NÃO CORRIGIR:

P4 de Álgebra Linear I -2012.1

26 de junho de 2012.

Nome:	_ Matrícula:
Assinatura:	_ Turma:
Preencha CORRETA e COMPLETAMENTE todos os cam nome não serão corrigidas e terão nota <u>ZERO</u> . Provas matrícula, assinatura e turma não preenchidos ou preenchid	com os campos
rada serão penalizadas com a perda de 1 ponto por campo.	

Duração: 1 hora 50 minutos

\mathbf{Q}	1.a	1.b	1.c	1.d	1.e	2.a	2.b	2.c	2.d	3.a	3.b	3.c	soma
\mathbf{V}	0.5	1.0	1.0	1.0	1.0	0.5	1.0	1.0	1.0	0.5	1.0	0.5	10.0

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- O desenvolvimento de cada questão deve estar a seguir **Resposta**. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) não serão corrigidos!!.
- Escreva de forma clara e legível. Justifique de forma <u>ordenada</u> e <u>cuidadosa</u> suas respostas. Respostas sem justificativa não serão consideradas.
- Se estiver fazendo a prova para subir nota, e não quer que a prova seja corrigida marque o campo no canto superior esquerdo a caneta. Caso contrário a prova será corrigida e a nota lançada.

- 1) Dado um plano π de \mathbb{R}^3 que contém a origem, o espelhamento E no plano π é a transformação linear que verifica
 - $E(\bar{v}) = \bar{v}$ se \bar{v} é paralelo a plano π e
 - $E(\bar{n}) = -\bar{n}$ se \bar{n} é ortogonal a π .

Considere agora o espelhamento $E \colon \mathbb{R}^3 \to \mathbb{R}^3$ em um plano tal que a matriz [E] de E na base canônica, é o seguinte produto de matrizes:

$$\begin{pmatrix} 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \\ 2/\sqrt{6} & 0 & -1/\sqrt{3} \\ -1/\sqrt{6} & 1/\sqrt{2} & -1/\sqrt{3} \end{pmatrix} \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1/\sqrt{6} & 2/\sqrt{6} & -1/\sqrt{6} \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 1/\sqrt{3} & -1/\sqrt{3} & -1/\sqrt{3} \end{pmatrix}$$

- a) Determine o valor de x.
- b) Determine a equação cartesiana do plano do espelhamento.
- c) Apresente, se possível, explicitamente a matriz de E^{-1} na base canônica.
- d) Determine, se possível, uma base α do \mathbb{R}^3 tal que a matriz de E na base α , denotada por $[E]_{\alpha}$, seja

$$[E]_{\alpha} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & -2 \\ 0 & 0 & 1 \end{array}\right).$$

e) Considere uma matriz M que é diagonalizável e tem determinante 4. Sabemos que ela se escreve como produto das seguintes matrizes

$$\begin{pmatrix} 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \\ 2/\sqrt{6} & 0 & -1/\sqrt{3} \\ -1/\sqrt{6} & 1/\sqrt{2} & -1/\sqrt{3} \end{pmatrix} \begin{pmatrix} a & 0 & 0 \\ 0 & 2 & 0 \\ 0 & b & 2 \end{pmatrix} \begin{pmatrix} 1/\sqrt{6} & 2/\sqrt{6} & -1/\sqrt{6} \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 1/\sqrt{3} & -1/\sqrt{3} & -1/\sqrt{3} \end{pmatrix}.$$

Determine os valores de $a \in b$.

Resposta:

2) Considere as matrizes $A \in B$ a seguir:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- a) Determine todos os autovalores de A.
- **b)** Decida se A é diagonalizável. Em caso afirmativo determine todas as formas diagonais de A.
- c) Decida se as matrizes A e B são semelhantes.
- d) Apresente a matriz A^{-1} .

Resposta:

3) Considere os vetores de \mathbb{R}^3

$$\overrightarrow{u}_1 = (1, 1, 1), \quad \overrightarrow{u}_2 = (1, 1, 0), \quad \overrightarrow{u}_3 = (3, 3, 2), \quad \overrightarrow{u}_4 = (2, 2, 2)$$

e o subespaço vetorial \mathbb{V} de \mathbb{R}^3 gerado pelos vetores \overrightarrow{u}_1 , \overrightarrow{u}_2 , \overrightarrow{u}_3 e \overrightarrow{u}_4 .

- a) Determine uma base β do subespaço \mathbb{V} formada por vetores do conjunto $\{\overrightarrow{u}_1, \overrightarrow{u}_3, \overrightarrow{u}_3, \overrightarrow{u}_4\}$.
- b) Determine uma base ortogonal β' de \mathbb{V} e uma base ortogonal β'' de \mathbb{R}^3 que contenha a base β' . Lembre que uma base ortogonal é uma base formada por vetores mutuamente ortogonais.
- c) Determine as coordenadas do vetor (5,5,3) de \mathbb{V} na base β .

Resposta: