Tanmay Garg

CS20BTECH11063

Data Science Analysis Assignment 2

```
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
import astroML
from astroML.stats import sigmaG
import pandas as pd
```

Q1

```
# plot the expected gaussian pdf
   mu = 3
   sigma = (1. / np.sqrt(N[i])) * np.sqrt(6)
   # sigma = sigma * np.sqrt(6)
   dist = norm(mu, sigma)
   x pdf = np.linspace(-1, 10, 1000)
   ax.plot(x pdf, dist.pdf(x pdf), label='Gaussian distribution', color='black')
   ax.set xlim(-1, 10.0)
   # ax.set ylim(0.001, None)
   # ax.xaxis.set major locator(plt.MultipleLocator(0.2))
   # ax.yaxis.set major locator(plt.MaxNLocator(5))
   ax.text(0.80, 0.95, r"$N = %i$" % N[i],
            ha='right', va='top', transform=ax.transAxes)
   if i == len(N) - 1:
       ax.xaxis.set major formatter(plt.FormatStrFormatter('%.1f'))
       ax.xaxis.set tick params(which='major', labelsize=8)
       ax.set_xlabel(r'$x$')
    else:
       ax.xaxis.set major formatter(plt.NullFormatter())
   ax.set_ylabel('$p(x)$')
   # ax.grid()
   ax.legend()
plt.show()
```



```
In [3]: df = pd.read_csv('luminosity_redshift.csv', sep=' ')
plt.loglog(df['z'], df['Lx'], '.')
plt.xlabel('redshift')
plt.ylabel('Luminosity')
plt.title('Luminosity vs Redshift')
plt.show()

from scipy.stats import spearmanr, pearsonr, kendalltau

spearman_coefficient, spearman_pvalue = spearmanr(df['z'], df['Lx'])
pearson_coefficient, pearson_pvalue = pearsonr(df['z'], df['Lx'])
kendall_coefficient, kendall_pvalue = kendalltau(df['z'], df['Lx'])

print(f'Spearman Correlation Coefficient: {spearman_coefficient}, p-value: {spearman_pvalue}')
print(f'Pearson Correlation Coefficient: {pearson_coefficient}, p-value: {kendall_pvalue}')
print(f'Kendall Correlation Coefficient: {kendall_coefficient}, p-value: {kendall_pvalue}')
```

Luminosity vs Redshift

Spearman Correlation Coefficient: 0.6596325957535454, p-value: 6.16648975908101e-07 Pearson Correlation Coefficient: 0.5144497852670242, p-value: 0.0002546471657612425 Kendall Correlation Coefficient: 0.5029584682704178, p-value: 2.9696862274734036e-06

According to the above graph the data seems to have some positive correlation, which can also be verified by the correlation coefficients and p-values.

Q3

```
In [4]: from scipy.stats import weibull_min, weibull_max
    wind_speed = pd.read_csv('wind.csv', sep='\t')
```

```
wind speed['probability'] = wind speed['probability'] / 100
wind speed['lower bound'] = wind speed['speed'].str.extract('(\d+)').astype(int)
wind_speed['upper_bound'] = wind_speed['speed'].str.extract('-(\d+)').astype(int)
# weibull distribution
x = np.linspace(0, 20, 100)
y = weibull min.pdf(x, 2, loc=0, scale=6)
plt.figure(figsize=(19, 5))
plt.step(wind speed['lower bound'], wind speed['probability'], where='post', label='wind speed probability')
plt.xlabel('Wind Speed (m/s)')
plt.ylabel('Probability')
plt.xticks(np.arange(0, 21, 1))
plt.xlim(0, 20)
plt.ylim(0, 0.15)
plt.plot(x, y, label='weibull pdf')
plt.legend()
plt.show()
```



```
In [5]: from scipy.stats import pearsonr, t
        arr1 = np.random.normal(0, 1, 1000)
        arr2 = np.random.normal(0, 1, 1000)
        # Calculating pearson correlation coefficient
        pearson coefficient, pearson pvalue = pearsonr(arr1, arr2)
        print(f'Pearson Correlation Coefficient: {pearson coefficient}, p-value: {pearson pvalue}')
        # Calculating t value from pearson correlation coefficient
        t value = pearson coefficient * np.sqrt((len(arr1) - 2) / (1 - pearson coefficient**2))
        print(f't-value: {t value}')
        # finding p-value from t distribution
        if t value < 0:</pre>
            t_distribution = 2 * t.cdf(t_value, len(arr1) - 2)
        else:
            t distribution = 2 * (1 - t.cdf(t value, len(arr1) - 2))
        # t distribution = 2 * t.cdf(-np.abs(t value), len(arr1) - 2)
        print(f'p-value from student-t distribution: {t distribution}')
```

Pearson Correlation Coefficient: 0.031289040614452666, p-value: 0.3229319014830188 t-value: 0.9889406068469445 p-value from student-t distribution: 0.32293190148301054

We can see from the above results that p-value calculated from pearson correlation matches with the one calculated from student-t distribution