Filtre de Canny-Deriche

ABOUZAID Mehdi TOOMEY Damien

INSA - Institut National des Sciences Appliquées de Rouen

27 novembre 2018

- Introduction
- Description du filtre
- Modélisation mathématique
- 4 Explication de l'implémentation (cas 2D)
- 5 Suppression des non-maxima locaux
- 6 Seuillage par hystérésis
- Résultats
- 8 Démonstrations
- Bibliographie

- Introduction
- Description du filtre
- Modélisation mathématique
- 4 Explication de l'implémentation (cas 2D)
- Suppression des non-maxima locaux
- 6 Seuillage par hystérésis
- Résultats
- Démonstrations
- Bibliographie

Introduction

- Détection de contours o réduction d'information o stockage réduit
- Rachid Deriche, 1987
- Amélioration du filtre de Canny

 $\alpha = 0.8$, Smin = 26, Smin = 41

- Introduction
- 2 Description du filtre
- Modélisation mathématique
- 4 Explication de l'implémentation (cas 2D)
- 5 Suppression des non-maxima locaux
- 6 Seuillage par hystérésis
- Résultats
- Démonstrations
- Bibliographie

Similitudes avec le filtre de Canny

Méthode

Détection de contours en 4 étapes, comme le filtre de Canny :

- 1 Gradients et lissage (réduction du bruit)
- 2 Norme du gradient et direction du gradient
- 3 Suppression des non-maxima locaux
- 4 Seuillage par hystérésis

Critères de détection optimale des contours

Remarque

Dans le filtre de Deriche, on retrouve également les mêmes critères de détection optimale des contours que le filtre de Canny

- A Bonne détection : faible taux d'erreur dans la signalisation des contours
- **B Bonne localisation** : les points détectés comme contours doivent être aussi proches que possible des contours réels
- C Clarté de la réponse : un point du contour ne doit être détecté qu'un seule fois par le filtre

A chaque critère (A,B,C) est associé une formule mathématique. La maximisation de ces trois critères conduit à la résolution de l'équation différentielle dont la solution est l'opérateur f.

Différences par rapport au filtre de Canny

La principale différence se trouve dans l'implémentation des deux premières étapes de l'algorithme :

- 1 Gradients et lissage (réduction du bruit)
- 2 Norme du gradient et direction du gradient

Contrairement au filtre de Canny, le détecteur de contours de Deriche utilise **un filtre RII (Réponse Impulsionnelle Infinie)** au lieu d'un filtre RIF (Réponse Impulsionnelle Finie)

Equation différentielle

$$2 \cdot f(x) - 2 \cdot \lambda_1 \cdot f''(x) + 2 \cdot \lambda_2 \cdot f''''(x) + \lambda_3 = 0$$

Canny: filtre RIF

Conditions initiales : f(0) = 0, f(W) = 0, f'(0) = S et f'(W) = 0Solution générale sur [-W, W] :

$$f(x) = a_1 \cdot e^{\alpha \cdot x} \cdot \sin(\omega \cdot x) + a_2 \cdot e^{\alpha \cdot x} \cdot \cos(\omega \cdot x) + a_3 \cdot e^{-\alpha \cdot x} \cdot \sin(\omega \cdot x) + a_4 \cdot e^{-\alpha x} \cdot \cos(\omega \cdot x) + C$$

Deriche: filtre RII

Conditions initiales : f(0) = 0, $f(+\infty) = 0$, f'(0) = S et $f'(+\infty) = 0$ Solution générale sur \mathbb{R} :

$$f(x) = -c \cdot e^{-\alpha \cdot |x|} \cdot \sin(\omega \cdot x)$$

On peut observer que la solution obtenue à l'aide du filtre RII pour le détecteur de contours de Deriche est plus simple en plus d'améliorer les résultats de détection.

Avantage du filtre RII de Deriche

Adaptation aux caractéristiques de l'image en modifiant seulement les deux paramètres $(\alpha, \omega) \in \mathbb{R}^+$, sans impacter le temps d'exécution.

- Si la valeur de α est petite (généralement entre 0.25 et 0.5), la détection est meilleure.
- Si la valeur de α est grande (entre 2 et 3), la localisation des contours est meilleure.

