Machine Learning with Opponents

Brendan Herger brendan@thisismetis.com
Slides: https://goo.gl/wY8iFY

Overview

Sampling
Feature Engineering
Modeling

Sampling

Observation Weighting

- Effect cost function by weighting every row at train time
- Weights include
 - Uniform weight
 - Observation age (staleness)
 - Random down-sampling
 - Up-sampling known opponent attacks

Observation Weighting

(Synthetic Minority Over-sampling Technique)

- Goal: Better model rare events (opponent attacks)
- Majority class: Down sample, with some probability
- Minority class: Create 'synthetic' observations

- 1. Select minority point
- 2. Select neighbor
- 3. Create new point

- 1. Select minority point
- 2. Select neighbor
- 3. Create new point

- 1. Select minority point
- 2. Select neighbor
- 3. Create new point

1

2

- 1. Select minority point
- 2. Select neighbor
- 3. Create new point

Observation Weighting SMOTE Sampling

Features

Outlier Detection

- Goal: Create outlier score
- Train learner to re-create input vector
 - PCA: Reduce dimensionality, increase dimensionality
 - Neural Network: Train auto-encoder, with bottleneck
- Measure distance from output vector to input vector

Low Rank Models

- Goal: Reduce dimensionality for dataset with many variables
- Reduce dimensionality with generalized PCA
- Model directly on components (latent factors)

Low Rank Models

Outlier Detection

Outlier score: |X'-X|

Outlier Detection GLRM

Modeling

Grid search

- Goal: Find optimal hyper-parameters for given class of models
- Create every possible permutation of hyper-parameters, and compute models until heat death of universe

Neural Networks

- Too complicated to cover here
- Strengths: Able to capture complicated, non-linear relationships. Deals well with class imbalance, near-arbitrary data types
- Weaknesses: Difficult to train, many free parameters

Ensemble Modeling

- Goal: Leverage a diverse set of algorithms
- Train multiple classes of algorithms (tree based, linear, neural network), possibly with multiple hyper-parameters, combine scores with meta model

Ensemble Modeling

Grid Search Neural Networks Ensemble models

Thanks!

Slides: https://goo.gl/wY8iFY

brendan@thisismetis.com

