

Tema 1:

Representación digital de la información

Fundamentos de computadores

José Manuel Mendías Cuadros

Dpto. Arquitectura de Computadores y Automática Universidad Complutense de Madrid

Contenidos

- Introducción de conceptos.
- 2. Sistemas de numeración.
- Aritmética binaria.
- 4. Conversión entre bases.
- 5. Representación y aritmética de enteros en MyS.
- 6. Representación y aritmética de enteros en C2.
- Otras codificaciones.

Presentación basada en los libros:

• R. Hermida, F. Sánchez y E. del Corral. Fundamentos de computadores.

Concepto de sistema

- Sistema: caja "negra" que a lo largo del tiempo:
 - Recibe información por sus entradas, x(t)
 - o Procesa dicha información según una cierta función, F
 - Genera información por sus salidas, z(t)

$$z(t) = F(x(t))$$

$$x(t_i)$$

Analógicos vs. digitales

- Sistema analógico
 - Los valores que pueden tomar las entradas/salidas pertenecen a un espectro continuo de valores.
- Sistema digital
 - Los valores que pueden tomar las entradas/salidas están restringidos a un conjunto discreto de valores.

Los sistemas analógicos establecen semejanzas, los digitales numerizan

Combinacionales vs. secuenciales

Sistema combinacional

$$z(t_i) = F(x(t_i))$$

- La salida en cada instante depende exclusivamente del valor de la entrada en ese instante.
- Sistema secuencial $z(t_i) = F(x(t)), con t \in [0, t_i]$
 - La salida en cada instante depende del valor de la entrada en ese instante y de todos los valores que la entrada ha tomado con anterioridad.

Asíncronos

Las entradas/salidas pueden cambiar en cualquier momento.

<u>Síncronos</u>

 Las entradas/salidas solo pueden cambiar en un conjunto discreto de instantes definidos por una señal de reloj.

Especificación vs. implementación

- Especificación (¿qué hace?)
 - Descripción del comportamiento de un sistema sin precisar cómo está constituido.
- Implementación (¿cómo está hecho?)
 - Descripción de un sistema en base a un conjunto de elementos más simples interconectados.

Para una especificación dada existen multitud de implementaciones válidas.

Síntesis vs. análisis

o Proceso de obtener una implementación que tenga el comportamiento definido por una especificación dada.

Análisis

 Proceso de obtener el comportamiento de una implementación dada.

Sistemas de numeración

- Mecanismo que permite dar una representación gráfica a cada número.
- Se define por:
 - O Un conjunto discreto de símbolos (dígitos) cada uno de los cuales representa directamente un número.
 - La cardinalidad de este conjunto se llama base.
 - Un conjunto discreto de reglas de generación (notación) que permiten representar números mayores usando más de un dígito.
 - Un conjunto de reglas de manipulación de símbolos (aritmética) que permite realizar coherentemente operaciones con números.

್ಲಿ SP SP

Notación posicional

$$(a_{n-1}, a_{n-2}, a_1, a_0)_r$$

- a_{n-1} es el dígito más significativo
- a₀ es el dígito menos significativo
- r es la base del sistema de numeración
- El valor de cada dígito es función de la posición que ocupa en la cadena (peso). El peso de la posición i en un sistema de base r es ri

$$(valor\ digito)_i = (valor\ digito) \times r^i$$

El valor de una cadena es la suma del valor de cada uno de los dígitos que la forman.

Notación polinomial

 Cada cantidad se representa por un polinomio cuya resolución permite conocer el valor representado

$$\sum_{i=0}^{n-1} a_i \times r^i$$

Notación posicional	Notación polinomial	Cantidad representada
(17) ₁₀	$1\times10^{1} + 7\times10^{0}$	17
(10001) ₂	$1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$	17
(21) ₈	$2 \times 8^1 + 1 \times 8^0$	17
(11) ₁₆	$1 \times 16^1 + 1 \times 16^0$	17

Sistemas base 10, 2, 8 y 16

Decimal	Binario	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10
	computadores	bina	rio compacto

Aritmética binaria

Aritmética de símbolos

o Las tablas de sumar, restar, multiplicar... dígitos.

Suma	
0 + 0 = 0	
0 + 1 = 1	
1+0=1	
1 + 1 = 0	y me llevo 1

Resta	
0 - 0 = 0	
0 - 1 = 1	y me llevo 1
1 - 0 = 1	
1 - 1 = 0	

Multiplicación
$0 \times 0 = 0$
$0 \times 1 = 0$
$1 \times 0 = 0$
1 × 1 = 1

Aritmética de notación

o El mecanismo para sumar, restar, multiplicar... cadenas de dígitos.

