Appearance of chaos in reversible systems

Elisa Sovrano elisa.sovrano@ehess.fr

Joint work with Isabel Labouriau

DEG1 Webinar, February 27th 2020

"The origin of reversible systems"

Time-reversal symmetry stands for invariance of the equations under the transformation $t \rightarrow -t$

Reversible vs conservative systems

Reversible dynamical systems have an involution in phase space which reverses the direction of time.

Some literature

Definition - Reversibility

A dynamical system X' = V(X) is reversible if there is $\ell \colon \mathbb{R}^2 \to \mathbb{R}^2$ s.t. $\ell^2 = Id$, $D\ell(p)V(p) = -V(\ell(p)) \ \forall p \in \mathbb{R}^2$.

Remark

Systems with reversing symmetries are in between conservative and dissipative systems.

Classical references:

- J.R.L. Devaney. Trans. Amer. Math. Soc. (1976).
- J.S.W. Lamb and J.A.G. Roberts. Phys. D (1998).
- M.B. Sevryuk. Lecture Notes in Mathematics (1986).
- M. A. Teixeira. Phys. D (1997).

2D reversible systems and equilibria

Let $\ell(x, y) = (x, -y)$, so that we consider the planar system

(S)
$$\begin{cases} x' = yf(x, y^2) \\ y' = g(x, y^2) \end{cases}$$

with f and g smooth.

- Line of symmetry for (S): $\{(x,0): x \in \mathbb{R}\}.$
- Categories of possible equilibria for (S):

centers

saddles

attractors/repellers

Normal forms

Assume that (S) has a symmetric equilibrium O at the (0,0).

Theorem (Codimension 0)

The normal forms around O of a structurally stable reversible vector field X are:

- $\bullet \ \ X(x,y)=(y,x),$
- $\bullet \ \ X(x,y)=(y,-x).$

Theorem (Codimension 1)

The normal forms of one-parameter families of structurally stable reversible vector fields X_{λ} near O are:

- (i) saddle type: $X_{\lambda}(x, y) = (xy, x y^2 + \lambda)$,
- (ii) cusp type: $X_{\lambda}(x, y) = (y, x^2 + \lambda)$,
- (iii) nodal type:

$$X_{\lambda}(x,y) = (xy, x + 2y^2 + \lambda) \text{ or } X_{\lambda}(x,y) = (-xy, x - 2y^2 + \lambda),$$

- (iv) focal type: $X_{\lambda}(x, y) = (xy + y^3, -x + y^2 + \lambda)$.

M. A. Teixeira, Phys. D (1997).

Classification of X_{λ} near O (Codimension 1)

- (i) saddle type
 - (ii) cusp type

(iii) nodal type

(iv) focal type

Problem setting

- Consider a normal form for a one-parameter family of codimension 1 reversible vector field $X_{\lambda}(x, y)$.
- Suppose that the dynamical system X' = X(x, y) switches in a T-periodic manner between

$$\left\{ \begin{array}{ll} X' = X_{\lambda_1}(x,y), & t \in [0,\tau_1) \\ X' = X_{\lambda_2}(x,y), & t \in [\tau_1,\tau_1+\tau_2) \end{array} \right.$$

with $\lambda_1 \neq \lambda_2$ and $\tau_1 + \tau_2 = T$.

• Establish whether or not there are open sets of the parameters λ_1 , λ_2 and open intervals for τ_1 , τ_2 where there exist infinitely many T-periodic solutions as well as chaotic-like dynamics for X' = X(x, y).

Symbolic dynamics

Let $h: \text{dom } h \subseteq \mathbb{R}^2 \to \mathbb{R}^2 \text{ and } \emptyset \neq \mathcal{D} \subseteq \text{dom } h$.

Definition - Chaos

h induces chaotic dynamics on $m \geq 2$ symbols on \mathcal{D} if there exist m nonempty pairwise disjoint compact sets $\mathcal{K}_0,\ldots,\mathcal{K}_{m-1}\subseteq\mathcal{D}$ such that for each two-sided sequence $(s_i)_{i\in\mathbb{Z}}\in\Sigma_m$ there exists a corresponding sequence $(w_i)_{i\in\mathbb{Z}}\in\mathcal{D}^\mathbb{Z}$ such that

$$w_i \in \mathcal{K}_{s_i} \text{ and } w_{i+1} = h(w_i) \text{ for all } i \in \mathbb{Z},$$
 (1)

and, whenever $(s_i)_{i\in\mathbb{Z}}\in\Sigma_m$ is a k-periodic sequence for some $k\geq 1$ there exists a k-periodic sequence $(w_i)_{i\in\mathbb{Z}}\in\mathcal{D}^\mathbb{Z}$ satisfying (1).

