# COSI 127b Introduction to Database Systems

Lecture 13: Normalization (3)

# Review: Good DB Design

### Three Approaches:

- 1. Ad hoc:
  - use Entity-Relationship Model to model data requirements
  - translate ER design into relational schema

Issue: How to tell if design is "good"?

- 2. Theoretical:
  - construct universal relations (e.g., Borrower-All)
  - decompose above using known functional dependencies

Issue: Time-Consuming and Complex

- 3. Practical:
  - use ER Model to produce 1st cut DB design
  - use FDs to refine and verify

# Review: Functional Dependencies

#### Previously:

- What " $A_1, ..., A_n \rightarrow B$ " means
- When sets of FDs are equivalent  $(F \equiv G)$ 
  - if  $F^+ = G^+$  (FD set closures)
  - algorithms: Attribute Closures or Armstrong's Axioms
- Minimal FD Sets (F<sub>c</sub> = "Canonical Cover" of F)
- Canonical Cover Algorithm

### Today and after midterm:

• DB Design using FDs and FD Algorithms

# Review: Functional Dependencies

#### In General:

$$A_1$$
, ...,  $A_n \rightarrow B$ 

### Informally:

If 2 tuples agree on their values for  $A_1$ , ...,  $A_n$ , then they will also agree on their values for B

#### Formally:

```
\forall t, u (t[A_1] = u[A_1] \land ... \land t[A_n] = u[A_n]) \Rightarrow t[B] = u[B])
```

#### Given FD sets over R, F and G, how to decide if $F \equiv G$ ?

• Idea: Compare sets of FDs that F, G imply (closures)

$$F \equiv G \text{ if and only if } F^+ = G^+$$

### Two ways to determine F<sup>+</sup>

- Attribute Closures
- Armstrong's Axioms

### Algorithm 1: Using Attribute Closures

```
ALGORITHM FD-Closure (F: {FDs})
-- using Att-Closure

BEGIN
Result ← {}
Atts ← <all attributes appearing in FDs in F>
FOREACH Z ⊆ Atts DO
Result ← Result ∪ {Z → Att-Closure (Z,F)}

RETURN Result
END
```

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

#### Algorithm 2: Using Armstrong's Axioms

```
ALGORITHM FD-Closure (F: {FDs})
-- using Armstrong's Axioms

BEGIN

Result 
F

REPEAT UNTIL STABLE

IF for any of Armstrong's Axioms (if A then B),

A matches part of Result THEN

Result 
Result 
Result 
B

RETURN Result

END
```

### Algorithm 2: Using Armstrong's Axioms

- 1. Reflexivity
  - if  $Y \subseteq X$

then X -> Y

- 2. Augmentation
  - if  $X \rightarrow Y$

then WX -> WY

- 3. Transitivity
  - if  $X \rightarrow Y$  and  $Y \rightarrow Z$

then  $X \rightarrow Z$ 

- 4. Union
  - if  $X \rightarrow Y$  and  $X \rightarrow Z$

then  $X \rightarrow YZ$ 

- 5. Decomposition
  - if  $X \rightarrow YZ$

then  $X \rightarrow Y$  and  $X \rightarrow Z$ 

- 6. Pseudotransitivity
  - if  $X \rightarrow Y$  and  $WY \rightarrow Z$

then  $\mathbf{WX} \rightarrow \mathbf{Z}$ 

# Review: Canonical Cover (F<sub>C</sub>)

#### One more algorithm over FD sets:

- Canonical Cover (F<sub>C</sub>): a "minimal" version of FD set, F
- $\mathbb{F}_{\mathbb{C}}$  the "minimal" version of  $\mathbb{F}$ ?
  - 1. equivalent to  $F(F_C^+ = F^+)$
  - 2. "smaller" than other FD sets equivalent to F:
    - a) fewer FDs:

$$\{A \rightarrow B, B \rightarrow C\} < \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$$

b) fewer attributes in FDs:

