Projeto Sistema Seletor de Funções

IBMEC - RJ

Disciplina: Sistemas Digitais Professor: Clayton J. A. Silva

Turma: Sexta-feira (Manhã) - 2025.2

Componentes do Grupo:

Guilherme de Moraes Lopes Silva

• Matrícula: 202401632473

• Autoavaliação: TA (Trabalhou Ativamente)

Felipe Dutrain de Sales

• Matrícula: 202401632473

• .Autoavaliação: TA (Trabalhou Ativamente)

1. Objetivos do Projeto

Projetar e implementar um circuito combinacional que utiliza um multiplexador (MUX) 8x1 para selecionar e exibir o resultado de três sistemas de controle digital distintos. O projeto também inclui um sistema de alarme para indicar seleções de função inválidas, reforçando os conceitos de lógica booleana, circuitos combinacionais e o uso de CIs multiplexadores.

2. Tabelas-Verdade

A seguir são apresentadas as tabelas-verdade para cada uma das funções implementadas e para a lógica de acionamento do alarme (buzzer).

2.1. Função 1: Sistema de Iluminação (F1)

Equação: F1 = (X OU Y) E (NÃO Z)

Х	Υ	Z	F1
0	0	0	0

0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

2.2. Função 2: Sistema de Segurança por Portas (F2)

Equação: F2 = NAND(X, Y, Z)

Х	Υ	Z	F2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

2.3. Função 3: Sistema de Reservatório de Água (F3)

Equação: F3 = NOR(X, Y, Z)

х	Υ	z	F3

0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

2.4. Lógica de Acionamento do Buzzer

O buzzer é acionado (saída = 1) quando uma combinação inválida das chaves de seleção (S2, S1, S0) é escolhida.

S2	S1	S0	Buzzer	Descrição
0	0	0	0	Válido (F1)
0	0	1	0	Válido (F2)
0	1	0	0	Válido (F3)
0	1	1	1	Inválido
1	0	0	1	Inválido
1	0	1	1	Inválido
1	1	0	1	Inválido
1	1	1	1	Inválido

3. Equações Booleanas e Simplificação

3.1. Equações das Funções

```
• F1 (Iluminação): F1 = (X + Y) . Z'
```

• **F2 (Segurança):** F2 = (X . Y . Z)'

• **F3 (Reservatório):** F3 = (X + Y + Z)'

3.2. Equação do Buzzer

A partir da tabela-verdade, a equação canônica (Soma de Mintermos) para o buzzer é: Buzzer = (S2'.S1.S0) + (S2.S1'.S0') + (S2.S1'.S0) + (S2.S1.S0') + (S2.S1.S0) Simplificação Algébrica:

```
1. Buzzer = S2'.S1.S0 + S2.(S1'.S0' + S1'.S0 + S1.S0' + S1.S0)
```

2. Buzzer =
$$S2'.S1.S0 + S2.[S1'.(S0' + S0) + S1.(S0' + S0)]$$

3. Buzzer =
$$S2'.S1.S0 + S2.[S1'.(1) + S1.(1)]$$

Aplicando a propriedade distributiva (X + Y.Z = (X+Y).(X+Z)):

Buzzer = (S2 + S2'). (S2 + S1.S0)

Buzzer = (1) . (S2 + S1.S0)

Equação Simplificada: Buzzer = S2 + (S1 . S0)

Esta equação simplificada significa que o buzzer soará se a chave **S2** estiver ativa **OU** se as chaves **S1 E S0** estiverem ativas ao mesmo tempo.

4. Mapeamento das Entradas do MUX 8x1

Linha de Seleção (S2 S1 S0)	Entrada do MUX	Sinal Conectado
000	10	F1 (Iluminação)
001	11	F2 (Segurança)
010	12	F3 (Reservatório)
011	13	O (GND)
100	14	O (GND)
101	15	O (GND)
110	16	O (GND)
111	17	O (GND)

5. Esquema Final do Circuito:

A imagem a seguir representa o diagrama lógico completo do circuito, implementado no software Logisim, incluindo as três funções, o multiplexador 8x1, as chaves de entrada e seleção, e o circuito de alarme para o buzzer.

6. Descrição da Lógica de Funcionamento

O circuito foi projetado para operar como um seletor de sistemas de controle digital. A lógica de funcionamento segue os passos abaixo, do ponto de vista do usuário:

1. **Inicialização:** Ao energizar o circuito, as chaves de seleção (S2, S1, S0) e as chaves de entrada (X, Y, Z) estão em seu estado inicial (tipicamente 0). LEDs acoplados às chaves de seleção S2, S1 e S0 indicam visualmente o estado de cada uma (aceso para 1, apagado para 0).

- 2. **Seleção de Função:** O usuário escolhe qual sistema deseja monitorar através das três chaves de seleção.
 - Seleção 000 (S2=0, S1=0, S0=0): O MUX direciona o resultado da Função 1 (Sistema de Iluminação) para a saída. A saída do circuito agora reflete se a lâmpada deve acender com base nas entradas X (presença), Y (período noturno) e Z (economia).
 - Seleção 001 (S2=0, S1=0, S0=1): O MUX seleciona a Função 2 (Sistema de Segurança). A saída indicará o estado do alarme com base nas entradas X, Y, Z, que representam os sensores das portas.
 - Seleção 010 (S2=0, S1=1, S0=0): O MUX ativa a Função 3 (Sistema de Reservatório). A saída mostrará se a bomba de água deve ser ligada, dependendo se os sensores X, Y, Z indicam que o tanque não está cheio.
- 3. **Simulação das Entradas:** Com uma função selecionada, o usuário pode alterar os estados das entradas X, Y e Z para simular diferentes cenários em cada sistema. A saída do circuito (geralmente visualizada por um LED) responderá em tempo real de acordo com a lógica da função ativa.
- 4. Alarme de Seleção Inválida: Se o usuário mover as chaves de seleção para qualquer combinação que não seja 000, 001 ou 010 (ou seja, de 011 a 111), o circuito de detecção de erro é ativado. Este circuito, implementado com a lógica Buzzer = S2 + (S1 . S0), gera um sinal de nível lógico 1, que aciona um buzzer continuamente. Simultaneamente, como as entradas I3 a I7 do MUX estão aterradas, a saída principal do circuito será 0, garantindo que nenhum sistema seja ativado incorretamente. O alarme serve como um feedback imediato de que a configuração é inválida.