Suma binaria

$$S = 9 + 11$$

sumando 1 sumando 2 suma

FC tema

Suma binaria

$$S = 9 + 11$$

ಕ್ಕ FC

Suma binaria

$$S = 9 + 11$$

Suma binaria

$$S = 9 + 11$$

		1	
1	0	0	1
1	0	1	1
			0

acarreos
sumando 1
sumando 2
suma

Suma binaria

$$S = 9 + 11$$

Suma binaria

$$S = 9 + 11$$

acarreos
sumando 1
sumando 2
suma

Suma binaria

$$S = 9 + 11$$

Suma binaria

$$S = 9 + 11$$

Acarreos sumando 1 sumando 2 Suma

Resta binaria

$$R = 83 - 21$$

83

1 0 1 0 0 1 1

minuendo 1 0 1 0 1 sustraendo acarreos

Resta binaria

$$R = 83 - 21$$

83

1 0 1 0 0 1 1

Resta binaria

$$R = 83 - 21$$

83

-21

1 0 1 0 0 1 1

minuendo 1 0 1 0 1 sustraendo acarreos diferencia

62

Resta binaria

$$R = 83 - 21$$

83

62

-21

1 0 1 0 0 1 1

1 0 1 0 1 sustraendo

minuendo acarreos diferencia

Resta binaria

$$R = 83 - 21$$

83

-21

1 0 1 0 0 1 1

1 0 1 0 1 sustraendo acarreos diferencia

minuendo

62

Resta binaria

$$R = 83 - 21$$

83

-21

62

1 0 1 0 0 1 1

1 0 1 0 1 sustraendo

minuendo acarreos diferencia

Resta binaria

$$R = 83 - 21$$

83

-21

62

1 0 1 0 0 1 1

Resta binaria

$$R = 83 - 21$$

83

-21

62

1 0 1 0 0 1 1

Resta binaria

$$R = 83 - 21$$

83

-21

62

1 0 1 0 0 1 1

Resta binaria

$$R = 83 - 21$$

83

-21

62

1 0 1 0 0 1 1

- A

Multiplicación binaria

$$P = 11 \times 5$$

1 1 5

1 0 1 1 1 1 0 1

multiplicando multiplicador

versión 2021

tem **FC**

Multiplicación binaria

$$P = 11 \times 5$$

1 1 × 5 5

× 1011 × 101 multiplicando multiplicador

productos parciales

versión 2021

FC

Multiplicación binaria

$$P = 11 \times 5$$

multiplicando multiplicador

productos parciales

Multiplicación binaria

$$P = 11 \times 5$$

multiplicando multiplicador

productos parciales

Multiplicación binaria

$$P = 11 \times 5$$

multiplicando multiplicador

productos parciales

Multiplicación binaria

$$P = 11 \times 5$$

1 1 × 5 5 5

× 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 multiplicando multiplicador

productos parciales

resultado

FC.

Multiplicación binaria

$$P = 11 \times 5$$

	1	1
×		5
	5	5

multiplicando multiplicador

productos parciales

resultado

Conversión entre bases

Sustitución en serie

base R → base S, usando la aritmética de <u>base S</u>

 Se evalúa la representación polinomial del número usando la aritmética de base S.

$$(2A)_{16} = 2 \times 16^1 + 10 \times 16^0 = 32 + 10 = (42)_{10}$$

$$(1010)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

= 8 + 0 + 2 + 0 = $(10)_{10}$

Conversión entre bases

División por la base

base R → base S, usando la aritmética en <u>base R</u>

 Se divide sucesivamente el número por S reservando los restos hasta que el cociente sea menor que S.

$$(12)_{10} = (1100)_2$$

$$\begin{array}{c|ccccc}
1 & 2 & & \\
-1 & 2 & 6 & 2 \\
\hline
0 & -6 & 3 & 2 \\
\hline
0 & -2 & 1 \\
\hline
1 & & + peso \\
\end{array}$$

Conversión entre bases

Conversión entre potencias de la misma base

base
$$R \rightarrow base S=R^i$$

base
$$2 \rightarrow$$
 base $8=2^3$ o base $16=2^4$

- Los dígitos de base R se agrupan de derecha a izquierda en bloques de i elementos.
- Cada bloque se remplaza por el correspondiente dígito de base S.

