UNIVERSITY OF CALIFORNIA

Los Angeles

The Effect of Methanol on the

Mobilization of Tetrachloroethylene
in a Water-Saturated Soil Column

A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Civil Engineering

by

Richard Mark Toy

1996

19960613 085

DTIC QUALITY INSPECTED 1

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited The thesis of Richard Mark Toy is approved.

William W-G. Yeh

Menachem Elimelech

Thomas C. Harmon, Committee Chair

University of California, Los Angeles

1996

Dedication

I would like to dedicate this thesis to my wife May for her unconditional support of my academic pursuit and military career. A special thanks to my parents Ron and Della, and my brother Scott, for all their help. Finally, to my son Brandon, who was born during the preparation of my thesis, for helping me maintain my sense of humor!

TABLE OF CONTENTS

Table of Contents	
List of Figures	viii
List of Tables	ix
Acknowledgments	x
Abstract	xi
Chapter 1. INTRODUCTION	1
1.1 Bioremediation	2
1.2 Chemical Additives	3
1.3 Thesis Overview	3
Chapter 2. BACKGROUND	5
2.1 Organic Contaminants and their Properties	5
2.2 Properties Affecting Transport of a NAPL-based Solute	5
2.3 Physical Processes Affecting Fate and Transport of Organic	6
Chemicals in Groundwater	
2.3.1 The Advection-Dispersion Equation	6
2.3.2 Advection	7
2.3.3 Dispersion	8

2.3.4 Retardation	10
2.4 Groundwater Remediation	11
2.4.1 Effect of Sorption on Remediation	11
2.4.2 Nonequilibrium Sorption	12
2.4.3 Effect of Cosolvents on Retardation	12
Chapter 3. COSOLVENCY THEORY AND SUBSURFACE	13
REMEDIATION	
3.1 Methanol as a Cosolvent	13
3.2 Cosolvent Theory	14
3.3 Cosolvent (Methanol) Effects	14
3.3.1 Physical and Chemical Properties of PCE	15
3.3.2 Mobilization of PCE	15
3.3.3 Dissolution and Mass Transfer Rate Coefficient	16
3.3.4 Related Research	16
3.3.5 The Mixing of Miscible, Inhomogeneous Fluids in the	18
Subsurface	
3.4 Thesis Objectives	19
Chapter 4. RESEARCH OBJECTIVES AND APPROACH	20
4.1 Research Objectives and Approach	20
4.2 Experimental Approach	20
4.3 Theoretical Approach	21

Chapter 5. MODELING APPROACH AND EXPERIMENTAL	23
METHODS	
5.1 Modeling Approach	23
5.2 Model Boundary Conditions	26
5.3 Experimental Methods	27
5.3.1 One-Dimensional Column Set-up	27
5.3.2 Analytical Methods	29
5.3.2.1 Liquid Scintillation Counting	29
5.3.2.2 Gas Chromatography	30
5.3.2.3 Radiochemical Purity	31
5.3.3 Column Experiment Protocol	31
5.3.3.1 Preliminary Preparation	31
5.3.3.2 Solute Preparation	32
5.3.3.3 Lab	33
5.3.3.4 Post-Lab	33
5.4 Data Reduction	33
5.5 CFITM Model Input	34
5.6 Expected Shape of Breakthrough Curve	34
Chapter 6. RESULTS AND DISCUSSION	36
6.1 Overview	36
6.2 Miscible Displacement Results: Methanol and PCE	36
6.3 MeOH Displacement Experiments	39
6.4 PCE Mobilization Breakthrough Curves	43

Chapter 7. SUMMARY AND CONCLUSIONS	48
Appendix A. Column Run Spreadsheets	49
Appendix B. CFITM Input Files	63
Appendix C. CFITM Output Files	76
References	113

LIST OF FIGURES

Figure 5-1. Schematic diagram of column study experimental set-up	28
Figure 5-2. Expected output breakthrough curve given a square input pulse	35
Figure 6-1. Methanol tracer breakthrough curve @ 0.745 mL/min flowrate	37
Figure 6-2. PCE tracer breakthrough curve @ 0.745 mL/min flowrate	37
Figure 6-3. 1% MeOH slug breakthrough @ 0.745 mL/min flowrate	39
Figure 6-4. 5% MeOH slug breakthrough @ 0.745 mL/min flowrate	40
Figure 6-5. 10% MeOH slug breakthrough @ 0.745 mL/min flowrate	40
Figure 6-6. 20% MeOH slug breakthrough @ 0.745 mL/min flowrate	41
Figure 6-7. 50% MeOH slug breakthrough @ 0.745 mL/min flowrate	41
Figure 6-8. PCE mobil. breakthrough (1% MeOH) @ 0.745 mL/min flowrate	43
Figure 6-9. PCE mobil. breakthrough (5% MeOH) @ 0.745 mL/min flowrate	44
Figure 6-10. PCE mobil. breakthrough (10% MeOH) @ 0.745 mL/min flowrate	44
Figure 6-11. PCE mobil. breakthrough (20% MeOH) @ 0.745 mL/min flowrate	45
Figure 6-12. PCE mobil. breakthrough (50% MeOH) @ 0.745 mL/min flowrate	45
Figure 6-13. Retardation Factors with respect to methanol fractions	47

LIST OF TABLES

Table 6-1.	Summary of Methanol and PCE Tracer Runs	38
Table 6-2.	Summary of MeOH Slug Experiments	42
Table 6-3.	Summary of PCE Retardation Experiments	46

ACKNOWLEDGMENTS

I wish to thank Professor Thomas C. Harmon for allowing me to continue his research in enhanced remediation techniques using methanol. I would also like to thank Professor William W-G. Yeh and Professor Menachem Elimelech for their assistance. Finally, a special thanks to Mr. Brian Dela Barre for all his assistance in the lab and for providing technical expertise in the analysis of my data.

ABSTRACT OF THE THESIS

The Effect of Methanol on the Mobilization of Tetrachloroethylene in a Water-Saturated Soil Column

by

Richard Mark Toy

Master of Science in Civil Engineering

University of California, Los Angeles, 1996

Professor Thomas C. Harmon, Chair

The contamination of surface waters and groundwater by chlorinated solvents continues to be a major environmental issue. Today, the challenge to environmental engineers is not necessarily which remediation technique to use, but how to enhance the remediation technique in order to accelerate the clean-up process.

The "pump-and-treat" method for remediating organic contaminants is experimenting with the use of chemical additives to increase the efficiency rate of subsurface contaminant removal. Because of their favorable chemical properties, alcohols such as methanol are often used in conjunction with water to flush a contaminated area, and subsequently pump it to the surface for treatment. For this study,

the objectives were: (1) to reconfirm the impact of a cosolvent, such as methanol, on the observed retardation of nonpolar organic solute (tetrachloroethylene, PCE) transport in a water-saturated porous medium; and, (2) to provide evidence that ineffective mixing of two inhomogeneous fluids, such as methanol and water, can negatively impact the desired cosolvent effect.

For the one-dimensional laboratory column at the flowrate tested (0.745 mL/min), methanol failed to produce the hypothesized cosolvent effect. The degree of retardation of PCE did not decrease log-linearly, but instead showed no significant difference with increasing methanol fraction. Therefore, the column system, under the conditions used in this study, may have been subject to the ineffective fluid mixing potentially associated with cosolvent-water systems. However, breakthrough behavior for methanol was generally symmetric and failed to exhibit any signs of ineffective mixing. The nature of these results underscores the complexity of the problem of mixing of inhomogeneous fluids.

Chapter 1. Introduction

Chlorinated solvents, used as cleaning agents in a vast array of industries, from dry cleaning to aerospace, are known or suspected as either carcinogens or mutagens. The frequent industrial use of these chemicals, such as tetrachloroethylene (PCE), trichloroethane (TCA), and trichloroethylene (TCE), has led to widespread contamination of soil and groundwater. Because of the high volatility of these organic compounds, their concentrations in surface waters, which are only a few micrograms per liter, is not a water quality issue. However, it is in the groundwater where the concentrations of chlorinated solvents will be thousands of times higher since the contaminants cannot volatilize, and hence will tend to remain in water or sorb to soil. Most frequently, the corrective action for subsurface contamination is to flush the contaminated area with water and subsequently pump it to the surface for treatment. This conventional "pump-and-treat" (Mackay and Cherry, 1989) strategy is effective for removal of a majority of the contaminant. Unfortunately, the remaining contaminant is still, most often, well above prescribed limits.

The remaining contamination is often due to nonaqueous phase liquids (NAPLs) in the subsurface. NAPLs are immiscible in water and can have densities that are either greater than water or less than water. When a NAPL has a density greater than water, it is commonly referred to as a dense nonaqueous phase liquid (DNAPL). Conversely, if the NAPL's density is less than water, it is commonly referred to as a light nonaqueous phase liquid (LNAPL). Examples of DNAPLs include chlorinated solvents such as trichloroethylene. Some examples of LNAPLs include gasoline, petroleum oil, and diesel fuel. The continued presence of NAPLs in the subsurface poses a major clean-up problem. It is critical to locate and remove any NAPLs from a hazardous waste site because NAPLs provide a long-term source of pollution due to their low solubilities.

Because of the limitations of the "pump-and-treat" method for remediating NAPL organic contaminants, alternative remediation techniques such as bioremediation and chemical additives are being considered.

1.1 Bioremediation

Bioremediation is the use of microorganisms to degrade subsurface contaminants. The microorganisms, generally bacteria, convert harmful chemical compounds to less harmful chemical compounds in order to effect remediation of a contaminated site. To survive, the microbes require: a carbon supply, an energy supply, and nutrients. The types and amounts of carbon, energy, and nutrients, are part of the overall design of the remediation system. Therefore, a detailed understanding and control of the site hydrogeology is required to implement an efficient remediation effort. Contaminant factors, such as: solubility, volatility, viscosity, and toxicity; and soil conditions, such as: permeability, soil type, depth to groundwater, mineral content, oxidation/reduction potential, and pH; may have a profound affect on the general remediation design.

The key to successful bioremediation is engineering the system such that all the microbe requirements can combine in the subsurface. However, engineering the system is not as simple as one might expect. The geologic medium for remediation must be permeable enough to allow the introduction of energy and nutrients. Many intraparticle pores are too narrow to allow microbe access. If the microbes cannot reach the zone of contamination, the remediation effort will fail. Another limitation to bioremediation is that it is difficult to biostimulate immobile zones. Most often, the contaminant must diffuse out to the biostimulated zone before bioremediation can occur. Finally, bioremediation is still in the developmental stage and there are few documented cases of using bioremediation in the saturated zone.

1.2 Chemical Additives

Enhanced remediation techniques using chemical additives are being introduced to increase the efficiency rate of contaminant removal from the subsurface (Palmer et al, 1992; Augustijn et al, 1994). In-situ solvent flushing involves injecting a mixed solvent into the subsurface of a site contaminated with organic chemicals. Surfactants, alcohols, or mixtures of these chemicals are often used as the solvent (Imhoff, 1995). When the solvent is in sufficient quantities relative to water, it is often referred to as a water-miscible organic cosolvent. Miscibility describes a compound's ability to mix in any ratio with water without separation into two phases, while immiscibility means a compound is unable to mix with water. Because of their favorable chemical properties, alcohols, such as methanol, have been investigated as potential cosolvents.

1.3 Thesis Overview

The objective of this thesis study is to test the ability of methanol as an effective cosolvent. Through a series of experiments, this research will investigate: the transport and dissolution of methanol in a water-saturated porous medium and, the effects of methanol on the mobilization of PCE. The hypothesis of this study is that methanol will decrease the retardation factor of PCE in a porous medium, thereby confirming the impact of cosolvents on remediating hazardous organic compounds.

In Chapter Two, background material relating to organic contaminants will be presented. Chapter Three will delve into the theory of cosolvency and subsurface remediation. In Chapter Four, the research objectives and approach for this thesis will be outlined. Chapter Five will detail the experimental methods used, and Chapter Six will

highlight the results. Finally, in Chapter Seven, a summary of the findings, and the conclusions reached in this study, will be presented.

Chapter 2. Background

Before reviewing the underlying theory of cosolvency, it is instructive to examine background material relating to organic contaminants and their properties, properties affecting the transport of a NAPL-based solute, and physical properties affecting the fate and transport of organic chemicals in groundwater.

2.1 Organic Contaminants and their Properties

Organic contaminants, such as TCE and PCE, are just two of the myriad of chlorinated solvents found in the subsurface. The extent to which these solvents contaminate the subsurface depends, in part, on the properties of the organic contaminants. Polarity refers to the extent of the dipole moment in a molecule. Hydrophobicity is the tendency of organic compounds dissolved in groundwater to adsorb onto solid surfaces. Less polar molecules are more hydrophobic. Solubility refers to the concentration of a species in a saturated aqueous solution. TCE and PCE have low solubilities due to their lack of polarity; hence, they are commonly referred to as hydrophobic contaminants.

2.2 Properties Affecting Transport of a NAPL-based Solute

Several key properties affect the transport of a NAPL-based solute. Solubility plays a major role. Another important property is sorption. Sorption is the term used to describe adsorption and/or absorption when independent determination of the processes is impossible. Adsorption is the net accumulation of a solute at the solid-liquid interface; while absorption occurs when a solute is transferred from one phase (i.e., water) to another, such as soil or organic matter.

2.3 Physical Processes Affecting Fate and Transport of Organic Chemicals in Groundwater

Organic contaminants may enter the subsurface by spills, leaks, or intentional disposal. In the saturated zone, these organic chemicals will either dissolve in the groundwater or will remain immiscible with groundwater in the form of NAPLs. A review of the physical processes that most strongly influence this phenomena will be presented to assist in the understanding of organic contaminant transport and distribution in the saturated zone.

2.3.1 The Advection-Dispersion Equation

Transport phenomena in the saturated zone is governed by the *Advection-Dispersion* equation (e.g., Freeze and Cherry, 1979):

$$\frac{\partial \mathbf{C}}{\partial t} = \frac{\partial}{\partial x} (\mathbf{D}_{HD} \frac{\partial \mathbf{C}}{\partial x}) - \frac{\partial}{\partial x} (\mathbf{v}_{\mathbf{X}} \frac{\partial \mathbf{C}}{\partial x}) \tag{2-1}$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial x} (\mathbf{D}_{HD} \frac{\partial}{\partial x}) - \frac{\partial}{\partial x} (\mathbf{v}_{\mathbf{X}} \frac{\partial}{\partial x}) \tag{2-1}$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial x} (\mathbf{D}_{HD} \frac{\partial}{\partial x}) - \frac{\partial}{\partial x} (\mathbf{v}_{\mathbf{X}} \frac{\partial}{\partial x}) \tag{2-1}$$

where D_{HD} = hydrodynamic dispersion coefficient [L²/T]

 v_x = the average pore water velocity [L/T]

t = time [T]

x = distance [L]

C =solution concentration [M/L³]

The first term (1) is the net accumulation. Term (2) represents the transport due to dispersion and term (3) represents the transport due to advection.

A more complete modeling of the transport of the solute in the aquifer would consider the immobile zones in each molecule of porous media. To account for this property of the media the concept of *retardation* will be introduced in Section 2.3.4.

2.3.2 Advection

Saturated-zone transport of dissolved contaminants is due primarily to advection. Advection is the process by which a solute is transported by the movement of the fluid itself (i.e., groundwater flow). The flow of groundwater is driven according to Darcy's Law. It is important to be able to estimate the rate at which groundwater is moving through an aquifer. This rate, the Darcy velocity, can be found by solving for the velocity using Darcy's Law (2-2).

$$Q = -KA \frac{\partial h}{\partial L}$$
 (2-2)

where $Q = \text{flow rate } [L^3/T]$

K = hydraulic conductivity or coefficient of permeability [L/T]

 $A = cross-sectional area [L^2]$

∂h = hydraulic gradient

∂L

The Darcy velocity is not the actual groundwater velocity because the cross-sectional area, given by A in (2-2), of an aquifer is made up of solids. The actual cross-sectional area is much smaller, and hence, the actual groundwater velocity is considerably faster than the Darcy velocity.

Groundwater will flow from points of high piezometric head to points of low piezometric head. The difference in water elevation and pressure head between points determines the hydraulic gradient which drives the flow of groundwater. In gentle topography and under unconfined conditions, the gradient normally follows the topography, and the groundwater flow rate can be estimated within a factor of 10 (Roberts *et al*, 1986). However, several factors, such as a porous media's hydraulic conductivity, can make the determination of the groundwater flow rate quite difficult to

estimate. Hydraulic conductivity is a measure of the ability of a porous media to transmit a fluid (i.e., water) and is dependent on the properties of the porous media and the fluid.

A subsurface porous media found in nature is generally heterogeneous; that is, the hydraulic conductivity varies from place to place. The porous media is considered to be homogeneous when the hydraulic conductivity is the same throughout. Sometimes hydraulic conductivities are a function of the flow direction. Generally, hydraulic conductivities are higher in the horizontal direction than in the vertical direction (Freeze and Cherry, 1979). Aquifers that have the same hydraulic conductivity in any flow direction are called isotropic, while those aquifers in which the conductivities varies according to direction are called anisotropic. Because homogeneous and isotropic aquifers are rarely found in nature, one must collect empirical measurements to obtain reasonably accurate estimates of the groundwater velocity in a flow field.

For one-dimensional soil column experiments, such as the one used for this study, a homogeneous and isotropic aquifer can be simulated. Because a pore water velocity is typically known for this type of system, the flow equation (2-2) is not employed. A one-dimensional, homogeneous and isotropic porous medium will limit variations from occurring. However, the limitation of this lab system is readily apparent in that it is not representative of an actual environmental system.

2.3.3 Dispersion

Dispersion is the tendency of a solute to spread during transport. The two main causes of dispersion are mechanical mixing and molecular diffusion (Freeze and Cherry, 1979). Mechanical mixing is mixing due to velocity gradients. The factors which affect the degree of mechanical mixing include: different sized pore channels within the porous media, variations in pore geometry (tortuosity), and fluctuations in the local flow

velocities relative to the mean flow direction. Molecular diffusion is the net flux of a solute from a zone of high concentration to a zone of low concentration. Dispersion results in the dilution of contaminant pulses and the attenuation of concentration peaks. Therefore, the maximum concentrations diminish with increasing distance from the source (Mackay *et al.*, 1985).

Dispersion can occur longitudinally, in the principal direction of flow; or transversely, perpendicular to the principal direction of flow. The hydrodynamic dispersion coefficient is a tensor (Bear, 1972):

$$D = \alpha_L D^1 + \alpha_T D^2 + D^*$$
 (2-3)

where D = hydrodynamic dispersion coefficient [L²/T]

 $D^* = \text{coefficient of molecular diffusion, which is generally ignored } [L^2/T]$

 α_L = longitudinal dispersivity of the porous medium [L]

 α_T^- = transverse dispersivity of the porous medium [L]

For the one-dimensional case,

$$D^1 = v$$
 and $D^2 = 0$ where $v = Darcy velocity [L/T]$

Therefore,

$$D = \alpha_{L}(v) \tag{2-4}$$

Despite the practical importance of the dispersion process, there is currently no method to confidently predict the magnitude of dispersion for a previously unstudied field situation. For simple hydrogeological systems, the spreading is believed to be proportional to the flow rate. For more complex systems, the dispersivity appears to

depend on the structure of the geologic medium such that it varies with the distance traversed (Mackay et al, 1985).

2.3.4 Retardation

Retardation is the apparent slowing of contaminant transport relative to groundwater flow due to sorption. The higher the fraction of the contaminant sorbed, the more retarded is its transport (Mackay *et al*, 1985).

Sorption of halogenated chemicals to soils is a nonspecific combination of two factors. The first factor is related to hydrophobicity. In essence, the molecules are "squeezed out" of the water and deposited on the soil surfaces due to their hydrophobicity (e.g., Curtis *et al*, 1986). The second factor affecting sorption is the fraction of solid organic matter in the aquifer solids, known as organic carbon content. Attempts have been made to correlate organic contaminant sorption with soil organic matter and a chemical property of the contaminant such as the octanol-water partition coefficient (Karickhoff *et al*, 1979). The assumption is that all sorption is due to organic matter implying the amount of sorption is proportional to the amount of organic matter.

If a solute does not sorb to the porous medium, it will move at a velocity equal to the groundwater velocity and, by definition, has a retardation factor equal to one. However, if the solute does sorb to the soil, it will move at a velocity equal to the groundwater velocity divided by a retardation factor, R:

$$R = 1 + \frac{\rho K_d}{\theta}$$
 (2-5)

where ρ = soil bulk density [M_s/L³]

 θ = soil porosity [-]

 K_d = equilibrium distribution coefficient [L³/M_s]

The equilibrium distribution coefficient is a function of the soil and the chemical type. Numerous attempts have been made aimed at correlating K_d with chemical properties, such as solubility or octanol-water partitioning coefficient (Karickhoff, 1979; Chiou *et al*, 1983; Curtis *et al*, 1986). These attempts assume that the sorption process is attributed solely to the soils organic carbon fraction. However, other studies (e.g., Ball and Roberts, 1991a) have shown that for soils characterized by low organic carbon contents (i.e., about 0.1% or less w/w), mineral surfaces play a significant role. In any case, the published correlations are best used for a first approximation, and more accurate K_d estimates must be determined experimentally.

2.4 Groundwater Remediation

Contaminated groundwater can contain an abundance of organic chemicals. Due to the low solubility of some of these chemicals, large dilute plumes of contaminant typically appear and propagate through the saturated zone. The most common method of treatment for a contaminated aquifer is a pump-and-treat system. The contaminated groundwater is extracted via a withdrawal well and treated at the surface through a filtration process such as granular activated carbon.

