# $\underset{\text{(See Statistics)}}{\text{LIKELIHOODS}} \ \underset{\text{(See Statistics)}}{\text{AND}} \ BAYES$

Trevor Gallen

Take a two-state Markov chain, in which you observe the following data:

$$X_t = \{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1\}$$

Say we wanted to estimate the markov process:

$$\pi = \left[ egin{array}{ccc} p_{11} & 1 - p_{11} \ 1 - p_{22} & p_{22} \end{array} 
ight]$$

► How do we do it? (What is your estimate?)

### Maximum Likelihood

We can write down the likelihood of seeing each type of transition:

$$\mathcal{L}_{1 \to 1} = p_{11}$$
 $\mathcal{L}_{1 \to 2} = p_{12}$ 
 $\mathcal{L}_{2 \to 1} = p_{21}$ 
 $\mathcal{L}_{2 \to 2} = p_{22}$ 

Or:

$$\mathcal{L} = \prod_{i=1}^{\mathcal{T}} (\mathcal{L}_{1 
ightarrow 1})^{x_{11}} (\mathcal{L}_{1 
ightarrow 2})^{x_{12}} (\mathcal{L}_{2 
ightarrow 1})^{x_{21}} (\mathcal{L}_{2 
ightarrow 2})^{x_{22}}$$

# MAXIMUM LIKELIHOOD

The likelihood:

$$\mathcal{L} = \prod_{i=1}^{T} (p_{11})^{x_{11}} (1-p_{11})^{x_{12}} (1-p_{22})^{x_{21}} (p_{22})^{x_{22}}$$

► Taking logs:

$$egin{aligned} \log \mathcal{L} &= \sum_{i=1}^{T} x_{11} \log(p_{11}) + x_{12} \log(1-p_{11}) \ &+ x_{21} \log(1-p_{22}) + x_{22} \log(p_{22}) \end{aligned}$$

▶ Is this all we can do?

# Maximum Likelihood

The likelihood:

$$\mathcal{L} = \prod_{i=1}^{T} (p_{11})^{x_{11}} (1-p_{11})^{x_{12}} (1-p_{22})^{x_{21}} (p_{22})^{x_{22}}$$

► Taking logs:

$$egin{aligned} \log \mathcal{L} &= \sum_{i=1}^{T} x_{11} \log(p_{11}) + x_{12} \log(1-p_{11}) \ &+ x_{21} \log(1-p_{22}) + x_{22} \log(p_{22}) \end{aligned}$$

▶ Is this all we can do? (Hint: no.)

# MAXIMUM LIKELIHOOD

The likelihood:

$$\mathcal{L} = \prod_{i=1}^{T} (p_{11})^{x_{11}} (1-p_{11})^{x_{12}} (1-p_{22})^{x_{21}} (p_{22})^{x_{22}}$$

► Taking logs:

$$egin{aligned} \log \mathcal{L} &= \sum_{i=1}^T x_{11} \log(p_{11}) + x_{12} \log(1-p_{11}) \ &+ x_{21} \log(1-p_{22}) + x_{22} \log(p_{22}) \end{aligned}$$

- Is this all we can do? (Hint: no.)
- ▶ The first observation gives us data!

# Better Maximum Likelihood

► The likelihood:

$$egin{aligned} \log \mathcal{L} &= \sum_{i=1}^{I} x_{11} \log(p_{11}) + x_{12} \log(1-p_{11}) \ &+ x_{21} \log(1-p_{22}) + x_{22} \log(p_{22}) \end{aligned}$$

▶ Denote a dummy for the first observation as  $x^{[1]}$  or  $x^{[2]}$ , depending on the value:

$$\begin{split} \log \mathcal{L} &= \sum_{i=1}^{T} x_{11} \log(p_{11}) + x_{12} \log(1 - p_{11}) \\ &+ x_{21} \log(1 - p_{22}) + x_{22} \log(p_{22}) \\ &+ x^{[1]} \left( \frac{1 - p_{22}}{2 - p_{11} - p_{22}} \right) + x^{[2]} \left( \frac{1 - p_{11}}{2 - p_{11} - p_{22}} \right) \end{split}$$

► Why?

