Integralen van tweede en derde klasse

Werner Peeters

$$\int f(\sin x, \cos x) \, dx$$

= rationaal samengestelde goniometrische functies

$$\int f(\sin x, \cos x) \, dx$$

 $\Rightarrow 5$ mogelijkheden

$$\int f(\sin x, \cos x) \, dx$$

- \Rightarrow 5 mogelijkheden Substitutie $tg \frac{x}{2} = t$

$$\int f(\sin x, \cos x) \, dx$$

- \Rightarrow 5 mogelijkheden Substitutie $tg \frac{x}{2} = t$
- Substitutie tg x = t

$$\int f(\sin x, \cos x) \, dx$$

- ⇒ 5 mogelijkheden Substitutie $tg \frac{x}{2} = t$
- Substitutie tg x = t
- Substitutie $\sin x = t$ of $\cos x = t$

$$\int f(\sin x, \cos x) \, dx$$

- ⇒ 5 mogelijkheden Substitutie $tg \frac{x}{2} = t$
- Substitutie tg x = t
- Substitutie $\sin x = t$ of $\cos x = t$
- Halverings–en verdubbelingsformules

$$\int f(\sin x, \cos x) \, dx$$

- ⇒ 5 mogelijkheden Substitutie $tg \frac{x}{2} = t$
- Substitutie tg x = t
- Substitutie $\sin x = t$ of $\cos x = t$
- Halverings–en verdubbelingsformules
- Recursie

Methode I: substitutie
$$tg \frac{x}{2} = t$$

$$tg\frac{x}{2} = t$$

Methode I: substitutie
$$\boxed{\operatorname{tg} \frac{x}{2} = t}$$
 voor $\int f(\sin x, \cos x) \, dx$

Methode I: substitutie
$$\left| \operatorname{tg} \frac{x}{2} = t \right|$$
 voor $\int f \left(\sin x, \cos x \right) dx$

$$\Rightarrow \sin x = \frac{2t}{1+t^2}$$
 $\cos x = \frac{1-t^2}{1+t^2}$ $\tan x = \frac{2t}{1-t^2}$

Methode I: substitutie
$$\left| \operatorname{tg} \frac{x}{2} = t \right|$$
 voor $\int f(\sin x, \cos x) \, dx$

$$\Rightarrow \sin x = \frac{2t}{1+t^2}$$
 $\cos x = \frac{1-t^2}{1+t^2}$ $\tan x = \frac{2t}{1-t^2}$

$$x = 2 \operatorname{Bgtg} t \Rightarrow dx = \frac{2dt}{1 + t^2}$$

Methode I: substitutie
$$\left| \operatorname{tg} \frac{x}{2} = t \right|$$
 vo

Methode I: substitutie
$$\boxed{\operatorname{tg} \frac{x}{2} = t}$$
 voor $\int f(\sin x, \cos x) \, dx$

$$\Rightarrow \sin x = \frac{2t}{1+t^2}$$
 $\cos x = \frac{1-t^2}{1+t^2}$ $\tan x = \frac{2t}{1-t^2}$

$$x = 2 \operatorname{Bgtg} t \Rightarrow dx = \frac{2dt}{1 + t^2}$$

⇒ Klasse I

Methode I: substitutie $\left| \operatorname{tg} \frac{x}{2} = t \right|$ voor $\int f(\sin x, \cos x) \, dx$

$$\Rightarrow \sin x = \frac{2t}{1+t^2} \qquad \cos x = \frac{1-t^2}{1+t^2} \qquad \operatorname{tg} x = \frac{2t}{1-t^2}$$

en

$$x = 2 \operatorname{Bgtg} t \Rightarrow dx = \frac{2dt}{1 + t^2}$$

⇒ Klasse I

Voorbeeld:
$$I = \int \frac{dx}{\sin x}$$

Methode I: substitutie
$$\left| \operatorname{tg} \frac{x}{2} = t \right|$$
 voor $\int f(\sin x, \cos x) \, dx$

$$\Rightarrow \sin x = \frac{2t}{1+t^2}$$
 $\cos x = \frac{1-t^2}{1+t^2}$ $\tan x = \frac{2t}{1-t^2}$

$$x = 2 \operatorname{Bgtg} t \Rightarrow dx = \frac{2dt}{1+t^2}$$

⇒ Klasse I

$$I = \int \frac{dx}{\sin x} = \int \frac{\frac{2dt}{1+t^2}}{\frac{2t}{1+t^2}}$$

Methode I: substitutie
$$\left| \operatorname{tg} \frac{x}{2} = t \right|$$
 voor $\int f \left(\sin x, \cos x \right) dx$

$$\Rightarrow \sin x = \frac{2t}{1+t^2}$$
 $\cos x = \frac{1-t^2}{1+t^2}$ $\tan x = \frac{2t}{1-t^2}$

$$x = 2 \operatorname{Bgtg} t \Rightarrow dx = \frac{2dt}{1+t^2}$$

⇒ Klasse I

$$I = \int \frac{dx}{\sin x} = \int \frac{\frac{2dt}{1+t^2}}{\frac{2t}{1+t^2}} = \int \frac{dt}{t}$$

Methode I: substitutie
$$\boxed{ \operatorname{tg} \frac{x}{2} = t }$$
 voor $\int f \left(\sin x, \cos x \right) dx$

$$\Rightarrow \sin x = \frac{2t}{1+t^2}$$
 $\cos x = \frac{1-t^2}{1+t^2}$ $\tan x = \frac{2t}{1-t^2}$

$$x = 2 \operatorname{Bgtg} t \Rightarrow dx = \frac{2dt}{1 + t^2}$$

⇒ Klasse I

$$I = \int \frac{dx}{\sin x} = \int \frac{\frac{2dt}{1+t^2}}{\frac{2t}{1+t^2}} = \int \frac{dt}{t} = \ln|t| + k$$

Methode I: substitutie
$$\boxed{ \operatorname{tg} \frac{x}{2} = t }$$
 voor $\int f \left(\sin x, \cos x \right) dx$

$$\Rightarrow \sin x = \frac{2t}{1+t^2}$$
 $\cos x = \frac{1-t^2}{1+t^2}$ $\tan x = \frac{2t}{1-t^2}$

$$x = 2 \operatorname{Bgtg} t \Rightarrow dx = \frac{2dt}{1 + t^2}$$

⇒ Klasse I

$$I = \int \frac{dx}{\sin x} = \int \frac{2dt}{\frac{1+t^2}{1+t^2}} = \int \frac{dt}{t} = \ln|t| + k = \ln\left|\operatorname{tg}\frac{x}{2}\right| + k$$

Methode II: substitutie tg x = t

Methode II: substitutie
$$\boxed{\operatorname{tg} x = t}$$
 voor $\int f \left(\operatorname{tg} x\right) dx$

Methode II: substitutie
$$\boxed{\operatorname{tg} x = t}$$
 voor $\int f(\operatorname{tg} x) dx$

$$x = \operatorname{Bgtg} t \Rightarrow dx = \frac{dt}{1 + t^2}$$

Methode II: substitutie
$$\boxed{\operatorname{tg} x = t}$$
 voor $\int f(\operatorname{tg} x) dx$

$$x = \operatorname{Bgtg} t \Rightarrow dx = \frac{dt}{1 + t^2}$$

 \Rightarrow Klasse I

Methode II: substitutie
$$\boxed{\operatorname{tg} x = t}$$
 voor $\int f(\operatorname{tg} x) dx$

$$x = \operatorname{Bgtg} t \Rightarrow dx = \frac{dt}{1 + t^2}$$

 \Rightarrow Klasse I

$$I = \int \frac{\cos x - \sin x}{\cos x + \sin x} dx$$

Methode II: substitutie
$$\boxed{\operatorname{tg} x = t}$$
 voor $\int f(\operatorname{tg} x) dx$

$$x = \operatorname{Bgtg} t \Rightarrow dx = \frac{dt}{1 + t^2}$$

$$I = \int \frac{\cos x - \sin x}{\cos x + \sin x} dx = \int \frac{\frac{\cos x - \sin x}{\cos x}}{\frac{\cos x + \sin x}{\cos x}} dx$$

Methode II: substitutie
$$tg x = t$$
 voor $\int f(tg x) dx$

$$x = \operatorname{Bgtg} t \Rightarrow dx = \frac{dt}{1 + t^2}$$

$$I = \int \frac{\cos x - \sin x}{\cos x + \sin x} dx = \int \frac{1 - \lg x}{1 + \lg x} dx$$

Methode II: substitutie
$$tg x = t$$
 voor $\int f(tg x) dx$

$$x = \operatorname{Bgtg} t \Rightarrow dx = \frac{dt}{1 + t^2}$$

$$I = \int \frac{\cos x - \sin x}{\cos x + \sin x} dx = \int \frac{1 - t}{1 + t} \frac{dt}{1 + t^2}$$

Methode II: substitutie
$$tg x = t$$
 voor $\int f(tg x) dx$

$$x = \operatorname{Bgtg} t \Rightarrow dx = \frac{dt}{1 + t^2}$$

$$I = \int \frac{\cos x - \sin x}{\cos x + \sin x} dx = \int \frac{(1-t) dt}{(1+t)(1+t^2)}$$

Methode II: substitutie
$$tg x = t$$
 voor $\int f(tg x) dx$

$$x = \operatorname{Bgtg} t \Rightarrow dx = \frac{dt}{1 + t^2}$$

$$I = \int \frac{\cos x - \sin x}{\cos x + \sin x} dx = \int \frac{(1 + t^2 - t^2 - t) dt}{(1 + t)(1 + t^2)}$$

Methode II: substitutie
$$tg x = t$$
 voor $\int f(tg x) dx$

$$x = \operatorname{Bgtg} t \Rightarrow dx = \frac{dt}{1 + t^2}$$

$$I = \int \frac{\cos x - \sin x}{\cos x + \sin x} dx = \int \frac{(1+t^2) - t(1+t)}{(1+t)(1+t^2)} dt$$

Methode II: substitutie
$$tg x = t$$
 voor $\int f(tg x) dx$

$$x = \operatorname{Bgtg} t \Rightarrow dx = \frac{dt}{1 + t^2}$$

$$I = \int \frac{\cos x - \sin x}{\cos x + \sin x} dx = \int \frac{(1+t^2)}{(1+t)(1+t^2)} dt - \int \frac{t(1+t)}{(1+t)(1+t^2)} dt$$

Methode II: substitutie $\boxed{\operatorname{tg} x = t}$ voor $\int f(\operatorname{tg} x) dx$

$$x = \operatorname{Bgtg} t \Rightarrow dx = \frac{dt}{1 + t^2}$$

⇒ Klasse I

$$I = \int \frac{\cos x - \sin x}{\cos x + \sin x} dx = \int \frac{dt}{(1+t)} - \int \frac{t}{(1+t^2)} dt$$

Methode II: substitutie
$$\boxed{\operatorname{tg} x = t}$$
 voor $\int f(\operatorname{tg} x) dx$

$$x = \operatorname{Bgtg} t \Rightarrow dx = \frac{dt}{1 + t^2}$$

$$I = \int \frac{\cos x - \sin x}{\cos x + \sin x} dx = \ln|1 + t| - \frac{1}{2} \int \frac{d(1 + t^2)}{(1 + t^2)}$$

Methode II: substitutie
$$tg x = t$$
 voor $\int f(tg x) dx$

$$x = \operatorname{Bgtg} t \Rightarrow dx = \frac{dt}{1 + t^2}$$

$$I = \int \frac{\cos x - \sin x}{\cos x + \sin x} dx = \ln|1 + t| - \frac{1}{2}\ln|1 + t^2| + k$$

Methode II: substitutie
$$\boxed{\operatorname{tg} x = t}$$
 voor $\int f(\operatorname{tg} x) dx$

$$x = \operatorname{Bgtg} t \Rightarrow dx = \frac{dt}{1 + t^2}$$

$$I = \int \frac{\cos x - \sin x}{\cos x + \sin x} dx = \frac{1}{2} \ln \left| (1+t)^2 \right| - \frac{1}{2} \ln \left| 1 + t^2 \right| + k$$

Methode II: substitutie tg x = t voor $\int f(tg x) dx$

$$x = \operatorname{Bgtg} t \Rightarrow dx = \frac{dt}{1 + t^2}$$

⇒ Klasse I

$$I = \int \frac{\cos x - \sin x}{\cos x + \sin x} dx = \frac{1}{2} \ln \left| \frac{(1+t)^2}{1+t^2} \right| + k$$