$$(10011110110)_2 = (2366)_8$$

$$(100111101)_2 = (13D)_{16}$$

Conversión entre bases

Conversión entre potencias de la misma base

base
$$R=S^i \rightarrow base S$$

base
$$8=2^3$$
 o base $16=2^4 \rightarrow$ base 2

 Cada dígito de base R se remplaza por el correspondiente bloque de dígitos en base S.

$$(713)_8 = (111001011)_2$$

$$(A5C)_{16} = (101001011100)_2$$

Representación de la información

- Un sistema digital solo procesa información digital codificada en binario.
 - Una codificación es un convenio que asocia a cada elemento de información una representación binaria diferente.
 - Un mismo dato puede tener distintas representaciones en distintos códigos.
- Cada código usa un número de dígitos binarios fijo (bits de anchura) que limita el número de datos representable.
 - Con n bits como máximo se representan 2ⁿ datos diferentes.
- El problema del desbordamiento:
 - En las codificaciones numéricas, se produce cuando el resultado de una operación aritmética no es representable (no hay un código que represente al resultado).
 - Deben detectarse porque el resultado obtenido es incorrecto.

Binario puro

- Codifica números naturales
- Notación n bits:
 - o n bits codifican la magnitud en binario.
- Rango representable: [0, 2ⁿ-1]

$$6_{10} = (00110)_{2-5 \text{bits}}$$

- Aritmética:
 - Extensión (pasar de n a m bits la representación del número, con m>n)
 - Completar con ceros por la izquierda.
 - o Suma
 - Suma binaria
 - Hay desbordamiento si al sumar el bit más significativo se produce un acarreo.

Magnitud y signo (MyS)

- Codifica números enteros
- Notación n bits:
 - 1 bit codifica el signo (el bit más significativo)
 - o n-1 codifican la magnitud en binario.

• Positivos:
$$+ N = 0 (N)_2$$

• Negativos:
$$-N = 1(N)_2$$

- Rango representable: [-(2ⁿ⁻¹-1), +(2ⁿ⁻¹-1)]
 - o el cero tiene doble representación (000..00) y (100..00)

Magnitud y signo (MyS)

- Codificar el signo $'+' \equiv '0'$, $'-' \equiv '1'$
- o Codificar la magnitud en binario de n-1 bits usando división por la base.

$$-26_{10} \rightarrow \text{MyS} \text{ de 8 bits} \quad \begin{cases} \text{signo} \equiv (1) \\ \text{magnitud} \equiv (0011010) \end{cases} \quad -26_{10} = (10011010)_{\text{MyS}}$$

+115₁₀ \rightarrow MyS de 8 bits $\begin{cases} \text{signo} \equiv (0) \\ \text{magnitud} \equiv (1110011) \end{cases} \quad +115_{10} = (01110011)_{\text{MyS}}$

Procedimiento de decodificación:

- Decodificar el signo '0' ≡ '+', '1' ≡ '-'
- o Decodificar la magnitud usando sustitución en serie.

$$(10010010)_{\text{MyS}} \rightarrow \text{decimal} \quad \begin{cases} \text{signo} \equiv '-' \\ \text{magnitud} \equiv 18_{10} \end{cases} \quad (10010010)_{\text{MyS}} = -18_{10}$$

$$(01011010)_{\text{MyS}} \rightarrow \text{decimal} \quad \begin{cases} \text{signo} \equiv '+' \\ \text{magnitud} \equiv 90_{10} \end{cases} \quad (01011010)_{\text{MyS}} = +90_{10}$$

Aritmética en MyS

o Cambiar el bit de signo

$$-(00110)_{\text{MyS-5bits}} = (10110)_{\text{MyS-5bits}}$$

- Extensión (pasar n a m bits, con m>n)
 - Manteniendo el signo, completar la magnitud con ceros por la izquierda.

$$(-6_{10}) = (10110)_{MyS-5bits} = (10000110)_{MyS-8bits}$$

- Suma / Resta
 - Signo y magnitud se manipulan por separado.
 - El signo del resultado depende de las magnitudes y signos de los operandos.
 - Las magnitudes se suman o restan en función de la magnitud y signo de los operandos.

