

Kvadratrøtter og røtter av høyere orden

Nikolai Bjørnestøl Hansen

OSLO METROPOLITAN UNIVERSITY
STORBYLINIVERSITETET

Kvadratrøtter og røtter av høyere orden

1 Tall på standardform

- 2 Kvadratrøtter og røtter av høyere orden
 - Kvadratrøtter
 - Røtter av høyere orden

3 Potenser med en brøk som eksponent

Definisjon

Definisjon

Kvadratroten til et ikke-negativt tall a er definert til å være det ikke-negative tallet x slik at $x^2 = a$. Vi skriver dette tallet som $x = \sqrt{a}$.

Merk at for alle positive tall a så finnes det to tall slik at $x^2 = a$.

Definisjon

- Merk at for alle positive tall a så finnes det to tall slik at $x^2 = a$.
- Eksempelvis er $2^2 = 2 \cdot 2 = 4 \text{ og } (-2)^2 = (-2) \cdot (-2) = 4$.

Definisjon

- Merk at for alle positive tall a så finnes det to tall slik at $x^2 = a$.
- Eksempelvis er $2^2 = 2 \cdot 2 = 4$ og $(-2)^2 = (-2) \cdot (-2) = 4$.
- Men kun ett av dem er ikke negativt, og det velger vi å kalle kvadratroten.

Definisjon

- Merk at for alle positive tall a så finnes det to tall slik at $x^2 = a$.
- Eksempelvis er $2^2 = 2 \cdot 2 = 4$ og $(-2)^2 = (-2) \cdot (-2) = 4$.
- Men kun ett av dem er ikke negativt, og det velger vi å kalle kvadratroten.
- Eksempelvis er $\sqrt{4} = 2$.

Definisjon

- Merk at for alle positive tall a så finnes det to tall slik at $x^2 = a$.
- Eksempelvis er $2^2 = 2 \cdot 2 = 4$ og $(-2)^2 = (-2) \cdot (-2) = 4$.
- Men kun ett av dem er ikke negativt, og det velger vi å kalle kvadratroten.
- Eksempelvis er $\sqrt{4} = 2$.
- Eneste grunnen til at jeg skriver ikke-negativt i stedet for positivt er for å få med at $\sqrt{0} = 0$.

Om vi ganger et positivt tall med seg selv, blir svaret positivt.

- Om vi ganger et positivt tall med seg selv, blir svaret positivt.
- Om vi ganger et negativt tall med seg selv, blir svaret også positivt.

- Om vi ganger et positivt tall med seg selv, blir svaret positivt.
- Om vi ganger et negativt tall med seg selv, blir svaret også positivt.
- Det finnes derfor ingen tall vi kan gange med seg selv, og få noe negativt.

- Om vi ganger et positivt tall med seg selv, blir svaret positivt.
- Om vi ganger et negativt tall med seg selv, blir svaret også positivt.
- Det finnes derfor ingen tall vi kan gange med seg selv, og få noe negativt.
- Det betyr for eksempel at $\sqrt{-2}$ ikke finnes i vårt tallsystem.

- Om vi ganger et positivt tall med seg selv, blir svaret positivt.
- Om vi ganger et negativt tall med seg selv, blir svaret også positivt.
- Det finnes derfor ingen tall vi kan gange med seg selv, og få noe negativt.
- Det betyr for eksempel at $\sqrt{-2}$ ikke finnes i vårt tallsystem.
- Vi kan derfor kun ta kvadratroten av ikke-negative tall.

- Om vi ganger et positivt tall med seg selv, blir svaret positivt.
- Om vi ganger et negativt tall med seg selv, blir svaret også positivt.
- Det finnes derfor ingen tall vi kan gange med seg selv, og få noe negativt.
- Det betyr for eksempel at $\sqrt{-2}$ ikke finnes i vårt tallsystem.
- Vi kan derfor kun ta kvadratroten av ikke-negative tall.

Bemerkning

Det finnes større tallsystemer hvor vi legger til røttene av negative tall. Dette kalles komplekse tall og dere skal lære om dem i senere kurs.

Om a og b er positive tall, har vi:

$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$
 $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Dette kan vi bruke til å forenkle røtter.

Om a og b er positive tall, har vi:

$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$
 $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Dette kan vi bruke til å forenkle røtter.

$$\sqrt{8}$$

Om a og b er positive tall, har vi:

$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$
 $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Dette kan vi bruke til å forenkle røtter.

$$\sqrt{8} = \sqrt{4 \cdot 2}$$

Om a og b er positive tall, har vi:

$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$
 $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Dette kan vi bruke til å forenkle røtter.

$$\sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2}$$

Om a og b er positive tall, har vi:

$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$
 $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Dette kan vi bruke til å forenkle røtter.

$$\sqrt{8}=\sqrt{4\cdot 2}=\sqrt{4}\cdot \sqrt{2}=2\sqrt{2}$$

Om a og b er positive tall, har vi:

$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$
 $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Dette kan vi bruke til å forenkle røtter.

$$\sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = 2\sqrt{2}$$

$$\sqrt{675}$$

Om a og b er positive tall, har vi:

$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$
 $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Dette kan vi bruke til å forenkle røtter.

$$\sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = 2\sqrt{2}$$

$$\sqrt{675} = \sqrt{3 \cdot 3 \cdot 3 \cdot 5 \cdot 5}$$

Om a og b er positive tall, har vi:

$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$
 $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Dette kan vi bruke til å forenkle røtter.

