Suppose we choose $v_1...v_k \in V$ to construct a subspace $W \subset V$ by spanning those vectors, $W = \text{span}(v_1...v_k)$. Are all $v_1...v_k$ essential? In other words, can we get the same W by dropping some of the original vectors? Sometimes yes: $\text{span}\left(\binom{1}{0},\binom{0}{1},\binom{1}{1}\right) = \text{span}\left(\binom{1}{0},\binom{0}{1}\right)$, redundant here. Sometimes no: dropping $\binom{1}{0}$ or $\binom{0}{1}$ will change $W = \text{span}\left(\binom{1}{0},\binom{0}{1}\right)$. The redundant vectors can be identified using the both vectors are fundamental notion of linear independence/dependence. essential.

Def The vectors $V_1...V_k \in V$ are called linearly dependent if $\exists \alpha_1...\alpha_k$ (not all zero!), such that $\alpha_1 V_1 + ... + \alpha_k V_k = 0$.

The vectors are linearly independent if they are not linearly dependent (i.e. $\forall \alpha_1...\alpha_k$ (not all zero), $\alpha_1 V_1 + ... + \alpha_k V_k \neq 0$)

Example 1 Let $T = \text{span}(1, \cos x, \sin x, \cos^2 x, \cos x \sin x, \sin^2 x)$ be the space of quadratic triponometric polynomials. The generating vectors are dependent since $\sin^2 x + \cos^2 x = 1$: $(-1) \cdot 1 + 0 \cdot \cos x + 0 \cdot \sin x + 1 \cdot \cos^2 x + 0 \cdot \cos x \sin x + 1 \cdot \sin^2 x = 0$

Example 2 T (2) = span (cosx, sinx, cosx, sinx, sinx) and the corresponding vectors are linearly independent (HW).

Nemark General strategy for proving linear independence:

Assume that $\alpha_1 v_1 + ... + \alpha_k v_k = 0$ and show that this leads to $\alpha_1 = ... = \alpha_k = 0$

Let us now focus on linear (in) dependence of vi... vie 18th

Theorem 3 Let vi... vie IR and A = [vi... vi] is the mx in matrix

- 1. V....V are lin. dep. (=) ∃d≠0, de|R : Ad=0 (=> rankA<n
- 2. VI... Vn are lin. ind. (=) A = 0 only if d=0 (=) rank A = n
- 3. Ve span (vi... Vi) (=) Ax = V has at least one solution (=> rank [AIV] = vent [A]

This is basically reformulation of the definitions of lin. dep/ind. and span on the matrix language.

Let us look at the homogeneous linear system $A \alpha = 0$ more carefully. It has m equations and knunknowns. Recall that $\exists \alpha \neq 0 : A \alpha = 0 \iff \text{rank } A \iff \text{if } \text{rank } A = 0 \iff \text{rank } A = 0$

- 1. If nin => rank A < kn => v....v = IR are linearly dependent
- 2. If them, then v,...vn & R are lin. ind. (dep.) (=> rank A= the (rank A < the)

When vi... vp span all of 1Rth?

This happens when $\forall s \in IR^m$ the system $A \alpha = \delta$ has at least one solution. This happens if and only if the row echelon form of A does not contain all tero rows, i.e. if rank A = m.

Remark A necessary (but not sufficient) condition for span (v,...vh) = 1Rn is na >m.

Our discussion of linear dependence/independence and span gets us very close to the fundamental notion of basis.

The notion of basis is absolutely fundamental in 14 linear algebra and its applications, including differential equations, statistics, signal and image processing, data compression, etc. It formalizes the idea of the most "economical" set of vectors that spans a given vector space V.

If we want to span V by $S_1...S_k \in V$, then kmust be large enough (recall that to span IR, k>n).

On the other hand, if k is too large, then J... Jk will be linearly dependent, and, therefore, some of the vectors will be redundant, making the set vi,... ok not "economical."

Defil Let V be a vector space. A collection of vectors $v_1...v_n \in V$ is called a basis of V if

1. span $(V_1...V_n) = V$ (we have enough vectors)

2. Vi... Vn are linearly independent (just enough)

Ex1 The standard basis of IR" is e,= (;), e2=(;),..., en=(;)

The standard basis consists of n vectors. It turns out that so does every basis of IRM Th4 Every basis of IR" consists of exactly n vectors.

Proof: Let J... Jk be a basis of IR". Since span (V....Vk) = IR" => k>n.

