Обучение без учителя. Кластеризация. Тематическое моделирование

Елена Гоголева, Дейвид Капаца, Анастасия Мандрикова

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Семинар по статистическому и машинному обучению

Ноябрь 2021

План доклада

- Обучение без учителя
 - Типы задач и методы их решения
- Иластеризация
 - Постановка задачи
 - Некорректность задачи
 - Вероятностный подход
 - ЕМ-алгоритм для задачи разделения смеси распределений
 - k-means и его связь с EM-алгоритмом
 - Иерархическая кластеризация
 - Формула Ланса-Уильямса
 - Визуализация кластерной структуры
 - Функционалы качества кластеризации
 - Другие подходы и методы (FOREL, DBSCAN, карты Кохонена)

План доклада (продолжение)

- Тематические модели
 - Введение
 - Вероятностная модель коллекции документов
 - Постановка задачи
 - Гипотезы
 - Предварительная обработка документов
 - PLSA
 - Стохастическое матричное разложение
 - Принцип максимума правдоподобия
 - ЕМ-алгоритм
 - Начальное приближение
 - Критерии качества модели

Типы задач и методы их решения

В случае обучения с учителем известны как независимые переменные $X_1,...,X_n,$ так и зависимая переменная Y. В случае обучения без учителя известны лишь $X_1,...,X_n.$

- Задачи сокращения размерности (РСА)
- Задачи визуализации данных (иерархическая кластеризация)
- Задачи кластеризации (k-means)

Постановка задачи

Дано:

X — пространство объектов; $X^n=\{X_i\}_{i=1}^n\subset X$ — обучающая выборка; $X_i\in\mathbf{R}^{\mathrm{p}}$ — объекты определяемые вектором признаков; $\rho:X\times X\to [0,\infty).$

Найти:

 $a: X \to C$, где C — множество непересекающихся кластеров, таких что в каждый кластер попадают близкие относительно выбранной метрики ho индивиды.

Этапы кластеризации

Общая схема кластеризации состоит из:

- выделение признаков которые значимы для кластеризации
- выбор метрики
- разделение на кластеры
- оценка качества кластеризации
- интерпретация результатов

Форма кластеров

Некорректность задачи

- Задача кластеризации не формализована
- Не всегда известно число кластеров
- ullet Результат зависит от выбранной метрики ho
- Разнообразие критериев качества
- Выбор метода кластеризации

Вероятностный подход

Пусть, модель данных состоит из смеси k распределений:

$$p(x) = \sum_{i=1}^{k} \omega_i p_i(x)$$

Оценить по наблюдаемой выборке из p(x):

- $\omega_1 \dots \omega_k$ априорные вероятности появления объектов из соответствующих кластеров;
- $p_1(x) \dots p_k(x)$ плотности распределения признаков внутри кластеров.

ЕМ - алгоритм

Предположим принадлежность $p_1(x) \dots p_k(x)$ одному семейству распределений:

$$p_i(x) = \varphi(\theta_i; x).$$

Согласно методу максимального правдоподобия:

$$\omega, \theta = \operatorname*{argmax}_{\omega,\theta} \sum_{i=1}^n \ln \sum_{j=1}^k \omega_i p_j(\theta_j; x_i).$$

ЕМ - алгоритм

Скрытые переменные $h_{ij} = P(\theta_j|x_i)$ — это вероятность того, что индивид x_i принадлежит j смеси. Найдем по формуле Байеса:

$$h_{ij} = \frac{\omega_j p_j(\theta_j; x_i)}{\sum_{s=1}^k \omega_s p_s(\theta_s; x_i)}.$$

Для любого индивида $\sum\limits_{j=1}^k h_{ij}=1.$

ЕМ - алгоритм

Е - шаг:

Подставляем текущую оценку ω, θ и расчитываем скрытые переменные h_{ij} .