2.4.1 Effect of Sorption on Remediation

In an aquifer, one might expect a contaminant to move at the same speed as the groundwater; however, this is not necessarily the case. Some contaminants are sorbed onto the soil particles thereby reducing the overall solute flow rate relative to that of the groundwater itself. The solute is retarded by a factor R called the retardation factor. For a successful remediation, R pore volumes must be extracted under ideal conditions (assuming the local equilibrium assumption (LEA) applies: no immobile zones and

instantaneous equilibrium is achieved between the water and solid phases). Thus, reducing sorption (or R) would expedite the remediation process.

2.4.2 Nonequilibrium Sorption

Equilibrium sorption models such as LEA assume that the mass transfer rate is fast relative to the flow rate so that equilibrium can be reached. If this is not the case and equilibrium is not attained, a nonequilibrium sorption model is more appropriate.

Unfortunately, a kinetic model causes complications at two scales. At the particle scale, mass transfer resistances like intraparticle diffusion can markedly decrease the rate of contaminant release from a sorption site thereby increasing remediation times (e.g., Ball and Roberts, 1991a; Harmon and Roberts, 1994). At the layer scale, an increase in the degree of hydraulic conductivity due to heterogeneity (larger scale immobile or low flow zones) can be a dominant factor in causing remediation times to increase (Rabideau and Miller, 1994; Kong and Harmon, 1996).

2.4.3 Effect of Cosolvents on Retardation

At the particle scale, complications caused by nonequilibrium sorption can be mitigated by the use of cosolvents (Brusseau *et al*, 1991). Cosolvents can lower retardation factors and increase mass transfer rates. This thesis will examine the capacity of a cosolvent to lower the retardation factor of PCE. Before examining the Research Objectives and Approach, Cosolvency Theory and Subsurface Remediation will be reviewed in detail in the next chapter.

Chapter 3. Cosolvency Theory and Subsurface Remediation

The idea of using cosolvents to accelerate the remediation of soils and groundwater has recently been considered for field testing (Augustijn *et al*, 1994). Although a relatively new remediation technique for soil and groundwater, the technology was actually developed in the petroleum industry. The mechanisms involved in cosolvent flooding for enhanced oil or nonaqueous phase liquid (NAPL) recovery have been discussed in several reviews (Reed *et al*, 1977; Larson *et al*, 1982; Lake, 1983; Imhoff *et al*, 1995). Other studies have indicated that the use of cosolvents will reduce the retardation factor substantially, thereby vastly reducing the remediation times (Yalkowsky *et al*, 1981; Rao *et al*, 1985; & Nkedi-Kizza *et al*, 1989).

3.1 Methanol as a Cosolvent

Methanol is a colorless, polar chemical that is miscible with water. Today, methanol has many industrial and consumer uses. Approximately 70% of the methanol produced worldwide is used in chemical syntheses (Ullman, 1990). The most readily apparent use of methanol is as an energy source. The oil crisis in the early 1970's set in motion the need to find alternative sources of fuel. Coupled with the added emphasis on air quality, methanol and methanol-petroleum fuel mixtures were a good solution. As the 21st century approaches, the use of methanol is increasing. Because of methanol's low freezing point and miscibility with water, it is sometimes used in refrigeration systems. Moreover, it is used as an anti-freeze or an absorption agent in gas scrubbers.

Methanol is an excellent choice for a cosolvent. Recent studies (e.g., Imhoff *et al*, 1995) cite methanol's advantages: (1) it is relatively inexpensive; (2) once diluted to low concentrations in groundwater, it is readily biodegradable; and (3) it is representative of a class of alcohols that do not significantly partition into denser than water nonaqueous

phase liquids (DNAPLS), and thus will not enhance downward DNAPL migration by reducing the interfacial surface tension of the DNAPL residual ganglia.

3.2 Cosolvent Theory

The idea of including other organic molecules in water to affect the solubility of organic contaminant in a solution is the basis behind the theory of cosolvency. When the organic molecules are present in relatively large quantities ($\approx > 10\%$ volume/volume), they act as solvent molecules themselves and partially surround the solute of interest, approximately in proportion to their volume fraction in the solution (Yalkowsky *et al*, 1976). If the organic molecules are not present in these quantities, the effect on solubility ranges from *no effect* (for < 0.001 v/v) to a *slight effect* (for > 0.001 but < 0.10).

Yalkowsky et al (1976) postulated that the excess free energy of solution of a solute in a water organic cosolvent mixture should be a linear combination of the solute's excess free energies of solution in each solvent alone. Part of the organic solute is dissolved in water and the remainder of the organic solute is dissolved in the organic cosolvent. By solving for the excess free energy of solution in pure water and the excess free energy of solution in the cosolvent, and by substitution, Yalkowsky et al (1976) showed mathematically that the log solubility of a solute increased linearly as the fraction of cosolvent in the solution mixture increased. This result was well supported by experimental observations conducted by Yalkowsky et al (1976) using a series of aromatic hydrocarbons.

3.3 Cosolvent (Methanol) Effects

A recent study (Imhoff et al, 1995) investigated the following topics: (1) the effect of methanol on various system parameters; (2) the influence of methanol on phase

partitioning; and, (3) the effect of methanol on PCE mobilization and rate of PCE dissolution. Conclusions were made after conducting a series of batch-contacting and generator column experiments.

3.3.1 Physical and Chemical Properties of PCE

The effect of methanol on various physical and chemical properties of PCE were determined for a select number of methanol/water volumetric fractions (0%, 20%, 40%, and 60% methanol by volume). The 60% methanol by volume results demonstrated that methanol significantly affected: the viscosity of the aqueous phase, the interfacial tension between the aqueous phase and PCE, the molecular diffusion coefficient of PCE, and most markedly, the PCE solubility. As their study (Imhoff *et al*, 1995) pointed out, an increased molecular diffusion coefficient and an increased solubility resulted in a faster remediation time.

3.3.2 Mobilization of PCE

Three column experiments were conducted to examine the effect of various methanol/water mixtures on the mobilization of trapped PCE ganglia (Imhoff *et al*, 1995). Although column experiments one and three resulted in no measurable PCE mobilization, experiment two demonstrated PCE mobility. The injection of a 60% methanol/water mixture into the column increased the aqueous phase viscosity, decreased the nonaqueous-aqueous phase interfacial tension, and increased the density difference between the nonaqueous and aqueous phases. It was readily apparent in the analysis of experiment two that the flushing of the column with the methanol cosolvent may have enhanced the downward migration (mobilization) of DNAPL ganglia.

3.3.3 Dissolution and Mass Transfer Rate Coefficient

Imhoff et al (1995) demonstrated that various methanol/water mixtures had an impact on the rate of PCE dissolution and the solubility limit of PCE in the aqueous phase. The change in the mass transfer rate coefficient with varying methanol fraction was due to the corresponding change in aqueous phase viscosity. When plotting the maximum potential mass flux versus the methanol fraction, the maximum potential mass flux was shown to increase by a factor of 30 as the methanol/water fraction increased from 0% to 60%. The improvement in the mass flux was attributed to the increase in aqueous phase PCE solubility.

3.3.4 Related Research

There are several publications on the effective use of cosolvents for enhanced in situ remediation. The major conclusions from these are briefly summarized in this section.

Nkedi-Kizza et al (1985) presented data in their study that clearly demonstrated the validity of the solvophobic approach for predicting the sorption of hydrophobic organic chemicals (HOC's) from binary solvent mixtures. They concluded that for each sorbate, the sorption coefficient decreased log linearly as the fraction of organic cosolvent increased.

Fu et al (1986) studied the hydrophobic sorptive behavior of four aromatic solutes onto three different soils with solvent/water mixtures. For a polar solvent, sorption decreased semi-logrithmically with an increase in volume fraction of solvent in the aqueous phase. This may have been the result of the solvent/water mixture swelling the organic carbon associated with the soil and thereby increasing solute accessibility to

organic matter. The conclusion of the study was that the more hydrophobic the solute, the greater the effect of solvent in solvent/water mixtures on solute solubility enhancement, and hence the less the tendency to sorb onto soil. Thus, the results of this investigation were particularly significant for those aromatic solutes exhibiting the lowest aqueous phase solubility.

Rao et al (1990) demonstrated that the presence of a completely miscible organic solvent (CMOS) increases the partially MOS solubility which in turn, is reflected in increased solubility and decreased sorption of hydrophobic organic chemicals (HOC's). Further, with increased volume fraction of a CMOS in a binary mixed solvent, HOC solubility increased and sorption decreased, essentially in a log-linear matter. They concluded that an increase in HOC solubility in the presence of cosolvents was reflected by decreased sorption by soils and increased mobility of HOC's.

Augustijn et al (1994) demonstrated in laboratory miscible displacement experiments that the smaller the retardation factor in water and the higher the cosolvent fraction, the faster the contaminant was recovered by solvent flushing. In addition, the presence of non-equilibrium conditions, soil heterogeneity, and the type of cosolvent influenced the time required to recover the contaminant. Augustijn et al found that solvent flushing was appropriate for more hydrophobic chemicals. Experimental data and model simulations showed that with increasing cosolvent content, the contaminant eluted at higher concentrations, thus improving the contaminant recovery efficiency. The conclusion of the study was that high cosolvent fractions were most effective for the elution of contaminants. The recovery efficiency was expected to decrease under non-equilibrium conditions and in a heterogeneous soil. The type of cosolvent and composition of the solvent mixture are design parameters that can be used to optimize the recovery efficiency.

Harmon et al (1994) focused on two aspects of methanol's behavior in the subsurface environment: (1) the mixing and dissolution; and, (2) the mobilization of sorbing organic contaminants. The studies were carried out in batch and column systems composed of a well-characterized sand fraction. All systems were water-saturated. The study examined: the impact of methanol on the sorption of the hydrophobic contaminant, benzene; the transport of methanol and benzene as solutes; the mixing behavior of methanol in a water-saturated soil column; and the impact of methanol mobilizing benzene in a water-saturated soil column. The results of the experiments showed that the retardation factor of benzene (i.e., sorption) decreased with increasing methanol fraction. However, at higher methanol fractions (>20%), there was an apparent increase in the retardation factor. They attributed the increase in retardation to the density difference between water and methanol. The major conclusions generated by the study were: (1) methanol reduces the equilibrium transport parameter (confirming results from previous studies); and (2) accurate modeling of the mixing of pure methanol with water in porous media requires addressing the water-methanol density differences.

3.3.5 The Mixing of Miscible, Inhomogeneous Fluids in the Subsurface

A major finding of the Harmon *et al* study (1994) was that there was a relatively poor understanding of the dynamics of mixing of miscible, inhomogeneous fluids in the subsurface environment. They found that the differences between methanol and water (i.e., density and viscosity) imply that the displacement of one fluid by the other will defy conventional flow and transport modeling approaches, which treat density and viscosity as constants. Currently, research is under way by Harmon *et al* (1996) to illustrate the dynamics of mixing and transport of miscible, inhomogeneous fluids in a porous medium

in hopes of increasing the understanding of, and design capabilities for, chemically enhanced remediation.

3.4 Thesis Objectives

The study by Harmon *et al* (1994) is the basis for this thesis. The impact of methanol as a cosolvent will be further investigated; in this case, on the nonpolar organic solute, PCE. Furthermore, this study will investigate the mixing dynamics of miscible, inhomogeneous fluids (methanol and water) in the context of soil and groundwater remediation strategies.

Chapter 4. Research Objectives and Approach

As with the previous study (Harmon *et al*, 1994), the research approach for this masters thesis focuses on the study of a one dimensional, single aquifer solid type. However, the organic contaminant to be used in conjunction with methanol is PCE instead of benzene.

4.1 Research Objectives

The objectives of this study were two-fold:

- (1) To reconfirm the impact of a cosolvent (i.e., methanol) on the observed retardation of nonpolar organic solute PCE transport in a water-saturated porous medium.
- (2) To provide evidence that ineffective mixing of two inhomogeneous fluids (i.e., methanol and water) can negatively impact the desired cosolvent effect.

4.2 Experimental Approach

The porous media used in this study is Borden sand (-40+60 U.S.) Standard mesh size, mean particle diameter = 0.33 mm). The experiments performed in the study were:

(1) <u>Tracer Experiments</u>- Breakthrough curves of trace amounts of 14C-labeled methanol/PCE in water to examine their transport behavior.

- (2) Methanol Displacement Experiments- A series of breakthrough curves for examining the transport of various methanol fractions through the sand column.
- (3) <u>PCE Mobilization Experiments</u>- A series of breakthrough curves to observe methanol mobilizing PCE in a saturated soil column.

4.3 Theoretical Approach

The results obtained from these experiments were modeled using available analytical solutions to the advection-dispersion equation. In the tracer experiments, trace amounts of MeOH in water were run through the column. The goal was to generate breakthrough curves which would provide a basis of comparison for the methanol displacement experiments and PCE mobilization experiments.

In the next set of experiments, the goal was to determine the advection and dispersion characteristics of methanol as a solute and as a cosolvent. Five individual tests were conducted. The methanol fractions used for each of the test pulses were 1%, 5%, 10%, 20%, and 50%. Using the soil-column lab set-up discussed in Chapter Five, forty experimental data points were measured in each test and used to characterize a specific methanol breakthrough curve. A least-squares fitting program, CFITM, (van Genuchten, 1981) was used to find the Peclet number for each data set assuming a retardation value of one. CFITM is a FORTRAN program capable of solving the nondimensional form of the Linear equilibrium adsorption (LEA) model (LEA model discussed in Section 5.1). With a Peclet number for each methanol fraction, the stage would be set for the next set of column experiments.

In the final set of experiments, the goal was to determine how the different methanol fractions would affect the mobilization of PCE in the soil column. Using the same experimental set-up, forty experimental data points were measured for each methanol fraction. Using the Peclet number generated from the previous set of experiments, CFITM was used to fit the retardation factor. The fitted retardation factor would be an indication of methanol's ability to mobilize PCE.

Chapter 5. Modeling Approach and Experimental Methods

5.1 Modeling Approach

Transport of a nonsorbing solute in a one-dimensional water-saturated porous medium is governed by the advection/dispersion equation (e.g., Freeze and Cherry, 1979):

$$\frac{\partial \mathbf{C}}{\partial t} = \mathbf{D}_{HD} \frac{\partial^2 \mathbf{C}}{\partial x^2} - \mathbf{v}_{\mathbf{X}} \frac{\partial \mathbf{C}}{\partial x}$$
 (5-1)

where D_{HD} = hydrodynamic dispersion coefficient [L²/T]

 v_X = the average pore water velocity [L/T]

t = time [T]

x = distance [L]

 $C = aqueous concentration [M/L^3]$

Equation (5-1) assumes steady-state flow and no interactions between the aqueous phase and the solid phase.

If chemical adsorption is considered, an additional term is needed to account for the interaction between the aqueous phase and the solid phase and the advection/ dispersion equation becomes:

$$\frac{\partial \mathbf{C}}{\partial t} = \mathbf{D}_{HD} \frac{\partial^2 \mathbf{C}}{\partial x^2} - \mathbf{v}_{\mathbf{X}} \frac{\partial \mathbf{C}}{\partial x} - \frac{\partial \mathbf{S}}{\partial t}$$
 (5-2)

where S = adsorbed concentration [M/M].

Prior to the conception of the CFITM model, significant deviations were observed between the calculated and experimental effluent curves using equation (5-2). In an

attempt to account for these apparent differences, several models were introduced (for review, see Harmon *et al*, 1989). The increasing complexity with which the immobile zones were viewed (described by the S term) led to CFITM. (van Genuchten, 1981).

In his program CFITM, van Genuchten (1981) considers five conceptual models. Depending on the exact form of the transport model, the program allows up to five different parameters to be estimated simultaneously. The least-squares computer model fits these transport parameters to column effluent data. The five transport models are:

Model A: Linear equilibrium adsorption

Model B: Physical non-equilibrium

Model C: Physical non-equilibrium in the presence of anion exclusion

Model D: Two-site kinetic non-equilibrium adsorption

Model E: One-site kinetic non-equilibrium adsorption

The model used for this work is the Linear Equilibrium Adsorption Model (LEA). With the LEA model, the relationship between the aqueous concentration and the sorbed concentration is described by a linear isotherm:

$$S = K_dC (5-3)$$

where K_d is an empirical distribution coefficient $[L^3/M_s]$. Substitution of equation (5-3) into equation (5-2) yields the following transport equation:

$$R \frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} - v_X \frac{\partial C}{\partial x}$$
 (5-4)

where R is the retardation factor [-] equal to:

$$R = 1 + \frac{\rho K_d}{\theta}$$
 (5-5)

where ρ = soil bulk density [M_s/L³]

 θ = soil porosity [-]

 K_d = empirical distribution coefficient [L³/M_s]

The program requires input data for the following dimensionless variables in order to perform the analysis of the effluent data:

(1) Length
$$(Z) = x/L$$

L = length of porous media

(2) Concentration (C) =
$$C/C_0$$

 C_0 = influent concentration

(3) Pore volumes (T) =
$$v_x t / L$$

(4) Peclet Number (P) =
$$v_x L/D_{HD}$$

For the dimensionless parameter (4), the Peclet number is defined as the ratio of advective flux to dispersive flux. A high Peclet number means advection is dominating transport while a low Peclet number implies dispersion is dominating transport. Typical Peclet number values for natural flow in groundwater ranges from one to five; however, these values may be greater under pumping conditions (Mackay *et al*, 1985).

To use van Genuchten's model, one must input the Peclet number, the retardation factor, the length of the input (pulse), and the data points (in dimensionless form). The user can request the program to fit one, two or all three parameters (Peclet number, retardation factor, and length of input). The fitted parameters are obtained by means of a

least-squares fit of the appropriate analytical solution to column effluent data. By iteration, a fitted solution is obtained. The non-linear least squares analysis output gives the fitted parameter value and a 95% confidence interval of the results. Although relatively old (1981), van Genuchten's program is not obsolete. The program is versatile and can be dimensioned for up to 90 data points. The least-squares computer model provides a convenient, efficient, and accurate means of fitting various transport parameters to column effluent data (van Genuchten, 1981).

5.2 Model Boundary Conditions

Analytical solutions of equation (5-4) exist for several sets of initial and boundary conditions. In van Genuchten's study (1981) for the LEA model, the initial condition is:

$$C(x,0) = C_i \tag{5-6}$$

Two different conditions can be applied to the upper boundary of the soil column (x = 0): a first-type, constant concentration boundary condition of the form:

$$C(0,t) = C_0 \tag{5-7}$$

or a second-type, constant flux boundary condition of the form:

$$(-D \frac{\partial C}{\partial x} + vc) = v C_0$$

$$| x = 0$$
(5-8)

where C_o is the concentration of the input solution.

For the lower boundary, the following condition is applied:

$$\frac{\partial C}{\partial x}(\infty, t) = 0 \tag{5-9}$$

This condition assumes the presence of a semi-infinite soil column. An alternative boundary condition, one that is frequently used for column displacement studies, is that of a zero concentration gradient at the lower end of the column:

$$\frac{\partial C}{\partial x}$$
 (L,t) = 0 (5-10)

where L is the column length.

In van Genuchten's study (1981), equations (5-9) and (5-10) are both used. However, only the solutions for a semi-infinite medium are included in the curve-fitting program. Because of the relatively small influence of the imposed mathematical boundary conditions, the solutions for a semi-infinite system provide close approximations for those applicable to a physically well-defined finite system, especially for not too short laboratory soil columns.

5.3 Experimental Methods

Each of the experiments summarized in Chapter 4.3 is described in detail in the following section.

5.3.1 One-Dimensional Column Set-up

The set-up of the soil column experiments is shown schematically in Figure 5-1. The controlled flow of methanol and water was driven through the soil column using a quarternary high performance liquid chromatography (HPLC) pump (Paramus, NJ) in

Figure 5-1. Schematic diagram of column study experimental set-up

order to deliver precise mixtures of methanol and water. In this study, a 25-cm steel column (2.06 cm inner diameter) was used, packed with -40+60 (U.S. Std. Mesh Size) Borden sand, which had been examined in particle characterization and organic contaminant sorption and desorption studies with PCE (Ball *et al*, 1990; Ball and Roberts, 1991a; 1991b; Harmon and Roberts, 1994). The Borden sand has: a mean grain diameter of 0.33 mm; a density of 2.71 g/cm³; and an organic carbon content of 0.00023% (Ball *et al*, 1990). The porosity was approximately 0.35. The ¹⁴C-labeled solute, either methanol or PCE, was injected via a gastight syringe mounted on a syringe pump (Sage Model 341B, Boston, MA). A three-way, electronically actuated valve (Valco, Houston, TX), which allowed precise switching between the HPLC pump and the syringe pump, was used for inputting the ¹⁴C-labeled solute pulse. The data points for the effluent breakthrough curves were captured in a series of vials containing liquid scintillation cocktail fluid. All fittings were composed of glass, Teflon, and stainless steel to avoid interactions between the organic contaminants and the apparatus.

5.3.2 Analytical Methods

5.3.2.1 Liquid Scintillation Counting

Liquid scintillation vials typically contained 5 mL of liquid scintillation cocktail (Insta-gel, Packard Instrument Co., Downer's Grove, IL). The samples were counted with a Packard Tricarb Model 4530 scintillation counter (Packard Instrument Co.). All samples were counted two times for 20 minutes each. Measured counts per minute were converted to actual disintegrations per minute by the external standard method, with quenching efficiencies estimated by a channels ratio method incorporated into the system software. Quenching was less than 5% for all samples and in a spectral region where

quenching was relatively insensitive to changes in solution matrix. Each set of vials to be counted was accompanied by a blank sample (containing 5 mL of scintillation cocktail), used to subtract out background activity.

5.3.2.2 Gas Chromatography

Prior to each spiking session, the overall (labeled and non-labeled) concentration of the spiking solution was determined by comparison with standard solutions using gas chromatography. Samples of the spiking solution were prepared by extracting approximately 3 mL of the spiking solution with 0.5 mL pentane in 2 mL vials equipped with teflon-lined silicon septa and plastic screw-top caps (Alltech Assoc., Deerfield, IL). Samples and standards were also spiked with an internal standard (1-chloro, 2-bromopropane). The PCE and internal standard were extracted into the pentane during 30 minutes of agitation on a shaker table.

