

WHAT IS CLAIMED IS:

- 1 1. A method, using a computer system, for designing a microfluidic
2 circuit schematic comprising a plurality of microfluidic component symbols associated
3 with a plurality of microfluidic components, said method comprising:
 - 4 placing a first component symbol of said plurality of microfluidic
5 component symbols on a schematic, wherein said first component symbol has associated
6 functional information;
 - 7 placing a second component symbol of said plurality of microfluidic
8 component symbols on said schematic; and
 - 9 connecting said first component symbol to said second component symbol.
- 1 2. The method of claim 1 wherein said plurality of microfluidic
2 component symbols are multilayered symbols.
- 1 3. The method of claim 1 wherein said plurality of microfluidic
2 components comprise structures having an elastomeric material.
- 1 4. The method of claim 1 wherein said first component symbol
2 comprises a first indication for a control channel and a second indication for a fluid
3 channel.
- 1 5. The method of claim 4 wherein said first indication is placed on a
2 first layer and said second indication is placed on a second layer.
- 1 6. The method of claim 1 wherein said first component symbol
2 functions as a NAND gate.
- 1 7. The method of claim 1 wherein said first component symbol
2 functions as a S-R latch.
- 1 8. The method of claim 1 wherein said plurality of microfluidic
2 component symbols are selected from the group consisting of channel symbols, pump
3 symbols, valve symbols, chamber symbols, multiplexer symbols, bridge symbols, macro
4 symbols, user defined symbols, and layer interconnect symbols.

1 9. The method of claim 1 wherein said first component symbol
2 comprises a first control channel symbol and a first fluid channel symbol, said second
3 component symbol comprises a second control channel symbol and a second fluid
4 channel symbol, and said connecting comprises connecting said first fluid channel symbol
5 to said second fluid channel symbol.

1 10. The method of claim 1 wherein said first component symbol
2 comprises a first control channel symbol and a first fluid channel symbol, said second
3 component symbol comprises a second control channel symbol and a second fluid
4 channel symbol, and said connecting comprises connecting said first control channel
5 symbol to said second control channel symbol.

1 11. The method of claim 1 wherein said connecting includes a design
2 rule check.

1 12. The method of claim 1 wherein selected component symbols of
2 said microfluidic circuit schematic include functional information and are functionally
3 simulated by applying control signals to said selected component symbols to show
4 functional connectivity.

1 13. The method of claim 12 wherein functionally simulating selected
2 component symbols comprises defining functional information of said selected
3 component symbols as including Boolean expressions with operands based on control
4 ports of the selected component symbols which control connections to input ports and
5 output ports of the selected component symbols.

1 14. The method of claim 12 wherein functionally simulating selected
2 component symbols comprises simulating actuation of said selected component symbols
3 using control signals generated by a Boolean based language with timing constraints.

1 15. A method for capturing a design of a microfluidic system using a
2 computer aided design tool, said method comprising:
3 placing a first symbol representing a first component of a plurality of
4 microfluidic components on a schematic, said first component comprising a first fluid

5 channel and a first control channel, said first symbol having related functional
6 information;

7 placing on said schematic a second symbol representing a second
8 component of said plurality of microfluidic components, said second component
9 comprising a second fluid channel and a second control channel; and
10 connecting said first symbol to said second symbol.

1 16. The method of claim 15 wherein said first symbol is an IDEF0
2 symbol.

1 17. The method of claim 16 wherein said second symbol is another
2 IDEF0 symbol and said connecting includes connecting an output of said IDEF0 symbol
3 to an input of said another IDEF0 symbol.

1 18. The method of claim 15 wherein said second symbol is a
2 multilayered symbol having a first channel on a first layer and a second channel on a
3 second layer.

1 19. The method of claim 15 wherein said first symbol includes a first
2 indication for said first fluid channel and a second indication for said first control
3 channel.

1 20. The method of claim 15 wherein said plurality of microfluidic
2 components are selected from the group consisting of channels, pumps, valves, chambers,
3 pressure oscillators, and layer interconnects.

