Book 2 Proposition 3

If a straight-line is cut at random then the rectangle contained by the whole (straight-line), and one of the pieces (of the straight-line), is equal to the rectangle contained by (both of) the pieces, and the square on the aforementioned piece.

For let the straight-line AB have been cut, at random, at (point) C. I say that the rectangle contained by AB and BC is equal to the rectangle contained by AC and CB, plus the square on BC.

For let the square CDEB have been described on CB [Prop. 1.46], and let ED have been drawn through to F, and let AF have been drawn through A, parallel to either of CD or BE [Prop. 1.31]. So the (rectangle) AE is equal to the (rectangle) AD and the (square) CE. And AE is the rectangle contained by AB and BC. For it is contained by AB and BE, and BE (is) equal to BC. And AD (is) the (rectangle contained) by AC and CB. For DC (is) equal to CB. And DB (is) the square on CB. Thus, the rectangle contained by AB and BC

is equal to the rectangle contained by AC and CB, plus the square on BC.

Thus, if a straight-line is cut at random then the rectangle contained by the whole (straight-line), and one of the pieces (of the straight-line), is equal to the rectangle contained by (both of) the pieces, and the square on the aforementioned piece. (Which is) the very thing it was required to show.