EN.553.732 Homework 1

Joseph High Hopkins ID: 9E1FDC

September 21, 2017

1 Problem 1

Let $p(y_1, ..., y_6|\theta)$ denote the sampling model and $\pi(\theta)$ denote the prior distribution. It is given that $y_1, ..., y_6|\theta \sim U[\theta - \frac{1}{2}, \theta + \frac{1}{2}]$ and that $\theta \sim U[10, 20]$. We then have that

$$p(y_1, ..., y_6 | \theta) = \frac{1}{(\theta + \frac{1}{2}) - (\theta - \frac{1}{2})} = 1, \ y_i \in (\theta - \frac{1}{2}, \theta + \frac{1}{2}), \ i = 1, ..., 6$$

and
$$\pi(\theta) = \frac{1}{10}, \ \theta \in [10, 20]$$

Note that
$$\theta - \frac{1}{2} < y_i < \theta + \frac{1}{2} \implies |y - \theta| < \frac{1}{2} \implies |\theta - y_i| < \frac{1}{2} \implies y_i - \frac{1}{2} < \theta < y_i + \frac{1}{2}, \ i = 1, \dots, 6$$

Using the available data $y_i \in \{11.0, 11.5, 11.7, 11.1, 11.4, 10.9\}$, we can find updated bounds for θ .

Indeed, since the above inequality holds for all i=1,...,6, then $\max_i \{y_i\} - \frac{1}{2} < \theta < \min_i \{y_i\} + \frac{1}{2}$

$$\implies 11.7 - \frac{1}{2} < \theta < 10.9 + \frac{1}{2} \implies 11.2 < \theta < 11.4$$

The posterior distribution of θ is $p(\theta|y_1,...,y_6) \propto p(y_1,...,y_6|\theta)\pi(\theta)$, implying that the posterior distribution is also uniformly distributed. More precisely, by Bayes' rule

$$p(\theta|y_1,...,y_6) = \frac{p(y_1,...,y_6|\theta)\pi(\theta)}{p(y_1,...,y_6)} = \frac{(1/10)}{p(y_1,...,y_6)}, \quad 11.2 < \theta < 11.4$$

Now, $1 = \int_{11.2}^{11.4} p(\theta|y_1, ..., y_6) d\theta = \int_{11.2}^{11.4} \frac{(1/10)}{p(y_1, ..., y_6)} d\theta = \frac{1}{p(y_1, ..., y_6)} \int_{11.2}^{11.4} \frac{1}{10} d\theta = \frac{0.2/10}{p(y_1, ..., y_6)}$

$$\implies \frac{1}{p(y_1, ..., y_6)} = 50$$

Thus,

$$p(\theta|y_1, ..., y_6) = \frac{p(y_1, ..., y_6|\theta)\pi(\theta)}{p(y_1, ..., y_6)} = (\frac{1}{10})(50) = 5$$

Therefore, the posterior distribution of θ is $p(\theta|y_1,...,y_6) = 5$, $11.2 < \theta < 11.4$.

2 Problem 2

Let $p(y_1, ..., y_{20}|\theta)$ denote the sampling model and $\pi(\theta)$ denote the prior distribution. It is given that $y_1, ..., y_{20}|\theta \sim \text{Exponential}(\theta)$ and that $\theta \sim \text{Gamma}(\alpha, \beta)$ where $\text{E}[\theta] = 0.2$ and $\sigma[\theta] = 1$.

The liklihood function is then $L(\theta) = \theta^{20} e^{-(\sum_{i=1}^{20} y_i)\theta}$ and prior distribution is of the form $\pi(\theta) \propto \theta^{\alpha-1} e^{-\beta\theta}$, $\theta > 0$

The posterior of θ is of then of the form

$$p(\theta|y_1,...,y_{20}) \propto L(\theta)\pi(\theta) \propto \theta^{\alpha+19} e^{-(\sum_{i=1}^{20} y_i + \beta)\theta}, \quad \theta > 0$$

which is proportional to the pdf of a gamma distribution with parameters $\alpha + 20$ and $\beta + \sum_{i=1}^{20} y_i$

To determine the paramaters α and β we note that since $\theta \sim \text{Gamma}(\alpha, \beta)$, $E[\theta] = \frac{\alpha}{\beta}$

and
$$\sigma[\theta] = \sqrt{\frac{\alpha}{\beta^2}}$$

Then from the given information, we have that $\frac{\alpha}{\beta} = 0.2$ and $\sqrt{\frac{\alpha}{\beta^2}} = 1 \implies \alpha = 0.2\beta \implies \frac{0.2}{\beta} = 1 \implies \beta = 0.2 \implies \alpha = 0.04$.

Moreover, we are given that the average time to serve a customer from a sample of 20 customers is 3.8 minutes. That is, $\bar{y} = \frac{1}{20} \sum_{i=1}^{20} y_i = 3.8 \implies \sum_{i=1}^{20} y_i = 76$.