C'est pourquoi, dans la plupart des cas, il est recommandé de fixer la valeur de α à 1.

- Introduction
- Description du filtre
- Modélisation mathématique
- 4 Explication de l'implémentation (cas 2D)
- Suppression des non-maxima locaux
- 6 Seuillage par hystérésis
- Résultats
- Démonstrations
- Bibliographie

Cas mono-dimensionnel

Deux détecteurs de contours optimaux de réponse impulsionnelle :

$$f(x) = -c \cdot e^{\alpha \cdot |x|} \cdot \sin(\omega \cdot x)$$

$$g(x) = -c \cdot x \cdot e^{\alpha \cdot |x|}$$

Remarque

Les résultats de détection de contours sont améliorés en utilisant g(x) au lieu de f(x).

Avec g(x), le filtre ne dépend que de α et non plus de ω .

Réponse impulsionnelle h(n) (fonction de lissage)

h(n) correspond à l'intégrale h(x) de f(x) avec $n \in \mathbb{Z}, x \in \mathbb{R}$

$$h(n) = (c_1 \cdot sin(\omega \cdot |n|) + c_2 \cdot cos(\omega \cdot |n|)) \cdot e^{-\alpha \cdot |n|}$$

Coefficients du filtre

Remarque

La forme du filtre est déterminée par $(\alpha, \omega) \in \mathbb{R}^+$. On choisit ces deux paramètres en fonction de nos données.

$$\begin{cases} c = \frac{1 - 2 \cdot e^{-\alpha} \cdot \cos(\omega) + e^{-2 \cdot \alpha}}{e^{-\alpha} \cdot \sin(\omega)} \\ c_1 = \frac{k \cdot \alpha}{\alpha^2 + \omega^2} \\ c_2 = \frac{k \cdot \omega}{\alpha^2 + \omega^2} \\ b_1 = -2 \cdot e^{-\alpha} \cdot \cos(\omega) \\ b_2 = e^{-2 \cdot \alpha} \end{cases}$$

$$\begin{cases} a = -c \cdot e^{-\alpha} \cdot \sin(\omega) \\ a_0 = c_2 \\ a_1 = (-c_2 \cdot \cos(\omega) + c_1 \cdot \sin(\omega)) \cdot e^{-\alpha} \\ a_2 = a_1 - c_2 \cdot b_1 \\ a_3 = -c_2 \cdot b_2 \end{cases}$$

$$k = \frac{(1 - 2 \cdot e^{-\alpha} \cdot \cos(\omega) + e^{-2 \cdot \alpha}) \cdot (\alpha^2 + \omega^2)}{2 \cdot \alpha \cdot e^{-\alpha} \cdot \sin(\omega) + \omega - \omega \cdot e^{-2 \cdot \alpha}}$$

Cas bi-dimensionnel

Réponse impulsionnelle f(x, y)

$$f(x,y) = -\frac{c \cdot k}{\alpha^2 + \omega^2} \cdot e^{-\alpha \cdot (|x| + |y|)} \cdot [\sin(\omega \cdot x) \cdot (\alpha \cdot \sin(\omega \cdot |y|) + \omega \cdot \cos(\omega \cdot |y|)) + \sin(\omega \cdot y) \cdot (\alpha \cdot \sin(\omega \cdot |x|) + \omega \cdot \cos(\omega \cdot |x|))]$$

$$f(x,y) = \underbrace{f(x) \cdot h(y)}_{X} + \underbrace{h(x) \cdot f(y)}_{Y}$$
 avec $(x,y) \in \mathbb{R}^{2}$

Remarque

Le filtre est donc séparable en deux masques X et Y.

