Problem Set #3

OSM Lab, John Van den Berghe John Wilson

Problem 4.2 We know from a prior excercise that

$$D = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Since $\det(D - \lambda I) = -\lambda^3$, the only eigenvalue of D is 0, with algebraic multiplicity 3. Accompanying this eigenvalue is eigenvector $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$. This implies that eigenvalue 0 has geometric multiplicity equal to 1.

Problem 4.4 i) Let

$$A = \begin{bmatrix} a & c + di \\ c - di & b \end{bmatrix}$$

Then the eigenvalues are solutions to $\lambda^2 - (a+b)\lambda + ab - c^2 - d^2 = 0$. To determine completixy of roots, we examine the portion inside the square root of the quadratic formula, here equal to $a^2 + b^2 + 2ab + 4c^2 + 4d^2 = (a+b)^2 + 4c^2 + 4d^2 \ge 0$. Thus A can have only real valued eigenvalues.

ii) Let

$$A = \begin{bmatrix} ai & c+di \\ -c+di & bi \end{bmatrix}$$

Eigenvalues are solutions to $\lambda^2 - (a+b)i\lambda - ab + c^2 + d^2 = 0$. Note that the quadratic formula implies that eigenvalues will begin with (a+b)i and are therefore imaginary.

Problem 4.6 For each $a_{ii} \in \text{diag}(A)$, we know that $\det(A - a_{ii}I) = 0$ since there is a zero in the diagonal and A is upper-triangular or lower-triangular. So thus each a_{ii} is an eigenvalue, and by Proposition 4.1.11 there cannot be any other eigenvalues.

Problem 4.8 i) We simply show that the elements of S are linearly independent since $\operatorname{span}(S) = V$. By 3.2.5, orthogonal sets are linearly independent, and we showed that S is a linearly independent set in exercise 3.8.

ii) Note $D(\sin(x)) = \cos(x)$, $D(\cos(x)) = -\sin(x)$, $D(\sin(2x)) = 2\cos(2x)$, $D(\sin(2x)) = -2\cos(2x)$. So the matrix representation of D in this matrix is

$$D = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

iii) One subspace is $\{\cos(x), \sin(x)\}\$ and the other is $\{\cos(2x), \sin(2x)\}\$.

Problem 4.13 We compute the eigenvalues of A. The characteristic equation of A is $\lambda^2 - 1.4\lambda + 0.4$. This solves to eigenvalues equal to 1 and 0.4. The eigenvector associated with eigenvalue 1 is the null space of

$$\begin{bmatrix} -0.2 & 0.4 \\ 0.2 & -0.4 \end{bmatrix}$$

which has as a solution the vector $[2 \ 1]^T$. The eigenvector associated with eigenvalue 0.4 is the null space of

$$\begin{bmatrix} 0.4 & 0.4 \\ 0.2 & 0.2 \end{bmatrix}$$

which has a solution of $[1 - 1]^T$. Then

$$P = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$$

Problem 4.15 Let A be a semisimple matrix. Then we know A is diagonalizable so there exist P and D such that $A = P^{-1}DP$. Note $f(A) = f(P^{-1}DP) =$ $a_0I + A_1P^{-1}DP + \dots + a_nP^{-1}DP = P^{-1}(a_0I + a_1D + \dots + a_nD^n)P = P^{-1}f(D)P.$ Then the elements of f(D) must be the eigenvalues of f(A). f(D) is a diagonal matrix whose elements are $f((\lambda_i)_{i=1}^n)$.

Problem 4.16 i) We use the diagonalization from problem 13, where

$$A = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0.4 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix}$$

Note

$$\lim_{k \to \infty} A^k = \lim_{k \to \infty} \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0.4^k \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

This implies

$$A^{k} - B = \begin{bmatrix} \frac{.4^{k}}{3} & \frac{-2 \cdot .4^{k}}{3} \\ -\frac{.4^{k}}{3} & \frac{2 \cdot .4^{k}}{3} \end{bmatrix}$$

So $||A^k - B||_1 = \frac{4}{3}(.4)^k$. We have $\frac{4}{3}(.4)^k < \epsilon \Rightarrow k > \frac{\ln(\frac{3}{4}\epsilon)}{\ln(.4)}$. Thus $\lim_{n \to \infty} A^n = B$.

ii) We have $||A^k - B||_{\infty} = 0.4^k$. $0.4^k < \epsilon \Rightarrow k > \frac{\ln \epsilon}{\ln 0.4}$ We also have $||A^k - B||_{FR} = \frac{10}{9}0.4^k < \epsilon \Rightarrow k > \frac{\ln \left(\frac{9}{10}\epsilon\right)}{\ln (0.4)}$. Thus the answer is the same regardless of the norm.

iii) By Theorem 4.3.12, the eigenvalues are 3+5+1=9 and $3+2+0.4^3=\frac{633}{195}$.

