bolt to 7.4 N·m (65 in. lbs.) torque and connect sensor wire harness connector.
- (97) Install converter housing (Fig. 183). Tighten 12 mm diameter housing bolts to 57 N·m (42 ft. lbs.) torque. Tighten 10 mm diameter housing bolts to 34 N·m (25 ft. lbs.) torque.
- (98) Install transmission shift lever on manual valve shaft. Do not install lever attaching nut at this time.
- (99) Move transmission shift lever fully rearward. Then move lever two detent positions forward.

Fig. 181 Applying Sealer To Case Rear Flange

Fig. 182 Installing Transmission Speed Sensor

- (100) Mount park/neutral position switch on manual valve shaft and tighten switch adjusting bolt just enough to keep switch from moving (Fig. 184).
- (101) Install park/neutral position switch tabbed washer and retaining nut (Fig. 184). Tighten nut to $6.9~\mathrm{N\cdot m}$ (61 in. lbs.) torque, but do not bend any of the washer tabs against the nut at this time.
- (102) Align park/neutral position switch standard line with groove or flat on manual shaft (Fig. 184).
- (103) Tighten park/neutral position switch adjusting bolt to 13 N·m (9 ft. lbs.) torque.
- (104) Install transmission shift lever on manual valve shaft. Tighten lever attaching nut to 16 N·m (12 ft. lbs.) torque.
- (105) Install retaining clamp for wire harness and throttle cable (Fig. 185).

Fig. 183 Installing Converter Housing

J8921-431

Fig. 184 Park/Neutral Position Switch Installation/ Adjustment

(106) Install torque converter.

(107) Verify that converter is seated by measuring distance between converter housing flange and one of the converter mounting pads (Fig. 186). Use straightedge and vernier calipers to measure distance. On 6–cyl. transmissions, distance should be 16.5 mm (0.650 in.).

(108) Secure converter in transmission with C-clamp or metal strapping. Do this before mounting transmission on jack or moving transmission under vehicle.

Fig. 185 Installing Cable/Harness Clamps

J8921-733

Fig. 186 Checking Converter Installation

(109) Install lower half of transmission fill tube (install upper half after transmission is in vehicle).

CAUTION: The transmission cooler and lines must be reverse flushed if overhaul corrected a malfunction that generated sludge, metal particles, or clutch friction material. The torque converter should also be replaced if contaminated by the same malfunction. Debris and residue not flushed from the cooler and lines will flow back into the transmission and converter. The result will be a repeat failure and shop comeback.

J8921-516

Fig. 187 Oil Pump Components

OIL PUMP

DISASSEMBLY

- (1) Remove pump body O-ring (Fig. 187).
- (2) Remove pump seal.
- (3) Remove pump seal rings (Fig. 187).
- (4) Remove bolts attaching stator shaft to pump body and separate components.
- (5) Remove drive gear and driven gear from pump body (Fig. 187).

ASSEMBLY

- (1) Measure inside diameter of pump body bushing with bore gauge or inside micrometer (Fig. 188). Diameter should be maximum of 38.19 mm (1.5035 in.). Replace pump body if bushing I.D. is greater than specified.
- (2) Measure inside diameter of stator shaft bushing (Fig. 188). Take measurements at front and rear of bushing. Diameter should be maximum of 21.58 mm (0.08496 in.) at front and 27.08 mm (1.0661 in.) at rear. Replace stator shaft if bushing diameter is greater than specified.
 - (3) Measure oil pump clearances (Fig. 189).
- Clearance between pump driven gear and pump body should be maximum of 0.3 mm (0.012 in).
- Clearance between tips of pump gear teeth should be maximum of 0.3 mm (0.012 in).
- Clearance between rear surface of pump housing and pump gears should be maximum of 0.1 mm (0.004 in.).
- (4) Replace pump body and gears if any clearance is greater than specified.

Fig. 188 Checking Pump/Stator Shaft Bushings

- (5) Install new seal with Seal Installer 7549 (Fig. 190).
 - (6) Lubricate and install gears in pump body.
- (7) Assemble stator shaft and pump body. Tighten shaft–to–body bolts to 10 N⋅m (7 ft. lbs.) torque.

Fig. 189 Checking Pump Gear Clearances

Fig. 190 Installing Pump Seal

- (8) Install new O-ring on pump body and new seal rings on stator shaft.
- (9) Install pump in torque converter and check pump gear rotation (Fig. 191). Gears must rotate smoothly when turned clockwise and counterclockwise.
- (10) Lubricate pump O-ring and seal rings with petroleum jelly.

Fig. 191 Checking Pump Gear Rotation

OVERDRIVE PLANETARY GEAR AND CLUTCH

DISASSEMBLY

Overdrive Planetary Gear And Clutch Components

- (1) Check operation of one-way clutch in clutch drum (Fig. 192). Hold drum and turn planetary shaft clockwise and counterclockwise. Shaft should turn clockwise freely but lock when turned counterclockwise. Replace one-way clutch if necessary.
- (2) Remove overdrive clutch from planetary gear (Fig. 193).
- (3) Measure stroke length of overdrive clutch piston as follows:
 - (a) Mount oil pump on torque converter. Then mount clutch on oil pump (Fig. 194).
- (b) Install a suitable threaded bolt/rod into oil pump for use in mounting Miller Tool C-3339 dial indicator components securely.
- (c) Mount dial indicator on the bolt/rod and position the dial indicator squarely on the clutch piston.
- (d) Apply compressed air through clutch feed hole in oil pump and note piston stroke length. Stroke length should be 1.85-2.15~mm (0.0728 -0.0846~in.).

Fig. 192 Checking One-Way Clutch

J8921-523

J8921-522

Fig. 193 Removing Overdrive Clutch From Gear

- (4) Remove thrust bearing and race assembly from clutch drum (Fig. 195).
- (5) Remove clutch pack snap ring and remove the clutch pack (Fig. 196).
- (6) Measure overdrive clutch disc thickness. Minimum allowable thickness is $1.84\ mm$ ($0.0724\ in.$).

J8921-525

Fig. 194 Assembling Converter, Pump And Clutch For Test

Fig. 195 Removing Clutch Drum Bearing And Race

(7) If the clutch pack stroke length is out of specification or any clutch disc fails to meet the minimum thickness, new discs will need to be installed during assembly.

Fig. 196 Removing Clutch Pack Snap Ring

J8921-527

(8) Compress piston return spring with Tool 7538 (Fig. 197). Remove snap ring and remove compressor tool.

Fig. 197 Removing Clutch Piston Snap Ring

- (9) Remove the piston return springs.
- (10) Mount oil pump on converter. Then mount clutch on oil pump (Fig. 198).
- (11) Hold clutch piston by hand and apply compressed air through oil pump feed hole to ease piston out (Fig. 198). Apply only enough air pressure to remove piston.

Fig. 198 Removing Overdrive Clutch Piston

(12) Measure free length of piston return springs with springs in retainer (Fig. 199). Length should be 16.8 mm (0.661 in.). Replace spring and retainer assembly if necessary.

Fig. 199 Checking Piston Return Spring Length

(13) Check clutch piston check ball (Fig. 200). Shake piston to see if ball moves freely. Then check ball sealing by applying low pressure compressed air to ball inlet as shown. Air should not leak past check ball.

J8921-537

Fig. 200 Testing Clutch Piston Check Ball

(14) Check inside diameter of clutch drum bushings with bore gauge or inside micrometer (Fig. 201). Maximum inside diameter is 27.11 mm (1.0673 in.). Replace drum if bushing inside diameter is greater than specified.

J8921-538

Fig. 201 Checking Clutch Drum Bushings

- (15) Remove bearing and race from ring gear (Fig. 202).
- (16) Remove snap ring from ring gear and remove ring gear hub (Fig. 203).

Fig. 202 Removing Ring Gear Bearing And Race

Fig. 203 Removing Ring Gear Hub

(17) Remove race from planetary gear (Fig. 204).

Fig. 204 Remove Planetary Gear Race

(18) Remove snap ring and remove retaining plate (Fig. 205).

Fig. 205 Removing Snap Ring And Retaining Plate

- (19) Remove one–way clutch and outer race as assembly. Then separate race from clutch (Fig. 206).
 - (20) Remove thrust washer (Fig. 207).
- (21) Check inside diameter of planetary gear bushing (Fig. 208). Maximum inside diameter is 11.27 mm (0.4437 in.). Replace planetary gear if bushing inside diameter is greater then specified.

ASSEMBLY

- (1) Install thrust washer in planetary gear (Fig. 209). **Grooved side of washer faces up and toward front.**
 - (2) Install clutch race into planetary gear.

Fig. 206 Removing One-Way Clutch

Fig. 207 Removing Planetary Thrust Washer

- (3) Install one-way clutch into the outer race (Fig. 210). Be sure flanged side of clutch is facing upward.
- (4) Install clutch retaining plate and snap ring in planetary gear.
- (5) Coat planetary race with petroleum jelly and install it on planetary gear. Outside diameter of race

FLANGED SIDE OF CLUTCH FACES UP ONE-WAY CLUTCH RACE

J8921-539

Fig. 208 Checking Planetary Bushing

Fig. 209 Install Planetary Thrust Washer

should be 41.8 mm (1.646 in.); inside diameter is 27.1 mm (1.067 in.).

- (6) Install hub in planetary ring gear and install snap ring.
- (7) Coat race and bearing with petroleum jelly and install in planetary ring gear (Fig. 211).
- (8) Verify bearing/race size. Outside diameter of race is 47.8 mm (1.882 in.) and inside diameter is 24.2 mm (0.953 in.). Outside diameter of bearing is 46.8 mm (1.843 in.) and inside diameter is 26 mm (1.024 in.).

J8921-540 Fig. 210 Assembling One–Way Clutch And Race

Fig. 211 Install Ring Gear Bearing And Race

- (9) Lubricate new clutch piston O-rings with Mopar® Door Ease, or Ru-Glyde. Then install rings on clutch piston and install piston in clutch drum.
- (10) Install piston return springs in clutch piston (Fig. 212).
- (11) Install piston snap ring. Compress piston return springs with Tool 7538 and shop press (Fig. 213).
- (12) Install overdrive clutch pack in drum. Install steel plate first, then a disc (Fig. 214). Continue installation sequence until required number of discs and plates have been installed.

Fig. 212 Installing Piston Return Springs

J8921-542

Fig. 213 Installing Clutch Piston Snap Ring

- (13) Install clutch pack retainer with flat side facing downward. Then install retainer snap ring (Fig. 215). Compress springs with suitable tool.
- (14) Install clutch drum bearing and race assembly (Fig. 216). Be sure bearing rollers face upward as shown. Outside diameter of assembled bearing and race is 50.2 mm (1.976 in.). Inside diameter is 28.9 mm (1.138 in.).
 - (15) Install clutch on planetary gear.
- (16) Verify one-way clutch operation. Hold drum and turn planetary shaft clockwise and counterclockwise. Shaft should turn clockwise freely but lock when turned counterclockwise.

J8921-543

Fig. 214 Installing Overdrive Clutch Discs And Plates

Fig. 215 Installing Retainer And Snap Ring

OVERDRIVE SUPPORT

DISASSEMBLY

(1) Check brake piston operation. Mount support on clutch (Fig. 217).

J8921-545

Fig. 216 Installing Clutch Drum Bearing And Race Assembly

(2) Apply compressed air through support feed hole and observe brake piston movement (Fig. 217). Piston should move smoothly and not bind or stick. If operation is incorrect, replace piston and support.

Fig. 217 Checking Brake Piston Movement

- (3) Remove thrust bearing front race, thrust bearing and rear race (Fig. 218).
- (4) Turn overdrive support over and remove bearing race and clutch drum thrust washer (Fig. 219).

Fig. 218 Removing Support Thrust Bearing And Races

Fig. 219 Removing Clutch Drum Thrust Washer And Race

(5) Compress piston return spring with Spring Compressor 7537 and remove piston snap ring (Fig. 220).

J8921-551

DISASSEMBLY AND ASSEMBLY (Continued)

Fig. 220 Removing/Installing Piston Snap Ring

- (6) Mount support in direct clutch and remove brake piston with compressed air. Apply air to same feed hole used when checking piston operation.
 - (7) Remove and discard support O-rings (Fig. 221).
 - (8) Remove support seal rings (Fig. 222).
- (9) Measure free length of piston return springs with springs mounted in retainer (Fig. 223). Length should be 17.23 mm (0.678 in.).
- (10) Clean support components and dry them with compressed air.
- (11) Inspect overdrive support and brake piston. Replace support and piston if either part is worn or damaged.

Fig. 222 Removing Support Seal Rings

ASSEMBLY

- (1) Lubricate new support seal rings. Then compress rings and install them on support (Fig. 224).
- (2) Lubricate and install new O-rings on brake piston. Then carefully seat piston in support.
 - (3) Install return springs on brake piston.
- (4) Compress return springs with Spring Compressor 7537 (Fig. 220) and install piston snap ring.
- (5) Install support bearing race and clutch drum thrust washer (Fig. 219).

Fig. 221 Overdrive Support Components

Fig. 223 Checking Piston Return Spring Length

Fig. 224 Installing Support Seal Rings

- (6) Install thrust bearing and front and rear bearing races. Thrust bearing rollers should face upward as shown (Fig. 224).
 - (7) Verify thrust bearing/race sizes (Fig. 225).
- Front race outer diameter is 47.8 mm (1.882 in.) and inside diameter is 30.7 mm (1.209 in.).
- Rear race outer diameter is 47.8 mm (1.882 in.) and inside diameter is 34.3 mm (1.350 in.).
- Bearing outer diameter is 47.7 mm (1.878 in.) and inside diameter is 32.7 mm (1.287 in.).

Fig. 225 Installing Support Thrust Bearing And Races

(8) Verify brake piston operation. Use same procedure described at beginning of disassembly. Piston should operate smoothly and not bind or stick.

DIRECT CLUTCH

DISASSEMBLY

(1) Remove direct clutch from forward clutch (Fig. 226).

J8921-555

Fig. 226 Separate Direct Clutch From Forward
Clutch

(2) Remove clutch drum thrust washer (Fig. 227).

Fig. 227 Removing Clutch Drum Thrust Washer

- (3) Check clutch piston stroke length as outlined in following steps.
- (4) Mount direct clutch on overdrive support assembly (Fig. 228).

Fig. 228 Mount Direct Clutch On Overdrive Support

- (5) Mount dial indicator on clutch and position indicator plunger on clutch piston (Fig. 229).
- (6) Apply 57–114 psi air pressure through feed hole in overdrive support and note piston stroke length (Fig. 229). Check stroke at least twice.
- (7) Piston stroke length should be 1.37 mm 1.67 mm (0.054 0.065 in.). If stroke length is incorrect,

Fig. 229 Checking Direct Clutch Piston Stroke Length

either the clutch pack retainer or clutch discs will have to be replaced.

(8) Remove clutch pack snap ring and remove retainer and clutch pack from drum (Fig. 230).

Fig. 230 Removing Clutch Pack Snap Ring

- (9) Compress clutch piston return springs with tool 7538 and remove clutch piston snap ring (Fig. 231).
 - (10) Remove compressor tool and return spring.
- (11) Remove clutch piston. Remount clutch on overdrive support (Fig. 232). Apply compressed air

Fig. 231 Removing Piston Return Spring

through piston feed hole in support to remove piston. Use only enough air to ease piston out.

Fig. 232 Removing Direct Clutch Piston

- (12) Remove and discard clutch piston O-rings.
- (13) Measure clutch disc thickness. Minimum allowable thickness is 1.84 mm (0.0724 in). Replace clutch pack if any disc is below minimum thickness.
- (14) Measure free length of piston return springs with springs in retainer (Fig. 233). Length should be 21.32 mm (0.839 in.). Replace return springs if not within specification.

Fig. 233 Checking Piston Return Spring Length

(15) Check clutch piston check ball (Fig. 234). Shake piston to see if ball moves freely. Then check ball seating by applying low pressure compressed air to ball inlet as shown. Air should not leak past check ball.

Fig. 234 Testing Piston Check Ball Seating

(16) Measure inside diameter of clutch drum bushing. Inside diameter should be no more than 53.97 mm (2.1248 in.). Replace drum if bushing inside diameter is greater than specified.

ASSEMBLY

(1) Lubricate and install replacement O-rings on clutch piston (Fig. 235).

Fig. 235 Direct Clutch Components

- (2) Install clutch piston in drum and install return springs on piston.
- (3) Compress piston return springs with Tool 7538 and install snap ring (Fig. 231). Be sure snap ring end gap is not aligned with spring retainer tab.
- (4) Install clutch discs and plates (Fig. 236). Install plate then disc until all plates and discs are installed. Four plates and discs are required.

J8921-563

Fig. 236 Installing Direct Clutch Discs And Plates

- (5) Install clutch pack retainer in drum (Fig. 237).
- (6) Install clutch pack snap ring (Fig. 237).

J8921-564

Fig. 237 Install Clutch Pack Retainer

(7) Check snap ring position. If necessary, shift snap ring until end gap is **not** aligned with any notches in clutch drum (Fig. 238).

Fig. 238 Adjusting Clutch Pack Snap Ring Position

- (8) Lubricate clutch drum thrust washer with petroleum jelly and install it in drum (Fig. 228).
- (9) Mount direct clutch assembly on forward clutch assembly and check assembled height (Fig. 239). Height should be 70.3 to 71.5 mm (2.767 to 2.815 in.).

Fig. 239 Checking Direct Clutch Assembled Height

(10) If assembled height is incorrect, clutches are not seated.

FORWARD CLUTCH

DISASSEMBLY

- (1) Check clutch piston stroke as outlined in following steps.
- (2) Position overdrive support on wood blocks and mount forward clutch drum on support (Fig. 241).
- (3) Remove bearing and race from forward clutch drum (Fig. 241).
- (4) Install a suitable threaded bolt/rod into the side of the overdrive support.
- (5) Mount Miller Tool C-3339 dial indicator components onto the threaded rod as necessary.
- (6) Position dial indicator plunger squarely against clutch piston.
- (7) Apply compressed air through right side feed hole in support and note piston stroke length on dial indicator.
- (8) Stroke length should be 3.55 3.73 mm (0.1348 0.1469 in.).
- (9) Replace clutch discs if stroke length is incorrect.
- (10) Remove clutch pack snap ring and remove retainer and clutch pack (Fig. 242).
 - (11) Remove clutch pack cushion plate (Fig. 243).
- (12) Compress clutch springs with Tool 7538 and remove piston snap ring.
- (13) Remove spring compressor tool and piston return springs.
- (14) Remount forward clutch drum on overdrive support (Fig. 244).

J8921-567

Fig. 240 Forward Clutch Components

- (15) Apply compressed air through feed hole in support to remove piston (Fig. 244). Use only enough air pressure to ease piston out of drum.
- (16) Remove and discard clutch piston O-rings (Fig. 245).
- (17) Remove clutch drum O-ring from rear hub of drum.
- (18) Remove three seal rings from clutch drum shaft (Fig. 246).
- (19) Remove thrust bearing and race assembly from clutch drum (Fig. 247).
- (20) Measure clutch disc thickness (Fig. 248). Minimum allowable thickness is 1.51 mm (0.0595 in.). Replace clutch pack if any disc falls below specified minimum thickness.
- (21) Measure free length of piston return springs with springs mounted in retainer (Fig. 249). Length should be 19.47 mm (0.767 in.). Replace springs and retainer if length is incorrect.
- (22) Inspect clutch piston check ball (Fig. 250). Ball should move freely within piston. Check ball seating by applying low pressure compressed air to

Fig. 241 Positioning Drum And Support On Wood Blocks

Fig. 242 Removing Retainer And Clutch Pack

ball feed hole. Ball should seat firmly and not leak air.

(23) Measure inside diameter of bushing in clutch drum hub. Maximum allowable diameter is 24.08 mm (0.9480 in.). Replace clutch drum if bushing inside diameter is greater than specified.

ASSEMBLY

(1) Lubricate bearing and race assembly with petroleum jelly and install it in clutch drum (Fig.

Fig. 243 Removing Cushion Plate

Fig. 244 Removing Forward Clutch Piston

- 251). Race side of assembly faces downward and toward drum. Bearing rollers face up (Fig. 251)
- (2) Coat new clutch drum shaft seal rings with petroleum jelly. Before installing drum shaft seal rings, squeeze each ring so ring ends overlap (Fig. 252). This tightens ring making clutch installation easier.
- (3) Install seal rings on shaft. Keep rings closed as tightly as possible during installation. Avoid overspreading them.
 - (4) Mount clutch drum on overdrive support.
- (5) Lubricate and install new O-ring on clutch drum hub (Fig. 245).

Fig. 245 Removing/Installing Clutch Drum O-Ring

J8921-574

Fig. 246 Removing Clutch Drum Seal Rings

- (6) Lubricate new clutch piston O-rings with Mopar Door Ease, or Ru-Glyde. Install rings on clutch piston and install piston in drum.
 - (7) Install piston return springs.
- (8) Compress piston return springs with Tool 7538 and shop press and install piston snap ring. Be sure snap ring end gap is not aligned with any notches in drum.
- (9) Install cushion plate in drum. Concave side of plate faces downward (Fig. 243).
- (10) Install clutch discs, plates and retainer (Fig. 253). Install tabbed plate followed by disc until

Fig. 247 Removing Clutch Drum Thrust Bearing
Assembly

J8921-576

Fig. 248 Measuring Clutch Disc Thickness

required number of plates and discs are installed. Use six plates and discs.

- (11) Install clutch pack snap ring.
- (12) Recheck clutch piston stroke length using same method outlined at beginning of disassembly procedure. If stroke length is not within specified limits, replace clutch discs.
- (13) Lubricate race and bearing with petroleum jelly and install them in clutch drum (Fig. 254). Be

Fig. 249 Checking Return Spring Length

J8921-577

Fig. 250 Testing Piston Check Ball

sure bearing rollers face up and race lip seats in drum as shown.

- (14) Verify bearing and race size.
- Outer diameter of bearing is 46.7 mm (1.839 in).
- Outer diameter of race is 48.9 mm (1.925 in.).
- Inner diameter of bearing and race is 26.0 mm (1.024 in.).
- (15) Mount forward clutch on direct clutch and check assembled height (Fig. 255). Height should be 70.3 71.5 mm (2.767 2.815 in.).

Fig. 251 Installing Thrust Bearing And Race

Fig. 252 Installing Clutch Drum Shaft Seal Rings

Fig. 253 Installing Forward Clutch Discs And Plates

J8921-581

Fig. 254 Installing Thrust Bearing And Race

Fig. 255 Checking Forward Clutch Assembled Height

FRONT PLANETARY GEAR

DISASSEMBLY

- (1) Remove ring gear from planetary gear (Fig. 256).
- (2) Remove front bearing and the two races from ring gear (Fig. 256).
- (3) Remove tabbed thrust race from planetary gear (Fig. 256).
- (4) Remove snap ring attaching planetary gear to shaft and remove gear.
- (5) Remove rear bearing and race from planetary gear.
- (6) Measure inside diameter of ring gear bushing. Maximum allowable diameter is 24.08 mm (0.9480 in.). Replace ring gear if bushing inside diameter is greater than specified.
- (7) Check condition of planetary gear. Replace gear if teeth are worn, pins are loose, or carrier is cracked, distorted, or worn.

J8921-583

Fig. 256 Front Planetary Gear Components

ASSEMBLY

- (1) Lubricate planetary and ring gear bearings and races with petroleum jelly.
- (2) Identify planetary bearings and races before installation. (Fig. 256). Bearings and races can be identified by following dimensions:
- Outer diameter of rear bearing is 47.7 mm (1.878 in.). Inner diameter is 35.5 mm (1.398 in.).
- Outer diameter of rear race 47.6 mm (1.874 in.). Inner diameter is 33.7 mm (1.327 in.).
- Outer diameter of front race is 53.6 mm (2.110 in.). Inner diameter is 30.5 mm (1.201 in.).
- Outer diameter of front bearing is 47.7 mm (1.878 in.). Inner diameter is 32.6 (1.283 in.).
- Outer diameter of forward race is 47.0 mm (1.850 in.). Inner diameter is 26.5 mm 1.043 in.).
 - (3) Install rear race and bearing in gear (Fig. 257).
- (4) Turn planetary over and install thrust race (Fig. 258).
- (5) Install front race and bearing and forward race in ring gear (Fig. 259).

Fig. 257 Front Planetary Rear Bearing and Race Installation

Fig. 259 Front Planetary Front Bearing And Races Installation

SUN GEAR AND NO. 1 ONE-WAY CLUTCH

J9121-400

J8921-586

Sun Gear And One-Way Clutch Components

DISASSEMBLY

(1) Hold sun gear and turn second brake hub clockwise and counterclockwise (Fig. 260). Hub should rotate freely clockwise but lock when turned counterclockwise. Replace one-way clutch and hub if they do not operate properly.

Fig. 260 Checking One-Way Clutch Operation

(2) Remove one-way clutch/second brake hub assembly from drum (Fig. 261).

J8921-589

Fig. 261 Removing/Installing Brake Hub And Clutch Assembly

- (3) Remove thrust washer from drum (Fig. 262).
- (4) Remove two seal rings from sun gear (Fig. 263).

Fig. 262 Removing/Installing Thrust Washer

J8921-591

Fig. 263 Removing/Installing Sun Gear Seal Rings

- (5) Support sun gear on wood block (Fig. 264). Then remove first sun gear snap ring and separate drum from gear.
- (6) Remove remaining snap ring from sun gear (Fig. 265).
- (7) Measure inside diameter of sun gear bushings with bore gauge or inside micrometer (Fig. 266). Maximum allowable diameter is 27.08 mm (1.0661 in.). Replace sun gear if bushing inside diameter is greater than specified.

Fig. 264 Removing/Installing Sun Gear

Fig. 265 Removing/Installing Second Snap Ring ASSEMBLY

- (1) Install first snap ring on sun gear.
- (2) Install sun gear in drum and install remaining snap ring.
- (3) Coat replacement seal rings with petroleum jelly and install them on sun gear. **Be sure seal ring ends are interlocked.**
- (4) Install thrust washer. Be sure washer tabs are seated in drum slots.
- (5) Install one-way clutch/second brake hub assembly on sun gear. Deep side of hub flange faces upward (Fig. 267).
- (6) Check one-way clutch operation again (Fig. 260). Hold sun gear and turn second brake hub clock-

Fig. 266 Checking Sun Gear Bushings

J8921-595

Fig. 267 Installing Clutch And Hub Assembly On Sun Gear

wise and counterclockwise. Hub should turn clockwise freely, but lock when turned counterclockwise.

SECOND BRAKE

DISASSEMBLY

- (1) Remove second brake drum from output shaft (Fig. 268).
- (2) Remove thrust washer from second brake drum (Fig. 269).
- (3) Compress piston return springs with shop press and tool 7538. Then remove piston snap ring (Fig. 270).
- (4) Remove compressor tool and remove spring retainer and return springs.

Second Brake Components

J8921-597

Fig. 268 Removing/Installing Second Brake
Assembly

- (5) Remove second brake piston and sleeve from drum with compressed air (Fig. 271). Use only enough air pressure to ease piston out of drum.
 - (6) Remove and discard brake piston O-rings.

Fig. 269 Removing/Installing Second Brake Drum
Thrust Washer

(7) Measure free length of piston return springs with springs mounted in retainer (Fig. 272). Length should be approximately 16.05 mm (0.632 in.). Replace return springs if length is less than specified.

Fig. 270 Removing/Installing Second Brake Piston Snap Ring

Fig. 271 Removing/Installing Piston And Sleeve ASSEMBLY

- (1) Lubricate and install new O-rings on brake piston. Then install brake piston in drum.
- (2) Install return springs and retainer on brake piston.
- (3) Compress return springs with shop press and Compressor Tool 7538. Install piston snap ring and remove brake assembly from press.

Fig. 272 Measuring Second Brake Piston Return Springs

(4) Check brake piston operation with low pressure compressed air (Fig. 273). Apply air pressure through feed hole in drum. Piston should move smoothly when applying–releasing air pressure.

Fig. 273 Checking Second Brake Piston Operation

(5) Coat thrust washer with petroleum jelly and install it in drum. Be sure washer notches are aligned with tabs on spring retainer (Fig. 274).

Fig. 274 Installing Second Brake Thrust Washer

PLANETARY/BRAKE PACK/OUTPUT SHAFT

Rear Planetary, Brake Pack, Output Shaft Components

DISASSEMBLY

- (1) Remove output shaft from gear assembly (Fig. 275).
 - (2) Remove and discard shaft seal ring (Fig. 276).
- (3) Remove brake pack from planetary gear (Fig. 277).
- (4) Remove planetary gear from ring gear (Fig. 278).

Fig. 275 Removing/Installing Output Shaft

J8921-605

Fig. 276 Removing/Installing Shaft Seal Ring

J8921-606

Fig. 277 Removing/Installing First–Reverse Brake Pack

- (5) Check No. 2 one-way clutch (Fig. 279). Hold planetary gear and turn clutch inner race in both directions. Race should turn freely counterclockwise, but lock when turned clockwise. Replace one-way clutch if necessary.
- (6) Remove clutch inner race from planetary gear (Fig. 280).
- (7) Remove clutch snap ring and remove No. 2 one–way clutch top end cap from planetary.
- (8) Remove No. 2 one-way clutch from planetary (Fig. 281).

Fig. 278 Removing/Installing Rear Planetary

Fig. 279 Checking No. 2 One-Way Clutch Operation

Fig. 280 Removing/Installing Clutch Inner Race

- (9) Remove No. 2 one–way clutch bottom end cap from planetary.
- (10) Remove front and rear thrust washers from planetary gear (Fig. 282).
- (11) Remove thrust bearing and washers from ring gear (Fig. 283).
- (12) Remove ring gear snap ring and remove ring gear hub (Fig. 284).
- (13) Inspect and replace any worn or damaged planetary gearcomponents.

Fig. 281 Removing/Installing One-Way Clutch

J8921-611

Fig. 282 Removing/Installing Rear Planetary Thrust Washers

Fig. 283 Removing/Installing Ring Gear Thrust Bearing And Races

ASSEMBLY

- (1) Measure thickness of each brake pack disc. Minimum thickness is 1.51 mm (0.0594 in.). Replace all discs if any disc is thinner than specified.
- (2) Install hub and snap ring in ring gear (Fig. 284)
- (3) Identify ring gear thrust bearing and races by following dimensions (Fig. 283):

Fig. 284 Removing/Installing Ring Gear Hub

- Outer diameter of bottom race is 44.8 mm (1.764 in.) and inner diameter is 27.6 mm (1.087 in.).
- Outer diameter of bearing is 44.7 mm (1.760 in.) and inner diameter is 30.1 mm (1.185 in.).
- Outer diameter of upper race is 44.8 mm (1.764 in.) and inner diameter is 28.8 mm (1.134 in.).
- (4) Lubricate ring gear thrust bearing and races with petroleum jelly and install them in ring gear (Fig. 283).
- (5) Coat planetary thrust washers with petroleum jelly and install them in gear (Fig. 282).
- (6) Install No. 2 one-way clutch bottom end cap into the planetary gear.
- (7) Install No. 2 one-way clutch in planetary gear. Be sure flanged side of clutch faces upward (Fig. 285).
- (8) Install No. 2 one-way clutch top end cap into the planetary gear.
- (9) Install clutch retaining snap ring and install clutch inner race (Fig. 280). Turn race counterclockwise to ease installation.
- (10) Verify one-way clutch operation. Hold gear and turn inner race in both directions. Race should turn freely counterclockwise, but lock when turned clockwise.
 - (11) Install planetary gear in ring gear.

J8921-614

Fig. 285 Installing No. 2 One-Way Clutch

- (12) Install thrust bearing and washers onto the ring gear (Fig. 283).
- (13) Assemble clutch discs and clutch plates (Fig. 277). Sequence is disc first, then a plate. Use seven discs and plates.

- (14) Install brake pack on planetary gear (Fig. 277).
- (15) Install new seal ring on output shaft (Fig. 276). Be sure ring ends are interlocked as shown.

TRANSMISSION VALVE BODY

The valve body assembly consists of two sections which are the upper body and lower body (Fig. 286) and (Fig. 287). Disassembly, inspection and overhaul procedures for each section are outlined separately. Refer to the appropriate procedure as needed.

J9121-384

Fig. 286 Lower Body Components

J8921-625

Fig. 287 Upper Body Components

CLEANING AND INSPECTION

TRANSMISSION PARTS CLEANING AND INSPECTION

Clean the transmission components with solvent and dry them with compressed air only. Do not use shop towels or rags.

Blow compressed air through all oil feed passages and channels to be sure they are clear. Inspect the transmission components for wear and damage. Replace components that are damaged or worn beyond the limits specified in the individual overhaul procedures.

Replace all O-rings, gaskets and seals. These components are not reusable. Also replace any snap ring that is distorted or damaged.

During overhaul assembly operations, lubricate the transmission components with Mopar Mercon automatic transmission fluid or petroleum jelly as indicated. Petroleum jelly should be used to prelubricate thrust bearings, washers and races. It can also be used to hold parts in position during assembly.

Soak replacement clutch and brake pack components in transmission fluid for at least 30 minutes before installation.

ADJUSTMENTS

GEARSHIFT CABLE

Check adjustment by starting the engine in Park and Neutral. Adjustment is OK if the engine starts only in these positions. Adjustment is incorrect if the engine starts in one but not both positions. If the engine starts in any position other than Park or Neutral, or if the engine will not start at all, the park/neutral position switch may be faulty.

Gearshift Adjustment Procedure

- (1) Shift transmission into Park.
- (2) Raise vehicle.
- (3) Release cable adjuster clamp (at transmission end of cable) to unlock cable.
- (4) Unsnap cable from cable mounting bracket on transmission (Fig. 288).
 - (5) Slide cable eyelet off transmission shift lever.
- (6) Verify transmission shift lever is in Park detent by moving lever fully rearward. Last rearward detent is Park position.
- (7) Verify positive engagement of transmission park lock by attempting to rotate propeller shaft. Shaft will not rotate when park lock is engaged.
 - (8) Slide cable eyelt onto transmission shift lever.
- (9) Snap shift cable adjuster into mounting bracket on transmission.

- (10) Lock shift cable by pressing cable adjuster clamp down until it snaps into place.
- (11) Lower vehicle and check engine starting. Engine should start only in Park and Neutral.

Fig. 288 Shift Cable Attachment At Transmission-Typical

BRAKE TRANSMISSION SHIFT INTERLOCK CABLE ADJUSTMENT

- (1) Shift transmission into PARK.
- (2) Remove shift lever bezel and console screws. Raise bezel and console for access to cable.
- (3) Pull cable lock button up to release cable (Fig. 289).
 - (4) Turn ignition switch to LOCK position.

Fig. 289 Park Lock Cable Attachment

ADJUSTMENTS (Continued)

- (5) Use a spacer to create a one millimeter gap between the shifter pawl and top of the shift gate.
- (6) Pull cable forward. Then release cable and press cable lock button down until it snaps in place.
 - (7) Check adjustment as follows:
 - (a) Check movement of release shift handle button (floor shift) or release lever (column shift). You should not be able to press button inward or move column lever.
 - (b) Turn ignition switch to RUN position.
 - (c) Shifting out of park should not be possible.
 - (d) Apply the brake and attempt to shift out of PARK. Shifting should be possible.
 - (e) While the transmission is shifted out of PARK, release the brake and attempt to shift through all gears. Release the shift button at least once during this procedure. The ignition key should not go to the LOCK position.
 - (f) Return transmission to the PARK position without applying the brake.
- (8) Move shift lever back to PARK and check ignition switch operation. You should be able to turn switch to LOCK position and shift lever release button/lever should not move.

TRANSMISSION THROTTLE VALVE CABLE ADJUSTMENT

The transmission throttle valve is operated by a cam on the throttle lever. The throttle lever is operated by an adjustable cable (Fig. 290). The cable is attached to an arm mounted on the throttle lever shaft. A retaining clip at the engine-end of the cable is removed to provide for cable adjustment. The retaining clip is then installed back onto the throttle valve cable to lock in the adjustment.

A correctly adjusted throttle valve cable will cause the throttle lever on the transmission to move simultaneously with the throttle body lever from the idle position. Proper adjustment will allow simultaneous movement without causing the transmission throttle lever to either move ahead of, or lag behind the lever on the throttle body.

Checking Throttle Valve Cable Adjustment

- (1) Turn ignition key to OFF position.
- (2) Remove air cleaner.
- (3) Verify that lever on throttle body is at curb idle position. Then verify that transmission throttle lever (Fig. 291) is also at idle (fully forward) position.
- (4) Slide cable off attachment stud on throttle body lever.
- (5) Compare position of cable end to attachment stud on throttle body lever:
- Cable end and attachment stud should be aligned (or centered on one another) to within 1 mm (0.039 in.) in either direction.

Fig. 290 Throttle Cable Attachment At Engine

Fig. 291 Throttle Cable Attachment At Transmission

- If cable end and attachment stud are misaligned (off center), cable will have to be adjusted as described in Throttle Valve Cable Adjustment procedure.
- (6) Reconnect cable end to attachment stud. Then with aid of a helper, observe movement of transmission throttle lever and lever on throttle body.
- If both levers move simultaneously from idle to half-throttle and back to idle position, adjustment is correct.
- If transmission throttle lever moves ahead of, or lags behind throttle body lever, cable adjustment will be necessary. Or, if throttle body lever prevents transmission lever from returning to closed position, cable adjustment will be necessary.

Throttle Valve Cable Adjustment Procedure

- (1) Turn ignition switch to OFF position.
- (2) Remove air cleaner if necessary.
- (3) Disconnect cable end from attachment stud. Carefully slide cable off stud. Do not pry or pull cable off.

ADJUSTMENTS (Continued)

- (4) Verify that transmission throttle lever is in fully closed position. Then be sure lever on throttle body is at curb idle position.
- (5) Insert a small screwdriver under edge of retaining clip and remove retaining clip.
- (6) Center cable end on attachment stud to within 1 mm (0.039 in.).

NOTE: Be sure that as the cable is pulled forward and centered on the throttle lever stud, the cable housing moves smoothly with the cable. Due to the angle at which the cable housing enters the spring housing, the cable housing may bind slightly and create an incorrect adjustment.

- (7) Install retaining clip onto cable housing.
- (8) Check cable adjustment. Verify transmission throttle lever and lever on throttle body move simultaneously.

SPECIFICATIONS

AW-4 AUTOMATIC TRANSMISSION

AW-4 GENERAL SPECIFICATIONS

AW-4 GENERAL SPECIFICATIONS
Gear Ratios:
First
Second
Third 1.000:1
Fourth (Overdrive)
Reverse
Transmission Fluid
Fluid Level
Fluid Capacity (all models)
Test Specifications
Stall Speed:
In D Range and Reverse
Line Pressure:
In D at Curb Idle
In D at WOT 173–209 psi (1196–1442 kPa)
In Reverse at Curb Idle
In Reverse at WOT
Time Lag Test:
Engagement in D Range
Engagement in Reverse
Valve Body Solenoid Resistance
Transmission Fluid Normal Operating Temperature
TPS Input Voltage (AU)
TPS Output Voltage
4-Cylinder
6-Cylinder

AW-4 OIL PUMP WEAR LIMITS

Drive Gear

Tip Clearance:

Gear-to-Pump Body

End Clearance:

Driven Gear-to-Pump

Body Clearance:

AW-4 CLUTCH DISC AND PLATE THICKNESS

Component	Minimum Allowable Thickness
Clutch Disc (all except first-reverse and forward clutch discs)	1.84 mm (0.0724 in.)
6-Cylinder Forward Clutch Disc	1.51 mm (0.0594 in.)
6 Cylinder Direct Clutch Plates: Thin Plate (1) Thick Plates (3)	2.3 mm (0.905 in.) 3.0 mm (0.118 in.)
6-Cylinder Forward Clutch Plate	1.8 mm (0.070 in.)
First-Reverse Brake Disc (all)	1.51 mm (0.0594 in.)

J9121-402

AW-4 BUSHING AND PISTON CLEARANCE

BUSHING INSIDE DIAMETER (MAXIMUM)

Bushing Location	Maximum Allowance Inside Diameter
Extension Housing	38.09 mm (1.4996 in.)
Direct Clutch Drum	53.97 mm (2.1248 in.)
Overdrive Planetary Gear	11.27 mm (.4437 in.)
Overdrive Direct Clutch Drum	27.11 mm (1.0673 in.)
Stator Shaft (Front)	21.58 mm (.8496 in.)
Stator Shaft (Rear)	27.08 mm (1.0661 in.)
Oil Pump Body	38.19 mm (1.5035 in.)
Transmission Case	38.18 mm (1.5031 in.)

PISTON STROKE LENGTH

Piston Location	Specification
Direct Clutch (all)	1.37-1.67 mm (.05390657 in.)
6-Cylinder Overdrive Brake	1.40-1.70 mm (.05510669 in.)
Second Coast Brake (all)	1.5-3.0 mm (.059118 in.)
6-Cylinder Forward Clutch	3.55–3.73 (.1397–.1468 in.)
Overdrive Direct Clutch (all)	1.85-2.15 mm (.07280846 in.)

END PLAY AND CLEARANCE

Component	Specification
Output Shaft End Play	.2786 mm (.01060339 in.)
6-Cylinder First-Reverse Brake Pack Clearance	.70-1.20 mm (.028047 in.)
6-Cylinder Second Brake Pack Clearance	.62-1.98 mm (.024078 in.)

AW-4 RETAINER AND PISTON SPECIFICATIONS

OVERDRIVE BRAKE RETAINER SELECTION

Retainer No.	Thickness	Retainer No.	Thickness
26	3.3 mm (.130 in.)	11	3.8 mm (.150 in.)
25	3.5 mm (.138 in.)	23	3.9 mm (.154 in.)
12	3.6 mm (.142 in.)	Not Marked	4.0 mm (.157 in.)
24	3.7 mm (.146 in.)	_	-

DIRECT CLUTCH RETAINER SELECTION

Retainer No.	Thickness	Retainer No.	Thickness
33	3.0 mm (.118 in.)	29	3.4 mm (.134 in.)
32	3.1 mm (.122 in.;)	28	3.5 mm (.138 in.)
31	3.2 mm (.126 in.)	27	3.6 mm (.142 in.)
30	3.3 mm (.130 in.)	34	3.7 mm (.146 in.)

OVERDRIVE CLUTCH RETAINER SELECTION

Retainer No.	Thickness	Retainer No.	Thickness
16	3.6 mm (.142 in.)	19	3.3 mm (.130 in.)
17	3.5 mm (.138 in.)	20	3.2 mm (.126 in.)
18	3.4 mm (.134 in.)	21	3.1 mm (.122 in.)

SECOND COAST BRAKE PISTON ROD SELECTION

Rod	Rod Length
No. 1	71.4 mm (2.811 in.)
No. 2	72.9 mm (2.870 in.)

FORWARD CLUTCH RETAINER SELECTION

Retainer No.	Thickness	Retainer No.	Thickness
42	4.0 mm (.157 in.)	61	3.0 mm (.118 in.)
44	3.8 mm (.149 in.)	62	3.6 mm (.142 in.)
45	3.4 mm (.134 in.)	63	4.2 mm (.165 in.)
60	3.2 mm (.126 in.)	64	4.4 mm (.173 in.)

FIRST-REVERSE BRAKE CLEARANCE SELECTION

Retainer No.	Thickness	Retainer No.	Thickness
50	5.0 mm (.197 in.)	53	4.4 mm (.173 in.)
51	4.8 mm (.189 in.)	54	4.2 mm (.165 in.)
52	4.6 mm (.181 in.)	55	4.0 mm (.157 in.)

AW-4 VALVE BODY BALL DIMENSIONS

Check Ball	Diameter
(A) Rubber Ball	6.35 mm (0.250 in.)
B Rubber Ball	5.535 mm (.218 in.)

J9121-405

AW-4 CLUTCH AND BRAKE PACK REQUIREMENTS

Component	Discs Required	Plates Required	Retainers Required
6-Cylinder Overdrive Brake	4	3	2
6-Cylinder Second Brake	5	5	1
6-Cylinder Overdrive Direct Clutch	2	2	1
6-Cylinder Direct Clutch	4	4	1
6-Cylinder Forward Clutch	6	6	1
6-Cylinder First-Reverse Brake	7	7	1

J9121-406

AW-4 VALVE AND SPRING IDENTIFICATION

Spring	Free Length	
(1) Downshift Plug	27.3 mm (1.074 in.)	
(2) Throttle Valve	20.6 mm (.811 in.)	
(3) 3-4 Shift Valve	30.8 mm (1.212 in.)	
(4) Second Coast Modulator Valve	25.3 mm (.996 in.)	
(5) Lockup Relay Valve	21.4 mm (.843 in.)	
(6)Secondary Regulator Valve	30.9 mm (1.217 in.)	
(7) Cut-Back Valve	21.8 mm (.858 in.)	
(8) 2-3 Shift Valve	30.8 mm (1.212 in.)	
(9) Low Coast Modulator Valve	27.8 mm (1.094)	

Spring	Spring Length	
(1) Check Valve	20.2 mm (.797 in.)	
(2) Pressure Relief Valve	11.2 mm (.441 in.)	
(3) 1-2 Shift Valve	30.8 mm (1.213 in.)	
(4) Primary Regulator Valve	62.3 mm (2.453 in.)	
(5) Accumulator Control Valve	29.8 mm (1.173 in.)	

AW-4 ACCUMULATOR COMPONENT IDENTIFICATION

	Component	Approximate Outside Diameter
SECOND BRAKE ACCUMULATOR	SPRING A	14.17 mm (.558 in.)
*	PISTON B	36.9 mm (1.453 in.)
	SPRING C	19.91 mm (.784 in.)
DIRECT CLUTCH ACCUMULATOR	SPRING D	12.07 mm (.475 in.)
	PISTON E	36.9 mm (1.453 in.)
	SPRING F	20.19 mm (.795 in.)
	SPRING G	14.81 mm (.583 in.)
OVERDRIVE BRAKE ACCUMULATOR	SPRING H	14.10 mm (.555 in.)
	PISTON J	31.9 mm (1.256 in.)
	SPRING K	19.99 mm (.785 in.)
OVERDRIVE CLUTCH ACCUMULATOR	SPRING L	14.0 mm (0.551 in.)
	SPRING M	20.3 mm (0.799 in.)
	PISTON N	29.9 mm (1.177 in.)

J9121-407

SPECIFICATIONS (Continued)

AW-4 TORQUE SPECIFICATIONS

Description	Torque	Description	Torque
Converter Housing Bolts	32-36 N•m (23-27 ft. lbs.)	Rear Mount-To-Transmission Bolts	60-81 N•m (44-66 ft. lbs.)
12 mm	55-59 N•m (40-43 ft. lbs.)	Rear Mount-To-Clevis Bracket Bolt/Nut	54-75 N•m (40-55 ft. lbs.)
Clip Nuts	2-4 N•m (18-35 in. lbs.)	Rear Mount Clevis Bracket-To- Crossmember Nuts	33-49 N•m (24-36 ft. lbs.)
Nuts	,	Shift Cable Bracket Screws At Transmission	25-39 N•m (221-345 in. lbs.)
(at auto. trans. fittings)	18-23 Nom (160-200 in. lbs.) 9-11 Nom (80-96 in. lbs.)	Shift Lever Mounting Cover Screws	1-2 N•m (9-20 in. lbs.)
Dust Cover Nuts/Bolts	18-23 N•m (159-203 in. lbs.)	Shift Lever Housing Nuts	16-26 N•m (141-230 in. lbs.)
Extension Housing Bolts	32-36 N•m (23-27 ft. lbs.)	Solenoid Harness Bolt	6-8 N•m (57-75 in. lbs.)
Fill Tube Bracket Bolt	50-64 N•m (37-47 ft. lbs.)	Speedometer Adapter Clamp Screw	10-12 N•m (90-110 in. lbs.)
Bolt	12-14 N•m (8-10 ft. lbs.) 6-8 N•m (53-70 in. lbs.)	Speed Sensor Coupling Nut	14-20 Nom (125-175 in. lbs.)
OD Support Bolt (to case)	23-27 Nom (18-20 ft. lbs.)	Bracket Screws	7-11 N•m (63-94 in. lbs.)
Oil Pan Bolts Oil Pan Drain Plug	6-8 N°m (53-70 in. lbs.) 19-21 N°m (14-16 ft. lbs.)	Throttle Cable Retaining Screw (at transmission)	8-10 N°m (70-98 in. lbs.)
Oil Pump Bolt	,	Transfer Case Mounting Nuts	30-41 N•m (22-30 ft. lbs.)
(to case)	21-23 N•m (16-18 ft. lbs.)	Transmission Shift Lever Nut	15-17 N•m (134-154 in. lbs.)
Oil Pump Bolt (to stator shaft)	9-11 N•m (80-96 in. lbs.)	Transmission-To-Engine Block Bolts	50-64 N•m (37-47 ft. lbs.)
Oil Screen Bolt		Valve Body Bolts (to case)	9-11 N•m (80-96 in. lbs.)
Park Pawl Bracket	9-11 N•m (80-96 in. lbs.)	Valve Body Bolts (to valve body)	6-7 N•m (54-58 in. lbs.)
Propeller Shaft Clamp Screws	16-23 N•m (140-200 in. lbs.)		

J9321-88

SPECIAL TOOLS

AW-4

C-484 Snap Ring Plier

C-3293-SP Gauge

C-3339 Dial Indicator Set

C-4959 Caliper, Metric Vernier

C-4960 Micrometer

7536 Puller, Oil Pump

7538 Compressor, Piston #2 Spring

7539 Compressor, Piston #3 Spring

SPECIAL TOOLS (Continued)

7540 Pliers, Large Snap Ring

7549 Installer, Seal

7542 Puller, Reaction Sleeve

7552 Gauge, 3.0 mm Wire

7543 Puller, Piston #1

7554 Adapter, Pressure Port

7544 Installer, Brake Drum Seal

NV231 TRANSFER CASE

INDEX

age
282
285
299
303
303
303

GENERAL INFORMATION

NV231 TRANSFER CASE

The NV231 is a part-time transfer case with a low range reduction gear system. The NV231 has three operating ranges plus a Neutral position. A low range system provides a reduction ratio for increased low speed torque capability.

The input gear is splined to the transmission output shaft. The input gear drives the mainshaft through the planetary assembly and range hub. The front output shaft is operated by a drive chain that connects the shaft to a drive sprocket on the mainshaft. The drive sprocket is engaged/disengaged by the mode fork, which operates the mode sleeve and hub. The sleeve and hub are not equipped with a synchronizer mechanism for shifting.

The geartrain is mounted in two aluminum case halves attached with bolts. The mainshaft front and rear bearings are mounted in aluminum retainer housings bolted to the case halves.

OPERATING RANGES

Transfer case operating ranges are:

- 2WD (2-wheel drive)
- 4x4 (4-wheel drive)
- 4 Lo (4-wheel drive low range

The 2WD range is for use on any road surface at any time.

The 4x4 and 4 Lo ranges are for off road use only. They are not for use on hard surface roads. The only exception being when the road surface is wet or slippery or covered by ice and snow.

The low range reduction gear system is operative in 4 Lo range only. This range is for extra pulling power in off road situations. Low range reduction ratio is 2.72:1.

SHIFT MECHANISM

Operating ranges are selected with a floor mounted shift lever. The shift lever is connected to the transfer case range lever by an adjustable linkage rod. A straight line shift pattern is used. Range positions are marked on the shifter bezel cover plate.

TRANSFER CASE IDENTIFICATION

A circular ID tag is attached to the rear case of each transfer case (Fig. 1). The ID tag provides the transfer case model number, assembly number, serial number, and low range ratio.

The transfer case serial number also represents the date of build.

Fig. 1 Fill/Drain Plug And I.D. Tag Locations

GENERAL INFORMATION (Continued)

RECOMMENDED LUBRICANT AND FILL LEVEL

Recommended lubricant for the NV231 transfer case is Mopar® Dexron II, or ATF Plus 3, type 7176. Approximate lubricant fill capacity is 1.2 liters (2.5 pints).

The fill and drain plugs are both in the rear case (Fig. 1). Correct fill level is to the bottom edge of the

fill plug hole. Be sure the vehicle is level to ensure an accurate fluid level check.

DIAGNOSIS AND TESTING

NV231 DIAGNOSIS

DIAGNOSIS CHART

Condition	Possible Cause	Correction	
Transfer case difficult to shift or will not shift into desired range.	Vehicle speed to great to permit shifting.	Slow vehicle and shift into desired range.	
	If vehicle was operated for an extended period in 4H mode on dry surface, driveline torque load may cause difficulty.	Stop vehicle and shift transfer case to Neutral position. Transfer case can then be shifted to the desired mode.	
	Transfer case shift linkage binding.	Repair or replace linkage as necessary.	
	4) Insufficient or incorrect lubricant.	4) Drain and refill transfer case with the correct type and quantity of lubricant.	
	5) Internal transfer case components binding, worn, or damaged.	5) Repair or replace components as necessary.	
Transfer case noisy in all drive modes.	Insufficient or incorrect lubricant.	Drain and refill transfer case with the correct type and quantity of lubricant.	
Transfer case noisy while in, or jumps out of, 4L mode.	Transfer case not completely engaged in 4L position.	Slow vehicle, shift transfer case to the Neutral position, and then shift into the 4L mode.	
	Transfer case shift linkage out of adjustment.	2) Adjust linkage as necessary.	
	Transfer case shift linkage loose or binding.	3) Repair, replace, or tighten linkage components as necessary.	
	4) Range fork damaged, inserts worn, or fork is binding on the shift rail.	Repair or replace components as necessary.	
	5) Low range gear worn or damaged.	5) Repair or replace components as necessary.	
Lubricant leaking from transfer case seals or vent.	1) Transfer case overfilled.	Drain lubricant to the correct level.	
	Transfer case vent closed or restricted.	Clean or replace vent as necessary.	
	Transfer case seals damaged or installed incorrectly.	3) Replace suspect seal.	
Abnormal tire wear.	Extended operation in 4H mode on dry surfaces,	Operate vehicle in 2H mode on dry surfaces.	

REMOVAL AND INSTALLATION

TRANSFER CASE

REMOVAL

- (1) Shift transfer case into Neutral.
- (2) Raise vehicle.
- (3) Drain transfer case lubricant.
- (4) Mark front and rear propeller shaft yokes for alignment reference.
 - (5) Support transmission with jack stand.
 - (6) Remove rear crossmember, or skid plate.
- (7) Disconnect front/rear propeller shafts at transfer case.
 - (8) Disconnect vehicle speed sensor wires.
- (9) Disconnect transfer case linkage rod from range lever.
- (10) Disconnect transfer case vent hose (Fig. 2) and indicator switch harness, if necessary.
 - (11) Support transfer case with transmission jack.
 - (12) Secure transfer case to jack with chains.
- (13) Remove nuts attaching transfer case to transmission.
- (14) Pull transfer case and jack rearward to disengage transfer case.
 - (15) Remove transfer case from under vehicle.

Fig. 2 Transfer Case Mounting

INSTALLATION

- (1) Mount transfer case on a transmission jack.
- (2) Secure transfer case to jack with chains.
- (3) Position transfer case under vehicle.
- (4) Align transfer case and transmission shafts and install transfer case on transmission.
- (5) Install and tighten transfer case attaching nuts to 35 N⋅m (26 ft. lbs.) torque (Fig. 2).
- (6) Connect vehicle speed sensor wires, and vent hose.

- (7) Connect indicator switch harness to transfer case switch, if necessary. Secure wire harness to clips on transfer case.
- (8) Align and connect propeller shafts. Refer to Group 3, Differential and Driveline, for proper procedures and specifications.
- (9) Fill transfer case with correct fluid. Check transmission fluid level. Correct as necessary.
- (10) Install rear crossmember, or skid plate. Tighten crossmember bolts to 41 N·m (30 ft. lbs.) torque.
 - (11) Remove transmission jack and support stand.
 - (12) Connect shift rod to transfer case range lever.
 - (13) Adjust transfer case shift linkage.
- (14) Lower vehicle and verify transfer case shift operation.

SHIFT LEVER

REMOVAL

- (1) Shift transfer case into 4L.
- (2) Raise vehicle.
- (3) Loosen adjusting trunnion locknut and slide shift rod out of trunnion (Fig. 3). If rod lacks enough travel to come out of trunnion, push trunnion out of torque shaft.
 - (4) Lower vehicle.
- (5) Remove console. Refer to Group 23, Body, for proper procedures.
- (6) Remove screws attaching lever assembly to floorpan and remove assembly and shift rod (if left attached).

INSTALLATION

- (1) If shift rod was not removed from lever assembly, work rod down through floorpan opening. Then position lever assembly on floorpan and install assembly attaching screws.
- (2) Install console. Refer to Group 23, Body, for proper procedures.
 - (3) Raise vehicle.
- (4) Connect trunnion to torque shaft arm. Or, slide shift rod into trunnion on range lever. Be sure shift rod slides freely in trunnion.
- (5) Verify that range lever is in 4L position. Then tighten trunnion lock bolt.
- (6) Lower vehicle and check transfer case shift operation.

SPEEDOMETER

REMOVAL

- (1) Raise vehicle.
- (2) Disconnect wires from vehicle speed sensor.
- (3) Remove adapter clamp and screw (Fig. 4).

Fig. 3 Shift Linkage

- (4) Remove speed sensor and speedometer adapter as an assembly.
- (5) Remove speed sensor retaining screw and remove sensor from adapter.
- (6) Remove speedometer pinion from adapter. Replace pinion if chipped, cracked, or worn.
- (7) Inspect sensor and adapter O-rings (Fig. 4). Remove and discard O-rings if worn or damaged.
- (8) Inspect terminal pins in speed sensor. Clean pins with Mopar® electrical spray cleaner if dirty or oxidized. Replace sensor if faulty, or if pins are loose, severely corroded, or damaged.

INSTALLATION AND INDEXING

- (1) Thoroughly clean adapter flange and adapter mounting surface in housing. Surfaces must be clean for proper adapter alignment and speedometer operation.
- (2) Install new O-rings on speed sensor and speed-ometer adapter (Fig. 4), if necessary.
- (3) Lubricate sensor and adapter O-rings with transmission fluid.
- (4) Install vehicle speed sensor in speedometer adapter. Tighten sensor attaching screw to 2-3 N·m (15-27 in. lbs.) torque.
 - (5) Install speedometer pinion in adapter.

- (6) Count number of teeth on speedometer pinion. Do this before installing assembly in housing. Then lubricate pinion teeth with transmission fluid.
- (7) Note index numbers on adapter body (Fig. 5). These numbers will correspond to number of teeth on pinion.
 - (8) Install speedometer assembly in housing.
- (9) Rotate adapter until required range numbers are at 6 o-clock position. Be sure range index numbers correspond to number of teeth on pinion gear.
- (10) Install speedometer adapter clamp and retaining screw. Tighten clamp screw to 10-12 $N{\cdot}m$ (90-110 in. lbs.) torque.
 - (11) Connect wires to vehicle speed sensor.
- (12) Lower vehicle and top off transmission fluid level if necessary.

FRONT OUTPUT SHAFT SEAL

REMOVAL

- (1) Raise vehicle.
- (2) Remove front propeller shaft. Refer to Group 3, Differential and Driveline, for proper procedure.
 - (3) Remove front output shaft yoke.
- (4) Remove seal from front case with pry tool (Fig. 6).

Fig. 4 Speedometer Components

Fig. 5 Location Of Index Numbers On Speedometer
Adapter

INSTALLATION

- (1) Install new front output seal in front case with Installer Tool 8143 as follows:
 - (a) Place new seal on tool. Garter spring on seal goes toward interior of case.
 - (b) Start seal in bore with light taps from hammer (Fig. 7). Once seal is started, continue tapping seal into bore until installer tool seats against case.

Fig. 6 Remove Front Output Shaft Seal

Fig. 7 Front Output Seal Installation
DISASSEMBLY AND ASSEMBLY

NV231 TRANSFER CASE

DISASSEMBLY

Position transfer case on shallow drain pan. Remove drain plug and drain lubricant remaining in case.

REAR RETAINER AND OIL PUMP REMOVAL

- (1) Remove the speedometer adapter.
- (2) Spread band clamp which holds output shaft boot to slinger with a suitable awl, or equivalent.
- (3) Remove output shaft boot from slinger and output shaft.
- (4) Using Puller MD-998056-A, remove rear slinger (Fig. 8).
- (5) Remove slinger stop spacer and snap-ring from output shaft (Fig. 9).

Fig. 8 Rear Slinger Removal

Fig. 9 Slinger Stop Spacer and Snap-ring

- (6) Use a suitable pry tool, or a slide hammer mounted screw, to remove the seal from the rear retainer (Fig. 10).
- (7) Remove the rear output bearing I.D. retaining ring (Fig. 11).
- (8) Remove the bolts holding the rear retainer to the rear case half.

80a50354

Fig. 10 Rear Retainer Seal

- (9) Tap rear retainer with rawhide or rubber mallet to loosen sealer bead.
- (10) Remove rear retainer from rear case half (Fig. 12).
- (11) Remove snap-ring holding oil pump in position on output shaft.
- (12) Disengage oil pickup tube from oil pump and remove oil pump assembly. Remove oil pump by tilting the edge of the oil pump from under the edge of the rear case half and sliding the pump (Fig. 13).
- (13) Remove pick-up tube o-ring from oil pump (Fig. 14), if necessary. Do not disassemble the oil pump, it is not serviceable.

Fig. 11 Output Shaft Rear Bearing Retaining Ring

Fig. 12 Rear Retainer Removal

Fig. 13 Oil Pump Removal

YOKE AND RANGE LEVER REMOVAL

- (1) Remove transfer case indicator switch.
- (2) Remove front yoke nut as follows:
 - (a) Move range lever to 4L position.
- (b) Then remove nut with socket and impact wrench (Fig. 15).
- (3) Remove yoke. If yoke is difficult to remove by hand, remove it with bearing splitter, or with stan-

Fig. 14 Pick-up Tube O-ring Location

dard two jaw puller (Fig. 16). Be sure puller tool is positioned on yoke and not on slinger as slinger will be damaged.

Fig. 15 Yoke Nut Removal

Fig. 16 Yoke Removal

- (4) Remove seal washer from front output shaft. Discard washer as it should not be reused.
- (5) Remove nut and washer that attach range lever to sector shaft. Then move sector to neutral position and remove range lever from shaft (Fig. 17).

Fig. 17 Range Lever Removal

FRONT OUTPUT SHAFT AND DRIVE CHAIN REMOVAL

- (1) Support transfer case so rear case is facing upward.
- (2) Remove bolts holding front case to rear case. The case alignment bolts require flat washers (Fig. 18).
- (3) Loosen rear case with flat blade screwdriver to break sealer bead. Insert pry tool blade only into notches provided at each end of case (Fig. 19).
 - (4) Remove rear case from front case.

Fig. 18 Rear Case Alignment Bolt Locations

- (5) Remove oil pickup tube from rear case (Fig. 20).
 - (6) Remove mode fork spring (Fig. 21).
- (7) Pull front output shaft upward and out of front output shaft bearing (Fig. 22).
 - (8) Remove front output shaft and chain.

SHIFT FORKS AND MAINSHAFT REMOVAL

(1) Remove detent plug, O-ring, detent spring and detent plunger (Fig. 23).

Fig. 19 Loosening Rear Case

Fig. 20 Oil Pickup Tube Removal

Fig. 21 Mode Fork Spring Removal

(2) Remove mainshaft from mode sleeve and input gear pilot bearing.

Fig. 22 Remove Front Output Shaft And Chain

Fig. 23 Detent Plug, Spring And Plunger Removal

- (3) Remove mode fork and sleeve as an assembly (Fig. 24). Note position of sleeve for assembly reference. The short side of the sleeve faces upward.
- (4) Remove range fork and hub as an assembly (Fig. 25). Note fork position for installation reference.
 - (5) Remove shift sector from front case (Fig. 26).
- (6) Remove shift sector bushing and O-ring (Fig. 27).

MAINSHAFT DISASSEMBLY

- (1) Remove mode hub retaining ring with heavy duty snap-ring pliers (Fig. 28).
 - (2) Slide mode hub off mainshaft (Fig. 29).
 - (3) Slide drive sprocket off mainshaft (Fig. 30).

Fig. 24 Mode Fork And Sleeve Removal

Fig. 25 Range Fork And Hub Removal

Fig. 26 Shift Sector Removal

INPUT GEAR AND LOW RANGE GEAR REMOVAL

(1) Remove front bearing retainer attaching bolts (Fig. 31).

Fig. 27 Sector Bushing And O-Ring Removal

Fig. 28 Mode Hub Retaining Ring Removal

Fig. 29 Mode Hub Removal

(2) Remove front bearing retainer. Pry retainer loose with pry tool positioned in slots at each end of retainer (Fig. 32).

Fig. 30 Drive Sprocket Removal

Fig. 31 Front Bearing Retainer Bolts

J8921-266

Fig. 32 Front Bearing Retainer Removal

- (3) Remove front bearing retainer seal. Tap seal out with drift and hammer.
- (4) Remove input gear retaining ring with heavy duty snap-ring pliers (Fig. 33)

Fig. 33 Removing Input Gear Retaining Ring

(5) Place front case in horizontal position. Then remove input gear and low range gear as an assembly (Fig. 34). Tap gear out of bearing with plastic mallet if necessary.

Fig. 34 Input Gear And Planetary Carrier Removal INPUT AND LOW RANGE GEAR DISASSEMBLY

- (1) Remove snap-ring that retains input gear in low range gear (Fig. 35).
 - (2) Remove retainer (Fig. 36).
 - (3) Remove front tabbed thrust washer (Fig. 37).
 - (4) Remove input gear (Fig. 38).
- (5) Remove rear tabbed thrust washer from low range gear (Fig. 39).

ASSEMBLY

Lubricate transfer case components with Mopar® Dexron II automatic transmission fluid or petroleum jelly (where indicated) during assembly.

Fig. 35 Input Gear Snap-Ring Removal

Fig. 36 Input Gear Retainer Removal

Fig. 37 Front Tabbed Thrust Washer Removal

Fig. 38 Input Gear Removal

Fig. 39 Rear Tabbed Thrust Washer Removal BEARING AND SEAL INSTALLATION

CAUTION: The bearing bores in various transfer case components contain oil feed holes. Make sure replacement bearings do not block the holes.

- (1) Remove the front output shaft seal from case with pry tool (Fig. 40).
- (2) Remove the front output shaft bearing retaining ring with screwdriver (Fig. 41).
- (3) Remove bearing with Tool Handle C-4171 and Tool 5065 (Fig. 42).
- (4) Install front output shaft front bearing in case with Tool Handle C-4171 and Installer 5064 (Fig. 43).
- (5) Install output shaft front bearing retaining ring (Fig. 44). Start ring into place by hand. Then use small screwdriver to work ring into case groove. Be sure ring is fully seated before proceeding.
- (6) Install new front output seal in front case with Installer Tool 8143 as follows:
 - (a) Place new seal on tool. Garter spring on seal goes toward interior of case.

Fig. 40 Front Output Seal Removal

Fig. 41 Front Output Shaft Bearing Retaining Ring

Fig. 42 Front Output Shaft Bearing Removal

(b) Start seal in bore with light taps from hammer (Fig. 45). Once seal is started, continue tap-

Fig. 43 Front Output Shaft Bearing Installation

Fig. 44 Installing Output Shaft Front Bearing Retaining Ring

ping seal into bore until installer tool bottoms against case.

Fig. 45 Front Output Seal Installation

- (7) Remove the output shaft rear bearing with the screw and jaws from Remover L-4454 and Cup 8148 (Fig. 46).
- (8) Install new bearing with Tool Handle C-4171 and Installer 5066 (Fig. 47). The bearing bore is

chamfered at the top. Install the bearing so it is flush with the lower edge of this chamfer (Fig. 48).

Fig. 46 Output Shaft Rear Bearing Removal

Fig. 47 Output Shaft Rear Bearing Installation

- (9) Using Remover C-4210 and Handle C-4171, drive input shaft bearing from inside the annulus gear opening in the case. (Fig. 49).
 - (10) Install locating ring on new bearing.
 - (11) Position case so forward end is facing upward.
- (12) Using Remover C-4210 and Handle C-4171, drive input shaft bearing into case. The bearing

Fig. 48 Output Shaft Rear Bearing Installation Depth

J9521-43

Fig. 49 Input Shaft Bearing Removal

locating ring must be fully seated against case surface (Fig. 50).

10001 01

Fig. 50 Seating Input Shaft Bearing

- (13) Remove input gear pilot bearing by inserting a suitably sized drift into the splined end of the input gear and driving the bearing out with the drift and a hammer (Fig. 51).
- (14) Install new pilot bearing with Installer 5065 and Handle C-4171 (Fig. 52).

Fig. 51 Remove Input Gear Pilot Bearing

Fig. 52 Install Input Gear Pilot Bearing

(15) Remove front bearing retainer seal with suitable pry tool.

(16) Install new front bearing retainer seal with Installer 7884 (Fig. 53).

Fig. 53 Install Front Bearing Retainer Seal

- (17) Remove seal from oil pump housing with a suitable pry tool.
- (18) Install new seal in oil pump housing with Installer 7888 (Fig. 54).

Fig. 54 Oil Pump Seal Installation

- (19) Remove rear retainer bearing with Installer 8128 and Handle C-4171.
- (20) Install rear bearing in retainer with Handle C-4171 and Installer 5064 (Fig. 55).

INPUT AND LOW RANGE GEAR ASSEMBLY

(1) Lubricate gears and thrust washers (Fig. 56) with recommended transmission fluid.

Fig. 55 Installing Rear Bearing In Retainer

- (2) Install first thrust washer in low range gear (Fig. 56). Be sure washer tabs are properly aligned in gear notches.
- (3) Install input gear in low range gear. Be sure input gear is fully seated.
- (4) Install remaining thrust washer in low range gear and on top of input gear. Be sure washer tabs are properly aligned in gear notches.
- (5) Install retainer on input gear and install snapring.

Fig. 56 Input/Low Range Gear Components
INPUT GEAR AND LOW RANGE GEAR INSTALLATION

(1) Align and install low range/input gear assembly in front case (Fig. 57). Be sure low range gear pinions are engaged in annulus gear and that input gear shaft is fully seated in front bearing.

(2) Install snap-ring to hold input/low range gear into front bearing (Fig. 58).

Fig. 57 Input/Low Range Gear Installation

Fig. 58 Install Snap-Ring

- (3) Clean gasket sealer residue from retainer and inspect retainer for cracks or other damage.
- (4) Apply a 3 mm (1/8 in.) bead of Mopar® gasket maker or silicone adhesive to sealing surface of retainer.
- (5) Align cavity in seal retainer with fluid return hole in front of case.

CAUTION: Do not block fluid return cavity on sealing surface of retainer when applying Mopar® gasket maker or silicone adhesive sealer. Seal failure and fluid leak can result.

(6) Install bolts to hold retainer to transfer case (Fig. 59). Tighten to 21 N⋅m (16 ft. lbs.) of torque.

MAINSHAFT ASSEMBLY

- (1) Lubricate mainshaft splines with recommended transmission fluid.
 - (2) Slide drive sprocket onto mainshaft.

Fig. 59 Install Front Bearing Retainer

- (3) Slide mode hub onto mainshaft.
- (4) Install mode hub retaining ring. Verify that the retaining ring is fully seated in mainshaft groove.

SHIFT FORKS AND MAINSHAFT INSTALLATION

(1) Install new sector shaft O-ring and bushing (Fig. 60).

Fig. 60 Sector O-Ring And Bushing Installation

- (2) Install shift sector in case (Fig. 61). Lubricate sector shaft with transmission fluid before installation.
- (3) Install range lever, washer, and nut on sector shaft (Fig. 62). Tighten range lever nut to 27–34 N.m (20–25 ft. lbs.) torque.
- (4) Assemble and install range fork and hub (Fig. 63). Be sure hub is properly seated in low range gear and engaged to the input gear.

Fig. 61 Shift Sector Installation

Fig. 62 Range Lever Installation

(5) Align and insert range fork pin in shift sector slot.

Fig. 63 Install Range Fork And Hub Assembly

- (6) Install assembled mainshaft (Fig. 64). Be sure shaft is seated in pilot bearing and input gear.
 - (7) Install new pads on mode fork if necessary.
- (8) Insert mode sleeve in mode fork mode fork. Be sure long side of sleeve is toward long end of shift rail (Fig. 65).

8001096c

Fig. 64 Mainshaft Assembly Installation

Fig. 65 Assembling Mode Fork And Sleeve

(9) Install assembled mode fork and sleeve (Fig. 66). Be sure fork rail goes through range fork and into case bore. Also be sure sleeve is aligned and seated on mainshaft hub.

Fig. 66 Mode Fork And Sleeve Installation

- (10) Rotate sector to Neutral position.
- (11) Install new O-ring on detent plug (Fig. 67).
- (12) Lubricate detent plunger with transmission fluid or light coat of petroleum jelly.

- (13) Install detent plunger, spring and plug (Fig. 67).
- (14) Verify that plunger is properly engaged in sector.

Fig. 67 Shift Detent Components

FRONT OUTPUT SHAFT AND DRIVE CHAIN INSTALLATION

- (1) Lubricate front output shaft-sprocket assembly, drive chain, and drive sprocket with transmission fluid.
- (2) Assemble drive chain and front output shaft (Fig. 68).
 - (3) Start chain on mainshaft drive sprocket.
- (4) Guide front shaft into bearing and drive sprocket onto mainshaft drive gear (Fig. 68).
- (5) Install mode spring on upper end of mode fork shift rail (Fig. 69).

OIL PUMP AND REAR CASE ASSEMBLY/INSTALLATION

- (1) Install magnet in front case pocket (Fig. 70).
- (2) Assemble oil pickup screen, connecting hose, and tube.
- (3) Install new pickup tube O-ring in oil pump (Fig. 71).
 - (4) Insert oil pickup tube in oil pump inlet.
- (5) Position assembled oil pump and pickup tube in rear case. Be sure pickup screen is securely seated in case slot. Also be sure oil pump locating tabs are outside rear case (Fig. 72).
- (6) Apply 3 mm (1/8 in.) wide bead of Mopar® gasket maker or silicone adhesive sealer to mounting flange of front case. Work sealer bead around bolt holes.
- (7) Lift rear case and oil pump and carefully position assembly on front case. Be sure case dowels are aligned and that mode fork rail extends through rear case before seating rear case on front case.
- (8) Install case attaching bolts. Alignment bolts at each end of case are only ones requiring washers (Fig. 73).

J9321-72

Fig. 68 Installing Drive Chain And Front Output Shaft

Fig. 69 Install Mode Fork Spring

(9) Tighten case bolts to 27-34 N·m (20-25 ft. lbs.) torque.

YOKE AND RANGE LEVER INSTALLATION

- (1) Install indicator switch in front case. Tighten switch to $20{\text -}34~{\rm N\cdot m}$ (15–25 ft. lbs.) torque.
- (2) Install range lever, washer and locknut on sector shaft (Fig. 74). Tighten locknut to 27-34 N⋅m (20-25 ft. lbs.) torque.
- (3) Install new seal washer on front output shaft (Fig. 76).
- (4) Lubricate yoke hub with transmission fluid and install yoke on front shaft.
 - (5) Install new seal washer on front shaft.

J8921-288

Fig. 70 Installing Case Magnet

Fig. 71 Pickup Tube O-Ring Position

800bdf98

Fig. 72 Oil Pump And Pickup Tube Installation

(6) Install yoke and new yoke nut on front output shaft (Fig. 75).

Fig. 73 Alignment Bolt Location

Fig. 74 Range Lever Installation

(7) Tighten yoke nut to 122-176 N·m (90-130 ft. lbs.) torque. Use Tool C-3281, or similar tool to hold yoke while tightening yoke nut.

Fig. 75 Output Shaft Yoke Installation

REAR RETAINER INSTALLATION

- (1) Apply bead of Mopar® Sealer P/N 82300234, or Loctite® Ultra Gray, to mating surface of rear retainer. Sealer bead should be a maximum of 3/16 inch.
- (2) Install rear retainer on rear case. Tighten retainer bolts to 20−27 N·m (15−20 ft. lbs.) torque.

Fig. 76 Yoke Seal Washer Installation

- (3) Install rear bearing I.D. retaining ring and spacer on output shaft.
- (4) Apply liberal quantity of petroleum jelly to new rear seal and to output shaft. Petroleum jelly is needed to protect seal lips during installation.
- (5) Slide seal onto Seal Protector 6992 (Fig. 77). Slide seal protector and seal onto output shaft.
- (6) Slide Installer C-4076-B onto seal protector with the recessed side of the tool toward the seal. Drive seal into rear bearing retainer with installer C-4076-B and handle MD-998323 (Fig. 78).

Fig. 77 Output Shaft Seal and Protector

- (7) Install rear slinger with installer C-4076-A and handle MD-998323 (Fig. 78).
- (8) Install boot on output shaft slinger and crimp retaining clamp with tool C-4975-A (Fig. 79).

CLEANING AND INSPECTION

NV231 TRANSFER CASE

Clean the transfer case parts with a standard parts cleaning solvent. Remove all traces of sealer from the cases and retainers with a scraper and 3M all purpose cleaner. Use compressed air to remove solvent residue from oil feed passages in the case halves, retainers, gears, and shafts.

Fig. 78 Rear Seal Installation

Fig. 79 Slinger Boot Installation

The oil pickup screen can be cleaned with solvent. Shake excess solvent from the screen after cleaning and allow it to air dry. Do not use compressed air.

MAINSHAFT/SPROCKET/HUB INSPECTION

Inspect the splines on the hub and shaft and the teeth on the sprocket (Fig. 80). Minor nicks and scratches can be smoothed with an oilstone. However, replace any part that is damaged.

Check the contact surfaces in the sprocket bore and on the mainshaft. Minor nicks and scratches can be smoothed with 320–400 grit emery cloth but do not try to salvage the shaft if nicks or wear is severe.

INPUT GEAR AND PLANETARY CARRIER

Check the teeth on the gear (Fig. 81). Minor nicks can be dressed off with an oilstone but replace the gear if any teeth are broken, cracked, or chipped. The bearing surface on the gear can be smoothed with 300–400 grit emery cloth if necessary.

Examine the carrier body and pinion gears for wear or damage. The carrier will have to be replaced

CLEANING AND INSPECTION (Continued)

Fig. 80 Mainshaft, Mode Hub, And Drive Sprocket

as an assembly if the body, pinion pins, or pinion gears are damaged.

Check the lock ring and both thrust washers for wear or cracks. Replace them if necessary. Also replace the lock retaining ring if bent, distorted, or broken.

SHIFT FORKS/HUBS/SLEEVES

Check condition of the shift forks and mode fork shift rail (Fig. 82). Minor nicks on the shift rail can be smoothed with 320–400 grit emery cloth.

Inspect the shift fork wear pads (Fig. 83). The mode fork pads are serviceable and can be replaced if necessary. The range fork pads are not serviceable.

8001b75f

Fig. 81 Input Gear And Carrier Components

CLEANING AND INSPECTION (Continued)

80010948

Fig. 82 Shift forks

The fork must be replaced as an assembly if the pads are worn or damaged.

Fig. 83 Shift Fork And Wear Pad Locations

Check both of the sleeves for wear or damage, especially on the interior teeth. Replace the sleeves if wear or damage is evident.

REAR RETAINER/BEARING/SEAL/SLINGER/BOOT

Inspect the retainer components (Fig. 84). Replace the bearing if rough or noisy. Check the retainer for cracks or wear in the bearing bore. Clean the retainer sealing surfaces with a scraper and 3M all purpose cleaner. This will ensure proper adhesion of the sealer during reassembly.

Replace the slinger and seal outright; do not reuse either part.

Inspect the retaining rings and washers. Replace any part if distorted, bent, or broken. Reuse is not recommended. Also replace the boot if cut or torn. Replace the boot band clamps, do not reuse them.

REAR OUTPUT SHAFT/YOKE/DRIVE CHAIN

Check condition of the seal contact surfaces of the yoke slinger (Fig. 85). This surface must be clean and smooth to ensure proper seal life. Replace the yoke nut and seal washer as neither part should be reused.

Inspect the shaft threads, sprocket teeth, and bearing surfaces. Minor nicks on the teeth can be smoothed with an oilstone. Use 320–400 grit emery to smooth minor scratches on the shaft bearing surfaces. Rough threads on the shaft can be chased if necessary. Replace the shaft if the threads are damaged, bearing surfaces are scored, or if any sprocket teeth are cracked or broken.

Examine the drive chain and shaft bearings. Replace the chain and both sprockets if the chain is stretched, distorted, or if any of the links bind. Replace the bearings if rough, or noisy.

LOW RANGE ANNULUS GEAR

Inspect annulus gear condition carefully. The gear is only serviced as part of the front case. If the gear is damaged, it will be necessary to replace the gear and front case as an assembly. Do not attempt to remove the gear (Fig. 86).

FRONT-REAR CASES AND FRONT RETAINER

Inspect the cases and retainer for wear and damage. Clean the sealing surfaces with a scraper and 3M all purpose cleaner. This will ensure proper sealer adhesion at assembly. Replace the input retainer seal; do not reuse it.

Check case condition. If leaks were a problem, look for gouges and severe scoring of case sealing surfaces. Also make sure the front case mounting studs are in good condition.

Check the front case mounting studs and vent tube. The tube can be secured with Loctite 271 or 680 if loose. The stud threads can be cleaned up with a die if necessary. Also check condition of the fill/drain plug threads in the rear case. The threads can be repaired with a thread chaser or tap if necessary. Or the threads can be repaired with Helicoil stainless steel inserts if required.

OIL PUMP/OIL PICKUP

Examine the oil pump pickup parts. Replace the pump if any part appears to be worn or damaged. Do not disassemble the pump as individual parts are not available. The pump is only available as a complete assembly. The pickup screen, hose, and tube are the only serviceable parts and are available separately.

CLEANING AND INSPECTION (Continued)

80010949

Fig. 84 Rear Retainer Components

Fig. 85 Seal Contact Surface Of Yoke Slinger

Fig. 86 Low Range Annulus Gear

ADJUSTMENTS

SHIFT LINKAGE ADJUSTMENT

- (1) Shift transfer case into 4L position.
- (2) Raise vehicle.
- (3) Loosen lock bolt on adjusting trunnion (Fig. 87).
- (4) Be sure linkage rod slides freely in trunnion. Clean rod and apply spray lube if necessary.
- (5) Verify that transfer case range lever is fully engaged in 4L position.
 - (6) Tighten adjusting trunnion lock bolt.
 - (7) Lower vehicle.

Fig. 87 Shift Linkage

SPECIFICATIONS

TORQUE

DESCRIPTION TORQUE
Plug, Detent 16–24 N·m (12–18 ft. lbs.)
Plug, Drain/Fill 20–34 N·m (15–25 ft. lbs.)
Bolt, Front Brg. Retainer 21 N·m (16 ft. lbs.)
Bolt, Front Brg. Retainer 21 N·m (16 ft. lbs.)
Bolt, Case Half 27–34 N·m (20–25 ft. lbs.)
Nut, Front Yoke 122–176 N⋅m (90–130 ft. lbs.)
Nut, Range Lever 27–34 N·m (20–25 ft. lbs.)
Bolt, Rear Retainer 35–46 N·m (26–34 ft. lbs.)
Nuts, Mounting 35–47 N·m (26–35 ft. lbs.)
Switch, Indicator 20–34 N⋅m (15–25 ft. lbs.)

SPECIAL TOOLS

NV231

Installer—C-4076-B

Puller, Slinger—MD-998056-A

SPECIAL TOOLS (Continued)

Seal Protector—6992

Installer, Seal—C-4210

Installer, Boot Clamp—C-4975-A

Installer, Bearing—5064

Installer, Seal—8143

Installer, Bearing—5065

Handle, Universal—C-4171

Installer, Bushing—5066

SPECIAL TOOLS (Continued)

Installer, Bearing—8128

Remover-L-4454

Cup-8148

Installer, Seal—7884

Installer, Pump Housing Seal—7888

NV242 TRANSFER CASE

INDEX

page	page
GENERAL INFORMATION	TRANSFER CASE
NV242 TRANSFER CASE 306	DISASSEMBLY AND ASSEMBLY
RECOMMENDED LUBRICANT AND FILL	NV242 TRANSFER CASE
LEVEL	CLEANING AND INSPECTION
TRANSFER CASE IDENTIFICATION 306	NV242 TRANSFER CASE
DIAGNOSIS AND TESTING	ADJUSTMENTS
NV242 DIAGNOSIS 307	SHIFT LINKAGE ADJUSTMENT 333
REMOVAL AND INSTALLATION	SPECIFICATIONS
FRONT OUTPUT SHAFT SEAL 309	TORQUE 334
SHIFT LEVER	SPECIAL TOOLS
SPEEDOMETER	NV242

GENERAL INFORMATION

NV242 TRANSFER CASE

The NV242 is a full and part-time transfer case (Fig. 1). It provides full time 2-wheel, or 4-wheel drive operation.

A differential in the transfer case is used to control torque transfer to the front and rear axles. A low range gear provides increased low speed torque capability for off road operation. The low range provides a 2.72:1 reduction ratio.

J8921-243

Fig. 1 NV242 Transfer Case

The input gear is splined to the transmission output shaft. It drives the mainshaft through the planetary gear and range hub. The front output shaft is

operated by a drive chain that connects the shaft to a drive sprocket on the mainshaft. The drive sprocket is engaged/disengaged by the mode fork, which operates the mode sleeve and hub. The sleeve and hub are not equipped with a synchro mechanism for shifting.

The geartrain is mounted in two aluminum case halves attached with bolts. The mainshaft front and rear bearings are mounted in aluminum retainer housings bolted to the case halves.

OPERATING RANGES

NV242 operating ranges are 2WD (2-wheel drive), 4x4 part-time, 4x4 full time, and 4 Lo.

The 2WD and 4x4 full time ranges can be used at any time and on any road surface.

The 4x4 part-time and 4 Lo ranges are for off road use only. The only time these ranges can be used on hard surface roads, is when the surface is covered with snow and ice.

SHIFT MECHANISM

Operating ranges are selected with a floor mounted shift lever. The shift lever is connected to the transfer case range lever by an adjustable linkage rod. A straight line shift pattern is used. Range positions are marked on the shifter bezel cover plate, or on the shift knob.

TRANSFER CASE IDENTIFICATION

A circular ID tag is attached to the rear case of each transfer case (Fig. 2). The ID tag provides the transfer case model number, assembly number, serial number, and low range ratio.

The transfer case serial number also represents the date of build.

GENERAL INFORMATION (Continued)

Fig. 2 Fill/Drain Plug And I.D. Tag Locations

RECOMMENDED LUBRICANT AND FILL LEVEL

Recommended lubricant for the NV242 transfer case is Mopar $^{\circledR}$ Dexron II, or ATF Plus, type 7176.

DIAGNOSIS AND TESTING

NV242 DIAGNOSIS

DIAGNOSIS CHART

Condition	Possible Cause	Correction
Transfer case difficult to shift or will not shift into desired range.	Transfer case shift linkage binding.	Repair or replace linkage as necessary.
	2) Insufficient or incorrect lubricant.	Drain and refill transfer case with the correct type and quantity of lubricant.
	Internal transfer case components binding, worn, or damaged.	3) Repair or replace components as necessary.
Transfer case noisy in all drive modes.	Insufficient or incorrect lubricant.	Drain and refill transfer case with the correct type and quantity of lubricant.
Lubricant leaking from transfer case seals or vent.	1) Transfer case overfilled.	Drain lubricant to the correct level.
	Transfer case vent closed or restricted.	Clean or replace vent as necessary.
	Transfer case seals damaged or installed incorrectly.	3) Replace suspect seal.
Transfer case will not shift through 4X4 part time range (light remains on)	Incomplete shift due to drivetrain torque load.	Momentarily release the accelerator pedal to complete the shift.
	2) Incorrect tire pressure.	Correct tire pressure as necessary.
	3) Excessive Tire wear.	Correct tire condition as necessary.
	4) Excessive vehicle loading.	4) Correct as necessary.

Approximate lubricant fill capacity is 1.35 liters (2.85 pints).

The fill and drain plugs are both in the rear case (Fig. 1). Correct fill level is to the bottom edge of the fill plug hole. Be sure the vehicle is level to ensure an accurate fluid level check.

REMOVAL AND INSTALLATION

TRANSFER CASE

REMOVAL

21 - 308

- (1) Shift transfer case into Neutral.
- (2) Raise vehicle.
- (3) Drain transfer case lubricant.
- (4) Mark front and rear propeller shaft yokes for alignment reference.
 - (5) Support transmission with jack stand.
 - (6) Remove rear crossmember, or skid plate.
- (7) Disconnect front/rear propeller shafts at transfer case.
 - (8) Disconnect vehicle speed sensor wires.
- (9) Disconnect transfer case linkage rod from range lever.
- (10) Disconnect transfer case vent hose (Fig. 3) and indicator switch harness, if necessary.
 - (11) Support transfer case with transmission jack.
 - (12) Secure transfer case to jack with chains.
- (13) Remove nuts attaching transfer case to transmission.
- (14) Pull transfer case and jack rearward to disengage transfer case.
 - (15) Remove transfer case from under vehicle.

Fig. 3 Transfer Case Mounting

INSTALLATION

- (1) Mount transfer case on a transmission jack.
- (2) Secure transfer case to jack with chains.
- (3) Position transfer case under vehicle.
- (4) Align transfer case and transmission shafts and install transfer case on transmission.
- (5) Install and tighten transfer case attaching nuts to 35 N⋅m (26 ft. lbs.) torque (Fig. 3).
- (6) Connect vehicle speed sensor wires, and vent hose.

- (7) Connect indicator switch harness to transfer case switch, if necessary. Secure wire harness to clips on transfer case.
- (8) Align and connect propeller shafts. Refer to Group 3, Differential and Driveline, for proper procedures and specifications.
- (9) Fill transfer case with correct fluid. Check transmission fluid level. Correct as necessary.
- (10) Install rear crossmember, or skid plate. Tighten crossmember bolts to 41 N·m (30 ft. lbs.) torque.
 - (11) Remove transmission jack and support stand.
 - (12) Connect shift rod to transfer case range lever.
 - (13) Adjust transfer case shift linkage.
- (14) Lower vehicle and verify transfer case shift operation.

SHIFT LEVER

REMOVAL

- (1) Shift transfer case into 4L.
- (2) Raise vehicle.
- (3) Loosen adjusting trunnion locknut and slide shift rod out of trunnion (Fig. 4). If rod lacks enough travel to come out of trunnion, push trunnion out of torque shaft.
 - (4) Lower vehicle.
- (5) Remove console. Refer to Group 23, Body, for proper procedures.
- (6) Remove screws attaching lever assembly to floorpan and remove assembly and shift rod (if left attached).

INSTALLATION

- (1) If shift rod was not removed from lever assembly, work rod down through floorpan opening. Then position lever assembly on floorpan and install assembly attaching screws.
- (2) Install console. Refer to Group 23, Body, for proper procedures.
 - (3) Raise vehicle.
- (4) Connect trunnion to torque shaft arm. Or, slide shift rod into trunnion on range lever. Be sure shift rod slides freely in trunnion.
- (5) Verify that range lever is in 4L position. Then tighten trunnion lock bolt.
- (6) Lower vehicle and check transfer case shift operation.

SPEEDOMETER

REMOVAL

- (1) Raise vehicle.
- (2) Disconnect wires from vehicle speed sensor.
- (3) Remove adapter clamp and screw (Fig. 5).

Fig. 4 Shift Linkage

- (4) Remove speed sensor and speedometer adapter as an assembly.
- (5) Remove speed sensor retaining screw and remove sensor from adapter.
- (6) Remove speedometer pinion from adapter. Replace pinion if chipped, cracked, or worn.
- (7) Inspect sensor and adapter O-rings (Fig. 5). Remove and discard O-rings if worn or damaged.
- (8) Inspect terminal pins in speed sensor. Clean pins with Mopar® electrical spray cleaner if dirty or oxidized. Replace sensor if faulty, or if pins are loose, severely corroded, or damaged.

INSTALLATION AND INDEXING

- (1) Thoroughly clean adapter flange and adapter mounting surface in housing. Surfaces must be clean for proper adapter alignment and speedometer operation.
- (2) Install new O-rings on speed sensor and speed-ometer adapter (Fig. 5), if necessary.
- (3) Lubricate sensor and adapter O-rings with transmission fluid.
- (4) Install vehicle speed sensor in speedometer adapter. Tighten sensor attaching screw to 2-3 N·m (15-27 in. lbs.) torque.
 - (5) Install speedometer pinion in adapter.

- (6) Count number of teeth on speedometer pinion. Do this before installing assembly in housing. Then lubricate pinion teeth with transmission fluid.
- (7) Note index numbers on adapter body (Fig. 6). These numbers will correspond to number of teeth on pinion.
 - (8) Install speedometer assembly in housing.
- (9) Rotate adapter until required range numbers are at 6 o-clock position. Be sure range index numbers correspond to number of teeth on pinion gear.
- (10) Install speedometer adapter clamp and retaining screw. Tighten clamp screw to 10-12 $N{\cdot}m$ (90-110 in. lbs.) torque.
 - (11) Connect wires to vehicle speed sensor.
- (12) Lower vehicle and top off transmission fluid level if necessary.

FRONT OUTPUT SHAFT SEAL

REMOVAL

- (1) Raise vehicle.
- (2) Remove front propeller shaft. Refer to Group 3, Differential and Driveline, for proper procedure.
 - (3) Remove front output shaft yoke.
- (4) Remove seal from front case with pry tool (Fig. 7).

Fig. 5 Speedometer Components

Fig. 6 Location Of Index Numbers On Speedometer
Adapter

INSTALLATION

- (1) Install new front output seal in front case with Installer Tool 6952-A as follows:
 - (a) Place new seal on tool. Garter spring on seal goes toward interior of case.
 - (b) Start seal in bore with light taps from hammer (Fig. 8). Once seal is started, continue tapping seal into bore until installer tool seats against case.

Fig. 7 Remove Front Output Shaft Seal

Fig. 8 Front Output Seal Installation
DISASSEMBLY AND ASSEMBLY

NV242 TRANSFER CASE

DISASSEMBLY

REAR RETAINER REMOVAL

(1) Remove output shaft boot. Spread band clamp that secures boot on slinger with a suitable awl. Then slide boot off shaft (Fig. 9).

Fig. 9 Output Boot—Typical

- (2) Using puller MD-998056-A, remove rear slinger (Fig. 10).
- (3) Remove slinger stop spacer and snap-ring from output shaft (Fig. 11).
- (4) Remove rear seal from retainer (Fig. 12). Use pry tool, or collapse seal with punch to remove it.
- (5) Remove rear output bearing I.D. retaining ring (Fig. 13).
 - (6) Remove speedometer adapter.
 - (7) Remove rear retainer bolts.

Fig. 10 Rear Slinger Removal

Fig. 11 Slinger Stop Spacer and Snap-ring

Fig. 12 Rear Seal Removal

(8) Remove rear retainer. Tap retainer with mallet and pry upward to break sealer bead. Then slide retainer off case and output shaft (Fig. 14).

Fig. 13 Rear Bearing I.D. Retaining Ring Removal

Fig. 14 Rear Retainer Removal

(9) Remove rear bearing O.D. retaining ring with snap ring pliers. Then tilt pump and slide it off output shaft (Fig. 15).

Fig. 15 Oil Pump Removal

- (10) Remove pickup tube O-ring from pump (Fig. 16) but do not disassemble pump; it is not a repairable part.
 - (11) Remove seal from oil pump with pry tool.

Fig. 16 Pickup Tube O-Ring Location

(12) Remove bolts attaching rear case to front case (Fig. 17). Note position of the two black finish bolts at each end of the case. These bolts go through the case dowels and require a washer under the bolt head.

Fig. 17 Spline And Dowel Bolt Locations

(13) Remove rear case from front case (Fig. 18). Insert screwdrivers into slots cast into each end of case. Then pry upward to break sealer bead and remove rear case.

CAUTION: Do not pry on the sealing surface of either case half as the surfaces will become damaged.

(14) Remove oil pickup tube and screen from rear case (Fig. 19).

YOKE AND RANGE LEVER REMOVAL

- (1) Remove front yoke nut:
 - (a) Move range lever to 4L position.
- (b) Remove nut with socket and impact wrench (Fig. 20).

Fig. 18 Loosening/Removing Rear case

Fig. 19 Oil Pickup Screen, Hose And Tube Removal

Fig. 20 Yoke Nut Removal

(2) Remove yoke. If yoke is difficult to remove by hand, remove it with bearing splitter, or with standard two jaw puller (Fig. 21). Be sure puller tool is

positioned on yoke and not on slinger as slinger will be damaged.

- Fig. 21 Yoke Removal

 (3) Remove seal washer from front output shaft. Discard washer as it should not be reused.
- (4) Remove nut and washer that attach range lever to sector shaft. Then move sector to neutral position and remove range lever from shaft (Fig. 22).

Fig. 22 Range Lever Removal

FRONT OUTPUT SHAFT AND DRIVE CHAIN REMOVAL

- (1) Remove drive sprocket snap-ring (Fig. 23).
- (2) Remove drive sprocket and chain (Fig. 24).
- (3) Remove front output shaft (Fig. 25).

SHIFT FORKS AND MAINSHAFT REMOVAL AND DISASSEMBLY

- (1) Remove shift detent plug, spring and pin (Fig. 26).
- (2) Remove seal plug from low range fork lockpin access hole. Then move shift sector to align low range fork lockpin with access hole.
- (3) Remove range fork lockpin with size number one easy-out tool as follows:
 - (a) Insert easy-out tool through access hole in side of transfer case and into lock-pin.
 - (b) Tap easy-out tool into lock-pin with hammer until tool is securely engaged into the lock-pin.

Fig. 23 Drive Sprocket Snap-Ring Removal

Fig. 24 Drive Sprocket And Chain Removal

- (c) Install a t-handle, such as from a tap and die set, onto the easy-out tool.
 - (d) Securely tighten the t-handle onto the tool.
- (e) In one motion, pull upward and turn the t-handle counter-clockwise to remove the lock-pin.
- (4) Remove shift rail by pulling it straight up and out of fork (Fig. 27).

Fig. 25 Removing Front Output Shaft

Fig. 26 Detent Component Removal

- (5) Remove mode fork and mainshaft as assembly (Fig. 28).
- (6) Remove mode shift sleeve and mode fork assembly from mainshaft (Fig. 29). Note position of mode sleeve in fork and remove sleeve.

Fig. 27 Shift Rail Removal

Fig. 28 Mode Fork And Mainshaft Removal

- (7) Remove intermediate clutch shaft snap-ring (Fig. 30).
 - (8) Remove clutch shaft thrust ring (Fig. 31).
 - (9) Remove intermediate clutch shaft (Fig. 32).
 - (10) Remove differential snap-ring (Fig. 33).

J8921-257

Fig. 29 Mode Fork And Sleeve Removal

Fig. 30 Intermediate Clutch Shaft Snap-Ring Removal

Fig. 31 Clutch Shaft Thrust Ring Removal

Fig. 32 Intermediate Clutch Shaft Removal

- (11) Remove differential (Fig. 34).
- (12) Remove differential needle bearings and both needle bearing thrust washers from mainshaft.
- (13) Slide low range fork pin out of shift sector slot (Fig. 35).

Fig. 33 Differential Snap-Ring Removal

Fig. 34 Differential Removal

- (14) Remove low range fork and hub (Fig. 36).
- (15) Remove shift sector (Fig. 37).
- (16) Remove shift sector bushing and O-ring (Fig. 38).

Fig. 35 Disengaging Low Range Fork

Fig. 36 Low Range Fork And Hub Removal INPUT GEAR/LOW RANGE ASSEMBLY REMOVAL AND DISASSEMBLY

- (1) Remove front bearing retainer bolts.
- (2) Remove front bearing retainer. Carefully pry retainer loose with screwdriver (Fig. 39). Position screwdriver in slots cast into retainer.
 - (3) Remove input gear snap-ring (Fig. 40).
- (4) Remove input/low range gear assembly from bearing with Tool Handle C-4171 and Tool 7829A (Fig. 41).

Fig. 37 Shift Sector Position

Fig. 38 Sector Bushing And O-Ring Removal

- (5) Remove low range gear snap-ring (Fig. 42).
- (6) Remove input gear retainer, thrust washers and input gear from low range gear (Fig. 43).
- (7) Inspect low range annulus gear (Fig. 44). Gear is not a serviceable component. If damaged, replace gear and front case as assembly.
 - (8) Remove oil seals from following components:
 - front bearing retainer.
 - rear retainer.
 - oil pump.
 - · case halves.

J8921-266

Fig. 39 Front Bearing Retainer Removal

J8921-267

Fig. 40 Input Gear Snap-Ring Removal
DIFFERENTIAL DISASSEMBLY

- (1) Mark differential case halves for reference.
- (2) Remove differential case bolts.
- (3) Invert differential on workbench.
- (4) Separate top case from bottom case. Use slots in case halves to pry them apart (Fig. 45).

Fig. 41 Input And Low Range Gear Assembly Removal

Fig. 42 Low Range Gear Snap-Ring Removal/ Installation

- (5) Remove thrust washers and planet gears from case pins (Fig. 46).
- (6) Remove mainshaft and sprocket gears from bottom case (Fig. 47). Note gear position for reference before separating them.

Fig. 43 Low Range Gear Disassembly

Fig. 44 Inspecting Low Range Annulus Gear

ASSEMBLY

Lubricate transfer case components with automatic transmission fluid or petroleum jelly (where indicated) during assembly.

CAUTION: The bearing bores in various transfer case components contain oil feed holes. Make sure replacement bearings do not block the holes.

BEARING AND SEAL INSTALLATION

(1) Remove snap-ring that retains front output shaft front bearing in case (Fig. 48). Then remove bearing. Use hammer handle, or hammer and brass punch to tap bearing out of case.

Fig. 45 Separating Differential Case Halves

Fig. 46 Planet Gears And Thrust Washer Removal

- (2) Install new front output shaft front bearing with Tool Handle C-4171 and Installer 8033A with the tapered cone upward (Fig. 49).
 - (3) Install front bearing snap-ring (Fig. 48).
- (4) Remove front output shaft seal using an appropriate pry tool (Fig. 50) or slide-hammer mounted screw.
- (5) Install new front output shaft oil seal with Installer 6952-A (Fig. 51).

Fig. 47 Mainshaft And Sprocket Gear Removal

Fig. 48 Front Output Shaft Front Bearing Snap-Ring Removal

- (6) Remove input gear bearing with Tool Handle C-4171 and Remover C-4210 (Fig. 52).
 - (7) Install snap-ring on new input gear bearing.
- (8) Install new input gear bearing with Tool Handle C-4171 and Remover C-4210. Install bearing far enough to seat snap-ring against case (Fig. 53).
- (9) Remove the input gear pilot bearing by inserting a suitably sized drift into the splined end of the

Fig. 49 Front Output Shaft Front Bearing Installation

Fig. 50 Remove Front Output Shaft Seal

Fig. 51 Install Front Output Shaft Seal

input gear and driving the bearing out with the drift and a hammer (Fig. 54).

(10) Install new pilot bearing with Installer 8128 and Handle C-4171 (Fig. 55).

J9521-43

Fig. 52 Input Gear Bearing Removal

J8921-219

Fig. 53 Seating Input Gear Bearing

- (11) Install new seal in front bearing retainer with Installer 7884 (Fig. 56).
- (12) Remove output shaft rear bearing with the screw and jaws from Remover L-4454 and Cup 8148 (Fig. 57).
- (13) Install new bearing with Tool Handle C-4171 and Installer 5066 (Fig. 58). Lubricate bearing after installation.
- (14) Install new seal in oil pump feed housing with Special Tool 7888 (Fig. 59).
- (15) Install new pickup tube O-ring in oil pump (Fig. 60).

Fig. 54 Remove Input Gear Pilot Bearing

Fig. 55 Install Input Gear Pilot Bearing

Fig. 56 Front Bearing Retainer Seal Installation

Fig. 57 Remove Front Output Shaft Rear Bearing
DIFFERENTIAL ASSEMBLY

80a98366

- (1) Lubricate differential components with automatic transmission fluid.
- (2) Install sprocket gear in differential bottom case (Fig. 61).
- (3) Install differential planet gears and new thrust washers (Fig. 62). Be sure thrust washers are installed at top and bottom of each planet gear.
 - (4) Install differential mainshaft gear (Fig. 62).

Fig. 58 Install Front Output Shaft Rear Bearing

Fig. 59 Oil Pump Seal Installation

- (5) Align and position differential top case on bottom case (Fig. 63). Align using scribe marks made at disassembly.
- (6) While holding differential case halves together, invert the differential and start the differential case holts
- (7) Tighten differential case bolts to specified torque.

J8921-286

Fig. 61 Installing Differential Sprocket Gear

Fig. 62 Installing Mainshaft And Planet Gears

Fig. 63 Differential Case Assembly

INPUT GEAR/LOW RANGE ASSEMBLY

- (1) Assemble low range gear, input gear thrust washers, input gear and input gear retainer (Fig. 64).
 - (2) Install low range gear snap ring (Fig. 65).

J8921-214

Fig. 64 Low Range And Input Gear Assembly

Fig. 65 Install Low Range Gear Snap Ring

- (3) Lubricate input gear and low range gears with automatic transmission fluid.
 - (4) Start input gear shaft into front case bearing.
 - (5) Press input gear shaft into front bearing.
 - (6) Install new input gear snap ring (Fig. 66).
- (7) Apply 3 mm (1/8 in.) wide bead of Mopar® gasket maker or silicone adhesive sealer to seal surface of front bearing retainer.

J8921-267

Fig. 66 Input Gear Snap Ring Installation

(8) Install front bearing retainer (Fig. 67). Tighten retainer bolts to 16 ft. lbs. (21 $N \cdot m$) torque.

J8921-276

Fig. 67 Installing Front Bearing Retainer

SHIFT FORKS AND MAINSHAFT INSTALLATION

- (1) Install new sector shaft O-ring and bushing (Fig. 68).
 - (2) Install shift sector.
- (3) Install new pads on low range fork, if necessary, (Fig. 69).
 - (4) Assemble low range fork and hub (Fig. 69).
- (5) Position low range fork and hub in case. Be sure low range fork pin is engaged in shift sector slot (Fig. 70).

Fig. 68 Sector O-Ring And Bushing Installation

J8921-278

Fig. 69 Assembling Low Range Fork And Hub

- (6) Install first mainshaft bearing spacer on mainshaft (Fig. 71).
- (7) Install bearing rollers on mainshaft (Fig. 71). Coat bearing rollers with generous quantity of petroleum jelly to hold them in place.
- (8) Install remaining bearing spacer on mainshaft (Fig. 71). Do not displace any bearings while installing spacer.

Fig. 70 Positioning Low Range Fork

Fig. 71 Installing Mainshaft Bearing Rollers and Spacers

- (9) Install differential (Fig. 72). **Do not displace** mainshaft bearings when installing differential.
 - (10) Install differential snap-ring (Fig. 73).
 - (11) Install intermediate clutch shaft (Fig. 74).

Fig. 72 Differential Installation

Fig. 73 Installing Differential Snap-Ring

- (12) Install clutch shaft thrust washer (Fig. 75).
- (13) Install clutch shaft snap-ring (Fig. 76).
- (14) Inspect mode fork assembly (Fig. 77). Replace pads and bushing if necessary. Replace fork tube if bushings inside tube are worn or damaged. Also

Fig. 74 Installing Intermediate Clutch Shaft check springs and slider bracket (Fig. 77). Replace worn, damaged components.

Fig. 75 Installing Clutch Shaft Thrust Washer

- (15) Install mode sleeve in mode fork (Fig. 78). Then install assembled sleeve and fork on mainshaft. Be sure mode sleeve splines are engaged in differential splines.
- (16) Install mode fork and mainshaft assembly in case (Fig. 79). Rotate mainshaft slightly to engage shaft with low range gears.

Fig. 76 Installing Clutch Shaft Snap-Ring

J8921-284

Fig. 77 Mode Fork Assembly Inspection

- (17) Rotate mode fork pin into shift sector slot.
- (18) Install shift rail (Fig. 80). Be sure rail is seated in both shift forks.
- (19) Rotate shift sector to align lockpin hole in low range fork with access hole in case.
- (20) Insert an easy-out in range fork lockpin to hold it securely for installation (Fig. 81). Lockpin is slightly tapered on one end. Insert tapered end into fork and rail.
- (21) Insert lockpin through access hole and into shift fork (Fig. 81). Then remove easy-out and seat the pin with pin punch.

J8921-257

Fig. 78 Installing Mode Fork And Sleeve

Fig. 79 Assembled Mainshaft And Mode Fork Installation

- (22) Install plug in lockpin access hole.
- (23) Install detent plunger, detent spring and detent plug in case (Fig. 82).

Fig. 80 Shift Rail Installation

Fig. 81 Installing Low Range Fork Lockpin
FRONT OUTPUT SHAFT AND DRIVE CHAIN INSTALLATION

- (1) Install front output shaft (Fig. 83).
- (2) Install drive chain (Fig. 83). Engage chain with front output shaft sprocket teeth.
- (3) Install drive sprocket (Fig. 83). Engage drive sprocket teeth with chain. Then engage sprocket splines with mainshaft splines.
 - (4) Install drive sprocket snap-ring (Fig. 84).

Fig. 82 Detent Pin, Spring And Plug Installation

Fig. 83 Drive Chain And Sprocket Installation

OIL PUMP AND REAR CASE INSTALLATION

- (1) Insert oil pickup tube in oil pump and attach oil screen and connector hose to pickup tube. Then install assembled pump, tube and screen in rear case (Fig. 85). Be sure screen is seated in case slot as shown.
 - (2) Install magnet in front case pocket (Fig. 86).
- (3) Apply 3 mm (1/8 in.) wide bead of Mopar gasket maker or silicone adhesive sealer to seal surface of front case.
- (4) Align and install rear case on front case. Be sure case locating dowels are in place and that mainshaft splines are engaged in oil pump inner gear.
- (5) Install and tighten front case-to-rear case bolts to 41 N·m (30 ft. lbs.) torque. Be sure to install a

Fig. 84 Drive Sprocket Snap-Ring Installation

J8921-287

Fig. 85 Oil Screen And Pickup Tube Installation washer under each bolt used at case dowel locations.

REAR RETAINER INSTALLATION

- (1) Remove rear bearing in retainer using Installer 8128 and Handle C-4171.
- (2) Install rear bearing in retainer with Tools C-4171 and 5064 (Fig. 87).
- (3) Install rear bearing O.D. retaining ring with snap-ring pliers (Fig. 88). Be sure retaining ring is fully seated in retainer groove.

J8921-288

Fig. 86 Installing Case Magnet

Fig. 87 Installing Rear Bearing In Retainer

800bdfae

Fig. 88 Rear Bearing Retaining Ring Installation

(4) Apply bead of Mopar® Sealer P/N 82300234, or Loctite® Ultra Gray, to mating surface of rear

retainer. Sealer bead should be a maximum of 3/16 in.

- (5) Install rear retainer on rear case. Tighten retainer bolts to 20−27 N·m (15−20 ft. lbs.) torque.
- (6) Install rear bearing I.D. retaining ring and spacer on output shaft.
- (7) Apply liberal quantity of petroleum jelly to new rear seal and to output shaft. Petroleum jelly is needed to protect seal lips during installation.
- (8) Slide seal onto Seal Protector 6992 (Fig. 89). Slide seal protector and seal onto output shaft.
- (9) Slide Installer C-4076-B onto seal protector with the recessed side of the tool toward the seal. Drive seal into rear bearing retainer with installer C-4076-B and handle MD-998323 (Fig. 90).

Fig. 89 Output Shaft Seal and Protector

Fig. 90 Rear Seal Installation

- (10) Install rear slinger with installer C-4076-A and handle MD-998323 (Fig. 90).
- (11) Install boot on output shaft slinger and crimp retaining clamp with tool C-4975-A (Fig. 91).

Fig. 91 Slinger Boot Installation

FRONT YOKE AND SWITCH INSTALLATION

- (1) Install indicator switch in front case. Tighten switch to 20– $34~N\cdot m$ (15–25~ft.~lbs.) torque.
- (2) Lubricate yoke hub with transmission fluid and install yoke on front shaft.
 - (3) Install new seal washer on front shaft.
- (4) Install yoke on front shaft. Secure yoke with new nut.

CLEANING AND INSPECTION

NV242 TRANSFER CASE

Clean the transfer case parts with a standard parts cleaning solvent. Remove all traces of sealer from the cases and retainers with a scraper and all purpose cleaner. Use compressed air to remove solvent residue from oil feed passages in the case halves, retainers, gears, and shafts.

The oil pickup screen can be cleaned with solvent. Shake excess solvent from the screen after cleaning and allow it to air dry. Do not use compressed air.

MAINSHAFT/SPROCKET/HUB INSPECTION

Inspect the splines on the hub and shaft and the teeth on the sprocket. Minor nicks and scratches can be smoothed with an oilstone. However, replace any part is damaged.

Check the contact surfaces in the sprocket bore and on the mainshaft. Minor nicks and scratches can be smoothed with 320–400 grit emery cloth but do not try to salvage the shaft if nicks or wear is severe.

INPUT GEAR AND PLANETARY CARRIER

Check the teeth on the gear (Fig. 92). Minor nicks can be dressed off with an oilstone but replace the gear if any teeth are broken, cracked, or chipped. The bearing surface on the gear can be smoothed with 300–400 grit emery cloth if necessary.

CLEANING AND INSPECTION (Continued)

8001b75f

Fig. 92 Input Gear And Carrier Components

Examine the carrier body and pinion gears for wear or damage. The carrier will have to be replaced as an assembly if the body, pinion pins, or pinion gears are damaged.

Check the lock ring and both thrust washers for wear or cracks. Replace them if necessary. Also replace the lock retaining ring if bent, distorted, or broken.

SHIFT FORKS/HUBS/SLEEVES

Check condition of the shift forks and mode fork shift rail (Fig. 93). Minor nicks on the shift rail can be smoothed with 320–400 grit emery cloth.

80010948

Fig. 93 Shift forks

Inspect the shift fork wear pads. The mode fork pads are serviceable and can be replaced if necessary. The range fork pads are also serviceable.

Check both of the sleeves for wear or damage, especially on the interior teeth. Replace the sleeves if wear or damage is evident.

REAR RETAINER/BEARING/ SEAL/SLINGER/BOOT

Inspect the retainer components (Fig. 94). Replace the bearing if rough or noisy. Check the retainer for cracks or wear in the bearing bore. Clean the retainer sealing surfaces with a scraper and all purpose cleaner. This will ensure proper adhesion of the sealer during reassembly.

Replace the slinger and seal outright; do not reuse either part.

Inspect the retaining rings and washers. Replace any part if distorted, bent, or broken. Reuse is not recommended. Also replace the boot if cut or torn. Replace the boot band clamps, do not reuse them.

REAR OUTPUT SHAFT/YOKE/DRIVE CHAIN

Check condition of the seal contact surfaces of the yoke slinger (Fig. 95). This surface must be clean and smooth to ensure proper seal life. Replace the yoke nut and seal washer as neither part should be reused.

Inspect the shaft threads, sprocket teeth, and bearing surfaces. Minor nicks on the teeth can be smoothed with an oilstone. Use 320–400 grit emery to smooth minor scratches on the shaft bearing surfaces. Rough threads on the shaft can be chased if necessary. Replace the shaft if the threads are dam-

CLEANING AND INSPECTION (Continued)

80010949

Fig. 94 Rear Retainer Components

aged, bearing surfaces are scored, or if any sprocket teeth are cracked or broken.

Examine the drive chain and shaft bearings. Replace the chain and both sprockets if the chain is stretched, distorted, or if any of the links bind. Replace the bearings if rough, or noisy.

Fig. 95 Seal Contact Surface Of Yoke Slinger LOW RANGE ANNULUS GEAR

Inspect annulus gear condition carefully. The gear is only serviced as part of the front case. If the gear

is damaged, it will be necessary to replace the gear and front case as an assembly. Do not attempt to remove the gear (Fig. 96).

Fig. 96 Low Range Annulus Gear

FRONT-REAR CASES AND FRONT RETAINER

Inspect the cases and retainer for wear and damage. Clean the sealing surfaces with a scraper and all purpose cleaner. This will ensure proper sealer adhesion at assembly. Replace the input retainer seal; do not reuse it.

CLEANING AND INSPECTION (Continued)

Check case condition. If leaks were a problem, look for gouges and severe scoring of case sealing surfaces. Also make sure the front case mounting studs are in good condition.

Check the front case mounting studs and vent tube. The tube can be secured with Loctite 271 or 680 if loose. The stud threads can be cleaned up with a die if necessary. Also check condition of the fill/drain plug threads in the rear case. The threads can be repaired with a thread chaser or tap if necessary. Or the threads can be repaired with Helicoil stainless steel inserts if required.

OIL PUMP/OIL PICKUP

Examine the oil pump pickup parts. Replace the pump if any part appears to be worn or damaged. Do not disassemble the pump as individual parts are not available. The pump is only available as a complete assembly. The pickup screen, hose, and tube are the only serviceable parts and are available separately.

ADJUSTMENTS

SHIFT LINKAGE ADJUSTMENT

- (1) Shift transfer case into 4L position.
- (2) Raise vehicle.
- (3) Loosen lock bolt on adjusting trunnion (Fig. 97).
- (4) Be sure linkage rod slides freely in trunnion. Clean rod and apply spray lube if necessary.
- (5) Verify that transfer case range lever is fully engaged in 4L position.
 - (6) Tighten adjusting trunnion lock bolt.
 - (7) Lower vehicle.

Fig. 97 Shift Linkage

SPECIFICATIONS

TORQUE

DESCRIPTION TORQUE
Plug, Detent 16–24 N·m (12–18 ft. lbs.)
Bolt, Diff. Case 17–27 N·m (15–24 ft. lbs.)
Plug, Drain/Fill 20–25 N·m (15–25 ft. lbs.)
Bolt, Front Brg. Retainer 16–27 N·m (12–20 ft.
lbs.)
Bolt, Case Half 35–46 N·m (26–34 ft. lbs.)
Nut, Front Yoke 122–176 N⋅m (90–130 ft. lbs.)
Screw, Oil Pump 1.2–1.8 N·m (12–15 in. lbs.)
Nut, Range Lever 27–34 N⋅m (20–25 ft. lbs.)
Bolt, Rear Retainer 35–46 N·m (26–34 ft. lbs.)
Nuts, Mounting 35 N·m (26 ft. lbs.)
Bolts, U-Joint

NV242

Installer—C-4076-B

Handle, Universal—C-4171

Remover—C-4210

Puller, Slinger—MD-998056-A

Installer—MD-998323

Installer, Bearing—5064

SPECIAL TOOLS (Continued)

Installer—8128

Installer—5066

Installer-6952-A

Remover—L-4454

Cup-8148

Seal Protector—6992

Installer, Input Gear Bearing—7829-A

Installer, Seal—7884

SPECIAL TOOLS (Continued)

Installer, Pump Housing Seal—7888

Installer, Bearing—8033-A

Installer, Boot Clamp—C-4975-A

TRANSMISSION AND TRANSFER CASE

CONTENTS

page	page
NV231 TRANSFER CASE 7	AX15 MANUAL TRANSMISSION
TRANSMISSION	AX15 MANUAL
DEX	INI
page	page
DIAGNOSIS AND TESTING HARD SHIFTING 3 LOW LUBRICANT LEVEL 3 TRANSMISSION NOISE 3 REMOVAL AND INSTALLATION TRANSMISSION 3 SPECIFICATIONS TORQUE 6	GENERAL INFORMATION AX 15 MANUAL TRANSMISSION
ratio of 0.79·1. The shift mechanism is integral and	CENEDAL INFORMATION

GENERAL INFORMATION

AX 15 MANUAL TRANSMISSION

The AX 15 is a 5–speed, synchromesh, manual transmission. Fifth gear is an overdrive range with a

ratio of 0.79:1. The shift mechanism is integral and mounted in the shift tower portion of the adapter housing (Fig. 1).

Fig. 1 AX 15 Manual Transmission

J8921-1023

GENERAL INFORMATION (Continued)

TRANSMISSION IDENTIFICATION

The AX 15 identification code numbers are on the bottom surface of the transmission gear case (Fig. 2). The first number is year of manufacture. The sec-

Fig. 2 Identification Code Number Location

ond and third numbers indicate month of manufacture. The next series of numbers is the transmission serial number.

TRANSMISSION SHIFT PATTERN

The AX 15 shift pattern is shown in (Fig. 3). First and second and third and fourth gear ranges are in line for improved shifting. Fifth and reverse gear ranges are also in line at the extreme right of the pattern (Fig. 3).

Fig. 3 AX 15 Shift Pattern

The AX 15 is equipped with a reverse lockout mechanism. The shift lever must be moved through the Neutral detent before making a shift to reverse.

TRANSMISSION LUBRICANT

Recommended lubricant for AX 15 transmissions is Mopar 75W-90, API Grade GL-3 gear lubricant, or equivalent.

Correct lubricant level is from the bottom edge, to no more than 6 mm (1/4 in.) below the bottom edge of the fill plug hole.

Approximate dry fill lubricant capacity is:

• 3.10 liters (3.27 qts.) in 4-wheel drive models

TRANSMISSION SWITCH AND PLUG LOCATIONS

The fill plug is at the driver side of the gear case (Fig. 4).

Fig. 4 Fill Plug Location

The drain plug and backup light switch are on the passenger side of the gear case (Fig. 5).

Fig. 5 Drain Plug/Backup Light Switch Location

GENERAL INFORMATION (Continued)

TRANSMISSION GEAR RATIOS

AX 15 gear ratios are:

First gear
Second gear
Third gear
Fourth gear
Fifth gear 0.79:1
Reverse

TRANSMISSION ASSEMBLY INFORMATION

Lubricate the transmission components with gear lubricant during assembly. Use petroleum jelly to lubricate seal lips and/or hold parts in place during installation.

DIAGNOSIS AND TESTING

LOW LUBRICANT LEVEL

A low transmission lubricant level is generally the result of a leak, inadequate lubricant fill, or an incorrect lubricant level check.

Leaks can occur at the mating surfaces of the gear case, intermediate plate and adapter or extension housing, or from the front/rear seals. A suspected leak could also be the result of an overfill condition.

Leaks at the rear of the extension or adapter housing will be from the housing oil seals. Leaks at component mating surfaces will usually be the result of inadequate sealer, gaps in the sealer, incorrect bolt tightening, or use of a non-recommended sealer.

A leak at the front of the transmission will be from either the front bearing retainer or retainer seal. Lubricant may be seen dripping from the clutch housing after extended operation. If the leak is severe, it may also contaminate the clutch disc causing slip, grab and chatter.

Transmissions filled from air or electrically powered lubricant containers can be under filled. This generally happens when the container delivery mechanism is improperly calibrated. Always check the lubricant level after filling to avoid an under fill condition.

A correct lubricant level check can only be made when the vehicle is level; use a drive-on hoist to ensure this. Also allow the lubricant to settle for a minute or so before checking. These recommendations will ensure an accurate check and avoid an under-or-over fill condition.

HARD SHIFTING

Hard shifting is usually caused by a low lubricant level, improper or contaminated lubricants, component damage, incorrect clutch adjustment, or by a damaged clutch pressure plate or disc.

Substantial lubricant leaks can result in gear, shift rail, synchro and bearing damage. If a leak goes undetected for an extended period, the first indications of a problem are usually hard shifting and noise.

Incorrect or contaminated lubricants can also contribute to hard shifting. The consequence of using non-recommended lubricants is noise, excessive wear, internal bind and hard shifting.

Improper clutch release is a frequent cause of hard shifting. Incorrect adjustment or a worn, damaged pressure plate or disc can cause incorrect release. If the clutch problem is advanced, gear clash during shifts can result.

Worn or damaged synchro rings can cause gear clash when shifting into any forward gear. In some new or rebuilt transmissions, new synchro rings may tend to stick slightly causing hard or noisy shifts. In most cases, this condition will decline as the rings wear-in.

TRANSMISSION NOISE

Most manual transmissions make some noise during normal operation. Rotating gears can generate a mild whine that may only be audible at extreme speeds.

Severe, obviously audible transmission noise is generally the result of a lubricant problem. Insufficient, improper, or contaminated lubricant can promote rapid wear of gears, synchros, shift rails, forks and bearings. The overheating caused by a lubricant problem, can also lead to gear breakage.

REMOVAL AND INSTALLATION

TRANSMISSION

REMOVAL

- 1. Disconnect the battery negative cable.
- 2. Remove the shifter boot and shifter.
- 3. Raise the vehicle on a hoist.
- 4. Drain the transmission fluid (Fig. 6).
- 5. Support the engine and transmission with an adjustable jack stand.
 - 6. Remove exhaust pipe and heat shield.
- 7. Mark the front and rear propeller shafts for installation alignment (Fig. 7).
 - 8. Remove the front propeller shaft.
 - 9. Remove the rear propeller shaft.
 - 10. Remove the transmission skid plate.
- 11. Disconnect the transfer case linkage and vehicle speed sensor electrical connector and vent tube hose (Fig. 8).
- 12. Reposition the adjustable jackstand under the engine.

Fig. 6 Drain Plug and Backup Light Switch Location

Fig. 7 Marking Propeller Shaft and Axle Yoke

- 13. Place a transmission jack under the transmission and secure the transmission with safety chains.
 - 14. Remove the rear transmission mount.
 - 15. Remove the rear crossmember.
- 16. Remove the transfer case assembly. Refer to Transfer Case removal later in this Group.
- 17. Lower the engine and transmission no more than 7.6 cm.
- 18. Remove the two (2) upper and two (2) mid clutch housing to engine bolts.
- 19. Remove the engine speed sensor (crankshaft position sensor) (Fig. 9).
- 20. Remove the clutch slave cylinder from the clutch housing.
 - 21. Remove the lower transmission bolts.
- 22. Remove the transmission assembly from the vehicle.

INSTALLATION

1. Mount the transmission on a transmission jack and secure the transmission with safety chains.

80a35409

Fig. 8 Vehicle Speed Sensor

Fig. 9 Engine Speed Sensor

- 2. Install the transmission to the vehicle (Fig. 10).
- 3. Install the two (2) lower transmission bolts. Tighten the bolts to 74.6 N·m.
- 4. Install the clutch slave cylinder to the clutch housing.
- 5. Install the engine speed sensor (crankshaft position sensor) to the vehicle (Fig. 9).
- 6. Install the two (2) upper clutch housing to engine bolts. Tighten the bolts to $36.6~N\cdot m$.
- 7. Install the two (2) mid clutch housing to engine bolts. Tighten the bolts to $58.3~\mathrm{N\cdot m}$.
- 8. Raise the engine and transmission with the adjustable jackstand.
- 9. Install the transfer case assembly. Refer to Transfer Case installation later in this Group.
 - 10. Install the rear crossmember.

80abfe70

Fig. 10 Transmission to Engine Mounting

Fig. 11 Clutch Housing to Transmission

- 11. Install the rear transmission mount.
- 12. Connect the transfer case linkage and vehicle speed sensor electrical connector and vent tube (Fig. 8).

- 13. Install the transmission skid plate.
- 14. Align and install the front and rear propeller shafts.
 - 15. Install the exhaust pipe and heat shield.
 - 16. Remove the transmission jack.
- 17. Fill the transmission with the proper fluid (Fig. 12).

Fig. 12 Fill Plug Location

18. Remove the adjustable jackstand from under the engine.

- 19. Lower the vehicle from the hoist.
- 20. Install the shifter boot and shifter.
- $21. \ Reconnect \ the \ battery \ negative \ cable.$

SPECIFICATIONS

TORQUE

DESCRIPTION TORQUE
Clutch Housing to Engine Top (2) Bolts 36.6 N·m
(27 ft. lbs.)
Clutch Housing to Engine Mid-Point (2) Bolts . 58.3
N·m (43 ft. lbs.)
Clutch Housing to Engine Bottom (2) Bolts 74.6
N·m (55 ft. lbs.)
Clutch Housing to Transmission bolts . 38.0 $N \cdot m$ (28
ft. lbs.)
Transfer Case to Transmission Attaching Nuts 35
N·m (26 ft. lbs.)
Propeller Shaft Bolts 26.5 N·m (19.5 ft. lbs.)

nage

NV231 TRANSFER CASE

INDEX

2000

pago	page
GENERAL INFORMATION	REAR RETAINER BUSHING AND SEAL
	SHIFT LEVER SPEEDOMETER S
	TRANSFER CASE 9
DIAGNOSIS AND TESTING NV231 DIAGNOSIS	
REMOVAL AND INSTALLATION FRONT OUTPUT SHAFT SEAL	SPECIAL TOOLS SPECIAL TOOLS—NV231

GENERAL INFORMATION

NV231 TRANSFER CASE

The NV231 is a part-time transfer case with a low range reduction gear system. The NV231 has three operating ranges plus a Neutral position. A low range system provides a reduction ratio for increased low speed torque capability.

The input gear is splined to the transmission output shaft. The input gear drives the mainshaft through the planetary assembly and range hub. The front output shaft is operated by a drive chain that connects the shaft to a drive sprocket on the mainshaft. The drive sprocket is engaged/disengaged by the mode fork, which operates the mode sleeve and hub. The sleeve and hub are not equipped with a synchronizer mechanism for shifting.

The geartrain is mounted in two aluminum case halves attached with bolts. The mainshaft front and rear bearings are mounted in aluminum retainer housings bolted to the case halves.

OPERATING RANGES

Transfer case operating ranges are:

- 2WD (2-wheel drive)
- 4x4 (4-wheel drive)
- 4 Lo (4-wheel drive low range

The 2WD range is for use on any road surface at any time.

The 4x4 and 4 Lo ranges are for off road use only. They are not for use on hard surface roads. The only exception being when the road surface is wet or slippery or covered by ice and snow.

The low range reduction gear system is operative in 4 Lo range only. This range is for extra pulling power in off road situations. Low range reduction ratio is 2.72:1.

SHIFT MECHANISM

Operating ranges are selected with a floor mounted shift lever. The shift lever is connected to the transfer case range lever by an adjustable linkage rod. A straight line shift pattern is used. Range positions are marked on the shifter bezel cover plate.

TRANSFER CASE IDENTIFICATION

A circular ID tag is attached to the rear case of each transfer case (Fig. 1). The ID tag provides the transfer case model number, assembly number, serial number, and low range ratio.

The transfer case serial number also represents the date of build.

Fig. 1 Fill/Drain Plug And I.D. Tag Locations

RECOMMENDED LUBRICANT AND FILL LEVEL

Recommended lubricant for the NV231 transfer case is Mopar® Dexron II, or ATF Plus 3, type 7176. Approximate lubricant fill capacity is 1.2 liters (2.5 pints).

The fill and drain plugs are both in the rear case (Fig. 1). Correct fill level is to the bottom edge of the fill plug hole. Be sure the vehicle is level to ensure an accurate fluid level check.

DIAGNOSIS AND TESTING

NV231 DIAGNOSIS

DIAGNOSIS CHART

Condition	Possible Cause	Correction
Transfer case difficult to shift or will not shift into desired range.	Vehicle speed to great to permit shifting.	Slow vehicle and shift into desired range.
	2) If vehicle was operated for an extended period in 4H mode on dry surface, driveline torque load may cause difficulty.	2) Stop vehicle and shift transfer case to Neutral position. Transfer case can then be shifted to the desired mode.
	Transfer case shift linkage binding.	Repair or replace linkage as necessary.
	4) Insufficient or incorrect lubricant.	4) Drain and refill transfer case with the correct type and quantity of lubricant.
	5) Internal transfer case components binding, worn, or damaged.	5) Repair or replace components as necessary.
Transfer case noisy in all drive modes.	Insufficient or incorrect lubricant.	Drain and refill transfer case with the correct type and quantity of lubricant.
Transfer case noisy while in, or jumps out of, 4L mode.	Transfer case not completely engaged in 4L position.	Slow vehicle, shift transfer case to the Neutral position, and then shift into the 4L mode.
	Transfer case shift linkage out of adjustment.	2) Adjust linkage as necessary.
	Transfer case shift linkage loose or binding.	3) Repair, replace, or tighten linkage components as necessary.
	4) Range fork damaged, inserts worn, or fork is binding on the shift rail.	4) Repair or replace components as necessary.
	5) Low range gear worn or damaged.	5) Repair or replace components as necessary.
Lubricant leaking from transfer case seals or vent.	1) Transfer case overfilled.	Drain lubricant to the correct level.
	Transfer case vent closed or restricted.	Clean or replace vent as necessary.
	Transfer case seals damaged or installed incorrectly.	3) Replace suspect seal.
Abnormal tire wear.	Extended operation in 4H mode on dry surfaces.	Operate vehicle in 2H mode on dry surfaces.

REMOVAL AND INSTALLATION

TRANSFER CASE

REMOVAL

- (1) Shift transfer case into Neutral.
- (2) Raise vehicle.
- (3) Drain transfer case lubricant.
- (4) Mark front and rear propeller shaft yokes for alignment reference.
 - (5) Support transmission with jack stand.
- (6) Remove rear crossmember and skid plate, if equipped.
- (7) Disconnect and support front/rear propeller shafts at transfer case.
 - (8) Disconnect vehicle speed sensor wires.
- (9) Disconnect transfer case linkage rod from range lever.
- (10) Disconnect transfer case vent hose (Fig. 2) and indicator switch harness, if necessary.
 - (11) Support transfer case with transmission jack.
 - (12) Secure transfer case to jack with chains.
- (13) Remove nuts attaching transfer case to transmission.
- (14) Pull transfer case and jack rearward to disengage transfer case.
 - (15) Remove transfer case from under vehicle.

Fig. 2 Transfer Case Mounting

INSTALLATION

- (1) Mount transfer case on a transmission jack.
- (2) Secure transfer case to jack with chains.
- (3) Position transfer case under vehicle.
- (4) Align transfer case and transmission shafts and install transfer case on transmission.
- (5) Install and tighten transfer case attaching nuts to 35 N·m (Fig. 2).
- (6) Connect vehicle speed sensor wires, and vent hose.

(7) Connect indicator switch harness to transfer case switch, if necessary. Secure wire harness to clips on transfer case.

NOTE: Do no reuse bearing straps or bolts. Discard and replace with new.

- (8) Align and connect propeller shafts. Tighten shaft attaching bolts to 26.5 N·m torque.
- (9) Fill transfer case with correct fluid. Refer to Recommended Lubricant And Fill Level section for proper fluid and capacity.
- (10) Install rear crossmember and skid plate, if equipped. Tighten crossmember bolts.
 - (11) Remove transmission jack and support stand.
 - (12) Connect shift rod to transfer case range lever.
 - (13) Adjust transfer case shift linkage.
- (14) Lower vehicle and verify transfer case shift operation.

SHIFT LEVER

REMOVAL

- (1) Shift transfer case into 4L.
- (2) Remove transfer case shifter knob cap.
- (3) Remove nut holding shifter knob to shift lever.
- (4) Remove shifter knob.
- (5) Raise and support vehicle.
- (6) Loosen adjusting trunnion lock bolt and slide shift rod out of trunnion (Fig. 3). If rod lacks enough travel to come out of trunnion, push trunnion out of shift lever.
- (7) Remove bolts holding shift lever to transmission.
 - (8) Separate shift lever from vehicle.

INSTALLATION

- (1) Position shift lever on transmission. Use care when passing the shift lever through the shifter boot to prevent damage to the shifter boot.
 - (2) Install bolts to hold shift lever to transmission.
 - (3) Install trunnion to shift lever, if necessary.
 - (4) Install shift rod to trunnion, if necessary.
- (5) Move shift lever and transfer case to 4L position.
 - (6) Tighten trunnion lock bolt.
 - (7) Lower vehicle.
 - (8) Install shift knob on shift lever.
 - (9) Install nut to hold shifter knob to shift lever.
 - (10) Install shifter knob cap.
 - (11) Verify transfer case operation.

SPEEDOMETER

REMOVAL

- (1) Raise vehicle.
- (2) Disconnect wires from vehicle speed sensor.

Fig. 3 Shift Lever

- (3) Remove adapter clamp and screw (Fig. 4).
- (4) Remove speed sensor and speedometer adapter as an assembly.

- (5) Remove speed sensor retaining screw and remove sensor from adapter.
- (6) Remove speedometer pinion from adapter. Replace pinion if chipped, cracked, or worn.
- (7) Inspect sensor and adapter O-rings (Fig. 4). Remove and discard O-rings if worn or damaged.
- (8) Inspect terminal pins in speed sensor. Clean pins with Mopar® electrical spray cleaner if dirty or oxidized. Replace sensor if faulty, or if pins are loose, severely corroded, or damaged.

INSTALLATION AND INDEXING

- (1) Thoroughly clean adapter flange and adapter mounting surface in housing. Surfaces must be clean for proper adapter alignment and speedometer operation.
- (2) Install new O-rings on speed sensor and speed-ometer adapter (Fig. 4), if necessary.
- (3) Lubricate sensor and adapter O-rings with transmission fluid.
- (4) Install vehicle speed sensor in speedometer adapter. Tighten sensor attaching screw to 2-3 N⋅m (15-27 in. lbs.) torque.
 - (5) Install speedometer pinion in adapter.
- (6) Count number of teeth on speedometer pinion. Do this before installing assembly in housing. Then lubricate pinion teeth with transmission fluid.
- (7) Note index numbers on adapter body (Fig. 5). These numbers will correspond to number of teeth on pinion.
 - (8) Install speedometer assembly in housing.

Fig. 4 Speedometer Components

- (9) Rotate adapter until required range numbers are at 6 o-clock position. Be sure range index numbers correspond to number of teeth on pinion gear.
- (10) Install speedometer adapter clamp and retaining screw. Tighten clamp screw to 10-12 N·m (90-110 in. lbs.) torque.
 - (11) Connect wires to vehicle speed sensor.
- (12) Lower vehicle and top off transmission fluid level if necessary.

J9321-386

Fig. 5 Location Of Index Numbers On Speedometer
Adapter

FRONT OUTPUT SHAFT SEAL

REMOVAL

- (1) Raise vehicle.
- (2) Remove front propeller shaft. Refer to Group 3, Differential and Driveline, for proper procedure.
 - (3) Remove front output shaft yoke.
- (4) Remove seal from front case with pry tool (Fig. 6).

Fig. 6 Remove Front Output Shaft Seal

INSTALLATION

- (1) Install new front output seal in front case with Installer Tool 8143 as follows:
 - (a) Place new seal on tool. Garter spring on seal goes toward interior of case.
 - (b) Start seal in bore with light taps from hammer (Fig. 7). Once seal is started, continue tapping seal into bore until installer tool seats against case.

Fig. 7 Front Output Seal Installation

REAR RETAINER BUSHING AND SEAL

REMOVAL

- (1) Raise vehicle.
- (2) Remove rear propeller shaft. Refer to Group 3, Differential and Driveline, for proper procedure.
- (3) Using a suitable pry tool or slide-hammer mounted screw, remove the rear retainer seal.
- (4) Using Remover 6957, remove bushing from rear retainer (Fig. 8).

Fig. 8 Rear Retainer Bushing Removal

INSTALLATION

- (1) Clean fluid residue from sealing surface and inspect for defects.
- (2) Position replacement bushing in rear retainer with fluid port in bushing aligned with slot in retainer.
- (3) Using Installer 8160, drive bushing into retainer until installer seats against case (Fig. 9).
- (4) Using Installer C-3995-A, install seal in rear retainer (Fig. 10).

Fig. 9 Rear Retainer Bushing Install

Fig. 10 Install Rear Retainer Seal

- (5) Install propeller shaft.
- (6) Verify proper fluid level.
- (7) Lower vehicle.

SPECIFICATIONS

TORQUE

DESCRIPTION	TORQUE
Plug, Drain/Fill	40 N⋅m
Nuts, Mounting	35 N⋅m
Switch Indicator	26 N.m

SPECIAL TOOLS

SPECIAL TOOLS—NV231

Installer, Seal-8143

Remover, Bushing-6957

Installer, Bushing—8160

Installer, Seal—C-3995-A

TIRES AND WHEELS

CONTENTS

	page	pa	ge
TIRES		WHEELS	7

TIRES

INDEX

page	page
DESCRIPTION AND OPERATION	TIRE WEAR PATTERNS
RADIAL-PLY TIRES 2	TREAD WEAR INDICATORS 3
REPLACEMENT TIRES 3	SERVICE PROCEDURES
SPARE TIRE-TEMPORARY 2	MATCH MOUNTING 4
TIRE INFLATION PRESSURES 2	REPAIRING LEAKS 5
TIRE INFORMATION 1	ROTATION
TIRE PRESSURE FOR HIGH SPEED	CLEANING AND INSPECTION
OPERATION	CLEANING TIRES 6
DIAGNOSIS AND TESTING	SPECIFICATIONS
PRESSURE GAUGES 3	TIRE SIZE 6
TIRE NOISE OR VIBRATION 4	

DESCRIPTION AND OPERATION

TIRE INFORMATION

Tires are designed and engineered for each specific vehicle. They provide the best overall performance for normal operation. The ride and handling characteristics match the vehicle's requirements. With proper care they will give excellent reliability, traction, skid resistance, and tread life.

Driving habits have more effect on tire life than any other factor. Careful drivers will obtain in most cases, much greater mileage than severe use or careless drivers. A few of the driving habits which will shorten the life of any tire are:

- Rapid acceleration
- Severe brake applications
- High speed driving
- Excessive speeds on turns
- · Striking curbs and other obstacles

Radial-ply tires are more prone to irregular tread wear. It is important to follow the tire rotation interval shown in the section on Tire Rotation. This will help to achieve a greater tread life.

TIRE IDENTIFICATION

Tire type, size, aspect ratio and speed rating are encoded in the letters and numbers imprinted on the side wall of the tire. Refer to the chart to decipher the tire identification code (Fig. 1).

Performance tires have a speed rating letter after the aspect ratio number.

LETTER	SPEED RATING
S	180 km/h (112 mph)
Т	190 km/h (118 mph)
U	200 km/h (124 mph)
Н	210 km/h (130 mph)
V	240 km/h (149 mph)
W	270 km/h (168 mph)
Y	300 km/h (186 mph)

The speed rating is not always printed on the tire sidewall.

TIRE CHAINS

Tire snow chains may be used on **certain** models. Refer to the Owner's Manual for more information.

DESCRIPTION AND OPERATION (Continued)

Fig. 1 Tire Identification

RADIAL-PLY TIRES

Radial-ply tires improve handling, tread life and ride quality, and decrease rolling resistance.

Radial-ply tires must always be used in sets of four. Under no circumstances should they be used on the front only. They may be mixed with temporary spare tires when necessary. A maximum speed of 50 MPH is recommended while a temporary spare is in use

Radial-ply tires have the same load-carrying capacity as other types of tires of the same size. They also use the same recommended inflation pressures.

The use of oversized tires, either in the front or rear of the vehicle, can cause vehicle drive train failure. This could also cause inaccurate wheel speed signals when the vehicle is equipped with Anti-Lock Brakes.

The use of tires from different manufactures on the same vehicle is NOT recommended. The proper tire pressure should be maintained on all four tires.

SPARE TIRE-TEMPORARY

The temporary spare tire is designed for emergency use only. The original tire should be repaired or replaced at the first opportunity and reinstall. Do not exceed speeds of 50 MPH. Refer to Owner's Manual for complete details.

TIRE INFLATION PRESSURES

Under inflation will cause rapid shoulder wear, tire flexing, and possible tire failure (Fig. 2).

Fig. 2 Under Inflation Wear

Over inflation will cause rapid center wear and loss of the tire's ability to cushion shocks (Fig. 3).

Fig. 3 Over Inflation Wear

Improper inflation can cause:

- Uneven wear patterns
- Reduced tread life
- Reduced fuel economy
- Unsatisfactory ride
- Vehicle drift

For proper tire pressure specification refer to the Tire Inflation Pressure Chart provided with the vehicle.

Tire pressures have been chosen to provide safe operation, vehicle stability, and a smooth ride. Tire pressure should be checked cold once a month. The spare tire pressure should be check at least twice annually. Tire pressure decreases as the ambient temperature drops. Check tire pressure frequently when ambient temperature varies widely.

DESCRIPTION AND OPERATION (Continued)

Inflation pressures specified on the placards are cold inflation pressure. The vehicle must sit for at least 3 hours to obtain the correct cold inflation pressure reading. Or driven less than one mile after sitting for 3 hours. Tire inflation pressures may increase from 2 to 6 pounds per square inch (psi) during operation, due to increased tire temperature.

WARNING: OVER OR UNDER INFLATED TIRES CAN AFFECT VEHICLE HANDLING AND TREAD WEAR. THIS MAY CAUSE THE TIRE TO FAIL SUDDENLY, RESULTING IN LOSS OF VEHICLE CONTROL.

TIRE PRESSURE FOR HIGH SPEED OPERATION

Chrysler Corporation advocates driving at safe speeds within posted speed limits. Where speed limits allow the vehicle to be driven at high speeds, correct tire inflation pressure is very important. For speeds up to and including $120~\rm km/h$ (75 mph), tires must be inflated to the pressures shown on the tire placard.

Vehicles loaded to the maximum capacity should not be driven at continuous speeds above 75 mph (120 km/h).

For emergency vehicles that are driven at speeds over 90 mph (144 km/h), special high speed tires must be used. Consult tire manufacturer for correct inflation pressure recommendations.

REPLACEMENT TIRES

The original equipment tires provide a proper balance of many characteristics such as:

- Ride
- Noise
- Handling
- Durability
- Tread life
- Traction
- Rolling resistance
- Speed capability

It is recommend that tires equivalent to the original equipment tires be used when replacement is needed.

Failure to use equivalent replacement tires may adversely affect the safety and handling of the vehicle.

The use of oversize tires not listed in the specification charts may cause interference with vehicle components. Under extremes of suspension and steering travel, interference with vehicle components may cause tire damage.

WARNING: FAILURE TO EQUIP THE VEHICLE WITH TIRES HAVING ADEQUATE SPEED CAPABILITY CAN RESULT IN SUDDEN TIRE FAILURE.

DIAGNOSIS AND TESTING

PRESSURE GAUGES

A quality air pressure gauge is recommended to check tire pressure. After checking the air pressure, replace valve cap finger tight.

TREAD WEAR INDICATORS

Tread wear indicators are molded into the bottom of the tread grooves. When tread depth is 1.6 mm (1/16 in.), the tread wear indicators will appear as a 13 mm (1/2 in.) band (Fig. 4).

Tire replacement is necessary when indicators appear in two or more grooves or if localized balding occurs.

J8922-5

Fig. 4 Tread Wear Indicators

TIRE WEAR PATTERNS

Under inflation will cause wear on the shoulders of tire. Over inflation will cause wear at the center of tire.

Excessive camber causes the tire to run at an angle to the road. One side of tread is then worn more than the other (Fig. 5).

Excessive toe-in or toe-out causes wear on the tread edges and a feathered effect across the tread (Fig. 5).

DIAGNOSIS AND TESTING (Continued)

CONDITION	RAPID WEAR AT SHOULDERS	RAPID WEAR AT CENTER	CRACKED TREADS	WEAR ON ONE SIDE	FEATHERED EDGE	BALD SPOTS	SCALLOPED WEAR
EFFECT	2. UNDER:INFLATION	OVER-INFLATION					
CAUSE	OF LACK OF ROTATION	OR LACK OF ROTATION	UNDER-INFLATION OR EXCESSIVE SPEED*	EXCESSIVE CAMBER	INCORRECT TOE	UNBALANCED WHEEL OR TIRE DEFECT *	LACK OF ROTATION OF TIRES OR WORN OR OUT- OF-ALIGNMENT SUSPENSION.
CORRECTION		DJUST PRESSURE TO PECIFICATIONS WHE TIRES ARE COOL ROTATE TIRES		ADJUST CAMBER TO SPECIFICATIONS	ADJUST TOE-IN TO SPECIFICATIONS	DYNAMIC OR STATIC BALANCE WHEELS	ROTATE TIRES AND INSPECT SUSPENSION SEE GROUP 2

*HAVE TIRE INSPECTED FOR FURTHER USE.

RN797

Fig. 5 Tire Wear Patterns

TIRE NOISE OR VIBRATION

Radial-ply tires are sensitive to force impulses caused by improper mounting, vibration, wheel defects, or possibly tire imbalance.

To find out if tires are causing the noise or vibration, drive the vehicle over a smooth road at varying speeds. Note the noise level during acceleration, deceleration and slight left and right steering inputs.

SERVICE PROCEDURES

ROTATION

Tires on the front and rear operate at different loads and perform different steering, driving, and braking functions. For these reasons they wear at unequal rates and tend to develop irregular wear patterns. These effects can be reduced by rotating the tires at regular intervals. The benefits of tire rotation are:

- Increase tread life
- Maintain traction levels
- A smooth, quiet ride

The suggested method of tire rotation is (Fig. 6). Other rotation methods can be used, but they will not provide all the tire longevity benefits.

MATCH MOUNTING

Tires and wheels are currently match mounted at the factory. Match mounting is a technique used to reduce runout in the wheel/tire assembly. This means that the high spot of the tire is aligned with the low spot on the wheel rim. The high spot on the tire is marked with a paint mark or a bright colored adhesive label on the outboard sidewall. The low spot on the rim is identified with a label on the outside of the

8031e864

Fig. 6 Tire Rotation Pattern

rim and a dot on the inside of the rim. If the outside label has been removed the tire will have to be removed to locate the dot on the inside of the rim.

Before dismounting a tire from its wheel, a reference mark should be placed on the tire at the valve stem location. This reference will ensure that it is remounted in the original position on the wheel.

- (1) Use a dial indicator to locate the high spot of the tire on the center tread rib (Fig. 7). Record the indicator reading and mark the high spot on the tire. Place a mark on the tire at the valve stem location (Fig. 8).
- (2) Break down the tire and remount it 180 degrees on the rim (Fig. 9).
- (3) Measure the total runout again and mark the tire to indicate the high spot.
- (4) If runout is still excessive use the following procedures.
 - (a) If the high spot is within 101.6 mm (4.0 in.) of the first spot and is still excessive, replace the tire.

SERVICE PROCEDURES (Continued)

Fig. 7 Dial Indicator

Fig. 8 First Measurement On Tire

- (b) If the high spot is within 101.6 mm (4.0 in.) of the first spot on the wheel, the wheel may be out of specifications. Refer to Wheel and Tire Runout.
- (c) If the high spot is NOT within 101.6 mm (4.0 in.) of either high spot, draw an arrow on the tread from second high spot to first. Break down the tire and remount it 90 degrees on rim in that direction (Fig. 10). This procedure will normally reduce the runout to an acceptable amount.

REPAIRING LEAKS

For proper repairing, a radial tire must be removed from the wheel. Repairs should only be made if the defect, or puncture, is in the tread area (Fig. 11). The tire should be replaced if the puncture is located in the sidewall.

Deflate tire completely before removing the tire from the wheel. Use lubrication such as a mild soap

Fig. 9 Remount Tire 180 Degrees

Fig. 10 Remount Tire 90 Degrees In Direction of Arrow

solution when dismounting or mounting tire. Use tools free of burrs or sharp edges which could damage the tire or wheel rim.

Before mounting tire on wheel, make sure all rust is removed from the rim bead and repaint if necessary.

Install wheel on vehicle, and tighten to proper torque specification.

SERVICE PROCEDURES (Continued)

Fig. 11 Tire Repair Area

CLEANING AND INSPECTION

CLEANING TIRES

Remove protective coating on tires before delivery of vehicle. This coating may cause deterioration of tires.

To remove the protective coating applying warm water and let it soak for a few minutes. Then scrub the coating away with a soft bristle brush. Steam cleaning may also be used to remove the coating.

NOTE: DO NOT use gasoline, mineral oil, oil-based solvent or wire brush for cleaning.

SPECIFICATIONS

TIRE SIZE

TIRE SIZE	SUPPLIER
P215/75R15	Goodyear
P225/75R15	Goodyear
P225/70R15	Goodyear

WHEELS

INDEX

page

DESCRIPTION AND OPERATION	SERVICE PROCEDURES
WHEEL 7	TIRE AND WHEEL BALANCE 9
DIAGNOSIS AND TESTING	WHEEL INSTALLATION 8
TIRE AND WHEEL RUNOUT 7	SPECIFICATIONS
WHEEL INSPECTION	TORQUE CHART 10

DESCRIPTION AND OPERATION

WHEEL

The rim size is on the vehicle safety certification label located on the drivers door shut face. The size of the rim is determined by the drivetrain package. Original equipment wheels/rims are designed for operation up to the specified maximum vehicle capacity.

All models use stamped steel, cast aluminum or forged aluminum wheels. Every wheel has raised sections between the rim flanges and rim drop well called safety humps (Fig. 1).

Fig. 1 Safety Rim

Initial inflation of the tire forces the bead over these raised sections. In case of rapid loss of air pressure, the raised sections help hold the tire on the wheel.

The wheel studs and nuts are designed for specific applications. All aluminum and some steel wheels have wheel stud nuts with an enlarged nose. This enlarged nose is necessary to ensure proper retention

with a different design or lesser quality.

of the wheels. Do not use replacement studs or nuts

page

WHEEL INSPECTION

Inspect wheels for:

- Excessive run out
- Dents or cracks
- Damaged wheel lug nut holes

DIAGNOSIS AND TESTING

· Air Leaks from any area or surface of the rim

NOTE: Do not attempt to repair a wheel by hammering, heating or welding.

If a wheel is damaged an original equipment replacement wheel should be used. When obtaining replacement wheels, they should be equivalent in load carrying capacity. The diameter, width, offset, pilot hole and bolt circle of the wheel should be the same as the original wheel.

WARNING: FAILURE TO USE EQUIVALENT REPLACEMENT WHEELS MAY ADVERSELY AFFECT THE SAFETY AND HANDLING OF THE VEHICLE. USED WHEELS ARE NOT RECOMMENDED. THE SERVICE HISTORY OF THE WHEEL MAY HAVE INCLUDED SEVERE TREATMENT OR VERY HIGH MILEAGE. THE RIM COULD FAIL WITHOUT WARNING.

TIRE AND WHEEL RUNOUT

Radial runout is the difference between the high and low points on the tire or wheel (Fig. 2).

Lateral runout is the **wobble** of the tire or wheel. Radial runout of more than 1.5 mm (.060 inch) measured at the center line of the tread may cause the vehicle to shake.

Lateral runout of more than 2.0 mm (.080 inch) measured near the shoulder of the tire may cause the vehicle to shake.

DIAGNOSIS AND TESTING (Continued)

J9022-4

Fig. 2 Checking Tire/Wheel/Hub Runout

Sometimes radial runout can be reduced. Relocate the wheel and tire assembly on the mounting studs (See Method 1). If this does not reduce runout to an acceptable level, the tire can be rotated on the wheel. (See Method 2).

METHOD 1 (RELOCATE WHEEL ON HUB)

- (1) Drive vehicle a short distance to eliminate tire flat spotting from a parked position.
- (2) Check wheel bearings and adjust if adjustable or replace if necessary.
 - (3) Check the wheel mounting surface.
- (4) Relocate wheel on the mounting, two studs over from the original position.
- (5) Tighten wheel nuts until all are properly torqued, to eliminate brake distortion.
- (6) Check radial runout. If still excessive, mark tire sidewall, wheel, and stud at point of maximum runout and proceed to Method 2.

METHOD 2 (RELOCATE TIRE ON WHEEL)

NOTE: Rotating the tire on wheel is particularly effective when there is runout in both tire and wheel.

- (1) Remove tire from wheel and mount wheel on service dynamic balance machine.
- (2) Check wheel radial runout (Fig. 3) and lateral runout (Fig. 4).
- STEEL WHEELS: Radial runout 0.040 in., Lateral runout 0.045 in. (maximum)
- ALUMINUM WHEELS: Radial runout 0.030 in., Lateral runout 0.035 in. (maximum)
- (3) If point of greatest wheel lateral runout is near original chalk mark, remount tire 180 degrees. Recheck runout, Refer to match mounting procedure.

Fig. 3 Radial Runout

Fig. 4 Lateral Runout

SERVICE PROCEDURES

WHEEL INSTALLATION

The wheel studs and nuts are designed for specific applications. They must be replaced with equivalent parts. Do not use replacement parts of lesser quality or a substitute design. All aluminum and some steel wheels have wheel stud nuts which feature an enlarged nose. This enlarged nose is necessary to ensure proper retention of the aluminum wheels.

NOTE: Do not use chrome plated lug nuts with chrome plated wheels.

Before installing the wheel, be sure to remove any build up of corrosion on the wheel mounting surfaces. Ensure wheels are installed with good metal-to-metal

SERVICE PROCEDURES (Continued)

contact. Improper installation could cause loosening of wheel nuts. This could affect the safety and handling of your vehicle.

To install the wheel, first position it properly on the mounting surface. All wheel nuts should then be tightened just snug. Gradually tighten them in sequence to the proper torque specification (Fig. 5). **Never use oil or grease on studs or nuts.**

Fig. 5 Lug Nut Tightening Pattern

WHEEL REPLACEMENT

Wheels must be replaced if they have:

- Excessive runout
- · Bent or dented
- Leak air through welds
- Have damaged bolt holes

Wheel repairs employing hammering, heating, or welding are not allowed.

Original equipment wheels are available through your dealer. Replacement wheels from any other source should be equivalent in:

· Load carrying capacity

- Diameter
- Width
- Offset
- Mounting configuration

Failure to use equivalent replacement wheels may affect the safety and handling of your vehicle. Replacement with **used** wheels is not recommended. Their service history may have included severe treatment.

TIRE AND WHEEL BALANCE

It is recommended that a two plane service dynamic balancer be used when a tire and wheel assembly require balancing. Refer to balancer operation instructions for proper cone mounting procedures. Typically use front cone mounting method for steel wheels. For aluminum wheel use back cone mounting method without cone spring.

NOTE: Static should be used only when a two plane balancer is not available.

NOTE: Cast aluminum and forged aluminum wheels require coated balance weights and special alignment equipment.

Wheel balancing can be accomplished with either on or off vehicle equipment. When using on-vehicle balancing equipment, remove the opposite wheel/tire. Off-vehicle balancing is recommended.

For static balancing, find location of heavy spot causing the imbalance. Counter balance wheel directly opposite the heavy spot. Determine weight required to counter balance the area of imbalance. Place half of this weight on the **inner** rim flange and the other half on the **outer** rim flange (Fig. 6).

For dynamic balancing, the balancing equipment is designed to locate the amount of weight to be applied to both the inner and outer rim flange (Fig. 7).

SERVICE PROCEDURES (Continued)

Fig. 6 Static Unbalance & Balance

Fig. 7 Dynamic Unbalance & Balance

SPECIFICATIONS

TORQUE CHART

DESCRIPTION	TORQUE
Lug Nut	
1/2 X 20 with 60° Cone	115-150 N·m
	(85-115 ft. lbs.)

BODY

CONTENTS

page	page
	SEATS

GENERAL SERVICE INFORMATION

GENERAL INFORMATION

SAFETY PRECAUTIONS AND WARNINGS

WARNING: EYE PROTECTION SHOULD BE USED WHEN SERVICING GLASS COMPONENTS. PERSONAL INJURY CAN RESULT.

USE A OSHA APPROVED BREATHING FILTER WHEN SPRAYING PAINT OR SOLVENTS IN A CONFINED AREA. PERSONAL INJURY CAN RESULT.

AVOID PROLONGED SKIN CONTACT WITH PETROLEUM OR ALCOHOL – BASED CLEANING SOLVENTS. PERSONAL INJURY CAN RESULT.

DO NOT STAND UNDER A HOISTED VEHICLE THAT IS NOT PROPERLY SUPPORTED ON SAFETY STANDS. PERSONAL INJURY CAN RESULT.

CAUTION: When holes must be drilled or punched in an inner body panel, verify depth of space to the outer body panel, electrical wiring, or other components. Damage to vehicle can result.

Do not weld exterior panels unless combustible material on the interior of vehicle is removed from the repair area. Fire or hazardous conditions, can result.

Always have a fire extinguisher ready for use when welding.

Disconnect the negative (-) cable clamp from the battery when servicing electrical components that are live when the ignition is OFF. Damage to electrical system can result.

Do not use abrasive chemicals or compounds on painted surfaces. Damage to finish can result.

Do not use harsh alkaline based cleaning solvents on painted or upholstered surfaces. Damage to finish or color can result.

Do not hammer or pound on plastic trim panel when servicing interior trim. Plastic panels can break.

Chrysler Corporation uses many different types of push-in fasteners to secure the interior and exterior trim to the body. Most of these fasteners can be reused to assemble the trim during various repair procedures. At times, a push-in fastener cannot be removed without damaging the fastener or the component it is holding. If it is not possible to remove a fastener without damaging a component or body, cut or break the fastener and use a new one when installing the component. Never pry or pound on a plastic or pressed-board trim component. Using a suitable fork-type prying device, pry the fastener from the retaining hole behind the component being removed. When installing, verify fastener alignment with the retaining hole by hand. Push directly on or over the fastener until it seats. Apply a low-force pull to the panel to verify that it is secure.

When it is necessary to remove components to service another, it should not be necessary to apply excessive force or bend a component to remove it. Before damaging a trim component, verify hidden fasteners or captured edges holding the component in place.

page

PAINT

INDEX

page

GENERAL INFORMATION	WET SANDING, BUFFING, AND POLISHING 2
BASE COAT/CLEAR COAT FINISH 2	SPECIFICATIONS
PAINT CODE	AFTERMARKET PAINT REPAIR PRODUCTS 3
PAINTED SURFACE TOUCH-UP 2	

GENERAL INFORMATION

PAINT CODE

Exterior vehicle body colors are identified on the Body Code plate. The plate is located on the left side of the dash panel in the engine compartment. Refer to the Introduction section at the front of this manual for body code plate description. The paint code is also identified on the Vehicle Safety Certification Label which is located on the drivers door shut face. The color names provided in the Paint and Trim Code Description chart are the color names used on most repair product containers.

BASE COAT/CLEAR COAT FINISH

On most vehicles a two-part paint application (base coat/clear coat) is used. Color paint that is applied to primer is called base coat. The clear coat protects the base coat from ultraviolet light and provides a durable high-gloss finish.

WET SANDING, BUFFING, AND POLISHING

Minor acid etching, orange peel, or smudging in clear coat or single-stage finishes can be reduced with light wet sanding, hand buffing, and polishing. If the finish has been wet sanded in the past, it cannot be repeated. Wet sanding operation should be performed by a trained automotive paint technician.

CAUTION: Do not remove clear coat finish, if equipped. Base coat paint must retain clear coat for durability.

PAINTED SURFACE TOUCH-UP

When a painted metal surface has been scratched or chipped, it should be touched-up as soon as possible to avoid corrosion. For best results, use Mopar® Scratch Filler/Primer, Touch-Up Paints and Clear Top Coat. Refer to Introduction group of this manual for Body Code Plate information.

TOUCH-UP PROCEDURE

- (1) Scrape loose paint and corrosion from inside scratch or chip.
- (2) Clean affected area with Mopar® Tar/Road Oil Remover, and allow to dry.
- (3) Fill the inside of the scratch or chip with a coat of filler/primer. Do not overlap primer onto good surface finish. The applicator brush should be wet enough to puddle-fill the defect without running. Do not stroke brush applicator on body surface. Allow the filler/primer to dry hard.
- (4) Cover the filler/primer with color touch-up paint. Do not overlap touch-up color onto the original color coat around the scratch or chip. Butt the new color to the original color, if possible. Do not stroke applicator brush on body surface. Allow touch-up paint to dry hard.
- (5) On vehicles without clear coat, the touch-up color can be lightly wet sanded (1500 grit) and polished with rubbing compound.
- (6) On vehicles with clear coat, apply clear top coat to touch-up paint with the same technique as described in Step 4. Allow clear top coat to dry hard. If desired, Step 5 can be performed on clear top coat.

SPECIFICATIONS

AFTERMARKET PAINT REPAIR PRODUCTS

EXTERIOR COLOR

	011517	1				
EXTERIOR COLOR	CHRY CODE *	PPG	DuPONT	S-W** M-S**	AKZO NOBEL SIKKENS	ICI**
Flame Red Clear Coat	PR4	4679	B9326	46916	CHA93:PR4	2NN6B
Chili Pepper Red	VEA	5361	B9823	54470	CHA98:VEA	НМТ3В
Medium Fern Pearl Coat	RJP	4969	B9524	50270	CHA99:RJP	7CD6B
Forest Green Pearl Coat	SG8	5065	B9609	51062	CHA95:SG8	7MR8B
Intense Blue Pearl Coat	VB3	5357	B9822	54468	CHA98:VB3	HMR9B
Desert Sand	WTD	5474	B9884	56153	CHA99:WTD	KGC7B
Deep Amethyst Pearl Coat	TCN	5246	B9736	52026	CHA97:TCN	FNE4B
Black Clear Coat	DX8	9700	99	34858	CHA85:DX8	TC60B
Gunmetal Pearl Coat	TQ7	5248	B9735	52952	CHA97:TQ7	ERA9B
Stone White Clear Coat	SW1	83542	B9622	51539	CHA96:SW1	8KY5B

INTERIOR COLOR

INTERIOR COLOR	CHRY CODE*	PPG	DuPONT	S-W** M-S**	AKZO NOBEL SIKKENS	ICI**
Agate	AZ	9856 / 2-1461	C9208	45994	CHALAZI	7WC8
Camel / Dark Green	KG	N/A	N/A	N/A	N/A	K5/G8

NOTE: *Herberts Standox, Spies Hecker, and BASF use the Chrysler paint code as listed on the Body Code Plate and the Vehicle Safety Certification label. ** S-W = Sherwin-Williams, M-S = Martin Senour, ICI = ICI Autocolor.

page

STATIONARY GLASS

INDEX

page

1 0	
DESCRIPTION AND OPERATION	REAR DOOR STATIONARY WINDOW GLASS 7
SAFETY PRECAUTIONS 4	REAR QUARTER WINDOW GLASS 8
REMOVAL AND INSTALLATION	WINDSHIELD
LIFTGATE GLASS 9	

DESCRIPTION AND OPERATION

SAFETY PRECAUTIONS

WARNING: DO NOT OPERATE THE VEHICLE WITHIN 24 HOURS OF WINDSHIELD INSTALLATION. IT TAKES AT LEAST 24 HOURS FOR URETHANE ADHESIVE TO CURE. IF IT IS NOT CURED, THE WINDSHIELD MAY NOT PERFORM PROPERLY IN AN ACCIDENT.

URETHANE ADHESIVES ARE APPLIED AS A SYSTEM. USE GLASS CLEANER, GLASS PREP SOLVENT, GLASS PRIMER, PVC (VINYL) PRIMER AND PINCH WELD (FENCE) PRIMER PROVIDED BY THE ADHESIVE MANUFACTURER. IF NOT, STRUCTURAL INTEGRITY COULD BE COMPROMISED.

CHRYSLER DOES NOT RECOMMEND GLASS ADHESIVE BY BRAND. TECHNICIANS SHOULD REVIEW PRODUCT LABELS AND TECHNICAL DATA SHEETS, AND USE ONLY ADHESIVES THAT THEIR MANUFACTURES WARRANT WILL RESTORE A VEHICLE TO THE REQUIREMENTS OF FMVSS 212. TECHNICIANS SHOULD ALSO INSURE THAT PRIMERS AND CLEANERS ARE COMPATIBLE WITH THE PARTICULAR ADHESIVE USED.

BE SURE TO REFER TO THE URETHANE MANU-FACTURER'S DIRECTIONS FOR CURING TIME SPECIFICATIONS, AND DO NOT USE ADHESIVE AFTER ITS EXPIRATION DATE.

VAPORS THAT ARE EMITTED FROM THE URE-THANE ADHESIVE OR PRIMER COULD CAUSE PERSONAL INJURY. USE THEM IN A WELL-VENTI-LATED AREA.

SKIN CONTACT WITH URETHANE ADHESIVE SHOULD BE AVOIDED. PERSONAL INJURY MAY RESULT.

ALWAYS WEAR EYE AND HAND PROTECTION WHEN WORKING WITH GLASS.

CAUTION: Protect all painted and trimmed surfaces from coming in contact with urethane or primers.

Be careful not to damage painted surfaces when removing moldings or cutting urethane around windshield.

It is difficult to salvage a windshield during the removal operation. The windshield is part of the structural support for the roof. The urethane bonding used to secure the windshield to the fence is difficult to cut or clean from any surface. If the moldings are set in urethane, it would also be unlikely they could be salvaged. Before removing the windshield, check the availability of the windshield and moldings from the parts supplier.

REMOVAL AND INSTALLATION

WINDSHIELD

The windshield is positioned in the reveal molding and is bonded to the windshield frame with urethane adhesive.

Depending on the circumstances, either one of two windshield glass installation methods can be used:

- The short method.
- The extended method.

The short method is used when the windshield glass is removed intact, and the body opening and the pinchweld flanges do not require repair.

The extended method must be used when the body opening or a flange is damaged. The extended method must also be used when urethane no longer adheres to either the windshield glass or the pinchweld flanges.

REMOVAL

- (1) Cover the interior and exterior body surface areas with a protective covering.
- (2) Remove the windshield wiper arms and the rearview mirror.
- (3) Using a razor knife, slide the blade between the windshield glass and the inboard edge of the reveal molding.
- (4) Cut around the interior perimeter of the reveal molding and sever the cap of the reveal molding.

- (5) Using a cold knife, cut the urethane around the perimeter of the windshield (Fig. 1).
 - (6) Remove the windshield glass from the frame.

Fig. 1 Cutting Urethane Around Windshield—Typical INSTALLATION—SHORT METHOD

WARNING: REVIEW ALL WARNINGS AND CAUTIONS IN THIS GROUP BEFORE PRECEDING WITH INSTALLATION.

(1) Trim the urethane from the pinchweld flanges. Leave a 3 mm (0.1 in.) level base of urethane on the pinchweld flanges.

WARNING: DO NOT USE SOLVENT BASED GLASS CLEANER TO CLEAN WINDSHIELD BEFORE APPLYING GLASS PREP AND PRIMER. POOR ADHESION CAN RESULT.

- (2) Clean inside of windshield with ammonia based glass cleaner and lint-free cloth.
- (3) Prime outer perimeter of interior side of glass 16 mm (5/8 inch) from edge. Use a wipe-off type ure-thane primer and wipe glass dry after primer application.

NOTE: The reveal molding has an adhesive applied to the windshield contact surface to help secure the molding to the windshield during the installation procedure.

- (4) Apply the molding to the windshield:
- With the molding at room temperature, press the molding onto the windshield corners.
- From corner to corner, work the molding to the center of each side. (Some stretching of the molding may be required during this procedure.)
- (5) Place the glass on the pinchweld flanges and inspect for gaps in the urethane. Gaps in excess of 3 mm (1/8 inch) must be filled with urethane.

- (6) Adjust windshield glass position until it is aligned with the flanges and adhesive.
- (7) Using a grease pencil or equivalent, make alignment marks on the glass and body.
- (8) Remove replacement windshield from windshield opening.
- (9) Position the windshield inside up on a suitable work surface with two padded, wood 10 cm by 10 cm by 50 cm (4 in. by 4 in. by 20 in.) blocks, placed parallel 75 cm (2.5 ft.) apart (Fig. 2).

CAUTION: Avoid spilling or dripping primer on painted surfaces. Clean spills or drips immediately. The primer will damage the paint if it remains on the surface for any length of time.

- (10) If the replacement windshield glass does not have blackout primer:
- Attach a 25 mm (1 in) wide masking tape band around the interior side of the glass 16 mm (5/8 in) from the edge of the glass (Fig. 3).
- Do not attach tape along the bottom of the glass and attach it only to the inside of the glass.
- Clean the 16-mm (5/8-in) wide surface area around the glass with isopropyl alcohol.
- Thoroughly mix and apply glass blackout primer to the 16 mm (5/8 in) surface area around the interior side of the glass (Fig. 4).
- Allow the primer to dry for at least 10-12 minutes.
- (11) Apply a small amount of adhesive to the bottom support spacers and attach the support spacers to the bottom of the windshield, 170 mm inboard from the outer windshield edge (Fig. 5).
- (12) Cut the urethane adhesive applicator nozzle (Fig. 6).

CAUTION: Be prepared to install the glass immediately after applying the adhesive, as the adhesive will begin to cure in less than 10 minutes.

- (13) Apply a continuous, 6-mm (1/4-in) diameter bead of urethane adhesive to the surface area.
- (14) Align the glass with the reference marks and position the glass on the pinchweld flanges. Ensure that the windshield glass is correctly seated on the support spacers.
- (15) Force the windshield glass inward just enough to wet-out and set the urethane. Use care to avoid excessive squeeze-out of adhesive.
- (16) Water test the windshield with a water spray after installation. Do not direct high pressure streams of water directly at urethane. If any leaks are detected, apply urethane as necessary.
- (17) If used, remove the masking tape from the inner surface of the glass.
 - (18) Install all components and clean the vehicle.

(19) Open the vehicle windows to prevent interior pressure while the urethane is curing. If not vented, pressure in the interior of the vehicle may interfere with proper glass bonding.

(20) Install the rearview mirror.

Fig. 2 Work Surface Set up

J8923-76

Fig. 3 Masking Tape Location For Blackout Primer INSTALLATION—EXTENDED METHOD

WARNING: REVIEW ALL WARNINGS AND CAUTIONS IN THIS GROUP BEFORE PRECEDING WITH INSTALLATION.

- (1) Remove the all of urethane from all pinchweld flanges.
- (2) Inspect and repair the windshield opening and pinchweld flanges.
- (3) Prime the pinchweld flanges with a urethane base primer. However, if the flange is color-coated with paint, prime the flanges with a paint finish primer. This is important because urethane adhesive will not adhere to all color-coat paints. Allow primer sufficient time to dry.

NOTE: The reveal molding has an adhesive applied to the windshield contact surface to help secure the

Fig. 4 Blackout Primer Application

Fig. 5 Windshield Bottom Support Spacers molding to the windshield during the installation procedure.

- (4) Apply the reveal molding to the windshield:
- With the molding at room temperature, press the molding onto the windshield corners.
- From corner to corner, work the molding to the center of each side. (Some stretching of the molding may be required during this procedure).
- (5) Install and inspect the fit of the windshield on the pinchweld flanges as follows:
- Position windshield until it is aligned within windshield opening.

Fig. 6 Applicator Nozzle Preparation

- Measure the gap between the pinchweld flanges and glass around perimeter of the glass and flange.
- The reveal molding should equally cover the A-Pillars on both sides.
- The flanges should also extend above the glass edge equally around the perimeter of the opening.
- (6) If the pinchweld flanges require repair, remove the windshield glass and straighten, align, or repair the flange(s) as necessary.
- (7) Position the windshield in the opening and inspect the windshield fit again. Mark the windshield final position on the glass and body with a wax pencil (or use masking tape). The marks (or masking tape) will be used for installation alignment reference.
- (8) If the replacement windshield does not have blackout primer:
- \bullet Attach a 25-mm (1-in) wide masking tape band around the interior side of glass 16 mm (5/8 in) from edge of glass (Fig. 3).
- Do not attach tape along the bottom of the glass and attach only to the inside of glass.
- Thoroughly mix and apply blackout primer to the 16 mm (5/8 in) surface area around the interior side of the glass (Fig. 4).
- Allow the primer to dry for at least 10-12 minutes.
- (9) Apply a small amount of adhesive to the bottom support spacers and attach the support spacers to the bottom of the windshield, 170 mm inboard from the outer windshield edge (Fig. 5).
 - (10) Cut the urethane applicator nozzle (Fig. 6).
- (11) Apply a continuous bead of urethane to the surface area with blackout primer on the interior side of glass. The bead should be 9-mm (3/8-in) wide by 12.7-mm (1/2-in) deep for best results.

CAUTION: Be prepared to install the glass immediately after applying the adhesive, as the adhesive will begin to cure in less than 10 minutes.

- (12) Align the windshield with the wax pencil installation alignment reference marks (or the tape strips). Position the windshield on pinchweld flanges and spacers.
- (13) Force the windshield inward just enough to wet-out and set the urethane. Use care to avoid excessive squeeze-out of adhesive.
- (14) Water test the windshield with a water spray after installation. Do not direct high pressure streams of water directly at the urethane. If any leaks are detected, apply urethane as necessary.
- (15) If used, remove the masking tape from the inner surface of glass.
- (16) Install all components and clean the vehicle. If necessary, refer to the installation procedures.
- (17) Open the vehicle windows to prevent interior pressure while the urethane adhesive is curing. If not vented, pressure in the interior of vehicle will interfere with glass bonding.
 - (18) Install the rearview mirror on the bracket.

REAR DOOR STATIONARY WINDOW GLASS

REMOVAL

The rear door stationary window glass is bonded to the division bar and is serviced as an assembly.

- (1) Lower the window glass.
- (2) Remove the inner and outer beltline weatherstrip.
- (3) Remove the trim panel and waterdam from door inner panel.
- (4) Remove the screws attaching the division bar/glass to the door (Fig. 7).
- (5) Tilt the division bar/glass forward and remove it from the door.

Fig. 7 Division Bar/Stationary Glass

INSTALLATION

- (1) Position the division bar/glass in the door.
- (2) Install the screws attaching the division bar/glass to the door. Finger tighten the screws.
- (3) Tighten the upper screw to 6 N·m (5 ft-lbs) torque.
- (4) Tighten the lower screw to 6 N·m (5 ft-lbs) torque.
 - (5) Install the beltline weatherstrip.
 - (6) Install the door waterdam and trim panel.

REAR QUARTER WINDOW GLASS

REMOVAL

- (1) If equipped, remove the quarter window reveal molding (Fig. 8).
- (2) Remove the quarter window interior trim covers.
- (3) Separate the weatherstrip seal lip from the window opening flanges. Use a pry tool and carefully push the window glass and seal outward.
- (4) Remove the weatherstrip seal and window glass from window opening.
- (5) Remove the weatherstrip seal from the window glass.

Fig. 8 Quarter Window Reveal Molding, Glass and Seal

INSTALLATION

- (1) Clean the original sealant from the weatherstrip channels and window opening flanges.
- (2) Apply a 4-mm (1/6-in) diameter bead of sealant to the window channel in the weatherstrip seal.
- (3) Install the weatherstrip on the window glass. Install the seal installation cord in the window opening flange channel (Fig. 9) as follows:
- Moisten a length of 6-mm (1/4-in) diameter cord with a soap and water solution.
- Ensure that the cord is long enough to go all the way around the perimeter of the weatherstrip.

- Insert the cord into the window opening flange channel in the weatherstrip seal.
- (4) Apply a 6-mm (1/4-in) diameter bead of sealant to the window opening flanges.
- (5) For two-door vehicles, apply a 3-mm (1/8-in) diameter bead of sealant at the quarter panel applique and liftgate pillar seam.
- (6) Position the quarter window glass and the weatherstrip seal in the window opening (Fig. 10) with the free ends of the cord inside the vehicle (Fig. 11).
- (7) Pull on each end of the cord to pull the weatherstrip seal channel lip over the window opening flanges.
 - (8) Test the vent window for water leaks.
 - (9) Install the interior trim cover.
- (10) If equipped, install the quarter window reveal molding.

Fig. 9 Weatherstrip Seal and Cord Installation

Fig. 10 Quarter Window With Vent

REMOVAL AND INSTALLATION (Continued)

Fig. 11 Quarter Window Glass and Seal Installation LIFTGATE GLASS

REMOVAL

- (1) Open liftgate.
- (2) Remove liftgate trim panel.
- (3) Disconnect heated backlite (HBL) connector.
- (4) Remove wiper arm.
- (5) Remove CHMSL lens.
- (6) Using a razor knife, slide the blade between the liftgate glass and the inboard edge of the reveal molding.
- (7) Cut around the interior perimeter of the reveal molding and severe the cap of the reveal molding.
- (8) Using a cold knife, cut urethane bonding from around liftgate glass. A pneumatic cutting device can be used if available.
 - (9) Separate glass from Liftgate.

INSTALLATION

CAUTION: Open a window before installing glass. This will avoid pressurizing the passenger compartment. If a door or liftgate is slammed before urethane is cured, water leaks can result.

(1) Trim the urethane from the liftgate glass opening flanges. Leave a 3 mm (0.1 in.) level base of urethane on the flanges.

- (2) Starting in the corners, press reveal molding onto glass.
- (3) Place replacement glass into liftgate opening and position glass in the center of the opening against flange.
- (4) Verify the glass lays evenly against the fence at the sides, top and bottom. If not, the flange must be formed to the shape of the new glass.
- (5) Using a grease pencil or equivalent, make references marks on the glass and body.
- (6) Remove replacement glass from liftgate opening.
- (7) Position the glass inside up on a suitable work surface.

WARNING: DO NOT USE SOLVENT BASED GLASS CLEANER TO CLEAN WINDSHIELD BEFORE APPLYING GLASS PREP AND PRIMER. POOR ADHESION CAN RESULT.

- (8) Clean inside of glass with Mopar Glass Cleaner and lint-free cloth.
- (9) Apply PVC (vinyl) primer 25 mm (1 in.) wide around edge of glass. Wipe with clean/dry lint-free cloth.
- (10) If necessary, apply fence primer around edge of fence. Allow at least eighteen minutes drying time.
- (11) Apply a 10 mm (0.4 in.) bead of urethane around glass border.
- (12) Position glass into liftgate opening and reference marks.
- (13) Push the glass inward until the reveal molding is seated onto the liftgate frame. Use care to avoid excessive squeeze-out of adhesive.
- (14) Open windows to prevent pressure build-up while the urethane is curing.
- (15) Apply 150 mm (6 in.) lengths of 50 mm (2 in.) masking tape spaced 250 mm (10 in.) apart to hold glass in place until urethane cures.
 - (16) Install the wiper arm.
 - (17) Install CHMSL lens.
 - (18) Connect heated backlite (HBL) connector.
- (19) After urethane has cured, remove tape strips and water test to verify repair.
 - (20) Install liftgate trim panel.

SEATS

IND	DEX
page	page
REMOVAL AND INSTALLATION BUCKET SEAT	HEAD RESTRAINT SLEEVE
REMOVAL AND INSTALLATION HEAD RESTRAINT SLEEVE	FWD
REMOVAL	
NOTE: When replacing a head restraint sleeve, the retaining tabs on the sleeve will be damaged during the removal process. Check the availability of	EXTRACTOR HEAD RESTRAINT / SLEEVE

replacement parts before servicing.

(1) Raise head restraint to the full up position. (2) Turn head restraint lock thumbwheel to release

head restraint and pull head restraint upward to remove from seat back.

- (3) Insert head restraint sleeve extractor (special tool 6773) (Fig. 1) and (Fig. 2) into the seat back.
- (4) The retaining tabs are positioned on each side of the sleeve, when inserting the extractor, ensure that the flat of the collar is facing the side of the seatback (Fig. 3).
- (5) Using a small hammer, tap extractor downward to release sleeve retaining tab.
- (6) Remove extractor tool from sleeve, rotate tool 180 degrees (Fig. 4) and repeat steps 3 and 4.
- (7) Remove extractor tool from sleeve and remove sleeve from seat back.

INSTALLATION

- (1) Position the sleeve in the seat back.
- (2) Firmly, push sleeve down to snap into place.
- (3) Install head restraint.

Fig. 1 Head Restraint Sleeve Extractor

Fig. 2 Head Restraint Sleeve Extractor Installation

REMOVAL AND INSTALLATION (Continued)

Fig. 3 Head Restraint Sleeve Extractor Positioning

Fig. 4 Head Restraint Sleeve Extractor Positioning
HEAD RESTRAINT COVER

REMOVAL

- (1) Remove head restraint from the bucket seat.
- (2) Remove the screws attaching the bezel and adjuster bar to the head restraint (Fig. 5).
 - (3) Pull the adjuster bar from the head restraint.
- (4) Roll the cover upward and separate from the head restraint cushion (Fig. 6).

INSTALLATION

- (1) Position the cover on the head restraint cushion and roll the cover downward.
 - (2) Position the adjuster bar in the head restraint.
- (3) Install the screws attaching the bezel and adjuster bar to the head restraint.
 - (4) Install head restraint in the bucket seat.

Fig. 5 Head Restraint

Fig. 6 Head Restraint Cover

BUCKET SEAT

REMOVAL

- (1) Remove bolts attaching seat to floor pan (Fig. 7).
 - (2) Remove nut attaching seat to floor pan.
- (3) For power seat, disconnect wire harness connector. If equipped, disconnect wire harness for heated seat.
- (4) Disconnect seat belt buckle warning wire harness connector.
 - (5) Separate seat from floor panel.

INSTALLATION

(1) Position seat on floor pan.

Fig. 7 Bucket Seat—Power Seat

- (2) Connect seat belt buckle warning wire harness connector.
- (3) For power seats, connect wire harness connector. If equipped, connect harness for heated seat.
- (4) Install front fasteners attaching seat to floor pan. Tighten to 27 N·m (20 ft. lbs.) torque.
- (5) Install rear fasteners attaching seat to floor pan. Tighten to 27 N·m (20 ft. lbs.) torque.
- (6) Install nut attaching seat to floor pan. Tighten to 40 N·m (30 ft. lbs.) torque.

BUCKET SEAT TRACK

REMOVAL

NOTE: If the vehicle is equipped with manually adjusted bucket seats, the inboard or outboard seat track may be serviced separately.

- (1) Remove bucket seat from vehicle.
- (2) Remove screws attaching the side shield trim cover from the seat.
- (3) If equipped, disengage the power seat connector from the power seat switch.
- (4) Remove the nuts attaching the seat track to the bucket seat platform.
- (5) When separating the seat track from the platform, route the power seat switch connector through the access hole in the seat cushion frame, if equipped.

INSTALLATION

- (1) While positioning the seat track on the bucket seat platform, route the power seat switch connector through the access hole in the seat cushion frame, if equipped.
- (2) Install the nuts attaching the seat track to the bucket seat platform.
- (3) If equipped, engage the power seat connector to the power seat switch.
- (4) Install screws attaching the side shield trim cover to the seat.
 - (5) Install bucket seat.

BUCKET SEAT PLATFORM

Bucket seat platforms are not repairable. If the seat platform is damaged, replace platform as a unit.

BUCKET SEATBACK COVER

REMOVAL

- (1) Remove head restraint, if equipped.
- (2) Remove screws attaching side shield trim cover to bucket seat.
- (3) If equipped, disengage power seat wire connector from power seat switch.
 - (4) Remove the inboard seatback pivot bolt.
- (5) Position the seatback in the full forward or full recline position.
- (6) Remove the seatback cover zipper from the base of the seatback.
- (7) Disengage the cover zipper and route the zipper end between the inboard seatback and seat cushion frame.
 - (8) Roll the seatback cover upward (Fig. 8).
- (9) Disengage the hogrings attaching the seatback cover to the seatback cushion support wires (Fig. 9).
- (10) Roll the seatback cover upward and disengage the hook and loop fastener (Fig. 10).
- (11) Roll seatback cover up and over the head restraint sleeves, if equipped and separate from the seatback.

INSTALLATION

- (1) Position the seatback cover on the seatback cushion and roll seatback cover down over the head restraint sleeves. Route the sleeves through the access holes in the cover, if equipped.
- (2) Roll the seatback cover downward and engage the hook and loop fastener.
- (3) Continue rolling the cover downward and engage the hogrings attaching the seatback cover to the seatback cushion support wires.
- (4) Route the zipper end between the inboard seatback and seat cushion frame and engage the cover zipper.
 - (5) Install the inboard seatback pivot bolt.
 - (6) Install the side shield trim cover.
 - (7) Install head restraint, if equipped.

REMOVAL AND INSTALLATION (Continued)

Fig. 8 Seatback Cover

Fig. 9 Hog Ring

Fig. 10 Hook And Loop Fastener

BUCKET SEATBACK

REMOVAL

- (1) Remove side shield trim cover.
- (2) Remove inboard seatback pivot bolt.
- (3) Remove bolts attaching recliner to seat cushion frame (Fig. 11).
 - (4) Separate seatback from vehicle.

Fig. 11 Bucket Seatback

INSTALLATION

- (1) Position seatback on seat cushion frame.
- (2) Install inboard seatback pivot bolt.
- (3) Install bolts attaching recliner to seat cushion frame.
 - (4) Install side shield trim cover.

BUCKET SEAT CUSHION COVER

REMOVAL

- (1) Remove seat from vehicle.
- (2) Remove side shield trim cover.
- (3) Remove seatback.
- (4) With the cushion side down, disengage the forward, rearward and inboard J-straps.
- (5) Disengage the clips attaching the outboard side of the cover to the cushion frame.
- (6) Turn the cushion over and roll the cover off the cushion.
- (7) Remove the hog rings attaching the cover to the cushion support wires (Fig. 12).
 - (8) Separate the cover from the cushion.

INSTALLATION

- (1) Position the cover on the cushion.
- (2) Install the hog rings attaching the cover to the cushion support wires.
- (3) With the cushion side down, engage the forward, rearward and inboard J-straps.
- (4) Engage the clips attaching the outboard side of the cover to the cushion frame.

Fig. 12 Seat Cushion Cover Hog Rings

- (5) Install seatback.
- (6) Install side shield trim cover.
- (7) Install seat.

BUCKET SEAT RECLINER

REMOVAL

- (1) Remove side shield trim cover.
- (2) Disengage seatback cover zipper.
- (3) Roll outer seatback cover upward.
- (4) Remove bolts attaching recliner to seatback and seat cushion frames (Fig. 13).
 - (5) Separate recliner from seat.

Fig. 13 Bucket Seat Recliner

INSTALLATION

- (1) Position recliner on seat.
- (2) Install bolts attaching recliner to seatback and seat cushion frames (Fig. 13).
 - (3) Roll seatback cover downward.
 - (4) Engage seatback cover zipper.
 - (5) Install side shield trim cover.

REAR SEAT CUSHION

REMOVAL

- (1) Disengage seat cushion at rear by pulling upward on release strap (Fig. 14).
 - (2) Tilt seat cushion forward.
- (3) Disengage seat cushion latch with right side release lever. Separate right side latch and left side seat bracket from floor anchor bolts, and remove cushion from vehicle (Fig. 15).

Fig. 14 Seat Cushion Release Strap

Fig. 15 Rear Seat Cushion/Seat Back

INSTALLATION

- (1) Position seat cushion in vehicle.
- (2) Insert left pivot in anchor grommet.
- (3) Force right side latch onto anchor bolt and pivot seat cushion to horizontal position.
- (4) Lock seat cushion in-place by pressing firmly on center of cushion until latch engages.

REAR SEATBACK

REMOVAL

- (1) Disengage the seat cushion at the rear by pulling upward on the release strap.
 - (2) Tilt the seat cushion forward.
- (3) Remove the shoulder/lap belt buckles from the elastic straps.
 - (4) Release the seatback latch from the striker.
- (5) Remove the pivot bolts and the washers from the wheelhouse panel anchors (Fig. 15).
- (6) Tilt the seatback forward, lift it upward and remove it from the vehicle.

INSTALLATION

- (1) Position the seatback in the vehicle.
- (2) Install the pivot bolts and the washer. Tighten the bolts with 33 N·m (25 ft. lbs.) torque.
 - (3) Engage the seatback latch with the striker.
- (4) Insert the shoulder/lap belt buckles in the elasic straps.
- (5) Pivot the seat cushion to the horizontal position and lock it in-place by pressing firmly on the center of the cushion until the latch engages.

REAR SEAT CUSHION COVER

REMOVAL

- (1) Remove the seat cushion from the vehicle.
- (2) Remove the cover side, front and rear retaining clips from the wire retainers with an appropriate removal tool (Fig. 16).
- (3) Remove the serrated retainers from the front ends of the cover with a trim panel removal tool (Fig. 17).
 - (4) Remove the seat cover from the cushion.

INSTALLATION

- (1) Position the replacement cover on the cushion.
- (2) Compress the cover and attach the retaining clips to the front and rear wire retainers.
- (3) Install the serrated retainers at the ends of the cover.
- (4) Install the seat cushion in the vehicle. If necessary, refer to the installation procedure.

Fig. 16 Seat Cushion Cover Retaining Clip Removal

Fig. 17 Seat Cushion Cover Retaining Clip Removal REAR SEATBACK LATCH STRIKER AND

REMOVAL

BUMPER

- (1) Disengage seat cushion at the rear by pulling upward on the release strap.
 - (2) Tilt seat cushion forward.
 - (3) Release seatback latch from striker.
- (4) Tilt seatback forward for access to striker bracket.
- (5) Remove screws (Fig. 18) attaching latch striker bracket and shims to trim panel.

INSTALLATION

(1) Position shims and latch striker bracket on trim panel.

23 - 16 BODY — XJ

REMOVAL AND INSTALLATION (Continued)

Fig. 18 Seatback Latch Striker Bracket

- (2) Install screws attaching latch striker bracket and shims to trim panel. Tighten screws to 6 N·m (50 in. lbs.) torque.
 - (3) Engage seatback latch with striker.
- (4) Pivot seat cushion to horizontal position and lock it in-place by pressing firmly on center of the cushion until latch engages.

REAR SEATBACK COVER

REMOVAL

- (1) Remove the seatback from the vehicle.
- (2) Remove the seatback latch release handle and bezel from the seatback.
 - (3) Disengage the cover zippers.
- (4) Disengage the J-strap attaching the cover to the seat back frame (Fig. 19).
 - (5) Remove the cover from the seatback pad.

INSTALLATION

- (1) Install the cover on the seatback.
- (2) Attach the cover J-strap to the seatback frame.

Fig. 19 Seatback Cover Removal

- (3) Engage the cover zippers.
- (4) Install the seat latch release bezel and handle.
- (5) Install the seatback in the vehicle.

SPECIAL TOOLS

SEATS

Extractor Head Restraint Sleeve 6773

BODY COMPONENT SERVICE

INDEX

page	page
DIAGNOSIS AND TESTING	HEADLINER
WATER LEAKS	HOOD 20
WIND NOISE	HOOD HINGE 20
SERVICE PROCEDURES	HOOD LATCH 22
BODY LUBRICATION	HOOD LATCH STRIKER
REMOVAL AND INSTALLATION	HOOD RELEASE CABLE
A-PILLAR TRIM	HOOD SAFETY LATCH
AIR EXHAUST GRILLE 43	HOOD SILENCER PAD
ASSIST HANDLE 45	LEFT FRONT FENDER 27
B-PILLAR TRIM 45	LIFTGATE 54
BODY DECALS 24	LIFTGATE HINGE
BODY SIDE MOLDING 42	LIFTGATE LATCH
C-PILLAR TRIM 45	LIFTGATE LATCH STRIKER 56
COWL GRILLE	LIFTGATE LOCK CYLINDER 55
COWL WEATHERSTRIP 24	LIFTGATE OPENING UPPER TRIM 47
DOOR SILL SCUFF PLATE 45	LIFTGATE OUTSIDE HANDLE 55
DRIP RAIL MOLDING 42	LIFTGATE PILLAR TRIM
EXTERIOR NAMEPLATES	LIFTGATE SCUFF PLATE 48
FRONT CARPET/MAT 50	LIFTGATE SUPPORT ROD BALL STUD 55
FRONT DOOR 30	LIFTGATE SUPPORT ROD CYLINDER 54
FRONT DOOR GLASS	LIFTGATE TRIM PANEL 53
FRONT DOOR GLASS EXTERIOR MOLDING 34	LIFTGATE WEATHERSTRIP 56
FRONT DOOR GLASS RUN CHANNEL	LOWER A-PILLAR COWL TRIM 44
WEATHERSTRIP	LUGGAGE RACK
FRONT DOOR HINGE	QUARTER PANEL TRIM AND WHEELHOUSE
FRONT DOOR INNER BELT WEATHERSTRIP 32	COVER 46
FRONT DOOR INSIDE HANDLE ACTUATOR 32	QUARTER PANEL TRIM EXTENSION 46
FRONT DOOR LATCH	QUARTER WINDOW APPLIQUE 42
FRONT DOOR LATCH STRIKER 32	REAR CARPET/MAT 50
FRONT DOOR LOCK CYLINDER	REAR DOOR 37
FRONT DOOR OPENING SECONDARY	REAR DOOR GLASS EXTERIOR MOLDING 40
WEATHERSTRIP	REAR DOOR GLASS RUN CHANNEL
FRONT DOOR OPENING WEATHERSTRIP 33	WEATHERSTRIP 39
FRONT DOOR OUTER BELT	REAR DOOR HINGE
WEATHERSTRIP 32	REAR DOOR INNER BELT WEATHERSTRIP 39
FRONT DOOR OUTSIDE HANDLE	REAR DOOR INSIDE HANDLE ACTUATOR 39
FRONT DOOR RESTRAINT	REAR DOOR LATCH
FRONT DOOR SPACER BLOCKS—TWO-DOOR	REAR DOOR LATCH STRIKER
VEHICLES	REAR DOOR OUTER BELT
FRONT DOOR TRIM PANEL 28	WEATHERSTRIP 39
FRONT DOOR WATERDAM	REAR DOOR OUTSIDE HANDLE
FRONT DOOR WINDOW REGULATOR 34	REAR DOOR RESTRAINT
FRONT FENDER FLARE 26	REAR DOOR TRIM PANEL
FRONT INNER SCUFF PLATE 45	REAR DOOR WATERDAM
FRONT SHOULDER BELT/BUCKLE 48	REAR DOOR WEATHERSTRIP 40
FRONT WHEELHOUSE LINER 27	REAR DOOR WINDOW GLASS 41
FULL FLOOR CONSOLE	REAR DOOR WINDOW REGULATOR 40
GRILLE 20	REAR FENDER FLARE 42
GRILLE OPENING PANEL (GOP)	REAR SHOULDER/LAP BELT/BUCKLE 49

REARVIEW MIRROR	51
REARVIEW MIRROR SUPPORT BRACKET	51
RIGHT FRONT FENDER	27
SAFETY LATCH STRIKER	
SIDE VIEW MIRROR	
SUNVISORS	52
DJUSTMENTS	
DOOR	57
DOOR LATCH ADJUSTMENT	57
HOOD	57
LIFTGATE	58

DIAGNOSIS AND TESTING

WATER LEAKS

Water leaks can be caused by poor sealing, improper body component alignment, body seam porosity, missing plugs, or blocked drain holes. Centrifugal and gravitational force can cause water to drip from a location away from the actual leak point, making leak detection difficult. All body sealing points should be water tight in normal wet-driving conditions. Water flowing downward from the front of the vehicle should not enter the passenger or luggage compartment. Moving sealing surfaces will not always seal water tight under all conditions. At times, side glass or door seals will allow water to enter the passenger compartment during high pressure washing or hard driving rain (severe) condi-Overcompensating door on adjustments to stop a water leak that occurs under severe conditions can cause premature seal wear and excessive closing or latching effort. After completing a repair, water-test vehicle to verify leak has stopped before returning vehicle to use.

VISUAL INSPECTION BEFORE WATER LEAK TESTS

Verify that floor and body plugs are in place, body drains are clear, and body components are properly aligned and sealed. If component alignment or sealing is necessary, refer to the appropriate section of this group for proper procedures.

WATER LEAK TESTS

WARNING: DO NOT USE ELECTRIC SHOP LIGHTS OR TOOLS IN WATER TEST AREA. PERSONAL INJURY CAN RESULT.

When the conditions causing a water leak have been determined, simulate the conditions as closely as possible.

• If a leak occurs with the vehicle parked in a steady light rain, flood the leak area with an openended garden hose.

REAR SEATBACK	58
SPECIFICATIONS	
BODY GAP AND FLUSH MEASUREMENTS 1°	17
BODY LUBRICANTS	
BODY OPENING DIMENSIONS 1 ²	18
BODY SEALING LOCATIONS)2
STRUCTURAL ADHESIVE LOCATIONS 1°	14
TORQUE SPECIFICATIONS	25
WELD LOCATIONS	59
SPECIAL TOOLS	
BODY	26

- If a leak occurs while driving at highway speeds in a steady rain, test the leak area with a reasonable velocity stream or fan spray of water. Direct the spray in a direction comparable to actual conditions.
- If a leak occurs when the vehicle is parked on an incline, hoist the end or side of the vehicle to simulate this condition. This method can be used when the leak occurs when the vehicle accelerates, stops or turns. If the leak occurs on acceleration, hoist the front of the vehicle. If the leak occurs when braking, hoist the back of the vehicle. If the leak occurs on left turns, hoist the left side of the vehicle. If the leak occurs on right turns, hoist the right side of the vehicle. For hoisting recommendations refer to Group 0, Lubrication and Maintenance, General Information section.

WATER LEAK DETECTION

To detect a water leak point-of-entry, do a water test and watch for water tracks or droplets forming on the inside of the vehicle. If necessary, remove interior trim covers or panels to gain visual access to the leak area. If the hose cannot be positioned without being held, have someone help do the water test.

Some water leaks must be tested for a considerable length of time to become apparent. When a leak appears, find the highest point of the water track or drop. The highest point usually will show the point of entry. After leak point has been found, repair the leak and water test to verify that the leak has stopped.

Locating the entry point of water that is leaking into a cavity between panels can be difficult. The trapped water may splash or run from the cavity, often at a distance from the entry point. Most water leaks of this type become apparent after accelerating, stopping, turning, or when on an incline.

MIRROR INSPECTION METHOD

When a leak point area is visually obstructed, use a suitable mirror to gain visual access. A mirror can also be used to deflect light to a limited-access area to assist in locating a leak point.

DIAGNOSIS AND TESTING (Continued)

BRIGHT LIGHT LEAK TEST METHOD

Some water leaks in the luggage compartment can be detected without water testing. Position the vehicle in a brightly lit area. From inside the darkened luggage compartment inspect around seals and body seams. If necessary, have a helper direct a drop light over the suspected leak areas around the luggage compartment. If light is visible through a normally sealed location, water could enter through the opening.

PRESSURIZED LEAK TEST METHOD

When a water leak into the passenger compartment cannot be detected by water testing, pressurize the passenger compartment and soap test exterior of the vehicle. To pressurize the passenger compartment, close all doors and windows, start engine, and set heater control to high blower in HEAT position. If engine can not be started, connect a charger to the battery to ensure adequate voltage to the blower. With interior pressurized, apply dish detergent solution to suspected leak area on the exterior of the vehicle. Apply detergent solution with spray device or soft bristle brush. If soap bubbles occur at a body seam, joint, seal or gasket, the leak entry point could be at that location.

WIND NOISE

Wind noise is the result of most air leaks. Air leaks can be caused by poor sealing, improper body component alignment, body seam porosity, or missing plugs in the engine compartment or door hinge pillar areas. All body sealing points should be airtight in normal driving conditions. Moving sealing surfaces will not always seal airtight under all conditions. At times, side glass or door seals will allow wind noise to be noticed in the passenger compartment during high cross winds. Over compensating on door or glass adjustments to stop wind noise that occurs under severe conditions can cause premature seal wear and excessive closing or latching effort. After a repair procedure has been performed, test vehicle to verify noise has stopped before returning vehicle to use.

Wind noise can also be caused by improperly fitted exterior moldings or body ornamentation. Loose moldings can flutter, creating a buzzing or chattering noise. An open cavity or protruding edge can create a whistling or howling noise. Inspect the exterior of the vehicle to verify that these conditions do not exist.

VISUAL INSPECTION BEFORE TESTS

Verify that floor and body plugs are in place and body components are aligned and sealed. If component alignment or sealing is necessary, refer to the appropriate section of this group for proper procedures.

ROAD TESTING WIND NOISE

- (1) Drive the vehicle to verify the general location of the wind noise.
- (2) Apply 50 mm (2 in.) masking tape in 150 mm (6 in.) lengths along weatherstrips, weld seams or moldings. After each length is applied, drive the vehicle. If noise goes away after a piece of tape is applied, remove tape, locate, and repair defect.

POSSIBLE CAUSE OF WIND NOISE

- Moldings standing away from body surface can catch wind and whistle.
- Gaps in sealed areas behind overhanging body flanges can cause wind-rushing sounds.
 - Misaligned movable components.
 - Missing or improperly installed plugs in pillars.
 - Weld burn through holes.

SERVICE PROCEDURES

BODY LUBRICATION

All mechanisms and linkages should be lubricated when necessary. This will maintain ease of operation and provide protection against rust and excessive wear. The weatherstrip seals should be lubricated to prolong their life as well as to improve door sealing.

All applicable exterior and interior vehicle operating mechanisms should be inspected and cleaned. Pivot/sliding contact areas on the mechanisms should then be lubricated.

- (1) When necessary, lubricate the operating mechanisms with the specified lubricants.
- (2) Apply silicone lubricant to a cloth and wipe it on door seals to avoid over-spray that can soil passenger's clothing.
- (3) Before applying lubricant, the component should be wiped clean. After lubrication, any excess lubricant should be removed.
- (4) The hood latch, latch release mechanism, latch striker, and safety latch should be lubricated periodically.
- (5) The door lock cylinders should be lubricated twice each year (preferably autumn and spring):
- Spray a small amount of lock cylinder lubricant directly into the lock cylinder.
- Apply a small amount to the key and insert it into the lock cylinder.
- Rotate it to the locked position and then back to the unlocked position several times.
- Remove the key. Wipe the lubricant from it with a clean cloth to avoid soiling of clothing.

23 - 20 BODY — XJ

REMOVAL AND INSTALLATION

GRILLE

REMOVAL

- (1) Remove the headlamp/park lamp bezels.
- (2) Remove the screws attaching the grille to the grille opening panel (GOP) (Fig. 1).
 - (3) Separate the grille from the GOP.

Fig. 1 Grille

INSTALLATION

- (1) Position the grille in the GOP.
- (2) Install the screws.
- (3) Install the headlamp/park lamp bezels.

GRILLE OPENING PANEL (GOP)

REMOVAL

- (1) Remove headlamp bezels.
- (2) Remove grille.
- (3) Remove side marker lamps.
- (4) Remove headlamps and park/turn signal lamps.
 - (5) Open hood.
- (6) Remove nuts that attach GOP to front fenders (Fig. 2).
- (7) Remove nuts attaching GOP to support bracket.
- (8) Pull GOP forward and disconnect harness clips and front lamp harness connectors.
 - (9) Remove GOP from vehicle.

INSTALLATION

- (1) Place GOP on bumper and secure all harness clips.
 - (2) Connect all lamp wire harness connectors.
 - (3) Position GOP on vehicle.
- (4) Install nuts attaching GOP to front fenders. Tighten nuts to 4 N·m (38 in-lbs) torque.

Fig. 2 Grille Opening Panel

- (5) Install nuts attaching GOP to support bracket. Tighten nuts to 4 N-m (38 in-lbs) torque.
 - (6) Install headlamps and park/turn signal lamps.
 - (7) Install grille.
 - (8) Install side marker lamps.
 - (9) Install headlamp bezels.
 - (10) Adjust headlamp aim, if necessary.

HOOD

REMOVAL

- (1) Raise hood.
- (2) Disconnect underhood lamp wire harness connector, if equipped.
- (3) Disconnect release cable from latch release bellcrank.
- (4) Remove latch release cable clips and remove cable from hood (Fig. 3).
- (5) Mark location of hood, hinges and hinge shims for installation.
 - (6) Remove bolts that attach hinges to hood.
 - (7) Remove hood from vehicle with aid of a helper.

INSTALLATION

- (1) Position hood on shims and hinges; finger-tighten hinge bolts.
- (2) Align hinges and shims with reference marks and tighten hinge bolts.
- (3) Connect latch release cable and latch connecting rod to bellcrank.
 - (4) Attach latch release cable to clips.
- (5) Connect underhood lamp wire harness connector.

HOOD HINGE

REMOVAL

(1) Raise and support hood.

REMOVAL AND INSTALLATION (Continued)

Fig. 3 Hood Components

- (2) Using a grease pencil or equivalent, mark position of hood.
 - (3) Remove seal from hinge base (Fig. 4).
 - (4) Remove hinge retaining nuts from studs.

Fig. 4 Hood Hinge and Seal

INSTALLATION

- (1) Position hinge over studs and align with reference marks.
 - (2) Install nuts.

NOTE: If a replacement hinge seal is being installed, position it around hinge arm, force it against hinge base.

- (3) Position hinge seal around hinge arm and on hinge base.
 - (4) Adjust hood as necessary.

HOOD LATCH

REMOVAL

- (1) Remove the screw that attaches the latch to the hood inner panel (Fig. 5).
 - (2) Disconnect the latch connecting rod.
 - (3) Remove the latch from the hood.

INSTALLATION

- (1) Connect the latch to the latch connecting rod and
 - (2) Position the latch on the hood inner panel.
- (3) Install the screw that attaches the latch to the hood inner panel.

HOOD LATCH STRIKER

REMOVAL

- (1) Remove headlamp bezel.
- (2) Remove parklamp.
- (3) Release the spring attaching the headlamp mounting bucket to the grille opening panel (GOP).

Fig. 5 Hood Latch

- (4) Remove the headlamp with mounting bucket attached from the adjusting screws.
- (5) Remove the upper bolt attaching the striker to the top of the (GOP).
- (6) Remove the lower bolt attaching the striker to the (GOP).
 - (7) Remove the striker and shims.

INSTALLATION

- (1) Position the shims and striker on the (GOP) and install the bolts.
 - (2) Install the headlamp and mounting bucket.
 - (3) Install parklamp.
 - (4) Install the headlamp bezel.
- (5) Test the striker/hood alignment by opening and closing the hood several times. Adjust the striker, if necessary.

HOOD RELEASE CABLE

REMOVAL

- (1) Drill out bellcrank to hood rivet heads and remove rivets (Fig. 6).
- (2) Disconnect bellcrank from latch rod and hood release cable. Remove bellcrank from hood.
- (3) Disconnect hood release cable from clips on hood.
 - (4) Remove left cowl side trim panel.
- (5) Remove cable bracket screws from cowl side panel.
- (6) Route cable through dash panel and remove it from under instrument panel.

INSTALLATION

- (1) Insert replacement cable end through hole in dash panel into engine compartment.
- (2) Route cable forward and seat grommet in dash panel.

Fig. 6 Hood Release Cable Bellcrank

- (3) Position cable bracket on cowl side panel and install screws.
 - (4) Install left cowl side trim panel.
 - (5) Connect cable and latch rod to bellcrank.
 - (6) Position bellcrank on hood and install rivets.
 - (7) Attach cable to clips.
 - (8) Test release cable for proper operation.

HOOD SAFETY LATCH

REMOVAL

- (1) Open and support hood.
- (2) Remove the nuts attaching the safety latch to the inner hood panel (Fig. 7).
 - (3) Separate the safety latch from the hood.

Fig. 7 Hood Safety Latch

INSTALLATION

- (1) Position the safety latch on the hood.
- (2) Install the nuts attaching the safety latch to the inner hood panel.
 - (3) Close hood.

SAFETY LATCH STRIKER

REMOVAL

- (1) Remove striker screws from radiator support crossmember (Fig. 8).
 - (2) Remove striker from crossmember.

Fig. 8 Hood Safety Latch Striker

INSTALLATION

- (1) Position striker on radiator support crossmember and install screws.
 - (2) Test safety latch operation.

HOOD SILENCER PAD

REMOVAL

- (1) Open and support hood.
- (2) Remove the hood latch release bellcrank.
- (3) Remove the clips attaching the latch connecting rod to the hood inner panel.
- (4) Remove the retainers attaching the hood silencer pad to the inner hood panel (Fig. 9).
 - (5) Separate the hood silencer pad from the hood.

Fig. 9 Hood Silencer Pad

INSTALLATION

- (1) Position the hood silencer pad on the hood inner panel.
- (2) Install the retainers attaching the hood silencer pad to the inner hood panel.
- (3) Install the clips attaching the latch connecting rod to the hood inner panel.
 - (4) Install the hood latch release bellcrank.
 - (5) Close hood.

COWL WEATHERSTRIP

REMOVAL

The cowl weatherstrip is attached to the cowl with adhesive tape.

(1) Peel weatherstrip from cowl (Fig. 10).

Fig. 10 Cowl Weatherstrip

INSTALLATION

- (1) Clean contact surface with Mopar Super Kleen or equivalent.
 - (2) Position weatherstrip on cowl.
 - (3) Press weatherstrip into place.

COWL GRILLE

REMOVAL

- (1) Remove the windshield wiper arms from the pivots.
- (2) Remove the screws that attach the grille to the cowl.
- (3) Remove the windshield washer tubes from the nozzles.
- (4) Remove the cowl grille and screen from the cowl (Fig. 11).

INSTALLATION

CAUTION: The washer fluid tubes must be routed and installed so that they are not pinched.

Fig. 11 Cowl Grille, Screen & Washer Nozzles

- (1) Position the cowl grille and screen on the cowl.
- (2) Install the windshield washer tubes on the nozzles.
- (3) Install the cowl screen and grille screws with new sealer. Tighten in sequence (Fig. 12).

NOTE: Force the cowl grille rearward while tightening the screws.

(4) Install the windshield wiper arms on the pivots.

Fig. 12 Cowl Grille Screw Tightening Sequence

BODY DECALS

Small nicks, scratches and other surface marks in a decal can be touched-up with paint.

To eliminate blisters and air bubbles in a decal, pierce them with a needle or pin.

A heat gun can also be used to remove small wrinkles in a decal.

Decal replacement requires that the metal repair and paint refinish be completed first.

The work area temperature should be between 21°C (70°F) and 32°C (90°F). A decal should not be replaced if the work area temperature is less than 21°C (70°F).

The following equipment and material are necessary for removal and installation:

- Liquid dish detergent (for the wetting solution).
- Mixture of wetting solution.
- Commercial wax and silicone removal solution.
- Isopropyl (rubbing) alcohol.
- Small squeegee (plastic or hard rubber).
- Water bucket and sponge.
- Clean wiping rags or paper towels.
- Heat gun (or infra-red heat bulb).
- Wax pencil.
- Sharp knife, single edge razor blade or X-acto knife.
 - Pair of scissors.
 - Needle or pin.

WARNING: USE DECAL REMOVAL SOLUTION IN A WELL-VENTILATED AREA ONLY.

A decal removal solution can be used for removal at areas where a heat gun is ineffective. Follow the manufacturers instructions whenever this type of product is used.

REMOVAL

- (1) Clean the repaired surface as necessary.
- (2) Start at one end of the decal and apply heat with a heat gun. Slowly peel the decal from the panel by pulling it back. **Do not pull the decal outward from panel.**

INSTALLATION

- (1) The area that will be covered by the decal must be cleaned with cleaning solution.
- (2) Freshly painted surfaces must be thoroughly dry.
- (3) Clean the painted surface with a commercial wax and silicone removal solution. Wipe the surface with a clean cloth and allow it to dry.
- (4) Prepare a wetting solution by mixing two or three teaspoons of dish detergent with 1 gallon of water. Do not use soap.

NOTE: Too much detergent will reduce the effectiveness of the mixture.

- (5) Use a clean sponge and apply the wetting solution to the adhesive side of the decal and to the painted panel surface. The wetting solution will permit ease of decal movement when positioning it.
- (6) Align a straight edge with the existing decal ends (Fig. 13).

NOTE: If applicable, the body panel character line can be used as the decal alignment reference.

- (7) Position the decal and carrier on the body panel (Fig. 14) and the mark length with a wax pencil.
- (8) Position the decal and carrier on the body panel and hold it in-place with masking tape.
- (9) Lift the bottom edge of decal and carrier. Use the tape sections as hinges, and reverse the position of decal and carrier.

CAUTION: Always remove the carrier from the decal, never remove the decal from carrier

- (10) Bend a corner of carrier outward and then, with a flick of the finger, separate the corner of carrier from the decal.
- (11) Return the decal back to its original position. If a solution is being used, position adhesive side of the decal on panel. Apply the solution to the outside of the decal.
- (12) Hold the decal against the panel surface while separating the carrier from the decal.
- (13) If applicable, remove the cover from face of decal.
- (14) Using a squeegee smooth out the decal to remove wrinkles and/or air bubbles.
- (15) Inspect the decal with reflected light to find any damage. Remove all the air and/or moisture bubbles.

Fig. 13 Decal Alignment Reference Mark

EXTERIOR NAMEPLATES

REMOVAL

NOTE: Exterior nameplates are attached to body panels with adhesive tape.

Fig. 14 Body Decals

- (1) Apply a length of masking tape on the body, parallel to the top edge of the nameplate to use as a guide, if necessary.
- (2) If temperature is below 21°C (70°F) warm emblem with a heat lamp or gun. Do not exceed 52°C (120°F) when heating emblem.
- (3) Insert a plastic trim stick or a hard wood wedge behind the emblem to separate the adhesive backing from the body.
- (4) Clean adhesive residue from body with MOPAR Super Clean solvent or equivalent.

INSTALLATION

- (1) Remove protective cover from adhesive tape on back of emblem.
 - (2) Position emblem properly on body (Fig. 15).
- (3) Press emblem firmly to body with palm of hand.
- (4) If temperature is below $21^{\circ}C$ ($70^{\circ}F$) warm emblem with a heat lamp or gun to assure adhesion. Do not exceed $52^{\circ}C$ ($120^{\circ}F$) when heating emblem.

Fig. 15 Exterior Nameplates

SIDE VIEW MIRROR

REMOVAL

- (1) Remove the door trim panel.
- (2) Remove the screw attaching the mirror trim cover/speaker grille to the door inner panel.
- (3) remove push-in fastener attaching trim cover to door inner panel (use special tool C-4829).
- (4) Disconnect the power mirror wire connector, if equipped.
- (5) Remove the screws attaching the mirror to the door (Fig. 16).
 - (6) Separate the mirror from the door.

Fig. 16 Side View Mirror

INSTALLATION

- (1) Position the mirror on the door.
- (2) Install the screws attaching the mirror to the door.
- (3) Connect the power mirror wire connector, if equipped.
 - (4) Install new push-in fastener.
 - (5) Install the mirror trim cover/speaker grille.
 - (6) Install the door trim panel.

FRONT FENDER FLARE

REMOVAL

- (1) Remove the screw attaching the lower part of flare to the bottom of the fender.
- (2) Remove the nuts attaching the fender flare retainer to the wheelhouse splash shield (Fig. 17).
 - (3) Remove the liner from the fender.
- (4) Remove the fasteners attaching the fender flare and retainer to the fender.
- (5) Separate the fender flare and retainer from the fender.

Fig. 17 Fender Flare

INSTALLATION

- (1) Position the fender flare and retainer on the fender.
- (2) Install the nuts attaching the fender flare and retainer to the wheelhouse fender.
- (3) Install the screw attaching the lower part of flare to the bottom of the fender.

FRONT WHEELHOUSE LINER

REMOVAL

- (1) Hoist vehicle.
- (2) Remove tire.
- (3) Remove the push-in fasteners attaching the wheelhouse liner to the inner fender.
- (4) Separate the wheelhouse liner from the fender (Fig. 18).

•

INSTALLATION

(1) Position the wheelhouse liner in the fender.

Fig. 18 Front Wheelhouse Liner

(2) Install new push-in fasteners attaching the wheelhouse liner to the inner fender.

- (3) Install tire.
- (4) Lower vehicle.

RIGHT FRONT FENDER

REMOVAL

- (1) Raise and support the hood.
- (2) Remove the grille opening panel (GOP).
- (3) If equipped, remove the radio antenna mast, and components from the fender.
 - (4) Remove the coolant recovery bottle.
 - (5) Raise and support the vehicle.
 - (6) Remove the right front wheel.
 - (7) Remove the front bumper end cap.
 - (8) Remove the wheelhouse liner.
 - (9) Remove the fender flare and retainers.
 - (10) Disconnect all wire harness connectors.
 - (11) Remove the air deflector.
 - (12) Remove the fender lower screws (Fig. 19).
- (13) Remove the fender top, front and the rear screws.
- (14) Remove the screws attaching the fender to the inner support bracket (Fig. 20).
- (15) Separate the fender from the inner fender panel.

INSTALLATION

- (1) Position the fender on the inner fender panel.
- (2) Install all fender screws finger-tight.
- (3) Align the fender with the body panels and tighten the screws attaching the fender to the body panels.
 - (4) Install the air deflector.
 - (5) Install the fender flare and retainers.
 - (6) Install the wheelhouse liner.
 - (7) Install the front bumper end cap.
- (8) Install the wheel, remove the support and lower the vehicle.
 - (9) Install the grille opening panel (GOP).
 - (10) Install the radio antenna.

LEFT FRONT FENDER

- (1) Raise and support the hood.
- (2) Remove the grille opening panel (GOP).
- (3) Raise and support the vehicle.
- (4) Remove the left front wheel.
- (5) Remove the front bumper end cap.
- (6) Remove the fender flare and retainers.
- (7) Remove the wheelhouse liner.
- (8) Remove the air deflector.
- (9) Remove the fender lower screws.
- (10) Remove the fender top, front and the rear screws.

23 - 28 BODY — XJ

REMOVAL AND INSTALLATION (Continued)

Fig. 19 Right Front Fender

Fig. 20 Inner Support Bracket

- (11) Remove the screws attaching the fender to the inner support bracket.
- (12) Separate the fender from the inner fender panel.

INSTALLATION

- (1) Position the fender on the inner fender panel.
- (2) Install all fender screws finger-tight.
- (3) Align the fender with the body panels and tighten the screws attaching the fender to the body panels.
 - (4) Install the air deflector.
 - (5) Install the wheelhouse liner.
 - (6) Install the fender flare and retainers.
 - (7) Install the front bumper.

- (8) Install the wheel, remove the support and lower the vehicle.
 - (9) Install the grille opening panel (GOP).

FRONT DOOR TRIM PANEL

REMOVAL

- (1) Roll window down.
- (2) Remove window crank, if equipped (Fig. 21).
- (3) Remove the screws attaching the trim panel to the door inner panel (Fig. 22) and (Fig. 23).
- (4) Separate the trim panel fasteners from door inner panel with a pry tool (use special tool C-4829) (Fig. 24).
- (5) Lift the trim panel up and outward to separate from the inner belt seal.
- (6) Move the door trim panel outward and disconnect the handle-to-latch rods.
- (7) Disconnect the power door locks/windows/mirrors wire harness connectors, if equipped.
 - (8) Remove the trim panel from door.

- (1) Replace any broken or damaged push-in fasteners.
- (2) Connect the power door locks/windows/mirrors wire harness connectors, if equipped.
- (3) Move the door trim panel outward and connect the handle-to-latch rods.
- (4) Position the trim panel on the inner belt seal and push down to seat.
- (5) Align the locating pins and push- (Fig. 25) in fasteners. Press inward to secure.

Fig. 21 Window Crank—Typical

Fig. 22 Front Door Trim Panel-Manual Window

Fig. 23 Front Door Trim Panel-Power Window

- (6) Install the screws attaching the trim panel to the door inner panel.
 - (7) Install the window crank, if equipped.

Fig. 24 Detaching Trim Panel Push-In Fasteners

J898S-8

Fig. 25 Push-In Fasteners

FRONT DOOR WATERDAM

REMOVAL

The waterdam is attached to the door inner panel with a butly adhesive. If cohesive separation of the butly between the waterdam and door inner panel occurs during the removal process, cut the strands of butly with a razor knife or equivalent.

- (1) Remove door trim panel.
- (2) Disengage clips attaching wire harnesses to the door inner panel.
- (3) Push the harnesses/connectors through the waterdam and into the door.
- (4) Grasp the upper and lower rearward corners of the waterdam and rapidly peel back the waterdam from the door inner panel.
- (5) Separate the waterdam from the door inner panel.

INSTALLATION

- (1) Route the latch rods through the waterdam.
- (2) Position the waterdam on the door, apply adhesive as necessary and press into place.
- (3) Route the harnesses/connectors through the waterdam.
- (4) Engage clips attaching wire harnesses to the door inner panel.
 - (5) Install door trim panel.

FRONT DOOR

REMOVAL

- (1) Remove door restraint (check) retaining pin.
- (2) For vehicles equipped with power windows, power mirrors and power door locks, remove trim panel and waterdam. Disconnect all components and route wire harness out of door.
- (3) Remove bolts that attach hinge to door. (Fig. 26).
 - (4) Remove door from vehicle.

Fig. 26 Front Door Hinge

INSTALLATION

- (1) Position door in body opening.
- (2) Align door hinges, plates and shims and install bolts. Tighten bolts to 3 N·m (2 ft. lbs.) torque.
 - (3) Install door restraint (check) pin.
- (4) If applicable, route and connect wire harness connectors.
 - (5) Install door waterdam and trim panel.

FRONT DOOR HINGE

REMOVAL

- (1) Remove door restraint (check) retaining pin.
- (2) Remove door hinge bolts and shims (Fig. 27).
- (3) Retain door hinge shims for correct installation.

Fig. 27 Front Door Hinge

INSTALLATION

- (1) Position hinge plates and shims on door face.
- (2) Align door hinges and shims with bolt holes and install hinge bolts. Tighten bolts to $3 \text{ N} \cdot \text{m}$ (2 ft. lbs.) torque.
- (3) Adjust/align latch striker and latch as necessary.
 - (4) Install door restraint (check) retaining pin.

FRONT DOOR RESTRAINT

- (1) Remove door trim panel.
- (2) Remove door radio speaker from door inner panel.
- (3) Remove door restraint (check) retaining pin from bracket with a punch.
- (4) Remove nuts and remove restraint via speaker opening. (Fig. 28).

Fig. 28 Door Restraint (Check)

INSTALLATION

(1) Position door restraint in door by way of opening and install nuts.

NOTE: Ensure the spring on the door restraint is facing outward.

- (2) Position door restraint in bracket with holes aligned and insert retaining pin.
 - (3) Install radio speaker and door trim panel.

FRONT DOOR OUTSIDE HANDLE

REMOVAL

- (1) Remove the door trim panel and waterdam.
- (2) Remove the access hole cover and remove the rearward nut attaching the door handle to the door. (Fig. 29).
- (3) Disconnect the handle-to-latch rod from the handle latch release lever arm.
- (4) Remove the forward nut attaching the handle to the door.
 - (5) Separate the handle from the door.

Fig. 29 Front Door Outside Handle

INSTALLATION

- (1) Position the handle in the door.
- (2) Install the forward nut attaching the handle to the door.
- (3) Connect the latch to handle rod, to the handle latch release lever arm.
- (4) Install the rearward nut attaching the door handle to the door.
 - (5) Install the access hole cover.
 - (6) Install the door waterdam and trim panel.

FRONT DOOR LOCK CYLINDER

REMOVAL

- (1) Remove the door trim panel.
- (2) Peel back waterdam to access lock cylinder.
- (3) Disconnect the door latch-to-lock cylinder rod at the door latch (Fig. 30).
 - (4) Remove the lock cylinder retainer clip.
 - (5) Remove the lock cylinder.
- (6) If applicable, remove the door latch-to-lock cylinder rod from the original lock cylinder. Connect it to the replacement lock cylinder.

Fig. 30 Door Lock Cylinder

INSTALLATION

- (1) Position the lock cylinder and in the door opening.
 - (2) Install the retainer clip.
- (3) Connect the door latch-to-lock cylinder rod to the door latch.
 - (4) Press the waterdam into position.
 - (5) Install the door trim panel.

FRONT DOOR LATCH

REMOVAL

- (1) Remove door trim panel and waterdam.
- (2) Remove screws attaching latch to door.
- (3) Disconnect all rods from latch (Fig. 31).
- (4) Disconnect power lock motor wire connector, if equipped.
 - (5) Remove latch from door face.

- (1) Position latch on door face.
- (2) Connect power lock motor wire connector, if equipped.
 - (3) Connect all rods to latch.
- (4) Install screws attaching latch to door. Tighten screws to 11 N·m (8 ft. lbs.) torque.

Fig. 31 Door Latch

(5) Install waterdam and door trim panel.

FRONT DOOR LATCH STRIKER

REMOVAL

- (1) Using a grease pencil or equivalent, mark position of striker.
- (2) Remove screws attaching striker to B-pillar (Fig. 32).
 - (3) Separate striker from B-pillar.

Fig. 32 Front Door Latch Striker

INSTALLATION

- (1) Position and align striker on B-pillar.
- (2) Install screws attaching striker to B-pillar. Tighten screws to 28 N·m (20 ft. lbs.) torque.

FRONT DOOR INSIDE HANDLE ACTUATOR

REMOVAL

The front door inside handle actuator is heat staked to the front door trim panel during the manufacturing process.

- (1) Remove the door trim panel.
- (2) Using an X-ACTO knife or equivalent, cut the melted tabs securing the inside handle to the door trim panel.
- (3) Separate the inside handle from the trim panel.

INSTALLATION

- (1) Position the inside handle in the trim panel.
- (2) Heat stake the inside handle to the trim panel.
- (3) Install the door trim panel.

FRONT DOOR INNER BELT WEATHERSTRIP

REMOVAL

- (1) Roll window down.
- (2) Remove door trim panel.
- (3) Pull up on the rear corner of the weatherstrip and lift from the door (Fig. 33).

Fig. 33 Front Door Inner/Outer Belt Weatherstrip
INSTALLATION

- (1) Position the weatherstrip on the door.
- (2) Push weatherstrip down to seat onto door.
- (3) Install door trim panel.

FRONT DOOR OUTER BELT WEATHERSTRIP

REMOVAL

- (1) Roll window down.
- (2) Using a trim stick, pry up the rear outer corner of the weatherstrip.
- (3) Lift the weatherstrip up to separate from the door (Fig. 33).

- (1) Position the weatherstrip on the door.
- (2) Push weatherstrip down to seat onto door.

REMOVAL AND INSTALLATION (Continued)

FRONT DOOR GLASS RUN CHANNEL WEATHERSTRIP

REMOVAL

- (1) Remove door trim panel.
- (2) Remove waterdam.
- (3) Starting at rear corner, peel weatherstrip from around door frame.

INSTALLATION

- (1) Install the weatherstrip in the following sequence:
 - Press weatherstrip into upper rear corner.
 - Press weatherstrip into lower front corner.
- Work/press the weatherstrip upward and to the upper front corner, seat the weatherstrip into the channel.
- Continue working/pressing the weatherstrip into the channel along the upper window frame.
 - Press weatherstrip into lower rear corner.
- Work/press the weatherstrip upward and to the upper rear corner, seat the weatherstrip into the channel.
- Press the weatherstrip to seat into the front lower glass run channel.
- (2) As applicable, move upward and forward evenly until the weatherstrip seal is fully seated in the channel.
 - (3) Install waterdam.
 - (4) Install door trim panel.

FRONT DOOR OPENING WEATHERSTRIP

REMOVAL

- (1) Remove A-pillar trim panel.
- (2) Remove B-pillar upper trim panel.
- (3) Remove cowl side trim panel.
- (4) Remove inner scuff plate.
- (5) Remove B-pillar lower trim panel.
- (6) Grasp seal and separate from door opening.

INSTALLATION

- (1) Position weatherstrip at corners.
- (2) Move upward and around edge of door opening. Seat seal on flange.
- (3) When installing a door opening weatherstrip seal, start at the door sill center line.
- (4) Move upward and around the perimeter of the door opening and seat the weatherstrip on the flange (Fig. 35).
 - (5) Install cowl side trim panel.
 - (6) Install inner scuff plate.
 - (7) Install B-pillar lower trim panel.
 - (8) Install B-pillar upper trim panel.
 - (9) Install A-pillar trim panel.

80aa0fd7

Fig. 34 Door Opening Weatherstrip

Fig. 35 Door Opening Weatherstrip

FRONT DOOR OPENING SECONDARY WEATHERSTRIP

REMOVAL

The front door opening secondary weatherstrip is attached to the A-pillar with adhesive tape (Fig. 34).

(1) Using a heat gun, heat the weatherstrip and slowly peel the weatherstrip from the A-pillar

INSTALLATION

- (1) Clean the contact surface on the A-pillar.
- (2) Remove the carrier backing and position the weatherstrip on the A-pillar. Press into place.

FRONT DOOR GLASS EXTERIOR MOLDING

REMOVAL

- (1) Open the window completely.
- (2) Remove the outer belt weatherstrip.
- (3) Pry and pull the molding sections from the door panel flange (Fig. 36).

Fig. 36 Front Door Glass Exterior Molding

INSTALLATION

- (1) Start at the forward end of the upper molding, force the molding onto the door panel and continue rearward until it is completely seated on the flange.
- (2) Mate the rear molding with the upper molding and force the molding edge inward.
- (3) Continue pressing and moving downward to complete the installation.
 - (4) Install the outer belt weatherstrip.

FRONT DOOR WINDOW REGULATOR

REMOVAL

- (1) Remove the door trim panel.
- (2) Remove the waterdam.
- (3) Remove the window glass.
- (4) Loosen the bolts attaching the regulator to the inner door panel (Fig. 37) and (Fig. 38) as applicable.
- (5) Lift the regulator upward to release it from the key hole slots and remove it through the access hole in the door inner panel.

INSTALLATION

(1) Position the regulator in the door and align with key hole slots.

Fig. 37 Power Window Regulator

Fig. 38 Manual Window Regulator

- (2) Attach the regulator to door inner panel with bolts (Fig. 39).
 - (3) Install the window glass
 - (4) Install the waterdam.
 - (5) Install the trim panel.

FRONT DOOR SPACER BLOCKS—TWO-DOOR VEHICLES

REMOVAL

- (1) Upper spacer block: drill-out the rivet heads and remove them from the reinforcement plate (Fig. 40).
- (2) Lower spacer block: remove the screws from the door face (Fig. 41).
- (3) As applicable, remove the spacer block from the door window frame or door face.

INSTALLATION

(1) As applicable, position the spacer block on the door window frame or door face.

Fig. 39 Front Door Regulator

Fig. 40 Front Door Upper Spacer Block—Two-Door

- (2) Upper spacer block: Install the replacement rivets in the spacer block and reinforcement plate.
- (3) Lower spacer block: install the screws in the door face. Tighten the screws to 1 $N \cdot m$ (11 in-lbs) torque.

FRONT DOOR GLASS

REMOVAL

- (1) Remove the door trim panel.
- (2) Remove the waterdam.
- (3) Remove inner and outer belt weatherstrip.

80a9f0f6

Fig. 41 Front Door Lower Spacer Block—Two-Door

- (4) Roll glass up to expose the bolts attaching the glass to the regulator.
- (5) Remove the bolts attaching the glass to the regulator (Fig. 42).
 - (6) Lift the glass upward and out of the door.

- (1) Position the glass in the door.
- (2) Install the bolts attaching the glass to the regulator Tighten the bolts to 4 N·m (36 in-lbs) torque.
 - (3) Install inner and outer belt weatherstrip.
- (4) Attach the door waterdam to the door inner panel with adhesive/sealant.

23 - 36 BODY — XJ

REMOVAL AND INSTALLATION (Continued)

Fig. 42 Front Door Glass

- (5) Install the waterdam.
- (6) Install the door trim panel.

REAR DOOR TRIM PANEL

- (1) Roll window down.
- (2) Remove window crank, if equipped (Fig. 43).
- (3) Remove the screws attaching the trim panel to the door inner panel (Fig. 44) and (Fig. 45).
- (4) Separate the trim panel fasteners from door inner panel with a pry tool (use special tool C-4829) (Fig. 46).
- (5) Lift the trim panel up and outward to separate from the inner belt seal.
- (6) Move the door trim panel outward and disconnect the handle-to-latch rods (Fig. 47).
- (7) Disconnect the power windows wire harness connectors, if equipped.
 - (8) Remove the trim panel from door.

Fig. 43 Window Crank—Typical

Fig. 44 Rear Door Trim Panel—Manual Window

Fig. 45 Rear Door Trim Panel—Power Window

J898S-8 Fig. 46 Detaching Trim Panel Push-In Fasteners

Fig. 47 Latch Rods

INSTALLATION

- (1) Replace any broken or damaged push-in fasteners.
- (2) Connect the power window wire harness connectors, if equipped.
- (3) Move the door trim panel outward and connect the handle-to-latch rods.
- (4) Position the trim panel on the inner belt seal and push down to seat.
- (5) Align the locating pins and push-in fasteners (Fig. 48). Press inward to secure.
- (6) Install the screws attaching the trim panel to the door inner panel.
 - (7) Install the window crank, if equipped.

Fig. 48 Push-In Fasteners

REAR DOOR WATERDAM

REMOVAL

- (1) Remove door trim panel.
- (2) Peel the waterdam from the door.
- (3) Route the latch rods and wire harnesses through the waterdam.

(4) Separate the waterdam from the door inner panel.

INSTALLATION

- (1) Route the latch rods and wire harnesses through the waterdam.
- (2) Position the waterdam on the door, apply adhesive as necessary and press into place.
 - (3) Install door trim panel.

REAR DOOR

REMOVAL

- (1) Remove door restraint (check) retaining pin.
- (2) For vehicles equipped with power windows and power door locks, remove trim panel and waterdam. Disconnect all components and route wire harness out of door.
 - (3) Remove bolts attaching hinge to door face.
 - (4) Separate door from vehicle.

INSTALLATION

- (1) Position door in body opening.
- (2) Align door hinges, plates and shims and install bolts. Tighten bolts to 3 N·m (2 ft. lbs.) torque.
 - (3) Install door restraint (check).
- (4) If applicable, route and connect wire harness connectors.
- (5) If necessary, install door waterdam and trim panel.

REAR DOOR RESTRAINT

- (1) Remove the door trim panel.
- (2) Remove the door restraint (check) retaining pin from the bracket with a punch.
- (3) Remove the nuts and remove the restraint via the access opening in the door inner panel (Fig. 49).

Fig. 49 Door Restraint (Check)

INSTALLATION

- (1) Position the door restraint in the door by way of the opening and install the nuts. Tighten the nuts to $10~\mathrm{N\cdot m}$ (7 ft-lbs) torque.
- (2) Position the door restraint in bracket with the holes aligned and insert the retaining pin.

REAR DOOR HINGE

REMOVAL

- (1) Remove door restrain (check) pin.
- (2) Remove door hinge bolts and shims.
- (3) Retain bolts and shims for correct installation.

INSTALLATION

- (1) Position hinge plates and shims on door face.
- (2) Align door hinges and shims with bolt holes and install hinges. Tighten bolts to 3 N·m (2 ft. lbs.).
- (3) Adjust/align latch striker and latch as necessary.
 - (4) Install door restrain (check) retaining pin.

REAR DOOR OUTSIDE HANDLE

REMOVAL

- (1) Remove the door trim panel.
- (2) Roll the window to the full up position.
- (3) Peel back the waterdam to access the fasteners for the outside handle.
 - (4) Remove the latch.
 - (5) Remove the access hole cover.
- (6) Remove the nuts attaching the door handle to the door (Fig. 50).
- (7) Disconnect the handle-to-latch rod from the handle latch release lever arm (Fig. 51).

Fig. 50 Rear Door Outside Handle

INSTALLATION

(1) Position the handle at the door panel.

Fig. 51 Latch Rod

- (2) Connect the latch-to-handle rod to the handle latch release lever arm.
- (3) Install nuts attaching the door handle to the door.
 - (4) Install the latch.
 - (5) Install the waterdam.
 - (6) Install the trim panel.

REAR DOOR LATCH

- (1) Remove access plug.
- (2) Remove door trim panel.
- (3) Remove waterdam.
- (4) Remove screws attaching door latch to door (Fig. 52).
 - (5) Disconnect all rods from door latch.
 - (6) Remove door latch from door.

Fig. 52 Rear Door Latch

INSTALLATION

- (1) Position door latch in door.
- (2) Connect all rods to door latch.
- (3) Install screws attaching door latch to door. Tighten screws to 11 N·m (8 ft. lbs.) torque.
 - (4) Install waterdam.
 - (5) Install door trim panel.
 - (6) Install access plug.

REAR DOOR LATCH STRIKER

REMOVAL

- (1) Using a grease pencil or equivalent, mark position of striker.
- (2) Remove screws attaching striker to C-pillar (Fig. 53).
 - (3) Separate striker from C-pillar.

Fig. 53 Rear Door Latch Striker

INSTALLATION

- (1) Position and align striker on C-pillar.
- (2) Install screws attaching striker to C-pillar. Tighten screws to 28 N·m (20 ft. lbs.) torque.

REAR DOOR INSIDE HANDLE ACTUATOR

REMOVAL

The rear door inside handle actuator is heat staked to the rear door trim panel during the manufacturing process.

- (1) Remove the door trim panel.
- (2) Using an X-ACTO knife or equivalent, cut the melted tabs securing the inside handle to the door trim panel.
- (3) Separate the inside handle from the trim panel.

INSTALLATION

- (1) Position the inside handle in the trim panel.
- (2) Heat stake the inside handle to the trim panel.
- (3) Install the door trim panel.

REAR DOOR INNER BELT WEATHERSTRIP

REMOVAL

- (1) Roll window down.
- (2) Remove door trim panel.
- (3) Pull up on the rear corner of the weatherstrip and lift from the door (Fig. 54).

80aa0fe6

Fig. 54 Rear Door Inner/Outer Belt Weatherstrip INSTALLATION

- (1) Position the weatherstrip on the door.
- (2) Push weatherstrip down to seat onto door.
- (3) Install door trim panel.

REAR DOOR OUTER BELT WEATHERSTRIP

REMOVAL

- (1) Roll window down.
- (2) Using a trim stick, pry up the rear outer corner of the weatherstrip.
- (3) Slowly and carefully, lift the weatherstrip up to separate from the door (Fig. 54).

INSTALLATION

- (1) Position the weatherstrip on the door.
- (2) Push weatherstrip down to seat onto door.

REAR DOOR GLASS RUN CHANNEL WEATHERSTRIP

- (1) Remove door trim panel.
- (2) Remove waterdam.
- (3) Remove window glass.

(4) Starting at rear corner, peel weatherstrip from around door frame (Fig. 54).

INSTALLATION

- (1) Starting at the top corner, press seal into place. A small amount of adhesive can be used to hold the weatherstrip in-place, if necessary.
- (2) As applicable, move downward evenly until the weatherstrip seal is fully seated in the channel.
 - (3) Install window glass.
 - (4) Install waterdam.
 - (5) Install door trim panel.

REAR DOOR GLASS EXTERIOR MOLDING

REMOVAL

- (1) Open the window.
- (2) Remove the outer belt molding.
- (3) Pry and pull the molding sections from the door panel flange (Fig. 55).

Fig. 55 Rear Glass Exterior Molding

INSTALLATION

- (1) Starting at the forward end of the upper molding, force the molding onto the door panel flange and continue rearward until it is completely seated on the flange.
- (2) Mate the rear molding with the upper molding and force the molding edge inward.
- (3) Continue pressing and moving downward to complete the installation.
 - (4) Install the outer belt molding.

REAR DOOR WEATHERSTRIP

REMOVAL

- (1) Remove B-pillar upper trim.
- (2) Remove inner scuff plate.
- (3) Remove B-pillar lower trim.
- (4) Remove upper door opening trim.

(5) Grasp seal and separate from door opening (Fig. 56).

Fig. 56 Door Opening Weatherstrip

INSTALLATION

- (1) When installing a door opening weatherstrip seal, start at the door sill center line.
- (2) Move upward and around edge of door opening. Seat seal on flange.
- (3) Move upward and around the perimeter of the door opening and seat the weatherstrip on the flange (Fig. 57).
 - (4) Install upper door opening trim.
 - (5) Install inner scuff plate.
 - (6) Install B-pillar lower trim panel.
 - (7) Install B-pillar upper trim panel.

REAR DOOR WINDOW REGULATOR

- (1) Remove the door trim panel.
- (2) Remove the waterdam.
- (3) Remove the bolt attaching the window glass to the regulator and support the glass (Fig. 58).
- (4) Remove the lower bolts attaching the regulator to the inner door panel (Fig. 59).
- (5) Remove the nuts attaching the regulator motor to the inner door panel, if equipped.
- (6) Loosen the upper bolt that attaches the regulator to the inner door panel.
- (7) Disconnect the wire harness connector from the regulator drive motor, if equipped.
- (8) Remove the regulator and drive motor, if equipped.

REMOVAL AND INSTALLATION (Continued)

Fig. 57 Door Opening Weatherstrip

Fig. 58 Regulator To Glass Screw Removal/ Installation

INSTALLATION

- (1) Position window regulator and, if equipped, drive motor within the door panels.
- (2) Install the fasteners attaching the regulator to the door inner panel.
 - (3) Connect the regulator wire harness connector.
- (4) Position the window glass at the regulator and install the retainer, bushing and bolt.
 - (5) Install the waterdam.
 - (6) Install the trim panel.

Fig. 59 Rear Door Window

REAR DOOR WINDOW GLASS

REMOVAL

- (1) Lower the window glass.
- (2) Remove the trim panel.
- (3) Remove the waterdam.
- (4) Remove inner and outer beltline weatherstrip.
- (5) Remove the window weatherstrip from the door.
- (6) Remove the division bar/stationary glass (Fig. 60).
- (7) Remove the window glass screw, bushing and retainer from the regulator.
 - (8) Remove the window glass from door.

Fig. 60 Division Bar/Stationary Glass

- (1) Install the glass in the door, and install the retainer, bushing and screw.
- (2) Tighten the glass attaching screw 6 N·m (53 inlbs) torque.
- (3) Install the division bar/stationary glass in the door.

- (4) Install the glass run channel weatherstrip.
- (5) Install the inner and outer beltline weatherstrip.
 - (6) Install the waterdam.
 - (7) Install the trim panel.

BODY SIDE MOLDING

REMOVAL

- (1) Loosen the body side molding (Fig. 61) with a heat gun.
- (2) Lift edge of molding with a putty knife and peel molding from body panel. Apply heat to any location where the molding remains adhered to a panel.
- (3) Remove the adhesive from the body panel with Mopar Super Clean solvent or equivalent.
- (4) If the original molding will be installed, also remove all adhesive from it.

80aef1cb

Fig. 61 Body Side Molding—4-Door

INSTALLATION

- (1) If the original molding will be installed, apply 3M 5344 double-sided tape on the molding.
- (2) For vertical alignment, use masking tape or a string as reference.
- (3) Remove the backing from the tape, align the molding and position it on the body panel.
- (4) Press the molding onto the body panel with a roller or hand pressure.

REAR FENDER FLARE

REMOVAL

- (1) Remove the screw attaching the lower part of flare to the bottom of the fender.
- (2) Remove the nuts attaching the fender flare retainer to the wheelhouse liner (Fig. 62).
- (3) Separate the fender flare and retainer from the fender.

Fig. 62 Fender Flare

INSTALLATION

- (1) Position the fender flare and retainer on the fender.
- (2) Install the nuts attaching the fender flare and retainer to the wheelhouse liner.
- (3) Install the screw attaching the lower part of flare to the bottom of the fender.

QUARTER WINDOW APPLIQUE

REMOVAL

- (1) Remove the liftgate pillar trim.
- (2) Remove nuts from inside vehicle (Fig. 63).
- (3) Using a trim sick or equivalent, carefully pry the applique the from panel.

INSTALLATION

- (1) Position the replacement applique the on panel and install the nuts.
 - (2) Install the liftgate pillar trim.

DRIP RAIL MOLDING

REMOVAL

- (1) Pry the clips from the roof flange.
- (2) Remove the clips and molding from the roof flange (Fig. 63).
- (3) Remove the remaining sealant and clean the roof flange.
 - (1) Pry the clips from the roof flange.
- (2) Remove the clips and molding from the roof flange (Fig. 63).
- (3) Remove the remaining sealant and clean the roof flange.

INSTALLATION

(1) Position the drip rail molding with clips at the roof flange and force the clips onto the roof flange.

Fig. 63 Quarter Window Applique and Drip Molding

(2) Apply sealant to the inner side of the molding to seal the roof flange.

LUGGAGE RACK

REMOVAL

- (1) Remove slide rail screws (Fig. 64).
- (2) Remove luggage rack from roof.

NOTE: Skid strips are attached to roof panel with adhesive.

- (3) Loosen each skid strip with a heat gun.
- (4) Lift one edge of each skid strip with a putty knife and peel it from roof panel.
- (5) Remove original adhesive from roof with an adhesive removal solution.
- (6) If original skid strips are installed, remove all original adhesive from m.

INSTALLATION

- (1) Install 3M 06379 double-sided tape, or an equivalent on skid strips.
- (2) Remove backing from double-sided tape, align each skid strip on roof, and position it on roof panel.
 - (3) Verify that each skid strip is properly aligned.
- (4) Press each skid strip onto roof panel with a roller (or use hand pressure).

NOTE: To prevent water leaks, apply 3M Drip-Chek Sealant, or equivalent.

(5) Position luggage rack on roof with screw holes aligned.

Fig. 64 Luggage Rack

(6) Install and tighten slide rail screws.

AIR EXHAUST GRILLE

REMOVAL

- (1) Remove the screw that attaches the grille to door the opening panel (Fig. 65).
- (2) Pry the bottom edge of the grille from the door opening panel.
- (3) Pull downward and remove the grille from exhaust port in the door opening panel.

Fig. 65 Door Opening Air Exhaust Grille

- (1) Position the slot located in the upper end of replacement grille at the exhaust port and insert edge in the slot.
- (2) Push inward and seat the grille in the exhaust port.
- (3) Install the screw to attach the grille to the door opening panel.

A-PILLAR TRIM

REMOVAL

- (1) Remove front and rear assist handles, if equipped.
 - (2) Remove the inner scuff plate.
 - (3) Remove the lower A-pillar cowl trim.
- (4) Using a small flat blade, pry the trim plugs from the A-pillar trim.
- (5) Remove the screws attaching the A-pillar trim to the A-pillar (Fig. 66).
 - (6) Separate the A-pillar trim from the A-pillar.

INSTALLATION

- (1) Position the A-pillar trim on the A-pillar.
- (2) Install the screws attaching the A-pillar trim to the A-pillar.
 - (3) Install the trim plugs.
 - (4) Install the lower A-pillar cowl trim.
 - (5) Install the inner scuff plate.
 - (6) Install the assist handles.

LOWER A-PILLAR COWL TRIM

REMOVAL

(1) Remove the inner scuff plate.

- (2) Remove the nut behind the fuse panel access door (Right side only) (Fig. 67).
- (3) Remove the fasteners attaching the lower A-pillar cowl trim to the A-pillar lower cowl.
- (4) Separate the lower A-pillar cowl trim from the A-pillar lower cowl.

Fig. 67 Lower A-Pillar Cowl Trim

INSTALLATION

(1) Position the lower A-pillar cowl trim on the A-pillar lower cowl.

Fig. 66 Trim Panels—2-Door Vehicles

- (2) Install the screws attaching the lower A-pillar cowl trim to the A-pillar lower cowl.
- (3) Install the nut behind the fuse panel access door (Right side only).
 - (4) Install the inner scuff plate.

FRONT INNER SCUFF PLATE

REMOVAL

- (1) If necessary, remove the bucket seat side shield trim cover.
- (2) Remove the screws attaching the inner scuff plate to the front door sill (Fig. 66).
- (3) Separate the inner scuff plate from the door sill.

INSTALLATION

- (1) Position the inner scuff plate on the front door sill.
- (2) Install the screws attaching the inner scuff plate to the front door sill.
- (3) If removed, install the bucket seat side shield trim cover.

DOOR SILL SCUFF PLATE

REMOVAL

- (1) Remove the screws attaching the door sill scuff plate to the door sill (Fig. 68).
 - (2) Separate the scuff plate from the door sill.

Fig. 68 Door Sill Scuff Plate

INSTALLATION

- (1) Position the scuff plate on the door sill.
- (2) Install the screws attaching the door sill scuff plate to the door sill.

ASSIST HANDLE

REMOVAL

- (1) Using a trim stick or equivalent, open the end covers to access the screws.
 - (2) Remove the screws (Fig. 66).
 - (3) Separate the assist handle from the trim.

INSTALLATION

- (1) Position the handle on the trim.
- (2) Install the screws.
- (3) Install the covers.

B-PILLAR TRIM

REMOVAL

- (1) Remove the inner scuff plate.
- (2) Remove the upper door opening trim (4-door vehicles) (Fig. 69).
- (3) Remove the upper quarter panel trim (2-door vehicles) (Fig. 66).
 - (4) Remove the rear A-pillar trim screw.
 - (5) Remove the shoulder belt turning loop.
 - (6) Remove the seat/shoulder belt anchor bolt.
- (7) Remove the screws attaching the B-pillar trim to the B-pillar (2-door vehicles).
- (8) Route the shoulder belt through the lower B-pillar trim (2-door vehicles).
 - (9) Separate the B-pillar trim from the B-pillar.

INSTALLATION

- (1) Route the shoulder belt through the lower B-pillar trim (2-door vehicles).
- (2) Position the B-pillar trim on the B-pillar and align push-in fasteners.
- (3) Press the B-pillar trim on the B-pillar to secure.
- (4) Install the screws attaching the B-pillar trim to the B-pillar (2-door vehicles).
 - (5) Install the seat/shoulder belt anchor bolt.
 - (6) Install the shoulder belt turning loop.
 - (7) Install the A-pillar trim.
- (8) Install the upper quarter panel trim (2-door vehicles) (Fig. 66).
- (9) Install the upper door opening trim (4-door vehicles) (Fig. 69).
 - (10) Install the inner scuff plate.

C-PILLAR TRIM

- (1) Remove the inner scuff plate.
- (2) Remove the upper door opening trim.
- (3) Remove the upper quarter panel trim.
- (4) Remove the quarter panel trim extension.

Fig. 69 B-Pillar Trim—4-Door Vehicles

- (5) Remove the screws attaching the C-pillar trim to the C-pillar (Fig. 69).
 - (6) Separate the C-pillar trim from the C-pillar.

INSTALLATION

- (1) Position the C-pillar trim on the C-pillar.
- (2) Install the screws attaching the C-pillar trim to the C-pillar.
 - (3) Install the quarter panel trim extension.
 - (4) Install the upper quarter panel trim.
 - (5) Install the upper door opening trim.
 - (6) Install the inner scuff plate.

QUARTER PANEL TRIM EXTENSION

REMOVAL

- (1) Remove the inner scuff plate.
- (2) Separate quarter panel trim extension from the wheelhouse and quarter trim panels (Fig. 69).

INSTALLATION

- (1) Position the quarter panel trim extension on the wheelhouse and quarter trim panels.
 - (2) Install the inner scuff plate.

QUARTER PANEL TRIM AND WHEELHOUSE COVER

REMOVAL

- (1) Remove the inner scuff plate.
- (2) Remove quarter panel trim extension.
- (3) Remove liftgate scuff plate.
- (4) Remove the screws attaching the quarter panel trim from the quarter panel and wheelhouse trim cover (Fig. 69) and (Fig. 66).
- (5) If necessary, remove the tire and mounting brackets from the left quarter panel trim (Fig. 70).
- (6) Remove the screws attaching the wheelhouse cover to the wheelhouse.
- (7) Separate the wheelhouse cover from the wheelhouse.

- (1) Position the wheelhouse cover on the wheelhouse.
- (2) Install the screws attaching the wheelhouse cover to the wheelhouse.
- (3) If removed, install the tire and mounting bracket on the left quarter panel trim.
- (4) Position the quarter panel trim on the quarter panel and wheelhouse cover.

Fig. 70 Spare Tire

- (5) Install the screws attaching quarter panel trim on the quarter panel and wheelhouse cover.
 - (6) Install liftgate scuff plate.
 - (7) Install quarter panel trim extension.
 - (8) Install the inner scuff plate.

LIFTGATE PILLAR TRIM

REMOVAL

- (1) Remove the liftgate opening upper trim.
- (2) Remove the liftgate pillar trim screws (Fig. 71).
- (3) Remove the screws attaching the lower quarter panel trim to the liftgate pillar.
- (4) Pull the trim panel outward to detach the spring steel clips attaching the trim panel to the pillar (2-dr vehicles).
 - (5) Remove liftgate pillar trim.

INSTALLATION

- (1) Position the liftgate pillar trim on the liftgate pillar.
- (2) Press the trim panel into place to engage the spring steel clips attaching the trim panel to the pillar (2-dr vehicles).
- (3) Install the screws attaching the lower quarter panel trim to the liftgate pillar.
 - (4) Install the liftgate pillar trim screws.
 - (5) Install the liftgate opening upper trim.