$$\{A \rightarrow B, B \rightarrow C\} < \{A \rightarrow BC, B \rightarrow C\}$$

# Review: Canonical Cover (F<sub>C</sub>)

### Canonical Cover Algorithm

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
  2. Remove extraneous attributes from each FD in F
     a) RHS: Is B extraneous in A → BC?
             Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+?
    b) LHS: Is B extraneous in AB → C?
            Is (A \rightarrow C) \in F^+?
END
```

#### Basic Idea:

- 1. Start with Universal Relation(s), R
  - all attributes in 1 table

### An Example Universal Relation:

|          |           | R      |          |      |      |
|----------|-----------|--------|----------|------|------|
| bname    | bcity     | assets | cname    | lno  | amt  |
| Downtown | Brooklyn  | 9M     | Jones    | L-17 | 1000 |
| Downtown | Brooklyn  | 9М     | Jackson  | L-14 | 1500 |
| Mianus   | Horseneck | 0.4M   | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | 9М     | Williams | L-17 | 1000 |

### Universal Relation: Expresses all "facts"

e.g.: Jones has a loan (L-17) for \$1000 that was initiated at the Downtown branch in Brooklyn which has assets of \$9M

### Why Necessary to Decompose?

avoid unnecessary redundancy: update/deletion anomalies

#### Basic Idea:

- 1. Start with Universal Relation(s), R
  - all attributes in 1 table

2. Determine FD set for R (F)

# Review: Deriving FDs

#### FD Sources:

- 1. Key Constraints (e.g.: bname → Branch)
- 2. Known "many-to-one" (n::1) relationships
  - e.g.: beer → manufacturer, beer → price
- 3. Laws of Physics
  - e.g.: time, room → course
- 4. Trial-and-error
  - given R = (A, B, C), see which of the following make sense:

#### Basic Idea:

- 1. Start with Universal Relation(s), R
  - all attributes in 1 table

- 2. Determine FD set for R (F)
- 3. Decompose R according to FDs in  $\mathbb{F}^+$



### Notation for schema decomposition:

$$R = R_1 \cup R_2$$

 $R = R_1 \cup R_2$  BTW: Not a Good Decomposition

|          |           | R      |          |      |      |
|----------|-----------|--------|----------|------|------|
| bname    | bcity     | assets | cname    | lno  | amt  |
| Downtown | Brooklyn  | 9M     | Jones    | L-17 | 1000 |
| Downtown | Brooklyn  | 9M     | Jackson  | L-14 | 1500 |
| Mianus   | Horseneck | 0.4M   | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | 9M     | Williams | L-17 | 1000 |

| R        |           |             |          |      |      |
|----------|-----------|-------------|----------|------|------|
| bname    | bcity     | assets      | cname    | lno  | amt  |
| Downtown | Brooklyn  | 9М          | Jones    | L-17 | 1000 |
| Downtown | Brooklyn  | 9М          | Jackson  | L-14 | 1500 |
| Mianus   | Horseneck | 0.4M        | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | <b>—</b> 9м | Williams | L-17 | 1000 |

| $\mathtt{R_1}$ |           |        |          |  |
|----------------|-----------|--------|----------|--|
| bname          | bcity     | assets | cname    |  |
| Downtown       | Brooklyn  | 9М     | Jones    |  |
| Downtown       | Brooklyn  | 9М     | Jackson  |  |
| Mianus         | Horseneck | 0.4M   | Jones    |  |
| Downtown       | Brooklyn  | 9М     | Williams |  |

| R <sub>2</sub> |      |      |  |  |
|----------------|------|------|--|--|
| cname          | lno  | amt  |  |  |
| Jones          | L-17 | 1000 |  |  |
| Jackson        | L-14 | 1500 |  |  |
| Jones          | L-93 | 500  |  |  |
| Williams       | L-17 | 1000 |  |  |

| R        |           |        |          |      |      |
|----------|-----------|--------|----------|------|------|
| bname    | bcity     | assets | cname    | lno  | amt  |
| Downtown | Brooklyn  | 9M     | Jones    | L-17 | 1000 |
| Downtown | Brooklyn  | 9M     | Jackson  | L-14 | 1500 |
| Mianus   | Horseneck | 0.4M   | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | 9М     | williams | L-17 | 1000 |

| R <sub>1</sub> |           |        |          |  |
|----------------|-----------|--------|----------|--|
| bname          | bcity     | assets | cname    |  |
| Downtown       | Brooklyn  | 9М     | Jones    |  |
| Downtown       | Brooklyn  | 9М     | Jackson  |  |
| Mianus         | Horseneck | 0.4M   | Jones    |  |
| Downtown       | Brooklyn  | 9М     | Williams |  |



| ${\mathtt R}_2$ |      |      |  |  |
|-----------------|------|------|--|--|
| cname           | lno  | amt  |  |  |
| Jones           | L-17 | 1000 |  |  |
| Jackson         | L-14 | 1500 |  |  |
| Jones           | L-93 | 500  |  |  |
| Williams        | L-17 | 1000 |  |  |

Lossy join: by adding noise, have lost meaningful info as a result of decomposition

| bname    | bcity     | assets | cname    | lno  | amt  |
|----------|-----------|--------|----------|------|------|
| Downtown | Brooklyn  | 9M     | Jones    | L-17 | 1000 |
| Downtown | Brooklyn  | 9М     | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | 9M     | Jackson  | L-14 | 1500 |
| Mianus   | Horseneck | 1.7M   | Jones    | L-17 | 1000 |
| Mianus   | Horseneck | 1.7M   | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | 9M     | Williams | L-17 | 1000 |



$$R = R_1 \cup R_2?$$

 $R = R_1 \cup R_2$ ? BTW: Not a Good Decomposition

# Goals of Decomposition

#### 1. Lossless Joins

• must be able to reconstruct universal relation via natural join of tables resulting from decomposition

### 2. Redundancy Avoidance

want to avoid unnecessary data duplication

