Skew Dyck paths with air pockets

J.-L. Baril, R. Maréchal, H. Prodinger¹

LIB, Université de Bourgogne (France) Department of Mathematical Sciences, Stellenbosch University (South Africa)

GASCom, 06/28/2024

l barjlQu-bourgogne.fr, remi.marechalO1@etu.u-bourgogne.fr, hproding@sun.ac.za

Plan of the talk

- A note about air pockets
- Skew DAP
- Valley-avoiding skew DAP
- 3 Zigzagging, valley-avoiding skew DAP

Lattice paths with air pockets

Air pockets: down-steps of the form (1, -k) (k > 0), two of which cannot be consecutive.

Baril, Kirgizov, M., Vajnovszki: Dyck paths with air pockets (2023), Grand Dyck paths with air pockets (2024).

— Enumeration results, bijections with various objects (peakless Motzkin paths, Fibonacci meanders, integer compositions, ...)

Table of Contents

A note about air pockets

- Skew DAP
- 2 Valley-avoiding skew DAP
- 3 Zigzagging, valley-avoiding skew DAP

What is a skew DAP?

Lattice path in the first quadrant of \mathbb{Z}^2

Starts and ends on the x-axis

Steps:
$$U = (1,1)$$
, $L = (-1,-1)$, and $D_k = (1,-k)$ (for $k > 0$)

Forbidden patterns: *UL*, *LU*, and D_iD_i (for all i, j > 0)

Figure 1: Left: skew DAP; Right: partial skew DAP ending at ordinate 3.

Figure 2: State graph of skew DAP

Black: U-step; Red: D_k -step; Green: L-step.

State graph translates into the following equations:

$$\begin{cases} & f_0(z) = 1, \\ \forall k > 0, & f_k(z) = z \left(f_{k-1}(z) + g_{k-1}(z) \right), \\ \forall k \geqslant 0, & g_k(z) = z \sum_{i \geqslant 1} \left(f_{k+i}(z) + h_{k+i}(z) \right), \\ \forall k \geqslant 0, & h_k(z) = z \left(g_{k+1}(z) + h_{k+1}(z) \right). \end{cases}$$

We set
$$F(z,u)=\sum\limits_{k\geqslant 0}f_k(z)u^k$$
, $G(z,u)=\sum\limits_{k\geqslant 0}g_k(z)u^k$, and $H(z,u)=\sum\limits_{k\geqslant 0}h_k(z)u^k$.

$$\longrightarrow$$
 Solve for $F(z, u) + G(z, u) + H(z, u)$, using the kernel method. Kernel: $u^3z - 2uz^3 - u^2z + z^2u - u^2 + zu + z^2 + u - z$.

Result:

$$F(z,u) + G(z,u) + H(z,u) = \frac{s_1(1-z^2)}{z(s_1-z)(s_1-u)},$$

with

$$s_1 = \frac{A}{6z} + \frac{4z^4 - 2z^3 - \frac{4}{3}z^2 - \frac{2}{3}z + \frac{2}{3}}{zA} + \frac{z+1}{3z},$$

$$A = (72z^5 - 72z^4 + 44z^3 + 12Bz - 48z^2 - 12z + 8)^{\frac{1}{3}},$$

and

$$B = (-96z^{10} + 144z^9 + 60z^8 - 108z^7 - 24z^6 - 48z^5 + 81z^4 - 18z^2 + 12z - 3)^{1/2}.$$

Taylor expansion of F(z, u) + G(z, u) + H(z, u):

$$\begin{aligned} 1 + uz + (u^2 + 1)z^2 + (u^3 + 2u + 1)z^3 + (u^4 + 3u^2 + 2u + 3)z^4 \\ + (u^5 + 4u^3 + 3u^2 + 6u + 5)z^5 \\ + (u^6 + 5u^4 + 4u^3 + 10u^2 + 11u + 13)z^6 \\ + (u^7 + 6u^5 + 5u^4 + 15u^3 + 19u^2 + 28u + 26)z^7 + O(z^8). \end{aligned}$$

Resulting sequences when u=0 (skew DAP) or u=1 (partial skew DAP) are not in the OEIS.

$$\underline{u = 0}$$
: 1, 0, 1, 1, 3, 5, 13, 26, 64, 143, ...
 $\underline{u = 1}$: 1, 1, 2, 4, 9, 19, 44, 100, 236, 558 ...