The gas chromatograph, a Hewlett-Packard 5890A, was equipped with a capillary column. The column was followed by a ⁶³Ni electron capture detector (ECD). The splitting valve was used on occasion to test the purity of new purchases of radiochemicals. The valve provided the capability of diverting most of the flow (99%) away from the detector in these instances, when a relatively concentrated and radioactive injection was applied. For quantitative purposes, 2-7 µL injections of the pentane were applied, and much less of the flow (<5%) was diverted from the detector. The carrier and makeup gases were helium and Argon/Methane, respectively. The system operated at 150 degrees Celsius, with the detector slightly higher-- 160 degrees Celsius.

5.3.2.3 Radiochemical Purity

Prior to spiking procedures, spiking solutions were routinely analyzed for volatile impurities via the gas chromatography procedures described in the preceding section. No extraneous peaks were detected in analyses with the PCE spiking solutions.

Spiking solutions were routinely tested for ¹⁴C-nonvolatile and ¹⁴C-CO₂ fractions using an acid/base purging procedure (Lanzarone and McCarty, 1988). The nonvolatile impurities, which were not identified, were found to represent approximately 1-2% of the activity, for the PCE. This fraction appeared to remain in the aqueous phase (i.e., did not sorb) in samples for which the A-B-N test was performed prior to purging. No significant fraction of ¹⁴C-CO₂ was detected in the PCE spiking solutions. The equilibrium measurement of the sample supernatant was adjusted downward to account for the nonvolatile fraction.

5.3.3 Column Experiment Protocol

5.3.3.1 Preliminary Preparation

Calibrate the scintillation counting machine (Beckman LS600, Fullerton, CA). At the quarternary HPLC pump, fill the water tank with distilled water (reservoir B) and fill the methanol tank with methanol (reservoir C). Degas the water and methanol tanks with helium for a 1/2 hour. Turn on helium gas at main tank valve and the brass toggle valve that branches to the Teflon tubing to the quarternary HPLC pump. Turn on the helium flow at the pump and get a flow of helium bubbles in the reservoirs. During degassing, continue lab preparation. Label vials (1 through 40) and fill with 5 mL of scintillation cocktail. Record the weight of each of the 40 vials before the experiment begins.

5.3.3.2 Solute Preparation

Retrieve the ^{14}C -labeled PCE or the ^{14}C -labeled methanol sample from the refrigerator and allow the sample to equilibrate at ambient temperature. A glass syringe (Hamilton, Reno, NV) was used to load 10 μL of PCE (or 50 μL of methanol) into the 10 mL syringe pump (filled with degassed water or precise methanol/water mixture). Preliminary tests indicated that these amounts were sufficient solute inputs. All syringes should be cleaned using a double-acetone wash procedure after each use. Mix the ^{14}C -labeled solute input (10 mL syringe pump spiked with radio-labeled PCE or radio-labeled methanol) over a magnetic mixer. Replace sample caps with new teflon caps.

Find C_o (initial concentration in syringe pump). Using three vials labeled A, B, and C; manually, via a syringe, load 5 μ L of the radio-labeled 10 mL sample into each of the three vials. Cap and shake immediately. This procedure is performed three times (A, B, & C) to account for possible non-uniform mixing in the syringe pump. Clean the syringe with the double-acetone wash procedure after each sample: A, B, & C. Using the counting machine, obtain a "quick dpm (disintegrations per minute) count" on A, B, & C vials to verify a uniform C_o . A "quick dpm count" means the counting machine, using a smaller sample time, will give a dpm count that still maintains a relative error that is less than 2%. The initial concentration is calculated by finding the average of the concentrations of A, B, and C.

When the three counts are within 5% of each other, proceed with the experiment. Set the quarternary HPLC pump to the desired flow rate (0.745 ml/min) and desired methanol/water mixture (0%, 1%, 5%, 10%, 20%, or 50%). Load empty vials 1 through 40 in the auto sampler (Isis Autosampler, Lincoln, NE). Load about three rows of empty test vials in the auto sampler. Set sample and wash times on the auto sampler (i.e., 20 seconds sample interval and one minute 35 seconds wash time).

5.3.3.3 Lab

Record start time of the experiment. Actuate the syringe pump to load the step input into the column. When the syringe is completely empty, turn-off syringe pump, switch the actuator, and engage the quarternary HPLC pump. Note the time the pulse was stopped. This is the length of the step input. Note the time when the supply of test vials is exhausted and the time when the first recorded sample is taken.

While the experiment is in progress, monitor the quarternary HPLC pump for stoppages. Note the time of any mishaps during the experiment run. Continue to sample the remaining 39 vials. Cap and shake each vial after every sample is taken. Rinse sample tube after each sample vial is taken using distilled water. At the end of the experiment, note the time of completion. After the last sample, turn off the auto sampler while the sampling rod is in the washing tube.

5.3.3.4 Post-Lab

Weigh each of the 40 sample vials. Load the A, B, C vials and the 40 sample vials into the scintillation counter. Program the counting machine to count the dpm's (ten minute counting time, twice each vial). The packed column must be flushed completely with degassed water before another experiment is run (preferably the next day). When flushing the column, ensure the packed column is in the vertical position. Turn off helium sources at the HPLC pump and the helium tank. Turn off all machines. Clean-up counters and police the area.

5.4 Data Reduction

The data from the scintillation counter will give the "dpm count" for each of the sample vials. The "dpm count" is a mass measurement. To be used in the CFITM model,

the mass measurement must be converted to a concentration measurement. Each "dpm count" will be divided by the difference between the final and initial weights of each corresponding sample vial. The difference between the final and initial weight of each sample vial is in the units of grams. To convert this difference measurement to mLs, divide by the density of water ($\cong 1 \text{ g/mL}$). The "dpm/mL" measurement is now in concentration (aqueous) units. All data reduction spreadsheets are included in Appendix A, Column Run Spreadsheets.

5.5 CFITM Model Input

The data input for the model for each sample vial is equivalent "pore volume" [-], and corresponding sample concentration (in [dpm/mL]; as calculated in section 5.4). CFITM provides a least-squares fit for each experimental data point. This output, when connected, is the fitted curve for the column effluent data.

The CFITM data input files for each of the column runs is shown in Appendix B, CFITM Data Input.

5.6 Expected Shape of Breakthrough Curves

The processes affecting solute transport in the saturated zone are advection and hydrodynamic dispersion. Advection would carry the dissolved chemical with the groundwater flow. In an ideal porous media, it would produce close to "plug flow" behavior. Hydrodynamic dispersion would cause the dissolved chemical to spread throughout the porous media. The curves in Figure 5-2 show the shape of the expected breakthrough curve given a square pulse input of solute.

Figure 5-2. Expected output breakthrough curve given a square input pulse.

In Figure 5-2, t₀ is the corresponding time for the center mass of the square input pulse. The degree of "spreading" in the output breakthrough curve varies according to the amount of hydrodynamic dispersion. As shown on the time-scale of the output breakthrough curve, the arrival time of the peak is a function of the length of and the rate at which the input pulse travels.

Chapter 6. Results and Discussion

6.1 Overview

Specific results are described in the following sections. Section 6.2 presents column breakthrough data for the miscible displacement tests; that is, employing methanol or PCE as single solutes. Section 6.3 presents the results for the methanol slug tests in which cosolvent levels of methanol were used to displace water from the column. Section 6.4 presents the PCE breakthrough curves subject to MeOH cosolvent levels. Throughout Chapter 6, the breakthrough data are plotted along with CFITM model output derived from the curve fitting protocols discussed in Section 5.5. Output from the CFITM program for each column run is included in Appendix C, CFITM Data Output.

The breakthrough curves for each of the column runs are shown in the following sections. As discussed previously in Section 5.6, all of the breakthrough curves are similar in shape to the output curves shown in Figure 5-2.

6.2 Miscible Displacement Results: Methanol and PCE

The first two sets of column experiments were tracer studies employing dilute amounts of either ¹⁴C-labeled MeOH or ¹⁴C-labeled PCE. In each case, the input pulse contained no methanol (0% methanol fraction). The purpose of the tracers was to provide a basis for comparison of the methanol displacement experiments and the PCE mobilization experiments. Figure 6-1 shows the tracer run for the ¹⁴C-labeled MeOH. Figure 6-2 shows the tracer run for the ¹⁴C-labeled PCE.

Methanol Tracer Run

Figure 6-1. Methanol tracer breakthrough curve for a 0.745 mL/min flowrate.

Figure 6-2. PCE tracer breakthrough curve for a 0.745 mL/min flowrate.

The solid squares on Figure 6-1 and Figure 6-2 represent the experimental data. The solid line represents CFITM's best-fitting curve, using a Peclet number equal to 159. A summary of the methanol and PCE tracer tests are shown below in Table 6-1.

Column	Methanol	Flow	Peclet	Retardation	95% Confide	nce Limit
Run	(%)	(mL/min)	Number	Factor	Lower	Upper
Tracer MeOH	0	0.745	159	1.00	112	206
Tracer PCE	0	0.745	159	1.20	1.18	1.22

Table 6-1. Summary of Methanol and PCE Tracer Runs.

Note- Numbers in bold italics indicate fitted data.

For each of the methanol tracer runs, the breakthrough curve begins to appear at approximately one pore volume. The expectation is that the center of the breakthrough curve should elute at one pore volume plus half of the total length of the input pulse (also in pore volumes). The center of the methanol tracer breakthrough curve occurs, for each tracer run, at approximately 1.5 pore volumes. The peaks arrive slightly later than expected; however, considering experimental error, the tracer curves show that the methanol was transported with the pore water, and not retarded.

The experimental tracer runs exhibited predictable behavior. The 0.745 mL/min flow rate used in each of the column runs was a relatively fast flow rate as shown by the shape of the breakthrough curves. The sharpness of the front and elution portions of the curves were indicative of advection dominated transport characteristic of a high Peclet number.

6.3 MeOH Displacement Experiments

The objective of the second set of column experiments was to characterize the advection and dispersion behavior of methanol as a cosolvent. More specifically, the purpose was to characterize the extent that methanol displacing water behaved immiscibly, due to density and viscosity differences. The methanol fractions tested (1%, 5%, 10%, 20%, and 50% v/v) exhibited similar behavior. Figures 6-3 through 6-7 show the methanol breakthrough curves for the 1%, 5%, 10%, 20%, and 50% methanol fractions respectively.

MeOH Slug (1% MeOH/99% Water)

Figure 6-3. 1% MeOH slug breakthrough at a 0.745 mL/min flowrate.

MeOH Slug (5% MeOH/95% Water)

Figure 6-4. 5% MeOH slug breakthrough at a 0.745 mL/min flowrate.

MeOH Slug (10% MeOH/90% Water)

Figure 6-5. 10% MeOH slug breakthrough at a 0.745 mL/min flowrate.

MeOH Slug (20% MeOH/80% Water)

Figure 6-6. 20% MeOH slug breakthrough at a 0.745 mL/min flowrate.

MeOH Slug (50% MeOH/50% Water)

Figure 6-7. 50% MeOH slug breakthrough at a 0.745 mL/min flowrate.

The simulation providing the best-fit for the data was characterized by a Peclet number of 328, the resulting Peclet number for the 20% MeOH fraction. Each of the column runs

had similar square mass inputs (pulses). When calculating the area below each of the output curves, it was estimated that at least 93% of the mass input was conserved for each column run (Appendix A, Column Run Spreadsheets).

Each of the column runs produced breakthrough curves that were characteristic of advection dominated transport. Analysis of the breakthrough curves shows that there was no evidence of unstable fronts nor was there evidence of "over-riding" or "wedging" of methanol over water. Table 6-2 summarizes the results of the MeOH slug experiments.

Column	Methanol	Flow	Peclet	Retardation	95% Confide	nce Limit
Run	(%)	(mL/min)	Number	Factor	Lower	Upper
MeOH Slug	1	0.745	153	1.00	106	200
MeOH Slug	5	0.745	305	1.00	224	385
MeOH Slug	10	0.745	276	1.00	199	352
MeOH Slug	20	0.745	328	1.00	293	364
MeOH Slug	50	0.745	221	1.00	190	253

Table 6-2. Summary of MeOH Slug Experiments.

Note- Numbers in bold italics indicate fitted data.

The MeOH slug run at 1% methanol by volume was characterized by a Peclet number similar to that of the MeOH tracer run. However, the methanol runs with greater methanol percentages by volume were characterized by significantly larger Peclet numbers. The sharpness of the corresponding curve fronts were also indicative of the larger Peclet numbers. Each of the methanol runs exhibited early breakthrough, however,

this was due to improperly flushing the radio-labeled MeOH from the previous column experiments. An adjusted C/C_o value was calculated to correct for this inaccuracy.

6.4 PCE Mobilization Breakthrough Curves

The final set of experiments determined the effect of different methanol fractions on the mobilization of PCE in the soil column. Again, the methanol fractions tested (1%, 5%, 10%, 20%, and 50% v/v) exhibited similar behavior. From the output curves, one would expect that with increasing methanol fraction, the curves would exhibit earlier breakthrough, indicative of a decrease of the retardation factor of PCE. Figures 6-8 through 6-12 show the PCE mobilization breakthrough curves for each of the methanol fractions.

PCE Mobil. (1% MeOH/99% Water)

Figure 6-8. PCE mobilization breakthrough (1% MeOH) at a 0.745 mL/min flowrate.

PCE Mobil. (5% MeOH/95% Water)

Figure 6-9. PCE mobilization breakthrough (5% MeOH) at a 0.745 mL/min flowrate.

PCE Mobil. (10% MeOH/90% Water)

Figure 6-10. PCE mobilization breakthrough (10% MeOH) at a 0.745 mL/min flowrate.

PCE Mobil. (20% MeOH/80% Water)

Figure 6-11. PCE mobilization breakthrough (20% MeOH) at a 0.745 mL/min flowrate.

PCE Mobil. (50% MeOH/50% Water)

Figure 6-12. PCE mobilization breakthrough (50% MeOH) at a 0.745 mL/min flowrate.

All of the PCE retardation results (1%, 5%, 10%, 20%, and 50%) were similar. As with the MeOH slug runs, each of the PCE mobilization column runs produced breakthrough

curves that were characteristic of advection dominated transport. The simulation providing the best-fit for the data was characterized by a retardation factor of 1.22, corresponding to the 20% MeOH fraction. Each of the column runs had similar square mass inputs (pulses). When calculating the area below each of the output curves, it was estimated that at least 97% of the mass input was conserved for each column run. Table 6-3 summarizes the PCE retardation results.

Column	Methanol	Flow	Peclet	Retardation	95% Confide	nce Limit
Run	(%)	(mL/min)	Number	Factor	Lower	Upper
PCE Input	1	0.745	153	1.22	1.21	1.24
PCE Input	5	0.745	305	1.25	1.25	1.26
PCE Input	10	0.745	276	1.25	1.24	1.26
PCE Input	20	0.745	328	1.23	1.22	1.24
PCE Input	50	0.745	221	1.24	1.23	1.25

Table 6-3. Summary of PCE Retardation Experiments.

Note- Numbers in bold italics indicate fitted data.

In general, the PCE breakthrough curves were symmetrical and weakly retarded. The PCE runs with 20% methanol and 50% methanol each exhibited slightly early breakthrough and slight tailing.

Van Genuchten's Least Squares Program determined the best-fitting retardation factor for each of the observed breakthrough curves. All of the resulting retardation factors are plotted in Figure 6-13 as a function of the methanol fraction.

Figure 6-13. Retardation Factors with respect to methanol fractions.

The results do not indicate any trends. The retardation factor only varied between 1.20 and 1.25. Essentially, there was no significant difference in retardation factor with increasing methanol fraction.

The PCE mobilization experiments failed to demonstrate the hypothesized results. The degree of retardation of PCE did not decrease log-linearly with increasing methanol fraction. However, the results of this study confirmed the results of previous studies (Imhoff, 1995). The MeOH slug experiments showed that with an increasing methanol fraction, there was an increase in the Peclet number.

Chapter 7. Summary and Conclusions

The goal of this research was to test the ability of methanol as an effective cosolvent. This study investigated the transport and dissolution of methanol in a water-saturated porous medium and the effects of methanol on the mobilization of PCE. 1-D column experiments were used to examine: the transport behavior of trace amounts of ¹⁴C-labeled methanol/PCE in water; the transport of various methanol fractions through a sand column; and, methanol mobilizing PCE in a saturated soil column.

The one-dimensional column apparatus devised for this work performed adequately. An average of 95% of the mass input through the column was calculated in the mass output indicating that a majority of the mass was conserved. The tracer and slug breakthrough curves of the methanol were described well by the advection/dispersion equation, and showed no indications of density and viscosity difference effects.

For the 1-D laboratory column at the flowrate tested (0.745 mL/min), methanol failed to produce the hypothesized cosolvent effect in mobilizing PCE. Two possible reasons for this failure exist: (1) The PCE sorbed too weakly to the porous medium and any reductions in the sorption were difficult to observe given the experimental uncertainty produced by the methods; (2) The MeOH front by-passed much of the porous medium, thereby failing to mix sufficiently in a timely manner. Given the apparent stability of the methanol slug breakthrough curves, the first reason appears to be the more likely of the two.

Further studies on flow conditions in a contaminated region need to be investigated. Perhaps the 0.745 mL/min flow rate used in this study was too fast to adequately demonstrate the impact of methanol on sorption rates. Although the outcome of this research was not completely as expected, the results do provide motivation for future work to address these flow and transport issues.

Appendix A. Column Run Spreadsheets

Explanation of Terms for Spreadsheets-

__/_%: Type of column run. First number refers to MeOH fraction; second number refers to percent water.

flow: flow rate at which the experiment was conducted.

time: the time at which the sample was completed. For each of the column runs, the sample time in the vial was 20 seconds, the wash time in the waste stream was 100 seconds, and the time in between sampling and washing was 3 seconds. Total time between sampling vials was 123 seconds (2 minutes, 3 seconds).

conv.: time conversion to decimals.

pore vol.: time conversion to equivalent, unitless "pore volumes."

dpm: "disintegrations per minute" as recorded by the scintillation counter. (dpm = concentration [C]).

diff: Difference in weight [g] between the sample vial initially and the sample vial after sampling.

dpm/diff: Self-explanatory. Assuming the density of water is 1 g per cm³, [dpm/mL].

Co: Initial concentration of input pulse [dpm/mL].

C/Co: Dimensionless parameter [sample concentration/initial concentration].

Adj C/Co: Adjusted C/Co value to account for inaccuracies caused by insufficient column flushing [-].

M: Mass of radio-labeled MeOH or PCE in the sample vial [dpm].

Mo: Initial mass of input pulse [dpm].

M/Mo: Dimensionless parameter [sample mass/total initial mass].

CFIT: Fitted value by van Genuchten's model based on experimental output [dpm/mL].

