AD-A236 543

2

HDL-TM-1-1 May 1991

Possible Hosts for Quadruply Ionized $3d^N$ Transition Metal Ions: Na_2TiSiO_5 , $Y_2SiBe_2O_7$, $Bi_4X_3O_{12}$, and $Bi_{12}XO_{20}$ (X = Si, Ge)

by Clyde A. Morrison

U.S. Army Laborat y Command Harry Diamond aboratories
Adelphi, Mi. 20788 97

Approved for public : use; distrik ion unlimited.

91-01503

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

gathering and maintaining the data needed, and compl collection of information, including suggestions for redu Davis Highway, Suite 1204, Arlington, VA 22202-4302	eting and reviewing the collection of information. So cing this burden, to Washington Headquarters Sen, and to the Office of Management and Budget, Pag-	end comments regarding rices, Directorate for Info servicek Reduction Proje	this burden estimate or any other expect of this permittion Operations and Reports, 1215 Jefferson et (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE		ND DATES COVERED
	May 1991	Interim, 1 Ju	n 90 to 15 Aug 90
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Possible Hosts for Quadruply Ior		: Na ₂ TiSiO ₅ ,	DA PR: AH44
$Y_2SiBe_2O_7$, $Bi_4X_3O_{12}$, and $Bi_{12}XO_{12}$	$Q_{20}(X = S1, Ge)$		PE: 61102H44
6. AUTHOR(S)			
Clyde A. Morrison			
7. PERFORMING ORGANIZATION NAME(S) AND A	DDRE38(E3)		a. PERFORMING ORGANIZATION REPORT NUMBER
Harry Diamond Laboratories 2800 Powder Mill Road			HDL-TM-91-1
Adelphi, MD 20783-1197			
9. SPONSORINGAIONITORING AGENCY NAME(S)	AMD ADDROG/ES		14 000110000110410117000110
U.S. Army Laboratory Command	• • •		10. SPONSORING/MONITORING AGENCY REPORT NUMBER
2800 Powder Mill Road	•		
Adelphi, MD 20783-1145			
11. SUPPLEMENTARY NOTES			<u> </u>
AMS code: 611102.H440011			
HDL PR: AE1051			
12a, DISTRIBUTION/AVAILABILITY STATEMENT		·	126. DISTRIBUTION CODE
Approved for public release; dist	ribution unlimited.		
]			
[1

13. ABSTRACT (Maximum 200 words)

This report provides the crystal-field splitting of Cr4+ in the host materials Na₂TiSiO₅, Y₂SiBe₂O₇, Bi₄X₃O₁₂, and Bi₁₂XO₂₀. The strength of the crystal field is estimated by evaluating the coefficients of a multipole expansion of the crystal field for the Ti, Si, or Ge site and using empirical values of the radial integrals, <r >>. With the exception of the Ti site in Na₂TiSiO₇, the Si or Ge sites $(D_{24} \text{ or } S_4 \text{ symmetry})$ are, to a certain degree, approximately tetrahedral. In the material Bi₁₂XO₂₀ the X site (Ge or Si) has the cubic symmetry T. Estimated values of the parameters for the quadruply ionized $3d^{N}$ electronic configurations are given for X = Ge. The energy levels are calculated with and without the spin-orbit interaction. The spin-orbit constant is chosen equal to the free-ion value.

14. SUBJECT TERMS			15. NUMBER OF PAGES 56
Crt. Na TiSiO. Y SiBe O	, Bi ₄ Ge ₃ O ₁₂ , Bi ₄ Si ₃ O ₁₂ , Bi ₁₂ O	GeO Bi SiO V ⁴⁺ .	
Mn ⁴⁺ , Fe ⁴⁺ , Co ⁴⁺ , Ni ⁴⁺ , Zn ⁴⁺	God+ optical spectra	20, 21,20,000, ,	16. PRICE CODE
IVIII, I'E, CO, IVI, ZII	, Ga , opucai spectra		
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	17. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	UL

Contents

		P	age
1.	Intro	oduction	7
2.	The	ory	8
3.	Para	meters for Cr4+ and Cubic Approximation	10
4.	Ener	rgy Level of Cr4+ in Each Host	13
	4.1	Cr4+:Na ₂ TiSiO ₅	13
		4.1.1 Ti Site	13
	4.2 4.3	Cr^{4+} : $Y_2SiBe_2O_7$	13 14
		4.3.1 Bi ₄ Si ₃ O ₁₂ 4.3.2 Bi ₄ Ge ₃ O ₁₂	14
5.	Ene	rgy Levels of the X ⁴ + Ions in Bi ₁₂ GeO ₂₀	20
6.	Con	clusion	38
7.	Refe	erences	39
Аp	pendi	x A.—Crystallographic and X-Ray Data	.41
Dis	tribut	ion	51
		Tables	
1	. Р	rarameters for Mn ⁴⁺ from Hartree-Fock, free-ion, and Cs ₂ GeF ₆ :Mn ⁴⁺	9
2		Tree-ion parameters and effective ρ_k for quadruply ionized ions of the d^N series derived from Cs ₂ GeF ₆ experimental	11
3	. А	approximate crystal-field parameters for Cr4+ in the four host materials	.12
4	. A	approximate crystal-field parameters for X ⁴⁺ in the Ge site in Bi ₁₂ GeO ₂₀	.12
5	. Е	energy levels of Cr4+ using the parameters of tables 2 and 3	.15
		.1 For Ti site in Na ₂ TiSiO ₅ , cubic approximation, no spin-orbit	

Tables (cont'd)

		Page
	5.3 For Si site in Na ₂ TiSiO ₅ , cubic approximation, no spin-orbit	16
	5.4 For Si site in Na ₂ TiSiO ₅ , D _{2d} symmetry, no spin-orbit	16
	5.5 For Si site in Y ₂ SiBe ₂ O ₇ , cubic approximation, no spin-orbit	
	5.6 For Si site in Y ₂ SiBe ₂ O ₇ , S ₄ symmetry, no spin-orbit	
	5.7 For Si site in Bi ₄ Si ₃ O ₁₂ , cubic approximation, no spin-orbit	
	5.8 For Si site in Bi ₄ Si ₃ O ₁₂ , S ₄ symmetry, no spin-orbit	
	5.9 For Ge site in Bi ₄ Ge ₃ O ₁₂ , cubic approximation, no spin-orbit	
	5.10 For Ge site in Bi ₄ Ge ₃ O ₁₂ , cubic approximation, no spin orbit	
6.	Energy levels for V ⁴⁺ using the parameters of tables 2 and 4, for Ge site in	
	Bi ₁₂ GeO ₂₀ , T symmetry, no spin orbit	22
7 .	Energy levels for V ⁴⁺ using the parameters of tables 2 and 4, for Ge site in	
	$Bi_{12}GeO_{20}$, T symmetry, $\zeta = 250 \text{ cm}^{-1}$	22
8.	Energy levels for Cr ⁴⁺ using the parameters of tables 2 and 4, for Ge site in	
	Bi ₁₂ GeO ₂₀ , T symmetry, no spin orbit	22
_		
9.	Energy levels for Cr ⁴⁺ using the parameters of tables 2 and 4, for Ge site in	
	$Bi_{12}GeO_{20}$, T symmetry, $\zeta = 319 \text{ cm}^{-1}$	23
10	Parameter to the Co. M. At a stand to the constant of continuous and A. Co. Co. Stanton	
10.	Energy levels for Mn ⁴⁺ using the parameters of tables 2 and 4, for Ge site in	24
	Bi ₁₂ GeO ₂₀ , T symmetry, no spin orbit	24
11.	Energy levels for Mn4+ using the nerometers of tables 2 and 4 for Ga site in	
11.	Energy levels for Mn ⁴⁺ using the parameters of tables 2 and 4, for Ge site in $Bi_{12}GeO_{20}$, T symmetry, $\zeta = 405$ cm ⁻¹	25
	Bij2GeO ₂₀ , I symmetry, $\zeta = 403$ cm ⁻¹	23
12.	Energy levels for Fe ⁴⁺ using the parameters of tables 2 and 4, for Ge site in	
12.	Bi ₁₂ GeO ₁₂ , T symmetry, no spin orbit	26
	Dilzootz, i symmony, no spin orote	
13.	Energy levels for Fe ⁴⁺ using the parameters of tables 2 and 4, for Ge site in	
	Bi ₁₂ GeO ₂₀ , T symmetry, $\zeta = 513$ cm ⁻¹	27
	12-0-20, - 0,, - 0-0 o	
14.	Energy levels for Co ⁴⁺ using the parameters of tables 2 and 4, for Ge site in	
	Bi ₁₂ GeO ₂₀ , T symmetry, no spin orbit	29
15.	Energy levels for Co ⁴⁺ using the parameters of tables 2 and 4, for Ge site in	
	$Bi_{12}GeO_{20}$, T symmetry, $\zeta = 654 \text{ cm}^{-1}$	30
16.	Energy levels for Ni ⁴⁺ using the parameters of tables 2 and 4, for Ge site in	
	Bi ₁₂ GeO ₂₀ , T symmetry, no spin orbit	32
17.	Energy levels for Ni ⁴⁺ using the parameters of tables 2 and 4, for Ge site in	
	$Bi_{12}GeO_{20}$, T symmetry, $\zeta = 830 \text{ cm}^{-1}$	33

Tables (cont'd)

		Page
18.	Energy levels for Cu ⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi ₁₂ GeO ₂₀ , T symmetry, no spin orbit	35
19.	Energy levels for Cu ⁴⁺ using the parameters of tables 2 and 4, for Ge site in $Bi_{12}GeO_{20}$, T symmetry $\zeta = 1008$ cm ⁻¹	36
20.	Energy levels for Zn ⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi ₁₂ GeO ₂₀ , T symmetry, no spin orbit	37
21.	Energy levels for Zn ⁴⁺ using the parameters of tables 2 and 4, for Ge site in $Bi_{12}GeO_{20}$, T symmetry, $\zeta = 1203$ cm ⁻¹	37
22.	Energy levels for Ga ⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi ₁₂ GeO ₂₀ , T symmetry, no spin orbit	38
23.	Energy levels for Ga ⁴⁺ using the parameters of tables 2 and 4, for Ge site $Bi_{12}GeO_{20}$, T symmetry, $\zeta = 1496$ cm ⁻¹	38

Acces	sion For	/					
NTIS	GRA&I	V					
DTIC	DTIC TAB						
Unann	ounced	ă i					
Just 1	fication						
By							
Avai	lability	Codes					
Dist	Avail and Special						
A-1							

1. Introduction

We have selected six compounds as possible host materials for the study of the optical spectra of the quadruply ionized elements with a $3d^N$ electronic configuration (X^{4+}). Previous hosts for which optical spectra of these ions have been investigated have serious drawbacks to the analysis of the experimental data. Frequently the X^{4+} ion is assumed to enter substitutionally for a triply ionized element of the host, such as Mn⁴⁺ in yttrium aluminum garnet (YAG) [1]. In such a case the charge compensation generally perturbs the spectra, giving many more lines than should exist for Mn⁴⁺. Further, the Mn⁴⁺ is assumed to go into the C_{3i} site. If it did, the electric dipole transitions would be forbidden and only magnetic dipole transition would be allowed for the zero phonon lines. Thus, the numerous vibrational assisted electric dipole transitions would be as large or larger than the zero phonon lines. Also, in most of the cases reported, the X^{4+} ion replaces a quadruply ionized element of the host, but the site symmetry does not allow electric dipole transitions and the spectra must be sorted out from the numerous vibronics. An additional difficulty arises when the symmetry of the site occupied by the transition metal ion is low, such as C_2 symmetry. Then the number of crystal-field parameters is large, thus requiring a large number of levels of the ion to be determined. In our selection of host materials presented here, we have attempted to avoid some of these difficulties.

Each of the host crystals have either Si^{4+} or Ge^{4+} as a constituent and we assume that under suitable growth conditions a number of X^{4+} ions can replace these ions substitutionally. In all six host crystals, the Si or Ge site has approximately tetrahedral symmetry (either S_4 or D_{2d} symmetry) and in $Bi_{12}XO_{20}$ (X = Ge, Si) the X site has the tetrahedral cubic symmetry, T. In the crystal Na_2TiSiO_5 , the lighter X^{4+} ions (V, Cr) might enter the Ti site, which has approximately octahedral symmetry (C_{4v}), but the heavier X^{4+} ions (Ni, Cu) could replace the Si ion, which has approximately tetrahedral symmetry (D_{2d}). In all cases the actual symmetry of the site has a maximum of three crystal-field parameters (B_{20} , B_{40} , and B_{44}) while in $Bi_{12}XO_{20}$ the X site has only one crystal-field parameter (B_{40}). The symmetry of the Ge and Si sites in all these compounds allows electric dipole transitions so that, in general, the electronic transitions would be stronger than the vibronic lines, and identification of the levels would be easier.

In this report, the detailed x-ray data on the six host materials are given along with references to the growth of these crystals. The x-ray data are used to obtain the crystal-field components, A_{kq} , and the monopole components of A_{kq} are used to predict the crystal-field parameters B_{kq} given by

$$B_{kq} = \rho_k A_{kq} , \qquad (1)$$

where the ρ_k are effective values of $\langle r^k \rangle$. The experimental data reported for Mn⁴⁺ in Cs₂GeF₆ are used to obtain an approximate set of ρ_k for the X^{4+} ions with the $3d^N$ electronic configuration. Because of the recent interest in the study of Cr⁴⁺ in a crystal-field of tetrahedral symmetry, we have calculated the energy levels of this ion in each of the host materials. In addition, we calculated the energy levels of all the X^{4+} ions with the $3d^N$ electronic configuration in the Ge site in Bi₁₂GeO₂₀. This latter calculation is done with and without the spin-orbit interaction.

2. Theory

The free ion Hamiltonian for a configuration of d^N ion is taken as

$$H_{FI} = F^{(2)}g_2 + F^{(4)}g_4 + \zeta \sum_{i=1}^{N} \hat{l}_i \cdot \vec{s}_i , \qquad (2)$$

with

$$g_k = \sum_{i>j} \sum_{q=-k}^k C_{kq}^*(i) C_{kq}(j)$$
, (3)

and

$$C_{kq} = \sqrt{4\pi/(2k+1)} Y_{kq}$$
 (4)

The $F^{(k)}$ and ζ have been calculated with the use of Hartree-Fock wavefunctions [2], and determined by fitting the free-ion spectrum [3] and fitting the spectrum in solids [4]. The matrix elements of g_k , for all the states of the d^N configurations, are listed by Nielson and Koster [5], and we use their labels here. Frequently, the Racah parameters B and C are used in place of the Slater parameters, $F^{(k)}$, and the relations

$$F^{(2)} = 7(7B + C)$$

and

$$F^{(4)} = \frac{63}{5}C\tag{5}$$

can be used to convert from one set of parameters to the other. In general the Slater parameters are considerably reduced when an ion enters a solid. Furthermore, the values for these same parameters obtained by fitting the free ion spectra are less than the corresponding values computed by using Hartree-Fock wavefunctions. As an example of the reduction of the free-ion parameters, we have chosen Mn⁴⁺ in the host Cs₂GeF₆ with the parameters for each approximation listed in table 1 (from Morrison [4], p 133).

Table 1. Parameters for Mn⁴⁺ from Hartree-Fock, free-ion, and Cs₂GeF₆:Mn⁴⁺

Parameters	Calculated ^a H-F	Experimental ^b free ion	Experimental ^c Cs ₂ GeF ₆ :Mn ⁴⁺
$F^{(2)}$ (cm ⁻¹)	101,615	86,939	55,644
F ⁽⁴⁾ (cm ⁻¹)	64,078	54,219	49,692
ζ (cm ⁻¹)	436	405	380
$\langle r^2 \rangle (\mathring{A}^2)$	0.3568	_]	0.8104
<r4> (Å⁴)</r4>	0.4097	·	2.114
B (cm ^{−1})	1,347	1,160	572.2
C (cm ⁻¹)	5,086	4,303	3,944

^aMorrison [4], p 21; ^bp 14; and ^cp 133.

We see that the reduction of B in going from the Hartree-Fock value to the value obtained for Mn^{4+} in Cs_2GeF_6 is quite large.

Further, the value Dq for Mn⁴⁺ in Cs₂GeF₆ is 2,185 cm⁻¹ so that Dq/B = 3.82. Whereas, if the Dq is computed using $< r^4 >$ from Hartree-Fock values, the crystal-field components, A_{40} , and equation (1), we have Dq = 368.5 cm⁻¹ and Dq/B = 0.274, which is less than 1/10 the experimental value of Dq/B. Thus, values of Dq/B (which is one of the fundamental quantities extracted from comparing experiment when one uses a standard Tanabe-Sugano plot), calculated by Hartree-Fock values greatly underestimate the experimental values. This is not too surprising since the value of B decreases significantly when the ion enters the solid, whereas the radial wavefunction of the transition metal ion expands, causing an increase of $< r^4 >$. These two effects cause the ratio Dq/B to increase dramatically.

From the values given in table 1 we find for Mn⁴⁺ in Cs₂GeF₆ that $F^{(2)}/F^{(2)}_{H-F} = 0.5476$, $F^{(4)}/F^{(4)}_{H-F} = 0.7755$, $\langle r^2 \rangle / \langle r^2 \rangle_{H-F} = 2.271$, and $\langle r^4 \rangle / \langle r^4 \rangle_{H-F} = 5.159$. We then assumed for the quadruply ionized $3d^N$ ions that $F^{(2)} = 0.5476$ $F^{(2)}_{H-F}$, $F^{(4)} = 0.7755$ $F^{(4)}_{H-F}$, $\rho_2 = 2.271$ $\langle r^2 \rangle_{H-F}$, and $\rho_4 = 5.159$ $\langle r^4 \rangle_{H-F}$. These values, along with the free-ion value of ζ , are given in table 2.

The crystal-field Hamiltonian for the electronic configuration d^N appropriate for the hosts here is

$$H_{CEF} = B_{20} \sum_{i=1}^{N} C_{20}(i) + B_{40} \sum_{i=1}^{N} C_{40}(i) + B_{44} \sum_{i=1}^{N} \left[C_{44}(i) + C_{4-4}(i) \right]$$
 (6)

with all B_{kq} real. In the cubic approximation, $B_{20} = 0$ and $B_{44} = (5/14)^{1/2}$ B_{40} . If $B_{40} < 0$ then we have tetrahedral cubic symmetry and if $B_{40} > 0$ then the symmetry is octahedral. For both cases, $B_{40} = 21 Dq$. A large variety of different parameters are in use for the description of the crystal-field interaction of equation (6); for example, see Konig and Kremer [6]. The two most frequently quoted are from Ballhausen [7]:

$$B_{20} = -7Ds ,$$

$$B_{40} = -21 Dq - 21 Dt ,$$

$$B_{44} = \frac{3}{2} \sqrt{70} Dq ,$$
(7)

and from Griffith [8]:

$$B_{20} = \delta - \mu ,$$

$$B_{40} = 21 Dq - \left(\delta + \frac{3\mu}{4}\right) \sqrt{\frac{7}{10}} ,$$

$$B_{44} = 3 \sqrt{\frac{7}{10}} Dq + \left(\delta + \frac{3\mu}{4}\right) \sqrt{\frac{7}{10}} .$$
(8)

3. Parameters for Cr4+ and Cubic Approximation

The parameters ρ_2 and ρ_4 given in table 2 are used to obtain a set of crystal-field parameters, B_{kq} , for Cr^{4+} in each of the hosts. In obtaining the cubic approximate values, we use the rotational invariant, $S_k(X)$, defined as

$$S_k(X) = \left[\sum_{q=-k}^k X_{kq}^* X_{kq} \right]^{1/2} , \qquad (9)$$

where X_{kq} is a spherical tensor such as the crystal-field components, A_{kq} , or crystal-field parameters, B_{kq} . Since for the cubic approximation to the crystal-field given in equation (6) we have $B_{40}^c = (5/14)^{1/2} B_{40}^c$, then

$$S_4^c(B) = \sqrt{\frac{12}{7}} B_{44}^c \tag{10}$$

with

$$S_4(A) = \sqrt{A_{40}^2 + 2A_{44}^2} \quad , \tag{11}$$

and from equation (1) we have

$$B_{40}^c = \sqrt{\frac{7}{12}} \, \rho_4 S_4(A) \ , \tag{12}$$

and the sign of B_{40}^c is taken to be the same as A_{40} . The result given in equation (12) has been used with the monopole A_{kq} (see tables A-1.3, -1.4, -2.2, -3.3, and -3.4 in app A) to obtain the cubic approximation to the crystal-field parameters for Cr^{4+} in each of the host crystals. The

results are given in table 3 along with the Dq/B ratio for the cubic approximation ($B_{40}^c = 21 Dq$). In the following text, the results of tables 2 and 3 will be used to calculate energy levels for Cr^{4+} in each of the host materials. Both the cubic approximation and the full symmetry of the site are considered. In these calculations we ignore the spin-orbit interaction since it is very small.

Since the Ge site in $Bi_{12}GeO_{20}$ has cubic symmetry, the A_{kq} from table A-4.4 (see app A) are used to construct the parameters given in table 4.