### 3. Dependency Preservation

• want to minimize the cost of global integrity constraints based on functional dependencies (i.e.: avoid big joins in assertions)

# Goals of Decomposition

#### 1. Lossless Joins

Avoid information loss

### 2. Redundancy Avoidance

• Avoid update anomalies

#### Relative Importance:

1: Primary Importance

2,3: Secondary Importance

### 3. Dependency Preservation

• Avoid expensive global integrity constraints

### Intuition: a bad decomposition revisited

|          |           | R      |          |      |      |
|----------|-----------|--------|----------|------|------|
| bname    | bcity     | assets | cname    | lno  | amt  |
| Downtown | Brooklyn  | 9M     | Jones    | L-17 | 1000 |
| Downtown | Brooklyn  | 9M     | Jackson  | L-14 | 1500 |
| Mianus   | Horseneck | 0.4M   | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | 9M     | Williams | L-17 | 1000 |

| R <sub>1</sub> |           |        |          |  |
|----------------|-----------|--------|----------|--|
| bname          | bcity     | assets | cname    |  |
| Downtown       | Brooklyn  | 9М     | Jones    |  |
| Downtown       | Brooklyn  | 9М     | Jackson  |  |
| Mianus         | Horseneck | 0.4M   | Jones    |  |
| Downtown       | Brooklyn  | 9М     | Williams |  |

| R <sub>2</sub> |      |      |  |  |
|----------------|------|------|--|--|
| cname          | lno  | amt  |  |  |
| Jones          | L-17 | 1000 |  |  |
| Jackson        | L-14 | 1500 |  |  |
| Jones          | L-93 | 500  |  |  |
| Williams       | L-17 | 1000 |  |  |

### Intuition: a bad decomposition revisited

|          |           | R      |          |      |      |
|----------|-----------|--------|----------|------|------|
| bname    | bcity     | assets | cname    | lno  | amt  |
| Downtown | Brooklyn  | 9M     | Jones    | L-17 | 1000 |
| Downtown | Brooklyn  | 9M     | Jackson  | L-14 | 1500 |
| Mianus   | Horseneck | 0.4M   | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | 9М     | Williams | L-17 | 1000 |

| $R_1$       |           |        |          |  |  |
|-------------|-----------|--------|----------|--|--|
| bname bcity |           | assets | cname    |  |  |
| Downtown    | Brooklyn  | 9М     | Jones    |  |  |
| Downtown    | Brooklyn  | 9М     | Jackson  |  |  |
| Mianus      | Horseneck | 0.4M   | Jones    |  |  |
| Downtown    | Brooklyn  | 9М     | Williams |  |  |



| R <sub>2</sub> |      |      |  |  |
|----------------|------|------|--|--|
| cname          | lno  | amt  |  |  |
| Jones          | L-17 | 1000 |  |  |
| Jackson        | L-14 | 1500 |  |  |
| Jones          | L-93 | 500  |  |  |
| Williams       | L-17 | 1000 |  |  |

A: lossy

| bname    | bcity     | assets | cname    | lno  | amt  |
|----------|-----------|--------|----------|------|------|
| Downtown | Brooklyn  | 9М     | Jones    | L-17 | 1000 |
| Downtown | Brooklyn  | 9М     | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | 9М     | Jackson  | L-14 | 1500 |
| Mianus   | Horseneck | 1.7M   | Jones    | L-17 | 1000 |
| Mianus   | Horseneck | 1.7M   | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | 9M     | Williams | L-17 | 1000 |

Intuition: a bad decomposition revisited



$$R = R_1 \cup R_2 is lossy$$

|          |           | R      |          |      |      |
|----------|-----------|--------|----------|------|------|
| bname    | bcity     | assets | cname    | lno  | amt  |
| Downtown | Brooklyn  | 9М     | Jones    | L-17 | 1000 |
| Downtown | Brooklyn  | 9М     | Jackson  | L-14 | 1500 |
| Mianus   | Horseneck | 0.4M   | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | 9М     | Williams | L-17 | 1000 |

| R <sub>1</sub> |           |        |          |  |  |
|----------------|-----------|--------|----------|--|--|
| bname bcity    |           | assets | cname    |  |  |
| Downtown       | Brooklyn  | 9М     | Jones    |  |  |
| Downtown       | Brooklyn  | 9М     | Jackson  |  |  |
| Mianus         | Horseneck | 0.4M   | Jones    |  |  |
| Downtown       | Brooklyn  | 9M     | Williams |  |  |

| $R_2$    |      |      |  |  |
|----------|------|------|--|--|
| bname    | lno  | amt  |  |  |
| Downtown | L-17 | 1000 |  |  |
| Downtown | L-14 | 1500 |  |  |
| Mianus   | L-93 | 500  |  |  |

### Intuition: is decomposition lossless or lossy?

|          |           | R      |          |      |      |
|----------|-----------|--------|----------|------|------|
| bname    | bcity     | assets | cname    | lno  | amt  |
| Downtown | Brooklyn  | 9M     | Jones    | L-17 | 1000 |
| Downtown | Brooklyn  | 9M     | Jackson  | L-14 | 1500 |
| Mianus   | Horseneck | 0.4M   | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | 9M     | Williams | L-17 | 1000 |

| R <sub>1</sub> |           |        |          |  |  |
|----------------|-----------|--------|----------|--|--|
| bname bcity    |           | assets | cname    |  |  |
| Downtown       | Brooklyn  | 9М     | Jones    |  |  |
| Downtown       | Brooklyn  | 9M     | Jackson  |  |  |
| Mianus         | Horseneck | 0.4M   | Jones    |  |  |
| Downtown       | Brooklyn  | 9М     | Williams |  |  |



| $R_2$    |      |      |  |  |  |
|----------|------|------|--|--|--|
| bname    | lno  | amt  |  |  |  |
| Downtown | L-17 | 1000 |  |  |  |
| Downtown | L-14 | 1500 |  |  |  |
| Mianus   | L-93 | 500  |  |  |  |

A: lossy

| bname    | bcity     | assets | cname    | lno  | amt  |
|----------|-----------|--------|----------|------|------|
| Downtown | Brooklyn  | 9М     | Jones    | L-17 | 1000 |
