

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)		2. REPORT TYPE Technical Papers		3. DATES COVERED (From - To)	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER <i>2303</i>	
				5e. TASK NUMBER <i>M2C8</i>	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048				8. PERFORMING ORGANIZATION REPORT	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S NUMBER(S)	
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited.					
13. SUPPLEMENTARY NOTES					
14. ABSTRACT					
<i>1121 039</i>					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
			<i>A</i>		Leilani Richardson
a. REPORT	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER (include area code) (661) 275-5015
Unclassified	Unclassified	Unclassified			

62

Separate items are enclosed

2009370218 TP-FY99-0109

-ERC#? (no letter)

✓ Spreadsheet
✓ DTS

MEMORANDUM FOR PRR (Contractor/In-House Publication)

FROM: PROI (TI) (STINFO)

27 May 1999

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-FY99-~~0109~~⁰¹⁰⁹ NAC
Drake et al., "New Energetic Salts for Monopropellants"

HEDM CONFERENCE

(Public Release)

New Energetic Salts for Monopropellants

June 9, 1999

U.S. Air Force High Energy Density Materials Meeting

Greg Drake, Adam Brand, Milton McKay, Ismail Ismail*, Tom Hawkins

Propulsion Directorate and *ERC, inc.
Air Force Research Laboratory, Edwards AFB, CA 93524

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

20021121 034

Overview of Talk

- I. Introduction
- II. 2-Hydroxyethylhydrazine salts
- III. Dimethyltriazinium salts revisited
- IV. A look at energetic nitrocyanamide salts
- V. Summary, Conclusions, and Outlook

Hydrazine (N_2H_4) is currently the state of the art monopropellant

Problems: Extreme vapor and dermal toxicity

- Relatively high vapor pressure at ambient temperature (12 torr)
- Leads to very high handling and loading costs
- Density (1.0 g/cm³) and performance aren't that spectacular

Another candidate receiving renewed attention is hydrogen peroxide (H_2O_2)

- Notorious history of violent decomposition
- Incompatible with many materials especially organics and metals

Objective: To find safer, higher performing monopropellant materials for eventual replacement of hydrazine

At AFRL, we have been exploring energetic salts as possible new monopropellant materials. Several advantages including significantly higher densities and little or no vapor pressure at ambient conditions.

2-hydroxyethylhydrazine, [HO-CH₂-CH₂-NH-NH₂] extensively used in the agricultural field in the 60's and 70's as a flowering agent, especially in pineapple plants.

"Use of reduced volatility substituted hydrazine compounds in liquid propellants", U. S. Patent # 5,433,802, Rothgery, E. F. ; Knollmeuller, K. O. ; Manke, S. E. ; Migliaro, F. W. (1995)

"Monopropellant Aqueous Hydroxy Ammonium Nitrate/Fuel" U. S. Patent # 5,233,057, Mueller, K. F.; Cziesla, M. F. (1993)

"Catalytic Decomposition of Hydroxylammonium Nitrate-Based Monopropellants", U. S. Patent # 5,484,722, Schmidt, E.W.; Gavin, D.F. (1996)

Liquid to low temperatures with no real freezing point to -50°C

Very low vapor pressures at room temperature.

Could salts of this form new monopropellant ingredients?

2-hydroxyethylhydrazinium nitrate (HEHN) from the simple
reaction of HEH with concentrated HNO₃

viscous liquid at RT
great physical properties, f.p. = -50°C, density = 1.42 g/cm
 H_f (calc.) : -107 kcal/mol
Impact sensitivity: 38 kg·cm (5 negatives)
Friction: 9 kg (5 negatives)
class 1.3 explosive
patent applied for by A. Brand and T. Hawkins

HEIH mononitroformate [HO-CH₂-CH₂-N₂H₄⁺] [C(NO₂)₃] “HEHNF”

Viscous yellow oil with significant vapor pressure
Decomposes slowly at RT(gasses), turns dark with bubbles
Can be detonated with a strong hammer blow
DSC studies large exotherm beginning at 75°C with pan exploding

HEH monodinitramide [HO-CH₂-CH₂-N₂H₄⁺][N(NO₂)₂]⁻

Carried out in a strong acid cation exchange resin, using MeOH as the solvent

Straw-colored viscous liquid which discolors upon long exposures to light

DSC studies: revealed no decomposition below 150°C

Impact: 5 negatives at 5 kg·cm

Friction: 5 negatives at 112 Newtons

Thermal stability at 75°C: decent, losing only 1.2% per day

Sample: HEHDNA 1:1 STRAW OIL
Size: 2.0000 mg
Method: PROPELLANTS
Comment: Rate 10°C/MIN, SEALED (CTD) AL PANS IN DRYBOX/ N2 FLOW