Table 2. Free-ion parameters (cm $^{-1}$) and effective ρ_k (Å k) for quadruply ionized ionic of the $3d^N$ series derived from Cs_2GeF_6 experimental

		F ⁽²⁾	F ⁽⁴⁾			
Ion	nd ^N	В	C	ζ	ρ_2	ρ ₄
V	3d ¹			250	0.9988	3.350
Cr	3 <i>d</i> ²	52,726 541.6	47,131 3,741	319	0.8421	2.168
Mn	3 <i>d</i> ³	55,644 572.2	49,692 3,944	405	0.8103	2.114
Fe	3 <i>d</i> ⁴	58,465 601.7	52,160 4,140	513	0.6618	1.386
Co	3 <i>d</i> 5	61,393 632.3	54,736 4,344	654	0.6179	1.172
Ni	3 <i>d</i> 6	63,611 656.2	56,620 4,494	830	0.5671	0.9673
Cu	3d ⁷	66,073 682.4	58,743 4,662	1,008	0.5185	0.7862
Zn	3 <i>d</i> ⁸	68,582 709.1	60,914 4,834	1,203	0.4769	0.6191
Ga	3d ⁹	<u></u>		1,496	0.40878	0.4127

 $^{a}F^{(2)} = 0.5476 \; F^{(2)}_{H-F}, F^{(4)} = 0.7755 \; F^{(4)}_{H-F}, \; \zeta = free-ion --- except for \; Ga^{4+};$ for $Ga^{4+}, \; \zeta = \zeta_{H-F} --- \rho_2 = 2.271 \; <r^2>_{H-F}, \; and \; \rho_4 = 5.159 \; <r^4>_{H-F}. \; All \; the$ Hartree-Fock data and free-ion data are from Morrison [4], p 21.

Table 3. Approximate crystal-field parameters (cm⁻¹) for Cr⁴⁺ in the four host materials

No.	Host	Symmetry	B_{40}^{a}	Dq/B	B ₂₀	B ₄₀	B ₄₄	Table No.
1	Na ₂ TiSiO ₅ ^b	C ₄₀	39,297	3.46	15,959	39,148	23,610	4.1 and 4.2
2	Na ₂ TiSiO ₅ c	D_{2d}	-65,526	5.76	6,135	-68,134	-36,856	4.3 and 4.4
3	Y ₂ SiBeO ₇	S ₄	-59,251	5.21	8,445	-62,421	-32,574	4.5 and 4.6
4	Bi ₄ Si ₃ O ₁₂	S ₄	-68,043	5.98	~3,724	-64,793	-43,236	4.7 and 4.8
5	Bi ₄ Ge ₃ O ₁₂	S ₄	-48,292	4.25	~7,704	-41,352	-33,429	4.9 and 4.10

^aCubic approximation $B_{44} = \sqrt{5/14} B_{40}$. ^bTi site. ^cSi site.

Table 4. Approximate crystal-field parameters (cm $^{-1}$) for X^{4+} in the Ge site (T symmetry) in $\rm Bi_{12}GeO_{20}$

•	2 W		- /-
Ion	3d ^N	B_{40}^a	Dq/B
v	$3d^1$	-84,923	-
Cr	3d ²	-54,959	4.83
Mn	3 <i>d</i> 3	-53,590	4.46
Fe	3 <i>d</i> ⁴	-35,135	2.78
Со	3 <i>a</i> 5	-29,710	2.24
Ni	3 <i>d</i> 6	-24,521	1.78
Cu	3d ⁷	-19,930	1.39
Zn	3 <i>d</i> 8	-15,694	1.05
Ga	3 <i>d</i> 9	-10,462	 _

$$^{a}B_{44}=\sqrt{\frac{5}{14}}\;B_{40}.$$

4. Energy Level of Cr4+ in Each Host

4.1 Cr4+:Na₂TiSiO₅

4.1.1 Ti Site

The parameters to be used in equations (2) and (6) for the calculation of the energy levels of Cr^{4+} in the Ti site from tables 2 and 3 are $F^{(2)}$ = 52,726; $F^{(4)} = 47,131$; and $B_{40}^c = 39,297$ (cm⁻¹), with $B_{44}^c = (5/14)^{1/2} B_{40}^c$. The results are given in table 5.1. With the same $F^{(k)}$, but with B_{20} = 15,959; $B_{40} = 39,148$; and $B_{44} = 23,610$ (cm⁻¹) (C_{4v} symmetry), the results are given in table 5.2. In the cubic symmetry (octahedral) the ground state is ${}^3T_1(F)$, which in the full C_{4p} symmetry splits into a Γ_5 (E = 0) and Γ_2 with a splitting of 6300 cm⁻¹. This large splitting is caused by the very large value of B_{20} since the ratio of B_{44}/B_{40} is very close to the cubic ratio $(5/14)^{1/2}$. The ¹E level is split (Γ_1 and Γ_3 in C_{4v}) by approximately 17,000 cm⁻¹ so that the Γ_1 at 6,640 cm⁻¹ and the Γ_3 at 17,899 cm⁻¹ encompass the ${}^{1}T_{2}$ (Γ_{4} and Γ_{5} in C_{4v}). However, the largest splitting is the ${}^3T_1(P)$ at 24,467 cm⁻¹ which in the C_{4p} symmetry forms a Γ_2 at 18,091 cm⁻¹ and a Γ_5 at 32,363 cm⁻¹ encompassing the 3T_2 , which suffers a comparatively small splitting (~1050 cm⁻¹). These results indicate that it would be next to impossible to interpret the experimental data in terms of cubic symmetry, assuming that the approximate values of the parameters are reasonable.

4.1.2 Si Site

The parameter for the cubic approximation is $B_{40}^c = -65,526$ cm⁻¹ and for the full D_{2d} symmetry, $B_{20} = 6135$; $B_{40} = -68,134$; and $B_{44} = -36,856$ (cm⁻¹). The cubic results are given in table 5.3, and the D_{2d} results are in table 5.4. The 3A_2 ground state in cubic symmetry goes over to the Γ_3 state. (In the presence of spin-orbit coupling with $\zeta = 319$ cm⁻¹, this state becomes a Γ_5 doublet and a Γ_4 singlet with the Γ_5 lowest and the Γ_4 at 0.14 cm⁻¹.) The 1E level in cubic symmetry is split into a Γ_1 and Γ_3 with a splitting of 369 cm⁻¹. The 3T_2 band is split into a Γ_5 and Γ_4 band, and the $^3T_1(P)$ is split into a Γ_2 and Γ_5 band. However, these splittings are not too severe and a first analysis could be done, assuming tetrahedral cubic symmetry.

4.2 Cr^{4+} : $Y_2SiBe_2O_7$

The free-ion parameters given in table 2 and the crystal-field parameters given in table 3 are used to calculate the energy levels of Cr^{4+} in this host. The calculation for the cubic approximation is given in table 5.5; and for S_4 symmetry, in table 5.6. The 3A_2 level in the cubic approximation remains the lowest level in S_4 symmetry despite the

rather large value of B_{20} . However, the ^{1}E level is split by 795 cm⁻¹ which might lead to an experimental error in identification using cubic symmetry. Further, the $^{3}T_{2}$ is split by approximately 3000 cm⁻¹ and the $^{3}T_{1}(P)$ is split by approximately 7500 cm⁻¹, both of which could lead to confusion if the experimental data are interpreted in terms of a cubic approximation. The experimental data might be analyzed in cubic symmetry provided the above deviations are considered.

4.3 $\operatorname{Cr}^{4+}:\operatorname{Bi}_{4}X_{3}\operatorname{O}_{12}(X=\operatorname{Ge},\operatorname{Si})$

4.3.1 Bi₄Si₃O₁₂

With the use of the parameters of tables 2 and 3, the energy levels of Cr^{4+} in the Si site in this host were calculated, with the results given in tables 5.7 (cubic approximation) and 5.8 (S_4 symmetry). The splitting of the cubic 1E level by the S_4 symmetry crystal field is only 6 cm $^{-1}$, the splitting of the 3T_2 is approximately 3000 cm $^{-1}$, and that of the $^3T_1(P)$ is 3500 cm $^{-1}$. The experimental data on Cr^{4+} in this host can be crudely analyzed assuming a cubic approximation if one is aware of the possible large splitting of the 3T_2 and $^3T_1(P)$ states.

4.3.2 Bi₄Ge₃O₁₂

The parameters given in tables 2 and 3 are used to calculate the splittings of the levels of Cr^{4+} in this host. The results are given in tables 5.9 and 5.10. The splittings in the cubic approximation are smaller than in the previous host. However, the large value of B_{20} causes a greater splitting of the ^{1}E (66 cm⁻¹). Also, the large value of B_{20} causes the $^{3}T_{1}(F)$ to intersperse with the $^{3}T_{1}(P)$. This mixture of the cubic terms would make the analysis of the experimental data on Cr^{4+} in terms of a cubic approximation next to impossible.

Table 5. Energy levels (cm⁻¹) of Cr⁴⁺ using the parameters of tables 2 and 3: 5.1 For Ti site in Na₂TiSiO, cubic approximation, no spin-orbit

Level	I.R.ª	Energy (cm ⁻¹)	Free ion state
1 2 3 4 5 6 7 8 9 10	³ T ₁ (F) ¹ T ₂ ¹ E ³ T ₂ ¹ A ₁ ³ T ₁ (P) ¹ T ₂ ¹ T ₁ ³ A ₂ ¹ E ¹ A ₁	0 10,979 11,075 17,527 23,435 24,467 29,533 31,508 36,240 48,150 63,701	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

^aIrreducible representation of the O or T_d group, Mulligan notation.

5.2 For Ti site in Na₂TiSiO₅, C₄, symmetry, no spin-orbit

	J.2 I	A II SILC III I	va2115105,	C4, Symmetry, no spin-o	
Level	I.R.ª	Energy (cm ⁻¹)		Free ion state	
1	Γ_5	0	$0.88^{3}F$	$+ 0.12^{3}P$	
2	Γ_2	6,299	$0.97 {}^{3}F$	$+ 0.03^{3}P$	
3	Γ_1	6,639	$0.55 {}^{1}G$	$+ 0.41 ^{1}D + 0.04 ^{1}S$, !
4	Γ_5	10,907	$0.52^{-1}D$	$+ 0.48 {}^{1}G$	
5	Γ_4	17,751	0.56 ¹ D	$+ 0.44 {}^{1}G$	
6	Γ_3	17,899	0.51 ¹ G	$+ 0.49 ^{1}D$	
7	Γ_2	18,091	0.97 ³ P	$+ 0.03^{3}F$	
8	Γ_5	18,601	$0.92~^{3}F$	$+ 0.08^{3}P$	ļ
9	Γ_4	19,648	$1.00^{3}F$		į
10	Γ_2	24,595	1.00 ¹ G		
11	Γ_1	27,151	0.68 ¹ G	$+ 0.22 {}^{1}S + 0.10 {}^{1}D$)
12	Γ_5	29,962	0.61 ¹ G	$+ 0.39 ^{1}D$	
13	Γ_4	31,719	0.56 ¹ G	$+ 0.44 ^{1}D$	
14	Γ_5	32,362	$0.80^{3}P$	$+ 0.20^{3}F$	
15	Γ_3	38,461	$1.00^{3}F$		
16	Γ_5	40,120	0.91 ¹ G	$+ 0.09^{1}D$	
17	Γ_1	47,074	0.44 ¹ G	$+ 0.39 ^{1}D + 0.17 ^{1}S$,
18	Γ_3	50,384	0.51 ¹ D	$+ 0.49 {}^{1}G$	
19	Γ ₁	69,763	0.57 ¹ S	$+ 0.33 {}^{1}G + 0.10 {}^{1}D$	

^aIrreducible representation of the C_{4v} group (Bethe notation, G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

C_{4v} group selection rules for electric dipole transitions B. Double group

A. Single group

I.R.	Γ_1	Γ_2	Γ_3	Γ_4	Γ_5
Γ_1	π	0	0	0	σ
Γ_2	0	π	0	0	σ
Γ_3	0	0	π	0	σ
Γ_4	0	0	0	π	σ
Γ_5	σ	σ	σ	σ	π

I.R.	Γ_6	Γ_7
Г ₆	π,σ	σ
Γ ₇	σ	π,σ

Table 5. Energy levels (cm⁻¹) of Cr⁴⁺ using the parameters of tables 2 and 3 (cont'd): 5.3 For Si site in Na₂TiSiO₅, cubic approximation, no spin-orbit

Level	I.R.ª	Energy	Free ion state
1	3 _{A2}	0	$1.00^{3}F$
2	$^{3}A_{2}$ ^{1}E	11,758	$0.60 ^{1}D + 0.40 ^{1}G$
3	$1\overline{A}_1$	21,612	$0.76 {}^{1}G + 0.24 {}^{1}S$
4	$3T_2$	31,202	$1.00\ ^{3}F$
5	$3T_1$	37,307	$0.70^{3}P + 0.30^{3}F$
6	$^{1}T_{2}$	42,906	$0.63 ^{1}D + 0.37 ^{1}G$
ž	${}^{1}T_{1}^{2}$	45,184	$1.00^{-1}G$
8	3T_1	64,426	$0.70^{3}F + 0.30^{3}P$
ğ	^{1}E	74,817	$0.60 {}^{1}G + 0.40 {}^{1}D$
10	$^{1}\overline{T_{2}}$	74,872	$0.63 {}^{1}G + 0.37 {}^{1}D$
11	$^{1}\overline{A}_{1}$	92,874	$0.76 {}^{1}S + 0.24 {}^{1}G$

alrreducible representation of the O or Ta group (Mulligan notation).

5.4 For Si site in Na₂TiSiO₅, D_{2d} symmetry, no spin-orbit

5.4 For Si site in Na ₂ 11SiO ₅ , D _{2d} symmetry, no spin-orbit									
Level	I.R.ª	Energy		F	ree ion sta	te			
1	Γ_3	0	$1.00^{3}F$						
	Γ_1	11,392	0.58 ¹ D	+	$0.41 {}^{1}G$	+	0.01 ¹ S		
2 3	Γ_3	11,760	0.60 ¹ D	+	$0.40^{-1}G$				
4	Γ_1	21,961	0.74 ¹ G	+	$0.23^{-1}S$	+	$0.02~^{1}D$		
5	Γ_4	29,374	$1.00^{3}F$						
6	Γ ₅	31,960	0.99 ³ F	+	$0.01^{3}P$				
7	Γ_2	33,585	0.72 ³ P	+	$0.28^{3}F$				
8	Γ_5	39,196	0.67 ³ P	+	$0.33 {}^{3}F$				
9	Γ_4	41,092	$0.62 ^{1}D$	+	$0.38 {}^{1}G$				
10	Γ_2	41,385	1.00 ¹ G						
11	Γ_5	43,547	$0.60 ^{1}D$	+	0.40 ¹ G				
12	Γ_{5}	47,235	0.96 ¹ G	+	$0.04 ^{1}D$				
13	Γ_5	63,018	$0.68^{3}F$	+	$0.32\ ^{3}P$				
14	Γ_2	67,051	$0.72^{3}F$	+	$0.28\ ^{3}P$				
15	r_1	71,288	$0.59 {}^{1}G$	+	$0.38 ^{1}D$	+	0.03 ¹ S		
16	Γ_5	73,418	$0.63 {}^{1}G$	+	$0.37^{-1}D$				
17	Γ_3	77,517	$0.60~^{1}G$	+	$0.40^{-1}D$				
18	Γ ₄	77,560	$0.62 {}^{1}G$	+	$0.38^{-1}D$				
19	Γ_1	93,496	0.73 ¹ S	+	$0.25 {}^{1}G$	+	$0.01^{-1}D$		
	1/1/2 7 7 7		of the Day or	0110	IC F Kos	or I	O Dimmoci		

^aIrreducible representations of the D_{2d} group (G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

D_{2d} group selection rules for electric dipole transitions

A Single group

A. Single	group _				
I.R.	Γ_{1}	Γ_2	Γ_3	Γ_4	Γ_5
Γ_1	0	0	0	π	σ
Γ_2	0	0	π	0	σ
Γ_3	0	π	0	0	σ
Γ_{4}	π	0	0	0	σ
Γ ₅	σ	σ	σ	σ	π

B. Double group I.R. $\Gamma_{\underline{7}}$ Γ_6 $\overline{\Gamma_6}$ σ π,σ Γ_7 π,σ

Table 5. Energy levels (cm⁻¹) of Cr⁴⁺ using the parameters of tables 2 and 3 (cont'd): 5.5 For Si site in Y₂SiBe₂O₇, cubic approximation, no spin orbit

No.	I.R.ª	Energy (cm ⁻¹)	Free ion state		
1 2 3 4 5 6 7 8 9 10	3A ₂ 1E 1A ₁ 3T ₂ 3T ₁ (P) 1T ₂ 1T ₁ 3T ₁ (F) 1E 1T ₂ 1T ₁ 1E	0 11,752 21,428 28,214 34,270 39,907 42,195 58,498 68,847 68,907 87,082	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

alreaducible representations of the T_d or O group (Mulligan notation).

5.6 For Si site in Y2SiBe2O7, S4 symmetry, no spin-orbit

No.	I.R.ª	Energy (cm ⁻¹)			ree ion stat	e	
1	Γ_2	0	$1.00^{3}F$				
2	Γ_1	10,960	0.56 ¹ D	+	$0.42 {}^{1}G$	+	0.02 ¹ S
3	Γ_2	11,756	$0.60 ^{1}D$	+	$0.40^{-1}G$		
4	Γ_1	22,179	0.74 ¹ G	+	0.21 ¹ S	+	$0.05\ ^{1}D$
5	Γ_2	25,955	1.00 ³ F				
6	Γ _{3,4}	29,044	$0.98^{3}F$	+	$0.02\ ^{3}P$		
7	Γ_1	29,188	0.71 ³ P	+	$0.29^{3}F$		
8	Γ _{3,4}	36,886	0.63 ³ P	+	$0.37 {}^{3}F$		
9	Γ_1	36,995	1.00 ¹ G				
10	Γ_2	37,668	$0.62 ^{1}D$	+	$0.38 {}^{1}G$		
11	Γ _{3,4}	40,543	0.59 ¹ D	+	$0.41^{-1}G$		
12	Γ _{3,4}	45,092	0.94 ¹ G	+	$0.06~^{1}D$		
13	Γ _{3,4}	56,644	$0.65^{3}F$	+	$0.35 ^{3}P$		
14	Γ_1	61,927	0.71 ³ F	+	$0.29^{3}P$		
15	Γ_1	63,966	0.59 ¹ G	+	$0.37 ^{1}D$	+	0.04 ¹ S
16	Γ _{3,4}	66,965	0.64 ¹ G	+	$0.36^{-1}D$		
17	Γ_2	72,391	0.60 ¹ G	+	$0.40^{-1}D$		
18	Γ_2	72,434	0.62 ¹ G	+	$0.38^{-1}D$		
19	Γ_1	88,092	0.73 ¹ S	+	0.25 ¹ G	+	$0.02~^{1}D$

^aIrreducible representations of the S_4 group, $\Gamma_{3,4} = \Gamma_3 + \Gamma_4$ (Bethe notation, G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

 S_4 group selection rules for electric dipole transitions

A. Single group

ii. Single group								
I.R.	Γ_1	Γ_2	Γ_3	Γ_4				
Γ_1	0	π	σ	σ				
Γ_2	π	0	σ	σ				
Γ_3	σ	σ	0	π				
Γ_4	σ	σ	π	0				

B. Double group

	D. Dodolo B.oup								
	I.R.	Γ_5	Γ_6	Γ_7	Γ_8				
I	Γ_5	0	σ	π	σ				
	Γ_6	σ	0	σ	π				
ĺ	Γ_7	π	σ	0	σ				
	Γ_8	σ	π	σ	0				

Table 5. Energy levels (cm⁻¹) of Cr⁴⁺ using the parameters of tables 2 and 3 (cont'd): 5.7 For Si site in Bi₄Si₃O₁₂, cubic approximation, no spin-orbit

No.	I.R.ª	Energy (cm ⁻¹)	Free ion state			
1	$^{3}A_{2}$	0	$1.00^{3}F$			
2	¹ <i>E</i> ¯	11,760	$0.60 ^{1}D + 0.40 ^{1}G$			
3	¹ A ₁	21,678	$0.75 {}^{1}G + 0.25 {}^{1}S$			
4	3T_2	32,401	$1.00~^{3}F$			
5	$^3T_1(P)$	38,523	$0.70^{3}P + 0.30^{3}F$			
6	$^{1}T_{2}$	44,109	$0.63 {}^{1}D + 0.37 {}^{1}G$			
7	$1T_1$	46,382	$1.00^{-1}G$			
8	$^{3}T_{1}(F)$	66,806	$0.70^{3}F + 0.30^{3}P$			
9	^{1}E	77,212	$0.60 {}^{1}G + 0.40 {}^{1}D$			
10	$1T_2$	77,265	$0.63 {}^{1}G + 0.37 {}^{1}D$			
11	$^{1}A_{1}^{-}$	95,206	$0.75 {}^{1}S + 0.25 {}^{1}G$			

^aIrreducible representations of the T_d or O group (Mulligan notation).