| Downtown | Brooklyn  | 9М     | Jones    | L-14 | 1500 |
| Downtown | Brooklyn  | 9М     | Jackson  | L-17 | 1000 |
| Downtown | Brooklyn  | 9М     | Jackson  | L-14 | 1500 |
| Mianus   | Horseneck | 0.4M   | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | 9М     | Williams | L-17 | 1000 |
| Downtown | Brooklyn  | 9М     | Williams | L-14 | 1500 |



$$R = R_1 \cup R_2 is lossy$$

|          |           | R      |          |      |      |
|----------|-----------|--------|----------|------|------|
| bname    | bcity     | assets | cname    | lno  | amt  |
| Downtown | Brooklyn  | 9М     | Jones    | L-17 | 1000 |
| Downtown | Brooklyn  | 9М     | Jackson  | L-14 | 1500 |
| Mianus   | Horseneck | 0.4M   | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | 9М     | Williams | L-17 | 1000 |

| R <sub>1</sub> |        |          |      |  |  |
|----------------|--------|----------|------|--|--|
| bname          | assets | cname    | lno  |  |  |
| Downtown       | 9M     | Jones    | L-17 |  |  |
| Downtown       | 9M     | Jackson  | L-14 |  |  |
| Mianus         | 0.4M   | Jones    | L-93 |  |  |
| Downtown       | 9M     | Williams | L-17 |  |  |

| $R_2$ |           |      |  |  |
|-------|-----------|------|--|--|
| lno   | bcity     | amt  |  |  |
| L-17  | Brooklyn  | 1000 |  |  |
| L-14  | Brooklyn  | 1500 |  |  |
| L-93  | Horseneck | 500  |  |  |

| R        |           |        |          |      |      |
|----------|-----------|--------|----------|------|------|
| bname    | bcity     | assets | cname    | lno  | amt  |
| Downtown | Brooklyn  | 9М     | Jones    | L-17 | 1000 |
| Downtown | Brooklyn  | 9М     | Jackson  | L-14 | 1500 |
| Mianus   | Horseneck | 0.4M   | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | 9М     | Williams | L-17 | 1000 |

| R <sub>1</sub> |        |          |      |  |  |
|----------------|--------|----------|------|--|--|
| bname          | assets | cname    | lno  |  |  |
| Downtown       | 9M     | Jones    | L-17 |  |  |
| Downtown       | 9M     | Jackson  | L-14 |  |  |
| Mianus         | 0.4M   | Jones    | L-93 |  |  |
| Downtown       | 9М     | Williams | L-17 |  |  |



| $R_2$ |           |      |  |  |
|-------|-----------|------|--|--|
| lno   | bcity     | amt  |  |  |
| L-17  | Brooklyn  | 1000 |  |  |
| L-14  | Brooklyn  | 1500 |  |  |
| L-93  | Horseneck | 500  |  |  |

A: lossless

| bname    | bcity     | assets | cname    | lno  | amt  |
|----------|-----------|--------|----------|------|------|
| Downtown | Brooklyn  | 9М     | Jones    | L-17 | 1000 |
| Downtown | Brooklyn  | 9M     | Jackson  | L-14 | 1500 |
| Mianus   | Horseneck | 0.4M   | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | 9М     | Williams | L-17 | 1000 |



$$R = R_1 \cup R_2$$
 is lossless

| R        |           |        |          |      |      |
|----------|-----------|--------|----------|------|------|
| bname    | bcity     | assets | cname    | lno  | amt  |
| Downtown | Brooklyn  | 9М     | Jones    | L-17 | 1000 |
| Downtown | Brooklyn  | 9М     | Jackson  | L-14 | 1500 |
| Mianus   | Horseneck | 0.4M   | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | 9М     | Williams | L-17 | 1000 |

| ${f R_1}$ |           |        |  |  |
|-----------|-----------|--------|--|--|
| bname     | bcity     | assets |  |  |
| Downtown  | Brooklyn  | 9М     |  |  |
| Mianus    | Horseneck | 0.4M   |  |  |

| R <sub>2</sub> |          |      |      |  |  |
|----------------|----------|------|------|--|--|
| bname          | cname    | lno  | amt  |  |  |
| Downtown       | Jones    | L-17 | 1000 |  |  |
| Downtown       | Jackson  | L-14 | 1500 |  |  |
| Mianus         | Jones    | L-93 | 500  |  |  |
| Downtown       | Williams | L-17 | 1000 |  |  |

### Intuition: is decomposition lossless or lossy?

| R        |           |        |          |      |      |
|----------|-----------|--------|----------|------|------|
| bname    | bcity     | assets | cname    | lno  | amt  |
| Downtown | Brooklyn  | 9М     | Jones    | L-17 | 1000 |
| Downtown | Brooklyn  | 9М     | Jackson  | L-14 | 1500 |
| Mianus   | Horseneck | 0.4M   | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | 9М     | Williams | L-17 | 1000 |

| R <sub>1</sub> |           |        |  |  |
|----------------|-----------|--------|--|--|
| bname          | bcity     | assets |  |  |
| Downtown       | Brooklyn  | 9М     |  |  |
| Mianus         | Horseneck | 0.4M   |  |  |



| R <sub>2</sub> |          |      |      |  |  |
|----------------|----------|------|------|--|--|
| bname          | cname    | lno  | amt  |  |  |
| Downtown       | Jones    | L-17 | 1000 |  |  |
| Downtown       | Jackson  | L-14 | 1500 |  |  |
| Mianus         | Jones    | L-93 | 500  |  |  |
| Downtown       | Williams | L-17 | 1000 |  |  |

A: lossless

| bname    | bcity     | assets | cname    | lno  | amt  |
|----------|-----------|--------|----------|------|------|
| Downtown | Brooklyn  | 9М     | Jones    | L-17 | 1000 |
| Downtown | Brooklyn  | 9М     | Jackson  | L-14 | 1500 |
| Mianus   | Horseneck | 0.4M   | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | 9М     | Williams | L-17 | 1000 |

Intuition: is decomposition lossless or lossy?



$$R = R_1 \cup R_2$$
 is lossless

When is decomposition lossless?

Test: decomposition step  $R = R_1 \cup R_2$  lossless iff

$$R_1 \cap R_2 \rightarrow R_1$$
, or  $R_1 \cap R_2 \rightarrow R_2$ 

• i.e., intersecting atts must be superkey for either result relation

Example:  $|\mathbf{R}| = 4$ 