CFIT	0	0	0	0	0	0	0	0	0	0	0	0.001	900.0	0.018	0.048	0.103	0.189	0.303	0.434	0.558	0.656	0.708	0.704	0.646	0.55	0.435	0.318	0.219	0.141	0.086	0.049	0.026	0.014	0.007	0.003	0.001	0.001	0	0	0	
pore vol.	0.4	0.45125	0.5025	0.55375	0.605	0.65625	0.7075	0.75875	0.81	0.86125	0.9125	0.96375	1.015	1.06625	1.1175	1.16875	1.22	1.27125	1.3225	1.37375	1.425	1.47625	1.5275	1.57875	1.63	1.68125	1.7325	1.78375	1.835	1.88625	1.9375	1.98875	2.04	2.09125	2.1425	2.19375	2.245	2.29625	2.3475	2.39875	
M/Mo	0.007278	0.008701	0.009394	0.009369	0.008816	0.008278	0.007975	908000	0.00776	0.007699	0.007904	0.008496	0.009819	0.011004	0.013186	0.017095	0.022688	0.032586	0.0493	0.075643	0.099284	0.108683	0.10916	0.10021			0.031438		1					0.001183	0.001074	0.00092	0.000845			0.000627	0.954795
ωW	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	1749188	
Σ	12730.71	15219.1	16431.7	16388.85	15421.33	14479.54	13949.09	14098.85	13573.5	13466.44	13825.73	14861.89	17174.47	19247.93	23065.33	29902.23	39685.54	56999.51	86235.56	132314.1	173666.2	190106.4	190940.7	175285.9			54990.37						-	2070.016	1879.057	1609.27	1477.235		1177.432	1096.592	1670116
Adj C/Co	-0.00473	0.004114	0.008425	0.008273	0.004833	0.001484	-0.0004	0.000131	-0.00174	-0.00212	-0.00084	0.002844	0.011067	0.018439	0.032012	0.056322	0.091108	0.152671	0.256624	0.420463	0.567497	0.625953	0.628919	0.573256	o	0.3275	0.145527	0.028404				_			-0.04332	-0.04428	3 -0.04475	5 -0.04524	0.04581	9 -0.0461	
C/Co	0.045266	0.054114	0.058425	0.058273	0.054833	0.051484	0.049598	0.050131	0.048263	0.047882	0.04916	0.052844	0.061067	0.068439	0.082012	0.106322	0.141108	0.202671	0.306624	0.470463	0.617497	0.675953	0.678919	0.623256	0.523207	_	0.195527	0.078404					٥	0.00736	0.006681	0.005722	0.005253	3 0.004755	3 0.004187	3 0.003899	
కి	184149.3	184149.3	184149.3	184149.3	184149.3	184149.3	184149.3	184149.3	184149.3	184149.3	184149.3	184149.3	184149.3	184149.3	184149.3	184149.3	184149.3	184149.3	184149.3	1	184149.3	184149.3	184149.3	184149.3	184149.3	184149.3	184149.3	184149.3	184149.3					184149.3	184149.3	184149.3	184149.3	184149.3	184149.3	184149.3	
dpm/diff	8335.708	9965.036	10759.01	10730.96	10097.45	9480.792	9133.469	9231.526	8887.542	8817.444	9052.694	9731.143	11245.36	12603	15102.52	19579.13	25984.97	37321.66	56464.6	8	113711.7	124476.3	125022.5	114772.3	96348.27	69516.37	36006.14	14438.05	5386.551		1964.082			1355.388	1230.354	1053.704	967.2519	875.6902	770.9491	718.0173	
diff	0.28218	0.27514	0.29624	0.2523	0.2978	0.28399	0.29565	0.26239	0.29869	0.28079	0.30155	0.29127	0.28962	0.27962	0.29154	0.27474	0.26143	0.2756	0.28659	0.263	0.28845	0.2851	0.26831	0.28581	0.29288	0.28503	0.28028	0.27924	0.26025	0.28264	0.28621	0.25932	0.28769	0.2784	0.28682	0.29346	0.2791	0.27528	0.29142	0.29172	
mdp	2352.17	2741.78	3187.25	2707.42	3007.02	2692.45	1	2422.26	1	2475.85	2729.84	2834.39	ــــ	-	4402.99	-	-	10285.85		22			33544.8	32803.06	28218.48	19814.25	10091.8	L.		_		433.23	435.98	377.34		309.22	269.96	241.06	224.67	209.46	
pore vol.	0.4	0.45125	0.5025	0.55375	0.605	0	_		-	0.8	<u> </u>	0.96375	Ĺ	-	1.1175	1.16875	L	1.27125		-	_	-	1	1.57875	L.,	1.68125	1.7325	1.78375	1.835	-	1.9375	1.98875	2.04	3 2.09125	2.1425	3 2.19375		5 2.29625	!	1	
conv.	16	18.05	İ.		24.2	26.25	1		1	34.45	L	38.55			44.7	46.75	48.8	50.85				59	61.1	63.15	65.2	67.25		71.35	73.4		77.5					5 87.75	89.8	91.85	93.9	0,	
time	0:16:00	0:18:03	0:20:06	0.22:09	0:24:12	0:26:15	0:28:18	0:30:21	0:32:24	0:34:27	0:36:30	0:38:33	0:40:36	0:42:39	0:44:42	0:46:45	0:48:48	0:50:51	0:52:54	0:54:57	0:57:00	0:59:03	1:01:06	1:03:09	1:05:12	1:07:15	1:09:18	1:11:21	1:13:24	1:15:27	1:17:30	1:19:33	1:21:36	1:23:39	1:25:42	1:27:45	1:29:48	1:31:51	1:33:54	1:35:57	
0/100%	meth	tracer		flow	0.745	(mL/min)																																			

CFIT		25 0	75 0			75 0	75 0	0.79 0	25 0																	9				75 0.008						525 0.001	275 0	875 0	2.43 0	_
pore vol.	0.43125	0.4825	0.53375	0.585	0.63625	0.6875	0.73875	0	0.84125	0.8925	0.94375	0.995	1.04625	1.0975	1.14875		1.25125	1.3025	1.35375	1.405	1.45625	1.5075	1.55875	-	1.66125	1.7125	1.76375	8.0	1.86625	1.91/5	006.1	2 07125	2 1225	217375	2.2	2.27625	2.3275	2.37875	2	
M/Mo	0.007671	0.008904	0.00919	0.008586	0.008282	0.00804	0.007598	0.007321	0.007274	0.007316	0.007889	0.008607	0.010022	0.011749	0.014765	0.020818	0.029206	0.04225	0.061238	0.085071	0.105557	0.10784	- 1	E		_				_1.		0.000112			_	_	0.000532	0.000464	0.000413	
Mo	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	2235840	0406677	2233840	2235540	1_	2235840	2235840	2235840	
Σ	17150.07	19907.01	20546.96	19197.45	18517.41	17976.52	16987.12	16367.6	16264.2	16357.63	17639.65	19242.91	22406.66	26269.52	33012.83	46546.25	65299.3	94464.72	136919.5	190204.5	236009.6	241113.7	233152	206753.7	159688.5	93852.4	41532.71	14477.24	5900.286	3697.054	_	2487.011	4	18/2.804		1	1	1036.557	924.3449	
Adj C/Co	-0.00136	0.006462	0.008277	0.004449	0.002521	0.000986	-0.00182	-0.00358	-0.00387	-0.00361	3.09E-05	0.004578	0.013552	0.024508			0.135207	0.217928	0.338342	0.489473	0.619389	0.633865	0.611284	0.536411	0.402921	0.216191	0.067798				_	-0.04295	_	-0.04469	_	<u> </u>	1	-0.04706	-0.04738	
C/Co	0.048642	0.056462	0.058277	0.054449	0.052521	0.050986	0.04818	0.046423	0.04613	0.046395	0.050031	0.054578	0.063552	0.074508	0.093634	0.132018	0.185207	0.267928	0.388342	0.539473	0.669389	0.683865	L		0.452921		_				_		-	0.005312				0.00294	0.002622	
ပိ	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	230856	730826	230856	230826			230856		<u>.</u>
dpm/diff	11229.38	13034.55	13453.57	12569.94	12124.68	11770.52	11122.68	10717.04	10649.34	10710.51	11549.94	12599.71	14671.25	17200.54	21615.87	30477.16	42756.13	61852.82	89650.99	124540.5	154532.4	157874.4	152661.3	135376.5			27194.44	9479.285					_	ш.	1092.022			<u> </u>	10	-
diff	0.27801	0.28193	0.2748	0.30203	0.28971	0.2771	0.27453	0.29584	0.30043	0.29939	0.31185	0.29429	0.27078	0.30059	0.31523	0.30432	0.24923	0.30392	0.27956	0.2969	0.2926	0.27775	0.28728	0.28994	0.27819	0.328	0.31434	0.28023	0.31282	0.28843		- 1			0.27928			Ĺ	10	į
mdp	3121.88	3674.83	3697.04	3796.5	3512.64	3261.61	3053.51	3170.53	3199.38	3206.62	3601.85	3707.97	3972.68	5170.31	6813.97	9274.81	10656.11	18798.31	25062.83	36976.07	45216.18	43849.62	43856.55	39251.06	29087.4	20156.22			1208.53	698.21	562.67	461.87	393.61	350.33	304.98	232.20	235.52	205.92		
pore vol.	0.43125	0.4825	0.53375	0.585	0.63625	0.6875	0.73875	0.79	0.84125	0.8925	0.94375	0.995	1.04625	1.0975	1.14875	1.2	1.25125		1.35375	1.405		İ_	1.55875		1.66125	1.7125	-		-		1.9		1	i	2.17375	,	1	10		Ĺ
conv.	17.25	19.3	21.35	23.4	25.45	27.5	29.55	31.6	33.65	35.7	37.75	39.8	41.85	43.9	45.95	48	50.05	52.1	54.15	56.2	58.25	60.3	62.35	64.4	66.45	68.5		72.6	74.65	76.7	78.75	80.8	82.85	84.9	86.95	01 00	-		İ	1
time	0:17:15	0:19:18	0:21:21	0:23:24	0:25:27	0:27:30	0.29:33	0:31:36	0.33.39	0:35:42	0:37:45	0:39:48	0:41:51	0:43:54	0:45:57	0:48:00	0:50:03	0:52:06	0:54:09	0:56:12	0:58:15	1:00:18	1:02:21	1:04:24	1:06:27	1:08:30	1:10:33	1:12:36	1:14:39	1:16:42	1:18:45	1:20:48	1:22:51	1:24:54	1:26:57	1.23:00	1.22.05	1.35.09	1:37:12	
1/99%	neth	shio	n n	flow	0.745	(ml /min)																														-				

2/95%	time	conv.	pore vol.	dpm	diff	dpm/diff	ပိ	02/2	Adj C/Co	Σ	Mo	M/Mo	pore vol.	CFIT
meth	0:18:15	-	0.45625	1961.66	0.30121	6512.599	207208	0.03143	-0.01857	9946.367	2006809	0.004956	0.45625	0
slug	0:20:18		0.5075	2380.78	0.28853	8251.412	207208	0.039822	-0.01018	12601.97	2006809	0.00628	0.5075	0
	0:22:21	22.35	0.55875	2780.3	0.27834	9988.863	207208	0.048207	-0.00179	15255.49	2006809	0.007602	0.55875	0
flow	0:24:24			3477.41	0.31543	11024.35	207208	0.053204	0.003204	16836.94	2006809	0.00839	0.61	0
0.745	0:26:27		0.66125	3114.01	0.27814	11195.84	207208	0.054032	0.004032	17098.84	2006809	0.00852	0.66125	0
mL/min)	0:28:30	28.5	:	2973.95	0.29027	10245.46	207208	0.049445	-0.00055	15647.38	2006809	0.007797	0.7125	0
	0:30:33	1		2790.12	0.28472	9799.522	207208	0.047293	-0.00271	14966.32	2006809	0.007458	0.76375	0
	0:32:36	32.6	0.815	2642.07	0.27815	9498.724	207208	0.045841	-0.00416	14506.93	2006809	0.007229	. 0.815	0
	0:34:39			2820	0.29924	9423.874	207208	0.04548	-0.00452	14392.61	2006809	0.007172	0.86625	0
	0:36:42	1	:	2661.3	0.28134	9459.373	207208	0.045652	-0.00435	14446.83	2006809	0.007199	0.9175	0
:	0:38:45	38.75	0.96875	2632.9	0.28206	9334.539	207208	0.045049	-0.00495	14256.17	2006809	0.007104	0.96875	0
	0:40:48	1		2643.93	0.26972	9802.499	207208	0.047308	-0.00269	14970.87	2006809	0.00746	1.02	0.001
	0:42:51	42.85	1.07125	2955.27	0.2723	10852.99	207208	0.052377	0.002377	16575.23	2006809	0.008259	1.07125	0.006
	0:44:54		1.1225	3352.62	0.26606	12600.99	207208	0.060813	0.010813	19244.87	2006809	0.00959	1.1225	0.026
	0:46:57	46.95	1.17375	5125.82	0.30247	16946.54	207208	0.081785	0.031785	25881.6	2006809	0.012897	1.17375	0.083
	0:49:00	49	1.225	8279.97	0.28032	29537.56	207208	0.14255	0.09255	45111.24	2006809	0.022479	1.225	0.194
	0:51:03	51.05	1.27625	16937.52	0.27741	61055.91	207208	0.29466	0.24466	93247.64	2006809	0.046466	1.27625	0.36
	0:53:06	53.1	1.3275	30171.24	0.27897	108152.3	207208	0.52195	0.47195	165175.6	2006809	0.082308	1.3275	0.554
	0:55:09	55.15	1.37875	41412.09	0.28258	146550	207208	0.70726	0.65726	223818.4	2006809	0.111529	1.37875	0.724
	0:57:12	57.2	1.43	45529.53	0.27524	165417.6	207208	0.798316	0.748316	252634	2006809	0.125888	1.43	0.838
	0:59:15	59.25	-	44188.59	0.26808	164833.6	207208	0.795498	0.745498	251742.1	2006809	0.125444	1.48125	0.875
	1:01:18			45227.63		165973	207208	0.800997	0.750997	253482.2	2006809	0.126311	1.5325	0.824
	1:03:21	63.35	-	39982.63	0.27252	146714.5	207208	0.708054	0.658054	224069.7	2006809	0.111655	1.58375	0.693
	1:05:24	65.4	1.635	30932.71	0.29456	105013.3	207208	0.506801	0.456801	160381.5	2006809	0.079919	1.635	0.513
	1:07:27	67.45	-	-	0.26754	51650.11	207208	0.249267	0.199267	78882.63	2006809	0.039307	1.68625	0.332
	1:09:30	1	1.737	4242	0.2554	16611.16	207208	- 1	0.030167	25369.39	2006809	0	1.7375	0.185
	1:11:33		1.78875	1582.39	0.30033	5268.838	207208		-0.02457	8046.832	2006809	0.00401	1.78875	0.091
	1:13:36			785	0.28855	2723.826	207208		-0.03685	4159.963	2006809	0.002073	1.84	
	1:15:39	7	1.89125	538	0.28998	1857.404	207208		-0.04104	2836.72	2006809		1.89125	
i	1:17:42			340	0.25676	1328.05	207208	9	-0.04359	2028.264	2006809	_	1.9425	
	1:19:45		•	285	0.277	1031.913	207208		-0.04502	1575.99	2006809	_	1.99375	0.002
	1:21:48	81.8	!	215.			207208		-0.04605	1249.889	2006809		2.045	0
	1:23:51			188	į		207208	_	-0.04665	1058.789	2006809	_	2.09625	0
	1:25:54		'	175			207208	į.	-0.0471	916.9457	2006809		2.1475	0
	1:27:57			131			207208		-0.04749	794.8605	2006809	0	2.19875	
	1:30:00			-	0.28471	447.1919	207208	_	-0.04784	682.9738	2006809	_	2.25	0
:	1:32:03	:		-	0.29551	410.9167	207208	0.001983	-0.04802	627.5726	2006809	0.000313	2.30125	0
	1:34:06		2.3525	105.63	0.29847	353.9049	207208	0.001708	-0.04829	540.5013	2006809	0.000269	2.3525	0
	1:36:09	96.1	2.4	!	0.28567	317.6392	207208		-0.04847	485.1145	2006809	0.000242	2.40375	0
	1:38:12	98.2	1	74.31	0.25573	290.5799	207208	0.001402	-0.0486	443.7882	2006809	0.000221	2.455	0
	:			1										
										2035991		1.014541		

5 1	Ų		5		3	2	Adj C/Co	ž	Mo	M/Mo	pore vol.	5
15.7	5 0.39375	10.43	0.26675	39.1003	208143	0.00019	-0.09981	59.7159	2028782	2.9E-05	0.39375	0
	3 0.445	17.16	0.28094	61.0807	208143	0.00029	-0.09971	93.28543	2028782	4.6E-05	0.445	0
	0.4962	73.93	0.29997	246.458	208143	0.00118	-0.09882	376.4029	2028782	0.00019	0.49625	0
:	0.5	236.31	0.26952	876.781	208143	0.00421	-0.09579	1339.064	2028782	0.00066	0.5475	0
	0.5987	638.07	0.30653	2081.59	208143	0.01	-0.09	3179.109	2028782	0.00157	0.59875	0
	9.0	1023.02	0.27701	3693.08	208143	0.01774	-0.08226	5640.256	2028782	0.00278	0.65	0
28.05	5 0.70125	1512.37	0.26163	5780.57	208143	0.02777	-0.07223	8828.372	2028782	0.00435	0.70125	0
	0.752	233	0.26682	8372.09	208143	0.04022	-0.05978	12786.27	2028782	0.0063	0.7525	0
	0.8037	2885.55	0.26693	10810.1	208143	0.05194	-0.04806	16509.78	2028782	0.00814	0.80375	0
	0.85	4036.54	0.29827	13533.2	208143	0.06502	-0.03498	20668.54	2028782	0.01019	0.855	0
:	0.9062	4283.46	0.26988	15871.7	208143	0.07625	-0.02375	24240.09	2028782	0.01195	0.90625	0
0:38:18 38.	3 0.9575	5083.34	0.27238	18662.7	208143	0.08966	-0.01034	28502.57	2028782	0.01405	0.9575	0.001
40.3	5 1.00875	5662.96	0.28933	19572.7	208143	0.09403	-0.00597	29892.36	2028782	0.01473	1.00875	0.004
4 42.	1.06	5495.62	0.25925	21198.1	208143	0.10184	0.00184	32374.87	2028782	0.01596	1.06	0.018
44.4	5 1.11125	6167.46	0.28476	21658.4	208143	0.10406	0.00406	33077.87	2028782	0.0163	1.11125	0.063
0:46:30 46.	5 1.1625	7334.39	0.26052	28152.9	208143	0.13526	0.03526	42996.5	2028782	0.02119	1.1625	0.16
48.5	5 1.21375	15052.7	0.26506	56789.9	208143	0.27284	0.17284	86732.43	2028782	0.04275	1.21375	0.313
50.6	6 1.265	28886.4	0.27691	104317	208143	0.50118	0.40118	159317.8	2028782	0.07853	1.265	0.498
0:52:39 52.65				148383	208143	0.71289	0.61289	226618.2	2028782	0.1117	1.31625	0.676
			0.26458			0.82229	0.72229	261396	2028782	0.12884	1.3675	0.81
						0.9058	0.8058	287942.1	2028782	0.14193	1.41875	0.871
					208143	0.84349	0.74349	268132.6	2028782	0.13216	1.47	0.848
	5 1.52125			,		0.71608	0.61608	227632.8	2028782	0.1122	1.52125	0.741
:02:54 62.	- 1			126361	208143	0.60709	0.50709	192985.4	2028782	0.09512	1.5725	0.571
	1	- 1		85087.9	208143	0.4088	0.3088	129950.6	2028782	0.06405	1.62375	0.388
-	- !	- 1	i	39127.3	208143	0.18798	0.08798	59757.22	2028782	0.02945	1.675	0.231
	-		0.28617	12789.3	208143	0.06144	-0.03856	19532.44	2028782	0.00963	1.72625	0.12
	1 1.7775			4545.52	208143	0.02184	-0.07816	6942.15	2028782	0.00342	1.7775	0.055
	-		0.27571	2393.31	208143	0.0115	-0.0885	3655.185	2028782	0.0018	1.82875	0.022
			0.2879	1644.08	208143	0.0079	-0.0921	2510.918	2028782	0.00124	1.88	0.008
		- 1		1296.74	208143	0.00623	-0.09377	1980.449	2028782	0.00098	1.93125	0.003
1:19:18 79.	1.982	_	0.29353	1172.62	208143	0.00563	-0.09437	1790.888	2028782	0.00088	1.9825	100.0
	2.0337	_	0.27532	1053.97	208143	0.00506	-0.09494	1609.681	2028782	0.00079	2.03375	0
				∞	208143	0.00431	-0.09569		2028782	0.00068	2.085	0
	2.1362	_	0		208143	0.00361	-0.09639	1147.805	2028782	0.00057	2.13625	0
	2.187		0.26006	628.547	208143	0.00302	-0.09698	959.9488	2028782	0.00047	2.1875	0
	2.2387	_	0	L.	208143	0.00259	-0.09741	822.6802	2028782	0.00041	2.23875	0
	2.2		0		208143	0.00226		719.7167	2028782	0.00035	2.29	0
	2.3412	_	0	387.324	208143	0.00186	-0.09814	591.5405	2028782	0.00029	2.34125	
95.7		93.76	0.26758	350.4	208143	0.00168	-0.09832	535.1482	2028782	0.00026	2.3925	
									_	_		

CFIT	0	0	0	0	0	0	0	0	0	0	0	0	0	0.001	0.005	0.023	0.074	0.174	0.326	0.508	0.683	908.0	0.857	0.823	0.705	0.537	0.36	0.212	0.109	0.05	0.02	0.007	0.005	0.001	0	0	0	0	0	0	
pore vol.	0.439583	0.490833	0.542083	0.593333	0.644583	0.695833	0.747083	0:798333	0.849583	0.900833	0.952083	1.003333	1.054583	1.105833	1.157083	1.208333	1.259583	1.310833	1.362083	1.413333	1.464583	1.515833	1.567083	1.618333	1.669583	1.720833	1.772083	1.823333	1.874583	1.925833	1.977083	2.028333	2.079583	2.130833	2.182083	2.233333	2.284583	2.335833	2.387083	2.438333	
M/Mo	0.013413	0.01513	0.013828	0.010993	0.009453	0.007939	0.006839	0.006504	0.00595	0.005974	0.005516	0.005158	0.00503	0.00503	0.005451	0.007499	0.014367	0.031898	0.057156	0.088531	0.116459	0.129843	0.135266	0.124422	0.119887	0.098972	0.070119	0.032631	0.011447	0.004185	0.002423	0.00179	0.001369	0.001087	0.000904	0.000774	0.000673	0.000622	0.000565	0.000469	1.175568
Mo	1875858	1875858	۰.	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	1875858	
Σ	25161.8	28381.72	25939.25	20620.91	17732.85	14893.14	12829.62	12200.1	11161.06	11206.39	10347.98	9675.223	9436.345	9436.396	10225.24	14067.51	26949.52	59836.42	107217.2	166071.7	218460.5	243567.8	253740.6	233397.3	224891.4	185657.2	131533	61210.53	21472.83	7850.29	4545.764	3358.136	2567.248	2038.231	1696.687	1452.183	1263.046	1166.339	1058.964	880.6292	2205199
Adj C/Co	0.054516	0.065332	-	1	:	0.020025	0.013093	0.010979	0.007489	0.007641	0.004758	0.002498	0.001696	0.001696	0.004346	0.017251	0.060521	0.170985	0.330133	0.527819	0.703788	0.788121	0.822291	0.75396	0.725389	0.593605	0.411807	0.1756	0.042125	-0.00363	-0.01473	-0.01872	-0.02138	-0.02315	-0.0243	-0.02512	-0.02576	-0.02608	-0.02644	-0.02704	
c/Co	0.084516	+-		:	0.059563	0.050025	0.043093	0.040979	0.037489	0.037641	0.034758	0.032498	0.031696	0.031696	0.034346	0.047251	0.090521	0.200985	0.360133	0.557819	0.733788	0.818121	0.852291	0.78396	0.755389	0.623605	0.441807	0.2056	0.072125	0.026368	0.015269	0.01128	0.008623	0.006846	0.005699	0.004878	0.004242	0.003918	0.003557	0.002958	
కి	194936	<u> </u>	-	1	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	194936	
dom/diff	16475.24	18583.55	16984.29	13501.99	11610.97	9751.603	8400.475	7988.281	7307.945	7337.627	6775.566	6335.062	6178.651	6178.685	6695.195	9211.009	17645.78	39179.19	70202.81	108739	143041.8	159481.3	166142.1	152821.9	147252.5	121563.1	86124.1	40078.92	14059.8	5140.147	2976.437	2198.812	1680.961	1334.576	1	1	4			576.611	
diff	0.27035	0.26027	0.27941	0 30475	0.25697	0.2808	0.29083	0.29098	0.28872	0.26784	0.24671	0.26998	0.2862	0.30551	0.28615	0.30956	0.25374	0.27914	0.23939	0.27699	0.26573	0.29129	0.23582	0.26956	0.25161	0.26773	0.29943	0.26672	0.27791	0.28099	0.24233	0.24083	0.28379		0.25094	0.27466	0.28134	0.23985	0.2583	0	
map	4454.08		4745.58				2443.11		2109.95		1671.6	1710.34	1768.33	1887.65	1915.83	2851.36	4477.44	10936.48	16805.85	30119.62	38010.49	46455.3	39179.64	41194.68	37050.2	32546.08	25788.14	10689.85	3907.36	1444.33	721.28	529.54	477.04	372.4	278.78	261.16	232.67	183.17	179.1	161.33	1
nore vol.	0.439583	0 490833	0.542083	0 593333	0 644583	0.695833	0.747083	0.798333	0.849583	0.900833	0.952083	1.003333	1.054583	1.105833	1.157083	1.208333	1.259583	1.310833	1.362083	1.413333	1.464583	1.515833	1.567083	1.618333	1.669583	1.720833	1.772083	1.823333	1.874583	1.925833	1.977083	2.028333	2.079583							2.438333	
Augo	17 58333	19 63333	51.68333		25 78333		+-	31.93333	33.98333	36.03333	38.08333	40.13333	42.18333	44.23333	46.28333	48.33333	50.38333	52.43333	54.48333	56.53333	58.58333	60.63333	62.68333	64.73333	66.78333	68.83333	70.88333	72.93333	74.98333	77.03333	79.08333	81.13333	83.18333	85.23333		89 3333	91 38333	93 43333	95 48333		1 :
time	0.17.35		0.51.41				0.29.53	0.31.56	0.33:59	0:36:02	0:38:05	0:40:08	0:42:11	0:44:14	0:46:17	0:48:20	0.50:23	0.52.26	0.54:29	0:56:32	0:58:35	1.00:38	1:02:41	1:04:44	1:06:47	1:08:50	1:10:53	1:12:56	1:14:59	1:17:02	1:19:05	1:21:08	1:23:11	1.25.14	1.27.17	1.29.20	1.31.23	1.33.26	1.35.20	1:37:32	
20/80%	tion the		50.0	, mol	745	(m) (min)										1.	i	1		-			1						1												