5.8 For Si site in Bi₄Si₃O₁₂, S₄ symmetry, no spin-orbit

	5.8 For Si site in Bi4Si3O12, 34 symmetry, no spin-orbit								
No.	I.R.ª	Energy (cm ⁻¹)		F	ree ion state	•			
1	Γ_2	0	$1.00^{3}F$						
2	Γ_1	11,752	0.60 ¹ D	+	$0.40^{-1}G$		İ		
3	Γ_2	11,759	0.60 ¹ D	+	$0.40^{1}G$				
4	Γ_1	21,680	0.75 ¹ G	+	0.25 ¹ S				
5	Γ _{3,4}	31,300	1.00 ³ F						
6	Γ_2	34,451	1.00 ³ F						
7	Γ _{3,4}	37,292	0.71 ³ P	+	$0.29^{3}F$				
8	Γ_1	40,826	0.68 ³ P	+	$0.32\ ^{3}F$				
9	Γ _{3,4}	43,008	0.62 ¹ D	+	$0.38 {}^{1}G$				
10	Γ _{3,4}	45,129	1.00 ¹ G						
11	Γ_2	46,142	0.64 ¹ D	+	$0.36 {}^{1}G$				
12	Γ_1	48,761	1.00 ¹ G						
13	Γ_1	64,521	0.68 ³ F	+	$0.32^{3}P$				
14	Γ3,4	67,812	0.71 ³ F	+	$0.29^{3}P$				
15	Γ_2	74,854	0.60 ¹ G	+	$0.40\ ^{1}D$				
16	Γ_2	74,921	0.64 ¹ G	+	$0.36\ ^{1}D$				
17	Γ _{3,4}	78,293	0.62 ¹ G	+	$0.38\ ^{1}D$				
18	Γ_1	78,772	0.59 ¹ G	+	$0.39\ ^{1}D$	+	0.03 ¹ S		
19	Γ_1	95,721	0.72 ¹ S	+	$0.26 {}^{1}G$	+	0.01 ¹ D		

alreaducible representations of the S_4 group, $\Gamma_{3,4} = \Gamma_3 + \Gamma_4$ (Bethe notation, G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

Note: See table 5.6 for allowed transitions.

Table 5. Energy levels (cm⁻¹) of Cr⁴⁺ using the parameters of tables 2 and 3 (cont'd): 5.9 For Ge site in Bi₄Ge₃O₁₂, cubic approximation, no spin-orbit

No.	I.R.ª	Energy (cm ⁻¹)	Free ion state			
1	3A_2	0	$1.00^{3}F$		-	
1 2 3 4 5 6 7	'E	11,738	0.61 ¹ D	+	0.39 ¹ G	
3	A_1	21,015	0.80 ¹ G	+	0.20 ¹ S	
4	3T_2	22,996	1.00 ³ F			
5	$3T_1(P)$	28,931	0.65 ³ P	+	$0.35 {}^{3}F$	
6	$1T_2$	34,662	0.65 ¹ D	+	$0.35 {}^{1}G$	
7	$1T_1$	36,977	1.00 ¹ G			
8	$3T_1(F)$	48,182	$0.65^{3}F$	+	0.35 ³ P	
8 9	$ {}^{1}E$	58,424	0.61 ¹ G	+	0.39 ¹ D	
10	$1T_2$	58,497	0.65 ¹ G	+	0.35 ¹ D	
11	$^{1}A_{1}$	77,058	0.80 ¹ S	+	$0.20^{-1}G$	

alreaducible representations of the T_d or O group (Mulligan notation).

5.10 For Ge site in Bi₄Ge₃O₁₂, S₄ symmetry, no spin-orbit

No.	I.R.ª	Energy (cm ⁻¹)	Бі4 Се3О12, 1	Free ion s		
1	Γ_2	0	1.00 ³ F			
	Γ_1	11,663	$0.60^{1}D +$	$0.40^{-1}G$		
3	Г3,4	11,729	$0.62^{1}D +$	0.38 ¹ G		
4	Γ _{3,4}	20,531	1.00 ³ F			
2 3 4 5	Γ_1	21,004	$0.80 {}^{1}G +$	0.19 ¹ S	+	$0.01^{-1}D$
	Γ _{3,4}	26,162	$0.67^{3}P +$	$0.33^{3}F$		
6 7 8 9	Γ_2	26,636	$1.00^{3}F$			
8	Γ3,4	32,162	$0.61^{-1}D +$	$0.39 {}^{1}G$		
9	Γ_1	32,936	$0.51^{3}F +$	$0.49^{3}P$		
10	Γ _{3,4}	34,160	$0.97 {}^{1}G +$	$0.03^{-1}D$		
11	Γ_2	38,213	$0.69^{1}D +$	$0.31 {}^{1}G$		
12	Γ_1	41,547	1.00 ¹ G			
13	Γ_1	43,409	$0.51^{3}P +$	$0.49^{-3}F$		
14	Γ3,4	49,514	$0.68^{3}F +$	$0.32^{3}P$		
15	Γ_2	53,095	$0.62 {}^{1}G +$	$0.38^{-1}D$		
16	Γ_2	53,248	$0.69 {}^{1}G +$	$0.31^{-1}D$		
17	Γ_1	59,816	$0.55 {}^{1}G +$	0.34 ¹ D	+	0.11 ¹ S
18	Γ _{3,4}	59,912	$0.64 {}^{1}G +$	$0.36^{1}D$		
19	Γ_1	78,626	0.69 ¹ S +	0.26 ¹ G	+	$0.05\ ^{1}D$

alreducible representations of the S_4 group, $\Gamma_{3,4} = \Gamma_3 + \Gamma_4$ (Bethe notation, G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

Note: See table 5.6 for allowed transitions.

5. Energy Levels of the X4+ Ions in Bi₁₂GeO₂₀

Because of the technological importance of the compounds Bi₁₂XO₂₀ (X = Ge, Si) [9,10], we have decided to calculate the energy levels of the entire $3d^N$ series of X^{4+} ions assuming these ions replace the Ge site substitutionally. Also, the Ge (Si) site in these compounds has the unique distinction of being of the cubic group T, and the optical spectra of these ions should be quite interesting. The parameters used in the calculations are given in tables 2 and 4, and the results are given in tables 6 to 23. For each ion, the energy levels are calculated with the spin-orbit interaction "turned off," followed by a similar calculation with the spin-orbit parameter values given in table 2. The optical spectra of Cr⁴⁺ in Bi₁₂GeO₂₀ have been reported by Wardzynski et al [11], who give $B_{40} = -17,220 \text{ cm}^{-1}$ and $B = 428.8 \text{ cm}^{-1}$, giving the parameter Dq/B= 1.91, whereas our estimated value, Dq/B = 4.83, is much larger. This would indicate that our estimate of Dq is too large or B is too small. However, their reported energy levels correspond more closely to the levels of Fe⁴⁺ (tables 12 and 13) calculated here.

The labeling of the levels is the irreducible representation of the T groups in the Bethe notation [12]. The correspondence with the T_d group in Mulligan notation is as follows: A_1 and A_2 correspond to Γ_1 , Ebecomes $\Gamma_2 + \Gamma_3$ (still a doublet), and T_1 and T_2 correspond to the triplet Γ_4 . The double group Γ_6 and Γ_7 (T_d) corresponds to Γ_5 (T), and the quartet Γ_8 (T_d) becomes $\Gamma_6 + \Gamma_7$ (T), which is two degenerate doublets. For d electrons the difference between the T and T_d groups is insignificant, but for f electrons there is a distinct difference. In the absence of the spin-orbit interaction, the energy levels can be obtained from a Tanabe-Sugano plot for ions with the d^N configurations provided the complementary rules are observed for tetrahedral symmetry. That is, for the configuration d^N in tetrahedral symmetry, we use the d^{10-N} Tanabe-Sugano plot. (These standard plots are for octahedral symmetry.) The inclusion of the spin-orbit interaction has very little effect on the V⁴⁺, Cr⁴⁺, and Mn⁴⁺ ions. However, in the Fe⁴⁺ ion (table 13) the Γ_1 ground state in the absence of spin-orbit (40 percent I) remains Γ_1 but is 67 percent ⁵D with 11 percent ¹I. This mixture could be changed considerably by different values of Dq/B. The spin-orbit interaction causes the 6S ground state of Co^{4+} with $\zeta = 0$ to split into a Γ_5 level at E=0 and a four-fold degenerate level $\Gamma_{6,7}$ to split at 0.04 cm⁻¹ (table 15).

For the ion Ni⁴⁺ the $\Gamma_{2,3}$ level of the ground state with $\zeta = 0$ is split into 5 levels ($0 \le E \le 176 \text{ cm}^{-1}$) by the spin-orbit interaction, as shown in tables 16 and 17. Also the spin-orbit mixes different spin states beginning with the Γ_4 levels at 11,142 cm⁻¹. The Cu⁴⁺ ion energy levels given in table 19 show that the first excited state is mixed by the spin-orbit interaction (98 percent ⁴F + 1 percent ²G) with the higher energy

levels becoming strongly mixed. Similarly, for the energy levels of Zn^{4+} , table 21, and Ga^{4+} , table 23, the spin-orbit interaction has a reasonably strong effect on the composition of the wave functions for the higher energy levels. This mixture of different total spin raises the spin forbidden transition rules usually employed in the interpretation of $3d^N$ electronic configuration optical absorption data.

The only ion with experimental data other than Cr⁴⁺ that we were able to find was Fe⁴⁺ [13], and we have not investigated this ionization state here.

The interstitial site mentioned [14] for $Bi_{12}GeO_{20}$ was investigated. The statement concerning the size of this site (6b in the crystallographic data) is correct. In the host material $Bi_{12}GeO_{20}$, the nearest neighbors at this site have four Bi ions at 2.86 Å while the Bi site has eight oxygen ions ranging from 2.08 to 3.47 Å and the Ge ion has four oxygen ions at 1.72 Å. However, because the nearest neighbors are Bi^{3+} it seems that it would be difficult to trap a positive ion at this position. On the other hand, this site might act as an electron trapping center in this crystal (also the silicon counterpart). Nevertheless, the monopole crystal-field components, A_{kq} (cm⁻¹/Å^k), were calculated, with $A_{20} = -31,713$; $A_{22} = 19,514$; $A_{40} = 4,521$; $A_{42} = 7,866$; and $A_{44} = -613$, and the site has D_2 symmetry. If this site had D_{2d} symmetry then A_{22} and A_{42} would vanish, which appears to be rather a gross assumption considering the relative magnitude of these components.

A second possible interstitial site not mentioned by Wardzynski and Szymczak [14] is the site (12d) which is located at (0, 0, 1/4) and has C_2 symmetry. This site has for nearest neighbors two Bi ions at 1.92 Å, two O ions at 2.09 Å, and one Ge ion at 2.54 Å. The monopole crystal-field components A_{kq} (cm⁻¹/Å^k) are as follows: $A_{20} = 12,856$; $A_{22} = 47,509 + i15,341$; $A_{40} = -7,415$; $A_{42} = -111 + i6,203$; and $A_{44} = -11,806 - i3,334$. The two-fold fields are slightly larger (absolute magnitude) than the previous interstitial site but this site has, in addition, a large A_{10} component (48,637 cm⁻¹/Å) which is equivalent to a constant electric field in the z direction. In view of these factors, this site does not appear to be a possible electron trapping site for electrons, but further work would be necessary to determine if a doubly ionized transition-metal ion might occupy it.

Table 6. Energy levels (cm^{-1}) for V⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi₁₂GeO₂₀, T symmetry, no spin orbit

No.	I.R.ª	Energy (cm ⁻¹)	Free ion state
1	Γ _{2,3}	0	1.00 ² D
2	Γ_4	40,439	1.00 ² D

^aIrreducible representations of the T group, $\Gamma_{2,3} = \Gamma_2 + \Gamma_3$ (Bethe notation, G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

Table 7. Energy levels (cm⁻¹) for V⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi₁₂GeO₂₀, T symmetry, $\zeta = 250 \text{ cm}^{-1}$

No.	I.R.ª	Energy (cm ⁻¹)	Free ion state			
1	$\Gamma_{6,7}$	0	1.00 ² D			
2	Γ6,7	40,319	1.00 ² D			
3	Γ_5	40,691	1.00 ² D			

^aIrreducible representations of the double T (cubic) group (G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

Table 8. Energy levels (cm⁻¹) for Cr⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi₁₂GeO₂₀, T symmetry, no spin orbit

No.	I.R.ª	Energy (cm ⁻¹)	Free ion state				
1	Γ ₁ •	0	1.00 ³ F				
2	Γ _{2,3}	11,748	0.61 ¹ D	+	0.39 ¹ G		
3	Γ_1	21,282	0.78 ¹ G	+	0.22 1S		
4	Γ_4	26,170	1.00 ³ F				
5	Γ_4	32,186	0.67 ³ P	+	$0.33 \ ^{3}F$		
6	Γ_4	37,854	0.64 ¹ D	+	0.36 ¹ G		
7	Γ_4	40,152	1.00 ¹ G				
8	Γ_4	54,451	0.67 ³ F	+	0.33 ³ P		
9	Γ _{2,3}	64,764	0.61 ¹ G	+	0.39 ¹ D		
10	Γ_4	64,829	0.64 ¹ G	+	0.36 ¹ D		
11	Γ_1	83,140	0.78 ¹ S	+	$0.22^{-1}G$		

^aIrreducible representations of the T (cubic) group, $\Gamma_{2,3} = \Gamma_2 + \Gamma_3$ (Bethe notation, G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

Table 9. Energy levels (cm⁻¹) for Cr^{4+} using the parameters of tables 2 and 4, for Ge site in $Bi_{12}GeO_{20}$, T symmetry,

۲	=	319	cm ⁻¹
---	---	-----	------------------

$\zeta = 319 \text{ cm}^{-1}$								
No.	I.R.ª	Energy (cm ⁻¹)	Free ion state					
1	Γ_4	0	$1.00^{3}F$					
2	Γ _{2,3}	11,739	0.61 ¹ D	+	0.39 ¹ S			
3	Γ_1	21,273	$0.78 {}^{1}G$	+	0.22 ¹ S			
4	Γ_1	26,021	$1.00\ ^{3}F$					
5	Γ4	26,096	1.00 ³ F					
6	$\Gamma_{2,3}$	26,249	$1.00\ ^{3}F$					
7	Γ_4	26,251	$1.00^{3}F$					
8	Γ_{t}	32,149	0.68 ³ P	+	0.31 ³ F			
9	Γ4	32,169	0.68 ³ P	+	$0.32~^{3}F$			
10	Γ_4	32,223	0.66 ³ P	+	0.34 ³ F			
11	$\Gamma_{2,3}$	32,239	0.66 ³ P	+	$0.34 {}^{3}F$			
12	Γ4	37,861	0.64 ¹ D	+	0.36 ¹ S			
13	Γ4	40,164	1.00 ¹ G					
14	Γ2,3	54,360	0.66 ³ F	+	$0.34 ^{3}P$			
15	Γ_4	54,365	$0.66^{3}F$	+	$0.34 ^{3}P$			
16	Γ_4	54,577	$0.68^{3}F$	+	$0.32\ ^{3}P$			
17	Γ_1	54,674	$0.69^{3}F$	+	$0.31^{3}P$			
18	$\Gamma_{2,3}$	64,784	0.61 ¹ G	+	$0.39 ^{1}D$			
19	Γ_4	64,849	0.64 ¹ G	+	$0.36\ ^{1}D$			
20	Γ_1	83,165	0.78 ¹ S	+	0.22 ¹ S			

alreducible representations of the T group, $\Gamma_{2,3} = \Gamma_2 + \Gamma_3$ (degenerate doublets) (G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

Table 10. Energy levels (cm $^{-1}$) for Mn $^{4+}$ using the parameters of tables 2 and 4, for Ge site in Bi $_{12}$ GeO $_{20}$, T symmetry, no spin orbit

No.	I.R.ª	Energy		Fr	ee ion state		
		(cm ⁻¹)					
1	Γ _{2,3}	0	0.40 ² G	+	$0.32^{2}H$	+	$0.15\ ^{2}D1$
2	Γ_4	8,233	0.88 ⁴ F	+	0.12 ⁴ P		
3	Γ_4	22,675	0.56 ² H	+	$0.44\ ^{2}G$		į
4	Γ_4	23,652	0.51 ² G	+	$0.24^{2}D2$	+	0.16 ² H
5	Γ_4	26,721	0.54 ² P	+	$0.27^{2}F$	+	0.19 ² H
6	Γ4	32,415	1.00 ⁴ F				
7	Γ_4	37,865	0.37 ² H	+	$0.29^{2}F$	+	0.24 ² D1
8	Γ_4	39,661	0.88 ⁴ P	+	0.12 ⁴ F		
9	Γ_1	46,535	$1.00^{\ 2}G$				
10	Γ_4	48,689	0.60 ² H	+	$0.25^{-2}G$	+	0.14 ² P
11	Γ_4	49,882	0.43 ² G	+	$0.30^{\ 2}D2$	+	$0.15^{2}H$
12	$\Gamma_{2,3}$	50,480	0.50 ² H	+	$0.43^{\ 2}D2$	+	$0.06^{2}D1$
13	Γ_4	53,810	$0.55^{2}F$	+	$0.35^{2}H$	+	$0.06\ ^{2}G$
14	Γ_4	54,639	0.40 ² D2	+	$0.40^{\ 2}F$	+	0.18 ² H
15	Γ_1	57,979	$1.00^{2}F$				
16	Γ_1	57,980	$1.00^{2}F$				
17	$\Gamma_{2,3}$	68,057	0.51 ² D1	+	$0.44^{-2}G$	+	$0.05^{2}H$
18	Γ_4	75,290	0.30 ² H	+	$0.28^{2}P$	+	$0.24^{-2}G$
19	$\Gamma_{2,3}$	79,031	0.43 ² D2	+	$0.28\ ^{2}D1$	+	$0.15\ ^{2}G$
20	Γ_4	89,511	0.68 ² D1	+	0.16 ² F	+	0.14 ² H

^aIrreducible representations of the T group, $\Gamma_{2,3} = \Gamma_2 + \Gamma_3$ (Bethe notation, G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

Table 11. Energy levels (cm⁻¹) for Mn⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi₁₂GeO₂₀, T symmetry, $\zeta = 405$ cm⁻¹

		e site in Bi ₁₂	GEO 20, 1 SY				
No.	I.R.a	Energy		F	ree ion state	;	
		(cm ⁻¹)					
1	Γ _{6,7}	0	0.40 ² G	+	0.32 ² H	+	$0.15\ ^{2}D1$
2	Γ_5	8,034	0.88 ⁴ F	+	$0.12 ^{4}P$		
3	Γ _{6,7}	8,055	0.88 ⁴ F	+	0.12 ⁴ P		
3 4	Γ _{6,7}	8,431	0.88 ⁴ F	+	$0.12 ^4P$		
5	Γ ₅	8,674	0.87 ⁴ F	+	0.13 ⁴ P		
6	Γ_5	22,548	$0.55^{2}H$	+	$0.44^{-2}G$		
7	Γ _{6,7}	22,771	$0.55^{2}H$	+	$0.44^{2}G$	+	$0.01~^2D2$
8	Γ5	23,534	$0.52^{-2}G$	+	$0.24\ ^{2}D2$	+	0.15 ² H
9	Γ _{6,7}	23,739	$0.50^{\ 2}G$	+	$0.23\ ^{2}D2$	+	0.18 ² H
10	Γ ₅	26,549	$0.54^{2}P$	+	$0.27^{2}F$	+	$0.19^{2}H$
11	Γ _{6,7}	26,864	$0.54^{2}P$	+	$0.27^{2}F$	+	0.19 ² H
12	Γ_5	32,310	1.00 ⁴ F				
13	Γ _{6,7}	32,426	0.99 ⁴ F				
14	Γ _{6,7}	32,566	1.00 ⁴ F				
15	Γ ₅	32,574	1.00 ⁴ F				
16	Γ _{6,7}	37,747	0.35 ² H	+	$0.29^{2}F$	+	$0.24 \ ^{2}D1$
17	Γ5	38,097	0.37 ² H	+	$0.26^{2}F$	+	$0.24\ ^{2}D1$
18	Γ ₅	39,481	0.87 ⁴ P	+	$0.13 {}^{4}F$		
19	Γ _{6,7}	39,642	0.87 ⁴ P	+	$0.12 {}^4F$		
20	Γ _{6,7}	39,879	0.87 ⁴ P	+	$0.12 {}^4F$	+	$0.01^{-2}H$
21	Γ5	39,925	0.85 ⁴ P	+	$0.11 {}^4F$	+	$0.02^{2}H$
22	Γ_5	46,589	$1.00^{\ 2}G$				
23	Γ ₅	48,613	0.63 ² H	+	$0.23^{2}G$	+	$0.14^{2}P$
24	Γ _{6,7}	48,803	0.58 ² H	+	$0.26^{2}G$	+	$0.15^{2}P$
25	Γ _{6,7}	49,850	0.41 ² G	+	$0.29^{2}D2$	+	$0.17^{2}H$
26	Γ_5	49,965	$0.42\ ^{2}G$	+	$0.33 ^{2}D2$	+	$0.13^{2}H$
27	Γ _{6,7}	50,568	0.49 ² H	+	$0.42^{2}D2$	+	$0.06\ ^{2}D1$
28	$\Gamma_{6,7}$	53,819	0.54 ² F	+	$0.36^{2}H$	+	$0.06^{2}G$
29	Γ ₅	53,962	$0.56^{2}F$	+	$0.32^{2}H$	+	$0.08\ ^{2}G$
30	$\Gamma_{6,7}$	54,674	$0.41^{2}D2$	+	$0.39^{2}F$	+	$0.18^{2}H$
31	Γ_5	54,746	$0.43^{2}F$	+	$0.37 ^2D2$	+	$0.18^{2}H$
32	Γ _{6,7}	58,029	0.99 ⁴ F				
33	Γ ₅	58,038	$1.00^{2}F$		_		-
34	Γ _{6,7}	68,125	$0.51 ^2D1$	+	$0.44^{2}G$	+	$0.05^{2}H$
35	Γ_5	75,294	$0.31^{2}H$	+	$0.27^{2}P$	+	$0.25^{2}G$
36	Γ _{6,7}	75,380	$0.30^{2}H$	+	$0.28^{2}P$	+	$0.24^{-2}G$
37	$\Gamma_{6,7}$	79,098	$0.43^{2}D2$	+	$0.28^{2}D1$	+	$0.15\ ^{2}G$
38	Γ5	89,441	$0.68^{2}D1$	+	$0.15^{2}F$	+	$0.15^{2}H$
39	Γ _{6.7}	89,657	0.68 ² D1	+	$0.16^{2}F$	+ (C	0.14 ² H