М - шаг:

Решение методом Лагранжа для максимизации $(\sum\limits_{j=1}^k \omega_j = 1)$

даёт оценку для параметров:

$$\omega_j = \frac{1}{n} \sum_{i=1}^n h_{ij},$$

$$\theta_j = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^n h_{ij} \ln \varphi(x_i, \theta).$$

В качестве меры близости выбрано евклидово расстояние:

$$d(x_i, x_{i'}) = \sum_{i=1}^k (x_{ij} - x_{i'j})^2 = ||x_i - x_{i'}||^2.$$

Минимизируем меру близости между индивидами внутри одного кластера:

$$\min_{C_1, \dots, C_k} \left\{ \sum_{l=1}^k \frac{1}{|C_l|} \sum_{i, i' \in C_l} ||x_i - x_{i'}||^2 \right\}.$$

k-means

- 1. Выбираем μ_1, \dots, μ_k центры кластеров случайным образом.
- 2. Определяем принадлежность индивидов кластерам.

$$C(i) = \underset{0 \le j \le k}{\operatorname{argmin}} \|x_i - \mu_j\|^2.$$

- 3. Для каждого кластера C_j пересчитываем центры μ_j как выборочное среднее индивидов, которые были отнесены к этому кластеру.
- 4. Повторяем шаги 2 и 3 пока принадлежность кластерам не перестанет изменяться.

k-means и его связь с EM - алгоритмом

Алгоритм k-средних является частным случаем для гауссовой смеси распределения с одинаковыми диагональными матрицами и дисперсиями близкими к нулю.

В таком случае:

- 1) На Е-шаге мы не считаем вероятности принадлежности кластерам, а приписываем каждый объект одному кластеру (вероятность принадлежности будет равна 0 или 1);
- 2) Форма кластеров не настраивается: они все являются сферическими.

Алгоритм агломеративной иерархической кластеризации

• Одноэлементые кластеры:

$$C_1 = \{\{x_1\}, \dots, \{x_n\}\}; \ R_1 = 0$$
 $\forall i \neq j$ вычислить $R(\{x_i\}, \{x_i\})$

- ② для всех t = 2, ..., n (t номер итерации)
- lacktriangledown найти в C_{t-1} два ближайших кластера: $(U,V) = \mathop{rg \min}_{U
 eq V} R(U,V), \ R_t = R(U,V)$
- **1** слить их в один кластер: $W = U \cup V; \ C_t = C_{t-1} \cup W \setminus \{U, V\}$
- ullet для всех $S \in C_t \backslash W$
- вычислить R(W, S)

Формула Ланса-Уильямса

Позволяет обобщить большинство способов определить расстояние между кластерами

$$R(W,S), W = U \cup V, U, V, S \subset X,$$

зная расстояния

$$R(W,S) = \alpha_U U R(U,S) + \alpha_V R(V,S) + \beta R(U,V) + \gamma |R(U,S)R(V,S)|,$$
 Например,

• Расстояние Уорда:

$$R(W,S) = \frac{|S||W|}{|S| + |W|} \rho^2 \left(\sum_{w \in W} \frac{w}{|W|}, \sum_{s \in S} \frac{s}{|S|} \right);$$

$$\alpha_U = \frac{|S| + |U|}{|S| + |W|}, \ \alpha_V = \frac{|S| + |V|}{|S| + |W|}, \ \beta = -\frac{|S|}{|S| + |W|}, \ \gamma = 0.$$

Визуализация кластерной структуры

Определение

Дендрограмма — древовидный график расстояний, при которых произошло слияние кластеров на каждом шаге

Пример

Другие алгоритмы кластеризации (FOREL)

FOREL (ФОРмальный ЭЛемент) — алгоритм, основанный на идее объединения в один кластер объектов в областях их наибольшего сгущения.

- $lacksymbol{0}$ Пусть $U=X_m$
- ② Пока есть некластеризованные точки, т.е. $U \neq \varnothing$;
- **3** взять случайную точку $x_0 \in U$;
- Повторять
- образовать кластер с центром в x_0 и радиусом R: $K_0 = x_i \in U | \rho(x_i, x_0) | \leq R;$
- переместить центр x_0 в центр масс кластера: $x_0 = \frac{1}{|K_0|} \sum_{x_i \in K_0} x_i;$
- **Пока** состав кластера K_0 не стабилизируется;
- f 0 Пометить объекты внутри сферы как кластеризованные, $U=U\backslash K_0.$

Преимущества и недостатки алгоритма FOREL

Преимущества

- Получаем двухуровневую систему кластеров;
- Кластеры могут быть произвольной формы (при добавлении модификации к построению сферы);
- Варьируя R можно управлять детальностью кластеризации.

Недостатки

• Алгоритм очень чувствителен к R и к начальному выбору точки x_0

DBSCAN

(Density-based spatial clustering of applications with noise)

Объект $x\in U$, его ϵ -окрестность $U_\epsilon(x)=\{u\in U: \rho(x,u)\leq \epsilon\}$ Каждый объект может быть одного из трёх типов:

- ullet корневой: имеет плотную окрестность $|U_{\epsilon}(x)|>m$
- граничный: не корневой, но находится в окрестности корневого
- выброс: не корневой и не граничный.