Table of Contents

- A note about air pockets
- 1 Skew DAP
- Valley-avoiding skew DAP
- 3 Zigzagging, valley-avoiding skew DAP

What is a valley-avoiding skew DAP?

Skew DAP, but any occurrence of $D_k U$ is forbidden (for all k > 0).

Figure 3: State graph of v.a. skew DAP

Black: U-step; Red: D_k -step; Green: L-step.

State graph translates into the following equations:

$$\begin{cases} f_0(z) &= 1, \\ \forall k > 0, & f_k(z) &= z f_{k-1}(z), \\ \forall k \geqslant 0, & g_k(z) &= z \sum_{i \geqslant 1} (f_{k+i}(z) + h_{k+i}(z)), \\ \forall k \geqslant 0, & h_k(z) &= z (g_{k+1}(z) + h_{k+1}(z)). \end{cases}$$

We set
$$F(z,u)=\sum\limits_{k\geqslant 0}f_k(z)u^k$$
, $G(z,u)=\sum\limits_{k\geqslant 0}g_k(z)u^k$, and $H(z,u)=\sum\limits_{k\geqslant 0}h_k(z)u^k$.

$$\longrightarrow$$
 Solve for $F(z, u) + G(z, u) + H(z, u)$, using the kernel method. Kernel: $u^3z^2 - u^2z^3 - uz^4 - u^3z + 2uz^3 + z^3 + u^2 - 2z^2 - u + z$.

Result:

$$F(z,u)+G(z,u)+H(z,u)=\frac{1-z+z^3-z^4}{(1-zu)(1-z-z^2+z^3-z^4)}.$$

Taylor expansion:

$$\begin{split} 1 + uz + \left(u^2 + 1\right)z^2 + \left(u^3 + u + 1\right)z^3 + \left(u^4 + u^2 + u + 2\right)z^4 \\ + \left(u^5 + u^3 + u^2 + 2u + 2\right)z^5 \\ + \left(u^6 + u^4 + u^3 + 2u^2 + 2u + 4\right)z^6 \\ + \left(u^7 + u^5 + u^4 + 2u^3 + 2u^2 + 4u + 5\right)z^7 + O(z^8) \,. \end{split}$$

$$\underline{u=0}$$
: 1, 0, 1, 1, 2, 2, 4, 5, 9, 12, ... (OEIS A124280)
 $\underline{u=1}$: 1, 1, 2, 3, 5, 7, 11, 16, 25, 37, ... (OEIS A130137)

Bijection with a set of binary words

F(z,1) + G(z,1) + H(z,1) is the same g.f. as that of binary words avoiding both 00 and 0110.

Figure 4: Illustration of the bijection χ .

 $\overline{w_1w_2\dots w_{n-1}w_n}:=w_1w_2\dots w_{n-1}1 \text{ for any word } w_1w_2\dots w_{n-1}w_n.$

Example: $\chi(U^4DLD_2) = 011110$.

Bijection with a set of binary words

n	$\alpha \in \mathcal{PV}_n$	$\chi(\alpha) \in \mathcal{B}_{n-1}^{(00,0110)}$
1	U	ε
2	UD	0
	UU	1
3	UUD	01
	UUD_2	10
	UUU	11
4	UUDL	010
	UUUD	011
	$UUUD_2$	101
	$UUUD_3$	110
	UUUU	111

Table 1: First values of χ .

Table of Contents

- A note about air pockets
- 1 Skew DAP
- 2 Valley-avoiding skew DAP
- 3 Zigzagging, valley-avoiding skew DAP

What is a zigzagging, valley-avoiding skew DAP?

V.a. skew DAP, but any occurrence of *LL* is forbidden.

Figure 5: State graph of v.a. skew DAP

Black: U-step; Red: D_k -step; Green: L-step.

Enumeration of z.v.a. skew DAP

State graph translates into the following equations:

$$\begin{cases} f_0(z) &= 1, \\ \forall k > 0, & f_k(z) &= z f_{k-1}(z), \\ \forall k \geqslant 0, & g_k(z) &= z \sum_{i \geqslant 1} (f_{k+i}(z) + h_{k+i}(z)), \\ \forall k \geqslant 0, & h_k(z) &= z g_{k+1}(z). \end{cases}$$

We set
$$F(z,u)=\sum\limits_{k\geqslant 0}f_k(z)u^k$$
, $G(z,u)=\sum\limits_{k\geqslant 0}g_k(z)u^k$, and $H(z,u)=\sum\limits_{k\geqslant 0}h_k(z)u^k$.

$$\longrightarrow$$
 Solve for $F(z, u) + G(z, u) + H(z, u)$, using the kernel method.
Kernel: $u^3z^2 - uz^4 - u^3z - u^2z^2 + uz^3 + z^3 + u^2 + uz - z^2 - u$.