Methode II: substitutie tg x = t voor $\int f(tg x) dx$

$$x = \operatorname{Bgtg} t \Rightarrow dx = \frac{dt}{1 + t^2}$$

⇒ Klasse I

$$I = \int \frac{\cos x - \sin x}{\cos x + \sin x} dx = \frac{1}{2} \ln \left| \frac{(1 + \lg x)^2}{1 + \lg^2 x} \right| + k$$

Methode III: substitutie $\sin x = t$ of $\cos x = t$

$$(1) I = \int \sin^5 x \cos^3 x dx$$

(1)
$$I = \int \sin^5 x \cos^3 x dx = \int \sin^5 x \cos^2 x \cos x dx$$

(1)
$$I = \int \sin^5 x \cos^3 x dx = \int \sin^5 x \cos^2 x d (\sin x)$$

(1)
$$I = \int \sin^5 x \cos^3 x dx = \int \sin^5 x (1 - \sin^2 x) d(\sin x)$$

(1)
$$I = \int \sin^5 x \cos^3 x dx = \int \sin^5 x (1 - \sin^2 x) d(\sin x)$$

$$t = \sin x$$

$$= \int t^5 \left(1 - t^2\right) dt$$

(1)
$$I = \int \sin^5 x \cos^3 x dx = \int \sin^5 x (1 - \sin^2 x) d(\sin x)$$

$$t = \sin x$$

$$= \int \left(t^5 - t^7\right) dt$$

(1)
$$I = \int \sin^5 x \cos^3 x dx = \int \sin^5 x (1 - \sin^2 x) d(\sin x)$$

$$t = \sin x$$

$$= \frac{1}{6}t^6 - \frac{1}{8}t^8 + k$$

(1)
$$I = \int \sin^5 x \cos^3 x dx = \int \sin^5 x (1 - \sin^2 x) d(\sin x)$$

$$t = \sin x$$

$$= \frac{1}{6}\sin^6 x - \frac{1}{8}\sin^8 x + k$$

(1)
$$I = \int \sin^5 x \cos^3 x dx = \int \sin^5 x (1 - \sin^2 x) d(\sin x)$$

$$t = \sin x$$

$$= \frac{1}{6}\sin^6 x - \frac{1}{8}\sin^8 x + k$$
(2) $I = \int \frac{\cos^3 x}{\sin^5 x} dx$

$$(2) I = \int \frac{\cos^3 x}{\sin^5 x} dx$$

(1)
$$I = \int \sin^5 x \cos^3 x dx = \int \sin^5 x (1 - \sin^2 x) d(\sin x)$$

$$t = \sin x$$

$$= \frac{1}{6}\sin^6 x - \frac{1}{8}\sin^8 x + k$$
(2) $I = \int \frac{\cos^3 x}{\sin^5 x} dx = \int \frac{\cos^2 x}{\sin^5 x} \cos x dx$

(1)
$$I = \int \sin^5 x \cos^3 x dx = \int \sin^5 x (1 - \sin^2 x) d(\sin x)$$

$$t = \sin x$$

$$= \frac{1}{6}\sin^6 x - \frac{1}{8}\sin^8 x + k$$
(2) $I = \int \frac{\cos^3 x}{\sin^5 x} dx = \int \frac{1 - \sin^2 x}{\sin^5 x} d(\sin x)$

(1)
$$I = \int \sin^5 x \cos^3 x dx = \int \sin^5 x (1 - \sin^2 x) d(\sin x)$$

$$t = \sin x$$

$$= \frac{1}{6}\sin^6 x - \frac{1}{8}\sin^8 x + k$$
(2) $I = \int \frac{\cos^3 x}{\sin^5 x} dx = \int \frac{1 - \sin^2 x}{\sin^5 x} d(\sin x)$

$$t = \sin x$$

$$= \int \frac{1 - t^2}{t^5} dt$$

(1)
$$I = \int \sin^5 x \cos^3 x dx = \int \sin^5 x (1 - \sin^2 x) d(\sin x)$$

$$t = \sin x$$

$$= \frac{1}{6}\sin^6 x - \frac{1}{8}\sin^8 x + k$$
(2) $I = \int \frac{\cos^3 x}{\sin^5 x} dx = \int \frac{1 - \sin^2 x}{\sin^5 x} d(\sin x)$

$$t = \sin x$$

$$= \int \left(\frac{1}{t^5} - \frac{1}{t^3}\right) dt$$

(1)
$$I = \int \sin^5 x \cos^3 x dx = \int \sin^5 x (1 - \sin^2 x) d(\sin x)$$

$$t = \sin x$$

$$= \frac{1}{6}\sin^6 x - \frac{1}{8}\sin^8 x + k$$
(2) $I = \int \frac{\cos^3 x}{\sin^5 x} dx = \int \frac{1 - \sin^2 x}{\sin^5 x} d(\sin x)$

$$t = \sin x$$

$$= \frac{1}{2t^2} - \frac{1}{4t^4} + k$$

(1)
$$I = \int \sin^5 x \cos^3 x dx = \int \sin^5 x (1 - \sin^2 x) d(\sin x)$$

$$t = \sin x$$

$$= \frac{1}{6}\sin^6 x - \frac{1}{8}\sin^8 x + k$$
(2) $I = \int \frac{\cos^3 x}{\sin^5 x} dx = \int \frac{1 - \sin^2 x}{\sin^5 x} d(\sin x)$

$$t = \sin x$$

$$= \frac{1}{2\sin^2 x} - \frac{1}{4\sin^4 x} + k$$

Methode IV: halverings-en verdubbelingsformules

$$(1) I = \int \sin^4 x dx$$

$$(1) I = \int \sin^4 x dx = \int (\sin^2 x)^2 dx$$

(1)
$$I = \int \sin^4 x dx = \int \left(\frac{1 - \cos 2x}{2}\right)^2 dx$$

(1)
$$I = \int \sin^4 x dx = \frac{1}{4} \int (1 - \cos 2x)^2 dx$$

(1)
$$I = \int \sin^4 x dx = \frac{1}{4} \int (1 - 2\cos 2x + \cos^2 2x) dx$$

(1)
$$I = \int \sin^4 x dx = \frac{1}{4} \int \left(1 - 2\cos 2x + \left(\frac{1 + \cos 4x}{2} \right) \right) dx$$

(1)
$$I = \int \sin^4 x dx = \frac{1}{4} \int \left(1 - 2\cos 2x + \frac{1}{2} + \frac{1}{2}\cos 4x \right) dx$$

(1)
$$I = \int \sin^4 x dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{1}{2}\cos 4x\right) dx$$

(1)
$$I = \int \sin^4 x dx = \int \frac{3}{8} dx - \frac{1}{2} \int \cos 2x dx + \frac{1}{8} \int \cos 4x dx$$

(1)
$$I = \int \sin^4 x dx = \frac{3x}{8} - \frac{1}{4} \sin 2x + \frac{1}{32} \sin 4x + k$$

(1)
$$I = \int \sin^4 x dx = \frac{3x}{8} - \frac{1}{4} \sin 2x + \frac{1}{32} \sin 4x + k$$

$$(2) I = \int \sin^2 x \cos^4 x dx$$

(1)
$$I = \int \sin^4 x dx = \frac{3x}{8} - \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + k$$

(2)
$$I = \int \sin^2 x \cos^4 x dx = \int (\sin x \cos x)^2 \cos^2 x dx$$

(1)
$$I = \int \sin^4 x dx = \frac{3x}{8} - \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + k$$

(2)
$$I = \int \sin^2 x \cos^4 x dx = \int \left(\frac{1}{2}\sin 2x\right)^2 \cos^2 x dx$$

(1)
$$I = \int \sin^4 x dx = \frac{3x}{8} - \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + k$$

(2)
$$I = \int \sin^2 x \cos^4 x dx = \frac{1}{4} \int \sin^2 2x \cos^2 x dx$$

(1)
$$I = \int \sin^4 x dx = \frac{3x}{8} - \frac{1}{4} \sin 2x + \frac{1}{32} \sin 4x + k$$

(2)
$$I = \int \sin^2 x \cos^4 x dx = \frac{1}{4} \int \frac{1 - \cos 4x}{2} \frac{1 + \cos 2x}{2} dx$$

(1)
$$I = \int \sin^4 x dx = \frac{3x}{8} - \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + k$$

(2)
$$I = \int \sin^2 x \cos^4 x dx = \frac{1}{16} \int (1 - \cos 4x) (1 + \cos 2x) dx$$

(1)
$$I = \int \sin^4 x dx = \frac{3x}{8} - \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + k$$

(2)
$$I = \int \sin^2 x \cos^4 x dx = \frac{1}{16} \int (1 + \cos 2x - \cos 4x - \cos 4x \cos 2x) dx$$

(1)
$$I = \int \sin^4 x dx = \frac{3x}{8} - \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + k$$

(2)
$$I = \int \sin^2 x \cos^4 x dx = \frac{1}{16} \int dx + \frac{1}{16} \int \cos 2x dx - \frac{1}{16} \int \cos 4x dx - \frac{1}{16} \int \cos 4x \cos 2x dx$$

(1)
$$I = \int \sin^4 x dx = \frac{3x}{8} - \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + k$$

(2)
$$I = \int \sin^2 x \cos^4 x dx = \frac{1}{16} \int dx + \frac{1}{16} \int \cos 2x dx - \frac{1}{16} \int \cos 4x dx - \frac{1}{16} \int \frac{1}{2} (\cos 6x + \cos 2x) dx$$

(1)
$$I = \int \sin^4 x dx = \frac{3x}{8} - \frac{1}{4} \sin 2x + \frac{1}{32} \sin 4x + k$$

(2)
$$I = \int \sin^2 x \cos^4 x dx = \frac{1}{16} \int dx + \frac{1}{16} \int \cos 2x dx - \frac{1}{16} \int \cos 4x dx - \frac{1}{32} \int \cos 6x dx - \frac{1}{32} \int \cos 2x dx$$

(1)
$$I = \int \sin^4 x dx = \frac{3x}{8} - \frac{1}{4} \sin 2x + \frac{1}{32} \sin 4x + k$$

(2)
$$I = \int \sin^2 x \cos^4 x dx = \frac{1}{16} \int dx + \frac{1}{32} \int \cos 2x dx - \frac{1}{16} \int \cos 4x dx - \frac{1}{32} \int \cos 6x dx$$

(1)
$$I = \int \sin^4 x dx = \frac{3x}{8} - \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + k$$

(2)
$$I = \int \sin^2 x \cos^4 x dx = \frac{x}{16} + \frac{1}{64} \sin 2x - \frac{1}{64} \sin 4x - \frac{1}{192} \sin 6x + k$$

Voorbeelden:
(1)
$$T_n = \int \operatorname{tg}^n x dx$$

(1)
$$T_n = \int \operatorname{tg}^n x dx = \int \operatorname{tg}^{n-2} x \operatorname{tg}^2 x dx$$

(1)
$$T_n = \int tg^n x dx = \int tg^{n-2} x (1 + tg^2 x - 1) dx$$

(1)
$$T_n = \int \operatorname{tg}^n x dx = \int \operatorname{tg}^{n-2} x \left(1 + \operatorname{tg}^2 x\right) dx - \int \operatorname{tg}^{n-2} x dx$$

(1)
$$T_n = \int \operatorname{tg}^n x dx = \int \operatorname{tg}^{n-2} x d(\operatorname{tg} x) - \int \operatorname{tg}^{n-2} x dx$$

(1)
$$T_n = \int tg^n x dx = \frac{tg^{n-1} x}{n-1} - T_{n-2}$$

Voorbeelden:

$$T_4 = \int \operatorname{tg}^4 x dx$$

$$T_n = \frac{\lg^{n-1} x}{n-1} - T_{n-2}$$

Voorbeelden:

$$T_n = \frac{\lg^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int tg^4 x dx = \frac{1}{3} tg^3 x - \int tg^2 x dx$$

Voorbeelden:

$$T_n = \frac{\lg^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + \int dx$$

Voorbeelden:

$$T_n = \frac{\lg^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

Voorbeelden:

$$T_n = \frac{\operatorname{tg}^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

(2)
$$S_{m,n} = \int \sin^m x \cos^n x dx$$
 met $m + n \neq 0$

Voorbeelden:

$$T_n = \frac{\lg^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

(2)
$$S_{m,n} = \int \sin^m x \cos^n x dx$$
 met $m + n \neq 0$

$$= \int \sin^m x \cos^{n-1} x \cos x dx$$

Voorbeelden:

$$T_n = \frac{\lg^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

(2)
$$S_{m,n} = \int \sin^m x \cos^n x dx$$
 met $m + n \neq 0$
= $\int \sin^m x \cos^{n-1} x d(\sin x)$

