

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Institut Supérieur d'Informatique et des Mathématiques de Monastir Université de Monastir

Chapitre 2

Systèmes Logiques et Architecture des Ordinateurs

Dr. Safa Teboulbi

Année universitaire : 2024-2025

Les Variables et les Fonctions Logiques

Les Variables Logiques

Une variable logique est une grandeur qui ne peut prendre que deux états logiques. Nous les symbolisons par 0 ou 1

Exemples

Un interrupteur peut être : * Fermé (1 logique)

" Ouvert (O logique)

Une lampe peut être : * Allumée (1 logique) * Eteinte (O logique)

> Une alarme peut être : * Activée (1 logique) * Désactivée (logique)

Les Fonctions Logiques

Une fonction logique est une variable logique dont la valeur dépend d'autres variables.

Algèbre De BOOLE

Fonctions Logiques

❖ C'est une expression logique (de valeur 0 ou 1) qui combine un ensemble de variables booléennes à l'aide des opérateurs logiques OU, ET, NON.

* Une fonction logique qui prend les valeurs () ou 1 peut être considérée comme une variable binaire pour une autre fonction logique.

Les Circuits Combinatoires

Dans un système logique (les entrées et sorties ne peuvent prendre que (0) ou (1) comme valeur) combinatoire, les sorties ne sont fonctions que des entrées.

Entrée e_i Circuit Sortie $s_i = f(e_i)$ Combinatoire

Exemple

Soit le schéma électrique suivant

- Pour décrire le fonctionnement d'un système en cherchant l'état de la sortie pour toutes les combinaisons possibles des entrées, on utilisera <u>« La table de vérité »</u>.
- La table de vérité est une table qui décrit toutes les combinaisons des entrées et la valeur de la fonction (sortie) pour chaque entrée.

, A	L
0	0
1	1

- Nombre d'états de la sortie dépend de nombre des entrées :
- Si nombre des entrées 1 nombre détats de la sortie est
- Si nombre des entrées 2 → nombre d'états de la sortie est
- Si nombre des entrées 3 → nombre détats de la sortie est

Porte OUI

- * C'est une porte dite unaire (ne s'applique qu'à une seule opérande).
- Elle affecte à la variable de sortie, l'état logique de la variable d'entrée.

Symboles	Equation	Table de vérité		
Symbole Européen Symbole Améri	icain			
		A	5	
A	S = A	0	0	
	_	1	1	

- L'algèbre de Boole est l'outil mathématique qui permet d'établir la relation entre les sorties et les entrées d'un système logique (<u>synthèse du système</u>).
- En technologie électronique:
- Les variables logiques sont généralement <u>des signaux « bi-tension »</u>.

L'algèbre de Boole est un ensemble de variables à <u>deux états</u> (0 et 1) dites aussi <u>booléennes</u> muni de <u>3 operateurs</u> élémentaires présentés dans le tableau suivant :

Opération logique	Addition	Multiplication	Inversion
operation logique	OU	ET	NON
Notation algébrique	A OU B = A+B	A ET B = A.B	Non A = Ā

- C'est une porte à une seule entrée, elle matérialise l'opérateur inverseur.
 Elle effectue l'opération appelée <u>Inversion</u> ou <u>Complémentaire</u>.
- . Elle transfert un 1 en 0 et un 0 en 1.

Symboles		Equation	Table de vérité		
Symbole Européen	Symbole Américain				
			A	5	
A- 1 b-s	1	S = Ā	0	1	
\ \	^ / / - 3		1	0	
					•

◆ La sortie est active, si les deux entrées sont actives.

Symboles	Equation	Table de vérité				
Symbole Européen Symbole Américain A S B S B S B S B S B S B S B S B S B S	S = A.B		A 0 0 1 1 1	B 0 1 0	5 0 0 0	

- & L'opérateur OU est la somme logique.
- Cest un opérateur binaire qui qui affecte à la variable de sortie l'état 1 si et seulement si une variable d'entrée est à 1.

Symboles		Equation		Table	de ve	Érité	
Symbole Européen	Symbole Américain		1	A	В	5]
				0	0	0	
4_51 4	4 7	S = A+B	[0	1	1	
^ ≥1 <u>s</u>	î ¬>- s			1	0	1	
B —		•	[1	1	1	
	-						

Porte OU-exclusif (XOR)

♦ Cet opérateur logique binaire ne prend la valeur 1 que si une seule des entrées est à 1

Symboles	Equation	Toble	de ve	rite
Symbole Europeen Junt ele American.		A		5
	0	0	0	
^ [] ^ _		0	1	1
	S-A@B	!	0	1
		1	1	0

E. marque

 La sortie de la fonction OU-EXCLUSIF prend l'état logique 1 s. l'informe le poir des variables d'entrée est à l'état logique 1.

Porte NON-ET (NAND)

SElle est équivalente à une porte NON suivie d'un inverseur.

Symboles	Equation	Table	de vé	rité	
Bynt ' found' ontale American		Λ	В	5	 ا
	e v D	0	0	1	1
1 0 1 A D 1	S ^z AlB	0	1	1	
<u>5</u>	$S = \overline{A \cdot B}$	1	0	1]
		1	1	0	

Les Lois et les règles de l'Algèbre de BOOLE

Fonctions

1 Variable

2 Variables

3 Variables

OU

 $A \cdot A = A$

A + 1 = 1

A + 0 = A

A . A = 1

A . B = B . A

A · (B · C) = (A · B) · C

= A.B.C

* Elle est équivalente à une porte OU suivie d'un inverseur.

Symbo	les	Equation	Table	de vé	rité	
Symbole Européen S	symbole Américain		A	В	5]
_		S=A↓B	0	0	1	
^ ≥1 s	1 ·		0	1	0	
B =	B))O =	S=A+B	1	0	0	
	$\neg \mathcal{L}$		1	1	0	
•	•		•	•		

ET

A . A = A

A . O = 0

A.1= A

A . A = 0

A . B = B . A

A (B C) = (A B) C

A (B·C) = (AB) · (AC)

= ABC

Ā = A

... "...

Idempotence

Elément absorbant

Elément neutre

Complement

Involution

Commutativité

Associativité

Distributivité

Porte Non OU-exclusif (XNOR)

La sortie XNOR (NON-XOR, NON OU-EXCLUSIF) est simplement le complément logique de la sortie XOR. Donc, lorsque la sortie XOR est 0, la sortie XNOR est 1, et vice versa.

Symb	oles	Equation	Table	e de ve	érité
Symbole Européen	Symbole Américain		A	В	S
			0	0	1
A	1 5	S=A⊕B	0	1	0
=1 \	(B))0 -	o mob	1	0	0
В			1	1	1.
•					

11

Les Théorèmes de l'Algèbre de BOOLE

❖ Pour effectuer tout calcul Booléen, on utilise, en plus des propriétés, un ensemble de théorèmes :

Théorèmes	OU	ET	
	$\overline{A \cdot B} = \overline{A} \cdot \overline{B}$	A.B = A + B	
tir fil MORGAL	Ce théorème peut être gén	éralisé à plusieurs variables.	
	A+B++Z= A.B Z	A.B Z = A + B ++ Z	
Ď At sorption	A+AB=A	A.(A+B)=A	
و يعدر الآلاد	A+AB: A+B	A (Ā+B)=A.B	
2014 1205.77	A B-ĀC-BC=AB-ĀC		