

Talk by Bennett Skinner
Work advised by Ryan Cloutier & Ralph
Pudritz

Emerging Researchers in Exoplanet Science Symposium IX July 10, 2024

What is the radius valley?

The Radius Valley

- Close-in Planet radii distribution bimodal (Fulton et al. 2017)
 - Super-Earths peaking at ~1.3 R⊕
 - Sub-Neptunes peaking at ~2.4 R⊕
 - Gap between them at \sim 1.8 R \oplus
- Implies some mechanism forming two separate populations or splitting one population
- Larger radii → less dense material
- Smaller radii → more dense material

Fulton et al. (2017) Figure 7 Top Panel

The Radius Valley Slope

- The slope of radius valley location vs. instellation leaves a trace of how the valley was formed
- Sunlike stars: positive slope
 - Matches predictions for atmospheric loss caused by either:
 - Photoevaporation (Lopez & Rice 2018)
 - Core-powered mass loss (Gupta & Schlichting 2019)
 - Sub-Neptunes are super-Earths with a H/He envelope
- M stars: negative slope
 - O Different formation mechanism?

Cloutier & Menou (2020) Figure 11

Sub-Neptunes as Water Worlds?

- Water, like H/He, has a low density, so sub-Neptunes could be water-rich
- Planet Population Synthesis models reproduce sunlike radius valley w/ water-rich formation, migration, and photoevaporation (Burn et al. 2024)
 - Super-Earths rocky worlds formed in-Situ
 - Sub-Neptunes water-rich worlds that formed outside iceline and migrated

Burn et al. (2024) Figure 1

If atmospheric mass loss does not explain the radius valley slope around M Dwarfs, then maybe inwards-migrating water-rich worlds do.

McMaster Planet Population Synthesis Model

- Simulates planet formation in 1D
 - One lunar-mass embryo/disk
 - Embryo grows via planetesimal accretion
 - o Sunlike star
 - Disk evolved self-consistently via turbulent viscosity

Planet Migration & Traps

- Planet migration can be inwards or outwards directed, depending on local disk properties
 - General inwards migration, but outwards-directed corotation torque can overwhelm inwards-directed Lindblad torque when disk properties vary from one side of planet to other
 - This creates "traps" that planets form and grow in at the dead zone, iceline, and heat transition
 - Traps closer in lower viscosity disk

Disk Winds

- Observed disk turbulent viscosities lower than needed for planet formation models (Pinte et al. 2022, Flaherty et al. 2018)
- Disk winds can generate an effective viscosity to make up the difference (Alessi & Pudritz 2022)
- Disk winds have been extensively observed to occur (Pascucci et al. 2023, Pascucci et al. 2024 submitted)
- Modeling disk winds allows viscosities to be lowered to realistic values

Turbulent disk viscous evolution

Wind-driven accretion

Mass loss from wind

$$\frac{\partial \Sigma}{\partial t} = \frac{3}{r} \frac{\partial}{\partial r} \left[r^{1/2} \frac{\partial}{\partial r} \left(r^{1/2} \nu \Sigma \right) \right] + \frac{1}{r} \frac{\partial}{\partial r} \left(r v_w \Sigma \right) - \dot{\Sigma}_w$$

Does the McMaster Planet Population Synthesis Model reproduce the position of the radius valley for planets with no H/He envelope around sunlike stars when the equations of state used are updated?

New Equations of State

- Equations of State (EOS) used to calculate radii updated
 - o Opacities: Freedman et al. (2008) → Freedman et al. (2014)
 - Hydrogen/Helium: Chabrier & Debras (2019) → Chabrier & Debras (2021)
 - \circ Water: Various \rightarrow AQUA (Haldemann et al. 2020)
 - o Silicates: Caracas & Cohen (2008) → Sotin et al. (2007)
 - \circ Iron: Seager et al. (2007) \rightarrow SEOS (Hakim et al. 2018)

Haldemann et al. (2020) Figure 11

Water sequestration

- Water preferentially incorporates into silicates and iron at high pressures (Luo, Dorn, and Deng (2024) submitted)
 - The majority of water in water worlds may be inside their mantle and core

Histograms: No disk winds

- Very few close-in low-atmosphere planets formed
- Updating EOS OR sequestering water causes:
 - Dry dead zone planets to slightly increase in radius
 - Ice-rich ice line planets to move from below to in/above the radius valley

Why the difference when recalculating radii?

- Dead zone planets low water content, ice line planets high water content
- Updating EOS causes all planetary radii to increase, but water worlds most effected
 - Temperature structure in water convective rather than following liquid-solid boundary
 - Iron generally denser than found by previous equation of state
 - Redefining radius to be defined by the transit radius rather than theoretical radius

Histograms: Disk Winds

- Many close-in no atmosphere planets formed
- Updating EOS causes:
 - Mostly but not entirely dry heat transition planets to slightly increase in radius towards the lower peak of the radius valley
 - Mostly but not entirely wet dead zone and iceline planets to move from inside the radius valley towards its upper end
- Sequestering water causes:
 - Mostly but not entirely dry heat transition planets to significantly increase in radius towards the center of the radius valley
 - Mostly but not entirely wet dead zone and iceline planets to scatter over entire parameter space

Why the difference when adding winds?

- Heat transition and thus planets formed in it closer to star in lower-viscosity disk
- Nearby traps in lower-viscosity disk can cross the iceline
 - \circ Planets accrete both inside and outside the iceline \rightarrow
 - Water content more broadly distributed →
 - More scatter in planetary radii

Summary & Future Work

- The radius valley is a bimodal radius distribution caused by a difference in composition
 - \circ Smaller peak \rightarrow rocky, higher peak \rightarrow H/He-enveloped and/OR water-rich
 - \circ Radius valley around M dwarfs different from around sunlike stars \rightarrow water worlds?
- The McMaster Planet Population Synthesis Model simulates sunlike star planet formation
 - The dead zone barrier, water iceline, and heat transition trap planets
 - Barriers closer at lower viscosities, increasing spread of planetary radii
 - Inclusion of disk winds allows turbulent viscosity to be dropped to observed levels
- Updating Equations Of State moves water worlds to the upper edge of the radius valley
- Water worlds contribute to-but don't fill-the sunlike sub-Neptune population
- Next: tune model for M dwarfs
 - See if expectation of the water world sub-Neptune contribution being larger is borne out

Viscosity Parameters

- Log-normal assumed due to variety of disk morphologies
- Median of 10⁻³ assumed due to agreement of planet population synthesis models using this value with observations
- 0.007, observed upper limit for TW Hya (Flaherty et al. 2018), chosen as 1σ above median
- 10^{-4} chosen as lower limit also due to observed values of α

