CA 3 - Banana Classification

Group 12: Le Uyen Nhu Dinh, Sheikh Hasan Elahi, Isma Sohail.

Imports

```
In [52]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import itertools

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, StratifiedKFold
from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatri

from sklearn.linear_model import LogisticRegression, Perceptron
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
```

Reading data

```
In [53]: df = pd.read_csv('train.csv')
df
```

_			_	_	_	_
\cap	1.1	+	П	5	3	1
U	u	L	L	J	J	J

	Size	Weight	Sweetness	Softness	HarvestTime	Ripeness	A
0	-1.825734	-0.883754	-2.423530	-1.198136	-4.286523	1.585792	-0.5
1	-0.142286	-0.708374	-2.224219	2.222650	1.896814	-4.284821	1.0
2	-1.957254	-4.293733	-1.073703	-1.405019	-0.729812	3.930497	-0.3
3	-2.168043	3.095472	1.707717	-0.584218	-0.564767	0.014740	-0.1
4	-3.149338	3.058402	2.173671	-0.265609	-2.563220	0.376015	1.4
2795	-3.558241	2.238072	3.659291	-2.009616	-1.182283	2.644585	0.9
2796	-0.674817	0.356224	-2.063503	-2.002749	-1.169246	0.710731	-2.7
2797	0.734057	-0.521849	-2.398139	3.082185	1.961583	-0.136754	-1.4
2798	-0.292535	1.418799	1.135584	-2.608716	-0.497932	2.589713	1.1
2799	-1.626098	2.229498	3.856501	0.652745	-1.943957	-0.638567	2.5

2800 rows \times 10 columns

Comments: The dataset has 9 features and target variable "Quality" for the banana

Data exploration and visualisation

In [54]: # Statiscal summary:
 df.describe()

Out[54]:

	Size	Weight	Sweetness	Softness	HarvestTime	R
count	2800.000000	2800.000000	2800.000000	2800.000000	2800.000000	2800
mean	-0.764652	-0.751050	-0.751005	-0.019557	-0.700683	0
std	2.114313	2.006590	1.955109	2.076865	2.029916	2
min	-7.998074	-7.103426	-6.434022	-6.959320	-7.570008	-7
25%	-2.249285	-2.238843	-2.104742	-1.593816	-2.112747	-0
50%	-0.922448	-0.882387	-0.997902	0.220174	-0.856858	0
75 %	0.638570	0.853566	0.334989	1.542899	0.628895	2
max	5.806328	5.679692	6.438196	8.241555	5.942060	7

Comment: All features are numerical so no need for encoding. Only 'Banana Density' has a significantly diffferent scale than the other features.

```
In [55]: # Missing values:
         df.isnull().any()
Out[55]: Size
                           False
         Weight
                           False
         Sweetness
                           False
         Softness
                           False
         HarvestTime
                           False
         Ripeness
                          False
         Acidity
                         False
         Peel Thickness False
         Banana Density False
         Quality
                           False
         dtype: bool
In [56]: # Check for duplicates:
         df.duplicated().any()
Out[56]: np.False_
         Comment: There is no missing values or duplicated samples in the dataset.
In [57]: # Initialize colors to be used in this notebook.
         banana colors = {0: "#786A23", 1: "#FFD700"}
In [58]: # Check the class proportion of the target
         target counts = df['Quality'].value counts()
         plt.figure(figsize=(5,5))
         plt.pie(target counts, autopct='%1.1f%', labels=target counts.index,
```

colors=list(reversed(banana colors.values())))

plt.title('Quality of Banana in Training data')

plt.show()

print(target counts)

Quality of Banana in Training data

Quality
1 1418
0 1382

Name: count, dtype: int64

Comment: The proportion of each class in Quality is nearly the half, good banana - 50.6% while bad banana - 49.4%.

```
In [59]: # Histograms to observe how the data is distributed
    df.hist(figsize=(14, 11), bins=10, color = banana_colors[1], edgecolor = 'bla
    plt.suptitle("Histograms for all features in banana dataset")
    plt.show()
```


Comments: The first 7 features has approximate normal distribution with the mean closes to 0. The last two have almost have equal bins for their flt distribution.

```
In [60]: # Box plots to observe how bad and good bananas distributed on each feature
    features = df.columns[:-1]
    num_features = len(features)

fig, axes = plt.subplots(nrows=3, ncols=3, figsize=(20, 10))
    axes = axes.flatten()

# Create individual box plots for each feature
for i, feature in enumerate(features):
    sns.boxplot(x='Quality', y=feature, data=df, ax=axes[i], color=banana_ccaxes[i].set_title(feature)
    axes[i].set_xlabel("")

plt.tight_layout()
plt.show()
```


Comment: Overall it seems quite difficult to distinguish two classes at each feature. Some features like 'Sweetness', 'HarvestTime', 'Ripeness' have noticable amount of outliers.

