Algoritmos de pesquisa

Tabelas de dispersão/Hash

Introdução

→ Motivação:

Considerar o problema de pesquisar um determinado valor num vetor (array).

- Se o vetor não está ordenado, a pesquisa requer O(n) de complexidade.
- Se o vetor está ordenado, pode-se fazer a pesquisa binária que requer uma complexidade de O(log n).
- Não parece haver melhor maneira de resolver o problema com custos melhorados.

Introdução

→ Ideia:

Poderia haver maneira de resolver o problema em O(1).

Se o vetor estiver organizado de uma determinada maneira.

→ Solução:

Arranjar uma função mágica que, dado um determinado valor a pesquisar, nos diga exatamente a posição exata no vetor.

→ Esta função é chamada *função de dispersão/hash*.

Introdução

- → Complexidade ideal O(1)
 - Vetor A[i] de 0 a 65.535 (16 bits) inicializado a zeros
 - Cada inserção de um número k seria: A[k]++
 - Cada remoção de um número k seria: A[k]--
 - A[k] representa o número de vezes que o número k foi inserido
 - Para procurar temos que fazer find(k); se A[k] > 0 está encontrado

Introdução

- → Problemas encontrados
 - Tamanho do vetor

Se o inteiro for 16 bits dá um vetor com 65.536, mas se tivermos um com 32 bits dá 4.294.967.296, o que é incomportável.

O uso de strings

Se tivermos strings em vez de inteiros não dá para indexar num vetor, porque A["Ana"] não existe.

Introdução

- → Resolução do problema dos *vetores* grandes
 - Usar uma função que mapeie grandes números ou strings
 transformados em números mais pequenos ou manejáveis
 - Esta função é chamada de *Hash* ou de *dispersão*

- → As tabelas de hash são um tipo de estruturação criado para o armazenamento de informação, e são
 - uma forma extremamente simples,
 - fácil de se implementar e,
 - intuitiva para se organizar grandes quantidades de dados.
- → Possui como ideia central a divisão do universo de dados a ser organizado em subconjuntos mais facilmente geríveis.
- → A estruturação da informação em tabelas de hash visa principalmente permitir armazenar e procurar rapidamente grande quantidade de dados.

- → As tabelas de *hash* são constituídas por 2 conceitos fundamentais:
 - Tabela de Hash: estrutura que permite o acesso aos subconjuntos.
 - Função de Hash: função que realiza um mapeamento entre os valores de chaves e as entradas na tabela.

- Criar um critério simples para dividir este universo em subconjuntos com base nalguma qualidade do domínio das chaves
 - Possuir um índice que permita encontrar o início do subconjunto certo, depois de calcular o valor de hash.
 - Isto é a tabela de hash.
- → Saber em qual subconjunto procurar e colocar uma chave
 - indicar quantos subconjuntos se pretende
 - criar uma regra de cálculo que, dada uma chave, determine em que subconjunto se deve procurar pelos dados com esta chave ou colocar estes dados (caso seja um novo elemento).
 - Isto é chamado de função de hash.

- → Gerir estes subconjuntos bem menores com um método simples:
 - Possuir uma estrutura ou um conjunto de estruturas de dados para os subconjuntos.
 - Existem duas filosofias: hashing fechado (ou de endereçamento aberto) ou o hashing aberto (ou encadeado).
- → Alguns dos problemas que se colocam quando usamos tabelas de hash são:
 - determinar uma função de hash que minimize o número de colisões;
 - obter os mecanismos eficientes para tratar as colisões.

Funções de Hash - exemplos

- → Números x (chave) de 0 a 99 (dois dígitos)
- → tam tamanho da tabela
- → Pode-se construir uma função que coloque x no vetor em termos do algarismo das dezenas.

```
f = x / tam (/ = divisão inteira)
```

→ Ou pode-se construir uma função que coloque x no vetor em termos do algarismo das unidades.

```
f = x \% tam (\% = resto da divisão)
```

Função de Hash

→ Exemplo de uma *função de Hash:*

```
int hash (int key, int tam) {
    return (key % tam);
}
```

- → Objetivos das funções de Hash:
 - deve ser eficiente.
 - deve distribuir todos os elementos uniformemente por todas as posições da tabela.

