UNIVERSITE D'ANTANANARIVO

année universitaire 2022-23

FACULTÉ DES SCIENCES

Mention Informatique

et Technologie

Feuille d'exercices $n^{\circ}2$

Exercice 1

Déterminer le développement limité à l'ordre 7 des fonctions arcsin, arccos et arctan au voisinage de 0.

Exercice 2 Trouver le développement limité à l'ordre n des fonctions suivantes au voisinage de 0:

$$\frac{1}{x+2} (n \text{ qlq}), \quad \frac{\ln(x+1)}{x+1} (n=4), \quad \frac{e^x - 1 - \sin x}{(1 - \cos x)} (n=3), \quad \frac{x \cos x - \sin x}{x^2 - x^4} (n=3),$$

$$e^{\sin x} (n=4), \quad \ln(x + \sqrt{x+1}) (n=3).$$

Exercice 3 Déterminer le développement limité à l'ordre 3 des fonctions suivantes au voisinage de x_0 :

$$\frac{1}{x-3} (x_0 = 1, +\infty); \frac{\ln(x+1)}{x} (x_0 \in]-1, +\infty[); \frac{x^2}{1-\cos(\pi x)} (x_0 = 1); \ln(\sin(\frac{\pi x}{2})) (x_0 = 1).$$

Exercice 4

Soit (u_n) la suite définie par $u_0 = 1$ et pour tout $n \ge 1$, $u_n = \frac{1}{2}u_{n-1} + 3$.

- 1) Montrer que pour tout $n \geq 0$, $u_n \leq 6$.
- 2) Montrer que (u_n) est croissante.
- 3) En déduire qu'elle est convergente et déterminer sa limite.

Exercice 5

Soit
$$(u_n)$$
 une suite définie par
$$\begin{cases} u_0 = 0, u_1 = -1 \\ u_n = -2u_{n-1} - u_{n-2}; \end{cases}$$

On pose $v_n = (-1)^n u_n$

- 1) Montrer que (v_n) est une suite arithmétique.
- 3) Calculer u_n .

Exercice 6

Déterminer les termes généraux des suites définies par les relations de récurrence suivantes:

$$\begin{cases} u_0 = u_1 = 1 \\ u_n = 2u_{n-1} + 3u_{n-2}; \end{cases} \begin{cases} u_0 = u_1 = 1 \\ u_n = -4_{n-1} - 4u_{n-2} + 2^n n; \end{cases}$$

Exercice 7

Soit
$$(u_n)$$
 la suite définie par
$$\begin{cases} u_0 = \frac{1}{2} \\ u_n = \frac{u_{n-1}}{u_{n-1} - 1}; \end{cases}$$

- 1) Montrer que $u_{n+2} = u_n$ pour tout $n \ge 0$.
- 2) Calculer u_{101} .

Exercice 8

On pose $u_n = n + 2^n \ (n \ge 0)$.

Montrer que la suite (u_n) vérifie une relation de récurrence $u_n = au_{n-1} + bu_{n-2} + c$ où a, b, c sont des constantes à déterminer.

Exercice 9

Soit (u_n) la suite définie par $u_n = \sum_{k=1}^n \frac{(-1)^k}{k}$.

- 1) Montrer que les sous-suites $(u_{2n-1})_{n\geq 1}$ et $(u_{2n})_{n\geq 1}$ sont adjacentes.
- 2) En déduire que (u_n) est convergente.

Exercice 10

Étudier la nature de la série définie par $u_{2n} = a^n$ et $u_{2n+1} = 2a^n$ (0 < a < 1).

Exercice 11

Etudier la nature des séries de termes généraux

$$(\ln n)^{-\ln n}; \quad \ln(\frac{n^2+n+1}{n^2+n-1}); \quad (\frac{an}{n+1})^{n^2} \ (a>0).$$

Exercice 12

Soit $(u_n)_{n\geq 1}$ la suite définie par $u_n=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}-2\sqrt{n}$.

- On pose $v_n = u_n u_{n+1}$. 1) Déterminer $\lim_{n \to +\infty} n^{3/2} v_n$.
- 2) En déduire la nature de $\sum v_n$. 3) Montrer que la suite (u_n) est convergente.

Exercice 13

Soit $\sum_{n\geq 1} u_n$ la série définie par $u_n = \frac{1}{n} + \ln n - \ln(n+1)$.

- 1) Déterminer un équivalent de u_n au voisinage de ∞ .
- 2) En déduire la nature de cette série.
- 3) Soit (v_n) la suite définie par $v_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \ln n$.
- a) Montrer que $v_n = u_1 + u_2 + \dots + u_n \ln n + \ln(n+1)$.
- b) En déduire que (v_n) est convergente.
- 4) Montrer que la série $\sum_{n>1} \frac{1}{n}$ est divergente.

Exercice 14

Étudier la nature des séries alternées de termes généraux suivants:

$$(-1)^n n^{\frac{1}{n}} \sin \frac{1}{n} \ (n > 0); \quad (-1)^n \sqrt{n} \ln \frac{n+1}{n-1} \ (n > 1); \quad \frac{(-1)^n}{n^{1/2} - n^{2/3}} \ (n > 1).$$

2