МАТЕМАТИЧЕСКАЯ ЛОГИКА И ТЕОРИЯ АЛГОРИТМОВ

Формулы в логике высказываний

Формула алгебры логики -

сложное высказывание, которое может быть получено из элементарных высказываний посредством применения логических связок отрицания, конъюнкции, дизъюнкции, импликации и эквивалентности

Определение:

- •Всякая пропозициональная переменная формула.
- •Если F_1 и F_2 пропозициональные формулы, то выражения:
- $\overline{F_1};\overline{F_2};F_1\wedge F_2;F_1\vee F_2;F_1\to F_2$ и $F_1\longleftrightarrow F_2$ также пропозициональные формулы.
- •Никаких других формул, кроме построенных по правилам двух предыдущих пунктов в исчислении высказываний нет.

Множество формул образует язык математической логики. Это множество перечислимо и разрешимо.

Подформула формулы- любая ее часть, которая сама является формулой.

Для формирования сложных формул используют вспомогательные символы "(" и ")".

Логические связки по силе и значимости могут быть упорядочены следующим образом: \neg ; \wedge ; \vee ; \rightarrow ; \leftrightarrow .

Пример:

Необходимо удалить лишние скобки в формуле:

Решение:

2)
$$F = (F_1 \lor (F_2)) \rightarrow F_3 \leftrightarrow F_4$$

3)
$$F = F_1 \lor (F_2) \rightarrow F_3 \leftrightarrow F_4$$

4)
$$F=F_1 \lor F_2 \to F_3 \longleftrightarrow F_4$$

Пример:

Необходимо расставить скобки в формуле $F=F_1 \wedge F_2 \wedge F_3 \vee \ | F_1 \longrightarrow F_3 \longleftrightarrow F_1$

Решение:

1)
$$F_1 \wedge F_2 \wedge F_3 \vee (\overline{|}F_1) \rightarrow F_3 \leftrightarrow F_1$$

2) $F = ((F_1 \wedge F_2) \wedge F_3) \vee (\overline{|}F_1) \rightarrow F_3 \leftrightarrow F_1$
3) $F = (((F_1 \wedge F_2) \wedge F_3) \vee (\overline{|}F_1)) \rightarrow F_3 \leftrightarrow F_1$
4) $F = ((((F_1 \wedge F_2) \wedge F_3) \vee (\overline{|}F_1)) \rightarrow F_3) \leftrightarrow F_1$
5) $F = (((((F_1 \wedge F_2) \wedge F_3) \vee (\overline{|}F_1)) \rightarrow F_3) \leftrightarrow F_1)$

Формулы F и G называются pавносильными, если для любой интерпретации φ выполняется равенство $\varphi(F)=\varphi(G)$.

Формула F называется *тождественно истинной (тавтологией)* если для любой интерпретации ϕ выполняется равенство $\phi(F)=1$.

Формула F называется *тождественно* **ложной** если для любой интерпретации φ выполняется равенство φ(F)=0.

Формула *F* называется *выполнимой* (*опровержимой*) если существует интерпретация, при которой формула *F* истинна (ложна).

Пример:

Определить является ли формула F=X∧Y→X тождественно истинной.

X	Y	X∧Y	$F=X\land Y\to X$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	1

Формулы, содержащие кроме переменных только знаки логических функций \vee, \wedge, \neg называют *булевыми формулами*.

Алгебра $(P_2; \vee, \wedge, \neg)$ над множеством логических функций с тремя операциями называется **булевой алгеброй**, а операции \vee, \wedge, \neg называют **булевыми операциями**.

Способы задания логической функции

- 1. Формула
- 2. Таблица истинности
- 3. Числовой способ задания функции
- 4. Геометрический способ задания логической функции

Формула

- указывает последовательность логических операций, которые нужно произвести над высказываниями - аргументами, чтобы получить значение функции.

Например,
$$F(X_1, X_2, X_3) = ((X_1 \lor X_2) \to X_3)$$

Таблица истинности

Указываются значения функции в зависимости от значений аргументов.

Переменные		Промежуточные логические формулы					Формула	
x	y	z	- y	$x \sim \overline{y}$	${x \vee y}$	x	<u>x</u> ·z	$\overline{x \vee \overline{y}} \vee \overline{x} \cdot z$
0	0	0	1	1	0	1	0	0
0	0	1	1	1	0	1	1	1
0	1	0	0	0	1	1	0	1
0	1	1	0	0	1	1	1	1
1	0	0	1	1	0	0	0	0
1	0	1	1	1	0	0	0	0
1	1	0	0	1	0	0	0	0
1	1	1	0	1	0	0	0	0

Числовой способ задания функции

При задании функции указывают номера тех наборов, на которых функция равна единице, и перед списком номеров единичных наборов ставят знак дизъюнкции.

Можно также указать те номера наборов, на которых функция равна нулю, но при этом перед списком нулевых наборов ставят знак конъюнкции.

