Task 5

Exercise 1

To have the best randomness, we're playing with the variables alpha, Jitter and D. We found out that:

- we need a high Jitta to have less auto-correlation
- alpha must equal 0.5 to get the most flat distribution

With **6283** duty cycles we manage to find a pretty good distribution and low auto-correlation.

Exercise 2

As it is expensive to increase the number oscillators and duty cycles, we will try to find the best random generator with the lowest values of m and D. With 3 oscillators, 628 duty cycles and still the highest jitter, we manage to have an ideal random generator.

Exercise 3

To have the best entropy with the lowest cost, we need 3472 duty cycles and 7 oscillators.

Exercise 4

For n = 4096:

The lowest threshold giving and α bigger than 10^{-6} is 1896 with α =1.087e-06. The hightest Shannon entropy for β smaller than 10e-6 is H_1 =0.9815 with β =1.383e-08.

Cyrille STROESSER

For n= 8192:

The lowest threshold giving and α bigger than 10^{-6} is 3881 with α =1.064e-06. The hightest Shannon entropy for β smaller than 10e-6 is H_1 =0.9896 with β =3.830e-10.

For n=16384:

The lowest threshold giving and α bigger than 10^{-6} is 7888 with α =1.054e-06. The hightest Shannon entropy for β smaller than 10e-6 is H_1 =0.9974 with β =4.581e-10.

Cyrille STROESSER

For n=32768:

The lowest threshold giving and α bigger than 10^{-6} is 15954 with α =1.039e-06. The hightest Shannon entropy for β smaller than 10e-6 is H_1 =0.9954 with β =1.792e-08.

Monobit tests such as AIS31 or FIPS 140-1 require:

- the bit sequence to test
- a threshold of number of bits equal to zero or one
- significance level: probability to reject a true null hypothesis

Exercise 5

M	$\sigma_{to} t / T1$	D
1	0.0	Impossible
	0.0001	Impossible
	0.001	Impossible
	0.01	Impossible
2	0.0	Impossible
	0.0001	Impossible
	0.001	Impossible
	0.01	4712
3	0.0	Impossible
	0.0001	Impossible
	0.001	78539
	0.01	1570
4	0.0	Impossible
	0.0001	Impossible
	0.001	47123
	0.01	157
5	0.0	Impossible
	0.0001	47123
	0.001	6283
	0.01	157
6	0.0	3141
	0.0001	157
	0.001	157
	0.01	157
7	0.0	9424
	0.0001	157
	0.001	157
	0.01	157
8	0.0	62831
	0.0001	157
	0.001	157
	0.01	157
9	0.0	157
	0.0001	157
	0.001	157
	0.01	157
10	0.0	157
	0.0001	157
	0.001	157
	0.01	157
11	0.0	157
	0.0001	157
	0.001	157

Cyrille STROESSER

12	0.01 0.0 0.0001	157 157 157
	0.001 0.01	157 157
13	0.0 0.0001	157 157
	0.001 0.01	157 157
14	0.0	157
	0.0001 0.001	157 157
15	0.01 0.0	157 157
	0.0001	157
	0.001 0.01	157 157
16	0.0 0.0001	157 157
	0.001 0.01	157 157