STAT423/523 HW5

- Present the solutions in the same sequence that the problems are listed in the homework sets. A
 one-point deduction will be enforced if they are not.
- Hand calculations in support of your final answers are required if and only if instructions explicitly ask for them.
- 1. An experiment investigated the effects of different bleaching chemicals on pulp brightness. Three chemicals were selected at random from a large population of potential bleaching chemicals. Summary statistics on pulp brightness are given below:

Bleaching Chemical	Sample Size	Sample Mean	Sample SD
1	6	72.843	8.607
2	6	83.386	5.146
3	5	77.257	5.460

An ANOVA table for analyzing the data is given below:

Source DF SS MS F P-value

Chemical 2 336.0 168.02 3.781 0.0486

Error 14 622.1 44.44

Total 16 958.1

Refer to formula set 10K for all the problems below.

- a. Briefly explain why a random-effects model is appropriate here.
- b. Carry out the hypothesis test based on the ANOVA table at the $\alpha=0.10$ level of significance. **Show all 4 steps in hypothesis testing that we follow in class.** Use the P-value provided above.
- c. Estimate σ_A^2 the variability due to bleaching chemicals. Show some calculations.
- d. What is an estimate of total variance in a single pulp brightness value?
- e. What proportion of total variation in a single pulp brightness value is attributed to differences among bleaching chemicals?
- 2. Chapter 11: Section 11.1, Exercise 4. "In an experiment to see whether the amount of coverage of light-blue ..."

This is the two-way additive ANOVA table:

	Df	Sum Sq	Mean Sq	F value	P-Value
A=Roller Brand	2	38.00	19.00	2.803	0.1381
B=Paint Brand	3	159.58	53.19	7.848	0.0169
Residuals	6	40.67	6.78		
Total	11	238.25			

a. An interaction plot of the data is given on the right. For the two-way additive model and ANOVA analysis above to be valid, the plot should show (roughly) parallel curves. Discuss what the plot tells you.

- b. Show by hand calculations that SSA=SS(Roller Brand)=38.00.
- c. State and test hypotheses appropriate for deciding whether paint brand has any effect on coverage. Complete the 4-step procedure we follow in class. Use the given P-value in the ANOVA table.
- d. Repeat part (b) for brand of roller. Use the given P-value in the ANOVA table..
- e. Comment on each plot of residuals below.

3. Chapter 11: Section 11.1, Exercise 6. House assessor.

For part (a), follow the 4-step procedure we do in class.