Aritmética en MyS: suma

- Signo (A) = signo (B)
 - Signo (R) = signo (A) = signo (B)
 - Magnitud (R) = magnitud (A) + magnitud (B)

- Signo (A) = positivo, signo (b) = negativo, |A| ≥ |B|
 - Signo (R) = signo (A) = positivo
 - Magnitud (R) = magnitud (A) magnitud (B)

+ 4	4	0 1 0 0	1 0 0
+ - 2	- :2	+ 1 0 1 0	- :0 1 0
+		0	0 1 0

Aritmética en MyS: suma

- Signo (A) = positivo, signo (b) = negativo, |A| < |B|</p>
 - Signo (R) = signo (B) = negativo
 - Magnitud (R) = magnitud (B) magnitud (A)

- Resto de casos
 - o Equivalente a alguno de los anteriores si se aplica conmutatividad.
- Desbordamiento
 - Hay desbordamiento si al operar con el bit más significativo de la magnitud se produce un acarreo.

Complemento a dos (C2)

- Codifica números enteros
- Notación con <u>n</u> bits:

 \circ Positivos: + N = 0 (N)₂

• Negativos: $-N = (2^n - N)_2 = C2((N)_2)$

• el bit más significativo se denomina bit de signo

- **Rango representable:** $[-(2^{n-1}), +(2^{n-1}-1)]$
 - o el cero tiene una única representación (000..00)
 - o el rango es asimétrico, hay un negativo de más (100..00)

$$6_{10} = (0110)_2 \Rightarrow (+6_{10}) = (00110)_{C2-5bits}$$

 $(2^5 - 6)_{10} = (26)_{10} = (11010)_2 \Rightarrow (-6_{10}) = (11010)_{C2-5bits}$

Complemento a dos (C2)

$$+93_{10} \rightarrow C2 \text{ de 8 bits } \left\{93_{10} = (01011101)_2\right\} +93_{10} = (01011101)_{C2}$$

 Si el número es negativo, codificar el número prescindiendo del signo en binario de n bits usando el método de división por la base y realizar el complemento a dos del resultado.

$$-78_{10} \rightarrow C2 \text{ de 8 bits} \quad \left\{ \begin{array}{l} 78_{10} = (01001110)_2 \\ C2(01001110) = (10110010) \end{array} \right\} -78_{10} = (10110010)_{C2}$$

Complemento a dos (C2)

Procedimiento de decodificación:

 Si el bit de signo es positivo (vale '0'), decodificarlo usando el método de sustitución en serie.

$$(01110001)_{C2} \rightarrow \text{decimal} \left\{ (01110001)_2 = (113)_{10} \right\} (01110001)_{C2} = +113_{10}$$

 Si el bit de signo es negativo (vale '1'), realizar su complemento a dos y decodificar el resultado usando el método de sustitución en serie.

$$(10110100)_{C2} \rightarrow \text{decimal} \quad \left\{ \begin{array}{l} \text{C2}(10110100) = (01001100) \\ (01001100)_2 = (76)_{10} \end{array} \right\} (10110100)_{C2} = -76_{10}$$

Complemento a dos (C2)

- Para realizar la operación C2 hay varias opciones:
 - o Restar el número a 2ⁿ
 - Invertir todos los bits y sumar 1
 - Copiar los bits de derecha a izquierda hasta encontrar el primer 1, invertir el resto.

Aritmética en C2

- Cambio de signo (cambiar un número por su opuesto)
 - o Complementar a dos el número

$$-(00110)_{C2-5bits} = C2(00110) = (11010)_{C2-5bits}$$

- Extensión (pasar n a m bits, con m>n)
 - Replicar el bit de signo hacia la izquierda

$$(-6_{10}) = (11010)_{C2-5bits} = (111111010)_{C2-8bits}$$

$$(+6_{10}) = (00110)_{C2-5bits} = (00000110)_{C2-8bits}$$

versión 2021

Aritmética en C2: suma

Signo (A) = signo (B)

6

 \circ R = A + B

0

Signo (A) = positivo, signo (B) = negativo, $|A| \ge |B|$

$$\circ$$
 R = A + B

Aritmética en C2: suma

Signo (A) = positivo, signo (B) = negativo, |A| < |B|</p>

$$\circ$$
 R = A + B

Resto de casos

o Equivalente a alguno de los anteriores si se aplica conmutatividad.

