Bayesian statistics

Exercise 1 (Bernoulli model): 1. Model $p(x|\theta) = \prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i}$

Prior $\pi(\theta) = 1_{[0,1]}(\theta)$

Posterior $\pi(\theta|x) \propto \theta^S (1-\theta)^{n-S} \mathbf{1}_{[0,1]}(\theta)$ with $S = \sum_{i=1}^n x_i$

This is a Beta distribution with parameter (S+1, n-S+1).

- 2. $\widehat{\theta}(x) = \mathcal{E}(\theta|x) = \frac{S+1}{n+2}$.
- 3. Bias $E_{\theta}(\widehat{\theta}(X)) = \frac{n\theta+1}{n+2}$ gives $b(\theta, \widehat{\theta}) = \frac{1-2\theta}{n+2}$ Variance $\operatorname{var}_{\theta}(\widehat{\theta}(X)) = \frac{n}{(n+2)^2}\theta(1-\theta)$ Quadratic risk, $R(\theta, \widehat{\theta}) = b(\theta, \widehat{\theta})^2 + \operatorname{var}_{\theta}(\widehat{\theta}(X)) = \frac{1}{(n+2)^2}(4(\theta-\frac{1}{2})^2 + n\theta(1-\theta))$ Bayes quadratic risk, $r(\widehat{\theta}) = E(R(\theta, \widehat{\theta})) = \frac{1}{6(n+2)}$
- 4. MLE $\hat{\theta}_{\text{MLE}}(x) = \frac{S}{n}$.

 Quadratic risk $R(\theta, \hat{\theta}_{\text{MLE}}) = \frac{\theta(1-\theta)}{n}$.

 Bayes quadratic risk, $r(\hat{\theta}_{\text{MLE}}) = \frac{1}{6n}$, higher than with Bayes estimator.

 Quadratic risk lower for $\theta(1-\theta) < \frac{n}{4(2n+1)}$, that is $|\theta \frac{1}{2}| > \frac{1}{2}\sqrt{\frac{n+1}{2n+1}}$.

Exercise 2 (Poisson model): 1. Model $p(x|\theta) = \prod_{i=1}^n e^{-\theta} \frac{\theta^{x_i}}{x_i!}$

Prior $\pi(\theta) = \lambda e^{-\lambda \theta}$

Posterior $\pi(\theta|x) \propto e^{-n\theta}\theta^S e^{-\lambda\theta} = \theta^S e^{-(\lambda+n)\theta}$ with $S = \sum_{i=1}^n x_i$

This is a Gamma distribution with parameters $(\lambda + n, S + 1)$.

- 2. $\widehat{\theta}(x) = E(\theta|x) = \frac{S+1}{\lambda+n}$.
- 3. Bias $E_{\theta}(\widehat{\theta}(X)) = \frac{n\theta+1}{n+\lambda}$ gives $b(\theta, \widehat{\theta}) = \frac{1-\lambda\theta}{\lambda+n}$ Variance $\operatorname{var}_{\theta}(\widehat{\theta}(X)) = \frac{n\theta}{(\lambda+n)^2}$

Quadratic risk, $R(\theta, \widehat{\theta}) = b(\theta, \widehat{\theta})^2 + \text{var}_{\theta}(\widehat{\theta}(X)) = \frac{(1-\lambda\theta)^2 + n\theta}{(\lambda+n)^2}$

Bayes quadratic risk, $r(\widehat{\theta}) = \mathrm{E}(R(\theta, \widehat{\theta})) = \frac{1}{\lambda(\lambda + n)}$

Exercise 3 (Gaussian model – mean): 1. Model $p(x|\theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x_i - \theta)^2}$

Prior $\pi(\theta) \propto e^{-\frac{1}{2}(\theta-\mu)^2}$

Posterior $\pi(\theta|x) \propto e^{-\frac{1}{2}\left((\theta-\mu)^2 + \sum_{i=1}^n \frac{1}{\sigma^2}(x_i-\theta)^2\right)}$

that is $\pi(\theta|x) \propto e^{-\frac{1}{2}\left(\theta^2\left(\frac{n}{\sigma^2}+1\right)-2\theta\left(\frac{S}{\sigma^2}+\mu\right)\right)}$ with $S = \sum_{i=1}^n x_i$

This is a Gaussian distribution with mean $\frac{\frac{S}{\sigma^2} + \mu}{\frac{n}{\sigma^2} + 1}$ and variance $\frac{1}{\frac{n}{\sigma^2} + 1}$.

