CS557: Cryptography

Modern Ciphers (AES)

S. Tripathy IIT Patna

We discussed

- Modern Cipher
 - Block cipher
 - DES
 - Cryptanalysis
 - LinearCryptanalysis
 - DifferentialCryptanalysis
 - -3DES
 - AES

AES: Advance Encryption Standard

- clear a replacement for DES was needed
 - have theoretical attacks that can break it
 - have demonstrated exhaustive key search attacks
- can use Triple-DES but slow with small blocks
- NIST announced Call for ciphers in 1997
 - 15 candidates accepted in Jun 98
 - 5 were short-listed in Aug-99
 - Rijndael was selected as the AES in Oct-2000
 - issued as FIPS PUB 197 standard in Nov-2001

Requirements - NIST

Security:

- Resistance to cryptanalysis
- Soundness of the mathematical basis
- Randomness of the ciphertext

Costs:

- System resources (hardware and software) required
- Monetary costs

Algorithm and implementation characteristics

- Simplicity: reduces implementation errors and impacts costs, such as power consumption, number of hardware gates and execution time
- Encryption and decryption using the same algorithm
- Ability to implement the algorithm in both software and hardware
- Use for other cryptographic purposes (hash function, a random bit generator and a stream cipher - such as via CTR mode)

AES Competetion

	Rijn dael	Serpe nt	Twofish	MARS	RC6
General Security	2	3	3	3	2
Implementation Difficulty	3	3	2	1	1
Software Performance	3	1	1	2	2
Smart Card Performance	3	3	2	1	1
Hardware Performance	3	3	2	1	2
Design Feature	2	1	3	2	1
Total	16	14	13	10	9

AES

- AES-Rijndael parameters
 - key size 128/192/256/ -bit
 - input/output size 128-bit
 - number of rounds 10 12 14
 - round key size 128
- Decryption algorithm is different from encryption algorithm (non Feistel structure). (optimized for encryption)
- single 8 bit to 8 bit S-box.
- stronger & faster than Triple-DES

AES – 128 bit block

AES-Rijndael

Add Round Key

- AddRoundKey proceeds one column at a time.
- AddRoundKey adds a round key word with each state column matrix; the operation in AddRoundKey is matrix addition

Byte Substitution

- uses one table of 16x16 bytes containing a permutation of all 256 8-bit values
- each byte of state is replaced by byte in row (left 4-bits) & column (right 4-bits)
 - eg. $\frac{S_{1,1}}{S_{1,1}}$ byte $\{4E\}$ is replaced by row 4 col E byte (in S-Table) which is the value $\frac{S_{1,1}}{S_{1,1}}$

S-box

										r							
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
	0	63	7C	77	7B	F2	6B	6F	C.5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	.59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A.5	E5	F1	71	D8	31	1.5
	3	04	C7	23	СЗ	18	96	0.5	9A	07	12	80	E2	EB	27	B2	7.5
	4	09	83	2C	1.A.	1B	6E	5A	A0	52	3B	<u>D</u> 6	B3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	40	33	85	45	F9	02	7F	50	3C	9F	A8
×	7	.51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
	8	CD	OC	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A.	90	88	46	EE	В8	14	DE	5E	0B	DB
	A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	6.5	7A	AE	08
	C	BA	78	2.5	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B.5	66	48	03	F6	Œ	61	35	57	B9	86	C1	1D	9E
	Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	OD	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

S-Box Byte Computation

S-box is constructed defined transformation of the values in $GF(2^8)$ with irreducible polynomial ($x^8 + x^4 + x^3 + x + 1$)

as
$$y = Ax^{-1} + c$$

$$\begin{bmatrix} s_0 \\ s_1 \\ s_2 \\ s_3 \\ s_4 \\ s_5 \\ s_6 \\ s_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

$$s = b \oplus (b \lll 1) \oplus (b \lll 2) \oplus (b \lll 3) \oplus (b \lll 4) \oplus 63_{16}$$
 $s_i = b_i \oplus b_{(i+4) \bmod 8} \oplus b_{(i+5) \bmod 8} \oplus b_{(i+6) \bmod 8} \oplus b_{(i+7) \bmod 8} \oplus c_i$

Shift Rows

A:

sij is a byte

s00	s01	s02	s03
s10	s11	s12	s13
s20	s21	s22	s23
s30	s31	s32	s33

Shift row i i positions (i = 0 to 3)

s00	s01	s02	s03
s11	s12	s13	s10
s22	s23	s20	s21
s33	s30	s31	s32

Mix Columns

• Each column is multiplied modulo (x^4+1) by the fixed polynomial a(x), given by

 $a(x) = \{03\}x^3 + \{01\}x^2 + \{01\}x + \{02\}$

• effectively a matrix multiplication in $GF(2^8)$ using prime poly $m(x) = x^8 + x^4 + x^3 + x + 1$

AES Decryption

The AES Decryption Algorithm:

AddRoundKey:

Add Roundkey transformation is identical to the forward add round key transformation, because the XOR operation is its own inverse.

$$A \leftarrow round_key \oplus A$$

Inverse SubBytes:

This operation can be performed using the inverse S-Box. It is read identically to the S-Box matrix.

☐ InvShiftRows:

Inverse Shift Ro for each of the the second row,

s00	s01	s02	s03	
s10	s11	s12	s13	
s20	s21	s22	s23	þ
s30	s31	s32	s33	ľ

Shift row i	
i positions	
(i = 0 to 3)	- ::

	lar				
a	one	2-	by	'te	C

s00	s01	s02	s03
s11	s12	s13	s10
s22	s23	s20	s21
s33	s30	s31	s32

InvMixColumns:

The inverse mix column transformation is multiplication in Galois Field (28):