Fig. 71 Liftgate Pillar Trim

LIFTGATE OPENING UPPER TRIM

REMOVAL

- (1) Remove the screws attaching the liftgate opening upper trim to the roof panel (Fig. 72).
- (2) Pull downward to disengage steel clips attaching the liftgate opening upper trim to the roof panel.
 - (3) Separate trim from vehicle.

INSTALLATION

Steel clips are used for manufacturing purposes and are not required for service.

23 - 48 BODY — XJ

REMOVAL AND INSTALLATION (Continued)

Fig. 72 Liftgate Opening Upper Trim

- (1) Position trim on roof panel.
- (2) Install the screws attaching the liftgate opening upper trim to the roof panel.

LIFTGATE SCUFF PLATE

REMOVAL

- (1) Remove the screws attaching the liftgate scuff plate to the floor pan (Fig. 73).
 - (2) Separate the scuff plate from the vehicle.

Fig. 73 Liftgate Scuff Plate

INSTALLATION

- (1) Position the scuff plate on the vehicle.
- (2) Center striker in opening.
- (3) Install the screws attaching the liftgate scuff plate to the floor pan.

FRONT SHOULDER BELT/BUCKLE

CAUTION: Inspect the front shoulder belts and buckles. Replace any belt that is either cut, frayed, torn or damaged in any way. Replace the shoulder belt if the retractor is damaged or inoperative.

REMOVAL

- (1) Slide the front seats all the way forward for access to the belt anchor bolt.
 - (2) Disconnect the belt wire harness connector.
 - (3) Remove the anchor bolt cover.
- (4) Remove the anchor bolt attaching the buckle to the seat.
- (5) Remove the turning loop cover concealing the shoulder belt upper anchor bolt.
- (6) Use a Torx bit to remove the upper anchor bolt (Fig. 74). Remove the support/guide washer.
- (7) Remove the inner scuff plate/trim panel from the door sill and remove the shoulder belt lower anchor bolt(s) with a Torx bit (Fig. 75) and (Fig. 76).
 - (8) Remove the shoulder belt and the retractor.

Fig. 74 Anchor Bolt

- (1) Position the shoulder belt retractor in the shield and install the lower anchor bolt with a Torx bit. Tighten bolt to $43\ N\cdot m$ (32 ft. lbs.) torque.
- (2) Position the support/guide washer and shoulder belt upper anchor plate on the trim panel. Install the upper anchor bolt with a Torx bit.
 - (3) Route belt through trim panel.
- (4) Tighten the upper and lower anchor bolts to 43 $N \cdot m$ (32 ft. lbs.) torque.

Fig. 75 Front Shoulder Belt—2-Door Vehicles

Fig. 76 Front Shoulder Belt—4-Door Vehicles

- (5) Install the door sill inner scuff plate/trim panel and install the cap over the upper anchor bolt.
- (6) Install the shoulder belt buckle and anchor bolt. Connect the wire harness connectors. Tighten the buckle anchor bolt to 43 N·m (32 ft. lbs.) torque.

REAR SHOULDER/LAP BELT/BUCKLE

WARNING: Inspect rear shoulder/lap belts and buckles. Replace any belt that is either cut, frayed, torn or damaged in any way. Replace shoulder belt if retractor is damaged or inoperative.

- (1) Pull rear seat release strap and tilt seat cushion forward.
- (2) Remove shoulder belt buckle and lap belt/buckle anchor plate bolts from floor pan (Fig. 77).
 - (3) Remove shoulder belt lower outer anchor bolt.
- (4) Remove quarter trim panel. If necessary, refer to removal procedure.
 - (5) Remove shoulder belt upper anchor bolt.
- (6) Remove bolt attaching retractor to rear quarter rail.
- (7) Separate retractor and shoulder belt from trim panel.

Fig. 77 Rear Seat Shoulder/Lap Belts and Buckles INSTALLATION

- (1) Position shoulder belt buckle and lap belt/buckle anchor plates on floor panel.
- (2) Install anchor bolts. Tighten bolts to 43 N·m (32 ft. lbs.) torque.
- (3) Install retractor support on rear quarter rail. Tighten screw.
- (4) Route shoulder belt through quarter trim panel slot.

- (5) Position shoulder belt at roof rail and install upper anchor bolt. Tighten bolt to 43 N·m (32 ft. lbs.) torque.
 - (6) Install quarter trim panel.
- (7) Install shoulder belt lower anchor bolt. Tighten bolt to 43 N·m (32 ft. lbs.) torque.
- (8) Return rear seat cushion to normal position and engage latch.

FULL FLOOR CONSOLE

REMOVAL

- (1) Remove the transmission shift lever handle/knob:
- Automatic transmissions, pull the handle straight upward to remove it.
- Insert a thin-blade tool under the edge of the transmission shift indicator bezel and pry up to remove.
- Manual transmissions, loosen the locknut and un-thread the shift knob from the shaft.
 - Pull the shift boot up to remove.
- (2) Insert a thin-blade tool under the edge of the transfer case shift indicator bezel or cover plate and pry up to remove.
 - (3) Open the console lid.
- (4) Remove the screws attaching the console to the floor and mounting bracket (Fig. 78).
 - (5) Disconnect the wire harness connector.
 - (6) Separate the console from the floor.

INSTALLATION

- (1) Position the console on the floor.
- (2) Attach the air duct to the air outlet duct.
- (3) Connect the wire harness connectors.
- (4) Install the screws attaching the console to the mounting bracket.
- (5) Install the shift indicator bezels (or cover plate).
 - (6) Install the shift lever handle/knob.

FRONT CARPET/MAT

REMOVAL

- (1) Remove the door sill inner scuff plates.
- (2) Remove the front and rear seats (as applicable).
 - (3) Remove floor console.
- (4) As necessary, remove the trim panels and moldings.
 - (5) Remove all other interfering components.
- (6) Remove the carpet and mat from the floor panel (Fig. 79).

Fig. 79 Front Carpet and Mat

INSTALLATION

- (1) Position the carpet and mat on the floor panel.
- (2) Install all the components that were removed to facilitate carpet/mat removal.
 - (3) Install the trim panels and moldings.
 - (4) Install the door sill inner scuff plates.
 - (5) Install floor console.
 - (6) Install the front and rear seats (as applicable).

REAR CARPET/MAT

REMOVAL

- (1) Remove the liftgate latch striker and scuff plate.
- (2) Drill-out the retaining rivet heads and remove the cargo tie-down footman loops from the carpet.
- (3) As necessary, remove the trim panels and moldings.
 - (4) Remove the all other interfering components.
- (5) Remove the carpet and mat from the floor panel.
- (6) If necessary, remove the insulation from the wheelhouse (Fig. 80).

INSTALLATION

(1) If removed, install the insulation on the wheel-houses.

REMOVAL AND INSTALLATION (Continued)

Fig. 80 Wheelhouse Insulation

- (2) Position the mat on the floor panel.
- (3) Position the carpet on the mat.
- (4) Install all the components that were removed to facilitate carpet and mat removal.
 - (5) Install the trim panels and moldings.
- (6) Install the cargo tie-down footman loops on the carpet with replacement rivets.
 - (7) Install the liftgate scuff plate and latch striker.

REARVIEW MIRROR

REMOVAL

- (1) Loosen the mirror base setscrew (Fig. 81).
- (2) Slide the mirror base upward and off the bracket.

INSTALLATION

- (1) Position the mirror base at the bracket and slide it downward onto the support bracket.
 - (2) Tighten setscrew to 1 N·m (9 in. lbs.) torque.

REARVIEW MIRROR SUPPORT BRACKET

INSTALLATION

- (1) Mark the position for the mirror bracket on the outside of the windshield glass with a wax pencil.
- (2) Clean the bracket contact area on the glass. Use a mild powdered cleanser on a cloth saturated with isopropyl (rubbing) alcohol. Finally, clean the glass with a paper towel dampened with alcohol.
- (3) Sand the surface on the support bracket with fine grit-sandpaper. Wipe the bracket surface clean with a paper towel.
- (4) Apply accelerator to the surface on the bracket according to the following instructions:
 - Crush the vial to saturate the felt applicator.
 - Remove the paper sleeve.
- Apply accelerator to the contact surface on the bracket.
 - Allow the accelerator to dry for five minutes.
- Do not touch the bracket contact surface after the accelerator has been applied.
- (5) Apply adhesive accelerator to the bracket contact surface on the windshield glass. Allow the accelerator to dry for one minute. Do not touch the glass contact surface after the accelerator has been applied.
- (6) Install the bracket according to the following instructions:
- Apply one drop of adhesive at the center of the bracket contact-surface on the windshield glass.
- Apply an even coat of adhesive to the contact surface on the bracket.
- Align the bracket with the marked position on the windshield glass.
- Press and hold the bracket in place for at least one minute.

NOTE: Verify that the mirror support bracket is correctly aligned, because the adhesive will cure rapidly.

- (7) Allow the adhesive to cure for 8-10 minutes. Remove any excess adhesive with an alcohol-dampened cloth.
- (8) Allow the adhesive to cure for an additional 8-10 minutes before installing the mirror.

80ad2f1f

Fig. 81 Rearview Mirror

SUNVISORS

REMOVAL

- (1) Remove the screws that attach the sunvisor arm support bracket to the headliner and the roof panel (Fig. 82) and (Fig. 83).
 - (2) Disconnect vanity lamp connector, if equipped.
 - (3) Detach the sunvisor from the support clip.
 - (4) Remove the sunvisor from the vehicle.
- (5) Remove the retaining screw and support clip. On vehicles equipped with an overhead console, the support clip is integral with the overhead console.

Fig. 82 Sunvisor

Fig. 83 Sunvisor w/Vanity Lamp

INSTALLATION

- (1) Install the support bracket and the retaining screw.
 - (2) Connect vanity lamp connector, if equipped.
- (3) Position the sunvisor in the support clip and align the arm support bracket holes with the head-liner holes.
- (4) Install the screws that attach the sunvisor arm support bracket to the headliner and the roof panel.

HEADLINER

The upper trim moldings and the headliner are attached to the roof rail with a combination of screws, clip retainers and rail retainers (Fig. 84).

Fig. 84 Headliner Trim Moldings

To remove a headliner, all of the upper trim moldings must be removed from the perimeter of the headliner along with (as applicable):

- Assist handles.
- · Sunvisors.
- Dome/cargo lamps.
- Overhead console.
- All other attached/overlapping components.

Refer to the appropriate removal and installation procedure locate in this section or in Group 8, Electrical.

REMOVAL

CAUTION: The headliner is a one-piece, molded component (Fig. 85). It has limited flexibility and must not be bent during removal/installation.

- (1) Remove the upper trim moldings from the perimeter of the headliner (Fig. 86).
- (2) Ensure that all the retainer clips and screws are disengaged before removing the headliner.
- (3) Disengage tabs attaching headliner/speaker structure to roof rail, if equipped (Fig. 85).
- (4) Disengage rear speaker harness connector, if equipped.

- (1) Engage tabs attaching headliner/speaker structure to roof rail, if equipped. (Fig. 85)
- (2) On vehicles without headliner speakers, ensure that the retainer clips on upper liftgate opening trim and rails are installed. (Fig. 87)
 - (3) Engage rear speaker harness connector.

REMOVAL AND INSTALLATION (Continued)

Fig. 85 Headliner

Fig. 86 Upper Trim Molding—4-Door

- (4) Install the upper trim moldings around the perimeter of the headliner. Tighten the retaining screws to 1 N·m (11 in. lbs.) torque.
 - (5) As applicable, install:
 - Assist handles.
 - Sunvisors.
 - Dome/cargo lamps.
 - Overhead console.
 - All other attached/overlapping components.

LIFTGATE TRIM PANEL

REMOVAL

- (1) Using a small flat blade, pry out the trim plugs from the liftgate assist handle.
- (2) Remove the screws attaching the assist handle to the liftgate (Fig. 88).
- (3) Remove the screws that attach the liftgate trim panel to the liftgate.
- (4) Using a trim panel removal tool, detach the push-in fasteners from the liftgate.

Fig. 87 Headliner Retainer Clip and Retainer Rail

(5) Remove the trim panel from the liftgate.

Fig. 88 Liftgate Trim Panel

- (1) Position the trim panel on liftgate.
- (2) Using new push-in fasteners, align the push-in fasteners with the holes in the liftgate inner panel and press the trim panel into place.
- (3) Install the screws to attach the liftgate trim panel to the liftgate.
- (4) Install the screws attaching the assist handle to the liftgate.
- (5) Press the trim plugs into the liftgate assist handle.

LIFTGATE

REMOVAL

WARNING: DO NOT DISCONNECT SUPPORT ROD CYLINDERS WITH LIFTGATE CLOSED. SUPPORT ROD PISTONS ARE OPERATED BY HIGH PRESSURE GAS. THIS COULD CAUSE DAMAGE AND/OR PERSONAL INJURY IF THEY ARE REMOVED WHILE PISTONS ARE COMPRESSED.

- (1) Remove center high mounted stop lamp (CHMSL).
 - (2) Open and support liftgate.
 - (3) Remove liftgate trim panel.
- (4) Disconnect and plug backlite washer fluid supply line.
- (5) Remove screws that attach rear wiper and liftgate power lock wire harness connectors to liftgate and disconnect connectors.
- (6) Using access hole created by removal of CHMSL, route backlite washer fluid supply line and rear wiper and liftgate power lock wire harness/grommets through access hole and separate from liftgate.
- (7) Remove retainer clips that secure support rods to ball studs.
 - (8) Remove support rods from ball studs.
 - (9) Remove bolts attaching hinges to liftgate.
 - (10) Remove liftgate from vehicle.

INSTALLATION

- (1) Position and support liftgate at opening in body and install bolts attaching hinges to liftgate. Tighten bolts to $26~\rm N\cdot m$ (19 ft. lbs.) torque.
- (2) Connect liftgate support rods to ball studs and install retainer clips.
- (3) Route backlite washer fluid supply line and rear wiper and liftgate power lock wire harnesses/grommets through access hole.
- (4) Connect connectors and install screws that attach rear wiper and liftgate power lock wire harness connectors to liftgate.
- (5) Unplug and connect backlite washer fluid supply line.
 - (6) Install liftgate trim panel.
 - (7) Remove supports and close liftgate.
 - (8) Install (CHMSL).

LIFTGATE HINGE

REMOVAL

It is not necessary to remove the liftgate to replace one or both hinges.

- (1) Open and support the liftgate.
- (2) Remove the liftgate opening upper trim.

- (3) Remove the bolts attaching the hinge to the header panel (Fig. 89).
- (4) Remove the bolts attaching the hinge to the liftgate.

Fig. 89 Liftgate Hinge

INSTALLATION

- (1) Position the hinge on the liftgate.
- (2) Install the bolts attaching the hinge to the lift-gate. Tighten to 26 N·m (19 ft. lbs.) torque.
- (3) Install the bolts attaching the hinge to the header panel. Tighten to 26 N·m (19 ft. lbs.) torque.
 - (4) Install the liftgate opening upper trim.
 - (5) Remove the support and close the liftgate.

LIFTGATE SUPPORT ROD CYLINDER

REMOVAL

WARNING: DO NOT REMOVE A SUPPORT ROD CYLINDER WITH THE LIFTGATE CLOSED. EACH SUPPORT ROD PISTON IS OPERATED BY HIGH PRESSURE GAS. IT CAN CAUSE DAMAGE AND/OR PERSONAL INJURY IF IT IS REMOVED WITH THE PISTON COMPRESSED. DO NOT ATTEMPT TO DISASSEMBLE OR REPAIR A SUPPORT ROD CYLINDER.

- (1) Open the liftgate.
- (2) Support the liftgate in the open position.
- (3) Remove the clip attaching the support rod to the ball stud.
 - (4) Disconnect the support rod from the ball stud.
- (5) Remove the bolts attaching the support rod to the liftgate (Fig. 90).
 - (6) Separate the support rod from the liftgate.

- (1) Position the support rod on the liftgate.
- (2) Install the bolts attaching the support rod to the liftgate.

REMOVAL AND INSTALLATION (Continued)

Fig. 90 Liftgate Support Rod

- (3) Connect the support rod to the ball stud.
- (4) Secure the support rod to the ball stud with the retainer clip.
 - (5) Remove the support from the liftgate.

LIFTGATE SUPPORT ROD BALL STUD

REMOVAL

- (1) Open the liftgate.
- (2) Support the liftgate in the open position.
- (3) Remove the retainer clip attaching the support rod to the ball stud.
 - (4) Disconnect the support rod from the ball stud.
 - (5) Remove the ball stud.

INSTALLATION

- (1) Install the replacement ball stud.
- (2) Connect the support rod to the ball stud.
- (3) Secure the support rod to the ball stud with the clip.
 - (4) Remove the support from the liftgate.

LIFTGATE OUTSIDE HANDLE

REMOVAL

- (1) Remove liftgate trim panel.
- (2) Disconnect liftgate actuator linkages.
- (3) Disconnect liftgate outside handle to latch rod.
- (4) Remove nut attaching outside handle to liftgate (Fig. 91).
 - (5) Separate outside handle from liftgate.
 - (6) If necessary, remove lock cylinder (Fig. 92).

INSTALLATION

- (1) If necessary, install lock cylinder.
- (2) Position outside handle on liftgate.
- (3) Install nut attaching outside handle to liftgate.
- (4) Connect liftgate outside handle to latch rod.
- (5) Connect liftgate actuator linkages.

Fig. 91 Liftgate Outside Handle

Fig. 92 Liftgate Lock Cylinder

(6) Install liftgate trim panel.

LIFTGATE LOCK CYLINDER

For service procedures, refer to the Liftgate Outside Handle Removal/Installation procedures.

LIFTGATE LATCH

REMOVAL

- (1) Raise liftgate.
- (2) Remove liftgate trim panel.
- (3) Remove screws attaching latch to liftgate (Fig. 93).
 - (4) Disconnect rod from latch.
- (5) Disconnect power lock connector from handle, if equipped.
 - (6) Remove latch from liftgate.

INSTALLATION

(1) Position latch in liftgate.

Fig. 93 Liftgate Latch

- (2) Connect power lock connector to handle, if equipped.
 - (3) Connect latch rod.
- (4) Install screws attaching latch to liftgate. Tighten screws to 13 N·m (9 ft. lbs.) torque.
 - (5) Install liftgate trim panel.

LIFTGATE LATCH STRIKER

REMOVAL

- (1) From underside of vehicle, remove nuts attaching striker to floor pan (Fig. 94).
 - (2) Separate striker from vehicle.

Fig. 94 Liftgagte Striker

INSTALLATION

- (1) Position striker on vehicle.
- (2) Install nuts. Tighten nuts to 54 $N {\cdot} m$ (40 ft. lbs.) torque.

LIFTGATE WEATHERSTRIP

REMOVAL

- (1) Pull the seal away from the flange around the perimeter of liftgate opening and remove it.
 - (2) Clean the flange as necessary.

- (1) Position weatherstrip seal in the opening with the left end of the seal at the opening centerline. Install the seal in a clockwise direction.
- (2) Move to the left and mate the seal with the bottom-left flange (Fig. 95).
- (3) Move upward and mate the seal with the left-side flange.
- (4) Move to the right and mate the seal with the top-left roof flange.
- (5) Seat the installed part of the seal with a roller. Move the roller from the left-bottom end of seal to the top-left half of the seal.
- (6) Move to the right and mate the seal with the top-right roof flange.
- (7) Move downward and mate the seal with the right-side flange.
- (8) Move to the left and mate the seal with the bottom-right flange.
- (9) Center and butt seal the ends together at the centerline.
- (10) Seat the remaining part of the seal with a roller. Move the roller the from top-left half of the seal to the right-bottom end of the seal.

Fig. 95 Liftgate Weatherstrip Installation

ADJUSTMENTS

HOOD

The hood bolt holes are elongated for fore and aft and side-to-side adjustment.

- (1) If hood is low to the cowl panel, insert shims between the hinge and hood at the rear hinge bolts.
- (2) Adjust the hood bumper (Fig. 96) in or out to provide proper hood-to-fender height alignment.
- (3) Adjust the hood strikers (Fig. 97) with shims as necessary. Tighten the screws to 22 N·m (16 ft-lbs) torque after adjustment.
- (4) Align each latch and striker so that the striker enters latch squarely.

Fig. 96 Hood Bumper

Fig. 97 Hood Latch Striker

DOOR

IN AND OUT—MINOR ADJUSTMENT

- (1) Loosen the latch striker.
- (2) Tap the latch striker inward if the door character line is outboard of the body character line or tap

the latch striker outward if the door character line is inboard of the body character line.

(3) Inspect alignment. If correct, tighten striker with 28 $N \cdot m$ (20 ft. lbs.) torque.

UP AND DOWN—MINOR ADJUSTMENT

- (1) Loosen the latch striker.
- (2) Tap the latch striker downward if the door character line is higher than the body character line or tap the latch striker upward if the door character line is lower than the body character line.
- (3) Inspect alignment. If correct, tighten striker with 28 $N \cdot m$ (20 ft. lbs.) torque.

ALIGNMENT MAJOR—ADJUSTMENT

Adjustment for alignment of the door is made by installing shims between hinge and door face (Fig. 98).

Fig. 98 Door Adjustment Shims

- (1) If not loosened, loosen the door hinge bolts.
- (2) Add or remove shims as necessary to obtain the best door fit.
- (3) Tighten door hinge bolts to 3 N·m (2 ft-lbs) torque after adjustment is completed.
- (4) Apply general purpose sealant around the door hinges/door face mating area.

DOOR LATCH ADJUSTMENT

- (1) Locate access hole (Fig. 99).
- (2) Insert a 5/32-inch hex-wrench through hole and into adjustment screw. Loosen screw.
- (3) Operate outside handle button several times to release any restriction because of mis-alignment.

ADJUSTMENTS (Continued)

- (4) Tighten adjustment screw to 3 N·m (30 in-lbs) torque.
- (5) Test handle button and lock cylinder for proper operation.

Fig. 99 Door Latch Adjustment

LIFTGATE

The position of liftgate can be adjusted upward or downward by use of slots in the hinge. An inward or outward adjustment is achieved by use of slots in the body. If an inward or outward adjustment is needed, use 3M⁽³⁾ Fast and Firm or equivalent on the hinge to body mating surface as a sealant.

XJ

REAR SEATBACK

- (1) Unlatch and position seatback in cargo position.
- (2) Loosen the screws attaching the strikers to the rear wheelhouse.
- (3) Position the seat back in the full upright position and secure the latch into the strikers.
- (4) From the cargo area of the vehicle, push the rear of the seatback forward.
 - (5) Unlatch and position seatback in cargo position.
- (6) Tighten the screws attaching the strikers to the rear wheelhouse.
- (7) Position the seat back in the full upright position and secure the latch into the strikers.
 - (8) Verify latch operation.

SPECIFICATIONS

BODY LUBRICANTS

COMPONENT	SERVICE INTERVAL	LUBRICANT
Door Latches	As Required	Multi-Purpose Grease NLGI GC-LB (Water Resistant) (1)
Hood Latch, Release Mechanism & Safety Latch	As Required (When Performing Other Underhood Service)	Multi-Purpose Grease NLGI GC-LB 2 EP (2)
Hood Hinges	As Required	Engine Oil
Seat Track & Release Mechanism	As Required	Multi-Purpose Grease NLGI GC-LB 2 EP (2)
Liftgate Hinge	As Required	Multi-Purpose Grease NLGI GC-LB 2 EP (2)
Liftgate Support Arms	As Required	Engine Oil
Liftgate Latches	As Required	White Spray Lubricant (3)
Liftgate Release Handle (Pivot & Slide Contact Surfaces)	As Required	Multi-Purpose Grease NLGI GC-LB 2 EP (2)
Window System Components	As Required	White Spray Lubricant (3)
Lock Cylinders	Twice A Year	Lock Cylinder Lubricant (4)
Parking Brake Mechanism	As Required	Multi-Purpose Grease NLGI GC-LB 2 EP (1)
1 = Mopar Wheel Bering Grease (High Temp) 2 = Mopar Multi-Mileage Lubricant 3 = Mopar Spray White Lube 4 = Mopar Lock Cylinder Lubricant		

SPECIFICATIONS (Continued)

WELD LOCATIONS UPPER COWL

23 - 60 BODY — XJ

SPECIFICATIONS (Continued)

UPPER COWL

SPECIFICATIONS (Continued)

COWL

23 - 62 BODY — XJ

SPECIFICATIONS (Continued)

A—PILLAR

SPECIFICATIONS (Continued)

A—PILLAR

23 - 64 BODY -**-** XJ

SPECIFICATIONS (Continued)

A—PILLAR

XJ -BODY 23 - 65

SPECIFICATIONS (Continued)

A—PILLAR

W2 - WELDING OF 2 PARTS W3 - WELDING OF 3 PARTS W4 - WELDING OF 4 PARTS

23 - 66 BODY — XJ

SPECIFICATIONS (Continued)

B—PILLAR

SPECIFICATIONS (Continued)

D—PILLAR

W2 - WELDING OF 2 PARTS W3 - WELDING OF 3 PARTS

W4 - WELDING OF 4 PARTS

23 - 68 BODY — XJ

SPECIFICATIONS (Continued)

FUEL FILLER OPENING

XJ -- BODY 23 - 69

SPECIFICATIONS (Continued)

23 - 70 BODY — XJ

SPECIFICATIONS (Continued)

ROOF AND D—PILLAR

XJ – BODY 23 - 71

SPECIFICATIONS (Continued)

LIFTGATE OPENING

23 - 72 BODY — XJ

SPECIFICATIONS (Continued)

ROOF

SPECIFICATIONS (Continued)

ROOF

W2 - WELDING OF 2 PARTS W3 - WELDING OF 3 PARTS W4 - WELDING OF 4 PARTS

23 - 74 BODY — XJ

SPECIFICATIONS (Continued)

FRAME RAIL

SPECIFICATIONS (Continued)

FRAME RAIL

23 - 76 BODY — XJ

SPECIFICATIONS (Continued)

FRAME RAIL

XJ – - BODY 23 - 77

SPECIFICATIONS (Continued)

FRAME RAIL

W2 - WELDING OF 2 PARTS W3 - WELDING OF 3 PARTS W4 - WELDING OF 4 PARTS

23 - 78 BODY — XJ

SPECIFICATIONS (Continued)

REINFORCEMENT

XJ — —— BODY 23 - 79

SPECIFICATIONS (Continued)

FRONT INNER FENDER

W4 - WELDING OF 4 PARTS

23 - 80 BODY — XJ

SPECIFICATIONS (Continued)

FRONT INNER FENDER AND RADIATOR CLOSURE PANEL

SPECIFICATIONS (Continued)

REINFORCEMENT

FRONT FENDER

80b69904

23 - 82 BODY — XJ

SPECIFICATIONS (Continued)

RIGHT SIDE SHOWN

SPECIFICATIONS (Continued)

REAR WHEELHOUSE

23 - 84 BODY — XJ

SPECIFICATIONS (Continued)

REAR INNER WHEELHOUSE

SPECIFICATIONS (Continued)

23 - 86 BODY — XJ

SPECIFICATIONS (Continued)

RIGHT SIDE SHOWN

SPECIFICATIONS (Continued)

23 - 88 BODY — XJ

SPECIFICATIONS (Continued)

SPECIFICATIONS (Continued)

BODY SIDE

80b6fd5c

23 - 90 BODY — XJ

SPECIFICATIONS (Continued)

SPECIFICATIONS (Continued)

UNDERBODY

80b698ef

W2 - WELDING OF 2 PARTS W3 - WELDING OF 3 PARTS W4 - WELDING OF 4 PARTS

23 - 92 BODY — XJ

SPECIFICATIONS (Continued)

XJ – BODY 23 - 93

SPECIFICATIONS (Continued)

SPECIFICATIONS (Continued)

UNDERBODY

0b698f2

SPECIFICATIONS (Continued)

UNDERBODY

W2 - WELDING OF 2 PARTS W3 - WELDING OF 3 PARTS

W4 - WELDING OF 4 PARTS

23 - 96 BODY — XJ

SPECIFICATIONS (Continued)

SPECIFICATIONS (Continued)

23 - 98 BODY — XJ

SPECIFICATIONS (Continued)

XJ -BODY 23 - 99

SPECIFICATIONS (Continued)

UNDERBODY

W2 - WELDING OF 2 PARTS W3 - WELDING OF 3 PARTS W4 - WELDING OF 4 PARTS

23 - 100 BODY — XJ

SPECIFICATIONS (Continued)

UNDERBODY

W2 - WELDING OF 2 PARTS W3 - WELDING OF 3 PARTS W4 - WELDING OF 4 PARTS

XJ — BODY 23 - 101

SPECIFICATIONS (Continued)

UNDERBODY

23 - 102 BODY — XJ

SPECIFICATIONS (Continued)

BODY SEALING LOCATIONS APPLICATION METHODS

HOLD GUN NOZZLE IN DIRECTION OF ARROW IN ORDER TO EFFECTIVELY SEAL METAL JOINTS.

DO NOT HOLD GUN NOZZLE IN DIRECTION OF ARROW. SEALER APPLIED AS SHOWN IN INEFFECTIVE.

2 METAL THICKNESS

3 METAL THICKNESS

3 METAL THICKNESS

SPECIFICATIONS (Continued)

COWL AND DASH PANEL

23 - 104 BODY — XJ

SPECIFICATIONS (Continued)

DASH PANEL AND FLOOR PAN

T = THUMBGRADABLE P = PUMPABLE

80b6fde7

XJ — BODY 23 - 105

SPECIFICATIONS (Continued)

FLOOR PAN

P = PUMPABLE

23 - 106 BODY — XJ

SPECIFICATIONS (Continued)

REAR INNER WHEELHOUSE

T = THUMBGRADABLE P = PUMPABLE

SPECIFICATIONS (Continued)

FRONT INNER WHEELHOUSE

23 - 108 BODY — XJ

SPECIFICATIONS (Continued)

BODY SIDE

80b6fdeb

SPECIFICATIONS (Continued)

BODY SIDE

23 - 110 BODY — XJ

SPECIFICATIONS (Continued)

BODY SIDE

P = PUMPABLE G = GENERAL PURPOSE H = HEAT EXPANDABLE

SPECIFICATIONS (Continued)

ROOF PANEL

P = PUMPABLE

23 - 112 BODY — XJ

SPECIFICATIONS (Continued)

FUEL FILLER HOUSING

SPECIFICATIONS (Continued)

23 - 114 BODY — XJ

SPECIFICATIONS (Continued)

STRUCTURAL ADHESIVE LOCATIONS

LEFT QUARTER PANEL

SPECIFICATIONS (Continued)

REAR WHEELHOUSE

23 - 116 BODY -

SPECIFICATIONS (Continued)

ROOF BOWS

80b6fde5

SPECIFICATIONS (Continued)

BODY GAP AND FLUSH MEASUREMENTS

	LOCATION	GAP	FLUSH
Α	Front Door to Windshield Pillar	6.4 +/- 2.0	1.6 +/- 2.0
В	Front Door to Rear Door	6.4 +/- 1.5	0.0 +/- 1.5
С	Front Door to Aperture at Sill	8.1 +/- 1.5	0.0 +/- 1.5
D	Front Door to Fender	6.4 +/- 1.5	0.0 +/- 1.5
E	Hood to Fender	5.6 +/- 1.5	0.5 +/- 1.5
F	Headlamp to Fender	5.6 +/- 1.5	0.5 +/- 1.5
G	Headlamp to Grille	N/A	0.74 +/- 1.0
Н	Grille to Hood	6.0 +/- 1.5	0.24 +/- 1.5
I	Liftgate to Roof	7.5 +/- 1.5	0.5 +/- 1.5
J	Liftgate to Aperture	6.5 +/- 1.5	0.0 +/- 1.5
К	Liftgate to Fascia	X.X +/- 2.0	N/A
L	Rear Door to Quarter Panel	6.4 +/- 1.5	0.0 +/- 1.5

NOTE: ALL MEASUREMENTS ARE IN MM.

23 - 118 BODY — XJ

SPECIFICATIONS (Continued)

BODY OPENING DIMENSIONS

WINDSHIELD OPENING

 \bullet A. & B. Center of radius at bottom to center of radius at top

XJ — BODY 23 - 119

SPECIFICATIONS (Continued)

FRONT DOOR OPENING 2-DOOR

80ae834f

- $\bullet\,$ A. Center of front door lower rear radius to center of A-pillar radius
- B. Center of radius at bottom rear to center of radius at lower A-pillar
- C. Center of radius at bottom front to center of radius at top rear

23 - 120 BODY — >

SPECIFICATIONS (Continued)

FRONT DOOR OPENING 4-DOOR

80ae8351

- $\bullet\,$ C. Center of front door lower rear radius to center of A-pillar radius
- E. Center of radius at bottom rear to center of radius at lower A-pillar
- F. Center of radius at bottom front to center of radius at top rear

XJ — BODY 23 - 121

SPECIFICATIONS (Continued)

REAR DOOR OPENING

80ae8352

- \bullet A. Quarter panel to front outer body side upper and lower seam
- B. Center of front upper door radius to center of rear lower door radius
- $\bullet\,$ C. Center of front lower door radius to center of rear upper door radius
 - D. Flange to rear door striker mount

23 - 122 BODY — XJ

SPECIFICATIONS (Continued)

QUARTER WINDOW OPENING 2-DOOR

- \bullet A. Center of upper and lower rear quarter window opening
- B. Center of radius front lower corner to center of radius rear upper corner
- C. Center of radius front upper corner to center of radius rear lower corner

XJ — BODY 23 - 123

SPECIFICATIONS (Continued)

QUARTER WINDOW OPENING 4-DOOR

80a9f0f9

- A. Center of upper and lower rear quarter window opening
- B. Center of radius front lower corner to center of radius rear upper corner
- C. Center of radius front upper corner to center of radius rear lower corner

23 - 124 BODY — XJ

SPECIFICATIONS (Continued)

ENGINE COMPARTMENT

80ae8354

SPECIFICATIONS (Continued)

LIFTGATE OPENING

80b3c727

- A. Center of upper liftgate opening to liftgate striker mount
- B. & C. Center of radius upper corner to center of radius lower corner
- D. Distance between outer quarter panel to tail lamp mounting panel to inner quarter panel seams

TORQUE SPECIFICATIONS

DESCRIPTION TORQUE
Bucket Seat to Floor Pan Bolt 27 N·m (20 ft. lbs.)
Bucket Seat to Floor Pan Nut 40 N·m (30 ft. lbs.)
Front Door Hinge Bolts 3 N·m (2 ft. lbs.)
Front Door Latch Screw 11 N·m (8 ft. lbs.)
Front Door Latch Striker Screw 28 N·m
(20 ft. lbs.)
Front Seat Belt Anchor Bolt 43 N·m (32 ft. lbs.)
Front Retractor Anchor Bolt 43 N·m (32 ft. lbs.)
Front Seat Belt Buckle Anchor Bolt 43 N·m
(32 ft. lbs.)
GOP to Support Bracket Nut 4 N·m (38 in. lbs.)
GOP to Fender Nut 4 N·m (38 in. lbs.)
Liftgate Hinge to Body and/or Liftgate
Bolt
Liftgate Latch Screw 13 N·m (9 ft. lbs.)
Liftgate Latch Striker Nut 54 N·m (40 ft. lbs.)

DESCRIPTION TOR	QUE
Rear Door Hinge Bolt 3 N·m (2 ft.	lbs.)
Rear Door Latch Screw 11 N·m (8 ft.	lbs.)
Rear Door Latch Striker Screw 28	N⋅m
(20 ft.	lbs.)
Rear Shoulder Belt Lower Anchor Bolt 43	N⋅m
(32 ft.	lbs.)
Rear Seatback Pivot Bolt 33 N·m (25 ft.	lbs.)
Rear Seat Belt/Buckle Anchor Bolt 43	N⋅m
(32 ft.	lbs.)
Rear Shoulder Belt Upper Anchor Bolt 43	N⋅m
(32 ft.	lbs.)

23 - 126 BODY — XJ

SPECIAL TOOLS

BODY

Remover, Moldings C-4829

HEATING AND AIR CONDITIONING

CONTENTS

page	Ρ	age
GENERAL INFORMATION HEATER AND AIR CONDITIONER CONTROL 2	HEATER PERFORMANCE	
HEATER AND AIR CONDITIONER CONTROL 2	LOW PRESSURE CYCLING	20
SERVICE WARNINGS AND PRECAUTIONS 3	CLUTCH SWITCH	20
DESCRIPTION AND OPERATION	REFRIGERANT SYSTEM LEAKS	20
ACCUMULATOR 4		
ACCUMULATOR DELAY	VACUUM SYSTEM	14
BLOWER MOTOR RELAY 5	SERVICE PROCEDURES REFRIGERANT OIL LEVEL	04
BLOWER MOTOR RESISTOR 5	REFRIGERANT DECOVERY	21
BLOWER MOTOR SWITCH 5	REFRIGERANT RECOVERY	
BLOWER MOTOR 4	REFRIGERANT SYSTEM CHARGE	
COMPRESSOR CLUTCH RELAY 6	REFRIGERANT SYSTEM EVACUATE	21
COMPRESSOR CLUTCH 6	REMOVAL AND INSTALLATION	
COMPRESSOR 5	ACCUMULATOR	32
CONDENSER	BLOWER MOTOR RELAY	
EVAPORATOR COIL	BLOWER MOTOR RESISTOR	
FIXED ORIFICE TUBE	BLOWER MOTOR	
HEATER CORE	COMPRESSOR CLUTCH RELAY	
HIGH PRESSURE CUT-OFF SWITCH 7	COMPRESSOR CLUTCH	
HIGH PRESSURE RELIEF VALVE 7	COMPRESSOR	
LOW PRESSURE CYCLING CLUTCH SWITCH . 7	CONDENSER	
REFRIGERANT LINE COUPLER 8	DUCTS AND OUTLETS	
REFRIGERANT LINE 7	EVAPORATOR COIL	
REFRIGERANT OIL 8	FIXED ORIFICE TUBE	
REFRIGERANT SYSTEM SERVICE	HEATER CORE	
EQUIPMENT 8	HEATER-A/C CONTROL	
REFRIGERANT SYSTEM SERVICE PORT 8	HEATER-A/C HOUSING DOOR	
REFRIGERANT 7	HEATER-A/C HOUSING	
VACUUM CHECK VALVE 9	HIGH PRESSURE CUT-OFF SWITCH	
VACUUM RESERVOIR 9	KICK COVER	
DIAGNOSIS AND TESTING	LIQUID LINE	29
A/C PERFORMANCE 9	LOW PRESSURE CYCLING	
BLOWER MOTOR RELAY 15	CLUTCH SWITCH	
BLOWER MOTOR RESISTOR 18	MODE DOOR VACUUM ACTUATOR	
BLOWER MOTOR SWITCH 18	REFRIGERANT LINE COUPLER	
BLOWER MOTOR	SUCTION AND DISCHARGE LINE	
COMPRESSOR CLUTCH COIL 19	TEMPERATURE CONTROL CABLE	
COMPRESSOR CLUTCH RELAY 19	VACUUM CHECK VALVE	
COMPRESSOR 19	VACUUM RESERVOIR	34

GENERAL INFORMATION

HEATER AND AIR CONDITIONER

All vehicles are equipped with a common heater-A/C housing assembly (Fig. 1). The system combines air conditioning, heating, and ventilating capabilities in a single unit housing mounted under the instrument panel. On heater-only systems, the evaporator coil and recirculating air door are omitted from the housing.

Fig. 1 Common Blend-Air Heater-Air Conditioner
System - Typical

Outside fresh air enters the vehicle through the cowl top opening at the base of the windshield, and passes through a plenum chamber to the heater-A/C system blower housing. Air flow velocity can then be adjusted with the blower motor speed selector switch on the heater-A/C control panel. The air intake openings must be kept free of snow, ice, leaves, and other obstructions for the heater-A/C system to receive a sufficient volume of outside air.

The heater and optional air conditioner are blendair type systems. In a blend-air system, a blend-air door controls the amount of unconditioned air (or cooled air from the evaporator on models with air conditioning) is allowed to flow through, or around, the heater core. A temperature control lever on the heater-A/C control panel determines the discharge air temperature by moving a cable, which operates the blend-air door. This allows an almost immediate manual control of the output air temperature of the system.

The mode control knob on the heater-A/C control panel is used to direct the conditioned air to the selected system outlets. Both mode control switches

use engine vacuum to control the mode doors through vacuum actuator motors.

On air conditioned vehicles, the outside air intake can be shut off by selecting the Recirculation Mode with the mode control knob. This will open a vacuum actuated recirculating air door and recirculate the air that is already inside the vehicle.

The optional air conditioner for all models is designed for the use of non-CFC, R-134a refrigerant. The air conditioning system has an evaporator to cool and dehumidify the incoming air prior to blending it with the heated air. This system uses a fixed orifice tube in the liquid line near the condenser outlet tube to meter refrigerant flow to the evaporator coil. To maintain minimum evaporator temperature, a fixed pressure setting switch on the accumulator cycles the compressor clutch.

NOTE: This group covers both Left-Hand Drive (LHD) and Right-Hand Drive (RHD) versions of this model. Whenever required and feasible, the RHD versions of affected vehicle components have been constructed as mirror-image of the LHD versions. While most of the illustrations used in this group represent only the LHD version, the diagnostic and service procedures outlined can generally be applied to either version. Exceptions to this rule have been clearly identified as LHD or RHD, if a special illustration or procedure is required.

HEATER AND AIR CONDITIONER CONTROL

Both the heater-only and heater-A/C systems use a combination of mechanical, electrical, and vacuum controls. These controls provide the vehicle operator with a number of setting options to help control the climate and comfort within the vehicle. Refer to the owner's manual for more information on the suggested operation and use of these controls.

The heater-only or heater-A/C control panel is located to the right of the instrument cluster on the instrument panel. The control panel contains a rotating-type temperature control knob, a rotating-type mode control switch knob, and a rotating-type blower motor switch knob.

The heater-only or heater-A/C control panel cannot be repaired. If faulty or damaged, the entire unit must be replaced.

GENERAL INFORMATION (Continued)

SERVICE WARNINGS AND PRECAUTIONS

WARNING:

- THE AIR CONDITIONING SYSTEM CONTAINS REFRIGERANT UNDER HIGH PRESSURE. SEVERE PERSONAL INJURY MAY RESULT FROM IMPROPER SERVICE PROCEDURES. REPAIRS SHOULD ONLY BE PERFORMED BY QUALIFIED SERVICE PERSONNEL.
- AVOID BREATHING THE REFRIGERANT AND REFRIGERANT OIL VAPOR OR MIST. EXPOSURE MAY IRRITATE THE EYES, NOSE, AND/OR THROAT. WEAR EYE PROTECTION WHEN SERVICING THE AIR CONDITIONING REFRIGERANT SYSTEM. SERIOUS EYE INJURY CAN RESULT FROM DIRECT CONTACT WITH THE REFRIGERANT. IF EYE CONTACT OCCURS, SEEK MEDICAL ATTENTION IMMEDIATELY.
- DO NOT EXPOSE THE REFRIGERANT TO OPEN FLAME. POISONOUS GAS IS CREATED WHEN REFRIGERANT IS BURNED. AN ELECTRONIC LEAK DETECTOR IS RECOMMENDED.
- IF ACCIDENTAL SYSTEM DISCHARGE OCCURS, VENTILATE THE WORK AREA BEFORE RESUMING SERVICE. LARGE AMOUNTS OF REFRIGERANT RELEASED IN A CLOSED WORK AREA WILL DISPLACE THE OXYGEN AND CAUSE SUFFOCATION.
- THE EVAPORATION RATE OF R-134a REFRIGERANT AT AVERAGE TEMPERATURE AND ALTITUDE IS EXTREMELY HIGH. AS A RESULT, ANYTHING THAT COMES IN CONTACT WITH THE REFRIGERANT WILL FREEZE. ALWAYS PROTECT THE SKIN OR DELICATE OBJECTS FROM DIRECT CONTACT WITH THE REFRIGERANT.
- THE R-134a SERVICE EQUIPMENT OR THE VEHICLE REFRIGERANT SYSTEM SHOULD NOT BE PRESSURE TESTED OR LEAK TESTED WITH COMPRESSED AIR. SOME MIXTURES OF AIR AND R-134a HAVE BEEN SHOWN TO BE COMBUSTIBLE AT ELEVATED PRESSURES. THESE MIXTURES ARE POTENTIALLY DANGEROUS, AND MAY RESULT IN FIRE OR EXPLOSION CAUSING INJURY OR PROPERTY DAMAGE.

CAUTION:

- Liquid refrigerant is corrosive to metal surfaces. Follow the operating instructions supplied with the service equipment being used.
- Never add R-12 to a refrigerant system designed to use R-134a. Damage to the system will result.
- R-12 refrigerant oil must not be mixed with R-134a refrigerant oil. They are not compatible.
- Do not use R-12 equipment or parts on the R-134a system. Damage to the system will result.

• Do not overcharge the refrigerant system. This will cause excessive compressor head pressure and can cause noise and system failure.

In addition to the warnings and cautions listed above, the following precautions must also be observed whenever servicing the air conditioning system:

- Recover the refrigerant before opening any fitting or connection. Open the fittings with caution, even after the system has been discharged. Never open or loosen a connection before recovering the refrigerant.
- The refrigerant system must always be evacuated before charging.
- Do not open the refrigerant system or uncap a replacement component until you are ready to service the system. This will prevent contamination in the system.
- Before disconnecting a component, clean the outside of the fittings thoroughly to prevent contamination from entering the refrigerant system.
- Immediately after disconnecting a component from the refrigerant system, seal the open fittings with a cap or plug.
- Before connecting an open refrigerant fitting, always install a new seal or gasket. Coat the fitting and seal with clean refrigerant oil before connecting.
- Do not remove the sealing caps from a replacement component until it is to be installed.
- When installing a refrigerant line, avoid sharp bends that may restrict refrigerant flow. Position the refrigerant lines away from exhaust system components or any sharp edges, which may damage the line.
- Tighten refrigerant fittings only to the specified torque. The aluminum fittings used in the refrigerant system will not tolerate overtightening.
- When disconnecting a refrigerant fitting, use a wrench on both halves of the fitting. This will prevent twisting of the refrigerant lines or tubes.
- Refrigerant oil will absorb moisture from the atmosphere if left uncapped. Do not open a container of refrigerant oil until you are ready to use it. Replace the cap on the oil container immediately after using. Store refrigerant oil only in a clean, airtight, and moisture-free container.
- Keep service tools and the work area clean. Contamination of the refrigerant system through careless work habits must be avoided.

COOLING SYSTEM REQUIREMENTS

To maintain the performance level of the heatingair conditioning system, the engine cooling system must be properly maintained.

The use of a bug screen is not recommended. Any obstructions in front of the radiator or condenser will reduce the performance of the air conditioning and engine cooling systems.

GENERAL INFORMATION (Continued)

COOLANT PRECAUTIONS

WARNING:

- ANTIFREEZE IS AN ETHYLENE GLYCOL BASED COOLANT AND IS HARMFUL IF SWALLOWED OR INHALED. IF SWALLOWED, DRINK TWO GLASSES OF WATER AND INDUCE VOMITING. IF INHALED, MOVE TO A FRESH AIR AREA. SEEK MEDICAL ATTENTION IMMEDIATELY.
- WASH THE SKIN AND CLOTHING THOR-OUGHLY AFTER COMING IN CONTACT WITH ETH-YLENE GLYCOL.
- KEEP OUT OF THE REACH OF CHILDREN AND PETS.
- DO NOT OPEN A COOLING SYSTEM WHEN THE ENGINE IS AT OPERATING TEMPERATURE. PERSONAL INJURY MAY RESULT.
- DO NOT STORE ENGINE COOLANT IN OPEN OR UNMARKED CONTAINERS.
- HOT ENGINE COOLANT CAN CAUSE SEVERE BURNS. DO NOT OPEN THE RADIATOR DRAIN COCK WHEN THE COOLING SYSTEM IS HOT AND PRESSURIZED. ALLOW THE COOLANT TO REACH TO ROOM TEMPERATURE BEFORE STARTING REPAIR OPERATIONS.

The engine cooling system is designed to develop internal pressures of 97 to 124 kPa (14 to 18 psi). Allow the vehicle 15 minutes to cool down, or wait until a safe temperature and pressure are attained, before opening the cooling system. Refer to Group 7 - Cooling System for more information.

REFRIGERANT HOSES/LINES/TUBES PRECAUTIONS

Kinks or sharp bends in the refrigerant plumbing will reduce the capacity of the entire system. High pressures are produced in the system when it is operating. Extreme care must be exercised to make sure that all refrigerant system connections are pressure tight.

A good rule for the flexible hose refrigerant lines is to keep the radius of all bends at least ten times the diameter of the hose. Sharp bends will reduce the flow of refrigerant. The flexible hose lines should be routed so they are at least 80 mm (3 inches) from the exhaust manifold. It is a good practice to inspect all flexible refrigerant system hose lines at least once a year to make sure they are in good condition and properly routed.

There are two types of refrigerant fittings:

- All fittings with O-rings need to be coated with refrigerant oil before installation. Use only O-rings approved for use with R-134a refrigerant. Failure to do so may result in a leak.
- Unified plumbing connections with aluminum gaskets cannot be serviced with O-rings. The gaskets

are not reusable and new gaskets do not require lubrication before installing.

Using the proper tools when making a refrigerant plumbing connection is very important. Improper tools or improper use of the tools can damage the refrigerant fittings. Always use two wrenches when loosening or tightening tube fittings. Use one wrench to hold one side of the connection stationary, while loosening or tightening the other side of the connection with a second wrench.

The refrigerant must be recovered completely from the system before opening any fitting or connection. Open the fittings with caution, even after the refrigerant has been recovered. If any pressure is noticed as a fitting is loosened, tighten the fitting and recover the refrigerant from the system again.

Do not discharge refrigerant into the atmosphere. Use an R-134a refrigerant recovery/recycling device that meets SAE Standard J2210.

The refrigerant system will remain chemically stable as long as pure, moisture-free R-134a refrigerant and refrigerant oil is used. Dirt, moisture, or air can upset this chemical stability. Operational troubles or serious damage can occur if foreign material is present in the refrigerant system.

When it is necessary to open the refrigerant system, have everything needed to service the system ready. The refrigerant system should not be left open to the atmosphere any longer than necessary. Cap or plug all lines and fittings as soon as they are opened to prevent the entrance of dirt and moisture. All lines and components in parts stock should be capped or sealed until they are to be installed.

All tools, including the refrigerant recycling equipment, the manifold gauge set, and test hoses should be kept clean and dry. All tools and equipment must be designed for R-134a refrigerant.

DESCRIPTION AND OPERATION

ACCUMULATOR

The accumulator is mounted in the engine compartment between the evaporator coil outlet tube and the compressor inlet. Refrigerant enters the accumulator canister as a low pressure vapor through the inlet tube.

Any liquid, oil-laden refrigerant falls to the bottom of the canister, which acts as a separator. A desiccant bag is mounted inside the accumulator canister to absorb any moisture which may have entered and become trapped in the refrigerant system (Fig. 2).

BLOWER MOTOR

The blower motor and blower wheel are located in the passenger side end of the heater-A/C housing, below the glove box. The blower motor controls the

Fig. 2 Accumulator - Typical

velocity of air flowing through the heater-A/C housing by spinning a squirrel cage-type blower wheel within the housing at the selected speed. The blower motor and wheel can be removed from the engine compartment side of the housing without heater-A/C housing removal.

The blower motor will only operate when the ignition switch is in the On position, and the heater-A/C mode control switch knob is in any position, except Off. The blower motor receives a fused battery feed through the blower motor relay whenever the ignition switch is in the On position. The blower motor battery feed circuit is protected by a fuse in the Power Distribution Center (PDC). Blower motor speed is controlled by regulating the ground path through the heater-A/C control blower motor switch and the blower motor resistor.

The blower motor and blower motor wheel cannot be repaired and, if faulty, they must be replaced. The blower motor and blower wheel are serviced only as a unit.

BLOWER MOTOR RELAY

The blower motor relay is a International Standards Organization (ISO)-type relay. The relay is a electromechanical device that switches battery current from a fuse in the Power Distribution Center

(PDC) directly to the blower motor. The relay is energized when the relay coil is provided a voltage signal by the ignition switch. See the Diagnosis and Testing section of this group for more information on the operation of the blower motor relay.

The blower motor relay is located in a wire harness connector that is secured to the heater-A/C housing behind the glove box on the passenger side of the vehicle, next to the heater-A/C wire harness connector in the passenger compartment.

The blower motor relay cannot be repaired and, if faulty or damaged, it must be replaced.

BLOWER MOTOR RESISTOR

The blower motor resistor is mounted to the bottom of the heater-A/C housing on the passenger side of the vehicle under the instrument panel. It can be accessed for service by removing the heater-A/C housing kick cover.

The resistor has multiple resistor wires, each of which reduce the current flow to the blower motor by changing the resistance in the blower motor ground path. The blower motor switch directs the ground path through the correct resistor wire to obtain the selected speed. When the highest blower speed is selected, the blower motor switch connects the blower motor directly to ground, bypassing the blower motor resistor.

The blower motor resistor cannot be repaired and, if faulty, it must be replaced.

BLOWER MOTOR SWITCH

The heater or heater-A/C blower motor is controlled by a four position rotary-type blower motor switch, mounted in the heater-A/C control panel. The switch allows the selection of one of four blower motor speeds, but can only be turned off by selecting the Off position with the heater-A/C mode control switch knob.

The blower motor switch directs the blower motor ground path through the mode control switch to the blower motor resistor, or directly to ground, as required to achieve the selected blower motor speed.

The blower motor switch cannot be repaired and, if faulty or damaged, the entire heater-A/C control panel must be replaced.

COMPRESSOR

The air conditioning system uses a Sanden SD7H15 fixed displacement compressor on all models. A label identifying the use of R-134a refrigerant is located on the compressor. The purpose of the compressor is to compress the low-pressure refrigerant vapor from the evaporator into a high-pressure, high-temperature vapor. The compressor is serviced only as an assembly.

COMPRESSOR CLUTCH

The compressor clutch assembly consists of a stationary electromagnetic coil, a hub bearing and pulley assembly, and a clutch plate (Fig. 3). The electromagnetic coil and pulley are retained on the compressor with snap rings. The clutch plate is mounted on the compressor shaft and secured with a nut.

J9524-33

Fig. 3 Compressor Clutch

These components provide the means to engage and disengage the compressor from the engine serpentine accessory drive belt. When the clutch coil is energized, it magnetically draws the clutch into contact with the pulley and drives the compressor shaft. When the coil is not energized, the pulley freewheels on the clutch hub bearing, which is part of the pulley. The compressor clutch and coil are the only serviced parts on the compressor.

The compressor clutch is controlled by several components: the heater-A/C mode control switch, the low pressure cycling clutch switch, the high pressure cutoff switch, the compressor clutch relay, and the Powertrain Control Module (PCM). The PCM may delay compressor clutch engagement for up to 30 seconds. Refer to Group 14 - Fuel System for more information on the PCM controls.

COMPRESSOR CLUTCH RELAY

The compressor clutch relay is a International Standards Organization (ISO) micro-relay. The terminal designations and functions are the same as a conventional ISO relay. However, the micro-relay terminal orientation (footprint) is different, current capacity is lower, and the relay case dimensions are smaller than those of the conventional ISO relay.

The compressor clutch relay is a electromechanical device that switches battery current to the compressor clutch coil when the Powertrain Control Module (PCM) grounds the coil side of the relay. The PCM responds to inputs from the heater-A/C mode control switch, the low pressure cycling clutch switch, and

the high pressure cut-off switch. See the Diagnosis and Testing section of this group for more information on the operation of the compressor clutch relay.

The compressor clutch relay is located in the Power Distribution Center (PDC) in the engine compartment. Refer to the PDC label for relay identification and location.

The compressor clutch relay cannot be repaired and, if faulty or damaged, it must be replaced.

CONDENSER

The condenser is located in front of the engine cooling radiator. It is a heat exchanger that allows the high-pressure refrigerant gas to give up its heat to the air passing over the condenser fins. This causes the refrigerant gas to condense into a high-pressure liquid refrigerant.

The condenser cannot be repaired and, if faulty or damaged, it must be replaced.

EVAPORATOR COIL

The evaporator coil is located in the heater-A/C housing, under the instrument panel. Refrigerant enters the evaporator as a low-temperature, low-pressure liquid. As air passes over the fins of the evaporator, the humidity in the air condenses on the fins, and the heat from the air is absorbed by the refrigerant. Heat absorption causes the refrigerant to become a low-pressure gas before it leaves the evaporator.

The evaporator coil cannot be repaired and, if faulty or damaged, it must be replaced.

FIXED ORIFICE TUBE

The fixed orifice tube is installed in the liquid line between the outlet tube of the condenser and the inlet tube of the evaporator. The fixed orifice tube is located in the end of the liquid line or liquid line jumper that connects to the condenser outlet tube.

The inlet and outlet ends of the tube have a screen to filter the refrigerant. O-rings on the tube body prevent the refrigerant from bypassing the fixed orifice. The fixed orifice tube is used to meter the flow of liquid refrigerant into the evaporator coil.

The fixed orifice tube cannot be repaired and, if faulty or plugged, the liquid line or liquid line jumper containing the fixed orifice tube must be replaced.

HEATER CORE

The heater core is located in the heater-A/C housing, under the instrument panel. It is a heat exchanger made of rows of tubes and fins. Engine coolant is circulated through heater hoses to the heater core at all times. As the coolant flows through

the heater core, heat removed from the engine is transferred to the heater core fins and tubes.

Air directed through the heater core picks up the heat from the heater core fins. The blend air door allows control of the heater output air temperature by controlling how much of the air flowing through the heater-A/C housing is directed through the heater core. The blower motor speed controls the amount of air flowing through the heater-A/C housing.

The heater core cannot be repaired and, if faulty or damaged, it must be replaced.

HIGH PRESSURE CUT-OFF SWITCH

The high pressure cut-off switch is located on the discharge line between the compressor and the condenser inlet. This switch is connected in series with the low pressure cycling clutch switch between ground and the Powertrain Control Module (PCM). The switch contacts open and close causing the PCM to turn the compressor clutch on and off. This prevents compressor operation when the discharge line pressure approaches high levels.

The high pressure cut-off switch contacts are open when the discharge line pressure rises above 3100 to 3375 kPa (450 to 490 psi). The switch contacts will close when the discharge line pressure drops to 1860 to 2275 kPa (270 to 330 psi).

The high pressure cut-off switch is a factory-calibrated unit. The switch cannot be adjusted or repaired and, if faulty or damaged, it must be replaced.

HIGH PRESSURE RELIEF VALVE

The high pressure relief valve is located on the compressor. The valve is used to prevent excessive refrigerant system pressure. The valve vents the system when a pressure of 3445 to 4135 kPa (500 to 600 psi), and above, is reached. This prevents damage to the compressor and other system components due to condenser air flow being restricted or an overcharge of refrigerant. The valve closes with a minimum pressure of 2756 kPa (400 psi).

The high pressure relief valve vents only enough refrigerant to reduce system pressure, and then re-seats itself. The majority of the refrigerant is conserved in the system. If the valve vents refrigerant, it does not mean the valve is faulty. The valve is part of the compressor assembly and must not be removed or otherwise disturbed.

LOW PRESSURE CYCLING CLUTCH SWITCH

The low pressure cycling clutch switch is mounted on top of the accumulator. The switch is connected in series with the high pressure cut-off switch, between ground and the Powertrain Control Module (PCM). The switch contacts open and close causing the PCM to turn the compressor clutch on and off. This regulates the system pressure and controls evaporator temperature. Controlling evaporator temperature prevents condensate water on the evaporator fins from freezing and obstructing air conditioning system air flow.

The low pressure cycling clutch switch contacts are open when the suction pressure is approximately 141 kPa (20.5 psi) or lower. The switch contacts will close when the suction pressure rises to approximately 234 to 262 kPa (34 to 38 psi) or above. Lower ambient temperatures, below approximately -1°C (30°F) during cold weather will also open the switch contacts. This is due to the pressure/temperature relationship of the refrigerant in the system.

The low pressure cycling clutch switch is a factorycalibrated unit. It cannot be adjusted or repaired and, if faulty or damaged, it must be replaced.

REFRIGERANT

The R-134a refrigerant used in this air conditioning system is a non-toxic, non-flammable, clear, and colorless liquefied gas. R-134a refrigerant is not compatible with R-12 refrigerant in an air conditioning system.

Even a small amount of R-12 added to a R-134a refrigerant system, will cause compressor failure, refrigerant oil sludge, or poor air conditioning system performance. The refrigerant system service ports have been designed to ensure that the system is not accidentally filled with the wrong refrigerant (R-12).

REFRIGERANT LINE

The refrigerant lines are used to carry the refrigerant between the various air conditioning system components. A barrier hose design is used for the air conditioning system on this vehicle. The ends of the refrigerant hoses are made from lightweight aluminum, and use braze-less fittings.

Kinks or sharp bends in the refrigerant plumbing will reduce the capacity of the entire system. High pressures are produced in the system when it is operating. Extreme care must be exercised to make sure that all refrigerant system connections are pressure tight.

A good rule for the flexible hose refrigerant lines is to keep the radius of all bends at least ten times the diameter of the hose. Sharp bends will reduce the flow of refrigerant. The flexible hose lines should be routed so they are at least 80 mm (3 inches) from the exhaust manifold. It is a good practice to inspect all flexible refrigerant system hose lines at least once a year to make sure they are in good condition and properly routed.

The refrigerant lines and hoses cannot be repaired and, if faulty or damaged, they must be replaced.

REFRIGERANT LINE COUPLER

Spring-locking refrigerant line couplers are used to connect refrigerant lines and other components to the refrigerant system. The coupling is held together by a garter spring inside a circular cage.

When the coupling halves are connected, the flared end of the female fitting slips behind the garter spring inside the cage of the male fitting. The garter spring and cage prevent the flared end of the female fitting from pulling out of the cage. Secondary clips are installed over the coupling at the factory for added blowoff protection.

O-rings are used to seal the coupling. These O-rings are compatible with R-134a refrigerant and must be replaced with O-rings made of the same material.

REFRIGERANT OIL

The oil used in the SD7H15 compressor is a polyalkylene glycol, synthetic (SP-20 PAG), wax-free refrigerant oil. Use only refrigerant oil of the same type to service the system.

Refrigerant oil will absorb any moisture it comes in contact with, even moisture in the air. The oil container should be kept tightly capped until it is ready to be used. Then, cap the oil immediately after using, to prevent contamination.

REFRIGERANT SYSTEM SERVICE EQUIPMENT

WARNING: EYE PROTECTION MUST BE WORN WHEN SERVICING AN AIR CONDITIONING REFRIGERANT SYSTEM. TURN OFF (ROTATE CLOCKWISE) ALL VALVES ON THE EQUIPMENT BEING USED, BEFORE CONNECTING TO OR DISCONNECTING FROM THE REFRIGERANT SYSTEM. FAILURE TO OBSERVE THESE WARNINGS MAY RESULT IN PERSONAL INJURY.

When servicing the air conditioning system, a refrigerant charging station and a recovery/recycling device for R-134a must be used. This device must meet SAE Standard J2210. Contact an automotive service equipment supplier for refrigerant charging and recycling/recovering equipment. Refer to the operating instructions provided with the equipment for proper operation.

A manifold gauge set may be needed with some charging and/or recovery/recycling devices (Fig. 4). The service hoses on the gauge set being used should have manual (turn wheel), or automatic back-flow valves at the service port connector ends. This will prevent refrigerant from being released into the atmosphere.

MANIFOLD GAUGE SET CONNECTIONS

CAUTION: Do not use an R-12 manifold gauge set on an R-134a system. The refrigerants are not compatible and system damage will result.

LOW PRESSURE GAUGE HOSE

The low pressure hose (Blue with Black stripe) attaches to the suction service port. This port is located on the suction line between the accumulator outlet and the compressor.

HIGH PRESSURE GAUGE HOSE

The high pressure hose (Red with Black stripe) attaches to the discharge service port. This port is located on the discharge line between the compressor and the condenser inlet.

RECOVERY/RECYCLING/EVACUATION/CHARGING HOSE

The center manifold hose (Yellow, or White, with Black stripe) is used to recover, evacuate, and charge the refrigerant system. When the low or high pressure valves on the manifold gauge set are opened, the refrigerant in the system will escape through this hose.

REFRIGERANT SYSTEM SERVICE PORT

The two refrigerant system service ports are used to charge, recover/recycle, evacuate, and test the air conditioning refrigerant system. Unique service port coupler sizes are used on the R-134a system, to ensure that the refrigerant system is not accidentally contaminated by the use of the wrong refrigerant (R-12), or refrigerant system service equipment.

DESCRIPTION AND OPERATION (Continued)

The high pressure service port is located on the discharge line, between the compressor and the condenser inlet. The low pressure service port is located on the suction line, between the accumulator outlet and the compressor. After servicing the refrigerant system, always reinstall the service port caps.

VACUUM CHECK VALVE

A one-way vacuum check valve is installed in the accessory vacuum supply line near the vacuum tap on the engine intake manifold in the engine compartment. This check valve helps to maintain the system vacuum needed to retain the selected heater-A/C mode settings by preventing the engine from bleeding down system vacuum through the intake manifold during extended heavy engine load (low engine vacuum) operation.

The vacuum check valve cannot be repaired and, if faulty or damaged, it must be replaced.

VACUUM RESERVOIR

The vacuum reservoir is mounted to the front bumper bar behind the passenger side bumper end cap. Vacuum stored in the reservoir is used to operate the vacuum-controlled vehicle accessories during periods of low engine vacuum, such as when the vehicle is climbing a steep grade or under other high engine load operating conditions.

The vacuum reservoir cannot be repaired and, if faulty or damaged, it must be replaced.

DIAGNOSIS AND TESTING

A/C PERFORMANCE

The air conditioning system is designed to provide the passenger compartment with low temperature and low humidity air. The evaporator, located in the heater-A/C housing on the dash panel below the instrument panel, is cooled to temperatures near the freezing point. As warm damp air passes over the fins in the evaporator, the air is cooled and the moisture is removed as it condenses on the fins. During periods of high heat and humidity, an air conditioning system will be more effective in the Recirculation Mode. With the system in the Recirculation Mode, only air from the passenger compartment passes through the evaporator. As the passenger compartment air dehumidifies, the air conditioning system performance levels improve.

Humidity has an important bearing on the temperature of the air delivered to the interior of the vehicle. It is important to understand the effect that humidity has on the performance of the air conditioning system. When humidity is high, the evaporator has to perform a double duty. It must lower the air temperature, and it must lower the temperature of

the moisture in the air that condenses on the evaporator fins. Condensing the moisture in the air transfers heat energy into the evaporator fins and tubing. This reduces the amount of heat the evaporator can absorb from the air. High humidity greatly reduces the ability of the evaporator to lower the temperature of the air.

However, evaporator capacity used to reduce the amount of moisture in the air is not wasted. Wringing some of the moisture out of the air entering the vehicle adds to the comfort of the passengers. Although, an owner may expect too much from their air conditioning system on humid days. A performance test is the best way to determine whether the system is performing up to standard. This test also provides valuable clues as to the possible cause of trouble with the air conditioning system.

Review the Service Warnings and Precautions in the front of this group before performing this procedure. The air temperature in the test room and in the vehicle must be a minimum of 21°C (70°F) for this test.

- (1) Connect a tachometer and a manifold gauge set.
- (2) Set the heater-A/C mode control switch knob in the Recirculation Mode position, the temperature control knob in the full cool position, and the blower motor switch knob in the highest speed position.
- (3) Start the engine and hold the idle at 1,000 rpm with the compressor clutch engaged.
- (4) The engine should be at operating temperature. The doors and windows must be open.
- (5) Insert a thermometer in the driver side center A/C (panel) outlet. Operate the engine for five minutes.
- (6) The compressor clutch may cycle, depending upon the ambient temperature and humidity. If the clutch cycles, unplug the low pressure cycling clutch switch wire harness connector from the switch located on the accumulator (Fig. 5). Place a jumper wire across the terminals of the low pressure cycling clutch switch wire harness connector.

Fig. 5 Low Pressure Cycling Clutch Switch

- (7) With the compressor clutch engaged, record the discharge air temperature and the compressor discharge pressure.
 - (8) Compare the discharge air temperature to the
- Performance Temperature and Pressure chart (Fig. 6). If the discharge air temperature is high, see Refrigerant System Leaks and Refrigerant System Charge in this group.
- (9) Compare the compressor discharge pressure to the Performance Temperature and Pressure chart. If the compressor discharge pressure is high, see the Pressure Diagnosis chart

Ambient Temperature	21°C (70°F)	27°C (80°F)	32°C (90°F)	38°C (100°F)	43°C (110°F)
Air Temperature at Center Panel Outlet	-3 to 3°C (27-38°F)	1 to 7°C (33-44°F)	3 to 9°C (37-48°F)	6 to 13°C (43-55°F)	10 to 18°C (50-64°F)
Evaporator Inlet Pressure at Charge Port	179-241 kPa (26-35 psi)	221-283 kPa (32-41 psi)	262-324 kPa (38-47 psi)	303-365 kPa (44-53 psi)	345-414 kPa (50-60 psi)
Compressor Discharge Pressure	1240-1655 kPa (180-240 psi)	1380-1790 kPa (200-260 psi)	1720-2070 kPa (250-300 psi)	1860-2345 kPa (270-340 psi)	2070-2690 kPa (300-390 psi)

Fig. 6 Performance Temperature and Pressure

Pressure Diagnosis			
Condition	Possible Causes	Correction	
Rapid compressor clutch cycling (ten or more cycles per minute).	Low refrigerant system charge.	1. See Refrigerant System Leaks in this group. Test the refrigerant system for leaks. Repair, evacuate and charge the refrigerant system, if required.	
Equal pressures, but the compressor clutch does not engage.	1. No refrigerant in the refrigerant system. 2. Faulty fuse. 3. Faulty compressor clutch coil. 4. Faulty compressor clutch relay. 5. Improperly installed or faulty low pressure cycling clutch switch. 6. Faulty high pressure cut-off switch. 7. Faulty Powertrain Control Module (PCM).	1. See Refrigerant System Leaks in this group. Test the refrigerant system for leaks. Repair, evacuate and charge the refrigerant system, if required. 2. Check the fuses in the Power Distribution Center and the junction block. Repair the shorted circuit or component and replace the fuses, if required. 3. See Compressor Clutch Coil in this group. Test the compressor clutch coil and replace, if required. 4. See Compressor Clutch Relay in this group. Test the compressor clutch relay and relay circuits. Repair the circuits or replace the relay, if required. 5. See Low Pressure Cycling Clutch Switch in this group. Test the low pressure cycling clutch switch and tighten or replace, if required. 6. See High Pressure Cut-Off Switch in this group. Test the high pressure cut-off switch and replace, if required. 7. Refer to the proper Diagnostic Procedures manual for testing of the PCM. Test the PCM and replace, if required.	
Normal pressures, but A/C Performance Test air temperatures at center panel outlet are too high.	Excessive refrigerant oil in system. Temperature control cable improperly installed or faulty. Blend-air door inoperative or sealing improperly.	1. See Refrigerant Oil Level in this group. Recover the refrigerant from the refrigerant system and inspect the refrigerant oil content. Restore the refrigerant oil to the proper level, if required. 2. See Temperature Control Cable in this group. Inspect the temperature control cable for proper routing and operation and correct, if required. 3. See Blend-Air Door under Heater-A/C Housing Door in this group. Inspect the blend-air door for proper operation and sealing and correct, if required.	

Pressure Diagnosis			
Condition	Possible Causes	Correction	
The low side pressure is normal or slightly low, and the high side pressure is too low.	Low refrigerant system charge. Refrigerant flow through the accumulator is restricted. Refrigerant flow through the evaporator coil is restricted. Faulty compressor.	See Refrigerant System Leaks in this group. Test the refrigerant system for leaks. Repair, evacuate and charge the refrigerant system, if required. See Accumulator in this group. Replace the restricted accumulator, if required. See Evaporator Coil in this group. Replace the restricted evaporator coil, if required. See Compressor in this group. Replace the compressor, if required.	
The low side pressure is normal or slightly high, and the high side pressure is too high.	 Condenser air flow restricted. Inoperative cooling fan. Refrigerant system overcharged. Air in the refrigerant system. Engine overheating. 	1. Check the condenser for damaged fins, foreign objects obstructing air flow through the condenser fins, and missing or improperly installed air seals. Refer to Group 7 - Cooling System for more information on air seals. Clean, repair, or replace components as required. 2. Refer to Group 7 - Cooling System for more information. Test the cooling fan and replace, if required. 3. See Refrigerant System Charge in this group. Recover the refrigerant from the refrigerant system. Charge the refrigerant system to the proper level, if required. 4. See Refrigerant System Leaks in this group. Test the refrigerant system Leaks in this group. Test the refrigerant system, if required. 5. Refer to Group 7 - Cooling System for more information. Test the cooling system and repair, if required.	
The low side pressure is too high, and the high side pressure is too low.	 Accessory drive belt slipping. Fixed orifice tube not installed. Faulty compressor. 	1. Refer to Group 7 - Cooling System for more information. Inspect the accessory drive belt condition and tension. Tighten or replace the accessory drive belt, if required. 2. See Fixed Orifice Tube in this group. Install the missing fixed orifice tube, if required. 3. See Compressor in this group. Replace the compressor, if required.	

Pressure Diagnosis			
Condition	Possible Causes	Correction	
The low side pressure is too low, and the high side pressure is too high.	 Restricted refrigerant flow through the refrigerant lines. Restricted refrigerant flow through the fixed orifice tube. Restricted refrigerant flow through the condenser. 	1. See Liquid Line and Suction and Discharge Line in this group. Inspect the refrigerant lines for kinks, tight bends or improper routing. Correct the routing or replace the refrigerant line, if required. 2. See Fixed Orifice Tube in this group. Replace the restricted fixed orifice tube, if required. 3. See Condenser in this group. Replace the restricted condenser, if required.	

HEATER PERFORMANCE

PREPARATIONS

Review the Service Warnings and Precautions in the front of this group before performing the following procedures.

Check the radiator coolant level, serpentine drive belt tension, and engine vacuum line connections. Also check the radiator air flow and the radiator fan operation. Start the engine and allow it to warm up to normal operating temperature.

WARNING: DO NOT REMOVE THE RADIATOR PRESSURE CAP WHEN THE ENGINE IS AT OPERATING TEMPERATURE, PERSONAL INJURY MAY RESULT.

If the vehicle has been operated recently, wait fifteen minutes or longer before removing the radiator pressure cap. Place a rag over the cap and turn it to the first safety stop. Allow any pressure to escape through the overflow tube. When the system stabilizes, remove the cap completely.

MAXIMUM HEATER OUTPUT

Engine coolant is delivered to the heater core through two heater hoses. With the engine idling at normal operating temperature, set the temperature control knob in the full hot position, the mode control switch knob in the Floor position, and the blower motor switch knob in the highest speed position. Using a test thermometer, check the air temperature coming from the floor outlets, refer to the Temperature Reference chart (Fig. 7).

If the floor outlet air temperature is low, refer to Group 7 - Cooling System for the coolant temperature specifications. Both of the heater hoses should be hot to the touch. The coolant return hose should be slightly cooler than the supply hose. If the coolant

Ambient Temperature		Minimum Heater System Floor Outlet Temperature	
Celsius	Fahrenheit	Celsius	Fahrenheit
15.5°	60°	62.2°	144°
21.1°	70°	63.8°	147°
26.6°	80°	65.5°	150°
32.2°	90°	67.2°	153°

Fig. 7 Temperature Reference

return hose is much cooler than the supply hose, locate and repair the engine coolant flow obstruction in the heater system.

OBSTRUCTED COOLANT FLOW

Possible locations or causes of obstructed coolant flow:

- · Pinched or kinked heater hoses.
- Improper heater hose routing.
- Plugged heater hoses or supply and return ports at the cooling system connections (refer to Group 7 Cooling System).
 - A plugged heater core.

If proper coolant flow through the heater system is verified, and outlet air temperature is still low, a mechanical problem may exist.

MECHANICAL PROBLEMS

Possible locations or causes of insufficient heat:

- An obstructed cowl air intake.
- Obstructed heater system outlets.
- A blend-air door not functioning properly.

TEMPERATURE CONTROL

If the heater discharge air temperature cannot be adjusted with the temperature control knob on the

heater-A/C control panel, the following could require service:

- The heater-A/C control.
- The temperature control cable.
- The blend-air door.
- Improper engine coolant temperature.

VACUUM SYSTEM

Vacuum control is used to operate the mode doors in the heater-A/C housing. Testing of the heater-A/C mode control switch operation will determine if the vacuum, and mechanical controls are functioning. However, it is possible that a vacuum control system that operates perfectly at engine idle (high engine vacuum) may not function properly at high engine speeds or loads (low engine vacuum). This can be caused by leaks in the vacuum system, or a faulty vacuum check valve.

A vacuum system test will help to identify the source of poor vacuum system performance, or locate vacuum system leaks. Before starting this test, stop the engine and make certain that the problem isn't a disconnected vacuum supply tube at the engine intake manifold vacuum tap or the vacuum reservoir.

Use an adjustable vacuum test set (Special Tool C-3707) and a suitable vacuum pump to test the heater-A/C vacuum control system. With a finger placed over the end of the vacuum test hose probe (Fig. 8), adjust the bleed valve on the test set gauge to obtain a vacuum of exactly 27 kPa (8 in. Hg.). Release and block the end of the probe several times to verify that the vacuum reading returns to the exact 27 kPa (8 in. Hg.) setting. Otherwise, a false reading will be obtained during testing.

Fig. 8 Adjust Vacuum Test Bleed Valve

VACUUM CHECK VALVE

(1) Remove the vacuum check valve. The valve is located in the (black) vacuum supply tube at the heat-A/C system vacuum tap.

- (2) Connect the test set vacuum supply hose to the heat-A/C system side of the valve. When connected to this side of the check valve, no vacuum should pass and the test set gauge should return to the 27 kPa (8 in. Hg.) setting. If OK, go to Step 3. If not OK, replace the faulty valve.
- (3) Connect the test set vacuum supply hose to the engine vacuum side of the valve. When connected to this side of the check valve, vacuum should flow through the valve without restriction. If not OK, replace the faulty valve.

HEATER-A/C CONTROLS

- (1) Connect the test set vacuum probe to the heat-A/C system vacuum supply (black) tube at the tee in the engine compartment. Position the test set gauge so that it can be viewed from the passenger compartment.
- (2) Place the heater-A/C mode control switch knob in each mode position, one at a time, and pause after each selection. The test set gauge should return to the 27 kPa (8 in. Hg.) setting shortly after each selection is made. If not OK, a component or vacuum line in the vacuum circuit of the selected mode has a leak. See the procedure in Locating Vacuum Leaks.

CAUTION: Do not use lubricant on the switch ports or in the holes in the plug, as lubricant will ruin the vacuum valve in the switch. A drop of clean water in the connector plug holes will help the connector slide onto the switch ports.

LOCATING VACUUM LEAKS

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect the vacuum harness connector behind the glove box and inboard of the glove box opening on the heater-A/C housing.
- (2) Connect the test set vacuum hose probe to each port in the heater-A/C housing half of the vacuum harness connector, one at a time, and pause after each connection (Fig. 9). The test set gauge should return to the 27 kPa (8 in. Hg.) setting shortly after each connection is made. If OK, replace the faulty heater-A/C control. If not OK, go to Step 3.
- (3) Determine the vacuum line color of the vacuum circuit that is leaking. To determine the vacuum line

Fig. 9 Vacuum Circuit Test

colors, refer to the Vacuum Circuits chart (Fig. 10) or (Fig. 11).

- (4) Disconnect and plug the vacuum line from the component (fitting, actuator, valve, switch, or reservoir) on the other end of the leaking circuit. Instrument panel disassembly or removal may be necessary to gain access to some components. See the service procedures in this group.
- (5) Connect the test set hose or probe to the open end of the leaking circuit. The test set gauge should return to the 27 kPa (8 in. Hg.) setting shortly after each connection is made. If OK, replace the faulty disconnected component. If not OK, go to Step 6.
- (6) To locate a leak in a vacuum line, leave one end of the line plugged and connect the test set hose or probe to the other end. Run your fingers slowly along the line while watching the test set gauge. The vacuum reading will fluctuate when your fingers contact the source of the leak. To repair the vacuum line, cut out the leaking section of the line. Then, insert the loose ends of the line into a suitable length of 3 mm (1/8-inch) inside diameter rubber hose.

BLOWER MOTOR

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

For circuit descriptions and diagrams, refer to 8W-42 - Air Conditioning/Heater in Group 8W - Wir-

ing Diagrams. Possible causes of an inoperative blower motor include:

- Faulty fuse
- Faulty blower motor circuit wiring or wire harness connectors
 - · Faulty blower motor resistor
 - Faulty blower motor relay
 - · Faulty blower motor switch
 - Faulty heater-A/C mode control switch
 - Faulty blower motor.

Possible causes of the blower motor not operating in all speeds include:

- · Faulty fuse
- Faulty blower motor switch
- Faulty blower motor resistor
- Faulty blower motor circuit wiring or wire harness connectors.

VIBRATION

Possible causes of blower motor vibration include:

- Improper blower motor mounting
- Improper blower wheel mounting
- Blower wheel out of balance or bent
- Blower motor faulty.

NOISE

To verify that the blower is the source of the noise, unplug the blower motor wire harness connector and operate the heater-A/C system. If the noise goes away, possible causes include:

- Foreign material in the heater-A/C housing
- Improper blower motor mounting
- Improper blower wheel mounting
- Blower motor faulty.

BLOWER MOTOR RELAY

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

RELAY TEST

The blower motor relay is located in a wire harness connector that is secured to the heater-A/C housing behind the glove box on the passenger side of the vehicle, next to the heater-A/C wire harness connector in the passenger compartment. Remove the relay from its connector to perform the following tests:

(1) A relay in the de-energized position should have continuity between terminals 87A and 30, and

Fig. 10 Vacuum Circuits - Heater Only

VACUUM CIRCUIT LEGEND			
.D.	Function	Color	
Α	Not Used	N/A	
В	Defrost Actuator (Full Position)	Yellow	
С	Floor Actuator	Brown	
D	Defrost Actuator (Mid-Position)	Blue	
Е	Vacuum Supply (Reservoir)	Black	
F	Panel Actuator	Red	
G	Recirculation Actuator	Green	

A/C-BI LEVEL

A/C-RECIRCULATION

80aac2d3

Fig. 11 Vacuum Circuits - Heater-A/C

no continuity between terminals 87 and 30. If OK, go to Step 2. If not OK, replace the faulty relay.

- (2) Resistance between terminals 85 and 86 (electromagnet) should be 75 \pm 5 ohms. If OK, go to Step 3. If not OK, replace the faulty relay.
- (3) Connect a battery to terminals 85 and 86. There should now be continuity between terminals 30 and 87, and no continuity between terminals 87A and 30. If OK, see the Circuit Test in this group. If not OK, replace the faulty relay.

Blower Motor Relay

CIRCUIT TEST

COIL GROUND

NORMALLY OPEN

NORMALLY CLOSED

COIL BATTERY

85

86

87

87A

- (1) The relay common feed terminal cavity (30) is connected to fused battery feed directly from a fuse in the Power Distribution Center (PDC), and should be hot at all times. Check for battery voltage at the connector cavity for relay terminal 30. If OK, go to Step 2. If not OK, repair the open circuit to the PDC as required.
- (2) The relay normally closed terminal cavity (87A) is not used for this application. Go to Step 3.
- (3) The relay normally open terminal cavity (87) is connected to the blower motor. When the relay is energized, terminal 87 is connected to terminal 30 and provides full battery current to the blower motor feed circuit. There should be continuity between the connector cavity for terminal 87 and the blower motor relay output circuit cavity of the blower motor wire harness connector at all times. If OK, go to Step 4. If not OK, repair the open circuit to the blower motor as required.
- (4) The coil battery terminal cavity (86) is connected to the ignition switch. When the ignition switch is placed in the On position, fused ignition switch output is directed from a fuse in the junction block to the relay electromagnetic coil to energize the relay. There should be battery voltage at the connector cavity for relay terminal 86 with the ignition switch in the On position. If OK, go to Step 5. If not

- OK, repair the open circuit to the junction block fuse as required.
- (5) The coil ground terminal cavity (85) is connected to ground. This terminal supplies the ground for the relay electromagnet coil. There should be continuity between the cavity for relay terminal 85 and a good ground at all times. If not OK, repair the open circuit as required.

BLOWER MOTOR RESISTOR

For circuit descriptions and diagrams, refer to 8W-42 - Air Conditioning/Heater in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

To test the blower motor resistor, unplug the resistor wire harness connector. Each blower motor switch input terminal on the resistor must have continuity to the resistor output terminal, which is connected to the circuit going to the blower motor. If the blower motor resistor continuity does not check OK, replace the faulty resistor.

BLOWER MOTOR SWITCH

For circuit descriptions and diagrams, refer to 8W-42 - Air Conditioning/Heater in Group 8W - Wiring Diagrams. The blower motor switch is only serviced as a part of the heater-only or heater-A/C control assembly.

- (1) Turn the ignition switch to the Off position. Remove the heater-A/C control from the instrument panel. Check for continuity between the ground circuit cavity of the control wire harness connector and a good ground. There should be continuity. If OK, go to Step 2. If not OK, repair the open circuit to ground as required.
- (2) With the heater-A/C control wire harness connector unplugged, place the mode control switch knob in any position except the Off position. Check for continuity between the ground circuit terminal and each of the blower motor driver circuit terminals of the control as you move the blower switch to each of the four speed positions. There should be continuity at each driver circuit terminal in only one blower motor switch speed position. If OK, test and repair the blower driver circuits between the control connector and the blower motor resistor as required. If not OK, replace the faulty heater-A/C control unit.

COMPRESSOR

When investigating an air conditioning related noise, you must first know the conditions under which the noise occurs. These conditions include: weather, vehicle speed, transmission in gear or neutral, engine temperature, and any other special conditions.

Noises that develop during air conditioning operation can often be misleading. For example: What sounds like a failed front bearing or connecting rod, may be caused by loose bolts, nuts, mounting brackets, or a loose clutch assembly. Verify serpentine drive belt tension. Improper belt tension can cause a misleading noise when the compressor is engaged. The noise may not occur when the compressor is disengaged.

Drive belts are speed sensitive. At different engine speeds and depending upon belt tension, belts can develop noises that are mistaken for a compressor noise.

- (1) Select a quiet area for testing. Duplicate the complaint conditions as much as possible. Switch the compressor on and off several times to clearly identify the compressor noise. Listen to the compressor clutch while engaged and disengaged.
- (2) To duplicate a high-ambient temperature condition (high head pressure), restrict the air flow through the condenser. Install a manifold gauge set to make sure that the discharge pressure does not exceed 2070 kPa (300 psi).
- (3) Tighten all compressor mounting bolts, the clutch mounting nut, the clutch coil mounting screw or nut, and the serpentine drive belt to the correct specifications.
- (4) Check the refrigerant system plumbing for rubbing or interference, which can cause unusual noises.
- (5) Check the refrigerant system charge. See the Charging Refrigerant System procedure in this group.
 - (6) Check the compressor noise as in Step 1.
- (7) If the noise still exists, loosen the compressor mounting bolts and tighten again. Repeat Step 1.
- (8) If the noise continues, replace the compressor and repeat Step 1.

COMPRESSOR CLUTCH COIL

For circuit descriptions and diagrams, refer to 8W-42 - Air Conditioning/Heater in Group 8W - Wiring Diagrams. The battery must be fully-charged before performing the following tests. Refer to Group 8A - Battery for more information.

(1) Connect an ammeter (0 to 10 ampere scale) in series with the clutch coil terminal. Use a voltmeter (0 to 20 volt scale) with clip-type leads for measuring the voltage across the battery and the compressor clutch coil.

- (2) With the heater-A/C mode control switch in any A/C mode, and the blower motor switch in the lowest speed position, start the engine and run it at normal idle.
- (3) The compressor clutch coil voltage should read within two volts of the battery voltage. If there is voltage at the clutch coil, but the reading is not within two volts of the battery voltage, test the clutch coil feed circuit for excessive voltage drop and repair as required. If there is no voltage reading at the clutch coil, use a DRB scan tool and the proper Diagnostic Procedures manual for testing of the compressor clutch circuit. The following components must be checked and repaired as required before you can complete testing of the clutch coil:
- Fuses in the junction block and the Power Distribution Center (PDC)
 - Heater-A/C mode control switch
 - Compressor clutch relay
 - High pressure cut-off switch
 - Low pressure cycling clutch switch
 - Powertrain Control Module (PCM).
- (4) The compressor clutch coil is acceptable if the current draw measured at the clutch coil is 2.0 to 3.9 amperes with electrical system voltage at 11.5 to 12.5 volts. This should only be checked with the work area temperature at 21 $^{\circ}$ C (70 $^{\circ}$ F). If system voltage is more than 12.5 volts, add electrical loads by turning on electrical accessories until the system voltage drops below 12.5 volts.
 - (a) If the clutch coil current reading is 4 amperes or more, the coil is shorted and should be replaced.
 - (b) If the clutch coil current reading is zero, the coil is open and should be replaced.

COMPRESSOR CLUTCH RELAY

RELAY TEST

For circuit descriptions and diagrams, refer to 8W-42 - Air Conditioning/Heater in Group 8W - Wiring Diagrams.

The compressor clutch relay is located in the Power Distribution Center (PDC). Refer to the PDC label for relay identification and location. Remove the relay from the PDC to perform the following tests:

- (1) A relay in the de-energized position should have continuity between terminals 87A and 30, and no continuity between terminals 87 and 30. If OK, go to Step 2. If not OK, replace the faulty relay.
- (2) Resistance between terminals 85 and 86 (electromagnet) should be 75 \pm 5 ohms. If OK, go to Step 3. If not OK, replace the faulty relay.
- (3) Connect a battery to terminals 85 and 86. There should now be continuity between terminals 30 and 87, and no continuity between terminals 87A

and 30. If OK, see the Relay Circuit Test procedure in this group. If not OK, replace the faulty relay.

9514-16

Compressor Clutch Relay

RELAY CIRCUIT TEST

For circuit descriptions and diagrams, refer to 8W-42 - Air Conditioning/Heater in Group 8W - Wiring Diagrams.

- (1) The relay common feed terminal cavity (30) is connected to fused battery feed. There should be battery voltage at the cavity for relay terminal 30 at all times. If OK, go to Step 2. If not OK, repair the open circuit to the fuse in the PDC as required.
- (2) The relay normally closed terminal (87A) is not used in this application. Go to Step 3.
- (3) The relay normally open terminal cavity (87) is connected to the compressor clutch coil. There should be continuity between this cavity and the A/C compressor clutch relay output circuit cavity of the compressor clutch coil wire harness connector. If OK, go to Step 4. If not OK, repair the open circuit as required.
- (4) The relay coil battery terminal (86) is connected to the fused ignition switch output (run/start) circuit. There should be battery voltage at the cavity for relay terminal 86 with the ignition switch in the On position. If OK, go to Step 5. If not OK, repair the open circuit to the fuse in the junction block as required.
- (5) The coil ground terminal cavity (85) is switched to ground through the Powertrain Control Module (PCM). There should be continuity between this cavity and the A/C compressor clutch relay control circuit cavity of the PCM wire harness connector C (gray) at all times. If not OK, repair the open circuit as required.

HIGH PRESSURE CUT-OFF SWITCH

For circuit descriptions and diagrams, refer to 8W-42 - Air Conditioning/Heater in Group 8W - Wiring Diagrams.

- (1) Verify that the refrigerant system is properly charged.
- (2) Unplug the high pressure switch wire harness connector and test for continuity between the switch terminals. There should be continuity. If OK, refer to the wiring diagrams and repair the A/C request signal circuit as required. If not OK, replace the faulty switch.

LOW PRESSURE CYCLING CLUTCH SWITCH

Before performing diagnosis of the low pressure cycling clutch switch, be certain that the switch is properly installed on the accumulator fitting. The low pressure cycling clutch switch should be hand-tightened onto the fitting. If the switch is too loose it may not open the Schrader-type valve in the accumulator fitting, which will prevent the switch from correctly monitoring the refrigerant system pressure.

Also verify that the refrigerant system has the correct refrigerant charge. See Refrigerant System Charge in this group for more information.

For circuit descriptions and diagrams, refer to 8W-42 - Air Conditioning/Heater in Group 8W - Wiring Diagrams.

- (1) Unplug the low pressure cycling clutch switch wire harness connector from the switch on the accumulator, and install a jumper wire between the two connector cavities.
- (2) Connect a manifold gauge set to the refrigerant system service ports.
- (3) Place the heater-A/C mode control switch knob in any A/C position and start the engine.
- (4) Check the continuity between the two terminals of the low pressure switch. There should be continuity with a suction pressure reading of 296 kPa (43 psi) or above, and no continuity with a suction pressure reading of 172 kPa (25 psi) or below. If OK, test and repair the A/C request signal circuit as required. If not OK, replace the faulty switch.

REFRIGERANT SYSTEM LEAKS

WARNING: REVIEW THE WARNINGS AND CAUTIONS IN THE FRONT OF THIS GROUP BEFORE LEAK TESTING THE SYSTEM.

If the air conditioning system is not cooling properly, determine if the refrigerant system is fully-charged. See A/C Performance in this group. If the refrigerant system is low or empty, a leak at a line, fitting, or component seal is likely. Fittings, lines, or components that appear to be oily indicate a possible refrigerant leak. To detect a leak in the refrigerant system, perform one of the following procedures:

SYSTEM EMPTY

- (1) Evacuate the refrigerant system. See Refrigerant System Evacuate in this group.
- (2) Connect and dispense 0.283 kPa (0.6 lbs. or 10 oz.) of R-134a refrigerant into the evacuated refrigerant system. See Refrigerant System Charge in this group.
- (3) Position the vehicle in a wind-free work area. This will aid in detecting small leaks.
- (4) With the engine not running, use a electronic R-134a leak detector and search for leaks. Move the leak detector probe slowly along the bottom side of all lines and fittings, because R-134a is heavier than air.
- (5) To inspect the evaporator coil for leaks, insert the leak detector probe into the center panel outlet. Set the blower motor switch to the lowest speed position, and the mode control switch in the Recirculation Mode.

SYSTEM LOW

- (1) Position the vehicle in a wind-free work area. This will aid in detecting small leaks.
- (2) Bring the refrigerant system up to operating temperature and pressure. This is done by allowing the engine to run with the air conditioning system on for five minutes.
- (3) With the engine not running, use a electronic R-134a leak detector and search for leaks. Move the leak detector probe slowly along the bottom side of all lines and fittings, because R-134a is heavier than air.
- (4) To inspect the evaporator coil for leaks, insert the leak detector probe into the center panel outlet. Set the blower motor switch to the lowest speed position, and the mode control switch in the Recirculation Mode.

SERVICE PROCEDURES

REFRIGERANT RECOVERY

WARNING: REVIEW THE WARNINGS AND CAUTIONS IN THE FRONT OF THIS GROUP BEFORE RECOVERING REFRIGERANT.

R-134a refrigerant is a hydrofluorocarbon (HFC) that does not contain chlorine. A R-134a refrigerant recovery/recycling station that meets SAE Standard J2210 must be used to recover the refrigerant. Refer to the operating instructions provided with the equipment for proper operation.

REFRIGERANT SYSTEM EVACUATE

WARNING: REVIEW THE WARNINGS AND CAUTIONS IN THE FRONT OF THIS GROUP BEFORE EVACUATING THE SYSTEM.

If the refrigerant system has been open to the atmosphere, it must be evacuated before the system can be charged. Moisture and air mixed with the refrigerant will raise the compressor head pressure above acceptable operating levels. This will reduce the performance of the air conditioner and damage the compressor. Evacuating will boil the moisture out of the refrigerant system at near room temperature. To evacuate the refrigerant system, use the following procedure:

- (1) Connect a suitable charging station and manifold gauge set to the vehicle.
- (2) Open the low and high side valves and start the vacuum pump. When the suction gauge reads 88 kPa (26 in. Hg.) vacuum or greater, close all of the valves and turn off the vacuum pump. If the system fails to reach the specified vacuum, the system has a leak that must be corrected. If the system maintains the specified vacuum for five minutes, restart the vacuum pump. Then open the suction and discharge valves and evacuate an additional ten minutes.
- (3) Close all of the valves. Turn off and disconnect the vacuum pump.
- (4) The refrigerant system is now ready to be charged with refrigerant.

REFRIGERANT SYSTEM CHARGE

WARNING: REVIEW THE WARNINGS AND CAUTIONS IN THE FRONT OF THIS GROUP BEFORE CHARGING THE REFRIGERANT SYSTEM.

After the system has been tested for leaks and evacuated, a refrigerant charge can be injected into the system. See Refrigerant Charge Capacity for the proper amount of the refrigerant charge. Charge the system using a recovery/recycling/charging station approved for R-134a refrigerant. This device must meet SAE Standard J2210. Refer to the instructions provided with the equipment for proper operation.

REFRIGERANT CHARGE CAPACITY

The R-134a system charge capacity is $0.567~\mathrm{kg}$ (1.25 lbs.).

REFRIGERANT OIL LEVEL

When an air conditioning system is assembled at the factory, all components (except the compressor) are refrigerant oil free. After the system has been charged and operated, the oil in the compressor is dispersed through the refrigerant system. The accu-

SERVICE PROCEDURES (Continued)

mulator, evaporator, condenser, and compressor will retain a significant amount of oil.

It is important to have the correct amount of oil in the refrigerant system. This will ensure proper lubrication of the compressor. Too little oil will result in damage to the compressor. Too much oil will reduce the cooling capacity of the system.

It will not be necessary to check the oil level in the compressor or to add oil, unless there has been an oil loss. This may be due to a rupture or leak from a refrigerant line, a compressor shaft seal, an evaporator, or a condenser. If a rupture occurs, add 30 milliliters (1 fluid ounce) of oil to the system after the repair has been made. Oil loss at a leak point will be evident by the presence of a wet, shiny surface around the leak.

Refrigerant oil must be added when a accumulator, evaporator, or condenser are replaced. Refer to the Refrigerant Oil Capacities chart. When a compressor is replaced, the oil must be drained from the old compressor and measured. Drain all the oil from the new compressor, then fill the new compressor with the same amount of oil that was drained out of the old compressor.

Refrigerant Oil Capacities			
Component	ml	oz	
A/C System	240	8.1	
Accumulator	120	4	
Condenser	30	1	
Evaporator	60	2	
Compressor	drain and measure the oil from the old compressor - see text.		

REMOVAL AND INSTALLATION

REFRIGERANT LINE COUPLER

WARNING: REVIEW THE WARNINGS AND CAUTIONS IN THE FRONT OF THIS GROUP BEFORE PERFORMING THE FOLLOWING OPERATION.

REMOVAL

- (1) Recover the refrigerant from the refrigerant system as described in this group.
- (2) Remove the secondary clip from the coupler. Fit the appropriate spring lock refrigerant line coupler tool (Special Tool 7193) to the coupler (Fig. 12).
- (3) Close the tool and push it into the open side of the cage to expand the garter spring and release the female fitting.

NOTE: The garter spring may not release if the tool is cocked while pushing it into the cage opening.

Fig. 12 Spring Lock Coupler Disconnect

- (4) After the garter spring is expanded, pull the fittings apart within the tool.
 - (5) Remove the tool from the disconnected coupler.
 - (6) Separate the two ends of the coupler.

INSTALLATION

- (1) Check to ensure that the garter spring is in the cage of the male coupler fitting. If the garter spring is missing, install a new spring by pushing it into the cage opening. If the garter spring is damaged, remove it from the cage with a small wire hook (DO NOT use a screwdriver) and install a new garter spring.
- (2) Clean any dirt or foreign material from both halves of the coupling.
 - (3) Install new O-rings on the male fitting.

CAUTION: Use only the specified O-rings as they are made of a special material for the R-134a system. The use of any other O-ring may allow the connection to leak intermittently during vehicle operation.

- (4) Lubricate the male fitting and O-ring, and the inside of the female fitting with clean R-134a refrigerant oil. Use only refrigerant oil of the type recommended for the compressor in the vehicle.
- (5) Fit the female fitting to the male fitting and push together until the garter spring snaps over the flared end of the female fitting.
- (6) Ensure the coupler is fully engaged by pulling back on the lines on either side of the coupler.
 - (7) Install the secondary clip on the coupler.

HIGH PRESSURE CUT-OFF SWITCH

REMOVAL

- (1) Disconnect and isolate the battery negative cable.
- (2) Unplug the wire harness connector from the high pressure cut-off switch, which is located in a fitting on the discharge line between the compressor and the condenser inlet (Fig. 13).

J9424-32

Fig. 13 High Pressure Cut-Off Switch - Typical

- (3) Unscrew the high pressure cut-off switch from the discharge line fitting.
- (4) Remove the high pressure cut-off switch from the vehicle.

INSTALLATION

- (1) Install and tighten the high pressure cut-off switch on the discharge line fitting.
- (2) Plug the wire harness connector into the high pressure cut-off switch.
 - (3) Connect the battery negative cable.

SUCTION AND DISCHARGE LINE

Kinks or sharp bends in the refrigerant plumbing will reduce the capacity of the entire system. High pressures are produced in the system when it is operating. Extreme care must be exercised to make sure that all refrigerant system connections are pressure tight.

A good rule for the flexible hose refrigerant lines is to keep the radius of all bends at least ten times the diameter of the hose. Sharp bends will reduce the flow of refrigerant. The flexible hose lines should be routed so they are at least 80 mm (3 inches) from the

exhaust manifold. It is a good practice to inspect all flexible refrigerant system hose lines at least once a year to make sure they are in good condition and properly routed.

WARNING: REVIEW THE WARNINGS AND CAUTIONS IN THE FRONT OF THIS GROUP BEFORE PERFORMING THE FOLLOWING OPERATION.

2.5L ENGINE

REMOVAL

- (1) Disconnect and isolate the battery negative cable.
- (2) Recover the refrigerant from the refrigerant system as described in this group.
- (3) Unplug the wire harness connector from the high pressure cut-off switch.
- (4) Remove the radiator grille panel. Refer to Group 23 Body for the procedures.
- (5) Reach through the grille opening to remove the screw that secures the discharge line block fitting at the condenser inlet (Fig. 14) or (Fig. 15). Install plugs in, or tape over all of the open refrigerant fittings.

Fig. 14 Suction and Discharge Line Remove/Install -Left-Hand Drive 2.5L Engine

(6) Remove the nut that secures the suction line block fitting to the accumulator outlet. Install plugs in, or tape over all of the open refrigerant fittings.

Fig. 15 Suction and Discharge Line Remove/Install - Right-Hand Drive 2.5L Engine

- (7) Remove the screw that secures the suction and discharge line manifold to the compressor. Install plugs in, or tape over all of the open refrigerant fittings.
- (8) Remove the suction and discharge line unit from the vehicle.

INSTALLATION

- (1) Remove the tape or plugs from the suction and discharge line manifold and the compressor. Install the suction and discharge line manifold to the compressor. Tighten the mounting screw to $28~\text{N}\cdot\text{m}$ (250 in. lbs.).
- (2) Remove the tape or plugs from the suction line and the accumulator outlet block fittings. Install the suction line to the accumulator outlet and tighten the mounting nut to 9 $N \cdot m$ (80 in. lbs.).
- (3) Remove the tape or plugs from the discharge line and the condenser inlet block fittings. Install the discharge line to the condenser inlet and tighten the mounting screw to $12 \text{ N} \cdot \text{m}$ (105 in. lbs.).
- (4) Install the radiator grille panel. Refer to Group 23 Body for the procedures.
- (5) Plug in the wire harness connector to the high pressure cut-off switch.
 - (6) Connect the battery negative cable.
- (7) Evacuate and charge the refrigerant system as described in this group.

LEFT-HAND DRIVE 4.0L ENGINE

REMOVAL

(1) Disconnect and isolate the battery negative cable.

- (2) Recover the refrigerant from the refrigerant system as described in this group.
- (3) Unplug the wire harness connector from the high pressure cut-off switch.
- (4) Disconnect the discharge line refrigerant line coupler at the condenser inlet (Fig. 16). See Refrigerant Line Coupler in this group for the procedures. Install plugs in, or tape over all of the open refrigerant fittings.

80abfeda

Fig. 16 Suction and Discharge Line Remove/Install -Left-Hand Drive 4.0L Engine

- (5) Remove the nut that secures the suction line block fitting to the accumulator outlet. Install plugs in, or tape over all of the open refrigerant fittings.
- (6) Remove the screw that secures the suction and discharge line manifold to the compressor. Install plugs in, or tape over all of the open refrigerant fittings.
- (7) Remove the suction and discharge line unit from the vehicle.

INSTALLATION

- (1) Remove the tape or plugs from the suction and discharge line manifold and the compressor. Install the suction and discharge line manifold to the compressor. Tighten the mounting screw to 28 N·m (250 in. lbs.).
- (2) Remove the tape or plugs from the suction line and the accumulator outlet block fittings. Install the suction line to the accumulator outlet and tighten the mounting nut to 9 $N \cdot m$ (80 in. lbs.).

- (3) Remove the tape or plugs from the refrigerant line couplers on the discharge line and the condenser inlet. Install the discharge line to the condenser inlet. See Refrigerant Line Coupler in this group for the procedures.
- (4) Plug in the wire harness connector to the high pressure cut-off switch.
 - (5) Connect the battery negative cable.
- (6) Evacuate and charge the refrigerant system as described in this group.

RIGHT-HAND DRIVE 4.0L ENGINE

The suction and discharge lines for this model are individual components and are secured to a manifold block on the compressor with block fittings (Fig. 17). There is also a jumper line installed between the discharge line and the condenser inlet that is secured with refrigerant line couplers at each end. Each of these components is available as a separate service part.

The suction and discharge line components can be removed from or installed on the vehicle individually, or as a unit. Otherwise, the service procedures are the same as those for the Left-Hand Drive 4.0L

Engine application. Tighten the additional mounting hardware as follows:

- Suction line to manifold block nut $9 \text{ N} \cdot \text{m}$ (80 in. lbs.)
- \bullet Discharge line to manifold block nut 9 N·m (80 in. lbs.)
- \bullet Manifold block to compressor screw 28 N·m (250 in. lbs.).

COMPRESSOR

The compressor may be removed and repositioned without disconnecting the refrigerant lines or discharging the refrigerant system. Discharging is not necessary if servicing the compressor clutch or clutch coil, the engine, the cylinder head, or the generator.

WARNING: REVIEW THE WARNINGS AND CAUTIONS IN THE FRONT OF THIS GROUP BEFORE PERFORMING THE FOLLOWING OPERATION.

REMOVAL

(1) Recover the refrigerant from the refrigerant system as described in this group.

80aac2db

Fig. 17 Suction and Discharge Line Remove/Install - Right-Hand Drive 4.0L Engine

- (2) Disconnect and isolate the battery negative cable.
- (3) Loosen and remove the serpentine drive belt. Refer to Group 7 Cooling System for the procedures.
- (4) If the vehicle is equipped with Right-Hand Drive (RHD) and the 4.0L engine, raise and support the vehicle.
- (5) Unplug the compressor clutch coil wire harness connector.
- (6) Remove the suction and discharge refrigerant lines from the compressor as described in this group. Install plugs in, or tape over all of the open refrigerant fittings.
- (7) Remove the four bolts that secure the compressor to the mounting bracket (Fig. 18) or (Fig. 19).

80abd2a8

Fig. 18 Compressor Remove/Install - All 2.5L Engines and LHD 4.0L Engines

(8) Remove the compressor from the mounting bracket.

INSTALLATION

NOTE: If a replacement compressor is being installed, be certain to check the oil level. See Refrigerant Oil Level in this group.

- (1) Install the compressor to the mounting bracket. Tighten the four mounting bolts as follows:
- All 2.5L engines and LHD 4.0L engines 27 N·m (20 ft. lbs.)
 - RHD 4.0L engines 57 N·m (42 ft. lbs.).
- (2) Remove the tape or plugs from all of the open refrigerant fittings, and install the suction and dis-

Fig. 19 Compressor Remove/Install - RHD 4.0L Engines

charge lines to the compressor as described in this group.

- (3) Install the serpentine drive belt. Refer to Group 7 Cooling System for the procedures.
- (4) Plug in the compressor clutch coil wire harness connector.
 - (5) Connect the battery negative cable.
- (6) Evacuate and charge the refrigerant system as described in this group.

COMPRESSOR CLUTCH

The refrigerant system can remain fully-charged during compressor clutch, pulley, or coil replacement. The compressor clutch can be serviced in the vehicle.

REMOVAL

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the serpentine drive belt. Refer to Group 7 Cooling System for the procedures.
- (3) Remove the compressor mounting bolts and lift the compressor from the mounting bracket. Support the compressor to work on the clutch.
- (4) Insert the two pins of the spanner wrench (Special Tool C-4489) into the holes of the clutch plate. Hold the clutch plate stationary and remove the hex nut (Fig. 20).
- (5) Remove the clutch plate with a puller (Special Tool C-6461) (Fig. 21).
- (6) Remove the compressor shaft key and the clutch shims.
- (7) Remove the external front housing snap ring with snap ring pliers (Fig. 22).
- (8) Install the lip of the rotor puller (Special Tool C-6141-1) into the snap ring groove exposed in the previous step, and install the shaft protector (Special Tool C-6141-2) (Fig. 23).

Fig. 20 Clutch Nut Remove

Fig. 21 Clutch Plate Remove

Fig. 22 External Snap Ring Remove

(9) Install the puller through-bolts (Special Tool C-6461) through the puller flange and into the jaws of the rotor puller and tighten (Fig. 24). Turn the

Fig. 23 Shaft Protector and Puller

puller center bolt clockwise until the rotor pulley is free.

Fig. 24 Install Puller Plate

- (10) Remove the screw and retainer from the clutch coil lead wire harness on the compressor front housing (Fig. 25).
- (11) Remove the snap ring from the compressor hub and remove the clutch field coil (Fig. 26). Slide the clutch field coil off of the compressor hub.

INSPECTION

Examine the friction surfaces of the clutch pulley and the front plate for wear. The pulley and front plate should be replaced if there is excessive wear or scoring.

If the friction surfaces are oily, inspect the shaft and nose area of the compressor for oil. Remove the felt from the front cover. If the felt is saturated with oil, the shaft seal is leaking and the compressor must be replaced.

Fig. 25 Clutch Coil Lead Wire Harness

Fig. 26 Clutch Field Coil Snap Ring Remove

Check the clutch pulley bearing for roughness or excessive leakage of grease. Replace the bearing, if required.

INSTALLATION

- (1) Install the clutch field coil and snap ring.
- (2) Install the clutch coil lead wire harness retaining clip on the compressor front housing and tighten the retaining screw.
- (3) Align the rotor assembly squarely on the front compressor housing hub.
- (4) Install the pulley bearing assembly with the installer (Special Tool C-6871) (Fig. 27). Thread the installer on the shaft, then turn the nut until the pulley assembly is seated.
- (5) Install the external front snap ring with snap ring pliers. The bevel side of the snap ring must be facing outward. Press the snap ring to make sure it is properly seated in the groove.

CAUTION: If the snap ring is not fully seated in the groove it will vibrate out, resulting in a clutch fail-

Fig. 27 Clutch Pulley Install

ure and severe damage to the front housing of the compressor.

- (6) Install the compressor shaft key and the original clutch shims on the compressor shaft.
- (7) Install the clutch plate with the driver (Special Tool C-6463) (Fig. 28). Install the shaft hex nut and tighten to $14.4~\rm N\cdot m$ ($10.5~\rm ft.$ lbs.).

Fig. 28 Clutch Plate Driver

(8) Check the clutch air gap with a feeler gauge (Fig. 29). If the air gap does not meet the specification, add or subtract shims as required. The air gap specification is 0.41 to 0.79 mm (0.016 to 0.031 inch). If the air gap is not consistent around the circumference of the clutch, lightly pry up at the minimum variations. Lightly tap down at the points of maximum variation.

J8924-28

Fig. 29 Check Clutch Air Gap

NOTE: The air gap is determined by the spacer shims. When installing an original, or a new clutch assembly, try the original shims first. When installing a new clutch onto a compressor that previously did not have a clutch, use 0.040, 0.020, and 0.005 shims from the clutch hardware package that is provided with the new clutch.

(9) Reverse the remaining removal procedures to complete the installation.

CLUTCH BREAK-IN

After a new compressor clutch has been installed, cycle the compressor clutch approximately twenty times (five seconds on, then five seconds off). During this procedure, set the heater-A/C control to the Recirculation Mode, the blower motor switch in the highest speed position, and the engine speed at 1500 to 2000 rpm. This procedure (burnishing) will seat the opposing friction surfaces and provide a higher compressor clutch torque capability.

COMPRESSOR CLUTCH RELAY

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the cover from the Power Distribution Center (PDC) (Fig. 30).
- (3) Refer to the label on the PDC for compressor clutch relay identification and location.
- (4) Unplug the compressor clutch relay from the PDC.
- (5) Install the compressor clutch relay by aligning the relay terminals with the cavities in the PDC and pushing the relay firmly into place.
 - (6) Install the PDC cover.
 - (7) Connect the battery negative cable.

Fig. 30 Power Distribution Center

(8) Test the relay operation.

LIQUID LINE

Kinks or sharp bends in the refrigerant plumbing will reduce the capacity of the entire system. High pressures are produced in the system when it is operating. Extreme care must be exercised to make sure that all refrigerant system connections are pressure tight.

A good rule for the flexible hose refrigerant lines is to keep the radius of all bends at least ten times the diameter of the hose. Sharp bends will reduce the flow of refrigerant. The flexible hose lines should be routed so they are at least 80 mm (3 inches) from the exhaust manifold. It is a good practice to inspect all flexible refrigerant system hose lines at least once a year to make sure they are in good condition and properly routed.

WARNING: REVIEW THE WARNINGS AND CAUTIONS IN THE FRONT OF THIS GROUP BEFORE PERFORMING THE FOLLOWING OPERATION.

2.5L ENGINE

REMOVAL

- (1) Disconnect and isolate the battery negative cable.
- (2) Recover the refrigerant from the refrigerant system as described in this group.
- (3) Disconnect the liquid line refrigerant line couplers at the evaporator inlet and, on Right-Hand

Drive models only, the liquid line jumper (Fig. 31) or (Fig. 32). See Refrigerant Line Coupler in this group for the procedures. Install plugs in, or tape over all of the open refrigerant fittings.

Fig. 31 Liquid Line Remove/Install - Left-Hand Drive 2.5L Engine

Fig. 32 Liquid Line Remove/Install - Right-Hand Drive 2.5L Engine

- (4) On Left-Hand Drive models only, remove the screw that secures the liquid line block fitting to the liquid line jumper. Install plugs in, or tape over all of the open refrigerant fittings.
 - (5) Remove the liquid line from the vehicle.
- (6) Remove the radiator grille panel. Refer to Group 23 Body for the procedures.
- (7) Reach through the grille opening to remove the screw that secures the liquid line jumper block fitting at the condenser outlet. Install plugs in, or tape over all of the open refrigerant fittings.
 - (8) Remove the liquid line jumper from the vehicle.

INSTALLATION

- (1) Remove the tape or plugs from the liquid line jumper and condenser outlet block fittings. Install the liquid line jumper to the condenser outlet. Tighten the mounting screw to 12 N·m (105 in. lbs.).
- (2) Install the radiator grille panel. Refer to Group 23 Body for the procedures.
- (3) Remove the tape or plugs from the refrigerant line couplers on the liquid line, the liquid line jumper, and the evaporator inlet. Install the liquid line to the liquid line jumper and the evaporator inlet refrigerant line couplers. See Refrigerant Line Coupler in this group for the procedures.
- (4) On Left-Hand Drive models only, install the screw that secures the liquid line block fitting to the liquid line jumper. Tighten the mounting screw to 9 $N\cdot m$ (80 in. lbs.).
 - (5) Connect the battery negative cable.
- (6) Evacuate and charge the refrigerant system as described in this group.

4.0L ENGINE

REMOVAL

- (1) Disconnect and isolate the battery negative cable.
- (2) Recover the refrigerant from the refrigerant system as described in this group.
- (3) Disconnect the liquid line refrigerant line couplers at the evaporator inlet and the condenser outlet (Left-Hand Drive) (Fig. 33), or at the evaporator inlet and the liquid line jumper (Right-Hand Drive) (Fig. 34). See Refrigerant Line Coupler in this group for the procedures. Install plugs in, or tape over all of the open refrigerant fittings.
 - (4) Remove the liquid line from the vehicle.
- (5) On Right-Hand Drive models only, disconnect the liquid line jumper refrigerant line coupler at the condenser outlet. Install plugs in, or tape over all of the open refrigerant fittings.
- (6) On Right-Hand Drive models only, remove the liquid line jumper from the vehicle.

Fig. 33 Liquid Line Remove/Install - Left-Hand Drive 4.0L Engine

Fig. 34 Liquid Line Remove/Install - Right-Hand Drive 4.0L Engine

INSTALLATION

(1) On Right-Hand Drive models only, remove the tape or plugs from the refrigerant line couplers on the liquid line jumper and the condenser outlet. Install the liquid line jumper to the condenser outlet. See Refrigerant Line Coupler in this group for the procedures.

- (2) Remove the tape or plugs from the refrigerant line couplers on the condenser outlet (Left-Hand Drive); or, on the liquid line, the evaporator inlet, and the liquid line jumper (Right-Hand Drive). Install the liquid line to the evaporator inlet and the condenser outlet or the liquid line jumper. See Refrigerant Line Coupler in this group for the procedures
 - (3) Connect the battery negative cable.
- (4) Evacuate and charge the refrigerant system as described in this group.

FIXED ORIFICE TUBE

The fixed orifice tube is located in the liquid line (Left-Hand Drive 4.0L engine) or the liquid line jumper (all except Left-Hand Drive 4.0L engine) near the condenser. The orifice has filter screens on the inlet and outlet ends of the tube body. If the fixed orifice tube is faulty or plugged, the liquid line unit must be replaced. See the service procedures for the liquid line in this group.

LOW PRESSURE CYCLING CLUTCH SWITCH

- (1) Disconnect and isolate the battery negative cable.
- (2) Unplug the wire harness connector from the low pressure cycling clutch switch on the top of the accumulator (Fig. 35).

80abd2a4

Fig. 35 Low Pressure Cycling Clutch Switch Remove/Install

(3) Unscrew the low pressure cycling clutch switch from the fitting on the top of the accumulator.

(4) Reverse the removal procedures to install. The switch should be hand-tightened onto the accumulator fitting.

ACCUMULATOR

WARNING: REVIEW THE WARNINGS AND CAUTIONS IN THE FRONT OF THIS GROUP BEFORE PERFORMING THE FOLLOWING OPERATION.

REMOVAL

- (1) Disconnect and isolate the battery negative cable.
- (2) Recover the refrigerant from the refrigerant system as described in this group.
- (3) Unplug the wire harness connector from the low pressure cycling clutch switch.
- (4) Loosen the screw that secures the accumulator retaining band to the support bracket (Fig. 36) or (Fig. 37).

Fig. 36 Accumulator Remove/Install - Left-Hand Drive

- (5) Disconnect the suction line from the accumulator as described in this group.
- (6) Disconnect the accumulator inlet tube refrigerant line coupler from the evaporator outlet tube. See Refrigerant Line Coupler in this group for the procedures. Install plugs in, or tape over all of the open refrigerant fittings.
- (7) Slide the accumulator out of the retaining band and remove the accumulator from the vehicle.

Fig. 37 Accumulator Remove/Install - Right-Hand Drive

INSTALLATION

- (1) Install the accumulator into the retaining band.
- (2) Remove the tape or plugs from accumulator inlet and evaporator outlet tube fittings, and install the accumulator refrigerant line coupler to the evaporator outlet tube. See Refrigerant Line Coupler in this group for the procedures.
- (3) Install the suction line to the accumulator as described in this group.
- (4) Tighten the accumulator retaining band screw to 5 N·m (45 in. lbs.).
- (5) Plug the wire harness connector into the low pressure cycling clutch switch.
 - (6) Connect the battery negative cable.
- (7) Evacuate and charge the refrigerant system as described in this group.

NOTE: If the accumulator is replaced, add 120 ml (4 oz.) of refrigerant oil to the refrigerant system.

CONDENSER

2.5L ENGINE

REMOVAL

WARNING: REVIEW THE WARNINGS AND CAUTIONS IN THE FRONT OF THIS GROUP BEFORE PERFORMING THE FOLLOWING OPERATION.

CAUTION: Before removing the condenser, note the location of each of the radiator and condenser air seals. These seals are used to direct air through the condenser and radiator. The air seals must be reinstalled in their proper locations in order for the air conditioning and engine cooling systems to perform as designed.

- (1) Disconnect and isolate the battery negative cable.
- (2) Recover the refrigerant from the refrigerant system as described in this group.
- (3) Remove the radiator grille panel. Refer to Group 23 Body for the procedures.
- (4) Reach through the grille opening to remove the screw from the discharge line block fitting at the condenser inlet and remove the discharge line from the condenser. Install plugs in, or tape over, all of the open refrigerant fittings.
- (5) Reach through the grille opening to remove the screw from the liquid line jumper block fitting at the condenser outlet and remove the liquid line jumper from the condenser. Install plugs in, or tape over, all of the open refrigerant fittings.
- (6) Remove the radiator and the condenser from the vehicle as a unit. Refer to Group 7 Cooling System for the procedures.
- (7) Remove the four screws that secure the condenser to the radiator (Fig. 38).

Fig. 38 Condenser Remove/Install - 2.5L Engine

(8) Remove the condenser from the radiator.

INSTALLATION

(1) Install the condenser to the radiator. Tighten the mounting screws to $28~\mathrm{N\cdot m}$ (250 in. lbs.).

- (2) Install the radiator and condenser to the vehicle as a unit. Refer to Group 7 Cooling System for the procedures.
- (3) Remove the tape or plugs from the liquid line jumper and condenser outlet block fittings. Install the liquid line jumper to the condenser outlet. Tighten the mounting screw to $12~N\cdot m$ (105~in.~lbs.).
- (4) Remove the tape or plugs from the discharge line and condenser inlet block fittings. Install the discharge line to the condenser inlet. Tighten the mounting screw to 12 N·m (105 in. lbs.).
- (5) Install the radiator grille panel. Refer to Group 23 Body for the procedures.
 - (6) Connect the battery negative cable.
- (7) Evacuate and charge the refrigerant system as described in this group.

NOTE: If the condenser is replaced, add 30 ml (1 oz.) of refrigerant oil to the refrigerant system.

4.0L ENGINE

REMOVAL

WARNING: REVIEW THE WARNINGS AND CAUTIONS IN THE FRONT OF THIS GROUP BEFORE PERFORMING THE FOLLOWING OPERATION.

CAUTION: Before removing the condenser, note the location of each of the radiator and condenser air seals. These seals are used to direct air through the condenser and radiator. The air seals must be reinstalled in their proper locations in order for the air conditioning and engine cooling systems to perform as designed.

- (1) Disconnect and isolate the battery negative cable.
- (2) Recover the refrigerant from the refrigerant system as described in this group.
- (3) Disconnect the discharge line (Left-Hand Drive) or discharge line jumper (Right-Hand Drive) refrigerant line coupler at the condenser inlet. See Refrigerant Line Coupler in this group for the procedures. Install plugs in, or tape over all of the open refrigerant fittings.
- (4) Disconnect the liquid line (Left-Hand Drive) or liquid line jumper (Right-Hand Drive) refrigerant line coupler at the condenser outlet. See Refrigerant Line Coupler in this group for the procedures. Install plugs in, or tape over all of the open refrigerant fittings.
- (5) Remove the radiator and the condenser from the vehicle as a unit. Refer to Group 7 Cooling System for the procedures.

(6) Remove the four nuts that secure the upper brackets to the radiator and the condenser (Fig. 39).

80abfee2

Fig. 39 Condenser Remove/Install - 4.0L Engine

- (7) Remove the upper brackets from the radiator and the condenser.
- (8) Slide the condenser lower brackets off of the dowel pins on the bottom of the radiator.
 - (9) Remove the condenser from the radiator.

INSTALLATION

- (1) Install the holes of the condenser lower brackets over the dowel pins on the bottom of the radiator.
- (2) Install the upper brackets over the studs on the top of the radiator and the condenser. Tighten the mounting nuts to $5.3~\mathrm{N}\cdot\mathrm{m}$ (47 in. lbs.).
- (3) Install the radiator and condenser to the vehicle as a unit. Refer to Group 7 Cooling System for the procedures.
- (4) Remove the tape or plugs from the refrigerant line couplers on the condenser outlet and the liquid line (Left-Hand Drive) or the liquid line jumper (Right-Hand Drive). Install the liquid line or the liquid line jumper to the condenser outlet. See Refrigerant Line Coupler in this group for the procedures.
- (5) Remove the tape or plugs from the refrigerant line couplers on the condenser inlet and the discharge line (Left-Hand Drive) or the discharge line jumper (Right-Hand Drive). Install the discharge line or the discharge line jumper to the condenser inlet. See Refrigerant Line Coupler in this group for the procedures.
 - (6) Connect the battery negative cable.
- (7) Evacuate and charge the refrigerant system as described in this group.

NOTE: If the condenser is replaced, add 30 ml (1 oz.) of refrigerant oil to the refrigerant system.

VACUUM CHECK VALVE

(1) Unplug the heater-A/C vacuum supply line at the vacuum check valve (Fig. 40).

Fig. 40 Vacuum Supply

- (2) Note the orientation of the check valve in the vacuum supply line for correct reinstallation.
- (3) Unplug the vacuum check valve from the vacuum supply line fittings.
 - (4) Reverse the removal procedures to install.

VACUUM RESERVOIR

- (1) Remove the passenger side bumper end cap from the front bumper. Refer to Group 23 Body for the procedures.
- (2) Unplug the vacuum supply line connector from the reservoir (Fig. 41).

Fig. 41 Vacuum Reservoir Remove/Install

(3) Remove the two screws that secure the reservoir to the front bumper.

- (4) Remove the vacuum reservoir from behind the front bumper.
 - (5) Reverse the removal procedures to install.

BLOWER MOTOR

REMOVAL

- (1) If the vehicle is equipped with air conditioning, recover the refrigerant from the refrigerant system as described in this group.
- (2) Disconnect and isolate the battery negative cable.
- (3) If the vehicle is equipped with air conditioning, loosen the accumulator retaining band screw, disconnect the accumulator inlet tube from the evaporator outlet tube and move the accumulator far enough to access and remove the blower motor.
- (4) Unplug the blower motor wire harness connector (Fig. 42).

Fig. 42 Blower Motor Remove/Install

- (5) Remove the three screws that secure the blower motor and wheel assembly to the heater-A/C housing.
- (6) Rotate and tilt the blower motor unit as needed for clearance to remove the blower motor and wheel from the heater-A/C housing.

INSTALLATION

- (1) Align and install the blower motor and wheel assembly into the heater-A/C housing.
- (2) Install and tighten the three screws that secure the blower motor to the heater A/C housing. Tighten the mounting screws to 2.2 N·m (20 in. lbs.).
- (3) Plug in the blower motor wire harness connector.
- (4) If the vehicle is equipped with air conditioning, connect the accumulator inlet tube to the evaporator

outlet tube and tighten the accumulator retaining band screw.

- (5) Connect the battery negative cable.
- (6) If the vehicle is equipped with air conditioning, evacuate and charge the refrigerant system as described in this group.

HEATER-A/C CONTROL

WARNING: ON VEHICLES EQUIPPED WITH AIR-BAGS. REFER TO GROUP 8M -**PASSIVE** RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRE-CAUTIONS COULD RESULT IN ACCIDENTAL AIR-BAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

REMOVAL

- (1) Disconnect and isolate the battery negative cable.
- (2) Open the glove box and remove the glove box stop bumpers to roll down the glove box as described in Group 8E - Instrument Panel Systems.
- (3) Reach through the glove box opening and unplug the vacuum harness connector.
- (4) Using a trim stick or another suitable widebladed flat tool, gently pry the instrument panel center bezel away from the instrument panel to release the six snap clip retainers (Fig. 43).

Fig. 43 Center Bezel Remove/Install

(5) Remove the center bezel from the vehicle.

- (6) Release the vacuum harness push-in retainer from the instrument panel directly beneath the heater-A/C control.
- (7) Remove the four screws that secure the heater-A/C control to the instrument panel (Fig. 44).

Fig. 44 Heater-A/C Controls Remove/Install

- (8) Pull the heater-A/C control assembly away from the instrument panel far enough to access the connections.
- (9) Unplug the wire harness connector from the back of the heater-A/C control assembly (Fig. 45).

Fig. 45 Heater-A/C Control Connections

- (10) Release the temperature control cable housing flag retainer latch on the receptacle on the back of the heater-A/C control and disengage the flag retainer from the receptacle.
- (11) Rotate the heater-A/C control assembly to align the cable core with the slot on the end of the temperature control lever and remove the cable end from the lever.
- (12) Reaching through the glove box opening, carefully guide the heater-A/C control half of the vacuum harness around any obstacles while removing the

heater-A/C control from the front of the instrument panel.

INSTALLATION

- (1) Connect the temperature control cable core end to the temperature control lever on the back of the heater-A/C controls.
- (2) Snap the temperature control cable housing flag retainer into the receptacle on the back of the heater-A/C controls.
- (3) Plug in the wire harness connector to the back of the heater-A/C control.
- (4) Route the vacuum harness through the instrument panel opening and reinstall the vacuum harness push-in retainer.
- (5) Reach through the glove box opening and plug in the vacuum harness connector.
- (6) Roll up the glove box and reinstall the glove box stop bumpers.
- (7) Install the heater-A/C controls to the instrument panel and secure with four screws. Tighten the screws to $2.2~\rm N\cdot m$ (20 in. lbs.).
 - (8) Install the instrument panel center bezel.
 - (9) Connect the battery negative cable.

TEMPERATURE CONTROL CABLE

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

REMOVAL

- (1) Disconnect and isolate the battery negative cable.
- (2) Disconnect the temperature control cable from the heater-A/C controls. See Heater-A/C Controls in this group for the procedures.
- (3) Locate the temperature control cable housing flag retainer receptacle on the bottom of the heater-A/C housing towards the passenger side of the floor pan transmission tunnel (Fig. 46). Locate the flag retainer latch release window on the side of the receptacle. While depressing the latch through the latch release window, use a trim stick or another suitable wide flat-bladed tool to gently pry the flag retainer out of the receptacle.
- (4) Remove the screw that secures the blend-air door crank arm to the blend-air door pivot shaft.

Fig. 46 Temperature Control Cable Remove/Install

- (5) Pull the blend-air door crank arm down from the heater-A/C housing to remove it from the blendair door pivot shaft.
- (6) Remove the blend-air door crank arm and temperature control cable from the vehicle as a unit.
- (7) Remove the push nut that secures the temperature control cable end to the pin on the end of the blend-air door crank arm.
- (8) Remove the temperature control cable from the blend-air door crank arm.

INSTALLATION

- (1) Install the blend-air door crank arm onto the blend-air door pivot shaft. Be certain that the tension band on the bottom of the heater-A/C housing is properly positioned against the cam formation on the blend-air door crank arm.
- (2) Install and tighten the screw that secures the blend-air door crank arm to the blend-air door pivot shaft. Tighten the mounting screw to 1 N·m (10 in. lbs.).
- (3) Install the temperature control cable end over the pin on the end of the blend-air door crank arm and secure it with a push nut.
- (4) Snap the temperature control cable housing flag retainer into the receptacle on the bottom of the heater-A/C housing.
- (5) Connect the temperature control cable to the heater-A/C controls and reinstall the heater-A/C controls to the instrument panel. See Heater-A/C Controls in this group for the procedures.
 - (6) Connect the battery negative cable.

BLOWER MOTOR RELAY

- (1) Disconnect and isolate the battery negative cable.
- (2) Open the glove box and remove the glove box stop bumpers to roll down the glove box as described in Group 8E Instrument Panel Systems.

(3) Reach through the glove box opening to locate the blower motor relay (Fig. 47).

Fig. 47 Blower Motor Relay Remove/Install

- (4) Unplug the blower motor relay from its wire harness connector.
- (5) Install the blower motor relay by aligning the relay terminals with the cavities in the wire harness connector and pushing the relay firmly into place.
- (6) Roll up the glove box and reinstall the glove box stop bumpers.
 - (7) Connect the battery negative cable.
 - (8) Test the relay operation.

KICK COVER

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

REMOVAL

- (1) Disconnect and isolate the battery negative cable.
- (2) Loosen the two upper screws that secure the kick cover to the heater-A/C housing under the passenger side of the instrument panel on the passenger side of the instrument panel (Fig. 48).
- (3) Remove the two lower screws that secure the kick cover to the heater-A/C housing.
- (4) Pull the kick cover down towards the floor to disengage the slotted upper mounting tabs from under the upper screws.
 - (5) Remove the kick cover from the vehicle.

Fig. 48 Kick Cover Remove/Install

INSTALLATION

- (1) Position the slotted upper mounting tabs of the kick cover under the upper mounting screws on the heater-A/C housing. Tighten the screws to $2.2~\rm N\cdot m$ (20 in. lbs.).
- (2) Install the two lower kick cover mounting screws to the heater-A/C housing. Tighten the screws to $2.2~\mathrm{N\cdot m}$ (20 in. lbs.).
 - (3) Connect the battery negative cable.

BLOWER MOTOR RESISTOR

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the kick cover from the heater-A/C housing as described in this group.
- (3) Pull out on the blower motor resistor wire harness connector lock to release the connector latch (Fig. 49).
- (4) Depress the latch on the blower motor resistor wire harness connector and unplug it from the resistor.
- (5) Remove the two screws that secure the resistor to the heater-A/C housing.
 - (6) Remove the resistor from the housing.
- (7) Reverse the removal procedures to install. Tighten the mounting screws to 2.2 N·m (20 in lbs.).

Fig. 49 Blower Motor Resistor Remove/Install MODE DOOR VACUUM ACTUATOR

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

DEFROST DOOR ACTUATOR

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the instrument panel assembly as described in Group 8E Instrument Panel Systems.
- (3) Unplug the two vacuum harness connectors from the defrost door actuator (Fig. 50).
- (4) Insert a trim stick or another suitable wide flat-bladed tool into the latch hole on the heater-A/C housing actuator mount to release the actuator latch and pull firmly outwards on the actuator to remove the actuator from the mount (Fig. 51).
- (5) Move the vacuum actuator as required to disengage the hole on the end of the actuator link from the hooked pin on the end of the defrost door crank arm.
- (6) Remove the defrost door vacuum actuator from the vehicle.
 - (7) Reverse the removal procedures to install.

FLOOR DOOR ACTUATOR

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the instrument panel assembly as described in Group 8E Instrument Panel Systems.

Fig. 50 Defrost, Floor, and Panel/Demist Door Vacuum Actuators

Fig. 51 Vacuum Actuator Remove/Install - Typical

- (3) Unplug the vacuum harness connector from the floor door actuator (Fig. 50).
- (4) Insert a trim stick or another suitable wide flat-bladed tool into the latch hole on the heater-A/C housing actuator mount to release the actuator latch and pull firmly outwards on the actuator to remove the actuator from the mount (Fig. 51).
- (5) Move the vacuum actuator as required to disengage the hole on the end of the actuator link from

the hooked pin on the end of the floor door crank arm.

- (6) Remove the floor door vacuum actuator from the vehicle.
 - (7) Reverse the removal procedures to install.

PANEL/DEMIST DOOR ACTUATOR

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the instrument panel assembly as described in Group 8E Instrument Panel Systems.
- (3) Remove the defrost door actuator as described in this group.
- (4) Unplug the vacuum harness connector from the panel/demist door actuator (Fig. 50).
- (5) Insert a trim stick or another suitable wide flat-bladed tool into the latch hole on the heater-A/C housing actuator mount to release the actuator latch and pull firmly outwards on the actuator to remove the actuator from the mount (Fig. 51).
- (6) Move the vacuum actuator as required to disengage the hole on the end of the actuator link from the hooked pin on the end of the panel/demist door crank arm.
- (7) Remove the panel/demist door vacuum actuator from the vehicle.
 - (8) Reverse the removal procedures to install.

RECIRCULATION AIR DOOR ACTUATOR

A recirculation air door and vacuum actuator are used only on models with the optional air conditioning system.

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the kick cover from the heater-A/C housing as described in this group.
- (3) Unplug the vacuum harness connector from the recirculation air door actuator (Fig. 52).
- (4) Insert a trim stick or another suitable wide flat-bladed tool into the latch hole on the heater-A/C housing actuator mount to release the actuator latch and pull firmly outwards on the actuator to remove the actuator from the mount (Fig. 51).
- (5) Move the vacuum actuator as required to disengage the hole on the end of the actuator link from the hooked pin on the end of the recirculation air door lever.
- (6) Remove the recirculation air door vacuum actuator from the vehicle.
 - (7) Reverse the removal procedures to install.

HEATER-A/C HOUSING

The heater-A/C housing assembly must be removed from the vehicle and the two halves of the housing separated for service access of the heater core, evaporator coil, blend-air door, and each of the various mode control doors.

Fig. 52 Recirculation Air Door Vacuum Actuator

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

REMOVAL

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the instrument panel assembly as described in Group 8E Instrument Panel Systems.
- (3) Unplug the heater-A/C unit wire harness connector, which is fastened to the heater-A/C housing next to the blower motor relay (Fig. 53).
- (4) If the vehicle is not equipped with air conditioning, go to Step 6. If the vehicle is equipped with air conditioning, recover the refrigerant from the refrigerant system as described in this group.
- (5) Disconnect the refrigerant lines from the evaporator tubes. Install plugs in, or tape over all of the open refrigerant fittings.
- (6) Drain the cooling system. Refer to Group 7 Cooling System for the procedures.
- (7) Disconnect the heater hoses from the heater core tubes.
- (8) Unplug the heater-A/C system vacuum supply line from the tee fitting near the heater core tubes.

Fig. 53 Heater-A/C Unit Connector

- (9) If the vehicle is equipped with air conditioning, remove and relocate the accumulator and its mounting bracket.
- (10) Remove the five heater-A/C housing mounting nuts from the studs on the engine compartment side of the dash panel (Fig. 54). Remove or reposition the evaporation canister for access, if required.

Fig. 54 Heater-A/C Housing Remove/Install

- (11) Pull the heater-A/C housing rearward far enough for the mounting studs and the evaporator drain tube to clear the dash panel holes.
- (12) Remove the heater-A/ \bar{C} housing from the vehicle.

DISASSEMBLY

- (1) Remove the heater-A/C housing from the vehicle and place it on a work bench.
- (2) Unplug the vacuum harness connectors from the floor door actuator and, if the unit is so equipped, the recirculation air door actuator.

- (3) Disengage the vacuum harness from any routing clips located on the lower half of the heater-A/C housing.
- (4) Disengage the heater-A/C unit wire harness and blower motor relay wire harness connector push-in retainers from their mounting holes on the heater-A/C housing.
- (5) Remove the blower motor and blower wheel unit from the heater-A/C housing as described in this group.
- (6) Pull the vacuum supply line and connector through the foam gasket on the heater-A/C housing heater core and evaporator coil tube mounting flange (Fig. 55).

Fig. 55 Heater-A/C Housing Disassembly

- (7) Carefully remove the blower motor housing foam flange gasket from around the blower motor opening in the heater-A/C housing. If the gasket is deformed or damaged, it must be replaced.
- (8) If the unit is equipped with air conditioning, remove the screw that secures the clamp to the evaporator coil tubes and remove the clamp.
- (9) Carefully remove the foam gasket from the heater-A/C housing heater core and evaporator coil tube mounting flange. If the gasket is deformed or damaged, it must be replaced.
- (10) Use a screwdriver to pry off the two snap clips that help secure the upper and lower heater-A/C housing halves together.
- (11) Remove the 14 screws that help secure the upper and lower heater-A/C housing halves together.
- (12) Carefully separate the upper heater-A/C housing half from the lower half.

ASSEMBLY

(1) Assemble the upper heater-A/C housing half to the lower half. Be certain that each of the door pivot shaft ends is properly engaged in its pivot hole, that the blower motor ring is properly installed and, if the unit is so equipped, that the evaporator coil tube rubber seal is properly positioned (Fig. 56).

Fig. 56 Heater-A/C Housing Assembly

- (2) Install the 14 screws and two snap clips that secure the upper and lower heater-A/C housing halves together.
- (3) Install the blower motor and wheel unit to the heater-A/C housing.
- (4) Install the blower motor housing flange and heater core and evaporator coil tube mounting flange foam gaskets.
- (5) Insert the vacuum supply line and connector through the foam gasket on the heater-A/C housing heater core and evaporator coil tube mounting flange.
- (6) If the unit is equipped with air conditioning, reinstall the evaporator coil tube clamp.
- (7) Engage the heater-A/C unit wire harness and blower motor relay wire harness connector push-in retainers to their mounting holes on the heater-A/C housing.
- (8) Reinstall the vacuum harness to the routing clips and plug in the vacuum harness connector at the floor door actuator and, if the unit is so equipped, the recirculation air door actuator.
 - (9) Install the heater-A/C housing in the vehicle.

INSTALLATION

- (1) Position the heater-A/C housing to the dash panel. Be certain that the evaporator drain tube and the housing mounting studs are inserted into their correct mounting holes.
- (2) Install the five nuts to the mounting studs on the engine compartment side of the dash panel. Tighten the mounting nuts to $6.2~\mathrm{N\cdot m}$ (55 in. lbs.).
- (3) Reinstall the evaporation canister if it was repositioned during the removal procedure.
- (4) If the vehicle is equipped with air conditioning, reinstall the accumulator and its mounting bracket.
- (5) Connect the heater-A/C system vacuum supply line to the tee fitting near the heater core tubes.
- (6) Connect the heater hoses to the heater core tubes.

- (7) If the vehicle is equipped with air conditioning, unplug or remove the tape from the refrigerant fittings, and connect the refrigerant lines to the evaporator tubes.
- (8) Install the instrument panel assembly as described in Group 8E Instrument Panel Systems.
 - (9) Connect the battery negative cable.
- (10) Fill the cooling system. Refer to Group 7 Cooling System for the procedures.
- (11) If the vehicle is equipped with air conditioning, evacuate and charge the refrigerant system as described in this group.
- (12) Start the vehicle and check for proper operation of the heating and air conditioning systems.

HEATER-A/C HOUSING DOOR

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

BLEND-AIR DOOR

(1) Remove and disassemble the heater-A/C housing as described in this group.

NOTE: If the temperature control cable was not removed with the blend-air door crank arm as a unit during the instrument panel assembly removal procedures, the crank arm must be removed from the blend-air door pivot shaft before the blend-air door can be removed from the heater-A/C housing. See Temperature Control Cable in this group for the procedures.

- (2) Lift the blend-air door pivot shaft out of the pivot hole in the bottom of the lower half of the heater-A/C housing (Fig. 57).
 - (3) Reverse the removal procedures to install.

PANEL/DEMIST DOOR AND CRANK ARM

- (1) Remove and disassemble the heater-A/C housing as described in this group.
- (2) Remove the defrost and panel/demist door vacuum actuators as described in this group.
- (3) Insert a screwdriver into the latch hole (Fig. 58) of the panel/demist door pivot shaft to release the latch of the panel/demist door crank arm, and pull the crank arm out of the pivot shaft from the outside of the upper half of the heater-A/C housing.

Fig. 57 Blend-Air Door

Fig. 58 Mode Door Crank Arm Remove/Install - Typical

- (4) Reach inside the upper half of the heater-A/C housing and carefully flex the panel/defrost door (Fig. 59) enough so that the door pivot clears the pivot hole in the housing.
- (5) Remove the panel/demist door from the heater-A/C housing.
 - (6) Reverse the removal procedures to install.

DEFROST DOOR AND CRANK ARM

- (1) Remove and disassemble the heater-A/C housing as described in this group.
- (2) Remove the panel/demist door and crank arm as described in this group.
- (3) Insert a screwdriver into the latch hole (Fig. 58) of the defrost door pivot shaft to release the latch of the defrost door crank arm, and pull the crank arm out of the pivot shaft from the outside of the upper half of the heater-A/C housing.
- (4) Reach inside the upper half of the heater-A/C housing and carefully flex the defrost door (Fig. 59)

Fig. 59 Panel/Demist and Defrost Doors

enough so that the door pivot clears the pivot hole in the housing.

- (5) Remove the defrost door from the heater-A/C housing.
 - (6) Reverse the removal procedures to install.

FLOOR DOOR AND CRANK ARM

- (1) Remove and disassemble the heater-A/C housing as described in this group.
- (2) Remove the floor door vacuum actuator as described in this group.
- (3) Insert a screwdriver into the latch hole (Fig. 58) of the floor door pivot shaft to release the latch of the floor door crank arm, and pull the crank arm out of the pivot shaft from the outside of the lower half of the heater-A/C housing.
- (4) Reach inside the lower half of the heater-A/C housing and carefully flex the floor door (Fig. 60) enough so that the door pivot clears the pivot hole in the housing.

Fig. 60 Floor Door

- (5) Remove the floor door from the heater-A/C housing.
 - (6) Reverse the removal procedures to install.

RECIRCULATION AIR DOOR

A recirculation air door and vacuum actuator are used only on models with the optional air conditioning system.

- (1) Remove and disassemble the heater-A/C housing as described in this group.
- (2) Remove the recirculation air door vacuum actuator as described in this group.
- (3) Reach inside the lower half of the heater-A/C housing and lift the bottom edge of the recirculation air door upwards (Fig. 61).

Fig. 61 Recirculation Air Door

- (4) Guide the recirculation air door lever through the air intake grille of the heater-A/C housing while removing the door from the housing.
 - (5) Reverse the removal procedures to install.

EVAPORATOR COIL

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Remove and disassemble the heater-A/C housing as described in this group.
- (2) Lift the evaporator coil unit out of the lower half of the heater-A/C housing (Fig. 62).
- (3) Reverse the removal procedures to install. Be certain that the evaporator foam insulator wrap and rubber tube seal are reinstalled.

Fig. 62 Evaporator Coil

NOTE: If the evaporator is replaced, add 60 ml (2 oz.) of refrigerant oil to the refrigerant system.

HEATER CORE

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Remove and disassemble the heater-A/C housing as described in this group.
- (2) Lift the heater core out of the lower half of the heater-A/C housing (Fig. 63).
- (3) Reverse the removal procedures to install. Be certain that the heater core foam insulator is reinstalled.

DUCTS AND OUTLETS

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIR-

Fig. 63 Heater Core

BAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

PANEL OUTLET DUCTS

The panel outlet ducts are integral to the instrument panel assembly. Refer to Group 8E - Instrument Panel Systems for the instrument panel assembly service procedures.

PANEL OUTLET BARRELS

(1) Use a trim stick or another suitable widebladed flat tool to gently pry the panel outlet barrel out of the panel outlet housing (Fig. 64). The barrel is retained by a light snap fit.

Fig. 64 Panel Outlet Barrels

(2) To install, position the barrel in the panel outlet housing and press firmly until the barrel snaps into place.

REMOVAL AND INSTALLATION (Continued)

DEMISTER OUTLETS

The side window demister outlets are integral to the instrument panel end caps. Refer to Group 8E - Instrument Panel Systems for the instrument panel end cap service procedures.

DEFROST DUCT/DEMISTER ADAPTER

- (1) Remove the instrument panel assembly as described in Group 8E Instrument Panel Systems.
- (2) Disconnect the demister hoses from the defrost duct/demister adapter (Fig. 65).

80abd29f

Fig. 65 Defrost Duct/Demister Adapter

- (3) Remove the three screws that secure the defrost duct/demister adapter to the instrument panel.
- (4) Remove the defrost duct/demister adapter from the instrument panel.
- (5) Reverse the removal procedures to install. Tighten the mounting screws to 2.2 N·m (20 in. lbs.).

DEMISTER HOSES

- (1) Remove the instrument panel assembly as described in Group 8E Instrument Panel Systems.
- (2) Disconnect the ends of the demister hose from the demister duct (Fig. 66) and the defrost duct/demister adapter (Fig. 65).
 - (3) Reverse the removal procedures to install.

DEMISTER DUCTS

- (1) Remove the instrument panel assembly as described in Group 8E Instrument Panel Systems.
- (2) Remove the instrument panel end cap as described in Group 8E Instrument Panel Systems.
- (3) Disconnect the demister hoses from the demister duct (Fig. 66).
- (4) Remove the two screws that secure the demister duct to the top of the instrument panel.
- (5) Remove the demister duct from the instrument panel.

Fig. 66 Demister Duct Remove/Install

(6) Reverse the removal procedures to install. Tighten the mounting screws to 2.2 N·m (20 in. lbs.).

CONSOLE REAR DUCT

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the floor console from the floor pan transmission tunnel (Fig. 67). Refer to Group 23 Body for the procedures.

Fig. 67 Floor Duct and Console Rear Duct Remove/ Install

- (3) Lift the rear of the console rear duct out of the console rear mounting bracket on the floor pan transmission tunnel and slide the duct rearward to disengage it from the floor duct and adapter.
 - (4) Remove the console rear duct from the vehicle.
 - (5) Reverse the removal procedures to install.

REMOVAL AND INSTALLATION (Continued)

FLOOR DUCT AND ADAPTER

- (1) Remove the instrument panel as described in Group 8E Instrument Panel Systems.
- (2) Remove the heater-A/C housing as described in this group.
- (3) Remove the three screws that secure the floor duct and adapter to the heater-A/C housing (Fig. 67).
- (4) Remove the floor duct and adapter from the heater-A/C housing.
- (5) Reverse the removal procedures to install. Tighten the mounting screws to 2.2 N·m (20 in. lbs.).

EMISSION CONTROL SYSTEMS

CONTENTS

	page		pa	ge
EVAPORATIVE EMISSION CONTROLS	. 11	ON-BOARD DIAGNOSTICS		1

ON-BOARD DIAGNOSTICS

INDEX

page	page
GENERAL INFORMATION SYSTEM DESCRIPTION	MALFUNCTION INDICATOR LAMP (MIL)
DIAGNOSTIC TROUBLE CODES	TRIP DEFINITION

GENERAL INFORMATION

SYSTEM DESCRIPTION

The Powertrain Control Module (PCM) monitors many different circuits in the fuel injection, ignition, emission and engine systems. If the PCM senses a problem with a monitored circuit often enough to indicate an actual problem, it stores a Diagnostic Trouble Code (DTC) in the PCM's memory. If the code applies to a non-emissions related component or system, and the problem is repaired or ceases to exist, the PCM cancels the code after 40 warm-up cycles. Diagnostic trouble codes that affect vehicle emissions illuminate the Malfunction Indicator (check engine) Lamp. Refer to Malfunction Indicator Lamp in this section.

Certain criteria must be met before the PCM stores a DTC in memory. The criteria may be a specific range of engine RPM, engine temperature, and/or input voltage to the PCM.

The PCM might not store a DTC for a monitored circuit even though a malfunction has occurred. This may happen because one of the DTC criteria for the circuit has not been met. **For example**, assume the diagnostic trouble code criteria requires the PCM to monitor the circuit only when the engine operates between 750 and 2000 RPM. Suppose the sensor's output circuit shorts to ground when engine operates above 2400 RPM (resulting in 0 volt input to the

PCM). Because the condition happens at an engine speed above the maximum threshold (2000 rpm), the PCM will not store a DTC.

There are several operating conditions for which the PCM monitors and sets DTC's. Refer to Monitored Systems, Components, and Non-Monitored Circuits in this section.

NOTE: Various diagnostic procedures may actually cause a diagnostic monitor to set a DTC. For instance, pulling a spark plug wire to perform a spark test may set the misfire code. When a repair is completed and verified, connect the DRB scan tool to the 16-way data link connector (Fig. 1) to erase all DTC's and extinguish the MIL.

Technicians can display stored DTC's by three different methods. Refer to Diagnostic Trouble Codes in this section. For DTC information, refer to charts in this section.

DESCRIPTION AND OPERATION

MALFUNCTION INDICATOR LAMP (MIL)

As a functional test, the MIL (check engine) illuminates at key-on before engine cranking. Whenever the Powertrain Control Module (PCM) sets a Diagnostic Trouble Code (DTC) that affects vehicle emissions, it illuminates the MIL. If a problem is

Fig. 1 Data Link (Diagnostic) Connector Location

detected, the PCM sends a message to the instrument cluster to illuminate the lamp. The PCM illuminates the MIL only for DTC's that affect vehicle emissions. There are some monitors that may take two consecutive trips, with a detected fault, before the MIL is illuminated. The MIL stays on continuously when the PCM has entered a Limp-In mode or identified a failed emission component. Refer to the Diagnostic Trouble Code charts in this group for emission related codes.

Also, the MIL either flashes or illuminates continuously when the PCM detects active engine misfire. Refer to Misfire Monitoring in this section.

Additionally, the PCM may reset (turn off) the MIL when one of the following occur:

- PCM does not detect the malfunction for 3 consecutive trips (except misfire and Fuel system Monitors).
- PCM does not detect a malfunction while performing three successive engine misfire or fuel system tests. The PCM performs these tests while the engine is operating within \pm 375 RPM of and within 10 % of the load of the operating condition at which the malfunction was first detected.

STATE DISPLAY TEST MODE

The switch inputs to the Powertrain Control Module (PCM) have two recognized states; HIGH and LOW. For this reason, the PCM cannot recognize the difference between a selected switch position versus an open circuit, a short circuit, or a defective switch. If the State Display screen shows the change from HIGH to LOW or LOW to HIGH, assume the entire switch circuit to the PCM functions properly. Connect the DRB scan tool to the data link connector and access the state display screen. Then access either

State Display Inputs and Outputs or State Display Sensors.

CIRCUIT ACTUATION TEST MODE

The Circuit Actuation Test Mode checks for proper operation of output circuits or devices the Powertrain Control Module (PCM) may not internally recognize. The PCM attempts to activate these outputs and allow an observer to verify proper operation. Most of the tests provide an audible or visual indication of device operation (click of relay contacts, fuel spray, etc.). Except for intermittent conditions, if a device functions properly during testing, assume the device, its associated wiring, and driver circuit work correctly. Connect the DRB scan tool to the data link connector and access the Actuators screen.

DIAGNOSTIC TROUBLE CODES

A Diagnostic Trouble Code (DTC) indicates the PCM has recognized an abnormal condition in the system.

The technician can retrieve and display DTC's in three different ways:

- The preferred and most accurate method of retrieving a DTC is by using the DRB scan tool. The scan tool supplies detailed diagnostic information which can be used to more accurately diagnose causes for a DTC.
- The second method is by observing the two-digit number displayed at the Malfunction Indicator Lamp (MIL). The MIL is displayed on the instrument panel as the Check Engine lamp. This method is to be used as a "quick-test" only. Always use the DRB scan tool for detailed information.
- The third method is by observing the two-digit number displayed at the vehicle odometer. This method, similar to the MIL lamp, is also to be used as a "quick-test" only.

Remember that DTC's are the results of a system or circuit failure, but do not directly identify the failed component or components.

NOTE: For a list of DTC's, refer to the charts in this section.

BULB CHECK

Each time the ignition key is turned to the ON position, the malfunction indicator (check engine) lamp on the instrument panel should illuminate for approximately 2 seconds then go out. This is done for a bulb check.

OBTAINING DTC'S USING DRB SCAN TOOL

(1) Connect the DRB scan tool to the data link (diagnostic) connector. This connector is located in

the passenger compartment; at the lower edge of instrument panel; near the steering column.

- (2) Turn the ignition switch on and access the "Read Fault" screen.
- (3) Record all the DTC's and "freeze frame" information shown on the DRB scan tool.
- (4) To erase DTC's, use the "Erase Trouble Code" data screen on the DRB scan tool. **Do not erase any DTC's until problems have been investigated and repairs have been performed.**

OBTAINING DTC'S USING MIL LAMP

- (1) Cycle the ignition key On Off On Off On within 5 seconds.
- (2) Count the number of times the MIL (check engine lamp) on the instrument panel flashes on and off. The number of flashes represents the trouble code. There is a slight pause between the flashes representing the first and second digits of the code. Longer pauses separate individual two digit trouble codes.

An example of a flashed DTC is as follows:

- Lamp flashes 4 times, pauses, and then flashes 6 more times. This indicates a DTC code number 46.
- Lamp flashes 5 times, pauses, and flashes 5 more times. This indicates a DTC code number 55. A DTC 55 will always be the last code to be displayed. This indicates the end of all stored codes.

OBTAINING DTC'S USING VEHICLE ODOMETER

- (1) Cycle the ignition key On Off On Off On within 5 seconds.
- (2) After a short pause, the mileage shown on the vehicles digital odometer will be temporarily deleted. After this occurs, read the DTC number displayed on the odometer. Each two-digit number will be displayed with a slight delay between numbers.
- (3) A DTC number 55 will always be the last code to be displayed. This indicates the end of all stored codes. After code 55 has been displayed, the odometer will return to its normal mode.

DIAGNOSTIC TROUBLE CODE DESCRIPTIONS

HEX CODE	MIL CODE	GENERIC SCAN TOOL CODE	DRB SCAN TOOL DISPLAY	DESCRIPTION OF DIAGNOSTIC TROUBLE CODE
	12*		Battery Disconnect	Direct battery input to PCM was disconnected within the last 50 Key-on cycles.
	55*			Completion of fault code display on Check Engine lamp.
01	54**	P0340	No Cam Signal at PCM	No camshaft signal detected during engine cranking.
02	53**	P0601	Internal Controller Failure	PCM Internal fault condition detected.
05	47***		Charging System Voltage Too Low	Battery voltage sense input below target charging during engine operation. Also, no significant change detected in battery voltage during active test of generator output circuit.
06	46***		Charging System Voltage Too High	Battery voltage sense input above target charging voltage during engine operation.
0A	42*		Auto Shutdown Relay Control Circuit	An open or shorted condition detected in the auto shutdown relay circuit.
0B	41***		Generator Field Not Switching Properly	An open or shorted condition detected in the generator field control circuit.
0C	37**	P0743	Torque Converter Clutch Soleniod/Trans Relay Circuits	An open or shorted condition detected in the torque converter part throttle unlock solenoid control circuit (3 speed auto RH trans. only).
0E	35**	P1491	Rad Fan Control Relay Circuit	An open or shorted condition detected in the low speed radiator fan relay control circuit.

HEX CODE	MIL CODE	GENERIC SCAN TOOL CODE	DRB SCAN TOOL DISPLAY	DESCRIPTION OF DIAGNOSTIC TROUBLE CODE
0F	34*		Speed Control Solenoid Circuits	An open or shorted condition detected in the Speed Control vacuum or vent solenoid circuits.
10	33*		A/C Clutch Relay Circuit	An open or shorted condition detected in the A/C clutch relay circuit.
12	31**	P0443	EVAP Purge Solenoid Circuit	An open or shorted condition detected in the duty cycle purge solenoid circuit.
13	27**	P0203	Injector #3 Control Circuit	Injector #3 output driver does not respond properly to the control signal.
14		or P0202	Injector #2 Control Circuit	Injector #2 output driver does not respond properly to the control signal.
15		or P0201	Injector #1 Control Circuit	Injector #1 output driver does not respond properly to the control signal.
19	25**	P0505	Idle Air Control Motor Circuits	A shorted or open condition detected in one or more of the idle air control motor circuits.
1A	24**	P0122	Throttle Position Sensor Voltage Low	Throttle position sensor input below the minimum acceptable voltage
1B		or P0123	Throttle Position Sensor Voltage High	Throttle position sensor input above the maximum acceptable voltage.
1E	22**	P0117	ECT Sensor Voltage Too Low	Engine coolant temperature sensor input below minimum acceptable voltage.
1F		or P0118	ECT Sensor Voltage Too High	Engine coolant temperature sensor input above maximum acceptable voltage.
21	17*		Engine Is Cold Too Long	Engine did not reach operating temperature within acceptable limits.
23	15**	P0500	No Vehicle Speed Sensor Signal	No vehicle speed sensor signal detected during road load conditions.
24	14**	P0107	MAP Sensor Voltage Too Low	MAP sensor input below minimum acceptable voltage.
25		or P0108	MAP Sensor Voltage Too High	MAP sensor input above maximum acceptable voltage.
27	13**	P1297	No Change in MAP From Start to Run	No difference recognized between the engine MAP reading and the barometric (atmospheric) pressure reading from start-up.
28	11*		No Crank Reference Signal at PCM	No crank reference signal detected during engine cranking.
2B		P0351	Ignition Coil #1 Primary Circuit	Peak primary circuit current not achieved with maximum dwell time.
2C	42*		No ASD Relay Output Voltage at PCM	An Open condition Detected In The ASD Relay Output Circuit.

HEX CODE	MIL CODE	GENERIC SCAN TOOL CODE	DRB SCAN TOOL DISPLAY	DESCRIPTION OF DIAGNOSTIC TROUBLE CODE
31	63**	P1696	PCM Failure EEPROM Write Denied	Unsuccessful attempt to write to an EEPROM location by the PCM.
39	23**	P0112 or	Intake Air Temp Sensor Voltage Low	Intake air temperature sensor input below the maximum acceptable voltage.
3A		P0113	Intake Air Temp Sensor Voltage High	Intake air temperature sensor input above the minimum acceptable voltage.
3D	27**	P0204	Injector #4 Control Circuit	Injector #4 output driver does not respond properly to the control signal.
3E	21**	P0132	Upstream O2S Shorted to Voltage	Oxygen sensor input voltage maintained above the normal operating range.
44	53**	PO600	PCM Failure SPI Communications	PCM internal fault condition detected
45	27**	P0205 or	Injector #5 Control Circuit	Injector #5 output driver does not respond properly to the control signal.
46		P0206	Injector #6 Control Circuit	Injector #6 output driver does not respond properly to the control signal.
52	77*		SPD CTRL PWR RLY; or S/C 12V Driver CKT	Malfuntion detected with power feed to speed control servo solenoids
56	34*	or	Speed Control Switch Always High	Speed control switch input above the maximum acceptable voltage.
57			Speed Control Switch Always Low	Speed control switch input below the minimum acceptable voltage.
65	42*		Fuel Pump Relay Control Circuit	An open or shorted condition detected in the fuel pump relay control circuit.
66	21**	P0133 or	Upstream O2S Slow Response	Oxygen sensor response slower than minimum required switching frequency.
67		P0135	Upstream O2S Heater Failure	Upstream oxygen sensor heating element circuit malfunction
69		P0141	Downstream or Pre-Catalyst Heater Failure	Oxygen sensor heating element circuit malfunction.
6A	43**	P0300	Multiple Cylinder Mis-fire	Misfire detected in multiple cylinders.
6B		or P0301 or	Cylinder #1 Mis-fire	Misfire detected in cylinder #1.
6C		P0302 or	Cylinder #2 Mis-fire	Misfire detected in cylinder #2.

HEX CODE	MIL CODE	GENERIC SCAN TOOL CODE	DRB SCAN TOOL DISPLAY	DESCRIPTION OF DIAGNOSTIC TROUBLE CODE
6D		P0303	Cylinder #3 Mis-fire	Misfire detected in cylinder #3.
		or		
6E		P0304	Cylinder #4 Mis-fire	Misfire detected in cylinder #4.
70	72**	P0420	Efficency Failure	Catalyst efficiency below required level.
71	31*	P0441	Evap Purge Flow Monitor Failure	Insufficient or excessive vapor flow detected during evaporative emission system operation.
72	37**	P1899	P/N Switch Stuck in Park or in Gear	Incorrect input state detected for the Park/ Neutral switch, auto. trans. only.
76	52**	P0172	Fuel System Rich	A rich air/fuel mixture has been indicated by an abnormally lean correction factor.
77	51**	P0171	Fuel System Lean	A lean air/fuel mixture has been indicated by an abnormally rich correction factor.
7E	21**	P0138	Downstream and Pre-Catalyst O2S Shorted to Voltage	Oxygen sensor input voltage maintained above the normal operating range.
80	17**	P0125	Closed Loop Temp Not Reached	Engine does not reach 20°F within 5 minutes with a vehicle speed signal.
84	24**	P0121	TPS Voltage Does Not Agree With MAP	TPS signal does not correlate to MAP sensor
87	14**	P1296	No 5 Volts To MAP Sensor	5 Volt output to MAP sensor open.
8A	25**	P1294	Target Idle Not Reached	Actual idle speed does not equal target idle speed.
94	37*	P0740	Torq Conv Clu, No RPM Drop At Lockup	Relationship between engine speed and vehicle speed indicates no torque converter clutch engagement (auto. trans. only).
95	42*	or	Fuel Level Sending Unit Volts Too Low	Open circuit between PCM and fuel gauge sending unit.
96			Fuel Level Sending Unit Volts Too High	Circuit shorted to voltage between PCM and fuel gauge sending unit.
97		or	Fuel Level Unit No Change Over Miles	No movement of fuel level sender detected.
99	44**	P1493 or	Ambient/Batt Temp Sen VoltsToo Low	Battery temperature sensor input voltage below an acceptable range.
9A		P1492	Ambient/Batt Temp Sensor VoltsToo High	Battery temperature sensor input voltage above an acceptable range.
9B	21**	P0131	Upstream O2S Shorted to Ground	O2 sensor voltage too low, tested after cold start.
		or		

HEX CODE	MIL CODE	GENERIC SCAN TOOL CODE	DRB SCAN TOOL DISPLAY	DESCRIPTION OF DIAGNOSTIC TROUBLE CODE
9C		P0137	Downstream and Pre-Catalyst O2S Shorted to Ground	O2 sensor voltage too low, tested after cold start.
9D	11**	P1391	Intermittent Loss of CMP or CKP	Intermittent loss of either camshaft or crankshaft position sensor
AE	43**	P0305 or	Cylinder #5 Mis-fire	Misfire detected in cylinder #5.
AF		P0306	Cylinder #6 Mis-fire	Misfire detected in cylinder #6.
BA	11**	P1398	Mis-fire Adaptive Numerator at Limit	CKP sensor target windows have too much variation
СО	21	P0133	CAT MON SLOW O2 1/1	A slow switching oxygen sensor has been detected in bank 1/1 during catalyst monitor test.

^{*} Check Engine Lamp (MIL) will not illuminate if this Diagnostic Trouble Code was recorded. Cycle Ignition key as described in manual and observe code flashed by Check Engine lamp.

MONITORED SYSTEMS

There are new electronic circuit monitors that check fuel, emission, engine and ignition performance. These monitors use information from various sensor circuits to indicate the overall operation of the fuel, engine, ignition and emission systems and thus the emissions performance of the vehicle.

The fuel, engine, ignition and emission systems monitors do not indicate a specific component problem. They do indicate that there is an implied problem within one of the systems and that a specific problem must be diagnosed.

If any of these monitors detect a problem affecting vehicle emissions, the Malfunction Indicator (Check Engine) Lamp will be illuminated. These monitors generate Diagnostic Trouble Codes that can be displayed with the check engine lamp or a scan tool.

The following is a list of the system monitors:

- Misfire Monitor
- Fuel System Monitor
- Oxygen Sensor Monitor
- Oxygen Sensor Heater Monitor
- Catalyst Monitor

All these system monitors require two consecutive trips with the malfunction present to set a fault.

Following is a description of each system monitor, and its DTC.

Refer to the appropriate Powertrain Diagnostics Procedures manual for diagnostic procedures.

MIL 21—OXYGEN SENSOR (O2S) MONITOR

Effective control of exhaust emissions is achieved by an oxygen feedback system. The most important element of the feedback system is the O2S. The O2S is located in the exhaust path. Once it reaches operating temperature 300° to 350°C (572° to 662°F), the sensor generates a voltage that is inversely proportional to the amount of oxygen in the exhaust. The information obtained by the sensor is used to calculate the fuel injector pulse width. This maintains a 14.7 to 1 Air Fuel (A/F) ratio. At this mixture ratio, the catalyst works best to remove hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxide (NOx) from the exhaust.

The O2S is also the main sensing element for the Catalyst and Fuel Monitors.

The O2S can fail in any or all of the following manners:

- slow response rate
- reduced output voltage
- · dynamic shift
- shorted or open circuits

Response rate is the time required for the sensor to switch from lean to rich once it is exposed to a richer than optimum A/F mixture or vice versa. As the sensor starts malfunctioning, it could take longer to detect the changes in the oxygen content of the exhaust gas.

The output voltage of the O2S ranges from 0 to 1 volt. A good sensor can easily generate any output

^{**} Check Engine Lamp (MIL) will illuminate during engine operation if this Diagnostic Trouble Code was recorded.

^{***} Generator Lamp illuminated

voltage in this range as it is exposed to different concentrations of oxygen. To detect a shift in the A/F mixture (lean or rich), the output voltage has to change beyond a threshold value. A malfunctioning sensor could have difficulty changing beyond the threshold value.

MIL 21—OXYGEN SENSOR HEATER MONITOR

If there is an oxygen sensor (O2S) shorted to voltage DTC, as well as a O2S heater DTC, the O2S fault MUST be repaired first. Before checking the O2S fault, verify that the heater circuit is operating correctly.

Effective control of exhaust emissions is achieved by an oxygen feedback system. The most important element of the feedback system is the O2S. The O2S is located in the exhaust path. Once it reaches operating temperature 300° to 350°C (572° to 662°F), the sensor generates a voltage that is inversely proportional to the amount of oxygen in the exhaust. The information obtained by the sensor is used to calculate the fuel injector pulse width. This maintains a 14.7 to 1 Air Fuel (A/F) ratio. At this mixture ratio, the catalyst works best to remove hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxide (NOx) from the exhaust.

The voltage readings taken from the O2S sensor are very temperature sensitive. The readings are not accurate below 300°C. Heating of the O2S sensor is done to allow the engine controller to shift to closed loop control as soon as possible. The heating element used to heat the O2S sensor must be tested to ensure that it is heating the sensor properly.

The O2S sensor circuit is monitored for a drop in voltage. The sensor output is used to test the heater by isolating the effect of the heater element on the O2S sensor output voltage from the other effects.

MIL 43—MISFIRE MONITOR

Excessive engine misfire results in increased catalyst temperature and causes an increase in HC emissions. Severe misfires could cause catalyst damage. To prevent catalytic convertor damage, the PCM monitors engine misfire.

The Powertrain Control Module (PCM) monitors for misfire during most engine operating conditions (positive torque) by looking at changes in the crankshaft speed. If a misfire occurs the speed of the crankshaft will vary more than normal.

MIL 51/52—FUEL SYSTEM MONITOR

To comply with clean air regulations, vehicles are equipped with catalytic converters. These converters reduce the emission of hydrocarbons, oxides of nitrogen and carbon monoxide. The catalyst works best when the Air Fuel (A/F) ratio is at or near the optimum of 14.7 to 1.

The PCM is programmed to maintain the optimum air/fuel ratio of 14.7 to 1. This is done by making short term corrections in the fuel injector pulse width based on the O2S sensor output. The programmed memory acts as a self calibration tool that the engine controller uses to compensate for variations in engine specifications, sensor tolerances and engine fatigue over the life span of the engine. By monitoring the actual fuel-air ratio with the O2S sensor (short term) and multiplying that with the program long-term (adaptive) memory and comparing that to the limit, it can be determined whether it will pass an emissions test. If a malfunction occurs such that the PCM cannot maintain the optimum A/F ratio, then the MIL will be illuminated.

MIL 64—CATALYST MONITOR

To comply with clean air regulations, vehicles are equipped with catalytic converters. These converters reduce the emission of hydrocarbons, oxides of nitrogen and carbon monoxide.

Normal vehicle miles or engine misfire can cause a catalyst to decay. A meltdown of the ceramic core can cause a reduction of the exhaust passage. This can increase vehicle emissions and deteriorate engine performance, driveability and fuel economy.

The catalyst monitor uses dual oxygen sensors (O2S's) to monitor the efficiency of the converter. The dual O2S's sensor strategy is based on the fact that as a catalyst deteriorates, its oxygen storage capacity and its efficiency are both reduced. By monitoring the oxygen storage capacity of a catalyst, its efficiency can be indirectly calculated. The upstream O2S is used to detect the amount of oxygen in the exhaust gas before the gas enters the catalytic converter. The PCM calculates the A/F mixture from the output of the O2S. A low voltage indicates high oxygen content (lean mixture). A high voltage indicates a low content of oxygen (rich mixture).

When the upstream O2S detects a lean condition, there is an abundance of oxygen in the exhaust gas. A functioning converter would store this oxygen so it can use it for the oxidation of HC and CO. As the converter absorbs the oxygen, there will be a lack of oxygen downstream of the converter. The output of the downstream O2S will indicate limited activity in this condition

As the converter loses the ability to store oxygen, the condition can be detected from the behavior of the downstream O2S. When the efficiency drops, no chemical reaction takes place. This means the concentration of oxygen will be the same downstream as upstream. The output voltage of the downstream O2S copies the voltage of the upstream sensor. The only difference is a time lag (seen by the PCM) between the switching of the O2S's.

To monitor the system, the number of lean-to-rich switches of upstream and downstream O2S's is counted. The ratio of downstream switches to upstream switches is used to determine whether the catalyst is operating properly. An effective catalyst will have fewer downstream switches than it has upstream switches i.e., a ratio closer to zero. For a totally ineffective catalyst, this ratio will be one-to-one, indicating that no oxidation occurs in the device.

The system must be monitored so that when catalyst efficiency deteriorates and exhaust emissions increase to over the legal limit, the MIL (check engine lamp) will be illuminated.

TRIP DEFINITION

The term "Trip" has different meanings depending on what the circumstances are. If the MIL (Malfunction Indicator Lamp) is OFF, a Trip is defined as when the Oxygen Sensor Monitor and the Catalyst Monitor have been completed in the same drive cycle.

When any Emission DTC is set, the MIL on the dash is turned ON. When the MIL is ON, it takes 3 good trips to turn the MIL OFF. In this case, it depends on what type of DTC is set to know what a "Trip" is.

For the Fuel Monitor or Mis-Fire Monitor (continuous monitor), the vehicle must be operated in the "Similar Condition Window" for a specified amount of time to be considered a Good Trip.

If a Non-Contiuous OBDII Monitor, such as:

- Oxygen Sensor
- Catalyst Monitor
- Purge Flow Monitor
- Leak Detection Pump Monitor (if equipped)
- EGR Monitor (if equipped)
- Oxygen Sensor Heater Monitor

fails twice in a row and turns ON the MIL, re-running that monitor which previously failed, on the next start-up and passing the monitor is considered to be a Good Trip.

If any other Emission DTC is set (not an OBDII Monitor), a Good Trip is considered to be when the Oxygen Sensor Monitor and Catalyst Monitor have been completed; or 2 Minutes of engine run time if the Oxygen Sensor Monitor or Catalyst Monitor have been stopped from running.

It can take up to 2 Failures in a row to turn on the MIL. After the MIL is ON, it takes 3 Good Trips to turn the MIL OFF. After the MIL is OFF, the PCM will self-erase the DTC after 40 Warm-up cycles. A Warm-up cycle is counted when the ECT (Engine Coolant Temperature Sensor) has crossed 160°F and has risen by at least 40°F since the engine has been started.

COMPONENT MONITORS

There are several components that will affect vehicle emissions if they malfunction. If one of these components malfunctions the Malfunction Indicator Lamp (Check Engine) will illuminate.

Some of the component monitors are checking for proper operation of the part. Electrically operated components now have input (rationality) and output (functionality) checks. Previously, a component like the Throttle Position sensor (TPS) was checked by the PCM for an open or shorted circuit. If one of these conditions occurred, a DTC was set. Now there is a check to ensure that the component is working. This is done by watching for a TPS indication of a greater or lesser throttle opening than MAP and engine rpm indicate. In the case of the TPS, if engine vacuum is high and engine rpm is 1600 or greater and the TPS indicates a large throttle opening, a DTC will be set. The same applies to low vacuum if the TPS indicates a small throttle opening.

All open/short circuit checks or any component that has an associated limp in will set a fault after 1 trip with the malfunction present. Components without an associated limp in will take two trips to illuminate the MIL.

Refer to the Diagnostic Trouble Codes Description Charts in this section and the appropriate Powertrain Diagnostic Procedure Manual for diagnostic procedures.

NON-MONITORED CIRCUITS

The PCM does not monitor the following circuits, systems and conditions that could have malfunctions causing driveability problems. The PCM might not store diagnostic trouble codes for these conditions. However, problems with these systems may cause the PCM to store diagnostic trouble codes for other systems or components. For example, a fuel pressure problem will not register a fault directly, but could cause a rich/lean condition or misfire. This could cause the PCM to store an oxygen sensor or misfire diagnostic trouble code

FUEL PRESSURE

The fuel pressure regulator controls fuel system pressure. The PCM cannot detect a clogged fuel pump inlet filter, clogged in-line fuel filter, or a pinched fuel supply or return line. However, these could result in a rich or lean condition causing the PCM to store an oxygen sensor or fuel system diagnostic trouble code.

SECONDARY IGNITION CIRCUIT

The PCM cannot detect an inoperative ignition coil, fouled or worn spark plugs, ignition cross firing, or open spark plug cables.

CYLINDER COMPRESSION

The PCM cannot detect uneven, low, or high engine cylinder compression.

EXHAUST SYSTEM

The PCM cannot detect a plugged, restricted or leaking exhaust system, although it may set a fuel system fault.

FUEL INJECTOR MECHANICAL MALFUNCTIONS

The PCM cannot determine if a fuel injector is clogged, the needle is sticking or if the wrong injector is installed. However, these could result in a rich or lean condition causing the PCM to store a diagnostic trouble code for either misfire, an oxygen sensor, or the fuel system.

EXCESSIVE OIL CONSUMPTION

Although the PCM monitors engine exhaust oxygen content when the system is in closed loop, it cannot determine excessive oil consumption.

THROTTLE BODY AIR FLOW

The PCM cannot detect a clogged or restricted air cleaner inlet or filter element.

VACUUM ASSIST

The PCM cannot detect leaks or restrictions in the vacuum circuits of vacuum assisted engine control

system devices. However, these could cause the PCM to store a MAP sensor diagnostic trouble code and cause a high idle condition.

PCM SYSTEM GROUND

The PCM cannot determine a poor system ground. However, one or more diagnostic trouble codes may be generated as a result of this condition. The module should be mounted to the body at all times, also during diagnostic.

PCM CONNECTOR ENGAGEMENT

The PCM may not be able to determine spread or damaged connector pins. However, it might store diagnostic trouble codes as a result of spread connector pins.

HIGH AND LOW LIMITS

The PCM compares input signal voltages from each input device with established high and low limits for the device. If the input voltage is not within limits and other criteria are met, the PCM stores a diagnostic trouble code in memory. Other diagnostic trouble code criteria might include engine RPM limits or input voltages from other sensors or switches that must be present before verifying a diagnostic trouble code condition.

LOAD VALUE

ENGINE	IDLE/NEUTRAL	2500 RPM/NEUTRAL
All Engines	2% to 8% of Maximum Load	9% to 17% of Maximum Load

EVAPORATIVE EMISSION CONTROLS

INDEX

page	page
DESCRIPTION AND OPERATION CRANKCASE VENTILATION SYSTEM 12 DUTY CYCLE EVAP CANISTER PURGE SOLENOID 11 EVAP CANISTER 11 EVAPORATION (EVAP) CONTROL SYSTEM 11 ROLLOVER VALVE 11 VEHICLE EMISSION CONTROL INFORMATION (VECI) LABEL 13	DIAGNOSIS AND TESTING VACUUM SCHEMATICS 13 REMOVAL AND INSTALLATION DUTY CYCLE EVAP CANISTER PURGE SOLENOID 14 EVAP CANISTER 13 ROLLOVER VALVE(S) 14 SPECIFICATIONS TORQUE CHART 14
DESCRIPTION AND OPERATION EVAPORATION (EVAP) CONTROL SYSTEM The function of the EVAP control system is to prevent the emissions of gasoline vapors from the fuel	FUEL SUPPLY TUBE EVAP CANISTER VENT LINE RETAINER

porarily held in the canister until they can be drawn into the intake manifold when the engine is running. All engines use a duty cycle purge system. The PCM controls vapor flow by operating the duty cycle EVAP purge solenoid. Refer to Duty Cycle EVAP

tank into the atmosphere. When fuel evaporates in the fuel tank, the vapors pass through vent hoses or tubes to a carbon filled EVAP canister. They are tem-

Canister Purge Solenoid for additional information. The EVAP canister is a feature on all models for the storage of fuel vapors from the fuel tank.

NOTE: The hoses used in this system are specially manufactured. If replacement becomes necessary, it is important to use only fuel resistant hose.

ROLLOVER VALVE

The fuel tank is equipped with a rollover valve. The valve is located on the top of the fuel tank (Fig. 1). The valve will prevent fuel flow through the fuel tank vent (EVAP) hoses in the event of an accidental vehicle rollover. The EVAP canister draws fuel vapors from the fuel tank through this valve.

The valve cannot be serviced separately. If replacement is necessary, the fuel tank must be replaced. Refer to Fuel Tank Removal/Installation in Group 14, Fuel System.

EVAP CANISTER

A maintenance free, EVAP canister is used on all vehicles. On conventional left hand drive (LHD) models, the EVAP canister is located in the engine compartment on the passenger side frame rail (Fig. 2).

Fig. 1 Rollover Valve Location

On RHD models, the canister is located in the left side of the engine compartment near the heater blower motor (Fig. 3). The EVAP canister is filled with granules of an activated carbon mixture. Fuel vapors entering the EVAP canister are absorbed by the charcoal granules.

Fuel tank pressure vents into the EVAP canister. Fuel vapors are temporarily held in the canister until they can be drawn into the intake manifold. The duty cycle EVAP canister purge solenoid allows the EVAP canister to be purged at predetermined times and at certain engine operating conditions.

DUTY CYCLE EVAP CANISTER PURGE SOLENOID

The Duty Cycle EVAP Canister Purge Solenoid regulates the rate of vapor flow from the EVAP canister to the intake manifold. The Powertrain Control Module (PCM) operates the solenoid.

Fig. 2 EVAP Canister Location—LHD Models

Fig. 3 EVAP Canister Location—RHD Models

During the cold start warm-up period and the hot start time delay, the PCM does not energize the solenoid. When de-energized, no vapors are purged. The PCM de-energizes the solenoid during open loop operation.

The engine enters closed loop operation after it reaches a specified temperature and the time delay ends. During closed loop operation, the PCM cycles (energizes and de-energizes) the solenoid 5 or 10 times per second, depending upon operating conditions. The PCM varies the vapor flow rate by changing solenoid pulse width. Pulse width is the amount of time that the solenoid is energized. The PCM adjusts solenoid pulse width based on engine operating condition.

On vehicles equipped with Left Hand Drive (LHD), the solenoid attaches to a bracket located in the right-rear side of engine compartment near the EVAP canister (Fig. 4). On vehicles equipped with Right Hand Drive (RHD), the solenoid attaches to a bracket located in the left-rear side of engine compartment. The top of the solenoid has the word UP or TOP on

it. The solenoid will not operate properly unless it is installed correctly.

Fig. 4 Duty Cycle EVAP Purge Solenoid (LHD Shown)

CRANKCASE VENTILATION SYSTEM

All 2.5L 4-cylinder and 4.0L 6-cylinder engines are equipped with a Crankcase Ventilation (CCV) system (Fig. 5) or (Fig. 6). The CCV system performs the same function as a conventional PCV system, but does not use a vacuum controlled valve.

Fig. 5 CCV System—2.5L Engine—Typical

On 4.0L 6 cylinder engines, a molded vacuum tube connects manifold vacuum to top of cylinder head (valve) cover at dash panel end. The vacuum fitting contains a fixed orifice of a calibrated size. It meters the amount of crankcase vapors drawn out of the engine.

Fig. 6 CCV System—4.0L Engine—Typical

On 2.5L 4 cylinder engines, a fitting on drivers side of cylinder head (valve) cover contains the metered orifice. It is connected to manifold vacuum.

A fresh air supply hose from the air cleaner is connected to front of cylinder head cover on 4.0L engines. It is connected to rear of cover on 2.5L engines.

When the engine is operating, fresh air enters the engine and mixes with crankcase vapors. Manifold vacuum draws the vapor/air mixture through the fixed orifice and into the intake manifold. The vapors are then consumed during combustion.

VEHICLE EMISSION CONTROL INFORMATION (VECI) LABEL

All vehicles are equipped with a combined VECI label. This label is located in the engine compartment (Fig. 7) and contains the following:

- Engine family and displacement
- Evaporative family
- Emission control system schematic
- Certification application
- Engine timing specifications (if adjustable)
- Idle speeds (if adjustable)
- Spark plug and gap

The label also contains an engine vacuum schematic. There are unique labels for vehicles built for sale in the state of California and the country of Canada. Canadian labels are written in both the English and French languages. These labels are permanently attached and cannot be removed without defacing information and destroying label.

Fig. 7 VECI Label Location—Typical
DIAGNOSIS AND TESTING

VACUUM SCHEMATICS

A vacuum schematic for emission related items can be found on the Vehicle Emission Control Information (VECI) Label. Refer to VECI Label in this group for label location.

REMOVAL AND INSTALLATION

EVAP CANISTER

On vehicle equipped with Left Hand Drive (LHD), the EVAP canister is located in engine compartment on right side frame rail (Fig. 8). On vehicles equipped with Right Hand Drive (RHD), the canister is located on left side of engine compartment near heater blower motor (Fig. 9).

Fig. 8 EVAP Canister Location—LHD Models

REMOVAL

(1) Disconnect vacuum lines at EVAP canister. Note location of lines before removal.

REMOVAL AND INSTALLATION (Continued)

Fig. 9 EVAP Canister Location—RHD Models

- (2) Remove canister retaining strap bolt.
- (3) Remove canister from vehicle.

INSTALLATION

- (1) Position canister into bracket.
- (2) Install and tighten strap bolt to 5 N·m (45 in. lbs.) torque.
 - (3) Connect vacuum lines at EVAP canister.

DUTY CYCLE EVAP CANISTER PURGE SOLENOID

REMOVAL

On vehicles equipped with Left Hand Drive (LHD), the solenoid attaches to a bracket located in the right-rear side of engine compartment near the EVAP canister (Fig. 10). On vehicles equipped with Right Hand Drive (RHD), the solenoid attaches to a bracket located in the left-rear side of engine compartment. The top of the solenoid has the word UP or TOP on it. The solenoid will not operate properly unless it is installed correctly.

- (1) Disconnect electrical wiring connector at solenoid.
 - (2) Disconnect vacuum harness at solenoid.
 - (3) Remove solenoid and its support bracket.

Fig. 10 Duty Cycle EVAP Canister Purge Solenoid—
(LHD Shown)

INSTALLATION

- (1) Install EVAP canister purge solenoid and its mounting bracket to cowl panel.
 - (2) Tighten bolt to 5 N·m (45 in. lbs.) torque.
 - (3) Connect vacuum harness and wiring connector.

ROLLOVER VALVE(S)

The pressure relief/rollover valves(s) are/is molded into the fuel tank and are not serviced separately. If replacement is necessary, the fuel tank must be replaced. Refer to Fuel Tank Removal/Installation in Group 14, Fuel System for procedures.

SPECIFICATIONS

TORQUE CHART

Description Torque

EVAP Canister Mounting Bolt . . . 5 N·m (45 in. lbs.) EVAP Canister Purge Solenoid

Bracket-to-Body Mounting Bolt . 5 N·m (45 in. lbs.)

DIFFERENTIAL AND DRIVELINE

CONTENTS

р	age	р	age
194 RBI AXLE			

PROPELLER SHAFTS

INDEX

page	page
GENERAL INFORMATION	REAR PROPELLER SHAFT 6
LUBRICATION 1	
PROPELLER SHAFT JOINT ANGLE 2	DOUBLE CARDAN JOINT 9
PROPELLER SHAFT JOINTS 2	SINGLE CARDAN UNIVERSAL JOINT 7
PROPELLER SHAFTS 1	CLEANING AND INSPECTION
DIAGNOSIS AND TESTING	PROPELLER SHAFT 12
RUNOUT 4	ADJUSTMENTS
UNBALANCE 3	
VIBRATION 3	LEAF SPRINGS 12
SERVICE PROCEDURES	FRONT AXLE ANGLE ADJUSTMENT 13
DRIVELINE ANGLE MEASUREMENT	SPECIFICATIONS
PREPARATION 5	PROPELLER SHAFTS AND U-JOINTS 14
PROPELLER SHAFT ANGLE MEASUREMENT 5	
REMOVAL AND INSTALLATION	PROPELLER SHAFT 14
FRONT PROPELLER SHAFT 6	

GENERAL INFORMATION

PROPELLER SHAFTS

The propeller shaft (Fig. 1) transmits power from one point to another in a smooth and continuous action. The shaft is designed to send torque through an angle from the transmission (transfer case on 4WD vehicles) to the axle.

The propeller shaft must operate through constantly changing relative angles between the transmission and axle. It must also be capable of changing length while transmitting torque. The axle rides suspended by springs in a floating motion. This means the propeller shaft must be able to contract, expand and change operating angles when going over various road surfaces. This is accomplished through universal joints, which permit the propeller shaft to operate at different angles. The slip joints (or yokes) permit contraction or expansion.

Tubular propeller shafts are balanced by the manufacturer with weights spot welded to the tube.

The propeller shaft is designed and built with the yoke lugs in line with each other. This is called phasing. This design produces the smoothest running condition. An out of phase shaft can cause a vibration.

Before undercoating a vehicle, the propeller shaft and the U-joints should be covered. This will prevent the undercoating from causing an unbalanced condition.

CAUTION: Use exact replacement parts for attaching the propeller shafts. This will ensure safe operation. The specified torque must always be applied when tightening the fasteners.

LUBRICATION

The slip yoke on the front propeller shaft is equipped with a lubrication fitting. Use a multi-pur-

GENERAL INFORMATION (Continued)

80a53ac2

Fig. 1 Front & Rear Propeller Shafts-4WD

pose NLGI Grade 2 EP lubricant. The factory installed universal joints are lubricated for the life of the vehicle and do not need lubrication. All universal joints should be inspected for leakage and damage each time the vehicle is serviced. If seal leakage or damage exists, the universal joint should be replaced. Refer to Group 0, Lubrication and Maintenance, for additional information.

PROPELLER SHAFT JOINT ANGLE

When two shafts come together at a common joint, the bend that is formed is called the operating angle. The larger the angle, the larger the amount of acceleration and deceleration of the joint. This speeding up and slowing down of the joint must be cancelled to produce a smooth power flow. This is done through the phasing of a propeller shaft and ensuring that the proper propeller shaft joint working angles are maintained.

A propeller shaft is properly phased when the yoke ends are in the same plane, or in line. A twisted shaft will make the yokes out of phase and cause a noticeable vibration.

When taking propeller shaft joint angle measurements, or checking the phasing, of two piece shafts, consider each shaft separately.

Ideally the driveline system should have;

- Angles that are equal or opposite within 1 degree of each other.
 - Have a 3 degree maximum operating angle.
- Have at least a 1/2 degree continuous operating (propeller shaft) angle.

Engine speed (rpm) is the main factor in determining the maximum allowable operating angle. As a guide to the maximum normal operating angles refer to (Fig. 2).

PROPELLER SHAFT	MAX. NORMAL
R.P.M.	OPERATING ANGLES
5000	3°
4500	3°
4000	4°
3500	5°
3000	5°
2500	7°
2000	8°
1500	11°

Fig. 2 Maximum Angles And Engine Speed PROPELLER SHAFT JOINTS

Two different types of propeller shaft joints are used:

• Single cardan universal joint (Fig. 3).

GENERAL INFORMATION (Continued)

• Double cardan (CV) universal joint (Fig. 4). None of the universal joints are servicible. If one becomes worn or damaged, the complete universal joint assembly must be replaced.

Fig. 3 Single Cardan Universal Joint

DIAGNOSIS AND TESTING

VIBRATION

Tires that are out-of-round, or wheels that are unbalanced, will cause a low frequency vibration. Refer to Group 22, Tires and Wheels, for additional information.

Brake drums that are unbalanced will cause a harsh, low frequency vibration. Refer to Group 5, Brakes, for additional information.

Driveline vibration can also result from loose or damaged engine mounts. Refer to Group 9, Engines, for additional information.

Propeller shaft vibration increases as the vehicle speed is increased. A vibration that occurs within a specific speed range is not usually caused by a propeller shaft being unbalanced. Defective universal joints, or an incorrect propeller shaft angle, are usually the cause of such a vibration.

UNBALANCE

NOTE: Removing and re-indexing the propeller shaft 180° relative to the yoke may eliminate some vibrations.

- 1. LINK YOKE
- 2. SOCKET SPRING
- 3. SOCKET BALL RETAINER
- 4. THRUST WASHER
- 5. NEEDLE BEARINGS
- 6. SEAL
- 7. BEARING CAP
- 8. REAR SPIDER
- 9. SOCKET YOKE
- 10. SOCKET BALL
- 11. FRONT SPIDER
- 12. NEEDLE BEARINGS
- 13. THRUST WASHER
- 14. DRIVE SHAFT YOKE
- 15. RETAINING CLIP

J9216-21

Fig. 4 Double Cardan (CV) Universal Joint

DRIVELINE VIBRATION

Drive Condition	Possible Cause	Correction
PROPELLER SHAFT	a. Undercoating or other foreign material on shaft.b. Loose U-joint clamp screws.c. Loose or bent U-joint yoke or excessive runout.	a. Clean exterior of shaft and wash with solvent. b. Tighten screws properly. c. Install replacement yoke.
	d. Incorrect drive line angularity. e. Rear spring center bolt not in seat. f. Worn U-joint bearings. g. Propeller shaft damaged (bent tube) or out of balance. h. Broken rear spring. i. Excessive runout or unbalanced condition. j. Excessive drive pinion gear shaft yoke runout.	d. Correct angularity. e. Loosen spring U-bolts and seat center bolts. f. Replace U-joint. g. Install replacement propeller shaft. h. Replace rear spring. i. Reindex propeller shaft 180°, test and correct as necessary. j. Reindex propeller shaft 180° and evaluate.
UNIVERSAL JOINT NOISE	a. U-joint clamp screws loose. b. Lack of lubrication.	a. Tighten screws with specified torque. Replace U-joint.

If propeller shaft is suspected of being unbalanced, it can be verified with the following procedure:

- (1) Raise the vehicle.
- (2) Clean all the foreign material from the propeller shaft and the universal joints.
- (3) Inspect the propeller shaft for missing balance weights, broken welds, and bent areas. If the propeller shaft is bent, it must be replaced.
- (4) Inspect the universal joints to ensure that they are not worn, are properly installed, and are correctly aligned with the shaft.
 - (5) Check the universal joint clamp screws torque.
- (6) Remove the wheels and tires. Install the wheel lug nuts to retain the brake drums or rotors.
- (7) Mark and number the shaft six inches from the yoke end at four positions 90° apart.
- (8) Run and accelerate the vehicle until vibration occurs. Note the intensity and speed the vibration occurred. Stop the engine.
 - (9) Install a screw clamp at position 1 (Fig. 5).
- (10) Start the engine and re-check for vibration. If there is little or no change in vibration, move the clamp to one of the other three positions. Repeat the vibration test.
- (11) If there is no difference in vibration at the other positions, the source of the vibration may not be propeller shaft.
- (12) If the vibration decreased, install a second clamp (Fig. 6) and repeat the test.
- (13) If the additional clamp causes an additional vibration, separate the clamps (1/4 inch above and below the mark). Repeat the vibration test (Fig. 7).

Fig. 5 Clamp Screw At Position 1

- (14) Increase distance between the clamp screws and repeat the test until the amount of vibration is at the lowest level. Bend the slack end of the clamps so the screws will not loosen.
- (15) If the vibration remains unacceptable, apply the same steps to the front end of the propeller shaft.
 - (16) Install the wheel and tires. Lower the vehicle.

RUNOUT

- (1) Remove dirt, rust, paint, and undercoating from the propeller shaft surface where the dial indicator will contact the shaft.
- (2) The dial indicator must be installed perpendicular to the shaft surface.

Fig. 6 Two Clamp Screws At The Same Position

Fig. 7 Clamp Screws Separated

- (3) Measure runout at the center and ends of the shaft sufficiently far away from weld areas to ensure that the effects of the weld process will not enter into the measurements.
 - (4) Refer to Runout Specifications chart.
- (5) Replace the propeller shaft if the runout exceeds the limit.

RUNOUT SPECIFICATIONS

Front of shaft	0.010 in. (0.25 mm)	
Center of shaft	0.015 in. (0.38 mm)	
Rear of shaft	0.010 in. (0.25 mm)	
NOTE: Measure front/rear runout approximately 3		
inches (76 mm) from the weld seam at each end of		
the shaft tube for tube lengths over 30 inches. Under		
30 inches the max. runout is 0.20 inch for full length		
of the tube.		

SERVICE PROCEDURES

DRIVELINE ANGLE MEASUREMENT PREPARATION

Before measuring universal joint angles, the following must be done;

- Inflate all tires to correct pressure.
- Check the angles in the same loaded or unloaded condition as when the vibration occurred. Propeller shaft angles change according to the amount of load in the vehicle.
- Check the condition of all suspension components and verify all fasteners are torqued to specifications.
- Check the condition of the engine and transmission mounts and verify all fasteners are torqued to specifications.

PROPELLER SHAFT ANGLE MEASUREMENT

To accurately check driveline alignment, raise and support the vehicle at the axles as level as possible. Allow the wheels and propeller shaft to turn. Remove any external bearing snap rings (if equipped) from universal joint so that the inclinometer base sits flat.

(1) Rotate the shaft until transmission/transfer case output yoke bearing cap is facing downward.

Always make measurements from front to rear.

(2) Place Inclinometer on yoke bearing cap (A) parallel to the shaft (Fig. 8). Center bubble in sight glass and record measurement.

This measurement will give you the transmission or Output Yoke Angle (A).

Fig. 8 Front (Output) Angle Measurement (A)

(3) Rotate propeller shaft 90 degrees and place Inclinometer on yoke bearing cap parallel to the

SERVICE PROCEDURES (Continued)

shaft (Fig. 9). Center bubble in sight glass and record measurement. This measurement can also be taken at the rear end of the shaft.

This measurement will give you the propeller shaft angle (C).

Fig. 9 Propeller Shaft Angle Measurement (C)

- (4) Subtract smaller figure from larger (C minus A) to obtain transmission output operating angle.
- (5) Rotate propeller shaft 90 degrees and place Inclinometer on pinion yoke bearing cap parallel to the shaft (Fig. 10). Center bubble in sight glass and record measurement.

This measurement will give you the pinion shaft or input yoke angle (B).

Fig. 10 Rear (Input) Angle Measurement (B)

(6) Subtract smaller figure from larger (C minus B) to obtain axle Input Operating Angle.

Refer to rules given below and the example in for additional information.

- \bullet Good cancellation of U-joint operating angles (within 1°).
 - Operating angles less than 3°.
- At least 1/2 of one degree continuous operating (propeller shaft) angle.

REMOVAL AND INSTALLATION

FRONT PROPELLER SHAFT

REMOVAL

- (1) Hoist and support vehicle on safety stands.
- (2) Scribe alignment marks on the yokes at the transfer case. Place marks at the pinion shaft and at each end of the propeller shaft. These marks will be used for installation reference (Fig. 12).
- (3) Remove the universal joint strap bolts at the pinion shaft yoke.
- (4) Disconnect the propeller shaft at the transfer case and remove the propeller shaft.

INSTALLATION

(1) Position the propeller shaft with the yoke reference marks aligned (Fig. 13). Install the propeller shaft.

Replacement universal joint straps and bolts must be installed.

- (2) Tighten the universal joint strap/clamp bolts at the axle yoke to 19 N·m (14 ft. lbs.) torque.
- (3) Tighten the flange to transfer case bolts to 27 N·m (20 ft. lbs.) torque.
 - (4) Lower the vehicle.

REAR PROPELLER SHAFT

REMOVAL

- (1) Shift the transmission and transfer case into Neutral.
 - (2) Hoist and support vehicle on safety stands.
- (3) Scribe alignment marks at the pinion shaft and at each end of the propeller shaft. These marks will be used for installation reference.
- (4) Remove the universal joint strap bolts at the pinion shaft yoke.
- (5) Pry open clamp holding the dust boot to propeller shaft yoke (Fig. 14).
- (6) Slide the slip yoke off of the transmission/ transfer case output shaft and remove the propeller shaft (Fig. 15).

REMOVAL AND INSTALLATION (Continued)

Horizontal Level

Trans. Output Operating Angle 1.9°
Axle Input Operating Angle -1.7°

Amount of U-Joint Cancellation 0.2°

J9316-3

Fig. 11 Universal Joint Angle Example

Fig. 12 Front Propeller Shaft

INSTALLATION

(1) Slide the slip yoke on the transmission/transfer case output shaft. Align the installation reference marks at the axle yoke and install the propeller shaft (Fig. 15).

Replacement universal joint straps and bolts must be installed.

- (2) Tighten the universal joint strap/clamp bolts at the axle yoke to 19 N·m (14 ft. lbs.) torque.
- (3) Crimp clamp to hold dust boot to propeller shaft yoke (Fig. 16).

Fig. 13 Reference Marks on Yokes

(4) Lower the vehicle.

DISASSEMBLY AND ASSEMBLY

SINGLE CARDAN UNIVERSAL JOINT

DISASSEMBLY

Individual components of cardan universal joints are not serviceable. If worn or leaking, they must be replaced as an assembly.

(1) Remove the propeller shaft.

Fig. 14 Dust Boot Clamp

Fig. 15 Rear Propeller Shaft

Fig. 16 Crimping Dust Boot Clamp—Typical

- (2) Using a soft drift, tap the outside of the bearing cap assembly to loosen snap ring.
- (3) Remove snap rings from both sides of yoke (Fig. 17).

Fig. 17 Remove Snap Ring

- (4) Set the yoke in an arbor press or vise with a socket whose inside diameter is large enough to receive the bearing cap positioned beneath the yoke.
- (5) Position the yoke with the grease fitting, if equipped, pointing up.
- (6) Place a socket with an outside diameter smaller than the upper bearing cap on the upper bearing cap and press the cap through the yoke to release the lower bearing cap (Fig. 18).

Fig. 18 Press Out Bearing

(7) If the bearing cap will not pull out of the yoke by hand after pressing, tap the yoke ear near the bearing cap to dislodge the cap.

(8) To remove the opposite bearing cap, turn the yoke over and straighten the cross in the open hole. Then, carefully press the end of the cross until the remaining bearing cap can be removed (Fig. 19).

CAUTION: If the cross or bearing cap are not straight during installation, the bearing cap will score the walls of the yoke bore and damage can occur.

80a9539c

Fig. 19 Press Out Remaining Bearing

ASSEMBLY

- (1) Apply extreme pressure (EP) N.L.G.I. Grade 1 or 2 grease to inside of yoke bores to aid in installation.
- (2) Position the cross in the yoke with its lube fitting, if equipped, pointing up (Fig. 20).
- (3) Place a bearing cap over the trunnion and align the cap with the yoke bore (Fig. 21). Keep the needle bearings upright in the bearing assembly. A needle bearing lying at the bottom of the cap will prevent proper assembly.
- (4) Press the bearing cap into the yoke bore enough to install a snap ring.
 - (5) Install a snap ring.
- (6) Repeat Step 3 and Step 4 to install the opposite bearing cap. If the joint is stiff or binding, strike the yoke with a soft hammer to seat the needle bearings.
 - (7) Add grease to lube fitting, if equipped.
 - (8) Install the propeller shaft.

Fig. 20 Install Cross In Yoke

Fig. 21 Install Bearing On Trunnion

DOUBLE CARDAN JOINT

DISASSEMBLY

Individual components of cardan universal joints are not serviceable. If worn or leaking, they must be replaced as an assembly.

- (1) Remove the propeller shaft.
- (2) Using a soft drift, tap the outside of the bearing cap assembly to loosen snap ring.

(3) Remove all the bearing cap snap rings (Fig. 22).

Fig. 22 Remove Snap Rings

- (4) Set the joint in an arbor press or vise with a socket whose inside diameter is large enough to receive the bearing cap positioned beneath the link voke.
- (5) Place a socket with an outside diameter smaller than the upper bearing cap on the upper bearing cap and partially press one bearing cap from the outboard side of the link yoke enough to grasp the bearing cap with vise jaws (Fig. 23). Be sure to remove grease fittings that interfere with removal.

Fig. 23 Press Out Bearing

(6) Grasp the protruding bearing by vise jaws. Tap the link yoke with a mallet and drift to dislodge the bearing cap from the yoke (Fig. 24).

Fig. 24 Remove Bearing From Yoke

(7) Flip assembly and repeat Step 4, Step 5, and Step 6 to remove the opposite bearing cap. This will then allow removal of the cross centering kit assembly and spring (Fig. 25).

J9316-8

Fig. 25 Remove Centering Kit

(8) Press the remaining bearing caps out the other end of the link yoke as described above to complete the disassembly.

ASSEMBLY

During assembly, ensure that the alignment marks on the link yoke and propeller shaft yoke are aligned.

- (1) Apply extreme pressure (EP) N.L.G.I. Grade 1 or 2 grease to inside of yoke bores to aid in installation
- (2) Fit a cross into the propeller shaft yoke (Fig. 26).

J9316-9

Fig. 26 Install Cross In Yoke

(3) Place a bearing cap over the trunnion and align the cap with the yoke bore (Fig. 27). Keep the needle bearings upright in the bearing assembly. A needle bearing lying at the bottom of the cap will prevent proper assembly.

Fig. 27 Install Bearing Cap

- (4) Press the bearing cap into the yoke bore enough to install a snap ring (Fig. 28).
 - (5) Install a snap ring.

Fig. 28 Press In Bearing Cap

(6) Flip the propeller shaft yoke and install the bearing cap onto the opposite trunnion. Install a snap ring (Fig. 29).

Fig. 29 Press In Bearing Cap

- (7) Fit the link yoke on the remaining two trunnions and press both bearing caps into place (Fig. 30).
 - (8) Install snap rings.

J9316-15

Fig. 30 Install Link Yoke

(9) Install the centering kit assembly inside the link yoke making sure the spring is properly positioned (Fig. 31).

J9316-14

Fig. 31 Install Centering Kit

- (10) Place two bearing caps on opposite trunnions of the remaining cross. Fit the open trunnions into the link yoke bores and the bearing caps into the centering kit (Fig. 32).
- (11) Press the remaining two bearing caps into place and install snap rings (Fig. 33).
- (12) Tap the snap rings to allow them to seat into the grooves (Fig. 34).
- (13) Check for proper assembly. Flex the joint beyond center, it should snap over-center in both directions when correctly assembled (Fig. 35).
 - (14) Install the propeller shaft.

Fig. 32 Install Remaining Cross

Fig. 33 Press In Bearing Cap

CLEANING AND INSPECTION

PROPELLER SHAFT

- (1) Clean all universal joint bores with cleaning solvent and a wire brush.
- (2) Inspect the yokes for distortion, cracks, and worn bearing cap bores.

ADJUSTMENTS

ADJUSTMENT AT AXLE WITH LEAF SPRINGS

Adjust the pinion shaft angle at the springs with tapered shims (Fig. 36). Install tapered shims between the springs and axle pad to correct the

ADJUSTMENTS (Continued)

J9316-17

Fig. 34 Seat Snap Rings In Groove

J9316-18

Fig. 35 Check Assembly

angle. Refer to Group 2, Suspension, for additional information.

FRONT AXLE ANGLE ADJUSTMENT

Adjust the pinion gear angle at the lower suspension arms with shims (Fig. 37). Adding shims will decrease the pinion gear shaft angle but will increase the caster angle. The pinion gear shaft angle has priority over the caster angle. Refer to Group 2, Suspension, for additional information.

Fig. 36 Angle Adjustment at Leaf Springs

Fig. 37 Front Axle Angle Adjustment

SPECIFICATIONS

DESCRIPTION

SPECIAL TOOLS

PROPELLER SHAFT

PROPELLER SHAFTS AND U-JOINTS

TORQUE Bolts, Transfer Case Yoke 27 N·m (20 ft. lbs.)

Bolts, Axle Yoke	 19 N·m (14 ft.	lbs.)
Bolts, Axle Yoke	 19 N·m (14 ft.	lbs.)

Inclinometer—7663

TUBE AND 181 FBI AXLE

INDEX

page	page
GENERAL INFORMATION	HUB BEARING AND AXLE SHAFT 24
181 FBI AXLE	5 PINION GEAR 30
LUBRICANT SPECIFICATIONS 15	5 PINION SHAFT SEAL 23
DESCRIPTION AND OPERATION	RING GEAR 29
STANDARD DIFFERENTIAL 16	S STEERING KNUCKLE AND BALL STUDS 25
DIAGNOSIS AND TESTING	TUBE AXLE ASSEMBLY 2 ⁻
BEARING NOISE 17	
DRIVELINE SNAP 17	7 FINAL ASSEMBLY 34
FRONT AXLES 18	3 STANDARD DIFFERENTIAL 34
GEAR NOISE 16	
GENERAL INFORMATION	AXLE COMPONENTS 35
LOW SPEED KNOCK 17	7 CARDAN U-JOINT 35
VIBRATION 17	ADJUSTMENTS
SERVICE PROCEDURES	DIFFERENTIAL BEARING PRELOAD AND
LUBRICANT CHANGE 20	
REMOVAL AND INSTALLATION	GEAR CONTACT PATTERN ANALYSIS 4
AXLE BUSHING REPLACEMENT 26	
AXLE SHAFT OIL SEAL 29	
AXLE SHAFT—CARDAN U-JOINT 22	
DIFFERENTIAL SIDE BEARINGS	
DIFFERENTIAL 26	
DRIVE AXLE ASSEMBLY 20) 181 FRI AXI F 4:

GENERAL INFORMATION

181 FBI AXLE

The 181 Front Beam-design Iron (FBI) axle consists of a cast iron differential housing with axle shaft tubes extending from either side. The tubes are pressed into the differential housing and welded.

The integral type housing, hypoid gear design has the centerline of the pinion set above the centerline of the ring gear.

The axle has a fitting for a vent hose used to relieve internal pressure caused by lubricant vaporization and internal expansion.

The axles are equipped with semi-floating axle shafts, meaning that loads are supported by the hub bearings. The axle shafts are retained by nuts at the hub bearings. The hub bearings are bolted to the steering knuckle at the outboard end of the axle tube yoke. The hub bearings are serviced as an assembly.

For vehicles with ABS brakes, the ABS wheel speed sensors are attached to the knuckle assemblies. The tone rings for the ABS system are pressed onto the axle shaft. **Do not damage ABS tone wheel or the sensor when removing axle shafts.**

The stamped steel cover provides a means for inspection and servicing the differential.

The 181 FBI axle has the assembly part number and gear ratio listed on a tag. The tag is attached to the housing cover by a cover bolt. Build date identification codes are stamped on the cover side of the axle shaft tube.

The differential case is a one-piece design. The differential pinion mate shaft is retained with a roll pin. Differential bearing preload and ring gear backlash is adjusted by the use of shims (select thickness). The shims are located between the differential bearing cones and case. Pinion bearing preload is set and maintained by the use of shims (select thickness).

LUBRICANT SPECIFICATIONS

A multi-purpose, hypoid gear lubricant which conforms to the following specifications should be used. Mopar® Hypoid Gear Lubricant conforms to all of these specifications.

- The lubricant should have MIL-L-2105C and API GL 5 quality specifications.
- Lubricant is a thermally stable SAE 80W-90 gear lubricant.
- Lubricant for axles intended for heavy-duty or trailer tow use is SAE 75W-140 SYNTHETIC gear lubricant.

GENERAL INFORMATION (Continued)

The 181 FBI axle lubricant capacity is $1.48\ L$ ($3.13\ pts.$).

CAUTION: If axle is submerged in water, lubricant must be replaced immediately to avoid possible premature axle failure.

DESCRIPTION AND OPERATION

STANDARD DIFFERENTIAL

The differential gear system divides the torque between the axle shafts. It allows the axle shafts to rotate at different speeds when turning corners.

Each differential side gear is splined to an axle shaft. The pinion gears are mounted on a pinion mate shaft and are free to rotate on the shaft. The pinion gear is fitted in a bore in the differential case and is positioned at a right angle to the axle shafts.

In operation, power flow occurs as follows:

- The pinion gear rotates the ring gear.
- The ring gear (bolted to the differential case) rotates the case.
- The differential pinion gears (mounted on the pinion mate shaft in the case) rotate the side gears.
- The side gears (splined to the axle shafts) rotate the shafts.

During straight-ahead driving, the differential pinion gears do not rotate on the pinion mate shaft. This occurs because input torque applied to the gears is divided and distributed equally between the two side gears. As a result, the pinion gears revolve with the pinion mate shaft but do not rotate around it (Fig. 1).

Fig. 1 Differential Operation—Straight Ahead Driving

When turning corners, the outside wheel must travel a greater distance than the inside wheel to complete a turn. The difference must be compensated for to prevent the tires from scuffing and skidding through turns. To accomplish this, the differential allows the axle shafts to turn at unequal speeds (Fig.

2). In this instance, the input torque applied to the pinion gears is not divided equally. The pinion gears now rotate around the pinion mate shaft in opposite directions. This allows the side gear and axle shaft attached to the outside wheel to rotate at a faster speed.

Fig. 2 Differential Operation—On Turns

DIAGNOSIS AND TESTING

GENERAL INFORMATION

Axle bearing problem conditions are usually caused by:

- Insufficient or incorrect lubricant.
- Foreign matter/water contamination.
- Incorrect bearing preload torque adjustment.
- Incorrect backlash.

Axle gear problem conditions are usually the result of:

- Insufficient lubrication.
- Incorrect or contaminated lubricant.
- Overloading (excessive engine torque) or exceeding vehicle weight capacity.
 - Incorrect clearance or backlash adjustment.

Axle component breakage is most often the result

- Severe overloading.
- Insufficient lubricant.
- Incorrect lubricant.
- Improperly tightened components.

GEAR NOISE

Axle gear noise can be caused by insufficient lubricant, incorrect backlash, tooth contact, or worn/damaged gears

Gear noise usually happens at a specific speed range. The range is 30 to 40 mph, or above 50 mph. The noise can also occur during a specific type of driving condition. These conditions are acceleration, deceleration, coast, or constant load.

When road testing, accelerate the vehicle to the speed range where the noise is the greatest. Shift out-of-gear and coast through the peak-noise range. If the noise stops or changes greatly:

- Check for insufficient lubricant.
- · Incorrect ring gear backlash.
- · Gear damage.

Differential side and pinion gears can be checked by turning the vehicle. They usually do not cause noise during straight—ahead driving when the gears are unloaded. The side gears are loaded during vehicle turns. A worn pinion gear mate shaft can also cause a snapping or a knocking noise.

BEARING NOISE

The axle shaft, differential and pinion gear bearings can all produce noise when worn or damaged. Bearing noise can be either a whining, or a growling sound.

Pinion gear bearings have a constant-pitch noise. This noise changes only with vehicle speed. Pinion bearing noise will be higher because it rotates at a faster rate. Drive the vehicle and load the differential. If bearing noise occurs, the rear pinion bearing is the source of the noise. If the bearing noise is heard during a coast, the front pinion bearing is the source.

Worn or damaged differential bearings usually produce a low pitch noise. Differential bearing noise is similar to pinion bearing noise. The pitch of differential bearing noise is also constant and varies only with vehicle speed.

Axle shaft bearings produce noise and vibration when worn or damaged. The noise generally changes when the bearings are loaded. Road test the vehicle. Turn the vehicle sharply to the left and to the right. This will load the bearings and change the noise level. Where axle bearing damage is slight, the noise is usually not noticeable at speeds above 30 mph.

LOW SPEED KNOCK

Low speed knock is generally caused by a worn U-joint or by worn side-gear thrust washers. A worn

pinion gear shaft bore will also cause low speed knock.

VIBRATION

Vibration at the rear of the vehicle is usually caused by a:

- Damaged drive shaft.
- Missing drive shaft balance weight(s).
- Worn or out-of-balance wheels.
- Loose wheel lug nuts.
- Worn U-joint(s).
- Loose/broken springs.
- Damaged axle shaft bearing(s).
- Loose pinion gear nut.
- Excessive pinion yoke run out.
- Bent axle shaft(s).

Check for loose or damaged front-end components or engine/transmission mounts. These components can contribute to what appears to be a rear-end vibration. Do not overlook engine accessories, brackets and drive belts.

All driveline components should be examined before starting any repair.

Refer to Group 22, Wheels and Tires, for additional vibration information.

DRIVELINE SNAP

A snap or clunk noise when the vehicle is shifted into gear (or the clutch engaged), can be caused by:

- High engine idle speed.
- Loose engine/transmission/transfer case mounts.
- Worn U-joints.
- Loose spring mounts.
- Loose pinion gear nut and yoke.
- Excessive ring gear backlash.
- Excessive side gear/case clearance.

The source of a snap or a clunk noise can be determined with the assistance of a helper. Raise the vehicle on a hoist with the wheels free to rotate. Instruct the helper to shift the transmission into gear. Listen for the noise, a mechanics stethoscope is helpful in isolating the source of a noise.

FRONT AXLES

DIAGNOSIS

CONDITION	POSSIBLE CAUSES	CORRECTION
WHEEL NOISE	Wheel loose. Faulty, brinelled wheel bearing.	Tighten loose nuts. Faulty or brinelled bearings must be replaced.
AXLE SHAFT NOISE	Misaligned axle shaft tube.	Inspect axle shaft tube alignment. Correct as necessary.
	2. Bent or sprung axle shaft.	Replace bent or sprung axle shaft.
	3. End play in drive pinion bearings.	Refer to Drive Pinion Bearing Pre-Load Adjustment.
	4. Excessive gear backlash between ring gear and pinion gear.	4. Check adjustment of ring gear backlash and pinion gear. Correct as necessary.
	5. Improper adjustment of drive pinion gear shaft bearings.	5. Adjust drive pinion shaft bearings.
	6. Loose drive pinion gearshaft yoke nut. 7. Improper wheel bearing	G. Tighten drive pinion gearshaft yoke nut with specified torque. Readjust as necessary.
	adjustment. 8. Scuffed gear tooth contact surfaces.	8. If necessary, replace scuffed gears.
AXLE SHAFT BROKE	 Misaligned axle shaft tube. Vehicle overloaded. 	 Replace broken axle shaft after correcting axle shaft tube alignment. Replace broken axle shaft. Avoid
	3. Erratic clutch operation.	excessive weight on vehicle. 3. Replace broken axle shaft after inspecting for other possible casues. Avoid erratic use of clutch.
	4. Grabbing clutch.	4. Replace broken axle shaft. Inspect clutch and make necessary repairs or adjustments.
DIFFERENTIAL CASE CRACKED	Improper adjustment of differential bearings.	Replace cracked case; examine gears and bearings for possible damage. At reassembly, adjust differential bearings properly.
	2. Excessive ring gear backlash.	Replace cracked case; examine gears and bearings for possible damage. At reassembly, adjust ring gear backlash properly.
	3. Vehicle overloaded.	3. Replace cracked case; examine gears and bearings for possible damage. Avoid excessive weight on vehicle.
	4. Erratic clutch operation.	4. Replace cracked case. After inspecting for other possible causes, examine gears and bearings for possible damage. Avoid erratic use of clutch.

CONDITION	POSSIBLE CAUSES	CORRECTION
DIFFERENTIAL GEARS SCORED	 Insufficient lubrication. Improper grade of lubricant. 	1. Replace scored gears. Scoring marks on the drive face of gear teeth or in the bore are caused by instantaneous fusing of the mating surfaces. Scored gears should be replaced. Fill rear differential housing to required capacity with proper lubricant. Refer to Specifications. 2. Replace scored gears. Inspect all gears and bearings for possible damage. Clean and refill differential housing to required capacity with
	3. Excessive spinning of one wheel/tire.	proper lubricant. 3. Replace scored gears. Inspect all gears, pinion bores and shaft for damage. Service as necessary.
LOSS OF LUBRICANT	1. Lubricant level too high.	Drain excess lubricant by removing fill plug and allow lubricant to level at lower edge of fill plug hole.
	 Worn axle shaft seals. Cracked differential housing. 	Replace worn seals. 3. Repair or replace housing as necessary.
	4. Worn drive pinion gear shaft seal.	4. Replace worn drive pinion gear shaft seal.
	5. Scored and worn yoke.	5. Replace worn or scored yoke and seal.
	6. Axle cover not properly sealed.	6. Remove cover and clean flange and reseal.
AXLE OVERHEATING	Lubricant level too low. Incorrect grade of lubricant.	Refill differential housing. Drain, flush and refill with correct amount of the correct lubricant.
	3. Bearings adjusted too tight.4. Excessive gear wear.	Readjust bearings. Inspect gears for excessive wear
	5. Insufficient ring gear backlash.	or scoring. Replace as necessary. 5. Readjust ring gear backlash and inspect gears for possible scoring.
GEAR TEETH BROKE (RING GEAR AND PINION)	1. Overloading.	Replace gears. Examine other gears and bearings for possible damage.
	2. Erratic clutch operation.	Replace gears and examine the remaining parts for possible damage. Avoid erratic clutch operation.
	3. Ice-spotted pavements.	Replace gears. Examine the remaining parts for possible damage. Replace parts as required.
	4. Improper adjustments.	4. Replace gears. Examine other parts for possible damage. Ensure ring gear backlash is correct.

CONDITION	POSSIBLE CAUSES	CORRECTION
AXLE NOISE	1. Insufficient lubricant.	Refill axle with correct amount of proper lubricant. Also inspect for leaks and correct as necessary.
	Improper ring gear and drive pinion gear adjustment.	Check ring gear and pinion gear teeth contact pattern.
	3. Unmatched ring gear and drive pinion gear.	3. Remove unmatched ring gear and drive pinion gear. Replace with matched gear and drive pinion gear set.
	4. Worn teeth on ring gear or drive pinion gear.	4. Check teeth on ring gear and drive pinion gear for correct contact. If necessary, replace with new matched set.
	5. Loose drive pinion gear shaft bearings.	5. Adjust drive pinion gearshaft bearing preload torque.
	6. Loose differential bearings.	6. Adjust differential bearing preload torque.
	7. Misaligned or sprung ring gear.8. Loose differential bearing cap bolts.	Neasure ring gear runout. R. Tighten with specified torque.

SERVICE PROCEDURES

LUBRICANT CHANGE

- (1) Raise and support the vehicle.
- (2) Remove the lubricant fill hole plug from the differential housing cover.
- (3) Remove the differential housing cover and drain the lubricant from the housing.
- (4) Clean the housing cavity with a flushing oil, light engine oil or lint free cloth. **Do not use water, steam, kerosene or gasoline for cleaning.**
- (5) Remove the sealant from the housing and cover surfaces. Use solvent to clean the mating surfaces.
- (6) Apply a bead of Mopar® Silicone Rubber Sealant, or equivalent, to the housing cover (Fig. 3).

Install the housing cover within 5 minutes after applying the sealant.

- (7) Install the cover and any identification tag. Tighten the cover bolts in a criss–cross pattern to 41 $N{\cdot}m$ (30 ft. lbs.) torque.
- (8) Refill the differential with Mopar® Hypoid Gear Lubricant, or equivalent, to bottom of the fill plug hole. Refer to the Lubricant Specifications in this group for the quantity necessary.
 - (9) Install the fill hole plug and lower the vehicle.

REMOVAL AND INSTALLATION

DRIVE AXLE ASSEMBLY

REMOVAL

(1) Raise and support the vehicle.

Fig. 3 Typical Housing Cover With Sealant

- (2) Position a suitable lifting device under the axle.
 - (3) Secure axle to device.
 - (4) Remove the wheels and tires.
- (5) Remove the brake rotors and calipers from the axle. Refer to Group 5, Brakes, for proper procedures.
- (6) Disconnect the wheel sensor wiring harness from the vehicle wiring harness, if necessary.

- (7) Disconnect the vent hose from the axle shaft tube.
- (8) Mark the propeller shaft and yoke for installation alignment reference.
 - (9) Remove propeller shaft.
 - (10) Disconnect stabilizer bar links at the axle.
- (11) Disconnect shock absorbers from axle brackets.
 - (12) Disconnect track bar.
- (13) Disconnect the tie rod and drag link from the steering knuckle. Refer to Group 2, Suspension, for proper procedures.
- (14) Disconnect the steering damper from the axle bracket.
- (15) Disconnect the upper and lower suspension arms from the axle brackets.
- (16) Lower the lifting device enough to remove the axle. The coil springs will drop with the axle.
 - (17) Remove the coil springs from the axle.

INSTALLATION

CAUTION: The weight of the vehicle must be supported by the springs before suspension arms and track bar fasteners can be tightened. If the springs are not at their normal ride position, ride height and handling could be affected.

- (1) Install the springs and retainer clips. Tighten the retainer bolts to 21 N·m (16 ft. lbs.) torque.
- (2) Support the axle on a suitable lifting device and position axle under the vehicle.
- (3) Raise the axle and align it with the spring pads.
- (4) Position the upper and lower suspension arms in the axle brackets. Loosely install bolts and nuts to hold suspension arms to the axle brackets.
 - (5) Connect the vent hose to the axle shaft tube.
- (6) Connect the track bar to the axle bracket. Loosely install the bolt to hold the track bar to the axle bracket.
- (7) Install the shock absorbers and tighten the bolts to 23 N·m (17 ft. lbs.) torque.
- (8) Install the stabilizer bar links to the axle brackets. Tighten the nut to 95 N·m (70 ft. lbs.) torque.
- (9) Install the drag link and tie rod to the steering knuckles. Refer to Group 2, Suspension, for proper procedures.
- (10) Install the steering damper to the axle bracket and tighten the nut to 75 N·m (55 ft. lbs.) torque.
- (11) Install the brake rotors and calipers. Refer to Group 5, Brakes, for the proper procedures.
- (12) Connect the wheel speed sensor wiring harness to the vehicle wiring harness, if necessary.

- (13) Align the previously made marks on the propeller shaft and the yoke.
- (14) Install the straps and bolts to hold the propeller shaft to the yoke.
- (15) Check and fill axle lubricant. Refer to the Lubricant Specifications in this group for the quantity necessary.
 - (16) Install the wheel and tire assemblies.
- (17) Remove the lifting device from the axle and lower the vehicle.
- (18) Tighten the upper suspension arm nuts to 75 N·m (55 ft. lbs.) torque. Tighten the lower suspension arm nuts to 115 N·m (85 ft. lbs.) torque.
- (19) Tighten the track bar bolt at the axle bracket to $100~N{\cdot}m$ (74 ft. lbs.) torque.
 - (20) Check the front wheel alignment.

TUBE AXLE ASSEMBLY

REMOVAL

- (1) Raise and support the vehicle.
- (2) Position a suitable lifting device under the axle.
 - (3) Secure axle to device.
 - (4) Remove the wheels and tires.
- (5) Remove the brake rotors and calipers from the axle. Refer to Group 5, Brakes, for proper procedures.
- (6) Disconnect the wheel sensor wiring harness from the vehicle wiring harness, if necessary.
 - (7) Disconnect stabilizer bar links at the axle.
 - (8) Disconnect shock absorbers from axle brackets.
 - (9) Disconnect track bar.
- (10) Disconnect the tie rod and drag link from the steering knuckle. Refer to Group 2, Suspension, for proper procedures.
- (11) Disconnect the steering damper from the axle bracket.
- (12) Disconnect the upper and lower suspension arms from the axle brackets.
- (13) Lower the lifting device enough to remove the axle. The coil springs will drop with the axle.
 - (14) Remove the coil springs from the axle.

INSTALLATION

CAUTION: The weight of the vehicle must be supported by the springs before suspension arms and track bar fasteners can be tightened. If the springs are not at their normal ride position, ride height and handling could be affected.

- (1) Install the springs and retainer clips. Tighten the retainer bolts to 21 N·m (16 ft. lbs.) torque.
- (2) Support the axle on a suitable lifting device and position axle under the vehicle.
- (3) Raise the axle and align it with the spring pads.

- (4) Position the upper and lower suspension arms in the axle brackets. Loosely install bolts and nuts to hold suspension arms to the axle brackets.
- (5) Connect the track bar to the axle bracket. Loosely install the bolt to hold the track bar to the axle bracket.
- (6) Install the shock absorbers and tighten the bolts to 23 N·m (17 ft. lbs.) torque.
- (7) Install the stabilizer bar links to the axle brackets. Tighten the nut to 95 N·m (70 ft. lbs.) torque.
- (8) Install the drag link and tie rod to the steering knuckles. Refer to Group 2, Suspension, for proper procedures.
- (9) Install the steering damper to the axle bracket and tighten the nut to 75 N·m (55 ft. lbs.) torque.
- (10) Install the brake rotors and calipers. Refer to Group 5, Brakes, for the proper procedures.
- (11) Connect the wheel speed sensor wiring harness to the vehicle wiring harness, if necessary.
 - (12) Install the wheel and tire assemblies.
- (13) Remove the lifting device from the axle and lower the vehicle.
- (14) Tighten the upper suspension arm nuts to 75 $N \cdot m$ (55 ft. lbs.) torque. Tighten the lower suspension arm nuts to 115 $N \cdot m$ (85 ft. lbs.) torque.
- (15) Tighten the track bar bolt at the axle bracket to 100 N⋅m (74 ft. lbs.) torque.
 - (16) Check the front wheel alignment.

AXLE SHAFT—CARDAN U-JOINT

Single cardan U-joint components are not serviceable. If defective, they must be replaced as a unit. If the bearings, seals, spider, or bearing caps are damaged or worn, replace the complete U-joint.

REMOVAL

CAUTION: Clamp only the narrow forged portion of the yoke in the vise. Also, to avoid distorting the yoke, do not over tighten the vise jaws.

- (1) Remove axle shaft.
- (2) Remove the bearing cap retaining snap rings (Fig. 4).

It can be helpful to saturate the bearing caps with penetrating oil prior to removal.

- (3) Locate a socket where the inside diameter is larger in diameter than the bearing cap. Place the socket (receiver) against the yoke and around the perimeter of the bearing cap to be removed.
- (4) Locate a socket where the outside diameter is smaller in diameter than the bearing cap. Place the socket (driver) against the opposite bearing cap.
- (5) Position the yoke with the sockets in a vise (Fig. 5).

J8902-15

Fig. 4 Axle Shaft Outer U-Joint

J8902-16

Fig. 5 Yoke Bearing Cap Removal

- (6) Compress the vise jaws to force the bearing cap into the larger socket (receiver).
- (7) Release the vise jaws. Remove the sockets and bearing cap that was partially forced out of the yoke.
- (8) Repeat the above procedure for the remaining bearing cap.
- (9) Remove the remaining bearing cap, bearings, seals and spider from the propeller shaft yoke.

INSTALLATION

- (1) Pack the bearing caps 1/3 full of wheel bearing lubricant. Apply extreme pressure (EP), lithium–base lubricant to aid in installation.
- (2) Position the spider in the yoke. Insert the seals and bearings. Tap the bearing caps into the yoke bores far enough to hold the spider in position.
- (3) Place the socket (driver) against one bearing cap. Position the yoke with the socket wrench in a vise.
- (4) Compress the vise to force the bearing caps into the yoke. Force the caps enough to install the retaining clips.
 - (5) Install the bearing cap retaining clips.
 - (6) Install axle shaft.

PINION SHAFT SEAL

REMOVAL

- (1) Raise and support the vehicle.
- (2) Remove wheel and tire assemblies.
- (3) Remove brake rotors and calipers. Refer to Group 5, Brakes, for proper procedures.
- (4) Mark the propeller shaft and pinion yoke for installation reference.
 - (5) Remove the propeller shaft from the yoke.
 - (6) Rotate the pinion gear three or four times.
- (7) Measure the amount of torque necessary to rotate the pinion gear with a (in. lbs.) dial-type torque wrench. Record the torque reading for installation reference.
- (8) Using Holder 6958 to hold the pinion yoke, remove the pinion nut and washer.
- (9) Use Remover C-452 and Wrench C-3281 to remove the pinion yoke (Fig. 6).

Fig. 6 Pinion Yoke Removal

(10) Use a suitable pry tool or a slide hammer mounted screw to remove the pinion shaft seal.

INSTALLATION

(1) Apply a light coating of gear lubricant on the lip of pinion seal. Install seal with Installer C-3972-A and Handle C-4171 (Fig. 7).

80a7e2be

Fig. 7 Pinion Seal Installation

(2) Install yoke on the pinion gear with Installer W-162-D, Cup 8109, and Holder 6958 (Fig. 8).

Fig. 8 Pinion Yoke Installation

CAUTION: Do not exceed the minimum tightening torque when installing the pinion yoke retaining nut at this point. Damage to the pinion bearings may result.

- (3) Install the pinion washer and a new nut on the pinion gear. **Tighten the nut only enough to remove the shaft end play**.
 - (4) Tighten pinion nut to 217 N·m (160 ft. lbs.).
- (5) Rotate the pinion shaft using a (in. lbs.) torque wrench. Rotating torque should be equal to the reading recorded during removal, plus an additional 0.56 N·m (5 in. lbs.) (Fig. 9).
- (6) If the rotating torque is low, use Holder 6958 to hold the pinion yoke, and tighten the pinion shaft

Fig. 9 Check Pinion Rotation Torque

nut in 6.8 N·m (5 ft. lbs.) increments until proper rotating torque is achieved.

- (7) Align the installation reference marks on the propeller shaft and yoke, and install the propeller shaft.
- (8) Check and fill the gear lubricant. Refer to the Lubricant Specifications for gear lubricant requirements
- (9) Install the brake rotors and calipers. Refer to Group 5, Brakes, for proper procedures.

- (10) Install wheel and tire assemblies.
- (11) Lower the vehicle.

HUB BEARING AND AXLE SHAFT

If the axle shaft and hub bearing are being removed in order to service another component, the axle shaft and hub bearing can be removed as an assembly.

REMOVAL

- (1) Raise and support the vehicle.
- (2) Remove the wheel and tire assembly.
- (3) Remove the brake caliper and rotor. Refer to Group 5, Brakes, for proper procedures.
- (4) Remove ABS wheel speed sensor, if necessary. Refer to Group 5, Brakes, for proper procedures.
- (5) Remove the cotter pin, nut retainer, and axle hub nut (Fig. 10), if necessary.
 - (6) Remove the hub to knuckle bolts (Fig. 11).
- (7) Remove the hub from the steering knuckle and axle shaft, if necessary.
- (8) Remove hub bearing and axle shaft assembly (Fig. 12), or axle shaft from axle. Avoid damaging the axle shaft oil seals in the axle housing.
- (9) Remove the brake rotor shield from the hub bearing or knuckle (Fig. 10).

INSTALLATION

- (1) Thoroughly clean the axle shaft (Fig. 10) and apply a thin film of Mopar® Wheel Bearing Grease, or equivalent, to the shaft splines, seal contact surface, and hub bore.
 - (2) Install the brake rotor shield to the knuckle.

Fig. 10 Hub, Knuckle and Axle Shaft

Fig. 11 Hub Bearing Bolts

Fig. 12 Hub Bearing and Axle Assembly

- (3) Install the hub bearing and axle shaft assembly, or axle shaft, into the housing and differential side gears. Avoid damaging the axle shaft oil seals in the axle housing.
 - (4) Install the hub bearing, if necessary.
- (5) Install the hub to knuckle bolts and tighten to $102~N\cdot m$ (75 ft. lbs.) torque.
- (6) Install the hub washer and nut, if necessary. Tighten the hub nut to 237 N⋅m (175 ft. lbs.) torque. Install the nut retainer and a new cotter pin (Fig. 10).
- (7) Install ABS wheel speed sensor, if necessary. Refer to Group 5, Brakes, for proper procedures.
- (8) Install the brake rotor and caliper. Refer to Group 5, Brakes, for proper procedures.
 - (9) Install the wheel and tire assembly.
 - (10) Remove support and lower the vehicle.

STEERING KNUCKLE AND BALL STUDS

Ball stud service procedures below require removal of the hub bearing and axle shaft. Removal and installation of upper and lower ball studs require the use of Tool Kit 6289.

KNUCKLE REMOVAL

- (1) Remove hub bearing and axle shaft.
- (2) Disconnect the tie-rod or drag link from the steering knuckle arm. Refer to Group 2, Suspension, for proper procedures.
- (3) Remove the cotter pins from the upper and lower ball studs.
 - (4) Remove the upper and lower ball stud nuts.
- (5) Strike the steering knuckle with a brass hammer to loosen knuckle from the ball studs. Remove knuckle from ball studs (Fig. 13).

Fig. 13 Steering Knuckle Removal/Installation

UPPER BALL STUD REPLACEMENT

(1) Position tools as shown to remove and install ball stud (Fig. 14).

LOWER BALL STUD REPLACEMENT

(1) Position tools as shown to remove and install ball stud (Fig. 15).

KNUCKLE INSTALLATION

- (1) Position the steering knuckle on the ball studs.
- (2) Install and tighten the bottom retaining nut to 109 N·m (80 ft. lbs.) torque. Install new cotter pin.
- (3) Install and tighten the top retaining nut to 101 N·m (75 ft. lbs.) torque. Install new cotter pin.
 - (4) Install the hub bearing and axle shaft.
- (5) Connect the tie-rod or drag link end to the steering knuckle arm. Refer to Group 2, Suspension, for proper procedures.

80a7e2a7

Fig. 14 Upper Ball Stud Remove/Install

AXLE BUSHING REPLACEMENT

Refer to Group 2, Suspension, for the proper axle bushing procedures.

DIFFERENTIAL

REMOVAL

- (1) Raise and support vehicle.
- (2) Remove the lubricant fill hole plug from the differential housing cover.
- (3) Remove the differential housing cover and allow fluid to drain.
 - (4) Remove hub bearings and axle shafts.
- (5) Note the installation reference letters stamped on the bearing caps and housing machined sealing surface (Fig. 16).
 - (6) Loosen the differential bearing cap bolts.
- (7) Position Spreader W-129-B, utilizing some items from Adapter Kit 6987, with the tool dowel pins seated in the locating holes (Fig. 17). Install the holddown clamps and tighten the tool turnbuckle finger-tight.
- (8) Install a Guide Pin C-3288-B at the left side of the differential housing. Attach Dial Indicator C-3339 to guide pin. Load the lever adapter against the opposite side of the housing (Fig. 18) and zero the indicator.

CAUTION: Do not spread over 0.50 mm (0.020 in). If the housing is over-spread, it could be distorted or damaged.

- (9) Spread the housing enough to remove the differential case from the housing. Measure the distance with the dial indicator (Fig. 19).
 - (10) Remove the dial indicator.
- (11) While holding the differential case in position, remove the differential bearing cap bolts and caps.
- (12) Remove the differential from the housing. Ensure that the differential bearing cups remain in position on the differential bearings (Fig. 20).
- (13) Mark or tag the differential bearing cups to indicate which side of the differential they were removed from.
 - (14) Remove spreader from housing.

INSTALLATION

If replacement differential bearings or differential case are being installed, differential side bearing shim requirements may change. Refer to the Differential Bearing Preload and Gear Backlash procedures in this section to determine the proper shim selection.

(1) Position Spreader W-129-B, utilizing some items from Adapter Kit 6987, with the tool dowel

Fig. 15 Lower Ball Stud Remove/Install

Fig. 16 Bearing Cap Identification

pins seated in the locating holes (Fig. 21). Install the holddown clamps and tighten the tool turnbuckle finger-tight.

(2) Install a Guide Pin C-3288-B at the left side of the differential housing. Attach Dial Indicator C-3339 to guide pin. Load the lever adapter against the opposite side of the housing (Fig. 18) and zero the indicator.

Fig. 17 Install Axle Housing Spreader

CAUTION: Do not spread over 0.50 mm (0.020 in). If the housing is over-spread, it could be distorted or damaged.

Fig. 18 Install Dial Indicator

Fig. 19 Spread Axle Housing

- (3) Spread the housing enough to install the case in the housing. Measure the distance with the dial indicator (Fig. 19).
 - (4) Remove the dial indicator.
- (5) Install differential case in the housing. Ensure that the differential bearing cups remain in position on the differential bearings. Tap the differential case to ensure the bearings cups are fully seated in the housing.
- (6) Install the bearing caps at their original locations (Fig. 22).
 - (7) Loosely install differential bearing cap bolts.
 - (8) Remove axle housing spreader.
- (9) Tighten the bearing cap bolts to 61 N·m (45 ft. lbs.) torque.
 - (10) Install the hub bearings and axle shafts.

Fig. 20 Differential Case Removal

Fig. 21 Install Axle Housing Spreader

DIFFERENTIAL SIDE BEARINGS

REMOVAL

- (1) Remove differential case from axle housing.
- (2) Remove the bearings from the differential case with Puller/Press C-293-PA, C-293-39 Adapter Blocks, and Plug SP-3289 (Fig. 23).

INSTALLATION

If replacement differential side bearings or differential case are being installed, differential side bearing shim requirements may change. Refer to the Differential Bearing Preload and Gear Backlash procedures in this section to determine the proper shim selection.

Fig. 22 Differential Bearing Cap Reference Letters

Fig. 23 Differential Bearing Removal

- (1) Install differential side bearing shims onto differential case hubs.
- (2) Using Installer C-3716-A and Handle C-4171, install differential side bearings (Fig. 24).
 - (3) Install differential in axle housing.

Fig. 24 Differential Side Bearing Installation AXLE SHAFT OIL SEAL

REMOVAL

- (1) Raise and support vehicle.
- (2) Remove differential assembly.
- (3) Remove the inner axle shaft seals with a pry bay.

INSTALLATION

- (1) Remove any sealer remaining from original seals.
- (2) Remove sealer from axle tube to housing junction, if necessary.
- (3) Install oil seals with Discs 8110 and Turnbuckle 6797 (Fig. 25). Tighten tool until disc bottoms in housing.
 - (4) Install differential assembly.

RING GEAR

The ring and pinion gears are service in a matched set. Do not replace the ring gear without replacing the pinion gear.

REMOVAL

- (1) Remove differential from axle housing.
- (2) Place differential case in a suitable vise with soft metal jaw protectors. (Fig. 26)
- (3) Remove bolts holding ring gear to differential
- (4) Using a soft hammer, drive ring gear from differential case (Fig. 26).

Fig. 25 Axle Seal Installation

Fig. 26 Ring Gear Removal

INSTALLATION

CAUTION: Do not reuse the bolts that held the ring gear to the differential case. The bolts can fracture causing extensive damage.

- (1) Invert the differential case and start two ring gear bolts. This will provide case-to-ring gear bolt hole alignment.
 - (2) Invert the differential case in the vise.
- (3) Install new ring gear bolts and alternately tighten to $95-122~N\cdot m$ (70-90 ft. lbs.) torque (Fig. 27).
- (4) Install differential in axle housing and verify gear mesh and contact pattern.

Fig. 27 Ring Gear Bolt Installation

PINION GEAR

The ring and pinion gears are serviced as a matched set. Do not replace the pinion gear without replacing the ring gear.

REMOVAL

- (1) Remove differential assembly from axle housing.
- (2) Mark pinion yoke and propeller shaft for installation alignment.
- (3) Disconnect propeller shaft from pinion yoke. Using suitable wire, tie propeller shaft to underbody.
- (4) Using Holder 6958 to hold yoke, remove the pinion nut and washer.
- (5) Using Remover C-452 and Holder C-3281, remove the pinion yoke from pinion shaft (Fig. 28).

Fig. 28 Pinion Yoke Removal

(6) Remove the pinion gear and preload shims from housing (Fig. 29). Catch the pinion with your hand to prevent it from falling and being damaged.

Fig. 29 Remove Pinion Gear

(7) Remove the front pinion bearing cup, bearing, oil slinger, if equipped, and pinion seal with Remover D-147 and Handle C-4171 (Fig. 30).

Fig. 30 Front Bearing Cup Removal

(8) Remove the rear pinion bearing cup from axle housing (Fig. 31). Use Remover D-149 and Handle C-4171.

(9) Remove the depth shims from rear pinion bearing cup bore in axle housing. Record the thickness of the depth shims.

NOTE: The pinion depth shims can be very thin. Verify that all shims have been removed before proceeding.

Fig. 31 Rear Bearing Cup Removal

(10) Remove the rear pinion bearing from the pinion with Puller/Press C-293-PA and Adapters C-293-39 (Fig. 32).

Place 4 adapter blocks so they do not damage the bearing cage.

INSTALLATION

NOTE: Pinion depth shims are placed between the rear pinion bearing cup and axle housing to achieve proper ring and pinion gear mesh. If the factory installed ring and pinion gears are reused, the pinion depth shim should not require replacement. Refer to Pinion Gear Depth to select the proper thickness shim before installing pinion gear.

- (1) Place proper thickness depth shim in rear pinion bearing cup bore in the axle housing.
- (2) Apply Mopar® Door Ease, or equivalent, stick lubricant to outside surface of rear pinion bearing cup. Install the bearing cup with Installer D-146 and Handle C-4171 (Fig. 33). Verify cup is correctly seated.
- (3) Apply Mopar[®] Door Ease, or equivalent, stick lubricant to outside surface of front pinion bearing cup. Install the bearing cup with Installer D-144 and Handle C-4171 (Fig. 34).

Fig. 32 Inner Bearing Removal

Fig. 33 Rear Pinion Bearing Cup Installation

- (4) Install front pinion bearing, and oil slinger, if equipped.
- (5) Apply a light coating of gear lubricant on the lip of pinion seal. Install seal with Installer C-3972-A and Handle C-4171 (Fig. 35).
- (6) Install the rear pinion bearing and oil slinger, if equipped, on the pinion gear with Installer W-262 and a shop press (Fig. 36).
- (7) Install pinion bearing preload shims onto the pinion gear (Fig. 37).

Fig. 34 Pinion Outer Bearing Cup Installation

80a7e2be

Fig. 35 Pinion Seal Installation

- (8) Install pinion gear in housing.
- (9) Install yoke with Installer W-162-B, Cup 8109, and Holder 6958 (Fig. 38).
- (10) Install the pinion washer and a new nut on the pinion gear. Tighten the nut to 217 N·m (160 ft. lbs.).

CAUTION: Never loosen pinion gear nut to decrease pinion gear bearing rotating torque and never exceed specified preload rotating torque.

- (11) Check bearing preload torque with an inch pound torque wrench (Fig. 39). The torque necessary to rotate the pinion gear should be:
 - Original Bearings—1 to 3 N·m (10 to 20 in. lbs.).
 - New Bearings—2 to 5 N·m (15 to 35 in. lbs.).
- (12) If rotating torque is above the desired amount, remove the pinion yoke and increase the preload shim pack thickness. Increasing the shim pack thickness 0.025 mm (0.001 in.) will decrease the rotating torque approximately 0.9 N·m (8 in. lbs.).

Fig. 36 Rear Pinion Bearing Installation

(13) Tighten pinion shaft nut in 6.8 N·m (5 ft. lbs.) increments until the maximum tightening or desired rotating torque is reached.

Fig. 38 Pinion Yoke Installation

- (14) If the maximum tightening torque is reached prior to achieving the desired rotating torque, remove the pinion yoke and decrease the thickness of the preload shim pack. Decreasing the shim pack thickness 0.025~mm (0.001~in.) will increase the rotating torque approximately $0.9~\text{N}\cdot\text{m}$ (8 in. lbs.).
 - (15) Install differential assembly.

Fig. 37 Pinion Preload Shims-Typical

Fig. 39 Check Pinion Gear Rotating Torque
DISASSEMBLY AND ASSEMBLY

STANDARD DIFFERENTIAL

DISASSEMBLY

- (1) Remove the ring gear.
- (2) Using a suitable roll pin punch, drive out the roll pin holding pinion gear mate shaft in the differential case (Fig. 40).

Fig. 40 Mate Shaft Roll Pin Removal

- (3) Remove the pinion gear mate shaft from the differential case and the pinion mate gears.
- (4) Rotate differential side gears and remove the pinion mate gears and thrust washers (Fig. 41).

Fig. 41 Pinion Mate Gear Removal

(5) Remove the differential side gears and thrust washers.

ASSEMBLY

- (1) Install the differential side gears and thrust washers.
- (2) Install the pinion mate gears and thrust washers.
- (3) Install the pinion gear mate shaft. Align the roll pin holes in shaft and the differential case.
- (4) Install the roll pin to hold the pinion mate shaft in the differential case (Fig. 42).
 - (5) Install the ring gear.
- (6) Lubricate all differential components with hypoid gear lubricant.

FINAL ASSEMBLY

(1) Scrape the residual sealant from the housing and cover mating surfaces. Clean the mating surfaces with mineral spirits. Apply a bead of Mopar® Silicone Rubber Sealant, or equivalent, on the housing cover (Fig. 43).

Install the housing cover within 5 minutes after applying the sealant.

(2) Install the cover on the differential with the attaching bolts. Install the identification tag. Tighten the cover bolts to $41~\rm N\cdot m$ (30 ft. lbs.) torque.

DISASSEMBLY AND ASSEMBLY (Continued)

Fig. 42 Mate Shaft Roll Pin Installation

Fig. 43 Typical Housing Cover With Sealant CAUTION: Overfilling the differential can result in lubricant foaming and overheating.

- (3) Refill the differential housing with gear lubricant. Refer to the Lubricant Specifications section of this group for the gear lubricant requirements.
 - (4) Install the fill hole plug.

CLEANING AND INSPECTION

CARDAN U-JOINT

Clean all the U-joint yoke bores with cleaning solvent and a wire brush. Ensure that all the rust and foreign matter are removed from the bores.

Inspect the yokes for distortion, cracks and worn bearing cap bores.

Replace the complete U-joint if any of the components are defective.

AXLE COMPONENTS

Wash differential components with cleaning solvent and dry with compressed air. **Do not steam clean the differential components.**

Wash bearings with solvent and towel dry, or dry with compressed air. DO NOT spin bearings with compressed air. Cup and bearing must be replaced as matched sets only.

Clean axle shaft tubes and oil channels in housing. Inspect for;

- Smooth appearance with no broken/dented surfaces on the bearing rollers or the roller contact surfaces.
 - Bearing cups must not be distorted or cracked.
- Machined surfaces should be smooth and without any raised edges.
- Raised metal on shoulders of cup bores should be removed with a hand stone.
- Wear and damage to pinion gear mate shaft, pinion gears, side gears and thrust washers. Replace as a matched set only.
- Ring and pinion gear for worn and chipped teeth.
- Ring gear for damaged bolt threads. Replaced as a matched set only.
- Pinion yoke for cracks, worn splines, pitted areas, and a rough/corroded seal contact surface. Repair or replace as necessary.
- Preload shims for damage and distortion. Install new shims, if necessary.

ADJUSTMENTS

PINION GEAR DEPTH

GENERAL INFORMATION

Ring and pinion gears are supplied as matched sets only. The identifying numbers for the ring and pinion gear are etched into the face of each gear (Fig. 44). A plus (+) number, minus (-) number or zero (0) is etched into the face of the pinion gear. This number is the amount (in thousandths of an inch) the depth varies from the standard depth setting of a pinion etched with a (0). The standard setting from the center line of the ring gear to the back face of the

pinion is 92.08 mm (3.625 in.). The standard depth provides the best gear tooth contact pattern. Refer to Backlash and Contact Pattern Analysis paragraph in this section for additional information.

Fig. 44 Pinion Gear ID Numbers

Compensation for pinion depth variance is achieved with select shims. The shims are placed behind the rear pinion bearing cup (Fig. 45).

Fig. 45 Shim Locations

If a new gear set is being installed, note the depth variance etched into both the original and replacement pinion gear. Add or subtract the thickness of the original depth shims to compensate for the difference in the depth variances. Refer to the Depth Variance chart.

Note where Old and New Pinion Marking columns intersect. Intersecting figure represents plus or minus the amount needed.

Note the etched number on the face of the drive pinion gear (-1, -2, 0, +1, +2, etc.). The numbers represent thousands of an inch deviation from the standard. If the number is negative, add that value to the required thickness of the depth shims. If the number is positive, subtract that value from the thickness of the depth shim. If the number is 0 no change is necessary.

PINION DEPTH MEASUREMENT AND ADJUSTMENT

Measurements are taken with pinion bearing cups and pinion bearings installed in the axle housing without any shims placed behind the rear pinion bearing cup. Take measurements with Pinion Gauge Set 6774 and Dial Indicator C-3339 (Fig. 46).

- (1) Assemble Pinion Height Block 6739, Pinion Block 6733, and rear pinion bearing onto Screw 6741 (Fig. 46).
- (2) Insert assembled height gauge components, rear bearing and screw into axle housing through pinion bearing cups (Fig. 47).
- (3) Install front pinion bearing and Cone-nut 6740 hand tight (Fig. 46).
- (4) Place Arbor Disc 6732 on Arbor D-115-3 in position in axle housing side bearing cradles (Fig. 48). Install differential bearing caps on Arbor Discs and tighten cap bolts to 41 N·m (30 ft. lbs.).

NOTE: Arbor Discs 6732 has different step diameters to fit other axles. Choose proper step for axle being serviced.

- (5) Assemble Dial Indicator C-3339 into Scooter Block D-115-2 and secure set screw.
- (6) Place Scooter Block/Dial Indicator in position in axle housing so dial probe and scooter block are flush against the rearward surface of the pinion height block (Fig. 46). Hold scooter block in place and zero the dial indicator face to the pointer. Tighten dial indicator face lock screw.
- (7) With scooter block still in position against the pinion height block, slowly slide the dial indicator probe over the edge of the pinion height block.
- (8) Slide the dial indicator probe across the gap between the pinion height block and the arbor bar with the scooter block against the pinion height block (Fig. 49). When the dial probe contacts the arbor bar, the dial pointer will turn clockwise. Bring dial pointer back to zero against the arbor bar, do not turn dial face. Continue moving the dial probe to the crest of the arbor bar and record the highest reading. If the dial indicator can not achieve the zero reading,

PINION GEAR DEPTH VARIANCE

Original Pinion Gear Depth	Replacement Pinion Gear Depth Variance								
Variance	-4	-3	-2	-1	0	+1	+2	+3	+4
+4	+0.008	+0.007	+0.006	+0.005	+0.004	+0.003	+0.002	+0.001	0
+3	+0.007	+0.006	+0.005	+0.004	+0.003	+0.002	+0.001	0	-0.001
+2	+0.006	+0.005	+0.004	+0.003	+0.002	+0.001	0	-0.001	-0.002
+1	+0.005	+0.004	+0.003	+0.002	+0.001	0	-0.001	-0.002	-0.003
0	+0.004	+0.003	+0.002	+0.001	0	-0.001	-0.002	-0.003	-0.004
-1	+0.003	+0.002	+0.001	0	-0.001	-0.002	-0.003	-0.004	-0.005
-2	+0.002	+0.001	0	-0.001	-0.002	-0.003	-0.004	-0.005	-0.006
-3	+0.001	0	-0.001	-0.002	-0.003	-0.004	-0.005	-0.006	-0.007
-4	0	-0.001	-0.002	-0.003	-0.004	-0.005	-0.006	-0.007	-0.008

Fig. 46 Pinion Gear Depth Gauge Tools—Typical

the rear bearing cup or the pinion depth gauge set is not installed correctly.

(9) Select a shim equal to the dial indicator reading plus the drive pinion gear depth variance number etched in the face of the pinion gear (Fig. 44). For example, if the depth variance is -2, add +0.002 in to the dial indicator reading.

NOTE: If an oil slinger is used behind the inner pinion bearing, deduct the thickness of the slinger from the dial indicator reading and use that total for shim selection.