- 2. $\widehat{\theta}(x) = \mathcal{E}(\theta|x) = \frac{\frac{S}{\sigma^2} + \mu}{\frac{n}{\sigma^2} + 1}$.
- 3. $E(\widehat{\theta}(X)) = \frac{\frac{n\theta}{\sigma^2} + \mu}{\frac{n}{\sigma^2} + 1}$ $Bias\ b(\theta, \widehat{\theta}) = \frac{\mu - \theta}{\frac{\sigma^2}{\sigma^2} + 1}$

Variance $\operatorname{var}_{\theta}(\widehat{\theta}(X)) = \frac{\frac{n}{\sigma^2}}{(\frac{n}{\sigma^2} + 1)^2}$

Quadratic risk $R(\theta, \hat{\theta}) = \frac{1}{(\frac{n}{2}+1)^2} ((\mu - \theta)^2 + \frac{n}{\sigma^2})$

Bayes risk $r(\widehat{\theta}) = \frac{1}{\frac{n}{\sigma^2} + 1}$ (using the fact that $E((\mu - \theta)^2) = var(\theta) = 1$).

The variance term dominates for large n.

Exercise 4 (Bernoulli model – discrete prior): 1. Model $p(x|\theta) = \prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i}$ Prior $\pi(\theta) \propto 1$ for the reference measure $\mu = \delta_{\frac{1}{4}} + \delta_{\frac{1}{2}}$

Posterior $\pi(\theta|x) \propto \theta^S (1-\theta)^{n-S}$ with $S = \sum_{i=1}^n x_i$ that is,

$$\frac{\pi(\frac{1}{3}|x)}{\pi(\frac{1}{4}|x)} = \left(\frac{4}{3}\right)^S \left(\frac{8}{9}\right)^{n-S}$$

and

$$\pi(\frac{1}{4}|x) = \frac{1}{1 + \frac{\pi(\frac{1}{3}|x)}{\pi(\frac{1}{4}|x)}}, \quad \pi(\frac{1}{3}|x) = \frac{1}{1 + \frac{\pi(\frac{1}{4}|x)}{\pi(\frac{1}{3}|x)}}.$$

- 2. $\widehat{\theta}(x) = E(\theta|x) = \frac{1}{4}\pi(\frac{1}{4}|x) + \frac{1}{3}\pi(\frac{1}{3}|x)$
- 3. When $n \to +\infty$, we have $S/n \to \theta$ by the Strong Law of Large Numbers so that

$$\pi(\frac{1}{4}|x) \approx \frac{1}{1 + \left(\left(\frac{4}{3}\right)^{\theta} \left(\frac{8}{9}\right)^{1-\theta}\right)^{n}}$$

Now

$$\left(\frac{4}{3}\right)^{\theta} \left(\frac{8}{9}\right)^{1-\theta} < 1 \quad \Longleftrightarrow \quad \theta < \theta_0 = \frac{\log \frac{9}{8}}{\log \frac{3}{2}} \approx 0.29.$$

Thus $\widehat{\theta}(x) \to \frac{1}{4}$ if $\theta < \theta_0$, $\widehat{\theta}(x) \to \frac{1}{3}$ if $\theta > \theta_0$ and $\widehat{\theta}(x) \to \frac{7}{12}$ if $\theta = \theta_0$.

Exercise 5 (Translated exponential): 1. Model $p(x|\theta) = \prod_{i=1}^n e^{\theta - x_i}$ with $x_i \ge \theta$ for all i = 1, ..., n

Prior $\pi(\theta) \propto e^{-\lambda \theta}$

Posterior $\pi(\theta|x) \propto e^{(n-\lambda)\theta} 1_{\theta \leq m}$ with $m = \min_{i=1,\dots,n} x_i$

- 2. $\widehat{\theta}(x) = E(\theta|x) = \frac{me^{(n-\lambda)m}}{e^{(n-\lambda)m}-1} \frac{1}{n-\lambda}$ for $\lambda \neq n$ and $\widehat{\theta}(x) = m/2$ otherwise.
- 3. For large n, $\widehat{\theta}(x) \to m$, which is the MLE.
- 4. Since the minimum of n i.i.d. exponential random variables with parameter 1 is an exponential random variable with parameter n (easy to check), the mean and variance of $\widehat{\theta}_{\mathrm{MLE}}(X) = \min(X_1, \dots, X_n)$ are $\theta + \frac{1}{n}$ and $\frac{1}{n^2}$.