# RESULTS

- ▶ We could do things closed form (how?)
- ► Or numerically (see Markov.m)
- ▶ What else can we do?

# BAYES RULE

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

# More Fun with Markovs

- Now imagine we didn't observe the states  $x_t$  directly, but observed some noise process  $y_t$
- If state  $x_t = 1$ , then  $y_t \sim \mathcal{N}(\mu_1, \sigma_1^2)$
- ▶ If state  $x_t = 2$ , then  $y_t \sim \mathcal{N}(\mu_2, \sigma_2^2)$
- ► To skip annoying notation for the first step, let's say we knew the first state but from then on out we knew nothing else.

$$x_1 = 1$$
 $\pi = \begin{bmatrix} 0.9 & 0.1 \\ 0.95 & 0.05 \end{bmatrix}$ 
 $y_t | x_t = 1 \sim \mathcal{N}(0, 10)$ 
 $y_t | x_t = 2 \sim \mathcal{N}(1, 4)$ 
 $P(x_t | y_t) = \frac{P(x_t)P(y_t | x_t)}{P(y_t)}$ 

These types of models are called "Regime Switching" models

See Markov.2



When are we in which state?  $y_t|x_t=1 \sim \mathcal{N}(0,10)$ ,  $y_t|x_t=2 \sim \mathcal{N}(1,4)$ 



# Graphing the means is relevant



Graphing the 2sd interval is relevant







### KALMAN FILTER: MOTIVATION

- ► Life is full of scenarios in which we see a *signal* about some true underlying process but never observe the truth
  - Missiles
  - Polls
  - Recessions
  - Economic variables
- We typically have some belief of what the underlying object is, where it's going to go, and get some signal related to the object
- How do we put all our information together?

# Kalman Filter: Preview to Lemma

Let X explain Y:

$$Y = X\beta + \epsilon$$

Then:

$$\hat{\beta} = (X'X)^{-1}X'Y$$

And:

$$\hat{Y} = X\beta$$

So:

$$Var(Y - \hat{Y}|X) = Var(Y - X\beta|X)$$

$$= Var(Y|X) + \beta^{2}Var(X|X) - 2\beta Cov(Y, X|X))$$

$$= Var(Y|X) + 2\beta^{2}Var(Y)^{-1}$$

# Kalman Filter: Lemma\*

If:

$$\left[\begin{array}{c}X\\Y\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c}0\\0\end{array}\right], \left[\begin{array}{cc}S_{XX'} & S_{XY'}\\S_{YX'} & S_{YY'}\end{array}\right]\right)$$

Then:

$$Y|X \sim \mathcal{N}\left(S_{XY'}S_{XX'}^{-1}X, S_{YY'|X}\right)$$

Where, letting  $A = S_{XY'}S_{XX}^{-1}$ 

$$S_{YY'|X} = S_{YY'} - S_{XY'}S_{XX}^{-1}S_{YX'} = S_{YY'} - AS_{XX'}^{-1}A'$$

In other words, our expectation of X given Y comes from a regression, and our conditional variance is our unconditional variance minus the regression coefficient squared times the variance of our signal.

 $<sup>^{</sup>st}$  This and the next two slides are inspired by Harald Uhlig's notation & wonderful slides.

# Kalman System

You have an observation equation:

$$Y_t = H_t \xi_t + \epsilon_t$$
  $\epsilon_t \sim \mathcal{N}\left(0, \Sigma_t\right)$ 

► And a state equation:

$$\xi_{t+1} = F_{t+1}\xi_t + \eta_{t+1} \qquad \eta_{t+1} \sim \mathcal{N}(0, \Phi_{t+1})$$

- We assume that  $\epsilon_t$  and  $\eta_t$  are independent.
- $ightharpoonup Y_t$  is a noisy observation of  $\xi_t$ , which moves around with noise.

