Lecture 5: Model Selection

Gavin Kerrigan
Spring 2023

Announcements

- Discussion sections tomorrow
 - Matplotlib and Scikit-Learn
 - Come prepared with questions on lecture / homework

- HW1 due Friday
 - Due 11:59PM no late submissions
 - Submit PDF via Gradescope
 - "Statement of Collaboration"
 - If you completed the HW on your own, state this
- HW2 released early next week

Today's Lecture

Model Selection

Cross Validation

Regularization

Reminders on Nonlinear Regression

Consider a feature vector with d features

$$\mathbf{x} = (x_1, x_2, \dots, x_d)$$

The **polynomial feature expansion** of x in degree p is

$$\mathbf{z} = \phi_p(\mathbf{x}) = (1, x_1, x_2, \dots, x_d, x_1^2, x_2^2, \dots, x_d^2, \dots, x_1^p, \dots, x_d^p, \dots, x_2 x_3^{p-1}, \dots)$$

New feature vector consisting of all possible feature combinations of degree $\leq p$

Reminders on Nonlinear Regression

Fitting a polynomial to data:

- 1. Fix a polynomial degree p
- 2. Compute the feature expansions $\mathbf{z}_i = \phi_p(\mathbf{x}_i)$ for every datapoint i = 0, 1, 2, ..., n

sklearn.preprocessing.PolynomialFeatures

3. Fit a linear regression model with the new features z_i

sklearn.linear_model.LinearRegression

class sklearn.linear_model.LinearRegression(*, fit_intercept=True, copy_X=True, n_jobs=None, positive=False)
[source]

Overfitting and Underfitting

The complexity of our model should "match" the complexity of our data

Underfitting: model is too simple to appropriately capture the data

Overfitting: model is too complex; fits data too well and cannot generalize to data not seen during training

What polynomial degree should we use?

Validation MSE increases despite training MSE decreasing

- Train many different models on this subset
- Different hyperparameters, e.g. learning rate, polynomial degree, etc.
- Evaluate each of your models on this subset
- Assess overfitting and select the best model

• After selecting your final model, use this set to assess how well your final model will perform on unseen data

- Percentages are just heuristics; can vary
 - Especially for very large datasets, where lower val/test percentages can work
- No overlap between splits!
 - "Data leakage" can lead to overly optimistic model evaluation
- Validation/Test set need to be sufficiently large
 - Too few datapoints → noisy, unreliable estimates of error

sklearn.model_selection.train_test_split

sklearn.model_selection.train_test_split(*arrays, test_size=None, train_size=None, random_state=None,
shuffle=True, stratify=None)
[source]

Tip: you almost always want to shuffle your data before using it

E.g. some datasets might come ordered by y-value

- Why do we need a separate test set if we already have a validation set?
 - Performance on the validation set influences our choice of model
 - We are "cheating" by peeking at the validation set; can lead to overfitting
 - True test data is entirely unseen and does not influence the model in any way
 - Meant to simulate data the model will see after deployment

Overfitting and Underfitting

How can we determine if a model is overfitting or underfitting?

A heuristic (but not set-in-stone) rule:

	High Training Error	Low Training Error
High Val. Error	Underfitting	Overfitting
Low Val. Error	Bug in your code ☺ (or train/val mismatch)	Appropriate Fit

- Sometimes too expensive to train all of your models at once, and then evaluate
 - E.g. a large neural network (as you will see later in the quarter)
 - Can use this heuristic to help you tune models
 - i.e. iteratively assess under/overfitting and use this to modify model

Overfitting and Underfitting

Evaluation Methods

How do we assess model performance?

- For regression, look at MSE value on different splits
 - Most straightforward way of quantifying performance
- Evaluation is not limited to MSF:
 - Other metrics, like $R^2 = 1 MSE/Variance(y)$
 - Measures how much variation in y is captured by the model
 - How fast does the model train?
 - We may want to re-train the model if we have new data
 - How fast is prediction with the model?
 - Do we need real-time predictions?
 - e.g. autonomous vehicles
 - How much memory does the model require?
 - Is my model fair?

14

Questions?

Today's Lecture

Model Selection

Cross Validation

Regularization

K-Fold Cross-Validation

We can use a large validation data set to find the best model but what if we have a small data set, e.g., n=20 or 100?