Fig. 47 Pinion Height Block—Typical

Fig. 48 Gauge Tools In Housing—Typical

Fig. 49 Pinion Gear Depth Measurement—Typical DIFFERENTIAL BEARING PRELOAD AND GEAR BACKLASH

INTRODUCTION

Differential side bearing preload and gear backlash is achieved by selective shims positioned behind the differential side bearing cones. The proper shim thickness can be determined using slip-fit dummy bearings D-348 in place of the differential side bearings and a dial indicator C-3339. Before proceeding with the differential bearing preload and gear backlash measurements, measure the pinion gear depth and prepare the pinion gear for installation. Establishing proper pinion gear depth is essential to establishing gear backlash and tooth contact patterns. After the overall shim thickness to take up differential side play is measured, the pinion gear is installed, and the gear backlash shim thickness is measured. The overall shim thickness is the total of the dial indicator reading and the preload specification added together. The gear backlash measurement determines the thickness of the shim used on the ring gear side of the differential case. Subtract the gear backlash shim thickness from the total overall shim thickness and select that amount for the pinion gear side of the differential (Fig. 50). Differential shim measurements are performed with axle spreader W-129-B removed.

SHIM SELECTION

NOTE: It is difficult to salvage the differential side bearings during the removal procedure. Install replacement bearings if necessary.

- (1) Remove differential side bearings from differential case.
- (2) Remove factory installed shims from differential case.

Fig. 50 Axle Adjustment Shim Locations

- (3) Install ring gear on differential case and tighten bolts to specification.
- (4) Install dummy side bearings D-348 on differential case.
 - (5) Install differential case in axle housing.
- (6) Install the marked bearing caps in their correct positions. Install and snug the bolts (Fig. 51).

Fig. 51 Tighten Bolts Holding Bearing Caps

- (7) Using a dead-blow type mallet, seat the differential dummy bearings to each side of the axle housing (Fig. 52) and (Fig. 53).
- (8) Thread guide stud C-3288-B into rear cover bolt hole below ring gear (Fig. 54).
- (9) Attach a dial indicator C-3339 to guide stud. Position the dial indicator plunger on a flat surface between the ring gear bolt heads (Fig. 54).

Fig. 52 Seat Pinion Gear Side Differential Dummy Side Bearing

Fig. 53 Seat Ring Gear Side Differential Dummy Side Bearing

- (10) Push and hold differential case to pinion gear side of axle housing (Fig. 55).
 - (11) Zero dial indicator face to pointer (Fig. 55).
- (12) Push and hold differential case to ring gear side of the axle housing (Fig. 56).
 - (13) Record dial indicator reading (Fig. 56).
- (14) Add 0.008 in. (0.2 mm) to the zero end play total. This new total represents the thickness of shims to compress, or preload the new bearings when the differential is installed.
- (15) Rotate dial indicator out of the way on the guide stud.
- (16) Remove differential case and dummy bearings from axle housing.
- (17) Install the pinion gear in axle housing. Install the pinion yoke and establish the correct pinion rotating torque.
- (18) Install differential case and dummy bearings D-348 in axle housing (without shims), install bearing caps and tighten bolts snug.
 - (19) Seat ring gear side dummy bearing (Fig. 53).

Fig. 54 Differential Side play Measurement

Fig. 55 Hold Differential Case and Zero Dial Indicator

- (20) Position the dial indicator plunger on a flat surface between the ring gear bolt heads. (Fig. 54).
- (21) Push and hold differential case toward pinion gear (Fig. 57).
 - (22) Zero dial indicator face to pointer (Fig. 57).
- (23) Push and hold differential case to ring gear side of the axle housing (Fig. 58).
 - (24) Record dial indicator reading (Fig. 58).
- (25) Subtract 0.002 in. (0.05 mm) from the dial indicator reading to compensate for backlash between ring and pinion gears. This total is the thickness shim required to achieve proper backlash.
- (26) Subtract the backlash shim thickness from the total preload shim thickness. The remainder is

Fig. 56 Hold Differential Case and Read Dial Indicator

Fig. 57 Hold Differential Case and Zero Dial Indicator

Fig. 58 Hold Differential Case and Read Dial Indicator

the shim thickness required on the pinion side of the axle housing.

- (27) Rotate dial indicator out of the way on guide stud.
- (28) Remove differential case and dummy bearings from axle housing.
- (29) Install side bearing shims on differential case hubs.
- (30) Install side bearings and cups on differential case.
- (31) Install spreader W-129-B, utilizing some items from Adapter Set 6987, on axle housing and spread axle opening enough to receive differential case.
 - (32) Install differential case in axle housing.
 - (33) Remove spreader from axle housing.
- (34) Rotate the differential case several times to seat the side bearings.
- (35) Position the indicator plunger against a ring gear tooth (Fig. 59).
- (36) Push and hold ring gear upward while not allowing the pinion gear to rotate.
 - (37) Zero dial indicator face to pointer.
- (38) Push and hold ring gear downward while not allowing the pinion gear to rotate. Dial indicator reading should be between 0.12 mm (0.005 in.) and 0.20 mm (0.008 in.). If backlash is not within specifications transfer the necessary amount of shim thickness from one side of the axle housing to the other (Fig. 60).
- (39) Verify differential case and ring gear runout by measuring ring to pinion gear backlash at several locations around the ring gear. Readings should not vary more than 0.05 mm (0.002 in.). If readings vary more than specified, the ring gear or the differential case is defective.

After the proper backlash is achieved, perform Gear Contact Pattern Analysis procedure.

Fig. 59 Ring Gear Backlash Measurement

Fig. 60 Backlash Shim Adjustment

GEAR CONTACT PATTERN ANALYSIS

The ring and pinion gear teeth contact patterns will show if the pinion gear depth is correct in the

axle housing. It will also show if the ring gear backlash has been adjusted correctly. The backlash can be adjusted within specifications to achieve desired tooth contact patterns.

- (1) Apply a thin coat of hydrated ferric oxide, or equivalent, to the drive and coast side of the ring gear teeth.
- (2) Wrap, twist, and hold a shop towel around the pinion yoke to increase the turning resistance of the pinion gear. This will provide a more distinct contact pattern.
- (3) Using a boxed end wrench on a ring gear bolt, Rotate the differential case one complete revolution in both directions while a load is being applied from shop towel.

The areas on the ring gear teeth with the greatest degree of contact against the pinion gear teeth will squeegee the compound to the areas with the least amount of contact. Note and compare patterns on the ring gear teeth to Gear Tooth Contact Patterns chart (Fig. 61) and adjust pinion depth and gear backlash as necessary.

DRIVE SIDE OF RING GEAR TEETH	COAST SIDE OF RING GEAR TEETH	
HEEL TOE	TOE	DESIRABLE CONTACT PATTERN. PATTERN SHOULD BE CENTERED ON THE DRIVE SIDE OF TOOTH. PATTERN SHOULD BE CENTERED ON THE COAST SIDE OF TOOTH, BUT MAY BE SLIGHTLY TOWARD THE TOE. THERE SHOULD ALWAYS BE SOME CLEARANCE BETWEEN CONTACT PATTERN AND TOP OF THE TOOTH.
		RING GEAR BACKLASH CORRECT. THINNER PINION GEAR DEPTH SHIM REQUIRED.
		RING GEAR BACKLASH CORRECT. THICKER PINION GEAR DEPTH SHIM REQUIRED.
		PINION GEAR DEPTH SHIM CORRECT. DECREASE RING GEAR BACKLASH.
		PINION GEAR DEPTH SHIM CORRECT. INCREASE RING GEAR BACKLASH.

J9003-24

Fig. 61 Gear Tooth Contact Patterns

SPECIFICATIONS

181 FBI AXLE

Axle Type
Lubricant SAE Thermally Stable 80W-90
Lube Capacity 1.2 L (2.5 pts.)
Axle Ratio 3.07, 3.31, 3.54, 3.55, 3.73, 4.10
Differential Side Gear Clearance 0.12–0.20 mm
(0.005–0.008 in.)
Ring Gear Diameter 18.09 cm (7.125 in.)
Backlash 0-0.15 mm (0.005-0.008 in.)
Pinion Std. Depth 92.1 mm (3.625 in.)
Pinion Bearing Rotating Torque
Original Bearings 1–2 N·m (10–20 in. lbs.)
New Bearings 1.5–4 N⋅m (15–35 in. lbs.)

181 FBI AXLE

DESCRIPTION	TORQUE
Fill Hole Plug 3	4 N·m (25 ft. lbs.)
Diff. Cover Bolt 4	1 N·m (30 ft. lbs.)
Bearing Cap Bolt 6	1 N·m (45 ft. lbs.)
Ring Gear Bolt 95-122 N	·m (70–90 ft. lbs.)
Axle Nut	N·m (175 ft. lbs.)
Hub Brg. Bolt 10	2 N·m (75 ft. lbs.)
Lower Ball Stud 10	8 N·m (80 ft. lbs.)
Upper Ball Stud 10	1 N·m (75 ft. lbs.)

SPECIAL TOOLS

181 FBI AXLE

Puller—C-293-PA

Plug—SP-3289

Adapter—C-293-39

Puller—C-452

Wrench—C-3281

SPECIAL TOOLS (Continued)

Dial Indicator—C-3339

Remover—D-149

Driver-C-3716-A

Installer-W-162-D

Handle—C-4171

Cup-8109

Remover/Installer—6289

Installer—D-146

SPECIAL TOOLS (Continued)

Installer—6761

Installer—6752

Installer Discs—8110

Turnbuckle—6797

Tool Set, Pinion Depth—6774

Gauge Block—6733

Spanner—6958

Installer—C-3972-A

Spreader—W-129-B

SPECIAL TOOLS (Continued)

Adapter Kit—6987

Installer-W-262

Pilot Stud—C-3288-B

Remover—D-147

Installer—D-144

194 RBI AXLE

INDEX

page	e page
GENERAL INFORMATION	DIFFERENTIAL
194 RBI AXLE 47	
LUBRICANT SPECIFICATIONS 47	
DESCRIPTION AND OPERATION	PINION SHAFT SEAL 55
STANDARD DIFFERENTIAL 48	8 REAR AXLE
TRAC-LOK OPERATION 48	8 RING GEAR 62
DIAGNOSIS AND TESTING	DISASSEMBLY AND ASSEMBLY
BEARING NOISE 49	9 STANDARD DIFFERENTIAL 67
DRIVELINE SNAP 50	0 TRAC-LOK DIFFERENTIAL 68
GEAR NOISE 49	
GENERAL INFORMATION 49	
LOW SPEED KNOCK 50	0 TRAC-LOK 72
TRAC-LOK DIFFERENTIAL NOISE 50	O ADJUSTMENTS
TRAC-LOK TEST 53	
VIBRATION 50	
SERVICE PROCEDURES	GEAR CONTACT PATTERN ANALYSIS 76
LUBRICANT CHANGE 53	3 PINION GEAR DEPTH 72
REMOVAL AND INSTALLATION	SPECIFICATIONS
AXLE SHAFT SEAL AND BEARING 59	
AXLE SHAFT 58	
COLLAPSIBLE SPACER 56	
DIFFERENTIAL SIDE BEARINGS 62	2

GENERAL INFORMATION

194 RBI AXLE

The 194 Rear Beam-design Iron (RBI) axle housing has an iron center casting (differential housing) with axle shaft tubes extending from either side. The tubes are pressed into and welded to the differential housing to form a one-piece axle housing.

The integral type, hypoid gear design, housing has the centerline of the pinion set below the centerline of the ring gear.

The axle has a vent hose to relieve internal pressure caused by lubricant vaporization and internal expansion.

The axles are equipped with semi-floating axle shafts, meaning that loads are supported by the axle shaft and bearings. The axle shafts are retained by C-clips in the differential side gears.

The cover provides a means for servicing the differential without removing the axle.

For vehicles equipped with ABS brakes, the axles have a tone ring pressed onto the axle shaft. Use care when removing axle shafts to ensure that the tone wheel or the wheel speed sensor are not damaged.

The 194 RBI axle has the assembly part number and gear ratio listed on a tag. The tag is attached to the differential housing by a cover bolt. Build date identification codes are stamped on the cover side of an axle shaft tube.

The differential case is a one-piece design. The differential pinion mate shaft is retained with a threaded pin. Differential bearing preload and ring gear backlash is adjusted by the use of selective spacer shims. Pinion bearing preload is set and maintained by the use of a collapsible spacer (Fig. 1).

LUBRICANT SPECIFICATIONS

A multi-purpose, hypoid gear lubricant which conforms to the following specifications should be used. Mopar® Hypoid Gear Lubricant conforms to all of these specifications.

- The lubricant should have MIL-L-2105C and API GL 5 quality specifications.
- Lubricant is a thermally stable SAE 80W-90 gear lubricant.
- Lubricant for axles intended for heavy-duty or trailer tow use is SAE 75W-140 SYNTHETIC gear lubricant.

Trac-lok differentials require the addition of 4 oz. of friction modifier to the axle lubricant. The 194 RBI

GENERAL INFORMATION (Continued)

Fig. 1 Shim Locations

axle lubricant capacity is 1.66L (3.50 pts.) total, including the friction modifier if necessary.

CAUTION: If axle is submerged in water, lubricant must be replaced immediately to avoid possible premature axle failure.

DESCRIPTION AND OPERATION

STANDARD DIFFERENTIAL

The differential gear system divides the torque between the axle shafts. It allows the axle shafts to rotate at different speeds when turning corners.

Each differential side gear is splined to an axle shaft. The pinion gears are mounted on a pinion mate shaft and are free to rotate on the shaft. The pinion gear is fitted in a bore in the differential case and is positioned at a right angle to the axle shafts.

In operation, power flow occurs as follows:

- The pinion gear rotates the ring gear.
- The ring gear (bolted to the differential case) rotates the case.
- The differential pinion gears (mounted on the pinion mate shaft in the case) rotate the side gears.
- The side gears (splined to the axle shafts) rotate the shafts.

During straight-ahead driving, the differential pinion gears do not rotate on the pinion mate shaft. This occurs because input torque applied to the gears is divided and distributed equally between the two side gears. As a result, the pinion gears revolve with the pinion mate shaft but do not rotate around it (Fig. 1).

When turning corners, the outside wheel must travel a greater distance than the inside wheel to complete a turn. The difference must be compensated for to prevent the tires from scuffing and skidding through turns. To accomplish this, the differential allows the axle shafts to turn at unequal speeds (Fig.

Fig. 2 Differential Operation—Straight Ahead Driving

2). In this instance, the input torque applied to the pinion gears is not divided equally. The pinion gears now rotate around the pinion mate shaft in opposite directions. This allows the side gear and axle shaft attached to the outside wheel to rotate at a faster speed.

Fig. 3 Differential Operation—On Turns

TRAC-LOK OPERATION

In a conventional differential, if one wheel spins, the opposite wheel will generate only as much torque as the spinning wheel.

In the Trac-lok differential, part of the ring gear torque is transmitted through clutch packs which contain multiple discs. The clutches will have radial grooves on the plates, and concentric grooves on the discs or bonded fiber material that is smooth in appearance.

In operation, the Trac-lok clutches are engaged by two concurrent forces. The first being the preload force exerted through Belleville spring washers within the clutch packs. The second is the separating forces generated by the side gears as torque is applied through the ring gear (Fig. 4).

DESCRIPTION AND OPERATION (Continued)

Fig. 4 Trac-lok Limited Slip Differential Operation

The Trac-lok design provides the differential action needed for turning corners and for driving straight ahead during periods of unequal traction. When one wheel looses traction, the clutch packs transfer additional torque to the wheel having the most traction. Trac-lok differentials resist wheel spin on bumpy roads and provide more pulling power when one wheel looses traction. Pulling power is provided continuously until both wheels loose traction. If both wheels slip due to unequal traction, Trac-lok operation is normal. In extreme cases of differences of traction, the wheel with the least traction may spin.

DIAGNOSIS AND TESTING

GENERAL INFORMATION

Axle bearing problem conditions are usually caused by:

- Insufficient or incorrect lubricant.
- Foreign matter/water contamination.
- Incorrect bearing preload torque adjustment.
- Incorrect backlash.

Axle gear problem conditions are usually the result of:

- Insufficient lubrication.
- Incorrect or contaminated lubricant.

- Overloading (excessive engine torque) or exceeding vehicle weight capacity.
 - Incorrect clearance or backlash adjustment.

Axle component breakage is most often the result of:

- Severe overloading.
- Insufficient lubricant.
- Incorrect lubricant.
- Improperly tightened components.

GEAR NOISE

Axle gear noise can be caused by insufficient lubricant, incorrect backlash, tooth contact, or worn/damaged gears.

Gear noise usually happens at a specific speed range. The range is 30 to 40 mph, or above 50 mph. The noise can also occur during a specific type of driving condition. These conditions are acceleration, deceleration, coast, or constant load.

When road testing, accelerate the vehicle to the speed range where the noise is the greatest. Shift out-of-gear and coast through the peak-noise range. If the noise stops or changes greatly:

- Check for insufficient lubricant.
- Incorrect ring gear backlash.
- · Gear damage.

Differential side and pinion gears can be checked by turning the vehicle. They usually do not cause noise during straight-ahead driving when the gears are unloaded. The side gears are loaded during vehicle turns. A worn pinion gear mate shaft can also cause a snapping or a knocking noise.

BEARING NOISE

The axle shaft, differential and pinion gear bearings can all produce noise when worn or damaged. Bearing noise can be either a whining, or a growling sound.

Pinion gear bearings have a constant-pitch noise. This noise changes only with vehicle speed. Pinion bearing noise will be higher because it rotates at a faster rate. Drive the vehicle and load the differential. If bearing noise occurs, the rear pinion bearing is the source of the noise. If the bearing noise is heard during a coast, the front pinion bearing is the source.

Worn or damaged differential bearings usually produce a low pitch noise. Differential bearing noise is similar to pinion bearing noise. The pitch of differential bearing noise is also constant and varies only with vehicle speed.

Axle shaft bearings produce noise and vibration when worn or damaged. The noise generally changes when the bearings are loaded. Road test the vehicle. Turn the vehicle sharply to the left and to the right. This will load the bearings and change the noise

level. Where axle bearing damage is slight, the noise is usually not noticeable at speeds above 30 mph.

LOW SPEED KNOCK

Low speed knock is generally caused by a worn U-joint or by worn side-gear thrust washers. A worn pinion gear shaft bore will also cause low speed knock.

VIBRATION

Vibration at the rear of the vehicle is usually caused by a:

- Damaged drive shaft.
- Missing drive shaft balance weight(s).
- Worn or out-of-balance wheels.
- Loose wheel lug nuts.
- Worn U-joint(s).
- Loose/broken springs.
- Damaged axle shaft bearing(s).
- Loose pinion gear nut.
- Excessive pinion yoke run out.
- Bent axle shaft(s).

Check for loose or damaged front-end components or engine/transmission mounts. These components can contribute to what appears to be a rear-end vibration. Do not overlook engine accessories, brackets and drive belts.

All driveline components should be examined before starting any repair.

Refer to Group 22, Wheels and Tires, for additional vibration information.

DRIVELINE SNAP

A snap or clunk noise when the vehicle is shifted into gear (or the clutch engaged), can be caused by:

- High engine idle speed.
- Loose engine/transmission/transfer case mounts.
- Worn U-joints.
- Loose spring mounts.
- Loose pinion gear nut and yoke.
- Excessive ring gear backlash.
- Excessive side gear/case clearance.

The source of a snap or a clunk noise can be determined with the assistance of a helper. Raise the vehicle on a hoist with the wheels free to rotate. Instruct the helper to shift the transmission into gear. Listen for the noise, a mechanics stethoscope is helpful in isolating the source of a noise.

TRAC-LOK DIFFERENTIAL NOISE

The most common problem is a chatter noise when turning corners. Before removing a Trac-lok unit for repair, drain, flush and refill the axle with the specified lubricant. Refer to Lubricant change in this Group.

A container of Mopar® Trac-lok Lubricant (friction modifier) should be added after repair service or during a lubricant change.

After changing the lubricant, drive the vehicle and make 10 to 12 slow, figure-eight turns. This maneuver will pump lubricant through the clutches. This will correct the condition in most instances. If the chatter persists, clutch damage could have occurred

	CORRECTION
Wheel loose. Faulty, brinelled wheel bearing.	Tighten loose nuts. Faulty or brinelled bearings must be replaced.
 Misaligned axle shaft tube. Bent or sprung axle shaft. 	 Inspect axle shaft tube alignment. Correct as necessary. Replace bent or sprung axle
3. End play in drive pinion bearings.	shaft. 3. Refer to Drive Pinion Bearing Pre-Load Adjustment.
4. Excessive gear backlash between ring gear and pinion gear.	4. Check adjustment of ring gear backlash and pinion gear. Correct as necessary.
5. Improper adjustment of drive pinion gear shaft bearings.	5. Adjust drive pinion shaft bearings.
nut. 7. Improper wheel bearing	6. Tighten drive pinion gearshaft yoke nut with specified torque.7. Readjust as necessary.
Scuffed gear tooth contact surfaces.	8. If necessary, replace scuffed gears.
 Misaligned axle shaft tube. Vehicle overloaded. 	 Replace broken axle shaft after correcting axle shaft tube alignment. Replace broken axle shaft. Avoid excessive weight on vehicle.
Erratic clutch operation. Grabbing clutch.	 Replace broken axle shaft after inspecting for other possible casues. Avoid erratic use of clutch. Replace broken axle shaft.
Ŭ	Inspect clutch and make necessary repairs or adjustments.
Improper adjustment of differential bearings.	Replace cracked case; examine gears and bearings for possible damage. At reassembly, adjust differential bearings properly.
2. Excessive ring gear backlash.	2. Replace cracked case; examine gears and bearings for possible damage. At reassembly, adjust ring
3. Vehicle overloaded.	gear backlash properly. 3. Replace cracked case; examine gears and bearings for possible damage. Avoid excessive weight on vehicle.
4. Erratic clutch operation.	4. Replace cracked case. After inspecting for other possible causes, examine gears and bearings for possible damage. Avoid erratic use of clutch.
	 Faulty, brinelled wheel bearing. Misaligned axle shaft tube. Bent or sprung axle shaft. End play in drive pinion bearings. Excessive gear backlash between ring gear and pinion gear. Improper adjustment of drive pinion gear shaft bearings. Loose drive pinion gearshaft yoke nut. Improper wheel bearing adjustment. Scuffed gear tooth contact surfaces. Misaligned axle shaft tube. Vehicle overloaded. Erratic clutch operation. Grabbing clutch. Improper adjustment of differential bearings. Excessive ring gear backlash. Vehicle overloaded.

CONDITION	POSSIBLE CAUSES	CORRECTION
DIFFERENTIAL GEARS SCORED	 Insufficient lubrication. Improper grade of lubricant. 	1. Replace scored gears. Scoring marks on the drive face of gear teeth or in the bore are caused by instantaneous fusing of the mating surfaces. Scored gears should be replaced. Fill rear differential housing to required capacity with proper lubricant. Refer to Specifications. 2. Replace scored gears. Inspect all gears and bearings for possible damage. Clean and refill differential
	3. Excessive spinning of one wheel/tire.	housing to required capacity with proper lubricant. 3. Replace scored gears. Inspect all gears, pinion bores and shaft for damage. Service as necessary.
LOSS OF LUBRICANT	1. Lubricant level too high.	Drain excess lubricant by removing fill plug and allow lubricant to level at lower edge of fill plug hole.
	 Worn axle shaft seals. Cracked differential housing. 	Replace worn seals. 3. Repair or replace housing as necessary.
	4. Worn drive pinion gear shaft seal.	4. Replace worn drive pinion gear shaft seal.
	5. Scored and worn yoke.	5. Replace worn or scored yoke and seal.
	6. Axle cover not properly sealed.	6. Remove cover and clean flange and reseal.
AXLE OVERHEATING	 Lubricant level too low. Incorrect grade of lubricant. 	Refill differential housing. Drain, flush and refill with correct amount of the correct lubricant.
	3. Bearings adjusted too tight.4. Excessive gear wear.	Readjust bearings. Inspect gears for excessive wear
	5. Insufficient ring gear backlash.	or scoring. Replace as necessary. 5. Readjust ring gear backlash and inspect gears for possible scoring.
GEAR TEETH BROKE (RING GEAR AND PINION)	1. Overloading.	Replace gears. Examine other gears and bearings for possible
	2. Erratic clutch operation.	damage. 2. Replace gears and examine the remaining parts for possible damage. Avoid erratic clutch operation.
	3. Ice-spotted pavements.	Replace gears. Examine the remaining parts for possible damage. Replace parts as required.
	4. Improper adjustments.	Replace gears. Examine other parts for possible damage. Ensure ring gear backlash is correct.

CONDITION	POSSIBLE CAUSES	CORRECTION		
AXLE NOISE	Insufficient lubricant.	Refill axle with correct amount of proper lubricant. Also inspect for leaks and correct as necessary.		
	2. Improper ring gear and drive	2. Check ring gear and pinion gear		
	pinion gear adjustment.	teeth contact pattern.		
	3. Unmatched ring gear and drive pinion gear.	3. Remove unmatched ring gear and drive pinion gear. Replace with matched gear and drive pinion gear set.		
	4. Worn teeth on ring gear or drive pinion gear.	4. Check teeth on ring gear and drive pinion gear for correct contact. If necessary, replace with new		
	E Lagge drive minion many short	matched set.		
	5. Loose drive pinion gear shaft bearings.	5. Adjust drive pinion gearshaft bearing preload torque.		
	6. Loose differential bearings.	6. Adjust differential bearing preload torque.		
	7. Misaligned or sprung ring gear.	7. Measure ring gear runout.		
	8. Loose differential bearing cap bolts.	8. Tighten with specified torque.		

TRAC-LOK TEST

WARNING: WHEN SERVICING VEHICLES WITH A TRAC-LOK DIFFERENTIAL DO NOT USE THE ENGINE TO TURN THE AXLE AND WHEELS. BOTH REAR WHEELS MUST BE RAISED AND THE VEHICLE SUPPORTED. A TRAC-LOK AXLE CAN EXERT ENOUGH FORCE IF ONE WHEEL IS IN CONTACT WITH A SURFACE TO CAUSE THE VEHICLE TO MOVE.

The differential can be tested without removing the differential case by measuring rotating torque. Make sure brakes are not dragging during this measurement.

- (1) Place blocks in front and rear of both front wheels.
- (2) Raise one rear wheel until it is completely off the ground.
- (3) Engine off, transmission in neutral, and parking brake off.
- (4) Remove wheel and bolt Special Tool 6790 to studs.
- (5) Use torque wrench on special tool to rotate wheel and read rotating torque (Fig. 5).
- (6) If rotating torque is less than 22 N·m (30 ft. lbs.) or more than 271 N·m (200 ft. lbs.) on either wheel the unit should be serviced.

Fig. 5 Trac-lok Test —Typical

SERVICE PROCEDURES

LUBRICANT CHANGE

- (1) Raise and support the vehicle.
- (2) Remove the lubricant fill hole plug from the differential housing cover.
- (3) Remove the differential housing cover and drain the lubricant from the housing.
- (4) Clean the housing cavity with a flushing oil, light engine oil, or lint free cloth. **Do not use water, steam, kerosene, or gasoline for cleaning.**
- (5) Remove the original sealant from the housing and cover surfaces.
- (6) Apply a bead of Mopar® Silicone Rubber Sealant, or equivalent, to the housing cover (Fig. 6).

SERVICE PROCEDURES (Continued)

Fig. 6 Apply Sealant

Install the housing cover within 5 minutes after applying the sealant.

- (7) Install the cover and any identification tag. Tighten the cover bolts to 41 N·m (30 ft. lbs.) torque.
- (8) For Trac-lok differentials, a quantity of Mopar® Trac-lok lubricant (friction modifier), or equivalent, must be added after repair service or a lubricant change. Refer to the Lubricant Specifications section of this group for the quantity necessary.
- (9) Fill differential with Mopar[®] Hypoid Gear Lubricant, or equivalent, to bottom of the fill plug hole. Refer to the Lubricant Specifications section of this group for the quantity necessary.

CAUTION: Overfilling the differential can result in lubricant foaming and overheating.

- (10) Install the fill hole plug and lower the vehicle.
- (11) Trac-lok differential equipped vehicles should be road tested by making 10 to 12 slow figure-eight turns. This maneuver will pump the lubricant through the clutch discs to eliminate a possible chatter noise complaint.

REMOVAL AND INSTALLATION

REAR AXLE

REMOVAL

- (1) Raise and support the vehicle.
- (2) Position a suitable lifting device under the axle.
 - (3) Secure axle to device.
 - (4) Remove the wheels and tires.
- (5) Remove the brake drums from the axle. Refer to Group 5, Brakes, for proper procedures.
- (6) Disconnect parking brake cables from brackets and lever.

- (7) Remove wheel speed sensors, if necessary. Refer to Group 5, Brakes, for proper procedures.
- (8) Disconnect the brake hose at the axle junction block. Do not disconnect the brake hydraulic lines at the wheel cylinders. Refer to Group 5, Brakes, for proper procedures.
- (9) Disconnect the vent hose from the axle shaft tube.
- (10) Mark the propeller shaft and yokes for installation alignment reference.
 - (11) Remove propeller shaft.
 - (12) Disconnect stabilizer bar links.
 - (13) Disconnect shock absorbers from axle.
- (14) Remove the U-bolts which hold the axle to the spring brackets.
 - (15) Separate the axle from the vehicle.

INSTALLATION

NOTE: The weight of the vehicle must be supported by the springs before suspension arms and track bar fasteners can be tightened. If the springs are not at their normal ride position, vehicle ride height and handling could be affected.

- (1) Raise the axle with lifting device and align the spring centering bolts with the mating holes in the axle spring perch.
- (2) Install the U-bolts which hold the axle to the spring brackets. Tighten nuts to 70 N·m (52 ft. lbs.).
- (3) Install shock absorbers and tighten nuts to 60 $N\cdot m$ (44 ft. lbs.) torque.
- (4) Install stabilizer bar links and tighten nuts to 74 N·m (55 ft. lbs.) torque.
- (5) Install the wheel speed sensors, if necessary. Refer to Group 5, Brakes, for proper procedures.
- (6) Connect parking brake cable to brackets and lever.
- (7) Install the brake drums. Refer to Group 5, Brakes, for proper procedures.
- (8) Connect the brake hose to the axle junction block. Refer to Group 5, Brakes, for proper procedures.
 - (9) Install axle vent hose.
- (10) Align propeller shaft and pinion yoke reference marks. Install U-joint straps and bolts. Tighten to 19 N·m (14 ft. lbs.) torque.
 - (11) Install the wheels and tires.
- (12) Add gear lubricant, if necessary. Refer to Lubricant Specifications in this section for lubricant requirements.
- (13) Remove lifting device from axle and lower the vehicle.

PINION SHAFT SEAL

REMOVAL

- (1) Raise and support the vehicle.
- (2) Remove wheel and tire assemblies.
- (3) Remove the brake drums. Refer to Group 5, Brakes, for proper procedures.
- (4) Mark the propeller shaft and pinion yoke for installation alignment reference.
 - (5) Remove the propeller shaft from the yoke.
 - (6) Rotate the pinion gear three or four times.
- (7) Measure the amount of torque necessary to rotate the pinion gear with a (in. lbs.) dial-type torque wrench. Record the torque reading for installation reference.
- (8) Using Holder 6958 to hold the pinion yoke, remove the pinion nut and washer.
- (9) Use Remover C-452 and Wrench C-3281 to remove the pinion yoke (Fig. 7).

Fig. 7 Pinion Yoke Removal

(10) Use a suitable pry tool or slide hammer mounted screw to remove the pinion gear seal.

INSTALLATION

- (1) Apply a light coating of gear lubricant on the lip of pinion seal. Install seal with Installer C-3972-A and Handle C-4171 (Fig. 8).
- (2) Install yoke on the pinion gear with Screw 8112, Cup 8109, and Holder 6958 (Fig. 9).

CAUTION: Do not exceed the minimum tightening torque when installing the pinion yoke at this point. Damage to the collapsible spacer or bearings may result.

- (3) Install the yoke washer and a new nut on the pinion gear and tighten the pinion nut until there is zero bearing end-play.
 - (4) Tighten the nut to 271 N·m (200 ft. lbs.).

Fig. 8 Pinion Seal Installation

Fig. 9 Pinion Yoke Installation

CAUTION: Never loosen pinion gear nut to decrease pinion gear bearing rotating torque and never exceed specified preload torque. If preload torque or rotating torque is exceeded a new collapsible spacer must be installed. The torque sequence will then have to be repeated.

- (5) Rotate the pinion shaft using a (in. lbs.) torque wrench. Rotating torque should be equal to the reading recorded during removal plus an additional 0.56 N·m (5 in. lbs.) (Fig. 10).
- (6) If the rotating torque is low, use Holder 6958 to hold the pinion yoke (Fig. 11), and tighten the pinion shaft nut in 6.8 N·m (5 ft. lbs.) increments until the proper rotating torque is achieved.

CAUTION: If the maximum tightening torque is reached prior to reaching the required rotating torque, the collapsible spacer may have been damaged. Replace the collapsible spacer.

Fig. 10 Check Pinion Rotation Torque

Fig. 11 Tightening Pinion Shaft Nut-Typical

- (7) Align the installation reference marks on the propeller shaft and yoke and install the propeller shaft.
- (8) Add gear lubricant to the differential housing, if necessary. Refer to the Lubricant Specifications for gear lubricant requirements.
- (9) Install the brake drums. Refer to Group 5, Brakes, for proper procedures.
 - (10) Install wheel and tire assemblies.
 - (11) Lower the vehicle.

COLLAPSIBLE SPACER

REMOVAL W/PINION INSTALLED

- (1) Raise and support the vehicle.
- (2) Remove wheel and tire assemblies.

- (3) Remove rear brake drums. Refer to Group 5, Brakes, for proper procedures.
- (4) Mark the propeller shaft and pinion yoke for installation reference.
 - (5) Remove the propeller shaft from the yoke.
 - (6) Rotate the pinion gear three or four times.
- (7) Measure the amount of torque necessary to rotate the pinion gear with a (in. lbs.) dial-type torque wrench. Record the torque reading for installation reference.
- (8) Using Holder 6958 to hold the pinion yoke, remove the pinion nut and washer.
- (9) Use Remover C-452 and Wrench C-3281 to remove the pinion yoke (Fig. 12).
- (10) Use a suitable pry tool or a slide hammer mounted screw to remove the pinion shaft seal.
- (11) Remove the front pinion bearing using a pair of suitable pick tools to pull the bearing straight off the pinion gear shaft. It may be necessary to lightly tap the end of the pinion gear with a rawhide or rubber mallet if the bearing becomes bound on the pinion shaft.
 - (12) Remove the collapsible spacer.

Fig. 12 Pinion Yoke Removal

REMOVAL W/PINION REMOVED

- (1) Raise and support the vehicle.
- (2) Remove wheel and tire assemblies.
- (3) Remove rear brake drums. Refer to Group 5, Brakes, for proper procedures.
- (4) Mark the propeller shaft and pinion yoke for installation reference.
 - (5) Remove the propeller shaft from the yoke.
 - (6) Rotate the pinion gear three or four times.
- (7) Measure the amount of torque necessary to rotate the pinion gear with a (in. lbs.) dial-type torque wrench. Record the torque reading for installation reference.
- (8) Remove differential assembly from axle housing.

- (9) Using Holder 6958 to hold yoke, remove the pinion yoke nut and washer.
- (10) Using Remover C-452 and Wrench C-3281, remove the pinion yoke from pinion shaft (Fig. 12).
- (11) Remove the pinion gear from housing (Fig. 13). Catch the pinion with your hand to prevent it from falling and being damaged.
 - (12) Remove collapsible spacer from pinion shaft.

Fig. 13 Remove Pinion Gear

INSTALLATION

- (1) Install a new collapsible preload spacer on pinion shaft (Fig. 14).
- (2) If pinion gear was removed, install pinion gear in housing.
 - (3) Install pinion front bearing, if necessary.
- (4) Apply a light coating of gear lubricant on the lip of pinion seal. Install seal with Installer C-3972-A and Handle C-4171 (Fig. 15).
- (5) Install yoke with Screw 8112, Cup 8109, and Holder 6958 (Fig. 16).
- (6) If the original pinion bearings are being used, install differential assembly and axle shafts, if necessary.

NOTE: If new pinion bearings were installed, do not install the differential assembly and axle shafts until after the pinion bearing preload and rotating torque are set.

- (7) Install the yoke washer and a new nut on the pinion gear. Tighten the pinion nut until there is zero bearing end-play.
 - (8) Tighten the nut to 271 N·m (200 ft. lbs.).

Fig. 14 Collapsible Preload Spacer

Fig. 15 Pinion Seal Installation

CAUTION: Never loosen pinion gear decrease pinion gear bearing rotating torque and never exceed specified preload torque. If preload torque or rotating torque is exceeded a new collapsible spacer must be installed. The torque sequence will then have to be repeated.

(9) Using yoke holder 6958 and a torque wrench set at 474 N·m (350 ft. lbs.), crush collapsible spacer until bearing end play is taken up (Fig. 17).

NOTE: If more than 474 N·m (350 ft. lbs.) of torque is necessary to remove the bearing end play, the collapsible spacer is defective and must be replaced.

Fig. 16 Pinion Yoke Installation

(10) Slowly tighten the nut in 6.8 N·m (5 ft. lbs.) increments until the rotating torque is achieved. Measure the rotating torque frequently to avoid over crushing the collapsible spacer (Fig. 18).

Fig. 17 Tightening Pinion Nut-Typical

- (11) Check rotating torque with a (in. lbs.) torque wrench (Fig. 18). The torque necessary to rotate the pinion gear should be:
- \bullet Original Bearings The reading recorded during removal, plus an additional 0.56 N·m (5 in. lbs.).
 - New Bearings -2 to 5 N·m (15 to 35 in. lbs.).
- (12) Install differential assembly and axle shafts, if necessary.
- (13) Align marks made previously on yoke and propeller shaft and install propeller shaft.
- (14) Install rear brake drums. Refer to Group 5, Brakes, for proper procedures.
- (15) Add gear lubricant, if necessary. Refer to Lubricant Specifications of this section for lubricant requirements.
 - (16) Install wheel and tire assemblies.
 - (17) Lower vehicle.

Fig. 18 Check Pinion Gear Rotation Torque
AXLE SHAFT

REMOVAL

- (1) Raise and support vehicle. Ensure that the transmission is in neutral.
 - (2) Remove wheel and tire assembly.
- (3) Remove brake drum. Refer to Group 5, Brakes, for proper procedure.
- (4) Clean all foreign material from housing cover area.
- (5) Loosen housing cover bolts. Drain lubricant from the housing and axle shaft tubes. Remove housing cover.
- (6) Rotate differential case so that pinion mate gear shaft lock screw is accessible. Remove lock screw and pinion mate gear shaft from differential case (Fig. 19).
- (7) Push axle shaft inward and remove axle shaft C-clip lock from the axle shaft (Fig. 20).
- (8) Remove axle shaft. Use care to prevent damage to axle shaft bearing and seal, which will remain in axle shaft tube. Also, exercise care not to damage the wheel speed sensor on vehicles equipped with ABS brakes.
 - (9) Inspect axle shaft seal for leakage or damage.
- (10) Inspect roller bearing contact surface on axle shaft for signs of brinelling, galling and pitting. If any of these conditions exist, the axle shaft and/or bearing and seal must be replaced.

Fig. 19 Mate Shaft Lock Screw

Fig. 20 Axle Shaft C-Clip Lock

INSTALLATION

(1) Lubricate bearing bore and seal lip with gear lubricant. Insert axle shaft through seal, bearing, and engage it into side gear splines.

NOTE: Use care to prevent shaft splines from damaging axle shaft seal lip. Also, exercise care not to damage the wheel speed sensor on vehicles equipped with ABS brakes

- (2) Insert C-clip lock in end of axle shaft. Push axle shaft outward to seat C-clip lock in side gear.
- (3) Insert pinion mate shaft into differential case and through thrust washers and pinion gears.
- (4) Align hole in shaft with hole in the differential case and install lock screw with Loctite $^{\circledR}$ on the threads. Tighten lock screw to 19 N·m (14 ft. lbs.) torque.
- (5) Install cover and add fluid. Refer to Lubricant Change procedure in this section for procedure and lubricant requirements.

- (6) Install brake drum. Refer to Group 5, Brakes, for proper procedures.
 - (7) Install wheel and tire.
 - (8) Lower vehicle.

AXLE SHAFT SEAL AND BEARING

REMOVAL

- (1) Remove the axle shaft.
- (2) Remove the axle shaft seal from the end of the axle shaft tube with a small pry bar.

NOTE: The seal and bearing can be removed at the same time with the bearing removal tool.

(3) Remove the axle shaft bearing from the axle tube with Bearing Removal Tool Set 6310 using Adapter Foot 6310-5 (Fig. 21).

Fig. 21 Axle Shaft Bearing Removal

(4) Inspect the axle shaft tube bore for roughness and burrs. Remove as necessary.

INSTALLATION

Do not install the original axle shaft seal. Always install a new seal.

- (1) Wipe the axle shaft tube bore clean.
- (2) Install axle shaft bearing with Installer 6436 and Handle C-4171. Ensure that the part number on the bearing is against the installer.
- (3) Install the new axle shaft seal with Installer 6437 and Handle C-4171 (Fig. 22).
 - (4) Install the axle shaft.

Fig. 22 Axle Shaft Seal Installation

DIFFERENTIAL

REMOVAL

- (1) Raise and support vehicle.
- (2) Remove the lubricant fill hole plug from the differential housing cover.
- (3) Remove the differential housing cover and allow fluid to drain.
 - (4) Remove axle shafts.
- (5) Note the installation reference letters stamped on the bearing caps and housing machined sealing surface (Fig. 23).

Fig. 23 Bearing Cap Identification

- (6) Loosen the differential bearing cap bolts.
- (7) Position Spreader W-129-B, utilizing some items from Adapter set 6987, with the tool dowel pins seated in the locating holes (Fig. 24). Install the hold-down clamps and tighten the tool turnbuckle finger-tight.
- (8) Install a Pilot Stud C-3288-B at the left side of the differential housing. Attach Dial Indicator C-3339 to pilot stud. Load the indicator plunger against the

Fig. 24 Install Axle Housing Spreader

opposite side of the housing (Fig. 25) and zero the indicator.

CAUTION: Do not spread over 0.38 mm (0.015 in). If the housing is over-spread, it could be distorted or damaged.

(9) Spread the housing enough to remove the differential case from the housing. Measure the distance with the dial indicator (Fig. 26).

Fig. 25 Install Dial Indicator

- (10) Remove the dial indicator.
- (11) While holding the differential case in position, remove the differential bearing cap bolts and caps.

Fig. 26 Spread Axle Housing

(12) Remove the differential from the housing. Ensure that the differential bearing cups remain in position on the differential bearings (Fig. 27).

Fig. 27 Differential Case Removal

- (13) Mark or tag the differential bearing cups to indicate which side of the differential they were removed from.
- (14) Retrieve differential case preload shims from axle housing. Mark or tag the differential case preload shims to indicate which side of the differential they were removed from.
 - (15) Remove spreader from housing.

INSTALLATION

If replacement differential bearings or differential case are being installed, differential side bearing shim requirements may change. Refer to the Differential Bearing Preload and Gear Backlash procedures in this section to determine the proper shim selection.

(1) Position Spreader W-129-B, utilizing some items from Adapter set 6987, with the tool dowel pins seated in the locating holes (Fig. 28). Install the hold-down clamps and tighten the tool turnbuckle finger-tight.

Fig. 28 Install Axle Housing Spreader

(2) Install a Pilot Stud C-3288-B at the left side of the differential housing. Attach Dial Indicator C-3339 to pilot stud. Load the indicator plunger against the opposite side of the housing (Fig. 25) and zero the indicator.

CAUTION: Do not spread over 0.38 mm (0.015 in). If the housing is over-spread, it could be distorted or damaged.

- (3) Spread the housing enough to install the case in the housing. Measure the distance with the dial indicator (Fig. 26).
 - (4) Remove the dial indicator.
- (5) Install differential case in the housing. Ensure that the differential bearing cups remain in position on the differential bearings and that the preload shims remain between the face of the bearing cup and the housing. Tap the differential case to ensure the bearings cups and shims are fully seated in the housing.
- (6) Install the bearing caps at their original locations (Fig. 29).
 - (7) Loosely install differential bearing cap bolts.

Fig. 29 Differential Bearing Cap Reference Letters

- (8) Remove axle housing spreader.
- (9) Tighten the bearing cap bolts to 77 N·m (57 ft. lbs.) torque.
 - (10) Install the axle shafts.

DIFFERENTIAL SIDE BEARINGS

REMOVAL

- (1) Remove differential from axle housing.
- (2) Remove the bearings from the differential case with Puller/Press C-293-PA, C-293-39 Blocks, and Plug SP-3289 (Fig. 30).

INSTALLATION

- (1) Using tool C-3716-A with handle C-4171, install differential side bearings (Fig. 31).
 - (2) Install differential in axle housing.

RING GEAR

The ring and pinion gears are service in a matched set. Do not replace the ring gear without replacing the pinion gear.

REMOVAL

- (1) Remove differential from axle housing.
- (2) Place differential case in a suitable vise with soft metal jaw protectors. (Fig. 26)
- (3) Remove bolts holding ring gear to differential case.
- (4) Using a soft hammer, drive ring gear from differential case (Fig. 26).

INSTALLATION

CAUTION: Do not reuse the bolts that held the ring gear to the differential case. The bolts can fracture causing extensive damage.

Fig. 30 Differential Bearing Removal

Fig. 31 Install Differential Side Bearings

- (1) Invert the differential case and start two ring gear bolts. This will provide case-to-ring gear bolt hole alignment.
 - (2) Invert the differential case in the vise.

Fig. 32 Ring Gear Removal

- (3) Install new ring gear bolts and alternately tighten to $95-122~N\cdot m$ (70-90 ft. lbs.) torque (Fig. 27).
- (4) Install differential in axle housing and verify gear mesh and contact pattern.

Fig. 33 Ring Gear Bolt Installation

PINION GEAR

The ring and pinion gears are serviced in a matched set. Do not replace the pinion gear without replacing the ring gear.

REMOVAL

- (1) Remove differential from the axle housing.
- (2) Mark pinion yoke and propeller shaft for installation alignment.
- (3) Disconnect propeller shaft from pinion yoke. Using suitable wire, tie propeller shaft to underbody.

- (4) Using Holder 6958 to hold yoke, remove the pinion yoke nut and washer.
- (5) Using Remover C-452 and Wrench C-3281, remove the pinion yoke from pinion shaft (Fig. 34).

Fig. 34 Pinion Yoke Removal

(6) Remove the pinion gear from housing (Fig. 35). Catch the pinion with your hand to prevent it from falling and being damaged.

Fig. 35 Remove Pinion Gear

- (7) Use a suitable pry tool or a slide hammer mounted screw to remove the pinion shaft seal.
- (8) Remove oil slinger, if equipped, and front pinion bearing.
- (9) Remove the front pinion bearing cup with Remover C-4345 and Handle C-4171 (Fig. 36).
- (10) Remove the rear bearing cup from housing (Fig. 37). Use Remover D-149 and Handle C-4171.

Fig. 36 Front Bearing Cup Removal

Fig. 37 Rear Bearing Cup Removal

- (11) Remove the collapsible preload spacer (Fig. 38).
- (12) Remove the rear bearing from the pinion with Puller/Press C-293-PA and Adapters C-293-40 (Fig. 39).

Place 4 adapter blocks so they do not damage the bearing cage.

(13) Remove the depth shims from the pinion gear shaft. Record the thickness of the depth shims.

Fig. 38 Collapsible Spacer

Fig. 39 Rear Bearing Removal

INSTALLATION

- (1) Apply Mopar® Door Ease, or equivalent, stick lubricant to outside surface of bearing cup.
- (2) Install the pinion rear bearing cup with Installer D-146 and Driver Handle C-4171 (Fig. 40). Ensure cup is correctly seated.
- (3) Apply Mopar® Door Ease, or equivalent, stick lubricant to outside surface of bearing cup.

Fig. 40 Pinion Rear Bearing Cup Installation

(4) Install the pinion front bearing cup with Installer D-130 and Handle C-4171 (Fig. 41).

Fig. 41 Pinion Front Bearing Cup Installation

- (5) Install pinion front bearing, and oil slinger, if equipped.
- (6) Apply a light coating of gear lubricant on the lip of pinion seal. Install seal with Installer C-3972-A and Handle C-4171 (Fig. 42).

NOTE: Pinion depth shims are placed between the rear pinion bearing cone and pinion gear to achieve proper ring and pinion gear mesh. If the factory installed ring and pinion gears are reused, the pinion depth shim should not require replacement. If required, refer to Pinion Gear Depth to select the

Fig. 42 Pinion Seal Installation

proper thickness shim before installing rear pinion bearing.

- (7) Place the proper thickness depth shim on the pinion gear.
- (8) Install the rear bearing and slinger, if equipped, on the pinion gear with Installer W-262 (Fig. 43).

Fig. 43 Shaft Rear Bearing Installation

- (9) Install a new collapsible preload spacer on pinion shaft and install pinion gear in housing (Fig. 44).
 - (10) Install pinion gear in housing.
- (11) Install yoke with Installer Screw 8112, Cup 8109, and holder 6958 (Fig. 45).

Fig. 44 Collapsible Preload Spacer

Fig. 45 Pinion Yoke Installation

- (12) Install the yoke washer and a new nut on the pinion gear and tighten the pinion nut until there is zero bearing end-play.
 - (13) Tighten the nut to 271 N·m (200 ft. lbs.).

CAUTION: Never loosen pinion gear nut to decrease pinion gear bearing rotating torque and never exceed specified preload torque. If preload torque or rotating torque is exceeded a new collapsible spacer must be installed. The torque sequence will then have to be repeated.

(14) Using yoke holder 6958 and a torque wrench set at 474 N·m (350 ft. lbs.), crush collapsible spacer until bearing end play is taken up (Fig. 46).

NOTE: If the spacer requires more than 474 N-m (350 ft. lbs.) torque to crush, the collapsible spacer is defective and must be replaced.

(15) Slowly tighten the nut in $6.8~\mathrm{N\cdot m}$ (5 ft. lbs.) increments until the rotating torque is achieved. Measure the rotating torque frequently to avoid over crushing the collapsible spacer (Fig. 47).

Fig. 46 Tightening Pinion Nut-Typical

- (16) Check bearing rotating torque with a (in. lbs.) torque wrench (Fig. 47). The torque necessary to rotate the pinion gear should be:
- \bullet Original Bearings 1 to 3 N·m (10 to 20 in. lbs.).
 - New Bearings -2 to 5 N·m (15 to 35 in. lbs.).

Fig. 47 Check Pinion Gear Rotating Torque

(17) Install differential in housing.

FINAL ASSEMBLY

(1) Scrape the residual sealant from the housing and cover mating surfaces. Clean the mating surfaces with mineral spirits. Apply a bead of Mopar® Silicone Rubber Sealant, or equivalent, on the housing cover (Fig. 43).

Fig. 48 Typical Housing Cover With Sealant

Install the housing cover within 5 minutes after applying the sealant.

(2) Install the cover on the differential with the attaching bolts. Install the identification tag. Tighten the cover bolts to $41~\mathrm{N}\cdot\mathrm{m}$ (30 ft. lbs.) torque.

CAUTION: Overfilling the differential can result in lubricant foaming and overheating.

- (3) Refill the differential housing with gear lubricant. Refer to the Lubricant Specifications section of this group for the gear lubricant requirements.
 - (4) Install the fill hole plug.

DISASSEMBLY AND ASSEMBLY

STANDARD DIFFERENTIAL

DISASSEMBLY

- (1) Remove pinion gear mate shaft lock screw (Fig. 49).
 - (2) Remove pinion gear mate shaft.
- (3) Rotate the differential side gears and remove the pinion mate gears and thrust washers (Fig. 50).
- (4) Remove the differential side gears and thrust washers.

Fig. 49 Pinion Gear Mate Shaft Lock Screw

Fig. 50 Pinion Mate Gear Removal

ASSEMBLY

- (1) Install the differential side gears and thrust washers.
- (2) Install the pinion mate gears and thrust washers.
 - (3) Install the pinion gear mate shaft.
- (4) Align the hole in the pinion gear mate shaft with the hole in the differential case and install the pinion gear mate shaft lock screw.
- (5) Lubricate all differential components with hypoid gear lubricant.

Fig. 51 Trac-lok Differential Components

TRAC-LOK DIFFERENTIAL

The Trac-lok differential components are illustrated in (Fig. 51). Refer to this illustration during repair service.

DISASSEMBLY

- (1) Clamp Side Gear Holding Tool 6965 in a vise.
- (2) Position the differential case on Side Gear Holding Tool 6965 (Fig. 52).
- (3) Remove ring gear, if necessary. Ring gear removal is necessary only if the ring gear is to be replaced. The Trac-lok differential can be serviced with the ring gear installed.

Fig. 52 Differential Case Holding Tool

(4) Remove the pinion gear mate shaft lock screw (Fig. 53).

Fig. 53 Mate Shaft Lock Screw

(5) Remove the pinion gear mate shaft. If necessary, use a drift and hammer (Fig. 54).

Fig. 54 Mate Shaft Removal

80a773e1

- (6) Install and lubricate Step Plate C-6960-3 (Fig. 55).
- (7) Assemble Threaded Adapter C-6960-1 into top side gear. Thread Forcing Screw C-6960-4 into adapter until it becomes centered in adapter plate.
- (8) Position a small screw driver in slot of Threaded Adapter C-6960-1 (Fig. 56) to prevent adapter from turning.

Fig. 55 Step Plate Tool Installation

Fig. 56 Threaded Adapter Installation

(9) Tighten forcing screw tool 122 N·m (90 ft. lbs.) maximum to compress Belleville springs in clutch packs (Fig. 57).

Fig. 57 Tighten Belleville Spring Compressor Tool

(10) Using an appropriate size feeler gauge, remove thrust washers from behind the pinion gears (Fig. 58).

Fig. 58 Remove Pinion Gear Thrust Washer

- (11) Insert Turning Bar C-6960-2 in case (Fig. 59).
- (12) Loosen the Forcing Screw C-6960-4 in small increments until the clutch pack tension is relieved and the differential case can be turned using Turning Bar C-6960-2.
- (13) Rotate differential case until the pinion gears can be removed.
 - (14) Remove pinion gears from differential case.

Fig. 59 Pinion Gear Removal

- (15) Remove Forcing Screw C-6960-4, Step Plate C-6960-3, and Threaded Adapter C-6960-1.
- (16) Remove top side gear, clutch pack retainer, and clutch pack. Keep plates in correct order during removal (Fig. 60).

80a98382

Fig. 60 Side Gear & Clutch Disc Removal

(17) Remove differential case from Side Gear Holding Tool 6965. Remove side gear, clutch pack retainer, and clutch pack. Keep plates in correct order during removal.

ASSEMBLY

NOTE: The clutch discs are replaceable as complete sets only. If one clutch disc pack is damaged, both packs must be replaced.

Lubricate each component with gear lubricant before assembly.

(1) Assemble the clutch discs into packs and secure disc packs with retaining clips (Fig. 61).

Fig. 61 Clutch Disc Pack

- (2) Position assembled clutch disc packs on the side gear hubs.
- (3) Install clutch pack and side gear in the ring gear side of the differential case (Fig. 62). **Be sure clutch pack retaining clips remain in position and are seated in the case pockets.**

Fig. 62 Clutch Discs & Lower Side Gear Installation

- (4) Position the differential case on Side Gear Holding Tool 6965.
- (5) Install lubricated Step Plate C-6960-3 in lower side gear (Fig. 63).

Fig. 63 Upper Side Gear & Clutch Disc Pack Installation

- (6) Install the upper side gear and clutch disc pack (Fig. 63).
- (7) Hold assembly in position. Insert Threaded Adapter C-6960-1 into top side gear.
 - (8) Insert Forcing Screw C-6960-4.
- (9) Tighten forcing screw tool to slightly compress clutch discs.
- (10) Place pinion gears in position in side gears and verify that the pinion mate shaft hole is aligned.
- (11) Rotate case with Turning Bar C-6960-2 until the pinion mate shaft holes in pinion gears align with holes in case. It may be necessary to slightly tighten the forcing screw in order to install the pinion gears.
- (12) Tighten forcing screw to 122 N·m (90 ft. lbs.) maximum to compress the Belleville springs.
- (13) Lubricate and install thrust washers behind pinion gears and align washers with a small screw driver. Insert mate shaft into each pinion gear to verify alignment.
- (14) Remove Forcing Screw C-6960-4, Step Plate C-6960-3, and Threaded Adapter C-6960-1.
- (15) Install pinion gear mate shaft and align holes in shaft and case.
- (16) Install the pinion mate shaft lock screw finger tight to hold shaft during differential installation.

If replacement gears and thrust washers were installed, it is not necessary to measure the

gear backlash. Correct fit is due to close machining tolerances during manufacture.

(17) Lubricate all differential components with hypoid gear lubricant.

CLEANING AND INSPECTION

AXLE COMPONENTS

Wash differential components with cleaning solvent and dry with compressed air. **Do not steam clean the differential components.**

Wash bearings with solvent and towel dry, or dry with compressed air. DO NOT spin bearings with compressed air. Cup and bearing must be replaced as matched sets only.

Clean axle shaft tubes and oil channels in housing. Inspect for;

- Smooth appearance with no broken/dented surfaces on the bearing rollers or the roller contact surfaces.
 - Bearing cups must not be distorted or cracked.
- Machined surfaces should be smooth and without any raised edges.
- Raised metal on shoulders of cup bores should be removed with a hand stone.
- Wear and damage to pinion gear mate shaft, pinion gears, side gears and thrust washers. Replace as a matched set only.
- Ring and pinion gear for worn and chipped teeth.
- Ring gear for damaged bolt threads. Replaced as a matched set only.
- Pinion yoke for cracks, worn splines, pitted areas, and a rough/corroded seal contact surface. Repair or replace as necessary.
- Preload shims for damage and distortion. Install new shims, if necessary.

TRAC-LOK

Clean all components in cleaning solvent. Dry components with compressed air. Inspect clutch pack plates for wear, scoring or damage. Replace both clutch packs if any one component in either pack is damaged. Inspect side and pinion gears. Replace any gear that is worn, cracked, chipped or damaged. Inspect differential case and pinion shaft. Replace if worn or damaged.

PRESOAK PLATES AND DISC

Plates and discs with fiber coating (no grooves or lines) must be presoaked in Friction Modifier before assembly. Soak plates and discs for a minimum of 20 minutes.

ADJUSTMENTS

PINION GEAR DEPTH

GENERAL INFORMATION

Ring and pinion gears are supplied as matched sets only. The identifying numbers for the ring and pinion gear are etched into the face of each gear (Fig. 64). A plus (+) number, minus (-) number or zero (0) is etched into the face of the pinion gear. This number is the amount (in thousandths of an inch) the depth varies from the standard depth setting of a pinion etched with a (0). The standard setting from the center line of the ring gear to the back face of the pinion is 96.850 mm (3.813 in.). The standard depth provides the best teeth contact pattern. Refer to Backlash and Contact Pattern Analysis Paragraph in this section for additional information.

Fig. 64 Pinion Gear ID Numbers

Compensation for pinion depth variance is achieved with select shims. The shims are placed under the inner pinion bearing cone (Fig. 65).

Fig. 65 Shim Locations

PINION GEAR DEPTH VARIANCE

Original Pinion	Replacement Pinion Gear Depth Variance									
Gear Depth Variance	-4	-3	-2	-1	0	+1	+2	+3	+4	
+4	+0.008	+0.007	+0.006	+0.005	+0.004	+0.003	+0.002	+0.001	0	
+3	+0.007	+0.006	+0.005	+0.004	+0.003	+0.002	+0.001	0	-0.001	
+2	+0.006	+0.005	+0.004	+0.003	+0.002	+0.001	0	-0.001	-0.002	
+1	+0.005	+0.004	+0.003	+0.002	+0.001	0	-0.001	-0.002	-0.003	
0	+0.004	+0.003	+0.002	+0.001	0	-0.001	-0.002	-0.003	-0.004	
-1	+0.003	+0.002	+0.001	0	-0.001	-0.002	-0.003	-0.004	-0.005	
-2	+0.002	+0.001	0	-0.001	-0.002	-0.003	-0.004	-0.005	-0.006	
-3	+0.001	0	-0.001	-0.002	-0.003	-0.004	-0.005	-0.006	-0.007	
-4	0	-0.001	-0.002	-0.003	-0.004	-0.005	-0.006	-0.007	-0.008	

If a new gear set is being installed, note the depth variance etched into both the original and replacement pinion gear. Add or subtract the thickness of the original depth shims to compensate for the difference in the depth variances. Refer to the Depth Variance charts.

Note where Old and New Pinion Marking columns intersect. Intersecting figure represents plus or minus amount needed.

Note the etched number on the face of the drive pinion gear (-1, -2, 0, +1, +2, etc.). The numbers represent thousands of an inch deviation from the standard. If the number is negative, add that value to the required thickness of the depth shim(s). If the number is positive, subtract that value from the thickness of the depth shim(s). If the number is 0 no change is necessary. Refer to the Pinion Gear Depth Variance Chart.

PINION DEPTH MEASUREMENT AND ADJUSTMENT

Measurements are taken with pinion cups and pinion bearings installed in housing. Take measurements with a Pinion Gauge Set, Pinion Block 6735, Arbor Discs 6732, and Dial Indicator C-3339 (Fig. 66).

- (1) Assemble Pinion Height Block 6739, Pinion Block 6735, and rear pinion bearing onto Screw 6741 (Fig. 66).
- (2) Insert assembled height gauge components, rear bearing and screw into axle housing through pinion bearing cups (Fig. 67).
- (3) Install front pinion bearing and Cone 6740 hand tight (Fig. 66).
- (4) Place Arbor Disc 6732 on Arbor D-115-3 in position in axle housing side bearing cradles (Fig. 68). Install differential bearing caps on Arbor Discs and

J9403-45

Fig. 66 Pinion Gear Depth Gauge Tools—Typical tighten cap bolts. Refer to the Torque Specifications in this section.

NOTE: Arbor Discs 6732 have different step diameters to fit other axle sizes. Pick correct size step for axle being serviced.

- (5) Assemble Dial Indicator C-3339 into Scooter Block D-115-2 and secure set screw.
- (6) Place Scooter Block/Dial Indicator in position in axle housing so dial probe and scooter block are flush against the surface of the pinion height block. Hold scooter block in place and zero the dial indicator face to the pointer. Tighten dial indicator face lock screw.

Fig. 67 Pinion Height Block—Typical

Fig. 68 Gauge Tools In Housing—Typical

- (7) With scooter block still in position against the pinion height block, slowly slide the dial indicator probe over the edge of the pinion height block. Observe how many revolutions counterclockwise the dial pointer travels (approximately 0.125 in.) to the out-stop of the dial indicator.
- (8) Slide the dial indicator probe across the gap between the pinion height block and the arbor bar with the scooter block against the pinion height block (Fig. 69). When the dial probe contacts the arbor bar, the dial pointer will turn clockwise. Bring dial pointer back to zero against the arbor bar, do not turn dial face. Continue moving the dial probe to the crest of the arbor bar and record the highest reading. If the dial indicator can not achieve the zero reading, the rear bearing cup or the pinion depth gauge set is not installed correctly.
- (9) Select a shim equal to the dial indicator reading plus the drive pinion gear depth variance number etched in the face of the pinion gear (Fig. 64) using the opposite sign on the variance number. For exam-

ple, if the depth variance is -2, add +0.002 in. to the dial indicator reading.

Fig. 69 Pinion Gear Depth Measurement—Typical

(10) Remove the pinion depth gauge components from the axle housing

DIFFERENTIAL BEARING PRELOAD AND GEAR BACKLASH

Differential side bearing preload and gear backlash is achieved by selective shims inserted between the bearing cup and the axle housing. The proper shim thickness can be determined using slip-fit dummy bearings D-348 in place of the differential side bearings and a dial indicator C-3339. Before proceeding with the differential bearing preload and gear backlash measurements, measure the pinion gear depth and prepare the pinion gear for installation. Establishing proper pinion gear depth is essential to establishing gear backlash and tooth contact patterns. After the overall shim thickness to take up differential side play is measured, the pinion gear is installed, and the gear backlash shim thickness is measured. The overall shim thickness is the total of the dial indicator reading, starting point shim thickness, and the preload specification added together. The gear backlash measurement determines the thickness of the shim used on the ring gear side of the differential case. Subtract the gear backlash shim thickness from the total overall shim thickness and select that amount for the pinion gear side of the differential (Fig. 70).

SHIM SELECTION

NOTE: It is difficult to salvage the differential side bearings during the removal procedure. Install replacement bearings if necessary.

(1) Remove side bearings from differential case.

Fig. 70 Axle Adjustment Shim Locations

- (2) Install ring gear, if necessary, on differential case and tighten bolts to specification.
- (3) Install dummy side bearings D-348 on differential case.
 - (4) Install differential case in axle housing.
- (5) Insert Dummy Shims 8107 (0.118 in. (3.0 mm)) starting point shims between the dummy bearing and the axle housing (Fig. 71).

Fig. 71 Insert Starting Point Shims

- (6) Install the marked bearing caps in their correct positions. Install and tighten the bolts.
- (7) Thread guide stud C-3288-B into rear cover bolt hole below ring gear (Fig. 72).
- (8) Attach dial indicator C-3339 to guide stud. Position the dial indicator plunger on a flat surface on a ring gear bolt head (Fig. 72).

Fig. 72 Differential Side play Measurement

- (9) Push firmly and hold differential case to pinion gear side of axle housing.
 - (10) Zero dial indicator face to pointer.
- (11) Push firmly and hold differential case to ring gear side of the axle housing.
 - (12) Record dial indicator reading.
- (13) Add the dial indicator reading to the starting point shim thickness to determine total shim thickness to achieve zero differential end play.
- (14) Add 0.008 in. (0.2 mm) to the zero end play total. This new total represents the thickness of shims to compress, or preload the new bearings when the differential is installed.
- (15) Rotate dial indicator out of the way on guide stud.
- (16) Remove differential case, dummy bearings, and starting point shims from axle housing.
- (17) Install pinion gear in axle housing. Install the yoke and establish the correct pinion rotating torque.
- (18) Install differential case and dummy bearings in axle housing (without shims) and tighten retaining cap bolts.
- (19) Position the dial indicator plunger on a flat surface between the ring gear bolt heads (Fig. 72).
- (20) Push and hold differential case toward pinion gear.
 - (21) Zero dial indicator face to pointer.
- (22) Push and hold differential case to ring gear side of the axle housing.
 - (23) Record dial indicator reading.
- (24) Subtract 0.002 in. (0.05 mm) from the dial indicator reading to compensate for backlash between

ring and pinion gears. This total is the thickness of shim required to achieve proper backlash.

- (25) Subtract the backlash shim thickness from the total preload shim thickness. The remainder is the shim thickness required on the pinion side of the axle housing.
- (26) Rotate dial indicator out of the way on guide stud.
- (27) Remove differential case and dummy bearings from axle housing.
- (28) Install new side bearing cones and cups on differential case.
- (29) Install spreader W-129-B, utilizing some components of Adapter Set 6987, on axle housing and spread axle opening enough to receive differential case.
- (30) Place side bearing shims in axle housing against axle tubes.
 - (31) Install differential case in axle housing.
- (32) Rotate the differential case several times to seat the side bearings.
- (33) Position the indicator plunger against a ring gear tooth (Fig. 73).
- (34) Push and hold ring gear upward while not allowing the pinion gear to rotate.
 - (35) Zero dial indicator face to pointer.
- (36) Push and hold ring gear downward while not allowing the pinion gear to rotate. Dial indicator reading should be between 0.12 mm (0.005 in.) and 0.20 mm (0.008 in.). If backlash is not within specifications transfer the necessary amount of shim thickness from one side of the differential housing to the other (Fig. 74).
- (37) Verify differential case and ring gear runout by measuring ring to pinion gear backlash at several locations around the ring gear. Readings should not vary more than 0.05 mm (0.002 in.). If readings vary more than specified, the ring gear or the differential case is defective.

After the proper backlash is achieved, perform the Gear Contact Pattern Analysis procedure.

GEAR CONTACT PATTERN ANALYSIS

The ring and pinion gear teeth contact patterns will show if the pinion gear depth is correct in the axle housing. It will also show if the ring gear backlash has been adjusted correctly. The backlash can be adjusted within specifications to achieve desired tooth contact patterns.

- (1) Apply a thin coat of hydrated ferric oxide, or equivalent, to the drive and coast side of the ring gear teeth.
- (2) Wrap, twist, and hold a shop towel around the pinion yoke to increase the turning resistance of the pinion gear. This will provide a more distinct contact pattern.

Fig. 73 Ring Gear Backlash Measurement

Fig. 74 Backlash Shim Adjustment

(3) Using a boxed end wrench on a ring gear bolt, Rotate the differential case one complete revolution in both directions while a load is being applied from shop towel.

The areas on the ring gear teeth with the greatest degree of contact against the pinion gear teeth will squeegee the compound to the areas with the least amount of contact. Note and compare patterns on the ring gear teeth to Gear Tooth Contact Patterns chart (Fig. 61) and adjust pinion depth and gear backlash as necessary.

DRIVE SIDE OF RING GEAR TEETH	COAST SIDE OF RING GEAR TEETH	
HEEL TOE	TOE	DESIRABLE CONTACT PATTERN. PATTERN SHOULD BE CENTERED ON THE DRIVE SIDE OF TOOTH. PATTERN SHOULD BE CENTERED ON THE COAST SIDE OF TOOTH, BUT MAY BE SLIGHTLY TOWARD THE TOE. THERE SHOULD ALWAYS BE SOME CLEARANCE BETWEEN CONTACT PATTERN AND TOP OF THE TOOTH.
		RING GEAR BACKLASH CORRECT. THINNER PINION GEAR DEPTH SHIM REQUIRED.
		RING GEAR BACKLASH CORRECT. THICKER PINION GEAR DEPTH SHIM REQUIRED.
		PINION GEAR DEPTH SHIM CORRECT. DECREASE RING GEAR BACKLASH.
		PINION GEAR DEPTH SHIM CORRECT. INCREASE RING GEAR BACKLASH.

SPECIFICATIONS

194 RBI AXLE

DESCRIPTION SPECIFICATIONAxle TypeSemi-Floating Hypoid
Lubricant SAE Thermally Stable 80W-90
Lubricant Trailer Tow Synthetic 75W-140
Lube Capacity 1.66 L (3.50 pts.)
Axle Ratios 3.07, 3.55, 3.73, 4.11
Differential Bearing Preload 0.1 mm (0.004 in.)
Differential Side Gear
Clearance 0–0.15 mm (0–0.006 in.)
Ring Gear Diameter 19.2 cm (7.562 in.)
Ring Gear Backlash 0–0.15 mm (0.005–0.008 in.)
Pinion Std. Depth 92.08 mm (3.625 in.)
Pinion Bearing Preload-Original
Bearings 1–2 N⋅m (10–20 in. lbs.)
Pinion Bearing Preload-New
Bearings 1.5–4 N·m (15–35 in. lbs.)
194 RBI AXLE

DESCRIPTION TORQUE
Bolt, Diff. Cover
Bolot, Bearing Cap 77 N·m (57 ft. lbs.)
Nut, Pinion 271–474 N·m (200–350 ft. lbs.)
Screw, Pinion Mate
Shaft Lock 16.25 N·m (12 ft. lbs.)
Bolt, Ring Gear 95–122 N⋅m (70–90 ft. lbs.)
Bolt, RWAL/ABS Sensor 8 N·m (70 in. lbs.)

SPECIAL TOOLS

194 RBI AXLE

Puller—C-293-PA

Adapter—C-293-39

Adapter—C-293-40

Plug—SP-3289

Puller—C-452

Wrench—C-3281

Installer—C-3972-A

Spanner—6958

Installer Screw—8112

Cup-8109

Handle—C-4171

Driver-C-3716-A

Installer—D-130

Installer—D-146

Remover—C-4345

Remover—D-149

Installer—W-262

Installer—6436

Installer—6437

Disc, Axle Arbor—6732

Gauge Block—6735

Tool Set, Pinion Depth-6774

Starting Point Shim—8107

Trac-lok Tool Set-6960

Spreader—W-129-B

Holder—6965

Adapter Kit—6987

Puller-7794-A

Guide Pin—C-3288-B

Bearing Remover Tool Set—6310

Hub Puller—6790

Dial Indicator—C-3339

8 1/4 REAR AXLE

INDEX

pa	ige		page
GENERAL INFORMATION		DIFFERENTIAL	. 95
8 1/4 AXLES	83	PINION GEAR	
AXLE IDENTIFICATION	83	PINION SEAL	. 93
LUBRICANT SPECIFICATIONS	83	REAR AXLE	. 91
DESCRIPTION AND OPERATION		RING GEAR	. 96
STANDARD DIFFERENTIAL	84	DISASSEMBLY AND ASSEMBLY	
TRAC-LOK OPERATION	85	STANDARD DIFFERENTIAL	100
DIAGNOSIS AND TESTING		TRAC-LOK DIFFERENTIAL	101
BEARING NOISE	86	CLEANING AND INSPECTION	
DRIVELINE SNAP	86	8 1/4 AXLES	104
GEAR NOISE		TRAC-LOK	105
GENERAL INFORMATION	85	ADJUSTMENTS	
LOW SPEED KNOCK	86	8 1/4 AXLE PINION GEAR DEPTH	105
TRAC-LOK DIFFERENTIAL NOISE	87	DIFFERENTIAL BEARING PRELOAD AND	
TRAC-LOK TEST	90	GEAR BACKLASH	107
VIBRATION	86	GEAR CONTACT PATTERN ANALYSIS	108
SERVICE PROCEDURES		SIDE GEAR CLEARANCE	108
LUBRICANT CHANGE	90	SPECIFICATIONS	
REMOVAL AND INSTALLATION		8 1/4 INCH AXLE	
AXLE SEAL AND BEARING	92	8 1/4 INCH AXLE	110
AXLE SHAFT		SPECIAL TOOLS	
DIFFERENTIAL SIDE BEARINGS	95	8 1/4 AXLES	111

GENERAL INFORMATION

8 1/4 AXLES

The 8 1/4 inch axle housings consist of a cast iron center section with axle shaft tubes extending from either side. The tubes are pressed into and welded to the differential housing to form a one-piece axle housing (Fig. 1).

The axles have a vent hose to relieve internal pressure caused by lubricant vaporization and internal expansion.

The axles are equipped with semi-floating axle shafts, meaning vehicle loads are supported by the axle shaft and bearings. The axle shafts are retained by C-clips in the differential side gears.

The removable, stamped steel cover provides a means for inspection and service without removing the complete axle from the vehicle.

The 8 1/4 axle have the assembly part number and gear ratio listed on tag. The tag is attached to the differential housing by a cover bolt.

The differential case is a one-piece design. The differential pinion mate shaft is retained with a threaded pin. Differential bearing preload and ring gear backlash are set and maintained by threaded adjusters at the outside of the differential housing.

Pinion bearing preload is set and maintained by the use of a collapsible spacer.

Axles equipped with a Trac-Lok differential are optional. A Trac-Lok differential has a one-piece differential case, and the same internal components as a standard differential, plus two clutch disc packs.

AXLE IDENTIFICATION

The axle differential cover can be used for identification of the axle (Fig. 2). A tag is also attached to the cover.

LUBRICANT SPECIFICATIONS

Multi-purpose, hypoid gear lubricant should be used for rear axles with a standard differential. The lubricant should have a MIL-L-2105C and API GL 5 quality specifications.

Trac-Lok differentials require the addition of 5 oz. of friction modifier to the axle lubricant after service. The 8 1/4 axle lubricant capacity is 2.27 L (4.8 pts.) total, including the friction modifier, if necessary.

NOTE: If the rear axle is submerged in water, the lubricant must be replaced immediately. Avoid the possibility of premature axle failure resulting from water contamination of the lubricant.

3 - 84

Fig. 1 8 1/4 Axle

Fig. 2 Differential Cover 8 1/4 Inch Axle

DESCRIPTION AND OPERATION

STANDARD DIFFERENTIAL

The differential gear system divides the torque between the axle shafts. It allows the axle shafts to rotate at different speeds when turning corners.

Each differential side gear is splined to an axle shaft. The pinion gears are mounted on a pinion mate shaft and are free to rotate on the shaft. The pinion gear is fitted in a bore in the differential case and is positioned at a right angle to the axle shafts.

In operation, power flow occurs as follows:

- The pinion gear rotates the ring gear.
- The ring gear (bolted to the differential case) rotates the case.
- The differential pinion gears (mounted on the pinion mate shaft in the case) rotate the side gears.
- The side gears (splined to the axle shafts) rotate the shafts.

During straight-ahead driving, the differential pinion gears do not rotate on the pinion mate shaft. This occurs because input torque applied to the gears is divided and distributed equally between the two side gears. As a result, the pinion gears revolve with the pinion mate shaft but do not rotate around it (Fig. 1).

DESCRIPTION AND OPERATION (Continued)

Fig. 3 Differential Operation—Straight Ahead Driving

When turning corners, the outside wheel must travel a greater distance than the inside wheel to complete a turn. The difference must be compensated for to prevent the tires from scuffing and skidding through turns. To accomplish this, the differential allows the axle shafts to turn at unequal speeds (Fig. 2). In this instance, the input torque applied to the pinion gears is not divided equally. The pinion gears now rotate around the pinion mate shaft in opposite directions. This allows the side gear and axle shaft attached to the outside wheel to rotate at a faster speed.

Fig. 4 Differential Operation—On Turns

TRAC-LOK OPERATION

In a conventional differential, if one wheel spins, the opposite wheel will generate only as much torque as the spinning wheel.

In the Trac-lok differential, part of the ring gear torque is transmitted through clutch packs which contain multiple discs. The clutches will have radial grooves on the plates, and concentric grooves on the discs or bonded fiber material that is smooth in appearance.

In operation, the Trac-lok clutches are engaged by two concurrent forces. The first being the preload force exerted through Belleville spring washers within the clutch packs. The second is the separating forces generated by the side gears as torque is applied through the ring gear (Fig. 4).

Fig. 5 Trac-lok Limited Slip Differential Operation

The Trac-lok design provides the differential action needed for turning corners and for driving straight ahead during periods of unequal traction. When one wheel looses traction, the clutch packs transfer additional torque to the wheel having the most traction. Trac-lok differentials resist wheel spin on bumpy roads and provide more pulling power when one wheel looses traction. Pulling power is provided continuously until both wheels loose traction. If both wheels slip due to unequal traction, Trac-lok operation is normal. In extreme cases of differences of traction, the wheel with the least traction may spin.

DIAGNOSIS AND TESTING

GENERAL INFORMATION

Axle bearing problem conditions are usually caused by:

- Insufficient or incorrect lubricant.
- Foreign matter/water contamination.

- Incorrect bearing preload torque adjustment.
- Incorrect backlash.

Axle gear problem conditions are usually the result of:

- Insufficient lubrication.
- Incorrect or contaminated lubricant.
- Overloading (excessive engine torque) or exceeding vehicle weight capacity.
 - Incorrect clearance or backlash adjustment.

Axle component breakage is most often the result of:

- Severe overloading.
- Insufficient lubricant.
- Incorrect lubricant.
- Improperly tightened components.

GEAR NOISE

Axle gear noise can be caused by insufficient lubricant, incorrect backlash, tooth contact, or worn/damaged gears.

Gear noise usually happens at a specific speed range. The range is 30 to 40 mph, or above 50 mph. The noise can also occur during a specific type of driving condition. These conditions are acceleration, deceleration, coast, or constant load.

When road testing, accelerate the vehicle to the speed range where the noise is the greatest. Shift out-of-gear and coast through the peak-noise range. If the noise stops or changes greatly:

- Check for insufficient lubricant.
- Incorrect ring gear backlash.
- Gear damage.

Differential side and pinion gears can be checked by turning the vehicle. They usually do not cause noise during straight-ahead driving when the gears are unloaded. The side gears are loaded during vehicle turns. A worn pinion gear mate shaft can also cause a snapping or a knocking noise.

BEARING NOISE

The axle shaft, differential and pinion gear bearings can all produce noise when worn or damaged. Bearing noise can be either a whining, or a growling sound.

Pinion gear bearings have a constant-pitch noise. This noise changes only with vehicle speed. Pinion bearing noise will be higher because it rotates at a faster rate. Drive the vehicle and load the differential. If bearing noise occurs, the rear pinion bearing is the source of the noise. If the bearing noise is heard during a coast, the front pinion bearing is the

Worn or damaged differential bearings usually produce a low pitch noise. Differential bearing noise is similar to pinion bearing noise. The pitch of differen-

tial bearing noise is also constant and varies only with vehicle speed.

Axle shaft bearings produce noise and vibration when worn or damaged. The noise generally changes when the bearings are loaded. Road test the vehicle. Turn the vehicle sharply to the left and to the right. This will load the bearings and change the noise level. Where axle bearing damage is slight, the noise is usually not noticeable at speeds above 30 mph.

LOW SPEED KNOCK

Low speed knock is generally caused by a worn U-joint or by worn side-gear thrust washers. A worn pinion gear shaft bore will also cause low speed knock.

VIBRATION

Vibration at the rear of the vehicle is usually caused by a:

- Damaged drive shaft.
- Missing drive shaft balance weight(s).
- Worn or out-of-balance wheels.
- · Loose wheel lug nuts.
- Worn U-joint(s).
- Loose/broken springs.
- Damaged axle shaft bearing(s).
- Loose pinion gear nut.
- Excessive pinion yoke run out.
- Bent axle shaft(s).

Check for loose or damaged front-end components or engine/transmission mounts. These components can contribute to what appears to be a rear-end vibration. Do not overlook engine accessories, brackets and drive belts.

All driveline components should be examined before starting any repair.

Refer to Group 22, Wheels and Tires, for additional vibration information.

DRIVELINE SNAP

A snap or clunk noise when the vehicle is shifted into gear (or the clutch engaged), can be caused by:

- High engine idle speed.
- Loose engine/transmission/transfer case mounts.
- Worn U-joints.
- Loose spring mounts.
- · Loose pinion gear nut and yoke.
- Excessive ring gear backlash.
- Excessive side gear/case clearance.

The source of a snap or a clunk noise can be determined with the assistance of a helper. Raise the vehicle on a hoist with the wheels free to rotate. Instruct the helper to shift the transmission into gear. Listen for the noise, a mechanics stethoscope is helpful in isolating the source of a noise.

TRAC-LOK DIFFERENTIAL NOISE

The most common problem is a chatter noise when turning corners. Before removing a Trac-lok unit for repair, drain, flush and refill the axle with the specified lubricant. Refer to Lubricant change in this Group.

A container of Mopar® Trac-lok Lubricant (friction modifier) should be added after repair service or during a lubricant change.

After changing the lubricant, drive the vehicle and make 10 to 12 slow, figure-eight turns. This maneuver will pump lubricant through the clutches. This will correct the condition in most instances. If the chatter persists, clutch damage could have occurred.

POSSIBLE CAUSES	CORRECTION		
Wheel loose. Faulty, brinelled wheel bearing.	Tighten loose nuts. Faulty or brinelled bearings must be replaced.		
Misaligned axle shaft tube.	Inspect axle shaft tube alignment. Correct as necessary.		
	Replace bent or sprung axle shaft.		
3. End play in drive pinion bearings.	Refer to Drive Pinion Bearing Pre-Load Adjustment.		
4. Excessive gear backlash between ring gear and pinion gear.	4. Check adjustment of ring gear backlash and pinion gear. Correct as necessary.		
5. Improper adjustment of drive pinion gear shaft bearings.	5. Adjust drive pinion shaft bearings.		
6. Loose drive pinion gearshaft yoke nut.	G. Tighten drive pinion gearshaft yoke nut with specified torque. Readjust as necessary.		
adjustment.			
8. Scuffed gear tooth contact surfaces.	8. If necessary, replace scuffed gears.		
Misaligned axle shaft tube.	Replace broken axle shaft after correcting axle shaft tube alignment.		
Vehicle overloaded. Fratic clutch operation	Replace broken axle shaft. Avoid excessive weight on vehicle. Replace broken axle shaft after		
3. Effalle Guleri operation.	inspecting for other possible casues. Avoid erratic use of clutch.		
4. Grabbing clutch.	4. Replace broken axle shaft. Inspect clutch and make necessary repairs or adjustments.		
Improper adjustment of differential bearings.	Replace cracked case; examine gears and bearings for possible damage. At reassembly, adjust		
2. Excessive ring gear backlash.	differential bearings properly. 2. Replace cracked case; examine		
	gears and bearings for possible damage. At reassembly, adjust ring		
3. Vehicle overloaded.	gear backlash properly. 3. Replace cracked case; examine		
	gears and bearings for possible damage. Avoid excessive weight on vehicle.		
4. Erratic clutch operation.	4. Replace cracked case. After inspecting for other possible causes,		
	examine gears and bearings for possible damage. Avoid erratic use of clutch.		
	 Wheel loose. Faulty, brinelled wheel bearing. Misaligned axle shaft tube. Bent or sprung axle shaft. End play in drive pinion bearings. Excessive gear backlash between ring gear and pinion gear. Improper adjustment of drive pinion gear shaft bearings. Loose drive pinion gearshaft yoke nut. Improper wheel bearing adjustment. Scuffed gear tooth contact surfaces. Misaligned axle shaft tube. Vehicle overloaded. Erratic clutch operation. Grabbing clutch. Improper adjustment of differential bearings. Excessive ring gear backlash. Vehicle overloaded. 		

CONDITION	POSSIBLE CAUSES	CORRECTION
DIFFERENTIAL GEARS SCORED	 Insufficient lubrication. Improper grade of lubricant. 	1. Replace scored gears. Scoring marks on the drive face of gear teeth or in the bore are caused by instantaneous fusing of the mating surfaces. Scored gears should be replaced. Fill rear differential housing to required capacity with proper lubricant. Refer to Specifications. 2. Replace scored gears. Inspect all gears and bearings for possible damage. Clean and refill differential housing to required capacity with
	3. Excessive spinning of one wheel/tire.	proper lubricant. 3. Replace scored gears. Inspect all gears, pinion bores and shaft for damage. Service as necessary.
LOSS OF LUBRICANT	1. Lubricant level too high.	Drain excess lubricant by removing fill plug and allow lubricant to level at lower edge of fill plug hole.
LOSS OF LUBRICANT	 Worn axle shaft seals. Cracked differential housing. 	Replace worn seals. 3. Repair or replace housing as necessary.
	4. Worn drive pinion gear shaft seal.	4. Replace worn drive pinion gear shaft seal.
	5. Scored and worn yoke.	5. Replace worn or scored yoke and seal.
	6. Axle cover not properly sealed.	Remove cover and clean flange and reseal.
AXLE OVERHEATING	Lubricant level too low. Incorrect grade of lubricant.	Refill differential housing. Drain, flush and refill with correct amount of the correct lubricant.
	3. Bearings adjusted too tight.4. Excessive gear wear.	3. Readjust bearings.4. Inspect gears for excessive wear
	5. Insufficient ring gear backlash.	or scoring. Replace as necessary. 5. Readjust ring gear backlash and inspect gears for possible scoring.
GEAR TEETH BROKE (RING GEAR AND PINION)	1. Overloading.	Replace gears. Examine other gears and bearings for possible damage.
	2. Erratic clutch operation.	Replace gears and examine the remaining parts for possible damage. Avoid erratic clutch operation.
	3. Ice-spotted pavements.	3. Replace gears. Examine the remaining parts for possible damage. Replace parts as required.
	4. Improper adjustments.	Replace gears. Examine other parts for possible damage. Ensure ring gear backlash is correct.

CONDITION	POSSIBLE CAUSES	CORRECTION
AXLE NOISE	1. Insufficient lubricant.	Refill axle with correct amount of proper lubricant. Also inspect for leaks and correct as necessary.
	2. Improper ring gear and drive	2. Check ring gear and pinion gear
	pinion gear adjustment.	teeth contact pattern.
	3. Unmatched ring gear and drive pinion gear.	3. Remove unmatched ring gear and drive pinion gear. Replace with matched gear and drive pinion gear set.
	4. Worn teeth on ring gear or drive pinion gear.	4. Check teeth on ring gear and drive pinion gear for correct contact. If necessary, replace with new matched set.
	5. Loose drive pinion gear shaft	5. Adjust drive pinion gearshaft
	bearings.	bearing preload torque.
	6. Loose differential bearings.	6. Adjust differential bearing preload torque.
	7. Misaligned or sprung ring gear.	7. Measure ring gear runout.
	8. Loose differential bearing cap bolts.	8. Tighten with specified torque.

TRAC-LOK TEST

WARNING: WHEN SERVICING VEHICLES WITH A TRAC-LOK DIFFERENTIAL DO NOT USE THE ENGINE TO TURN THE AXLE AND WHEELS. BOTH REAR WHEELS MUST BE RAISED AND THE VEHI-CLE SUPPORTED. A TRAC-LOK AXLE CAN EXERT ENOUGH FORCE IF ONE WHEEL IS IN CONTACT WITH A SURFACE TO CAUSE THE VEHICLE TO MOVE.

The differential can be tested without removing the differential case by measuring rotating torque. Make sure brakes are not dragging during this measurement.

- (1) Place blocks in front and rear of both front wheels.
- (2) Raise one rear wheel until it is completely off the ground.
- (3) Engine off, transmission in neutral, and parking brake off.
- (4) Remove wheel and bolt Special Tool 6790 to studs.
- (5) Use torque wrench on special tool to rotate wheel and read rotating torque (Fig. 5).
- (6) If rotating torque is less than 22 N·m (30 ft. lbs.) or more than 271 N·m (200 ft. lbs.) on either wheel the unit should be serviced.

Fig. 6 Trac-lok Test —Typical

SERVICE PROCEDURES

LUBRICANT CHANGE

- (1) Raise and support the vehicle.
- (2) Remove the lubricant fill hole plug from the differential housing cover.
- (3) Remove the differential housing cover and drain the lubricant from the housing.
- (4) Clean the housing cavity with a flushing oil, light engine oil, or lint free cloth. Do not use water, steam, kerosene, or gasoline for cleaning.
- (5) Remove the original sealant from the housing and cover surfaces.
- (6) Apply a bead of Mopar® Silicone Rubber Sealant, or equivalent, to the housing cover (Fig. 6).

SERVICE PROCEDURES (Continued)

Fig. 7 Apply Sealant

Install the housing cover within 5 minutes after applying the sealant.

- (7) Install the cover and any identification tag. Tighten the cover bolts to 41 N·m (30 ft. lbs.) torque.
- (8) For Trac-lok differentials, a quantity of Mopar® Trac-lok lubricant (friction modifier), or equivalent, must be added after repair service or a lubricant change. Refer to the Lubricant Specifications section of this group for the quantity necessary.
- (9) Fill differential with Mopar® Hypoid Gear Lubricant, or equivalent, to bottom of the fill plug hole. Refer to the Lubricant Specifications section of this group for the quantity necessary.

CAUTION: Overfilling the differential can result in lubricant foaming and overheating.

- (10) Install the fill hole plug and lower the vehicle.
- (11) Trac-lok differential equipped vehicles should be road tested by making 10 to 12 slow figure-eight turns. This maneuver will pump the lubricant through the clutch discs to eliminate a possible chatter noise complaint.

REMOVAL AND INSTALLATION

REAR AXLE

REMOVAL

- (1) Raise and support the vehicle.
- (2) Position a suitable lifting device under the axle.
 - (3) Secure axle to device.
 - (4) Remove the wheels and tires.
 - (5) Secure brake drums to the axle shaft.
- (6) Disconnect the brake hose at the axle junction block. Do not disconnect the brake hydraulic lines at the wheel cylinders. Refer to Group 5, Brakes, for proper procedures.

- (7) Disconnect the parking brake cables and cable brackets.
- (8) Disconnect the vent hose from the axle shaft tube.
- (9) Mark the propeller shaft and yoke for installation alignment reference.
 - (10) Remove propeller shaft.
 - (11) Disconnect shock absorbers from axle.
 - (12) Remove the stabilizer links.
- (13) Remove the spring clamps and spring brackets. Refer to Group 2, Suspension, for proper procedures.
 - (14) Separate the axle from the vehicle.

INSTALLATION

- (1) Raise the axle with lifting device and align to the leaf spring centering bolts.
- (2) Install the spring clamps and spring brackets. Refer to Group 2, Suspension, for proper procedures.
- (3) Install shock absorbers and tighten nuts to 60 N·m (44 ft. lbs.) torque.
- (4) Install the stabilizer links. Tighten sway bar links to 74 N·m (55 ft. lbs.).
- (5) Connect the parking brake cables and cable brackets.
- (6) Install the brake drums. Refer to Group 5, Brakes, for proper procedures.
- (7) Connect the brake hose to the axle junction block. Refer to Group 5, Brakes, for proper procedures.
 - (8) Install axle vent hose.
- (9) Align propeller shaft and pinion yoke reference marks. Install universal joint straps and bolts. Tighten to 19 N·m (14 ft. lbs.) torque.
 - (10) Install the wheels and tires.
- (11) Add gear lubricant, if necessary. Refer to Lubricant Specifications in this section for lubricant requirements.
- (12) Remove lifting device from axle and lower the vehicle.

AXLE SHAFT

REMOVAL

- (1) Raise and support vehicle. Ensure that the transmission is in neutral.
 - (2) Remove wheel and tire assembly.
- (3) Remove brake drum. Refer to Group 5, Brakes, for proper procedure.
- (4) Clean all foreign material from housing cover area.
- (5) Loosen housing cover bolts. Drain lubricant from the housing and axle shaft tubes. Remove housing cover.
- (6) Rotate differential case so that pinion mate gear shaft lock screw is accessible. Remove lock

screw and pinion mate gear shaft from differential case (Fig. 8).

Fig. 8 Mate Shaft Lock Screw

(7) Push axle shaft inward and remove axle shaft C-clip lock from the axle shaft (Fig. 9).

Fig. 9 Axle Shaft C-Clip Lock

- (8) Remove axle shaft. Use care to prevent damage to axle shaft bearing and seal, which will remain in axle shaft tube.
 - (9) Inspect axle shaft seal for leakage or damage.
- (10) Inspect roller bearing contact surface on axle shaft for signs of brinelling, galling and pitting. If any of these conditions exist, the axle shaft and/or bearing and seal must be replaced.

INSTALLATION

(1) Lubricate bearing bore and seal lip with gear lubricant. Insert axle shaft through seal, bearing, and engage it into side gear splines.

NOTE: Use care to prevent shaft splines from damaging axle shaft seal lip.

- (2) Insert C-clip lock in end of axle shaft. Push axle shaft outward to seat C-clip lock in side gear.
- (3) Insert pinion mate shaft into differential case and through thrust washers and pinion gears.
- (4) Align hole in shaft with hole in the differential case and install lock screw with Loctite $^{\text{@}}$ on the threads. Tighten lock screw to 11 N·m (8 ft. lbs.) torque.
- (5) Install cover and add fluid. Refer to Lubricant Change procedure in this section for procedure and lubricant requirements.
- (6) Install brake drum. Refer to Group 5, Brakes, for proper procedures.
 - (7) Install wheel and tire.
 - (8) Lower vehicle.

AXLE SEAL AND BEARING

REMOVAL

- (1) Remove axle shaft.
- (2) Remove axle shaft seal from the end of the axle tube with a small pry bar (Fig. 10).

NOTE: The seal and bearing can be removed at the same time with the bearing removal tool.

(3) Remove the axle shaft bearing from the axle tube with Bearing Removal Tool Set 6310, using Adapter Foot 6310-9 (Fig. 11).

Fig. 10 Axle Seal Removal

INSTALLATION

NOTE: Do not install the original axle shaft seal. Always install a new seal.

- (1) Wipe the axle tube bore clean. Remove any old sealer or burrs from the tube.
- (2) Install the axle shaft bearing with Installer C-4198 and Handle C-4171 (Fig. 12). Ensure that the bearing part number is against the installer. Verify

Fig. 11 Axle Shaft Bearing Removal Tool

that the bearing in installed straight and the tool fully contacts the axle tube when seating the bearing.

- (3) Install a new axle seal with Installer C-4076-B and Handle C-4735-1. When the tool contacts the axle tube, the seal is installed to the correct depth.
- (4) Coat the lip of the seal with axle lubricant for protection prior to installing the axle shaft.
 - (5) Install the axle shaft.

Fig. 12 Axle Shaft Seal and Bearing Installation
PINION SEAL

REMOVAL

- (1) Raise and support the vehicle.
- (2) Scribe a mark on the universal joint, pinion yoke, and pinion shaft for reference.

- (3) Disconnect the propeller shaft from the pinion yoke. Secure the propeller shaft in an upright position to prevent damage to the rear universal joint.
 - (4) Remove the wheel and tire assemblies.
- (5) Remove the brake drums to prevent any drag. The drag may cause a false bearing preload torque measurement.
 - (6) Rotate the pinion yoke three or four times.
- (7) Measure the amount of torque necessary to rotate the pinion gear with a (in. lbs.) dial-type torque wrench. Record the torque reading for installation reference.
- (8) Hold the yoke with Wrench 6719. Remove the pinion shaft nut and washer.
 - (9) Remove the yoke with Remover C-452 (Fig. 13).

Fig. 13 Yoke Removal

(10) Remove the pinion shaft seal with suitable pry tool or slide-hammer mounted screw.

INSTALLATION

- (1) Clean the seal contact surface in the housing bore.
- (2) Examine the splines on the pinion shaft for burrs or wear. Remove any burrs and clean the shaft.
- (3) Inspect pinion yoke for cracks, worn splines and worn seal contact surface. Replace yoke if necessary.

NOTE: The outer perimeter of the seal is pre-coated with a special sealant. An additional application of sealant is not required.

- (4) Apply a light coating of gear lubricant on the lip of pinion seal.
- (5) Install the new pinion shaft seal with Installer C-4076-B and Handle C-4735-1 (Fig. 14).

NOTE: The seal is correctly installed when the seal flange contacts the face of the differential housing flange.

Fig. 14 8 1/4 Axle Pinion Seal Installation

- (6) Position the pinion yoke on the end of the shaft with the reference marks aligned.
- (7) Seat yoke on pinion shaft with Installer C-3718 and Wrench 6719.
- (8) Remove the tools and install the pinion yoke washer. The convex side of the washer must face outward.

CAUTION: Do not exceed the minimum tightening torque when installing the pinion yoke retaining nut at this point. Damage to collapsible spacer or bearings may result.

- (9) Hold pinion yoke with Yoke Holder 6719 and tighten shaft nut to 285 N·m (210 ft. lbs.) (Fig. 15). Rotate pinion shaft several revolutions to ensure the bearing rollers are seated.
- (10) Rotate the pinion shaft using an (in. lbs.) torque wrench. Rotating torque should be equal to the reading recorded during removal, plus an additional 0.56 N·m (5 in. lbs.) (Fig. 16).

CAUTION: Never loosen pinion gear nut to decrease pinion gear bearing rotating torque and never exceed specified preload torque. If preload torque is exceeded a new collapsible spacer must be installed. The torque sequence will then have to be repeated.

(11) If the rotating torque is low, use Yoke Holder 6719 to hold the pinion yoke (Fig. 15) and tighten the pinion shaft nut in 6.8 N·m (5 ft. lbs.) increments until proper rotating torque is achieved.

NOTE: The bearing rotating torque should be constant during a complete revolution of the pinion. If the rotating torque varies, this indicates a binding condition.

Fig. 15 Tightening Pinion Shaft Nut

Fig. 16 Check Pinion Rotation Torque

- (12) The seal replacement is unacceptable if the final pinion nut torque is less than 285 N·m (210 ft. lbs.).
- (13) Install the propeller shaft with the installation reference marks aligned.
- (14) Tighten the universal joint yoke clamp screws to 19 N·m (14 ft. lbs.).
 - (15) Install the brake drums.

- (16) Install wheel and tire assemblies and lower the vehicle.
 - (17) Check the differential housing lubricant level.

DIFFERENTIAL

RFMOVAL

(1) Remove the axle shafts.

NOTE: Side play resulting from bearing races being loose on case hubs requires replacement of the differential case.

(2) Mark the differential housing and the differential bearing caps for installation reference (Fig. 17).

Fig. 17 Mark For Installation Reference

- (3) Remove bearing threaded adjuster lock from each bearing cap. Loosen the bolts, but do not remove the bearing caps.
- (4) Loosen the threaded adjusters with Wrench C-4164 (Fig. 18).

Fig. 18 Threaded Adjuster Tool

- (5) Hold the differential case while removing bearing caps and adjusters.
 - (6) Remove the differential case.

NOTE: Each differential bearing cup and threaded adjuster must be kept with their respective bearing.

INSTALLATION

- (1) Apply a coating of hypoid gear lubricant to the differential bearings, bearing cups, and threaded adjusters. A dab of grease can be used to keep the adjusters in position. Carefully position the assembled differential case in the housing.
- (2) Observe the reference marks and install the differential bearing caps at their original locations (Fig. 19).

Fig. 19 Bearing Caps & Bolts

- (3) Install bearing cap bolts and tighten the upper bolts to 14 N·m (10 ft. lbs.). Tighten the lower bolts finger-tight until the bolt head is seated.
- (4) Perform the differential bearing preload and adjustment procedure.
- (5) Install axle shafts and differential housing cover.

DIFFERENTIAL SIDE BEARINGS

REMOVAL

- (1) Remove differential case from axle housing.
- (2) Remove the bearings from the differential case with Puller/Press C-293-PA and Adapters C-293-48 and Plug SP-3289 (Fig. 20).

INSTALLATION

- (1) Install differential side bearings. Use Installer C-4340 with handle C-4171 (Fig. 21).
 - (2) Install differential case in axle housing.

Fig. 20 Differential Bearing Removal

Fig. 21 Install Differential Side Bearings

RING GEAR

The ring and pinion gears are serviced in a matched set. Do not replace the ring gear without replacing the pinion gear.

REMOVAL

- (1) Remove differential from axle housing.
- (2) Place differential case in a suitable vise with soft metal jaw protectors. (Fig. 22).
- (3) Remove bolts holding ring gear to differential case.
- (4) Using a soft hammer, drive ring gear from differential case (Fig. 22).

Fig. 22 Ring Gear Removal

INSTALLATION

CAUTION: Do not reuse the bolts that held the ring gear to the differential case. The bolts can fracture causing extensive damage.

- (1) Invert the differential case.
- (2) Position ring gear on the differential case and start two ring gear bolts. This will provide case-to-ring gear bolt hole alignment.
 - (3) Invert the differential case in the vise.
- (4) Install new ring gear bolts and alternately tighten to 102 N·m (75 ft. lbs.) torque (Fig. 23).
- (5) Install differential in axle housing and verify gear mesh and contact pattern.

PINION GEAR

The ring and pinion gears are serviced in a matched set. Do not replace the pinion gear without replacing the ring gear.

REMOVAL

- (1) Remove differential from the axle housing.
- (2) Mark pinion yoke and propeller shaft for installation alignment.

Fig. 23 Ring Gear Bolt Installation

- (3) Disconnect propeller shaft from pinion yoke. Using suitable wire, tie propeller shaft to underbody.
- (4) Using Yoke Holder 6719 to hold yoke and remove the pinion yoke nut and washer.
- (5) Using Remover C-452, remove the pinion yoke from pinion shaft (Fig. 24).

Fig. 24 Pinion Yoke Removal

- (6) Partially install pinion nut onto pinion to protect the threads.
- (7) Remove the pinion gear from housing (Fig. 25). Catch the pinion with your hand to prevent it from falling and being damaged.
- (8) Remove the pinion shaft seal with suitable pry tool or slide-hammer mounted screw.
- (9) Remove oil slinger, if equipped, and front pinion bearing.

Fig. 25 Remove Pinion Gear

(10) Remove the front pinion bearing cup with Remover C-4345 and Handle C-4171 (Fig. 26).

Fig. 26 Front Bearing Cup Removal

(11) Remove the rear bearing cup from housing (Fig. 27). Use Remover C-4307 and Handle C-4171.

Fig. 27 Rear Bearing Cup Removal

(12) Remove the collapsible preload spacer (Fig. 28).

Fig. 28 Collapsible Spacer

(13) Remove the rear bearing from the pinion (Fig. 29) with Puller/Press C-293-PA and Adapters C-293-47.

Place 4 adapter blocks so they do not damage the bearing cage.

Fig. 29 Rear Bearing Removal

(14) Remove the depth shims from the pinion gear shaft. Record the thickness of the depth shims.

INSTALLATION

- (1) Apply Mopar® Door Ease, or equivalent, stick lubricant to outside surface of bearing cup.
- (2) Install the pinion rear bearing cup (Fig. 30) with Installer C-4308 and Driver Handle C-4171.
 - (3) Ensure cup is correctly seated.

Fig. 30 Pinion Rear Bearing Cup Installation

- (4) Apply Mopar® Door Ease, or equivalent, stick lubricant to outside surface of bearing cup.
- (5) Install the pinion front bearing cup (Fig. 31) with Installer D-130 and Handle C-4171.

Fig. 31 Pinion Front Bearing Cup Installation

- (6) Install pinion front bearing, and oil slinger, if equipped.
- (7) Apply a light coating of gear lubricant on the lip of pinion seal. Install seal with Installer C-4076–B and Handle C-4735-1 (Fig. 32).

Fig. 32 Pinion Seal Installation

NOTE: Pinion depth shims are placed between the rear pinion bearing cone and pinion gear to achieve proper ring and pinion gear mesh. If the factory installed ring and pinion gears are reused, the pinion depth shim should not require replacement. If required, refer to Pinion Gear Depth to select the proper thickness shim before installing rear pinion bearing.

(8) Place the proper thickness depth shim on the pinion gear.

(9) Install the rear bearing and slinger, if equipped, on the pinion gear (Fig. 33) with Installer 6448.

Fig. 33 Shaft Rear Bearing Installation

- (10) Install a new collapsible preload spacer on pinion shaft and install pinion gear in housing (Fig. 34).
 - (11) Install pinion gear in housing.

Fig. 34 Collapsible Preload Spacer

(12) Install yoke with Installer C-3718 and Yoke Holder 6719.

- (13) Install the yoke washer and a new nut on the pinion gear and tighten the pinion nut until there is zero bearing end-play. It will not be possible at this point to achieve zero bearing end-play if a new collapsible spacer was installed.
 - (14) Tighten the nut to 285 N·m (210 ft. lbs.).

CAUTION: Never loosen pinion gear nut to decrease pinion gear bearing rotating torque and never exceed specified preload torque. If preload torque or rotating torque is exceeded a new collapsible spacer must be installed. The torque sequence will then have to be repeated.

- (15) Using Yoke Holder 6719, crush collapsible spacer until bearing end play is taken up.
- (16) Slowly tighten the nut in 6.8 N·m (5 ft. lbs.) increments until the desired rotating torque is achieved. Measure the rotating torque frequently to avoid over crushing the collapsible spacer (Fig. 35).
- (17) Check bearing rotating torque with an inch pound torque wrench (Fig. 35). The torque necessary to rotate the pinion gear should be:
- \bullet Original Bearings 1 to 3 N·m (10 to 20 in. lbs.).
 - New Bearings -2 to 5 N·m (15 to 35 in. lbs.).

Fig. 35 Check Pinion Gear Rotating Torque

- (18) Install propeller shaft.
- (19) Install differential in housing.

DISASSEMBLY AND ASSEMBLY

STANDARD DIFFERENTIAL

DISASSEMBLY

- (1) Remove pinion gear mate shaft lock screw (Fig. 49).
 - (2) Remove pinion gear mate shaft.
- (3) Rotate the differential side gears and remove the pinion mate gears and thrust washers (Fig. 50).

Fig. 36 Pinion Gear Mate Shaft Lock Screw

Fig. 37 Pinion Mate Gear Removal

(4) Remove the differential side gears and thrust washers.

Fig. 38 Trac-lok Differential Components

ASSEMBLY

- (1) Install the differential side gears and thrust washers.
- (2) Install the pinion mate gears and thrust washers.
 - (3) Install the pinion gear mate shaft.
- (4) Align the hole in the pinion gear mate shaft with the hole in the differential case and install the pinion gear mate shaft lock screw.
- (5) Lubricate all differential components with hypoid gear lubricant.

TRAC-LOK DIFFERENTIAL

The Trac-lok differential components are illustrated in (Fig. 38). Refer to this illustration during repair service.

DISASSEMBLY

- (1) Clamp Side Gear Holding Tool 8138 in a vise.
- (2) Position the differential case on Side Gear Holding Tool 8138 (Fig. 39).
- (3) Remove ring gear, if necessary. Ring gear removal is necessary only if the ring gear is to be replaced. The Trac-lok differential can be serviced with the ring gear installed.
- (4) Remove the pinion gear mate shaft lock screw (Fig. 40).
- (5) Remove the pinion gear mate shaft. If necessary, use a drift and hammer (Fig. 41).

Fig. 39 Differential Case Holding Tool

- (6) Install and lubricate Step Plate 8140–2 (Fig. 42).
- (7) Assemble Threaded Adapter 8140-1 into top side gear. Thread Forcing Screw 6960-4 into adapter until it becomes centered in adapter plate.

Fig. 40 Mate Shaft Lock Screw

80a773e1

Fig. 41 Mate Shaft Removal

- (8) Position a small screw driver in slot of Threaded Adapter 8140-1 (Fig. 43) to prevent adapter from turning.
- (9) Tighten forcing screw tool 122 N·m (90 ft. lbs.) maximum to compress Belleville springs in clutch packs (Fig. 44).
- (10) Using an appropriate size feeler gauge, remove thrust washers from behind the pinion gears (Fig. 45).
 - (11) Insert Turning Bar 6960-2 in case (Fig. 46).
- (12) Loosen the Forcing Screw 6960-4 in small increments until the clutch pack tension is relieved and the differential case can be turned using Turning Bar 6960-2.
- (13) Rotate differential case until the pinion gears can be removed.
 - (14) Remove pinion gears from differential case.
- (15) Remove Forcing Screw 6960-4, Step Plate 8140-2, and Threaded Adapter 8140-1.

Fig. 42 Step Plate Tool Installation

80a982ed

Fig. 43 Threaded Adapter Installation

- (16) Remove top side gear, clutch pack retainer, and clutch pack. Keep plates in correct order during removal (Fig. 47).
- (17) Remove differential case from Side Gear Holding Tool 8138. Remove side gear, clutch pack retainer, and clutch pack. Keep plates in correct order during removal.

Fig. 44 Tighten Belleville Spring Compressor Tool

Fig. 45 Remove Pinion Gear Thrust Washer
ASSEMBLY

NOTE: The clutch discs are replaceable as complete sets only. If one clutch disc pack is damaged, both packs must be replaced.

Lubricate each component with gear lubricant before assembly.

- (1) Assemble the clutch discs into packs and secure disc packs with retaining clips (Fig. 48).
- (2) Position assembled clutch disc packs on the side gear hubs.
- (3) Install clutch pack and side gear in the ring gear side of the differential case (Fig. 49). **Be sure clutch pack retaining clips remain in position and are seated in the case pockets.**

Fig. 46 Pinion Gear Removal

Fig. 47 Side Gear & Clutch Disc Removal

- (4) Position the differential case on Side Gear Holding Tool 8138.
- (5) Install lubricated Step Plate 8140–2 in lower side gear (Fig. 50).
- (6) Install the upper side gear and clutch disc pack (Fig. 50).
- (7) Hold assembly in position. Insert Threaded Adapter 8140-1 into top side gear.
 - (8) Insert Forcing Screw 6960-4.
- (9) Tighten forcing screw tool to slightly compress clutch discs.
- (10) Place pinion gears in position in side gears and verify that the pinion mate shaft holes are aligned.
- (11) Rotate case with Turning Bar 6960-2 until the pinion mate shaft holes in pinion gears align with

Fig. 48 Clutch Disc Pack

Fig. 49 Clutch Discs & Lower Side Gear Installation

holes in case. It may be necessary to slightly tighten the forcing screw in order to install the pinion gears.

- (12) Tighten forcing screw to 122 N·m (90 ft. lbs.) maximum to compress the Belleville springs.
- (13) Lubricate and install thrust washers behind pinion gears and align washers with a small screw driver. Insert mate shaft into each pinion gear to verify alignment.
- (14) Remove Forcing Screw 6960-4, Step Plate 8140-2, and Threaded Adapter 8140-1.

Fig. 50 Upper Side Gear & Clutch Disc Pack Installation

- (15) Install pinion gear mate shaft and align holes in shaft and case.
- (16) Install the pinion mate shaft lock screw finger tight to hold shaft during differential installation.
- (17) Lubricate all differential components with hypoid gear lubricant.

CLEANING AND INSPECTION

8 1/4 AXLES

Wash differential components with cleaning solvent and dry with compressed air. **Do not steam clean the differential components.**

Wash bearings with solvent and towel dry, or dry with compressed air. DO NOT spin bearings with compressed air. Cup and bearing must be replaced as matched sets only.

Clean axle shaft tubes and oil channels in housing. Inspect for:

- Smooth appearance with no broken/dented surfaces on the bearing rollers or the roller contact surfaces.
 - Bearing cups must not be distorted or cracked.
- Machined surfaces should be smooth and without any raised edges.
- Raised metal on shoulders of cup bores should be removed with a hand stone.
- Wear and damage to pinion gear mate shaft, pinion gears, side gears and thrust washers. Replace as a matched set only.

CLEANING AND INSPECTION (Continued)

- Ring and pinion gear for worn and chipped teeth.
- Ring gear for damaged bolt threads. Replaced as a matched set only.
- Pinion yoke for cracks, worn splines, pitted areas, and a rough/corroded seal contact surface. Repair or replace as necessary.
- Pinion depth shims for damage and distortion. Install new shims if necessary.
- The differential case. Replace the case if cracked or damaged.
- The axle shaft C-clip locks for cracks and excessive wear. Replace them if necessary.
- Each threaded adjuster to determine if it rotates freely. If an adjuster binds, repair the damaged threads or replace the adjuster.

Polish each axle shaft sealing surface with No. 600 crocus cloth. This can remove slight surface damage. Do not reduce the diameter of the axle shaft seal contact surface. When polishing, the crocus cloth should be moved around the circumference of the shaft (not in-line with the shaft).

TRAC-LOK

Clean all components in cleaning solvent. Dry components with compressed air. Inspect clutch pack plates for wear, scoring or damage. Replace both clutch packs if any one component in either pack is damaged. Inspect side and pinion gears. Replace any gear that is worn, cracked, chipped or damaged. Inspect differential case and pinion shaft. Replace if worn or damaged.

PRESOAK PLATES AND DISC

Plates and discs with fiber coating (no grooves or lines) must be presoaked in Friction Modifier before assembly. Soak plates and discs for a minimum of 20 minutes.

ADJUSTMENTS

8 1/4 AXLE PINION GEAR DEPTH

GENERAL INFORMATION

Ring and pinion gears are supplied as matched sets only. The identifying numbers for the ring and pinion gear are marked on the face of each gear (Fig. 51). A plus (+) number, minus (-) number or zero (0) is marked on the face of the pinion gear. This number is the amount (in thousandths of an inch) the depth varies from the standard depth setting of a pinion marked with a (0). The standard depth provides the best teeth contact pattern. Refer to Backlash and Contact Pattern Analysis Paragraph in this section for additional information.

Fig. 51 Pinion Gear ID Numbers

Compensation for pinion depth variance is achieved with select shims. The shims are placed under the rear pinion bearing cone (Fig. 52).

Fig. 52 Shim Locations

If a new gear set is being installed, note the depth variance marked on both the original and replacement pinion gear. Add or subtract the thickness of the original depth shims to compensate for the difference in the depth variances. Refer to the Depth Variance charts.

Note where Old and New Pinion Marking columns intersect. Intersecting figure represents plus or minus amount needed.

Note the marked number on the face of the drive pinion gear (-1, -2, 0, +1, +2, etc.). The numbers represent thousands of an inch deviation from the standard. If the number is negative, add that value to the required thickness of the depth shim(s). If the number is positive, subtract that value from the thickness of the depth shim(s). If the number is 0 no change is necessary. Refer to the Pinion Gear Depth Variance Chart.

PINION GEAR DEPTH VARIANCE

Original Pinion Gear Depth	Replacement Pinion Gear Depth Variance								
Variance	-4	-3	-2	-1	0	+1	+2	+3	+4
+4	+0.008	+0.007	+0.006	+0.005	+0.004	+0.003	+0.002	+0.001	0
+3	+0.007	+0.006	+0.005	+0.004	+0.003	+0.002	+0.001	0	-0.001
+2	+0.006	+0.005	+0.004	+0.003	+0.002	+0.001	0	-0.001	-0.002
+1	+0.005	+0.004	+0.003	+0.002	+0.001	0	-0.001	-0.002	-0.003
0	+0.004	+0.003	+0.002	+0.001	0	-0.001	-0.002	-0.003	-0.004
-1	+0.003	+0.002	+0.001	0	-0.001	-0.002	-0.003	-0.004	-0.005
-2	+0.002	+0.001	0	-0.001	-0.002	-0.003	-0.004	-0.005	-0.006
-3	+0.001	0	-0.001	-0.002	-0.003	-0.004	-0.005	-0.006	-0.007
-4	0	-0.001	-0.002	-0.003	-0.004	-0.005	-0.006	-0.007	-0.008

PINION DEPTH MEASUREMENT AND ADJUSTMENT

- (1) Install front pinion bearing cup. Use Installer D-130 and Handle C-4171.
- (2) Install rear pinion bearing cup. Use Installer C-4308 and Handle C-4171.
- (3) Use Pinion Gear Adjustment Gauge Set C-3715-B (Fig. 53).
 - (4) Position Spacer SP-6030 over Shaft SP-5385.
 - (5) Position pinion rear bearing on shaft.
 - (6) Position tools (with bearing) in the housing.
 - (7) Install Sleeve SP-5382.
 - (8) Install pinion front bearing.
 - (9) Install Spacer SP-6022.
- (10) Install Sleeve SP-3194-B, Washer SP-534, and Nut SP-3193.

Fig. 53 8 1/4 Axle Pinion Adjustment Tools

- (11) Tighten the nut to seat the pinion bearings in the housing. Allow the sleeve to turn several times during tightening to prevent brinelling bearing cups or bearings.
 - (12) Loosen the compression nut tool.

- (13) Lubricate the pinion gear front and rear bearings with gear lubricant.
- (14) Re-tighten the compression nut tool to 1-3 $N \cdot m$ (15-25 in. lbs.) torque.
- (15) Rotate the pinion gear several complete revolutions to align the bearing rollers.
 - (16) Install Gauge Block (Fig. 54).

Fig. 54 Gauge Block

- (17) Install Gauge Block SP-5383 at the end of SP-5385.
- (18) Install Cap Screw SP-536 and tighten with Wrench SP-531.
- (19) Position Crossbore Arbor SP-6029 in the differential housing (Fig. 55).
 - (20) Center the arbor tool.
 - (21) Position the bearing caps on the arbor tool.
 - (22) Install the attaching bolts.
 - (23) Tighten the cap bolts to 14 N·m (10 ft. lbs.).
- (24) Trial fit depth shim(s) between the crossbore arbor and gauge block (Fig. 56). The depth shim(s) fit must be snug but not tight (drag friction of a feeler gauge blade).

Fig. 55 Crossbore Arbor

Fig. 56 Depth Shim(s) Selection

(25) Select a shim equal to the shim selected above plus the drive pinion gear depth variance number marked on the face of the pinion gear (Fig. 51) using the opposite sign on the variance number. For example, if the depth variance is -2, add +0.002 in. to the dial indicator reading.

NOTE: Depth shims are available in 0.001-inch increments from 0.020 inch to 0.038 inch.

(26) Remove the tools from the differential housing.

DIFFERENTIAL BEARING PRELOAD AND GEAR BACKLASH

The following must be considered when adjusting bearing preload and gear backlash:

- The maximum ring gear backlash variation is 0.003 inch (0.076 mm).
- Mark the gears so the same teeth are meshed during all backlash measurements.

- Maintain the torque while adjusting the bearing preload and ring gear backlash.
- Excessive adjuster torque will introduce a high bearing load and cause premature bearing failure. Insufficient adjuster torque can result in excessive differential case free-play and ring gear noise.
- Insufficient adjuster torque will not support the ring gear correctly and can cause excessive differential case free-play and ring gear noise.

NOTE: The differential bearing cups will not always immediately follow the threaded adjusters as they are moved during adjustment. To ensure accurate bearing cup responses to the adjustments:

- Maintain the gear teeth engaged (meshed) as marked.
- The bearings must be seated by rapidly rotating the pinion gear a half turn back and forth.
- Do this five to ten times each time the threaded adjusters are adjusted.
- (1) Use Wrench C-4164 to adjust each threaded adjuster inward until the differential bearing free-play is eliminated (Fig. 57). Allow some ring gear backlash (approximately 0.01 inch/0.25 mm) between the ring and pinion gear. Seat the bearing cups with the procedure described above.

Fig. 57 Threaded Adjuster Tool

- (2) Install dial indicator and position the plunger against the drive side of a ring gear tooth (Fig. 58). Measure the backlash at 4 positions (90 degrees apart) around the ring gear. Locate and mark the area of minimum backlash.
- (3) Rotate the ring gear to the position of the least backlash. Mark the gear so that all future backlash measurements will be taken with the same gear teeth meshed.
- (4) Loosen the right-side, tighten the left-side threaded adjuster. Obtain backlash of 0.003 to 0.004 inch (0.076 to 0.102 mm) with each adjuster tight-

Fig. 58 Ring Gear Backlash Measurement

ened to $14~N\cdot m$ (10 ft. lbs.). Seat the bearing cups with the procedure described above.

- (5) Tighten the differential bearing cap bolts 95 $N \cdot m$ (70 ft. lbs.).
- (6) Tighten the right-side threaded adjuster to 102 N·m (75 ft. lbs.). Seat the bearing cups with the procedure described above. Continue to tighten the right-side adjuster and seat bearing cups until the torque remains constant at 102 N·m (75 ft. lbs.)
- (7) Measure the ring gear backlash. The range of backlash is 0.006 to 0.008 inch (0.15 to 0.203 mm).
- (8) Continue increasing the torque at the rightside threaded adjuster until the specified backlash is obtained.

NOTE: The left-side threaded adjuster torque should have approximately 102 N·m (75 ft. lbs.). If the torque is considerably less, the complete adjustment procedure must be repeated.

- (9) Tighten the left-side threaded adjuster until $102~N\cdot m$ (75 ft. lbs.) torque is indicated. Seat the bearing rollers with the procedure described above. Do this until the torque remains constant.
- (10) Install the threaded adjuster locks and tighten the lock screws to 10 N·m (90 in. lbs.).

After the proper backlash is achieved, perform the Gear Contact Analysis procedure.

GEAR CONTACT PATTERN ANALYSIS

The ring and pinion gear teeth contact patterns will show if the pinion gear depth is correct in the axle housing. It will also show if the ring gear backlash has been adjusted correctly. The backlash can be adjusted within specifications to achieve desired tooth contact patterns.

(1) Apply a thin coat of hydrated ferric oxide, or equivalent, to the drive and coast side of the ring gear teeth.

- (2) Wrap, twist, and hold a shop towel around the pinion yoke to increase the turning resistance of the pinion gear. This will provide a more distinct contact pattern.
- (3) Using a boxed end wrench on a ring gear bolt, Rotate the differential case one complete revolution in both directions while a load is being applied from shop towel.

The areas on the ring gear teeth with the greatest degree of contact against the pinion gear teeth will squeegee the compound to the areas with the least amount of contact. Note and compare patterns on the ring gear teeth to Gear Tooth Contact Patterns chart (Fig. 61) and adjust pinion depth and gear backlash as necessary.

SIDE GEAR CLEARANCE

When measuring side gear clearance, check each gear independently. If it necessary to replace a side gear, replace both gears as a matched set.

- (1) Install the axle shafts and C-clip locks and pinion mate shaft.
- (2) Measure each side gear clearance. Insert a matched pair of feeler gauge blades between the gear and differential housing on opposite sides of the hub (Fig. 60).
- (3) If side gear clearances is no more than 0.005 inch. Determine if the shaft is contacting the pinion gear mate shaft. **Do not remove the feeler gauges, inspect the axle shaft with the feeler gauge inserted behind the side gear.** If the end of the axle shaft is not contacting the pinion gear mate shaft, the side gear clearance is acceptable.
- (4) If clearance is more than 0.005 inch (axle shaft not contacting mate shaft), record the side gear clearance. Remove the thrust washer and measure its thickness with a micrometer. Add the washer thickness to the recorded side gear clearance. The sum of gear clearance and washer thickness will determine required thickness of replacement thrust washer (Fig. 61).

In some cases, the end of the axle shaft will move and contact the mate shaft when the feeler gauge is inserted. The C-clip lock is preventing the side gear from sliding on the axle shaft.

- (5) If there is no side gear clearance, remove the C-clip lock from the axle shaft. Use a micrometer to measure the thrust washer thickness. Record the thickness and re-install the thrust washer. Assemble the differential case without the C-clip lock installed and re-measure the side gear clearance.
- (6) Compare both clearance measurements. If the difference is less than 0.012 inch (0.305 mm), add clearance recorded when the C-clip lock was installed to thrust washer thickness measured. The sum will

DRIVE SIDE OF RING GEAR TEETH	COAST SIDE OF RING GEAR TEETH	
HEEL TOE	TOE	DESIRABLE CONTACT PATTERN. PATTERN SHOULD BE CENTERED ON THE DRIVE SIDE OF TOOTH. PATTERN SHOULD BE CENTERED ON THE COAST SIDE OF TOOTH, BUT MAY BE SLIGHTLY TOWARD THE TOE. THERE SHOULD ALWAYS BE SOME CLEARANCE BETWEEN CONTACT PATTERN AND TOP OF THE TOOTH.
		RING GEAR BACKLASH CORRECT. THINNER PINION GEAR DEPTH SHIM REQUIRED.
		RING GEAR BACKLASH CORRECT. THICKER PINION GEAR DEPTH SHIM REQUIRED.
		PINION GEAR DEPTH SHIM CORRECT. DECREASE RING GEAR BACKLASH.
		PINION GEAR DEPTH SHIM CORRECT. INCREASE RING GEAR BACKLASH.

Fig. 60 Side Gear Clearance Measurement

Fig. 61 Side Gear Calculations

determine the required thickness of the replacement thrust washer.

- $\left(7\right)$ If clearance is 0.012 inch (0.305 mm) or greater, both side gears must be replaced (matched set) and the clearance measurements repeated.
- (8) If clearance (above) continues to be 0.012 inch $(0.305 \ \text{mm})$ or greater, the case must be replaced.

SPECIFICATIONS

8 1/4 INCH AXLE

	Semi-floating, hypoid SAE 80W-90
Lube Capacity	2.27 L (4.8 pts.)
	148 ml (5 oz.)
	3.21, 3.55, 3.90
Differential	
Case Clearance	0.12 mm (0.005 in.)
Case Flange Runout	0.076 mm (0.003 in.)
Ring Gear	
Diameter	
Backlash	0.12-0.20 mm (0.005-0.008 in.)
Runout	0.127 mm (0.005 in.)
Pinion Bearing	
Preload	1-2 N·m (10-20 in.lbs.)
8 1/4 INCH AXLE	
DESCRIPTION	TORQUE
Diff. Cover Bolt	
	136 N·m (100 ft. lbs.)
	285 N·m (210 ft. lbs.)
Ring Gear Bolt	95 N·m (70 ft. lbs.)
	64 N·m (48 ft. lbs.)
	lt 24 N·m (18. ft. lbs.)

SPECIAL TOOLS

8 1/4 AXLES

Puller, Hub-6790

Remover, Bearing—6310

Installer—C-4198

Handle—C-4171

Installer—C-4076-B

Handle—C-4735-1

Holder—6719

SPECIAL TOOLS (Continued)

Puller—C-452

Installer—C-3718

Adjustment Rod—C-4164

Puller/Press—C-293-PA

Adapters—C-293-48

Plug—SP-3289

Adapters—C-293-47

Installer—C-4340

SPECIAL TOOLS (Continued)

Holder—8138

Installer—C-4345

Remover—C-4307

Installer—C-4308

Installer—D-130

Installer—6448

Trac-lok Tools—8140

Trac-lok Tools—6960

Gauge Set—C-3715-B

BRAKES

CONTENTS

	р	age		p	age
ANTILOCK BRAKES		30	BASE BRAKE SYSTEM		1

BASE BRAKE SYSTEM

INDEX

page	page
GENERAL INFORMATION	REMOVAL AND INSTALLATION
BRAKE SYSTEM 2	BRAKE PEDAL
SERVICE WARNINGS & CAUTIONS 2	BRAKE SUPPORT PLATE 20
DESCRIPTION AND OPERATION	COMBINATION VALVE 14
BRAKE HOSES AND LINES 5	DISC BRAKE CALIPER
BRAKE PEDAL	DISC BRAKE ROTOR 18
COMBINATION VALVE 3	DISC BRAKE SHOES
FRONT DISC BRAKES 3	DRUM BRAKE SHOES 19
MASTER CYLINDER 3	MASTER CYLINDER
PARKING BRAKE 4	PARKING BRAKE LEVER 21
POWER BRAKE BOOSTER 2	POWER BRAKE BOOSTER
REAR DRUM BRAKE 3	REAR PARKING BRAKE CABLES 21
RED BRAKE WARNING LAMP 2	STOP LAMP SWITCH 13
STOP LAMP SWITCH 2	WHEEL CYLINDER 20
DIAGNOSIS AND TESTING	DISASSEMBLY AND ASSEMBLY
BASE BRAKE SYSTEM 5	DISC BRAKE CALIPER
BRAKE DRUM 10	MASTER CYLINDER RESERVOIR 22
BRAKE FLUID CONTAMINATION 11	WHEEL CYLINDER 24
BRAKE LINE AND HOSES 10	CLEANING AND INSPECTION
COMBINATION VALVE 9	CALIPER 25
DISC BRAKE ROTOR 9	REAR DRUM BRAKE
MASTER CYLINDER/POWER BOOSTER 8	WHEEL CYLINDER 26
RED BRAKE WARNING LAMP 8	ADJUSTMENTS
STOP LAMP SWITCH 8	PARKING BRAKE CABLE TENSIONER 28
SERVICE PROCEDURES	REAR DRUM BRAKE
BRAKE BLEEDING 11	STOP LAMP SWITCH 26
BRAKE DRUM MACHINING 12	SPECIFICATIONS
BRAKE FLUID LEVEL 11	BRAKE COMPONENTS
BRAKE LINE 12	BRAKE FLUID 28
DISC ROTOR MACHINING 12	TORQUE CHART 29
MASTER CYLINDER BLEEDING 11	SPECIAL TOOLS
	BASE BRAKES 29

GENERAL INFORMATION

BRAKE SYSTEM

Power assist front disc and rear drum brakes are standard equipment. Disc brake components consist of single piston calipers and ventilated rotors. Rear drum brakes are dual shoe units with cast brake drums.

The parking brake mechanism is lever and cable operated. The cables are attached to levers on the rear drum brake secondary shoes. The parking brakes are operated by a hand lever.

A dual diaphragm vacuum power brake booster is used for all applications. All models have a two-piece master cylinder with plastic reservoir.

All models are equipped with a combination valve. The valve contains a pressure differential valve and switch and a fixed rate rear proportioning valve.

Factory brake lining on all models consists of an organic base material combined with metallic particles. The lining does not contain asbestos.

SERVICE WARNINGS & CAUTIONS

WARNING: FACTORY INSTALLED BRAKE LININGS DO NOT CONTAIN ASBESTOS FIBERS. DUST AND DIRT ACCUMULATING ON BRAKE PARTS DURING NORMAL USE MAY CONTAIN ASBESTOS FIBERS FROM AFTER MARKET BRAKE LININGS. BREATH-ING EXCESSIVE CONCENTRATIONS OF ASBESTOS FIBERS CAN CAUSE SERIOUS BODILY HARM. EXERCISE CARE WHEN SERVICING BRAKE PARTS. DO NOT CLEAN BRAKE PARTS WITH COM-PRESSED AIR OR BY DRY BRUSHING. USE A VAC-**UUM CLEANER SPECIFICALLY DESIGNED FOR** THE REMOVAL OF ASBESTOS FIBERS FROM BRAKE COMPONENTS. IF A SUITABLE VACUUM CLEANER IS NOT AVAILABLE, CLEANING SHOULD BE DONE WITH A WATER DAMPENED CLOTH. DO NOT SAND, OR GRIND BRAKE LINING UNLESS **EQUIPMENT USED IS DESIGNED TO CONTAIN THE** DUST RESIDUE. DISPOSE OF ALL RESIDUE CON-TAINING ASBESTOS FIBERS IN SEALED BAGS OR CONTAINERS TO MINIMIZE EXPOSURE TO YOUR-SELF AND OTHERS. FOLLOW PRACTICES PRE-SCRIBED BY THE OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION AND THE ENVIRONMEN-TAL PROTECTION AGENCY FOR THE HANDLING, PROCESSING. AND DISPOSITION OF DUST OR DEBRIS THAT MAY CONTAIN ASBESTOS FIBERS.

CAUTION: Never use gasoline, kerosene, alcohol, motor oil, transmission fluid, or any fluid containing mineral oil to clean the system components. These fluids damage rubber cups and seals. Use only fresh brake fluid or Mopar brake cleaner to clean or

flush brake system components. These are the only cleaning materials recommended. If system contamination is suspected, check the fluid for dirt, discoloration, or separation into distinct layers. Drain and flush the system with new brake fluid if contamination is suspected.

CAUTION: Use Mopar brake fluid, or an equivalent quality fluid meeting SAE/DOT standards J1703 and DOT 3. Brake fluid must be clean and free of contaminants. Use fresh fluid from sealed containers only to ensure proper antilock component operation.

CAUTION: Use Mopar multi-mileage or high temperature grease to lubricate caliper slide surfaces, drum brake pivot pins, and shoe contact points on the backing plates. Use multi-mileage grease or GE 661 or Dow 111 silicone grease on caliper bushings and slide pins to ensure proper operation.

DESCRIPTION AND OPERATION

BRAKE PEDAL

A suspended-type brake pedal is used, the pedal pivots on a shaft mounted in the pedal support bracket. The bracket is attached to the dash panel and steering support bracket. The unit is serviced as an assembly, except for the pedal pad.

STOP LAMP SWITCH

The plunger type stop lamp switch is mounted on a bracket attached to the brake pedal support. The switch can be adjusted when necessary.

RED BRAKE WARNING LAMP

A red warning lamp is used for the service brake portion of the hydraulic system. The lamp is located in the instrument cluster.

The red warning light alerts the driver if a pressure differential exists between the front and rear hydraulic systems. The light also alerts the driver when the parking brakes are applied.

POWER BRAKE BOOSTER

The booster assembly consists of a housing divided into separate chambers by two internal diaphragms. The outer edge of each diaphragm is attached to the booster housing. The diaphragms are connected to the booster primary push rod.

Two push rods are used in the booster. The primary push rod connects the booster to the brake pedal. The secondary push rod connects the booster to the master cylinder to stroke the cylinder pistons.

DESCRIPTION AND OPERATION (Continued)

The atmospheric inlet valve is opened and closed by the primary push rod. Booster vacuum supply is through a hose attached to an intake manifold fitting at one end and to the booster check valve at the other. The vacuum check valve in the booster housing is a one-way device that prevents vacuum leak back.

Power assist is generated by utilizing the pressure differential between normal atmospheric pressure and a vacuum. The vacuum needed for booster operation is taken directly from the engine intake manifold. The entry point for atmospheric pressure is through a filter and inlet valve at the rear of the housing (Fig. 1).

The chamber areas forward of the booster diaphragms are exposed to vacuum from the intake manifold. The chamber areas to the rear of the diaphragms, are exposed to normal atmospheric pressure of 101.3 kilopascals (14.7 pounds/square in.).

Brake pedal application causes the primary push rod to open the atmospheric inlet valve. This exposes the area behind the diaphragms to atmospheric pressure. The resulting pressure differential provides the extra apply pressure for power assist.

MASTER CYLINDER

The master cylinder has a removable nylon reservoir. The cylinder body is made of aluminum and contains a primary and secondary piston assembly. The cylinder body including the piston assemblies are not serviceable. If diagnosis indicates an internal problem with the cylinder body, it must be replaced as an assembly. The reservoir and grommets are the only replaceable parts on the master cylinder.

COMBINATION VALVE

The combination valve contains a pressure differential valve and switch and a rear brake proportioning valve. The valve is not repairable. It must be replaced if diagnosis indicates this is necessary.

The pressure differential switch is connected to the brake warning light. The switch is actuated by movement of the switch valve. The switch monitors fluid pressure in the separate front/rear brake hydraulic circuits.

A decrease or loss of fluid pressure in either hydraulic circuit will cause the switch valve to shuttle to the low pressure side. Movement of the valve pushes the switch plunger upward. This action closes the switch internal contacts completing the electrical circuit to the red warning light. The switch valve will remain in an actuated position until repairs are made.

The rear proportioning valve is used to balance front-rear brake action. The valve allows normal fluid flow during moderate effort brake stops. The valve only controls (meters) fluid flow during high effort brake stops.

FRONT DISC BRAKES

The calipers are a single piston type. The calipers are free to slide laterally, this allows continuous compensation for lining wear.

When the brakes are applied fluid pressure is exerted against the caliper piston. The fluid pressure is exerted equally and in all directions. This means pressure exerted against the caliper piston and within the caliper bore will be equal (Fig. 2).

Fluid pressure applied to the piston is transmitted directly to the inboard brake shoe. This forces the shoe lining against the inner surface of the disc brake rotor. At the same time, fluid pressure within the piston bore forces the caliper to slide inward on the mounting bolts. This action brings the outboard brake shoe lining into contact with the outer surface of the disc brake rotor.

In summary, fluid pressure acting simultaneously on both piston and caliper, produces a strong clamping action. When sufficient force is applied, friction will stop the rotors from turning and bring the vehicle to a stop.

Application and release of the brake pedal generates only a very slight movement of the caliper and piston. Upon release of the pedal, the caliper and piston return to a rest position. The brake shoes do not retract an appreciable distance from the rotor. In fact, clearance is usually at, or close to zero. The reasons for this are to keep road debris from getting between the rotor and lining and in wiping the rotor surface clear each revolution.

The caliper piston seal controls the amount of piston extension needed to compensate for normal lining wear.

During brake application, the seal is deflected outward by fluid pressure and piston movement (Fig. 3). When the brakes (and fluid pressure) are released, the seal relaxes and retracts the piston.

The amount of piston retraction is determined by brake lining wear. Generally the amount is just enough to maintain contact between the piston and inboard brake shoe.

REAR DRUM BRAKE

The brake systems use a leading shoe (primary) and trailing shoe (secondary) (Fig. 4). When the brake pedal is depressed hydraulic pressure pushes the rear brake wheel cylinder pistons outward. The wheel cylinder push rods then push the brake shoes outward against the brake drum. When the brake pedal is released return springs attached to the brake shoes pull the shoes back to there original position.

5 - 4 BRAKES — XJ

DESCRIPTION AND OPERATION (Continued)

Fig. 1 Power Brake Booster-Typical

PARKING BRAKE

Parking brake adjustment is controlled by a cable tensioner mechanism. The cable tensioner, once adjusted at the factory, should not need further adjustment under normal circumstances. Adjustment may be required if a new tensioner, or cables are installed, or disconnected.

PARKING BRAKE OPERATION

A hand operated lever in the passenger compartment is the main application device. The front cable is connected between the hand lever and the tensioner. The tensioner rod is attached to the equalizer which is the connecting point for the rear cables (Fig. 5).

The rear cables are connected to the actuating lever on each secondary brake shoe. The levers are attached to the brake shoes by a pin either pressed into, or welded to the lever. A clip is used to secure the pin in the brake shoe. The pin allows each lever to pivot independently of the brake shoe.

To apply the parking brakes, the hand lever is pulled upward. This pulls the rear brake shoe actuating levers forward, by means tensioner and cables. As the actuating lever is pulled forward, the parking brake strut (which is connected to both shoes), exerts a linear force against the primary brake shoe. This action presses the primary shoe into contact with the drum. Once the primary shoe contacts the drum, force is exerted through the strut. This force is transferred through the strut to the secondary brake shoe causing it to pivot into the drum as well.

A gear type ratcheting mechanism is used to hold the lever in an applied position. Parking brake release is accomplished by the hand lever release button.

DESCRIPTION AND OPERATION (Continued)

Fig. 2 Brake Caliper Operation

Fig. 3 Lining Wear Compensation By Piston Seal

A parking brake switch is mounted on the parking brake lever and is actuated by movement of the lever. The switch, which is in circuit with the red warning light in the dash, will illuminate the warning light whenever the parking brakes are applied.

BRAKE HOSES AND LINES

Flexible rubber hose is used at both front brakes and at the rear axle junction block. Double walled steel tubing is used to connect the master cylinder to the major hydraulic braking components and then to the flexible rubber hoses.

DIAGNOSIS AND TESTING

BASE BRAKE SYSTEM

Base brake components consist of the brake shoes, calipers, wheel cylinders, brake drums, rotors, brake

lines, master cylinder, booster, and parking brake components.

Brake diagnosis involves determining if the problem is related to a mechanical, hydraulic, or vacuum operated component.

The first diagnosis step is the preliminary check.

PRELIMINARY BRAKE CHECK

- (1) Check condition of tires and wheels. Damaged wheels and worn, damaged, or underinflated tires can cause pull, shudder, vibration, and a condition similar to grab.
- (2) If complaint was based on noise when braking, check suspension components. Jounce front and rear of vehicle and listen for noise that might be caused by loose, worn or damaged suspension or steering components.
- (3) Inspect brake fluid level and condition. Note that the front disc brake reservoir fluid level will decrease in proportion to normal lining wear. Also note that brake fluid tends to darken over time. This is normal and should not be mistaken for contamination.
 - (a) If fluid level is abnormally low, look for evidence of leaks at calipers, wheel cylinders, brake lines, and master cylinder.
 - (b) If fluid appears contaminated, drain out a sample. System will have to be flushed if fluid is separated into layers, or contains a substance other than brake fluid. The system seals and cups will also have to be replaced after flushing. Use clean brake fluid to flush the system.
- (4) Check parking brake operation. Verify free movement and full release of cables and pedal. Also note if vehicle was being operated with parking brake partially applied.
- (5) Check brake pedal operation. Verify that pedal does not bind and has adequate free play. If pedal lacks free play, check pedal and power booster for being loose or for bind condition. Do not road test until condition is corrected.
- (6) If components checked appear OK, road test the vehicle.

ROAD TESTING

- (1) If complaint involved low brake pedal, pump pedal and note if it comes back up to normal height.
- (2) Check brake pedal response with transmission in Neutral and engine running. Pedal should remain firm under constant foot pressure.
- (3) During road test, make normal and firm brake stops in 25-40 mph range. Note faulty brake operation such as low pedal, hard pedal, fade, pedal pulsation, pull, grab, drag, noise, etc.

DIAGNOSIS AND TESTING (Continued)

Fig. 4 Brake Components

Fig. 5 Parking Brake Components

PEDAL FALLS AWAY

A brake pedal that falls away under steady foot pressure is generally the result of a system leak. The leak point could be at a brake line, fitting, hose, or caliper/wheel cylinder. Internal leakage in the master cylinder caused by worn or damaged piston cups, may also be the problem cause.

If leakage is severe, fluid will be evident at or around the leaking component. However, internal leakage in the master cylinder may not be physically evident.

LOW PEDAL

If a low pedal is experienced, pump the pedal several times. If the pedal comes back up worn linings,

rotors, drums, or rear brakes out of adjustment are the most likely causes.

SPONGY PEDAL

A spongy pedal is most often caused by air in the system. However, thin brake drums or substandard brake lines and hoses can also cause a spongy pedal. The proper course of action is to bleed the system, or replace thin drums and suspect quality brake lines and hoses.

HARD PEDAL OR HIGH PEDAL EFFORT

A hard pedal or high pedal effort may be due to lining that is water soaked, contaminated, glazed, or badly worn. The power booster or check valve could also be faulty.

PEDAL PULSATION

Pedal pulsation is caused by components that are loose, or beyond tolerance limits.

The primary cause of pulsation are disc brake rotors with excessive lateral runout or thickness variation, or out of round brake drums. Other causes are loose wheel bearings or calipers and worn, damaged tires.

NOTE: Some pedal pulsation may be felt during ABS activation.

BRAKE DRAG

Brake drag occurs when the lining is in constant contact with the rotor or drum. Drag can occur at one wheel, all wheels, fronts only, or rears only.

DIAGNOSIS AND TESTING (Continued)

Drag is a product of incomplete brake shoe release. Drag can be minor or severe enough to overheat the linings, rotors and drums.

Minor drag will usually cause slight surface charring of the lining. It can also generate hard spots in rotors and drums from the overheat-cool down process. In most cases, the rotors, drums, wheels and tires are quite warm to the touch after the vehicle is stopped.

Severe drag can char the brake lining all the way through. It can also distort and score rotors and drums to the point of replacement. The wheels, tires and brake components will be extremely hot. In severe cases, the lining may generate smoke as it chars from overheating.

Common causes of brake drag are:

- Seized or improperly adjusted parking brake cables.
 - Loose/worn wheel bearing.
 - Seized caliper or wheel cylinder piston.
- Caliper binding on corroded bushings or rusted slide surfaces.
 - Loose caliper mounting.
- Drum brake shoes binding on worn/damaged support plates.
 - Misassembled components.

If brake drag occurs at all wheels, the problem may be related to a blocked master cylinder return port, or faulty power booster (binds-does not release).

BRAKE FADE

Brake fade is usually a product of overheating caused by brake drag. However, brake overheating and resulting fade can also be caused by riding the brake pedal, making repeated high deceleration stops in a short time span, or constant braking on steep mountain roads. Refer to the Brake Drag information in this section for causes.

BRAKE PULL

Front brake pull condition could result from:

- Contaminated lining in one caliper
- · Seized caliper piston
- Binding caliper
- Loose caliper
- Rusty adapter/caliper slide surfaces
- Improper brake shoes
- Damaged rotor

A worn, damaged wheel bearing or suspension component are further causes of pull. A damaged front tire (bruised, ply separation) can also cause pull.

A common and frequently misdiagnosed pull condition is where direction of pull changes after a few stops. The cause is a combination of brake drag followed by fade at one of the brake units.

As the dragging brake overheats, efficiency is so reduced that fade occurs. Since the opposite brake unit is still functioning normally, its braking effect is magnified. This causes pull to switch direction in favor of the normally functioning brake unit.

An additional point when diagnosing a change in pull condition concerns brake cool down. Remember that pull will return to the original direction, if the dragging brake unit is allowed to cool down (and is not seriously damaged).

REAR BRAKE GRAB OR PULL

Rear grab or pull is usually caused by improperly adjusted or seized parking brake cables, contaminated lining, bent or binding shoes and support plates, or improperly assembled components. This is particularly true when only one rear wheel is involved. However, when both rear wheels are affected, the master cylinder, proportioning valve, or RWAL valve could be at fault.

BRAKES DO NOT HOLD AFTER DRIVING THROUGH DEEP WATER PUDDLES

This condition is generally caused by water soaked lining. If the lining is only wet, it can be dried by driving with the brakes very lightly applied for a mile or two. However, if the lining is both soaked and dirt contaminated, cleaning and/or replacement will be necessary.

BRAKE SQUEAK/SQUEAL

Brake squeak or squeal may be due to linings that are wet or contaminated with brake fluid, grease, or oil. Glazed linings and rotors with hard spots can also contribute to squeak. Dirt and foreign material embedded in the brake lining will also cause squeak/squeal.

A very loud squeak or squeal is frequently a sign of severely worn brake lining. If the lining has worn through to the brake shoes in spots, metal-to-metal contact occurs. If the condition is allowed to continue, rotors and drums can become so scored that replacement is necessary.

BRAKE CHATTER

Brake chatter is usually caused by loose or worn components, or glazed/burnt lining. Rotors with hard spots can also contribute to chatter. Additional causes of chatter are out-of-tolerance rotors, brake lining not securely attached to the shoes, loose wheel bearings and contaminated brake lining.

THUMP/CLUNK NOISE

Thumping or clunk noises during braking are frequently **not** caused by brake components. In many cases, such noises are caused by loose or damaged steering, suspension, or engine components. However,

DIAGNOSIS AND TESTING (Continued)

calipers that bind on the slide surfaces can generate a thump or clunk noise. In addition, worn out, improperly adjusted, or improperly assembled rear brake shoes can also produce a thump noise.

BRAKE LINING CONTAMINATION

Brake lining contamination is mostly a product of leaking calipers or wheel cylinders, worn seals, driving through deep water puddles, or lining that has become covered with grease and grit during repair. Contaminated lining should be replaced to avoid further brake problems.

WHEEL AND TIRE PROBLEMS

Some conditions attributed to brake components may actually be caused by a wheel or tire problem.

A damaged wheel can cause shudder, vibration and pull. A worn or damaged tire can also cause pull.

Severely worn tires with very little tread left can produce a grab-like condition as the tire loses and recovers traction. Flat-spotted tires can cause vibration and generate shudder during brake operation. A tire with internal damage such as a severe bruise, cut, or ply separation can cause pull and vibration.

STOP LAMP SWITCH

Stop lamp switch operation can be tested with an ohmmeter. The ohmmeter is used to check continuity between the pin terminals at different plunger positions (Fig. 6).

NOTE: The switch wire harness must be disconnected before testing switch continuity.

SWITCH CIRCUIT IDENTIFICATION

- Terminals 1 and 2 are for brake sensor circuit.
- Terminals 5 and 6 are for the stop lamp circuit.
- Terminals 3 and 4 are for the speed control circuit.

SWITCH CONTINUITY TEST

- (1) Check continuity between terminal pins 5 and 6 as follows:
 - (a) Pull plunger all the way out to fully extended position.
 - (b) Attach test leads to pins 5 and 6 and note ohmmeter reading.
 - (c) If continuity exists, proceed to next test. Replace switch if meter indicates lack of continuity (shorted or open).
- (2) Check continuity between terminal pins 1 and 2 and pins 3 and 4 as follows:
 - (a) Push switch plunger inward to fully retracted position.
 - (b) Attach test leads to pins 1 and 2 and note ohmmeter reading.

Fig. 6 Stop Lamp Switch Terminal Identification

(c) If continuity exists, switch is OK. Replace switch if meter indicates lack of continuity (switch is open).

RED BRAKE WARNING LAMP

The red brake warning light will illuminate under the following conditions:

- 2-3 seconds at start-up as part of normal bulb check.
 - When parking brakes are applied.
- Low brake pedal caused by leak in front/rear brake hydraulic circuit.

If the red light remains on after start-up, first verify that the parking brakes are fully released. Then check pedal action and fluid level. A red light plus low pedal indicates the pressure differential switch and valve have been actuated due to a system leak.

On models with ABS brakes, the amber warning light only illuminates when an ABS malfunction has occurred. The ABS light operates independently of the red warning light.

For addition information refer to Group 8W.

MASTER CYLINDER/POWER BOOSTER

- (1) Start engine and check booster vacuum hose connections. A hissing noise indicates vacuum leak. Correct any vacuum leak before proceeding.
- (2) Stop engine and shift transmission into Neutral.
- (3) Pump brake pedal until all vacuum reserve in booster is depleted.
- (4) Press and hold brake pedal under light foot pressure. The pedal should hold firm, if the pedal falls away master cylinder is faulty (internal leakage).
- (5) Start engine and note pedal action it should fall away slightly under light foot pressure then hold firm. If no pedal action is discernible, power booster,

DIAGNOSIS AND TESTING (Continued)

vacuum supply, or vacuum check valve is faulty. Proceed to the POWER BOOSTER VACUUM TEST.

- (6) If the POWER BOOSTER VACUUM TEST passes, rebuild booster vacuum reserve as follows: Release brake pedal. Increase engine speed to 1500 rpm, close the throttle and immediately stop turn off ignition to stop engine.
- (7) Wait a minimum of 90 seconds and try brake action again. Booster should provide two or more vacuum assisted pedal applications. If vacuum assist is not provided, booster is faulty.

POWER BOOSTER VACUUM TEST

- (1) Connect vacuum gauge to booster check valve with short length of hose and T-fitting (Fig. 7).
- (2) Start and run engine at curb idle speed for one minute.
- (3) Observe the vacuum supply. If vacuum supply is not adequate, repair vacuum supply.
- (4) Clamp hose shut between vacuum source and check valve.
 - (5) Stop engine and observe vacuum gauge.
- (6) If vacuum drops more than one inch HG (33 millibars) within 15 seconds, booster diaphragm or check valve is faulty.

Fig. 7 Typical Booster Vacuum Test Connections
POWER BOOSTER CHECK VALVE TEST

- (1) Disconnect vacuum hose from check valve.
- (2) Remove check valve and valve seal from booster.
 - (3) Use a hand operated vacuum pump for test.
- (4) Apply 15-20 inches vacuum at large end of check valve (Fig. 8).

(5) Vacuum should hold steady. If gauge on pump indicates vacuum loss, check valve is faulty and should be replaced.

Fig. 8 Vacuum Check Valve And Seal COMBINATION VALVE

PRESSURE DIFFERENTIAL SWITCH

- (1) Have helper sit in drivers seat to apply brake pedal and observe red brake warning light.
 - (2) Raise vehicle on hoist.
- (3) Connect bleed hose to a rear wheel cylinder and immerse hose end in container partially filled with brake fluid.
- (4) Have helper press and hold brake pedal to floor and observe warning light.
 - (a) If warning light illuminates, switch is operating correctly.
 - (b) If light fails to illuminate, check circuit fuse, bulb, and wiring. The parking brake switch can be used to aid in identifying whether or not the brake light bulb and fuse is functional. Repair or replace parts as necessary and test differential pressure switch operation again.
- (5) If warning light still does not illuminate, switch is faulty. Replace combination valve assembly, bleed brake system and verify proper switch and valve operation.

REAR PROPORTIONING VALVE

The valve controls fluid flow. If fluid enters the valve and does not exit the valve the combination valve must be replaced.

DISC BRAKE ROTOR

The rotor braking surfaces should not be refinished unless necessary.

Light surface rust and scale can be removed with a lathe equipped with dual sanding discs. The rotor surfaces can be restored by machining in a disc brake lathe if surface scoring and wear are light.

DIAGNOSIS AND TESTING (Continued)

Replace the rotor under the following conditions:

- severely scored
- tapered
- hard spots
- cracked
- below minimum thickness

ROTOR MINIMUM THICKNESS

Measure rotor thickness at the center of the brake shoe contact surface. Replace the rotor if worn below minimum thickness, or if machining would reduce thickness below the allowable minimum.

Rotor minimum thickness is usually specified on the rotor hub. The specification is either stamped or cast into the hub surface.

ROTOR RUNOUT

Check rotor lateral runout with dial indicator C-3339 (Fig. 9). Excessive lateral runout will cause brake pedal pulsation and rapid, uneven wear of the brake shoes. Position the dial indicator plunger approximately 25.4 mm (1 in.) inward from the rotor edge.

NOTE: Be sure wheel bearing has zero end play before checking rotor runout.

Maximum allowable rotor runout is 0.102 mm (0.004 in.).

Fig. 9 Checking Rotor Runout And Thickness
Variation

ROTOR THICKNESS VARIATION

Variations in rotor thickness will cause pedal pulsation, noise and shudder.

Measure rotor thickness at 6 to 12 points around the rotor face (Fig. 10).

Position the micrometer approximately 25.4 mm (1 in.) from the rotor outer circumference for each measurement.

Thickness should not **vary** by more than 0.013 mm (0.0005 in.) from point-to-point on the rotor. Machine or replace the rotor if necessary.

Fig. 10 Measuring Rotor Thickness

BRAKE DRUM

The maximum allowable diameter of the drum braking surface is stamped or cast into the drum outer edge. Generally, a drum can be machined to a maximum of 1.52 mm (0.060 in.) oversize. Always replace the drum if machining would cause drum diameter to exceed the size limit indicated on the drum.

BRAKE DRUM RUNOUT

Measure drum diameter and runout with an accurate gauge. The most accurate method of measurement involves mounting the drum in a brake lathe and checking variation and runout with a dial indicator.

Variations in drum diameter should not exceed 0.076 mm (0.003 in.). Drum runout should not exceed 0.20 mm (0.008 in.) out of round. Machine the drum if runout or variation exceed these values. Replace the drum if machining causes the drum to exceed the maximum allowable diameter.

BRAKE LINE AND HOSES

Flexible rubber hose is used at both front brakes and at the rear axle junction block. Inspect the hoses whenever the brake system is serviced, at every engine oil change, or whenever the vehicle is in for service.

Inspect the hoses for surface cracking, scuffing, or worn spots. Replace any brake hose immediately if

DIAGNOSIS AND TESTING (Continued)

the fabric casing of the hose is exposed due to cracks or abrasions.

Also check brake hose installation. Faulty installation can result in kinked, twisted hoses, or contact with the wheels and tires or other chassis components. All of these conditions can lead to scuffing, cracking and eventual failure.

The steel brake lines should be inspected periodically for evidence of corrosion, twists, kinks, leaks, or other damage. Heavily corroded lines will eventually rust through causing leaks. In any case, corroded or damaged brake lines should be replaced.

Factory replacement brake lines and hoses are recommended to ensure quality, correct length and superior fatigue life. Care should be taken to make sure that brake line and hose mating surfaces are clean and free from nicks and burrs. Also remember that right and left brake hoses are not interchangeable.

Use new copper seal washers at all caliper connections. Be sure brake line connections are properly made (not cross threaded) and tightened to recommended torque.

BRAKE FLUID CONTAMINATION

Indications of fluid contamination are swollen or deteriorated rubber parts.

Swollen rubber parts indicate the presence of petroleum in the brake fluid.

To test for contamination, put a small amount of drained brake fluid in clear glass jar. If fluid separates into layers, there is mineral oil or other fluid contamination of the brake fluid.

If brake fluid is contaminated, drain and thoroughly flush system. Replace master cylinder, proportioning valve, caliper seals, wheel cylinder seals, Antilock Brakes hydraulic unit and all hydraulic fluid hoses.

SERVICE PROCEDURES

BRAKE FLUID LEVEL

Always clean the master cylinder reservoir and cap before adding fluid. This will prevent dirt from falling in the reservoir and contaminating the brake fluid.

The reservoir has a ADD and a FULL mark on the side (Fig. 11) fill to the FULL mark.

MASTER CYLINDER BLEEDING

A new master cylinder should be bled before installation on the vehicle. Required bleeding tools include bleed tubes and a wood dowel to stroke the pistons. Bleed tubes can be fabricated from brake line.

BLEEDING PROCEDURE

(1) Mount master cylinder in vise.

Fig. 11 Master Cylinder Fluid Level

- (2) Attach bleed tubes to cylinder outlet ports. Then position each tube end in the reservoir fluid compartment (Fig. 12).
 - (3) Fill reservoir with fresh brake fluid.
- (4) Press cylinder pistons inward with wood dowel. Then release pistons and allow them to return under spring pressure. Continue bleeding operations until air bubbles are no longer visible in the fluid reservoir.

Fig. 12 Master Cylinder Bleeding

BRAKE BLEEDING

Use Mopar brake fluid, or an equivalent quality fluid meeting SAE J1703-F and DOT 3 standards only. Use fresh, clean fluid from a sealed container at all times.

Do not pump the brake pedal at any time while bleeding. Air in the system will be compressed into small bubbles that are distributed throughout the hydraulic system. This will make additional bleeding operations necessary.

Do not allow the master cylinder to run out of fluid during bleed operations. An empty cylinder will allow

SERVICE PROCEDURES (Continued)

additional air to be drawn into the system. Check the cylinder fluid level frequently and add fluid as needed.

Bleed only one brake component at a time. Recommended bleed sequence is:

- master cylinder
- combination valve
- right rear wheel
- left rear wheel
- right front wheel
- left front wheel

MANUAL BLEEDING

- (1) Remove reservoir filler caps and fill reservoir with Mopar, or equivalent quality DOT 3 brake fluid.
- (2) If calipers, or wheel cylinders were overhauled, open all caliper and wheel cylinder bleed screws. Then close each bleed screw as fluid starts to drip from it. Top off master cylinder reservoir once more before proceeding.
- (3) Attach one end of bleed hose to bleed screw and insert opposite end in glass container partially filled with brake fluid (Fig. 13). Be sure end of bleed hose is immersed in fluid.

J8905-18

Fig. 13 Bleed Hose Setup

(4) Open up bleeder, then have a helper press down the brake pedal. Once the pedal is down close the bleeder. Repeat bleeding until fluid stream is clear and free of bubbles. Then move to the next wheel.

PRESSURE BLEEDING

If pressure bleeding equipment will be used, the front brake metering valve will have to be held open to bleed the front brakes. The valve stem is located in the forward end of the combination valve. The stem must either be pressed inward, or held outward slightly. a spring clip tool or helper is needed to hold the valve stem in position.

Follow the manufacturers instructions carefully when using pressure equipment. Do not exceed the tank manufacturers pressure recommendations. Generally, a tank pressure of 15-20 psi is sufficient for bleeding.

Fill the bleeder tank with recommended fluid and purge air from the tank lines before bleeding.

Do not pressure bleed without a proper master cylinder adapter. The wrong adapter can lead to leakage, or drawing air back into the system.

DISC ROTOR MACHINING

Rotor braking surfaces can be sanded or machined in a disc brake lathe.

The lathe must machine both sides of the rotor simultaneously with dual (two) cutter heads (Fig. 14). Equipment capable of machining only one side at a time will produce a tapered rotor.

The lathe should also be equipped with a grinder attachment or dual sanding discs for final cleanup or light refinishing (Fig. 15).

If the rotor surfaces only need minor cleanup of rust, scale, or minor scoring, use abrasive discs to clean up the rotor surfaces. However, when a rotor is scored or worn, machining with cutting tools will be required.

CAUTION: Do not machine the rotor if it will cause the rotor to fall below minimum allowable thickness.

BRAKE DRUM MACHINING

The brake drums can be machined on a drum lathe when necessary. Initial machining cuts should be limited to 0.12 - 0.20 mm (0.005 - 0.008 in.) at a time as heavier feed rates can produce taper and surface variation. Final finish cuts of 0.025 to 0.038 mm (0.001 to 0.0015 in.) are recommended and will generally provide the best surface finish.

Be sure the drum is securely mounted in the lathe before machining operations. A damper strap should always be used around the drum to reduce vibration and avoid chatter marks.

The maximum allowable diameter of the drum braking surface is stamped or cast into the drum outer edge. Always replace the drum if machining would cause drum diameter to exceed the size limit indicated on the drum.

BRAKE LINE

Mopar preformed metal brake line is recommended and preferred for all repairs. However, double-wall

SERVICE PROCEDURES (Continued)

Fig. 14 Rotor Refinishing

Fig. 15 Rotor Grinder

steel line can be used for emergency repair when factory replacement parts are not readily available.

Special, heavy duty tube bending and flaring equipment is required to prepare double wall brake line. Special bending tools are needed to avoid kinking or twisting metal brake line. In addition, special flaring tools are needed to provide the inverted-type, double flare required on metal brake lines.

FLARING PROCEDURE

- (1) Cut off damaged tube with Tubing Cutter.
- (2) Ream cut edges of tubing to ensure proper flare.
- (3) Install replacement tube nut on section of tube to be repaired.
- (4) Insert tube in flaring tool. Center tube in area between vertical posts.
 - (5) Place gauge form over the end of the tube.
- (6) Push tubing through flaring tool jaws until tube contacts recessed notch in gauge that matches tube diameter.
- (7) Squeeze flaring tool jaws to lock tubing in place.
- (8) Insert plug on gauge in the tube. Then swing compression disc over gauge and center tapered flaring screw in recess of compression disc (Fig. 16).
- (9) Tighten tool handle until plug gauge is seated on jaws of flaring tool. This will start the inverted flare.
- (10) Remove the plug gauge and complete the inverted flare.
- (11) Remove the flaring tools and verify that the inverted flare is correct.

Fig. 16 Inverted Flare Tools

REMOVAL AND INSTALLATION

STOP LAMP SWITCH

REMOVAL

- (1) Remove steering column cover and lower trim panel for switch access (if necessary).
- (2) Press brake pedal downward to fully applied position.

- (3) Rotate switch approximately 30° in counterclockwise direction to unlock switch retainer. Then pull switch rearward and out of bracket.
- (4) Disconnect switch wire harness and remove switch from vehicle (Fig. 17).

Fig. 17 Stop Lamp Switch

INSTALLATION

- (1) Pull switch plunger all the way out to fully extended position.
 - (2) Connect harness wires to switch.
 - (3) Press and hold brake pedal in applied position.
- (4) Install switch as follows: Align tab on switch with notch in switch bracket. Then insert switch in bracket and turn it clockwise about 30° to lock it in place.
- (5) Release brake pedal. Then pull pedal fully rearward. Pedal will set plunger to correct position as pedal pushes plunger into switch body. Switch will make ratcheting sound as it self adjusts.

BRAKE PEDAL

REMOVAL

- (1) Remove knee blocker under the steering column.
- (2) Remove retainer clip securing booster push rod to pedal (Fig. 18).
 - (3) Remove stop lamp switch.
- (4) Remove nuts securing the booster to the pedal support bracket and nuts to the column bracket.
- (5) Remove pedal and support bracket as an assembly from the vehicle.

INSTALLATION

- (1) Install pedal and support bracket as an assembly into the vehicle.
- (2) Install nuts securing the booster to the pedal support bracket and nuts to the column bracket.
 - (3) Tighten nuts to 39 N·m (29 ft. lbs.).

Fig. 18 Booster Push Rod

- (4) Install booster push rod on pedal pin and install new retainer clip.
 - (5) Install knee blocker.

COMBINATION VALVE

NOTE: The combination valve is not repairable. The valve is serviced as an assembly only.

REMOVAL

- (1) Remove air cleaner cover and hose for access to valve.
- (2) Unsnap connector lock tabs and disconnect differential pressure switch wire at combination valve (Fig. 19). Do not pull switch wire to disconnect.

Fig. 19 Differential Pressure Switch

(3) Disconnect brake lines at combination valve (Fig. 20).

8031e88d

Fig. 20 Combination Valve

(4) Remove mounting nut and remove valve.

INSTALLATION

- (1) Install valve and tighten mounting nut to 17 $N \cdot m$ (155 in. lbs.).
- (2) Connect brake lines to replacement valve. Start line fittings by hand to avoid cross threading.
- (3) Tighten brake line fittings to 19 N·m (170 in. lbs.).
 - (4) Connect wire to pressure differential switch.
 - (5) Bleed brakes.

MASTER CYLINDER

REMOVAL

- (1) On RHD vehicles remove the coolant reserve/ overflow tank. Refer to Group 7 Cooling System.
- (2) Remove brake lines at master cylinder and combination valve (Fig. 20).
- (3) Disconnect differential pressure switch wire from the combination valve.
- (4) Remove mounting nuts from the combination valve bracket and remove the valve (Fig. 20).
- (5) Remove mounting nuts from the master cylinder.
 - (6) Remove master cylinder.
 - (7) Remove cylinder cover and drain fluid.
- (8) If master cylinder reservoir requires service, refer to reservoir replacement procedure in this section.

INSTALLATION

NOTE: Bleed master cylinder on bench before installation.

- (1) Remove protective sleeve from primary piston shank on new master cylinder.
- (2) Clean cylinder mounting surface of brake booster.
- (3) Install master cylinder onto brake booster studs.
- (4) Install mounting nuts and tighten to 17.5 N·m (155 in. lbs.).
- (5) Install combination valve and install mounting
- (6) Connect brake lines to master cylinder and combination valve and tighten to 19 N·m (170 in. lbs.).
- (7) Connect differential pressure switch wire to the combination valve.
- (8) On RHD vehicles install the coolant reserve/overflow tank. Refer to Group 7 Cooling System.
 - (9) Fill and bleed brake system.

POWER BRAKE BOOSTER

REMOVAL

- (1) On RHD vehicles remove the coolant reserve/ overflow tank. Refer to Group 7 Cooling System.
 - (2) Disconnect brake lines at master cylinder.
- (3) Disconnect wire at combination valve differential pressure switch.
- (4) Remove nut mounting combination valve bracket to booster studs and remove valve.
- (5) Remove nuts mounting master cylinder to booster studs and remove cylinder.
- (6) Disconnect vacuum hose from booster check valve.
- (7) Remove knee blocker under the steering column.
- (8) Remove retaining clip that secures booster push rod to brake pedal (Fig. 21).
- (9) Remove nuts attaching booster to passenger compartment side of dash panel (Fig. 22).

Fig. 21 Booster Push Rod

80ab88a8

Fig. 22 Booster Mounting

- (10) In engine compartment, slide booster studs out of dash panel, tilt booster upward, and remove booster from engine compartment.
 - (11) Remove dash seal from booster.

INSTALLATION

- (1) Install dash seal on booster.
- (2) Align and position booster on dash panel.
- (3) In passenger compartment, install booster mounting nuts. Tighten nuts just enough to hold booster in place.
- (4) Slide booster push rod onto the brake pedal. Then secure push rod to pedal pin with retaining clip.

NOTE: Lubricate the pedal pin and bushing with Mopar multi-mileage grease before installation.

- (5) Tighten booster mounting nuts to 39 N·m (29 ft. lbs.).
 - (6) Install the knee blocker.
- (7) If original master cylinder is being installed, check condition of seal at rear of master cylinder. Replace seal if cut, or torn.
- (8) Clean cylinder mounting surface of brake booster. Use shop towel wetted with brake cleaner for this purpose. Dirt, grease, or similar materials will prevent proper cylinder seating and could result in vacuum leak.
- (9) Align and install master cylinder on booster studs. Install mounting nuts and tighten to 17.5 N·m (155 in. lbs.).
 - (10) Connect vacuum hose to booster check valve.
- (11) Connect and secure brake lines to combination valve and master cylinder. Start all brake line fittings by hand to avoid cross threading.
- (12) Install combination valve on booster studs. Tighten bracket mounting nuts to 17.5 N·m (155 in. lbs.).

- (13) Connect wire to combination valve switch.
- (14) On RHD vehicles install the coolant reserve/ overflow tank. Refer to Group 7 Cooling System.
 - (15) Fill and bleed brake system.
- (16) Verify proper brake operation before moving vehicle.

DISC BRAKE CALIPER

REMOVAL

- (1) Raise and support vehicle.
- (2) Remove front wheel and tire assembly.
- (3) Drain small amount of fluid from master cylinder brake reservoir with suction gun.
- (4) Bottom caliper piston in bore with C-clamp. Position clamp screw on outboard brake shoe and clamp frame on rear of caliper (Fig. 23). Do not allow clamp screw to bear directly on outboard shoe retainer spring. Use wood or metal spacer between shoe and clamp screw.

Fig. 23 Bottoming Caliper Piston With C-Clamp

- (5) Remove brake hose mounting bolt and discard washers (Fig. 24).
 - (6) Remove caliper mounting bolts (Fig. 25).
- (7) Tilt top of caliper outward with pry tool if necessary (Fig. 26) and remove caliper.
 - (8) Remove caliper from vehicle.

- (1) Clean brake shoe mounting ledges with wire brush and apply light coat of Mopar multi-mileage grease to surfaces (Fig. 27).
- (2) Connect brake hose to caliper with **new** washer on both sides of hose fitting. Do not tighten fitting bolt completely at this time.
- (3) Install caliper by position notches at lower end of brake shoes on bottom mounting ledge. Then rotate caliper over rotor and seat notches at upper end of shoes on top mounting ledge (Fig. 28).

8031e88f

Fig. 24 Brake Hose And Bolt

Fig. 25 Caliper Mounting Bolts

(4) Coat caliper mounting bolts with silicone grease. Then install and tighten bolts to 15 N·m (11 ft. lbs.).

CAUTION: If new caliper bolts are being installed, or if the original reason for repair was a drag/pull condition, check caliper bolt length before proceeding. Bolts must not have a shank length greater than 67.6 mm (2.66 in.) (Fig. 29).

(5) Tighten brake hose fitting bolt to 31 N·m (23 ft. lbs.).

CAUTION: Insure the brake hose is not twisted or kinked and clear of all steering and suspension components.

Fig. 26 Caliper Removal

Fig. 27 Caliper Lubrication Points

- (6) Install wheel and tire assembly.
- (7) Remove support and lower vehicle.
- (8) Pump brake pedal until caliper pistons and brake shoes are seated.
 - (9) Fill master cylinder and bleed brake system.

DISC BRAKE SHOES

REMOVAL

- (1) Raise and support vehicle.
- (2) Remove wheel and tire assembly.
- (3) Remove caliper.
- (4) Pressing one end of outboard shoe inward to disengage shoe lug. Then rotate shoe upward until retainer spring clears caliper. Press opposite end of shoe inward to disengage shoe lug and rotate shoe up and out of caliper (Fig. 30).
- (5) Grasp ends of inboard shoe and tilt shoe outward to release springs from caliper piston (Fig. 31) and remove shoe from caliper.

J9005-35

Fig. 28 Caliper Installation

J9405-154

Fig. 29 Mounting Bolt Dimensions

NOTE: If original brake shoes will be used, keep them in sets left and right. They are not interchangeable.

- (6) Secure caliper to nearby suspension part with wire. **Do not allow brake hose to support caliper weight.**
 - (7) Wipe caliper off with shop rags or towels.

CAUTION: Do not use compressed air, this can unseat dust boot and force dirt into piston bore.

INSTALLATION

(1) Install inboard shoe in caliper and verify shoe retaining is fully seated into the piston.

Fig. 30 Outboard Brake Shoe Removal

Fig. 31 Inboard Brake Shoe Removal

- (2) Starting one end of outboard shoe in caliper and rotating shoe downward into place. Verify shoe locating lugs and shoe spring are seated.
 - (3) Install caliper.
 - (4) Install wheel and tire assembly.
 - (5) Remove support and lower vehicle.
- (6) Pump brake pedal until caliper pistons and brake shoes are seated.
 - (7) Top off brake fluid level if necessary.

DISC BRAKE ROTOR

REMOVAL

- (1) Remove wheel and tire assemble.
- (2) Remove caliper.
- (3) Remove retainers securing rotor to hub studs (Fig. 32).
 - (4) Remove rotor from hub.
- (5) If rotor shield requires service, remove front hub and bearing assembly.

Fig. 32 Rotor & Hub

INSTALLATION

- (1) If new rotor is being installed, remove protective coating from rotor surfaces with carburetor cleaner.
 - (2) Install rotor on hub.
 - (3) Install caliper.
 - (4) Install new spring nuts on wheel studs.
 - (5) Install wheel and tire assembly.

DRUM BRAKE SHOES

REMOVAL

- (1) Raise vehicle and remove rear wheels.
- (2) Remove and discard spring nuts securing drums to wheel studs.
- (3) Remove brake drums. If drums prove difficult to remove, retract brake shoes. Remove access plug

at the rear of backing plate and back off adjuster screw with brake tool and screwdriver.

- (4) Remove U-clip and washer securing adjuster cable to parking brake lever (Fig. 33).
- (5) Remove primary and secondary return springs from anchor pin with brake spring pliers.
- (6) Remove hold-down springs, retainers and pins with standard retaining spring tool.
- (7) Install spring clamps on wheel cylinders to hold pistons in place.
- (8) Remove adjuster lever, adjuster screw and spring.
 - (9) Remove adjuster cable and cable guide.
 - (10) Remove brake shoes and parking brake strut.
- (11) Disconnect cable from parking brake lever and remove lever.

- (1) Clean support plate with brake cleaner.
- (2) If new drums are being installed, remove protective coating with carburetor cleaner followed by final rinse with brake cleaner.
- (3) Clean and lubricate anchor pin with light coat of Mopar multi-mileage grease.
- (4) Apply Mopar multi-mileage grease to brake shoe contact surfaces of support plate (Fig. 34).
- (5) Lubricate adjuster screw threads and pivot with spray lube.
- (6) Attach parking brake lever to secondary brake shoe. Use new washer and U-clip to secure lever.
 - (7) Remove wheel cylinder clamps.
 - (8) Attach parking brake cable to lever.

Fig. 33 Drum Brake Components—Typical

Fig. 34 Shoe Contact Surfaces

- (9) Install brake shoes on support plate. Secure shoes with new hold-down springs, pins and retainers.
 - (10) Install parking brake strut and spring.
- (11) Install guide plate and adjuster cable on anchor pin.
 - (12) Install primary and secondary return springs.
- (13) Install adjuster cable guide on secondary shoe.
 - (14) Lubricate and assemble adjuster screw.
- (15) Install adjuster screw, spring and lever and connect to adjuster cable.
 - (16) Adjust shoes to drum.
- (17) Install wheel/tire assemblies and lower vehicle.
 - (18) Verify firm brake pedal before moving vehicle.

WHEEL CYLINDER

REMOVAL

- (1) Remove wheel and tire assembly.
- (2) Remove brake drum.
- (3) Disconnect wheel cylinder brake line.
- (4) Remove brake shoe return springs and move shoes out of engagement with cylinder push rods.
- (5) Remove cylinder attaching bolts and remove cylinder from support plate.

INSTALLATION

- (1) Apply bead of silicone sealer around cylinder mounting surface of support plate.
- (2) Install cylinder mounting bolts and tighten to correct torque.
 - (3) Connect brake line to cylinder.
 - (4) Install brake shoe return spring.
 - (5) Install brake drum.
 - (6) Install wheel and tire assembly.
 - (7) Bleed brake system.

BRAKE SUPPORT PLATE

REMOVAL

- (1) Remove wheel and tire assembly and brake drum.
 - (2) Remove brake shoe assembly.
- (3) Remove parking brake cable from parking brake lever.
- (4) Compress parking brake cable retainer tabs with a hose clamp (Fig. 35). Then push retainer and cable through and out of support plate.

Fig. 35 Parking Brake Cable Removal

- (5) Disconnect brake line at wheel cylinder.
- (6) Remove wheel cylinder from support plate.
- (7) Remove axle shaft, refer to Group 3 for procedures.
- (8) Remove bolts attaching support plate to axle and remove support plate.

- (1) Apply bead of silicone sealer around axle mounting surface of support plate.
- (2) Install support plate on axle flange. Tighten attaching bolts to 47-81 N·m (35-60 ft. lbs.).
- (3) Apply bead of silicone sealer around wheel cylinder mounting surface and install wheel cylinder.
 - (4) Install brake line in wheel cylinder.
 - (5) Install parking brake cable in support plate.
- (6) Install axle shaft, refer to Group 3 for procedure.
- (7) Connect parking brake cable to lever on secondary shoe and install brake shoes on support plate.
 - (8) Adjust brake shoes to drum with brake gauge.
- (9) Install brake drum and wheel and tire assembly.
 - (10) Bleed brake system.

REAR PARKING BRAKE CABLES

REMOVAL

- (1) Raise vehicle and loosen equalizer nuts until rear cables are slack.
- (2) Disengage cables from equalizer and compress cable retainers with a worm drive hose clamp.
 - (3) Remove cables from the cable bracket (Fig. 36).
 - (4) Remove rear wheel and brake drums.
- (5) Remove secondary brake shoe and disconnect cable from lever on brake shoe.
- (6) Compress cables retainer with worm drive hose clamp (Fig. 37) and remove cables from backing plates.

Fig. 36 Parking Brake Cables

Fig. 37 Cable Retainer

INSTALLATION

- (1) Install new cables in backing plates. Be sure cable retainer is seated.
- (2) Attach cable to lever on brake shoe and install brake shoe on backing plate.
 - (3) Adjust brake shoes to drum with brake gauge.
 - (4) Install brake drums and wheels.
- (5) Install cables into the cable bracket and insure retainers are seated in the bracket.
- (6) Engage the cable ends into the equalizer and install equalizer nut.
 - (7) Adjust parking brakes.

PARKING BRAKE LEVER

The center console must be removed to service the parking brake lever. Refer to Group 23 Interior Components for service procedures.

REMOVAL

- (1) Release parking brakes.
- (2) Raise vehicle.
- (3) Remove adjusting nut from tensioner rod at the equalizer (Fig. 38).

Fig. 38 Parking Brake Equalizer

- (4) Lower vehicle.
- (5) Disengage front cable from the cable lever.
- (6) Compress cable retainer with worm drive hose clamp and remove the cable from the parking brake lever base.
- (7) Disconnect parking brake lamp switch wire (Fig. 39).
- (8) Remove parking brake lever assembly mounting bolts (Fig. 39).
 - (9) Remove lever assembly.
 - (10) Remove parking brake lamp switch.

- (1) Install parking brake lamp switch.
- (2) Position lever assembly on floorpan and install lever mounting bolts.

Fig. 39 Parking Brake Lever Assembly

- (3) Insert front cable through the parking brake lever base. Insure the cable retainer is seated into the base.
- (4) Attach the front cable to the cable lever (Fig. 39).
 - (5) Connect parking brake lamp switch wire.
 - (6) Raise vehicle.
- (7) Install adjusting nut to the tensioner rod and adjust parking brakes.
 - (8) Lower vehicle.
 - (9) Verify correct parking brake operation.

DISASSEMBLY AND ASSEMBLY

MASTER CYLINDER RESERVOIR

REMOVAL

- (1) Remove reservoir cap and empty fluid into drain container.
- (2) Remove pins that retain reservoir to master cylinder. Use hammer and pin punch to remove pins (Fig. 40).
- (3) Clamp cylinder body in vise with brass protective jaws.
- (4) Loosen reservoir from grommets with pry tool (Fig. 41).
- (5) Remove reservoir by rocking it to one side and pulling free of grommets (Fig. 42).
- (6) Remove old grommets from cylinder body (Fig. 43).

INSTALLATION

CAUTION: Do not use any type of tool to install the grommets. Tools may cut, or tear the grommets creating a leak problem after installation. Install the grommets using finger pressure only.

J9505-77

Fig. 40 Reservoir Retaining Pins

Fig. 41 Loosening Reservoir

Fig. 42 Reservoir Removal

- (1) Lubricate new grommets with clean brake fluid and Install new grommets in cylinder body (Fig. 44). Use finger pressure to install and seat grommets.
- (2) Start reservoir in grommets. Then rock reservoir back and forth while pressing downward to seat it in grommets.
- (3) Install pins that retain reservoir to cylinder body.

DISASSEMBLY AND ASSEMBLY (Continued)

Fig. 43 Grommet Removal

Fig. 44 Grommet Installation

(4) Fill and bleed master cylinder on bench before installation in vehicle.

DISC BRAKE CALIPER

DISASSEMBLY

- (1) Remove brake shoes from caliper.
- (2) Drain brake fluid out of caliper.
- (3) Pad interior of caliper with minimum, 2.54 cm (1 in.) thickness of shop towels or rags (Fig. 45). Towels are needed to protect caliper piston during removal.
- (4) Remove caliper piston with **short bursts** of low pressure compressed air. Direct air through fluid inlet port and ease piston out of bore (Fig. 46).

CAUTION: Do not blow the piston out of the bore with sustained air pressure. This could result in a cracked piston. Use only enough air pressure to ease the piston out.

WARNING: NEVER ATTEMPT TO CATCH THE PISTON AS IT LEAVES THE BORE. THIS MAY RESULT IN PERSONAL INJURY.

Fig. 45 Padding Caliper Interior

Fig. 46 Caliper Piston Removal

- (5) Remove caliper piston dust boot with suitable tool (Fig. 47) and discard boot.
- (6) Remove caliper piston seal with wood or plastic tool (Fig. 48) and discard seal. Do not use metal tools as they will scratch piston bore.
- (7) Remove caliper mounting bolt bushings and boots (Fig. 49).

ASSEMBLY

- (1) Coat caliper piston bore, new piston seal and piston with clean brake fluid.
- (2) Lubricate caliper bushings and interior of bushing boots with silicone grease.
- (3) Install bushing boots in caliper, then insert bushing into boot and push bushing into place (Fig. 50).

DISASSEMBLY AND ASSEMBLY (Continued)

Fig. 47 Caliper Piston Dust Boot Removal

Fig. 48 Piston Seal Removal

Fig. 49 Mounting Bolt Bushing And Boot

- (4) Install new piston seal into seal groove with finger (Fig. 51).
- (5) Install dust boot on caliper piston and seat boot in piston groove (Fig. 52).
- (6) Press piston into caliper bore by hand, use a turn and push motion to work piston into seal (Fig. 53).
 - (7) Press caliper piston to bottom of bore.
- (8) Seat dust boot in caliper with Installer Tool C-4842 and Tool Handle C-4171 (Fig. 54).

Fig. 50 Bushings And Boots Installation

Fig. 51 Piston Seal Installation

Fig. 52 Dust Boot On Piston

(9) Replace caliper bleed screw if removed.

WHEEL CYLINDER

DISASSEMBLY

- (1) Remove push rods and boots (Fig. 55).
- (2) Press pistons, cups and spring and expander out of cylinder bore.
 - (3) Remove bleed screw.

DISASSEMBLY AND ASSEMBLY (Continued)

Fig. 53 Caliper Piston Installation

Fig. 54 Piston Dust Boot Installation

Fig. 55 Wheel Cylinder Components-Typical

ASSEMBLY

- (1) Lubricate wheel cylinder bore, pistons, piston cups and spring and expander with clean brake fluid.
- (2) Install first piston in cylinder bore. Then install first cup in bore and against piston. Be sure lip of piston cup is facing inward (toward spring and expander) and flat side is against piston.
- (3) Install spring and expander followed by remaining piston cup and piston.
- (4) Install boots on each end of cylinder and insert push rods in boots.
 - (5) Install cylinder bleed screw.

CLEANING AND INSPECTION

CALIPER

CLEANING

Clean the caliper components with clean brake fluid or brake clean only. Wipe the caliper and piston dry with lint free towels or use low pressure compressed air.

CAUTION: Do not use gasoline, kerosene, thinner, or similar solvents. These products may leave a residue that could damage the piston and seal.

INSPECTION

The piston is made from a phenolic resin (plastic material) and should be smooth and clean.

The piston must be replaced if cracked or scored. Do not attempt to restore a scored piston surface by sanding or polishing.

CAUTION: If the caliper piston is replaced, install the same type of piston in the caliper. Never interchange phenolic resin and steel caliper pistons. The pistons, seals, seal grooves, caliper bore and piston tolerances are different.

The bore can be **lightly** polished with a brake hone to remove very minor surface imperfections (Fig. 56). The caliper should be replaced if the bore is severely corroded, rusted, scored, or if polishing would increase bore diameter more than 0.025 mm (0.001 inch).

REAR DRUM BRAKE

CLEANING

Clean the individual brake components, including the support plate and wheel cylinder exterior, with a water dampened cloth or with brake cleaner. Do not use any other cleaning agents. Remove light rust and

CLEANING AND INSPECTION (Continued)

Fig. 56 Polishing Piston Bore

scale from the brake shoe contact pads on the support plate with fine sandpaper.

INSPECTION

As a general rule, riveted brake shoes should be replaced when worn to within 0.78 mm (1/32 in.) of the rivet heads. Bonded lining should be replaced when worn to a thickness of 1.6 mm (1/16 in.).

Examine the lining contact pattern to determine if the shoes are bent or the drum is tapered. The lining should exhibit contact across its entire width. Shoes exhibiting contact only on one side should be replaced and the drum checked for runout or taper.

Inspect the adjuster screw assembly. Replace the assembly if the star wheel or threads are damaged, or the components are severely rusted or corroded.

Discard the brake springs and retainer components if worn, distorted or collapsed. Also replace the springs if a brake drag condition had occurred. Overheating will distort and weaken the springs.

Inspect the brake shoe contact pads on the support plate, replace the support plate if any of the pads are worn or rusted through. Also replace the plate if it is bent or distorted (Fig. 57).

WHEEL CYLINDER

CLEANING

Clean the cylinder and pistons with clean brake fluid or brake cleaner only. Do not use any other cleaning agents.

Dry the cylinder and pistons with compressed air. Do not use rags or shop towels to dry the cylinder components. Lint from cloth material will adhere to the cylinder bores and pistons.

INSPECTION

Inspect the cylinder bore. Light discoloration and dark stains in the bore are normal and will not impair cylinder operation.

Fig. 57 Shoe Contact Surfaces

The cylinder bore can be lightly polished but only with crocus cloth. Replace the cylinder if the bore is scored, pitted or heavily corroded. Honing the bore to restore the surface is not recommended.

Inspect the cylinder pistons. The piston surfaces should be smooth and free of scratches, scoring and corrosion. Replace the pistons if worn, scored, or corroded. Do attempt to restore the surface by sanding or polishing.

Discard the old piston cups and the spring and expander. These parts are not reusable. The original dust boots may be reused but only if they are in good condition.

ADJUSTMENTS

STOP LAMP SWITCH

- (1) Press and hold brake pedal in applied position.
- (2) Pull switch plunger all the way out to fully extended position.
- (3) Release brake pedal. Then pull pedal fully rearward. Pedal will set plunger to correct position as pedal pushes plunger into switch body. Switch will make ratcheting sound as it self adjusts.

REAR DRUM BRAKE

The rear drum brakes are equipped with a self-adjusting mechanism. Under normal circumstances, the only time adjustment is required is when the shoes are replaced, removed for access to other parts, or when one or both drums are replaced.

Adjustment can be made with a standard brake gauge or with adjusting tool. Adjustment is performed with the complete brake assembly installed on the backing plate.

ADJUSTMENT WITH BRAKE GAUGE

(1) Be sure parking brakes are fully released.

ADJUSTMENTS (Continued)

- (2) Raise rear of vehicle and remove wheels and brake drums.
- (3) Verify that left and right automatic adjuster levers and cables are properly connected.
- (4) Insert brake gauge in drum. Expand gauge until gauge inner legs contact drum braking surface. Then lock gauge in position (Fig. 58).

Fig. 58 Adjusting Gauge On Drum

(5) Reverse gauge and install it on brake shoes. Position gauge legs at shoe centers as shown (Fig. 59). If gauge does not fit (too loose/too tight), adjust shoes.

Fig. 59 Adjusting Gauge On Brake Shoes

- (6) Pull shoe adjuster lever away from adjuster screw star wheel.
- (7) Turn adjuster screw star wheel (by hand) to expand or retract brake shoes. Continue adjustment until gauge outside legs are light drag-fit on shoes.
- (8) Install brake drums and wheels and lower vehicle.
- (9) Drive vehicle and make one forward stop followed by one reverse stop. Repeat procedure 8-10

times to operate automatic adjusters and equalize adjustment.

NOTE: Bring vehicle to complete standstill at each stop. Incomplete, rolling stops will not activate automatic adjusters.

ADJUSTMENT WITH ADJUSTING TOOL

- (1) Be sure parking brake lever is fully released.
- (2) Raise vehicle so rear wheels can be rotated freely.
- (3) Remove plug from each access hole in brake support plates.
- (4) Loosen parking brake cable adjustment nut until there is slack in front cable.
- (5) Insert adjusting tool through support plate access hole and engage tool in teeth of adjusting screw star wheel (Fig. 60).

Fig. 60 Brake Adjustment

- (6) Rotate adjuster screw star wheel (move tool handle upward) until slight drag can be felt when wheel is rotated.
- (7) Push and hold adjuster lever away from star wheel with thin screwdriver.
- (8) Back off adjuster screw star wheel until brake drag is eliminated.
- (9) Repeat adjustment at opposite wheel. Be sure adjustment is equal at both wheels.
 - (10) Install support plate access hole plugs.
 - (11) Adjust parking brake cable and lower vehicle.
- (12) Install brake drums and wheels and lower vehicle.
- (13) Drive vehicle and make one forward stop followed by one reverse stop. Repeat procedure 8-10 times to operate automatic adjusters and equalize adjustment.

ADJUSTMENTS (Continued)

NOTE: Bring vehicle to complete standstill at each stop. Incomplete, rolling stops will not activate automatic adjusters.

PARKING BRAKE CABLE TENSIONER

NOTE: Parking brake adjustment is only necessary when the tensioner, or a cable has been replaced or disconnected for service. When adjustment is necessary, perform the following procedure for proper parking brake operation.

ADJUSTMENT

- (1) Raise vehicle.
- (2) Back off tensioner adjusting nut to create slack in cables.
- (3) Remove rear wheel/tire assemblies and remove brake drums.
- (4) Check rear brake shoe adjustment with standard brake gauge. Excessive shoe-to-drum clearance, or worn brake components will result in faulty parking brake adjustment and operation.
- (5) Verify that parking brake cables operate freely and are not binding, or seized. Replace faulty cables, before proceeding.
- (6) Reinstall brake drums and wheel/tire assemblies after brake shoe adjustment is complete.
- (7) Lower vehicle enough for access to parking brake lever. Then **fully** apply parking brakes. Leave brakes applied until adjustment is complete.
- (8) Raise vehicle and mark tensioner rod 6.5 mm (1/4 in.) from tensioner bracket (Fig. 61).
- (9) Tighten adjusting nut at equalizer until mark on tensioner rod moves into alignment with tensioner bracket.
- (10) Lower vehicle until rear wheels are 15-20 cm (6-8 in.) off shop floor.
- (11) Release parking brake lever and verify that rear wheels rotate freely without drag.
 - (12) Lower vehicle.

NOTE: Do not loosen/tighten equalizer adjusting nut for any reason after completing adjustment.

J9405-158

Fig. 61 Tensioner Rod Measurement

SPECIFICATIONS

BRAKE FLUID

The brake fluid used in this vehicle must conform to DOT 3 specifications and SAE J1703 standards. No other type of brake fluid is recommended or approved for usage in the vehicle brake system. Use only Mopar brake fluid or an equivalent from a tightly sealed container.

CAUTION: Never use reclaimed brake fluid or fluid from an container which has been left open. An open container will absorb moisture from the air and contaminate the fluid.

CAUTION: Never use any type of a petroleumbased fluid in the brake hydraulic system. Use of such type fluids will result in seal damage of the vehicle brake hydraulic system causing a failure of the vehicle brake system. Petroleum based fluids would be items such as engine oil, transmission fluid, power steering fluid ect.

SPECIFICATIONS (Continued)

BRAKE COMPONENTS

Disc Brake Caliper Type Sliding **Disc Brake Rotor** Type Ventilated Max. Runout 0.12 mm (0.005 in.) Max. Thickness Variation . . 0.013 mm (0.0005 in.) **Brake Drum** Size 9 in. or 10 in. **Brake Booster** Type Dual Diaphragm TOROUE CHART **DESCRIPTION TORQUE Brake Pedal Brake Booster Master Cylinder** Mounting Nuts 17.5 N·m (155 in. lbs.) Brake Lines 19 N·m (170 in. lbs.) **Combination Valve** Mounting Nuts 17.5 N·m (155 in. lbs.) Brake Lines 19 N·m (170 in. lbs.) **Caliper** Mounting Bolts 15 N·m (11 ft. lbs.) **Wheel Cylinder** Mounting Bolts 10 N·m (7 ft. lbs.) Brake Line 16 N·m (12 ft. lbs.) **Parking Brake** Lever Screws 10-14 N·m (7-10 ft. lbs.) Lever Bracket Screws ... 10-14 N·m (7-10 ft. lbs.)

Cable Retainer Nut 1.5 N·m (14 in. lbs.)

SPCIAL TOOLS

BASE BRAKES

Installer Caliper Dust Boot C-4842

Handle C-4171

ANTILOCK BRAKES

INDEX

page	page
GENERAL INFORMATION	SERVICE PROCEDURES
ANTILOCK BRAKE SYSTEM 30	BLEEDING ABS BRAKE SYSTEM 33
DESCRIPTION AND OPERATION	REMOVAL AND INSTALLATION
ABS WARNING LAMP 33	ACCELERATION SWITCH
ACCELERATION SWITCH	FRONT WHEEL SPEED SENSOR 34
ANTILOCK BRAKE SYSTEM 30	HYDRAULIC CONTROL UNIT/
COMBINATION VALVE 32	CONTROLLER ANTILOCK BRAKES 33
CONTROLLER ANTILOCK BRAKES 31	REAR WHEEL SPEED SENSOR 34
HYDRAULIC CONTROL UNIT	DISASSEMBLY AND ASSEMBLY
WHEEL SPEED SENSORS AND	HYDRAULIC CONTROL UNIT/
TONE WHEEL	CONTROLLER ANTILOCK BRAKE 36
DIAGNOSIS AND TESTING	SPECIFICATIONS
ANTILOCK BRAKES	TORQUE CHART 37

GENERAL INFORMATION

ANTILOCK BRAKE SYSTEM

The antilock brake system (ABS) is an electronically operated, all wheel brake control system.

The system is designed to prevent wheel lockup and maintain steering control during periods of high wheel slip when braking. Preventing lockup is accomplished by modulating fluid pressure to the wheel brake units.

The hydraulic system is a three channel design. The front wheel brakes are controlled individually and the rear wheel brakes in tandem (Fig. 1). The ABS electrical system is separate from other electrical circuits in the vehicle. A specially programmed controller antilock brake unit operates the system components.

ABS system major components include:

- Controller Antilock Brakes (CAB)
- Hydraulic Control Unit (HCU)
- Wheel Speed Sensors (WSS)
- Acceleration Switch
- ABS Warning Light

DESCRIPTION AND OPERATION

ANTILOCK BRAKE SYSTEM

The purpose of the antilock system is to prevent wheel lockup during periods of high wheel slip. Preventing lockup helps maintain vehicle braking action and steering control.

The antilock CAB activates the system whenever sensor signals indicate periods of high wheel slip. High wheel slip can be described as the point where

Fig. 1 Antilock Brake System

wheel rotation begins approaching 20 to 30 percent of actual vehicle speed during braking. Periods of high wheel slip occur when brake stops involve high pedal pressure and rate of vehicle deceleration.

Battery voltage is supplied to the CAB ignition terminal when the ignition switch is turned to Run position. The CAB performs a system initialization procedure at this point. Initialization consists of a static and dynamic self check of system electrical components.

The static check occurs after the ignition switch is turned to Run position. The dynamic check occurs when vehicle road speed reaches approximately 30 kph (18 mph). During the dynamic check, the CAB

DESCRIPTION AND OPERATION (Continued)

briefly cycles the pump and solenoids to verify operation.

If an ABS component exhibits a fault during initialization, the CAB illuminates the amber warning light and registers a fault code in the microprocessor memory.

NORMAL BRAKING

During normal braking, the master cylinder, power booster and wheel brake units all function as they would in a vehicle without ABS. The HCU components are not activated.

ANTILOCK BRAKING

The antilock system prevents lockup during high slip conditions by modulating fluid apply pressure to the wheel brake units.

Brake fluid apply pressure is modulated according to wheel speed, degree of slip and rate of deceleration. A sensor at each wheel converts wheel speed into electrical signals. These signals are transmitted to the CAB for processing and determination of wheel slip and deceleration rate.

The ABS system has three fluid pressure control channels. The front brakes are controlled separately and the rear brakes in tandem. A speed sensor input signal indicating a high slip condition activates the CAB antilock program.

Two solenoid valves are used in each antilock control channel. The valves are all located within the HCU valve body and work in pairs to either increase, hold, or decrease apply pressure as needed in the individual control channels.

The solenoid valves are not static during antilock braking. They are cycled continuously to modulate pressure. Solenoid cycle time in antilock mode can be measured in milliseconds.

CONTROLLER ANTILOCK BRAKES

The CAB monitors wheel speed sensor inputs continuously while the vehicle is in motion. However, the CAB will not activate any ABS components as long as sensor inputs and the acceleration switch indicate normal braking.

The CAB is mounted to the HCU and operates the ABS system (Fig. 2) separate from other vehicle electrical circuits. CAB voltage source is through the ignition switch in the RUN position.

The CAB contains dual microprocessors. A logic block in each microprocessor receives identical sensor signals. These signals are processed and compared simultaneously.

The CAB contains a self check program that illuminates the ABS warning light when a system fault is detected. Faults are stored in a diagnostic program memory and are accessible with the DRB scan tool.

ABS faults remain in memory until cleared, or until after the vehicle is started approximately 50 times. Stored faults are **not** erased if the battery is disconnected.

Fig. 2 Controller Antilock Brakes

HYDRAULIC CONTROL UNIT

The HCU consists of a valve body, pump body, accumulators, pump motor, and wire harnesses (Fig. 2).

The pump, motor, and accumulators are combined into an assembly attached to the valve body. The accumulators store the extra fluid released to the system for ABS mode operation. The pump provides the fluid volume needed and is operated by a DC type motor. The motor is controlled by the CAB.

The valve body contains the solenoid valves. The valves modulate brake pressure during antilock braking and are controlled by the CAB.

The HCU provides three channel pressure control to the front and rear brakes. One channel controls the rear wheel brakes in tandem. The two remaining channels control the front wheel brakes individually.

During antilock braking, the solenoid valves are opened and closed as needed. The valves are not static. They are cycled rapidly and continuously to modulate pressure and control wheel slip and deceleration.

During normal braking, the HCU solenoid valves and pump are not activated. The master cylinder and power booster operate the same as a vehicle without an ABS brake system.

During antilock braking, solenoid valve pressure modulation occurs in three stages, pressure increase, pressure hold, and pressure decrease. The valves are all contained in the valve body portion of the HCU.

Pressure Decrease

The outlet valve is opened and the inlet valve is closed during the pressure decrease cycle.

DESCRIPTION AND OPERATION (Continued)

A pressure decrease cycle is initiated when speed sensor signals indicate high wheel slip at one or more wheels. At this point, the CAB closes the inlet then opens the outlet valve, which also opens the return circuit to the accumulators. Fluid pressure is allowed to bleed off (decrease) as needed to prevent wheel lock.

Once the period of high wheel slip has ended, the CAB closes the outlet valve and begins a pressure increase or hold cycle as needed.

Pressure Hold

Both solenoid valves are closed in the pressure hold cycle. Fluid apply pressure in the control channel is maintained at a constant rate. The CAB maintains the hold cycle until sensor inputs indicate a pressure change is necessary.

Pressure Increase

The inlet valve is open and the outlet valve is closed during the pressure increase cycle. The pressure increase cycle is used to counteract unequal wheel speeds. This cycle controls re-application of fluid apply pressure due to changing road surfaces or wheel speed.

WHEEL SPEED SENSORS AND TONE WHEEL

A speed sensor is used at each wheel. The front sensors are mounted to the steering knuckles. The rear sensors at the outboard end of the axle.

The sensors convert wheel speed into a small AC electrical signal. This signal is transmitted to the CAB. The CAB converts the AC signal into a digital signal for each wheel. This voltage is generated by magnetic induction when a tone wheel passes by the stationary magnet of the wheel speed sensor.

A gear type tone ring serves as the trigger mechanism for each sensor. The tone rings are mounted at the outboard ends of the front and rear axle shafts.

Different sensors are used at the front and rear wheels (Fig. 3). The front/rear sensors have the same electrical values but are not interchangeable. The sensors have a resistance between 900 and 1300 ohms.

SPEED SENSOR AIR GAP

Front Sensor

Front sensor air gap is fixed and not adjustable. Only rear sensor air gap is adjustable.

Although front air gap is not adjustable, it can be checked if diagnosis indicates this is necessary. Front air gap should be 0.36 to 1.5 mm (0.014 to 0.059 in.). If gap is incorrect, the sensor is either loose, or damaged.

Rear Sensor

A rear sensor air gap adjustment is only needed when reinstalling an original sensor. Replacement

Fig. 3 Wheel Speed Sensors

sensors have an air gap spacer attached to the sensor pickup face. The spacer establishes correct air gap when pressed against the tone ring during installation. As the tone ring rotates, it peels the spacer off the sensor to create the required air gap. Rear sensor air gap is 0.92-1.275 mm (0.036-0.05 in.).

Sensor air gap measurement, or adjustment procedures are provided in this section. Refer to the front, or rear sensor removal and installation procedures as required.

COMBINATION VALVE

The combination valve contains a pressure differential valve and switch and a rear brake proportioning valve. The valve is not repairable. It must be replaced if diagnosis indicates this is necessary.

The pressure differential switch is connected to the brake warning light. The switch is actuated by movement of the switch valve. The switch monitors fluid pressure in the separate front/rear brake hydraulic circuits.

A decrease or loss of fluid pressure in either hydraulic circuit will cause the switch valve to shuttle to the low pressure side. Movement of the valve pushes the switch plunger upward. This action closes the switch internal contacts completing the electrical circuit to the red warning light. The switch valve will remain in an actuated position until repairs are made.

The rear proportioning valve is used to balance front-rear brake action. The valve allows normal fluid flow during moderate effort brake stops. The valve only controls (meters) fluid flow during high effort brake stops.

ACCELERATION SWITCH

The acceleration switch is located under the rear seat. The switch (Fig. 4), provides an additional vehicle deceleration reference during 4WD operation. The

DESCRIPTION AND OPERATION (Continued)

switch is monitored by the CAB at all times. The switch reference signal is utilized by the CAB when all wheels are decelerating at the same speed.

Fig. 4 Acceleration Switch

ABS WARNING LAMP

The amber ABS warning lamp is located in the instrument cluster. The lamp illuminates at start-up to perform a self check. The lamp goes out when the self check program determines the system is operating normal. If an ABS component exhibits a fault the CAB will illuminate the lamp and register a trouble code in the microprocessor.

The lamp is controlled by the CAB. The lamp is illuminated when the CAB sends a ground signal to the ABS relay. The ABS relay then grounds the lamp circuit and illuminates the lamp.

DIAGNOSIS AND TESTING

ANTILOCK BRAKES

The ABS brake system performs several self-tests every time the ignition switch is turned on and the vehicle is driven. The CAB monitors the systems input and output circuits to verify the system is operating correctly. If the on board diagnostic system senses that a circuit is malfunctioning the system will set a trouble code in its memory.

NOTE: The MDS or DRB III scan tool is used to diagnose the ABS system. For additional information refer to the Antilock Brake section in Group 8W. For test procedures refer to the Chassis Diagnostic Manual.

SERVICE PROCEDURES

BLEEDING ABS BRAKE SYSTEM

ABS system bleeding requires conventional bleeding methods plus use of the DRB scan tool. The procedure involves performing a base brake bleeding, followed by use of the scan tool to cycle and bleed the HCU pump and solenoids. A second base brake bleeding procedure is then required to remove any air remaining in the system.

- (1) Perform base brake bleeding. Refer to base brake section for procedure.
 - (2) Connect scan tool to the Data Link Connector.
- (3) Select ANTILOCK BRAKES, followed by MIS-CELLANEOUS, then ABS BRAKES. Follow the instructions displayed. When scan tool displays TEST COMPLETE, disconnect scan tool and proceed.
- (4) Perform base brake bleeding a second time. Refer to base brake section for procedure.
- (5) Top off master cylinder fluid level and verify proper brake operation before moving vehicle.

REMOVAL AND INSTALLATION

HYDRAULIC CONTROL UNIT/CONTROLLER ANTILOCK BRAKES

RFMOVAL

- (1) Remove negative battery cable from the battery.
- (2) Pull up on the CAB harness connector release (Fig. 5) and remove connector.
 - (3) Remove brake lines from the HCU.
- (4) Remove HCU/CAB mounting nuts and bolt (Fig. 6) and remove HCU/CAB.

Fig. 5 CAB Harness Connector Release

Fig. 6 HCU/CAB Mounting

INSTALLATION

- (1) Install HCU/CAB on the mounting studs.
- (2) Install mounting nuts and bolt. Tighten to 11.5 N·m (102 in. lbs.).
- (3) Install brake lines to the HCU and tighten to 19 N·m (170 in. lbs.).
- (4) Install wiring harness connector to the CAB and push down on the release to secure the connector.
 - (5) Install negative battery cable to the battery.
 - (6) Bleed ABS brake system.

FRONT WHEEL SPEED SENSOR

REMOVAL

- (1) Raise vehicle and turn wheel outward for easier access to sensor.
 - (2) Remove sensor wire from mounting brackets.
- (3) Clean sensor and surrounding area with shop towel before removal.
- (4) Remove bolt attaching sensor to steering knuckle and remove sensor (Fig. 7).
- (5) Remove sensor wire from brackets on body and steering knuckle.
- (6) Unseat sensor wire grommet in wheel house panel.
- (7) In engine compartment, disconnect sensor wire connector at harness plug. Then remove sensor and wire.

INSTALLATION

- (1) If **original** sensor will be installed, wipe all traces of old spacer material off sensor pickup face. Use a dry shop towel for this purpose.
- (2) Apply Mopar Lock N' Seal or Loctite ® 242 to bolt that secures sensor in steering knuckle. Use new sensor bolt if original bolt is worn or damaged.

Fig. 7 Front Wheel Speed Sensor

- (3) Position sensor on steering knuckle. Seat sensor locating tab in hole in knuckle and install sensor attaching bolt finger tight.
- (4) Tighten sensor attaching bolt to $4.7 \text{ N} \cdot \text{m}$ (42 in. lbs.).
- (5) If original sensor has been installed, check sensor air gap. Air gap should be 0.36 to 1.5 mm (0.014 to 0.059 in.). If gap is incorrect, sensor is either loose, or damaged.
- (6) Secure sensor wire to steering knuckle and body brackets.
- (7) Route sensor wire forward and behind shock absorber. Then attach sensor wire to spring seat bracket with grommets on sensor wire.
- (8) Route sensor wire to outer sill bracket. Remove all twists or kinks from wire.
- (9) Attach sensor wire to sill bracket with grommet. Be sure wire is free of twists and kinks.
- (10) Verify sensor wire routing. Wire should loop forward and above sill bracket. Loose end of wire should be below sill bracket and towards brake hose.
- (11) Seat sensor wire grommet in body panel and clip wire to brake line at grommet location.
- (12) Connect sensor wire to harness in engine compartment.

REAR WHEEL SPEED SENSOR

REMOVAL

- (1) Raise and fold rear seat forward for access to rear sensor connectors (Fig. 8).
 - (2) Disconnect sensors at rear harness connectors.

(3) Push sensor grommets and sensor wires through floorpan.

Fig. 8 Acceleration Switch And Rear Sensor Connections

- (4) Raise vehicle.
- (5) Disconnect sensor wires at rear axle connectors.
 - (6) Remove wheel and tire assembly.
 - (7) Remove brake drum.
- (8) Remove clips securing sensor wires to brake lines, rear axle and, brake hose.
 - (9) Unseat sensor wire support plate grommet.
- (10) Remove bolt attaching sensor to bracket and remove sensor (Fig. 9).

Fig. 9 Rear Wheel Speed Sensor

INSTALLATION

- (1) If **original sensor** is being installed, remove any remaining pieces of cardboard spacer from sensor pickup face. Use dry shop towel only to remove old spacer material.
- (2) Insert sensor wire through support plate hole. Then seat sensor grommet in support plate.
- (3) Apply Mopar Lock N' Seal or Loctite ® 242 to original sensor bolt. Use new bolt if original is worn or damaged.
- (4) Install sensor bolt finger tight only at this time.
- (5) If **original** rear sensor was installed, adjust sensor air gap to 0.92-1.275 mm (0.036-0.05 in.). Use feeler gauge to measure air gap (Fig. 10). Tighten sensor bolt to 13 N·m (115 in. lbs.).

Fig. 10 Setting Air Gap On Original Rear Sensor

(6) If **new** sensor was installed, push cardboard spacer on sensor face against tone ring (Fig. 11). Then tighten sensor bolt to $13~N\cdot m$ (115 in. lbs.). Correct air gap will be established as tone ring rotates and peels spacer off sensor face.

Fig. 11 New Rear Sensor

- (7) Route sensor wires to rear seat area.
- (8) Feed sensor wires through floorpan access hole and seat sensor grommets in floorpan.

- (9) Verify that rear sensor wires are secured to rear brake hose and axle with clips. Verify that wire is clear of rotating components.
- (10) Install brake drum and wheel and tire assembly.
 - (11) Lower vehicle.
- (12) Connect sensor wire to harness connector. Then reposition carpet and fold rear seat down.

ACCELERATION SWITCH

RFMOVAL

- (1) Raise and fold rear seat assembly forward for access to sensor.
 - (2) Disconnect switch harness.
 - (3) Remove switch mounting screws (Fig. 12)
 - (4) Remove the acceleration switch.

Fig. 12 Acceleration Switch Mounting

INSTALLATION

CAUTION: The mercury switch (inside the acceleration switch), will not function properly if the switch is mispositioned. Verify that the switch locating arrow is pointing to the front of the vehicle (Fig. 13).

- (1) Position switch in mounting bracket.
- (2) Install switch mounting bolts and tighten to 3 $N \cdot m$ (27.5 in. lbs.).
- (3) Connect harness to switch. Be sure harness connector is firmly seated.
 - (4) Move seat back to normal position.

Fig. 13 Acceleration Switch

DISASSEMBLY AND ASSEMBLY

HYDRAULIC CONTROL UNIT/CONTROLLER ANTILOCK BRAKE

DISASSEMBLY

- (1) Remove pump motor connector from the CAB.
- (2) Remove CAB mounting screws from the HCU (Fig. 14).
 - (3) Remove CAB from the HCU.

Fig. 14 CAB Mounting Screws

ASSEMBLY

- (1) Install the CAB onto the HCU.
- (2) Install the CAB mounting screws and tighten to $1.8~\mathrm{N\cdot m}$ (16 in. lbs.).
 - (3) Install pump motor connector to the CAB.

SPECIFICATIONS

TORQUE CHART

DESCRIPTION	TORQUE
Acceleration Sens	sor
Sensor Bolt	3 N·m (27.5 in. lbs.)
Bracket Bolt	1.7 N·m (15.5 in. lbs.)
Hydraulic Cont	rol Unit/Controller Antilock
Brakes	
Mounting Nuts .	11.5 N·m (102 in. lbs.)
Brake Lines	
Controller Antilo	ck Brakes
Mounting Screws	s 1.8 N·m (16 in. lbs.)
Wheel Speed Sens	sors
Front Mounting	Bolt 4.7 N·m (42 in. lbs.)
Rear Mounting B	Solt 13 N·m (115 in. lbs.)

CLUTCH

CONTENTS

page	page
GENERAL INFORMATION	IMPROPER CLUTCH RELEASE OR
CLUTCH COMPONENTS 1	ENGAGEMENT 3
CLUTCH HYDRAULIC FLUID 2	MISALIGNMENT 5
CLUTCH LUBRICATION 2	SERVICE PROCEDURES
INSTALLATION METHODS AND PARTS	CLUTCH COMPONENT LUBRICATION 5
USAGE 2	CLUTCH FLUID LEVEL 10
SAFETY PRECAUTIONS 1	CLUTCH LINKAGE FLUID 5
DESCRIPTION AND OPERATION	FLYWHEEL 10
CLUTCH OPERATION 2	REMOVAL AND INSTALLATION
DIAGNOSIS AND TESTING	CLUTCH COVER AND DISC 11
CLUTCH CONTAMINATION 3	CLUTCH HOUSING REPLACEMENT—AX15 12
CLUTCH RUNOUT 3	CLUTCH HYDRAULIC LINKAGE 14
DIAGNOSTIC CHARTS 5	PILOT BEARING 14
GENERAL INFORMATION	RELEASE BEARING
	SPECIFICATIONS
	TOROUF 15

GENERAL INFORMATION

CLUTCH COMPONENTS

The clutch mechanism consists of a single, dry-type disc and a diaphragm style clutch cover. A hydraulic linkage is used to operate the clutch release bearing and fork.

A needle-type pilot bearing in the crankshaft flange supports the transmission input shaft. A sleeve type release bearing is used to engage and disengage the clutch cover pressure plate.

The release bearing is operated by a release fork in the clutch housing. The fork pivots on a ball stud mounted in the housing. The release fork is actuated by a hydraulic slave cylinder mounted in the housing. The slave cylinder is operated by a clutch master cylinder mounted on the dash panel. The cylinder push rod is connected to the clutch pedal.

The clutch disc has cushion springs in the disc hub. The clutch disc facing is riveted to the hub. The facing is made from a non-asbestos material. The clutch cover pressure plate is a diaphragm type with a one-piece spring and multiple release fingers. The pressure plate release fingers are preset during manufacture and are not adjustable.

HYDRAULIC LINKAGE COMPONENTS

The hydraulic linkage consists of a clutch master cylinder with integral reservoir, a clutch slave cylinder and an interconnecting fluid line.

The clutch master cylinder push rod is connected to the clutch pedal. The slave cylinder push rod is

connected to the clutch release fork. The master cylinder is mounted on the driver side of the dash panel adjacent to the brake master cylinder and booster assembly. This positioning is similar for both left and right hand drive models.

SAFETY PRECAUTIONS

EXERCISE CARE WHEN SERVICING WARNING: CLUTCH COMPONENTS. FACTORY INSTALLED CLUTCH DISCS DO NOT CONTAIN ASBESTOS FIBERS. DUST AND DIRT ON CLUTCH PARTS MAY CONTAIN ASBESTOS FIBERS FROM AFTERMAR-KET COMPONENTS. BREATHING EXCESSIVE CON-CENTRATIONS OF THESE FIBERS CAN CAUSE SERIOUS BODILY HARM. WEAR A RESPIRATOR DURING SERVICE AND NEVER CLEAN CLUTCH COMPONENTS WITH COMPRESSED AIR OR WITH A DRY BRUSH. EITHER CLEAN THE COMPONENTS WITH A WATER DAMPENED RAGS OR USE A VAC-**UUM CLEANER SPECIFICALLY DESIGNED FOR** REMOVING ASBESTOS FIBERS AND DUST. DO NOT CREATE DUST BY SANDING A CLUTCH DISC. REPLACE THE DISC IF THE FRICTION MATERIAL IS DAMAGED OR CONTAMINATED. DISPOSE OF ALL **DUST AND DIRT CONTAINING ASBESTOS FIBERS** IN SEALED BAGS OR CONTAINERS. THIS WILL HELP MINIMIZE EXPOSURE TO YOURSELF AND TO OTHERS. FOLLOW ALL RECOMMENDED SAFETY PRACTICES PRESCRIBED BY THE OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA) AND THE ENVIRONMENTAL SAFETY AGENCY (EPA), FOR THE HANDLING AND DISPOSAL OF PRODUCTS CONTAINING ASBESTOS.

GENERAL INFORMATION (Continued)

CLUTCH HYDRAULIC FLUID

The clutch hydraulic linkage cylinders and lines are prefilled with fluid at the factory.

The hydraulic system should not require additional fluid under normal circumstances. In fact, the reservoir fluid level will actually increase as normal clutch wear occurs. For this reason, it is important to avoid overfilling, or removing fluid from the reservoir. This action will cause clutch release problems.

If inspection or diagnosis indicates additional fluid may be needed, use Mopar® brake fluid, or an equivalent, meeting SAE J1703 and DOT 3 standards. Do not use any other type of fluid.

CLUTCH LUBRICATION

Proper clutch component lubrication is important to satisfactory operation. Using the correct lubricant and avoiding over lubrication are also equally important.

During service, apply recommended lubricant sparingly. Do not overlubricate as this could result in clutch disc and pressure plate contamination.

Clutch and transmission components requiring lubrication are:

- pilot bearing.
- release lever pivot ball stud.
- release lever pivot surfaces.
- release bearing bore.
- clutch pedal pivot bore and bushings.
- transmission input shaft splines and pilot hub.
- release bearing slide surface of front bearing retainer.

Do not apply grease to any part of the clutch cover or disc.

Use Mopar® multi-mileage grease or a silicone grease for the clutch pedal bushings and pivot shaft.

Use Mopar® high temperature bearing grease or equivalent for the pilot bearing, release bearing bore, transmission input shaft and release fork components. Apply recommended amounts only and do not overlubricate.

INSTALLATION METHODS AND PARTS USAGE

Distortion of clutch components during installation and the use of non-standard components are common causes of clutch malfunction.

Improper clutch cover bolt tightening can distort the cover. The usual result is clutch grab, chatter and rapid wear.

An improperly seated flywheel and/or clutch housing are additional causes of clutch failure. Improper seating will produce misalignment and additional clutch problems.

The use of non-standard or low quality parts will also lead to problems and wear. Use recommended factory parts only.

A cocked pilot bearing is another cause of clutch noise, drag, hard shifting, and rapid bearing wear. Always use an alignment tool to install a new bearing. This practice helps avoid cocking the bearing during installation.

DESCRIPTION AND OPERATION

CLUTCH OPERATION

Leverage, clamping force, and friction are what make the clutch work. The disc serves as the friction element and a diaphragm spring and pressure plate provide the clamping force. The clutch pedal, hydraulic linkage, release lever and bearing provide the leverage.

The clutch cover assembly clamps the disc against the flywheel. The assembly consists of the cover, diaphragm spring, pressure plate, and fulcrum components. The pressure plate clamps the clutch disc against the flywheel and the spring provides the clamping force.

The clutch disc friction material is riveted to the disc hub. The hub bore is splined for installation on the transmission input shaft. The hub splines connect the disc to the transmission.

The clutch linkage uses hydraulic pressure to operate the clutch. The clutch master cylinder push rod is connected to the clutch pedal and the slave cylinder push rod is connected to the release lever in the clutch housing.

Depressing the clutch pedal develops fluid pressure in the clutch master cylinder. This pressure is transmitted to the slave cylinder through a connecting line. In turn, the slave cylinder operates the clutch release lever.

The clutch release bearing is mounted on the transmission front bearing retainer. The bearing is attached to the release lever, which moves the bearing into contact with the clutch cover diaphragm spring.

Slave cylinder force causes the release lever to move the release bearing into contact with the diaphragm spring. As additional force is applied, the bearing presses the diaphragm spring fingers inward on the fulcrums. This action moves the pressure plate rearward relieving clamp force on the disc. The clutch disc is disengaged and freewheeling at this point.

The process of clutch re-engagement is simply the reverse of what occurs during disengagement. Releasing pedal pressure removes clutch linkage pressure. The release bearing moves away from the diaphragm spring which allows the pressure plate to exert clamping force on the clutch disc.

DIAGNOSIS AND TESTING

GENERAL INFORMATION

Problem diagnosis will generally require a road test to determine the type of fault. Component inspection will then determine the problem cause after road testing.

Drive the vehicle at normal speeds during the road test. Shift the transmission through all gear ranges and observe clutch action.

If chatter, grab, slip, or improper release is experienced, remove and inspect the clutch components. However, if the problem is noise or hard shifting, further diagnosis may be needed. The transmission or another driveline component may actually be at fault. Careful observation during the test will help narrow the problem area.

CLUTCH CONTAMINATION

Fluid contamination is a frequent cause of clutch malfunctions. Oil, grease, water, or other fluids on the clutch contact surfaces will cause faulty operation. The usual result is chatter, slip and grab.

During inspection, note if any components are contaminated. Look for evidence of oil, grease, clutch hydraulic fluid, or water/road splash on clutch components.

Oil contamination indicates a leak at either the rear main seal or transmission input shaft. Oil leaks produce a residue of oil on the housing interior and on the clutch cover and flywheel. Heat buildup caused by slippage between the clutch cover, disc, and flywheel can sometimes bake the oil residue onto the components. The glaze-like residue ranges in color from amber to black.

Road splash contamination means dirt/water is entering the clutch housing. This may be due to loose bolts, housing cracks, or through the slave cylinder opening. Driving through deep water puddles can force water/road splash into the housing through such openings.

Clutch fluid leaks are from loose or damaged clutch linkage fluid lines or connections. However, most clutch fluid leaks will usually be noted and corrected before severe contamination occurs.

Grease contamination is usually a product of excessive lubrication during clutch service. Apply only a small amount of grease to the input shaft splines, bearing retainer, pilot bearing, release fork and pivot stud. Excess grease can be thrown off during operation and contaminate the disc.

IMPROPER CLUTCH RELEASE OR ENGAGEMENT

Clutch release or engagement problems are caused by wear, or damage to one or more clutch components. A visual inspection of the release components will usually reveal the problem part.

Release problems can result in hard shifting and noise. Items to look for are: leaks at the clutch cylinders and interconnecting line; loose slave cylinder bolts; worn/loose release fork and pivot stud; damaged release bearing; and a worn clutch disc, or pressure plate.

Normal condensation in vehicles that are stored or out of service for long periods of time can generate enough corrosion to make the disc stick to the flywheel, or pressure plate. If this condition is experienced, correction only requires that the disc be loosened manually through the inspection plate opening.

Engagement problems usually result in slip, chatter/shudder, and noisy operation. The primary causes are clutch disc contamination; clutch disc wear; misalignment, or distortion; flywheel damage; or a combination of the foregoing. A visual inspection is required to determine the part actually causing the problem.

CLUTCH RUNOUT

CLUTCH DISC

Check the clutch disc before installation. Axial (face) runout of a new disc should not exceed 0.5 mm (0.020 in.). Measure runout about 6 mm (1/4 in.) from the outer edge of the disc facing. Obtain another disc if runout is excessive.

CLUTCH COVER

Check condition of the clutch cover before installation. A warped cover or diaphragm spring will cause grab and incomplete release or engagement. Be careful when handling the cover and disc. Impact can distort the cover, diaphragm spring, release fingers and the hub of the clutch disc.

Use an alignment tool when positioning the disc on the flywheel. The tool prevents accidental misalignment which could result in cover distortion and disc damage.

A frequent cause of clutch cover distortion is improper bolt tightening. To avoid warping the cover, the bolts must be tightened in a diagonal pattern and only 2–3 threads at a time to the specified torque.

FLYWHEEL

Flywheel runout should not exceed 0.08 mm (0.003 in.). Measure runout at the outer edge of the flywheel face with a dial indicator. Mount the indicator on a stud installed in place of one of the flywheel bolts.

Common causes of runout are:

- heat warpage.
- improper machining.

DIAGNOSIS AND TESTING (Continued)

- 1 Check clutch housing bolts. Tighten if loose. Be sure housing is fully seated on engine block.
- Check flywheel. Scuff sand face to remove glaze. Clean surface with wax and grease remover. Replace flywheel if severely scored, worn or cracked. Secure flywheel with new bolts (if removed). Do not reuse old bolts. Use Mopar Lock N'Seal on bolts.
- 3 Tighten clutch cover bolts 2-3 threads at a time, alternately and evenly (in a star pattern) to specified torque. Failure to do so could wrap the cover.
- 4 Check release fork. Replace fork if bent or worn. Make sure pivot and bearing contact surfaces are lubricated.
- 5 Check release fork pivot (in housing). Be sure pivot is suecure and ball end is lubricated.
- 6 Transmission input shaft bearing will cause noise, chatter, or improper release if damaged. Check condition before installing transmission.
- 7 Check slave cylinder. Replace it if leaking. Be sure cylinder is properly secured in housing and cylinder piston is seated in release fork.
- 8 Check input shaft seal if clutch cover and disc were oil covered. Replace seal if worn, or cut.

- Inspect release bearing slide surface of trans. front bearing retainer. Surface should be smooth, free of nicks, scores. Replace retainer if necessary. Lubricate slide surface before installing release bearing.
- 10 Do not replace release bearing unless actually faulty. Replace bearing only if seized, noisy, or damaged.
- 11 Check clutch cover diaphragm spring and release fingers. Replace cover if spring or fingers are bent, warped, broken, cracked. Do not tamper with factory spring setting as clutch problems will result.
- 12 Check condition of clutch cover. Replace clutch cover if plate surface is deeply scored. warped, worn, or cracked. Be sure cover is correct size and properly aligned on disc and flywheel.
- 13 Inspect clutch housing. Be sure bolts are tight. Replace housing if damaged.
- 14 Verify that housing alignment dowels are in position before installing housing.
- 15 Clean engine block surface before installing clutch housing. Dirt, grime can produce misalignment.
- 16 Make sure side of clutch disc marked "flywheel side" is toward flywheel.
- 17 Check rear main seal if clutch disc and cover were oil covered. Replace seal if necessary.
- 18 Check crankshaft flange (if flywheel is removed). Be sure flance is clean and flywheel bolt threads are in good condition.
- 19 Check pilot bearing. Replace bearing if damaged. Lube with Mopar high temp. bearing grease before installation.
- 20 Check transmission input shaft. Disc must slide freely on shaft splines. Lightly grease splines before installation. Replace shaft if splines or pilot bearing hub are damaged.
- 21 Check flywheel bolt torque. If bolts are loose, replace them. Use Mopar Lock N'Seal to secure new bolts.
- 22 Check clutch disc facing. Replace disc if facing is charred, scored, flaking off, or worn. Also check runout of new disc. Runout should not exceed 0.5 mm (0.02 in.).

J9506-2

DIAGNOSIS AND TESTING (Continued)

• incorrect bolt tightening.

X.J -

- improper seating on crankshaft flange shoulder.
- foreign material on crankshaft flange.

Flywheel machining is not recommended. The flywheel clutch surface is machined to a unique contour and machining will negate this feature. However, minor flywheel scoring can be cleaned up by hand with 180 grit emery, or with surface grinding equipment. Remove only enough material to reduce scoring (approximately 0.001 - 0.003 in.). Heavy stock removal is **not recommended.** Replace the flywheel if scoring is severe and deeper than 0.076 mm (0.003 in.). Excessive stock removal can result in flywheel cracking or warpage after installation; it can also weaken the flywheel and interfere with proper clutch release.

Clean the crankshaft flange before mounting the flywheel. Dirt and grease on the flange surface may cock the flywheel causing excessive runout. Use new bolts when remounting a flywheel and secure the bolts with Mopar® Lock And Seal. Tighten flywheel bolts to specified torque only. Overtightening can distort the flywheel hub causing runout.

MISALIGNMENT

Clutch housing alignment is important to proper clutch operation. The housing maintains alignment between the crankshaft and transmission input shaft. Misalignment can cause clutch noise, hard shifting, incomplete release and chatter. It can also result in premature wear of the pilot bearing, cover release fingers and clutch disc. In severe cases, misalignment can also cause premature wear of the transmission input shaft and front bearing.

Housing misalignment is generally caused by incorrect seating on the engine or transmission, loose housing bolts, missing alignment dowels, or housing damage. Tighten all the clutch housing bolts to proper torque before installing any struts. Also be sure alignment dowels are in place and seated in the block and housing before bolt tightening. Infrequently, misalignment may also be caused by housing mounting surfaces that are not completely parallel. Misalignment can be corrected with shims.

DIAGNOSTIC CHARTS

The diagnosis charts describe common clutch problems, causes and correction. Fault conditions are listed at the top of each chart. Conditions, causes and corrective action are outlined in the indicated columns.

SERVICE PROCEDURES

CLUTCH COMPONENT LUBRICATION

Proper clutch component lubrication is important to satisfactory operation. Using the correct lubricant and not over lubricating are equally important. Apply recommended lubricant sparingly to avoid disc and pressure plate contamination.

Clutch and transmission components requiring lubrication are:

- Pilot bearing.
- Release lever pivot ball stud.
- Release lever contact surfaces.
- Release bearing bore.
- Clutch disc hub splines.
- Clutch pedal pivot shaft bore.
- Clutch pedal bushings.
- Input shaft splines.
- Input shaft pilot hub.
- Transmission front bearing retainer slide surface.

NOTE: Never apply grease to any part of the clutch cover, or disc.

RECOMMENDED LUBRICANTS

Use Mopar® multi-purpose grease for the clutch pedal bushings and pivot shaft. Use Mopar® high temperature grease (or equivalent) for all other lubrication requirements. Apply recommended amounts and do not over lubricate.

CLUTCH LINKAGE FLUID

The integral clutch master cylinder reservoir, slave cylinder and fluid lines are pre-filled with fluid prior to assembly operations.

The hydraulic system should not require additional fluid under normal circumstances. In fact, the reservoir fluid level will actually increase as normal clutch wear occurs. For this reason, it is important to avoid overfilling, or removing fluid from the reservoir. This will cause clutch release problems.

If inspection or diagnosis indicates additional fluid may be needed, use Mopar® brake fluid, or an equivalent meeting standards SAE J1703 and DOT 3. Do not use any other type of fluid.

6 - 6 CLUTCH — X

CONDITION	POSSIBLE CAUSES	CORRECTION
DISC FACING WORN OUT	Normal wear. Driver frequently rides (slips) clutch. Results in rapid war overheating. Insufficient clutch cover diaphragm spring tension.	Replace clutch disc. Also replace cover if spring is weak or pressure plate surface is damaged.
CLUTCH DISC FACING CONTAMINATED WITH OIL, GREASE, OR CLUTCH FLUID	Leak at rear main seal or at transmission input shaft seal. Excessive amount of grease applied to input shaft splines. Road splash, water entering housing. Slave cylinder leaking.	Replace leaking seals. Apply less grease to input shaft splines. Replace clutch disc (do not clean and reuse). Clean clutch cover and reuse only if cover is in good condition. Replace slave cylinder if leaking.
CLUTCH IS RUNNING PARTIALLY DISENGAGED	Release bearing sticking-binding. Does not return to normal running position.	Verify that bearing is actually binding, the replace bearing and transmission front bearing retainer if sleeve surface is damaged.
FLYWHEEL HEIGHT INCORRECT	Flywheel surface improperly machined. Too much stock removed or surface is tapered.	Replace flywheel.
WRONG DISC OR PRESSURE PLATE INSTALLED	Incorrect parts order or model number.	Replace with correct parts. Compare old and new parts before installation.
CLUTCH DISC, COVER AND/OR DIAPHRAGM SPRING, SARPED, DISTORTED	Rough handling (impact) bent cover, spring, or disc. Incorrect bolt tightening sequence and method caused warped cover.	Install new disc or cover as needed. Follow installation/ tightening instructions.
FACING ON FLYWHEEL SIDE OF DISC TORN, GOUGED, WORN	Flywheel surface scored and nicked.	Reduce scores and nicks by sanding or surface grinding. Replace flywheel if scores-nicks are deeper than .002004 inch.
CLUTCH DISC FACING BURN (CHARRED). FLYWHEEL AND COVER PRESSURE PLATE SURFACES HEAVILY GLAZED	Frequent operation under high loads or hard acceleration conditions. Driver frequently rides (slips) clutch. Results in rapid wear and overheating of disc and cover.	Scuff sand flywheel. Replace clutch cover and disc. Alert driver to problem cause.

CONDITION	POSSIBLE CAUSES	CORRECTION
CLUTCH DISC WARPED	New disc not checked for axial runout before installation.	Replace disc. Be sure runout of new disc is less than .5 mm (.020 in.).
CLUTCH DISC BINDS ON INPUT SHAFT SPLINES	Clutch disc hub splines damaged during installation. Input shaft splines rough, damaged. Corrosion, rust formations on splines of disc and input shaft.	Clean, smooth and lubricate disc and shaft splines. Replace disc and/or input shaft if splines are severely damaged.
CLUTCH DISC RUSTED TO FLYWHEEL AND/OR PRESSURE PLATE	Occurs in vehicles stored, or not driven for extended periods of time. Also occurs after steam cleaning if vehicle is not used for extended period.	Remove clutch cover and disc. Sand rusted surfaces clean with 180 grit paper. Replace disc cover, and flywheel if corrosion is severe.
CLUTCH DISC FACING STICKS TO FLYWHEEL	Vacuum may form in pockets over rivet heads in clutch disc. Occurs as clutch cools down after use.	Drill 1/16 inch diameter hole through rivets and scuff sand disc facing with 180 grit paper.
CLUTCH DISC TOO THICK	1. Wrong disc installed.	1. Replace disc.
PILOT BEARING SEIZED, LOOSE, OR ROLLERS ARE WORN	Bearing cocked during installation. Bearing defective. Bearing not lubricated. Clutch misalignment.	Lubricate and install new bearing. Check and correct any misalignment.
CLUTCH WILL NOT DISENGAGE PROPERLY	Low clutch fluid level.	Top off reservoir and check for leaks.
	2. Clutch cover loose.	2. Tighten bolts.
	Clutch cover diaphragm spring bent or warped during transmission installation.	5. Replace cover.
	6. Clutch disc installed backwards.	Remove and reinstall disc correctly. Be sure disc side marked "to flywheel" is actually toward flywheel.
	Release fork bent or fork pivot is loose or damaged.	Replace fork and pivot if worn or damaged.
	Clutch master or slave cylinder fault.	Replace master and slave cylinder as assembly.

6 - 8 CLUTCH — X

CONDITION	POSSIBLE CAUSES	CORRECTION
CLUTCH DISC FACING COVERED WITH OIL, GREASE, OR CLUTCH FLUID	Oil leak at rear main or input shaft seal.	Correct leak and replace disc (do not clean and reuse the disc).
	Too much grease applied to splines or disc and input shaft.	Apply lighter grease coating to splines and replace disc (do not clean and reuse the disc).
CLUTCH DISC AND/OR COVER WARPED, OR DISC FACINGS EXHIBIT UNUSUAL WRONG TYPE	Incorrect or substandard parts.	Replace disc and/or cover with correct parts.
CLUTCH MASTER OR SLAVE CYLINDER PLUNGER DRAGGING- BINDING	Master or slave cylinder components worn or corroded.	Replace both cylinders as assembly (and reservoir).
NO FAULT FOUND WITH CLUTCH COMPONENTS	Problem actually related to suspension or driveline component.	Further diagnosis required. Check engine/transmission mounts, propeller shafts and U-joints, tires, suspension attaching parts and other driveline components as needed.
	2. Engine related problem.	2. Check EFI and ignition systems.
PARTIAL ENGAGEMENT OF CLUTCH DISC (ONE SIDE	Clutch pressure plate position setting incorrect or modified.	Replace clutch cover and disc.
WORN-OPPOSITE SIDE GLAZED AND LIGHTLY WORN)	Clutch cover, spring, or release fingers bent, distorted (rough handling, improper assembly).	Replace clutch cover and disc.
	3. Clutch disc damaged or distorted.	3. Replace disc.
	4. Clutch misalignment.	4. Check alignment and runout of flywheel, disc, or cover and/or clutch housing. Correct as necessary.

CONDITION	POSSIBLE CAUSE	CORRECTION
Clutch components damaged or worn out prematurely.	Incorrect or sub-standard clutch parts.	Replace with parts of correct type and quality.
Pilot bearing damaged.	Bearing cocked during installation. Bearing not lubricated prior to installation. Bearing defect.	Replace bearing. Be sure it is properly seated and lubricated before installing clutch.
	2. Clutch misalignment.	Check and correct misalignment caused by excessive runout of flywheel, disc, cover or clutch housing. Replace input shaft if bearing hub is damaged.
Loose components.	Attaching bolts loose at flywheel, cover, or clutch housing.	Tighten bolts to specified torque. Replace any clutch bolts that are damaged.
Components appear overheated. Hub of disc cracked or torsion damper springs are distorted or broken.	Frequent high load, full throttle operation.	Replace parts as needed. Alert driver to condition causes.
Contact surface of release bearing damaged.	Clutch cover incorrect, or release fingers are bent or distorted causing damage.	Replace clutch cover and bearing.
	2. Release bearing defect.	2. Replace bearing.
	3. Release bearing misaligned.	 Check and correct runout of clutch components. Check front bearing retainer sleeve surface. Replace if damaged.
Release bearing is noisy.	Release bearing defect.	1. Replace bearing.
Clutch pedal squeak.	Pivot pin loose. Pedal bushings worn out or cracked.	Tighten pivot pin. Replace bushings if worn or damaged. Lubricate pin and bushings with silicone base lubricator chassis grease.

CLUTCH FLUID LEVEL

The clutch fluid reservoir, master cylinder, slave cylinder and fluid lines are pre-filled with fluid at the factory during assembly operations.

The hydraulic system should not require additional fluid under normal circumstances. In fact, the reservoir fluid level will actually increase as normal clutch wear occurs. For this reason, it is important to avoid overfilling, or removing fluid from the reservoir.

If inspection or diagnosis indicates additional fluid may be needed, use Mopar® brake fluid, or an equivalent meeting standards SAE J1703 and DOT 3. Do not use any other type of fluid.

Clutch fluid level is checked at the master cylinder reservoir (Fig. 1). An indicator ring is provided either on the side, or interior rim of the reservoir (Fig. 2).

Be sure to wipe the reservoir and cover clean before removing the cover. This will avoid having dirt or foreign material fall into the reservoir during a fluid level check.

Fig. 1 Clutch Master Cylinder Reservoir And Cap

Fig. 2 Reservoir Fluid Level Indicator Ring

FLYWHEEL

Inspect the flywheel whenever the clutch disc, cover and housing are removed for service. Check condition of the flywheel face, hub, ring gear teeth, and flywheel bolts.

Minor scratches, burrs, or glazing on the flywheel face can be reduced with 180 grit emery cloth. However, the flywheel should be replaced if the disc contact surface is severely scored, heat checked, cracked, or obviously worn.

Flywheel machining is not recommended. The flywheel surface is manufactured with a unique contour that would be negated by machining. However, cleanup of minor flywheel scoring can be performed by hand with 180 grit emery, or with surface grinding equipment. Replace the flywheel if scoring is deeper than 0.0762 mm (0.003 in.).

Heavy stock removal by grinding is **not recommended**. Excessive stock removal can result in flywheel cracking or warpage after installation. It can also weaken the flywheel and interfere with proper clutch release.

Check flywheel runout if misalignment is suspected. Runout should not exceed 0.08 mm (0.003 in.). Measure runout at the outer edge of the flywheel face with a dial indicator. Mount the dial indicator on a stud installed in place of one of the clutch housing attaching bolts.

Clean the crankshaft flange before mounting the flywheel. Dirt and grease on the flange surface may cock the flywheel causing excessive runout.

Check condition of the flywheel hub and attaching bolts. Replace the flywheel if the hub exhibits cracks in the area of the attaching bolt holes.

Install new attaching bolts whenever the flywheel is replaced and use Mopar® Lock N' Seal, or Loctite 242 on the replacement bolt threads.

Recommended flywheel bolt torques are:

- 142 N·m (105 ft. lbs.) for 6-cylinder flywheels
- \bullet 68 N·m (50 ft. lbs.) plus an additional turn of 60° for 4-cylinder flywheels

Inspect the teeth on the starter ring gear. If the teeth are worn or damaged, the flywheel should be replaced as an assembly. This is the recommended and preferred method of repair.

In cases where a new flywheel is not readily available, a replacement ring gear can be installed. However, the following precautions must be observed to avoid damaging the flywheel and replacement gear.

- (1) Mark position of the old gear for alignment reference on the flywheel. Use a scriber for this purpose.
- (2) Wear protective goggles or approved safety glasses. Also wear heat resistent gloves when handling a heated ring gear.

- (3) Remove the old gear by cutting most of the way through it (at one point) with an abrasive cut-off wheel. Then complete removal with a cold chisel or punch.
- (4) The ring gear is a shrink fit on the flywheel. This means the gear must be expanded by heating in order to install it. **The method of heating and expanding the gear is extremely important.** Every surface of the gear must be heated at the same time to produce uniform expansion. An oven or similar enclosed heating device must be used. Temperature required for uniform expansion is approximately 375° F.

CAUTION: Do not use an oxy/acetylene torch to remove the old gear, or to heat and expand a new gear. The high temperature of the torch flame can cause localized heating that will damage the flywheel. In addition, using the torch to heat a replacement gear will cause uneven heating and expansion. The torch flame can also anneal the gear teeth resulting in rapid wear and damage after installation.

- (5) The heated gear must be installed evenly to avoid misalignment or distortion. A shop press and suitable press plates should be used to install the gear if at all possible.
- (6) Be sure to wear eye and hand protection. Heat resistent gloves and safety goggles are needed for personal safety. Also use metal tongs, vise grips, or similar tools to position the gear as necessary for installation.
- (7) Allow the flywheel and ring gear to cool down before installation. Set the assembly on a workbench and let it cool in normal shop air.

CAUTION: Do not use water, or compressed air to cool the flywheel. The rapid cooling produced by water or compressed air can distort, or crack the gear and flywheel.

REMOVAL AND INSTALLATION

CLUTCH COVER AND DISC

REMOVAL

- (1) Remove transmission. Refer to Group 21, Transmission and Transfer Case, for proper procedures.
- (2) If original clutch cover will be reinstalled, mark position of cover on flywheel for assembly reference (Fig. 3). Use paint or a scriber for this purpose.
- (3) Loosen cover bolts evenly and in rotation to relieve spring tension equally. This is necessary to avoid warping cover.

Fig. 3 Typical Method Of Marking Clutch Cover Position

(4) Remove cover bolts and remove cover and disc (Fig. 4).

- (1) Lightly scuff sand flywheel face with 180 grit emery cloth. Then clean surface with a wax and grease remover.
- (2) Lubricate pilot bearing with Mopar $^{\mbox{\tiny \$}}$ high temperature bearing grease.
- (3) Check new clutch for runout and free operation on input shaft splines.
- (4) Position clutch disc on flywheel. Be sure side of disc marked flywheel side is positioned against flywheel (Fig. 4). If disc is not marked, be sure flat side of disc hub is toward flywheel.
- (5) Inspect condition of pressure plate surface of clutch cover (Fig. 4). Replace cover if this surface is worn, heat checked, cracked, or scored.
- (6) Insert clutch alignment tool in clutch disc (Fig. 5).
- (7) Insert alignment tool in pilot bearing and position disc on flywheel. Be sure disc hub is positioned correctly. Side of hub marked Flywheel Side should face flywheel (Fig. 4). If disc is not marked, place flat side of disc against flywheel.
- (8) Position clutch cover over disc and on flywheel (Fig. 5).
 - (9) Install clutch cover bolts finger tight.
- (10) Tighten cover bolts evenly and in rotation a few threads at a time. Cover bolts must be tightened evenly and to specified torque to avoid distorting cover. Tightening torques are 31 N·m (23 ft. lbs.) on 2.5L engines and 54 N·m (40 ft. lbs.) on 4.0L engines.

REMOVAL AND INSTALLATION (Continued)

Fig. 4 Clutch Disc And Pressure Plate Inspection

- (11) Apply light coat of Mopar® high temperature bearing grease to pilot bearing hub and splines of transmission input shaft. Do not over lubricate shaft splines. This will result in grease contamination of disc.
- (12) Install transmission (Fig. 6) and (Fig. 7). Refer to Group 21, Transmission and Transfer Case, for proper procedures.

CLUTCH HOUSING REPLACEMENT—AX15

REMOVAL

- (1) Raise vehicle and support vehicle.
- (2) Remove transmission and clutch housing as assembly. Refer to Group 21, Transmission and Transfer Case, for proper procedures.

Fig. 5 Typical Method Of Aligning Clutch Disc

- (3) Remove release bearing, release fork, and fork boot from input shaft and clutch housing.
- (4) Remove bolts attaching clutch housing to transmission (Fig. 8).

- (1) Clean mounting surfaces of transmission and clutch housing. Use a wire brush if necessary followed by a wax and grease remover, or similar solvent. Also clean engine block surface as well.
- (2) Position clutch housing on transmission and install housing attaching bolts. Tighten bolts to 38 N·m (28 ft. lbs.) torque.
- (3) Install release fork pivot ball stud to housing, if necessary.

Fig. 6 Manual Transmission Mounting—4.0L

Fig. 7 Manual Transmission Mounting—2.5L

Fig. 8 Clutch Housing Attachment

(4) Lubricate release bearing bore, release fork contact surfaces, and release fork pivot stud with Mopar® high temperature bearing grease. Also lubricate transmission input shaft splines, pilot hub and

bearing retainer slide surface with light coat of same grease.

- (5) Install release fork, bearing, and boot in housing. Be sure release fork boot is properly seated in housing.
- (6) Install transmission. Refer to Group 21, Transmission and Transfer Case, for proper procedures.

RELEASE BEARING

REMOVAL

- (1) Remove transmission. Refer to Group 21, Transmission and Transfer Case, for proper procedures.
- (2) Disconnect release bearing from fork and remove bearing (Fig. 9).

Fig. 9 Release Bearing And Release Fork Mounting

INSTALLATION

- (1) Inspect release bearing slide surface of transmission front bearing retainer. Replace retainer if slide surface is scored, worn or cracked.
- (2) Inspect release fork and fork pivot (Fig. 9). Be sure pivot is secure and in good condition. Be sure fork is not distorted or worn. Replace release fork retainer spring if bent or damaged in any way.
- (3) Lightly lubricate pilot bearing, input shaft splines, bearing retainer slide surface, fork pivot and release fork pivot surface with Mopar® high temperature bearing grease.
- (4) Install release fork and bearing. Be sure fork and bearing are properly secured.
- (5) Install transmission. Refer to Group 21, Transmission and Transfer Case, for proper procedures.

PILOT BEARING

REMOVAL

- (1) Remove transmission. Refer to Group 21, Transmission and Transfer Case, for proper procedures.
 - (2) Remove clutch cover and disc.
- (3) Use a suitable blind hole puller to remove pilot bearing.

INSTALLATION

- (1) Clean bearing bore with solvent and wipe dry with shop towel.
- (2) Lubricate new pilot bearing with Mopar® high temperature grease.
- (3) Position and start new bearing in bearing bore by hand. Note that pilot bearing has seal at one end. Install bearing so seal is facing outward toward transmission.
- (4) Seat pilot bearing with clutch alignment tool (Fig. 10). Keep bearing straight during installation. Do not allow bearing to become cocked. Tap bearing into place until flush with edge of bearing bore. Do not recess bearing.
- (5) Install transmission. Refer to Group 21, Transmission and Transfer Case, for proper procedures.

CLUTCH HYDRAULIC LINKAGE

The clutch master cylinder, slave cylinder and connecting line are serviced as an assembly only. The linkage components cannot be overhauled or serviced separately. The cylinders and connecting line are sealed units. Also note that removal/installation procedures for right and left hand drive models are basically the same. Only master cylinder location is different.

Fig. 10 Typical Method Of Installing Pilot Bearing
REMOVAL

- (1) Raise vehicle.
- (2) Remove fasteners attaching slave cylinder to clutch housing.
- (3) Remove slave cylinder from clutch housing (Fig. 11).
 - (4) Disengage clutch fluid line from body clips.
 - (5) Lower vehicle.
- (6) Verify that cap on clutch master cylinder reservoir is tight. This is necessary to avoid undue spillage during removal.
- (7) Remove clutch master cylinder attaching nuts. Note that both nuts are accessible from under instrument panel (Fig. 12) and (Fig. 13).
- (8) Remove clutch master cylinder push rod from pedal.
 - (9) Disconnect clutch pedal position switch wires.
- (10) If pedal pin is equipped with bushing, inspect condition of bushing and replace it if worn or damaged.
- (11) Remove clutch hydraulic linkage through engine compartment.

INSTALLATION

- (1) Be sure reservoir cover on clutch master cylinder is tight to avoid spills.
- (2) Position clutch linkage components in vehicle. Work connecting line and slave cylinder downward past engine and adjacent to clutch housing.
 - (3) Position clutch master cylinder on dash panel.
- (4) Attach clutch master cylinder push rod to clutch pedal pin.

XJ — CLUTCH 6 - 15

REMOVAL AND INSTALLATION (Continued)

Fig. 11 Slave Cylinder Attachment

Fig. 12 Clutch Master Cylinder And Push Rod Attachment—Left Hand Drive Models

- (5) Install and tighten clutch master cylinder attaching nuts to 23-34 N·m (200-300 in. lbs.) torque.
 - (6) Raise vehicle.
- (7) Insert slave cylinder push rod through clutch housing opening and into release lever. Be sure cap on end of rod is securely engaged in lever. Check this before installing cylinder attaching nuts.
- (8) Install and tighten slave cylinder attaching nuts to 23-34 N·m (200-300 in. lbs.) torque.
 - (9) Secure clutch fluid line in body clips.
 - (10) Lower vehicle.

Fig. 13 Clutch Master Cylinder Location—Right Hand Drive Models

(11) Connect clutch pedal position switch wires.

SPECIFICATIONS

TORQUE

DESCRIPTION TORQUE
Bolts, clutch cover 2.5 L 31 N·m (23 ft. lbs)
Bolts, clutch cover 4.0 L 52 N·m (38 ft. lbs)
Bolt/Nut, clutch cyl. mount 23 N·m (200 in. lbs)
Bolt, clutch housing M12 75 N·m (55 ft. lbs)
Bolt, clutch housing 3/8 37 N·m (27 ft. lbs)
Bolt, clutch housing 7/16 58 N·m (43 ft. lbs)
Bolt, clutch housing/trans 38 N·m (28 ft. lbs)
Bolt, dust shield M8 8 N·m (72 in. lbs)
Bolt, dust shield lower 50 N·m (37 ft. lbs)
Bolt, X-member/frame 41 N·m (30 ft. lbs)
Bolt, X-member/rear support 45 N·m (33 ft. lbs.)
Bolts, flywheel 4.0 L 142 N·m (105 ft. lbs)
Bolts, flywheel 2.5 L 68 N·m (50 ft. lbs) +1/4 turn
Bolt, starter motor 45 N·m (33 ft. lbs)
Bolts, U-joints

XJ ------COOLING SYSTEM 7 - 1

COOLING SYSTEM

CONTENTS

page	١	Jaye
GENERAL INFORMATION	RADIATOR COOLANT FLOW CHECK	19
ACCESSORY DRIVE BELT TENSION 3	TESTING COOLING SYSTEM FOR LEAKS	19
COOLANT 2	VISCOUS FAN DRIVE	20
COOLING SYSTEM COMPONENTS 2	SERVICE PROCEDURES	
COOLING SYSTEM 1	ADDING ADDITIONAL COOLANT—ROUTINE	22
ENGINE ACCESSORY DRIVE BELTS 1	COOLANT LEVEL CHECK—ROUTINE	22
ENGINE BLOCK HEATER	COOLANT LEVEL CHECK—SERVICE	
RADIATORS 2	COOLANT SERVICE	
SYSTEM COOLANT ROUTING 2	DRAINING AND FILLING COOLING SYSTEM	
WATER PUMPS 2	REVERSE FLUSHING	23
DESCRIPTION AND OPERATION	REMOVAL AND INSTALLATION	
ACCESSORY DRIVE BELT TENSION 4	AUXILIARY ELECTRIC COOLING FAN	34
AUTOMATIC TRANSMISSION OIL COOLER 3	COOLANT RESERVE TANK	
AUXILIARY ELECTRIC COOLING FAN 8	COOLING SYSTEM FANS	
COOLANT PERFORMANCE 5	ENGINE ACCESSORY DRIVE BELTS	
COOLANT RESERVE/OVERFLOW SYSTEM 3	ENGINE BLOCK HEATER	
COOLANT SELECTION-ADDITIVES 5	RADIATOR	
COOLING SYSTEM FANS 4	THERMOSTAT	
COOLING SYSTEM HOSES 6	TRANSMISSION OIL COOLERS	24
ENGINE BLOCK HEATER 4	VISCOUS FAN DRIVE REMOVAL/	
RADIATOR PRESSURE CAP 5	INSTALLATION	
THERMOSTAT 4	WATER PUMP	25
VISCOUS FAN DRIVE 7	CLEANING AND INSPECTION	
WATER PUMPS 6	COOLING SYSTEM CLEANING	
DIAGNOSIS AND TESTING	COOLING SYSTEM HOSES	
AUXILIARY ELECTRIC COOLING FAN 21	FAN BLADE INSPECTION	
COOLING SYSTEM DIAGNOSIS 12	RADIATOR CLEANING	
DEAERATION 22	RADIATOR PRESSURE CAP	38
DRB SCAN TOOL 8	SPECIFICATIONS	
ENGINE ACCESSORY DRIVE BELTS 9	BELT TENSION	
LOW COOLANT LEVEL-AERATION 22	COOLING SYSTEM CAPACITIES	
ON-BOARD DIAGNOSTICS (OBD) 8	TORQUE SPECIFICATIONS	39
PRELIMINARY CHECKS 10	SPECIAL TOOLS	
PRESSURE TESTING RADIATOR CAPS 22	COOLING	39
RADIATOR CAP-TO-FILLER NECK SEAL—		
PRESSURE RELIEF CHECK 21		

GENERAL INFORMATION

ENGINE ACCESSORY DRIVE BELTS

CAUTION: When installing a serpentine accessory drive belt, the belt MUST be routed correctly. If not, the engine may overheat due to water pump rotating in wrong direction. Refer to the appropriate engine Belt Schematic in this group for the correct belt routing. Or, refer to the Belt Routing Label located in the engine compartment.

COOLING SYSTEM

The cooling system regulates engine operating temperature. It allows the engine to reach normal operating temperature as quickly as possible, maintains normal operating temperature and prevents overheating.