CFIT	0	0	0	0	0	0	0	0	0	0	0	0	0.001	0.005	0.018	0.052	0.119	0.23	0.371	0.525	0.664	0.763	0.798	0.763	0.667	0.529	0.383	0.253	0.153	0.084	0.043	0.05	0.009	0.004	0.001	0.001	0	0	0	0	
pore vot.	0.40625	0.4575	0.50875	0.56	0.61125	0.6625	0.71375	0.765	0.81625	0.8675	0.91875	0.97	1.02125	1.0725	1.12375	1.175	1.22625	1.2775	1.32875	1.38	1.43125	1.4825	1.53375	1.585	1.63625	1.6875	1.73875	1.79	1.84125	1.8925	1.94375	1.995	2.04625	2.0975	2.14875	2.2	2.25125	2.3025	2.35375	2.405	
M/Mo	0.006326	0.007209	0.008462	0.008708	0.007635	0.006492	0.0055	0.005384	0.005236	0.004893	0.004774	0.004124	0.004045	0.004171	0.005067	0.008923	0.018402	0.041315	0.0673	0.100299	0.116724	0.117335	0.118408	0.116744	0.111347	0.098712	0.080077	0.04731	0.021204	0.009032	0.004818	0.003081	0.00217	0.001626	0.001308	0.001146	0.001015	0.000889	0.000782	0.000748	1.178741
Mo	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	1991614	
Σ	12599.77	14357.21	16852.42	17342.38	15206.22	12929.7	10953.35	10722.18	10427.34	9744.825	9507.045	8213.711	8056.458	8307.847	10091.57	17770.84	36649.13	82283.9	134036.3	199757.4	232468.2	233685.3	235823.9	232508.3	221760.4	196596.9	159483.2	94223.61	42229.27	17988.57	9594.769	6136.789	4322.051	3238.329	2604.188	2281.565	2021.289	1770.906	1558.067	1490.634	2347596
Adj C/Co	0.00089	0.006594	<u> </u>	0.016281	0.009349	0.001961	-0.00445	-0.0052	-0.00616	-0.00837	-0.00915	-0.01334	-0.01385	-0.01304	-0.00725	0.017672	0.078938	0.227037	0.39499	0.608276	0.714433	0.718382	0.725323	0.714563	0.679683	0.598019	0.477573	0.265785	0.097047	0.018379	-0.00886	-0.02008	-0.02597	-0.02949	-0.03155	-0.0326	-0.03344	-0.03425	-0.03494	-0.03516	
°Z/C°	0.04089	0.046594	0.054691	0.056281	0.049349	0.041961	0.035547	0.034797	0.03384	0.031625	0.030853	0.026656	0.026146	0.026962	0.03275	0.057672	0.118938	0.267037	0.43499	0.648276	0.754433	0.758382	0.765323	0.754563	0.719683	0.638019	0.517573	0.305785	0.137047	0.058379	0.031138	0.019916	0.014026	0.010509	0.008451	0.007404	0.00656	0.005747	0.005056	0.004838	
Co	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	201759	
dpm/diff	8249.974	9400.691	11034.49	11355.3	9956.601	8465.999	7171.94	7020.579	6827.527	6380.635	6224.943	5378.105	5275.14	5439.743	6607.672	11635.84	23996.81	53877.16	87763.19	130795.5	152213.6	153010.5	154410.8	152239.8	145202.4	128726.1	104425.1	61694.95	27650.53	11778.41	6282.383	4018.196	2829.956	2120.366	1705.149	1493.904	1323.483	1159.539	1020.178	976.025	
diff	0.28663	0.26911	0.26909	0.25981	0.27512	0.28455	0.28475	0.27844	0.26984	0.315	0.26949	0.2818	0.26074	0.29565	0.29873	0.26071	0.29172	0.2912	0.27575	0.27012	0.24936	0.27572	0.27758	0.27144	0.2832	0.25616	0.26041	0.24022	0.25181	0.26964	0.24612	0.26105	0.25911	0.26328	0.2525	0.26412	0.26394	0.25511	0.26514	0.24317	
mdp	2364.69	2529.82	2969.27	2950.22	2739.26	2409	2042.21	1954.81	1842.34	2009.9	1677.56	1515.55	1375.44	1608.26	1973.91	3033.58	7000.35	15689.03	24200.7	35330.47	37955.98	42188.05	42861.35	41323.98	41121.33	32974.48	27193.33	14820.36		3175.93	546.	1048.95	733.27	558.25	430.55	394.57	349.32	295.81		237.34	
pore vol.	0.40625	0.4575	0.50875	0.56	0.61125	0.6625	0.71375	0.765	0.81625	0.8675	0.91875	0.97	1.02125	1.0725	1.12375	1.175	1.22625	1.2775	1.32875	1.38	1.43125	1.4825	1.53375	1.585	1.63625	1.6875	1.73875	1.79	1.84125	1.8925	1.94375	1.995	2.04625	2.0975	2.14875	2.2	2.25125	2.3025	2.35375	2.405	
conv.	16.25	18.3	20.35	22.4	24.45	26.5	28.55	30.6	32.65	34.7	36.75	38.8	40.85	42.9	44.95	47	49.05	51.1	53.15	55.2	57.25	59.3	61.35	63.4	65.45	67.5	69.55	71.6	73.65	75.7	77.75	79.8	81.85	83.9	85.95	88	90.05	92.1	94.15	96.2	
time	0:16:15	0:18:18	0:20:21	0:22:24	0:24:27	0:26:30	0:28:33	0:30:36	0:32:39	0:34:42	0:36:45	0:38:48	0:40:51	0:42:54	0:44:57	0:47:00	0:49:03	0:51:06	0:53:09	0:55:12	0:57:15	0:59:18	1:01:21	1:03:24	1:05:27	1:07:30	1:09:33	1:11:36	1:13:39	1:15:42	1:17:45	1:19:48	1:21:51	1:23:54	1:25:57	1:28:00	1:30:03	1:32:06	1:34:09	1:36:12	
20/20%	meth	skug	10	Mo.	0.745	(mL/min)		-		-		:		-			:														•	:		1	:			:		:	

CFIT	0	0	0	0	0	0	0.001	0.007	0.025	0.067	0.147	0.264	0.408	0.557	0.686	0.768	0.788	0.741	0.637	0.502	0.363	0.242	0.147	0.084	0.044	0.022	0.01	0.005	0.002	0.001	0	0	0	0	0	0	0	0	0	0		
pore vol.	0.55208	0.60333	0.65458	0.70583	0.75708	0.80833	0.85958	0.91083	0.96208	1.01333	1.06458	1.11583	1.16708	1.21833	1.26958	1.32083	1.37208	1.42333	1.47458	1.52583	1.57708	1.62833	1.67958	1.73083	1.78208	1.83333	1.88458	1.93583	1.98708	2.03833	2.08958	2.14083	2.19208	2.24333	2.29458	2.34583	2.39708	2.44833	2.49958	2.55083		
M/Mo	2.6E-06	2.6E-06	3.7E-06	1.9E-06	2.1E-06	7.9E-06	4.2E-06	1.5E-05	7.9E-05	0.00032	0.0013	0.0092	0.04454	0.09231	0.12494	0.14072	0.14627	0.14235	0.11417	0.07244	0.03694	0.01812	0.00805	0.00402	0.00247	0.0019	0.00159	0.00137	0.0012	0.00103	0.00089	0.00073	0.00056	0.00043	0.00034	0.00026	0.0002	0.00017	0.00015	0.00013	***************************************	0.96924
Mo	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647	3100647		
Σ	8.06448	7.92919	11.4151	5.84749	6.46477	24.5197	12.982	46.4204	244.551	1002.46	4036.86	28525.1	138088	286212	387400	436311	453531	441381	353989	224624	114541	56178.8	24945	12477.2	7657.37	5896.93	4922.35	4257.17	3726.79	3195.28	2763.32	2276.72	1726.41	1337.93	1049.03	818.683	633.889	533.901	467.498	400.207	1000	3005273
C/Co	1.7E-05	1.7E-05	2.4E-05	1.2E-05	1.4E-05	5.1E-05	2.7E-05	9.7E-05	0.00051	0.0021	0.00845	0.05969	0.28893	0.59887	0.8106	0.91294	0.94897	0.92355	0.74069	0.47	0.23966	0.11755	0.0522	0.02611	0.01602	0.01234	0.0103	0.00891	0.0078	0.00669	0.00578	0.00476	0.00361	0.0028	0.00219	0.00171	0.00133	0.00112	0.00098	0.00084		
တ	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928	312928		
dpm/diff	5.2804	5.19181	7.47428	3.82877	4.23295	16.0548	8.50023	30.3948	160.125	656.386	2643.22	18677.4	90415.8	187404	253658	285684	296959	289004	231782	147077	74997.9	36784.3	16333.3	8169.7	5013.83	3861.14	3223.02	2787.47	2440.2	2092.18	1809.34	1490.73	1130.4	876.036	686.873	536.05	415.053	349.583	306.105	262.044		
diff	0.29922	0.31203	-	0.31864	0.29294	0.21302	0.25764	0.25761	0.29477	0.25354	0.19449	0.30219	0.28488	0.25282	0.23892	0.27504	0.26643	0.29374	0.25985	0.27298	0.29799	0.2612	0.27898	0.2657	0.29216	0.35375	0.295	0.27559	0.34071	0.28347	0.26393	0.31449	0.28926	0.30299	0.32482	0.29126	0.30931	0.26523	0.27667	0.29163		
шфр	1.58	1.62	2.55	1.22	1.24	3.42	2.19	7.83	47.2	166.42	514.08	5644.13	25757.7	47379.4	60604	78574.5	79118.9	84891.9	60228.6	40149.2	22348.6	9608.05	4556.66	2170.69	1464.84	1365.88	950.79	768.2	831.4	593.07	477.54	468.82	326.98	265.43	223.11	156.13	128.38	92.72	84.69	76.42	!	
pore vol.	0.55208	0.60333	0.65458	0.70583	0.75708		0.85958	0.91083	0.96208	1.01333	1.06458	1.11583	1.16708	1.21833	1.26958	1.32083	1.37208	1.42333	1.47458	1.52583	1.57708	1.62833	1.67958	1.73083	1.78208	1.83333	1.88458	1.93583	1.98708	2.03833	2.08958	2.14083	2.19208	2.24333	2.29458	2.34583	2.39708	2,44833	2.49958	2.55083		
conv.	22.0833	24.1333	26.1833	28.2333	30.2833	32.3333	34.3833	≀प	4833		5833	6333	46.6833	48.7333	50.7833	52.8333	54.8833	56.9333	58.9833	61.0333	63.0833	65.1333	67.1833	69.2333	71.2833	73.3333	75.3833	77.4333	79.4833	81.5333	83.5833	85.6333	87.6833	89.7333	91.7833	93.8333	ı œ	10	0	102.033	,	
time	: 10	100	0:26:11	. +	1/	:	i	0:36:26	!	0:40:32	0:42:35	0:44:38	0:46:41	0:48:44	0:50:47	<u>i</u>	0:54:53	0:56:56	0:58:59	-	+-		1:07:11		1	-		1:17:26	4	1:21:32	1:23:35	1:25:38	1:27:41	1:29:44	1:31:47	1:33:50	1.35.53	1:37:56	39.59	2.0		
0/100%	bce	tracer		flow	0.745	(mL/min)			1										-	-					-	•			!	!		!			:			!				_

1/99%	time	conv.	nore vol.	map	diff	dpm/diff	ပိ	c/Co	Σ	Mo	M/Mo	pore vol	vol.	CFIT
bce	0:20:10		0.504167	6.23	0.2993	20.81524	300088	6.94E-05	31.79007	3018135	1.05E-05	0.50	0.504167	0
mobil.	0:22:13	22.21667	0.555417	13.5	0.32692	41.29451	300088	0.000138	63.06703	3018135	2.09E-05	0.55	0.555417	0
	0:24:16		0.606667	41.95	0.30077	139.4753	300088	0.000465	213.0137	3018135	7.06E-05	09.0	0.606667	0
flow	0:26:19	26.31667	0.657917	110.61	0.28692	385.5082	300088	0.001285	588.7673	3018135	0.000195	0.65	0.657917	0
0.745	0:28:22	t	0.709167	274.83	0.32678	841.0245	300088	0.002803	1284.455	3018135	0.000426	0.70	0.709167	0
(mL/min)	0:30:25	30.41667	0.760417	522.43	0.30691	1702.225	300088	0.005672	2599.724	3018135	0.000861	0.76	0.760417	0
	0:32:28	32.46667	0.811667	861.5	0.29139	2956.519	300088	0.009852	4515.343	3018135	0.001496	0.81	0.811667	0
	0:34:31	34.51667	0.862917	1556.16	0.31419	4952.927	300088	0.016505	7564.357	3018135	0.002506	0.86	0.862917	0.001
	0:36:34	36.56667	0.914167	2229.99	0.3014	7398.772	300088	0.024655	11299.78	3018135	0.003744	0.91	0.914167	0.005
	0:38:37	38.61667	0.965417	3410.41	0.31696	10759.75	300088	0.035855	16432.83	3018135	0.005445	96.0	0.965417	0.019
	0:40:40	40.66667	1.016667	4963.57	0.31184	15917.04	300088	0.053041	24309.3	3018135	0.008054	1.01	1.016667	0.055
	0:42:43	42.71667	1.067917	7178.51	0.29156	24621.04	300088	0.082046	37602.48	3018135	0.012459	1.06	1.067917	0.121
	0:44:46	44.76667	1.119167	12928.73	0.30482	42414.31	300088	0.14134	64777.26	3018135	0.021463	1.11	1.119167	0.223
	0:46:49	46.81667	1.170417	23342.52	0.29452	79256.15	300088	0.26411	121043.9	3018135	0.040106	1.17	1.170417	0.355
	0:48:52	48.86667	1.221667	40322.63	0.30067	134109.3	300088	0.4469	204818.4	3018135	0.067863	1.22	1.221667	0.502
	0:50:55	50.91667	1.272917	61946.39	0.31707	195371.3	30008	0.651047	298380.9	3018135	0.098863	1.27	1.272917	0.634
	0:52:58	52.96667	1.324167	76281.41	0.29659	257194.8	300088	0.857065	392800.8	3018135	0.130147	1.32	.324167	0.732
	0:55:01		1.375417	81202.03	0.30404	267076.8	300088	0.889995	407893	3018135	0.135147	1.3	.375417	0.775
	0:57:04	:	1	74733.41	0.28129	265681	300088	0.885344	405761.3	3018135	0.134441	1.42	1.426667	0.755
	0:59:07	59.11667	1.477917	72148.01	0.30984	232855.7	30008	0.775958	355628.9	3018135	0.117831	1.4.1	1.477917	0.676
	1:01:10	<u> </u>	1.529167	61333.12	0.32483	188816.1	300088	0.629202	288369.3	3018135	0.095546	1.6	1.529167	0.558
	1:03:13		-	40176.09	0.32152	124956.7	30008	0.4164	190840.2	3018135	0.063231	1.5	1.580417	0.425
	1:05:16		1.631667	18182.75	0.3021	60187.85	300088	0.200567	91921.9	3018135	0.030457	1.6	1.631667	0.296
	1:07:19	i	1.682917	5698.56	0.26194	21755.21	300088	0.072496	33225.65	3018135	0.011009	1.6	1.682917	0.193
!	1:09:22	:	1.734167	2055.15	0.30128	6821.395	300088	0.022731	10417.98	3018135	0.003452	1.7.	1.734167	0.117
	1:11:25		1.785417	903.13	0.28742	3142.196	300088	0.010471	4798.919	3018135	0.00159	1.7	1.785417	0.066
	1:13:28	ì	1.836667	672.76	0.3089	2177.922	300088	0.007258	3326.231	3018135		1.8	1.836667	0.035
:	1:15:31	75.51667	1.887917	505.23	0.2862	1765.304	300088	0.005883	2696.061	3018135	_	1.8	1.887917	0.017
	1:17:34	77.56667	1.939167	492.71	0.31507	1563.811	300088	0.005211	2388.331	3018135		1.9	1.939167	0.008
	1:19:37	79.61667	1.990417	439.92	0.29212	1505.956	300088		2299.972	3018135	_	9.	1.990417	0.004
	1:21:40	81.66667	2.041667	447.6	0.30832		300088		2217.168	3018135	_	2.0	2.041667	0.002
	1:23:43	83.71667	2.092917	464.71	0.32714	1420.523	300088	_	2169.494	3018135	_	2.0	2.092917	0.001
1	1:25:46	85.76667	2.144167	460.92	0.31857	1446.841	300088	_	2209.687	3018135	_	2.1	2.144167	0
	1:27:49	87.81667	-	420.91	0.2827	1488.893	300088		2273.912	3018135	이	2.1	2.195417	0
	1:29:52	89.86667	2.246667	421.68	0.28468	1481.242	30008	0.004936	2262.227	3018135		2.2	2.246667	0
:	1:31:55		2.297917	410.25	0.2835	1447.09	300088	0.004822	2210.068	3018135	0.000732	2.2	2.297917	0
	1:33:58	:	2.349167		0.29724	1271.801	300088	0.004238	1942.357	3018135	0.000644	2.3	2.349167	0
	1:36:01	1	<u> </u>	335.41	0.2904	1154.993	300088	0.003849	1763.963	3018135	0.000584	2.4	2.400417	0
	1:38:04	98.06667	-	-	0.30426	1031.453	300088	0.003437	1575.287	3018135	0.000522	2.4	2.451667	0
	1:40:07	100.1167	1	282.31	0.2999	941.3471	30008	0.003137	1437.672	3018135	0.000476	2.5	2.502917	0
		:									100000			
									3007926		0.390027			

