Il Lemma di Farkas

Gabriele Rastello

16 aprile 2020

Indice

1 Problemi lineari 1

1 Problemi lineari

Dualità e Lemma di Farkas

Linear programming, surprisingly, is not directly related to computer programming.

Jiri Matousek, Bernd Garter

4

Sono problemi lineari tutti quei problimi in cui ci si prefigge di trovare il valore massimo (o minimo) che una certa funzione lineare di n variabili può assumere, dato un qualche numero di vincoli (anche essi lineari) su queste variabili. Prima di definire formalmente un problema lineare consideriamo un esempio.

Esempio 1.1.

Massimizza
$$x_1 + x_2$$

rispetto ai vincoli $x_1, x_2 \ge 0$
 $x_2 - x_1 \le 1$
 $x_1 + 6x_2 \le 15$
 $4x_1 - x_2 \le 10$

In \mathbb{R}^2 ogni vincolo individua un semipiano. La zona di \mathbb{R}^2 su cui vogliamo massimizzare $x_1 + x_2$ è dunque l'intersezione di tutti questi semipiani ed è rappresentata in Figura 1.1. Osserviamo che quest'area non è vuota e che è un poligono convesso. Esiste dunque una coppia (x_1^*, x_2^*) che massimizza $x_1 + x_2$; la coppia in questione può essere ottenuta cercando quale punto del poligono si trova "più distante" nella direzione di massima crescita della funzione (data dal suo gradiente (1, 1)). Otteniamo così $x_1^* = 3, x_2^* = 2$ e infine che il valore massimo di $x_1 + x_2$ rispetto ai vincoli dati è 5.

Figura 1.1

Definizione 1.2. Un **problema lineare** consiste in una funzione lineare di n variabili detta **funzione obiettivo** (o **funzione di costo**) e in un insieme di m vincoli lineari. La funzione obiettivo ha la forma $\mathbf{c}^T\mathbf{x} = c_1x_1 + \ldots + c_nx_n$ per qualche $\mathbf{c} \in \mathbb{R}^n$; lo stesso si applica ai vincoli. Dare un problema lineare è allora equivalente a dare un vettore $\mathbf{c} \in \mathbb{R}^n$, una matrice $A \in \mathbb{R}^{m \times n}$ e un vettore $\mathbf{b} \in \mathbb{R}^m$. Scriveremo compattamente

Massimizza
$$\mathbf{c}^T \mathbf{x}$$
 rispetto ai vincoli $A\mathbf{x} < \mathbf{b}$.

Osservazione 1.3. La Definizione 1.2 è del tutto generale. Infatti un problema di minimizzazione può essere trasformato in uno di massimizzazione cambiando segno alla funzione obiettivo. I vincoli espressi tramite un'uguaglianza $\mathbf{a}^T\mathbf{x} = b$ sono equivalenti alla coppia di disuguaglianze $\mathbf{a}^T\mathbf{x} \geq b$, $\mathbf{a}^T\mathbf{x} \leq b$. Ed infine le disuguaglianze possono essere espresse tutte quante nella forma $\mathbf{a}^T\mathbf{x} \leq b$.

Definizione 1.4. Un vettore $\mathbf{x} \in \mathbb{R}^n$ che soddisfa tutti i vincoli di un problema lineare è una soluzione possibile per il problema. Un problema è soddisfacibile se ammette una soluzione possibile ed è insoddisfacibile altrimenti. Una soluzione possibile $\mathbf{x}^* \in \mathbb{R}^n$ è una soluzione ottimale se $\mathbf{c}^T\mathbf{x}^*$ è massimo tra i valori $\mathbf{c}^T\mathbf{x}$ con \mathbf{x} soluzione possibile.