The cooling system also provides a means of heating the passenger compartment and cooling the automatic transmission fluid (if equipped). The cooling system is pressurized and uses a centrifugal water pump to circulate coolant throughout the system.

GENERAL INFORMATION (Continued)

An optional factory installed heavy duty cooling package is available on most models. The package consists of a radiator that has an increased number of cooling fins. Vehicles equipped with a 4.0L 6- cylinder engine and heavy duty cooling and/or air conditioning also have an auxiliary electric cooling fan.

COOLING SYSTEM COMPONENTS

The cooling system consists of:

- A radiator
- Cooling fan (mechanical and/or electrical)
- Thermal viscous fan drive
- Fan shroud
- Radiator pressure cap
- Thermostat
- Coolant reserve/overflow system
- Transmission oil cooler (if equipped with an automatic transmission)
 - Coolant
 - Water pump
 - Hoses and hose clamps

SYSTEM COOLANT ROUTING

For cooling system flow routings, refer to (Fig. 1) (Fig. 2).

WATER PUMPS

A quick test to determine if the pump is working is to check if the heater warms properly. A defective water pump will not be able to circulate heated coolant through the long heater hose to the heater core.

COOLANT

The cooling system is designed around the coolant. Coolant flows through the engine water jackets absorbing heat produced during engine operation. The coolant carries heat to the radiator and heater core. Here it is transferred to the ambient air passing through the radiator and heater core fins. The coolant also removes heat from the automatic transmission fluid in vehicles equipped with an automatic transmission.

RADIATORS

2.5L 4-cylinder engine radiators are the down flow type, 4.0L 6-cylinder engine radiators are the cross flow type. Plastic tanks are used on all radiators.

CAUTION: Plastic tanks, while stronger than brass, are subject to damage by impact, such as wrenches.

Fig. 1 Coolant Flow—2.5L 4-Cylinder Engine—Typical

GENERAL INFORMATION (Continued)

Fig. 2 Coolant Flow—4.0L 6-Cylinder Engine— Typical

If the plastic tank has been damaged, the plastic tank and/or o-rings are available for service repair. Tank replacement should be done by a qualified person with proper equipment.

ACCESSORY DRIVE BELT TENSION

Correct accessory drive belt tension is required to ensure optimum performance of belt driven engine accessories. If specified tension is not maintained, belt slippage may cause: engine overheating, lack of power steering assist, loss of air conditioning capacity, reduced generator output rate, greatly reduced belt life and objectionable under hood noise.

DOMESTIC LEFT HAND DRIVE VEHICLES

Belt tension is adjusted at the power steering pump bracket and idler pulley assembly.

DOMESTIC RIGHT HAND DRIVE VEHICLES

If equipped with a 4.0L 6-cylinder engine; the serpentine belt is adjusted at the generator mounting bracket. When equipped with a 2.5L 4-cylinder engine, the serpentine belt is adjusted at the power steering pump bracket and idler pulley assembly.

ENGINE BLOCK HEATER

An optional engine block heater is available for all models. The heater is equipped with a power cord. The cord is attached to an engine compartment component with tie-straps. The heater warms the engine providing easier engine starting and faster warm-up in low temperatures. The heater is mounted in a core hole of the engine cylinder block (in place of a freeze plug) with the heating element immersed in engine coolant. Connect the power cord to a grounded 110-120 volt AC electrical outlet with a grounded, three-wire extension cord.

DESCRIPTION AND OPERATION

AUTOMATIC TRANSMISSION OIL COOLER

WATER-TO-OIL COOLER

All models equipped with an automatic transmission are equipped with a transmission oil cooler mounted internally within the radiator tank. This internal cooler is supplied as standard equipment on all models equipped with an automatic transmission.

Transmission oil is cooled when it passes through this separate cooler. In case of a leak in the internal radiator mounted transmission oil cooler, engine coolant may become mixed with transmission fluid or transmission fluid may enter engine cooling system. Both cooling system and transmission should be drained and inspected if the internal radiator mounted transmission cooler is leaking.

AIR-TO-OIL COOLER

An auxiliary air-to-oil transmission oil cooler is available with most engine packages.

The auxiliary air-to-oil transmission oil cooler is located in front of the radiator or A/C condenser (if equipped) and behind the grill. It is mounted to the front frame crossmember.

The auxiliary oil coolers on all models operate in conjunction with the internal radiator mounted main oil cooler. The transmission oil is routed through the main cooler first, then the auxiliary cooler, before returning to the transmission.

COOLANT RESERVE/OVERFLOW SYSTEM

The system works along with the radiator pressure cap. This is done by using thermal expansion and contraction of the coolant to keep the coolant free of trapped air. It provides:

- A volume for coolant expansion and contraction.
- A convenient and safe method for checking/adjusting coolant level at atmospheric pressure. This is done without removing the radiator pressure cap.
- Some reserve coolant to the radiator to cover minor leaks and evaporation or boiling losses.

As the engine cools, a vacuum is formed in the cooling system of both the radiator and engine. Coolant will then be drawn from the coolant tank and returned to a proper level in the radiator.

The coolant reserve/overflow system consists of a radiator mounted pressurized cap, a plastic reserve/overflow tank (Fig. 3) (Fig. 4), a tube (hose) connecting the radiator and tank, and an overflow tube on the side of the tank.

J9407-26

Fig. 3 Reserve/Overflow Tank—Except Right Hand Drive

COOLING SYSTEM FANS

Also refer to either the Viscous Fan Drive and/or the Auxiliary Electric Cooling Fan.

All models are equipped with a mechanical temperature controlled fan. This thermal viscous fan drive is a torque-and-temperature-sensitive clutch unit. It automatically increases or decreases fan speed to provide proper engine cooling. Vehicles with a 4.0L 6-cylinder engine may also have an auxiliary electrical cooling fan; when equipped air conditioning and/or heavy duty cooling.

ACCESSORY DRIVE BELT TENSION

Both the 2.5l and 4.0l engines use one accessory drive belt. Correct drive belt tension is required to ensure optimum performance of the belt driven engine accessories. There are different types of adjustment gauges for checking either a serpentine or a conventional "V-type" belt. Refer to the instructions supplied with the gauge. Make sure to use a gauge designed specifically for serpentine style belts. Place gauge in the middle of the section of belt being

Fig. 4 Reserve/Overflow Tank—With Right Hand
Drive

tested (between two pulleys) to check tension. Do not allow the gauge (or gauge adapter) to contact anything but the belt.

ENGINE BLOCK HEATER

An optional engine block heater is available for all models. The heater is equipped with a power cord. The cord is attached to an engine compartment component with tie-straps. The heater warms the engine providing easier engine starting and faster warm-up in low temperatures. The heater is mounted in a core hole of the engine cylinder block (in place of a freeze plug) with the heating element immersed in engine coolant. Connect the power cord to a grounded 110-120 volt AC electrical outlet with a grounded, three-wire extension cord.

WARNING: DO NOT OPERATE ENGINE UNLESS BLOCK HEATER CORD HAS BEEN DISCONNECTED FROM POWER SOURCE AND SECURED IN PLACE.

BLOCK HEATER SPECIFICATIONS

2.5L 4-Cylinder Engine: 115 Volts 400 Watts4.0L 6-Cylinder Engine: 120 Volts 600 Watts

THERMOSTAT

A pellet-type thermostat controls the operating temperature of the engine by controlling the amount of coolant flow to the radiator. On all engines the thermostat is closed below 195°F (90°C). Above this temperature, coolant is allowed to flow to the radiator. This provides quick engine warm-up and overall temperature control.

An arrow plus the word **UP** is stamped on the front flange next to the air bleed. The words **TO RAD** are stamped on one arm of the thermostat. They indicate the proper installed position.

The same thermostat is used for winter and summer seasons. An engine should not be operated without a thermostat, except for servicing or testing. Operating without a thermostat causes other problems. These are: longer engine warm-up time, unreliable warm-up performance, increased exhaust emissions and crankcase condensation. This condensation can result in sludge formation.

CAUTION: Do not operate an engine without a thermostat, except for servicing or testing.

COOLANT PERFORMANCE

X.J -

ETHYLENE-GLYCOL MIXTURES

The required ethylene-glycol (antifreeze) and water mixture depends upon the climate and vehicle operating conditions. The recommended mixture of 50/50 ethylene-glycol and water will provide protection against freezing to -37 deg. C (-35 deg. F). The antifreeze concentration must always be a minimum of 44 percent, year-round in all climates. **If percentage** is lower than 44 percent, engine parts may be eroded by cavitation, and cooling system components may be severely damaged by corrosion. Maximum protection against freezing is provided with a 68 percent antifreeze concentration, which prevents freezing down to -67.7 deg. C (-90 deg. F). A higher percentage will freeze at a warmer temperature. Also, a higher percentage of antifreeze can cause the engine to overheat because the specific heat of antifreeze is lower than that of water.

100 Percent Ethylene-Glycol—Should Not Be Used in Chrysler Vehicles

Use of 100 percent ethylene-glycol will cause formation of additive deposits in the system, as the corrosion inhibitive additives in ethylene-glycol require the presence of water to dissolve. The deposits act as insulation, causing temperatures to rise to as high as 149 deg. C (300) deg. F). This temperature is hot enough to melt plastic and soften solder. The increased temperature can result in engine detonation. In addition, 100 percent ethylene-glycol freezes at 22 deg. C (-8 deg. F).

Propylene-glycol Formulations—Should Not Be Used in Chrysler Vehicles

Propylene-glycol formulations do not meet Chrysler coolant specifications. It's overall effective temperature range is smaller than that of ethylene-glycol. The freeze point of 50/50 propylene-glycol

and water is -32 deg. C (-26 deg. F). 5 deg. C higher than ethylene-glycol's freeze point. The boiling point (protection against summer boil-over) of propylene-glycol is 125 deg. C (257 deg. F) at 96.5 kPa (14 psi), compared to 128 deg. C (263 deg. F) for ethylene-glycol. Use of propylene-glycol can result in boil-over or freeze-up in Chrysler vehicles, which are designed for ethylene-glycol. Propylene glycol also has poorer heat transfer characteristics than ethylene glycol. This can increase cylinder head temperatures under certain conditions.

Propylene-glycol/Ethylene-glycol Mixtures—Should Not Be Used in Chrysler Vehicles

Propylene-glycol/ethylene-glycol Mixtures can cause the destabilization of various corrosion inhibitors, causing damage to the various cooling system components. Also, once ethylene-glycol and propylene-glycol based coolants are mixed in the vehicle, conventional methods of determining freeze point will not be accurate. Both the refractive index and specific gravity differ between ethylene glycol and propylene glycol.

CAUTION: Richer antifreeze mixtures cannot be measured with normal field equipment and can cause problems associated with 100 percent ethylene-glycol.

COOLANT SELECTION-ADDITIVES

Coolant should be maintained at the specified level with a mixture of ethylene glycol-based antifreeze and low mineral content water. Only use an antifreeze containing ALUGARD 340-2 $^{\tiny \tiny \mbox{\tiny 1}}$

CAUTION: Do not use coolant additives that are claimed to improve engine cooling.

RADIATOR PRESSURE CAP

All radiators are equipped with a pressure cap. This cap releases pressure at some point within a range of 83-110 kPa (12-16 psi). The pressure relief point (in pounds) is engraved on top of the cap (Fig. 5).

The cooling system will operate at pressures slightly above atmospheric pressure. This results in a higher coolant boiling point allowing increased radiator cooling capacity. The cap contains a spring-loaded pressure relief valve that opens when system pressure reaches release range of 83-110 kPa (12-16 psi).

A vent valve in the center of cap allows a small coolant flow through cap when coolant is below boiling temperature. The valve is completely closed when boiling point is reached. As the coolant cools, it con-

Fig. 5 Radiator Pressure Cap and Filler Neck— Typical

tracts and creates a vacuum in the cooling system. This causes the vacuum valve to open and coolant in the reserve/overflow tank to be drawn through its connecting hose into radiator. If the vacuum valve is stuck shut, the radiator hoses will collapse on cooldown.

A rubber gasket seals radiator filler neck. This is done to maintain vacuum during coolant cool-down and to prevent leakage when system is under pressure.

WATER PUMPS

A centrifugal water pump circulates coolant through the water jackets, passages, intake manifold, radiator core, cooling system hoses and heater core. The pump is driven from the engine crankshaft by a drive belt on all engines.

The water pump impeller is pressed onto the rear of a shaft that rotates in bearings pressed into the housing. The housing has a small hole to allow seepage to escape. The water pump seals are lubricated by the antifreeze in the coolant mixture. No additional lubrication is necessary.

CAUTION: All engines are equipped with a reverse (counter-clockwise) rotating water pump and vis-

cous fan drive assembly. REVERSE is stamped or imprinted on the cover of the viscous fan drive and inner side of the fan. The letter R is stamped into the back of the water pump impeller (Fig. 6).

Fig. 6 Reverse Rotating Water Pump—Typical

Engines from previous model years, depending upon application, may have been equipped with a forward (clockwise) rotating water pump. Installation of the wrong water pump will cause engine overheating.

A quick test to determine if the pump is working is to check if the heater warms properly. A defective water pump will not be able to circulate heated coolant through the long heater hose to the heater core.

COOLING SYSTEM HOSES

Rubber hoses route coolant to and from the radiator, intake manifold and heater core. Radiator lower hoses are spring-reinforced to prevent collapse from water pump suction at moderate and high engine speeds.

WARNING: CONSTANT TENSION HOSE CLAMPS ARE USED ON MOST COOLING SYSTEM HOSES. WHEN REMOVING OR INSTALLING, USE ONLY TOOLS DESIGNED FOR SERVICING THIS TYPE OF CLAMP, SUCH AS SPECIAL CLAMP TOOL (NUMBER 6094) (Fig. 7). SNAP-ON CLAMP TOOL (NUMBER HPC-20) MAY BE USED FOR LARGER CLAMPS. ALWAYS WEAR SAFETY GLASSES WHEN SERVICING CONSTANT TENSION CLAMPS.

CAUTION: A number or letter is stamped into the tongue of constant tension clamps (Fig. 8). If replacement is necessary, use only an original equipment clamp with matching number or letter.

J9207-36

Fig. 7 Hose Clamp Tool—Typical

Fig. 8 Clamp Number/Letter Location

Inspect the hoses at regular intervals. Replace hoses that are cracked, feel brittle when squeezed, or swell excessively when the system is pressurized.

For all vehicles: In areas where specific routing clamps are not provided, be sure that hoses are positioned with sufficient clearance. Check clearance from exhaust manifolds and pipe, fan blades, drive belts and sway bars. Improperly positioned hoses can be damaged, resulting in coolant loss and engine overheating.

Ordinary worm gear type hose clamps (when equipped) can be removed with a straight screwdriver or a hex socket. To prevent damage to hoses or clamps, the hose clamps should be tightened to 4 N·m (34 in. lbs.) torque. Do not over tighten hose clamps.

VISCOUS FAN DRIVE

NOTE: Also refer to Cooling System Fans.

The thermal viscous fan drive is a silicone-fluidfilled coupling used to connect the fan blades to either the engine or the water pump shaft. The coupling allows the fan to be driven in a normal manner. This is done at low engine speeds while limiting the top speed of the fan to a predetermined maximum level at higher engine speeds.

A thermostatic bimetallic spring coil is located on the front face of the viscous fan drive unit. A typical viscous unit is shown in (Fig. 9). This spring coil reacts to the temperature of the radiator discharge air. It engages the viscous fan drive for higher fan speed if the air temperature from the radiator rises above a certain point. Until additional engine cooling is necessary, the fan will remain at a reduced rpm regardless of engine speed.

Fig. 9 Typical Viscous Fan Drive

Only when sufficient heat is present, will the viscous fan drive engage. This is when the air flowing through the radiator core causes a reaction to the bimetallic coil. It then increases fan speed to provide the necessary additional engine cooling.

Once the engine has cooled, the radiator discharge temperature will drop. The bimetallic coil again reacts and the fan speed is reduced to the previous disengaged speed.

CAUTION: Engines equipped with serpentine drive belts have reverse rotating fans and viscous fan drives. They are marked with the word REVERSE to designate their usage. Installation of the wrong fan or viscous fan drive can result in engine overheating.

CAUTION: If the viscous fan drive is replaced because of mechanical damage, the cooling fan blades should also be inspected. Inspect for fatigue cracks, loose blades, or loose rivets that could have resulted from excessive vibration. Replace fan blade assembly if any of these conditions are found. Also inspect water pump bearing and shaft assembly for any related damage due to a viscous fan drive malfunction.

NOISE

It is normal for fan noise to be louder (roaring) when:

- The underhood temperature is above the engagement point for the viscous drive coupling. This may occur when ambient (outside air temperature) is very high.
- Engine loads and temperatures are high such as when towing a trailer.
- Cool silicone fluid within the fan drive unit is being redistributed back to its normal disengaged (warm) position. This can occur during the first 15 seconds to one minute after engine start-up on a cold engine.

AUXILIARY ELECTRIC COOLING FAN

Models equipped with a 4.0L 6-cylinder engine may also have an auxiliary electrical cooling fan. This is with models that have air conditioning and/or heavy duty cooling. The fan is controlled by the cooling fan relay, which is located in the power distribution center (PDC) (Fig. 10). For the location of relay within the PDC, refer to the label on PDC cover.

When coolant temperature reaches approximately 103°C (218°F), or when air conditioning is requested, the powertrain control module (PCM) provides a ground path for the fan relay. This ground is provided to the cooling fan relay through pin C2 of PCM connector C3. Battery voltage is then applied to the fan through the relay. When coolant temperature drops below approximately 98°C (209°F), the PCM opens the ground path to the relay. This will prevent the cooling fan from being energized.

Fig. 10 Power Distribution Center (PDC)

DIAGNOSIS AND TESTING

ON-BOARD DIAGNOSTICS (OBD)

COOLING SYSTEM RELATED DIAGNOSTICS

The Powertrain Control Module (PCM) has been programmed to monitor the certain following cooling system components:

- If the engine has remained cool for too long a period, such as with a stuck open thermostat, a Diagnostic Trouble Code (DTC) can be set.
- If an open or shorted condition has developed in the relay circuit controlling the electric radiator fan, a Diagnostic Trouble Code (DTC) can be set.

If the problem is sensed in a monitored circuit often enough to indicate an actual problem, a DTC is stored. The DTC will be stored in the PCM memory for eventual display to the service technician. (Refer to Group 25, Emission Control Systems for proper procedures)

ACCESSING DIAGNOSTIC TROUBLE CODES

To read DTC's and to obtain cooling system data, refer to Group 25, Emission Control Systems for proper procedures.

DRB SCAN TOOL

For operation of the DRB scan tool, refer to the appropriate Powertrain Diagnostic Procedures service manual.

XJ -

DIAGNOSIS AND TESTING (Continued)

ENGINE ACCESSORY DRIVE BELTS

BELT DIAGNOSIS

When diagnosing serpentine accessory drive belts, small cracks that run across the ribbed surface of the belt from rib to rib (Fig. 11), are considered normal. These are not a reason to replace the belt. However, cracks running along a rib (not across) are **not** normal. Any belt with cracks running along a rib must be replaced (Fig. 11). Also replace the belt if it has excessive wear, frayed cords or severe glazing.

Refer to the Serpentine Drive Belt Diagnosis charts for further belt diagnosis.

Fig. 11 Serpentine Belt Wear Patterns

SERPENTINE BELT DIAGNOSIS CHART

CONDITION	POSSIBLE CAUSES	CORRECTION
RIB CHUNKING (One or more ribs has separated from belt body)	Foreign objects imbedded in pulley grooves. Installation damage	Remove foreign objects from pulley grooves. Replace belt. Replace belt.
RIB OR BELT WEAR	 Pulley misaligned Abrasive environment Rusted pulley(s) Sharp or jagged pulley groove tips Belt rubber deteriorated 	1. Align pulley(s) 2. Clean pulley(s). Replace belt if necessary 3. Clean rust from pulley(s) 4. Replace pulley. Inspect belt. 5. Replace belt
BELT SLIPS	Belt slipping because of insufficient tension Belt or pulley exposed to substance that has reduced friction (belt dressing, oil, ethylene glycol) Driven component bearing failure (seizure)	Adjust tension Replace belt and clean pulleys Replace faulty component or bearing
	Belt glazed or hardened from heat and excessive slippage	4. Replace belt.
LONGITUDAL BELT CRACKING	Belt has mistracked from pulley groove Pulley groove tip has worn away rubber to tensile member	Replace belt Replace belt

CONDITION	POSSIBLE CAUSES	CORRECTION
"GROOVE JUMPING" (Belt does not maintain correct	Belt tension either too low or too high	1. Adjust belt tension
position on pulley)	Pulley(s) not within design tolerance	2. Replace pulley(s)
	3. Foreign object(s) in grooves	Remove foreign objects from grooves
	4. Pulley misalignment	4. Align component
	5. Belt cordline is broken	5. Replace belt
BELT BROKEN (Note: Identify and correct problem	Excessive tension	Replace belt and adjust tension to specification
before new belt is installed)	Tensile member damaged during belt installation	2. Replace belt
	3. Severe misalignment	3. Align pulley(s)
	4. Bracket, pulley, or bearing failure	Replace defective component and belt
NOISE	1. Belt slippage	1. Adjust belt
(Objectional squeal, squeak, or rumble is heard or felt while drive belt	Bearing noise Belt misalignment	Locate and repair Align belt/pulley(s)
is in operation)	Belt to pulley mismatch	4. Install correct belt
	5. Driven component induced	5. Locate defective driven component
	vibration	and repair
	System resonant frequency induced vibration	Vary belt tension within specifications.
TENSION SHEETING FABRIC FAILURE	Tension sheeting contacting stationary object	Correct rubbing condition
(Woven fabric on outside, circumference of belt has cracked or separated from body of belt)	Excessive heat causing woven fabric to age	2. Replace belt
,	Tension sheeting splice has fractured	3. Replace belt
CORD EDGE FAILURE	1. Excessive tension	1. Adjust belt tension
(Tensile member exposed at edges of belt or separated from belt body)	2. Belt contacting stationary object	2. Replace belt
beit of separated from beit body)	Pulley(s) out of tolerance Insufficient adhesion between	Replace pulley Replace belt and adjust tension to
	tensile member and rubber matrix	specifications

PRELIMINARY CHECKS

ENGINE COOLING SYSTEM OVERHEATING

Establish what driving conditions caused the complaint. Abnormal loads on the cooling system such as the following may be the cause:

PROLONGED IDLE, VERY HIGH AMBIENT TEMPERATURE, SLIGHT TAIL WIND AT IDLE, SLOW TRAFFIC, TRAFFIC JAMS, HIGH SPEED OR STEEP GRADES.

Driving techniques that avoid overheating are:

- Idle with A/C off when temperature gauge is at end of normal range.
- Increasing engine speed for more air flow is recommended.

TRAILER TOWING:

Consult Trailer Towing section of owners manual. Do not exceed limits.

AIR CONDITIONING; ADD-ON OR AFTER MARKET:

A maximum cooling package should have been ordered with vehicle if add-on or after market A/C is installed. If not, maximum cooling system components should be installed for model involved per manufacturer's specifications.

RECENT SERVICE OR ACCIDENT REPAIR:

Determine if any recent service has been performed on vehicle that may effect cooling system. This may be:

XJ — COOLING SYSTEM 7 - 11

DIAGNOSIS AND TESTING (Continued)

- Engine adjustments (incorrect timing)
- Slipping engine accessory drive belt(s)
- Brakes (possibly dragging)
- Changed parts. Incorrect water pump or pump rotating in wrong direction due to belt not correctly routed
- Reconditioned radiator or cooling system refilling (possibly under filled or air trapped in system).

NOTE: If investigation reveals none of the previous items as a cause for an engine overheating complaint, refer to following Cooling System Diagnosis charts.

These charts are to be used as a quick-reference only. Refer to the group text for information.

COOLING SYSTEM DIAGNOSIS

CONDITION	POSSIBLE CAUSES	CORRECTION
TEMPERATURE GAUGE READS LOW		1. Refer to On-Board Diagnostics in the service manual text. Replace thermostat if necessary. If a Diagnostic Trouble Code (DTC) number 17 has not been set, the problem may be with the temperature gauge.
	the engine?	2. Check the engine temperature sensor connector in the engine compartment. Refer to Group 8E. Repair as necessary.
	Is the temperature gauge (if equipped) operating OK?	Check gauge operation. Refer to Group 8E. Repair as necessary.
		4. Check coolant level in the coolant reserve/overflow tank and the radiator. Inspect system for leaks. Repair leaks as necessary. Refer to the Coolant section of the manual text for WARNINGS and precautions before removing the radiator cap.
	5. Improper operation of internal heater doors or heater controls.	5. Inspect heater and repair as necessary. Refer to Group 24, Heating and Air Conditioning for procedures.
TEMPERATURE GAUGE READS HIGH OR ENGINE COOLANT WARNING LAMP ILLUMINATES. COOLANT MAY OR MAY NOT BE LOST OR LEAKING FROM COOLING SYSTEM	idled with very high ambient (outside) temperatures and the air conditioning is on. Higher altitudes could aggravate these conditions.	and repair is not necessary. Turn off the air conditioning and attempt to drive the vehicle without any of the previous conditions. Observe the
	Is temperature gauge (if equipped) reading correctly?	Check gauge. Refer to Group 8E. Repair as necessary.
	Is temperature warning lamp (if equipped) illuminating unnecessarily?	Check warning lamp operation. Refer to Group 8E. Repair as necessary.
	Coolant low in coolant reserve/ overflow tank and radiator.	Check for coolant leaks and repair as necessary. Refer to Testing Cooling System For Leaks in this group.
	5. Pressure cap not installed tightly. If cap is loose, boiling point of coolant will be lowered. Also refer to the following step 6.	5. Tighten cap.
	6. Poor seals at radiator cap.	6. (a) Check condition of cap and cap seals. Refer to Radiator Cap. Replace cap if necessary.
		(b) Check condition of radiator filler neck. If neck is bent or damaged, replace radiator.

CONDITION	POSSIBLE CAUSES	CORRECTION
TEMPERATURE GAUGE READS HIGH OR ENGINE COOLANT WARNING LAMP ILLUMINATES. COOLANT MAY OR MAY NOT BE LOST OR LEAKING FROM COOLING SYTEM (Continued)	7. Coolant level low in radiator but not in coolant reserve/overflow tank. This means the radiator is not drawing coolant from the coolant reserve/ overflow tank as the engine cools. As the engine cools, a vacuum is formed in the cooling system of the engine and radiator. If radiator cap seals are defective, or cooling system has leaks, a vacuum can not be formed.	7. (a) Check condition of radiator cap and cap seals. Refer to Radiator Cap in this group. Replace cap if necessary. (b) Check condition of radiator filler neck. If neck is bent or damaged, replace radiator. (c) Check the condition of the hose from the radiator to the coolant tank. It should fit tight at both ends without any kinks or tears. Replace hose if necessary. (d) Check coolant reserve/overflow tank and tank hose for blockage.
	8. Freeze point of antifreeze not correct. Mixture may be too rich.	Repair as necessary. 8. Check antifreeze. Refer to Coolant section of this group. Adjust antifreezeto-water ratio as required.
	9. Coolant not flowing through system.	9. Check for coolant flow at radiator filler neck with some coolant removed, engine warm and thermostat open. Coolant should be observed flowing through radiator. If flow is not observed, determine reason for lack of flow and repair as necessary.
	10. Radiator or A/C condenser fins are dirty or clogged.	10. Clean insects or debris. Refer to Radiator Cleaning in this group.
	11. Radiator core is corroded or plugged.12. Aftermarket A/C installed without	11. Have radiator re-cored or replaced.12. Install proper radiator.
	proper radiator. 13. Fuel or ignition system problems.	13. Refer to Fuel and Ignition System groups for diagnosis. Also refer to the appropriate Powertrain Diagnostic Procedures service manual for operation of the DRB scan tool.
	14. Dragging brakes.	14. Check and correct as necessary. Refer to Group 5, Brakes in this manual text.
	15. Bug screen is being used reducing airflow.	15. Remove bug screen.
	16. Thermostat partially or completely shut. This is more prevalent on high mileage vehicles.	16. Check thermostat operation and replace as necessary. Refer to Thermostats in this group.
	17. Thermal viscous fan drive not operating properly.	17. Check fan drive operation and replace if necessary. Refer to Viscous Fan Drive in this group.
	18. Electric cooling fan not operating properly (XJ models with 4.0L engine equipped with heavy duty cooling and/or air conditioning).	18. Check electric fan operation and repair as necessary. Refer to Auxiliary Electric Cooling Fan-XJ Models with 4.0L 6-cylinder engine in the manual text.

CONDITION	POSSIBLE CAUSES	CORRECTION
TEMPERATURE GAUGE READS HIGH OR ENGINE COOLANT WARNING LAMP ILLUMINATES. COOLANT MAY OR MAY NOT BE LOST OR LEAKING FROM COOLING SYSTEM (Continued)	19. Cylinder head gasket leaking	19. Check for cylinder head gasket leaks. Refer to Testing Cooling System for Leaks in this group. For repair refer to Group 9, Engines.
	20. Heater core leaking.	20. Check heater core for leaks. Refer to Group 24, Heating and Air Conditioning. Repair as necessary.
TEMPERATURE GUAGE READING IS INCONSISTENT (FLUCTUATES, CCLES OR IS ERRACTIC)	6-cylinder engine, heavy duty cooling and/or air conditioning, the gauge may cycle up and down. This is due to the cycling of the electric radiator fan. 2. During cold weather operation, with	A normal condition. No correction is necessary. If gauge cycling is going into the hot zone, check electric fan operation and repair as necessary. Refer to Auxiliary Electric Cooling Fan-XJ Models with 4.0L 6-cylinder engine in the manual text.
	the heater blower in the high position, the gauge reading may drop slightly. 3. Temperature gauge or engine mounted gauge sensor defective or shorted. Also, corroded or loose wiring in this circuit.	necessary. 3. Check operation of gauge and repair if necessary. Refer to Group 8E, Instrument Panel and Gauges.
	in this circuit. 4. Gauge reading rises when vehicle is brought to a stop after heavy use (engine still running).	4. A normal condition. No correction is necessary. Gauge reading should return to normal range after vehicle is driven.
	5. Gauge reading high after restarting a warmed-up (hot) engine.	5. A normal condition. No correction is necessary. The gauge should return to normal range after a few minutes of engine operation.
	6. Coolant level low in radiator (air will build up in the cooling system causing the thermostat to open late).7. Cylinder head gasket leaking allowing exhaust gas to enter cooling	6. Check and correct coolant leaks. Refer to Testing Cooling Sytem for Leaks in this group. 7. (a) Check for cylinder head gasket leaks with a commercially available
	8. Water pump impeller loose on shaft.	8. Check water pump and replace as necessary. Refer to Water Pumps in this group.
	Loose accessory drive belt (water pump slipping).	Refer to Engine Accessory Drive Belts in this group. Check and correct as necessary.
	10. Air leak on the suction side of water pump allows air to build up in cooling system causing thermostat to open late.	10. Locate leak and repair as necessary.

CONDITION	POSSIBLE CAUSES	CORRECTION
PRESSURE CAP IS BLOWING OFF STEAM AND/OR COOLANT TO COOLANT TANK. TEMPERATURE GAUGE READING MAY BE ABOVE NORMAL BUT NOT HIGH. COOLANT LEVEL MAY BE HIGH IN COOLANT RESERVE/OVERFLOW TANK	Pressure relief valve in radiator cap is defective.	Check condition of radiator cap and cap seals. Refer to Radiator Caps in this group. Replace cap as necessary.
COOLANT LOSS TO THE GROUND WITHOUT PRESSURE CAP BLOWOFF. GAUGE IS READING HIGH OR HOT	Coolant leaks in radiator, cooling system hoses, water pump or engine.	Pressure test and repair as necessary. Refer to Testing Cooling System for Leaks in this group.
DETONATION OR PREIGNITION (NOT CAUSED BY IGNITION SYSTEM). GAUGE MAY OR MAY NOT BE READING HIGH	Engine overheating.	Check reason for overheating and repair as necessary.
	2. Freeze point of antifreeze not correct. Mixture is too rich or too lean.	Check antifreeze. Refer to the Coolant section in this group. Adjust antifreeze-to-water ratio as required.
HOSE OR HOSES COLLAPSE WHEN ENGINE IS COOLING	Vacuum created in cooling system on engine cool-down is not being relieved through coolant reserve/overflow system.	1. (a) Radiator cap relief valve stuck. Refer to Radiator Cap in this group. Replace if necessary. (b) Hose between coolant reserve/overflow tank and radiator is kinked. Repair as necessary. (c) Vent at coolant reserve/overflow tank is plugged. Clean vent and repair as necessary. (d) Reserve/overflow tank is internally blocked or plugged. Check for blockage and repair as necessary.
ELECTRIC RADIATOR FAN RUNS ALL THE TIME (XJ MODELS WITH 4.0L ENGINE EQUIPPED WITH HEAVY DUTY COOLING AND/OR AIR CONDITIONING ONLY)	(PCM) or engine coolant temperature sensor defective.	Refer to Auxiliary Electric Cooling Fan-XJ Models with 4.0L 6-Cylinder engine in the manual text. Repair as necessary. Also refer to appropriate Powertrain Diagnostic Procedures service manual for operation of the DRB scan tool.
ELECTRIC RADIATOR FAN WILL NOT RUN (XJ MODELS WITH 4.0L ENGINE EQUIPPED WITH HEAVY DUTY COOLING AND/OR AIR		Refer to Auxiliary Electric Cooling Fan-XJ Models with 4.0L 6-Cylinder engine in the manual text. Repair as necessary.
CONDITIONING ONLY) GAUGE READING HIGH OR HOT	2. Fan relay, powertrain control module (PCM) or engine coolant temperature sensor defective.	2. Refer to Auxiliary Electric Cooling Fan-XJ Models with 4.0L 6-Cylinder engine in the manual text. Repair as necessary. Also refer to the appropriate Powertrain Diagnostic Procedures service manual for operation of the DRB scan tool
	Blown fuse in power distribution center (PDC).	Determine reason for blown fuse and repair as necessary.

CONDITION	POSSIBLE CAUSES	CORRECTION
NOISY FAN	 Fan blades loose. Fan blades striking a surrounding object. Air obstructions at radiator or air conditioning condenser. 	Replace fan blade assembly. Refer to Cooling System Fans in this group. 2. Locate point of fan blade contact and repair as necessary. 3. Remove obstructions and/or clean debris or insects from radiator or A/C condenser.
	4. Electric fan motor defective (if equipped).	4. Replace electric fan motor. Refer to Auxiliary Electric Cooling Fan-XJ Models with 4.0L 6-Cylinder engine in the manual text.
	5. Thermal viscous fan drive has defective bearing.	5. Replace fan drive. Bearing is not serviceable. Refer to Viscous Fan Drive in this group.
	6. A certain amount of fan noise (roaring) may be evident on models equipped with a thermal viscous fan drive. Some of this noise is normal.	6. Refer to Viscous Fan Drive in this group for an explanation of normal fan noise.
INADEQUATE AIR CONDITIONER PERFORMANCE (COOLING SYSTEM SUSPECTED)	 Electric radiator fan not operating when A/C is operated (if equipped with electric fan). Thermal viscous fan drive is freewheeling. 	1. Remove restriction and/or clean as necessary. Refer to Radiator Cleaning in this group. 2. Refer to Auxiliary Electric Cooling Fan-XJ Models with 4.0L 6-Cylinder engine in the manual text. Repair as necessary. 3. Refer to Viscous Fan Drive for diagnosis. Repair as necessary. 4. Correct overheating condition. Refer to text in Group 7, Cooling.
	components). 5. Some models with certain engines are equipped with air seals at the radiator and/or A/C condenser. If these seals are missing or damaged, not enough air flow will be pulled through the radiator and A/C condenser.	5. Check for missing or damaged air seals and repair as necessary.
INADEQUATE HEATER PERFORMANCE. THERMOSTAT FAILED IN OPEN POSITION		Refer to On-Board Diagnostics in the manual text and replace thermostat if necessary.
	2. Coolant level low.	Refer to Testing Cooling System for Leaks in the manual text. Repair as necessary.
	3. Obstructions in heater hose fittings at engine.	
	4. Heater hose kinked.	Locate kinked area and repair as necessary.

CONDITION	POSSIBLE CAUSES	CORRECTION
INADEQUATE HEATER PERFORMANCE. THERMOSTAT FAILED IN OPEN POSITION (Continued)	5. Some models with certain engines are equipped with a water control valve located on one of the heater hoses. This valve may be defective. 6. Water pump is not pumping water to heater core. When the engine is fully warmed up, both heater hoses should be hot to the touch. If only one of the hoses is hot, the water pump may not be operating correctly. The accessory drive belt may also be slipping causing poor water pump operation.	 Refer to Group 24, Heating and Air Conditioning for diagnosis. Repair as necessary. Refer to Water Pumps in this group. Repair as necessary. If a slipping belt is detected, refer to Engine Accessory Drive Belts in this group. Repair as necessary.
HEAT ODOR	Various heat shields are used at certain drive line components. One or more of these shields may be missing.	
	2. Is temperature gauge reading above the normal range?	Refer to the previous Temperature Gauge Reads High in these Diagnosis Charts. Repair as necessary.
	3. Is cooling fan operating correctly?	Refer to Cooling System Fan in this group for diagnosis. Repair as necessary.
	4. Has undercoating been applied to any unnecessary component?	Clean undercoating as necessary.
	5. Engine may be running rich causing the catalytic convertor to overheat.	5. Refer to the DRB scan tool and the appropriate Powertrain Diagnostic Procedures service manual. Repair as necessary.
POOR DRIVEABILITY (THERMOSTAT POSSIBLY STUCK OPEN) GAUGE READING MAY BE LOW	1. For proper driveability, good vehicle emissions and for preventing build-up of engine oil sludge, the thermostat must be operating properly. Has a diagnostic trouble code (DTC) number 17 been set?	Refer to On-Board Diagnostics in this group. DTC's may also be checked using the DRB scan tool. Refer to the proper Powertrain Diagnostics Procedures service manual for checking the thermostat using the DRB scan tool. Replace thermostat if necessary.
STEAM IS COMING FROM FRONT OF VEHICLE NEAR GRILL AREA WHEN WEATHER IS WET, ENGINE IS WARMED UP AND RUNNING, AND VEHICLE IS STATIONARY. TEMPERATURE GAUGE IS IN NORMAL RANGE	1. During wet weather, moisture (snow, ice or rain condensation) on the radiator will evaporate when the thermostat opens. This opening allows heated water into the radiator. When the moisture contacts the hot radiator, steam may be emitted. This usually occurs in cold weather with no fan or airflow to blow it away.	Occasional steam emitting from this area is normal. No repair is necessary.

CONDITION	POSSIBLE CAUSES	CORRECTION
COOLANT COLOR	Coolant color is not necessarily an indication of adequate corrosion or temperature protection. Do not rely on coolant color for determining condition of coolant.	Refer to Coolant in this group for antifreeze tests. Adjust antifreeze-to- water ratio as necessary.
COOLANT LEVEL CHANGES IN COOLANT RESERVE/OVERFLOW TANK. TEMPERATURE GAUGE IS IN NORMAL RANGE	1. Level changes are to be expected as coolant volume fluctuates with engine temperature. If the level in the tank was between the FULL and ADD marks at normal engine operating temperature, the level should return to within that range after operation at elevated temperatures.	A normal condition. No repair is necessary.

COOLING SYSTEM DIAGNOSIS (CONT.)

XJ — COOLING SYSTEM 7 - 19

DIAGNOSIS AND TESTING (Continued)

RADIATOR COOLANT FLOW CHECK

The following procedure will determine if coolant is flowing through the cooling system.

If engine is cold, idle engine until normal operating temperature is reached. Then feel the upper radiator hose. If hose is hot, the thermostat is open and water is circulating through cooling system.

TESTING COOLING SYSTEM FOR LEAKS

ULTRAVIOLET LIGHT METHOD

All Jeep models have a leak detection additive added to the cooling system before they leave the factory. The additive is highly visible under ultraviolet light (black light). If the factory original coolant has been drained, pour one ounce of additive into the cooling system. The additive is available through the part's department. Place the heater control unit in HEAT position. Start and operate the engine until the radiator upper hose is warm to the touch. Aim the commercially available black light tool at the components to be checked. If leaks are present, the black light will cause the additive to glow a bright green color.

The black light can be used along with a pressure tester to determine if any external leaks exist (Fig. 12).

Fig. 12 Leak Detection Using Black Light—TypicalPRESSURE TESTER METHOD

The engine should be at the normal operating temperature. Recheck the system cold if the cause of coolant loss is not located during warm engine examination.

WARNING: HOT, PRESSURIZED COOLANT CAN CAUSE INJURY BY SCALDING.

Carefully remove the radiator pressure cap from the filler neck and check the coolant level. Push down on the cap to disengage it from the stop tabs. Wipe the inner part of the filler neck and examine the lower inside sealing seat for nicks, cracks, paint, dirt and solder residue. Inspect the reserve/overflow tank tube for internal obstructions. Insert a wire through the tube to be sure it is not obstructed.

Inspect the cams on the outside part of the filler neck. If the cams are bent, seating of pressure cap valve and tester seal will be affected. Replace cap if cams are bent.

Attach pressure tester 7700 (or an equivalent) to the radiator filler neck (Fig. 13).

Fig. 13 Pressurizing System—Typical

Operate the tester pump to apply 124 kPa (18 psi) pressure to the system. If the hoses enlarge excessively or bulge while testing, replace as necessary. Observe the gauge pointer and determine the condition of the cooling system according to the following criteria:

- Holds Steady: If the pointer remains steady for two minutes, there are no serious coolant leaks in the system. However, there could be an internal leak that does not appear with normal system test pressure. Inspect for interior leakage or do the Internal Leakage Test. Do this if it is certain that coolant is being lost and no leaks can be detected.
- Drops Slowly: Shows a small leak or seepage is occurring. Examine all connections for seepage or slight leakage with a flashlight. Inspect the radiator, hoses, gasket edges and heater. Seal any small leak holes with a Sealer Lubricant or equivalent. Repair leak holes and reinspect the system with pressure applied.
- Drops Quickly: Shows that a serious leakage is occurring. Examine the system for serious external

leakage. If no leaks are visible, inspect for internal leakage. Large radiator leak holes should be repaired by a reputable radiator repair shop.

INTERNAL LEAKAGE INSPECTION

Remove the engine oil pan drain plug and drain a small amount of engine oil. Coolant, being heavier than engine oil, will drain first. Another way of testing is to operate the engine and check for water globules on the engine oil dipstick. Also inspect the automatic transmission oil dipstick for water globules. Inspect the automatic transmission fluid cooler for leakage. Operate the engine without the pressure cap on the radiator until thermostat opens.

Attach a pressure tester to the filler neck. If pressure builds up quickly, a leak exists as a result of a faulty cylinder head gasket or crack in the engine. Repair as necessary.

WARNING: DO NOT ALLOW PRESSURE TO EXCEED 124 KPA (18 PSI). TURN THE ENGINE OFF. TO RELEASE THE PRESSURE, ROCK THE TESTER FROM SIDE TO SIDE. WHEN REMOVING THE TESTER, DO NOT TURN THE TESTER MORE THAN 1/2 TURN IF THE SYSTEM IS UNDER PRESSURE.

If there is no immediate pressure increase, pump the pressure tester until the indicated pressure is within the system range. Vibration of the gauge pointer indicates compression or combustion leakage into the cooling system.

WARNING: DO NOT DISCONNECT THE SPARK PLUG WIRES WHILE THE ENGINE IS OPERATING.

CAUTION: Do not operate the engine with a spark plug shorted for more than a minute. The catalytic converter may be damaged.

Isolate the compression leak by shorting each spark plug to the cylinder block. The gauge pointer should stop or decrease vibration when spark plug for leaking cylinder is shorted. This happens because of the absence of combustion pressure.

COMBUSTION LEAKAGE TEST (WITHOUT PRESSURE TESTER)

DO NOT WASTE reusable coolant. If the solution is clean, drain the coolant into a clean container for reuse.

WARNING: DO NOT REMOVE THE CYLINDER BLOCK DRAIN PLUGS OR LOOSEN THE RADIATOR DRAINCOCK WITH THE SYSTEM HOT AND UNDER PRESSURE. SERIOUS BURNS FROM COOLANT CAN OCCUR.

Drain sufficient coolant to allow for thermostat removal. Refer to Thermostat Replacement. Disconnect the water pump drive belt.

Disconnect the upper radiator hose from the thermostat housing. Remove the housing and thermostat. Install the thermostat housing.

Add coolant to the radiator to bring the level to within 6.3 mm (1/4 in) of the top of the thermostat housing.

CAUTION: Avoid overheating. Do not operate the engine for an excessive period of time. Open the draincock immediately after the test to eliminate boil over of coolant.

Start the engine and accelerate rapidly three times (to approximately 3000 rpm) while observing the coolant. If internal engine combustion gases are leaking into the cooling system, bubbles will appear in the coolant. If bubbles do not appear, there is no internal combustion gas leakage.

VISCOUS FAN DRIVE

LEAKS

Viscous fan drive operation is not affected by small oil stains near the drive bearing. If leakage appears excessive, replace the fan drive unit.

TFSTING

If the fan assembly free-wheels without drag (the fan blades will revolve more than five turns when spun by hand), replace the fan drive. This spin test must be performed when the engine is cool.

For the following test, the cooling system must be in good condition. It also will ensure against excessively high coolant temperature.

WARNING: BE SURE THAT THERE IS ADEQUATE FAN BLADE CLEARANCE BEFORE DRILLING.

- (1) Drill a 3.18-mm (1/8-in) diameter hole in the top center of the fan shroud.
- (2) Obtain a dial thermometer with an 8 inch stem (or equivalent). It should have a range of -18 $^{\circ}$ -to-105 $^{\circ}$ C (0 $^{\circ}$ -to-220 $^{\circ}$ F). Insert thermometer through the hole in the shroud. Be sure that there is adequate clearance from the fan blades.
- (3) Connect a tachometer and an engine ignition timing light (timing light is to be used as a strobe light).
- (4) Block the air flow through the radiator. Secure a sheet of plastic in front of the radiator (or air conditioner condenser). Use tape at the top to secure the plastic and be sure that the air flow is blocked.
- (5) Be sure that the air conditioner (if equipped) is turned off.

XJ — COOLING SYSTEM 7 - 21

DIAGNOSIS AND TESTING (Continued)

WARNING: USE EXTREME CAUTION WHEN THE ENGINE IS OPERATING. DO NOT STAND IN A DIRECT LINE WITH THE FAN. DO NOT PUT YOUR HANDS NEAR THE PULLEYS, BELTS OR FAN. DO NOT WEAR LOOSE CLOTHING.

- (6) Start the engine and operate at 2400 rpm. Within ten minutes the air temperature (indicated on the dial thermometer) should be up to 88° C (190° F). Fan drive **engagement** should have started to occur at between 74° to 82° C (165° to 180° F). Engagement is distinguishable by a definite **increase** in fan flow noise (roaring). The timing light also will indicate an increase in the speed of the fan.
- (7) When the air temperature reaches 88° C (190° F), remove the plastic sheet. Fan drive **disengagement** should have started to occur at between 57° to 79° C (135° to 175° F). A definite **decrease** of fan flow noise (roaring) should be noticed. If not, replace the defective viscous fan drive unit.

AUXILIARY ELECTRIC COOLING FAN

ELECTRIC COOLING FAN AND RELAY DIAGNOSIS

NOTE: Refer to Electrical Group 8W for electric cooling fan and relay circuit schematic.

The powertrain control module (PCM) will enter a diagnostic trouble code (DTC) in memory if it detects a problem in the auxiliary cooling fan relay or circuit. Refer to Group 25, Emission Control Systems for correct DTC retrieval procedures.

If the electric cooling fan is inoperative, check fuse #11 (20A) in junction block and fuse #5 (40A maxifuse) in the Power Distribution Center (PDC) with a 12 volt test lamp or DVOM. If fuses are o.k., refer to Group 8W for electric cooling fan and relay circuit schematic.

RADIATOR CAP-TO-FILLER NECK SEAL—PRESSURE RELIEF CHECK

With radiator cap installed on filler neck, remove coolant reserve/ overflow tank hose from nipple on filler neck. Connect a hand operated vacuum pump to nipple. Operate pump until a reading of 47-to-61 kPa (14- to-18 in. Hg) appears on gauge. If the reading stays steady, or drops slightly and then remains steady, the pressure valve seal is good. Replace radiator cap if reading does not hold.

WARNING: THE WARNING WORDS -DO NOT OPEN HOT- ON THE RADIATOR PRESSURE CAP (Fig. 14) ARE A SAFETY PRECAUTION. WHEN HOT, PRESSURE BUILDS UP IN COOLING SYSTEM. TO PREVENT SCALDING OR INJURY, THE RADIATOR CAP

SHOULD NOT BE REMOVED WHILE THE SYSTEM IS HOT AND/OR UNDER PRESSURE.

Fig. 14 Radiator Pressure Cap

There is no need to remove the radiator cap **except** for the following purposes:

- (1) To check and adjust antifreeze freeze point.
- (2) To refill system with new antifreeze.
- (3) For conducting service procedures.
- (4) When checking for vacuum leaks.

WARNING: VEHICLE HAS BEEN RUN RECENTLY, WAIT AT LEAST 15 MINUTES BEFORE REMOVING RADIATOR CAP. WITH A SQUEEZE RADIATOR UPPER HOSE TO CHECK IF SYSTEM IS UNDER PRESSURE. PLACE A RAG OVER THE CAP AND WITHOUT PUSHING DOWN, ROTATE CAP COUNTER-CLOCKWISE TO THE FIRST STOP. ALLOW FLUID TO ESCAPE THROUGH OVERFLOW HOSE INTO COOLANT RESERVE/ OVERFLOW TANK. SQUEEZE RADIATOR UPPER HOSE TO DETERMINE WHEN PRESSURE HAS BEEN RELEASED. WHEN COOLANT AND STEAM STOP BEING PUSHED INTO TANK AND SYSTEM PRESSURE DROPS, REMOVE RADIATOR CAP COMPLETELY.

PRESSURE TESTING RADIATOR CAPS

Remove cap from radiator. Be sure that sealing surfaces are clean. Moisten rubber gasket with water and install the cap on pressure tester (tool 7700 or an equivalent) (Fig. 15).

Fig. 15 Pressure Testing Radiator Pressure Cap—Typical

Operate the tester pump and observe the gauge pointer at its highest point. The cap release pressure should be 83-to-110 kPa (12-to-16 psi). The cap is satisfactory when the pressure holds steady. It is also good if it holds pressure within the 83-to-110 kPa (12-to-16 psi) range for 30 seconds or more. If the pointer drops quickly, replace the cap.

CAUTION: Radiator pressure testing tools are very sensitive to small air leaks, which will not cause cooling system problems. A pressure cap that does not have a history of coolant loss should not be replaced just because it leaks slowly when tested with this tool. Add water to tool. Turn tool upside down and recheck pressure cap to confirm that cap needs replacement.

CAP INSPECTION

Visually inspect the pressure valve gasket on the cap. Replace cap if the gasket is swollen, torn or worn. Inspect the area around radiator filler neck for white deposits that indicate a leaking cap.

LOW COOLANT LEVEL-AERATION

If the coolant level in radiator drops below top of radiator core tubes, air will enter cooling system.

Low coolant level can cause thermostat pellet to be suspended in air instead of coolant. This will cause thermostat to open later, which in turn causes higher coolant temperature. Air trapped in cooling system also reduces amount of coolant circulating in heater core resulting in low heat output.

DEAERATION

As the engine operates, any air trapped in cooling system gathers under the radiator cap. The next time the engine is operated, thermal expansion of coolant will push any trapped air past radiator cap into the coolant reserve/overflow tank. Here it escapes to the atmosphere into the tank. When the engine cools down the coolant, it will be drawn from the reserve/overflow tank into the radiator to replace any removed air.

SERVICE PROCEDURES

COOLANT LEVEL CHECK—ROUTINE

NOTE: Do not remove radiator cap for routine coolant level inspections. The coolant level can be checked at coolant reserve/overflow tank.

The coolant reserve/overflow system provides a quick visual method for determining coolant level without removing radiator pressure cap. With engine cold and not running, observe coolant level in reserve/overflow tank. The coolant level should be between ADD and FULL marks.

COOLANT SERVICE

It is recommended that the cooling system be drained and flushed at 84,000 kilometers (52,500 miles), or 3 years, whichever occurs first. Then every two years, or 48,000 kilometers (30,000 miles), whichever occurs first.

ADDING ADDITIONAL COOLANT—ROUTINE

Do not remove radiator cap to add coolant to system. When adding coolant to maintain correct level, do so at coolant reserve/overflow tank. Use a 50/50 mixture of ethylene-glycol antifreeze containing Alugard 340-2 [®] and low mineral content water. Remove radiator cap only for testing or when refilling system after service. Removing cap unnecessarily can cause loss of coolant and allow air to enter system, which produces corrosion.

COOLANT LEVEL CHECK—SERVICE

The cooling system is closed and designed to maintain coolant level to top of radiator.

SERVICE PROCEDURES (Continued)

WARNING: DO NOT OPEN RADIATOR DRAINCOCK WITH ENGINE RUNNING OR WHILE ENGINE IS HOT AND COOLING SYSTEM IS UNDER PRESSURE.

When vehicle servicing requires a coolant level check in radiator, drain several ounces of coolant from radiator drain cock. Do this while observing coolant reserve/overflow system tank. The coolant level in reserve/overflow tank should drop slightly. If not, inspect for a leak between radiator and coolant reserve/overflow system connection. Remove radiator cap. The coolant level should be to top of radiator. If not and if coolant level in reserve/overflow tank is at ADD mark, check for:

- An air leak in coolant reserve/overflow tank or its hose
 - An air leak in radiator filler neck
 - · Leak in pressure cap seal to radiator filler neck

DRAINING AND FILLING COOLING SYSTEM

DRAINING 2.5L 4-CYLINDER ENGINE

WARNING: DO NOT REMOVE THE CYLINDER BLOCK DRAIN PLUGS OR LOOSEN THE RADIATOR DRAIN-COCK WITH SYSTEM HOT AND UNDER PRESSURE. SERIOUS BURNS FROM COOLANT CAN OCCUR.

DO NOT WASTE reusable coolant. If the solution is clean, drain the coolant into a clean container for reuse.

DO NOT remove the radiator cap when draining the coolant from the reserve/overflow tank. Open the radiator draincock and when the tank is empty, remove the radiator cap. The coolant does not have to be removed from the tank unless the system is being refilled with a fresh mixture.

- (1) Drain the coolant from the radiator by loosening the petcock.
- (2) Drain coolant from engine by removing drain plug at left rear side of block.

DRAINING 4.0L 6-CYLINDER ENGINE

WARNING: DO NOT REMOVE THE CYLINDER BLOCK DRAIN PLUGS OR LOOSEN THE RADIATOR DRAIN-COCK WITH SYSTEM HOT AND UNDER PRESSURE. SERIOUS BURNS FROM COOLANT CAN OCCUR.

DO NOT WASTE reusable coolant. If the solution is clean, drain the coolant into a clean container for reuse.

- (1) Remove radiator pressure cap.
- (2) For access to radiator draincock (Fig. 16), remove radiator grille mounting screws and remove grill. Refer to Group 23, Body for correct procedure.
- (3) Attach one end of a 24 inch long X 1/4 inch ID hose to the radiator draincock. Put the other end into

Fig. 16 Radiator Petcock—4.0L (LHD/RHD)

a clean container. Open draincock and drain coolant from radiator.

(4) Drain coolant from engine by removing the drain plug and coolant temperature sensor on left side of block.

REFILLING COOLING SYSTEM

- (1) Tighten the radiator petcock and the cylinder block drain plug(s). If removed, install coolant temperature sensor (4.0L 6-cylinder engine).
- (2) Fill system using a 50/50 mixture of water and antifreeze as described in the Coolant section of this group. Fill radiator to top and install radiator cap. Add sufficient coolant to reserve/overflow tank to raise level to FULL mark.
- (3) With heater control unit in the HEAT position, operate engine with radiator cap in place.
- (4) After engine has reached normal operating temperature, shut engine off and allow it to cool.
- (5) Add coolant to reserve/overflow tank as necessary. Only add coolant when the engine is cold. Coolant level in a warm engine will be higher due to thermal expansion.

REVERSE FLUSHING

CAUTION: The cooling system normally operates at 97-to-124 kPa (14- to-18 psi) pressure. Exceeding this pressure may damage the radiator or hoses.

Reverse flushing of the cooling system is the forcing of water through the cooling system. This is done using air pressure in the opposite direction of normal coolant flow. It is usually only necessary with very dirty systems with evidence of partial plugging.

SERVICE PROCEDURES (Continued)

CHEMICAL CLEANING

If visual inspection indicates the formation of sludge or scaly deposits, use a radiator cleaner (Mopar Radiator Kleen or equivalent) before flushing. This will soften scale and other deposits and aid the flushing operation.

CAUTION: Be sure instructions on the container are followed.

REVERSE FLUSHING RADIATOR

Disconnect the radiator hoses from the radiator fittings. Attach a section of radiator hose to the radiator bottom outlet fitting and insert the flushing gun. Connect a water supply hose and air supply hose to the flushing gun.

CAUTION: The cooling system normally operates at 97-to-124 kPa (14- to-18 psi) pressure. Exceeding this pressure may damage the radiator or hoses.

Allow the radiator to fill with water. When radiator is filled, apply air in short blasts allowing radiator to refill between blasts. Continue this reverse flushing until clean water flows out through rear of radiator cooling tube passages. For more information, refer to operating instructions supplied with flushing equipment. Have radiator cleaned more extensively by a radiator repair shop.

REVERSE FLUSHING ENGINE

Drain the cooling system. Remove the thermostat housing and thermostat. Install the thermostat housing. Disconnect the radiator upper hose from the radiator and attach the flushing gun to the hose. Disconnect the radiator lower hose from the water pump. Attach a lead away hose to the water pump inlet fitting.

CAUTION: Be sure that the heater control valve is closed (heat off). This is done to prevent coolant flow with scale and other deposits from entering the heater core.

Connect the water supply hose and air supply hose to the flushing gun. Allow the engine to fill with water. When the engine is filled, apply air in short blasts, allowing the system to fill between air blasts. Continue until clean water flows through the lead away hose. For more information, refer to operating instructions supplied with flushing equipment.

Remove the lead away hose, flushing gun, water supply hose and air supply hose. Remove the thermostat housing and install thermostat. Install the thermostat housing with a replacement gasket. Refer to Thermostat Replacement. Connect the radiator hoses. Refill the cooling system with the correct antifreeze/water mixture.

REMOVAL AND INSTALLATION

TRANSMISSION OIL COOLERS

WATER-TO-OIL COOLER

The internal transmission oil cooler located within the radiator is not serviceable. If it requires service, the radiator must be replaced.

Once the repaired or replacement radiator has been installed, fill the cooling system and inspect for leaks. Refer to the Refilling Cooling System and Testing Cooling System For Leaks sections in this group. If the transmission operates properly after repairing the leak, drain the transmission and remove the transmission oil pan. Inspect for sludge and/or rust. Inspect for a dirty or plugged inlet filter. If none of these conditions are found, the transmission and torque convertor may not require reconditioning. Refer to Group 21 for automatic transmission servicing.

AIR-TO-OIL COOLER

REMOVAL

- (1) Remove the grill mounting screws and remove the grill. Refer to Group 23, Body for procedures.
- (2) Place a drain pan below the transmission oil cooler.
- (3) Remove the two hose clamps at oil cooler inlet and outlet tubes.
- (4) Remove the two oil cooler mounting bolts (Fig. 17) (Fig. 18).
 - (5) Remove the oil cooler from vehicle.

Fig. 17 Auxiliary Air-To-Oil Cooler—4.0L Engine

XJ — COOLING SYSTEM 7 - 25

REMOVAL AND INSTALLATION (Continued)

Fig. 18 Auxiliary Air-To-Oil Cooler2.5L Engine INSTALLATION

(1) Position and secure oil cooler to vehicle. Tighten mounting bolts to 8 N·m (72 in. lbs.) torque.

(2) Secure inlet and outlet tubes with hose clamps. Tighten the two clamps to 2 N·m (15 in. lbs.) torque.

COOLANT RESERVE TANK

REMOVAL

- (1) Remove the tube clamp at the tank and remove
- (2) Remove the tank mounting bolts and remove tank (Fig. 19) (Fig. 20).

INSTALLATION

- (1) Position tank and tighten to 2 N⋅m (17 in. lbs.) orque.
- (2) Position tube and secure clamp.

WATER PUMP

CAUTION: If the water pump is replaced because of mechanical damage, the fan blades and viscous fan drive should also be inspected. These components could have been damaged due to excessive vibration.

The water pump can be removed without discharging the air conditioning system (if equipped).

CAUTION: All engines have a reverse (counterclockwise) rotating water pump. The letter R is stamped into the back of the water pump impeller (Fig. 21) to identify. Engines from previous model

J9407-26

Fig. 19 Reserve/Overflow Tank—Except Right Hand
Drive

Fig. 20 Reserve/Overflow Tank—With Right Hand
Drive

years, depending upon application, may be equipped with a forward (clockwise) rotating water pump. Installation of the wrong water pump will cause engine over heating.

The water pump impeller is pressed on the rear of the pump shaft and bearing assembly. The water pump is serviced only as a complete assembly.

Fig. 21 Reverse Rotating Water Pump—Typical WARNING: DO NOT REMOVE THE BLOCK DRAIN PLUG(S) OR LOOSEN RADIATOR DRAINCOCK WITH THE SYSTEM HOT AND UNDER PRESSURE. SERIOUS BURNS FROM COOLANT CAN OCCUR.

DO NOT WASTE reusable coolant. If the solution is clean, drain coolant into a clean container for reuse.

REMOVAL-2.5L ENGINE (LHD/RHD)

- (1) Disconnect negative battery cable at battery.
- (2) Drain the cooling system.
- (3) Remove upper radiator hose.
- (4) Loosen (but do not remove at this time) the four fan hub-to-water pump pulley mounting nuts (Fig. 22).
- (5) Remove accessory drive belt (refer to Accessory Drive Belt, Removal and Installation in this section)
 - (6) Unbolt fan shroud
- (7) Remove the four fan hub-to-water pump pulley nuts and remove fan and shroud together

CAUTION: After removing fan blade/viscous fan drive assembly, do not place thermal viscous fan drive in horizontal position. If stored horizontally, silicone fluid in viscous fan drive could drain into its bearing assembly and contaminate lubricant.

- (8) Remove power steering pump and bracket (Fig. 23), refer to Group 19 Steering for correct procedure.
- (9) Remove lower radiator hose from water pump. Remove heater hose from water pump fitting.
- (10) Remove the four pump mounting bolts (Fig. 24) and remove pump from vehicle. Discard old gas-

Fig. 22 Fan Mounting Nuts

Fig. 23 Power Steering Pump Attachment-2.5L

ket. Note that one of the four bolts is longer than the other bolts.

(11) If pump is to be replaced, the heater hose fitting must be removed. Note position of fitting before removal.

INSTALLATION-2.5L ENGINE (LHD/RHD)

- (1) If pump is being replaced, install the heater hose fitting to the pump. Use a sealant on the fitting such as Mopar[®] Thread Sealant With Teflon. Refer to the directions on the package.
- (2) Clean the gasket mating surfaces. If the original pump is used, remove any deposits or other foreign material. Inspect the cylinder block and water pump mating surfaces for erosion or damage from cavitation.

Fig. 24 Water Pump Remove/Install—Typical

- (3) Install the gasket and water pump. The silicone bead on the gasket should be facing the water pump. Also, the gasket is installed dry. Tighten mounting bolts to $30~\text{N}\cdot\text{m}$ (22 ft. lbs.) torque. Rotate the shaft by hand to be sure it turns freely.
- (4) Connect the radiator and heater hoses to the water pump.
- (5) Install power steering pump and bracket. Refer to Group 19, Steering.
- (6) Position water pump pulley to water pump hub.
- (7) Install shroud and fan together and install four nuts to water pump hub studs. Tighten nuts to 27 N·m (20 ft. lbs.) torque.
 - (8) Install and tighten upper fan shroud nuts.

CAUTION: When installing the serpentine engine accessory drive belt, the belt MUST be routed correctly. If not, the engine may overheat due to the water pump rotating in the wrong direction. Refer to the Belt Removal and Installation in this group for appropriate belt routing. You may also refer to the Belt Routing Label in the vehicle engine compartment.

(9) Install and tension accessory drive belt, refer to Accessory Drive Belt removal and installation in this group.

- (10) Install upper radiator hose.
- (11) Fill cooling system with coolant and check for leaks. Refer to Refilling Cooling System in this group.
 - (12) Connect battery cable to battery.
 - (13) Start and warm the engine. Check for leaks.

REMOVAL-4.0L ENGINE (LHD/RHD)

- (1) Disconnect negative battery cable at battery.
- (2) Drain the cooling system.
- (3) Disconnect electric cooling fan connector.
- (4) Remove electric cooling fan/shroud assembly (if equipped).
 - (5) Unbolt viscous fan shroud.
- (6) Loosen (but do not remove at this time) the four water pump pulley-to-water pump hub mounting bolts (Fig. 25) and the four viscous fan to idler pulley nuts.

Fig. 25 Water Pump Pulley Bolts

NOTE: The engine accessory drive belt must be removed prior to removing the fan (if installed at pump) or fan pulley.

- (7) Remove accessory drive belt (refer to Accessory Drive Belt, Removal and Installation in this section)
- (8) Remove the four viscous fan to idler pulley nuts and remove the fan and shroud together.

CAUTION: After removing fan blade/viscous fan drive assembly, do not place thermal viscous fan drive in horizontal position. If stored horizontally, silicone fluid in viscous fan drive could drain into its bearing assembly and contaminate lubricant.

- (9) Remove the four water pump pulley bolts and remove the pulley.
- (10) Remove power steering pump and bracket (Fig. 26), refer to Group 19 Steering.
- (11) Remove lower radiator hose from water pump. Remove heater hose from water pump fitting.

Fig. 26 Power Steering Pump Attachment-4.0L

(12) Remove the four pump mounting bolts (Fig. 27) and remove pump from vehicle. Discard old gasket. Note that one of the four bolts is longer than the other bolts.

Fig. 27 Water Pump Remove/Install—Typical

(13) If pump is to be replaced, the heater hose fitting must be removed. Note position of fitting before removal.

INSTALLATION-4.0L ENGINE (LHD/RHD)

- (1) If pump is being replaced, install the heater hose fitting to the pump. Use a sealant on the fitting such as Mopar[®] Thread Sealant With Teflon. Refer to the directions on the package.
- (2) Clean the gasket mating surfaces. If the original pump is used, remove any deposits or other foreign material. Inspect the cylinder block and water pump mating surfaces for erosion or damage from cavitation.
- (3) Install the gasket and water pump. The silicone bead on the gasket should be facing the water pump. Also, the gasket is installed dry. Tighten mounting bolts to $30~\text{N}\cdot\text{m}$ (22 ft. lbs.) torque. Rotate the shaft by hand to be sure it turns freely.
- (4) Connect the radiator and heater hoses to the water pump.
- (5) Position water pump pulley to water pump hub.
- (6) Install four pump pulley bolts. Tighten bolts (or nuts) to 27 N·m (20 ft. lbs.) torque.
- (7) Install power steering pump. Refer to Group 19, Steering for proper procedure and torque values.
- (8) Install the viscous fan and shroud together. Install the four fan to idler pulley nuts and tighten to $27~\mathrm{N\cdot m}$ (20 ft. lbs.).

CAUTION: When installing the serpentine engine accessory drive belt, the belt MUST be routed correctly. If not, the engine may overheat due to the water pump rotating in the wrong direction. Refer to the Belt Removal and Installation in this group for appropriate belt routing. You may also refer to the Belt Routing Label in the vehicle engine compartment.

- (9) Install and tighten viscous fan shroud bolts.
- (10) Install and tension the accessory drive belt, refer to Accessory Drive Belt removal and installation in this group.
 - (11) Install the electric cooling fan/shroud assy.
- (12) Install and tighten fan shroud bolts and connect electrical fan connector.
- (13) Fill cooling system with coolant and check for leaks. Refer to Refilling Cooling System in this group.
 - (14) Connect battery cable to battery.
 - (15) Start and warm the engine. Check for leaks.

THERMOSTAT

REMOVAL

WARNING: DO NOT LOOSEN THE RADIATOR DRAINCOCK WITH THE SYSTEM HOT AND PRESSURIZED. SERIOUS BURNS FROM THE COOLANT CAN OCCUR.

DO NOT WASTE reusable coolant. If the solution is clean, drain the coolant into a clean container for reuse.

(1) Drain the coolant from the radiator until the level is below the thermostat housing.

WARNING: CONSTANT TENSION HOSE CLAMPS ARE USED ON MOST COOLING SYSTEM HOSES. WHEN REMOVING OR INSTALLING, USE ONLY TOOLS DESIGNED FOR SERVICING THIS TYPE OF CLAMP, SUCH AS SPECIAL CLAMP TOOL (NUMBER 6094) (Fig. 7). SNAP-ON CLAMP TOOL (NUMBER HPC-20) MAY BE USED FOR LARGER CLAMPS. ALWAYS WEAR SAFETY GLASSES WHEN SERVICING CONSTANT TENSION CLAMPS.

CAUTION: A number or letter is stamped into the tongue of constant tension clamps (Fig. 8). If replacement is necessary, use only an original equipment clamp with matching number or letter.

- (2) Remove radiator upper hose and heater hose at thermostat housing.
- (3) Disconnect wiring connector at engine coolant temperature sensor.

(4) Remove thermostat housing mounting bolts, thermostat housing, gasket and thermostat (Fig. 28). Discard old gasket.

Fig. 28 Thermostat Removal/Installation

(5) Clean the gasket mating surfaces.

INSTALLATION

- (1) Install the replacement thermostat so that the pellet, which is encircled by a coil spring, faces the engine. All thermostats are marked on the outer flange to indicate the proper installed position.
 - (a) Observe the recess groove in the engine cylinder head (Fig. 29).
 - (b) Position thermostat into this groove with arrow and air bleed hole on outer flange pointing up.
- (2) Install replacement gasket and thermostat housing.

CAUTION: Tightening the thermostat housing unevenly or with the thermostat out of its recess may result in a cracked housing.

- (3) Tighten the housing bolts to 20 N·m (15 ft. lbs.) torque.
 - (4) Install hoses to thermostat housing.
- (5) Install electrical connector to coolant temperature sensor.
- (6) Be sure that the radiator draincock is tightly closed. Fill the cooling system to the correct level with the required coolant mixture. Refer to Refilling Cooling System in this group.
 - (7) Start and warm the engine. Check for leaks.

Fig. 29 Thermostat Recess

RADIATOR

WARNING: DO NOT REMOVE THE CYLINDER BLOCK DRAIN PLUGS, RADIATOR CAP, OR LOOSEN THE RADIATOR DRAINCOCK WITH THE SYSTEM HOT AND PRESSURIZED. SERIOUS BURNS FROM THE COOLANT CAN OCCUR.

DO NOT WASTE reusable coolant. If solution is clean, drain coolant into a clean container for reuse.

WARNING: CONSTANT TENSION HOSE CLAMPS ARE USED ON MOST COOLING SYSTEM HOSES. WHEN REMOVING OR INSTALLING, USE ONLY TOOLS DESIGNED FOR SERVICING THIS TYPE OF CLAMP, SUCH AS SPECIAL CLAMP TOOL (NUMBER 6094) (Fig. 7). SNAP-ON CLAMP TOOL (NUMBER HPC-20) MAY BE USED FOR LARGER CLAMPS. ALWAYS WEAR SAFETY GLASSES WHEN SERVICING CONSTANT TENSION CLAMPS.

CAUTION: A number or letter is stamped into the tongue of constant tension clamps (Fig. 8). If replacement is necessary, use only an original equipment clamp with matching number or letter.

2.5L 4-CYLINDER ENGINE

REMOVAL

- (1) Disconnect negative battery cable at battery.
- (2) Observe the previous **WARNINGS.** Remove radiator cap.

- (3) Position drain pan under draincock. Open radiator draincock. Drain radiator.
- (4) Remove radiator upper and lower hose clamps (Fig. 7) (Fig. 8). Remove hoses.
- (5) Remove E-clip from alignment dowel at radiator lower mounting bracket (Fig. 30).
- (6) Disconnect coolant reserve/overflow tank hose from radiator.
- (7) Remove four radiator fan shroud mounting bolts (Fig. 30). Push shroud back against front of engine.
- (8) If equipped, disconnect and plug automatic transmission fluid cooler lines. Refer to Group 21, Transmission for procedures.
- (9) Remove two radiator top mounting bolts (Fig. 30).
 - (10) Air conditioning equipped
 - (a) Remove the radiator grille mounting screws and remove grill. Refer to Group 23, Body for procedures.
 - (b) Remove the air conditioning condenser-toradiator mounting bolt. Use an open end wrench to remove bottom bolts (Fig. 31).
- (11) Lift radiator straight up and out of vehicle. Take care not to damage radiator fins. When removing radiator, note position of the rubber seals located on the top, bottom and sides of radiator (Fig. 30). To prevent possible overheating, these seals must be installed to their original positions.

INSTALLATION

- (1) Install radiator behind air conditioning condenser with bottom alignment dowel inserted into radiator lower mounting bracket (Fig. 30).
- (2) Install E-clip to radiator alignment dowel (Fig. 30).
- (3) Tighten the four condenser-to-radiator mounting bolts to 6.2 N·m (55 in. lbs.) torque.
 - (4) If removed, install radiator grille.
- (5) Tighten radiator top mounting bolts to 6 $N {\cdot} m$ (55 in. lbs.) torque.
- (6) If equipped, connect automatic transmission fluid cooler lines to radiator. Refer to Group 21, Transmission for procedures.
 - (7) Install the radiator fan shroud.
 - (8) Connect the coolant reserve/overflow tank hose.
 - (9) Connect radiator hoses and install hose clamps.
 - (10) Connect negative battery cable.
 - (11) Close the draincock.
 - (12) Fill cooling system with correct coolant.
 - (13) Install radiator cap.
- (14) Check and adjust automatic transmission fluid level (if equipped).

Fig. 30 Radiator Remove/Install—2.5L 4-Cylinder Engine

Fig. 31 Condenser Mounting Bolts—2.5L 4-Cylinder Engine—Typical

4.0L 6-CYLINDER ENGINE

WARNING: DO NOT REMOVE THE CYLINDER BLOCK DRAIN PLUGS OR LOOSEN THE RADIATOR DRAINCOCK WITH THE SYSTEM HOT AND PRESSURIZED. SERIOUS BURNS FROM THE COOLANT CAN OCCUR.

DO NOT WASTE reusable coolant. If solution is clean, drain coolant into a clean container for reuse.

WARNING: CONSTANT TENSION HOSE CLAMPS ARE USED ON MOST COOLING SYSTEM HOSES. WHEN REMOVING OR INSTALLING, USE ONLY TOOLS DESIGNED FOR SERVICING THIS TYPE OF CLAMP, SUCH AS SPECIAL CLAMP TOOL (NUMBER 6094) (Fig. 7). SNAP-ON CLAMP TOOL (NUMBER HPC-20) MAY BE USED FOR LARGER CLAMPS. ALWAYS WEAR SAFETY GLASSES WHEN SERVICING CONSTANT TENSION CLAMPS.

CAUTION: A number or letter is stamped into the tongue of constant tension clamps (Fig. 8). If replacement is necessary, use only an original equipment clamp with matching number or letter.

REMOVAL

- (1) Disconnect negative battery cable at battery.
- (2) Observe the previous **WARNINGS**.
- (3) Remove pressure cap.
- (4) For access to radiator draincock, remove radiator grille mounting screws and remove grill. Refer to Group 23, Body for procedures.
- (5) Attach one end of a 24 inch long X 1/4 inch ID hose to the radiator draincock. Put the other end into a clean container. Open draincock and drain radiator.
- (6) If equipped, disconnect auxiliary electric cooling fan electrical connector (Fig. 32).

Fig. 32 Auxiliary Electric Cooling Fan Wiring Connector—Typical

- (7) If equipped, remove two electric cooling fan mounting bolts. Lift cooling fan straight up until alignment tabs at the bottom are clear of slots in bracket at bottom of radiator (Fig. 33).
- (8) Remove the two mechanical (non-electrical) fan shroud mounting bolts. Lift shroud straight up until alignment tabs at the bottom are clear of slots in bracket at bottom of radiator (Fig. 33). Place shroud over mechanical fan.
- (9) If equipped, disconnect and plug automatic transmission fluid cooler lines. Refer to Group 21, Transmissions for procedures. If equipped with remote transmission cooler, remove line to cooler from bracket at bottom of radiator.
- (10) Disconnect radiator upper and lower hoses clamps (Fig. 7) (Fig. 8). Disconnect radiator upper and lower hoses.

- (11) Mark the position of the hood latch striker on the radiator crossmember and remove hood latch striker.
- (12) Remove two radiator upper crossmember-to-isolator nuts (Fig. 33).
- (13) Remove four radiator upper crossmember bolts (Fig. 33) and remove upper crossmember.
- (14) If equipped with air conditioning, separate radiator from condenser by removing condenser-to-radiator mounting brackets (Fig. 34).
- (15) Lift radiator straight up and out of engine compartment taking care not to damage fins.

INSTALLATION

The radiator is supplied with two alignment dowels (Fig. 33) xxxxxxx (Fig. 35). They are located on the bottom tank and fit into rubber grommets in the radiator lower crossmember.

- (1) Lower radiator into engine compartment. Position alignment dowels into rubber grommets in radiator lower crossmember (Fig. 33) xxxxxxxx (Fig. 35)
- (2) If equipped with air conditioning, attach condenser to radiator with mounting brackets (Fig. 34).
- (3) Install radiator upper crossmember and four mounting bolts.
- (4) Install radiator upper crossmember-to-isolator nuts. Tighten nuts to 10 N·m (86 in. lbs.) torque. If isolator-to-radiator nuts had been removed, tighten them to 5 N·m (47 in. lbs.) torque.
- (5) Install hood latch striker. Note previously marked position.
 - (6) Connect radiator upper and lower hoses.
- (7) If equipped, connect automatic transmission fluid cooler lines. Refer to Group 21, Transmissions for procedures. If equipped with remote cooler, attach cooler line to bracket at bottom of radiator.
- (8) Install electric cooling fan (if equipped). Insert alignment tabs at bottom of fan shroud into slots in bracket at bottom of radiator. Tighten mounting bolts to 3 $N \cdot m$ (31 in. lbs.) torque.
- (9) Connect electric cooling fan electrical connector
- (10) Install mechanical cooling fan shroud. Insert alignment tabs at bottom of shroud into slots in bracket at bottom of radiator. Tighten mounting bolts to 3 $N \cdot m$ (31 in. lbs.) torque.
 - (11) Close radiator draincock.
 - (12) Install grille.
 - (13) Connect negative battery cable.
- (14) Fill cooling system with correct coolant. Refer to the Coolant section of this group.
 - (15) Install pressure cap.
- (16) Check and adjust automatic transmission fluid level (if equipped).

Fig. 33 Auxiliary Electric Cooling Fan and Fan Shroud—Typical

Fig. 34 Condenser-to-Radiator Mounting Brackets— 4.0L 6- Cylinder Engine

Fig. 35 Radiator Installation 4.0L 6-Cylinder Engine

AUXILIARY ELECTRIC COOLING FAN

REMOVAL

The auxiliary cooling fan is attached to the radiator upper crossmember behind the radiator.

- (1) Remove the two fan mounting bolts from radiator upper crossmember (Fig. 36).
 - (2) Disconnect the electric fan connector.

Fig. 36 Auxiliary Cooling Fan—Remove/Install— Typical

(3) Lift fan straight up and out of vehicle.

INSTALLATION

- (1) Align lower retaining tabs of fan shroud with slots in bracket at bottom of radiator. Push fan down into position.
- (2) Tighten the mounting bolts to 4 N·m (31 in. lbs.) torque.
- (3) Connect auxiliary cooling fan electrical connector.

ENGINE BLOCK HEATER

REMOVAL

Refer to correct illustration (Fig. 37) (Fig. 38)when servicing block heater.

WARNING: DO NOT REMOVE THE CYLINDER BLOCK DRAIN PLUGS OR LOOSEN THE RADIATOR DRAINCOCK WITH THE SYSTEM HOT AND PRESSURIZED. SERIOUS BURNS FROM THE COOLANT CAN OCCUR.

- DO NOT WASTE reusable coolant. If solution is clean, drain coolant into a clean container for reuse.
- (1) Drain coolant from radiator and engine cylinder block.
 - (2) Unplug power cord from block heater.
- (3) Loosen screw in center of block heater (Fig. 37) (Fig. 38).
 - (4) Remove block heater from cylinder block.

INSTALLATION

- (1) Thoroughly clean the engine core hole and the block heater seat.
- (2) Insert block heater assembly into core hole with element loop pointing **Up.**
- (3) Seat block heater flush against block face. Tighten mounting screw to 3.6 N·m (32 in. lbs.) torque.
- (4) Fill cooling system with coolant. Pressurize system and inspect for leaks.
- (5) Plug power cord into block heater. Route cord away from moving parts, linkages and exhaust system components. Secure cord in place with tie-straps.

Fig. 37 Heater and Cord— 2.5L 4-Cylinder Engine ENGINE ACCESSORY DRIVE BELTS

Correct drive belt tension is required to ensure optimum performance of the belt driven engine accessories. There are different types of adjustment gauges for checking either a serpentine or a V-type belt. Refer to the instructions supplied with the gauge. Use the correct gauge when checking belt tension. Place gauge in the middle of the section of belt being tested (between two pulleys) to check tension. Do not allow the gauge (or gauge adapter) to contact anything but the belt.

BELT SCHEMATICS

The belt routing schematics are published from the latest information available at the time of publication. If anything differs between these schematics and the Belt Routing Label, use the

REMOVAL AND INSTALLATION (Continued)

Fig. 38 Heater and Cord—4.0L 6-Cylinder Engine schematics on Belt Routing Label. This label is located in the engine compartment.

Refer to (Fig. 39) xxxxx (Fig. 40) xxxxxx (Fig. 41) xxxxx (Fig. 42) for proper belt routing on vehicles with conventional left hand drive. Refer to (Fig. 43) xxxxx (Fig. 44) for proper belt routing on vehicles with right hand drive (RHD). Or, refer to the Belt Routing Label located in the vehicle engine compartment.

Fig. 39 Models with 2.5L Engine—With A/C

BELT REPLACEMENT OR ADJUSTMENT— LEFT HAND DRIVE

Belt tension is adjusted at the power steering pump bracket and idler pulley assembly.

- (1) Disconnect negative battery cable from battery.
- (2) Loosen idler pulley bolt at the power steering bracket (Fig. 45).
- (3) Loosen adjusting bolt until belt can be removed from pulleys.

Fig. 40 Models with 2.5L Engine—Without A/C

Fig. 41 Models with 4.0L Engine—Without A/C— Except RHD

(4) Remove belt.

INSTALLATION

(1) Check condition of all pulleys.

CAUTION: When installing the serpentine accessory drive belt, the belt MUST be routed correctly. If not, the engine may overheat due to the water pump rotating in the wrong direction. Refer to (Fig. 39) xxxxx (Fig. 40) xxxx (Fig. 41) xxxxx (Fig. 42) xxxx for correct belt routing.

- (2) Install new belt.
- (3) Using serpentine belt tension gauge, tighten adjusting bolt until belt reaches proper tension. Refer

Fig. 42 Models With 4.0L Engine—With A/C—Except RHD

Fig. 43 Models With 4.0L Engine—With A/C—With RHD

to Belt Tension at the rear of this section for proper belt tension.

- (4) After belt is tensioned correctly, tighten idler pulley bolt to 47 N·m (35 ft. lbs.)
- (5) After idler pulley has been tightened into position, recheck belt tension. Adjust if necessary.

BELT REPLACEMENT OR ADJUSTMENT— RIGHT HAND DRIVE (4.0L)

- (1) Disconnect negative battery cable from battery.
- (2) Loosen lower alternator mounting bolt and nut.
- (3) Loosen upper alternator mounting nut.

Fig. 44 Models With 4.0L Engine—Without A/C— With RHD

Fig. 45 Power Steering Pump Bracket and Idler Pulley

- (4) Loosen adjusting bolt at upper alternator bracket (Fig. 46) until belt can be removed from pulleys.
 - (5) Remove belt.

INSTALLATION

(1) Check condition of all pulleys.

CAUTION: When installing the serpentine accessory drive belt, the belt MUST be routed correctly. If not, the engine may overheat due to the water pump rotating in the wrong direction. Refer to (Fig. 43) xxxxx (Fig. 44) for correct belt routing.

Fig. 46 Generator Belt Tension Adjust Bracket

- (2) Install new belt.
- (3) Using serpentine belt tension gauge, tighten adjusting bolt until belt reaches proper tension. Refer to Belt Tension at the rear of this section for proper belt tension.
- (4) Tighten alternator upper and lower mounting bolts
- (5) After generator and adjust bracket have been tightened into position, recheck belt tension. Adjust if necessary.

COOLING SYSTEM FANS

REMOVAL

Some engines have the mechanical fan/viscous fan drive assembly mounted directly to the water pump hub (Fig. 47). It may also be mounted to a hub/bearing attached to an aluminum bracket on the right front side of engine (Fig. 48).

- (1) Loosen but do not remove at this time, the four fan hub mounting nuts (Fig. 47) xxxxxx (Fig. 48).
- (2) Remove accessory serpentine drive belt. Refer to Belt Service in the Engine Accessory Drive Belt section of this group.
- (3) Some models with certain engines may require the removal of the fan shroud to remove the viscous fan drive. The fan shroud and fan blade/viscous fan drive should be removed from the vehicle as one assembly.
- (4) Remove four fan hub mounting nuts (Fig. 47) xxxxxxxxx (Fig. 48) and remove fan/viscous fan drive assembly from vehicle.
- (5) After removing fan blade/viscous fan drive assembly, **do not** place thermal viscous fan drive in horizontal position. If stored horizontally, silicone

Fig. 47 Water Pump Mounted Cooling Fan

Fig. 48 Bracket Mounted Cooling Fan

fluid in viscous fan drive could drain into its bearing assembly and contaminate lubricant.

INSTALLATION

- (1) Assemble fan blade to viscous fan drive. Tighten mounting bolts to $27~\mathrm{N\cdot m}$ (20 ft. lbs.) torque.
- (2) Position mounting flange of fan blade/viscous fan drive assembly onto hub. Install four nuts and tighten to 24 N·m (18 ft. lbs.) torque. Tighten the

first two nuts 180 degrees apart. Then tighten last two nuts.

CAUTION: When installing a serpentine accessory drive belt, the belt MUST be routed correctly. If not, the engine may overheat due to the water pump rotating in the wrong direction. Refer to appropriate Engine Accessory Drive Belt Schematic in this group for correct belt routing.

(3) Install accessory drive belts. Tension belts to specifications. Refer to the Specifications section at the end of this group.

VISCOUS FAN DRIVE REMOVAL/INSTALLATION

Refer to Cooling System Fan for removal and installation procedures of the viscous drive unit.

Viscous Fan Drive Fluid Pump Out Requirement:

After installing a **new** viscous fan drive, bring the engine speed up to approximately 2000 rpm and hold for approximately two minutes. This will ensure proper fluid distribution within the drive.

CLEANING AND INSPECTION

RADIATOR PRESSURE CAP

INSPECTION

Visually inspect the pressure valve gasket on the cap. Replace cap if the gasket is swollen, torn or worn. Inspect the area around radiator filler neck for white deposits that indicate a leaking cap.

RADIATOR CLEANING

The radiator and air conditioning fins should be cleaned when an accumulation of bugs, leaves etc. has occurred. Clean radiator fins are necessary for good heat transfer. With the engine cold, apply cold water and compressed air to the back (engine side) of the radiator to flush the radiator and/or A/C condenser of debris.

COOLING SYSTEM CLEANING

Drain cooling system and refill with water. Run engine with radiator cap installed until upper radiator hose is hot. Stop engine and drain water from system. If water is dirty, fill system with water, run engine and drain system. Repeat until water drains clean.

FAN BLADE INSPECTION

The fan blades cannot be repaired. If fan is damaged, it must be replaced. Inspect fan as follows:

- (1) Remove fan blade and viscous fan drive as an assembly from the engine. Refer to preceding Removal procedure.
- (2) Remove fan blade assembly from viscous fan drive unit (four bolts).
- (3) Lay fan on a flat surface with leading edge facing down. With tip of blade touching flat surface, replace fan if clearance between opposite blade and surface is greater than 2.0 mm (.090 inch). Rocking motion of opposite blades should not exceed 2.0 mm (.090 inch). Test all blades in this manner.

WARNING: DO NOT ATTEMPT TO BEND OR STRAIGHTEN FAN BLADES IF NOT WITHIN SPECIFICATIONS.

(4) Inspect fan assembly for cracks, bends, loose rivets or broken welds. Replace fan if any damage is found.

CAUTION: If fan blade assembly is replaced because of mechanical damage, water pump and viscous fan drive should also be inspected. These components could have been damaged due to excessive vibration.

COOLING SYSTEM HOSES

INSPECTION

Inspect the hoses at regular intervals. Replace hoses that are cracked, feel brittle when squeezed or swell excessively when the system is pressurized. The use of molded replacement hoses is recommended. When performing a hose inspection, inspect the radiator lower hose for proper position and condition of the spring.

SPECIFICATIONS

COOLING SYSTEM CAPACITIES

BELT TENSION

Belt tension must be adjusted. Refer to the following Belt Tension chart for specifications.

SPECIFICATIONS (Continued)

MODEL	. ENGINE			DLING ACITY	COOL		RADIA	TOR	A/C		CHANIC FAN COUS D			UXILIAR ECTRIC I	
	2.5L	4.0L	QTS.	LITERS	STD.	HD.	ROWS OF TUBES	FINS PER INCH		DIA (INCH)	NO. OF BLADE	BLADE PITCH (INCH)	DIA. (INCH)	NO. OF BLADES	BLADE PITCH (INCH)
	•		10.0	9.5	•		1	15		16.0	5	2.5			
	•		10.0	9.5		•	1	20	•	16.05	5	2.5			
XJ		•	12.0	11.4	•		1	19		15.0	7	1.88			
		•	12.0	11.4	•		1	19	•	15.0	7	1.88	11.0	6	1.75
		•	12.0	11.4		•	2	19		15.0	7	1.88	11.0	6	1.75
		•	12.0	11.4		•	2	19	•	15.0	7	1.88	11.0	6	1.75

^{*4.0}L ENGINE WITH HEAVY DUTY COOLING AND /OR AIR CONDITIONING

COOLING SYSTEM CAPACITIES

*800-900 N (180-200 lbs. force) (With ** new serpentine belt) *623-712 N (140-160 lbs. force) (With ** used serpentine belt) **Belt is considered new if it has been used 15 minutes or less. *Specifications for use with a belt tension gauge. Refer to operating instructions supplied with gauge.

TORQUE SPECIFICATIONS

DESCRIPTION	TORQUE
Auto. Trans. Auxiliary Oil Cooler	
Mtg. Screws 2 N·m	(18in. lbs.)
Auxiliary Electric Cooling Fan	
Mtg. Screws 4 N·m	(36 in. lbs.)
Block Heater	
Mounting Screw 4 N⋅m	(20 in. lbs.)
Condenser-to-Radiator	
Screws 6 N·m	(55 in. lbs.)
Fan Blade Assyto-Viscous Fan Drive	
Bolts 24 N·m	(18 ft. lbs.)
Fan Shroud (2.5L Engine)	
Mounting Bolts 2 N·m	(20 in. lbs.)
Fan Shroud (4.0L Engine)	
Screws 4 N·m	(20 in. lbs.)
Generator Pivot	
Bolt	(28 ft. lbs.)
Generator Rear Adj.	
Bolt 27 N⋅m	(20 ft. lbs.)
Isolator-to-Crossmember	
Nuts 10 N·m	(86 in. lbs.)
Isolator-to-Radiator	
Nuts 5 N·m	(47 in. lbs.)
Radiator (4.0L Engine)	
Mounting Bolts 8 N·n	n (6 ft. lbs.)

DESCRIPTION	TORQUE
Radiator (2.5L Engine)	
Mounting Bolts	6 N·m (55 in. lbs.)
Thermostat Housing	
Bolts	20 N·m (15 ft. lbs.)
Viscous Fan Drive Assyt	o-Water Pump
Nuts	27 N·m (20 ft. lbs.)
Water Pump	
Bolts	30 N·m (22 ft. lbs.)

SPECIAL TOOLS

COOLING

Hose Clamp Tool—6094 Cooling System Pressure Tester—7700-A

XJ ------BATTERY 8A - 1

BATTERY

CONTENTS

page	page
GENERAL INFORMATION	IGNITION-OFF DRAW TEST
INTRODUCTION 1	LOAD TEST8
OVERVIEW 1	OPEN-CIRCUIT VOLTAGE TEST 7
DESCRIPTION AND OPERATION	VOLTAGE DROP TEST 10
BATTERY MOUNTING 3	SERVICE PROCEDURES
BATTERY SIZE AND RATINGS 2	BATTERY CHARGING 11
BATTERY 2	REMOVAL AND INSTALLATION
DIAGNOSIS AND TESTING	BATTERY 13
BATTERY 3	SPECIFICATIONS
BUILT-IN TEST INDICATOR 4	BATTERY 15
HYDROMETER TEST	

GENERAL INFORMATION

OVERVIEW

The battery, starting, and charging systems operate with one another, and must be tested as a complete system. In order for the vehicle to start and charge properly, all of the components involved in these systems must perform within specifications.

Group 8A covers the battery, Group 8B covers the starting system, and Group 8C covers the charging system. Refer to Group 8W - Wiring Diagrams for complete circuit descriptions and diagrams. We have separated these systems to make it easier to locate the information you are seeking within this Service Manual. However, when attempting to diagnose any of these systems, it is important that you keep their interdependency in mind.

The diagnostic procedures used in these groups include the most basic conventional diagnostic methods, to the more sophisticated On-Board Diagnostics (OBD) built into the Powertrain Control Module (PCM). Use of a induction milliampere ammeter, volt/ohmmeter, battery charger, carbon pile rheostat (load tester), and 12-volt test lamp may be required.

All OBD-sensed systems are monitored by the PCM. Each monitored circuit is assigned a Diagnostic Trouble Code (DTC). The PCM will store a DTC in electronic memory for any failure it detects. See the On-Board Diagnostics Test in Group 8C - Charging System for more information.

INTRODUCTION

This section covers only battery diagnostic and service procedures. For battery maintenance procedures, refer to Group 0 - Lubrication and Maintenance. While battery charging can be considered a mainte-

nance procedure, battery charging information is located in this group. This was done because the battery must be fully-charged before any diagnosis can be performed.

The factory-installed low-maintenance battery has removable battery cell caps. Water can be added to this battery. The battery is not sealed and has vent holes in the cell caps (Fig. 1). The chemical composition within the low-maintenance battery reduces battery gassing and water loss, at normal charge and discharge rates.

Fig. 1 Low-Maintenance Battery - Typical

Rapid loss of electrolyte can be caused by an overcharging condition. Be certain to diagnose the charging system before returning the vehicle to service. Refer to Group 8C - Charging System for more information.

The factory-installed battery also has a built-in test indicator (hydrometer). The color visible in the sight glass of the indicator will reveal the battery

GENERAL INFORMATION (Continued)

condition. See Built-In Test Indicator in this group for more information.

It is important that the battery, starting, and charging systems be thoroughly tested and inspected any time a battery needs to be charged or replaced. The cause of abnormal discharge, overcharging, or early battery failure must be diagnosed and corrected before a battery is replaced or returned to service.

NOTE: This group covers both Left-Hand Drive (LHD) and Right-Hand Drive (RHD) versions of this model. Whenever required and feasible, the RHD versions of affected vehicle components have been constructed as mirror-image of the LHD versions. While most of the illustrations used in this group represent only the LHD version, the diagnostic and service procedures outlined can generally be applied to either version. Exceptions to this rule have been clearly identified as LHD or RHD, if a special illustration or procedure is required.

DESCRIPTION AND OPERATION

BATTERY

The storage battery is a device used to store electrical energy potential in a chemical form. When an electrical load is applied to the battery terminals, an electrochemical reaction occurs within the battery. This reaction causes the battery to discharge electrical current.

The battery is made up of six individual cells that are connected in series. Each cell contains positively charged plate groups made of lead oxide, and negatively charged plate groups made of sponge lead. These dissimilar metal plates are submerged in a sulfuric acid and water solution called an electrolyte.

As the battery discharges, a gradual chemical change takes place within each cell. The sulfuric acid in the electrolyte combines with the plate materials, causing both plates to slowly change to lead sulfate. At the same time, oxygen from the positive plate material combines with hydrogen from the sulfuric acid, causing the electrolyte to become mainly water.

The chemical changes within the battery are caused by the movement of excess or free electrons between the positive and negative plate groups. This movement of electrons produces a flow of electrical current through the load device attached to the battery terminals.

As the plate materials become more similar chemically, and the electrolyte becomes less acid, the voltage potential of each cell is reduced. However, by charging the battery with a voltage higher than that of the battery, the battery discharging process is reversed.

Charging the battery gradually changes the sulfated lead plates back into sponge lead and lead oxide, and the water back into sulfuric acid. This action restores the difference in the electron charges deposited on the plates, and the voltage potential of the battery cells.

For a battery to remain useful, it must be able to produce high-amperage current over an extended period. A battery must also be able to accept a charge, so that its voltage potential may be restored.

In addition to producing and storing electrical energy, the battery serves as a capacitor, or voltage stabilizer, for a vehicle's electrical system. It absorbs most abnormal or transient voltages caused by the switching of any of the vehicle's electrical components.

The battery is vented to release excess hydrogen gas that is created when the battery is being charged or discharged. However, even with these vents, the hydrogen gas can collect in or around the battery. If hydrogen gas is exposed to flame or sparks, it may ignite.

If the electrolyte level is low, the battery may arc internally and explode. If the battery is equipped with removable cell caps, add distilled water whenever the electrolyte level is below the top of the plates. If the battery cell caps cannot be removed, the battery must be replaced if the electrolyte level becomes low.

BATTERY SIZE AND RATINGS

The battery Group Size number, the Cold Cranking Amperage (CCA) rating, and the Reserve Capacity (RC) rating or Ampere-Hours (AH) rating can be found on the original equipment battery label. Be certain that a replacement battery has the correct Group Size number, as well as CCA, and RC or AH ratings that equal or exceed the original equipment specification for the vehicle being serviced.

See the Battery Classifications and Ratings chart in Specifications at the back of this group for more information. Battery sizes and ratings are discussed in more detail below.

GROUP SIZE

The outside dimensions and terminal placement of the battery conform to standards established by the Battery Council International (BCI). Each battery is assigned a BCI Group Size number to help identify a correctly-sized replacement.

COLD CRANKING AMPERAGE

The Cold Cranking Amperage (CCA) rating specifies how much current (in amperes) the battery can deliver for thirty seconds at -18 $^{\circ}$ C (0 $^{\circ}$ F). Terminal voltage must not fall below 7.2 volts during or after the thirty second discharge period. The CCA required

DESCRIPTION AND OPERATION (Continued)

is generally higher as engine displacement increases, depending also upon the starter current draw requirements.

RESERVE CAPACITY

The Reserve Capacity (RC) rating specifies the time (in minutes) it takes for battery terminal voltage to fall below 10.5 volts, at a discharge rate of 25 amperes. RC is determined with the battery fully-charged at 26.7° C (80° F). This rating estimates how long the battery might last after a charging system failure, under minimum electrical load.

AMPERE-HOURS

The Ampere-Hours (AH) rating specifies the current (in amperes) that a battery can deliver steadily for twenty hours, with the voltage in the battery not falling below 10.5 volts. This rating is also sometimes referred to as the twenty-hour discharge rating.

BATTERY MOUNTING

The battery is mounted to a molded plastic tray located in the right front corner of the engine compartment. Two T-bolts are held in formations on each side of the tray by push-on retainers, and extend upward on each side of the battery. A holddown strap fits across the top of the battery case and thermoguard. The ends of the T-bolts pass through the holddown strap on each side of the battery, and a nut secures the holddown strap to the T-bolts. One end of a support strap is located under the forward-most holddown strap nut, and the other end is secured to the upper radiator crossmember by a bolt.

The battery tray is secured with three nuts to three studs that protrude from the wheelhouse inner panel, forward of the right front wheel.

On some models, a hole in the bottom of the battery tray is fitted with a battery temperature sensor. Models without the battery temperature sensor have a plug fitted to this hole. Refer to Group 8C - Charging System for more information on the battery temperature sensor.

When installing a battery, be certain that the hold-down fasteners are tightened to the proper specifications. Improper holddown fastener tightness, whether too loose or too tight, can result in damage to the battery. See the Battery Removal and Installation procedures for the correct holddown fastener tightness specifications.

DIAGNOSIS AND TESTING

BATTERY

The battery must be completely charged and the top, posts, and terminal clamps should be properly cleaned before diagnostic procedures are performed.

See the Battery Charging procedure in this group for more information.

WARNING:

- IF THE BATTERY SHOWS SIGNS OF FREEZING, LEAKING, LOOSE POSTS, OR LOW ELECTROLYTE LEVEL, DO NOT TEST, ASSIST-BOOST, OR CHARGE. THE BATTERY MAY ARC INTERNALLY AND EXPLODE. PERSONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT.
- EXPLOSIVE HYDROGEN GAS FORMS IN AND AROUND THE BATTERY. DO NOT SMOKE, USE FLAME, OR CREATE SPARKS NEAR THE BATTERY. PERSONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT.
- THE BATTERY CONTAINS SULFURIC ACID, WHICH IS POISONOUS AND CAUSTIC. AVOID CONTACT WITH THE SKIN, EYES, OR CLOTHING. IN THE EVENT OF CONTACT, FLUSH WITH WATER AND CALL A PHYSICIAN IMMEDIATELY. KEEP OUT OF THE REACH OF CHILDREN.
- IF THE BATTERY IS EQUIPPED WITH REMOVABLE CELL CAPS, BE CERTAIN THAT EACH OF THE CELL CAPS IS IN PLACE AND TIGHT BEFORE THE BATTERY IS RETURNED TO SERVICE. PERSONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT FROM LOOSE OR MISSING CELL CAPS.

The condition of a battery is determined by two criteria:

- 1. **State-Of-Charge** This can be determined by viewing the built-in test indicator, by checking the specific gravity of the electrolyte (hydrometer test), or by checking the battery voltage (open-circuit voltage test).
- 2. **Cranking Capacity** This can be determined by performing a battery load test, which measures the ability of the battery to supply high-amperage current.

First, determine the battery state-of-charge. This can be done in one of three ways. If the battery has a built-in test indicator, view the test indicator to determine the state-of-charge. If the battery has no test indicator, but has removable cell caps, perform the hydrometer test to determine the state-of-charge. If the cell caps are not removable, or a hydrometer is not available, perform the open-circuit voltage test to determine the state-of-charge.

The battery must be charged before proceeding with a load test if:

- The built-in test indicator has a black or dark color visible.
- The temperature corrected specific gravity is less than 1.235.
 - The open-circuit voltage is less than 12.4 volts.

A battery that will not accept a charge is faulty, and must be replaced. Further testing is not

required. A fully-charged battery must be load tested to determine its cranking capacity. A battery that is fully-charged, but does not pass the load test, is faulty and must be replaced.

NOTE: Completely discharged batteries may take several hours to accept a charge. See Charging A Completely Discharged Battery in this group for more information.

A battery is fully-charged when:

- All cells are gassing freely during charging.
- A green color is visible in the sight glass of the built-in test indicator.
- Three corrected specific gravity tests, taken at one-hour intervals, indicate no increase in the specific gravity.
 - Open-circuit voltage is 12.4 volts or greater.

ABNORMAL BATTERY DISCHARGING

Any of the following conditions can result in abnormal battery discharging:

- 1. Corroded or loose battery posts and terminal clamps.
 - 2. A loose or worn generator drive belt.
- 3. Electrical loads that exceed the output of the charging system. This can be due to equipment installed after manufacture, or repeated short trip use.
- 4. Slow driving speeds (heavy traffic conditions) or prolonged idling, with high-amperage draw systems in use.
- 5. A faulty circuit or component causing excessive ignition-off draw. See the Ignition-Off Draw Test procedure in this group for more information.
- 6. A faulty or incorrect charging system component. Refer to Group 8C Charging System for more information.
 - 7. A faulty or incorrect battery.

BUILT-IN TEST INDICATOR

A test indicator (hydrometer) built into the top of the battery case provides visual information for battery testing (Fig. 2). Like a hydrometer, the built-in test indicator measures the specific gravity of the electrolyte. The test indicator reveals the battery state-of-charge; however, it will not reveal the cranking capacity of the battery. A load test must be performed to determine the battery cranking capacity. See the Load Test procedure in this group for more information.

WARNING:

• IF THE BATTERY SHOWS SIGNS OF FREEZ-ING, LEAKING, LOOSE POSTS, OR LOW ELECTRO-LYTE LEVEL, DO NOT TEST, ASSIST-BOOST, OR CHARGE. THE BATTERY MAY ARC INTERNALLY

AND EXPLODE. PERSONAL INJURY AND/OR VEHI-CLE DAMAGE MAY RESULT.

- EXPLOSIVE HYDROGEN GAS FORMS IN AND AROUND THE BATTERY. DO NOT SMOKE, USE FLAME, OR CREATE SPARKS NEAR THE BATTERY. PERSONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT.
- THE BATTERY CONTAINS SULFURIC ACID, WHICH IS POISONOUS AND CAUSTIC. AVOID CONTACT WITH THE SKIN, EYES, OR CLOTHING. IN THE EVENT OF CONTACT, FLUSH WITH WATER AND CALL A PHYSICIAN IMMEDIATELY. KEEP OUT OF THE REACH OF CHILDREN.
- IF THE BATTERY IS EQUIPPED WITH REMOVABLE CELL CAPS, BE CERTAIN THAT EACH OF THE CELL CAPS IS IN PLACE AND TIGHT BEFORE THE BATTERY IS RETURNED TO SERVICE. PERSONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT FROM LOOSE OR MISSING CELL CAPS.

Before testing, visually inspect the battery for any damage (a cracked case or cover, loose posts, etc.) that would cause the battery to be faulty. In order to obtain correct indications from the built-in test indicator, it is important that the battery be level and have a clean sight glass. Additional light may be required to view the indicator. **Do not use open flame as a source of additional light.**

To read the built-in test indicator, look into the sight glass and note the color of the indicator (Fig. 3). Refer to the following description, as the color indicates:

- **Green** indicates 75% to 100% state-of-charge. The battery is adequately charged for further testing or return to use. If the vehicle will not crank for a minimum of fifteen seconds with a fully-charged battery, perform the Load Test procedure as described in this group.
- **Black or Dark** indicates 0% to 75% state-of-charge. The battery is inadequately charged and must be charged until a green indication is visible in the sight glass (12.4 volts or more), before the battery is tested further or returned to service. See the Battery Charging procedure in this group for more information. Also see Abnormal Battery Discharging in this group for possible causes of the discharged condition.
- Clear or Bright indicates a low electrolyte level. The electrolyte level in the battery is below the test indicator. A maintenance-free battery with non-removable cell caps must be replaced if the electrolyte level is low. Water must be added to a low-maintenance battery with removable cell caps before it is charged. See the Battery Charging procedure in this group for more information. A low electrolyte level may be caused by an overcharging condition.

Battery Diagnosis						
Condition	Possible Causes	Correction				
The battery seems weak or dead when attempting to start the engine.	 The battery has an incorrect size or rating for this vehicle. The battery is physically damaged. The battery terminal connections are loose or corroded. The battery is discharged. The electrical system is faulty. The starting system is faulty. The charging system is faulty. 	 See Specifications in this group. Replace the incorrect battery with the correct battery, if required. Inspect the battery for loose terminal posts or a cracked and leaking case. Replace the battery, if damaged. See the Voltage Drop Test in this group. Clean and tighten the battery terminal connections, if required. See the Test Indicator, the Hydrometer Test, or the Open-Circuit Voltage Test in this group to determine the battery state-of-charge. Charge the battery, if required. See the Ignition-Off Draw Test in this group. Repair the electrical system, if required. See the Load Test in this group to determine the battery condition. Replace the battery, if required. Refer to Group 8B - Starting Systems for more information. Repair the starting system, if required. Refer to Group 8C - Charging Systems for more information. Repair the charging system, if required. 				
The battery state-of-charge cannot be maintained.	1. The battery has an incorrect size or rating for this vehicle. 2. The battery terminal connections are loose or corroded. 3. The generator drive belt is loose or worn. 4. The electrical system is faulty. 5. The battery is faulty. 6. The starting system is faulty. 7. The charging system is faulty. 8. Electrical loads exceed the output of the charging system. 9. Slow driving or prolonged idling with high-amperage draw systems in use.	 See Specifications in this group. Replace the incorrect battery with the correct battery, if required. See the Voltage Drop Test in this group. Clean and tighten the battery terminal connections, if required. Refer to Group 7 - Cooling Systems for more information. Replace or adjust the generator drive belt, if required. See the Ignition-Off Draw Test in this group. Repair the electrical system, if required. See the Load Test in this group to determine the battery condition. Replace the battery, if required. Check whether the starting system is performing to specifictions. Refer to Group 8B - Starting Systems for more information. Repair the starting system, if required. Refer to Group 8C - Charging Systems for more information. Repair the charging system, if required. Inspect the vehicle for aftermarket electrical equipment which might cause excessive electrical loads. Advise the vehicle operator, as required. 				
The battery will not accept a charge.	1. The battery is faulty.	See Battery Charging in this group. Replace the faulty battery, if required.				

Fig. 2 Built-In Test Indicator

Refer to Group 8C - Charging System to diagnose an overcharging condition.

Fig. 3 Built-In Test Indicator Sight Glass

HYDROMETER TEST

The hydrometer test reveals the battery state-ofcharge by measuring the specific gravity of the electrolyte. This test cannot be performed on maintenance-free batteries with non-removable cell caps. If the battery has non-removable cell caps, see the Built-In Test Indicator or the Open-Circuit Voltage Test procedures in this group.

Specific gravity is a comparison of the density of the electrolyte to the density of pure water. Pure water has a specific gravity of 1.000, and sulfuric acid has a specific gravity of 1.835. Sulfuric acid makes up approximately 35% of the electrolyte by weight, or 24% by volume.

In a fully-charged battery the electrolyte will have a temperature-corrected specific gravity of 1.260 to 1.290. However, a specific gravity of 1.235 or above is satisfactory for battery load testing and/or return to service.

WARNING:

• IF THE BATTERY SHOWS SIGNS OF FREEZ-ING, LEAKING, LOOSE POSTS, OR LOW ELECTRO-LYTE LEVEL, DO NOT TEST, ASSIST-BOOST, OR CHARGE. THE BATTERY MAY ARC INTERNALLY

AND EXPLODE. PERSONAL INJURY AND/OR VEHI-CLE DAMAGE MAY RESULT.

- EXPLOSIVE HYDROGEN GAS FORMS IN AND AROUND THE BATTERY. DO NOT SMOKE, USE FLAME, OR CREATE SPARKS NEAR THE BATTERY. PERSONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT.
- THE BATTERY CONTAINS SULFURIC ACID, WHICH IS POISONOUS AND CAUSTIC. AVOID CONTACT WITH THE SKIN, EYES, OR CLOTHING. IN THE EVENT OF CONTACT, FLUSH WITH WATER AND CALL A PHYSICIAN IMMEDIATELY. KEEP OUT OF THE REACH OF CHILDREN.
- IF THE BATTERY IS EQUIPPED WITH REMOVABLE CELL CAPS, BE CERTAIN THAT EACH OF THE CELL CAPS IS IN PLACE AND TIGHT BEFORE THE BATTERY IS RETURNED TO SERVICE. PERSONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT FROM LOOSE OR MISSING CELL CAPS.

Before testing, visually inspect the battery for any damage (a cracked case or cover, loose posts, etc.) that would cause the battery to be faulty. Then remove the cell caps and check the electrolyte level. Add distilled water if the electrolyte level is below the top of the battery plates.

Refer to the instructions supplied with the hydrometer for recommendations on the correct use of the hydrometer. Remove only enough electrolyte from the battery cell so that the float is off the bottom of the hydrometer barrel with pressure on the bulb released.

CAUTION: Exercise care when inserting the tip of the hydrometer into a cell to avoid damaging the plate separators. Damaged plate separators can cause early battery failure.

To read the hydrometer correctly, hold it with the top surface of the electrolyte at eye level (Fig. 4). Hydrometer floats are generally calibrated to indicate the specific gravity correctly only at 26.7° C (80° F). When testing the specific gravity at any other temperature, a correction factor is required.

The correction factor is approximately a specific gravity value of 0.004, referred to as four points of specific gravity. For each 5.5° C above 26.7° C (10° F above 80° F), add four points. For each 5.5° C below 26.7° C (10° F below 80° F), subtract four points. Always correct the specific gravity for temperature variation. Test the specific gravity of the electrolyte in each battery cell.

EXAMPLE: A battery is tested at -12.2° C (10° F) and has a specific gravity of 1.240. Determine the actual specific gravity as follows:

(1) Determine the number of degrees above or below 26.7° C (80° F):

Fig. 4 Hydrometer - Typical

 26.6° C - -12.2° C = 38.8° C (80° F - 10° F = 70° F)

- (2) Divide the result from Step 1 by 5.5 (10): 38.8° C \div 5.5 = 7 (70° F \div 10 = 7)
- (3) Multiply the result from Step 2 by the temperature correction factor (0.004):
- $7 \times 0.004 = 0.028$
- (4) The temperature at testing was below 26.7° C $(80^{\circ}$ F); therefore, the temperature correction factor is subtracted:

$$1.240 - 0.028 = 1.212$$

The corrected specific gravity of the battery in this example is 1.212.

If the specific gravity of all cells is above 1.235, but the variation between cells is more than fifty points (0.050), the battery should be replaced. If the specific gravity of one or more cells is less than 1.235, charge the battery at a rate of approximately five amperes.

Continue charging the battery until three consecutive specific gravity tests, taken at one-hour intervals, are constant. If the cell specific gravity variation is more than fifty points (0.050) at the end of the charge period, replace the battery.

When the specific gravity of all cells is above 1.235, and the cell variation is less than fifty points (0.050), the battery may be load tested to determine its cranking capacity. See the Load Test procedure in this group for more information.

OPEN-CIRCUIT VOLTAGE TEST

A battery open-circuit voltage (no load) test will show the state-of-charge of a battery. This test can be used in place of the hydrometer test when a hydrometer is not available, or for maintenance-free batteries with non-removable cell caps.

WARNING:

- IF THE BATTERY SHOWS SIGNS OF FREEZING, LEAKING, LOOSE POSTS, OR LOW ELECTROLYTE LEVEL, DO NOT TEST, ASSIST-BOOST, OR CHARGE. THE BATTERY MAY ARC INTERNALLY AND EXPLODE. PERSONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT.
- EXPLOSIVE HYDROGEN GAS FORMS IN AND AROUND THE BATTERY. DO NOT SMOKE, USE FLAME, OR CREATE SPARKS NEAR THE BATTERY. PERSONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT.
- THE BATTERY CONTAINS SULFURIC ACID, WHICH IS POISONOUS AND CAUSTIC. AVOID CONTACT WITH THE SKIN, EYES, OR CLOTHING. IN THE EVENT OF CONTACT, FLUSH WITH WATER AND CALL A PHYSICIAN IMMEDIATELY. KEEP OUT OF THE REACH OF CHILDREN.
- IF THE BATTERY IS EQUIPPED WITH REMOV-ABLE CELL CAPS, BE CERTAIN THAT EACH OF THE CELL CAPS IS IN PLACE AND TIGHT BEFORE THE BATTERY IS RETURNED TO SERVICE. PER-SONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT FROM LOOSE OR MISSING CELL CAPS.

Before proceeding with this test, completely charge the battery as described in the Battery Charging procedure in this group.

- (1) Before measuring the open-circuit voltage, the surface charge must be removed from the battery. Turn on the head lamps for fifteen seconds, then allow up to five minutes for the battery voltage to stabilize.
- (2) Disconnect and isolate both battery cables, negative cable first.
- (3) Using a voltmeter connected to the battery posts (refer to the instructions provided with the voltmeter), measure the open-circuit voltage (Fig. 5).

898A-7

Fig. 5 Testing Open-Circuit Voltage - Typical

See the Open-Circuit Voltage chart. This voltage reading will indicate the battery state-of-charge, but will not reveal its cranking capacity. If a battery has an open-circuit voltage reading of 12.4 volts or greater, it may be load tested to reveal its cranking capacity. See the Load Test procedure in this group for more information.

Open Circuit Voltage					
Open Circuit Volts Charge Percentage					
11.7 volts or less	0%				
12.0 volts	25%				
12.2 volts	50%				
12.4 volts	75%				
12.6 volts or more	100%				

LOAD TEST

A battery load test will verify the battery cranking capacity. The test is based on the Cold Cranking Amperage (CCA) rating of the battery. Refer to the battery label, or see the Battery Classifications and Ratings chart in Specifications at the back of this group for the CCA rating of the factory-installed battery.

WARNING:

- IF THE BATTERY SHOWS SIGNS OF FREEZ-ING, LEAKING, LOOSE POSTS, OR LOW ELECTRO-LYTE LEVEL, DO NOT TEST, ASSIST-BOOST, OR CHARGE. THE BATTERY MAY ARC INTERNALLY AND EXPLODE. PERSONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT.
- EXPLOSIVE HYDROGEN GAS FORMS IN AND AROUND THE BATTERY. DO NOT SMOKE, USE FLAME, OR CREATE SPARKS NEAR THE BATTERY. PERSONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT.
- THE BATTERY CONTAINS SULFURIC ACID, WHICH IS POISONOUS AND CAUSTIC. AVOID CONTACT WITH THE SKIN, EYES, OR CLOTHING. IN THE EVENT OF CONTACT, FLUSH WITH WATER AND CALL A PHYSICIAN IMMEDIATELY. KEEP OUT OF THE REACH OF CHILDREN.
- IF THE BATTERY IS EQUIPPED WITH REMOVABLE CELL CAPS, BE CERTAIN THAT EACH OF THE CELL CAPS IS IN PLACE AND TIGHT BEFORE THE BATTERY IS RETURNED TO SERVICE. PERSONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT FROM LOOSE OR MISSING CELL CAPS.

Before proceeding with this test, completely charge the battery as described in the Battery Charging procedure in this group.

- (1) Disconnect and isolate both battery cables, negative cable first. The battery top and posts should be clean.
- (2) Connect a suitable volt-ammeter-load tester (Fig. 6) to the battery posts (Fig. 7). Refer to the operating instructions provided with the tester being used. Check the open-circuit voltage (no load) of the battery. Open-circuit voltage must be 12.4 volts or greater.

898A-8

Fig. 6 Volt-Ammeter-Load Tester - Typical

Fig. 7 Volt-Ammeter-Load Tester Connections - Typical

- (3) Rotate the load control knob (carbon pile rheostat) to apply a 300 ampere load to the battery for fifteen seconds, then return the control knob to the Off position (Fig. 8). This will remove the surface charge from the battery.
- (4) Allow the battery to stabilize to open-circuit voltage. It may take up to five minutes for the battery voltage to stabilize.
- (5) Rotate the load control knob to maintain a load equal to 50% of the CCA rating of the battery (Fig. 9). After fifteen seconds, record the loaded voltage reading, then return the load control knob to the Off position.

DIAGNOSIS AND TESTING (Continued)

898A-10

Fig. 8 Remove Surface Charge from Battery - Typical

898A-1

Fig. 9 Load 50% CCA Rating - Note Voltage - Typical

(6) The voltage drop will vary with the battery temperature at the time of the load test. The battery temperature can be estimated by using the ambient temperature during the past several hours. If the battery has been charged, boosted, or loaded a few minutes prior to the test, the battery will be somewhat warmer. See the Load Test Temperature chart for the proper loaded voltage reading.

Load Test Temperature						
Minimum Volt-	Temperature					
age	°F	°C				
9.6 volts	70° and above	21° and above				
9.5 volts	60°	16°				
9.4 volts	50°	10°				
9.3 volts	40°	4°				
9.1 volts	30°	-1°				
8.9 volts	20°	-7°				
8.7 volts	10°	-12°				
8.5 volts	0°	-18°				

(7) If the voltmeter reading falls below 9.6 volts, at a minimum battery temperature of 21° C (70° F), the battery is faulty and must be replaced.

IGNITION-OFF DRAW TEST

Ignition-Off Draw (IOD) refers to power being drained from the battery with the ignition switch in the Off position. A normal vehicle electrical system will draw from five to twenty-five milliamperes (0.005 to 0.025 ampere) with the ignition switch in the Off position, and all non-ignition controlled circuits in proper working order. The twenty-five milliamperes are needed to enable the memory functions for the Powertrain Control Module (PCM), digital clock, electronically tuned radio, and other modules which may vary with the vehicle equipment.

A vehicle that has not been operated for approximately twenty days, may discharge the battery to an inadequate level. When a vehicle will not be used for twenty days or more (stored), remove the IOD fuse from the Power Distribution Center (PDC). This will reduce battery discharging.

Excessive IOD can be caused by:

- Electrical items left on
- Faulty or improperly adjusted switches
- Faulty or shorted electronic modules and components
 - · An internally shorted generator
 - Intermittent shorts in the wiring.

If the IOD is over twenty-five milliamperes, the problem must be found and corrected before replacing a battery. In most cases, the battery can be charged and returned to service after the excessive IOD condition has been corrected.

DIAGNOSIS

- (1) Verify that all electrical accessories are off. Turn off all lamps, remove the ignition key, and close all doors. If the vehicle is equipped with a illuminated entry system or electronically tuned radio, allow the electronic timer function of these systems to automatically shut off (time out). This may take up to three minutes.
- (2) Determine that the underhood lamp is operating properly, then unplug the lamp wire harness connector or remove the lamp bulb.
 - (3) Disconnect the battery negative cable.
- (4) Set an electronic digital multi-meter to its highest amperage scale. Connect the multi-meter between the disconnected battery negative cable clamp and the battery negative terminal post. Make sure that the doors remain closed so that the illuminated entry system is not activated. The multi-meter amperage reading may remain high for up to three minutes, or may not give any reading at all while set in the highest amperage scale, depending upon the electrical equipment on the vehicle. The multi-meter

leads must be securely clamped to the battery negative cable clamp and the battery negative terminal post. If continuity between the battery negative terminal post and the negative cable clamp is lost during any part of the IOD test, the electronic timer function will be activated and all of the tests will have to be repeated.

(5) After about three minutes, the high-amperage IOD reading on the multi-meter should become very low or nonexistent, depending upon the electrical equipment on the vehicle. If the amperage reading remains high, remove each fuse or circuit breaker (refer to Group 8W - Wiring Diagrams for more information) until the amperage reading becomes very low, or nonexistent. This will isolate each circuit and identify the source of the high-amperage IOD. If the amperage reading remains high after disconnecting each fuse and circuit breaker, unplug the wire harness connector from the generator. If the amperage reading now becomes very low or nonexistent, refer to Group 8C - Charging System to diagnose the faulty charging system. After the high-amperage IOD has been corrected, switch the multi-meter to progressively lower amperage scales and, if necessary, repeat the fuse and circuit breaker removal process to identify and correct the sources of excessive IOD. It is now safe to select the lowest milliampere scale of the multi-meter to check the low-amperage IOD.

CAUTION: Do not open any doors, or turn on any electrical accessories with the lowest milliampere scale selected, or the multi-meter may be damaged.

(6) Observe the multi-meter reading. The low-amperage IOD should not exceed twenty-five milliamperes (0.025 ampere). If the draw exceeds twenty-five milliamperes, isolate each circuit by removing the circuit breakers and fuses. The multi-meter reading will drop to within the acceptable limit when the source of the excessive draw is disconnected. Repair this circuit as required; whether a wiring short, incorrect switch adjustment, or a component failure is at fault.

VOLTAGE DROP TEST

The voltage drop test will determine if there is excessive resistance in the battery terminal connections or the battery cables. When performing these tests, it is important to remember that the voltage drop is giving an indication of the resistance between the two points at which the voltmeter probes are attached.

Example: When testing the resistance of the battery positive cable, touch the voltmeter leads to the battery positive cable clamp and the cable connector at the starter solenoid. If you probe the battery positive terminal post and the cable connector at the starter solenoid, you are reading the combined volt-

age drop in the battery positive cable clamp-to-terminal post connection and the battery positive cable.

WARNING:

- IF THE BATTERY SHOWS SIGNS OF FREEZ-ING, LEAKING, LOOSE POSTS, OR LOW ELECTRO-LYTE LEVEL, DO NOT TEST, ASSIST-BOOST, OR CHARGE. THE BATTERY MAY ARC INTERNALLY AND EXPLODE. PERSONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT.
- EXPLOSIVE HYDROGEN GAS FORMS IN AND AROUND THE BATTERY. DO NOT SMOKE, USE FLAME, OR CREATE SPARKS NEAR THE BATTERY. PERSONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT.
- THE BATTERY CONTAINS SULFURIC ACID, WHICH IS POISONOUS AND CAUSTIC. AVOID CONTACT WITH THE SKIN, EYES, OR CLOTHING. IN THE EVENT OF CONTACT, FLUSH WITH WATER AND CALL A PHYSICIAN IMMEDIATELY. KEEP OUT OF THE REACH OF CHILDREN.
- IF THE BATTERY IS EQUIPPED WITH REMOVABLE CELL CAPS, BE CERTAIN THAT EACH OF THE CELL CAPS IS IN PLACE AND TIGHT BEFORE THE BATTERY IS RETURNED TO SERVICE. PERSONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT FROM LOOSE OR MISSING CELL CAPS.

The following operation will require a voltmeter accurate to 1/10 (0.10) volt. Before performing the tests, be certain the following procedures are accomplished:

- Battery is fully-charged as described in this group.
 - Fully engage the parking brake.
- If the vehicle is equipped with an automatic transmission, place the gearshift selector lever in the Park position. If the vehicle is equipped with a manual transmission, place the gearshift selector lever in the Neutral position and fully depress the clutch pedal.
- Unplug the Automatic ShutDown (ASD) relay to prevent the engine from starting. The ASD relay is located in the Power Distribution Center (PDC). Refer to the PDC label for ASD relay identification and location.
- (1) Connect the positive lead of the voltmeter to the battery negative terminal post. Connect the negative lead of the voltmeter to the battery negative cable clamp (Fig. 10). Rotate and hold the ignition switch in the Start position. Observe the voltmeter. If voltage is detected, correct the poor contact between the cable clamp and the terminal post.
- (2) Connect the positive lead of the voltmeter to the battery positive terminal post. Connect the negative lead of the voltmeter to the battery positive cable clamp (Fig. 11). Rotate and hold the ignition switch

XJ ------ BATTERY 8A - 11

DIAGNOSIS AND TESTING (Continued)

Fig. 10 Test Battery Negative Connection Resistance - Typical

in the Start position. Observe the voltmeter. If voltage is detected, correct the poor contact between the cable clamp and the terminal post.

Fig. 11 Test Battery Positive Connection Resistance
- Typical

- (3) Connect the voltmeter to measure between the battery positive terminal post and the starter sole-noid battery terminal stud (Fig. 12). Rotate and hold the ignition switch in the Start position. Observe the voltmeter. If the reading is above 0.2 volt, clean and tighten the battery cable connection at the solenoid. Repeat the test. If the reading is still above 0.2 volt, replace the faulty battery positive cable.
- (4) Connect the voltmeter to measure between the battery negative terminal post and a good clean ground on the engine block (Fig. 13). Rotate and hold

Fig. 12 Test Battery Positive Cable Resistance - Typical

the ignition switch in the Start position. Observe the voltmeter. If the reading is above 0.2 volt, clean and tighten the battery negative cable attachment on the engine block. Repeat the test. If the reading is still above 0.2 volt, replace the faulty battery negative cable.

*Fig. 13 Test Ground Circuit Resistance - Typical*SERVICE PROCEDURES

BATTERY CHARGING

A battery is fully-charged when:

- All cells are gassing freely during battery charging.
- A green color is visible in the sight glass of the built-in test indicator.
- Three corrected specific gravity tests, taken at one-hour intervals, indicate no increase in the specific gravity.
 - Open-circuit voltage is 12.4 volts or above.

SERVICE PROCEDURES (Continued)

WARNING:

- IF THE BATTERY SHOWS SIGNS OF FREEZ-ING, LEAKING, LOOSE POSTS, OR LOW ELECTRO-LYTE LEVEL, DO NOT TEST, ASSIST-BOOST, OR CHARGE. THE BATTERY MAY ARC INTERNALLY AND EXPLODE. PERSONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT.
- EXPLOSIVE HYDROGEN GAS FORMS IN AND AROUND THE BATTERY. DO NOT SMOKE, USE FLAME, OR CREATE SPARKS NEAR THE BATTERY. PERSONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT.
- THE BATTERY CONTAINS SULFURIC ACID, WHICH IS POISONOUS AND CAUSTIC. AVOID CONTACT WITH THE SKIN, EYES, OR CLOTHING. IN THE EVENT OF CONTACT, FLUSH WITH WATER AND CALL A PHYSICIAN IMMEDIATELY. KEEP OUT OF THE REACH OF CHILDREN.
- IF THE BATTERY IS EQUIPPED WITH REMOVABLE CELL CAPS, BE CERTAIN THAT EACH OF THE CELL CAPS IS IN PLACE AND TIGHT BEFORE THE BATTERY IS RETURNED TO SERVICE. PERSONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT FROM LOOSE OR MISSING CELL CAPS.

CAUTION:

- Always disconnect and isolate the battery negative cable before charging a battery. Do not exceed sixteen volts while charging a battery. Damage to the vehicle electrical system components may result.
- Battery electrolyte will bubble inside the battery case during normal battery charging. Electrolyte boiling or being discharged from the battery vents indicates a battery overcharging condition. Immediately reduce the charging rate or turn off the charger to evaluate the battery condition. Damage to the battery may result from overcharging.
- The battery should not be hot to the touch. If the battery feels hot to the touch, turn off the charger and let the battery cool before continuing the charging operation. Damage to the battery may result.

Some battery chargers are equipped with polarity-sensing circuitry. This circuitry protects the charger and/or the battery from being damaged if they are improperly connected. If the battery state-of-charge is too low for the polarity-sensing circuitry to detect, the charger will not operate. This makes it appear that the battery will not accept charging current. Refer to the instructions provided with the battery charger to bypass the polarity-sensing circuitry.

After the battery has been charged to 12.4 volts or greater, perform a load test to determine the battery cranking capacity. If the battery will endure a load

test, return the battery to use. If the battery will not endure a load test, it is faulty and must be replaced.

Clean and inspect the battery holddowns, tray, terminals, posts, and top before completing service. See the Battery Removal and Installation procedures in this group for more information.

CHARGING A COMPLETELY DISCHARGED BATTERY

The following procedure should be used to recharge a completely discharged battery. Unless this procedure is properly followed, a good battery may be needlessly replaced.

(1) Measure the voltage at the battery posts with a voltmeter, accurate to 1/10 (0.10) volt (Fig. 14). If the reading is below ten volts, the charge current will be low. It could take some time before the battery accepts a current greater than a few milliamperes. Such low current may not be detectable on the ammeters built into many chargers.

898A-12

Fig. 14 Voltmeter Accurate to 1/10 Volt Connected - Typical

- (2) Disconnect and isolate the battery negative cable. Connect the battery charger leads. Some battery chargers are equipped with polarity-sensing circuitry. This circuitry protects the charger and/or the battery from being damaged if they are improperly connected. If the battery state-of-charge is too low for the polarity-sensing circuitry to detect, the charger will not operate. This makes it appear that the battery will not accept charging current. Refer to the instructions provided with the battery charger to bypass the polarity-sensing circuitry.
- (3) Battery chargers vary in the amount of voltage and current they provide. The amount of time required for a battery to accept measurable charger current at various voltages is shown in the Charge Rate chart. If the charge current is still not measurable at the end of the charging time, the battery is faulty and must be replaced. If the charge current is measurable during the charging time, the battery

SERVICE PROCEDURES (Continued)

may be good and the charging should be completed in the normal manner.

Charge Rate					
Voltage Hours					
16.0 volts maximum	up to 4 hours				
14.0 to 15.9 volts	up to 8 hours				
13.9 volts or less	up to 16 hours				

CHARGING TIME REQUIRED

The time required to charge a battery will vary, depending upon the following factors:

- **Battery Capacity** A completely discharged heavy-duty battery requires twice the charging time of a small capacity battery.
- **Temperature** A longer time will be needed to charge a battery at -18 $^{\circ}$ C (0 $^{\circ}$ F) than at 27 $^{\circ}$ C (80 $^{\circ}$ F). When a fast charger is connected to a cold battery, the current accepted by the battery will be very low at first. As the battery warms, it will accept a higher charging current rate (amperage).
- **Charger Capacity** A charger that supplies only five amperes will require a longer charging time. A charger that supplies twenty amperes or more will require a shorter charging time.
- State-Of-Charge A completely discharged battery requires more charging time than a partially discharged battery. Electrolyte is nearly pure water in a completely discharged battery. At first, the charging current (amperage) will be low. As the battery charges, the specific gravity of the electrolyte will gradually rise.

WARNING: NEVER EXCEED TWENTY AMPERES WHEN CHARGING A COLD (-1° C/30° F) BATTERY. THE BATTERY MAY ARC INTERNALLY AND EXPLODE. PERSONAL INJURY AND/OR VEHICLE DAMAGE MAY RESULT.

REMOVAL AND INSTALLATION

BATTERY

- (1) Turn the ignition switch to the Off position. Make sure all electrical accessories are turned off.
- (2) Loosen the cable terminal clamps and disconnect both battery cables, negative cable first. If necessary, use a puller to remove the terminal clamps from the battery posts (Fig. 15).
- (3) Inspect the cable terminal clamps for corrosion and damage. Remove any corrosion using a wire brush or a post and terminal cleaning tool, and a sodium bicarbonate (baking soda) and warm water cleaning solution (Fig. 16). Replace any cable that has damaged or deformed terminal clamps.

Battery Charging Timetable							
Charging	5	10	20				
Amperage	Amperes	Amperes	Amperes				
Open Cir- cuit Volt-	Hours Charging at 21°C (70°F)						
age							
12.25 to 12.39	6 hours	3 hours	1.5 hours				
12.00 to 12.24	8 hours	4 hours	2 hours				
11.95 to 11.99	12 hours	6 hours	3 hours				
10.00 to 11.94	14 hours	7 hours	3.5 hours				
less than 10.00	See Charging Completely Discharged Battery						

Fig. 15 Remove Battery Cable Terminal Clamp - Typical

WARNING: WEAR A SUITABLE PAIR OF RUBBER GLOVES (NOT THE HOUSEHOLD TYPE) WHEN REMOVING A BATTERY BY HAND. SAFETY GLASSES SHOULD ALSO BE WORN. IF THE BATTERY IS CRACKED OR LEAKING, THE ELECTROLYTE CAN BURN THE SKIN AND EYES.

- (4) Remove the battery holddowns and remove the battery from the vehicle (Fig. 17).
- (5) Inspect the battery tray and holddowns for corrosion or damage. Remove any corrosion using a wire brush and a sodium bicarbonate (baking soda) and warm water cleaning solution. Paint any exposed bare metal and replace any damaged parts.
- (6) Slide the thermoguard off of the battery case. Inspect the battery case for cracks or other damage that could result in electrolyte leaks. Also, check the battery terminal posts for looseness. Batteries with damaged cases or loose posts must be replaced.
- (7) Check the electrolyte level in the battery. Use a putty knife or another suitable wide flat-bladed tool to pry the cell caps off (Fig. 18). Do not use a screw-

Fig. 16 Clean Battery Cable Terminal Clamp - Typical

Fig. 17 Battery Holddowns

driver. Add distilled water to each cell until the liquid reaches the bottom of the vent well. DO NOT OVERFILL.

Fig. 18 Removing Cell Caps - Typical

- (8) Inspect the battery built-in test indicator sight glass for an indication of the battery condition. If the battery is discharged, charge as required. See the Built-In Test Indicator and the Battery Charging procedures in this group for more information.
- (9) If the battery is to be reinstalled, clean the outside of the battery case and the top cover with a sodium bicarbonate (baking soda) and warm water cleaning solution to remove any acid film (Fig. 19). Rinse the battery with clean water. Ensure that the cleaning solution does not enter the battery cells through the vent holes. If the battery is being replaced, see the Battery Ratings and Classifications chart in Specifications at the back of this group. Confirm that the replacement battery is the correct size and has the correct ratings for the vehicle.
- (10) Clean any corrosion from the battery terminal posts with a wire brush or a post and terminal cleaner, and a sodium bicarbonate (baking soda) and warm water cleaning solution (Fig. 20).
- (11) Reinstall the battery thermoguard by sliding it over the battery case.
- (12) Position the battery in the tray. Ensure that the positive and negative terminal posts are correctly positioned. The cable terminal clamps must reach the correct battery post without stretching the cables (Fig. 21).
- (13) Loosely install the battery holddown hardware. Ensure that the battery base is correctly positioned in the tray, then tighten the holddown nuts to $2.2~\mathrm{N\cdot m}$ (20 in. lbs.). Tighten the holddown support strap bolt to $9~\mathrm{N\cdot m}$ (77 in. lbs.).

CAUTION: Be certain that the battery cables are connected to the correct battery terminals. Reverse polarity may damage electrical components.

REMOVAL AND INSTALLATION (Continued)

Fig. 19 Clean Battery - Typical

Fig. 20 Clean Battery Terminal Post - Typical

Fig. 21 Battery Cables

- (14) Install and tighten the battery positive cable terminal clamp. Then install and tighten the battery negative cable terminal clamp. Tighten both cable terminal clamp bolts to 8.5 N·m (75 in. lbs.).
- (15) Apply a thin coating of petroleum jelly or chassis grease to the exposed surfaces of the battery cable terminal clamps and the battery terminal posts.

SPECIFICATIONS

BATTERY

Battery Classifications and Ratings						
Part Number	BCI Group Size Cold Cranking Reserve Capac- Ampere-Hours Load Test Amperage					
56041105	58	500	85 Minutes	42	250	

STARTING SYSTEMS

CONTENTS

page	page
	CONTROL CIRCUIT TEST 6 FEED CIRCUIT TEST 3 STARTER NOISE - 2.5L ENGINE 7
	STARTING SYSTEM
STARTER RELAY 2	REMOVAL AND INSTALLATION
STARTER 2	STARTER RELAY 9
STARTING SYSTEM 2	STARTER 8
DIAGNOSIS AND TESTING	SPECIFICATIONS
COLD CRANKING TEST	STARTING SYSTEM 10

GENERAL INFORMATION

OVERVIEW

The battery, starting, and charging systems operate with one another, and must be tested as a complete system. In order for the vehicle to start and charge properly, all of the components involved in these systems must perform within specifications.

Group 8A covers the battery, Group 8B covers the starting system, and Group 8C covers the charging system. Refer to Group 8W - Wiring Diagrams for complete circuit descriptions and diagrams. We have separated these systems to make it easier to locate the information you are seeking within this Service Manual. However, when attempting to diagnose any of these systems, it is important that you keep their interdependency in mind.

The diagnostic procedures used in these groups include the most basic conventional diagnostic methods, to the more sophisticated On-Board Diagnostics (OBD) built into the Powertrain Control Module (PCM). Use of a induction milliampere ammeter, volt/ohmmeter, battery charger, carbon pile rheostat (load tester), and 12-volt test lamp may be required.

All OBD-sensed systems are monitored by the PCM. Each monitored circuit is assigned a Diagnostic Trouble Code (DTC). The PCM will store a DTC in electronic memory for any failure it detects. See the On-Board Diagnostics Test in Group 8C - Charging System for more information.

INTRODUCTION

The starting system consists of:

- Battery
- Starter relay
- · Starter with an integral solenoid

- Ignition switch
- Clutch pedal position switch (manual transmission)
- Park/neutral position switch (automatic transmission)
 - Wire harness and connections.

This group covers diagnosis of the complete starting system, except the battery. However, this group only covers service procedures for the starter and starter relay. Service procedures for other starting system components can be located as follows:

- \bullet Battery refer to Group 8A Battery for the diagnostic and service procedures
- \bullet Ignition switch refer to Group 8D Ignition Systems for the service procedures
- Clutch pedal position switch refer to Group 6 Clutch for the service procedures
- Park/neutral position switch refer to Group 21 Transmission for the service procedures
- Wire harness and connections refer to Group 8W Wiring Diagrams for the service procedures.

NOTE: This group covers both Left-Hand Drive (LHD) and Right-Hand Drive (RHD) versions of this model. Whenever required and feasible, the RHD versions of affected vehicle components have been constructed as mirror-image of the LHD versions. While most of the illustrations used in this group represent only the LHD version, the diagnostic and service procedures outlined can generally be applied to either version. Exceptions to this rule have been clearly identified as LHD or RHD, if a special illustration or procedure is required.

DESCRIPTION AND OPERATION

STARTING SYSTEM

The starting system components form two separate circuits. A high-amperage feed circuit that feeds the starter between 150 and 350 amperes, and a low-amperage control circuit that operates on less than 20 amperes.

If the vehicle is equipped with an automatic transmission, battery voltage is supplied through the low-amperage control circuit to the coil battery terminal of the starter relay when the ignition switch is turned to the Start position. The park/neutral position switch is installed in series between the starter relay coil ground terminal and ground. This normally open switch prevents the starter relay from being energized unless the automatic transmission gear selector is in the Neutral or Park positions.

If the vehicle is equipped with a manual transmission, it has a clutch pedal position switch installed in series between the ignition switch and the coil battery terminal of the starter relay. This normally open switch prevents the starter relay from being energized unless the clutch pedal is depressed, preventing starter operation while the clutch disc and the flywheel are engaged. The starter relay coil ground terminal is always grounded on vehicles with a manual transmission.

When the starter relay coil is energized, the normally open relay contacts close. The relay contacts connect the relay common feed terminal to the relay normally open terminal. The closed relay contacts energize the starter solenoid coil windings.

The energized solenoid pull-in coil pulls in the solenoid plunger. The solenoid plunger pulls the shift lever in the starter. This engages the starter overrunning clutch and pinion gear with the starter ring gear on the manual transmission flywheel, or on the automatic transmission torque converter drive plate.

As the solenoid plunger reaches the end of its travel, the solenoid contact disc completes the high-amperage starter feed circuit and energizes the solenoid plunger hold-in coil. Current now flows between the solenoid battery terminal and the starter motor, energizing the starter.

Once the engine starts, the overrunning clutch protects the starter from damage by allowing the starter pinion gear to spin faster than the pinion shaft. When the driver releases the ignition switch to the On position, the starter relay coil is de-energized. This causes the relay contacts to open. When the relay contacts open, the starter solenoid plunger hold-in coil is de-energized.

When the solenoid plunger hold-in coil is de-energized, the solenoid plunger return spring returns the plunger to its relaxed position. This causes the con-

tact disc to open the starter feed circuit, and the shift lever to disengage the overrunning clutch and pinion gear from the starter ring gear.

STARTER

The starter motor incorporates several features to create a reliable, efficient, compact, and lightweight unit. A planetary gear system (intermediate transmission) is used between the electric motor and the pinion gear. This feature makes it possible to reduce the dimensions of the starter. At the same time, it allows higher armature rotational speed and delivers increased torque through the pinion gear to the starter ring gear on the automatic transmission torque converter or torque converter drive plate, or on the manual transmission flywheel.

The use of a permanent magnet field also reduces the size and weight of the starter. The permanent magnet field consists of four high-strength permanent magnets. The magnets are aligned according to their polarity, and are permanently mounted in the starter field frame.

The starter motors for all engines are activated by a solenoid mounted to the overrunning clutch housing. However, the starter motor and solenoid are serviced only as a complete assembly. If either component is faulty or damaged, the entire starter assembly must be replaced.

CAUTION:

- Permanent magnet starters are highly sensitive to hammering, shocks, and external pressure. The permanent magnets may be damaged and the starter rendered unserviceable, if subjected to any of these conditions.
- The starter motor must not be clamped in a vise by the starter field frame. Doing so may damage the permanent magnets. The starter should only be clamped by the mounting flange.
- Do not connect the starter motor incorrectly when testing. Reverse polarity may damage the permanent magnets and render the starter unserviceable.

STARTER RELAY

The starter relay is a International Standards Organization (ISO)-type relay. The starter relay is a electromechanical device that switches battery current to the pull-in coil of the starter solenoid when the ignition switch is turned to the Start position. See the Diagnosis and Testing section of this group for more information on the operation of the starter relay.

The starter relay is located in the Power Distribution Center (PDC), in the engine compartment. Refer to the PDC label for relay identification and location.

XJ — STARTING SYSTEMS 8B - 3

DESCRIPTION AND OPERATION (Continued)

The starter relay cannot be repaired and, if faulty or damaged, it must be replaced.

DIAGNOSIS AND TESTING

STARTING SYSTEM

For circuit descriptions and diagrams, refer to 8W-21 - Starting System in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

INSPECTION

Before removing any unit from the starting system for repair or diagnosis, perform the following inspections:

- **Battery** Visually inspect the battery for indications of physical damage and loose or corroded cable connections. Determine the state-of-charge and cranking capacity of the battery. Charge or replace the battery, if required. Refer to Group 8A Battery for more information.
- **Ignition Switch** Visually inspect the ignition switch for indications of physical damage and loose or corroded wire harness connections.
- Clutch Pedal Position Switch Visually inspect the clutch pedal position switch for indications of physical damage and loose or corroded wire harness connections.
- Park/Neutral Position Switch Visually inspect the park/neutral position switch for indications of physical damage and loose or corroded wire harness connections.
- **Starter Relay** Visually inspect the starter relay for indications of physical damage and loose or corroded wire harness connections.
- **Starter** Visually inspect the starter for indications of physical damage and loose or corroded wire harness connections.
- **Starter Solenoid** Visually inspect the starter solenoid for indications of physical damage and loose or corroded wire harness connections.
- **Wiring** Visually inspect the wire harness for damage. Repair or replace any faulty wiring, as required.

COLD CRANKING TEST

For circuit descriptions and diagrams, refer to 8W-21 - Starting System in Group 8W - Wiring Diagrams. The battery must be fully-charged and load-tested before proceeding. Refer to Group 8A - Battery for more information.

- (1) Connect a suitable volt-ampere tester to the battery terminals (Fig. 1). Refer to the operating instructions provided with the tester being used.
 - (2) Fully engage the parking brake.
- (3) If the vehicle is equipped with an automatic transmission, place the gearshift selector lever in the Park position. If the vehicle is equipped with a manual transmission, place the gearshift selector lever in the Neutral position and fully depress the clutch pedal.
- (4) Verify that all lamps and accessories are turned off.
- (5) To prevent the engine from starting, unplug the Automatic ShutDown (ASD) relay. The ASD relay is located in the Power Distribution Center (PDC). Refer to the PDC label for relay identification and location.
- (6) Rotate and hold the ignition switch in the Start position. Note the cranking voltage and current (amperage) draw.
 - (a) If the voltage reads below 9.6 volts, remove the starter for bench testing. If the starter bench test is OK, refer to Group 9 Engine for further diagnosis of the engine. If the starter bench test is not OK, replace the faulty starter.
 - (b) If the voltage reads above 9.6 volts and the current (amperage) draw reads below specifications, see the Feed Circuit Test procedures in this group.
 - (c) If the voltage reads 12.5 volts or greater and the starter does not turn, see the Control Circuit Test procedures in this group.
 - (d) If the voltage reads 12.5 volts or greater and the starter turns very slowly, see the Feed Circuit Test procedures in this group.

NOTE: A cold engine will increase the starter current (amperage) draw reading, and reduce the battery voltage reading.

FEED CIRCUIT TEST

The starter feed circuit test (voltage drop method) will determine if there is excessive resistance in the high-amperage circuit. For circuit descriptions and diagrams, refer to 8W-21 - Starting System in Group 8W - Wiring Diagrams.

When performing these tests, it is important to remember that the voltage drop is giving an indication of the resistance between the two points at which the voltmeter probes are attached.

Starting System Diagnosis			
CONDITION	POSSIBLE CAUSE	CORRECTION	
STARTER FAILS TO ENGAGE.	1. Battery discharged or faulty. 2. Starting circuit wiring faulty. 3. Starter relay faulty. 4. Ignition switch faulty. 5. Park/Neutral position switch (auto trans) faulty or misadjusted. 6. Clutch pedal position switch (man trans) faulty. 7. Starter solenoid faulty. 8. Starter assembly faulty.	 Refer to Group 8A - Battery. Charge or replace battery, if required. See Cold Cranking Test, in this group. Test and repair feed and/or control circuits, if required. See Relay Test, in this group. Replace relay, if required. See Ignition Switch Test, in this group. Replace switch, if required. See Park/Neutral Position Switch, in Group 21 - Transmission and Transfer Case for the diagnosis and service of this component. Replace switch, if required. See Clutch Pedal Position Switch Test, in this group. Replace switch, if required. See Solenoid Test, in this Group. Replace starter assembly, if required. If all other starting system components and circuits check OK, replace starter assembly. 	
STARTER ENGAGES, FAILS TO TURN ENGINE.	Battery discharged or faulty. Starting circuit wiring faulty. Starter assembly faulty. Engine seized.	 Refer to Group 8A - Battery. Charge or replace battery, if required. See Cold Cranking Test, in this group. Test and repair feed and/or control circuits, if required. If all other starting system components and circuits check OK, replace starter assembly. Refer to Group 9 - Engine, for diagnostic and service procedures. 	
STARTER ENGAGES, SPINS OUT BEFORE ENGINE STARTS.	Broken teeth on starter ring gear. Starter assembly faulty.	Remove starter as described in this group. Inspect ring gear and replace, if required. If all other starting system components and circuits check OK, replace starter assembly.	
STARTER DOES NOT DISENGAGE.	 Starter improperly installed. Starter relay faulty. Ignition switch faulty. Starter assembly faulty. 	 Install starter as described in this group. Tighten starter mounting hardware to correct torque specifications. See Relay Test, in this group. Replace relay, if required. See Ignition Switch Test, in this group. Replace switch, if required. If all other starting system components and circuits check OK, replace starter assembly. 	

Example: When testing the resistance of the battery positive cable, touch the voltmeter leads to the battery positive cable clamp and the cable connector at the starter solenoid. If you probe the battery positive terminal post and the cable connector at the starter solenoid, you are reading the combined voltage drop in the battery positive cable clamp-to-terminal post connection and the battery positive cable.

The following operation will require a voltmeter accurate to 1/10 (0.10) volt. Before performing the tests, be certain the following procedures are accomplished:

- Battery is fully-charged. Refer to Group 8A -Battery for more information.
 - Fully engage the parking brake.
- If the vehicle is equipped with an automatic transmission, place the gearshift selector lever in the Park position. If the vehicle is equipped with a manual transmission, place the gearshift selector lever in the Neutral position and fully depress the clutch pedal.
- Unplug the Automatic ShutDown (ASD) relay to prevent the engine from starting. The ASD relay is located in the Power Distribution Center (PDC).

DIAGNOSIS AND TESTING (Continued)

Fig. 1 Volts-Amps Tester Connections - Typical

Refer to the PDC label for ASD relay identification and location.

(1) Connect the positive lead of the voltmeter to the battery negative terminal post. Connect the negative lead of the voltmeter to the battery negative cable clamp (Fig. 2). Rotate and hold the ignition switch in the Start position. Observe the voltmeter. If voltage is detected, correct the poor contact between the cable clamp and the terminal post.

Fig. 2 Test Battery Negative Connection Resistance
- Typical

- (2) Connect the positive lead of the voltmeter to the battery positive terminal post. Connect the negative lead of the voltmeter to the battery positive cable clamp (Fig. 3). Rotate and hold the ignition switch in the Start position. Observe the voltmeter. If voltage is detected, correct the poor contact between the cable clamp and the terminal post.
- (3) Connect the voltmeter to measure between the battery positive terminal post and the starter sole-noid battery terminal stud (Fig. 4). Rotate and hold the ignition switch in the Start position. Observe the voltmeter. If the reading is above 0.2 volt, clean and tighten the battery cable connection at the solenoid.

Fig. 3 Test Battery Positive Connection Resistance - Typical

Repeat the test. If the reading is still above 0.2 volt, replace the faulty battery positive cable.

Fig. 4 Test Battery Positive Cable Resistance - Typical

- (4) Connect the voltmeter to measure between the battery negative terminal post and a good clean ground on the engine block (Fig. 5). Rotate and hold the ignition switch in the Start position. Observe the voltmeter. If the reading is above 0.2 volt, clean and tighten the battery negative cable attachment on the engine block. Repeat the test. If the reading is still above 0.2 volt, replace the faulty battery negative cable.
- (5) Connect the positive lead of the voltmeter to the starter housing. Connect the negative lead of the voltmeter to the battery negative terminal post (Fig. 6). Rotate and hold the ignition switch in the Start position. Observe the voltmeter. If the reading is above 0.2 volt, correct the poor starter to engine block ground contact.

If the resistance tests detect no feed circuit problems, remove the starter and see the Solenoid Test procedure in this group.

Fig. 5 Test Ground Circuit Resistance - Typical

Fig. 6 Test Starter Ground - Typical

CONTROL CIRCUIT TEST

For circuit descriptions and diagrams, refer to 8W-21 - Starting System in Group 8W - Wiring Diagrams. The starter control circuit consists of:

- Battery
- Starter relay
- · Starter solenoid
- Ignition switch
- Park/neutral position switch (automatic transmission)
- Clutch pedal position switch (manual transmission)
 - Wire harness and connections.

Test procedures for these components should be performed in the order in which they are listed, as follows:

SOLENOID TEST

Remove the starter as described in this group. Then proceed as follows:

- (1) Remove the wire from the solenoid field coil terminal.
- (2) Check for continuity between the solenoid terminal and the field coil terminal with a continuity

tester (Fig. 7). There should be continuity. If OK, go to Step 3. If not OK, replace the faulty starter assembly.

Fig. 7 Continuity Test Between Solenoid Terminal and Field Coil Terminal

(3) Check for continuity between the solenoid terminal and the solenoid case (Fig. 8). There should be continuity. If OK, go to Step 4. If not OK, replace the faulty starter assembly.

Fig. 8 Continuity Test Between Solenoid Terminal and Solenoid Case

- (4) Connect the solenoid field coil wire to the field coil terminal.
 - (5) Install the starter as described in this group.

RELAY TEST

The starter relay is located in the Power Distribution Center (PDC) in the engine compartment. Refer to the PDC label for starter relay identification and location.

Remove the starter relay from the PDC as described in this group to perform the following tests:

- (1) A relay in the de-energized position should have continuity between terminals 87A and 30, and no continuity between terminals 87 and 30. If OK, go to Step 2. If not OK, replace the faulty relay.
- (2) Resistance between terminals 85 and 86 (electromagnet) should be 75 \pm 5 ohms. If OK, go to Step 3. If not OK, replace the faulty relay.
- (3) Connect a battery to terminals 85 and 86. There should now be continuity between terminals 30 and 87, and no continuity between terminals 87A and 30. If OK, see the Relay Circuit Test procedure in this group. If not OK, replace the faulty relay.

RELAY CIRCUIT TEST

(1) The relay common feed terminal cavity (30) is connected to battery voltage and should be hot at all

XJ — STARTING SYSTEMS 8B - 7

DIAGNOSIS AND TESTING (Continued)

9514-16

Starter Relay

times. If OK, go to Step 2. If not OK, repair the open circuit to the PDC fuse as required.

- (2) The relay normally closed terminal (87A) is connected to terminal 30 in the de-energized position, but is not used for this application. Go to Step 3.
- (3) The relay normally open terminal (87) is connected to the common feed terminal (30) in the energized position. This terminal supplies battery voltage to the starter solenoid field coils. There should be continuity between the cavity for relay terminal 87 and the starter solenoid terminal at all times. If OK, go to Step 4. If not OK, repair the open circuit to the starter solenoid as required.
- (4) The coil battery terminal (86) is connected to the electromagnet in the relay. It is energized when the ignition switch is held in the Start position. On vehicles with a manual transmission, the clutch pedal must be fully depressed for this test. Check for battery voltage at the cavity for relay terminal 86 with the ignition switch in the Start position, and no voltage when the ignition switch is released to the On position. If OK, go to Step 5. If not OK with an automatic transmission, check for an open or short circuit to the ignition switch and repair, if required. If the circuit to the ignition switch is OK, see the Ignition Switch Test procedure in this group. If not OK with a manual transmission, check the circuit between the relay and the clutch pedal position switch for an open or a short. If the circuit is OK, see the Clutch Pedal Position Switch Test procedure in this group.
- (5) The coil ground terminal (85) is connected to the electromagnet in the relay. On vehicles with an automatic transmission, it is grounded through the park/neutral position switch only when the gearshift selector lever is in the Park or Neutral positions. On vehicles with a manual transmission, it is grounded at all times. Check for continuity to ground at the cavity for relay terminal 85. If not OK with an auto-

matic transmission, check for an open or short circuit to the park/neutral position switch and repair, if required. If the circuit is OK, see the Park/Neutral Position Switch Test procedure in this group. If not OK with a manual transmission, repair the circuit to ground as required.

PARK/NEUTRAL POSITION SWITCH TEST

For testing of the park/neutral position switch, refer to Group 21 - Transmission and Transfer Case.

IGNITION SWITCH TEST

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the steering column shrouds and unplug the ignition switch wire harness connector. Refer to Group 8D Ignition Systems for the procedures.
- (3) With the ignition switch in the On position, check for continuity between the ignition switch fused B(+) circuit terminal and the ignition switch output (start) circuit terminal. There should be no continuity. If OK, go to Step 4. If not OK, replace the faulty switch.
- (4) With the ignition switch held in the Start position, check for continuity between the ignition switch fused B(+) circuit terminal and the ignition switch output (start) circuit terminal. There should now be continuity. If not OK, replace the faulty switch.

STARTER NOISE - 2.5L ENGINE

See the Starter Noise Diagnosis chart (Fig. 9). If the complaint is similar to Conditions 1 and 2 in the chart, correction can be made by shimming the starter using the following procedures:

CAUTION: Disconnect the battery negative cable to prevent the engine from starting.

(1) If the complaint is similar to Condition 1, the starter must be moved toward the starter ring gear by removing shims (Fig. 10).

NOTE: The shim thickness is 0.381 mm (0.015 in.), and the shims may be stacked if additional thickness is required.

CONDITION	POSSIBLE CAUSE	CORRECTION
VERY HIGH FREQUENCY WHINE BEFORE ENGINE STARTS; ENGINE STARTS OK.	Excessive distance between pinion gear and flywheel/drive plate gear.	Move starter motor toward flywheel/drive plate by removing shim(s), if possible.
2. VERY HIGH FREQUENCY WHINE AFTER ENGINE STARTS WITH IGNITION KEY RELEASED. ENGINE STARTS OK.	Insufficient distance between starter motor pinion gear and flywheel/drive plate runout can cause noise to be intermittent.	Shim starter motor away from flywheel/drive plate. Inspect flywheel/drive plate for damage; bent, unusual wear, and excessive runout. Replace flywheel/drive plate as necessary.
3. A LOUD "WHOOP" AFTER ENGINE STARTS WHILE STARTER MOTOR IS ENGAGED.	Most probably cause is defective overrunning clutch.	3. Replace starter motor.
4. A "RUMBLE," "GROWL," OR "KNOCK" AS STARTER MOTOR COASTS TO STOP AFTER ENGINE STARTS.	Most probable cause is bent or unbalanced starter motor armature.	4. Replace starter motor.

NOTE: A high frequency whine during cranking is normal for this starter motor.

J958A-5

Fig. 9 Starter Noise Diagnosis

REMOVAL AND INSTALLATION

STARTER

2.5L ENGINE

- (1) Disconnect and isolate the battery negative cable.
 - (2) Raise and support the vehicle.
- (3) Disconnect the battery cable and solenoid feed wire from the starter solenoid (Fig. 11).

NOTE: This is a condition that will generally cause broken starter (flywheel/drive plate) ring gear teeth or broken starter housings.

required.

Fig. 10 Starter Shim

Fig. 11 Starter Remove/Install - 2.5L Engine

(4) Remove the two starter mounting screws, the starter motor, and any starter motor shims.

NOTE: Shim thickness available is 0.381 mm (0.015 in.). See Starter Noise - 2.5L Engine in this group for more information.

- (5) Reverse the removal procedures to install. Tighten the starter hardware as follows:
 - Mounting screws 45 N·m (33 ft. lbs.)
 - Solenoid battery cable nut 10 N·m (90 in. lbs.)
 - Solenoid terminal nut 6 N·m (55 in. lbs.).

4.0L ENGINE

- (1) Disconnect and isolate the battery negative cable.
 - (2) Raise and support the vehicle.
- (3) Disconnect the battery cable and solenoid feed wire from the starter solenoid (Fig. 12).

Fig. 12 Starter Remove/Install - 4.0L Engine

- (4) Remove the lower starter mounting screw.
- (5) Remove the upper starter mounting screw and the starter motor.

- (6) Reverse the removal procedures to install. Tighten the starter hardware as follows:
- Upper mounting screw (rear screw) 55 N·m (40 ft. lbs.)
- Lower mounting screw (front screw) 41 N·m (30 ft. lbs.)
 - Solenoid battery cable nut 10 N·m (90 in. lbs.)
 - Solenoid terminal nut 6 N·m (55 in. lbs.).

STARTER RELAY

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the cover from the Power Distribution Center (PDC) (Fig. 13).

Fig. 13 Power Distribution Center

- (3) Refer to the label on the PDC for starter relay identification and location.
 - (4) Unplug the starter relay from the PDC.
- (5) Install the starter relay by aligning the relay terminals with the cavities in the PDC and pushing the relay firmly into place.
 - (6) Install the PDC cover.
 - (7) Connect the battery negative cable.
 - (8) Test the relay operation.

SPECIFICATIONS

STARTING SYSTEM

Starter and Solenoid		
Manufacturer	Mitsubishi	
Engine Application	2.5L, 4.0L	
Power Rating	1.2 Kilowatt - 2.5L 1.4 Kilowatt - 4.0L	
Voltage	12 Volts	
Number of Fields	4	
Number of Poles	4	
Number of Brushes	4	
Drive Type	Planetary Gear Reduction	
Free Running Test Voltage	11.2 Volts	
Free Running Test Maximum Amperage Draw	90 Amperes	
Free Running Test Minimum Speed	2600 rpm - 2.5L 2500 rpm - 4.0L	
Solenoid Closing Maximum Voltage	7.8 Volts	
*Cranking Amperage Draw Test	130 Amperes - 2.5L 160 Amperes - 4.0L	
*Test at operating temperature. Cold engine, tight		

^{*}Test at operating temperature. Cold engine, tight (new) engine, or heavy oil will increase starter amperage draw.

CHARGING SYSTEM

CONTENTS

2222

page	page
GENERAL INFORMATION	CHARGING SYSTEM
OVERVIEW 1	CURRENT OUTPUT TEST 3
DESCRIPTION AND OPERATION	ON-BOARD DIAGNOSTIC TEST FOR
BATTERY TEMPERATURE SENSOR 2	CHARGING SYSTEM 5
CHARGING SYSTEM OPERATION 1	REMOVAL AND INSTALLATION
ELECTRONIC VOLTAGE REGULATOR 2	BATTERY TEMPERATURE SENSOR 7
GENERATOR 2	GENERATOR 5
DIAGNOSIS AND TESTING	SPECIFICATIONS
BATTERY TEMPERATURE SENSOR 5	GENERATOR RATINGS 7
CHARGING SYSTEM RESISTANCE TESTS 3	TOROUE CHART 7

GENERAL INFORMATION

OVERVIEW

The battery, starting, and charging systems operate with one another, and must be tested as a complete system. In order for the vehicle to start and charge properly, all of the components involved in these systems must perform within specifications.

Group 8A covers the battery, Group 8B covers the starting system, and Group 8C covers the charging system. Refer to Group 8W - Wiring Diagrams for complete circuit descriptions and diagrams. We have separated these systems to make it easier to locate the information you are seeking within this Service Manual. However, when attempting to diagnose any of these systems, it is important that you keep their interdependency in mind.

The diagnostic procedures used in these groups include the most basic conventional diagnostic methods to the more sophisticated On-Board Diagnostics (OBD) built into the Powertrain Control Module (PCM). Use of a induction milliampere ammeter, volt/ohmmeter, battery charger, carbon pile rheostat (load tester), and 12-volt test lamp may be required.

All OBD-sensed systems are monitored by the PCM. Each monitored circuit is assigned a Diagnostic Trouble Code (DTC). The PCM will store a DTC in electronic memory for any failure it detects. See the On-Board Diagnostics Test in Group 8C - Charging System for more information.

DESCRIPTION AND OPERATION

CHARGING SYSTEM OPERATION

The charging system consists of:

Generator

• Electronic Voltage Regulator (EVR) circuitry within the Powertrain Control Module (PCM)

nage

- Ignition switch (refer to Group 8D, Ignition System for information)
- Battery (refer to Group 8A, Battery for information)
 - Battery temperature sensor
 - Generator Lamp (if equipped)
 - Check Gauges Lamp (if equipped)
- Voltmeter (refer to Group 8E, Instrument Panel and Gauges for information)
- Wiring harness and connections (refer to Group 8W, Wiring for information)

The charging system is turned on and off with the ignition switch. When the ignition switch is turned to the ON position, battery voltage from the powertrain control module (PCM) is supplied to the generator rotor to produce a magnetic field. This is done through one of the two field terminals at the rear of generator. On models of previous years, battery voltage to this field terminal was supplied directly from the ASD relay.

The amount of DC current produced by the generator is controlled by the EVR (field control) circuitry contained within the PCM. This circuitry is connected in series with the second rotor field terminal and ground.

A battery temperature sensor, located in the battery tray housing, is used to sense battery temperature. This temperature data, along with data from monitored line voltage, is used by the PCM to vary the battery charging rate. This is done by cycling the ground path to control the strength of the rotor magnetic field. The PCM then compensates and regulates generator current output accordingly.

All vehicles are equipped with On-Board Diagnostics (OBD). All OBD-sensed systems, including the EVR (field control) circuitry, are monitored by the

DESCRIPTION AND OPERATION (Continued)

PCM. Each monitored circuit is assigned a Diagnostic Trouble Code (DTC). The PCM will store a DTC in electronic memory for any failure it detects. Refer to On-Board Diagnostic Test For Charging System in this group for more information.

The Check Gauges Lamp monitors: **charging system voltage**, engine coolant temperature and engine oil pressure. If an extreme condition is indicated, the lamp will be illuminated. This is done as reminder to check the three gauges. The signal to activate the lamp is sent via the CCD bus circuits. The lamp is located on the instrument panel. Refer to Group 8E, Instrument Panel and Gauges for additional information.

GENERATOR

The generator is belt-driven by the engine using a serpentine type drive belt. It is serviced only as a complete assembly. If the generator fails for any reason, the entire assembly must be replaced.

As the energized rotor begins to rotate within the generator, the spinning magnetic field induces a current into the windings of the stator coil. Once the generator begins producing sufficient current, it also provides the current needed to energize the rotor.

The Y type stator winding connections deliver the induced AC current to 3 positive and 3 negative diodes for rectification. From the diodes, rectified DC current is delivered to the vehicle electrical system through the generator battery and ground terminals.

Although the generators appear the same externally, different generators with different output ratings are used on this vehicle. Be certain that the replacement generator has the same output rating and part number as the original unit. Refer to Generator Ratings in the Specifications section at the back of this group for amperage ratings and part numbers

Noise emitting from the generator may be caused by: worn, loose or defective bearings; a loose or defective drive pulley; incorrect, worn, damaged or misadjusted fan drive belt; loose mounting bolts; a misaligned drive pulley or a defective stator or diode.

BATTERY TEMPERATURE SENSOR

The battery temperature sensor is used to determine the battery temperature and control battery charging rate. This temperature data, along with data from monitored line voltage, is used by the PCM to vary the battery charging rate. System voltage will be higher at colder temperatures and is gradually reduced at warmer temperatures.

ELECTRONIC VOLTAGE REGULATOR

The Electronic Voltage Regulator (EVR) is not a separate component. It is actually a voltage regulat-

ing circuit located within the Powertrain Control Module (PCM). The EVR is not serviced separately. If replacement is necessary, the PCM must be replaced.

Operation: The amount of DC current produced by the generator is controlled by EVR circuitry contained within the PCM. This circuitry is connected in series with the generators second rotor field terminal and its ground.

Voltage is regulated by cycling the ground path to control the strength of the rotor magnetic field. The EVR circuitry monitors system line voltage and battery temperature (refer to Battery Temperature Sensor for more information). It then compensates and regulates generator current output accordingly. Also see Charging System Operation for additional information.

DIAGNOSIS AND TESTING

CHARGING SYSTEM

The following procedures may be used to diagnose the charging system if:

- the generator lamp (if equipped) is illuminated with the engine running
- the voltmeter (if equipped) does not register properly
- an undercharged or overcharged battery condition occurs.

Remember that an undercharged battery is often caused by:

- accessories being left on with the engine not running
- a faulty or improperly adjusted switch that allows a lamp to stay on. See Ignition-Off Draw Test in Group 8A, Battery for more information.

INSPECTION

To perform a complete test of the charging system, refer to the appropriate Powertrain Diagnostic Procedures service manual and the DRB scan tool. Perform the following inspections before attaching the scan tool.

- (1) Inspect the battery condition. Refer to Group 8A, Battery for procedures.
- (2) Inspect condition of battery cable terminals, battery posts, connections at engine block, starter solenoid and relay. They should be clean and tight. Repair as required.
- (3) Inspect all fuses in both the fuseblock and Power Distribution Center (PDC) for tightness in receptacles. They should be properly installed and tight. Repair or replace as required.
- (4) Inspect generator mounting bolts for tightness. Replace or tighten bolts if required. Refer to the Generator Removal/Installation section of this group for torque specifications.

- (5) Inspect generator drive belt condition and tension. Tighten or replace belt as required. Refer to Belt Tension Specifications in Group 7, Cooling System.
- (6) Inspect automatic belt tensioner (if equipped). Refer to Group 7, Cooling System for information.
- (7) Inspect connections at generator field, battery output, and ground terminals. Also check ground connection at engine. They should all be clean and tight. Repair as required.

CHARGING SYSTEM RESISTANCE TESTS

These tests will show the amount of voltage drop across the generator output wire, from the generator output (B+) terminal to the battery positive post. They will also show the amount of voltage drop from the ground (-) terminal on the generator to the battery negative post. A typical generator wiring harness is shown in (Fig. 1). Wiring harness routing as shown in (Fig. 1) may be slightly different depending on vehicle model and/or engine. Refer to Group 8W, Wiring Diagrams for additional information.

80a3cc69

Fig. 1 Generator Terminals (Typical Wiring Harness Shown)

A voltmeter with a $0{\text -}18$ volt DC scale should be used for these tests. By repositioning the voltmeter test leads, the point of high resistance (voltage drop) can easily be found.

PREPARATION

(1) Before starting test, make sure battery is in good condition and is fully-charged. See Group 8A, Battery for more information.

- (2) Check condition of battery cables at battery. Clean if necessary.
- (3) Start the engine and allow it to reach normal operating temperature.
 - (4) Shut engine off.
 - (5) Connect an engine tachometer.
 - (6) Fully engage the parking brake.

TEST

- (1) Start engine.
- (2) Place heater blower in high position.
- (3) Turn on headlamps and place in high-beam position.
 - (4) Turn vehicle interior lamps on.
 - (5) Bring engine speed up to 2400 rpm and hold.
 - (6) Testing (+) circuitry:
 - (a) Touch the negative lead of voltmeter directly to battery positive post.
 - (b) Touch the positive lead of voltmeter to the B+ output terminal stud on the generator (not the terminal mounting nut). Voltage should be no higher than 0.6 volts. If voltage is higher than 0.6 volts, touch test lead to terminal mounting stud nut and then to the wiring connector. If voltage is now below 0.6 volts, look for dirty, loose or poor connection at this point. Also check condition of the generator output wire-to-battery bullet connector (if equipped). Refer to Group 8, Wiring for connector location. A voltage drop test may be performed at each (+) connection in this circuit to locate the excessive resistance.
 - (7) Testing (-) circuitry:
 - (a) Touch the negative lead of voltmeter directly to battery negative post.
 - (b) Touch the positive lead of voltmeter to the ground terminal stud on the generator case (not the terminal mounting nut). Voltage should be no higher than 0.3 volts. If voltage is higher than 0.3 volts, touch test lead to terminal mounting stud nut and then to the wiring connector. If voltage is now below 0.3 volts, look for dirty, loose or poor connection at this point. A voltage drop test may be performed at each (-) connection in this circuit to locate the excessive resistance. This test can also be performed between the generator case and the engine. If test voltage is higher than 0.3 volts, check for corrosion at generator mounting points or loose generator mounting.

CURRENT OUTPUT TEST

The current output test will determine if the charging system can deliver its minimum test current (amperage) output. Refer to the Specifications section at the end of this group for minimum test current (amperage) requirements.

The first part of this test (Test 1) will determine the combined amperage output of both the generator

and the Electronic Voltage Regulator (EVR) circuitry. The second part of this test (Test 2) will determine only generator amperage and **will not** include analysis of EVR circuitry. EVR circuitry is located within the Powertrain Control Module (PCM). To test voltage regulator circuitry, refer to the appropriate Powertrain Diagnostic Procedures service manual.

PREPARATION

- (1) Determine if any Diagnostic Trouble Codes (DTC's) exist. To determine a DTC, refer to On-Board Diagnostics in this group. For repair, refer to the appropriate Powertrain Diagnostic Procedures manual.
- (2) Before starting test, make sure battery is in good condition and is fully-charged. See Group 8A, Battery for more information.
- (3) Check condition of battery cables at battery. Clean if necessary.
- (4) Perform the previous Charging System Resistance Tests (voltage drop tests). This will ensure clean and tight generator/battery electrical connections.
- (5) Be sure the generator drive belt is properly tensioned. Refer to Group 7, Cooling System for information.
- (6) A volt/amp tester equipped with both a battery load control (carbon pile rheostat) and an inductive-type pickup clamp (ammeter probe) will be used for this test. Refer to operating instructions supplied with tester. When using a tester equipped with an inductive-type clamp, removal of wiring at the generator will not be necessary.
- (7) Start the engine and allow it to reach operating temperature.
 - (8) Shut engine off.
- (9) Turn off all electrical accessories and all vehicle lighting.
- (10) Connect the volt/amp tester leads to the battery. Be sure the carbon pile rheostat control is in the OPEN or OFF position before connecting leads. See Load Test in Group 8A, Battery for more information. Also refer to the operating instructions supplied with test equipment.
- (11) Connect the inductive clamp (ammeter probe). Refer to the operating instructions supplied with test equipment.
- (12) If volt/amp tester is not equipped with an engine tachometer, connect a separate tachometer to the engine.

TEST 1

- (1) Perform the previous test Preparation.
- (2) Fully engage the parking brake.
- (3) Start engine.
- (4) Bring engine speed to 2500 rpm.

- (5) With engine speed held at 2500 rpm, slowly adjust the rheostat control (load) on the tester to obtain the highest amperage reading. Do not allow voltage to drop below 12 volts. Record the reading. This load test must be performed within 15 seconds to prevent damage to test equipment. On certain brands of test equipment, this load will be applied automatically. Refer to the operating manual supplied with test equipment.
- (6) The ammeter reading must meet the Minimum Test Amps specifications as displayed in the Generator Ratings chart. This can be found in the Specifications section at the end of this group. A label stating a part reference number is attached to the generator case. On some engines this label may be located on the bottom of the case. Compare this reference number to the Generator Ratings chart.
 - (7) Rotate the load control to the OFF position.
- (8) Continue holding engine speed at 2500. If EVR circuitry is OK, amperage should drop below 15–20 amps. With all electrical accessories and vehicle lighting off, this could take several minutes of engine operation. If amperage did not drop, refer to the appropriate Powertrain Diagnostic Procedures manual for testing.
 - (9) Remove volt/amp tester.

If minimum amperage could not be met, proceed to Test 2. This test will determine if the generator is faulty, or if EVR circuitry is defective.

TEST 2

- (1) Perform the previous test preparation.
- (2) Fully engage the parking brake.
- (3) Connect one end of a jumper wire to a good ground. Connect the other end of jumper wire to the generator field driver (-) terminal. The 2 field terminals (+ and -) are located on the back of the generator (Fig. 1). To locate and identify the (-) terminal and circuit, refer to Group 8W, Wiring Diagrams. Another way to identify the (-) terminal is to start the engine and measure voltage at both field terminals. The (+) terminal will show battery voltage (12.5–14.5 volts). The (-) terminal will show 3–5 volts less than battery voltage.

CAUTION: Do not connect the jumper ground wire to the generator field source (+) field terminal. Damage to electrical system components may result.

Connecting the jumper wire will remove the voltage regulator circuitry from the test. It will also generate a Diagnostic Trouble Code (DTC).

- (4) Start engine. **Immediately** after starting, reduce engine speed to idle. This will prevent any electrical accessory damage from high voltage.
- (5) Adjust carbon pile rheostat (load) and engine speed in slow increments until a speed of 1250 rpm,

and a voltmeter reading of 15 volts is obtained. Immediately record ammeter reading. Do not apply load to system longer than 15 seconds as damage to test equipment may result.

CAUTION: When adjusting rheostat load, do not allow voltage to rise above 16 volts. Damage to the battery and electrical system components may result.

- (6) The ammeter reading must meet the Minimum Test Amps specifications as displayed in the Generator Ratings chart. This can be found in the Specifications section at the end of this group. A label stating a part reference number is attached to the generator case. On some engines this label may be located on the bottom of the case. Compare this reference number to the Generator Rating chart.
 - (7) Remove volt/amp tester.
 - (8) Remove jumper wire.
- (9) Use the DRB scan tool to erase the DTC. Refer to the DRB screen for procedures.

RESULTS

- If amp reading meets specifications in Test 2, generator is OK.
- If amp reading is less than specified in Test 2, and wire resistance (voltage drop) tests were OK, the generator should be replaced. Refer to Removal and Installation in this group for procedures.
- If Test 2 results were OK, but Test 1 results were not, the problem is in EVR circuitry. Refer to appropriate Powertrain Diagnostic Procedures manual for diagnosis.

BATTERY TEMPERATURE SENSOR

To perform a complete test of this sensor and its circuitry, refer to the appropriate Powertrain Diagnostic Procedures manual. To test the sensor only, refer to the following:

- (1) The sensor is located under the battery and is attached to the battery tray (Fig. 2). A two-wire pigtail harness is attached directly to the sensor. The opposite end of this harness connects the sensor to the engine wiring harness.
- (2) Disconnect the two-wire pigtail harness from the engine harness.
- (3) Attach ohmmeter leads to the wire terminals of the pigtail harness.
- (4) At room temperature of 25° C (75–80° F), an ohmmeter reading of 9,000 (9K) to 11,000 (11K) ohms should be observed.
- (5) If reading is above or below the specification, replace the sensor.
- (6) Refer to the Removal and Installation section for procedures.

Fig. 2 Battery Temperature Sensor

ON-BOARD DIAGNOSTIC TEST FOR CHARGING SYSTEM

The Powertrain Control Module (PCM) monitors critical input and output circuits of the charging system, making sure they are operational. A Diagnostic Trouble Code (DTC) is assigned to each input and output circuit monitored by the On-Board Diagnostic (OBD) system. Some circuits are checked continuously and some are checked only under certain conditions.

For DTC information, refer to Diagnostic Trouble Codes in Group 25, Emission Control System. This will include a complete list of DTC's including DTC's for the charging system.

REMOVAL AND INSTALLATION

GENERATOR

REMOVAL

WARNING: DISCONNECT NEGATIVE CABLE FROM BATTERY BEFORE REMOVING BATTERY OUTPUT WIRE (B+ WIRE) FROM GENERATOR. FAILURE TO DO SO CAN RESULT IN INJURY OR DAMAGE TO ELECTRICAL SYSTEM.

- (1) Disconnect negative battery cable at battery.
- (2) Remove generator drive belt. Refer to Group 7, Cooling System for procedures.
- (3) Left Hand Drive (LHD) Vehicles Only: Remove generator pivot and mounting bolts/nut (Fig. 3) or

(Fig. 4). Position generator for access to wire connectors.

(4) Right Hand Drive (RHD) Vehicles Only: Remove upper nut (generator adjustment nut) and both belt adjustment bolts (Fig. 5). Remove generator lower nut/bolt. Position generator for access to wire connectors.

Fig. 3 Remove/Install Generator—2.5L Engine

80a592b1

Fig. 4 Remove/Install Generator—4.0L Engine—LHD

(5) Remove nuts from harness hold-down, battery terminal, ground terminal and 2 field terminals.

Fig. 5 Remove/Install Generator—4.0L Engine—RHD

Fig. 6 Remove/Install Generator Connectors— Typical

Remove wire connectors. A typical generator wiring harness is shown in (Fig. 6). Wiring harness routing as shown may be slightly different depending on vehicle model and/or engine. Refer to Group 8W, Wiring Diagrams for additional information.

(6) Remove generator from vehicle.

INSTALLATION

- (1) Position generator to engine and install wiring to rear of generator. Tighten all wiring fasteners as follows:
 - Battery terminal nut-8.5 N·m (75 in. lbs.)
 - Ground terminal nut-8.5 N·m (75 in. lbs.)
 - Harness hold-down nut-8.5 N·m (75 in. lbs.)
 - Field terminal nuts-2.8 N·m (25 in. lbs.)

- (2) LHD Vehicles: Install generator fasteners and tighten as follows:
- \bullet Generator upper mounting bolt-55 N·m (41 ft. lbs.)
- \bullet Generator lower pivot bolt/nut-55 N·m (41 ft. lbs.)

CAUTION: Never force a belt over a pulley rim using a screwdriver. The synthetic fiber of the belt can be damaged.

CAUTION: When installing a serpentine accessory drive belt, the belt MUST be routed correctly. The water pump will be rotating in the wrong direction if the belt is installed incorrectly, causing the engine to overheat. Refer to belt routing label in engine compartment, or refer to Belt Schematics in Group 7, Cooling System.

- (3) LHD Vehicles: Install generator drive belt. Refer to Group 7, Cooling System for procedures.
- (4) RHD Vehicles: Install upper nut (generator adjustment nut) and both belt adjustment bolts. Install generator lower nut/bolt.
- (5) RHD Vehicles: On vehicles equipped with RHD, the generator is used to adjust the serpentine belt. Refer to Group 7, Cooling System for belt routing, belt adjustment and bolt tightening procedures.
 - (6) Install negative battery cable to battery.

BATTERY TEMPERATURE SENSOR

The battery temperature sensor is located under vehicle battery and is attached to a mounting hole on battery tray.

Fig. 7 Battery Temperature Sensor

REMOVAL

- (1) Remove battery. Refer to Group 8A, Battery for procedures.
- (2) Disconnect sensor pigtail harness from engine wire harness.
- (3) Pry sensor straight up from battery tray mounting hole.

INSTALLATION

- (1) Feed pigtail harness through hole in top of battery tray and press sensor into top of battery tray.
 - (2) Connect pigtail harness.
- (3) Install battery. Refer to Group 8A, Battery for procedures.

SPECIFICATIONS

GENERATOR RATINGS

TYPE	PART NUMBER	RATED SAE AMPS	ENGINES	MINIMUM TEST AMPS
DENSO	56005685AB	119	2.5L/4.0L	90

TORQUE CHART

Right Hand Drive= RHD, Left Hand Drive= LHD.

Nut—LHD—2.5L/4.0L Engine . 55 N⋅m (41 ft. lbs.)

Description	Torque
Battery Terminal Nut-LHD or	
RHD 8.5 N·m (75	in. lbs.)
Ground Terminal Nut—LHD or	
RHD 8.5 N·m (75	in. lbs.)
Harness Hold-down Nut-LHD or	
RHD 8.5 N·m (75	in. lbs.)
Field Terminal Nuts—LHD or	
RHD 2.8 N·m (25	in. lbs.)

- IGNITION SYSTEM 8D - 1

IGNITION SYSTEM

CONTENTS

page	page
GENERAL INFORMATION INTRODUCTION	SENSOR
GENERAL INFORMATION	DESCRIPTION AND OPERATION
INTRODUCTION	IGNITION SYSTEM
INTRODUCTION	IUINI I IUN STSTEM

This group describes the ignition systems for both the 2.5L 4-cylinder and the 4.0L 6-cylinder engines. On Board Diagnostics is described in Group 25, Emission Control Systems.

Group 0, Lubrication and Maintenance, contains general maintenance information (in time or mileage intervals) for ignition related items. The Owner's Manual also contains maintenance information.

The ignition systems used on the 2.5L 4-cylinder and the 4.0L 6-cylinder engine are basically identical. Similarities and differences between the systems will be discussed.

The ignition system is controlled by the powertrain control module (PCM) on all engines.

The ignition system consists of:

- Spark Plugs
- Ignition Coil

- Secondary Ignition Cables
- Distributor (contains rotor and camshaft position sensor)
 - Powertrain Control Module (PCM)
- Crankshaft Position, Camshaft Position, Throttle Position and MAP Sensors

POWERTRAIN CONTROL MODULE

The Powertrain Control Module (PCM) is located in the engine compartment (Fig. 1).

*Fig. 1 Powertrain Control Module (PCM) Location*The ignition system is controlled by the PCM.

NOTE: Base ignition timing by rotation of distributor is not adjustable.

The PCM opens and closes the ignition coil ground circuit to operate the ignition coil. This is done to adjust ignition timing, both initial (base) and advance, and for changing engine operating conditions.

The amount of electronic spark advance provided by the PCM is determined by five input factors: engine coolant temperature, engine rpm, intake manifold temperature, manifold absolute pressure and throttle position.

DISTRIBUTOR

All engines are equipped with a camshaft driven mechanical distributor containing a shaft driven distributor rotor. All distributors are equipped with an internal camshaft position (fuel sync) sensor (Fig. 2). This sensor provides fuel injection synchronization and cylinder identification.

The distributors on both the 2.5L 4-cylinder and the 4.0L-6 cylinder engines do not have built in centrifugal or vacuum assisted advance. Base ignition timing and all timing advance is controlled by the powertrain control module (PCM). Because ignition

Fig. 2 Distributor and Camshaft Position Sensor-Typical

timing is controlled by the PCM, base ignition timing is not adjustable on any of these engines.

The distributor is locked in place by a fork with a slot located on the distributor housing base. The distributor holddown clamp bolt passes through this slot when installed. Because the distributor position is locked when installed, its rotational position can not be changed. Do not attempt to modify the distributor housing to get distributor rotation. Distributor position will have no effect on ignition timing. The position of the distributor will determine fuel synchronization only.

All distributors contain an internal oil seal that prevents oil from entering the distributor housing. The seal is not serviceable.

SPARK PLUGS

All engines use resistor type spark plugs. Remove the spark plugs and examine them for burned electrodes and fouled, cracked or broken porcelain insulators. Keep plugs arranged in the order in which they were removed from the engine. A single plug displaying an abnormal condition indicates that a problem exists in the corresponding cylinder. Replace spark plugs at the intervals recommended in Group O, Lubrication and Maintenance

Spark plugs that have low milage may be cleaned and reused if not otherwise defective, carbon or oil fouled. Refer to the Spark Plug Condition section of this group.

SPARK PLUG CABLES

Spark plug cables are sometimes referred to as secondary ignition wires. These cables transfer electrical current from the ignition coil(s) and/or distributor, to individual spark plugs at each cylinder. The resistive spark plug cables are of nonmetallic construction.

DESCRIPTION AND OPERATION (Continued)

The cables provide suppression of radio frequency emissions from the ignition system.

IGNITION COIL

Battery voltage is supplied to the ignition coil positive terminal from the ASD relay.

The Powertrain Control Module (PCM) opens and closes the ignition coil ground circuit for ignition coil operation.

Base ignition timing is not adjustable on any engine. By controlling the coil ground circuit, the PCM is able to set the base timing and adjust the ignition timing advance. This is done to meet changing engine operating conditions.

The ignition coil is not oil filled. The windings are embedded in an epoxy compound. This provides heat and vibration resistance that allows the ignition coil to be mounted on the engine.

AUTOMATIC SHUTDOWN (ASD) RELAY

As one of its functions, the ASD relay will supply battery voltage to the ignition coil. The ground circuit for the ASD relay is controlled by the Powertrain Control Module (PCM). The PCM regulates ASD relay operation by switching the ground circuit on-and-off.

CRANKSHAFT POSITION SENSOR

The crankshaft position sensor is mounted to the transmission bellhousing at the left/rear side of engine block (Fig. 3).

Fig. 3 Crankshaft Position Sensor—Typical

Engine speed and crankshaft position are provided through the crankshaft position sensor. The sensor

generates pulses that are the input sent to the powertrain control module (PCM). The PCM interprets the sensor input to determine the crankshaft position. The PCM then uses this position, along with other inputs, to determine injector sequence and ignition timing.

The sensor is a hall effect device combined with an internal magnet. It is also sensitive to steel within a certain distance from it.

SENSOR OPERATION

The flywheel/drive plate has groups of four notches at its outer edge. On 4.0L 6-cylinder engines there are three sets of notches (Fig. 5). On 2.5L 4-cylinder engines there are two sets of notches (Fig. 4).

The notches cause a pulse to be generated when they pass under the sensor. The pulses are the input to the PCM. For each engine revolution there are two groups of four pulses generated on 2.5L 4-cylinder engines. There are 3 groups of four pulses generated on 4.0L 6-cylinder engines.

The trailing edge of the fourth notch, which causes the pulse, is four degrees before top dead center (TDC) of the corresponding piston.

The engine will not operate if the PCM does not receive a crankshaft position sensor input.

Fig. 4 Sensor Operation—2.5L 4-Cyl. Engine CAMSHAFT POSITION SENSOR

The camshaft position sensor is located in the distributor on all engines.

The sensor contains a hall effect device called a sync signal generator to generate a fuel sync signal. This sync signal generator detects a rotating pulse ring (shutter) on the distributor shaft. The pulse ring

Fig. 5 Sensor Operation—4.0L 6-Cyl. Engine

rotates 180 degrees through the sync signal generator. Its signal is used in conjunction with the crankshaft position sensor to differentiate between fuel injection and spark events. It is also used to synchronize the fuel injectors with their respective cylinders.

When the leading edge of the pulse ring (shutter) enters the sync signal generator, the following occurs: The interruption of magnetic field causes the voltage to switch high resulting in a sync signal of approximately 5 volts.

When the trailing edge of the pulse ring (shutter) leaves the sync signal generator, the following occurs: The change of the magnetic field causes the sync signal voltage to switch low to 0 volts.

MANIFOLD ABSOLUTE PRESSURE (MAP) SENSOR

For an operational description, diagnosis and removal/installation procedures, refer to Group 14, Fuel System.

ENGINE COOLANT TEMPERATURE SENSOR

For an operational description, diagnosis and removal/installation procedures, refer to Group 14, Fuel System.

THROTTLE POSITION SENSOR

For an operational description, diagnosis and removal/installation procedures, refer to Group 14, Fuel System.

INTAKE MANIFOLD AIR TEMPERATURE SENSOR

For an operational description, diagnosis and removal/installation procedures, refer to Group 14, Fuel System.

IGNITION SWITCH AND KEY LOCK CYLINDER

The ignition switch is located on the steering column. The Key-In-Switch is located in the ignition switch module. For electrical diagnosis of the Key-In-Switch, refer to Group 8U, Chime/Buzzer Warning Systems. For removal/installation of either the key lock cylinder or ignition switch, refer to Ignition Switch and Key Cylinder Removal/Installation in this group.

On vehicles equipped with an automatic transmission, a cable connects an interlock device within the steering column assembly to the transmission floor shift lever. This interlock device is used to lock the transmission shifter in the PARK position when the key is in the LOCKED or ACCESSORY position. The interlock device is not serviceable. If repair is necessary, the steering column assembly must be replaced. Refer to Group 19, Steering for procedures. The shifter interlock cable can be adjusted or replaced. Refer to Group 21, Transmissions for procedures.

DIAGNOSIS AND TESTING

AUTOMATIC SHUTDOWN (ASD) RELAY TEST

To perform a complete test of this relay and its circuitry, refer to the DRB scan tool. Also refer to the appropriate Powertrain Diagnostics Procedures manual. To test the relay only, refer to Relays—Operation/Testing in the Group 14, Fuel Systems section.

TESTING FOR SPARK AT COIL

CAUTION: When disconnecting a high voltage cable from a spark plug or from the distributor cap, twist the rubber boot slightly (1/2 turn) to break it loose (Fig. 6). Grasp the boot (not the cable) and pull it off with a steady, even force.

(1) Disconnect the ignition coil secondary cable from center tower of the distributor cap. Hold the cable terminal approximately 12 mm (1/2 in.) from a good engine ground (Fig. 7).

WARNING: BE VERY CAREFUL WHEN THE ENGINE IS CRANKING. DO NOT PUT YOUR HANDS NEAR THE PULLEYS, BELTS OR THE FAN. DO NOT WEAR LOOSE FITTING CLOTHING.

DIAGNOSIS AND TESTING (Continued)

Fig. 6 Cable Removal

Fig. 7 Checking for Spark—Typical

- (2) Rotate (crank) the engine with the starter motor and observe the cable terminal for a steady arc. If steady arcing does not occur, inspect the secondary coil cable. Refer to Spark Plug Cables in this group. Also inspect the distributor cap and rotor for cracks or burn marks. Repair as necessary. If steady arcing occurs, connect ignition coil cable to the distributor cap.
 - (3) Remove a cable from one spark plug.
- (4) Using insulated pliers, hold the cable terminal approximately 12 mm (1/2 in.) from the engine cylinder head or block while rotating the engine with the starter motor. Observe the spark plug cable terminal for an arc. If steady arcing occurs, it can be expected that the ignition secondary system is operating correctly. (If the ignition coil cable is removed for this test, instead of a spark plug cable, the spark intensity will be much higher). If steady arcing occurs at the spark plug cables, but the engine will not start, connect the DRB scan tool. Refer to the appropriate Powertrain Diagnostic Procedures service manual.

IGNITION COIL TEST

To perform a complete test of the ignition coil and its circuitry, refer to the DRB scan tool. Also refer to the appropriate Powertrain Diagnostics Procedures manual. To test the coil only, refer to the following:

The ignition coil (Fig. 8) or (Fig. 9) is designed to operate without an external ballast resistor.

Fig. 8 Ignition Coil—2.5L Engine

Fig. 9 Ignition Coil—4.0L Engine

Inspect the ignition coil for arcing. Test the coil according to coil tester manufacturer's instructions. Test the coil primary and secondary resistance. Replace any coil that does not meet specifications. Refer to the Ignition Coil Resistance chart.

If the ignition coil is being replaced, the secondary spark plug cable must also be checked. Replace cable if it has been burned or damaged.

Arcing at the tower will carbonize the cable boot, which if it is connected to a new ignition coil, will cause the coil to fail.

If the secondary coil cable shows any signs of damage, it should be replaced with a new cable and new

COIL (MANUFACTURER)	PRIMARY RESISTANCE 21-27°C (70-80°F)	SECONDARY RESISTANCE 21–27°C (70–80°F)
Diamond	0.97 - 1.18 Ohms	11,300 - 15,300 Ohms
Toyodenso	0.95 - 1.20 Ohms	11,300 - 13,300 Ohms

J918D-2

IGNITION COIL RESISTANCE

terminal. Carbon tracking on the old cable can cause arcing and the failure of a new ignition coil.

FAILURE TO START TEST

To prevent unnecessary diagnostic time and wrong test results, the Testing For Spark At Coil test should be performed prior to this test.

WARNING: SET PARKING BRAKE OR BLOCK THE DRIVE WHEELS BEFORE PROCEEDING WITH THIS TEST.

- (1) Unplug the ignition coil harness connector at the coil (Fig. 9).
- (2) Connect a set of small jumper wires (18 gauge or smaller) between the disconnected harness terminals and the ignition coil terminals. To determine polarity at connector and coil, refer to the Wiring Diagrams section.
- (3) Attach one lead of a voltmeter to the positive (12 volt) jumper wire. Attach the negative side of voltmeter to a good ground.
- (4) Determine that sufficient battery voltage (12.4 volts) is present for the starting and ignition systems.
- (5) Crank the engine for 5 seconds while monitoring the voltage at the coil positive terminal:
- If the voltage remains near zero during the entire period of cranking, refer to On-Board Diagnostics in Group 14, Fuel Systems. Check the Powertrain Control Module (PCM) and auto shutdown relay.
- If voltage is at or near battery voltage and drops to zero after 1-2 seconds of cranking, check the powertrain control module circuit. Refer to On-Board Diagnostics in Group 14, Fuel Systems.
- If voltage remains at or near battery voltage during the entire 5 seconds, turn the key off. Remove the three 32-way connectors (Fig. 10) from the PCM. Check 32-way connectors for any spread terminals or corrosion.
- (6) Remove test lead from the coil positive terminal. Connect an 18 gauge jumper wire between the

Fig. 10 PCM and Three 32-Way Connectors

battery positive terminal and the coil positive terminal.

(7) Make the special jumper shown in (Fig. 11). Using the jumper, **momentarily** ground the ignition coil driver circuit at the PCM connector (cavity A-7). For cavity/terminal location of this circuit, refer to Group 8W, Wiring. A spark should be generated at the coil cable when the ground is removed.

Fig. 11 Special Jumper Ground-to-Coil Negative
Terminal

- (8) If spark is generated, replace the PCM.
- (9) If spark is not seen, use the special jumper to ground the coil negative terminal directly.
- (10) If spark is produced, repair wiring harness for an open condition.

DIAGNOSIS AND TESTING (Continued)

(11) If spark is not produced, replace the ignition coil.

DISTRIBUTOR CAP

Remove the distributor cap and wipe it clean with a dry lint free cloth. Visually inspect the cap for cracks, carbon paths, broken towers or damaged rotor button (Fig. 12) or (Fig. 13). Also check for white deposits on the inside (caused by condensation entering the cap through cracks). Replace any cap that displays charred or eroded terminals. The machined surface of a terminal end (faces toward rotor) will indicate some evidence of erosion from normal operation. Examine the terminal ends for evidence of mechanical interference with the rotor tip.

Fig. 12 Cap Inspection—External—Typical

Fig. 13 Cap Inspection—Internal—Typical
DISTRIBUTOR ROTOR

Visually inspect the rotor (Fig. 14) for cracks, evidence of corrosion or the effects of arcing on the metal tip. Also check for evidence of mechanical interference with the cap. Some charring is normal on the end of the metal tip. The silicone-dielectric-

varnish-compound applied to the rotor tip for radio interference noise suppression, will appear charred. This is normal. **Do not remove the charred compound.** Test the spring for insufficient tension. Replace a rotor that displays any of these adverse conditions.

Fig. 14 Rotor Inspection—Typical

IGNITION TIMING

NOTE: Base (initial) ignition timing is NOT adjustable on any 2.5L 4-cylinder or 4.0L 6-cylinder engine. Do not attempt to adjust ignition timing by rotating the distributor.

NOTE: Do not attempt to modify the distributor housing to get distributor rotation. Distributor position will have no effect on ignition timing.

All ignition timing functions are controlled by the powertrain control module (PCM). For additional information, refer to the appropriate Powertrain Diagnostics Procedures service manual for operation of the DRB Scan Tool.

MAP SENSOR

For an operational description, diagnosis or removal/ installation procedures, refer to Group 14, Fuel Systems.

CRANKSHAFT POSITION SENSOR

To perform a complete test of this sensor and its circuitry, refer to the DRB scan tool. Also refer to the appropriate Powertrain Diagnostics Procedures manual.

CAMSHAFT POSITION SENSOR

The camshaft position sensor is located in the distributor (Fig. 15) on all engines.

Fig. 15 Camshaft Position Sensor—Typical

To perform a complete test of this sensor and its circuitry, refer to the appropriate Powertrain Diagnostics Procedures service manual. To test the sensor only, refer to the following:

For this test, an analog (non-digital) voltmeter is needed. Do not remove the distributor connector from the distributor. Using small paper clips, insert them into the backside of the distributor wire harness connector to make contact with the terminals. Be sure that the connector is not damaged when inserting the paper clips. Attach voltmeter leads to these paper clips.

- (1) Connect the positive (+) voltmeter lead into the sensor output wire. This is at done the distributor wire harness connector. For wire identification, refer to Group 8W, Wiring Diagrams.
- (2) Connect the negative (-) voltmeter lead into the ground wire. For wire identification, refer to Group 8W, Wiring Diagrams.
 - (3) Set the voltmeter to the 15 Volt DC scale.
- (4) Remove distributor cap from distributor (two screws). Rotate (crank) the engine until the distributor rotor is approximately in the 11 o'clock position. The movable pulse ring should now be within the sensor pickup.
- (5) Turn ignition key to ON position. Voltmeter should read approximately 5.0 volts.
- (6) If voltage is not present, check the voltmeter leads for a good connection.
- (7) If voltage is still not present, check for voltage at the supply wire. For wire identification, refer to Group 8W, Wiring Diagrams.
- (8) If 5 volts is not present at supply wire, check for voltage at PCM 32-way connector (cavity A-17). Refer to Group 8W, Wiring for location of connector/

terminal. Leave the PCM connector connected for this test.

- (9) If voltage is still not present, perform vehicle test using the DRB scan tool.
- (10) If voltage is present at cavity A-17, but not at the supply wire:
 - (a) Check continuity between the supply wire. This is checked between the distributor connector and cavity A-17 at the PCM. If continuity is not present, repair the harness as necessary.
 - (b) Check for continuity between the camshaft position sensor output wire and cavity A-18 at the PCM. If continuity is not present, repair the harness as necessary.
 - (c) Check for continuity between the ground circuit wire at the distributor connector and ground. If continuity is not present, repair the harness as necessary.
- (11) While observing the voltmeter, crank the engine with ignition switch. The voltmeter needle should fluctuate between 0 and 5 volts while the engine is cranking. This verifies that the camshaft position sensor in the distributor is operating properly and a sync pulse signal is being generated.

If sync pulse signal is not present, replacement of the camshaft position sensor is necessary

ENGINE COOLANT TEMPERATURE SENSOR

For an operational description, diagnosis and removal/installation procedures, refer to Group 14, Fuel System.

INTAKE MANIFOLD AIR TEMPERATURE SENSOR

For an operational description, diagnosis and removal/installation procedures, refer to Group 14, Fuel System.

SPARK PLUG CABLES

Check the spark plug cable connections for good contact at the coil(s), distributor cap towers, and spark plugs. Terminals should be fully seated. The insulators should be in good condition and should fit tightly on the coil, distributor and spark plugs. Spark plug cables with insulators that are cracked or torn must be replaced.

Clean high voltage ignition cables with a cloth moistened with a non-flammable solvent. Wipe the cables dry. Check for brittle or cracked insulation.

TESTING

When testing secondary cables for damage with an oscilloscope, follow the instructions of the equipment manufacturer.

If an oscilloscope is not available, spark plug cables may be tested as follows:

DIAGNOSIS AND TESTING (Continued)

CAUTION: Do not leave any one spark plug cable disconnected for longer than necessary during testing. This may cause possible heat damage to the catalytic converter. Total test time must not exceed ten minutes.

With the engine running, remove spark plug cable from spark plug (one at a time) and hold next to a good engine ground. If the cable and spark plug are in good condition, the engine rpm should drop and the engine will run poorly. If engine rpm does not drop, the cable and/or spark plug may not be operating properly and should be replaced. Also check engine cylinder compression.

With the engine not running, connect one end of a test probe to a good ground. Start the engine and run the other end of the test probe along the entire length of all spark plug cables. If cables are cracked or punctured, there will be a noticeable spark jump from the damaged area to the test probe. The cable running from the ignition coil to the distributor cap can be checked in the same manner. Cracked, damaged or faulty cables should be replaced with resistance type cable. This can be identified by the words ELECTRONIC SUPPRESSION printed on the cable jacket.

Use an ohmmeter to test for open circuits, excessive resistance or loose terminals. Remove the distributor cap from the distributor. **Do not remove cables from cap.** Remove cable from spark plug. Connect ohmmeter to spark plug terminal end of cable and to corresponding electrode in distributor cap. Resistance should be 250 to 1000 Ohms per inch of cable. If not, remove cable from distributor cap tower and connect ohmmeter to the terminal ends of cable. If resistance is not within specifications as found in the Spark Plug Cable Resistance chart, replace the cable. Test all spark plug cables in this manner.

MINIMUM	MAXIMUM
250 Ohms Per Inch	1000 Ohms Per Inch
3000 Ohms Per Foot	12,000 Ohms Per Foot

SPARK PLUG CABLE RESISTANCE

To test ignition coil-to-distributor cap cable, do not remove the cable from the cap. Connect ohmmeter to rotor button (center contact) of distributor cap and terminal at ignition coil end of cable. If resistance is not within specifications as found in the Spark Plug Cable Resistance chart, remove the cable from the distributor cap. Connect the ohmmeter to the terminal ends of the cable. If resistance is not within specifications as found in the Spark Plug Cable Resistance chart, replace the cable. Inspect the ignition coil tower for cracks, burns or corrosion.

SPARK PLUG CONDITIONS

NORMAL OPERATING

The few deposits present on the spark plug will probably be light tan or slightly gray in color. This is evident with most grades of commercial gasoline (Fig. 16). There will not be evidence of electrode burning. Gap growth will not average more than approximately 0.025 mm (.001 in) per 1600 km (1000 miles) of operation. Spark plugs that have normal wear can usually be cleaned, have the electrodes filed, have the gap set and then be installed.

J908D-15

Fig. 16 Normal Operation and Cold (Carbon) Fouling

Some fuel refiners in several areas of the United States have introduced a manganese additive (MMT) for unleaded fuel. During combustion, fuel with MMT causes the entire tip of the spark plug to be coated with a rust colored deposit. This rust color can be misdiagnosed as being caused by coolant in the combustion chamber. Spark plug performance is not affected by MMT deposits.

COLD FOULING/CARBON FOULING

Cold fouling is sometimes referred to as carbon fouling. The deposits that cause cold fouling are basically carbon (Fig. 16). A dry, black deposit on one or two plugs in a set may be caused by sticking valves or defective spark plug cables. Cold (carbon) fouling of the entire set of spark plugs may be caused by a clogged air cleaner element or repeated short operating times (short trips).

WET FOULING OR GAS FOULING

A spark plug coated with excessive wet fuel or oil is wet fouled. In older engines, worn piston rings, leaking valve guide seals or excessive cylinder wear can cause wet fouling. In new or recently overhauled engines, wet fouling may occur before break-in (normal oil control) is achieved. This condition can usu-

ally be resolved by cleaning and reinstalling the fouled plugs.

OIL OR ASH ENCRUSTED

If one or more spark plugs are oil or oil ash encrusted (Fig. 17), evaluate engine condition for the cause of oil entry into that particular combustion chamber.

Fig. 17 Oil or Ash Encrusted

ELECTRODE GAP BRIDGING

Electrode gap bridging may be traced to loose deposits in the combustion chamber. These deposits accumulate on the spark plugs during continuous stop-and-go driving. When the engine is suddenly subjected to a high torque load, deposits partially liquefy and bridge the gap between electrodes (Fig. 18). This short circuits the electrodes. Spark plugs with electrode gap bridging can be cleaned using standard procedures.

SCAVENGER DEPOSITS

Fuel scavenger deposits may be either white or yellow (Fig. 19). They may appear to be harmful, but this is a normal condition caused by chemical additives in certain fuels. These additives are designed to change the chemical nature of deposits and decrease spark plug misfire tendencies. Notice that accumulation on the ground electrode and shell area may be heavy, but the deposits are easily removed. Spark plugs with scavenger deposits can be considered normal in condition and can be cleaned using standard procedures.

Fig. 18 Electrode Gap Bridging

J908D-1

Fig. 19 Scavenger Deposits

CHIPPED ELECTRODE INSULATOR

A chipped electrode insulator usually results from bending the center electrode while adjusting the spark plug electrode gap. Under certain conditions, severe detonation can also separate the insulator from the center electrode (Fig. 20). Spark plugs with this condition must be replaced.

PREIGNITION DAMAGE

Preignition damage is usually caused by excessive combustion chamber temperature. The center electrode dissolves first and the ground electrode dissolves somewhat latter (Fig. 21). Insulators appear relatively deposit free. Determine if the spark plug has the correct heat range rating for the engine. Determine if ignition timing is over advanced or if other operating conditions are causing engine overheating. (The heat range rating refers to the operating temperature of a particular type spark plug. Spark plugs are designed to operate within specific temperature ranges. This depends upon the thick-

J908D-13

Fig. 20 Chipped Electrode Insulator

ness and length of the center electrodes porcelain insulator.)

Fig. 21 Preignition Damage

SPARK PLUG OVERHEATING

Overheating is indicated by a white or gray center electrode insulator that also appears blistered (Fig. 22). The increase in electrode gap will be considerably in excess of 0.001 inch per 1000 miles of operation. This suggests that a plug with a cooler heat range rating should be used. Over advanced ignition timing, detonation and cooling system malfunctions can also cause spark plug overheating.

REMOVAL AND INSTALLATION

SPARK PLUG CABLES

CAUTION: When disconnecting a high voltage cable from a spark plug or from the distributor cap, twist the rubber boot slightly (1/2 turn) to break it loose (Fig. 23). Grasp the boot (not the cable) and pull it off with a steady, even force.

J908D-16

Fig. 22 Spark Plug Overheating

Fig. 23 Cable Removal

Install cables into the proper engine cylinder firing order (Fig. 24) or (Fig. 25).

Fig. 24 Engine Firing Order—2.5L 4-Cylinder Engine

Fig. 25 Engine Firing Order—4.0L 6-Cylinder Engine

When replacing the spark plug and coil cables, route the cables correctly and secure in the proper retainers. Failure to route the cables properly can cause the radio to reproduce ignition noise. It could also cause cross ignition of the plugs or short circuit the cables to ground.

When installing new cables, make sure a positive connection is made. A snap should be felt when a good connection is made between the plug cable and the distributor cap tower.

SPARK PLUGS

PLUG REMOVAL

- (1) Always remove spark plug or ignition coil cables by grasping at the cable boot (Fig. 23). Turn the cable boot 1/2 turn and pull straight back in a steady motion. Never pull directly on the cable. Internal damage to cable will result.
- (2) Prior to removing the spark plug, spray compressed air around the spark plug hole and the area around the spark plug. This will help prevent foreign material from entering the combustion chamber.
- (3) Remove the spark plug using a quality socket with a rubber or foam insert.
- (4) Inspect the spark plug condition. Refer to Spark Plugs in the Diagnostics/Service Procedures section of this group.

PLUG CLEANING

The plugs may be cleaned using commercially available spark plug cleaning equipment. After cleaning, file the center electrode flat with a small point file or jewelers file before adjusting gap.

CAUTION: Never use a motorized wire wheel brush to clean the spark plugs. Metallic deposits will remain on the spark plug insulator and will cause plug misfire.

PLUG GAP ADJUSTMENT

Check the spark plug gap with a gap gauge tool. If the gap is not correct, adjust it by bending the ground electrode (Fig. 26). **Never attempt to adjust the gap by bending the center electrode.**

Fig. 26 Setting Spark Plug Gap—Typical

SPARK PLUG GAP

- 2.5L 4-Cylinder Engine Spark Plug Gap: .89 mm (.035 in).
- 4.0L 6-Cylinder Engine Spark Plug Gap: .89 mm (.035 in).

PLUG INSTALLATION

Always tighten spark plugs to the specified torque. Over tightening can cause distortion. This may result in a change in the spark plug gap, or a cracked porcelain insulator.

When replacing the spark plug and ignition coil cables, route the cables correctly and secure them in the appropriate retainers. Failure to route the cables properly can cause the radio to reproduce ignition noise. It could cause cross ignition of the spark plugs, or short circuit the cables to ground.

- (1) Start the spark plug into the cylinder head by hand to avoid cross threading.
- (2) Tighten the spark plugs to 35-41 N·m (26-30 ft. lbs.) torque.
 - (3) Install spark plug cables over spark plugs.

IGNITION COIL

The ignition coil is an epoxy filled type. If the coil is replaced, it must be replaced with the same type.

REMOVAL AND INSTALLATION (Continued)

REMOVAL

On the 2.5L 4-cylinder engine, the ignition coil is mounted to a bracket on side of engine (to rear of distributor) (Fig. 27).

On the 4.0L 6-cylinder engine, the ignition coil is mounted to a bracket on side of engine (to front of distributor) (Fig. 28).

Fig. 27 Ignition Coil—2.5L Engine

Fig. 28 Ignition Coil—4.0L Engine

- (1) Disconnect ignition coil secondary cable from ignition coil.
- (2) Disconnect engine harness connector from ignition coil.
- (3) Remove ignition coil mounting bolts (nuts are used on back side of bracket on some coils).
 - (4) Remove coil from vehicle.

INSTALLATION

(1) Install ignition coil to bracket on cylinder block with mounting bolts (and nuts if equipped). If equipped with nuts and bolts, tighten to 11 $N{\cdot}m$ (100 in. lbs.) torque. If equipped with bolts only, tighten to 5 $N{\cdot}m$ (50 in. lbs.) torque.

- (2) Connect engine harness connector to coil.
- (3) Connect ignition coil cable to ignition coil.

AUTOMATIC SHUTDOWN (ASD) RELAY

The ASD relay is located in the power distribution center (PDC). The PDC is located in engine compartment (Fig. 29). Refer to label on PDC cover for relay location .

Fig. 29 PDC Location

REMOVAL

- (1) Remove PDC cover.
- (2) Remove relay by lifting straight up.

INSTALLATION

- (1) Check condition of relay wire terminals at PDC for corrosion or damage. Also check heights of relay terminal pins at PDC. Pin height should be the same for all pins. Repair as necessary before installing relay.
 - (2) Push relay into connector.
 - (3) Install relay cover.

CRANKSHAFT POSITION SENSOR

The crankshaft position sensor is mounted to the transmission bellhousing at the left/rear side of engine block (Fig. 30) or (Fig. 31).

On 2.5L 4-cylinder equipped with a manual transmission, the sensor is attached with two bolts. On 2.5L engines equipped with an automatic transmission, the sensor is attached with two nuts. All 4.0L 6-cylinder engines have the sensor attached with two bolts.

Fig. 30 Crankshaft Position Sensor—2.5L 4-Cyl. Engine With Auto. Trans.

Fig. 31 Crankshaft Position Sensor—Except 2.5L 4-Cyl. Engine With Auto. Trans.

REMOVAL

Some model/engine combinations may require removal of air cleaner tubes for access to sensor.

- (1) Remove air cleaner tube(s) at throttle body (if necessary).
- (2) Near rear of intake manifold, disconnect pigtail harness (electrical connector) from main electrical harness.

- (3) Remove nut holding sensor harness wire clamp to fuel rail mounting stud.
- (4) Depending upon application, remove either sensor mounting bolts or nuts.
 - (5) Remove sensor.
 - (6) Remove clamp from sensor wire harness.

INSTALLATION

- (1) Install sensor flush against opening in transmission housing.
- (2) 2.5L engines equipped with automatic transmission: Install and tighten two sensor mounting nuts to 19 N·m (14 ft. lbs.) torque.
- (3) 2.5L engines equipped with manual transmission or any 4.0L engines: Install and tighten two sensor mounting bolts to 19 N·m (14 ft. lbs.) torque. The two sensor mounting bolts are specially machined to correctly space unit to flywheel. Do not attempt to install any other bolts.
- (4) Connect sensor pigtail harness electrical connector to main wiring harness.
 - (5) Install clamp on sensor wire harness.
 - (6) Install clamp over fuel rail mounting stud.
 - (7) Install clamp mounting nut.
- (8) Install air cleaner tube to throttle body (if necessary).

CAMSHAFT POSITION SENSOR

The camshaft position sensor is located in the distributor (Fig. 32).

REMOVAL

Distributor removal is not necessary to remove camshaft position sensor.

- (1) Disconnect negative battery cable at battery.
- (2) Remove distributor cap from distributor (two screws).
- (3) Disconnect camshaft position sensor wiring harness from main engine wiring harness.

Fig. 32 Camshaft Position Sensor

- (4) Remove distributor rotor from distributor shaft.
- (5) Lift camshaft position sensor assembly from distributor housing (Fig. 32).

INSTALLATION

- (1) Install camshaft position sensor to distributor. Align sensor into notch on distributor housing.
 - (2) Connect wiring harness.
 - (3) Install rotor.
- (4) Install distributor cap. Tighten mounting screws.

MANIFOLD ABSOLUTE PRESSURE (MAP) SENSOR

For removal and installation, refer to Manifold Absolute Pressure Sensor in group 14, Fuel Systems.

ENGINE COOLANT TEMPERATURE SENSOR

For an operational description, diagnosis and removal/installation procedures, refer to Group 14, Fuel System.

THROTTLE POSITION SENSOR

For an operational description, diagnosis and removal/installation procedures, refer to Group 14, Fuel System.

INTAKE MANIFOLD AIR TEMPERATURE SENSOR

For an operational description, diagnosis and removal/installation procedures, refer to Group 14, Fuel System.

DISTRIBUTOR

All distributors contain an internal oil seal that prevents oil from entering the distributor housing. The seal is not serviceable.

Factory replacement distributors are equipped with a plastic alignment pin already installed. The pin is located in an access hole on the bottom of the distributor housing (Fig. 33). It is used to temporarily lock the rotor to the cylinder number 1 position during installation. The pin must be removed after installing the distributor.

The camshaft position sensor is located in the distributor on all engines (Fig. 34). For removal/installation procedures, refer to Camshaft Position Sensor. Distributor removal is not necessary for sensor removal.

Refer to (Fig. 34) for an exploded view of the distributor.

A fork with a slot is supplied on the bottom of the distributor housing where the housing base seats against the engine block (Fig. 34). The centerline of the slot aligns with the distributor holddown bolt hole in the engine block. Because of the fork, the distributor cannot be rotated. Distributor rotation is not necessary as all ignition timing requirements are handled by the powertrain control module (PCM).

Fig. 33 Plastic Alignment Pin

Fig. 34 Distributor—2.5L Or 4.0L Engines—Typical

The position of the distributor determines fuel synchronization only. It does not determine ignition timing.

NOTE: Do not attempt to modify this fork to attain ignition timing.

REMOVAL-2.5L OR 4.0L ENGINE

- (1) Disconnect the negative battery cable at the battery.
 - (2) Disconnect coil secondary cable at coil.
- (3) Remove distributor cap from distributor (2 screws). Do not remove cables from cap. Do not remove rotor.
- (4) Disconnect the distributor wiring harness from the main engine harness.
 - (5) Remove the cylinder number 1 spark plug.
- (6) Hold a finger over the open spark plug hole. Rotate the engine at the vibration dampener bolt until compression (pressure) is felt.
- (7) Slowly continue to rotate the engine. Do this until the timing index mark on the vibration damper pulley aligns with the top dead center (TDC) mark (0 degree) on timing degree scale (Fig. 35). Always rotate the engine in direction of normal rotation. Do not rotate the engine backward to align the timing marks.
- (8) On models equipped with A/C, remove the electrical cooling fan and shroud assembly from the radiator. Refer to Group 7, Cooling System for procedures.
- (9) This will provide room to turn the engine crankshaft with a socket and ratchet using the vibration damper bolt.

Fig. 35 Align Timing Marks

J898D-14

(10) Remove the distributor holddown bolt and clamp.

- (11) Remove the distributor from engine by slowly lifting straight up.
- (12) Note that the rotor will rotate slightly in a counterclockwise direction while lifting up the distributor. The oil pump gear will also rotate slightly in a counterclockwise direction while lifting up the distributor. This is due to the helical cut gears on the distributor and camshaft.
- (13) Note the removed position of the rotor during distributor removal. During installation, this will be referred to as the Pre-position.
- (14) **2.5L 4-Cylinder Engine:** Observe the slot in the oil pump gear through the hole on the side of the engine. It should be slightly before (counterclockwise of) the 10 o'clock position (Fig. 36).
- (15) **4.0L 6-Cylinder Engine:** Observe the slot in the oil pump gear through the hole on the side of the engine. It should be slightly before (counterclockwise of) the 11 o'clock position (Fig. 37).

Fig. 36 Slot At 10 O'clock Position—2.5L Engine

Fig. 37 Slot At 11 O'clock Position—4.0L Engine

(16) Remove and discard the old distributor-to-engine block gasket.

INSTALLATION

- (1) If the engine crankshaft has been rotated after distributor removal, cylinder number 1 must be returned to its proper firing stroke. Refer to previous REMOVAL Step 5 and Step 6. These steps must be done before installing distributor.
- (2) Check the position of the slot on the oil pump gear. On the 2.5L engine, it should be just slightly before (counterclockwise of) the 10 o'clock position (Fig. 36). On the 4.0L engine, it should be just slightly before (counterclockwise of) the 11 o'clock position (Fig. 37). If not, place a flat blade screwdriver into the oil pump gear and rotate it into the proper position.
- (3) Factory replacement distributors are equipped with a plastic alignment pin already installed (Fig. 33). This pin is used to temporarily hold the rotor to the cylinder number 1 firing position during distributor installation. If this pin is in place, proceed to Step 8. If not, proceed to next step.
- (4) If the original distributor is to be reinstalled, such as during engine overhaul, the plastic pin will not be available. A 3/16 inch drift pin punch tool may be substituted for the plastic pin.
- (5) Remove the camshaft position sensor from the distributor housing. Lift straight up.
- (6) Four different alignment holes are provided on the plastic ring (Fig. 38). Note that 2.5L and 4.0L engines have different alignment holes (Fig. 38).
- (7) Rotate the distributor shaft and install the pin punch tool through the proper alignment hole in the plastic ring (Fig. 38) and into the mating access hole in the distributor housing. This will prevent the distributor shaft and rotor from rotating.
- (8) Clean the distributor mounting hole area of the engine block.
- (9) Install a new distributor-to-engine block gasket (Fig. 34).
 - (10) Install the rotor to the distributor shaft.
- (11) **2.5L 4-Cylinder Engine:** Pre-position the distributor into the engine while holding the centerline of the base slot in the 1 o'clock position (Fig. 39). Continue to engage the distributor into the engine. The rotor and distributor will rotate clockwise during installation. This is due to the helical cut gears on the distributor and camshaft. When the distributor is fully seated to the engine block, the centerline of the base slot should be aligned to the clamp bolt mounting hole on the engine (Fig. 40). The rotor should also be pointed slightly past (clockwise of) the 3 o'clock position.
- **4.0L 6-Cylinder Engine:** Pre-position the distributor into the engine while holding the centerline of the base slot in the 1 o'clock position (Fig. 39). Continue to engage the distributor into the engine. The

Fig. 38 Pin Alignment Holes

rotor and distributor will rotate clockwise during installation. This is due to the helical cut gears on the distributor and camshaft. When the distributor is fully seated to the engine block, the centerline of the base slot should be aligned to the clamp bolt mounting hole on the engine (Fig. 41). The rotor should also be pointed at the 5 o'clock position.

It may be necessary to rotate the rotor and distributor shaft (very slightly) to engage the distributor shaft with the slot in the oil pump gear. The same may have to be done to engage the distributor gear with the camshaft gear.

The distributor is correctly installed when:

- the rotor is pointed at the 3 o'clock position (2.5L engine), or at the 5 o'clock position (4.0L engine).
- the plastic alignment pin (or pin punch tool) is still installed to distributor.
- the number 1 cylinder piston is set at top dead center (TDC) (compression stroke).
- · the centerline of the slot at the base of the distributor is aligned to the centerline of the distributor holddown bolt hole on the engine. In this position, the holddown bolt should easily pass through the slot and into the engine.

No adjustments are necessary. Proceed to next

- (12) Install the distributor holddown clamp and bolt. Tighten the bolt to 23 N·m (17 ft. lbs.) torque.
- (13) Remove the pin punch tool from the distributor. Or, if the plastic alignment pin was used, remove it straight down from the bottom of the distributor. Discard plastic pin.

Fig. 39 Distributor Pre-position—All Engines

FRONT |

J958D-9

Fig. 40 Distributor Engaged Position—2.5L 4-Cylinder Engine

- (14) If removed, install the camshaft position sensor to the distributor. Align the wiring harness grommet to the notch in the distributor housing.
 - (15) Install the rotor.

CAUTION: If the distributor cap is incorrectly positioned on distributor housing, the cap or rotor may be damaged when engine is started.

Fig. 41 Distributor Engaged Position—4.0L 6-Cylinder Engine

- (16) Install the distributor cap. Tighten distributor cap holddown screws to 3 $N\cdot m$ (26 in. lbs.) torque.
- (17) If removed, install the spark plug cables to the distributor cap. For proper firing order, refer to the Specifications section at the end of this group. See Engine Firing Order.
- (18) Connect the distributor wiring harness to the main engine harness.
 - (19) Connect battery cable to battery.

POWERTRAIN CONTROL MODULE (PCM)

Refer to Group 14, Fuel System for procedures.

IGNITION SWITCH AND KEY CYLINDER

The ignition key must be in the key cylinder for cylinder removal. The key cylinder must be removed first before removing ignition switch.

KEY CYLINDER REMOVAL

- (1) Disconnect negative battery cable at battery.
- (2) If equipped with an automatic transmission, place shifter in PARK position.
 - (3) Rotate key to ON position.
- (4) A release tang is located on bottom of key cylinder (Fig. 42).
- (5) Position a small screwdriver or pin punch into tang access hole on bottom of steering column lower cover (Fig. 43).
- (6) Push the pin punch up while pulling key cylinder from steering column.

Fig. 42 Key Cylinder Release Tang

Fig. 43 Key Cylinder and Cover Removal

IGNITION SWITCH REMOVAL

- (1) Remove key cylinder. Refer to previous steps.
- (2) Remove lower steering column cover screws and remove cover (Fig. 43).
- (3) Remove ignition switch mounting screw (Fig. 46). Use tamper proof torx bit (Snap-On® SDMTR10 or equivalent) to remove the screw.
- (4) Using a small screwdriver, push on locking tab (Fig. 44) and remove switch from steering column.
- (5) Disconnect two electrical connectors at rear of ignition switch (Fig. 46).

IGNITION SWITCH INSTALLATION

(1) Before installing ignition switch, rotate the slot in the switch to the ON position (Fig. 45).

Fig. 44 Ignition Switch Lock Tab

Fig. 45 Switch In ON Position

- (2) Connect two electrical connectors to rear of ignition switch. Make sure that locking tabs are fully seated into wiring connectors.
- (3) Position switch to column and install tamper proof screw. Tighten screw to 3 N·m (26 in. lbs.).
 - (4) Install steering column lower cover.

KEY CYLINDER INSTALLATION

- (1) If equipped with an automatic transmission, place shifter in PARK position.
- (2) Position key cylinder into steering column as it would normally be in the ON position.
- (3) Press key cylinder into column until it snaps into position.
- (4) Check mechanical operation of switch. **Automatic Transmission:** Be sure transmission lever is

Fig. 46 Ignition Switch Removal/Installation

locked in PARK position after key removal. If key is difficult to rotate or is difficult to remove, the shift lever-to-steering column cable may be out of adjustment or defective. Refer to Group 21, Transmission for procedures. **Manual Transmission:** Be sure key cannot be removed until release lever is operated. If key can be removed, release lever mechanism may be defective. Release lever mechanism is not serviced separately. If repair is necessary, the steering column must be replaced. Refer to Group 19, Steering for procedures.

- (5) Connect negative cable to battery.
- (6) Check electrical operation of switch.

SHIFTER/IGNITION INTERLOCK

On models equipped with an automatic transmission, a cable connects the ignition switch with the floor shift lever. The shifter will be locked in the PARK position when the ignition key is in the LOCK or ACCESSORY positions. The cable can be adjusted or replaced. Refer to Group 21, Transmissions for procedures. The ignition interlock device within the steering column is not serviceable. If service is necessary, the steering column must be replaced. Refer to Group 19, Steering for procedures.

SPECIFICATIONS

VECI LABEL

If anything differs between the specifications found on the Vehicle Emission Control Information (VECI) label and the following specifications, use specifications on VECI label. The VECI label is located in the engine compartment.

IGNITION TIMING

Ignition timing is not adjustable on any engine. Refer to Ignition Timing in the Diagnostics/Service Procedures section of this group for more information

ENGINE FIRING ORDER—2.5L 4-CYLINDER ENGINE

ENGINE FIRING ORDER—4.0L 6-CYLINDER ENGINE

XJ — IGNITION SYSTEM 8D - 21

SPECIFICATIONS (Continued)

SPARK PLUGS

ENGINE	PLUG TYPE	ELECTRODE GAP	
2.5/4.0L	1	0.89 mm (0.035 in.)	

SPARK PLUG CABLE RESISTANCE

MINIMUM	MAXIMUM
250 Ohms Per Inch	1000 Ohms Per Inch
3000 Ohms Per Foot	12,000 Ohms Per Foot

IGNITION COIL RESISTANCE

COIL	TOYODENSO	DIAMOND
Primary Resistance	.95 - 1.20 Ohms	.96 - 1.18 Ohms
Secondary Resistance at 70° - 80°F	11,300 - 13,300 Ohms	11,300 - 15,300 Ohms

TORQUE CHART

DESCRIPTION TORQUE
Crankshaft Position Sensor
Mounting Bolts 19 N⋅m (14 ft. lbs.)
Crankshaft Position Sensor
Mounting Nuts 19 N⋅m (14 ft. lbs.)
Distributor Hold Down Bolt 23 N·m (17 ft. lbs.)
Ignition Coil Mounting
(if tapped bolts are used) 5 N·m (50 in. lbs.)
Ignition Coil Mounting
(if nuts/bolts are used) 11 N·m (100 in. lbs.)
Powertrain Control Module (PCM)
Mounting Screws 1 N·m (9 in. lbs.)
Spark Plugs (all engines) 41 N·m (30 ft. lbs.)

INSTRUMENT PANEL SYSTEMS

CONTENTS

page	page
GENERAL INFORMATION	CLUSTER ILLUMINATION LAMP 17
GAUGE 3	COOLANT TEMPERATURE GAUGE 10
INDICATOR LAMP 3	COOLANT TEMPERATURE WARNING LAMP 18
INSTRUMENT CLUSTER 2	CRUISE-ON INDICATOR LAMP 18
INSTRUMENT PANEL 2	FOUR-WHEEL DRIVE INDICATOR LAMP 18
INTRODUCTION 1	FUEL GAUGE
JUNCTION BLOCK 3	HEADLAMP HIGH BEAM INDICATOR LAMP 19
DESCRIPTION AND OPERATION	INSTRUMENT CLUSTER 9
AIRBAG INDICATOR LAMP 6	LOW FUEL WARNING LAMP 20
ANTI-LOCK BRAKE SYSTEM LAMP 6	LOW OIL PRESSURE WARNING LAMP 20
BRAKE WARNING LAMP 6	LOW WASHER FLUID WARNING LAMP 20
CHECK GAUGES LAMP 6	MALFUNCTION INDICATOR LAMP 21
CIGAR LIGHTER AND POWER OUTLET 6	ODOMETER AND TRIP ODOMETER 13
CIGAR LIGHTER RELAY 6	OIL PRESSURE GAUGE
CLUSTER ILLUMINATION LAMP 7	SEAT BELT REMINDER LAMP 21
COOLANT TEMPERATURE GAUGE 4	SPEEDOMETER 14
COOLANT TEMPERATURE WARNING LAMP 7	TACHOMETER 14
CRUISE-ON INDICATOR LAMP 7	TURN SIGNAL INDICATOR LAMP 21
FOUR-WHEEL DRIVE INDICATOR LAMP 7	UPSHIFT INDICATOR LAMP 22
FUEL GAUGE 4	VOLTAGE WARNING LAMP 22
HEADLAMP HIGH BEAM INDICATOR LAMP 7	VOLTMETER 14
LOW FUEL WARNING LAMP 8	REMOVAL AND INSTALLATION
LOW OIL PRESSURE WARNING LAMP 8	ACCESSORY SWITCH BEZEL 24
LOW WASHER FLUID WARNING LAMP 8	CENTER SUPPORT BRACKET 32
MALFUNCTION INDICATOR LAMP 8	CIGAR LIGHTER RELAY 24
ODOMETER AND TRIP ODOMETER 4	CLUSTER BEZEL 25
OIL PRESSURE GAUGE 5	CLUSTER BULB 28
SEAT BELT REMINDER LAMP 9	CLUSTER COMPONENTS 27
SPEEDOMETER 5	GLOVE BOX COMPONENTS 30
TACHOMETER 5	GLOVE BOX LAMP AND SWITCH 29
TURN SIGNAL INDICATOR LAMP 9	GLOVE BOX LATCH STRIKER 31
UPSHIFT INDICATOR LAMP 9	GLOVE BOX 29
VOLTAGE WARNING LAMP 9	HEADLAMP SWITCH 25
VOLTMETER 5	INSTRUMENT CLUSTER 26
DIAGNOSIS AND TESTING	INSTRUMENT PANEL ASSEMBLY 33
AIRBAG INDICATOR LAMP 14	INSTRUMENT PANEL CENTER BEZEL 23
ANTI-LOCK BRAKE SYSTEM LAMP 14	INSTRUMENT PANEL END CAP 31
BRAKE WARNING LAMP 15	INSTRUMENT PANEL TOP COVER 28
CHECK GAUGES LAMP 16	JUNCTION BLOCK
CIGAR LIGHTER AND POWER OUTLET 16	KNEE BLOCKER 23
CIGAR LIGHTER RELAY	STEERING COLUMN OPENING COVER 22

GENERAL INFORMATION

INTRODUCTION

This group is responsible for covering the vehicle instrument panel. However, because the instrument panel serves as the command center of the vehicle, it

is a very complex unit. The instrument panel is designed to house the controls and monitors for standard and optional powertrains, climate control systems, audio systems, lighting systems, safety systems, and many other comfort or convenience items. It is also designed so that all of the controls and monitors can be safely reached and viewed by

GENERAL INFORMATION (Continued)

the vehicle operator, while still allowing relative ease of access to these items for service.

Complete service information coverage for all of the systems and components housed in the instrument panel in this section of the service manual would not be practical. It would result in a great deal of duplication and make this group too large for the information to be easily accessed and used. Therefore, the information found in this group has been limited as follows:

- General Information Covers non-electrical components and features of the instrument panel that are not related to other systems.
- Description and Operation Covers gauges and their sending units, warning lamps and their switches, and instrument panel illumination lamps.
- Diagnosis and Testing Covers gauges and their sending units, warning lamps and their switches, and instrument panel illumination lamps.
- Removal and Installation Covers components installed on or in the instrument panel that require removal for diagnosis or service of instrument panel components covered in this group.

For more information on components or systems not covered above, refer to the proper group in this manual. If you are uncertain as to the proper group, refer to the Component and System Index at the back of this manual. Refer to Group 8W - Wiring Diagrams for complete circuit descriptions and diagrams.

NOTE: This group covers both Left-Hand Drive (LHD) and Right-Hand Drive (RHD) versions of this model. Whenever required and feasible, the RHD versions of affected vehicle components have been constructed as mirror-image of the LHD versions. While most of the illustrations used in this group represent only the LHD version, the diagnostic and service procedures outlined can generally be applied to either version. Exceptions to this rule have been clearly identified as LHD or RHD, if a special illustration or procedure is required.

INSTRUMENT PANEL

This instrument panel uses a full-width structural plastic foundation as its primary support. When the two primary molded plastic components of this structure are vibration welded together they provide superior instrument panel stiffness and integrity to help reduce buzzes, squeaks, and rattles even on the bumpiest roads.

This type of construction also provides improved energy absorption which, in conjunction with the dual airbag modules and seat belts, helps to improve occupant protection. This foundation structure also serves as the ducting for the heating and air condi-

tioning system panel outlets, which greatly reduces the number of components used over conventional instrument panel construction.

Modular instrument panel construction allows all of the gauges and controls to be serviced from the front of the panel. In addition, most of the instrument panel electrical components can be accessed without complete instrument panel removal. If necessary, the instrument panel can be removed from the vehicle as an assembly.

Removal of the steering column opening cover and knee blocker provides access to the steering column mounts, the steering column wiring, the headlamp switch, the electronic combination flasher, and much of the instrument panel wiring. Removal of the glove box provides access to the heating and air conditioning electrical and vacuum harnesses, the blower motor relay, the radio antenna coaxial cable, the lower passenger side airbag mounts, and additional instrument panel wiring.

Removal of the instrument panel center bezel allows access to the radio, the heating and air conditioning controls, the accessory switches, the cigar lighter, and the accessory power outlet. Removal of the instrument cluster bezel allows access to the instrument cluster. Removal of the cluster assembly allows access to the cluster illumination and indicator lamp bulbs, and more of the instrument panel wiring.

Removal of the instrument panel top cover allows access to the upper passenger side airbag mounts. Instrument panel removal is required for service of most internal components of the heating and air conditioning housing.

INSTRUMENT CLUSTER

Two basic instrument clusters are offered on this model: low-line or high-line. Both clusters are electromechanical units that utilize integrated circuitry and information carried on the Chrysler Collision Detection (CCD) data bus network for control of all gauges and many of the indicator lamps. These clusters also incorporate a vacuum fluorescent display tube for the digital odometer/trip odometer display functions. Some variations of each cluster exist due to optional equipment and regulatory requirements.

The low-line cluster includes the following analog gauges:

- Fuel gauge
- Speedometer.

This cluster includes provisions for the following indicator lamps:

- Airbag indicator lamp
- Anti-lock brake system lamp
- Brake warning lamp
- Coolant temperature warning lamp

GENERAL INFORMATION (Continued)

- Cruise-on indicator lamp
- Four-wheel drive (Part Time and/or Full Time) indicator lamps
 - · Headlamp high beam indicator lamp
 - Low oil pressure warning lamp
 - Low washer fluid warning lamp
 - Malfunction indicator (Check Engine) lamp
 - Seat belt reminder lamp
 - Turn signal indicator lamps
 - Upshift indicator lamp (manual transmission)
 - Voltage warning lamp.

The high-line cluster replaces some of the indicator lamps found in the low-line cluster with analog gauges. The high-line cluster includes the following analog gauges:

- Coolant temperature gauge
- Fuel gauge
- Oil pressure gauge
- Speedometer
- Tachometer
- Voltmeter.

The high-line cluster also adds a check gauges lamp and a low fuel warning lamp to the remaining indicator lamps found in the low-line cluster.

Both instrument clusters feature circuitry that has a self-diagnostic actuator test capability, which will test each of the CCD bus message-controlled functions of the cluster by lighting the appropriate indicator lamps and positioning the gauge needles at several predetermined locations on the gauge faces in a prescribed sequence. For more information on this function, see Instrument Cluster in the Diagnosis and Testing section of this group.

The instrument cluster circuitry also integrates a chime tone generator and a timer circuit. These items replace the chime or buzzer module, and the separate timer circuit for the rear window defogger system. Refer to Group 8U - Chime/Buzzer Warning Systems or Group 8N - Electrically Heated Systems for more information on these cluster circuitry functions.

The instrument clusters for this model are serviced only as complete units. If a cluster gauge or the cluster circuit board are faulty, the entire cluster must be replaced. The cluster lens, the hood and mask, the rear housing cover and the odometer reset knob boot are available for service. Also, the individual cluster lamp bulbs and bulb holders can be serviced.

GAUGE

With the ignition switch in the On or Start positions, voltage is supplied to all gauges through the instrument cluster electronic circuit board. With the ignition switch in the Off position, voltage is not supplied to the gauges. The gauges do not accurately

indicate any vehicle condition unless the ignition switch is in the On or Start positions.

All gauges, except the odometer, are air core magnetic units. Two fixed electromagnetic coils are located within the gauge. These coils are wrapped at right angles to each other around a movable permanent magnet. The movable magnet is suspended within the coils on one end of a shaft. The gauge needle is attached to the other end of the shaft.

One of the coils has a fixed current flowing through it to maintain a constant magnetic field strength. Current flow through the second coil changes, which causes changes in its magnetic field strength. The current flowing through the second coil is changed by the instrument cluster electronic circuitry in response to messages received on the Chrysler Collision Detection (CCD) data bus network.

The gauge needle moves as the movable permanent magnet aligns itself to the changing magnetic fields created around it by the electromagnets. The instrument cluster circuitry is programmed to move all of the gauge needles back to the low end of their respective scales after the ignition switch is turned to the Off position.

INDICATOR LAMP

Indicator lamps are located in the instrument cluster and are served by the cluster circuit board and connectors. Many of the indicator lamps in the instrument cluster are controlled by the instrument cluster circuitry in response to messages received over the Chrysler Collision Detection (CCD) data bus network.

The anti-lock brake system lamp, brake warning lamp, four-wheel drive indicator lamps, headlamp high beam indicator lamp, low washer fluid warning lamp, seat belt reminder lamp driver seat belt switch input, and turn signal indicator lamps are hardwired. The instrument cluster circuitry uses CCD data bus messages from the Powertrain Control Module (PCM) and Airbag Control Module (ACM) to control all of the remaining indicator lamps.

JUNCTION BLOCK

The junction block is mounted on the right cowl side inner panel under the instrument panel. It is concealed behind the right cowl side trim panel. The junction block serves to simplify and centralize numerous electrical components.

The junction block combines the functions previously provided by a separate fuseblock module and relay center. It contains fuses, circuit breakers and relays. It also eliminates the need for numerous splice connections and serves in place of a bulkhead connector between many of the engine compartment, instrument panel, and body wire harnesses.

GENERAL INFORMATION (Continued)

The right cowl side trim panel has a snap-fit fuse access cover that can be removed for service of the junction block fuses. A fuse puller and spare fuse holders are located on the back of the fuse access panel. The right cowl side trim panel must be removed to access the relays in the junction block.

The junction block cannot be repaired and, if faulty or damaged, it must be replaced.

DESCRIPTION AND OPERATION

COOLANT TEMPERATURE GAUGE

The coolant temperature gauge gives an indication of the engine coolant temperature. The instrument cluster circuitry controls the gauge pointer position. The instrument cluster circuitry calculates the proper gauge pointer position based upon an engine coolant temperature message received from the Powertrain Control Module (PCM) on the Chrysler Collision Detection (CCD) data bus.

The PCM uses an input from the engine coolant temperature sensor and internal programming to decide what engine coolant temperature message is required. The PCM then sends the proper message to the instrument cluster on the CCD data bus.

If the PCM message indicates that coolant temperature is high, the instrument cluster circuitry moves the gauge needle into the beginning of the red zone on the gauge face, turns on the Check Gauges lamp, and generates a single chime tone. If the PCM message indicates that coolant temperature is critical, the instrument cluster circuitry moves the gauge needle to the stop at the end of the red zone on the gauge face.

The engine coolant temperature sensor is installed in a threaded hole that penetrates a coolant passage of the engine. It is a thermistor-type sensor that changes its internal resistance with changes in engine coolant temperature. Refer to Group 14 - Fuel Systems for more information on the PCM and the coolant temperature sensor.

FUEL GAUGE

The fuel gauge gives an indication of the level of fuel in the fuel tank. The instrument cluster circuitry controls the gauge pointer position. The instrument cluster circuitry calculates the proper gauge pointer position based upon a fuel level message received from the Powertrain Control Module (PCM) on the Chrysler Collision Detection (CCD) data bus.

The PCM uses an input from the fuel gauge sending unit and internal programming to decide what fuel level message is required. The PCM then sends the proper message to the instrument cluster on the CCD data bus. If the vehicle is equipped with the high-line instrument cluster, when the PCM message

indicates that the fuel level is below one-eighth of a full tank, the instrument cluster circuitry turns on the low fuel warning lamp and generates a single chime tone.

The fuel gauge sending unit is mounted to the electric fuel pump module located inside the fuel tank. The sending unit has a float attached to the end of a swing-arm. The float moves up or down within the fuel tank as the fuel level changes. As the float moves, an electrical contact on the pivot end of the swing-arm wipes across a resistor coil, which changes the internal electrical resistance of the sending unit. Refer to Group 14 - Fuel Systems for more information on the PCM and the fuel gauge sending unit service procedures.

ODOMETER AND TRIP ODOMETER

The odometer and the trip odometer share the same vacuum fluorescent digital display tube in the instrument cluster circuit board. Each gives an indication of the distance the vehicle has travelled. However, by depressing the reset knob on the face of the instrument cluster, the display can be switched from odometer to trip odometer. Depressing the reset knob for longer than two seconds while in the trip odometer mode will reset the trip odometer to zero. The odometer and trip odometer display values are based on distance pulse messages received from the Powertrain Control Module (PCM) on the Chrysler Collision Detection (CCD) data bus.

The PCM uses an input from the Vehicle Speed Sensor (VSS) and internal programming to decide what distance pulse signal is required. The PCM then sends the proper message to the instrument cluster circuitry on the CCD data bus. The instrument cluster stores both the odometer and trip odometer distance information and displays the proper value based upon ignition key-on and trip odometer reset knob inputs. The instrument cluster also stores the odometer display mode (odometer or trip odometer), and will return to the mode that was selected prior to the ignition switch being turned off.

If the instrument cluster is not receiving distance information on the CCD data bus when the ignition switch is turned to the On position, the odometer display will remain blank. If the instrument cluster does not receive a distance message on the CCD data bus after the ignition switch has been turned to the On position, the instrument panel circuitry will insert the last normally displayed distance in the odometer display. If the instrument cluster is receiving CCD messages, but cannot display odometer values due to an internal error, the odometer display will be blank.

The VSS is a hall-effect sensor that is installed in the transmission (two-wheel drive) or transfer case

(four-wheel drive), and is driven by the output shaft through a speedometer pinion gear. Incorrect tire size, incorrect axle ratio, a faulty or incorrect speedometer pinion gear, or a faulty VSS can each result in inaccurate odometer readings. Refer to Group 14 - Fuel Systems for more information on the PCM and the VSS. Refer to Group 21 - Transmission for more information on the speedometer pinion gear.

The odometer and trip odometer can also be used to digitally display a stored DTC. Refer to Group 25 - Emission Control Systems for more information on DTCs and their retrieval.

OIL PRESSURE GAUGE

The oil pressure gauge gives an indication of the engine oil pressure. The instrument cluster circuitry controls the gauge pointer position. The instrument cluster circuitry calculates the proper gauge pointer position based upon an engine oil pressure message received from the Powertrain Control Module (PCM) on the Chrysler Collision Detection (CCD) data bus.

The PCM uses an input from the engine oil pressure sensor and internal programming to decide what engine oil pressure message is required. The PCM then sends the proper message to the instrument cluster on the CCD data bus. If the PCM message indicates that oil pressure is low, the instrument cluster circuitry moves the gauge needle to below the zero graduation on the gauge face, and turns on the Check Gauges lamp.

The engine oil pressure sensor is installed in a threaded hole that penetrates an oil passage of the engine. The engine oil pressure sensor contains a flexible diaphragm and a variable resistor coil. The diaphragm moves in response to changes in the engine oil pressure, which changes the internal electrical resistance of the sensor. Refer to Group 14 - Fuel Systems for more information on the PCM and the engine oil pressure sensor.

SPEEDOMETER

The speedometer gives an indication of the current vehicle speed. The instrument cluster circuitry controls the gauge pointer position. The instrument cluster circuitry calculates the proper gauge pointer position based upon a vehicle speed message received from the Powertrain Control Module (PCM) on the Chrysler Collision Detection (CCD) data bus.

The PCM uses an input from the Vehicle Speed Sensor (VSS) and internal programming to decide what vehicle speed message is required. The PCM then sends the proper message to the instrument cluster on the CCD data bus.

The VSS is a hall-effect sensor that is installed in the transmission (two-wheel drive) or transfer case (four-wheel drive), and is driven by the output shaft through a speedometer pinion gear. Incorrect tire size, incorrect axle ratio, a faulty or incorrect speedometer pinion gear, or a faulty VSS can each result in inaccurate speedometer readings. Refer to Group 14 - Fuel Systems for more information on the PCM and the VSS. Refer to Group 21 - Transmission for more information on the speedometer pinion gear.

TACHOMETER

The tachometer gives an indication of the engine speed in revolutions-per-minute (RPM). The instrument cluster circuitry controls the gauge pointer position. The instrument cluster circuitry calculates the proper gauge pointer position based upon an engine speed message received from the Powertrain Control Module (PCM) on the Chrysler Collision Detection (CCD) data bus.

The PCM uses an input from the crankshaft position sensor and internal programming to calculate what engine speed message is required. The PCM then sends the proper message to the instrument cluster on the CCD data bus. The crankshaft position sensor is a hall-effect sensor installed near the rear of the engine, where it is aimed at the trigger wheel attached to the rear flange of the crankshaft.

Refer to Group 14 - Fuel Systems for more information on the PCM. Refer to Group 8D - Ignition Systems for more information on the crankshaft position sensor.

VOLTMETER

The voltmeter gives an indication of the electrical system voltage. The instrument cluster circuitry controls the gauge pointer position. The instrument cluster circuitry calculates the proper gauge pointer position based upon a system voltage message received from the Powertrain Control Module (PCM) on the Chrysler Collision Detection (CCD) data bus.

The PCM uses an input from the electrical system and internal programming to decide what system voltage message is required. The PCM then sends the proper message to the instrument cluster on the CCD data bus.

If the PCM message indicates that the charging system has failed, the instrument cluster circuitry moves the gauge needle to the 9 volt graduation on the gauge face, and turns on the Check Gauges lamp. If the PCM message indicates that system voltage is high, the instrument cluster circuitry moves the gauge needle to the 19 volt graduation on the gauge face, and turns on the Check Gauges lamp.

Refer to Group 14 - Fuel Systems for more information on the PCM. Refer to Group 8C - Charging Systems for more information on charging system components and diagnosis.

AIRBAG INDICATOR LAMP

The airbag indicator lamp gives an indication when the airbag system is faulty or inoperative. The lamp is turned on by the instrument cluster circuitry for about seven seconds when the ignition switch is turned to the On position as a bulb test. After the bulb test, the lamp is controlled by the instrument cluster circuitry based upon a message received from the Airbag Control Module (ACM) on the Chrysler Collision Detection (CCD) data bus.

The ACM continually monitors the airbag system circuits and sensors to decide whether the system is in good operating condition. The ACM then sends the proper message to the instrument cluster on the CCD data bus to turn the lamp on or off. If the ACM sends a lamp-on message after the bulb test, it indicates that the ACM has detected a system malfunction and/or that the airbag system has become inoperative.

Each time the instrument cluster circuitry receives a lamp-on message from the ACM, it will light the lamp for twelve seconds or the duration of the airbag system malfunction, whichever is longer. If the instrument cluster receives no lamp messages from the ACM for more than five seconds, it will light the lamp for twelve seconds or until another lamp-off message from the ACM, whichever is longer.

Refer to Group 8M - Passive Restraint Systems for more information on the airbag system.

ANTI-LOCK BRAKE SYSTEM LAMP

The Anti-Lock Brake System (ABS) lamp gives an indication when the ABS system is faulty or inoperative. The lamp is hard-wired in the instrument cluster, and is completely controlled by the Controller Anti-lock Brake (CAB). It receives battery voltage through the instrument cluster fused ignition switch output feed circuit, and is grounded by the CAB. The lamp is turned on by the CAB for about two seconds when the ignition switch is turned to the On position as a bulb test. After the bulb test, the CAB turns the lamp on or off based upon the results of the ABS system self-tests.

The CAB continually monitors the ABS circuits and sensors to decide whether the system is in good operating condition. If the CAB turns the lamp on after the bulb test, it indicates that the CAB has detected a system malfunction and/or that the ABS system has become inoperative. Refer to Group 5 - Brakes for more information.

BRAKE WARNING LAMP

The brake warning lamp gives an indication when the parking brake is applied, or when the pressures in the two halves of the split brake hydraulic system are unequal. The lamp is turned on when the ignition switch is in the Start position as a bulb test. After the bulb test, the lamp is controlled by hard-wired inputs from the parking brake switch and/or the brake warning switch.

The brake warning switch closes to ground when it senses unequal hydraulic pressures in the two halves of the split brake hydraulic system, possibly due to low brake fluid level or brake fluid leakage. The parking brake switch closes to ground when the parking brake is applied. Refer to Group 5 - Brakes for more information.

CHECK GAUGES LAMP

The check gauges lamp gives an indication when certain gauges reflect a condition requiring immediate attention. The lamp is turned on by the instrument cluster circuitry for about three seconds after the ignition switch is turned to the On position as a bulb test. After the bulb test, the lamp is controlled by the instrument cluster circuitry based upon gauge data messages received from the Powertrain Control Module (PCM) on the Chrysler Collision Detection (CCD) data bus.

The PCM uses several inputs to decide what gauge data messages are required. The PCM then sends the proper message to the instrument cluster on the CCD data bus. The gauge data messages for which the instrument cluster is programmed to turn on the check gauges lamp are:

- Engine coolant temperature is high or critical
- Engine oil pressure is low
- Charging system failure
- System voltage is high.

CIGAR LIGHTER AND POWER OUTLET

A cigar lighter and an accessory power outlet are standard equipment on this model. Power to the accessory power outlet is provided at all times, regardless of the ignition switch position. Power to the cigar lighter is switched by a cigar lighter relay, which is only energized when the ignition switch is in the Accessory or On positions.

The cigar lighter and accessory power outlet receptacles are located in, and serviced only as a part of, the accessory switch bezel unit. If either receptacle is faulty or damaged, the accessory switch bezel must be replaced.

CIGAR LIGHTER RELAY

The cigar lighter relay is a International Standards Organization (ISO)-type relay. The cigar lighter relay is a electromechanical device that switches fused battery current to the cigar lighter when the ignition switch is turned to the Accessory or On positions. See the Diagnosis and Testing section of this group for

more information on the operation of the cigar lighter relay.

The cigar lighter relay is located in the junction block, on the right cowl side panel below the instrument panel in the passenger compartment. The cigar lighter relay cannot be repaired and, if faulty or damaged, it must be replaced.

CLUSTER ILLUMINATION LAMP

The cluster illumination lamps are hard-wired in the instrument cluster. When the park or head lamps are turned on, the cluster illumination lamps light. Illumination brightness is adjusted by rotating the headlamp switch knob (clockwise to dim, counterclockwise to brighten). The instrument cluster illumination lamps receive battery feed from the panel dimmer rheostat in the headlamp switch through a fuse in the junction block.

Each of the illumination lamps is located on the instrument cluster circuit board. Each lamp has a replaceable bulb and bulb holder. Refer to Group 8L - Lamps for more information.

COOLANT TEMPERATURE WARNING LAMP

The coolant temperature warning lamp gives an indication when the engine coolant temperature is high. The lamp is turned on by the instrument cluster circuitry for about three seconds after the ignition switch is turned to the On position as a bulb test. After the bulb test, the lamp is controlled by the instrument cluster circuitry based upon an engine coolant temperature message received from the Powertrain Control Module (PCM) on the Chrysler Collision Detection (CCD) data bus.

The PCM uses an input from the engine coolant temperature sensor and internal programming to decide what engine coolant temperature message is required. The PCM then sends the proper message to the instrument cluster on the CCD data bus. If the PCM message indicates that coolant temperature is high, the instrument cluster circuitry turns on the coolant temperature warning lamp and generates a single chime tone.

The engine coolant temperature sensor is installed in a threaded hole that penetrates a coolant passage of the engine. It is a thermistor-type sensor that changes its internal resistance with changes in engine coolant temperature. Refer to Group 14 - Fuel Systems for more information on the PCM and the coolant temperature sensor.

