Assignment 05

(due on 12/03 19:00)

PS5 1.R

1. Potential Renewable Energy Spots in China

dimensions: 4320, 8640, 37324800 (nrow, ncol, ncell)

resolution: 0.04166667, 0.04166667 (x, y)

In this exercise, we will search for some potential renewable energy spots in China. The data sets we will use are GeoTiff (.tif) files provided by the <u>WorldClim</u>.

1.1 [5 points] Download the following data sets and load them in R:

- Solar radiation, 2.5 minutes
- Precipitation, 2.5 minutes
- Wind speed, 2.5 minutes

```
#1.1 Read tiff files
#get the 12 layers with different month
dir("wc2.1 2.5m srad", full.names = T) \%>\%
stack() -> worldclimsrad
dir("wc2.1_2.5m_prec",full.names = T) %>%
 stack() -> worldclimprec
dir("wc2.1_2.5m_wind",full.names = T) \%>\%
 stack() -> worldclimwind
#create a new layer with mean values
Srad_mean <- stackApply(worldclimsrad,indices=c(1),fun=mean,na.rm = TRUE)
Prec mean <- stackApply(worldclimprec,indices=c(1),fun=mean,na.rm = TRUE)
Wind mean <- stackApply(worldclimwind,indices=c(1),fun=mean,na.rm = TRUE)
# Look at the raster attributes
Srad mean
Prec mean
Wind_mean
> Srad mean
class
        : RasterLayer
dimensions: 4320, 8640, 37324800 (nrow, ncol, ncell)
resolution: 0.04166667, 0.04166667 (x, y)
         : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
        : +proj=longlat +datum=WGS84 +no defs
crs
source: C:/Users/sunshine/AppData/Local/Temp/RtmpecZsg4/raster/r_tmp_2020-11-
30_221901_4124_32523.grd
         : index 1
names
         : 0, 23494.25 (min, max)
values
> Prec mean
        : RasterLayer
class
```

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax) crs : +proj=longlat +datum=WGS84 +no_defs

source : C:/Users/sunshine/AppData/Local/Temp/RtmpecZsg4/raster/r_tmp_2020-11-

30_222552_4124_71250.grd

names : index_1

values : 0, 937.1667 (min, max)

> Wind mean

class : RasterLayer

dimensions: 4320, 8640, 37324800 (nrow, ncol, ncell)

resolution: 0.04166667, 0.04166667 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax) crs : +proj=longlat +datum=WGS84 +no defs

source : C:/Users/sunshine/AppData/Local/Temp/RtmpecZsg4/raster/r_tmp_2020-11-

30_224103_4124_00831.grd

names : index_1

values : 0.4793333, 19.975 (min, max)

1.2 [10 points] Plot the above data sets over China. You should make three plots, each should contain its own legend.

Answer:

#1.2Plot the above data sets over China. You should make three plots, each should contain its own legend.

Read china map, a shape file

China_map_crop <- readOGR("China_map", "bou2_4p")

Crop the raster with china map

Srad_crop <- crop(Srad_mean, China_map_crop)</pre>

Prec_crop <- crop(Prec_mean, China_map_crop)

Wind_crop <- crop(Wind_mean, China_map_crop)

Plot cropped region

spplot(Srad crop,main="Solar radiation in 2020.")

spplot(Prec_crop, main="Precipitation in 2020.")

spplot(Wind_crop, main="Wind speed in 2020.")

1.3 [5 points] First, let's search for regions with relatively high wind speed to build wind farms. Define a reasonable wind speed as the threshold, and describe your favorite spots.

Answer:

According to the report, generally, the regions to build wind farms, should have an annual average wind speed which is larger than 6m/s. However, according to my plot, we could hardly find the region where the wind mean values larger than 6m/s. So I change the condition to areas(wind>90% region). And from the plot, we can see the feasible regions could be Inner Mongoria、Qinghai、Xinjiang、Tibet and so on.

1.4 [5 points] Second, let's search for regions with relatively high solar radiation and low precipitation as potential locations of photovoltaics (PV) farms. Describe your favorite spots of PV farms.

```
#1.4 regions with relatively high solar radiation and low precipitation as potential locations of photovoltaics (PV) farms.

#reclassify the areas(srad>75%)=1,otherwise 0;

#reclassify the areas(prec<75%)=1,otherwise 0;

Srad_rc <- reclassify(Srad_crop,c(-Inf,quantile(Srad_crop,0.75),0,quantile(Srad_crop,0.75),Inf,1))

Prec_rcChina_map_crop <- reclassify(Prec_crop,c(-Inf,quantile(Prec_crop,0.75),1,quantile(Prec_crop,0.75), Inf, 0))

#get the mean of Srad_rc and Prec_rc

Srad_Prec <- stack(Srad_rc,Prec_rc)

PV_region_test <- stackApply(Srad_Prec,indices=c(1),fun=mean,na.rm = TRUE)

#reclassify the areas(Srad_Prec=1)=1,otherwise NA;
```

As potential locations of photovoltaics (PV) farms should have relatively high solar radiation and low precipitation, we can choose the areas which has a higher solar radiation than the other 75% areas, and has a lower precipitation than the other 75% areas. And from the plot, we can see the feasible regions could be Hainan. Inner Mongoria. Qinghai. Xinjiang. Tibet and so on.