# UPDATING OUR BELIEFS

- We start with some beliefs from last period about where  $\xi$  would be this period (called  $\xi_{t|t-1}$ ).
- We summarize these as:

$$\xi_{t|t-1} \sim \mathcal{N}\left(\hat{\xi}_{t|t-1}, \Omega_{t|t-1}\right)$$

• We want to look at information today and say what we think  $\xi$  is, calling this  $\xi_{t|t}$ .

# FIRST STEP: BEST GUESS OF WHAT THE SIGNAL WILL BE

We start with beliefs:

$$\xi_t \sim \mathcal{N}\left(\hat{\xi}_{t|t-1}, \Omega_{t|t-1}\right)$$

► And we know, as a law:

$$Y_t = H_t \xi_t + \epsilon_t \quad \epsilon_t \sim \mathcal{N}(0, \Sigma_t)$$

► Then we have our best guess of what *Y* will be, along with its variance:

$$\hat{Y}_t = H_t \xi_{t|t-1}$$
 
$$S_{YY|t} = H_t \Omega_{t|t-1} H_t + \Sigma_t$$

# SECOND STEP: USE SURPRISE INFO TO UPDATE PRIOR BELIEFS

▶ We have our *unexpected* information:

$$\hat{\epsilon}_t = Y_t - \hat{Y}_t$$

▶ Then our best fit is, like a regression fit:

$$\hat{\xi}_{t|t} = \hat{\xi}_{t|t-1} + S_{\xi Y'|t} S_{YY'|t}^{-1} \hat{\epsilon}_t$$

► Where our "signal" is:

$$S_{\xi Y'|t} = \Omega_{t|t-1}H_t'$$

And our beliefs are updated:

$$\Omega_{t|t} = \Omega_{t|t-1} - S_{\xi Y'|t} S_{YY'|t}^{-1} S_{Y\xi'|t}$$

# THIRD STEP: USE CURRENT BEST BELIEFS TO FIND TOMORROW'S BEST BELIEFS

- lacktriangle We have our beliefs for today,  $\hat{\xi}_{t|t}$  and  $\Omega_{t|t}$
- ► We want:

$$\xi_{t+1} \sim \mathcal{N}(\hat{\xi}_{t+1|t}, \Omega_{t+1|t})$$

Update using the law of motion:

$$\hat{\xi}_{t+1|t} = F_{t+1}\hat{\xi}_{t|t}$$
 
$$\Omega_{t+1|t} = F_{t+1}\Omega_{t|t}F'_{t+1} + \Phi_{t+1}$$

# SUMMARIZING THE KALMAN FILTER

$$Y_t \sim \mathcal{N}\left(H_t \xi_t, \Sigma_t\right), ~~ \xi_t \sim \mathcal{N}\left(F_{t+1} \xi_t, \Phi_{t+1}\right)$$

- ► Given  $\xi_t \sim \mathcal{N}(\hat{\xi}_{t|t-1}, \Omega_{t|t-1})$ ,
  - 1. Forecast  $Y_t$  given what you know:

$$\hat{Y}_t = H_t \hat{\xi}_{t|t-1} \qquad S_{YY'|t} = H_t \Omega_{t|t-1} H_t' + \Sigma_t$$

2. Update  $\xi_t$  given surprise:

$$\begin{split} \hat{\xi}_{t|t} &= \hat{\xi}_{t|t-1} + S_{\xi Y'|t} S_{YY'|t}^{-1} (Y_t - \hat{Y}_t) \\ \hat{\Omega}_{t|t} &= \hat{\Omega}_{t|t-1} + S_{\xi Y'|t} S_{YY'|t}^{-1} S_{\xi Y'|t} \end{split}$$