|          |           | R      |          |      |      |
|----------|-----------|--------|----------|------|------|
| bname    | bcity     | assets | cname    | lno  | amt  |
| Downtown | Brooklyn  | 9М     | Jones    | L-17 | 1000 |
| Downtown | Brooklyn  | 9М     | Jackson  | L-14 | 1500 |
| Mianus   | Horseneck | 0.4M   | Jones    | L-93 | 500  |
| Downtown | Brooklyn  | 9M     | Williams | L-17 | 1000 |

Test: decomposition step  $R = R_1 \cup R_2$  lossless iff

$$R_1 \cap R_2 \rightarrow R_1$$
, or  $R_1 \cap R_2 \rightarrow R_2$ 

• i.e., intersecting atts must be superkey for either result relation

### Example: $|\mathbf{R}| = 4$

| $ m R_1$ |        |          | R <sub>2</sub> |          |        |           |        |
|----------|--------|----------|----------------|----------|--------|-----------|--------|
| bname    | assets | cname    | lno            |          | lno    | bcity     | amt    |
| Downtown | 9М     | Jones    | L-17           |          | L-17   | Brooklyn  | 1000   |
| Downtown | 9М     | Jackson  | L-14           | <b>,</b> | L-14   | Brooklyn  | 1500   |
| Mianus   | 0.4M   | Jones    | L-93           | ·//      | L-93   | Horseneck | 500    |
| Downtown | 9М     | Williams | L-17           |          | l no a | ı key ⇒   | n··1 r |

• Ino not a key  $\Rightarrow |R_1| = 4$ 

 $\therefore$  4 tuples in  $\mathbb{R}_1 \bowtie \mathbb{R}_2$ 

COSI 127b, Spr 2014, Lecture 13

### Goal #1: Lossless Joins

Test: decomposition step  $R = R_1 \cup R_2$  lossless iff

$$R_1 \cap R_2 \rightarrow R_1$$
, or  $R_1 \cap R_2 \rightarrow R_2$ 

• i.e., intersecting atts must be superkey for either result relation

In General: Suppose R has n tuples and  $R_1 \cap R_2 = A$ 



 $\therefore$  n tuples in  $\mathbb{R}_1 \bowtie \mathbb{R}_2$ 

### Tests for Decomposition Goals

Test of  $R = R_1 \cup ... \cup R_n$  with FD set F:

• Lossless Joins? iff for each decomposition step,  $R_k = R_i \cup R_j$ : common atts of result relations form a key for one of them

### Tests for Decomposition Goals

Test of  $R = R_1 \cup ... \cup R_n$  with FD set F:

• Lossless Joins? iff for each decomposition step,  $R_k = R_i \cup R_j$ :  $(R_1 \cap R_2 \rightarrow R_1)$  or  $(R_1 \cap R_2 \rightarrow R_2)$ 

+

Example 1: 
$$R = R_1 \cup R_2 \quad (R = (A, B, C))$$
  
 $R_1 = (A, B)$   
 $R_2 = (B, C)$   
 $F = \{A \rightarrow B, B \rightarrow C\}$ 

#### Is the decomposition of R lossless?

A: 1) What are the candidate keys of  $R_1$ ,  $R_2$ ?

$$\begin{array}{ccc} \textbf{A} & \rightarrow & \textbf{R}_1 \\ \textbf{B} & \rightarrow & \textbf{R}_2 \end{array}$$

2) What is  $R_1 \cap R_2$ ?

3) Does 
$$R_1 \cap R_2 \rightarrow R_1$$
 or  $R_1 \cap R_2 \rightarrow R_2$   
Yes,  $B \rightarrow R_2$ 

Therefore, decomposition of R is <u>lossless</u>

Example 2: 
$$R = R_1 \cup R_2$$
  $(R = (A,B,C))$ 

$$R_1 = (A,C)$$

$$R_2 = (B,C)$$

$$F = \{A \rightarrow B, B \rightarrow C\}$$

#### Is the decomposition of R lossless?

A: 1) What are the candidate keys of  $R_1$ ,  $R_2$ ?

$$\begin{array}{ccc} \textbf{A} & \rightarrow & \textbf{R}_1 \\ \textbf{B} & \rightarrow & \textbf{R}_2 \end{array}$$

2) What is  $R_1 \cap R_2$ ?

3) Does  $R_1 \cap R_2 \rightarrow R_1$  or  $R_1 \cap R_2 \rightarrow R_2$ No.

Therefore, decomposition of R is <u>lossy</u>.

| Example                                                                                                        | Lossless Joins? |
|----------------------------------------------------------------------------------------------------------------|-----------------|
| $R_1 = (A, B)$ $R_2 = (B, C)$ $F = \{A \rightarrow B, B \rightarrow C\}$                                       | yes             |
| $R_1 = (A, C)$ $R_2 = (B, C)$ $F = \{ \mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{C} \}$ | no              |

Example 3: 
$$R = R_1 \cup R_2$$
  $(R = (A, B, C))$ 

$$R_1 = (A, C)$$

$$R_2 = (B, C)$$

$$F = \{AB \rightarrow C, C \rightarrow B\}$$

#### Is the decomposition of R lossless?

- A: 1) What are the candidate keys of  $R_1$ ,  $R_2$ ?

  AC  $\rightarrow R_1$ C  $\rightarrow R_2$ 
  - 2) What is  $R_1 \cap R_2$ ?
  - 3) Does  $R_1 \cap R_2 \rightarrow R_1$  or  $R_1 \cap R_2 \rightarrow R_2$ Yes,  $C \rightarrow R_2$

Therefore, decomposition of R is <u>lossless</u>

Example 4: 
$$R = R_1 \cup R_2$$
  $(R = (A,B,C))$ 

$$R_1 = (AB,C)$$

$$R_2 = (B,C)$$

$$F = {AB \rightarrow C, C \rightarrow B}$$

#### Is the decomposition of R lossless?

- A: 1) What are the candidate keys of  $R_1$ ,  $R_2$ ?

  AB  $\rightarrow R_1$  Any Others?

  C  $\rightarrow R_2$ 
  - 2) What is  $R_1 \cap R_2$ ?
  - 3) Does  $R_1 \cap R_2 \rightarrow R_1$  or  $R_1 \cap R_2 \rightarrow R_2$

Example 4: 
$$R = R_1 \cup R_2 \quad (R = (A, B, C))$$
  
 $R_1 = (A, B, C)$   
 $R_2 = (B, C)$   
 $F = \{AB \rightarrow C, C \rightarrow B\}$ 

#### Is the decomposition of R lossless?

- A: 1) What are the candidate keys of  $R_1$ ,  $R_2$ ?

  AB  $\rightarrow R_1$ , AC  $\rightarrow R_1$ C  $\rightarrow R_2$ 
  - 2) What is  $R_1 \cap R_2$ ?

    BC
  - 3) Does  $R_1 \cap R_2 \rightarrow R_1$  or  $R_1 \cap R_2 \rightarrow R_2$ Yes. BC  $\rightarrow R_2$

Therefore, decomposition of R is <u>lossless</u>

| Example                                                                  | Lossless Joins? |
|--------------------------------------------------------------------------|-----------------|
| $R_1 = (A, B)$ $R_2 = (B, C)$ $F = \{A \rightarrow B, B \rightarrow C\}$ | yes             |

