Abstract interpretation with numeric intervals

Second assignment of the Software Verification course, A.Y. 2022/2023

Christian Micheletti October 13, 2023

Outline

- 1 The Language
 - Arithmetic Expressions

2 Introduction

3 First section

The Language

The language is a variation of the While language seen in class. It differs on:

- it admits some syntactic sugar (it's not minimal);
- its semantic functions are modified to allow divergence and state changes in both arithmetic and boolean expressions.

Arithmetic Expressions (1)

$$AExp ::= n \mid x \mid -e \mid (e)$$

 $\mid e_1 + e_2 \mid e_1 - e_2 \mid e_1 * e_2 \mid e_1/e_2$
 $\mid x++ \mid ++x \mid x-- \mid --x$

$\mathcal{A}: AExp \rightarrow State \hookrightarrow \mathbb{Z} \times State$

$$\begin{split} &\mathcal{A}[\![n]\!]\varphi = &(n_{\mathbb{Z}},\varphi) \\ &\mathcal{A}[\![x]\!]\varphi = &(\varphi(x),\varphi) \\ &\mathcal{A}[\![(e)]\!]\varphi = &\mathcal{A}[\![e]\!]\varphi \\ &\mathcal{A}[\![-e]\!]\varphi = \begin{cases} (-a,\varphi') & \mathcal{A}[\![e]\!]\varphi = (a,\varphi') \\ \uparrow & (\mathcal{A}[\![e]\!]\varphi) \uparrow \end{cases} \end{split}$$

Arithmetic Expressions (2)

$\mathcal{A}: AExp \rightarrow State \hookrightarrow \mathbb{Z} \times State$

$$\mathcal{A}[\![e_1/e_2]\!]\varphi = \begin{cases} (a_1 \div a_2, \varphi'') & \mathcal{A}[\![e_1]\!]\varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}[\![e_2]\!]\varphi' = (a_2, \varphi'') \\ & \wedge a_2 \neq 0 \\ \uparrow & \text{otherwise} \end{cases}$$

$$\mathcal{A}[\![e_1 \text{ op } e_2]\!]\varphi = \begin{cases} (a_1 \text{ op } a_2, \varphi'') & \mathcal{A}[\![e_1]\!]\varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}[\![e_2]\!]\varphi' = (a_2, \varphi'') \\ \uparrow & \text{otherwise} \end{cases}$$

Arithmetic Expressions (3)

$\mathcal{A}: AExp \rightarrow State \hookrightarrow \mathbb{Z} \times State$

$$\mathcal{A}[\![x++]\!]\varphi = (\varphi(x), \varphi[x \mapsto x+1])$$

$$\mathcal{A}[\![++x]\!]\varphi = let \ \varphi' = \varphi[x \mapsto x+1]$$

$$in \ (\varphi'(x), \varphi')$$

$$\mathcal{A}[\![x--]\!]\varphi = (\varphi(x), \varphi[x \mapsto x-1])$$

$$\mathcal{A}[\![--x]\!]\varphi = let \ \varphi' = \varphi[x \mapsto x-1]$$

$$in \ (\varphi'(x), \varphi')$$

Introduction

Etiam eu interdum ligula Nunc mi eros, vulputate in ornare a, viverra eget quam

- Morbi vitae lacus porta neque tincidunt sodales
- Proin tincidunt, neque at tincidunt mollis
- Ut lacinia sem a nibh consequat porttitor

First section

Normal block

Fusce luctus venenatis felis quis semper

Alert block

$$E = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_1 \vee x_2 \vee x_4)$$

Example block

Proin tincidunt, neque at tincidunt mollis