CRUISE-ON INDICATOR LAMP

The cruise-on indicator lamp gives an indication when the vehicle speed control system is turned on, even when the system is not currently engaged. The lamp is controlled by the instrument cluster circuitry based upon a message received from the Powertrain Control Module (PCM) on the Chrysler Collision Detection (CCD) data bus.

The PCM uses an input from the analog resistor-multiplexed vehicle speed control switches in the steering wheel to decide whether to turn the lamp on or off. The PCM then sends the proper message to the instrument cluster on the CCD data bus. Refer to Group 8H - Vehicle Speed Control System for more information.

FOUR-WHEEL DRIVE INDICATOR LAMP

PART TIME

On vehicles with the optional Command-Trac four-wheel drive system, the Part Time indicator lamp lights when the transfer case is engaged in the 4H or 4L positions. On vehicles with the optional Selec-Trac four-wheel drive system, the Part Time indicator lamp lights when the transfer case is engaged in the 4 X 4 Part Time or 4 Lo positions.

When the ignition switch is in the On position, battery voltage is supplied to one side of the indicator lamp bulb. A normally-open, plunger-type, four-wheel drive switch threaded into the transfer case is hardwired in series between the other side of the indicator lamp bulb and ground. When the transfer case is shifted into the proper position, the plunger of the four-wheel drive switch is moved, closing the switch and providing a path to ground. This causes the Part Time indicator lamp bulb to light.

Refer to Group 21 - Transmission for more information on the transfer case shift mechanism.

FULL TIME

The Full Time indicator lamp is only operational on vehicles equipped with the optional Selec-Trac four-wheel drive system. The Full Time indicator lamp lights when the transfer case is engaged in the $4\ X\ 4$ Full Time position.

When the ignition switch is in the On position, battery voltage is supplied to one side of the indicator lamp bulb. A normally-open, plunger-type, four-wheel drive switch threaded into the transfer case is hardwired in series between the other side of the indicator lamp bulb and ground. When the transfer case is shifted into the proper position, the plunger of the four-wheel drive switch is moved, closing the switch and providing a path to ground. This causes the Full Time indicator lamp bulb to light.

Refer to Group 21 - Transmission for more information on the transfer case shift mechanism.

HEADLAMP HIGH BEAM INDICATOR LAMP

The headlamp high beam indicator lamp gives an indication when the headlamp high beams are turned on. The lamp is controlled by a hard-wired input

from the headlamp dimmer (multi-function) switch. One side of the indicator bulb is grounded at all times. The other side of the bulb receives a battery feed through the contacts of the dimmer switch when the multi-function switch stalk is actuated to turn on the headlamp high beams. Refer to Group 8L - Lamps for more information.

LOW FUEL WARNING LAMP

The low fuel warning lamp gives an indication when the fuel level in the fuel tank has fallen below about one-eighth of a full tank, as registered on the fuel gauge. The instrument cluster circuitry lights the lamp for about three seconds when the ignition switch is turned to the On position as a bulb test. After the bulb test, the instrument cluster circuitry controls the lamp based upon a fuel level message received from the Powertrain Control Module (PCM) on the Chrysler Collision Detection (CCD) data bus.

The PCM uses an input from the fuel gauge sending unit and internal programming to decide what fuel level message is required. The PCM then sends the proper message to the instrument cluster on the CCD data bus. If the PCM message indicates that the fuel level is below one-eighth of a full tank for more than ten seconds, the instrument cluster circuitry turns on the low fuel warning lamp and generates a single chime tone. Once the lamp is turned on, an increase in the fuel level message of at least one full needle width for more than twenty seconds is required before the cluster will turn the lamp off.

The fuel gauge sending unit is mounted to the electric fuel pump module inside the fuel tank. The sending unit has a float attached to the end of a swingarm. The float moves up or down within the fuel tank as the fuel level changes. As the float moves, an electrical contact on the pivot end of the swingarm wipes across a resistor coil, which changes the resistance of the sending unit. Refer to Group 14 - Fuel Systems for more information on the PCM and the fuel gauge sending unit.

LOW OIL PRESSURE WARNING LAMP

The low oil pressure warning lamp gives an indication when the engine oil pressure is low. The lamp is turned on by the instrument cluster circuitry for about three seconds after the ignition switch is turned to the On position as a bulb test. After the bulb test, the lamp is controlled by the instrument cluster circuitry based upon an engine oil pressure message received from the Powertrain Control Module (PCM) on the Chrysler Collision Detection (CCD) data bus.

The PCM uses an input from the engine oil pressure sensor and internal programming to decide what engine oil pressure message is required. The

PCM then sends the proper message to the instrument cluster on the CCD data bus. If the PCM message indicates that oil pressure is low, the instrument cluster circuitry turns on the low oil pressure warning lamp.

The engine oil pressure sensor is installed in a threaded hole that penetrates an oil passage of the engine. The engine oil pressure sensor contains a flexible diaphragm and a variable resistor coil. The diaphragm moves in response to changes in the engine oil pressure, which changes the internal electrical resistance of the sensor. Refer to Group 14 - Fuel Systems for more information on the PCM and the engine oil pressure sensor.

LOW WASHER FLUID WARNING LAMP

The low washer fluid warning lamp gives an indication when the fluid level in the washer fluid reservoir is too low. The instrument cluster circuitry controls the lamp based upon a hard-wired input from the washer fluid level sensor.

The washer fluid level sensor uses a float in the reservoir to monitor the fluid level. The up and down action of the float opens or closes the switch within the washer fluid level sensor that provides a ground signal to the instrument cluster circuitry.

If the instrument cluster circuitry senses a ground input from the washer fluid level sensor for more than about thirty seconds, it turns on the low washer fluid warning lamp. This helps to reduce the effects of fluid sloshing within the reservoir. This lamp also latches. Once the lamp has been turned on, it will remain on until washer fluid is added to the reservoir and the ignition switch is cycled.

Refer to Group 8K - Wiper and Washer Systems for more information on the washer fluid level sensor.

MALFUNCTION INDICATOR LAMP

The Check Engine or Malfunction Indicator Lamp (MIL) gives an indication when the Powertrain Control Module (PCM) has recorded a Diagnostic Trouble Code (DTC) for an On-Board Diagnostics II (OBDII) emissions-related circuit or component malfunction. The lamp is controlled by the instrument cluster circuitry based upon messages received from the PCM on the Chrysler Collision Detection (CCD) data bus. The PCM sends a lamp-on message for about three seconds when the ignition switch is turned to the On position as a bulb test.

Following the bulb test, the PCM uses inputs from many emissions-related circuits and sensors, along with its internal programming, to decide whether a condition exists that requires the MIL lamp to be turned on. The PCM then sends the proper message to the instrument cluster on the CCD data bus to turn the lamp on or off.

DESCRIPTION AND OPERATION (Continued)

The MIL lamp can also be used to display a stored DTC by flashing on and off. Refer to Group 14 - Fuel Systems for more information on the PCM or the PCM inputs. Refer to Group 25 - Emission Control Systems for more information on DTCs and their retrieval.

SEAT BELT REMINDER LAMP

The seat belt reminder lamp gives a visual reminder to the vehicle occupants to fasten their seat belts. The lamp is turned on by the instrument cluster circuitry for about seven seconds when the ignition switch is turned to the On position. The instrument cluster also receives a hard-wired input from the driver seat belt switch. If the driver seat belt switch is closed (seat belt is not buckled), the instrument cluster will generate a chime warning for the duration of the seat belt reminder lamp illumination. The chime warning will stop when the driver seat belt switch is open (seat belt is buckled).

Refer to Group 8U - Chime/Buzzer Warning Systems for more information on the driver seat belt switch.

TURN SIGNAL INDICATOR LAMP

The left and right turn signal indicator lamps give an indication when the turn signal circuits are activated. The lamps are hard-wired in the instrument cluster, and are completely controlled by the turn signal and hazard warning (multi-function) switches.

The indicator lamps are grounded at all times and receive battery feed through the contacts of the multi-function switch when the turn signal lever (multi-function switch stalk) or hazard warning button are actuated to the On position. The instrument cluster circuitry does not perform a bulb test of these lamps. Refer to Group 8J - Turn Signal and Hazard Warning Systems for more information.

UPSHIFT INDICATOR LAMP

Vehicles equipped with a manual transmission have an upshift indicator lamp. The upshift indicator lamp gives an indication when the driver should shift to the next highest gear for the best fuel economy. The lamp is controlled by the instrument cluster circuitry based upon a message received from the Powertrain Control Module (PCM) on the Chrysler Collision Detection (CCD) data bus.

The PCM uses inputs from many sensors and its internal programming to decide whether the engine speed and load conditions are correct for a transmission upshift. The PCM then sends the proper message to the instrument cluster on the CCD data bus to turn the lamp on or off. The PCM will send a lamp-off message three to five seconds after a lamp-on message, if an upshift is not performed. The

lamp will then remain off until the vehicle stops accelerating and is brought back into the range of lamp operation, or until the transmission is shifted into another gear. Refer to Group 14 - Fuel Systems for more information on the PCM and the PCM inputs.

VOLTAGE WARNING LAMP

The voltage warning lamp gives an indication when the electrical system voltage is too low or too high. The lamp is turned on by the instrument cluster circuitry for about three seconds after the ignition switch is turned to the On position as a bulb test. After the bulb test, the lamp is controlled by the instrument cluster circuitry based upon a system voltage message received from the Powertrain Control Module (PCM) on the Chrysler Collision Detection (CCD) data bus.

The PCM uses an input from the electrical system and internal programming to decide what system voltage message is required. The PCM then sends the proper message to the instrument cluster on the CCD data bus. If the PCM message indicates that the charging system is too low or too high, the instrument cluster circuitry turns on the voltage warning lamp.

Refer to Group 14 - Fuel Systems for more information on the PCM. Refer to Group 8C - Charging Systems for more information on charging system components and diagnosis.

DIAGNOSIS AND TESTING

INSTRUMENT CLUSTER

If all of the gauges and/or indicator lamps are inoperative, perform the Preliminary Diagnosis. If an individual gauge or Chrysler Collision Detection (CCD) data bus message-controlled indicator lamp is inoperative, go directly to the Actuator Test. If an individual hard-wired indicator lamp is inoperative, go directly to the diagnosis for that lamp. For circuit descriptions and diagrams, refer to 8W-40 - Instrument Cluster in Group 8W - Wiring Diagrams.

PRELIMINARY DIAGNOSIS

- (1) If the indicator lamps operate, but none of the gauges operate, go to Step 2. If all of the gauges and the data bus message-controlled indicator lamps are inoperative, go to Step 5.
- (2) Check the Ignition-Off Draw (IOD) fuse in the Power Distribution Center (PDC). If OK, go to Step 3. If not OK, repair the shorted circuit or component as required and replace the faulty fuse.
- (3) Check for battery voltage at the IOD fuse in the PDC. If OK, go to Step 4. If not OK, repair the open circuit as required.
- (4) Disconnect and isolate the battery negative cable. Remove the instrument cluster as described in this group. Connect the battery negative cable. Check for battery voltage at the fused B(+) circuit cavity of the left instrument cluster wire harness connector (connector A). If OK, go to the Actuator Test. If not OK, repair the open circuit to the IOD fuse as required.
- (5) Check the switched ignition fuse in the junction block. If OK, go to Step 6. If not OK, repair the shorted circuit or component as required and replace the faulty fuse.
- (6) Turn the ignition switch to the On position and check for battery voltage at the switched ignition fuse in the junction block. If OK, go to Step 7. If not OK, repair the open circuit to the ignition switch as required.
- (7) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Reinstall the instrument cluster. Connect the battery negative cable. Turn the ignition switch to the On position. Set the parking brake. The brake warning lamp should light. If OK, go to Step 8. If not OK, go to Step 9.
- (8) Turn the ignition switch to the Off position. Turn on the park lamps and adjust the panel lamps dimmer rheostat to the full bright position. The cluster illumination lamps should light. If OK, go to the Actuator Test. If not OK, go to Step 10.
- (9) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Remove the instrument cluster as described in this group. Connect the battery negative cable. Turn the ignition switch to the On position. Check for battery voltage at the fused ignition switch output (run/start) circuit cavity of the left instrument cluster wire harness connector (connector A). If OK, go to the Actuator Test. If not OK, repair the open circuit to the junction block as required.
- (10) Disconnect and isolate the battery negative cable. Remove the instrument cluster as described in this group. Check for continuity between the ground circuit cavity of the left instrument cluster wire harness connector (connector A) and a good ground.

There should be continuity. If OK, go to the Actuator Test. If not OK, repair the open circuit to ground as required.

ACTUATOR TEST

The instrument cluster actuator test will put the cluster into its self-diagnostic mode. In this mode the cluster will position each of the gauge needles at various specified calibration points, and turn all of the CCD data bus message-controlled lamps on and off at specified time intervals (Fig. 1) or (Fig. 2).

Successful completion of the actuator test will confirm that the cluster circuitry, gauges, and lamps are capable of operating as designed. However, there may still be a problem with the CCD data bus, the Powertrain Control Module (PCM), the Airbag Control Module (ACM), or the inputs to one of these modules. Use a DRB scan tool and the proper Diagnostic Procedures manual for testing of these components.

If an individual gauge does not respond properly or at all during the Actuator Test, the instrument cluster should be removed. However, check the gauge mounting screws on the printed circuit board for proper tightness before considering instrument cluster replacement. If the mounting screws check OK, replace the faulty cluster.

If an individual indicator lamp does not illuminate during the Actuator Test, the instrument cluster should be removed. However, check that the incandescent lamp bulb is not faulty and that the bulb holder is properly installed on the circuit board before considering instrument cluster replacement. If the bulb and bulb holder check OK, replace the faulty instrument cluster.

- (1) Begin the test with the ignition switch in the Off position.
 - (2) Depress the trip odometer reset button.
- (3) While holding the trip odometer reset button depressed, turn the ignition switch to the On position, but do not start the engine.
 - (4) Release the trip odometer reset button.
- (5) Compare the operation of the suspect gauge(s) and/or lamp(s) with the chart (Fig. 1) or (Fig. 2).
- (6) The cluster will exit the self-diagnostic mode at the completion of the test, or if the ignition switch is turned to the Off position.
- (7) Go back to Step 1 to repeat the test, if required.

COOLANT TEMPERATURE GAUGE

If the problem being diagnosed is related to coolant temperature gauge accuracy, be certain to confirm that the problem is with the gauge and not with cooling system performance. The actual engine coolant temperature should be checked with a test gauge or thermometer and compared to the instrument cluster coolant temperature gauge readings before you pro-

NOTE: 1.5 SECONDS AFTER COMPLETING TEST, ALL POINTERS SHOULD RETURN TO POINTER STOP AND ODOMETER SHOULD BE TURNED OFF.

START DIAGNOSTICS

COMPLETE DIAGNOSTICS

NOTE: 1.5 SECONDS AFTER COMPLETING TEST, ALL POINTERS SHOULD RETURN TO POINTER STOP AND ODOMETER SHOULD BE TURNED OFF.

ceed with gauge diagnosis. Refer to Group 7 - Cooling System for more information. Refer to Group 8W - Wiring Diagrams for circuit descriptions and diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

Diagnosis of the coolant temperature sensor and circuit, the Chrysler Collision Detection (CCD) data bus, and/or the Powertrain Control Module (PCM) should be performed with a DRB scan tool as described in the proper Diagnostic Procedures manual. For diagnosis of the coolant temperature gauge and the instrument cluster circuitry, see Instrument Cluster in this group.

FUEL GAUGE

If the problem being diagnosed is related to fuel gauge accuracy, be certain to confirm that the problem is with the gauge or sending unit and not with the fuel tank. Inspect the fuel tank for signs of damage or distortion that could affect the sending unit performance before you proceed with fuel gauge diagnosis. Refer to Group 8W - Wiring Diagrams for circuit descriptions and diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

Diagnosis of the fuel gauge sending unit and circuit, the Chrysler Collision Detection (CCD) data bus, and/or the Powertrain Control Module (PCM) should be performed with a DRB scan tool as described in the proper Diagnostic Procedures manual. For diagnosis of the fuel gauge and the instrument cluster circuitry, see Instrument Cluster in this group.

ODOMETER AND TRIP ODOMETER

If the problem being diagnosed is related to odometer and/or trip odometer accuracy, be certain to confirm that the problem is with the display and not

with an incorrect speedometer pinion gear, axle ratio, or tire size. Refer to Group 21 - Transmission for more information on the speedometer pinion gear. Refer to Group 8W - Wiring Diagrams for circuit descriptions and diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

Diagnosis of the vehicle speed sensor and circuit, the Chrysler Collision Detection (CCD) data bus, and/or the Powertrain Control Module (PCM) should be performed with a DRB scan tool as described in the proper Diagnostic Procedures manual. For diagnosis of the odometer and/or trip odometer and the instrument cluster circuitry, see Instrument Cluster in this group.

OIL PRESSURE GAUGE

If the problem being diagnosed is related to oil pressure gauge accuracy, be certain to confirm that the problem is with the gauge and not with the engine oiling system performance. The actual engine oil pressure should be checked with a test gauge and compared to the instrument cluster oil pressure gauge readings before you proceed with gauge diagnosis. Refer to Group 9 - Engines for more information. Refer to Group 8W - Wiring Diagrams for circuit descriptions and diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

Diagnosis of the oil pressure sensor and circuit, the Chrysler Collision Detection (CCD) data bus, and/or the Powertrain Control Module (PCM) should be performed with a DRB scan tool as described in the proper Diagnostic Procedures manual. For diagnosis of the oil pressure gauge and the instrument cluster circuitry, see Instrument Cluster in this group.

SPEEDOMETER

If the problem being diagnosed is related to speed-ometer accuracy, be certain to confirm that the problem is with the speedometer gauge and not with an incorrect speedometer pinion gear, axle ratio, or tire size. Refer to Group 21 - Transmission for more information on the speedometer pinion gear. Refer to Group 8W - Wiring Diagrams for circuit descriptions and diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

Diagnosis of the vehicle speed sensor and circuit, the Chrysler Collision Detection (CCD) data bus, and/or the Powertrain Control Module (PCM) should be performed with a DRB scan tool as described in the proper Diagnostic Procedures manual. For diagnosis of the speedometer and the instrument cluster circuitry, see Instrument Cluster in this group.

TACHOMETER

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

Refer to Group 8W - Wiring Diagrams for circuit descriptions and diagrams. Diagnosis of the crankshaft position sensor and circuit, the Chrysler Collision Detection (CCD) data bus, and/or the Powertrain Control Module (PCM) should be performed with a DRB scan tool as described in the proper Diagnostic Procedures manual. For diagnosis of the tachometer and the instrument cluster circuitry, see Instrument Cluster in this group.

VOLTMETER

If the problem being diagnosed is related to voltmeter gauge accuracy, be certain to confirm proper charging system operation before considering instrument cluster replacement. Refer to Group 8C - Charging System for more information. Refer to

Group 8W - Wiring Diagrams for circuit descriptions and diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

Diagnosis of the system voltage input circuit, the Chrysler Collision Detection (CCD) data bus, and/or the Powertrain Control Module (PCM) should be performed with a DRB scan tool as described in the proper Diagnostic Procedures manual. For diagnosis of the voltmeter and the instrument cluster circuitry, see Instrument Cluster in this group.

AIRBAG INDICATOR LAMP

The diagnosis found here addresses an inoperative airbag indicator lamp condition. If the airbag indicator lamp stays on with the ignition switch in the On position, or comes on and stays on while driving, refer to Group 8M - Passive Restraint Systems for diagnosis. For circuit descriptions and diagrams, refer to 8W-40 - Instrument Cluster, and 8W-43 - Airbag System in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

If the airbag indicator lamp fails to light when the ignition switch is turned to the On position, replace the airbag indicator lamp bulb with a known good unit. If the airbag indicator lamp still fails to operate, diagnosis of the airbag lamp and the instrument cluster circuitry should be performed as described in Instrument Cluster in this group. If the airbag lamp and instrument cluster circuitry are OK, diagnosis of the airbag system and the CCD data bus should be performed with a DRB scan tool as described in the proper Diagnostic Procedures manual.

ANTI-LOCK BRAKE SYSTEM LAMP

The diagnosis found here addresses an inoperative Anti-lock Brake System (ABS) lamp condition. If the ABS lamp stays on with the ignition switch in the

On position, or comes on and stays on while driving, refer to Group 5 - Brakes for diagnosis. If no ABS problem is found, the following procedure will help locate a short or open in the ABS lamp circuit. For circuit descriptions and diagrams, refer to 8W-40 - Instrument Cluster, and 8W-35 - All-Wheel Anti-Lock Brakes in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Check the fuse in the junction block. If OK, go to Step 2. If not OK, repair the shorted circuit or component as required and replace the faulty fuse.
- (2) Turn the ignition switch in the On position. Check for battery voltage at the fuse in the junction block. If OK, go to Step 3. If not OK, repair the open circuit to the ignition switch as required.
- (3) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Remove the instrument cluster as described in this group. Connect the battery negative cable. Turn the ignition switch to the On position and within five seconds check for continuity between the ABS warning lamp driver circuit cavity of the left instrument cluster wire harness connector (connector A) and a good ground. There should be continuity for five seconds after ignition On, and then an open circuit. If OK, replace the faulty bulb. If not OK, go to Step 4.
- (4) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Disconnect the Controller Anti-lock Brake (CAB) wire harness connector. Check for continuity between the ABS warning lamp driver circuit cavity of the left instrument cluster wire harness connector (connector A) and a good ground. There should be no continuity. If OK, go to Step 5. If not OK, repair the short circuit as required.
- (5) Check for continuity between the ABS warning lamp driver circuit cavities of the left instrument cluster wire harness connector (connector A) and the CAB wire harness connector. There should be continuity. If OK, refer to Group 5 Brakes for diagnosis of the CAB. If not OK, repair the open circuit as required.

BRAKE WARNING LAMP

The diagnosis found here addresses an inoperative brake warning lamp condition. If the brake warning lamp stays on with the ignition switch in the On position and the parking brake released, or comes on while driving, refer to Group 5 - Brakes for diagnosis. If no service brake or parking brake problem is found, the following procedure will help locate a short or open circuit, or a faulty switch. Refer to 8W-40 - Instrument Cluster, and 8W-35 - All-Wheel Anti-Lock Brakes in Group 8W - Wiring Diagrams for circuit descriptions and diagrams.

- (1) Check the fuse in the junction block. If OK, go to Step 2. If not OK, repair the shorted circuit or component as required and replace the faulty fuse.
- (2) Turn the ignition switch to the On position. Check for battery voltage at the fuse in the junction block. If OK, go to Step 3. If not OK, repair the open circuit to the ignition switch as required.
- (3) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Unplug the wire harness connector at the park brake switch. With the park brake released, check for continuity between the park brake switch terminal and a good ground. There should be no continuity. If OK, go to Step 4. If not OK, adjust or replace the faulty park brake switch.
- (4) Unplug the wire harness connector at the brake warning switch. Check for continuity between the two terminals of the brake warning switch. There should be continuity. If OK, go to Step 5. If not OK, replace the faulty brake warning switch.
- (5) Check for continuity between each of the two brake warning switch terminals and a good ground. In each case, there should be no continuity. If OK, go to Step 6. If not OK, replace the faulty brake warning switch.
- (6) With both the park brake switch and the brake warning switch wire harness connectors still unplugged, check for continuity between the park brake switch wire harness connector cavity and a good ground. There should be no continuity. If OK, go to Step 7. If not OK, repair the short circuit as required.
- (7) With the ignition switch held in the Start position, check for continuity between the park brake switch wire harness connector cavity and a good ground. There should be continuity. If OK, go to Step 8. If not OK, refer to Group 8D Ignition Systems for diagnosis of the ignition switch.

- (8) Turn the ignition switch to the Off position. Remove the instrument cluster as described in this group. Check for continuity between the red brake warning lamp driver circuit cavity of the left instrument cluster wire harness connector (connector A) and a good ground. There should be no continuity. If OK, go to Step 9. If not OK, repair the short circuit as required.
- (9) Check for continuity between the red brake warning lamp driver (G99) circuit cavities of the left instrument cluster wire harness connector (connector A) and the brake warning switch wire harness connector. There should be continuity. If OK, replace the faulty bulb. If not OK, repair the open circuit as required.

CHECK GAUGES LAMP

The diagnosis found here addresses an inoperative check gauges lamp condition. If the check gauges lamp stays on with the ignition switch in the On position, or comes on while driving with no unusual gauge readings evident, diagnosis of the Powertrain Control Module (PCM) and the Chrysler Collision Detection (CCD) data bus should be performed with a DRB scan tool as described in the proper Diagnostic Procedures manual. For circuit descriptions and diagrams, refer to 8W-40 - Instrument Cluster in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

If the check gauges lamp fails to light during the bulb test (about three seconds after the ignition switch is turned to the On position), replace the check gauges lamp bulb with a known good unit. If the coolant temperature gauge, oil pressure gauge, or voltmeter are giving an indication that should trigger the check gauges lamp, but the check gauges lamp still fails to operate, see Instrument Cluster in this group for diagnosis of the check gauges lamp and the instrument cluster circuitry.

CIGAR LIGHTER AND POWER OUTLET

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR

SERVICE. FAILURE TO TAKE THE PROPER PRE-CAUTIONS COULD RESULT IN ACCIDENTAL AIR-BAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

ACCESSORY POWER OUTLET

- (1) Check the fuse in the junction block. If OK, go to Step 2. If not OK, repair the shorted circuit or component as required and replace the faulty fuse.
- (2) Check for battery voltage at the fuse in the junction block. If OK, go to Step 3. If not OK, repair the open circuit to the Power Distribution Center (PDC) as required.
- (3) Disconnect and isolate the battery negative cable. Remove the accessory switch bezel as described in this group. Check for continuity between the ground circuit cavity of the accessory power outlet wire harness connector and a good ground. There should be continuity. If OK, go to Step 4. If not OK, repair the open circuit to ground as required.
- (4) Connect the battery negative cable. Check for battery voltage at the fused B(+) circuit cavity of the accessory power outlet wire harness connector. If OK, replace the faulty accessory switch bezel. If not OK, repair the open circuit to the junction block fuse as required.

CIGAR LIGHTER

- (1) Disconnect and isolate the battery negative cable. Remove the accessory switch bezel as described in this group. Check for continuity between the ground circuit cavity of the cigar lighter wire harness connector and a good ground. There should be continuity. If OK, go to Step 2. If not OK, repair the open circuit to ground as required.
- (2) Connect the battery negative cable. Turn the ignition switch to the Accessory or On positions. Check for battery voltage at the cigar lighter relay output circuit cavity of the cigar lighter wire harness connector. If OK, replace the faulty accessory switch bezel. If not OK, see the diagnosis for the cigar lighter relay in this group.

CIGAR LIGHTER RELAY

For circuit descriptions and diagrams, refer to 8W-41 - Horns/Cigar Lighter in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

RELAY TEST

The cigar lighter relay is located in the junction block. The junction block is attached to the right cowl side inner panel, below the instrument panel and behind the right cowl side trim panel.

Remove the cigar lighter relay from the junction block as described in this group to perform the following tests:

- (1) A relay in the de-energized position should have continuity between terminals 87A and 30, and no continuity between terminals 87 and 30. If OK, go to Step 2. If not OK, replace the faulty relay.
- (2) Resistance between terminals 85 and 86 (electromagnet) should be 75 \pm 5 ohms. If OK, go to Step 3. If not OK, replace the faulty relay.
- (3) Connect a battery to terminals 85 and 86. There should now be continuity between terminals 30 and 87, and no continuity between terminals 87A and 30. If OK, see the Relay Circuit Test in this group. If not OK, replace the faulty relay.

	NUMBER	IDENTIFICATION		
	30	COMMON FEED		
	85	COIL GROUND	<u></u>	
	86	COIL BATTERY		
	87	NORMALLY OPEN		
	87A	NORMALLY CLOSED		

Cigar Lighter Relay

RELAY CIRCUIT TEST

- (1) The relay common feed terminal cavity (30) is connected to battery voltage and should be hot at all times. If OK, go to Step 2. If not OK, repair the open circuit to the fuse in the junction block as required.
- (2) The relay normally closed terminal (87A) is connected to terminal 30 in the de-energized position, but is not used for this application. Go to Step 3.

- (3) The relay normally open terminal (87) is connected to the common feed terminal (30) in the energized position. This terminal supplies battery voltage to the cigar lighter. There should be continuity between the cavity for relay terminal 87 and the cigar lighter relay output circuit cavity of the cigar lighter wire harness connector at all times. If OK, go to Step 4. If not OK, repair the open circuit to the cigar lighter as required.
- (4) The coil battery terminal (86) is connected to the electromagnet in the relay. It is connected to fused ignition switch output and should be hot when the ignition switch is in the On or Accessory positions. Check for battery voltage at the cavity for relay terminal 86 with the ignition switch in the On or Accessory positions. If OK, go to Step 5. If not OK, repair the open circuit to the ignition switch as required.
- (5) The coil ground terminal (85) is connected to the electromagnet in the relay. It is grounded at all times. Check for continuity to ground at the cavity for relay terminal 85. There should be continuity. If not OK, repair the open circuit to ground as required.

CLUSTER ILLUMINATION LAMP

The diagnosis found here addresses an inoperative instrument cluster illumination lamp condition. If the problem being diagnosed includes inoperative exterior lighting controlled by the headlamp switch, that system needs to be repaired first. If the exterior lamps controlled by the headlamp switch are inoperative, refer to Group 8L - Lamps for diagnosis. If no exterior lighting system problems are found, the following procedure will help locate a short or open in the cluster illumination lamp circuit. For circuit descriptions and diagrams, refer to 8W-40 - Instrument Cluster in Group 8W - Wiring Diagrams.

- (1) Check the fuse in the junction block. If OK, go to Step 2. If not OK, repair the shorted circuit or component as required and replace the faulty fuse.
- (2) Turn the park lamps on with the headlamp switch. Rotate the headlamp switch knob counterclockwise to just before the interior lamps detent. Check for battery voltage at the fuse in the junction block. Rotate the headlamp switch knob clockwise

while observing the test voltmeter. The reading should go from battery voltage to zero volts. If OK, go to Step 3. If not OK, repair the open circuit to the headlamp switch or refer to Group 8L - Lamps to diagnose the headlamp switch.

- (3) Disconnect and isolate the battery negative cable. Remove the instrument cluster as described in this group. Turn the headlamp switch off. Remove the fuse from the junction block. Probe the fused panel lamp dimmer switch signal circuit cavity of the left instrument cluster wire harness connector (connector A). Check for continuity to a good ground. There should be no continuity. If OK, go to Step 4. If not OK, repair the short circuit as required.
- (4) Reinstall the fuse in the junction block. Connect the battery negative cable. Turn the park lamps on with the headlamp switch. Rotate the headlamp switch knob counterclockwise to just before the interior lamps detent. Check for battery voltage at the fused panel lamp dimmer switch signal circuit cavity of the left instrument cluster wire harness connector (connector A). If OK, replace the faulty bulb(s) and bulb holder(s). If not OK, repair the open circuit as required.

COOLANT TEMPERATURE WARNING LAMP

If the problem being diagnosed is related to coolant temperature warning lamp accuracy, be certain to confirm that the problem is with the lamp and not with cooling system performance. The actual engine coolant temperature should be checked with a test gauge or thermometer and compared to the coolant temperature warning lamp operation before you proceed with lamp diagnosis. Refer to Group 7 - Cooling System for more information. Refer to Group 8W - Wiring Diagrams for circuit descriptions and diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

If the coolant temperature warning lamp fails to light during the bulb test (about two seconds after the ignition switch is turned to the On position), replace the coolant temperature warning lamp bulb with a known good unit. If the coolant temperature warning lamp still fails to operate, diagnosis of the coolant temperature sensor and circuit, the Chrysler Collision Detection (CCD) data bus, and/or the Powertrain Control Module (PCM) should be performed

with a DRB scan tool as described in the proper Diagnostic Procedures manual. For diagnosis of the coolant temperature warning lamp and the instrument cluster circuitry, see Instrument Cluster in this group.

CRUISE-ON INDICATOR LAMP

The diagnosis found here addresses an inoperative cruise-on indicator lamp condition. If the problem being diagnosed is an inaccurate cruise-on indicator lamp, refer to Group 8H - Vehicle Speed Control for diagnosis of the vehicle speed control system. For circuit descriptions and diagrams, refer to 8W-33 - Vehicle Speed Control and 8W-40 - Instrument Cluster in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

If the cruise-on indicator lamp fails to light when the vehicle speed control is turned on, replace the cruise-on indicator lamp bulb with a known good unit. If the cruise-on lamp still fails to operate, diagnosis of the Powertrain Control Module (PCM) and the Chrysler Collision Detection (CCD) data bus should be performed with a DRB scan tool as described in the proper Diagnostic Procedures manual. For diagnosis of the cruise-on indicator lamp and the instrument cluster circuitry, see Instrument Cluster in this group.

FOUR-WHEEL DRIVE INDICATOR LAMP

The diagnosis found here addresses an inoperative four-wheel drive indicator lamp condition. If the problem being diagnosed is related to lamp accuracy, be certain to confirm that the problem is with the lamp or switch and not with a damaged or inoperative transfer case or transfer case linkage. Refer to Group 21 - Transmission for more information. If no transfer case problem is found, the following procedure will help locate a short or open in the indicator lamp circuit. For circuit diagrams and descriptions, refer to 8W-40 - Instrument Cluster in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

PART TIME

- (1) Check the fuse in the junction block. If OK, go to Step 2. If not OK, repair the shorted circuit or component as required and replace the faulty fuse.
- (2) Turn the ignition switch to the On position. Check for battery voltage at the fuse in the junction block. If OK, go to Step 3. If not OK, repair the open circuit to the ignition switch as required.
- (3) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Unplug the transfer case switch wire harness connector. Check for continuity between the ground circuit cavity of the transfer case switch wire harness connector and a good ground. There should be continuity. If OK, go to Step 4. If not OK, repair the open circuit to ground as required.
- (4) Connect the battery negative cable. Turn the ignition switch to the On position. Install a jumper wire between the part time four wheel drive indicator lamp driver circuit cavity of the transfer case switch wire harness connector and a good ground. The four-wheel drive indicator lamp should light. If OK, replace the faulty transfer case switch. If not OK, go to Step 5.
- (5) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Remove the instrument cluster as described in this group. With the transfer case switch wire harness connector still unplugged, check for continuity between the part time four wheel drive indicator lamp driver circuit cavity of the right instrument cluster wire harness connector (connector B) and a good ground. There should be no continuity. If OK, go to Step 6. If not OK, repair the short circuit as required.
- (6) Check for continuity between the part time four wheel drive indicator lamp driver circuit cavities of the right instrument cluster wire harness connector (connector B) and the transfer case switch wire harness connector. There should be continuity. If OK, replace the faulty bulb. If not OK, repair the open circuit as required.

FULL TIME

- (1) Check the fuse in the junction block. If OK, go to Step 2. If not OK, repair the shorted circuit or component as required and replace the faulty fuse.
- (2) Turn the ignition switch to the On position. Check for battery voltage at the fuse in the junction block. If OK, go to Step 3. If not OK, repair the open circuit to the ignition switch as required.
- (3) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Unplug the transfer case switch wire harness connector. Check for continuity between the ground circuit cavity of the transfer case switch wire harness connector and a good ground. There should be continuity. If OK, go to Step 4. If not OK, repair the open circuit to ground as required.
- (4) Connect the battery negative cable. Turn the ignition switch to the On position. Install a jumper wire between the full time four wheel drive indicator lamp driver circuit cavity of the transfer case switch wire harness connector and a good ground. The four-wheel drive indicator lamp should light. If OK, replace the faulty transfer case switch. If not OK, go to Step 5.
- (5) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Remove the instrument cluster as described in this group. With the transfer case switch wire harness connector still unplugged, check for continuity between the full time four wheel drive indicator lamp driver circuit cavity of the right instrument cluster wire harness connector (connector B) and a good ground. There should be no continuity. If OK, go to Step 6. If not OK, repair the short circuit as required.
- (6) Check for continuity between the full time four wheel drive indicator lamp driver circuit cavities of the right instrument cluster wire harness connector (connector B) and the transfer case switch wire harness connector. There should be continuity. If OK, replace the faulty bulb. If not OK, repair the open circuit as required.

HEADLAMP HIGH BEAM INDICATOR LAMP

The diagnosis found here addresses an inoperative headlamp high beam indicator lamp condition. If the problem being diagnosed is related to inoperative headlamp high beams, refer to Group 8L - Lamps for diagnosis of the headlamp system. If no headlamp system problems are found, the following procedure will help locate an open in the high beam indicator lamp circuit. For circuit descriptions and diagrams, refer to 8W-40 - Instrument Cluster and 8W-50 - Front Lighting in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable. Remove the instrument cluster as described in this group.
- (2) Connect the battery negative cable. Turn the headlamps on and select the high beams with the multi-function switch stalk. Check for battery voltage at the high beam indicator driver circuit cavity of the left instrument cluster wire harness connector (connector A). If OK, replace the faulty bulb. If not OK, repair the open circuit to the headlamp dimmer (multi-function) switch as required.

LOW FUEL WARNING LAMP

The diagnosis found here addresses an inoperative low fuel warning lamp condition. If the problem being diagnosed is related to lamp accuracy, be certain to confirm the problem is the with the low fuel warning lamp and not with the fuel gauge circuit. See the diagnosis for the Fuel Gauge in this group. If no fuel gauge problem is found, refer to the Instrument Cluster diagnosis in this group. For circuit descriptions and diagrams, refer to 8W-40 - Instrument Cluster in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

If the low fuel warning lamp fails to light when the fuel level is below about one-eighth of a full tank as indicated by the fuel gauge, replace the low fuel warning lamp bulb with a known good unit. If the indicator lamp still fails to operate, diagnosis of the fuel gauge sending unit and circuit, the Powertrain Control Module (PCM), and the Chrysler Collision Detection (CCD) data bus should be performed with a DRB scan tool as described in the proper Diagnostic Procedures manual. For diagnosis of the low fuel warning lamp and the instrument cluster circuitry, see Instrument Cluster in this group.

LOW OIL PRESSURE WARNING LAMP

If the problem being diagnosed is related to low oil pressure warning lamp accuracy, be certain to confirm that the problem is with the lamp and not with the engine oiling system performance. The actual engine oil pressure should be checked with a test gauge and compared to the low oil pressure warning lamp operation before you proceed with lamp diagnosis. Refer to Group 9 - Engines for more information. Refer to Group 8W - Wiring Diagrams for circuit descriptions and diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

If the low oil pressure warning lamp fails to light during the bulb test (about two seconds after the ignition switch is turned to the On position), replace the low oil pressure warning lamp bulb with a known good unit. If the low oil pressure warning lamp still fails to operate, diagnosis of the oil pressure sensor and circuit, the Chrysler Collision Detection (CCD) data bus, and/or the Powertrain Control Module (PCM) should be performed with a DRB scan tool as described in the proper Diagnostic Procedures manual. For diagnosis of the low oil pressure warning lamp and the instrument cluster circuitry, see Instrument Cluster in this group.

LOW WASHER FLUID WARNING LAMP

The diagnosis found here addresses an inoperative low washer fluid warning lamp condition. If the problem being diagnosed is related to lamp accuracy, be certain to confirm that the problem is with the lamp or washer fluid level sensor and not with a damaged or empty washer fluid reservoir. Inspect the reservoir for proper fluid level and signs of damage or distortion that could affect sensor performance before you proceed with lamp diagnosis. Refer to Group 8K - Wiper and Washer Systems for more information. For circuit descriptions and diagrams, refer to 8W-40 - Instrument Cluster in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Check the fuse in the junction block. If OK, go to Step 2. If not OK, repair the shorted circuit or component as required and replace the faulty fuse.
- (2) Turn the ignition switch to the On position. Check for battery voltage at the fuse in the junction block. If OK, go to Step 3. If not OK, repair the open circuit to the ignition switch as required.
- (3) Turn the ignition switch to the Off position. Unplug the wire harness connector from the washer fluid level sensor. Install a jumper wire between the two cavities of the sensor wire harness connector. Turn the ignition switch to the On position. The low washer fluid warning lamp should light. Remove the jumper wire and the lamp should go off. If OK, replace the faulty washer fluid level sensor. If not OK, go to Step 4.
- (4) Turn the ignition switch to the Off position. Check for continuity between the ground circuit cavity of the washer fluid level sensor wire harness connector and a good ground. There should be continuity. If OK, go to Step 5. If not OK, repair the open circuit as required.
- (5) Disconnect and isolate the battery negative cable. Remove the instrument cluster as described in this group. The washer fluid level sensor wire harness connector is still unplugged. Check for continuity between the washer fluid level sense circuit cavity of the right instrument cluster wire harness connector (connector B) and a good ground. There should be no continuity. If OK, go to Step 6. If not OK, repair the short circuit as required.
- (6) Check for continuity between the washer fluid level sense circuit cavities of the right instrument cluster wire harness connector (connector B) and the washer fluid level sensor wire harness connector. There should be continuity. If OK, replace the faulty bulb. If not OK, repair the open circuit as required.

MALFUNCTION INDICATOR LAMP

The diagnosis found here addresses an inoperative malfunction indicator lamp condition. If the lamp comes on and stays on with the engine running, refer to Group 14 - Fuel Systems for diagnosis. For circuit descriptions and diagrams, refer to 8W-40 - Instrument Cluster in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

If the malfunction indicator lamp fails to light during the bulb test (about three seconds after the ignition switch is turned to the On position), replace the malfunction indicator lamp bulb with a known good unit. If the indicator lamp still fails to operate, diagnosis of the Powertrain Control Module (PCM) and the Chrysler Collision Detection (CCD) data bus should be performed with a DRB scan tool as described in the proper Diagnostic Procedures manual. For diagnosis of the malfunction indicator lamp and the instrument cluster circuitry, see Instrument Cluster in this group.

SEAT BELT REMINDER LAMP

The diagnosis found here addresses an inoperative seat belt reminder lamp condition. If the lamp comes on and flashes following its display function (for about seven seconds after the ignition switch is turned to the On position), refer to the diagnosis for the airbag indicator lamp in this group. For circuit descriptions and diagrams, refer to 8W-40 - Instrument Cluster in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

If the seat belt reminder lamp fails to light during its display function, replace the seat belt reminder lamp bulb with a known good unit. If the reminder lamp still fails to operate, see Instrument Cluster in this group for diagnosis of the seat belt reminder lamp and the instrument cluster circuitry. Refer to Group 8U - Chime/Buzzer Warning Systems for diagnosis of the driver seat belt switch and circuit.

TURN SIGNAL INDICATOR LAMP

The diagnosis found here addresses an inoperative turn signal indicator lamp condition. For any other turn signal problem, refer to Group 8J - Turn Signal and Hazard Warning Systems for diagnosis. If no

turn signal or hazard warning system problem is found, the following procedure will help locate a short or open in the indicator lamp circuit. For circuit descriptions and diagrams, refer to 8W-40 - Instrument Cluster and 8W-50 - Front Lighting in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable. Remove the instrument cluster bezel and the cluster as described in this group.
- (2) Connect the battery negative cable. Activate the hazard warning system by moving the hazard warning switch button to the On position. Check for battery voltage at the inoperative (right or left) turn signal circuit cavity of the cluster wire harness connector (connector A left, or connector B right). There should be a switching (on and off) battery voltage signal. If OK, replace the faulty (right or left) indicator lamp bulb. If not OK, repair the open circuit to the turn signal/hazard warning (multi-function) switch as required.

UPSHIFT INDICATOR LAMP

The diagnosis found here addresses an inoperative upshift indicator lamp condition. If lamp accuracy is suspect, diagnosis should be performed with a DRB scan tool as described in the proper Diagnostic Procedures manual. For circuit descriptions and diagrams, refer to 8W-40 - Instrument Cluster in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

If the upshift indicator lamp fails to light when a transmission upshift is obviously required, replace the upshift indicator lamp bulb with a known good unit. If the indicator lamp still fails to operate, diagnosis of the Powertrain Control Module (PCM) and the Chrysler Collision Detection (CCD) data bus

should be performed with a DRB scan tool as described in the proper Diagnostic Procedures manual. For diagnosis of the upshift indicator lamp and the instrument cluster circuitry, see Instrument Cluster in this group.

VOLTAGE WARNING LAMP

If the problem being diagnosed is related to voltage warning lamp accuracy, be certain to confirm proper charging system operation before considering voltage warning lamp diagnosis. Refer to Group 8C - Charging System for more information. Refer to Group 8W - Wiring Diagrams for circuit descriptions and diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

If the voltage warning lamp fails to light during the bulb test (about two seconds after the ignition switch is turned to the On position), replace the voltage warning lamp bulb with a known good unit. If the voltage warning lamp still fails to operate, diagnosis of the system voltage input circuit, the Chrysler Collision Detection (CCD) data bus, and/or the Powertrain Control Module (PCM) should be performed with a DRB scan tool as described in the proper Diagnostic Procedures manual. For diagnosis of the voltage warning lamp and the instrument cluster circuitry, see Instrument Cluster in this group.

REMOVAL AND INSTALLATION

STEERING COLUMN OPENING COVER

- (1) Disconnect and isolate the battery negative cable.
- (2) If the vehicle is so equipped, move the tilt steering column to the fully raised position.

(3) Remove the three screws that secure the steering column opening cover to the lower instrument panel reinforcement (Fig. 3).

Fig. 3 Steering Column Opening Cover Remove/ Install

- (4) Using a trim stick or another suitable wide flat-bladed tool, gently pry the upper edge of the steering column opening cover away from the instrument panel on each side of the steering column to release the two snap clip retainers that secure the cover to the instrument panel.
- (5) Remove the steering column opening cover from the vehicle.
- (6) Reverse the removal procedures to install. Tighten the mounting screws to 2.2 N·m (20 in. lbs.).

KNEE BLOCKER

WARNING: ON VEHICLES EQUIPPED WITH AIR-BAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIR-BAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the steering column opening cover as described in this group.
- (3) Remove the two screws that secure the knee blocker to the instrument panel (Fig. 4).
- (4) Pull the knee blocker away from the instrument panel far enough to disengage the two mounting tabs from the slots in the lower instrument panel reinforcement.
 - (5) Remove the knee blocker from the vehicle.

Fig. 4 Knee Blocker Remove/Install

(6) Reverse the removal procedures to install. Be certain that the mounting screws are located in the screw hole on each side of the steering column that is closest to the driver side front door of the vehicle (Fig. 5). Tighten the mounting screws to 2.2 N·m (20 in. lbs.).

Fig. 5 Knee Blocker Mounting Screw Location
INSTRUMENT PANEL CENTER BEZEL

- (1) Disconnect and isolate the battery negative cable.
- (2) Using a trim stick or another suitable wide flat-bladed tool, gently pry the instrument panel center bezel away from the instrument panel to release the six snap clip retainers (Fig. 6).

Fig. 6 Center Bezel Remove/Install

- (3) Remove the center bezel from the vehicle.
- (4) Reverse the removal procedures to install.

ACCESSORY SWITCH BEZEL

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the instrument panel center bezel as described in this group.
- (3) Remove the three screws that secure the accessory switch bezel to the instrument panel (Fig. 7).
- (4) Pull the accessory switch bezel out from the instrument panel far enough to unplug the wire harness connectors.
- (5) Remove the accessory switch bezel from the instrument panel.
- (6) Carefully pry the snap retainers at the top and bottom of the accessory switch (fog lamp switch, rear window defogger switch, rear wiper and washer switch) receptacles on the back of the accessory switch bezel with a small thin-bladed screwdriver and pull the switches out of the receptacles.

Fig. 7 Accessory Switch Bezel Remove/Install

(7) Reverse the removal procedures to install. Be certain that both of the switch snap retainers in the receptacles on the back of the accessory switch bezel are fully engaged. Tighten the mounting screws to $2.2~\mathrm{N\cdot m}$ (20 in. lbs.).

CIGAR LIGHTER RELAY

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the fuse access panel by unsnapping it from the right cowl side trim panel.
- (3) Remove the stamped nut that secures the right cowl side trim to the junction block stud (Fig. 8).
- (4) Remove the screw located above the fuse access opening that secures the right cowl side trim to the right cowl side inner panel.
- (5) Remove the screw that secures the right door sill trim and the right cowl side trim to the right door opening sill.
- (6) Remove the right cowl side trim panel from the vehicle.
- (7) Unplug the cigar lighter relay from the junction block.
- (8) Install the cigar lighter relay by aligning the relay terminals with the cavities in the junction block and pushing the relay firmly into place.
 - (9) Connect the battery negative cable.
 - (10) Test the relay operation.

Fig. 8 Right Cowl Side Trim Remove/Install

(11) Install the right cowl side trim and the fuse access panel.

CLUSTER BEZEL

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the knee blocker and the instrument panel center bezel, as described in this group.
- (3) Remove the headlamp switch knob and shaft from the headlamp switch. See Headlamp Switch in this group for the procedures.
- (4) Disengage the two ends of the steering column sight shield from each other at the connector located below the lower steering column shroud (Fig. 9).
- (5) If the vehicle is so equipped, set the tilt steering column in its lowest position.

Fig. 9 Cluster Bezel Remove/Install

- (6) Remove the four screws that secure the cluster bezel to the instrument panel behind the center bezel.
- (7) Using a trim stick or another suitable wide flat-bladed tool, gently pry around the perimeter of the cluster bezel to disengage the five snap clip retainers that secure the bezel to the instrument panel.
 - (8) Remove the cluster bezel from the vehicle.
- (9) Reverse the removal procedures to install. Tighten the mounting screws to 2.2 N·m (20 in. lbs.). Be certain to engage the two ends of the steering column sight shield connector with each other before reinstalling the knee blocker and steering column opening cover.

HEADLAMP SWITCH

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

WARNING: IF THE HEADLAMP SWITCH WAS ON, WAIT FIVE MINUTES TO ALLOW THE CERAMIC DIMMER RESISTOR TO COOL. IF THE CERAMIC DIMMER RESISTOR IS NOT ALLOWED TO COOL, IT CAN BURN YOUR FINGERS.

(1) Disconnect and isolate the battery negative cable.

- (2) Remove the knee blocker as described in this group.
- (3) Pull the headlamp switch control knob out to the On position stop.

WARNING: IF THE HEADLAMP SWITCH WAS ON, WAIT FIVE MINUTES TO ALLOW THE CERAMIC DIMMER RESISTOR TO COOL. IF THE CERAMIC DIMMER RESISTOR IS NOT ALLOWED TO COOL, IT CAN BURN YOUR FINGERS.

(4) Reach up through the outboard side of the steering column opening and depress the headlamp switch knob and shaft release button on the inboard side of the switch (Fig. 10).

Fig. 10 Headlamp Switch Knob and Shaft Remove/ Install - Typical

- (5) Pull the switch knob and shaft out of the headlamp switch.
- (6) Remove the spanner nut that secures the head-lamp switch to the instrument panel (Fig. 11).
- (7) Move the headlamp switch into the steering column opening far enough to access the wire harness connectors.
- (8) Unplug the two wire harness connectors from the headlamp switch.
- (9) Remove the headlamp switch from the instrument panel.
- (10) Reverse the removal procedures to install. Tighten the spanner nut to 2.7 N·m (24 in. lbs.).

INSTRUMENT CLUSTER

WARNING: ON VEHICLES EQUIPPED WITH AIR-BAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY

Fig. 11 Headlamp Switch Remove/Install

STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Remove the cluster bezel as described in this group.
- (2) Remove the four screws that secure the cluster to the instrument panel (Fig. 12).

Fig. 12 Instrument Cluster Remove/Install

(3) Pull the cluster rearward to disengage the two self-docking wire harness connectors.

NOTE: The instrument cluster has two self-docking wire harness connectors that will be automatically aligned with, and connected to the instrument panel wire harness when the cluster is installed in the instrument panel.

- (4) Remove the instrument cluster from the vehicle.
- (5) Reverse the removal procedures to install. Tighten the mounting screws to 2.2 N·m (20 in. lbs.).

CLUSTER COMPONENTS

CLUSTER LENS AND ODOMETER RESET KNOB BOOT

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the instrument cluster as described in this group.
- (3) Work around the perimeter of the cluster depressing the snap clips that secure the cluster lens to the cluster housing, and gently pull the lens away from the cluster (Fig. 13).
- (4) Remove the trip odometer reset knob boot by pulling it out of the lens.

(5) Reverse the removal procedures to install.

CLUSTER HOOD AND MASK

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the instrument cluster as described in this group.
- (3) Remove the cluster lens as described in this group.
- (4) Work around the perimeter of the cluster depressing the snap clips that secure the cluster hood and mask to the cluster housing, and gently pull the hood and mask away from the cluster (Fig. 13).
 - (5) Reverse the removal procedures to install.

Fig. 13 Instrument Cluster Components

CLUSTER REAR COVER

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the instrument cluster as described in this group.
- (3) Work around the perimeter of the cluster releasing the snap clips that secure the rear cover to the cluster housing, and gently pull the rear cover away from the cluster (Fig. 13).
 - (4) Reverse the removal procedures to install.

CLUSTER BULB

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Remove the instrument cluster as described in this group.
- (2) Remove the bulb and bulb holder from the circuit board on the rear of the cluster housing by turning the holder counterclockwise (Fig. 14).

Fig. 14 Cluster Bulb Locations

CAUTION: Always use the correct bulb size and type for replacement. An incorrect bulb size or type

may overheat and cause damage to the instrument cluster printed circuit and/or the gauges.

(3) Reverse the removal procedures to install.

INSTRUMENT PANEL TOP COVER

- (1) Disconnect and isolate the battery negative cable
- (2) Remove the instrument cluster bezel as described in this group.
- (3) Using a trim stick or another suitable wide flat-bladed tool, gently pry the rear edge (nearest the passenger compartment) of the instrument panel top cover up and away from the top of the instrument panel to release the seven rear snap clip retainers (Fig. 15).

Fig. 15 Instrument Panel Top Cover Remove/Install

- (4) Lift the rear edge of the top cover up and away from the instrument panel until all of the rear snap clip retainers (seven) on the top cover are disengaged from the receptacles in the top of the instrument panel.
- (5) Pull the top cover sharply rearwards to disengage the four front snap clip retainers from the receptacles near the base of the windshield.
 - (6) Remove the top cover from the vehicle.
- (7) Reverse the removal procedures to install. When installing the top cover, be certain to engage the four front (nearest the windshield) snap clip

retainers first, then engage the seven rear snap clip retainers.

GLOVE BOX

ROLL DOWN

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable.
 - (2) Open the glove box.
- (3) Locate the two rubber stop bumpers on the upper edge of the glove box opening (Fig. 16).

Fig. 16 Glove Box Stop Bumpers Remove/Install

- (4) Remove the two glove box stop bumpers by sliding them downward and out of the slots in the instrument panel upper glove box opening reinforcement.
- (5) Roll the glove box downward so that the stops on the glove box bin pass through the stop bumper slots in the instrument panel upper glove box opening reinforcement.
- (6) Reverse the roll down procedure to roll the glove box back up.

REMOVAL

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR

INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRE-CAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable
- (2) Remove the three screws that secure the glove box hinge to the instrument panel lower glove box opening reinforcement (Fig. 17).

Fig. 17 Glove Box Remove/Install

- (3) Release the glove box latch.
- (4) Remove the glove box from the instrument panel.
- (5) Reverse the removal procedures to install. When reinstalling the glove box, be certain that the stops on the glove box bin are oriented behind the glove box stop bumpers on the instrument panel upper glove box opening reinforcement.

GLOVE BOX LAMP AND SWITCH

- (1) Disconnect and isolate the battery negative cable.
- (2) Roll down the glove box as described in this group.
- (3) Reach inside and above the glove box opening to unlatch and unplug the wire harness connector from the glove box lamp and switch (Fig. 18).
- (4) From inside and above the glove box opening, squeeze the retaining tabs on the top and bottom of the glove box lamp and switch housing together and

Fig. 18 Glove Box Lamp and Switch Remove/Install push the unit out through the instrument panel mounting hole.

(5) Reverse the removal procedures to install.

GLOVE BOX COMPONENTS

The glove box hinge, bin, inner door and latch are serviced only as a complete unit. The glove box outer door and lock cylinder are serviced separately.

HINGE, BIN, INNER DOOR AND LATCH

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the glove box from the instrument panel as described in this group.
- (3) Remove the seven screws that secure the inner glove box door to the outer glove box door (Fig. 19).
- (4) Separate the inner glove box door assembly from the outer glove box door.
- (5) Reverse the removal procedures to install. Tighten the mounting screws to 2.2 N·m (20 in. lbs.).

OUTER DOOR

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY

Fig. 19 Glove Box Components Remove/Install

STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the glove box from the instrument panel as described in this group.
- (3) Remove the seven screws that secure the inner glove box door to the outer glove box door (Fig. 19).
- (4) Separate the outer glove box door from the inner glove box door assembly.
- (5) Reverse the removal procedures to install. Tighten the mounting screws to $2.2~{\rm N\cdot m}$ (20 in. lbs.).

LOCK CYLINDER

- (1) Insert the key into the glove box lock cylinder and turn the lock cylinder to the unlocked position.
 - (2) Open the glove box.
- (3) With the key still in the lock cylinder, insert a small pin punch or a stiff wire into the lock cylinder release hole (Fig. 20) and depress the lock cylinder retaining tumbler.
- (4) While holding the retaining tumbler depressed, rotate the key in the lock cylinder clockwise and press outward on the back of the lock cylinder from the inside of the glove box door until the lock cylinder comes out of the glove box latch lock cylinder bore.
- (5) To install the lock cylinder, insert the key in the cylinder and align the lock cylinder tumblers with the ramp in the glove box latch lock cylinder bore. The ramp is located at about the 7 o'clock posi-

80abac66

Fig. 20 Glove Box Lock Cylinder Remove/Install

tion. Push the lock cylinder firmly into the lock cylinder bore while rotating the key and cylinder counterclockwise to the 6 o'clock position, where the lock cylinder retaining tumbler will snap back into place.

GLOVE BOX LATCH STRIKER

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the passenger side airbag module. Refer to Group 8M Passive Restraint Systems for the procedures.
- (3) Remove the two screws that secure the glove box latch striker to the instrument panel on the top of the upper glove box opening reinforcement (Fig. 21).

Fig. 21 Glove Box Latch Striker Remove/Install

- (4) Remove the latch striker from the glove box opening.
- (5) Reverse the removal procedures to install. Tighten the mounting screws to 2.2 N·m (20 in. lbs.).

INSTRUMENT PANEL END CAP

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

DRIVER SIDE

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the knee blocker as described in this group.
- (3) Remove the instrument panel top cover as described in this group.
- (4) Remove the five screws that secure the end cap to the instrument panel (Fig. 22).

Fig. 22 Instrument Panel End Cap Remove/Install

- (5) Remove the end cap from the instrument panel.
- (6) Reverse the removal procedures to install. Tighten the mounting screws to 2.2 N⋅m (20 in. lbs.).

PASSENGER SIDE

- (1) Disconnect and isolate the battery negative cable.
- (2) Roll down the glove box as described in this group.
- (3) Remove the instrument panel top cover as described in this group.

- (4) Remove the passenger side airbag module. Refer to Group 8M Passive Restraint Systems for the procedures.
- (5) Remove the six screws that secure the end cap to the instrument panel (Fig. 22).
- (6) Remove the end cap from the instrument panel.
- (7) Reverse the removal procedures to install. Tighten the mounting screws to 2.2 N·m (20 in. lbs.).

CENTER SUPPORT BRACKET

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the instrument panel center bezel as described in this group.
- (3) Remove the floor console from the floor pan transmission tunnel. Refer to Group 23 Body for the procedures.
- (4) Pull the carpet back from the front of the floor pan transmission tunnel far enough to access the center support bracket mounting nuts.
- (5) Remove the two nuts that secure the center support bracket to the studs on the lower instrument panel (Fig. 23).

Fig. 23 Center Support Bracket Remove/Install

(6) Remove the two nuts that secure the center support bracket to the studs on the floor pan transmission tunnel.

- (7) Remove the center support bracket from the vehicle.
- (8) Reverse the removal procedures to install. Tighten the mounting nuts to 28 N·m (250 in. lbs.).

JUNCTION BLOCK

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the fuse access panel by unsnapping it from the right cowl side trim panel.
- (3) Remove the stamped nut that secures the right cowl side trim to the junction block stud (Fig. 24).

Fig. 24 Right Cowl Side Trim Remove/Install

(4) Remove the screw located above the fuse access opening that secures the right cowl side trim to the right cowl side inner panel.

- (5) Remove the screw that secures the right door sill trim and the right cowl side trim to the right door opening sill.
- (6) Remove the right cowl side trim panel from the vehicle.
- (7) Unplug all of the wire harness connectors from the junction block cavities.
- (8) Remove the three nuts that secure the junction block to the studs on the right cowl side inner panel (Fig. 25).

Fig. 25 Junction Block Remove/Install

(9) Remove the junction block from the vehicle.

(10) Reverse the removal procedures to install. Tighten the mounting nuts to 2.7 N·m (24 in. lbs.).

INSTRUMENT PANEL ASSEMBLY

- (1) Place the front wheels in the straight-ahead position.
- (2) Disconnect and isolate the battery negative cable.
- (3) Remove the left and right cowl side inner trim panels. Refer to Group 23 Body for the procedures.
- (4) Remove the steering column opening cover and the knee blocker as described in this group.

- (5) Remove the instrument panel center bezel, the cluster bezel and the instrument panel top cover as described in this group.
- (6) Remove the center support bracket as described in this group.
- (7) Remove the steering column. Refer to Group 19Steering for the procedures.
- (8) Remove the screws from the centers of the instrument panel-to-body and instrument panel-to-headlamp and dash wire harness connectors near the left cowl side inner panel and unplug the connectors.
- (9) Remove the screw from the center of the instrument panel-to-floor wire harness connector near the floor pan transmission tunnel under the instrument panel and unplug the connector.
- (10) Unplug the two wire harness connectors located near the instrument panel-to-floor wire harness connector at the floor pan transmission tunnel under the instrument panel.
- (11) Roll down the glove box as described in this group.
- (12) Reach through the inboard side of the instrument panel glove box opening to unplug the vacuum harness connector between the heater-A/C control and the heater-A/C housing halves of the vacuum harness.
- (13) Reach under the right end of the instrument panel to unplug the coaxial cable connector between the radio and antenna halves of the antenna coaxial cable. On Left-Hand Drive models only, also disengage the retainer on the radio half of the coaxial cable from the heater-A/C housing kick cover.
- (14) Remove the temperature control cable and blend-air door crank arm from the heater-A/C housing as a unit. Refer to Group 24 Heating and Air Conditioning for the temperature control cable service procedures.
- (15) Loosen the right and left instrument panel cowl side roll down screws about 6 mm (0.25 inch) (Fig. 26).
- (16) Remove the four screws and two nuts that secure the top of the instrument panel to the top of the dash panel near the base of the windshield.
- (17) With the aid of an assistant, lift the top of the instrument panel assembly off of the two dash panel studs. Then pull the lower instrument panel rearward to clear the cowl side roll down screws.
- (18) Remove the instrument panel assembly from the vehicle.
- (19) Reverse the removal procedures to install. Tighten the mounting hardware as follows:
- Instrument panel top to dash panel screws $7 \cdot N \cdot m$ (60 in. lbs.)
- \bullet Instrument panel top to dash panel nuts 7 N·m (60 in. lbs.)

80a9f12b

Fig. 26 Instrument Panel Assembly Remove/Install

- \bullet Instrument panel cowl side roll down screws 28 $N{\cdot}m$ (250 in. lbs.)
- \bullet Wire harness connector screws 4 N·m (35 in. lbs.).

XJ ------ AUDIO SYSTEMS 8F - 1

AUDIO SYSTEMS

CONTENTS

pag	је	р	age
	1	RADIO FREQUENCY INTERFERENCE	. 7
DESCRIPTION AND OPERATION		RADIO	. 4
ANTENNA	2	SPEAKER	. 5
IGNITION-OFF DRAW FUSE	1	REMOVAL AND INSTALLATION	
RADIO NOISE SUPPRESSION	2	AMPLIFIER	. 8
RADIO	1	ANTENNA	10
SPEAKER	1	RADIO	. 7
DIAGNOSIS AND TESTING		SOUND BAR	10
ΔΝΙΤΕΝΝΙΔ	6	SDEVKED	Ω

GENERAL INFORMATION

INTRODUCTION

Following are general descriptions of the major components used in both the standard and optional factory-installed audio systems. Refer to 8W-47 Audio System in Group 8W - Wiring Diagrams for complete circuit descriptions and diagrams.

NOTE: This group covers both Left-Hand Drive (LHD) and Right-Hand Drive (RHD) versions of this model. Whenever required and feasible, the RHD versions of affected vehicle components have been constructed as mirror-image of the LHD versions. While most of the illustrations used in this group represent only the LHD version, the diagnostic and service procedures outlined can generally be applied to either version. Exceptions to this rule have been clearly identified as LHD or RHD, if a special illustration or procedure is required.

DESCRIPTION AND OPERATION

RADIO

Available factory-installed radio receivers for this model include an AM/FM (RAL sales code), an AM/FM/cassette (RAS sales code), and an AM/FM/CD/cassette/3-band graphic equalizer (RAZ sales code). All factory-installed radio receivers are stereo Electronically Tuned Radios (ETR) and include an electronic digital clock function.

For more information on radio features, setting procedures, and control functions refer to the owner's manual in the vehicle glove box.

IGNITION-OFF DRAW FUSE

All vehicles are equipped with an Ignition-Off Draw (IOD) fuse that is removed when the vehicle is shipped from the factory. This fuse feeds various accessories that require battery current when the ignition switch is in the Off position, including the clock and radio station preset memory functions. The fuse is removed to prevent battery discharge during vehicle storage.

When removing or installing the IOD fuse, it is important that the ignition switch be in the Off position. Failure to place the ignition switch in the Off position can cause the radio display to become scrambled when the IOD fuse is removed and replaced. Removing and replacing the IOD fuse again, with the ignition switch in the Off position, will correct the scrambled display condition.

The IOD fuse should be checked if the radio station preset memory or clock functions are erratic or inoperative. The IOD fuse is located in the Power Distribution Center (PDC). Refer to the PDC label for IOD fuse identification and location.

SPEAKER

The standard equipment speaker system includes two 13.3 centimeter (5.25 inch) diameter full-range speakers. Each speaker is mounted to the front lower inner door panel behind the door trim panel.

The sound bar option adds two 13.3 centimeter (5.25 inch) diameter full-range speakers to the standard speaker system, for a total of four speakers. Each of the additional speakers is mounted behind a grille located on the outboard ends of the sound bar, which is located on the headliner just forward of the upper liftgate opening reinforcement near the rear of the vehicle cargo area.

DESCRIPTION AND OPERATION (Continued)

The premium speaker option upgrades all of the speakers to Infinity models, and includes a 100 watt Infinity amplifier. Each front door has two separate Infinity speakers: a woofer mounted low in the door, and a tweeter mounted behind the door flag trim panel. Infinity coaxial speakers are mounted in the sound bar. The Infinity amplifier is mounted to the floor pan under the left rear seat cushion.

ANTENNA

All models use a fixed-length stainless steel rodtype antenna mast, installed at the right front fender of the vehicle. The antenna mast is connected to the center wire of the coaxial antenna cable, and is not grounded to any part of the vehicle.

To eliminate static, the antenna base must have a good ground. The coaxial antenna cable shield (the outer wire mesh of the cable) is grounded to the antenna base and the radio chassis.

The antenna coaxial cable has an additional disconnect, located near the right cowl side panel behind the instrument panel. This additional disconnect allows the instrument panel assembly to be removed and installed without removing the radio.

The factory-installed Electronically Tuned Radios (ETRs) automatically compensate for radio antenna trim. Therefore, no antenna trimmer adjustment is required or possible when replacing the receiver or the antenna.

RADIO NOISE SUPPRESSION

Radio Frequency Interference (RFI) and Electro-Magnetic Interference (EMI) noise suppression is accomplished primarily through circuitry internal to the radio receivers. These internal suppression devices are only serviced as part of the radio receiver.

External suppression devices that are serviced, and should be checked in the case of RFI or EMI noise complaints, include the following:

- Radio antenna base ground
- Radio chassis ground wire, strap, or bracket
- Engine-to-body ground strap (if the vehicle is so equipped)
- Cab-to-bed ground strap (if the vehicle is so equipped)
- Heater core ground strap (if the vehicle is so equipped)
 - Resistor-type spark plugs
- Radio suppression-type secondary ignition wiring.

In addition, if the source of RFI or EMI noise is identified as a component on the vehicle (i.e., generator, blower motor, etc.), the ground path for that component should be checked. If excessive resistance is found in that circuit, repair that circuit as required before considering any component replacement.

If the source of the noise is identified as two-way mobile radio or telephone equipment, check the equipment installation for the following:

- Power connections should be made directly to the battery, and fused as closely to the battery as possible.
- The antenna should be mounted on the roof or toward the rear of the vehicle. Remember that magnetic antenna mounts on the roof panel can adversely affect the operation of an overhead console compass, if the vehicle is so equipped.
- The antenna cable should be fully shielded coaxial cable, should be as short as is practical, and should be routed away from the factory-installed vehicle wire harnesses whenever possible.
- The antenna and cable must be carefully matched to ensure a low Standing Wave Ratio (SWR).

Fleet vehicles are available with an extra-cost RFI-suppressed Powertrain Control Module (PCM). This unit reduces interference generated by the PCM on some radio frequencies used in two-way radio communications. However, this unit will not resolve complaints of RFI in the commercial AM or FM radio frequency ranges.

DIAGNOSIS AND TESTING

AUDIO SYSTEM

AUDIO SYSTEM DIAGNOSIS

CONDITION	POSSIBLE CAUSE	CORRECTION
NO AUDIO.	 Fuse faulty. Radio connector faulty. Wiring faulty. Ground faulty. Radio faulty. Speakers faulty. 	 Check radio fuses in fuseblock module. Replace fuses, if required. Check for loose or corroded radio connector. Repair, if required. Check for battery voltage at radio connector. Repair wiring, if required. Check for continuity between radio chassis and a known good ground. There should be continuity. Repair ground, if required. Exchange or replace radio, if required. See speaker diagnosis, in this group.
NO DISPLAY.	 Fuse faulty. Radio connector faulty. Wiring faulty. Ground faulty. Radio faulty. 	1. Check radio fuses in fuseblock module. Replace fuses, if required. 2. Check for loose or corroded radio connector. Repair, if required. 3. Check for battery voltage at radio connector. Repair wiring, if required. 4. Check for continuity between radio chassis and a known good ground. There should be continuity. Repair ground, if required. 5. Exchange or replace radio, if required.
CLOCK WILL NOT KEEP SET TIME.	 Fuse faulty. Radio connector faulty. Wiring faulty. Ground faulty. Radio faulty. 	1. Check ignition-off draw fuse. Replace fuse, if required. 2. Check for loose or corroded radio connector. Repair, if required. 3. Check for battery voltage at radio connector. Repair wiring, if required. 4. Check for continuity between radio chassis and a known good ground. There should be continuity. Repair ground, if required. 5. Exchange or replace radio, if required.
POOR RADIO RECEPTION.	Antenna faulty. Ground faulty. Radio faulty.	 See antenna diagnosis, in this group. Repair or replace antenna, if required. Check for continuity between radio chassis and a known good ground. There should be continuity. Repair ground, if required Exchange or replace radio, if required.

CONDITION	POSSIBLE CAUSE	CORRECTION
NO AUDIO.	 Fuse faulty. Radio connector faulty. Wiring faulty. Ground faulty. Radio faulty. Speakers faulty. 	 Check radio fuses in fuseblock module. Replace fuses, if required. Check for loose or corroded radio connector. Repair, if required. Check for battery voltage at radio connector. Repair wiring, if required. Check for continuity between radio chassis and a known good ground. There should be continuity. Repair ground, if required. Exchange or replace radio, if required. See speaker diagnosis, in this group.
NO/POOR TAPE OPERATION.	 Faulty tape. Foreign objects behind tape door. Dirty cassette tape head. Faulty tape deck. 	Insert known good tape and test operation. Remove foreign objects and test operation. Clean head with Mopar Cassette Head Cleaner. Exchange or replace radio, if required.
NO COMPACT DISC OPERATION	 Faulty CD. Foreign material on CD. Condensation on CD or optics. Faulty CD player. 	Insert known good CD and test operation. Clean CD and test operation. Allow temperature of vehicle interior to stabilize and test operation. Exchange or replace radio, if required.

RADIO

For circuit descriptions and diagrams, refer to 8W-47 - Audio System in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

CAUTION: The speaker output of the radio is a "floating ground" system. Do not allow any speaker lead to short to ground, as damage to the radio may result.

- (1) Check the fuse(s) in the junction block and the Power Distribution Center (PDC). If OK, go to Step 2. If not OK, repair the shorted circuit or component as required and replace the faulty fuse(s).
- (2) Check for battery voltage at the fuse in the PDC. If OK, go to Step 3. If not OK, repair the open circuit to the battery as required.
- (3) Turn the ignition switch to the On position. Check for battery voltage at the fuse in the junction block. If OK, go to Step 4. If not OK, repair the open circuit to the ignition switch as required.
- (4) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Remove the radio as described in this group, but do not unplug the radio wire harness connectors. Check for continuity between the radio chassis and a good ground. There should be continuity. If OK, go to Step 5. If not OK, repair the open radio chassis ground circuit as required.
- (5) Connect the battery negative cable. Turn the ignition switch to the On position. Check for battery voltage at the fused ignition switch output circuit

cavity of the left (gray) radio wire harness connector. If OK, go to Step 6. If not OK, repair the open circuit as required.

(6) Turn the ignition switch to the Off position. Check for battery voltage at the fused B(+) circuit cavity of the left (gray) radio wire harness connector. If OK, replace the faulty radio. If not OK, repair the open circuit to the Ignition-Off Draw (IOD) fuse as required.

SPEAKER

For circuit descriptions and diagrams, refer to 8W-47 - Audio System in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

CAUTION: The speaker output of the radio is a "floating ground" system. Do not allow any speaker lead to short to ground, as damage to the radio may result.

- (1) Turn the ignition switch to the On position. Turn the radio on. Adjust the balance and fader controls to check the performance of each individual speaker. Note the speaker locations that are not performing correctly. Go to Step 2.
- (2) Turn the radio off. Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Remove the radio as described in this group. If the vehicle is equipped with the Infinity speaker package, also unplug the wire harness connectors at the amplifier. Check both the speaker feed (+) circuit and return (-) circuit cavities for the inoperative speaker location(s) at the radio wire harness connectors for continuity to ground. In each case, there should be no continuity. If OK, go to Step 3. If not OK, repair the shorted speaker circuit(s) as required.
- (3) If the vehicle is equipped with the Infinity speaker package, go to Step 6. If the vehicle is equipped with the standard speaker system, check the resistance between the speaker feed (+) circuit and return (-) circuit cavities of the radio wire harness connectors for the inoperative speaker location(s). The meter should read between 2 and 12 ohms (speaker resistance). If OK, go to Step 4. If not OK, go to Step 5.

- (4) Install a known good radio. Connect the battery negative cable. Turn the ignition switch to the On position. Turn on the radio and test the speaker operation. If OK, replace the faulty radio. If not OK, turn the radio off, turn the ignition switch to the Off position, disconnect and isolate the battery negative cable, remove the test radio, and go to Step 5.
- (5) Unplug the speaker wire harness connector at the inoperative speaker. Check for continuity between the speaker feed (+) circuit cavities of the radio wire harness connector and the speaker wire harness connector. Repeat the check between the speaker return (–) circuit cavities of the radio wire harness connector and the speaker wire harness connector. In each case, there should be continuity. If OK, replace the faulty speaker. If not OK, repair the open circuit(s) as required.
- (6) For each inoperative speaker location, check for continuity between the speaker feed (+) circuit cavities of the radio wire harness connectors and the amplifier wire harness connectors. Repeat the check for each inoperative speaker location between the speaker return (–) circuit cavities of the radio wire harness connectors and the amplifier wire harness connectors. In each case, there should be continuity. If OK, go to Step 7. If not OK, repair the open circuit as required.
- (7) Check for continuity between the two ground circuit cavities of the amplifier wire harness connector and a good ground. There should be continuity. If OK, go to Step 8. If not OK, repair the open circuit(s) as required.
- (8) Check the amplifier fuse in the junction block. If OK, go to Step 9. If not OK, repair the shorted circuit or component as required and replace the faulty fuse.
- (9) Check for battery voltage at the amplifier fuse in the junction block. If OK, go to Step 10. If not OK, repair the open circuit to the PDC as required.
- (10) Install the radio. Connect the battery negative cable. Check for battery voltage at the two fused B(+) circuit cavities of the amplifier wire harness connector. If OK, go to Step 11. If not OK, repair the open circuit to the fuse in the junction block as required.
- (11) Turn the ignition switch to the On position. Turn the radio on. Check for battery voltage at the radio 12 volt output circuit cavity of the amplifier wire harness connector. If OK, go to Step 12. If not OK, repair the open circuit to the radio as required.
- (12) Turn the radio off. Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. For each inoperative speaker location, check both the amplified feed (+) circuit and the amplified return (-) circuit cavities of the amplifier wire harness connectors for continuity to ground. In each case there should be no continuity. If OK, go to

Step 13. If not OK, repair the short circuit as required.

(13) For each inoperative speaker location, check the resistance between the amplified feed (+) circuit and the amplified return (–) circuit cavities of the amplifier wire harness connectors. The meter should read between 2 and 12 ohms (speaker resistance). If OK, replace the faulty amplifier. If not OK, go to Step 14.

(14) Unplug the speaker wire harness connector at the inoperative speaker. Check for continuity between the amplified feed (+) circuit cavities of the speaker wire harness connector and the amplifier wire harness connector. Repeat the check between the amplified return (-) circuit cavities of the speaker wire harness connector and the amplifier wire harness connector. In each case there should be continuity. If OK, replace the faulty speaker. If not OK, repair the open circuit as required.

ANTENNA

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

The following four tests are used to diagnose the antenna with an ohmmeter:

- Test 1 Mast to ground test
- **Test 2** Tip-of-mast to tip-of-conductor test
- Test 3 Body ground to battery ground test
- Test 4 Body ground to coaxial shield test.

The ohmmeter test lead connections for each test are shown in Antenna Tests (Fig. 1).

NOTE: This model has a two-piece antenna coaxial cable. Tests 2 and 4 must be conducted in two steps to isolate a coaxial cable problem; from the coaxial cable connection under the right end of the instrument panel near the right cowl side panel to the antenna base, and then from the coaxial cable connection to the radio chassis connection.

TEST 1

Test 1 determines if the antenna mast is insulated from the base. Proceed as follows:

(1) Unplug the antenna coaxial cable connector from the radio chassis and isolate.

Fig. 1 Antenna Tests

- (2) Connect one ohmmeter test lead to the tip of the antenna mast. Connect the other test lead to the antenna base. Check for continuity.
- (3) There should be no continuity. If continuity is found, replace the faulty or damaged antenna base and cable assembly.

TEST 2

Test 2 checks the antenna for an open circuit as follows:

- (1) Unplug the antenna coaxial cable connector from the radio chassis.
- (2) Connect one ohmmeter test lead to the tip of the antenna mast. Connect the other test lead to the center pin of the antenna coaxial cable connector.
- (3) Continuity should exist (the ohmmeter should only register a fraction of an ohm). High or infinite resistance indicates damage to the base and cable assembly. Replace the faulty base and cable, if required.

TEST 3

Test 3 checks the condition of the vehicle body ground connection. This test should be performed with the battery positive cable removed from the battery. Disconnect both battery cables, the negative cable first. Reconnect the battery negative cable and perform the test as follows:

- (1) Connect one ohmmeter test lead to the vehicle fender. Connect the other test lead to the battery negative post.
 - (2) The resistance should be less than one ohm.
- (3) If the resistance is more than one ohm, check the braided ground strap connected to the engine and

the vehicle body for being loose, corroded, or damaged. Repair the ground strap connection, if required.

TEST 4

XJ -

Test 4 checks the condition of the ground between the antenna base and the vehicle body as follows:

- (1) Connect one ohmmeter test lead to the vehicle fender. Connect the other test lead to the outer crimp on the antenna coaxial cable connector.
 - (2) The resistance should be less then one ohm.
- (3) If the resistance is more then one ohm, clean and/or tighten the antenna base to fender mounting hardware.

RADIO FREQUENCY INTERFERENCE

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

Inspect the ground connections at the following:

- Blower motor
- Electric fuel pump
- Generator
- Ignition module
- Wiper motor
- Antenna coaxial ground
- Radio ground
- Body-to-engine braided ground strap (if the vehicle is so equipped).

Clean, tighten, or repair the connections as required.

Also inspect the following secondary ignition system components, as described in Group 8D - Ignition Systems:

- Spark plug wire routing and condition
- Distributor cap and rotor
- Ignition coil
- · Spark plugs.

Reroute the spark plug wires or replace the faulty components as required.

REMOVAL AND INSTALLATION

RADIO

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR

INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRE-CAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable
- (2) Using a trim stick or another suitable wide flat-bladed tool, gently pry the instrument panel center bezel away from the instrument panel to release the six snap clip retainers (Fig. 2).

80ab87bc

Fig. 2 Center Bezel Remove/Install

- (3) Remove the center bezel from the vehicle.
- (4) Remove the two screws from the front of the radio that secure it to the instrument panel (Fig. 3).

Fig. 3 Radio Remove/Install

(5) Pull the radio out from the instrument panel far enough to unplug the wire harness connectors and the antenna coaxial cable connector (Fig. 4).

Fig. 4 Radio Connections - Typical

- (6) Remove the radio from the vehicle.
- (7) Reverse the removal procedures to install. Tighten the radio mounting screws to 5 N·m (45 in. lbs.).

AMPLIFIER

- (1) Disconnect and isolate the battery negative cable.
- (2) Disengage the rear seat cushion latch by pulling upward on the release strap. Tilt the seat cushion forward.
- (3) Lift the carpeting on the rear floor pan under the left end of the seat cushion as required to access the amplifier.
- (4) Unplug the two wire harness connectors from the amplifier (Fig. 5).

Fig. 5 Amplifier Remove/Install

(5) Remove the four screws that secure the amplifier to the rear floor pan.

- (6) Remove the amplifier from the vehicle.
- (7) Reverse the removal procedures to install. Tighten the amplifier mounting screws to 2.8 N·m (25 in. lbs.).

SPEAKER

FRONT DOOR

LOWER

- (1) Disconnect and isolate the battery negative cable.
- (2) If the vehicle is so equipped, remove the manual window regulator crank handle with a removal tool (Fig. 6).

Fig. 6 Window Regulator Crank Handle Remove - Typical

(3) Remove the screws that secure the door trim panel to the inner door panel (Fig. 7) or (Fig. 8).

Fig. 7 Front Door Trim Panel Remove/Install - Manual Window

(4) Using a trim stick or another suitable wide flat-bladed tool, gently pry the trim panel away from

Fig. 8 Front Door Trim Panel Remove/Install - Power Window

the door around the perimeter to release the trim panel retainers.

NOTE: To aid in the removal of the trim panel, start at the bottom of the panel.

- (5) Lift the door trim panel upwards and away from the door to disengage the top of the panel from the inner belt weatherstrip.
- (6) Pull the door trim panel away from the inner door far enough to access the inside door latch release and lock linkage rods near the back of the inside door remote control.
- (7) Unsnap the plastic retainer clips from the inside door remote control ends of the latch release and lock linkage rods, and remove the rod ends from the inside door remote control.
- (8) If the vehicle is so equipped, unplug the wire harness connectors from the door power switch module or, on the driver side only, the power mirror switch.
- (9) Remove the front door trim panel from the vehicle.
- (10) Remove the two screws that secure the speaker to the lower front corner of the inner door panel (Fig. 9).
- (11) Pull the speaker away from the inner door panel far enough to unplug the speaker wire harness connector.
 - (12) Remove the speaker from the door.
 - (13) Reverse the removal procedures to install.

UPPER

- (1) Remove the front door trim panel as described under Lower Front Door Speaker, in this group.
- (2) Remove the one screw that secures the door flag trim to the inner door panel (Fig. 10).

Fig. 9 Front Door Lower Speaker Remove/Install

Fig. 10 Front Door Flag Trim Panel Remove/Install

- (3) Using a trim stick or another suitable wide flat-bladed tool, gently pry the door flag trim away from the inner door to release the trim panel retainer.
- (4) Unplug the upper speaker wire harness connector.
- (5) Unsnap the speaker from the retainers molded into the back side of the door flag trim panel.
 - (6) Reverse the removal procedures to install.

SOUND BAR

- (1) Remove the sound bar from the vehicle as described in this group.
- (2) From the inside of the sound bar, straighten the tabs that secure the speaker grille to the sound bar (Fig. 11).
- (3) From the outside of the sound bar, remove the speaker grille.

Fig. 11 Sound Bar Speaker Remove/Install - Typical

- (4) Carefully drill out the rivets that secure the speaker to the sound bar.
 - (5) Remove the speaker from the sound bar.
- (6) Reverse the removal procedures to install. Use new rivets installed from the inside of the sound bar to secure the speaker.

SOUND BAR

- (1) Disconnect and isolate the battery negative cable.
- (2) If the vehicle is so equipped, remove the cargo compartment-mounted spare tire.
- (3) Remove the liftgate opening upper garnish moulding and the liftgate pillar trim panels. Refer to Group 23 Body for the procedures.
- (4) Remove the lens from the cargo lamp housing (Fig. 12).
- (5) If the vehicle is so equipped, remove the rear roof side rail-mounted assist handles.
- (6) Remove the screws that secure the rear roof side rail garnish moldings.
- (7) Remove the left and right rear roof side rail garnish moldings.
- (8) Remove and discard the two push nut retainers from the studs inside the front and rear of the cargo lamp housing.
- (9) Lower the sound bar far enough to unplug the wire harness connectors from both speakers and the cargo lamp.
- (10) Remove the adhesive tape that secures the wire harness to the inside of the sound bar.
 - (11) Remove the sound bar from the vehicle.

Fig. 12 Sound Bar Remove/Install

(12) Reverse the removal procedures to install. Use two new push nuts on the studs in the cargo lamp housing when reinstalling the sound bar.

ANTENNA

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the right front fender inner splash shield. Refer to Group 23 Body for the procedures.
- (3) Reach under the right end of the instrument panel to unplug the coaxial cable connector (Fig. 13). Unplug the connector by pulling it apart while twisting the metal connector halves. Do not pull on the cable.
- (4) Unscrew the antenna mast from the antenna body (Fig. 14).
- (5) Remove the antenna cap nut and adapter using an antenna nut wrench (Special Tool C-4816) (Fig. 15).
- (6) Lower the antenna body and cable assembly through the fender far enough to access the antenna body by reaching up into the rear of the right front

REMOVAL AND INSTALLATION (Continued)

Fig. 13 Antenna Cable Routing

Fig. 14 Antenna Mast Remove/Install - Typical

fender wheel opening between the right cowl side outer panel and the fender (Fig. 16).

- (7) Disengage the coaxial cable grommet from the hole in the right cowl side outer panel.
- (8) Pull the coaxial cable out through the right cowl side outer panel.
- (9) Remove the antenna body and cable from the vehicle.

Fig. 15 Antenna Cap Nut and Adapter Remove/ Install - Typical

Fig. 16 Antenna Mounting

(10) Reverse the removal procedures to install. Tighten the antenna cap nut to 8 N·m (70 in. lbs.). Tighten the antenna mast to 3.3 N·m (30 in. lbs.).

XJ ------ HORN SYSTEMS 8G - 1

HORN SYSTEMS

CONTENTS

page	page
	HORN SWITCH
HORN RELAY 1 HORN SWITCH 1 HORN 1	HORN RELAY
DIAGNOSIS AND TESTING	

GENERAL INFORMATION

INTRODUCTION

Following are general descriptions of the major components in the factory-installed horn systems. Refer to 8W-41 - Horns/Cigar Lighter in Group 8W - Wiring Diagrams for complete circuit descriptions and diagrams.

NOTE: This group covers both Left-Hand Drive (LHD) and Right-Hand Drive (RHD) versions of this model. Whenever required and feasible, the RHD versions of affected vehicle components have been constructed as mirror-image of the LHD versions. While most of the illustrations used in this group represent only the LHD version, the diagnostic and service procedures outlined can generally be applied to either version. Exceptions to this rule have been clearly identified as LHD or RHD, if a special illustration or procedure is required.

DESCRIPTION AND OPERATION

HORN RELAY

The horn relay is a International Standards Organization (ISO) relay. The relay is a electromechanical device that switches battery current to the horn when the horn switch grounds the relay coil. See the Diagnosis and Testing section of this group for more information on the operation of the horn relay.

The horn relay is located in the junction block, on the right cowl side panel below the instrument panel in the passenger compartment. If a problem is encountered with a continuously sounding horn, it can usually be quickly resolved by removing the horn relay from the junction block until further diagnosis is completed.

The horn relay cannot be repaired and, if faulty or damaged, it must be replaced.

HORN SWITCH

A center-blow, resistive membrane type horn switch is installed on the back side of the driver side airbag module trim cover in the center of the steering wheel. When the center area of the airbag trim cover is depressed, the horn switch completes a circuit to ground for the coil side of the horn relay. The steering wheel and steering column must be properly grounded for the horn switch to function.

The horn switch is only serviced as a part of the airbag module trim cover. If the horn switch should fail, or if the airbag is deployed, the airbag module trim cover and horn switch unit must be replaced.

HORN

Dual-note, electromagnetic diaphragm-type horns are standard equipment. The low-note horn is mounted and grounded to the left radiator closure panel brace, behind the front bumper. The high-note horn is connected in parallel with the low-note horn. The high-note horn is mounted and grounded to the right radiator closure panel brace, behind the front bumper. Both horns receive battery feed through the closed contacts of the horn relay.

The horns cannot be repaired or adjusted and, if faulty or damaged, they must be replaced.

NOTE: A cadmium-plated screw is used to mount the horns. Do not substitute other types of screws, as they may become corroded and cause a loss of horn ground.

DIAGNOSIS AND TESTING

HORN RELAY

For circuit descriptions and diagrams, refer to 8W-41 - Horns/Cigar Lighter in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

RELAY TEST

The horn relay is located in the junction block. The junction block is attached to the right cowl side inner panel, below the instrument panel and behind the right cowl side trim panel.

Remove the horn relay from the junction block as described in this group to perform the following tests:

- (1) A relay in the de-energized position should have continuity between terminals 87A and 30, and no continuity between terminals 87 and 30. If OK, go to Step 2. If not OK, replace the faulty relay.
- (2) Resistance between terminals 85 and 86 (electromagnet) should be 75 \pm 5 ohms. If OK, go to Step 3. If not OK, replace the faulty relay.
- (3) Connect a battery to terminals 85 and 86. There should now be continuity between terminals 30 and 87, and no continuity between terminals 87A and 30. If OK, see the Relay Circuit Test in this group. If not OK, replace the faulty relay.

	TERMINAL LEGEND	
NUMBER	IDENTIFICATION	
30	COMMON FEED	
85	COIL GROUND	
86	COIL BATTERY	
87	NORMALLY OPEN	
87A	NORMALLY CLOSED	

Horn Relay

RELAY CIRCUIT TEST

- (1) The relay common feed terminal cavity (30) is connected to battery voltage and should be hot at all times. If OK, go to Step 2. If not OK, repair the open circuit to the fuse in the junction block as required.
- (2) The relay normally closed terminal (87A) is connected to terminal 30 in the de-energized position, but is not used for this application. Go to Step 3.
- (3) The relay normally open terminal (87) is connected to the common feed terminal (30) in the energized position. This terminal supplies battery voltage to the horn(s). There should be continuity between the cavity for relay terminal 87 and the relay output circuit cavity of each horn wire harness connector at all times. If OK, go to Step 4. If not OK, repair the open circuit to the horn(s) as required.
- (4) The coil battery terminal (86) is connected to the electromagnet in the relay. It is connected to battery voltage and should be hot at all times. Check for battery voltage at the cavity for relay terminal 86. If OK, go to Step 5. If not OK, repair the open circuit to the fuse in the junction block as required.
- (5) The coil ground terminal (85) is connected to the electromagnet in the relay. It is grounded through the horn switch when the horn switch is depressed. Check for continuity to ground at the cavity for relay terminal 85. There should be continuity with the horn switch depressed, and no continuity with the horn switch released. If not OK, see the diagnosis for the Horn Switch in this group.

HORN SWITCH

For circuit descriptions and diagrams, refer to 8W-41 - Horns/Cigar Lighter in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable. Remove the steering column opening cover and knee blocker. Check for continuity between the metal steering column jacket and a good ground. There should be continuity. If OK, go to Step 2. If not OK, refer to Group 19 Steering and check for proper installation of the steering column mounting nuts.
- (2) Remove the driver side airbag module as described in Group 8M Passive Restraint Systems. Unplug the horn switch wire harness connector from the airbag module. Unplug the horn relay from the

junction block. Check for continuity between the steering column half of the horn switch feed wire harness connector and a good ground. There should be no continuity. If OK, go to Step 3. If not OK, repair the short circuit as required.

- (3) Check for continuity between the steering column half of the horn switch feed wire harness connector and the horn relay control circuit cavity for the horn relay in the junction block. There should be continuity. If OK, go to Step 4. If not OK, repair the open circuit as required.
- (4) Check for continuity between the horn switch feed wire and the horn switch ground wire on the airbag module. There should be no continuity. If OK, go to Step 5. If not OK, replace the faulty horn switch.
- (5) Depress the center of the airbag module cover and check for continuity between the horn switch feed wire and the horn switch ground wire on the airbag module. There should now be continuity. If not OK, replace the faulty horn switch.

HORN

For circuit descriptions and diagrams, refer to 8W-41 - Horns/Cigar Lighter in Group 8W - Wiring Diagrams.

- (1) Measure the resistance between the horn mounting bracket and a good ground. There should be zero ohms resistance. If OK, go to Step 2. If not OK, repair the horn ground connection as required.
- (2) Unplug the horn wire harness connector. Depress the horn switch. There should be battery voltage at the horn wire harness connector. If OK, replace the faulty horn. If not OK, repair the open circuit to the horn relay as required.

REMOVAL AND INSTALLATION

HORN RELAY

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the fuse access panel by unsnapping it from the right cowl side trim panel.
- (3) Remove the stamped nut that secures the right cowl side trim to the junction block stud (Fig. 1).

Fig. 1 Right Cowl Side Trim Remove/Install

- (4) Remove the screw located above the fuse access opening that secures the right cowl side trim to the right cowl side inner panel.
- (5) Remove the screw that secures the right door sill trim and the right cowl side trim to the right door opening sill.
- (6) Remove the right cowl side trim panel from the vehicle.
 - (7) Unplug the horn relay from the junction block.
- (8) Install the horn relay by aligning the relay terminals with the cavities in the junction block and pushing the relay firmly into place.
 - (9) Connect the battery negative cable.
 - (10) Test the relay operation.
- (11) Install the right cowl side trim and the fuse access panel.

HORN SWITCH

WARNING: ON VEHICLES EQUIPPED WITH A DRIVER SIDE AIRBAG, THE HORN SWITCH IS INTEGRAL TO THE AIRBAG MODULE TRIM COVER. SERVICE OF THIS COMPONENT SHOULD BE PERFORMED ONLY BY CHRYSLER-TRAINED AND AUTHORIZED DEALER SERVICE TECHNICIANS. FAILURE TO TAKE THE PROPER PRECAUTIONS OR TO FOLLOW THE PROPER PROCEDURES COULD RESULT IN ACCIDENTAL, INCOMPLETE, OR IMPROPER AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY. REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS FOR THE SERVICE PROCEDURES.

HORN

- (1) Disconnect and isolate the battery negative cable.
 - (2) Raise and support the vehicle.
 - (3) Remove the front underbody splash shield.

NOTE: Do not remove the horn from its mounting bracket.

- (4) Remove the horn mounting bracket screw and lower the horn and mounting bracket unit far enough to access the wire harness connector (Fig. 2).
- (5) Unplug the wire harness connector from the horn.
- (6) Remove the horn and mounting bracket from the vehicle.
- (7) Reverse the removal procedures to install. Tighten the horn mounting bracket screw to 28.5

Fig. 2 Horns Remove/Install

N·m (21 ft. lbs.).

VEHICLE SPEED CONTROL SYSTEM

CONTENTS

page	pag	jе
GENERAL INFORMATION INTRODUCTION	SPEED CONTROL ELECTRICAL TEST SPEED CONTROL SERVO SPEED CONTROL SWITCHES STOP LAMP SWITCH VACUUM SUPPLY TEST VEHICLE SPEED SENSOR	3 3 3
SPEED CONTROL SWITCHES 1	REMOVAL AND INSTALLATION	^
STOP LAMP SWITCH 1	POWERTRAIN CONTROL MODULE	_
VACUUM RESERVOIR 2 VEHICLE SPEED SENSOR 2	SERVO CABLE	_
DIAGNOSIS AND TESTING	SPEED CONTROL SWITCH	
ON-BOARD DIAGNOSTIC TEST FOR SPEED	STOP LAMP SWITCH	_
CONTROL SYSTEM 2	VACUUM RESERVOIR	6
OVERSHOOT/UNDERSHOOT FOLLOWING	VEHICLE SPEED SENSOR	6
SPEED CONTROL SET 4	SPECIFICATIONS	
POWERTRAIN CONTROL MODULE (PCM) 4	TORQUE CHART	6
ROAD TEST 2		

GENERAL INFORMATION

INTRODUCTION

The vehicle speed control system is electronically controlled and vacuum operated. The system is designed to operate between approximately 35 and 85 mph (56 and 137 km/h). Following are general descriptions of the major components in the speed control system. For diagnosis of the entire speed control system, refer to the appropriate Powertrain Diagnostic Procedures service manual and the DRB scan tool. Refer to Group 8W, Wiring Diagrams for complete circuit descriptions and wiring diagrams.

DESCRIPTION AND OPERATION

SPEED CONTROL SERVO

The servo unit consists of a solenoid valve body, a vacuum servo and the mounting bracket. The Powertrain Control Module (PCM) controls the solenoid valve body. The solenoid valve body controls the application and release of vacuum to the diaphragm of the vacuum servo. A cable connects the servo with the throttle linkage. The servo unit cannot be repaired and is serviced only as a complete assembly.

SPEED CONTROL SWITCHES

Two separate speed control switch modules are mounted on the steering wheel to the left and right side of the driver's airbag module. Within the two switch modules, five **momentary** contact switches, supporting seven different speed control functions are used. The outputs from these switches are filtered into one input. The Powertrain Control Module (PCM) determines which output has been applied through **resistive multiplexing.** The input circuit voltage is measured by the PCM to determine which switch function has been selected.

A speed control indicator lamp, located on the instrument panel cluster is energized by the PCM via the CCD Bus. This occurs when speed control system power has been turned ON, and the engine is running.

The two switch modules are labeled: ON/OFF, SET, RESUME/ACCEL, CANCEL and COAST. Refer to the owner's manual for more information on speed control switch functions and setting procedures. The individual switches cannot be repaired. If one individual switch fails, the switch module must be replaced.

STOP LAMP SWITCH

Vehicles equipped with the speed control option use a dual function stop lamp switch. The switch is mounted in the same location as the conventional stop lamp switch, on the brake pedal mounting bracket under the instrument panel. The PCM monitors the state of the dual function stop lamp switch. Refer to Group 5, Brakes for more information on stop lamp switch service and adjustment procedures.

SERVO CABLE

The speed control servo cable is connected between the speed control vacuum servo diaphragm and the throttle body control linkage. This cable causes the throttle control linkage to open or close the throttle valve in response to movement of the vacuum servo diaphragm.

POWERTRAIN CONTROL MODULE

The speed control electronic control circuitry is integrated into the Powertrain Control Module (PCM). The PCM is located in the engine compartment. The PCM speed control functions are monitored by the On-Board Diagnostics (OBD). All OBD-sensed systems are monitored by the PCM. Each monitored circuit is assigned a Diagnostic Trouble Code (DTC). The PCM will store a DTC in electronic memory for certain failures it detects. See On-Board Diagnostic Test For Speed Control System in this group for more information. The PCM cannot be repaired and must be replaced if faulty.

VACUUM RESERVOIR

The vacuum reservoir contains a one-way check valve to trap engine vacuum in the reservoir. When engine vacuum drops, as in climbing a grade while driving, the reservoir supplies the vacuum needed to maintain proper speed control operation. The vacuum reservoir cannot be repaired and must be replaced if faulty.

VEHICLE SPEED SENSOR

The Vehicle Speed Sensor (VSS) is a pulse generator mounted to an adapter near the transmission output shaft. The sensor is driven through the adapter by a speedometer pinion gear. The VSS pulse signal to the speedometer/odometer is monitored by the PCM speed control circuitry to determine vehicle speed and to maintain speed control set speed. Refer to the appropriate Powertrain Diagnostic Procedures manual for diagnosis and testing of this component. Refer to Group 14, Fuel System for removal/installation procedures.

DIAGNOSIS AND TESTING

ROAD TEST

Perform a vehicle road test to verify reports of speed control system malfunction. The road test should include attention to the speedometer. Speedometer operation should be smooth and without flutter at all speeds.

Flutter in the speedometer indicates a problem which might cause surging in the speed control system. The cause of any speedometer problems should be corrected before proceeding. Refer to Group 8E,

Instrument Panel and Gauges for speedometer diagnosis.

If a road test verifies a system problem and the speedometer operates properly, check for:

- A Diagnostic Trouble Code (DTC). If a flash lamp code 15, 34 or 77 exists at the Check Engine Lamp (MIL), conduct tests per the Powertrain Diagnostic Procedures service manual.
- A misadjusted brake (stop) lamp switch. This could also cause an intermittent problem.
- Loose or corroded electrical connections at the servo. Corrosion should be removed from electrical terminals and a light coating of Mopar MultiPurpose Grease, or equivalent, applied.
 - Loose or leaking vacuum hoses or connections.
- Secure attachment of both ends of the speed control servo cable.
- Smooth operation of throttle linkage and throttle body air valve.
- Failed speed control servo. Do the servo vacuum test.

CAUTION: When test probing for voltage or continuity at electrical connectors, care must be taken not to damage connector, terminals or seals. If these components are damaged, intermittent or complete system failure may occur.

ON-BOARD DIAGNOSTIC TEST FOR SPEED CONTROL SYSTEM

The Powertrain Control Module (PCM) monitors critical input and output circuits of the speed control system, making sure they are operational. A Diagnostic Trouble Code (DTC) is assigned to each input and output circuit monitored by the On-Board Diagnostic (OBD) system. Some circuits are checked continuously and some are checked only under certain conditions.

For DTC information, refer to Diagnostic Trouble Codes in Group 25, Emission Control System. This will include a complete list of DTC's including DTC's for the speed control system.

SPEED CONTROL ELECTRICAL TEST

Two different test methods may be used to check the electronic speed control system. One involves using the DRB scan tool. If this test method is desired, refer to the appropriate Powertrain Diagnostic Procedures service manual.

The other test method will involve the use of a volt/ohm meter. The volt/ohm meter method is described within the tests on the following pages. Refer to Group 8W, Wiring Diagrams for speed control electrical schematics and connector location.

CAUTION: When test probing for voltage or continuity at electrical connectors, care must be taken not to damage connector, terminals or seals. If these components are damaged, intermittent or complete system failure may occur.

When electrical connections are removed, corrosion should be removed from electrical terminals and a light coating of Mopar Multi-Purpose Grease, or equivalent, should be applied.

Inspect connectors for damaged terminals. A poor electrical connection can cause a complete or intermittent malfunction. For this reason, a poor connection may be misdiagnosed as a component malfunction.

VEHICLE SPEED SENSOR

For diagnosis and testing of the Vehicle Speed Sensor (VSS), refer to the appropriate Powertrain Diagnostic Procedures service manual. Also refer to the DRB scan tool.

SPEED CONTROL SWITCHES

For complete speed control system diagnosis, refer to the appropriate Powertrain Diagnostic Procedures manual. To test each of the speed control switches only, refer to the following:

WARNING: BEFORE ATTEMPTING TO DIAGNOSE, REMOVE OR INSTALL ANY AIRBAG SYSTEM OR RELATED STEERING WHEEL AND STEERING COLUMN COMPONENTS, YOU MUST FIRST DISCONNECT AND ISOLATE THE BATTERY NEGATIVE (GROUND) CABLE. WAIT 2 MINUTES FOR SYSTEM CAPACITOR TO DISCHARGE BEFORE FURTHER SYSTEM SERVICE. FAILURE TO DO SO COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect negative battery cable. Wait 2 minutes for airbag system capacitor to discharge.
- (2) Remove the two speed control switch modules from steering wheel. Refer to the removal/installation section for procedures.
- (3) Check continuity of each individual speed control switch module as shown in chart (Fig. 1). If OK, reinstall switch. If not OK, replace switch module assembly.

STOP LAMP SWITCH

For continuity checks and switch adjustment, refer to Group 5, Brakes.

VACUUM SUPPLY TEST

(1) Disconnect vacuum hose at speed control servo and install a vacuum gauge into the disconnected hose.

SWITCH POSITION	RESISTANCE BETWEEN PINS 1 AND 2
ON	909 ohms +/- 9 ohms
SET	6650 ohms +/- 66 ohms
RESUME/ACCEL	15,400 ohms +/- 154 ohms
CANCEL	0 ohms (Close Circuit)
COAST	2940 ohms +/- 29 ohms

____ 80aa0f31

Fig. 1 Speed Control Switch Continuity Tests

- (2) Start engine and observe gauge at idle. Vacuum gauge should read at least ten inches of mercury.
- (3) If vacuum is less than ten inches of mercury, determine source of leak. Check vacuum line to engine for leaks. Also check actual engine intake manifold vacuum. If manifold vacuum does not meet this requirement, check for poor engine performance and repair as necessary.
- (4) If vacuum line to engine is not leaking, check for leak at vacuum reservoir. To locate and gain access to reservoir, refer to Vacuum Reservoir Removal/Installation in this group. Disconnect vacuum line at reservoir and connect a hand-operated vacuum pump to reservoir fitting. Reservoir vacuum should not bleed off. If vacuum is being lost, replace reservoir.

SPEED CONTROL SERVO

For complete speed control system diagnosis, refer to the appropriate Powertrain Diagnostic Procedures manual. To test the speed control servo only, refer to the following:

The engine must be started and running for the following voltage tests.

- (1) Start engine.
- (2) Disconnect 4-way electrical connector at servo.
- (3) Turn speed control switch to ON position.
- (4) Check for battery voltage at pin-3 of wiring harness 4-way connector (Fig. 2). This is the 12 volt feed from the stoplamp switch. When the brake pedal is depressed, voltage should not be present at pin-3. If voltage is not present with brake pedal **not** depressed, check for continuity between servo and stop lamp switch. Also check stop lamp switch adjustment. Refer to Group 5, Brakes for procedures.

(5) Connect a small gauge jumper wire between the disconnected servo harness 4-way connector pin-3, and pin-3 on the servo. Check for battery voltage at pins-1, 2 and 4 of the servo. If battery voltage is not at these pins, replace the servo.

80a5f268

Fig. 2 Servo 4-Way Harness Connector

(6) Turn ignition switch to OFF position. Check for continuity between disconnected servo harness 4-way connector pin-4 and a good ground. There should be continuity. If not OK, repair open circuit to ground as required.

POWERTRAIN CONTROL MODULE (PCM)

For complete PCM diagnosis of the speed control system, refer to the DRB scan tool and the appropriate Powertrain Diagnostic Procedures service manual.

OVERSHOOT/UNDERSHOOT FOLLOWING SPEED CONTROL SET

If the operator repeatedly presses and releases the set button with their foot off of the accelerator (a "lift foot set" to begin speed control operation), the vehicle may accelerate and exceed the desired set speed by up to 5 MPH (8 km/h) and then decelerate to less than the desired set speed before finally achieving the desired set speed.

The Speed Control has an adaptive strategy that compensates for vehicle-to-vehicle variations in speed control cable lengths. When the speed control is set with the vehicle operators foot off of the accelerator pedal, the speed control thinks there is excessive speed control cable slack and adapts. If the lift foot sets are continually used, the speed control overshoot/undershoot condition will develop.

To "unlearn" the overshoot/undershoot condition, the vehicle operator has to press and release the set button while maintaining the desired set speed with the accelerator pedal (not decelerating or accelerating), and then turn the cruise control switch to the OFF position (or press the CANCEL button if equipped) after waiting 10 seconds. This procedure must be performed approximately 10–15 times to completely unlearn the overshoot/undershoot condition.

REMOVAL AND INSTALLATION

SPEED CONTROL SERVO

REMOVAL

- (1) Disconnect negative battery cable at battery.
- (2) Disconnect vacuum hose at servo.
- (3) Disconnect electrical connector at servo.
- (4) Block throttle to full open position.
- (5) Remove 2 servo mounting nuts holding cable and cable sleeve to mounting bracket.
- (6) Pull servo away from mounting bracket to expose cable retaining clip (Fig. 3) and remove clip.

Fig. 3 Servo Cable Clip Remove/Install

(7) Pull servo away from cable and remove from vehicle.

INSTALLATION

- (1) Position servo near end of servo cable.
- (2) Block throttle to full open position. Align hole in cable sleeve with hole in servo pin and install cable retaining clip (Fig. 3).
- (3) Insert servo studs through holes in servo mounting bracket.
- (4) Install servo mounting nuts. Tighten to 8.5 $N{\cdot}m$ (75 in. lbs.) torque.
 - (5) Connect vacuum hose at servo.
 - (6) Connect electrical connector at servo.

- (7) Remove throttle block.
- (8) Connect negative battery cable to battery.

SPEED CONTROL SWITCH

WARNING: BEFORE ATTEMPTING TO DIAGNOSE, REMOVE OR INSTALL ANY AIRBAG SYSTEM OR RELATED STEERING WHEEL AND STEERING COLUMN COMPONENTS YOU MUST FIRST DISCONNECT AND ISOLATE THE BATTERY NEGATIVE (GROUND) CABLE. WAIT 2 MINUTES FOR SYSTEM CAPACITOR TO DISCHARGE BEFORE FURTHER SYSTEM SERVICE. FAILURE TO DO SO COULD RESULT IN ACCIDENTAL DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

REMOVAL

- (1) Disconnect and isolate negative battery cable from battery.
- (2) Remove airbag module. Refer to Group 8M, Passive Restraint Systems for procedures.
- (3) From underside of steering wheel, remove speed control switch mounting screw (Fig. 4).

Fig. 4 Speed Control Switch Remove/Install

(4) Remove switch from steering wheel and unplug electrical connector.

INSTALLATION

- (1) Plug electrical connector into switch.
- (2) Position switch to steering wheel.
- (3) Install switch mounting screw and tighten to $1.5~\mathrm{N\cdot m}$ (14 in. lbs.) torque.
- (4) Install airbag module. Refer to Group 8M, Passive Restraint Systems for procedures.
 - (5) Connect negative battery cable to battery.

STOP LAMP SWITCH

Refer to Stop Lamp Switch in Group 5, Brakes for removal/installation and adjustment procedures.

SERVO CABLE

REMOVAL

- (1) Disconnect negative battery cable at battery.
- (2) Using finger pressure only, remove cable connector by pushing connector off the throttle body bellcrank pin (Fig. 5). **DO NOT try to pull cable connector off perpendicular to the bellcrank pin. Connector will be broken.**
- (3) Two squeeze tabs are located on sides of speed control cable at cable locking plate (Fig. 6). Squeeze the tabs together and push cable out of cable locking plate.
- (4) Unclip cable from cable guide at valve cover (Fig. 6).
- (5) Disconnect servo cable at servo. Refer to Speed Control Servo—Removal/Installation.

Fig. 5 Servo Cable to Bellcrank—Remove/Install
INSTALLATION

- (1) Attach end of cable to speed control servo. Refer to Speed Control Servo Removal/Installation.
 - (2) Install cable into cable locking plate (snaps in).
- (3) Install cable connector at throttle body bellcrank pin (snaps on).

Fig. 6 Squeeze Tabs at Cable Locking Plate

- (4) Clip cable to cable guide at valve cover.
- (5) Connect negative battery cable to battery.

POWERTRAIN CONTROL MODULE

For Removal/Installation refer to Powertrain Control Module in Group 14, Fuel Injection System.

VACUUM RESERVOIR

REMOVAL

The vacuum reservoir is located behind right front bumper end cap on vehicles equipped with LHD (Left Hand Drive) (Fig. 7). It is located behind left front bumper end cap on vehicles equipped with RHD (Right Hand Drive).

- (1) Remove front bumper end cap. Refer to Front Bumper End Cap in Group 23, Body for procedures.
 - (2) Remove vacuum line at reservoir (Fig. 8).
 - (3) Remove 2 reservoir mounting screws.
 - (4) Remove reservoir from bumper bar.

INSTALLATION

- (1) Position reservoir to bumper bar and install mounting screws. Tighten screws to 8 N·m (72 in. lbs.) torque.
 - (2) Install vacuum line to reservoir
- (3) Install front bumper end cap. Refer to Group 23, Body for procedures.

VEHICLE SPEED SENSOR

For removal/installation, refer to Vehicle Speed Sensor in Group 14, Fuel System.

Fig. 7 Vacuum Reservoir Location

Fig. 8 Vacuum Reservoir Removal/Installation
SPECIFICATIONS

TORQUE CHART

Description	Torque
Servo Mounting Bracket-to-	
Servo Nuts 8.5 N·m (7	5 in. lbs.)
Servo Mounting Bracket-to-	
Body Bolts 2 N·m (20	0 in. lbs.)
Speed Control Switch Mounting	
Screws 1.5 N·m (14	4 in. lbs.)
Vacuum Reservoir Mounting	
Bolts 8 N·m (7)	2 in. lbs.)

TURN SIGNAL AND HAZARD WARNING SYSTEMS

CONTENTS

page	page	3
GENERAL INFORMATION	TURN SIGNAL SYSTEM 1	1
INTRODUCTION 1	DIAGNOSIS AND TESTING	
DESCRIPTION AND OPERATION	INTRODUCTION 2	2
COMBINATION FLASHER 1	MULTI-FUNCTION SWITCH 3	3
HAZARD WARNING SYSTEM 1	TURN SIGNAL AND HAZARD WARNING	
TURN SIGNAL INDICATOR LAMP 2	SYSTEMS 2	2
TURN SIGNAL LAMP 2	REMOVAL AND INSTALLATION	
TURN SIGNAL SWITCH AND HAZARD	COMBINATION FLASHER	3
WARNING SWITCH 2	MULTI-FUNCTION SWITCH 4	4

GENERAL INFORMATION

INTRODUCTION

Following are general descriptions of the major components in the turn signal and hazard warning systems. Refer to 8W-52 - Turn Signals in Group 8W - Wiring Diagrams for complete circuit descriptions and diagrams.

NOTE: This group covers both Left-Hand Drive (LHD) and Right-Hand Drive (RHD) versions of this model. Whenever required and feasible, the RHD versions of affected vehicle components have been constructed as mirror-image of the LHD versions. While most of the illustrations used in this group represent only the LHD version, the diagnostic and service procedures outlined can generally be applied to either version. Exceptions to this rule have been clearly identified as LHD or RHD, if a special illustration or procedure is required.

DESCRIPTION AND OPERATION

TURN SIGNAL SYSTEM

With the ignition switch in the On position, and the multi-function switch control lever moved up (right turn) or down (left turn), the turn signal system is activated. The switch has a detent position in each direction that provides turn signals with automatic cancellation, and an intermediate momentary position that provides turn signals only until the multi-function switch lever is released.

When the turn signal switch is in a detent position, it is turned off by one of two cancelling cam lobes molded into the hub of the clockspring mechanism. When turning the steering wheel causes one of the cam lobes to contact a cancel actuator in the

multi-function switch, the turn signal switch automatically returns to the off position.

When the turn signal system is activated, the selected (right or left) turn signal indicator lamp, front park/turn signal lamp, front side marker lamp, and rear tail/stop/turn signal lamp bulbs will flash. With the headlamp switch in the Off position, the front turn signal and front side marker lamps flash in unison. With the headlamp switch in the On position, the front turn signal and front side marker lamps flash alternately.

HAZARD WARNING SYSTEM

The hazard warning system is activated by a switch button in the multi-function switch. The button is located on the top of the steering column between the steering wheel and the instrument panel. The hazard warning switch button is identified with a double triangle.

The hazard warning system is connected to a nonswitched battery feed so that the system remains functional, regardless of the ignition switch position. Slide the switch button to the left to activate the hazard warning system, and slide the switch button to the right to turn the system off.

When the hazard warning system is activated, the right and left turn signal indicators, front park/turn signal lamps, front side marker lamps, and rear tail/stop/turn signal lamps will flash. With the headlamp switch in the Off position, the front turn signal and front side marker lamps flash in unison. With the head or park lamps turned on, the front turn signal and front side marker lamps flash alternately.

COMBINATION FLASHER

The combination flasher is a smart relay that functions as both the turn signal system and hazard warning system flasher. The combination flasher is

designed to handle the current flow requirements of the factory-installed lighting.

If supplemental lighting is added to the turn signal lamp circuits, such as when towing a trailer with lights, the combination flasher will automatically compensate. This allows the flash rate to remain the same, regardless of electrical load increases. However, if a bulb fails in the turn signal lamp circuits, the flash rate of the remaining bulbs in that circuit will increase to 120 flashes-per-minute, or higher.

While the combination flasher shares the terminal orientation (footprint) of a International Standards Organization (ISO)-type relay, the internal circuitry is much different. The combination flasher contains active electronic integrated circuitry elements. Do not substitute any other relay for the combination flasher.

Because of the active electronic elements within the combination flasher, it cannot be tested with conventional automotive electrical test equipment. If the combination flasher is believed to be faulty, test the turn signal and hazard warning system circuits as described in this group. Then replace the combination flasher with a known good unit to confirm system operation.

The combination flasher cannot be repaired and, if faulty, it must be replaced.

TURN SIGNAL SWITCH AND HAZARD WARNING SWITCH

The turn signal and hazard warning switches are integral to the multi-function switch assembly. The multi-function switch assembly is mounted to the left side of the steering column (Fig. 1). This switch contains circuitry for the following functions:

- Turn signals
- Hazard warning
- Headlamp beam selection
- Headlamp optical horn.

The information contained in this group addresses only the multi-function switch functions for the turn signal and hazard warning circuits. For information relative to the other switch functions, refer to the proper group. However, the multi-function switch cannot be repaired. If any function of the multi-function switch is faulty, or if the switch is damaged, the entire switch assembly must be replaced.

TURN SIGNAL INDICATOR LAMP

The turn signal indicator lamps are located in the instrument cluster. They flash with the exterior turn signal lamps to give the driver a visual indication that a turn signal or the hazard warning system is operating. For diagnosis and service of these lamps, refer to Group 8E - Instrument Panel Systems.

Fig. 1 Multi-Function Switch

TURN SIGNAL LAMP

The exterior lamps in the turn signal and hazard warning circuits include the front park/turn signal, the front side marker, and the rear tail/stop/turn signal. For diagnosis and service of these lamps, refer to Group 8L - Lamps.

DIAGNOSIS AND TESTING

INTRODUCTION

When diagnosing the turn signal or hazard warning circuits, remember that high generator output can burn out bulbs rapidly and repeatedly. If this is a problem on the vehicle being diagnosed, refer to Group 8C - Charging System for further diagnosis of a possible generator overcharging condition.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

TURN SIGNAL AND HAZARD WARNING SYSTEMS

For circuit descriptions and diagrams, refer to 8W-52 - Turn Signals in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Turn the ignition switch to the On position. Actuate the turn signal lever or hazard warning button. Observe the turn signal indicator lamp(s) in the instrument cluster. If the flash rate is very high, check for a turn signal bulb that is not lit or is very dimly lit. Repair the circuits to that lamp or replace the faulty bulb, as required. Test the operation of the turn signal and hazard warning systems again. If the turn signal indicator(s) fail to light, go to Step 2.
- (2) Turn the ignition switch to the Off position. Check the turn signal fuse in the junction block and/or the hazard warning fuse in the Power Distribution Center (PDC). If OK, go to Step 3. If not OK, repair the shorted circuit or component as required and replace the faulty fuse(s).
- (3) Turn the ignition switch to the On position to check for battery voltage at the turn signal fuse in the junction block; or, leave the ignition switch in the Off position to check for battery voltage at the hazard warning fuse in the PDC. If OK, go to Step 4. If not OK, repair the open circuit as required.
- (4) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Unplug the combination flasher from its wire harness connector and replace it with a known good unit. Connect the battery negative cable. Test the operation of the turn signal and hazard warning systems. If OK, discard the faulty combination flasher. If not OK, remove the test flasher and go to Step 5.
- (5) Turn the ignition switch to the On position. Check for battery voltage at the combination flasher fused ignition circuit cavity in the combination flasher wire harness connector. If OK, go to Step 6. If not OK, go to Step 8.
- (6) Turn the ignition switch to the Off position. Check for battery voltage again at the combination flasher fused B+ circuit cavity in the combination flasher wire harness connector. If OK, go to Step 7. If not OK, go to Step 8.
- (7) Disconnect and isolate the battery negative cable. Check for continuity between the ground circuit cavity of the combination flasher wire harness connector and a good ground. There should be continuity. If OK, go to Step 8. If not OK, repair the circuit to ground as required.

- (8) Unplug the multi-function switch wire harness connector as described in this group. Check for continuity between the combination flasher turn signal circuit cavities in the combination flasher wire harness connector and in the multi-function switch wire harness connector. There should be continuity. If OK, go to Step 9. If not OK, repair the open circuit as required.
- (9) Check for continuity between the combination flasher hazard warning circuit cavities in the combination flasher wire harness connector and in the multi-function switch wire harness connector. There should be continuity. If OK, test the multi-function switch as described in this group. If not OK, repair the open circuit as required.

MULTI-FUNCTION SWITCH

Perform the diagnosis of the hazard warning and/or turn signal systems as described in this group before testing the multi-function switch. For circuit descriptions and diagrams, refer to 8W-52 - Turn Signals in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Unplug the multi-function switch wire harness connector as described in this group.
- (2) Using an ohmmeter, perform the switch continuity checks at the switch terminals as shown in the Multi-Function Switch Continuity chart (Fig. 2).
- (3) If the switch fails any of the continuity checks, replace the faulty switch. If the switch is OK, repair the lighting circuits as required.

REMOVAL AND INSTALLATION

COMBINATION FLASHER

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

SWITCH POSITION		CONTINUITY	
TURN SIGNAL	HAZARD WARNING	BETTVEETT	
NEUTRAL	OFF	F and H F and K A and E	B
LEFT	OFF	F and H C and K C and I A and E	C K B1
RIGHT	OFF	F and K C and H C and J A and E	IH GI
NEUTRAL	ON	B and E C and H C and K C and I C and J	H - RIGHT REAR I - LEFT FRONT J - RIGHT FRONT K - LEFT REAR

948J-12

Fig. 2 Multi-Function Switch Continuity

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the steering column opening cover and the knee blocker as described in Group 8E Instrument Panel Systems.
- (3) Reach through the outboard side of the steering column opening and remove the combination flasher and wire harness connector from the instrument panel diagonal mounting bracket by gently prying the connector retainer from the bracket mounting hole (Fig. 3).

Fig. 3 Combination Flasher Remove/Install

- (4) Pull the combination flasher and wire harness connector into the steering column opening far enough to unplug the flasher from the wire harness connector.
- (5) Install the combination flasher by aligning the flasher terminals with the cavities in the wire harness connector and pushing the flasher firmly into place.
- (6) Reinstall the retainer that secures the combination flasher and wire harness connector to the instrument panel diagonal mounting bracket.
- (7) Reinstall the knee blocker and the steering column opening cover as described in Group 8E Instrument Panel Systems.
 - (8) Connect the battery negative cable.
 - (9) Test the flasher operation.

MULTI-FUNCTION SWITCH

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable
- (2) Remove the steering column opening cover as described in Group 8E Instrument Panel Systems.
- (3) If the vehicle is so equipped, move the tilt steering column to the fully raised position.
- (4) Insert the key in the ignition lock cylinder and turn the ignition switch to the On position.
- (5) Insert a small screwdriver or pin punch through the access hole in the lower steering column shroud and depress the ignition lock cylinder retaining tumbler (Fig. 4).
- (6) While holding the retaining tumbler depressed, pull the ignition lock cylinder and key out of the ignition lock housing.
- (7) Remove the three screws that secure the lower steering column shroud to the upper shroud.
- (8) If the vehicle is equipped with a standard nontilt steering column, loosen the two upper steering column mounting nuts. If the vehicle is equipped with the optional tilt steering column, move the tilt steering column to the fully lowered position.
- (9) Remove both the upper and lower shrouds from the steering column.
- (10) Remove the two screws that secure the switch water shield and bracket to the top of the steering column (Fig. 5).

Fig. 4 Steering Column Shrouds Remove/Install

Fig. 5 Water Shield Upper Screws Remove/Install

(11) Remove the one screw located below the multi-function switch lever that secures the switch

water shield and bracket to the steering column (Fig. 6).

Fig. 6 Water Shield Lower Screw Remove/Install

- (12) Gently pull the lower mounting tab of the switch water shield bracket away from the steering column far enough to clear the screw boss below the multi-function switch lever.
- (13) Lift the water shield and bracket with the multi-function switch away from the steering column far enough to access the two multi-function switch wire harness connectors. If the vehicle is equipped with the optional tilt steering column, lifting gently upward on the tilt release lever will provide additional clearance to ease multi-function switch removal.
- (14) Unplug the wire harness connectors from the multi-function switch.
- (15) Remove the multi-function switch and water shield from the steering column as a unit.
- (16) Gently pull the water shield over the hazard warning switch knob and the multi-function switch lever.
 - (17) Reverse the removal procedures to install.

WIPER AND WASHER SYSTEMS

CONTENTS

page	page
GENERAL INFORMATION	WIPER SWITCH AND WASHER SWITCH 3
INTRODUCTION 1	DIAGNOSIS AND TESTING
DESCRIPTION AND OPERATION	WASHER SYSTEM 5
REAR WIPER AND WASHER SYSTEM 2	WIPER SWITCH AND WASHER SWITCH 6
WASHER FLUID LEVEL SENSOR 4	WIPER SYSTEM 4
WASHER NOZZLE AND PLUMBING 4	REMOVAL AND INSTALLATION
WASHER PUMP 3	WASHER SYSTEM 13
WASHER RESERVOIR 3	WIPER ARM 8
WINDSHIELD WASHER SYSTEM 1	WIPER BLADE AND ELEMENT 7
WINDSHIELD WIPER SYSTEM 1	WIPER LINKAGE AND PIVOT 9
WIPER ARM AND BLADE 2	WIPER MOTOR 9
WIPER LINKAGE AND PIVOT 2	WIPER SWITCH AND WASHER SWITCH 11
WIPER MOTOR 2	

GENERAL INFORMATION

INTRODUCTION

Following are general descriptions of the major components in the wiper and washer systems. Refer to 8W-53 - Wipers in Group 8W - Wiring Diagrams for complete circuit descriptions and diagrams.

NOTE: This group covers both Left-Hand Drive (LHD) and Right-Hand Drive (RHD) versions of this model. Whenever required and feasible, the RHD versions of affected vehicle components have been constructed as mirror-image of the LHD versions. While most of the illustrations used in this group represent only the LHD version, the diagnostic and service procedures outlined can generally be applied to either version. Exceptions to this rule have been clearly identified as LHD or RHD, if a special illustration or procedure is required.

DESCRIPTION AND OPERATION

WINDSHIELD WIPER SYSTEM

An intermittent windshield wiper system is standard equipment. This system lets the driver select from either of two wiper speeds, or the intermittent wipe mode.

The intermittent wipe mode delay times are driver adjustable from about one second to about fifteen seconds. The intermittent wipe mode is provided by delay logic and relay control circuitry contained within the intermittent wiper/washer switch. The

intermittent wipe relay is also contained within the switch.

The windshield wipers will operate only when the ignition switch is in the Accessory or On positions. A circuit breaker located in the junction block protects the circuitry of the windshield wiper system. Refer to the owner's manual for more information on the windshield wiper system controls and operation.

WINDSHIELD WASHER SYSTEM

A electrically operated windshield washer system is standard equipment. The washer reservoir is located between the inner and outer front fenders, above and forward of the left front wheel housing. The reservoir filler neck is located in the engine compartment on the left inner fender shield.

The reservoir holds the washer fluid, which is pressurized by a pump when the windshield washer switch lever is actuated. The windshield washer pump feeds the pressurized washer fluid through the washer system plumbing to the windshield washer nozzles

A low washer fluid warning lamp is standard equipment on all models equipped with the optional rear wiper and washer system. This warning lamp in the instrument cluster will warn the driver when the washer fluid level needs to be checked. Refer to Group 8E - Instrument Panel Systems for more information on this feature.

The washers will operate only when the ignition switch is in the Accessory or On positions. A fuse located in the junction block protects the circuitry of the washer system. Refer to the owner's manual for more information on the windshield washer system controls and operation.

REAR WIPER AND WASHER SYSTEM

A rear wiper and washer system is an available option on this model. The rear wiper system is a fixed-cycle wiper system. A single switch in the instrument panel center bezel controls both the rear wiper and washer functions. The rear washer system shares the reservoir of the windshield washer system, but has its own dedicated washer pump and plumbing.

The rear wiper and washer systems will operate only when the ignition switch is in the Accessory or On positions. A fuse in the junction block protects the circuitry of both the rear wiper and washer systems.

Refer to the owner's manual for more information on the rear wiper and washer system controls and operation.

WIPER ARM AND BLADE

All Cherokee models have two 45.72-centimeter (18-inch) windshield wiper blades with replaceable rubber elements (squeegees). The optional rear wiper uses a single 34.8-centimeter (13.7-inch) wiper blade with a replaceable rubber element (squeegee).

Caution should be exercised to protect the rubber squeegees from any petroleum-based cleaners or contaminants, which will rapidly deteriorate the rubber. If the squeegees are damaged, worn, or contaminated, they must be replaced.

Wiper squeegees exposed to the elements for a long time tend to lose their wiping effectiveness. Periodic cleaning of the squeegees is suggested to remove deposits of salt and road film. The wiper blades, arms, and windshield or rear glass should be cleaned with a sponge or cloth and windshield washer fluid, a mild detergent, or a non-abrasive cleaner. If the squeegees continue to streak or smear, they should be replaced.

The blades are mounted to spring-loaded wiper arms. The spring tension of the wiper arms controls the pressure applied to the blades on the glass. The windshield wiper arms are secured by an integral latch to the two wiper pivots on the cowl plenum cover/grille panel at the base of the windshield. The rear wiper arm is secured by a nut directly to the rear wiper motor output shaft on the liftgate below the liftgate glass.

The wiper arms and blades cannot be adjusted or repaired. If faulty or damaged, they must be replaced.

WIPER LINKAGE AND PIVOT

The wiper linkage and pivot module is secured with screws to the cowl top panel beneath the cowl plenum cover/grille panel. The wiper motor is secured with screws to the center of the linkage and

pivot module bracket. The wiper pivots are secured to the ends of the module bracket.

The two wiper pivot crank arms and the wiper motor crank arm each have ball studs on their ends. The left pivot ball stud is the longer of the three. A connecting link with a plastic socket-type bushing in the right end, and a plastic sleeve-type bushing in the left end, is fit over the pivot ball studs to join the two pivots.

The wiper drive link has a plastic socket-type bushing on each end. One end of the drive link is fit over the exposed end of the longer left pivot ball stud, while the other end is snap-fit over the ball stud on the wiper motor crank arm.

The wiper linkage, pivots, bushings, and mounting bracket are only serviced as a complete unit. If any part of this assembly is faulty or damaged, the entire linkage and pivot module must be replaced. The wiper motor and motor crank arm are serviced separately.

WIPER MOTOR

FRONT

The two-speed permanent magnet wiper motor has an integral transmission and park switch. The motor also contains an internal automatic resetting circuit breaker to protect the motor from overloads. The motor is secured to a bracket on the linkage and pivot module in the cowl plenum area. A reinforcement/stud plate with a rubber-isolated mounting bracket extends from the cowl plenum side of the dash panel to the motor mounting bracket to provide additional support. The wiper motor output shaft passes through a hole in the module bracket, where a nut secures the wiper motor crank arm to the motor output shaft.

Wiper speed is controlled by current flow to the proper set of brushes. The wiper motor completes its wipe cycle when the windshield wiper switch stalk is moved to the Off position, and parks the blades in the lowest portion of the wipe pattern.

The windshield wiper motor cannot be repaired. If faulty or damaged, the entire wiper motor assembly must be replaced. The motor crank arm, the linkage and pivot module, and the reinforcement/stud plate are available for service.

REAR

The rear wiper motor is secured with a bracket to the liftgate inner panel, below the liftgate glass and behind the liftgate trim panel. The motor output shaft passes through the liftgate outer panel where a gasket, bezel, and nut, seal and secure the unit to the liftgate outer panel. The rear wiper arm is secured directly to the motor output shaft.

The rear wiper motor unit provides three operating modes:

- Constant wipe that operates when the rear wiper switch is turned to the On position.
- Constant wipe that operates when the rear washer switch is depressed.
- A park mode that operates the wiper motor until the blade reaches its park position when either the rear wiper switch or the ignition switch is placed in the Off position.

The rear wiper motor cannot be repaired. If faulty or damaged, the entire rear wiper motor assembly must be replaced.

WIPER SWITCH AND WASHER SWITCH

FRONT

The windshield wiper and washer switches are mounted on the right side of the steering column (Fig. 1). The switch stalk is moved up or down to select the wiper switch mode, and pulled towards the steering wheel to activate the washer system. An intermittent wipe system control knob on the end of the switch stalk is rotated to select the desired delay interval. The windshield wiper and washer switch contains circuitry for the following functions:

- Windshield wipers
- Intermittent wiper delay relay control and logic
- Intermittent wipe relay
- · Windshield washers.

The windshield wiper and washer switch cannot be repaired. If any function of the switch is faulty, or if the switch is damaged, the entire switch assembly must be replaced.

Fig. 1 Windshield Wiper and Washer Switch

REAR

The single two-function rear wiper and washer switch is installed near the bottom of the instrument panel center bezel, below the heater-A/C controls. The rear wiper and washer switch controls the rear wiper and washer functions.

The toggle-type switch features a detent in the On position, and a momentary wash position. The rear wiper and washer switch also has an integral illumination lamp with a serviceable bulb. The switch knob is pushed down to its detent to activate the rear wiper system, and down again to the momentary position to activate the rear washer system. Both the rear wiper and rear washer motors will operate continuously for as long as the switch is held in the momentary Wash position.

The rear wiper and washer switch cannot be repaired and, if faulty or damaged, the entire switch unit must be replaced.

WASHER RESERVOIR

A single washer fluid reservoir is used for both the standard front and optional rear washer systems. The washer fluid reservoir is secured between the left front inner and outer fender panels, above and in front of the left front wheel house.

Each washer pump and motor unit has a barbed nipple, which is installed through a rubber grommet seal inserted in a hole near the bottom of the reservoir. The washer pumps are retained by an interference fit between the barbed nipple and the grommet seal, which is a light press fit.

The washer reservoir has a separate filler neck. The filler neck snaps into the reservoir from the engine compartment side of the left inner fender shield. The reservoir also has a provision for a washer fluid level sensor.

The washer reservoir, filler neck, filler cap, and sensor are each available for service.

WASHER PUMP

The washer pumps and motors are mounted near the bottom of the washer reservoir. A barbed nipple on the pump housing passes through a rubber grommet seal installed in a hole near the bottom of the reservoir. The washer pump is retained by an interference fit between the barbed pump nipple and the grommet seal, which is a light press fit.

A permanently lubricated and sealed motor is coupled to a rotor-type pump. Washer fluid is gravity-fed from the reservoir to the pump. When the motor is energized, the pump pressurizes the washer fluid and forces it through the plumbing to the nozzles.

On vehicles with the optional rear wiper/washer system, the front washer pump and motor is always mounted in the lower hole of the reservoir. The

washer pump and motor unit cannot be repaired. If faulty, the entire washer pump and motor unit must be replaced.

WASHER FLUID LEVEL SENSOR

The washer fluid level sensor is mounted near the front of the washer reservoir, above the two washer pumps. A barbed nipple on the sensor is press-fit into a rubber grommet seal installed in a hole in the front of the reservoir.

When the fluid level in the reservoir falls below the pivoting float on the sensor, the float changes position and closes the internal switch contacts of the sensor. Refer to Group 8E - Instrument Panel Systems for diagnosis of the low washer fluid warning lamp and circuit, including the sensor.

The washer fluid level sensor cannot be repaired. If faulty or damaged, the sensor unit must be replaced.

WASHER NOZZLE AND PLUMBING

FRONT

Pressurized washer fluid is fed through a single hose, attached to a barbed nipple on the front washer pump. The hose is routed to a tee fitting located in the cowl plenum area, beneath the cowl plenum cover/grille panel. Hoses from the tee fitting are routed to the two nozzles, which are riveted into openings in the cowl plenum cover/grille panel below the windshield.

The two fluidic washer nozzles are not adjustable. The nozzles and hose fittings cannot be repaired and, if faulty or damaged, they must be replaced.

REAR

Pressurized washer fluid is fed through a single hose, attached to a barbed nipple on the rear washer pump. The hose is routed from the front of the vehicle to the liftgate with the body wire harness.

Located at the highest point of the supply hose routing, beneath the liftgate opening upper header garnish moulding, a check valve prevents washer fluid drain-back or siphoning from occurring. From the check valve, another single hose is routed through a grommet to the liftgate, where it is connected to a nipple that protrudes from the inside of the rear wiper motor output shaft bezel.

The washer fluid passes through the bezel nipple to the outside of the liftgate. There a single hose is routed through a plastic trough-like guard snapped to the underside of the rear wiper arm. The hose is then attached to the single rear washer nozzle. The nozzle snaps into place on the rear wiper arm.

The rear washer nozzle cannot be adjusted. The nozzle, bezel, check valve, and hose fittings cannot be repaired and, if faulty or damaged, they must be replaced.

DIAGNOSIS AND TESTING

WIPER SYSTEM

FRONT

For circuit descriptions and diagrams, refer to 8W-53 - Wipers in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Check the circuit breaker in the junction block. If OK, go to Step 2. If not OK, replace the faulty circuit breaker.
- (2) Disconnect and isolate the battery negative cable. Unplug the windshield wiper switch wire harness connector. Connect the battery negative cable. Turn the ignition switch to the On position. Check for battery voltage at the fused ignition switch output circuit cavity of the wiper switch wire harness connector. If OK, go to Step 3. If not OK, repair the open circuit to the junction block as required.
- (3) If the problem being diagnosed involves only the pulse wipe, wipe-after-wash, or intermittent wipe modes, go to Step 4. If not, go to Step 5.
- (4) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Check for continuity between the ground circuit cavity of the wiper switch wire harness connector and a good ground. There should be continuity. If OK, replace the faulty switch. If not OK, repair the open circuit to ground as required.
- (5) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Remove and check the windshield wiper and washer switch continuity as described in this group. If OK, go to Step 6. If not OK, replace the faulty switch.
- (6) Unplug the windshield wiper motor wire harness connector. Check for continuity between the ground circuit cavity in the body half of the wiper motor wire harness connector and a good ground. There should be continuity. If OK, go to Step 7. If not OK, repair the open circuit to ground as required.
- (7) Connect the battery negative cable. Turn the ignition switch to the On position. Check for battery voltage at the fused ignition switch output circuit cavity in the body half of the wiper motor wire harness connector. If OK, go to Step 8. If not OK, repair the open circuit to the junction block as required.

- (8) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. With the windshield wiper and washer switch wire harness connector still unplugged, check the cavities for each of the following circuits in the body half of the wiper motor wire harness connector for continuity to ground. In each case, there should be no continuity. If OK, go to Step 9. If not OK, repair the short circuit as required.
 - Wiper park switch sense
 - Wiper switch low speed output
 - Wiper switch high speed output.
- (9) Check for continuity between the cavities in the body half of the wiper motor wire harness connector and the cavities in the windshield wiper and washer switch wire harness connector for each of the following circuits. In each case, there should be continuity. If OK, replace the faulty wiper motor. If not OK, repair the open circuit as required.
 - Wiper park switch sense
 - Wiper switch low speed output
 - Wiper switch high speed output.

REAR

For circuit descriptions and diagrams, refer to 8W-53 - Wipers in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Check the fuse in the junction block. If OK, go to Step 2. If not OK, repair the shorted circuit or component as required and replace the faulty fuse.
- (2) Disconnect and isolate the battery negative cable. Remove the rear wiper and washer switch and unplug the wire harness connector as described in this group. Connect the battery negative cable. Turn the ignition switch to the On position. Check for battery voltage at the fused ignition switch output circuit cavity of the rear wiper and washer switch wire harness connector. If OK, go to Step 3. If not OK, repair the open circuit to the junction block as required.
- (3) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Check for continuity between the ground circuit cavity of the rear wiper and washer switch wire harness connector and a good ground. There should be continuity. If OK, go to Step 4. If not OK, repair the open circuit to ground as required.

- (4) Test the rear wiper and washer switch as described in this group. If OK, go to Step 5. If not OK, replace the faulty switch.
- (5) Remove the liftgate trim panel and unplug the rear wiper motor wire harness connector. Connect the battery negative cable. Turn the ignition switch to the On position. Check for battery voltage at the fused ignition switch output circuit cavity of the rear wiper motor wire harness connector. If OK, go to Step 6. If not OK, repair the open circuit to the junction block as required.
- (6) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Check for continuity between the ground circuit cavity of the rear wiper motor wire harness connector and a good ground. There should be continuity. If OK, go to Step 7. If not OK, repair the open circuit to ground as required.
- (7) Check for continuity between the rear wiper motor control circuit cavity of the rear wiper motor wire harness connector and a good ground. There should be no continuity. If OK, go to Step 8. If not OK, repair the short circuit as required.
- (8) Check for continuity between the rear wiper motor control circuit cavities of the rear wiper motor wire harness connector and the rear wiper and washer switch wire harness connector. There should be continuity. If OK, replace the faulty rear wiper motor. If not OK, repair the open circuit as required.

WASHER SYSTEM

FRONT

The diagnosis found here addresses an inoperative washer pump. If the washer pump operates, but no washer fluid is emitted from the washer nozzles, be certain to check the fluid level in the reservoir. Check for ice or other foreign material in the reservoir, and for pinched, disconnected, broken, or incorrectly routed washer system plumbing. For circuit descriptions and diagrams, refer to 8W-53 - Wipers in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

(1) Turn the ignition switch to the On position. Turn the wiper switch to the Low or High speed position. Check whether the wipers operate. If OK, go to

Step 2. If not OK, see the Wiper System diagnosis in this group.

- (2) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Unplug the front washer pump wire harness connector. Check for continuity between the ground circuit cavity of the front washer pump wire harness connector and a good ground. There should be continuity. If OK, go to Step 3. If not OK, repair the open circuit to ground as required.
- (3) Connect the battery negative cable. Turn the ignition switch to the On position. Check for battery voltage at the front washer switch output circuit cavity of the front washer pump wire harness connector while actuating the washer switch. If OK, replace the faulty washer pump. If not OK, go to Step 4.
- (4) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Unplug the windshield wiper/washer switch wire harness connector. Check for continuity between the front washer switch output circuit cavity of the front washer pump wire harness connector and a good ground. There should be no continuity. If OK, go to Step 5 If not OK, repair the short circuit as required.
- (5) Check for continuity between the front washer switch output circuit cavities of the front washer pump wire harness connector and the wiper/washer switch wire harness connector. There should be continuity. If OK, replace the faulty switch. If not OK, repair the open circuit as required.

REAR

The diagnosis found here addresses an inoperative washer pump. If the washer pump operates, but no washer fluid is emitted from the washer nozzles, be certain to check the fluid level in the reservoir. Check for ice or other foreign material in the reservoir, and for pinched, disconnected, broken, or incorrectly routed washer system plumbing. For circuit descriptions and diagrams, refer to 8W-53 - Wipers in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

(1) Turn the ignition switch to the On position. Place the rear wiper/washer switch in the Wipe position. Check whether the rear wiper is operating. If OK, go to Step 2. If not OK, see the Wiper System diagnosis in this group.

- (2) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Unplug the rear washer pump wire harness connector. Check for continuity between the ground circuit cavity of the rear washer pump wire harness connector and a good ground. There should be continuity. If OK, go to Step 3. If not OK, repair the open circuit to ground as required.
- (3) Connect the battery negative cable. Turn the ignition switch to the On position. Depress the rear washer switch. Check for battery voltage at the rear washer motor control circuit cavity of the rear washer pump wire harness connector. If OK, replace the faulty pump. If not OK, go to Step 4.
- (4) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Unplug the rear wiper/washer switch wire harness connector. Check for continuity between the rear washer motor control circuit cavity of the rear washer pump wire harness connector and a good ground. There should be no continuity. If OK, go to Step 5. If not OK, repair the short circuit as required.
- (5) Check for continuity between the rear washer motor control circuit cavities of the rear washer pump wire harness connector and the rear wiper/washer switch wire harness connector. There should be continuity. If OK, replace the faulty switch. If not OK, repair the open circuit as required.

WIPER SWITCH AND WASHER SWITCH

FRONT

Perform the diagnosis for the windshield wiper system and/or washer system as described in this group before testing the windshield wiper and washer switch. For circuit descriptions and diagrams, see 8W-53 - Wipers in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable.
- (2) Unplug the windshield wiper and washer switch wire harness connector as described in this group.
- (3) Using an ohmmeter, perform the switch continuity checks at the switch terminals as shown in the

Windshield Wiper and Washer Switch Continuity chart (Fig. 2).

SWITCH POSITION	CONTINUITY BETWEEN
OFF	PIN P2 and PIN L
LOW	PIN P1 and PIN L
HIGH	PIN P1 and PIN H
WASH	PIN P1 and PIN W
INTERMITTENT	CANNOT BE CHECKED

948K-38

Fig. 2 Windshield Wiper and Washer Switch Continuity

(4) If the switch fails any of the continuity checks, replace the faulty switch. If the switch is OK, repair the wiper system and/or washer system wire harness circuits as required.

REAR

Perform the diagnosis for the rear wiper system and/or washer system as described in this group before testing the rear wiper and washer switch. For circuit descriptions and diagrams, see 8W-53 - Wipers in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Remove the rear wiper and washer switch as described in this group.
- (2) Using an ohmmeter, check the switch continuity at the switch terminals as shown in the Rear Wiper and Washer Switch Continuity chart (Fig. 3).
- (3) If the switch fails any of the continuity checks, replace the faulty switch. If the switch is OK, repair the rear wiper system and/or washer system wire harness circuits as required.

SWITCH POSITION	CONTINUITY BETWEEN
OFF	1 AND 4
WIPE	4 AND 5
WASH	2 AND 5, 4 AND 5
ILLUMINATION LAMP	1 AND 3

80a5035e

Fig. 3 Rear Wiper and Washer Switch Continuity
REMOVAL AND INSTALLATION

WIPER BLADE AND ELEMENT

FRONT

NOTE: The notched retainer end of the wiper element should always be oriented towards the end of the wiper blade that is nearest to the wiper pivot.

To remove the windshield wiper blade and/or element, proceed as follows:

- (1) Lift the wiper arm to raise the wiper blade and element off of the windshield glass.
- (2) Remove the wiper blade from the wiper arm, or the wiper element from the wiper blade as follows:
 - (a) To remove the wiper blade from the wiper arm, push the release tab under the arm tip and slide the blade away from the tip towards the pivot end of the arm (Fig. 4).
 - (b) To remove the wiper element from the wiper blade, pinch the notched retainer (pivot) end of the wiper element tightly between the thumb and fore-finger. Then, pull the element firmly towards the wiper pivot until the notched retainer of the wiper element clears the wiper blade claws. Once the notched retainer is released from the claws, the element will slide easily out of the remaining claws.
- (3) Install the wiper blade on the wiper arm, or the wiper element in the wiper blade as follows:
 - (a) To install the wiper blade on the wiper arm, slide the blade retainer into the U-shaped forma-

Fig. 4 Wiper Blade Remove/Install - Typical

tion on the tip of the wiper arm until the release tab snaps into its locked position. Be certain that the notched retainer for the wiper element is oriented towards the end of the wiper blade that is nearest to the wiper pivot.

(b) To install the wiper element in the wiper blade, start at the wiper pivot end of the blade and slide the element through each pair of wiper blade claws. The element is fully installed when the notched retainer on the wiper element is engaged with the claws on the wiper pivot end of the wiper blade.

REAR

NOTE: The notched retainer end of the wiper element should always be oriented towards the end of the wiper blade that is nearest to the wiper pivot.

To remove the rear wiper blade and/or element, proceed as follows:

- (1) Lift the rear wiper arm to raise the wiper blade and element off of the rear window glass.
- (2) Remove the wiper blade from the wiper arm, or the wiper element from the wiper blade as follows:
 - (a) To remove the wiper blade from the wiper arm, push the release tab under the arm tip and slide the blade away from the tip towards the rear wiper motor output shaft end of the arm (Fig. 4).
 - (b) To remove the wiper element from the wiper blade, pinch the notched (pivot) end release clip of the wiper element tightly between the thumb and forefinger. Then, pull the element firmly towards the rear wiper motor output shaft to release the wiper element pinch-release clip from the wiper blade claws. Once the clip is released from the claws, the element will slide easily out of the remaining claws.
- (3) Install the wiper blade on the wiper arm, or the wiper element in the wiper blade as follows:
 - (a) To install the wiper blade on the wiper arm, slide the blade retainer into the U-shaped formation on the tip of the wiper arm until the release tab snaps into its locked position. Be certain that

the pinch-release clip for the wiper element is oriented towards the end of the wiper blade that is nearest to the rear wiper motor output shaft.

(b) To install the wiper element in the wiper blade, start at the rear wiper motor output shaft end of the blade and slide the element through each pair of wiper blade claws. The element is fully installed when the claws on the rear wiper motor output shaft end of the blade are engaged in the wiper element retaining clip notches.

WIPER ARM

FRONT

CAUTION: The use of a screwdriver or other prying tool to remove a wiper arm may distort it. This distortion could allow the arm to come off of the pivot shaft, regardless of how carefully it is installed.

(1) Lift the wiper arm to permit the latch to be pulled out to its holding position, then release the arm (Fig. 5). The arm will remain off the windshield with the latch in this position.

Fig. 5 Wiper Arm Remove/Install

- (2) Remove the arm from the pivot using a rocking motion.
- (3) Install the arm and blade with the wiper motor in the Park position. See the Wiper Arm Installation illustration
- (4) (Fig. 6). Mount the arms on the pivot shafts so that the distance from the lower edge of the wiper arm tip to the upper edge of the lower windshield moulding is:
- \bullet 23 to 52 mm (0.90 to 2.04 inch) on the driver side
- 33 to 62 mm (1.29 to 2.44 inch) on the passenger side.
- (5) Lift the wiper arm away from the windshield slightly to relieve the spring tension on the latch.

J898K-29

Fig. 6 Front Wiper Arm Installation

Push the latch into the locked position and slowly release the arm until the wiper blade rests on the windshield.

(6) Operate the wipers with the windshield glass wet, then turn the wiper switch to the Off position. Check for the correct wiper arm positioning and readjust if required.

REAR

- (1) Disconnect the washer nozzle hose and clip from the external nipple of the rear wiper motor output shaft bezel.
- (2) Lift the wiper arm pivot cover and remove the retaining nut (Fig. 7).

Fig. 7 Rear Wiper Arm Remove/Install

- (3) Remove the wiper arm from the motor output shaft using a rocking motion.
- (4) Install the rear wiper arm with the wiper motor in the Park position. Place the rear wiper blade on the glass so that it is parallel to the liftgate

glass opening, and install the wiper arm retaining nut.

(5) Operate the rear wiper on the wet liftgate glass, then turn the rear wiper switch to the Off position so that the blade moves to the Park position. The tip of the blade should now be from 27 to 35 mm (1.06 to 1.38 inch) above the upper edge of the lower liftgate glass seal (Fig. 8). Check for the correct wiper arm positioning and readjust if required.

80ab5cc2

Fig. 8 Rear Wiper Arm Installation

(6) Tighten the wiper arm retaining nut to 18 $N{\cdot}m$ (160 in. lbs.) and close the pivot cover.

WIPER LINKAGE AND PIVOT

The wiper linkage and pivots module can only be removed from or installed in the vehicle as a unit with the wiper motor. See Wiper Motor in this group for the service procedures.

WIPER MOTOR

FRONT

- (1) Disconnect and isolate the battery negative cable
- (2) Remove the wiper arms as described in this group.
- (3) Remove the eight screws that secure the cowl plenum cover/grille panel and screen to the cowl top panel (Fig. 9).
- (4) Lift the cowl plenum cover/grille panel and screen from the vehicle far enough to access the windshield washer plumbing. Use care so as not to damage the paint around the pivot openings of the panel.
- (5) Disconnect the windshield washer supply hose and the passenger side washer nozzle hose from the washer nozzle hose tee fitting.
- (6) Remove the cowl plenum cover/grille panel and screen from the vehicle.
- (7) Reach into the cowl plenum and unplug the wiper motor wire harness connector.

Fig. 9 Cowl Plenum Cover/Grille Panel Remove/Install

(8) Open the hood and remove the two nuts that secure the studs of the wiper module mounting bracket and grommet to the cowl plenum panel (Fig. 10).

Fig. 10 Wiper Linkage Module Remove/Install

- (9) Remove the four screws near the wiper pivots that secure the wiper module to the cowl plenum panel.
- (10) Remove the wiper module from the cowl plenum as a unit.
- (11) Remove the three screws that secure the wiper motor to the wiper linkage module and remove the motor.
- (12) Reverse the removal procedures to install. Tighten the mounting hardware as follows:
 - Wiper motor mounting screws 4 N·m (35 in. lbs.)
 - Wiper module mounting screws 6 N·m (50 in. lbs.)
- \bullet Wiper module mounting bracket nuts 6 N·m (50 in. lbs.).

REAR

- (1) Disconnect and isolate the battery negative cable.
- (2) From the outside of the liftgate glass, remove the rear wiper arm as described in this group.

(3) Remove the motor output shaft retaining nut (Fig. 11).

Fig. 11 Rear Wiper Motor Remove/Install

- (4) Pull the bezel and seal away from the liftgate far enough to access the washer supply hose.
- (5) Disconnect the washer supply hose from the internal nipple on the bezel.
- (6) Remove the bezel and seal from the motor output shaft.
 - (7) Open the liftgate.
- (8) Using a trim stick or another suitable wide flat-bladed tool, gently pry the two screw cover plugs out of the liftgate assist handle.
- (9) Remove the two screws that secure the liftgate assist handle to the liftgate inner panel (Fig. 12).

Fig. 12 Liftgate Trim Panel Remove/Install

- (10) Remove the eight screws that secure the liftgate trim panel to the liftgate inner panel on both sides and above the liftgate glass.
- (11) Using a trim stick or another suitable wide flat-bladed tool, gently pry the lower edges of the trim panel away from the liftgate inner panel around the perimeter to release the trim panel retainers.

NOTE: To aid in the removal of the trim panel, start at the bottom of the panel.

- (12) Remove the liftgate trim panel from the vehicle.
- (13) Unplug the rear wiper motor wire harness connector.
- (14) Remove the two screws that secure the rear wiper motor mounting bracket to the liftgate inner panel.
- (15) Remove the rear wiper motor and mounting bracket from the liftgate as a unit.
- (16) Reverse the removal procedures to install. Tighten the mounting hardware as follows:
- \bullet Rear wiper motor mounting bracket screws 5 N·m (45 in. lbs.)
- \bullet Rear wiper motor output shaft retaining nut 3 N·m (27 in. lbs.).

WIPER SWITCH AND WASHER SWITCH

FRONT

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the steering column opening cover as described in Group 8E Instrument Panel Systems.
- (3) If the vehicle is so equipped, move the tilt steering column to the fully raised position.
- (4) Insert the key in the ignition lock cylinder and turn the ignition switch to the On position.
- (5) Insert a small screwdriver or pin punch through the access hole in the lower steering column shroud and depress the ignition lock cylinder retaining tumbler (Fig. 13).
- (6) While holding the retaining tumbler depressed, pull the ignition lock cylinder and key out of the ignition lock housing.

Fig. 13 Steering Column Shrouds Remove/Install

- (7) Remove the three screws that secure the lower steering column shroud to the upper shroud.
- (8) If the vehicle is equipped with a standard nontilt steering column, loosen the two upper steering column mounting nuts. If the vehicle is equipped with the optional tilt steering column, move the tilt steering column to the fully lowered position.
- (9) Remove both the upper and lower shrouds from the steering column.
- (10) Remove the two screws that secure the switch water shield and bracket to the top of the steering column (Fig. 14).

Fig. 14 Water Shield Upper Screws Remove/Install

(11) Remove the one screw located below the multi-function switch lever that secures the switch

water shield and bracket to the steering column (Fig. 15).

Fig. 15 Water Shield Lower Screw Remove/Install

- (12) Gently pull the lower mounting tab of the switch water shield bracket away from the steering column far enough to clear the screw boss below the multi-function switch lever.
- (13) Lift the water shield and bracket with the multi-function switch off of the left side of the steering column as a unit and move it out of the way. If the vehicle is equipped with the optional tilt steering column, lifting gently upward on the tilt release lever will provide additional clearance to ease multi-function switch removal.
- (14) Gently pull the windshield wiper and washer switch up and away from the right side of the steering column far enough to access the wire harness connector.
- (15) Unplug the wire harness connector from the windshield wiper and washer switch.
- (16) Remove the windshield wiper and washer switch from the steering column.
 - (17) Reverse the removal procedures to install.

REAR

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable.
- (2) Using a trim stick or another suitable wide flat-bladed tool, gently pry the instrument panel cen-

ter bezel away from the instrument panel to release the six snap clip retainers (Fig. 16).

Fig. 16 Center Bezel Remove/Install

- (3) Remove the center bezel from the vehicle.
- (4) Remove the three screws that secure the accessory switch bezel to the instrument panel (Fig. 17).

Fig. 17 Accessory Switch Bezel Remove/Install

- (5) Pull the accessory switch bezel out from the instrument panel far enough to unplug the wire harness connectors.
- (6) Remove the accessory switch bezel from the instrument panel.
- (7) Carefully pry the snap retainers at the top and bottom of the rear wiper and washer switch receptacle on the back of the accessory switch bezel with a small thin-bladed screwdriver and pull the switch out of the receptacle.

(8) Reverse the removal procedures to install. Be certain that both of the switch snap retainers in the receptacle on the back of the accessory switch bezel are fully engaged. Tighten the mounting screws to $2.2~\mathrm{N\cdot m}$ (20 in. lbs.).

WASHER SYSTEM

WASHER RESERVOIR

- (1) Disconnect and isolate the battery negative cable.
- (2) The washer reservoir filler neck is held in the reservoir by an interference fit. Remove the filler neck from the reservoir using a pulling and twisting action (Fig. 18).

Fig. 18 Washer Reservoir Filler Neck Remove/Install

- (3) Remove the engine air filter housing. Refer to Group 14 Fuel System for the procedures.
- (4) Remove the two screws that secure the reservoir to the inner fender shield (Fig. 19).
 - (5) Raise and support the vehicle.
- (6) Remove the left front inner wheelhouse splash shield. Refer to Group 23 Body for the procedures.
- (7) Remove the washer supply hose(s) from the washer pump(s) and drain the washer fluid from the reservoir into a clean container for reuse.
- (8) Unplug the wire harness connectors from the washer pump(s) and the washer fluid level sensor.
- (9) Slide the reservoir slightly towards the rear of the vehicle to release the two hooks from the inner fender ledge slots.
- (10) Lower the front of the reservoir and slide the unit forward to remove it from the vehicle.
- (11) Reverse the removal procedures to install. Tighten the reservoir mounting screws to 3 N·m (26 in. lbs.).

WASHER PUMP

(1) Disconnect and isolate the battery negative cable.

Fig. 19 Washer Reservoir Remove/Install

- (2) Raise and support the vehicle.
- (3) Remove the left front inner wheelhouse splash shield. Refer to Group 23 Body for the procedures.
- (4) Remove the washer supply hose(s) from the washer pump(s) and drain the washer fluid from the reservoir into a clean container for reuse.
- (5) Unplug the wire harness connectors from the washer pump(s).
- (6) Using a trim stick or another suitable wide flat-bladed tool, gently pry the washer pump out of the rubber grommet seal. Care must be taken not to damage the reservoir.
- (7) Remove the rubber grommet seal from the reservoir and discard.
- (8) Reverse the removal procedures to install. Always use a new rubber grommet seal on the reservoir.

WASHER FLUID LEVEL SENSOR

(1) Remove the washer reservoir as described in this group.

NOTE: The pivoting float of the washer fluid sensor must be in a horizontal position within the reservoir in order to be removed. With the reservoir empty and held in an upright position, the pivoting float will be oriented to the horizontal position when the sensor connector is pointed straight downwards.

(2) Using a trim stick or another suitable wide flat-bladed tool, gently pry the washer fluid level sensor out of the rubber grommet seal. Care must be taken not to damage the reservoir.

- (3) Remove the rubber grommet seal from the reservoir and discard.
- (4) Reverse the removal procedures to install. Always use a new rubber grommet seal on the reservoir.

WASHER NOZZLE

FRONT

- (1) Remove the wiper arms as described in this group.
- (2) Remove the eight screws that secure the cowl plenum cover/grille panel and screen to the cowl top panel (Fig. 20).

Fig. 20 Front Washer Nozzles Remove/Install

- (3) Lift the cowl plenum cover/grille panel and screen from the vehicle far enough to access the windshield washer plumbing. Use care so as not to damage the paint around the pivot openings of the panel.
- (4) Disconnect the windshield washer supply hose and the passenger side washer nozzle hose from the washer nozzle hose tee fitting.
- (5) Remove the cowl plenum cover/grille panel and screen from the vehicle.
- (6) From the underside of the cowl plenum cover/grille panel, disconnect the washer hose from the nozzle fitting.
- (7) From the underside of the cowl plenum cover/grille panel, remove the rivet that secures the nozzle to the opening in the cowl plenum cover/grille panel.
- (8) Remove the washer nozzle from the cowl plenum cover/grille panel.
 - (9) Reverse the removal procedures to install.

REAR

- (1) Unsnap the rear washer nozzle from the rear wiper arm (Fig. 21).
- (2) Disconnect the washer hose from the nozzle fitting.
 - (3) Reverse the removal procedures to install.

Fig. 21 Rear Washer Nozzle Remove/Install

CHECK VALVE

- (1) Remove the four screws that secure the liftgate opening upper garnish moulding to the upper liftgate opening reinforcement.
- (2) Using a trim stick or another suitable widebladed flat tool, gently pry the liftgate opening upper garnish moulding away from the upper liftgate opening reinforcement to release the snap clip retainers.
- (3) Remove the upper liftgate opening garnish moulding from the vehicle.
- (4) Disconnect the liftgate half of the washer supply hose from the check valve.
- (5) Disconnect the body half of the washer supply hose from the check valve.
 - (6) Remove the check valve from the vehicle.
- (7) When reinstalling the check valve, be certain the valve is properly oriented within the system flow (Fig. 22).

Fig. 22 Rear Washer System Check Valve

(8) Reverse the remaining removal procedures to complete the installation.

XJ ------LAMPS 8L - 1

LAMPS

CONTENTS

page	page
HEADLAMP ALIGNMENT 4	LAMP DIAGNOSIS

LAMP DIAGNOSIS

INDEX

page	ра	
GENERAL INFORMATION	DIAGNOSIS AND TESTING	
DAYTIME RUNNING LAMP MODULE 1	DIAGNOSTIC PROCEDURES 2	
GENERAL INFORMATION	FOG LAMP DIAGNOSIS 3	
SAFETY PRECAUTIONS 1	HEADLAMP DELAY MODULE	
SENTINEL HEADLAMP DELAY MODULE 1	HEADLAMP DIAGNOSIS	

GENERAL INFORMATION

GENERAL INFORMATION

Each vehicle is equipped with various lamp assemblies. A good ground is necessary for proper lighting operation. Grounding is provided by the lamp socket when it comes in contact with the metal body, or through a separate ground wire.

When changing lamp bulbs check the socket for corrosion. If corrosion is present, clean it with a wire brush and coat the inside of the socket lightly with Mopar Multi-Purpose Grease or equivalent.

SAFETY PRECAUTIONS

WARNING: EYE PROTECTION SHOULD BE USED WHEN SERVICING GLASS COMPONENTS. PERSONAL INJURY CAN RESULT.

CAUTION: Do not touch the glass of halogen bulbs with fingers or other possibly oily surface, reduced bulb life will result.

Do not use bulbs with higher candle power than indicated in the Bulb Application table at the end of this group. Damage to lamp can result.

Do not use fuses, circuit breakers or relays having greater amperage value than indicated on the fuse panel or in the Owners Manual.

When it is necessary to remove components to service another, it should not be necessary to apply excessive force or bend a component to remove it. Before damaging a trim component, verify hidden fasteners or captured edges are not holding the component in place.

SENTINEL HEADLAMP DELAY MODULE

The Headlamp Module delays the de-activation of the headlamps for 45 \pm 15 seconds after the ignition switch is turned OFF. The driver engages the module by turning the ignition switch OFF, then turning the headlamps OFF.

DAYTIME RUNNING LAMP MODULE

The Daytime Running Lights (Headlamps) System is installed on vehicles manufactured for sale in Canada only. The headlamps are illuminated when the ignition switch is turned to the ON position and the vehicle is put into motion. The DRL module receives a vehicle-moving signal from the vehicle speed sensor. This provides a constant **headlamps-on** condition as long as the vehicle is moving. The lamps are illuminated at approximately 30 percent of normal intensity.

8L - 2 LAMPS — XJ

DIAGNOSIS AND TESTING

DIAGNOSTIC PROCEDURES

When a vehicle experiences problems with the headlamp system, verify the condition of the battery connections, charging system, headlamp bulbs, wire connectors, relay, high beam dimmer switch and headlamp switch. Refer to Group 8W, Wiring Diagrams for component locations and circuit information.

HEADLAMP DIAGNOSIS

Always begin any diagnosis by testing all of the fuses and circuit breakers in the system. Refer to Group 8W, Wiring Diagrams.

Conventional and halogen headlamps are interchangeable. It is recommended that they not be intermixed on a given vehicle.

HEADLAMP DIAGNOSIS

CONDITION	POSSIBLE CAUSES	CORRECTION
HEADLAMPS ARE DIM WITH ENGINE IDLING OR	Loose or corroded battery cables.	Clean and secure battery cable clamps and posts.
IGNITION TURNED OFF.	2. Loose or worn generator drive belt.3. Charging system output too low.	2. Adjust or replace generator drive belt.3. Test and repair charging system, refer to Group 8A
	4. Battery has insufficient charge.	Test battery state-of-charge, refer to Group 8A
	5. Battery is sulfated or shorted.6. Poor lighting circuit Z1-ground.	5. Load test battery, refer to Group 8A. 6. Test for voltage drop across Z1-ground locations, refer to Group 8W.
	7. Both headlamp bulbs defective.	7. Replace both headlamp bulbs.
HEADLAMP BULBS BURN OUT FREQUENTLY.	Charging system output too high.	Test and repair charging system, refer to Group 8A
	Loose or corroded terminals or splices in circuit.	Inspect and repair all connectors and splices, refer to Group 8W.
HEADLAMPS ARE DIM WITH ENGINE RUNNING	Charging system output too low.	Test and repair charging system, refer to Group 8A.
ABOVE IDLE.*	Poor headlamp circuit ground.	Test voltage drop across Z1-ground, refer to Group 8W.
	High resistance in headlamp circuit. Both headlamp bulbs defective.	Test amperage draw of headlamp circuit. Replace both headlamp bulbs.
HEADLAMPS FLASH RANDOMLY.	 Poor headlamp circuit ground. High resistance in headlamp circuit. Faulty headlamp switch circuit breaker. 	 Repair circuit ground, refer to Group 8W. Test amperage draw of headlamp circuit. Replace headlamp switch.
	4. Loose or corroded terminals or splices in circuit.	4. Repair connector terminals or splices, refer to Group 8W.
HEADLAMPS DO NOT ILLUMINATE.	 No voltage to headlamps. No ground at headlamps. Faulty headlamp switch. Faulty headlamp dimmer switch. Broken connector terminal or wire splice in headlamp circuit. 	 Replace fuse, refer to group 8W. Repair circuit ground, refer to Group 8W. Replace headlamp switch. Replace headlamp dimmer switch. Repair connector terminal or wire splices.
* Canada vehicles must hav	e lamps ON.	

XJ ———— LAMPS 8L - 3

DIAGNOSIS AND TESTING (Continued)

FOG LAMP DIAGNOSIS

CONDITION	POSSIBLE CAUSES	CORRECTION
FOG LAMPS ARE DIM WITH ENGINE IDLING OR	Loose or corroded battery cables.	Clean and secure battery cable clamps and posts.
IGNITION TURNED OFF.	2. Loose or worn generator drive belt.3. Charging system output too low.	Adjust or replace generator drive belt. Test and repair charging system, refer to Group 8A
	4. Battery has insufficient charge.	4. Test battery state-of-charge, refer to Group 8A.
	5. Battery is sulfated or shorted.6. Poor lighting circuit Z1-ground.	5. Load test battery, refer to Group 8A 6. Test for voltage drop across Z1-ground locations, refer to Group 8W.
	7. Both fog lamp bulbs defective.	7. Replace both lamp bulbs.
FOG LAMP BULBS BURN OUT FREQUENTLY.	Charging system output too high.	Test and repair charging system, refer to Group 8A.
	Loose or corroded terminals or splices in circuit.	Inspect and repair all connectors and splices, refer to Group 8W.
FOG LAMPS ARE DIM WITH ENGINE RUNNING	Charging system output too low.	Test and repair charging system, refer to Group 8A.
ABOVE IDLE.	2. Poor fog lamp circuit ground.	Test voltage drop across Z1-ground, refer to Group 8W.
	3. High resistance in fog lamp circuit.4. Both fog lamp bulbs defective.	Test amperage draw of fog lamp circuit. Replace both fog lamp bulbs.
FOG LAMPS FLASH RANDOMLY.	 Poor fog lamp circuit ground. High resistance in fog lamp circuit. Faulty fog lamp switch circuit breaker. 	 Repair circuit ground, refer to Group 8W. Test amperage draw of fog lamp circuit. Replace fog lamp switch.
	4. Loose or corroded terminals or splices in circuit.	4. Repair connector terminals or splices, refer to Group 8W.
FOG LAMPS DO NOT ILLUMINATE.	 Blown fuse for fog lamps. No ground at fog lamps. Faulty fog lamp switch. Broken connector terminal or wire splice in fog lamp circuit. 	 Replace fuse, refer to group 8W. Repair circuit ground, refer to Group 8W. Replace fog lamp switch. Repair connector terminal or wire splices.

HEADLAMP DELAY MODULE

DELAY FUNCTION INOPERATIVE

- (1) Ensure headlamps operate before proceeding.
- (2) Remove, inspect and test the HDLP delay 10 amp fuse in junction box. Replace if defective.
- (3) With the key off and the connector disconnected, measure the resistance from the delay module terminal 4 to vehicle body ground. The ohmmeter should indicate zero ohms. If not, repair the open circuit in the wire harness to vehicle body ground.
- (4) With the key on measure the voltage between the delay module terminal 8 and vehicle body ground. The voltmeter should indicate battery voltage. If not, repair the open circuit in the wire harness from ignition switch to HDLP delay module.

- (5) Turn headlamps on and measure voltage at terminal 6. The voltmete should indicate battery voltage. If not repair open circuit between L2 and HDLP delay module.
- (6) Measure the voltage between the delay module terminal 2 and vehicle body ground. The voltmeter should indicate battery voltage. If not, repair the open circuit in the wire harness to the HDLP fuse in the PDC.
- (7) If steps 1 through 6 prove out good, replace headlamp delay module.

HEADLAMP ALIGNMENT

INDEX

page	ρ	aye
GENERAL INFORMATION HEADLAMP ALIGNMENT	SPECIAL TOOLS	. 4
GENERAL INFORMATION	SERVICE PROCEDURES	

HEADLAMP ALIGNMENT

Headlamps can be aligned using the screen method provided in this section. Alignment Tool C-4466-A or equivalent can also be used. Refer to instructions provided with the tool for proper procedures. The preferred headlamp alignment setting is 0 for the left/right adjustment and 1" down for the up/down adjustment.

HEADLAMP ALIGNMENT PREPARATION

- (1) Verify headlamp dimmer switch and high beam indicator operation.
- (2) Correct defective components that could hinder proper headlamp alignment.
 - (3) Verify proper tire inflation.
 - (4) Clean headlamp lenses.
 - (5) Verify that luggage area is not heavily loaded.
- (6) Fuel tank should be FULL. Add 2.94~kg (6.5~lbs.) of weight over the fuel tank for each estimated gallon of missing fuel.

Fig. 1 Headlamp Alignment Screen—Typical

SERVICE PROCEDURES (Continued)

ALIGNMENT SCREEN PREPARATION

- (1) Position vehicle on a level surface perpendicular to a flat wall 7.62 meters (25 ft) away from front of headlamp lens (Fig. 1).
- (2) If necessary, tape a line on the floor 7.62 meters (25 ft) away from and parallel to the wall.
- (3) Measure from the floor up 1.27 meters (5 ft) and tape a line on the wall at the centerline of the vehicle. Sight along the centerline of the vehicle (from rear of vehicle forward) to verify accuracy of the line placement.
- (4) Rock vehicle side-to-side three times to allow suspension to stabilize.
- (5) Jounce front suspension three times by pushing downward on front bumper and releasing.
- (6) Measure the distance from the center of headlamp lens to the floor. Transfer measurement to the alignment screen (with tape). Use this line for up/down adjustment reference.
- (7) Measure distance from the centerline of the vehicle to the center of each headlamp being aligned. Transfer measurements to screen (with tape) to each side of vehicle centerline. Use these lines for left/right adjustment reference.

HEADLAMP ADJUSTMENT

A properly aimed low beam will project the top edge of high intensity pattern on the screen from 50 mm (2 in.) above to 50 mm (2 in.) below headlamp centerline. The side-to-side left edge of high intensity pattern should be from 50 mm (2 in.) left to 50 mm (2 in.) right of headlamp centerline). The preferred headlamp alignment is 0 for the left/right adjustment and 1" down for the up/down adjustment. The high beams on a vehicle with dual headlamps cannot be aligned. The high beam pattern should be correct when the low beams are aligned properly.

- (1) Remove screws and both headlamp bezels.
- (2) Clean front of the headlamps.
- (3) Place headlamps on LOW beam.
- (4) Cover front of the headlamp that is not being adjusted.
- (5) Turn vertical adjustment screw (Fig. 2) until the headlamp beam pattern on screen/wall is similar to the pattern depicted in the alignment screen figure.

Fig. 2 Headlamp Beam Adjustment Screws

NOTE: When using a headlamp aiming screen:

- Adjust the headlamps so that the beam horizontal position is at 0.
- Adjust the beam vertical position is 25 mm (1 in) downward from the lamp horizontal centerline.
- (6) Rotate the horizontal adjustment screw until the headlamp beam pattern on the aiming screen/wall similar to the pattern in the alignment screen figure.
- (7) Cover front of the headlamp that has been adjusted and adjust the other headlamp beam as instructed above.
- (8) Install headlamp bezels. Tighten the screws securely.

8L - 6 LAMPS — XJ

SERVICE PROCEDURES (Continued)

Fig. 3 Fog Lamp Alignment —Typical

FOG LAMP ADJUSTMENT

Prepare an alignment screen. Refer to Alignment Screen Preparation paragraph in this section. A properly aligned fog lamp will project a pattern on the alignment screen 100 mm (4 in.) below the fog lamp centerline and straight ahead (Fig. 3).

Rotate the adjustment screw to adjust beam height (Fig. 4).

Fig. 4 Fog Lamp Adjustment

SPECIAL TOOLS

HEADLAMP ALIGNMENT

Headlamp Aiming Kit C-4466-A

XJ ------LAMPS 8L - 7

LAMP BULB SERVICE

INDEX

page

1 - 3 -	r - 3 -
REMOVAL AND INSTALLATION BACK-UP/REAR TURN SIGNAL/TAIL LAMP	FRONT PARK/TURN SIGNAL LAMP BULB 7 HEADLAMP BULB 7
BULB 8	LICENSE PLATE LAMP BULB 8
CENTER HIGH MOUNTED STOP LAMP (CHMSL) BULB 8	MAP READING LAMP BULB
DOME LAMP BULB 9 FOG LAMP BULB 7	

REMOVAL AND INSTALLATION

HEADLAMP BULB

REMOVAL

(1) Remove the screws attaching the bezel to the grille opening panel (Fig. 1).

Fig. 1 Headlamp Bezel

- (2) Remove the screws attaching the retaining ring to the headlamp bucket.
- (3) Disconnect the headlamp bulb wire harness connector.
 - (4) Separate the bulb from the vehicle.

INSTALLATION

- (1) Connect wire harness connector.
- (2) Position bulb in bucket.
- (3) Position retaining ring on headlamp bulb and install screws.
 - (4) Install headlamp bezel.

FOG LAMP BULB

REMOVAL

(1) Remove the screws attaching the access cover to the bottom of the fog lamp (Fig. 2).

page

- (2) Remove spring clip securing bulb to fog lamp.
- (3) Disconnect wire connectors at bulb.
- (4) Remove bulb element from fog lamp.

Fig. 2 Fog Lamp Components

INSTALLATION

CAUTION: Do not touch the bulb glass with fingers or other oily surfaces. Reduced bulb life will result.

- (1) Position bulb element in fog lamp.
- (2) Connect wire connectors at bulb.
- (3) Install spring clip securing bulb to fog lamp.
- (4) Install screws attaching the access cover to the bottom of the fog lamp.

FRONT PARK/TURN SIGNAL LAMP BULB

REMOVAL

(1) Remove headlamp bezel.

- (2) Remove screws attaching park/turn signal lamp to grille opening panel.
- (3) Rotate bulb socket one-third turn and remove it from lamp (Fig. 3).
 - (4) Remove bulb from socket.

Fig. 3 Park/Turn Signal Lamp Bulb

INSTALLATION

- (1) Install bulb in socket.
- (2) Install socket in lamp.
- (3) Install park/turn signal lamp.
- (4) Install headlamp bezel.

SIDE MARKER LAMP BULB

REMOVAL

- (1) Remove side marker lamp.
- (2) Remove bulb and socket from back side of lamp housing (Fig. 4).
 - (3) Remove bulb from socket.

Fig. 4 Side Marker Lamp

INSTALLATION

(1) Install bulb in socket.

- (2) Install bulb and socket in back of side marker lamp.
 - (3) Install side marker lamp.

BACK-UP/REAR TURN SIGNAL/TAIL LAMP BULB

RFMOVAL

- (1) Remove tail lamp.
- (2) Rotate bulb socket one-third turn and remove bulb socket from lamp (Fig. 5).
 - (3) Remove bulb from socket.

Fig. 5 Bulb Socket Removal

INSTALLATION

- (1) Install bulb in socket.
- (2) Install bulb and socket in lamp.
- (3) Install lamp.

LICENSE PLATE LAMP BULB

REMOVAL

- (1) Remove screws attaching license plate lamp to liftgate.
 - (2) Remove bulb from lamp socket.

INSTALLATION

- (1) Install a replacement bulb in lamp socket.
- (2) Install screws attaching license plate lamp to liftgate.

CENTER HIGH MOUNTED STOP LAMP (CHMSL) BULB

REMOVAL

- (1) Remove the screws attaching the lamp housing to the liftgate.
- (2) Rotate bulb socket 1/4 turn and pull from housing (Fig. 6).
 - (3) Grasp bulb and pull from socket.

Fig. 6 CHMSL Bulb

INSTALLATION

- (1) Push bulb into socket.
- (2) Position socket in lamp and rotate 1/4 turn.
- (3) Install the screws attaching the lamp housing to the liftgate.

UNDERHOOD LAMP BULB

REMOVAL

- (1) Disconnect the wire harness connector from the underhood lamp.
- (2) Rotate the bulb counterclock-wise. Remove it from the lamp socket.

INSTALLATION

- (1) Insert the replacement bulb in the lamp base socket. Rotate it clockwise.
- (2) Connect the wire harness connector to the lamp.

DOME LAMP BULB

REMOVAL

- (1) Remove the dome lamp lens by squeezing it at both sides. This will separate the lens retainer tabs from the lamp housing shoulders.
- (2) Pull the lens downward to remove it from the lamp housing.
 - (3) Grasp bulb and pull from lamp.

INSTALLATION

(1) Position bulb in lamp and snap into place.

(2) Position the lens at the lamp housing and force it upward into the housing until the retainer tabs are seated on the lamp housing shoulders.

MAP READING LAMP BULB

RFMOVAL

- (1) Insert a flat blade screwdriver in slot at front of lens (Fig. 7).
- (2) Rotate the screwdriver until lens snaps out of the housing.
 - (3) Remove lens from housing.
 - (4) Remove bulb from terminals.

Fig. 7 Reading Lamp Bulb

INSTALLATION

- (1) Insert bulb into reading lamp terminals.
- (2) Replace lens by holding lens level and pushing rearward into housing.
 - (3) Push lens up to snap into housing.

VISOR VANITY LAMP BULB

REMOVAL

- (1) Using a small flat blade, carefully pry each corner of lens outward from lamp.
 - (2) Separate lens from lamp.
 - (3) Grasp bulb and pull outward.

- (1) Position bulb in socket and push into place.
- (2) Position lens on lamp and snap into place.

8L - 10 LAMPS — XJ

LAMP SERVICE

INDEX

page	page
REMOVAL AND INSTALLATION	HEADLAMP 10
BACK-UP/REAR TURN SIGNAL/TAIL LAMP 11	LICENSE PLATE LAMP 12
CENTER HIGH MOUNTED STOP LAMP	MAP/READING LAMP
(CHMSL) 11	SIDE MARKER LAMP 11
DOME LAMP 12	UNDERHOOD LAMP 12
FOG LAMP 10	VISOR VANITY LAMP 13
FRONT PARK/TURN SIGNAL LAMP 10	

REMOVAL AND INSTALLATION

HEADLAMP

REMOVAL

- (1) Remove the screws attaching the bezel to the grille opening panel
- (2) Remove the screws attaching the retaining ring to the headlamp bucket.
- (3) Disconnect the headlamp bulb wire harness connector.
 - (4) Separate the bulb from the vehicle.
- (5) Remove the spring attaching the headlamp bucket to the grille opening panel (Fig. 1).
- (6) Slide the headlamp bucket downward to disengage it from the headlamp adjusting screws.

Fig. 1 Headlamp

INSTALLATION

- (1) Position the headlamp bucket in the grille opening panel and slide the headlamp bucket upward to engage it with the headlamp adjusting screws.
- (2) Install the spring attaching the headlamp bucket to the grille opening panel.

- (3) Connect the wire harness connector.
- (4) Position the bulb in the bucket.
- (5) Position retaining ring on the headlamp bulb and install screws.
 - (6) Install the headlamp bezel.

FOG LAMP

REMOVAL

- (1) Disconnect the fog lamp wire harness connector.
- (2) Remove the screws attaching the fog lamp to the support (Fig. 2).
 - (3) Separate the fog lamp from the vehicle.

Fig. 2 Fog Lamp

INSTALLATION

- (1) Position the fog lamp in the support bracket and install the screws.
 - (2) Connect the fog lamp wire harness connector.

FRONT PARK/TURN SIGNAL LAMP

REMOVAL

(1) Remove the headlamp bezel.

- (2) Remove the screws attaching the park/turn signal lamp housing to the grille opening panel (Fig. 3).
- (3) Remove the bulb sockets and separate from the vehicle.

Fig. 3 Park/Turn Signal Lamp

INSTALLATION

- (1) Install bulbs and sockets in the lamp housing.
- (2) Position the park/turn signal lamp housing on the grille opening panel and install the screws.
 - (3) Install the headlamp bezel.

SIDE MARKER LAMP

REMOVAL

- (1) Remove screws attaching side marker lamp lens to grille opening panel (Fig. 4).
- (2) Remove bulb and socket from back side of lamp.

Fig. 4 Side Marker Lamp

INSTALLATION

(1) Install bulb and socket in back of side marker lamp.

(2) Install side marker lamp in grille opening panel.

BACK-UP/REAR TURN SIGNAL/TAIL LAMP

REMOVAL

- (1) Open the liftgate.
- (2) Remove the bolts attaching the tail lamp housing to the quarter panel (Fig. 5).
- (3) Grasp the lamp and pull to disengage it from the grommet at the base of the lamp.
- (4) Rotate the bulb sockets one-third turn and remove the bulb sockets from the lamp housing.

Fig. 5 Tail Lamp

INSTALLATION

- (1) Install the bulb and sockets in the lamp housing.
- (2) Position the lamp housing in the quarter panel and push to engage the grommet.
- (3) Install the lamp housing screws. Tighten the screws securely.
- (4) Install the bolts attaching the tail lamp housing to the quarter panel.
 - (5) Close the liftgate.

CENTER HIGH MOUNTED STOP LAMP (CHMSL)

REMOVAL

- (1) Remove the screws attaching the CHMSL to the liftgate (Fig. 6).
 - (2) Disconnect the wire harness connector.
 - (3) Separate the CHMSL from the vehicle.

- (1) Connect the wire harness connector.
- (2) Position the CHMSL on the liftgate.
- (3) Install the screws attaching the CHMSL to the liftgate.

Fig. 6 Center High Mounted Stop lamp

LICENSE PLATE LAMP

REMOVAL

- (1) Remove screws attaching the license plate lamp to the liftgate.
 - (2) Remove the bulb from the lamp socket.

INSTALLATION

- (1) Install bulb in the lamp socket.
- (2) Position the license plate lamp on the liftgate and install screws.

UNDERHOOD LAMP

The underhood lamp is installed on the hood inner panel. The lamp illuminates when the hood is opened. The liquid ON/OFF switch that is integral with the lamp base controls the operation. The switch provides automatic ON/OFF functions each time the hood is opened and closed.

REMOVAL

- (1) Disconnect the wire harness connector from the lamp.
- (2) Rotate the bulb counterclock-wise. Remove it from the lamp base socket.
- (3) Remove the screw that attaches the lamp reflector and support bracket (Fig. 7).
 - (4) Remove the lamp from the hood inner panel.

INSTALLATION

- (1) Position the underhood lamp on the hood inner panel.
- (2) Install the screw through the lamp and into the hood panel. Tighten the screw securely.
- (3) Insert a replacement bulb in the lamp base socket. Rotate it clockwise.
- (4) Connect the wire harness connector to the lamp.

Fig. 7 Underhood Lamp

DOME LAMP

REMOVAL

- (1) Remove the dome lamp lens by squeezing it at both sides. This will separate the lens retainer tabs from the lamp housing shoulders.
- (2) Pull the lens downward to remove it from the lamp housing.
- (3) Remove the fasteners attaching the lamp to the roof (Fig. 8).

Fig. 8 Dome Lamp

- (4) Disconnect the wire harness connector.
- (5) Remove the lamp housing from the headliner cavity.

- (1) Position the dome lamp housing at the headliner cavity.
 - (2) Connect the wire harness connector.
- (3) Install the fasteners attaching the lamp to the roof.

REMOVAL AND INSTALLATION (Continued)

(4) Position the lens at the lamp housing and force it upward into the housing until the retainer tabs are seated on the lamp housing shoulders.

MAP/READING LAMP

The map/reading lamp can be serviced by removing the overhead console. Refer to Group 8C, Overhead Console for removal/installation procedures.

VISOR VANITY LAMP

REMOVAL

(1) Fold down sunvisor.

- (2) Starting at the base of the lamp assembly and working right-to-left, use a small flat blade, carefully pry lamp from visor.
- (3) Disconnect visor lamp wire connector and remove from vehicle.

- (1) Position visor lamp at visor and connect visor lamp wire connector.
- (2) Position visor lamp in visor and press into place.

8L - 14 LAMPS — XJ

LAMP SYSTEMS

INDEX

p:	age		pa	age
REMOVAL AND INSTALLATION DAYTIME RUNNING LAMP MODULE	14	SENTINEL HEADLAMP DELAY MODULE		14

REMOVAL AND INSTALLATION

SENTINEL HEADLAMP DELAY MODULE

REMOVAL

- (1) Remove the knee blocker.
- (2) Remove the screw that attaches the module to the inside of the instrument panel (Fig. 1).
- (3) Disconnect the wire harness connector and remove the module from the instrument panel.

Fig. 1 Headlamp Delay Module

INSTALLATION

- (1) Position the module inside the I/P and connect the wire harness connector to the module.
- (2) Install the screw that attaches the module to the inside of the instrument panel.
 - (3) Install the knee blocker.

DAYTIME RUNNING LAMP MODULE

REMOVAL

The Daytime Running Lights (DRL) module is located on the right fender inner panel adjacent to the dash panel (Fig. 2).

Fig. 2 Daytime Running Lamp Module

- (1) Disconnect the wire harness connector from the module.
- (2) Remove the screws that attach the module to the fender inner panel.
- (3) Remove the module from the fender inner panel.

- (1) Position the module on the right fender inner panel.
- (2) Install the attaching screws. Tighten the screws securely.
- (3) Connect the wire harness connector to the module.

XJ ————— LAMPS 8L - 15

BULB APPLICATION

INDEX

page	page
GENERAL INFORMATION GENERAL INFORMATION	INTERIOR LAMPS
GENERAL INFORMATION The following Bulb Application Tables lists the lamp title on the left side of the column and trade number or part number on the right. CAUTION: Do not use bulbs that have a higher candle power than the bulb listed in the Bulb Application Table. Damage to lamp can result. Do not touch halogen bulbs with fingers or other oily surfaces. Bulb life will be reduced.	LAMP Dome/Reading 906 Glove Compartment 194 Overhead Console 912 Under Hood 105 Vanity Mirror 74 Underpanel Courtesy 168 INDICATOR LAMPS Service procedures for most of the lamps in the instrument panel, instrument cluster and switches are located in Group 8E, Instrument Panel and Gauges.
SPECIFICATIONS EXTERIOR LAMPS LAMP BULB Back-up	LAMP BULB A/C Control 74 Airbag 74 Anti-lock Brake 74 Brake Warning 74 Check Engine 74 Check Gauges 74 Cigar Lighter 53 Coolant Town High 104
Front Side Marker	Coolant Temp High 194 Cruise 74 Fasten Seat Belts 74 Four Wheel Drive 74 Generator 194 Heater Control 74 High Beam 74
INTERIOR LAMPS Service procedures for most of the lamps in the instrument panel, Instrument cluster and switches are located in Group 8E, Instrument Panel and Gauges. Some components have lamps that can only be serviced by an Authorized Service Center (ASC) after the component is removed from the vehicle. Contact local dealer for location of nearest ASC.	Illumination 103 Low Fuel 74 Low Oil Pressure 194 Low Washer Fluid 74 Radio ASC Security 74 Transfer Case 658 Transmission Floor Shift 658 Turn Signal 74
LAMP BULB	Upshift

222

PASSIVE RESTRAINT SYSTEMS

CONTENTS

2222

page	page	,
GENERAL INFORMATION		ļ
INTRODUCTION 1	REMOVAL AND INSTALLATION	
DESCRIPTION AND OPERATION	AIRBAG CONTROL MODULE 8	3
AIRBAG CONTROL MODULE 3	AIRBAG MODULE 5	,
AIRBAG MODULE 2	CLOCKSPRING 9)
CLOCKSPRING 3	DRIVER SIDE AIRBAG TRIM COVER AND	
IMPACT SENSOR 3	HORN SWITCH 6	ì
DIAGNOSIS AND TESTING	PASSENGER SIDE AIRBAG DOOR 7	,
AIRBAG SYSTEM 3		
SERVICE PROCEDURES	CLOCKSPRING CENTERING 10)
AIRBAG SYSTEM 4		

GENERAL INFORMATION

INTRODUCTION

A dual front airbag system is a standard equipment safety feature on this model. The system includes an inflatable airbag module in the center of the steering wheel, and a second inflatable airbag module in the instrument panel above the glove box. This system is designed to reduce serious injuries to the driver and front seat passenger during a frontal impact of the vehicle.

To test this passive restraint system, refer to the proper Diagnostic Procedures manual. If an airbag module assembly is defective and non-deployed, refer to the Chrysler Corporation current parts return list in the Warranty Policies and Procedures manual for the proper handling procedures.

Following are general descriptions of the major components in the airbag system. Refer to 8W-43 - Airbag System in Group 8W - Wiring Diagrams for complete circuit descriptions and diagrams.

NOTE: This group covers both Left-Hand Drive (LHD) and Right-Hand Drive (RHD) versions of this model. Whenever required and feasible, the RHD versions of affected vehicle components have been constructed as mirror-image of the LHD versions. While most of the illustrations used in this group represent only the LHD version, the diagnostic and service procedures outlined can generally be applied to either version. Exceptions to this rule have been clearly identified as LHD or RHD, if a special illustration or procedure is required.

GENERAL INFORMATION (Continued)

WARNING:

- THE AIRBAG SYSTEM IS A SENSITIVE, COMPLEX ELECTROMECHANICAL UNIT. BEFORE ATTEMPTING TO DIAGNOSE OR SERVICE ANY AIRBAG SYSTEM OR RELATED STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENTS YOU MUST FIRST DISCONNECT AND ISOLATE THE BATTERY NEGATIVE (GROUND) CABLE. THEN WAIT TWO MINUTES FOR THE SYSTEM CAPACITOR TO DISCHARGE BEFORE FURTHER SYSTEM SERVICE. THIS IS THE ONLY SURE WAY TO DISABLE THE AIRBAG SYSTEM. FAILURE TO DO THIS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.
- THE AIRBAG MODULE INFLATOR ASSEMBLY CONTAINS SODIUM AZIDE AND **POTASSIUM** NITRATE. THESE MATERIALS ARE POISONOUS AND EXTREMELY FLAMMABLE. CONTACT WITH ACID. WATER. OR HEAVY METALS MAY PRODUCE (SODIUM HARMFUL AND IRRITATING GASES HYDROXIDE IS FORMED IN THE PRESENCE OF MOISTURE) OR COMBUSTIBLE COMPOUNDS. IN ADDITION, THE PASSENGER AIRBAG MODULE CONTAINS ARGON GAS PRESSURIZED TO OVER 2500 PSI. DO NOT ATTEMPT TO DISMANTLE AN AIRBAG MODULE OR TAMPER WITH ITS INFLA-TOR. DO NOT PUNCTURE, INCINERATE, OR BRING INTO CONTACT WITH ELECTRICITY. DO NOT STORE AT TEMPERATURES EXCEEDING 93° C (200° F).
- REPLACE AIRBAG SYSTEM COMPONENTS ONLY WITH PARTS SPECIFIED IN THE CHRYSLER MOPAR PARTS CATALOG. SUBSTITUTE PARTS MAY APPEAR INTERCHANGEABLE, BUT INTERNAL DIFFERENCES MAY RESULT IN INFERIOR OCCUPANT PROTECTION.
- THE FASTENERS, SCREWS, AND BOLTS ORIGINALLY USED FOR THE AIRBAG SYSTEM COMPONENTS HAVE SPECIAL COATINGS AND ARE SPECIFICALLY DESIGNED FOR THE AIRBAG SYSTEM. THEY MUST NEVER BE REPLACED WITH ANY SUBSTITUTES. ANY TIME A NEW FASTENER IS NEEDED, REPLACE IT WITH THE CORRECT FASTENERS PROVIDED IN THE SERVICE PACKAGE OR SPECIFIED IN THE CHRYSLER MOPAR PARTS CATALOG.
- WHEN A STEERING COLUMN HAS AN AIRBAG MODULE ATTACHED, NEVER PLACE THE COLUMN ON THE FLOOR OR ANY OTHER SURFACE WITH THE STEERING WHEEL OR AIRBAG MODULE FACE DOWN.

DESCRIPTION AND OPERATION

AIRBAG MODULE

DRIVER SIDE

The airbag module protective trim cover is the most visible part of the driver side airbag system. The module is mounted directly to the steering wheel. Located under the airbag module trim cover are the horn switch, the airbag cushion, and the airbag cushion supporting components. The airbag module includes a housing to which the cushion and inflator are attached and sealed. The airbag module cannot be repaired, and must be replaced if deployed or in any way damaged.

The inflator assembly is mounted to the back of the airbag module. The inflator seals the hole in the airbag cushion so it can discharge the gas it produces directly into the cushion when supplied with the proper electrical signal. The protective trim cover is fitted to the front of the airbag module and forms a decorative cover in the center of the steering wheel. Upon airbag deployment, this cover will split at a predetermined breakout line.

PASSENGER SIDE

The airbag door on the instrument panel above the glove box is the most visible part of the passenger side airbag system. Located under the airbag door are the airbag cushion and its supporting components. The airbag module includes a housing to which the cushion and inflator are attached and sealed. The airbag module cannot be repaired, and must be replaced if deployed or in any way damaged.

The inflator assembly is mounted to the back of the airbag module. The inflator seals the hole in the airbag cushion so it can discharge the gas it produces directly into the cushion when supplied with the proper electrical signal. The airbag door is secured to the airbag module and the instrument panel base, and has predetermined breakout lines concealed beneath its decorative cover. Upon airbag deployment, the airbag door will split at the breakout lines and the door will pivot out of the way.

The airbag module is secured with screws at the bottom to the instrument panel base above the glove box opening, and at the top to the instrument panel base underneath the instrument panel top cover. The airbag module and airbag door are available as separate service items. Following an airbag deployment, the airbag module and airbag door must be replaced.

STORAGE

An airbag module must be stored in its original, special container until used for service. Also, it must be stored in a clean, dry environment; away from sources of extreme heat, sparks, and high electrical

DESCRIPTION AND OPERATION (Continued)

energy. Always place or store an airbag module on a surface with its trim cover or airbag side facing up, to minimize movement in case of an accidental deployment.

IMPACT SENSOR

The impact sensor provides verification of the direction and severity of an impact. One impact sensor is used. It is located inside the Airbag Control Module (ACM), which is secured to a bracket under the left side front bucket seat inside the vehicle.

The impact sensor is an accelerometer that senses the rate of deceleration. The microprocessor in the ACM monitors the impact sensor signal. A pre-programmed decision algorithm in the microprocessor determines when the deceleration rate indicates an impact is severe enough to require airbag system protection. When the programmed conditions are met, the ACM sends an electrical signal to deploy the airbag system components.

The impact sensor is calibrated for the specific vehicle. The sensor is only serviced as a unit with the ACM. The sensor cannot be repaired or adjusted and, if faulty or damaged, the ACM unit must be replaced.

CLOCKSPRING

The clockspring is mounted on the steering column behind the steering wheel. This assembly consists of a plastic housing which contains a flat, ribbon-like, electrically conductive tape that winds and unwinds with the steering wheel rotation.

The clockspring is used to maintain a continuous electrical circuit between the wire harness and the driver side airbag module, the horn switch, and the vehicle speed control switches on vehicles that are so equipped.

The clockspring must be properly centered when it is installed on the steering column following any service removal, or it will be damaged. See the Clockspring Centering procedure in this group for more information.

The clockspring cannot be repaired. If the clockspring is faulty, damaged, or if the airbag has been deployed, the clockspring must be replaced.

AIRBAG CONTROL MODULE

The Airbag Control Module (ACM) contains the impact sensor, and a microprocessor that monitors the impact sensor and the airbag system electrical circuits to determine the system readiness. The ACM contains On-Board Diagnostics (OBD), and will send an airbag lamp-on message to the instrument cluster on the Chrysler Collision Detection (CCD) data bus to light the airbag indicator lamp in the instrument cluster when a monitored airbag system fault occurs.

The ACM also contains an energy-storage capacitor. This capacitor stores enough electrical energy to deploy the airbags for up to one second following a battery disconnect or failure during an impact. The purpose of the capacitor is to provide airbag system protection in a severe secondary impact, if the initial impact has damaged or disconnected the battery, but was not severe enough to deploy the airbags.

The ACM cannot be repaired and, if damaged or faulty, it must be replaced.

DIAGNOSIS AND TESTING

AIRBAG SYSTEM

A DRB scan tool is required for diagnosis of the airbag system. Refer to the proper Diagnostic Procedures manual for more information.

- (1) Disconnect and isolate the battery negative cable. If the airbag has not been deployed, wait two minutes for the system capacitor to discharge before further service.
- (2) Connect the DRB scan tool to the 16-way data link wire harness connector. The connector is located on the driver side lower edge of the instrument panel, outboard of the steering column (Fig. 1).

Fig. 1 16-Way Data Link Connector - Typical

- (3) Turn the ignition switch to the On position. Exit the vehicle with the DRB. Use the latest version of the proper DRB cartridge.
- (4) After checking that nobody is inside the vehicle, reconnect the battery negative cable.
- (5) Using the DRB, read and record the active Diagnostic Trouble Code (DTC) data.

- (6) Read and record any stored DTC data.
- (7) Refer to the proper Diagnostic Procedures manual, if any DTC is found in Step 5 or Step 6.
- (8) Erase the stored DTC data. If any problems remain, the stored DTC data will not erase.
- (9) With the ignition switch still in the On position, make sure nobody is in the vehicle.
- (10) From outside of the vehicle (away from the airbag modules in case of an accidental deployment) turn the ignition switch to the Off position for about ten seconds, and then back to the On position. Observe the airbag indicator lamp in the instrument cluster. It should light for six to eight seconds, and then go out. This indicates that the airbag system is functioning normally.

NOTE: If the airbag indicator lamp fails to light, or lights and stays on, there is an airbag system malfunction. Refer to the proper Diagnostic Procedures manual to diagnose the problem.

SERVICE PROCEDURES

AIRBAG SYSTEM

NON-DEPLOYED

At no time should any source of electricity be permitted near the inflator on the back of an airbag module. When carrying a non-deployed airbag module, the trim cover or airbag side of the module should be pointed away from the body to minimize injury in the event of an accidental deployment. If the module is placed on a bench or any other surface, the trim cover or airbag side of the module should be face up to minimize movement in the event of an accidental deployment.

In addition, the airbag system should be disarmed whenever any steering wheel, steering column, or instrument panel components require diagnosis or service. Failure to observe this warning could result in accidental airbag deployment and possible personal injury. Refer to Group 8E - Instrument Panel Systems for additional service procedures on the instrument panel. Refer to Group 19 - Steering for additional service procedures on the steering wheel and steering column.

DEPLOYED

Any vehicle which is to be returned to use after an airbag deployment, must have both airbag modules, and the clockspring replaced. These components will be damaged or weakened as a result of an airbag deployment, which may or may not be obvious during a visual inspection, and are not intended for reuse.

Other vehicle components should be closely inspected, but are to be replaced only as required by the extent of the visible damage incurred.

CLEANUP PROCEDURE

Following an airbag system deployment, the vehicle interior will contain a powdery residue. This residue is primarily sodium bicarbonate (baking soda), used as an airbag cushion lubricant. However, there will also be traces of sodium hydroxide powder, a chemical by-product of the generant used for airbag deployment. Since this powder can irritate the skin, eyes, nose, or throat, be sure to wear safety glasses, rubber gloves, and a long-sleeved shirt during cleanup (Fig. 2).

Fig. 2 Wear Safety Glasses and Rubber Gloves

WARNING: IF YOU EXPERIENCE SKIN IRRITATION DURING CLEANUP, RUN COOL WATER OVER THE AFFECTED AREA. ALSO, IF YOU EXPERIENCE IRRITATION OF THE NOSE OR THROAT, EXIT THE VEHICLE FOR FRESH AIR UNTIL THE IRRITATION CEASES. IF IRRITATION CONTINUES, SEE A PHYSICIAN.

Begin the cleanup by removing the airbag modules from the vehicle as described in this group.

Use a vacuum cleaner to remove any residual powder from the vehicle interior. Clean from outside the vehicle and work your way inside, so that you avoid kneeling or sitting on a non-cleaned area.

Be sure to vacuum the heater and air conditioning outlets as well (Fig. 3). Run the heater and air conditioning blower on the lowest speed setting and vacuum any powder expelled from the outlets. You may need to vacuum the interior of the vehicle a second time to recover all of the powder.

Place the deployed airbag modules in your vehicular scrap pile.

Fig. 3 Vacuum Heater and A/C Outlets REMOVAL AND INSTALLATION

AIRBAG MODULE

WARNING:

- THE AIRBAG SYSTEM IS A SENSITIVE, COM-PLEX ELECTROMECHANICAL UNIT. **BEFORE** ATTEMPTING TO DIAGNOSE OR SERVICE ANY AIR-BAG SYSTEM OR RELATED STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENTS YOU MUST FIRST DISCONNECT AND ISOLATE THE BATTERY NEGATIVE (GROUND) CABLE. THEN WAIT TWO MINUTES FOR THE SYS-TEM CAPACITOR TO DISCHARGE BEFORE FUR-THER SYSTEM SERVICE. THIS IS THE ONLY SURE WAY TO DISABLE THE AIRBAG SYSTEM. FAILURE TO DO THIS COULD RESULT IN ACCIDENTAL AIR-BAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.
- WHEN REMOVING A DEPLOYED AIRBAG MODULE, RUBBER GLOVES, EYE PROTECTION, AND A LONG-SLEEVED SHIRT SHOULD BE WORN. THERE MAY BE DEPOSITS ON THE AIRBAG MOD-**ULE AND OTHER INTERIOR SURFACES. IN LARGE** DOSES, THESE DEPOSITS MAY CAUSE IRRITATION TO THE SKIN AND EYES.

DRIVER SIDE

- (1) Disconnect and isolate the battery negative cable. If the airbag module has not been deployed, wait two minutes for the system capacitor to discharge before further service.
- (2) From the underside of the steering wheel, remove the two screws that secure the driver side airbag module to the steering wheel (Fig. 4).
- (3) Pull the airbag module away from the steering wheel far enough to access the wire harness connectors on the back of the airbag module.

Fig. 4 Driver Side Airbag Module Remove/Install

- (4) Unplug the airbag module and horn switch wire harness connectors from the back of the airbag
- (5) Remove the driver side airbag module from the vehicle.
- (6) If the airbag has been deployed, see the procedure for replacing the clockspring in this group.
- (7) When installing the airbag module, connect the clockspring wire harness connector to the module by pressing straight in on the connector. Be certain that the connector is fully engaged by observing the latching clip arms on the top of the connector.
- (8) Install the two airbag module mounting screws and tighten to 10.2 N·m (90 in. lbs.).
- (9) Do not connect the battery negative cable at this time. See Airbag System in Diagnosis and Testing for the proper procedures.

PASSENGER SIDE

- (1) Disconnect and isolate the battery negative cable. If the airbag module has not been deployed, wait two minutes for the system capacitor to discharge before further service.
- (2) Remove the instrument panel top cover. Refer to Group 8E - Instrument Panel Systems for the pro-
- (3) Unplug the passenger side airbag module wire harness connector located on the top of the instrument panel between the airbag module and the windshield (Fig. 5).
- (4) Disengage the passenger side airbag module wire harness connector retainer from the hole on the top of the instrument panel.
- (5) Remove the four screws that secure the upper flange of the passenger side airbag door to the instrument panel (Fig. 6).
- (6) Remove the two screws that secure the upper airbag module mounting brackets to the top of the instrument panel.

Fig. 5 Passenger Side Airbag Connector Remove/ Install

Fig. 6 Passenger Side Airbag Module Remove/Install

- (7) Open the glove box door and remove the two glove box door stop bumpers by sliding them down towards the glove box bin and out of their slotted holes in the instrument panel. Roll the glove box door down to its fully opened position.
- (8) Remove the four screws that secure the lower flange of the passenger side airbag door to the instrument panel near the upper edge of the glove box opening.
- (9) Reach through the glove box opening and up to remove the two screws that secure the lower airbag module mounting brackets to the instrument panel.
- (10) Remove the passenger side airbag module and airbag door from the instrument panel as a unit.
- (11) Reverse the removal procedures to install. Tighten the hardware as follows:
- Airbag module mounting bracket screws 11.8 N·m (105 in. lbs.)
- \bullet Airbag door mounting screws 2.2 N·m (20 in. lbs.).
- (12) Before reinstalling the instrument panel top cover, be certain that the airbag module wire harness connector latches are fully engaged.

(13) Do not connect the battery negative cable at this time. See Airbag System in Diagnosis and Testing for the proper procedures.

DRIVER SIDE AIRBAG TRIM COVER AND HORN SWITCH

WARNING:

- THE AIRBAG SYSTEM IS A SENSITIVE, COM-PLEX ELECTROMECHANICAL UNIT. ATTEMPTING TO DIAGNOSE OR SERVICE ANY AIR-BAG SYSTEM OR RELATED STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENTS YOU MUST FIRST DISCONNECT AND ISOLATE THE BATTERY NEGATIVE (GROUND) CABLE. THEN WAIT TWO MINUTES FOR THE SYS-TEM CAPACITOR TO DISCHARGE BEFORE FUR-THER SYSTEM SERVICE. THIS IS THE ONLY SURE WAY TO DISABLE THE AIRBAG SYSTEM. FAILURE TO DO THIS COULD RESULT IN ACCIDENTAL AIR-BAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.
- THE HORN SWITCH IS INTEGRAL TO THE AIRBAG MODULE TRIM COVER. SERVICE OF THIS COMPONENT SHOULD BE PERFORMED ONLY BY CHRYSLER-TRAINED AND AUTHORIZED DEALER SERVICE TECHNICIANS. FAILURE TO TAKE THE PROPER PRECAUTIONS OR TO FOLLOW THE PROPER PROCEDURES COULD RESULT IN ACCIDENTAL, INCOMPLETE, OR IMPROPER AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.
- (1) Disconnect and isolate the battery negative cable. If the airbag module has not been deployed, wait two minutes for the system capacitor to discharge before further service.
- (2) Remove the driver side airbag module as described in this group.
- (3) Remove the plastic horn switch feed wire retainer from the stud on the airbag housing (Fig. 7).

80ab88a3

Fig. 7 Horn Switch Feed Wire Remove/Install

(4) Remove the four nuts that secure the upper and lower trim cover retainers to the studs on the airbag housing (Fig. 8).

Fig. 8 Airbag Trim Cover Retainers Remove/Install

- (5) Remove the upper and lower trim cover retainers from the airbag housing studs.
- (6) Remove the horn switch ground wire eyelet from the upper airbag housing stud.
- (7) Disengage the four trim cover locking blocks from the lip around the outside edge of the airbag housing and remove the housing from the cover (Fig. 9).

Fig. 9 Airbag Trim Cover Remove/Install

WARNING: USE EXTREME CARE TO PREVENT ANY FOREIGN MATERIAL FROM ENTERING THE DRIVER SIDE AIRBAG MODULE, OR BECOMING ENTRAPPED BETWEEN THE DRIVER SIDE AIRBAG MODULE TRIM COVER AND THE DRIVER SIDE AIRBAG MODULE. FAILURE TO OBSERVE THIS WARNING COULD RESULT IN OCCUPANT INJURIES UPON AIRBAG DEPLOYMENT.

(8) When installing the trim cover and horn switch, be certain that the locking blocks are fully engaged on the lip of the airbag housing (Fig. 10).

80a0f19f

Fig. 10 Airbag Trim Cover Locking Blocks Installed

- (9) When installing the upper and lower trim cover retainers, be certain that the tabs on each retainer are engaged in the retainer slots of the trim cover (Fig. 9).
- (10) Install and tighten the trim cover retainer nuts to 10 N·m (90 in. lbs.).
- (11) Reverse the remaining removal procedures to complete the installation, but do not connect the battery negative cable at this time. See Airbag System in Diagnosis and Testing for the proper procedures.

PASSENGER SIDE AIRBAG DOOR

WARNING:

- THE AIRBAG SYSTEM IS A SENSITIVE, COMPLEX ELECTROMECHANICAL UNIT. BEFORE ATTEMPTING TO DIAGNOSE OR SERVICE ANY AIRBAG SYSTEM OR RELATED STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENTS YOU MUST FIRST DISCONNECT AND ISOLATE THE BATTERY NEGATIVE (GROUND) CABLE. THEN WAIT TWO MINUTES FOR THE SYSTEM CAPACITOR TO DISCHARGE BEFORE FURTHER SYSTEM SERVICE. THIS IS THE ONLY SURE WAY TO DISABLE THE AIRBAG SYSTEM. FAILURE TO DO THIS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.
- WHEN REMOVING A DEPLOYED AIRBAG MODULE, RUBBER GLOVES, EYE PROTECTION, AND A LONG-SLEEVED SHIRT SHOULD BE WORN. THERE MAY BE DEPOSITS ON THE AIRBAG MODULE AND OTHER INTERIOR SURFACES. IN LARGE DOSES, THESE DEPOSITS MAY CAUSE IRRITATION TO THE SKIN AND EYES.

- (1) Disconnect and isolate the battery negative cable. If the airbag module has not been deployed, wait two minutes for the system capacitor to discharge before further service.
- (2) Remove the passenger side airbag module from the instrument panel as described in this group.
- (3) With the airbag module on a bench, slide the airbag door sideways until the keyed slots in the upper and lower airbag door flanges clear the three tabs on the top and the bottom of the airbag housing (Fig. 11).

Fig. 11 Passenger Side Airbag Door Remove/Install

(4) Remove the passenger side airbag door from the airbag module.

WARNING: USE EXTREME CARE TO PREVENT ANY FOREIGN MATERIAL FROM ENTERING THE PASSENGER SIDE AIRBAG MODULE, OR BECOMING ENTRAPPED BETWEEN THE PASSENGER SIDE AIRBAG DOOR AND THE PASSENGER SIDE AIRBAG MODULE. FAILURE TO OBSERVE THIS WARNING COULD RESULT IN OCCUPANT INJURIES UPON AIRBAG DEPLOYMENT.

(5) Reverse the removal procedures to complete the installation, but do not connect the battery negative cable at this time. See Airbag System in Diagnosis and Testing for the proper procedures.

AIRBAG CONTROL MODULE

WARNING:

• THE AIRBAG CONTROL MODULE CONTAINS THE IMPACT SENSOR, WHICH ENABLES THE SYSTEM TO DEPLOY THE AIRBAG. BEFORE ATTEMPTING TO DIAGNOSE OR SERVICE ANY AIRBAG SYSTEM OR RELATED STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENTS YOU MUST FIRST DISCONNECT AND ISOLATE THE BATTERY NEGATIVE (GROUND) CABLE. THEN WAIT TWO MINUTES FOR THE SYSTEM CAPACITOR TO DISCHARGE BEFORE FURTHER SYSTEM SERVICE. THIS IS THE ONLY SURE

WAY TO DISABLE THE AIRBAG SYSTEM. FAILURE TO DO THIS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- NEVER STRIKE OR KICK THE AIRBAG CONTROL MODULE, AS IT CAN DAMAGE THE IMPACT SENSOR OR AFFECT ITS CALIBRATION. IF AN AIRBAG CONTROL MODULE IS ACCIDENTALLY DROPPED DURING SERVICE, THE MODULE MUST BE SCRAPPED AND REPLACED WITH A NEW UNIT. ALWAYS REINSTALL THE AIRBAG CONTROL MODULE PROTECTIVE COVER.
- (1) Disconnect and isolate the battery negative cable. If the airbag has not been deployed, wait two minutes for the system capacitor to discharge before further service.
- (2) Remove the left front bucket seat assembly as described in Group 23 Body.
- (3) Remove the three screws that secure the Airbag Control Module (ACM) protective cover to the left front floor pan and the ACM mounting bracket (Fig. 12).

Fig. 12 Airbag Control Module Remove/Install

- (4) Pull the ACM protective cover away from the ACM far enough to access and release the ACM wire harness retainer from the slotted hole near the rear of the cover.
- (5) Remove the ACM protective cover from the vehicle.
- (6) Unplug the ACM wire harness connector. To unplug the connector, squeeze the two connector latch tabs between the thumb and forefinger, while pulling the connector out from the ACM.

- (7) Remove the three nuts that secure the ACM mounting bracket to the floor pan mounting bracket.
 - (8) Remove the ACM from the vehicle.
- (9) When installing the ACM, position the unit with the arrow on the ACM housing pointing forward.
- (10) Attach the ACM to the floor pan ACM mounting bracket with the three mounting nuts. Tighten the mounting nuts to 7.3 N⋅m (65 in. lbs.).
- (11) Plug in the wire harness connector to the ACM. Be certain that the connector latches are fully engaged.
- (12) Position the ACM protective cover over the ACM. Be certain that the wire harness retainer is correctly reinstalled in the slotted hole of the ACM protective cover. Tighten the mounting screws to 4 $N \cdot m$ (35 in. lbs.).
- (13) Reverse the remaining removal procedures to complete the installation.
- (14) Do not connect the battery negative cable at this time. See Airbag System in Diagnosis and Testing for the proper procedures.

CLOCKSPRING

WARNING: THE AIRBAG SYSTEM IS A SENSITIVE, COMPLEX ELECTROMECHANICAL UNIT. BEFORE ATTEMPTING TO DIAGNOSE OR SERVICE ANY AIRBAG SYSTEM OR RELATED STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENTS YOU MUST FIRST DISCONNECT AND ISOLATE THE BATTERY NEGATIVE (GROUND) CABLE. THEN WAIT TWO MINUTES FOR THE SYSTEM CAPACITOR TO DISCHARGE BEFORE FURTHER SYSTEM SERVICE. THIS IS THE ONLY SURE WAY TO DISABLE THE AIRBAG SYSTEM. FAILURE TO DO THIS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Turn the steering wheel until the front wheels are in the straight-ahead position before starting the procedure.
- (2) Disconnect and isolate the battery negative cable. If the airbag has not been deployed, wait two minutes for the system capacitor to discharge before further service.
- (3) Remove the driver side airbag module as described in this group.
- (4) If the vehicle is equipped with the optional vehicle speed control, unplug the speed control switch wire harness connector in the steering wheel.
- (5) Remove the nut that secures the steering wheel to the steering column upper shaft.
- (6) Remove the steering wheel with a steering wheel puller (Special Tool C-3428B).

- (7) Remove the steering column opening cover as described in Group 8E Instrument Panel Systems.
- (8) If the vehicle is so equipped, move the tilt steering column to the fully raised position.
- (9) Insert the key in the ignition lock cylinder and turn the ignition switch to the On position.
- (10) Insert a small screwdriver or pin punch through the access hole in the lower steering column shroud and depress the ignition lock cylinder retaining tumbler (Fig. 13).

Fig. 13 Steering Column Shrouds Remove/Install

- (11) While holding the retaining tumbler depressed, pull the ignition lock cylinder and key out of the ignition lock housing.
- (12) Remove the three screws that secure the lower steering column shroud to the upper shroud.
- (13) If the vehicle is equipped with a standard non-tilt steering column, loosen the two upper steering column mounting nuts. If the vehicle is equipped with the optional tilt steering column, move the tilt steering column to the fully lowered position.
- (14) Remove both the upper and lower shrouds from the steering column.
- (15) Unplug the two wire harness connectors from the steering column side of the clockspring.
- (16) To remove the clockspring, carefully lift the locating fingers of the clockspring assembly from the steering column as necessary. If the clockspring locating fingers are broken, be certain to remove the broken pieces from the upper steering column housing. The clockspring cannot be repaired. It must be replaced if faulty or damaged, or if the airbag has been deployed.

- (17) When installing the clockspring, snap the clockspring onto the steering column. If the clockspring is not properly positioned, see Clockspring Centering in this group before installing the steering wheel.
- (18) Plug the two clockspring wire harness connectors into the steering column side of the clockspring. Be certain that the wire harness connector latches are fully engaged.
- (19) Reinstall the steering column shrouds and ignition lock cylinder.
- (20) Reinstall the steering column opening cover as described in Group 8E Instrument Panel Systems.
- (21) The front wheels should still be in the straight-ahead position. Install the steering wheel being certain to fit the flats on the hub of the steering wheel onto the formations on the inside of the clockspring. Pull the wire harness through the lower hole in the steering wheel hub. Tighten the steering wheel nut to 61 N·m (45 ft. lbs.). Be certain not to pinch the wiring between the steering wheel and the nut.
- (22) Install the airbag module as described in this group.

ADJUSTMENTS

CLOCKSPRING CENTERING

If the rotating tape within the clockspring is not positioned properly in relation to the steering wheel and the front wheels, the clockspring may fail during use. The clockspring must be centered if it is not known to be properly positioned, or if the front wheels were moved from the straight-ahead position with the clockspring removed during any service procedure.

WARNING: THE AIRBAG SYSTEM IS A SENSITIVE, COMPLEX ELECTROMECHANICAL UNIT. BEFORE ATTEMPTING TO DIAGNOSE OR SERVICE ANY AIRBAG SYSTEM OR RELATED STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENTS YOU MUST FIRST DISCONNECT AND ISOLATE THE BATTERY NEGATIVE (GROUND) CABLE. THEN WAIT TWO MINUTES FOR THE SYSTEM CAPACITOR TO DISCHARGE BEFORE FURTHER SYSTEM SERVICE. THIS IS THE ONLY SURE WAY TO DISABLE THE AIRBAG SYSTEM. FAILURE TO DO THIS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

(1) Turn the steering wheel until the front wheels are in the straight-ahead position before starting the centering procedure.

- (2) Disconnect and isolate the battery negative cable. If the airbag has not been deployed, wait two minutes for the system capacitor to discharge before further service.
- (3) Remove the airbag module as described in this group.
- (4) If the vehicle is equipped with the optional vehicle speed control, unplug the speed control switch wire harness connector in the steering wheel.
- (5) Remove the nut that secures the steering wheel to the steering column upper shaft.
- (6) Remove the steering wheel with a steering wheel puller (Special Tool C-3428B).
- (7) Rotate the clockspring rotor clockwise to the end of its travel (Fig. 14). **Do not apply excessive torque.**

80a53484

Fig. 14 Clockspring

- (8) From the end of the clockwise travel, rotate the rotor about two and one-half turns counterclockwise, until the rotor flats are horizontal. If the clockspring wire harness is not at the bottom, rotate another one-half turn.
- (9) The front wheels should still be in the straightahead position. Install the steering wheel being certain to fit the flats on the hub of the steering wheel onto the formations on the inside of the clockspring. Pull the wire harness from the clockspring through the lower hole in the steering wheel hub. Tighten the steering wheel nut to 61 N·m (45 ft. lbs.). Be certain not to pinch any of the wiring between the steering wheel and the nut.
- (10) Install the airbag module as described in this group.

ELECTRICALLY HEATED SYSTEMS

CONTENTS

page	page
GENERAL INFORMATION	DEFOGGER SWITCH 3
INTRODUCTION 1	DEFOGGER SYSTEM 2
DESCRIPTION AND OPERATION	INSTRUMENT CLUSTER 5
DEFOGGER RELAY 2	REAR GLASS HEATING GRID
DEFOGGER SWITCH 2	SERVICE PROCEDURES
INSTRUMENT CLUSTER 2	REAR GLASS HEATING GRID REPAIR 5
OUTSIDE MIRROR HEATING GRID 2	REMOVAL AND INSTALLATION
REAR GLASS HEATING GRID 1	DEFOGGER RELAY 7
DIAGNOSIS AND TESTING	DEFOGGER SWITCH 6
DEFOGGER RELAY 4	

GENERAL INFORMATION

INTRODUCTION

An electrically heated rear window defogger and electrically heated outside rear view mirrors are available factory-installed options on this model. The defogger will only operate when the ignition switch is in the On position. When the defogger switch is in the On position, electric heater grids on the rear window glass and behind the outside rear view mirror glass are energized. These grids produce heat to help clear the rear window glass and outside rear view mirrors of ice, snow, or fog.

The defogger system is controlled by a switch located in the accessory switch bezel, which is near the bottom of the instrument panel center bezel. An amber indicator lamp in the switch button will light to indicate when the defogger system is turned on. The instrument cluster circuitry, which contains the defogger system timer logic, monitors the state of the defogger switch through a hard-wired input. The instrument cluster circuitry controls the defogger system through a hard-wired control output to the defogger relay.

The defogger system will be automatically turned off after a programmed time interval of about ten minutes. After the initial time interval has expired, if the defogger switch is turned on again during the same ignition cycle, the defogger system will automatically turn off after about five minutes.

The defogger system will automatically shut off if the ignition switch is turned to the Off position, or it can be turned off manually by depressing the instrument panel switch. Refer to the owner's manual for more information on the defogger system controls and operation. Following are general descriptions of the major components in the defogger system. Refer to 8W-48 - Rear Window Defogger and 8W-62 - Power Mirrors in Group 8W - Wiring Diagrams for complete circuit descriptions and diagrams.

NOTE: This group covers both Left-Hand Drive (LHD) and Right-Hand Drive (RHD) versions of this model. Whenever required and feasible, the RHD versions of affected vehicle components have been constructed as mirror-image of the LHD versions. While most of the illustrations used in this group represent only the LHD version, the diagnostic and service procedures outlined can generally be applied to either version. Exceptions to this rule have been clearly identified as LHD or RHD, if a special illustration or procedure is required.

DESCRIPTION AND OPERATION

REAR GLASS HEATING GRID

The heated rear window glass has two electrically conductive vertical bus bars and a series of horizontal grid lines made of a silver-ceramic material, which is baked on and bonded to the inside surface of the glass. The grid lines and bus bars comprise a parallel electrical circuit.

When the rear window defogger switch is placed in the On position, electrical current is directed to the rear window grid lines through the bus bars. The grid lines heat the rear window to clear the surface of fog or snow. Protection for the heated grid circuit is provided by a fuse in the Power Distribution Center (PDC).

The grid lines and bus bars are highly resistant to abrasion. However, it is possible for an open circuit

DESCRIPTION AND OPERATION (Continued)

to occur in an individual grid line, resulting in no current flow through the line.

The grid lines can be damaged or scraped off with sharp instruments. Care should be taken when cleaning the glass or removing foreign materials, decals, or stickers from the glass. Normal glass cleaning solvents or hot water used with rags or toweling is recommended.

A repair kit is available to repair the grid lines and bus bars, or to reinstall the heated glass pigtail wires.

OUTSIDE MIRROR HEATING GRID

The heated mirrors are controlled by the rear window defogger switch. The heating grids behind the mirror glass inside the mirror are activated only when the rear window defogger switch is in the On position. The heating grids inside the mirrors cannot be repaired and, if faulty, the entire mirror unit must be replaced. Refer to Group 8T - Power Mirrors for the diagnosis and service of this component.

DEFOGGER SWITCH

The rear window defogger switch is mounted in the accessory switch bezel, which is located in the lower instrument panel center bezel. The momentary-type switch provides a hard-wired ground signal to the instrument cluster each time it is depressed. The instrument cluster rear window defogger timer and logic circuitry responds by energizing or de-energizing the rear window defogger relay.

Energizing the rear window defogger relay provides electrical current to the rear window defogger grid, the heated outside rear view mirror grids, and the amber indicator lamp in the switch, which lights to indicate when the defogger system is turned On. The defogger illumination lamp and indicator lamp bulbs are serviceable. The defogger switch cannot be repaired and, if faulty, it must be replaced.

INSTRUMENT CLUSTER

The instrument cluster is an electromechanical unit that contains integrated circuitry and internal programming to perform a variety of functions. The instrument cluster circuitry monitors hard-wired switch inputs, as well as message inputs received from other vehicle electronic control modules on the Chrysler Collision Detection (CCD) data bus network.

The instrument cluster uses these many inputs along with its internal programming and integral timer and logic circuitry to perform the functions of the rear window defogger timer on this model. The instrument cluster circuitry also has a self-diagnostic capability. Refer to Group 8E - Instrument Panel Systems for more information on this feature.

However, there are no diagnostics available for the rear window defogger timer and logic circuitry. Therefore, the diagnosis for this system consists of confirming the presence of a rear window defogger switch input signal at the instrument cluster connector, and the resulting rear window defogger relay control output signal at the defogger relay. For diagnosis of the CCD data bus and the data bus message inputs, a DRB scan tool and the proper Diagnostic Procedures manual are recommended.

Refer to Group 8E - Instrument Panel Systems for the service procedures for the instrument cluster. The rear window defogger timer and logic circuitry cannot be adjusted or repaired and, if faulty, the instrument cluster assembly must be replaced.

DEFOGGER RELAY

The rear window defogger relay is a International Standards Organization (ISO)-type relay. The rear window defogger relay is a electromechanical device that switches fused battery current to the rear glass and outside mirror heating grids and the indicator lamp of the defogger switch, when the instrument cluster rear window defogger timer and logic circuitry grounds the relay coil. See the Diagnosis and Testing section of this group for more information on the operation of the rear window defogger relay.

The rear window defogger relay is located in the junction block, on the right cowl side panel below the instrument panel in the passenger compartment. The rear window defogger relay cannot be repaired and, if faulty or damaged, it must be replaced.

DIAGNOSIS AND TESTING

DEFOGGER SYSTEM

For circuit descriptions and diagrams, refer to 8W-48 - Rear Window Defogger or 8W-62 Power Mirrors in Group 8W - Wiring Diagrams. The operation of the electrically heated rear window defogger system can be confirmed in one of the following manners:

- 1. Turn the ignition switch to the On position. While monitoring the instrument panel voltmeter, set the defogger switch in the On position. When the defogger switch is turned On, a distinct voltmeter needle deflection should be noted.
- 2. Turn the ignition switch to the On position. Set the defogger switch in the On position. The rear window defogger operation can be checked by feeling the rear window or outside rear view mirror glass. A distinct difference in temperature between the grid lines and the adjacent clear glass or the mirror glass can be detected within three to four minutes of operation.
- 3. Using a 12-volt DC voltmeter, contact the rear glass heating grid terminal A (right side) with the

negative lead, and terminal B (left side) with the positive lead (Fig. 1). The voltmeter should read battery voltage.

Fig. 1 Rear Window Glass Grid Test

The above checks will confirm system operation. Illumination of the defogger switch indicator lamp means that there is electrical current available at the output of the defogger relay, but does not confirm that the electrical current is reaching the rear glass heating grid lines.

If the defogger system does not operate, the problem should be isolated in the following manner:

- (1) Confirm that the ignition switch is in the On position.
- (2) Ensure that the rear glass heating grid feed and ground wires are connected to the glass. Confirm that the ground wire has continuity to ground.
- (3) Check the fuses in the Power Distribution Center (PDC) and in the junction block. The fuses must be tight in their receptacles and all electrical connections must be secure.

When the above steps have been completed and the rear glass or outside rear view mirror heating grid is still inoperative, one or more of the following is faulty:

- Defogger switch
- Defogger relay
- Instrument cluster circuitry
- Rear window grid lines (all grid lines would have to be broken or one of the feed wires disconnected for the entire system to be inoperative)
 - Outside rear view mirror heating grid.

If setting the defogger switch to the On position produces a severe voltmeter deflection, check for a short circuit between the defogger relay output and the rear glass or outside rear view mirror heating grids.

REAR GLASS HEATING GRID

For circuit descriptions and diagrams, refer to 8W-48 - Rear Window Defogger in Group 8W - Wir-

ing Diagrams. To detect breaks in the grid lines, the following procedure is required:

- (1) Turn the ignition switch to the On position. Set the defogger switch in the On position. The indicator lamp should light. If OK, go to Step 2. If not OK, see the Defogger Relay diagnosis in this group.
- (2) Using a 12-volt DC voltmeter, contact the vertical bus bar on the right side of the vehicle with the negative lead. With the positive lead, contact the vertical bus bar on the left side of the vehicle. The voltmeter should read battery voltage. If OK, go to Step 3. If not OK, repair the open circuit to the defogger relay as required.
- (3) With the negative lead of the voltmeter, contact a good body ground point. The voltage reading should not change. If OK, go to Step 4. If not OK, repair the circuit to ground as required.
- (4) Connect the negative lead of the voltmeter to the right side bus bar and touch each grid line at midpoint C with the positive lead. A reading of approximately six volts indicates a line is good. A reading of zero volts indicates a break in the grid line between midpoint C and the left side bus bar. A reading of ten to fourteen volts indicates a break between midpoint C and the right side bus bar. Move the positive lead on the grid line towards the break and the voltage reading will change as soon as the break is crossed.

DEFOGGER SWITCH

For circuit descriptions and diagrams, refer to 8W-48 - Rear Window Defogger in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable. Remove the defogger switch and unplug the switch wire harness connector.
- (2) Check for continuity between the ground circuit cavity of the switch wire harness connector and a good ground. There should be continuity. If OK, go to Step 3. If not OK, repair the open circuit as required.
- (3) Check for continuity between the ground circuit and rear window defogger switch sense circuit terminals on the back of the switch housing (Fig. 2). There should be momentary continuity as the defogger switch button is depressed, and then no continu-

ity. If OK, see the diagnosis for the Instrument Cluster in this group. If not OK, replace the faulty switch.

SWITCH POSITION	CONTINUITY BETWEEN
OFF	LAMPS
ON	MOMENTARY 1 AND 2
ILLUMINATION LAMP	1 AND 4
INDICATOR LAMP	1 AND 3

Fig. 2 Defogger Switch Continuity

DEFOGGER RELAY

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

RELAY TEST

The defogger relay is located in the junction block, on the right cowl side panel below the instrument panel in the passenger compartment. Remove the defogger relay from the junction block as described in this group to perform the following tests:

- (1) A relay in the de-energized position should have continuity between terminals 87A and 30, and no continuity between terminals 87 and 30. If OK, go to Step 2. If not OK, replace the faulty relay.
- (2) Resistance between terminals 85 and 86 (electromagnet) should be 75 \pm 10 ohms. If OK, go to Step 3. If not OK, replace the faulty relay.
- (3) Connect a battery to terminals 85 and 86. There should now be continuity between terminals 30 and 87, and no continuity between terminals 87A and 30. If OK, see the Relay Circuit Test in this group. If not OK, replace the faulty relay.

Defogger Relay

RELAY CIRCUIT TEST

- (1) The relay common feed terminal cavity (30) is connected to battery voltage and should be hot at all times. If OK, go to Step 2. If not OK, repair the open circuit to the PDC fuse as required.
- (2) The relay normally closed terminal (87A) is connected to terminal 30 in the de-energized position, but is not used for this application. Go to Step 3.
- (3) The relay normally open terminal (87) is connected to the common feed terminal (30) in the energized position. This terminal supplies battery voltage to the rear glass and outside rear view mirror heating grids and the defogger switch indicator lamp. There should be continuity between the cavity for relay terminal 87 and the rear window defogger relay output circuit cavities of the rear glass and outside rear view mirror heating grids and the defogger switch indicator lamp at all times. If OK, go to Step 4. If not OK, repair the open circuit(s) as required.
- (4) The coil ground terminal (85) is connected to the electromagnet in the relay. This terminal is provided with ground by the instrument cluster rear window defogger timer and logic circuitry to energize the defogger relay. There should be continuity to ground at the cavity for relay terminal 85 when the defogger switch is turned On. However, with the defogger relay removed, the defogger switch indicator lamp will not light to show that the defogger system is turned On. Be certain that you depress the defogger switch at least twice to confirm that the system is turned on during this test. If OK, go to Step 5. If not OK, repair the open circuit to the instrument cluster as required.
- (5) The coil battery terminal (86) is connected to the electromagnet in the relay. It is connected to fused ignition switch output voltage and should be hot when the ignition switch is in the On position. Check for battery voltage at the cavity for relay terminal 86 with the ignition switch in the On position.

If OK, see the diagnosis for Instrument Cluster in this group. If not OK, repair the open circuit to the fuse in the junction block as required.

INSTRUMENT CLUSTER

Before performing this test, complete the Defogger Switch and the Defogger Relay tests as described in this group. For circuit descriptions and diagrams, refer to 8W-48 - Rear Window Defogger in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable. Remove the defogger relay from the junction block and unplug the defogger switch wire harness connector.
- (2) Remove the instrument cluster from the instrument panel. Refer to Group 8E Instrument Panel Systems for the procedures.
- (3) Check for continuity between the rear window defogger switch sense circuit cavity of the right instrument cluster wire harness connector and a good ground. There should be no continuity. If OK, go to Step 4. If not OK, repair the short circuit as required.
- (4) Check for continuity between the rear window defogger switch sense circuit cavities of the right instrument cluster wire harness connector and the defogger switch wire harness connector. There should be continuity. If OK, go to Step 5. If not OK, repair the open circuit as required.
- (5) Check for continuity between the rear window defogger relay control circuit cavity of the right instrument cluster wire harness connector and a good ground. There should be no continuity. If OK, go to Step 6. If not OK, repair the short circuit as required.
- (6) Check for continuity between the rear window defogger relay control circuit cavities of the right instrument cluster wire harness connector and the defogger relay receptacle (ISO relay cavity 85) in the junction block. There should be continuity. If OK, replace the faulty instrument cluster. If not OK, repair the open circuit as required.

SERVICE PROCEDURES

REAR GLASS HEATING GRID REPAIR

Repair of the grid lines, bus bars, or pigtail wires can be accomplished using a Mopar Rear Window Defogger Repair Kit (P/N 4267922) or equivalent.

WARNING: MATERIALS **CONTAINED** THE REPAIR KIT MAY CAUSE SKIN OR EYE IRRITATION. THE KIT CONTAINS EPOXY RESIN AND AMINE TYPE HARDENER, WHICH ARE HARMFUL IF SWAL-LOWED. AVOID CONTACT WITH THE SKIN AND EYES. FOR SKIN CONTACT, WASH THE AFFECTED AREAS WITH SOAP AND WATER. FOR CONTACT WITH THE EYES, FLUSH WITH PLENTY OF WATER. DO NOT TAKE INTERNALLY. IF TAKEN INTER-NALLY, INDUCE VOMITING AND CALL A PHYSICIAN IMMEDIATELY. USE WITH ADEQUATE VENTILA-TION. DO NOT USE NEAR FIRE OR FLAME. CON-TAINS FLAMMABLE SOLVENTS. KEEP OUT OF THE REACH OF CHILDREN.

(1) Mask the repair area so that the conductive epoxy can be applied neatly. Extend the epoxy application onto the grid line or the bus bar on each side of the break (Fig. 3).

Fig. 3 Grid Line Repair - Typical

- (2) Follow the instructions in the repair kit for preparing the damaged area.
- (3) Remove the package separator clamp and mix the two conductive epoxy components thoroughly within the packaging. Fold the package in half and cut the center corner to dispense the epoxy.
- (4) For grid line repairs, mask the area to be repaired with masking tape or a template.
- (5) Apply the epoxy through the slit in the masking tape or template. Overlap both ends of the break by at least 19 mm (0.75 in.).
- (6) For a terminal or pigtail wire replacement, mask the adjacent areas so the epoxy can be extended onto the adjacent grid line as well as the bus bar. Apply a thin layer of epoxy to the area

SERVICE PROCEDURES (Continued)

where the terminal or pigtail wire was fastened and onto the adjacent grid line.

- (7) Apply a thin layer of conductive epoxy to the terminal or bare wire end of the pigtail and place it in the proper location on the bus bar. To prevent the terminal or pigtail wire from moving while the epoxy is curing, it must be wedged or clamped.
- (8) Carefully remove the masking tape or template.

CAUTION: Do not allow the glass surface to exceed 204° C (400° F) or the glass may fracture.

- (9) Allow the epoxy to cure 24 hours at room temperature, or use a heat gun with a 260° to 371° C (500° to 700° F) range for fifteen minutes. Hold the heat gun approximately 25.4 cm (10 in.) from the repair.
- (10) After the conductive epoxy is properly cured, remove the wedge or clamp from the terminal or pigtail wire. Do not attach the wire harness connectors until the curing process is complete.
- (11) Check the operation of the rear window defogger rear glass heating grid.

REMOVAL AND INSTALLATION

DEFOGGER SWITCH

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable.
- (2) Using a trim stick or another suitable wide flat-bladed tool, gently pry the instrument panel center bezel away from the instrument panel to release the six snap clip retainers (Fig. 4).
 - (3) Remove the center bezel from the vehicle.
- (4) Remove the three screws that secure the accessory switch bezel to the instrument panel (Fig. 5).
- (5) Pull the accessory switch bezel out from the instrument panel far enough to unplug the wire harness connectors.
- (6) Remove the accessory switch bezel from the instrument panel.

80ab87bc

Fig. 4 Center Bezel Remove/Install

Fig. 5 Accessory Switch Bezel Remove/Install

- (7) Carefully pry the snap retainers at the top and bottom of the rear window defogger switch receptacle on the back of the accessory switch bezel with a small thin-bladed screwdriver and pull the switch out of the receptacle.
- (8) Reverse the removal procedures to install. Be certain that both of the switch snap retainers in the receptacle on the back of the accessory switch bezel are fully engaged. Tighten the mounting screws to $2.2~\mathrm{N\cdot m}$ (20 in. lbs.).

DEFOGGER RELAY

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the fuse access panel by unsnapping it from the right cowl side trim panel.
- (3) Remove the stamped nut that secures the right cowl side trim to the junction block stud (Fig. 6).
- (4) Remove the screw located above the fuse access opening that secures the right cowl side trim to the right cowl side inner panel.
- (5) Remove the screw that secures the right door sill trim and the right cowl side trim to the right door opening sill.
- (6) Remove the right cowl side trim panel from the vehicle.
- (7) Unplug the rear window defogger relay from the junction block.
- (8) Install the defogger relay by aligning the relay terminals with the cavities in the junction block and pushing the relay firmly into place.
 - (9) Connect the battery negative cable.
 - (10) Test the relay operation.

Fig. 6 Right Cowl Side Trim Remove/Install

(11) Install the right cowl side trim and the fuse access panel.

POWER LOCK SYSTEMS

8P - 1

POWER LOCK SYSTEMS

CONTENTS

age
3
5
5
6
6
6
6
7
8

GENERAL INFORMATION

INTRODUCTION

Power locks are optional factory-installed equipment on these models. The power window system and the power mirror system are included on vehicles equipped with the power lock option. On vehicles equipped with the power lock option, all of the doors and the liftgate can be locked and unlocked electrically by operating the switch on either front door trim panel. The power lock system includes a lock inhibit feature, which prevents the doors from being locked by the power lock system if the driver door is open with the key in the ignition switch or with the headlamp switch in the On position. However, the doors can still be locked manually.

The Remote Keyless Entry (RKE) system is an additional option available on vehicles equipped with the power lock option. On vehicles with the RKE option, the power locks can also be operated by depressing the Lock or Unlock buttons of the RKE radio transmitter. The RKE system includes an illuminated entry feature, which turns on the courtesy lamps for a timed interval (about thirty seconds), when the power locks are unlocked using the RKE transmitter.

The power locks and RKE systems operate with battery power supplied independent of the ignition switch. Following are general descriptions of the major components in the power lock, and RKE systems. Refer to 8W-61 - Power Door Locks in Group 8W - Wiring Diagrams for complete circuit descriptions and diagrams. Refer to the owner's manual for more information on the features and use of these systems.

POWER LOCK SYSTEM

The power lock system allows all of the doors and the liftgate to be locked or unlocked electrically by operating the switch on either front door trim panel. This system operates with battery power supplied through a fuse in the junction block, independent of the ignition switch.

The power lock system includes the front door power lock switches integral to the driver and passenger door modules, and the power lock motors mounted in each door and the liftgate. The power lock control circuitry and the power lock and unlock relays are integral to the Passenger Door Module (PDM).

REMOTE KEYLESS ENTRY SYSTEM

The Remote Keyless Entry (RKE) system is a radio frequency system that allows the use of a remote radio transmitter to control the power lock and illuminated entry systems. The RKE system consists of the remote key fob transmitter and a radio receiver with program logic, which is installed in an RKE housing on the headliner of the vehicle, or in the housing of the optional overhead console, depending upon how the vehicle is equipped.

The RKE system can retain the vehicle access codes of up to four transmitters. The transmitter codes are retained in memory, even if the battery is disconnected. If a transmitter is faulty or lost, new transmitter vehicle access codes can be programmed

GENERAL INFORMATION (Continued)

into the system using a DRB scan tool and the proper Diagnostic Procedures manual.

The RKE system for this vehicle also features a customer-programmable horn chirp feature. This feature allows the customer the option of enabling or disabling the horn chirp request that the RKE receiver issues as an audible indication that a valid Lock signal has been received from the RKE transmitter. See Remote Keyless Entry Receiver Programming in this group for more information on this feature.

DESCRIPTION AND OPERATION

POWER LOCK SWITCH

The power locks are controlled by a two-way switch that is integral to the Driver Door Module (DDM) and the Passenger Door Module (PDM) mounted in the trim panel of its respective front door. Each switch is illuminated by a light-emitting diode when the ignition switch is turned to the On position. The power lock switches provide a hard-wired lock or unlock signal to the power lock system control circuitry, which is located in the PDM.

The power lock switches and their lamps cannot be repaired. If the switches are damaged or faulty, the entire PDM or DDM must be replaced.

DOOR MODULE

A Driver Door Module (DDM) and a Passenger Door Module (PDM) are used on all models equipped with power locks and power windows. Each door module houses both the front power lock and power window switches. The DDM also houses individual switches for each passenger door power window, a power window lockout switch and the power mirror switch. The PDM also houses the control circuitry and the power lock and unlock relays for the power lock system.

In its role as the power lock control module, the PDM receives inputs from the battery, the ignition switch, the DDM, the driver door ajar switch, the key-in ignition switch, and the headlamp switch. It also receives a hard-wired input from the RKE receiver, if the vehicle is so equipped. In response to these inputs, the PDM sends the proper outputs to control the power lock motors through its integral power lock and unlock relays.

The DDM and the PDM are mounted to their respective front door trim panels. The DDM and PDM are serviced individually and cannot be repaired. If the DDM or PDM, or any of the switches and circuitry they contain are faulty or damaged, the complete module must be replaced.

POWER LOCK MOTOR

In the power lock and Remote Keyless Entry (RKE) systems, the locks are actuated by a reversible motor mounted within each door and the liftgate. The power lock motor direction is controlled by the battery and ground feeds from the power lock and unlock relays integral to the Passenger Door Module (PDM).

The power lock motors cannot be repaired and, if faulty or damaged, the entire motor must be replaced.

REMOTE KEYLESS ENTRY TRANSMITTER

The Remote Keyless Entry (RKE) system transmitter is equipped with two buttons, labeled Lock and Unlock. It is also equipped with a key ring and is designed to serve as a key fob. The operating range of the transmitter radio signal is up to 7 meters (23 feet) from the RKE receiver.

Each transmitter has a different vehicle access code, which must be programmed into the memory of the RKE receiver in the vehicle in order to operate the RKE system. Refer to the service procedure for Remote Keyless Entry Transmitter Programming in this group for more information.

The transmitter operates on two Duracell DL2016 (or equivalent) batteries. Typical battery life is from one to two years. The transmitter cannot be repaired and, if faulty or damaged, it must be replaced.

REMOTE KEYLESS ENTRY RECEIVER

On models with the Remote Keyless Entry (RKE) option, an RKE receiver is mounted in an RKE housing, or in the overhead console housing on the vehicle headliner. The RKE receiver is a radio frequency unit that also contains the RKE system program logic. The RKE receiver also performs as a smart relay for the illuminated entry feature.

The RKE receiver has a memory function to retain the vehicle access code of at least one, but no more than four transmitters. The receiver is designed to retain the transmitter codes in memory, even if the battery is disconnected.

The RKE module receives inputs from the battery, the driver door ajar switch, and the Chrysler Collision Detection (CCD) data bus. It also receives the radio signal input from the RKE transmitter. In response to those inputs, it is programmed to control outputs to the power lock motors, the courtesy lamp circuits, and the vehicle horn.

The RKE system for this vehicle also features a customer-programmable horn chirp feature. This feature allows the customer the option of enabling or disabling the horn chirp request that the RKE receiver issues as an audible indication that a valid Lock signal has been received from the RKE trans-

DESCRIPTION AND OPERATION (Continued)

mitter. See Remote Keyless Entry Receiver Programming in this group for more information on this feature.

The RKE receiver cannot be repaired and, if faulty or damaged, it must be replaced.

DIAGNOSIS AND TESTING

POWER LOCK SYSTEM AND REMOTE KEYLESS ENTRY SYSTEM

On models without the Remote Keyless Entry (RKE) option, proceed directly to the Door Module diagnosis. As a preliminary diagnosis for models with the RKE system, note the power lock system and illuminated entry system operation while you actuate both the Lock and Unlock functions with the power lock switches and the RKE transmitter. Then, proceed as follows:

- If the entire power lock system fails to function with either the power lock switches or the RKE transmitter, see the Door Module diagnosis in this group.
- If the system functions with both power lock switches, but not with the RKE transmitter, see the Remote Keyless Entry Transmitter diagnosis in this group.
- If one power lock motor fails to operate with both of the power lock switches and/or the RKE transmitter, see the Power Lock Motor diagnosis in this group.
- If the RKE and power lock systems are functioning, but the illuminated entry system fails to operate, see the Remote Keyless Entry Receiver diagnosis in this group.

DOOR MODULE

If the power lock system is inoperative with either front door power lock switch, test the Passenger Door Module (PDM). If the power lock system is inoperative with only the driver side front door power lock switch, test the Driver Door Module (DDM). For circuit descriptions and diagrams, refer to 8W-61 - Power Door Locks in Group 8W - Wiring Diagrams.

DRIVER DOOR MODULE

The only function of the Driver Door Module (DDM) in the power lock system is to provide a Lock or Unlock signal to the power lock system control circuitry contained within the Passenger Door Module (PDM). The DDM signals the PDM by providing a hard-wired ground path through the DDM ground circuit and the driver side power lock switch contacts to the lock request or unlock request terminals of the PDM. The DDM power lock switch function can be tested as follows:

- (1) Disconnect and isolate the battery negative cable. Remove the driver side front door trim panel and unplug the 12-way DDM wire harness connector (C-2) from the DDM. Check for continuity between the ground circuit cavity of the 12-way DDM wire harness connector and a good ground. There should be continuity. If OK, go to Step 2. If not OK, repair the open circuit to ground as required.
- (2) If the problem being diagnosed is inoperative power lock switch illumination, proceed as follows. If the problem is not power lock switch illumination, go to Step 4. Connect the battery negative cable. Turn the ignition switch to the Accessory or On positions. Check for battery voltage at both sides of the power window circuit breaker in the junction block. If OK, go to Step 3. If not OK, replace the faulty circuit breaker.
- (3) With the ignition switch still in the On or Accessory position, check for battery voltage at the fused ignition switch output circuit cavity of the 12-way DDM wire harness connector. If OK, replace the faulty DDM. If not OK, repair the open circuit to the junction block as required.
- (4) Test the power lock switch continuity through the DDM 12-way wire harness connector receptacle. See the DDM Power Lock Switch Continuity chart (Fig. 1) to determine if the continuity is correct in the Lock and Unlock switch positions. If OK, repair the lock request circuit and/or the unlock request circuit between the DDM and the PDM as required. If not OK, replace the faulty DDM.

CONNECTOR 2 (C2)

SWITCH POSITION	CONTINUITY BETWEEN
LOCK	7 & 8
UNLOCK	11 & 8

80ahd2c7

Fig. 1 DDM Power Lock Switch Continuity \$\$1\$
PASSENGER DOOR MODULE

The Passenger Door Module (PDM) contains the passenger side front door power lock switch and the power lock system control circuitry. In its role as a power lock switch, it provides the power lock system control circuitry with a ground path through the PDM ground circuit and the driver side power lock

switch contacts to indicate a lock request or unlock request.

In its role as the power lock control module, the PDM receives inputs from the battery, the ignition switch, the DDM, the driver door ajar switch, the key-in ignition switch, and the headlamp switch. It also receives a hard-wired input from the RKE receiver, if the vehicle is so equipped. In response to these inputs, the PDM sends the proper outputs to control the power lock motors through its integral power lock and unlock relays. The PDM power lock system functions can be tested as outlined below. If the power lock system operates, but the RKE system lock and/or unlock functions are inoperative, see the diagnosis for the Remote Keyless Entry Transmitter in this group.

- (1) Check the fuse in the junction block. If OK, go to Step 2. If not OK, repair the shorted circuit or component as required and replace the faulty fuse.
- (2) Disconnect and isolate the battery negative cable. Remove the passenger side front door trim panel and unplug the 8-way PDM wire harness connector (C-1) from the PDM. Check for continuity between the ground circuit cavity of the 8-way PDM wire harness connector and a good ground. There should be continuity. If OK, go to Step 3. If not OK, repair the open circuit to ground as required.
- (3) If the problem being diagnosed is inoperative power lock switch illumination, proceed as follows. If the problem is not power lock switch illumination, go to Step 5. Connect the battery negative cable. Turn the ignition switch to the Accessory or On positions. Check for battery voltage at both sides of the power window circuit breaker in the junction block. If OK, go to Step 4. If not OK, replace the faulty circuit breaker.
- (4) With the ignition switch still in the Accessory or On positions, check for battery voltage at the fused ignition switch output circuit cavity of the 8-way PDM wire harness connector. If OK, replace the faulty PDM. If not OK, repair the open circuit to the junction block as required.
- (5) If the problem being diagnosed is an inoperative door lock inhibit feature or a power lock system that responds to an Unlock command, but not a Lock command, proceed as follows. Otherwise, go to Step 7. With the driver side front door closed, check for continuity between the door ajar/key-in circuit cavity of the 8-way PDM wire harness connector and a good ground. There should be no continuity. If OK, go to Step 6. If not OK, repair the shorted door ajar and/or key-in ignition circuits as required. Refer to Group 8U Chime/Buzzer Warning Systems for more information.
- (6) Open the driver side front door with the key in the ignition switch or with the headlamp switch in

- the On position. Check for continuity between the door ajar/key-in circuit cavity of the 8-way PDM wire harness connector and a good ground. There should be continuity. If OK, go to Step 8. If not OK, repair the open door ajar and/or key-in ignition circuits as required. Refer to Group 8U Chime/Buzzer Warning Systems for more information.
- (7) Connect the battery negative cable. Check for battery voltage at the fused B(+) circuit cavity of the 8-way PDM wire harness connector. If OK, go to Step 8. If not OK, repair the open circuit to the fuse in the junction block as required.
- (8) Test the PDM power lock switch continuity through the two PDM wire harness connector receptacles. See the PDM Power Lock Switch Continuity chart (Fig. 2) to determine if the continuity is correct in the Lock and Unlock switch positions. If OK, see the diagnosis for Power Lock Motors in this group. If not OK, replace the faulty PDM.

CONNECTOR 2 (C-2)

LEFT-HAND DRIVE (LHD)		
SWITCH POSITION	CONTINUITY BETWEEN	
LOCK	C1 PIN 3 & C1 PIN 6	
	C1 PIN 3 & C2 PIN 1	
	C1 PIN 3 & C2 PIN 5	
UNLOCK	C1 PIN 6 & C1 PIN 7	
	C1 PIN 7 & C2 PIN 1	
	C1 PIN 7 & C2 PIN 5	

RIGHT-HAND DRIVE (RHD)	
SWITCH POSITION	CONTINUITY BETWEEN
LOCK	C1 PIN 7 & C1 PIN 6
	C1 PIN 7 & C2 PIN 1
	C1 PIN 7 & C2 PIN 5
UNLOCK	C1 PIN 6 & C1 PIN 3
	C1 PIN 3 & C2 PIN 1
	C1 PIN 3 & C2 PIN 5

Fig. 2 PDM Power Lock Switch Continuity

- POWER LOCK SYSTEMS

DIAGNOSIS AND TESTING (Continued)

POWER LOCK MOTOR

Before you proceed with this diagnosis, confirm proper power door lock switch operation. See Door Module in this group for the diagnostic procedures. Remember, the Passenger Door Module (PDM) circuitry controls the output to each of the power lock motors. For circuit descriptions and diagrams, refer to 8W-61 - Power Door Locks in Group 8W - Wiring Diagrams.