Where:  $S_{\xi Y'|t} = \Omega_{t|t-1}H'_t$ 

3. Forecast and set up for tomorrow

$$\hat{\xi}_{t+1|t} = F_{t+1}\hat{\xi}_{t|t}$$
  $\Omega_{t+t|t} = F_{t+1}\Omega_{t|t}F'_{t+1} + \Phi_{t+1}$ 

# CODING IT

See Kalman.m

### USES

- Estimating underlying data, like polls, recessions
- Alternatively, think of your regression coefficients as your unknown  $\xi$  and your data as  $Y_t$
- ► Then for:

$$Y_{t} \sim \mathcal{N}\left(H_{t}\xi_{t}, \Sigma_{t}\right), \quad \xi_{t} \sim \mathcal{N}\left(F_{t+1}\xi_{t}, \Phi_{t+1}\right)$$

- $\triangleright$   $Y_t$  is your dependent variable
- $ightharpoonup H_t$  is your independent variable
- $\triangleright$   $\Sigma_t$  is your noise term
- $ightharpoonup F_{t+1}$  is just 1, if your coefficients are constant
- $ightharpoonup \Phi_{t+1}$  is zero, if your coefficients are constant.
- Now you can run Kalman filter point-by-point on your data to uncover your belief *distribution* over your coefficients.

# ONE MORE EXAMPLE: BVARS (DSGE ESTIMATION)

Standard feel of a DSGE estimation: parameters are unknown state, and data take place of parameters

$$\underbrace{\begin{bmatrix} c_t \\ y_t \\ i_t \end{bmatrix}}_{Y_t} = \underbrace{\begin{bmatrix} y_{t-1} & 0 & 0 \\ 0 & y_{t-1} & 0 \\ 0 & 0 & y_{t-1} \end{bmatrix}}_{H_t} \underbrace{\begin{bmatrix} \beta_{1,t} \\ \beta_{2,t} \\ \beta_{3,t} \end{bmatrix}}_{\xi_t} + \begin{bmatrix} \epsilon_{1,t} \\ \epsilon_{2,t} \\ \epsilon_{3,t} \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} \sigma_{\epsilon_1}^2 & \cdot & \cdot \\ \cdot & \sigma_{\epsilon_2}^2 & \cdot \\ \cdot & \cdot & \sigma_{\epsilon_3}^2 \end{bmatrix}$$

And the "state equation" is:

$$\begin{bmatrix} \beta_{1,t+1} \\ \beta_{2,t+1} \\ \beta_{3,t+1} \end{bmatrix} = \underbrace{\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}}_{\epsilon} \begin{bmatrix} \beta_{1,t} \\ \beta_{2,t} \\ \beta_{3,t} \end{bmatrix} \qquad \Phi = \begin{bmatrix} 0 \end{bmatrix}$$

# Our use: Insurance

- As labor, macro, and public economists, we care about people's lifecycle income paths
- ▶ We know a random walk component is important
- We know transitory shocks are also important
- Write down a simple flexible model of income  $y_{i,t}$  as the sum of permanent income  $z_{i,t}$  and perfectly transitory shock  $\epsilon_{i,t}$ .

$$y_{i,t} = z_{i,t} + \epsilon_{i,t}$$

ightharpoonup Where permanent income is subject to a shock  $\zeta_{i,t}$ 

$$z_{i,t} = z_{i,t-1} + \zeta_{i,t}$$

Note: for more about this, read Meghir and Pistaferri (ECMA 2004) or Blundell, Pistiaferri, and Preston (AER 2008)

### Our use: Insurance

▶ We can therefore write the *change* in income as:

$$y_{i,t} = z_{i,t} + \epsilon_{i,t}$$

▶ If we're interested in what consumption tells us about income, we might also have:

$$c_{i,t} = \phi z_{i,t} + \psi \epsilon_{i,t} + \xi_{i,t}$$

- Nhere  $\phi$  and  $\psi$  are the MPC out of permanent and temporary income changes, respectively.  $\xi_{i,t}$  denotes shocks that change consumption, but not income (such as lifecycle concerns, so it may be common between individuals).
- ▶ This allows both y and c to tell us about permanent income
- Two observations: income and consumption
- ▶ Two (or three) hidden variables: "true" permanent income  $z_{i,t}$ , transitory income  $\epsilon_{i,t}$  and transitory consumption shock  $\xi_{i,t}$ .