Problem 4.18 By Proposition 4.1.23, A and A^T have the same characteristic polynomial. Then by 4.1.8, they have the same eigenvalues. So for all $\lambda \in \sigma(A)$, $\exists x | A^T x =$ $\lambda x \Rightarrow x^T A = \lambda x^T.$

Problem 4.20 Suppose A is orthonormally similar to B and it Hermetian. Then we know that $B = U^H A U = U^H A^H U = (U^H A U)^H = B^H$. Thus B is Hermetian.

Problem 4.24 Suppose A is Hermetian. Then $x^H A x = \langle x, Ax \rangle = \overline{\langle Ax, x \rangle} = \overline{x^H A^H x} = \overline{x^H A x}$. So since $x^H A x = \overline{x^H A x}$, the Rayleigh quotient is real valued only. Now suppose A is skew-Hermetian. Then $\langle x, Ax \rangle = x^H A x = -x^H A^H x = -\langle Ax, x \rangle = -\overline{\langle x, Ax \rangle}$. Thus the Rayleigh quotient is imaginary only.

Problem 4.25 i) Since A is a normal matrix, it has orthonormal eigenvectors. Write

$$Q = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}$$

Note that Q is an orthonormal matrix, so $QQ^H = Q^HQ = I$. Expanding QQ^H , we get that $QQ^H = x_1x_1^H + \cdots + x_nx_n^H = I$, as desired.

ii) Since $x_1x_1^H + \cdots + x_nx_n^H = I$, where each x_i is an eigenvector of A, we have $A = AI = A(x_1x_1^H + \cdots + x_nx_n^H) = Ax_1x_1^H + \cdots + Ax_nx_n^H = \lambda_1x_1x_1^h + \cdots + \lambda_nx_nx_n^H$.

Problem 4.27 Let A be positive definite. Define a vector x_i which is all zeroes except for a one in the i^{th} position. Observe that the i^{th} element of the diagonal of A, $A_{ii} = \langle x_i, Ax_i \rangle$. This must be positive due to the positive definiteness of A.

Problem 4.28 Notice that

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} \langle e_i, ABe_i \rangle = \sum_{i=1}^{n} e_i^H ABe_i = \sum_{i=1}^{n} e_i^H Ae_i e_i^H Be_i = \sum_{i=1}^{n} \langle e_i, Ae_i \rangle \langle e_i, Be_i \rangle$$

This must be non-negative because of the positive semi-definiteness of A and B. We also know that

$$\operatorname{tr}(AB) \le \operatorname{tr}(AB) + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \langle e_i, Ae_i \rangle \langle e_j, Be_j \rangle = \operatorname{tr}(A)\operatorname{tr}(B)$$

Problem 4.31 i) Observe that A^HA is Hermetian, and therefore there exists an eigenbasis. This implies that for any vector $x \in \mathbb{F}^n$, $x = a_1x_1 + \cdots + a^nx^n$, where each x_i is an eigenvector. Let σ_i be the largest singular value of A. Then $||A||_2^2 = \sup_{\|x\|=1} \langle Ax, Ax \rangle = \langle x, A^HAx \rangle = \langle x, a_1A^HAx_1 + \cdots + a_nA^HAx_n \rangle \leq \langle x, \sigma_i^2 a_1x_1 + \cdots + \sigma_i^2 a_n x_n \rangle = \sigma_i^2 \langle x, x \rangle = \sigma_i^2$. Thus $||A||_2 \leq \sigma_i$. Note that $||x_i||_2 = 1$, so since $||A||_2 = \sup_{\|x\|=1} ||Ax||_2$, $||A||_2 \geq ||Ax_i||_2 = \sigma_i ||x_i||_2 = \sigma_i$. Thus $||A||_2 = \sigma_i$.

ii) Observe that by properties of the SVD, $A = U\Sigma V^H \Rightarrow A^{-1} = V\Sigma^{-1}U^H$, where $\Sigma_{ij}^{-1} = \frac{1}{\Sigma_{ij}}$. By i), we know that $||A^{-1}||_2$ is equal to its largest singular value, which are the elements of Σ^{-1} . The largest of these is $\frac{1}{\sigma_n}$, as desired.

iii) Expanding A using the SVD yields that $A = U\Sigma V^H$. So $A^H = V\overline{\Sigma}U^H$ and $A^T = \overline{V}\Sigma U^T$. Since we know that for any matrix A $||A||_2$ is equal to the largest singular value and that the singular values are real, positive numbers found in the diagonal

of Σ in the SVD, we know $\Sigma = \overline{\Sigma}$ and thus $||A^H||_2^2 = ||A^T||_2^2 = ||A||_2^2$. Observe also that $A^{H}A = V\overline{\Sigma}U^{H}U\Sigma V^{H} = V\Sigma^{2}V^{H}$. So $\|A^{H}A\|_{2}^{2} = \sup_{\|x\|=1}^{2}V\Sigma^{2}V^{H}x = \sigma_{i}^{2} = \|A\|_{2}^{2}$, where σ_i is the largest singular value of A. Thus they are all equal, as desired. iv) For notational convenience, we square both sides. Then we have $||UAV||_2^2 =$ $\langle UAV, UAV \rangle = V^H A^H U^H UAV = V^H A^H AV = \langle AV, AV \rangle = \langle A, AVV^H \rangle = \langle A, A \rangle = \langle A, AVV^H \rangle = \langle A, AVV^$ $||A||_2^2$, as desired.