- (1) Check each power lock motor for correct operation while moving the power lock switch to both the Lock and Unlock positions. If all of the power lock motors are inoperative, go to Step 2. If one power lock motor is inoperative, go to Step 3.
- (2) If all of the power lock motors are inoperative, the problem may be caused by one shorted motor. Unplugging a shorted power lock motor from the power lock circuit will allow the good power lock motor to operate. Unplug each power lock motor wire harness connector, one at a time, and recheck both the lock and unlock functions by operating the power lock switch. If all of the power lock motors are still inoperative after the above test, check for a short or open circuit between the power lock motors and the PDM. If unplugging one power lock motor causes the other motors to become functional, go to Step 3 to test the unplugged motor.
- (3) Once it is determined which lock motor is inoperative, that motor can be tested as follows. Unplug the wire harness connector at the inoperative motor. Apply 12 volts to the motor terminals to check its operation in one direction. Reverse the polarity to check the operation in the other direction. If OK, repair the short or open circuits to the PDM as required. If not OK, replace the faulty power lock motor.

REMOTE KEYLESS ENTRY TRANSMITTER

- (1) Replace the Remote Keyless Entry (RKE) transmitter batteries as described in this group. Test each of the transmitter functions. If OK, discard the faulty batteries. If not OK, go to Step 2.
- (2) Perform the Remote Keyless Entry Transmitter Programming procedure with the suspect transmitter and another known good transmitter using a DRB scan tool, as described in the proper Diagnostic Procedures manual.
- (3) Test the RKE system operation with both transmitters. If both transmitters fail to operate the power lock system, see the diagnosis for the Remote Keyless Entry Receiver in this group. If the known good transmitter operates the power locks and the suspect transmitter does not, replace the faulty transmitter.

NOTE: Be certain to perform the Remote Keyless Entry Transmitter Programming procedure again following this test. This procedure will erase the access code of the test transmitter from the RKE receiver.

REMOTE KEYLESS ENTRY RECEIVER

If the problem being diagnosed is an inoperative RKE horn chirp feature, be certain that the horn chirp feature has not been disabled by performing the Remote Keyless Entry Receiver Programming procedure as described in this group. Also be certain that the vehicle horn system is operational. See Group 8G - Horn Systems for more information.

If the problem being diagnosed is an inoperative RKE illuminated entry system, be certain that the interior courtesy lamp system is operational. See Group 8L - Lamps for more information.

Before you proceed with diagnosis of the RKE receiver, see the diagnosis for Remote Keyless Entry Transmitter in this group. For circuit descriptions and diagrams, refer to 8W-61 - Power Door Locks in Group 8W - Wiring Diagrams.

- (1) Check the fuses in the Power Distribution Center (PDC) and the junction block. If OK, go to Step 2. If not OK, repair the shorted circuit or component as required and replace the faulty fuse.
- (2) Disconnect and isolate the battery negative cable. Remove the Remote Keyless Entry (RKE) receiver as described in this group. Unplug the wire harness connector from the RKE receiver.
- (3) Check the wire harness connector and the receptacle in the receiver for loose, corroded, or damaged terminals and pins. If OK, go to Step 4. If not OK, repair as required.
- (4) Check for continuity between each of the two ground circuit cavities of the RKE receiver wire harness connector and a good ground. In each case, there should be continuity. If OK, go to Step 5. If not OK, repair the circuit to ground as required.
- (5) Connect the battery negative cable. Check for battery voltage at each of the two fused B(+) circuit cavities of the RKE receiver wire harness connector. If OK, go to Step 6. If not OK, repair the open circuit to the PDC or the junction block as required.
- (6) If the problem being diagnosed involves only the RKE horn chirp feature, go to Step 10. If the problem being diagnosed involves only the RKE illuminated entry feature, go to Step 9. If the problem being diagnosed involves only the RKE power locks feature, go to Step 7.
- (7) Disconnect and isolate the battery negative cable. Unplug the 8-way Passenger Door Module (PDM) wire harness connector. Check for continuity between the lock request circuit cavity of the RKE receiver wire harness connector and a good ground.

Repeat the test between the unlock request circuit cavity of the RKE receiver wire harness connector and a good ground. In each case, there should be no continuity. If OK, go to Step 8. If not OK, repair the shorted circuit as required.

- (8) Check for continuity between the lock request circuit cavities of the RKE receiver wire harness connector and the 8-way PDM wire harness connector. Repeat the test between the unlock request circuit cavities of the RKE receiver wire harness connector and the 8-way PDM wire harness connector. In each case, there should be continuity. If OK, replace the faulty RKE receiver. If not OK, repair the open circuit as required.
- (9) Check for continuity between the door ajar circuit cavity of the RKE receiver wire harness connector and a good ground with the driver door closed. There should be no continuity until the driver door is opened. If OK, replace the faulty RKE receiver. If not OK, repair the circuit or replace the faulty driver door ajar switch as required.
- (10) Unplug the horn relay from the junction block. Check for continuity between the horn relay output circuit cavity of the RKE receiver wire harness connector and a good ground. There should be no continuity. If OK, go to Step 11. If not OK, repair the short circuit to the horn relay as required.
- (11) Check for continuity between the horn relay output circuit cavity of the RKE receiver wire harness connector and the junction block cavity for the horn relay coil ground terminal (85). There should be continuity. If OK, replace the faulty RKE receiver. If not OK, repair the open circuit to the junction block as required.

SERVICE PROCEDURES

REMOTE KEYLESS ENTRY TRANSMITTER BATTERY REPLACEMENT

To replace the Remote Keyless Entry (RKE) transmitter batteries, separate the transmitter case halves at the center seam by prying gently with a trim stick, or another suitable wide flat-bladed tool. The case snaps open and shut.

Replace the two batteries with new Duracell DL2016, or their equivalent. Be certain that the batteries are installed with their polarity correctly oriented. Then, align the two transmitter case halves with each other, and squeeze them firmly together until they snap back into place.

REMOTE KEYLESS ENTRY TRANSMITTER PROGRAMMING

To program the Remote Keyless Entry (RKE) transmitter access codes into the RKE receiver

requires the use of a DRB scan tool. Refer to the proper Diagnostic Procedures manual for more information.

REMOTE KEYLESS ENTRY RECEIVER PROGRAMMING

The optional Remote Keyless Entry (RKE) system for this vehicle has a customer-programmable horn chirp feature. The horn chirp is requested by the RKE receiver through a hard-wired circuit to the horn relay whenever a valid Lock message is received from a programmed RKE radio transmitter.

The purpose of the horn chirp is to provide the vehicle operator with an audible verification that the Lock request has been received by the RKE receiver. However, for any number of reasons, some customers may prefer that this feature be disabled. This RKE system allows them that option.

To program the Remote Keyless Entry (RKE) receiver to disable the horn chirp feature, proceed as follows:

- (1) Press and hold the Lock button of a programmed RKE transmitter depressed for five to ten seconds
- (2) While holding the RKE transmitter Lock button depressed, press and release the RKE transmitter Unlock button.
- (3) The horn chirp feature is now disabled.

Repeating the preceding steps will again enable the horn chirp feature.

REMOVAL AND INSTALLATION

DOOR MODULE

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the screws that secure the door trim panel to the inner door panel (Fig. 3).

Fig. 3 Front Door Trim Panel Remove/Install

X.J -

(3) Using a trim stick or another suitable wide flat-bladed tool, gently pry the trim panel away from the door around the perimeter to release the trim panel retainers.

NOTE: To aid in the removal of the trim panel, start at the bottom of the panel.

- (4) Lift the door trim panel upwards and away from the door to disengage the top of the panel from the inner belt weatherstrip.
- (5) Pull the door trim panel away from the inner door far enough to access the inside door latch release and lock linkage rods near the back of the inside door remote controls.
- (6) Unsnap the plastic retainer clips from the inside door remote control ends of the latch release and lock linkage rods, and remove the rod ends from the inside door remote controls.
- (7) Unplug the wire harness connectors from the door module.
- (8) Remove the front door trim panel from the vehicle.
- (9) Remove the three screws that secure the door module to the door trim panel (Fig. 4).

Fig. 4 Door Module Remove/Install

- (10) Remove the door module from the trim panel.
- (11) Reverse the removal procedures to install. Tighten the mounting screws to 2.2 N·m (20 in. lbs.).

POWER LOCK MOTOR

FRONT DOOR

The front door power lock motor is integral to the front door latch unit. If the front door power lock motor is faulty or damaged, the entire latch unit must be replaced. Refer to Group 23 - Body for the front door latch service procedures.

REAR DOOR

The rear door power lock motor is integral to the rear door latch unit. If the rear door power lock motor is faulty or damaged, the entire latch unit must be replaced. Refer to Group 23 - Body for the rear door latch service procedures.

LIFTGATE

- (1) Disconnect and isolate the battery negative cable.
 - (2) Open the liftgate.
- (3) Using a trim stick or another suitable wide flat-bladed tool, gently pry the two screw cover plugs out of the liftgate assist handle.
- (4) Remove the two screws that secure the liftgate assist handle to the liftgate inner panel (Fig. 5).

Fig. 5 Liftgate Trim Panel Remove/Install

- (5) Remove the eight screws that secure the liftgate trim panel to the liftgate inner panel on both sides and above the liftgate glass.
- (6) Using a trim stick or another suitable wide flat-bladed tool, gently pry the lower edges of the trim panel away from the liftgate inner panel around the perimeter to release the trim panel retainers.

NOTE: To aid in the removal of the trim panel, start at the bottom of the panel.

- (7) Remove the liftgate trim panel from the vehicle.
- (8) Reach through the liftgate inner panel access hole and disconnect the link from the clip on the power lock motor (Fig. 6).
- (9) Remove the two screws that secure the power lock motor to the liftgate inner panel.
- (10) Pull the power lock motor out through the liftgate inner panel access hole far enough to reach the wire harness connector.
- (11) Unplug the wire harness connector from the power lock motor.
- (12) Remove the power lock motor from the lift-gate.
- (13) Reverse the removal procedures to install. Tighten the power lock motor mounting screws to 3 $N \cdot m$ (28 in. lbs.).

Fig. 6 Liftgate Power Lock Motor Remove/Install
REMOTE KEYLESS ENTRY RECEIVER

MINI-DOME MOUNTED TYPE

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the two screws that secure the Remote Keyless Entry (RKE) mini-dome housing to the roof panel reinforcement (Fig. 7).

Fig. 7 Mini-Dome Housing Remove/Install

- (3) Lower the front of the mini-dome housing and slide the unit forward to disengage the rear mounting tab from the headliner.
- (4) Lower the mini-dome housing far enough to reach the RKE receiver wire harness connector.
- (5) Unplug the wire harness connector from the RKE receiver.

- (6) Remove the RKE mini-dome unit from the vehicle.
- (7) Remove the two screws that secure the RKE receiver circuit board to the mini-dome housing.
- (8) Remove the RKE receiver circuit board from the mini-dome housing.

OVERHEAD CONSOLE MOUNTED TYPE

- (1) Disconnect and isolate the battery negative cable
- (2) Remove the two screws located forward of the display module that secure the overhead console to the upper windshield opening reinforcement (Fig. 8).

Fig. 8 Overhead Console Remove/Install

- (3) To release the overhead console from the rear mounting bracket, use your fingertips to gently pull the sides of the overhead console housing outward near the rear mounting bracket.
- (4) Move the overhead console forward to disengage the rear mounting tab from the headliner.
- (5) Lower the overhead console far enough to access the two wire harness connectors.
- (6) Unplug one wire harness connector near the push button module towards the front of the overhead console.
- (7) Unplug one wire harness connector from the Remote Keyless Entry (RKE) receiver near the center of the overhead console.
 - (8) Remove the overhead console from the vehicle.
- (9) Remove the six screws that secure the rear overhead console housing to the overhead console bezel (Fig. 9).
- (10) Gently flex the sides of the overhead console bezel far enough to clear the tabs on the rear console housing and remove the housing from the bezel.

Fig. 9 RKE Receiver Remove/Install

(11) Remove the two screws that secure the RKE receiver circuit board to the rear overhead console housing.

- (12) Remove the RKE circuit board from the rear overhead console housing.
 - (13) Reverse the removal procedures to install.

XJ ------POWER SEAT SYSTEMS 8R - 1

POWER SEAT SYSTEMS

CONTENTS

page	page
GENERAL INFORMATION INTRODUCTION	
DESCRIPTION AND OPERATION	POWER SEAT SYSTEM 2
CIRCUIT BREAKER 2	REMOVAL AND INSTALLATION
POWER SEAT ADJUSTER AND MOTORS 1	POWER SEAT ADJUSTER AND MOTORS 3
POWER SEAT SWITCH 1	POWER SEAT SWITCH 2
DIAGNOSIS AND TESTING	
CIRCUIT BREAKER	

GENERAL INFORMATION

INTRODUCTION

A six-way driver side power seat is an available factory-installed option for Left-Hand Drive (LHD) versions of this model. The power seat system receives battery feed through a fuse in the Power Distribution Center and a circuit breaker in the junction block at all times.

Following are general descriptions of the major components in the power seat system. Refer to 8W-63 - Power Seat in Group 8W - Wiring Diagrams for complete circuit descriptions and diagrams.

NOTE: This group covers both Left-Hand Drive (LHD) and Right-Hand Drive (RHD) versions of this model. Whenever required and feasible, the RHD versions of affected vehicle components have been constructed as mirror-image of the LHD versions. While most of the illustrations used in this group represent only the LHD version, the diagnostic and service procedures outlined can generally be applied to either version. Exceptions to this rule have been clearly identified as LHD or RHD, if a special illustration or procedure is required.

DESCRIPTION AND OPERATION

POWER SEAT SWITCH

The power seat can be adjusted in six different ways using the power seat switch. The switch is located on the lower outboard side of the seat cushion frame. Refer to the owner's manual for more information on power seat switch functions and seat adjusting procedures.

The individual switches in the power seat switch module cannot be repaired. If one switch is damaged or faulty, the entire power seat switch module must be replaced.

POWER SEAT ADJUSTER AND MOTORS

There are three reversible motors that operate the power seat adjuster. The motors are connected to worm-drive gearboxes that move the seat adjuster through a combination of screw-type drive units.

The front and rear of a seat are operated by different motors. They can be raised or lowered independently of each other. When the center seat switch is pushed to the Up or Down position, both the front and rear motors operate in unison, moving the entire seat up or down. The forward-rearward motor is operated by pushing the center seat switch to the Forward or Rearward position.

When a switch is actuated, a battery feed and a ground path are applied through the switch contacts to the motor(s). The motor(s) and drives operate to move the seat in the selected direction until the switch is released, or until the travel limit of the power seat adjuster is reached. When the switch is moved in the opposite direction, the battery feed and ground path to the motor(s) are reversed through the switch contacts. This causes the motor to run in the opposite direction.

Each motor contains a self-resetting circuit breaker to protect it from overload. Consecutive or frequent resetting of the circuit breakers must not be allowed to continue, or the motors may be damaged. Make the necessary repairs.

The power seat adjuster and motors cannot be repaired, and are serviced only as a complete unit. If any component in this unit is faulty or damaged, the entire power seat adjuster and motors assembly must be replaced.

CIRCUIT BREAKER

An automatic resetting circuit breaker in the junction block is used to protect the power seat system circuit. The circuit breaker can protect the system from a short circuit, or from an overload condition caused by an obstructed or stuck seat adjuster.

The circuit breaker cannot be repaired and, if faulty or damaged, it must be replaced.

DIAGNOSIS AND TESTING

POWER SEAT SYSTEM

Before any testing of the power seat system is attempted, the battery should be fully-charged and all wire harness connections and pins cleaned and tightened to ensure proper continuity and grounds. For circuit descriptions and diagrams, refer to 8W-63 - Power Seat in Group 8W - Wiring Diagrams.

With the dome lamp on, apply the power seat switch in the direction of the failure. If the dome lamp dims, the seat may be jamming. Check under and behind the seat for binding or obstructions. If the dome lamp does not dim, proceed with testing of the individual components and circuits.

CIRCUIT BREAKER

For circuit descriptions and diagrams, refer to 8W-63 - Power Seat in Group 8W - Wiring Diagrams.

- (1) Locate the correct circuit breaker in the junction block. Pull out the circuit breaker slightly, but be sure that the terminals still contact the terminals in the junction block cavities.
- (2) Connect the negative lead of a 12-volt DC voltmeter to a good ground.
- (3) With the voltmeter positive lead, check both terminals of the circuit breaker for battery voltage.

If only one terminal has battery voltage, the circuit breaker is faulty and must be replaced. If neither terminal has battery voltage, repair the open circuit from the Power Distribution Center (PDC) as required.

POWER SEAT ADJUSTER AND MOTORS

For circuit descriptions and diagrams, refer to 8W-63 - Power Seat in Group 8W - Wiring Diagrams.

Operate the power seat switch to move all three seat motors. The seat should move in each selected direction. If a motor fails to operate in only one direction, move the seat a short distance in the opposite direction and test again to be certain the adjuster is not at its travel limit. If one or more of the motors operate, see the diagnosis for the Power Seat Switch in this group. If no motors operate, proceed as follows:

- (1) Test the circuit breaker in the junction block as described in this group. If OK, go to Step 2. If not OK, replace the faulty circuit breaker.
- (2) Remove the power seat switch as described in this group. Check for battery voltage at the fused B(+) circuit cavity of the power seat switch wire harness connector. If OK, go to Step 3. If not OK, repair the open circuit to the junction block as required.
- (3) Check for continuity between the ground circuit cavity of the power seat switch wire harness connector and a good ground. There should be continuity. If OK, go to Step 4. If not OK, repair the open circuit to ground as required.
- (4) Test the power seat switch as described in this group. If the switch tests OK, check the wire harness for the inoperative motor between the switch and the motor for shorts or opens. If the circuits check OK, replace the faulty power seat adjuster and motors assembly. If the circuits are not OK, repair the wire harness as required.

POWER SEAT SWITCH

For circuit descriptions and diagrams, refer to 8W-63 - Power Seat in Group 8W - Wiring Diagrams.

- (1) Remove the power seat switch as described in this group.
- (2) Use an ohmmeter to test the continuity of the switches in each position. See the Power Seat Switch Continuity chart (Fig. 1). If OK, see the diagnosis for the Power Seat Adjuster and Motors in this group. If not OK, replace the faulty power seat switch module.

REMOVAL AND INSTALLATION

POWER SEAT SWITCH

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the three screws that secure the seat side shield to the outboard seat cushion frame.
- (3) Pull the seat side shield away from the seat cushion frame far enough to access the power seat switch wire harness connector.
- (4) Unplug the power seat switch wire harness connector from the switch.
 - (5) Remove the seat side shield from the vehicle.
- (6) Remove the two screws that secure the power seat switch to the inside of the seat side shield (Fig. 2)
- (7) Remove the power seat switch from the seat side shield.
- (8) Reverse the removal procedures to install. Tighten the mounting screws to $2.2~\mathrm{N\cdot m}$ (20 in. lbs.).

SWITCH POSITION	CONTINUITY BETWEEN
OFF	B-N, B-J, B-M, B-E, B-L, B-K
VERTICAL UP	A-E, A-M, B-N, B-J
VERTICAL DOWN	A-J, A-N, B-M, B-E
HORIZONTAL FORWARD	A-L, B-K
HORIZONTAL AFT	A-K, B-L
FRONT TILT UP	A-M, B-N
FRONT TILT DOWN	A-N, B-M
REAR TILT UP	A-E, B-J
REAR TILT DOWN	A-J, B-E

Fig. 1 Power Seat Switch Continuity

Fig. 2 Power Seat Switch Remove/Install

POWER SEAT ADJUSTER AND MOTORS

- (1) Move the seat to its fully raised and fully forward position, if possible.
- (2) Disconnect and isolate the battery negative cable.
- (3) Unplug the seat belt switch wire harness connector from the driver side seat belt buckle half on the inboard side of the seat (Fig. 3).
- (4) Remove the two screws that secure the front of the seat adjuster frame to the floor pan seat mounting reinforcement (Fig. 4).
- (5) Remove the screw that secures the outboard rear of the seat adjuster frame to the floor pan.

Fig. 3 Driver Seat Belt Switch Connector

- (6) Remove the nut that secures the inboard rear of the seat adjuster frame to the stud on the floor pan.
- (7) Unplug the power seat wire harness connector from the body wire harness connector.
- (8) Remove the driver side power seat and adjuster assembly from the vehicle.
- (9) Unplug the power seat wire harness connectors at each of the three power seat motors.
- (10) Remove the four nuts that secure the seat adjuster and motors assembly to the seat cushion frame and remove the adjuster and motors assembly from the seat (Fig. 5).
- (11) Reverse the removal procedures to install. Tighten the seat mounting hardware as follows:

Fig. 4 Power Seat Remove/Install

Fig. 5 Power Seat Adjuster and Motors Remove/ Install

 \bullet Seat adjuster to seat cushion frame nuts - 25 $N{\cdot}m$ (18 ft. lbs.)

- \bullet Seat adjuster to floor panel screws 27 N·m (20 ft. lbs.)
- \bullet Seat adjuster to floor panel nut 40 N·m (30 ft. lbs.).

POWER WINDOW SYSTEMS

CONTENTS

page	page
GENERAL INFORMATION INTRODUCTION 1	
DESCRIPTION AND OPERATION	POWER WINDOW SWITCH
CIRCUIT BREAKER 2	POWER WINDOW SYSTEM 2
DOOR MODULE 2	REMOVAL AND INSTALLATION
POWER WINDOW MOTOR 2	DOOR MODULE
POWER WINDOW SWITCH 1	POWER WINDOW MOTOR 5
DIAGNOSIS AND TESTING	POWER WINDOW SWITCH 5

GENERAL INFORMATION

INTRODUCTION

Power windows are available as factory-installed optional equipment on this model. The power lock system and power mirror system are included on vehicles equipped with the power window option. This group covers diagnosis and service of only the electrical components in the power window system. For service of mechanical components, such as the regulator, lift plate, window tracks, or glass refer to Group 23 - Body.

CIRCUIT BREAKER 3

Following are general descriptions of the major components in the power window system. Refer to 8W-60 - Power Windows in Group 8W - Wiring Diagrams for complete circuit descriptions and diagrams. Refer to the owner's manual for more information on the features and use of this system.

NOTE: This group covers both Left-Hand Drive (LHD) and Right-Hand Drive (RHD) versions of this model. Whenever required and feasible, the RHD versions of affected vehicle components have been constructed as mirror-image of the LHD versions. While most of the illustrations used in this group represent only the LHD version, the diagnostic and service procedures outlined can generally be applied to either version. Exceptions to this rule have been clearly identified as LHD or RHD, if a special illustration or procedure is required.

DESCRIPTION AND OPERATION

POWER WINDOW SWITCH

The individual power windows are controlled by a two-way momentary switch mounted on the trim panel of the passenger side front door trim panel and, on four-door models, on each of the rear door trim panels. Two-way momentary master switches on the driver side front door trim panel control all of the power windows in the vehicle. The driver side front door trim panel also has a two-position power window lockout switch.

The front door power window switches and the power window lockout switch are integral to the Driver Door Module (DDM) or Passenger Door Module (PDM), respectively. The rear door power window switches are stand-alone units.

Each power window switch controls its power window motor by switching battery current and ground between the terminals of the power window motor. The passenger side front door and, on four-door models, both rear door power window switches receive their battery feed through the power window lockout switch or through the master switches in the DDM. Also, each of the individual power window switches receives its ground through the DDM. When the lockout switch is placed in the Lock position, the individual power window switches become inoperative because they have no battery current available to them. However, the master switches are unaffected by the lockout switch position.

Each power window switch, except the lockout switch, is illuminated by a Light-Emitting Diode (LED) when the ignition switch is turned to the On position. However, when the lockout switch is placed in the Lock position, the LED for the locked-out passenger side front and, on four-door models, the rear passenger door power window switches is turned off.

The front door power window switches and their lamps cannot be repaired and, if faulty or damaged, the entire door module must be replaced. The rear door power window switches and their lamps cannot be repaired but, if faulty or damaged, only the affected switch unit must be replaced.

DOOR MODULE

A Driver Door Module (DDM) and a Passenger Door Module (PDM) are used on all models equipped with power locks and power windows. Each door module houses both the front door power lock and power window switches. The DDM also houses individual switches for each passenger door power window, a power window lockout switch, a power mirror switch, and circuitry to support the one-touch down feature of the driver side front door power window. The PDM also houses the control circuitry and the power lock and unlock relays for the power lock system.

The DDM and the PDM are mounted to their respective front door trim panels. The DDM and PDM are serviced individually and cannot be repaired. If the DDM or PDM, or any of the switches and circuitry they contain are faulty or damaged, the complete module must be replaced.

POWER WINDOW MOTOR

A permanent magnet reversible motor moves the window regulator through an integral gearbox mechanism. A positive and negative battery connection to the two motor terminals will cause the motor to rotate in one direction. Reversing current through these same two connections will cause the motor to rotate in the opposite direction.

In addition, each power window motor is equipped with an integral self-resetting circuit breaker to protect the motor from overloads. The power window motor and gearbox assembly cannot be repaired and, if faulty or damaged, the entire power window regulator assembly must be replaced.

CIRCUIT BREAKER

An automatic resetting circuit breaker in the junction block is used to protect the power window system circuit. The circuit breaker can protect the system from a short circuit, or from an overload condition caused by an obstructed or stuck window glass or regulator.

The circuit breaker cannot be repaired and, if faulty, it must be replaced.

DIAGNOSIS AND TESTING

POWER WINDOW SYSTEM

For circuit descriptions and diagrams, refer to 8W-60 - Power Windows in Group 8W - Wiring Diagrams.

ALL WINDOWS INOPERATIVE

(1) Check the circuit breaker in the junction block, as described in this group. If OK, go to Step 2. If not OK, replace the faulty circuit breaker.

- (2) Remove the Driver Door Module (DDM) as described in this group. Check for continuity between the ground circuit cavity of the switch wire harness connector and a good ground. If OK, go to Step 3. If not OK, repair the circuit to ground as required.
- (3) Turn the ignition switch to the On position. Check for battery voltage at the fused ignition switch output circuit cavity of the DDM wire harness connector. If OK, see the diagnosis for the Door Module in this group. If not OK, repair the open circuit to the circuit breaker in the junction block as required.

ONE WINDOW INOPERATIVE

The window glass must be free to slide up and down for the power window motor to function properly. If the glass is not free to move up and down, the motor will overload and trip the integral circuit breaker. To determine if the glass is free, disconnect the regulator plate from the glass. Then slide the window up and down by hand.

There is an alternate method to check if the glass is free. Position the glass between the up and down stops. Then, shake the glass in the door. Check that the glass can be moved slightly from side to side, front to rear, and up and down. Then check that the glass is not bound tight in the tracks. If the glass is free, proceed with the diagnosis that follows. If the glass is not free, refer to Group 23 - Body for the door window glass and hardware service and adjustment procedures.

- (1) Check the power window switch continuity as described in the diagnosis for the Door Module (front doors) or Power Window Switch (rear doors) in this group. If OK and the driver side front window is inoperative, see the Power Window Motor diagnosis in this group. If OK and the inoperative window is other than the driver side front, go to Step 2. If not OK, replace the faulty door module or switch.
- (2) Refer to the circuit diagrams in 8W-60 Power Windows in Group 8W Wiring Diagrams. Check the continuity in each circuit between the inoperative Passenger Door Module (PDM) or power window switch wire harness connector cavities and the corresponding Driver Door Module (DDM) wire harness connector cavities. If OK, see the diagnosis for the Power Window Motor in this group. If not OK, repair the open circuit(s) as required.

NOTE: All individual power window switches receive their battery and ground feeds through the Driver Door Module (DDM) and wire harness connectors.

DIAGNOSIS AND TESTING (Continued)

CIRCUIT BREAKER

For circuit descriptions and diagrams, refer to 8W-60 - Power Windows in Group 8W - Wiring Diagrams.

- (1) Locate the circuit breaker in the junction block. Pull out the circuit breaker slightly, but be sure that the terminals still contact the terminals in the junction block cavities.
- (2) Connect the negative lead of a 12-volt DC voltmeter to a good ground.
- (3) With the voltmeter positive lead, check both terminals of the circuit breaker for battery voltage.

If only one terminal has battery voltage, the circuit breaker is faulty and must be replaced. If neither terminal has battery voltage, repair the open circuit from the Power Distribution Center (PDC) as required.

DOOR MODULE

The Driver Door Module (DDM) contains the master switches and the lockout switch in the power window system. The DDM also contains an integrated circuit to support the one-touch down feature of the driver side front door power window. Remember that the passenger side front door power window switch and, on four-door models, the rear door power window switches get their battery current through the power window lockout switch in the Driver Door Module (DDM). In addition, each individual power window switch gets its ground through the master switch in the DDM.

The one-touch down feature circuitry within the DDM will not operate the power window motor if the door glass, window regulator, or gearbox mechanism are stuck, obstructed, or binding. If the driver side front door power window operates as designed, but the one-touch down feature is inoperative, replace the faulty DDM.

If the problem being diagnosed is an inoperative power window switch illumination lamp, but the power window switch operates as designed, replace the faulty door module. For circuit descriptions and diagrams, refer to 8W-60 - Power Windows in Group 8W - Wiring Diagrams.

- (1) Remove the door module from the door trim panel as described in this group.
- (2) Check the door module power window switch and/or power window lockout switch continuity in each position, as shown in the proper chart (Fig. 1) or (Fig. 2). If OK, see the Power Window Motor diagnosis in this group. If not OK, replace the faulty door module.

POWER WINDOW SWITCH

The diagnosis found here applies only to the rear door power window switches. For diagnosis of the

POWER WINDOWS CONNECTOR 2 (C2)

SWITCH POSITION	CONTINUITY BETWEEN
OFF (NORMAL)	1&8, 2&8, 3&8, 4&8, 5&8, 6&8, 10&8, 12&8
RIGHT REAR DOWN	1&9
RIGHT REAR UP	2&9
RIGHT FRONT UP	3&9
LEFT REAR UP	4&9
LEFT FRONT UP	5&9
RIGHT FRONT DOWN	6&9
LEFT REAR DOWN	10&9
LEFT FRONT DOWN	12&9

WINDOW LOCKOUT CONNECTOR 1 (C1), CONNECTOR 2 (C2)

SWITCH POSITION	CONTINUITY BETWEEN
LOCKOUT OFF (UP)	C1 PIN 8 & C2 PIN 9
LOCKOUT ON (DOWN)	NO CONTINUITY BETWEEN C1 PIN 8 & C2 PIN 9

80abd2eb

Fig. 1 DDM Power Window Switch Continuity

CONNECTOR 2 (C-2)

POWER WINDOWS		
OFF (NORMAL)	C2 PIN 2 & C2 PIN 3	
	C2 PIN 4 & C2 PIN 9	
UP	C2 PIN 2 & C2 PIN 3	
	C2 PIN 9 & C2 PIN 10	
DOWN	C2 PIN 2 & C2 PIN 10	
	C2 PIN 4 & C2 PIN 9	

80abd2ec

Fig. 2 PDM Power Window Switch Continuity

front door switches, see Door Module in this group. If the problem being diagnosed is an inoperative power window switch illumination lamp, but the power window switch operates as designed, replace the faulty switch. For circuit descriptions and diagrams, refer to 8W-60 - Power Windows in Group 8W - Wiring Diagrams.

- (1) Remove the power window switch from the rear door trim panel as described in this group.
- (2) Check the power window switch continuity in each position as shown in the Rear Door Power Window Switch Continuity chart (Fig. 3). If OK, see the Power Window Motor diagnosis in this group. If not OK, replace the faulty switch.

DIAGNOSIS AND TESTING (Continued)

SWITCH POSITION	CONTINUITY BETWEEN
OFF (NORMAL)	1&4
	2&5
UP	1&6
	2&5
DOWN	1&4
	5&6

80abd2ed

Fig. 3 Rear Door Power Window Switch Continuity
POWER WINDOW MOTOR

For circuit descriptions and diagrams, refer to 8W-60 - Power Windows in Group 8W - Wiring Diagrams. Before you proceed with this diagnosis, confirm proper switch operation. See the Door Module and/or Power Window Switch diagnosis in this group.

- (1) Remove the door trim panel as described in Door Module (front door) or Power Window Switch (rear door) in this group.
- (2) Unplug the power window motor wire harness connector. Apply 12 volts across the motor terminals to check its operation in one direction. Reverse the connections across the motor terminals to check the operation in the other direction. Remember, if the window is in the full up or full down position, the motor will not operate in that direction by design. If OK, repair the circuits from the motor to the door module or the switch as required. If not OK, replace the faulty motor.
- (3) If the motor operates in both directions, check the operation of the window glass and lift mechanism through its complete up and down travel. There should be no binding or sticking of the window glass or lift mechanism through the entire travel range. If not OK, refer to Group 23 Body to check the window glass, tracks, and regulator for sticking, binding, or improper adjustment.

REMOVAL AND INSTALLATION

DOOR MODULE

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the screws that secure the door trim panel to the inner door panel (Fig. 4).

Fig. 4 Front Door Trim Panel Remove/Install

(3) Using a trim stick or another suitable wide flat-bladed tool, gently pry the trim panel away from the door around the perimeter to release the trim panel retainers.

NOTE: To aid in the removal of the trim panel, start at the bottom of the panel.

- (4) Lift the door trim panel upwards and away from the door to disengage the top of the panel from the inner belt weatherstrip.
- (5) Pull the door trim panel away from the inner door far enough to access the inside door latch release and lock linkage rods near the back of the inside door remote controls.
- (6) Unsnap the plastic retainer clips from the inside door remote control ends of the latch release and lock linkage rods, and remove the rod ends from the inside door remote controls.
- (7) Unplug the wire harness connectors from the door module.
- (8) Remove the front door trim panel from the vehicle.
- (9) Remove the three screws that secure the door module to the door trim panel (Fig. 5).

Fig. 5 Door Module Remove/Install

- (10) Remove the door module from the trim panel.
- (11) Reverse the removal procedures to install. Tighten the mounting screws to $2.2~N\cdot m$ (20 in. lbs.).

POWER WINDOW SWITCH

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the screws that secure the door trim panel to the inner door panel (Fig. 6).

Fig. 6 Rear Door Trim Panel Remove/Install

(3) Using a trim stick or another suitable wide flat-bladed tool, gently pry the trim panel away from the door around the perimeter to release the trim panel retainers.

NOTE: To aid in the removal of the trim panel, start at the bottom of the panel.

- (4) Lift the door trim panel upwards and away from the door to disengage the top of the panel from the inner belt weatherstrip.
- (5) Pull the door trim panel away from the inner door far enough to access the inside door latch release and lock linkage rods near the back of the inside door remote controls.
- (6) Unsnap the plastic retainer clips from the inside door remote control ends of the latch release and lock linkage rods, and remove the rod ends from the inside door remote controls.

- (7) Unplug the wire harness connector from the rear door power window switch.
- (8) Remove the rear door trim panel from the vehicle.
- (9) Carefully pry the snap retainers at each side of the switch receptacle in the trim panel and pull the switch out of the receptacle (Fig. 7).

80abd2f0

Fig. 7 Rear Door Power Window Switch Remove/ Install

(10) Reverse the removal procedures to install.

POWER WINDOW MOTOR

FRONT DOOR

The front door power window motor and mechanism is integral to the front door power window regulator unit. If the front door power window motor or mechanism is faulty or damaged, the entire power window regulator unit must be replaced. Refer to Group 23 - Body for the front door window regulator service procedures.

REAR DOOR

The rear door power window motor and mechanism is integral to the rear door power window regulator unit. If the rear door power window motor or mechanism is faulty or damaged, the entire power window regulator unit must be replaced. Refer to Group 23 - Body for the rear door window regulator service procedures.

page

POWER MIRROR SYSTEMS

CONTENTS

page

GENERAL INFORMATION		DIAGNOSIS AND TESTING	
INTRODUCTION	1	POWER MIRROR SYSTEM	2
DESCRIPTION AND OPERATION		REMOVAL AND INSTALLATION	
DOOR MODULE	1	DOOR MODULE	4
POWER MIRROR SWITCH	1	POWER MIRROR SWITCH	2
POWER MIRROR	1	POWER MIRROR	_

GENERAL INFORMATION

INTRODUCTION

Power operated or power operated and heated outside rear view mirrors are available factory-installed options on this model. Following are general descriptions of the major components in the power mirror system.

Refer to 8W-62 - Power Mirrors in Group 8W - Wiring Diagrams for complete circuit descriptions and diagrams. Refer to the owner's manual for more information on the features and use of this system.

NOTE: This group covers both Left-Hand Drive (LHD) and Right-Hand Drive (RHD) versions of this model. Whenever required and feasible, the RHD versions of affected vehicle components have been constructed as mirror-image of the LHD versions. While most of the illustrations used in this group represent only the LHD version, the diagnostic and service procedures outlined can generally be applied to either version. Exceptions to this rule have been clearly identified as LHD or RHD, if a special illustration or procedure is required.

DESCRIPTION AND OPERATION

POWER MIRROR

The power mirrors are connected to an ignitionswitched battery feed so that the mirrors will only operate with the ignition switch in the On position. Each mirror head contains two electric motors, two drive mechanisms, and the mirror glass. One motor and drive controls mirror up-and-down movement, and the other controls right-and-left movement.

The power mirrors in vehicles equipped with the available heated mirror option also include an electric heating grid located behind the mirror glass. This heating grid is energized by the rear window defogger relay whenever the rear window defogger

system is turned on. Refer to Group 8N - Electrically Heated Systems for more information on the operation of the rear window defogger system.

The power mirror assembly cannot be repaired. Only the mirror glass is serviced separately. If any other component of the power mirror unit is faulty or damaged, the entire assembly must be replaced.

POWER MIRROR SWITCH

Both the right and left power outside mirrors are controlled by a single multi-function switch unit located on the driver side front door trim panel. Two versions of this switch are offered. Models without power windows or power locks have a stand-alone switch mounted in the driver side front door trim panel. Models equipped with power windows and power locks have a power mirror switch that is integral to the Driver Door Module (DDM).

Both versions of the switch are operated in the same manner. A three position rocker-type mirror selector switch is moved right (right mirror control), left (left mirror control), or center to turn the power mirrors off. Then one of four directional control buttons is depressed to control movement of the selected mirror up, down, right, or left. The directional control buttons of the DDM-mounted switch are illuminated when the ignition switch is in the On position. The stand-alone switch is not illuminated.

The stand-alone power mirror switch cannot be repaired and, if faulty or damaged, it must be replaced as a complete unit. The DDM power mirror switch requires replacement of the entire DDM if the switch is faulty or damaged.

DOOR MODULE

A Driver Door Module (DDM) and a Passenger Door Module (PDM) are used on all models equipped with power locks and power windows. Each door module houses both the front door power lock and power window switches. The DDM also houses individual switches for each passenger door power window, a power window lockout switch, a power mirror

switch, and circuitry to support the one-touch down feature of the driver side front door power window. The PDM also houses the control circuitry and the power lock and unlock relays for the power lock system.

The DDM and the PDM are mounted to their respective front door trim panels. The DDM and PDM are serviced individually and cannot be repaired. If the DDM or PDM, or any of the switches and circuitry they contain are faulty or damaged, the complete module must be replaced.

DIAGNOSIS AND TESTING

POWER MIRROR SYSTEM

For circuit descriptions and diagrams, refer to 8W-62 - Power Mirrors in Group 8W - Wiring Diagrams.

- (1) Check the fuse in the junction block. If OK, go to Step 2. If not OK, repair the shorted circuit or component as required and replace the faulty fuse.
- (2) If the problem being diagnosed is inoperative power mirror switch directional button illumination for the Driver Door Module (DDM)-type switch, proceed as follows. If not, go to Step 4. Check the power window circuit breaker in the junction block. If OK, go to Step 3. If not OK, replace the faulty circuit breaker.
- (3) Check for battery voltage at the fused ignition switch output circuit cavity of the 12-way DDM wire harness connector with the ignition switch in the On position. If OK, replace the faulty DDM. If not OK, repair the open circuit to the power window circuit breaker in the junction block as required.
- (4) If the problem being diagnosed is an inoperative power mirror electric heating grid, proceed as follows. If not, go to Step 7. Disconnect and isolate the battery negative cable. Unplug the wire harness connector at the inoperative mirror as described in this group. Check for continuity between the ground circuit cavity in the body half of the power mirror wire harness connector and a good ground. If OK, go to Step 5. If not OK, repair the open circuit to ground as required.
- (5) Connect the battery negative cable. Turn the ignition switch to the On position. Turn on the rear window defogger system. Check for battery voltage at the rear window defogger relay output circuit cavity in the body half of the power mirror wire harness connector. If OK, go to Step 6. If not OK, repair the open circuit to the rear window defogger relay as required.
- (6) Check for continuity between the ground circuit and the rear window defogger relay output circuit cavities in the mirror half of the power mirror wire harness connector. There should be continuity. If

- not OK, replace the faulty power mirror. If OK, check the resistance through the electric heating grid circuit. Correct resistance through the electric heating grid should be from 10 to 16 ohms when measured at an ambient temperature of 21°C (70°F). If not OK, replace the faulty power mirror.
- (7) Disconnect and isolate the battery negative cable. Remove the stand-alone power mirror switch or the DDM as described in this group. Unplug the wire harness connector from the stand-alone switch or the 8-way wire harness connector from the DDM. Connect the battery negative cable. Turn the ignition switch to the On position. Check for battery voltage at the fused ignition switch output circuit cavity of the stand-alone switch wire harness connector or the 8-way DDM wire harness connector. If OK, go to Step 8. If not OK, repair the open circuit to the junction block as required.
- (8) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Check for continuity between the ground circuit cavity of the stand-alone switch wire harness connector or the 8-way DDM wire harness connector and a good ground. There should be continuity. If OK, go to Step 9. If not OK, repair the circuit to ground as required.
- (9) Check the stand-alone power mirror switch or DDM-mounted power mirror switch continuity as shown in (Fig. 1) or (Fig. 2). If OK, go to Step 10. If not OK, replace the faulty stand-alone power mirror switch or the faulty DDM.
- (10) Connect the battery negative cable. Use two jumper wires, one connected to a 12-volt battery feed, and the other connected to a good body ground. See the Power Mirror Test chart for the correct jumper wire connections at the mirror half of the power mirror wire harness connector (Fig. 3). If the mirror reactions are OK, repair the wire harness between the mirror and the stand-alone power mirror switch or the DDM as required. If the mirror reactions are not OK, replace the faulty power outside mirror assembly.

REMOVAL AND INSTALLATION

POWER MIRROR SWITCH

This procedure covers removal of only the standalone power mirror switch. Vehicles with power windows and power locks have the a power mirror switch integral to the Driver Door Module (DDM). See Door Module in this group for the service procedures.

- (1) Disconnect and isolate the battery negative cable.
- (2) Using a trim stick or another suitable wide flat-bladed tool, gently pry the edge of the switch out

SELECT RIGHT MIRROR		
SWITCH POSITION	CONTINUITY BETWEEN	
OFF	1 & 3, 1 & 4, 1 & 5, 1 & 6	
UP	2 & 4, 1 & 3, 1 & 5, 1 & 6	
DOWN	2 & 5, 1 & 3, 1 & 4, 1 & 6	
RIGHT	2 & 6, 1 & 3, 1 & 4, 1 & 5	
LEFT	2 & 3, 1 & 4, 1 & 5, 1 & 6	

SELECT LEFT MIRROR		
SWITCH POSITION	CONTINUITY BETWEEN	
OFF	1 & 5, 1 & 6, 1 & 7, 1 & 8	
UP	2 & 8, 1 & 5, 1 & 6, 1 & 7	
DOWN	2 & 5, 1 & 6, 1 & 7, 1 & 8	
RIGHT	2 & 6, 1 & 5, 1 & 7, 1 & 8	
LEFT	2 & 7, 1 & 5, 1 & 6, 1 & 8	

80abfeca

Fig. 1 Stand-Alone Power Mirror Switch Continuity

SELECT RIGHT MIRROR			
SWITCH POSITION CONTINUITY BETY			
UP	7 & 3, 2 & 5		
DOWN	2 & 3, 7 & 5		
RIGHT	4 & 3, 2 & 5		
LEFT	2 & 3, 4 & 5		

SELECT LEFT MIRROR			
SWITCH POSITION	CONTINUITY BETWEEN		
UP	1 & 3, 2 & 5		
DOWN	2 & 3, 1 & 5		
RIGHT	6 & 3, 2 & 5		
LEFT	2 & 3, 6 & 5		

80abfecb

Fig. 2 Driver Door Module Power Mirror Switch Continuity

of the trim panel to release the snap clip retainers (Fig. 4).

POWER MIRROR TEST				
12 VOLTS	GROUND	MIRROR REACTION		
PIN 1	PIN 4 UP			
PIN 4	PIN 1	DOWN		
PIN 2	PIN 3	LEFT		
PIN 3	PIN 3 PIN 2 RIGHT			
PIN 5 PIN 6 HEATER		HEATER		

80ac2c55

Fig. 3 Power Mirror Test

Fig. 4 Stand-Alone Power Mirror Switch Remove/ Install

- (3) Pull the power mirror switch away from the trim panel far enough to access the wire harness connector.
- (4) Unplug the power mirror switch wire harness connector.

- (5) Remove the power mirror switch from the vehicle.
 - (6) Reverse the removal procedures to install.

DOOR MODULE

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the screws that secure the door trim panel to the inner door panel (Fig. 5).

Fig. 5 Front Door Trim Panel Remove/Install

(3) Using a trim stick or another suitable wide flat-bladed tool, gently pry the trim panel away from the door around the perimeter to release the trim panel retainers.

NOTE: To aid in the removal of the trim panel, start at the bottom of the panel.

- (4) Lift the door trim panel upwards and away from the door to disengage the top of the panel from the inner belt weatherstrip.
- (5) Pull the door trim panel away from the inner door far enough to access the inside door latch release and lock linkage rods near the back of the inside door remote controls.
- (6) Unsnap the plastic retainer clips from the inside door remote control ends of the latch release and lock linkage rods, and remove the rod ends from the inside door remote controls.
- (7) Unplug the wire harness connectors from the door module.
- (8) Remove the front door trim panel from the vehicle.
- (9) Remove the three screws that secure the door module to the door trim panel (Fig. 6).
 - (10) Remove the door module from the trim panel.
- (11) Reverse the removal procedures to install. Tighten the mounting screws to 2.2 N·m (20 in. lbs.).

Fig. 6 Door Module Remove/Install

POWER MIRROR

- (1) Disconnect and isolate the battery negative cable.
- (2) If the vehicle is so equipped, remove the manual window regulator crank handle with a removal tool (Fig. 7).

Fig. 7 Window Regulator Crank Handle Remove - Typical

- (3) Remove the screws that secure the door trim panel to the inner door panel (Fig. 8) or (Fig. 9).
- (4) Using a trim stick or another suitable wide flat-bladed tool, gently pry the trim panel away from the door around the perimeter to release the trim panel retainers.

NOTE: To aid in the removal of the trim panel, start at the bottom of the panel.

- (5) Lift the door trim panel upwards and away from the door to disengage the top of the panel from the inner belt weatherstrip.
- (6) Pull the door trim panel away from the inner door far enough to access the inside door latch release and lock linkage rods near the back of the inside door remote control.

Fig. 8 Front Door Trim Panel Remove/Install - Manual Window

Fig. 9 Front Door Trim Panel Remove/Install - Power Window

- (7) Unsnap the plastic retainer clips from the inside door remote control ends of the latch release and lock linkage rods, and remove the rod ends from the inside door remote control.
- (8) Unplug the wire harness connectors from the door power switch module or, on the driver side only, the stand-alone power mirror switch.
- (9) Remove the front door trim panel from the vehicle.
- (10) Remove the one screw that secures the door flag trim to the inner door panel (Fig. 10).
- (11) Using a trim stick or another suitable wide flat-bladed tool, gently pry the door flag trim away from the inner door to release the trim panel retainer.

Fig. 10 Front Door Flag Trim Panel Remove/Install

- (12) Unplug the power mirror wire harness connector.
- (13) Remove the three screws that secure the power mirror to the inner door panel (Fig. 11).

Fig. 11 Power Mirror Remove/Install

- (14) Unseat the power mirror wire harness grommet by pushing it out through the hole in the door flag from the inside.
- (15) Pull the mirror and seal from the outside of the door while feeding the wire harness, grommet, and connector out through the hole from the inside of the door
- (16) Reverse the removal procedures to install. Tighten the mirror mounting screws to 4.3 N·m (38 in, lbs.).

2000

CHIME/BUZZER WARNING SYSTEMS

CONTENTS

2000

page	page
GENERAL INFORMATION	DIAGNOSIS AND TESTING
INTRODUCTION 1	DRIVER DOOR JAMB SWITCH 2
DESCRIPTION AND OPERATION	DRIVER SEAT BELT SWITCH
DRIVER DOOR JAMB SWITCH 2	HEADLAMP SWITCH 3
DRIVER SEAT BELT SWITCH 2	INSTRUMENT CLUSTER 3
HEADLAMP SWITCH 2	KEY-IN IGNITION SWITCH
INSTRUMENT CLUSTER 1	REMOVAL AND INSTALLATION
KEY-IN IGNITION SWITCH 2	CHIME WARNING SYSTEM SWITCHES

GENERAL INFORMATION

INTRODUCTION

This group covers the chime warning system, which is standard factory-installed equipment on this model. The chime warning system provides an audible warning to the driver under the following conditions:

- Driver side seat belt is not fastened with the ignition switch in the On position
 - Engine coolant temperature is high
- Head or park lamps are turned on with the ignition switch Off and the driver side front door open
- Key is in the ignition switch with the ignition switch Off and the driver side front door open
- Low fuel warning lamp illumination less than about one-eighth tank of fuel remaining
 - Overhead console trip computer is reset.

Following are general descriptions of the major components in the chime warning system. Refer to 8W-40 Instrument Cluster or 8W-44 - Interior Lighting in Group 8W - Wiring Diagrams for complete circuit descriptions and diagrams.

NOTE: This group covers both Left-Hand Drive (LHD) and Right-Hand Drive (RHD) versions of this model. Whenever required and feasible, the RHD versions of affected vehicle components have been constructed as mirror-image of the LHD versions. While most of the illustrations used in this group represent only the LHD version, the diagnostic and service procedures outlined can generally be applied to either version. Exceptions to this rule have been clearly identified as LHD or RHD, if a special illustration or procedure is required.

DESCRIPTION AND OPERATION

INSTRUMENT CLUSTER

The instrument cluster is an electromechanical unit that contains integrated circuitry and internal programming to perform a variety of functions. The instrument cluster circuitry monitors hard-wired switch inputs, as well as message inputs received from other vehicle electronic modules on the Chrysler Collision Detection (CCD) data bus network.

The instrument cluster uses these many inputs along with its internal programming and an integral chime tone generator to perform the functions of the chime warning module on this model. The instrument cluster circuitry also has a self-diagnostic capability. Refer to Group 8E - Instrument Panel Systems for more information on this feature.

Hard-wired chime warning system inputs to the instrument cluster include the following:

- · Driver door jamb switch
- Driver seat belt switch
- Headlamp switch
- Key-in ignition switch.

The only instrument cluster diagnosis found in this group consists of confirming the viability of the hardwired chime request inputs to the instrument cluster circuitry. For diagnosis of the CCD data bus and the data bus message inputs, a DRB scan tool and the proper Diagnostic Procedures manual are recommended.

Refer to Group 8E - Instrument Panel Systems for the service procedures for the instrument cluster. The instrument cluster chime warning circuitry and chime tone generator cannot be repaired and, if faulty, the instrument cluster assembly must be replaced.

DRIVER DOOR JAMB SWITCH

The driver door jamb switch is mounted to the driver side front door hinge pillar. The switch closes a path to ground for the instrument cluster chime warning circuitry through the key-in ignition switch and/or the headlamp switch when the driver door is opened, and opens the ground path when the driver door is closed.

The driver door jamb switch cannot be repaired and, if faulty or damaged, it must be replaced. Refer to Group 8L - Lamps for the service procedures.

DRIVER SEAT BELT SWITCH

The driver seat belt switch is integral to the driver seat belt buckle-half assembly. The switch is normally closed, providing a ground path to the instrument panel chime warning circuitry. When the tiphalf of the seat belt is inserted into the seat belt buckle, the switch opens the ground path.

The driver seat belt switch cannot be repaired and, if faulty or damaged, the entire driver seat belt buckle-half unit must be replaced. Refer to Group 23 - Body for the service procedures.

KEY-IN IGNITION SWITCH

The key-in ignition switch is integral to the ignition switch, which is mounted on the left side of the steering column, opposite the ignition lock cylinder. It closes a path to ground for the instrument cluster chime warning circuitry when the ignition key is inserted in the ignition lock cylinder and the driver door jamb switch is closed (driver door is open). The key-in ignition switch opens the ground path when the key is removed from the ignition lock cylinder.

The key-in ignition switch cannot be repaired and, if faulty or damaged, the entire ignition switch must be replaced. Refer to Group 8D - Ignition Systems for the service procedures.

HEADLAMP SWITCH

The headlamp switch is located in the instrument panel, outboard of the steering column. It closes a path to ground for the instrument cluster chime warning circuitry when the park or head lamps are on and the driver door jamb switch is closed (driver door is open). The headlamp switch opens the ground path when the headlamp switch is turned off.

The headlamp switch cannot be repaired and, if faulty or damaged, it must be replaced. Refer to Group 8E - Instrument Panel Systems for the service procedures.

DIAGNOSIS AND TESTING

DRIVER DOOR JAMB SWITCH

For circuit descriptions and diagrams, refer to 8W-40 - Instrument Cluster or 8W-44 - Interior Lighting in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Rotate the headlamp switch knob counterclockwise to ensure that the dome lamps are not switched off. Open the driver door and note whether the interior lamps light. They should light. If OK, see the diagnosis for the Key-In Ignition Switch or the Headlamp Switch in this group. If not OK, go to Step 2.
- (2) Disconnect and isolate the battery negative cable. Unplug the driver door jamb switch from its wire harness connector. Check for continuity between the ground circuit cavity of the driver door jamb switch wire harness connector and a good ground. There should be continuity. If OK, go to Step 3. If not OK, repair the circuit to ground as required.
- (3) Check for continuity between the door jamb switch ground circuit terminal and the left front door jamb switch sense terminal of the door jamb switch. There should be continuity with the switch plunger released, and no continuity with the switch plunger depressed. If not OK, replace the faulty switch.

DRIVER SEAT BELT SWITCH

For circuit descriptions and diagrams, refer to 8W-40 - Instrument Cluster or 8W-44 - Interior Lighting in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

DIAGNOSIS AND TESTING (Continued)

- (1) Disconnect and isolate the battery negative cable. Unplug the driver seat belt switch wire harness connector on the floor under the driver seat near the seat belt buckle-half anchor. Check for continuity between the seat belt switch sense circuit and the ground circuit cavities of the seat belt half of the driver seat belt switch wire harness connector. There should be continuity with the seat belt unbuckled, and no continuity with the seat belt buckled. If OK, go to Step 2. If not OK, replace the faulty seat belt buckle-half assembly.
- (2) Check for continuity between the ground circuit cavity in the body half of the driver seat belt switch wire harness connector and a good ground. There should be continuity. If OK, see the Instrument Cluster diagnosis in this group. If not OK, repair the circuit to ground as required.

KEY-IN IGNITION SWITCH

For circuit descriptions and diagrams, refer to 8W-40 - Instrument Cluster or 8W-44 - Interior Lighting in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable. Remove the steering column shrouds. Refer to Group 8D Ignition Systems for the procedures. Unplug the key-in ignition switch wire harness connector from the ignition switch.
- (2) Check for continuity between the key-in switch sense circuit and the left front door jamb switch sense circuit terminals of the key-in ignition switch. There should be continuity with the key in the ignition lock cylinder, and no continuity with the key removed from the ignition lock cylinder. If OK, go to Step 3. If not OK, replace the faulty ignition switch assembly.
- (3) Check for continuity between the left front door jamb switch sense circuit cavity of the key-in ignition switch wire harness connector and a good ground. There should be continuity with the driver door open, and no continuity with the driver door closed. If OK, see the diagnosis for Instrument Cluster in this group. If not OK, repair the circuit to the driver door jamb switch as required.

HEADLAMP SWITCH

For circuit descriptions and diagrams, refer to 8W-40 - Instrument Cluster or 8W-44 - Interior Lighting in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

- (1) Disconnect and isolate the battery negative cable. Remove the headlamp switch from the instrument panel. Refer to Group 8E Instrument Panel Systems for the procedures. Unplug the headlamp switch wire harness connectors. Check for continuity between the left front door jamb switch sense circuit cavity of the headlamp switch wire harness connector and a good ground. There should be continuity with the driver door closed, and no continuity with the driver door open. If OK, go to Step 2. If not OK, repair the circuit to the driver door jamb switch as required.
- (2) Check for continuity between the key-in switch sense circuit terminal and the left front door jamb switch sense terminal of the headlamp switch. There should be no continuity with the switch in the Off position, and continuity with the switch in the park or head lamps On position. If OK, see the diagnosis for the Instrument Cluster in this group. If not OK, replace the faulty headlamp switch.

INSTRUMENT CLUSTER

Before performing this test, complete the testing of the hard-wired chime warning system switches as described in this group. For circuit descriptions and diagrams, refer to 8W-40 - Instrument Cluster or 8W-44 - Interior Lighting in Group 8W - Wiring Diagrams.

WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS, REFER TO GROUP 8M - PASSIVE RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY STEERING WHEEL, STEERING COLUMN, OR INSTRUMENT PANEL COMPONENT DIAGNOSIS OR SERVICE. FAILURE TO TAKE THE PROPER PRECAUTIONS COULD RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE PERSONAL INJURY.

(1) Disconnect and isolate the battery negative cable. Remove the instrument cluster from the

DIAGNOSIS AND TESTING (Continued)

instrument panel. Refer to Group 8E - Instrument Panel Systems for the procedures.

- (2) Unplug the headlamp switch and the key-in ignition switch wire harness connectors. Check for continuity between the key-in switch sense circuit cavity of the right instrument cluster wire harness connector (connector B) and a good ground. There should be no continuity. If OK, go to Step 3. If not OK, repair the short circuit as required.
- (3) Check for continuity between the key-in switch sense circuit cavities of the right instrument cluster wire harness connector (connector B) and the head-lamp switch wire harness connector. There should be continuity. If OK, go to Step 4. If not OK, repair the open circuit as required.
- (4) Unplug the driver seat belt switch wire harness connector. Check for continuity between the seat belt switch sense circuit cavity of the right instrument cluster wire harness connector (connector B) and a good ground. There should be no continuity. If OK, go to Step 5. If not OK, repair the short circuit as required.
- (5) Check for continuity between the seat belt switch sense circuit cavities of the right instrument

cluster wire harness connector (connector B) and the driver seat belt switch wire harness connector. There should be continuity. If OK, test the instrument cluster as described in Group 8E - Instrument Panel Systems. If not OK, repair the open circuit as required.

REMOVAL AND INSTALLATION

CHIME WARNING SYSTEM SWITCHES

Service procedures for the various hard-wired switches used in the chime warning system can be found in the proper group as follows:

- Driver door jamb switch refer to Group 8L Lamps
- Driver seat belt switch refer to Group 23 Body
- Headlamp switch refer to Group 8E Instrument Panel Systems
- \bullet Key-in ignition switch refer to Group 8D Ignition Systems.

OVERHEAD CONSOLE SYSTEMS

CONTENTS

page	page
GENERAL INFORMATION	COMPASS DEMAGNETIZING 5
INTRODUCTION 1	COMPASS VARIATION ADJUSTMENT 4
DESCRIPTION AND OPERATION	REMOVAL AND INSTALLATION
COMPASS 2	AMBIENT TEMPERATURE SENSOR 8
GARAGE DOOR OPENER STORAGE BIN 2	GARAGE DOOR OPENER STORAGE BIN
READING AND COURTESY LAMP 2	DOOR 7
SUNGLASSES STORAGE BIN	OVERHEAD CONSOLE 6
THERMOMETER 2	PUSH BUTTON MODULE 7
TRIP COMPUTER 1	READING AND COURTESY LAMP BULB 7
DIAGNOSIS AND TESTING	SUNGLASSES STORAGE BIN 8
THERMOMETER 4	TRIP COMPUTER, COMPASS, AND
TRIP COMPUTER, COMPASS, AND	THERMOMETER DISPLAY MODULE 7
THERMOMETER DISPLAY MODULE 3	
SERVICE PROCEDURES	
COMPASS CALIBRATION 5	

GENERAL INFORMATION

INTRODUCTION

An overhead console featuring a mini trip computer, an electronic compass, and an outside ambient temperature thermometer are available factory-installed options on this model. The overhead console also includes two front-mounted and two rearmounted reading and courtesy lamps, a garage door opener storage bin, and a sunglasses storage bin.

On models equipped with the Remote Keyless Entry (RKE) option, the overhead console also houses the RKE receiver. Refer to Group 8P - Power Lock Systems for more information on this feature.

Following are general descriptions of the major components used in the overhead console. Refer to 8W-49 - Overhead Console in Group 8W - Wiring Diagrams for complete circuit descriptions and diagrams.

NOTE: This group covers both Left-Hand Drive (LHD) and Right-Hand Drive (RHD) versions of this model. Whenever required and feasible, the RHD versions of affected vehicle components have been constructed as mirror-image of the LHD versions. While most of the illustrations used in this group represent only the LHD version, the diagnostic and service procedures outlined can generally be applied to either version. Exceptions to this rule have been clearly identified as

DESCRIPTION AND OPERATION

TRIP COMPUTER

A mini trip computer is available on this model to provide several electronic functions and features. The trip computer contains a central processing unit and interfaces with other modules in the vehicle on the Chrysler Collision Detection (CCD) data bus network.

The CCD data bus network allows the sharing of sensor information. This helps to reduce wire harness complexity, reduce internal controller hardware, and reduce component sensor current loads. At the same time, this system provides increased reliability, enhanced diagnostics, and allows the addition of many new feature capabilities.

Some of the functions and features that the trip computer supports and/or controls, include the following display options:

- Compass and temperature
- Trip odometer (ODO)
- Average fuel economy (AVG ECO)
- Instant fuel economy (ECO)
- Distance to empty (DTE)
- Elapsed time (ET)
- Blank display.

Momentarily depressing and releasing the Step button when the ignition switch is in the On position will cause the overhead console display to step sequentially through the listed display options. Momentarily depressing and releasing the U.S./Metric button toggles the display between U.S. and Metric measurements. For more information on the trip

computer features and functions, refer to the owner's manual in the vehicle glove box.

The push button (Step and U.S./Metric) switch module in the overhead console is hard-wired to the trip computer. The compass flux-gate unit is integral to the trip computer, compass, and thermometer display module unit. Data input for all other trip computer functions is received through CCD data bus messages. The trip computer uses its internal programming and all of these inputs to calculate and display the requested data. If the data displayed is incorrect, perform the self-diagnostic tests as described in this group. If these tests prove inconclusive, the use of a DRB scan tool and the proper Diagnostic Procedures manual are recommended for further testing of the trip computer and the CCD data bus.

The trip computer, compass, and thermometer display module cannot be repaired, and are only available for service as a unit. If faulty, the complete module must be replaced. The push button (Step and U.S./Metric) switch module is serviced separately.

COMPASS

The compass will display the direction in which the vehicle is pointed using the eight major compass headings (Examples: north is N, northeast is NE). It does not display the headings in actual degrees.

The self-calibrating compass unit requires no adjusting in normal use. The only calibration that may prove necessary is to drive the vehicle in three complete circles, on level ground, in not less than 48 seconds. This will reorient the compass unit to its vehicle.

The compass unit also will compensate for magnetism the body of the vehicle may acquire during normal use. However, avoid placing anything magnetic directly on the roof of the vehicle. Magnetic mounts for an antenna, a repair order hat, or a funeral procession flag can exceed the compensating ability of the compass unit if placed on the roof panel. Magnetic bit drivers used on the fasteners that hold the assembly to the roof header can also affect compass operation. If the vehicle roof should become magnetized, the demagnetizing and calibration procedures found in this group may be required to restore proper compass operation.

The compass, trip computer, and thermometer display module cannot be repaired, and are only available for service as a unit. If faulty, the complete module must be replaced. The push button (Step and U.S./Metric) switch module is serviced separately.

THERMOMETER

The thermometer displays the outside ambient temperature. The temperature display can be

changed from Fahrenheit to Celsius using the U.S./ Metric button, located just rearward of the display module. The displayed temperature is not an instant reading of conditions, but an average temperature. It may take the thermometer display several minutes to respond to a major temperature change, such as driving out of a heated garage into winter temperatures.

When the ignition switch is turned to the Off position, the last displayed temperature reading stays in the thermometer unit memory. When the ignition switch is turned to the On position again, the thermometer will display the memory temperature if the engine coolant temperature is above about 52° C (125° F). If the engine coolant temperature is below about 52° C (125° F), the thermometer will display the actual temperature sensed by the ambient temperature sensor. The thermometer temperature display update interval varies with the vehicle speed.

The thermometer function is supported by an ambient temperature sensor. The sensor is mounted outside the passenger compartment near the front and center of the vehicle and is hard-wired to the module. The ambient temperature sensor is available as a separate service item.

The thermometer, compass, and trip computer display module cannot be repaired, and are only available for service as a unit. If faulty or damaged, the complete module must be replaced. The push button (Step and U.S./Metric) switch module and ambient temperature sensor are serviced separately.

READING AND COURTESY LAMP

All reading and courtesy lamps located in the overhead console are activated by the door ajar switches. When the doors are closed, the lamps can be individually activated by depressing the corresponding lens.

When a door is open, depressing the lamp lens switches will not turn the lamps off. Refer to Group 8L - Lamps, for diagnosis of the reading and courtesy lamps.

The reading and courtesy lamp lens, and bulbs are available for service replacement. The reading and courtesy lamp holders and switches are only available as part of the overhead console wire harness. If any reading lamp switch is faulty or damaged, the wire harness and all four switches must be replaced.

GARAGE DOOR OPENER STORAGE BIN

A compartment in the overhead console is designed to hold most garage door opener remote control transmitters. The transmitter is mounted within the compartment with an adhesive-backed hook and loop fastener patch.

With the transmitter mounted in the storage bin, adapter pegs located on the front of the storage bin

door are selected and mounted on a post near the center of the storage bin door. The peg(s) selected and/or the post must be long enough to depress the button of the transmitter when the garage door opener storage bin door is depressed. The pegs may be stacked, if necessary. Refer to the owner's manual in the vehicle glove box for more information.

A transmitter mounting kit including the adhesive-backed hook and loop fastener material and a selection of pegs is available for service. The garage door opener storage bin door assembly is also available for service replacement.

SUNGLASSES STORAGE BIN

A sunglasses storage bin is included in the overhead console. The interior of the bin is lined with a foam rubber padding material to protect the sunglasses from being scratched. This bin features a push/push-type latching mechanism, and a viscous dampening system for a fluid opening action.

The sunglasses storage bin door, latch, viscous damper, hinge spring and housing are available for service only as a complete module. If any part of this unit is faulty or damaged, the entire module must be replaced.

DIAGNOSIS AND TESTING

TRIP COMPUTER, COMPASS, AND THERMOMETER DISPLAY MODULE

If the problem with the trip computer, compass, and thermometer display module is an inaccurate or scrambled display, use the Self-Diagnostic Test procedures. If the problem is incorrect display lighting levels, use a DRB scan tool and the proper Diagnostic Procedures manual to test for the correct dimming message inputs being received from the instrument cluster over the Chrysler Collision Detection (CCD) data bus. If the problem is a no-display condition, use the following procedures. For circuit descriptions and diagrams, refer to 8W-49 - Overhead Console in Group 8W - Wiring Diagrams.

- (1) Check the fuses in the junction block and the Power Distribution Center (PDC). If OK, go to Step 2. If not OK, repair the shorted circuit or component as required and replace the faulty fuse(s).
- (2) Turn the ignition switch to the On position. Check for battery voltage at the fused ignition switch output fuse in the junction block. If OK, go to Step 3. If not OK, repair the open circuit to the ignition switch as required.
- (3) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Remove the overhead console as described in this group. Check for continuity between the ground circuit cavities of the overhead console wire harness

connector and a good ground. There should be continuity. If OK, go to Step 4. If not OK, repair the open circuit to ground as required.

- (4) Connect the battery negative cable. Check for battery voltage at the fused B(+) circuit cavity of the overhead console wire harness connector. If OK, go to Step 5. If not OK, repair the open circuit to the junction block as required.
- (5) Turn the ignition switch to the On position. Check for battery voltage at the fused ignition switch output circuit cavity of the overhead console wire harness connector. If OK, proceed to the Self-Diagnostic Test in this group for further diagnosis of the module and the CCD data bus. If not OK, repair the open circuit to the junction block as required.

SELF-DIAGNOSTIC TEST

A self-diagnostic test is used to determine that the trip computer, compass, thermometer, and all of the display module segments are operating properly electrically. Initiate the self-diagnostic test as follows:

- (1) With the ignition switch in the Off position, simultaneously press and hold the Step button and the U.S./Metric button.
 - (2) Turn the ignition switch to the On position.
- (3) Continue to hold both buttons until the display module performs a display segment test. In this test, all of the vacuum fluorescent display segments are lighted. This test will:
 - a. Verify that all display segments are functional
 - b. Check the internal circuitry of the module
- c. Check that all of the CCD data bus messages needed are being received.
- (4) Respond to the respective test results as follows. If all tests are passed, the module will automatically return to normal operation.
- d. In the display segment test, if any segment should fail to light the unit is faulty and must be replaced.
- e. If the internal circuitry test is failed, the module will display "FAIL". If "FAIL" is displayed, the unit is faulty and must be replaced.
- f. If the CCD data bus message test is failed, the module will display "CCD". If "CCD" is displayed, the use of a DRB scan tool and the proper Diagnostic Procedures manual are required for further diagnosis.
- (5) Momentarily depress and release either button one time to exit the self-diagnostic test mode and return the trip computer, compass, and thermometer display module to normal operation.

DIAGNOSIS AND TESTING (Continued)

NOTE: If the compass functions, but accuracy is suspect, it may be necessary to perform a variation adjustment. This procedure allows the compass unit to accommodate variations in the earth's magnetic field strength, based on geographic location. See the Compass Variation Adjustment procedures, in this group.

NOTE: If the compass reading has blanked out, and only "CAL" appears in the display module, demagnetizing may be necessary to remove excessive residual magnetic fields from the vehicle. See the Compass Demagnetizing procedure, in this group.

THERMOMETER

The thermometer function is supported by a ambient temperature sensor, a wiring circuit, and a portion of the overhead console trip computer, compass, and thermometer display module display. The sensor is mounted outside the passenger compartment near the front and center of the vehicle.

If any portion of the ambient temperature sensor circuit fails, the thermometer display will self-diagnose the circuit. An "SC" (short circuit) will appear in the display in place of the temperature, when the sensor is exposed to temperatures above 55° C (131° F), or if the sensor circuit is shorted. An "OC" (open circuit) will appear in the display in place of the temperature, when the sensor is exposed to temperatures below -40° C (-40° F), or if the sensor circuit is open.

The ambient temperature sensor circuit can also be diagnosed using the following Sensor Test, and Sensor Circuit Test. If the temperature sensor and circuit are confirmed to be OK, but the temperature display is inoperative or incorrect, see the Trip Computer, Compass, and Thermometer Display Module diagnosis in this group. For circuit descriptions and diagrams, refer to 8W-49 - Overhead Console in Group 8W - Wiring Diagrams.

SENSOR TEST

- (1) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable. Unplug the temperature sensor wire harness connector.
- (2) Measure the resistance of the temperature sensor. At -40 $^{\circ}$ C (-40 $^{\circ}$ F), the sensor resistance is 336 kilohms. At 55 $^{\circ}$ C (131 $^{\circ}$ F), the sensor resistance is 2.986 kilohms. The sensor resistance should read between these two values. If OK, go to the Sensor Circuit Test. If not OK, replace the faulty sensor.

SENSOR CIRCUIT TEST

(1) Turn the ignition switch to the Off position. Disconnect and isolate the battery negative cable.

Unplug the ambient temperature sensor wire harness connector and the overhead console wire harness connector.

- (2) Connect a jumper wire between the two terminals in the body half of the sensor wire harness connector.
- (3) Check for continuity between the sensor return circuit and the ambient temperature sensor signal circuit cavities of the overhead console wire harness connector. There should be continuity. If OK, go to Step 4. If not OK, repair the open circuit as required.
- (4) Remove the jumper wire from the ambient temperature sensor wire harness connector. Check for continuity between the sensor return circuit cavity of the overhead console wire harness connector and a good ground. There should be no continuity. If OK, go to Step 5. If not OK, repair the short circuit as required.
- (5) Check for continuity between the ambient temperature sensor signal circuit cavity of the overhead console wire harness connector and a good ground. There should be no continuity. If OK, see the Trip Computer, Compass, and Thermometer Display Module diagnosis in this group. If not OK, repair the short circuit as required.

SERVICE PROCEDURES

COMPASS VARIATION ADJUSTMENT

Variance is the difference between magnetic north and geographic north. In some geographic locations, the difference between magnetic and geographic north is great enough to cause the compass to give false readings. If this problem occurs, the compass variance must be set.

To set the compass variance:

- (1) Using the Variance Settings map, find your geographic location and note the zone number (Fig. 1)
- (2) Turn the ignition switch to the On position. If the compass/temperature data is not currently being displayed, momentarily depress and release the Step button to step through the display options until you have reached the compass/temperature display.
- (3) Depress both the U.S./Metric, and the Step buttons. Hold the buttons down until "VAR" appears in the display. This takes about five seconds.
- (4) Release both of the buttons. The current variance zone number setting will appear in the display.
- (5) Press and release the U.S./Metric button to step through the zone numbers, until the zone number for your geographic location appears in the display.
- (6) Press the Step button to enter this zone number into the compass unit memory.

SERVICE PROCEDURES (Continued)

80a13863

Fig. 1 Variance Settings

(7) Confirm that the correct directions are now indicated by the compass.

COMPASS CALIBRATION

CAUTION: Do not place any external magnets, such as magnetic roof mount antennas, in the vicinity of the compass. Do not use magnetic tools when servicing the overhead console.

The electronic compass unit features a self-calibrating design, which simplifies the calibration procedure. This feature automatically updates the compass calibration while the vehicle is being driven. This allows the compass unit to compensate for small changes in the residual magnetism that the vehicle may acquire during normal use. Do not attempt to calibrate the compass near large metal objects such as other vehicles, large buildings, or bridges.

NOTE: Whenever the compass is calibrated manually, the variation number must also be reset. See the Compass Variation Adjustment procedure, in this group.

Calibrate the compass manually as follows:

(1) Start the engine. If the compass/temperature data is not currently being displayed, momentarily depress and release the Step button to step through the display options until you have reached the compass/temperature display.

- (2) Depress both the U.S./Metric, and the Step buttons. Hold the buttons down until "CAL" appears in the display. This takes about ten seconds, and appears about five seconds after "VAR" is displayed.
 - (3) Release both of the buttons.
- (4) Drive the vehicle on a level surface, away from large metal objects, through three or more complete circles in not less than 48 seconds. The "CAL" message will disappear from the display to indicate that the compass is now calibrated.

NOTE: If the "CAL" message remains in the display, either there is excessive magnetism near the compass, or the unit is faulty. Repeat the demagnetizing and calibration procedures at least one more time.

NOTE: If the wrong direction is still indicated in the compass display, the area selected for calibration may be too close to a strong magnetic field. Repeat the calibration procedure in another location.

COMPASS DEMAGNETIZING

A degaussing tool (Special Tool 6029) is used to demagnetize, or degauss, the overhead console forward mounting screw(s) and the roof panel. Equivalent units must be rated as continuous duty for 110/115 volts and 60 Hz. They must also have a field

SERVICE PROCEDURES (Continued)

strength of over 350 gauss at 7 millimeters (0.25 inch) beyond the tip of the probe.

To demagnetize the roof panel and the overhead console forward mounting screw(s), proceed as follows:

- (1) Be certain the ignition switch is in the Off position, before you begin the demagnetizing procedure.
- (2) Plug in the degaussing tool, while keeping the tool at least 61 centimeters (2 feet) away from the compass unit.
- (3) Slowly approach the head of the overhead console forward mounting screw with the degaussing tool plugged in.
- (4) Contact the head of each screw with the plastic coated tip of the degaussing tool for about two seconds.
- (5) With the degaussing tool still energized, slowly back it away from the screw. When the tip of the tool is at least 61 centimeters (2 feet) from the screw head, unplug the tool.
- (6) Place a piece of paper approximately 22 by 28 centimeters (8.5 by 11 inches), oriented on the vehicle lengthwise from front to rear, on the center line of the roof at the windshield header (Fig. 2). The purpose of the paper is to protect the roof panel from scratches, and to define the area to be demagnetized.

J908E-27

Fig. 2 Roof Demagnetizing Pattern

- (7) Plug in the degaussing tool, while keeping the tool at least 61 centimeters (2 feet) away from the compass unit.
- (8) Slowly approach the center line of the roof panel at the windshield header, with the degaussing tool plugged in.
- (9) Contact the roof panel with the plastic coated tip of the degaussing tool. Be sure the template is in place to avoid scratching the roof panel. Using a slow, back-and-forth sweeping motion, and allowing 13 millimeters (0.50 inch) between passes, move the tool at least 11 centimeters (4 inches) to each side of the roof center line, and 28 centimeters (11 inches) back from the windshield header.
- (10) With the degaussing tool still energized, slowly back it away from the roof panel. When the tip of the tool is at least 61 centimeters (2 feet) from the roof panel, unplug the tool.
- (11) Calibrate the compass and adjust the compass variance as described in this group.

REMOVAL AND INSTALLATION

OVERHEAD CONSOLE

- (1) Disconnect and isolate the battery negative cable.
- (2) Remove the two screws located forward of the display module that secure the overhead console to the upper windshield opening reinforcement (Fig. 3).

Fig. 3 Overhead Console Remove/Install

- (3) To release the overhead console from the rear mounting bracket, use your fingertips to gently pull the sides of the overhead console housing outward near the rear mounting bracket.
- (4) Move the overhead console forward to disengage the rear mounting tab from the headliner.

- (5) Lower the overhead console far enough to access the two wire harness connectors.
- (6) Unplug one wire harness connector near the push button module towards the front of the overhead console.
- (7) Unplug one wire harness connector from the Remote Keyless Entry (RKE) receiver near the center of the overhead console.
 - (8) Remove the overhead console from the vehicle.
- (9) Reverse the removal procedures to install. Tighten the overhead console mounting screws to 2.7 N·m (24 in. lbs.).

TRIP COMPUTER, COMPASS, AND THERMOMETER DISPLAY MODULE

- (1) Remove the overhead console as described in this group.
- (2) Remove the two screws that secure the forward end of the trip computer, compass, and thermometer display module to the overhead console housing (Fig. 4).

Fig. 4 Trip Computer, Compass, and Thermometer
Display Module Remove/Install

- (3) Gently flex the sides of the overhead console housing as required to release the trip computer, compass, and thermometer display module mounting pins.
- (4) Pull the trip computer, compass, and thermometer display module away from the overhead console housing far enough to access the two wire harness connectors.
- (5) Unplug the overhead console and push button module wire harness connectors from the trip computer, compass, and thermometer display module.

- (6) Remove the trip computer, compass, and thermometer display module from the overhead console housing.
- (7) Reverse the removal procedures to install. Tighten the mounting screws to 2.2 N·m (20 in. lbs.).

PUSH BUTTON MODULE

- (1) Remove the overhead console as described in this group.
- (2) Unplug the push button module wire harness connector from the trip computer, compass, and thermometer display module.
- (3) Remove the four screws that secure the push button module to the overhead console housing (Fig. 5).

Fig. 5 Push Button Module Remove/Install

- (4) Remove the push button module from the overhead console.
- (5) Reverse the removal procedures to install. Tighten the mounting screws to 2.2 N·m (20 in. lbs.).

READING AND COURTESY LAMP BULB

- (1) Disconnect and isolate the battery negative cable.
- (2) Insert a long, narrow, flat-bladed tool in the notch on the edge of the reading and courtesy lamp lens.
- (3) Gently pry the lens downward from the overhead console housing and pivot the lens down. It may be necessary to move the tool along the edge of the lens to free the lens from the console housing.
- (4) Unsnap the bulb from the bulb holders by pulling the bulb gently downwards.
- (5) Install a new bulb by aligning its base with the bulb holders and pushing the bulb firmly into place.
- (6) Pivot the lens back up into position and press upward firmly until it snaps into place.
 - (7) Connect the battery negative cable.
- (8) Test the lamp by depressing the lens to check for proper lamp switching and lighting.

GARAGE DOOR OPENER STORAGE BIN DOOR

(1) Open the garage door opener storage bin door.

- (2) Using a trim stick or another suitable wide flat-bladed tool, gently pry between the door pivot pin and the pivot hole on one side of the overhead console housing until the pivot pin clears the pivot hole.
- (3) Use a gentle twisting action to remove the garage door opener storage bin door from the overhead console housing.
- (4) To install, insert the pivot pin on one side of the door into the pivot hole in the overhead console housing. Gently depress the pivot pin tab on the other side of the door until it clears the side of the garage door opener storage bin opening and push the door into the opening. Guide the door into the opening so that the pivot pin snaps into the pivot hole.

SUNGLASSES STORAGE BIN

The sunglasses storage bin door and bin, housing, damper, spring and latch are serviced only as a unit. Remove the sunglasses storage bin module from the overhead console as follows:

- (1) Remove the overhead console as described in this group.
- (2) Disengage the overhead console courtesy lamp wire harness from the retainers molded into the sunglasses storage bin housing.
- (3) Remove the six screws that secure the sunglasses storage bin module to the overhead console housing (Fig. 6).

Fig. 6 Sunglasses Storage Bin Module Remove/ Install

- (4) Remove the sunglasses storage bin module from the overhead console.
- (5) Reverse the removal procedures to install. Tighten the mounting screws to 2.2 N·m (20 in. lbs.).

AMBIENT TEMPERATURE SENSOR

- (1) Disconnect and isolate the battery negative cable.
- (2) Locate the ambient temperature sensor, below the grille and behind the front bumper (Fig. 7).

Fig. 7 Ambient Temperature Sensor Remove/Install

- (3) Unplug the sensor wire harness connector.
- (4) Remove the screw that secures the ambient temperature sensor to the radiator support.
 - (5) Remove the ambient temperature sensor.
- (6) Reverse the removal procedures to install. Tighten the ambient temperature sensor mounting screw to $3.4~\mathrm{N\cdot m}$ (30 in lbs.).

WIRING DIAGRAMS

CONTENTS

page	page
8W-01 GENERAL INFORMATION 8W-01-1	8W-44 INTERIOR LIGHTING 8W-44-1
8W-02 COMPONENT INDEX 8W-02-1	8W-47 AUDIO SYSTEM 8W-47-1
8W-10 POWER DISTRIBUTION 8W-10-1	8W-48 REAR WINDOW DEFOGGER 8W-48-1
8W-12 JUNCTION BLOCK 8W-12-1	8W-49 OVERHEAD CONSOLE 8W-49-1
8W-15 GROUND DISTRIBUTION 8W-15-1	8W-50 FRONT LIGHTING 8W-50-1
8W-20 CHARGING SYSTEM 8W-20-1	8W-51 REAR LIGHTING 8W-51-1
8W-21 STARTING SYSTEM 8W-21-1	8W-52 TURN SIGNALS 8W-52-1
8W-30 FUEL/IGNITION SYSTEMS 8W-30-1	8W-53 WIPERS 8W-53-1
8W-31 TRANSMISSION CONTROL	8W-54 TRAILER TOW 8W-54-1
SYSTEM 8W-31-1	8W-60 POWER WINDOWS 8W-60-1
8W-33 VEHICLE SPEED CONTROL 8W-33-1	8W-61 POWER DOOR LOCKS 8W-61-1
8W-35 ALL-WHEEL ANTI-LOCK BRAKES . 8W-35-1	8W-62 POWER MIRRORS 8W-62-1
8W-39 VEHICLE THEFT SECURITY	8W-63 POWER SEAT 8W-63-1
SYSTEM 8W-39-1	8W-70 SPLICE INFORMATION 8W-70-1
8W-40 INSTRUMENT CLUSTER 8W-40-1	8W-80 CONNECTOR PIN-OUTS 8W-80-1
8W-41 HORN/CIGAR LIGHTER 8W-41-1	8W-90 CONNECTOR LOCATIONS 8W-90-1
8W-42 AIR CONDITIONING/HEATER 8W-42-1	8W-95 SPLICE LOCATIONS 8W-95-1
0\N/ 12 AIDDAC CVCTEN/I 0\N/ 12 1	

8W-01 GENERAL INFORMATION

INDEX

page	page
DESCRIPTION AND OPERATION	INTERMITTENT AND POOR CONNECTIONS 5
SYMBOLS 3	TROUBLESHOOTING TESTS 6
ELECTROSTATIC DISCHARGE (ESD)	TROUBLESHOOTING WIRING PROBLEMS 6
SENSITIVE DEVICES 5	SERVICE PROCEDURES
HOW TO USE THIS GROUP 1	WIRING REPAIR 7
SECTION IDENTIFICATION 1	TERMINAL/CONNECTOR REPAIR-MOLEX
CONNECTOR/GROUND LOCATIONS 1	CONNECTORS
SPLICE LOCATIONS 1	TERMINAL/CONNECTOR REPAIR—THOMAS
NOTES, CAUTIONS, and WARNINGS 1	AND BETTS CONNECTORS 8
WIRE CODE IDENTIFICATION 2	CONNECTOR REPLACEMENT 8
CIRCUIT IDENTIFICATION	CONNECTOR AND TERMINAL REPLACEMENT 9
CONNECTORS 3	TERMINAL REPLACEMENT 9
TAKE OUTS	DIODE REPLACEMENT 10
DIAGNOSIS AND TESTING	SPECIAL TOOLS
TROUBLESHOOTING TOOLS 5	WIRING/TERMINAI 11

DESCRIPTION AND OPERATION

HOW TO USE THIS GROUP

The purpose of this group is to show the electrical circuits in a clear, simple fashion and to make troubleshooting easier. Components that work together are shown together. All electrical components used in a specific system are shown on one diagram. The feed for a system is shown at the top of the page. All wires, connectors, splices, and components are shown in the flow of current to the bottom of the page. Wiring which is not part of the circuit represented is referenced to another page/section, where the complete circuit is shown. In addition, all switches, components, and modules are shown in the **at rest position with the doors closed and the key removed from the ignition.**

If a component is part of several different circuits, it is shown in the diagram for each. For example, the headlamp switch is the main part of the exterior lighting, but it also affects the interior lighting and the chime warning system. It is important to realize that no attempt is made on the diagrams to represent components and wiring as they appear on the vehicle. For example, a short piece of wire is treated the same as a long one. In addition, switches and other components are shown as simply as possible, with regard to function only.

SECTION IDENTIFICATION

Sections in Group 8W are organized by sub-systems. The sections contain circuit operation descrip-

tions, helpful information, and system diagrams. The intention is to organize information by system, consistently from year to year.

CONNECTOR/GROUND LOCATIONS

Section 8W-90 contains connector/ground location illustrations. The illustrations contain the connector name (or number)/ground number and component identification. Connector/ground location charts in Section 8W-90 reference the illustration number for components and connectors.

Section 8W-80 shows each connector and the circuits involved with that connector. The connectors are identified using the name/number on the Diagram pages.

SPLICE LOCATIONS

Splice Location charts in Section 8W-70 show the entire splice, and provide references to other sections the splice serves.

Section 8W-95 contains illustrations that show the general location of the splices in each harness. The illustrations show the splice by number, and provide a written location.

NOTES, CAUTIONS, and WARNINGS

Throughout this group additional important information is presented in three ways; Notes, Cautions, and Warnings.

NOTES are used to help describe how switches or components operate to complete a particular circuit. They are also used to indicate different conditions

that may appear on the vehicle. For example, an up-to and after condition.

CAUTIONS are used to indicate information that could prevent making an error that may damage the vehicle.

WARNINGS provide information to prevent personal injury and vehicle damage. Below is a list of general warnings that should be followed any time a vehicle is being serviced.

WARNING: ALWAYS WEAR SAFETY GLASSES FOR EYE PROTECTION.

WARNING: USE SAFETY STANDS ANYTIME A PRO-CEDURE REQUIRES BEING UNDER A VEHICLE.

WARNING: BE SURE THAT THE IGNITION SWITCH ALWAYS IS IN THE OFF POSITION, UNLESS THE PROCEDURE REQUIRES IT TO BE ON.

WARNING: SET THE PARKING BRAKE WHEN WORKING ON ANY VEHICLE. AN AUTOMATIC TRANSMISSION SHOULD BE IN PARK. A MANUAL TRANSMISSION SHOULD BE IN NEUTRAL.

WARNING: OPERATE THE ENGINE ONLY IN A WELL-VENTILATED AREA.

WARNING: KEEP AWAY FROM MOVING PARTS WHEN THE ENGINE IS RUNNING, ESPECIALLY THE FAN AND BELTS.

WARNING: TO PREVENT SERIOUS BURNS, AVOID CONTACT WITH HOT PARTS SUCH AS THE RADIATOR, EXHAUST MANIFOLD(S), TAIL PIPE, CATALYTIC CONVERTER, AND MUFFLER.

WARNING: DO NOT ALLOW FLAME OR SPARKS NEAR THE BATTERY. GASES ARE ALWAYS PRESENT IN AND AROUND THE BATTERY.

WARNING: ALWAYS REMOVE RINGS, WATCHES, LOOSE HANGING JEWELRY, AND LOOSE CLOTH-ING.

WIRE CODE IDENTIFICATION

Each wire shown in the diagrams contains a code (Fig. 1) which identifies the main circuit, part of the main circuit, gauge of wire, and color. The color is shown as a two letter code which can be identified by referring to the Wire Color Code Chart (Fig. 2)

Fig. 1 Wire Code Identification

COLOR CODE	COLOR	STANDARD TRACER COLOR	COLOR CODE	COLOR	STANDARD TRACER CODE
BL	BLUE	WT	OR	ORANGE	вк
ВК	BLACK	WT	PK	PINK	BK OR WT
BR	BROWN	WT	RD	RED	WT
DB	DARK BLUE	WT	TN	TAN	WT
DG	DARK GREEN	WT	VT	VIOLET	WT
GY	GRAY	вк	WT	WHITE	ВК
LB	LIGHT BLUE	ВК	YL	YELLOW	ВК
LG	LIGHT GREEN	ВК	*	WITH TRACER	

918W-136

Fig. 2 Wire Color Code Chart

DESCRIPTION AND OPERATION (Continued)

CIRCUIT IDENTIFICATION

All circuits in the diagrams use an alpha/numeric code to identify the wire and its function (Fig. 3). To identify which circuit code applies to a system, refer to the Circuit Identification Code Chart. This chart shows the main circuits only and does not show the secondary codes that may apply to some models.

CIRCUIT	FUNCTION
A	Battery Feed
В	Brake Controls
c	Climate Controls
D	Diagnostic Circuits
E	Dimming Illumination Circuits
F	Fused Circuits (Secondary Feed)
G	Monitoring Circuits (Gauges)
Н	Open
1	Not Used
J	Open
K	Powertrain Control Module
L	Exterior Lighting
M	Interior Lighting
N	ESA Module
0	Not Used
Р	Power Option (Battery Feed)
Q	Power Options (Battery Feed)
R	Passive Restraint
S	Suspension/Steering
Т	Transmission/Transaxle/Transfer Case
U	Open
٧	Speed Control, Washer/Wiper
W	Open .
X	Audio Systems
Y	Open
Z	Grounds
	948W-190

Fig. 3 Circuit Identification

CONNECTORS

Connectors shown in the diagrams are identified using the international standard arrows for male and female terminals (Fig. 4). A connector identifier is placed next to the arrows to indicate the connector number (Fig. 4).

Fig. 4 Connector Identification

For viewing connector pin outs, with two terminals or greater, refer to section 8W-80. This section identifies in-line connectors by number, and component connectors by name. If a component has two or more connectors they will be identified as C1, C2, C3...etc. This sections also provides terminal numbering, circuit identification, wire colors, and functions.

All connectors are viewed from the terminal end unless otherwise specified. To find the connector location in the vehicle refer to section 8W-90. This section uses the connector identification number from the wiring diagrams to provide a figure number reference.

TAKE OUTS

The abbreviation T/O is used in the component location section to indicate a point in which the wiring harness branches out to a component.

SYMBOLS

Various symbols are used throughout the Wiring Diagrams. These symbols can be identified by referring to the symbol identification chart (Fig. 5).

DESCRIPTION AND OPERATION (Continued)

LEGEND OF SYMBOLS USED ON WIRING DIAGRAMS				
POSITIVE	₩-	BY-DIRECTIONAL ZENER DIODE		
NEGATIVE	- O-	MOTOR		
GROUND	Ø	ARMATURE AND BRUSHES		
FUSE	→> 	CONNECTOR IDENTIFICATION		
GANG FUSES WITH BUSS BAR	\rightarrow	MALE CONNECTOR		
CIRCUIT BREAKER	> —	FEMALE CONNECTOR		
CAPACITOR	 5	DENOTES WIRE CONTINUES ELSEWHERE		
онмѕ		DENOTES WIRE GOES TO ONE OF TWO CIRCUITS		
RESISTOR	+	SPLICE		
VARIABLE RESISTOR	\$100	SPLICE IDENTIFICATION		
SERIES RESISTOR		THERMAL ELEMENT		
COIL	TIMER	TIMER		
STEP UP COIL	1 1 1 1	MULTIPLE CONNECTOR		
OPEN CONTACT	*]—	OPTIONAL WIRING WITH WIRING WITHOUT		
CLOSED CONTACT	New S	"Y" WINDINGS		
CLOSED SWITCH	88:88	DIGITAL READOUT		
OPEN SWITCH		SINGLE FILAMENT LAMP		
CLOSED GANGED SWITCH	-00	DUAL FILAMENT LAMP		
OPEN GANGED SWITCH	-	L.E.D. — LIGHT EMITTING DIODE		
TWO POLE SINGLE THROW SWITCH		THERMISTOR		
PRESSURE SWITCH		GAUGE		
SOLENOID SWITCH	-	SENSOR		
MERCURY SWITCH		FUEL INJECTOR		
DIODE OR RECTIFIER		948W-19 2		
	POSITIVE NEGATIVE GROUND FUSE GANG FUSES WITH BUSS BAR CIRCUIT BREAKER CAPACITOR OHMS RESISTOR VARIABLE RESISTOR SERIES RESISTOR COIL STEP UP COIL OPEN CONTACT CLOSED CONTACT CLOSED SWITCH OPEN GANGED SWITCH TWO POLE SINGLE THROW SWITCH PRESSURE SWITCH SOLENOID SWITCH MERCURY SWITCH	POSITIVE NEGATIVE GROUND FUSE GANG FUSES WITH BUSS BAR CIRCUIT BREAKER CAPACITOR OHMS RESISTOR VARIABLE RESISTOR SERIES RESISTOR COIL STEP UP COIL OPEN CONTACT CLOSED CONTACT CLOSED SWITCH OPEN GANGED SWITCH TWO POLE SINGLE THROW SWITCH PRESSURE SWITCH SOLENOID SWITCH MERCURY SWITCH		

Fig. 5 Symbol Identification

DESCRIPTION AND OPERATION (Continued)

ELECTROSTATIC DISCHARGE (ESD) SENSITIVE DEVICES

All ESD sensitive components are solid state and a symbol (Fig. 6) is used to indicate this. When handling any component with this symbol comply with the following procedures to reduce the possibility of electrostatic charge build up on the body and inadvertent discharge into the component. If it is not known whether the part is ESD sensitive, assume that it is.

- (1) Always touch a known good ground before handling the part. This should be repeated while handling the part and more frequently after sliding across a seat, sitting down from a standing position, or walking a distance.
- (2) Avoid touching electrical terminals of the part, unless instructed to do so by a written procedure.
- (3) When using a voltmeter, be sure to connect the ground lead first.
- (4) Do not remove the part from its protective packing until it is time to install the part.
- (5) Before removing the part from its package, ground the package to a known good ground on the vehicle.

948W-193

Fig. 6 Electrostatic Discharge Symbol
DIAGNOSIS AND TESTING

TROUBLESHOOTING TOOLS

When diagnosing a problem in an electrical circuit there are several common tools necessary. These tools are listed and explained below.

• Jumper Wire - This is a test wire used to connect two points of a circuit. It can be used to bypass an open in a circuit.

WARNING: NEVER USE A JUMPER WIRE ACROSS A LOAD, SUCH AS A MOTOR, CONNECTED BETWEEN A BATTERY FEED AND GROUND.

Voltmeter - Used to check for voltage on a circuit. Always connect the black lead to a known good ground and the red lead to the positive side of the circuit.

CAUTION: Most of the electrical components used in today's vehicle are solid state. When checking voltages in these circuits use a meter with a 10-megohm or greater impedance.

• Ohmmeter - Used to check the resistance between two points of a circuit. Low or no resistance in a circuit means good continuity.

CAUTION: - Most of the electrical components used in today's vehicle are Solid State. When checking resistance in these circuits use a meter with a 10-megohm or greater impedance. In addition, make sure the power is disconnected from the circuit. Circuits that are powered up by the vehicle electrical system can cause damage to the equipment and provide false readings.

• Probing Tools - These tools are used for probing terminals in connectors (Fig. 7). Select the proper size tool from Special Tool Package 6807, and insert it into the terminal being tested. Use the other end of the tool to insert the meter probe.

Fig. 7 Probing Tool

INTERMITTENT AND POOR CONNECTIONS

Most intermittent electrical problems are caused by faulty electrical connections or wiring. It is also possible for a sticking component or relay to cause a problem. Before condemning a component or wiring assembly check the following items.

- Connectors are fully seated
- Spread terminals, or terminal push out
- Terminals in the wiring assembly are fully seated into the connector/component and locked in position
- Dirt or corrosion on the terminals. Any amount of corrosion or dirt could cause an intermittent problem
- Damaged connector/component casing exposing the item to dirt and moisture
- \bullet Wire insulation that has rubbed through causing a short to ground
 - Wiring broke inside of the insulation

DIAGNOSIS AND TESTING (Continued)

TROUBLESHOOTING TESTS

Before beginning any tests on a vehicles electrical system use the Wiring Diagrams and study the circuit. Also refer to the Troubleshooting Wiring Problems section in this section.

TESTING FOR VOLTAGE

- (1) Connect the ground lead of a voltmeter to a known good ground (Fig. 8).
- (2) Connect the other lead of the voltmeter to the selected test point. The vehicle ignition may need to be turned ON to check voltage. Refer to the appropriate test procedure.

Fig. 8 Testing for Voltage

TESTING FOR CONTINUITY

- (1) Remove the fuse for the circuit being checked or, disconnect the battery.
- (2) Connect one lead of the ohmmeter to one side of the circuit being tested (Fig. 9).
- (3) Connect the other lead to the other end of the circuit being tested. Low or no resistance means good continuity.

TESTING FOR A SHORT TO GROUND

- (1) Remove the fuse and disconnect all items involved with the fuse.
- (2) Connect a test light or a voltmeter across the terminals of the fuse.
- (3) Starting at the fuse block, wiggle the wiring harness about six to eight inches apart and watch the voltmeter/test lamp.
- (4) If the voltmeter registers voltage or the test lamp glows, there is a short to ground in that general area of the wiring harness.

Fig. 9 Testing for Continuity

TESTING FOR A SHORT TO GROUND ON FUSES POWERING SEVERAL LOADS

- (1) Refer to the wiring diagrams and disconnect or isolate all items on the fused circuit.
 - (2) Replace the blown fuse.
- (3) Supply power to the fuse by turning ON the ignition switch or re-connecting the battery.
- (4) Start connecting the items in the fuse circuit one at a time. When the fuse blows the circuit with the short to ground has been isolated.

TESTING FOR A VOLTAGE DROP

- (1) Connect the positive lead of the voltmeter to the side of the circuit closest to the battery (Fig. 10).
- (2) Connect the other lead of the voltmeter to the other side of the switch or component.
 - (3) Operate the item.
- (4) The voltmeter will show the difference in voltage between the two points.

TROUBLESHOOTING WIRING PROBLEMS

When troubleshooting wiring problems there are six steps which can aid in the procedure. The steps are listed and explained below. Always check for non-factory items added to the vehicle before doing any diagnosis. If the vehicle is equipped with these items, disconnect them to verify these add-on items are not the cause of the problem.

- (1) Verify the problem.
- (2) Verify any related symptoms. Do this by performing operational checks on components that are in the same circuit. Refer to the wiring diagrams.

Fig. 10 Testing for Voltage Drop

- (3) Analyze the symptoms. Use the wiring diagrams to determine what the circuit is doing, where the problem most likely is occurring and where the diagnosis will continue.
 - (4) Isolate the problem area.
 - (5) Repair the problem.
- (6) Verify proper operation. For this step check for proper operation of all items on the repaired circuit. Refer to the wiring diagrams.

SERVICE PROCEDURES

WIRING REPAIR

When replacing or repairing a wire, it is important that the correct gauge be used as shown in the wiring diagrams. The wires must also be held securely in place to prevent damage to the insulation.

- (1) Disconnect battery negative cable
- (2) Remove 1 inch of insulation from each end of the wire.
- (3) Place a piece of heat shrink tubing over one side of the wire. Make sure the tubing will be long enough to cover and seal the entire repair area.
- (4) Spread the strands of the wire apart on each part of the exposed wire (example 1). (Fig. 11)
- (5) Push the two ends of wire together until the strands of wire are close to the insulation (example 2) (Fig. 11)
 - (6) Twist the wires together (example 3) (Fig. 11)
- (7) Solder the connection together using rosin core type solder only. Do not use acid core solder.

- (8) Center the heat shrink tubing over the joint, and heat using a heat gun. Heat the joint until the tubing is tightly sealed and sealant comes out of both ends of the tubing.
- (9) Secure the wire to the existing ones to prevent chafing or damage to the insulation
 - (10) Connect battery and test all affected systems.

Fig. 11 Wire Repair

TERMINAL/CONNECTOR REPAIR-MOLEX CONNECTORS

- (1) Disconnect battery.
- (2) Disconnect the connector from its mating half/
- (3) Insert the terminal releasing special tool 6742 into the terminal end of the connector (Fig. 12).

Fig. 12 Molex Connector Repair

- (4) Using special tool 6742 release the locking fingers on the terminal (Fig. 13).
- (5) Pull on the wire to remove it from the connector.
- (6) Repair or replace the connector or terminal, as necessary.

Fig. 13 Using Special Tool 6742

TERMINAL/CONNECTOR REPAIR—THOMAS AND **BETTS CONNECTORS**

- (1) Disconnect battery.
- (2) Disconnect the connector from its mating half/
- (3) Push in the two lock tabs on the side of the connector (Fig. 14).

Fig. 14 Thomas and Betts Connector Lock Release **Tabs**

- (4) Insert the probe end of special tool 6934 into the back of the connector cavity (Fig. 15).
- (5) Grasp the wire and tool 6934 and slowly remove the wire and terminal from the connector.
 - (6) Repair or replace the terminal.
- (7) Install the wire and terminal in the connector. Fully seat the terminal in the connector.

Fig. 15 Removing Wire Terminal

(8) Push in the single lock tab on the side of the connector (Fig. 16).

Fig. 16 Single Lock Tab

CONNECTOR REPLACEMENT

- (1) Disconnect battery.
- (2) Disconnect the connector that is to be repaired from its mating half/component
- (3) Remove the connector locking wedge, if required (Fig. 17)

Fig. 17 Connector Locking Wedge

- (4) Position the connector locking finger away from the terminal using the proper pick from special tool kit 6680. Pull on the wire to remove the terminal from the connector (Fig. 18) (Fig. 19).
 - (5) Reset the terminal locking tang, if it has one.
- (6) Insert the removed wire in the same cavity on the repair connector.
- (7) Repeat steps four through six for each wire in the connector, being sure that all wires are inserted into the proper cavities. For additional connector pinout identification, refer to the wiring diagrams.
- (8) Insert the connector locking wedge into the repaired connector, if required.
- (9) Connect connector to its mating half/component.
 - (10) Connect battery and test all affected systems.

Fig. 18 Terminal Removal

Fig. 19 Terminal Removal Using Special Tool
CONNECTOR AND TERMINAL REPLACEMENT

- (1) Disconnect battery.
- (2) Disconnect the connector (that is to be repaired) from its mating half/component.

- (3) Cut off the existing wire connector directly behind the insulator. Remove six inches of tape from the harness.
- (4) Stagger cut all wires on the harness side at 1/2 inch intervals (Fig. 20).
- (5) Remove 1 inch of insulation from each wire on the harness side.
- (6) Stagger cut the matching wires on the repair connector assembly in the opposite order as was done on the harness side of the repair. Allow extra length for soldered connections. Check that the overall length is the same as the original (Fig. 20).

Fig. 20 Stagger Cutting Wires

- (7) Remove 1 inch of insulation from each wire.
- (8) Place a piece of heat shrink tubing over one side of the wire. Be sure the tubing will be long enough to cover and seal the entire repair area.
- (9) Spread the strands of the wire apart on each part of the exposed wires.
- (10) Push the two ends of wire together until the strands of wire are close to the insulation.
 - (11) Twist the wires together.
- (12) Solder the connection together using rosin core type solder only. **Do not use acid core solder.**
- (13) Center the heat shrink tubing over the joint and heat using a heat gun. Heat the joint until the tubing is tightly sealed and sealant comes out of both ends of the tubing
 - (14) Repeat steps 8 through 13 for each wire.
- (15) Re-tape the wire harness starting 1-1/2 inches behind the connector and 2 inches past the repair.
 - (16) Re-connect the repaired connector.
- (17) Connect the battery, and test all affected systems.

TERMINAL REPLACEMENT

- (1) Disconnect battery.
- (2) Disconnect the connector being repaired from its mating half. Remove connector locking wedge, if required (Fig. 21).

(3) Remove connector locking wedge, if required (Fig. 21).

Fig. 21 Connector Locking Wedge Tab (Typical)

(4) Position the connector locking finger away from the terminal using the proper pick from special tool kit 6680. Pull on the wire to remove the terminal from the connector (Fig. 22) (Fig. 23).

Fig. 22 Terminal Removal

- (5) Cut the wire 6 inches from the back of the connector.
- (6) Remove 1 inch of insulation from the wire on the harness side.
- (7) Select a wire from the terminal repair assembly that best matches the color wire being repaired.
- (8) Cut the repair wire to the proper length and remove 1 inch of insulation.
- (9) Place a piece of heat shrink tubing over one side of the wire. Make sure the tubing will be long enough to cover and seal the entire repair area.
- (10) Spread the strands of the wire apart on each part of the exposed wires.
- (11) Push the two ends of wire together until the strands of wire are close to the insulation.

Fig. 23 Terminal Removal Using Special Tool

- (12) Twist the wires together.
- (13) Solder the connection together using rosin core type solder only. **Do not use acid core solder.**
- (14) Center the heat shrink tubing over the joint and heat using a heat gun. Heat the joint until the tubing is tightly sealed and sealant comes out of both ends of the tubing.
 - (15) Insert the repaired wire into the connector.
- (16) Install the connector locking wedge, if required, and reconnect the connector to its mating half/component.
- (17) Re-tape the wire harness starting 1-1/2 inches behind the connector and 2 inches past the repair.
 - (18) Connect battery, and test all affected systems.

DIODE REPLACEMENT

- (1) Disconnect the battery.
- (2) Locate the diode in the harness, and remove the protective covering.
- (3) Remove the diode from the harness, pay attention to the current flow direction (Fig. 24).

948W-197

Fig. 24 Diode Identification

- (4) Remove the insulation from the wires in the harness. Only remove enough insulation to solder in the new diode.
- (5) Install the new diode in the harness, making sure current flow is correct. If necessary refer to the appropriate wiring diagram for current flow.
- (6) Solder the connection together using rosin core type solder only. Do not use acid core solder.
- (7) Tape the diode to the harness using electrical tape making, sure the diode is completely sealed from the elements
- (8) Re-connect the battery, and test affected systems.

SPECIAL TOOLS

WIRING/TERMINAL

Probing Tool Package 6807

Terminal Pick 6680

Terminal Removing Tool 6932

Terminal Removing Tool 6934

8W-02 COMPONENT INDEX

INDEX

			page
SCHEMATICS AND DIAGRAMS			1
GENERAL INFORMATION			
Component	Page	Component	Page
4WD Switch		Driver Airbag	
4WD Switch Illumination		Driver Power Seat Motor	
A/C Compressor Clutch		Driver Power Seat Switch	
A/C Compressor Clutch Relay		Driver's Door Speaker	
A/C Heater Control		Driver's Door Tweeter	
A/C High Pressure Switch		Duty Cycle Evap/Purge Solenoid	
A/C Low Pressure Switch		Electric Brake	
Accelerator Pedal Position Sensor		Electronic Vacuum Modulator	
Airbag Control Module		Engine Coolant Temperature Gauge	
Ambient Temperature Sensor		Engine Coolant Temperature Gauge Engine Coolant Temperature Sensor	
Automatic Shut Down Relay		Engine Starter Motor	
Back-Up Lamps		Engine Starter Motor Relay	
Back-Up Switch		Fog Lamp Relay	
Battery		Fog Lamps	
Battery Temperature Sensor		Front Fog Lamp Switch	
Beam Select Switch		Front Wiper Motor	
Blower Motor		Fuel Gauge	
Blower Motor Relay		Fuel Heater	
Brake Pressure Warning Switch		Fuel Heater Relay	
Brake Warning Indicator		Fuel Injectors	
Camshaft Position Sensor		Fuel Level Sensor	
Cargo Lamp/Switch		Fuel Pump Module	
Center High Mounted Stop Lamp		Fuel Pump Relay	
Cigar Lighter		Fuel Quantity Actuator	
Cigar Lighter Relay		Fuel Shutdown Solenoid	
Circuit Breakers	8W-12	Fuel Temperature Sensor	8W-30
Clockspring 8W-12, 30, 33, 40,	41, 70	Fuel Timing Solenoid	
Cluster Illumination Lamps		Fuses (JB)	
Clutch Interlock Switch		Fuses (PDC)	8W-10
Clutch Interlock Switch Jumper8W-	12, 21	Fusible Link	8W-10
Combination Flasher	8W-52	G Switch	8W-35
Compass	8W-49	Generator	$\dots8W-20$
Control Sleeve	8W-30	Glove Box Lamp Switch	8W-44
Controller Anti-Lock Brake	8W-35	Glow Plug Assembly	8W-30
Controller Anti-Lock Brake Relay	8W-35	Glow Plug Relay	
Cooling Fan Relay	8W-42	Ground Distribution	8W-15
Courtesy Lamps		Headlamp Delay Module	
Crankshaft Position Sensor	8W-30	Headlamp Leveling Motors	8W-50
Data Link Connector		Headlamp Leveling Switch	
Diagnostic Splice Block		Headlamp Switch	
Diesel Power Relay		Headlamps	
Dome Lamp/Switch		Heated Oxygen Sensors	
Door Jamb Switches		Horn Relay	
Door Lock Motors	RW-61	Horn Switch	8 ₩-41

Component Pa	ge Component	Page
Horns	-41 Radio	8W-47
HVAC Unit8W	-42 Rear Fog Lamp Relay	8W-51
Idle Air Control Motor	Rear Fog Lamp Switch	8W-51
Ignition Coil	Rear Washer Pump Motor	8W-53
Ignition Switch8W		8W-48
Indicator Lamps8W		8W-12, 48
Instrument Cluster	Rear Window Defogger Switch	8W-48
Intake Air Temperature Sensor 8W	-30 Rear Wiper Motor	8W-53
Interior Lights On Switch	Rear Wiper/Washer Switch	8W-53
Junction Block	-12 Repeater Lamps	8W-50
License Lamp	-51 Seat Belt Switch	8W-40
Lift Gate Door Lock Motor8W	-61 Seat Belt Warning Indicator	8W-40
Liftgate Switch8W-39,	44 Speakers	8W-47
Low Coolant Switch	-30 Speed Control Switches	8W-30, 33
Low Washer Fluid Switch	-40 Speedometer	8W-40
Manifold Absolute Pressure Sensor 8W	-30 Splice Details	8W-70
Mass Air Flow Sensor8W	-30 Stop Lamp Switch	8W-30, 33
Measure Coil	-30 Tachometer	8W-40
Needle Movement Sensor		
Odometer	-40 Tell Tale Module	8W-30, 40
Oil Pressure Gauge		
Oil Pressure Sensor		
Output Shaft Speed Sensor		
Overhead Module	-39 Transmission Control Solenoids .	8W-31
Park Brake Switch8W	· · ·	
Part Time 4WD Switch8W	-40 Trip Reset Switch	8W-40
Passenger Airbag	-43 Turn Signal Relays	8W-54
Passenger Power Seat Motor		
Passenger Power Seat Switch		
Passenger's Door Speaker		
Passenger's Door Tweeter8W		
Position Lamps		
Power Amplifier		
Power Distribution Center		
Power Lock/Window Switch/Modules 8W-60,	-	
Power Lock/Window Switches 8W-60, 61,		
Power Mirrors	1	
Power Outlet		
Power Steering Pressure Switch		
Powertrain Control Module8W-30,	•	
PRNDL Illumination	•	8W-53
Radiator Cooling Fan8W	-42	

8W-02 COMPONENT INDEX

GENERAL INFORMATION

INTRODUCTION

This section provides an alphabetical listing of all the components covered in group 8W. For information on system operation, refer to the appropriate section of the wiring diagrams.

8W-10 POWER DISTRIBUTION

INDEX

	page
SCHEMATICS AND DIAGRAMS	
Comment	C
Component Page A/C Compressor Clutch. .8W-10-12, 35	Component Page Fuse 27 (JB)
A/C Compressor Clutch Relay	Fuse 27 (PDC)
Automatic Shut Down Relay	Fusible Link A11
Battery	G108
Brake Pressure Warning Switch	Generator
Cargo Lamp/Switch	Glove Box Lamp Switch
Center High Mounted Stop Lamp	Glow Plug Assembly
Cigar Lighter	Glow Plug Relay
Cigar Lighter Relay	Headlamp Delay Module
Circuit Breaker 29 (JB)	Horn Relay
Circuit Breaker 30 (JB)	HVAC Unit
Combination Flasher	Ignition Coil
Compass	Ignition Switch
Controller Anti-Lock Brake	Instrument Cluster
Cooling Fan Relay	Junction Block
Data Link Connector	Left Courtesy Lamp
Dome Lamp/Switch	Left Fog Lamp
Downstream Heated Oxygen Sensor	Left Front Power Lock/Window Switch
Electronic Vacuum Modulator	Left Front Power Lock/Window Switch/Module
Engine Starter Motor	Left Horn
Engine Starter Motor Relay	Left Rear Fog Lamp
Fog Lamp Relay	Left Tail/Stop Lamp
Front Fog Lamp Switch	Left Vanity Lamp
Fuel Heater	Mass Air Flow Sensor
Fuel Heater Relay. .8W-10-25, 31 Fuel Injector No. 1 .8W-10-18	Overhead Module
Fuel Injector No. 2	Power Amplifier
Fuel Injector No. 3	Power Distribution Center
Fuel Injector No. 4	16, 17, 19, 20, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37
Fuel Injector No. 5	Powertrain Control Module
Fuel Injector No. 6	Radiator Cooling Fan
Fuel Pump Module	Radio
Fuel Pump Relay	Rear Fog Lamp Relay
Fuse 2 (JB)	Rear Fog Lamp Switch
Fuse 2 (PDC)	Rear Window Defogger Relay
Fuse 3 (PDC)	Right Courtesy Lamp
Fuse 4 (PDC)	Right Fog Lamp
Fuse 5 (PDC)	Right Front Door Jamb Switch
Fuse 6 (PDC)	Right Front Power Lock/Window Switch
Fuse 7 (PDC)	Right Front Power Lock/Window Switch/Module
Fuse 8 (PDC)	Right Rear Fog Lamp
Fuse 9 (JB)	Right Tail/Stop Lamp
Fuse 9 (PDC)	Right Vanity Lamp
Fuse 10 (JB)	S106
Fuse 10 (PDC)	\$109
Fuse 11 (JB)	S110
Fuse 11 (PDC)	S113
Fuse 12 (JB)	S131
Fuse 13 (JB)	\$135
Fuse 13 (PDC)	S137
Fuse 14 (JB)	S147
Fuse 14 (PDC)	S151
Fuse 15 (JB)	\$153
Fuse 16 (PDC)	S156
Fuse 17 (JB)	S200
Fuse 18 (JB)	S207
Fuse 18 (PDC)	S210
Fuse 19 (JB)	S211
Fuse 19 (PDC)	S214
Fuse 20 (JB)	S218
Fuse 20 (PDC)	S220
Fuse 21 (JB)	\$300
Fuse 21 (PDC)	S301
Fuse 22 (JB)	\$302
Fuse 23 (PDC)	S308
Fuse 24 (JB)	Stop Lamp Switch
Fuse 24 (PDC)	Transmission Control Module
Fuse 25 (JB)	Underhood Lamp
Fuse 25 (PDC)	Upstream Heated Oxygen Sensor
Fuse 26 (JB)	
Fuse 26 (PDC)	

GAS

FUSES

FUSE NO.	AMPS	FUSED CIRCUIT	FEED CIRCUIT
1	-	-	-
2	40A	A1 12RD IGNITION SWITCH	A0 6RD
3	40A	A2 12PK/BK IGNITION SWITCH	A0 6RD
4	40A	A7 10RD/BK	A0 6RD
5	40A	F141 12LG/RD COOLING FAN RELAY	A0 6RD
6	40A	A111 12RD/LG A/C HEATER CONTROL	A0 6RD
7	30A	A3 16RD/WT	A0 6RD
8	-	-	-
•	20A	A17 16RD/BK	A0 6RD
9	204	A17 16RD/BK	A0 6RD
40	30A	A4 14BK/PK	A0 6RD
10	304	A4 14BK/PK	AU OND
11	-	-	-
12	40A	A10 12RD/DG ABS CONTROL MODULE	A0 6RD
13	20A	A20 14RD/DB ABS CONTROL MODULE	A0 6RD
14	-	-	-
15	-	-	-
16	15A	M1 20PK	A0 6RD
17	20A	F34 18TN/BK	A0 6RD
18	25A	A16 16RD/LG AUTOMATIC SHUT DOWN RELAY	A0 6RD
19	15A	L9 20BK/PK COMBINATION FLASHER	A0 6RD
20	20A	A142 18DG/OR	A999 16RD
21	15A	A61 14DG/BK	A0 6RD
22	15A	F32 20PK/DB STOP LAMP SWITCH	A0 6RD
23	15A	F142 20DG/WT	A999 16RD
24	15A	F61 20WT/OR FOG LAMP RELAY NO. 1	A0 6RD
25	20A	F75 16VT POWER AMPLIFIER	A0 6RD
26	10A	F1 20DB/GY	A17 16RD/BK

XJI01002 J978W-7

A/C COMPRESSOR CLUTCH RELAY

CAVITY	CIRCUIT	FUNCTION
B1	A17 16RD/BK	FUSED B(+)
B2	C3 16DB/BK	A/C COMPRESSOR CLUTCH RELAY OUTPUT
В3	C13 18DB/OR	A/C COMPRESSOR CLUTCH RELAY CONTROL
B4	-	-
B5	F12 18DB/WT	FUSED IGN. (ST-RUN)

FOG LAMP RELAY

CAVITY	CIRCUIT	FUNCTION
B6	F61 20WT/OR	FUSED B(+)
В7	L139 20VT	FOG LAMP RELAY OUTPUT
B8	L35 20BR/WT	GROUND
В9	-	-
D40	L77 20BR/YL	FUSED HEADLAMP SWITCH OUTPUT
B10	L77 20BR/YL	FUSED HEADLAMP SWITCH OUTPUT

CONTROLLER ANTI-LOCK BRAKE RELAY

CAVITY	CIRCUIT	FUNCTION
B16	G19 20LG/OR	CONTROLLER ANTI-LOCK BRAKE INDICATOR OUTPUT
B17	•	-
B18	G83 20GY/BK	CONTROLLER ANTI-LOCK BRAKE RELAY CONTROL
B19	Z1 20BK	GROUND
B20	F15 20DB/WT	FUSED IGNITION (RUN)

J978W-7 XJI01003

GAS

AUTOMATIC SHUT DOWN RELAY

CAVITY	CIRCUIT	FUNCTION
C2	A16 16RD/LG	FUSED B(+)
C4	F12 18DB/WT	FUSED IGN. (ST-RUN)
C5	-	-
C6	K51 18DB/YL	AUTOMATIC SHUT DOWN RELAY CONTROL
00	A999 16RD	AUTOMATIC SHUT DOWN RELAY OUTPUT
C8	A999 16RD	AUTOMATIC SHUT DOWN RELAY OUTPUT

COOLING FAN RELAY

CAVITY	CIRCUIT	FUNCTION	
C10	F141 12LG/RD	FUSED B(+)	
C11	F12 18DB/WT	FUSED IGN. (ST-RUN)	
C12	-	-	
C13	C27 18DB/PK	COOLING FAN RELAY CONTROL	
C14	C25 12LB	COOLING FAN RELAY OUTPUT	

FUEL PUMP RELAY

CAVITY	CIRCUIT	FUNCTION	
Do	A61 14DG/BK	FUSED B(+)	
D2	A61 14DG/BK	FUSED B(+)	
D4	F12 18DB/WT	FUSED IGN. (ST-RUN)	
D5	-	-	
D6	K31 18BR	FUEL PUMP RELAY CONTROL	
D8	A141 14DG/WT	FUEL PUMP RELAY OUTPUT	

ENGINE STARTER MOTOR RELAY

CAVITY	CIRCUIT	FUNCTION	
D10	A4 14BK/PK	FUSED B(+)	
D44 (A/T)	T41 20BK/WT	ENGINE STARTER MOTOR RELAY CONTROL	
D11 (A/T)	T41 20BK/WT	ENGINE STARTER MOTOR RELAY CONTROL	
D11 (M/T)	T41 20BR/LB	ENGINE STARTER MOTOR RELAY CONTROL	
D12	-	-	
D13 (A/T)	F45 20YL/RD	FUSED IGN. (ST)	
D13 (M/T)	T141 20YL	SWITCHED FUSED IGN. (ST)	
D14	T40 14BR	ENGINE STARTER MOTOR RELAY OUTPUT	

XJI01004 J978W-7

J978W-7 XJI01009

J978W-7

J978W-7 XJI01017

XJI01020 J978W-7

FUSES

FUSE NO. AMPS FUSED CIRCUIT			FEED CIRCUIT	
1	-	-	-	
2	50A	A54 12RD/GY GLOW PLUG RELAY	A0 6RD	
3	50A	A54 12RD/GY GLOW PLUG RELAY	A0 6RD	
4	30A	A16 12RD/LG	A0 6RD	
5	40A	A1 12RD IGNITION SWITCH	A0 6RD	
6	30A	A61 14LG/RD FUEL HEATER RELAY	A0 6RD	
		A4 12BK/PK		
7	30A	A4 12BK/PK (LHD)	A0 6RD	
		A4 14BK/PK (RHD)		
8	30A	A3 16RD/WT	A0 6RD	
9	50A	A7 10RD/BK	A0 6RD	
10	40A	A2 12PK/BK IGNITION SWITCH	A0 6RD	
11	40A	A111 12RD/LG	A0 6RD	
12	40A	A10 12RD/DG ABS CONTROL MODULE	A0 6RD	
13	-	-	A0 6RD	
14	20A	A20 14RD/DG ABS CONTROL MODULE	A0 6RD	
15	-	-	-	
40	15A	M1 20PK	A0 6RD	
16	10/1	M1 20PK	710 0115	
17	-	-	-	
18	-	-	-	
19	15A	F32 20PK/DB	A0 6RD	
20	20A	A17 20RD/BK	A0 6RD	
20		A17 16RD/BK		
21	20A	F142 16DG/OR	A142 16DG/OR	
22	20A	F75 16VT	A0 6RD	
23	15A	L9 20BK/WT	A0 6RD	
24	10A	F16 16RD/LG	A16 12RD/LG	
25	15A	F61 20WT/OR FOG LAMP RELAY	A0 6RD	
26	20A	F34 18TN/BK	A0 6RD	
27	10A	F1 20DB/GY	A17 20RD/BK	

J978W-7 XJI01021

A/C COMPRESSOR CLUTCH RELAY

CAVITY	CIRCUIT	FUNCTION	
B1	A17 16RD/BK	FUSED B(+)	
B2	C3 12DB/BK	A/C COMPRESSOR CLUTCH RELAY OUTPUT	
В3	C13 20DB/OR	A/C COMPRESSOR CLUTCH RELAY CONTROL	
B4	-	-	
B5	F142 18DG/OR	SWITCHED IGN. (ST-RUN)	

FOG LAMP RELAY

CAVITY	CIRCUIT	FUNCTION	
B6	F61 20WT/OR	FUSED B(+)	
В7	L139 20WT	FOG LAMP RELAY OUTPUT	
Do	L77 18BR/YL	FUSED HEADLAMP SWITCH OUTPUT	
B8	L77 20BR/YL	FUSED HEADLAMP SWITCH OUTPUT	
В9	-	-	
B10	Z1 20BK	GROUND	
	Z1 20BK	GROUND	

CONTROLLER ANTI-LOCK BRAKE RELAY

CAVITY	CIRCUIT	FUNCTION	
B16	G19 20LG/OR	CONTROLLER ANTI-LOCK BRAKE INDICATOR OUTPUT	
B17	-	-	
B40	F15 20DB/WT	FUSED IGNITION (RUN)	
B18	F15 20DB/WT	FUSED IGNITION (RUN)	
B19	Z1 20BK	GROUND	
B20	G83 20GY/WT	CONTROLLER ANTI-LOCK BRAKE RELAY CONTROL	

XJI01022 J978W-7

DIESEL

DIESEL POWER RELAY

CAVITY	CIRCUIT	FUNCTION	
C2	A16 12RD/LG	FUSED B(+)	
C4	A16 12RD/LG	FUSED B(+)	
C5	-	-	
C6	K51 20DB/YL	DIESEL POWER RELAY CONTROL	
C8	A142 16DG/OR	DIESEL POWER RELAY OUTPUT	

FUEL HEATER RELAY

CAVITY	CIRCUIT	FUNCTION	
D2	A61 14LG/RD	FUSED B(+)	
D4	F12 18DB/WT	FUSED IGN. (ST-RUN)	
D5	-	-	
D6	Z1 18BK	GROUND	
D8	A93 14RD/BK	FUEL HEATER RELAY OUTPUT	

ENGINE STARTER MOTOR RELAY

CAVITY	CIRCUIT	FUNCTION
D10 (LHD)	A4 12BK/PK	FUSED B(+)
D10 (RHD)	A4 14BK/PK	FUSED B(+)
D11	T141 20YL	SWITCHED FUSED IGN. (ST)
D12	-	-
D13	Z1 20BK	GROUND
D14	T40 14BR	ENGINE STARTER MOTOR RELAY OUTPUT

XJI01030

8W-12 JUNCTION BLOCK

INDEX

		page
SCHEMATICS AND DIAGRAMS .		
Component	Page	Component Page
4WD Switch Illumination		Left Rear Door Jamb Switch
A/C Compressor Clutch Relay		Left Rear Door Lock Motor
A/C Heater Control		Left Rear Window Switch
Automatic Shut Down Relay	8W-12-14	Left Tail/Stop Lamp. .8W-12-10 Left Turn Relay. .8W-12-19
Back-Up Switch		License Lamp
Beam Select Switch		Lift Gate Door Lock Motor
Cargo Lamp/Switch		Overhead Module
Cigar Lighter		Passenger Power Seat Switch
Cigar Lighter Relay	8W-12-23 24	Power Distribution Center
Circuit Breaker 29 (JB)		Powertrain Control Module
Circuit Breaker 30 (JB)		PRNDL Illumination
Clockspring		Radio
Clutch Interlock Switch		Rear Fog Lamp Switch
Clutch Interlock Switch Jumper		Rear Window Defogger Grid
Compass		Rear Window Defogger Switch
Controller Anti-Lock Brake		Rear Wiper Motor
Controller Anti-Lock Brake Relay		Rear Wiper/Washer Switch
Cooling Fan Relay		Right Courtesy Lamp
Dome Lamp/Switch		Right Front Door Jamb Switch
Duty Cycle Evap/Purge Solenoid	8W-12-14	Right Front Power Lock/Window Switch
Engine Starter Motor Relay	8W-12-17, 18	Right Front Power Lock/Window Switch/Module8W-12-17, 23, 28, 30, 33
Fog Lamp Relay		Right Headlamp
Front Fog Lamp Switch		Right Horn
Front Wiper Motor		Right Position Lamp
Fuel Pump Relay		Right Rear Door Jamb Switch
Fuse 1 (JB)		Right Rear Door Lock Motor
Fuse 2 (JB)		Right Rear Window Switch
Fuse 3 (JB)		Right Tail/Stop Lamp
Fuse 4 (JB)		Right Turn Relay
Fuse 5 (JB)		S116
Fuse 7 (JB)		S131
Fuse 8 (JB)		S133
Fuse 9 (JB)		S134
Fuse 10 (JB)		S135
Fuse 11 (JB)		S136
Fuse 13 (JB)		S202
Fuse 14 (JB)		S206
Fuse 15 (JB)		S208
Fuse 16 (JB)		S213
Fuse 16 (PDC)		S214
Fuse 18 (JB)		S216
Fuse 19 (JB)		S300
Fuse 20 (JB)		S304
Fuse 21 (JB)		\$305
Fuse 22 (JB)		S306
Fuse 24 (JB)		S307
Fuse 25 (JB)		S314
Fuse 26 (JB)		S315
Fuse 27 (JB)		S316
G107		S317
Headlamp Delay Module		S318
Headlamp Switch	8W-12-8. 9. 10. 22. 26	S322
Horn Relay		S323
Horn Switch		S328
HVAC Unit		S338
Instrument Cluster		\$340
Left Courtesy Lamp		S342
Left Front Door Jamb Switch		S347
Left Front Door Lock Motor		Tell Tale Module
Left Front Power Lock/Window Switch		Trailer Tow Connector
Left Front Power Lock/Window Switch/Module . Left Headlamp	8W-12-18, 24, 29, 30	Transmission Control Module
Left Horn		Transmission Range Switch .8W-12-14 Underhood Lamp .8W-12-32
Left Position Lamp		Windshield Wiper/Washer Switch

FUSES

FUSE NO.	AMPS	FUSED CIRCUIT	FEED CIRCUIT
1	25A	F38 16RD/LB	A7 10RD/BK
2	25A	-	A7 10RD/BK
3	10A	L33	L3 16RD/OR
4	10A	L43	L4 16VT/WT
5	10A	L44	L4 16VT/WT
6	5A	E2 20OR	E1 20TN
7	10A	L77	L7 18BK/YL
8	-	-	A21 12DB
9	10A	F87 20WT/BK	A21 12DB
10	-	-	A21 12DB
11	20A	F12 18DB/WT	A21 12DB
12	10A	L5 20BK	A22 12BK/OR
13	-	-	A4 14PK/BK
14	10A	C16	C15
15	25A	F35 16RD	A7 10RD/BK
16	10A	L34	L3 16RD/OR
17	15A	X12 16RD/WT	A31 12BK/WT
18	-	-	A31 12BK/WT
19	10A	F45 20YL/RD	A41
20	10A	A6 20RD/OR	A7 10RD/BK
21	15A		A7 10RD/BK
22	20A	V23 18BR/PK	A22 12BK/OR
23	10A	L78	L7 18BK/YL
24	-		
25	15A	F15 20DB/WT	A22 12BK/OR
26	10A	F14 18LG/YL	A22 12BK/OR
27	10A	F23 18DB/YL	A21 12DB
	•		<u> </u>

CIRCUIT BREAKERS

CB NO.	AMPS	FUSED CIRCUIT	FEED CIRCUIT
28	30A	F81 12TN	A31 12BK/WT
29	30A	F37 14RD/LB	A7 10RD/BK
30	20A	V6 16DB	A31 12BK/WT

XJI01202 J978W-7

CIGAR LIGHTER RELAY

CAVITY	CIRCUIT	FUNCTION
30	-	FUSED B (+)
85	C81 20LB/WT	GROUND
86	A31 12BK/WT	FUSED B (+)
87	F30 16RD	CIGAR LIGHTER RELAY OUTPUT
-	-	-

HORN RELAY

CAVITY	CIRCUIT	FUNCTION
30	-	FUSED B (+)
85	X3 20BK/RD	HORN RELAY CONTROL
86	A2	FUSED B (+)
87	X2	HORN RELAY OUTPUT
-	-	-

REAR WINDOW DEFOGGER RELAY

CAVITY	CIRCUIT	FUNCTION
30	A4 12PK/BK	FUSED B (+)
85	C81 20LB/WT	REAR WINDOW DEFOGGER RELAY CONTROL
86	L5	FUSED B (+)
87	C15	REAR WINDOW DEFOGGER RELAY OUTPUT
-	-	-

SPARE RELAY

CAVITY	CIRCUIT	FUNCTION
30	ı	-
85	•	-
86	-	-
87	-	-
87A	-	-

XJI01204 J978W-7

XJI01206 J978W-7

XJI01208 J978W-7

J978W-7

XJI01210 J978W-7

XJI01212 J978W-7

J978W-7

XJI01216 J978W-7

XJI01218

XJI01222 J978W-7

XJI01224 J978W-7

XJI01226 J978W-7

XJI01228 J978W-7

XJI01230 J978W-7

XJI01232

J978W-7

8W-15 GROUND DISTRIBUTION

INDEX

	page
SCHEMATICS AND DIAGRAMS	
Component Page	Component Page
4WD Switch	Part Time 4WD Switch
4WD Switch Illumination	Passenger Power Seat Switch
A/C Heater Control	Power Amplifier
Airbag Control Module	Power Outlet
Battery	Power Steering Pressure Switch
Center High Mounted Stop Lamp	Powertrain Control Module
Cigar Lighter	PRNDL Illumination
Cigar Lighter Relay	Radiator Cooling Fan
Combination Flasher	Radio
Compass	Rear Fog Lamp Relay
Controller Anti-Lock Brake	Rear Fog Lamp Switch
Controller Anti-Lock Brake Relay	Rear Washer Pump Motor
Data Link Connector	Rear Window Defogger Grid
Dome Lamp/Switch	Rear Window Defogger Switch
Downstream Heated Oxygen Sensor	Rear Wiper Motor
Electronic Vacuum Modulator	Right Back-Up Lamp
Engine Starter Motor Relay	Right Fog Lamp
Fog Lamp Relay	Right Front Door Jamb Switch
Front Fog Lamp Switch	Right Front Power Lock/Window Switch
Front Wiper Motor	Right Front Power Lock/Window Switch/Module
Fuel Heater	Right Front Turn Signal Lamp
Fuel Heater Relay	Right Headlamp
Fuel Pump Module	Right Headlamp Leveling Motor
G100	Right Position Lamp
G101	Right Power Mirror
G102	Right Rear Door Jamb Switch
G103	Right Repeater Lamp
G104	Right Tail/Stop Lamp
G105	Right Turn Signal Lamp
G106	S102
G107	S103
G108	\$107
G200	S119
G300	\$132
G301	S141
G303	S150
G304	S157
Generator	S207
Glove Box Lamp Switch	S208
Headlamp Delay Module	S309
Headlamp Leveling Switch	S310
Headlamp Switch	S313
HVAC Unit	S314
Ignition Switch	S319
Instrument Cluster	S325
Junction Block	S329
Left Back-Up Lamp	S333
Left Fog Lamp	S334
Left Front Door Jamb Switch	S337
Left Front Power Lock/Window Switch	S341
Left Front Power Lock/Window Switch/Module	S342
Left Front Turn Signal Lamp	S343
Left Headlamp	•
Left Headlamp Leveling Motor	Seat Belt Switch
Left Power Mirror	Trailer Tow Connector
Left Rear Door Jamb Switch	Transmission Control Module
Left Repeater Lamp	Transmission Control Solenoids
Left Tail/Stop Lamp	Transmission Range Switch
Left Turn Signal Lamp	Underhood Lamp
License Lamp	Upstream Heated Oxygen Sensor
Liftgate Switch	Vehicle Speed Control Servo
Low Washer Fluid Switch	Windshield Washer Pump Motor
Mass Air Flow Sensor	Windshield Wiper/Washer Switch
Overhead Module 8W-15-7 9	

XJI01504 J978W-7

(8W-15-4)

XJI01506 J978W-7

XJI01508 J978W-7

XJ

XJI01512 J978W-7

XJI01514 J978W-7

8W-20 CHARGING SYSTEM

INDEX

		page
Component	Page	Component Page
Automatic Shut Down Relay 8	W-20-2, 3	G103
Battery	W-20-2, 3	G104
Diesel Power Relay	.8W-20-3	G105
Engine Starter Motor	W-20-2, 3	Generator
Fuse 4 (PDC)	.8W-20-3	Power Distribution Center 8W-20-2, 3
Fuse 18 (PDC)	W-20-2, 3	Powertrain Control Module 8W-20-2, 3
Fuse 20 (PDC)	W-20-2, 3	S118
Fuse 23 (PDC)	W-20-2, 3	S119
Fusible Link	W-20-2, 3	S137
G100	W-20-2, 3	S151
C101 0	W OO O	

8W-20 CHARGING SYSTEM

DESCRIPTION AND OPERATION

CHARGING SYSTEM

The charging system is an integral part of the battery and starting systems. Because all these systems work in conjunction, diagnose and test them together.

Circuit A11 connects to the generator output terminal and the Power Distribution Center (PDC). Circuit A0 connects the battery to the PDC. Circuit Z0 provides ground for the generator.

When the ignition switch is in either the START or RUN positions, it connects circuit A1 from fuse 2 in the PDC to circuit A21. Circuit A21 splices to circuit F12 aned supplies current to the coil side of the Automatic Shut Down (ASD) relay. The Powertrain Control Module (PCM) provides ground for the relay on circuit K51. Circuit K51 connects to cavity C3 of the PCM.

When the PCM grounds the ASD relay, contacts inside the relay close and connect circuit A16 from fuse 18 in the PDC to circuit A142. Circuit A142 connects to cavity C12 of the PCM.

The PCM has an internal voltage regulator that controls generator output. The PCM controls the generator field on circuit K20. Circuit K20 connects to PCM cavity B10.

When the engine operates and there is current in the generator field, the generator produces a B+ voltage. The generator supplies $B+\mbox{ voltage to the battery through the }A11\mbox{ and }A0\mbox{ circuits.}$

HELPFUL INFORMATION

- The ignition switch also connects circuit A1 with circuit A31.
- Circuit F12 also powers the coil side of the fuel pump relay.

CHARGING SYSTEM (DIESEL)

The charging system is an integral part of the battery and starting systems. Because all these systems work in conjunction, diagnose and test them together.

Circuit A11 connects to the generator output terminal and the Power Distribution Center (PDC). Circuit A0 connects the battery to the PDC. The generator is case grounded.

Power for the field terminal in the generator is supplied on circuit A142. This circuit is HOT when the contacts in the Diesel Power relay are CLOSED.

The PCM has an internal voltage regulator that controls generator output. The PCM controls the generator field on circuit K20.

When the engine operates and there is current in the generator field, the generator produces a B+ voltage. The generator supplies B+ voltage to the battery through the A11 and A0 circuits.

8W-21 STARTING SYSTEM

INDEX

			page
SCHEMATICS AND DIAGRAMS DESCRIPTION AND OPERATION			
Component	Page	Component	Page
Battery	8W-21-2, 3	G106	8W-21-2, 3
Clutch Interlock Switch	8W-21-3	Junction Block	8W-21-2, 3
Clutch Interlock Switch Jumper	8W-21-2	Power Distribution Center	8W-21-2, 3
Engine Starter Motor	8W-21-2, 3	Powertrain Control Module	
Engine Starter Motor Relay	8W-21-2, 3	S107	
Fuse 7 (PDC)	8W-21-3	S132	
Fuse 10 (PDC)	8W-21-2, 3	S141	8W-21-2, 3
Fuse 19 (JB)	8W-21-2, 3	Transmission Range Switch	8W-21-2
C101	QW/_21_3	O	

J978W-7

J978W-7

8W-21 STARTING SYSTEM

DESCRIPTION AND OPERATION

STARTING SYSTEM—AUTOMATIC TRANSMISSIONS

Circuit A0 from the battery is double crimped at the positive battery post. One branch of circuit A0 (battery positive cable) connects to the engine starter motor. The other A0 branch supplies voltage to the bus bar in the Power Distribution Center (PDC).

Fuse 10 in the PDC supplies battery voltage to the contact side of the engine starter motor relay on circuit A4. When the coil side of the engine starter motor relay energizes, the contacts close and connect circuit A4 to circuit T40. Circuit T40 supplies battery voltage to the starter motor solenoid.

The ignition switch supplies battery voltage to the coil side of the starter motor relay on circuit A41 when the key is moved to the START position and the PARK/NEUTRAL position switch is closed. Ground for the coil side of the starter motor relay is supplied by the PARK/NEUTRAL position switch. Circuit T41 connects the coil side of the relay to the PARK/NEUTRAL position switch.

When the starter motor relay energizes and the contacts close, circuit T40 supplies battery voltage to the starter motor solenoid. Circuit A0 from the battery supplies voltage to the starter motor when the solenoid energizes.

STARTING SYSTEM—MANUAL TRANSMISSION

Circuit A0 from the battery is double crimped at the positive battery post. One branch of circuit A0 (battery positive cable) connects to the battery starter motor. The other A0 branch supplies voltage to the bus bar in the Power Distribution Center (PDC).

Fuse 10 in the PDC supplies battery voltage to the contact side of the engine starter motor relay on circuit A4. When the coil side of the engine starter motor relay energizes, the contacts close and connect

circuit A4 to circuit T40. Circuit T40 supplies battery voltage to the starter motor solenoid.

The ignition switch supplies battery voltage to the coil side of the starter motor relay on circuit A41 when the key is moved to the START position. Circuit Z1 provides ground for the coil side of the relay.

When the starter motor relay energizes and the contacts close, circuit T40 supplies battery voltage to the starter motor solenoid. Circuit A0 from the battery supplies voltage to the starter motor when the solenoid energizes.

STARTING SYSTEM (DIESEL)

Power for the coil side of the engine starter motor relay is supplied on circuit T141. This circuit is HOT when the operator has moved the ignition key to the START position and the clutch pedal position switch is CLOSED.

Ground for the coil side of the relay is supplied by circuit Z1.

When the coil side of the relay energizes the contacts in the relay CLOSE connecting circuits A4 and T40. The A4 circuit is protected by a 30 amp fuse located in the Power Distribution Center (PDC). Circuit T40 connects from the relay to the solenoid in the engine starter motor.

Power for the motor in the starter is supplied on circuit A0. This is a direct feed from the battery. Ground for the engine starter motor is supplied through a case ground.

HELPFUL INFORMATION (DIESEL)

- Check the 30 amp fuse located in the PDC
- Check the clutch pedal position switch for proper operation
- \bullet Check the case ground of the engine starter motor

8W-30 FUEL/IGNITION SYSTEMS

INDEX

	page
SCHEMATICS AND DIAGRAMS	
	32
DESCRIPTION AND OPERATION	
	-
Component Page A/C Compressor Clutch Relay	ComponentPageIntake Air Temperature Sensor
A/C Heater Control	Junction Block
A/C High Pressure Switch	Left Speed Control Switch
A/C Low Pressure Switch	Low Coolant Level Warning Indicator
Accelerator Pedal	Low Coolant Switch
Airbag Control Module	Manifold Absolute Pressure Sensor
Automatic Shut Down Relay	Mass Air Flow Sensor. .8W-30-22 Measure Coil .8W-30-22
Camshaft Position Sensor	Needle Movement Sensor
Clockspring	Oil Pressure Sensor
Compass	Overhead Module
Control Sleeve	Power Distribution Center
Controller Anti-Lock Brake	15, 18, 19, 20, 21, 22, 26, 29 Power Steering Pressure Switch
Cooling Fan Relay	Powertrain Control Module
Data Link Connector	Right Speed Control Switch
Diagnostic Splice Block	S107
Diesel Power Relay	S109
Downstream Heated Oxygen Sensor	S110
Duty Cycle Evap/Purge Solenoid	S111
Engine Coolant Temperature Sensor	S113
Engine Starter Motor Relay	S114
Fuel Heater	S115
Fuel Heater Relay	S116
Fuel Injector No. 1	S117
Fuel Injector No. 2	S132
Fuel Injector No. 4	S136
Fuel Injector No. 5	S137
Fuel Injector No. 6	S138
Fuel Level Sensor	S139
Fuel Pump Module	\$140
Fuel Pump Relay	S143
Fuel Shutdown Solenoid	S144
Fuel Temperature Sensor	S145
Fuel Timing Solenoid	S146
Fuse 2 (PDC)	\$147
Fuse 3 (PDC)	S149
Fuse 6 (PDC)	S150
Fuse 9 (JB)	S151
Fuse 11 (JB)	S152
Fuse 17 (PDC)	S153
Fuse 18 (PDC)	S157
Fuse 20 (PDC)	S203
Fuse 21 (PDC)	S204
Fuse 23 (PDC)	S207
Fuse 24 (PDC)	S216
Fuse 26 (PDC)	S221
G102	S222
G106	S309
G108	S344
G123	S346
G154	Stop Lamp Switch. .8W-30-11, 14, 26 Tell Tale Module .8W-30-20
G302	Throttle Position Sensor
Glow Plug Assembly	Transmission Control Module
Glow Plug No.1	Transmission Range Switch
Glow Plug No.2	Upstream Heated Oxygen Sensor
Glow Plug No.3	Vehicle Speed Control Servo
Glow Plug No.4	Vehicle Speed Sensor
Glow Plug Relay	Water In Fuel Sensor
Idle Air Control Motor	Water In Fuel Warning Indicator
Ignition Coil	
Instrument Cluster	

XJI03004 J978W-7

J978W-7

8W-30 FUEL/IGNITION SYSTEM DIESEL

8W-30 FUEL/IGNITION SYSTEM DIESEL

XJI03026 J978W-7

8W-30 FUEL/IGNITION SYSTEMS

INDEX

page	page
DESCRIPTION AND OPERATION	LOW IDLE POSITION SWITCH (DIESEL) 36
IGNITION SWITCH	MANIFOLD ABSOLUTE PRESSURE SENSOR 36
BATTERY FEED	MASS AIR FLOW SENSOR (DIESEL) 36
BATTERY FEED (DIESEL)	INTAKE AIR TEMPERATURE SENSOR
GROUND	OIL PRESSURE SENSOR (DIESEL)
POWER GROUND (DIESEL)	WATER IN FUEL SENSOR (DIESEL) 36
DATA LINK CONNECTOR	PARK/NEUTRAL POSITION SWITCH 37
AUTOMATIC SHUT DOWN (ASD) RELAY 33	POWER STEERING PRESSURE SWITCH 37
DIESEL POWER RELAY	STOP LAMP SWITCH INPUT 37
FUEL PUMP RELAY 33	FUEL INJECTORS 37
FUEL PUMP MODULE	FUEL INJECTION PUMP (DIESEL) 37
FUEL PUMP MODULE (DIESEL)	FUEL HEATER (DIESEL)
VEHICLE SPEED SENSOR	NEEDLE MOVEMENT SENSOR (DIESEL) 38
VEHICLE SPEED SENSOR (DIESEL) 34	GLOW PLUGS (DIESEL)
HEATED OXYGEN SENSORS	IGNITION COIL 38
BATTERY TEMPERATURE SENSOR 34	IDLE AIR CONTROL (IAC) MOTOR 38
CRANKSHAFT POSITION SENSOR 34	DUTY CYCLE EVAP\PURGE SOLENOID 38
CRANKSHAFT POSITION SENSOR (DIESEL) 35	ELECTRIC VACUUM MODULATOR (DIESEL) 38
CAMSHAFT POSITION SENSOR	LOW COOLANT LEVEL SWITCH (DIESEL) 38
ENGINE COOLANT TEMPERATURE SENSOR 35	TORQUE CONVERTER CLUTCH (TCC)
ENGINE COOLANT TEMPERATURE SENSOR	SOLENOID 38
(DIESEL)	EXTENDED IDLE SWITCH
THROTTLÉ POSITION SENSOR	CCD BUS
ACCELERATOR PEDAL POSITION SENSOR	

DESCRIPTION AND OPERATION

IGNITION SWITCH

Circuit A1 from fuse 2 and circuit A2 from fuse 3, in the power distribution center (PDC), supply battery voltage to the ignition switch. Depending upon position, the ignition switch powers circuits A21, A22, A31, A41, G9, G26, and G99.

START POSITION

In the START position, the ignition switch connects circuit A1 to circuit A21 and circuit A2 to circuit A41.

Additionally in the START position, the case grounded ignition switch provides ground for the brake lamp switch and the warning lamps in the instrument cluster.

START OR RUN POSITION

In the START or RUN position, the ignition switch connects circuit A1 to circuit A21.

RUN (ONLY) POSITION

When the ignition switch is in the RUN position, it connects circuit A1 to circuit A21 and circuit A2 to circuit A22.

ACCESSORY OR RUN POSITIONS

In the ACCESSORY or RUN positions, the ignition switch connects circuit A1 to circuit A31.

BATTERY FEED

Circuit A61 from fuse 21 in the Power Distribution Center (PDC) supplies battery voltage to cavity A22 of the Powertrain Control Module (PCM).

HELPFUL INFORMATION

Circuit A61 also supplies power to the contact side of the fuel pump relay.

BATTERY FEED (DIESEL)

Battery feed for the Powertrain Control Module (PCM) is supplied from several sources. One is a constant battery feed on circuit F16. This circuit is protected by a 10 amp fuse located in the Power Distribution Center (PDC)

Battery voltage is also provided on circuit F12. This circuit is HOT in the START and RUN position and protected by a 20 amp fuse located in the Junction Block. Power for the fuse is supplied on circuit A21 from the ignition switch.

GROUND

Circuit Z12 connects to cavities A31 and A32 of the PCM. The Z12 circuit provides ground for PCM internal drivers that operate high current devices like the injectors and ignition coil.

Internal to the PCM, the power (device) ground circuit connects to the PCM sensor return circuit (from circuit K167).

HELPFUL INFORMATION

- The grounding point for circuit Z12 is the right front of the engine.
- If the system loses ground for the Z12 circuits at the front of the engine, the vehicle will not operate. Check the connection at the ganged-ground circuit eyelet.

POWER GROUND (DIESEL)

Circuit Z12 attaches to cavities 11 and 12 of the Powertrain Control Module (PCM) and cacities 1, 24 and 46 of the MSA Controller. Circuit Z12 terminates at the battery ground at the engine.

DATA LINK CONNECTOR

Circuit F39 from the Power Distribution Center (PDC) supplies battery voltage to the data link connector.

Circuit D20 connects to cavity C29 of the PCM. Circuit D20 is the SCI receive circuit for the Power-train Control Module (PCM). Circuit D21 connects to cavity C27 of the PCM and cavity A3 of the Controller- Anti Lock Brakes. Circuit D21 is the SCI transmit circuit for the PCM. CCD Bus Circuits D1 and D2 connect to the data link connector.

Circuits Z1 and Z12 provide ground for the data link connector. Circuit Z12 also connects to cavities A31 and A32 of the PCM.

AUTOMATIC SHUT DOWN (ASD) RELAY

When the ignition switch is in either the START or RUN position, it connects circuit A1 from fuse 8 in the Power Distribution Center (PDC) to circuit A21. Circuit A21 splices to circuit F12 and supplies battery voltage to the coil side of the Automatic Shut Down (ASD) relay. The Powertrain Control Module (PCM) provides ground for the relay on circuit K51. Circuit K51 connects to cavity C3 of the PCM.

When the PCM grounds the ASD relay, contacts inside the relay close and connect circuit A16 from fuse 18 in the PDC to circuit A142. Circuit A142 connects to cavity C12 of the PCM.

HELPFUL INFORMATION

Along with supplying voltage to the coil side of the ASD relay, circuit F12 also supplies voltage to the coil side of the fuel pump relay.

DIESEL POWER RELAY

Power for the coil and contact side of the diesel power relay is supplied on circuit A16. This circuit is HOT at all times and protected by a 30 amp fuse located in the Power Distribution Center (PDC).

Ground for the coil side of the relay is controlled by the MSA Controller on circuit K51.

When the MSA Controller provides a ground for the coil side of the relay, the contacts in the relay CLOSE and connect circuits A16 to circuits A142 and F142. The A142 and F142 circuits supply power to various components and modules in the fuel system.

HELPFUL INFORMATION

- Check the 30 amp fuse located in the PDC
- Refer to the appropriate section of the service manual or Diagnostic Test Procedures manual

FUEL PUMP RELAY

When the ignition switch is in either the START or RUN positions, it connects circuit A1 from fuse 2 in the Power Distribution Center (PDC) to circuit A21. Circuit A21 splices to circuit F12 and supplies battery voltage to the coil side of the fuel pump relay. The Powertrain Control Module (PCM) provides ground for the relay on circuit K31. Circuit K31 connects to cavity C19 of the PCM.

When the PCM grounds the fuel pump relay, contacts inside the relay close and connect circuit A61 from fuse 21 in the PDC to circuit A141. Circuit A141 supplies voltage to the fuel pump motor (part of the in-tank fuel pump module).

HELPFUL INFORMATION

Circuit A61 also splices to supply battery voltage to cavity A22 of the PCM.

FUEL PUMP MODULE

The in-tank fuel pump module contains the fuel pump motor and fuel level sensor.

FUEL PUMP MOTOR

When the fuel pump relay contacts close, circuit A141 supplies voltage to the fuel pump module. Circuit Z1 provides ground for the fuel pump motor.

FUEL LEVEL SENSOR

The fuel level sensor is a variable resistor. Circuit K226 provides the fuel level input to cavity C26 of the Powertrain Control Module (PCM). The PCM broadcasts fuel level data on the CCD bus. The micro-processor in the instrument cluster receives

the message on the CCD bus, calculates fuel gauge needle position and adjusts the gauge.

FUEL PUMP MODULE (DIESEL)

The fuel pump module used on this engine package contains the fuel gauge level sending unit. The fuel level sensor is a variable resistor. Circuit K226 provides the fuel level input to the Powertrain Control Module (PCM). The PCM broadcasts fuel level data on the CCD bus. The micro-processor in the instrument cluster receives the message on the CCD bus, calculates fuel gauge needle position and adjusts the gauge.

Ground for the module is supplied on circuit K167.

VEHICLE SPEED SENSOR

Circuit K6 supplies 5 volts from the Powertrain Control Module (PCM) to the vehicle speed sensor. The K6 circuit connects to cavity B31 of the PCM.

Circuit G7 from the vehicle speed sensor provides an input signal to the PCM. The G7 circuit connects to cavity B27 of the PCM.

The PCM provides a ground for the vehicle speed sensor signal (circuit G7) through circuit K167. Circuit K167 connects to cavity A4 of the PCM.

HELPFUL INFORMATION

Circuit K167 splices to supply ground for the signals from the following:

- Battery temperature sensor
- Camshaft position sensor
- Crankshaft position sensor
- Engine coolant temperature sensor
- Engine oil pressure sensor
- Fuel level sensor
- Heated oxygen sensor
- Intake air temperature sensor
- Manifold absolute pressure sensor
- Throttle position sensor
- Vehicle speed control module
- Vehicle speed sensor

VEHICLE SPEED SENSOR (DIESEL)

Circuit K7 supplies voltage from the Powertrain Control Module (PCM) to the vehicle speed sensor.

Circuit G7 from the vehicle speed sensor provides an input signal to the PCM.

The PCM provides a ground for the vehicle speed sensor signal (circuit G7) through circuit K167.

HEATED OXYGEN SENSORS

When the Automatic Shut Down (ASD) relay contacts close, they connect circuits A16 and F142. Circuit F142 supplies voltage to the upstream and downstream heated oxygen sensors.

Circuit K41 delivers the signal from the upstream heated oxygen sensor to the Powertrain Control Module (PCM). Circuit K41 connects to cavity A24 of the PCM. Circuit K141 supplies the signal from the downstream heated oxygen sensor to the PCM. Circuit K141 connects to PCM cavity A25.

The PCM provides a ground for the heated oxygen sensor signals (circuits K41 and K141) through circuit K167. Circuit H167 connects to cavity A4 of the PCM connector.

Circuit Z1 provides ground for the heater circuit in each sensor.

HELPFUL INFORMATION

Circuit K167 splices to supply ground for the signals from the following:

- Battery temperature sensor
- Camshaft position sensor
- · Crankshaft position sensor
- Engine coolant temperature sensor
- Engine oil pressure sensor
- Fuel level sensor
- Heated oxygen sensor
- Intake air temperature sensor
- · Manifold absolute pressure sensor
- Throttle position sensor
- Vehicle speed control module
- Vehicle speed sensor

BATTERY TEMPERATURE SENSOR

The Powertrain Control Module (PCM) determines battery temperature on circuit K15. Circuit K15 connects the PCM to the battery temperature sensor. Circuit K15 connects to cavity C15 of the PCM. Circuit K167 provides ground for the sensor and connects to PCM cavity A4.

CRANKSHAFT POSITION SENSOR

The Powertrain Control Module (PCM) supplies 5 volts to the crankshaft position sensor on circuit K7. Circuit K7 connects to cavity A17 of the PCM.

The PCM receives the crankshaft position sensor signal on circuit K24. Circuit K24 connects to cavity A8 of the PCM.

The PCM provides a ground for the crankshaft position sensor (circuit K24) through circuit K167. Circuit K167 connects to cavity A4 of the PCM.

HELPFUL INFORMATION

• Circuit K7 splices to supply 5 volts to the camshaft position sensor.

Circuit K167 splices to supply ground for the signals from the following:

- Battery temperature sensor
- Camshaft position sensor
- Crankshaft position sensor
- Engine coolant temperature sensor
- Engine oil pressure sensor
- Fuel level sensor

- Heated oxygen sensor
- Intake air temperature sensor
- Manifold absolute pressure sensor
- Throttle position sensor
- Vehicle speed control module
- Vehicle speed sensor

CRANKSHAFT POSITION SENSOR (DIESEL)

The MSA Controller supplies voltage to the crankshaft position sensor on circuit K24.

The MSA Controller provides a ground for the crankshaft position sensor (circuit K24) through circuit K3.

CAMSHAFT POSITION SENSOR

The Powertrain Control Module (PCM) supplies 5 volts to the camshaft position sensor (in distributor) on circuit K7. Circuit K7 connects to cavity A17 of the PCM.

The PCM receives the camshaft position sensor signal on circuit K44. Circuit K44 connects to cavity A18 of the PCM.

The PCM provides a ground for the camshaft position sensor signal (circuit K44) through circuit K167. Circuit K167 connects to cavity A4 of the PCM.

HELPFUL INFORMATION

• Circuit K7 splices to supply 5 volts to the crank-shaft position sensor.

Circuit K167 splices to supply ground for the signals from the following:

- Battery temperature sensor
- Camshaft position sensor
- · Crankshaft position sensor
- Engine coolant temperature sensor
- Engine oil pressure sensor
- Fuel level sensor
- Heated oxygen sensor
- Intake air temperature sensor
- Manifold absolute pressure sensor
- Throttle position sensor
- Vehicle speed control module
- Vehicle speed sensor

ENGINE COOLANT TEMPERATURE SENSOR

The engine coolant temperature sensor provides an input to the Powertrain Control Module (PCM) on circuit K2. From circuit K2, the engine coolant temperature sensor draws up to 5 volts from the PCM. The sensor is a variable resistor. As coolant temperature changes, the resistance in the sensor changes, causing a change in current draw. The K2 circuit connects to cavity A16 of the PCM.

The PCM provides a ground for the engine coolant temperature sensor signal (circuit K2) through circuit K167. Circuit K167 connects to cavity A4 of the PCM connector.

HELPFUL INFORMATION

Circuit K167 splices to supply ground for the signals from the following:

- Battery temperature sensor
- Camshaft position sensor
- Crankshaft position sensor
- Engine coolant temperature sensor
- Engine oil pressure sensor
- Fuel level sensor
- Heated oxygen sensor
- Intake air temperature sensor
- Manifold absolute pressure sensor
- Throttle position sensor
- Vehicle speed control module
- Vehicle speed sensor

ENGINE COOLANT TEMPERATURE SENSOR (DIESEL)

The Engine Coolant Temperature (ECT) sensor on this engine application is a dual function sensor. It provides an engine coolant temperature input to the Powertrain Control Module (PCM) on Circuit K222 and to the MSA Controller on circuit K2.

Ground for the sensor is supplied on circuit K4.

The sensor is a variable resistor. As engine coolant temperature changes the resistance on the K4 circuit changes.

THROTTLE POSITION SENSOR

From the Powertrain Control Module (PCM), circuit K7 supplies 5 volts to the throttle position sensor (TPS). Circuit K7 connects to cavity A17 of the PCM.

Circuit K22 delivers the TPS signal to the PCM. Circuit K22 connects to cavity A23 of the PCM.

The PCM provides a ground for the throttle position sensor signal (circuit K22) through circuit K167. Circuit K167 connects to cavity A4 of the PCM.

HELPFUL INFORMATION

Refer to Group 14 for throttle position sensor operation. $\,$

Circuit K7 splices to supply 5 volts to the manifold absolute pressure sensor, battery temperature sensor, camshaft position sensor, and crankshaft position sensor.

On vehicles equipped with the 4.0L engine and automatic transmission, circuit K22 splices to the transmission control module.

Circuit K167 splices to supply ground for the signals from the following:

- Battery temperature sensor
- Camshaft position sensor
- Crankshaft position sensor
- Engine coolant temperature sensor
- Engine oil pressure sensor

- Fuel level sensor
- · Heated oxygen sensor
- Intake air temperature sensor
- Manifold absolute pressure sensor
- Throttle position sensor
- Vehicle speed control module
- Vehicle speed sensor

ACCELERATOR PEDAL POSITION SENSOR (DIESEL)

Power for the accelerator pedal position sensor is supplied by the MSA Controller on circuit K6. This is a 5 volt feed from the MSA Controller.

Circuit K22 provides the pedal position input to the MSA Controller. Ground for the sensor is supplied from the MSA Controller on circuit K255.

LOW IDLE POSITION SWITCH (DIESEL)

Circuit K151 connects from the MSA Controller to the Accelerator Pedal Position Sensor. This circuit provides the low idle switch input.

Ground for the Accelerator Pedal Position Sensor is provided on circuit K255.

MANIFOLD ABSOLUTE PRESSURE SENSOR

From the Powertrain Control Module (PCM), circuit K7 supplies 5 volts to the manifold absolute pressure (MAP) sensor. Circuit K7 connects to cavity A17 of the PCM.

Circuit K1 delivers the MAP signal to the PCM. Circuit K1 connects to cavity A27 of the PCM.

The PCM provides a ground for the MAP sensor signal (circuit K1) through circuit K167. Circuit K167 connects to cavity A4 of the PCM.

HELPFUL INFORMATION

Refer to Group 14 for MAP sensor operation.

Circuit K7 splices to supply 5 volts to the camshaft position sensor, crankshaft position sensor and throttle position sensor.

Circuit K167 splices to supply ground for the signals from the following:

- Battery temperature sensor
- Camshaft position sensor
- Crankshaft position sensor
- Engine coolant temperature sensor
- Engine oil pressure sensor
- Fuel level sensor
- Heated oxygen sensor
- Intake air temperature sensor
- Manifold absolute pressure sensor
- Throttle position sensor
- Vehicle speed control module
- Vehicle speed sensor

MASS AIR FLOW SENSOR (DIESEL)

Power for the mass air flow sensor is supplied on circuit F142. This circuit is HOT when the contacts in the Diesel Power Relay are CLOSED.

Circuit K155 provides the input to the MSA Controller. A sensor ground is provided by the MSA Controller on circuit K4.

Ground is also provided on circuit Z2.

INTAKE AIR TEMPERATURE SENSOR

The intake air temperature sensor provides an input to the Powertrain Control Module (PCM) on circuit K21. Circuit K21 connects to cavity A15 of the PCM.

From circuit K21, the intake air temperature sensor draws voltage from the PCM. The sensor is a variable resistor. As intake air temperature changes, the resistance in the sensor changes, causing a change in current draw.

The PCM provides a ground for the intake air temperature sensor signal (circuit K21) through circuit K167. Circuit K167 connects to cavity A4 of the PCM.

HELPFUL INFORMATION

Circuit K167 splices to supply ground for the signals from the following:

- Battery temperature sensor
- Camshaft position sensor
- Crankshaft position sensor
- Engine coolant temperature sensor
- Engine oil pressure sensor
- Fuel level sensor
- Heated oxygen sensor
- Intake air temperature sensor
- Manifold absolute pressure sensor
- Throttle position sensor
- Vehicle speed control module
- Vehicle speed sensor

OIL PRESSURE SENSOR (DIESEL)

The oil pressure sensor is a variable resistor. A change in engine oil pressure changes the resistance in the sending unit which alters the signal sensed by the Powertrain Control Module on circuit G60.

The PCM provides ground for the oil pressure sensor on circuit K167.

The PCM broadcasts the oil pressure data on the CCD bus. The micro-processor in the instrument cluster receives the signal from the CCD bus, calculates oil pressure and adjusts the gauge needle position.

WATER IN FUEL SENSOR (DIESEL)

The water in fuel sensor provides an input to the Powertrain Control Module (PCM) on circuit G123.

The PCM provides ground for the water in fuel sensor signal (circuit G123) through circuit K167.

PARK/NEUTRAL POSITION SWITCH

When closed, the park/neutral position switch provides a ground path on circuit T41 for the coil side of the starter motor relay. Circuit T141 from the ignition switch provides battery voltage to the coil side of the relay.

Circuit T41 is double crimped at the coil side of the relay and connects to cavity A6 of the Powertrain Control Module (PCM). The park/neutral position switch provides an input to the PCM.

POWER STEERING PRESSURE SWITCH

The Powertrain Control Module (PCM) connects to the power steering pressure switch on circuit K10. On vehicles equipped with a manual transmission, circuit Z12 provides ground for the switch. If the vehicle has an automatic transmission, circuit Z1 provides ground. When the switch closes, it connects circuit K10 to ground. The switch closes during periods of high power steering pump load and low engine speed; such as parking maneuvers.

Circuit K10 connects to cavity A12 of the PCM. Circuit Z12 also connects to cavities A31 and A32 of the PCM.

STOP LAMP SWITCH INPUT

Circuit K29 provides the stop lamp switch input to the PCM. Circuit K29 connects to cavity C24 of the PCM. Circuit K29 also connects to the Transmission Control Module (TCM) and the shift interlock.

FUEL INJECTORS

When the Automatic Shut Down (ASD) relay contacts close, they connect circuits A16 and A142. Circuit A142 supplies voltage to the fuel injectors. Each injector has a separate ground circuit controlled by the Powertrain Control Module (PCM).

Circuit K12 provides ground for injector number two. The K12 circuit connects to cavity B15 of the PCM.

Circuit K13 provides ground for injector number three. The K13 circuit connects to cavity B5 of the PCM.

Circuit K14 provides ground for injector number four. The K14 circuit connects to cavity B16 of the PCM.

On the 4.0L engine, circuit K15 provides ground for injector number five. The K15 circuit connects to cavity B6 of the PCM.

Also on the 4.0L engine, circuit K16 provides ground for injector number six. The K16 circuit connects to cavity B12 of the PCM.

HELPFUL INFORMATION

• For information about fuel injector operation, refer to Group 14.

FUEL INJECTION PUMP (DIESEL)

The fuel injection pump used on this engine application performs several functions. Each of these is described as follows.

FUEL SHUTDOWN SOLENOID

Power for the fuel shutdown solenoid is supplied by the MSA Controlller on circuit K153. The solenoid is case grounded

FUEL TIMING SOLENOID

Power for the solenoid is supplied on circuit F142. This circuit is HOT when the contacts in the Diesel Power Relay are CLOSED. Ground for the solenoid is controlled by the MSA Controller on circuit K126.

FUEL TEMPERATURE SENSOR

Circuit K156 connects between the MSA Controller and the fuel temperature sensor. The sensor is a variable resistor. As fuel temperature changes the resistance on circuit K156 changes. Ground for the sensor is supplied on circuit K4.

CONTROL SLEEVE POSITION SENSOR

Circuit K134 connects between the MSA Controller and the control sleeve position sensor. This circuit is the position input to the MSA Controller.

Circuit K57 is used for the middle tap, and circuit K135 is used for the measure coil.

FUEL QUANTITY ACTUATOR

Power for the fuel quantity Actuator is supplied on circuit A142. This circuit is HOT when the contacts in the Diesel Power Relay are CLOSED. Ground for the Actuator is controlled by the MSA Controller on circuit K140.

FUEL HEATER (DIESEL)

When the ignition switch is in the START or RUN position, it connects circuit A1 from fuse 2 in the Power Distribution Center (PDC) to circuit A21. Circuit A21 powers circuit F12 through PDC fuse 11. Circuit F12 feeds the coil side of the fuel heater relay. Ground for the relay is supplied by circuit Z1.

When the contacts of the fuel heater relay are closed they connect circuit A61 from fuse 6 of the PDC and circuit A93. Circuit A93 supplies voltage to the fuel heater. Ground for the fuel heater is supplied on circuit Z1.

NEEDLE MOVEMENT SENSOR (DIESEL)

The needle movement sensor is used to provide an input to the MSA Controller. Circuit K67 connects from the MSA Controller, cavity 12, to the injector and is used as the signal wire.

Circuit K68, from cavity 11 of the MSA Controller connector, is used for a return from the injector.

GLOW PLUGS (DIESEL)

The glow plugs used on this vehicle are controlled by the MSA Controller and the glow plug relay. Power for the coil side of the relay is supplied on circuit F142. This circuit is HOT when the contacts in the Diesel Power Relay are CLOSED.

The ground side of the relay is controlled by the MSA Controller on circuit K152. This circuit connects to cavity 50 of the MSA Controller.

When the MSA Controller determines a need for glow plug operation it supplies a ground path on circuit K152. This causes the contacts in the relay to CLOSE connecting circuit A54 and K154. The A54 circuit is HOT at all times. Circuit K154 connects from the relay to the glow plugs.

The glow plugs are case grounded.

IGNITION COIL

When the Automatic Shut Down (ASD) relay contacts close, they connect circuits A16 and A142. Circuit A142 splices to supply voltage to the ignition coil. The Powertrain Control Module (PCM) controls the ground path for the ignition coil on circuit K19. Circuit K19 connects to cavity A7 of the PCM.

HELPFUL INFORMATION

Circuit A142 splices to supply voltage to the fuel injectors, PCM, and heated oxygen sensors.

IDLE AIR CONTROL (IAC) MOTOR

The Powertrain Control Module (PCM) operates the idle air control motor through 4 circuits; K39, K40, K59, and K60. Each circuit connects to separate cavities in the PCM connector.

- Circuit K39 connects to cavity A19 of the PCM
- Circuit K40 connects to cavity A11 of the PCM
- Circuit K59 connects to cavity A20 of the PCM
- Circuit K60 connects to cavity A10 of the PCM

DUTY CYCLE EVAP\PURGE SOLENOID

When the ignition switch is in the START or RUN position, it connects circuit A1 from fuse 2 in the Power Distribution Center (PDC) to circuit A21. Circuit A21 powers circuit F12 through fuse 11 in the junction block. Circuit F12 supplies power to the Duty Cycle EVAP/Purge solenoid.

The Powertrain Control Module (PCM) provides the ground path for the solenoid on circuit K52. Circuit K52 connects to cavity C20 of the PCM.

ELECTRIC VACUUM MODULATOR (DIESEL)

Power for the Electric Vacuum Modulator is supplied on circuit F142. This circuit is HOT when the contacts in the Diesel Power Relay are CLOSED. The Electric Vacuum Modulator is case grounded.

The MSA Controller controls the operation of the modulator by supplying a ground path for circuit K35. This circuit connects to cavity 25 of the MSA Controller.

LOW COOLANT LEVEL SWITCH (DIESEL)

When the low coolant level switch closes, it connects circuit G18 from the Powertrain Control Module (PCM) and circuit K167. Circuit K167 is the sensor ground circuit.

When the low coolant level switch is closed the PCM receives a signal from circuit G18.

TORQUE CONVERTER CLUTCH (TCC) SOLENOID

The TCC solenoid is only used on 2.5L engines with the three-speed automatic transmissions. When the ignition switch is in the START or RUN position, it connects circuit A1 from fuse 2 in the Power Distribution Center (PDC) to circuit A21. Circuit A21 powers circuit F12 through fuse 11 in the junction block. Circuit F12 supplies power to the TCC solenoid. The Powertrain Control Module (PCM) provides ground for the solenoid on circuit K54. Circuit K54 connects to cavity B11 of the PCM.

EXTENDED IDLE SWITCH

On Police Package vehicles, an optional extended idle switch provides an input to the Powertrain Control Module (PCM) on circuit K78. Circuit K78 connects to cavity A12 of the PCM. When the ignition switch is in the RUN position, circuit F15 from fuse 25 in the junction block supplies battery voltage to the extended idle switch. Circuit Z1 grounds the switch.

CCD BUS

Circuits D1 and D2 connect the Powertrain Control Module (PCM) to the CCD Bus. Circuit D1 connects to cavity C30 of the PCM. Circuit D2 connects to cavity C28 of the PCM. Circuits D1 and D2 are a twisted pair of wires.

Several modules and controllers broadcast and receive data on the CCD Bus.

8W-31 TRANSMISSION CONTROL SYSTEM

INDEX

		pag	е
Component	Page	Component Page	e
1-2 And 3-4 Solenoid	U	S115	
2-3 Solenoid	8W-31-2	S130	
Data Link Connector	8W-31-4	S135	2
Diagnostic Splice Block	8W-31-4	S136	3
Engine Starter Motor Relay	8W-31-3	S138	3
Fuse 11 (JB)		S139	4
Fuse 16 (PDC)	8W-31-2	S140	1
G101	8W-31-2	S141	3
G106	8W-31-2, 3	S144	4
G108	8W-31-4	S145	1
Junction Block	8W-31-2, 3	S204	1
Lock-Up Solenoid	8W-31-2	S207	1
Output Shaft Speed Sensor	8W-31-2	Stop Lamp Switch8W-31-4	4
Power Distribution Center	8W-31-2	Throttle Position Sensor	3
Powertrain Control Module	8W-31-3, 4	Transmission Control Module 8W-31-2, 3, 4	4
S111	8W-31-3	Transmission Control Solenoids 8W-31-2	2
S112	8W-31-3	Transmission Range Switch 8W-31-3	3
C114	011/01/0	_	

J978W-7 XJI03101

J978W-7 XJI03103

8W-31 TRANSMISSION CONTROL SYSTEM

DESCRIPTION AND OPERATION

TORQUE CONVERTER CLUTCH (TCC) SOLENOID

The TCC solenoid is only used on 2.5L engines with the three-speed automatic transmissions. When the ignition switch is in the START or RUN position, it connects circuit A1 from fuse 2 in the Power Distribution Center (PDC) to circuit A21. Circuit A21 powers circuit F12 through fuse 11 in the junction block. Circuit F12 supplies power to the TCC solenoid. The Powertrain Control Module (PCM) provides ground for the solenoid on circuit K54. Circuit K54 connects to cavity B11 of the PCM.

FOUR-WHEEL DRIVE (4WD) SWITCH

When the 4WD switch CLOSES, circuit Z1 provides ground for the 4WD indicator lamp in the instrument cluster. Circuit F87 connects to the instrument cluster and supplies battery voltage to the 4WD indicator lamp. Circuit G107 connects the indicator lamp to the 4WD switch.

On vehicles equipped with the 4.0L engine and an automatic transmission, circuit G107 connects to the solenoid assembly in the transmission. Circuit G106 from the solenoid assembly provides ground during 4WD Full Time operation.

SHIFT INTERLOCK

The shift interlock prevents the operator from shifting the vehicle out of PARK unless the brake pedal is pressed. When the ignition switch is in the

START or RUN position, circuit A22 feeds circuit F15 through fuse 25 in the junction block. Circuit F15 splices to power the shift interlock.

When the brake pedal is not depressed, the stop lamp switch provides ground for interlock by connecting circuit K29 to ground circuit Z1. When grounded, the interlock prevents shifting the transmission out of PARK. When the brake pedal is pressed, the stop lamp switch disconnects circuits K29 and Z1, removing ground from the shift interlock.

TRANSMISSION CONTROL MODULE—4.0L ENGINE ONLY

Vehicles equipped with the 4.0L engine have electronically controlled solenoids in the automatic transmission valve body.

The Transmission Control Module (TCM) receives inputs from the Throttle Position Sensor (TPS) on circuit K22 and the stop lamp switch on circuit K29. Circuit K167 connects to the TCM to provide ground for the TPS signal. The TCM receives the transmission output speed sensor signal on circuit T14. Circuit M1 from fuse 16 in the Power Distribution Center (PDC) supplies battery voltage to the TCM. Circuit Z12 provides ground for the TCM.

The TCM powers the S1 solenoid on circuit T19, the S2 solenoid on circuit T60, and the S3 solenoid on circuit T22. The S1, S2, and S3 solenoids are case grounded.

8W-33 VEHICLE SPEED CONTROL

INDEX

			page
SCHEMATICS AND DIAGRAMS DESCRIPTION AND OPERATION			
Component	Page	Component	Page
Accelerator Pedal	8W-33-5	S138	
Clockspring	8W-33-2, 4	S140	8W-33-3
Fuel Pump Module	8W-33-5	S147	8W-33-5
Fuel Quantity Actuator	8W-33-5	S148	8W-33-5
Fuse 19 (PDC)		S149	8W-33-4
G106		S203	8W-33-5
G108		S204	
Left Speed Control Switch	8W-33-2, 4	S207	
Power Distribution Center		S221	
Powertrain Control Module	8W-33-2, 3, 4, 5	S222	
Right Speed Control Switch	8W-33-2, 4	Stop Lamp Switch	
S111		Vehicle Speed Control Servo	
S139		1	

XJI03304 (8W-15-10) J978W-7

8W-33 VEHICLE SPEED CONTROL

DESCRIPTION AND OPERATION

VEHICLE SPEED CONTROL

The Powertrain Control Module (PCM) operates the vehicle speed control system. The vehicle speed control switches are located in the steering wheel.

Circuit V32 from cavity C11 of the PCM supplies 12 volts to the Light Emitting Diode (LED) used for the speed control indicator lamp and the speed control switches. Circuit V32 also connects to circuit V30 through the stop lamp switch. Circuit V30 powers the vehicle speed control servo.

Circuit V37 from PCM cavity C32 connects to the vehicle speed control switches. The switches are wired in parallel and each contains a separate resistor. The voltage level present on circuit V37 (at PCM cavity C32) depends on which speed control switch is selected. Circuit K167 from PCM cavity A4 supplies ground for the speed control switches.

- When the ON/OFF switch is open, the voltage level on circuit V37 at PCM cavity C32 has a nominal value of 5.0 volts with a range from 4.8 to 5.0 volts.
- When the ON/OFF switch closes, the voltage level on circuit V37 at PCM cavity C32 has nominal value of 1.51 volts with a range from 1.31 to 1.61 volts.
- When the SET/COAST switch closes, the voltage level on circuit V37 at PCM cavity C32 has nominal value of 3.8 volts with a range from 3.6 to 3.9 volts.
- When the RESUME/ACCEL switch closes, the voltage level on circuit V37 at PCM cavity C32 has nominal value of 4.4 volts with a range from 4.2 to 4.5 volts.

The PCM controls the vent and vacuum functions of the vehicle speed control servo on circuits V35 and

V36. Depending on the signal it receives from vehicle speed control switches, the PCM either applies vacuum to or vents vacuum from the servo. Circuit V36 from cavity C4 of the PCM sends the vacuum signal to the servo. Circuit V35 from cavity C5 sends the vent signal.

Circuit K29 provides the stop lamp switch sense input to the PCM at cavity C24. The stop lamp switch connects circuit K29 to ground on circuit Z1. When the brake pedal is depressed, the stop lamp switch opens and disconnects circuits K29 and Z1, and circuits V32 and V30. When the stop lamp switch disconnects circuits V32 and V30, power is removed from the speed control servo.

HELPFUL INFORMATION

Circuit K167 also provides ground for some of the engine control sensors that provide inputs to the PCM.

VEHICLE SPEED CONTROL (DIESEL)

The MSA Controller operates the vehicle speed control system. The vehicle speed control switches are located in the steering wheel.

Circuit V32 from the Powertrain Control Module (PCM) connects to circuit V30 through the stop lamp switch. Circuit V30 provides power to the speed control servo.

Circuit V37 from the MSA Controller supplies voltage to the vehicle speed control switches. The switches are wired in parallel and each contains a separate resistor. The voltage level present on circuit V37 at the MSA Controller depends on which speed control switch is selected. Circuit K4 from MSA Controller supplies ground for the speed control switches.

8W-35 ALL-WHEEL ANTI-LOCK BRAKES

INDEX

		page
Component	Page	Component Page
ABS Indicator		Junction Block
Controller Anti-Lock Brake 8W-35-	2, 3, 4, 5, 6	Left Front Wheel Speed Sensor8W-35-6
Controller Anti-Lock Brake Relay	.8W-35-3, 5	Left Rear Wheel Speed Sensor 8W-35-6
Data Link Connector	.8W-35-2, 4	Overhead Module
Fog Lamp Relay	8W-35-5	Power Distribution Center 8W-35-2, 4
Fuse 9 (JB)		Right Front Wheel Speed Sensor 8W-35-6
Fuse 12 (PDC)	.8W-35-2, 4	Right Rear Wheel Speed Sensor 8W-35-6
Fuse 13 (PDC)		S103
Fuse 14 (PDC)	8W-35-4	S132
Fuse 19 (PDC)	8W-35-4	S134
Fuse 22 (PDC)	8W-35-2	S139
Fuse 25 (JB)	.8W-35-3, 5	S147
G Switch	.8W-35-2, 4	S203
G102	.8W-35-2, 4	S216
G106	.8W-35-3, 5	Stop Lamp Switch
Instrument Cluster	.8W-35-3. 5	

XJI03502

_9 G106 (8W-15-4)

J978W-7

J978W-7

8W-35 ANTI-LOCK BRAKES - DIESEL

J978W-7 XJI03505

8W-35 ALL-WHEEL ANTI-LOCK BRAKES

INDEX

page	page
WHEEL SPEED SENSORS 7	ABS RELAY

DESCRIPTION AND OPERATION

INTRODUCTION

Four fuses supply power for the Anti-Lock Brake System (ABS); fuses 5, 8 and 14 in the Power Distribution Center (PDC) and fuse 18 in the fuse block. Fuses 5, 8 and 14 in the PDC are connected directly to battery voltage and are HOT all times. Fuse 18 in the fuse block is HOT when the ignition switch is the RUN Position.

In the RUN position, the ignition switch connects circuit A1 from fuse 8 in the PDC with circuit A38. Circuit A38 connects to a bus bar in the fuse block. The bus bar feeds circuit B236 through fuse 18. Fuse 18 is a 2 amp fuse.

Circuit B236 connects to the coil side of the ABS main relay and the Controller, Anti-Lock Brakes (CAB).

Circuit Z1 provides ground for the CAB. Circuit Z1 connects to cavities B14 and B13 of the CAB.

Refer to group 5, Brakes for operational descriptions of ABS system components.

WHEEL SPEED SENSORS

The all wheel anti-lock system uses four wheel speed sensors; one for each wheel. Each sensor converts wheel speed into an electrical signal that it transmits to the Controller, Anti-Lock Brakes (CAB). A pair of twisted wires connect to each sensor to provide signals to the CAB.

Circuits B6 and B7 provide signals to the CAB from the right front wheel speed sensor. Circuit B6 which provides the LOW signal connects to cavity 18 of the CAB. Circuit B7 connects to cavity 3 of the CAB and provides the HIGH signal.

Circuits B8 and B9 provide signals to the CAB from the left front wheel speed sensor. Circuit B8, which provides the LOW signal, connects to cavity 11 of the CAB. Circuit B9 connects to cavity 4 of the CAB and provides the HIGH signal.

Circuits B1 and B2 provide signals to the CAB from right rear wheel speed sensor. Circuit B1 which provides the LOW signal connects to cavity 1 of the CAB. Circuit B2 connects to cavity 17 and provides the HIGH signal. Circuits B3 and B4 provide signals to the CAB from the left rear wheel speed sensor. Circuit B3, which provides the LOW signal, connects to cavity 2 of the CAB. Circuit B4 connects to cavity 10 and provides the HIGH signal.

G-SWITCH

During four-wheel drive operation, the G-switch provides deceleration data to the Controller, Anti-Lock Brakes (CAB). Refer to Group 5, Brakes for additional information.

Circuits B41, B42, and B43 connect the G-Switch to the CAB. Circuits B41 and B42 provide switch states while circuit B43 provides ground.

ABS RELAY

Circuit F15 from fuse 25 of the junction block supplies voltage to the coil side of the ABS relay. Ground for the coil side of the relay is supplied by the Controller, Anti-Lock Brake (CAB).

When the relay contacts close, the ground circuit for the ABS warning lamp is completed on circuit Z1.

ABS WARNING LAMP

Circuit F87 provides power for the ABS warning lamp at the instrument cluster. Ground for the ABS warning lamp is provided by circuit Z1 when the ABS relay is not energized.

STOP LAMP SWITCH INPUT

Circuit L50 from the stop lamp switch provides the brake switch input to the Controller, Anti-Lock Brakes (CAB). When the brake pedal is depressed, the stop lamp switch closes to supply battery voltage from circuit F32 to circuit L50. Circuit L50 connects to cavity 12 of the CAB. Circuit F32 originates at fuse 22 in the Power Distribution Center (PDC).

DATA LINK CONNECTOR

Circuit D21 from cavity 20 of the Controller, Anti-Lock Brakes (CAB) transmits data to the DRB scan tool through the data link connector. Circuit D21 is double crimped at the data link connector and connects to cavity C27 of the Powertrain Control Module (PCM).

Through the data link connector, circuit Z1 provides ground for the DRB scan tool.

Circuit F34 from fuse 17 in the Power Distribution Center (PDC) supplies battery voltage to the scan tool through the diagnostic connector.

page

8W-39 VEHICLE THEFT SECURITY SYSTEM

INDEX

Component Page	Component	Page
Cargo Lamp/Switch8W-39-6, 7	Right Front Door Jamb Switch	8W-39-6, 7
Data Link Connector	Right Front Power Lock/Window	
Diagnostic Splice Block 8W-39-8	Switch/Module	8W-39-2, 4
Fuse 16 (PDC) 8W-39-2, 3, 4, 5	Right Rear Door Jamb Switch	8W-39-6, 7
Fuse 26 (PDC)	S135	8W-39-2, 3
Fuse 27 (PDC)	S144	8W-39-8
G107	S145	8W-39-8
G108	S200	8W-39-6, 7
G302	S208	.8W-39-2, 3, 4, 5
G303	S304	8W-39-6, 7
G304	S309	8W-39-6, 7
Headlamp Switch8W-39-6, 7	S310	8W-39-6, 7
Horn Relay	S314	8W-39-2, 4
Ignition Switch	S333	8W-39-6, 7
Instrument Cluster 8W-39-2, 3, 4, 5, 8	S334	8W-39-6, 7
Junction Block	S342	.8W-39-2, 3, 4, 5
Left Front Door Jamb Switch 8W-39-6, 7	S343	.8W-39-2, 3, 4, 5
Left Front Power Lock/Window	S344	8W-39-8
Switch/Module8W-39-3, 5	S345	8W-39-6, 7
Left Rear Door Jamb Switch8W-39-6, 7	S346	8W-39-8
Liftgate Switch	S347	.8W-39-2, 3, 4, 5
Overhead Module8W-39-2, 3, 4, 5, 6, 7, 8	Underhood Lamp	8W-39-4, 5
Power Distribution Center 8W-39-2, 3, 4, 5	VTSS Indicator	.8W-39-2, 3, 4, 5
Powertrain Control Module 8W-39-8		

- 8W-39 VEHICLE THEFT SECURITY SYSTEM -GAS LHD

8W-39 VEHICLE THEFT SECURITY SYSTEM - GAS RHD

- 8W-39 VEHICLE THEFT SECURITY SYSTEM -LHD DIESEL

8W-39 VEHICLE THEFT SECURITY SYSTEM -

XJI03905 J978W-7

8W-39 VEHICLE THEFT SECURITY SYSTEM

DESCRIPTION AND OPERATION

IMMOBILIZER

The Immobilizer provides protection against unauthorized vehicle use by preventing the engine from operating when the system is armed. The system is operated by radio signals sent from a hand-held immobilizer transmitter to a receiver in the vehicle.

REMOTE KEYLESS ENTRY

Immobilizers use key-fob radio signal transmitters and vehicle-mounted receivers to lock and unlock the system. In most cases, the transmitters and receivers also operate the Remote Keyless Entry (RKE) system for locking and unlocking doors.

OVERHEAD MODULE

The Overhead Module operates the Remote Keyles Entry and the Imobilizer system.

Power for the Overhead Module is supplied by circuit F1 from fuse 26 in the Power Distribution Center. Inputs to the overhead module include; door ajar illumination sense, door lock and unlock request, and horn relay control.

The Overhead Module controls systems based on inputs broadcast on the CCD bus.

8W-40 INSTRUMENT CLUSTER

INDEX

	page
SCHEMATICS AND DIAGRAMS	
Component Page	Component Page
4WD Switch	Part Time 4WD Indicator
ABS Indicator	Part Time 4WD Switch
Airbag Control Module	Power Distribution Center
Airbag Warning Indicator	Powertrain Control Module
Beam Select Switch	Rear Window Defogger Relay
Brake Pressure Warning Switch	Rear Window Defogger Switch
	Right Front Door Jamb Switch
Brake Warning Indicator	Right Turn Signal Indicator Lamp
Check Gauges Warning Indicator	\$103
Clockspring	\$107
Cluster Illumination Lamps	\$108
Compass	S132
Controller Anti-Lock Brake Relay 8W-40-8, 9, 10, 11	S135
Cruise On Indicator	S141
Diagnostic Splice Block 8W-40-3, 4, 5, 6, 8, 9, 10, 11, 16	S144
Engine Coolant Temperature Gauge 8W-40-5, 6	S145
Engine Coolant Temperature Sensor 8W-40-5, 6	S152
Engine Coolant Temperature Warning Indicator 8W-40-5, 6	S200
Fog Lamp Relay	S207
Fuel Gauge	S208
Fuel Level Sensor	S209
Fuel Pump Module	S210
Full Time 4WD Indicator	S211
Fuse 6 (JB)	S212
Fuse 9 (JB)	S213
Fuse 12 (JB)	S214
Fuse 16 (PDC)	S215
G101	S216
G106	S221
G107	S309
G108	S310
G123	S313
G154	S314
G3028W-40-9, 11, 14	S315
G303	S344
Headlamp Switch	S346
High Beam Indicator Lamp	Seat Belt Switch
Ignition Switch	Seat Belt Warning Indicator
Instrument Cluster	
Junction Block	Speedometer
Left Front Door Jamb Switch	Tell Tale Module
Left Speed Control Switch	Transmission Control Module
•	
Left Turn Signal Indicator Lamp	Trip Reset Switch
Low Coolant Level Warning Indicator	Turn Signal/Hazard Switch8W-40-15
Low Coolant Switch	Underhood Lamp
Low Fuel Warning Indicator	Upshift Warning Indicator
Low Washer Fluid Indicator	Vehicle Speed Sensor
Low Washer Fluid Switch	Voltmeter
Odometer	VTSS Indicator
Oil Pressure Gauge	Wait To Start Warning Indicator
Oil Pressure Sensor	Water In Fuel Sensor
Oil Pressure Warning Indicator	Water In Fuel Warning Indicator
Overhead Module 8W-40-16	

J978W-7

XJI04002 J978W-7

(8W-30-31)

8W-40 INSTRUMENT CLUSTER - GAS LHD

J978W-7

- 8W-40 INSTRUMENT CLUSTER -Diesel LHD

8W-40 INSTRUMENT CLUSTER — **DIESEL RHD**

J978W-7

XJI04013

XJI04014

8W-40 INSTRUMENT CLUSTER

INDEX

page	page
DESCRIPTION AND OPERATION	ILLUMINATION LAMPS
OIL PRESSURE GAUGE 19	WARNING LAMPS—EXCEPT ABS and BRAKE . 18
SEAT BELT WARNING LAMP 19	ABS WARNING LAMP 18
HIGH BEAM INDICATOR LAMP 19	BRAKE WARNING LAMP 18
TURN SIGNAL INDICATOR LAMPS 19	SPEEDOMETER
MANUAL TRANSMISSION UP-SHIFT LAMP 19	TACHOMETER
FOUR-WHEEL DRIVE (4WD) SWITCH 19	VOLTMETER 19
CHIME	FUEL GAUGE
TELL TALE MODULE 20	ENGINE COOLANT TEMPERATURE GAUGE 19
INTRODUCTION	

DESCRIPTION AND OPERATION

INTRODUCTION

The electronic instrument cluster contains a microprocessor which controls cluster functions based on data it receives from the CCD bus. Circuit M1 from fuse 16 in the Power Distribution Center (PDC) supplies power to the cluster microprocessor. When the ignition switch is in the START or RUN position, it connects circuit A1 from fuse 2 in the PDC to circuit A21. Circuit A21 powers circuit F87 through fuse 9 in the junction block. Circuit F87 powers the cluster microprocessor plus the warning lamps in the cluster. The cluster microprocessor switches the warning lamps on and off by controlling the ground path for each lamp.

ILLUMINATION LAMPS

When the headlamp switch is in the PARK or ON position, circuit E1 from the dimmer switch circuitry feeds circuit E2 through fuse 6 in the junction block. Circuit E2 powers the illumination lamps. Circuit Z2 provides ground for the lamps.

WARNING LAMPS—EXCEPT ABS and BRAKE

Circuit F87 feeds all the warning lamps in the instrument cluster. The microprocessor turns on and off all the warning lamps except the seat belt warning lamp, ABS warning lamp, and brake warning lamp based on inputs broadcast on the CCD bus. The microprocessor controls the ground path for these lamps. Circuits Z2 provide ground for the microprocessor.

ABS WARNING LAMP

Circuit F87 from fuse 9 in the junction block provides power for the ABS warning lamp in the instrument cluster. Ground for the ABS warning lamp is

provided by the ABS relay when the relay is not energized. When the ABS relay is not energized circuit G19 is connected to circuit Z1 ground, through the ABS relay.

HELPFUL INFORMATION

When the ignition switch is in the START or RUN position, it connects circuit A1 from fuse 2 in the Power Distribution Center (PDC) to circuit A21. Circuit A21 powers circuit F87 through fuse 9 in the junction block.

Circuit F87 supplies voltage to the coil side of ABS relay and circuit G83 provides the ground. Circuit G83 connects to cavity 16 of the Controller, Anti-Lock Brakes (CAB).

BRAKE WARNING LAMP

Circuit F87 from fuse 9 in the junction block supplies power to the brake warning lamp. Ground for the brake warning lamp is supplied through the case grounded park brake switch, ignition switch (in the START position) or brake warning switch. Circuit G99 from the lamp connects to the brake warning switch. Circuit G9 connects the brake warning switch to the park brake switch and ignition switch.

SPEEDOMETER

The instrument cluster microprocessor calculates speedometer needle position based on the vehicle speed signal broadcast on the CCD bus by the Powertrain Control Module (PCM). The PCM determines vehicle speed from the input provided by the vehicle speed sensor.

TACHOMETER

The Powertrain Control Module (PCM) broadcasts the engine RPM data on the CCD bus. From the

DESCRIPTION AND OPERATION (Continued)

RPM message on the CCD bus, the instrument cluster calculates tachometer needle position.

VOLTMETER

The Powertrain Control Module (PCM) broadcasts system voltage data on the CCD bus. The microprocessor in the instrument cluster calculate voltmeter needle position based on the signal received from the CCD bus.

FUEL GAUGE

The Powertrain Control Module (PCM) transmits the fuel percentage data over the CCD bus. The microprocessor in the instrument cluster calculates position of the fuel gauge needle based on the signal from the PCM.

ENGINE COOLANT TEMPERATURE GAUGE

The Powertrain Control Module (PCM) broadcasts the engine coolant temperature data over the CCD bus. From the data message on the CCD bus, the instrument cluster microprocessor calculates coolant temperature gauge needle position.

OIL PRESSURE GAUGE

On circuit G60, the Powertrain Control Module (PCM) provides current to the oil pressure sensor. The sensor is a variable resistor. As engine oil pressure changes, the resistance in the sensor changes resulting in a change in current draw. The PCM provides ground for the sensor on circuit K167. Circuit K167 connects to cavity A4 of the PCM.

The instrument cluster microprocessor calculates engine oil pressure gauge needle position based on the oil pressure data message on the CCD bus. The Powertrain Control Module (PCM) broadcasts the data message over the CCD bus.

Circuit K167 splices to supply ground for the signals from the following:

- Battery temperature sensor
- Upstream and downstream heated oxygen sensors
 - Camshaft position sensor
 - Crankshaft position sensor
 - Intake air temperature sensor
 - Throttle position sensor
 - Engine coolant temperature sensor
 - Vehicle speed sensor

SEAT BELT WARNING LAMP

Circuit F87 feeds all the warning lamps in the instrument cluster. The microprocessor turns on and off all the warning lamps except the seat belt warning lamp, ABS warning lamp, and brake warning lamp based on inputs broadcast on the CCD bus. The microprocessor controls the ground path for these

lamps. Circuits Z2 provide ground for the microprocessor.

Circuit G10 from the instrument cluster microprocessor connects to the seat belt switch. The switch is closed when the seat belt is removed from the seat belt clasp. When the seat belt is inserted into the clasp, it opens the switch. When closed, the seat belt switch connects circuit G10 to ground on circuit Z1. If the ignition switch is in the START or RUN position, the instrument cluster microprocessor grounds the seat belt warning lamp if it senses a closed seat belt switch.

HIGH BEAM INDICATOR LAMP

When the operator selects high beam operation, the multi-function switch powers the headlamp high beams on circuit L3. Circuit L3 connects to circuit G34. Circuit G34 supplies power for the high-beam indicator lamp. Circuit Z2 provides ground for the high beam indicator lamp at the cluster.

TURN SIGNAL INDICATOR LAMPS

Circuits L60 and L61 from the turn signal/hazard flasher circuitry in the multi-function switch power the turn signal indicator lamps. Circuit L60 powers the right turn signal indicator lamp. Circuit L61 powers the left indicator lamp. Circuit Z2 provides ground for the lamps.

MANUAL TRANSMISSION UP-SHIFT LAMP

The Powertrain Control Module (PCM) broadcasts the transmission up-shift message on the CCD bus. The microprocessor in the instrument cluster monitors the CCD bus and switches the up-shift lamp on or off by supplying or removing ground from the lamp. Circuit F87 from fuse 9 in the junction block powers the lamp.

FOUR-WHEEL DRIVE (4WD) SWITCH

Circuit F87 from fuse 9 in the junction block powers the 4WD indicator lamp. Circuit G107 connects the indicator lamp to the 4WD switch. When the 4WD switch closes, it connects circuit G107 to circuit G106. Circuit G106 connects to circuit Z1. Circuit Z1 provides ground for the 4WD indicator lamp.

CHIME

The instrument cluster microprocessor sounds the audible warning chime. The chime sounds for seat belt warning and when the ignition key is in the ignition switch while the drivers door is open. The chime sounds when the ignition key is in the ON position while the drivers side seat belt is not buckled. Lastly, the chime sounds when the headlamps are ON when the ignition is OFF.

DESCRIPTION AND OPERATION (Continued)

When the parking lamps or headlamps are ON, the headlamp switch connects circuit G26 from the instrument cluster microprocessor to circuit G16. Circuit G16 connects to the drivers side door jamb switch. Circuit G16 also connects to the key-in switch. When the cluster microprocessor senses ground on circuit G26, it sounds the chime.

If the headlamps are ON, and the drivers door opens, the drivers door jamb switch connects circuit G16 to ground. When the instrument cluster senses ground on circuit G26, it sounds the chime.

If the headlamps are OFF with the key in the ignition switch while the drivers side door is open, the cluster sounds the chime. In this case, the closed key-in switch and drivers door jamb connect the cluster microprocessor to ground.

Circuit G10 connects the cluster microprocessor to the seat belt switch. When the seat belt switch closes, a path to ground is completed on circuit Z1 and the cluster momentarily sounds the chime.

TELL TALE MODULE

Circuit F87 from fuse 9 in the junction block powers the tell tale module. The warning lamps within the telltale module receive ground from the power-train control module and the MSA controller.

Circuit K185 from cavity 3 of the MSA controller provides the ground for the Diesel Wait lamp.

Circuit G86 from cavity 31 of the powertrain control module provides the ground for the Water In Fuel lam.

Circuit G154 from cavity 54 of the powertrain control module provides groung for the Low Coolant lamp.

8W-41 HORN/CIGAR LIGHTER

INDEX

			page
SCHEMATICS AND DIAGRAMS DESCRIPTION AND OPERATION			
Component	Page	Component	Page
Cigar Lighter	_	Junction Block	_
Cigar Lighter Relay		Left Horn	8W-41-2, 3
Clockspring		Overhead Module	8W-41-2, 3
Fuse 1 (JB)		Power Outlet	8W-41-2, 3
Fuse 2 (JB)		Right Horn	8W-41-2, 3
Fuse 21 (JB)		S131	8W-41-2, 3
G107	8W-41-2, 3	S208	8W-41-2, 3
Horn Relay		S314	8W-41-2, 3
Llown Cruitoh	OW 41 9 9		

8W-41 HORN/CIGAR LIGHTER

DESCRIPTION AND OPERATION

HORN

The horn system uses a single horn switch and horn relay. The horn switch is installed in the center of the steering wheel.

Circuit A7 from fuse 4 in the Power Distribution Center (PDC) feeds a junction block bus bar. The bus bar powers the coil side of the horn relay, and the contact side through fuse 21 in the junction block..

When the case grounded horn switch is depressed, circuit X3 provides ground for the coil side of the relay and the contacts CLOSE. When the contacts CLOSE, circuit X2 supplies voltage to the case grounded horns.

HELPFUL INFORMATION

- The horn switch is grounded to the steering wheel.
- Check fuse 4 in the PDC and fuse 21 in the junction block.

CIGAR LIGHTER

The cigar lighter relay powers the cigar lighter. The relay energizes when the ignition switch is in the ACCESSORY or RUN position. In the ACCESSORY or RUN position, the switch connects circuit A1 from fuse 2 in the Power Distribution Center (PDC) to circuit A31. Circuit A31 powers relay coil. Circuit Z1 provides ground for the relay coil.

When the relay energizes, its connects circuit A7 from fuse 4 in the PDC to circuit F30. Circuit F30 powers the cigar lighter.

When the operator depresses the lighter, contacts inside the lighter element close, and voltage from circuit F30 flows through the heating element to ground. Circuit Z1 provides ground for the lighter.

HELPFUL INFORMATION

Circuit Z1 also grounds the power outlet.

POWER OUTLET

Circuit A7 from FUSE 4 in the Power Distribution Center (PDC) powers circuit F38 through fuse 1 in the junction block. Circuit F38 feeds the power outlet. Circuits A7 and F38 are HOT at all times. Circuit Z1 provides ground for the power outlet.

8W-42 AIR CONDITIONING/HEATER

INDEX

	page		
SCHEMATICS AND DIAGRAMS			
Component Page	Component Page		
A/C Compressor Clutch	Fuse 21 (PDC)		
A/C Compressor Clutch Relay 8W-42-7, 8	Fuse 25 (JB)		
A/C Heater Control 8W-42-2, 3, 4, 5, 6	G106		
A/C High Pressure Switch8W-42-2, 3, 4, 8	G1088W-42-2, 3,4, 5, 6		
A/C Low Pressure Switch 8W-42-2, 3, 4, 8	HVAC Unit		
Blower Motor	Illumination Lamps 8W-42-2, 3, 4, 5, 6		
Blower Motor Relay 8W-42-2, 3, 4, 5, 6	Junction Block		
Cooling Fan Relay	Power Distribution Center8W-42-2, 3, 4, 5, 6, 7, 8		
Diesel Power Relay	Powertrain Control Module8W-42-2, 3, 4, 5, 6, 7, 8		
Fuse 5 (PDC)	Radiator Cooling Fan8W-42-7		
Fuse 6 (PDC)	S137		
Fuse 9 (PDC)	S143		
Fuse 11 (JB)	S156		
Fuse 11 (PDC)	S219		
Fuse 20 (PDC)			

— 8W-42 AIR CONDITIONING-HEATER -

XJI04206 J978W-7

J978W-7

8W-42 AIR CONDITIONING/HEATER

INDEX

page		page
GENERAL INFORMATION	A/C OPERATION	
INTRODUCTION 9	A/C OPERATION	9
DESCRIPTION AND OPERATION		
BLOWER MOTOR 9		

GENERAL INFORMATION

INTRODUCTION

The wiring diagrams in this section are divided into two sub-sections; Heater only, and A/C and Heater. When referring to the wiring diagrams, ensure that you use the correct sub-section.

DESCRIPTION AND OPERATION

BLOWER MOTOR

In the RUN position, the ignition switch connects circuit A2 from fuse 3 in the Power Distribution Center (PDC) to circuit A22. Circuit A22 feeds circuit F15 through fuse 25 in the junction block. Circuit F15 supplies voltage to coil side of the blower motor relay. Ground for the coil side of the relay is circuit Z8. When the relay contacts close they connect circuit A111 from fuse 6 of the PDC to circuit C1. Circuit C1 supplies voltage to the blower motor. Circuit C7 connects the ground side of the blower motor to the blower resistor block.

The blower switch receives ground through the control switch on circuit Z8. The blower switch connects to circuit C4. Circuit C4 connects to the blower resistor block. The blower resistor block controls blower motor speed in all positions except HIGH. The blower motor switch has four positions; LOW, MEDIUM 1, MEDIUM 2, AND HIGH.

In the LOW position, circuit C4 passes through all three resistors in the blower resistor block, to the blower motor.

In the MEDIUM 1 position, circuit C5 passes through two resistors in the blower resistor block, to the blower motor.

In the MEDIUM 2 position, circuit C6 passes through one resistor in the blower resistor block, to the blower motor.

When the blower motor switch is in the HIGH position it connects circuit C7 directly to the blower motor

Circuit Z8 provides ground for the blower motor switch. Circuit Z8 also supplies ground for the coil side of the blower motor relay.

A/C OPERATION

When the A/C-heater control switch is moved to an A/C position or the defrost position, it connects circuit C90 to ground on circuit Z8. Circuit C90 connects to cavity C23 of the Powertrain Control Module (PCM). When circuit C90 connects to ground circuit Z8, it provides the A/C select signal to the PCM.

When the A/C high pressure and low pressure switches are closed, circuit C90 connects to circuit C21, and circuit C21 connects to circuit C22. Circuit C22 connects to cavity C22 of the PCM. The PCM senses the A/C request signal on circuit C22 when the A/C-heater control switch is in defrost or an A/C position.

After sensing the A/C request signal, the PCM supplies ground for the coil side of A/C compressor clutch relay on circuit C13. Circuit C13 originates at cavity C1 of the PCM. Circuit F12 from fuse 11 in the fuse block powers the coil side of the A/C compressor clutch relay.

When the PCM grounds the A/C compressor clutch relay, the contacts close and connect circuit A17 from fuse 9 in the PDC to circuit C3. Circuit C3 supplies power to the case grounded A/C compressor clutch.

The A/C compressor clutch has a built-in diode. The diode controls the induced voltage that results from the magnetic field collapsing when the clutch disengages. The diode provides a current path to protect other components and systems.

A/C OPERATION

When the A/C-heater control switch is moved to an A/C position or the defrost position, it connects circuit C90 to ground on circuit Z8. Circuit C90 connects to cavity C28 of the Powertrain Control Module (PCM). When circuit C90 connects to ground circuit Z8, it provides the A/C input signal to the PCM.

Circuit F142 from the diesel power relay powers the coil side of the A/C compresser relay. Circuit C13 provides ground for the coil side of the A/C com-

DESCRIPTION AND OPERATION (Continued)

presser relay. When the A/C high pressure and low pressure switches are closed, they connect circuit C13 to to circuit C22 which connects to cavity 28 of the MSA Controller and provides A/C compresser relay ground.

When the MSA Controller grounds the A/C compressor clutch relay, the contacts close and connect circuit A17 from fuse 20 in the PDC to circuit C3.

Circuit C3 supplies power to the A/C compressor clutch. Circuit Z0 provides ground for the compresser clutch.

The A/C compressor clutch has a built-in diode. The diode controls the induced voltage that results from the magnetic field collapsing when the clutch disengages. The diode provides a current path to protect other components and systems.

8W-43 AIRBAG SYSTEM

INDEX

			page
SCHEMATICS AND DIAGRAMS DESCRIPTION AND OPERATION			
Component F	Page	Component	Page
Airbag Control Module 8W-43	-2, 3	G200	8W-43-2
Data Link Connector	-2, 3	G300	8W-43-3
Diagnostic Splice Block 8W-43	-2, 3	Junction Block	
Driver Airbag8W-43	-2, 3	Passenger Airbag	
Fuse 26 (JB)	-2, 3		
Fuse 27 (JB)	-2, 3		

8W-43 AIRBAG SYSTEM

INDEX

pag	ge page
DESCRIPTION AND OPERATION INTRODUCTION	AIRBAG IMPACT SENSOR

DESCRIPTION AND OPERATION

INTRODUCTION

This vehicle has a drivers airbag and a passengers airbag. The Airbag Control Module (ACM) operates both. The airbag system has one impact sensor located inside the Airbag Control Module (ACM). The ACM is secured to a bracket under the left side front seat inside the vehicle.

The ACM has two ignition switch feeds. In the START or RUN position, the ignition switch connects circuit A1 from fuse 2 in the Power Distribution Center (PDC) to circuit A21. Circuit A21 powers circuit F23 through fuse 27 in the junction block. Circuit F23 connects to the ACM.

When the ignition switch is in the RUN position, it connects circuit A2 to circuit A22. Circuit A22 powers circuit F14 through fuse 26 in the junction block. Circuit F14 connects to the ACM. Circuit Z6 provides ground for the ACM.

AIRBAG IMPACT SENSOR

The Airbag system uses a sensor internal to the Airbag Control Module (ACM) to detect impact. For information regarding operation of this sensor, refer to the appropriate group of the Service Manual.

AIRBAG SQUIB (AIRBAG IGNITER)

Circuits, R43 and R45, connect the ACM to the drivers airbag squib (igniter) after passing through the clock spring connector. Circuit R43 from cavity 2 of the ACM 4-way connector connects to the squib. Circuit R45 from cavity 1 of the ACM 4-way connector connects to the squib.

Circuits, R42 and R44, connect the ACM to the passenger airbag squib (igniter). Circuit R42 from cavity 5 of the ACM 4-way connector connects to the squib. Circuit R44 from cavity 6 of the ACM 4-way connector connects to the squib.

8W-44 INTERIOR LIGHTING

	page
SCHEMATICS AND DIAGRAMS	
DESCRIPTION AND OPERATION	
Component Page	Component Page
4wWD Switch Illumination 8W-44-2, 3	Rear Window Defogger Switch8W-44-2, 3
A/C Heater Control	Rear Wiper/Washer Switch 8W-44-2, 3
Cargo Lamp/Switch8W-44-6	Right Courtesy Lamp8W-44-5
Dome Lamp/Switch	Right Front Door Jamb Switch 8W-44-6
Front Fog Lamp Switch	Right Rear Door Jamb Switch8W-44-6
Fuse 6 (JB)	Right Vanity Lamp
Fuse 16 (PDC)8W-44-4	S132
G106	S135
G107	S157
G108	S201
G302	S207
G303	S208
G304	S214
Glove Box Lamp Switch 8W-44-5	S215
Headlamp Delay Module 8W-44-5	S300
Headlamp Switch	S304
Instrument Cluster	S309
Interior Lights On Switch 8W-44-5	S310
Junction Block	S313
Left Courtesy Lamp8W-44-5	S314
Left Front Door Jamb Switch 8W-44-6	S315
Left Rear Door Jamb Switch8W-44-6	S333
Left Vanity Lamp8W-44-4	S334
Liftgate Switch	S342
Power Distribution Center 8W-44-4	S345
PRNDL Illumination 8W-44-2, 3	S347
Radio8W-44-2, 3	Underhood Lamp
Rear Fog Lamp Switch 8W-44-2, 3	-

XJI04402 J978W-7

J978W-7 XJI04403

page

page

8W-44 INTERIOR LIGHTING

INDEX

DESCRIPTION AND OPERATION	CARGO LAMP, COURTESY LAMPS AND DOME
INTRODUCTION 7	LAMP 7
INSTRUMENT PANEL ILLUMINATION LAMPS 7	VISOR VANITY MIRROR LAMPS 7
GLOVE BOX LAMP 7	READING LAMPS 8
UNDERHOOD LAMP 7	

DESCRIPTION AND OPERATION

INTRODUCTION

Circuit M1 from the Ignition Off Draw (IOD)fuse in cavity 16 of the Power Distribution Center (PDC) supplies power to the glove box lamp, left courtesy lamp, right courtesy lamp, dome lamp, cargo lamp, and visor vanity mirror lamps. The M1 circuit also feeds the radio and instrument cluster microprocessor.

Circuit E2 supplies power for the instrument panel illumination lamps.

INSTRUMENT PANEL ILLUMINATION LAMPS

When parking lamps or headlamps are ON, the headlamp switch connects circuit F34 from fuse 17 in the Power Distribution Center (PDC) to circuit E1 through the dimmer switch circuitry. Circuit E1 feeds circuit E2 through fuse 6 in the junction block. Circuit E2 powers to the following illumination lamps:

- Instrument cluster
- A/C-Heater control lamp
- Fog lamp switch lamp
- Rear wiper switch lamp
- Rear window defogger switch lamp
- Transmission range (PRNDL) indicator lamp
- Radio

Circuit Z1 provides ground for all of the illumination lamps except the instrument cluster, radio, and A/C-Heater control. Circuit Z2 provides ground for the instrument cluster illumination lamps. Circuit Z5 provides ground for the radio, and circuit Z8 provides ground for the A/C-Heater control lamp.

GLOVE BOX LAMP

Circuit M1 from the Ignition Off Draw (IOD) fuse in cavity 16 of the Power Distribution Center (PDC) powers the glove box lamp. A case grounded switch, in series after the lamp, CLOSES when the glove box door is opened. The switch completes a path to ground on circuit Z1.

UNDERHOOD LAMP

Circuit M1 from the Ignition Off Draw (IOD) fuse in cavity 16 of the Power Distribution Center (PDC) supplies battery voltage for the underhood lamp. A mercury switch, in series after the lamp, connects the lamp to ground on circuit Z1. When the hood is raised, mercury inside the switch moves to a position where it connects circuit M1 to ground circuit Z1, illuminating the lamp.

CARGO LAMP, COURTESY LAMPS AND DOME LAMP

Circuit M1 from the Ignition Off Draw (IOD) fuse in cavity 16 of the Power Distribution Center (PDC) supplies power to the cargo lamp, courtesy lamps and dome lamp. This circuit is HOT at all times. The ground path for the lamp is provided in three different ways.

One way is through the door jamb switches. Circuit M2 connects to the door jamb switches from the courtesy and dome lamps. The switches are connected to ground circuit Z1. When a door is opened, the plunger in the switch CLOSES, completing a path to ground.

The second way is through the liftgate switch. Circuit M2 connects to circuit M4 through the liftgate switch. The liftgate switch connects to ground circuit Z1. When the lift gate opens, the plunger in the switch CLOSES, completing a path to ground.

The third ground path is through the headlamp switch. Circuit M2 is spliced in with the headlamp switch. When the operator turns the headlamp switch to the dome lamp ON position, a ground path is provided through the switch.

VISOR VANITY MIRROR LAMPS

Circuit M1 from the Ignition Off Draw (IOD) fuse in cavity 16 of the Power Distribution Center (PDC) supplies power to the vanity lamps. Circuit M1 is HOT at all times. When the vanity lamps switch closes, voltage flows to vanity mirror lamps. Circuit Z1 supplies ground for the vanity mirror lamps.

DESCRIPTION AND OPERATION (Continued)

READING LAMPS

Circuit M1 from the Ignition Off Draw (IOD) fuse in cavity 16 of the Power Distribution Center (PDC) supplies power to the reading lamps. Circuit M1 is

HOT at all times. When the operator depresses the reading lamp, the reading lamp switch closes and supplies ground on circuit Z1.

8W-47 AUDIO SYSTEM

		page
Component P	age	Component Page
Driver's Door Speaker	-3, 4	Radio8W-47-2
Driver's Door Tweeter	-3, 4	Right Rear Speaker
Fuse 6 (JB)	47-2	S135
Fuse 16 (JB)	47-2	S206
Fuse 17 (JB)	47-2	S214
Fuse 25 (PDC)	-3, 4	S215
G108	47-2	S301
G301	-3, 4	S315
Headlamp Switch	47-2	S320
Junction Block	47-2	S321
Left Rear Speaker	-3, 4	S326
Passenger's Door Speaker 8W-47-	-3, 4	S327
Passenger's Door Tweeter 8W-47-	-3, 4	S330
Power Amplifier8W-47-2,	3, 4	S331
Dower Distribution Center 9W 47.9	2 1	

8W-47 AUDIO SYSTEM

DESCRIPTION AND OPERATION

RADIO

When the ignition switch is in the ACCESSORY or RUN position, it connects circuit A1 from fuse 2 in the Power Distribution Center (PDC) to circuit A31. Circuit A31 feeds circuit X12 through fuse 15 in the junction block. Circuit X12 powers the radio.

Circuit Z5 provides ground for the radio. The antenna connects to the rear of the radio.

RADIO MEMORY

Circuit M1 from the Ignition Off Draw (IOD) fuse in cavity 16 of the Power Distribution Center (PDC) supplies power for the radio memory. Circuit M1 is HOT at all times.

The IOD fuse is removed during vehicle shipping to prevent excessive battery draw.

RADIO ILLUMINATION

When the parking lamps or headlamps are ON, circuit L7 provides the illumination signal to the radio. Also when the headlamps or parking lamps are ON, circuit E2 provides the illumination intensity signal to the radio.

SPEAKERS—STANDARD SYSTEM

The standard system uses four speakers. Circuit X53 feeds the speaker in the left front door. Circuit X55 is the return from the speaker to the radio.

Circuit X54 feeds the right front door speaker. Circuit X56 is the return from the speaker to the radio.

Circuit X51 feeds the left rear door speaker. Circuit X57 is the return from the speaker to the radio.

Circuit X52 feeds the right rear door speaker. Circuit X58 is the return from the speaker to the radio.

AMPLIFIER AND SPEAKERS—PREMIUM

A power amplifier is used on premium systems only. The amplifier is connected between the radio and the speakers.

Circuit F75 from fuse 25 in the Power Distribution Center (PDC) feeds the radio amplifier. Circuit Z5 provides ground for the amplifier. Circuit X60 from the radio supplies power to the amplifier.

From the radio, circuits X54 and X56 are the right front speaker inputs to the power amplifier; circuits X53 and X55 the left front inputs, circuits X51 and X57 the left rear inputs, and circuits X52 and X58 the right rear inputs.

From the power amplifier, circuits X80 and X82 feed the right front door and instrument panel. Circuits X85 and X87 feed the left front door and instrument panel. Circuits X92 and X94 feed the right sound bar. Circuits X91 and X93 feed the left sound bar

8W-48 REAR WINDOW DEFOGGER

page
4
Component Page
Rear Window Defogger Relay 8W-48-2, 3
Rear Window Defogger Switch 8W-48-2, 3
Right Power Mirror
S202
S208
S309
S314
S319
S329

8W-48 REAR WINDOW DEFOGGER

DESCRIPTION AND OPERATION

REAR WINDOW DEFOGGER

When the ignition switch is in the START or RUN position, it connects circuit A1 from fuse 2 in the Power Distribution Center (PDC) to circuit A22. Circuit A22 powers the coil side of the rear window defogger relay through fuse 12 in the junction block..

When the operator presses the rear window defogger switch, the switch contacts momentarily CLOSE. When closed, the switch contacts connect circuit C80 from the instrument cluster microprocessor to ground on circuit Z1. After it senses ground on circuit C80, the microprocessor energizes the rear window defog-

ger relay by providing ground for the relay coil on circuit C81.

When the rear window defogger relay energizes, it connects circuit A4 from PDC fuse 10 to circuit C15. Circuit C15 supplies power the rear window defogger grid. Circuit Z1 provides ground for the rear window defogger grid.

HELPFUL INFORMATION

- Check for broken grid lines on the window.
- Check for a broken bus bar or disconnected leads at the rear window.
- Check for a good ground at the rear window defogger grid.

8W-49 OVERHEAD CONSOLE

			page
SCHEMATICS AND DIAGRAMS DESCRIPTION AND OPERATION			
Component	Page	Component	Page
Ambient Temperature Sensor (4.0L)	8W-49-2	S208	8W-49-2
Compass	8W-49-2,3	S216	8W-49-2
Data Link Connector	8W-49-3	S314	8W-49-2
Diagnostic Splice Block	8W-49-3	S342	8W-49-2
Fuse 9 (JB)	8W-49-2	S343	8W-49-2
Fuse 16 (PDC)	8W-49-3	S344	8W-49-3
G107	8W-49-2	S345	8W-49-3
G108	8W-49-2	S346	8W-49-3
Junction Block	8W-49-2,3	S347	
Power Distribution Center	8W-49-3		
~.~~			

XJI04902 J978W-7

8W-49 OVERHEAD CONSOLE

DESCRIPTION AND OPERATION

INTRODUCTION

When the ignition switch is in the START or RUN position, it connects circuit A1 from fuse 2 in the Power Distribution Center (PDC) to circuit A21. Circuit A21 supplies power to circuit F87 through fuse 9 in the junction block. Circuit F87 supplies power to the overhead console.

To allow the overhead console to communicate with other modules and controllers the CCD Bus is used.

The circuits involved are D1 for CCD (+), and D2 for CCD (-).

Circuits Z1 and Z2 provides ground for the overhead console. Circuit M2 from the door jamb switches also connects to the overhead console.

AMBIENT TEMPERATURE SENSOR

The ambient temperature sensor is a variable resistor. Circuit G31 supplies voltage from the overhead console to the sensor. Circuit G32 is the signal return from the sensor to the overhead console.

page

8W-50 FRONT LIGHTING

Component Page	Component	Page
Beam Select Switch8W-50-2, 3, 4, 9	Left Headlamp	8W-50-4
Compass	Left Headlamp Leveling Motor	8W-50-9
Controller Anti-Lock Brake Relay 8W-50-8	Left Position Lamp	8W-50-5, 6
Fog Lamp Relay	Left Repeater Lamp	8W-50-5, 6
Front Fog Lamp Switch 8W-50-7, 8	Power Distribution Center	.8W-50-2, 3, 7, 8
Fuse 3 (JB)	Rear Fog Lamp Relay	8W-50-3
Fuse 4 (JB)	Right Fog Lamp	8W-50-7, 8
Fuse 5 (JB)	Right Front Turn Signal Lamp	8W-50-5, 6
Fuse 7 (JB)	Right Headlamp	
Fuse 7 (PDC)	Right Headlamp Leveling Motor	
Fuse 9 (JB)	Right Position Lamp	
Fuse 16 (JB)	Right Repeater Lamp	
Fuse 23 (JB)	S100	
Fuse 24 (PDC)	S10287	
G106	S103	<i>N</i> -50-4, 5, 6, 7, 8
G107	S105	•
G108	S106	•
Headlamp Delay Module 8W-50-2, 3	S133	•
Headlamp Leveling Switch 8W-50-4, 9	S206	
Headlamp Switch	S207	8W-50-2, 3
Illumination Lamp8W-50-7, 8	S209	,
Instrument Cluster	S212	
Junction Block	S213	
Left Fog Lamp	S216	
Left Front Turn Signal Lamn 8W-50-5 6	Turn Signal/Hazard Switch	8W-50-5 6

XJI05005

J978W-7

8W-50 FRONT LIGHTING

INDEX

page	page
	HEADLAMP DELAY MODULE

DESCRIPTION AND OPERATION

PARKING LAMPS

Circuit F34 from fuse 17 in the Power Distribution Center (PDC) connects to circuit L7 through the headlamp switch. Circuit L7 powers circuits L77 and L78 through fuses 7 and 23 in the junction block. Circuit L78 powers the right park and marker lamps. Circuit L77 powers the left park and marker lamps.

HELPFUL INFORMATION

- Circuits L77 and L78 also power the rear tail lamps.
- Circuit L77 powers the coil side of the fog lamp relay.
- Circuit L77 provides the illumination lamp signal to the radio.
 - Circuit L78 feeds the license plate lamp.
- Circuit Z1 provides ground for the parking lamps, marker lamps, rear tail lamps, and license lamp.

HEADLAMPS

HEADLAMP SWITCH IN ON POSITION

The headlamp switch has three positions: ON, PARK (parking lamps) and OFF. In the ON position, the headlamp switch connects circuit A3 from fuse 7 in the Power Distribution Center (PDC) to circuit L2. Circuit L2 connects to circuit L4 through the dimmer switch circuitry in the multi-function switch. Circuit L4 connects to circuits L43 and L44 through fuses 4 and 5 in the junction block. Circuits L43 and L44 power the low beams of the headlamps.

When the operator selects high beam operation, the multi-function switch connects circuit L2 to circuit L3. Circuit L3connects to circuits L33 and L34 through fuses 3 and 16 in the junction block. Circuits L33 and L34 power high beam operation. Circuit Z1 provides ground for the headlamps.

HEADLAMP SWITCH IN OFF OR PARKING LAMP POSITION

The headlamps switch contains an internal circuit breaker that connects circuit A3 to circuit L20. Cir-

cuit L20 connects to the multi-function switch. When the operator momentarily flashes the high beams of the headlamps with the turn signal lever, circuit L20 connects to circuit L3. Circuit L3 feeds the high beams of the headlamps.

HEADLAMP GROUND

Circuit Z1 provides ground for both right and left headlamps.

HEADLAMP LEVELING

When the headlamp switch is in the ON or Headlamp position, it connects circuit A3 from fuse 7 in the Power Distribution Center (PDC) to circuit L2. Circuit L2 connects to circuit L4 through the multifunction switch. Circuit L4 feeds the headlamp leveling switch. Circuit Z15 grounds the switch.

HEADLAMP DELAY MODULE

When the operator turns OFF the ignition switch and then turns OFF the headlamp switch, the headlamp delay module powers the headlamps for approximately 45 seconds.

When the ignition switch is in the START or RUN position, circuit A22 powers circuit F87 through fuse 9 in the junction block. Circuit F87 supplies the IGNITION ON/OFF signal to the headlamp delay module. Circuit Z1 provides ground for the module.

When the headlamp delay module activates, it connects circuit A3 from fuse 7 in the Power Distribution Center (PDC) to circuit L2. Circuit L2 powers the headlamps through the multifunction switch.

FOG LAMPS

WITHOUT DAYTIME RUNNING LAMPS

The fog lamps are controlled by the fog lamp switch and fog lamp relay. The fog lamps operate only when the headlamp switch is in the PARK or ON position, and the operator has selected low-beam

DESCRIPTION AND OPERATION (Continued)

operation. When the headlamps are in high-beam operation, the fog lamps will not operate.

Circuit F61 from fuse 24 in the Power Distribution Center (PDC) powers the contact side of fog lamp relay. Circuit F61 connects to circuit L139 through the contacts of the fog lamp relay. Circuit L139 connects to circuit L39 through the contacts of the fog lamp switch. When the contacts in the fog lamp relay and the fog lamp switch are closed, circuit L39 feeds the fog lamps. Circuit Z1 provides ground for the fog lamps.

Circuit E2 provides voltage for the illumination lamp in the fog lamp switch.

WITH DAYTIME RUNNING LAMPS

The fog lamps are controlled by the fog lamp switch and two fog lamp relays. The fog lamps operate only when the headlamp switch is in the PARK or ON position, and the operator has selected low-beam operation. When the headlamps are in high-beam operation, the fog lamps will not operate.

Circuit F61 from fuse 24 in the Power Distribution Center (PDC) powers the contact side of fog lamp relay number one (1).

When the headlamp switch is in the PARK or ON position, circuit L77 from the switch supplies voltage to the coil side of relay number one (1). Circuit Z1 provides ground for the coil side of relay number one (1). When the contacts in relay number one are closed circuit F61 is connected to circuit L34. Circuit L34 connects to circuit L139 through the contacts in fog lamp relay number two (2). When the fog lamp switch closes, it connects circuit L139 to circuit L39. When the contacts in the fog lamp relays and the fog lamp switch are closed, circuit L39 feeds the fog lamps. Circuit Z1 provides ground for the fog lamps.

If the high beam lamps are ON, circuit G34 energizes fog lamp relay number two (2). When fog lamp relay number two (2) energizes, its contacts open and disconnect circuits L34 and L139. When circuits L34 and L139 are disconnected, power is not supplied to the fog lamps.

Circuit E2 provides voltage for the illumination lamp in the fog lamp switch.

HELPFUL INFORMATION

• The fog lamp switch contains a light emitting diode (LED) that illuminates during fog lamp operation.

DAYTIME RUNNING LAMP (DRL) MODULE

On vehicles built for sale in Canada, the headlamps operate when the ignition switch is in the RUN position.

When the ignition switch is in the START or RUN position, circuit A1 from fuse 2 in the Power Distribution Center (PDC) connects to circuit A21. Circuit A21 powers circuit F12 through fuse 11 in the junction block. Circuit F12 splices to supply power to the DRL module.

The headlamp switch connects circuit A3 from fuse 7 in the PDC to circuit L20. Circuits A3 and L20 are HOT at all times. Circuit L20 connects to the headlamp dimmer switch circuitry in the multi-function switch and to the DRL module.

The DRL module receives the vehicle speed sensor input from circuit G7. Circuit G34 from the DRL module provides power for the high beam indicator lamp in the instrument cluster.

When the headlamp switch is OFF and the ignition switch is in the START or RUN position, the DRL module powers the headlamps on circuit L3 at reduced intensity. When the headlamps are ON, the dimmer switch in the multi-function switch powers the low beams on circuit L4.

Circuit L3 feeds the high beams of the headlamps. When the operator flashes the headlamps with the stalk of the multi-function switch, the DRL senses voltage on circuit L3.

Circuit Z1 provides ground for the DRL module.

8W-51 REAR LIGHTING

	page
SCHEMATICS AND DIAGRAMS	
DESCRIPTION AND OPERATION	
Component Page	Component Page
Back-Up Switch8W-51-5	Right Tail/Stop Lamp
Beam Select Switch8W-51-6	Right Turn Signal Lamp 8W-51-4
Center High Mounted Stop Lamp 8W-51-2, 3	S116
Fuse 7 (JB)	S130
Fuse 11 (JB)	S142
Fuse 17 (PDC)8W-51-6	S203
Fuse 19 (PDC)8W-51-3	S206
Fuse 22 (PDC)	S218
Fuse 23 (JB)	S220
G107	S302
G302	S303
G303	S308
G304	S3098W-51-2, 3, 4, 5, 6
Headlamp Delay Module 8W-51-6	S3108W-51-2, 3, 4, 5, 6
Headlamp Switch8W-51-2, 3, 6	S311
Illumination Lamp8W-51-6	S312
Junction Block	S333
Left Back-Up Lamp8W-51-5	S334
Left Rear Fog Lamp8W-51-6	S337
Left Tail/Stop Lamp	S340
Left Turn Signal Lamp 8W-51-4	S3418W-51-2, 3, 4, 5, 6
License Lamp	S3488W-51-2, 3, 4, 5, 6
Power Distribution Center 8W-51-2, 3, 6	Stop Lamp Switch
Rear Defogger On Indicator 8W-51-6	Trailer Tow Connector 8W-51-2, 3, 4, 5
Rear Fog Lamp Relay 8W-51-6	Transmission Control Module 8W-51-5
Rear Fog Lamp Switch	Turn Signal/Hazard Switch8W-51-4
Right Back-Up Lamp	
Right Rear Fog Lamp	

J978W-7

J978W-7

8W-51 REAR LIGHTING

DESCRIPTION AND OPERATION

TAIL LAMPS AND REAR LICENSE PLATE LAMPS

Circuit F34 from fuse 17 in the Power Distribution Center (PDC) connects to circuit L7 through the headlamp switch. Circuit L7 powers circuits L77 and L78 through fuses 7 and 23 in the junction block. Circuit L78 powers the right tail lamps, the right park and marker lamps, and the license lamp. Circuit L77 powers the left tail lamps, and the left left park and marker lamps.

GROUND CIRCUIT

Circuit Z1 provides a ground for the tail lamps, parking lamps, marker lamps, and rear license plate lamp.

STOP LAMPS AND CHMSL LAMPS

Circuit F32 from fuse 22 in the Power Distribution Center (PDC). Circuit F32 connects to the stop lamp switch.

When the operator presses the brake pedal, the stop lamp switch CLOSES and connects circuit F32 to circuit L50. Circuit L50 connects to the stop lamps and Center High Mounted Stop Lamps (CHMSL). Circuit Z1 provides a ground for the CHMSL lamps and stop lamps.

HELPFUL INFORMATION

- Check fuse 22 in the PDC.
- Check for continuity across the stop lamp switch when it is closed.

REAR FOG LAMPS

The rear fog lamps are powered by the rear fog lamp relay on circuit L38. Circuit L2 supplies voltage to the coil side of the relay (only when the headlamps operate on Low beam. The relay coil ground is supplied by circuit Z!.

lWhen the relay contacts close they connect circuit F34 and L38. Circuit L38 feeds the right and left rear fog lamps.

BACK-UP LAMPS

In the RUN position, the ignition switch connects circuit A1 from fuse 2 in the Power Distribution Center (PDC) to circuit A21. Circuit A21 feeds circuit F12 through fuse 11 in the junction block.

Circuit F12 supplies power to the back-up lamp switch. On automatic transmission equipped vehicles, the back-up lamp switch circuitry is part of the PARK/NEUTRAL position switch. When the operator puts the transmission in REVERSE, the back-up lamp switch connects circuit F12 to circuit L10. Circuit L10 feeds the back-up lamps. Circuit Z1 provides ground for the back-up lamps.

- Check fuse 2 in the PDC and fuse 11 in the junction block.
- Check for continuity across the back-up lamp switch when it is closed.

8W-52 TURN SIGNALS

	page
SCHEMATICS AND DIAGRAMS	
Component Page	Component Page
Combination Flasher8W-52-2, 3	Right Repeater Lamp
Fuse 12 (JB)	Right Turn Signal Lamp 8W-52-3
Fuse 19 (PDC)	S100
G107	S105
Instrument Cluster	S208
Junction Block	S209
Left Front Turn Signal Lamp 8W-52-2	S212
Left Repeater Lamp8W-52-2	S312
Left Turn Signal Lamp	Turn Signal/Hazard Switch

XJI05202

8W-52 TURN SIGNALS

DESCRIPTION AND OPERATION

TURN SIGNALS

When the operator selects the right turn signal, the multi-function switch connects power from circuit L55 to circuit L60 and L62. Circuit L60 feeds the right front turn signal lamps and the right turn signal indicator lamp on the instrument cluster. Circuit L62 feeds the right rear turn signal lamp.

When the operator selects the left turn signal, the multi-function switch connects power from circuit L55 to circuit L61 and L63. Circuit L61 feeds the left front turn signal lamp and the left turn signal indicator lamp on the instrument cluster. Circuit L63 feeds the left rear turn signal lamp.

Circuit Z1 provides ground for the turn signal lamps.

HELPFUL INFORMATION

- The turn signal lamps are the same lamps used for the hazard flasher.
- Check fuse 19 in the PDC if the turn signals do not operate.

COMBINATION FLASHER

In the ACCESSORY or RUN position, the ignition switch connects circuit A2 from fuse 3 in the Power Distribution Center (PDC) to circuit A22. Circuit A22 feeds circuit L5 through fuse 12 in the junction block.

Circuit L5 powers the combination flasher for the turn signals. Circuit L9 from fuse 19 in the PDC supplies battery voltage to the combination flasher for the hazard lamps. Circuit Z1 provides ground for the combination flasher.

Circuit L6 from the flasher connects to the multifunction switch to supply power to the turn signals on circuit L55. The multi-function switch supplies voltage to the turn signals and side marker lamps on circuits L60 and L61.

Circuit L12 from the flasher connects to the multifunction switch to supply power to the hazard flasher circuits. The multi-function switch connects to the turn signal and side marker lamps on circuits L62 and L63.

HAZARD FLASHERS

When the operator selects the hazard flashers, the multi-function switch connects circuit L12 from the combination flasher to circuits L60, L61, L62 and L63

Circuits L60 and L61feed the front turn signal lamps and the turn signal indicator lamps on the instrument cluster.

Circuits L62 and L63 feed the rear turn signal lamps $\,$

Circuit Z1 provides ground for the hazard flasher lamps.

- The hazard flasher lamps are the same lamps used for the turn signals.
- Circuit L9 powers circuit L12 through the combination flasher.

8W-53 WIPERS

	page
SCHEMATICS AND DIAGRAMS	
DESCRIPTION AND OPERATION	
Component Page	Component Page
Circuit Breaker 30 (JB)8W-53-2	S132
Front Wiper Motor	S141
Fuse 22 (JB)	S205
G106	S207
G107	S208
G108	S333
G304	S334
Junction Block	Windshield Washer Pump Motor 8W-53-2, 3
Rear Washer Pump Motor 8W-53-2, 3	Windshield Wiper/Washer Switch 8W-53-2
Rear Wiper Motor	•
Rear Wiper/Washer Switch 8W-53-3	

8W-53 WIPERS

DESCRIPTION AND OPERATION

INTERMITTENT WIPERS

A circuit breaker powers the intermittent wiper system. The intermittent wiper system operates at either LOW or HIGH or DELAY speeds.

In the ACCESSORY or RUN position, the ignition switch connects circuit A1 from fuse 8 in the Power Distribution Center (PDC) with circuit A48. Circuit A48 supplies voltage to circuit F86 through the circuit breaker near the left kick panel.

Circuit F86 supplies power to the front wiper motor and the intermittent wiper control module. Circuit Z1 provides ground for the front wiper motor and the intermittent wiper control module.

When the operator moves the wiper switch to the LOW position, battery voltage passes through the switch to circuit V3. Circuit V3 feeds the wiper motor low speed brushes. If the operator selects wiper HIGH speed operation, the wiper switch passes current to circuit V4. Circuit V4 feeds the wiper motor high speed brushes.

The DELAY portion of the wiper switch contains a variable resistor. The variable resistor connects to the intermittent wiper module on circuit V51. The amount of delay selected by the operator determines the voltage drop through the resistor and the voltage level received by the intermittent wiper module.

After the intermittent wiper control module determines the amount of delay selected, it cycles the wipers by periodically energizing circuit V3. Circuit V3 powers the wiper motor low speed brushes.

As the windshield wiper motor turns, the park switch, internal to the motor, moves from its DOWN position to the UP position. When the wiper switch is turned OFF, the V55 circuit prevents the wipers from stopping in any position but park.

The windshield washer uses a pump motor located inside the windshield washer fluid reservoir. When the washer switch is pressed, circuit V11 provides an input to the intermittent wiper module. The module powers the pump motor on circuit V10. Circuit Z1 provides ground for the pump motor.

HELPFUL INFORMATION

Circuit Z1 also provides ground for the rear wiper washer pump.

REAR WIPER SYSTEM

In the RUN position, the ignition switch connects circuit A1 from fuse 8 in the PDC with circuit A38. Circuit A38 connects to a fuse block bus bar that powers circuit V15 through the fuse in cavity 1. Circuit V15 supplies power to the rear wiper switch.

In the WIPE or WASH positions, the rear wiper switch supplies voltage to the wiper motor on circuit V13. Circuit Z1 provides ground for the wiper motor.

The rear windshield washer uses a pump motor located inside the windshield washer fluid reservoir. When the rear wiper switch is in the WASH position, power is supplied through the wiper switch to the rear wiper on circuit V13 and the rear washer pump motor on circuit V20. Circuit Z1 provides ground for the rear washer pump motor.

As the rear wiper motor turns, the park switch, internal to the motor, moves from the RUN position to the PARK position. When the wiper switch is turned OFF, the F20 circuit prevents the wipers from stopping in any position but park.

8W-54 TRAILER TOW

	page
Component Page	Component Page
Electric Brake	S303
Fuse 7 (JB)	S309
Fuse 20 (JB)	S311
G302	S312
Headlamp Switch	S335
Junction Block	S336
Left Back-Up Lamp	S337
Left Tail/Stop Lamp8W-54-3	S338
Left Turn Relay	S339
Left Turn Signal Lamp	S340
Right Turn Relay	Trailer Tow Connector
S206	Turn Signal/Hazard Switch8W-54-3
S302 8W-54-3	

8W-54 TRAILER TOW

DESCRIPTION AND OPERATION

TRAILER TOW

The factory installed trailer tow system in this vehicle uses two relays with the trailer tow wiring connector located below the rear bumper.

Battery voltage for the trailer tow system is supplied on circuit A7. This circuit is HOT at all times and connects to circuitr A6 through fuse 20 in the junction block.

RIGHT TURN RELAY

Circuit A6 is the feed for the contact side of the relay. When the contacts are closed they connect circuit A6 and circuit L74. Circuit L74 supplies voltage to the trailer connecter for the right turn and stop lamps.

Power and ground for the coil sides of the relay are supplied by circuits L50 and L62. When the brakes are depressed circuit L50 supplies voltage to the coil side of the relay through the stop lamp switch. When the stop lamp switch is open circuit L50 supplies ground to the coil side of the relay.

HELPFUL INFORMATION

Circuit L62 supplies voltage to the right rear turn signal lamps and the coil side of the relay, through the combination flasher.

LEFT TURN RELAY

Circuit A6 is the feed for the contact side of the relay. When the contacts are closed they connect circuit A6 and circuit L73. Circuit L73 supplies voltage to the trailer connecter for the left turn and stop lamps.

Power and ground for the coil sides of the relay are supplied by circuits L50 and L63. When the brakes are depressed circuit L50 supplies voltage to the coil side of the relay through the stop lamp switch. When the stop lamp switch is open circuit L50 supplies ground to the coil side of the relay.

HELPFUL INFORMATION

Circuit L63 supplies voltage to the right rear turn signal lamps and the coil side of the relay, through the combination flasher.

- Circuit L1 supplies voltage for the trailer back-up lamps.
- Circuit L77 supplies voltage for the running lamps.
 - Circuit A6 supplies trailer battery voltage.

8W-60 POWER WINDOWS

	page
Component Page	Component Page
Circuit Breaker 28 (JB)8W-60-2, 4	Right Front Power Lock/Window
G107	Switch/Module8W-60-2
G302	Right Front Window Motor 8W-60-2, 4
Junction Block	Right Rear Window Motor8W-60-3, 5
Left Front Power Lock/Window Switch8W-60-2, 3	Right Rear Window Switch 8W-60-2, 3, 4, 5
Left Front Power Lock/Window	S208
Switch/Module	S305
Left Front Window Motor 8W-60-2, 4	S309
Left Rear Window Motor 8W-60-3, 5	S319
Left Rear Window Switch 8W-60-2, 3, 4, 5	S329
Right Front Power Lock/Window Switch8W-60-4. 5	

XJI06004

8W-60 POWER WINDOWS

INDEX

page	page
DESCRIPTION AND OPERATION	HELPFUL INFORMATION
POWER WINDOW OPERATION 6	

DESCRIPTION AND OPERATION

POWER WINDOW OPERATION

When the ignition switch is in the RUN or ACCES-SORY position it connects circuit A1 from fuse 2 in the Power Distribution Center (PDC) to circuit A31. Circuit A31 is connected to circuit F81 through a 20 amp. circuit breaker located in cavity 28 of the junction block. The power window system is powered by circuit F81.

Circuit F81 connects to the master window switch. Circuit Z1 provides ground for the power windows.

A LOCK-OUT feature is provided on the driver's door window switch. When this feature is engaged the other windows in the system will not operate.

LEFT FRONT WINDOW OPERATION

When the operator selects window DOWN operation, power is supplied on the F81 circuit through the switch to circuit Q21. Circuit Q21 connects the switch to the power window motor. Ground for the motor is supplied on the Q11 circuit back to the switch. A bus bar, internal to the switch, connects the Q11 circuit to the Z1 ground circuit.

For window UP operation the circuits are reversed. Circuit Q11 is the feed, and circuit Q21 is the ground.

RIGHT FRONT WINDOW OPERATION

When the DRIVER selects window DOWN operation, power is supplied on the F81 circuit through the switch to circuit Q26. Circuit Q26 connects the drivers door switch to the right front door switch. Power is passed through this switch to circuit Q22. The Q22 circuit then goes to the right front window motor.

Ground for the window motor is supplied on the Q12 circuit back to the right front door switch. Circuity internal to the switch then passes the ground to circuit Q16. Circuit Q16 connects the right front door switch to the master switch. A bus bar, internal to the switch, connects the Q16 circuit to the Z1 ground circuit.

For window UP operation the circuits are reversed. Circuits Q16 and Q12 are the feeds, and circuits Q22 and Q26 are the grounds.

If the switch is being operated from the RIGHT FRONT door, and the operator is requesting window

DOWN operation, power is supplied on the Q1 circuit from the driver's master switch circuit through the switch to the Q22 circuit.

Ground for the motor is supplied on the Q12 circuit through the switch and back to the master switch on circuit Q16. A bus bar, internal to the switch, connects the Q16 circuit to the Z1 ground circuit.

For window UP operation, the circuits are reversed. Circuit Q12 is the power and circuit Q22 is the ground.

LEFT REAR WINDOW

When the DRIVER selects window DOWN operation, power is supplied on the F81 circuit through the switch to circuit Q27. Circuit Q27 connects the drivers door switch to the left rear door switch. Power is passed through this switch to circuit Q23. The Q23 circuit then goes to the left rear window motor.

Ground for the window motor is supplied on the Q13 circuit back to the left rear door switch. Circuity internal to the switch then passes the ground to circuit Q17. Circuit Q17 connects the right front door switch to the master switch. A bus bar, internal to the switch, connects the Q17 circuit to the Z1 ground circuit.

For window UP operation the circuits are reversed. Circuits Q17 and Q13 are the feeds, and circuits Q23 and Q27 are the grounds.

If the switch is being operated from the LEFT REAR door, and the operator is requesting window DOWN operation, power is supplied on the Q1 circuit from the driver's master switch circuit through the switch to the Q23 circuit.

Ground for the motor is supplied on the Q13 circuit through the switch and back to the master switch on circuit Q17. A bus bar, internal to the switch, connects the Q17 circuit to the Z1 ground circuit.

For window UP operation, the circuits are reversed. Circuit Q13 is the power and circuit Q23 is the ground.

RIGHT REAR WINDOW

When the DRIVER selects window DOWN operation, power is supplied on the F81 circuit through the

DESCRIPTION AND OPERATION (Continued)

switch to circuit Q28. Circuit Q28 connects the drivers door switch to the right rear door switch. Power is passed through this switch to circuit Q24. The Q24 circuit then goes to the right rear window motor.

Ground for the window motor is supplied on the Q14 circuit back to the right rear door switch. Circuity internal to the switch then passes the ground to circuit Q18. Circuit Q18 connects the right rear door switch to the master switch. A bus bar, internal to the switch, connects the Q18 circuit to the Z1 ground circuit.

For window UP operation the circuits are reversed. Circuits Q18 and Q14 are the feeds, and circuits Q28 and Q24 are the grounds.

If the switch is being operated from the RIGHT REAR door, and the operator is requesting window DOWN operation, power is supplied on the Q1 circuit from the driver's master switch circuit through the switch to the Q24 circuit.

Ground for the motor is supplied on the Q14 circuit through the switch and back to the master switch on circuit Q18. A bus bar, internal to the switch, connects the Q18 circuit to the Z1 ground circuit.

For window UP operation, the circuits are reversed. Circuit Q14 is the power and circuit Q24 is the ground.

- When the ignition switch is in the RUN position, it connects circuit A1 from fuse 8 in the Power Distribution Center (PDC) to circuit A38.
- Refer to the appropriate group of the Service Manual for test procedures.

8W-61 POWER DOOR LOCKS

	page
Component Page	Component Page
Circuit Breaker 28 (JB)8W-61-2, 3	Right Front Power Lock/Window
Fuse 15 (JB)	Switch/Module
G107	Right Rear Door Lock Motor 8W-61-5, 6
G302	S200
G303	S208
Headlamp Switch	S210
Ignition Switch	S306
Instrument Cluster	S307
Junction Block	S309
Left Front Door Jamb Switch 8W-61-4	S310
Left Front Door Lock Motor8W-61-5, 6	S314
Left Front Power Lock/Window Switch 8W-61-2	S316
Left Front Power Lock/Window	S317
Switch/Module	S319
Left Rear Door Lock Motor 8W-61-5, 6	S322
Lift Gate Door Lock Motor 8W-61-5, 6	S323
Overhead Module	S325
Right Front Door Jamb Switch 8W-61-4	S329
Right Front Door Lock Motor 8W-61-5, 6	
Right Front Power Lock/Window Switch 8W-61-3	

J978W-7

8W-61 POWER DOOR LOCKS

DESCRIPTION AND OPERATION

INTRODUCTION

The Passenger Door Module and the left door lock switch, control the door locks, keyless entry, and illuminated entry systems.

POWER DOOR LOCK OPERATION

Circuit A7 from fuse 4 in the Power Distribution Center (PDC) supplies voltage to circuit F35 through fuse 15 in the junction block. Circuit F35 supplies voltage to the passenger door lock module.

When the ignition switch is in the ACCESSORY or RUN position it connects circuit A1 from fuse 2 in the Power Distribution Center (PDC) to circuit A31. Circuit A31 supplies power to circuit F81 through a circuit breaker in cavity 28 of the junction block.

DOOR LOCK SWITCH OPERATION—LOCK POSITION

When either door lock switch is put in the LOCK position, the switch connects voltage from circuit F35 to circuit P35. Circuit P35 provides the LOCK input to the door lock module. After receiving the LOCK input, the door lock module supplies power to the door locks on circuit P33. Circuit P33 is spliced to provide power for all the door lock motors.

In the LOCK position, ground for the door lock motors is on circuit P34, through the door lock module to ground on circuit Z1.

DOOR LOCK SWITCH OPERATION—UNLOCK POSITION

When either door lock switch is put in the UNLOCK position, the switch connects voltage from circuit F35 to circuit P36. Circuit P36 provides the UNLOCK input to the door lock module. After receiving the UNLOCK input, the door lock module supplies power to the door locks on circuit P34. Circuit P34 is spliced to provide power to all the door lock motors.

In the UNLOCK position, ground for the door lock motors is on circuit P33, through the door lock module to ground on circuit Z1.

REMOTE KEYLESS ENTRY AND ILLUMINATED FNTRY

The PDM controls the remote keyless entry and illuminated entry systems. When the module receives input from the transmitter, it operates the door locks and provides ground for courtesy lamps.

GROUND CIRCUIT

Circuit Z1 provides ground for the door lock module and drivers door lock switch..

HELPEUL INFORMATION

• Each door lock motor has an internal circuit breaker.

8W-62 POWER MIRRORS

INDEX

			page
SCHEMATICS AND DIAGRAMS DESCRIPTION AND OPERATION			
Component P	age	Component	Page
Fuse 16 (PDC)	2, 4	S208	
G107	4, 5	S214	
G302	2, 3	S300	
Junction Block	3, 4	S309	
Left Front Power Lock/Window Switch8W-62-	2, 3	S318	
Left Power Mirror	3, 5	S319	
Power Distribution Center8W-62-	2, 4	S328	8W-62-2, 3, 5
Right Front Power Lock/Window Switch8W-62-	4, 5	S329	8W-62-2, 3
Right Power Mirror		Underhood Lamp	8W-62-2, 4
\$135 \$W_62		1	,

J978W-7

XJI06204 J978W-7

8W-62 POWER MIRRORS

DESCRIPTION AND OPERATION

POWER MIRRORS

Two power mirror systems are available. One power mirror system is used if the vehicle is also equipped with power windows and locks, and another system is used if the vehicle is not equipped with power windows and locks.

Each power mirror system uses a different switch and circuity; however, on both systems have a single switch that operates both the left and right power mirrors. Each mirror has two motors; a LEFT/RIGHT motor and a UP/DOWN motor. The motors switch polarity to allow mirror adjustment.

Battery voltage for each system is supplied on circuit M1. This is the Ignition-Off Draw (IOD) circuit and protected by a 15 amp fuse located in the junction block.

Circuit Z1 connects to the power mirror switch and supplies ground for the power mirror system.

RIGHT POWER MIRROR OPERATION

WITH POWER WINDOWS AND LOCKS

In the RIGHT position, the power mirror switch supplies power to the right mirror LEFT/RIGHT motor on circuit P74 when a RIGHTWARD adjustment is made. Circuit P76 provides the ground path the for RIGHTWARD adjustments.

When the operator makes a LEFTWARD adjustment, polarity reverses. For LEFTWARD adjustments, the switch supplies battery voltage the right mirror LEFT/RIGHT motor on circuit P76. Circuit P74 supplies ground for LEFTWARD adjustments.

During UPWARD adjustments, the switch supplies voltage to the right mirror UP/DOWN motor on circuit P72. Circuit P76 supplies ground during UPWARD adjustments.

For DOWNWARD adjustments, the polarity is reversed, the switch powers the right mirror UP/DOWN motor on circuit P76. Circuit P72 supplies the ground path.

WITHOUT POWER WINDOWS AND LOCKS

In the RIGHT position, the power mirror switch supplies power to the right mirror LEFT/RIGHT motor on circuit P91 when a RIGHTWARD adjustment is made. Circuit P74 provides the ground path the for RIGHTWARD adjustments.

When the operator makes a LEFTWARD adjustment, polarity reverses. For LEFTWARD adjustments, the switch supplies battery voltage the right mirror LEFT/RIGHT motor on circuit P74. Circuit P91 supplies ground for LEFTWARD adjustments.

During UPWARD adjustments, the switch supplies voltage to the right mirror UP/DOWN motor on circuit P72. Circuit P90 supplies ground during UPWARD adjustments.

For DOWNWARD adjustments, the polarity is reversed, the switch powers the right mirror UP/DOWN motor on circuit P90. Circuit P72 supplies the ground path.

LEFT POWER MIRROR OPERATION

WITH POWER WINDOWS AND LOCKS

In the LEFT position, the power mirror switch supplies power to the left mirror LEFT/RIGHT motor on circuit P75 when a RIGHTWARD adjustment is made. Circuit P76 provides the ground path for the RIGHTWARD adjustments.

When the operator makes LEFTWARD adjustment, polarity reverses. For LEFTWARD adjustments, the switch supplies battery voltage to the left mirror LEFT/RIGHT motor on circuit P76. Circuit P75 supplies ground for LEFTWARD adjustments.

During UPWARD adjustments, the switch supplies voltage to the left mirror UP/DOWN motor on circuit P71. Circuit P76 supplies ground during UPWARD adjustments.

For DOWNWARD adjustments, the polarity is reversed, the switch powers the left mirror UP/DOWN motor on circuit P76. Circuit P71 supplies the ground path.

WITHOUT POWER WINDOWS AND LOCKS

In the LEFT position, the power mirror switch supplies power to the left mirror LEFT/RIGHT motor on circuit P91 when a RIGHTWARD adjustment is made. Circuit P75 provides the ground path the for RIGHTWARD adjustments.