In [61]: # Scatterplot with distinguishing colors to see if there is possible linearl
sns.pairplot(df, hue='Quality', palette=banana_colors)

Out[61]: <seaborn.axisgrid.PairGrid at 0x28e8a0e10>

Comment: Marking quality of banana on pair-wise plots shows us that it appear unlikely the target can be classified by a linear separating line. This could suggest that linear models like Perceptron, Adaline or Logistic Regression may not perform well on this dataset.

Out[62]: <Axes: >

Comment: The dataset generally have very low correlation between pairs of feature. The most significant ones are ('Size' vs 'HarvestTime'), ('Weight' vs 'Acidity') og ('Weight' vs 'Sweetness')

```
In [63]: # Analysis the feature importance

# Train Random Forest:
X = df.drop(['Quality'], axis=1)
y = df['Quality']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rar

rf = RandomForestClassifier(n_estimators=500, random_state=42)
rf.fit(X_train, y_train)

# Get feature importance
feature_importance = rf.feature_importances_
importance_df = pd.DataFrame({'Feature': X.columns, 'Importance': feature_importance_df = importance_df.sort_values(by='Importance', ascending=False)

# Plot feature importance
plt.figure(figsize=(10, 6))
sns.barplot(x='Importance', y='Feature', data=importance_df, palette='viridiplt.title('Feature Importance of the dataset')
```

```
plt.xlabel('Importance')
plt.ylabel('Feature')
plt.tight_layout()
plt.show()
```

/var/folders/tb/4p7pqq7j23n681mj_tfj2wl40000gn/T/ipykernel_7892/2647690016.p
y:19: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x='Importance', y='Feature', data=importance_df, palette='viri
dis')

Comment: 'Acidity', 'Banana density' and 'Peel Thickness' are the least important features. They could be removed from the training data.

Data cleaning and visualization

Analysing if we should remove outliers

```
In [64]: #Function to evaluate general models without hyperparameters
def evaluate_models(model_list, df, remove_columns = None):
    if remove_columns == None:
        X = df.drop(['Quality'], axis = 1)
    else:
        X = df.drop(['Quality'] + remove_columns, axis=1)

    y = df['Quality']

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
```

```
model accuracies = {}
             for model class in model list:
                 model = model class()
                                                   # Instantiate model
                 model.fit(X_train, y_train)
                                                  # Train model
                 y pred = model.predict(X test) # Predict
                 accuracy = accuracy score(y test, y pred) # Calculate accuracy
                 model name = model.__class__._name__
                 model accuracies[model name] = accuracy # Store name and accuracy
                 print(f"{model name} accuracy: {accuracy:.3f}\n")
             return model accuracies
         model list = [Perceptron, LogisticRegression, SVC,
                       RandomForestClassifier, DecisionTreeClassifier,
                       KNeighborsClassifier]
In [65]: #First, train and fit to see the models' performance without removing anythi
         sc = StandardScaler()
         df.iloc[:,:-1] = sc.fit transform(df.iloc[:,:-1])
         original models = evaluate models(model list, df)
        Perceptron accuracy: 0.806
        LogisticRegression accuracy: 0.886
        SVC accuracy: 0.969
        RandomForestClassifier accuracy: 0.961
        DecisionTreeClassifier accuracy: 0.924
        KNeighborsClassifier accuracy: 0.963
```

Comment: SVC yields the highest of 96.9% while RandomForestClassifier and KNN yields the same of 96.3%.

```
In [66]: # Function removing outliers using Z_score:
    def remove_outliers(df, threshold=3):
        df_clean = df.copy()
        numerical_cols = df_clean.select_dtypes(include=['number']).columns

    for col in numerical_cols:
        mean = df_clean[col].mean()
        std = df_clean[col].std()

    # Compute Z-score
    df_clean['Z_score'] = (df_clean[col] - mean) / std

# Filter out outliers
    df_clean = df_clean[abs(df_clean['Z_score']) < threshold]</pre>
```

```
df_clean = df_clean.drop(columns=['Z_score'])
    return df_clean

df_no_outliers = remove_outliers(df)
```


