به نام خدا

طراحی سیستم های دیجیتال ۱

فصل سوم ساده سازی با استفاده از جدول کارنو (K-Map)

(K-Map) جدول کارنو

💠 یک نمایش گرافیکی از جدول صحت است.

💠 جدول کارنو تابع دو متغیره:

AB
C 00 01 11 10
0 2 6 4
1 3 7 5

💠 جدول کارنوی تابع سه متغیره:

(K-Map) جدول كارنو

جدول کارنو تابع چهار متغیره:

💠 جدول كارنوى تابع پنج متغيره:

(K-Map) جدول کارنو

💠 رسم جدول کارنوی یک تابع:

$$\begin{split} f(A,B,C) &= m(0,3,5) = m_0 + m_3 + m_5 \\ &= \prod M(1,2,4,6,7) = M_1 M_2 M_4 M_6 M_7 \end{split}$$

$f(A,B,C) = AB + B\bar{C}$

$$f(A,B,C) = \sum m(2,6,7)$$

(K-Map) جدول کارنو

💠 رسم جدول کارنوی یک تابع:

یافتن لیست جملات مینیمم یا ماکزیمم یک تابع

$$f(A, B, C) = \prod M(0,1,3,4,5)$$

√ جدول كارنو (K-Map)

💠 رسم جدول کارنوی یک تابع به فرم POS:

$$f(A,B,C,D) = (A+C)(B+C)(\bar{B}+\bar{C}+D)$$

$$f(A, B, C, D) = \prod M(0,1,4,5,6,8,9,14)$$

$$f(A, B, C, D) = \sum m(2,3,7,10,11,12,13,15)$$

(K-Map) جدول کارنو

$$f(A,B,C,D) = (A+C)(B+C)(\bar{B}+\bar{C}+D)$$

$$\bar{f}(A, B, C, D) = \overline{(A+C)(B+C)(\bar{B}+\bar{C}+D)}$$

$$= \overline{(A+C)} + \overline{(B+C)} + \overline{(\bar{B}+\bar{C}+D)}$$

$$= \bar{A}\bar{C} + \bar{B}\bar{C} + BC\bar{D}$$

- یک های تابع \overline{f} در جدول کارنو همان صفرهای تابع f می باشند که معادل با لیست جملات ماکزیمم تابع f هستند.
- صفر های تابع \overline{f} در جدول کارنو همان یک های تابع f می باشند که معادل با لیست جملات مینیمم تابع f هستند.

$$f(A, B, C, D) = \prod M(0,1,4,5,6,8,9,14) = \sum m(2,3,7,10,11,12,13,15)$$

$$f(A,B,C,D) = (\bar{A} + \bar{B})(\bar{A} + C + \bar{D})(\bar{B} + \bar{C} + \bar{D})$$

$$\bar{f}(A, B, C, D) = \overline{(\bar{A} + \bar{B})(\bar{A} + C + \bar{D})(\bar{B} + \bar{C} + \bar{D})}$$

$$= \overline{(\bar{A} + \bar{B})} + \overline{(\bar{A} + C + \bar{D})} + \overline{(\bar{B} + \bar{C} + \bar{D})}$$

$$= AB + A\bar{C}D + BCD$$

$\sqrt{\mathbb{K}-\mathbb{M}}$ ول کارنو ($\mathbb{K}-\mathbb{M}$

اليست جملات مينيمم تابع را بيابيد.

$$f(A, B, C, D) = \sum m(0, 1, 2, 3, 4, 5, 6, 8, 10, 11)$$

$\sqrt{\text{K-Map}}$ همسایگی در جدول کارنو

(Logically Adjacent) بصورت منطقی همسایه هستند m_i و m_i بصورت منطقی همسایه هستند $(m_{12}) \, AB \, \bar{C} \, \bar{D}$ و $(m_{14}) \, AB \, \bar{C} \, \bar{D}$ و $(m_{12}) \, AB \, \bar{C} \, \bar{D}$ و $(m_{12}) \, AB \, \bar{C} \, \bar{D}$

در این حالت این دو می توانند باهم ترکیب شوند که نتیجه آن $AB\overline{D}$ می شود.