^aIrreducible representations of the double T (cubic) group (G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

Table 12. Energy levels (cm⁻¹) for Fe⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi₁₂GeO₂₀, T symmetry, no spin orbit

2 and 4, for Ge site in Bi ₁₂ GeO ₂₀ , T symmetry, no spin orbit							
No.	I.R.a	Energy (cm ⁻¹)			Free ion stat	te	
		(cm ⁻¹)					
1	Γ_1	0	0.40 ¹ /	+	$0.30^{-1}G1$	+	$0.22 {}^{1}G2$
2	Γ_4	45	1.00 ⁵ D	•	0.50 01	•	0.22 02
3	Γ_4	5,601	$0.47^{3}H$	+	$0.25 {}^{3}F2$	+	0.15 ³ P1
4	Γ_4	9,139	$0.40^{-3}G$	+	$0.23^{-1} = 0.27^{-3}H$	+	0.13^{-1} $^{-1}$ 0.17^{-3} $^{-1}$
5	Γ4	14,290	$0.62^{-1}I$	+	$0.21^{-1}G1$	+	$0.17^{-1}G2$
6	$\Gamma_{2,3}$	16,776	$1.00^{-5}D$	•	0.21 01	•	0.17 02
7	Γ ₄	19,938	$0.67^{3}H$	+	$0.28\ ^{3}F2$	+	0.04 ³ F1
8	Γ4	20,554	$0.52^{3}H$	+	$0.43^{-3}G$	+	$0.04^{-3}F2$
9	Γ4	21,631	0.36 1/	+	$0.40^{-1}F$	+	$0.19^{-1}D2$
10	$\Gamma_{2,3}$	22,245	0.50° $^{\circ}$ $^{\circ$	+	0.30^{-7}	+	$0.19 DL$ $0.18 ^{3}D$
11	Γ_4	22,983	$0.50^{-3}G$	+	$0.30^{\circ} P2$	+	$0.16 D$ $0.05 ^{3}P1$
12		24,961	$0.53 ^{3}D$	+	$0.43^{3}F2$	+	0.03^{-7} G 0.03^{-7}
13	Γ ₄ Γ ₄	29,791	0.53 D $0.62 I$	+	$0.43 \ F2$ $0.17 \ ^{1}G2$	+	$0.03 \ 0.011 \ ^{1}D2$
14		30,722	$0.51^{-1}G2$	+	$0.17 \ 0.2$	+	$0.17 ^{1}G1$
15	$\Gamma_{2,3}$	31,331	0.31 ¹ / _{0.48} ¹ / ₁	+	0.23^{-1} 0.28^{-1} $S2$	+	$0.17 - G1$ $0.16^{-1}G2$
16	Γ_1	33,577	$0.52^{3}F1$	+	$0.28 ^{3}F2$	т	0.10 02
17	Γ_4	34,226	$0.32 \ F1$ $0.43 \ ^{1}G2$	+	$0.48 F^2$ $0.32 F$	+	0.21 ¹ I
18	Γ4	34,661	$0.43 \cdot 0.2$ $0.54 \cdot 1F$	+	0.32 ⁻ I ⁻ 0.46 ¹ I	Τ.	0.21
19	$\Gamma_{\rm I}$	35,518	$0.54^{\circ}H$	+	$0.48^{\circ}F2$	+	$0.10^{3}P1$
20	Γ_4	35,647	0.32^{-1} 0.30^{-1} $D2$	+	$0.28^{-1}F$ $0.27^{-1}F$	+	$0.10^{-1}I$ $0.25^{-1}I$
21	Γ_4	36,622	$0.30^{\circ}D2$ $0.68^{\circ}H$	+	0.27^{-1} $0.30^{-3}G$	+	$0.23^{\circ} D$
22	$\Gamma_{2,3}$	38,743	$0.38^{-3}F2$	+	0.30^{-6} $0.24^{-3}D$	+	$0.02^{\circ}D$ $0.20^{\circ}H$
23	Γ_4	38,750	$1.00^{-3}G$	+	0.24 D	*	0.20 -H
24	$\Gamma_{2,3}$	38,832	$0.40^{3}P2$	+	$0.35 {}^{3}G$	+	$0.14^{-3}F1$
25	Γ_4	41,856	$0.40^{\circ} I Z$ $0.80^{\circ} D$	+	$0.33 {}^{\circ}G$	+	$0.14^{\circ} H$
26	$\Gamma_{2,3}$	43,396	$0.80^{\circ}D$ $0.45^{\circ}D2$	+	$0.18 ^{\circ}G$ $0.40 ^{1}G1$	+	0.02^{-1} 0.12^{-1} $D1$
27	$\Gamma_{2,3}$	44,946	0.43 D2 0.49 I	+	$0.40^{+}G1$ $0.23^{-1}G1$	+	$0.12^{-}D1$ $0.21^{-1}D2$
28	Γ_4	46,774	0.49 ¹ 0.55 ¹ I	+	$0.25 ^{\circ}G1$ $0.35 ^{\circ}G2$	+	$0.21 ^{1}D2$ $0.03 ^{1}D1$
29	$\Gamma_{2,3}$		0.53^{-1} 0.52^{-3} F2	+	$0.33 ^{3}G2$ $0.48 ^{3}F1$	+	0.03 1
	Γ_4	48,037	0.52 ¹ I		0.46 ¹ F		
30	Γ_1	48,084	0.34^{-1} $0.47^{-1}G2$	+	0.46 ¹ F 0.27 ¹ F		0.09 ¹ D1
31	Γ_4	50,506	$0.47 \cdot G2$ $0.45 \cdot 1G2$	+	0.27 °F 0.42 ¹S2	+	0.09 ¹ S1
32	Γ_1	50,732	0.45 ¹ G2 0.65 ¹ F	+	$0.42^{-3}2$ $0.13^{-1}G2$	+	0.09 ·31 0.13 ¹ /
33	Γ_4	50,904	0.65 ¹ F 0.70 ³ P1	+	$0.13^{-1}G2$ $0.13^{-3}F2$	+	0.13 ¹ 7 0.08 ³ P2
34	Γ4	55,156		+		+	
35	Γ_4	55,479	0.74 ³ F1 0.61 ¹ G1	+	$0.11 {}^{3}F2$	+	$0.10 \ ^{3}D$ $0.09 \ ^{1}D2$
36	Γ4	61,956	0.61^{-6} 0.65^{-3} $F1$	+	0.17 ¹ <i>I</i> 0.14 ³ <i>H</i>	+	$0.09 ^{1}D2$ $0.12 ^{3}G$
37	Γ_4	61,971	$0.65^{\circ}F1$ $0.50^{\circ}D1$	+		+	$0.12^{-3}G$ $0.07^{-1}G2$
38	$\Gamma_{2,3}$	64,355	$0.50^{-1}D1$ $0.50^{-1}G1$	+	$0.36 {}^{1}D2$ $0.18 {}^{1}S2$	+	0.07 ·G2 0.14 ¹ G2
39	Γ_1	64,403	$0.50^{-1}G1$	+	$0.18^{-1}52$ $0.26^{-1}G2$	+	0.14 ¹ G2 0.05 ¹ I
40	Γ4	64,766	0.67 G1 0.34 D1	+	$0.26 ^{1}G2$ $0.33 ^{1}G1$	+	0.05 ¹ / 0.16 ¹ /
41	$\Gamma_{2,3}$	73,171	$0.34 ^{1}D1$ $0.69 ^{1}D1$	+	0.33 ¹ G1 0.14 ¹ F	+	0.16 ¹ I 0.09 ¹ D2
42	Γ4	79,955	0.69 · <i>D</i> 1	+	$0.14^{-1}F$ $0.18^{-1}G1$	+	0.09 · <i>D2</i> 0.06 ¹ S2
43	Γ_1	100,394				+	$\frac{0.00^{\circ}32}{10.00^{\circ}}$

alreducible representations of the T (cubic) group, $\Gamma_{2,3} = \Gamma_2 + \Gamma_3$ (Bethe notation, G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

Table 13. Energy levels (cm⁻¹) for Fe⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi₁₂GeO₂₀, T symmetry, $\zeta = 513$ cm⁻¹

		Ge site in Bi	e in $Bi_{12}GeO_{20}$, T symmetry, $\zeta = 513$ cm ⁻¹				
No.	I.R.ª	Energy		F	ree ion state	;	
		(cm ⁻¹)					
1	Γ_1	0	0.67 ⁵ D	+	0.11 ¹ I	+	$0.08 {}^{1}G1$
2	Γ_4	159	$0.99\ ^{5}D$				
3	Γ4	208	$0.99\ ^{5}D$				
3 4	Γ_1	354	$0.31^{-5}D$	+	$0.27^{-1}I$	+	$0.20 {}^{1}G1$
5	$\Gamma_{2,3}$	579	$0.99\ ^{5}D$				
6	Γ4	606	$1.00\ ^{5}D$				ì
7	Γ4	868	$1.00^{5}D$				
8	Γ4	5,962	$0.47^{3}H$	+	$0.24^{3}F2$	+	$0.15^{3}P1$
9	Γ_1	6,007	$0.44^{3}H$	+	$0.22 {}^{3}F2$	+	0.15 ³ P1
10	$\Gamma_{2,3}$	6,196	$0.47^{3}H$	+	$0.26^{3}F2$	+	0.14 ³ P1
11	Γ ₄	6,253	$0.47^{3}H$	+	$0.26^{3}F2$	+	0.14 ³ P1
12	Γ_1	9,214	$0.44 {}^{3}G$	+	$0.24^{3}H$	+	0.17 ³ F1
13	Γ_4	9,430	$0.42^{-3}G$	+	$0.26^{3}H$	+	0.17 ³ F1
14	Γ_4	9,760	$0.38\ ^{3}G$	+	$0.29^{3}H$	+	0.16 ³ F1
15	$\Gamma_{2,3}$	9,838	$0.38\ ^{3}G$	+	$0.29^{3}H$	+	0.16 ³ F1
16	Γ ₄	14,690	$0.60^{-1}I$	+	$0.21^{-1}G1$	+	$0.17^{-1}G2$
17	Γ_1	17,147	0.97 ⁵ D	+	$0.01^{-3}H$	+	$0.01~^{3}F2$
18	Γ_4	17,164	0.98 ⁵ D	+	$0.01^{-3}H$	+	$0.01~^{3}F2$
19	$\Gamma_{2,3}$	17,174	0.98 ⁵ D	+	$0.01^{-3}H$	+	$0.01~^{3}F2$
20	Γ4	17,183	$0.99\ ^{5}D$				
21	Γ_1	17,193	0.99 ⁵ D				
22	$\Gamma_{2,3}$	20,302	$0.65^{3}H$	+	$0.22^{3}F2$	+	$0.09\ ^{3}G$
23	Γ ₄	20,387	0.66 ³ H	+	$0.25^{3}F2$	+	$0.04^{-3}G$
24	Γ_1	20,410	$0.65^{3}H$	+	$0.29^{-3}F2$	+	$0.04~^{3}F1$
25	Γ_4	20,433	0.64 ³ H	+	$0.26^{3}F2$	+	$0.04^{-3}G$
26	Γ_4	21,055	0.51 ³ H	+	$0.41^{-3}G$	+	$0.07\ ^{3}F2$
27	Γ_1	21,061	0.55 ³ H	+	$0.41^{-3}G$	+	$0.03~^{3}F2$
28	Γ_4	21,064	0.53 ³ H	+	$0.37^{-3}G$	+	$0.07~^{3}F2$
29	$\Gamma_{2,3}$	21,174	0.53 ³ H	+	$0.36\ ^{3}G$	+	$0.10^{3}F2$
30	Γ_4	21,813	0.27 ¹ /	+	$0.15 {}^{1}F$	+	$0.15 ^{1}D2$
31	Γ_4	22,725	$0.51^{-3}G$	+	0.31 ³ H	+	$0.18\ ^{3}D$
32	Γ_4	22,884	$0.43~^{3}G$	+	$0.25^{3}H$	+	$0.15\ ^{3}D$
33	Γ_1	23,358	$0.46^{3}G$	+	$0.37^{3}P2$	+	$0.06^{3}H$
34	Γ_4	23,413	$0.48\ ^{3}G$	+	$0.37^{3}P2$	+	$0.05^{3}H$
35	Γ _{2,3}	23,506	$0.51^{-3}G$	+	$0.36\ ^{3}P2$	+	$0.05\ ^{3}P1$
36	Γ_4	23,545	$0.50^{3}G$	+	$0.36^{3}P2$	+	$0.05\ ^{3}P1$
37	Γ_1	25,473	$0.54^{3}D$	+	$0.43^{3}F2$	+	$0.02^{-3}G$
38	$\Gamma_{2,3}$	25,479	$0.51~^{3}D$	+	$0.43^{3}F2$	+	$0.05\ ^{3}G$
39	$\Gamma_4^{2,3}$	25,484	$0.52\ ^{3}D$	+	$0.43^{3}F2$	+	$0.05\ ^{3}G$
40	Γ_4	25,535	$0.51~^{3}D$	+	$0.42^{3}F2$	+	$0.03~^{3}G$
41	Γ4	30,220	0.61 1/	+	$0.17^{-1}G2$	+	$0.11 ^{1}D2$
42	Γ _{2,3}	31,154	$0.50 ^{1}G2$	+	0.25 1/	+	$0.17^{-1}G1$
43	$\Gamma_1^{2,3}$	31,733	0.47 1/	+	0.27 152	+	$0.16^{-1}G2$
44	Γ_4	34,103	$0.52^{3}F1$	+	$0.47^{3}F2$		
45	Γ_4	34,531	$0.39 ^{1}G2$	+	$0.30^{-1}F$	+	0.19 1/
46	Γ_1	35,089	$0.53^{-1}F$	+	0.45 1/	+	$0.01^{-3}F2$
47	Γ_4	35,924	$0.34^{3}H$	+	$0.17^{3}F2$	+	$0.11^{-1}F$
48	Γ _{2,3}	35,984	0.51 311	+	$0.29^{3}F2$	+	$0.10^{3}P1$
49	$\Gamma_4^{2,3}$	36,060	$0.19^{-1}D2$	+	$0.19\ ^{3}H$	+	$0.15^{-1}F$
,	1 - 4	, , , , , ,	•				

Table 13. Energy levels (cm⁻¹) for Fe⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi₁₂GeO₂₀, T symmetry, $\zeta = 513$ cm⁻¹ (cont'd)

		Ge site in $Bi_{12}GeO_{20}$, T symmetry, $\zeta = 513$ cm ⁻ (cont d)						
No.	I.R.ª	Energy (cm ⁻¹)		F	ree ion state	;		
50	Γ_1	36,127	$0.52^{-3}H$	+	0.27 ³ F2	+	$0.10^{3}P1$	
51	Γ_4	36,138	0.49 ³ H	+	$0.26 {}^{3}F2$	+	0.09 ³ P1	
52	Γ_4	37,135	0.67 ³ H	+	$0.29^{-3}G$	+	$0.02~^{3}D$	
53	Γ_4	37,170	0.66 ³ H	+	$0.28^{3}G$	+	$0.02\ ^{3}D$	
54	Γ_4	39,070	$0.31^{3}F2$	+	$0.18\ ^{3}D$	+	$0.17^{3}H$	
55	$\Gamma_{2,3}$	39,088	$0.35 {}^{3}F2$	+	$0.21 ^3D$	+	$0.20^{3}H$	
56	Γ_4	39,172	0.64 ³ G	+	$0.12 {}^{3}P2$	+	$0.07^{3}F2$	
57	Γ_1	39,179	0.38 ³ G	+	$0.37 ^{3}P2$	+	$0.15^{3}F1$	
58	Γ_4	39,358	$0.25 ^{3}P2$	+	$0.24 {}^{3}G$	+	$0.16^{3}F2$	
59	Γ_4	39,377	$0.63^{3}G$	+	$0.20^{3}P2$	+	$0.07^{3}F1$	
60	$\Gamma_{2,3}$	39,418	0.38 ³ P2	+	$0.30^{3}G$	+	$0.14^{3}F1$	
61	Γ4	39,483	0.24 ³ F2	+	$0.17\ {}^{3}G$	+	$0.17^{3}P2$	
62	Γ_1	39,590	$0.38^{3}F2$	+	$0.25\ ^{3}D$	+	$0.19^{3}H$	
63	Γ4	42,346	$0.79 ^3D$	+	$0.18\ ^{3}G$	+	$0.02^{3}H$	
64	Γ_4	42,348	$0.80^{3}D$	+	$0.18\ {}^{3}G$	+	$0.02^{3}H$	
65	Γ2,3	43,871	$0.44 ^{1}D2$	+	$0.39^{-1}G1$	+	0.12 ¹ <i>D</i> 1	
66	Γ4	45,448	0.49 ¹ I	+	$0.23^{-1}G1$	+	0.21 ¹ D2	
67	$\Gamma_{2,3}$	47,259	0.55 ¹ I	+	$0.35 {}^{1}G2$	+	0.04 ¹ <i>D</i> 1	
68	Γ_4	48,532	$0.52^{3}F2$	+	$0.48 {}^{3}F1$			
69	Γ_1	48,545	0.54 ¹ /	+	$0.46 {}^{1}F$			
70	Γ4	50,955	$0.47 {}^{1}G2$	+	$0.27^{-1}F$	+	$0.09^{-1}D1$	
71	Γ_1	51,112	0.44 ¹ G2	+	0.41 ¹ S2	+	0.08 ¹ S1	
72	Γ_4	51,359	$0.64 {}^{1}F$	+	$0.13^{-1}G2$	+	$0.13^{1}I$	
73	$\Gamma_{2,3}$	55,463	$0.67^{3}P1$	+	$0.14^{3}F2$	+	$0.07^{3}H$	
74	Γ_4	55,471	$0.68^{3}P1$	+	$0.14^{3}F2$	+	$0.07^{3}H$	
75	Γ_1	55,822	$0.74^{3}F1$	+	$0.10^{3}F2$	+	$0.08\ ^{3}D$	
76	Γ_4	55,839	$0.66^{3}P1$	+	$0.13^{3}F2$	+	$0.09^{3}P2$	
77	Γ_4	55,926	$0.72^{3}F1$	+	$0.11 {}^{3}F2$	+	$0.09^{3}D$	
78	$\Gamma_{2,3}$	56,104	$0.70^{3}F1$	+	$0.11 {}^{3}F2$	+	$0.10^{3}D$	
79	Γ4	56,129	$0.69^{3}F1$	+	$0.11 {}^{3}F2$	+	$0.10^{3}D$	
80	Γ_1	56,168	0.67 ³ P1	+	$0.12 {}^{3}F2$	+	$0.09\ ^{3}P2$	
81	Γ_4	62,162	$0.37 {}^{1}G1$	+	$0.26^{3}F1$	+	0.11 ¹ / ₂	
82	Γ_1	62,219	$0.66^{3}F1$	+	$0.14^{3}H$	+	$0.11 {}^{3}G$	
83	Γ4	62,378	$0.66^{3}F1$	+	$0.14^{3}H$	+	$0.12 {}^{3}G$	
84	$\Gamma_{2,3}$	62,590	$0.64^{3}F1$	+	$0.14^{3}H$	+	$0.13 {}^{3}G$	
85	Γ4	62,963	$0.39^{3}F1$	+	$0.24 {}^{1}G1$	+	$0.09^{3}H$	
86	$\Gamma_{2,3}$	64,886	$0.49 ^{1}D1$	+	$0.35 ^{1}D2$	+	$0.07 {}^{1}G2$	
87	Γ_1	64,921	$0.50 {}^{1}G1$	+	0.18 ¹ S2	+	$0.14 {}^{1}G2$	
88	Γ4	65,279	$0.67 {}^{1}G1$	+	$0.26 {}^{1}G2$	+	0.04 1/	
89	$\Gamma_{2,3}$	73,700	$0.33 ^{1}D1$	+	$0.33 {}^{1}G1$	+	0.16 1/	
90	Γ4	80,458	$0.69 ^{1}D1$	+.	$0.14 {}^{1}F$	+	$0.09 ^{1}D2$	
91	Γ_1	100,908	0.72 ¹ S1	+	0.18 ¹ GT	+	0.06 ¹ S2	