Bias $b(\theta, \widehat{\theta}_{\text{MLE}}) = \frac{1}{n}$.

Variance $\operatorname{var}_{\theta}(\widehat{\theta}_{\mathrm{MLE}}) = \frac{1}{n^2}$.

Quadratic risk $R(\theta, \widehat{\theta}_{\text{MLE}}) = \frac{2}{n^2}$, independent of θ .

Bayes risk is the same, $r(\widehat{\theta}_{\text{MLE}}) = \frac{2}{n^2}$.

Exercise 6 (Exponential model – mean): 1. Model $p(x|\theta) = \prod_{i=1}^{n} \theta e^{-\theta x_i}$

Prior $\pi(\theta) \propto e^{-\lambda \theta}$

Posterior $\pi(\theta|x) \propto \theta^n e^{-\theta(S+\lambda)}$ with $S = \sum_{i=1}^n x_i$

this is a Gamma distribution with parameters $(S + \lambda, n + 1)$.

- 2. $\widehat{g}(x) = E(g(\theta)|x) = \frac{S+\lambda}{n}$

3. $E_{\theta}(\widehat{g}(X)) = \frac{1}{\theta} + \frac{\lambda}{n}$ Bias $b(\theta, \widehat{\theta}) = \frac{\lambda}{n}$ Variance $\operatorname{var}_{\theta}(\widehat{g}(X)) = \frac{1}{n\theta^2}$.

Quadratic risk $R(\theta, \widehat{\theta}) = \frac{1}{n}(\lambda + \frac{1}{\theta^2})$. Infinite Bayes risk since $E(\frac{1}{\theta^2}) = +\infty$ for θ exponential.

Exercise 7 (Poisson model – Jeffreys prior): 1. Since $I(\theta) = \frac{1}{\theta}$ we get $\pi(\theta) \propto \frac{1}{\sqrt{\theta}}$. This is *not* a probability measure!

- 2. Posterior $\pi(\theta|x) \propto \frac{1}{\sqrt{\theta}} \theta^S e^{-n\theta}$ with $S = \sum_{i=1}^n x_i$ this is a Gamma distribution with parameters $(n, S + \frac{1}{2})$.
- 3. $\widehat{\theta}(x) = E(\theta|x) = \frac{1}{n}(S + \frac{1}{2})$. Here no parameter needed.
- 4. Bias $b(\theta, \widehat{\theta}) = \frac{1}{2n}$ Variance $\operatorname{var}_{\theta}(\widehat{\theta}(X)) = \frac{\theta}{n}$ Quadratic risk, $R(\theta, \widehat{\theta}) = b(\theta, \widehat{\theta})^2 + \operatorname{var}_{\theta}(\widehat{\theta}(X)) = \frac{1}{n}(\frac{1}{4n} + \theta)$

Exercise 8 (Gaussian vector): 1. Model $p(x|\theta) \propto \prod_{i=1}^n e^{-\frac{1}{2} \sum_{i=1}^n (x_i - \theta)^T \Gamma^{-1}(x_i - \theta)}$ Prior $\pi(\theta) \propto e^{-\frac{1}{2}\theta^T\theta}$

Posterior $\pi(\theta|x) \propto e^{-\frac{1}{2}\theta^T\theta} e\left(-\frac{1}{2}(n\theta^T\Gamma^{-1}\theta - 2\theta^T\Gamma^{-1}S)\right)$ with $S = \sum_{i=1}^n x_i$ Gaussian with mean $(\Gamma + nI)^{-1}S$ and covariance matrix $(I + n\Gamma^{-1})^{-1}$

2. $\widehat{g}(x) = \mathbb{E}(g(\theta)|x) = w^T(\Gamma + nI)^{-1}S$