💠 بطور کلی هر دو ترم همسایه می توانند ترکیب شده و یک متغیر را حذف کنند.

$$f(x,y) = \sum m(1,2,3)$$

$$f(x,y) = \bar{x}y + x\bar{y} + xy = x + y$$

❖ عبارت معادل همسایگی ها می شود آن متغیرهایی که تغییر نکرده اند.

$\sqrt{\text{K-Map}}$ همسایگی در جدول کارنو

اکارنوی ۳ متغیره:

$$f(A,B,C) = AB + B\bar{C}$$

$$f(A,B,C) = B\bar{C} + AB$$

$$F(x, y, z) = \Sigma(3, 4, 6, 7)$$

$$f(x, y, z) = x\bar{z} + yz$$

$$F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$$

$$f(x, y, z) = \bar{z} + x\bar{y}$$

√ همسایگی در جدول کارنو (K-Map)

$f(A,B,C) = AB + B\bar{C}$

$$f(A,B,C) = B\bar{C} + AB$$

$F(x, y, z) = \Sigma(3, 4, 6, 7)$

$$f(x, y, z) = x\bar{z} + yz$$

$$F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$$

$$f(x, y, z) = \bar{z} + x\bar{y}$$

💠 در کارنوی ۳ متغیره:

✓هر ۲ خانه همسایه معادل می شود با ۲ متغیر (حذف یک متغیر)
 ✓هر ۴ خانه همسایه معادل می شود با ۱ متغیر (حذف دو متغیر)
 ✓ ۸ خانه همسایه معادل است با تابعی که همیشه یک است

$\sqrt{\text{K-Map}}$ همسایگی در جدول کارنو

کارنوی ۴ متغیره:

(K-Map) همسایگی در جدول کارنو \checkmark

$$F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$$

$$F = y' + w'z' + xz'$$

💠 در کارنوی ۴ متغیره:

 $f(A,B,C,D) = \bar{A}C\bar{D} + \bar{B}\bar{C}D + \bar{A}B\bar{D}$

√ همسایگی در جدول کارنو (K-Map)

💠 کارنوی ۵ متغیره:

$\sqrt{\text{K-Map}}$ همسایگی در جدول کارنو

💠 كارنوى ۵ متغيره:

- ✔ هر ۲ خانه همسایه معادل می شود با ۴ متغیر (حذف یک متغیر)
- ✔ هر ۴ خانه همسایه معادل می شود با ۳ متغیر (حذف دو متغیر)
- ✓ هر ۸ خانه همسایه معادل می شود با ۲ متغیر (حذف سه متغیر)
- ✓ هر ۱۶ خانه همسایه معادل می شود با ۱ متغیر (حذف چهار متغیر)

(K-Map) ساده سازی با جدول کارنو

💠 چند تعریف مهم:

✓ Implicant: یک جمله حاصلضربی است که می تواند برای پوشش دادن

5 Minterms: $\{\bar{A}\bar{B}C, \bar{A}B\bar{C}, \bar{A}BC, AB\bar{C}, ABC\}$ 5 Groups of two minterms: $\{\bar{A}B, AB, \bar{A}C, B\bar{C}, BC\}$

جملات مینیمم یک تابع استفاده شود.

بزرگترین دسته بندی که برای implicant وان درنظر گرفت. $Prime\ Implicant$ $oldsymbol{\sqrt{B}}$, $ar{AC}$

 \checkmark <u>Essential Prime Implicant:</u> یک Prime Implicant است که حداقل یک <u>Essential Prime Implicant</u> ویگری پوشش داده نشده را پوشش دهد.

$\sqrt{\mathbb{K}$ -Map) ساده سازی با جدول کارنو

💠 چند نکته مهم:

- ستغیره، با n خانه هر خانه در یک جدول کارنو n متغیره، با n خانه بصورت منطقی همسایه است.
- ایکی ها توان هایی از ۲ هستند. همچنین همسایگی 2^n خانه، n متغیر را حذف می کند.
- ✔ در ساده سازی بزرگترین همسایگی ممکن را درنظر می گیریم که باعث کاهش تعداد متغیرها می شود.
- √ به منظور پوشش دادن تمامی جملات مینیمم تا حدامکان کمترین دسته بندی ایجاد شود که باعث کاهش تعداد جملات حاصلضربی می شود.
- √ در ترکیب کردن خانه های یک جدول، همیشه با آن خانه هایی شروع می کنیم که برای آن ها تعداد کمتری همسایه وجود دارد (تنهاترین خانه در جدول).