- A. Margheri, C. Rebelo and F. Zanolin J. Differential Equations (2010).
- A. Medio, M. Pireddu and F. Zanolin Int. J. Bifur. Chaos (2009).

Stretching Along the Paths

Let $h : \text{dom } h \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ be continuous. Let $\widehat{\mathcal{R}}_1 := (\mathcal{R}_1, \mathcal{R}_1^-)$, $\widehat{\mathcal{R}}_2 := (\mathcal{R}_2, \mathcal{R}_2^-)$ two topological oriented rectangles.

Definition - SAP property

h stretches $\widehat{\mathcal{R}}_1$ to $\widehat{\mathcal{R}}_2$ along the paths, $(\mathcal{K},h)\colon \widehat{\mathcal{R}}_1 \Leftrightarrow \widehat{\mathcal{R}}_2$, if there is \mathcal{K} compact subset of $\mathcal{R}_1 \cap \text{dom } h$ and for each path $\gamma\colon [0,1] \to \mathcal{R}_1$ such that $\gamma(0) \in \mathcal{R}_{1,l}^-$, $\gamma(1) \in \mathcal{R}_{1,l}^-$ (or vice-versa), there is $[t_0,t_1] \subseteq [0,1]$

- $\gamma(t) \in \mathcal{K}$ for all $t \in [t_0, t_1]$,
- $h(\gamma(t)) \in \mathcal{R}_2$ for all $t \in [t_0, t_1]$,
- $h(\gamma(t_0))$ and $h(\gamma(t_1))$ belong to different components of \mathbb{R}_2^- .

A. Medio, M. Pireddu and F. Zanolin Int.. J. Bifur. Chaos (2009).

Rays and bridges

Let \mathcal{S} be a topological strip. Let \mathcal{A} be a topological annulus with $\partial \mathcal{A} = \partial^i \mathcal{A} \cup \partial^e \mathcal{A}$.

- A bridge in S is a simple continuous curve γ_1 : $[a, b] \to S$ such that $\gamma_1(a)$ and $\gamma_1(b)$ belongs to different components of ∂S .
- A ray in \mathcal{A} is a simple continuous curve $\gamma_2 \colon [a,b] \to \mathcal{A}$ such that $\gamma_2(a) \in \partial^i \mathcal{A}$ and $\gamma_2(b) \in \partial^e \mathcal{A}$ or viceversa.

Linkage condition & streatching

Let Γ a Jordan curve. $out(\Gamma)=$ region outside Γ , $in(\Gamma)=$ region inside Γ . Given $\mathcal A$ a topological annulus and $\mathcal S$ a topological strip, assume $\partial^i\mathcal A\subset in(\partial^e\mathcal A)$.

Linkage condition

 $\mathcal A$ is linked with $\mathcal S$ if there exist a bridge γ_1 in $\mathcal S$, a ray γ_2 in $\mathcal A$, and a topological ball $\mathcal B$ containing $\mathcal A$ such that:

- $\gamma_1 \subset in(\partial^i \mathcal{A});$
- $\gamma_2 \cap \mathcal{S} = \emptyset$;
- $(S \setminus \gamma_1) \cap \partial B$ consists of exactly two disjoint bridges.

Theorem

Let \mathcal{R}_1 , \mathcal{R}_2 be disjoint oriented topological rectangles through the linkage of \mathcal{A} with \mathcal{S} . Let $\phi_{\mathcal{A}} \colon \mathcal{A} \to \mathcal{A}$ and $\phi_{\mathcal{S}} \colon \mathcal{S} \to \mathcal{S}$ be continuous maps that satisfy the boundary invariance conditions, and the twist conditions. Then, $\phi_{\mathcal{A}} \circ \phi_{\mathcal{S}} \colon \widehat{\mathcal{R}}_j \Leftrightarrow^{m-1} \widehat{\mathcal{R}}_j$ and $\phi_{\mathcal{S}} \circ \phi_{\mathcal{A}} \colon \widehat{\mathcal{R}}_{j+1} \Leftrightarrow^{m-1} \widehat{\mathcal{R}}_{j+1}$ for some $j \pmod{2}$ with $m = |j_{-1} - j_1| + 1$.

