Студентка: Ковалева Кристина

Группа: 2362 Вариант: СС

Дата: 19 февраля 2024 г.

Комбинаторика и теория графов

Индивидуальное домашнее задание №1

Дано множество $M = \{67, 46, 16, 80, 18, 54, 55, 61\}$ и следующие бинарные отношения на нем:

- $F_1(x,y) = 1 \Leftrightarrow \exists z \in M : (x-z)(y-z) < 0;$
- $F_2(x,y) = 1 \Leftrightarrow x \geq y$ поразрядно;
- $F_3(x,y) = 1 \Leftrightarrow \left[\frac{x}{4}\right] = \left[\frac{y}{4}\right]$;
- $F_4(x,y) = 1 \Leftrightarrow x^2 y^3$ нечетно;
- $F_5(x,y) = 1 \Leftrightarrow |x-y| < 5$.

Задание 1. Проверить, является ли бинарное отношение – рефлексивным, арефлексивным, симметричным, асимметричным, антисимметричным, транзитивным.

- F_1 является арефлексивным, т.к. (x-z)(x-z)>0; симметричным: $(x-z)(y-z)>0 \Leftrightarrow (y-z)(x-z)>0$; нетранзитивным, т.к. есть хотя бы один случай нетранзитивности: например, $F_1(55,18)=1, F_1(18,54)=1,$ но $F_1(55,54)=0$;
- F_2 является рефлексивным, т.к. $x \ge x$; антисимметричным, т.к. если $x \ge y$ и $y \ge x$, то x = y; транзитивным, т.к. (обозначим матрицу бинарного отношения A) $A^2 = A$;
- F_3 является рефлексивным, т.к. $\left[\frac{x}{4}\right] = \left[\frac{x}{4}\right]$; симметричным, т.к. $\left[\frac{x}{4}\right] = \left[\frac{y}{4}\right] \Leftrightarrow \left[\frac{y}{4}\right] = \left[\frac{x}{4}\right]$; транзитивным, т.к. $A^2 = A$;
- F_4 является арефлексивным, т.к. $x^2 x^3$ всегда четно; симметричным, т.к. получившаяся матрица симметрична (см. Задание 2); нетранзитивным, т.к. есть хотя бы один случай нетранзитивности: например, $F_4(18,55) = 1$, $F_4(55,54) = 1$, но $F_4(18,54) = 0$;
- F_5 является рефлексивным, т.к. 0 = |x x| < 5; симметричным, т.к. $|x y| < 5 \Leftrightarrow |y x| < 5$; транзитивным, т.к. $A^2 = A$.

Задание 2. Построить матрицы и графы этих б.о.

m_i	16	18	46	54	55	61	67	80
16	0	0	1	1	1	1	1	1
18	0	0	0	1	1	1	1	1
46	1	0	0	0	1	1	1	1
54	1	1	0	0	0	1	1	1
55	1	1	1	0	0	0	1	1
61	1	1	1	1	0	0	0	1
67	1	1	1	1	1	0	0	0
80	1	1	1	1	1	1	0	0

Таблица 1: Матрица для F_1

Рис. 1: Граф для F_1

m_i	16	18	46	54	55	61	67	80
16	1	0	0	0	0	0	0	0
18	1	1	0	0	0	0	0	0
46	1	0	1	0	0	0	0	0
54	0	0	0	1	0	0	0	0
55	0	0	0	1	1	0	0	0
61	0	0	0	0	0	1	0	0
67	1	0	1	1	1	1	1	0
80	0	0	0	0	0	0	0	1

Таблица 2: Матрица для F_2

Рис. 2: Граф для F_2

m_i	16	18	46	54	55	61	67	80
16	1	1	0	0	0	0	0	0
18	1	1	0	0	0	0	0	0
46	0	0	1	0	0	0	0	0
54	0	0	0	1	1	0	0	0
55	0	0	0	1	1	0	0	0
61	0	0	0	0	0	1	0	0
67	0	0	0	0	0	0	1	0
80	0	0	0	0	0	0	0	1