$\sqrt{\text{K-Map}}$ ساده سازی با جدول کارنو

الگوریتم برای استخراج فرم ساده شده SOP از جدول کارنو:

- ۱) تمامی PI ها را مشخص کرده و دورش دایره می کشیم.
 - ۲) همه Essential PI ها را مشخص می کنیم.
- ۳) برای پوشش دادن minterm هایی که با essential پوشش داده نشده اند، کوچکترین PI های باقیمانده را انتخاب می کنیم.

$\sqrt{\mathbb{K}$ -Map) ساده سازی با جدول کارنو

$$f(A,B,C,D) = \sum m(2,3,4,5,7,8,10,13,15)$$

💠 مثال: تابع روبرو را با جدول کارنو ساده کنید.

 $f(A, B, C, D) = \bar{A}\bar{B}C + \bar{A}B\bar{C} + BD + A\bar{B}\bar{D}$

$\sqrt{\mathrm{K-Map}}$ ساده سازی با جدول کارنو

$$f(A,B,C,D) = \sum m(0,5,7,8,10,12,14,15)$$

💠 مثال: تابع روبرو را با جدول کارنو ساده کنید.

$$f(A, B, C, D) = \bar{B}\bar{C}\bar{D} + \bar{A}BD + A\bar{D} + BCD$$

$$f(A, B, C, D) = \bar{B}\bar{C}\bar{D} + \bar{A}BD + A\bar{D} + ABC$$

√ ساده سازی با جدول کارنو (K-Map)

 $f(A,B,C,D) = \sum m(0,4,5,7,8,10,14,15)$

💠 مثال: تابع روبرو را با جدول کارنو ساده کنید.

$$f(A,B,C,D) = \bar{A}\bar{C}\bar{D} + \bar{A}BD + ABC + A\bar{B}\bar{D} \qquad f(A,B,C,D) = \bar{B}\bar{C}\bar{D} + \bar{A}B\bar{C} + BCD + AC\bar{D}$$

$$f(A, B, C, D) = \bar{B}\bar{C}\bar{D} + \bar{A}B\bar{C} + BCD + AC\bar{D}$$

$\sqrt{K-Map}$ ساده سازی با جدول کارنو

 $f(A,B,C,D,E) = \sum m(0,2,4,7,10,12,13,18,23,26,28,29)$

💠 مثال: تابع روبرو را با جدول کارنو ساده کنید.

$$f(A, B, C, D, E) = \bar{A}\bar{B}\bar{D}\bar{E} + BC\bar{D} + \bar{B}CDE + \bar{C}D\bar{E}$$

$\sqrt{\text{K-Map}}$ ساده سازی با جدول کارنو

💠 ساده سازی توابع به فرم POS:

$$f(A,B,C,D) = \prod M(0,1,2,3,6,9,14)$$

 $f(A,B,C,D) = \prod M(0,1,2,3,6,9,14)$ یک روش استفاده از همان الگوریتم قبلی است با این تفاوت M(0,1,2,3,6,9,14)که بجای یک ها، صفر می گذاریم.

$$f(A, B, C, D) = (A + B)(B + C + \bar{D})(\bar{B} + \bar{C} + D)$$

(K-Map) ساده سازی با جدول کارنو

❖ ساده سازی توابع به فرم POS:

- رسم تابع \overline{f} در جدول کارنوullet
- استفاده از الگوریتم قبلی جهت ساده سازی
 - متمم گیری از رابطه بدست آمده

$$\bar{f}(A, B, C, D) = \bar{A}\bar{B} + \bar{B}\bar{C}D + BC\bar{D}$$

$$f(A, B, C, D) = \overline{A}\overline{B} + \overline{B}\overline{C}D + BC\overline{D}$$

$$= (\overline{A}\overline{B})(\overline{B}\overline{C}D)(\overline{B}C\overline{D})$$

$$= (A + B)(B + C + \overline{D})(\overline{B} + \overline{C} + D)$$

$\sqrt{\mathbb{K}$ -Map) ساده سازی با جدول کارنو $\sqrt{\mathbb{K}}$

$$f(A,B,C,D) = \prod M(0,2,3,9,11,12,13,15)$$

$$\bar{f}(A, B, C, D) = \bar{A}\bar{B}\bar{D} + AB\bar{C} + AD + \bar{A}\bar{B}C$$

$$f(A, B, C, D) = \overline{A}\overline{B}\overline{D} + AB\overline{C} + AD + \overline{A}\overline{B}C$$

$$= (\overline{A}\overline{B}\overline{D})(\overline{A}B\overline{C})(\overline{A}D)(\overline{A}\overline{B}C)$$

$$= (A + B + D)(\overline{A} + \overline{B} + C)(\overline{A} + \overline{D})(A + B + \overline{C})$$