On the other hand, if k>n => J.... The are linearly dependent

How to check whether Si... In & IR form a basis? Hence, k=n

This A set of vectors $\vec{v}_1...\vec{v}_n \in \mathbb{R}^n$ form a basis of $\mathbb{R}^n \iff \text{rank } A = n$

The fact that every basis of IR consists of the same number of vectors is not special for IR, it is true for every vector space

The Let Ji... In be a basis in a vector space V. Then every basis of V consists of n vectors.

Proof: Suppouse u,... um is another basis of V and m + n.

Without loss of generality, assume m>n. We will show that {u,3} n are linedep. Since $v_1...v_n$ is a basis, $u_j \in \text{Span}(\vec{v}_1...\vec{v}_n) \implies v_j = \sum_{i=1}^n \alpha_{ij} \vec{v}_i$ for $j=\overline{l},\overline{m}$.

Let us form a linear combination of u...um and see when it is zero.

 $\sum_{j=1}^{m} u_{i} = \sum_{j=1}^{m} \sum_{i=1}^{m} \beta_{i} \alpha_{ij} \delta_{i} = \sum_{i=1}^{m} \left(\sum_{j=1}^{m} \alpha_{ij} \beta_{j} \right) \delta_{i} = 0 \iff \sum_{j=1}^{m} \alpha_{ij} \beta_{j} = 0 \iff \sum_$

 $A = [\mathcal{S}_1, ..., \mathcal{S}_n]$

(we established) this test town when discussed

when Si... Ske IRh

are lin. ind & span 18

Note that $\sum_{j=1}^{\infty} d_{ij} \beta_{j} = 0$ $\forall i=1,n$ is a homogeneous system of n equations
with m unknowns: Bi Pm. But we know (man) n d = 0
that in this case I a non-trivial solution \$= 0 m p we can't have my
=> I non-trivial lin. combination $\angle \beta_j u_j = 0 => u_1u_m$ are in eq>
This result motivates the following definition have men)
Defz: The number of vectors in a basis of a vector space V
is called the dimension of V.
Example 2: The standard basis of the space $P^{(n)}$ of all polynomials of dep $\leq n$ is $1, x, x^2,, x^n$. The Limension is thus dim $P^{(n)} = n+1$.
is 1, x, x,, x. The timention is thus aim is = = 1.
Now we can formulate precisely what we mean when we say that
a basis openmally (economically) 'F'
Th4: Let V be an n-Limensional vector space. Then
1. Every set of m>n vectors is linearly sependent.
2 No set of men vectors spans . this is the proof
1 1 de Million to check whether a sel
of vectors is a basis of v, we want of are lin. dep. (same arpument
a) vectors are lin. ind. b) they span V. as in Th 3.) If we know that dim V = n and we have n vectors (only sets of n vectors then we need to check just one of the two conditions, can be potentially bases) the other will be fullfilled automatically.
If we know that sim v = n and the two couditions, can be potentially bases)
the other will be fullfilled automatically.
The let V be an n-amendance
1. Vectors Vi In form a basis <=> fi In are lin. ind
2 Vectors of of form a basis (=) span (v1vn) = V
O P T I II cores we need to prove only one direction
Assume span (Sindy) # V =) Interview are lining. Indeed, if of (n+1) vectors: (Sind, u). We claim they are lining. Indeed, if
of (n+1) vectors: (v_1v_n , v_i). We can define v_i but then all $v_i = v_i$ but then all $v_i = v_i$ contradiction =) span (v_iv_n) = v_i and v_iv_n form a basis are lin. ind. with Th4. 1)
with Th4. 1) of V.

2. Suppose now that J In span V. We need to show that J In
Assume they are not, i.e. I non-trivial lin. combination are liv. 1401.
$\alpha_i S_i + + \alpha_n S_n = 0$, where not all α_i are zero. Assume $\alpha_n \neq 0$ (matter which α_i)
which differ span (f_1f_{n-1}) , in other words,
Thus, soon (25, 25,) - V which contradicts to
=) $V_n = -\frac{\alpha_1}{\alpha_n} \int_{1-\dots-\frac{\alpha_{n-1}}{\alpha_n}} \int_{n-1} \in \text{span}(f_1f_{n-1})$, in other words, V_n is redundent. Thus, span $(V_1V_{n-1}) = V$, which contradicts to V_n is redundent. So, $V_n = V_n$ are lin. ind, and, therefore, form a basis of $V_n = V_n$.
or, of of are in. last, and, therefore, form a basis of
In Th5, we assumed that dim V is known and made some statements
about the properties of sets of vectors. Suppose now, that we don't know dim V but we do know that a certain set of vectors is limited. Or that it spans V.
but we do know that a certain set of vectors is lin. ind. or that it spans V.
Can we say anything about 41m V:
The Let V be a vector space, and $V_1 V_n \in V$.
1. If s, In are lin. ind. => dim V > n?
7. If v_1v_n are lin. ind. \Rightarrow dim $V \gg n$ } 2. If $span(v_1v_n) = V \Rightarrow$ dim $V \leq n$ Follows directly from Th 4
Let us finish the discussion of bases with the following from Th. 4.
useful characterization.
Th 7 The vectors S In form a basis of V <=>
$\forall v \in V \exists d_1 d_n : v = \sum_{i=1}^{n} d_i v_i$ (any vector $v \in V$ can be written uniquely as a linear combination of $v_i = v_i v_i$) Since $v_i v_i v_i$ is a basis, span $(v_i v_i) = V_i v_i v_i$
Proof: (=) Since $\mathcal{S}_1\mathcal{S}_n$ is a basis, span $(\mathcal{S}_1\mathcal{S}_n) = V$,
and therefore $\forall v \in V \exists d_1d_n : v = \sum_{i=1}^n d_i v_i$ (there exists at least
and therefore $\forall v \in V \exists d_1d_n : v = \sum_{i=1}^n d_i v_i$ (there exists at least one suppose \exists another representation of v as a lin. combination v as a lin. combination v and v and v are v and v and v are v and v and v are v and v are v and v are v and v are v are v and v are v are v are v and v are v are v and v are v are v and v are v and v are v and v are v and v are v are v are v are v are v are v and v are v are v and v are v are v are v are v and v are v and v are v are v and v are v are v are v are v and v are v are v and v are v are v are v are v and v are v are v and v are v are v are v and v are v and v are v are v are v and v are v are v are v and v are v
But then $Z(d_i-\tilde{\alpha}_i)\tilde{v}_i=0 \Longrightarrow \alpha_i-\tilde{\alpha}_i=0$ (since $\tilde{v}_i\tilde{v}_n$)
Thus, the representation $v = \sum_{i=1}^{n} d_i v_i$ is unique.
We know that span $(f_1f_n) = V$ and need to show that f_1f_n are
Supposse they are not: 3 didn (not all zero): lin. ind.
$d_1 \mathcal{J}_1 + \dots + d_n \mathcal{J}_n = 0 \text{Let say } d_n \neq 0 = 0 \mathcal{J}_n = -\frac{\alpha_1}{\alpha_n} \mathcal{J}_1 - \dots - \frac{d_{n-1}}{d_n} \mathcal{J}_{n-1}$ On the other hand $\mathcal{J}_n = 0.05 + + 0.05 + 0.05 + + 0.05 + 0.05 + + 0.05 + 0.$
on the other hand, of -0.11 + 1.3h.
And we constructed two different representations of V_h as a lin. combination of V_1V_h , Contradiction! => V_1V_h are lin. ind.
Def3 (d. d.) are called the coordinates of S in the basis of S

