Calculus and Probability Assignment 1

 $\begin{array}{c} x \\ x \\ Group 6 \end{array}$

September 1, 2018

Exercise 6

a)

$$0 = x - x^{3}$$

$$x = x^{3}$$

$$x \in \{-1, 0, 1\}$$

 $x \in \{-1, 0, 1\}$

b)

$$0 < x - x^3$$
$$x < x^3$$
$$0 < x < 1 \text{ and } x < -1$$

0 < x < 1 and x < -1

Exercise 7

$$y = a + (b - a)x$$
$$y = a + xb - xa$$

When choosing a=b, we can run over all values thus y has no restrictions. $y\in\mathbb{R}$

Exercise 8

- a) This function is odd because for all x and y = -x, $3x x^3 = -(3x x^3)$. The function is odd
- b) This function is even because for all x and y = -x, f(x) = f(y). The function is even.

Exercise 9

a) Domain:

$$7 - x^{2} >= 0$$

$$7 >= x^{2}$$

$$|\sqrt{7}| >= x$$

$$x < |\sqrt{7}|$$

Range:

The maximum of the function is at x=0, thus $1+\sqrt{7}$. The minimum of the function is at $sqrt7-x^2=0$ and thus f(x)=1. Domain: $D(f)=-\sqrt{7}<=x<=\sqrt{7}$, Range: $R(f)=1<=y<=1+\sqrt{7}$

b) Domain:

The only restriction for x is $x \neq 0$.

f(x) will never equal 0 or anything lower than 0. This means f(x) > 0. Domain: $D(f) = x \neq 0$ 0, Range: R(f) = y > 0

Exercise 10

a)

$$y = \frac{ax + b}{cx + d}$$
$$y * (cx + d) = ax + b$$
$$ycx + yd = ax + b$$
$$ycx - ax = b - yd$$
$$x * (yc - a) = b - yd$$
$$x = \frac{b - yd}{yc - a}$$

$$x = \frac{b - yd}{yc - a}$$

b) Always. Always.

Exercise 11

a)

$$\lim_{x \to 2} \frac{x-2}{x^2 + x - 6} = \lim_{x \to 2} \frac{x-2}{(x-2)(x+3)}$$

$$= \lim_{x \to 2} \frac{1}{(x+3)}$$

$$= \frac{1}{2+3}$$

$$= \frac{1}{5}$$

$$\lim_{x \to 1} \frac{x^2 - 4x + 3}{x^2 + x - 2} = \lim_{x \to 2} \frac{(x - 3)(x - 1)}{(x - 1)(x - 2)}$$

$$= \lim_{x \to 2} \frac{(x - 3)}{(x - 2)}$$

$$= \frac{(1 - 3)}{(1 - 2)}$$

$$= \frac{-2}{-1}$$

$$= 2$$

Answer Form Assignment 1

Name	X
Student Number	X

Que	stion	Answer
6a	(1pt)	$x \in \{-1, 0, 1\}$
6b	(1pt)	0 < x < 1 and $x < -1$
7	(1pt)	$y \in \mathbb{R}$
8a	(0.5pt)	The function is odd.
8b	(0.5pt)	The function is even.
9a	(1pt)	Domain: $D(f) = -\sqrt{7} <= x <= \sqrt{7}$, Range: $R(f) = 1 <= y <= 1 + \sqrt{7}$
9b	(1pt)	Domain: $D(f) = x \neq 0$, Range: $R(f) = y > 0$
10a	(1pt)	$x = \frac{b - yd}{yc - a}$
10b	(1pt)	Always.
11a	(1pt)	$\frac{1}{5}$
11b	(1pt)	$\tilde{2}$