Пример:

N	X	Y	Z	F
0	0	0	0	1
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

Числовой способ задания:

$$F(X,Y,Z) = \sqrt{(0,1,4,7)} = \wedge(2,3,5,6)$$

Определение номера набора

Каждой независимой переменной-аргументу функции ставится в соответствие число 2^k (k = 0, 1, 2,...).

Аргументы функции записываются в виде упорядоченного множества, например, $F(X_1, X_2, X_3)$.

При этом переменная, записанная крайней справа, получает коэффициент $2^0 = 1$, переменная, стоящая рядом слева, получает коэффициент $2^1=2$ и т. д.

Для функции $F(X_{1,}X_{2},X_{3})$ независимые переменные получают следующие коэффициенты: X_{3} -1, X_{2} -2, X_{1} -4.

$$N = 4 \cdot X_1 + 2 \cdot X_2 + 1 \cdot X_3$$

Геометрический способ задания логической функции

Для функции *n* - независимых логических переменных рассматривается единичный *n*- мерный куб.

Вершины куба соответствуют наборам независимых переменных.

Каждой вершине приписывают значение функции на соответствующем наборе.

Логическая схема

Логическая схема – условное графическое обозначение логических функций.

Графические обозначения элементарных логических функций

Логическая схема

Пример логической схемы

Законы алгебры логики

1. Ассоциативность:

a)
$$x(yz) = (xy)z$$
;

6)
$$x \lor (y \lor z) = (x \lor y) \lor z$$
.

2. Коммутативность:

$$a) xy = yx;$$

$$\delta$$
) $x \vee y = y \vee x$.

3. Дистрибутивность:

a)
$$x(y \lor z) = xy \lor xz$$
;

$$(5) x \lor (yz) = (x \lor y)(x \lor z).$$

4. Идемпотентность:

$$a) xx = x;$$

$$6) x \lor x = x.$$

5. Двойное отрицание:

#

x = x.

6. Свойства констант:

a)
$$x \wedge 1 = x$$
;

B)
$$x \vee 1 = 1$$
;

$$_{\rm J}$$
) $\bar{1} = 0$;

6)
$$x \wedge 0 = 0$$
;

$$\Gamma$$
) $x \vee 0 = x$;

e)
$$\bar{0} = 1$$
.

7. Закон противоречия:

$$x\bar{x}=0.$$

8. Закон исключения третьего:

$$x \vee \overline{x} = 1$$
.

9. Законы де Моргана:

a)
$$\overline{x \wedge y} = \overline{x} \vee \overline{y}$$
;

$$6) \overline{x \vee y} = \overline{x} \wedge \overline{y}.$$

Эквивалентные преобразования логических формул

Правило подстановки формулы вместо переменной: при подстановке формулы F вместо переменной x все вхождения переменных x в исходное соотношение должны быть заменены формулой F.

Правило замены подформул: если $F_1 = F_2$ и F содержит подформулу F_1 , то замена F_1 на F_2 даст формулу F – эквивалентную F.

Эквивалентные преобразования — преобразования, использующие эквивалентные соотношения и правила замены (правила упрощения булевых формул)

Правила упрощения булевых формул

1. Правило поглощения:

a)
$$x \vee xz = x$$
;

$$\delta$$
) $x(x \vee y) = x$.

2. Правило склеивания:

$$xy \lor x\overline{y} = x$$
.

3. Правило раскрепощения (обратное к склеиванию):

$$x = xy \lor xy$$
.

4. Обобщенное склеивание:

$$xz \vee y\overline{z} \vee xy = xz \vee y\overline{z}$$
.

5. Удаление отрицания:

$$x \vee \overline{x}y = x \vee y$$
.

Эквивалентные преобразования основных логических операций:

$$F_1 \rightarrow F_2 = \exists F_1 \lor F_2 = \exists (F_1 \land \exists F_2).$$

$$F_{1} \leftrightarrow F_{2} =$$

$$(F_{1} \rightarrow F_{2}) \land (F_{2} \rightarrow F_{1}) =$$

$$(\exists F_{1} \lor F_{2}) \land (\exists F_{2} \lor F_{1}) =$$

$$\exists (\exists (F_{1} \lor F_{2}) \land (\exists F_{2} \lor F_{1}) =$$

$$\exists (\exists (F_{1} \lor F_{2}) \lor \exists (F_{2} \lor F_{1})).$$

$$F_{1} \leftrightarrow F_{2} \equiv$$

$$|F_{1} \land F_{2} \lor F_{1} \land F_{2} \equiv$$

$$|(|F_{1} \land F_{2}) \land (F_{1} \land F_{2})|.$$

Пример:

Дано $F=(F_1 \rightarrow F_2) \rightarrow ((F_2 \rightarrow F_3) \rightarrow (F_1 \lor F_2 \rightarrow F_3).$

Выполнить преобразования для упрощения алгебраического выражения.