Thus, we have that the parameters of the posterior distribution are $\alpha + 20 = 20.04$ and $\beta + \sum_{i=1}^{20} y_i = 76.2$ Therefore, $\theta|y_1,...,y_{20} \sim \text{Gamma}(20.04, 76.2)$.

3 Problem 3

Proof. It is given that the sampling model, $f(y_1, ..., y_n | p)$, has the negative binomial distribution with unknown parameter p (and known r) and the prior distribution, $\pi(p)$, is the beta distribution with parameters α and β . That is,

$$L(p) = \prod_{i=1}^{n} f(y_i \mid p) = \prod_{i=1}^{n} {y_i + r - 1 \choose y_i} (1 - p)^r p^{y_i} \implies L(p) \propto (1 - p)^{nr} p^{\sum_{i=1}^{n} y_i}$$

$$\pi(p) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1} \implies \pi(p) \propto p^{\alpha - 1} (1 - p)^{\beta - 1}$$

Therefore, the posterior distribution is of the form

$$f(p \mid y_1, ..., y_n) \propto L(p)\pi(p) \propto p^{\alpha + \sum_{i=1}^n y_i - 1} (1-p)^{\beta + nr - 1} \longrightarrow \text{Beta}(\alpha + \sum_{i=1}^n y_i, \beta + nr)$$

Thus, the posterior distribution, again, follows a beta distribution with parameters $\alpha + \sum_{i=1}^{n} y_i$ and $\beta + nr$ Therefore, the family of beta distributions is a conjugate family of prior distributions for samples from a negative binomial distribution with one unknown parameter.

4 Problem 4

Part 1: For each $i \in [1, 100]$ $\Pr(Y_i = y_i | \theta) = \theta^{y_i} (1 - \theta)^{1 - y_i}$ since each Y_i is a binary random variable. Then, with the assumption of conditional independence of the Y_i on θ , we have

$$\Pr(Y_1 = y_1, ..., Y_{100} = y_{100} | \theta) = \prod_{i=1}^{100} \Pr(Y_i = y_i | \theta) = \prod_{i=1}^{100} \theta^{y_i} (1 - \theta)^{1 - y_i} = \theta^{\sum_{i=1}^{100} y_i} (1 - \theta)^{100 - \sum_{i=1}^{100} y_i}$$

Then $\Pr(\sum_{i=1}^{100} Y_i = y_i | \theta)$ is the probability that the sum of the binary random variables is equal to y, where

the sum of y from 100 binary random variables can be achieved in $\binom{100}{y}$ distinct ways. Thus,

$$\Pr(\sum_{i=1}^{100} Y_i = y_i | \theta) = \binom{100}{y} \theta^y (1 - \theta)^{100 - y}$$

Part 2: The R code attached computes $\Pr(\sum_{i=1}^{100} Y_i = 57|\theta)$ for each θ . Refer to R code for computation.

From part 1 we know that $\Pr(\sum_{i=1}^{100} Y_i = 57|\ \theta) = \binom{100}{57} \theta^{57} (1-\theta)^{43}$.

The corresponding outputs for each $\theta \in \{0.0, 0.1, ..., 0.9, 1.0\}$ are below.

θ	0.000	0.1	0.2	0.3	0.4	0.5
$\Pr(\sum_{i=1}^{100} Y_i = 57 \theta)$	0.000	4.107×10^{-31}	3.738×10^{-16}	1.307×10^{-8}	2.286×10^{-4}	3.007×10^{-2}

θ	0.6	0.7	0.8	0.9	1.0
$\Pr(\sum_{i=1}^{100} Y_i = 57 \theta)$	6.673×10^{-2}	1.853×10^{-3}	1.004×10^{-7}	9.396×10^{-18}	0.000

R code and Plot for Part 2

Problem 4, Part 2

Part 3: Since $p(\theta = 0.0) = p(\theta = 0.1) = \dots = p(\theta = 1.0)$ then since θ discrete, we have

 $p(\theta = 0.0) = p(\theta = 0.1) = \dots = p(\theta = 1.0) = \frac{1}{11}$ Then, by Bayes' rule, we have for each $\theta \in \{0.0, 0.1, ..., 1.0\}$

$$p(\theta \mid \sum_{i=1}^{100} Y_i = 57) = \frac{p(\sum_{i=1}^{100} Y_i = 57 \mid \theta)p(\theta)}{p(\sum_{i=1}^{100} Y_i = 57)} = \frac{\binom{100}{57}\theta^{57}(1-\theta)^{43}(\frac{1}{11})}{p(\sum_{i=1}^{100} Y_i = 57)}$$

where $\frac{1}{p(\sum_{i=1}^{100} Y_i = 57)}$ is the normalization constant. Then,

$$\Pr(\sum_{i=1}^{100} Y_i = 57) = \sum_{\theta} {100 \choose 57} \theta^{57} (1 - \theta)^{43} (\frac{1}{11})$$