Resumen suma/resta

 Para sumar/restar números en C2 basta con hacerlo en binario, ignorando el acarreo del bit más significativo.

o No obstante, es común realizar la resta como la suma del opuesto

•
$$A - B = A + (-B) =_{C2} A + C2(B)$$

Aritmética en C2: suma

Desbordamiento

- En la suma, solo puede producirse si ambos operandos son del mismo signo. En la resta, solo si son de distinto signo.
- Se detecta chequeando si el signo del resultado es coherente con el signo de los operandos. Si al sumar dos números negativos da resultado positivo o al sumar dos positivos da negativos.
- NO se tiene en cuenta el acarreo del bit más significativo

el rango representable con 4 bits es: [-8, +7]

Comparación códigos (4 bits)

Decimal	MyS	C2			
+7	0111	0111			
+6	0110	0110			
+5	0101	0101			
+4	0100	0100			
+3	0011	0011			
+2	0010	0010			
+1	0001	0001			
+0	0000	0000			
-0	1000				
-1	1001	1111			
-2	1010	1110			
-3	1011	1101			
-4	1100	1100			
-5	1101	1011			
-6	1110	1010			
-7	1111	1001			
-8		1000			

Representaciones decimales

- BCD (Binary Coded Decimal)
 - Cada dígito decimal se representa por un bloque de 4 bits (nibble)
 que lo codifica en binario.

$$(375)_{10} = (001101110101)_{BCD}$$

- Exceso-3
 - Cada dígito decimal se representa por un bloque de 4 bits que codifica en binario el valor del dígito + 3.

$$(375)_{10} = (011010101000)_{EX-3}$$

Simplifican la conversión decimal-binario y evitan pérdidas de precisión en la conversión de números con parte fraccionaria

Representaciones de alfabetos

- ASCII (American Standard Code for Information Interchange)
 - Codifica el alfabeto latino occidental con 7 bits.
 - Los códigos 00h-1Fh (0-31) y el 7Fh (127) son de control.
 - Los códigos 20h-7Eh (32-126) son imprimibles.
 - Hay diferentes extensiones de 8 bits (1 byte) para soportar más caracteres imprimibles.
- EBCDIC (Extended Binary Coded Decimal Interchange Code)
 - o Codifica el alfabeto latino occidental con 8 bits.
- Unicode. (Investigad en qué consiste)

Código ASCII (7 bits)

ASC	II Hex	Simbolo	ASCII	Hex	Símbolo	ASCII	Hex	Símbolo	ASCII	Hex S	Simbolo
0	0	NUL	16	10	DLE	32	20	(espacio)	48	30	0
1	1	SOH	17	11	DC1	33	21	1	49	31	1
2	2	STX	18	12	DC2	34	22	-	50	32	2
3	3	ETX	19	13	DC3	35	23	#	51	33	3
4	4	EOT	20	14	DC4	36	24	S	52	34	4
5	5	ENQ	21	15	NAK	37	25	%	53	35	5
6	6	ACK	22	16	SYN	38	26	&	54	36	6
7	7	BEL	23	17	ETB	39	27		55	37	7
8	8	BS	24	18	CAN	40	28	(56	38	8
9	9	TAB	25	19	EM	41	29)	57	39	9
10	A	LF	26	1A	SUB	42	2A		58	3A	
11	В	VT	27	1B	ESC	43	2B	+	59	3B	;
12	C	FF	28	1C	FS	44	2C	,	60	3C	<
13	D	CR	29	1D	GS	45	2D		61	3D	=
14	E	SO	30	1E	RS	46	2E	-	62	3E	>
15	F	SI	31	1F	US	47	2F	1	63	3F	?
ASC	II Hex	Simbolo	ASCII	Hex	Símbolo	ASCII	Hex	Simbolo	ASCII	Hex S	Simbolo
64	40	@	80	50	Р	96	60		112	70	р
65	41	A	81	51	Q	97	61	a	113	71	q
66	42	В	82	52	R	98	62	b	114	72	r
67	43	C	83	53	S	99	63	С	115	73	S
68	44	D	84	54	T	100	64	d	116	74	t
69	45	E	85	55	U	101	65	e	117	75	U
70	46	F	86	56	V	102	66	f	118	76	V
71	47	G	87	57	W	103	67	g	119	77	W
72	48	н	88	58	X	104	68	h	120	78	X
73	49	1	89	59	Y	105	69	i	121	79	У
74	4A	J	90	5A	Z	106	6A	j	122	7A	Z
75	4B	K	91	5B	[107	6B	k	123	7B	{
76	4C	L	92	5C	1	108	6C	1	124	7C	1
77	4D	M	93	5D]	109	6D	m	125	7D	}
78	4E	N	94	5E	٨	110	6E	n	126	7E	~
79	4F	0	95	5F	_	111	6F	0	127	7F	

No olvidar

Una cadena de bits por sí misma no significa nada

10001001

¿?

No olvidar

Una cadena de bits por sí misma no significa nada

10001001

es la codificación usada la que le da sentido