^aIrreducible representations of the T (cubic) group, $\Gamma_{2,3} = \Gamma_2 + \Gamma_3$ (G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

Table 14. Energy levels (cm⁻¹) for Co⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi₁₂GeO₂₀, T symmetry, no spin orbit

No.	I.R.ª	Energy (cm ⁻¹)	320, 1 Symu		ree ion stat		
1	Γ_1	0	1.00 ⁶ S				
2	Γ_4	17,382	0.63 ⁴ G	+	$0.33^{4}P$	+	0.03 ⁴ F
3	Γ_4	21,309	0.35 ² I	+	$0.26^{2}H$	+	$0.17^{2}F1$
3 4	Γ_4	21,316	0.50 ⁴ G	+	$0.26 {}^4F$	+	0.24 ⁴ D
5	Γ_4	28,043	1.00 ⁴ G				
6	Γ_4	30,284	0.57 ⁴ D	+	0.41 ⁴ G	+	0.02 ⁴ F
7	Γ_1	31,705	0.59 ² I	+	$0.37^{2}F1$	+	0.04 ² F2
8	Γ_4	31,834	0.63 ² I	+	$0.23^{2}H$	+	$0.12^{2}F1$
9	$\Gamma_{2,3}$	32,470	1.00 ⁴ D				
10	Γ_4	33,261	0.52 ² I	+	$0.22^{2}F1$	+	0.10 ² H
11	$\Gamma_{2,3}$	35,005	$0.43^{2}I$	+	$0.25^{2}H$	+	$0.12^{2}D3$
12	Γ_4	38,873	$0.37^{-2}G2$	+	$0.20^{2}F2$	+	$0.18^{2}F1$
13	Γ_1^{4}	40,501	0.71 ² I	+	$0.15^{2}G2$	+	$0.10^{2}G1$
14	Γ_4	40,547	$0.32^{\ 2}G2$	+	$0.24^{2}F2$	+	0.18 ² /
15	Γ_4	41,108	0.45 ⁴ P	+	$0.43 {}^{4}F$	+	0.11 ⁴ G
16	Γ _{2,3}	43,278	0.45 ² I	+	$0.29^{2}D3$	+	$0.11^{2}H$
17	$\Gamma_1^{2,3}$	43,831	$0.51^{-2}G2$	+	$0.28^{2}I$	+	$0.12\ ^{2}G1$
18	Γ_4	44,300	0.45 ² I	+	$0.39^{2}D3$	+	$0.06^{2}D1$
19	Γ_1	44,320	1.00 ⁴ F	•			:
20	$\Gamma_{2,3}$	47,294	$0.73^{-2}G2$	+	$0.12^{2}D3$	+	$0.05\ ^{2}D1$
21	$\Gamma_4^{2,3}$	48,545	$0.46^{2}F2$	+	$0.27^{-2}G2$	+	$0.12^{2}I$
22	Γ_4	48,708	0.53 ⁴ F	+	$0.26 {}^4G$	+	0.21 ⁴ P
23	Γ_1^4	49,327	$0.75^{2}F2$	+	$0.18^{2}I$	+	$0.07^{2}F1$
24	Γ_4	49,402	$0.52^{2}F2$	+	$0.37^{2}G2$	+	$0.07^{2}I$
25	Γ_4	51,107	0.68 ² H	+	$0.31^{2}F1$		
26	Γ_{i}^{4}	52,702	0.71 ² S	+	$0.24^{-2}G2$	+	$0.04\ ^{2}G1$
27	Γ_4	53,233	0.71 ⁴ F	+	0.19 ⁴ D	+	$0.10^{-4}G$
28	$\Gamma_{2,3}$	55,188	0.44 ² H	+	$0.30^{2}D3$	+	$0.24^{2}D2$
29	Γ_4	56,796	0.41 ² H	+	$0.20^{2}F1$	+	$0.16^{2}F2$
30	Γ_4	58,217	$0.34^{2}F1$	+	$0.22^{2}H$	+	$0.13^{\ 2}G2$
31	Γ_4	61,526	0.45 ² H	+	$0.27^{2}I$	+	$0.18^{2}F1$
32	Γ_1	61,634	$0.56^{2}F1$	+	$0.23^{2}I$	+	$0.21^{2}F2$
33		64,912	$0.78^{2}G1$	+	$0.08^{2}H$	+	$0.07^{2}D1$
34	$\Gamma_{2,3}$ Γ_4	67,311	$0.49^{2}D2$	+	$0.17^{2}G1$	+	$0.13^{2}I$
35	$\Gamma_{2,3}$	68,375	$0.60^{2}D2$	+	$0.10^{2}H$	+	$0.10^{\ 2}G2$
36	$\Gamma_4^{2,3}$	69,487	$0.26^{2}D3$	+	$0.22^{2}H$	+	$0.18^{2}F1$
37	Γ_4	70,166	$0.80^{2}G1$	+	$0.07^{2}P$	+	$0.06^{2}F2$
38	Γ_4	73,792	$0.52^{2}G1$	+	$0.13^{2}F2$	+	$0.12^{-2}G2$
39	Γ_1	75,794	$0.74^{2}G1$	+	$0.16^{2}S$	+	$0.10^{-2}G2$
40	Γ_4	80,636	$0.87^{2}P$	+	$0.04^{2}F^{2}$	+	$0.04^{-2}G2$
41	Γ_4	94,481	$0.73^{2}D1$	+	$0.07^{2}H$	+	$0.05^{2}D3$
42	Γ_{23}	94,533	$0.73^{2}D1$	+	$0.10^{2}G1$	+	$0.10^{2}D3$

^aIrreducible representations of the T (cubic) group, $\Gamma_{2,3} = \Gamma_2 + \Gamma_3$ (Bethe notation, G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

Table 15. Energy levels (cm⁻¹) for Co⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi₁₂GeO₂₀, T symmetry, $\zeta = 654$ cm⁻¹

	I.R.ª		120020, 2		metry, ζ =					
No.	1.K.*	Energy (cm ⁻¹)	Free ion state							
1	Γ _{6,7}	0	1.00 ⁶ S		···					
2	$\Gamma_{6,7}$	0.04								
3	Γ_5	17,231	0.63 ⁴ G	+	0.33 ⁴ P	+	$0.04 {}^4F$			
4	Γ _{6,7}	17,247	0.61 ⁴ G	+	0.32 ⁴ P	+	$0.04 {}^4F$			
5	Γ ₅	17,313	0.60 ⁴ <i>G</i>	+	0.32 ⁴ P	+	$0.03 {}^4F$			
6	$\Gamma_{6,7}$	17,410	0.61 ⁴ G	+	0.33 ⁴ P	+	0.03 ⁴ F			
7	$\Gamma_{6,7}$	20,762	0.22 ⁴ G	+	$0.19^{2}I$	+	0.14 ² H			
8	Γ_5	21,241	0.43 ⁴ G	+	0.26 ⁴ D	+	$0.25 {}^{4}F$			
9	Γ_5	21,350	0.53 ⁴ G	+	$0.26 {}^4F$	+	0.21 ⁴ D			
10	$\Gamma_{6,7}$	21,374	0.53 ⁴ G	+	0.26 ⁴ F	+	0.21 ⁴ D			
11	$\Gamma_{6,7}$	21,689	0.29 ⁴ G	+	0.16 ⁴ F	+	0.16 ⁴ D			
12	Γ_5	22,297	0.34 ² I	+	$0.25^{2}H$	+	$0.13^{2}F1$			
13	Γ6,7	27,957	0.97 ⁴ G	+	0.01 ² /	+	$0.01\ ^{2}F1$			
14	Γ5	27,995	0.98 ⁴ G	+	$0.01\ ^{2}F1$					
15	Γ_5	28,019	0.98 ⁴ G	+	$0.01^{2}I$	+	$0.01^{2}H$			
16	$\Gamma_{6,7}$	28,052	0.99 ⁴ G							
17	Γ_5	29,754	0.46 ⁴ D	+	0.40 ⁴ G	+	$0.06^{2}I$			
18	$\Gamma_{6,7}$	30,194	0.54 ⁴ D	+	0.43 ⁴ G	+	$0.02 {}^4F$			
19	$\Gamma_{6,7}$	30,416	0.59 ⁴ D	+	0.37 ⁴ G	+	$0.02 {}^4F$			
20	Γ5	30,468	$0.60 ^4D$	+	0.37 ⁴ G	+	$0.02 {}^4F$			
21	Γ_5	31,558	$0.60^{2}I$	+	$0.22^{2}H$	+	$0.10^{2}F1$			
22	$\Gamma_{6,7}$	32,017	$0.52^{2}I$	+	0.18 ² H	+	$0.14 ^4D$			
23	$\Gamma_{6,7}$	32,053	$0.53^{2}I$	+	$0.31^{2}F1$	+	0.07 ⁴ G			
24	Γ ₅	32,341	0.90 ⁴ D	+	$0.05^{2}I$	+	$0.02^{2}F1$			
25	Γ _{6,7}	32,515	0.81 ⁴ D	+	$0.12^{2}I$	+	$0.04^{2}H$			
26	Γ5	32,554	0.96 ⁴ D	+	$0.02^{2}I$	+	$0.01^{2}H$			
27	$\Gamma_{6,7}$	33,427	$0.49^{2}I$	+	$0.20^{2}F1$	+	$0.10^{2}H$			
28	Γ_5	33,591	$0.48^{2}I$	+	$0.20^{2}F1$	+	$0.10 ^4D$			
29	Γ _{6,7}	35,102	$0.43^{2}I$	+	$0.25^{2}H$	+	$0.12 ^2D3$			
30	Γ_5	38,794	$0.39^{2}G2$	+	$0.20^{2}F1$	+	$0.16^{2}F2$			
31	$\Gamma_{6,7}$	38,807	$0.34^{2}G2$	+	$0.20^{2}F2$	+	$0.16^{2}H$			
32	Γ_5	40,366	$0.41^{2}I$	+	$0.15 {}^{4}F$	+	$0.15 {}^{4}P$			
33	Γ_5	40,399	$0.28^{2}F2$	+	$0.25^{2}G2$	+	$0.11 ^2D2$			
34	$\Gamma_{6,7}$	40,492	$0.29^{-2}G2$	+	$0.21 {}^{2}F2$	+	$0.16^{2}I$			
35	Γ_5	41,114	$0.30^{-4}P$	+	$0.30^{2}I$	+	$0.26 {}^4F$			
36	$\Gamma_{6,7}$	41,115	$0.39^{4}P$	+	$0.39 {}^{4}F$	+	0.11 ⁴ G			
37	$\Gamma_{6,7}$	41,246	0.40 ⁴ P	+	$0.36 {}^4F$	+	$0.10^{-4}G$			
38	Γ_5	41,368	0.38 ⁴ P	+	$0.36 {}^{4}F$	+	$0.10^{-4}G$			
39	$\Gamma_{6,7}$	43,563	$0.42^{2}I$	+	$0.26^{2}D3$	+	$0.10^{2}H$			
40	Γ_5	43,935	$0.50^{2}G2$	+	$0.26^{2}I$	+	$0.12^{-2}G1$			
41	$\Gamma_{6,7}$	44,070	$0.44 {}^{4}F$	+	$0.28^{2}I$	+	$0.19^{2}D3$			
42	Γ_5	44,497	$0.43^{2}I$	+	$0.39^{2}D3$	+	$0.06^{2}D1$			
43	Γ _{6,7}	44,820	$0.55 {}^{4}F$	+	$0.18^{2}D3$	+	$0.15^{2}I$			
44	$\Gamma_{6,7}$	47,236	$0.66^{2}G2$	+	$0.12^{2}D3$	+	$0.05 {}^4F$			
45	Γ_5	47,676	$0.25^{2}F2$	+	$0.20^{-4}F$	+	$0.18^{-2}G2$			
46	$\Gamma_{6,7}$	48,127	$0.26^{4}F$	+	$0.23^{2}F2$	+	0.14 ⁴ G			
47	$\Gamma_{6,7}$	48,789	$0.48 {}^{4}F$	+	$0.22 {}^{4}G$	+	$0.18^{-4}P$			
48	Γ ₅	49,092	$0.52{}^{4}F$	+	$0.24 {}^4G$	+	0.18 ⁴ P			
49	$\Gamma_{6,7}$	49,185	$0.30^{2}F2$	+	$0.23^{-2}G2$	+	$0.17 {}^4F$			

Table 15. Energy levels (cm⁻¹) for Co⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi₁₂GeO₂₀, T symmetry, $\zeta = 654$ cm⁻¹ (cont'd)

No.	I.R.ª		Free ion state						
		Energy (cm ⁻¹)					Ì		
50	Γ5	49,222	0.41 ² F2	+	0.19 ⁴ F	+	0.12 2/		
51	Γ _{6,7}	49,356	0.43 ² F2	+	$0.29^{-2}G2$	+	0.09 ⁴ F		
52	Γ_5	49,398	0.49 ² F2	+	0.14 ⁴ F	+	0.12 ² /		
53	Γ_5	49,442	0.54 ² F2	+	$0.30^{2}G2$	+	0.06 ² I		
54	Γ_5	51,355	0.66 ² H	+	$0.24^{2}F1$	+	0.03 ⁴ F		
55	Γ _{6,7}	51,366	0.63 ² H	+	$0.29^{2}F1$	+	0.02 ⁴ F		
56	Γ_5	52,896	0.67 2S	+	$0.24^{-2}G2$	+	$0.04\ ^{2}G1$		
57	Γ _{6,7}	53,152	0.68 ⁴ F	+	0.17 ⁴ D	+	0.10 ⁴ G		
58	Γ_5	53,301	0.67 ⁴ F	+	$0.16 ^4D$	+	0.10 ⁴ G		
59	Γ _{6,7}	53,417	0.69 ⁴ F	+	0.19 ⁴ D	+	0.09 ⁴ G		
60	Γ_5	53,697	0.69 ⁴ F	+	$0.20 ^4D$	+	0.08 ⁴ G		
61	$\Gamma_{6,7}$	55,364	0.42 ² H	+	$0.30^{2}D3$	+	$0.22 ^2D2$		
62	Γ _{6,7}	56,870	0.42 ² H	+	$0.18^{2}F1$	+	0.16 ² F2		
63	Γ_5	57,054	0.35 ² H	+	$0.24 {}^{2}F1$	+	$0.14^{2}F2$		
64	Γ_5	58,351	$0.36^{2}F1$	+	$0.20^{2}H$	+	$0.14 {}^{2}G2$		
65	Γ _{6,7}	58,452	$0.32 {}^{2}F1$	+	$0.23^{2}H$	+	$0.12 {}^{2}G2$		
66	Γ _{6,7}	61,535	0.44 ² H	+	$0.26^{2}I$	+	$0.18^{2}F1$		
67	Γ_5	61,781	$0.56^{2}F1$	+	$0.22^{2}I$	+	$0.20^{2}F2$		
68	Γ_5	61,964	0.46 ² H	+	$0.27^{2}I$	+	0.16 ² F1		
69	$\Gamma_{6,7}$	65,000	$0.78\ ^{2}G1$	+	$0.08^{2}H$	+	0.07 ² D1		
70	Γ_5	67,382	$0.43 ^2D2$	+	$0.20^{\ 2}G1$	+	0.14 ² I		
71	$\Gamma_{6,7}$	67,414	$0.52 ^2D2$	+	$0.15\ ^{2}G1$	+	0.13 ² /		
72	Γ _{6,7}	68,498	$0.59^{2}D2$	+	$0.10^{2}H$	+	$0.10^{\ 2}G2$		
73	Γ_5	69,282	$0.25 ^2D3$	+	$0.22^{2}H$	+	0.18 ² F1		
74	Γ6,7	69,813	$0.26^{2}D3$	+	$0.21^{2}H$	+	$0.17^{2}F1$		
75	Γ_5	70,063	$0.81\ ^{2}G1$	+	$0.07\ ^{2}P$	+	$0.05\ ^{2}F2$		
76	$\Gamma_{6,7}$	70,392	$0.78\ ^{2}G1$	+	$0.08^{2}P$	+	$0.06\ ^{2}F2$		
77	Γ_5	73,826	$0.52\ ^{2}G1$	+	$0.15^{2}F2$	+	$0.10^{\ 2}G2$		
78	Γ _{6,7}	73,964	$0.51\ ^{2}G1$	+	$0.13^{\ 2}G2$	+	$0.11 {}^{2}F2$		
79	Γ_5	75,894	$0.74\ ^{2}G1$	+	0.15 2S	+	$0.10^{\ 2}G2$		
80	$\Gamma_{6,7}$	80,716	0.87 ² P	+	$0.05^{2}F2$	+	$0.04^{2}G2$		
81	Γ_5	80,738	0.87 ² P	+	$0.04^{2}G2$	+	$0.04\ ^{2}F2$		
82	Γ _{6,7}	94,583	$0.73^{2}D1$	+	$0.07^{2}D3$	+	$0.07\ ^{2}G1$		
83	Γ ₅	94,621	$0.72^{2}D1$	+	$0.07^{2}H$	+	$0.06^{2}D3$		
84	$\Gamma_{6,7}$	94,712	0.73 ² D1	+	$0.08\ ^{2}G1$	+	$0.08^{2}D3$		

^aIrreducible representations of the double T (cubic) group (G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

Table 16. Energy levels (cm⁻¹) for Ni⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi₁₂GeO₂₀, T symmetry, no spin orbit

2 and 4, for Ge site in Bi ₁₂ GeO ₂₀ , T symmetry, no spin orbit									
No.	I.R.ª	Energy	Free ion state						
	[[(cm ⁻¹)							
1	Γ2,3	0	1.00 ⁵ D						
2	Γ_4	11,676	1.00 ⁵ D				Į.		
3	Γ_4	12,590	0.47 ³ H	+	$0.17^{3}G$	+	$0.13^{3}F2$		
4	$\Gamma_{2,3}$	21,226	$0.87^{3}H$	+	$0.12\ ^{3}G$	+	$0.01~^{3}D$		
5	Γ_4	22,495	$0.42^{3}H$	+	$0.28\ ^{3}G$	+	$0.20^{3}P2$		
6	Γ_4	23,138	$0.42^{3}F2$	+	$0.38^{3}H$	+	$0.08^{3}F1$		
7	Γ_4	23,808	0.44 ¹ I	+	$0.27 {}^{1}G2$	+	0.17 ¹ G1		
8	Γ_1	23,880	$1.00\ ^{3}G$				j		
9	Γ _{2,3}	24,316	0.70 ¹ I	+	$0.16^{1}D2$	+	0.07 ¹ G1		
10	$\Gamma_1^{2,3}$	24,510	0.94 ³ F2	+	$0.06\ ^{3}F1$		j		
11	Γ _{2,3}	26,499	$0.49^{3}G$	+	$0.48 ^3D$	+	$0.04^{3}H$		
12	Γ_1	31,376	0.32 ¹ /	+	$0.24 {}^{1}G1$	+	0.23 ¹ S2		
13	Γ4	31,437	$0.55^{3}H$	+	$0.32\ ^{3}G$	+	$0.09^{3}P1$		
14	Γ_1	32,026	0.94 1/	+	$0.06 {}^{1}F$		1		
15	Γ4	32,626	0.57 ¹ I	+	$0.27^{-1}G2$	+	0.07 ¹ G1		
16	Γ4	33,069	$0.37^{3}G$	+	$0.35^{3}H$	+	$0.10^{3}F1$		
17	Γ_4	33,922	$0.40^{3}F2$	+	$0.28^{3}H$	+	$0.12 {}^{3}G$		
18	Γ4	34,628	0.44 ¹ I	+	$0.29 {}^{1}G2$	+	$0.14^{-1}F$		
19	Γ_4	36,016	0.48 ³ D	+	$0.23^{3}H$	+	$0.15^{3}F2$		
20	Γ _{2,3}	36,226	0.47 ¹ D2	+	$0.34 {}^{1}G2$	+	0.11 ¹ /		
21	Γ2,3	36,905	$0.52\ ^{3}D$	+	0.39 ³ G	+	$0.10^{3}H$		
22	Γ4	37,571	0.44 ³ G	+	$0.27 ^3D$	+	$0.27^{3}F2$		
23	Γ_4	40,383	$0.50^{3}P2$	+	$0.27 {}^{3}F2$	+	$0.14^{-3}H$		
24	Γ4	43,140	0.87 ¹ I	+	$0.11 {}^{1}G2$	+	$0.02^{-1}G1$		
25	Γ_1	44,491	0.37 ¹ I	+	$0.32^{-1}S2$	+	0.21 ¹ G2		
26	Γ_4	45,239	0.43 ¹ F	+	$0.30^{-1}I$	+	$0.18 {}^{1}G2$		
27	$\Gamma_{2,3}$	45,314	$0.48 {}^{1}G2$	+	$0.18^{-1}G1$	+	0.18 1/		
28	Γ4	46,520	$0.69^{-1}F$	+	$0.12^{-1}D1$	+	$0.08 {}^{1}G1$		
29	$ \mathbf{r}_{i} $	48,325	$0.57 {}^{1}G2$	+	0.20 ¹ S2	+	0.10 ¹ G1		
30	Γ_{i}	51,292	0.94 ¹ F	+	I^{1} 60.0		•		
31	Γ_4	51,301	0.73 ¹ D2	+	$0.09 {}^{1}G1$	+	$0.08^{-1}F$		
32	Γ_4	51,464	$0.51 {}^{1}G2$	+	$0.42 {}^{1}F$	+	0.06 1/		
33	Γ_4	53,601	$0.70^{3}F1$	+	$0.16^{3}P1$	+	$0.10^{3}H$		
34	Γ_1	57,595	$0.94\ ^{3}F1$	+	$0.06\ ^{3}F2$		0 4 4 2		
35	Γ_4	58,214	$0.53^{3}P1$	+	$0.17 {}^{3}F2$	+	$0.14^{3}P2$		
36	Γ_4	60,295	$0.70^{3}F1$	+	$0.11 ^3D$	+	$0.10^{-3}G$		
37	Γ_4	63,745	$0.77 {}^{1}G1$	+	0.20 1/	+	$0.02 {}^{1}G2$		
38	$\Gamma_{2,3}$	63,749	$0.74 {}^{1}G1$	+	$0.17 {}^{1}G2$	+	$0.07 ^{1}D2$		
39	Γ_1	69,390	$0.51 {}^{1}G1$	+	0.24 1/	+	0.17 ¹ S2		
40	Γ_4	70,055	$0.54 {}^{1}G1$	+	$0.29 {}^{1}G2$	+	$0.10^{-1}D2$		
41	Γ_4	76,978	$0.75^{1}D1$	+	$0.11 {}^{1}F$	+	$0.06^{1}D2$		
42	$\Gamma_{2,3}$	79,827	0.84 ¹ D1	+	$0.16^{-1}D2$		0.00.100		
43	Γ_1	102,985	0.83 ¹ S1	+	0.09 ¹ S2	+	$0.08^{-1}G1$		

alreaducible representations of the T (cubic) group, $\Gamma_{2,3} = \Gamma_2 + \Gamma_3$ (Bethe notation, G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