| Example                                                                    | Lossless Joins? |
|----------------------------------------------------------------------------|-----------------|
| $R_1 = (A, B)$ $R_2 = (B, C)$ $F = \{ A \rightarrow B, B \rightarrow C \}$ | yes             |
| $R_1 = (A,C)$ $R_2 = (B,C)$ $F = {AB \rightarrow C, C \rightarrow B}$      | yes             |
| $R_1 = (A, B, C)$ $R_2 = (B, C)$ $F = {AB \rightarrow C, C \rightarrow B}$ | yes             |

### Goal #2: Redundancy Avoidance

Intuition: when is there redundancy in a relation, R?

| R |   |   |  |
|---|---|---|--|
| A | В | С |  |
| a | Х | 1 |  |
| е | Х | 1 |  |
| g | У | 2 |  |
| h | У | 2 |  |
| m | Z | 1 |  |

Which att(s) in R show redundancy?

What apparent FD involves these atts?

What is the only candidate key of R?

In general, when is there redundancy in a relation, R?

A: When an FD in  $\mathbb{F}^+$ ,  $\mathbb{X} \to \mathbb{Y}$  is "covered" by  $\mathbb{R}$  (i.e.,  $\mathbb{X}$ ,  $\mathbb{Y} \in \mathbb{R}$ ) but  $\mathbb{X} \not\to \mathbb{R}$ 

A: B, C

 $A: B \rightarrow C$ 

**A:** A

### Tests for Decomposition Goals

Test of  $R = R_1 \cup ... \cup R_n$  with FD set F:

- Lossless Joins? iff for each decomposition step,  $R_1 = R_1 \cup R_j$ :  $(R_1 \cap R_2 \to R_1)$  or  $(R_1 \cap R_2 \to R_2)$
- Redundancy Avoidance? iff for each  $R_i$  in decomposition result: all nontrivial FDs covered by  $R_i$  have key for lhs

### Tests for Decomposition Goals

Test of  $R = R_1 \cup ... \cup R_n$  with FD set F:

- Lossless Joins? iff for each decomposition step,  $R_i = R_i \cup R_j$ :  $(R_1 \cap R_2 \rightarrow R_1)$  or  $(R_1 \cap R_2 \rightarrow R_2)$
- Redundancy Avoidance? iff for each  $R_i$  in decomposition result: for each nontrivial,  $X \to Y$  in  $F^+$  covered by  $R_i$ ,  $X \to R_i$

+

Single Table Example: 
$$R = (A, B, C)$$

$$F = \{ \mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{C} \}$$

#### Does R have redundancy?

A: 1) What are the candidate keys of R?

$$A \rightarrow R$$

2) Which non-trivial FDs of F<sup>+</sup> are covered by R?

$$A \rightarrow BC$$
,  $A \rightarrow B$ ,  $A \rightarrow C$   $(A \rightarrow R)$ 

$$\mathbf{B} \to \mathbf{C}$$
 ( $\mathbf{B} \not\to \mathbf{R}$  because  $\mathbf{B} \not\to \mathbf{A}$ )

Therefore, R has redundancy

Example 1: 
$$R = R_1 \cup R_2 \quad (R = (A, B, C))$$
  
 $R_1 = (A, B)$   
 $R_2 = (B, C)$   
 $F = \{A \rightarrow B, B \rightarrow C\}$ 

#### Does decomposition of R have redundancy?

A: 1) What are the candidate keys of  $R_1$ ,  $R_2$ ?

$$\begin{array}{ccc} \textbf{A} & \rightarrow & \textbf{R}_1 \\ \textbf{B} & \rightarrow & \textbf{R}_2 \end{array}$$

2) Which non-trivial FDs of  $F^+$  are covered by  $R_1$ ?

$$\mathbf{A} \rightarrow \mathbf{B}$$

$$(A \rightarrow R_1)$$

3) Which non-trivial FDs of  $F^+$  are covered by  $R_2$ ?

$$\mathbf{B} \rightarrow \mathbf{C}$$

$$(B \rightarrow R_2)$$

Therefore, decomposition of R has no redundancy

Example 3: 
$$R = R_1 \cup R_2 \quad (R = (A, B, C))$$
  
 $R_1 = (A, C)$   
 $R_2 = (B, C)$   
 $F = \{AB \rightarrow C, C \rightarrow B\}$ 

#### Does decomposition of R have redundancy?

A: 1) What are the candidate keys of  $R_1$ ,  $R_2$ ?

$$\begin{array}{ccc} AC & \rightarrow & R_1 \\ C & \rightarrow & R_2 \end{array}$$

2) Which non-trivial FDs of  $F^+$  are covered by  $R_1$ ?





3) Which non-trivial FDs of  $F^+$  are covered by  $R_2$ ?

$$C \rightarrow B$$

$$(C \rightarrow R_2) \checkmark$$

Therefore, decomposition of R has no redundancy

Example 4: 
$$R = R_1 \cup R_2 \quad (R = (A, B, C))$$
  
 $R_1 = (A, B, C)$   
 $R_2 = (B, C)$   
 $F = \{AB \rightarrow C, C \rightarrow B\}$ 

#### Does decomposition of R have redundancy?

A: 1) What are the candidate keys of  $R_1$ ,  $R_2$ ?

2) Which non-trivial FDs of  $F^+$  are covered by  $R_1$ ?

$$AB \rightarrow C$$
  $(AB \rightarrow R_1) \checkmark$   $(C \rightarrow B \quad (C \rightarrow R_1) \checkmark$ 

3) Which non-trivial FDs of  $F^+$  are covered by  $R_2$ ?

$$C \rightarrow B$$
  $(C \rightarrow R_2)$ 

Therefore, decomposition of R has redundancy

| Example                                                                                                      | Lossless Joins? |
|--------------------------------------------------------------------------------------------------------------|-----------------|
| $R_1 = (A,B)$ $R_2 = (B,C)$ $F = \{ \mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{C} \}$ | yes             |
| $R_1 = (A,C)$ $R_2 = (B,C)$ $F = {AB \rightarrow C, C \rightarrow B}$                                        | yes             |
| $R_1 = (A, B, C)$ $R_2 = (B, C)$ $F = {AB \rightarrow C, C \rightarrow B}$                                   | yes             |

| Example                                                                    | Lossless Joins? | Avoids Redundancy? |
|----------------------------------------------------------------------------|-----------------|--------------------|
| $R_1 = (A, B)$ $R_2 = (B, C)$ $F = \{A \rightarrow B, B \rightarrow C\}$   | yes             | yes                |
| $R_1 = (A,C)$ $R_2 = (B,C)$ $F = {AB \rightarrow C, C \rightarrow B}$      | yes             | yes                |
| $R_1 = (A, B, C)$ $R_2 = (B, C)$ $F = {AB \rightarrow C, C \rightarrow B}$ | yes             | no                 |

Intuition: enforcing functional dependencies



To enforce the FD,  $\mathbf{A} \rightarrow \mathbf{B}$  over R:

```
CREATE ASSERTION A-B
CHECK (NOT EXISTS

(SELECT *
FROM R AS r_1, R AS r_2
WHERE r_1.A = r_2.A AND r_1.B <> r_2.B)
```

Intuition: enforcing functional dependencies



To enforce the FDs,  $A \rightarrow B$ ,  $A \rightarrow C$  over R, S:

```
CREATE ASSERTION A-B
CHECK (NOT EXISTS

(SELECT *
FROM R AS r_1, R AS r_2
WHERE r_1 . A = r_2 . A AND r_1 . B <> r_2 . B))

CREATE ASSERTION A-C
CHECK (NOT EXISTS

(SELECT *
FROM S AS <math>s_1, S AS s_2
WHERE s_1 . A = s_2 . A AND s_1 . C <> s_2 . C))
```

Intuition: enforcing functional dependencies

Consider:

R

A B C

To enforce the FDs,  $A \rightarrow B$ ,  $A \rightarrow C$  over R:

```
A: CREATE ASSERTION A-BC

CHECK (NOT EXISTS

(SELECT *

FROM R AS r_1, R AS r_2

WHERE r_1.A = r_2.A AND ((r_1.B <> r_2.B) OR (r_1.C <> r_2.C))
```

Idea:  $X \rightarrow Y$  less \$ to enforce if X, Y in same table

#### Intuition: enforcing functional dependencies

ensure 1 table examined per FD (table appears 2x in assertion FROM clause)

i.e.: decomposed tables should still cover FDs



e.g., 
$$R_i$$
 covers  $\mathbf{A_1}$  ...  $\mathbf{A_n} \rightarrow \mathbf{B_1}$  ...  $\mathbf{B_m}$ 

Is  $R = R_1 \cup ... \cup R_n$  with FD's, F, dependency preserving?

#### Test:

- 1. Compute  $\mathbb{F}^+$
- 2. Compute G: FD's in F<sup>+</sup> covered by individual tables, R<sub>1</sub>, ..., R<sub>n</sub>  $G \leftarrow \emptyset$ FOR i  $\leftarrow$  1 TO n DO Add to G those FD's in F<sup>+</sup> that are covered by R<sub>i</sub>
- 3. Test if  $F^+ = G^+$ 
  - if yes, decomposition is dependency preserving
  - if no, decomposition is not dependency preserving
     → (F<sup>+</sup> G<sup>+</sup>) not covered by the decomposition

Example 1: 
$$R = R_1 \cup R_2 \quad (R = (A, B, C))$$
  
 $R_1 = (A, B)$   
 $R_2 = (B, C)$   
 $F = \{A \rightarrow B, B \rightarrow C\}$ 

### Is decomposition of R dependency preserving?

- A: 1) Which non-trivial FDs of  $F^+$  are covered by  $R_1$ ?

  A  $\rightarrow$  B
  - Which non-trivial FDs of F<sup>+</sup> are covered by R<sub>2</sub>?
     B → C
  - 3) Does  $(1 \cup 2)^+ = F^+$ ? Yes.  $\{ \mathbf{A} \to \mathbf{B}, \mathbf{B} \to \mathbf{C} \}^+ = F^+$

Therefore, decomposition of  $\mathbb{R}$  is dependency preserving

```
Example 3: R = R_1 \cup R_2 (R = (A, B, C))
R_1 = (A, C)
R_2 = (B, C)
F = \{AB \rightarrow C, C \rightarrow B\}
```

### Is decomposition of R dependency preserving?

- A: 1) Which non-trivial FDs of F<sup>+</sup> are covered by R<sub>1</sub>?
  - Which non-trivial FDs of F<sup>+</sup> are covered by R<sub>2</sub>?
     C → B
  - 3) Does  $(1 \cup 2)^+ = F^+$ ? No. (AB  $\to$  C)  $\in F^+$  but (AB  $\to$  C)  $\notin \{C \to B\}^+$

Therefore, decomposition of R is not dependency preserving

```
Example 4: R = R_1 \cup R_2 (R = (A, B, C))

R_1 = (A, B, C)

R_2 = (B, C)

