

planetmath.org

Math for the people, by the people.

proof of existence and uniqueness of singular value decomposition

 ${\bf Canonical\ name} \quad {\bf ProofOfExistence And Uniqueness Of Singular Value Decomposition}$

Date of creation 2013-03-22 17:07:46

Last modified on 2013-03-22 17:07:46

Owner fernsanz (8869)

Last modified by fernsanz (8869)

Numerical id 12

Author fernsanz (8869)

Entry type Proof
Classification msc 65-00
Classification msc 15-00

Proof. To prove existence of the SVD, we isolate the direction of the largest action of $A \in \mathbb{C}^{m \times n}$, and then proceed by induction on the dimension of A. We will denote hermitian conjugation by T . Norms for vectors in \mathbb{C}^n will be the usual euclidean 2-norm $\|\cdot\| = \|\cdot\|_2$ and for matrix the induced by norm of vectors.

Let $\sigma_1 = ||A||$. By a compactness argument, there must be vectors $v_1 \in \mathbb{C}^n$, $u_1^* \in \mathbb{C}^m$ with $||v_1|| = 1$, $||u_1^*|| = \sigma_1$ and $u_1^* = Av_1$. Normalize u_1^* by setting $u_1 = u_1^* / ||u_1^*||$ and consider any extensions of v_1 to an orthonormal basis $\{v_i\}$ of \mathbb{C}^n and of u_1 to an orthonormal basis $\{u_j\}$ of \mathbb{C}^m ; let U_1 and V_1 denote the unitary matrices with columns $\{v_i\}$ and $\{u_j\}$ respectively. Then we have

$$U_1^T A V_1 = S = \left(\begin{array}{cc} \sigma_1 & w^T \\ 0 & B \end{array}\right)$$

where 0 is a column vector of dimension m-1, w^T is a row vector of dimension n-1, and B is a matrix of dimension $(m-1) \times (n-1)$. Now,

$$\left\| \begin{pmatrix} \sigma_1 & w^T \\ 0 & B \end{pmatrix} \begin{pmatrix} \sigma_1 \\ w \end{pmatrix} \right\| \ge \sigma_1^2 + w^2 = (\sigma_1^2 + w^2)^{1/2} \left\| \begin{pmatrix} \sigma_1 \\ w \end{pmatrix} \right\|$$

so that $||S|| \ge (\sigma_1^2 + w^2)^{1/2}$. But U_1 and V_1 are unitary matrix, hence $||S|| = \sigma_1$; it therefore implies w = 0.

If n=1 or m=1 we are done. Otherwise the submatrix B describes the action of A on the subspace orthogonal to v_1 . By the induction hypothesis B has an SVD $B = U_2 \Sigma_2 V_2^T$. Now it is easily verified that

$$A = U_1 \begin{pmatrix} 1 & 0 \\ 0 & U_2 \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 \\ 0 & \Sigma_2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & V_2 \end{pmatrix}^T V_1^T$$

is an SVD of A. completing the proof of existence.

For the uniqueness let $A = U\Sigma V^T$ a SVD for A and let e_i denote the i-th, $i = 1 \cdots min(m, n)$ vector of the canonical base of \mathbb{C}^n . As U and V are unitary, $||Ae_i|| = \sigma_i^2$, so each σ_i is uniquely determined.