Table 17. Energy levels (cm⁻¹) for Ni⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi₁₂GeO₂₀, T symmetry, $\zeta = 830$ cm⁻¹

No.	I.R.ª	Energy (cm ⁻¹)	$_2$ GeO ₂₀ , T symmetry, $\zeta = 830$ cm ⁻¹ Free ion state						
		(cm -)							
1	Γ_1	0	0.99 ⁵ D						
2	Γ_4	37	0.99 ⁵ D						
3	$\Gamma_{2,3}$	72	0.99 ⁵ D						
4	Γ_4	124	1.00 ⁵ D						
5	Γ_1	176	1.00 ⁵ D		_				
6	Γ_4	11,142	0.99 ⁵ D	+	$0.01\ ^{3}F2$				
7	Γ_4	11,598	0.99 ⁵ D						
8	Γ2,3	11,599	0.99 ⁵ D				_		
9	Γ_4	12,185	0.84 ⁵ D	+	$0.06^{3}H$	+	$0.03\ ^{3}G$		
10	Γ_4	12,230	0.99 ⁵ D						
11	Γ_1	12,247	0.99 ⁵ D				_		
12	Γ_4	12,400	0.38 ³ H	+	$0.15 {}^{3}G$	+	$0.15 {}^{5}D$		
13	$\Gamma_{2,3}$	12,425	0.43 ³ H	+	$0.19^{3}G$	+	$0.12^{3}F2$		
14	Γ_4	13,069	$0.51^{3}H$	+	$0.14^{-3}G$	+	$0.13^{3}F2$		
15	Γ_1	13,283	0.55 ³ H	+	$0.13^{3}F2$	+	$0.12\ {}^{3}G$		
16	Γ_4	21,211	0.78 ³ H	+	$0.11 {}^{3}G$	+	$0.02 {}^{1}G2$		
17	Γ_4	21,327	$0.86^{3}H$	+	$0.13^{3}G$	+	$0.01^{3}D$		
18	Γ_4	21,985	$0.41^{3}H$	+	$0.19^{3}G$	+	$0.16^{3}P2$		
19	$\Gamma_{2,3}$	22,258	$0.47^{3}H$	+	$0.21^{3}G$	+	$0.19^{3}P2$		
20	Γ2,3	22,738	$0.29^{3}F2$	+	$0.27^{3}H$	+	$0.18^{-1}I$		
21	Γ4	22,802	$0.36^{3}H$	+	$0.31 {}^{3}F2$	+	$0.09^{3}G$		
22	Γ_1	22,857	$0.40^{3}F2$	+	$0.37^{3}H$	+	$0.09^{3}F1$		
23	Γ_4	23,071	$0.36^{3}H$	+	$0.34^{3}G$	+	$0.18^{3}P2$		
24	Γ_1	23,508	$0.39^{-3}G$	+	$0.31^{3}H$	+	$0.20^{3}P2$		
25	Γ_4	23,668	$0.39^{3}F2$	+	$0.38^{3}H$	+	$0.07\ ^{3}F1$		
26	Γ_4	23,960	$0.97\ ^{3}G$	+	$0.02^{3}H$				
27	Γ_4	24,171	$0.46^{3}F2$	+	0.13 1/	+	$0.12^{3}H$		
28	Γ_4	25,281	$0.53^{3}F2$	+	0.19 1/	+	$0.08^{-1}G2$		
29	$\Gamma_{2,3}$	25,307	0.50 ¹ /	+	$0.13^{3}F2$	+	$0.11^{3}H$		
30	Γ_4	26,669	$0.48^{3}G$	+	$0.46^{3}D$	+	$0.05^{3}H$		
31	Γ_4	26,735	$0.45 ^3D$	+	$0.44^{-3}G$	+	$0.06^{3}H$		
32	Γ_1	30,260	$0.25^{3}H$	+	$0.20^{3}G$	+	0.13 1/		
33	Γ_4	31,308	0.44 ³ H	+	$0.22 \ ^{3}G$	+	0.13 1/		
34	Γ_4	31,620	0.55 ³ H	+	$0.30^{-3}G$	+	$0.10^{3}P1$		
35	$\Gamma_{2,3}$	31,780	$0.56^{3}H$	+	$0.31\ ^{3}G$	+	$0.07^{3}P1$		
36	Γ_1	31,787	0.68 1/	+	$0.12^{3}H$	+	$0.08^{-3}G$		
37	Γ_4	32,578	0.27 ³ H	+	$0.26^{3}G$	+	0.16 1/		
38	Γ_4	32,789	$0.41^{3}H$	+	0.17 1/	+	$0.11 {}^{1}G1$		
39	$\Gamma_{2,3}$	33,217	$0.34\ ^{3}G$	+	$0.25^{3}H$	+	$0.20^{3}F2$		
40	Γ_4	33,309	0.29 ³ H	+	$0.28^{-3}G$	+	$0.12 ^3D$		
41	Γ_1	33,333	$0.29^{3}H$	+	$0.26^{3}G$	+	0.23 1/		
42	Γ_4	33,701	$0.25\ ^{3}G$	+	$0.20^{3}H$	+	0.17 1/		
43	$\Gamma_{2,3}$	33,772	0.23 ³ H	+	$0.21^{-3}G$	+	$0.20^{3}F2$		
44	Γ_4	33,972	$0.33 {}^{3}F2$	+	$0.18^{3}H$	+	$0.15\ {}^{3}G$		
45	Γ4	34,191	0.29 ³ H	+	$0.28 {}^{3}F2$	+	$0.11 {}^{3}G$		
46	Γ_1	34,422	$0.43^{3}F2$	+	$0.23^{3}H$	+	$0.09\ ^{3}G$		
47	Γ4	35,094	0.23 1/	+	$0.15 {}^{1}G2$	+	$0.12\ {}^{3}G$		
48	Γ2,3	35,521	$0.31 {}^{3}D$	+	$0.22^{3}H$	+	$0.15 {}^{3}F2$		
49	Γ_4	36,073	$0.49^{3}D$	+	$0.26^{3}H$	+	$0.10^{3}F2$		

Table 17. Energy levels (cm⁻¹) for Ni⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi₁₂GeO₂₀, T symmetry, $\zeta = 830$ cm⁻¹ (cont'd)

			$_{2}$ GeO ₂₀ , T symmetry, $\zeta = 8.50$ cm ⁻¹ (cont ² d)						
No.	I.R.ª	Energy	Free ion state						
		(cm ⁻¹)							
50	Γ_4	36,433	$0.44 ^3D$	+	0.21 ³ H	+	$0.17^{3}F2$		
51	Γ_1	36,794	$0.41 ^3D$	+	$0.19^{3}H$	+	0.18 ³ F2		
52	Γ_4	37,126	$0.48 ^3D$	+	$0.41 {}^{3}G$	+	$0.10^{3}H$		
53	Γ _{2,3}	37,175	$0.27^{-1}D2$	+	$0.23 {}^{1}G2$	+	0.13 ³ H		
54	Γ_4	37,236	$0.42~^{3}D$	+	$0.39\ ^{3}G$	+	$0.08^{3}H$		
55	$\Gamma_{2,3}$	37,483	$0.46\ ^{3}G$	+	$0.25 {}^{3}F2$	+	$0.24 \ ^{3}D$		
56	Γ_4	37,610	0.41 ³ G	+	$0.28 {}^{3}F2$	+	$0.22 ^3D$		
57	Γ_4	38,191	$0.39\ ^{3}G$	+	$0.32\ ^{3}D$	+	$0.26^{3}F2$		
58	Γ_1	38,510	$0.37 {}^{3}G$	+	$0.37\ ^{3}D$	+	$0.25 {}^{3}F2$		
59	Γ_4	40,349	0.44 ³ P2	+	$0.31\ ^{3}F2$	+	$0.15^{3}H$		
60	Γ2,3	40,430	0.40 ³ P2	+	$0.32\ ^{3}F2$	+	0.14 ³ H		
61	Γ_4	41,018	$0.55^{3}P2$	+	$0.22 {}^{3}F2$	+	$0.12^{3}H$		
62	Γ_1	41,129	0.55 ³ P2	+	$0.19^{3}F2$	+	0.12 ³ G		
63	Γ_4	43,447	0.86 ¹ I	+	$0.11 {}^{1}G2$	+	$0.02 {}^{1}G1$		
64	Γ_1	44,917	0.35 ¹ /	+	0.30 ¹ S2	+	$0.22 {}^{1}G2$		
65	Γ_4	45,484	$0.42^{-1}F$	+	$0.30^{-1}I$	+	$0.18 {}^{1}G2$		
66	Γ2,3	45,638	$0.48 {}^{1}G2$	+	0.17 ¹ <i>G</i> 1	+	0.17 ¹ /		
67	Γ_4	46,727	0.67 ¹ F	+	$0.12 {}^{1}D1$	+	0.07 ¹ <i>G</i> 1		
68	Γ_1	48,344	$0.54 {}^{1}G2$	+	0.19 ¹ <i>S</i> 2	+	$0.09 {}^{1}G1$		
69	Γ_4	51,401	0.71 ¹ <i>D</i> 2	+	$0.08 {}^{1}G1$	+	$0.08 {}^{1}F$		
70	Γ_1	51,481	$0.92^{-1}F$	+	0.06 1/	+	$0.01\ ^{3}D$		
71	Γ_4	51,640	0.51 ¹ <i>G</i> 2	+	$0.41 {}^{1}F$	+	0.06 ¹ I		
72	Γ_1	53,599	0.63 ³ F1	+	$0.19\ ^{3}P1$	+	$0.10^{3}H$		
73	Γ_4	53,659	0.67 ³ F1	+	$0.19 {}^{3}P1$	+	$0.11^{3}H$		
74	$\Gamma_{2,3}$	54,208	$0.72^{3}F1$	+	$0.13^{3}P1$	+	$0.09^{3}H$		
75	Γ_4	54,282	$0.72^{3}F1$	+	$0.12 {}^{3}P1$	+	$0.09^{3}H$		
76	Γ_1	57,747	0.50 ³ P1	+	$0.19^{3}F2$	+	$0.16^{3}F1$		
77	Γ_4	57,871	0.93 ³ F1	+	$0.06^{3}F2$				
78	Γ_4	58,101	0.51 ³ P1	+	$0.18^{3}F2$	+	$0.15 {}^{3}F1$		
79	$\Gamma_{2,3}$	58,864	0.54 ³ P1	+	$0.16^{3}P2$	+	$0.15 {}^{3}F2$		
80	Γ_4	59,063	0.53 ³ P1	+	$0.15\ ^{3}P2$	+	$0.15 {}^{3}F2$		
81	Γ _{2,3}	60,575	$0.68^{3}F1$	+	$0.12\ ^{3}D$	+	$0.08^{3}G$		
82	Γ_4	60,614	$0.70^{3}F1$	+	$0.11^{-2}G$	+	$0.10^{3}D$		
83	Γ_1	60,692	$0.70^{3}F1$	+	$0.13^{-3}G$	+	$0.08\ ^{3}D$		
84	Γ_4	60,754	$0.69^{3}F1$	+	$0.12\ ^{3}D$	+	$0.08^{-3}G$		
85	Γ_4	64,083	$0.77 {}^{1}G1$	+	0.20 ¹ /	+	$0.02^{-1}G2$		
86	$\Gamma_{2,3}$	64,145	0.72 ¹ G1	+	$0.17^{-1}G2$	+	$0.07^{-1}D2$		
87	Γ_1	69,754	0.51 ¹ G1	+	0.24 ¹ <i>I</i>	+	0.17 ¹ S2		
88	Γ_4	70,343	$0.53 {}^{1}G1$	+	$0.29 {}^{1}G2$	+	$0.10^{-1}D2$		
89	Γ_4	77,274	$0.75 ^{1}D1$	+	$0.11^{-1}F$	+	$0.06^{-1}D2$		
90	Γ2,3	80,097	$0.83 ^{1}D1$	+	$0.16^{-1}D2$		_		
91	Γ_1	103,295	0.83 ¹ S1	+	0.09 ¹ S2	+	0.08 ¹ G1		

alrreducible representations of the T group, $\Gamma_{2,3} = \Gamma_2 + \Gamma_3$ (degenerate doublets) (G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

Table 18. Energy levels (cm⁻¹) for Cu⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi₁₂GeO₂₀, T symmetry, no spin orbit

No.	I.R.ª	Energy (cm ⁻¹)	GeO ₂₀ , 7 syn	Free ion sta	te	
1	Г.	0	1.00 ⁴ F			
	Γ_1	·				
2	Γ_4	9,490	1.00 ⁴ F			
3	Γ_4	14,930	0.76 ⁴ F +	0.24 ⁴ P		
4	$\Gamma_{2,3}$	18,807	$0.66^{2}G +$	$0.19^{2}H$	+	0.14 ² D2
5	Γ_4	19,357	$0.46^{2}G +$	0.34 ² H	+	0.18 ² P
6	Γ_4	23,777	0.76 ⁴ P +	0.24 ⁴ F		
7	Γ_4	25,491	$0.31^{2}H +$	$0.29^{\ 2}G$	+	$0.23^{2}D2$
8	Γ_1	26,206	1.00 ² G			
9	Γ_4	28,207	$0.51^{2}G +$	$0.48^{2}H$		
10	Γ_4	28,786	0.53 ² H +	$0.24^{-2}G$	+	0.23 ² P
11	Γ _{2,3}	30,961	0.49 ² H +	$0.44\ ^{2}D2$	+	0.07 ² D1
12	Γ_4	32,785	$0.43^{2}P +$	$0.38^{2}H$	+	0.17 ² F
13	Γ_4	37,536	$0.55^{2}D2 +$	$0.26^{2}F$	+	$0.09\ ^2G$
14	Γ_4	37,953	0.72 ² H +	$0.28^{-2}G$		
15	Γ_1	39,854	1.00 ² F			
16	Γ_4	41,737	$0.66^{2}F +$	$0.12^{\ 2}G$	+	0.10 ² H
17	Γ2,3	43,525	$0.40^{2}D2 +$	$0.32^{\ 2}G$	+	0.28 ² H
18	Γ_4	45,523	0.81 ² F +	$0.16^{2}P$	+	0.03 ² H
19	$\Gamma_{2,3}$	64,919	0.91 ² D1 +	$0.04^{2}H$	+	$0.03^{2}G$
20	Γ_4	65,096	$0.76^{2}D1 +$	0.16 ² D2	+	$0.05\ ^{2}F$

already alrea

Table 19. Energy levels (cm⁻¹) for Cu⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi₁₂GeO₂₀, T symmetry, $\zeta = 1008$ cm⁻¹

	and 4, for Ge site in Bi ₁₂ GeO ₂₀ , T symmetry, $\zeta = 1008$ cm ⁻¹									
No.	I.R.ª	Energy			Free ion stat	e				
		(cm ⁻¹)								
1	Γ _{6,7}	0	1.00 ⁴ F							
2	Γ _{6,7}	9,024	0.98 ⁴ F	+	$0.01^{-2}G$					
3	Γ5	9,345	0.99 ⁴ F	+	$0.01^{-2}G$					
4	Γ _{6,7}	9,818	0.99 ⁴ F							
5	Γ_5	10,072	1.00 ⁴ F							
6	Γ_5	14,203	0.81 ⁴ F	+	0.16 ⁴ P	+	$0.02^{-2}G$			
7	Γ _{6,7}	14,782	0.75 ⁴ F	+	0.21 ⁴ P	+	$0.02^{-2}G$			
8	Γ ₅	15,460	0.69 ⁴ F	+	0.30 ⁴ P	+	$0.01\ ^{2}D2$			
9	Γ _{6,7}	15,686	0.69 ⁴ F	+	0.30 ⁴ P					
10	Γ _{6,7}	18,892	$0.62^{-2}G$	+	$0.22^{2}H$	+	$0.11 ^2D2$			
11	Γ_5	19,255	0.46 ² G	+	$0.35^{2}H$	+	$0.14^{2}P$			
12	Γ _{6,7}	19,813	0.40 ² G	+	$0.29^{2}H$	+	$0.20^{2}P$			
13	Γ _{6,7}	23,746	0.69 ⁴ P	+	0.28 ⁴ F	+	$0.01~^{2}D2$			
14	Γ _{6,7}	23,816	0.73 ⁴ P	+	0.20 ⁴ F	+	$0.04^{2}G$			
15	$\Gamma_5^{"}$	23,834	0.69 ⁴ P	+	0.30 ⁴ F					
16	Γ ₅	24,145	0.79 ⁴ P	+	0.14 ⁴ F	+	$0.05^{2}G$			
17	Γ_5	25,520	0.41 ² H	+	$0.22 ^2D2$	+	$0.19^{-2}G$			
18	Γ _{6,7}	25,870	0.40 ² G	+	$0.23^{2}H$	+	$0.21\ ^{2}D2$			
19	Γ_5	26,782	0.93 ² G	+	0.03 ⁴ F	+	0.02 ⁴ P			
20	Γ _{6,7}	28,294	0.59 ² H	+	$0.38\ ^{2}G$	+	$0.01\ ^{2}D1$			
21	Γ ₅	28,589	0.57 ² G	+	$0.40^{2}H$	+	$0.02\ ^{2}D2$			
22	Γ _{6,7}	29,042	0.55 ² H	+	$0.25^{2}G$	+	$0.16^{2}P$			
23	Γ5	29,773	0.54 ² H	+	$0.25^{2}P$	+	$0.18^{-2}G$			
24	Γ _{6,7}	31,342	0.48 ² H	+	$0.40^{2}D2$	+	$0.06^{2}D1$			
25	Γ _{6,7}	33,225	0.40 ² P	+	$0.34^{2}H$	+	$0.14^{2}F$			
26	Γ5	33,338	0.40 ² P	+	$0.38^{2}H$	+	$0.18^{2}F$			
27	Γ ₅	37,543	$0.52^{2}D2$	+	$0.24^{2}F$	+	$0.10^{-2}G$			
28	Γ _{6,7}	37,782	$0.40^{2}D2$	+	$0.25^{2}H$	+	$0.22 {}^{2}F$			
29	Γ _{6,7}	38,508	0.54 ² H	+	$0.23^{2}G$	+	$0.14 ^2D2$			
30	Γ5	38,664	0.68 ² H	+	$0.31^{-2}G$	+	0.01 ² P			
31	Γ_5	40,084	1.00 ² F							
32	$\Gamma_{6.7}$	41,764	0.61 ² F	+	$0.11^{2}H$	+	$0.11\ ^{2}G$			
33	Γ ₅	42,706	0.68 ² F	+	$0.14^{2}G$	+	$0.07^{2}H$			
34	Γ _{6,7}	43,857	$0.37 ^2D2$	+	$0.30^{\ 2}G$	+	0.27 ² H			
35	Γ _{6,7}	45,756	0.76 ² F	+	$0.16^{2}P$	+	$0.04^{2}H$			
36	Γ ₅	46,137	0.79 ² F	+	$0.17^{2}P$	+	$0.03^{2}H$			
37	Γ_5	65,145	$0.76 ^2D1$	+	$0.18^{2}D2$	+	$0.04\ ^{2}F$			
38	Γ _{6,7}	65,303	$0.90^{2}D1$	+	$0.04^{2}H$	+	$0.03^{2}D2$			
39	Γ _{6.7}	65,692	0.77 ² D1	+	$0.14 ^2D2$	+	$0.06\ ^{2}F$			