Função de *Hash* para *strings* - exemplos

→ Método normal:

```
int hash (char key[], int tam) {
    int valHash = 0, k = 0;
    while (key[k]!= '\0') {
        valHash = valHash + int(key[k]);
        k++;
    }
    return (valHash % tam);
}
```

Função de *Hash* para *strings*

→ Usando a regra de Horner:

```
int hash (char key[], int tam) {
    int valHash = 0, a = 127, k = 0;
    while (key[k] != '\0') {
        valHash = valHash * a + int(key[k]);
        k++;
    }
    return (valHash % tam);
}
```

Colisões

- → Quando a função de Hash é imperfeita poderão existir dois valores a serem colocados na mesma posição do vetor. A isto chama-se uma colisão.
- → As colisões são normalmente tratadas como quem chega primeiro serve-se; isto é, o primeiro elemento a chegar a uma posição fica com ela.
- → Terá de se arranjar uma solução eficiente para se determinar o que se deve fazer com o segundo valor que deveria ser colocado na mesma posição.

Colisões

- → O que fazer quando dois valores diferentes tentam ocupar a mesma posição?
 - Solução 1 (hashing fechado ou endereçamento aberto): procura a partir dessa posição uma posição vazia.
 - Solução 2: usar uma segunda função de hash, uma terceira, uma quarta, ...
 - Solução 3 (hashing aberto ou encadeamento separado): usa a posição do vetor como *cabeça* (head) de uma lista que vai conter todas as colisões dessa posição.

Factor de ocupação da tabela λ

- → n = número de elementos da tabela.
- → dim = dimensão da tabela.
- $\rightarrow \lambda = n / dim$
- \rightarrow λ deve ser inferior a 1.

- Suponha que quer adicionar seagull à tabela de Hash.
- → Suponha também que:
 - hash(seagull) = 143
 - table[143] está ocupada
 - table[143] != seagull
 - table[143+1] está ocupada
 - table[143+1] != *seagull*
 - table[143+2] está vazia

• • •	
141	
142	robin
143	sparrow
144	hawk
145	
146	
147	bluejay
148	owl

- → Suponha que quer adicionar seagull à tabela de Hash.
- → Suponha também que:
 - hash(seagull) = 143
 - table[143] está ocupada
 - table[143] != seagull
 - table[143+1] está ocupada
 - table[143+1] != *seagull*
 - table[143+2] está vazia
- → Então, colocar *seagull* em 145.
- → Foi utilizada a **sondagem linear.**

141	
142	robin
143	sparrow
144	hawk
145	seagull
146	
147	bluejay
148	owl

- Suponha que quer adicionar hawk à tabela de Hash.
- → Suponha também que:
 - hash(hawk) = 143
 - table[143] está ocupada
 - table[143] != hawk
 - table[143+1] está ocupada
 - table[143+1] == hawk
 - O hawk já está na tabela.
- → Então, não fazer nada.

141	
142	robin
143	sparrow
144	hawk
145	seagull
146	
147	bluejay
148	owl

- Suponha que quer adicionar cardinal à tabela de Hash.
- → Suponha também que:
 - hash(cardinal) = 147
 - a última posição é 148
 - table[147] está ocupada
 - table[148] está ocupada
- → Solução
 - Tratar a tabela como circular:
 a seguir a 148 vem o 0.
 - Assim, cardinal vai para a posição 0.

141	
142	robin
143	sparrow
144	hawk
145	seagull
146	
147	bluejay
148	owl

- → Problemas da sondagem linear
 - Existência de blocos contíguos de posições ocupadas com grandes dimensões (em geral quando $\lambda > 0.5$) **Clusters**.
 - Quanto maiores os blocos ficam, mais tendência têm para crescer.
 - A sondagem é igual para elementos que colidem.

- Suponha que quer adicionar seagull à tabela de Hash.
- → Suponha também que:
 - hash(seagull) = 143
 - table[143] não está vazia
 - table[143] != seagull
 - $table[143+1^2] != seagull$
 - $table[143+2^2] != seagull$
 - table $[143+3^2]$!= está vazia
- → Então, colocar *seagull* em 152.
- → Foi utilizada a **sondagem quadrática**.

- Problemas da sondagem quadrática
 - Cada sondagem tenta uma nova posição. Se tivermos o tamanho do vetor, tam = 16, calha sempre nas posições 1, 2, 4, 9 entrando num ciclo infinito.