Таблица 3: Матрица для F_3

Рис. 3: Граф для F_3

m_i	16	18	46	54	55	61	67	80
16	0	0	0	0	1	1	1	0
18	0	0	0	0	1	1	1	0
46	0	0	0	0	1	1	1	0
54	0	0	0	0	1	1	1	0
55	1	1	1	1	0	0	0	1
61	1	1	1	1	0	0	0	1
67	1	1	1	1	0	0	0	1
80	0	0	0	0	1	1	1	0

Таблица 4: Матрица для F_4

Рис. 4: Граф для F_4

m_i	16	18	46	54	55	61	67	80
16	1	1	0	0	0	0	0	0
18	1	1	0	0	0	0	0	0
46	0	0	1	0	0	0	0	0
54	0	0	0	1	1	0	0	0
55	0	0	0	1	1	0	0	0
61	0	0	0	0	0	1	0	0
67	0	0	0	0	0	0	1	0
80	0	0	0	0	0	0	0	1

Таблица 5: Матрица для F_5

Рис. 5: Граф для F_5

Задание 3. Определить, являются ли эти б.о. отношениями эквивалентности, частичного порядка, линейного порядка, строгого порядка.

- F_1 не является ни одним из типов отношений, т.к. оно арефлексивно, симметрично и нетранзитивно
- F_2 является отношением частичного порядка, т.к. оно рефлексивно, антисимметрично и транзитивно. Оно не является отношением линейного порядка, т.к. существуют пары элементов

из множества, не связанных этим отношением (например, 18 и 80, 46 и 54).

- \bullet F_3 является отношением эквивалентности, т.к. оно рефлексивно, симметрично и транзитивно.
- \bullet F_4 не является ни одним из типов отношений, т.к. оно арефлексивно, симметрично и нетранзитивно.
- \bullet F_5 является отношением эквивалентности, т.к. оно рефлексивно, симметрично и транзитивно.

Задание 4. Для отношений эквивалентности построить классы эквивалентности.

- Классы эквивалентности для F_3 : $\{16, 18\}, \{54, 55\}, \{46\}, \{61\}, \{67\}, \{80\};$
- Классы эквивалентности для F_5 : $\{16,18\},\{54,55\},\{46\},\{61\},\{67\},\{80\}.$

Задание 5. Для отношений частичного порядка применить алгоритм топологической сортировки и получить отношение линейного порядка.

Рис. 6: Решение задания 5

Задание 6. Для нетранзитивных отношений построить транзитивное замыкание, используя алгоритм Уоршелла.

Построим транзитивное замыкание для F_1 :

$\sqrt{0}$	0	1	1	1	1	1_	1)
0	0	0	1	1	1	1	1
1	0	0	01	1	1	1	1
L	Т.	101	ν_1	\boldsymbol{L}		Т.	Т.
1	1	1	81	<u>Ø1</u>	Ø1	1	1
1	1	1	1	Ø <u>1</u>	Ø1	Ø1	1
1	1	1	1	1	01	Ø 1	Ø1
(1)	1	1 1 1 1	1	1	1	\emptyset_1	01
\sim							'

Рис. 7: Шаг 1

На шаге 2 матрица не изменится.

	181	. 0	\bigcap	1	1	1	1	1
	0	0	0	1	1	1	1	1
	1	0	1	1	1	1	1	
1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1
	$\backslash 1$	1	$\lfloor 1 \rfloor$	1	1	1	1	1/

Рис. 8: Шаг 3

/1	Ø1	1			1	1	1
Ø1	$\emptyset 1$	Ø1	1	1	1	1	1
1	01		1	1	1	1	1
1		1	1		1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
$\backslash 1$	1	1	1	1	1	1	1/
			- レン	/			,

Рис. 9: Шаг 4

Построим транзитивное замыкание для F_4 :

	_							
	I_0	0	0	0	1	1	1	0)
	0	0	0	0	1	1	1	0
ı	0	0	0	0	1	1	1	0
ı	0	0	0	0	1	1	1	0
ı	1	1	1	1	01	81	Ø 1	1
I	1	1	1	1	Ø1	Ø1	Ø1	1
l	$\frac{1}{0}$	1	1	1	91	0/1	01	1
	(0)	0	0	0	1	1	1 1 1 9 1 9 1 9 1	0
	•							,

Рис. 10: Шаг 1

На шаге 2, 3 и 4 матрица не изменится.

Рис. 11: Шаг 5