

问题重述

线性规划问题可行域的凸性

概念定义

什么叫做凸?

凸多胞形: 同时也是 \mathbb{R}^n 中的一个凸集的多胞形

多胞形: 由平的边界构成的几何对象

 \mathbf{R}^n 中的凸集: 凸集C中的两个点连线段上的点都属于C

问题重述

线性规划问题可行域的凸性

证明一

线性代数

命题: 若 $Ax \le 0$ 且 $Ay \le 0$,则 $A(\lambda x + (1 - \lambda)y) \le 0$,其中 $\lambda \in (0,1)$.

证明:

$$A(\lambda x + (1 - \lambda)y) = A(\lambda x) + A((1 - \lambda)y)$$
$$= \lambda(Ax) + (1 - \lambda)(Ay)$$
$$\leq 0.$$

证明二

数学归纳法

p(n): 加入了n个限制后的可行域 s_n 为凸集. $(n \ge 0)$

奠基: p(0)成立. $\lambda x_i + (1 - \lambda)y_i \ge 0$, $\lambda \in (0, 1)$.

递推: 设p(k)成立. 则, 对于加入第k+1个限制后的可行域 s_{k+1} , 其中任选两点a, b. 假设线段ab上有点 $c \notin s_{k+1}$, 则又因为a, $b \in s_k$, 有 $c \in s_k$, 于是有 $c \in s_k - s_{k+1}$. 将第k+1个限制的划分所对应的平面记为 π_{k+1} . 则, 线段ac和线段bc都与 π_{k+1} 有交点. 由于ac和bc都在线段ab上, 所以它们与 π_{k+1} 交于同一点, 即c. 也即 $c \in \pi_{k+1} \subseteq s_{k+1}$,与假设矛盾. 因此, $\forall c \in ab$, $c \in s_{k+1}$.

由归纳假设, p(n)对于任意的n都是真命题.

