1.3

Q(1 - a)

<u>p</u> <u>p Λ T</u>

T T

F F

The equivalence p / T = p, is valid because the second column p / T is identical to p.

Q(9)

a) $p q p \land q (p \land q) \rightarrow p$

T T T T

T F F T

F T F T

F F F T

b) $p q p vq p \rightarrow (p vq)$

T T T T

T F T T

FT T

F F F T

d) $p q p \rightarrow q p \rightarrow (p \rightarrow q)$

T T T T

T F F T

F T T T

F F T T

c) <u>p</u>	q	p /\	$q p \rightarrow q$	$(p \land q) \rightarrow (p \rightarrow q)$	<u>)</u>
Т	Т	Т	Т	T	
Т	F	F	F	T	
F	Т	F	Т	Т	
F	F	F	Т	Т	
e) <u>p</u>	q	$p \rightarrow q$	_(p → q)	$-(p\rightarrow q)\rightarrow p$	
Т	Т	Т	F	Т	
Т	F	F	Т	Т	
F	Т	Т	F	Т	
F	F	T	F	Т	
e) <u>p</u>	q	$p \rightarrow q$	_(p → q)	-q	$-(p \rightarrow q) \rightarrow -q$
Т	Т	Т	F	F	T
Т	F	F	Т	Т	T
F	Т	Т	F	F	T
F	F	Т	F	Т	Т

Q(18)

It is easy to see from the definitions of conditional statement and negation that each of these propositions is false in the case in which p is true and q is false, and true in the other three cases. Therefore the two propositions are logically equivalent.

Q(21)

This is essentially the same as Exercise 17. The proposition $-(p \leftrightarrow q)$ is true when $p \leftrightarrow q$ is false. Since $p \leftrightarrow q$ is true when p and q have the same truth value, it is false when p and q have different truth values

1.4

Q(12)

- a) Since $0 + 1 > 2 \cdot 0$, we know that Q(0) is true.
- b) Since $(-1) + 1 > 2 \cdot (-1)$, we know that Q(-1) is true.
- c) Since 1 + 1, $> 2 \cdot 1$, we know that Q(1) is false. d) From part (a) we know that there is at least one x that makes Q(x) true, so $\exists x \ Q(x)$ is true.
- e) From part (c) we know that there is at least one x that makes Q(x) false, so $\forall x$ Q(x) is false.
- f) From part (c) we know that there is at least one x that makes Q(x) false, so $\exists x \neg Q(x)$ is true.
- g) From part (a) we know that there is at least one x that makes Q(x) true, so $\forall x \neg Q(x)$ is false

Q(19)

- a) We want to assert that P(x) is true for some x in the universe, so either P(I) is true or P(2) is true or P(3) is true or P(4) is true or P(5) is true. Thus the answer is $P(I) \vee P(2) \vee P(3) \vee P(4) \vee P(5)$.
- b) P(I) /\ P(2) /\ P(3) /\ P(4) /\ P(5)
- c) This is just the negation of part (a): •(P(I) V P(2) V P(3) V P(4) V P(5))
- d) This is just the negation of part (b): \bullet (P(I) /\ P(2) /\ P(3) /\ P(4) /\ P(5))
- e) The formal translation is as follows: (((1 = I 3) + P(I)) / ((2 = I 3) + P(2)) / ((3 = I 3) + P(3)) / ((4 = I 3) + P(4)) / ((5 = I 3) + P(5))) V (•P(I) V -.P(2) V -.P(3) V -.P(4) V .P(5))..

Q(43)

A conditional statement is true if the hypothesis is false. Thus it is very easy for the second of these propositions to be true-just have P(x) be something that is not always true, such as "The integer x is a multiple of 2." On the other hand, it is certainly not always true that if a number is a multiple of 2, then it is also a multiple of 4, so if we let Q(x) be "The integer x is a multiple of 4," then x is x if x in these two propositions can have different truth values. Of course, for some choices of x and x if x is also a multiple of 4, so if we let x in these two propositions can have different truth values. Of course, for some choices of x and x in the time.