Voorbeelden:

$$T_n = \frac{\lg^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

(2)
$$S_{m,n} = \int \sin^m x \cos^n x dx$$
 met $m + n \neq 0$
= $\frac{1}{m+1} \int \cos^{n-1} x d \left(\sin^{m+1} x \right)$

Voorbeelden:

$$T_n = \frac{\operatorname{tg}^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

(2)
$$S_{m,n} = \int \sin^m x \cos^n x dx \text{ met } m + n \neq 0$$

= $\frac{1}{m+1} \left[\sin^{m+1} x \cos^{n-1} x - \int \sin^{m+1} x d \left(\cos^{n-1} x \right) \right]$

Voorbeelden:

$$T_n = \frac{\operatorname{tg}^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

(2)
$$S_{m,n} = \int \sin^m x \cos^n x dx \text{ met } m + n \neq 0$$

= $\frac{1}{m+1} \left[\sin^{m+1} x \cos^{n-1} x - (n-1) \int \sin^{m+1} x \cos^{n-2} x d(\cos x) \right]$

Voorbeelden:

$$T_n = \frac{\operatorname{tg}^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

(2)
$$S_{m,n} = \int \sin^m x \cos^n x dx$$
 met $m + n \neq 0$
= $\frac{1}{m+1} \left[\sin^{m+1} x \cos^{n-1} x - (n-1) \int \sin^{m+1} x \cos^{n-2} x (-\sin x) dx \right]$

Voorbeelden:

$$T_n = \frac{\operatorname{tg}^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

(2)
$$S_{m,n} = \int \sin^m x \cos^n x dx \text{ met } m + n \neq 0$$

= $\frac{1}{m+1} \left[\sin^{m+1} x \cos^{n-1} x + (n-1) \int \sin^{m+2} x \cos^{n-2} x dx \right]$

Voorbeelden:

$$T_n = \frac{\operatorname{tg}^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

(2)
$$S_{m,n} = \int \sin^m x \cos^n x dx$$
 met $m + n \neq 0$
= $\frac{1}{m+1} \left[\sin^{m+1} x \cos^{n-1} x + (n-1) \int \sin^m x \sin^2 x \cos^{n-2} x dx \right]$

Voorbeelden:

$$T_n = \frac{\operatorname{tg}^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

(2)
$$S_{m,n} = \int \sin^m x \cos^n x dx \text{ met } m + n \neq 0$$

= $\frac{1}{m+1} \left[\sin^{m+1} x \cos^{n-1} x + (n-1) \int \sin^m x \left(1 - \cos^2 x \right) \cos^{n-2} x dx \right]$

Voorbeelden:

$$T_n = \frac{\operatorname{tg}^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

(2)
$$S_{m,n} = \int \sin^m x \cos^n x dx$$
 met $m + n \neq 0$

$$= \frac{1}{m+1} \left[\sin^{m+1} x \cos^{n-1} x + (n-1) \int \sin^m x \cos^{n-2} x dx - (n-1) \int \sin^m x \cos^n x dx \right]$$

Voorbeelden:

$$T_n = \frac{\lg^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

(2)
$$S_{m,n} = \int \sin^m x \cos^n x dx$$
 met $m + n \neq 0$

$$= \frac{1}{m+1} \left[\sin^{m+1} x \cos^{n-1} x + (n-1) \left(S_{m,n-2} - S_{m,n} \right) \right]$$

Voorbeelden:

$$T_n = \frac{\operatorname{tg}^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

(2)
$$S_{m,n} = \int \sin^m x \cos^n x dx$$
 met $m + n \neq 0$

$$\Rightarrow S_{m,n} = \frac{1}{m+1} \sin^{m+1} x \cos^{n-1} x + \frac{n-1}{m+1} (S_{m,n-2} - S_{m,n})$$

Voorbeelden:

$$T_n = \frac{\lg^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

(2)
$$S_{m,n} = \int \sin^m x \cos^n x dx$$
 met $m + n \neq 0$
 $\Rightarrow (m+1) S_{m,n} = \sin^{m+1} x \cos^{n-1} x + (n-1) (S_{m,n-2} - S_{m,n})$

Voorbeelden:

$$T_n = \frac{\lg^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

(2)
$$S_{m,n} = \int \sin^m x \cos^n x dx$$
 met $m + n \neq 0$
 $\Rightarrow (m+1) S_{m,n} = \sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} + (1-n) S_{m,n}$

Voorbeelden:

$$T_n = \frac{\lg^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

(2)
$$S_{m,n} = \int \sin^m x \cos^n x dx$$
 met $m + n \neq 0$

$$\Rightarrow (m+1-1+n) S_{m,n} = \sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2}$$

Voorbeelden:

$$T_n = \frac{\lg^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

(2)
$$S_{m,n} = \int \sin^m x \cos^n x dx$$
 met $m + n \neq 0$
 $\Rightarrow (m+n) S_{m,n} = \sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2}$

Voorbeelden:

$$T_n = \frac{\operatorname{tg}^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

(2)
$$S_{m,n} = \int \sin^m x \cos^n x dx$$
 met $m + n \neq 0$

$$\Rightarrow S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

Voorbeelden:

(1)

$$T_n = \frac{\operatorname{tg}^{n-1} x}{n-1} - T_{n-2}$$

$$T_4 = \int \operatorname{tg}^4 x dx = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x + k$$

(2)
$$S_{m,n} = \int \sin^m x \cos^n x dx$$
 met $m + n \neq 0$

$$\Rightarrow S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

Analoog:

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(a)
$$S_{2,-3} = \int \sin^2 x \cos^{-3} x dx$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(a)
$$S_{2,-3} = \int \sin^2 x \cos^{-3} x dx = \frac{1}{-1} \left(-\sin x \cos^{-2} x + \int \cos^{-3} x dx \right)$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(a)
$$S_{2,-3} = \int \sin^2 x \cos^{-3} x dx = \sin x \cos^{-2} x - S_{0,-3}$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(a)
$$S_{2,-3} = \int \sin^2 x \cos^{-3} x dx = \sin x \cos^{-2} x - \int \cos^{-3} x dx$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(a)
$$S_{2,-3} = \int \sin^2 x \cos^{-3} x dx = \sin x \cos^{-2} x - \int (\sin^2 x + \cos^2 x) \cos^{-3} x dx$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(a)
$$S_{2,-3} = \int \sin^2 x \cos^{-3} x dx = \sin x \cos^{-2} x - \int \sin^2 x \cos^{-3} x dx - \int \cos^2 x \cos^{-3} x dx$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(a)
$$S_{2,-3} = \int \sin^2 x \cos^{-3} x dx = \sin x \cos^{-2} x - S_{2,-3} - \int \cos^{-1} x dx$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(a)
$$2S_{2,-3} = \sin x \cos^{-2} x - \int \frac{dx}{\cos x}$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

Voorbeelden:
(a)
$$S_{2,-3} = \frac{1}{2} \sin x \cos^{-2} x - \frac{1}{2} \int \frac{dx}{\cos x}$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(a)
$$S_{2,-3} = \frac{1}{2}\sin x \cos^{-2} x - \frac{1}{2}\ln\left|\lg\left(\frac{x}{2} + \frac{\pi}{4}\right)\right| + k$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(a)
$$S_{2,-3} = \frac{1}{2}\sin x \cos^{-2} x - \frac{1}{2}\ln\left|\lg\left(\frac{x}{2} + \frac{\pi}{4}\right)\right| + k$$

(b)
$$S_{-1,-3} = \int \sin^{-1} x \cos^{-3} x dx$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(a)
$$S_{2,-3} = \frac{1}{2}\sin x \cos^{-2} x - \frac{1}{2}\ln\left|\operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right)\right| + k$$

(b)
$$S_{-1,-3} = \int \sin^{-1} x \cos^{-3} x dx = \int (\sin^2 x + \cos^2 x) \sin^{-1} x \cos^{-3} x dx$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(a)
$$S_{2,-3} = \frac{1}{2}\sin x \cos^{-2} x - \frac{1}{2}\ln\left|\operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right)\right| + k$$

(b)
$$S_{-1,-3} = \int \sin^{-1} x \cos^{-3} x dx = \int \sin^{2} x \sin^{-1} x \cos^{-3} x dx + \int \cos^{2} x \sin^{-1} x \cos^{-3} x dx$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(a)
$$S_{2,-3} = \frac{1}{2}\sin x \cos^{-2} x - \frac{1}{2}\ln\left|\lg\left(\frac{x}{2} + \frac{\pi}{4}\right)\right| + k$$

(b)
$$S_{-1,-3} = \int \sin^{-1} x \cos^{-3} x dx = \int \sin x \cos^{-3} x dx + \int \sin^{-1} x \cos^{-1} x dx$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(a)
$$S_{2,-3} = \frac{1}{2}\sin x \cos^{-2} x - \frac{1}{2}\ln\left|\lg\left(\frac{x}{2} + \frac{\pi}{4}\right)\right| + k$$

(b)
$$S_{-1,-3} = \int \sin^{-1} x \cos^{-3} x dx = -\int \cos^{-3} x d(\cos x) + \int (\sin^2 x + \cos^2 x) \sin^{-1} x \cos^{-1} x dx$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(a)
$$S_{2,-3} = \frac{1}{2}\sin x \cos^{-2} x - \frac{1}{2}\ln\left|\operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right)\right| + k$$

(b)
$$S_{-1,-3} = \int \sin^{-1} x \cos^{-3} x dx = \frac{1}{2} \cos^{-2} x + \int \sin^{2} x \sin^{-1} x \cos^{-1} x dx + \int \cos^{2} x \sin^{-1} x \cos^{-1} x dx$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(a)
$$S_{2,-3} = \frac{1}{2}\sin x \cos^{-2} x - \frac{1}{2}\ln\left|\operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right)\right| + k$$

(b) $S_{-1,-3} = \int \sin^{-1} x \cos^{-3} x dx = \frac{1}{2}\cos^{-2} x + \int \sin x \cos^{-1} x dx + \int \cos x \sin^{-1} x dx$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(a)
$$S_{2,-3} = \frac{1}{2}\sin x \cos^{-2} x - \frac{1}{2}\ln\left|\operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right)\right| + k$$

(b) $S_{-1,-2} = \int \sin^{-1} x \cos^{-3} x dx - \frac{1}{2}\cos^{-2} x + \int \operatorname{tg} x dx + \int \operatorname{tg} x dx$

(b)
$$S_{-1,-3} = \int \sin^{-1} x \cos^{-3} x dx = \frac{1}{2} \cos^{-2} x + \int \operatorname{tg} x dx + \int \cot x dx$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(a)
$$S_{2,-3} = \frac{1}{2}\sin x \cos^{-2} x - \frac{1}{2}\ln\left|\lg\left(\frac{x}{2} + \frac{\pi}{4}\right)\right| + k$$

(b)
$$S_{-1,-3} = \int \sin^{-1} x \cos^{-3} x dx = \frac{1}{2} \cos^{-2} x - \ln|\cos x| + \ln|\sin x| + k$$

(2)

$$S_{m,n} = \frac{1}{m+n} \left(\sin^{m+1} x \cos^{n-1} x + (n-1) S_{m,n-2} \right)$$

$$S_{m,n} = \frac{1}{m+n} \left(-\sin^{m-1} x \cos^{n+1} x + (m-1) S_{m-2,n} \right)$$

(a)
$$S_{2,-3} = \frac{1}{2}\sin x \cos^{-2} x - \frac{1}{2}\ln\left|\lg\left(\frac{x}{2} + \frac{\pi}{4}\right)\right| + k$$

(b)
$$S_{-1,-3} = \int \sin^{-1} x \cos^{-3} x dx = \frac{1}{2} \cos^{-2} x + \ln|\operatorname{tg} x| + k$$

Integralen van derde klasse = irrationaal samengestelde functies

- = irrationaal samengestelde functies
- $\Rightarrow 4$ mogelijkheden

- = irrationaal samengestelde functies
- $\Rightarrow 4$ mogelijkheden
- Naar klasse I met $\sqrt{ax+b}=t$

- = irrationaal samengestelde functies
- $\Rightarrow 4$ mogelijkheden
- Naar klasse I met $\sqrt{ax+b}=t$
- Naar klasse I met $\sqrt{ax^2 + bx + c} = \sqrt{a}x + t$

- = irrationaal samengestelde functies
- $\Rightarrow 4$ mogelijkheden
- Naar klasse I met $\sqrt{ax+b}=t$
- Naar klasse I met $\sqrt{ax^2 + bx + c} = \sqrt{a}x + t$
- Naar klasse I met $\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$

- = irrationaal samengestelde functies
- $\Rightarrow 4$ mogelijkheden
- Naar klasse I met $\sqrt{ax+b}=t$
- Naar klasse I met $\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$
- Naar klasse I met $\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$
- Naar klasse II met (hyper)goniometrie

