

密码算法和密码学

En/Decryption Algorithms and Cryptology

嵩天

songtian@bit.edu.cn

北京理工大学计算机学院

本节大纲

• 密码学的基本概念

• 对称密钥密码算法

- 密码学是一门历史悠久的学科
 - Cryptology, Cryptography, from Greek
- 密码技术是研究数据加密、解密及变换的科学,涉及数学、计算机科学、电子与通信等学科
- 加密是把数据和信息转换为不可识别的密文的过程
- 解密是恢复数据和信息本来面目的过程

- 密码学早在公元前400多年就已经产生
- 希腊人把奴隶的头发剃光,把秘密刺在头上,等头发长起来了再派他上路
- 斯巴达人采用羊皮条和木棍进行加密
- 周朝《六韬》, 兵符, 藏头诗
- 中国古代的"江湖黑话"

挂彩、蹓狗、豆儿、总瓢把子、流月汪则中

· 古罗马: 凯撒密码 (Caesar 密码)

字母表

ABCDEFGHIGKLMNOPQRSTUVWXYZ

对应密文

DEFGHIGKLMNOPQRSTUVWXYZABC

明文

Caesar was a great soldier

密文

Fdhvdu zdv d juhdw vroglhu

CAESAR 密码: c=(m+3) Mod 26

• 美国南北战争时期

输入方向

输出方向

С	A	N	Y
О	U	U	N
D	Е	R	S
T	A	N	D

明文:

Can you understand

密文:

Codtaueanurnynsd

- 第二次世界大战,德国
 - 恩尼格玛 (Enigma) 密码机,"谜"
 - 由Arthur Scherbius于1919年发明,1925年生产3万台

• 具有连线的三转子机器

- 艾伦 图灵 (Alan Turing)
 - 二战期间成功地破译了纳粹德国密码系统Enigma。
 - 1912~1954,英国数学家,一生对智能与机器之间的关系进行着不 懈探索,被誉为"计算机科学之父"。
 - 1931~1934, 剑桥大学国王学院; 1937~1938, 普林斯顿大学
 - 1936年,24岁的图灵提出"图灵机"的设想。
 - 《机器会思考吗?》的论文提出了用于判定机器是否具有智能的试验方法,即图灵试验,被誉为"人工智能之父"

- 艾伦 图灵 (Alan Turing)
 - 1948年,奥运会马拉松项目银牌得主。
 - 1954年6月8日,服毒自杀,42岁
 - 1966年,美国计算机协会以他的名字命名了计算机 领域的最高奖"图灵奖"。
 - 2000年,姚期智 Andrew Chi-Chih Yao

• 现代密码学

- 随着电子计算机的诞生,以语言学为基础的密码方法失效
- 现代密码方法主要在二进制字串上进行
- 密码方法所基于的问题只要被证明无法有效解出,就是安全
- 现代密码学的主要威胁:
 - 暴力破解的速度
 - 量子计算的发展

密码学的基本概念

• 基本术语

- 明文: plaintext, 原有的信息
- 密文: ciphertext, 明文经过加密变换后的内容
- 加密函数: Encryption, 用来加密的数学函数
- 解密函数: Decryption, 用来解密的数学函数

- 古典密码算法和现代密码算法
 - 根据算法和密钥是否分开来区分
- 古典密码算法
 - 密码体制的安全性依赖于算法本身的保密性
 - 算法存在以下限制
 - 不适合大规模生产
 - 不适合较大的或者人员变动频繁的组织
 - 用户无法了解算法的安全性

- 古典密码算法种类
 - 代码加密: "代码"指专有词汇或者特殊用语, "黑话"
 - 替换加密:用一组密文字母代替一组明文字母,但保持明文的顺序,例如:凯撒密码
 - 变位加密: 对明文字母作重新排序
 - 一次性加密:利用代码本,结合上述方法,用代码本上每一页 加密明文的一个片段

• 现代密码算法

- 把算法和密钥分开
- 密码算法可以公开,密钥保密
- 密码系统的安全性依赖于密钥的保密性
- 优点包括:
 - 密码算法可以经过充分论证,安全性有保证
 - 对密码系统的管理简单
 - 可应用于大规模场景