From the R code (below), the values of $p(\theta \mid \sum_{i=1}^{100} Y_i = 57)$ were found to be:

θ	0.000	0.1	0.2	0.3	0.4	0.5
$p(\theta \mid \sum_{i=1}^{100} Y_i = 57)$	0.000	4.154×10^{-30}	3.781×10^{-15}	1.322×10^{-7}	2.312×10^{-3}	3.041×10^{-1}

θ	0.6	0.7	0.8	0.9	1.0
$p(\theta \mid \sum_{i=1}^{100} Y_i = 57)$	6.749×10^{-1}	1.874×10^{-2}	1.015×10^{-6}	9.502×10^{-17}	0.000

R code and Plot for Part 3

Problem 4 Part 3

Part 4: Using the uniform density on [0,1] for the prior, the posterior density $p(\theta) \times \Pr(\sum_{i=1}^{100} Y_i = 57 \mid \theta)$ is such that

$$p(\theta \mid \sum_{i=1}^{100} Y_i = 57) = \frac{\binom{100}{57} \theta^{57} (1 - \theta)^{43} \times (1)}{\Pr(\sum_{i=1}^{100} Y_i = 57)} , \text{ for } 0 \le \theta \le 1$$

This plot for this posterior density is below.

R code and Plot for Part 4

Problem 4, Part 4

Part 5: From the above we see that the posterior distribution $\sim \text{Beta}(58, 44)$. However, we are not using the normalizing constant here. Rather, what is being shown is that the posterior maintains the same shape and proportions as the sampling model's joint distribution.

```
Since p(\theta \mid \sum_{i=1}^{100} Y_i = 57) \propto \theta^{57} (1-\theta)^{43} then \theta \mid \sum_{i=1}^{100} Y_i = 57 \sim \text{Beta}(58, 44) Below is the plot of the posterior.
```

R code and Plot for Part 5

```
> #Part 5
> v<-seq(0, 1, length = 200)
> z<-dbeta(v, 58, 44)
> plot(v, z, type = "l", main = "Problem 4, Part 5 Beta(58,44) Distribution",
+ xlab = expression(paste(theta)), ylab = "Posterior")
```

Problem 4, Part 5 Beta(58,44) Distribution

Relationship Between Plots: While the plots in parts 2 and 3 are discrete and continuous in parts 3 and 4, each set of plots is unimodal with a mode around 0.6 and has a similar shape in distribution. However, this shouldn't be too surprising since each set of plots is based on the same data/results. In parts 4 and 5 we notice that the distributions have the same shape, but the distribution in part 4 is normalized and includes the binomial coefficient. However, what is important to recognize is that the shape of the posterior distribution can be derived from the liklihood \times prior, that is, without any constants or functions that are not dependent on θ . In other words, the statement poster \propto liklihood \times prior (or sampling model \times prior) is meaningful. We are able extract sufficient information about the posterior from the sampling model and the prior.

5 Problem 5

R Code and Plot

```
> #Problem 5
> theta_0<-c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)
> n_0<-c(1,2,8,16,32)
>
> a<-matrix(OL, nrow =length(theta_0), ncol =length(n_0))
> b<-matrix(OL, nrow =length(theta_0), ncol =length(n_0))
> for (i in 1:length(theta_0))
+ {for (j in 1:length(n_0))
```

```
+ {a[i,j]=theta_0[i]*n_0[j]
+ b[i,j]=(1-theta_0[i])*n_0[j]
+ }
+ }
> Pr<-matrix(OL, nrow =length(theta_0), ncol =length(n_0))
> for (i in 1:length(theta_0))
+ {for (j in 1:length(n_0))
+ {
    f <- function(x)
    \{choose(100,57)*(x^57)*((1-x)^43)*(gamma(a[i,j]+b[i,j])/\}
                     (gamma(a[i,j])*gamma(b[i,j])))*(x^(a[i,j]-1))*(1-x)^(b[i,j]-1)
    bot <- integrate (f, 0, 1, rel.tol=1e-10) $value
    top<-integrate(f,0.5, 1, rel.tol=1e-10)$value</pre>
    Pr[i,j]<-top/bot</pre>
+ }
+ }
> contour(theta_0, n_0, Pr,main = "Problem 5 Countour Plot",
          xlab=expression(paste(theta)), ylab='n_0')
```

Problem 5 Countour Plot

The contour plot suggests that "lower values of n_0 are generally 90% or more certain that" $\theta > 0.5$ (as cited in Hoff, pgs. 6-7). In other words, according to the countour plot, we can be at least 90% certain that $\theta > 0.5$, which is quite significant. It is reasonable to believe, then, that $\theta > 0.5$.

Reference for Response/Answer to Problem 5: Hoff, Peter D. (2009). A First Course in Bayesian Statistical Methods. New York, NY: Springer.