Methode I: substitutie $\sqrt{ax+b}=t$

$$\sqrt{ax+b} = t$$

Methode I: substitutie
$$\sqrt{ax+b}=t$$
 voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax+b}$

Methode I: substitutie
$$\sqrt{ax+b}=t$$
 voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax+b}$ \Rightarrow Klasse I

Methode I: substitutie $\sqrt{ax+b}=t$ voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax+b}$ \Rightarrow Klasse I

Voorbeelden: (1)
$$I = \int \frac{dx}{x\sqrt{x-1}}$$

Methode I: substitutie
$$\sqrt{ax+b}=t$$
 voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax+b}$ \Rightarrow Klasse I

Voorbeelden: (1)
$$I = \int \frac{dx}{x\sqrt{x-1}}$$

$$t = \sqrt{x-1}$$

Methode I: substitutie
$$\sqrt{ax+b}=t$$
 voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax+b}$ \Rightarrow Klasse I

Voorbeelden: (1)
$$I = \int \frac{dx}{x\sqrt{x-1}}$$

$$t = \sqrt{x - 1} \Rightarrow x = t^2 + 1$$

Methode I: substitutie
$$\sqrt{ax+b}=t$$
 voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax+b}$ \Rightarrow Klasse I

$$(1) I = \int \frac{dx}{x\sqrt{x-1}}$$

$$t = \sqrt{x - 1} \Rightarrow x = t^2 + 1$$
$$dx = 2tdt$$

Methode I: substitutie $\sqrt{ax+b}=t$ voor $\int f(x,y) dx$ met $y=\sqrt{ax+b}$

 \Rightarrow Klasse I

Voorbeelden: (1)
$$I = \int \frac{dx}{x\sqrt{x-1}}$$

$$t = \sqrt{x - 1} \Rightarrow x = t^2 + 1$$
$$dx = 2tdt$$

$$= \int \frac{2tdt}{(t^2+1)t}$$

Methode I: substitutie $\sqrt{ax+b}=t$ voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax+b}$ \Rightarrow Klasse I

$$(1) I = \int \frac{dx}{x\sqrt{x-1}}$$

$$t = \sqrt{x - 1} \Rightarrow x = t^2 + 1$$
$$dx = 2tdt$$

$$=2\int \frac{dt}{(t^2+1)}$$

Methode I: substitutie $\sqrt{ax+b}=t$ voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax+b}$

 \Rightarrow Klasse I

Voorbeelden: (1)
$$I = \int \frac{dx}{x\sqrt{x-1}}$$

$$t = \sqrt{x - 1} \Rightarrow x = t^2 + 1$$
$$dx = 2tdt$$

$$= 2 \operatorname{Bgtg} t + k$$

Voorbeelden: (1)
$$I = \int \frac{dx}{x\sqrt{x-1}}$$

$$t = \sqrt{x - 1} \Rightarrow x = t^2 + 1$$
$$dx = 2tdt$$

$$= 2 \operatorname{Bgtg} \sqrt{x-1} + k$$

$$(1) I = \int \frac{dx}{x\sqrt{x-1}}$$

$$t = \sqrt{x - 1} \Rightarrow x = t^2 + 1$$
$$dx = 2tdt$$

$$= 2 \operatorname{Bgtg} \sqrt{x - 1} + k$$
(2)
$$I = \int x\sqrt{x + 3} dx$$

$$(1) I = \int \frac{dx}{x\sqrt{x-1}}$$

$$t = \sqrt{x - 1} \Rightarrow x = t^2 + 1$$
$$dx = 2tdt$$

$$= 2 \operatorname{Bgtg} \sqrt{x - 1} + k$$
(2)
$$I = \int x\sqrt{x + 3} dx$$

$$t = \sqrt{x+3}$$

$$(1) I = \int \frac{dx}{x\sqrt{x-1}}$$

$$t = \sqrt{x - 1} \Rightarrow x = t^2 + 1$$
$$dx = 2tdt$$

$$= 2 \operatorname{Bgtg} \sqrt{x - 1} + k$$
(2)
$$I = \int x\sqrt{x + 3} dx$$

$$t = \sqrt{x+3} \Rightarrow x = t^2 - 3$$

$$(1) I = \int \frac{dx}{x\sqrt{x-1}}$$

$$t = \sqrt{x - 1} \Rightarrow x = t^2 + 1$$
$$dx = 2tdt$$

$$= 2 \operatorname{Bgtg} \sqrt{x - 1} + k$$
(2)
$$I = \int x\sqrt{x + 3} dx$$

$$t = \sqrt{x+3} \Rightarrow x = t^2 - 3$$
$$dx = 2tdt$$

$$(1) I = \int \frac{dx}{x\sqrt{x-1}}$$

$$t = \sqrt{x - 1} \Rightarrow x = t^2 + 1$$
$$dx = 2tdt$$

$$= 2 \operatorname{Bgtg} \sqrt{x - 1} + k$$

$$(2) I = \int x\sqrt{x + 3} dx$$

$$t = \sqrt{x+3} \Rightarrow x = t^2 - 3$$
$$dx = 2tdt$$

$$= \int (t^2 - 3) t 2t dt$$

$$(1) I = \int \frac{dx}{x\sqrt{x-1}}$$

$$t = \sqrt{x - 1} \Rightarrow x = t^2 + 1$$
$$dx = 2tdt$$

$$= 2 \operatorname{Bgtg} \sqrt{x-1} + k$$

$$(2) I = \int x\sqrt{x+3}dx$$

$$t = \sqrt{x+3} \Rightarrow x = t^2 - 3$$
$$dx = 2tdt$$

$$= \int \left(2t^4 - 6t^2\right) dt$$

$$(1) I = \int \frac{dx}{x\sqrt{x-1}}$$

$$t = \sqrt{x - 1} \Rightarrow x = t^2 + 1$$
$$dx = 2tdt$$

$$= 2 \operatorname{Bgtg} \sqrt{x - 1} + k$$
(2)
$$I = \int x\sqrt{x + 3} dx$$

$$t = \sqrt{x+3} \Rightarrow x = t^2 - 3$$
$$dx = 2tdt$$

$$= \frac{2t^5}{5} - 2t^3 + k$$

$$(1) I = \int \frac{dx}{x\sqrt{x-1}}$$

$$t = \sqrt{x - 1} \Rightarrow x = t^2 + 1$$
$$dx = 2tdt$$

$$= 2 \operatorname{Bgtg} \sqrt{x - 1} + k$$
(2)
$$I = \int x\sqrt{x + 3} dx$$

$$t = \sqrt{x+3} \Rightarrow x = t^2 - 3$$
$$dx = 2tdt$$

$$= \frac{2\sqrt{(x+3)^5}}{5} - 2\sqrt{(x+3)^3} + k$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$

Methode II: substitutie
$$\sqrt{ax^2+bx+c}=\sqrt{a}x+t$$
 voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax^2+bx+c},\,a>0$

Methode II: substitutie
$$\sqrt{ax^2+bx+c}=\sqrt{a}x+t$$
 voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax^2+bx+c},\,a>0$

$$\Rightarrow ax^2 + bx + c = (\sqrt{ax} + t)^2$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$

$$met \ y = \sqrt{ax^2 + bx + c}, \ a > 0$$

$$\Rightarrow ax^2 + bx + c = \left(\sqrt{ax} + t\right)^2 = ax^2 + 2\sqrt{ax}t + t^2$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$

$$met \ y = \sqrt{ax^2 + bx + c}, \ a > 0$$

$$\Rightarrow ax^2 + bx + c = (\sqrt{a}x + t)^2 = ax^2 + 2\sqrt{a}xt + t^2$$
$$\Rightarrow bx + c = 2\sqrt{a}xt + t^2$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$

$$met \ y = \sqrt{ax^2 + bx + c}, \ a > 0$$

$$\Rightarrow ax^{2} + bx + c = (\sqrt{a}x + t)^{2} = ax^{2} + 2\sqrt{a}xt + t^{2}$$

$$\Rightarrow ax^{2} + bx + c = (\sqrt{a}x + t)^{2} = ax^{2} + 2\sqrt{a}xt + t^{2}$$

$$\Rightarrow bx + c = 2\sqrt{a}xt + t^{2} \Rightarrow x = \frac{c - t^{2}}{2\sqrt{a}t - b}$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$

 $met \ y = \sqrt{ax^2 + bx + c}, \ a > 0$

$$\Rightarrow ax^2 + bx + c = (\sqrt{a}x + t)^2 = ax^2 + 2\sqrt{a}xt + t^2$$

$$\Rightarrow ax^{2} + bx + c = (\sqrt{ax} + t)^{2} = ax^{2} + 2\sqrt{ax}t + t^{2}$$

$$\Rightarrow bx + c = 2\sqrt{ax}t + t^{2} \Rightarrow x = \frac{c - t^{2}}{2\sqrt{at} - b}$$

⇒ Klasse I

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$

 $met y = \sqrt{ax^2 + bx + c}, a > 0$

$$\Rightarrow ax^2 + bx + c = (\sqrt{ax} + t)^2 = ax^2 + 2\sqrt{ax}t + t^2$$

$$\Rightarrow ax^{2} + bx + c = (\sqrt{ax} + t)^{2} = ax^{2} + 2\sqrt{ax}t + t^{2}$$

$$\Rightarrow bx + c = 2\sqrt{ax}t + t^{2} \Rightarrow x = \frac{c - t^{2}}{2\sqrt{at} - b}$$

⇒ Klasse I

(1)
$$I = \int \frac{dx}{1 + \sqrt{4x^2 + 1}}$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$

 $met y = \sqrt{ax^2 + bx + c}, a > 0$

$$\Rightarrow ax^2 + bx + c = (\sqrt{a}x + t)^2 = ax^2 + 2\sqrt{a}xt + t^2$$

$$\Rightarrow ax^{2} + bx + c = (\sqrt{a}x + t)^{2} = ax^{2} + 2\sqrt{a}xt + t^{2}$$

$$\Rightarrow bx + c = 2\sqrt{a}xt + t^{2} \Rightarrow x = \frac{c - t^{2}}{2\sqrt{a}t - b}$$

⇒ Klasse I

(1)
$$I = \int \frac{dx}{1 + \sqrt{4x^2 + 1}}$$

 $\sqrt{4x^2 + 1} = 2x + t$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$ met $y = \sqrt{ax^2 + bx + c}$, $a > 0$

$$\Rightarrow ax^{2} + bx + c = (\sqrt{a}x + t)^{2} = ax^{2} + 2\sqrt{a}xt + t^{2}$$

$$\Rightarrow bx + c = 2\sqrt{a}xt + t^{2} \Rightarrow x = \frac{c - t^{2}}{2\sqrt{a}t - b}$$

(1)
$$I = \int \frac{dx}{1 + \sqrt{4x^2 + 1}}$$

 $\sqrt{4x^2 + 1} = 2x + t \Rightarrow 4x^2 + 1 = 4x^2 + 4tx + t^2$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$ met $y = \sqrt{ax^2 + bx + c}$, $a > 0$

$$\Rightarrow ax^{2} + bx + c = (\sqrt{a}x + t)^{2} = ax^{2} + 2\sqrt{a}xt + t^{2}$$

$$\Rightarrow bx + c = 2\sqrt{a}xt + t^{2} \Rightarrow x = \frac{c - t^{2}}{2\sqrt{a}t - b}$$

(1)
$$I = \int \frac{dx}{1 + \sqrt{4x^2 + 1}}$$

 $\sqrt{4x^2 + 1} = 2x + t \Rightarrow 4x^2 + 1 = 4x^2 + 4tx + t^2 \Rightarrow x = \frac{-t^2 + 1}{4t}$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$ met $y = \sqrt{ax^2 + bx + c}$, $a > 0$

$$\Rightarrow ax^{2} + bx + c = (\sqrt{a}x + t)^{2} = ax^{2} + 2\sqrt{a}xt + t^{2}$$

$$\Rightarrow bx + c = 2\sqrt{a}xt + t^{2} \Rightarrow x = \frac{c - t^{2}}{2\sqrt{a}t - b}$$

(1)
$$I = \int \frac{dx}{1 + \sqrt{4x^2 + 1}}$$

 $\sqrt{4x^2 + 1} = 2x + t \Rightarrow 4x^2 + 1 = 4x^2 + 4tx + t^2 \Rightarrow x = \frac{-t^2 + 1}{4t}$
 $\Rightarrow dx = \frac{-t^2 - 1}{4t^2}dt$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$ met $y = \sqrt{ax^2 + bx + c}$, $a > 0$

$$\Rightarrow ax^{2} + bx + c = (\sqrt{a}x + t)^{2} = ax^{2} + 2\sqrt{a}xt + t^{2}$$
$$\Rightarrow bx + c = 2\sqrt{a}xt + t^{2} \Rightarrow x = \frac{c - t^{2}}{2\sqrt{a}t - b}$$