❖ مثال: تابع زیر را به فرم SOP و POS ساده کنید.

$$f(A, B, C, D) = \bar{A}\bar{C}D + A\bar{B}\bar{D} + \bar{A}B + BC\bar{D}$$

$\sqrt{\mathrm{K-Map}}$ ساده سازی با جدول کارنو

:(Incompletely Specified Functions) توابع با تعين ناكامل

✓ توابعی که برای برخی ترکیب های متغیرها تعریف نشده اند. مانند کد BCD برای اعداد بیشتر از ۹.

یا d نشان می دهند. d به d به d یا d نشان می دهند. d نشان می دهند.

این X یا d می تواند صفر یا یک باشد. انتخاب آن ها براساس ساده سازی بهتر صورت می گیرد.

$\sqrt{\mathrm{K-Map}}$ ساده سازی با جدول کارنو

$$f(A,B,C,D) = \sum_{m=0}^{\infty} m(1,3,4,7,11) + d(5,12,13,14,15)$$
$$= \prod_{m=0}^{\infty} M(0,2,6,8,9,10) \cdot D(5,12,13,14,15)$$

❖ مثال: تابع زیر را به فرم SOP و POS ساده کنید.

$$f(A, B, C, D) = B\bar{C} + \bar{A}D + CD$$

$$f(A, B, C, D) = (B + D)(\bar{C} + D)(\bar{A} + C)$$

7-Segment ✓

- 💠 هر کدام از segmentها یک دیود نوری هستند.
- ❖ دو نوع آند مشترک (Common Anode) و کاتد مشترک (Common Cathode) دارند.

0	-	2	3	닉
S	Ь	-	8	9

f x w 220 s	_
SY	
fa & m	
	1 1
thit con for	
14	
- fa	

Decimal			Displa	ay Seg	gmen	ts	
Digit	а	b	c	d	e	f	g
0	1	1	1	1	1	1	0
1	0	1	1	0	0	0	0
2	1	1	0	1	1	0	1
3	1	1	1	1	0	0	1
4	0	1	1	0	0	1	1
5	1	0	1	1	0	1	1
6	0	0	1	1	1	1	1
7	1	1	1	0	0	0	0
8	1	1	1	1	1	1	1
9	1	1	1	0	0	1	1

Decimal	Display Segments						
Digit	а	b	c	d	e	f	g
0	1	1	1	1	1	1	0
1	0	1	1	0	0	0	0
2	1	1	0	1	1	0	1
3	1	1	1	1	0	0	1
4	0	1	1	0	0	1	1
5	1	0	1	1	0	1	1
6	0	0	1	1	1	1	1
7	1	1	1	0	0	0	0
8	1	1	1	1	1	1	1
9	1	1	1	0	0	1	1

7-Segment ✓

- ❖ گیتی است که بتوان با آن گیت های OR ،AND و NOT را ساخت.
- \checkmark برای پیاده سازی توابع به فرم SOP استفاده می شود.
 - دارای دو نماد AND-NOT و NOT-OR است.
- mixed-notation: اگر از هر دو نماد برای پیاده سازی استفاده شود.

F = AB + CD

:NAND *

💠 مثال: تابع روبرو را با گیت NAND پیاده سازی کنید.

* NAND چند سطحی:

 $\begin{array}{c}
A \longrightarrow P \\
B \longrightarrow A + B = \overline{A} \cdot \overline{B} \\
B \longrightarrow P \\
B \longrightarrow P \\
NoT - AND$

✓ NOR: برای پیاده سازی
 توابع به فرم POS استفاده
 می شود.

❖ مثال: تابع روبرو را بصورت تمام NAND و تمام NOR پیاده سازی کنید.