Рис.: Иллюстрация к алгоритму DBSCAN. На рисунке зелёным отмечены корневые объекты, жёлтым — граничные и красным — шумовые.

Алгоритм DBSCAN

Вход: Выборка $X^n = \{x_1, \dots, x_n\}$, параметры ϵ и m; **Выход:** разбиение выборки на кластеры и шумовые выбросы;

- **1** $U = X_m, \ a = 0;$
- ② Пока есть некластеризованные точки, т.е. $U \neq \varnothing$;
- lacksquare взять случайную точку $x \in U$;
- ullet если $|U_{\epsilon}(x)| < m$, то
- ullet пометить x как возможно шумовой;
- иначе
- $oldsymbol{\circ}$ создать новый кластер: $K=U_{\epsilon}(x),\; a=a+1;$
- $\mathbf{3}$ для всех $x' \in K$
- ullet если $|U_{\epsilon}(x^{'})| > m$ то $K = K \cup U_{\epsilon}(x^{'});$
- lacktriangle иначе пометить $x^{'}$ как граничный элемент K;
- $a_{i}=a$ для всех $x^{'}\in K$;
- $U = U \setminus K$.

Преимущества и недостатки алгоритма DBSCAN

Преимущества

- Быстрая кластеризация больших данных (от $O(m \ln m)$ до $O(m^2)$ в зависимости от реализации);
- Кластеры произвольной формы;
- Явная разметка шумовых объектов;

Недостатки

 Алгоритм может неадекватно обрабатывать сильные вариации плотности данных внутри кластера, проёмы и шумовые мосты между кластерами.

Пример

Самоорганизующаяся карта Кохонена

X, $\rho: X \times X$ — метрика пространства объектов;

$$Y = \{1, ..., M\} \times \{1, ..., H\}$$
 — сетка кластеров, $r: Y \times Y$ — метрика пространства кластеров;

Каждому узлу (m,h) приписан нейрон Кохонена $w_{mh}\in X$;

Заданы неотрицательные невозрастающие функции:

- ullet $K(r(\cdot,\cdot),t)$ расстояние,
- $\eta(t)$ скорость обучения,
- ullet $\epsilon(t)$ окрестность, где t номер итерации;

 $v_{\epsilon(t)}(m_i,h_i)$ – $\epsilon(t)$ -окрестность (m_i,h_i) в метрике r:

Самоорганизующаяся карта Кохонена

- **1** задать начальные w_{mh} , $m = \overline{1:M}$, $h = \overline{1:H}$;
- Повторять
- ullet выбрать случайным образом x_i из X^n ;
- вычислить координаты ближайшего кластера:

$$(m_i, h_i) = \underset{(m,h)\in Y}{\arg\min} \rho(x_i, w_{mh});$$

- \bullet для всех $(m,h) \in v_{\epsilon}(m_i,h_i)$
- о сделать шаг стохастического градиентного спуска: $w_{mh} = w_{mh} + \eta(t)(x_i w_{mh})K\left(r[(m_i, h_i), (m, h)], t\right);$
- пока кластеризация не стабилизируется;

Интерпретация карт Кохонена

Два типа графиков – цветных карт $M \times H$:

- Цвет узла (m,h) локальная плотность в точке (m,h) среднее расстояние до k ближайших точек выборки;
- По одной карте на каждый признак: цвет узла (m,h) значение j-й компоненты вектора w_{mh} .

Преимущества и недостатки карт Кохонена

Преимущества:

• Возможность визуального анализа многомерных данных.

Недостатки:

- Субъективность. Карта зависит не только от кластерной структуры данных, но и от
 - \bullet свойств функций K, η , ϵ ;
 - начальных значений w_{mh} ;
 - ullet случайного выбора x_i в ходе итераций.
- Искажения. Близкие объекты исходного пространства могут переходить в далекие точки на карте, и наоборот.

Рекомендуется только для разведочного анализа данных.

Функционалы качества кластеризации

Возможна постановка задачи кластеризации: приписать номера кластеров объектам так, чтобы значение выбранного функционала качества приняло наилучшее значение.