(1)
$$I = \int \frac{dx}{1 + \sqrt{4x^2 + 1}}$$

 $\sqrt{4x^2 + 1} = 2x + t \Rightarrow 4x^2 + 1 = 4x^2 + 4tx + t^2 \Rightarrow x = \frac{-t^2 + 1}{4t}$
 $\Rightarrow dx = \frac{-t^2 - 1}{4t^2} dt$
 $\Rightarrow \sqrt{4x^2 + 1} = 2\frac{-t^2 + 1}{4t} + t = \frac{t^2 + 1}{2t}$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$ met $y = \sqrt{ax^2 + bx + c}$, $a > 0$

$$\Rightarrow ax^{2} + bx + c = (\sqrt{ax} + t)^{2} = ax^{2} + 2\sqrt{ax}t + t^{2}$$

$$\Rightarrow bx + c = 2\sqrt{ax}t + t^{2} \Rightarrow x = \frac{c - t^{2}}{2\sqrt{at} - b}$$

$$(1) I = \int \frac{dx}{1 + \sqrt{4x^2 + 1}} = \int \frac{\frac{-t^2 - 1}{4t^2}}{1 + \frac{t^2 + 1}{2t}}$$

$$\sqrt{4x^2 + 1} = 2x + t \Rightarrow 4x^2 + 1 = 4x^2 + 4tx + t^2 \Rightarrow x = \frac{-t^2 + 1}{4t}$$

$$\Rightarrow dx = \frac{-t^2 - 1}{4t^2}dt$$

$$\Rightarrow \sqrt{4x^2 + 1} = 2\frac{-t^2 + 1}{4t} + t = \frac{t^2 + 1}{2t}$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$ met $y = \sqrt{ax^2 + bx + c}$, $a > 0$

$$\Rightarrow ax^{2} + bx + c = (\sqrt{ax} + t)^{2} = ax^{2} + 2\sqrt{ax}t + t^{2}$$

$$\Rightarrow bx + c = 2\sqrt{ax}t + t^{2} \Rightarrow x = \frac{c - t^{2}}{2\sqrt{at} - b}$$

$$(1) I = \int \frac{dx}{1 + \sqrt{4x^2 + 1}} = -\frac{1}{2} \int \frac{t^2 + 1}{t(2t + t^2 + 1)} dt$$

$$\sqrt{4x^2 + 1} = 2x + t \Rightarrow 4x^2 + 1 = 4x^2 + 4tx + t^2 \Rightarrow x = \frac{-t^2 + 1}{4t}$$

$$\Rightarrow dx = \frac{-t^2 - 1}{4t^2} dt$$

$$\Rightarrow \sqrt{4x^2 + 1} = 2\frac{-t^2 + 1}{4t} + t = \frac{t^2 + 1}{2t}$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$ met $y = \sqrt{ax^2 + bx + c}$, $a > 0$

$$\Rightarrow ax^{2} + bx + c = (\sqrt{a}x + t)^{2} = ax^{2} + 2\sqrt{a}xt + t^{2}$$
$$\Rightarrow bx + c = 2\sqrt{a}xt + t^{2} \Rightarrow x = \frac{c - t^{2}}{2\sqrt{a}t - b}$$

(1)
$$I = \int \frac{dx}{1 + \sqrt{4x^2 + 1}} = -\int \frac{1}{2} \frac{t^2 + 1}{t(t+1)^2} dt$$

$$\sqrt{4x^2 + 1} = 2x + t \Rightarrow 4x^2 + 1 = 4x^2 + 4tx + t^2 \Rightarrow x = \frac{-t^2 + 1}{4t}$$

$$\Rightarrow dx = \frac{-t^2 - 1}{4t^2} dt$$

$$\Rightarrow \sqrt{4x^2 + 1} = 2\frac{-t^2 + 1}{4t} + t = \frac{t^2 + 1}{2t}$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$ met $y = \sqrt{ax^2 + bx + c}$, $a > 0$

$$\Rightarrow ax^{2} + bx + c = (\sqrt{ax} + t)^{2} = ax^{2} + 2\sqrt{ax}t + t^{2}$$

$$\Rightarrow bx + c = 2\sqrt{ax}t + t^{2} \Rightarrow x = \frac{c - t^{2}}{2\sqrt{at} - b}$$

(1)
$$I = \int \frac{dx}{1 + \sqrt{4x^2 + 1}} = \int \left(-\frac{1}{2t} + \frac{1}{(t+1)^2} \right) dt$$

$$\sqrt{4x^2 + 1} = 2x + t \Rightarrow 4x^2 + 1 = 4x^2 + 4tx + t^2 \Rightarrow x = \frac{-t^2 + 1}{4t}$$

$$\Rightarrow dx = \frac{-t^2 - 1}{4t^2} dt$$

$$\Rightarrow \sqrt{4x^2 + 1} = 2\frac{-t^2 + 1}{4t} + t = \frac{t^2 + 1}{2t}$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$ met $y = \sqrt{ax^2 + bx + c}$, $a > 0$

$$\Rightarrow ax^{2} + bx + c = (\sqrt{a}x + t)^{2} = ax^{2} + 2\sqrt{a}xt + t^{2}$$
$$\Rightarrow bx + c = 2\sqrt{a}xt + t^{2} \Rightarrow x = \frac{c - t^{2}}{2\sqrt{a}t - b}$$

(1)
$$I = \int \frac{dx}{1 + \sqrt{4x^2 + 1}} = -\frac{1}{2} \ln t - \frac{1}{t+1} + c$$

 $\sqrt{4x^2 + 1} = 2x + t \Rightarrow 4x^2 + 1 = 4x^2 + 4tx + t^2 \Rightarrow x = \frac{-t^2 + 1}{4t}$
 $\Rightarrow dx = \frac{-t^2 - 1}{4t^2} dt$
 $\Rightarrow \sqrt{4x^2 + 1} = 2\frac{-t^2 + 1}{4t} + t = \frac{t^2 + 1}{2t}$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$

$$met \ y = \sqrt{ax^2 + bx + c}, \ a > 0$$

$$\Rightarrow ax^{2} + bx + c = (\sqrt{ax} + t)^{2} = ax^{2} + 2\sqrt{ax}t + t^{2}$$

$$\Rightarrow bx + c = 2\sqrt{ax}t + t^{2} \Rightarrow x = \frac{c - t^{2}}{2\sqrt{a}t - b}$$

(1)
$$I = \int \frac{dx}{1 + \sqrt{4x^2 + 1}} = -\frac{1}{2} \ln t - \frac{1}{t+1} + c$$

 $\sqrt{4x^2 + 1} = 2x + t \Rightarrow t = \sqrt{4x^2 + 1} - 2x$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$ met $y = \sqrt{ax^2 + bx + c}$, $a > 0$

$$\Rightarrow ax^{2} + bx + c = (\sqrt{ax} + t)^{2} = ax^{2} + 2\sqrt{ax}t + t^{2}$$

$$\Rightarrow bx + c = 2\sqrt{ax}t + t^{2} \Rightarrow x = \frac{c - t^{2}}{2\sqrt{a}t - b}$$

$$(1) I = \int \frac{dx}{1 + \sqrt{4x^2 + 1}} = -\frac{1}{2} \ln \left| \sqrt{4x^2 + 1} - 2x \right| - \frac{1}{\sqrt{4x^2 + 1} - 2x + 1} + c$$

$$\sqrt{4x^2 + 1} = 2x + t \Rightarrow t = \sqrt{4x^2 + 1} - 2x$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$

(2)
$$I = \int \sqrt{x^2 - 3x + 2} dx$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$

(2)
$$I = \int \sqrt{x^2 - 3x + 2} dx$$

 $\sqrt{x^2 - 3x + 2} = x + t$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$

(2)
$$I = \int \sqrt{x^2 - 3x + 2} dx$$

$$\sqrt{x^2 - 3x + 2} = x + t \Rightarrow x^2 - 3x + 2 = x^2 + 2tx + t^2 \Rightarrow x = \frac{-t^2 + 2}{2t + 3}$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$

(2)
$$I = \int \sqrt{x^2 - 3x + 2} dx$$

$$\sqrt{x^2 - 3x + 2} = x + t \Rightarrow x^2 - 3x + 2 = x^2 + 2tx + t^2 \Rightarrow x = \frac{-t^2 + 2}{2t + 3}$$

$$\Rightarrow dx = -2\frac{t^2 + 3t + 2}{(2t + 3)^2}dt$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$

(2)
$$I = \int \sqrt{x^2 - 3x + 2} dx$$

$$\sqrt{x^2 - 3x + 2} = x + t \Rightarrow x^2 - 3x + 2 = x^2 + 2tx + t^2 \Rightarrow x = \frac{-t^2 + 2}{2t + 3}$$

$$\Rightarrow dx = -2\frac{t^2 + 3t + 2}{(2t + 3)^2}dt$$

$$\Rightarrow \sqrt{x^2 - 3x + 2} = \frac{-t^2 + 2}{2t + 3} + t = \frac{t^2 + 3t + 2}{2t + 3}$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$

(2)
$$I = \int \sqrt{x^2 - 3x + 2} dx$$

$$\sqrt{x^2 - 3x + 2} = x + t \Rightarrow x^2 - 3x + 2 = x^2 + 2tx + t^2 \Rightarrow x = \frac{-t^2 + 2}{2t + 3}$$

$$\Rightarrow dx = -2\frac{t^2 + 3t + 2}{(2t + 3)^2}dt$$

$$\Rightarrow \sqrt{x^2 - 3x + 2} = \frac{-t^2 + 2}{2t + 3} + t = \frac{t^2 + 3t + 2}{2t + 3}$$

$$=-2\int \frac{(t^2+3t+2)^2}{(2t+3)^3}dt$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$

(2)
$$I = \int \sqrt{x^2 - 3x + 2} dx$$

$$\sqrt{x^2 - 3x + 2} = x + t \Rightarrow x^2 - 3x + 2 = x^2 + 2tx + t^2 \Rightarrow x = \frac{-t^2 + 2}{2t + 3}$$

$$\Rightarrow dx = -2\frac{t^2 + 3t + 2}{(2t + 3)^2}dt$$

$$\Rightarrow \sqrt{x^2 - 3x + 2} = \frac{-t^2 + 2}{2t + 3} + t = \frac{t^2 + 3t + 2}{2t + 3}$$

$$= \int \frac{-2t^4 - 12t^3 - 26t^2 - 24t - 8}{8t^3 + 36t^2 + 54t + 27} dt$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$

(2)
$$I = \int \sqrt{x^2 - 3x + 2} dx$$

$$\sqrt{x^2 - 3x + 2} = x + t \Rightarrow x^2 - 3x + 2 = x^2 + 2tx + t^2 \Rightarrow x = \frac{-t^2 + 2}{2t + 3}$$

$$\Rightarrow dx = -2\frac{t^2 + 3t + 2}{(2t + 3)^2}dt$$

$$\Rightarrow \sqrt{x^2 - 3x + 2} = \frac{-t^2 + 2}{2t + 3} + t = \frac{t^2 + 3t + 2}{2t + 3}$$

$$= \int \left(-\frac{1}{4}t - \frac{3}{8} + \frac{8t^2 + 24t + 17}{8(2t+3)^3}\right) dt$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$

(2)
$$I = \int \sqrt{x^2 - 3x + 2} dx$$

$$\sqrt{x^2 - 3x + 2} = x + t \Rightarrow x^2 - 3x + 2 = x^2 + 2tx + t^2 \Rightarrow x = \frac{-t^2 + 2}{2t + 3}$$

$$\Rightarrow dx = -2\frac{t^2 + 3t + 2}{2t + 3}dt$$

$$\Rightarrow dx = -2\frac{t^2 + 3t + 2}{(2t+3)^2}dt$$

$$\Rightarrow \sqrt{x^2 - 3x + 2} = \frac{-t^2 + 2}{2t+3} + t = \frac{t^2 + 3t + 2}{2t+3}$$

$$= \int \left(-\frac{1}{4}t - \frac{3}{8} - \frac{1}{8(3+2t)^3} + \frac{1}{4(3+2t)} \right) dt$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$