- Introduction
- 2 Description du filtre
- Modélisation mathématique
- 4 Explication de l'implémentation (cas 2D)
- 5 Suppression des non-maxima locaux
- 6 Seuillage par hystérésis
- Résultats
- Démonstrations
- Bibliographie

Etape 1/4: Gradients selon x et y et lissage (**récursif**)

Gradient selon x

$$Y^{+}(i,j) = I(i,j-1) - b_1 \cdot Y^{+}(i,j-1) - b_2 \cdot Y^{+}(i,j-2)$$

 $j = 1,..., NCL \quad i = 1,..., NLG$

$$Y^{-}(i,j) = I(i,j+1) - b_1 \cdot Y^{-}(i,j+1) - b_2 \cdot Y^{-}(i,j+2)$$

 $j = NCL, ..., 1 \quad i = 1, ..., NLG$

$$S(i,j) = a \cdot (Y^{+}(i,j) - Y^{-}(i,j))$$
 $j = 1, ..., NCL$ $i = 1, ..., NLG$

Lissage

$$R^+(i,j) = a_0 \cdot S(i,j) + a_1 \cdot S(i-1,j) - b_1 \cdot R^+(i-1,j) - b_2 \cdot R^+(i-2,j)$$

 $i = 1, ..., NLG$ $j = 1, ..., NCL$

$$R^{-}(i,j) = a_2 \cdot S(i+1,j) + a_3 \cdot S(i+2,j) - b_1 \cdot R^{-}(i+1,j) - b_2 \cdot R^{-}(i+2,j)$$

 $i = NLG, ..., 1$ $j = 1, ..., NCL$

$$R(i,j) = R^{-}(i,j) + R^{+}(i,j)$$
 $i = 1,...,NLG$ $j = 1,...,NCL$

Etape 1/4: Gradient selon x et lissage (convolutions)

f(n) (gradient selon x)

 $n \in \llbracket -N \cdot P; N \cdot P
rbracket$

 ${\sf N}$: nombre de lignes dans l'image

P : nombre de colonnes dans l'image

Etape 1/4 : Gradient selon y et lissage (convolutions)

$$n \in \llbracket -N \cdot P; N \cdot P \rrbracket$$

 ${\sf N}$: nombre de lignes dans l'image

P : nombre de colonnes dans l'image

Etape 2/4: Norme du gradient et direction du gradient

Norme du gradient

$$A(m, n) = \sqrt{r(m, n)^2 + s(m, n)^2}$$
avec
$$\begin{cases} r \text{ gradient selon } x \\ s \text{ gradient selon } y \end{cases}$$

Direction du gradient

$$arg = arctan(\frac{s(m, n)}{r(m, n)})$$

- Introduction
- Description du filtre
- Modélisation mathématique
- 4 Explication de l'implémentation (cas 2D)
- 5 Suppression des non-maxima locaux
- 6 Seuillage par hystérésis
- Résultats
- Démonstrations
- Bibliographie

Définition

Méthode appliquée sur la norme du gradient qui permet d'affiner les contours

Méthode

Mettre à 0 les pixels qui ne constituent pas un contour.

Un pixel de la norme du gradient est considéré comme contour s'il forme un maximum local dans la direction du gradient.

Direction du gradient

Norme du gradient

Classe 1:
$$arg \in [0; 22.5[$$
 ou $arg \in [157.5; 180]$

Direction du gradient

Norme du gradient

Si non(N > max(N, N)) alors $N \leftarrow 0$

Classe 2:
$$arg \in [22.5; 67.5[$$

Direction du gradient

Norme du gradient

Si $non(N \ge max(N, N))$ alors $N \leftarrow 0$

Classe 3:
$$arg \in [67.5; 112.5[$$

Direction du gradient

Norme du gradient

Si $non(N \ge max(N, N))$ alors $N \leftarrow 0$

Classe 4 :
$$arg \in [112.5; 157.5[$$

Direction du gradient

Norme du gradient

Si $non(N \ge max(N, N))$ alors $N \leftarrow 0$

Remarque

Après cette étape, l'image n'est pas encore binarisée mais on a mis à 0 les pixels qui ne constituaient pas un contour.

- Introduction
- Description du filtre
- Modélisation mathématique
- (4) Explication de l'implémentation (cas 2D)
- 5 Suppression des non-maxima locaux
- 6 Seuillage par hystérésis
- Résultats
- Démonstrations
- Bibliographie

Etape 4/4 : Seuillage par hystérésis

Définition

Le seuillage par hystérésis permet de retirer les faux contours.

Méthode

Pour cela, on définit deux seuils :

- Smin : seuil minimum
- Smax : seuil maximum

Pour chaque pixel de la norme du gradient obtenu après la suppression des non-maxima locaux, on regarde sa valeur.