1 21. The method of claim 15 wherein symbols are connected according
2 to predetermined design rules.

1 22. The method of claim 15 wherein said first symbol is placed
2 interactively on said schematic.

1 23. The method of claim 15 wherein said first symbol is placed
2 automatically on said schematic.

1 24. A design capture system for capturing a microfluidic circuit
2 comprising a plurality of microfluidic components, said design capture system
3 comprising:

4 a microfluidic component library comprising functional information and
5 symbols associated with said plurality of microfluidic components; and
6 a schematic entry module used for placing and connecting said symbols.

1 25. The design capture system of claim 24 wherein said symbols are
2 multilayered symbols.

1 26. The design capture system of claim 24 wherein said symbols have
2 depth information.

1 27. The design capture system of claim 24 wherein one of said
2 symbols includes a first indication for a fluid channel and a second indication for a
3 control channel.

1 28. The design capture system of claim 24 wherein said plurality of
2 microfluidic components comprise structures having an elastomeric material.

1 29. The design capture system of claim 24 wherein said placing of said
2 symbols includes dragging and dropping a symbol from an active library area to an active
3 drawing area.

1 30. The design capture system of claim 24 wherein said schematic
2 entry module includes a window on a display, said window comprising a component
3 library area and an active drawing area.

1 31. The design capture system of claim 30 wherein said window
2 further includes a layer area, said layer area indicating a layer of a plurality of drawing
3 layers in said active drawing area that has items on said layer displayed.

1 32. A computer program product stored in a computer readable
2 medium for capturing a design of a microfluidic system using a computer aided design
3 tool, said computer program product comprising:

4 code for placing a first symbol representing a first component of a plurality
5 of microfluidic components on a schematic, said first component comprising a first fluid
6 channel and a first control channel;
7 code for placing a second symbol representing a second component of said
8 plurality of microfluidic components, on said schematic, said second component
9 comprising a second fluid channel and a second control channel; and
10 code for connecting said first symbol to said second symbol.

1 33. A method for synthesizing a network model of a microfluidic
2 circuit comprising a plurality of microfluidic components, said method comprising:
3 storing in a computer readable medium a synthesis program;
4 selecting from a database, component models associated with said plurality
5 of microfluidic components, said component models having layer information; and
6 generating said network model by using said component models and said
7 synthesis program, wherein said component models are connected together using said
8 layer information.

1 34. The method of claim 33 wherein said plurality of microfluidic
2 components comprise structures having an elastomeric material.

1 35. The method of claim 33 wherein one of said component models
2 includes a symbol related to a component of said plurality of microfluidic components.

1 36. The method of claim 33 wherein said network model is displayed
2 as a schematic, comprising symbols of said plurality of microfluidic components
3 connected together.

1 37. The method of claim 33 wherein said database includes a macro
2 library and a basic library of microfluidic components.

1 38. The method of claim 33 wherein said synthesis program comprises
2 code selected from the group consisting of VHDL, Verilog, VHDL-AMS, Verilog-A,
3 VHDL-A, Verilog-AMS, C, and C++.

1 39. A synthesis system for creating a schematic of a microfluidic
2 circuit comprising a plurality of microfluidic components, said synthesis system
3 comprising:
4 a memory for storing synthesis code related to said schematic;
5 a design library comprising a plurality of indications associated with said
6 plurality of microfluidic components, said plurality of indications having layer
7 information, wherein selected indications of said plurality of indications are selected
8 using said synthesis code; and
9 a synthesis module for creating said schematic by connecting said selected
10 indications using layer information associated with said selected indications.

1 40. The synthesis system of claim 39 further comprising a display
2 module for showing said schematic.

1 41. The synthesis system of claim 39 wherein said synthesis module is
2 configured to optimize said schematic.

1 42. The synthesis system of claim 39 wherein said synthesis code
2 comprises code selected from a group consisting of VHDL, Verilog, VHDL-AMS,
3 Verilog-A, VHDL-A, Verilog-AMS, C or C++.