Comments: With threshold of 3 standard deviation, a few of outliers have been remove. We have tested the models with lower threshold, they results in lower accuracy. So threshold of 3 is not too strict but it can remove extreme outliers that led to fail in classification.

```
In [68]: no_outliers_models = evaluate_models(model_list, df_no_outliers)
```

Perceptron accuracy: 0.787

LogisticRegression accuracy: 0.875

SVC accuracy: 0.983

RandomForestClassifier accuracy: 0.963

DecisionTreeClassifier accuracy: 0.909

KNeighborsClassifier accuracy: 0.972

Comment: SVC yields higher at now 98.3 % and both RandomForest and KNN increase in accuracy.

Then we are curious of if the models perform better if we remove some features has small importance (noise to the dataset).

```
In [69]: # Models performance when the two least important removed:
         cleaned models = evaluate models(model list, df,
                                          ['Peel Thickness', 'Banana Density'])
        Perceptron accuracy: 0.876
```

LogisticRegression accuracy: 0.888

SVC accuracy: 0.974

RandomForestClassifier accuracy: 0.963

DecisionTreeClassifier accuracy: 0.925

KNeighborsClassifier accuracy: 0.973

Comment: The accuracy drops when we removed some columns. We tried removing from 1 to 4 columns and all results in lower accuracy.

```
In [70]: # Convert dictionaries to lists of model names and their accuracies
         model names = list(original models.keys())
         original acc = [original models[model] for model in model names]
         no outliers acc = [no outliers models[model] for model in model names]
         cleaned acc = [cleaned models[model] for model in model names]
         # Bar width and positions
         x = np.arange(len(model names))
         bar width = 0.25
         # Create the bar plot
         plt.figure(figsize=(12, 6))
         plt.bar(x - bar width, original acc, width=bar width, label='Original')
         plt.bar(x, no outliers acc, width=bar width, label='No Outliers')
         plt.bar(x + bar width, cleaned acc, width=bar width, label='Cleaned')
```

```
# Labels and titles
plt.xlabel('Model')
plt.ylabel('Accuracy')
plt.title('Model Accuracy Comparison')
plt.xticks(x, model_names, rotation=45)
plt.ylim(0, 1) # since accuracy is between 0 and 1
plt.legend()
plt.tight_layout()
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
```


Comment: From exploration and this graph, we would focus on Support Vector Machine, Random Forest and KNNeighbors as effective models. We will also just remove extreme outliers that lies out of 3 standard deviations.

DATA PREPROCESSING

This will include:

- Scaling: StandardScaler()
- · Remove outliers
- Splitting training and test sets
- Remove 'Peel Thickness' and 'Banana Density': We have done the whole
 process without this step but received lower accuracy score so we decided to
 remove them.

```
In [71]: # df was scaled before
    df = remove_outliers(df, threshold=3)

X = df.drop(['Quality', 'Peel Thickness', 'Banana Density'], axis = 1)
    y = df['Quality']
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rar
```


EVALUATING MODELS AND PARAMETERS

```
for params in param combinations:
    scores = []
    # Cross-validation
    skf = StratifiedKFold(n splits=cv, shuffle=True, random state=42)
    # Perform cross-validation
    for train idx, val idx in skf.split(X train, y train):
        # Split training data into training and validation folds
        X fold train, X fold val = X train.iloc[train idx], X train.iloc
        y fold train, y fold val = y train.iloc[train idx], y train.iloc
        # Train model with parameter combination:
        model = model class(**params)
        model.fit(X fold train, y fold train)
        # Predict on validation set and compute accuracy
        y val pred = model.predict(X fold val)
        score = accuracy score(y fold val, y val pred)
        scores.append(score)
    # Average cross-validation score for the param combination
    avg score = np.mean(scores)
    # Update best score and best params
    if avg_score > best score:
        best score = avg score
        best params = params
# Train best model on full training set
best_model = model_class(**best_params)
best model.fit(X train, y train)
# Predict on the test set
y pred = best model.predict(X test)
# Compute accuracy
acc = accuracy score(y test, y pred)
print(f"Best Parameters: {best params}")
print(f"Test Accuracy: {acc:.3f}")
# Plot confusion matrix
cm = confusion_matrix(y_test, y_pred)
disp = ConfusionMatrixDisplay(confusion matrix=cm)
disp.plot(cmap='Blues', values format='d')
plt.title(f"Confusion Matrix: {model class. name }")
plt.show()
return best model, acc, cm
```

