Automatic skin lesion segmentation

A non-invasive test to aid in the diagnosis of cystic fibrosis: Automatic chloride patch/sensor analysis

- Ratio between red and green areas is in correlation with chloride concentration, aiding in the diagnosis of CF
- Courtesy of PolyChrome and Warren Warwick

Sulcii extraction

Image Registration, Classification and Averaging in Cryo-Electron Tomography

Thanks to Alberto Bartesaghi and Sriram Subramaniam

Laboratory of Cell Biology

Center for Cancer Research

Imaging technologies for biology

S. Subramaniam, Curr. Opin. Microbiol. (2005)

Our Target: Molecular structure of HIV envelope glycoproteins

Transmission Electron Microscopy

Single Projection Image of HIV

Cryo-Electron Tomography

 Reduce radiation damage

 Obtain 3D information

Raw tilt-series of HIV

Tomographic Reconstruction

Subramaniam at al., ASM News 60, 240-245.

Sub-Volume Averaging in Electron Tomography

Imaging Challenges of Sub-Volume Averaging in ET

Low SNR makes alignment difficult

Alignment ambiguities due to missing data

3D datasets require extensive computation

Effects of Missing Data on Alignment

Effects of Missing Data on Alignment

Similarity with Missing Information

Similarity with Missing Information

Similarity with Missing Information

$$d = \frac{\sum ||r_1 - r_2|| \cdot w_1 \cdot w_2}{\sum w_1 \cdot w_2}$$

Similarity of partially occluded volumes in Fourier space

$$\widehat{\mathcal{F}}_1 = \mathcal{F}_1 \, \mathcal{W}_1, \ \widehat{\mathcal{F}}_2 = \mathcal{F}_2 \, \mathcal{W}_2, \ \mathcal{W}_i \to [0, 1]$$

Missing Wedge

Measured Data

$$d = \frac{\int_{\mathcal{B}} ||\widehat{\mathcal{F}}_1 - \widehat{\mathcal{F}}_2|| \, \mathcal{W}_1 \, \mathcal{W}_2}{\int_{\mathcal{B}} \mathcal{W}_1 \, \mathcal{W}_2}$$

image Optimization Strategy

Image Optimization Strategy

3D Image Alignment

6 DOF problem: Speed-up in Fourier domain

W.

HIV envelope glycoproteins

- Mediate virus binding to the cell surface receptor CD4 on target cells to initiate infection
- Functional unit is a trimer

of gp120 (surface glycoprotein)

and gp41 (transmembrane unit).

- Structure of components available.
- Structure of the trimer remains elusive.

Molecular architecture of native HIV-1 gp120 trimers

Jun Liu1*, Alberto Bartesaghi1*, Mario J. Borgnia1*, Guillermo Sapiro2 & Sriram Subramaniam1

Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA. Department of Electrical and Computer Engineering, University of Minnesota, Minnesota, Minnesota 55455, USA.

*These authors contributed equally to this work.

- Use cryo-electron tomography combined with 3D image averaging and classification
- Report 3D "snapshots" of trimeric spike:
 - Unliganded state
 - Complex with broadly neutralizing b12
 - Ternary complex with CD4 and 17b

Imaging the spike at different states

- 80 tilt series, 400 virus, 4K spikes
 - 1. Unliganded state
 - 2. Complex with b12
 - 3. Ternary complex with CD4 and 17b

Image Refinement Loop

Image Refinement Loop

Piecing it all together

Conformational changes of the trimeric spike that occur upon CD4 binding

Diffusion-Weighted MRI

Provides architecture of biological tissues

Used to study:

- Neurological disorders
- Brain development
- Structure of brain fiber bundles

Diffusion of Water Molecules

Orthogonal Diffusion fiber crossing

Diffusion-Weighted MR Image

Diffusion-Weighted MR Image

Brain Imaging: Deep Brain Stimulation Image and Video Processing: From Mars to Hollywood with a Stop at the Hospital

Guillermo Sapiro

Thanks to Lenglet, Aganj, Harel, Duchin, SIS

Deep Brain Stimulation (DBS)

Successful DBS surgery is critically dependent on precise placement of DBS electrodes into target structures

Students: A good place to take a break if needed.

Human, 7T, 1.5 x 1.5 x 1.5 mm³ Tractography – Paul Thompson, UCLA

GP = Globus pallidus GPi = DBS Target for Dystonia

Brain Imaging and DBS: ROI

Brain Imaging and DBS: DWI