1 43. A computer program product stored in a computer readable
2 medium for synthesizing a network model of a microfluidic circuit comprising a plurality
3 of microfluidic components, said computer program product comprising:
4 a synthesis program;
5 code for selecting from a database, software component models associated
6 with said plurality of microfluidic components, said software component models having
7 layer information; and
8 code for generating said network model by using said software component
9 models, including said layer information and said synthesis program, wherein said
10 software component models are connected together.

1 44. A method for functionally analyzing a schematic, having a control
2 layer and a fluid layer, of a microfluidic circuit comprising a plurality of microfluidic
3 components, said method comprising:

4 selecting a functional model for a component of said plurality of
5 microfluidic components;
6 determining a logic control test sequence for said control layer of said
7 schematic; and
8 functionally simulating said schematic by using said functional model in
9 said schematic and said logic control test sequence.

1 45. The method of claim 44 wherein said plurality of microfluidic
2 components comprise structures having an elastomeric material.

1 46. The method of claim 44 wherein said functional model includes
2 code selected from the group consisting of VHDL, Verilog, VHDL-AMS, Verilog-A,
3 VHDL-A, Verilog-AMS, C, and C++.

1 47. The method of claim 44 wherein said logic control test sequence
2 includes code from a digital simulation language.

1 48. The method of claim 44 wherein said logic control test sequence
2 includes code selected from the group consisting of VHDL, Verilog, VHDL-AMS,
3 Verilog-A, VHDL-A, Verilog-AMS, C, and C++.

1 49. The method of claim 44 wherein said logic control test sequence
2 includes code from a Diagnostic Chip Control language (DCCL).

1 50. A system for functionally analyzing a schematic, having at least
2 one control layer and at least one fluid layer, of a microfluidic circuit comprising a
3 plurality of microfluidic components, said system comprising:
4 a functional model for a component of said plurality of microfluidic
5 components;
6 a logic control test sequence for at least one control layer of said
7 schematic; and
8 a functional simulator for functionally simulating said schematic by using
9 said functional model in said schematic and said logic control test sequence.

1 51. The method of claim 50 wherein said functional model includes
2 code selected from the group consisting of VHDL, Verilog, VHDL-AMS, Verilog-A,
3 VHDL-A, Verilog-AMS, C, and C++.

1 52. The method of claim 50 wherein said plurality of microfluidic
2 components comprise structures having an elastomeric material.

1 53. A computer program product stored in a computer readable
2 medium for functionally analyzing a schematic, having at least one control layer, of a
3 microfluidic circuit comprising a plurality of microfluidic components, said computer
4 program product comprising:

5 code for selecting a functional model for a component of said plurality of
6 microfluidic components;

7 code for determining a logic control test sequence for at least one control
8 layer of said schematic; and

9 code for functionally simulating said schematic by using said functional
10 model in said schematic and said logic control test sequence.

1 54. A computer program product stored in a computer readable
2 medium for designing a microfluidic circuit schematic comprising a plurality of
3 microfluidic component symbols associated with a plurality of microfluidic components,
4 said computer program product comprising:

5 code for placing a first component symbol of said plurality of microfluidic
6 component symbols on a schematic, wherein said first component symbol has associated
7 functional information;

8 code for placing a second component symbol of said plurality of
9 microfluidic component symbols on said schematic; and

10 code for connecting said first component symbol to said second
11 component symbol.

1 55. The method of claim 54 wherein said first component symbol
2 comprises a first indication for a control channel and a second indication for a fluid
3 channel.

1 56. A microfluidic circuit design system comprising:

2 a synthesis module for synthesizing software of a design into a component
3 level description of said design, said design comprising a plurality of microfluidic
4 components, and said component level description comprising multilayered symbols
5 associated with said plurality of microfluidic components;

6 a design capture module, including a schematic entry tool, for placing and
7 connecting said multilayered symbols on a schematic according to said design; and

8 a functional analysis module for functionally simulating selected
9 multilayered symbols of said schematic.

1 57. The system of claim 56 wherein the modules comprise instructions
2 stored in a computer-readable medium.