

NASA Armstrong Flight Research Center Dynamics and Controls (530)

Chris Miller (Branch Chief) chris.j.miller@nasa.gov
ACGSC Spring 2023

AFRC Controls and Dynamics Branch

Research Areas:

- Traditional GN&C
 - Classical and advanced control algorithms
 - Risk based approaches for safety critical applications
 - Integration of novel sensors and sensor fusion (FOSS, LIDAR, etc.)
 - Trajectory optimization and control
- Flight/System Dynamics
 - Equations of Motion and integrated modeling of vehicles and vehicle systems
 - Unique and novel vehicle dynamics
 - Methods for extracting relevant vehicle dynamic information from flight data
- Human and vehicle interfaces and interactions
 - Handling Qualities and Pilot-in-the-loop oscillations (PIO) predictions and design metrics
 - Ride quality research
- Autonomy
 - Novel algorithms, sensors, and sensor fusion
 - Bounding risk for testing automated systems
 - Pilot/Operator interactions
- Engineering Support and Airworthiness Assessments
 - Aircraft modifications and experimental configurations

X-59 Low-Boom Flight Demonstrator

- Program Overview:
 - Phase 1 Aircraft Development
 - Phase 2 Acoustic Validation
 - Phase 3 Community Response
- AFRC Controls and Dynamics Role:
 - Simulation Development- engineering / mission planning / pilot training
 - Independent Assessments: Stability / Handling Qualities
 - Control Challenges
 - Unstable bare airframe in pitch
 - Large Clb, weak Cnb (supersonic)
 - Limited forward vision due to required forward fuselage shape
 - Trade-off between rigid body stability and flexible margin
 - Managing the boom

X-57 Maxwell

• Project Overview:

- Mod II test the all-new electric propulsion system
 - Significant challenges with components, subsystems, and integration have caused delays
 - Project rescoped to just include Mod II flights
 - Aircraft put in flyable storage after Mod II flights
- Mod III high-speed cruise efficiency wing development
 - Subsystem designs complete for Mod III
- Mod IV test with the high lift motor system
 - Some high lift subsystems being fabricated and delivered, but no integrated testing planned.

AFRC Controls and Dynamics Role:

- Engineering support and airworthiness assessment role
- Simulation development and use
 - Evaluation of handling qualities effects of changes in mass properties, and with critical failure conditions
 - Pilot training and procedure development

Revolutionary Vertical Lift Technology - RVLT

- RVLT Tech Challenges:
 - Reliable and Efficient Propulsion Components for Urban Air Mobility (UAM)
 - Tools to Explore the Noise and Performance of Multi-Rotor UAM Vehicles
 - Urban Air Mobility (UAM) Operational Fleet Noise Assessment
 - Acceptable Pilot Handling Qualities (HQ) and Passenger Ride Quality (RQ) for UAM Vehicles
- AFRC Controls and Dynamics Role:
 - Developing a Ride Quality Simulation facility and experiments to evaluate unique aspects of the UAM mission
 - Evaluating handling qualities with complex powertrain models capable of simulating realistic powertrain failures
 - Control allocation with powertrain constraints
 - Envelope protection control schemes for simplified pilot operations

Airborne Instrumentation for Real-world Video of Urban Environments - AIRVUE

Motivation:

 To inspire autonomous aviation advances by creating large, diverse, open datasets in an AAM context.

• Project Goals:

- Build and publish datasets to accelerate autonomy perception research toward UML4+
- Integrate cameras and other sensors into a ride-along pods and install the pods on fleet helicopters
- Accumulate and curate the video & sensor data in online repositories accessible to researchers across NASA and beyond

Approach

- Developmental testing on NASA aircraft and UAV's
- Production pod for eventual deployment on partner vehicles such as LAPD and LA County Fire helicopters

Integration of Automated Systems - IAS

• Objective:

 To integrate AAM relevant automation technologies and test them in a relevant environment on an appropriate flight platform

IAS-1

- Hazard Perception and Avoidance (HPA) Detect and avoid
 - Based on FAA/Lincoln Labs ACAS-XR
- Flight Path Management (FPM) 4D optimal flight trajectories
- Flight testing to characterize
 - Human factors
 - Navigation performance
- Test platform Sikorsky Autonomy Research Aircraft (SARA), modified S-76B
- AFRC Controls and Dynamics Role
 - Support integration, flight testing planning, and data analysis
 - Investigate and address some issues that arose in flight due to the integration of the autonomy

SUbsonic Single Aft eNgine Electrofan-SUSAN

Objectives:

- To leverage Electrified Aircraft Propulsion (EAP) and Propulsion Airframe Integration (PAI) to reduce emission by 50% while maintaining size, speed, and range of large regional jets.
- Explore EAP to as an enabler to single engine jet transport operations
- Current Research Efforts
 - Full Scale 180 Passenger Concept conceptual design of a 20MW class regional transport.
 - 25% Scale Flight Demonstrator -Unpiloted 30 ft span, weight 1500-2000lbs, and power 150-200kW
 - Subscale Unmanned Systems Integration Effort (SUSIE)

- AFRC Controls and Dynamics Role:
 - Full Scale
 - Flight control requirements
 - Piloted simulation evaluation
 - Flight control design and evaluation
 - 25% Flight Research Vehicle
 - Piloted simulation development
 - Vehicle Management System design
 - Flight control design
 - Ground control station and flight operations
 - SUSIE
 - Flight operations
 - System ID
 - Flight control design

Attritable Aircraft for Autonomy Research

- What do we mean by an "attritable" aircraft?
 - A collection of aircraft capabilities where vehicle loss is an acceptable while not expected outcome.
- What should be tested on this type of test bed?
 - High risk technology that needs data to lower risk before testing in a more operational environment
 - When real world data could accelerate the development cycle
 - When the problem permits testing at subscale
- Traditional challenges with this approach:
 - Vehicles not truly attritable → loss of aircraft slowed/stopped research
 - Lack of hardware/software documentation
 - Lack of engineering support
 - Immature software tools
 - Poor quality data not suitable to flight research goals
- Potential Benefits:
 - Enable researchers to implement, evaluate and improve algorithms/software/sensors in a relevant flight environment (SpaceX and CubeSat model)
 - Hardware and software architectures that can scale to multiple platforms
 - Faster design/evaluation cycles through tailored risk and systems engineering approach
 - Workforce development in systems engineering, flight test, controls, and autonomy

Transonic Truss Based Wing - TTBW

- Research Objectives:
 - Increased aerodynamic efficiency to address climate and emissions goals
- AFRC Controls and Dynamics Perspective:
 - Evaluate potential controls challenges in a piloted simulation:
 - Stall properties including deep stall arising from the T-tail configuration
 - High speed buffet, ASE, and control reversal challenges from high aspect ratio thin wings

Conclusions and Questions

3/22/2023 ACGSC Meeting #130