Cluster Best Practices

Learning Objectives

- Compute types
- ▶ Best practices and recommendations

Databricks Compute

Classic Compute Types

All-purpose cluster

- Used to run interactive notebooks
- Can be created using the Web UI, Command Line (CLI), or REST API
- Can be manually terminated, or auto terminated after a period of inactivity
- ▶ DBU: More expensive

Jobs cluster

- Used to run automated jobs
- Created automatically by Databricks job scheduler
- Terminate when the job is completed
- ▶ DBU: Less expensive

Instance Family

Instance Family

VM Category	Workload Type
Memory Optimized	 Where a lot of shuffle and spills are involved When Spark caching is needed For ML workloads
Compute Optimized	 Structured Streaming jobs ELT with full scan and no data reuse To run OPTIMIZE and Z-order Delta commands
Storage Optimized	 To leverage Delta caching For ad hoc and interactive data analysis ML and DL workloads with data caching
GPU Optimized	ML and DL workloads with an exceptionally high memory requirement
General Purpose	Used in absence of specific requirementsTo run VACUUM Delta command

Standard_D4ds_v5	16 GB Memory, 4 Cores
General purpose	
Standard_DS3_v2	14 GB Memory, 4 Cores
Standard_DS4_v2	28 GB Memory, 8 Cores
Standard_DS5_v2	56 GB Memory, 16 Cores
Memory optimized	
Standard_DS12_v2	28 GB Memory, 4 Cores
Standard_DS13_v2	56 GB Memory, 8 Cores
Storage optimized	
Standard_L8s_v3	64 GB Memory, 8 Cores
Standard_L16s_v3	128 GB Memory, 16 Cores
Standard_L32s_v3	256 GB Memory, 32 Cores

Spot Instances

- ► Low-cost virtual machines
- ▶ Users bid for unused capacity, but the instances can be interrupted if the market price exceeds the bid.

Databricks pools

- ▶ Set of idle, and ready-to-use instances
- ▶ Reduce cluster start and auto-scaling times

Cloud provider charges

Compute

Serverless Compute

Serverless Compute

- On-demand, scalable computing resources without configuration
- Avoid the operational overhead of managing and tuning clusters.
- Rapid start-up and scaling times
- Runs latest Databricks Runtime
- Support only Python and SQL

Serverless Compute Types

- Serverless compute for notebooks
- Serverless compute for jobs
- Serverless compute for pipelines

Serverless vs. Classic

Serverless compute

- Fully managed without configuration
 - Photon Engine is enabled by default
 - Automatic access to latest features
 - ▶ Automatic instance type selection
 - Automatic scaling
- Rapid Startup time
- Supports only Python and SQL

Classic compute

- Offers additional control and configuration
 - Photon Engine is optional
 - Requires manual upgrade of runtime versions
 - Requires manual selection of instance type
 - ► Autoscaling requires manual configuration
- Takes few minutes to start
- Supports Python, SQL, Scala, R, and Java

Pricing

SQL Warehouse

SQL Warehouse

- ► Highly optimized for SQL workloads
- Serverless SQL warehouses:
 - ▶ ETL
 - Business intelligence
 - Exploratory analysis
- ▶ Pro SQL warehouses:
 - ▶ If Serverless are not available
 - For custom-defined networking (databases/event buses in your cloud network or on-premises)