When the operator makes LEFTWARD adjustment, polarity reverses. For LEFTWARD adjustments, the switch supplies battery voltage to the left mirror LEFT/RIGHT motor on circuit P775. Circuit P91 supplies ground for LEFTWARD adjustments.

During UPWARD adjustments, the switch supplies voltage to the left mirror UP/DOWN motor on circuit P71. Circuit P90 supplies ground during UPWARD adjustments.

For DOWNWARD adjustments, the polarity is reversed, the switch powers the left mirror UP/DOWN motor on circuit P90. Circuit P71 supplies the ground path.

HELPFUL INFORMATION

• Check the IOD fuse in cavity 16 of the junction block

DESCRIPTION AND OPERATION (Continued)

- Circuit M1 supplies voltage to the radio memory, lamp, underhood lamp, dome lamp, overhead console lamps and glove box lamp. Check for proper operation of these items.
- Move the switch to its various positions and listen for the motors to click or try to move. Some movement or clicking indicates a poor connection or a mechanical problem with a mirror.

HEATER ELEMENTS

The rear window defogger relay powers the heater elements in power mirrors. When the relay energizes, it supplies power to the heater elements on circuit C15. Circuit Z1 provides ground for the power mirror heater elements.

HELPFUL INFORMATION

- Circuit F82 from fuse 2 in the fuse block powers circuit C15 when the rear window defogger relay energizes.
- Circuit A4 from fuse 3 in the Power Distribution Center (PDC) supplies battery voltage to the fuse block for fuse 2 and circuit F82.
 - Check fuse 2 in the fuse block.
 - Check fuse 3 in the PDC.

8W-63 POWER SEAT

INDEX

		page
SCHEMATICS AND DIAGRAMS DESCRIPTION AND OPERATION		
Component Pag	ge Component	Page
Circuit Breaker 29 (JB)8W-63-2,	3 Junction Block	8W-63-2, 3
Driver Power Seat Motor	-2 Passenger Power Seat Motor	8W-63-3
Driver Power Seat Switch 8W-63-2,	3 Passenger Power Seat Switch	8W-63-2, 3
Forward/Rearward Motor 8W-63-2,	3 Rear Motor	8W-63-2, 3
Front Motor	3 S310	8W-63-2, 3
C303 8W-63-2	3	

8W-63 POWER SEAT

DESCRIPTION AND OPERATION

POWER SEAT OPERATION

Battery voltage for the power seat system is supplied by circuit A7 from fuse 4 in the Power Distribution Center (PDC). Circuit A7 connects to circuit F37 through a circuit breaker in cavity 29 of the junction block. Circuit F37 connects to the power seat switch.

A bus bar internal to the power seat switch connects the power from circuit F37 to the switches. Grounding for the seat system is supplied on circuit Z1.

The motors located under the seat are protected by circuit breakers wired in with the motors. Each motor has its own circuit breaker.

When the operator selects the FRONT UP function, power is passed on the F37 circuit through the CLOSED contacts in the switch to the P19 circuit. The P19 circuit connects to the motor. Ground is provided on the P21 circuit back to the switch. A ground bus bar internal to the switch then connects to the Z1 ground circuit.

For FRONT DOWN function the circuits are reversed. P21 is the feed and P19 is the ground.

When the operator selects the SEAT FORWARD function, power is passed on the F37 circuit through the CLOSED contacts in the switch to the P15 circuit. The P15 circuit connects to the motor. Ground is

provided on the P17 circuit back to the switch. A ground bus bar internal to the switch then connects to the Z1 ground circuit.

For SEAT REARWARD function the circuits are reversed. P17 is the feed and P15 is the ground.

When the operator selects the REAR UP function, power is passed on the F37 circuit through the CLOSED contacts in the switch to the P11 circuit. The P11 circuit connects to the motor. Ground is provided on the P13 circuit back to the switch. A ground bus bar internal to the switch then connects to the Z1 ground circuit.

For REAR DOWN function the circuits are reversed. P13 is the feed and P11 is the ground.

When the operator selects the SEAT UP function power is passed on the F37 circuit through the CLOSED contacts in the switch to the P11 and P19 circuits. The P11 circuit connects to the REAR UP motor, and P19 connects to the FRONT UP motor. Ground is provided on the P13 and P21 circuits back to the switch. A ground bus bar internal to the switch then connects to the Z1 ground circuit.

For SEAT DOWN function the circuits are reversed. P13 and P21 circuits are the feeds and P11 and P19 are the grounds.

HELPFUL INFORMATION

Check the circuit breaker located in cavity 29 of the junction block

8W-70 SPLICE INFORMATION

Component	Page	Component	Page
S100	8W-70-4	S205	V-706
S105	8W-70-4	S206	7-70-6
S111	8W-70-2	S209	/-70-4
S114	8W-70-2	S212	7-70-4
S115	8W-70-5	S222	0-2, 3
S117	8W-70-3	S303	7-70-7
S138	8W-70-2, 3	S312	/-70-5
S142	8W-70-7	S339	7-70-7
S149	8W-70-3		

XJ ·

XJI07003

XJI07004 J978W-7

RIGHT

TURN

I RELAY

(8W-54-2)

- (8W-54-3)

2

LEFT

TURN

I LAMP

SIGNAL

(8W-51-4)

2

RIGHT

TURN

I LAMP

SIGNAL

(8W-51-4)

XJI07006 J978W-7

8W-80 CONNECTOR PIN-OUTS

Component Page	Component Page
4WD Switch (231)	C201 (LHD Base)
4WD Switch (242)	C201 (LHD Full Options) 8W-80-32
A/C Compressor Clutch	C202 (RHD)8W-80-34
A/C Heater Control (LHD) 8W-80-4	C203 (RHD)8W-80-34
A/C Heater Control (RHD)8W-80-4	C204 (RHD)8W-80-34
A/C High Pressure Switch8W-80-5	C205
A/C Low Pressure Switch (Diesel) 8W-80-5	C206 (A/T)8W-80-35
A/C Low Pressure Switch (LHD) 8W-80-5	C206 (M/T)
A/C Low Pressure Switch (2.5L M/T RHD)8W-80-5	C207
A/C Low Pressure Switch (RHD, All Others).8W-80-5	C208
Airbag Control Module (LHD) 8W-80-6	C300 (LHD)
Airbag Control Module (RHD)8W-80-6	C301 (W/Vanity Lamps)8W-80-36
Alternator	C301 (W/Vainty Lamps)8W-80-36
Ambient Temperature Sensor 8W-80-7	C302 (W/Immobilizer)
Back-Up Lamp Switch (M/T)8W-80-7	C303 (LHD)
Battery Temperature Sensor 8W-80-7	C304
Beam Select Switch (LHD) 8W-80-7	C305 (LHD)
Beam Select Switch (RHD) 8W-80-8	C305 (RHD)
Brake Pressure Switch	C306 (LHD)
Brake Shift Interlock Solenoid (LHD) 8W-80-8	C306 (RHD)8W-80-38
Brake Shift Interlock Solenoid (RHD)8W-80-8	C307 (LHD)
C100 (LHD, 2.5L Diesel) 8W-80-9	C307 (RHD)8W-80-38
C100 (LHD, 4.0L, A/T, Fog, Amp, Headlamp Leveling)	C308 (LHD)8W-80-38
Headlamp Leveling)8W-80-11	C308 (RHD)8W-80-39
C100 (LHD, 4.0L, M/T, ABS, DRL) 8W-80-13	C309
C100 (LHD, A/T, ABS, DRL) 8W-80-15	C310
C100 (RHD, 2.5L, M/T) 8W-80-17	C311
C100 (RHD, 4.0L, A/T, ABS) 8W-80-19	C312
C100 (RHD, VM Diesel)8W-80-21	C313
C102 (RHD)8W-80-23	C314
C103 (RHD)8W-80-23	C314 (With Sound Bar) 8W-80-40
C104 (RHD)8W-80-23	C315
C106 (2.5L, Diesel)	C316 (LHD)
C106 (4.0L, DRL)8W-80-24	C316 (RHD)8W-80-40
C106 (4.0L, DRL, Fog Lamps)8W-80-25	C317 (LHD)8W-80-41
C106 (All Others W/Fog Lamps) 8W-80-25	C317 (RHD)8W-80-41
C106 (All Others)	C318 (LHD)8W-80-41
C107 (Diesel)	C318 (RHD)8W-80-41
C107 (2.5L M/T 231,2WD) 8W-80-26	C319
C107 (2.5L M/T 231,2WD W/DRL)8W-80-26	C320
C107 (4.0L A/T 231,242) 8W-80-27	C321
C107 (4.0L A/T 231,242,DRL) 8W-80-27	C322
C107 (4.0L A/T 2WD)8W-80-27	Camshaft Position Sensor 8W-80-42
C107 (4.0L A/T 2WD DRL) 8W-80-28	Cargo Lamp (All Others)8W-80-42
C107 (4.0L M/T 231,242)	Cargo Lamp (With Sound Bar) 8W-80-42
C107 (4.0L M/T 2WD)	Center High Mounted Stop Lamp 8W-80-43
C108	Cigar Lighter8W-80-43
C109 (LHD)	Clock Spring (LHD)8W-80-43
C109 (RHD)	Clock Spring (RHD)8W-80-43
C110 (Diesel)	Clutch Interlock Switch (RHD M/T) 8W-80-43
C200 (LHD, Full Options)	Clutch Interlock Switch (RHD, M/T) 8W-80-45 Clutch Interlock Switch (RHD, M/T) 8W-80-44
C200 (RHD)	
C&UU (MID)	Clutch Interlock Switch Jumper (RHD, A/T).8W-80-44

Component	Component Page
Combination Flasher (With Lighted Visor) .8W-80-44	Junction Block - C48W-80-50
Compass	Junction Block - C5
Console Illumination	Junction Block - C6
Controller Anti-Lock Brake (LHD) 8W-80-45	Junction Block - C78W-80-5
Controller Anti-Lock Brake (RHD)8W-80-45	Junction Block - C8
Coolant Temperature Sensor (Diesel) 8W-80-46	Junction Block - C9
Crankshaft Position Sensor	Key-In Switch
Crankshaft Position Sensor (Diesel) 8W-80-46	Left Back-Up Lamp
Data Link Connector	Left Courtesy Lamp
Daytime Running Lamp Module 8W-80-47	Left Fog Lamp
Diagnostics Splice Block 8W-80-47	Left Front Door Jamb Switch 8W-80-59
Dome Lamp (W/Vanity Lamps, Immobilizer).8W-80-47	Left Front Door Speaker (LHD) 8W-80-59
Downstream Heated Oxygen Sensor 8W-80-47	Left Front Door Speaker (RHD)8W-80-59
Driver Airbag	Left Front Door Tweeter (LHD)8W-80-59
EGR Solenoid (Diesel) 8W-80-48	Left Front Door Tweeter (RHD)8W-80-59
Engine Coolant Temperature Sensor 8W-80-48	Left Front Power Door Lock Motor (LHD)8W-80-60
Engine Oil Pressure Sensor8W-80-48	Left Front Power Lock/Window
Evap/Purge Solenoid	Switch-C1 (LHD)
Front Fog Lamp Switch8W-80-48	Left Front Power Lock/Window
Front Washer Pump Motor 8W-80-49	Switch-C2 (LHD)
Front Wiper Motor	Left Front Power Window Motor (LHD)8W-80-60
Fuel Heater (Diesel) 8W-80-49	Left Front Side Marker Lamp8W-80-60
Fuel Pump Module (Diesel) 8W-80-49	Left Front Wheel Speed Sensor (LHD) 8W-80-6
Fuel Pump Module (LHD) 8W-80-50	Left Front Wheel Speed Sensor (RHD) 8W-80-6
Fuel Pump Module (RHD)8W-80-50	Left Headlamp
G Switch (LHD)8W-80-50	Left Park Lamp8W-80-6
Generator	Left Power Mirror
Glove Box Lamp Switch 8W-80-50	Left Power Seat
Glow Plug Relay (Diesel)8W-80-51	Left Rear Door Jamb Switch 8W-80-62
Headlamp Delay Module (LHD)8W-80-51	Left Rear Power Door Lock Motor8W-80-62
Headlamp Delay Module (RHD)8W-80-51	Left Rear Power Window Motor8W-80-62
Headlamp Leveling Switch (RHD)8W-80-51	Left Rear Power Window Switch8W-80-62
Headlamp Switch C1 (LHD) 8W-80-52	Left Rear Side Marker Lamp 8W-80-63
Headlamp Switch C1 (RHD) 8W-80-52	Left Rear Turn Signal Lamp 8W-80-63
Headlamp Switch (C2)8W-80-52	Left Rear Wheel Speed Sensor (LHD) 8W-80-63
HVAC Unit (LHD)	Left Rear Wheel Speed Sensor (RHD) 8W-80-63
HVAC Unit (RHD)8W-80-53	Left Sound Bar Speaker 8W-80-63
Idle Air Control Motor8W-80-53	Left Speaker (With Sound Bar) 8W-80-65
Ignition Coil	Left Tail/Stop Lamp
Ignition Switch (LHD)8W-80-53	Left Turn Jumper
Ignition Switch (RHD)8W-80-53	Left Turn Signal
Injector No. 1	License Lamp
Injector No. 2	Liftgate Jamb Switch8W-80-6
Injector No. 3	Liftgate Lock Motor
Injector No. 4	Low Coolant Sensor (Diesel) 8W-80-65
Injector No. 5	Low Washer Fluid Level Switch 8W-80-6
Injector No. 6	Manifold Absolute Pressure Sensor 8W-80-6
Instrument Cluster-C1 (LHD) 8W-80-55	Mass Air Flow Sensor (Diesel)8W-80-65
Instrument Cluster-C1 (RHD) 8W-80-55	MSA Controller (Diesel) 8W-80-60
Instrument Cluster-C2 8W-80-55	Needle Movement Sensor (Diesel) 8W-80-6
Intake Air Temperature Sensor 8W-80-55	Oil Pressure Switch (Diesel) 8W-80-6
Junction Block - C1	Overhead Module (With Immobilizer) 8W-80-6
Junction Block - C2	Park Brake Switch (LHD) 8W-80-68
Junction Block - C38W-80-56	Park Brake Switch (RHD)8W-80-68

Component Page		Page
Passenger Air Bag8W-80-68	Right Front Power Window Motor	8W-80-81
Pedal Position Sensor (Diesel) 8W-80-68	Right Front Side Marker Lamp	8W-80-81
Power Amplifier-C18W-80-68	Right Front Wheel Speed Sensor (LHD)	8W-80-81
Power Amplifier-C2 (LHD)8W-80-69	Right Front Wheel Speed Sensor (RHD)	8W-80-81
Power Amplifier C2 (RHD)8W-80-69		
Power Outlet		
Power Steering Pressure Switch (2.5L)8W-80-69	•	
Powertrain Control Module - C1 8W-80-70		
Powertrain Control Module - C1 (Diesel)8W-80-71		
Powertrain Control Module - C2 8W-80-72		
Powertrain Control Module - C3	Right Rear Power Door Lock Motor	
(2.5L, RHD, M/T)8W-80-73		
Powertrain Control Module - C3	Right Rear Power Window Switch	
(All Others)		
PRNDL Lamp	0	
Radiator Fan Motor8W-80-75		
Radio-C1	0 1 , , ,	
Radio-C2	0 1 , , ,	
Radio-C3	0 1	
Rear Door Jamb Switch (LHD) 8W-80-76	<i>O</i> 1 \	
Rear Door Jamb Switch (RHD) 8W-80-76		
Rear Fog Lamp Relay		
Rear Fog Lamp Switch	0	
Rear Washer Pump Motor (2.5L, Diesel)8W-80-76		
Rear Washer Pump Motor (All Others) 8W-80-70		
Rear Window Defogger - C18W-80-77	. ,	
Rear Window Defogger - C2		
	· · · · · · · · · · · · · · · · · · ·	
Rear Window Defogger Switch 8W-80-77		
Rear Wiper Motor	· · · · · · · · · · · · · · · · · · ·	
Rear Wiper Switch		
Right Back-Up Lamp		
Right Courtesy Lamp	3	
Right Fourt Deep Level South		
Right Front Door Jamb Switch 8W-80-79		
Right Front Door Speaker (LHD) 8W-80-79		
Right Front Door Speaker (RHD) 8W-80-79	ĕ	
Right Front Door Tweeter (LHD)8W-80-79	8	
Right Front Door Tweeter (RHD) 8W-80-79	1	
Right Front Power Door Lock	Upstream Heated Oxygen Sensor	
Motor (LHD)	,	
Right Front Power Lock/Window	Vehicle Speed Control Servo (RHD)	
Switch-C1 (LHD)	vennere opeen dender (212)	
Right Front Power Lock/Window	Vehicle Speed Sensor (RHD)	
Switch-C1 (RHD)	(210001) 11111 401 201301 (210001) 111111	
Right Front Power Lock/Window	Wiper/Washer Switch (LHD)	
Switch-C2 (LHD)	Wiper/Washer Switch (RHD)	8W-80-90
Right Front Power Lock/Window		
Switch-C2 (RHD)8W-80-81		

CAV	CIRCUIT	FUNCTION
Α	G107 18BK/RD	4WD PART TIME INDICATOR
В	Z1 18BK	GROUND

CAV	CIRCUIT	FUNCTION
Α	Z1 18BK	GROUND
В	G106 18BK/WT	4WD FULL TIME INDICATOR
С	-	_
D	G107 18BK/RD	4WD PART TIME INDICATOR

CAV	CIRCUIT	FUNCTION
1	C3 16DB/BK	A/C COMPRESSOR CLUTCH RELAY OUTPUT
2	_	_

CAV	CIRCUIT	FUNCTION
1	E2 20OR	A/C HEATER CONTROL ILLUMINATION
2	C90 20LG	A/C JTEC SELECT SIGNAL
3	C4 14TN	HVAC MOTOR – LOW
4	C5 14LG	HVAC MOTOR - M1
5	C6 14LB	HVAC MOTOR – M2
6	C7 12BK/TN	HVAC MOTOR – HIGH
7	Z8 12 BK/VT	GROUND

CAV	CIRCUIT	FUNCTION
1	E2 20OR	REAR WIPER SWITCH ILLUMINATION
'	E2 20OR	A/C HEATER CONTROL ILLUMINATION
2	C90 20LG	A/C JTEC SELECT SIGNAL
3	C4 14TN	HVAC MOTOR – LOW
4	C5 14LG	HVAC MOTOR - M1
5	C6 14LB	HVAC MOTOR - M2
6	C7 12BK/TN	HVAC MOTOR – HIGH
7	Z8 12 BK/VT	GROUND

XJI08004 J978W-7

(CAV	CIRCUIT	FUNCTION
	1	C22 18DB/WT	A/C REQUEST TO JTEC
	2	C21 20DB/OR	A/C REQUEST

CAV	CIRCUIT	FUNCTION
1	C13 20DB/OR	A/C SWITCH SENSE
2	C21 20DB/PK	A/C LOW PRESSURE SWITCH OUTPUT

CAV	CIRCUIT	FUNCTION
1	C21 20DB/OR	A/C LOW PRESSURE SWITCH OUTPUT
2	C90 20LG	A/C SWITCH SENSE

CAV	CIRCUIT	FUNCTION
1	C21 20DB/OR	A/C LOW PRESSURE SWITCH OUTPUT
2	C90 20LG/RD	A/C SWITCH SENSE

CAV	CIRCUIT	FUNCTION
1	C21 20DB/OR	A/C LOW PRESSURE SWITCH OUTPUT
2	C90 20LG	A/C SWITCH SENSE

XJI08005 J978W-7

041/	OIDOLUT	FUNCTION
CAV	CIRCUIT	FUNCTION
1	R45 18DG/LB	DRIVER AIRBAG
2	R43 18BK/LB	DRIVER AIRBAG
3	_	_
4	_	_
5	R42 18BK/YL	PASSENGER AIRBAG
6	R44 18DG/YL	PASSENGER AIRBAG
7	_	_
8	_	_
9	_	_
10	Z6 18BK/PK	GROUND*
10	Z6 18BK/YL	GROUND**
11	R50 18BR/YL	PASSENGER AIRBAG
12	R51 18VT/YL	PASSENGER AIRBAG
13	_	_
14	_	_
15	_	_
16	_	_
17	F23 18DB/YL	FUSED IGNITION (START)
18	D2 18WT/BK	CCD BUS(-)
19	D1 18VT/BR	CCD BUS(+)
20	F14 18LG/YL	FUSED IGNITION (START/RUN)

CAV	CIRCUIT	FUNCTION
1	R45 18DG/LB	PASSENGER AIRBAG
2	R43 18BK/LB	PASSENGER AIRBAG
3	_	_
4	_	_
5	R42 18BK/YL	PASSENGER AIRBAG
6	R44 18DG/YL	PASSENGER AIRBAG
7	_	_
8	_	_
9	_	_
10	Z6 18BK/PK	GROUND
11	R50 20BR/YL	DRIVER AIRBAG
12	R51 20WT/YL	DRIVER AIRBAG
13	_	_
14	_	_
15	_	_
16	_	_
17	F23 18DB/YL	FUSED IGNITION (START)
18	D2 20WT/BK	CCD BUS(-)
19	D1 20VT/BR	CCD BUS(+)
20	F14 18LG/YL	FUSED IGNITION (START/RUN)

CAV	CIRCUIT	FUNCTION
1	K20 18DG	GENERATOR FIELD DRIVER
2	A142 16DG/OR	IGNITION (RUN/START)
3	_	_

AMBIENT TEMPERATURE SENSOR (WITH 4.0L, A/T, LHD, 4.0L M/T, 2.5L M/T, LHD)

CAV	CIRCUIT	FUNCTION
1	G31 20VT/LG	AMBIENT TEMP SENSOR SIGNAL
2	G32 20BK/LG	AMBIENT TEMP SENSOR GROUND

CAV	CIRCUIT	FUNCTION
Α	F12 18DB/WT	FUSED IGNITION SWITCH OUTPUT (RUN/ACC)
В	L10 18BR/LG	BACK-UP LAMP SWITCH OUTPUT

CAV	CIRCUIT	FUNCTION
1	K118 18PK/YL	BATTERY TEMP SENSOR SIGNAL
2	K167 20BR/YL	SENSOR RETURN

CAV	CIRCUIT	FUNCTION
1	L20 16LG/WT	BEAM SELECT SWITCH FEED
2	L3 16RD/OR	DIMMER SWITCH HIGH BEAM OUTPUT
3	L2 16LG	FUSED B(+)
4	L4 16VT/WT	DIMMER SWITCH LOW BEAM OUTPUT

XJI08007 J978W-7

CAV	CIRCUIT	FUNCTION	
1	L20 16LG/WT	BEAM SELECT SWITCH FEED	
2	L3 16RD/OR	DIMMER SWITCH HIGH BEAM OUTPUT	
3	_	_	
4	L4 16VT/WT	DIMMER SWITCH LOW BEAM OUTPUT	

	CAV	CIRCUIT	FUNCTION
Γ	1	G9 20GY/BK	BRAKE WARNING LAMP DRIVER
	2	G99 20GY/WT	BRAKE PRESSURE WARNING SWITCH SIGNAL

CAV	CIRCUIT	FUNCTION
1	K29 20WT/PK	STOP LAMP SWITCH SENSE
2	F15 20DB/WT	FUSED B(+)

CAV	CIRCUIT	FUNCTION
1	K29 18WT/PK	STOP LAMP SWITCH SENSE
2	F15 20DB/WT	FUSED B(+)

XJI08008 J978W-7

C100 (LHD, 2.5 DIESEL)

CAV	CIRCUIT
A1	Z1 16BK
A2	G106 20BK/WT
А3	G107 20BK/RD
A4	L39 20LB
A5	L139 20WT
A6	C90 20LG
A7	Z12 20BK/LG
A8	G29 20BK/TN
A9	_
A10	G99 20GY/WT
A11	D1 20VT/BR
A12	D2 20WT/BK
A13	_
A14	G9 20GY/BK
A15	L10 18BR/LG
A16	V10 18BR
A17	V20 18VT/OR
A18	F34 18TN/BK
B1	K29 20WT/PK
B2	K226 20DB/LG
B3	K167 20BR/YL
B4	L50 20WT/TN
B5	V37 18RD/LG
B6	K4 20BK/LB
B7	D20 20LG/BK
B8	D21 20PK
B9	L60 20TN
B10	L61 20LG/WT
B11	L9 20BK/WT
B12	L44 20VT/RD
B13	L44 20V 1/KD
B14	_
B15	_
	_
B16	_
B17	_
B18	- \/2.46DD/\/T
C1	V3 16BR/WT
C2	A1 12RD
C3	V4 16RD/YL
C4	F75 16VT
C5	V5 16DG/YL
C6	A2 12PK/BK
D1	A3 16RD/WT
D2	_
D3	_
D4	_
D5	A111 12RD/LG
D6	_
E1	_
E2	_
E3	_

(CONTINUED ON NEXT PAGE)

XJI08009 J978W-7

(CONTINUED)

CAV	CIRCUIT
E4	_
E5	_
E6	_
E7	_
E8	_
E9	_
E10	F1 20DB/GY
E11	_
E12	_
E13	_
E14	_
E15	K185 20OR/LB
E16	G86 20TN/OR
E17	G154 20VT/LG
E18	L13 18BR/YL
F1	_
F2	_
F3	_
F4	_
F5	_
F6	_
F7	_
F8	F32 20PK/DB
F9	_
F10	_
F11	_
F12	_
F13	G19 20LG/OR
F14	G31 20VT/LG
F15	G32 20BK/LB
F16	_
F17	_
F18	_
	l .

E4 - E5 - E6 - E7 - E8 - E9 - E10 F1 20DB/GY E11 - E12 - E13 - E14 - E15 K185 20OR/LB E16 G86 20TN/OR E17 G154 20VT/LG E18 L13 18BR/YL F1 - F2 - F3 - F4 - F5 - F6 - F7 - F8 F32 20PK/DB F9 - F10 - F11 - F12 - F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 - F17 - F18 -	CAV	CIRCUIT	
E6 - E7 - E8 - E9 - E10 F1 20DB/GY E11 - E12 - E13 - E14 - E15 K185 20OR/LB E16 G86 20TN/OR E17 G154 20VT/LG E18 L13 18BR/YL F1 - F2 - F3 - F4 - F5 - F6 - F7 - F8 F32 20PK/DB F9 - F10 - F11 - F12 - F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 - F17 -	E4	_	
E7	E5	_	
E8	E6	_	
E9	E7	_	
E10 F1 20DB/GY E11 — E12 — E13 — E14 — E15 K185 20OR/LB E16 G86 20TN/OR E17 G154 20VT/LG E18 L13 18BR/YL F1 — F2 — F3 — F4 — F5 — F6 — F7 — F8 F32 20PK/DB F9 — F10 — F11 — F12 — F11 — F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	E8	_	
E11 — E12 — E13 — E14 — E15 K185 20OR/LB E16 G86 20TN/OR E17 G154 20VT/LG E18 L13 18BR/YL F1 — F2 — F3 — F4 — F5 — F6 — F7 — F8 F32 20PK/DB F9 — F10 — F11 — F12 — F11 — F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	E9	_	
E12	E10	F1 20DB/GY	
E13	E11	_	
E14 — E15 K185 20OR/LB E16 G86 20TN/OR E17 G154 20VT/LG E18 L13 18BR/YL F1 — F2 — F3 — F4 — F5 — F6 — F7 — F8 F32 20PK/DB F9 — F10 — F11 — F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	E12	_	
E15 K185 200R/LB E16 G86 20TN/OR E17 G154 20VT/LG E18 L13 18BR/YL F1 - F2 - F3 - F4 - F5 - F6 - F7 - F8 F32 20PK/DB F9 - F10 - F11 - F12 - F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 - F17 -	E13	_	
E16 G86 20TN/OR E17 G154 20VT/LG E18 L13 18BR/YL F1 - F2 - F3 - F4 - F5 - F6 - F7 - F8 F32 20PK/DB F9 - F10 - F11 - F12 - F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 - F17 -	E14	_	
E17 G154 20VT/LG E18 L13 18BR/YL F1 - F2 - F3 - F4 - F5 - F6 - F7 - F8 F32 20PK/DB F9 - F10 - F11 - F12 - F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 - F17 -	E15	K185 20OR/LB	
E18 L13 18BR/YL F1	E16	G86 20TN/OR	
F1 — F2 — F3 — F4 — F5 — F6 — F7 — F8 F32 20PK/DB F9 — F10 — F11 — F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	E17	G154 20VT/LG	
F2	E18	L13 18BR/YL	
F3	F1	_	
F4 — F5 — F6 — F7 — F8 F32 20PK/DB F9 — F10 — F11 — F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	F2	_	
F5 — F6 — F7 — F8 F32 20PK/DB F9 — F10 — F11 — F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	F3	_	
F6 — F7 — F8 F32 20PK/DB F9 — F10 — F11 — F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	F4	_	
F7 - F8 F32 20PK/DB F9 - F10 - F11 - F12 - F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 - F17 - F17	F5	_	
F8 F32 20PK/DB F9 - F10 - F11 - F12 - F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 - F17 -	F6	_	
F9 — F10 — F11 — F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	F7	_	
F10 — F11 — F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	F8	F32 20PK/DB	
F11 — F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	F9	_	
F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	F10	_	
F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 – F17 –	F11	_	
F14 G31 20VT/LG F15 G32 20BK/LB F16 – F17 –	F12	_	
F15 G32 20BK/LB F16 – F17 –	F13	G19 20LG/OR	
F16 – F17 –	F14	G31 20VT/LG	
F17 –	F15	G32 20BK/LB	
	F16	_	
F18 –	F17	_	
	F18	_	

XJI08010 J978W-7

C100 (LHD, 4.0L, A/T, W/FOG, AMP, **HEADLAMP LEVELING)**

D4

D6

C100 (LHD, 4.0L, A/T, W/FOG, AMP, HEADLAMP LEVELING)

A1 Z1 16BK A2 G106 20BK/WT A3 G107 20BK/RD A4 L39 20LB A5 L139 20VT A6 C90 20LG A7 Z12 20BK/TN A8 G29 20BK/TN A9 — A10 G99 20GY/WT A11 D1 20VT/BR A12 D2 20WT/BK A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 — B13	CAV	CIRCUIT
A3 G107 20BK/RD A4 L39 20LB A5 L139 20VT A6 C90 20LG A7 Z12 20BK/TN A8 G29 20BK/TN A9 — A10 G99 20GY/WT A11 D1 20VT/BR A12 D2 20WT/BK A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 — B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 — E1 — E2 —	A1	Z1 16BK
A4 L39 20LB A5 L139 20VT A6 C90 20LG A7 Z12 20BK/TN A8 G29 20BK/TN A9 — A10 G99 20GY/WT A11 D1 20VT/BR A12 D2 20WT/BK A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 — B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/WT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 — E1 — E2 —	A2	G106 20BK/WT
A5 L139 20VT A6 C90 20LG A7 Z12 20BK/TN A8 G29 20BK/TN A9 — A10 G99 20GY/WT A11 D1 20VT/BR A12 D2 20WT/BK A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 — B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/WT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 — E1 — E2 —	A3	G107 20BK/RD
A6 C90 20LG A7 Z12 20BK/TN A8 G29 20BK/TN A9 — A10 G99 20GY/WT A11 D1 20VT/BR A12 D2 20WT/BK A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 — B13 — B14 — B15 — B16 — B17 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/OR D5 A111 12RD/LG D6 — E1 — E2 —	A4	L39 20LB
A7 Z12 20BK/TN A8 G29 20BK/TN A9 — A10 G99 20GY/WT A11 D1 20VT/BR A12 D2 20WT/BK A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 — B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 — E1 — E2 —	A5	L139 20VT
A8 G29 20BK/TN A9 — A10 G99 20GY/WT A11 D1 20VT/BR A12 D2 20WT/BK A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 — B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 — E1 — E2 —	A6	C90 20LG
A9 — A10 G99 20GY/WT A11 D1 20VT/BR A12 D2 20WT/BK A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 — B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A111 12RD/LG D6 — E1 — E2 —	A7	Z12 20BK/TN
A10 G99 20GY/WT A11 D1 20VT/BR A12 D2 20WT/BK A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 — B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/WT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A111 12RD/LG D6 — E1 — E2 —	A8	G29 20BK/TN
A11 D1 20VT/BR A12 D2 20WT/BK A13	A9	_
A12 D2 20WT/BK A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 — B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 — E1 — E2 —	A10	G99 20GY/WT
A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 — B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 — E1 — E2 —	A11	D1 20VT/BR
A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 — B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 — E1 —	A12	D2 20WT/BK
A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 - B13 - B14 - B15 - B16 - B17 - B18 - C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A111 12RD/LG D6 - E1 - E2 -	A13	-
A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 - B13 - B14 - B15 - B16 - B17 - B18 - C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A111 12RD/LG D6 - E1 - E1 - E2 -	A14	G9 20GY/BK
A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 - B13 - B14 - B15 - B16 - B17 - B18 - C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A111 12RD/LG D6 - E1 - E1 - E2 -	A15	L10 18BR/LG
A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 — B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 — E1 — E2 —	A16	V10 18BR
B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 — B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 — E1 —	A17	V20 18BK/WT
B2 K226 18DB/LG B3 K167 20BR/YL B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 — B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A111 12RD/LG D6 — E1 — E2 —	A18	F34 18TN/BK
B3 K167 20BR/YL B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 - B13 - B14 - B15 - B16 - B17 - B18 - C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 - E1 - E2 -	B1	K29 20WT/PK
B4 L50 20WT/TN B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 - B13 - B14 - B15 - B16 - B17 - B18 - C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 - E1 - E2 -	B2	K226 18DB/LG
B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 - B13 - B14 - B15 - B16 - B17 - B18 - C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 - E1 - E2 -	В3	K167 20BR/YL
B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 — B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 — E1 — E2 —	B4	L50 20WT/TN
B7 D20 18LG/BK B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 - B13 - B14 - B15 - B16 - B17 - B18 - C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 - E1 - E2 -	B5	V37 18RD/LG
B8 D21 20PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 - B13 - B14 - B15 - B16 - B17 - B18 - C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 - E1 - E2 -	В6	K167 20BR/YL
B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 - B13 - B14 - B15 - B16 - B17 - B18 - C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 - E1 - E2 -	В7	D20 18LG/BK
B10 L61 20LG/WT B11 L9 20BK/PK B12 - B13 - B14 - B15 - B16 - B17 - B18 - C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 - E1 - E2 -	B8	D21 20PK
B11 L9 20BK/PK B12 - B13 - B14 - B15 - B16 - B17 - B18 - C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 - E1 - E2 -	В9	L60 20TN
B12	B10	L61 20LG/WT
B13	B11	L9 20BK/PK
B14	B12	_
B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 — E1 — E2 —	B13	_
B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 — E1 — E2 —	B14	_
B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 — E1 — E2 —	B15	_
B18	B16	_
C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 — E1 — E2 —	B17	_
C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 - E1 - E2 -	B18	_
C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 - E1 - E2 -	C1	V3 16BR/WT
C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 - E1 - E2 -	C2	A1 12RD
C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 — E1 — E2 —	СЗ	V4 16BR/VT
C5 V5 16DG/YL C6 A2 12PK/RD D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 — E1 — E2 —	C4	F75 16VT
D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 - E1 - E2 -		V5 16DG/YL
D1 A3 16RD/WT D2 A141 14DG/WT D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 - E1 - E2 -	C6	A2 12PK/RD
D3 L3 16RD/OR D4 G34 16RD/GY D5 A111 12RD/LG D6 - E1 - E2 -		
D4 G34 16RD/GY D5 A111 12RD/LG D6 - E1 - E2 -	D2	A141 14DG/WT
D5 A111 12RD/LG D6 - E1 - E2 -	D3	L3 16RD/OR
D6 – E1 – E2 –	D4	G34 16RD/GY
E1 – E2 –	D5	A111 12RD/LG
E2 –	D6	_
	E1	_
E3 –	E2	-
	E3	_

(CONTINUED ON NEXT PAGE)

XJI08011 J978W-7

(CONTINUED)

CAV	CIRCUIT
E4	_
E5	_
E6	_
E7	_
E8	_
E9	_
E10	F1 20DB/GY
E11	_
E12	_
E13	_
E14	_
E15	_
E16	_
E17	_
E18	_
F1	_
F2	_
F3	_
F4	_
F5	_
F6	_
F7	V30 20DB/RD
F8	F32 20PK/DB
F9	V32 18YL/RD
F10	_
F11	_
F12	-
F13	G19 20LG/OR
F14	G31 20VT/LG
F15	G32 20BK/LG
F16	K78 20GY*
F17	_
F18	_

CAV	CIRCUIT
E4	_
E5	_
E6	_
E7	_
E8	_
E9	_
E10	F1 20DB/GY
E11	_
E12	_
E13	_
E14	_
E15	_
E16	_
E17	_
E18	_
F1	_
F2	_
F3	_
F4	_
F5	_
F6	_
F7	V30 20DB/RD
F8	F32 20PK/DB
F9	V32 18YL/RD
F10	_
F11	_
F12	_
F13	G19 20LG/OR
F14	G31 20VT/LG
F15	G32 20BK/LG
F16	K78 20GY*
F17	_
F18	_

C100 (LHD, 4.0L, M/T, ABS, DRL)

	CAV	CIRCUIT
	A1	Z1 18BK
	A2	G106 20BK/WT
	A3	G107 20BK/RD
	A4	L39 20LB
	A5	L139 20VT
	A6	C90 20LG
	A7	Z12 18BK/TN
	A8	G29 20BK/LB
	A9	_
	A10	G99 20GY/WT
	A11	D1 18VT/BR
	A12	D2 18WT/BK
	A13	-
	A14	G9 20GY/BK
K	A15	L10 18BR/LG
. `	A16	V10 18BR
F6	A17	V20 18BK/WT
F12	A18	F34 18TN/BK
F18	B1	K29 18WT/PK
D2	B2	K226 18DB/LG
D4	B3	K167 20BR/YL
D6	B4	L50 20WT/TN
В6	B5	V37 20RD/LG
B12	B6	K167 20BR/YL
B18	B7	D20 18LG/BK
	B8	D21 20PK
	B9	L60 20TN
	B10	L61 20LG/WT
	B11	L9 20BK/PK
	B12	_
	B13	_
	B14	_
	B15	_
	B16	_
	B17	_
	B18	_
	C1	V3 16BR/WT
	C2	A1 12RD
	C3	V4 16BR/VT
	C4	F75 16VT
	C5	V5 16DG/YL
	C6	A2 12PK/BK
	D1	A3 16RD/WT
	D2	A141 14DG/WT
	D3	L3 16RD
	D4	G34 16RD/GY
	D5	A111 12RD/LG
	D6	_
	E1	_
	E2	
	E3	_

(CONTINUED ON NEXT PAGE)

XJI08013 J978W-7

(CONTINUED)

CAV	CIRCUIT
E4	_
E5	_
E6	_
E7	_
E8	-
E9	-
E10	F1 20DB/GY
E11	-
E12	-
E13	_
E14	
E15	-
E16	-
E17	-
E18	-
F1	-
F2	-
F3	-
F4	-
F5	-
F6	-
F7	V30 20DB/RD
F8	F32 20PK/DB
F9	V32 18YL/RD
F10	-
F11	-
F12	_
F13	G19 20LG/OR
F14	G31 20VT/LG
F15	G32 20BK/LG
F16	_
F17	_
F18	_

CAV	CIRCUIT
E4	_
E5	_
E6	_
E7	_
E8	_
E9	_
E10	F1 20DB/GY
E11	_
E12	_
E13	_
E14	_
E15	_
E16	_
E17	_
E18	_
F1	_
F2	_
F3	_
F4	_
F5	_
F6	_
F7	V30 20DB/RD
F8	F32 20PK/DB
F9	V32 18YL/RD
F10	_
F11	_
F12	_
F13	G19 20LG/OR
F14	G31 20VT/LG
F15	G32 20BK/LG
F16	_
F17	_
F18	_

XJI08014 J978W-7 **CIRCUIT**

Z1 18BK

CAV

A1

Ε1 E2 E3

C100 (LHD, A/T, ABS, DRL)

CAV	CIRCUIT
A1	Z1 18BK
A2	G106 20BK/WT
A3	G107 20BK/RD
A4	L39 20LB
A5	L139 20VT
A6	C90 20LG
A7	Z12 18BK/TN
A8	G29 20BK/LB
A9	_
A10	G99 20GY/WT
A11	D1 20VT/BR
A12	D2 20WT/BK
A13	_
A14	G9 20GY/BK
A15	L10 18BR/LG
A16	V10 18BR
A17	V20 18BK/WT
A18	F34 18TN/BK
B1	K29 20WT/PK
B2	K226 18DB/LG
В3	K167 20BR/YL
B4	_
B5	V37 18RD/LG
B6	K167 20BR/YL
B7	D20 18LG/BK
B8	D21 20PK
В9	L60 20TN
B10	L61 20LG/WT
B11	L9 20BK/PK
B12	L44 20VT/RD
B13	_
B14	-
B15	-
B16	_
B17	_
B18	-
C1	V3 16BR/WT
C2	A1 12RD
C3	V4 16BR/VT
C4	F75 16VT
C5	V5 16DG/YL
C6	A2 12PK/RD
D1	A3 16RD/WT
D2	A141 14DG/WT
D3	G34 16RD/GY
D4	G34 16RD/GY
D5	A111 12RD/LG
D6	_
E1	_
E2	-
E3	_

(CONTINUED ON NEXT PAGE)

XJI08015 J978W-7

(CONTINUED)

CAV	CIRCUIT
E4	_
E5	_
E6	_
E7	_
E8	_
E9	_
E10	F1 20DB/GY
E11	_
E12	_
E13	_
E14	_
E15	_
E16	_
E17	_
E18	L13 20BR/YL
F1	_
F2	_
F3	_
F4	_
F5	_
F6	_
F7	V30 20DB/RD
F8	F32 20PK/DB
F9	V32 18YL/RD
F10	_
F11	_
F12	_
F13	_
F14	G31 20VT/LG
F15	G32 20BK/LG
F16	_
F17	_
F18	_

CAV	CIRCUIT
E4	_
E5	_
E6	_
E7	_
E8	_
E9	_
E10	F1 20DB/GY
E11	_
E12	_
E13	_
E14	_
E15	_
E16	_
E17	_
E18	L13 20BR/YL
F1	_
F2	_
F3	_
F4	_
F5	_
F6	_
F7	V30 20DB/RD
F8	F32 20PK/DB
F9	V32 18YL/RD
F10	_
F11	_
F12	_
F13	_
F14	G31 20VT/LG
F15	G32 20BK/LG
F16	_
F17	_
F18	_

XJI08016 J978W-7

C100 (RHD, 2.5L, M/T)

A1 Z1 18BK A2 — A3 G107 20BK/RD A4 L39 20LB A5 L139 20VT A6 C90 20LG A7 Z12 18BK/TN A8 G29 20BK/LB A9 — A10 G99 20GY/WT A11 D1 18VT/BR A12 D2 18WT/BK A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 — B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 — B14 — B15 — B16 — B17 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 — D4 — D5 A111 12RD/LG D6 — E1 — E2 — E3 —	CAV	CIRCUIT
A3 G107 20BK/RD A4 L39 20LB A5 L139 20VT A6 C90 20LG A7 Z12 18BK/TN A8 G29 20BK/LB A9 — A10 G99 20GY/WT A11 D1 18VT/BR A12 D2 18WT/BK A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 — B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 — B14 — B15 — B16 — B17 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 — D4 — D5 A111 12RD/LG D6 — E1 — E2 —	A1	Z1 18BK
A4 L39 20LB A5 L139 20VT A6 C90 20LG A7 Z12 18BK/TN A8 G29 20BK/LB A9 — A10 G99 20GY/WT A11 D1 18VT/BR A12 D2 18WT/BK A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 — B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 — B14 — B15 — B16 — B17 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 — D4 — D5 A111 12RD/LG D6 — E1 — E2 —	A2	_
A5 L139 20VT A6 C90 20LG A7 Z12 18BK/TN A8 G29 20BK/LB A9 — A10 G99 20GY/WT A11 D1 18VT/BR A12 D2 18WT/BK A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 — B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 — B14 — B15 — B16 — B17 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 — D4 — D5 A111 12RD/LG D6 — E1 — E2 —	А3	G107 20BK/RD
A6 C90 20LG A7 Z12 18BK/TN A8 G29 20BK/LB A9 — A10 G99 20GY/WT A11 D1 18VT/BR A12 D2 18WT/BK A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 — B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 — B14 — B15 — B16 — B17 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 — D4 — D5 A111 12RD/LG D6 — E1 — E2 —	A4	L39 20LB
A7 Z12 18BK/TN A8 G29 20BK/LB A9 — A10 G99 20GY/WT A11 D1 18VT/BR A12 D2 18WT/BK A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 — B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 — B14 — B15 — B16 — B17 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 — D4 — D5 A111 12RD/LG D6 — E1 — E2 —	A5	L139 20VT
A8 G29 20BK/LB A9 - A10 G99 20GY/WT A11 D1 18VT/BR A12 D2 18WT/BK A13 - A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 - B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 - B14 - B15 - B16 - B17 - B16 - B17 - B18 - C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 - D4 - D5 A111 12RD/LG D6 - E1 - E2 -	A6	C90 20LG
A9 — A10 G99 20GY/WT A11 D1 18VT/BR A12 D2 18WT/BK A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 — B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 — D4 — D5 A111 12RD/LG D6 — E1 — E2 —	A7	Z12 18BK/TN
A10 G99 20GY/WT A11 D1 18VT/BR A12 D2 18WT/BK A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 — B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 — D5 A111 12RD/LG D6 — E1 — E2 —	A8	G29 20BK/LB
A11 D1 18VT/BR A12 D2 18WT/BK A13	A9	_
A12 D2 18WT/BK A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 — B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 — B14 — B15 — B16 — B17 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 — D4 — D5 A111 12RD/LG D6 — E1 — E2 —	A10	G99 20GY/WT
A13 — A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 — B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 — B14 — B15 — B16 — B17 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 — D4 — D5 A111 12RD/LG D6 — E1 — E2 —	A11	D1 18VT/BR
A14 G9 20GY/BK A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 — B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 — B14 — B15 — B16 — B17 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 — D4 — D5 A111 12RD/LG D6 — E1 — E2 —	A12	D2 18WT/BK
A15 L10 18BR/LG A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 — B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 — D4 — D5 A111 12RD/LG D6 — E1 — E2 —	A13	_
A16 V10 18BR A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 — B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 — D4 — D5 A111 12RD/LG D6 — E1 — E2 —	A14	G9 20GY/BK
A17 V20 18BK/WT A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 - B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 - B14 - B15 - B16 - B17 - B18 - C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 - D4 - D5 A111 12RD/LG D6	A15	L10 18BR/LG
A18 F34 18TN/BK B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 - B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 - B14 - B15 - B16 - B17 - B18 - C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 - D4 - D5 A111 12RD/LG D6 - E1 <td< td=""><td>A16</td><td>V10 18BR</td></td<>	A16	V10 18BR
B1 K29 20WT/PK B2 K226 18DB/LG B3 K167 20BR/YL B4 — B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A111 12RD/LG D6 — E1 — E2 —	A17	V20 18BK/WT
B2 K226 18DB/LG B3 K167 20BR/YL B4	A18	F34 18TN/BK
B3 K167 20BR/YL B4 - B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 - B14 - B15 - B16 - B17 - B18 - C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 - D4 - D5 A111 12RD/LG D6 - E1 - E2 -	B1	K29 20WT/PK
B4	B2	K226 18DB/LG
B5 V37 18RD/LG B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 — D4 — D5 A111 12RD/LG D6 — E1 —	В3	K167 20BR/YL
B6 K167 20BR/YL B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 — D4 — D5 A111 12RD/LG D6 — E1 — E2 —	B4	_
B7 D20 18LG/BK B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 — D4 — D5 A111 12RD/LG D6 — E1 — E2 —	B5	V37 18RD/LG
B8 D21 18PK B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 - B14 - B15 - B16 - B17 - B18 - C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 - D4 - D5 A111 12RD/LG D6 - E1 - E2 -	B6	K167 20BR/YL
B9 L60 20TN B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 - B14 - B15 - B16 - B17 - B18 - C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 - D4 - D5 A111 12RD/LG D6 - E1 - E2 -	B7	D20 18LG/BK
B10 L61 20LG/WT B11 L9 20BK/PK B12 L44 20VT/RD B13 — B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 — D4 — D5 A111 12RD/LG D6 — E1 — E2 —	B8	D21 18PK
B11 L9 20BK/PK B12 L44 20VT/RD B13 - B14 - B15 - B16 - B17 - B18 - C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 - D4 - D5 A111 12RD/LG D6 - E1 - E2 -	B9	L60 20TN
B12 L44 20VT/RD B13 - B14 - B15 - B16 - B17 - B18 - C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 - D4 - D5 A111 12RD/LG D6 - E1 - E2 -	B10	L61 20LG/WT
B13	B11	L9 20BK/PK
B14 — B15 — B16 — B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 — D4 — D5 A111 12RD/LG D6 — E1 — E2 —	B12	L44 20VT/RD
B15	B13	_
B16	B14	_
B17 — B18 — C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 — D4 — D5 A111 12RD/LG D6 — E1 — E2 —	B15	_
B18	B16	_
C1 V3 16BR/WT C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 - D4 - D5 A111 12RD/LG D6 - E1 - E2 -	B17	-
C2 A1 12RD C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 - D4 - D5 A111 12RD/LG D6 - E1 - E2 -	B18	-
C3 V4 16BR/VT C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 - D4 - D5 A111 12RD/LG D6 - E1 - E2 -	C1	V3 16BR/WT
C4 F75 16VT C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 - D4 - D5 A111 12RD/LG D6 - E1 - E2 -	C2	A1 12RD
C5 V5 16DG/YL C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 - D4 - D5 A111 12RD/LG D6 - E1 - E2 -	СЗ	V4 16BR/VT
C6 A2 12PK/BK D1 A3 16RD/WT D2 A141 14DG/WT D3 - D4 - D5 A111 12RD/LG D6 - E1 - E2 -	C4	F75 16VT
D1 A3 16RD/WT D2 A141 14DG/WT D3 - D4 - D5 A111 12RD/LG D6 - E1 - E2 -	C5	V5 16DG/YL
D2 A141 14DG/WT D3 - D4 - D5 A111 12RD/LG D6 - E1 - E2 -	C6	A2 12PK/BK
D3	D1	A3 16RD/WT
D4	D2	A141 14DG/WT
D5 A111 12RD/LG D6 - E1 - E2 -	D3	_
D6 – E1 – E2 –	D4	_
E1 – E2 –	D5	A111 12RD/LG
E2 –	D6	
	E1	-
E3 –	E2	_
	E3	_

(CONTINUED ON NEXT PAGE)

XJI08017 J978W-7

(CONTINUED)

CAV	CIRCUIT
E4	_
E5	_
E6	_
E7	F45 20YL/RD
E8	T141 20YL
E9	- T141 201L
E10	F1 20DB/GY
E11	- T 1 20DB/G1
E12	
E13	
	_
E14	_
E15	_
E16	_
E17	-
E18	L13 20BR/YL
F1	_
F2	_
F3	_
F4	_
F5	_
F6	_
F7	V30 20DB/RD
F8	F32 20PK/DB
F9	V32 18YL/RD
F10	-
F11	_
F12	_
F13	_
F14	_
F15	_
F16	_
F17	_
F18	_

CAV	CIRCUIT
E4	_
E5	_
E6	_
E7	F45 20YL/RD
E8	T141 20YL
E9	_
E10	F1 20DB/GY
E11	_
E12	_
E13	_
E14	_
E15	_
E16	_
E17	_
E18	L13 20BR/YL
F1	_
F2	_
F3	_
F4	_
F5	_
F6	_
F7	V30 20DB/RD
F8	F32 20PK/DB
F9	V32 18YL/RD
F10	_
F11	_
F12	_
F13	_
F14	_
F15	_
F16	_
F17	_
F18	_

XJI08018 J978W-7

C100 (RHD, 4.0L, A/T, ABS)

CAV	CIRCUIT
A1	Z1 18BK
A2	G106 20BK/WT
A3	G107 20BK/RD
A4	L39 20LB
A5	L139 20VT
A6	C90 20LG
A7	Z12 18BK/TN
A8	G29 20BK/LB
A9	_
A10	G99 20GY/WT
A11	D1 20VT/BR
A12	D2 20WT/BK
A13	_
A14	G9 20GY/BK
A15	L10 18BR/LG
A16	V10 18BR
A17	V20 18BK/WT
A18	F34 18TN/BK
B1	K29 20WT/PK
B2	K226 18DB/LG
В3	K167 20BR/YL
B4	L50 20WT/TN
B5	V37 18RD/LG
B6	K167 20BR/YL
B7	D20 18LG/BK
B8	D21 20PK
B9	L60 20TN
B10	L61 20LG/WT
B11	L9 20BK/PK
B12	L44 20VT/RD
B13	_
B14	_
B15	_
B16	_
B17	_
B18	_
C1	V3 16BR/WT
C2	A1 12RD
C3	V4 16BR/VT
C4	F75 16VT
C5	V5 16DG/YL
C6	A2 12PK/BK
D1	A3 16RD/WT
D2	A141 14DG/WT
D3	_
D4	-
D5	A111 12RD/LG
D6	_
E1	_
E2	_
E3	_

(CONTINUED ON NEXT PAGE)

XJI08019 J978W-7

(CONTINUED)

0417	0.00
CAV	CIRCUIT
E4	_
E5	_
E6	_
E7	F45 20YL/RD
E8	T141 20YL
E9	_
E10	F1 20DB/GY
E11	_
E12	_
E13	_
E14	_
E15	_
E16	_
E17	_
E18	L13 20BR/YL
F1	_
F2	_
F3	_
F4	_
F5	_
F6	_
F7	V30 20DB/RD
F8	F32 20PK/DB
F9	V32 18YL/RD
F10	_
F11	_
F12	_
F13	G19 20LG/OR
F14	G31 20VT/LG
F15	G32 20BK/LG
F16	_
F17	-
F18	_

CAV	CIRCUIT
E4	-
E5	_
E6	_
E7	F45 20YL/RD
E8	T141 20YL
E9	_
E10	F1 20DB/GY
E11	_
E12	_
E13	_
E14	_
E15	_
E16	_
E17	_
E18	L13 20BR/YL
F1	_
F2	_
F3	_
F4	_
F5	_
F6	_
F7	V30 20DB/RD
F8	F32 20PK/DB
F9	V32 18YL/RD
F10	_
F11	_
F12	
F13	G19 20LG/OR
F14	G31 20VT/LG
F15	G32 20BK/LG
F16	-
F17	_
F18	_
	1

XJI08020 J978W-7 **CIRCUIT**

Z1 16BK

CAV

Α1

C100 (RHD, VM DIESEL)

	CAV	CIRCUIT
	A1	Z1 16BK
	A2	G106 20BK/WT
	A3	G107 20BK/RD
	A4	L39 20LB
	A5	L139 20WT
	A6	C90 20LG
	A7	Z12 20BK/LG
	A8	G29 20BK/TN
	A9	_
	A10	G99 20GY/WT
	A11	D1 20VT/BR
	A12	D2 20WT/BK
	A13	_
	A14	G9 20GY/BK
K	A15	L10 18BR/LG
	A16	V10 18BR
F6	A17	V20 18VT/OR
F12	A18	F34 18TN/BK
F18	B1	K29 20WT/PK
D2	B2	K226 18DB/LG
D4	В3	K167 20BR/YL
D6	B4	L50 20WT/TN
В6	B5	V37 18RD/LG
B12	B6	K4 20BK/LB
B18	B7	D20 20LG/BK
	B8	D21 20PK
	B9	L60 20TN
	B10	L61 20LG/WT
	B11	L9 20BK/WT
	B12	L44 18VT/RD
	B13	_
	B14	_
	B15	_
	B16	_
	B17	_
	B18	_
	C1	V3 16BR/WT
	C2	A1 12RD
	C3	V4 16RD/YL
	C4	F75 16VT
	C5	V5 16DG/YL
	C6	A2 12PK/BK
	D1	A3 16RD/WT
	D2	_
	D3	_
	D4	_
	D5	A111 12RD/LG
	D6	
	E1	_
	E2	_
	E3	_
L		_

(CONTINUED ON NEXT PAGE)

XJI08021 J978W-7

E3

(CONTINUED)

CAV CIRCUIT E4		
E5	CAV	CIRCUIT
E6 - E7 F45 20YL/RD E8 T141 20YL E9 - E10 F1 20DB/GY E11 - E12 - E13 - E14 - E15 K185 20OR/LB E16 G86 20TN/OR E17 G154 20VT/LG E18 L13 18BR/YL F1 - F2 - F3 - F4 - F5 - F6 - F7 - F8 F32 20PK/DB F9 - F10 - F11 - F12 - F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 - F17 -	E4	_
E7 F45 20YL/RD E8 T141 20YL E9	E5	_
E8 T141 20YL E9 - E10 F1 20DB/GY E11 - E12 - E13 - E14 - E15 K185 20OR/LB E16 G86 20TN/OR E17 G154 20VT/LG E18 L13 18BR/YL F1 - F2 - F3 - F4 - F5 - F6 - F7 - F8 F32 20PK/DB F9 - F10 - F11 - F12 - F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 - F17 -	E6	П
E9	E7	F45 20YL/RD
E10 F1 20DB/GY E11	E8	T141 20YL
E11 — E12 — E13 — E14 — E15 K185 200R/LB E16 G86 20TN/OR E17 G154 20VT/LG E18 L13 18BR/YL F1 — F2 — F3 — F4 — F5 — F6 — F7 — F8 F32 20PK/DB F9 — F10 — F11 — F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	E9	_
E12 — E13 — E14 — E15 K185 200R/LB E16 G86 20TN/OR E17 G154 20VT/LG E18 L13 18BR/YL F1 — F2 — F3 — F4 — F5 — F6 — F7 — F8 F32 20PK/DB F9 — F10 — F11 — F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	E10	F1 20DB/GY
E13 — E14 — E15 K185 200R/LB E16 G86 20TN/OR E17 G154 20VT/LG E18 L13 18BR/YL F1 — F2 — F3 — F4 — F5 — F6 — F7 — F8 F32 20PK/DB F9 — F10 — F11 — F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	E11	-
E14 — E15 K185 200R/LB E16 G86 20TN/OR E17 G154 20VT/LG E18 L13 18BR/YL F1 — F2 — F3 — F4 — F5 — F6 — F7 — F8 F32 20PK/DB F9 — F10 — F11 — F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	E12	-
E15 K185 200R/LB E16 G86 20TN/OR E17 G154 20VT/LG E18 L13 18BR/YL F1 - F2 - F3 - F4 - F5 - F6 - F7 - F8 F32 20PK/DB F9 - F10 - F11 - F12 - F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 - F17 -	E13	-
E16 G86 20TN/OR E17 G154 20VT/LG E18 L13 18BR/YL F1 - F2 - F3 - F4 - F5 - F6 - F7 - F8 F32 20PK/DB F9 - F10 - F11 - F12 - F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 - F17 -	E14	_
E17 G154 20VT/LG E18 L13 18BR/YL F1 - F2 - F3 - F4 - F5 - F6 - F7 - F8 F32 20PK/DB F9 - F10 - F11 - F12 - F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 - F17 -	E15	K185 20OR/LB
E18 L13 18BR/YL F1 - F2 - F3 - F4 - F5 - F6 - F7 - F8 F32 20PK/DB F9 - F10 - F11 - F12 - F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 - F17 -	E16	G86 20TN/OR
F1	E17	G154 20VT/LG
F2	E18	L13 18BR/YL
F3	F1	-
F4 - F5 - F6 - F7 - F8 F32 20PK/DB F9 - F10 - F11 - F12 - F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 - F17 - F17 - F17	F2	-
F5 — F6 — F7 — F8 F32 20PK/DB F9 — F10 — F11 — F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	F3	_
F6 — F7 — F8 F32 20PK/DB F9 — F10 — F11 — F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	F4	П
F7 - F8 F32 20PK/DB F9 - F10 - F11 - F12 - F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 - F17 -	F5	П
F8 F32 20PK/DB F9 - F10 - F11 - F12 - F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 - F17 -	F6	П
F9 - F10 - F11 - F12 - F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 - F17 -	F7	-
F10 — F11 — F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	F8	F32 20PK/DB
F11 — F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	F9	_
F12 — F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 — F17 —	F10	-
F13 G19 20LG/OR F14 G31 20VT/LG F15 G32 20BK/LB F16 – F17 –	F11	_
F14 G31 20VT/LG F15 G32 20BK/LB F16 – F17 –	F12	-
F15 G32 20BK/LB F16 – F17 –	F13	G19 20LG/OR
F16 – F17 –	F14	G31 20VT/LG
F17 –	F15	G32 20BK/LB
	F16	-
F18 –	F17	_
	F18	

CAV	CIRCUIT
E4	_
E5	_
E6	_
E7	F45 20YL/RD
E8	T141 20YL
E9	_
E10	F1 20DB/GY
E11	_
E12	_
E13	_
E14	_
E15	K185 20OR/LB
E16	G86 20TN/OR
E17	G154 20VT/LG
E18	L13 18BR/YL
F1	_
F2	_
F3	_
F4	_
F5	_
F6	_
F7	_
F8	F32 20PK/DB
F9	_
F10	_
F11	_
F12	_
F13	G19 20LG/OR
F14	G31 20VT/LG
F15	G32 20BK/LB
F16	
F17	_
F18	_

XJI08023 J978W-7

CAV	CIRCUIT
1	C7 12BK/TN
2	_
3	F81 12TN
4	_
5	_
6	Z8 16BK/VT
7	A111 12RD/LG
8	C6 14LB
9	_
10	_
11	_
12	_
13	C5 14LG/
14	C4 14TN

CAV	CIRCUIT
1	C7 12BK/TN
2	_
3	F81 12TN
4	_
5	_
6	Z8 12BK/PK
7	A111 12RD/LG
8	C6 14LB
9	_
10	_
11	_
12	_
13	C5 14LG
14	C4 14TN

CIRCUIT

CAV

X51 16BR/YL
X52 16DB/WT
X53 16DG
X54 16VT
X55 16BR/RD
X56 16DB/RD
X57 16BR/LB
X58 16DB/OR
X60 16DG/RD
G9 20GY/BK
E2 200R/BK
G10 20LG/RD
R50 20BR/YL
R51 20WT/YL
L38 18BR/WT
V13 18BR/RD
V23 18BR/PK
V20 18VT/OR
G16 20BK/LB
G26 20LB
P59 20LB/RD
P55 20DB

CAV	CIRCUIT
1	D1 20VT/BR
2	D2 20WT/BR
3	F75 16VT
4	A141 16DG/WT
5	L10 18BR/LG
6	L50 20WT/TN
7	L62 20BR/RD
8	L63 20DG/RD
9	F15 20DB/WT
10	F23 18DB/YL
11	F14 18LG/YL

CAV	CIRCUIT
1	D1 20VT/BR
2	D2 20WT/BR
3	F75 16VT
4	A141 16DG/WT
5	L10 18BR/LG
6	L50 20WT/TN
7	L62 20BR/RD
8	L63 20DG/RD
9	F15 20DB/WT
10	F23 18DB/YL
11	F14 18LG/YL

(CONTINUED ON NEXT PAGE)

XJI08023 J978W-7

(CONTINUED)

CAV	CIRCUIT
12	F35 16RD
13	_
14	_
15	_
16	K226 20DB/LG
17	K167 20BR/YL
18	P72 20YL/BK
19	P74 20DB
20	P76 20OR/YL
21	_
22	C16 20BK/WT
23	P35 20OR/VT
24	P36 20PK/VT

CAV	CIRCUIT
12	F35 16RD
13	_
14	_
15	_
16	K226 20DB/LG
17	K167 20BR/YL
18	P71 20YL
19	P75 20DB/WT
20	P76 20OR/YL
21	_
22	C16 20LB/YL
23	P35 20OR/VT
24	P36 20PK/VT

CAV	CIRCUIT
1	L13 18BR/YL
2	L33 18RD
3	L61 20LG/WT
4	Z1 18BK
5	Z15 16BK/GY
6	L34 18RD/OR
7	L77 20BR/YL
8	L39 20LB
9	L43 18VT
10	L60 20TN
11	Z1 18BK
12	Z1 20BK
13	L44 18VT/RD
14	L78 18DG/YL

CAV	CIRCUIT
1	ı
2	L33 20RD
3	L61 20LG
4	Z1 18BK
5	_
6	L34 18RD/OR
7	L77 20BR
8	_
9	L43 20VT
10	L60 20TN
11	Z1 18BK
12	_
13	L44 18VT/RD
14	L78 20DG/YL

CAV	CIRCUIT
1	_
2	L33 20RD
3	L61 20LG/WT
4	Z1 18BK
5	_
6	L34 20DG/OR
7	L77 20BR/YL
8	L39 20LB
9	L43 20VT
10	L60 20TN
11	Z1 20BK
12	_
13	L44 20VT/RD
14	L78 20DG/YL

CAV	CIRCUIT
1	_
2	L33 20RD
3	L61 20LG
4	Z1 18BK
5	_
6	L34 18RD/OR
7	L77 20BR
8	L39 20LB
9	L43 20VT
10	L60 20TN
11	Z1 18BK
12	Z1 20BK
13	L44 18VT/RD
14	L78 20DG/YL

XJI08024 J978W-7

CAV	CIRCUIT
1	_
2	L33 20RD
3	L61 20LG/WT
4	Z1 18BK
5	_
6	L34 20DG/OR
7	L77 20BR/YL
8	L39 20LB
9	L43 20VT
10	L60 20TN
11	Z1 20BK
12	_
13	L44 20VT/RD
14	L78 20DG/YL

CAV	CIRCUIT
1	-
2	L33 20RD
3	L61 20LG
4	Z1 18BK
5	-
6	L34 18RD/OR
7	L77 20BR
8	L39 20LB
9	L43 20VT
10	L60 20TN
11	Z1 18BK
12	Z1 20BK
13	L44 18VT/RD
14	L78 20DG/YL

CAV	CIRCUIT
1	L13 20BR/YL
2	L33 20RD
3	L61 20LG/WT
4	Z1 18BK
5	Z15 16BK/GY
6	L34 20DG/OR
7	L77 20BR/YL
8	L39 20LB
9	L43 20VT
10	L60 20TN
11	Z1 20BK
12	L35 20BR/WT
13	L44 20VT/RD
14	L78 20DG/YL

CAV	CIRCUIT
1	_
2	L33 20RD
3	L61 20LG
4	Z1 18BK
5	_
6	L34 18RD/OR
7	L77 20BR
8	L39 20LB
9	L43 20VT
10	L60 20TN
11	Z1 18BK
12	Z1 20BK
13	L44 18VT/RD
14	L78 20DG/YL

ΑV	CIRCUIT
1	L13 20BR/YL
2	L33 20RD
3	L61 20LG/WT
4	Z1 18BK
5	Z15 16BK/GY
6	L34 20DG/OR
7	L77 20BR/YL
8	L39 20LB
9	L43 20VT
10	L60 20TN
11	Z1 20BK
12	L35 20BR/WT
13	L44 20VT/RD
14	L78 20DG/YL
	1 2 3 4 5 5 6 7 8 8 9 10 11 11 12

CAV	CIRCUIT
1	_
2	L33 20RD
3	L61 20LG
4	Z1 18BK
5	_
6	L34 18RD/OR
7	L77 20BR
8	L39 20LB
9	L43 20VT
10	L60 20TN
11	Z1 18BK
12	Z1 20BK
13	L44 18VT/RD
14	L78 20DG/YL

XJI08025 J978W-7

CAV	CIRCUIT
1	K3 20LG/BK
2	C21 20DB/PK
3	C22 20DB/WT
4	K24 20GY/BK
5	K20 18DG
6	C3 14DB/BK
7	A142 16DG/OR
8	K2 20TN/BK
9	K4 20BK/LB
10	K222 20TN/RD

CAV	CIRCUIT
1	K3 20LG/BK
2	C21 20DB/PK
3	C22 20DB/WT
4	K24 20GY/BK
5	K20 18DG
6	C3 14DB/BK
7	A142 16DG/OR
8	K2 20TN/BK
9	K4 20BK/LB
10	K222 20TN/RD

TRANSMISSION, 231, 2WD)

CIRCUIT
A142 18DG/OR
K20 18DG
K167 20BR/YL
_
_
K22 20OR/DB
F142 20DG/WT
G107 18BK/RD
Z12 18BK/TN
F12 18DB/WT
_
L10 18BR/LG
G106 20BK/WT
A61 16DG/BK

CAV	CIRCUIT
1	A142 18DG/OR
2	K20 18DG
3	K167 20BR/YL
4	G7 20WT/OR
5	Z1 20BK
6	-
7	F142 20DG/WT
8	G107 18BK/RD
9	-
10	F12 18DB/WT
11	_
12	L10 18BR/LG
13	_
14	A61 16DG/BK

CAV	CIRCUIT
1	A142 18DG/OR
2	K20 18DG
3	K167 20BR/YL
4	G7 20WT/OR
5	T41 20BR/LB
6	_
7	F142 20DG/WT
8	G107 18BK/RD
9	_
10	F12 18DB/WT
11	_
12	_
13	_
14	A61 16DG/BK

CIRCUIT
A142 18DG/OR
K20 18DG
K167 20BR/YL
G7 20WT/OR
Z1 20BK
-
F142 20DG/WT
G107 18BK/RD
_
F12 18DB/WT
_
L10 18BR/LG
_
A61 16DG/BK

XJI08026 J978W-7

C107 (WITH 4.0L ENGINE, **AUTOMATIC** TRANSMISSION, 231, 242)

CAV	CIRCUIT
1	A142 18DG/OR
2	K20 18DG
3	K167 20BR/YL
4	G7 20WT/OR
5	T41 20BK/WT
6	K22 20OR/DB
7	F142 20DG/WT
8	G107 20BK/RD
9	Z12 18BK/TN
10	F12 18DB/WT
11	K78 20GY
12	_
13	G106 20BK/WT
14	A61 16DG/BK

C107 (WITH 4.0L ENGINE, **AUTOMATIC** TRANSMISSION, 231, 242)

CAV	CIRCUIT
1	A142 18DG/OR
2	K20 18DG
3	K167 20BR/YL
4	G7 20WT/OR
5	T41 18BK/WT
6	K22 20OR/DB
7	F142 20DG/WT
8	G107 18BK/RD
9	Z12 16BK/TN
10	F12 18DB/WT
11	K78 18GY
12	_
13	G106 20BK/WT
14	A61 16DG/BK

CIRCUIT A142 18DG/OR

K167 20BR/YL

G106 20BK/WT

A61 16DG/BK

K20 18DG

C107 (WITH 4.0L ENGINE, AUTOMATIC TRANSMISSION, 231, 242, DRL)

CAV	CIRCUIT
1	A142 18DG/OR
2	K20 18DG
3	K167 20BR/YL
4	_
5	T41 20BK/WT
6	K22 20OR/DB
7	F142 20DG/WT
8	G107 20BK/RD
9	Z12 18BK/TN
10	F12 18DB/WT
11	K78 20GY
12	_
13	G106 20BK/WT
14	A61 16DG/BK

G7 20WT/OR
0. 20111/011
T41 18BK/WT
K22 20OR/DB
F142 20DG/WT
G107 18BK/RD
Z12 16BK/TN
F12 18DB/WT
K78 18GY
_

13

14

CAV

2

3

CAV	CIRCUIT
1	A142 18DG/OR
2	K20 18DG
3	K167 20BR/YL
4	G7 20WT/OR
5	T41 20BK/WT
6	K22 20OR/DB
7	F142 20DG/WT
8	-
9	Z12 18BK/TN
10	F12 18DB/WT
11	K78 20GY
12	_
13	G106 20BK/WT
14	A61 16DG/BK

CAV	CIRCUIT
1	A142 18DG/OR
2	K20 18DG
3	K167 20BR/YL
4	G7 20WT/OR
5	T41 18BK/WT
6	K22 20OR/DB
7	F142 20DG/WT
8	_
9	Z12 16BK/TN
10	F12 18DB/WT
11	K78 18GY
12	_
13	_
14	A61 16DG/BK

XJI08027 J978W-7

C107 (WITH 4.0L ENGINE, AUTOMATIC TRANSMISSION, 2WD, DRL)

CAV	CIRCUIT
1	A142 18DG/OR
2	K20 18DG
3	K167 20BR/YL
4	_
5	T41 20BK/WT
6	K22 20OR/DB
7	F142 20DG/WT
8	_
9	Z12 18BK/TN
10	F12 18DB/WT
11	K78 20GY
12	_
13	G106 20BK/WT
14	A61 16DG/BK

CAV	CIRCUIT
1	A142 18DG/OR
2	K20 18DG
3	K167 20BR/YL
4	G7 20WT/OR
5	T41 18BK/WT
6	K22 20OR/DB
7	F142 20DG/WT
8	_
9	Z12 16BK/TN
10	F12 18DB/WT
11	K78 18GY
12	_
13	_
14	A61 16DG/BK

C107 (WITH 4.0L ENGINE, MANUAL TRANSMISSION, 231, 242)

CAV	CIRCUIT
1	A142 18DG/OR
2	K20 18DG
3	K167 20BR/YL
4	-
5	-
6	K22 20OR/DB
7	F142 20DG/WT
8	G107 20BK/RD
9	Z12 18BK/TN
10	F12 18DB/WT
11	_
12	L10 18BR/LG
13	G106 20BK/WT*
14	A61 16DG/BK

CAV	CIRCUIT
1	A142 18DG/OR
2	K20 18DG
3	K167 20BR/YL
4	G7 20WT/OR
5	_
6	K22 20OR/DB
7	F142 20DG/WT
8	G107 18BK/RD
9	Z12 16BK/TN
10	F12 18DB/WT
11	_
12	L10 18BR/LG
13	G106 20BK/WT*
14	A61 16DG/BK

(WITH 4.0L ENGINE, MANUAL TRANSMISSION, 2WD)

CAV	CIRCUIT
1	A142 18DG/OR
2	K20 18DG
3	K167 20BR/YL
4	_
5	T41 20BK/WT
6	K22 20OR/DB
7	F142 20DG/WT
8	G107 20BK/RD
9	Z12 18BK/TN
10	F12 18DB/WT
11	-
12	_
13	G106 20BK/WT
14	A61 16DG/BK

CAV	CIRCUIT
1	A142 18DG/OR
2	K20 18DG
3	K167 20BR/YL
4	G7 20WT/OR
5	_
6	_
7	F142 20DG/WT
8	_
9	_
10	F12 18DB/WT
11	_
12	L10 18BR/LG
13	_
14	A61 16DG/BK

- * 242 ONLY
- 4.0L AUTOMATIC TRANSMISSION LHD
 - 4.0L MANUAL TRANSMISSION 2.5L MANUAL TRANSMISSION

J978W-7 XJI08028

CAV	CIRCUIT
1	T40 14BR
2	K72 18DG/OR
3	K20 18DG
4	C3 16DB/BK**

CAV	CIRCUIT
1	T40 14LG/BK
2	K72 18DG/OR
3	K20 18DG
4	C3 16DB/BK**

CIRCUIT
B41 20YL/VT
B42 20TN/WT
B43 20PK/OR
B1 20YL/DB
B2 20YL
B3 20LG/DB
B4 20LG

CAV	CIRCUIT
Α	B515 20YL/VT
В	B516 20TN/WT
С	B517 20PK/OR
D	B1 20YL/DB
Е	B2 20YL
F	B3 20LG/DB
G	B4 20LG

CAV	CIRCUIT		
Α	B41 20YL/VT		
В	B42 20TN/WT		
С	B43 20PK/OR		
D	B1 20YL/DB		
Е	B2 20YL		
F	B3 20LG/DB		
G	B4 20LG		

CAV	CIRCUIT		
Α	B515 18YL/VT		
В	B516 18TN/WT		
С	B517 18PK/OR		
D	B1 18YL/DB		
Е	B2 18YL		
F	B3 18LG/DB		
G	B4 18LG		

CAV	CIRCUIT			
1	G7 20WT/OR			
2	G106 20BK/WT			
3	G107 20BK/RD			
4	Z1 18BK			
5	L10 18BR/LG			
6	K7 200R			
7	F12 18DB/WT			
8	K167 20BR/YL			
9	_			
10	T40 14BR			

CAV	CIRCUIT			
1	G7 20WT/OR			
2	G106 20BK/WT			
3	G107 20BK/RD			
4	Z1 18BK			
5	L10 18BR/LG			
6	K7 20OR			
7	F12 18DB/WT			
8	K167 20BR/YL			
9	_			
10	T40 14BR			

XJI08029 J978W-7

^{* 242} ONLY * 4.0L AUTOMATIC TRANSMISSION LHD

^{4.0}L MANUAL TRANSMISSION 2.5L MANUAL TRANSMISSION

CAV	CIRCUIT			
1	X53 16DG			
2	X55 16BR/RD			
3	_			
4	X54 16VT			
5	X56 16DB/RD			
6	X51 16BR/YL			
7	X57 16BR/LB			
8	_			
9	X52 16DB/WT			
10	X58 16DB/OR			
11	X60 16DG/RD			
12	_			
13	A141 16DG/WT			
14	F75 14VT			
15	K226 20DB/LG			
16	L10 18BR/LG			
17	G16 20BK/LB			
18	_			
19	_			
20	_			
21	_			
22	_			
23	L38 16BR/WT			
24	L50 20WT/TN			
25	L62 18BK/RD			
26	L63 18DG/RD			
27	V13 18BR/LG			
28	V20 18VT/OR			
29	V23 18BR/PK			
30	K167 20BR/YL			
31	P35 18OR/VT			
32	P36 18PK/VT			
33	F81 12TN			
34	P72 20YL/BK			
35	P74 20DB			
36	P76 20OR/YL			
37	C16 20LB/YL			

CAV	CIRCUIT		
1	X53 16DG		
2	X55 16BR/RD		
3	_		
4	X54 16VT		
5	X56 16DB/RD		
6	X51 16BR/YL		
7	X57 16BR/LB		
8	_		
9	X52 16DB/WT		
10	X58 16DB/OR		
11	X60 16DG/RD		
12	_		
13	A141 16DG/WT		
14	F75 16VT		
15	K226 20DB/LG		
16	L10 18BR/LG		
17	G16 20BK/LB		
18	_		
19	-		
20	_		
21	_		
22	_		
23	_		
24	L50 20WT/TN		
25	L62 20BR/RD		
26	L63 20DG/RD		
27	V13 18BR/LG		
28	V20 18BK/WT		
29	V23 18BR/PK		
30	K167 20BR/YL		
31	P35 20OR/VT		
32	P36 18PK/VT		
33	F81 12TN		
34	P72 20YL/BK		
35	P74 20DB		
36	P76 20OR/YL		
37	C16 20LB/YL		

CAV	CIRCUIT		
1	P35 20OR/VT		
2	P36 20PK/VT		
3	_		
4	_		
5	_		

CAV	CIRCUIT	
1	P35 20OR/VT	
2	P36 20PK/VT	
3	P55 20DB	
4	P59 20LB/RD	
5	G26 20LB	

4.0L, LHD, AUTOMATIC TRANSMISSION 4.0L, MANUAL TRANSMISSION 2.5L, MANUAL TRANSMISSION

XJI08030 J978W-7

CAV	CIRCUIT	
1	_	
2	C16 20LB/YL	
3	L5 20BK	
4	_	
5	F87 20WT/BK	
6	M1 20PK	
7	_	
8	V6 18PK/VT	
9	_	
10	A31 12BK/VT	
11	A111 12RD/LG	
12	C7 12BK/TN	
13	U/ IZDRVIN	
14	Z1 14BK	
15		
16	L3 16RD/OR	
17	C81 20LB/WT	
	COT ZULB/VVT	
18	_	
19 20	_	
21	_	
22	L4 16VT/WT	
23	_	
24	78 20RK/\/T	
25	Z8 20BK/VT	
26	X3 20BK/RD	
27	_	
28	_	
29	_	
30	_	
31	_	
32	_	
33	_	
34	_	
35	_	
36	_	
37	_	
38	<u>-</u>	
39	V23 18BR/PK	
40	F15 20DB/WT	
41	_	
42	E1 20TN	
43	E2 200R	
44	_	
45	L7 18BR/YL	
46	M2 20YL	
47	R50 18BR/YL	
48	R51 18WT/YL	
49	-	
50	F30 16RD	
51	D1 18VT/BR	
52	D2 18WT/BK	
53	_	

CAV	CIRCUIT		
	CIRCUIT		
1	_		
2	C16 20LB/YL		
3	L5 20BK		
4	_		
5	F87 20WT/BK		
6	M1 20PK		
7	_		
8	V6 18PK/VT		
9	P36 18PK/WT		
10	A31 12BK/WT		
11	A111 12RD/LG		
12	C7 12BK/TN		
13	F81 12TN		
14	Z1 14BK		
15	_		
16	L3 16RD/OR		
17	C81 20LB/WT		
18	_		
19	F1 20DB/GY		
20	P72 20YL/BK		
21	- 12 ZUIL/DN		
	- L 4 16\/T/\^/T		
22	L4 16VT/WT		
23	P35 20OR/VT		
24	P74 20DB		
25	Z8 16BK/VT		
26	X3 20BK/RD		
27	<u> </u>		
28	P76 20OR/YL		
29	G26 20LB		
30	_		
31	_		
32	G31 20VT/LG		
33	_		
34	_		
35	G32 20BK/LB		
36	_		
37	_		
38	_		
39	V23 18BR/PK		
40	F15 20DB/WT		
41	_		
42	E1 20TN		
43	E2 20OR		
44	_		
45	L7 18BK/YL		
46	M2 20YL		
47	R50 18BR/YL		
48	R51 20WT/YL		
49	G38 20GY		
50			
	F30 16RD		
51	D1 20VT/BR		
52	D2 20WT/BK		
53	_		

(CONTINUED ON NEXT PAGE)

XJI08031 J978W-7

CAV	CIRCUIT			
53	_			
54	X12 16RD/WT			
55	_			
56	_			
57	_			
58	_			
59	C4 14TN			
60	C5 14LG			
61	C6 14LB			
62	A22 12BK/OR			
63	A41 12YL			
64	A21 12DB			
65	F38 16RD/LB			
66	G9 18GY/BK			
67	_			
68	_			
69	G10 20LG/RD			
70	_			
71	_			
72	_			

(CON	TINL	JED)
------	------	------

CAV	CIRCUIT
53	_
54	X12 16RD/WT
55	D1 20VT/BR
56	D2 20WT/BK
57	_
58	Z2 18BK/LG
59	C4 14TN
60	C5 14LG
61	C6 14LB
62	A22 12BK/OR
63	A41 14YL
64	A21 12DB
65	F38 16RD/LB
66	G9 20GY/BK
67	_
68	_
69	G10 20LG/RD
70	_
71	_
72	_

C201 (LHD FULL OPTIONS)

CAV	CIRCUIT
CAV	CIRCUIT
1	_
2	C16 20LB/YL
3	L5 20BK
4	_
5	F87 20WT/BK
6	M1 20PK
7	-
8	V6 18PK/VT
9	P36 20PK/WT
10	A31 12BK/VT
11	A111 12RD/LG
12	C7 12BK/TN
13	F81 12TN
14	Z1 14BK
15	_
16	L3 16RD/OR
17	C81 20LB/WT
18	_
19	F1 20DB/GY
20	P72 20YL/BK
21	_
22	L4 16VT/WT
23	P35 20OR/VT
24	P74 20DB
25	Z8 20BK/VT
26	X3 20BK/RD
27	_
28	P76 20OR/YL
29	G26 20LB

C201 (LHD FULL OPTIONS)

CIRCUIT
OIICOOII
C16 20LB/YL
L5 20BK
F87 20WT/BK
M1 20PK
_
V6 18PK/VT
P36 18PK/WT
A31 12BK/WT
A111 12RD/LG
C7 12BK/TN
F81 12TN
Z1 14BK
_
L3 16RD/OR
C81 20LB/WT
_
F1 20DB/GY
P72 20YL/BK
_
L4 16VT/WT
P35 20OR/VT
P74 20DB
Z8 16BK/VT
X3 20BK/RD
_
P76 20OR/YL
G26 20LB

(CONTINUED ON NEXT PAGE)

XJI08032 J978W-7

(CONTINUED)

CAV	CIRCUIT
30	-
31	_
32	G31 20VT/LG
33	_
34	_
35	G32 20BK/LB
36	_
37	_
38	_
39	V23 18BR/PK
40	F15 20DB/WT
41	_
42	E1 20TN
43	E2 20OR
44	_
45	L7 18BR/YL
46	M2 20YL
47	R50 18BR/YL
48	R51 18WT/YL
49	G38 20GY
50	F30 16RD
51	D1 18VT/BR
52	D2 18WT/BK
53	_
54	X12 16RD/WT
55	D1 20VT/BR
56	D2 20WT/BK
57	_
58	Z2 18BK/LG
59	C4 14TN
60	C5 14LG
61	C6 14LB
62	A22 12BK/OR
63	A41 12YL
64	A21 12DB
65	F38 16RD/LB
66	G9 18GY/BK
67	_
68	_
69	G10 20LG/RD
70	_
71	_
72	_

CAV	CIRCUIT
30	_
31	_
32	G31 20VT/LG
33	_
34	_
35	G32 20BK/LB
36	_
37	_
38	_
39	V23 18BR/PK
40	F15 20DB/WT
41	_
42	E1 20TN
43	E2 20OR
44	_
45	L7 18BK/YL
46	M2 20YL
47	R50 18BR/YL
48	R51 20WT/YL
49	G38 20GY
50	F30 16RD
51	D1 20VT/BR
52	D2 20WT/BK
53	_
54	X12 16RD/WT
55	D1 20VT/BR
56	D2 20WT/BK
57	_
58	Z2 18BK/LG
59	C4 14TN
60	C5 14LG
61	C6 14LB
62	A22 12BK/OR
63	A41 14YL
64	A21 12DB
65	F38 16RD/LB
66	G9 20GY/BK
67	_
68	_
69	G10 20LG/RD
70	_
71	_
72	_

XJI08033 J978W-7

CAV	CIRCUIT
1	C7 12BK/TN
2	_
3	F81 12TN
4	_
5	_
6	Z8 12BK/PK
7	A111 12RD/LG
8	C6 14LB
9	_
10	_
11	_
12	_
13	C5 14LG
14	C4 14TN

CAV	CIRCUIT
1	C7 12BK/TN
2	_
3	F81 12TN
4	_
5	_
6	Z8 16BK/VT
7	A111 12RD/LG
8	C6 14LB
9	_
10	_
11	_
12	_
13	C5 14LG
14	C4 14TN

CIRCUIT

X51 16BR/YL

CAV

X52 16DB/WT
X53 16DG
X54 16VT
X55 16BR/RD
X56 16DB/RD
X57 16BR/LB
X58 16DB/OR
X60 16DG/RD
G9 20GY/BK
E2 200R
G10 20LG/RD
R50 20BR/YL
R51 20WT/YL
_
V13 18BR/LG
V23 18BR/PK
V20 18BK/WT
G16 20BK/LB
G26 20LB
P59 20LB/RD
P55 20DB

CIRCUIT
D1 20VT/BR
D2 20WT/BK
F75 14VT
A141 16DG/WT
L10 18BR/LG
L50 20WT/TN
L62 18BR/RD
L63 20DG/RD
F15 20DB/WT
F23 18DB/YL

	CAV	CIRCUIT
	1	D1 20VT/BR
<	2	D2 20WT/BR
	3	F75 14VT
	4	A141 16DG/WT
	5	L10 18BR/LG
	6	L50 20WT/TN
	7	L62 20BR/RD
	8	L63 20DG/RD
	9	F15 20DB/WT
	10	F23 18DB/YL

(CONTINUED ON NEXT PAGE)

XJI08034 J978W-7

CAV	CIRCUIT
11	F14 18LG/YL
12	F35 16RD
13	-
14	-
15	-
16	K226 20DB/LG
17	K167 20BR/YL
18	P71 20YL
19	P75 20DB/WT
20	P76 20OR/YL
21	_
22	C16 20LB/YL
23	P35 18OR/VT
24	P36 18PK/VT

(CONTINUED)

CAV	CIRCUIT
11	F14 18LG/YL
12	F35 16RD
13	_
14	_
15	_
16	K226 20DB/LG
17	K167 20BR/YL
18	P72 20YL/BK
19	P74 20DB
20	P76 20OR/YL
21	_
22	C16 20BK/WT
23	P35 20OR/VT
24	P36 20PK/VT

CAV	CIRCUIT
1	R42 18BK/YL
2	R44 18DG/YL
3	R43 18BK/LB
4	R45 18DG/LB

CAV	CIRCUIT
1	R42 18BK/YL
2	R44 18DG/YL
3	R43 18BK/LB
4	R45 18DG/LB

CAV	CIRCUIT
1	E2 20OR
2	Z1 20BK

CAV	CIRCUIT
1	E2 20OR
1	E2 20OR
2	Z1 20BK
2	Z1 20BK

CAV	CIRCUIT
1	E2 20OR
2	Z1 20BK

CAV	CIRCUIT
1	E2 20OR
2	Z1 20BK

_		
	CAV	CIRCUIT
Γ	Α	M1 20PK
	В	M2 20YL

CAV	CIRCUIT
Α	M1 18PK
В	M2 18BK/WT

XJI08035 J978W-7

CAV	CIRCUIT
Α	M1 20PK
В	M2 20YL

CAV	CIRCUIT
Α	M1 18PK
В	M2 18BK/WT

CAV	CIRCUIT
1	P35 20OR/VT
2	P36 20PK/VT
3	P55 20DB
4	P59 20LB/RD
5	G26 20LB
6	-

CAV	CIRCUIT
1	P35 20OR/VT
2	P36 20PK/VT
3	P55 20DB
4	P59 20LB/RD
5	G26 20LB
6	_

	C301	
(WITH	VANITY	LAMPS)

CAV	CIRCUIT
1	D1 20VT/BR
2	D2 20WT/BK
3	G32 20BK/LG
4	G31 20VT/LG
5	Z2 20BK/LG
6	F87 20WT/BK
7	_
8	_

CAV	CIRCUIT
1	D1 20VT/BR
2	D2 20WT/BK
3	G32 20BK/LB
4	G31 20VT/LG
5	Z2 18BK/LG
6	F87 20WT/BK
6	F87 20WT/BK
7	-
8	-

CAV	CIRCUIT
1	D1 20VT/BR
2	D2 20WT/BK
3	_
4	_
5	Z2 20BK/LG
6	_
7	_
8	_

CAV	CIRCUIT
1	D1 20VT/BR
2	D2 20WT/BK
3	G32 20BK/LB
4	G61 20VT/LG
5	Z2 18BK/LG
6	F87 20WT/BK
6	F87 20WT/BK
7	_
8	_

CAV	CIRCUIT
1	X3 20BK/RD
2	F1 20DB/GY
3	_
4	P59 20LB/RD
5	P55 20DB
6	G38 20GY

C302 (WITH IMMOBILIZER)

CAV	CIRCUIT
1	X3A 20BK/RD
2	F1 20DB/GY
3	_
4	P59 20LB/RD
5	P55 20DB
6	G38 20GY

XJI08036 J978W-7

CAV	CIRCUIT
1	Q16 14BR/WT
2	Q26 14VT/WT
3	_
4	X80 16LB/BK
5	X82 16LB/RD

CAV	CIRCUIT
1	Q16 14BR/WT
2	Q26 14VT/WT
3	_
4	X80 16LB/BK
5	X82 16LB/RD

CAV	CIRCUIT
1	Q18 14GY/BK
2	Q28 14DG/WT
3	Q1 14YL
4	P33 16OR/BK
5	P34 16PK/BK

CAV	CIRCUIT
1	Q18 14GY/BK
2	Q28 14DG/WT
3	Q1 14YL
4	P33 16OR/BK
5	P34 16PK/BK

CAV	CIRCUIT
1	X85 16BR/RD
2	X87 16DG
3	M1 20PK
4	P33 16OR/BK
5	P34 16PK/BK
6	P35 18OR/VT
7	P36 18PK/VT
8	P72 20YL/BK
9	P74 20DB
10	P76 20OR/YL
11	C16 20LB/YL
12	_
13	_

CAV	CIRCUIT
1	X85 16BR/RD
2	X87 16DG
3	M1 18PK
4	P33 16OR/BK
5	P34 16PK/BK
6	P35 18OR/VT
7	P36 18PK/VT
8	P72 20YL/BK
9	P74 20DB
10	P76 20OR/YL
11	C16 20LB/YL
12	_
13	_

CAV	CIRCUIT
1	X85 16LG/RD
2	X87 16DG
3	M1 20PK
4	P33 16OR/BK
5	P34 16PK/BK
6	P35 18OR/VT
7	P36 18PK/VT
8	P72 20YL/BK
9	P74 20DB
10	P76 20OR/YL
11	C16 20LB/YL
12	P90 20LG/BK
13	P91 20WT/BK

CAV	CIRCUIT
1	X85 16BR/RD
2	X87 16DG
3	P59 20LB/RD
4	P33 16OR/BK
5	P34 16PK/BK
6	P35 18OR/VT
7	P36 18PK/VT
8	P71 20YL
9	P75 20DB/RD
10	P76 20OR/YL
11	C16 20LB/YL
12	P55 20DB
13	G26 20LB

XJI08037 J978W-7

CAV	CIRCUIT
1	Q18 14GY/BK
2	Q28 14DG/WT
3	Q16 14BR/WT
4	Q26 14VT/WT
5	Q17 14DB/WT
6	Q27 14RD/BK

CAV	CIRCUIT
1	Q18 14GY/BK
2	Q28 14DG/WT
3	Q16 14BR/WT
4	Q26 14VT/WT
5	Q17 14DB/WT
6	Q27 14RD/BK

CAV	CIRCUIT
1	F35 16RD
2	_
3	Q16 14BR/WT
4	Q26 14VT/WT
5	-
6	-

CAV	CIRCUIT
1	F35 16RD
2	_
3	Q16 14BR/WT
4	Q26 14VT/WT
5	_
6	_

CAV	CIRCUIT
1	F81 12TN
2	Q1 14YL
3	Z1 12BK

CAV	CIRCUIT
1	F81 12TN
2	Q1 14YL
3	Z1 12BK

CAV	CIRCUIT
1	F81 12TN
2	Q1 14YL
3	Z1 12BK

CAV	CIRCUIT
1	F81 12TN
2	Q1 14YL
3	Z1 12BK

CAV	CIRCUIT
Α	P33 16OR/BK
В	P34 16PK/BK
С	M4 20GY/BK
D	L50 18WT/TN
Е	V13 18BR/LG
F	V23 18BR/PK
G	V20 18BK/WT
Н	L77 18BR

CAV	CIRCUIT
Α	P33 16OR/BK
В	P34 16PK/BK
С	M4 20GY/BK
D	L50 20WT/TN
E	V13 18BR/LG
F	V23 18BR/PK
G	V20 18VT/OR
Н	L77 18BR

XJI08038 J978W-7

CAV	CIRCUIT
Α	P33 16OR/BK
В	P34 16PK/BK
С	M4 20GY/BK
D	L50 18WT/TN
Е	V13 18BR/LG
F	V23 18BR/PK
G	V20 18BK/WT
Н	L77 18BR

CAV	CIRCUIT
Α	P33 16OR/BK
В	P34 16PK/BK
С	M4 20GY/BK
D	L50 20WT/TN
Е	V13 18BR/LG
F	V23 18BR/PK
G	V20 18VT/OR
Н	L77 18BR

CAV	CIRCUIT
1	Q17 14DB/WT
2	Q27 14RD/BK
3	Q1 14YL
4	P33 16OR/BK
5	P34 16PK/BK

CAV	CIRCUIT
1	Q17 14DB/WT
2	Q27 14RD/BK
3	Q1 14YL
4	P33 16OR/BK
5	P34 16PK/BK

CAV	CIRCUIT
1	V20 18BK/WT
2	Z1 12 BK
3	C15 12BK/WT
4	P33 16BR/BK
5	P34 16PK/BK
6	_
7	V23 18BR/PK
8	V13 18BR/LG
9	Z1 18BK
10	M4 20VT/YL
11	L77 18BR

CIRCUIT
P33 16OR/BK
P34 16PK/BK
_
L77 18BR
M4 20GY/BK
Z1 18BK

CAV	CIRCUIT
1	Z1 12 BK
2	C15 12BK/WT

CAV	CIRCUIT
1	V13 18BR/LG
2	V23 18BR/PK
3	V20 BR/WT

XJI08039 J978W-7

CAV	CIRCUIT
1	X92 16TN/BK
2	X94 16TN/RD
3	X91 16WT/BK
4	X93 16WT/RD
5	M1 20PK
6	M2 20YL
7	M4 20GY/BK
8	_

CAV	CIRCUIT
1	X92 16TN/BR
2	X94 16TN/RD
3	X91 16WT/BK
4	X93 16WT/RD
5	M1 18PK
6	M2 18YL
7	M4 18GY/BK
8	_

CAV	CIRCUIT
1	X92 16TN/BK
2	X94 16TN/RD
3	X91 16WT/BK
4	X93 16WT/RD
5	M1 18PK
6	M2 18YL
7	M4 18GY/BK
8	_

CAV	CIRCUIT
1	X92 16TN/BK
2	X94 16TN/RD
3	X91 16WT/BK
4	X93 16WT/RD
5	M1 20PK
6	M2 20YL
7	M4 20GY/BK
8	_

CAV	CIRCUIT
1	C15 12BK/WT
2	_

CAV	CIRCUIT
1	C15 12BK/WT
2	_

CAV	CIRCUIT
1	F37 14RD/LB*
1	F37 14RD/LB**
'	F37 14RD/LB**
2	Z1 14BK*
2	Z1 14BK**
_	Z1 14BK**

CAV	CIRCUIT
1	F37 14RD/LB*
1	F37 14RD/LB**
'	F37 14RD/LB**
2	Z1 16BK*
2	Z1 16BK**
~	Z1 16BK**

CAV	CIRCUIT
Α	M2 18YL
В	Z1 18BK

CAV	CIRCUIT
Α	M2 20YL
В	Z1 20BK

CAV	CIRCUIT
1	M2 20YL
2	G16 20BK/LB
3	Z1 20BK

CAV	CIRCUIT
1	M2 18YL
2	G16 18BK/LB
3	Z1 18BK

CAV	CIRCUIT
1	M2 20YL
2	_
3	Z1 20BK

CAV	CIRCUIT
1	M2 18YL
2	G16 18BK/LB
3	Z1 18BK

CAV	CIRCUIT
1	M2 20YL
2	_
3	Z1 20BK

CAV	CIRCUIT
1	M2 18YL
2	G16 18BK/LB
3	Z1 18BK

CAV	CIRCUIT
1	M2 20YL
2	G16 20BK/LB
3	Z1 20BK

CAV	CIRCUIT
1	M2 18YL
2	G16 18BK/LB
3	Z1 18BK

CAV	CIRCUIT
Α	M2 20YL
В	Z1 20BK

CAV	CIRCUIT
Α	M2 18YL
В	Z1 18BK

CAV	CIRCUIT
Α	M2 20YL
В	Z1 20BK

CAV	CIRCUIT
Α	M2 18YL
В	Z1 18BK

XJI08041 J978W-7

CAV	CIRCUIT
1	L62 18BR/RD
2	Z1 18BK
3	_
4	L38 16LG/BK
5	L10 18BR/LG
6	L50 20WT/TN
7	L78 18DG/YL
8	_

CAV	CIRCUIT
1	L62 18BR/RD
2	Z1 18BK
3	_
4	L38 16LG/BK
5	L10 18BR/LG
6	L50 20WT/TN
7	L78 18DG/YL
8	_

CAV	CIRCUIT
1	L63 18DG/RD*
1	L63 20DG/RD**
2	Z1 14BK
3	A6 20RD/OR
4	L38 16LG/BK
5	L10 18BR/LG
6	L50 20WT/TN
7	L77 18BR
8	L62 18BK/RD

CAV	CIRCUIT
1	L63 20DG/RD
2	Z1 14BK
3	A6 20RD/OR
4	L38 20LG/BK
5	L10 18BK/LG
6	L50 20WT/TN
7	L77 20BR
8	L62 20BK/RD

CAV	CIRCUIT	FUNCTION
1	K7 18OR	5 VOLT SUPPLY
2	K167 18BR/YL	SENSOR RETURN
3	K44 18TN/YL	CAMSHAFT POSITION SENSOR

CAV	CIRCUIT	FUNCTION
Α	M1 20PK	COURTESY LAMP B(+)
В	M2 20YL	SWITCHED GROUND
С	M4 20GY/BR	GATE GROUND

CARGO LAMP (ALL OTHERS)

CAV	CIRCUIT	FUNCTION
Α	M1 18PK	COURTESY LAMP B(+)
В	M2 18YL	SWITCHED GROUND
С	M4 18GY/BK	GATE GROUND

CAV	CIRCUIT	FUNCTION
1	L50 18WT/TN	STOP LAMP SWITCH OUTPUT
2	Z1 18BK	GROUND

CAV	CIRCUIT	FUNCTION
1	F30 16RD	CIGAR LIGHTER FEED
2	Z1 16BK	GROUND

CAV	CIRCUIT	FUNCTION
1	X3 20BK/RD	HORN SWITCH
2	V37 20RD/LG	VEHICLE SPEED CONTROL SWITCH JTEC
3	K4 20BK/LB	VEHICLE SPEED CONTROL SIGNAL
4	_	_

CAV	CIRCUIT	FUNCTION
1	X3 20BK/RD	HORN SWITCH
2	V37 20RD/LG	VEHICLE SPEED CONTROL SWITCH TO JTEC
3	K4 20BK/RD	VEHICLE SPEED CONTROL SIGNAL
4	_	-

CAV	CIRCUIT	FUNCTION
1	F45 20YL/RD	FUSED IGNITION (START)
2	T141 20YL	ENGINE STARTER MOTOR RELAY

XJI08043 J978W-7

CAV	CIRCUIT	FUNCTION
1	F45 20YL/RD	STARTER RELAY COIL FEED
2	T141 20YL	CLUTCH INTERLOCK

CAV	CIRCUIT	FUNCTION
1	F45 18YL	FUSED IGNITION (START)
2	F45 18YL	FUSED IGNITION (START)

CAV	CIRCUIT	FUNCTION
1	L5 20BK	FUSED IGNITION (ACC/RUN)
2	L9 20BK/PK	FUSED B(+)
3	L12 20VT/TN	COMBINATION FLAHSER OUTPUT (HAZARD)
4	L6 20RD/WT	COMBINATION FLASHER OUTPUT (TURN SIGNALS)
5	Z1 18BK	GROUND

CAV	CIRCUIT	FUNCTION
1	F87 20WT/BK	FUSED IGNITION
2	D1 20VT/BR	CCD(+)
3	G31 20VT/LG	TEMP SENSOR FEED
4	_	-
5	M1 20PK	COURTESY LAMPS
6	Z1 20BK	GROUND
7	Z2 20BK/LG	LOGIC GROUND
8	D2 20WT/BK	CCD(-)
9	G32 20BK/LG	TEMP SENSOR RETURN
10	_	-
11	_	-
12	M2 20YL	SWITCHED GROUND

CAV	CIRCUIT	FUNCTION
1	E2 20OR	CONSOLE ILLUMINATION
2	Z1 20BK	GROUND

XJI08044 J978W-7

CAV	CIRCUIT	FUNCTION
1	B1 20YL/DB	RIGHT REAR WHEEL SENSOR (-)
2	B3 20LG/DB	LEFT REAR WHEEL SENSOR (-)
3	B7 20WT	RIGHT FRONT WHEEL SENSOR (+)
4	B9 20RD	LEFT FRONT WHEEL SENSOR (+)
5	_	-
6	B41 20YL/VT	(ABS) ACCEL SENSOR 1
7	B42 20TN/WT	(ABS) ACCEL SENSOR 2
8	Z1 12BK	GROUND
9	A20 14RD/DB	ABS SOLENOIDS
10	B4 20LG	LEFT REAR WHEEL SENSOR (+)
11	B8 20RD/DB	LEFT FRONT WHEEL SENSOR (-)
12	L50 20WT/TN	STOP LAMPS
13	B43 20PK/OR	ACCEL SENSOR TEST SIGNAL
14	_	-
15	_	-
16	G83 20GY/BK	FEED TO ABS MODULE
17	B2 20YL	RIGHT REAR WHEEL SENSOR (+)
18	B6 20WT/DB	RIGHT FRONT WHEEL SENSOR (-)
19	_	-
20	D21 20PK	DATA LINK TRANSMIT
21	_	-
22	_	_
23	F15 20DB/WT	IGNITION RUN
24	Z1 12BK	GROUND
25	A10 12RD/DG	ABS PUMP

CAV	CIRCUIT	FUNCTION
1	B1 20YL/DB	RIGHT REAR WHEEL SENSOR (-)
2	B3 20LG/DB	LEFT REAR WHEEL SENSOR (-)
3	B7 20WT	RIGHT FRONT WHEEL SENSOR (+)
4	B9 20RD	LEFT FRONT WHEEL SENSOR (+)
5	-	-
6	B41 20YL/VT	(ABS) ACCEL SENSOR 1
7	B42 20TN/WT	(ABS) ACCEL SENSOR 2
8	Z1 12BK	GROUND
9	A20 14RD/DB	ABS SOLENOIDS
10	B4 20LG	LEFT REAR WHEEL SENSOR (+)
11	B8 20RD/DB	LEFT FRONT WHEEL SENSOR (-)
12	L50 20WT/TN	STOP LAMPS
13	B43 20PK/OR	ACCEL SENSOR TEST SIGNAL
14	-	-
15	-	-
16	G83 20GY/BK	FEED TO ABS MODULE
17	B2 20YL	RIGHT REAR WHEEL SENSOR (+)
18	B6 20WT/DB	RIGHT FRONT WHEEL SENSOR (-)
19	-	-
20	D21 20PK	DATA LINK TRANSMIT
21	-	-
22	-	-
23	F15 20DB/WT	IGNITION RUN
24	Z1 12BK	GROUND
25	A10 12RD/DG	ABS PUMP

XJI08045 J978W-7

CAV	CIRCUIT	FUNCTION
Α	K2 20TN/BK	ENGINE COOLANT TEMPERATURE SENSOR SIGNAL
В	K4 20BK/LB	SENSOR GROUND
С	K222 20TN/RD	SECONDARY ENGINE COOLANT TEMPERATURE SENSOR

CRANKSHAFT POSITION SENSOR

CAV	CIRCUIT	FUNCTION
1	K24 18GY/BK	CRANKSHAFT POSITION SENSOR
2	K167 20BR/YL	SENSOR GROUND
3	K7 20OR	5 VOLT SUPLY

CAV	CIRCUIT	FUNCTION
1	K3 20LG/BK	SENSOR GROUND
2	_	-
3	K24 20GY/BK	CRANK POSITION SENSOR SIGNAL

CAV	CIRCUIT	FUNCTION
1	-	_
2	_	_
3	D1 18VT/BR	CCD BUS (+)
4	Z1 18BK	GROUND
5	Z12 18BK/LB	GROUND
6	D20 20LG/BK	SCI RECEIVE
7	D21 20PK	SCI TRANSMIT
8	_	_
9	_	-
10	-	-
11	D2 18WT/BK	CCD BUS (-)
12	_	-
13	_	-
14	_	-
15	_	_
16	F34 18TN/BK	FUSED B(+)

XJI08046 J978W-7

CAV	CIRCUIT	FUNCTION
1	L3 16RD	DIMMER SWITCH HIGH BEAM OUTPUT
2	_	_
3	_	_
4	G34 16RD/GY	HIGH BEAM INDICATOR DRIVER
5	F12 18DB/WT	FUSED IGNITION SWITCH OUTPUT (RUN/START)
6	A3 16RD/WT	FUSED B(+)
7	G7 20WT/OR	VEHICLE SPEED SENSOR SIGNAL
8	Z12 16BK/TN	GROUND
9	_	-
10	L44 18VT/RD	DIMMER SWITCH LOW BEAM OUTPUT

CAV	CIRCUIT	FUNCTION
1	D1 20VT/BR	UNDERHOOD CCD BUS (+)
2	D1 18VT/BR	DATA LINK CCD BUS (+)
3	D1 20VT/BR	AIRBAG CONTROL MODULE CCD BUS (+)
4	_	_
5	D2 20WT/BK	AIRBAG CONTROL MODULE CCD BUS (-)
6	D2 18WT/BK	DATA LINK CCD BUS (-)
7	D2 20WT/BK	UNDERHOOD CCD BUS (-)
8	D1 20VT/BR	OVERHEAD CONSOLE CCD BUS (+)
9	D1 20VT/BR	INSTRUMENT CLUSTER CCD BUS (+)
10	_	_
11	_	_
12	_	-
13	D2 20WT/BK	INSTRUMENT CLUSTER CCD BUS (-)
14	D2 20WT/BK	OVERHEAD CONSOLE CCD BUS (-)

CAV	CIRCUIT	FUNCTION
Α	M1 20PK	COURTESY LAMPS
В	M2 20YL	SWITCHED GROUND
С	Z1 20BK	GROUND

CAV	CIRCUIT	FUNCTION
1	K142 20DG/WT	AUTOMATIC SHUT DOWN RELAY OUTPUT
2	Z1 20BK	GROUND
3	K167 18BR/YL	SENSOR RETURN
4	K141 18TN/BK	DOWNSTREAM HEATED OXYGEN SENSOR SIGNAL

XJI08047 J978W-7

CAV	CIRCUIT	FUNCTION
1	R45 18DG/LB	DRIVER AIRBAG SQUIB
2	R43 18BK/LB	DRIVER AIRBAG SQUIB

CAV	CIRCUIT	FUNCTION
Α	F142 18DG/OR	FUSED ASD RELAY FEED TO EGR SOLENOID
В	K35 18GY/YL	EGR ACTUATOR SIGNAL
С	-	_
D	Z1 18BK	GROUND

CAV	CIRCUIT	FUNCTION
1	K167 20BR/YL	SENSOR RETURN
2	K2 18TN/BK	ENGINE COOLANT TEMPERATURE SENSOR

ENGINE OIL PRESSURE SENSOR

CAV	CIRCUIT	FUNCTION
1	K167 18BR/YL	SENSOR RETURN
2	G60 18GY/YL	OIL PRESSURE SENSOR

CAV	CIRCUIT	FUNCTION
1	K52 18PK/BK	EVAP/PURGE SOLENOID CONTROL
2	F12 18DB/WT	FUSED IGNITION SWITCH OUTPUT (RUN/START)

CAV	CIRCUIT	FUNCTION
1	E2 20OR	FOG LAMP SWITCH ILLUMINATION
2	L39 20LB	FOG LAMP FEED FROM SWITCH
3	L139 20VT	SIGNAL FROM SWITCH TO RELAY
4	Z1 18BK	GROUND

XJI08048 J978W-7

CAV	CIRCUIT	FUNCTION
Α	V10 18BR	WINDSHIELD WASHER SWITCH OUTUT
В	Z1 18BK	GROUND

CIRCUIT 6 16DB	FUNCTION FUSED IGNITION SWITCH OUTPUT (RUN)
	FUSED IGNITION SWITCH OUTPUT (RUN)
5 16DG/YL	WIPER PARK SWITCH SENSE
_	-
1 16BK	GROUND
3 16BR/WT	WIPER SWITCH LOW SPEED OUTPUT
4 16BR/VT*	WIPER SWITCH HIGH SPEED OUTPUT
4 16RD/YL**	WIPER SWITCH HIGH SPEED OUTPUT
1	3 16BR/WT 1 16BR/VT*

CAV	CIRCUIT	FUNCTION
1	A93 14RD/BK	FUEL HEATER RELAY FEED TO FUEL HEATER
2	Z1 14BK	GROUND

FUEL PUMP MODULE (DIESEL)

CAV	CIRCUIT	FUNCTION
1	K134 20LB/BK	FUEL PUMP REFERENCE COIL SIGNAL
2	K57 20LG/OR	FUEL PUMP CONT. SLEEVE SIGNAL
3	K135 20WT/BK	FUEL PUMP MEASURE COIL SIGNAL
4	K4 20BK/LB	SIGNAL GROUND FUEL TEMP SENSOR
5	K126 16LG	FUEL TIMING SOLENOID SIGNAL
6	K153 16OR	FUEL SHUTOFF SOLENOID SIGNAL
7	K156 20GY	FUEL TEMP SENSOR SIGNAL
8	K140 16TN/WT	FUEL QUANTITY ACTUATOR
9	A142 16DG/OR	ASD RELAY FEED TO FUEL ACTUATOR SOLENOID
10	F142 16DG/OR	FUSED ASD RELAY FEED TO FUEL TIMING SOLENOID

* GAS

** DIESEL

XJI08049 J978W-7

CAV	CIRCUIT	FUNCTION
1	A141 16DG/WT	FUEL PUMP FEED
2	_	-
3	K226 20DB/LG	FUEL LEVEL SENSOR
4	K167 20BR/YL	FUEL RETURN SENSOR
5	_	-
6	Z1 14BK	GROUND

CAV	CIRCUIT	FUNCTION
1	A141 16DG/WT	FUEL PUMP FEED
2	_	_
3	K226 20DB/LG	FUEL LEVEL SENSOR
4	K167 20BR/YL	FUEL RETURN SENSOR
5	_	_
6	Z1 16BK	GROU ND

CAV	CIRCUIT	FUNCTION
1	B517 20PK/OR	ACCEL SENSOR
2	B515 20YL/VT	ACCEL SENSOR
3	B516 20TN/WT	ACCEL SENSOR

CAV	CIRCUIT	FUNCTION
CAV	CIRCUIT	FUNCTION
1	K20 18DG®	GENERATOR FIELD
2	K72 18DG/OR●	GENERATOR SOURCE
3	_	-
4	Z006BK**	ALTERNATOR GROUND
4	Z0 08BK*	BATTERY CABLE NEGATIVE B(-)

CAV	CIRCUIT	FUNCTION
1	M120 PK	FUSED B(+)
2	Z1 20BK	GROUND

* 2.5L DIESEL

** 4.0L

2.5L DIESEL/4.0L

J978W-7

CAV	CIRCUIT	FUNCTION
1	A54 10RD/GY	BATTERY FEED TO GLOW PLUG RELAY
2	F142 18DG/OR	FUSED ASD RELAY FEED TO GLOW PLUG RELAY
3	K152 18WT	GLOW PLUG RELAY CONTROL SENSE
4	K154 10GY	GLOW PLUG FEED

CAV	CIRCUIT	FUNCTION
1	-	-
2	A3 16RD/WT	FUSED B(+)
3	ı	-
4	Z1 18BK	GROUND
5	ı	-
6	L2 16LG	HEADLAMP SWITCH OUTPUT
6	L2 16LG	HEADLAMP SWITCH OUTPUT
7	_	-
8	F87 20WT/BK	FUSED IGNITION (START/RUN)

CAV	CIRCUIT	FUNCTION
1	_	-
2	A3 16RD/WT	FUSED B(+)
3	_	-
4	Z1 18BK	GROUND
5	_	-
6	L2 16LG	HEADLAMP SWITCH OUTPUT
6	L2 16LG	HEADLAMP SWITCH OUTPUT
7	_	-
8	F87 20WT/BK	FUSED IGNITION (START/RUN)

CAV	CIRCUIT	FUNCTION
1	_	-
2	Z15 20BK	GROUND
3	_	_
4	L44 20BK/RD	HEADLAMP LEVELING SWITCH FEED
5	L13 20BR/YL	HEADLAMP LEVELING MOTOR FEED
6	_	-

XJI08051 J978W-7

CAV	CIRCUIT	FUNCTION
1	E1 20TN	FUSED PANEL LAMPS DIMMER SWITCH SIGNAL
2	L2 16LG	FEED TO DELAY MODULE
3	M2 20YL	COURTESY LAMP DRIVER
4	F34 18TN/BK	FUSED B(+)
4	F34 18TN/BK	FUSED B(+)
5	G26 20LB	HEADLAMPS ON SIGNAL
6	G16 20BK/LB	KEY-IN IGNITION SWITCH SENSE
7	L20 16LG/WT	FEED TO BEAM SELECT SWITCH
8	A3 16RD/WT	FUSED B(+)
	A3 16RD/WT	FUSED B(+)
9	L7 18BK/YL	PARKLAMP OUTPUT

BLACK
1 3
9 7 4
8 5

6

HEADLAMP SWITCH C1 (RHD)

CAV	CIRCUIT	FUNCTION
1	E1 20TN	FUSED PANEL LAMPS DIMMER SWITCH SIGNAL
2	L2 16LG	FEED TO DELAY MODULE
3	M2 20YL	COURTESY LAMP DRIVER
4	F34 18TN/BK	FUSED B(+)
5	G26 20LB	KEY-IN IGNITION SWITCH SENSE
6	G16 20BK/LB	HEADLAMP ON SIGNAL
7	L20 16LG/WT	FEED TO BEAM SELECT SWITCH
8	A3 16RD/WT	FUSED B(+)
	A3 16RD/WT	FUSED B(+)
9	L7 18BK/YL	PARKLAMP OUTPUT

CAV	CIRCUIT	FUNCTION
1	Z1 18BK	GROUND
	Z1 18BK	GROUND

CAV	CIRCUIT	FUNCTION
1	-	1
2	C4 14TN	LOW MOTOR BLOWER DRIVER
3	C5 14LG	M1 MOTOR BLOWER DRIVER
4	C6 14LB	M2 MOTOR BLOWER DRIVER
5	-	1
6	-	1
7	C7 12BK/TN	HIGH MOTOR BLOWER DRIVER
8	A111 12RD/LG	BLOWER MOTOR FEED
9	F15 20DB/WT	FUSED IGNITION (START/RUN)
	F15 20DB/WT	FUSED IGNITION (START/RUN)
10	Z8 12BK/VT	GROUND

XJI08052 J978W-7

CAV	CIRCUIT	FUNCTION
1	_	ı
2	C4 14TN	LOW MOTOR BLOWER DRIVER
3	C5 14LG	M1 MOTOR BLOWER DRIVER
4	C6 14LB	M2 MOTOR BLOWER DRIVER
5	-	_
6	-	_
7	C7 12BK/TN	HIGH MOTOR BLOWER DRIVER
8	A111 12RD/LG	BLOWER MOTOR FEED
9	F15 20DB/WT	FUSED IGNITION (START/RUN)
10	Z8 12BK/PK	GROUND

CAV	CIRCUIT	FUNCTION
1	K59 18VT/BK	IDLE AIR CONTROL MOTOR CLOSE SIGNAL
2	K40 18BR/WT	IDLE AIR CONTROL MOTOR CLOSE SIGNAL
3	K60 18YL/BK	IDLE AIR CONTROL MOTOR CLOSE SIGNAL
4	K39 18GY/RD	IDLE AIR CONTROL MOTOR OPEN SIGNAL

CAV	CIRCUIT	FUNCTION
1	K19 18GY	IGNITION COIL NO. 1 DRIVER
2	A142 18DG/OR	AUTOMATIC SHUT DOWN RELAY OUTPUT

CAV	CIRCUIT	FUNCTION
1	Z1 20BK	GROUND
2	G9 20GY/BK	BRAKE INDICATOR LAMP
3	A2 12PK/RD	FUSED B(+)
4	A22 12BK/OR	IGNITION OUTPUT (RUN)
5	_	-
6	-	-
7	A1 12RD	FUSED B(+)
8	A31 12BK/WT	IGNITION OUTPUT (RUN/START)
9	A21 12DB	IGNITION OUTPUT (START/RUN)
10	A41 14YL	IGNITION OUTPUT (START)

CAV	CIRCUIT	FUNCTION
1	Z1 20BK	GROUND
2	G9 20GY/BK	BRAKE INDICATOR LAMP
3	A2 12PK/BK	FUSED B(+)
4	A22 12BK/OR	IGNITION OUTPUT (RUN)
5	_	_
6	_	_
7	A1 12RD	FUSED B(+)
8	A31 12BK/WT	IGNITION OUTPUT (RUN/START)
9	A21 12DB	IGNITION OUTPUT (START/RUN)
10	A41 14YL	IGNITION OUTPUT (START)

XJI08053 J978W-7

CAV	CIRCUIT	FUNCTION
1	A142 18DG/OR	AUTOMATIC SHUT DOWN FEED FROM RELAY
2	K11 18WT/DB	INJECTOR NO. 1 DRIVER

CAV	CIRCUIT	FUNCTION
1	A142 18DG/OR	AUTOMATIC SHUT DOWN FEED FROM RELAY
2	K12 18TN	INJECTOR NO. 2 DRIVER

CAV	CIRCUIT	FUNCTION
1	A142 18DG/OR	AUTOMATIC SHUT DOWN FEED FROM RELAY
2	K13 18YL/WT	INJECTOR NO. 3 DRIVER

	BLACK
2	1

INJECTOR NO. 4

CAV	CIRCUIT	FUNCTION
1	A142 18DG/OR	AUTOMATIC SHUT DOWN FEED FROM RELAY
2	K14 18LB/BR	INJECTOR NO. 4 DRIVER

CAV	CIRCUIT	FUNCTION
1	A142 18DG/OR	AUTOMATIC SHUT DOWN FEED FROM RELAY
2	K15 18PK/BK	INJECTOR NO. 5 DRIVER

INJECTOR NO. 5

CAV CIRCUIT FUNCTION

1 A142 18DG/OR AUTOMATIC SHUT DOWN FEED FROM RELAY
2 K16 18LG/BK INJECTOR NO. 6 DRIVER

XJI08054 J978W-7

CAV	CIRCUIT	FUNCTION
1	Z2 18BK/LG	GROUND
2	G99 20GY/WT	BRAKE INDICATOR LAMP
3	E2 20OR	CLUSTER ILLUMINATION
4	G19 20LG/OR	ABS INDICATOR LAMP
5	G34 16RD/GY	HIGH BEAM INDICATOR LAMP
6	Z2 18BK/LG	GROUND
7	G38 20GY	SECURITY INDICATOR LAMP
8	F87 20WT/BK	FUSED IGNITION (START/RUN)
9	M1 20PK	FUSED B(+)
10	L61 20LG/WT	LEFT TURN SIGNAL INDICATOR

CAV	CIRCUIT	FUNCTION
1	Z2 18BK/LG	GROUND
2	G99 20GY/WT	BRAKE INDICATOR LAMP
3	E2 20OR	CLUSTER ILLUMINATION
4	G19 20LG/OR	ABS INDICATOR LAMP
5	G34 16RD/GY	HIGH BEAM INDICATOR LAMP
6	Z2 18BK/LG	GROUND
7	G38 20GY	SECURITY INDICATOR LAMP
8	F87 20WT/BK	FUSED IGNITION (START/RUN)
9	M1 20PK	FUSED B(+)
10	L61 20LG/WT	LEFT TURN SIGNAL INDICATOR

CAV	CIRCUIT	FUNCTION
1	D2 20WT/BK	CCD (-)
2	D1 20VT/BR	CCD (+)
3	C81 20LB/WT	HEATED MIRRORS/REAR WINDOW DEFOGGER TIMER
4	C80 20DB/WT	HEATED MIRRORS/REAR WINDOW DEFOGGER ON
5	G107 20BK/RD	FULL TIME 4WD INDICATOR LAMP
6	L60 20TN	RIGHT TURN SIGNAL INDICATOR LAMP
7	G106 20BK/WT	PART TIME 4WD INDICATOR LAMP
8	G26 20LB	IGNITION KEY-IN TO CLUSTER
9	G29 20BK/TN	WASHER FLUID SWITCH SENSE
10	G10 20LG/RD	SEAT BELT SWITCH SENSE

CAV	CIRCUIT	FUNCTION
1	K167 20BR/YL	SENSOR RETURN
2	K21 18BK/RD	INTAKE AIR TEMPERATURE SENSOR

XJI08055 J978W-7

CAV	CIRCUIT	FUNCTION
1	L44 20VT/RD	FUSED DIMMER SWITCH LOW BEAM OUTPUT
2	_	_
3	F45 20YL/RD	FUSED IGNITION (START)
4	_	_
5	L78 20DG/YL	FUSED DIMMER SWITCH RGHT PARK LAMP OUTPUT
6	F15 20DB/WT	FUSED IGNITION (RUN)
7	_	_
8	V6 16DB	FUSED IGNITION (RUN/ALL)
9	L33 20RD	FUSED DIMMER SWITCH LEFT HIGH BEAM OUTPUT
10	L43 20VT	FUSED DIMMER SWITCH LEFT LOW BEAM OUTPUT
11	L34 20DG/OR*	FUSED DIMMER SWITCH RIGHT HIGH BEAM OUTPUT
	L34 20DG/OR**	FUSED DIMMER SWITCH RIGHT HIGH BEAM OUTPUT
12	M1 20PK	FUSED B(+)

CAV	CIRCUIT	FUNCTION
1	A4 12BK/PK	FUSED B(+)
2	A7 10RD/BK	FUSED B(+)
3	_	-
4	X2 20DG/RD	HORN RELAY OUTPUT
5	F12 18DB/WT	FUSED IGNITION (RUN/START)
6	L77 20BR/YL	FUSED DIMMER SWITCH LEFT PARK LAMP OUTPUT

CAV	CIRCUIT	FUNCTION
1	M2 20YL	COURTESY LAMP DRIVER
2	Z1 20BK	GROUND
3	M1 20PK	FUSED B(+)

BLOCK - C4

CAV	CIRCUIT	FUNCTION
L1	A31 12BK/WT	IGNITION SWITCH OUTPUT (RUN/ACC)
L2	A21 12DB	IGNITION SWITCH OUTPUT (START/RUN)
M1	A41 12YL	IGNITION SWITCH OUTPUT (START)
M1	A41 14YL*	IGNITION SWITCH OUTPUT (START)
M2	A22 12BK/OR	IGNITION SWITCH OUTPUT (RUN)
МЗ	L7 18BK/YL	PARK LAMP FEED
M4	V6 18DB	FUSED IGNITION (RUN/ACC)
M4	Y6 16DB**	FUSED IGNITION (RUN/ACC)
M5	F38 16RD/LB	FUSED B(+)
M6	F30 16RD	CIGAR LIGHTER RELAY OUTPUT
S1	E1 20TN	PANEL LAMPS FUSE FEED
S2	E2 20OR	FUSED DIMMER SWITCH OUTPUT
S3	L4 16VT/WT	DIMMER SWITCH LOW BEAM OUTPUT
S4	_	-
S5	Z1 14BK	GROUND
S6	_	-

(CONTINUED ON NEXT PAGE)

- * RHD, 4.0L AUTOMATIC TRANSMISSION
- ** ALL OTHERS

XJI08056

(CONTINUED)

		(OCITINOLD)
CAV	CIRCUIT	FUNCTION
S7	L3 16RD/OR	DIMMER SWITCH HIGH BEAM OUTPUT
S8	F15 20DB/WT	FUSED IGNITION (RUN)
S9	X12 16RD/WT	FUSED IGNITION (RUN/ACC)
S10	_	-
S11	V23 18BR/PK	FUSED IGNITION (RUN)
S12	_	-
S13	F87 20WT/BK	FUSED IGNITION (START/RUN)
S14	_	-
S15	_	-
S16	_	-
S17	_	-
S18	M1 20PK	FUSED B(+)
S19	C16 20LB/YL*	REAR WINDOW DEFOGGER RELAY OUTPUT
013	C16 20BK/WT**	REAR WINDOW DEFOGGER RELAY OUTPUT
S20	L5 20BK	FUSED IGNITION (RUN)
S21	F14 18LG/YL	FUSED IGNITION (RUN)
S22	X3 20BK/RD	HORN RELAY CONTROL
S23	F23 18DB/YL	FUSED IGNITION (START/RUN)
S24	_	-
S25	M2 20YL	COURTESY LAMP SWITCH OUTPUT
S26	C81 20LB/WT	REAR WINDOW DEFOGGER RELAY CONTROL

CAV	CIRCUIT	FUNCTION
1	X3 20BK/RD	HORN RELAY CONTROL
2	P76 20OR/YL	POWER MIRROR CONTROL
3	_	-
4	_	-
5	C16 20LB/YL	REAR WINDOW DEFOGGER RELAY OUTPUT
6	F35 16RD	FUSED B(+)
7	_	-
8	F81 12TN	FUSED IGNITION (RUN/ACC)
9	P74 20DB	RIGHT POWER MIRROR HORIZONTAL MOTOR
10	P72 20YL/BK	RIGHT POWER MIRROR VERTICAL MOTOR

CAV	CIRCUIT	FUNCTION
1	C15 12BK/WT	REAR WINDOW DEFOGGER RELAY OUTPUT
2	F37 14RD/LB	FUSED B(+)

CAV	CIRCUIT	FUNCTION
1	P33 16OR/BK	DOOR LOCK RELAY OUTPUT
2	L77 18BR	LEFT PARK LAMP
3	Q1 14YL	MASTER SWITCH LOCKOUT
4	M1 20PK	POWER MIRROR LOCK SWITCH POWER
5	P34 16PK/BK	DOOR UNLOCK RELAY OUTPUT
6	L78 18DG/YL	RIGHT PARK LAMP
7	M2 20YL	DOOR AND LIFT GROUND SWITCHES
8	A6 20RD/OR	FUSED B(+)

* LHD, BASE MODEL

** ALL OTHERS

J978W-7

CAV	CIRCUIT	FUNCTION
1	F81 12TN	FUSED IGNITION (RUN/ACC)
2	_	_

CAV	CIRCUIT	FUNCTION
1	P33 16OR/BK	RIGHT FRONT DOOR LOCK SWITCH TO ACTUATOR
2	P74 20DB	RIGHT POWER MIRROR
3	C16 20BK/WT	RIGHT POWER MIRROR HEATER
4	_	-
5	_	-
6	P72 20YL/BK	RIGHT POWER MIRROR
7	Q1 14YL	MASTER SWITCH LOCKOUT
8	_	_
9	F35 16RD	FUSED B(+)
10	P76 20OR/YL	RIGHT POWER MIRROR
11	Z1 16BK	GROUND
12	P34 16PK/BK	RIGHT FRONT DOOR SWITCH TO ACTUATOR

CAV	CIRCUIT	FUNCTION
1	G26 20LB	KEY-IN IGNITION SWITCH SENSE
2	G16 20BK/LB	KEY-IN IGNITION SWITCH SIGNAL

CAV	CIRCUIT	FUNCTION
Α	L10 18BR/LG	BACK-UP LAMP SWITCH OUTPUT
G	Z1 18BK	GROUND

(CAV	CIRCUIT	FUNCTION
	1	M1 18PK	COURTESY LAMP FEED
	2	M2 18BK/WT	SWITCHED GROUND

XJI08058 J978W-7

CAV	CIRCUIT	FUNCTION
1	Z1 20BK	GROUND
2	L39 20LB	LEFT FOG LAMP

CAV	CIRCUIT	FUNCTION
1	M2 18YL	COURTESY LAMPS DRIVER
2	G16 18BK/LB	DOOR AJAR SWITCH SENSE
3	Z1 18BK	GROUND

CAV	CIRCUIT	FUNCTION
1	X85 16BK/RD	LEFT FRONT DOOR SPEAKER (-)
2	X87 16DG	LEFT FRONT DOOR SPEAKER (+)

CAV	CIRCUIT	FUNCTION
1	X80 16LB/BR	LEFT FRONT DOOR SPEAKER (-)
2	X82 16LB/RD	LEFT FRONT DOOR SPEAKER (+)

LEFT FRONT DOOR TWEETER (LHD)

CAV	CIRCUIT	FUNCTION
1	X85 16LG/RD	LEFT DOOR TWEETER (-)
2	X87 16LG/BK	LEFT DOOR TWEETER (+)

CAV	CIRCUIT	FUNCTION
1	X80 16LB/BR	LEFT FRONT DOOR TWEETER (-)
2	X80 16LB/RD	LEFT FRONT DOOR TWEETER (+)

XJI08059 J978W-7

CA	٩V	CIRCUIT	FUNCTION
1	1	P34 16PK/BK	POWER DOOR UNLOCK RELAY
2	2	P33 16OR/BK	POWER DOOR LOCK RELAY

LEFT FRONT POWER LOCK/ WINDOW SWITCH –C1 (LHD)

CAV	CIRCUIT	FUNCTION
1	Q28 14DG/WT	MASTER SWITCH TO RIGHT REAR MOTOR (DOWN)
2	Q18 14GY/BK	MASTER SWITCHTO RIGHT REAR MOTOR (UP)
3	Q16 14BR/WT	MASTER SWITCH TO RIGHT FRONT MOTOR (UP)
4	Q17 14DB/WT	MASTER SWITCH TO LEFT REAR MOTOR (UP)
5	Q11 16LB	MASTER SWITCH TO LEFT FRONT MOTOR (UP)
6	Q26 14VT/WT	MASTER SWITCH TO RIGHT FRONT MOTOR (DOWN)
7	P35 18OR/VT	MASTER SWITCH TO POWER DOOR LOCK RELAY
8	Z1 12BK	GROUND
9	F81 12TN	MASTER SWITCH POWER FEED (RUN)
10	Q27 14RD/BK	MASTER SWTICH TO LEFT REAR MOTOR (DOWN)
11	P36 18PK/VT	MASTER SWITCH TO POWER DOOR UNLOCK RELAY
12	Q21 16WT	MASTER SWITCH TO LEFT FRONT MOTOR (DOWN)

LEFT FRONT POWER LOCK/WINDOW SWITCH –C2 (LHD)

CIRCUIT	FUNCTION
P71 20YL	LEFT POWER MIRROR (UP)
P76 20OR/YL	LEFT POWER MIRROR (DOWN/RIGHT)
M1 18PK	FUSED IGNITION B(+)
P74 20DB	RIGHT POWER MIRROR (RIGHT)
Z1 12BK	GROUND
P75 20DB/WT	LEFT POWER MIRROR (RIGHT)
P72 20YL/BK	RIGHT POWER MIRROR (UP)
Q1 14YL	MASTER SWITCH LOCKOUT
	P71 20YL P76 20OR/YL M1 18PK P74 20DB Z1 12BK P75 20DB/WT P72 20YL/BK

CAV	CIRCUIT	FUNCTION
1	Q11 16LB	POWER WINDOW MOTOR (UP)
2	Q21 16WT	POWER WINDOW MOTOR (DOWN)

CAV	CIRCUIT	FUNCTION
1	L77 20BR	LEFT PARK LAMP
2	L61 20LG	LEFT TURN SIGNAL

XJI08060 J978W-7

CAV	CIRCUIT	FUNCTION
1	B8 20RD/DB	LEFT FRONT WHEEL SPEED SENSOR (-)
2	B9 20RD	LEFT FRONT WHEEL SPEED SENSOR (+)

CAV	CIRCUIT	FUNCTION
1	B8 20RD/DB	LEFT FRONT WHEEL SPEED SENSOR (-)
2	B9 20RD	LEFT FRONT WHEEL SPEED SENSOR (+)

CAV	CIRCUIT	FUNCTION
Α	L33 20RD	LEFT HIGH BEAM
_ ^	L33 20RD*	LEFT HIGH BEAM
В	L43 VT	LEFT LOW BEAM
С	Z1 18BK	GROUND

CAV	CIRCUIT	FUNCTION
1	L77 20BR	LEFT PARK LAMP
2	Z1 20BK	GROUND

CAV	CIRCUIT	FUNCTION
1	P71 20YL	LEFT POWER MIRROR (UP)
2	P76 20OR/YL	LEFT POWER MIRROR (DOWN/RIGHT)
3	P75 20DB/WT**	LEFT POWER MIRROR (RIGHT)
3	P75 20DB/RD***	LEFT POWER MIRROR (RIGHT)
4	P76 20OR/YL	LEFT POWER MIRROR (DOWN/RIGHT)
5	C16 20LB/YL	HEATED MIRROR FEED
6	Z1 16BK	GROUND

* WITH FOG LAMPS

** LHD

*** RHD

XJI08061 J978W-7

POWER SEAT

CAV	CIRCUIT	FUNCTION
1	F37 14RD/LB	POWER SEAT FEED
2	Z1 14BK	BODY GROUND

CAV	CIRCUIT	FUNCTION
Α	M2 18YL	COURTESY LAMPS DRIVER
В	Z1 18BK	GROUND
С	_	_

LEFT REAR DOOR JAMB SWITCH

LEFT REAR POWER DOOR LOCK MOTOR

CAV	CIRCUIT	FUNCTION
1	P34 16PK/BK	DOOR LOCK MOTOR UNLOCK
2	P33 16OR/BK	DOOR LOCK MOTOR LOCK

CAV	CIRCUIT	FUNCTION
1	Q13 16DB	REAR SWITCH TO MOTOR UP
2	Q23 16RD/WT	REAR SWITCH TO MOTOR DOWN

CAV	CIRCUIT	FUNCTION
1	Q13 16DB	REAR SWITCH TO MOTOR UP
2	Q28 14DG/WT	REAR SWITCH TO MASTER DOWN
3	_	-
4	Q18 14GY/BK	REAR SWITCH TO MASTER UP
5	Q23 16RD/WT	REAR SWITCH TO MOTOR DOWN
6	Q1 14YL	MASTER SWITCH LOCKOUT

XJI08062 J978W-7

CAV	CIRCUIT	FUNCTION
Α	L90 18DB/RD	PARK LAMP SWITCH OUTPUT
В	Z1 18BK	GROUND

SIGNAL LAMP

CAV	CIRCUIT	FUNCTION
Α	L60 18TN	LEFT TURN SIGNAL
G	Z1 18BK	GROUND

CAV	CIRCUIT	FUNCTION
Α	B3 20LG/DB	LEFT REAR WHEEL SENSOR (-)
В	B4 20LG	LEFT REAR WHEEL SENSOR (+)

LEFT REAR WHEEL SPEED SENSOR (RHD)

C	ΑV	CIRCUIT	FUNCTION
	Α	B3 18LG/DB	LEFT REAR WHEEL SENSOR (-)
	В	B4 18LG	LEFT REAR WHEEL SENSOR (+)

CAV	CIRCUIT	FUNCTION
Α	X91 16WT/BK	LEFT SOUND BAR SPEAKER (-)
В	X93 16WT/RD	LEFT SOUND BAR SPEAKER (+)

CAV	CIRCUIT	FUNCTION
1	X91 16WT/BK	SOUND BAR (-)
2	X93 16WT/RD	SOUND BAR (+)

XJI080563 J978W-7

CAV	CIRCUIT	FUNCTION
Α	L50 18WT/TN	STOP LAMP SWITCH OUTPUT
В	L90 18DB/RD	PARK LAMP SWITCH OUTPUT
G	Z1 18BK	GROUND

CAV	CIRCUIT	FUNCTION
1	L61 18LG	LEFT TURN SIGNAL
2	Z1 18BK	GROUND

CAV	CIRCUIT	FUNCTION
1	Z1 18BK	GROUND
2	_	_
3	L61 18LG	LEFT TURN SIGNAL

CAV	CIRCUIT	FUNCTION
1	L77 18BR	PARK LAMP SWITCH OUTPUT
2	Z1 18BK	GROUND

LIFTGATE JAMB SWITCH

CAV	CIRCUIT	FUNCTION
1	Z1 20BK	GROUND
2	_	_
3	M4 20VT/YL	COURTESY LAMPS DRIVER

XJI08064 J978W-7

CAV	CIRCUIT	FUNCTION
Α	P33 16OR/BK	DOOR LOCK RELAY OUTPUT
В	P34 16PK/BK	DOOR UNLOCK RELAY OUTPUT

CAV	CIRCUIT	FUNCTION
1	G18 20PK/BK	COOLANT LEVEL SENSOR
2	K167 20BR/YL	SIGNAL GROUND LOW COOLANT

CAV	CIRCUIT	FUNCTION
Α	Z1 20BK	GROUND
В	G29 20BK/LB*	WASHER FLUID SWITCH SENSE
В	G29 20BK/TN**	WASHER FLUID SWITCH SENSE

MANIFOLD ABSOLUTE PRESSURE SENSOR

CAV	CIRCUIT	FUNCTION
1	K167 20BR/YL	SENSOR RETURN
2	K1 18DG/RD	MAP SENSOR
3	K7 20OR	5 VOLT SUPPLY

CAV	CIRCUIT	FUNCTION
1	Z2 18BK/LG	GROUND
2	K4 20BK/LB	SENSOR GROUND
3	F142 18DG/OR	FUSED AUTOMATIC SHUTDOWN RELAY OUTPUT
4	K155 20DB	MASS AIR FLOW SENSOR SIGNAL

1	CAV	CIRCUIT	EUNCTION
2 G21 20GY/LB		CIRCUIT	FUNCTION
3			
4 K140 16TN/WT FUEL QUANTITY ACTUATOR GROUND 5 K140 16TN/WT FUEL QUANTITY ACTUATOR GROUND 6 — — 7 K57 20LG/OR CONT SLEEVE POSITION SENSOR 8 K24 20GY/BK CRANK POSITION SENSOR SIGNAL 9 — — 10 — — 11 K68 18LG/YL NEEDLE MOVEMENT SENSOR (-) 12 K67 18BR/BK NEEDLE MOVEMENT SENSOR (+) 13 K155 20DB AIR FLOW METER SIGNAL 14 K2 20TN/BK ENGINE COOLANT TEMEPRATURE SENSOR SIGNAL 15 K22 20OR/DB THROTTLE POSITION SENSOR SIGNAL 16 — — 17 — — 20 K29 20WT/PK BRAKE SWITCH SENSE 21 K3 20LG/BK SENSOR GROUND 22 — — 23 A142 16DG/OR AUTO SHUTDOWN RELAY OUTPUT 24 Z12 16BK/LG POWER GROUND 25 K35 18GY/YL EGR SOLENOLD CONTROL 26 <t< td=""><td></td><td></td><td></td></t<>			
5 K140 16TNWT FUEL QUANTITY ACTUATOR GROUOND 6 - - 7 K57 20LG/OR CONT SLEEVE POSITION SENSOR 8 K24 20GY/BK CRANK POSITION SENSOR SIGNAL 9 - - 10 - - 11 K68 18LG/YL NEEDLE MOVEMENT SENSOR (-) 12 K67 18BR/BK NEEDLE MOVEMENT SENSOR (-) 13 K155 20DB AIR FLOW METER SIGNAL 14 K2 20TN/BK ENGINE COOLANT TEMEPRATURE SENSOR SIGNAL 15 K22 20OR/DB THROTTLE POSITION SENSOR SIGNAL 16 - - 17 - - 18 - - 19 - - 20 K29 20WT/PK BRAKE SWITCH SENSE 21 K3 20LG/BK SENSOR GROUND 22 - - 23 A142 16DG/OR AUTO SHUTDOWN RELAY OUTPUT 24 Z12 16BK/LG POWER GROUND 25 K35 18GYYL EGR SOLENOID CONTROL			
6			
7 K57 20LG/OR CONT SLEEVE POSITION SENSOR 8 K24 20GY/BK CRANK POSITION SENSOR SIGNAL 9 - - 10 - - 11 K68 18LG/YL NEEDLE MOVEMENT SENSOR (+) 12 K67 18BR/BK NEEDLE MOVEMENT SENSOR (+) 13 K155 20DB AIR FLOW METER SIGNAL 14 K2 20TN/BK ENGINE COOLANT TEMEPRATURE SENSOR SIGNAL 15 K22 20OR/DB THROTTLE POSITION SENSOR SIGNAL 16 - - 17 - - 18 - - 19 - - 20 K29 20WT/PK BRAKE SWITCH SENSE 21 K3 20LG/BK SENSOR GROUND 22 - - 23 A142 16DG/OR AUTO SHUTDOWN RELAY OUTPUT 24 Z12 16BK/LG POWER GROUND 25 K35 18GY/YL EGR SOLENOID CONTROL 26 K48 20OR/RD FLT SIGNAL 27 Y66 20RD/LG WIPER PARK SWITCH OUTPUT<		K140 16TN/WT	FUEL QUANTITY ACTUATOR GROUOND
8 K24 20GY/BK CRANK POSITION SENSOR SIGNAL 9 - - 10 - - 11 K68 18LG/YL NEEDLE MOVEMENT SENSOR (-) 12 K67 18BR/BK NEEDLE MOVEMENT SENSOR (+) 13 K155 20DB AIR FLOW METER SIGNAL 14 K2 20TN/BK ENGINE COOLANT TEMEPRATURE SENSOR SIGNAL 15 K22 20OR/DB THROTTLE POSITION SENSOR SIGNAL 16 - - 17 - - 18 - - 19 - - 20 K29 20WT/PK BRAKE SWITCH SENSE 21 K3 20LG/BK SENSOR GROUND 22 - - 23 A142 16DG/OR AUTO SHUTDOWN RELAY OUTPUT 24 Z12 16BK/LG POWER GROUND 25 K35 18GY/YL EGR SOLENOID CONTROL 26 K48 20OR/RD FLT SIGNAL 27 V66 20RD/LG WIPER PARK SWITCH SENSE 28 C22 20DB/WT PRESSURE SWITCH OUTPUT		_	-
9	7		
10	8	K24 20GY/BK	CRANK POSITION SENSOR SIGNAL
111 K68 18LG/YL NEEDLE MOVEMENT SENSOR (-) 12 K67 18BR/BK NEEDLE MOVEMENT SENSOR (+) 13 K155 20DB AIR FLOW METER SIGNAL 14 K2 20TN/BK ENGINE COOLANT TEMEPRATURE SENSOR SIGNAL 15 K22 20OR/DB THROTTLE POSITION SENSOR SIGNAL 16 - - 17 - - 18 - - 19 - - 20 K29 20WT/PK BRAKE SWITCH SENSE 21 K3 20LG/BK SENSOR GROUND 22 - - 23 A142 16DG/OR AUTO SHUTDOWN RELAY OUTPUT 24 Z12 16BK/LG POWER GROUND 25 K35 18GY/YL EGR SOLENOID CONTROL 26 K48 20OR/RD FLT SIGNAL 27 V66 20RD/LG WIPER PARK SWITCH SENSE 28 C22 20DB/WT PRESSURE SWITCH OUTPUT 29 K134 20LB/BK SLEEVE POSITION SENSOR (-) 30 - - 31 - - <td>9</td> <td>_</td> <td></td>	9	_	
12	10	-	
13	11	K68 18LG/YL	NEEDLE MOVEMENT SENSOR (-)
14 K2 20TN/BK ENGINE COOLANT TEMEPRATURE SENSOR SIGNAL 15 K22 200R/DB THROTTLE POSITION SENSOR SIGNAL 16 — — 17 — — 18 — — 19 — — 20 K29 20WT/PK BRAKE SWITCH SENSE 21 K3 20LG/BK SENSOR GROUND 22 — — 23 A142 16DG/OR AUTO SHUTDOWN RELAY OUTPUT 24 Z12 16BK/LG POWER GROUND 25 K35 18GY/YL EGR SOLENOID CONTROL 26 K48 20OR/RD FLT SIGNAL 27 V66 20RD/LG WIPER PARK SWITCH SENSE 28 C22 20DB/WT PRESSURE SWITCH OUTPUT 29 K134 20LB/BK SLEEVE POSITION SENSOR (-) 30 — — 31 — — 32 — — 33 K4 20BK/LB SENSOR GROUND 34 — — 36 V37 20RD/LG	12	K67 18BR/BK	NEEDLE MOVEMENT SENSOR (+)
15	13	K155 20DB	AIR FLOW METER SIGNAL
16	14	K2 20TN/BK	ENGINE COOLANT TEMEPRATURE SENSOR SIGNAL
17	15	K22 20OR/DB	THROTTLE POSITION SENSOR SIGNAL
18	16	_	-
19	17	_	-
20	18	_	_
21 K3 20LG/BK SENSOR GROUND 22 - - 23 A142 16DG/OR AUTO SHUTDOWN RELAY OUTPUT 24 Z12 16BK/LG POWER GROUND 25 K35 18GY/YL EGR SOLENOID CONTROL 26 K48 20OR/RD FLT SIGNAL 27 V66 20RD/LG WIPER PARK SWITCH SENSE 28 C22 20DB/WT PRESSURE SWITCH OUTPUT 29 K134 20LB/BK SLEEVE POSITION SENSOR (-) 30 - - 31 - - 32 - - 33 K4 20BK/LB SENSOR GROUND 34 - - 35 - - 36 V37 20RD/LG SPEED CONTROL SWITCH SIGNAL 37 C103 20DG A/C SWITCH SIGNAL 38 F12 18DB/WT FUSED IGNITION SWITCH OUTPUT 40 - - 41 - - 42 K51 20DB/YL AUTO SHUTDOWN RELAY CONTROL 43 G7 20WT	19	-	_
22	20	K29 20WT/PK	BRAKE SWITCH SENSE
22	21	K3 20LG/BK	SENSOR GROUND
23 A142 16DG/OR AUTO SHUTDOWN RELAY OUTPUT 24 Z12 16BK/LG POWER GROUND 25 K35 18GY/YL EGR SOLENOID CONTROL 26 K48 20OR/RD FLT SIGNAL 27 V66 20RD/LG WIPER PARK SWITCH SENSE 28 C22 20DB/WT PRESSURE SWITCH OUTPUT 29 K134 20LB/BK SLEEVE POSITION SENSOR (-) 30 - - 31 - - 32 - - 33 K4 20BK/LB SENSOR GROUND 34 - - 35 - - 36 V37 20RD/LG SPEED CONTROL SWITCH SIGNAL 37 C103 20DG A/C SWITCH SIGNAL 38 F12 18DB/WT FUSED IGNITION SWITCH OUTPUT 40 - - 41 - - 42 K51 20DB/YL AUTO SHUTDOWN RELAY CONTROL 43 G7 20WT/OR VEHICLE SPEED SENSOR SIGNAL 44 L50 20WT/TN STOP LAMP SWITCH OUTPUT		_	
24 Z12 16BK/LG POWER GROUND 25 K35 18GY/YL EGR SOLENOID CONTROL 26 K48 20OR/RD FLT SIGNAL 27 V66 20RD/LG WIPER PARK SWITCH SENSE 28 C22 20DB/WT PRESSURE SWITCH OUTPUT 29 K134 20LB/BK SLEEVE POSITION SENSOR (-) 30 - - 31 - - 32 - - 33 K4 20BK/LB SENSOR GROUND 34 - - 35 - - 36 V37 20RD/LG SPEED CONTROL SWITCH SIGNAL 37 C103 20DG A/C SWITCH SIGNAL 38 F12 18BB/WT FUSED IGNITION SWITCH OUTPUT 39 - - 40 - - 41 - - 42 K51 20DB/YL AUTO SHUTDOWN RELAY CONTROL 43 G7 20WT/OR VEHICLE SPEED SENSOR SIGNAL 44 L50 20WT/TN STOP LAMP SWITCH OUTPUT 45 <		A142 16DG/OR	AUTO SHUTDOWN RELAY OUTPUT
25 K35 18GY/YL EGR SOLENOID CONTROL 26 K48 20OR/RD FLT SIGNAL 27 V66 20RD/LG WIPER PARK SWITCH SENSE 28 C22 20DB/WT PRESSURE SWITCH OUTPUT 29 K134 20LB/BK SLEEVE POSITION SENSOR (-) 30 - - 31 - - 32 - - 33 K4 20BK/LB SENSOR GROUND 34 - - 35 - - 36 V37 20RD/LG SPEED CONTROL SWITCH SIGNAL 37 C103 20DG A/C SWITCH SIGNAL 38 F12 18DB/WT FUSED IGNITION SWITCH OUTPUT 39 - - 40 - - 41 - - 42 K51 20DB/YL AUTO SHUTDOWN RELAY CONTROL 43 G7 20WT/OR VEHICLE SPEED SENSOR SIGNAL 44 L50 20WT/TN STOP LAMP SWITCH OUTPUT 45 A142 16DG/OR AUTO DHUTDOWN RELAY OUTPUT 46			
26 K48 200R/RD FLT SIGNAL 27 V66 20RD/LG WIPER PARK SWITCH SENSE 28 C22 20DB/WT PRESSURE SWITCH OUTPUT 29 K134 20LB/BK SLEEVE POSITION SENSOR (-) 30 - - 31 - - 32 - - 33 K4 20BK/LB SENSOR GROUND 34 - - 35 - - 36 V37 20RD/LG SPEED CONTROL SWITCH SIGNAL 37 C103 20DG A/C SWITCH SIGNAL 38 F12 18DB/WT FUSED IGNITION SWITCH OUTPUT 39 - - 40 - - 41 - - 42 K51 20DB/YL AUTO SHUTDOWN RELAY CONTROL 43 G7 20WT/OR VEHICLE SPEED SENSOR SIGNAL 44 L50 20WT/TN STOP LAMP SWITCH OUTPUT 45 A142 16DG/OR AUTO DHUTDOWN RELAY OUTPUT 46 Z12 16BK/LG POWER GROUOND 47			
27 V66 20RD/LG WIPER PARK SWITCH SENSE 28 C22 20DB/WT PRESSURE SWITCH OUTPUT 29 K134 20LB/BK SLEEVE POSITION SENSOR (-) 30 - - 31 - - 32 - - 33 K4 20BK/LB SENSOR GROUND 34 - - 35 - - 36 V37 20RD/LG SPEED CONTROL SWITCH SIGNAL 37 C103 20DG A/C SWITCH SIGNAL 38 F12 18DB/WT FUSED IGNITION SWITCH OUTPUT 39 - - 40 - - 41 - - 42 K51 20DB/YL AUTO SHUTDOWN RELAY CONTROL 43 G7 20WT/OR VEHICLE SPEED SENSOR SIGNAL 44 L50 20WT/TN STOP LAMP SWITCH OUTPUT 45 A142 16DG/OR AUTO DHUTDOWN RELAY OUTPUT 46 Z12 16BK/LG POWER GROUOND 47 - - 49 K140 16T			
28 C22 20DB/WT PRESSURE SWITCH OUTPUT 29 K134 20LB/BK SLEEVE POSITION SENSOR (-) 30 - - 31 - - 32 - - 33 K4 20BK/LB SENSOR GROUND 34 - - 35 - - 36 V37 20RD/LG SPEED CONTROL SWITCH SIGNAL 37 C103 20DG A/C SWITCH SIGNAL 38 F12 18DB/WT FUSED IGNITION SWITCH OUTPUT 39 - - 40 - - 41 - - 42 K51 20DB/YL AUTO SHUTDOWN RELAY CONTROL 43 G7 20WT/OR VEHICLE SPEED SENSOR SIGNAL 44 L50 20WT/TN STOP LAMP SWITCH OUTPUT 45 A142 16DG/OR AUTO DHUTDOWN RELAY OUTPUT 46 Z12 16BK/LG POWER GROUOND 47 - - 48 - - 49 K140 16TN/WT FUEL QUANT			
29 K134 20LB/BK SLEEVE POSITION SENSOR (-) 30			
30			
31		K134 20LB/BK	SLEEVE FOSITION SENSOR (-)
32		_	
33 K4 20BK/LB SENSOR GROUND 34 - - 35 - - 36 V37 20RD/LG SPEED CONTROL SWITCH SIGNAL 37 C103 20DG A/C SWITCH SIGNAL 38 F12 18DB/WT FUSED IGNITION SWITCH OUTPUT 39 - - 40 - - 41 - - 42 K51 20DB/YL AUTO SHUTDOWN RELAY CONTROL 43 G7 20WT/OR VEHICLE SPEED SENSOR SIGNAL 44 L50 20WT/TN STOP LAMP SWITCH OUTPUT 45 A142 16DG/OR AUTO DHUTDOWN RELAY OUTPUT 46 Z12 16BK/LG POWER GROUOND 47 - - 48 - - 49 K140 16TN/WT FUEL QUANTITY ACTUATOR GROUND 50 K152 18WT GLOW PLUG RELAY CONTROL SENSE		_	
34		- K4 20DK/LD	CENCOD ODOLIND
35		N4 ZUDN/LD	SENSOR GROUND
36 V37 20RD/LG SPEED CONTROL SWITCH SIGNAL 37 C103 20DG A/C SWITCH SIGNAL 38 F12 18DB/WT FUSED IGNITION SWITCH OUTPUT 39 - - 40 - - 41 - - 42 K51 20DB/YL AUTO SHUTDOWN RELAY CONTROL 43 G7 20WT/OR VEHICLE SPEED SENSOR SIGNAL 44 L50 20WT/TN STOP LAMP SWITCH OUTPUT 45 A142 16DG/OR AUTO DHUTDOWN RELAY OUTPUT 46 Z12 16BK/LG POWER GROUOND 47 - - 48 - - 49 K140 16TN/WT FUEL QUANTITY ACTUATOR GROUND 50 K152 18WT GLOW PLUG RELAY CONTROL SENSE		_	-
37 C103 20DG A/C SWITCH SIGNAL 38 F12 18DB/WT FUSED IGNITION SWITCH OUTPUT 39 - - 40 - - 41 - - 42 K51 20DB/YL AUTO SHUTDOWN RELAY CONTROL 43 G7 20WT/OR VEHICLE SPEED SENSOR SIGNAL 44 L50 20WT/TN STOP LAMP SWITCH OUTPUT 45 A142 16DG/OR AUTO DHUTDOWN RELAY OUTPUT 46 Z12 16BK/LG POWER GROUOND 47 - - 48 - - 49 K140 16TN/WT FUEL QUANTITY ACTUATOR GROUND 50 K152 18WT GLOW PLUG RELAY CONTROL SENSE		-	- OPER CONTROL CONTROL CONTROL
38 F12 18DB/WT FUSED IGNITION SWITCH OUTPUT 39 - - 40 - - 41 - - 42 K51 20DB/YL AUTO SHUTDOWN RELAY CONTROL 43 G7 20WT/OR VEHICLE SPEED SENSOR SIGNAL 44 L50 20WT/TN STOP LAMP SWITCH OUTPUT 45 A142 16DG/OR AUTO DHUTDOWN RELAY OUTPUT 46 Z12 16BK/LG POWER GROUOND 47 - - 48 - - 49 K140 16TN/WT FUEL QUANTITY ACTUATOR GROUND 50 K152 18WT GLOW PLUG RELAY CONTROL SENSE			
39			
40 - - 41 - - 42 K51 20DB/YL AUTO SHUTDOWN RELAY CONTROL 43 G7 20WT/OR VEHICLE SPEED SENSOR SIGNAL 44 L50 20WT/TN STOP LAMP SWITCH OUTPUT 45 A142 16DG/OR AUTO DHUTDOWN RELAY OUTPUT 46 Z12 16BK/LG POWER GROUOND 47 - - 48 - - 49 K140 16TN/WT FUEL QUANTITY ACTUATOR GROUND 50 K152 18WT GLOW PLUG RELAY CONTROL SENSE		F12 18DB/W1	FUSED IGNITION SWITCH OUTPUT
41 - - 42 K51 20DB/YL AUTO SHUTDOWN RELAY CONTROL 43 G7 20WT/OR VEHICLE SPEED SENSOR SIGNAL 44 L50 20WT/TN STOP LAMP SWITCH OUTPUT 45 A142 16DG/OR AUTO DHUTDOWN RELAY OUTPUT 46 Z12 16BK/LG POWER GROUOND 47 - - 48 - - 49 K140 16TN/WT FUEL QUANTITY ACTUATOR GROUND 50 K152 18WT GLOW PLUG RELAY CONTROL SENSE		_	
42 K51 20DB/YL AUTO SHUTDOWN RELAY CONTROL 43 G7 20WT/OR VEHICLE SPEED SENSOR SIGNAL 44 L50 20WT/TN STOP LAMP SWITCH OUTPUT 45 A142 16DG/OR AUTO DHUTDOWN RELAY OUTPUT 46 Z12 16BK/LG POWER GROUOND 47 - - 48 - - 49 K140 16TN/WT FUEL QUANTITY ACTUATOR GROUND 50 K152 18WT GLOW PLUG RELAY CONTROL SENSE		_	
43 G7 20WT/OR VEHICLE SPEED SENSOR SIGNAL 44 L50 20WT/TN STOP LAMP SWITCH OUTPUT 45 A142 16DG/OR AUTO DHUTDOWN RELAY OUTPUT 46 Z12 16BK/LG POWER GROUOND 47 - - 48 - - 49 K140 16TN/WT FUEL QUANTITY ACTUATOR GROUND 50 K152 18WT GLOW PLUG RELAY CONTROL SENSE			-
44 L50 20WT/TN STOP LAMP SWITCH OUTPUT 45 A142 16DG/OR AUTO DHUTDOWN RELAY OUTPUT 46 Z12 16BK/LG POWER GROUOND 47 - - 48 - - 49 K140 16TN/WT FUEL QUANTITY ACTUATOR GROUND 50 K152 18WT GLOW PLUG RELAY CONTROL SENSE			
45 A142 16DG/OR AUTO DHUTDOWN RELAY OUTPUT 46 Z12 16BK/LG POWER GROUOND 47 - - 48 - - 49 K140 16TN/WT FUEL QUANTITY ACTUATOR GROUND 50 K152 18WT GLOW PLUG RELAY CONTROL SENSE			
46 Z12 16BK/LG POWER GROUOND 47 - - 48 - - 49 K140 16TN/WT FUEL QUANTITY ACTUATOR GROUND 50 K152 18WT GLOW PLUG RELAY CONTROL SENSE			
47 - 48 - 49 K140 16TN/WT FUEL QUANTITY ACTUATOR GROUND 50 K152 18WT GLOW PLUG RELAY CONTROL SENSE	45		AUTO DHUTDOWN RELAY OUTPUT
48 – – – – 49 K140 16TN/WT FUEL QUANTITY ACTUATOR GROUND 50 K152 18WT GLOW PLUG RELAY CONTROL SENSE	46	Z12 16BK/LG	POWER GROUOND
49 K140 16TN/WT FUEL QUANTITY ACTUATOR GROUND 50 K152 18WT GLOW PLUG RELAY CONTROL SENSE	47	_	-
50 K152 18WT GLOW PLUG RELAY CONTROL SENSE	48	_	
	49	K140 16TN/WT	FUEL QUANTITY ACTUATOR GROUND
51 K126 16LG SOLENOID CONTROL	50	K152 18WT	GLOW PLUG RELAY CONTROL SENSE
oor	51	K126 16LG	SOLENOID CONTROL
52 K135 20WT/BK SLEEVE POSITION SENSOR (+)	'		

(CONTINUED ON NEXT PAGE)

XJI08066 J978W-7

(CONTINUED)

CIRCUIT	FUNCTION
K153 16OR	SHUTOFF FEED
_	-
K255 20WT/DG	PEDAL POSITION SENSOR
_	-
K6 20VT/WT	5 VOLT SUPPLY
_	_
G55 200R/BK	ENGINE DISABLE SIGNAL
_	_
D21 20PK	SCI TRANSMIT
_	_
K156 20GY	FUEL TEMPERATURE SENSOR SIGNAL
_	_
K151 20WT	LOW IDLE POSITION SWITCH
_	_
_	_
A142 16DG/OR	AUTO SHUTDOWN RELAY OUTPUT
	K153 16OR - K255 20WT/DG - K6 20VT/WT - G55 20OR/BK - D21 20PK - K156 20GY - K151 20WT -

CAV	CIRCUIT	FUNCTION
1	K67 18BR/BK	NEEDLE MOVEMENT SENSOR B(+)
2	K68 18LG/YL	NEEDLE MOVEMENT SENSOR B(-)

CAV	CIRCUIT	FUNCTION
1	K167 20BR/YL	SIGNAL GROUND OIL PRESSURE SWITCH
2	G60 20GY/YL	OIL PRESSURE GAUGE SENDING UNIT

OVERHEAD MODULE (WITH IMMOBILIZER)

CAV	CIRCUIT	FUNCTION
1	M2 20YL	DOOR AJAR
2	M1 20PK	COURTESY LAMPS
3	Z1 20BK	POWER GROUND
4	G38 20GY	IMMOBILIZER TELLTALE
5	P55 20DB	UNLOCK CONTROL
6	D1 20VT/BR	CCD BUS(+)
7	_	-
8	F1 20DB/GY	FUSED BATTERY SIGNAL
9	Z2 20BK/LG	LOGIC GROUND
10	X3 20BK/RD	HORN RELAY
11	P59 20LB/RD	LOCK CONTROL
12	D2 20WT/BK	CCD BUS(-)

XJI08067 J978W-7

CAV	CIRCUIT	FUNCTION
1	G9 18GY/BK	BRAKE SWITCH SENSE
2	_	_

CAV	CIRCUIT	FUNCTION
1	G9 20GY/BK	BRAKE SWITCH SENSE
2	-	-

CAV	CIRCUIT	FUNCTION
1	R51 20WT/YL	PRESSURE SENSE (-)
2	R50 20BR/YL	PRESSURE SENSE (+)
3	R42 18BK/YL	AIRBAG SQUIB (-)
4	R44 18DG/YL	AIRBAG SQUIB (+)

PEDAL POSITION SENSOR (DIESEL)

CAV	CIRCUIT	FUNCTION
1	-	-
2	_	_
3	K4 20BK/LB	SIGNAL GROUND PEDAL POSITION SENSOR
4	_	_
5	K151 20WT	PEDAL POSITION SENSOR LOW IDLE SIGNAL
6	_	_
7	K22 20OR/DB	THROTTLE POSITION SIGNAL
8	K255 20WT/DG	PEDAL POSITION SENSOR GROUND
9	_	-
10	K6 20VT/WT	5 VOLT OUTPUT FOR M.A.P.P. & T.P.P.
		•

CAV	CIRCUIT	FUNCTION
1	X55 16BR/RD	LEFT DOOR SPEAKER (-)
2	X56 16DB/RD	RIGHT DOOR SPEAKER (-)
3	X58 16DB/OR	RIGHT SOUND BAR SPEAKER (-)
4	X60 16DG/RD	POWER AMP RELAY FEED
5	X53 16DG	LEFT DOOR SPEAKER (+)
6	X54 16VT	RIGHT DOOR SPEAKER (+)
7	X51 16BR/YL	LEFT SOUND BAR SPEAKER (+)
8	X57 16BR/LB	LEFT SOUND BAR SPEAKER (-)
9	X52 16DB/WT	RIGHT SOUND BAR SPEAKER (+)
10	_	-

XJI08068 J978W-7

CAV	CIRCUIT	FUNCTION
1	F75 16VT	POWER AMP FEED
2	F75 16VT	POWER AMP FEED
3	_	-
4	X87 16DG	LEFT DOOR SPEAKER (+)
5	X94 16TN/RD	RIGHT SOUND BAR SPEAKER (+)
6	X93 16WT/TN	LEFT SOUND BAR SPEAKER (-)
7	Z5 16BK	POWER AMP GROUND
8	Z5 16BK	POWER AMP GROUND
9	_	_
10	X80 16LB/BK	RIGHT DOOR SPEAKER (-)
11	X82 16LB/RD	RIGHT DOOR SPEAKER (+)
12	X85 16BR/RD	LEFT DOOR SPEAKER (-)
13	X92 16TN/BK	RIGHT SOUND BAR SPEAKER (-)
14	X91 16WT/BK	LEFT SOUND BAR SPEKAER (-)

CAV	CIRCUIT	FUNCTION
1	F75 16VT	POWER AMP FEED
2	F75 16VT	POWER AMP FEED
3	-	-
4	X87 16DG	LEFT DOOR SPEAKER (+)
5	X94 16TN/RD	RIGHT SOUND BAR SPEAKER (+)
6	X93 16WT/TN	LEFT SOUND BAR SPEAKER (+)
7	Z5 16BK	POWER AMP GROUND
8	Z5 16BK	POWER AMP GROUND
9	_	_
10	X80 16LB/BK	RIGHT DOOR SPEAKER (-)
11	X82 16LB/RD	RIGHT DOOR SPEAKER (+)
12	X85 16BR/RD	LEFT DOOR SPEAKER (-)
13	X92 16TN/BK	RIGHT SOUND BAR SPEAKER (-)
14	X91 16WT/BK	LEFT SOUND BAR SPEKAER (-)

CAV	CIRCUIT	FUNCTION
1	Z1 16BK	GROUND
2	F38 16RD/LB	POWER OUTLET FEED

POWER STEERING PRESSURE SWITCH (2.5L)

CA	V CIRCUIT	FUNCTION
1	Z1 20BK	GROUND
2	K10 18DB/BR	POWER STEERING PRESSURE SWITCH SENSE

XJI08069 J978W-7

CAV	CIRCUIT	FUNCTION
A1	_	_
A2	F12 18DB/WT	FUSED IGNITION SWITCH OUTPUT (RUN/START)
A3	_	_
A4	K167 18BR/YL	SENSOR RETURN
	T41 18BK/WT	PARK/NEUTRAL SWITCH*
A5	_	_
4.0	T41 18BK/WT	PARK NEUTRAL SWITCH*
A6	Z1 18BK	GROUND**
A7	K19 18GY	IGNITION COILS NO. 1 NO. 6 DRIVER
A8	K24 18GY/BK	CRANKSHAFT POSITION SENSOR SIGNAL
A9	_	_
A10	K60 18YL/BK	AIS MOTOR CLOSE SIGNAL
A11	K40 18BR/WT	AIS MOTOR CLOSE SIGNAL
A12	K10 18DB/BK	POWER STEERING PRESSURE SWITCH***
A12	K78 18GY	EXTENDED IDLE SWITCH (POLICE)****
A13	_	-
A14	_	-
A15	K21 18BK/RD	CHARGE AIR TEMP SENSOR
A16	K2 18TN/BK	ENGINE COOLANT TEMPERATURE SENSOR
A17	K7 18OR	5 VOLT SUPPLY
A18	K44 18TN/YL	CAMSHAFT POSITION SENSOR SIGNAL
A19	K39 18GY/RD	AIS MOTOR OPEN SIGNAL
A20	K59 18VT/BK	AIS MOTOR CLOSE SIGNAL
A21	-	-
A22	A61 16DG/BK	FUSED B(+)
A23	K22 18OR/DB	THROTTLE POSITION SENSOR
A24	K41 18BK/DG	UPSTREAM HEATED OXYGEN SENSOR
A25	K141 18TN/BK	DOWNSTREAM HEATED OXYGEN SENSOR
A26	-	-
A27	K1 18DG/RD	MANIFOLD ABSOLUTE PRESSURE SENSOR
A28	_	-
A29	_	-
A30	_	-
A31	Z12 14BK/TN	GROUND
A32	Z12 14BK/TN	GROUND

XJI08070 J978W-7

^{*} WITH AUTOMATIC TRANSMISSION

^{**} WITH MANUAL TRANSMISSION

^{***} WITH 2.5L ENGINE

^{****} WITH 4.0L ENGINE, AUTOMATIC TRANSMISSSION

XJ -

8W-80 CONNECTOR PIN-OUTS ——

8W - 80 - 71

04)/	OLDOLUT	FUNCTION
CAV	CIRCUIT	FUNCTION
1	K226 20DB/LG	FUEL LEVEL SENSOR
2	_	-
3	F16 16RD/LG	FUSED B(+)
4	K167 20BR/YL	SENSOR RETURN
5	_	_
6	K7 20OR	8 VOLT SUPPLY
7	_	_
8	G18 20PK/BK	COOLANT LEVEL SWITCH SENSE
9	F12 18DB/WT	FUSED IGNITION SWITCH OUTPUT
10	_	-
11	Z12 14BK/LG	POWER GROUND
12	Z12 14BK/LG	POWER GROUND
13	_	_
14	_	_
15	G55 200R/BK	ENGINE DISABLE SIGNAL
16	_	_
17	_	_
18	_	-
19	_	-
20	K20 18DG	GENERATOR FIELD DRIVER
21	K222 20TN/RD	SECONDARY ENGINE COOLANT TEMP SENSOR
22	K48 200R/RD	FLT SIGNAL
23	G123 20DG/WT	WATER IN FUEL SENSE
24	G21 20GY/LB	TACHOMETER SIGNAL
25	D21 20PK	SCI TRANSMIT
26	D1 20VT/BR	CCD BUS(+)
27	_	_
28	C90 20LG	A/C SWITCH SENSE
29	_	-
30	_	_
31	G86 20TN/OR	WATER IN FUEL WARNING LAMP DRIVER
32	_	_
33	_	_
34	_	_
35	_	_
36	_	_
37		
-		
38		
40	_	_
	V66 20PD/LC	MIDED DADK SMITCH SENSE
41	V66 20RD/LG	WIPER PARK SWITCH SENSE ENGINE OIL PRESSURE SENSOR SIGNAL
42	G60 20GY/YL	ENGINE OIL PRESSURE SENSOR SIGNAL
43	_	_
44		-
45	D20 20LG/BK	SCI RECEIVE
46	D2 20WT/BK	CCD BUS (-)
47	G7 20WT/OR	VEHICLE SPEED SENSOR SIGNAL
48	_	_
49	_	_
50	-	_
51	-	_
52	-	_
53	_	_

(CONTINUED

CAV	CIRCUIT	FUNCTION
54	G154 20VT/LG	LOW COOLANT WARNING LAMP DRIVER
55	_	_
56	_	_
57	A142 16DG/OR	AUTO SHUTDOWN RELAY OUTPUT
58	_	_
59	C103 20DG	A/C SWITCH SIGNAL
60	_	-

B1	CAV	CIRCUIT	FUNCTION
B3	B1	_	-
B4 K11 18WT/DB INJECTOR NO. 1 DRIVER B5 K13 18YL/WT INJECTOR NO. 3 DRIVER B6 K15 18PK/BK INJECTOR NO. 5 DRIVER* B7 - - B8 - - B9 - - B10 K20 18DG GENERATOR FIELD DRIVER B11 - - B12 K16 18LG/BK INJECTOR NO. 6 DRIVER* B13 - - B14 - - B15 K12 18TN INJECTOR NO. 2 DRIVER B16 K14 18LB/BR INJECTOR NO. 4 DRIVER B17 - - B18 - - B19 - - B20 - - B21 - - B22 - - B23 G60 18GY/YL OIL PRESSURE SENSOR B24 - - B25 - - B26 - -	B2	_	_
B5 K13 18YL/WT INJECTOR NO. 3 DRIVER B6 K15 18PK/BK INJECTOR NO. 5 DRIVER* B7 - - B8 - - B9 - - B10 K20 18DG GENERATOR FIELD DRIVER B11 - - B12 K16 18LG/BK INJECTOR NO. 6 DRIVER* B13 - - B14 - - B15 K12 18TN INJECTOR NO. 2 DRIVER B16 K14 18LB/BR INJECTOR NO. 4 DRIVER B17 - - B18 - - B19 - - B20 - - B21 - - B22 - - B23 G60 18GY/YL OIL PRESSURE SENSOR B24 - - B25 - - B26 - - B27 G7 18WT/OR VEHICLE SPEED SENSOR B	В3	_	_
B6 K15 18PK/BK INJECTOR NO. 5 DRIVER* B7 - - B8 - - B9 - - B10 K20 18DG GENERATOR FIELD DRIVER B11 - - B12 K16 18LG/BK INJECTOR NO. 6 DRIVER* B13 - - B14 - - B15 K12 18TN INJECTOR NO. 2 DRIVER B16 K14 18LB/BR INJECTOR NO. 4 DRIVER B17 - - B18 - - B19 - - B20 - - B21 - - B22 - - B23 G60 18GY/YL OIL PRESSURE SENSOR B24 - - B25 - - B26 - - B27 G7 18WT/OR VEHICLE SPEED SENSOR B28 - - B29 -	B4	K11 18WT/DB	INJECTOR NO. 1 DRIVER
B7	B5	K13 18YL/WT	INJECTOR NO. 3 DRIVER
B8	B6	K15 18PK/BK	INJECTOR NO. 5 DRIVER*
B9	B7	_	-
B10 K20 18DG GENERATOR FIELD DRIVER	B8	_	_
B11	В9	_	_
B12 K16 18LG/BK INJECTOR NO. 6 DRIVER* B13 - - B14 - - B15 K12 18TN INJECTOR NO. 2 DRIVER B16 K14 18LB/BR INJECTOR NO. 4 DRIVER B17 - - B18 - - B19 - - B20 - - B21 - - B22 - - B23 G60 18GY/YL OIL PRESSURE SENSOR B24 - - B25 - - B26 - - B27 G7 18WT/OR VEHICLE SPEED SENSOR B28 - - B29 - - B30 - - B31 K6 18VT/OR 5 VOLT SUPPLY	B10	K20 18DG	GENERATOR FIELD DRIVER
B13	B11	_	-
B14 - - B15 K12 18TN INJECTOR NO. 2 DRIVER B16 K14 18LB/BR INJECTOR NO. 4 DRIVER B17 - - B18 - - B19 - - B20 - - B21 - - B22 - - B23 G60 18GY/YL OIL PRESSURE SENSOR B24 - - B25 - - B26 - - B27 G7 18WT/OR VEHICLE SPEED SENSOR B28 - - B29 - - B30 - - B31 K6 18VT/OR 5 VOLT SUPPLY	B12	K16 18LG/BK	INJECTOR NO. 6 DRIVER*
B15 K12 18TN INJECTOR NO. 2 DRIVER B16 K14 18LB/BR INJECTOR NO. 4 DRIVER B17 - - B18 - - B19 - - B20 - - B21 - - B22 - - B23 G60 18GY/YL OIL PRESSURE SENSOR B24 - - B25 - - B26 - - B27 G7 18WT/OR VEHICLE SPEED SENSOR B28 - - B29 - - B30 - - B31 K6 18VT/OR 5 VOLT SUPPLY	B13	_	-
B16 K14 18LB/BR INJECTOR NO. 4 DRIVER B17 - - B18 - - B19 - - B20 - - B21 - - B22 - - B23 G60 18GY/YL OIL PRESSURE SENSOR B24 - - B25 - - B26 - - B27 G7 18WT/OR VEHICLE SPEED SENSOR B28 - - B29 - - B30 - - B31 K6 18VT/OR 5 VOLT SUPPLY	B14	_	-
B17	B15	K12 18TN	INJECTOR NO. 2 DRIVER
B18	B16	K14 18LB/BR	INJECTOR NO. 4 DRIVER
B19	B17	_	-
B20	B18	_	-
B21	B19	_	-
B22	B20	_	-
B23 G60 18GY/YL OIL PRESSURE SENSOR B24 - - B25 - - B26 - - B27 G7 18WT/OR VEHICLE SPEED SENSOR B28 - - B29 - - B30 - - B31 K6 18VT/OR 5 VOLT SUPPLY	B21	_	-
B24 - - B25 - - B26 - - B27 G7 18WT/OR VEHICLE SPEED SENSOR B28 - - B29 - - B30 - - B31 K6 18VT/OR 5 VOLT SUPPLY	B22	_	-
B25 - - B26 - - B27 G7 18WT/OR VEHICLE SPEED SENSOR B28 - - B29 - - B30 - - B31 K6 18VT/OR 5 VOLT SUPPLY	B23	G60 18GY/YL	OIL PRESSURE SENSOR
B26 - - B27 G7 18WT/OR VEHICLE SPEED SENSOR B28 - - B29 - - B30 - - B31 K6 18VT/OR 5 VOLT SUPPLY	B24	_	_
B27 G7 18WT/OR VEHICLE SPEED SENSOR B28 - - B29 - - B30 - - B31 K6 18VT/OR 5 VOLT SUPPLY	B25	_	-
B28 - B29 - B30 - B31 K6 18VT/OR 5 VOLT SUPPLY	B26	_	-
B29 – – – – – – – – – – – – – – – – – – –	B27	G7 18WT/OR	VEHICLE SPEED SENSOR
B30 – – – – – – – – – – – B31 K6 18VT/OR 5 VOLT SUPPLY	B28	_	-
B31 K6 18VT/OR 5 VOLT SUPPLY	B29		-
	B30	_	-
B32 – –	B31	K6 18VT/OR	5 VOLT SUPPLY
	B32	_	-

POWERTRAIN CONTROL MODULE - C3 (2.5L, RHD, MANUAL TRANSMISSION)

	1	
CAV	CIRCUIT	FUNCTION
C1	C13 18DB/OR	A/C COMPRESSOR CLUTCH RELAY CONTROL
C2	C27 18DB/PK	RADIATOR FAN RELAY CONTROL
C3	K51 18DB/YL	AUTOMATIC SHUT DOWN RELAY CONTROL
C4	V36 18TN/RD	SPEED CONTROL VACUUM SOLENOID CONTROL
C5	V35 18LG/RD	SPEED CONTROL VENT SOLENOID CONTROL
C6	_	-
C7	_	-
C8	_	-
C9	_	-
C10	_	-
C11	V32 18YL/RD	STOP SWITCH SPEED CONTROL SOURCE
C12	A142 18DG/OR	AUTOMATIC SHUT DOWN RELAY OUTPUT
C13	_	-
C14	_	-
C15	K118 18PK/YL	BATTERY TEMPERATURE SENSOR SIGNAL
C16	_	-
C17	_	-
C18	_	-
C19	K31 18BR	FUEL PUMP RELAY CONTROL
C20	K52 18PK/BK	EVAP/PURGE SOLENOID CONTROL
C21	_	-
C22	C22 18DB/WT	A/C SWITCH SENSE
C23	C90 18LG/RD	A/C SELECT SIGNAL
C24	K29 18WT/PK	STOP LAMP SWITCH SENSE
C25	K72 18DG/OR	GENERATOR SOURCE
C26	K226 18DB/LG	FUEL LEVEL SENSE
C27	D21 18PK	SCI TRANSMIT
C28	D2 18WT/BK	CCD BUS(-)
C29	D20 18LG/BK	SCI RECEIVE
C30	D1 18VT/BR	CCD BUS (+)
C31	_	-
C32	V37 18RD/LG	SPEED CONTROL SWITCH SENSE

XJI08073 J978W-7

CAV	CIRCUIT	FUNCTION
C1	C13 18DB/OR	A/C COMPRESSOR CLUTCH RELAY CONTROL
C2	C27 18DB/PK	RADIATOR FAN RELAY CONTROL
C3	K51 18DB/YL	AUTOMATIC SHUT DOWN RELAY CONTROL
C4	V36 18TN/RD	SPEED CONTROL VACUUM SOLENOID CONTROL
C5	V35 18LG/RD	SPPED CONTROL VENT SOLENOID CONTROL
C6	_	_
C7	_	_
C8	_	_
C9	_	_
C10	_	-
C11	V32 18YL/RD	STOP SWITCH SPEED CONTROL SOURCE
C12	A142 18DG/OR	AUTOMATIC SHUT DOWN RELAY OUTPUT
C13	_	_
C14	_	_
C15	K118 18PK/YL	BATTERY TEMPERATURE SENSOR SIGNAL
C16	_	_
C17	_	_
C18	_	_
C19	K31 18BR	FUEL PUMP RELAY CONTROL
C20	K52 18PK/BK	EVAP/PURGE SOLENOID CONTROL
C21	_	_
C22	C22 18DB/WT	A/C SWITCH SENSE
C23	C90 18LG	A/C SELECT SIGNAL
C24	K29 18WT/PK	STOP LAMP SWITCH SENSE
C25	K72 18DG/OR	GENERATOR SOURCE
C26	K226 18DB/LG	FUEL LEVEL SENSE
C27	D21 18PK	SCI TRANSMIT
C28	D2 18WT/BK	CCD BUS (-)
C29	D20 18LG/BK	SCI RECEIVE
C30	D1 18VT/BR	CCD BUS (+)
C31	_	-
C32	V37 18RD/LG	SPEED CONTROL SWITCH SENSE

XJI08074 J978W-7

CAV	CIRCUIT	FUNCTION
1	E2 20OR	CONSOLE ILLUMINATION
2	Z1 20BK	BODY GROUND

CAV	CIRCUIT	FUNCTION
1	C25 12LB	RADIATOR FAN
2	Z1 12BK	GROUND

CAV	CIRCUIT	FUNCTION
1	X60 16DG/RD	POWER AMP RELAY FEED
2	X51 16BR/YL	LEFT REAR SPEAKER (+)
3	X52 16DB/WT	RIGHT REAR SPEAKER (+)
4	X53 16DG	LEFT FRONT DOOR SPEAKER (+)
5	X54 16VT	RIGHT FRONT DOOR SPEAKER (+)
6	X57 16BR/LB	LEFT REAR SPEAKER (-)
7	X58 16DB/OR	RIGHT REAR SPEAKER (-)

CAV	CIRCUIT	FUNCTION
1	_	-
2	X55 16BR/RD	LEFT FRONT DOOR SPEAKER (-)
3	X56 16DB/RD	RIGHT FRONT DOOR SPEAKER (-)
4	L7 18BK/YL	MASTER RADIO ILLUMINATION
5	E2 20OR	RADIO ILLUMINATION
6	X12 16RD/WT	RADIO POWER FEED
7	M1 20PK	

CAV	CIRCUIT	FUNCTION	
1	Z9 14BK	GROUND	
2	_	_	

XJI08075 J978W-7

CAV	CIRCUIT	FUNCTION
1	M2 18YL	COURTESY LAMP FEED
2	G16 18BK/LB	SWITCHED GROUND
3	Z1 18BK	GROUND

CAV	CIRCUIT	FUNCTION
1	-	-
2	Z1 18BK	REAR DOOR SWITCH TO COURTESY LAMP
3	M2 18YL	REAR DOOR SWITCH TO COURTESY LAMP

CAV	CIRCUIT	FUNCTION
1	F34 18TN/BK	FUSED B(+)
2	L36 18LG/BK	REAR FOG LAMPS ON RELAY
3	Z1 16BK	GROUND
4	L38 18BR/WT	REAR FOG LAMP RELAY FEED
5	L2 16LG	BATTERY FEED TO REAR FOG LAMP RELAY
5	L2 16LG	BATTERY FEED TO DIMMER FLASHER

CAV	CIRCUIT	FUNCTION
1	Z15 18BK	GROUND
2	L36 18LG/BK	REAR FOG LAMPS ON RELAY
3	L38 18BR/WT	REAR FOG LAMP SWITCHES FEED
4	E2 20OR	REAR FOG LAMP ILLUMINATION

REAR WASHER
PUMP MOTOR
(WITH 2.5L ENGINE, DIESEL)

CAV	CIRCUIT	FUNCTION
1	V20 18VT/OR	REAR WASHER PUMP MOTOR CONTROL
2	Z1 18BK	GROUND

XJI08076 J978W-7

CAV	CIRCUIT	FUNCTION
1	V20 18BK/WT	REAR WASHER PUMP MOTOR CONTROL
2	Z1 18BK	GROUND
	Z1 18BK	GROUND

CAV	CIRCUIT	FUNCTION
1	C15 12BK/WT	REAR WINDOW DEFOGGER POWER
2	_	_

CAV	CIRCUIT	FUNCTION
1	Z1 12BK	REAR WINDOW DEFOGGER GROUND
2	_	-

CAV	CIRCUIT	FUNCTION
1	Z1 18BK	GROUND
2	C80 20DB/WT	REAR WINDOW DEFOGGER RELAY CONTROL
3	C116 20LB/YL	HEATED MIRROR
4	E2 200R	REAR WINDOW DEFOGGER SWITCH ILLUMINATION

CAV	CIRCUIT	FUNCTION
1	Z1 18BK	GROUND
2	V20 18BK/WT	REAR WASHER MOTOR CONTROL
3	V13 18BR/LG	REAR WIPER MOTOR CONTROL
4	V23 18BK/PK	FUSED IGNITION SWITCH OUTPUT (RUN)

XJI08077 J978W-7

CAV	CIRCUIT	FUNCTION
1	Z1 18BK	GROUND
2	V20 18BK/WT	REAR WASHER SIGNAL TO MODULE
3	E2 20OR	REAR WIPER SWITCH ILLUMINATION
4	V13 18BR/LG	REAR WIPER FEED
5	V23 18BR/PK	FUSED B(+)
6	V23 18BR/PK	FUSED B(+)

 CAV
 CIRCUIT
 FUNCTION

 A
 L10 18BR/LG
 BACK-UP LAMP SWITCH OUTPUT

 G
 Z1 18BK
 GROUND

CAV	CIRCUIT	FUNCTION
1	M1 18PK	COURTESY LAMP FEED
2	M2 18BK/WT	SWITCHED GROUND

CAV	CIRCUIT	FUNCTION
1	Z1 20BK	GROUND
2	L39 20LB	RIGHT FOG LAMP

XJI08078 J978W-7

CAV	CIRCUIT	FUNCTION
1	M2 18YL	COURTESY LAMPS DRIVER
2	G16 18BK/LB	DOOR AJAR SWITCH SENSE
3	Z1 18BK	GROUND

CAV	CIRCUIT	FUNCTION
1	X80 16LB/BR	RIGHT FRONT DOOR SPEAKER (+)
2	X82 16LB/RD	RIGHT FRONT DOOR SPEAKER (-)

CAV	CIRCUIT	FUNCTION
1	X85 16LG/RD	RIGHT FRONT DOOR SPEAKER (-)
2	X87 16LG/BK	RIGHT FRONT DOOR SPEAKER (+)

RIGHT FRONT DOOR TWEETER (LHD)

CAV	CIRCUIT	FUNCTION
1	X80 16LB/BR	RIGHT FRONT DOOR TWEETER (-)
2	X82 16LB/RD	RIGHT FRONT DOOR TWEETER (+)

CAV	CIRCUIT	FUNCTION
1	X85 16LG/RD	RIGHT FRONT DOOR TWEETER (-)
2	X87 16LG/BK	RIGHT FRONT DOOR TWEETER (+)

XJI08079 J978W-7

CAV	CIRCUIT	FUNCTION
1	P34 16PK/BR	POWER DOOR UNLOCK RELAY
2	P33 16OR/BK	POWER DOOR LOCK RELAY

RIGHT FRONT POWER LOCK/WINDOW SWITCH – C1 (LHD)

CAV	CIRCUIT	FUNCTION
1	P34 16PK/BK	POWER DOOR LOCK MOTOR (UNLOCK)
2	Q22 16VT	RIGHT FRONT POWER WINDOW MOTOR (DOWN)
3	Q26 14VT/WT	MASTER SWITCH RIGHT FRONT WINDOW MOTOR (DOWN)
4	Q16 14BR/WT	MASTER SWITCH RIGHT FRONT WINDOW MOTOR (UP)
5	P33 18OR/BK	POWER DOOR LOCK MOTOR (LOCK)
6	_	-
7	_	-
8	_	-
9	Q12 16BR	RIGHT FRONT POWER WINDOW MOTOR (UP)
10	Q1 14YL	MASTER SWITCH LOCK OUT
11	_	-
12	_	-

RIGHT FRONT POWER LOCK/WINDOW SWITCH – C1 (RHD)

CAV	CIRCUIT	FUNCTION
1	P34 16PK/BK	POWER DOOR LOCK MOTOR (UNLOCK)
2	Q22 16VT	POWER WINDOW MOTOR (DOWN)
3	Q26 14VT/WT	POWER WINDOW MASTER SWITCH (DOWN)
4	Q16 14BR/WT	POWER WINDOW MASTER SWITCH (UP)
5	P33 18OR/BK	POWER DOOR LOCK SWITCH (LOCK)
6	-	-
7	-	-
8	-	-
9	Q12 16BR	POWER WINDOW MOTOR (UP)
10	Q1 14YL	MASTER SWITCH LOCK OUT
11	_	-
12	_	-

RIGHT FRONT POWER LOCK/WINDOW SWITCH – C2 (LHD)

CAV	CIRCUIT	FUNCTION
1	P59 20LB/RD	RKE LOCK CONTROL
2	P55 20DB	RKE UNLOCK CONTROL
3	P35 20OR/VT	POWER DOOR LOCK RELAY
4	F81 12TN	POWER WINDOW SWITCH FEED (RUN)
5	F35 16RD	POWER DOOR LOCK RELAY FEED
6	Z1 16BK	GROUND
7	P36 20PK/VT	POWER DOOR UNLOCK RELAY
8	G26 20LB	DOOR AJAR KEY-IN

XJI08080 J978W-7

RIGHT FRONT POWER LOCK/WINDOW SWITCH – C2 (RHD)

CAV	CIRCUIT	FUNCTION
1	P59 20LB/RD	RKE LOCK CONTROL
2	P55 20DB	RKE UNLOCK CONTROL
3	P35 20OR/VT	POWER DOOR LOCK RELAY
4	F81 12TN	POWER WINDOW SWITCH FEED (RUN)
5	F35 16RD	POWER DOOR LOCK RELAY FEED
6	Z1 12BK	GROUND
7	P36 18PK/VT	POWER DOOR UNLOCK RELAY
8	G26 20LB	DOOR AJAR KEY-IN

RIGHT FRONT POWER WINDOW MOTOR

CAV	CIRCUIT	FUNCTION
1	Q12 16BR	POWER WINDOW MOTOR UP
2	Q22 16VT	POWER WINDOW MOTOR DOWN

RIGHT FRONT SIDE MARKER LAMP

CAV	CIRCUIT	FUNCTION
1	L78 20DG/YL	RIGHT PARK LAMP
2	L60 20TN	RIGHT TURN SIGNAL

SPEED SENSOR (LHD)

CAV	CIRCUIT	FUNCTION
1	B6 20WT/DB	RIGHT FRONT WHEEL SPEED SENSOR (-)
2	B7 20WT	RIGHT FRONT WHEEL SPEED SENSOR (+)

RIGHT FRONT WHEEL SPEED SENSOR (RHD)

CAV	CIRCUIT	FUNCTION
1	B6 20WT/DB	RIGHT FRONT WHEEL SPEED SENSOR (-)
2	B7 20WT	RIGHT FRONT WHEEL SPEED SENSOR (+)

XJI08081 J978W-7

CAV	CIRCUIT	FUNCTION
Α	L34 18RD/OR	RIGHT HIGH BEAM
В	L44 18VT/RD	RIGHT LOW BEAM
С	Z1 18BK	GROUND

CAV	CIRCUIT	FUNCTION
1	L78 20DG/YL	RIGHT PARK LAMP
2	Z1 20BK	GROUND

CAV	CIRCUIT	FUNCTION
1	P72 20YL/BK	RIGHT POWER MIRROR (UP)
2	P76 20OR/YL	RIGHT POWER MIRROR (DOWN/RIGHT)
3	P74 20DB	RIGHT POWER MIRROR (LEFT)
4	P76 20OR/YL	RIGHT POWER MIRROR (DOWN/RIGHT)
5	C16 20BK/WT	HEATED MIRROR FEED
6	Z1 18BK	GROUND

CAV	CIRCUIT	FUNCTION
1	P71 20YL	RIGHT POWER MIRROR (UP)
2	P76 20OR/YL	RIGHT POWER MIRROR (DOWN/RIGHT)
3	P75 20DB/RD	RIGHT POWER MIRROR (RIGHT)
4	P76 20OR/YL	RIGHT POWER MIRROR (DOWN/RIGHT)
5	C16 20BK/WT	HEATED MIRROR FEED
6	Z1 16BK	GROUND

CAV	CIRCUIT	FUNCTION
1	F37 14RD/LB	RIGHT SEAT
2	Z1 14BK	BODY GROUND

XJI08082 J978W-7

RIGHT REAR DOOR JAMB SWITCH

CAV	CIRCUIT	FUNCTION
Α	M2 18YL	COURTESY LAMPS DRIVER
В	Z1 18BK	GROUND

CAV	CIRCUIT	FUNCTION
1	P34 16PK/BK	DOOR LOCK MOTOR UNLOCK
2	P33 16OR/BK	DOOR LOCK MOTOR LOCK

CAV	CIRCUIT	FUNCTION
1	Q14 16GY	REAR SWITCH TO MOTOR (UP)
2	Q24 16DG	REAR SWITCH TO MOTOR (DOWN)

CAV	CIRCUIT	FUNCTION
1	Q14 16GY	REAR SWITCH TO MOTOR (UP)
2	Q28 14DG/WT	REAR SWITCH TO MASTER (DOWN)
3	_	_
4	Q18 14GY/BK	REAR SWITCH TO MASTER (UP)
5	Q24 16DG	REAR SWITCH TO MOTOR (DOWN)
6	Q1 14YL	MASTER SWITCH LOCKOUT

MARKER LAMP

 CAV
 CIRCUIT
 FUNCTION

 A
 L90 18DB/RD
 PARK LAMP SWITCH OUTPUT

 B
 Z1 18BK
 GROUND

XJI08083 J978W-7

RIGHT REAR
TURN SIGNAL LAMP

CAV	CIRCUIT	FUNCTION
Α	L60 18TN	RIGHT TURN SIGNAL
G	Z1 18BK	GROUND

CA	V CIRCUIT	FUNCTION
А	B2 20YL	RIGHT REAR WHEEL SENSOR (+)
В	B1 20YL/DB	RIGHT REAR WHEEL SENSOR (-)

CAV	CIRCUIT	FUNCTION
Α	B2 18YL	RIGHT REAR WHEEL SENSOR (+)
В	B1 18YL/DB	RIGHT REAR WHEEL SENSOR (-)

CAV	CIRCUIT	FUNCTION
Α	X92 16TN/BK	RIGHT SOUND BAR SPEAKER (-)
В	X94 16TN/RD	RIGHT SOUND BAR SPEAKER (+)

CAV	CIRCUIT	FUNCTION
Α	X92 16TN/BK	RIGHT SOUND BAR (-)
В	X94 16TN/RD	RIGHT SOUND BAR (+)

XJI08084 J978W-7

RIGHT	TAIL/
STOP L	AMP

CAV	CIRCUIT	FUNCTION
Α	L50 18WT/TN	STOP LAMP SWITCH OUTPUT
В	L90 18DB/RD	PARK LAMP SWITCH OUTPUT
G	Z1 18BK	GROUND

CAV	CIRCUIT	FUNCTION
1	L60 18TN	RIGHT TURN SIGNAL
2	Z1 18BK	GROUND

CAV	CIRCUIT	FUNCTION
1	Z1 18BK	GROUND
2	_	_
3	L60 18TN	RIGHT TURN SIGNAL

C	CAV	CIRCUIT	FUNCTION
	Α	G10 20LG/RD	SEAT BELT SWITCH SENSE
	В	Z1 20BK	GROUND

CAV	CIRCUIT	FUNCTION
1	A0 06RD	BATTERY TO STARTER (+)
2	T40 14LG/BK	STARTER RELAY CONTACT TO SOLENOID

XJI08085 J978W-7

CAV	CIRCUIT	FUNCTION
1	K29 18WT/PK	STOP LAMP SWITCH SENSE
2	Z1 18BK	GROUND
3	V32 20YL/RD	VEHICLE SPEED CONTROL ON/OFF SENSE
4	V30 20DB/RD	VEHICLE SPEED CONTROL BRAKE SWITCH OUTPUT
5	L50 20WT/TN	STOP LAMP SWITCH OUTPUT
6	F32 20PK/DB	FUSED B(+)

CAV	CIRCUIT	FUNCTION
1	K29 18WT/PK	STOP LAMP SWITCH SENSE
2	Z1 18BK	GROUND
3	V32 20YL/RD	VEHICLE SPEED CONTROL ON/OFF SENSE
4	V30 20DG/RD	VEHICLE SPEED CONTROL BRAKE SWITCH OUTPUT
5	L50 20WT/TN	STOP LAMP SWITCH OUTPUT
6	F32 20PK/DB	FUSED B(+)

CIRCUIT	FUNCTION
F87 20WT/BK	IGNITION (START/RUN)
-	-
-	-
K185 20OR/LB	WAIT TO START WARNING SIGNAL
-	-
-	-
G86 20TN/OR	WATER IN FUEL WARNING SIGNAL
G154 20VT/LG	LOW COOLANT WARNING SIGNAL
	F87 20WT/BK K185 20OR/LB G86 20TN/OR

CAV	CIRCUIT	FUNCTION
1	K167 20BR/YL	SENSOR RETURN
2	K22 18OR/DB	THROTTLE POSITION SENSOR SIGNAL
3	K7 20OR	5 VOLT SUPPLY

XJI08086 J978W-7

CAV	CIRCUIT	FUNCTION
1	K167 20BR/YL	SENSOR RETURN
2	K22 20OR/DB	THROTTLE POSITION SENSOR SIGNAL
3	K7 200R	5 VOLT SUPPLY

CAV	CIRCUIT	FUNCTION
1	E2 20OR	CONSOLE ILLUMINATION
2	Z1 20BK	BODY GROUND

CAV	CIRCUIT	FUNCTION
1	B40 14LB	ELECTRIC BRAKE
2	_	_

CAV	CIRCUIT	FUNCTION
1	L63 20DG/RD	LEFT REAR STOP/TURN LAMP
2	L50 20WT/TN	STOP LAMPS
3	A6 20RD/OR	TRAILER TOW FEED
4	_	-
5	L73 20YL	LEFT TURN

CAV	CIRCUIT	FUNCTION
1	L62 20BK/RD	RIGHT REAR STOP/TURN LAMP
2	L50 20WT/TN	STOP LAMPS
3	A6 20RD/OR	TRAILER TOW FEED
4	_	-
5	L74 20LG	RIGHT TURN

XJI08087 J978W-7

CAV CIRCUIT FUNCTION 1	
2	
3	
4 T14 20LG/WT OUTPUT SHAFT SPEED SIGNAL 5	
5	
6 D2B 20WT/BK CCD BUS (-) 7 D1B 20VT/BR CCD BUS (+) 8 9 T3 18VT RANGE SENSOR D3 10 11 T22 20DB/WT TRANS SOLENOID (LOCK UP)	
7 D1B 20VT/BR CCD BUS (+) 8	
8 - 9 T3 18VT 10 - - - 11 T22 20DB/WT TRANS SOLENOID (LOCK UP)	
9 T3 18VT RANGE SENSOR D3 10 11 T22 20DB/WT TRANS SOLENOID (LOCK UP)	
10 – – – – – 11 T22 20DB/WT TRANS SOLENOID (LOCK UP)	
11 T22 20DB/WT TRANS SOLENOID (LOCK UP)	
,	
12 T19 20WT TRANS SOLENOID A	
13 T60 20OR/WT TRANS SOLENOID B	
14 D21C 20PK DATA LINK TRANSMIT	
15 – –	
16 K167E 20BR/YL SENSOR RETURN	
17 K22 20OR/DB TPS TO TCU	
18 L10A 18BR/LG BACKUP LAMPS	
19 – –	
20 – –	
21 T42 18VT/WT RANGE SENSOR L	
22 T1 18LG/BK RANGE SENSOR D	
23 K29A 20WT/PK STOP SWITCH-NORMALLY CLOSED	
24 Z12A 18BK/TN GROUND	
25 M1D 20PK UNDERHOOD LAMP & IGNITION OFF DRAW	
26 F12A 18DB/WT IGNITION (RUN/START)	

CAV	CIRCUIT	FUNCTION
1	Z1 18BK	GROUND
2	-	-
3	T19 20WT	TRANS SOLENOID A
4	T14 20LG/WT	OUTPUT SHAFT SPEED SIGNAL
5	T22 20DB/WT	TRANS SOLENOID C (LOCK-UP)
6	T60 20OR/WT	TRANS SOLENOID B

CAV	CIRCUIT	FUNCTION
1	T42 18VT/WT	RANGE SENSOR L
2	T3 18VT	RANGE SENSOR D3
3	F12 18DB/WT	IGNITION (RUN/START)
4	T1 18LG/BK	RANGE SENSOR D
5	_	_
6	L10 18BR/LG	BACK-UP LAMPS
7	T41 20BK/WT	STARTER RELAY
8	Z1 18BK	GROUND

XJI08088 J978W-7

CAV	CIRCUIT	FUNCTION
1	L60 20TN	RIGHT FRONT TURN SIGNAL
2	_	-
3	L62 20BR/RD	RIGHT REAR TURN SIGNAL
4	L55 20BK/YL	HAZARD AND TURN SIGNAL OUT TO LAMPS
5	L6 20RD/WT	TURN SIGNALS TO COMBINATION FLASHER
6	L12 20VT/TN	HAZARD FLASHER INPUT TO COMBO FLASHER
7	_	-
8	_	-
9	L63 20DG/RD	LEFT REAR TURN SIGNAL
10	L61 20LG/WT	LEFT FRONT TURN SIGNAL
11	L55 20BK/YL	HAZARD AND TURN SIGNAL OUT TO LAMPS

CAV	CIRCUIT	FUNCTION
1	Z1 20BK	GROUND
2	M1 20PK	FUSED B(+)

UPSTREAM HEATED OXYGEN SENSOR

CAV	CIRCUIT	FUNCTION	
1	F142 20DG/WT	AUTOMATIC SHUTDOWN RELAY OUTPUT	
2	Z1 18BK	GROUND	
3	K167 20BR/YL	SENSOR RETURN	
4	K41 18BK/DG	UPSTREAM HEATED OXYGEN SENSOR SIGNAL	

VEHICLE SPEED CONTROL SERVO (LHD)

CAV	CIRCUIT	FUNCTION
1	V36 18TN/RD	SPEED CONTROL VACUUM
2	V35 18LG/RD	SPEED CONTROL VENT
3	V30 20DB/RD	STOP SWITCH-SPEED CONTROL
4	Z1E 18BK	GROUND

VEHICLE SPEED CONTROL SERVO (RHD)

CAV	CIRCUIT	FUNCTION
1	V36 18TN/RD	SPEED CONTROL VACUUM
2	V35 18LG/RD	SPEED CONTROL VENT
3	V30 20DB/RD	STOP SWITCH-SPEED CONTROL
4	Z1E 18BK	GROUND

XJI08089 J978W-7

CAV	CIRCUIT	FUNCTION	
1	K6 18VT/OR	5 VOLT SUPPLY	
2	K167E 18BR/YL	SENSOR RETURN	
3	G7 18WT/OR	VEHICLE SPEED SENSOR	

CAV	CIRCUIT	FUNCTION
1	K6 18VT/OR	5 VOLT SUPPLY
2	K167E 18BR/YL	SENSOR RETURN
3	G7 18WT/OR	VEHICLE SPEED SENSOR

С	CAV	CIRCUIT	FUNCTION			
	1	G123 20DG/WT	WATER IN FUEL SENSOR			
	2	K167 20BR/YL	SIGNAL GROUND WATER IN FUEL SENSOR			

CAV	CIRCUIT	FUNCTION
1	Z1 18BK	GROUND
2	V5 16DG/YL	PARK SENSE
3	V10 18BR	WASHER SIGNAL
4	V3 16BR/WT	LOW
5	V6 18DB	WIPER FEED
6	V4 16BR/VT	HIGH

CAV	CIRCUIT	FUNCTION
1	Z1 18BK	GROUND
2	V5 16DG/YL	PARK SENSE
3	V10 18BR	WASHER SIGNAL
4	V3 16BR/WT	LOW
5	V6 16DB	WIPER FEED
6	V4 16BR/VT	HIGH

XJI08090 J978W-7

8W-90 CONNECTOR LOCATIONS

DESCRIPTION AND OPERATION

INTRODUCTION

This section provides illustrations identifying component and connector locations in the vehicle. A connector index is provided. Use the wiring diagrams in

each section for connector number identification. Refer to the index for the proper figure number.

CONNECTOR/GROUND LOCATIONS

For items that are not shown in this section N/S is placed in the Fig. column.

Connector Name/Number	Color	Location	Fig.
4WD Switch (231)	BK	On Transfer Case	31
4WD Switch (242)	BK	On Transfer Case	31
A/C Compressor Clutch	BK	Top of Compressor	37
A/C Heater Control (LHD)	BK	At Control Unit	19
A/C Heater Control (RHD)	BK	At Control Unit	20
A/C High Pressure Switch	BK	At Drier Bottle	6
A/C Low Pressure Switch (Diesel)	BK	Top of Drier Bottle	33
A/C Low Pressure Switch	BK	At Switch	N/S
A/C Low Pressure Switch (2.5L M/T RHD)	BK	At Drier Bottle	3
A/C Low Pressure Switch (RHD All Others)	BK	At Switch	N/S
Air Bag Control Module (LHD)	BK	Under Left Seat	21
Air Bag Control Module (RHD)	BK	Under Left Seat	22
Ambient Temperature Sensor	BK	Lower Radiator Support	5, 10
Back-Up Lamp Switch (M/T)	BK	On Transmission	31
Battery Temperature Sensor	BK	At Battery	16
Beam Select Switch (LHD)	BK	On Steering Column	24

Connector Name/Number	Color	Location	Fig.
Beam Select Switch (RHD)	BK	On Steering Column	24
Brake Pressure Switch	BK	At Master Cylinder	2, 5
Brake Shift Interlock Solenoid (LHD)	BK	Lower Steering Column	N/S
Brake Shift Interlock Solenoid (RHD)	BK	Lower Steering Column	N/S
C100 (LHD)	BK	To Headlamp and Dash	17, 23
C100 (RHD)	BK	To Headlamp and Dash	18
C102 (RHD)	GY	Right Hand Drive Jumper	N/S
C103 (RHD)	BL	Right Hand Drive Jumper	N/S
C104 (RHD)	WT	Right Hand Drive Jumper	N/S
C106 (Diesel)	BK	Near Left Front Headlamp	32
C106 (4.0L DRL)	BK	Front End Lighting	N/S
C106 (4.0L DRL, W/FOG)	BK	Front End Lighting	N/S
C106 (All Others W/Fog Lamps)	BK	Front End Lighting	N/S
C106 (All Others)	BK	Front End Lighting	N/S
C107 (Diesel)	BK	Rear of Engine Compartment	N/S
C107 2.5L M/T 231, 2WD	BK	Rear of Engine Compartment	13, 14

Connector	Color	Location	Fig.
Name/Number			
C107 2.5L M/T	BK	Rear of Engine	13, 14
231, 2WD W/DRL		Compartment	
C107 4.0L A/T	BK	Door of Engine	11
231, 242	BN	Rear of Engine Compartment	11
C107 4.0L A/T	BK	Rear of Engine	11
231, 242, DRL		Compartment	' '
C107 4.0L A/T	BK	Rear of Engine	11
2WD		Compartment	
C107 4.0L A/T	BK	Rear of Engine	11
2WD DRL	514	Compartment	
C107 4.0L M/T 231, 242	BK	Rear of Engine Compartment	11
C107 4.0L M/T	BK	Rear of Engine	11
2WD	DIX	Compartment	''
C108	GY	Near Battery	N/S
C109 (LHD)	BK	ABS Connector	N/S
C109 (RHD)	BK	ABS Connector	N/S
C110 (Diesel)	GY	Near Battery	NS
C200 (LHD Full	GY	To Left Body	17, 23
Options)		Harness	
C200 (RHD)	GY	To Left Body	18
0004 (1112)		Harness .	4= 00
C201 (LHD) Base	WT	Lower Instrument	17, 23
Dasc		Panel	
C201 (LHD) Full	WT	Lower	17
Options		Instrument	
0000 (DUD)	DIC	Panel .	4.0
C202 (RHD)	BK	Lower Instrument	18
		Panel	
C203 (RHD)	BK	Lower	18
		Instrument	
0004 (BUE)	DIC	Panel	4.0
C204 (RHD)	BK	Lower Instrument	18
		Panel	
C205	YL	Lower	17, 18,
		Instrument	23
		Panel	
C206 (A/T)	GY	At Center	17, 21,
C20C (M/T)	CV	Console	22
C206 (M/T)	GY	At Center Console	21, 22
C207	BK	Courtesy Lamp	N/S
		Journey Lamp	. 1, 0

Connector	Color	Location	Fig.
Name/Number	00101	Location	1 ig.
C208	BK	Left Courtesy	N/S
		Lamp	
C300 (LHD)	NAT	At Right Kick Panel	21
C301	BK	At Overhead Console	21
C301 (W/ Immobilizer	BK	At Overhead Console	N/S
C302 (W/ Immobilizer	BK	At Overhead Console	18
C303 (LHD)	BK	Right Door	N/S
C304	BK	Right Rear Door	N/S
C305 (LHD)	WT	Left Door	N/S
C305 (RHD)	WT	Left Door	N/S
C306 (LHD)	WT	Left Door	N/S
C306 (RHD)	WT	Left Door	N/S
C307 (LHD)	WT	Left Door	N/S
C307 (RHD)	WT	Left Door	N/S
C308 (LHD)	BK	At Liftgate	27
C308 (RHD)	BK	At Liftgate	27
C309	BK	Left Rear Door	N/S
C310	BK	Top of Liftgate	30
C311	BK	Top of Liftgate	30
C312	GY	Top of Liftgate	30
C313	GN	Top of Liftgate	30
C314	WT	At Soundbar	N/S
C315	BK	Near Liftgate	27
C316 (LHD)	BK	At Power Seat	N/S
C316 (RHD)	BK	At Power Seat	N/S
C317 (LHD)	GY	Left Front Jamb Switch	25
C317 (RHD)	GY	Left Front Jamb Switch	25
C318 (LHD)	GY	Right Front Jamb Switch	N/S
C318 (RHD)	GY	Right Front Jamb Switch	N/S
C319	BK	Rear Jamb Switch	N/S
C320	BK	Left Rear Jamb Switch	25
C321	NAT	At Right Tail Lamp	N/S

Connector Name/Number	Color	Location	Fig.
C322	NAT	Trailer Tow Harness	N/S
Camshaft Position Sensor	BK	Near Distributor	13, 14, 15
Cargo Lamp (All Except With Sound Bar	BK	At Lamp	N/S
Cargo Lamp (With Sound Bar)	BK	At Lamp	N/S
Center High Mounted Stop Lamp	BK	Liftgate	N/S
Cigar Lighter	BK	Instrument Panel	19, 20
Clock Spring (LHD)	NAT	Steering Column	24
Clock Spring (RHD)	NAT	Steering Column	24
Clutch Interlock Switch (RHD M/T)	GN	Lower Steering Column	12, 18, 24
Clutch Interlock Switch (M/T)	GN	Lower Steering Column	12, 18, 24
Clutch Interlock Switch Jumper (RHD A/T)	GN	Lower Steering Column	12, 18, 24
Combination Flasher	BK	Near Headlamp Switch	17, 18
Compass	BK	Overhead Console	29
Console Illumination	BK	Overhead Console	29
Controller Anti-Lock Brake (LHD)	BK	At Controller Anti-Lock Brake	8
Controller Anti-Lock Brake (RHD)	BK	At Controller Anti-Lock Brake	9
Coolant Temperature Sensor (Diesel)	BK	Above Injection Pump Assembly	36, 37
Crankshaft Position Sensor	BK	Near Fuel Rail	16
Data Link Connector	BK	Lower Instrument Panel	17, 18
Daytime Running Lamp Module	BK	Front End Lighting	6

		L	
Connector Name/Number	Color	Location	Fig.
Diagnostics Splice Block	GY	Near Data Link Connector	N/S
Dome Lamp (With Vanity Lamps, Immobilizer)	ВК	Overhead Console	29
Downstream Heated Oxygen Sensor	BK	Exhaust	N/S
Driver Air Bag	YL	Steering Column	24
EGR Solenoid (Diesel)	BK	Right Side of Engine	N/S
Engine Coolant Temperature Sensor	BK	Front of Engine	13, 14
Engine Oil Pressure Sensor	BK	Near Generator	13
EVAP/Purge Solenoid	BK	Rear of Engine Compartment	3,4,9, 10
Fog Lamp Switch	BK	Instrument Panel	19, 20
Front Washer Pump Motor	BK	At Washer Reservoir	6, 7
Front Wiper Motor	BK	At Wiper Motor	7
Fuel Heater (Diesel)	BK	Left Rear Engine Compartment	32, 33
Fuel Pump Module (Diesel)	BK	Left Side of Engine	36, 37
Fuel Pump Module (LHD)	BK	At Fuel Pump Module	N/S
Fuel Pump Module (RHD)	BK	At Fuel Pump Module	N/S
G100		Near Battery	16
G101		Near Starter	13, 14, 15, 16
G102		Near Engine Connector C107	N/S
G103		Near Generator	16
G104		Body Ground (VM Diesel) from Negative Battery Cable	N/S

Connector Name/Number	Color	Location	Fig.
G105		Engine Ground (VM Diesel) from Negative Battery Cable	N/S
G106		Near Powertrain Control Module	2, 3, 8, 9
G107		Near Glove Box Lamp Switch	17, 18
G108		Near Headlamp Switch	17, 18
G200		Near Air Bag Control Module	21
G300		Near Air Bag Control Module	N/S
G301		Near Power Amplifier	25
G302		Near Left Tail Lamp	27
G303		Between Right Tail Lamp and Power Amplifier	27
G304		Near Rear Window Defogger Grid	N/S
G Switch (LHD)	ВК	Under Rear Seat	26
Generator	BK	At Generator	36, 37
Glove Box Lamp Switch	ВК	At Glove Box	17, 18, 19
Glow Plug Relay (Diesel)	BK	Left Rear Engine Compartment	32, 33
HeadLamp Delay Module (LHD)	BK	Near Headlamp Switch	17
HeadLamp Delay Module (RHD)	BK	Near Headlamp Switch	18
Headlamp Switch C1 (RHD)	BK	At Headlamp Switch	18
Headlamp Switch C2	ВК	At Headlamp Switch	17, 18
Headlamp Switch C1 (LHD)	ВК	At Headlamp Switch	17
HVAC Unit (LHD)	ВК	On HVAC Tub	21
HVAC Unit (RHD)	BK	On HVAC Tub	N/S

Connector Name/Number	Color	Location	Fig.
Idle Air Control Motor	ВК	At Throttle Body	14
Ignition Coil	BK	Front of Engine	13, 14
Ignition Switch (LHD)	ВК	Steering Column	24
Ignition Switch (RHD)	ВК	Steering Column	24
Injector No. 1	BK	At Injector	14, 15
Injector No. 2	BK	At Injector	14, 15
Injector No. 3	BK	At Injector	14, 15
Injector No. 4	BK	At Injector	14, 15
Injector No. 5	BK	At Injector	15
Injector No. 6	BK	At Injector	15
Instrument Cluster C1 (LHD)	BK	At Instrument Cluster	17
Instrument Cluster C1 (RHD)	BK	At Instrument Cluster	18
Instrument Cluster C2	BK	At Instrument Cluster	17, 18
Intake Air Temperature Sensor	GY	At Intake Manifold	13, 15
Junction Block C1	NAT	At Junction Block	29
Junction Block C2	WT	At Junction Block	29
Junction Block C3	NAT	At Junction Block	29
Junction Block C4	NAT	At Junction Block	29
Junction Block C5	NAT	At Junction Block	29
Junction Block C6	NAT	At Junction Block	29
Junction Block C7	NAT	At Junction Block	29
Junction Block C8	NAT	At Junction Block	29
Junction Block C9	NAT	At Junction Block	29
Key-In Switch	GN	Steering Column	24
Left Back-Up Lamp	BK	At Back-Up Lamp	N/S
Left Courtesy Lamp	ВК	At Courtesy Lamp	N/S

Connector	Color	Location	Fig.
Name/Number	DIC	A4 5	N/O
Left Fog Lamp	BK	At Fog Lamp	N/S
Left Front Door Jamb Switch	BK	At Switch	N/S
Left Front Door Speaker (LHD)	BK	At Speaker	N/S
Left Front Door Speaker (RHD)	BK	At Speaker	N/S
Left Front Door Tweeter (LHD)	BK	Left Front Door	N/S
Left Front Door Tweeter (RHD)	BK	Left Front Door	N/S
Left Front Park/Turn Signal Lamp	BK	At Lamp	N/S
Left Front Power Door Lock Motor	BK	In Respective Door	28
Left Front Power Lock/Window Switch C1 (LHD)	BL	In Respective Door	28
Left Front Power Lock/Window Switch C2 (LHD)	WT	In Respective Door	28
Left Front Power Window Motor (LHD)	BK	In Respective Door	28
Left Front Side Marker Lamp	YL	At Lamp	1
Left Front Wheel Speed Sensor (LHD)	BK	Left Engine Compartment	8
Left Front Wheel Speed Sensor (RHD)	BK	Left Engine Compartment	9
Left Headlamp	BK	At Headlamp	1
Left Park Lamp	BK	At Lamp	N/S
Left Power Mirror	RD	At Mirror	N/S
Left Rear Power Door Lock Motor	BK	In Respective Door	28
Left Rear Power Window Motor	BK	In Respective Door	28
Left Rear Power Window Switch	BL	In Respective Door	28
Left Rear Side Marker Lamp	YL	At Lamp	1
Left Rear Turn Signal Lamp	BK	At Lamp	1

Cammaatan	Color	Landing	
Connector Name/Number	Color	Location	Fig.
Left Rear Wheel Speed Sensor (LHD)	BK	Under Rear Seat	26
Left Rear Wheel Speed Sensor (RHD)	BK	Under Rear Seat	26
Left Sound Bar Speaker	BK	At Soundbar	N/S
Left Speaker (With Sound Bar)	BK	At Soundbar	N/S
Left Tail/Stop Lamp	BK	At Lamp	N/S
Left Turn Jumper	BK	At Lamp	N/S
Left Turn Signal	BK	At Lamp	N/S
License Lamp	YL	At Lamp	N/S
Liftgate Jamb Switch	BK	Lailgate	30
Liftgate Lock Motor	BK	Liftgate	30
Low Coolant Sensor (Diesel)	BK	Right Rear Engine Compartment	34, 35
Low Washer Fluid Level Switch	BK	At Washer Reservoir	6, 7
Manifold Absolute Pressure Sensor	BK	At Throttle Body	13, 14, 15
Mass Air Flow Sensor (Diesel)	BK	At Air Intake	N/S
MSA Controller (Diesel)	BK	Fender Side Shield	34, 35
Needle Movement Sensor (Diesel)	BK	Left Front of Engine	36
Oil Pressure Switch (Diesel)	BK	Right Rear of Engine	38
Overhead Module (With Immobilizer)	BK	Overhead Module	N/S
Park Brake Switch (LHD)	BK	At Park Brake Lever	21
Park Brake Switch (RHD)	BK	At Park Brake Lever	22
Passenger Air Bag	YL	Behind Instrument Panel	17, 18, 19, 20

Color	Location	Fig.
ВК	At Accelerator Pedal	N/S
NAT	At Power Amplifier	25
NAT	At Power Amplifier	25
NAT	At Power Amplifier	25
BK	Fender Side Shield	5, 10, 11, 16
BK	Fender Side Shield	5, 10, 11, 16
ВК	Instrument Panel	19, 20
BK	At Power Seat	N/S
WT	Front of Engine	13, 14
BK	Fender Side Shield	2, 6, 7
BK	Under Instrument Panel	N/S
WT	Fender Side Shield	2, 6, 7
GY	Fender Side Shield	2, 6, 7
GY	Fender Side Shield	2, 6, 7
BK	Steering Co;umn	N/S
LT GY	At Radiator	8, 9
BK	Behind Radio	19, 20
GY	Behind Radio	19, 20
BK	Behind Radio	19, 20
BK	At Respective Door	N/S
ВК	At Respective Door	N/S
	BK NAT NAT NAT BK BK BK WT BK WT GY GY BK LT GY BK GY BK BK	BK At Accelerator Pedal NAT At Power Amplifier NAT At Power Amplifier NAT At Power Amplifier BK Fender Side Shield BK Instrument Panel BK At Power Seat WT Front of Engine BK Fender Side Shield BK Fender Side Shield BK At Power Seat WT Front of Engine BK Fender Side Shield BK Under Instrument Panel WT Fender Side Shield GY Fender Side Shield GY Fender Side Shield BK Under Instrument Panel WT Fender Side Shield BK Under Side Shield BK Behind Radio BK At Respective Door BK At Respective

		Li e	-
Connector Name/Number	Color	Location	Fig.
Rear Washer Pump Motor (2.5L)	BK	At Washer Reservoir	6, 7
Rear Fog Lamp Relay	BK	Instrument Panel	N/S
Rear Fog Lamp Switch	BK	Instrument Panel	N/S
Rear Washer Pump Motor (Diesel)	BK	At Washer Reservoir	32, 33
Rear Washer Pump Motor (All Others)	BK	At Washer Reservoir	6, 7
Rear Window Defogger Switch	BK	Instrument Panel	19, 20
Rear Wiper Motor	BK	Liftgate	30
Rear Wiper Switch	BK	Instrument Panel	19, 20
Right Back-Up Lamp	BK	At Lamp	N/S
Right Courtesy Lamp	BK	At Lamp	N/S
Right Fog Lamp	BK	At Lamp	1
Right Front Door Jamb Switch	ВК	At Respective Door	N/S
Right Front Door Speaker (LHD)	BK	At Respective Door	28
Right Front Door Speaker (RHD)	BK	At Respective Door	28
Right Front Door Tweeter (LHD)	BK	At Respective Door	28
Right Front Door Tweeter (RHD)	BK	At Respective Door	28
Right Front Park/Turn Signal Lamp	BK	At:Lamp	1
Right Front Power Door Lock Motor	BK	At Respective Door	28
Right Front Power Lock/ Window Switch C1 (LHD)	BL	At Respective Door	28
Right Front Power Lock/ Window Switch C1 (RHD)	BL	At Respective Door	28

Connector	Color	Location	Fig.
Right Front Power Lock/ Window Switch C2 (LHD)	WT	At Respective Door	28
Right Front Power Lock/ Window Switch C2 (RHD)	WT	At Respective Door	28
Right Front Power Window Motor	BK	At Respective Door	28
Right Front Side Marker Lamp	YL	At Lamp	1
Right Front Wheel Speed Sensor (LHD)	BK	Left Engine Compartment	N/S
Right Front Wheel Speed Sensor (RHD)	BK	Left Engine Compartment	N/S
Right Headlamp	BK	At Headlamp	1
Right Park Lamp	BK	At Lamp	N/S
Right Power Mirror (LHD)	RD	In Respective Door	N/S
Right Power Mirror (RHD)	RD	In Respective Door	N/S
Right Rear Door Jamb Switch	ВК	At Respective Door	N/S
Right Rear Power Door Lock Motor	BK	At Respective Door	N/S
Right Rear Power Window Motor	BK	At Respective Door	N/S
Right Rear Power Window Switch	BL	At Respective Door	N/S
Right Rear Side Marker Lamp	YL	At Lamp	1
Right Rear Turn Signal Lamp	ВК	At Lamp	N/S
Right Rear Wheel Speed Sensor (LHD)	RD	Under Rear Seat	26
Right Rear Wheel Speed Sensor (RHD)	RD	Under Rear Seat	26
Right Sound Bar Speaker	BK	At Soundbar	N/S

Connector	Color	Location	Fig.
Name/Number			
Right Speaker (With Sound Bar)	BK	At Soundbar	N/S
Right Tail/Stop Lamp	BK	At Lamp	N/S
Right Turn Jumper	BK	At Lamp	N/S
Seat Belt Switch	BK	Near Center Console	21, 22
Starter (Diesel)	BK	At Starter	38
Stop Lamp Switch (LHD)	GY	Near Brake Pedal	12
Stop Lamp Switch (RHD)	GY	Near Brake Pedal	12
Tell Tale Module (Diesel)	BK	Overhead Console	N/S
Throttle Position Sensor (4.0L 2WD)	BK	On Throttle Body	13, 14, 15, 16
Throttle Position Sensor (All Others)	BK	On Throttle Body	13, 14, 15, 16
Traction Control Switch	BK	Console	N/S
Trailer Tow Electric Brake	BK	Trailer Tow Wiring Harness	N/S
Trailer Tow Left Turn Relay	BK	Trailer Tow Wiring Harness	N/S
Trailer Tow Right Turn Relay	BK	Trailer Tow Wiring Harness	N/S
Transmission Control Module	BK	Under Center Instrument Panel	N/S
Transmission Control Solenoids	BK	On Transmission	N/S
Transmission Range Sensor	BK	On Transmission	N/S
Turn Signal Hazard Switch	BK	Steering Column	24
Underhood Lamp	BK	At Lamp	4, 5
Upstream Heated Oxygen Sensor	GY	Exhaust	13, 14, 15
Vehicle Speed Control Servo (LHD)	BK	At Speed Control Servo	4

Connector Name/Number	Color	Location	Fig.
Vehicle Speed Control Servo (RHD)	BK	At Speed Control Servo	7
Vehicle Speed Sensor (LHD)	BK	On Transmission	31
Vehicle Speed Sensor (RHD)	BK	On Transmission	31

Connector Name/Number	Color	Location	Fig.
Water In Fuel Sensor	BK	At Fuel Heater	32, 33
Wiper/Washer Switch (LHD)	GY	Steering Column	24
Wiper/Washer Switch (RHD)	GY	Steering Column	24

80a837a0

Fig. 1 Front End Lighting

Fig. 3 Left Engine Compartment 2.5L Engine RHD

Fig. 4 Right Engine Compartment 2.5L Engine LHD

80abfd62

Fig. 5 Right Engine Compartment 2.5L Engine RHD

Fig. 6 Engine Compartment Components LHD

Fig. 7 Engine Compartment Components RHD

80abfd63

Fig. 8 Left Engine Compartment 4.0L Engine LHD

Fig. 9 Left Engine Compartment 4.0L Engine RHD

Fig. 10 Right Engine Compartment 4.0L Engine LHD

80abfd65

Fig. 11 Right Engine Compartment 4.0L Engine RHD

Fig. 12 Under Dash Components

CONNECTOR LOCATIONS

Fig. 13 Engine Connectors 2.5L Engine LHD

Fig. 14 Engine Connectors 2.5L Engine RHD

80a837a8

Fig. 15 Engine Connectors 4.0L Engine

Fig. 16 Engine and Battery 4.0L Engine

90 CONNECTOR LOCATIONS

80a837aa

Fig. 17 Instrument Panel Connectors LHD

80abfd67

Fig. 18 Instrument Panel Connectors RHD

Fig. 19 Instrument Panel Components LHD

Fig. 20 Instrument Panel Components RHD

80a837ac

Fig. 21 Center Console LHD

Fig. 22 Center Console RHD

Fig. 24 Steering Column

Fig. 25 Left Side Body

Fig. 26 ABS G-Sensor

80a837b0

Fig. 27 Rear Lamps

Fig. 28 Front and Rear Doors

POWER WINDOW, SWITCH

POWER OF LOCK

POWER WINDOW MOTOR

REAR DOOR

80a837b2

Fig. 29 Overhead and Junction Block

Fig. 30 Liftgate

Fig. 31 Transmission Wiring Connectors

Fig. 32 Left Engine Compartment Diesel Engine LHD

90 CONNECTOR LOCATIONS

Fig. 33 Left Engine Compartment Diesel Engine RHD

Fig. 34 Right Engine Compartment Diesel Engine LHD

90 CONNECTOR LOCATIONS

Fig. 35 Right Engine Compartment Diesel Engine RHD

Fig. 36 Engine Connectors Diesel Engine

- M8

Fig. 37 Engine and Battery Diesel Engine

80abfd77

Fig. 38 Starter and Battery Diesel Engine

Fig. 39 Transmission Connectors Diesel Engine

8W-95 SPLICE LOCATIONS

DESCRIPTION AND OPERATION

INTRODUCTION

This section provides illustrations identifying the general location of the splices in this vehicle. A splice index is provided. Use the wiring diagrams in each section for splice number identification. Refer to the index for proper splice number.

SPLICE LOCATIONS

For splices that are not shown in the figures in this section a N/S is placed in the Fig. column.

Splice Number	Location	Fig.
S100	Near Right Headlamp	9
S101	Near Right Headlamp	9
S102	Between Headlamps	9
S103	Near Left Headlamp	9
S104	Near Left Headlamp	9
S105	Near Left Headlamp	9
S106	Near Left Headlamp	9
S107	Rear of Engine	10, 11, 12
S108	Rear of Engine	10, 11, 12
S109	Near Fuel Injector Harness	10, 11, 12
S110	Near Fuel Injector Harness	10, 11, 12
S111	Near Fuel Injector Harness	10, 11, 12
S112	Near Fuel Injector Harness	10
S113	Near Fuel Injector Harness	10, 11, 12
S114	Near Fuel Injector Harness	10, 11, 12
S115	Near MAP Sensor	11, 12
S116	Near Back-Up Switch	11, 12
S118	Near Generator	10
S119	Near Battery	N/S
S130	Near Power Distribution Center	3, 4, 7, 8, 17, 18
S131	Near Purge Solenoid	3, 4, 7, 8, 18, 19, 20
S132	Near Purge Solenoid	3, 4, 7, 8, 18
S133	Left Rear of Engine Compartment	1, 2, 6, 7, 17, 20
S134	Left Rear of Engine Compartment	2, 3
S135	Rear of Engine Compartment	3, 4, 7, 8
S136	Rear of Engine Compartment	2, 3, 6, 7
S137	Rear of Engine Compartment	1, 2, 5, 6, 7, 17, 18

Splice Number	Location	Fig.
S138	Rear of Engine Compartment	1, 2, 5, 6, 7, 17, 18
S139	Left Rear of Engine Compartment	1, 2, 6, 17, 18
S140	Left Rear of Engine Compartment	1, 2, 6
S141	Left Rear of Engine Compartment	1, 2, 17
S142	Left Rear of Engine Compartment	1, 4
S143	Left Rear of Engine Compartment	1, 4, 5, 8
S144	Left Rear of Engine Compartment	1, 2, 6
S145	Left Rear of Engine Compartment	1, 2, 6
S146	Near MSA Controller (Diesel)	19, 20
S147	Left Rear of Engine Compartment	17, 18
S148	Left Rear of Engine Compartment	17, 18
S149	Left Rear of Engine Compartment	17, 18
S150	Left Rear of Engine Compartment	17, 18
S151	Left Fender Side Shield	17, 18
S152	Left Fender Side Shield	18
S156	Rear of Engine Compartment	17
S157	Left Rear of Engine Compartment	17
S200	Near Headlamp Switch	13, 14
S201	Near Data Link Connector	13, 14
S202	Lower Left Instrument Panel	13
S203	Near Brake switchl	13
S204	Near Brake Switch	13, 14

Splice Number	Location	Fig.
S205	Lower Instrument Panel	13, 14
S206	In Lower Instrument Panel Trough	13, 14
S207	In Lower Instrument Panel Trough	13, 14
S208	In Lower Instrument Panel Trough	13, 14
S209	In Lower Instrument Panel Trough	13, 14
S210	In Lower Instrument Panel Trough	13, 14
S211	In Lower Instrument Panel Trough	13, 14
S212	Near Brake Shift Interlock	13, 14
S213	Near Brake Shift Interlock	13, 14
S214	Between Glove Box Lamp and Troughl	13, 14
S215	Near Center Console	13, 14
S216	Near Instrument Cluster	13, 14
S217	Lower Instrument Panel	13
S218	Lower Instrument Panel	14
S219	Lower Instrument Panel	14
S221	Near Clock Spring	N/S
S222	Near Clock Spring	N/S
S300	Left Side Body Harness	16
S301	Near Power Amplifier	16
S302	Near Power Amplifier	16
S303	Near Power Amplifier	16
S304	Near Right Front Door Jamp Switch	N/S
S305	Between Right Tail Lamp and Power Seat	N/S
S306	Between Right Tail Lamp and Power Seat	N/S
S307	Between Right Tail Lamp and Power Seat	N/S
S308	Between Left Tail Lamp and Left Rear Door	N/S
S309	Between Left Tail Lamp and Left Rear Door	N/S
S310	Near Right Rear Door Jamb Switch	N/S
S311	Near Left Tail Lamp	N/S

Splice Number	Location	Fig.
S312	Near Power Seat	N/S
S313	Near Console Illumination	N/S
S314	Instrument Panel to Body Harness	15
S315	Instrument Panel to Body Harness	15
S316	Near Right Power Window	N/S
S317	Near Right Power Window	N/S
S318	Right Front Door	N/S
S319	Right Front Door	N/S
S320	Right Front Door	N/S
S321	Right Front Door	N/S
S322	Near Left Power Mirror	N/S
S323	Near Left Door Tweeter	N/S
S324	Near Left Door Tweeter	N/S
S325	Near Left Door Tweeter	N/S
S326	Near Left Door Speaker	N/S
S327	Near Left Door Speaker	N/S
S328	Near Left Power Mirror	N/S
S329	Near Left Power Mirror	N/S
S330	Near Left Front Door Speaker	N/S
S331	Near Left Front Door Speaker	N/S
S333	Liftgate	N/S
S334	Liftgate	N/S
S335	Trailer Tow Harness	N/S
S336	Trailer Tow Harness	N/S
S337	Trailer Tow Harness	N/S
S338	Trailer Tow Harness	N/S
S339	Trailer Tow Harness	N/S
S340	Trailer Tow Harness	N/S
S341	Trailer Tow Harness	N/S
S342	Overhead Console	N/S
S343	Overhead Console	N/S
S344	Overhead Console	N/S
S345	Overhead Console	N/S
S346	Overhead Console	N/S
S347	Dome and Vanity Harness	N/S
S348	Trailer Tow Harness	N/S

Fig. 5 Left Engine Compartment Splices 2.5L Engine LHD

Fig. 6 Left Engine Compartment Splices 2.5L Engine RHD

Fig. 9 Front End Lighting Splices

Fig. 11 Engine Wiring Splices 2.5L Engine LHD

Fig. 12 Engine Wiring Splices 2.5L Engine RHD

- W8

95 SPLICE LOCATIONS

80a837bb

Fig. 13 Instrument Panel Wiring Splices LHD

80abfd6f

Fig. 14 Instrument Panel Wiring Splices RHD

Fig. 15 Instrument Panel to Body Harness Splices

Fig. 17 Left Engine Compartment Splices Diesel LHD

Fig. 18 Left Engine Compartment Splices Diesel RHD

XJ ------ ENGINE 9 - 1

ENGINE

CONTENTS

page	page
2.5L ENGINE	

STANDARD SERVICE INFORMATION

INDEX

page	page
GENERAL INFORMATION	HYDROSTATIC LOCK4
ENGINE OIL	MEASURING WITH PLASTIGAGE
ENGINE PERFORMANCE 2	REPAIR DAMAGED OR WORN THREADS 4
FORM-IN-PLACE GASKETS 1	SERVICE ENGINE ASSEMBLY
HONING CYLINDER BORES 2	(SHORT BLOCK)

GENERAL INFORMATION

FORM-IN-PLACE GASKETS

There are several places where form-in-place gaskets are used on the engine. **DO NOT use form-in-place gasket material unless specified.** Care must be taken when applying form-in-place gaskets. Bead size, continuity and location are of great importance. Too thin a bead can result in leakage while too much can result in spill-over. A continuous bead of the proper width is essential to obtain a leak-free joint.

Two types of form-in-place gasket materials are used in the engine area (Mopar Silicone Rubber Adhesive Sealant and Mopar Gasket Maker). Each have different properties and cannot be used interchangeably.

MOPAR SILICONE RUBBER ADHESIVE SEALANT

Mopar Silicone Rubber Adhesive Sealant, normally black in color, is available in 3 ounce tubes. Moisture in the air causes the sealant material to cure. This material is normally used on flexible metal flanges. It has a shelf life of a year and will not properly cure if over aged. Always inspect the package for the expiration date before use.

MOPAR GASKET MAKER

Mopar Gasket Maker, normally red in color, is available in 6 cc tubes. This anaerobic type gasket material cures in the absence of air when squeezed between smooth machined metallic surfaces. It will not cure if left in the uncovered tube. DO NOT use on flexible metal flanges.

SURFACE PREPARATION

Parts assembled with form-in-place gaskets may be disassembled without unusual effort. In some instances, it may be necessary to lightly tap the part with a mallet or other suitable tool to break the seal between the mating surfaces. A flat gasket scraper may also be lightly tapped into the joint but care must be taken not to damage the mating surfaces.

Scrape or wire brush all gasket surfaces to remove all loose material. Inspect stamped parts to ensure gasket rails are flat. Flatten rails with a hammer on a flat plate, if required. Gasket surfaces must be free of oil and dirt. Make sure the old gasket material is removed from blind attaching holes.

GASKET APPLICATION

Assembling parts using a form-in-place gasket requires care.

Mopar Silicone Rubber Adhesive Sealant should be applied in a continuous bead approximately 3 mm (0.12 inch) in diameter. All mounting holes must be circled. For corner sealing, a 3 or 6 mm (1/8 or 1/4

GENERAL INFORMATION (Continued)

inch) drop is placed in the center of the gasket contact area. Uncured sealant may be removed with a shop towel. Components should be torqued in place while the sealant is still wet to the touch (within 10 minutes). The use of a locating dowel is recommended during assembly to prevent smearing the material off location.

Mopar Gasket Maker should be applied sparingly to one gasket surface. The sealant diameter should be 1.00 mm (0.04 inch) or less. Be certain the material surrounds each mounting hole. Excess material can easily be wiped off. Components should be torqued in place within 15 minutes. The use of a locating dowel is recommended during assembly to prevent smearing the material off location.

ENGINE PERFORMANCE

It is important that the vehicle is operating to its optimum performance level to maintain fuel economy and the lowest emission levels. If vehicle is not operating to these standards, refer to Engine Diagnosis outlined in this section. The following procedures can assist in achieving the proper engine diagnosis.

- (1) Test cranking amperage draw. Refer to Electrical Group 8B, Cold Cranking Test.
- (2) Check intake manifold bolt torque; Refer to Group 11, Exhaust System and Intake Manifold.
- (3) Perform cylinder compression test. Refer to Cylinder Compression Pressure Test in the Engine Diagnosis area of this section.
- (4) Clean or replace spark plugs as necessary and adjust gap as specified in Electrical Group 8D. Tighten to specifications.
- (5) Test resistance of spark plug cables. Refer to Electrical Group 8D, Spark Plug Cables.
- (6) Inspect the primary wires. Test coil output voltage and primary resistance. Replace parts as necessary. Refer to Electrical Group 8D, for specifications.
- (7) Test fuel pump for pressure. Refer to Group 14, Fuel System Specifications.
- (8) The air filter elements should be replaced as specified in Lubrication and Maintenance, Group 0.
- (9) Inspect crankcase ventilation system as out lined in Group 0, Lubrication and Maintenance. For emission controls see Group 25, Emission Controls for service procedures.
 - (10) Road test vehicle as a final test.

HONING CYLINDER BORES

Before honing, stuff plenty of clean shop towels under the bores and over the crankshaft to keep abrasive materials from entering the crankshaft area.

(1) Used carefully, the Cylinder Bore Sizing Hone C-823 equipped with 220 grit stones, is the best tool for this job. In addition to deglazing, it will reduce

taper and out-of-round as well as removing light scuffing, scoring or scratches. Usually a few strokes will clean up a bore and maintain the required limits.

CAUTION: DO NOT use rigid type hones to remove cylinder wall glaze.

(2) Deglazing of the cylinder walls may be done if the cylinder bore is straight and round. Use a cylinder surfacing hone, Honing Tool C-3501, equipped with 280 grit stones (C-3501-3810). 20-60 strokes, depending on the bore condition, will be sufficient to provide a satisfactory surface. Using honing oil C-3501-3880 or a light honing oil available from major oil distributors.

CAUTION: DO NOT use engine or transmission oil, mineral spirits or kerosene.

(3) Honing should be done by moving the hone up and down fast enough to get a crosshatch pattern. The hone marks should INTERSECT at 50° to 60° for proper seating of rings (Fig. 1).

Fig. 1 Cylinder Bore Crosshatch Pattern

- (4) A controlled hone motor speed between 200 and 300 RPM is necessary to obtain the proper cross-hatch angle. The number of up and down strokes per minute can be regulated to get the desired 50° to 60° angle. Faster up and down strokes increase the cross-hatch angle.
- (5) After honing, it is necessary that the block be cleaned to remove all traces of abrasive. Use a brush to wash parts with a solution of hot water and detergent. Dry parts thoroughly. Use a clean, white, lint-free cloth to check that the bore is clean. Oil the bores after cleaning to prevent rusting.

XJ — ENGINE 9 - 3

GENERAL INFORMATION (Continued)

MEASURING WITH PLASTIGAGE

CRANKSHAFT MAIN BEARING CLEARANCE

Engine crankshaft bearing clearances can be determined by use of Plastigage, or equivalent. The following is the recommended procedures for the use of Plastigage:

- (1) Remove oil film from surface to be checked. Plastigage is soluble in oil.
- (2) The total clearance of the main bearings can only be determined by removing the weight of the crankshaft. This can be accomplished by either of two methods:

METHOD - 1 (PREFERRED)

Shim the bearings adjacent to the bearing to be checked. This will remove the clearance between upper bearing shell and the crankshaft. Place a minimum of 0.254~mm (0.010~inch) shim between the bearing shell and the adjacent bearing cap. Tighten the bolts to $18~\text{N}\cdot\text{m}$ (13~ft. lbs.) torque.

- **ALL ENGINES**—When checking No.1 main bearing; shim No.2 main bearing.
- **ALL ENGINES**—When checking No.2 main bearing; shim No.1 and No.3 main bearing.
- **ALL ENGINES**—When checking No.3 main bearing; shim No.2 and No.4 main bearing.
- **ALL ENGINES**—When checking No.4 main bearing; shim No.3 and No.5 main bearing.
- **2.5L ENGINE**—When checking No.5 main bearing; shim No.4 main bearing.
- **4.0L ENGINE**—When checking No.5 main bearing; shim No.4 and No.6 main bearing.
- **4.0L ENGINE**—When checking No.6 main bearing; shim No.5 and No.7 main bearing.
- **4.0L ENGINE**—When checking No.7 main bearing; shim No.6 main bearing.

NOTE: Remove all shims before assembling engine.

METHOD - 2 (ALTERNATIVE)

The weight of the crankshaft is supported by a jack under the counterweight adjacent to the bearing being checked.

- (1) Place a piece of Plastigage across the entire width of the bearing cap shell (Fig. 2). Position the Plastigage approximately 6.35 mm (1/4 inch) off center and away from the oil holes. In addition, suspect areas can be checked by placing the Plastigage in that area. Tighten the bearing cap bolts of the bearing being checked to 108 N·m (80 ft. lbs.) torque. **DO NOT rotate the crankshaft or the Plastigage may be smeared, giving inaccurate results.**
- (2) Remove the bearing cap and compare the width of the flattened Plastigage with the scale provided on

Fig. 2 Placement of Plastigage in Bearing Shell

the package (Fig. 3). Plastigage generally comes in 2 scales (one scale is in inches and the other is a metric scale). Locate the band closest to the same width. This band shows the amount of clearance. Differences in readings between the ends indicate the amount of taper present. Record all readings taken (refer to Engine Specifications).

Fig. 3 Clearance Measurement

(3) Plastigage is available in a variety of clearance ranges. The 0.025-0.076 mm (0.001-0.003 inch) range is usually the most appropriate for checking engine bearing clearances.

CONNECTING ROD BEARING CLEARANCE

Engine connecting rod bearing clearances can be determined by use of Plastigage, or equivalent. The following is the recommended procedures for the use of Plastigage:

- (1) Remove oil film from surface to be checked. Plastigage is soluble in oil.
- (2) Place a piece of Plastigage across the entire width of the bearing cap shell (Fig. 2). Position the Plastigage approximately 6.35 mm (1/4 inch) off center and away from the oil holes. In addition, suspect areas can be checked by placing the Plastigage in the suspect area.
- (3) The crankshaft must be turned until the connecting rod to be checked starts moving toward the top of the engine. Only then should the rod cap with Plastigage in place be assembled. Tighten the rod cap nut to 45 $N{\cdot}m$ (33 ft. lbs.) torque. **DO NOT rotate**

GENERAL INFORMATION (Continued)

the crankshaft or the Plastigage may be smeared, giving inaccurate results.

- (4) Remove the bearing cap and compare the width of the flattened Plastigage with the scale provided on the package (Fig. 3). Plastigage generally comes in 2 scales (one scale is in inches and the other is a metric scale). Locate the band closest to the same width. This band shows the amount of clearance. Differences in readings between the ends indicate the amount of taper present. Record all readings taken (refer to Engine Specifications).
- (5) Plastigage is available in a variety of clearance ranges. The 0.025-0.076 mm (0.001-0.003 inch) range is usually the most appropriate for checking engine bearing clearances.

REPAIR DAMAGED OR WORN THREADS

Damaged or worn threads can be repaired. Essentially, this repair consists of:

- Drilling out worn or damaged threads.
- Tapping the hole with a special Heli-Coil Tap, or equivalent.
- Installing an insert into the tapped hole to bring the hole back to its original thread size.

CAUTION: Be sure that the tapped holes maintain the original center line.

Heli-Coil tools and inserts are readily available from automotive parts jobbers.

SERVICE ENGINE ASSEMBLY (SHORT BLOCK)

A service replacement engine assembly (short block) may be installed whenever the original cylinder block is defective or damaged beyond repair. It consists of the cylinder block, crankshaft, piston and rod assemblies. If needed, the camshaft must be procured separately and installed before the engine is installed in the vehicle.

A short block is identified with the letter "S" stamped on the same machined surface where the build date code is stamped for complete engine assemblies.

Installation includes the transfer of components from the defective or damaged original engine. Follow the appropriate procedures for cleaning, inspection and torque tightening.

HYDROSTATIC LOCK

When an engine is suspected of hydrostatic lock (regardless of what caused the problem), follow the steps below.

- (1) Perform the Fuel Pressure Release Procedure (refer to Group 14, Fuel System).
 - (2) Disconnect the negative cable from the battery.

- (3) Inspect air cleaner, induction system and intake manifold to ensure system is dry and clear of foreign material.
- (4) Place a shop towel around the spark plugs to catch any fluid that may possibly be under pressure in the cylinder head. Remove the plugs from the engine.

CAUTION: DO NOT use the starter motor to rotate the crankshaft. Severe damage could occur.

- (5) With all spark plugs removed, rotate the crankshaft using a breaker bar and socket.
- (6) Identify the fluid in the cylinders (i.e. coolant, fuel, oil, etc.).
- (7) Make sure all fluid has been removed from the cylinders.
- (8) Repair engine or components as necessary to prevent this problem from occurring again.
- (9) Squirt engine oil into the cylinders to lubricate the walls. This will prevent damage on restart.
- (10) Install new spark plugs. Tighten the spark plugs to 37 N·m (27 ft. lbs.) torque.
- (11) Drain engine oil. Remove and discard the oil filter
- (12) Install the drain plug. Tighten the plug to 34 $N{\cdot}m$ (25 ft. lbs.) torque.
 - (13) Install a new oil filter.
- (14) Fill engine crankcase with the specified amount and grade of oil (refer to Group 0, Lubrication and Maintenance).
 - (15) Connect the negative cable to the battery.
 - (16) Start the engine and check for any leaks.

ENGINE OIL

WARNING: NEW OR USED ENGINE OIL CAN BE IRRITATING TO THE SKIN. AVOID PROLONGED OR REPEATED SKIN CONTACT WITH ENGINE OIL. CONTAMINANTS IN USED ENGINE OIL, CAUSED BY INTERNAL COMBUSTION, CAN BE HAZARDOUS TO YOUR HEALTH. THOROUGHLY WASH EXPOSED SKIN WITH SOAP AND WATER. DO NOT WASH SKIN WITH GASOLINE, DIESEL FUEL, THINNER, OR SOLVENTS, HEALTH PROBLEMS CAN RESULT. DO NOT POLLUTE, DISPOSE OF USED ENGINE OIL PROPERLY.

ENGINE OIL SPECIFICATION

CAUTION: Do not use non-detergent or straight mineral oil when adding or changing crankcase lubricant. Engine failure can result.

GENERAL INFORMATION (Continued)

API SERVICE GRADE CERTIFIED

Use an engine oil that is API Service Grade Certified or an oil that conforms to the API Service Grade SH or SH/CD. MOPAR provides engine oils that conform to all of these service grades.

SAE VISCOSITY

An SAE viscosity grade is used to specify the viscosity of engine oil. SAE 30 specifies a single viscosity engine oil. Engine oils also have multiple viscosities. These are specified with a dual SAE viscosity grade which indicates the cold-to-hot temperature viscosity range. Select an engine oil that is best suited to your particular temperature range and variation (Fig. 4).

Fig. 4 Temperature/Engine Oil Viscosity

ENERGY CONSERVING OIL

An Energy Conserving type oil is recommended for gasoline engines. They are designated as either ENERGY CONSERVING or ENERGY CONSERVING II.

CONTAINER IDENTIFICATION

Standard engine oil identification notations have been adopted to aid in the proper selection of engine oil. The identifying notations are located on the label of engine oil plastic bottles and the top of engine oil cans (Fig. 5).

9400-9

Fig. 5 Engine Oil Container Standard Notations

ENGINE OIL ADDITIVES

In some instances, such as infrequent operation, short trip driving, and during break-in after a major overhaul, addition of special materials containing anti-rust and anti-scuff additives are beneficial. A suitable product for this purpose is MOPAR Engine Oil Supplement.

CRANKCASE OIL LEVEL INSPECTION

CAUTION: Do not overfill crankcase with engine oil, oil foaming and oil pressure loss can result.

The engine oil level indicator (Dipstick) is located at the right rear of both 2.5L engines and 4.0L engines. Inspect engine oil level approximately every 800 kilometers (500 miles). Unless the engine has exhibited loss of oil pressure, run the engine for about five minutes before checking oil level. Checking engine oil level on a cold engine is not accurate.

To ensure proper lubrication of an engine, the engine oil must be maintained at an acceptable level. The acceptable levels are indicated between the ADD and SAFE marks on the engine oil dipstick (Fig. 6) (Fig. 7).

- (1) Position vehicle on level surface.
- (2) With engine OFF, allow approximately ten minutes for oil to settle to bottom of crankcase, remove engine oil dipstick.
 - (3) Wipe dipstick clean.
- (4) Install dipstick and verify it is seated in the tube.
- (5) Remove dipstick, with handle held above the tip, take oil level reading (Fig. 6) (Fig. 7).
- (6) Add oil only if level is below the ADD mark on dipstick.

Fig. 6 Engine Oil Dipstick—2.5L Engine

GENERAL INFORMATION (Continued)

Fig. 7 Engine Oil Dipstick—4.0L Engine

ENGINE OIL CHANGE

Change engine oil at mileage and time intervals described in Maintenance Schedules.

Run engine until achieving normal operating temperature.

- (1) Position the vehicle on a level surface and turn engine off.
 - (2) Hoist and support vehicle on safety stands.
 - (3) Remove oil fill cap.
- (4) Place a suitable drain pan under crankcase drain.
- (5) Remove drain plug from crankcase and allow oil to drain into pan. Inspect drain plug threads for stretching or other damage. Replace drain plug if damaged.
 - (6) Install drain plug in crankcase.
- (7) Lower vehicle and fill crankcase with specified type and amount of engine oil described in this section.
 - (8) Install oil fill cap.
 - (9) Start engine and inspect for leaks.
 - (10) Stop engine and inspect oil level.

ENGINE OIL FILTER CHANGE

FILTER SPECIFICATION

CAUTION: Do not use oil filter with metric threads. The proper oil filter has SAE type 3/4 X 16 threads. An oil filter with metric threads can result in oil leaks and engine failure.

All Jeep engines are equipped with a high quality full-flow, throw-away type oil filter. Chrysler Corpo-

ration recommends a Mopar or equivalent oil filter be used.

OIL FILTER REMOVAL

- (1) Position a drain pan under the oil filter.
- (2) Using a suitable oil filter wrench loosen filter.
- (3) Rotate the oil filter counterclockwise to remove it from the cylinder block oil filter boss or filter adapter housing (Fig. 8) (Fig. 9).

Fig. 8 Oil Filter—2.5L Engine

Fig. 9 Oil Filter-4.0L Engine

- (4) When filter separates from adapter nipple, tip gasket end upward to minimize oil spill. Remove filter from vehicle.
- (5) Make sure old gasket comes off with oil filter. With a wiping cloth, clean the gasket sealing surface (Fig. 10) of oil and grime.

GENERAL INFORMATION (Continued)

OIL FILTER INSTALLATION

- (1) Lightly lubricate oil filter gasket with engine oil or chassis grease.
- (2) Thread filter onto adapter nipple. When gasket makes contact with sealing surface, (Fig. 10) hand tighten filter one full turn, do not over tighten.
- (3) Add oil, verify crankcase oil level and start engine. Inspect for oil leaks.

Fig. 10 Oil Filter Sealing Surface—Typical

USED ENGINE OIL DISPOSAL

Care should be exercised when disposing used engine oil after it has been drained from a vehicle engine. Refer to the WARNING at beginning of this section.