# ASIDE: WHAT'S THE MOTIVATION?



FIGURE 1. OVERALL PATTERN OF INEQUALITY

# ASIDE: CONSUMPTION INEQUALITY



### Insurance: Kalman

Applying the Kalman Filter's notation for H, F,  $\Sigma$ ,  $\Phi$ ,  $\xi$ , and Y, above, we can write out the "observation equation":

$$\underbrace{\begin{bmatrix} c_{i,t} \\ y_{i,t} \end{bmatrix}}_{Y} = \underbrace{\begin{bmatrix} \phi \\ 1 \end{bmatrix}}_{H} \underbrace{\begin{bmatrix} z_{i,t} \end{bmatrix}}_{\xi_{t}} + \begin{bmatrix} \psi \epsilon_{i,t} + \xi_{i,t} \\ \epsilon_{i,t} \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} \psi^{2} \sigma_{\epsilon}^{2} + \sigma_{\xi}^{2} & \psi \\ \psi & \sigma^{2} \epsilon \end{bmatrix}$$

And the "state equation" is:

$$\left[\begin{array}{c} z_{i,t+1} \end{array}\right] = \underbrace{\left[\begin{array}{c} 1 \end{array}\right]}_{F} \left[\begin{array}{c} z_{i,t} \end{array}\right]$$
 
$$\Phi = \left[\begin{array}{c} \sigma_{\zeta}^{2} \end{array}\right]$$

### IDENTIFICATION

- But how do we get the parameter values out? The variances?
- Can estimate from conditional moments
- For instance:

$$E(\Delta y_t \Delta y_{t-1}) = E((\zeta_{i,t} + \Delta \epsilon_{i,t})(\zeta_{i,t-1} + \Delta \epsilon_{i,t-1}))$$

$$= E(\zeta_{i,t} \zeta_{i,t-1} + \Delta \epsilon_{i,t} \zeta_{i,t-1} + \zeta_{i,t} \Delta \epsilon_{i,t-1} + \Delta \epsilon_{i,t} \Delta \epsilon_{i,t-1})$$

$$= E((\epsilon_{i,t} - \epsilon_{i,t-1})(\epsilon_{i,t-1} - \epsilon_{i,t-2}))$$

$$= E(-\epsilon_{i,t-1} \epsilon_{i,t-1})$$

$$= -\sigma_{\epsilon}^{2}$$

▶ Intuition: the only reason the change in income today & change in income yesterday are correlated is the transitory shock, which shows up in both periods (one coming in, the other going out).

#### OUR USE

Similiarly:

$$\begin{split} E(\Delta c_{t} \Delta c_{t-1}) &= E\left( \left( \phi \zeta_{i,t} + \psi \Delta \epsilon_{i,t} + \Delta \xi_{i,t} \right) \left( \phi \zeta_{i,t-1} + \psi \Delta \epsilon_{i,t-1} + \Delta \xi_{i,t-1} \right) \right) \\ &= E\left( \left( \psi \Delta \epsilon_{i,t} + \Delta \xi_{i,t} \right) \left( \psi \Delta \epsilon_{i,t-1} + \Delta \xi_{i,t-1} \right) \right) \\ &= E\left( \left( \psi \left( \epsilon_{i,t} - \epsilon_{i,t-1} \right) + \left( \xi_{i,t} - \xi_{i,t-1} \right) \right) \left( \psi \left( \epsilon_{i,t-1} - \epsilon_{i,t-2} \right) + \right. \\ &+ \left. \left( \xi_{i,t-1} - \xi_{i,t-2} \right) \right) \right) \\ &= E\left( \left( -\psi \epsilon_{i,t-1} - \xi_{i,t-1} \right) \left( \psi \left( \epsilon_{i,t-1} - \epsilon_{i,t-2} \right) + \left( \xi_{i,t-1} - \xi_{i,t-2} \right) \right) \right) \\ &= E\left( -\psi^{2} \epsilon_{i,t-1} \epsilon_{i,t-1} - \xi_{i,t-1} \xi_{i,t-1} \right) \\ &= -\psi^{2} \sigma_{\epsilon}^{2} - \sigma_{\xi}^{2} \end{split}$$

There are two reasons consumption today and yesterday are correlated. First, the transitory shock (weighted by  $\psi$ ) increases consumption in the first period relative to the second, in which it falls. Second, consumption has its own "transitory" shock, which comes in just as  $\epsilon$  did.

#### OUR USE

The identifying equations derived above are summarized in Table 1:

| Data                                                                       |   | Structural Equation                                        |
|----------------------------------------------------------------------------|---|------------------------------------------------------------|
| $F(\Delta y_{i,t} (\Delta y_{i,t-1} + \Delta y_{i,t} + \Delta y_{i,t+1}))$ | = | $\sigma_{\zeta}^2$                                         |
| $E(\Delta y_t \Delta y_{t-1})$                                             |   |                                                            |
| $E(\Delta c_t \Delta c_{t-1})$                                             | = | $-\psi^2\sigma_\epsilon^2-\sigma_\xi^2$                    |
| $E(\Delta c_t \Delta y_t)$                                                 | = | $\phi \sigma_{\zeta}^2 + 2\psi \Delta \sigma_{\epsilon}^2$ |
| $E(\Delta c_t(\Delta y_{t-1} + \Delta y_t + \Delta y_{t+1}))$              | = | $\phi\sigma_{\zeta}^{2}$                                   |
|                                                                            |   |                                                            |

Table: This table summarizes the identifying equations for  $\sigma_{\zeta}^2$ ,  $\sigma_{\xi}^2$ ,  $\sigma_{\epsilon}^2$ ,  $\phi$ , and  $\psi$ .

# HOW GOOD IS OUR ESTIMATOR?

| Description        | Parm.             | Value | Est.  | Est. | Est.    |
|--------------------|-------------------|-------|-------|------|---------|
|                    |                   |       | N=10  | N=50 | N=10000 |
| c to a perm. y     | $\phi$            | 1     | 1.11  | 0.54 | 1.02    |
| c to a trans. y    | $\psi$            | 0.1   | 0.33  | 0.09 | 0.10    |
| StdDev of trans. y | $\sigma_\epsilon$ | 0.1   | -0.04 | 0.10 | 0.10    |
| StdDev of perm. y  | $\sigma_{\zeta}$  | 0.1   | 0.07  | 0.06 | 0.10    |
| StdDev of trans. c | $\sigma_{\xi}$    | 0.1   | 0.05  | 0.08 | 0.11    |

# How good is our estimator?

Once we have the parameters, we can let the Kalman filter rip! Uncover hidden states.



# HOW GOOD IS OUR ESTIMATOR?

Compare belief about permanent shock to permanent shock



►  $R^2 \approx 0.54$ 

# How good is our estimator?

▶ Remember, these all have standard errors!



Can run regressions on these, know how to correct for attrition bias!

### Concluding Thoughts

- ► If you ever do structural estimation with different, hidden regimes, need to filter
- ► If you ever want to (partially) uncover hidden state (such as permanent income) Kalman Filter
  - Note: might not be super practical in example we gave!
- Very useful in time series estimation
- Used to estimate most macro models (DSGE)