Выделяют две группы функционалов качества внутренние и внешние:

• Среднее внутрикластерное расстояние:

$$F_0 = \frac{\sum_{i < j} \mathbf{I}_{\{y_i = y_j\}} \rho(x_i, x_j)}{\sum_{i < j} \mathbf{I}_{\{y_i = y_j\}}},$$

• Среднее межкластерное расстояние:

$$F_1 = \frac{\sum_{i < j} \mathbf{I}_{\{y_i \neq y_j\}} \rho(x_i, x_j)}{\sum_{i < j} \mathbf{I}_{\{y_i \neq y_j\}}}.$$

На практике обычно вычисляют F_0/F_1 .

Функционалы качества кластеризации (Силуэт)

• Принадлежность объекта своему кластеру:

$$c(x_i) = \frac{1}{|K_i| - 1} \sum_{x_j \in K_i, i \neq j} \rho(x_i, x_j)$$

• Принадлежность объекта другому кластеру:

$$b(x_i) = \min_{i \neq j} \frac{1}{|K_j|} \sum_{x_z \in K_j} \rho(x_i, x_z)$$

• Силуэт объекта:

$$s(x_i) = \begin{cases} \frac{b(x_i) - c(x_i)}{\max\{c(x_i), b(x_i)\}}, & |K_i| > 1\\ 0, & |K_i| = 1 \end{cases}$$

ullet Силуэт кластеризации: $S=rac{1}{n}\sum_i s(x_i).$

Данный функционал качества пригоден только для кластеров, которые представляют собой далеко отстоящие компактные скопления объектов.

Тематические модели

(часть 2)

Введение

Тематическое моделирование применяется к анализу текстов.

- Тематическое моделирование способ построения модели коллекции текстовых документов.
- Тематическая модель коллекции текстовых документов определяет, к каким темам относится каждый документ и какие слова (термины) образуют каждую тему.
- Вероятностная тематическая модель описывает каждую тему дискретным распределением на множестве терминов, каждый документ — дискретным распределением на множестве тем.

Введение

Это про выявление тематики в текстовой коллекции...

- Тема условное распределение на множестве терминов p(w|t) вероятность термина w в теме t;
- Тематический профиль документа условное распределение p(t|d) вероятность темы t в документе d.

Задача определения тематики коллекции документов

Дано:

- W словарь, множество слов (терминов)
- D множество (коллекция) текстовых документов
- ullet n_{dw} частота термина $w\in W$ в документе $d\in D$

Хотим найти:

- число различимых тем
- какими терминами определяется каждая тема
- к каким темам относится каждый документ

или

Найти: вероятностную тематическую модель

Гипотезы и допущения

- Гипотеза назвисимости: Порядок слов в документе и порядок документов в коллекции не важны
- ullet Гипотеза условной независимости: p(w|d, t) = p(w|t)
- Гипотеза разреженности: Каждый документ d и каждый термин w связан c небольшим количеством тем t.

Если не выполняется гипотеза разреженности?

- ullet Документ относится к большому количеству тем o разобьем его на части, более однородные по тематике
- Термин относится к большому числу тем \to положим, что термин является общеупотребительным и неважен для определения тематики

Вероятностная формализация постановки задачи

Базовые предположения:

каждое слово в документе связано с некоторой темой $t\in T$ $D\times W\times T$ — дискретное вероятностное пространство D — выборка троек $(d_i,w_i,t_i)_{i=1}^n\sim p(d,w,t)$ $d_i,\ w_i$ — наблюдаемые, t_i — скрытые (латентные)

Вероятностная модель порождения документа d:

$$\begin{split} p(w,d) &= \sum_{t \in T} p(w,d,t) = \sum_{t \in T} p(w|t,d) \cdot p(t,d) = \\ &= \sum_{t \in T} p(w|t,d) \cdot p(t|d) \cdot p(d) = p(d) \cdot \sum_{t \in T} p(w|t) \cdot p(t|d) \\ &\boxed{\mathsf{p}(\mathsf{w}|\mathsf{d}) = \sum_{t \in T} p(w|t) \cdot p(t|d)} \end{split}$$

Задача: найти $T, \ p(w|t), \ p(t|d).$

Предварительная обработка документа

Необходимость конкретного метода обработки зависит от типа задачи, но вообще это хорошая практика.