K-fold cross-validation:

- -> use multiple validation sets and average over them
- -> Example: 10-fold cross-validation
 - randomly divide our data into 10 disjoint subsets ("folds"), each with 10% of the n datapoints
 - for each of the 10 folds
 - train a model on 90% and compute validation error on the 10%
 - repeat 10 times
 - cross-validation error = average of the 10 validation errors

Very general purpose technique (can be used with classification, regression, with any model) but requires training of K different models

Illustration of 5-fold Cross-Validation

Original data indices

Create 5 folds: for each fold, train on other 80%, evaluate on 20%

Very small dataset with 9 data points Evaluate MSE using 3-fold cross-validation to compare m=1, m=3 polynomials

$$f(\mathbf{x}) = \theta_0 + \theta_1 x + \theta_2 x^2 + \ldots + \theta_m x^m$$

Split 1: MSE = 331.8

Training data

Validation data

\mathbf{x}_{i}	y _i	
88	79	
32	-2	
27	30	
68	73	
7	-16	
20	43	
53	77	
17	16	
87	94	

Very small dataset with 9 data points Evaluate MSE using 3-fold cross-validation to compare m=1, m=3 polynomials

$$f(\mathbf{x}) = \theta_0 + \theta_1 x + \theta_2 x^2 + \ldots + \theta_m x^m$$

Split 1: MSE = 331.8

Split 2: MSE = 361.2 Training data Validation data

Xi	y _i	
88	79	
32	-2	
27	30	
68	73	
7	-16	
20	43	
53	77	
17	16	
87	94	

Very small dataset with 9 data points Evaluate MSE using 3-fold cross-validation to compare m=1, m=3 polynomials

$$f(\mathbf{x}) = \theta_0 + \theta_1 x + \theta_2 x^2 + \ldots + \theta_m x^m$$

$\mathbf{X_{i}}$	\mathbf{y}_{i}
88	79
32	-2
27	30
68	73
7	-16
20	43
53	77
17	16
87	94

Very small dataset with 9 data points Evaluate MSE using 3-fold cross-validation to compare m=1, m=3 polynomials

$$f(\mathbf{x}) = \theta_0 + \theta_1 x + \theta_2 x^2 + \ldots + \theta_m x^m$$

Split 1: MSE = 280.5

Training data

Validation data

Xi	y _i	
88	79	
32	-2	
27	30	
68	73	
7	-16	
20	43	
53	77	
17	16	
87	94	

Very small dataset with 9 data points Evaluate MSE using 3-fold cross-validation to compare m=1, m=3 polynomials

$$f(\mathbf{x}) = \theta_0 + \theta_1 x + \theta_2 x^2 + \ldots + \theta_m x^m$$

Split 1: MSE = 280.5

Split 2: MSE = 3081.3 Training data Validation data

$\mathbf{x_i}$	y _i	
88	79	
32	-2	
27	30	
68	73	
7	-16	
20	43	
53	77	
17	16	
87	94	

Very small dataset with 9 data points Evaluate MSE using 3-fold cross-validation to compare m=1, m=3 polynomials

$$f(\mathbf{x}) = \theta_0 + \theta_1 x + \theta_2 x^2 + \ldots + \theta_m x^m$$

Split	1:
MSE	= 280.5

MSE = 3081.3

MSE = 1640.1

Training data
Validation
data

3-Fold X-Val MSE = 1667.3

Xi	Yi
88	79
32	-2
27	30
68	73
7	-16
20	43
53	77
17	16
87	94

Cross Validation in Sklearn

sklearn.model_selection.KFold

class sklearn.model selection.KFold(n_splits=5, *, shuffle=False, random_state=None)

[source]

sklearn.model_selection.LeaveOneOut

class sklearn.model_selection.LeaveOneOut

[source]

- Cross validation with the number of folds equal to the number of datapoints
- i.e. with n datapoints, on each split we fit a model on n-1 datapoints and evaluate on 1 datapoint
- Useful for very small datasets
 - Lets us train model on most possible data
 - Can be too expensive for large datasets

Bootstrapping

An alternate method to cross-validation is **bootstrapping**

Have a dataset with n datapoints
Create M new train/val sets as follows:

 Create a training set by sampling n datapoints from your data <u>with</u> <u>replacement</u>

```
sklearn.utils.resample

sklearn.utils.resample(*arrays, replace=True, n_samples=None, random_state=None, stratify=None) [source]
```

2. Create a validation set by taking all datapoints not in the training set

Fit models on train sets; evaluate on validation sets and average performance

Bootstrapping

An alternate method to cross-validation is bootstrapping

Bootstrapping vs Cross-Validation:

- Both widely used in practice
- Bootstrapping more popular in statistics; Cross-validation more popular in ML
- Cross-validation trains models on datasets smaller than the original data
 - Can underestimate model performance
- Cross-validation can be thought of as similar to bootstrapping without replacement

We will use bootstrapping later in the course to build *ensemble* methods

Questions?

