

	VGS = VX	VSG= V00-1	/×								
	$K_{\ell'}(\frac{w}{c})_{\ell}(V_{\ell})$	00-Vx-/V+A)2	$= K_n' \left(\frac{W}{L} \right)_{\mathcal{U}} \left(V_{\times} \right)$	~ VM)2							
	14' (141) (.1						
	$\sqrt{K_m(\frac{r}{L})_m}$	$\sqrt{x} - \sqrt{1} = \sqrt{K}$	$r\left(\frac{W}{L}\right)_{P}\left(V_{OD}-V_{OD}\right)$	/x-1\v1	rl)						
		-1)= 50 (3-V _x)								
,	2 10 Vx -10 = 3	352 (3-Vx)									
	€Vx -VZ= 3	3-Vx									
	(1+ 52) W = 3										
	$V_x = 1.83$	V									
$\hat{\omega}$, l. Q(1.83,1.83)									
Chu	med O((1.05, 1.0)									

B)		
	Voo	Voc. = 4V
		(W) 1
	V _E —	$\left(\frac{W}{L}\right)_{S} = \frac{S}{1}$
	VI I:	
	<u> </u>	V70 = 1 V Y = 0.5 V ²
		2D=0.6V
		20=0.6V K'N = 25MA/V ^R
(1) LIVE	ELLI LOGICI	
	SLLI LOGICI Von:	
Cittae	V <i>0</i> /4.	
(V	Voo-Vrn	
) Volt =	V00 - V5NL	
	V V/[a, V]	
(VFNL-	VTO + Y (20 + VOH - J20) 1 VSG del Conco = VOH	
	VSG del conto = Vol	Dit
VoH =	4-(1+ 0.5 JO.6+Von - JO.6)	
VoH = 1	4-1-0.5 JVOH +0.6 + 0.5 JO.6	
V017 +€),6=4 (3.39-VoH)2	
y-17 C		
1/211	0.6 = 4(11.5 + VoH² - 6.7 VoH)	
Vol (0.6 ~ 9 (1.5 7 VOH ~ 0.7 VOH)	
1./ 2	-27.8 VoH + 45.4=0	
	2.62 V accellable: Von CV00-Vro 4.32 V mon accellable	
VoH=	4 32 1/ 20 200 1/1/2	
	7. x V Mon allemantile	

Trovo la Voi: Ampango ugunybarm constr.	
Tolki with some lacer Takendo coco	Wable it Vousance
Me sample in Sahirasione. No Kin (W) (Vose - Vive) 2 l'effetts substituté. Se vue	of puol fare illerazioni dops.
2 (1/2 (105)	. , , , , , , , , , , , , , , , , , , ,
Ms sh sh Malo perchi Newore of usell slave user less.	
V ₀ O - Vol	
$\frac{K_{m}(\frac{W}{L})_{\ell}(V_{GS_{L}}-V_{TO})^{2}}{2}=\frac{K_{m}(\frac{W}{L})_{s}(V_{OH}-V_{TO}-V_{DL})V_{OL}}{2}$	
$\frac{\mathcal{K}_{m}^{m}}{2} \left(\frac{\mathcal{W}}{\mathcal{L}}\right)_{\mathcal{L}} \left(V_{DD} - V_{0L} - V_{TO}\right)^{2} = \mathcal{K}_{m} \left(\frac{\mathcal{W}}{\mathcal{L}}\right)_{S} \left(V_{0H} - V_{TD} - \frac{V_{0L}}{2}\right) V_{0L}$	
$\frac{1}{4} \left(4 - V_{0L} - 1 \right)^2 = 5 \left(2.62 - 1 - \frac{V_{0L}}{2} \right) V_{0L}$	
$\frac{1}{20}\left(9 + V_{02}^{2} - 6V_{01}\right) = 1.62 V_{01} - \frac{V_{01}^{2}}{25}$	
10 (9 + Vol 2 - 6 Vol) = 3.24 Vol - Vol	
9+Vo2 - 6VoL = 32.4 Vol - 10 Vo2	
3 401 8 401 2 32.14 22 4(0 40)	
11 Vol = 38,4Vol + 9=0	
X1=0.25V accellable	
X2= 3.24 V no accellable	
Vulore compatibile con Hp.	
s somplime and the	