Osservazione 1.5. Va osservato che, generalmente, un sistema lineare può avere più di una soluzione ottimale; come esempio si considerino i vincoli dell'Esercizio 1.1 applicati però alla funzione obiettivo $\frac{1}{6}x_1 + x_2$. È inoltre vero che, anche se un sistema è soddisfacibile, possono non esistere soluzioni ottimali; come esempio basta rimuovere i vincoli $x_1 + 6x_2 \le 15$ e $4x_1 - x_2 \le 10$ dall'Esercizio 1.1.

Definizione 1.6. Se un problema lineare ammette (almeno) una soluzione ottimale allora è detto **limitato**; se non ne ammette viene detto **illimitato**.

Concludiamo la sezione con un esempio di applicazione dei problemi lineari all'analisi numerica (in particolare alla regressione lineare) e con un'osservazione sulla difficoltà computazionale della ricerca di soluzioni (possibili e ottimali) ad un dato problema lineare.

Esempio 1.7. Dato un insieme di punti $\{(x_i, y_i): i = 1, ..., n\}$ di \mathbb{R}^2 è possibile ottenere l'equazione di una retta che si avvicina il più possibile ai punti dati usando il *metodo dei* minimi quadrati. L'intera tecnica è basata sul cercare $a, b \in \mathbb{R}$ tali che

$$\sum_{i=1}^{n} (ax_i + b - y_i)^2$$

sia minimo. Un metodo alternativo (e per certi lati migliore) consiste nel minimizzare direttamente la somma degli errori in valore assoluto:

$$\sum_{i=1}^{n} |ax_i + b - y_i|. \tag{*}$$

Seppure questa quantità non sia lineare il problema può essere ridotto ad un problema lineare. Si consideri infatti il problema

Minimizza
$$e_1 + \ldots + e_n$$

rispetto ai vincoli $e_i \ge ax_i + b - y_i$
 $e_i \ge -(ax_i + b - y_i)$, con $i = 1, \ldots, n$.

Le variabili qui sono a, b, e_1, \ldots, e_n . Ogni e_i è una variabile ausiliaria che rappresenta l'errore relativo al punto (x_i, y_i) ; infatti i vincoli ci assicurano che

$$e_i \ge \max(ax_i + b - y_i, -(ax_i + b - y_i)) = |ax_i + b - y_i|.$$

Nel caso di una soluzione ottimale tutte queste disuguaglianze devono valere come uguaglianze, altrimenti sarebbe possibile ridurre ulteriormente il corrispettivo e_i . Ne consegue che una soluzione ottimale del problema fornisce una retta che minimizza (*).

Osservazione 1.8. Consideriamo un problema lineare generico

Massimizza
$$\mathbf{c}^T \mathbf{x}$$
 rispetto ai vincoli $A\mathbf{x} < \mathbf{b}$.

e supponiamo di sapere che $0 \le \mathbf{c}^T \mathbf{x} \le M$ per un $M \in \mathbb{R}$ e ogni soluzione possibile \mathbf{x} . Supponiamo inoltre di avere una procedura che ci permetta di sapere quando un arbitrario problema lineare è soddisfacibile. Allora possiamo approssimare il valore massimo di $\mathbf{c}^T \mathbf{x}$ con una tecnica di ricerca binaria:

- (1) aggiungiamo al problema iniziale il vincolo $\mathbf{c}^T \mathbf{x} \geq \frac{M}{2}$ e determiniamo se questo nuovo problema è soddisfacibile,
- (2) se lo è allora il massimo di $\mathbf{c}^T\mathbf{x}$ si trova tra $\frac{M}{2}$ e M, altrimenti si trova tra 0 e $\frac{M}{2}$,
- (3) ripetendo i passi (1) e (2) su questo nuovo intervallo possiamo molto velocemente localizzare il massimo.

Questo ci dice che, computazionalmente, il problema di ricerca di una soluzione ottimale è tanto difficile quanto quello di ricerca di una soluzione qualunque.

2 Dualità e Lemma di Farkas

Riferimenti bibliografici

[1] Jiri Matousek & Bernd Gartner, *Understanding and Using Linear Programming*, Springer, 2007.