SUPPORT VECTOR MACHINE

Observed from the scatterplot that it seems very difficult to classify classes from linear separating line so we do not use Linear SVC

```
In [74]: # RBF KERNEL SVM
    param_grid_rbf = {
        'kernel': ['rbf'],
        'C': [0.1, 1, 10],
        'gamma': ['scale', 'auto', 0.01, 0.1]
    }
    rbf_SVC = manual_search_evaluate(SVC, param_grid_rbf, X_train, X_test, y_train)
```

Best Parameters: {'kernel': 'rbf', 'C': 10, 'gamma': 0.1}

Test Accuracy: 0.989

Confusion Matrix: SVC

Comment: Submission score on Kaggle: 0.98541 - a bit overfitting.

```
In [75]: param_grid_poly = {
        'kernel': ['poly'],
        'C': [0.1, 1],
        'degree': [2, 3],
        'gamma': ['scale', 0.01],
        'coef0': [0.0, 0.1]
    }
    poly_SVC = manual_search_evaluate(SVC, param_grid_poly, X_train, X_test, y_t

Best Parameters: {'kernel': 'poly', 'C': 1, 'degree': 3, 'gamma': 'scale',
        'coef0': 0.1}
    Test Accuracy: 0.989
```


Comment: Submission score on Kaggle: 0.98541

```
In [76]: param_grid_sigmoid = {
    'kernel': ['sigmoid'],
    'C': [0.1, 1, 10],
    'gamma': ['scale', 0.01],
    'coef0': [0.0, 0.1]
}
sigmoid_SVC = manual_search_evaluate(SVC, param_grid_sigmoid, X_train, X_tes

Best Parameters: {'kernel': 'sigmoid', 'C': 1, 'gamma': 0.01, 'coef0': 0.0}
Test Accuracy: 0.868
```


Comment: Submission score on Kaggle - 0.84811

RANDOM FOREST

```
In [77]: param_grid_rf = {
    'max_depth': [None, 10, 20],  # Maximum depth of the tree
    'min_samples_split': [2, 5],  # Min samples to split an internal no
    'min_samples_leaf': [1, 2],  # Min samples required at a leaf node
    'max_features': ['sqrt', 'log2'],  # Number of features to consider at e
}

best_rf = manual_search_evaluate(RandomForestClassifier, param_grid_rf, X_tr

Best Parameters: {'max_depth': None, 'min_samples_split': 5, 'min_samples_le
    af': 2, 'max_features': 'log2'}
Test Accuracy: 0.968
```

Confusion Matrix: RandomForestClassifier

Comment: Submission score on Kaggle: 0.96233

KNN

```
In [78]: param_grid_knn = {
    'n_neighbors': [3, 4, 5, 6, 7],  # Number of neighbors to use
    'metric': ['euclidean', 'manhattan', 'minkowski'], # Distance metric
    'p': [1, 2]  # Power parameter for Minkowsk
}

best_knn = manual_search_evaluate(KNeighborsClassifier, param_grid_knn, X_tr

Best Parameters: {'n_neighbors': 7, 'metric': 'euclidean', 'p': 1}
Test Accuracy: 0.980
```

Confusion Matrix: KNeighborsClassifier

Comment: Submission score on Kaggle: 0.98177

```
In [80]: df_test = pd.read_csv('test.csv')
    df_test = df_test.drop(['Peel Thickness', 'Banana Density'], axis =1)
    df_test = sc.fit_transform(df_test)
    y_test_kaggle = rbf_SVC[0].predict(df_test)
    y_test_kaggle = pd.DataFrame(y_test_kaggle, columns=["Quality"])
    y_test_kaggle.index.name = "ID"
    y_test_kaggle[['Quality']].to_csv("submission6.csv")
```

/Users/dunhul/Library/CloudStorage/OneDrive-NorwegianUniversityofLifeScience s/VÅR 2025/DAT200/CA3_DAT200/.venv/lib/python3.13/site-packages/sklearn/util s/validation.py:2739: UserWarning: X does not have valid feature names, but SVC was fitted with feature names warnings.warn(

So far RBF-kernel Support Vector Machine is the best model with C=10 and gamma=0.1.