DSC

File: C:DRAKE.059
Operator: DRAKE
Run Date: 4-Jun-98 02:41
Comment: Rate 10°C/MIN, SEALED (CTD) AL PANS IN DRYBOX/ N2 FLOW

HEH dinitramide at 75°C

HEH dinitrate

White crystalline solid, m.p. 61°C

Density (g/cm³) : 1.78 (calc.); 1.77 ± 0.03 (expt.)

Impact sensitivity: 30 kg-cm

Friction: 12kg

DSC studies: Slow decom. starting at 110°C

Thermal properties: very poor losing 40% in first 3 hrs at 75°C

H_r (kcal/mol) = -107 (calc.)

Sample: HYDROXYETHYLHYDRAZINE DINITRATE DSC
Size: 1.0000 mg
Method: PROPELLANTS
Comment: 10°C/MIN. Coated Pans, N2 50 ML/MIN

File: A:DRAKE.040
Operator: gwdpjd
Run Date: 27-Mar-98 06: 06

HEH diperchlorate [HO-CH₂-CH₂-NH₂NH₃⁺²][ClO₄]₂

White solid, mp 110°C

Density(g/cm³) : 2.09 (ca@l.)

Impact sensitivity: << 10 kg cm

Friction : < 1 kg

Extremely sensitive to both friction and impact, destroyed testing cup and anvil. Friction completely destroyed ceramic plate on lowest setting.

DSC : surprisingly stable with no decomposition until 130°C

H_f(kcal/mol) : -117 (ca@l.)

Thermal stability at 75°C: > 1% per day

Performance Estimates of "HEHDN" and "HEHDP" versus some known explosive materials

Compound	Density(g/cm ³)	Detonation Velocity (m/sec)	Heat of explosion (kcal/kg)
PETN	1.76	8400	1421
RDX	1.82	8750	1375
HMX	1.85	9100	1357
Nitroglycerine	1.59	7600	1617
Lead azide	4.8	5300	367
Lead styphnate	3.0	5200	370
HEHDN	1.78	8370	1077
HEHDP	2.09	9150	1270

HEHDN and HEHDP compare very well to known materials.

The Dimethyltriazanium cation $[\text{H}_2\text{N}-\text{N}(\text{CH}_3)_2-\text{NH}_2]^+$

Stable catenated nitrogen chain of 3 nitrogen atoms
First prepared by Goesl in 1962 as the sulfate salt
in a straightforward reaction:

Goesl, R. Angew. Chem Int. Ed. Engl. 1962, 1, 405.

Energetic salts are made in a straightforward manner, following the synthesis route used by a Rocketdyne chemist¹, and later by Soviet workers²

Nitrate salt:

Perchlorate salt:

¹ Grant, L. R. "Chemistry of Catenated Nitrogen Compounds" Rocketdyne Final Report April 1972, Contract # N0019-71-C-0374.

² Matyushin, Y. N.; Kon'kova, T. S.; Vorob'ev, A. B.; Loginova, E. N.; Titova, K. V.; Lebedev, V. A. Izv. Akad. Nauk SSSR 1981, 1735.

Dimethyltriazanium nitrate

White crystalline solid

Melting point: 134°C

$H_f = -34.8 \text{ kcal/mole}$ (Russian work)*

DSC: large exotherm after melt

Impact sensitivity: 17 kgcm (5 negatives)

Friction sensitivity: 9 kg (89 newtons)

Thermal stability at 75°C : Very poor

Rubstov, Y. L.; Andrienko L. P.; Tritova, K. V.; Loginova, E.N. Izv. Akad. Nauk SSSR Ser. Khim. 1982, 1953

Dimethyltriazanium Perchlorate

White crystalline solid

Melting point: 185°C

$H_f = -16.6 \text{ kcal/mole}^*$

DSC: exothermic decomposition occurring right after melt

Impact sensitivity: Rather sensitive, 6 kgcm

Friction sensitivity: < 0.5 kg, detonates very easily with pressure

Thermal stability at 75°C: very poor

1/14/99

DMTP.xls

Dimethyltriazanium dinitramide synthesis

Metathesis:

