2006年度日本政府(文部科学省) 奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS **2006**

学科試験 問題

EXAMINATION QUESTIONS

(学部留学生)

UNDERGRADUATE STUDENTS

数 学(B)

MATHEMATICS (B)

注意 試験時間は60分。

PLEASE NOTE: THE TEST PERIOD IS 60 MINUTES.

(2006)

数学(B)

Nationality		No.	
Name	(Please print full name, underlining family name)		ining

Marks

- 1 空欄を適当な数で埋めよ。
 - (1) 不等式 |2x-1| < x+2 の解は

$$\boxed{1}$$
 $< x < \boxed{2}$ $\boxed{$ $\boxed{}$ $\boxed{}$ $\boxed{}$ $\boxed{}$ $\boxed{}$ $\boxed{}$ $\boxed{}$ $\boxed{}$ $\boxed{}$ $\boxed{}$

(2) x 軸が関数 $y = x^2 + ax + 1$ のグラフに接するための必要十分条件は、

$$a = \boxed{ ① }$$
 または $\boxed{ 2 }$ となることである。

- (3) 関数 $f(x) = (\log_2 x)^2 + \log_4 x + 1$ の最小値は である。
- (4) 3点(1,2,4),(2,5,6),(① 2 , 10)は、 同一直線上にある。

$$(5) \quad \int_0^{\frac{\pi}{2}} x \sin x dx = \boxed{ }$$

2 4点 A , B , C , D が、この順に円の上にある。この円の半径は1であり、中心はOである。直線 AD はこの円の直径であり、三角形の面積比は

OAB: *OBC*: *OCD* = 1:2:2であると仮定する。

- (1) $\alpha = AOB$ $\beta = BOC$ とせよ。このとき $\sin \alpha$: $\sin \beta$ を求めよ。
- (2) 四角形 ABCD の面積を求めよ。

- 3 p を正の数とする。 C は曲線 $y=2x^3$ で、 $P(p,2p^3)$ は C 上の点である。 l_1 を P における接線とし、 l_2 を P を通る、C の接線とする。
 - (1) l_2 の傾きを p で表せ。
 - (2) θ を l_1 と l_2 がつくる角で、 $0 < \theta < \frac{\pi}{2}$ とするとき、 $an \theta$ を求めよ。
 - (3) tan θ の最大値を求めよ。

