ННГУ им. Лобачевского

Факультет: Высшая школа общей и прикладной физики

ОТЧЕТ

по лабораторной работе №12:

Определение ускорения свободного падения

Выполнили:

Митяшин Илья

Ковригин Марк

Нижний Новгород

2023г.

Цель работы

Экспериментально определить ускорение свободного падения с точностью до 1%, используя математический маятник.

Оборудование

Математический маятник, зеркальная шкала, секундомер. $\Delta t = 0.2$ с; $\Delta h = 0.1$ см.

Теоретическая часть

1. Математический маятник

Предположим, что нить невесома и нерастяжима, силами трения и сопротивление воздуха можно пренебречь. Тогда можно записать II закон Ньютона для шарика: $m\overrightarrow{a} = m\overrightarrow{g} + \overrightarrow{N}$, где m — масса шарика, а — ускорение шарика, mg — сила тяжести, N — сила натяжения нити.

В проекции на ось Ох получаем: $ma_x = -mg \sin \varphi$ (1)

Поскольку $dx=ld\varphi$, имеем $a_x=\frac{\mathrm{d}^2x}{\mathrm{d}t^2}=l\frac{\mathrm{d}^2\phi}{\mathrm{d}t^2}$ и, подставляя в (1) получаем: $\frac{\mathrm{d}^2\phi}{\mathrm{d}t^2}+\frac{\mathrm{g}}{\mathrm{l}}\sin\phi=0\ (2)$

При малых отклонений от положения равновесия можно считать что $\sin \varphi \approx \varphi$. В этом случае из (2), получаем $\frac{\mathrm{d}^2 \varphi}{\mathrm{d} t^2} + \frac{\mathrm{g}}{\mathrm{l}} \varphi = 0$ (3). Решением (3) является $\varphi = \varphi_0 \sin(\omega t + \alpha)$, где $\varphi_0 - \mathrm{a}$ мплитуда колебаний, α - начальная фаза, $\omega = \sqrt{\frac{g}{l}}$ – частота колебаний. Тогда $\mathrm{T} = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{\mathrm{l}}{\mathrm{g}}}$ (4) — период малых колебаний. (4) можно использовать для определения ускорения свободного падения: $g = \frac{4\pi^2 l}{T^2}$ (5).

Однако, точно измерить длину маятника сложно, так как приходится определять расстояние между точкой подвеса и центром тяжести шарика. Поэтому обычно поступают следующим образом: В точке (рис. 2) закрепляют нить, к которой подвешен шарик, и отмечают на верхней зеркальной шкале изображение наинизшей точки шарика. Зеркальная шкала помогает избежать ошибки на параллакс при определении деления шкалы h_1 , совпадающего с этой низшей точкой шарика и ее зеркальным изображением. Назовём длину нити, соответствующую этому положению шарика l_1 . Период колебания маятника, который определяется с помощью секундомера, обозначим T_1 . Для второго положения проделываем аналогичные действия, тогда получаем: $T_1^2 = 4\pi^2 \frac{l_1}{g}$ (4a) и $T_2^2 = 4\pi^2 \frac{l_2}{g}$ (4б). Вычитая

из (4б) соотношение (4а), получаем $g=\frac{4\pi^2(l_2-l_1)}{T_2^2-T_1^2}$, и т.к. l_2 - l_1 = h_2 - h_1 , то в итоге получаем: $g=\frac{4\pi^2(h_2-h_1)}{T_2^2-T_1^2}$. Чтобы измерения были точнее, нужно брать как можно больше разность высот h_2-h_1 .

2. Контрольные вопросы

1. При определении периода пускать в ход и останавливать секундомер можно: а) когда маятник имеет наибольшее отклонение; б) когда он проходит положение равновесия. В каком случае измерение точнее?

Измерение будет точнее если действовать согласно пункту б), потому что все равно есть трение о воздух, и угол наибольшего отклонения будет меняться, то есть человек может нажать на секундомер позже чем надо, либо нажать раньше, думая, что шарик дошел до максимального отклонения.

2. g можно определить, измерив время свободного падения и измерив период колебаний маятника. Какой метод даст результат точнее, если пользоваться одним секундомером в обоих случаях?

Измерив период колебаний результат будет точнее, потому что сложно увидеть момент соударения с поверхностью, так как оно происходит очень быстро.

- 3. В каких точках земной поверхности д максимально, в каких минимально? Максимально значение д будет на полюсе и минимально на экваторе.
- 4. Чему равно g в центре Земли? g в центре Земли равно 0.
- 5. На какую высоту над землей нужно подняться, чтобы с помощью приборов, которыми вы пользовались можно было заметить изменение g?

$$g=rac{GM}{(R+x)^2}$$
 приборы, которыми мы пользовались определяют ускорение свободного падения с точностью 1%, то есть, показания прибора должны отличаться хотя бы на 2%, тогда $x=\sqrt{rac{GM}{0.98g}}-R_3$, пусть $g=9.81$ м/c²; $M=5.97*10^{24}$ кг; $R_3=6371$ км, получается $x\approx 64.80$ км.

Практическая часть

1. Определение зависимости периода колебаний маятника от амплитуды. n = 20 колебаний.

ф, в град	5	10	15	20	25
t, c	47,60	47,67	47,84	48,12	48,32
T=t/n, c	2,380	2,384	2,392	2,406	2,416
$\Delta T = \Delta t/n, c$	0,01				

Исходя из таблицы делаем вывод, что колебания будут малыми при φ ≤ 15°.

2. Определение минимального количества колебаний п, при котором максимальная относительная погрешность δ, была бы не более 1%.

n	h1, см	t1, c	T1, c	h2, см	t2, c	T2, c
20	7,80	31,67	1,58	143,3	54,67	2,73

$$n = \frac{2\Delta t}{(T_2 - T_1)\left(0.01 - \frac{2\Delta h}{h_2 - h_1}\right)} = 41$$
 колебание

3. Определение ускорения свободного падения g. Количество колебаний, вычисленное теоретически $\mathbf{n}=41$.

$$g = \frac{4\pi^{2}(h_{2}-h_{1})}{T_{2}^{2}-T_{1}^{2}}$$
$$\delta g = \frac{2\Delta h}{h_{2}-h_{1}} + \frac{2\Delta t}{n(T_{2}-T_{1})}$$

№ Опыта	I	II	III		
h ₁ , см	7,8	7,8	7,8		
t ₁ , c	60,40	60,29	60,37		
T_1 , c	1,473	1,470	1,472		
h ₂ , см	143,3	143,3	143,3		
t ₂ , c	113,36	113,40	113,40		
T ₂ , c	2,765	2,766	2,766		
h_2-h_1 , см	135,5	135,5	135,5		
$T_2^2 - T_1^2$, c	5,475	5,490	5,484		
$g, cm/c^2$	977,05	974,38	975,44		
$g_{\text{эталон}}$, c_{M}/c^2	981,6 (56° с.ш.)				
δg, %	0,991	0,991	0,991		
Δg , cm/c ²	9,68	9,66	9,67		

 $g_1 = 977,05 \pm 9,68 \text{ cm/c}^2$

 $g_2 = 974,38 \pm 9,66 \text{ cm/c}^2$

 $g_3 = 975,44 \pm 9,67 \text{ cm/c}^2$

 $g_{cp} = 975,\!62 \pm 9,\!67~\text{cm/c}^2$

Вывод

В ходе лабораторной работы мы определили ускорение свободного падения с точностью 0,91%, для этого определили минимальное необходимое количество колебаний. Также обнаружили, что для $\phi \le 15^\circ$ колебания можно считать малыми.