20. Если ошиблись в выборе Rk, то к чему это может привести? Рассмотри на примере каскада с ОЭ

Рис. 1: каскад с ОЭ

Эквивалентная схема:

Рис. 2: эквивалентная схема каскада с ОЭ

??

Резистор R_k определяет коэффициент усиления по напряжению При $R_g=0, R_H \to \infty, K_uoe=\frac{BR_k}{R_{vatroe}}\Rightarrow$ Чем больше R_k , тем больше будет коэффициент передачи по напряжению.

Но согласно полной эквивалентной схемы $(c R_{kdif}), R_{kdif}$ ограничивает размер R_k , т.к. $R_k || r_{kdif}$

Также при больших значениях сопротивения R_k , весь потенциал $\varphi=E_k$ будет падать на нем и транзистор в результате не будет открываться. $(I_{k0}$ будет ничтожно мал)

Рассмотрим схему:

 R_k выбираем с учетом нужного коэффициента усиления, чем R_k больше, тем больше и $K_u \Rightarrow$ меньший максимальной ток, протекающий через транзистор

$$I_{max} = \frac{E_k}{R_k}$$

Рис. 3: каскад с ОЭ

 R_k стоит $||R_H$, тогда

$$i_{R_H} = i_k \frac{R_k}{R_k + R_H}$$

чем больше R_k , тем больше тока будет уходить в нагрузку

Коэффициент усиления по току так же зависит от значеня резистора R_k

$$K_i = B \frac{R_k}{R_k + R_H},$$

где чем больше R_k , тем больше K_u

Вывод: при очень больших значениях R_k ток в транзисторе будет $\to 0 \Rightarrow$ сигнал на выходе будет практически отсутствовать.

При малых значениях R_k коэффициент училения по напряжению будет уменьшаться, но при этом ток в K будет расти \Rightarrow при $R_k \to 0$, $K_u \to 0 \Rightarrow$ на выходе сигнала опять таки не будет \Rightarrow Для повышения коэффициента усиления, R_k должно составлять несколько десятков кОМ, но при этом нужно увеличивать E_k (что затратно) и учитывать $R_k dif$.