

hack-age

We are a goal-driven association of passionate individuals unified by a vision: rejuvenation of the extracellular matrix

Glycation

REVERSIBILITY OF THE GLYCATION DAMAGE

Minutes

Hours

Weeks

Years

Blood sugar

Adducts and crosslinks:

glucosepane, crossline, GOLD, MOLD

AGEs

(Advanced Glycation End products)

AGEs: crosslinks

Crosslinks accumulation

- As a part of aging, crosslinks accumulate in the matrix
- Glucosepane is the major AGE in humans

Decline of collagen solubility

 Aging is associated with deterioration of the enzymatic ability to cleave collagen fibrils that interrupt matrix renewal

Targets

Precursors

Early glycation products

Advanced glycation end products

Dicarbonyls, transition metals, ROS, etc. Schiff's bases, Amadori products, etc. CML, CEL, hydroimidazolones, crosslinks, etc.

Our approach: development tracks

HACK02: metagenomic space

HACK03: directed evolution

MutaGAN CADEE AlphaFold ESMFold DiffDock EquiBind

Known deglycating enzymes

- MnmC
- DJ-1/PARK7
- GATD3A
- Glyoxalase II

DOI: 10.1002/cbic.201900158

Very Important Paper

Biocatalytic Reversal of Advanced Glycation End Product Modification

Nam Y. Kim, ^[a, b] Tyler N. Goddard, ^[a, b] Seungjung Sohn, ^[a] David A. Spiegel, ^[a, c] and Jason M. Crawford* ^[a, b, d]

HACK01: building an active site from scratch

1. Identify targetable glucosepane fragments

2. Hypothesize a reaction that can be applied on the fragments

3. Use **QM/MM** modeling to build an active site given the reaction and the substrate

4. Extrapolate the active site topology on the full amino acid sequence

$$\begin{array}{c} O \\ HO \\ \hline \\ HO \\ \hline \\ HO \\ \end{array}$$

HACK04: Glo1 engineering

- DKD is characterized by ↓ Glo1:
 - nephropathy in Glo1-deficient mice
 - ↑ MGO in diabetic patients
- Overexpression of Glo1:
 - alleviates nephropathy in experimental models

Delivery of engineered Glo1 more efficient at removing toxic methylglyoxal into diabetic kidneys

Plans

Short-term:

- A running directed evolution platform
- Candidates for all four tracks by EOY 2023

Medium-term:

- Wetlab validation of candidates in 2024
- Pre-clinical leads by mid-2025