ENGINE DIAGNOSIS

INDEX

page

1.0.	1.3.
DIAGNOSIS AND TESTING	GENERAL INFORMATION 8
CYLINDER COMBUSTION PRESSURE	INSPECTION (ENGINE OIL LEAKS IN
LEAKAGE TEST 9	GENERAL)9
CYLINDER COMPRESSION PRESSURE TEST 8	INTAKE MANIFOLD LEAKAGE DIAGNOSIS 8
ENGINE CYLINDER HEAD GASKET FAILURE	SERVICE DIAGNOSIS—MECHANICAL 13
DIAGNOSIS 8	SERVICE DIAGNOSIS—PERFORMANCE 11
ENGINE OIL PRESSURE 10	

DIAGNOSIS AND TESTING

GENERAL INFORMATION

Engine diagnosis is helpful in determining the causes of malfunctions not detected and remedied by routine tune-ups.

These malfunctions may be classified as either performance (e.g., engine idles rough and stalls) or mechanical (e.g., a strange noise).

Refer to the Service Diagnosis—Performance chart and the Service Diagnosis—Mechanical chart for possible causes and corrections of malfunctions. Refer to Group 14, Fuel System for the fuel system diagnosis.

Additional tests and diagnostic procedures may be necessary for specific engine malfunctions that can not be isolated with the Service Diagnosis charts. Information concerning additional tests and diagnosis is provided within the following diagnosis:

- Cylinder Compression Pressure Test.
- Cylinder Combustion Pressure Leakage Test.
- Engine Cylinder Head Gasket Failure Diagnosis.
- Intake Manifold Leakage Diagnosis.

INTAKE MANIFOLD LEAKAGE DIAGNOSIS

An intake manifold air leak is characterized by lower than normal manifold vacuum. Also, one or more cylinders may not be functioning.

WARNING: USE EXTREME CAUTION WHEN THE ENGINE IS OPERATING. DO NOT STAND IN A DIRECT LINE WITH THE FAN. DO NOT PUT YOUR HANDS NEAR THE PULLEYS, BELTS OR THE FAN. DO NOT WEAR LOOSE CLOTHING.

- (1) Start the engine.
- (2) Spray a small stream of water at the suspected leak area.
- (3) If a change in RPM is observed the area of the suspected leak has been found.
 - (4) Repair as required.

CYLINDER COMPRESSION PRESSURE TEST

The results of a cylinder compression pressure test can be utilized to diagnose several engine malfunctions.

XJ

nage

Ensure the battery is completely charged and the engine starter motor is in good operating condition. Otherwise the indicated compression pressures may not be valid for diagnosis purposes.

- (1) Clean the spark plug recesses with compressed air.
 - (2) Remove the spark plugs.
 - (3) Secure the throttle in the wide-open position.
 - (4) Disconnect the ignition coil.
- (5) Insert a compression pressure gauge and rotate the engine with the engine starter motor for three revolutions.
- (6) Record the compression pressure on the 3rd revolution. Continue the test for the remaining cylinders

Refer to Engine Specifications for the correct engine compression pressures.

ENGINE CYLINDER HEAD GASKET FAILURE DIAGNOSIS

A leaking engine cylinder head gasket usually results in loss of power, loss of coolant and engine misfiring.

An engine cylinder head gasket leak can be located between adjacent cylinders or between a cylinder and the adjacent water jacket.

- An engine cylinder head gasket leaking between adjacent cylinders is indicated by a loss of power and/or engine misfire.
- An engine cylinder head gasket leaking between a cylinder and an adjacent water jacket is indicated by coolant foaming or overheating and loss of coolant.

CYLINDER-TO-CYLINDER LEAKAGE TEST

To determine if an engine cylinder head gasket is leaking between adjacent cylinders; follow the procedures outlined in Cylinder Compression Pressure

DIAGNOSIS AND TESTING (Continued)

Test. An engine cylinder head gasket leaking between adjacent cylinders will result in approximately a 50-70% reduction in compression pressure.

CYLINDER-TO-WATER JACKET LEAKAGE TEST

WARNING: USE EXTREME CAUTION WHEN THE ENGINE IS OPERATING. DO NOT STAND IN A DIRECT LINE WITH THE FAN. DO NOT PUT YOUR HANDS NEAR THE PULLEYS, BELTS OR THE FAN. DO NOT WEAR LOOSE CLOTHING.

Remove the radiator cap.

Start the engine and allow it to warm up until the engine thermostat opens.

If a large combustion/compression pressure leak exists, bubbles will be visible in the coolant.

If bubbles are not visible, install a radiator pressure tester and pressurize the coolant system.

If a cylinder is leaking combustion pressure into the water jacket, the tester pointer will pulsate with every combustion stroke of the cylinder.

CYLINDER COMBUSTION PRESSURE LEAKAGE TEST

The combustion pressure leakage test provides an accurate means for determining engine condition.

Combustion pressure leakage testing will detect:

- Exhaust and intake valve leaks (improper seating).
- Leaks between adjacent cylinders or into water iacket.
- Any causes for combustion/compression pressure loss.
- (1) Check the coolant level and fill as required. DO NOT install the radiator cap.
- (2) Start and operate the engine until it attains normal operating temperature, then turn the engine OFF.

- (3) Remove the spark plugs.
- (4) Remove the oil filler cap.
- (5) Remove the air cleaner.
- (6) Calibrate the tester according to the manufacturer's instructions. The shop air source for testing should maintain 483 kPa (70 psi) minimum, 1 379 kPa (200 psi) maximum and 552 kPa (80 psi) recommended.
- (7) Perform the test procedures on each cylinder according to the tester manufacturer's instructions. While testing, listen for pressurized air escaping through the throttle body, tailpipe and oil filler cap opening. Check for bubbles in the radiator coolant.

All gauge pressure indications should be equal, with no more than 25% leakage.

FOR EXAMPLE: At 552 kPa (80 psi) input pressure, a minimum of 414 kPa (60 psi) should be maintained in the cylinder.

Refer to the Cylinder Combustion Pressure Leakage Test Diagnosis chart.

INSPECTION (ENGINE OIL LEAKS IN GENERAL)

Begin with a through visual inspection of the engine, particularly at the area of the suspected leak. If an oil leak source is not readily identifiable, the following steps should be followed:

- (1) Do not clean or degrease the engine at this time because some solvents may cause rubber to swell, temporarily stopping the leak.
- (2) Add an oil soluble dye (use as recommended by manufacturer). Start the engine and let idle for approximately 15 minutes. Check the oil dipstick to make sure the dye is thoroughly mixed as indicated with a bright yellow color under a black light.
- (3) Using a black light, inspect the entire engine for fluorescent dye, particularly at the suspected area of oil leak. If the oil leak is found and identified, repair per service manual instructions.

CONDITION	POSSIBLE CAUSE	CORRECTION
	Intake valve bent, burnt, or not seated properly	Inspect valve. Reface or replace, as necessary
AIR ESCAPES THROUGH TAILPIPE	Exhaust valve bent, burnt, or not seated properly	Inspect valve. Reface or replace, as necessary
AIR ESCAPES THROUGH RADIATOR	Head gasket leaking or cracked cylinder head or block	Remove cylinder head and inspect. Replace defective part
	Head gasket leaking or crack in cylinder head or block between adjacent cylinders	Remove cylinder head and inspect. Replace gasket, head, or block as necessary
MORE THAN 25% LEAKAGE AND AIR ESCAPES THROUGH OIL FILLER CAP OPENING ONLY	Stuck or broken piston rings; cracked piston; worn rings and/or cylinder wall	

DIAGNOSIS AND TESTING (Continued)

- (4) If dye is not observed, drive the vehicle at various speeds for approximately 24km (15 miles), and repeat inspection.
- (5) **If the oil leak source is not positively identified at this time**, proceed with the air leak detection test method.

Air Leak Detection Test Method

- (1) Disconnect the breather cap to air cleaner hose at the breather cap end. Cap or plug breather cap nipple.
- (2) Remove the PCV valve from the cylinder head cover. Cap or plug the PCV valve grommet.
- (3) Attach an air hose with pressure gauge and regulator to the dipstick tube.

CAUTION: Do not subject the engine assembly to more than 20.6 kpa (3 PSI) of test pressure.

- (4) Gradually apply air pressure from 1 psi to 2.5 psi maximum while applying soapy water at the suspected source. Adjust the regulator to the suitable test pressure that provide the best bubbles which will pinpoint the leak source. If the oil leak is detected and identified, repair per service manual procedures.
- (5) If the leakage occurs at the rear oil seal area, refer to the section, Inspection for Rear Seal Area Leak.
- (6) If no leaks are detected, turn off the air supply and remove the air hose and all plugs and caps. Install the PCV valve and breather cap hose.
- (7) Clean the oil off the suspect oil leak area using a suitable solvent. Drive the vehicle at various speeds approximately 24 km (15 miles). Inspect the engine for signs of an oil leak by using a black light.

INSPECTION FOR REAR SEAL AREA LEAKS

Since it is sometimes difficult to determine the source of an oil leak in the rear seal area of the engine, a more involved inspection is necessary. The following steps should be followed to help pinpoint the source of the leak.

If the leakage occurs at the crankshaft rear oil seal area:

- (1) Disconnect the battery.
- (2) Raise the vehicle.
- (3) Remove torque converter or clutch housing cover and inspect rear of block for evidence of oil. Use a black light to check for the oil leak:
 - (a) Circular spray pattern generally indicates seal leakage or crankshaft damage.
 - (b) Where leakage tends to run straight down, possible causes are a porous block, distributor seal, camshaft bore cup plugs oil galley pipe plugs, oil filter runoff, and main bearing cap to cylinder block mating surfaces.
- (4) If no leaks are detected, pressurize the crankcase as outlined in the, Inspection (Engine oil Leaks in general)

CAUTION: Do not exceed 20.6 kPa (3 psi).

(5) If the leak is not detected, very slowly turn the crankshaft and watch for leakage. If a leak is detected between the crankshaft and seal while slowly turning the crankshaft, it is possible the crankshaft seal surface is damaged. The seal area on the crankshaft could have minor nicks or scratches that can be polished out with emery cloth.

CAUTION: Use extreme caution when crankshaft polishing is necessary to remove minor nicks and scratches. The crankshaft seal flange is especially machined to complement the function of the rear oil seal.

(6) For bubbles that remain steady with shaft rotation, no further inspection can be done until disassembled.

ENGINE OIL PRESSURE

- (1) Remove oil pressure sending unit.
- (2) Install Oil Pressure Line and Gauge Tool C-3292. Start engine and record pressure. Refer to Oil Pressure in Engine Specifications for the proper pressures.

J ----- ENGINE 9 - 11

DIAGNOSIS AND TESTING (Continued)

SERVICE DIAGNOSIS—PERFORMANCE

ENGINE PERFORMANCE DIAGNOSIS CHART

CONDITION	POSSIBLE CAUSES	CORRECTION
ENGINE LOSS OF POWER	Incorrect ignition timing Worn or burned distributor rotor Worn distributor shaft	Refer to group 8D, Ignition System Install new distributor rotor Remove and repair distributor (Refer to group 8D, Ignition System)
	4. Dirty or incorrect gapped spark plugs 5. Dirt or water in fuel system	4. Clean plugs and set gap (Refer to group 8D, Ignition System 5. Clean system and replace fuel
	6. Faulty fuel pump	filter 6. Install new fuel pump
	7. Incorrect valve timing8. Blown cylinder head gasket9. Low compression	7. Correct valve timing8. Install new cylinder head gasket9. Test cylinder compression
	10. Burned, warped, or pitted valves	10. Install/Reface valves as necessary
	11. Plugged or restricted exhaust system	11. Install new parts as necessary
	12. Faulty ignition cables	12. Replace any cracked or shorted cables
	13. Faulty ignition coil14. Faulty crank or cam sensor	13. Test and replace, as necessary (Refer to Group 8D, ignition system) 14. Replace sensor
ENGINE STALLS OR ROUGH IDLE	1. Idle speed set too low	Refer to group 14, Fuel System
	Idle mixture too lean or too rich Leak in intake manifold	2. Refer to group 14, Fuel System 3. Inspect intake manifold gasket and vacuum hoses. Replace if necessary (Refer to Group 11, Exhaust System & Intake Manifold
	4. Worn or burned distributor rotor.5. Incorrect ignition wiring6. Faulty coil	4. Install new distributor rotor 5. Install correct wiring 6. Test and replace, if necessary (refer to group 8D, Ignition System)
	7. EGR valve leaking or stuck open	7. Test and replace, if necessary (refer to group 25, Emission Control Systems)
ENGINE LOSS OF POWER	1. Incorrect ignition timing	Refer to Group 8D, Ignition System
	Worn or burned distributor rotor Worn distributor shaft	Install new distributor rotor Remove and repair distributor (refer to group 8D, Ignition System)
	4. Dirty or incorrectly gapped spark plugs5. Dirt or water in fuel system	4. Clean plugs and set gap (refer to group 8D, Ignition System) 5. Clean system and replace fuel
		filter
	6. Faulty fuel pump7. Incorrect valve timing	Install new fuel pump Correct valve timing
	8. Blown cylinder head gasket	8. Install new cylinder head gasket
	9. Low compression 10. Burned, warped or pitted valves	Test cylinder compression Reface/replace valves
	To. burned, warped or pilled valves	10. Nelace/Teplace Valves

9 - 12 ENGINE — XJ

DIAGNOSIS AND TESTING (Continued)

CONDITION	POSSIBLE CAUSES	CORRECTION
ENGINE LOSS OF POWER (CONT'D)	11. Plugged or restricted exhaust system12. Faulty ignition cables13. Faulty coil14. Faulty crankshaft or camshaft sensor	11. Install new parts as necessary12. Replace any cracked or shorted cables13. Test and replace, as necessary14. Replace sensor
ENGINE MISSES ON ACCELERATION	Dirty or gap set too wide in spark plug Incorrect ignition timing Dirt in fuel system Burned, warped or pitted valves Faulty coil	Clean spark plugs and set gap (refer to group 8D, Ignition System) Refer to group 8D, Ignition System Clean fuel system Install new valves Test and replace as necessary (refer to group 8D, Ignition System)
ENGINE MISSES AT HIGH SPEED	 Dirty or gap set too wide in spark plug Worn distributor shaft Worn or burned distributor rotor Faulty coil Incorrect ignition timing Dirty injector in throttle body Dirt or water in fuel system 	1. Clean spark plugs and set gap (refer to group 8D, Ignition System) 2. Remove and repair distributor (refer to group 8D, Ignition System) 3. Install new distributor rotor 4. Test and replace, as necessary (refer to group 8D, Ignition System) 5. Refer to group 8D, Ignition System 6. Clean injector 7. Clean system and replace fuel filter

(J — ENGINE 9 - 13

DIAGNOSIS AND TESTING (Continued)

SERVICE DIAGNOSIS—MECHANICAL

ENGINE MECHANICAL DIAGNOSIS CHART

CONDITION	POSSIBLE CAUSES	CORRECTION
NOISY VALVES	1. High or low oil level in crankcase	Check for correct oil level (refer to group 0, Lubrication and Maintenance)
	2. Thin or diluted oil	Change oil (refer to group 0, Lubrication and Maintenance)
	3. Low oil pressure	3. Check engine oil level
	4. Dirt in tappets/lash adjusters	Clean hydraulic tappets/lash adjusters
	5. Bent push rods	5. Install new push rods
	6. Worn rocker arms	6. Inspect oil supply to rocker arms
	7. Worn tappets/lash adjusters	7. Install new hydraulic tappets/lash adjusters
	8. Worn valve guides	8. Ream and install new valves with oversize stems
	9. Excessive runout of valve seats or valve faces	Grind valve seats and valves
CONNECTING ROD NOISE	1. Insufficient oil supply	Check engine oil level (refer to group 0, Lubrication and Maintenance)
	2. Low oil pressure	Check engine oil level. Perform manual oil pressure test
	3. Thin or diluted oil	3. Change oil to correct viscosity
	4. Excessive bearing clearance	Measure bearings for correct clearance. Repair as necessary
	5. Connecting rod journal out of round	Replace crankshaft or grind journals
	6. Misaligned connecting rods	6. Replace bent connecting rods
MAIN BEARING NOISE	1. Insufficient oil supply	Check engine oil level (refer to group 0, Lubrication and Maintenance)
	2. Low oil pressure	2. Check engine oil level. Perform manual oil pressure test if necessary
	3. Thin or diluted oil	3. Change oil to correct viscosity
	4. Excessive bearing clearance	4. Measure bearings for correct clearance. Repair as necessary
	5. Excessive end play	5. Check crankshaft thrust bearing for excessive wear on flanges
	6. Crankshaft main journal out of	6. Grind journals or replace
	round or worn	crankshaft
	7. Loose flywheel or torque converter	7. Tighten to correct torque
LOW OIL PRESSURE	1. Low oil level	1. Check oil level and fill if necessary
	2. Faulty oil pressure sending unit	2. Install new sending unit
	3. Clogged oil filter	3. Install new oil filter
	4. Worn oil pump	Replace worn gears or oil pump assy
	5. Thin or diluted oil	5. Change oil to correct viscosity
LOW OIL PRESSURE (CONT'D)	6. Excessive bearing clearance	6. Measure bearings for correct clearance

DIAGNOSIS AND TESTING (Continued)

CONDITION	POSSIBLE CAUSES	CORRECTION
	7. Oil pump relief valve stuck8. Oil pump suction tube loose, broken, bent or clogged9. Oil pump cover warped or cracked	7. Remove valve to inspect, clean and reinstall 8. Inspect suction tube and clean or replace if necessary 9. Install new oil pump
OIL LEAKS	Misaligned or deteriorated gaskets Loose fastener, broken or porous metal part Front or rear crankshaft oil seal leaking	1. Replace gasket 2. Tighten, repair or replace the part 3. Replace seal 4. Remove and reseal threaded plug. Replace cup style plug
OIL CONSUMPTION OR SPARK PLUGS OIL FOULED	 PCV System malfunction Defective valve stem seal Worn, scuffed or broken piston rings Carbon in oil control ring groove Worn valve guides Piston rings fitted too tightly in grooves 	1. Refer to group 25, Emission Control System for proper operation 2. Repair or replace seal 3. Hone cylinder bores. Install new rings 4. Remove rings and de-carbon piston 5. Ream guides and replace valves with oversize valves and seals 6. Remove rings and check ring end gap and side clearance. Replace if necessary

- 2.5L ENGINE 9 - 15

2.5L ENGINE

INDEX

page	page
DESCRIPTION AND OPERATION	OIL PAN
ENGINE DESCRIPTION	OIL PUMP
LUBRICATION SYSTEM	PISTONS AND CONNECTING RODS
OIL PUMP PRESSURE	REAR MAIN OIL SEALS
OVERSIZE AND UNDERSIZE COMPONENT	ROCKER ARMS AND PUSH RODS
CODES	TIMING CASE COVER OIL SEAL
SERVICE PROCEDURES	TIMING CASE COVER
FITTING CONNECTING ROD BEARINGS 21	TIMING CHAIN AND SPROCKETS
FITTING CRANKSHAFT MAIN BEARINGS 23	VALVE SPRINGS AND OIL SEALS
PISTON FITTING	VALVES AND VALVE SPRINGS
PISTON RING FITTING	VIBRATION DAMPER 35
VALVE TIMING	DISASSEMBLY AND ASSEMBLY
REMOVAL AND INSTALLATION	CYLINDER BLOCK 48
CAMSHAFT BEARINGS 41	VALVE SERVICE 46
CAMSHAFT PIN REPLACEMENT	CLEANING AND INSPECTION
CAMSHAFT 38	CYLINDER BLOCK 49
CRANKSHAFT MAIN BEARINGS 41	ENGINE CYLINDER HEAD 49
CYLINDER HEAD COVER	ROCKER ARMS AND PUSH RODS 48
ENGINE ASSEMBLY 28	SPECIFICATIONS
ENGINE CYLINDER HEAD	2.5L ENGINE SPECIFICATIONS 50
ENGINE MOUNTS—FRONT 27	2.5L TORQUE SPECIFICATIONS 52
ENGINE MOUNT—REAR	SPECIAL TOOLS
HYDRAULIC TAPPETS	2.5L ENGINE
DESCRIPTION AND OPERATION	Engine Type
	Cylinder Combustion Cavity Double Quench
ENGINE DESCRIPTION	Connecting Rods Cast Malleable Iron
The 2.5 liter (150 CID) four-cylinder engine is an	This engine is designed for unleaded fuel.
In-line, lightweight, overhead valve engine.	The engine cylinder head has dual quench-type
in mie, ngneweigne, overneud valve engine.	combustion chambers that create turbulence and fast
Engine Description	burning of the air/fuel mixture. This results in good
g	fuel economy.
Engine Type	The cylinders are numbered 1 through 4 from front
Bore and Stroke 98.4 x 81.0mm (3.88 x 3.19 in.)	to rear. The firing order is 1-3-4-2 (Fig. 1).
Displacement	The crankshaft rotation is clockwise, when viewed
Compression Ratio	
Torque	from the front of the engine. The crankshaft rotates
Firing Order	within five main bearings and the camshaft rotates
Lubrication Pressure Feed–Full Flow Filtration	within four bearings.
Engine Oil Capacity	BUILD DATE CODE
	The engine Build Date Code is located on a
Cooling System Liquid Cooled–Forced Circulation	The eligine build bate code is located oil a

Cooling System Capacity 9.5L (10 Quarts)

Pistons. Aluminum Alloy (with Struts)

The engine Build Date Code is located on a machined surface on the right side of the cylinder block between the No.3 and No.4 cylinders (Fig. 2).

The digits of the code identify:

- 1st Digit—The year (7 = 1997).
- 2nd & 3rd Digits—The month (01 12).
- 4th & 5th Digits—The engine type/fuel system/ compression ratio (HX = A 2.5 liter (150 CID) 9.1:1

DESCRIPTION AND OPERATION (Continued)

Fig. 1 Engine Firing Order

Fig. 2 Build Date Code Location

compression ratio engine with a multi-point fuel injection system).

• 6th & 7th Digits—The day of engine build (01 - 31).

FOR EXAMPLE: Code * 701HX23 * identifies a 2.5 liter (150 CID) engine with a multi-point fuel

injection system, 9.1:1 compression ratio and built on January 23, 1997.

LUBRICATION SYSTEM

A gear—type positive displacement pump is mounted at the underside of the block opposite the No. 4 main bearing. The pump draws oil through the screen and inlet tube from the sump at the rear of the oil pan. The oil is driven between the drive and idler gears and pump body, then forced through the outlet to the block. An oil gallery in the block channels the oil to the inlet side of the full flow oil filter. After passing through the filter element, the oil passes from the center outlet of the filter through an oil gallery that channels the oil up to the main gallery which extends the entire length of the block.

Galleries extend downward from the main oil gallery to the upper shell of each main bearing. The crankshaft is drilled internally to pass oil from the main bearing journals (except number 4 main bearing journal) to the connecting rod journals. Each connecting rod bearing cap has a small squirt hole, oil passes through the squirt hole and is thrown off as the rod rotates. This oil throwoff lubricates the camshaft lobes, distributor drive gear, cylinder walls, and piston pins.

The hydraulic valve tappets receive oil directly from the main oil gallery. Oil is provided to the camshaft bearing through galleries. The front camshaft bearing journal passes oil through the camshaft sprocket to the timing chain. Oil drains back to the oil pan under the number one main bearing cap.

The oil supply for the rocker arms and bridged pivot assemblies is provided by the hydraulic valve tappets which pass oil through hollow push rods to a hole in the corresponding rocker arm. Oil from the rocker arm lubricates the valve train components, then passes down through the push rod guide holes in the cylinder head past the valve tappet area, and returns to the oil pan.

- 2.5L ENGINE 9 - 17

DESCRIPTION AND OPERATION (Continued)

DESCRIPTION AND OPERATION (Continued)

OIL PUMP PRESSURE

The MINIMUM oil pump pressure is 89.6 kPa (13 psi) at 600 rpm. The NORMAL oil pump pressure is 255-517 kPa (37-75 psi) at 1600 rpm or more.

OVERSIZE AND UNDERSIZE COMPONENT CODES

Some engines may be built with oversize or undersize components such as:

- Oversize cylinder bores.
- Oversize camshaft bearing bores.
- Undersize crankshaft main bearing journals.
- Undersize connecting rod journals.

These engines are identified by a letter code (Fig. 3) stamped on the oil filter boss near the distributor (Fig. 4).

CODE	COMPONENT	UNDERSIZE	
Р	One or more 0.254 mm (0.010 in) bearing journals		
М	All crankshaft 0.254 mm (0.010 in) journals		
PM	All crankshaft 0.254 m main bearing (0.010 i journals and one or more connecting rod journals		
CODE	COMPONENT OVERSIZE		
В	All cylinder bores	0.254 mm (0.010 in)	
С	All camshaft 0.254 mm bearing bores (0.010 in)		

J8909-54

Fig. 3 Oversize and Undersize Component Codes
SERVICE PROCEDURES

VALVE TIMING

Disconnect the spark plug wires and remove the spark plugs.

Remove the engine cylinder head cover.

Remove the capscrews, bridge and pivot assembly, and rocker arms from above the No.1 cylinder.

Alternately loosen each capscrew, one turn at a time, to avoid damaging the bridge.

Rotate the crankshaft until the No.4 piston is at top dead center (TDC) on the compression stroke.

Fig. 4 Oversize and Undersize Component Code Location

Rotate the crankshaft counterclockwise (viewed from the front of the engine) 90°.

Install a dial indicator on the end of the No.1 cylinder intake valve push rod. Use rubber tubing to secure the indicator stem on the push rod.

Set the dial indicator pointer at zero.

Rotate the crankshaft clockwise (viewed from the front of the engine) until the dial indicator pointer indicates 0.305 mm (0.012 inch) travel distance (lift).

The timing notch index on the vibration damper should be aligned with the TDC mark on the timing degree scale.

If the timing notch is more than 13 mm (1/2 inch) away from the TDC mark in either direction, the valve timing is incorrect.

If the valve timing is incorrect, the cause may be a broken camshaft pin. It is not necessary to replace the camshaft because of pin failure. A spring pin is available for service replacement.

PISTON FITTING

BORE GAUGE METHOD

- (1) To correctly select the proper size piston, a cylinder bore gauge, capable of reading in 0.003 mm (.0001 in.) INCREMENTS is required. If a bore gauge is not available, do not use an inside micrometer.
- (2) Measure the inside diameter of the cylinder bore at a point 49.5 mm (1-15/16 inches) below top of bore. Start perpendicular (across or at 90 degrees) to the axis of the crankshaft at point A and then take an additional bore reading 90 degrees to that at point B (Fig. 6).

SERVICE PROCEDURES (Continued)

- (3) The coated pistons will be serviced with the piston pin and connecting rod pre-assembled. The coated piston connecting rod assembly can be used to service previous built engines and MUST be replaced as complete sets. Tin coated pistons should not be used as replacements for coated pistons.
- (4) The coating material is applied to the piston after the final piston machining process. Measuring the outside diameter of a coated piston will not provide accurate results (Fig. 5). Therefore measuring the inside diameter of the cylinder bore with a dial Bore Gauge is **MANDATORY**. To correctly select the proper size piston, a cylinder bore gauge capable of reading in 0.003 mm (.0001 in.) increments is required.
- (5) Piston installation into the cylinder bore requires slightly more pressure than that required for non-coated pistons. The bonded coating on the piston will give the appearance of a line-to-line fit with the cylinder bore.

DO NOT MEASURE MOLY COATED PISTON

80aac2ao

Fig. 5 Moly Coated Piston
PISTON SIZE CHART

CYLINDER BORE SIZE	PISTON LETTER SIZE
98.438 to 98.448 mm (3.8755 to 3.8759 in.)	A
98.448 to 98.458 mm (3.8759 to 3.8763 in.)	B
98.458 to 98.468 mm (3.8763 to 3.8767 in.)	C
98.468 to 98.478 mm (3.8767 to 3.8771 in.)	D
98.478 to 98.488 mm (3.8771 to 3.8775 in.)	E
98.488 to 98.498 mm (3.8775 to 3.8779 in.)	F

PISTON RING FITTING

(1) Carefully clean the carbon from all ring grooves. Oil drain openings in the oil ring groove and

Fig. 6 Bore Gauge

pin boss must be clear. DO NOT remove metal from the grooves or lands. This will change ring-to-groove clearances and will damage the ring-to-land seating.

- (2) Be sure the piston ring grooves are free of nicks and burrs.
- (3) Measure the ring side clearance with a feeler gauge fitted snugly between the ring land and ring (Fig. 7) (Fig. 8). Rotate the ring in the groove. It must move freely around circumference of the groove.

GROOVE HEIGHT

A 1.530-1.555 mm (0.0602-0.0612 in) B 4.035-4.060 mm (0.1589-0.1598 in)

Fig. 7 Piston Dimensions

SERVICE PROCEDURES (Continued)

Fig. 8 Ring Side Clearance Measurement Ring Side Clearance Measurement

(4) Place ring in the cylinder bore and push down with inverted piston to position near lower end of the ring travel. Measure ring gap with a feeler gauge fitting snugly between ring ends (Fig. 9).

Fig. 9 Gap Measurement

Ring Gap Measurement

- (5) The oil control rings are symmetrical, and can be installed with either side up. It is not necessary to use a tool to install the upper and lower rails. Insert oil rail spacer first, then side rails.
- (6) The two compression rings are different and cannot be interchanged. The top compression ring can be identified by the shiny coating on the outer sealing surface and can be installed with either side up. (Fig. 10).
- (7) The second compression ring has a slight chamfer on the bottom of the inside edge and a dot on the top for correct installation (Fig. 11).
- (8) Using a ring installer, install the second compression ring with the dot facing up (Fig. 11) (Fig. 13).
- (9) Using a ring installer, install the top compression ring (either side up).

Fig. 10 Top Compression ring identification

Fig. 11 Second Compression Ring Identification

SERVICE PROCEDURES (Continued)

Fig. 12 Compression Ring Chamfer Location

Fig. 13 Compression Ring Installation

Ring Gap Orientation

- Position the gaps on the piston as shown (Fig. 14).
 - Oil spacer Gap on center line of piston skirt.
- Oil rails gap 180° apart on centerline of piston pin bore.
- No. 2 Compression ring Gap 180° from top oil rail gap.
- No. 1 Compression ring Gap 180° from No. 2 compression ring gap.

FITTING CONNECTING ROD BEARINGS

INSPECTION

BEARINGS

Inspect the connecting rod bearings for scoring and bent alignment tabs (Fig. 15) (Fig. 16). Check the bearings for normal wear patterns, scoring, grooving, fatigue and pitting (Fig. 17). Replace any bearing that shows abnormal wear.

Inspect the connecting rod journals for signs of scoring, nicks and burrs.

0047200

Fig. 15 Connecting Rod Bearing Inspection

CONNECTING RODS

Misaligned or bent connecting rods can cause abnormal wear on pistons, piston rings, cylinder walls, connecting rod bearings and crankshaft connecting rod journals. If wear patterns or damage to any of these components indicate the probability of a misaligned connecting rod, inspect it for correct rod alignment. Replace misaligned, bent or twisted connecting rods.

SERVICE PROCEDURES (Continued)

J8909-128

Fig. 16 Locking Tab Inspection

J8909-129

Fig. 17 Scoring Caused by Insufficient Lubrication or by Damaged Crankshaft Pin Journal

BEARING-TO-JOURNAL CLEARANCE

- (1) Wipe the oil from the connecting rod journal.
- (2) Use short rubber hose sections over rod bolts during installation.
- (3) Lubricate the upper bearing insert and install in connecting rod.
- (4) Use piston ring compressor to install the rod and piston assemblies. The oil squirt holes in the rods must face the camshaft. The arrow on the piston crown should point to the front of the engine (Fig. 18). Verify that the oil squirt holes in the rods face the camshaft and that the arrows on the pistons face the front of the engine.
- (5) Install the lower bearing insert in the bearing cap. The lower insert must be dry. Place strip of Plastigage across full width of the lower insert at the center of bearing cap. Plastigage must not crumble in use. If brittle, obtain fresh stock.
- (6) Install bearing cap and connecting rod on the journal and tighten nuts to 45 N⋅m (33 ft. lbs.) torque. DO NOT rotate crankshaft. Plastigage will smear, resulting in inaccurate indication.
- (7) Remove the bearing cap and determine amount of bearing-to- journal clearance by measuring the width of compressed Plastigage (Fig. 19). Refer to Engine Specifications for the proper clearance. Plastigage should indicate the same clearance across the entire width of the insert. If the

Fig. 18 Rod and Piston Assembly Installation clearance varies, it may be caused by either a tapered journal, bent connecting rod or foreign material trapped between the insert and cap or rod.

Fig. 19 Measuring Bearing Clearance with Plastigage

- (8) If the correct clearance is indicated, replacement of the bearing inserts is not necessary. Remove the Plastigage from crankshaft journal and bearing insert. Proceed with installation.
- (9) If bearing-to-journal clearance exceeds the specification, install a pair of 0.0254 mm (0.001 inch) undersize bearing inserts. All the odd size inserts must be on the bottom. The sizes of the service replacement bearing inserts are stamped on the backs of the inserts. Measure the clearance as described in the previous steps.
- (10) The clearance is measured with a pair of 0.0254 mm (0.001 inch) undersize bearing inserts installed. This will determine if two 0.0254 mm (0.001 inch) undersize inserts or another combination is needed to provide the correct clearance (refer to Connecting Rod Bearing Fitting Chart).

SERVICE PROCEDURES (Continued)

Crankshaft Journal		Corresponding Connecting Rod Bearing Insert	
Color Code	Diameter	Upper Insert Size	Lower Insert Size
Yellow	53.2257-53.2079 mm (2.0955-2.0948 in.)	Yellow - Standard	Yellow - Standard
Orange	53.2079-53.1901 mm (2.0948-2.0941 in.) 0.0178 mm (0.0007 in.) Undersize	Yellow - Standard	Blue - Undersize 0.025 mm (0.001 in.)
Blue	53.1901-53.1724 mm (2.0941-2.0934 in.) 0.0356 mm (0.0014 in.) Undersize	Blue - Undersize 0.025 mm (0.001 in.)	Blue - Undersize 0.025 mm (0.001 in.)
Red	52.9717-52.9539 mm (2.0855-2.0848 in.) 0.254 mm (0.010 in.) Undersize	Red - Undersize 0.254 mm (0.010 in.)	Red - Undersize 0.254 mm (0.010 in.)

J9409-24

CONNECTING ROD BEARING FITTING CHART

- (11) **FOR EXAMPLE:** If the initial clearance was 0.0762 mm (0.003 inch), 0.025 mm (0.001 inch) undersize inserts would reduce the clearance by 0.025 mm (0.001 inch). The clearance would be 0.002 inch and within specification. A 0.051 mm (0.002 inch) undersize insert would reduce the initial clearance an additional 0.013 mm (0.0005 inch). The clearance would then be 0.038 mm (0.0015 inch).
- (12) Repeat the Plastigage measurement to verify your bearing selection prior to final assembly.
- (13) Once you have selected the proper insert, install the insert and cap. Tighten the connecting rod bolts to 45 N·m (33 ft. lbs.) torque.

SIDE CLEARANCE MEASUREMENT

Slide snug-fitting feeler gauge between the connecting rod and crankshaft journal flange (Fig. 20). Refer to Engine Specifications for the proper clearance. Replace the connecting rod if the side clearance is not within specification.

FITTING CRANKSHAFT MAIN BEARINGS

INSPECTION

Wipe the inserts clean and inspect for abnormal wear patterns and for metal or other foreign material imbedded in the lining. Normal main bearing insert wear patterns are illustrated (Fig. 21).

NOTE: If any of the crankshaft journals are scored, remove the engine for crankshaft repair.

Fig. 20 Checking Connecting Rod Side Clearace— Typical

Inspect the back of the inserts for fractures, scrapings or irregular wear patterns.

Inspect the upper insert locking tabs for damage. Replace all damaged or worn bearing inserts.

FITTING BEARINGS (CRANKSHAFT INSTALLED)

The main bearing caps, numbered (front to rear) from 1 through 5 have an arrow to indicate the forward position. The upper main bearing inserts are grooved to provide oil channels while the lower inserts are smooth.

Each bearing insert pair is selectively fitted to its respective journal to obtain the specified operating

SERVICE PROCEDURES (Continued)

Fig. 21 Main Bearing Wear Patterns

clearance. In production, the select fit is obtained by using various-sized color-coded bearing insert pairs as listed in the Main Bearing Fitting Chart. The bearing color code appears on the edge of the insert. The size is not stamped on bearing inserts used for engine production.

The main bearing journal size (diameter) is identified by a color-coded paint mark on the adjacent cheek. The rear main journal, is identified by a color-coded paint mark on the crankshaft rear flange.

When required, upper and lower bearing inserts of different sizes may be used as a pair. A standard size insert is sometimes used in combination with a 0.025 mm (0.001 inch) undersize insert to reduce the clearance by 0.013 mm (0.0005 inch). Never use a pair of bearing inserts with greater than a 0.025 mm (0.001 inch) difference in size (Fig. 22).

Insert	Correct	Incorrect	
Upper	Standard	Standard	
Lower	0.025 mm (0.001 in.) Undersize	0.051 mm (0.002 in.) Undersize	

J9109-179

Fig. 22 Bearing Insert Pairs

NOTE: When replacing inserts, the odd size inserts must be either all on the top (in cylinder block) or all on the bottom (in main bearing cap).

Once the bearings have been properly fitted, proceed to Crankshaft Main Bearing—Installation.

BEARING-TO-JOURNAL CLEARANCE (CRANKSHAFT INSTALLED)

When using Plastigage, check only one bearing clearance at a time.

Install the grooved main bearings into the cylinder block and the non-grooved bearings into the bearing caps.

Install the crankshaft into the upper bearings dry. Place a strip of Plastigage across full width of the crankshaft journal to be checked.

Install the bearing cap and tighten the bolts to 108 $N{\cdot}m$ (80 ft. lbs.) torque.

NOTE: DO NOT rotate the crankshaft. This will cause the Plastigage to shift, resulting in an inaccurate reading. Plastigage must not be permitted to crumble. If brittle, obtain fresh stock.

Remove the bearing cap. Determine the amount of clearance by measuring the width of the compressed Plastigage with the scale on the Plastigage envelope (Fig. 23). Refer to Engine Specifications for the proper clearance.

Fig. 23 Measuring Bearing Clearance with Plastigage

Plastigage should indicate the same clearance across the entire width of the insert. If clearance varies, it may indicate a tapered journal or foreign material trapped behind the insert.

If the specified clearance is indicated and there are no abnormal wear patterns, replacement of the bearing inserts is not necessary. Remove the Plastigage from the crankshaft journal and bearing insert. Proceed to Crankshaft Main Bearing—Installation.

If the clearance exceeds specification, install a pair of 0.025 mm (0.001 inch) undersize bearing inserts and measure the clearance as described in the previous steps.

The clearance indicated with the 0.025 mm (0.001 inch) undersize insert pair installed will determine if

SERVICE PROCEDURES (Continued)

this insert size or some other combination will provide the specified clearance. **FOR EXAMPLE:** If the clearance was 0.0762 mm (0.003 inch) originally, a pair of 0.0254 mm (0.001 inch) undersize inserts would reduce the clearance by 0.0254 mm (0.001 inch). The clearance would then be 0.0508 mm (0.002 inch) and within the specification. A 0.051 mm (0.002 inch) undersize bearing insert and a 0.0254 mm (0.001 inch) undersize insert would reduce the original clearance an additional 0.0127 mm (0.0005 inch). The clearance would then be 0.0381 mm (0.0015 inch).

CAUTION: Never use a pair of inserts that differ more than one bearing size as a pair.

FOR EXAMPLE: DO NOT use a standard size upper insert and a 0.051 mm (0.002 inch) undersize lower insert.

If the clearance exceeds specification using a pair of 0.051 mm (0.002 inch) undersize bearing inserts, measure crankshaft journal diameter with a micrometer. If the journal diameter is correct, the crankshaft bore in the cylinder block may be misaligned, which requires cylinder block replacement or machining to true bore.

If journals 1 through 5 diameters are less than 63.4517 mm (2.4981 inches), replace crankshaft or grind crankshaft down to accept the appropriate undersize bearing inserts.

Once the proper clearances have been obtained, proceed to Crankshaft Main Bearing—Installation.

MAIN BEARING JOURNAL DIAMETER (CRANKSHAFT REMOVED)

Remove the crankshaft from the cylinder block (refer to Cylinder Block - Disassemble).

Clean the oil off the main bearing journal.

Determine the maximum diameter of the journal with a micrometer. Measure at two locations 90° apart at each end of the journal.

The maximum allowable taper and out of round is 0.013 mm (0.0005 inch). Compare the measured diameter with the journal diameter specification (Main Bearing Fitting Chart). Select inserts required to obtain the specified bearing-to-journal clearance.

Once the proper clearances have been obtained, proceed to Crankshaft Main Bearing—Installation.

SERVICE PROCEDURES (Continued)

MAIN BEARING FITTING CHART

CRANKSHAFT JOURNALS #1 - #4		CORRESPONDING CRANKSHAFT BEARING INSERT	
Color Code	Diameter	Upper Insert Size	Lower Insert Size
Yellow	63.5025 - 63.4898 mm	Yellow - Standard	Yellow - Standard
	(2.5001 - 2.4996 in.)		
Orange	63.4898 - 63.4771mm	Yellow - Undersize 0.025 mm (0.001 in.)	Blue - Standard
	(2.4996 - 2.4991 in.)		
	0.0127 mm (0.0005 in.)		
	Undersize		
Blue	63.4771 - 63.4644 mm	0.005 (0.004 :)	Blue - Undersize 0.025 mm (0.001 in.)
	(2.4991 - 2.4986 in.)		
	0.0254 mm (0.001 in.)		
	Undersize		
Green	63.4644 - 63.4517 mm	Blue - Undersize 0.025 mm (0.001 in.)	Green - Undersize 0.051 mm (0.002 in.)
	(2.4986 - 2.4981 in.)		
	0.0381 mm (0.0015 in.)		
	Undersize		
Red		Red - Undersize	Red - Undersize 0.254 mm (0.010 in.)
	(2.4901 - 2.4896 in.)	0.254 mm (0.010 in.)	
	0.254 mm (0.010 in.)		
	Undersize		

CRANKSHAFT JOURNAL #5 ONLY		CORRESPONDING CRANKSHAFT BEARING INSERT	
Color Code	Diameter	Upper Insert Size	Lower Insert Size
Yellow	63.4873 - 63.4746 mm	Yellow - Standard	Yellow - Standard
	(2.4995 - 2.4990 in.)		
Orange	63.4746 - 63.4619 mm	Yellow - Undersize	Blue - Standard
	(2.4990 - 2.4985 in.)	0.025 mm (0.001 in.)	
	0.0127 mm (0.0005 in.		
	Undersize		
Blue	63.4619 - 63.4492 mm	Blue - Undersize 0.025 mm (0.001 in.)	Blue - Undersize 0.025 mm (0.001 in.)
	(2.4985 - 2.4980 in.)		
	0.0254 mm (0.001 in.)		
	Undersize		
Green	63.4492 - 63.4365 mm	Blue - Undersize 0.025 mm (0.001 in.)	Green - Undersize 0.051 mm (0.002 in.)
	(2.4980- 2.4975 in.)		
	0.0381 mm (0.0015 in.)		
	Undersize		
Red	63.2333 - 63.2206 mm	Red - Undersize 0.254 mm (0.010 in.)	Red - Undersize 0.254 mm (0.010 in.)
	(2.4895 - 2.4890 in.)		
	0.254 mm (0.010 in.)		
	Undersize		

REMOVAL AND INSTALLATION

ENGINE MOUNTS—FRONT

The front mounts support the engine at each side. These supports are made of resilient rubber.

REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Raise the vehicle.
- (3) Support the engine.
- (4) Remove through bolt nut (Fig. 24). DO NOT remove the through bolt.
- (5) Remove the retaining bolts and nuts from the support cushions (Fig. 24).
 - (6) Remove the through bolt.
 - (7) Remove the support cushions.

Fig. 24 Front Mounts

INSTALLATION

- (1) If the engine support bracket was removed, position the LEFT bracket (Fig. 24) and the RIGHT bracket (Fig. 25) onto the cylinder block. Install the bolts and stud nuts.
 - (a) RIGHT SIDE (Fig. 25) —Tighten the bolts to 61 N·m (45 ft. lbs.) torque. Tighten the stud nuts to 46 N·m (34 ft. lbs.) torque.
 - (b) LEFT SIDE (Fig. 24) —Tighten the bolts to 61 N⋅m (45 ft. lbs.) torque.

Fig. 25 Engine Support Bracket—Right Side

(2) If the support cushion brackets were removed, position the brackets onto the lower front sill (Fig. 24) (Fig. 26). Install the bolts and stud nuts. Tighten the bolts to 54 N·m (40 ft. lbs.) torque and the stud nuts to 41 N·m (30 ft. lbs.) torque.

Fig. 26 Support Cushion Bracket—Left Side

- (3) Place the support cushions onto the support cushion brackets (Fig. 24). Tighten the right support cushion nuts to 65 N·m (48 ft. lbs.) torque. Tighten the left support cushion bolt and nut to 41 N·m (30 ft. lbs.) torque.
- (4) Install the through bolt and the retaining nut (Fig. 24). Tighten the through bolt nut to 65 $N{\cdot}m$ (48 ft. lbs.) torque.
 - (5) Remove the engine support.
 - (6) Lower the vehicle.
 - (7) Connect negative cable to battery.

ENGINE MOUNT—REAR

A resilient rubber cushion supports the transmission at the rear between the transmission extension housing and the rear support crossmember or skid plate.

REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Raise the vehicle and support the transmission.
- (3) Remove the nuts holding the support cushion to the crossmember (Fig. 27) (Fig. 28). Remove the crossmember.

MANUAL TRANSMISSION:

- a. Remove the support cushion nuts and remove the cushion.
- b. If necessary, remove the bolts holding the transmission support bracket to the transmission (Fig. 27). Remove the bracket.

Fig. 27 Rear Mount (Manual Transmission)

AUTOMATIC TRANSMISSION:

- a. Remove the support cushion bolts and remove the cushion and the transmission support bracket.
- b. If necessary on 2WD vehicles, remove the bolts holding the transmission support adaptor bracket to the transmission (Fig. 28). Remove the adaptor bracket.

INSTALLATION

MANUAL TRANSMISSION:

- a. If removed, position the transmission support bracket to the transmission and install the bolts. Tighten the bolts to 43 N·m (32 ft. lbs.) torque.
- b. Position the support cushion onto the transmission support bracket. Install and tighten the nuts to $46~\rm N\cdot m$ (34 ft. lbs.) torque.

Fig. 28 Rear Mount (Automatic Transmission)
AUTOMATIC TRANSMISSION:

- a. If removed, position the transmission support adaptor bracket (2WD vehicles) to the transmission and install the bolts. Tighten the bolts to 75 N·m (55 ft. lbs.) torque.
- b. Position the transmission support bracket and support cushion to the transmission and install the bolts. Tighten the bolts to 75 N·m (55 ft. lbs.) torque.
- (1) Position the crossmember onto the support cushion studs and install the nuts. Tighten the nuts to $22~\mathrm{N\cdot m}$ (192 in. lbs.) torque.
- (2) Install the crossmember to sill bolts and tighten to 41 N·m (30 ft. lbs.) torque.
 - (3) Remove the transmission support.
 - (4) Lower the vehicle.
 - (5) Connect negative cable to battery.

ENGINE ASSEMBLY

REMOVAL

- (1) Disconnect the battery cables. Remove the battery.
- (2) Mark the hinge locations on the hood panel for alignment reference during installation. Remove the engine compartment lamp. Remove the hood.

WARNING: THE COOLANT IN A RECENTLY OPER-ATED ENGINE IS HOT AND PRESSURIZED. USE CARE TO PREVENT SCALDING BY HOT COOLANT. CAREFULLY RELEASE THE PRESSURE BEFORE REMOVING THE RADIATOR DRAIN COCK AND CAP.

- (3) Loosen the radiator drain cock and radiator cap to drain the coolant. DO NOT waste usable coolant. If the solution is clean, drain the coolant into a clean container for reuse.
 - (4) Remove the air cleaner assembly.
 - (5) Remove the lower radiator hose.
- (6) Remove the upper radiator hose and coolant recovery hose (Fig. 29).
 - (7) Remove the fan shroud (Fig. 29).

Fig. 29 Upper Radiator Hose, Coolant Recovery Hose & Fan Shroud

- (8) Remove the radiator/condenser (if equipped with air conditioning).
- (9) Remove fan assembly and install a $5/16 \times 1/2$ -inch SAE capscrew through fan pulley into water pump flange. This will maintain the pulley and water pump in alignment when crankshaft is rotated.
 - (10) Disconnect the heater hoses.
- (11) Disconnect the throttle cable, speed control cable (if equipped) and transmission cable (if equipped).
 - (12) Disconnect the body ground at the firewall.
- (13) Disconnect the wires from the starter motor solenoid.
- (14) Disconnect all fuel injection harness connections.

WARNING: THE FUEL SYSTEM IS UNDER A CONSTANT PRESSURE (EVEN WITH THE ENGINE TURNED OFF). BEFORE DISCONNECTING FUEL LINES, THE FUEL SYSTEM PRESSURE MUST BE RELEASED.

- (15) Perform fuel pressure release procedure. (refer to Group 14, Fuel System for the proper procedure).
- (16) Remove latch clip and disconnect the quickconnect fuel line at the fuel rail
- (17) Recover refrigerant (if equipped with A/C). (Refer to group 24, Heating and Air Conditioning for proper procedures.)
- (18) Disconnect suction/discharge hose from A/C compressor and cap off ports to prevent intrusion of foreign material or refrigerant oil loss.
- (19) Remove the power brake vacuum check valve from the booster, if equipped.
 - (20) If equipped with power steering:
 - (a) Disconnect the power steering hoses from the fittings at the steering gear.
 - (b) Drain the pump reservoir.
 - (c) Cap the fittings on the hoses and steering gear to prevent foreign material from entering the system.
- (21) Identify, tag and disconnect all necessary wire connectors and vacuum hoses.
 - (22) Raise the vehicle.
 - (23) Remove the oil filter.
 - (24) Remove the starter motor.
- (25) Disconnect the exhaust pipe from the exhaust manifold.
 - (26) Remove the flywheel housing access cover.
- (27) Remove the upper flywheel and converter housing bolts and loosen the bottom bolts.
- (28) Remove the engine support cushion-to-engine compartment bracket bolts.
- (29) Remove the engine shock damper bracket from the sill.
 - (30) Lower the vehicle.
 - (31) Attach a lifting device to the engine.
- (32) Raise the engine slightly off the front supports.
- (33) Place a support stand under the converter or flywheel housing.
- (34) Lift the engine out of the engine compartment and install on an engine stand.
- (35) Install the oil filter to keep foreign material out of the engine.

INSTALLATION

- (1) Remove the oil filter.
- (2) Lift the engine off the stand and lower it into the engine compartment. For easier installation, it may be useful to remove the engine support cushions from the engine support brackets as an aide for alignment of the engine-to-transmission.
- (3) Insert the transmission shaft into the clutch spline. (M/T models) $\,$
 - (4) Align the flywheel housing with the engine.
- (5) Install and tighten the flywheel housing lower bolts.

- (6) Install the engine support cushions (if removed).
- (7) Lower the engine and engine support cushions onto the engine compartment brackets.
 - (8) Remove the engine lifting device.
 - (9) Raise the vehicle.
 - (10) Install the converter-housing access cover.
 - (11) Install the exhaust pipe support.
- (12) Install the starter motor and connect the cable. Tighten the bolts to $45~\mathrm{N\cdot m}$ (33 ft. lbs.) torque.
- (13) Tighten the engine support cushion throughbolt nuts.
 - (14) Connect the exhaust pipe to the manifold.
 - (15) Install the oil filter.
 - (16) Lower the vehicle.
- (17) Connect the coolant hoses and tighten the clamps.
 - (18) If equipped with power steering:
 - (a) Remove the protective caps
 - (b) Connect the hoses to the fittings at the steering gear. Tighten the nut to 52 N·m (38 ft. lbs.) torque.
 - (c) Fill the pump reservoir with fluid.
- (19) Remove the pulley-to-water pump flange alignment capscrew and install the fan assembly.
- (20) Install the fan shroud and radiator and condenser (if equipped with air conditioning).
 - (21) Connect the radiator hoses.
 - (22) Connect the oxygen sensor wire connector.
- (23) Connect the throttle cable and install the rod. Connect the transmission and speed control cables (if equipped)
- (24) Connect the fuel supply line to the injector rail. push until a "click" is heard. Re-install latch clip.
- (25) Connect all the vacuum hoses and wire connectors.
- (26) Connect suction/discharge hose to compressor. (if equipped)
 - (27) Fill the power steering reservoir.
 - (28) Connect the battery cables.
 - (29) Install the air cleaner.
 - (30) Install the hood.
 - (31) Add engine oil and coolant.
 - (32) Start the engine and inspect for leaks.
- (33) Stop the engine and check the fluid levels. Add fluid, as required.
- (34) Recharge air conditioning (Refer to group 24, Heating and Air Conditioning for proper procedures).

CYLINDER HEAD COVER

A cured gasket is part of the engine cylinder head cover.

REMOVAL

(1) Disconnect negative cable from battery.

- (2) Disconnect the Crankcase Ventilation (CCV) vacuum hose from engine cylinder head cover (Fig. 30).
- (3) Disconnect the fresh air inlet hose from the engine cylinder head cover (Fig. 30).
- (4) Remove the engine cylinder head cover mounting bolts.
 - (5) Remove the engine cylinder head cover.

Fig. 30 Engine Cylinder Head Cover

- (6) Remove any original sealer from the cover sealing surface of the engine cylinder head and clean the surface using a fabric cleaner.
- (7) Remove all residue from the sealing surface using a clean, dry cloth.

INSTALLATION

(1) Inspect the engine cylinder head cover for cracks. Replace the cover, if cracked.

NOTE: The original dark grey gasket material should NOT be removed. If sections of the gasket material are missing or are compressed, replace the engine cylinder head cover. However, sections with minor damage such as small cracks, cuts or chips may be repaired with a hand held applicator. The new material must be smoothed over to maintain gasket height. Allow the gasket material to cure prior to engine cylinder head cover installation.

- (2) If a replacement cover is installed, transfer the CCV valve grommet the oil filler cap from the original cover to the replacement cover.
- (3) Install engine cylinder head cover. Tighten the mounting bolts to 13 N·m (115 in. lbs.) torque.

- (4) Connect the CCV hoses (Fig. 30).
- (5) Connect negative cable to battery.

ROCKER ARMS AND PUSH RODS

This procedure can be done with the engine in or out of the vehicle.

REMOVAL

- (1) Remove the engine cylinder head cover. (Refer to procedure in this section)
- (2) Check for rocker arm bridges which are causing misalignment of the rocker arm to valve tip area.
- (3) Remove the capscrews at each bridge and pivot assembly (Fig. 31). Alternately loosen the capscrews one turn at a time to avoid damaging the bridges.
- (4) Remove the bridges, pivots and corresponding pairs of rocker arms (Fig. 31). Place them on a bench in the same order as removed.
- (5) Remove the push rods and place them on a bench in the same order as removed.

Fig. 31 Rocker Arm Assembly

- (6) Clean all the components with cleaning solvent.
- (7) Use compressed air to blow out the oil passages in the rocker arms and push rods.

INSTALLATION

- (1) Lubricate the ball ends of the push rods with Mopar Engine Oil Supplement, or equivalent and install push rods in their original locations. Ensure that the bottom end of each push rod is centered in the tappet plunger cap seat.
- (2) Using Mopar Engine Oil Supplement, or equivalent, lubricate the area of the rocker arm that the

pivot contacts. Install rocker arms, pivots and bridge above each cylinder in their original position.

- (3) Loosely install the capscrews through each bridge.
- (4) At each bridge, tighten the capscrews alternately, one turn at a time, to avoid damaging the bridge. Tighten the capscrews to 28 N·m (21 ft. lbs.) torque.
 - (5) Install the engine cylinder head cover.

VALVE SPRINGS AND OIL SEALS

This procedure can be done with the engine cylinder head installed on the block.

REMOVAL

Each valve spring is held in place by a retainer and a set of conical valve locks. The locks can be removed only by compressing the valve spring.

- (1) Remove the engine cylinder head cover. (Refer to procedure in this section)
- (2) Remove capscrews, bridge and pivot assemblies and rocker arms for access to each valve spring to be removed.
- (3) Remove push rods. Retain the push rods, bridges, pivots and rocker arms in the same order and position as removed.
- (4) Inspect the springs and retainer for cracks and possible signs of weakening.
- (5) Remove the spark plug(s) adjacent to the cylinder(s) below the valve springs to be removed.
- (6) Install a 14 mm (1/2 inch) (thread size) air hose adaptor in the spark plug hole.
- (7) Connect an air hose to the adapter and apply air pressure slowly. Maintain at least 621 kPa (90 psi) of air pressure in the cylinder to hold the valves against their seats. For vehicles equipped with an air conditioner, use a flexible air adaptor when servicing the No.1 cylinder.
- (8) Tap the retainer or tip with a rawhide hammer to loosen the lock from the retainer. Use Valve Spring Compressor Tool MD-998772A to compress the spring and remove the locks (Fig. 32).
 - (9) Remove valve spring and retainer (Fig. 32).
- (10) Remove valve stem oil seals (Fig. 32). Note the valve seals are different for intake and exhaust valves. The top of each seal is marked either INT (Intake) or EXH (Exhaust). DO NOT mix the seals.

INSTALLATION

Inspect the valve stems, especially the grooves. An Arkansas smooth stone should be used to remove nicks and high spots.

CAUTION: Install oil seals carefully to prevent damage from the sharp edges of the valve spring lock grove.

Fig. 32 Valve and Valve Components

- (1) Lightly push the valve seal over the valve stem and valve guide boss. Be sure the seal is completely seated on the valve guide boss.
 - (2) Install valve spring and retainer.
- (3) Compress the valve spring with Valve Spring Compressor Tool MD-998772A and insert the valve locks. Release the spring tension and remove the tool. Tap the spring from side-to-side to ensure that the spring is seated properly on the engine cylinder head.
- (4) Release air pressure and disconnect the air hose. Remove the adaptor from the spark plug hole and install the spark plug.
- (5) Repeat the procedures for each remaining valve spring to be removed.
- (6) Install the push rods. Ensure the bottom end of each rod is centered in the plunger cap seat of the hydraulic valve tappet.
- (7) Install the rocker arms, pivots and bridge at their original location.
- (8) Tighten the bridge capscrews alternately, one at a time, to avoid damaging the bridge. Tighten the capscrews to 28 N·m (21 ft. lbs.) torque.
 - (9) Install the engine cylinder head cover.

ENGINE CYLINDER HEAD

This procedure can be done with the engine in or out of the vehicle.

REMOVAL

(1) Disconnect negative cable from battery.

WARNING: DO NOT REMOVE THE CYLINDER BLOCK DRAIN PLUGS OR LOOSEN THE RADIATOR

DRAIN COCK WITH THE SYSTEM HOT AND PRES-SURIZED BECAUSE SERIOUS BURNS FROM THE COOLANT CAN OCCUR.

- (2) Drain the coolant and disconnect the hoses at the engine thermostat housing. DO NOT waste reusable coolant. If the solution is clean and is being drained only to service the engine or cooling system, drain the coolant into a clean container for reuse.
 - (3) Remove the air cleaner assembly.
- (4) Remove the engine cylinder head cover. (Refer to procedure in this section)
- (5) Remove the capscrews, bridge and pivot assemblies and rocker arms (Fig. 33).
- (6) Remove the push rods (Fig. 33). Retain the push rods, bridges, pivots and rocker arms in the same order as removed.

Fig. 33 Rocker Arm Assembly

- (7) Loosen the serpentine drive belt at the power steering pump bracket, if equipped or at the idler pulley bracket (refer to Group 7, Cooling System for the proper procedure).
- (8) If equipped with air conditioning, perform the following:
 - (a) Remove the bolts from the A/C compressor mounting bracket and set the compressor aside.
 - (b) Remove the air conditioner compressor bracket bolts from the engine cylinder head.
 - (c) Loosen the through bolt at the bottom of the bracket.
- (9) If equipped, disconnect the power steering pump bracket. Set the pump and bracket aside. DO NOT disconnect the hoses.

- (10) Perform fuel pressure release procedure (Refer to Group 14, fuel systems for proper procedures).
- (11) Remove the latch clip and disconnect the fuel supply hose.
- (12) Remove the intake and engine exhaust manifolds from the engine cylinder head (refer to Group 11, Exhaust System and Intake Manifold for the proper procedures).
- (13) Number and disconnect the ignition wires and remove the spark plugs.
- (14) Disconnect the coolant temperature sending unit connector.
 - (15) Remove the engine cylinder head bolts.
- (16) Remove the engine cylinder head and gasket (Fig. 34).
- (17) If this was the first time the bolts were removed, put a paint dab on the top of the bolt. If the bolts have a paint dab on the top of the bolt or it isn't known if they were used before, discard the bolts.
- (18) Stuff clean lint free shop towels into the cylinder bores.

NOTE: If valves, springs, or seals are to be inspected/replaced at this time, refer to Valves and Valve Springs later in this section for proper procedures.

Fig. 34 Engine Cylinder Head Assembly

INSTALLATION

The engine cylinder head gasket is a composition gasket. The gasket is to be installed DRY. **DO NOT use a gasket sealing compound on the gasket.**

If the engine cylinder head is to be replaced and the original valves used, measure the valve stem diameter. Only standard size valves can be used with a service replacement engine cylinder head unless the replacement head valve stem guide bores are reamed to accommodate oversize valve stems. Remove all carbon buildup and reface the valves.

(1) Fabricate two engine cylinder head alignment dowels from used head bolts (Fig. 35). Use the longest head bolt. Cut the head of the bolt off below the hex head. Then cut a slot in the top of the dowel to allow easier removal with a screwdriver.

Fig. 35 Fabricate Alignment Dowels

(2) Install one dowel in bolt hole No.10 and the other dowel in bolt hole No.8 (Fig. 36).

Fig. 36 Alignment Dowel Locations

- (3) Remove the shop towels from the cylinder bores. Coat the bores with clean engine oil.
- (4) Place the engine cylinder head gasket (with the numbers facing up) over the dowels.
 - (5) Place the engine cylinder head over the dowels.

CAUTION: Engine cylinder head bolts should be reused only once. Replace the head bolts if they were used before or if they have a paint dab on the top of the bolt.

- (6) Coat the threads of bolt No.7, only, with Loctite PST sealant or equivalent.
 - (7) Install all head bolts, except No.8 and No.10.
 - (8) Remove the dowels.
 - (9) Install No.8 and No.10 head bolts.

CAUTION: During the final tightening sequence, bolt No.7 will be tightened to a lower torque than the rest of the bolts. DO NOT overtighten bolt No.7.

- (10) Tighten the engine cylinder head bolts in sequence according to the following procedure (Fig. 37):
 - (a) Tighten all bolts in sequence (1 through 10) to 30 N·m (22 ft. lbs.) torque.
 - (b) Tighten all bolts in sequence (1 through 10) to $61\ N\cdot m$ (45 ft. lbs.) torque.
 - (c) Check all bolts to verify they are set to 61 $N\!\cdot\!m$ (45 ft. lbs.) torque.
 - (d) Tighten bolts (in sequence):
- Bolts 1 through 6 to 149 N·m (110 ft. lbs.) torque.
 - Bolt 7 to 136 N·m (100 ft. lbs.) torque.
- \bullet Bolts 8 through 10 to 149 N·m (110 ft. lbs.) torque.
 - (e) Check all bolts in sequence to verify the correct torque.
 - (f) If not already done, clean and mark each bolt with a dab of paint after tightening. Should you encounter bolts which were painted in an earlier service operation, replace them.

Fig. 37 Engine cylinder head Bolt Tightening Sequence

- (11) Connect the coolant temperature sending unit connector.
- (12) Install the spark plugs and tighten to $37~\text{N}\cdot\text{m}$ (27 ft. lbs.) torque. Connect the ignition wires.
- (13) Install the intake and exhaust manifolds (refer to Group 11, Exhaust System and Intake Manifold for the proper procedures).
- (14) Install the fuel supply line. Push until a "click" is heard. Reinstall latch clip.
- (15) If equipped, attach the power steering pump and bracket.
- (16) Install the push rods, rocker arms, pivots and bridges in the order they were removed.
 - (17) Install the engine cylinder head cover.

- (18) Attach the air conditioning compressor mounting bracket to the engine cylinder head and block. Tighten the bolts to 40 N·m (30 ft. lbs.) torque.
- (19) Attach the air conditioning compressor to the bracket. Tighten the bolts to 27 N·m (20 ft. lbs.) torque.

CAUTION: The serpentine drive belt must be routed correctly. Incorrect routing can cause the water pump to turn in the opposite direction causing the engine to overheat.

- (20) Install the serpentine drive belt and correctly tension the belt (refer to Group 7, Cooling System for the proper procedure).
 - (21) Install the air cleaner and ducting.
- (22) Connect the hoses to the thermostat housing and fill the cooling system to the specified level (refer to Group 7, Cooling Systems for the proper procedure).
- (23) Install the coolant temperature sending unit connector.
 - (24) Connect negative cable to battery.
- (25) Connect the upper radiator hose and heater hose at the thermostat housing.
 - (26) Fill the cooling system. Check for leaks.

WARNING: USE EXTREME CAUTION WHEN THE ENGINE IS OPERATING. DO NOT STAND IN DIRECT LINE WITH THE FAN. DO NOT PUT HANDS NEAR THE PULLEYS, BELTS OR FAN. DO NOT WEAR LOOSE CLOTHING.

(27) Operate the engine with the radiator cap off. Inspect for leaks and continue operating the engine until the thermostat opens. Add coolant, if required.

VALVES AND VALVE SPRINGS

This procedure is done with the engine cylinder head removed from the block.

REMOVAL

- (1) Remove the engine cylinder head from the cylinder block (Refer to procedure earlier in this section)
- (2) Use Valve Spring Compressor Tool MD-998772A and compress each valve spring.
- (3) Remove the valve locks, retainers, springs and valve stem oil seals. Discard the oil seals.
- (4) Use an Arkansas smooth stone or a jewelers file to remove any burrs on the top of the valve stem, especially around the groove for the locks.
- (5) Remove the valves, and place them in a rack in the same order as removed.

INSTALLATION

(1) Thoroughly clean the valve stems and the valve guide bores.

- (2) Lightly lubricate the stem.
- (3) Install the valve in the original valve guide bore.
- (4) Install the replacement valve stem oil seals on the valve stems. If the 0.381 mm (0.015 inch) oversize valve stems are used, oversize oil seals are required.
- (5) Position the valve spring and retainer on the engine cylinder head and compress the valve spring with Valve Spring Compressor Tool MD-998772A.
 - (6) Install the valve locks and release the tool.
- (7) Tap the valve spring from side to side with a hammer to ensure that the spring is properly seated at the engine cylinder head. Also tap the top of the retainer to seat the valve locks.
 - (8) Install the engine cylinder head.

HYDRAULIC TAPPETS

REMOVAL

Retain all the components in the same order as removed.

- (1) Remove the engine cylinder head cover (refer to procedure earlier in this section)
- (2) Remove the bridge and pivot assemblies and rocker arms by removing the capscrews at each bridge. Alternately loosen each capscrew, one turn at a time, to avoid damaging the bridges.
 - (3) Remove the push rods.
- (4) Remove the tappets through the push rod openings in the cylinder head with a Hydraulic Valve Tappet Removal/Installation Tool (Fig. 38).

J8909-96

Fig. 38 Hydraulic Valve Tappet Removal/Installation
Tool

INSTALLATION

- It is not necessary to charge the tappets with engine oil. They will charge themselves within a very short period of engine operation.
- (1) Dip each tappet in Mopar Engine Oil Supplement, or equivalent.
- (2) Use Hydraulic Valve Tappet Removal/Installation Tool to install each tappet in the same bore from where it was originally removed.
 - (3) Install the push rods in their original locations.
- (4) Install the rocker arms and bridge and pivot assemblies at their original locations. Loosely install the capscrews at each bridge.
- (5) Tighten the capscrews alternately, one turn at a time, to avoid damaging the bridges. Tighten the capscrews to 28 N·m (21 ft. lbs.) torque.
- (6) Pour the remaining Mopar Engine Oil Supplement, or equivalent over the entire valve actuating assembly. The Mopar Engine Oil Supplement, or equivalent must remain with the engine oil for at least 1 600 km (1,000 miles). The oil supplement need not be drained until the next scheduled oil change.
 - (7) Install the engine cylinder head cover.

VIBRATION DAMPER

REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Remove the serpentine drive belt and fan shroud.
- (3) Remove the vibration damper retaining bolt and washer.
- (4) Use Vibration Damper Removal Tool 7697 to remove the damper from the crankshaft (Fig. 39).

Fig. 39 Vibration Damper Removal Tool 7697

INSTALLATION

(1) Apply Mopar Silicone Rubber Adhesive Sealant to the keyway in the crankshaft and insert the key. With the key in position, align the keyway on the

vibration damper hub with the crankshaft key and tap the damper onto the crankshaft.

- (2) Install the vibration damper retaining bolt and washer.
- (3) Tighten the damper retaining bolt to $108 \text{ N} \cdot \text{m}$ (80 ft. lbs.) torque.
- (4) Install the serpentine drive belt and tighten to the specified tension (refer to Group 7, Cooling Systems for the proper specifications and procedures).
 - (5) Connect negative cable to battery.

TIMING CASE COVER OIL SEAL

REMOVAL

This procedure is done with the timing case cover installed.

- (1) Disconnect negative cable from battery.
- (2) Remove the serpentine drive belt.
- (3) Remove the vibration damper.
- (4) Remove the radiator shroud.
- (5) Carefully remove the oil seal. Make sure seal bore is clean.

INSTALLATION

- (1) Position the replacement oil seal on Timing Case Cover Alignment and Seal Installation Tool 6139 with seal open end facing inward. Apply a light film of Perfect Seal, or equivalent, on the outside diameter of the seal. Lightly coat the crankshaft with engine oil.
- (2) Position the tool and seal over the end of the crankshaft and insert a draw screw tool into Seal Installation Tool 6139 (Fig. 40). Tighten the nut against the tool until it contacts the cover.

Fig. 40 Timing Case Cover Oil Seal Installation

(3) Remove the tools. Apply a light film of engine oil on the vibration damper hub contact surface of the seal.

- (4) Apply Mopar Silicone Rubber Adhesive Sealant to the keyway in the crankshaft and insert the key. With the key inserted in the keyway in the crankshaft, install the vibration damper, washer and bolt. Lubricate and tighten the bolt to 108 N·m (80 ft. lbs.) torque.
- (5) Install the serpentine belt and tighten to the specified tension (refer to Group 7, Cooling Systems for the proper specifications and procedures).
 - (6) Install the radiator shroud.
 - (7) Connect negative cable to battery.

TIMING CASE COVER

REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Remove accessory drive belt (Refer to Group 07, Cooling System for proper procedure)
- (3) Remove the accessory drive brackets that are attached to the timing case cover.
- (4) Remove the fan and hub assembly and remove the fan shroud.
- (5) Remove the A/C compressor (if equipped) and generator bracket assembly from the engine cylinder head and move to one side.
 - (6) Remove the vibration damper (Fig. 41).
- (7) Remove the oil pan-to-timing case cover bolts and timing case cover-to-cylinder block bolts.
- (8) Remove the timing case cover and gasket from the engine.
- (9) Pry the crankshaft oil seal from the front of the timing case cover (Fig. 41).

Fig. 41 Timing Case Cover Components

INSTALLATION

- (1) Clean the timing case cover, oil pan and cylinder block gasket surfaces.
- (2) Install a new crankshaft oil seal in the timing case cover. The open end of the seal should be toward the inside of the cover. Support the cover at the seal

area while installing the seal. Force it into position with Seal Installation Tool 6139.

- (3) Position the gasket on the cylinder block.
- (4) Position the timing case cover on the oil pan gasket and the cylinder block.
- (5) Insert Timing Case Cover Alignment and Seal Installation Tool 6139 in the crankshaft opening in the cover (Fig. 42).

Fig. 42 Timing Case Cover Alignment and Seal Installation Tool 6139

- (6) Install the timing case cover-to-cylinder block and the oil pan-to-timing case cover bolts.
- (7) Tighten the 1/4 inch cover-to-block bolts to 7 N·m (60 in. lbs.) torque. Tighten the 5/16 inch front cover-to-block bolts to 22 N·m (192 in. lbs.) torque. Tighten the oil pan-to-cover bolts to 9.5 N·m (84 in. lbs.) torque.
 - (8) Remove the cover alignment tool.
- (9) Apply a light film of engine oil on the vibration damper hub contact surface of the seal.
- (10) Apply Mopar Silicone Rubber Adhesive Sealant to the keyway in the crankshaft and insert the key. With the key inserted in the keyway in the crankshaft, install the vibration damper, washer and bolt. Lubricate and tighten the bolt to $108~\rm N\cdot m$ (80 ft. lbs.) torque.
- (11) Install the A/C compressor (if equipped) and generator bracket assembly.
- (12) Install the engine fan and hub assembly and shroud.
- (13) Install the serpentine drive belt and tighten to obtain the specified tension.
 - (14) Connect negative cable to battery.

TIMING CHAIN AND SPROCKETS

The timing chain tensioner reduces noise and prolongs timing chain life. In addition, it compensates for slack in a worn or stretched chain and maintains the correct valve timing.

REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Remove the fan and shroud.
- (3) Remove the serpentine drive belt.
- (4) Remove the crankshaft vibration damper.
- (5) Remove the timing case cover.
- (6) Rotate crankshaft until the "0" timing mark is closest to and on the center line with camshaft sprocket timing mark (Fig. 43).

Fig. 43 Crankshaft—Camshaft Alignment

- (7) Remove the oil slinger from the crankshaft.
- (8) Remove the camshaft retaining bolt and remove the sprockets and chain as an assembly (Fig. 44).
- (9) To replace the timing chain tensioner, the oil pan must be removed.

Fig. 44 Camshaft and Crankshaft Sprockets and Chain

INSTALLATION

(1) Turn the tensioner lever to the unlocked (down) position (Fig. 45).

(2) Pull the tensioner block toward the tensioner lever to compress the spring. Hold the block and turn the tensioner lever to the lock position (Fig. 45).

Fig. 45 Loading Timing Chain Tensioner

- (3) Apply Mopar Silicone Rubber Adhesive Sealant to the keyway in the crankshaft and insert the key. With the key in the crankshaft keyway, install the crankshaft, camshaft sprockets and timing chain. Ensure the timing marks on the sprockets are properly aligned (Fig. 43).
- (4) Install the camshaft sprocket retaining bolt and washer. Tighten the bolt to $108~\mathrm{N\cdot m}$ (80 ft. lbs.) torque.
- (5) To verify correct installation of the timing chain, turn the crankshaft to position the camshaft sprocket timing mark as shown in (Fig. 46). Count the number of chain pins between the timing marks of both sprockets. There must be 20 pins.
- (6) Turn the chain tensioner lever to the unlocked (down) position (Fig. 45).
 - (7) Install the oil slinger.
 - (8) Replace the oil seal in the timing case cover.
 - (9) Install the timing case cover and gasket.
- (10) With the key inserted in the keyway in the crankshaft, install the vibration damper, washer and bolt. Lubricate and tighten the bolt to 108 N·m (80 ft. lbs.) torque.
 - (11) Install the fan and shroud.
 - (12) Connect negative cable to battery.

CAMSHAFT

REMOVAL

WARNING: THE COOLANT IN A RECENTLY OPER-ATED ENGINE IS HOT AND PRESSURIZED. RELEASE THE PRESSURE BEFORE REMOVING THE DRAIN COCK, CAP AND DRAIN PLUGS.

(1) Disconnect negative cable from battery.

Fig. 46 Verify Sprocket—Chain Installation

- (2) Drain the cooling system. DO NOT waste reusable coolant. If the solution is clean, drain it into a clean container for reuse.
- (3) Remove the radiator or radiator and condenser, if equipped with A/C.
- (4) Scribe a mark on the distributor housing in line with the lip of the rotor.
- (5) Scribe a mark on the distributor housing near the clamp and continue the scribe mark on the cylinder block in line with the distributor mark.
- (6) For ease of installation, note the position of the rotor and distributor housing in relation to adjacent engine components.
 - (7) Remove the distributor and ignition wires.
 - (8) Remove the engine cylinder head cover.
 - (9) Remove the rocker arms, bridges and pivots.
 - (10) Remove the push rods.
- (11) Remove the hydraulic valve tappets from the engine cylinder head.
 - (12) Remove the vibration damper.
 - (13) Remove the timing case cover.
 - (14) Remove the timing chain and sprockets.
 - (15) Remove the camshaft (Fig. 47).

INSTALLATION

- (1) Inspect the cam lobes for wear.
- (2) Inspect the bearing journals for uneven wear pattern or finish.
 - (3) Inspect the bearings for wear.
 - (4) Inspect the distributor drive gear for wear.
- (5) If the camshaft appears to have been rubbing against the timing case cover, examine the oil pres-

Fig. 47 Camshaft

sure relief holes in the rear cam journal. The oil pressure relief holes must be free of debris.

- (6) Lubricate the camshaft with Mopar Engine Oil Supplement, or equivalent.
- (7) Carefully install the camshaft to prevent damage to the camshaft bearings (Fig. 47).
- (8) Turn the tensioner lever to the unlocked (down) position (Fig. 48).

NOTE: Pull the tensioner block toward the tensioner lever to compress the spring. Hold the block and turn the tensioner lever to the lock position (Fig. 48).

- (9) Install the timing chain, crankshaft sprocket and camshaft sprocket with the timing marks aligned.
- (10) Install the camshaft sprocket retaining bolt and washer. Tighten the bolt to 108 N·m (80 ft. lbs.) torque.
- (11) Install the timing case cover with a replacement oil seal (Fig. 49). Refer to Timing Case Cover Installation.
 - (12) Install the vibration damper.
 - (13) Install the hydraulic valve tappets.
 - (14) Install the push rods.
 - (15) Install the rocker arms, bridges and pivots.
 - (16) Install the engine cylinder head cover.
- (17) Position the oil pump gear. Refer to Distributor in the Component Removal/Installation section of Group 8D, Ignition Systems.
- (18) Install the distributor and ignition wires. Refer to Distributor in the Component Removal/Installation section of Group 8D, Ignition Systems.
- (19) Install the radiator or radiator and condenser, if equipped with A/C.
 - (20) Fill the cooling system.
 - (21) Connect negative cable to battery.

Fig. 48 Loading Timing Chain Tensioner

Fig. 49 Timing Case Cover

CAMSHAFT PIN REPLACEMENT

REMOVAL

WARNING: DO NOT LOOSEN THE RADIATOR DRAIN COCK WITH THE SYSTEM HOT AND PRESSURIZED BECAUSE SERIOUS BURNS FROM COOLANT CAN OCCUR.

- (1) Disconnect negative cable from battery.
- (2) Drain the radiator. DO NOT waste reusable coolant. Drain the coolant into a clean container.
 - (3) Remove the fan and shroud.
- (4) Disconnect the radiator overflow tube, radiator hoses, automatic transmission fluid cooler pipes (if equipped).
 - (5) Remove the radiator.
 - (6) If equipped with air conditioning:

CAUTION: DO NOT loosen or disconnect any air conditioner system fittings. Move the condenser and receiver/drier aside as a complete assembly.

- (a) Remove the A/C compressor serpentine drive belt idler pulley.
 - (b) Disconnect and remove the generator.
- (c) Remove the A/C condenser attaching bolts and move the condenser and receiver/drier assembly up and out of the way.
- (7) Remove the serpentine drive belt.
- (8) Remove the crankshaft vibration damper.
- (9) Remove the timing case cover. Clean the gasket material from the cover.
- (10) Rotate crankshaft until the crankshaft sprocket timing mark is closest to and on the center line with the camshaft sprocket timing mark (Fig. 50).

Fig. 50 Timing Chain Alignment

- (11) Remove camshaft sprocket retaining bolt.
- (12) Remove the crankshaft oil slinger.
- (13) Remove the sprockets and chain as an assembly (Fig. 51).

Fig. 51 Camshaft and Crankshaft Sprocket and Chain CAUTION: The following procedural step must be accomplished to prevent the camshaft from damaging the rear camshaft plug during pin installation.

- (14) Inspect the damaged camshaft pin.
- (15) If the pin is a spring-type pin, remove the broken pin by inserting a self-tapping screw into the pin and carefully pulling the pin from the camshaft.
- (16) If the pin is a dowel-type pin, center-punch it. Ensure the exact center is located when center-punching the pin.

CAUTION: Cover the opened oil pan area to prevent metal chips from entering the pan.

- (17) Drill into the pin center with a 4 mm (5/32) inch drill bit.
- (18) Insert a self-tapping screw into the drilled pin and carefully pull the pin from the camshaft.

INSTALLATION

- (1) Clean the camshaft pin hole.
- (2) Compress the center of the replacement spring pin with vise grips.
- (3) Carefully drive the pin into the camshaft pin hole until it is seated.
- (4) Install the camshaft sprocket, crankshaft sprocket and timing chain with the timing marks aligned (Fig. 50).
- (5) To verify correct installation of the timing chain, turn the crankshaft to position the camshaft sprocket timing mark as shown in (Fig. 52). Count the number of chain pins between the timing marks of both sprockets. There must be 20 pins.

Fig. 52 Verify Crankshaft—Camshaft Installation

- (6) Install the crankshaft oil slinger.
- (7) Tighten the camshaft sprocket bolt to 108 N·m (80 ft. lbs.) torque.

- (8) Check the valve timing.
- (9) Coat both sides of the replacement timing case cover gasket with gasket sealer. Apply a 3 mm (1/8 inch) bead of Mopar Silicone Rubber Adhesive Sealant, or equivalent to the joint formed at the timing case cover and cylinder block.
- (10) Position the timing case cover on the oil pan gasket and the cylinder block.
- (11) Place Timing Case Cover Alignment and Seal Installation Tool 6139 in the crankshaft opening of the cover (Fig. 53).

Fig. 53 Timing Case Cover Alignment and Seal Installation Tool 6139

- (12) Install the timing case cover-to-cylinder block bolts. Install the oil pan-to-timing case cover bolts.
- (13) Tighten the 1/4 inch cover-to-block bolts to 7 N·m (60 in. lbs.) torque. Tighten the 5/16 inch front cover-to-block bolts to 22 N·m (192 in. lbs.) torque. Tighten the oil pan-to-cover 1/4 inch bolts to 14 N·m (120 in. lbs.) torque. Tighten the oil pan-to-cover 5/16 inch bolts to 18 N·m (156 in. lbs.) torque.
- (14) Remove the cover alignment tool and install a replacement oil seal into the cover.
 - (15) Install the vibration damper on the crankshaft.
- (16) Lubricate and tighten the damper bolt to 108 $N \cdot m$ (80 ft. lbs.) torque.
 - (17) If equipped with air conditioning:
 - (a) Install the A/C compressor serpentine drive belt idler pulley.
 - (b) Install the generator.
 - (c) Install the A/C condenser and receiver/drier assembly.
- (18) Install the serpentine drive belt on the pulleys and tighten (refer to Group 7, Cooling System for the specifications and procedures).
- (19) Install the radiator. Connect the radiator hoses and automatic transmission fluid cooler pipes, if equipped. Fill the cooling system.
 - (20) Install the fan and shroud.
 - (21) Connect negative cable to battery.

CAMSHAFT BEARINGS

The camshaft rotates within four steel-shelled, babbitt-lined bearings that are pressed into the cylinder block and then line reamed. The camshaft bearing bores and bearing diameters are not the same size. They are stepped down in 0.254 mm (0.010 inch) increments from the front bearing (largest) to the rear bearing (smallest). This permits easier removal and installation of the camshaft. The camshaft bearings are pressure lubricated.

NOTE: It is not advisable to attempt to replace camshaft bearings unless special removal and installation tools are available.

Camshaft end play is maintained by the load placed on the camshaft by the oil pump and distributor drive gear. The helical cut of the gear holds the camshaft sprocket thrust face against the cylinder block face.

CRANKSHAFT MAIN BEARINGS

REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Remove the spark plugs.
- (3) Raise the vehicle.
- (4) Remove the oil pan and oil pump.
- (5) Remove only one main bearing cap and lower insert at a time (Fig. 54).

Fig. 54 Removing Main Bearing Caps and Lower Inserts

- (6) Remove the lower insert from the bearing cap.
- (7) Remove the upper insert by LOOSENING (DO NOT REMOVE) all of the other bearing caps. Now insert a small cotter pin tool in the crankshaft journal oil hole. Bend the cotter pin as illustrated to fab-

ricate the tool (Fig. 55). With the cotter pin tool in place, rotate the crankshaft so that the upper bearing insert will rotate in the direction of its locking tab. Because there is no hole in the No.3 main journal, use a tongue depressor or similar soft-faced tool to remove the bearing insert (Fig. 55). After moving the insert approximately 25 mm (1 inch), it can be removed by applying pressure under the tab.

(8) Using the same procedure described above, remove the remaining bearing inserts one at a time for inspection.

Fig. 55 Removing Upper Inserts

INSTALLATION

- (1) Lubricate the bearing surface of each insert with engine oil.
- (2) Loosen all the main bearing caps. Install the main bearing upper inserts.
- (3) Install the lower bearing inserts into the main bearing caps.
- (4) Install the main bearing cap(s) and lower insert(s).
- (5) Clean the rear main bearing cap (No.5) mating surfaces.
- (6) Apply Loctite 518, or equivalent on the rear bearing cap (Fig. 56). The bead should be 3 mm (0.125 in) thick. DO NOT apply Loctite 518, or equivalent to the lip of the seal.
- (7) Install the rear main bearing cap. DO NOT strike the cap more than twice for proper engagement.
- (8) Tighten the bolts of caps 1, 3, 4 and 5 to 54 N·m (40 ft. lbs.) torque. Now tighten these bolts to 95 N·m (70 ft. lbs.) torque. Finally, tighten these bolts to 108 N·m (80 ft. lbs.) torque.

Fig. 56 Location of Loctite 518 (or equivalent)

- (9) Push the crankshaft forward and backward. Load the crankshaft front or rear and tighten cap bolt No.2 to 54 N·m (40 ft. lbs.) torque. Then tighten to 95 N·m (70 ft. lbs.) torque and finally tighten to 108 N·m (80 ft. lbs.) torque.
- (10) Rotate the crankshaft after tightening each main bearing cap to ensure the crankshaft rotates freely.
- (11) Check crankshaft end play. Crankshaft end play is controlled by the thrust bearing which is flange and installed at the No.2 main bearing position.
 - (a) Attach a magnetic base dial indicator to the cylinder block at either the front or rear of the engine.
 - (b) Position the dial indicator rod so that it is parallel to the center line of the crankshaft.
 - (c) Pry the crankshaft forward, position the dial indicator to zero.
 - (d) Pry the crankshaft forward and backward. Note the dial indicator readings. End play is the difference between the high and low measurements (Fig. 57). Correct end play is 0.038-0.165 mm (0.0015-0.0065 inch). The desired specifications are 0.051-0.064 mm (0.002-0.0025 inch).
 - (e) If end play is not within specification, inspect crankshaft thrust faces for wear. If no wear is apparent, replace the thrust bearing and measure end play. If end play is still not within specification, replace the crankshaft.
- (12) If the crankshaft was removed, install the crankshaft into the cylinder block (refer to Cylinder Block Assemble).

Fig. 57 Crankshaft End Play Measurement

- (13) Install the oil pan.
- (14) Install the drain plug. Tighten the plug to 34 N·m (25 ft. lbs.) torque.
 - (15) Lower the vehicle.
- (16) Install the spark plugs. Tighten the plugs to $37 \text{ N}\cdot\text{m}$ (27 ft. lbs.) torque.
- (17) Fill the oil pan with engine oil to the safe mark on the dipstick level.
 - (18) Connect negative cable to battery.

OIL PAN

REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Raise the vehicle.
- (3) Remove the oil pan drain plug and drain the engine oil.
- (4) Disconnect the exhaust pipe at the engine exhaust manifold.
- (5) Disconnect the exhaust hanger at the catalytic converter and lower the pipe.
 - (6) Remove the engine starter motor.
- (7) Remove the flywheel/torque converter housing access cover.
- (8) Position a jack stand directly under the engine vibration damper.
- (9) Place a piece of wood (2 x 2) between the jack stand and the engine vibration damper.
 - (10) Remove the engine mount through bolts.
- (11) Using the jack stand, raise the engine until adequate clearance is obtained to remove the oil pan.
- (12) Remove the oil pan bolts. Carefully remove the oil pan and gasket.

INSTALLATION

- (1) Clean the block and pan gasket surfaces.
- (2) Fabricate 4 alignment dowels from $1/4 \times 1 \cdot 1/2$ inch bolts. Cut the head off the bolts and cut a slot

into the top of the dowel. This will allow easier installation and removal with a screwdriver (Fig. 58).

Fig. 58 Fabrication of Alignment Dowels

(3) Install two dowels in the timing case cover. Install the other two dowels in the cylinder block (Fig. 59).

Fig. 59 Position of Dowels in Cylinder Block

- (4) Slide the one-piece gasket over the dowels and onto the block and timing case cover.
- (5) Position the oil pan over the dowels and onto the gasket.
- (6) Install the 1/4 inch oil pan bolts. Tighten these bolts to 9.5 N·m (84 in. lbs.) torque. Install the 5/16 inch oil pan bolts (Fig. 60). Tighten these bolts to 15 N·m (132 in. lbs.) torque.
- (7) Remove the dowels. Install the remaining 1/4 inch oil pan bolts. Tighten these bolts to $9.5~N\cdot m$ (84 in. lbs.) torque.
- (8) Lower the engine until it is properly located on the engine mounts.
 - (9) Install the through bolts and tighten the nuts.
- (10) Lower the jack stand and remove the piece of wood.
- (11) Install the flywheel and torque converter housing access cover.
 - (12) Install the engine starter motor.

Fig. 60 Position of 5/16 inch Oil Pan Bolts

- (13) Connect the exhaust pipe to the hanger and to the engine exhaust manifold.
- (14) Install the oil pan drain plug (Fig. 60). Tighten the plug to 34 N⋅m (25 ft. lbs.) torque.
 - (15) Lower the vehicle.
 - (16) Connect negative cable to battery.
- (17) Fill the oil pan with engine oil to the specified level.

WARNING: USE EXTREME CAUTION WHEN THE ENGINE IS OPERATING. DO NOT STAND IN A DIRECT LINE WITH THE FAN. DO NOT PUT YOUR HANDS NEAR THE PULLEYS, BELTS OR FAN. DO NOT WEAR LOOSE CLOTHING.

(18) Start the engine and inspect for leaks.

OIL PUMP

The positive-displacement gear-type oil pump is driven by the distributor shaft, which is driven by a gear on the camshaft. Oil is siphoned into the pump through an inlet tube and strainer assembly that is pressed into the pump body.

The pump incorporates a nonadjustable pressure relief valve to limit maximum pressure to 517 kPa (75 psi). In the relief position, the valve permits oil to bypass through a passage in the pump body to the inlet side of the pump.

Oil pump removal or replacement will not affect the distributor timing because the distributor drive gear remains in mesh with the camshaft gear.

REMOVAL

- (1) Drain the engine oil.
- (2) Remove the oil pan.
- (3) Remove the pump-to-cylinder block attaching bolts. Remove the pump assembly with gasket (Fig. 61).

CAUTION: If the oil pump is not to be serviced, DO NOT disturb position of oil inlet tube and strainer assembly in pump body. If the tube is moved within the pump body, a replacement tube and strainer assembly must be installed to assure an airtight seal.

Fig. 61 Oil Pump Assembly

INSTALLATION

- (1) Install the oil pump on the cylinder block using a replacement gasket. Tighten the bolts to 23 N·m (17 ft. lbs.) torque.
 - (2) Install the oil pan and gasket.
 - (3) Fill the oil pan with oil to the specified level.

PISTONS AND CONNECTING RODS

RFMOVAL

- (1) Remove the engine cylinder head cover.
- (2) Remove the rocker arms, bridges and pivots.
- (3) Remove the push rods.
- (4) Remove the engine cylinder head.
- (5) Position the pistons one at a time near the bottom of the stroke. Use a ridge reamer to remove the ridge from the top end of the cylinder walls. Use a protective cloth to collect the cuttings.
 - (6) Raise the vehicle.
 - (7) Drain the engine oil.
 - (8) Remove the oil pan and gasket.
- (9) Remove the connecting rod bearing caps and inserts. Mark the caps and rods with the cylinder bore location. The connecting rods and caps are stamped with a two letter combination (Fig. 62).
- (10) Lower the vehicle until it is about 2 feet from the floor.

REMOVAL AND INSTALLATION (Continued)

Fig. 62 Stamped Connecting Rods and Caps

CAUTION: Ensure that the connecting rod bolts DO NOT scratch the crankshaft journals or cylinder walls. Short pieces of rubber hose, slipped over the rod bolts will provide protection during removal.

(11) Have an assistant push the piston and connecting rod assemblies up and through the top of the cylinder bores (Fig. 63).

Fig. 63 Removal of Connecting Rod and Piston Assembly

INSTALLATION

- (1) Clean the cylinder bores thoroughly. Apply a light film of clean engine oil to the bores with a clean lint-free cloth
- (2) Install the piston rings on the pistons if removed.

(3) Lubricate the piston and rings with clean engine oil.

CAUTION: Ensure that connecting rod bolts do not scratch the crankshaft journals or cylinder walls. Short pieces of rubber hose slipped over the connecting rod bolts will provide protection during installation.

- (4) Use a piston ring compressor to install the connecting rod and piston assemblies through the top of the cylinder bores (Fig. 64).
- (5) Ensure the arrow on the piston top points to the front of the engine (Fig. 64).

Fig. 64 Rod and Piston Assembly Installation

- (6) Raise the vehicle.
- (7) Each bearing insert is fitted to its respective journal to obtain the specified clearance between the bearing and the journal. In production, the select fit is obtained by using various-sized, color-coded bearing inserts as listed in the Connecting Rod Bearing Fitting Chart. The color code appears on the edge of the bearing insert. The size is not stamped on inserts used for production of engines.
- (8) The rod journal is identified during the engine production by a color-coded paint mark on the adjacent cheek or counterweight toward the flange (rear) end of the crankshaft. The color codes used to indicate journal sizes are listed in the Connecting Rod Bearing Fitting Chart.
- (9) When required, upper and lower bearing inserts of different sizes may be used as a pair (refer to Connecting Rod Bearing Fitting Chart). A standard size insert is sometimes used in combination with a 0.025 mm (0.001 inch) undersize insert to reduce clearance 0.013 mm (0.0005 inch).

CAUTION: DO NOT intermix bearing caps. Each connecting rod and bearing cap are stamped with the cylinder number. The stamp is located on a machined surface adjacent to the oil squirt hole that faces the camshaft side of the cylinder block.

(10) Install the connecting rod bearing caps and inserts in the same positions as removed.

CAUTION: Verify that the oil squirt holes in the rods face the camshaft and that the arrows on the pistons face the front of the engine.

- (11) Install the oil pan and gaskets as outlined in the installation procedure.
 - (12) Lower the vehicle.
- (13) Install the engine cylinder head, push rods, rocker arms, bridges, pivots and engine cylinder head cover.
 - (14) Fill the crankcase with engine oil.

REAR MAIN OIL SEALS

REMOVAL

- (1) Remove the flywheel or converter drive plate. Discard the old bolts.
- (2) Pry out the seal from around the crankshaft flange (Fig. 65).

J8909-149

Fig. 65 Replacement of Rear Crankshaft Oil Seal INSTALLATION

- (1) Coat the outer lip of the replacement rear main bearing seal with engine oil.
- (2) Carefully position the seal into place. Use rear main Seal Installer Tool 6271A to install the seal flush with the cylinder block.

CAUTION: The felt lip must be located inside the flywheel mounting surface. If the lip is not positioned correctly the flywheel could tear the seal.

(3) Install the flywheel or converter drive plate. New bolts MUST be used when installing the flywheel or converter plate. Tighten the new bolts to 68 N·m (50 ft. lbs.) torque. Turn the bolts an additional 60°.

DISASSEMBLY AND ASSEMBLY

VALVE SERVICE

Clean all carbon deposits from the combustion chambers, valve ports, valve stems, valve stem guides and head.

Clean all grime and gasket material from the engine cylinder head machined gasket surface.

Inspect for cracks in the combustion chambers and valve ports.

Inspect for cracks on the exhaust seat.

Inspect for cracks in the gasket surface at each coolant passage.

Inspect valves for burned, cracked or warped heads.

Inspect for scuffed or bent valve stems. Replace valves displaying any damage.

VALVE REFACING

- (1) Use a valve refacing machine to reface the intake and exhaust valves to the specified angle.
- (2) After refacing, a margin of at least 0.787 mm (0.031 inch) must remain (Fig. 66). If the margin is less than 0.787 mm (0.031 inch), the valve must be replaced.

J8909-89

Fig. 66 Valve Facing Margin

VALVE SEAT REFACING

(1) Install a pilot of the correct size in the valve guide bore. Reface the valve seat to the specified angle with a good dressing stone. Remove only enough metal to provide a smooth finish.

DISASSEMBLY AND ASSEMBLY (Continued)

- (2) Use tapered stones to obtain the specified seat width when required.
- (3) Control valve seat runout to a maximum of 0.0635 mm (0.0025 in.)— (Fig. 67).

Fig. 67 Measurement of Valve Seat Runout

VALVE STEM OIL SEAL REPLACEMENT

Valve stem oil seals are installed on each valve stem to prevent rocker arm lubricating oil from entering the combustion chamber through the valve guide bores. One seal is marked INT (intake valve) and the other is marked EXH (exhaust valve).

Replace the oil seals whenever valve service is performed or if the seals have deteriorated.

VALVE GUIDES

The valve guides are an integral part of the engine cylinder head and are not replaceable.

When the valve stem guide clearance is excessive, the valve guide bores must be reamed oversize. Service valves with oversize stems are available in 0.076 mm (0.003 inch) and 0.381 mm (0.015 inch) increments.

Corresponding oversize valve stem seals are also available and must be used with valves having 0.381 mm (0.015 inch) oversize stems, 0.076mm (.003in.) oversize stems do not require oversize seals.

NOTE: If the valve guides are reamed oversize, the valve seats must be ground to ensure that the valve seat is concentric to the valve guide.

VALVE STEM-TO-GUIDE CLEARANCE MEASUREMENT

Valve stem-to-guide clearance may be measured by either of the following two methods.

PREFERRED METHOD:

(1) Remove the valve from the head.

- (2) Clean the valve stem guide bore with solvent and a bristle brush.
- (3) Insert a telescoping gauge into the valve stem guide bore approximately 9.525 mm (.375 inch) from the valve spring side of the head (Fig. 68).

Fig. 68 Measurement of Valve Guide Bore Diameter

- (4) Remove and measure telescoping gauge with a micrometer.
- (5) Repeat the measurement with contacts lengthwise to engine cylinder head.
- (6) Compare the crosswise to lengthwise measurements to determine out-of-roundness. If the measurements differ by more than 0.0635 mm (0.0025 in.), ream the guide bore to accommodate an oversize valve stem.
- (7) Compare the measured valve guide bore diameter with specifications (7.95-7.97 mm or 0.313-0.314 inch). If the measurement differs from specification by more than 0.076 mm (0.003 inch), ream the guide bore to accommodate an oversize valve stem.

ALTERNATIVE METHOD:

- (1) Use a dial indicator to measure the lateral movement of the valve stem (stem-to-guide clearance). This must be done with the valve installed in its guide and just off the valve seat (Fig. 69).
- (2) Correct clearance is 0.025-0.0762 mm (0.001-0.003 inch). If indicated movement exceeds the specification ream the valve guide to accommodate an oversize valve stem.

NOTE: Valve seats must be ground after reaming the valve guides to ensure that the valve seat is concentric to the valve guide.

DISASSEMBLY AND ASSEMBLY (Continued)

Fig. 69 Measurement of Lateral Movement Of Valve Stem

VALVE SPRING TENSION TEST

Use a Universal Valve Spring Tester and a torque wrench to test each valve spring for the specified tension value (Fig. 70).

Replace valve springs that are not within specifications.

Fig. 70 Valve Spring Tester

CYLINDER BLOCK

Remove the Engine Assembly from the vehicle.

DISASSEMBLY

- (1) Drain the engine oil. Remove and discard the oil filter.
- (2) Remove the water pump from the cylinder block.
 - (3) Remove the distributor from the cylinder block.
 - (4) Remove the vibration damper.
- (5) Remove the timing case cover and lay the cover upside down.
- (6) Position a drift punch into the slot in the back of the cover and tap the old seal out.

- (7) Remove the timing chain bumper.
- (8) Remove the oil slinger from crankshaft.
- (9) Remove the camshaft retaining bolt and remove the sprockets and chain as an assembly.
 - (10) Remove the camshaft.
 - (11) Remove the oil pan and gasket.
 - (12) Remove the timing chain tensioner.
 - (13) Remove the front and rear oil galley plugs.
- (14) Remove the connecting rods and the pistons. Remove the connecting rod and piston assemblies through the top of the cylinder bores.
 - (15) Remove the crankshaft.

ASSEMBLY

- (1) Install the crankshaft.
- (2) Install the connecting rods and the pistons through the top of the cylinder bores.
 - (3) Install the front and rear oil galley plugs.
 - (4) Install the timing chain tensioner.
 - (5) Install the camshaft.
 - (6) Install the sprockets and chain as an assembly.
 - (7) Install the oil slinger to the crankshaft.
 - (8) Install the timing chain bumper.
 - (9) Install the timing case cover seal.
 - (10) Install the timing case cover.
 - (11) Install the oil pan gasket and oil pan.
 - (12) Install the vibration damper.
- (13) Install the water pump. Tighten the mounting bolts to 31 N·m (270 in. lbs.) torque.
- (14) Remove the distributor from the cylinder block.
- (15) Lubricate the oil filter seal with clean engine oil. Tighten oil filter to 18 N·m (13 ft. lbs.) torque.
 - (16) Install the engine into the vehicle.
 - (17) Fill the engine with clean lubrication oil.
 - (18) Fill the cooling system.

CLEANING AND INSPECTION

ROCKER ARMS AND PUSH RODS

CLEANING

Clean all the components with cleaning solvent.

Use compressed air to blow out the oil passages in the rocker arms and push rods.

INSPECTION

Inspect the pivot surface area of each rocker arm. Replace any that are scuffed, pitted, cracked or excessively worn.

Inspect the valve stem tip contact surface of each rocker arm and replace any rocker arm that is deeply pitted.

Inspect each push rod end for excessive wear and replace as required. If any push rod is excessively

CLEANING AND INSPECTION (Continued)

worn because of lack of oil, replace it and inspect the corresponding hydraulic tappet for excessive wear.

Inspect the push rods for straightness by rolling them on a flat surface or by shining a light between the push rod and the flat surface.

A wear pattern along the length of the push rod is not normal. Inspect the engine cylinder head for obstruction if this condition exists.

ENGINE CYLINDER HEAD

CLEANING

Thoroughly clean the engine cylinder head and cylinder block mating surfaces. Clean the intake and exhaust manifold and engine cylinder head mating surfaces. Remove all gasket material and carbon.

Check to ensure that no coolant or foreign material has fallen into the tappet bore area.

Remove the carbon deposits from the combustion chambers and top of the pistons.

INSPECTION

Use a straightedge and feeler gauge to check the flatness of the engine cylinder head and block mating surfaces.

CYLINDER BLOCK

CLEANING

Thoroughly clean the oil pan and engine block gasket surfaces.

Use compressed air to clean out:

• The galley at the oil filter adaptor hole, the filter bypass hole (Fig. 71).

Fig. 71 Oil Filter Adaptor Hole

- The front and rear oil galley holes (Fig. 72) (Fig. 73).
- The feed holes for the crankshaft main bearings.
 Once the block has been completely cleaned, apply
 Loctite PST pipe sealant with Teflon 592 to the

Fig. 72 Front Oil Galley Hole

Fig. 73 Rear Oil Galley Hole

threads of the front and rear oil galley plugs. Tighten the plugs to 41 N·m (30 ft. lbs.) torque.

INSPECTION—CYLINDER BORE

- (1) It is mandatory to use a dial bore gauge to measure each cylinder bore diameter (Fig. 74). To correctly select the proper size piston, a cylinder bore gauge, capable of reading in 0.003 mm (.0001in.) INCREMENTS is required. If a bore gauge is not available, do not use an inside micrometer.
- (2) Measure the inside diameter of the cylinder bore at three levels below top of bore. Start perpendicular (across or at 90 degrees) to the axis of the crankshaft and then take two additional reading.
- (3) Measure the cylinder bore diameter crosswise to the cylinder block near the top of the bore. Repeat the measurement near the middle of the bore, then repeat the measurement near the bottom of the bore.
- (4) Determine taper by subtracting the smaller diameter from the larger diameter.
- (5) Rotate measuring device 90° and repeat steps above.

9 - 50 2.5L ENGINE — XJ

CLEANING AND INSPECTION (Continued)

Fig. 74 Cylinder Bore Measurement

- (6) Determine out-of-roundness by comparing the difference between each measurement.
- (7) If cylinder bore taper does not exceed 0.025 mm (0.001 inch) and out-of-roundness does not exceed 0.025 mm (0.001 inch), the cylinder bore can be honed. If the cylinder bore taper or out- of-round condition exceeds these maximum limits, the cylinder must be bored and then honed to accept an oversize piston. A slight amount of taper always exists in the cylinder bore after the engine has been in use for a period of time.

HONING—CYLINDER BORE

The honing operation should be closely coordinated with the fitting of pistons and rings. This will ensure specified clearances are maintained.

SPECIFICATIONS

2.5L ENGINE SPECIFICATIONS

Camshaft

Hydraulic Tappet Clearance	Zero Lash
Bearing Clearance	0.025 to 0.076 mm
	(0.001 to 0.003 in.)

Bearing Journal Diameter

No. 1	.51.54 to	51.56	mm	(2.029)	to	2.030	in.)
No. 2	.51.28 to	51.31	mm	(2.019	to	2.020	in.)
No. 3	.51.03 to	51.05	mm	(2.009	to	2.010	in.)
No. 4	.50.78 to	50.80	mm	(1.999	to	2.000	in.)
Base Circle I	Runout.			0.03	3 n	nm - n	ıax.
				(0.00)	1 i	n m	ax.)

Camshaft Lobe Lift
Exhaust
Intake
Valve Lift
Exhaust
Intake
Intake Valve Timing
Opens
Closes
Exhaust Valve Timing
Opens
Closes
Valve Overlap
Intake Duration
Exhaust Duration
Crankshaft
End Play
(0.0015 to 0.0065 in.)
Main Bearing Journal
Diameter
(2.4996 to 2.5001 in.)
Main Bearing Journal
Width No. 1
(1.086 to 1.098 in.)
Main Bearing Journal
Width No. 2
(1.271 to 1.273 in.)
Main Bearing Journal
Width No. 3-4-5
(1.182 to 1.188 in.)
Main Bearing Clearance
(0.001 to 0.0025 in.)
Main Bearing Clearance (Preferred)0.051 mm (0.002 in.)
Connecting Rod Journal
Diameter
(2.0934 to 2.0955 in.)
Connecting Rod Journal
Width
(1.070 to 1.076 in.)
Out-of-Round (Max. All Journals).0.013 mm (0.0005
in.)
Taper (Max. – All Journals)0.013 mm
(0.0005 in.)
Cylinder Block
Deck Height
Deck Clearance
Cylinder Bore Diameter—
Standard
(3.8759 to 3.8775 in.)
Cylinder Bore Diameter—
Taper (Max.)
Cylinder Bore Diameter—
Out-of-Round (Max.) 0.025 mm (0.001 in.)

XJ — 2.5L ENGINE 9 - 51

SPECIFICATIONS (Continued)	
Tappet Bore Diameter.23.000 to 23.025 mm (0.9055	Rocker Arm Ratio
to 0.9065 in.)	Push Rod Length
Flatness	(9.500 to 9.520in.)
(0.001 in. per 1 in.)	Push Rod Diameter
Flatness0.05 mm per 152 mm	(0.312 to 0.315 in.)
(0.002 in. per 6 in.)	Hydraulic Tappet Diameter22.962 to 22.974 mm
Flatness Max0.20 mm for total length	(0.904 to 0.9045 in.)
(0.008 in. for total length)	Tappet-to-Bore Clearance.0.025 to 0.063 mm (0.001
Main Bearing Bore Diameter	to 0.0025 in.)
(2.691 to 2.692 in.)	Valves
Connecting Rods	Length (Tip-to-Gauge Dimension Line) Intake124.435 to 125.070 mm
Total Weight (Less Bearing).657 to 665 grams (23.17	(4.899 to 4.924 in.)
to 23.45 oz.)	Length (Tip-to-Gauge Dimension Line)
Length (Center-to-Center)155.52 to 155.62 mm	Exhaust
(6.123 to 6.127 in.)	(4.927 to 4.952 in.)
Piston Pin Bore Diameter.23.59 to 23.62 mm (0.9288	Valve Stem Diameter 7.899 to 7.925 mm
to 0.9298 in.)	(0.311 to 0.312 in.)
Bore (Less Bearings)	Stem-to-Guide Clearance 0.025 to 0.076 mm
(2.2080 to 2.2085 in.)	(0.001 to 0.003 in.)
Bearing Clearance 0.025 to 0.076 mm	Valve Head Diameter—
(0.001 to 0.003 in.)	Intake .48.387 to 48.641 mm (1.905 to 1.915 in.)
Bearing Clearance (Preferred)0.044 to 0.050 mm	Valve Head Diameter—
(0.0015 to 0.0020 in.)	Exhaust
Side Clearance	(1.495 to 1.505 in.)
(0.010 to 0.019 in.)	Valve Face Angle—Intake
Twist (Max.).0.001 mm per mm (0.001 in. per inch)	Valve Face Angle—Exhaust
Bend Max.)	Tip Refinishing (Max. Allowable) 0.25 mm (0.010 in.)
Cylinder Compression Pressure	Valve Springs
Ratio	Free Length (Approx.)
Pressure Range	Spring Tension—Valve
(120 to 150 psi)	Closed
Max. Variation Between	(61 to 69 lbf. @ 1.64 in.)
Cylinders206 kPa (30 psi)	Spring Tension—Valve
Cylinder Head	pen
Combustion Chamber	(184 to 196 lbf @ 1.216 in.)
(3.04 to 3.23 cu. in.)	Inside Diameter
Valve Guide I.D. (Integral)7.95 to 7.97 mm	(0.827 to 0.847 in.)
(0.313 to 0.314 in.)	Installed Height
Valve Stem-to-Guide	Pistons
Clearance	Weight (Less Pin)
(0.001 to 0.003 in.)	(19.86 to 20.00 oz.)
Intake Valve Seat Angle	Piston Pin Bore (Centerline to
Exhaust Valve Seat Angle	Piston Top)
Valve Seat Width	Piston-to-Bore Clearance.0.033 to 0.053 mm (0.0013
Valve Seat Runout 0.064 mm (0.0025 in.)	to 0.0021 in.)
Flatness	Piston-to-Bore Clearance
(0.001 in. per 1 in.)	(Preferred)
Flatness	(0.0013 to 0.0015 in.)
(0.002 in. per 6 in.)	Ring Gap Clearance—Top
Flatness Max0.20 mm for total length	Compression Ring 0.229 to 0.610 mm
(0.008 in. for total length)	(0.0090 to 0.0240 in.)
Docker Arms Duch Dode & Tannots	

Rocker Arms, Push Rods & Tappets

SPECIFICATIONS (Contin

Ring Gap Clearance—2nd	At 1600 rpm & Higher255 to 517 kPa
Compression Ring 0.483 to 0.965 mm	(37 to 75 psi)
(0.0190 to 0.0380 in.)	Oil Pressure Relief
Ring Gap Clearance—Oil Control	
	2.5L TORQUE SPECIFICATIONS
Steel Rails	
(0.010 to 0.060 in.)	DESCRIPTION TORQUE
Ring Side Clearance—Compression	V
Rings	A/C Compressor Bracket-to-Engine
(0.0017 to 0.0033 in.)	Bolts
Ring Side Clearance—Oil Control	A/C Compressor
Ding 0.06 to 0.91 mm	Mounting Bolts
Ring	Block Heater
(0.0024 to 0.0083 in.)	Nut
Piston Ring Groove Height—	Camshaft Sprocket
Compression Rings 1.530 to 1.555mm	Bolt
(0.0602 to 0.0612 in.)	Connecting Rod
Piston Ring Groove Height—	Nuts
Oil Control Ring 4.035 to 4.060 mm	Clutch Cover to Flywheel
(0.1589 to 0.1598 in.)	Bolts
Piston Ring Groove Diameter—	Cylinder Block
Compression Rings 87.78 to 87.90 mm	Drain Plugs
(3.456 to 3.461 in.)	Cylinder Head
Piston Ring Groove Diameter—Oil Control	Bolts #1–10 & #12–14149 N·m (110 ft. lbs.)
Ring 87.50 to 87.75 mm	Bolt #11
O Company of the comp	Cylinder Head Cover
(3.445 to 3.455 in.)	Bolts
Piston Pin Bore Diameter23.647 to 23.655 mm	Dipstick Tube Bracket to Cylinder Block
(0.9310 to 0.9313 in.)	Bolt
Piston Pin Diameter	Distributor Hold-Down Clamp
(0.9306 to 0.9307 in.)	Bolt
Piston-to-Pin Clearance 0.0076 to 0.0178 mm	
(0.0003 to 0.0007 in.)	Engine Shock Damper
	Stud Nuts
Piston-to-Pin Clearance	Engine Mounts—Front
(Preferred)	Insulator Bracket Bolts 81 N·m (60 ft. lbs.)
(0.0006 in.—Loose)	Insulator Bracket Nuts
Piston-to-Pin Connecting Rod	Insulator Thru-Bolt 81 N·m (60 ft. lbs.)
(Press Fit)	Engine Mounts—Rear
Oil Pump	Support Cushion/Crossmember Nuts
Gear-to-Body Clearance	(192 in. lbs.)
v	Support Cushion/Bracket Nuts
(Radial)	(34 ft. lbs.)
(0.002 to 0.004 in.)	Transmission Support Bracket Bolts 43 N·m
Gear-to-Body Clearance (Radial)	(32 ft. lbs.)
(Preferred)	
Gear End Clearance—	Transmission Support Bracket/
Plastigage 0.051 to 0.152 mm	Cushion Bolt
(0.002 to 0.006 in.)	Transmission Support Adaptor
·	Bracket Bolts
Gear End Clearance—Plastigage	Exhaust Manifold/Pipe
(Preferred)	Nuts
Gear End Clearance—Feeler	Flywheel/Converter Housing
Gauge	Bolts
(0.004 to 0.008 in.)	Flywheel to Crankshaft
Gear End Clearance—Feeler Gauge	Bolts
(Preferred) 0.1778 mm (0.007 in.)	Front Cover to Block
Oil Pressure	Bolts 1/4–20 7 N·m (60 in. lbs.)
Min. Pressure (600 rpm) 89.6 kPa (13 psi)	Bolts 5/16–18
At Idle Speed (800 rpm)172 to 241 kPa	Generator
(25 to 35 psi)	Adjusting Bolt
•	Pivot Bolt/Nut

_______ 2.5L ENGINE 9 - 53

SPECIFICATIONS (Continued)

DESCRIPTION TORQUE	Ξ
Mounting Bracket-to-Engine	
Bolts)
Mounting/Head Bolts	
Main Bearing	
Bolts)
Oil Filter	
Adaptor Bolt	
Connector	
Filter)
Oil Galley	
Plug)
Oil Pan	
1/4–20 Bolts9.5 N·m (84 in. lbs.)	
5/16–18 Bolts	
Drain Plug)
Oil Pressure Sending Unit	
Sending Unit)
Oil Pump	
Short Attaching Bolts 23 N·m (204 in. lbs.)
Long Attaching Bolts 23 N·m (204 in. lbs.)
Cover Bolts)
Power Steering Pump Pressure Hose	
Nut)
Rocker Arm Assembly to Cylinder Head	
Capscrews)
Spark Plugs	
Plugs)
Starter Motor	
Mounting Bolts)
Tensioner Bracket ot Cylinder Block	`
Bolts)
Thermostat Housing	`
Bolts)
Bolts	`
Vibration Damper	,
Bolt	`
Water Pump to Block	,
Bolts	`
Duits)

SPECIAL TOOLS

2.5L ENGINE

Timing Case Cover Alignment and Seal Installation Tool 6139

Vibration Damper Removal Tool 7697

Rear Main Seal Installer Tool 6271A

Hydraulic Valve Tappet Removal/Installation Tool C-4129-A

4.0L ENGINE

INDEX

page	page
DESCRIPTION AND OPERATION	PISTONS AND CONNECTING RODS 82
ENGINE DESCRIPTION	REAR MAIN OIL SEAL
LUBRICATION SYSTEM	ROCKER ARMS AND PUSH RODS 70
OIL PUMP PRESSURE 57	TIMING CASE COVER OIL SEAL
OVERSIZE AND UNDERSIZE COMPONENT	TIMING CASE COVER 75
CODES	TIMING CHAIN AND SPROCKETS
SERVICE PROCEDURES	VALVE STEM SEAL AND SPRING 71
FITTING CONNECTING ROD BEARINGS 60	VALVES AND VALVE SPRINGS
FITTING CRANKSHAFT MAIN BEARINGS 62	VIBRATION DAMPER
PISTON FITTING 57	DISASSEMBLY AND ASSEMBLY
PISTON RING FITTING 58	CYLINDER BLOCK
VALVE TIMING	VALVE SERVICE
REMOVAL AND INSTALLATION	CLEANING AND INSPECTION
CAMSHAFT PIN REPLACEMENT 78	CYLINDER BLOCK
CAMSHAFT 77	ENGINE CYLINDER HEAD COVER 88
CRANKSHAFT MAIN BEARINGS 80	ENGINE CYLINDER HEAD 87
ENGINE ASSEMBLY 67	HYDRAULIC TAPPETS
ENGINE CYLINDER HEAD COVER 69	ROCKER ARMS AND PUSH RODS 88
ENGINE CYLINDER HEAD 71	SPECIFICATIONS
ENGINE MOUNTS—FRONT 66	4.0L ENGINE SPECIFICATIONS 90
ENGINE MOUNT—REAR	4.0L TORQUE SPECIFICATIONS 92
HYDRAULIC TAPPETS	SPECIAL TOOLS
OIL PAN	4.0L ENGINE
OII PUMP 84	

DESCRIPTION AND OPERATION

ENGINE DESCRIPTION

The 4.0 Liter (242 CID) six-cylinder engine is an In-line, lightweight, overhead valve engine.

Engine Type
Bore and Stroke98.4 x 86.69 mm (3.88 x 3.413 in.)
Displacement
Compression Ratio
Torque
Firing Order
Lubrication Pressure Feed–Full Flow Filtration
Engine Oil Capacity 5.7 L (6 Quarts)
Cooling System Liquid Cooled–Forced Circulation
Cooling System Capacity
Cylinder Block
Crankshaft
Cylinder Head
Camshaft
Pistons Aluminum Alloy (with Struts)
Pistons Combustion Cavity Double Quench
Connecting Rods

This engine is designed for unleaded fuel.

The engine cylinder head has dual quench-type combustion chambers that create turbulence and fast burning of the air/fuel mixture. This results in good fuel economy.

The cylinders are numbered 1 through 6 from front to rear. The firing order is 1-5-3-6-2-4 (Fig. 1).

The crankshaft rotation is clockwise, when viewed from the front of the engine. The crankshaft rotates within seven main bearings. The camshaft rotates within four bearings.

BUILD DATE CODE

The engine Build Date Code is located on a machined surface on the right side of the cylinder block between the No.2 and No.3 cylinders (Fig. 2).

The digits of the code identify:

- 1st Digit—The year (7 = 1997).
- 2nd & 3rd Digits—The month (01 12).
- 4th & 5th Digits—The engine type/fuel system/compression ratio (MX = A 4.0 Liter (242 CID) 8.7:1 compression ratio engine with a multi-point fuel injection system).
- 6th & 7th Digits—The day of engine build (01 31).

DESCRIPTION AND OPERATION (Continued)

Fig. 1 Engine Firing Order

Fig. 2 Build Date Code Location

(1) **FOR EXAMPLE:** Code * 701MX12 * identifies a 4.0 Liter (242 CID) engine with a multi-point fuel injection system, 8.7:1 compression ratio and built on January 12, 1997.

LUBRICATION SYSTEM

A gear—type positive displacement pump is mounted at the underside of the block opposite the No. 4 main bearing. The pump draws oil through the screen and inlet tube from the sump at the rear of the oil pan. The oil is driven between the drive and idler gears and pump body, then forced through the outlet to the block. An oil gallery in the block channels the oil to the inlet side of the full flow oil filter. After passing through the filter element, the oil passes from the center outlet of the filter through an oil gallery that channels the oil up to the main gallery which extends the entire length of the block.

Galleries extend downward from the main oil gallery to the upper shell of each main bearing. The crankshaft is drilled internally to pass oil from the main bearing journals (except number 4 main bearing journal) to the connecting rod journals. Each connecting rod bearing cap has a small squirt hole, oil passes through the squirt hole and is thrown off as the rod rotates. This oil throwoff lubricates the camshaft lobes, distributor drive gear, cylinder walls, and piston pins.

The hydraulic valve tappets receive oil directly from the main oil gallery. Oil is provided to the camshaft bearing through galleries. The front camshaft bearing journal passes oil through the camshaft sprocket to the timing chain. Oil drains back to the oil pan under the number one main bearing cap.

The oil supply for the rocker arms and bridged pivot assemblies is provided by the hydraulic valve tappets which pass oil through hollow push rods to a hole in the corresponding rocker arm. Oil from the rocker arm lubricates the valve train components, then passes down through the push rod guide holes in the cylinder head past the valve tappet area, and returns to the oil pan.

DESCRIPTION AND OPERATION (Continued)

XJ — 4.0L ENGINE 9 - 57

DESCRIPTION AND OPERATION (Continued)

OIL PUMP PRESSURE

The MINIMUM oil pump pressure is 89.6 kPa (13 psi) at 600 rpm. The NORMAL oil pump pressure is 517 kPa (75 psi) at 1600 rpm or more.

OVERSIZE AND UNDERSIZE COMPONENT CODES

Some engines may be built with oversize or undersize components such as:

- Oversize cylinder bores.
- Oversize camshaft bearing bores.
- Undersize crankshaft main bearing journals.
- Undersize connecting rod journals.

These engines are identified by a letter code (Fig. 3) stamped on a boss between the ignition coil and the distributor (Fig. 4).

CODE	COMPONENT	UNDERSIZE
Р	One or more connecting rod bearing journals	0.254 mm (0.010 in)
М	All crankshaft main bearing journals	0.254 mm (0.010 in)
PM	All crankshaft main bearing journals and one or more connecting rod journals	0.254 mm (0.010 in)
CODE	COMPONENT	OVERSIZE
В	All cylinder bores	0.254 mm (0.010 in)
С	All camshaft bearing bores	0.254 mm (0.010 in)

J8909-54

Fig. 3 Oversize and Undersize Component Codes
SERVICE PROCEDURES

VALVE TIMING

Disconnect the spark plug wires and remove the spark plugs.

Remove the engine cylinder head cover.

Remove the capscrews, bridge and pivot assembly, and rocker arms from above the No.1 cylinder.

Alternately loosen each capscrew, one turn at a time, to avoid damaging the bridge.

Rotate the crankshaft until the No.6 piston is at top dead center (TDC) on the compression stroke.

Fig. 4 Oversize and Undersize Component Code
Location

Rotate the crankshaft counterclockwise (viewed from the front of the engine) 90°.

Install a dial indicator on the end of the No.1 cylinder intake valve push rod. Use rubber tubing to secure the indicator stem on the push rod.

Set the dial indicator pointer at zero.

Rotate the crankshaft clockwise (viewed from the front of the engine) until the dial indicator pointer indicates 0.305 mm (0.012 inch) travel distance (lift).

The timing notch index on the vibration damper should be aligned with the TDC mark on the timing degree scale.

If the timing notch is more than 13 mm (1/2 inch) away from the TDC mark in either direction, the valve timing is incorrect.

If the valve timing is incorrect, the cause may be a broken camshaft pin. It is not necessary to replace the camshaft because of pin failure. A spring pin is available for service replacement.

PISTON FITTING

BORE GAGE METHOD

- (1) To correctly select the proper size piston, a cylinder bore gauge, capable of reading in 0.003 mm (.0001 in.) INCREMENTS is required. If a bore gauge is not available, do not use an inside micrometer.
- (2) Measure the inside diameter of the cylinder bore at a point 49.5 mm (1-15/16 inches) below top of bore. Start perpendicular (across or at 90 degrees) to the axis of the crankshaft at point A and then take

an additional bore reading 90 degrees to that at point B (Fig. 6).

- (3) The coated pistons will be serviced with the piston pin and connecting rod pre-assembled. The coated piston connecting rod assembly can be used to service previous built engines and MUST be replaced as complete sets. Tin coated pistons should not be used as replacements for coated pistons.
- (4) The coating material is applied to the piston after the final piston machining process. Measuring the outside diameter of a coated piston will not provide accurate results (Fig. 5). Therefore measuring the inside diameter of the cylinder bore with a dial Bore Gauge is **MANDATORY**. To correctly select the proper size piston, a cylinder bore gauge capable of reading in 0.003 mm (.0001 in.) increments is required.
- (5) Piston installation into the cylinder bore requires slightly more pressure than that required for non-coated pistons. The bonded coating on the piston will give the appearance of a line-to-line fit with the cylinder bore.

DO NOT MEASURE MOLY COATED PISTON

80aac2ac

Fig. 5 Moly Coated Piston

PISTON SIZE CHART

CYLINDER	PISTON
BORE	LETTER
SIZE	SIZE
98.438 to 98.448 mm (3.8755 to 3.8759 in.) A
98.448 to 98.458 mm (3.8759 to 3.8763 in.)B
98.458 to 98.468 mm (3.8763 to 3.8767 in.) C
98.468 to 98.478 mm (3.8767 to 3.8771 in.	D (
98.478 to 98.488 mm (3.8771 to 3.8775 in.)E
98.488 to 98.498 mm (3.8775 to 3.8779 in.) F

Fig. 6 Bore Gauge

PISTON RING FITTING

- (1) Carefully clean the carbon from all ring grooves. Oil drain openings in the oil ring groove and pin boss must be clear. DO NOT remove metal from the grooves or lands. This will change ring-to-groove clearances and will damage the ring-to-land seating.
- (2) Be sure the piston ring grooves are free of nicks and burrs.
- (3) Measure the ring side clearance with a feeler gauge fitted snugly between the ring land and ring (Fig. 7) (Fig. 8). Rotate the ring in the groove. It must move freely around circumference of the groove.

Ring Side Clearance Measurement

Top Compression Ring	0.042 to 0.084 mm
	(0.0017 to 0.0033 in.)
Second Compression Ring	0.042 to 0.084 mm
-	(0.0017 to 0.0033 in.)
Oil Control Ring	0.06 to 0.21 mm
	(0.0024 to 0.0083 in.)

(4) Place ring in the cylinder bore and push down with inverted piston to position near lower end of the ring travel. Measure ring gap with a feeler gauge fitting snugly between ring ends (Fig. 9).

SERVICE PROCEDURES (Continued)

Fig. 8 Ring Side Clearance Measurement

GROOVE HEIGHT

A 1.530-1.555 mm (0.0602-0.0612 in) B 4.035-4.060 mm (0.1589-0.1598 in)

Fig. 7 Piston Dimensions

Ring Gap Measurement

Top Compression Ring	0.229 to 0.610 mm
	(0.0090 to 0.0240 inch)
Second Compression Ring	0.483 to 0.965 mm
	(0.0190 to 0.0380 inch)
Oil Control Ring	0.254 to 1.500 mm
	(0.010 to 0.060 inch)

Fig. 9 Gap Measurement

- (5) The oil control rings are symmetrical, and can be installed with either side up. It is not necessary to use a tool to install the upper and lower rails. Insert oil rail spacer first, then side rails.
- (6) The two compression rings are different and cannot be interchanged. The top compression ring can be identified by the shiny coating on the outer sealing surface and can be installed with either side up. (Fig. 10).
- (7) The second compression ring has a slight chamfer on the bottom of the inside edge and a dot on the top for correct installation (Fig. 11).
- (8) Using a ring installer, install the second compression ring with the dot facing up (Fig. 11) (Fig. 13).
- (9) Using a ring installer, install the top compression ring (either side up).

Fig. 10 Top Compression ring identification Ring Gap Orientation

- Position the gaps on the piston as shown (Fig. 4).
- Oil spacer Gap on center line of piston skirt.
- $\bullet\,$ Oil rails gap 180° apart on centerline of piston pin bore.

Fig. 11 Second Compression Ring Identification

Fig. 12 Compression Ring Chamfer Location

Fig. 13 Compression Ring Installation

- \bullet No. 2 Compression ring Gap 180° from top oil rail gap.
- No. 1 Compression ring Gap 180° from No. 2 compression ring gap.

80a72339

Fig. 14 Ring Gap Orientation
FITTING CONNECTING ROD BEARINGS

INSPECTION

BEARINGS

Inspect the connecting rod bearings for scoring and bent alignment tabs (Fig. 15) (Fig. 16). Check the bearings for normal wear patterns, scoring, grooving, fatigue and pitting (Fig. 17). Replace any bearing that shows abnormal wear.

Inspect the connecting rod journals for signs of scoring, nicks and burrs.

CONNECTING RODS

Misaligned or bent connecting rods can cause abnormal wear on pistons, piston rings, cylinder walls, connecting rod bearings and crankshaft connecting rod journals. If wear patterns or damage to any of these components indicate the probability of a misaligned connecting rod, inspect it for correct rod alignment. Replace misaligned, bent or twisted connecting rods.

BEARING-TO-JOURNAL CLEARANCE

- (1) Wipe the oil from the connecting rod journal.
- (2) Use short rubber hose sections over rod bolts during installation.

Fig. 15 Connecting Rod Bearing Inspection

J8909-128

Fig. 16 Locking Tab Inspection

J8909-129

Fig. 17 Scoring Caused by Insufficient Lubrication or by Damaged Crankshaft Pin Journal

- (3) Lubricate the upper bearing insert and install in connecting rod.
- (4) Use piston ring compressor to install the rod and piston assemblies. The oil squirt holes in the rods must face the camshaft. The arrow on the piston crown should point to the front of the engine (Fig. 18). Verify that the oil squirt holes in the rods face the camshaft and that the arrows on the pistons face the front of the engine.

Fig. 18 Rod and Piston Assembly Installation

- (5) Install the lower bearing insert in the bearing cap. The lower insert must be dry. Place strip of Plastigage across full width of the lower insert at the center of bearing cap. Plastigage must not crumble in use. If brittle, obtain fresh stock.
- (6) Install bearing cap and connecting rod on the journal and tighten nuts to 45 N⋅m (33 ft. lbs.) torque. DO NOT rotate crankshaft. Plastigage will smear, resulting in inaccurate indication.
- (7) Remove the bearing cap and determine amount of bearing-to- journal clearance by measuring the width of compressed Plastigage (Fig. 19). Refer to Engine Specifications for the proper clearance. Plastigage should indicate the same clearance across the entire width of the insert. If the clearance varies, it may be caused by either a tapered journal, bent connecting rod or foreign material trapped between the insert and cap or rod.

Fig. 19 Measuring Bearing Clearance with Plastigage

(8) If the correct clearance is indicated, replacement of the bearing inserts is not necessary. Remove

the Plastigage from crankshaft journal and bearing insert. Proceed with installation.

- (9) If bearing-to-journal clearance exceeds the specification, install a pair of 0.0254 mm (0.001 inch) undersize bearing inserts. All the odd size inserts must be on the bottom. The sizes of the service replacement bearing inserts are stamped on the backs of the inserts. Measure the clearance as described in the previous steps.
- (10) The clearance is measured with a pair of 0.0254 mm (0.001 inch) undersize bearing inserts installed. This will determine if two 0.0254 mm (0.001 inch) undersize inserts or another combination is needed to provide the correct clearance (refer to Connecting Rod Bearing Fitting Chart).

Refer to Engine Specifications for the proper clearance. Replace the connecting rod if the side clearance is not within specification.

FITTING CRANKSHAFT MAIN BEARINGS

INSPECTION

Wipe the inserts clean and inspect for abnormal wear patterns and for metal or other foreign material imbedded in the lining. Normal main bearing insert wear patterns are illustrated (Fig. 21).

NOTE: If any of the crankshaft journals are scored, remove the engine for crankshaft repair.

Crankshaft Journal		Corresponding Connecting Rod Bearing Insert	
Color Code	Diameter	Upper Insert Size	Lower Insert Size
Yellow	53.2257-53.2079 mm (2.0955-2.0948 in.)	Yellow - Standard	Yellow - Standard
Orange	53.2079-53.1901 mm (2.0948-2.0941 in.) 0.0178 mm (0.0007 in.) Undersize	Yellow - Standard	Blue - Undersize 0.025 mm (0.001 in.)
Blue	53.1901-53.1724 mm (2.0941-2.0934 in.) 0.0356 mm (0.0014 in.) Undersize	Blue - Undersize 0.025 mm (0.001 in.)	Blue - Undersize 0.025 mm (0.001 in.)
Red	52.9717-52.9539 mm (2.0855-2.0848 in.) 0.254 mm (0.010 in.) Undersize	Red - Undersize 0.254 mm (0.010 in.)	Red - Undersize 0.254 mm (0.010 in.)

J9409-24

CONNECTING ROD BEARING FITTING CHART

- (11) **FOR EXAMPLE:** If the initial clearance was 0.0762 mm (0.003 inch), 0.025 mm (0.001 inch) undersize inserts would reduce the clearance by 0.025 mm (0.001 inch). The clearance would be 0.002 inch and within specification. A 0.051 mm (0.002 inch) undersize insert would reduce the initial clearance an additional 0.013 mm (0.0005 inch). The clearance would then be 0.038 mm (0.0015 inch).
- (12) Repeat the Plastigage measurement to verify your bearing selection prior to final assembly.
- (13) Once you have selected the proper insert, install the insert and cap. Tighten the connecting rod bolts to 45 N·m (33 ft. lbs.) torque.

SIDE CLEARANCE MEASUREMENT

Slide snug-fitting feeler gauge between the connecting rod and crankshaft journal flange (Fig. 20).

Inspect the back of the inserts for fractures, scrapings or irregular wear patterns.

Inspect the upper insert locking tabs for damage. Replace all damaged or worn bearing inserts.

FITTING BEARINGS (CRANKSHAFT INSTALLED)

The main bearing caps, numbered (front to rear) from 1 through 7 have an arrow to indicate the forward position. The upper main bearing inserts are grooved to provide oil channels while the lower inserts are smooth.

Each bearing insert pair is selectively fitted to its respective journal to obtain the specified operating clearance. In production, the select fit is obtained by using various-sized color-coded bearing insert pairs as listed in the Main Bearing Fitting Chart. The XJ ———————————————————————4.0L ENGINE 9 - 63

SERVICE PROCEDURES (Continued)

Fig. 20 Checking Connecting Rod Side Clearance— Typical

Fig. 21 Main Bearing Wear Patterns

bearing color code appears on the edge of the insert. The size is not stamped on bearing inserts used for engine production.

The main bearing journal size (diameter) is identified by a color-coded paint mark (Fig. 22) on the adjacent cheek or counterweight towards the rear of the crankshaft (flange end). The rear main journal, is identified by a color-coded paint mark on the crankshaft rear flange.

When required, upper and lower bearing inserts of different sizes may be used as a pair. A standard size insert is sometimes used in combination with a 0.025 mm (0.001 inch) undersize insert to reduce the clearance by 0.013 mm (0.0005 inch). Never use a pair of bearing inserts with greater than a 0.025 mm (0.001 inch) difference in size (Fig. 23).

Insert	Correct	Incorrect
Upper	Standard	Standard
Lower	0.025 mm (0.001 in.) Undersize	0.051 mm (0.002 in.) Undersize

J9109-179

Fig. 23 Bearing Insert Pairs

NOTE: When replacing inserts, the odd size inserts must be either all on the top (in cylinder block) or all on the bottom (in main bearing cap).

Once the bearings have been properly fitted, proceed to Crankshaft Main Bearing—Installation.

Fig. 22 Crankshaft Journal Size Paint I.D. Location

BEARING-TO-JOURNAL CLEARANCE (CRANKSHAFT INSTALLED)

When using Plastigage, check only one bearing clearance at a time.

Install the grooved main bearings into the cylinder block and the non-grooved bearings into the bearing caps.

Install the crankshaft into the upper bearings dry. Place a strip of Plastigage across full width of the crankshaft journal to be checked.

Install the bearing cap and tighten the bolts to 108 $N{\cdot}m$ (80 ft. lbs.) torque.

NOTE: DO NOT rotate the crankshaft. This will cause the Plastigage to shift, resulting in an inaccurate reading. Plastigage must not be permitted to crumble. If brittle, obtain fresh stock.

Remove the bearing cap. Determine the amount of clearance by measuring the width of the compressed Plastigage with the scale on the Plastigage envelope (Fig. 24). Refer to Engine Specifications for the proper clearance.

Fig. 24 Measuring Bearing Clearance with Plastigage

Plastigage should indicate the same clearance across the entire width of the insert. If clearance varies, it may indicate a tapered journal or foreign material trapped behind the insert.

If the specified clearance is indicated and there are no abnormal wear patterns, replacement of the bearing inserts is not necessary. Remove the Plastigage from the crankshaft journal and bearing insert. Proceed to Crankshaft Main Bearing—Installation.

If the clearance exceeds specification, install a pair of 0.025 mm (0.001 inch) undersize bearing inserts and measure the clearance as described in the previous steps.

The clearance indicate with the 0.025 mm (0.001 inch) undersize insert pair installed will determine if

this insert size or some other combination will provide the specified clearance. **FOR EXAMPLE:** If the clearance was 0.0762 mm (0.003 inch) originally, a pair of 0.0254 mm (0.001 inch) undersize inserts would reduce the clearance by 0.0254 mm (0.001 inch). The clearance would then be 0.0508 mm (0.002 inch) and within the specification. A 0.051 mm (0.002 inch) undersize bearing insert and a 0.0254 mm (0.001 inch) undersize insert would reduce the original clearance an additional 0.0127 mm (0.0005 inch). The clearance would then be 0.0381 mm (0.0015 inch).

CAUTION: Never use a pair of inserts that differ more than one bearing size as a pair.

FOR EXAMPLE: DO NOT use a standard size upper insert and a 0.051 mm (0.002 inch) undersize lower insert.

If the clearance exceeds specification using a pair of 0.051 mm (0.002 inch) undersize bearing inserts, measure crankshaft journal diameter with a micrometer. If the journal diameter is correct, the crankshaft bore in the cylinder block may be misaligned, which requires cylinder block replacement or machining to true bore.

Replace the crankshaft or grind to accept the appropriate undersize bearing inserts if:

- Journal diameters 1 through 6 are less than 63.4517 mm (2.4981 inches)
- Journal 7 diameter is less than 63.4365 mm (2.4975 inches).

Once the proper clearances have been obtained, proceed to Crankshaft Main Bearing—Installation.

MAIN BEARING JOURNAL DIAMETER (CRANKSHAFT REMOVED)

Remove the crankshaft from the cylinder block (refer to Cylinder Block - Disassemble).

Clean the oil off the main bearing journal.

Determine the maximum diameter of the journal with a micrometer. Measure at two locations 90° apart at each end of the journal.

The maximum allowable taper and out of round is 0.013 mm (0.0005 inch). Compare the measured diameter with the journal diameter specification (Main Bearing Fitting Chart). Select inserts required to obtain the specified bearing-to-journal clearance.

Install the crankshaft into the cylinder block (refer to Cylinder Block - Assemble and Crankshaft Main Bearings - Installation).

XJ — 4.0L ENGINE 9 - 65

SERVICE PROCEDURES (Continued)

MAIN BEARING FITTING CHART

Crankshaft .	Journals #1-6	Corresponding Cranl	kshaft Bearing Insert
Color Code	Diameter	Upper Insert Size	Lower Insert Size
Yellow	63.5025 -63.4898 mm	Yellow - Standard	Yellow - Standard
	(2.5001 - 2.4996 in.)		
Orange	63.4898 - 63.4771 mm	Yellow - Standard	Blue - Undersize
	(2.4996 - 2.4991 in.)		0.025 mm (0.001 in.)
	0.0127 mm (0.0015 in.)		
	Undersize		
Blue	63.4771 - 63.4644 mm	Blue - Undersize	Blue - Undersize
	(2.4991 - 2.4986 in.)	0.025 mm (0.001 in.)	0.025 mm (0.001 in.)
	0.0254 mm (0.001 in.)		
	Undersize		
Green	63.4644 - 63.4517 mm	Blue - Undersize	Green - Undersize
	(2.4986 - 2.4981 in.)	0.025 mm (0.001 in.)	0.051 mm (0.002 in.)
	0.0381 mm (0.0015 in.)		
	Undersize		
Red	63.2485 - 63.2358 mm	Red - Undersize	Red - Undersize
	(2.4901 - 2.4896 in.)	0.254 mm (0.010 in.)	0.254 mm (0.010 in.)
	0.254 mm (0.010 in.)		
	Undersize		

Crankshaft Journal #7 Only		Corresponding Bearing Insert	
Color Code	Diameter	Upper Insert Size	Lower Insert Size
Yellow	63.4873 - 63.4746 mm	Yellow - Standard	Yellow - Standard
	(2.4995 - 2.4990 in.)		
Orange	63.4746 - 63.4619 mm	Yellow - Standard	Blue - Undersize
	(2.4996 - 2.4991 in.)		0.025 mm (0.001 in.)
	0.0127 mm (0.0005 in.)		
	Undersize		
Blue	63.4619 - 63.4492 mm	Blue - Undersize 0.025 mm (0.001 in.)	Blue - Undersize 0.025 mm (0.001 in.)
	(2.4985 - 2.4980 in.)		
	0.0254 mm (0.001 in.)		
	Undersize		
Green	63.4492 - 63.4365 mm	Blue - Undersize	Green - Undersize
	(2.4980 - 2.4975 in.)	0.025 mm (0.001 in.)	0.051 mm (0.002 in.)
	0.0381 mm (0.0015 in.)		
	Undersize		
Red	63.2333 - 63.2206 mm	Red - Undersize 0.254 mm (0.010 in.)	Red - Undersize 0.254 mm (0.010 in.)
	(2.4895 - 2.4890 in.)		
	0.254 mm (0.010 in.)		
	Undersize		

REMOVAL AND INSTALLATION

ENGINE MOUNTS—FRONT

The front mounts support the engine at each side. These supports are made of resilient rubber.

REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Raise the vehicle.
- (3) Support the engine.
- (4) Remove the nut from the through bolt (Fig. 25). DO NOT remove the through bolt.
- (5) Remove the retaining bolts and nuts from the support cushions (Fig. 25).
 - (6) Remove the through bolt.
 - (7) Remove the support cushions.

Fig. 25 Front Mounts

INSTALLATION

- (1) If the engine support bracket was removed, position the bracket onto the block and install the attaching bolts (Fig. 25). Tighten the engine support bracket bolts to 61 N·m (45 ft. lbs.) torque.
- (2) If the support cushion bracket was removed, position the bracket onto the lower front sill (Fig. 26). Install support cushion bracket bolts and nuts. Tighten the bolts to 54 N·m (40 ft. lbs.) torque. Tighten the nuts to 41 N·m (30 ft. lbs.) torque.

Fig. 26 Support Cushion Bracket

- (3) Place the support cushion into position on the support cushion bracket (Fig. 25). Install and tighten the bolts and nuts to 41 N·m (30 ft. lbs.) torque.
- (4) Install the through bolt and the retaining nut (Fig. 25). Tighten the through bolt nut to 65 N·m (48 ft. lbs.) torque.
 - (5) Remove the engine support.
 - (6) Lower the vehicle.
 - (7) Connect negative cable to battery.

ENGINE MOUNT—REAR

A resilient rubber cushion supports the transmission at the rear between the transmission extension housing and the rear support crossmember or skid plate.

REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Raise the vehicle and support the transmission.
- (3) Remove the nuts holding the support cushion to the crossmember (Fig. 27) (Fig. 28). Remove the crossmember.

MANUAL TRANSMISSION

(Fig. 27)

a. Remove the support cushion nuts and remove the cushion.

b. Remove the transmission support bracket bolts and remove the bracket from the transmission.

AUTOMATIC TRANSMISSION

- a. Remove the support cushion bolts and remove the cushion and the support bracket from the transmission (4WD) or from the adaptor bracket (2WD).
- b. On 2WD vehicles, remove the bolts holding the transmission support adaptor bracket to the transmission (Fig. 28). Remove the adaptor bracket.

Fig. 27 Rear Mount(Manual Transmission)

INSTALLATION

MANUAL TRANSMISSION:

- a. Install the transmission support bracket to the transmission. Install the bolts and tighten to 46 N·m (34 ft. lbs.) torque.
- b. Install the support cushion to the support bracket. Install the nuts and tighten to 75 $N \cdot m$ (55 ft. lbs.) torque.

AUTOMATIC TRANSMISSION:

- a. On 2WD vehicles, position the transmission support adaptor bracket to the transmission. Install the bolts and tighten to 75 N·m (55 ft. lbs.) torque.
- b. Position the transmission support bracket and support cushion to the adaptor bracket (2WD) or the transmission (4WD). Install the bolts and tighten to 75 N·m (55 ft. lbs.) torque.
- (1) Position the crossmember onto the support cushion studs. Install the stud nuts and tighten to 22 $N{\cdot}m$ (192 in. lbs) torque.

Fig. 28 Rear Mount(Automatic Transmission)

- (2) Install crossmember-to-sill bolts and tighten to 41 N·m (30 ft. lbs.) torque.
 - (3) Remove the transmission support.
 - (4) Lower the vehicle.
 - (5) Connect negative cable to battery.

ENGINE ASSEMBLY

REMOVAL

- (1) Disconnect the battery cables. Remove the battery.
- (2) Mark the hinge locations on the hood panel for alignment reference during installation. Remove the engine compartment lamp. Remove the hood.

WARNING: THE COOLANT IN A RECENTLY OPERATED ENGINE IS HOT AND PRESSURIZED. USE CARE TO PREVENT SCALDING BY HOT COOLANT. CAREFULLY RELEASE THE PRESSURE BEFORE REMOVING THE RADIATOR DRAIN COCK AND CAP.

- (3) Remove the air cleaner assembly.
- (4) Loosen the radiator drain cock and radiator cap to drain the coolant. DO NOT waste usable coolant. If the solution is clean, drain the coolant into a clean container for reuse.
 - (5) Remove the lower radiator hose.

- (6) Remove the upper radiator hose and coolant recovery hose (Fig. 29).
- (7) Remove upper radiator support retaining bolts and remove radiator support.
- (8) Remove the fan shroud (Fig. 29) and electric cooling fan.
- (9) Disconnect the transmission fluid cooler tubing (automatic transmission).
 - (10) Disconnect radiator fan switch wire connector.
 - (11) Vehicles with Air Conditioning:
 - (a) Discharge A/C system (refer to group 24, Heating and Air Conditioning for proper procedures)
 - (b) Disconnect the suction/discharge hose and cap off compressor ports to prevent foreign material and refrigerant oil loss.
- (12) Remove the radiator or radiator and condenser (if equipped with A/C).
- (13) Remove the fan assembly from the idler pulley.
- (14) Disconnect the heater hoses at the engine thermostat housing and water pump (Fig. 29) (Fig. 30).

Fig. 29 Upper Radiator Hose, Coolant Recovery Hose, Fan Shroud & Heater hoses

- (15) Disconnect the throttle cable.
- (16) Disconnect the speed control cable (i equipped).
- (17) Disconnect the line pressure cable (if equipped with automatic transmission).
- (18) Disconnect the fuel injector harness at the injectors.
- (19) Disconnect the distributor electrical connection and the oil pressure switch connector.

WARNING: THE FUEL SYSTEM IS UNDER A CONSTANT PRESSURE (EVEN WITH THE ENGINE TURNED OFF). BEFORE DISCONNECTING FUEL LINES, THE FUEL SYSTEM PRESSURE MUST BE RELEASED.

Fig. 30 Heater Hoses (RH Drive Vehicle)

- (20) Perform the Fuel System Pressure Release procedure (refer to Group 14, Fuel System).
- (21) Remove the latch clip and disconnect fuel supply line.
- (22) Remove the power brake vacuum check valve from the booster, if equipped.
 - (23) If equipped with power steering:
 - (a) Disconnect the hoses from the fittings at the steering gear.
 - (b) Drain the pump reservoir.
 - (c) Cap the fittings on the hoses and steering gear to prevent foreign objects from entering the system.
- (24) Identify, tag and disconnect all necessary wire connectors and vacuum hoses.
 - (25) Raise and support the vehicle.
- (26) Disconnect the wires from the starter motor solenoid.
 - (27) Remove the starter motor.
- (28) Disconnect the exhaust pipe from the manifold.
- (29) Disconnect the engine speed sensor wire connection.
 - (30) Remove the exhaust pipe support.
- (31) Remove the flywheel and converter housing access cover.

(32) Vehicles with Automatic Transmission:

- (a) Mark the converter and drive plate location.
- (b) Remove the converter-to-drive plate bolts.
- (33) Remove the upper flywheel and converter housing bolts and loosen the bottom bolts.
- (34) Remove the engine mount cushion-to-engine compartment bracket bolts.
 - (35) Lower the vehicle.
 - (36) Attach a lifting device to the engine.
 - (37) Raise the engine off the front supports.
- (38) Place a support or floor jack under the converter (or flywheel) housing.

- (39) Remove the remaining converter (or flywheel) housing bolts.
- (40) Lift the engine out of the engine compartment.

INSTALLATION

CAUTION: When installing the engine into a vehicle equipped with an automatic transmission, be careful not to damage the trigger wheel on the flywheel.

(1) Attach a lifting device to the engine and lower the engine into the engine compartment. For easier installation, it may be necessary to remove the engine mount cushions from the engine mount bracket as an aide in alignment of the engine to the transmission.

(2) Vehicles with Manual Transmission:

- (a) Insert the transmission shaft into the clutch spline.
 - (b) Align the flywheel housing with the engine.
- (c) Install and tighten the flywheel housing lower bolts finger tight.

(3) Vehicles with Automatic Transmission:

- (a) Align the transmission torque converter housing with the engine.
- (b) Loosely install the converter housing lower bolts and install the next higher bolt and nut on each side.
 - (c) Tighten all 4 bolts finger tight.
- (4) Install the engine mount cushions (if removed).
- (5) Lower the engine and engine mount cushions onto the engine compartment brackets. Install the bolts and finger tighten the nuts.
 - (6) Remove the engine lifting device.
 - (7) Raise and support the vehicle.
- (8) Install the remaining flywheel and converter housing bolts. Tighten all bolts to 38 N·m (28 ft. lbs.) torque.

(9) Vehicles with Automatic Transmission:

- (a) Install the converter-to-drive plate bolts.
- (b) Ensure the installation reference marks are aligned.
- (10) Install the flywheel and converter housing access cover.
- (11) Install the exhaust pipe support and tighten the screw.
 - (12) Tighten the engine mount-to-bracket bolts.
- (13) Connect the engine speed sensor wire connections and tighten the screws.
 - (14) Connect the exhaust pipe to the manifold.
- (15) Install the starter motor and connect the cable.
- (16) Connect the wires to the starter motor solenoid.
 - (17) Lower the vehicle.

(18) Connect all the vacuum hoses and wire connectors identified during engine removal.

(19) Vehicles with Power Steering:

- (a) Remove the protective caps
- (b) Connect the hoses to the fittings at the steering gear. Tighten the nut to 52 N·m (38 ft. lbs.) torque.
 - (c) Fill the pump reservoir with fluid.
- (20) Install the power brake vacuum check valve to the booster, if equipped.
- (21) Connect the fuel supply hose the fuel rail. Push until a "click" is heard. Install latch clip
- (22) Connect the fuel injector harness to the injectors
- (23) Connect the distributor electrical connector and oil pressure switch connector.
- (24) Connect the line pressure cable (if equipped with automatic transmission).
 - (25) Connect the speed control cable, if equipped.
 - (26) Connect the throttle cable.
- (27) Connect the heater hoses at the engine thermostat housing and water pump.
 - (28) Install the fan assembly to the idler pulley.
- (29) Connect the suction/discharge hose to the compressor.
- (30) Connect automatic transmission fluid cooler lines, if equipped.
- (31) Install the fan shroud, electric cooling fan and radiator and condenser (if equipped with A/C).
 - (32) Connect the electric fan connector.
 - (33) Install upper radiator support.
 - (34) Connect the upper radiator hose.
 - (35) Connect the lower radiator hose.
- (36) Align the hood to the scribe marks. Install the hood.
 - (37) Install the air cleaner assembly.
- (38) Install the battery and connect the battery cable.
- (39) Add the proper amount of engine oil and coolant.

WARNING: USE EXTREME CAUTION WHEN THE ENGINE IS OPERATING. DO NOT STAND IN A DIRECT LINE WITH THE FAN. DO NOT PUT YOUR HANDS NEAR THE PULLEYS, BELTS OR FAN. DO NOT WEAR LOOSE CLOTHING.

- (40) Start the engine, inspect for leaks and correct the fluid levels, as necessary.
- (41) Charge the air conditioning system (refer to Group 24, Heating and Air Conditioning for proper procedures).

ENGINE CYLINDER HEAD COVER

The cylinder head cover is isolated from the cylinder head via grommets and a reusable molded rubber

gasket. The grommet and limiter are retained in the cylinder head cover.

There are two cylinder head bolts that have a pin to locate the cylinder head cover gasket, they are located at position 8 and 9 (Fig. 32)

REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Disconnect the Crankcase Ventilation (CCV) vacuum hose from engine cylinder head cover.
- (3) Disconnect the fresh air inlet hose from the engine cylinder head cover.
- (4) Disconnect the accelerator, transmission, and speed (if equipped) control cables from the throttle body (Fig. 31).
- (5) Remove the three bolts that fasten the control cable bracket to the intake manifold.
- (6) Remove control cables from cylinder head cover clip.
- (7) Position control cables and bracket away from cylinder head cover secure with tie straps.
- (8) Remove the engine cylinder head cover mounting bolts.
- (9) Remove the engine cylinder head cover and gasket.

Fig. 31 Engine Cylinder Head Cover

Fig. 32 Cylinder Head Cover Gasket Locator Pins at #8 & #9

INSTALLATION

- (1) If a replacement cover is installed, transfer the CCV valve grommet and oil filler cap from the original cover to the replacement cover.
- (2) Install cylinder head cover and gasket. Tighten the mounting bolts to 10 N·m (85 in. lbs.) torque.
 - (3) Connect the CCV hoses.
- (4) Install control cables and bracket on intake manifold and tighten bolts to $8.7~\mathrm{N\cdot m}$ (77 in. lbs.) torque.
 - (5) Connect control cables to throttle body linkage.
- (6) Snap control cables into cylinder head cover clip.
 - (7) Connect negative cable to battery.

ROCKER ARMS AND PUSH RODS

This procedure can be done with the engine in or out of the vehicle.

REMOVAL

- (1) Remove the engine cylinder head cover.
- (2) Check for rocker arm bridges which are causing misalignment of the rocker arm to valve tip area.
- (3) Remove the capscrews at each bridge and pivot assembly (Fig. 33). Alternately loosen the capscrews one turn at a time to avoid damaging the bridges.
- (4) Remove the bridges, pivots and corresponding pairs of rocker arms (Fig. 33). Place them on a bench in the same order as removed.
- (5) Remove the push rods and place them on a bench in the same order as removed.

Fig. 33 Rocker Arm Assembly

REMOVAL AND INSTALLATION (Continued)

INSTALLATION

- (1) Lubricate the ball ends of the push rods with Mopar Engine Oil Supplement, or equivalent and install push rods in their original locations. Ensure that the bottom end of each push rod is centered in the tappet plunger cap seat.
- (2) Using Mopar Engine Oil Supplement, or equivalent, lubricate the area of the rocker arm that the pivot contacts. Install rocker arms, pivots and bridge above each cylinder in their originally position.
- (3) Loosely install the capscrews through each bridge.
- (4) At each bridge, tighten the capscrews alternately, one turn at a time, to avoid damaging the bridge. Tighten the capscrews to $28~N\cdot m$ (21 ft. lbs.) torque.
 - (5) Install the engine cylinder head cover.

VALVE STEM SEAL AND SPRING

This procedure can be done with the engine cylinder head installed on the block.

REMOVAL

Inspect the valve stems, especially the grooves. An Arkansas smooth stone should be used to remove nicks and high spots.

Each valve spring is held in place by a retainer and a set of conical valve locks. The locks can be removed only by compressing the valve spring.

- (1) Remove the engine cylinder head cover.
- (2) Remove capscrews, bridge and pivot assemblies and rocker arms for access to each valve spring to be removed.
- (3) Remove push rods. Retain the push rods, bridges, pivots and rocker arms in the same order and position as removed.
- (4) Inspect the springs and retainer for cracks and possible signs of weakening.
- (5) Remove the spark plug(s) adjacent to the cylinder(s) below the valve springs to be removed.
- (6) Connect an air hose to the adapter and apply air pressure slowly. Maintain at least 621~kPa (90 psi) of air pressure in the cylinder to hold the valves against their seats. For vehicles equipped with an air conditioner, use a flexible air adaptor when servicing the No.1 cylinder.
- (7) Tap the retainer or tip with a rawhide hammer to loosen the lock from the retainer. Use Valve Spring Compressor Tool MD-998772A to compress the spring and remove the locks (Fig. 34).
 - (8) Remove valve spring and retainer (Fig. 34).
- (9) Remove valve stem oil seals (Fig. 34). Note the valve seals are different for intake and exhaust valves. The top of each seal is marked either INT (Intake) or EXH (Exhaust). DO NOT mix the seals.

Fig. 34 Valve and Valve Components

INSTALLATION

CAUTION: Install oil seals carefully to prevent damage from the sharp edges of the valve spring lock grove.

- (1) Lightly push the valve seal over the valve stem and valve guide boss. Be sure the seal is completely seated on the valve guide boss.
 - (2) Install valve spring and retainer.
- (3) Compress the valve spring with Valve Spring Compressor Tool MD-998772A and insert the valve locks. Release the spring tension and remove the tool. Tap the spring from side-to-side to ensure that the spring is seated properly on the engine cylinder head.
- (4) Release air pressure and disconnect the air hose. Remove the adaptor from the spark plug hole and install the spark plug.
- (5) Repeat the procedures for each remaining valve spring to be removed.
- (6) Install the push rods. Ensure the bottom end of each rod is centered in the plunger cap seat of the hydraulic valve tappet.
- (7) Install the rocker arms, pivots and bridge at their original location.
- (8) Tighten the bridge capscrews alternately, one at a time, to avoid damaging the bridge. Tighten the capscrews to 28 N·m (21 ft. lbs.) torque.
 - (9) Install the engine cylinder head cover.

ENGINE CYLINDER HEAD

This procedure can be done with the engine in or out of the vehicle.

REMOVAL

(1) Disconnect negative cable from battery.

WARNING: DO NOT REMOVE THE CYLINDER BLOCK DRAIN PLUGS OR LOOSEN THE RADIATOR DRAIN COCK WITH THE SYSTEM HOT AND PRESSURIZED BECAUSE SERIOUS BURNS FROM THE COOLANT CAN OCCUR.

- (2) Drain the coolant and disconnect the hoses at the engine thermostat housing. DO NOT waste reusable coolant. If the solution is clean and is being drained only to service the engine or cooling system, drain the coolant into a clean container for reuse.
 - (3) Remove the air cleaner assembly.
- (4) Remove the engine cylinder head cover and gasket.
- (5) Remove the capscrews, bridge and pivot assemblies and rocker arms.
- (6) Remove the push rod. Retain the push rods, bridges, pivots and rocker arms in the same order as removed.
- (7) Loosen the serpentine drive belt at the power steering pump, if equipped or at the idler pulley (refer to Group 7, Cooling System for the proper procedure).
- (8) If equipped with air conditioning, perform the following:
 - (a) Remove the bolts from the A/C compressor mounting bracket and set the compressor aside.
 - (b) Remove the air conditioner compressor bracket bolts from the engine cylinder head.
 - (c) Loosen the through bolt at the bottom of the bracket.
- (9) If equipped, disconnect the power steering pump bracket. Set the pump and bracket aside. DO NOT disconnect the hoses.
- (10) Perform the Fuel System Pressure Release procedure (refer to Group 14, Fuel System).
- (11) Remove the fuel lines and vacuum advance hose.
- (12) Remove the intake and engine exhaust manifolds from the engine cylinder head (refer to Group 11, Exhaust System and Intake Manifold for the proper procedures).
- (13) Disconnect the ignition wires and remove the spark plugs.
- (14) Remove the ignition coil and bracket assembly.
- (15) Remove the engine cylinder head bolts. Bolt No.14 cannot be removed until the head is moved forward (Fig. 35). Pull bolt No.14 out as far as it will go and then suspend the bolt in this position (tape around the bolt).
- (16) Remove the engine cylinder head and gasket (Fig. 35).

- (17) If this was the first time the bolts were removed, put a paint dab on the top of the bolt. If the bolts have a paint dab on the top of the bolt or it isn't known if they were used before, discard the bolts.
- (18) Stuff clean lint free shop towels into the cylinder bores.

Fig. 35 Engine Cylinder Head Assembly

INSTALLATION

The engine cylinder head gasket is a composition gasket. The gasket is to be installed DRY. **DO NOT use a gasket sealing compound on the gasket.**

If the engine cylinder head is to be replaced and the original valves used, measure the valve stem diameter. Only standard size valves can be used with a service replacement engine cylinder head unless the replacement head valve stem guide bores are reamed to accommodate oversize valve stems. Remove all carbon buildup and reface the valves.

- (1) Remove the shop towels from the cylinder bores. Coat the bores with clean engine oil.
- (2) Position the engine cylinder head gasket (with the numbers facing up) onto the cylinder block.

CAUTION: Engine cylinder head bolts should be reused only once. Replace the head bolts if they were used before or if they have a paint dab on the top of the bolt.

- (3) With bolt No.14 held in place (tape around bolt), install the engine cylinder head. Remove the tape from bolt No.14.
- (4) Coat the threads of stud bolt No.11 with Loctite 592 sealant, or equivalent.
- (5) Tighten the engine cylinder head bolts in sequence according to the following procedure (Fig. 36).

CAUTION: During the final tightening sequence, bolt No.11 will be tightened to a lower torque than the rest of the bolts. DO NOT overtighten bolt No.11.

- (a) Tighten all bolts in sequence (1 through 14) to 30 N·m (22 ft. lbs.) torque.
- (b) Tighten all bolts in sequence (1 through 14) to 61 N·m (45 ft. lbs.) torque.
- (c) Check all bolts to verify they are set to $61 \text{ N} \cdot \text{m}$ (45 ft. lbs.) torque.
 - (d) Tighten bolts (in sequence):
- \bullet Bolts 1 through 10 to 149 N·m (110 ft. lbs.) torque.
 - Bolt 11 to 13 N·m (100 ft. lbs.) torque.
- Bolts 12 through 14 to 149 N·m (110 ft. lbs.) torque.
- (e) Check all bolts in sequence to verify the correct torque.
- (f) If not already done, clean and mark each bolt with a dab of paint after tightening. Should you encounter bolts which were painted in an earlier service operation, replace them.

Fig. 36 Engine Cylinder Head Bolt Tightening Sequence

- (6) Install the ignition coil and bracket assembly.
- (7) Connect the temperature sending unit wire connector.
- (8) Install the spark plugs and tighten to 37 N⋅m (27 ft. lbs.) torque. Connect the ignition wires.
- (9) Install the intake and engine exhaust manifolds (refer to Group 11, Exhaust System and Intake Manifold for the proper procedures).
- (10) Install the fuel lines and the vacuum advance hase
- (11) If equipped, attach the power steering pump and bracket.
- (12) Install the push rods, rocker arms, pivots and bridges in the order they were removed (refer to Rocker Arms and Push Rods in this section).
- (13) Install the engine cylinder head cover and gasket.
- (14) Attach the air conditioner compressor mounting bracket to the engine cylinder head and block. Tighten the bolts to 40 N·m (30 ft. lbs.) torque.

(15) Attach the air conditioning compressor to the bracket. Tighten the bolts to 27 N·m (20 ft. lbs.) torque.

CAUTION: The serpentine drive belt must be routed correctly. Incorrect routing can cause the water pump to turn in the opposite direction causing the engine to overheat.

- (16) Install the serpentine drive belt and correctly tension the belt (refer to Group 7, Cooling System for the proper procedure).
 - (17) Install the air cleaner and ducting.
 - (18) Install the engine cylinder head cover.
- (19) Connect the hoses to the engine thermostat housing and fill the cooling system to the specified level (refer to Group 7, Cooling Systems for the proper procedure).
- (20) The automatic transmission throttle linkage and cable must be adjusted after completing the engine cylinder head installation (refer to Group 21, Transmissions for the proper procedures).
 - (21) Connect the fuel line.
 - (22) Connect negative cable to battery.
- (23) Connect the upper radiator hose and heater hose at the engine thermostat housing.
 - (24) Fill the cooling system. Check for leaks.

WARNING: USE EXTREME CAUTION WHEN THE ENGINE IS OPERATING. DO NOT STAND IN DIRECT LINE WITH THE FAN. DO NOT PUT HANDS NEAR THE PULLEYS, BELTS OR FAN. DO NOT WEAR LOOSE CLOTHING.

(25) Operate the engine with the radiator cap off. Inspect for leaks and continue operating the engine until the engine thermostat opens. Add coolant, if required.

VALVES AND VALVE SPRINGS

This procedure is done with the engine cylinder head removed from the block.

REMOVAL

- (1) Remove the engine cylinder head from the cylinder block.
- (2) Use Valve Spring Compressor Tool MD-998772A and compress each valve spring.
- (3) Remove the valve locks, retainers, springs and valve stem oil seals. Discard the oil seals.
- (4) Use a smooth stone or a jewelers file to remove any burrs on the top of the valve stem, especially around the groove for the locks.
- (5) Remove the valves, and place them in a rack in the same order as removed.

INSTALLATION

- (1) Thoroughly clean the valve stems and the valve guide bores.
 - (2) Lightly lubricate the stem.
- (3) Install the valve in the original valve guide bore.
- (4) Install the replacement valve stem oil seals on the valve stems. If the 0.381~mm (0.015~inch) oversize valve stems are used, oversize oil seals are required.
- (5) Position the valve spring and retainer on the engine cylinder head and compress the valve spring with Valve Spring Compressor Tool MD-998772A.
 - (6) Install the valve locks and release the tool.
- (7) Tap the valve spring from side to side with a hammer to ensure that the spring is properly seated at the engine cylinder head. Also tap the top of the retainer to seat the valve locks.
 - (8) Install the engine cylinder head.

HYDRAULIC TAPPETS

Retain all the components in the same order as removed.

REMOVAL

- (1) Remove the engine cylinder head (Refer to cylinder head r&i in this section).
 - (2) Remove the push rods.
- (3) Remove the tappets through the push rod openings in the cylinder block with a Hydraulic Valve Tappet Removal/Installation Tool (Fig. 37).

Fig. 37 Hydraulic Valve Tappet Removal— Installation Tool

INSTALLATION

It is not necessary to charge the tappets with engine oil. They will charge themselves within a very short period of engine operation.

- (1) Dip each tappet in Mopar Engine Oil Supplement, or equivalent.
- (2) Use Hydraulic Valve Tappet Removal/Installation Tool to install each tappet in the same bore from where it was originally removed.

- (3) Install the cylinder head assy (Refer to cylinder head r&i in this section).
 - (4) Install the push rods in their original locations.
- (5) Install the rocker arms and bridge and pivot assemblies at their original locations. Loosely install the capscrews at each bridge.
- (6) Tighten the capscrews alternately, one turn at a time, to avoid damaging the bridges. Tighten the capscrews to $28~\rm N\cdot m$ (21 ft. lbs.) torque.
- (7) Pour the remaining Mopar Engine Oil Supplement, or equivalent over the entire valve actuating assembly. The Mopar Engine Oil Supplement, or equivalent must remain with the engine oil for at least 1 609 km (1,000 miles). The oil supplement need not be drained until the next scheduled oil change.
 - (8) Install the engine cylinder head cover.

VIBRATION DAMPER

REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Remove the serpentine drive belt and fan shroud.
- (3) Remove the vibration damper retaining bolt and washer.
- (4) Use Vibration Damper Removal Tool 7697 to remove the damper from the crankshaft (Fig. 38).

Fig. 38 Vibration Damper Removal Tool 7697

INSTALLATION

- (1) Apply Mopar Silicone Rubber Adhesive Sealant to the keyway in the crankshaft and insert the key. With the key in position, align the keyway on the vibration damper hub with the crankshaft key and tap the damper onto the crankshaft.
- (2) Install the vibration damper retaining bolt and washer.
- (3) Tighten the damper retaining bolt to 108 N·m (80 ft. lbs.) torque.

- (4) Install the serpentine drive belt and tighten to the specified tension (refer to Group 7, Cooling Systems for the proper specifications and procedures).
 - (5) Connect negative cable to battery.

TIMING CASE COVER

REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Remove the vibration damper.
- (3) Remove the fan and hub assembly and remove the fan shroud.
- (4) Remove the accessory drive brackets that are attached to the timing case cover.
- (5) Remove the A/C compressor (if equipped) and generator bracket assembly from the engine cylinder head and move to one side.
- (6) Remove the oil pan-to-timing case cover bolts and timing case cover-to-cylinder block bolts.
- (7) Remove the timing case cover and gasket from the engine. Make sure the tension spring and thrust pin do not fall out of the preload bolt.
- (8) Pry the crankshaft oil seal from the front of the timing case cover (Fig. 39).

Fig. 39 Timing Case Cover Components

INSTALLATION

Clean the timing case cover, oil pan and cylinder block gasket surfaces.

- (1) Install a new crankshaft oil seal in the timing case cover. The open end of the seal should be toward the inside of the cover. Support the cover at the seal area while installing the seal. Force it into position with Seal Installation Tool 6139.
 - (2) Position the gasket on the cylinder block.
- (3) Position the timing case cover on the oil pan gasket and the cylinder block. Make sure the tension spring and thrust pin are in place in the camshaft preload bolt.

(4) Insert Timing Case Cover Alignment and Seal Installation Tool 6139 in the crankshaft opening in the cover (Fig. 40).

Fig. 40 Timing Case Cover Alignment and Seal Installation Tool 6139

- (5) Install the timing case cover-to-cylinder block and the oil pan-to-timing case cover bolts.
- (6) Tighten the 1/4 inch cover-to-block bolts to 7 N·m (60 in. lbs.) torque. Tighten the 5/16 inch front cover-to-block bolts to 22 N·m (192 in. lbs.) torque. Tighten the oil pan-to-cover 1/4 inch bolts to 9.5 N·m (84 in. lbs.) torque.
 - (7) Remove the cover alignment tool.
- (8) Apply a light film of engine oil on the vibration damper hub contact surface of the seal.
- (9) Apply Mopar Silicone Rubber Adhesive Sealant to the keyway in the crankshaft and insert the key. With the key inserted in the keyway in the crankshaft, install the vibration damper, washer and bolt. Lubricate and tighten the bolt to $108~\rm N\cdot m$ (80 ft. lbs.) torque.
- (10) Install the A/C compressor (if equipped) and generator bracket assembly.
- (11) Install the engine fan and hub assembly and shroud.
- (12) Install the serpentine drive belt and tighten to obtain the specified tension.
 - (13) Connect negative cable to battery.

TIMING CHAIN AND SPROCKETS

REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Remove the fan and shroud.
- (3) Remove the serpentine drive belt.
- (4) Remove the crankshaft vibration damper.
- (5) Remove the timing case cover.
- (6) Rotate crankshaft until the "0" timing mark is closest to and on the center line with camshaft sprocket timing mark (Fig. 41).

Fig. 41 Crankshaft—Camshaft Alignment—Typical

- (7) Remove the oil slinger from the crankshaft.
- (8) Remove the tension spring and thrust pin from the preload bolt (Fig. 42). Remove the camshaft sprocket retaining preload bolt and washer.

Fig. 42 Camshaft Sprocket Preload Bolt

- (9) Remove the crankshaft sprocket, camshaft sprocket and timing chain as an assembly.
- (10) Installation of the timing chain with the timing marks on the crankshaft and camshaft sprockets properly aligned ensures correct valve timing. A worn or stretched timing chain will adversely affect valve timing. If the timing chain deflects more than 12.7 mm (1/2 inch) replace it. The correct timing chain has 48 pins. A chain with more than 48 pins will cause excessive slack.

INSTALLATION

Assemble the timing chain, crankshaft sprocket and camshaft sprocket with the timing marks aligned (Fig. 43).

(1) Apply Mopar Silicone Rubber Adhesive Sealant to the keyway in the crankshaft and insert the key.

With the key in the keyway on the crankshaft, install the assembly on the crankshaft and camshaft.

- (2) Install the camshaft sprocket retaining preload bolt and washer (Fig. 42). Tighten the preload bolt to 108 N·m (80 ft. lbs.) torque.
- (3) To verify correct installation of the timing chain, turn the crankshaft to position the camshaft sprocket timing mark as shown in (Fig. 43). Count the number of chain pins between the timing marks of both sprockets. There must be 15 pins.

Fig. 43 Verify Sprocket—Chain Installation—Typical

- (4) Install the crankshaft oil slinger.
- (5) Replace the oil seal in the timing case cover.
- (6) Lubricate the tension spring, thrust pin and pin bore in the preload bolt with Mopar Engine Oil Supplement, or equivalent. Install the spring and thrust pin in the preload bolt head (Fig. 42).
 - (7) Install the timing case cover and gasket.
- (8) With the key installed in the crankshaft keyway, install the vibration damper, washer and bolt. Lubricate and tighten the bolt to 108 N⋅m (80 ft. lbs.) torque.
- (9) Install the serpentine drive belt and tighten to the specified tension (refer to Group 7, Cooling System for the proper procedure).
- (10) Install the fan and hub assembly. Install the shroud.
 - (11) Connect negative cable to battery.

CAMSHAFT

REMOVAL

WARNING: THE COOLANT IN A RECENTLY OPER-ATED ENGINE IS HOT AND PRESSURIZED. RELEASE THE PRESSURE BEFORE REMOVING THE DRAIN COCK, CAP AND DRAIN PLUGS.

- (1) Disconnect negative cable from battery.
- (2) Drain the cooling system. DO NOT waste reusable coolant. If the solution is clean, drain it into a clean container for reuse.
- (3) Remove the radiator or radiator and condenser, if equipped with A/C (refer to Group 7, Cooling System for the proper procedure).
- (4) Remove the air conditioner condenser and receiver/drier assembly as a charged unit, if equipped (refer to Group 24, Heating and Air Conditioning).
- (5) Remove the distributor cap and mark the position of the rotor.
 - (6) Remove the distributor and ignition wires.
 - (7) Remove the engine cylinder head cover.
 - (8) Remove the rocker arms, bridges and pivots.
 - (9) Remove the push rods.
 - (10) Remove the engine cylinder head and gasket.
- (11) Remove the hydraulic valve tappets from the engine cylinder block.
 - (12) Remove the vibration damper.
 - (13) Remove the timing case cover.
 - (14) Remove the timing chain and sprockets.
- (15) Remove the front bumper and/or grille, as required.
 - (16) Remove the camshaft (Fig. 44).

Fig. 44 Camshaft

INSTALLATION

- (1) Inspect the cam lobes for wear.
- (2) Inspect the bearing journals for uneven wear pattern or finish.
 - (3) Inspect the bearings for wear.

- (4) Inspect the distributor drive gear for wear.
- (5) If the camshaft appears to have been rubbing against the timing case cover, examine the oil pressure relief holes in the rear cam journal. The oil pressure relief holes must be free of debris.
- (6) Lubricate the camshaft with Mopar Engine Oil Supplement, or equivalent.
- (7) Carefully install the camshaft to prevent damage to the camshaft bearings (Fig. 44).
- (8) Install the timing chain, crankshaft sprocket and camshaft sprocket with the timing marks aligned.
- (9) Install the camshaft sprocket retaining preload bolt. Tighten the bolt to 108 N·m (80 ft. lbs.) torque.
- (10) Lubricate the tension spring, the thrust pin and the pin bore in the preload bolt with Mopar Engine Oil Supplement, or equivalent. Install the spring and thrust pin in the preload bolt head.
- (11) Install the timing case cover with a replacement oil seal (Fig. 45). Refer to Timing Case Cover Installation.
 - (12) Install the vibration damper (Fig. 45).

Fig. 45 Timing Case Cover Components

- (13) Install the hydraulic valve tappets.
- (14) Install the cylinder head gasket with the numbers facing up.
- (15) Install the cylinder head and head bolts (Refer to cylinder head R&I in this section for torque values and tightening sequence).
 - (16) Install the push rods.
- (17) Install the rocker arms and pivot and bridge assemblies. Tighten each of the capscrews for each bridge alternately, one turn at a time, to avoid damaging the bridge (Refer to Rocker Arms and Push Rods in this section).
 - (18) Install the engine cylinder head cover.
- (19) Position the oil pump gear. Refer to Distributor in the Component Removal/Installation section of Group 8D, Ignition Systems.

- (20) Install the distributor and ignition wires. Refer to Distributor in the Component Removal/Installation section of Group 8D, Ignition Systems.
- (21) Install the serpentine drive belt and tighten to the specified tension (refer to Group 7, Cooling System for the proper procedure).

NOTE: During installation, lubricate the hydraulic valve tappets and all valve components with Mopar Engine Oil Supplement, or equivalent. The Mopar Engine Oil Supplement, or equivalent must remain with the engine oil for at least 1609 km (1,000 miles). The oil supplement need not be drained until the next scheduled oil change.

(22) Install the A/C condenser and receiver/drier assembly, if equipped (refer to Group 24, Heating and Air Conditioning).

CAUTION: Both service valves must be opened before the air conditioning system is operated.

- (23) Install the radiator, connect the hoses and fill the cooling system to the specified level (refer to Group 7, Cooling System for the proper procedure).
- (24) Check the ignition timing and adjust as necessary.
 - (25) Install the grille and bumper, if removed.
 - (26) Connect negative cable to battery.

CAMSHAFT PIN REPLACEMENT

REMOVAL

WARNING: DO NOT LOOSEN THE RADIATOR DRAIN COCK WITH THE SYSTEM HOT AND PRESSURIZED BECAUSE SERIOUS BURNS FROM COOLANT CAN OCCUR.

- (1) Disconnect negative cable from battery.
- (2) Drain the radiator. DO NOT waste reusable coolant. Drain the coolant into a clean container.
 - (3) Remove the fan and shroud.
- (4) Disconnect the radiator overflow tube, radiator hoses, automatic transmission fluid cooler pipes (if equipped).
 - (5) Remove the radiator.
 - (6) If equipped with air conditioning:

CAUTION: DO NOT loosen or disconnect any air conditioner system fittings. Move the condenser and receiver/drier aside as a complete assembly.

- (a) Remove the A/C compressor serpentine drive belt idler pulley.
 - (b) Disconnect and remove the generator.

- (c) Remove the A/C condenser attaching bolts and move the condenser and receiver/drier assembly up and out of the way.
- (7) Remove the serpentine drive belt.
- (8) Remove the crankshaft vibration damper.
- (9) Remove the timing case cover. Clean the gasket material from the cover.
- (10) Remove the thrust pin and tension spring from the preload bolt head.
- (11) Rotate crankshaft until the crankshaft sprocket timing mark is closest to and on the center line with the camshaft sprocket timing mark (Fig. 46).

Fig. 46 Timing Chain Alignment—Typical

- (12) Remove the camshaft sprocket preload retaining bolt and washer.
 - (13) Remove the crankshaft oil slinger.
- (14) Remove the sprockets and chain as an assembly.

CAUTION: The following procedural step must be accomplished to prevent the camshaft from damaging the rear camshaft plug during pin installation.

- (15) Inspect the damaged camshaft pin.
- (16) If the pin is a spring-type pin, remove the broken pin by inserting a self-tapping screw into the pin and carefully pulling the pin from the camshaft.
- (17) If the pin is a dowel-type pin, center-punch it. Ensure the exact center is located when center-punching the pin.

CAUTION: Cover the opened oil pan area to prevent metal chips from entering the pan.

- (18) Drill into the pin center with a 4 mm (5/32 inch) drill bit.
- (19) Insert a self-tapping screw into the drilled pin and carefully pull the pin from the camshaft.

CAMSHAFT BEARINGS

XJ -

The camshaft rotates within four steel-shelled, babbitt-lined bearings that are pressed into the cylinder block and then line reamed. The camshaft bearing bores and bearing diameters are not the same size. They are stepped down in 0.254 mm (0.010 inch) increments from the front bearing (largest) to the rear bearing (smallest). This permits easier removal and installation of the camshaft. The camshaft bearings are pressure lubricated.

NOTE: It is not advisable to attempt to replace camshaft bearings unless special removal and installation tools are available.

Camshaft end play is maintained by the load placed on the camshaft by the sprocket preload bolt tension spring and thrust pin.

INSTALLATION

- (1) Clean the camshaft pin hole.
- (2) Compress the center of the replacement spring pin with vise grips.
- (3) Carefully drive the pin into the camshaft pin hole until it is seated.
- (4) Install the camshaft sprocket, crankshaft sprocket and timing chain with the timing marks aligned (Fig. 46).
- (5) To verify correct installation of the timing chain, turn the crankshaft to position the camshaft sprocket timing mark as shown in (Fig. 47). Count the number of chain pins between the timing marks of both sprockets. There must be 15 pins.

Fig. 47 Verify Crankshaft—Camshaft Installation— Typical

- (6) Install the crankshaft oil slinger.
- (7) Tighten the camshaft sprocket preload bolt to 108 N·m (80 ft. lbs.) torque.
 - (8) Check the valve timing.
- (9) Lubricate the tension spring, the thrust pin and the pin bore in the preload bolt with Mopar Engine Oil Supplement, or equivalent. Install the spring and thrust pin in the preload bolt head.
- (10) Coat both sides of the replacement timing case cover gasket with gasket sealer. Apply a 3 mm (1/8 inch) bead of Mopar Silicone Rubber Adhesive Sealant, or equivalent to the joint formed at the oil pan and cylinder block.
- (11) Position the timing case cover on the oil pan gasket and the cylinder block.
- (12) Place Timing Case Cover Alignment and Seal Installation Tool 6139 in the crankshaft opening in the cover (Fig. 48).

Fig. 48 Timing Case Cover Alignment and Seal Installation Tool 6139

- (13) Install the timing case cover-to-cylinder block bolts. Install the oil pan-to-timing case cover bolts.
- (14) Tighten the 1/4 inch cover-to-block bolts to 7 N·m (60 in. lbs.) torque. Tighten the 5/16 inch front cover-to-block bolts to 22 N·m (192 in. lbs.) torque. Tighten the oil pan-to-cover 1/4 inch bolts to 14 N·m (120 in. lbs.) torque. Tighten the oil pan-to-cover 5/16 inch bolts to 18 N·m (156 in. lbs.) torque.
- (15) Remove the cover alignment tool and install a replacement oil seal into the cover.
- (16) Install the vibration damper on the crank-shaft.
- (17) Lubricate and tighten the damper bolt to 108 $N{\cdot}m$ (80 ft. lbs.) torque.
 - (18) If equipped with air conditioning:
 - (a) Install the A/C compressor serpentine drive belt idler pulley.
 - (b) Install the generator.
 - (c) Install the A/C condenser and receiver/drier assembly.

- (19) Install the serpentine drive belt on the pulleys and tighten (refer to Group 7, Cooling System for the specifications and procedures).
- (20) Install the radiator. Connect the radiator hoses and automatic transmission fluid cooler pipes, if equipped. Fill the cooling system.
 - (21) Install the fan and shroud.
 - (22) Connect negative cable to battery.

CRANKSHAFT MAIN BEARINGS

RFMOVAL

- (1) Disconnect negative cable from battery.
- (2) Remove the spark plugs.
- (3) Raise the vehicle.
- (4) Remove the oil pan and oil pump.
- (5) Remove only one main bearing cap and lower insert at a time (Fig. 49).

Fig. 49 Removing Main Bearing Caps and Lower Inserts

- (6) Remove the lower insert from the bearing cap.
- (7) Remove the upper insert by LOOSENING (DO NOT REMOVE) all of the other bearing caps. Now insert a small cotter pin tool in the crankshaft journal oil hole. Bend the cotter pin as illustrated to fabricate the tool (Fig. 50). With the cotter pin tool in place, rotate the crankshaft so that the upper bearing insert will rotate in the direction of its locking tab. Because there is no hole in the No.3 main journal, use a tongue depressor or similar soft-faced tool to remove the bearing insert (Fig. 50). After moving the insert approximately 25 mm (1 inch), it can be removed by applying pressure under the tab.

(8) Using the same procedure described above, remove the remaining bearing inserts one at a time for inspection.

Fig. 50 Removing Upper Inserts

INSTALLATION

- (1) Lubricate the bearing surface of each insert with engine oil.
- (2) Loosen all the main bearing caps. Install the main bearing upper inserts.
- (3) Install the lower bearing inserts into the main bearing caps.
- (4) Install the main bearing cap(s) and lower insert(s).
- (5) Tighten the bolts of caps 1, 2, 4, 5, 6, and 7 to 54 N·m (40 ft. lbs.) torque. Now tighten these bolts to 95 N·m (70 ft. lbs.) torque. Finally, tighten these bolts to 108 N·m (80 ft. lbs.) torque.
- (6) Push the crankshaft forward and backward. Load the crankshaft front or rear and tighten cap bolt No.3 to 54 N·m (40 ft. lbs.) torque. Then tighten to 95 N·m (70 ft. lbs.) torque and finally tighten to 108 N·m (80 ft. lbs.) torque.
- (7) Rotate the crankshaft after tightening each main bearing cap to ensure the crankshaft rotates freely.
- (8) Check crankshaft end play. Crankshaft end play is controlled by the thrust bearing which is flange and installed at the No.2 main bearing position.
 - (a) Attach a magnetic base dial indicator to the cylinder block at either the front or rear of the engine.
 - (b) Position the dial indicator rod so that it is parallel to the center line of the crankshaft.

- (c) Pry the crankshaft forward, position the dial indicator to zero.
- (d) Pry the crankshaft forward and backward. Note the dial indicator readings. End play is the difference between the high and low measurements (Fig. 51). Correct end play is 0.038-0.165 mm (0.0015-0.0065 inch). The desired specifications are 0.051-0.064 mm (0.002-0.0025 inch).
- (e) If end play is not within specification, inspect crankshaft thrust faces for wear. If no wear is apparent, replace the thrust bearing and measure end play. If end play is still not within specification, replace the crankshaft.

Fig. 51 Crankshaft End Play Measurement

- (9) If the crankshaft was removed, install the crankshaft into the cylinder block (refer to Cylinder Block Assemble).
 - (10) Install the oil pan.
- (11) Install the drain plug. Tighten the plug to 34 $N{\cdot}m$ (25 ft. lbs.) torque.
 - (12) Lower the vehicle.
- (13) Install the spark plugs. Tighten the plugs to 37 N·m (27 ft. lbs.) torque.
- (14) Fill the oil pan with engine oil to the full mark on the dipstick level.
 - (15) Connect negative cable to battery.

OIL PAN

REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Raise the vehicle.
- (3) Remove the oil pan drain plug and drain the engine oil.
- (4) Disconnect the exhaust pipe at the exhaust manifold.
- (5) Disconnect the exhaust hanger at the catalytic converter and lower the pipe.
 - (6) Remove the starter motor.

- (7) Remove the engine flywheel and transmission torque converter housing access cover.
- (8) If equipped with an oil level sensor, disconnect the sensor.
- (9) Position a jack stand directly under the engine vibration damper.
- (10) Place a piece of wood (2 x 2) between the jack stand and the engine vibration damper.
 - (11) Remove the engine mount through bolts.
- (12) Using the jack stand, raise the engine until adequate clearance is obtained to remove the oil pan.
- (13) Remove the oil pan bolts. Carefully slide the oil pan and gasket to the rear. If equipped with an oil level sensor, take care not to damage the sensor.

INSTALLATION

- (1) Clean the block and pan gasket surfaces.
- (2) Fabricate 4 alignment dowels from 1 $1/2 \times 1/4$ inch bolts. Cut the head off the bolts and cut a slot into the top of the dowel. This will allow easier installation and removal with a screwdriver (Fig. 52).

Fig. 52 Fabrication of Alignment Dowels

(3) Install two dowels in the timing case cover. Install the other two dowels in the cylinder block (Fig. 53).

Fig. 53 Position of Dowels in Cylinder Block

- (4) Slide the one-piece gasket over the dowels and onto the block and timing case cover.
- (5) Position the oil pan over the dowels and onto the gasket. If equipped with an oil level sensor, take care not to damage the sensor.
- (6) Install the 1/4 inch oil pan bolts. Tighten these bolts to 9.5 N·m (84 in. lbs.) torque. Install the 5/16 inch oil pan bolts (Fig. 54). Tighten these bolts to 15 N·m (132 in. lbs.) torque.

Fig. 54 Position of 5/16 inch Oil Pan Bolts

- (7) Remove the dowels. Install the remaining 1/4 inch oil pan bolts. Tighten these bolts to $9.5~N\cdot m$ (84 in. lbs.) torque.
- (8) Lower the engine until it is properly located on the engine mounts.
 - (9) Install the through bolts and tighten the nuts.
- (10) Lower the jack stand and remove the piece of wood.
- (11) Install the engine flywheel and transmission torque converter housing access cover.
 - (12) Install the engine starter motor.
- (13) Connect the exhaust pipe to the hanger and to the engine exhaust manifold.
- (14) Install the oil pan drain plug (Fig. 54). Tighten the plug to 34 N⋅m (25 ft. lbs.) torque.
 - (15) Lower the vehicle.
 - (16) Connect negative cable to battery.
- (17) Fill the oil pan with engine oil to the specified level.

WARNING: USE EXTREME CAUTION WHEN THE ENGINE IS OPERATING. DO NOT STAND IN A DIRECT LINE WITH THE FAN. DO NOT PUT YOUR HANDS NEAR THE PULLEYS, BELTS OR FAN. DO NOT WEAR LOOSE CLOTHING.

(18) Start the engine and inspect for leaks.

PISTONS AND CONNECTING RODS

REMOVAL

- (1) Remove the engine cylinder head cover.
- (2) Remove the rocker arms, bridges and pivots.

- (3) Remove the push rods.
- (4) Remove the engine cylinder head.
- (5) Position the pistons one at a time near the bottom of the stroke. Use a ridge reamer to remove the ridge from the top end of the cylinder walls. Use a protective cloth to collect the cuttings.
 - (6) Raise the vehicle.
 - (7) Drain the engine oil.
 - (8) Remove the oil pan and gasket.
- (9) Remove the connecting rod bearing caps and inserts. Mark the caps and rods with the cylinder bore location. The connecting rods and caps are stamped with a two letter combination (Fig. 55).

Fig. 55 Stamped Connecting Rods and Caps

(10) Lower the vehicle until it is about 2 feet from the floor.

CAUTION: Ensure that the connecting rod bolts DO NOT scratch the crankshaft journals or cylinder walls. Short pieces of rubber hose, slipped over the rod bolts will provide protection during removal.

(11) Have an assistant push the piston and connecting rod assemblies up and through the top of the cylinder bores (Fig. 56).

INSTALLATION

- (1) Clean the cylinder bores thoroughly. Apply a light film of clean engine oil to the bores with a clean lint-free cloth.
- (2) Install the piston rings on the pistons if removed.
- (3) Lubricate the piston and rings with clean engine oil.

CAUTION: Ensure that connecting rod bolts DO NOT scratch the crankshaft journals or cylinder walls. Short pieces of rubber hose slipped over the connecting rod bolts will provide protection during installation.

REMOVAL AND INSTALLATION (Continued)

Fig. 56 Removal of Connecting Rod and Piston Assembly

- (4) Use a piston ring compressor to install the connecting rod and piston assemblies through the top of the cylinder bores (Fig. 57).
- (5) Ensure the arrow on the piston top points to the front of the engine (Fig. 57).

Fig. 57 Rod and Piston Assembly Installation

- (6) Raise the vehicle.
- (7) Each bearing insert is fitted to its respective journal to obtain the specified clearance between the bearing and the journal. In production, the select fit is obtained by using various-sized, color-coded bearing inserts as listed in the Connecting Rod Bearing Fitting Chart. The color code appears on the edge of the bearing insert. The size is not stamped on inserts used for production of engines.
- (8) The rod journal is identified during the engine production by a color-coded paint mark on the adja-

cent cheek or counterweight toward the flange (rear) end of the crankshaft. The color codes used to indicate journal sizes are listed in the Connecting Rod Bearing Fitting Chart.

(9) When required, upper and lower bearing inserts of different sizes may be used as a pair (refer to Connecting Rod Bearing Fitting Chart). A standard size insert is sometimes used in combination with a 0.025 mm (0.001 inch) undersize insert to reduce clearance 0.013 mm (0.0005 inch).

CAUTION: DO NOT intermix bearing caps. Each connecting rod and bearing cap are stamped with the cylinder number. The stamp is located on a machined surface adjacent to the oil squirt hole that faces the camshaft side of the cylinder block.

(10) Install the connecting rod bearing caps and inserts in the same positions as removed.

CAUTION: Verify that the oil squirt holes in the rods face the camshaft and that the arrows on the pistons face the front of the engine.

- (11) Install the oil pan and gaskets as outlined in the installation procedure.
 - (12) Lower the vehicle.
- (13) Install the engine cylinder head, push rods, rocker arms, bridges, pivots and engine cylinder head cover
 - (14) Fill the crankcase with engine oil.

REAR MAIN OIL SEAL

The crankshaft rear main bearing oil seal consists of two half pieces of viton with a single lip that effectively seals the rear of the crankshaft. Replace the upper and lower seal halves as a unit to ensure leak-free operation.

REMOVAL

- (1) Remove the transmission inspection cover.
- (2) Remove the oil pan.
- (3) Remove the main bearing cap brace.
- (4) Remove the rear main bearing cap (No.7).
- (5) Push the upper seal out of the groove. Ensure that the crankshaft and seal groove are not damaged.
- (6) Remove the lower half of the seal from the bearing cap.

INSTALLATION

- (1) Wipe the seal surface area of the crankshaft until it is clean.
 - (2) Apply a thin coat of engine oil.
 - (3) Coat the lip of the seal with engine oil.
- (4) Carefully position the upper seal into the groove in the cylinder block. The lip of the seal faces toward the front of the engine.

- (5) Place the lower half of the seal into bearing cap No.7 (Fig. 58).
- (6) Coat the outer curved surface of the lower seal with soap and the lip of the seal with engine oil (Fig. 58).

Fig. 58 Rear Main Bearing Oil Seal

- (7) Position the lower seal into the bearing cap recess and seat it firmly. Be sure the seal is flush with the cylinder block pan rail.
- (8) Apply Loctite 518, or equivalent on the rear bearing cap (Fig. 59). The bead should be 3 mm (0.125 in) thick. DO NOT apply Loctite 518, or equivalent to the lip of the seal.
- (9) Install the rear main bearing cap. DO NOT strike the cap more than twice for proper engagement.
- (10) Tighten all main bearing bolts to 108 N·m (80 ft. lbs.) torque.
- (11) Install the main bearing cap brace. Tighten nuts to 47 N⋅m (35 ft. lbs.).
- (12) Install the oil pan gasket and oil pan. Tighten 1/4-20 screws to 14 N·m (120 in. lbs.). Tighten 5/16-18 screws to 18 N·m (156 in. lbs.)
- (13) Install the engine flywheel or converter drive plate. Tighten bolts to 142 N·m (105 ft. lbs.)

OIL PUMP

A gear-type oil pump is mounted at the underside of the cylinder block opposite the No.4 main bearing.

The pump incorporates a nonadjustable pressure relief valve to limit maximum pressure to 517 kPa (75 psi). In the relief position, the valve permits oil to bypass through a passage in the pump body to the inlet side of the pump.

Fig. 59 Location of Loctite 518 (or equivalent)

Oil pump removal or replacement will not affect the distributor timing because the distributor drive gear remains in mesh with the camshaft gear.

REMOVAL

- (1) Drain the engine oil.
- (2) Remove the oil pan.
- (3) Remove the pump-to-cylinder block attaching bolts. Remove the pump assembly with gasket (Fig. 60).

CAUTION: If the oil pump is not to be serviced, DO NOT disturb position of oil inlet tube and strainer assembly in pump body. If the tube is moved within the pump body, a replacement tube and strainer assembly must be installed to assure an airtight seal.

INSTALLATION

- (1) Install the oil pump on the cylinder block using a replacement gasket. Tighten the bolts to 23 N·m (17 ft. lbs.) torque.
 - (2) Install the oil pan.
 - (3) Fill the oil pan with oil to the specified level.

TIMING CASE COVER OIL SEAL

This procedure is done with the timing case cover installed.

REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Remove the serpentine drive belt.
- (3) Remove the vibration damper.

Fig. 60 Oil Pump Assembly

- (4) Remove the radiator shroud.
- (5) Carefully remove the oil seal. Make sure seal bore is clean.

INSTALLATION

- (1) Position the replacement oil seal on Timing Case Cover Alignment and Seal Installation Tool 6139 with seal open end facing inward. Apply a light film of Perfect Seal, or equivalent, on the outside diameter of the seal. Lightly coat the crankshaft with engine oil.
- (2) Position the tool and seal over the end of the crankshaft and insert a draw screw tool into Seal Installation Tool 6139 (Fig. 61). Tighten the nut against the tool until it contacts the cover.

Fig. 61 Timing Case Cover Oil Seal Installation

- (3) Remove the tools. Apply a light film of engine oil on the vibration damper hub contact surface of the seal.
- (4) Apply Mopar Silicone Rubber Adhesive Sealant to the keyway in the crankshaft and insert the key. With the key inserted in the keyway in the crankshaft, install the vibration damper, washer and bolt. Lubricate and tighten the bolt to $108~\rm N\cdot m$ (80 ft. lbs.) torque.
- (5) Install the serpentine belt and tighten to the specified tension (refer to Group 7, Cooling Systems for the proper specifications and procedures).
 - (6) Install the radiator shroud.
 - (7) Connect negative cable to battery.

DISASSEMBLY AND ASSEMBLY

VALVE SERVICE

Clean all carbon deposits from the combustion chambers, valve ports, valve stems, valve stem guides and head.

Clean all grime and gasket material from the engine cylinder head machined gasket surface.

Inspect for cracks in the combustion chambers and valve ports.

Inspect for cracks on the exhaust seat.

Inspect for cracks in the gasket surface at each coolant passage.

Inspect valves for burned, cracked or warped heads.

Inspect for scuffed or bent valve stems.

Replace valves displaying any damage.

VALVE REFACING

- (1) Use a valve refacing machine to reface the intake and exhaust valves to the specified angle.
- (2) After refacing, a margin of at least 0.787~mm (0.031~inch) must remain (Fig. 62). If the margin is less than 0.787~mm (0.031~inch), the valve must be replaced.

VALVE SEAT REFACING

- (1) Install a pilot of the correct size in the valve guide bore. Reface the valve seat to the specified angle with a good dressing stone. Remove only enough metal to provide a smooth finish.
- (2) Use tapered stones to obtain the specified seat width when required.
- (3) Control valve seat runout to a maximum of 0.0635 mm (0.0025 in.) (Fig. 63).

VALVE STEM OIL SEAL REPLACEMENT

Valve stem oil seals are installed on each valve stem to prevent rocker arm lubricating oil from entering the combustion chamber through the valve

DISASSEMBLY AND ASSEMBLY (Continued)

Fig. 62 Valve Facing Margin

Fig. 63 Measurement of Valve Seat Runout

guide bores. One seal is marked INT (intake valve) and the other is marked EXH (exhaust valve).

Replace the oil seals whenever valve service is performed or if the seals have deteriorated.

VALVE GUIDES

The valve guides are an integral part of the engine cylinder head and are not replaceable.

When the valve stem guide clearance is excessive, the valve guide bores must be reamed oversize. Service valves with oversize stems are available in 0.076 mm (0.003 inch) and 0.381 mm (0.015 inch) increments.

Corresponding oversize valve stem seals are also available and must be used with valves having 0.381 mm (0.015 inch) oversize stems.

NOTE: If the valve guides are reamed oversize, the valve seats must be ground to ensure that the valve seat is concentric to the valve guide.

VALVE STEM-TO-GUIDE CLEARANCE MEASUREMENT

Valve stem-to-guide clearance may be measured by either of the following two methods.

XJ

PREFERRED METHOD

- (1) Remove the valve from the head.
- (2) Clean the valve stem guide bore with solvent and a bristle brush.
- (3) Insert a telescoping gauge into the valve stem guide bore approximately 9.525 mm (.375 inch) from the valve spring side of the head (Fig. 64).

Fig. 64 Measurement of Valve Guide Bore Diameter

- (4) Remove and measure telescoping gauge with a micrometer.
- (5) Repeat the measurement with contacts lengthwise to engine cylinder head.
- (6) Compare the crosswise to lengthwise measurements to determine out-of-roundness. If the measurements differ by more than 0.0635 mm (0.0025 in.), ream the guide bore to accommodate an oversize valve stem.
- (7) Compare the measured valve guide bore diameter with specifications (7.95-7.97 mm or 0.313-0.314 inch). If the measurement differs from specification by more than 0.076 mm (0.003 inch), ream the guide bore to accommodate an oversize valve stem.

ALTERNATIVE METHOD

(1) Use a dial indicator to measure the lateral movement of the valve stem (stem-to-guide clearance). This must be done with the valve installed in its guide and just off the valve seat (Fig. 65).

DISASSEMBLY AND ASSEMBLY (Continued)

(2) Correct clearance is 0.025-0.0762 mm (0.001-0.003 inch). If indicated movement exceeds the specification ream the valve guide to accommodate an oversize valve stem.

NOTE: Valve seats must be ground after reaming the valve guides to ensure that the valve seat is concentric to the valve guide.

Fig. 65 Measurement of Lateral Movement of Valve Stem

VALVE SPRING TENSION TEST

Use a universal Valve Spring Tester and a torque wrench to test each valve spring for the specified tension value (Fig. 66).

Replace valve springs that are not within specifications.

Fig. 66 Valve Spring Tester

CYLINDER BLOCK

DISASSEMBLY

Refer to the applicable sections for detailed instructions.

- (1) Drain the engine oil. Remove and discard the oil filter.
- (2) Remove the water pump from the cylinder block.
 - (3) Remove the vibration damper.
- (4) Remove the timing case cover and lay the cover upside down.
- (5) Position a drift punch into the slot in the back of the cover and tap the old seal out.
 - (6) Remove the oil slinger from crankshaft.
- (7) Remove the camshaft retaining bolt and remove the sprockets and chain as an assembly.
 - (8) Remove the camshaft.
 - (9) Remove the oil pan and gasket.
 - (10) Remove the front and rear oil galley plugs.
 - (11) Remove the oil pump.
- (12) Remove the connecting rods and the pistons. Remove the connecting rod and piston assemblies through the top of the cylinder bores.
 - (13) Remove the crankshaft.

ASSEMBLY

Refer to the applicable sections for detailed instructions.

- (1) Install the crankshaft.
- (2) Install the connecting rods and the pistons through the top of the cylinder bores.
 - (3) Install the oil pump.
 - (4) Install the oil pan and gasket.
 - (5) Install the camshaft.
 - (6) Install the sprockets and chain as an assembly.
 - (7) Install the oil slinger from the crankshaft.
 - (8) Install the timing case cover seal.
 - (9) Install the timing case cover.
 - (10) Install the vibration damper.
- (11) Install the water pump. Tighten the mounting bolts to 31 N·m (23 ft. lbs.) torque.
- (12) Lubricate the oil filter seal with clean engine oil. Tighten oil filter to $18 \text{ N} \cdot \text{m}$ (156 in. lbs.) torque.
 - (13) Install the engine into the vehicle.
- (14) Fill the engine with clean lubrication oil (refer to Group 0, Lubrication and Maintenance).
 - (15) Fill the cooling system.

CLEANING AND INSPECTION

ENGINE CYLINDER HEAD

CLEANING

Thoroughly clean the engine cylinder head and cylinder block mating surfaces. Clean the intake and engine exhaust manifold and engine cylinder head mating surfaces. Remove all gasket material and carbon

Check to ensure that no coolant or foreign material has fallen into the tappet bore area.

CLEANING AND INSPECTION (Continued)

Remove the carbon deposits from the combustion chambers and top of the pistons.

INSPECTION

Use a straightedge and feeler gauge to check the flatness of the engine cylinder head and block mating surfaces.

ENGINE CYLINDER HEAD COVER

CLEANING

Remove any original sealer from the cover sealing surface of the engine cylinder head and clean the surface using a fabric cleaner.

Remove all residue from the sealing surface using a clean, dry cloth.

INSPECTION

Inspect the engine cylinder head cover for cracks. Replace the cover, if cracked.

The original dark grey gasket material should NOT be removed. If sections of the gasket material are missing or are compressed, replace the engine cylinder head cover. However, sections with minor damage such as small cracks, cuts or chips may be repaired with a hand held applicator. The new material must be smoothed over to maintain gasket height. Allow the gasket material to cure prior to engine cylinder head cover installation.

ROCKER ARMS AND PUSH RODS

CLEANING

Clean all the components with cleaning solvent. Use compressed air to blow out the oil passages in the rocker arms and push rods.

INSPECTION

Inspect the pivot surface area of each rocker arm. Replace any that are scuffed, pitted, cracked or excessively worn.

Inspect the valve stem tip contact surface of each rocker arm and replace any rocker arm that is deeply pitted.

Inspect each push rod end for excessive wear and replace as required. If any push rod is excessively worn because of lack of oil, replace it and inspect the corresponding hydraulic tappet for excessive wear.

Inspect the push rods for straightness by rolling them on a flat surface or by shining a light between the push rod and the flat surface.

A wear pattern along the length of the push rod is not normal. Inspect the engine cylinder head for obstruction if this condition exists.

HYDRAULIC TAPPETS

CLEANING

Clean each tappet assembly in cleaning solvent to remove all varnish, gum and sludge deposits.

INSPECTION

Inspect for indications of scuffing on the side and base of each tappet body.

Inspect each tappet base for concave wear with a straightedge positioned across the base. If the base is concave, the corresponding lobe on the camshaft is also worn. Replace the camshaft and defective tappets.

LEAK-DOWN TEST

After cleaning and inspection, test each tappet for specified leak-down rate tolerance to ensure zero-lash operation (Fig. 67).

Swing the weighted arm of the hydraulic valve tappet tester away from the ram of the Leak-Down Tester.

- (1) Place a 7.925-7.950 mm (0.312-0.313 inch) diameter ball bearing on the plunger cap of the tappet.
- (2) Lift the ram and position the tappet (with the ball bearing) inside the tester cup.
- (3) Lower the ram, then adjust the nose of the ram until it contacts the ball bearing. DO NOT tighten the hex nut on the ram.
- (4) Fill the tester cup with hydraulic valve tappet test oil until the tappet is completely submerged.
- (5) Swing the weighted arm onto the push rod and pump the tappet plunger up and down to remove air. When the air bubbles cease, swing the weighted arm away and allow the plunger to rise to the normal position.
- (6) Adjust the nose of the ram to align the pointer with the SET mark on the scale of the tester and tighten the hex nut.
- (7) Slowly swing the weighted arm onto the push rod.
- (8) Rotate the cup by turning the handle at the base of the tester clockwise one revolution every 2 seconds.
- (9) Observe the leak-down time interval from the instant the pointer aligns with the START mark on the scale until the pointer aligns with the 0.125 mark. A normally functioning tappet will require 20-110 seconds to leak-down. Discard tappets with leak-down time interval not within this specification.

CYLINDER BLOCK

CLEANING

Thoroughly clean the oil pan and engine block gasket surfaces.

CLEANING AND INSPECTION (Continued)

Fig. 67 Leak-Down Tester

Use compressed air to clean out:

- The galley at the oil filter adaptor hole.
- The front and rear oil galley holes.
- \bullet The feed holes for the crankshaft main bearings. Once the block has been completely cleaned, apply Loctite PST pipe sealant with Teflon 592 to the threads of the front and rear oil galley plugs. Tighten the plugs to 34 N·m (25 ft. lbs.) torque.

INSPECTION—CYLINDER BORE

- (1) It is mandatory to use a dial bore gauge to measure each cylinder bore diameter (Fig. 68). To correctly select the proper size piston, a cylinder bore gauge, capable of reading in 0.003 mm (.0001 in.) INCREMENTS is required. If a bore gauge is not available, do not use an inside micrometer.
- (2) Measure the inside diameter of the cylinder bore at three levels below top of bore. Start perpendicular (across or at 90 degrees) to the axis of the crankshaft and then take two additional reading.
- (3) Measure the cylinder bore diameter crosswise to the cylinder block near the top of the bore. Repeat the measurement near the middle of the bore, then repeat the measurement near the bottom of the bore.
- (4) Determine taper by subtracting the smaller diameter from the larger diameter.
- (5) Rotate measuring device 90° and repeat steps above.

Fig. 68 Cylinder Bore Measurement

- (6) Determine out-of-roundness by comparing the difference between each measurement.
- (7) If cylinder bore taper does not exceed 0.025 mm (0.001 inch) and out-of-roundness does not exceed 0.025 mm (0.001 inch), the cylinder bore can be honed. If the cylinder bore taper or out- of-round condition exceeds these maximum limits, the cylinder must be bored and then honed to accept an oversize piston. A slight amount of taper always exists in the cylinder bore after the engine has been in use for a period of time.

HONING—CYLINDER BORE

The honing operation should be closely coordinated with the fitting of pistons and rings. This will ensure specified clearances are maintained.

Refer to Standard Service Procedures in the beginning of this Group for the proper honing of cylinder bores.

9 - 90 4.0L ENGINE — XJ

SPECIFICATIONS	Taper (Max. – All Journals)0.013 mm
4.0L ENGINE SPECIFICATIONS	(0.0005 in.) Cylinder Block
4.0E ENGINE SI EGII IGATIONS	Deck Height
Camshaft	(9.450 to 9.456 in.)
Hydraulic Tappet Clearance Zero Lash	Deck Clearance (Below Block)0.546 mm
Bearing Clearance	(0.0215 in.)
(0.001 to 0.003 in.)	Cylinder Bore Diameter—
Bearing Journal Diameter	Standard
No. 1	(3.8759 to 3.8775 in.)
No. 2	Cylinder Bore Diameter— Taper
No. 3	(Max.)
No. 4 50.78 to 50.80 mm (1.999 to 2.000 in.)	Cylinder Bore Diameter—
Base Circle Runout	Out-of-Round 0.025 mm (0.001 in.)
(0.001 in max.)	Tappet Bore Diameter.23.000 to 23.025 mm (0.9055
Valve Lift	to 0.9065 in.)
Intake Valve Timing	Flatness
Opens12.4° BTDC	(0.001 in. per 1 in.)
Closes	Flatness
	(0.002 in. per 6 in.)
Exhaust Valve Timing Opens	Flatness Max0.20 mm max. for total length (0.008
Closes	in. max. for total length)
	Main Bearing Bore
Valve Overlap	Diameter
Intake Duration	(2.691 to 2.692 in.)
Crankshaft	Connecting Rods
	Total Weight (Less Bearing).657 to 665 grams (23.17
End Play	to 23.45 oz.)
·	Length (Center-to-Center)155.52 to 155.62 mm
Main Bearing Journal Diameter No. 1-6	(6.123 to 6.127 in.)
(2.4996 to 2.5001 in.)	Piston Pin Bore Diameter.23.59 to 23.62 mm (0.9288
Main Bearing Journal Diameter	to 0.9298 in.)
No. 7	Bore (Less Bearings) 56.08 to 56.09 mm
(2.4980 to 2.4995 in.)	(2.2080 to 2.2085 in.)
Main Bearing Journal	Bearing Clearance 0.025 to 0.076 mm
Width No. 1	(0.001 to 0.003 in.)
(1.086 to 1.098 in.)	Bearing Clearance
Main Bearing Journal	(Preferred)
Width No. 3	(0.0015 to 0.0020 in.)
(1.271 to 1.273 in.)	Side Clearance
Main Bearing Journal	(0.010 to 0.019 in.)
Width No. 2-4-5-6-7 30.02 to 30.18 mm	Twist (Max.)
(1.182 to 1.188 in.)	0.001 in. per inch)
Main Bearing Clearance 0.03 to 0.06 mm	Bend (Max.)
(0.001 to 0.0025 in.)	0.001 in. per inch.)
Main Bearing Clearance	Cylinder Compression Pressure
(Preferred)	Ratio
Connecting Rod Journal	Pressure Range
Diameter	(120 to 150 psi)
(2.0934 to 2.0955 in.)	Max. Variation Between
Connecting Rod Journal	Cylinders
Width27.18 to 27.33 mm (1.070 to 1.076 in.)	Cylinder Head Combustion Chamber 52 22 to 52 22 as
Out-of-Round (Max. All Journals).0.013 mm (0.0005	Combustion Chamber
in.)	(3.37 to 3.55 cu. in.)
	Valve Guide I.D. (Integral) 7.9 mm (0.312 in.)

XJ — 4.0L ENGINE 9 - 91

SPECIFICATIONS (Continued)

Valve Stem-to-Guide	Pistons
Clearance	Weight (Less Pin) 563 to 567 grams
(0.001 to 0.003 in.)	(19.86 to 20.00 oz.)
Intake Valve Seat Angle	Piston Pin Bore (Centerline to
Exhaust Valve Seat Angle	Piston Top)
Valve Seat Width1.02 to 1.52 mm	(1.599 to 1.603 in.)
(0.040 to 0.060 in.)	Piston-to-Bore Clearance.0.033 to 0.053 mm (0.0013
Valve Seat Runout	to 0.0021 in.)
Flatness	Piston-to-Bore Clearance (Preferred)
(0.001 in. per 1 in.) Flatness0.05 mm per 152 mm	(0.0013 to 0.0015 in.)
(0.002 in. per 6 in.)	Ring Gap Clearance— Top Compression
Flatness Max0.20 mm - max. for total length (0.008	Ring
in. max. for total length)	(0.0090 to 0.0240 in.)
Rocker Arms, Push Rods & Tappets	Ring Gap Clearance— 2nd Compression
Rocker Arm Ratio	Ring
Push Rod Length	(0.0190 to 0.0380 in.)
(9.640 to 9.660 in.)	Ring Gap Clearance—Oil Control
Push Rod Diameter 7.92 to 8.00 mm	Steel Rails
(0.312 to 0.315 in.)	(0.010 to 0.060 in.)
Hydraulic Tappet Diameter22.962 to 22.974 mm	Ring Side Clearance—Compression
(0.904 to 0.9045 in.)	Rings
Tappet-to-Bore Clearance.0.025 to 0.063 mm (0.001	(0.0017 to 0.0033 in.)
to 0.0025 in.)	Ring Side Clearance—Oil Control Rings
Valves	(0.0024 to 0.0083 in.)
Length (Tip-to-Gauge Dimension Line) Intake 122.479 to 122.860 mm	Piston Ring Groove Height—
(4.822 to 4.837 in.)	Compression Rings 1.530 to 1.555 mm
Length (Tip-to-Gauge Dimension Line)	(0.0602 to 0.0612 in.)
Exhaust	Piston Ring Groove Height—
(4.837 to 4.852 in.)	Oil Control Ring
Valve Stem Diameter 7.899 to 7.925 mm	(0.1589 to 0.1598 in.)
(0.311 to 0.312 in.)	Piston Ring Groove Diameter—
Stem-to-Guide Clearance 0.025 to 0.076 mm	Compression Rings 88.3 to 88.55 mm
(0.001 to 0.003 in.)	(3.476 to 3.486 in.)
Valve Head Diameter—	Piston Ring Groove Diameter— Oil Control Ring 90.35 to 90.60 mm
Intake	(3.557 to 3.566 in.)
(1.905 to 1.915 in.)	Piston Pin Bore Diameter 23.647 to 23.655 mm
Valve Head Diameter— Exhaust	(0.9310 to 0.9313 in.)
(1.495 to 1.505 in.)	Piston Pin Diameter
Valve Face Angle—Intake	(0.9306 to 0.9307 in.)
Valve Face Angle—Exhaust	Piston-to-Pin
Tip Refinishing (Max. Allowable) 0.25 mm	Clearance0.0076 to 0.0178 mm—Loose
(0.010 in.)	(0.0003 to 0.0007 in. Loose)
Valve Springs	Piston-to-Pin Clearance
Free Length (Approx.) 47.65 mm (1.876 in.)	(Preferred)
Spring Tension—Valve Closed.271 to 307 N @ 41.656	Piston-to-Pin Connecting Rod
mm	(Press Fit)
(61 to 69 lbf. @ 1.64 in.)	Oil Pump
Spring Tension—Valve Open818.5 to 871.9 N @	Gear-to-Body Clearance (Radial)
30.89 mm	(0.002 to 0.004 in.)
(184 to 196 lbf @ 1.216 in.)	Gear-to-Body Clearance (Radial)
Inside Diameter	(Preferred) 0.051 mm (0.002 in.)
(0.827 to 0.847 III.)	((((((((((((((((((((

9 - 92 4.0L ENGINE — XJ

SPECIFICATIONS (Continued)

Gear End Clearance—	DESCRIPTION TORQUE
Plastigage 0.051 to 0.152 mm	Engine Mounts—Rear
(0.002 to 0.006 in.)	Crossmember-to-Sill Bolts
Gear End Clearance—Plastigage	(Automatic)
(Preferred)	Insulator Stud Assembly
Gear End Clearance—	Nut
Feeler Gauge	Support Cushion/Crossmember
(0.004 to 0.008 in.) Gear End Clearance—Feeler	Nuts
Gauge (Preferred)0.1778 mm (0.007 in.)	Support Cushion/Bracket Nuts (Manual)
Oil Pressure	Transmission Support Bracket Bolt
At Idle Speed (600 rpm) 89.6 kPa (13 psi)	(Manual)
At 1600 rpm & Higher255 to 517 kPa	Transmission Support Bracket/Cushion
(37 to 75 psi)	Bolt (4WD Auto)
Oil Pressure Relief	Transmission Support Adaptor Bracket
4.0L TORQUE SPECIFICATIONS	Bolts (2WD Auto) 75 N·m (55 ft. lbs.)
4.0L TURQUE SPECIFICATIONS	Exhaust Manifold/Pipe
TORQUE SPECIFICATIONS	Nuts
	Flywheel to Converter Housing
DESCRIPTION TORQUE	Bolts
A/C Compressor Bracket-to-Engine	Flywheel to Crankshaft
Bolts	Bolts
A/C Compressor	Front Cover-to-Block
Mounting Bolts	Bolts 1/4–20
A/C Low Pressure Service Valve	Bolts 5/16–18
Nut	Bolts/Stud
Nut	Generator
Camshaft Sprocket	Fixed Bolt
Bolt	Thru Bolt/Nut
Clutch Cover to Flywheel	Main Bearing Cap
Bolts	Bolts
Coil Bracket to Block	Main Bearing Brace
Bolts	Nuts
Connecting Rod	Oil Filter
Nuts	Filter
Cylinder Block	Connector (to adaptor)
Drain Plugs	Connector (to block)
Cylinder Head	Adaptor Bolts
Bolts	Oil Galley At N m (20 ft lbs)
Cylinder Head Cover	Plug
Bolts	1/4–20 Bolts
Bolt	5/16–18 Bolts 15 N·m (132 in. lbs.)
Engine Mounts—Front	Drain Plug
Support Bracket Bolts61 N·m (45 ft. lbs.)	Oil Pump
Support Cushion Bolts/Nuts	Short Attaching Bolts
(30 ft. lbs.)	Long Attaching Bolts 23 N·m (204 in. lbs.)
Support Cushion Bracket Bolts 54 N⋅m	Cover Bolts
(40 ft. lbs.)	Power Steering Pump Pressure Hose
Support Cushion Bracket Stud Nuts41 N·m	Nut
(30 ft. lbs.)	Rocker Arm Assembly-to-Cylinder Head
Support Cushion Thru-Bolt65 N·m (48 ft. lbs.)	Capscrews
	Spark Plugs
	Plugs

SPECIFICATIONS (Continued)

DESCRIPTION	TORQUE
Starter Motor	
Mounting Bolts	45 N·m (33 ft. lbs.)
Thermostat Housing	
Bolts	18 N·m (156 in. lbs.)
Throttle Body	
Bolts	10 N·m (90 in.lbs.)
Vibration Damper	
Bolts	108 N·m (80 ft. lbs.)
Water Pump/Block	
Bolts	31 N·m (23 ft. lbs.)

Vibration Damper Removal Tool 7697

SPECIAL TOOLS

4.0L ENGINE

Valve Spring Compressor Tool MD-998772A

Timing Case Cover Alignment and Seal installation Tool 6139

Rear Main Seal Installer Tool 6271A

Hydraulic Valve Tappet Removal Tool C-4129-A

INTRODUCTION

CONTENTS

nage

pago	page
FASTENER IDENTIFICATION 4 INTERNATIONAL VEHICLE CONTROL AND	TORQUE REFERENCES

GENERAL INFORMATION

VEHICLE IDENTIFICATION NUMBER

VEHICLE IDENTIFICATION NUMBER

The Vehicle Identification Number (VIN) plate is located on the lower windshield fence near the left A-pillar. The VIN contains 17 characters that provide data concerning the vehicle. Refer to the VIN decoding chart to determine the identification of a vehicle.

The Vehicle Identification Number is also imprinted on the:

- Body Code Plate.
- Vehicle Safety Certification Label.
- Frame rail.
- Engine-Last 8 of VIN (Requires Stamping).

• Transmission-Last 8 of VIN (Requires Stamping).

1

nage

- Right front fender.
 - Left front fender.
 - Hood.
 - Right front door.
 - Left front door.
 - Right rear quarter panel.
 - Left rear quarter panel.
 - Liftgate.

To protect the consumer from theft and possible fraud the manufacturer is required to include a Check Digit at the ninth position of the Vehicle Identification Number. The check digit is used by the manufacturer and government agencies to verify the authenticity of the vehicle and official documenta-

VEHICLE IDENTIFICATION NUMBER DECODING CHART

POSITION	INTERPRETATION	CODE = DESCRIPTION
1	Country of Origin	1 = United States
2	Make	J = Jeep
3	Vehicle Type	4 = MPV
4	Gross Vehicle Weight Rating	F = 4001-5000 lbs.
5	Vehicle Line	J = Cherokee 4X4 (LHD) N = Cherokee 4X4 (RHD) B = Cherokee 4X2 (RHD) T = Cherokee 4X2 (LHD)
6	Series	2 = SE 6 = Sport 7 = Country
7	Body Style	7 = 2dr Sport Utility 8 = 4dr Sport Utility
8	Engine	P = 2.5L Gasoline S = 4.0L Gasoline
9	Check Digit	
10	Model Year	V = 1997
11	Assembly Plant	L = Toledo #1
12 thru 17	Vehicle Build Sequence	

tion. The formula to use the check digit is not released to the general public.

VEHICLE SAFETY CERTIFICATION LABEL

A vehicle safety certification label (Fig. 1) is attached to every Chrysler Corporation vehicle. The label certifies that the vehicle conforms to all applicable Federal Motor Vehicle Safety Standards. The label also lists:

- Month and year of vehicle manufacture.
- Gross Vehicle Weight Rating (GVWR). The gross front and rear axle weight ratings (GAWR's) are based on a minimum rim size and maximum cold tire inflation pressure.
 - Vehicle Identification Number (VIN).
 - · Type of vehicle.
 - Type of rear wheels.
 - · Bar code.
 - · Month, Day and Hour (MDH) of final assembly.
 - · Paint and Trim codes.
 - Country of origin.

The label is located on the driver-side door shutface.

80ab36d9

Fig. 1 Vehicle Safety Certification Label—Typical BODY CODE PLATE

LOCATION AND DECODING

A metal body code plate is attached to the left (driver's side of the dash panel in the engine compartment. There are seven lines of information on the body code plate. Lines 4, 5, 6, and 7 are not used to define service information. Information reads from left to right, starting with line 3 in the center of the plate to line 1 at the bottom of the plate (Fig. 2).

The last code imprinted on a vehicle code plate will be followed by the imprinted word END. When two vehicle code plates are required, the last available spaces on the first plate will be imprinted with the letters CTD (for continued). When a second vehicle code plate is necessary, the first four spaces on each row will not be used because of the plate overlap.

Fig. 2 Body Code Plate Decoding

BODY CODE PLATE—LINE 3

DIGITS 1 THROUGH 12 Vehicle Order Number

DIGITS 13, 14, AND 15 Open Space

DIGITS 16, 17, AND 18

Car Line Shell

- XJT = Cherokee 2WD (LHD)
- XJJ = Cherokee 4WD (LHD)
- XJB = Cherokee 2WD (RHD)
- XJU = Cherokee 4WD (RHD)

DIGIT 19

Price Class

• L = Cherokee (All)

DIGITS 20 AND 21

Body Type

- 72 = 2–Door
- 74 = 4–Door

BODY CODE PLATE—LINE 2

DIGITS 1,2, AND 3

Paint Procedure

DIGIT 4

Open Space

DIGITS 5 THROUGH 8

Primary Paint

Refer to Group 23, Body for color codes.

DIGIT 9

Open Space

DIGITS 10 THROUGH 13

Secondary Paint

DIGIT 14

Open Space

DIGITS 15 THROUGH 18

Interior Trim Code

DIGIT 19

Open Space

DIGITS 20, 21, AND 22

Engine Code

- EPE = 2.5 L 4 cyl. MPI Gasoline
- ERH = 4.0L 6 cyl. MPI Gasoline

BODY CODE PLATE LINE 1

DIGITS 1, 2, AND 3

Transmission Codes

- DDQ = AX5 5-speed Manual
- DGD = 30RH 3-speed Automatic
- DGS = AW4 4-speed Automatic

DIGIT 4

Open Space

DIGIT 5

Market Code

- B = International
- C = Canada
- M = Mexico
- U = United States

DIGIT 6

Open Space

DIGITS 7 THROUGH 23

Vehicle Identification Number (VIN)

Refer to Vehicle Identification Number (VIN) paragraph for proper breakdown of VIN code.

3

VEHICLE DIMENSIONS

The vehicle dimension data charts list the exterior and interior dimensions. All dimensions are listed in centimeters and inches.

VEHICLE EXTERIOR DIMENSIONS

MODEL NAME	WHEEL BASE	TRACK FRONT	TRACK REAR	LENGTH	OVERALL WIDTH	HEIGHT
Cherokee 2WD/4WD	257.6 101.4	147.3 58.0	147.3 58.0	424.4 167.5	172.5 67.9	162.3 63.9

VEHICLE INTERIOR DIMENSIONS

MODEL NAME	HEAD FRONT/ REAR			HIP FRONT / REAR	
Cherokee 2WD / 4WD	96.0 / 96.5 37.8 / 38.0			140.2 / 113.3 55.2 / 44.6	

INTERNATIONAL CONTROL AND DISPLAY SYMBOLS

	# 0	HEADLIGHTS,			
HIGH BEAM	FOG LIGHTS	PARKING LIGHTS, PANEL LIGHTS	TURN SIGNAL	HAZARD WARNING	WINDSHIELD WASHER
\bigcirc			35	[;;]	\Box
WINDSHIELD WIPER	WINDSHIELD WIPER AND WASHER	WINDSCREEN DEMISTING AND DEFROSTING	VENTILATING FAN	REAR WINDOW DEFOGGER	REAR WINDOW WIPER
Ф		£.			
REAR WINDOW WASHER	FUEL	ENGINE COOLANT TEMPERATURE	BATTERY CHARGING CONDITION	ENGINE OIL	SEAT BELT
(!)	(P)	*	*	9	_
BRAKE FAILURE	PARKING BRAKE	FRONT HOOD	REAR HOOD (TRUNK)	HORN	LIGHTER

Fig. 3 80a53b2d

INTERNATIONAL VEHICLE CONTROL AND DISPLAY SYMBOLS

INTERNATIONAL VEHICLE CONTROL AND DISPLAY SYMBOLS

The graphic symbols illustrated in the following chart (Fig. 3) are used to identify various instrument controls. The symbols correspond to the controls and displays that are located on the instrument panel.

FASTENER IDENTIFICATION

FASTENER IDENTIFICATION

THREAD IDENTIFICATION

SAE and metric bolt/nut threads are not the same. The difference is described in the Thread Notation chart (Fig. 4).

INCH	ł ,	METRIC					
5/16-1	18	M8 X	1.25				
THREAD MAJOR DIAMETER IN INCHES	NUMBER OF THREADS PER INCH	THREAD MAJOR DIAMETER IN MILLIMETERS	DISTANCE BETWEEN THREADS IN MILLIMETERS				

PR606B

Fig. 4 Thread Notation—SAE and Metric

GRADE/CLASS IDENTIFICATION

The SAE bolt strength grades range from grade 2 to grade 8. The higher the grade number, the greater the bolt strength. Identification is determined by the line marks on the top of each bolt head. The actual bolt strength grade corresponds to the number of line marks plus 2. The most commonly used metric bolt strength classes are 9.8 and 12.9. The metric strength class identification number is imprinted on the head of the bolt. The higher the class number, the greater the bolt strength. Some metric nuts are imprinted with a single-digit strength class on the nut face. Refer to the Fastener Identification and Fastener Strength Charts.

FASTENER IDENTIFICATION

Bolt Markings and Torque - Metric

Commercial Steel Class

10.9

12.9

Bolt Head Markings

5

Body Size	Torque						Torque						
Diam.	Diam. Cast Iron Aluminum mm Nom ft-lb Nom ft-lb		n Aluminum Cast Iron Aluminum		Cast Iron Alum		inum						
mm			ft-lb N•m ft-lb		N∙m	ft-lb	N∙m	ft-lb	N∙m	ft-lb	N∙m	ft-lb	
6	9	5	7	4	14	9	11	7	14	9	11	7	
7	14	9	11	7	18	14	14	11	23	18	18	14	
8	25	18	18	14	32	23	25	18	36	27	28	21	
10	40	30	30	25	60	45	45	35	70	50	55	40	
12	70	55	55	40	105	75	80	60	125	95	100	75	
14	115	85	90	65	160	120	125	95	195	145	150	110	
16	180	130	140	100	240	1 <i>7</i> 5	190	135	290	210	220	165	
18	230	1 <i>7</i> 0	180	135	320	240	250	185	400	290	310	230	

Bolt Markings and Torque Values - U.S. Customary

SAE Grade Number

5

8

olt Torque - Grade 5 Bolt	Bolt Torque - Grade 8 Bolt

		Bolt Torque	e - Grade 5 B	olt	Bol	t Torque - G	rade 8 Bolt		
Body Size	Cas	t Iron	Alun	ninum	Cast	Iron	Alum	inum	 -
	N∙m	ft-lb	N∙m	ft-lb	N∙m	ft-lb	N∙m	ft-lb	
1/4 - 20	9	7	8	6	15	11	12	9	
- 28	12	9	9	7	18	13	14	10	
5/16 - 18	20	15	16	12	30	22	24	18	
- 24	23	17	19	14	33	24	25	19	
3/8 - 16	40	30	25	20	55	40	40	30	
- 24	40	30	35	25	60	45	45	35	
7/16 - 14	60	45	45	35	90	65	65	50	
- 20	65	50	55	40	95	<i>7</i> 0	<i>7</i> 5	55	
1/2 - 13	95	<i>7</i> 0	<i>7</i> 5	55	130	95	100	<i>7</i> 5	
- 20	100	<i>7</i> 5	80	60	150	110	120	90	
9/16 - 12	135	100	110	80	190	140	150	110	
- 18	1 <i>5</i> 0	110	115	85	210	155	1 <i>7</i> 0	125	
5/8 - 11	180	135	1 <i>5</i> 0	110	255	190	205	150	
- 18	210	155	160	120	290	215	230	1 <i>7</i> 0	
3/4 - 10	325	240	255	190	460	340	365	270	
- 16	365	270	285	210	515	380	410	300	
7/8 - 9	490	360	380	280	<i>7</i> 45	550	600	440	
- 14	530	390	420	310	825	610	660	490	
1 - 8	720	530	<i>57</i> 0	420	1100	820	890	660	
- 14	800	590	650	480	1200	890	960	710	

FASTENER STRENGTH

HOW TO DETERMINE BOLT STRENGTH

	Mark	Class		Mark	Class
Hexagon head bolt	Bolt 6— head No. 7— 8— 9— 10— 11—	4T 5T 6T 7T 8T 9T 10T	Stud bolt	No mark	4 T
	No mark	4 T			
Hexagon flange bolt w/washer hexagon bolt	No mark	4 T		Grooved	6 T
Hexagon head bolt	Two protruding lines	5T			
Hexagon flange bolt w/washer hexagon bolt	Two protruding lines	6T	Welded bolt		
Hexagon head bolt	Three protruding lines	71			4 T
Hexagon head bolt	Four protruding lines	8T			

METRIC SYSTEM

WARNING: USE OF AN INCORRECT FASTENER MAY RESULT IN COMPONENT DAMAGE OR PERSONAL INJURY.

Figure art, specifications and torque references in this Service Manual are identified in metric and SAE format.

During any maintenance or repair procedures, it is important to salvage metric fasteners (nuts, bolts, etc.) for reassembly. If the fastener is not salvageable, a fastener of equivalent specification should be used.

The metric system is based on quantities of one, ten, one hundred, one thousand and one million (Fig. 5).

Mega	-	(M) Million	Deci	-	(D)	Tenth
Kilo	-	(K) Thousand	Centi	-	(C)	Hundreth
		Milli - (m	n) Thousar	ndth		

J901N-2

Fig. 5 Metric Prefixes

The following chart will assist in converting metric units to equivalent English and SAE units, or vise versa.

Refer to the Conversion Chart to convert torque values listed in metric Newton- meters $(N \cdot m)$. Also, use the chart to convert between millimeters (mm) and inches (in.)

TORQUE REFERENCES

Individual Torque Charts appear at the end of many Groups. Refer to the Standard Torque Specifications Chart for torque references not listed in the individual torque charts.

CONVERSION FORMULAS AND EQUIVALENT VALUES

Multiply	Ву	To Get	Multiply	Ву	To Get
in-lbs	x 0.11298	= Newton-Meters (N⋅m)	N⋅m	x 8.851	= in-lbs
ft-lbs	x 1.3558	= Newton-Meters (N·m)	N·m	x 0.7376	= ft-lbs
Inches Hg (60°F)	x 3.377	= Kilopascals (kPa)	kPa	x 0.2961	= Inches Hg
psi	x 6.895	= Kilopascals (kPa)	kPa	x 0.145	= psi
Inches	x 25.4	= Millimeters (mm)	mm	x 0.03937	= Inches
Feet	x 0.3048	= Meters (M)	M	x 3.281	= Feet
Yards	x 0.9144	= Meters (M)	M	x 1.0936	= Yards
Miles	x 1.6093	= Kilometers (Km)	Km	x 0.6214	= Miles
mph	x 1.6093	= Kilometers/Hr. (Km/h)	Km/h	x 0.6214	= mph
Feet/Sec.	x 0.3048	= Meters/Sec. (M/S)	M/S	x 3.281	= Feet/Sec.
Kilometers/Hr.	x 0.27778	= Meters/Sec. (M/S)	M/S	x 3.600	= Kilometers/Hr.
mph	x 0.4470	= Meters/Sec. (M/S)	M/S	x 2.237	= mph
		COMMON METRIC I	EQUIVALENTS		
1 Inch	= 25 Millimete	ers	1 Cubic Inch	= 16 Cubic C	Centimeters
1 Foot	= 0.3 Meter		1 Cubic Foot	= 0.03 Cubic	Meter
1 Yard	= 0.9 Meter		1 Cubic Yard	= 0.8 Cubic I	Meter
1 Mile	= 1.6 Kilomet	ters			

METRIC CONVERSION

	_	in-lbs	s to N·m			N·m to in-lbs					
in-	N⋅m in-lb	N⋅m in-lb	N-m in-lb	N⋅m in-lb	N·m N	N·m in-lb	N∙m	in-lb N⋅m	in-lb N⋅m	in-lb N⋅m	in-lb
lb											
2 4	.2260 42 .4519 44 .6779 46 .9039 48 1.1298 50 1.3558 52 1.5818 54 1.8077 56 2.0337 58 2.2597 60	4.7453 82 4.9713 84	9.2646 122 9.4906 124	13.7839 162 14.0099 164	18.3032 18.5292	2 1.7702 4 3.5404	4.2 4.4	37.1747 8.2 38.9449 8.4	72.5792 12.2 74.3494 12.4	107.9837 16.2 109.7539 16.4	143.3882 145.1584
6	.6779 46	5.1972 86	9.7165 126	14.2359 166	18.7552	6 5.3107	4.6	40.7152 8.6	76.1197 12.6	111.5242 16.6	146.9287
8 10	1.1298 50	5.6492 90	10.1685 130	14.4618 168	19.2071 1	8.8511	4.8 5	42.4854 8.8 44.2556 9	77.8899 12.8	115.0646 17	150.4691
12	1.3558 52 1.5818 54	5.8751 92 6.1011 94	10.3944 132 10.6204 134	14.9138 172 15 1397 174	19.4331 1 19.6590 1	1.2 10.6213 1.4 12.3916	5.2 5.4	46.0258 9.2 47.7961 9.4	81.4303 13.2 83.2006 13.4	116.8348 17.2 118.6051 17.4	152.2393 154.0096
16	1.8077 56	6.3270 96	10.8464 136	15.3657 176	19.8850 1	1.6 14.1618	5.6	49.5663 9.6	84.9708 13.6	120.3753 17.6	155.7798
10 12 14 16 18 20 22	2.2597 60	6.7790 100	11.0723 138	15.8176 180	20.1110 1	1.8 15.9320 2 17.7022	5.8 6	53.1067 10	88.5112 14	107.9837 16.2 109.7539 16.4 111.5242 16.6 113.2944 16.8 115.0646 17 116.8348 17.2 118.6051 17.4 120.3753 17.6 122.1455 17.8 123.9157 18 125.6860 18.5	157.5500
22		4.7453 82 4.9713 84 5.1972 86 5.4232 88 5.6492 90 5.8751 92 6.1011 94 6.3270 96 6.5530 98 6.7790 100 7.0049 102 7.2309 104 7.4569 106 7.6828 108 7.9088 110 8.1348 112 8.3607 114 8.5867 116 8.8127 118 9.0386 120	11.5243 142 11.7502 144	14.0099 164 14.2359 166 14.4618 168 14.6878 170 14.9138 172 15.1397 174 15.5917 178 15.5917 178 15.8176 180 16.0436 182 16.2696 184 16.4955 186 16.7215 188 16.9475 190 17.1734 192 17.3994 194 17.6253 196 17.8513 198 18.0773 200	18.3032 18.5292 18.7552 18.9811 19.2071 19.4331 19.6590 19.8850 20.5629 20.7889 21.0148 21.2408 21.4668 3 21.6927 21.9187 32.3706 3 22.5966 4	2 1.7702 4 3.5404 6 5.3107 8 7.0809 1 8.8511 1.2 10.6213 1.4 12.3916 1.6 14.1618 1.8 15.9320 2 17.7022 2.2 19.4725 2.4 21.2427 2.6 23.0129 2.8 24.7831 3 26.5536 3.4 30.0938 3.6 31.8640 3.8 35.4045	6.2 6.4	38.9449 8.4 40.7152 8.6 42.4854 8.8 44.2556 9 46.0258 9.2 47.7961 9.4 49.5663 9.6 51.3365 9.8 53.1067 10 54.8770 10.2 56.6472 10.4 58.4174 10.6 60.1876 10.8 61.9579 11 63.7281 11.2 65.4983 11.4 67.2685 11.6 69.0388 11.8 70.8090 12	72.5792 12.2 74.3494 12.4 76.1197 12.6 77.8899 12.8 79.6601 13.2 83.2006 13.4 84.9708 13.6 86.7410 13.8 88.5112 14 90.2815 14.2 92.0517 14.4 93.8219 14.6 95.5921 14.8 97.3624 15.99.1326 15.2 100.9028 15.4 102.6730 15.6 104.4433 15.8 106.2135 16	125.6860 18.5 127.4562 19	143.3882 145.1584 146.9287 148.6989 150.4691 152.2393 154.0096 155.7798 157.5500 159.3202 163.7458 168.1714 172.5970 177.0225
24 26 28 30 32 34 36 38 40	2.7116 64 2.9376 66	7.4569 106	11.9762 146	16.4955 186	21.0148 2	2.6 23.0129	6.6	58.4174 10.6	93.8219 14.6	129.2264 19.5	172.5970
30	3.1635 68 3.3895 70 3.6155 72	7.9088 110	12.4281 150	16.9475 190	21.4668	3 26.5534	0.0 7	61.9579 11	97.3624 15	132.7669 20.5	181.4480
32	3.6155 72 3.8414 74	8.1348 112 8.3607 114	12.6541 152 12.8801 154	17.1734 192 17.3994 194	21.6927 3 21.9187 3	3.2 28.3236 3.4 30.0938	7.2 7.4	63.7281 11.2 65.4983 11.4	99.1326 15.2 100.9028 15.4	134.5371 21 136.3073 22	185.8736 194.7247
36	3.8414 74 4.0674 76 4.2934 78	8.5867 116	13.1060 156	17.6253 196	22.1447	31.8640	7.6	67.2685 11.6	102.6730 15.6	138.0775 23	203.5759
40	4.2934 76 4.5193 80	9.0386 120	9.2646 122 9.4906 124 9.7165 126 9.9425 128 10.1685 130 10.3944 132 10.6204 134 10.8464 136 11.0723 138 11.2983 140 11.5243 142 11.7502 144 11.9762 146 12.2022 148 12.4281 150 12.6541 152 12.8801 154 13.1060 156 13.3320 158 13.5580 160	18.0773 200	22.5966	35.4045	8	70.8090 12	106.2135 16	127.4562 19 129.2264 19.5 130.9966 20 132.7669 20.5 134.5371 21 136.3073 22 138.0775 23 139.8478 24 141.6180 25	181.4480 185.8736 194.7247 203.5759 212.4270 221.2781
	•		s to N-m	<u>'</u>		'	•	N-m	to ft-lbs	· ·	
ft-lb	N⋅m ft-lb	N⋅m ft-lb	N⋅m ft-lb	N⋅m ft-lb	N·m N		N∙m	ft-lb N⋅m	ft-lb N·m	ft-lb N⋅m	ft-lb
1 2	1.3558 21 2.7116 22	28.4722 41 29.8280 42 31.1838 43 32.5396 44 33.8954 45 35.2513 46 36.6071 47 37.9629 48 39.3187 49 40.6745 50 42.0304 51 43.3862 52 44.7420 53 46.0978 54 47.4536 55 48.8094 56 50.1653 57 51.5211 58 52.8769 59 54.2327 60	55.5885 61 56.9444 62 58.3002 63 59.6560 64 61.0118 65 62.3676 66 63.7234 67 65.0793 68 66.4351 69 67.7909 70 69.1467 71 70.5025 72 71.8583 73 73.2142 74 74.5700 75 75.9258 76 77.2816 77 77.86374 78 79.9933 79 81.3491 80	82.7049 81 84.0607 82 85.4165 83 86.7723 84 88.1281 85 89.4840 86 90.8398 87 92.1956 88 93.5514 89 94.9073 90 96.2631 91 97.6189 92 98.9747 93 100.3316 94 101.6862 95 103.0422 96 104.3980 97 105.7538 98 107.1196 99 108.4654 100	109.8212 1 111 1770 2	1.7376 2.1.4751 3.2.2127 4.2.9502 5.3.6878 6.3.4.4254 7.5.1629 8.5.9005 9.6.6381 10.7.3756 11.8.1132 12.8.8507 13.9.5883 14.10.3259 15.11.0634 16.11.0634 16.11.0634 16.11.0634 17.12.5386 18.13.2761 19.14.0137	21 22	15.9888 41 16.2264 42 16.9639 43 17.7015 44 18.4391 45 19.1766 46 19.9142 47 20.6517 48 21.3893 49 22.1269 50 22.8644 51 23.6020 52 24.3395 53 25.0771 54 25.8147 55 26.5522 56 27.2898 57 28.0274 58 29.5025 60	30.2400 61 30.9776 62 31.7152 63 32.4527 64 33.1903 65 33.9279 66 34.6654 67 35.4030 68 36.1405 69 36.8781 70 37.6157 71 38.3532 72 39.0908 73 39.8284 74 40.5659 75 41.3035 76 42.0410 77 42.7786 78 43.5162 79 44.2537 80	44.9913 81 45.7289 82 46.4664 83 47.2040 84 47.9415 85 48.6791 86 49.4167 87 50.1542 88 50.8918 89 51.6293 90 52.3669 91 53.1045 92 53.8420 93 54.5720 94 55.3172 95 56.0547 96 56.7923 97 57.5298 98 58.2674 99	59.7425 60.4801 61.2177 61.9552 62.6928 63.4303 64.1679 64.9545 65.6430 66.3806 67.1181 67.8557 68.5933 69.3308 70.0684 70.0684 70.8660 71.5435 72.2811 73.0187
3	4.0675 23	31.1838 43	58.3002 63	85.4165 83	112.5328	3 2.2127	23	16.9639 43	31.7152 63	46.4664 83	61.2177
2 3 4 5 6 7	2.7116 22 4.0675 23 5.4233 24 6.7791 25 8.1349 26 9.4907 27 10.8465 28 12.2024 29 13.5582 30 14.9140 31 16.2698 32 17.6256 33	32.5396 44 33.8954 45	61.0118 65	88.1281 85	111.1770 2 112.5328 3 113.8888 4 115.2446 5 116.6004 6 117.93120 8 120.6678 9 122.0236 1 124.7352 1 124.7352 1 126.0910 1 127.4468 1 128.8026 1 130.1586 1 131.5144 1 132.8702 1 134.2260 1 135.5820 2	3.6878	2 4 25	18.4391 45	32.4527 64 33.1903 65	47.2040 84 47.9415 85	62.6928
6 7	8.1349 26 9.4907 27	35.2513 46 36.6071 47	62.3676 66 63.7234 67	89.4840 86 90.8398 87	116.6004 6 117.9562 7	5 4.4254 7 5.1629	26 27	19.1766 46 19.9142 47	33.9279 66 34.6654 67	48.6791 86 49.4167 87	63.4303 64.1679
8 9	10.8465 28	37.9629 48	65.0793 68	92.1956 88	119.3120 8	5.9005	28	20.6517 48	35.4030 68	50.1542 88	64.9545
10 11	13.5582 30	40.6745 50	67.7909 70	93.5514 69 94.9073 90	122.0236	10 7.3756	30	22.1269 50	36.8781 70	51.6293 90	66.3806
11 12	14.9140 31 16.2698 32	42.0304 51 43.3862 52	69.1467 /1 70.5025 72	96.2631 91 97.6189 92	123.3794 1 124.7352 1	11 8.1132 12 8.8507	31 32	22.8644 51 23.6020 52	37.6157 /1 38.3532 72	52.3669 91 53.1045 92	67.1181 67.8557
12 13 14 15 16	17.6256 33	44.7420 53	71.8583 73	98.9747 93	126.0910 1	9.5883	33	24.3395 53	39.0908 73	53.8420 93	68.5933
15	18.9815 34 20.3373 35	47.4536 55	74.5700 75	101.6862 95	128.8026 1	15 11.0634	35	25.8147 55	40.5659 75	55.3172 95	70.0684
16 17	21.6931 36 23.0489 37	48.8094 56 50.1653 57	75.9258 76 77.2816 77	103.0422 96 104.3980 97	130.1586 1 131.5144 1	16 11.8010 17 12.5386	36 37	26.5522 56 27.2898 57	41.3035 76 42.0410 77	56.0547 96 56.7923 97	70.8060 71.5435
18	21.6931 36 23.0489 37 24.4047 38 25.7605 39	51.5211 58	78.6374 78	105.7538 98	132.8702 1	13.2761	38	28.0274 58	42.7786 78	57.5298 98 58.2674 00	72.2811
20	27.1164 40	54.2327 60	81.3491 80	108.4654 100	135.5820 2	20 14.7512	40	29.5025 60	44.2537 80	59.0050 100	73.7562
		in.	to mm						to in.		
in.	mm in.	mm in.	mm in.	mm in.	mm n		mm	in. mm	in. mm	in. mm	in.
.01	.254 .21 .508 .22	5.588 .42	10.668 .62	15.748 .82	20.574 . 20.828 .	02 .00079	.22	.00827 .41 .00866 .42 .00906 .43	.01654 .62	.02402 .81 .02441 .82 .02480 .83	.03189 .03228
.03	.762 .23 1.016 .24	5.842 .43 6.096 .44	10.922 .63 11.176 .64	16.002 .83 16.256 .84	21.082 L 21.336 L	03 .00118 04 .00157	.23 .24	.00906 .43	.01693 .63	.02480 .83	.03268
.05 .06	1.270 .25 1.524 .26 1.778 .27	6.350 .45	11.430 .65	16.510 .85	21.590	05 .00197	.25	.00984 .45	.01772 .65	.02520 .84 .02559 .85	.03346
.07	1.778 .27	6.858 .47	11.938 .67	17.018 .87	22.098	07 .00276	.27	.01024 .40	.01850 .67	.02538 .86 .02538 .86 .02638 .87 .02677 .88 .02717 .89	.03425
.08 .09	2.032 .28 2.286 .29	7.112 .48 7.366 .49	12.192 .68 12.446 .69	17.272 .88 17.526 .89	22.352 . 22.606 .	08 .00315 09 .00354	.28 .29	.01102 .48 .01142 .49	.01890 .68 .01929 .69	.02677 .88 .02717 .89	.03465
.10 .11	2.540 .30 2.794 .31	7.620 .50 7.874 51	12.700 .70 12.954 .71	17.780 .90 18.034 91	22.860 23.114	10 .00394 11 .00433	.30 31	.01181 .50 01220 51	.01969 .70 02008 71	.027561.90	.03228 .03268 .03307 .03346 .03386 .03425 .03504 .03543 .03583 .03622
.12	3 0/18 1 32	8.128 .52	13.208 .72	18.288 .92	23.368	12 .00472	.32	.01260 .52	.02047 .72	.02795 .91 .02835 .92	.03622
.13 .14	3.302 .33 3.556 .34 3.810 .35 4.064 .36 3.318 .37 4.522 .38	8.636 .54	13.462 .73	18.542 .93 18.796 .94	23.622	13 .00512 14 .00551	.33 .34	.01299 .53	.02087 .73	.02874 .93 .02913 .94	.03661 .03701
.15 .16	3.810 .35 4.064 .36	8.890 .55 9.144 .56	13.970 .75 14.224 .76	19.050 .95 19.304 .96	24.130 24.384	15 .00591 16 .00630	.35 .36	.01378 .55 .01417 .56	.02165 .75 02205 76	.02913 .94 .02953 .95 .02992 .96	.03740
.17	3.318 .37	9.398 .57	14.478 .77	19.558 .97	24.638	17 .00669	.37	.01457 .57	.02244 .77	.03032 .97	.03819
.18 .19	4.0201.39	5.334 .41 5.588 .42 5.842 .43 6.096 .44 6.350 .45 6.604 .46 6.858 .47 7.112 .48 7.366 .49 7.620 .50 7.874 .51 8.128 .52 8.382 .53 8.636 .54 8.890 .55 9.144 .56 9.398 .57 9.652 .58 9.906 .59 10.160 .60	10.414 .61 10.668 .62 10.922 .63 11.176 .64 11.430 .65 11.684 .66 11.938 .67 12.192 .68 12.446 .69 12.700 .70 12.954 .71 13.208 .72 13.462 .73 13.716 .74 13.970 .75 14.224 .76 14.478 .77 14.732 .78 14.986 .79 15.240 .80	15.494	20.828 J 21.082 J 21.336 J 21.590 J 21.844 J 22.098 J 22.352 J 22.606 J 22.860 J 23.368 J 23.876 J 24.130 J 24.384 J 24.638 J 24.892 J 25.146 J	01 .00039 02 .00079 03 .00118 04 .00157 05 .00197 06 .00236 07 .00276 08 .00315 09 .00354 10 .00394 11 .00433 12 .00472 13 .00512 14 .00551 15 .00591 16 .00630 17 .00669 18 .00709 19 .00748	.38 .39	.00945 .44 .00984 .45 .01024 .46 .01063 .47 .01102 .48 .01142 .49 .01181 .50 .01220 .51 .01260 .52 .01299 .53 .01339 .54 .01378 .55 .01417 .56 .01457 .57 .01496 .58 .01535 .59	.01614	.03032 .97 .03071 .98 .03110 .99 .03150 1.00	.03701 .03740 .03780 .03819 .03858 .03898 .03937
.20	5.080 .40	10.160 .60	15.240 .80	20.320 1.00	25.400	20 .00787	.40	.01575 .60	.02362 .80	.03150 1.00	.03937

TORQUE SPECIFICATIONS SPECIFIED TORQUE FOR STANDARD BOLTS

			Specified torque						
Class	Diameter mm	Pitch mm	Hex	agon head	bolt	Hexa	agon flange	bolt	
			N-m	kgf-cm	ft-lbf	N-m	kgf-cm	ft-lbf	
	6	1	5	55	48 inlbf	6	60	52 inlbf	
	8	1.25	12.5	130	9	14	145	10	
4T	10	1.25	26	260	19	29	290	21	
	12	1.25	47	480	35	53	540	39	
	14	1.5	74	760	55	84	850	61	
	16	1.5	115	1,150	83	_	_	_	
	6	1	6.5	65	56 inlbf	7.5	75	65 inlbf	
	8	1.25	15.5	160	12	17.5	175	13	
5T	10	1.25	32	330	24	36	360	26	
	12	1.25	59	600	43	65	670	48	
	14	1.5	91	930	67	100	1,050	76	
	16	1.5	140	1,400	101	_	_	_	
	6	1	8	80	69 inlbf	9	90	78 inlbf	
	8	1.25	19	195	14	21	210	15	
6T	10	1.25	39	400	29	44	440	32	
	12	1.25	71	730	53	80	810	59	
	14	1.5	110	1,100	80	125	1,250	90	
	16	1.5	170	1,750	127	_	_	_	
	6	1	10.5	110	8	12	120	9	
	8	1.25	25	260	19	28	290	21	
7T	10	1.25	52	530	38	58	590	43	
	12	1.25	95	970	70	105	1,050	76	
	14	1.5	145	1,500	108	165	1,700	123	
	16	1.5	230	2,300	166	_	_	_	
	8	1.25	29	300	22	33	330	24	
8T	10	1.25	61	620	45	68	690	50	
	12	1.25	110	1,100	80	120	1,250	90	
	8	1.25	34	340	25	37	380	27	
9T	10	1.25	70	710	51	78	790	57	
	12	1.25	125	1,300	94	140	1,450	105	
	8	1.25	38	390	28	42	430	31	
10T	10	1.25	78	800	58	88	890	64	
	12	1.25	140	1,450	105	155	1,600	116	
	8	1.25	42	430	31	47	480	35	
11T	10	1.25	87	890	64	97	990	72	
	12	1.25	155	1,600	116	175	1,800	130	