Enumeration of z.v.a. skew DAP

Result:

$$F(z,u) + G(z,u) + H(z,u) = \frac{1-z+z^2}{(1-zu)(1-z-z^4)}.$$

Taylor expansion:

$$\begin{split} 1 + uz + \left(u^2 + 1\right)z^2 + \left(u^3 + u + 1\right)z^3 + \left(u^4 + u^2 + u + 2\right)z^4 \\ + \left(u^5 + u^3 + u^2 + 2u + 2\right)z^5 \\ + \left(u^6 + u^4 + u^3 + 2u^2 + 2u + 3\right)z^6 \\ + \left(u^7 + u^5 + u^4 + 2u^3 + 2u^2 + 3u + 4\right)z^7 + O(z^8) \,. \end{split}$$

$$\underline{u=0}$$
: 1,0,1,1,2,2,3,4,6,8,... (OEIS A103632)
 $\underline{u=1}$: 1,1,2,3,5,7,10,14,20,28,... (not in the OEIS)

Bijection with a set of compositions

F(z,0)+G(z,0)+H(z,0) is the same g.f. as that of palindromic compositions with parts in $\{2,1,3,5,7,9,\ldots\}$.

$$\psi(UD) = \varepsilon$$
, $\psi(U^2D_2) = (1)$, $\psi(U^2DL) = (2)$, $\psi(U^3D_2L) = (3)$.

Figure 6: Illustration of the bijection ψ (nontrivial cases).

$$_{+2}(x_1)_{+2} := (x_1 + 4)$$
 $_{+2}(x_1, x_2, \dots, x_{n-1}, x_n)_{+2} := ((x_1 + 2), x_2, \dots, x_{n-1}, (x_n + 2))$

Bijection with a set of compositions

n	$\alpha \in \mathcal{Z}_n$	$\psi(\alpha) \in \mathcal{C}_{n-2}$
2	UD	ϵ
3	UUD_2	(1)
4	UUUD ₃	(1,1)
	UUDL	(2)
5	UUUUD ₄	(1, 1, 1)
	$UUUD_2L$	(3)
6	$UUUUUD_5$	(1, 1, 1, 1)
	$UUUUD_3L$	(1, 2, 1)
	UUUDLD	(2, 2)
7	UUUUUUD ₆	(1,1,1,1,1)
	$UUUUUD_4L$	(1, 3, 1)
	$UUUUDLD_2$	(2, 1, 2)
	$UUUUD_2LD$	(5)

Table 2: First values of ψ .

What is $\psi(U^7D_2LD_2LD)$?

$$\psi(U^7 D_2 L D_2 L D) = {}_{+2} \psi(U^5 D_3 L D)_{+2}$$

$$\psi(\textit{U}^7\textit{D}_2\textit{L}\textit{D}_2\textit{L}\textit{D}) = {}_{+2}\psi(\textit{U}^5\textit{D}_3\textit{L}\textit{D})_{+2} = {}_{+2}(1,\psi(\textit{U}^3\textit{D}\textit{L}\textit{D}),1)_{+2}$$

$$\psi(U^7 D_2 L D_2 L D) = {}_{+2} \psi(U^5 D_3 L D)_{+2} = {}_{+2} (1, \psi(U^3 D L D), 1)_{+2}$$
$$= {}_{+2} (1, 2, \psi(U D), 2, 1)_{+2} = (3, 2, 2, 3).$$

Enumeration summary

Type of paths	First terms	OEIS
Skew DAPs	1, 0, 1, 1, 3, 5, 13, 26, 64, 143,	New
Partial skew DAPs	1, 1, 2, 4, 9, 19, 44, 100, 236, 558	New
v.a. skew DAPs	1, 0, 1, 1, 2, 2, 4, 5, 9, 12,	A124280
Partial v.a. skew DAPs	$1, 1, 2, 3, 5, 7, 11, 16, 25, 37, \dots$	A130137
z.v.a skew DAPs	1, 0, 1, 1, 2, 2, 3, 4, 6, 8,	A103632
Partial z.v.a skew DAPs	$1, 1, 2, 3, 5, 7, 10, 14, 20, 28, \dots$	New

Thank you:)