INF221 – Algoritmos y Complejidad

Clase #25 Algoritmo de Kruskal III

Aldo Berrios Valenzuela

9 de noviembre de 2016

1. Algoritmo de Kruskal (continuación de la continuación)

Secuencia C de compress en $\mathscr{F} \leadsto C_+$ sobre \mathscr{F}_+ , C_- sobre \mathscr{F}_- , operaciones shatter, asignaciones parent $[z] \leftarrow z$. Sean n_+ , n_- número de nodos \mathscr{F}_+ , \mathscr{F}_- , m_+ , m_- operaciones en C_+ , C_- -

Sea $T(\mathcal{F}, C)$ el costo (# asignaciones a punteros) al aplicar C a \mathcal{F} :

$$T(\mathcal{F}, C) \le T(\mathcal{F}_+, C_+) + T(\mathcal{F}_-, C_-) + m_+ + n$$
 (1.1)

Sabemos que hay a lo más

$$\frac{n}{2^i}$$

nodos de rank i, por lo que:

$$n_{+} \le \sum_{i>s} \frac{n}{2^{i}}$$
$$= \frac{n}{2^{s}}$$

Del teorema que vimos la clase pasada, sabemos:

$$T(\mathcal{F}_+, C_+) \le n_+ r$$

$$\le \frac{nr}{2^s}$$

Si elegimos $s = \log_2 r$, queda $T(\mathcal{F}_+, C_+) \le n$. Como (1.1) vale para $todo \mathcal{F}$, C, tenemos:

$$\begin{split} T\left(m,n,r\right) &\leq n + T\left(m_{-},n_{-},\log_{2}r\right) + n + m_{+} \\ T\left(m,n,r\right) - m &\leq T\left(m_{-},n_{-},\log_{2}r\right) - m_{-} + 2n \\ T'\left(m,n,r\right) &= T\left(m,n,r\right) - m \\ T'\left(m,n,r\right) &\leq T'\left(m_{-},n_{-},\log_{2}r\right) + 2n \\ &\leq T'\left(m,n,\log_{2}r\right) + 2n \end{split}$$

Sabemos:

$$T'(m, n, r = 0) = T(m, n, 0) - m \le 0$$

 $\leadsto T'(m, n, r) \le 2n \log_2^* r$

/* El objetivo de esto fue analizar la secuencia de operaciones */