PS5 2.R

2. More Linux Commands

In this exercise, we will learn a few more Linux commands. For each command, please use \max to learn what it does and how to use it correctly. First, change your directory to \sim .

(In you report, please insert of a screenshot of your Linux code and output. No need to upload R scripts for this exercise.)

2.1 [2 points] Make a link called data_demo_link to data_demo folder using ln

```
[ese-suntt@login02 ~]$ pwd
/work/ese-suntt
[ese-suntt@login02 ~]$ man ln
[ese-suntt@login02 ~]$ ll
total 2
drwxr-xr-x 2 root root 4096 Sep 26 15:20 billing_report
drwxr-xr-x 8 ese-suntt ese-ouycc 4096 Nov 19 19:37 data_demo
drwxr-xr-x 2 ese-suntt ese-ouycc 4096 Sep 12 11:02 exam
[ese-suntt@login02 ~]$ ln -s data_demo data_demo_link
[ese-suntt@login02 ~]$ ll
total 2
drwxr-xr-x 2 root root 4096 Sep 26 15:20 billing_report
drwxr-xr-x 8 ese-suntt ese-ouycc 4096 Nov 19 19:37 data_demo
lrwxrwxrwx 1 ese-suntt ese-ouycc 4096 Nov 19 19:37 data_demo
drwxr-xr-x 2 ese-suntt ese-ouycc 4096 Sep 12 11:02 exam
```

2.2 [2 points] Go to data_demo/data/, make an empty file planets.txt_1st with touch.

Answer:

```
[ese-suntt@login02 ~]$ man touch
[ese-suntt@login02 ~]$ cd data_demo/data
 [ese-suntt@login02 data]$ ll
total 260
 -rw-r--r-- 1 ese-suntt ese-ouycc
                                                                              283 Nov 19 19:17 amino-acids.txt
drwxr-xr-x 2 ese-suntt ese-ouycc 4096 Nov 19 19:17 animal-counts
-rw-r--r- 1 ese-suntt ese-ouycc 4096 Nov 19 19:17 animals.txt
drwxr-xr-x 2 ese-suntt ese-ouycc 4096 Nov 19 19:17 elements
-rw-r--r- 1 ese-suntt ese-ouycc 8 Nov 19 19:51 file1
 -rw-r--r-- 1 ese-suntt ese-ouycc
-rw-r--r-- 1 ese-suntt ese-ouycc
                                                                             554 Nov 19 19:17 morse.txt
drwxr-xr-x 2 ese-suntt ese-ouycc 4096 Nov 19 19:17 pdb

-rw-r--r- 1 ese-suntt ese-ouycc 8898 Nov 19 19:17 planets.txt

-rw-r--r- 1 ese-suntt ese-ouycc 45 Nov 19 19:17 salmon.txt
 -rw-r--r-- 1 ese-suntt ese-ouycc 73861 Nov 19 19:17 sunspot.txt
[ese-suntt@login02 data]$ touch planets.txt_1st
 [ese-suntt@login02 data]$ ll
 total 260
rw-r--r- 1 ese-suntt ese-ouycc drwxr-xr-x 2 ese-suntt ese-ouycc 4096 Nov 19 19:17 amino-acids.tz
drwxr-xr-x 2 ese-suntt ese-ouycc 136 Nov 19 19:17 animal-counts
drwxr-xr-x 2 ese-suntt ese-ouycc 4096 Nov 19 19:17 animals.txt
drwxr-xr-x 2 ese-suntt ese-ouycc 8 Nov 19 19:17 elements
-rw-r--r- 1 ese-suntt ese-ouycc 4096 Nov 19 19:17 morse.txt
drwxr-xr-x 2 ese-suntt ese-ouycc 8898 Nov 19 19:17 pdb
-rw-r--r- 1 ese-suntt ese-ouycc 8898 Nov 19 19:17 planets.txt
                                                                             283 Nov 19 19:17 amino-acids.txt
 -rw-r--r-- 1 ese-suntt ese-ouycc
                                                                                 0 Nov 20 21:48 planets.txt_1st
-rw-r--r-- 1 ese-suntt ese-ouycc 45 Nov 19 19:17 salmon.txt
-rw-r--r-- 1 ese-suntt ese-ouycc 73861 Nov 19 19:17 sunspot.txt
 -rw-r--r-- 1 ese-suntt ese-ouycc
```

2.3 [2 points] Print your home directory using echo.