Problem 4.32 i)
$$||UAV||_F = \sqrt{\operatorname{tr}(V^HA^HU^HUAV)} = \sqrt{\operatorname{tr}(V^HA^HAV)} = \sqrt{\operatorname{tr}(A^HAVV^H)} = \sqrt{\operatorname{tr}(A^HA)} = ||A||_F$$

ii) $||A||_F = \sqrt{\operatorname{tr}(A^HA)} = \sqrt{\operatorname{tr}(V\Sigma^HU^HU\Sigma V^H)} = \sqrt{\operatorname{tr}(\Sigma^H\Sigma V^HV)} = \sqrt{\operatorname{tr}(\Sigma^H\Sigma)} = \sqrt{\sigma_1^2 + \dots + \sigma_r^2}$

Problem 4.33 Let $y = \frac{1}{\sigma_i}Ax$, where σ_i is the greatest singular value of A. Then $|y^HAx| = \left|\frac{1}{\sigma_i}x^HA^HAx\right| = \frac{1}{\sigma_i}||Ax||_2^2$. Taking the supremum over $||x||_2 = 1$ implies that $|y^HAx| = ||A||_2$. Note also that when x is a normalized eigenvector of A associated with σ_i , $||x||_2 = 1$, $||y||_2 = \frac{1}{\sigma_i} ||Ax|| = 1$. As shown is 4.31, the supremum for the 2-norm of A is achieved when x is the unit eigenvector associated with the largest signular value. Thus the equality holds, as desired.

Problem 4.36 Let

$$A = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$$

Then

$$A^H A = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$$

Note det(A) = -2 and the singular values of A are 1, 2, with eigenvalues $\pm \sqrt{2}$.

Problem 4.38 i) $AA^{\dagger}A = U_1\Sigma_1V_1^HV_1\Sigma_1^{-1}U_1^HU_1\Sigma_1V_1^H = U_1\Sigma_1\Sigma_1^{-1}\Sigma_1V_1^H = U_1\Sigma_1V_1^H = U_1V_1^H = U_1V_1^H = U_1V_1^H = U_1V_1^H = U_1V_1^H = U_1V_$

- ii) $A^{\dagger}AA^{\dagger} = V_1\Sigma_1^{-1}U_1^HU_1\Sigma_1V_1^HV_1\Sigma_1^{-1}U_1^H = V_1\Sigma_1^{-1}\Sigma_1\Sigma_1^{-1}U_1^H = V_1\Sigma_1^{-1}U_1^H = A^{\dagger}$ iii) $(AA^{\dagger})^H = (U_1\Sigma_1V_1^HV_1\Sigma_1^{-1}U_1^H)^H = U_1\Sigma_1V_1^HV_1\Sigma_1^{-1}U_1^H = AA^{\dagger}$ iv) $(A^{\dagger}A)^H = (V_1\Sigma_1^{-1}U_1^HU_1\Sigma_1V_1^H)^H = V_1\Sigma_1^{-1}U_1^HU_1\Sigma_1V_1^H = A^{\dagger}A$

- v) That $AA^{\dagger}x \in \mathcal{R}(A)$ is obvious. That it is a projection follows since $AA^{\dagger}AA^{\dagger}$. To see it is orthogonal, see that $\langle Ax, b - AA^{\dagger}b \rangle = x^HA^Hb - x^HA^HAA^{\dagger}b = x^HA^Hb$ $x^{H}V_{1}\Sigma_{1}^{H}U_{1}^{H}U_{1}\Sigma_{1}V_{1}^{H}V_{1}\Sigma_{1}^{-1}U_{1}^{H}b = x^{H}V_{1}\Sigma_{1}^{H}U_{1}^{H}b - x^{H}V_{1}\Sigma_{1}^{H}U_{1}^{H}b = 0$. Thus it must be an orthogonal projection.
- vi) By the proof of Theorem 4.6.1, we know that for $x = A^{\dagger}b, x \in \mathcal{R}(V_1) = \mathcal{R}(A^H)$. We can see that it is a projection because $A^{\dagger}AA^{\dagger}A = A^{\dagger}A$. To check orthogonality of the projection, observe that $\langle A^H x, b - A^{\dagger} A b \rangle = x^H A b - x^H A A^{\dagger} A b = x^H A b - x^H A b = 0$.