%96/9	time	conv.	pore vol.	mdp	diff	dpm/diff	ပိ	°Z/C	Σ	Mo	M/Mo	pore vol.	CFIT
bce	0:24:15	24.25	0.60625	24.28	0.27883	87.07815	336095	0.000259	132.9901	3087318	4.31E-05	0.60625	0
mobil.	0:26:18	26.3	0.6575	76.9	0.31713	242.4873	336095	0.000721	370.3387	3087318	0.00012	0.6575	0
	0:28:21	28.35	0.70875	189.93	0.30453	623.6824	336095	0.001856	952.5189	3087318	0.000309	0.70875	0
flow	0:30:24	30.4	0.76	391.95	0.28275	1386.207	336095	0.004124	2117.084	3087318	0.000686	0.76	0
0.745	0:32:27	32.45	0.81125	831.85	0.32269	2577.861	336095	0.00767	3937.038	3087318	0.001275	0.81125	0
(mL/min)	0:34:30	34.5	0.8625	1239.13	0.27688	4475.332	336095	0.013316	6834.951	3087318	0.002214	0.8625	0
	0:36:33	36.55	0.91375	2406.36	0.32824	7331.099	336095	0.021813	11196.42	3087318	0.003627	0.91375	0
Marie of the second of the second	0:38:36	38.6	0.965	3580.02	0.31534	11352.89	336095	0.033779	17338.7	3087318	0.005616	0.965	0.001
	0:40:39	40.65	1.01625	4886.78	0.29164	16756.21	336095	0.049856	25590.92	3087318	0.008289	1.01625	0.005
	0:42:42	-	1.067	8406.34	0.31856	26388.56	336095	0.078515	40301.93	3087318	0.013054	1.0675	0.025
	0:44:45	44.75	1.11875	13521.76	0.29005	46618.72	336095	0.138707	71198.44	3087318	0.023062	1.11875	0.083
	0:46:48		1.1	20467.4	0.27096	75536.61	336095	0.224748	115363.3	3087318	0.037367	1.17	0.202
	0:48:51	48.85		34138	0.29446	115934.3	336095	0.344945	177060.6	3087318	0.057351	1.22125	0.379
1	0:50:54		1.272	47216.34	0.27894	169270.6	336095	0.503639	258518.5	3087318	0.083736	1.2725	0.582
	0:52:57			74287.86	0.31499	235842	336095	0.701712	360189.6	3087318	0.116667	1.32375	0.752
,	0:55:00	55	i	82118.73	0.29904		336095	0.817054	419394.8	3087318	0.135844	1.375	0.854
	0:57:03	:	1.42625	69263.98	0.24783	279481.8	336095	0.831556	426838.6	3087318	0.138255	1.42625	1 0.867
	0:59:06	59.1	1.4775	75311.37	0.28515	264111.4	336095	0.785824	403364.2	3087318	0.130652	1.4775	0.781
:	1:01:09		-	53456.32	0.245	218189.1	336095	0.649189	333229.2	3087318	0.107935	1.52875	0.618
	1:03:12	63.2	1.58	36521.73	0.27464	132980.4	336095	0.395663	203094.3	3087318	0.065783	1.58	0.423
	1:05:15	65.25	1.63125	17111.88	0.30742	55662.87	336095	0.165616	85011.12	3087318	0.027536	1.63125	0.249
	1:07:18	67.3	1.6825	5177.87	0.29538	17529.52	336095	0.052156	26771.96	3087318	0.008672	1.6825	5 0.124
:	1:09:21	69.35	1.73375	1895.02	0.28263	6704.95	336095	0.01995	10240.13	3087318	0.003317	1.73375	0.054
	1:11:24	71.4	1.785	1087.8	0.29733	3658.561	336095	0.010885	5587.538	3087318	0.00181	1.785	
	1:13:27	7	1.83625	689.68	0.29112	2369.057	336095	_	-	3087318	0.001172	1.83625	
:	1:15:30	75.5	1.8875	562.86	0.30316	1856.643	336095	0.005524	2835.559	3087318	0.000918	1.8875	
1	1:17:33	77.55	1.93875	470.63	0.29837	1577.337	336095	0.004693	2408.988	3087318	0.00078	1.93875	0.001
	1:19:36		1	419.41	0.30442	1377.735	336095			3087318	0.000682	1.99	0
	1:21:39	81.65	2.04125	387.44	0.30309	. :	336095	0.003803	1952.284	3087318	i	2.04125	
	1:23:42		'	,	0.30218	,	336095		1	3087318	_ 1	2.0925	
	1:25:45		.,		0.27866	1135.075	336095	0	1733.543	3087318	_	2.14375	2
	1:27:48	1		319.53	0.29993	1065.349	336095		1627.054	3087318	_	2.195	2
	1:29:51			312.82	0.3021	1035.485	336095	0.003081	1581.444	3087318	0.000512	2.24625	2
:	1:31:54		i		0.2975	976.8739	336095		1491.931	3087318		2.2975	2
	1:33:57		-	283.43	0.29978	945.46	336095	0.002813	1443.954	3087318		2.34875	2
	1:36:00	! :	1	260.05	0.28789	903.2964	336095	0.002688	1379.559	3087318	0.000447	2.	4.
•	1:38:03			277.52	0.31231	888.6043	336095	0.002644	1357.121	3087318	0.00044	2.45125	S.
:	1:40:06	100.1	2.5025		0.28273	892.0525	336095	0.002654	1362.387	3087318	0.000441	2.5025	2
	1:42:09	102.1	2.55375	248.98	0.29302	_	336095	0.002528	1297.709	3087318	0.00042	2.55375	2
:	1:44:12	104.2		222.53	0.28211	788.8058	336095	0.002347	1204.704	3087318	0.00039	2.605	2
	:			-					***************************************		000000		
									3033834		0.302030		

CFIT	0	0	0	9	0	0	5	0	0	0	5 0.001	5 0.007	5 0.03	5 0.093	5 0.215	5 0.388	7 0.578	5 0.741	5 0.845	0.866	0.796	5 0.65	75 0.463	6 0.289		25 0.075	25 0.031	75 0.012	35 0.004	25 0.001	75 0	75 0	0 60	25 0	25 0	75 0	95 0	25 0	75 0	75 0
pore vol.	0.45	0.50125	0.5525	0.60375	0.655	0.70625	0.7575	0.80875	0.86	0.91125	0.9625	1.01375	1.065	1.11625	1.1675	1.21875	1.27	1.32125	1.3725	1.42375	1.475	1.52625	1.5775	1.62875	1.68	1.73125	1.7825	1.83375	1.885	1.93625	1.9875	2.03875	2.09	2.14125	2.1925	2.24375	2.295	2.34625	2.3975	2.44875
M/Mo	3.23E-05	0.000114	0.000295	0.00000	0.001232	0.001952	0.002896	0.00386	0.005237	0.006489	0.008107	0.010531	0.014921	0.024332	0.036501	0.052146	0.079907	0.108819	0.127365	0.129811	0.119892	0.104751	0.07377	0.035468	0.011484	0.004255	0.002221	0.001488	0.001086	0.000863	0.000724	0.000608	0.000533	0.000461	0.000419	0.000385	0.000352	0.000341	0.000325	0.000297
Mo	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815	3158815
Σ	101.9146	359.8333	931.5175	2240.553	3890.309	6164.668	9147.416	12193.75	16542.56	20497.05	25607.69	33264.29	47131.4	76859.49	115299.4	164718.5	252412.5	343738.8	402322.1	410047.5	378717.7	330890.6	233024.8	112038.4	36274.79	13442.13	7016.505		3431.361	2726.728	2286.715	1920.576	1684.749	1455.727	1323.521	1214.75	1111.293	1078.046	1025.316	936.6684
c/Co	0.000202	0.000713	0.001846	0.004439	0.007708	0.012214	0.018124	0.024159	0.032776	0.040611	0.050736	0.065906	0.093381	0.152281	0.228442	0.326355	0.500103	0.681047	0.797118	0.812424	0.750351	0.655591	0.46169	0.221981	0.071871	0.026633	0.013902	0.009313	0.006799	0.005402	0.004531	0.003805	0.003338	0.002884	0.002622	0.002407	0.002202	0.002136	0.002031	0.001856
ပိ	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477	330477
dpm/diff	66.73077	235.6086	609.9312	1467.051	2547.264	4036.45	5989.469	7984.122	10831.6	13420.88	16767.19	21780.51	30860.31	50325.41	75494.8	107853	165272.6	225070.4	263429.1	268487.5	247973.6	216657.8	152578.1			8801.524	4594.209	3077.759	2246.758	1785.384	1497.276	1257.538	1103.126	953.1689	866.6041		727.6433	705.8739	671.348	613.3039
diff	0.312	0.28055	0.29523	0.28286	0.27981	0.29849	0.3048	0.29789	0.29549	0.29122	0.31541	0.30275	0.29121	0.29163	0.30645	0.31956	0.29097	0.29191	0.3179	0.29254	0.32219	0.26668	0.29909	0.30594	0		0.30252	0.27971		0.27682		0.26365	0.3039		0.28749	0.29245	0.28459	1		0.28578
dpm	20.82	66.1	180.07	414.97	712.75	1204.84	1825.59			3908.43	ĺ	6594.05	8986.83	14676.4	23135.38	34465.5	48089.36	65700.31	83744.12	78543.33	79894.62	57778.29	45634.57	22443.62	71	2541	1389.84	860.88	658.3	494.23			335.24	267.85	249.14	232.61	207.08	195.4	186.91	175.27
pore vol.	0.4	0.5012		0.6037	0.655	0.70625	0.757	0		0.91125		1.01375	1.06	1.1162	1.167	1.21875	1.27	1.32125	1.3725		1.47	1.52625	1.5775	1.6287		1.7312		1.83375		1.93625			2.09	2.1412	_	2.2437	_	<u> </u>	2.	2.44875
S			!		26.2			32.35		. 36.45				44.65	46.7	48.75	50.8	52.85			2		63.1		67.2			73.35		7	79.	81.55	83.6			89.75	l	93.8	95.9	97.95
time	0:18:00	0:20:03	0:22:06	0:24:09	0:26:12	0:28:15	0:30:18	0:32:21	0:34:24	0:36:27	0:38:30	0:40:33	0:42:36	0:44:39	0:46:42	0:48:45	0:50:48	0:52:51	0:54:54	0:56:57	0:59:00	1:01:03	1:03:06	1:05:09	1:07:12	1:09:15	1:11:18	1:13:21	1:15:24	1:17:27	1:19:30	1:21:33	1:23:36	1:25:39	1:27:42	1:29:45	1:31:48	1:33:51	1:35:54	1:37:57
10/90%	pce	mobil.		flow	0.745	(mL/min)																													1					

:	conv.	9	шфр	diff	dpm/diff	တ	C/Co	Σ	Mo	M/Mo	pore vol.	CFIT
9:50	9.33333	833	1159.79	0.30853	3759.083	300000	0.01253	5741.06	2793750	0.002055	0.483333	0
1:23	1.38333	345	1513.23	0.29359	5154.229	300000	0.017181	7871.796	2793750	0.002818	0.534583	0
3:26	3.43333	858	2095.41	0.3165	6620.569	300000	0.022069	10111.26	2793750	0.003619	0.585833	0
:29	25.48333	0.637083	2378.47	0.28774	8266.039	300000	0.027553	12624.31	2793750	0.004519	0.637083	0
27:32	7.53333	883	2676.66	0.27057	9892.671	300000	0.032976	15108.58	2793750	0.005408	0.688333	
3:35	3333	395	3739.89	0.33339	11217.76	300000	0.037393	17132.33	2793750	0.006132	0.739583	0
:38	633	0.790833	4259.09	0.31983	13316.73	300000	0.044389	20337.98	2793750	0.00728	0.790833	0
3:41	3	0.842083	4358.84	0.28177	15469.5	300000	0.051565	23625.79	2793750	0.008457	0.842083	
5:44	35.73333	0.893333	5789.58	0.31795	18209.09	300000	0.060697	27809.83	2793750	0.009954	0.893333	0
37:47	37.78333	0.944583	5454.69	0.24726	22060.54	300000	0.073535	33691.97	2793750	0.01206	0.944583	0
9:50	39.83333	0.995833	8374.59	0.3003	27887.41	300000	0.092958	42591.05	2793750	0.015245	0.995833	0.003
0:41:53		1.0470	14147.11	0.31629	44728.29	300000	0.149094	68311.28	2793750	0.024451	1.047083	0.018
3:56		1.0983	20908.17	0.30507	68535.65	300000	0.228452	104671.1	2793750	0.037466	1.098333	0.07
5:59		1.1495	28003.02	0.29972		300000	0.311435	142691.9	2793750	0.051075	1.149583	0.189
8:02		1.2008	31910.67	0.29751	, -	300000	0.357531	163811.5	2793750	0.058635	1.200833	0.373
0:05		1.2520	36777.21	0.25819		300000	0.474808	217545.2	2793750	0.077869	1.252083	0.583
2:08		1.3033	64668.21	0.32706	197725.8	300000	0.659086	301976.8	2793750	0.10809	1.303333	0.762
1-1		1.3545	73093.53	0.29337	249151.3	300000	0.830504	380516.4	2793750	0.136203	1.354583	9 0.874
6:14	56.23333	-	79287.77	0.30359	261167.3	300000	0.870558	398867.7	2793750	0.142771	1.405833	0.893
3:17		1.4570	56759.66	0.2491	227858.9	300000	0.75953	347997.6	2793750	0.124563	1.457083	0.813
0:50		1.5083	54031.66	0.27867	193891.2	300000	0.646304	296120.3	2793750	0.105994	1.508333	0.647
:23		1.5595	37734.93	0.2824	133622.3	300000	0.445408	204074.6	2793750	0.073047	1.559583	0.436
1:26		1.6108	17971.22	0.26943	68.00799	300000	0.222336	101868.9	2793750	0.036463	1.610833	3 0.251
3:29	66.4833	\sim	~	0.28947	23404.08	300000	0.078014	35743.89	2793750	0.012794	1.662083	3 0.122
3:32	68.53333	. !	2783	0.27866	180.7866	300000	0.03329	15252.77	2793750	0.00546	1.713333	3 0.05
35	70.58333	1.76	1606.5	0.26804	5993.508	300000	0.019978	9153.586	2793750	0.003276	1.764583	10.017
1:12:38	72.63333	-	1262.35	0.29968	4212.326	300000	0.014041	6433.276	2793750	0.002303	1.815833	3 0.005
4:41	333	1.867083	935.11	0.27976	3342.544	300000	0.011142	5104.9	2793750	0.001827	1.867083	3 0.001
:16:44	76.733	1.918333	808.11	0.29278	2760.127	300000	0.0092	4215.404	2793750	0.001509	1.918333	9
18:47	78.7833	1.969583	647.87	0.28958	2237.275	300000	0.007458	3416.878	2793750	0.001223	1.969583	0
0:50	80.83	2.020833	600.37	0.27606	2174.781	300000	0.007249	3321.434	2793750	0.001189	2.020833	0
2:53		2.072083	499.59	0.29517	1692.55	300000	0.005642	2584.947	2793750	0.000925	2.072083	0
4:56	84.93	2.123333	446.45	0.28542	1564.186	300000	0.005214	2388.903	2793750	0.000855	2.123333	
6:23	86.98	2.174583	380.49	0.26874	1415.829	300000	0.004719	2162.325	2793750	0.000774	2.174583	
9:02	89.0333	2.225833	399.37	0.29257	1365.041	300000	0.00455	2084.759	2793750	0.000746	2.225833	0
1:05	91.0833	2.277083	374.28	0.28596	1308.854	300000	0.004363	1998.948	2793750	0.000716	2.277083	3
3:08		2.328333	404.18	0.31267	1292.673	300000	0.004309	1974.235	2793750	0.000707	2.328333	9
5:11	95.1833	2.379583	387.42	0.2906	1333.173	300000	0.004444	2036.088	2793750	0.000729	2.379583	3
7:14	97.233	2.430833	371.45	0.289	1285.294	300000	0.004284	1962.965	2793750	0.000703	2.430833	0
39.17	99.2833	2.482083	327.79	0.27217	1204.358	300000	0.004015	1839.355	2793750	0.000658	2.482083	9
1									rational units desirates and and and and and and and and and and			
	_	_	_			-	_	3046774		1.090568	_	_

0.30698 2848.003 340533
4631.531
0.29132 6511.637 340533
8075.28
0.28363 10082.33 340533
11972.02
13066.07
15442.8
17398.54
25779.62
23437.7
30718.58
68660.44
93320.51
114215.5
142314.4
199725.9
0.23552 272677 340533
0.26375 307077.2 340533
295315.1
249253.2
157355.3
81617.12
48980.03
28554.3
0.25223 21087.1 340533
10000
6496.06
4165.522
0.24885 2840.587 340533
0.27477 1932.161 340533
0.26683 1635.686 340533
0.25692 1338.082 340533
0.2656 1147.44 340533
0.25724 1024.374 340533
0.24725 870.8595 340533
0.24934 821.0877 340533
0.25113 754.0318 340533