^aIrreducible representations of the double T (cubic) group, $\Gamma_{6,7} = \Gamma_6 + \Gamma_7$ (G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

Table 20. Energy levels (cm⁻¹) for Zn⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi₁₂GeO₂₀, T symmetry, no spin orbit

No.	I.R.ª	Energy (cm ⁻¹)	Free ion state			
1	Γ_4	0	0.96 ³ F	+	0.04 ³ P	
2	Γ_4	6,548	1.00 ³ F			
3	Γ_1	14,021	$1.00^{3}F$			
4	Γ_4	14,327	0.73 ¹ D	+	$0.27^{-1}G$	
5	$\Gamma_{2,3}$	14,713	0.59 ¹ D	+	0.41 ¹ G	
6	Γ_4	16,258	0.96 ³ P	+	$0.04~^{3}F$	
7	Γ_4	22,686	0.73 ¹ G	+	0.27 ¹ D	
8	Γ_1	24,435	0.94 ¹ G	+	0.06 ¹ S	
9	Γ_4	24,725	1.00 ¹ G			
10	Γ2,3	29,774	0.59 ¹ G	+	0.41 ¹ D	
11	Γ_1	56,276	0.94 ¹ S	+	0.06 ¹ G	

Table 21. Energy levels (cm⁻¹) for Zn^{4+} using the parameters of tables 2 and 4, for Ge site in Bi₁₂GeO₂₀, T symmetry, $\zeta = 1203$ cm⁻¹

No.	I.R.ª	Energy (cm ⁻¹)		Free ion state				
1	Γ_1	0	0.97 ³ F	+	0.03 ³ P			
2	Γ_4	699	0.97 ³ F	+	$0.03^{3}P$			
2 3	$\Gamma_{2,3}$	1,877	0.96 ³ F	+	$0.03^{3}P$			
4	Γ_4	2,325	0.95 ³ F	+	$0.04^{3}P$			
5	Γ_4	8,121	$0.95 {}^{3}F$	+	$0.03^{-1}D$	+	$0.01^{-1}G$	
6	Γ_4	8,182	$1.00^{3}F$					
7	$\Gamma_{2,3}$	8,525	$0.98^{3}F$	+	$0.01^{-1}D$	+	$0.01^{-3}P$	
8	Γ_1	8,926	$1.00^{3}F$					
9	Γ_4	15,124	0.40 ¹ D	+	$0.39^{3}F$	+	$0.15^{3}P$	
10	$\Gamma_{2,3}$	15,327	0.39 ¹ D	+	$0.39^{3}P$	+	$0.22^{-1}G$	
11	Γ_4	16,486	0.65 ³ F	+	$0.17^{3}P$	+	$0.10^{-1}D$	
12	Γ_4	18,312	0.62 ³ P	+	$0.19^{1}D$	+	0.16 ¹ G	
13	Γ_4	18,589	0.97 ³ P	+	$0.03^{3}F$			
14	$\Gamma_{2,3}$	18,701	0.57 ³ P	+	$0.20^{-1}G$	+	$0.18^{-1}D$	
15	Γ_1	18,903	0.96 ³ P	+	$0.03^{3}F$	+	0.01 ¹ S	
16	Γ_4	24,734	0.69 ¹ G	+	$0.28 {}^{1}D$	+	$0.02^{-3}F$	
17	Γ_1	26,307	0.94 ¹ G	+	0.05 ¹ S	+	$0.01^{-3}P$	
18	Γ_4	26,565	1.00 ¹ G					
19	$\Gamma_{2,3}$	31,744	0.58 ¹ G	+	$0.41 {}^{1}D$	+	$0.01^{-3}P$	
20	Γ_1	58,264	0.94 ¹ S	+	0.06 ¹ G	+	$0.01^{3}P$	

alreaducible representations of the T group, $\Gamma_{2,3} = \Gamma_2 + \Gamma_3$ (degenerate doublets) (G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

Table 22. Energy levels (cm⁻¹) for Ga⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi₁₂GeO₂₀, T symmetry, no spin orbit

No.	I.R.ª	Energy (cm ⁻¹)	Free ion state
1	Γ_4	0	1.00 ² D
2	Γ _{2,3}	4,981	$1.00^{2}D$

already Irreducible representations of the T (cubic) group, $\Gamma_{2,3} = \Gamma_2 + \Gamma_3$ (Bethe notation, G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

Table 23, Energy levels (cm⁻¹) for Ga⁴⁺ using the parameters of tables 2 and 4, for Ge site in Bi₁₂GeO₂₀, T symmetry, $T = 1496 \text{ cm}^{-1}$

2 - 14%	T		
No.	I.R.ª	Energy (cm ⁻¹)	Free ion state
1	Γ5	0	1.00 ² D
2	Γ _{6,7}	1,561	1.00 ² D
3	Γ67	7,160	$1.00^{2}D$

alreaducible representations of the double T (cubic) group, $\Gamma_{6,7} = \Gamma_6 + \Gamma_7$ (G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, MIT Press, Cambridge, MA (1963)).

6. Conclusion

The crystallographic data on six host materials have been used to find the crystal-field components at sites that could be occupied by quadruply ionized transition-metal ions with the $3d^N$ electronic configuration. Using approximate values for the effective radial integrals ρ_2 and ρ_4 , we obtain the crystal-field parameters, B_{kq} , for Cr^{4+} in the host crystals NaTiSiO₅, Y₂SiBeO₇, Bi₄Si₃O₁₂, and Bi₄Ge₃O₁₂, assuming that the Cr^{4+} ion occupied the Ge, Ti, or Si site in these crystals.

For the host crystal $Bi_{12}GeO_{20}$ the Ge site has the cubic group symmetry T, and the entire quadruply ionized $3d^N$ series energy levels were calculated using estimated crystal-field parameters. The calculated energy levels are for $\zeta=0$ and for the value of ζ corresponding to the free-ion results. Experimental values of several energy levels for Cr^{4+} have been reported and upon comparison with the results obtained here, our estimated crystal-field parameters are too large. More experimental data are needed to ascertain whether this difference is significant.

7. References

- (1) D. T. Sviridov, R. K. Sviridova, N. I. Kulik, and V. B. Glasko, Optical spectra of the iso-electronic ions V^{2+} , Cr^{3+} , and Mr^{4+} in an octahedral coordination, J. Appl. Spectrosc. 30 (1979), 334.
- (2) S. Fraga, K. M. S. Saxena, and J. Karwowski, *Physical science data*: 5. *Handbook of atomic data*, Elsevier, New York (1976).
- (3) P. H. M. Uylings, A. J. J. Raassen, and J. F. Wyart, Energies of N equivalent electrons expressed in terms of two-electron energies and independent three-electron parameters: A new complete set of orthogonal operators: II. Application of 3d^N configurations, J. Phys. **B17** (1984).
- (4) C. A. Morrison, Host materials for transition-metal ions, Harry Diamond Laboratories, HDL-DS-89-1 (September 1989). Pages referenced in the present report are to specific items. This data summary (HDL-DS-89-1) includes results based on the work of many researchers, and references to the researcher's work are given within it.
- (5) C. W. Nielson and G. F. Koster, Spectroscopic coefficients for the pⁿ, dⁿ, and fⁿ configurations, MIT Press, Cambridge, MA (1963).
- (6) E. Konig and S. Kremer, Ligand field energy diagrams, Plenum Press, New York, NY (1977).
- (7) C. J. Ballhausen, Ligand field theory, McGraw Hill, New York (1962), p 93.
- (8) J. S. Griffith, *The theory of transition-metal ions*, Cambridge University Press, Cambridge, England (1961), p 226.
- (9) M. Weber, CRC Handbook of laser science and technology, Vol. III, p 198; Vol. IV, p 370; Vol. V, pp 12, 75, 78-80, 172, CRC Press, Boca Raton, FL (1987).
- (10) W. Wardzynski, T. Lukasiewicz, and J. Zmija, Reversible photochromic effects in doped single crystals of bismuth germinate $(Bi_{12}GeO_{20})$ and bismuth silicon oxide $(Bi_{12}SiO_{20})$, Opt. Commun. 30 (1979), 203.
- (11) W. Wardzynski, H. Szymczak, K. Pataj, T. Lukasiewicz, and J. Zmija, Light induced charge transfer in Cr doped Bi₁₂GeO₂₀ and Bi₁₂SiO₂₀ single crystals, J. Phys. Chem. Solids 43 (1982), 767.
- (12) G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, *Properties of the thirty-two point groups*, MIT Press, Cambridge, MA (1963).

- (13) W. Wardzynski, M. Baran, and H. Szymczak, Electron paramagnetic resonance of Fe³⁺ in bismuth germanium oxide single crystals, Physica 111B (1981), 47.
- (14) W. Wardzynski and H. Szymczak, The center of orthorhombic symmetry in chromium doped Bi₁₂GeO₂₀ and Bi₁₂SiO₂₀ single crystals, J. Phys. Chem. Solids 45 (1984), 887.

Appendix A.—Crystallographic and X-Ray Data

Contents

			Page
A-1.	Na ₂ TiS	iO ₅	43
	A-1.1	Crystallographic Data on Na ₂ TiSiO ₅	43
	A-1.2	Crystal-Field Components, A_{kq} , for the Si (D_{2d}) Site in	
		Na ₂ TiSiO ₅	43
	A-1.3	Crystal-Field Components, A_{kq} , for the Ti (C_{4v}) Site in	
		Na ₂ TiSiO ₅	43
	A-1.4	Na ₂ TiSiO ₅ References	
A-2.	Y ₂ SiBe	₂ O ₇	44
	A-2.1	Crystallographic Data on Y ₂ SiBe ₂ O ₇	44
	A-2.2	Crystal-Field Components, A_{kq} , for the Si Site (S_4) in	······································
	112	Y ₂ SiBeO ₇	44
	A-2.3	Y ₂ SiBe ₂ O ₇ References	
A-3.	Bi ₄ X ₃ O	$O_{12} (X = Si, Ge)$	45
	A-3.1	Crystallographic Data on Bi ₄ X ₃ O ₁₂	45
	A-3.2	X-Ray Data on Bi ₄ X ₃ O ₁₂	
	A-3.3	Crystal-Field Components, A_{ka} , for the Si Site (S_4) of	
		Bi ₄ Si ₃ O ₁₂	45
	A-3.4	Crystal-Field Components, A_{kq} for the Ge Site (S_4) of	
		Bi ₄ Ge ₃ O ₁₂	46
	A-3.5	Bi ₄ X ₃ O ₁₂ References	
A-4.	Bi ₁₂ XO	O_{20} (X = Ge, Si)	47
	A-4.1	Crystallographic Data on Bi ₁₂ XO ₂₀	47
	A-4.2	X-Ray Data on Bi ₁₂ XO ₂₀	
	A-4.3	Crystal-Field Components, A_{kq} , for the Ge Site of	
		Bi ₁₂ GeO ₂₀	48
	A-4.4	Crystal-Field Components, A_{kq} , for the Si Site (T) of	_
		Bi ₁₂ SiO ₂₀	48
	A-4.5	$Bi_{12}XO_{20}$ (X = Ge, Si) References	

The following tables give the crystallographic and x-ray data on each of the compounds considered. The crystal-field components, A_{kq} , are calculated for the monopole (point-charge), self-induced, and dipole contributions. Following each table is a list of references for that particular compound. These references include such topics as crystal growth, index of refraction, and electron spin resonance investigations. However, the list of references is not, in any sense, exhaustive and if further investigations are contemplated on any compound, additional library searches should be undertaken.

A-1. Na₂TiSiO₅

A-1.1 Crystallographic Data on Na₂TiSiO₅

Tetragonal (P4/nmm), 129, $Z = 2^a$

Ion	Site	Symmetry	х ^b	у	z	q	$\alpha (A^3)^c$
Ti	2c	C_{4v}	1/2	0	0.9343	4	0.506
Na	4e	C_{2h}	1/4	1/4	1/2	1	0.147
Si	2a	D_{2d}	0	0	0	4	0.0165
O_1	8i	C_s	0	0.2071	0.1831	-2	1.349
02	2 <i>c</i>	C ₄₀	1/2	0	-0.7338	–2	1.349

^aN. F. M. Henry and K. Lonsdale, International tables for x-ray crystallography, Vol. I: Symmetry groups, Kynoch, Birmingham, UK (1969).

A-1.2 Crystal-Field Components, A_{kq} (cm⁻¹/Å^k) for the Si (D_{2d}) Site in Na₂TiSiO₅

Akq	Monopole	Self-induced	Dipole	Total
A ₂₀	7,285	548.7	-34,349	-26,515
A ₃₂	-64,975	25,258	-48,610	-88,327
A40	-31,427	19,391	-20,545	-32,581
A44	17,004	-12,063	21,554	26,494
A52	326.3	-628.4	9,042	8,740

A-1.3 Crystal-Field Components, A_{kq} (cm⁻¹/Å^k), for the Ti (C_{4p}) Site in Na₂TiSiO₅

Akq	Monopole	Self-induced	Dipole	Total
A ₁₀	15,041	0	114,675	129,716
A20	18,952	-2,906	38,432	54,478
A ₃₀	48,794	-13,854	36,992	71,932
A40	18,057	-10,303	42,160	49,914
A44	10,890	-4,552	766.4	7,105
A50	4,284	-5,673	25,232	23,843
A54	-6,132	3,088	2,933	-111.3

bX-ray data: a = 6.480 Å, c = 5.107 Å (Nyman et al (1978)).

^cSchmidt et al (1979).

A-1.4 Na₂TiSiO₅ References

Nyman, H., M. O'Keeffe, and J. O. Borin, Sodium titanium silicates, Na₂TiSiO₅, Acta. Crystallogr. **B34** (1978), 905.

Schmidt, P. C, A. Weiss, and T. P. Das, Effect of crystal-fields and self-consistency on dipole and quadrupole polarizabilities of closed shell ions, Phys. Rev. **B19** (1979), 5525.

A-2. Y₂SiBe₂O₇

A-2.1 Crystallographic Data on Y₂SiBe₂O₇

Tetragonal D_{3d}^3 ($P\overline{4}2_1m$), 113, Z=2

Ion	Site	Symmetry	x ^a	у	Z	q	$\alpha (A^3)^b$
Y	4e	C_s	0.1595	0.6595	0.4873	3	0.870
Si	2 <i>a</i>	S ₄	0	1 0	0	4	0.0165c
Be	4 <i>e</i>	C_s	0.363	0.863	0.031	2	0.0125
O_1	8 <i>f</i>	C_1	0.0823	0.1664	0.7928	-2	1.349
O_2	4e	C_2	0.3561	0.8561	0.7053	-2	1.349
O_3	2 <i>c</i>	C_{2v}	0	1/2	0.8275	-2	1.349

 $^{^{}a}X$ -ray data: a = 7.283 Å; c = 4.755 Å, Bartram (1969).

A-2.2 Crystal-Field Components, A_{kq} (cm⁻¹/Å^k), for the Si Site (S₄) in Y₂SiBe₂O₇

A_{kq}	Monopole	Self-induced	Dipole	Total
A ₂₀	10,029	-468.9	-19,678	-10,118
ReA ₃₂	35,565	-12,974	26,656	49,247
ImA ₃₂	-46,373	17,029	-40,428	-69,772
A_{40}	-28,792	16,971	-23,527	-35,348
ReA ₄₄	-4,073	2,468	-6,484	-8,089
ImA ₄₄	-14,462	9,193	-17,375	-22,644
ReA ₅₂	902.0	-662.1	-2,652	-2,412
ImA ₅₂	-1,164	866.0	3,394	3,096
A44	15,025		<u>-</u>	24,045

A-2.3 Y₂SiBe₂O₇ References

Bartram, S. F., Crystal structure of $Y_2SiBe_2O_7$, Acta. Crystallogr. **B25** (1969), 791.

Morrison, C. A., N. Karayianis, and D. E. Wortman, Rare-earth ion-host interactions: 10. Lanthanides in Y₂SiBe₂O₇, Harry Diamond Laboratories, HDL-TR-1766 (August 1976).

bSchmidt et al (1979).

cTessman et al (1953).

Schmidt, P. C., A. Weiss, and T. P. Das, Effect of crystal-fields and self-consistency on dipole and quadrupole polarizabilities of closed shell ions, Phys. Rev. B19 (1979), 5525.

Tessman, J. R., A. H. Kahn, and W. Schockley, Phys. Rev. 92 (1953), 890.

A-3. $Bi_4X_3O_{12}$ (X = Si, Ge)

A-3.1 Crystallographic Data on Bi₄X₃O₁₂

Cubic $T_d^6(I\overline{4}3d)$, 220, Z=4

Ion	Site	Symmetry	х ^а	у	z	q	α (Å ³)
Bi	16 <i>c</i>	C_3	х	x	х	3	2.23a
X	12 <i>a</i>	S ₄	0	1/4	3/8	4	α_{x}^{a}
0	48e	C_1	x	l y	z	-4	1.3496

^aFraga et al (1976), $\alpha_{Si} = 0.03$ (Å³), $\alpha_{Ge} = 0.12$ (Å³). ^bSchmidt et al (1979).

A-3.2 X-Ray Data on $Bi_4X_3O_{12}$

X	а	ΧBi	<i>x</i> ₀	Уо	z ₀
Si	10.300°	0.0857	0.0607	0.1335	0.2875
Ge	10.513 ^b	0.0876	0.0689	0.1277	0.2875

^aWyckoff (1968), Vol. 4. ^bFisher and Waldner (1982).

A-3.3 Crystal-Field Components, A_{kq} (cm⁻¹/Å^k), for the Si Site (S₄) of Bi₄Si₃O₁₂

Akq	Monopole	Self-induced	Dipole	Total
A ₂₀	-4,423	1,103	11,851	8,531
ReA32	39,156	-15,088	35,345	59,414
ImA32	55,809	-21,662	43,774	77,921
A ₄₀	-29,886	19,317	-36,749	-47,317
ReA44	-7,631	4,551	-3,239	-6,319
ImA44	18,425	-12,613	15,697	21,509
ReA ₅₂	-2,043	1,506	2,727	2,190
ImA ₅₂	-2,628	2,150	3,917	3,439
A44	19,943	_	_	22,418

A-3.4	Crystal-Field Components, A_{kq} (cm ⁻¹ /Å ^k), for the Ge
	Site (S_4) of $Bi_4Ge_3O_{12}$

Akq	Monopole	Self-induced	Dipole	Total
A ₂₀	-9,149	1,563	7,098	-488.4
ReA ₃₂	26,496	-8,445	21,045	39,096
ImA ₃₂	43,745	-14,017	29,123	58,851
A ₄₀	-19,352	10,242	-22,771	-31,881
ReA44	-7,790	3,872	-2,562	-6,480
ImA ₄₄	13,318	-7,527	8,938	14,729
ReA ₅₂	-2,366	1,523	1,117	274.0
ImA ₅₂	-3,549	2,507	1,981	938.8
$ A_{44} $	15,429	_	_	16,091

A-3.5 $Bi_4X_3O_{12}$ References

Allegretti, F., D. Borgia, R. Riva, F. DeNotaristefani, and S. Pizzini, Growth of BGO single crystals using a directional solidification technique, J. Cryst. Growth 94 (1989), 373.

Bochkova, T. M., E. G. Valyashko, V. A. Smirnov, and S. A. Flerova, Optical spectra of $Bi_4Ge_3O_{12} - Nd$ and $Bi_4Si_3O_{12} - Nd$ crystals, J. Appl. Spectrosc. (USSR) 30 (1979), 102.

Bortfeld, D. P., and H. Meier, Refractive indices and electro-optic coefficients of the eulitites $Bi_4Ge_3O_{12}$ and $Bi_4Si_3O_{12}$, J. Appl. Phys. 43 (1972), 5110.

Chesler, R. B. and J. E. Geusic, *Laser handbook*, Vol.1, North Holland (1972), 362.

Cho, Z. H., O. Nalcioglu, and M. R. Farukhi, Analysis of a cylindrical hybrid position camera with bismuth germanate (BGO) scintillation crystals, IEEE NS25 (1978), 952.

Couzi, M., J. R. Vignalou, and G. Boulon, Infrared and Raman study of the optical phonons in $Bi_4Ge_3O_{12}$ single crystals, Solid State Commun. 20 (1976), 461.

Fischer, P. and F. Waldner, Comparison of neutron diffraction and EPR results on the cubic crystal structures of piezoelectric $Bi_4Y_3O_{12}$ (Y = Ge, Si), Solid State Commun. 44 (1982), 657.

Gusev, V. A., and S. A. Petrov, *Photoluminescence of Bi*₄ Ge_3O_{12} single crystals, Optoelectron. Instrum. Data Process. (5) (1988), 15.

Gusev, V. A., S. I. Demenko, and S. A. Petrov, *Photoconductivity of* $Bi_4Ge_3O_{12}$ single crystals, Optoelectron. Instrum. Data Process. (32) (1988), 32.

Ivanov, V. Y., A. V. Kruzhalov, V. A. Pustovarou, and V. L. Petrov, *Electron excitation and luminescence in Bi*₄*Ge*₃*O*₁₂ and *Bi*₄*Si*₃*O*₁₂ crystals, Nucl. Instrum. Methods Phys. Res. A261 (1987), 150.