Ex3: Recall our weird example of a vector space Let us find its Limension and a basis. It "feels" like Q should be 2-dim. Since the vector space $(x,y_1) \oplus (x_2y_2) = (x,x_2,y,y_2)$ operations @ and . are based on (ordinary) $d \cdot (x,y) = (x^{k}, y^{k})$ multiplication, its reasonable to use 1 and e to construct a basis. So, let us define $V_1 = (1,e)$ and $V_2 = (e,1)$. Let (x,y) = Q be any vector, let us try to represent it as a lin. comb. $(x,y) = \alpha \sqrt{10} \beta \sqrt{1} = (21,e^{\alpha}) \oplus (e^{\beta},1) = (e^{\beta},e^{\alpha}).$ This equation has unique solution: $f = \log y$ Thus, $\dim Q = 2$. $\beta = \log x$ => Vi, Vz is indeed a basis and (d, b) are the coord. of (kry) in that basis. The Fundamental Matrix Subspaces many results assoc with A combe formul.
in terms of these spaces Let $A \in IM_{m \times n}$ be an $m \times n$ matrix. There are 4 fundamental subspaces associated with A: kernel (null), image (range), cokernal, and coimage. We can view A as a (linear) map $A: \mathbb{R}^n \to \mathbb{R}^m$, $x \mapsto Ax$. Def 4 The kernel of A is the subspace ker A C IR"; $\ker A = \left\{ x \in \mathbb{R}^n \mid Ax = 0 \right\}$ Let us check that ker A is indeed a subspace. Let x, y e ker A and d, p \in IR =) $A(\alpha x + \beta y) = \alpha Ax + \beta Ay = 0$ =) $\alpha x + \beta y \in \ker A$. The fact that ker A is a subspace can be re-expressed as the following Superposition Principle (for homogeneous systems) k If $x_1...x_k$ are solutions of $Ax=0 \Rightarrow \sum_{i=1}^{k} \alpha_i x_i$ is also a solution for any $\alpha_1...\alpha_n \in \mathbb{R}$. Because it tells us that if we want to find a general solution of Ax=0, we need to find a basis in ker A, and then any solution is a lin. combination we need to find a basis in ker A, and then any solution is a lin. combination Why is this principle important? Def 5 The image of A is the subspace im A < IRM, | im A = { A x | x \in | R n } | 3x,,xz ER: Let us also check that im A is a subspace. Let b1, b2 € im A => Ax, = b, => Ydip A (dxi+Bx2) = dbi+db2 => dbi+Bb2 & im A. A K2 = b2

- The definition of im A is a bit implicit, but it has a very simple let $a_1...a_n$ be the columns of A, then im A consists interpretation. of all vectors $b = Ax = [a_1...a_n] \begin{pmatrix} x_1 \\ x_n \end{pmatrix} = x_1a_1 + ... + x_na_n$, $\forall x$. Therefore, $im A = span(a_1,...,a_n)$
- The image of A is important because it is exactly the set of vectors b, for which the linear system Ax = b has solutions. It turns out that to find the general solution of Ax = b, all we need to know is one particular solution and ker A.

The $x \in \mathbb{R}^n$ is a solution x = x = x + x, where $x \in \mathbb{R}^n$.

Proof (=) is easy: $A(x^*+x_0) = Ax^* + Ax_0 = b$.

- If z is a solution =) $A \times zb$. We also know that $A \times z^* = b$. Therefore, $A(x-x^*) = 0 \Rightarrow x-x^* = z_0 \in \ker A$
- The existence of a solution of $A \times = b$ depends on whether $b \in \operatorname{im} A$ or $b \not\in \operatorname{im} A$.
- But if be im A, a solution exists and its uniqueness does not depend on a particular b:

 Solution of Ax = b is unique (=) $ker A = \{0\}$

The superposition principle lies at the heart of linearity. BANDMAN AND STREET FOR homogeneous systems: it allows to construct new solutions of Ax = 0 by simply taking linear combinations of old solutions. For inhomogeneous systems Ax= b this of course does not work, and the s.p. takes the following form:

Superposition Principle (for inhomogeneous systems)

Let $x_1, ..., x_k$ be particular solutions of $Ax = b_1, ..., Ax = b_k$

 \Rightarrow $x^* = Z a_i x_i^*$ is a particular solution of $Ax = Z a_i b_i$ (here we assume)

=> The general solution of Ax = Za; b; is then ze = ze + xo, xo eker A.

Useful interpretation

In physical applications, b1,..., bk usually represent external forces, and the solutions xi... xk represent the corresponding responses of the physical system. The s.p. tells us that we know how the system responds to the individual excitations, then we also know how it will respond to any combination of the exications. The precise details of the system are irrelevant: all is important is its

Cokernel & Coimage

WHAMMANN We introduced two (out of four) fundamental subspaces associated with any matrix $A \in IM_{m \times n}$: ker $A \in IR^n$ and in $A \subset IR^m$.

Every system Ax = b has a syster (or a brother if you wish), called adjoint.

Def The adjoint to Az=b is Ay=c. Here, A & IM mxn, x & IR, b & IR The remaining two fundamental subspaces $A^T \in \mathbb{N}_{n \times m}$, $y \in \mathbb{R}^m$, $C \in \mathbb{R}^m$ of A are the two known subspaces of AT.

Def The cokernel of A is coker A = ker AT = {y \in IRM | ATy = 0} \in IRM The coimage of A is coim A = im AT = {ATy | y \in IRm} C IRm

Recall that im A = span (a1,..., an), where ai is the ith column of A.

Therefore coim A = aphillatillatin span (a',...,am), where a' is the its row of A. · im A is also called column space : Rumake
· coim A is also called row space