Answer:/work/ese-suntt

```
[ese-suntt@login02 data]$ man echo
[ese-suntt@login02 data]$ echo $HOME
/work/ese-suntt
```

2.4 [3 points] Find how many files in data_demo/data/pdb/using find.

```
[ese-suntt@login02 data]$ man find
[ese-suntt@login02 data]$ find ./pdb -type f | wc -l
48
[ese-suntt@login02 data]$ find ./pdb | wc -l
49
```

2.5 [3 points] Count how many C character appears

in data demo/data/pdb/tnt.pdb with grep.

Answer:10

```
[ese-suntt@login02 data]$ man grep
[ese-suntt@login02 data]$ grep -o "C" ./pdb/t
testosterone.pdb thiamine.pdb tnt.pdb tuberin.pdb tyrian-purple.pdb
[ese-suntt@login02 data]$ grep -o "C" ./pdb/tnt.pdb | wc -l
10
```

2.6 [2points] Compare data demo/data/pdb/ethane.pdb and

data demo/data/pdb/ethanol.pdb with diff

Answer:

```
[ese-suntt@login02 data]$ man diff
[ese-suntt@login02 data]$ cd pdb
[ese-suntt@login02 pdb]$ <mark>diff ethane.pdb ethanol.pdb -y</mark>
                      ETHANE
                                                                                                                         COMPND
AUTHOR
                                                                                                                                                ETHANOL
AUTHOR
                      DAVE WOODCOCK 95 12 18
                                                                                                                                                DAVE WOODCOCK
                                                                                                                                                                           96 01 03
                                                                                                                         ATOM
MOTA
                                                                                                                         ATOM
ATOM
ATOM
ATOM
ATOM
                                                                            -0.001
0.991
                                                                                                                                                                                       -0.599
MOTA
MOTA
                                                             0.752
-1.158
                                                                                            0.141
0.070
                                                                                                          1.00
1.00
                                                                                                                                                                                                      1.244
-0.738
                                                                                                                                                                                                                     -0.481
MOTA
MOTA
MOTA
                                                                           -0.737
-0.249
-0.991
                                                                                                          1.00
1.00
1.00
1.00
1.00
                                                              1.240
                                                                                            0.496
                                                                                                                                            4
5
6
7
8
9
                                                                                           -1.188
-0.070
                                                                                                                                                                                                      1.434
-0.383
                                                                                                                                                                                                                     -0.689
0.147
                                                              0.924
                                                                                                                        ATOM
ATOM
ATOM
ATOM
                                                              0.924
                                                                             0.249
0.737
                                                                                           1.188
-0.496
                                                                                                                                                                                        1.370
                                                                                                                                                                                                      0.240
-0.147
                                                                                                                                                                                                                     0.981
-0.735
                                                                                                                                                                                                                                    1.00
ATOM
TER
                                                                                                                         TER
END
                                                                                                                                          10
```

2.7 [2 points] Check the total file size of the data demo folder using df.

Answer:

```
[ese-suntt@login02 data_demo]$ man df
[ese-suntt@login02 data_demo]$ df .
Filesystem 1K-blocks Used Available Use% Mounted
work 536911806464 178643156992 358268649472 34% /work
[ese-suntt@login02 data_demo]$ df . -h
Filesystem Size Used Avail Use% Mounted on
work 501T 167T 334T 34% /work
```

2.8 [3 points] Copy the data_demo folder to data_demo_new, compress it using zip, and decompress the .zip file with unzip.

Answer: (1) cp -r data_demo/ data_demo_new

(2) zip -q -r data_demo_new.zip ./data_demo_new

(3) unzip -o -d data_demo_new.zip

```
[ese-suntt@login02 ~]$ mkdir data demo new
[ese-suntt@login02 ~]$ cp -r data_demo/ data_demo_new
[ese-suntt@login02 ~]$ ll
total 3
drwxr-xr-x 2 root root 4096 Sep 26 15:20 billing_report
drwxr-xr-x 8 ese-suntt ese-ouycc 4096 Nov 19 19:37 data_demo
lrwxrwxrwx 1 ese-suntt ese-ouycc 9 Nov 20 21:40 data_demo_link -> data_demo_drwxr-xr-x 3 ese-suntt ese-ouycc 4096 Nov 20 23:09 data_demo_new
drwxr-xr-x 2 ese-suntt ese-ouycc 4096 Sep 12 11:02 exam
```

2.9 [3 points] Change the file permissions flags on data_demo_new to drwxr-x--using chmod.

Answer:

2.10 [3 points] Print the last 10 commands you made using history.

```
[ese-suntt@login02 ~]$ history 10
137 ll
138 man chmod
139 chmod u=wrx,g=rx data_demo_new
140 cd data_demo_new
141 cd ..
142 ll
143 man chmod
144 chmod 750 data_demo_new
145 ll
146 history 10
```