Johnson, L. F. and A. A. Ballman, Coherent emission from rare earth ions in electro-optic crystals, J. Appl. Phys. 40 (1969), 297.

Kaminiskii, A. A., S. E. Sarkisov, T. I. Butaeva, G. A. Denisenko, B. Hermoneit, J. Bohm, W. Grasskreutz, and D. Schultz, Growth, spectroscopy, and stimulated emission of cubic Bi₄Ge₃O₁₂ crystals doped with Dy³⁺, Ho³⁺, Er³⁺, Tm³⁺, or Yb³⁺ ions, Phys. Status Solidi (a)56 (1979), 725.

Kaminskii, A. A., D. Schultz, B. Hermoneit, S. Sarkisov, L. Li, J. Bohm, P. Reiche, R. Ehlert, A. A. Mayer, V. A. Lomonov, and V. A. Balashov, Spectroscopic properties and stimulated emission in the ${}^4F_{3/2} \rightarrow {}^4I_{11/2}$ and ${}^4F_{3/2} \rightarrow {}^4I_{13/2}$ transitions of Nd^{3+} ions from cubic $Bi_4Ge_3O_{12}$ crystals, Phys. Status Solidi (a)33 (1976), 737.

Liebertz, J., Einkristallzüchtung von wismutgermanat $(Bi_4(GeO_4)_3)$, J. Cryst. Growth 5 (1969), 150.

Neikirk, D. P. and R. C. Powell, Laser time-resolved spectroscopy studies of host-sensitized energy transfer in $Bi_4Ge_3O_{12}$: Er^{3+} crystals, J. Lumin. 20 (1976), 261.

Nitsche, R., Crystal growth and electro-optic effect of bismuth germanate, $Bi_4(GeO_4)_3$, J. Appl. Phys. 36 (1965), 2358.

Sarkisov, S. E., K. K. Pukhov, A. A. Kaminskii, A. G. Petrosyan, and T. I. Betaeva, *Manifestation of electron-phonon interaction in insulating crystals doped with Pr³⁺ ions*, Phys. Status Solidi (a)113 (1989), 193.

Segal, D. J., R. P. Santoro, and R. E. Newnham, *Neutron-diffraction* study of Bi₄Si₃O₁₂, Z. Kristallogr. 123 (1966), 73.

Schmidt, P. C., A. Weiss, and T. P. Das, Effect of crystal-fields and self-consistency on dipole and quadrupole polarizabilities of closed shell ions, Phys. Rev. **B19** (1979), 5525.

Schweppe, H., Electromechanical properties of bismuth germanate $Bi_4(GeO_4)_3$, IEEE Trans. Sonics Ultrason. (October 1969), 219.

Von Philipsborn, H., Croissance d'eulytine $Bi_4Si_3O_{12}$ et des composés substitués $Bi_4Ge_3O_{12}$ par la méthode czochrolski, J. Cryst. Growth 11 (1971), 348.

Weber, M. J. and R. R. Monchamp, Luminescence of $Bi_4Ge_3O_{12}$: Spectral and decay properties, J. Appl. Phys. 44 (1973), 5495.

A-4. $Bi_{12}XO_{20}$ (X = Ge, Si)

A-4.1 Crystallographic Data on Bi₁₂XO₂₀

Cubic T^3 (123), 197, Z = 2

Ion	Site	Symmetry	x	у	Z	q	$\alpha (A^3)$
Bi	24 <i>f</i>	C_1	х	у	Z	3	2.23a
X	2 <i>a</i>	$I \qquad I$	0	0	0	4	α_{x}^{a}
O ₁	24f	C_1	x	у	z	-2	1.349b
O ₂	8 <i>c</i>	C_3	x	x	x	-2	1.349
O ₃	8 <i>c</i>	C_3	x	x	х	-2	1.349

^aFraga et al (1976).

^bSchmidt et al (1979).

A-4.2 X-Ray Data on Bi₁₂XO₂₀

X	а	x_{Bi}	УВі	z _{Bi}	<i>x</i> ₀₁	уо1	<i>z</i> ₀₁
Ge	10.1455°	0.82409	0.68158	0.98433	0.8655	0.7477	0.5145
Si	10.10433 ^b	0.17564	0.31741	0.01592	0.1348	0.2523	0.4858

X	x02	<i>x</i> 03	$\alpha_x (\mathring{A}^3)^c$
Ge	0.8019	0.0977	0.12
Si	0.1950	0.9059	0.03

^aAbrahams et al (1967).

^bAbrahams et al (1979).

cFraga et al (1976).

A-4.3 Crystal-Field Components, A_{kq} (cm⁻¹/Å^k), for the Ge Site of Bi₁₂GeO₂₀^a

Aka	Monopole	Self-induced	Dipole	Total
A ₃₂	i54,550	-i17,875	<i>i</i> 50,303	86,978
A ₄₀	-25,350	13,407	-26,296	-38,240
A60	4,766.4	-5,328.1	7,328.2	6,766.5
A62	163.03	17.182	-35.978	144.24
A72	<i>−i</i> 3,901.1	i5,796.2	<i>−i</i> 6,963.0	<i>−i</i> 5,067.9

 $^{a}A_{44} = \sqrt{\frac{5}{14}} A_{40}, A_{64} = -\sqrt{\frac{7}{2}} A_{60}, A_{66} = -\sqrt{\frac{5}{11}} A_{62}, \text{ and } A_{76} = \sqrt{\frac{11}{13}} A_{72}.$

A-4.4 Crystal-Field Components, A_{kq} (cm⁻¹/Å^k), for the Si Site (T) of Bi₁₂SiO₂₀^a

Akq	Monopole	Self-induced	Dipole	Total
A32	<i>−i</i> 64,514	i23,949	-i64,411	-i104,976
A ₄₀	-31,029	18,698	-35,224	-47,555
A ₆₀	6,361.3	-8,079.2	10,613	8,895.5
A ₆₂	170.64	18.406	-35.384	153.67
A72	i5,446.7	<i>−i</i> 9,160.9	i10,524	i6,810.0

$${}^{a}A_{44} = \sqrt{\frac{5}{14}} A_{40}, A_{64} = -\sqrt{\frac{7}{2}} A_{60}, A_{66} = -\sqrt{\frac{5}{11}} A_{62}, \text{ and } A_{76} = \sqrt{\frac{11}{13}} A_{72}.$$

A-4.5 $Bi_{12}XO_{20}$ (X = Ge, Si) References

Abrahams, S. C., J. L. Bernstein, and C. Svensson, Crystal structure and absolute piezoelectric d_{14} coefficient in laevorotatory $Bi_{12}SiO_{20}$, J. Chem. Phys. 71 (1979), 788.

Abrahams, S. C., P. B. Jamieson, and J. L. Bernstein, Crystal structure of piezoelectric bismuth germanium oxide Bi₁₂GeO₂₀, J. Chem. Phys. 47 (1967), 4034.

Barbonas, G., D. Senuliene, A. Sileika, E. I. Leonov, and V. M. Orlov, Induced circular dichroism in bismuth silicate $(Bi_{12}SiO_{12})$ crystals doped with Cr, Leit. Fiz. Rinkinys 27 (1987), 318 (in Russian; English abstract).

Denagbe, S., M. Martin, M. Schvocrer, F. Marsaud, J. C. Launay, and P. Hagenmuller, *Thermally stimulated luminescence in undoped and doped Bi*₁₂GeO₂₀ single crystals, J. Phys. Chem. Solids 51 (1990), 171.

Fraga, S., K. M. Saxena, and J. Karwowski, *Physical science data:* 5. *Handbook of atomic data*, Elsevier, New York (1976).

Nikolova, E. G. and M. M. Gospodinov, The Twyman effect in crystals of $Bi_4Ge_3O_{12}$ and $Bi_{12}SiO_{20}$, J. Mater. Sci. Lett. 8 (1989), 309.

Schmidt, P. C., A. Weiss, and T. P. Das, Effect of crystal-fields and self-consistency on dipole and quadrupole polarizabilities of closed shell ions, Phys. Rev. **B19** (1979), 5525.

Senuliene, D., G. Babonas, A. Sileika, E. Leonovas, and V. Orlovas, An investigation of absorption and circular dichroism spectra in $Bi_{12}SiO_{20}$ crystals doped with Ni, Co, and Mn, Sov. Phys. Coll. 27 No. 1 (1987), 55 (English translation).

Wardzynski, W., M. Baran, and H. Szymczak, Electron paramagnetic resonance of Fe³⁺ in bismuth germanium oxide single crystals, Physica 111B (1981), 47.

Wardzynski, W., T. Lukasiewicz, and J. Zmija, Reversible photochromic effects in doped single crystals of bismuth germinate $(Bi_{12}GeO_{20})$ and bismuth silicon oxide $(Bi_{12}SiO_{20})$, Opt. Commun. 30 (1979), 203.

Wardzynski, W., and H. Szymczak, The center of orthorhombic symmetry in chromium doped $Bi_{12}GeO_{20}$ and $Bi_{12}SiO_{20}$ single crystals, J. Phys. Chem. Solids 45 (1984), 887.

Wardzynski, W., H. Szymczak, K. Pataj, T. Lukasiewicz, and J. Zmija, Light induced charge transfer in Cr doped $Bi_{12}GeO_{20}$ and $Bi_{12}SiO_{20}$ single crystals, J. Phys. Chem. Solids 43 (1982), 767.

Weber, M. J., ed., CRC handbook of laser science and technology, Vol. IV. Optical materials, Part 2: Properties, CRC Press, Boca Raton, FL (1986). Also, Vol. V. Optical materials, Part 3: Applications, coatings, and fabrication, CRC Press (1987).

Wojdowski, W., T. Lukasiewicz, W. Nazarewicz, and J. Zmija, Infrared studies of lattice vibrations in $Bi_{12}GeO_{20}$ and $Bi_{12}SiO_{20}$ crystals, Phys. Status Solidi (b)94 (1979), 649.

Administrator

Defense Technical Information Center

Attn DTIC-DDA (2 copies) Cameron Station, Bulding 5 Alexandria, VA 22304-6145

Director

Night Vision & Electro-Optics Laboratory

Attn Technical Library

Attn R. Buser

Attn A. Pinto

Attn J. Hebersat

Attn L. Merkel

Attn R. Rhode

Attn W. Tressel

Ft Belvoir, VA 22060

Director

Defense Advanced Research Projects Agency

Attn J. Friebele 1400 Wilson Blvd Arlington, VA 22290

Director

Defense Nuclear Agency

Attn Tech Library

Washington, DC 20305

Under Secretary of Defense Res &

Engineering

Attn Tech Library, 3C128

Washington, DC 20301

Office of the Deputy Chief of Staff, for

R&D Center

Department of the Army

Attn DAMA-ARZ-B,

I. R. Hershner

Washington, DC 20310

Commander

US Army Armament Munitions &

Chemical Command (AMCCOM)

R&D Center

Attn DRDAR-TSS, STINFO Div

Dover, NJ 07801

Commander

Atmospheric Sciences Laboratory

Attn Technical Library

White Sands Missile Range, NM 88002

Director

US Army Ballistic Research Laboratory

Attn SLCBR-DD-T (STINFO)

Aberdeen Proving Ground, MD 21005

Director

US Army Electronics Warfare Laboratory

Attn J. Charlton

Attn AMSEL-DD

Ft Monmouth, NJ 07703

Commanding Officer

USA Foreign Science & Technology

Center

Attn AIAST-BS, Basic Science Div

Federal Office Building

Charlottesville, VA 22901

Commander

US Army Materials & Mechanics

Research Center

Attn SLCMT-TL, Tech Library

Watertown, MA 02172

US Army Materiel Systems Analysis

Activity

Attn AMXSY-MP, Library

Aberdeen Proving Ground, MD 21005

Commander

US Army Missile & Munitions

Center & School

Attn ATSK-CTD-F

Attn AMSMI-TB, Redstone Sci Info

Center

Redstone Arsenal, AL 35809

Commander

US Army Research Office Durham

Attn M. Stosio

Attn M. Ciftan

Attn R. Guenther

Research Triangle Park, NC 27709

Commander

USA Resch & Std Gp (Europe)

Attn Chief, Physics & Math Branch

FPO, New York 09510

Commander
US Army Test & Evaluation Command
Attn D. H. Sliney
Attn Tech Library
Aberdeen Proving Ground, MD 21005

Commander
US Army Troop Support Command
Attn STRNC-RTL, Tech Library
Natick, MA 01762

Office of Naval Research Attn J. Murday Arlington, VA 22217

Director
Naval Research Laboratory
Attn Code 2620, Tech Library Br
Attn G. Quarles
Attn G. Kintz
Attn A. Rosenbaum
Attn G. Risenblatt
Attn Code 5554, F. Bartoli
Attn Code 6540, S. R. Bowman
Attn Code 5554, L. Esterowitz
Attn Code 5554, R. E. Allen
Washington, DC 20375

Commander
Naval Weapons Center
Attn Code 3854, R. Schwartz
Attn Code 3854, M. Hills
Attn Code 3854, M. Nadler
Attn Code 385, R. L. Atkins
Attn DOCE 343, Technical Information
Department
China Lake, CA 93555

Air Force Office of Scientific Research Attn Major H. V. Winsor, USAF Bolling AFB Washington, DC 20332

Department of Commerce National Bureau of Standards Attn Library Washington, DC 20234

Nasa Langley Research Center Attn N. P. Barnes Attn G. Armagan Nasa Langley Research Center (cont'd)
Attn P. Cross
Attn D. Getteny
Attn J. Barnes
Attn E. Filer
Attn C. Bair
Attn N. Bounchrishani
Hampton, VA 23665

Director
Advisory Group on Electron Devices
Attn Sectry, Working Group D
201 Varick Street
New York, NY 10013

Aerospace Corporation Attn M. Birnbaum Attn N. C. Chang Attn T. S. Rose PO Box 92957 Los Angeles, CA 90009

Allied Signal, Inc. Advanced Application Dept Attn A. Budgor 31717 La Tiemda Drive Westlake Village, CA 91362

Allied Signal Inc Attn Y. Band Attn R. Morris POB 1021R Morristown, NJ 07960

Ames Laboratory Dow Iowa State University Attn K. A. Gschneidner, Jr (2 copies) Ames, IA 50011

Argonne National Laboratory Attn W. T. Carnall 9700 South Cass Avenue Argonne, IL 60439

Booz Allen and Hamilton Attn W. Drozdoski 4330 East West Highway Bethesda, MD 20814

Brimrose Corp of America Attn R. G. Rosemeier 7527 Belair Road Baltimore, MD 21236

Draper Lab Attn F. Hakimi, MS 53555 Tech Sq Cambridge, MA 02139

Engineering Societies Library Attn Acquisitions Dept 345 East 47th Street New York, NY 10017

Fibertech Inc Attn H. R. Verdin (3 copies) 510-A Herdon Pkwy Herdon, VA 22070

General Dynamics Attn R. J. Blair 5452 Oberlin Drive San Diego, CA 92121

Hughes Aircraft Company Attn D. Sumida 3011 Malibu Canyon Rd Malibu, CA 90265

IBM Research Division Almaden Research Center Attn R. M. Macfarlane, Mail Stop K32 802(d) 650 Harry Road San Jose, CA 95120

Director
Lawrence Radiation Laboratory
Attn M. J. Weber
Attn H. A. Koehler
Attn W. Krupke
Livermore, CA 94550

LTV Attn M. Kock (WT-50) PO Box 650003 Dallas, TX 75265

Martin Marietta Attn F. Crowne Attn J. Little Martin Marietta (cont'd) Attn T. Worchesky 1450 South Rolling Road Baltimore, MD 21227

McDonnell Douglass Electronic Systems Company Dept Y440, Bldg. 101, Lev. 2 Rm/Pt B54 Attn D. M. Andrauskas, MS-2066267 PO Box 516 St Louis, MO 63166

MIT Lincoln Lab Attn B. Aull PO Box 73 Lexington, MA 02173

Department of Mechanical, Industrial, & Aerospace Engineering Attn S. Temkin PO Box 909 Piscataway, NJ 08854

National Oceanic & Atmospheric Adm Environmental Research Labs Attn Library, R-51, Tech Rpts Boulder, CA 80302

Oak Ridge National Laboratory Attn R. G. Haire Oak Ridge, TN 37839

W. J. Schafer Assoc Attn J. W. Collins 321 Billerica Road Chelmsford, MA 01824

Science Applications, International Corp Attn T. Allik 1710 Goodridge Drive McLean, VA 22102

Shwartz Electro-Optic, Inc. Attn G. A. Rines 45 Winthrop Street Concord, MA 01742

Teledyne Brown Engineering Cummings Research Park Attn M. L. Price, MS-44 Huntsville, AL 35807

Union Carbide Corp Attn M. R. Kokta 50 South 32nd Street Washougal, WA 98671

Arizona State University Dept of Chemistry Attn L Eyring Tempe, AZ 85281

University of Southern California Attn Dr. M. Birnbaum Denney Research Bldg, University Park Los Angeles, CA 90089

Carnegie Mellon University Schenley Park Attn Physics & EE, J. O. Artman Pittsburgh, PA 15213

Colorado State University Physics Department Attn S. Kern Ft Collins, CO 80523

University of Connecticut Department of Physics Attn R. H. Bartram Storrs, CT 06269

University of South Florida Physics Dept Attn R. Chang Attn Sengupta Tampa, FL 33620

Howard University Physics Department Attn Prof. V. Kushamaha 25 Bryant St., N.W. Washington, DC 20059

Johns Hopkins University Dept of Physics Attn B. R. Judd Baltimore, MD 21218

Kalamazoo College Dept of Physics Attn K. Rajnak Kalamazoo, MI 49007 Massachusetts Institute of Technology Crystal Physics Laboratory Attn H. P. Jenssen Cambridge, MA 02139

Massachusetts Institute of Technology Attn V. Bagnato 77 Mass, Ave, Room 26-251 Cambridge, MA 02139

University of Minnesota, Duluth Department of Chemistry Attn L. C. Thompson Duluth, MN 55812

Oklahoma State University Dept of Physics Attn R. C. Powell Stillwater, OK 74078

Pennsylvania State University Materials Research Laboratory Attn W. B. White University Park, PA 16802

Princeton University Department of Chemistry Attn D. S. McClure Princeton, NJ 08544

San Jose State University Department of Physics Attn J. B. Gruber San Jose, CA 95192

Seaton Hall University Chemistry Department Attn H. Brittain South Orange, NJ 07099

University of Virginia Dept of Chemistry Attn F. S. Richardson (2 copies) Charlottesville, VA 22901

University of Wisconsin Chemistry Department Attn J. Wright Attn B. Tissue Madison, WI 53706

US Army Laboratory Command Attn Technical Director, AMSLC-TD

Installation Support Activity Attn Legal Office, SICIS-CC

USAISC

Attn Adminstrative Services, AMSLC-IM-TS
Attn Technical Publishing Branch,
AMSLC-IM-VP (2 copies)

Harry Diamond Laboratories

Attn Division Directors

Attn Library, SLCHD-TL (3 copies)

Attn Library, SLCHD-TL (Woodbridge)

Attn Chief, SLCHD-NW-CS

Attn Chief, SLCHD-NW-E

Attn Chief, SLCHD-NW-EH

Attn Chief, SLCHD-NW-EP

Attn Chief, SLCHD-NW-ES

Attn Chief, SLCHD-NW-P

Attn Chief, SLCHD-NW-R

Attn Chief, SLCHD-NW-RP

Attn Chief, SLCHD-NW-RS

Attn Chief, SLCHD-NW-TN

Attn Chief, SLCHD-NW-TS

Attn Chief, SLCHD-PO

Attn Chief, SLCHD-ST-C

Attn Chief, SLCHD-ST-RP

Attn Chief, SLCHD-ST-RS

Attn Chief, SLCHD-TT

Harry Diamond Laboratories (cont'd)

Attn B. Willis, SLCHD-TA-ET

Attn B. Zabludowski, SLCHD-TA-ET

Attn C. S. Kenyon, SLHD-NW-EP

Attn J. R. Miletta, SLCHD-NW-EP

Attn F. B. McLean, SLCHD-ST-MW

Attn L. Libelo, SLCHD-ST-MW

Attn A. A. Bencivenga, SLCHD-ST-SP

Attn J. Sattler, SLCHD-CS

Attn J. Nemarich, SLCHD-ST-CB

Attn B. Weber, SLCHD-ST-CB

Attn T. Bahder, SLCHD-ST-AP

Attn J. Bradshaw, SLCHD-ST-AP

Attn J. Bruno, SLCHD-ST-AP

Attn E. Harris, SLCHD-ST-AP

Attn R. Leavitt, SLCHD-ST-AP

Attn J. Pham, SLCHD-ST-AP

Attn G. Simonis, SLCHD-ST-AP

Attn M. Stead, SLCHD-ST-AP

Allii M. Sicau, SECHD-SI-AF

Attn J. Stellato, SLCHD-ST-AP

Attn S. Stevens, SLCHD-ST-AP

Attn R. Tober, SLCHD-ST-AP

Attn M. Tobin, SLCHD-ST-AP

Attn G. Turner, SLCHD-ST-AP

Attn D. Wortman, SLCHD-ST-AP

Attn C. Garvin, SLCHD-ST-SS

Attn J. Goff, SLCHD-RT-RB

Attn C. Morrison, SLCHD-ST-AP

(10 copies)