Classroom Exercises

1. If
$$\frac{e}{f} = \frac{g}{h}$$
, which equation is correct?

$$\mathbf{a.} \ ef = gh$$

a.
$$ef = gh$$
 b. $eh = fg$ **c.** $eg = fh$

$$c. eg = fh$$

2. Which proportions are equivalent to
$$\frac{x}{12} = \frac{3}{4}$$
?

a.
$$\frac{x}{3} = \frac{12}{4}$$

b.
$$\frac{x}{4} = \frac{12}{3}$$

c.
$$\frac{12}{x} = \frac{4}{3}$$

a.
$$\frac{x}{3} = \frac{12}{4}$$
 b. $\frac{x}{4} = \frac{12}{3}$ **c.** $\frac{12}{x} = \frac{4}{3}$ **d.** $\frac{x+12}{12} = \frac{7}{4}$

Complete the statement.

3. If
$$\frac{a}{b} = \frac{2}{3}$$
, then $3a = \frac{?}{}$.

4. If
$$\frac{c}{d} = \frac{4}{7}$$
, then $\frac{d}{c} = \frac{?}{?}$.

5. If
$$\frac{e}{f} = \frac{5}{9}$$
, then $\frac{e}{5} = \frac{?}{?}$.

6. If
$$\frac{g}{h} = \frac{j}{8}$$
, then $\frac{j}{g} = \frac{?}{?}$.

7. If
$$\frac{k}{m} = \frac{2}{3}$$
, then $\frac{k + m}{m} = \frac{?}{?}$.

8. If
$$\frac{n}{p} = \frac{q}{r} = \frac{7}{9}$$
, then $\frac{n+q+7}{p+r+9} = \frac{?}{?}$.

9. a. Apply the means-extremes property of proportions to the proportion

$$\frac{e}{f} = \frac{g}{5}$$
 and you get $5e = \frac{?}{}$.

b. Apply the property to the proportion $\frac{5}{f} = \frac{g}{e}$ and you get $\frac{?}{} = \frac{?}{}$.

c. Are the proportions $\frac{e}{f} = \frac{g}{5}$ and $\frac{5}{f} = \frac{g}{e}$ equivalent? Why?

10. Explain an easy way to show that the proportions $\frac{x}{7} = \frac{2}{3}$ and $\frac{x}{2} = \frac{3}{7}$ are not equivalent.

11. Apply the means-extremes property to $\frac{x}{10} = \frac{4}{5}$ and you get $5x = \frac{?}{10}$ and $x = \frac{?}{}$

12. If $\frac{4}{y} = \frac{7}{9}$, then $\frac{?}{} = \frac{?}{}$ and $y = \frac{?}{}$.

What can you conclude from the given information?

13.
$$\frac{b}{a} = \frac{t}{x}$$
 and $\frac{a}{b} = \frac{x}{p}$

14.
$$\frac{2}{5} = \frac{y}{k}$$
 and $\frac{2}{z} = \frac{5}{k}$

15. Apply the means-extremes property to $\frac{a}{b} = \frac{c}{d}$ and also to $\frac{a}{c} = \frac{b}{d}$. (Note that you have justified Property 1(b) on page 245 by showing that each proportion is equivalent to the same equation.)

16. Explain why $\frac{a}{b} = \frac{c}{d}$ and $\frac{b}{a} = \frac{d}{c}$ are equivalent. (This justifies Property 1(c) on page 245.)