Intros + Lambda Calculus CS 130 sp 21 4/2/21

Your TAs

Michael James

Zheng Guo

Agenda

Setup

What is the lambda calculus

Syntax

Beta reductions

PA0 tips

Agenda

Setup

What is the lambda calculus

Syntax

Beta reductions

PA0 tips

Setup

HW0 will have you manually evaluate lambda calculus terms

Elsa checks that reductions are valid

Elsa - what is it and how do I use it?

Elsa is implemented as a Haskell package

How do I run elsa and do the HW?

Options:

- 1. SSH into ieng6
- 2. Install stack locally
- 3. Use online demo

SSH into ieng6

Pros:

- Should have everything installed already
- Standardized and easy for us to help us with

Cons:

- Requires internet connection
- Watch out for quota!

Install stack locally

Pros:

- Everything can be done offline
- We will use Haskell throughout the class, you might want it locally

Cons:

- <u>Installing Haskell's stack tool</u> might be annoying
- Unix: should be easy
- Mac: should also be easy with brew
- Windows: Installer from Stack website
- WSL: ??
- \$ stack install elsa

Online demo

Pros:

• Will "just work"

Cons:

Very clumsy for doing the homework

Doing the homework

make test will check your work

Make sure to commit your work to GH!

Submit a .zip of your git repo to gradescope (use GH's "download zip" feature)

Confused? The submission instructions are quite detailed

Do not use =*> or =~> operators!

Agenda

Setup

What is the lambda calculus

Syntax

Beta reductions

PA0 tips

What is the lambda calculus

Very simple programming language

Still Turing complete!

What is the lambda calculus

It might look silly but...

- Simple formal model of programming
- Provides a minimal framework for exploring and reasoning about various PL concepts
- Fundamental to lots of PL research (especially functional programming)
- Definitely on the exam

Agenda

Setup

What is the lambda calculus

Syntax

Beta reductions

PA0 tips

Syntax

x : Variable

 $(\x -> M)$: Function abstraction (M is a lambda term)

(M N) : Function application (M, N are lambda terms)

All we can do is declare functions and apply functions!

Functions are *first-class*: We can apply functions to other functions, and a function can return another function

Syntax

```
\a -> (\b -> b) -- Function that takes a parameter "a" and
-- returns a function that takes a param "b"
\a -> \b -> b -- Syntactic sugar for above
\a b -> b -- More syntactic sugar
```

Syntax Quiz

Which is equivalent to:

```
(\foo -> (\bar -> (\baz -> baz bar foo)))
```

No reductions! Just syntactic sugar!

```
a. (\foo bar baz -> baz bar foo)
b. (\foo -> (\bar -> (\baz -> (baz (bar foo)))))
c. (\foo -> \bar) -> (\baz -> baz bar foo)
d. A & B
```

Syntax Quiz

Which is equivalent to:

```
(\foo -> (\bar -> (\baz -> baz bar foo)))
```

No reductions! Just syntactic sugar!

```
a. (\foo bar baz -> baz bar foo)
```

- b. (\foo -> (\bar -> (\baz -> (baz (bar foo)))))
- c. (\foo -> \bar) -> (\baz -> baz bar foo)
- d. A & B

Syntax Quiz

Which is equivalent to:

```
(\foo -> (\bar -> (\baz -> baz bar foo)))

No reductions! Just syntactic sugar!

a. (\foo bar baz -> baz bar foo)

b. (\foo -> (\bar -> (\baz -> (baz (bar foo)))))
c. (\foo -> \bar) -> (\baz -> bar bar foo)

d. A & B
```

Syntactic Sugar

```
- \x -> (\y -> (\z -> E)) we can rewrite: \x -> \y -> \z -> E
```

```
- \x -> \y -> \z -> \E we can rewrite: \x y z -> \E
```

- (((E1 E2) E3) E4) we can rewrite: E1 E2 E3 E4

Associativity

Application is **left** associative!

Abstraction is **right** associative!

$$\x -> \y -> \z -> \E =$$

$$\x \rightarrow (\y \rightarrow (\z \rightarrow E)$$

Fully parenthesize: \b1 b2 -> ITE b1 b2 FALSE

```
a. ((((\b1 b2 -> ITE) b1) b2) FALSE)
b. (\b1 b2 -> (ITE (b1 (b2 FALSE))))
c. (\b1 b2 -> ((ITE b1) b2) FALSE)
d. (\b1 b2 -> (ITE b1) (b2 FALSE))
```

Fully parenthesize:\b1 b2 -> ITE b1 b2 FALSE

```
a. ((((\b1 b2 -> ITE) b1) b2) FALSE)
b. (\b1 b2 -> (ITE (b1 (b2 FALSE))))
c. (\b1 b2 -> ((ITE b1) b2) FALSE)
d. (\b1 b2 -> (ITE b1) (b2 FALSE))
```

Agenda

Setup

What is the lambda calculus

Syntax

Beta reductions

PA0 tips

Alpha/Beta reductions

Beta step: Calling a function

Alpha step: Renaming a variable inside a function

Beta step

What do we do with $(\x -> x)$ y?

We can **substitute** y for x inside the body of the function: we just get y

More examples:

(\a b c -> b) d becomes (\b c -> b)

(\b c -> b) e becomes (\c -> e)

(\a b c -> b) d e becomes (\c -> e)

In Elsa

```
1
2 eval beta:
3 (\f x -> f (f x)) g
```

In Elsa

```
eval beta
      (1x \rightarrow g(gx))
```

In Elsa

```
1
2 eval beta:
3 (\f x -> f (f x)) g
4 =b> \x -> g (g x)
```

```
What does: (\f x -> f (f x)) incr one beta-reduce to (in one step)?

a. (\x -> incr (f x)) one
```

- b. $(\x -> one (one x)) incr$
- c. $(\x -> incr (incr x))$ one
- d. $(\f -> f (f one)) incr$

```
What does ((x - x)) incr one beta-reduce to (in one step)?

a. (x - x) incr (x - x) one

b. (x - x) one (x - x) incr

c. (x - x) incr (x - x) one

d. (x - x) incr (x - x) one

incr (x - x) incr (x - x) one

incr (x - x) incr (x - x) one
```

```
What does: (\f x -> f (\f -> f x) x) incr one beta-reduce to?

a. (\x -> incr (\f -> incr x) x) one

b. (\x -> incr (\incr -> incr x) x) one

c. (\f -> incr (incr x) x) one

d. (\x -> incr (\f -> f x) x) one
```


Agenda

Setup

What is the lambda calculus

Syntax

Beta reductions

PA0 tips

PA0 Overview

Goal: Simplify lambda calculus expressions via alpha/beta steps

You will need to understand:

- How to apply alpha/beta steps
- The definitions in each source file

Be aware: the lambda calculus is weird! This might take time

PA0 Overview

Each problem will define higher-level concepts with lambda terms:

```
-- DO NOT MODIFY THIS SEGMENT

let TRUE = \x y -> x

let FALSE = \x y -> y

let ITE = \b x y -> b x y

let NOT = \b x y -> b y x

let AND = \b1 b2 -> ITE b1 b2 FALSE

let OR = \b1 b2 -> ITE b1 TRUE b2
```

Most of these definitions will not make sense on their own!

TRUE and FALSE make no sense without the definition of ITE -- you need to read all the definitions and try to figure out how they work together

PA0 overview

Elsa also offers a =d> operator

This allows you to replace symbols with their definition -- this is key! Use it early

```
    DO NOT MODIFY THIS SEGMENT

let TRUE = \x y -> x
let FALSE = \x y -> y
        = \b x y -> b x y
        = \b x y -> b y x
let NOT
let AND
        = \b1 b2 -> ITE b1 b2 FALSE
          = \b1 b2 -> ITE b1 TRUE b2
let OR

    YOU SHOULD ONLY MODIFY THE TEXT BELOW, JUST THE PARTS MARKED AS COMMENTS

eval not true :
 NOT TRUE
  -- (a) fill in your reductions here
  =d> FALSE
```

lof APPLE = X >X

However, you can also make the problems too complicated...

If we replace all definitions, we might end up with too much complexity!

Which of these is easier to work with? Why?

```
eval not_true :
NOT TRUE
=d> (\b x y -> b y x) TRU<mark>E</mark>
```

```
eval not_true :
NOT TRUE
=d> (\b x y -> b y x) (\x y -> x)
```

Q & A / Live Examples