Yes			91%

O No 9%

Submit

Results gathered from 462 respondents.

FEEDBACK

Yes, just like a rectangle has the same area if you rotate it 90 degrees.

1. Finite X infinite

0 points possible (ungraded)

If A is finite and B is infinite then $A \times B$ can be:

- nonempty finite
- ✓ infinite ✓

Explanation

If A is empty then $A \times \backslash B$, otherwise it is infinite.

Submit

You have used 3 of 4 attempts

1 Answers are displayed within the problem

2. Order matters

0/1 point (graded)

Which of the following ensures that $A imes B = B imes A\!\!?$

 \square $A = B \checkmark$

 \square $A \cap B = \emptyset$

 $\square |A| = |B|$

Explanation

- True.
- True. $A imes B = B imes A = \emptyset$
- True. Same as above.
- False. Let $A=\{1\}, B=\{2\}$. Then A imes B
 eq B imes A
- False. Same as above.

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

3. Cartesian product shape

0 points possible (ungraded)

Taking the geometric view of Cartesian products, if A and B are real intervals of positive length in \mathbb{R} , then $A \times B$ is a:

line,

rectangle,

o circle,

triangle,

onone of above.

Explanation

Let A=[a,b) , B=[c,d) Then $A imes B=\{(x,y)\,|a\le x< b,c\le y< d,x\in\mathbb{R},y\in\mathbb{R}\}$ which is a rectangle.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

4. Divisors

0.0/2.0 points (graded)

How many positive divisors does 2016 have?

1680

X Answer: 36

1680

Explanation

$$2016 = 2^5 \cdot 3^2 \cdot 7$$

Hence any positive divisor of 2016 can factored as $2^x\cdot 3^y\cdot 7^z$, where $x\in\{0,1,\dots,5\}$ $y\in\{0,1,2\}$ and $z\in\{0,1\}$. By the product rule, there are $6\times 3\times 2=36$ divisors.

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Topic 3 / Cartesian Products

Add a Post

Show all posts ▼ by recent activity ▼

Problem 4
Questions and comments regarding problem 4.

Staff

Problem 2
Questions and comments regarding problem 2.

Questions and comments regarding problem 2.