- Лемматизация приведение каждого слова в документе к его начальной форме.
 Трудоемкий процесс
- Стемминг отбрасывание изменяемых частей слова. Большое число ошибок
- Отбрасывание стоп-слов удаление слов, которые никак не характеризуют тему.
 Почти не влияет на длину словаря
- Отбрасывание редких слов.
 Для коллекций коротких новостных сообщений лучше не использовать
- Выделение ключевых фраз.
 Приходится привлекать экспертов

Вероятностная модель порождения документа d

Вероятностная тематическая модель:

$$p(w|d) = \sum_{t \in T} p(w|t) \cdot p(t|d)$$

Выборочный язык

Дано:

- ullet коллекция текстовых документов D,
- n_{dw} число вхождений термина w в документ d,
- ullet $n_d = \sum\limits_{w \in W} n_{dw}$ длина документа d в терминах.

Можем оценить: $\hat{p}(w|d) = \frac{n_{dw}}{n_d}$.

Найти параметры тематической модели:

$$F = (\hat{p}(w|d))_{W \times D} \approx \sum_{t \in T} (\varphi_{wt})_{W \times T} (\theta_{td})_{T \times D}$$

Искомые:

- ullet $\varphi_{wt}=p(w|t)$ вероятности терминов w в каждой теме t,
- $\theta_{td} = p(t|d)$ вероятности тем t в каждом документе d.

Стохастическое матричное разложение

Задача стохастического матричного разложения:

$$F \approx \Phi\Theta \quad \Leftrightarrow \quad ||F - \Phi\Theta||^2 \to \min_{\Phi, \Theta}$$

Если Φ и Θ — решение, то существует матрица S ранга |T|:

$$F = \Phi S S^{-1} \Theta,$$

где S — матрица перестановки, а $\Phi,\,\Theta$ тоже стохастические.

Принцип максимума правдоподобия

Правдоподобие — плотность распределения выборки $(d_i, w_i)_{i=1}^n$:

$$\prod_{i=1}^{n} p(d_i, w_i) = \prod_{d \in D} \prod_{w \in W} p(d, w)^{n_{dw}}$$

где n_{dw} — число вхождений термина w в документ d, $n=\sum_{d\in D}\sum_{w\in d}n_{dw}$ — длина коллекции в терминах.

Максимизация логарифма правдоподобия:

$$\sum_{d \in D} \sum_{w \in W} n_{dw} \ln p(w|d) p(d) \to \max_{\Phi, \Theta},$$

здесь $p(d)=n_d/n={
m const},\ n_d$ — длина документа в терминах.

Приходим к задаче:

$$\sum_{d \in D} \sum_{w \in W} n_{dw} \ln \sum_{t \in T} \varphi_{wt} \theta_{td} \to \max_{\Phi, \Theta},$$

При ограничениях неотрицательности и нормировки

$$\varphi_{wt} \ge 0; \quad \sum_{w \in W} \varphi_{wt} = 1; \quad \theta_{td} \ge 0; \quad \sum_{t \in T} \theta_{td} = 1.$$

ЕМ-алгоритм

Для решения задачи матричного разложения применяется **EM-алгоритм**. Он заключается в выполнении двух шагов до сходимости.

Е-шаг: условные вероятности тем p(t|d,w) для всех $t,\,d,\,w$ вычисляются через $\varphi_{wt},\,\theta_{td}$ по формуле Байеса:

$$H_{dwt} = p(t|d,w) = \frac{p(w,t|d)}{p(w|d)} = \frac{p(w|t)p(t|d)}{p(w|d)} = \frac{\varphi_{wt}\theta_{td}}{\sum\limits_{s \in T} \varphi_{ws}\theta_{sd}}.$$

М-шаг: частотные оценки условных вероятностей вычисляются путем накопления счетчика $n_{dwt} = n_{dw} p(t|d,w)$:

$$\begin{split} \varphi_{wt} &= \frac{\hat{n}_{wt}}{\hat{n}_t}, \quad \hat{n}_t = \sum_{w \in W} \hat{n}_{wt}, \quad \hat{n}_{wt} = \sum_{d \in D} n_{dw} H_{dwt}; \\ \theta_{dt} &= \frac{\hat{n}_{dt}}{\hat{n}_t}, \quad \hat{n}_d = \sum_{t \in T} \hat{n}_{dt}, \quad \hat{n}_{dt} = \sum_{w \in W} n_{dw} H_{dwt}. \end{split}$$

Модификация ЕМ-алгоритма

Можно не хранить матрицу H_{dwt} и уменьшить вычислительные затраты, получим алгоритм:

Алгоритм 2.1. PLSA-EM: рациональный EM-алгоритм для модели PLSA.

