Subband Temporal Modulation Spectrum Normalization for Automatic Speech Recognition in Reverberant Environments

Authors: Xugang Lu, Masashi Unoki, Satoshi Nakamura

Professor:陳嘉平

Reporter: 吳柏鋒

Outline

- Introduction
- Reverberation effect on temporal envelopes
- Proposed temporal modulation spectrum normalization algorithm
- Experimental

Introduction

- In this paper, we first investigated the reverberation effect on <u>subband temporal envelopes(STE)</u> by using the modulation transfer function (MTF).
- Based on the investigation, we proposed an algorithm which <u>normalizes</u> the subband temporal modulation spectrum (TMS) to reduce the diffusion effect of the reverberation.

Introduction

- During the normalization, both the subband TMS of the clean and reverberated speech are normalized to a reference TMS calculated from a clean speech data set for each frequency subband.
- Based on the normalized subband TMS, the <u>inverse</u> Fourier transform was done to restore the subband temporal envelopes by keeping their original phase information.

Reverberation effect on temporal envelopes

- Reverberation effect can be quantified by using the temporal modulation spectrum.
- Consider the reverberation effect by using the <u>smoothed</u> temporal modulation PSD to smooth out the details of the PSD due to linguistic context effect.

Reverberation effect on temporal envelopes

 The average of ensemble of the STEs can be quantified using the average of the power spectral density (PSD) of the STE as:

$$P_{xx}(\Omega) = \left\langle \frac{\left| A_{x}(\Omega) \right|^{2}}{N} \right\rangle; P_{yy}(\Omega) = \left\langle \frac{\left| A_{y}(\Omega) \right|^{2}}{N} \right\rangle$$

suppose $a_x(t)$ and $a_y(t)$ are the subband temporal envelopes (STEs) of the clean and reverberation speech, and their Fourier transforms are $A_x(\Omega)$ and $A_y(\Omega)$, the Ω is the modulation frequency, N is the length of the STE and $\langle . \rangle$ is the ensemble average operator

- It is difficult to estimate the STMTF or the inverse filters.
- We attempt to normalize the subband temporal modulation PSDs of the clean and reverberated speech to a reference modulation PSD.

Figure 2: Normalization of the modulation power spectrum.

The $H_{xr}(\Omega)$ and $H_{yr}(\Omega)$ can be regarded as the PSDs of the modulation transfer filters between the clean, reverberated and the the reference environments.

 the <u>reference PSD</u> is set as the average PSD of the STE of a prior clean speech data set in each frequency band as:

$$P_{rr}(\Omega) = \frac{1}{M} \sum_{i=1}^{M} P^{i}_{xx}(\Omega)$$

Where $P_{xx}^{i}(\Omega)$ is the modulation PSD of the i-th clean utterance, i=1, 2, ..., M, with M is the total number of the speech utterances.

•The PSD of the STMTFs between the clean and reverberated speech is:

$$H_{xr}(\Omega) = \frac{P_{rr}(\Omega)}{P_{xx}(\Omega)}; H_{yr}(\Omega) = \frac{P_{rr}(\Omega)}{P_{yy}(\Omega)}$$

$$\longrightarrow H_{xy}(\Omega) = H_{xr}(\Omega) H_{yr}(\Omega)^{-1}$$

- One clean training data set from <u>AURORA-2J</u> data corpus in used in this study.
- Using the speaker to microphone distance (SMD=400cm).

 Using the smoothed temporal modulation PSD to smooth out the details of the PSD due to linguistic context effect.

Figure 1: Temporal modulation spectrum of clean (solid) and reverberated (dashed) speech (with center frequency 1kHz).

Figure 3: Normalized subband temporal modulation PSDs of the clean (solid) and reverberated (dashed) speech.

gure 6: Recognition performance for filtering on the subband poral envelope.