

Outline

I - Problem

II - Baseline method & Limitations

III - Solution & Improvements

IV - Results & Evaluation

Problem

Devise a black-box adversarial attack that is simple but effective across multiple domains.

Problem: Adversarial attack

Adversarial attack is a machine learning technique attempting to fool models by supplying corrupted input. By inserting a small noise to the original input, which is undetectable to humans, a different output is produced by the network.

Problem: Blackbox

Attack done without knowing the internal structure of the model, which can only utilize the output as feedback, is called a **blackbox attack**.

Problem: simple & effective?

- Simple: search-based
- Effective: High attack success rate

Small number of queries

Small distortion from original input

Simultaneously fuzzing

Why is adversarial attack important?

Adversarial inputs pose security risks to Al-based software. Generating and defending these tricky test cases helps improving the safety of the software.

Example: Autonomous cars are still vulnerable to adversarial input that may cause

casualties.

classification: 120 km/h

classification: STOP

(White image was possibly taken as open space.)

Baseline method

DeepSearch: A Simple and Effective Blackbox

Attack for Deep Neural Networks

Paper method

- 1) Input: Original Image + Classifier + parameters
- 2) Feedback (Fitness): Classifier probability output
- 3) Method: Searching + Query reduction + Distortion (difference) reduction

Goal: Find input that will get wrong output + less evaluation + more similar

Paper method

Finding noise pattern for adversary

Simple hill climbing -ish method

- try out a step and stay if fitter

Hierarchical Grouping (to reduce query usage)

Iterative Refinement (to reduce distortion)

Paper method - shortcomings/limitations

Non targeted attack

Unnatural grouping

Restricted to image domain

Rely on prob outputs

Solution

Replicate the paper

Improve the method

Expand to a different domain

Re-implemented:

Re-implemented:

- DeepSearch algorithm (main algorithm)
 - + Perturbation batching
- Hierarchical grouping

Re-implemented:

- DeepSearch algorithm (main algorithm)
 - + Perturbation batching
- Hierarchical grouping

Re-implemented:

- DeepSearch algorithm (main algorithm)
 - + Perturbation batching
- Hierarchical grouping

🤒 evaluation.py

mutation.py

Re-implemented:

- DeepSearch algorithm (main algorithm)
 - + Perturbation batching
- Hierarchical grouping

Re-implemented:

- DeepSearch algorithm
 - + Perturbation batching
- Hierarchical grouping

Borrowed:

- The models (and datasets)
- Interfaces

borrowed for fair comparison of results.

- deepSearch.py
- evaluation.py
- mutation.py
- imgntWrapper.py
- madryCifarUndefWrapper.py
- madryCifarWrapper.py
- model.py
- testDeepSearch.py

Readability was subjectively improved during the replication

Readability was subjectively improved during the replication

Before

LazierGreedy.py Line 44~64

```
def loss(image):
    self.loss_fn=loss
    self.loss=loss(self.image)
```

- Swapping method bonding to a variable bonding right after definition. (???)
- No comments or explanation at all.

Readability was subjectively improved during the replication

LazierGreedy.py Line 44~64

44 def loss(image):
63 self.loss_fn=loss
64 self.loss=loss(self.image)

to

- Swapping method bonding to a variable bonding right after definition. (???)
- No comments or explanation at all.

After (Separate example)

- Full documentation of how the algorithm works.
- Full length variable naming.

Improvement

- Targeted Attack
- Categorical Feedback Attack
- Alternative Grouping scheme

Improvement: Targeting

Research

- Targeted Attack
- Categorical Feedback Attack
- Alternative Grouping scheme

Improvement: Targeting

- Targeted Attack
- Categorical Feedback Attack
- Alternative Grouping scheme

Improvement: Categorical

- Targeted Attack
- Categorical Feedback Attack
- Alternative Grouping scheme

Improvement: Categorical

- Targeted Attack
- Categorical Feedback Attack
- Alternative Grouping scheme

Improvement: Grouping

Research

- Targeted Attack
- Categorical Feedback Attack
- Alternative Grouping scheme

Improvement: Grouping

Research

New features implemented:

- Targeted Attack
- Categorical Feedback Attack
- Alternative Grouping scheme

Random Grouping

New features implemented:

- Targeted Attack⁻
- Categorical Feedback Attack
- Alternative Grouping scheme

Changing focus:

<Probability gap> to <Target probability>

New features implemented:

- Targeted Attack-
- Categorical Feedback Attack
- Alternative Grouping scheme

Changing focus:

<Probability gap> to <Target probability>

Category to probability: **Frequency distribution** Repeatedly challenge the confidence