- → Resolução do problema
 - tam tem de ser número primo
 - O fator λ tem que ser >= 0,5
 - Ao atingir $\lambda=0.5$ pode-se aumentar a tabela para o próximo número primo, de seguida pega-se nos valores da tabela e passam-se para a nova aplicando de novo a função de hash(x)
 - A este método chama-se o método de rehash(x).

- → Problema da remoção.
- → Suponha também que:
 - hash(9) = 2
 - hash(24) = 3
 - hash(39) = 4
 - hash(10) = 3
 - hash(16) = 2
- → Remove(24)

2	9
3	24
4	39
5	10
6	16
7	
8	
9	

- → Não existe nada na posição 3.
- \rightarrow hash(10) = 3.
- → Logo, número 10 não existe no vetor.
 O que é falso.

• • •	
2	9
3	
4	39
5	10
6	16
7	
8	
9	

Hashing fechado - resolução do problema

- → Cria-se uma estrutura que assinale cada posição:
 - Livre (vazia e nunca ocupada)
 - Ocupada
 - Removida (vazia mas já ocupada)
- → Pesquisar/remover:
 - Termina quando encontra o objeto
 - Termina quando encontra uma posição livre
 - Continua a pesquisa quando encontra uma posição removida
- → Inserir (insere o objeto quando encontra):
 - uma posição assinalada como livre ou removida.

Hashing aberto

- → A estruturação dos dados é talvez a forma mais intuitiva de se implementar o conceito de Hashing
- → Consiste em ter um vetor de apontadores, com dimensão N, em que cada elemento do vetor contém uma ligação para uma lista dos elementos a guardar
- → A pesquisa de um elemento efetua-se da seguinte forma:
 - A partir de uma chave, calcular qual o elemento do vetor é a cabeça da lista que se pretende
 - Usando um qualquer algoritmo para o efeito, pesquisar o elemento dentro daquela lista.

Hashing aberto - Exemplo 1

- → Armazenar os elementos: 19, 26, 33, 70, 79, 103 e 110.
- → Usando a função de hash: hash(x) = x % 10
- → Os valores das funções de hash são os seguintes:
 - hash(19) = 9
 - hash(26) = 6
 - hash(33) = 3
 - hash(70) = 0
 - hash(79) = 9
 - hash(103) = 3
 - hash(110) = 0

Hashing aberto – Exemplo 1

→ A tabela de *hash* é a seguinte:

Hashing aberto – Exemplo 2

- → Cada elemento do vetor é um apontador para uma lista de estruturas com o mesmo valor da função de hash.
- → Supondo que o vetor tem tamanho tam = 13 e que a função de hash é a que consta na tabela que se segue

Chave	A,B	C,D	E,F	G,H	I,J	K,L	M,N	O,P	Q,R	S,T	U,V	X,Y	W,Z
Hash	0	1	2	3	4	5	6	7	8	9	10	11	12

calcular os valores de *hash* para as seguintes chaves: Alce, Burro, Gato, Hiena, Pato, Orca e Tigre.

Hashing aberto – Exemplo 2

→ A tabela de hash é a seguinte:

Hashing aberto - propriedades

- Reduz o número de comparações, quando comparado com a pesquisa sequencial
- → Necessidade de espaço em memória para armazenar o vetor de listas

Vantagens e desvantagens

- → Dispersão aberta (DA) vs. Fechada (DF)
 - Suporta a primitiva de remoção
 - As listas de colisão não se cruzam
 - O erro por defeito do pré-dimensionamento não é tão grave
- → Dispersão fechada vs. aberta
 - Se a tabela estiver em ficheiro poupam-se muitos acessos com a sondagem linear, porque em geral os elementos que colidem estão fisicamente próximos.

Vantagens e desvantagens

- → Vantagens da Dispersão
 - A complexidade das primitivas suportadas (pesquisa, inserção e remoção na DA), no caso esperado é constante.
 - A técnica é eficiente e é só depende do fator de ocupação e da qualidade das funções (na DF).
- → Problemas da Dispersão
 - Não é uma estrutura dinâmica (o redimensionamento é necessário)
 - Não suporta primitivas que se baseiam em relações de ordem dos elementos (mínimo, máximo, percurso ordenado).
 - A complexidade das primitivas suportadas (pesquisa, inserção e remoção na DA), no pior caso é linear no nº de elementos da tabela.