(2)
$$I = \int \sqrt{x^2 - 3x + 2} dx$$

$$\sqrt{x^2 - 3x + 2} = x + t \Rightarrow x^2 - 3x + 2 = x^2 + 2tx + t^2 \Rightarrow x = \frac{-t^2 + 2}{2t + 3}$$

$$\Rightarrow dx = -2\frac{t^2 + 3t + 2}{(2t + 3)^2}dt$$

$$\Rightarrow \sqrt{x^2 - 3x + 2} = \frac{-t^2 + 2}{2t + 3} + t = \frac{t^2 + 3t + 2}{2t + 3}$$

$$= -\frac{1}{8}t^2 - \frac{3}{8}t + \frac{1}{32(2t+3)^2} + \frac{1}{8}\ln|2t+3| + c$$

Methode II: substitutie
$$\sqrt{ax^2 + bx + c} = \sqrt{ax + t}$$
 voor $\int f(x, y) dx$

(2)
$$I = \int \sqrt{x^2 - 3x + 2} dx$$

$$\sqrt{x^2 - 3x + 2} = x + t \Rightarrow x^2 - 3x + 2 = x^2 + 2tx + t^2 \Rightarrow x = \frac{-t^2 + 2}{2t + 3}$$

$$\Rightarrow dx = -2\frac{t^2 + 3t + 2}{(2t+3)^2}dt$$

$$\Rightarrow dx = -2\frac{t^2 + 3t + 2}{(2t+3)^2}dt$$

$$\Rightarrow \sqrt{x^2 - 3x + 2} = \frac{-t^2 + 2}{2t+3} + t = \frac{t^2 + 3t + 2}{2t+3}$$

$$= -\frac{1}{8} \left(\sqrt{x^2 - 3x + 2} - x \right)^2 - \frac{3}{8} \left(\sqrt{x^2 - 3x + 2} - x \right)$$

$$+ \frac{1}{32 \left(2\sqrt{x^2 - 3x + 2} - 2x + 3 \right)^2} + \frac{1}{8} \ln \left| 2\sqrt{x^2 - 3x + 2} - 2x + 3 \right| + c$$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax^2+bx+c}=\sqrt{a\left(x-p\right)\left(x-q\right)}$ $\Rightarrow a\left(x-p\right)\left(x-q\right)=\left(x-p\right)^2t^2$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$

$$\text{met } y = \sqrt{ax^2 + bx + c} = \sqrt{a\left(x - p\right)\left(x - q\right)}$$

$$\Rightarrow a(x-p)(x-q) = (x-p)^2 t^2$$

$$\Rightarrow a(x-q) = (x-p)t^2$$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$

$$\Rightarrow a(x-q) = (x-p)t^2$$

$$\Rightarrow x = \frac{pt^2 - aq}{t^2 - a}$$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$

$$\Rightarrow x = \frac{pt^2 - aq}{t^2 - a}$$

$$(1) I = \int \frac{dx}{\sqrt{(x-1)(x-4)}}$$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$

$$\Rightarrow x = \frac{pt^2 - aq}{t^2 - a}$$

(1)
$$I = \int \frac{dx}{\sqrt{(x-1)(x-4)}}$$

 $\sqrt{(x-1)(x-4)} = (x-1)t$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$

$$\Rightarrow x = \frac{pt^2 - aq}{t^2 - a}$$

(1)
$$I = \int \frac{dx}{\sqrt{(x-1)(x-4)}}$$

 $\sqrt{(x-1)(x-4)} = (x-1)t \Rightarrow x-4 = (x-1)t^2$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax^2+bx+c}=\sqrt{a\left(x-p\right)\left(x-q\right)}$ $\Rightarrow a\left(x-p\right)\left(x-q\right)=\left(x-p\right)^2t^2$

$$\Rightarrow a(x-p)(x-q) = (x-p)^{-1}$$

$$\Rightarrow a(x-q) = (x-p)t^2$$

$$\Rightarrow x = \frac{pt^2 - aq}{t^2 - a}$$

(1)
$$I = \int \frac{dx}{\sqrt{(x-1)(x-4)}}$$

 $\sqrt{(x-1)(x-4)} = (x-1)t \Rightarrow x-4 = (x-1)t^2$
 $x = \frac{t^2-4}{t^2-1} \Rightarrow x-1 = \frac{-3}{t^2-1}$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax^2+bx+c}=\sqrt{a\left(x-p\right)\left(x-q\right)}$ $\Rightarrow a\left(x-p\right)\left(x-q\right)=\left(x-p\right)^2t^2$

$$\Rightarrow a(x-p)(x-q) = (x-p)^2 t^2$$

$$\Rightarrow a(x-q) = (x-p)t^2$$

$$\Rightarrow x = \frac{pt^2 - aq}{t^2 - a}$$

 \Rightarrow Klasse

$$(1) I = \int \frac{dx}{\sqrt{(x-1)(x-4)}}$$

$$\sqrt{(x-1)(x-4)} = (x-1)t \Rightarrow x-4 = (x-1)t^{2}$$

$$x = \frac{t^{2}-4}{t^{2}-1} \Rightarrow x-1 = \frac{-3}{t^{2}-1}$$

$$\Rightarrow dx = \frac{6tdt}{(t^{2}-1)^{2}}$$

Methode III: substitutie
$$\sqrt{a(x-p)(x-q)} = (x-p)t$$
 voor $\int f(x,y) dx$

met
$$y = \sqrt{ax^2 + bx + c} = \sqrt{a(x - p)(x - q)}$$

 $\Rightarrow a(x - p)(x - q) = (x - p)^2 t^2$

$$\Rightarrow a(x-q) = (x-p)t^2$$

$$\Rightarrow x = \frac{pt^2 - aq}{t^2 - a}$$

(1)
$$I = \int \frac{dx}{\sqrt{(x-1)(x-4)}}$$

 $\sqrt{(x-1)(x-4)} = (x-1)t \Rightarrow x-4 = (x-1)t^2$
 $x = \frac{t^2-4}{t^2-1} \Rightarrow x-1 = \frac{-3}{t^2-1}$
 $\Rightarrow dx = \frac{6tdt}{(t^2-1)^2}$

$$= \int \frac{6tdt}{\frac{(t^2 - 1)^2}{-3}} \frac{1}{t^2 - 1} dt$$

Methode III: substitutie
$$\boxed{\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t} \text{ voor } \int f\left(x,y\right)dx$$
 met $y=\sqrt{ax^2+bx+c}=\sqrt{a\left(x-p\right)\left(x-q\right)}$

$$\Rightarrow a(x-p)(x-q) = (x-p)^2 t^2$$

$$\Rightarrow a(x-q) = (x-p)t^2$$

$$\Rightarrow x = \frac{pt^2 - aq}{t^2 - a}$$

(1)
$$I = \int \frac{dx}{\sqrt{(x-1)(x-4)}}$$

 $\sqrt{(x-1)(x-4)} = (x-1)t \Rightarrow x-4 = (x-1)t^2$
 $x = \frac{t^2-4}{t^2-1} \Rightarrow x-1 = \frac{-3}{t^2-1}$
 $\Rightarrow dx = \frac{6tdt}{(t^2-1)^2}$

$$= \int \frac{6tdt}{(t^2 - 1)}$$

Methode III: substitutie
$$\boxed{\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t} \text{ voor } \int f\left(x,y\right)dx$$
 met $y=\sqrt{ax^2+bx+c}=\sqrt{a\left(x-p\right)\left(x-q\right)}$

$$\Rightarrow a(x-p)(x-q) = (x-p)^2 t^2$$

$$\Rightarrow a(x-q) = (x-p)t^2$$

$$\Rightarrow x = \frac{pt^2 - aq}{t^2 - a}$$

$$(1) I = \int \frac{dx}{\sqrt{(x-1)(x-4)}}$$

$$\sqrt{(x-1)(x-4)} = (x-1)t \Rightarrow x-4 = (x-1)t^{2}$$

$$x = \frac{t^{2}-4}{t^{2}-1} \Rightarrow x-1 = \frac{-3}{t^{2}-1}$$

$$\Rightarrow dx = \frac{6tdt}{(t^{2}-1)^{2}}$$

$$= \int \frac{-2dt}{t^{2}-1}$$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax^2+bx+c}=\sqrt{a\left(x-p\right)\left(x-q\right)}$

$$\Rightarrow a(x-p)(x-q) = (x-p)^2 t^2$$

$$\Rightarrow a(x-q) = (x-p)t^2$$

$$\Rightarrow x = \frac{pt^2 - aq}{t^2 - a}$$

⇒ Klasse I

$$(1) I = \int \frac{dx}{\sqrt{(x-1)(x-4)}}$$

$$\sqrt{(x-1)(x-4)} = (x-1)t \Rightarrow x-4 = (x-1)t^{2}$$

$$x = \frac{t^{2}-4}{t^{2}-1} \Rightarrow x-1 = \frac{-3}{t^{2}-1}$$

$$\Rightarrow dx = \frac{6tdt}{(t^{2}-1)^{2}}$$

$$= \int \frac{dt}{t+1} - \int \frac{dt}{t-1}$$

$$\Rightarrow a(x-q) = (x-p)t^2$$

$$\Rightarrow x = \frac{pt^2 - aq}{t^2 - a}$$

$$(1) I = \int \frac{dx}{\sqrt{(x-1)(x-4)}}$$

$$\sqrt{(x-1)(x-4)} = (x-1)t \Rightarrow x-4 = (x-1)t^{2}$$

$$x = \frac{t^{2}-4}{t^{2}-1} \Rightarrow x-1 = \frac{-3}{t^{2}-1}$$

$$\Rightarrow dx = \frac{6tdt}{(t^{2}-1)^{2}}$$

$$= \ln|t+1| - \ln|t-1| + k$$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax^2+bx+c}=\sqrt{a\left(x-p\right)\left(x-q\right)}$

$$\Rightarrow a(x-p)(x-q) = (x-p)^2 t^2$$

$$\Rightarrow a(x-q) = (x-p)t^2$$

$$\Rightarrow x = \frac{pt^2 - aq}{t^2 - a}$$

(1)
$$I = \int \frac{dx}{\sqrt{(x-1)(x-4)}}$$

 $\sqrt{(x-1)(x-4)} = (x-1)t \Rightarrow x-4 = (x-1)t^2$
 $x = \frac{t^2-4}{t^2-1} \Rightarrow x-1 = \frac{-3}{t^2-1}$
 $\Rightarrow dx = \frac{6tdt}{(t^2-1)^2}$
 $= \ln\left|\frac{t+1}{t-1}\right| + k$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$

Voorbeelden:
$$(1) \ I = \int \frac{dx}{\sqrt{(x-1)(x-4)}} = \ln\left|\frac{t+1}{t-1}\right| + k$$

$$t = \frac{\sqrt{(x-1)(x-4)}}{x-1}$$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax^2+bx+c}=\sqrt{a\left(x-p\right)\left(x-q\right)}$ $\Rightarrow a\left(x-p\right)\left(x-q\right)=\left(x-p\right)^2t^2$

$$\Rightarrow a(x-p)(x-q) = (x-p)^2 t^2$$

$$\Rightarrow a(x-q) = (x-p)t^2$$

$$\Rightarrow x = \frac{pt^2 - aq}{t^2 - a}$$

(1)
$$I = \int \frac{dx}{\sqrt{(x-1)(x-4)}} = \ln\left|\frac{t+1}{t-1}\right| + k$$

$$t = \frac{\sqrt{(x-1)(x-4)}}{x-1} \Rightarrow \frac{t+1}{t-1} = \frac{\frac{\sqrt{(x-1)(x-4)}}{x-1} + 1}{\frac{\sqrt{(x-1)(x-4)}}{x-1} - 1}$$

Methode III: substitutie
$$\sqrt{a(x-p)(x-q)} = (x-p)t \text{ voor } \int f(x,y) \, dx$$
 met $y = \sqrt{ax^2 + bx + c} = \sqrt{a(x-p)(x-q)}$
$$\Rightarrow a(x-p)(x-q) = (x-p)^2 t^2$$

$$\Rightarrow a(x-q) = (x-p)t^2$$

$$\Rightarrow x = \frac{pt^2 - aq}{t^2 - a}$$

(1)
$$I = \int \frac{dx}{\sqrt{(x-1)(x-4)}} = \ln\left|\frac{t+1}{t-1}\right| + k$$

