Nassau County Interscholastic Mathematics League Solutions, Contest 4

#19. The square root of 600 is close to 25. Thus, the two pages across from each other in the middle of the pamphlet are numbered "24" and "25". From page 1 through page 24, there are 24 pages. The number of pages in the pamphlet is twice that, 48.

#20. In right \triangle ACB below, C is the orthocenter. \overline{CD} is the median to the hypotenuse and its length is 39, one-half the length of the hypotenuse, 78. Medians \overline{AE} and \overline{CD} intersect at F, which is the centroid of \triangle ACB. When the midsegment \overline{DE} is drawn, DE is 36 since the segment joining the midpoints of two sides of a triangle is half as long as the third side, and \triangle ACF and \triangle EDF, are similar. If we let FD = x and CF = 39 - x, then $\frac{36}{72} = \frac{x}{39-x}$. So, x = 13 and CF = 26.

#21. The area of the circle is
$$\frac{16}{\pi^2} = \pi r^2$$
; So, $r = \sqrt{\frac{16}{\pi^3}} = \frac{4}{\pi \sqrt{\pi}}$; Thus, $d = \frac{8}{\pi \sqrt{\pi}} \approx 1.4367$.

#22. Factoring yields
$$\frac{(x^3+1)(x^3-1)}{x^3(x^2-1)+1(x^2-1)} = \frac{21}{5}$$
; $\frac{x^2+x+1}{x+1} = \frac{21}{5}$; $5x^2-16x-16=0$. $(5x+4)(x-4)=0$; $x=-\frac{4}{5}$ or 4.

#23. The acceptable combinations are 6 valencias, 5 valencias and 1 temple, 5 valencias and 1 navel, 4 valencias and 2 temples, 4 valencias, 1 temple, and 1 navel, and 3 valencias and 3 temples.

So, the probability is
$$\frac{{}_{8}C_{6}+6\cdot{}_{8}C_{5}+4\cdot{}_{8}C_{5}+{}_{8}C_{4}\cdot{}_{6}C_{2}+{}_{8}C_{4}\cdot{}_{6}\cdot{}_{4}+{}_{8}C_{3}\cdot{}_{6}C_{3}}{{}_{18}C_{6}}=\frac{317}{1326}\approx0.2391$$

#24. Draw \overline{AE} and reflect the figure over \overline{BD} , producing an isosceles trapezoid. Draw the altitude of the trapezoid from A to F, F being a point on \overline{DE} between D and E. In right \triangle AEF, AE = 37, EF = 12, AF = 35. Let the reflection of E over \overline{BD} be E'. In right \triangle AFE', AE' = 91, AF = 35, and E'F = 84. Let AB = FD = x. Then, 2x + 12 = 84 and x = 36.