F = \{AB \rightarrow C, C \rightarrow B\}
```

### Is decomposition of R dependency preserving?

- A: 1) Which non-trivial FDs of F<sup>+</sup> are covered by R<sub>1</sub>?
   AB → C
   C → B
  - Which non-trivial FDs of F⁺ are covered by R₂?
     C → B
  - 3) Does  $(1 \cup 2)^+ = F^+$ ? Yes. {AB  $\rightarrow$  C, C  $\rightarrow$  B}<sup>+</sup> = F<sup>+</sup>

Therefore, decomposition of  $\mathbb{R}$  is dependency preserving

# Summary: Examples

| Example                                                                    | Lossless Joins? | Avoids Redundancy? |
|----------------------------------------------------------------------------|-----------------|--------------------|
| $R_1 = (A, B)$ $R_2 = (B, C)$ $F = \{A \rightarrow B, B \rightarrow C\}$   | yes             | yes                |
| $R_1 = (A,C)$ $R_2 = (B,C)$ $F = {AB \rightarrow C, C \rightarrow B}$      | yes             | yes                |
| $R_1 = (A, B, C)$ $R_2 = (B, C)$ $F = {AB \rightarrow C, C \rightarrow B}$ | yes             | no                 |

# Summary: Examples

| Example                                                                    | Lossless Joins? | Avoids Redundancy? | Dependency<br>Preserving? |
|----------------------------------------------------------------------------|-----------------|--------------------|---------------------------|
| $R_1 = (A, B)$ $R_2 = (B, C)$ $F = \{A \rightarrow B, B \rightarrow C\}$   | yes             | yes                | yes                       |
| $R_1 = (A, C)$ $R_2 = (B, C)$ $F = \{AB \rightarrow C, C \rightarrow B\}$  | yes             | yes                | no                        |
| $R_1 = (A, B, C)$ $R_2 = (B, C)$ $F = {AB \rightarrow C, C \rightarrow B}$ | yes             | no                 | yes                       |

### Tests for Decomposition Goals

Test of  $R = R_1 \cup ... \cup R_n$  with FD set F:

- Lossless Joins? iff for each decomposition step,  $R_1 = R_1 \cup R_j$ :  $(R_1 \cap R_2 \to R_1)$  or  $(R_1 \cap R_2 \to R_2)$
- Redundancy Avoidance? iff for each  $R_i$  in decomposition result: for each nontrivial,  $X \to Y$  in  $F^+$  covered by  $R_i$ ,  $X \to R_i$
- Dependency Preserving? iff:

  FDs covered by single relations R; tare equivalent to F

## Tests for Decomposition Goals

Test of  $R = R_1 \cup ... \cup R_n$  with FD set F:

- Lossless Joins? iff for each decomposition step,  $R_1 = R_1 \cup R_j$ :  $(R_1 \cap R_2 \to R_1)$  or  $(R_1 \cap R_2 \to R_2)$
- Redundancy Avoidance? iff for each  $R_i$  in decomposition result: for each nontrivial,  $X \to Y$  in  $F^+$  covered by  $R_i$ ,  $X \to R_i$
- Dependency Preserving? iff:

$$\left( \bigcup_{i=1}^{n} \{ f \in F^{+} \mid f \text{ covered by } R_{i} \} \right)^{+} = F^{+}$$

| Goal                    | Motivation                                |
|-------------------------|-------------------------------------------|
| Lossless                | avoid info                                |
| Joins                   | loss                                      |
| Redundancy<br>Avoidance | avoid update<br>and deletion<br>anomalies |
| Dependency              | efficient FD                              |
| Preservation            | enforcement                               |

| Goal                       | Motivation                                | Idea                                              |
|----------------------------|-------------------------------------------|---------------------------------------------------|
| Lossless<br>Joins          | avoid info<br>loss                        | recomposing<br>tables should<br>not add noise     |
| Redundancy<br>Avoidance    | avoid update<br>and deletion<br>anomalies | only FD's with keys covered by decomposed tables  |
| Dependency<br>Preservation | efficient FD<br>enforcement               | fewer global<br>ICs required<br>to enforce<br>FDs |

| Goal                       | Motivation                                | Idea                                              | Test                                                                                                               |
|----------------------------|-------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Lossless<br>Joins          | avoid info<br>loss                        | recomposing<br>tables should<br>not add noise     | For: $R = R_1 \cup R_2$<br>$(R_1 \cap R_2) \rightarrow R_1$ or $(R_1 \cap R_2) \rightarrow R_2$                    |
| Redundancy<br>Avoidance    | avoid update<br>and deletion<br>anomalies | only FD's with keys covered by decomposed tables  | For any $X \rightarrow Y$ covered by $R_i$ , $X$ is a superkey of $R_i$                                            |
| Dependency<br>Preservation | efficient FD<br>enforcement               | fewer global<br>ICs required<br>to enforce<br>FDs | For: $R = R_1 \cup \cup R_n$<br>(FD's covered by each $R_i$ ) <sup>+</sup> $=$ (FD's covered by $R$ ) <sup>+</sup> |

| Goal                       | Motivation                                | Idea                                              | Test                                                                                                               | Guaranteed By |
|----------------------------|-------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------|
| Lossless<br>Joins          | avoid info<br>loss                        | recomposing<br>tables should<br>not add noise     | For: $R = R_1 \cup R_2$<br>$(R_1 \cap R_2) \rightarrow R_1$ or $(R_1 \cap R_2) \rightarrow R_2$                    | BCNF, 3NF     |
| Redundancy<br>Avoidance    | avoid update<br>and deletion<br>anomalies | only FD's with keys covered by decomposed tables  | For any $X \rightarrow Y$ covered by $R_i$ , $X$ is a superkey of $R_i$                                            | BCNF          |
| Dependency<br>Preservation | efficient FD<br>enforcement               | fewer global<br>ICs required<br>to enforce<br>FDs | For: $R = R_1 \cup \cup R_n$<br>(FD's covered by each $R_i$ ) <sup>+</sup> $=$ (FD's covered by $R$ ) <sup>+</sup> | 3NF           |

### After the midterm: Normalization

#### Normal Forms

- schema in some normal form if it satisfies certain properties
  - e.g., BCNF: lhs of FD covered by table is a key
- typically accompanied by decomposition algorithm that ensures result schema satisfies normal form

# Midterm Coverage

| Topic                   | Lecture(s) | Assignment(s) |
|-------------------------|------------|---------------|
| Introduction            | 1          | -             |
| Relational Data Model   | 2          | -             |
| Relational Algebra      | 2, 3       | PS 1          |
| Relational Calculus     | 3, 4       | PS 1, PS 2    |
| SQL                     | 5, 6       | PS 1, PA 1    |
| Transactions            | 7          | PS 3          |
| Integrity Constraints   | 8, 9       | PS 3          |
| E/R Data Model          | 9, 10, 11  | PS 4          |
| Functional Dependencies | 9, 11      | PS 4          |

#### 1. Data Organization

• Logical: Relational Data Model, Database Design

#### 2. Data Retrieval

• Logical: Query Languages: RA, TRC, SQL

#### 3. Data Integrity

• Logical: Transactions, Integrity Constraints

#### 1. Data Organization

#### **Includes:**

- Relational Terminology
- E/R Data Model
- E/R  $\rightarrow$  Relation Xlation
- Functional Dependencies

#### Does not include:

- Canonical Covers of FDs
- Decomposition

#### 2. Data Retrieval

• Logical: Query Languages: RA, TRC, SQL

#### 3. Data Integrity

• Logical: Transactions, Integrity Constraints

#### 1. Data Organization

#### **Includes:**

- Relational Terminology
- E/R Data Model
- $E/R \rightarrow Relation Xlation$
- Functional Dependencies

#### Does not include:

- Canonical Covers of FDs
- Decomposition

#### 2. Data Retrieval

#### <u>Includes:</u>

- Relational Algebra
- Tuple Relational Calculus
- SQL (DML, DDL, Views)
- Xlations:  $RA \leftrightarrow TRC \leftrightarrow SQL$

#### 3. Data Integrity

• Logical: Transactions, Integrity Constraints

#### 1. Data Organization

#### **Includes:**

- Relational Terminology
- E/R Data Model
- E/R  $\rightarrow$  Relation Xlation
- Functional Dependencies

#### Does not include:

- Canonical Covers of FDs
- Decomposition

#### 2. Data Retrieval

#### <u>Includes:</u>

- Relational Algebra
- Tuple Relational Calculus
- SQL (DML, DDL, Views)
- Xlations:  $RA \leftrightarrow TRC \leftrightarrow SQL$

#### 3. Data Integrity

#### Includes:

- ACID Properties
- Serializability and Conflict Serializability
- Alternative SQL Isolation Policies and Isolation Anomalies
- Integrity Constraints
- GICs and FDs
- FD Closures (Attribute Closures, Armstrongs Axioms)

COSI 127b, Spr 2014, Lecture 13

### Midterm

#### **Studying Suggestions**

- Review slides and text
- Review homework solutions (make sure you understand)
- Practice Exercises in text (solutions in back)
- Study groups
- Set high bar for "understanding"