- 对称密钥密码和非对称密钥密码
 - 根据加密和解密是否使用相同的密钥来区分
- 对称密钥密码
 - 也成"单钥体制", k = k⁻¹
 - 算法优点
 - 加密速度快,使用简单
 - 算法缺点

- 密钥分配: 必须通过保密通道进行
- 密钥个数: n个用户需要n(n-1)个密钥

• 非对称密钥密码

- "公开密钥密码体制(PKI-Public Key Infrastructure)'
- 加密和解密使用不同的密钥(k, k⁻¹)
- 把加密密钥公开(公钥),解密密钥保密(私钥)
- 对于每一个用户,形成"公私密钥对"
- 算法优点
 - 密钥分配: 不必保持信道的保密性
 - 密钥个数: n个用户需要n个密钥
- 算法缺点

密钥
$$\downarrow$$
 $C=E_{K}(P)$ \xrightarrow{C} $P=D_{K}^{-1}(C)$ \xrightarrow{P}

• 算法速度: 比对称密钥算法慢10倍左右(软件)

• 混合加密体系

- 结合对称密钥密码和非对称密钥密码体系
- 采用对称方法进行通信,采用PKI体系进行密钥交换

- 分组密码和序列密码
 - 根据每次操作的数据单元是否分块来区分
- 分组密码 (Block Cipher)
 - 一次加密或解密操作作用于一个数据块,比如64bit
 - 数据块之间加密是独立的
- 序列密码 (Stream Cipher)
 - 一次加密或解密操作作用于一位或者一个字节
 - 前部分密文参与后部分明文的加密,数据块之间加密不独立

- 双向加密和单向加密
 - 根据明文加密后是否需要还原来区分
- 双向加密
 - 明文加密后,需要解密,目的是信息的交换
- 单向加密
 - 明文加密后,不需要解密,目的验证数据的完整性

- 古典密码算法和现代密码算法
 - 根据算法和密钥是否分开来区分
- 对称密钥密码和非对称密钥密码
 - 根据加密和解密是否使用相同的密钥来区分
- 分组密码和序列密码
 - 根据每次操作的数据单元是否分块来区分
- 双向加密和单向加密
 - 根据明文加密后是否需要还原来区分

密码分析

- 什么是密码分析?
 - 未知密钥,利用数学方法恢复明文,或者推导出密钥
 - 对密码进行分析的尝试称为"攻击"或者"破解"
 - 对密码体系的攻击方法包括:
 - 暴力破解: 对密钥进行穷尽搜索
 - 已经明文攻击: 利用一段已知明文和密文的对应关系
 - 选定明文攻击: 设法让对手加密一段选定的明文, 获得加密结果
 - 选定密文攻击: 设法让对手回复一段的密文, 获得明文结果
 - 选定密钥攻击: 用于分析密码算法和体系

密码分析

• 其他密码攻击方法

- 可以针对人机系统的弱点进行攻击,而不是攻击密码算法本身
- 欺骗用户密码(技术手段或者社会工程学)
- 在用户输入密钥时,窥视或者偷窃密钥内容
- 利用密码系统实现中的缺陷或者漏洞
- 妨碍用户正确使用密码系统
- 让口令的另一方透露密钥和信息
- 威胁用户交出密钥

密码分析

• 密码算法的安全性

- 如果破解算法的代价大于被加密数据本身的价值,或者在信息的生命周期内无法破解,那么算法可能是安全的
- 如果一个密码算法用可得到的资源不能被破解,则称该算 法是计算上安全的
- 处理复杂性: 计算量、CPU时间
- 数据复杂性: 所需输入的数据量
- 存储复杂性: 计算所需要的存储空间

本节大纲

• 密码学的基本概念

• 对称密钥密码算法

对称密钥密码算法

• 常用的对称密钥密码算法

- DES, Data Encryption Standard
- 20世纪70年代,IBM公司为美国国家标准局研制
- 1977年成为美国国家标准,1998年废弃
- 2001年,DES算法被安全性更强的AES算法所取代
- DES算法是一个分组加密算法,以64bit为一个分组
- DES算法使用标准的算术和逻辑运算

- DES的总体框架
 - 明文分成64bit为单位的块m
 - 对于每个m, 执行如下操作:

$$DES(m)=FP \bullet T_{16} \bullet T_{15} \bullet \dots T_2 \bullet T_1 \bullet IP(m)$$