 $t = \frac{\sqrt{(x-1)(x-4)}}{x-1} \Rightarrow \frac{t+1}{t-1} = \frac{\sqrt{(x-1)(x-4)} + x - 1}{\sqrt{(x-1)(x-4)} - x + 1}$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax^2+bx+c}=\sqrt{a\left(x-p\right)\left(x-q\right)}$ $\Rightarrow a\left(x-p\right)\left(x-q\right)=\left(x-p\right)^2t^2$

$$\Rightarrow a(x-q) = (x-p)t^2$$

$$\Rightarrow x = \frac{pt^2 - aq}{t^2 - a}$$

(1)
$$I = \int \frac{dx}{\sqrt{(x-1)(x-4)}} = \ln\left|\frac{t+1}{t-1}\right| + k$$

$$t = \frac{\sqrt{(x-1)(x-4)}}{x-1} \Rightarrow \frac{t+1}{t-1} = \frac{\left(\sqrt{(x-1)(x-4)} + x - 1\right)^2}{\left(\sqrt{(x-1)(x-4)} - x + 1\right)\left(\sqrt{(x-1)(x-4)} + x - 1\right)}$$

(1)
$$I = \int \frac{dx}{\sqrt{(x-1)(x-4)}} = \ln\left|\frac{t+1}{t-1}\right| + k$$

 $t = \frac{\sqrt{(x-1)(x-4)}}{x-1} \Rightarrow \frac{t+1}{t-1} = \frac{(x-1)^2 + 2(x-1)\sqrt{(x-1)(x-4)} + (x-1)(x-4)}{(x-1)(x-4) - (x-1)^2}$

(1)
$$I = \int \frac{dx}{\sqrt{(x-1)(x-4)}} = \ln\left|\frac{t+1}{t-1}\right| + k$$

$$t = \frac{\sqrt{(x-1)(x-4)}}{x-1} \Rightarrow \frac{t+1}{t-1} = \frac{2x^2 - 7x + 5 + 2(x-1)\sqrt{(x-1)(x-4)}}{-3x+3}$$

(1)
$$I = \int \frac{dx}{\sqrt{(x-1)(x-4)}} = \ln\left|\frac{t+1}{t-1}\right| + k$$

 $t = \frac{\sqrt{(x-1)(x-4)}}{x-1} \Rightarrow \frac{t+1}{t-1} = \frac{(x-1)(2x-5) + 2(x-1)\sqrt{(x-1)(x-4)}}{-3(x-1)}$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)} = \left(x-p\right)t \text{ voor } \int f\left(x,y\right)dx$$
 met $y = \sqrt{ax^2 + bx + c} = \sqrt{a\left(x-p\right)\left(x-q\right)}$ $\Rightarrow a\left(x-p\right)\left(x-q\right) = \left(x-p\right)^2t^2$ $\Rightarrow a\left(x-q\right) = \left(x-p\right)t^2$ $\Rightarrow x = \frac{pt^2 - aq}{t^2 - a}$

(1)
$$I = \int \frac{dx}{\sqrt{(x-1)(x-4)}} = \ln\left|\frac{t+1}{t-1}\right| + k$$

$$t = \frac{\sqrt{(x-1)(x-4)}}{x-1} \Rightarrow \frac{t+1}{t-1} = \frac{(2x-5)+2\sqrt{(x-1)(x-4)}}{-3}$$

(1)
$$I = \int \frac{dx}{\sqrt{(x-1)(x-4)}} = \ln\left|\frac{t+1}{t-1}\right| + k$$

$$t = \frac{\sqrt{(x-1)(x-4)}}{x-1} \Rightarrow \left|\frac{t+1}{t-1}\right| = \left|\frac{(2x-5) + 2\sqrt{(x-1)(x-4)}}{-3}\right|$$

$$\begin{aligned} & \textbf{Methode III: substitutie} \ \boxed{\sqrt{a\left(x-p\right)\left(x-q\right)} = \left(x-p\right)t} \ \text{voor} \ \int f\left(x,y\right) dx \\ & \text{met} \ y = \sqrt{ax^2 + bx + c} = \sqrt{a\left(x-p\right)\left(x-q\right)} \\ & \Rightarrow a\left(x-p\right)\left(x-q\right) = \left(x-p\right)^2 t^2 \\ & \Rightarrow a\left(x-q\right) = \left(x-p\right)t^2 \\ & \Rightarrow x = \frac{pt^2 - aq}{t^2 - a} \end{aligned}$$

(1)
$$I = \int \frac{dx}{\sqrt{(x-1)(x-4)}} = \ln\left|\frac{t+1}{t-1}\right| + k$$

 $t = \frac{\sqrt{(x-1)(x-4)}}{x-1} \Rightarrow \left|\frac{t+1}{t-1}\right| = \left|\frac{(2x-5)+2\sqrt{(x-1)(x-4)}}{-3}\right|$
 $\Rightarrow I = \ln\left|\frac{2x-5+2\sqrt{(x-1)(x-4)}}{3}\right| + k$

met
$$y = \sqrt{ax^2 + bx + c} = \sqrt{a(x - p)(x - q)}$$

Voorbeelden:
$$(2) I = \int \frac{dx}{\sqrt{2 + x - x^2}}$$

Methode III: substitutie
$$\sqrt{a(x-p)(x-q)} =$$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int\!f\left(x,y\right)dx$

$$\text{met } y = \sqrt{ax^2 + bx + c} = \sqrt{a\left(x - p\right)\left(x - q\right)}$$

Voorbeelden:
(2)
$$I = \int \frac{dx}{\sqrt{2 + x - x^2}} = \int \frac{dx}{\sqrt{(2 - x)(x + 1)}}$$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$

$$\text{met } y = \sqrt{ax^2 + bx + c} = \sqrt{a\left(x - p\right)\left(x - q\right)}$$

Voorbeelden:
(2)
$$I = \int \frac{dx}{\sqrt{2+x-x^2}} = \int \frac{dx}{\sqrt{(2-x)(x+1)}}$$

 $\sqrt{(2-x)(x+1)} = (2-x)t$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$

$$\text{met } y = \sqrt{ax^2 + bx + c} = \sqrt{a\left(x - p\right)\left(x - q\right)}$$

Voorbeelden:
(2)
$$I = \int \frac{dx}{\sqrt{2+x-x^2}} = \int \frac{dx}{\sqrt{(2-x)(x+1)}}$$

 $\sqrt{(2-x)(x+1)} = (2-x)t \Rightarrow x+1 = (2-x)t^2$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$

$$\text{met } y = \sqrt{ax^2 + bx + c} = \sqrt{a(x-p)(x-q)}$$

Voorbeelden:
(2)
$$I = \int \frac{dx}{\sqrt{2+x-x^2}} = \int \frac{dx}{\sqrt{(2-x)(x+1)}}$$

 $\sqrt{(2-x)(x+1)} = (2-x)t \Rightarrow x+1 = (2-x)t^2$
 $x = \frac{2t^2-1}{t^2+1} \Rightarrow 2-x = \frac{3}{t^2+1}$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax^2+bx+c}=\sqrt{a\left(x-p\right)\left(x-q\right)}$

Voorbeelden:
(2)
$$I = \int \frac{dx}{\sqrt{2 + x - x^2}} = \int \frac{dx}{\sqrt{(2 - x)(x + 1)}}$$

 $\sqrt{(2 - x)(x + 1)} = (2 - x)t \Rightarrow x + 1 = (2 - x)t^2$
 $x = \frac{2t^2 - 1}{t^2 + 1} \Rightarrow 2 - x = \frac{3}{t^2 + 1}$
 $\Rightarrow dx = \frac{6tdt}{(t^2 + 1)^2}$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$

$$\mathrm{met}\; y = \sqrt{ax^2 + bx + c} = \sqrt{a\left(x - p\right)\left(x - q\right)}$$

Voorbeelden:
(2)
$$I = \int \frac{dx}{\sqrt{2 + x - x^2}} = \int \frac{dx}{\sqrt{(2 - x)(x + 1)}}$$

 $\sqrt{(2 - x)(x + 1)} = (2 - x)t \Rightarrow x + 1 = (2 - x)t^2$
 $x = \frac{2t^2 - 1}{t^2 + 1} \Rightarrow 2 - x = \frac{3}{t^2 + 1}$
 $\Rightarrow dx = \frac{6tdt}{(t^2 + 1)^2}$

$$= \int \frac{6tdt}{\frac{(t^2+1)^2}{3t}} \frac{3t}{t^2+1}$$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax^2+bx+c}=\sqrt{a\left(x-p\right)\left(x-q\right)}$

Voorbeelden:
(2)
$$I = \int \frac{dx}{\sqrt{2 + x - x^2}} = \int \frac{dx}{\sqrt{(2 - x)(x + 1)}}$$

 $\sqrt{(2 - x)(x + 1)} = (2 - x)t \Rightarrow x + 1 = (2 - x)t^2$
 $x = \frac{2t^2 - 1}{t^2 + 1} \Rightarrow 2 - x = \frac{3}{t^2 + 1}$
 $\Rightarrow dx = \frac{6tdt}{(t^2 + 1)^2}$

$$= \int \frac{6tdt}{t^2 + 1}$$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$

$$\text{met } y = \sqrt{ax^2 + bx + c} = \sqrt{a\left(x - p\right)\left(x - q\right)}$$

Voorbeelden:
(2)
$$I = \int \frac{dx}{\sqrt{2 + x - x^2}} = \int \frac{dx}{\sqrt{(2 - x)(x + 1)}}$$

 $\sqrt{(2 - x)(x + 1)} = (2 - x)t \Rightarrow x + 1 = (2 - x)t^2$
 $x = \frac{2t^2 - 1}{t^2 + 1} \Rightarrow 2 - x = \frac{3}{t^2 + 1}$
 $\Rightarrow dx = \frac{6tdt}{(t^2 + 1)^2}$

$$= \int \frac{2dt}{t^2 + 1}$$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$ met $y=\sqrt{ax^2+bx+c}=\sqrt{a\left(x-p\right)\left(x-q\right)}$

 $= 2 \operatorname{Bgtg} t + k$

Voorbeelden:
(2)
$$I = \int \frac{dx}{\sqrt{2 + x - x^2}} = \int \frac{dx}{\sqrt{(2 - x)(x + 1)}}$$

 $\sqrt{(2 - x)(x + 1)} = (2 - x)t \Rightarrow x + 1 = (2 - x)t^2$
 $x = \frac{2t^2 - 1}{t^2 + 1} \Rightarrow 2 - x = \frac{3}{t^2 + 1}$
 $\Rightarrow dx = \frac{6tdt}{(t^2 + 1)^2}$

Methode III: substitutie
$$\sqrt{a\left(x-p\right)\left(x-q\right)}=\left(x-p\right)t$$
 voor $\int f\left(x,y\right)dx$

$$\text{met } y = \sqrt{ax^2 + bx + c} = \sqrt{a\left(x - p\right)\left(x - q\right)}$$

Voorbeelden:
(2)
$$I = \int \frac{dx}{\sqrt{2 + x - x^2}} = \int \frac{dx}{\sqrt{(2 - x)(x + 1)}}$$

 $\sqrt{(2 - x)(x + 1)} = (2 - x)t \Rightarrow x + 1 = (2 - x)t^2$
 $x = \frac{2t^2 - 1}{t^2 + 1} \Rightarrow 2 - x = \frac{3}{t^2 + 1}$
 $\Rightarrow dx = \frac{6tdt}{(t^2 + 1)^2}$

$$= 2\operatorname{Bgtg}\sqrt{\frac{x+1}{2-x}} + k$$

$$(1) I = \int \sqrt{1 - x^2} dx$$

$$(1) I = \int \sqrt{1 - x^2} dx$$
$$x = \sin t$$

(1)
$$I = \int \sqrt{1 - x^2} dx$$

 $x = \sin t \Rightarrow \sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t$

(1)
$$I = \int \sqrt{1 - x^2} dx$$

 $x = \sin t \Rightarrow \sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t$
 $dx = \cos t dt$

(1)
$$I = \int \sqrt{1 - x^2} dx$$

 $x = \sin t \Rightarrow \sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t$
 $dx = \cos t dt$
 $t = \operatorname{Bgsin} x$

(1)
$$I = \int \sqrt{1 - x^2} dx$$

 $x = \sin t \Rightarrow \sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t$
 $dx = \cos t dt$
 $t = \operatorname{Bgsin} x$
 $= \int \cos^2 t dt$

(1)
$$I = \int \sqrt{1 - x^2} dx$$

 $x = \sin t \Rightarrow \sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t$
 $dx = \cos t dt$
 $t = \operatorname{Bgsin} x$
 $= \frac{1}{2} (t + \sin t \cos t) + k$

$$(1) I = \int \sqrt{1 - x^2} dx$$

$$x = \sin t \Rightarrow \sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t$$

$$dx = \cos t dt$$

$$t = \operatorname{Bgsin} x$$

$$= \frac{1}{2} \left(\operatorname{Bgsin} x + x\sqrt{1 - x^2} \right) + k$$

(1)
$$I = \int \sqrt{1 - x^2} dx$$

 $x = \sin t \Rightarrow \sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t$
 $dx = \cos t dt$
 $t = \operatorname{Bgsin} x$
 $= \frac{1}{2} \left(\operatorname{Bgsin} x + x\sqrt{1 - x^2} \right) + k$
(2) $I = \int \sqrt{x^2 + 4} dx$