$$\sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = 2\sqrt{2}$$

$$\sqrt{675} = \sqrt{3 \cdot 3 \cdot 3 \cdot 5 \cdot 5} = \sqrt{3^2} \cdot \sqrt{3} \cdot \sqrt{5^2}$$

Om a og b er positive tall, har vi:

$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$
 $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Dette kan vi bruke til å forenkle røtter.

$$\begin{array}{l} \sqrt{8}=\sqrt{4\cdot 2}=\sqrt{4}\cdot \sqrt{2}=2\sqrt{2}\\ \\ \sqrt{675}=\sqrt{3\cdot 3\cdot 3\cdot 5\cdot 5}=\sqrt{3^2}\cdot \sqrt{3}\cdot \sqrt{5^2}=3\cdot 5\cdot \sqrt{3} \end{array}$$

Om a og b er positive tall, har vi:

$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$
 $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Dette kan vi bruke til å forenkle røtter.

$$\sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = 2\sqrt{2}$$

$$\sqrt{675} = \sqrt{3 \cdot 3 \cdot 3 \cdot 5 \cdot 5} = \sqrt{3^2} \cdot \sqrt{3} \cdot \sqrt{5^2} = 3 \cdot 5 \cdot \sqrt{3} = 15\sqrt{3}$$

Kvadratrøtter og røtter av høyere orden

1 Tall på standardform

- 2 Kvadratrøtter og røtter av høyere orden
 - Kvadratrøtter
 - Røtter av høyere orden

3 Potenser med en brøk som eksponent

Definisjon

Tredjeroten til et tall a er definert til å være det tallet x slik at $x^3 = a$. Vi skriver dette tallet $x = \sqrt[3]{a}$.

Definisjonen minner om definisjonen av kvadratrot. Nesten eneste forskjell er at vi opphøyer i 3.

Definisjon

- Definisjonen minner om definisjonen av kvadratrot. Nesten eneste forskjell er at vi opphøyer i 3.
- Eksempelvis er $2^3 = 8$, så $\sqrt[3]{8} = 2$.

Definisjon

- Definisjonen minner om definisjonen av kvadratrot. Nesten eneste forskjell er at vi opphøyer i 3.
- Eksempelvis er $2^3 = 8$, så $\sqrt[3]{8} = 2$.
- Det finnes kun ett alternativ for tredjerøtter.

Definisjon

- Definisjonen minner om definisjonen av kvadratrot. Nesten eneste forskjell er at vi opphøyer i 3.
- Eksempelvis er $2^3 = 8$, så $\sqrt[3]{8} = 2$.
- Det finnes kun ett alternativ for tredjerøtter.
- Vi slipper å tenke på om tall er positive eller negative.

Definisjon

- Definisjonen minner om definisjonen av kvadratrot. Nesten eneste forskjell er at vi opphøyer i 3.
- Eksempelvis er $2^3 = 8$, så $\sqrt[3]{8} = 2$.
- Det finnes kun ett alternativ for tredjerøtter.
- Vi slipper å tenke på om tall er positive eller negative.
- Eksempelvis er $(-2)^3 = -8$, så $\sqrt[3]{-8} = -2$.

På samme måte som kvadratrøtter og tredjerøtter kan vi definere røtter av så høy grad vi vil.

- På samme måte som kvadratrøtter og tredjerøtter kan vi definere røtter av så høy grad vi vil.
- Eksempelvis er $\sqrt[4]{81} = 3$, siden $3^4 = 81$.

- På samme måte som kvadratrøtter og tredjerøtter kan vi definere røtter av så høy grad vi vil.
- Eksempelvis er $\sqrt[4]{81} = 3$, siden $3^4 = 81$.

Definisjon

Den *n*-te roten til et tall *a* er tallet *x* slik at $x^n = a$. Vi skriver det som $\sqrt[n]{a}$.

- På samme måte som kvadratrøtter og tredjerøtter kan vi definere røtter av så høy grad vi vil.
- Eksempelvis er $\sqrt[4]{81} = 3$, siden $3^4 = 81$.

Definisjon

Den *n*-te roten til et tall *a* er tallet *x* slik at $x^n = a$. Vi skriver det som $\sqrt[n]{a}$. Merk at $\sqrt{a} = \sqrt[2]{a}$.

- På samme måte som kvadratrøtter og tredjerøtter kan vi definere røtter av så høy grad vi vil.
- Eksempelvis er $\sqrt[4]{81} = 3$, siden $3^4 = 81$.

Definisjon

Den *n*-te roten til et tall *a* er tallet *x* slik at $x^n = a$. Vi skriver det som $\sqrt[n]{a}$. Merk at $\sqrt{a} = \sqrt[2]{a}$.

For partalls-røtter så har vi to valg, og velger alltid det positive. Vi kan ikke ta partalls-rot av negative tall.

- På samme måte som kvadratrøtter og tredjerøtter kan vi definere røtter av så høy grad vi vil.
- Eksempelvis er $\sqrt[4]{81} = 3$, siden $3^4 = 81$.

Definisjon

Den *n*-te roten til et tall *a* er tallet *x* slik at $x^n = a$. Vi skriver det som $\sqrt[n]{a}$. Merk at $\sqrt{a} = \sqrt[2]{a}$.

- For partalls-røtter så har vi to valg, og velger alltid det positive. Vi kan ikke ta partalls-rot av negative tall.
- For oddetalls-rot så har vi kun ett valg. Vi kan ta oddetalls-rot av negative tall.

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET