Prediction

Youlan Shen

2023-04-29

Task 4: Prediction Using Estimated Model Parameters

```
library(tidyverse)
library(dplyr)
library(cowplot)
```

load data

```
load("hurricane.RData")
data <- hurricane %>% ungroup()
load("test.RData")
B <- test$B
gamma <- test$gamma</pre>
```

```
# get XYD
Y <- as.matrix(data$Wind.kt)</pre>
D <- data %>% mutate(intercept = 1) %>% dplyr::select(intercept, Wind_prev,
                                                       Lat_change, Long_change,
                                                       Wind_change) %>%
  as.matrix()
X <- data %>%
  mutate(index = 1:nrow(data)) %>%
  group_by(index) %>%
  dplyr::select(Month, Season, Nature) %>%
  mutate(n = 1) \%
  pivot_wider(names_from = Month, values_from = n, values_fill = 0) %>%
  mutate(n = 1) \%
  pivot_wider(names_from = Nature, values_from = n, values_fill = 0) %>%
  ungroup() %>%
  dplyr::select(April, May, June, July, August, September, October, November,
                December, Season, ET,NR,SS,TS) %>%
  as.matrix()
```

Adding missing grouping variables: 'index'

Get Estimated Model Parameters Using MCMC Train

```
# get parameter estimates function
get_estimate <- function(null_matrix, iter, MCMCchain){
   for (i in iter) {
      null_matrix <- null_matrix + MCMCchain[[i]]
   }
   estimate <- null_matrix / length(iter)
   estimate
}

# set iter, we only use the last 3000 of MCMC to get posterior mean
iter <- 3001:6000
# set Null matrix
beta_estimate <- matrix(data = 0, nrow = 5, ncol = 699)
gamma_estimate <- matrix(data = 0, nrow = 14, ncol = 1)
beta_estimate <- get_estimate(beta_estimate, iter, B)
gamma_estimate <- get_estimate(gamma_estimate, iter, gamma)</pre>
```

Get Prediction

```
X_with_id <- cbind(as.numeric(factor(data$ID)), X)
#number of hurricanes
H <- max(X_with_id[,1])
ith_hurricane_idx <- 1:H |>
    map(\(i) which(X_with_id[,1] == i))
# calculate Y estimates
N <- length(Y)
mu_H <- rep(NA, N)
for (i in 1:H) {
    curr_hurricane_idx <- ith_hurricane_idx[[i]]
    mu_i <- D[curr_hurricane_idx,,drop = FALSE] %*%
        beta_estimate[,i,drop = FALSE]
    mu_H[curr_hurricane_idx] <- mu_i
}
mu_H <- as.matrix(mu_H)
Wind_pred <- mu_H + X %*% gamma_estimate</pre>
```

Analysis on Prediction

```
arrange(Pred_RMSE) %>%
top_n(10) %>%
knitr::kable(
    caption = "Prediction Standard Error of Wind Speed in Ascending Order",
    col.names = c("Hurricane ID", "Number of Observation", "Prediction RMSE"),
    digits = 3
)
```

Selecting by Pred_RMSE

Table 1: Prediction Standard Error of Wind Speed in Ascending Order

Hurricane ID	Number of Observation	Prediction RMSE
CHARLEY.2004	28	12.560
JANET.1955	33	12.866
BLANCHE.1969	8	13.579
EDOUARD.1984	5	14.242
CELIA.1970	22	14.335
FELIX.2007	26	14.866
HATTIE.1961	18	15.628
IRIS.2001	20	15.963
AUDREY.1957	15	17.777
ETHEL.1960	12	19.874

Observation

More Observation

Fewer Observation

Figure: Prediction Standard Error of Wind Speed by Number of Observation