Today's Lecture

Model Selection

Cross Validation

Regularization

Regularization with MSE Loss Function

Linear regression model:

$$f(x \mid \theta) = \theta_0 + \theta_1 x_1 + \dots + \theta_d x_d = \theta^T x$$

Model is learned by minimizing the MSE:

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i | \theta))^2$$

Recall: overfitting happens when our model is "too complex"

• Can we somehow measure the complexity of a model using the parameters θ ?

Regularization for Regression

Suppose we can somehow measure the complexity of a model

- Using a function $R(\theta)$
- Higher values of $R(\theta) \rightarrow$ higher complexity

We can **regularize** our model by adding a complexity penalty to the loss:

$$L_R(\theta) = \text{MSE}(\theta) + \alpha R(\theta)$$
$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i \mid \theta))^2 + \alpha R(\theta)$$

Minimizing $L_R(\theta)$ requires our model to balance:

- Error on the training data, i.e. MSE
- Complexity of the model, i.e. $R(\theta)$
- As long as $R(\theta)$ is differentiable, can still use gradient descent

Regularization for Regression

Suppose we can somehow measure the complexity of a model

- Using a function $R(\theta)$
- Higher values of $R(\theta) \rightarrow$ higher complexity

We can **regularize** our model by adding a complexity penalty to the loss:

$$L_R(\theta) = \operatorname{MSE}(\theta) + \alpha R(\theta)$$
$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i \mid \theta))^2 + \alpha R(\theta)$$

 $\alpha > 0$ is the <u>regularization strength</u>

- Yet another hyperparameter we can tune
- Higher α means more regularization

Norms

A **norm** is a function that takes in a vector and measures its "size" or "magnitude"

Norm of a vector v usually denoted ||v||

- i.e. ||v|| is a <u>non-negative</u> real number telling us the magnitude of the vector v
- Has a formal definition (we won't need it in this class)

Example: the **Euclidean** norm (or L2-norm):

$$v = (v_1, v_2, \dots, v_d)$$

$$||v||_2 = \sqrt{v_1^2 + v_2^2 + \dots + v_d^2}$$

- Corresponds to the usual "length"
 - Pythagorean Theorem

Norms

A **norm** is a function that takes in a vector and measures its "size" or "magnitude"

Norm of a vector v usually denoted ||v||

- i.e. ||v|| is a <u>non-negative</u> real number telling us the magnitude of the vector v
- Has a formal definition (we won't need it in this class)

Example: the **L1-norm**:

$$v = (v_1, v_2, \dots, v_d)$$

$$||v||_1 = |v_1| + |v_2| + \dots + |v_d|$$

 Measures length by adding lengths of individual components

Norms

A **norm** is a function that takes in a vector and measures its "size" or "magnitude"

Norm of a vector v usually denoted ||v||

- i.e. ||v|| is a <u>non-negative</u> real number telling us the magnitude of the vector v
- Has a formal definition (we won't need it in this class)

General formula for **Lp-norms**, p>0:

$$v = (v_1, v_2, ..., v_d)$$

$$||v||_p = \left(\sum_{i=1}^d |v_i|^p\right)^{1/p}$$

- Different values of p change how we measure length
 - (more details later)

Norms as Measuring Model Complexity

We can use the norm of the parameter vector θ to measure how complex the model having those parameters is

$$\|\theta\|_2 = \sqrt{\theta_0^2 + \theta_1^2 + \dots + \theta_d^2}$$

Example: quadratic regression

$$f(\boldsymbol{x} | \boldsymbol{\theta}) = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2$$

If θ_0 , θ_1 , θ_2 are all small:

- The parabola is approximately the zero function: $f(x | \theta) \approx 0$
 - Clearly not a "complex" model
- $\|\theta\|_2$ is also small

Regularized Regression

We can use the norm of the parameter vector θ as the "complexity function"

$$R(\theta) = \|\theta\|_{p}$$

$$L_R(\theta) = \operatorname{MSE}(\theta) + \alpha R(\theta)$$

$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i \mid \theta))^2 + \alpha R(\theta)$$

$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i \mid \theta))^2 + \alpha \|\theta\|_p$$

Most common special cases:

- p = 1 ("LASSO")
- p = 2 ("Ridge")

Regularized Regression in Sklearn

sklearn.linear_model.Lasso

class sklearn.linear_model.Lasso(alpha=1.0, *, fit_intercept=True, precompute=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False, positive=False, random_state=None, selection='cyclic') [source]

sklearn.linear_model.Ridge

class sklearn.linear_model.Ridge(alpha=1.0, *, fit_intercept=True, copy_X=True, max_iter=None, tol=0.0001, solver='auto', positive=False, random_state=None) [source]

Regularization strength

- Needs to be tuned
- Can have significant impact on model performance

Polynomial Regression with L2 Regularization

True curve = Sine Wave + noise: n = 30 datapoints, MSE estimated with 10-fold cross-validation

