# PostgreSQL

Fanavaran Anisa Iran Linux House

Linux & Open Source Training Center

www.anisa.co.ir



#### **About Me**

- BigData.ir (since 1392)
- UT PHD Student & Instructor
- Big Data & Data Engineering Lecturer
- CTO of a private Al powered retailer company
- CDO of Saba Tamin ...
- CTO & Data Architect &
  Developer in many projects





### Course Overview

#### **Introduction to PostgreSQL Course**

Getting Started and Basic SQL

Introduction and Installing PostgreSQL

Entity-Relationship (ER) Design

Data Definition Language (DDL)

Data Manipulation Language (DML)

**SELECT** Query Fundamentals

Joins and CTE

Advanced SQL Techniques

Subqueries and CASE WHEN

Window Functions

Practical Queries(Exercise)

Working With JSON Data

Recursive queries for tree structures/Arrays

Popular SQL/PG functions

Full-Text Search, Vectorization, and

Columnar Storage

**Views and Materialized Views** 

Index Types and Usage Guide

**Backup and Recovery** 

Log Management and Replication

**Explain and Query Monitoring** 

User Access, Security, and Programming

**User Access Management** 

Security and Encryption

Writing PL/PgSQL Code (IF, FOR, WHILE)

**Functions and Stored Procedures** 

**Triggers** 

Lateral Join and Flattening

Internal PostgreSQL Tables

Foreign Data Wrappers (FDW) and Cross-Database

Queries

Postgres Extensions and PostGIS

Distributed PG Using Citus

**High Availability** 

**Query Parallelism** 

Managing Large Databases

SupaBase and Other modern Online PG Tools



### Target Audiences

#### Who should learn PostgreSQL?

- Data Analyzers
- Software Eng. Student
- Backend Developers
- Data Engineers
- Postgres Fans

- ....



## Why Postgres?

#### **Why Postgres**

- Open-source nature
- ACID compliance
- Support for advanced data types
- Extensibility & It's Ecosystem





#### **Why Postgres**





#### Why Postgres: DB-Engines Db of the Year

| Year | Database             |
|------|----------------------|
| 2022 | Snowflake            |
| 2021 | Snowflake            |
| 2020 | PostgreSQL           |
| 2019 | MySQL                |
| 2018 | PostgreSQL           |
| 2017 | PostgreSQL           |
| 2016 | Microsoft SQL Server |
| 2015 | Oracle               |
| 2014 | MongoDB              |
| 2013 | MongoDB              |

#### Why Postgres – StackOverFlow Survey





#### Why Postgres – StackOverFlow Survey





#### **Why Postgres**

البته این موضوع به این معنی نیست که در طراحی سامانههای پیچیده امروزی، تنها به پستگرس اکتفا شود. تجربه و توصیه فعالان این حوزه، استفاده از معماریهای ترکیبی است که بسته به نیاز از تمامی بانکهای اطلاعاتی نوین به عنوان اجزای یک سامانه اطلاعاتی بزرگ، استفاده شود. آنچه مدنظر ماست این است که برای هسته اصلی سامانه به شرطی که ماهیت دادههای آن تراکنشی باشد مثل اکثر سامانههای تجاری که نیاز به به ذخیره، به روزرسانی و حذف دادههای کاربران، محصولات، سفارشها و مانند آن را دارند، از پستگرس در کنار سایر بانکهای اطلاعاتی غیر رابطهای استفاده شود.



#### A Practical Sample - Digikala





# History



#### **Origin & History**

- The first implementation of [POSTGRES] began back in 1986 and was put into production in 1988.
- After the user community and demands doubled in size in the early 90s, the POSTGRES Project ended and Postgres95, an open-source SQL language interpreter, was launched.
- Since then, Postgres has continued to receive widespread adoption, especially with the introduction of the public cloud. With each release, there are significant enhancements and improvements providing more functionality and scalability for customer data.

](https://www.postgresql.org/docs/current/history.html



### Origin & History

|                   |      |                                                                                                                                                                             | • • |
|-------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Version           | Year | Key Features                                                                                                                                                                |     |
| PostgreSQL<br>6.0 | 1996 | First official PostgreSQL release, Open-source licensing                                                                                                                    |     |
| PostgreSQL<br>7.1 | 2001 | Introduction of Write-Ahead Logging (WAL), Enhanced query optimizer                                                                                                         |     |
| PostgreSQL<br>9.0 | 2010 | Streaming replication, Hot standby                                                                                                                                          |     |
| PostgreSQL<br>12  | 2019 | Advanced indexing, Improved partitioning support                                                                                                                            |     |
| PostgreSQL<br>13  | 2020 | Enhanced partitioning and indexing, Improved query performance                                                                                                              |     |
| PostgreSQL<br>14  | 2021 | Better performance and usability for logical replication and connection handling                                                                                            |     |
| PostgreSQL<br>15  | 2022 | Improved sort performance, JSON enhancements, Incremental sorting                                                                                                           |     |
| PostgreSQL<br>16  | 2023 | <b>expanded SQL/JSON syntax</b> , advanced monitoring statistics, and refined access control mechanisms, ensuring efficient policy management across extensive deployments. |     |



#### **ORDBMS** vs **DBMS**

| Feature           | ORDBMS (Object-Relational DBMS)                                                         | RDBMS (Relational DBMS)                                                 |
|-------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Data Model        | Extends relational model with object-<br>oriented features.                             | Purely relational model.                                                |
| Complexity        | More complex, handles complex data types.                                               | Simpler, primarily for structured data.                                 |
| Use Case          | Suitable for applications requiring complex data representation (like CAD, multimedia). | Ideal for transactional and operational databases with structured data. |
| Query<br>Language | Extensions to SQL for object-oriented features.                                         | Standard SQL.                                                           |
| Performance       | Can be slower due to complexity.                                                        | Generally faster for simple queries.                                    |
| Example           | PostgreSQL, Oracle.                                                                     | MySQL, SQLite.                                                          |



### **Section Overview**

### **Any Question?**

