Lab Manual: Smart Agriculture Network for Precision Farming

Prepared by Abdullah Aamir

Department of Computer Science FAST National University of Computer and Emerging Sciences

Version 1.0 | November 2024

1 Objective

The objective of this project is to design and implement a Smart Agriculture Network tailored to Precision Farming in Pakistan. The project involves setting up IoT devices, configuring routing protocols, and integrating automation for resource optimization.

2 Lab Overview

This lab manual guides you through:

- 1. Setting up and configuring routers using OSPF, RIP, and EIGRP.
- 2. Integrating IoT devices for precision farming.
- 3. Setting up a scalable and efficient communication network for data transfer between devices.
- 4. Testing and validating connectivity and performance using various tools.

3 Network Components

The network consists of several components:

- HQ Router: Responsible for central communication using OSPF.
- Farm Routers: Connected via RIP for legacy support.
- Research Zone Router: High-performance routing with EIGRP.
- Switches: For connecting IoT devices to the local network.
- IoT Devices: Includes several IoT devices for smart farming.

4 Step-by-Step Configuration

4.1 Configuring the HQ Router (OSPF Configuration)

The HQ router connects all zones using the OSPF routing protocol for scalable communication.

```
Router> enable
Router# configure terminal
Router(config)# router ospf 1
Router(config—router)# network 12.0.0.0 0.0.0.255 area 0
Router(config—router)# network 10.0.0.0 0.0.0.255 area 0
Router(config—router)# exit
Router(config)# end
```

Listing 1: OSPF Configuration for HQ Router

4.2 Configuring Farm Routers (RIP Configuration)

The farm routers support legacy systems and are configured with RIP.

```
Router> enable
Router# configure terminal
Router(config)# router rip
Router(config—router)# version 2
```

```
Router(config—router)# network 192.168.2.0
Router(config—router)# network 192.168.3.0
Router(config—router)# no auto—summary
Router(config—router)# exit
Router(config)# end
```

Listing 2: RIP Configuration for Farm Routers

4.3 Configuring Research Zone Router (EIGRP Configuration)

The research zone router is configured with EIGRP to optimize performance for data-heavy tasks.

```
Router> enable
Router# configure terminal
Router(config)# router eigrp 10
Router(config—router)# network 192.168.1.0 0.0.0.255
Router(config—router)# no auto—summary
Router(config—router)# exit
Router(config)# end
```

Listing 3: EIGRP Configuration for Research Zone Router

4.4 Redistributing Routing Protocols

To ensure communication between OSPF, RIP, and EIGRP, redistribute routing information.

```
Router* enable
Router# configure terminal
Router(config)# router ospf 1
Router(config-router)# redistribute rip subnets
Router(config-router)# redistribute eigrp 10 subnets
Router(config-router)# exit
Router(config)# router rip
Router(config-router)# redistribute ospf 1 metric 1
Router(config-router)# exit
Router(config)# router eigrp 10
Router(config-router)# redistribute ospf 1 metric 10000 100 255 1 1500
Router(config-router)# redistribute ospf 1 metric 10000 100 255 1 1500
Router(config-router)# exit
Router(config)# end
```

Listing 4: Routing Protocol Redistribution

4.5 Configuring IoT Devices

Each IoT device is assigned a static IP and connected to the switch to monitor environmental parameters.

```
Device > enable
Device# configure terminal
Device(config)# ip address 192.168.2.X 255.255.255.0
Device(config)# exit
```

Listing 5: IoT Device IP Configuration

Verify IoT device connectivity:

```
Device > ping 192.168.2.1
```

Listing 6: IoT Device Connectivity Test

4.6 Automating the Irrigation System (IoT Integration)

The IoT devices are configured to automate irrigation based on soil moisture levels.

```
IoT—Sprinkler> enable
IoT—Sprinkler# configure terminal
IoT—Sprinkler(config)# activate irrigation based on sensor data
IoT—Sprinkler(config)# exit
```

Listing 7: IoT Sprinkler Configuration

5 Testing and Validation

5.1 Connectivity Tests

Verify the network setup and IoT device communication:

- Use ping to test connectivity between devices and routers.
- Check IoT device connectivity and data transfer.

5.2 Traffic Simulation

Use simulation mode in Cisco Packet Tracer to monitor network traffic and validate routing protocol performance.

5.3 IoT Device Performance Tests

Ensure that IoT devices respond to environmental changes and trigger automated systems like irrigation based on threshold values.

6 Network Diagram

Figure 1: Smart Agriculture Network Diagram

7 Conclusion

This lab project successfully demonstrates the integration of IoT devices, routing protocols, and automation to create a Smart Agriculture Network. The network facilitates precision farming with real-time monitoring and optimized resource management.

8 Future Work

Future work involves:

- Integration of drones for aerial monitoring.
- Use of blockchain for tracking farming data.
- Enhanced automation using AI for predictive maintenance and resource management.