Etape 4/4 : Seuillage par hystérésis

Norme du gradient après suppression des non-maxima locaux

Remarque

L'image obtenue est maintenant binarisée.

Elle contient les contours de l'image initiale et un peu de bruit.

Etape 4/4 : Seuillage par hystérésis

Norme du gradient après suppression des non-maxima locaux

 $\begin{pmatrix} {\color{red}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {\color{blue}N} \\ {\color{blue}N} & {$

Remarque

L'image obtenue est maintenant binarisée.

Elle contient les contours de l'image initiale et un peu de bruit.

- Introduction
- Description du filtre
- Modélisation mathématique
- 4 Explication de l'implémentation (cas 2D)
- 5 Suppression des non-maxima locaux
- 6 Seuillage par hystérésis
- Résultats
- 8 Démonstrations
- Bibliographie

Résultats

- Introduction
- Description du filtre
- Modélisation mathématique
- 4 Explication de l'implémentation (cas 2D)
- 5 Suppression des non-maxima locaux
- 6 Seuillage par hystérésis
- Résultats
- 8 Démonstrations
- 9 Bibliographie

- Introduction
- Description du filtre
- Modélisation mathématique
- 4 Explication de l'implémentation (cas 2D)
- 5 Suppression des non-maxima locaux
- 6 Seuillage par hystérésis
- Résultats
- 8 Démonstrations
- 9 Bibliographie

Article

Titre: Using Canny's Criteria to Derive a Recursively Implemented

Optimal Edge Detector

Auteur: RACHID DERICHE

- Deriche edge detector
 https://en.wikipedia.org/wiki/Deriche_edge_detector
- Can't get clean output in my MATLAB implementation of Canny-Deriche
 https://stackoverflow.com/questions/14132356/

```
https://stackoverflow.com/questions/14132356/cant-get-clean-output-in-my-matlab-implementation-of-cann
```

- Canny edge detector
 https://en.wikipedia.org/wiki/Canny_edge_detector
- Canny Edge Detection Step by step
 https://opencv-python-tutroals.readthedocs.io/en/
 latest/py_tutorials/py_imgproc/py_canny/py_canny.html

- Détection de contours : les opérateurs de Canny-Deriche https://perso.esiee.fr/~coupriem/Algo/algoima.html
- Extraction de contours et son extension du contour actif http://ninebill.free.fr/ExtractionContours/detection/ canny.html
- JAVA demo of Canny/Deriche-like filter (EPFL Biomedical Imaging Group)

```
http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/
```

- Segmentator Fix gramag export error with deriche filter (3D python)
 https://github.com/ofgulban/segmentator
- Edge Detection with MATLAB https://fr.mathworks.com/videos/ edge-detection-with-matlab-119353.html
- Gaël Deest (pdf)
 www.theses.fr/2017REN1S102/abes

Canny en python (OpenCV)

```
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_canny/py_canny.html
```

• Convolution in Two Dimensions

```
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/low/space/convol.htm
```

Convolution en 2D

```
http://web.stanford.edu/group/sequoia/cgi-bin/node/185
```

EECS 442 – Computer vision

```
http://vhosts.eecs.umich.edu/vision//teaching/EECS442_2012/lectures/lecture14.pdf
```

DETECTION DE CONTOURS

```
http:
//www.lirmm.fr/~strauss/PageImage3/EdgeDetection.pdf
```

- Techniques d'extraction de contours ftp://ftp-sop.inria.fr/athena/Team/Rachid.Deriche/ Lectures/Master-Stic-IGMMV/techniques_contours.pdf
- Détection de contours http://devernay.free.fr/cours/vision/pdf/c3.pdf
- Bases du traitement des images Détection de contours http://webia.lip6.fr/~thomen/Teaching/BIMA/cours/ contours.pdf
- La détection decontours dans des images à niveaux de gris : mise en œuvre et sélection de détecteurs http:

```
//docnum.univ-lorraine.fr/public/INPL_T_1991_ZIOU_D.pdf
```

- Detection de contours http://dept-info.labri.fr/~achille/enseignement/TI/ TI-ch4-notes.pdf
- Segmentation d'image : Contours http://www.lgi2p.mines-ales.fr/~montesin/CoursPDF/