Вход: коллекция документов D, число тем |T|, начальные приближения Θ , Φ ; **Выход**: распределения Θ и Φ ;

```
1 повторять
```

```
1 повторять
2 обнулить \hat{n}_{wt}, \hat{n}_{dt}, \hat{n}_{t} для всех d \in D, w \in W, t \in T;
3 для всех d \in D, w \in d
4 Z := \sum_{t \in T} \varphi_{wt}\theta_{td};
5 Для всех t \in T таких, что \varphi_{wt}\theta_{td} > 0
6 U увеличить \hat{n}_{wt}, \hat{n}_{dt}, \hat{n}_{t} на \delta = n_{dw}\varphi_{wt}\theta_{td}/Z;
7 \varphi_{wt} := \hat{n}_{wt}/\hat{n}_{t} для всех w \in W, t \in T;
8 \theta_{td} := \hat{n}_{dt}/n_{d} для всех d \in D, t \in T;
9 пока \Theta и \Phi не сойдутся;
```

Начальное приближение φ_t , θ_d

- Начальное приближение можно задать нормированными случайными векторами из равномерного распределения.
- ② Пройти по всей коллекции, выбрать для каждой пары (d,w) случайную тему t, вычислить частотные оценки вероятностей φ_{wt} и θ_{td} для всех d,w,t.
- **③** Частичное обучение (некоторые t известны заранее и имеются дополнительные данные о привязке некоторых d или w к t): Известно, что документ d относится к подмножеству $T_d \subset T$:

$$\theta_{td}^0 = \frac{1}{|T_d|} \mathbf{I}_{t \in T_d}.$$

Известно, что подмножество терминов $W_t \subset W$ относится к теме t:

$$\varphi_{wt}^0 = \frac{1}{|W_t|} \mathbf{I}_{w \in W_t}.$$

Известно, что множество документов $D_t \subset D$ относится к теме t:

$$\varphi_{wt}^0 = \frac{\sum_{d \in D_t} n_{dw}}{\sum_{d \in D_t} n_d}.$$

Недостатки PLSA

- Задача стохастического матричного разложения некорректно поставлена (может быть бесконечно много решений), это приводит к неустойчивости матриц Φ и Θ ;
- С появлением нового d не можем вычислить p(t|d), не перестраивая модель;
- Число параметров растёт линейно по числу документов в коллекции, что может приводить к переобучению модели.

Внутренние (intrinsic) критерии качества тематической модели

Перплексия (perplexity) языковой модели p(w|d):

$$\mathcal{P}(D) = \exp\left(-\frac{1}{n}\sum_{d\in D}\sum_{w\in d}n_{dw}\ln p(w|d)\right), \ n = \sum_{d\in D}\sum_{w\in d}n_{dw}.$$

Интерпретация:

- ullet если $p(w|d)=rac{1}{|W|}$, то $\mathcal{P}=|W|$;
- мера неопределенности в тексте.

Перплексия тестовой коллекции

Перплексия тестовой коллекции $D^{'}$ (hold-out perplexity):

$$\mathcal{P}(D') = \exp\left(-\frac{1}{n''} \sum_{d \in D'} \sum_{w \in d''} n_{dw} \ln p(w|d)\right), \ n'' = \sum_{d \in D'} \sum_{w \in d''} n_{dw}.$$

 $d = d^{'} \cup d^{''}$ — случайное разбиение тестового документа на две половины равной длины;

- ullet параметры $arphi_{wt}$ оцениваются по обучающей коллекции D
- ullet параметры $heta_{td}$ оцениваются по первой половине $d^{'}$
- ullet перплексия вычисляется по $d^{''}$

Когерентность как мера интерпретируемости

Когерентность (согласованность) темы t по k топовым словам:

$$\mathsf{PMI}_t = \frac{2}{k(k-1)} \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} \mathsf{PMI}(w_i, w_j),$$

где w_i-i -й термин в порядке убывания $arphi_{wt}$.

 $\mathsf{PMI}(u,v) = \ln rac{|D|N_{uv}}{N_u N_v}$ — поточечная взаимная информация (pointwise mutual information),

 N_{uv} — число документов, в которых термины $u,\,v$ встречаются рядом,

 N_u — число документов, в которых u встретился хотя бы раз.