 $Adapted \ from \ https://scikit-learn.org/stable/auto_examples/model_selection/plot_under fitting_over fitting.html \# sphx-glr-auto-examples-model-selection-plot-under fitting-over fitting-pylection from https://scikit-learn.org/stable/auto_examples/model_selection/plot_under fitting-over fitting-pylection from https://scikit-learn.org/stable/auto_examples/model_selection/plot_under fitting-over fitting$

Comparing Coefficient Estimates with and w/o Regularization

8th order polynomial fit to Sine Wave + noise, n = 30 datapoints

Coefficients	Fitted Values with No Regularization	Fitted Values with L2 Regularization, α = 0.01	Fitted Values with L1 Regularization, $\alpha = 0.0$
$\theta_\mathtt{1}$	133.9	-3.54	-3.04
• •	-1628.0	0.98	-0.00
• •	9589.3	0.76	0.00
• •	-31725.5	1.30	0.00
• •	61479.8	1.14	0.00
• •	-69079.0	0.68	2.14
• •	41604.9	0.14	0.00
θ_8	-10373.6	-0.38	0.00

Why should L1 regularization result in so many zeros?

Geometric Intuition for L1 Sparsity

Why should L1 regularization result in so many zeros for the weights?

Sometimes called "sparsity inducing"

Instead of the usual regularized MSE:

$$L_R(\theta) = \operatorname{MSE}(\theta) + \alpha \|\theta\|_1$$
$$= \operatorname{MSE}(\theta) + \alpha \sum_{j=0}^{d} |\theta_j|$$

Consider the "constrained" MSE optimization problem:

$$\min_{\theta} \text{MSE}(\theta)$$
 such that $\|\theta\|_1 \leq 1$

LASSO vs Ridge Regression

Solution to constrained MSE problem must lie in corresponding unit ball

- Due to geometry of L1 unit ball, much more likely to hit "corners"
- i.e. points where at least some of the parameters are zero!

Zou, H., & Hastie, T. (2005)

Unit Balls for Other Lp Norms

- p < 1 results in even more sparsity
 - But leads to a nonconvex optimization problem
 - $1 always leads to a convex loss <math>L_R(\theta)$
- Special case $p = \infty$
 - $\|\theta\|_{\infty} = \max_{i=0,1,\dots,d} |\theta_i|$
 - Not differentiable

Elastic Net Regression

We can be creative in how we define the complexity function

Example: "Elastic-Net" regularization uses a sum of L1 and L2 norms:

$$R(\theta) = \alpha_1 \|\theta\|_1 + \alpha_2 \|\theta\|_2$$

Why is this useful?

- L1 regularization can lead to non-unique solutions
- Can be problematic if you want to interpret the weights of your model
- Elastic-Net is a convex optimization problem; unique minimizer
- Achieves both sparsity and uniqueness

Summary and Wrapup

- Model Selection is the process of deciding which model to use
 - Tuning hyperparameters
 - Choosing which model to use (later in the course)
- Best practices:
 - Train/val/test splits
 - Cross validation or bootstrapping if you have limited data
 - Use train/val performance to assess over/under fitting

- Regularization
 - Add a term to your loss which penalizes model complexity
 - E.g. norm of parameter vector
 - L1 (Lasso) and L2 (Ridge) regression

Next Lecture

- Regression portion of the course complete
- We'll focus on classification for the next several weeks
 - Nearest centroids, kNN, logistic classifiers, neural networks

Week 2				
Monday 4/10	Lec04	Gradient Descent; Nonlinear Regression		Partial Derivatives [1] [2]
Wednesday 4/12	Lec05	Model Selection and Regularization		
Thursday 4/13	Dis02	Intro to scikit-learn and matplotlib		
Friday 4/14	Lec06	Classification; Nearest Centroids	HW1 Due	
Week 3				
Monday 4/17	Lec07	Probability review; Classification metrics; Bayes Error		
Wednesday 4/19	Lec08	k-Nearest Neighbors		
Thursday 4/20	Dis03			
Friday 4/21	Lec09	k-Nearest Neighbors		
Week 4				
Monday 4/24	Lec10	k-Nearest Neighbors; Logistic Classifiers		
Wednesday 4/26	Lec11	Logistic Classifiers		
Thursday 4/27	Dis04			
Friday 4/28	Lec12	Logistic Classifiers	HW2 Due	
Week 5				
Monday 5/1	Lec13	Logistic Classifiers		
Wednesday 5/3	Lec14	Logistic Classifiers		
Thursday 5/4	Dis05			
Friday 5/5	Lec15	Midterm exam (in class)		

Questions?