D. Papini, G. Villari and F. Zanolin Differential Integral Equations (2019).

I. Labouriau and E.S., J. Singularities (2020).

Linkage condition & streatching

Theorem

Let \mathcal{R}_1 , \mathcal{R}_2 be disjoint oriented topological rectangles through the linkage of \mathcal{A} with \mathcal{S} . Let $\phi_{\mathcal{A}} \colon \mathcal{A} \to \mathcal{A}$ and $\phi_{\mathcal{S}} \colon \mathcal{S} \to \mathcal{S}$ be continuous maps that satisfy the boundary invariance conditions, and the twist conditions. Then, $\phi_{\mathcal{A}} \circ \phi_{\mathcal{S}} \colon \widehat{\mathcal{R}}_j \Leftrightarrow^{m-1} \widehat{\mathcal{R}}_j$ and $\phi_{\mathcal{S}} \circ \phi_{\mathcal{A}} \colon \widehat{\mathcal{R}}_{j+1} \Leftrightarrow^{m-1} \widehat{\mathcal{R}}_{j+1}$ for some $j \pmod{2}$ with $m = |j_{-1} - j_1| + 1$.

D. Papini, G. Villari and F. Zanolin Differential Integral Equations (2019).

I. Labouriau and E.S., J. Singularities (2020).

Application to reversible systems

The full dynamics of (\lozenge) can be broken into

$$\begin{cases} x' = yf(x, y^2) \\ y' = g(x, y^2) + \lambda_1 \end{cases} \qquad \begin{cases} x' = yf(x, y^2) \\ y' = g(x, y^2) + \lambda_2 \end{cases}$$

The Poincaré map Φ associated with (\lozenge) may be decomposed as $\Phi = \Phi_{\lambda_2} \circ \Phi_{\lambda_1}$, Φ_{λ_1} and $\Phi_{\lambda_2}(x_0, y_0)$ are the Poincaré maps associated with the two subsystems.

12/15

Application to reversible systems

The full dynamics of (\lozenge) can be broken into

$$\begin{cases} x' = yf(x, y^2) \\ y' = g(x, y^2) + \lambda_1 \end{cases} \begin{cases} x' = yf(x, y^2) \\ y' = g(x, y^2) + \lambda_2 \end{cases}$$

The Poincaré map Φ associated with (\lozenge) may be decomposed as $\Phi = \Phi_{\lambda_2} \circ \Phi_{\lambda_1}$, Φ_{λ_1} and $\Phi_{\lambda_2}(x_0, y_0)$ are the Poincaré maps associated with the two subsystems.

¹²/₁₅

Application to reversible systems

The full dynamics of (\lozenge) can be broken into

$$\begin{cases} x' = yf(x, y^2) \\ y' = g(x, y^2) + \lambda_1 \end{cases} \qquad \begin{cases} x' = yf(x, y^2) \\ y' = g(x, y^2) + \lambda_2 \end{cases}$$

The Poincaré map Φ associated with (\lozenge) may be decomposed as $\Phi = \Phi_{\lambda_2} \circ \Phi_{\lambda_1}$, Φ_{λ_1} and $\Phi_{\lambda_2}(x_0, y_0)$ are the Poincaré maps associated with the two subsystems.

¹²/₁₅

The saddle case

Consider the periodically forced reversible system

where

Theorem

Let Φ be the Poincaré map associated with system (\star) . Then for each $\lambda_1>0$ and each λ_2 with $\lambda_1>\lambda_2$ and for an open set of values of τ_1 and τ_2 the map Φ induces chaotic dynamics on m symbols, for some m>2.

I. Labouriau and E.S., J. Singularities (2020).

Phase-plane analysis

Step I: Linkage.

$$\lambda_2=0$$
: Strip

Phase-plane analysis

Step II: Stretching (with τ_1 , τ_2 large enough).

Other results and open problems

The same approach applies to the *cusp case!* (Configuration already discussed for Ambrosetti-Prodi problems).

The *nodal case* and *focal case* have not been treated yet, but they have good chance of work well!

Grazie dell'attenzione!