

TCP/UDP

Comprendre les bases des protocoles de transport

Slimani Mohamed Amine

January 28, 2025

Sommaire

- Qu'est-ce que TCP ?
- Qu'est-ce que UDP?
- Différences entre TCP et UDP
- Fonctionnement de TCP
- Fonctionnement de UDP
- Avantages et inconvénients
- Exemples d'utilisation
- Outils pour tester TCP/UDP
- Exemple de commandes
- Pourquoi c'est important?

Qu'est-ce que TCP ?

- ▶ Définition : Protocole de transport orienté connexion, fiable et sécurisé.
- Caractéristiques :
 - Livraison garantie des paquets.
 - Contrôle de flux et de congestion.
 - Réorganisation des paquets dans l'ordre.
- ▶ Utilisation : Web (HTTP/HTTPS), emails (SMTP), transferts de fichiers (FTP).

Qu'est-ce que UDP ?

- ▶ Définition : Protocole de transport non orienté connexion, léger et rapide.
- Caractéristiques :
 - Aucune garantie de livraison des paquets.
 - Aucun contrôle de flux ou de congestion.
 - Paquets envoyés indépendamment.
- ▶ **Utilisation** : Streaming vidéo, VoIP, jeux en ligne.

Différences entre TCP et UDP

Caractéristique	TCP	UDP
Connexion	Orienté connexion	Non orienté connexion
Fiabilité	Garantie de livraison	Aucune garantie
Contrôle de flux	Oui	Non
Vitesse	Plus lent	Plus rapide
Utilisation	Données critiques	Temps réel

Fonctionnement de TCP

- ► Établissement de la connexion : Poignée de main en trois étapes (SYN, SYN-ACK, ACK).
- ► Transfert des données : Segmentation des données en paquets numérotés.
- ► Contrôle de flux : Utilisation de fenêtres glissantes.
- Fermeture de la connexion : Fin de connexion en quatre étapes (FIN, ACK).

Fonctionnement de UDP

- ► Envoi des données : Les paquets sont envoyés sans établir de connexion.
- ► Aucun accusé de réception : Les paquets peuvent être perdus ou arriver dans le désordre.
- Léger : Moins de surcharge par rapport à TCP.

Avantages et inconvénients

TCP

Avantages : Fiabilité, contrôle de flux, ordre des paquets.

Inconvénients : Surcharge, plus lent.

UDP

Avantages : Rapide, léger, idéal pour le temps réel.

Inconvénients : Pas de fiabilité, pas de contrôle de flux.

Exemples d'utilisation

► TCP :

- ► Navigation web (HTTP/HTTPS).
- ► Transfert de fichiers (FTP).
- Envoi d'emails (SMTP).

► UDP :

- Streaming vidéo (YouTube, Netflix).
- ▶ VoIP (Skype, Zoom).
- ▶ Jeux en ligne (Fortnite, Call of Duty).

Outils pour tester TCP/UDP

- netcat : Pour envoyer des données via TCP/UDP.
- ▶ Wireshark : Pour analyser les paquets réseau.
- ▶ iperf : Pour mesurer les performances du réseau.

Exemple de commandes

Commandes netcat

```
# Écouter sur un port TCP
nc -1 -p 1234

# Envoyer des données via TCP
echo "Hello TCP" | nc localhost 1234

# Envoyer des données via UDP
echo "Hello UDP" | nc -u localhost 1234
```

Pourquoi c'est important ?

- ► TCP : Essentiel pour les applications nécessitant une livraison fiable des données.
- ▶ UDP : Idéal pour les applications en temps réel où la vitesse est critique.
- ► Comprendre les deux : Permet de choisir le bon protocole en fonction des besoins de l'application.