Appendix B. CFITM Input Files

```
1
                   40
    2
          1
              25
  Methanol Run: 0% Methanol/100% Water
                         PULSE
             RF
PECLET
                  1.0
                           0.319
      5.0
          1
               0
    1
             0.0000
     0.400
     0.451
             0.0000
             0.0000
     0.503
     0.554
             0.0000
             0.0000
     0.605
             0.0000
     0.656
     0.708
             0.0000
             0.0000
     0.759
     0.810
             0.0000
     0.861
             0.0000
             0.0000
     0.913
             0.0028
     0.964
             0.0111
     1.015
             0.0184
     1.066
             0.0320
     1.118
             0.0563
     1.169
     1.220
             0.0911
     1.271
             0.1527
     1.323
             0.2566
             0.4205
     1.374
     1.425
             0.5675
             0.6260
     1.476
             0.6289
     1.528
             0.5736
      1.579
      1.630
             0.4732
             0.3275
      1.681
             0.1455
      1.733
      1.784
             0.0284
             0.0000
      1.835
      1.886
             0.0000
             0.0000
      1.938
             0.0000
      1.989
      2.040
             0.0000
      2.091
             0.0000
             0.0000
      2.143
             0.0000
      2.194
             0.0000
      2.245
             0.0000
      2.296
      2.348
              0.0000
      2.399
              0.0000
C$stop
```

```
1
              25
                 40
    2
         1
  Methanol Run: 1% Methanol/99% Water
                          PULSE
             RF
PECLET
                           0.326
                  1.0
       5.0
         1
               0
    1
             0.0000
     0.431
             0.0000
     0.483
             0.0000
     0.534
             0.0000
     0.585
             0.0000
     0.636
     0.688
             0.0000
             0.0000
     0.739
     0.790
             0.0000
             0.0000
     0.841
             0.0000
     0.893
     0.944
             0.0000
             0.0046
     0.995
             0.0136
     1.046
             0.0245
     1.098
     1.149
             0.0436
             0.0820
     1.200
             0.1352
     1.251
             0.2179
     1.303
     1.354
             0.3383
     1.405
             0.4895
     1.456
             0.6194
             0.6339
     1.508
     1.559
             0.6113
             0.5364
     1.610
     1.661
             0.4029
     1.713
             0.2162
     1.764
             0.0678
     1.815
             0.0000
     1.866
             0.0000
     1.918
             0.0000
     1.969
             0.0000
     2.020
             0.0000
     2.071
             0.0000
     2.123 - 0.0000
     2.174
             0.0000
     2.225
             0.0000
     2.276
             0.0000
     2.328
             0.0000
     2.379
             0.0000
     2.430
             0.0000
C$stop
```

```
1
    2
        . 1
              25
                 40
  Methanol Run: 5% Methanol/95% Water
                          PULSE
             RF
PECLET
                           0.326
                  1.0
      5.0
                0
          1
    1
             0.0000
     0.456
             0.0000
     0.508
             0.0000
     0.559
     0.610
             0.0000
             0.0000
     0.661
             0.0000
     0.713
     0.764
             0.0000
             0.0000
     0.815
             0.0000
     0.866
     0.918
             0.0000
             0.0000
     0.969
             0.0000
     1.020
             0.0024
     1.071
             0.0108
     1.123
     1.174
             0.0318
             0.0926
     1.225
             0.2447
     1.276
             0.4720
     1.328
             0.6573
     1.379
     1.430
             0.7483
             0.7455
     1.481
             0.7510
     1.533
             0.6581
     1.584
             0.4568
     1.635
             0.1993
     1.686
     1.738
             0.0302
             0.0000
     1.789
             0.0000
     1.840
     1.891
             0.0000
     1.943
             0.0000
             0.0000
     1.994
     2.045
             0.0000
     2.096
             0.0000
            0.0000
     2.148
             0.0000
      2.199
             0.0000
      2.250
             0.0000
      2.301
             0.0000
      2.353
             0.0000
      2.404
      2.455
             0.0000
C$stop
```

```
1
                 40
     2
         . 1
               25
  Methanol Run: 10% Methanol/90% Water
PECLET
             RF
                          PULSE
                  1.0
                           0.328
       5.0
                0
     1
          1
              0.0000
      0.394
      0.445
              0.0000
              0.0000
      0.496
      0.548
              0.0000
      0.599
              0.0000
              0.0000
      0.650
      0.701
              0.0000
      0.753
              0.0000
      0.804
              0.0000
              0.0000
      0.855
      0.906
             0.0000
      0.958
             0.0000
              0.0000
      1.009
             0.0018
      1.060
     1.111
             0.0041
     1.163
             0.0353
             0.1728
     1.214
             0.4012
     1.265
             0.6129
     1.316
             0.7223
     1.368
             0.8058
     1.419
             0.7435
     1.470
     1.521
             0.6161
     1.573
             0.5071
             0.3088
     1.624
     1.675
             0.0880
     1.726
             0.0000
     1.778
             0.0000
             0.0000
     1.829
     1.880
             0.0000
     1.931
             0.0000
             0.0000
     1.983
     2.034
             0.0000
     2.085
            10.0000
     2.136
             0.0000
     2.188
             0.0000
     2.239
             0.0000
             0.0000
     2.290
     2.341
             0.0000
     2.393
             0.0000
C$stop
```

```
. 1
              25 40
  Methanol Run: 20% Methanol/80% Water
                          PULSE
             RF
PECLET
                           0.322
                  1.0
      5.0
               0
          1
    1
             0.0000
     0.440
     0.491
             0.0000
             0.0000
     0.542
             0.0000
     0.593
     0.645
             0.0000
     0.696
             0.0000
     0.747
             0.0000
     0.798
             0.0000
             0.0000
     0.850
             0.0000
     0.901
     0.952
             0.0000
     1.003
             0.0000
             0.0017
     1.055
             0.0017
     1.106
     1.157
             0.0043
     1.208
             0.0173
             0.0605
     1.260
             0.1710
     1.311
     1.362
             0.3301
             0.5278
     1.413
             0.7038
     1.465
             0.7881
     1.516
             0.8223
     1.567
     1.618
             0.7540
             0.7254
     1.670
     1.721
             0.5936
     1.772
             0.4118
     1.823
             0.1756
     1.875
             0.0421
     1.926
             0.0000
     1.977
             0.0000
     2.028
             0.0000
     2.080
             0.0000
            -0.0000
     2.131
             0.0000
     2.182
             0.0000
     2.233
             0.0000
     2.285
     2.336
             0.0000
     2.387
             0.0000
             0.0000
     2.438
C$stop
```

```
1
    2
              25 40
  Methanol Run: 50% Methanol/50% Water
                          PULSE
PECLET
             RF
                           0.331
       5.0
                  1.0
               0
    1
         1
             0.0000
     0.406
     0.458
             0.0000
     0.509
             0.0000
             0.0000
     0.560
             0.0000
     0.611
             0.0000
     0.663
     0.714
             0.0000
     0.765
             0.0000
     0.816
             0.0000
             0.0000
     0.868
     0.919
             0.0000
     0.970
             0.0000
     1.021
             0.0000
     1.073
             0.0000
     1.124
             0.0000
     1.175
             0.0177
     1.226
             0.0789
     1.278
             0.2270
     1.329
             0.3950
             0.6083
     1.380
     1.431
             0.7144
     1.483
             0.7184
             0.7253
     1.534
     1.585
             0.7146
     1.636
             0.6797
     1.688
             0.5980
     1.739
             0.4776
     1.790
             0.2658
     1.841
             0.0970
     1.893
             0.0184
     1.944
             0.0000
             0.0000
     1.995
             0.0000
     2.046
     2.098 - 0.0000
             0.0000
     2.149
             0.0000
     2.200
     2.251
             0.0000
     2.303
             0.0000
             0.0000
     2.354
     2.405
             0.0000
C$stop
```

```
1
     2
               25 40
         . 1
   PCE Run: 0% Methanol/100% Water
 PECLET
              RF
                           PULSE
     159.
                            0.334
                   1.0
           1
                0
     0
                      0
                            0
      0.552
              0.0000
      0.603
              0.0000
      0.655
              0.0000
      0.706
              0.0000
      0.757
              0.0000
      0.808
              0.0000
      0.860
              0.0000
      0.911
              0.0000
      0.962
              0.0005
      1.013
              0.0021
      1.065
              0.0084
      1.116
              0.0597
      1.167
              0.2889
      1.218
              0.5989
      1.270
              0.8106
      1.321
              0.9129
      1.372
              0.9490
      1.423
              0.9235
      1.475
              0.7407
      1.526
              0.4700
      1.577
              0.2397
      1.628
             0.1175
      1.680
             0.0521
     1.731
             0.0261
      1.782
             0.0160
     1.833
             0.0123
     1.885
             0.0103
     1.936
             0.0089
     1.987
             0.0078
     2.038
             0.0067
     2.090
             0.0058
     2.141
             0.0048
     2.192
             0.0036
     2.243
            -0.0028
     2.295
             0.0022
     2.346
             0.0017
     2.397
             0.0013
     2.448
             0.0011
     2.500
             0.0010
     2.551
             0.0008
C$stop
```

```
1
               25 40
          1
  PCE Run: 1% Methanol/99% Water
PECLET
             RF
                          PULSE
                           0.337
                  1.0
     153.
                0
     0
          1
              0.0000
      0.504
             0.0001
      0.555
             0.0005
      0.607
      0.658
             0.0013
      0.709
             0.0028
      0.760
             0.0057
      0.812
             0.0099
      0.863
             0.0165
      0.914
             0.0247
      0.965
             0.0359
     1.017
             0.0530
     1.068
             0.0820
     1.119
             0.1413
     1.170
             0.2641
             0.4469
     1.222
     1.273
             0.6510
     1.324
             0.8571
     1.375
             0.8900
     1.427
             0.8853
             0.7760
     1.478
             0.6292
     1.529
     1.580
             0.4164
             0.2006
     1.632
     1.683
             0.0725
     1.734
             0.0227
             0.0105
     1.785
             0.0073
     1.837
     1.888
             0.0059
             0.0052
     1.939
     1.990
             0.0050
     2.042
             0.0048
     2.093
             0.0047
     2.144
             0.0048
     2.195
            0.0050
     2.247
             0.0049
     2.298
             0.0048
     2.349
             0.0042
     2.400
             0.0038
     2.452
             0.0034
     2.503
             0.0031
C$stop
```

```
2
           1
               25 40
   PCE Run: 5% Methanol/95% Water
 PECLET
              RF
                           PULSE
     305.
                            0.309
                   1.0
           1
                 0
     0
      0.606
              0.0003
      0.658
              0.0007
      0.709
              0.0019
      0.760
              0.0041
      0.811
              0.0077
              0.0133
      0.863
      0.914
              0.0218
      0.965
              0.0338
      1.016
              0.0499
      1.068
              0.0785
      1.119
              0.1387
      1.170
              0.2247
      1.221
              0.3449
      1.273
              0.5036
      1.324
              0.7017
      1.375
              0.8171
      1.426
              0.8316
      1.478
              0.7858
      1.529
              0.6491
      1.580
              0.3957
      1.631
              0.1656
      1.683
              0.0522
      1.734
              0.0200
      1.785
              0.0109
      1.836
              0.0070
      1.888
              0.0055
      1.939
             0.0047
             0.0041
      1.990
      2.041
             0.0038
      2.093
             0.0036
     2.144
             0.0034
     2.195
             0.0032
     2.246
             0.0031
            0.0029
     2.298
     2.349
             0.0028
     2.400
             0.0027
     2.451
             0.0026
     2.503
             0.0027
     2.554
             0.0025
     2.605
             0.0023
C$stop
```

```
1
              25 40
          1
  PCE Run: 10% Methanol/90% Water
                         PULSE
             RF
PECLET
                           0.320
                  1.0
    276.
               0
          1
    0
             0.0002
     0.450
     0.501
             0.0007
             0.0018
     0.553
             0.0044
     0.604
     0.655
             0.0077
     0.706
             0.0122
             0.0181
     0.758
             0.0242
     0.809
     0.860
             0.0328
     0.911
             0.0406
             0.0507
     0.963
             0.0659
     1.014
     1.065
             0.0934
             0.1523
     1.116
             0.2284
     1.168
     1.219
             0.3264
             0.5001
     1.270
             0.6810
     1.321
     1.373
             0.7971
     1.424
             0.8124
     1.475
             0.7504
             0.6556
     1.526
             0.4617
     1.578
     1.629
             0.2220
     1.680
             0.0719
     1.731
             0.0266
             0.0139
     1.783
     1.834
             0.0093
     1.885
             0.0068
             0.0054
     1.936
             0.0045
     1.988
     2.039
             0.0038
             0.0033
     2.090
            0.0029
     2.141
             0.0026
     2.193
     2.244
             0.0024
             0.0022
     2.295
     2.346
             0.0021
             0.0020
     2.398
             0.0019
     2.449
C$stop
```

```
1
     2
           1
               25 40
   PCE Run: 20% Methanol/80% Water
              RF
                          PULSE
 PECLET
                            0.313
                   1.0
     328.
                0
           1
     0
      0.483
              0.0125
              0.0172
      0.535
      0.586
              0.0221
              0.0276
      0.637
              0.0330
      0.688
      0.740
              0.0374
      0.791
              0.0444
              0.0516
      0.842
      0.893
              0.0607
      0.945
              0.0735
      0.996
              0.0930
      1.047
              0.1491
      1.098
              0.2285
      1.150
              0.3114
      1.201
              0.3575
      1.252
              0.4748
      1.303
              0.6591
      1.355
              0.8305
      1.406
              0.8706
      1.457
              0.7595
              0.6463
      1.508
      1.560
              0.4454
              0.2223
      1.611
              0.0708
      1.662
      1.713
              0.0333
      1.765
              0.0120
      1.816
              0.0140
      1.867
              0.0111
      1.918
             0.0092
      1.970
             0.0075
     2.021
             0.0072
     2.072
             0.0056
     2.123
             0.0052
     2.175
             0.0047
     2.226
             0.0046
     2.277
             0.0044
     2.328
             0.0043
     2.380
             0.0044
     2.431
             0.0043
     2.482
             0.0040
C$stop
```

```
1
               25 40
    2
          1
  PCE Run: 50% Methanol/50% Water
                          PULSE
PECLET
             RF
                           0.326
    221.
                  1.0
                0
    0
          1
             0.0084
     0.433
     0.485
             0.0136
     0.536
             0.0191
             0.0237
     0.587
     0.638
             0.0296
     0.690
             0.0352
     0.741
             0.0384
     0.792
             0.0453
     0.843
             0.0511
     0.895
             0.0757
     0.946
             0.0688
     0.997
             0.0902
     1.048
             0.1298
     1.100
             0.2016
             0.2740
     1.151
     1.202
             0.3354
     1.253
             0.4179
     1.305
             0.5865
     1.356
             0.8007
     1.407
             0.9018
     1.458
             0.8672
     1.510
             0.7320
     1.561
             0.4621
     1.612
             0.2397
     1.663
             0.1438
     1.715
             0.0839
     1.766
             0.0619
     1.817
             0.0458
     1.868
             0.0300
     1.920
             0.0191
     1.971
             0.0122
     2.022
             0.0083
     2.073
             0.0057
     2.125
             0.0048
           0.0039
     2.176
     2.227
             0.0034
     2.278
             0.0030
     2.330
             0.0026
     2.381
             0.0024
     2.432
             0.0022
C$stop
```

Appendix C. CFITM Output Files

EQUILIBRIUM TRANSPORT (MODEL A) THIRD-TYPE BOUNDARY CONDITION Methanol Run: 0% Methanol/100% Water

INITIAL VALUES OF COEFFICIENTS

NO	NAME	INITIAL VALUE
1	PECLET	5.000
2	RF	1.000
3	PUL	0.319

OBSERVED DATA

OBS. NO.	PORE VOLUME	CONCENTRATION
1	0.4000	0.0000
2	0.4510	0.0000
3	0.5030	0.0000
4	0.5540	0.0000
5	0.6050	0.0000
6	0.6560	0.0000
7	0.7080	0.0000
8	0.7590	0.0000
9	0.8100	0.000
10	0.8610	0.0000
11	0.9130	0.0000
12	0.9640	0.0028
13	1.0150	0.0111
14	1.0660	0.0184
15	1.1180	0.0320
16	1.1690	0.0563
17	1.2200	0.0911
18	1.2710	0.1527
19	1.3230	0.2566
20	1.3740	0.4205
21	1.4250	0.5675
22	1.4760	0.6260
23	1.5280	0.6289
24	1.5790	0.5736
25	1.6300	0.4732
26	1.6810	0.3275
27	1.7330	0.1455
28	1.7840	0.0284
29	1.8350	0.0000
30	1.8860	0.0000
31	1.9380	0.0000
32	1.9890	0.0000
33	2.0400	0.0000
34	2.0910	0.0000
35	2.1430	0.0000
36	2.1940	0.0000
37	2.2450	0.0000
38	2.2960	0.0000

39 2.3480 40 2.3990	0.0000	
7 0.2326818 8 0.2254175 9 0.2245778 10 0.2245075 11 0.2245041	PECLET 5.00000 3.95501 10.48430 21.69042 39.98299 66.54190 100.95358 130.64368 148.79398 156.06346 158.40369 159.08281 159.09472	RF 1.00000 1.61202 1.57499 1.26549 1.41942 1.31392 1.34595 1.34595 1.34595 1.34607

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

								95% CONFI	DENCE LIMITS
		- 1711	113 7 770		S.E.COEF	т-т ч	VALUE	LOWER	UPPER
	VARIABI		VALUE		23.127			112.2719	205.9175
		ECLET	159.09		0.011	-	2.14	1.3238	1.3684
	2	RF	1.34	5U /	0.011	.0 12	2.11	21020	
			COMPLETE	TMDIFF		0	RDERED	BY RESIDU	ALS
			COMPUTER	INPUT	PORE		NTRATIO		
-			ION RESI-	D113.7	NO	VOLUME	OBS.	FITTED	DUAL
NC		OBS.	FITTED	DUAL		1.015	0.011	0.006	0.005
1	0.400	0.000	0.000	0.000		0.964	0.003	0.001	0.001
2	0.451	0.000	0.000	0.000		1.066	0.003	0.018	0.000
3	0.503	0.000	0.000	0.000			0.000	0.000	0.000
4	0.554	0.000	0.000	0.000		0.400	0.000	0.000	0.000
5	0.605	0.000	0.000	0.000		0.451	0.000	0.000	0.000
6	0.656	0.000	0.000	0.000			0.000	0.000	0.000
7	0.708	0.000	0.000	0.000		0.554	0.000	0.000	0.000
8	0.759	0.000	0.000	0.000		0.605	0.000	0.000	0.000
9	0.810	0.000	0.000	0.000		0.656	0.000	0.000	0.000
10	0.861	0.000	0.000	0.000		0.708	0.000	0.000	0.000
11	0.913	0.000	0.000	0.000		0.759	0.000	0.000	0.000
12	0.964	0.003	0.001	0.001		0.810	0.000	0.000	0.000
13	1.015	0.011	0.006	0.005		0.861		0.000	0.000
14	1.066	0.018	0.018	0.000		2.399	0.000	0.000	0.000
15	1.118	0.032	• • • • •	-0.016		2.348	0.000	0.000	0.000
16	1.169	0.056		-0.047		0.913	0.000		
17	1.220	0.091	0.189	-0.098		2.296	0.000	0.000	0.000
18	1.271	0.153	0.303	-0.150		2.245	0.000	0.001	-0.001
19	1.323	0.257	0.434	-0.178		2.194	0.000	0.001	-0.001
20	1.374	0.420	0.558	-0.138	35	2.143	0.000	0.003	-0.003
21	1.425	0.568	0.656	-0.088	34	2.091	0.000		-0.007
22	1.476	0.626		-0.082	33	2.040	0.000	0.014	-0.014
22	1.470								

23	1.528	0.629	0.704	-0.075	15	1.118	0.032	0.048	-0.016
24	1.579	0.574	0.646	-0.073	32	1.989	0.000	0.026	-0.026
	1.630	0.473	0.550	-0.077	16	1.169	0.056	0.103	-0.047
25		0.328	0.435	-0.108	31	1.938	0.000	0.049	-0.049
26	1.681 .	0.328	0.318	-0.173	24	1.579	0.574	0.646	-0.073
27	1.733			-0.173	23	1.528	0.629	0.704	-0.075
28	1.784	0.028	0.219					0.550	-0.077
29	1.835	0.000	0.141	-0.141	25	1.630	0.473		
30	1.886	0.000	0.086	-0.086	22	1.476	0.626	0.708	-0.082
31	1.938	0.000	0.049	-0.049	30	1.886	0.000	0.086	-0.086
32	1.989	0.000	0.026	-0.026	21	1.425	0.568	0.656	-0.088
33	2.040	0.000	0.014	-0.014	17	1.220	0.091	0.189	-0.098
-	•	0.000	0.007	-0.007	26	1.681	0.328	0.435	-0.108
34	2.091			-0.003	20	1.374	0.420	0.558	-0.138
35	2.143	0.000	0.003					0.141	-0.141
36	2.194	0.000	0.001	-0.001	29	1.835	0.000	•	
37	2.245	0.000	0.001	-0.001	18	1.271	0.153	0.303	-0.150
38	2.296	0.000	0.000	0.000	27	1.733	0.145	0.318	-0.173
		0.000	0.000	0.000	19	1.323	0.257	0.434	-0.178
39	2.348		•		28	1.784	0.028	0.219	-0.190
40	2 399	0.000	0.000	0.000	28	4.70%	0.020	0.213	0.230

EQUILIBRIUM TRANSPORT (MODEL A) THIRD-TYPE BOUNDARY CONDITION Methanol Run: 1% Methanol/99% Water

INITIAL VALUES OF COEFFICIENTS

	*******	*****
NO	NAME	INITIAL VALUE
1	PECLET	5.000
2	RF	1.000
3	PUL	0.326

OBSERVED DATA

OBS. NO.	PORE VOLUME	CONCENTRATION
1	0.4310	0.0000
2	0.4830	0.0000
3	0.5340	0.0000
4	0.5850	0.0000
5	0.6360	0.0000
6	0.6880	0.0000
7	0.7390	0.0000
8	0.7900	0.0000
9	0.8410	0.0000
10	0.8930	0.0000
11	0.9440	0.0000
12	0.9950	0.0046
13	1.0460	0.0136
14	1.0980	0.0245
15	1.1490	0.0436
16	1.2000	0.0820
17	1.2510	0.1352
18	1.3030	0.2179
19	1.3540	0.3383
20	1.4050	0.4895
21	1.4560	0.6194
22	1.5080	0.6339
23	1.5590	0.6113
24	1.6100	0.5364
25	1.6610	0.4029
26	1.7130	0.2162
27	1.7640	0.0678
28	1.8150	0.0000
29	1.8660	0.0000
30	1.9180	0.0000
31	1.9690	0.0000
32	2.0200	0.0000
33	2.0710	0.0000
34	2.1230	0.0000
35_	2.1740	0.0000
36 ·	2.2250	0.0000
37	2.2760	0.0000
38	2.3280	0.0000

39	2.3790	0.0000	
40	2.4300	0.0000	
	SSQ	PECLET	RF
ITERATION	1.7593414	5.00000	1.00000
0	1.3673960	4.02193	1.60697
1	1.1304704	10.36198	1.57879
2	0.9330030	20.88302	1.26978
3	0.6351175	38.60093	1.41651
4	0.4244203	63.76383	1.31535
5		96.48217	1.35419
6	0.2966283	124.63864	1.34265
7	0.2591371	142.14987	1.34461
8	0.2515045	149.52063	1.34467
9	0.2505274	152.03288	1.34476
10	0.2504351		1.34478
11	0.2504297	152.80571	
12	0.2504297	152.83439	1.34478
CORRELATIO	N MATRIX		

1	2		
1 1.00			
2 0.04	25 1.0000		

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

								95% CONFI	DENCE LIMIT	rs.
			*** * ****		S.E.COE	т <u>-</u>	VALUE	LOWER	UPPER	
	VARIABL		VALUE		23.239		6.58	105.7853	199.8834	
	_	ECLET	152.83		0.013		4.60	1.3210	1.3685	5
	2	RF	1.34	178	0.011	., 11	4.00	1.0000		
			COMPUTED	TNDITT		0	RDERED	BY RESIDU	ALS	
		ERED BY	COMPUTER	IMPUI	PORE		NTRATIC		-	
			ION RESI-	DUAL	NO	VOLUME	OBS.	FITTED	DUAL	
МО	VOLUME	OBS.	FITTED			0.995	0.005		0.001	
1	0.431	0.000	0.000	0.000	13	1.046	0.014	-	0.000	
2	0.483	0.000	0.000	0.000		0.431	0.000		0.000	
3	0.534	0.000	0.000	0.000		0.483	0.000		0.000	
4	0.585	0.000	0.000	0.000	2	0.534	0.000		0.000	
5	0.636	0.000	0.000	0.000	3		0.000		0.000	
6	0.688	0.000	0.000	0.000		0.585	0.000		0.000	
7	0.739	0.000	0.000	0.000		0.636			0.000	
8	0.790	0.000	0.000	0.000		0.688	0.000		0.000	
9	0.841	0.000	0.000	0.000	7	0.739	0.000		0.000	
10	0.893	0.000	0.000	0.000		0.790	0.000		0.000	
11	0.944	0.000	0.001	-0.001		0.841	0.000		0.000	
12	0.995	0.005	0.004	0.001	40	2.430	0.000			
13	1.046	0.014	0.014	0.000		2.379	0.000		0.000	
14	1.098	0.025	0.037	-0.013		0.893	0.000		0.000	
15	1.149	0.044	0.084	-0.040	38	2.328	0.000		0.000	
16	1.200	0.082	0.159	-0.077	37	2.276	0.000		-0.001	
17	1.251	0.135		-0.127	11	0.944	0.000		-0.001	
	1.303	0.218		-0.170	36	2.225	0.000		-0.001	
18		0.218		-0.176		2.174	0.000		-0.003	
19	1.354	0.489		-0.133		2.123	0.000	0.005	-0.005	
20	1.405		• • • • •	-0.074		2.071	0.000	0.011	-0.011	
21	1.456	0.619		-0.080		1.098	0.025	0.037	-0.013	
22	1.508	0.634	0.714	- 0.000	- *					

23	1.559	0.611	0.680	-0.068	32	2.020	0.000	0.021	-0.021
24	1.610	0.536	0.601	-0.064	31	1.969	0.000	0.039	-0.039
25	1.661	0.403	0.494	-0.091	15	1.149	0.044	0.084	-0.040
26	1.713 .	0.216	0.377	-0.160	24	1.610	0.536	0.601	-0.064
27	1.764	0.068	0.270	-0.202	23	1.559	0.611	0.680	-0.068
28	1.815	0.000	0.182	-0.182	30	1.918	0.000	0.068	-0.068
29	1.866	0.000	0.115	-0.115	21	1.456	0.619	0.694	-0.074
30	1.918	0.000	0.068	-0.068	16	1.200	0.082	0.159	-0.077
31	1.969	0.000	0.039	-0.039	22	1.508	0.634	0.714	-0.080
32	2.020	0.000	0.021	-0.021	25	1.661	0.403	0.494	-0.091
33	2.071	0.000	0.011	-0.011	29	1.866	0.000	0.115	-0.115
34	2.123	0.000	0.005	-0.005	17	1.251	0.135	0.262	-0.127
35	2.174	0.000	0.003	-0.003	20	1.405	0.489	0.623	-0.133
36	2.225	0.000	0.001	-0.001	26	1.713	0.216	0.377	-0.160
37	2.276	0.000	0.001	-0.001	18	1.303	0.218	0.388	-0.170
38	2.328	0.000	0.000	0.000	19	1.354	0.338	0.515	-0.176
	2.379	0.000	0.000	0.000	28	1.815	0.000	0.182	-0.182
39 40	2.379	0.000	0.000	0.000	27	1.764	0.068	0.270	-0.202
→ ()	4.430	0.000							

EQUILIBRIUM TRANSPORT (MODEL A) THIRD-TYPE BOUNDARY CONDITION Methanol Run: 5% Methanol/95% Water

INITIAL VALUES OF COEFFICIENTS

计算 医乳腺 医乳腺性 医电影 医电影 医电影 医电影 医电影 医电影 医电影 医电影 医电影 医电影							
NO	NAME	INITIAL VALUE					
1	PECLET	5.000					
2	RF	1.000					
	PUL	0.326					