- Targeted Attack
- Categorical Feedback Attack
- Alternative Grouping scheme

New features implemented:

- Targeted Attack
- Categorical Feedback Attack
- Alternative Grouping scheme

Category to probability: **Frequency distribution**Repeatedly challenge the confidence

New features implemented:

- Targeted Attack
- Categorical Feedback Attack
- Alternative Grouping scheme

Category to probability: **Frequency distribution**Repeatedly challenge the confidence

New features implemented:

- Targeted Attack
- Categorical Feedback Attack
- Alternative Grouping scheme

Category to probability: Frequency distribution Repeatedly challenge the confidence #2 Weighted Frequency distribution 8 0.067 0.017 0.183 **0.45** 0.05 | 0.233 | 0

Class 9

- Targeted Attack
- Categorical Feedback Attack
- Alternative Grouping scheme

Expansion

- Audio classifier 5 classes:
 human, cat, dog, parrot, kid
- Data harnessed by youtube_dl
- Data converted to spectrogram images
- Training by fine-tuned Resnet50 architecture, accuracy ~80%

Results

Replicated

Targeted

Randomly Grouped

Audio Domain

Cifar-10 Example

ImageNet Example

		Success Rate (%)		Average Query	
		Research	Ours	Research	Ours
ImageNet		(on 1000) 99.3	(on 50) 98	(on 1000) 561	(on 50) 666
C:£ 10	Undefended	100	100	247	531
Cifar-10	Defended	47.7	44	963	925

ImageNet Example

		Success Rate (%)		Average Query	
		Research	Ours	Research	Ours
		(on 1000)	(on 50)	(on 1000)	(on 50)
ImageNet		99.3	98	561	666
Cifar-10	Undefended	100	100	247	531
	Defended	47.7	44	963	925

<goldfish>

<screwdriver>

ImageNet Example

<screwdriver>

		Success Rate (%)		Average Query	
		Research (on 1000)	Ours (on 50)	Research (on 1000)	Ours (on 50)
ImageNet		99.3	98	561	666
Cifar-10	Undefended	100	100	247	531
	Defended	47.7	44	963	925

True label → Ship Dog Plane Deer

Cifar-10 Example

Cat

Bird

Trụck

Results: Targeted

ImageNet Example

<goldfish>

<street sign>

6	Success Rate (%)	Average Query
ImageNet	54	5547
Cifar (Undefended)	100	931

Cifar-10 Example

<airplane>

<horse>

<frog>

Results: Random Grouping

		Success Rate (%)		Average Query	
		Research (on 1000)	Ours (on 50)	Research (on 1000)	Ours (on 50)
ImageNet		99.3	98	561	666
Cifar-10	Undefended	100	100	247	531
	Defended	47.7	44	963	925

ImageNet Example

<goldfish>

<lollipop>

	Success Rate (%)	Average Query	
ImageNet	80	1522	
Cifar (Undefended)	96	581	

Cifar-10 Example

<deer> → <dog>

<horse> → <dog>

Results: Categorical

CIFAR Undefended Non-Targeted

- Success Rate (on 50) = 6%
- Average Query = 5617

 $\langle cat \rangle \rightarrow \langle dog \rangle$

<deer> → <frog>

 $\langle \text{deer} \rangle \rightarrow \langle \text{frog} \rangle$

Audio Non-Targeted

- Success Rate (on 2) = 100%
- Average Query = 655.5

Results: Audio

Conclusion

- DS is effective on targeted attacks & audio domain (spectrograms turned out to be robust to noise)
- Random grouping has less artifacts, but with worse quality
- Categorical Attack → not successful in query usage

Replication		Success Rate (%)		Average Query	
•		Research (on 1000)	Ours (on 50)	Research (on 1000)	Ours (on 50)
ImageNet		99.3	98	561	666
Cifar-10	Undefended	100	100	247	531
	Defended	47.7	44	963	925

Targeted Attack	Success Rate (%)	Average Query	
ImageNet	54	5547	
Cifar (Undefended)	100	931	

Random Grouping	Success Rate (%)	Average Query	
ImageNet	80	1522	
Cifar (Undefended)	96	581	

Future work

- Different representations for audio
- Representation-independent implementation:
- Raw mutation (directly on sound)
- Back-and-forth implementation (raw

Non Targeted Imgnt

* Attack Succeeded with 261 queries

goldfish, Carassius auratus

screwdriver

Non Targeted CIFAR (defended)

* Attack Succeeded with 117 queries

Results: Targeted

Targeted Imgnt

* Attack Succeeded with 4654 queries

<goldfish, Carassius auratus>

<street sign>

Results: Targeted

Targeted CIFAR (UD)

* Attack Succeeded with 202 queries

<ship>

