Reihen Übung

Marcus Jung

15.03.2011

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Reihen		
	1.1	Aufgabe 1:	3
	1.2	Aufgabe 2:	3
	1.3	Aufgabe 3:	3
	1.4	Aufgabe 4:	3
	1.5	Aufgabe 5:	4
	1.6	Aufgabe 6:	4
	1.7	Aufgabe 7:	4

1 Reihen

1 Reihen

1.1 Aufgabe 1:

Welche der folgenen Aussagen über Reihen sind korrekt?

- a) Ist eine Reihe konvergent, so ist sie auch absolut konvergent.
- b) Der Wert einer Reihe ändert sich nicht, wenn man endlich viele Summanden abändert.
- c) Wenn $\sum_{k=0}^{n} a_k$ konvergiert, dann ist (a_k) eine Cauchyfolge.
- d) Wenn (a_k) Cauchyfolge, dann konvergiert $\sum_{k=0}^{n} a_k$.
- e) Wenn (a_k) Nullfolge, dann konvergiert $\sum_{k=0}^{n} a_k$.

1.2 Aufgabe 2:

Geben Sie Beispiel an für:

- a) Eine beschränkte Folge, die nicht konvergiert.
- b) Eine konvergente Reihe, die nicht absolut konvergiert.
- c) Eine Reihe, die konvergiert, aber nicht das Quotientenkriterium erfüllt.

1.3 Aufgabe 3:

Untersuchen Sie folgende Reihen auf (absolute) Konvergenz:

a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n-1}}$$

Untersuchen Sie fo
a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n-1}}$$
b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sin(\sqrt{n})}{n^{\frac{5}{2}}}$$
c)
$$\sum_{n=1}^{\infty} \frac{n}{4n^2 - 3}$$
d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$
e)
$$\sum_{n=1}^{\infty} \frac{1}{2^n n^2}$$

$$c) \sum_{n=1}^{\infty} \frac{n}{4n^2 - 3}$$

d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

$$e) \sum_{n=1}^{\infty} \frac{1}{2^n n^2}$$

$$f) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n-1}}$$

1.4 Aufgabe 4:

Zeigen Sie, dass die Reihe
$$\sum_{k=1}^{\infty} \frac{2k+1}{k^2(k+1)^2}$$

konvergiert und berechnen Sie den Grenzwert.

1.5 Aufgabe 5:

Bestimmen Sie die Werte der folgenden Reihen:

a)
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$

b)
$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{n!}$$

bestimmen sie die a)
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$
 b) $\sum_{n=1}^{\infty} \frac{2^{n+1}}{n!}$ c) $\sum_{n=1}^{\infty} \frac{1}{(3n+1)(3n-2)}$ d) $\sum_{n=1}^{\infty} 3^{n/2} 2^{1-n}$

d)
$$\sum_{n=1}^{\infty} 3^{n/2} 2^{1-n}$$

1.6 Aufgabe 6:

Bestimmen Sie den Konvergenzradius der folgenden Potenzreihen:

$$a) \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

b)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^n}{n}$$

c)
$$\sum_{n=0}^{\infty} \frac{x^{5n+1}}{1+2^n}$$

$$\mathrm{d} \sum_{n=0}^{\infty} \frac{2^n x^n}{n}$$

Bestimmen Sie der a)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
b)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}x^n}{n}$$
c)
$$\sum_{n=0}^{\infty} \frac{x^{5n+1}}{1+2^n}$$
d)
$$\sum_{n=0}^{\infty} \frac{2^n x^n}{n}$$
e)
$$\sum_{n=0}^{\infty} \frac{(2+(-1)^n)^n}{n} x^n$$

1.7 Aufgabe 7:

Beweisen Sie mithilfe des Cauchy-Produkts:

$$exp(z)exp(w) = exp(z+w)$$