Sample: DIMETHYLTRIAZANUM CHLORIDE
Size: 1.0000 mg
Method: GREG
Comment: SEALED COATED AL PANS UNDER N2/50 ML/MIN N2

DSC

File: GWD.007
Operator: GREG DRAKE
Run Date: 10-Feb-99 19: 12

2/18/99

Dimethyltriazenium dinitramide

White crystalline solid

Melting point: 32°C

DSC: Surprising liquid range with major exotherm at 145°C

Impact: xxx kgcm

Friction: xxx newtons
Thermal stability at 75°C : xxxx

Sample: DMTDN CRYSTALS
Size: 1.7000 mg
Method: PROPELLANTS
Comment: 10°C/MIN. HERMETIC ALUM PANS. GN2 50ML/MIN.

DSC

File: GD.009
Operator: GREG DRAKE
Run Date: 7-Mar-99 19:53
REARED IN GLOVE BOX

Energetic salts of the nitrocyanamide anion

First isolated by McKay and coworkers¹ in 1950 as one of the products in the synthesis of diazohydrocarbons

¹ McKay, A. F.; Ott, W. L.; Taylor, G. W.; Buchanan, M. N.; Crooker, J. F. Can. J. Chem. 1950, 28B, 683.

In 1958, Sam Harris reported the synthesis and characterization of a large family of nitrocyanamide salts as new primary explosives/initiators as possible replacements of mercury fulminate.

General reaction scheme:

Harris, S. J. Amer. Chem. Soc. 1958, 80, 2302.

Ammonium Nitrocyanamide, $[\text{NH}_4][\text{N}(\text{NO}_2)(\text{CN})]$

White powder

Melting point: 92°C^*

DSC: slow exotherm beginning at 160°C

Impact sensitivity: insensitive at highest setting

200 kgcm (4 kg at 50 cm)

Friction sensitivity: insensitive at highest setting

37.8 kg (371 Newtons)

Thermal stability at 75°C : not very good at 3.8% per day

Harris, S. J. Amer. Chem. Soc. 1958, 80, 2302.

DSC

Sample: NH4N (NO₂) (CN)
Size: 1.3000 mg
Method: PROPELLANTS
Comment: 10 °C/MIN, HER AL PANS, GN2 50 ML/MIN

File: A:DRAKE.030
Operator: JONES/DRAKE
Run Date: 10-Feb-98 07:24

5/18/99

051799.xls

Guanidinium nitrocyanamide, $[\text{C}(\text{NH}_2)_3\text{N}(\text{NO}_2)\text{(CN)}]$

White solid

Melting point: 131°C

DSC: melt with a large exotherm at 148°C

Impact sensitivity:

Friction sensitivity:

Thermal stability at 75°C : good passing at 0.64% loss/ 24 hours

5/17/99

GNC.XLS

Hydrazinium nitrocyanamide, $[N_2H_5][N(NO_2)(CN)]$

White, crystalline needles

Melting point: $89^\circ C$

DSC: complex decomposition with broad exotherms after melt

Impact sensitivity: 10 kgcm (5 negatives)

Friction sensitivity: 7.8 kg (77 newtons)

Thermal stability at $75^\circ C$: < 1% per day

Summary and Conclusions

2-hydroxyethylhydrazine makes an excellent starting material for a new set of energetic salts. The 1:1 salts of 2-hydroxyethylhydrazine have good physical properties, including good densities, liquids at ambient temperatures, and good thermal stabilities at elevated temperatures. These 1:1 salts pass the initial "tough" hurdles required for new candidates and look promising as replacements for hydrazine. The 1:2 salts are impact and friction sensitive, but they may have a future in high explosives work.

Dimethyltriazanium salts were reinvestigated and put through several tests. Although energetic, they have poor thermal stability at elevated temperatures and probably will not make good propellant ingredients.

Simple nitrocyanamide salts are energetic materials, which will require more work. Our initial work with small energetic cations (NH_4 , N_2H_5 , CH_3ONH_3), show that these salts are not very stable at elevated temperatures. But, larger cations, such as the guanidinium salt, appear to be more thermally stable, and more work will be put into investigating larger cation based salts.

Acknowledgements

United States Air Force (Funding)

Dr. Suresh Suri

Dr. Pat Carrick

Dr. Jeff Sheehy and Dr. Jerry Boatz

Dr. Steve Rodgers

Dr. Karl Christe and Dr. Bill Wilson

Mr. Paul Jones