- 初始置换(Initial Permutation), IP
- 16轮迭代,*T_i*, i=1,2,...16
- 末置换(Final Permutation),FP

· DES的初始置换和末置换

$$DES(m)=FP \bullet T_{16} \bullet T_{15} \bullet \dots T_2 \bullet T_1 \bullet IP(m)$$

- -IP*FP=I, $IPFP=IP^{-1}$
- 对m中64个位置进行置换
- -输入: $m = m_1 m_2 ... m_{64}$

· DES的初始置换和末置换

$$m = m_1 m_2,....m_{62} m_{63}, m_{64}$$

$$IP(M)$$

$$m'=m_{58} m_{50},....m_{23} m_{15}, m_7$$

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

• E-盒置换

- 将32位扩展成48位
- 目的:输入的一位影响下一步的两个替换,使得输出对输入的依赖性传播得更快,密文的每一位都依赖于明文的每一位

- P-盒置换
 - 32位输入32位输出
 - 仅置换位置

1	2	3	4	5	6	7	8	9							30	31	32
16	7	20	21	29	12	28	17	1	15	•	•	••	•	•	11	4	25

• DES的解密过程

$$m = DES^{-1}(c) = IP^{-1} \bullet T_1 \bullet T_2 \bulletT_{15} \bullet T_{16} \bullet IP(c)$$

- DES的解密过程与加密过程十分相似
- 不同是,将16次迭代的顺寻颠倒
- 可以证明

$$DES^{-1}$$
 (DES (m))=m

• DES的安全性

- 1976年,耗资2000万美元的计算机,可以在一天中找到密钥。
- 1993年,设计100万美元的计算机3.5小时用穷举法找到密钥。
- 2006年,1万美元的计算机可以用6.4天可以找到密钥。
- DES安全性不足源自于密钥太短

Triple DES算法

- Triple DES算法
 - 3DES算法,密钥长度是112比特, k=k₁k₂
 - 密钥数量: 2112

DES算法的硬件实现

- 商业DES芯片
 - VLSI公司的VM009芯片
 - 1993年制造,200M Bytes/s
 - 2009年,采用FPGA技术,速度可达到750M Bytes/s
- 软件实现
 - 采用双核服务器,速度约19M Bytes/s

对称密钥密码算法

算法	密钥长度	迭代次数	数学操作	应用
DES	56	16	XOR, S-Box	
3DES	112 or 168	48	XOR, S-Box	PGP, S/MIME
IDEA	128	8	$XOR, +, \times$	PGP
BlowFish	最大448	16	XOR, S-Box, +	
RC5	最大2048	<255	+, —, XOR	
CAST-128	40-128	16	+, —, S-Box	PGP

• 算法历史

- RC4是RSA算法发明人Ronald Rivest在1987年设计
- 2002年图灵奖获得者
- Ron's Code 4 (Rivest Cipher 4), RC2, RC5, RC6
- 密钥长度可变的流加密算法簇
- 其核心部分的S-Box长度可为任意,但一般为256字节
- 该算法速度是DES算法的10倍

• 算法思想

- RC4产生一个伪随机bit流,与输入流明文逐位异或
- 解密时,用密文与伪随机bit流逐位异或产生明文
- 异或操作具有对称性:

```
0 \times 1 \times 1 = 0; 0 \times 0 \times 0 = 0; 1 \times 1 \times 1 = 1; 1 \times 0 \times 0 = 1
```

- RC4算法关键是根据密钥产生伪随机bit流
 - 使用了一个256位的转换器(S-BOX)
 - 两个指针

- 密钥的使用(密钥调度算法)
 - 对于变长密钥,应用它置换S-BOX
 - 伪代码,其中S为一个字节数组

- 伪随机流产生算法
 - RPGA: pseudo-random generation algorithm
 - 每周期i增加1,j增加S[i],每次运算可输出一个Byte

```
i := 0
j := 0
while GeneratingOutput:
    i := (i + 1) mod 256
    j := (j + S[i]) mod 256
    swap(&S[i],&S[j])
    output S[(S[i] + S[j]) mod 256]
endwhile
```

• 伪随机流产生算法

本节小结

- 经过本节的学习,我们知道
 - 密码学悠久的历史
 - 密码学的分类
 - 对称密钥密码算法
 - DES, 3DES
 - RC4算法
- 请大家复习课件内容