(1)
$$I = \int \sqrt{1 - x^2} dx$$

 $x = \sin t \Rightarrow \sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t$
 $dx = \cos t dt$
 $t = \operatorname{Bgsin} x$
 $= \frac{1}{2} \left(\operatorname{Bgsin} x + x\sqrt{1 - x^2} \right) + k$
(2) $I = \int \sqrt{x^2 + 4} dx$
 $x = 2 \operatorname{sh} t$

(1)
$$I = \int \sqrt{1 - x^2} dx$$

 $x = \sin t \Rightarrow \sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t$
 $dx = \cos t dt$
 $t = \operatorname{Bgsin} x$
 $= \frac{1}{2} \left(\operatorname{Bgsin} x + x\sqrt{1 - x^2} \right) + k$
(2) $I = \int \sqrt{x^2 + 4} dx$
 $x = 2 \operatorname{sh} t \Rightarrow \sqrt{x^2 + 4} = \sqrt{4 \operatorname{sh}^2 t + 4}$

$$(1) I = \int \sqrt{1 - x^2} dx$$

$$x = \sin t \Rightarrow \sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t$$

$$dx = \cos t dt$$

$$t = \operatorname{Bgsin} x$$

$$= \frac{1}{2} \left(\operatorname{Bgsin} x + x\sqrt{1 - x^2} \right) + k$$

$$(2) I = \int \sqrt{x^2 + 4} dx$$

$$x = 2 \operatorname{sh} t \Rightarrow \sqrt{x^2 + 4} = \sqrt{4 \operatorname{sh}^2 t + 4} = 2\sqrt{\operatorname{sh}^2 t + 1}$$

$$(1) I = \int \sqrt{1 - x^2} dx$$

$$x = \sin t \Rightarrow \sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t$$

$$dx = \cos t dt$$

$$t = \operatorname{Bgsin} x$$

$$= \frac{1}{2} \left(\operatorname{Bgsin} x + x\sqrt{1 - x^2} \right) + k$$

$$(2) I = \int \sqrt{x^2 + 4} dx$$

$$x = 2 \operatorname{sh} t \Rightarrow \sqrt{x^2 + 4} = \sqrt{4 \operatorname{sh}^2 t + 4} = 2\sqrt{\operatorname{sh}^2 t + 1} = 2 \operatorname{ch} t$$

$$(1) I = \int \sqrt{1 - x^2} dx$$

$$x = \sin t \Rightarrow \sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t$$

$$dx = \cos t dt$$

$$t = \operatorname{Bgsin} x$$

$$= \frac{1}{2} \left(\operatorname{Bgsin} x + x\sqrt{1 - x^2} \right) + k$$

$$(2) I = \int \sqrt{x^2 + 4} dx$$

$$x = 2 \operatorname{sh} t \Rightarrow \sqrt{x^2 + 4} = \sqrt{4 \operatorname{sh}^2 t + 4} = 2\sqrt{\operatorname{sh}^2 t + 1} = 2 \operatorname{ch} t$$

$$dx = 2 \operatorname{ch} t dt$$

$$(1) I = \int \sqrt{1 - x^2} dx$$

$$x = \sin t \Rightarrow \sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t$$

$$dx = \cos t dt$$

$$t = \operatorname{Bgsin} x$$

$$= \frac{1}{2} \left(\operatorname{Bgsin} x + x\sqrt{1 - x^2} \right) + k$$

$$(2) I = \int \sqrt{x^2 + 4} dx$$

$$x = 2 \operatorname{sh} t \Rightarrow \sqrt{x^2 + 4} = \sqrt{4 \operatorname{sh}^2 t + 4} = 2\sqrt{\operatorname{sh}^2 t + 1} = 2 \operatorname{ch} t$$

$$dx = 2 \operatorname{ch} t dt$$

$$= 4 \int \operatorname{ch}^2 t dt$$

$$(1) I = \int \sqrt{1 - x^2} dx$$

$$x = \sin t \Rightarrow \sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t$$

$$dx = \cos t dt$$

$$t = \operatorname{Bgsin} x$$

$$= \frac{1}{2} \left(\operatorname{Bgsin} x + x\sqrt{1 - x^2} \right) + k$$

$$(2) I = \int \sqrt{x^2 + 4} dx$$

$$x = 2 \operatorname{sh} t \Rightarrow \sqrt{x^2 + 4} = \sqrt{4 \operatorname{sh}^2 t + 4} = 2\sqrt{\operatorname{sh}^2 t + 1} = 2 \operatorname{ch} t$$

$$dx = 2 \operatorname{ch} t dt$$

$$= 2 \int (1 + \operatorname{ch} 2t) dt$$

$$(1) I = \int \sqrt{1 - x^2} dx$$

$$x = \sin t \Rightarrow \sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t$$

$$dx = \cos t dt$$

$$t = \operatorname{Bgsin} x$$

$$= \frac{1}{2} \left(\operatorname{Bgsin} x + x\sqrt{1 - x^2} \right) + k$$

$$(2) I = \int \sqrt{x^2 + 4} dx$$

$$x = 2 \operatorname{sh} t \Rightarrow \sqrt{x^2 + 4} = \sqrt{4 \operatorname{sh}^2 t + 4} = 2\sqrt{\operatorname{sh}^2 t + 1} = 2 \operatorname{ch} t$$

$$dx = 2 \operatorname{ch} t dt$$

$$= 2t + \operatorname{sh} 2t + k$$

$$(1) I = \int \sqrt{1 - x^2} dx$$

$$x = \sin t \Rightarrow \sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t$$

$$dx = \cos t dt$$

$$t = \operatorname{Bgsin} x$$

$$= \frac{1}{2} \left(\operatorname{Bgsin} x + x\sqrt{1 - x^2} \right) + k$$

$$(2) I = \int \sqrt{x^2 + 4} dx$$

$$x = 2 \operatorname{sh} t \Rightarrow \sqrt{x^2 + 4} = \sqrt{4 \operatorname{sh}^2 t + 4} = 2\sqrt{\operatorname{sh}^2 t + 1} = 2 \operatorname{ch} t$$

$$dx = 2 \operatorname{ch} t dt$$

$$= 2t + \operatorname{sh} 2t + k$$

$$\operatorname{sh} 2t = 2\operatorname{sh} t\operatorname{ch} t$$
 en $\operatorname{ch} t = \sqrt{1 + \operatorname{sh}^2 t}$

$$(1) I = \int \sqrt{1 - x^2} dx$$

$$x = \sin t \Rightarrow \sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t$$

$$dx = \cos t dt$$

$$t = \operatorname{Bgsin} x$$

$$= \frac{1}{2} \left(\operatorname{Bgsin} x + x\sqrt{1 - x^2} \right) + k$$

$$(2) I = \int \sqrt{x^2 + 4} dx$$

$$x = 2 \operatorname{sh} t \Rightarrow \sqrt{x^2 + 4} = \sqrt{4 \operatorname{sh}^2 t + 4} = 2\sqrt{\operatorname{sh}^2 t + 1} = 2 \operatorname{ch} t$$

$$dx = 2 \operatorname{ch} t dt$$

$$= 2 \left(\operatorname{Bgsh} \frac{x}{2} + x\sqrt{1 + \frac{x^2}{4}} \right) + k$$

$$\sinh 2t = 2 \sinh t \cosh t$$
 en $\cosh t = \sqrt{1 + \sinh^2 t}$

Twee belangrijke integralen (1)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \operatorname{Bgsin} \frac{x}{a} + k$$
 als $a > 0$

(1)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \operatorname{Bgsin} \frac{x}{a} + k \qquad \text{als } a > 0$$

$$(2) \int \frac{dx}{\sqrt{x^2 + a}} = \ln\left|x + \sqrt{x^2 + a}\right| + k$$

(1)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \operatorname{Bgsin} \frac{x}{a} + k \qquad \text{als } a > 0$$
(2)
$$\int \frac{dx}{\sqrt{x^2 + a}} = \ln\left|x + \sqrt{x^2 + a}\right| + k$$

Voorbeelden (1)
$$I = \int \frac{dx}{\sqrt{x^2 - 5x + 4}}$$

(1)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \operatorname{Bgsin} \frac{x}{a} + k \qquad \text{als } a > 0$$
(2)
$$\int \frac{dx}{\sqrt{x^2 + a}} = \ln\left|x + \sqrt{x^2 + a}\right| + k$$

(1)
$$I = \int \frac{dx}{\sqrt{x^2 - 5x + 4}} = \int \frac{d\left(x - \frac{5}{2}\right)}{\sqrt{\left(x - \frac{5}{2}\right)^2 - \frac{9}{4}}}$$

(1)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \operatorname{Bgsin} \frac{x}{a} + k \qquad \text{als } a > 0$$
(2)
$$\int \frac{dx}{\sqrt{x^2 + a}} = \ln\left|x + \sqrt{x^2 + a}\right| + k$$

(1)
$$I = \int \frac{dx}{\sqrt{x^2 - 5x + 4}} = \int \frac{d\left(x - \frac{5}{2}\right)}{\sqrt{\left(x - \frac{5}{2}\right)^2 - \frac{9}{4}}}$$

(1)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \operatorname{Bgsin} \frac{x}{a} + k \qquad \text{als } a > 0$$
(2)
$$\int \frac{dx}{\sqrt{x^2 + a}} = \ln\left|x + \sqrt{x^2 + a}\right| + k$$

(1)
$$I = \int \frac{dx}{\sqrt{x^2 - 5x + 4}} = \ln\left|x - \frac{5}{2} + \sqrt{x^2 - 5x + 4}\right| + k$$

(1)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \operatorname{Bgsin} \frac{x}{a} + k \qquad \text{als } a > 0$$
(2)
$$\int \frac{dx}{\sqrt{x^2 + a}} = \ln\left|x + \sqrt{x^2 + a}\right| + k$$

(1)
$$I = \int \frac{dx}{\sqrt{x^2 - 5x + 4}} = \ln|2x - 5 + 2\sqrt{x^2 - 5x + 4}| + k$$

(1)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \operatorname{Bgsin} \frac{x}{a} + k \qquad \text{als } a > 0$$
(2)
$$\int \frac{dx}{\sqrt{x^2 + a}} = \ln\left|x + \sqrt{x^2 + a}\right| + k$$

(1)
$$I = \int \frac{dx}{\sqrt{x^2 - 5x + 4}} = \ln|2x - 5 + 2\sqrt{x^2 - 5x + 4}| + k$$

(2)
$$I = \int \frac{dx}{\sqrt{2 + x - x^2}}$$

(1)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \operatorname{Bgsin} \frac{x}{a} + k \qquad \text{als } a > 0$$
(2)
$$\int \frac{dx}{\sqrt{x^2 + a}} = \ln\left|x + \sqrt{x^2 + a}\right| + k$$

(1)
$$I = \int \frac{dx}{\sqrt{x^2 - 5x + 4}} = \ln|2x - 5 + 2\sqrt{x^2 - 5x + 4}| + k$$

(2)
$$I = \int \frac{dx}{\sqrt{2+x-x^2}} = \int \frac{d\left(x-\frac{1}{2}\right)}{\sqrt{\frac{9}{4}-\left(x-\frac{1}{2}\right)^2}}$$

(1)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \operatorname{Bgsin} \frac{x}{a} + k \qquad \text{als } a > 0$$
(2)
$$\int \frac{dx}{\sqrt{x^2 + a}} = \ln\left|x + \sqrt{x^2 + a}\right| + k$$

(1)
$$I = \int \frac{dx}{\sqrt{x^2 - 5x + 4}} = \ln|2x - 5 + 2\sqrt{x^2 - 5x + 4}| + k$$

(2)
$$I = \int \frac{dx}{\sqrt{2 + x - x^2}} = \operatorname{Bgsin} \frac{x - \frac{1}{2}}{\frac{3}{2}} + k$$

(1)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \operatorname{Bgsin} \frac{x}{a} + k \qquad \text{als } a > 0$$
(2)
$$\int \frac{dx}{\sqrt{x^2 + a}} = \ln\left|x + \sqrt{x^2 + a}\right| + k$$

(1)
$$I = \int \frac{dx}{\sqrt{x^2 - 5x + 4}} = \ln|2x - 5 + 2\sqrt{x^2 - 5x + 4}| + k$$

(2)
$$I = \int \frac{dx}{\sqrt{2 + x - x^2}} = \operatorname{Bgsin} \frac{2x - 1}{3} + k$$

EINDE van deze presentatie