OBSERVED DATA

*==**=*=		GOVERNMENT A MIT ON
OBS. NO.	PORE VOLUME	CONCENTRATION
1	0.4560	0.0000
2	0.5080	0.0000
3	0.5590	0.000
4	0.6100	0.0000
5	0.6610	0.0000
6	0.7130	0.0000
ž	0.7640	0.0000
8	0.8150	0.0000
9	0.8660	0.0000
10	0.9180	0.0000
11	0.9690	0.0000
12	1.0200	0.0000
	1.0710	0.0024
13	1.1230	0.0108
14	1.1740	0.0318
15	1.2250	0.0926
16	1.2760	0.2447
17	1.3280	0.4720
18	1.3790	0.6573
19	1.4300	0.7483
20	1.4810	0.7455
21	1.5330	0.7510
22	1.5840	0.6581
23		0.4568
24	1.6350	0.1993
25	1.6860	
26	1.7380	0.0302
27	1.7890	0.0000
28	1.8400	0.0000
29	1.8910	0.0000
30	1.9430	0.0000
31	1.9940	0.0000
32	2.0450	0.0000
33	2.0960	0.0000
34	2.1480	0.0000
35	2.1990	0.0000
36	2.2500	0.0000
37	2.3010	0.0000
38	2.3530	0.0000
30	2.3355	

.39	2,4040	0.0000	
40	2.4550	0.0000	
		PECLET	RF
ITERATI			1.00000
0	2.5125510	5.00000	
1	2.0375895	6.02197	1.63007
2	1.8661717	16.81586	1.14096
3	1.3585833	28.57618	1.46650
4	1.2421442	55.70067	1.18348
2	0.6307918	77.18728	1.37174
5		132.13273	1.28056
6	0.3239347		1.32136
7	0.1571142	206.50526	
8	0.1274750	264.84063	1.31176
9	0.1242359	294.52444	1.31329
10	0.1240597	302.77202	1.31336
11	0.1240537	304.56661	1.31339
	0.1240537	304.74452	1.31339
12		304.75780	1.31339
13	0.1240537	304.75760	1.51557
CORRELA	TION MATRIX		

	1 2		
1 1	.0000		
	.0775 1.0000		
2 0			

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

	**								
								95% CONFI	DENCE LIMITS
	VARIABI	E NAME	VALUE		E.COE	FF. T-	VALUE	LOWER	UPPER
		ECLET	304.75	_	39.76		7.66	224.2514	385.2642
	1 F	RF	1.31		0.00		0.81	1.3014	1.3254
	2	KF	1.31		0.00				
	OPE	ve dada	COMPUTER	INPUT-		0	RDERED	BY RESIDU	IALS
-	ODE CON	CENTRO DI	ION RESI-	*****	PORE		NTRATIO		
		OBS.	FITTED	DUAL	NO	VOLUME	OBS.	FITTED	DUAL
NO	0.456	0.000	0.000	0.000	1	0.456	0.000	0.000	0.000
1	0.456	0.000	0.000	0.000	2	0.508	0.000	0.000	0.000
2	0.559	0.000	0.000	0.000	3	0.559	0.000	0.000	0.000
_		0.000	0.000	0.000	4	0.610	0.000	0.000	0.000
4	0.610	0.000	0.000	0.000	5	0.661	0.000	0.000	0.000
5	0.661	0.000	0.000	0.000	6	0.713	0.000	0.000	0.000
6 7	0.713 0.764	0.000	0.000	0.000	7	0.764	0.000	0.000	0.000
-	0.764	0.000	0.000	0.000	40	2.455	0.000	0.000	0.000
8	0.815	0.000	0.000	0.000	8	0.815	0.000	0.000	0.000
9	0.866	0.000	0.000	0.000	39	2.404	0.000	0.000	0.000
10	0.918	0.000	0.000	0.000	38	2.353	0.000	0.000	0.000
11	1.020	0.000		-0.001	9	0.866	0.000	0.000	0.000
12	1.020	0.002	•	-0.003	37	2.301	0.000	0.000	0.000
13	1.123	0.002	• • • • •	-0.015	36	2.250	0.000	0.000	0.000
14	1.174	0.011		-0.051	10	0.918	0.000	0.000	0.000
15	1.225	0.032		-0.102	35	2.199	0.000	0.000	0.000
16	1.225	0.093	•	-0.116	34	2.148	0.000	0.000	0.000
17		0.472		-0.082	11	0.969	0.000	0.000	0.000
18	1.328	0.657		-0.066	33	2.096	0.000	0.000	0.000
19	1.379	0.748	• • •	-0.090	32	2.045	0.000	0.000	0.000
20	1.430	0.746		-0.130	12	1.020	0.000	0.001	-0.001
21	1.481	0.746	0.075	0.100					

			0.004	-0.073	31	1.994	0.000	0.002	-0.002
22	1.533	0.751	0.824		13	1.071	0.002	0.006	-0.003
23	1.584	0.658	0.693	-0.035			0.002	0.005	-0.005
24	1.635	0.457	0.513	-0.056	30	1.943			-0.015
25	1.686	0.199	0.332	-0.133	29	1.891	0.000	0.015	
26	1.738	0.030	0.185	-0.155	14	1.123	0.011	0.026	-0.015
	1.789	0.000	0.091	-0.091	23	1.584	0.658	0.693	-0.035
27		0.000	0.039	-0.039	28	1.840	0.000	0.039	-0.039
28	1.840	0.000	0.015	-0.015	15	1.174	0.032	0.083	-0.051
29	1.891		0.005	-0.005	24	1.635	0.457	0.513	-0.056
30	1.943	0.000			19	1.379	0.657	0.724	-0.066
31	1.994	0.000	0.002	-0.002	22	1.533	0.751	0.824	-0.073
32	2.045	0.000	0.000	0.000			0.472	0.554	-0.082
33	2.096	0.000	0.000	0.000	18	1.328		0.838	-0.090
34	2.148	0.000	0.000	0.000	20	1.430	0.748	• • • • •	-0.091
35	2.199	0.000	0.000	0.000	27	1.789	0.000	0.091	
36	2.250	0.000	0.000	0.000	16	1.225	0.093	0.194	-0.102
	2.301	0.000	0.000	0.000	17	1.276	0.245	0.360	-0.116
37		• • • • -	0.000	0.000	21	1.481	0.746	0.875	-0.130
38	2.353	0.000		0.000	25	1.686	0.199	0.332	-0.133
39	2.404	0.000	0.000			1.738	0.030	0.185	-0.155
4.0	2 455	0.000	0.000	0.000	26	1./30	0.030	4.200	

EQUILIBRIUM TRANSPORT (MODEL A)
THIRD-TYPE BOUNDARY CONDITION
Methanol Run: 10% Methanol/90% Water

INITIAL VALUES OF COEFFICIENTS

	_	
NO	NAME	INITIAL VALUE
1	PECLET	5.000
2	RF	1.000
3	PUL	0.328

OBSERVED DATA

*********		CONCENTRATION
OBS. NO.		0.0000
1	0.3940	0.0000
2	0.4450	
3	0.4960	0.0000
4	0.5480	0.0000
5	0.5990	0.0000
6	0.6500	0.0000
7	0.7010	0.0000
8	0.7530	0.0000
9	0.8040	0.0000
10	0.8550	0.0000
11	0.9060	0.0000
12	0.9580	0.0000
13	1.0090	0.0000
14	1.0600	0.0018
15	1.1110	0.0041
16	1.1630	0.0353
17	1.2140	0.1728
18	1.2650	0.4012
19	1.3160	0.6129
20	1.3680	0.7223
21	1.4190	0.8058
22	1.4700	0.7435
23	1.5210	0.6161
24	1.5730	0.5071
25	1.6240	0.3088
26	1.6750	0.0880
27	1.7260	0.0000
28	1.7780	0.0000
29	1.8290	0.0000
30	1.8800	0.0000
31	1.9310	0.0000
32	1.9830	0.0000
33	2.0340	0.0000
34	2.0850	0.0000
35	2.1360	0.0000
	2.1880	0.0000
36	2.2390	0.0000
37		0.0000
38	2.2900	0.0000

39	2.3410	0.0000	
40	2.3930	0.0000	
ITERATION	SSQ	PECLET	RF
	2.3998257	5.00000	1.00000
0			1.57860
1	1.9379348	6.79970	
2	1.8858709	17.65172	1.07969
3	1.3257426	25.74722	1.40975
4	1.1300019	52.26530	1.15333
5	0.5767929	80.24640	1.32332
		129.93195	1.23941
6	0.2952515		1.27236
7	0.1622297	199.68445	
8	0.1413681	247.17486	1.26468
9	0.1394053	269.29171	1.26545
_	0.1393203	274.57353	1.26543
10		275.58952	1.26542
11	0.1393184		1.26542
12	0.1393184	275.61210	1.20542
CORRELATION	N MATRIX		
1	2		
1 1.000	0.0		
2 0.076			
2 0.076	1.0000		

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

							9	5% CONFI	DENCE LIMITS
		LE NAME	VALUE		S.E.COE	F. T-	VALUE	LOWER	UPPER
	VARIABI		275.61		37.81			199.0518	352.1724
	_	PECLET	1.26		0.000		9.14	1.2526	1.2783
	2	RF	1.20	542	0.000			2.200	
	OP1	DERED BY	COMPUTER	INPUT		0	RDERED E	BY RESIDU	ALS
			ION RESI-		PORE		NTRATION		
		OBS.	FITTED	DUAL	NO	VOLUME	OBS.	FITTED	DUAL
N	0.394	0.000	0.000	0.000		0.394	0.000	0.000	0.000
1		0.000	0.000	0.000	_	0.445	0.000	0.000	0.000
2	0.445	0.000	0.000	0.000		0.496	0.000	0.000	0.000
3	0.496		0.000	0.000		0.548	0.000	0.000	0.000
4	0.548	0.000	0.000	0.000		0.599	0.000	0.000	0.000
5	0.599	0.000		0.000		0.650	0.000	0.000	0.000
6	0.650	0.000	0.000	0.000		0.701	0.000	0.000	0.000
7	0.701	0.000	0.000	0.000		0.753	0.000	0.000	0.000
8	0.753	0.000	0.000			2.393	0.000	0.000	0.000
9	0.804	0.000	0.000	0.000		2.341	0.000	0.000	0.000
10	0.855	0.000	0.000	0.000			0.000	0.000	0.000
11	0.906	0.000	0.000	0.000		0.804	0.000	0.000	0.000
12	0.958	0.000		-0.001		2.290		0.000	0.000
13	1.009	0.000		-0.004		2.239	0.000		0.000
14	1.060	0.002		-0.017		0.855	0.000	0.000	
15	1.111	0.004	0.063	-0.059		2.188	0.000	0.000	0.000
16	1.163	0.035	0.160	-0.125		2.136	0.000	0.000	0.000
17	1.214	0.173	0.313	-0.140	11	0.906	0.000	0.000	0.000
18	1.265	0.401	0.498	-0.097	34	2.085	0.000	0.000	0.000
19	1.316	0-613	0.676	-0.063	33	2.034	0.000	0.000	0.000
20	1.368	0.722		-0.088	12	0.958	0.000	0.001	-0.001
	1.419	0.806		-0.065		1.983	0.000	0.001	-0.001
21	1.419	0.744		-0.104		1.931	0.000	0.003	-0.003
22	1.470	0.744	0.540						

							0.000	0.004	-0.004
23	1.521	0.616	0.741	-0.125	13	1.009	•		
			0.571	-0.064	30	1.880	0.000	0.008	-0.008
24	1.573	0.507				1.060	0.002	0.018	-0.017
25	1.624	0.309	0.388	-0.079	14				-0.022
		0.088	0.231	-0.143	29	1.829	0.000	0.022	
26	1.675			-0.120	28	1.778	0.000	0.055	-0.055
27	1.726	0.000	0.120				0.004	0.063	-0.059
28	1.778	0.000	0.055	-0.055	15	1.111	• • • •		-0.063
_		0.000	0.022	-0.022	19	1.316	0.613	0.676	
29	1.829			-0.008	24	1.573	0.507	0.571	-0.064
30	1.880	0.000	0.008				0.806	0.871	-0.065
31	1.931	0.000	0.003	-0.003	21	1.419			-0.079
		0.000	0.001	-0.001	25	1.624	0.309	0.388	
32	1.983			0.000	20	1.368	0.722	0.810	-0.088
33	2.034	0.000	0.000				0.401	0.498	-0.097
34	2.085	0.000	0.000	0.000	18	1.265			
		0.000	0.000	0.000	22	1.470	0.744	0.848	-0.104
35	2.136	•		-	27	1.726	0.000	0.120	-0.120
36	2.188	0.000	0.000	0.000				0.741	-0.125
	2.239	0.000	0.000	0.000	23	1.521	0.616		
37				0.000	16	1.163	0.035	0.160	-0.125
38	2.290	0.000	0.000			1.214	0.173	0.313	-0.140
39	2.341	0.000	0.000	0.000	17		•	• • • • •	-0.143
		0.000	0.000	0.000	26	1.675	0.088	0.231	-0.143
4.0	2 3 6 3	0.000	u. 000	0.000					

EQUILIBRIUM TRANSPORT (MODEL A)
THIRD-TYPE BOUNDARY CONDITION
Methanol Run: 20% Methanol/80% Water

INITIAL VALUES OF COEFFICIENTS

NO	NAME	INITIAL VALUE					
1	PECLET	5.000					
2	RF	1.000					
2	PUL	0.322					
_							

OBSERVED DATA

OBS. NO.	PORE VOLUME	CONCENTRATION
	0.4400	0.0000
1 2	0.4910	0.0000
3	0.5420	0.0000
4	0.5930	0.0000
5	0.6450	0.0000
6	0.6960	0.0000
7	0.7470	0.0000
8	0.7980	0.0000
ğ	0.8500	0.0000
10	0.9010	0.0000
11	0.9520	0.0000
12	1.0030	0.0000
13	1.0550	0.0017
14	1.1060	0.0017
15	1.1570	0.0043
16	1.2080	0.0173
17	1.2600	0.0605
18	1.3110	0.1710
19	1.3620	0.3301
20	1.4130	0.5278
21	1.4650	0.7038
22	1.5160	0.7881
23	1.5670	0.8223
24	1.6180	0.7540
25	1.6700	0.7254
26	1.7210	0.5936
27	1.7720	0.4118
28	1.8230	0.1756
29	1.8750	0.0421
30	1.9260	0.0000
31	1.9770	0.0000
32	2.0280	0.0000
33	2.0800	0.0000
34	2.1310	0.0000
35	2.1820	0.0000
36	2.2330	0.0000
37	2.2850	0.0000
38	2.3360	0.0000

39	2.3870	0.0000	
40	2.4380	0.0000	
40	2.4300		
TTERATION	SSQ	PECLET	RF
0	3.1821863	5.00000	1.00000
	2.6683041	4.62117	1.76768
1	2.1786787	11.35423	1.40497
2		37.32405	1.44531
3	1.2182719		1.35778
4	0.4977078	103.62416	
5	0.1255254	198.04523	1.43351
6	0.0311304	282.26962	1.40335
7	0.0222684	323.83838	1.41066
8	0.0222296	328.22786	1.41062
	0.0222295	328.24006	1.41065
9		520.21000	
CORRELATION	MATRIX		
*******	*====		
1	2		
1 1.000	0		
2 0.076	1.0000		

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

	-	**=****							
								95% CONFI	DENCE LIMITS
					S.E.COE	7 T-	VALUE	LOWER	UPPER
	VARIABI		VALUE		17,608			292.5910	363.8891
		PECLET	328.24		0.002		3.86	1.4054	1.4159
	2	RF	1.41	065	0.004	20 34	3.00	1.405.	
			COMPLETED	INPUT		0	RDERED	BY RESIDU	JALS
		JEKED BI	COMPUTER	INFUL	PORE	CONCE	NTRATIC	N RESI	-
			ION RESI-	DUAL	NO	VOLUME	OBS.	FITTED	DUAL
NO	VOLUME	OBS.	FITTED	0.000		1.721	0.594		0.057
1	0.440	0.000	0.000	0.000		1.772	0.412		0.051
2	0.491	0.000	0.000	0.000	_	1.465	0.704		0.021
3	0.542	0.000	0.000			1.670	0.725		0.020
4	0.593	0.000	0.000	0.000		1.413	0.528		0.020
5	0.645	0.000	0.000	0.000		1.362	0.330		0.004
6	0.696	0.000	0.000	0.000		1.055	0.002		0.002
7	0.747	0.000	0.000	0.000		1.106	0.002		0.001
8	0.798	0.000	0.000	0.000		0.440	0.000		0.000
9	0.850	0.000	0.000	0.000		0.491	0.000		0.000
10	0.901	0.000	0.000	0.000			0.000		0.000
11	0.952	0.000	0.000	0.000		0.542	0.000		0.000
12	1.003	0.000	0.000	0.000		0.593	0.000		0.000
13	1.055	0.002	0.000	0.002		0.645			0.000
14	1.106	0.002	0.001	0.001		0.696	0.000		0.000
15	1.157	0.004		-0.001		0.747	0.000		0.000
16	1.208	0.017	0.023	-0.006		0.798	0.000		0.000
17	1.260	0.060	0.074	-0.013		0.850	0.000		-
18	1.311	0.171	0.174	-0.003		0.901	0.000		0.000
19	1.362	0.330	0.326	0.004	40	2.438	0.000		0.000
20	1.413	0.528	0.508	0.020	11	0.952	0.000		0.000
21	1.465	0.704	0.683	0.021	39	2.387	0.000		0.000
22	1.516	0.788		-0.018	38	2.336	0.000		0.000
23	1.567	0.822		-0.035		1.003	0.000		0.000
	1.618	0.754		-0.069		2.285	0.000		0.000
24	1.670	0.725	0.705	0.020	-	2.233	0.000	0.000	0.000
25	1.670	0.723	000		•				

26 27 28 29 30 31 32 33 34 35 36 37	1.721 1.772 1.823 1.875 1.926 1.977 2.028 2.080 2.131 2.182 2.233 2.285	0.594 0.412 0.176 0.042 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.537 0.360 0.212 0.109 0.050 0.020 0.007 0.002 0.001 0.000 0.000	0.057 0.051 -0.037 -0.066 -0.050 -0.020 -0.007 -0.002 -0.001 0.000 0.000	35 34 15 33 18 16 32 17 22 31 28 30	2.182 2.131 1.157 2.080 1.311 1.208 2.028 1.260 1.516 1.977 1.567 1.823 1.926	0.000 0.000 0.004 0.000 0.171 0.017 0.000 0.788 0.000 0.822 0.176 0.000	0.000 0.001 0.005 0.002 0.174 0.023 0.007 0.074 0.806 0.020 0.857 0.212	0.000 -0.001 -0.002 -0.003 -0.006 -0.007 -0.013 -0.018 -0.020 -0.035 -0.037
								0.050	-0.050
38	2.336	• • • •		0.000	29	1.875	0.042	0.109	-0.066
39	2.387	0.000	0.000	0.000	24	1.618	0.754	0.823	-0.069
40	2.438	0.000	0.000	0.000			• • •		

EQUILIBRIUM TRANSPORT (MODEL A) THIRD-TYPE BOUNDARY CONDITION Methanol Run: 50% Methanol/50% Water

INITIAL VALUES OF COEFFICIENTS

*====		
NO	NAME	INITIAL VALUE
1	PECLET	5.000
2	RF	1.000
3	PUL	0.331

OBSERVED DATA

1 0.4060 0.0000 1 0.4580 0.0000 3 0.5090 0.0000 4 0.5600 0.0000 5 0.6110 0.0000 6 0.6630 0.0000 7 0.7140 0.0000 9 0.8160 0.0000 10 0.8680 0.0000 11 0.9190 0.0000 12 0.9700 0.0000 13 1.0210 0.0000 14 1.0730 0.0000 15 1.1240 0.0000 16 1.1750 0.0177 17 1.2260 0.0789 18 1.2780 0.2270 19 1.3290 0.3950 20 1.3800 0.6083 21 1.4310 0.7144 22 1.4830 0.7184 23 1.5340 0.7253 24 1.5850 0.7146 25 1.6360 0.6797 26 1.6880 0.5980 27 1.7390 0.4776 28 1.7900 0.2658 29 1.8410 0.0970 30 1.8930 0.0184 31 1.9440 0.0000 32 1.9950 0.0000 33 2.0460 0.0000 34 2.0980 0.0000 35 2.1490 0.0000 36 2.2000 0.0000			
2 0.4580 0.0000 3 0.5090 0.0000 4 0.5600 0.0000 5 0.66110 0.0000 6 0.6630 0.0000 7 0.7140 0.0000 8 0.7650 0.0000 9 0.8160 0.0000 10 0.8680 0.0000 11 0.9190 0.0000 12 0.9700 0.0000 13 1.0210 0.0000 14 1.0730 0.0000 15 1.1240 0.0000 16 1.1750 0.0177 17 1.2260 0.0789 18 1.2780 0.2270 19 1.3290 0.3950 20 1.3800 0.6083 21 1.4310 0.7144 22 1.4830 0.7184 22 1.4830 0.7184 22 1.5850 0.7146 25 1.6360 0.6797 26 1.6880 0.5980 27 1.7390 0.4776 28 1.7900 0.2658 29 1.8410 0.0970 30 1.8930 0.0184 31 1.9440 0.0000 32 1.9950 0.0000 33 2.0460 0.0000 34 2.0980 0.0000 35 2.1490 0.0000 36 2.2000 0.0000	OBS. NO.	PORE VOLUME	CONCENTRATION
2	1		
4 0.5600 0.0000 5 0.6110 0.0000 6 0.6630 0.0000 7 0.7140 0.0000 8 0.7650 0.0000 9 0.8160 0.0000 10 0.8680 0.0000 11 0.9190 0.0000 12 0.9700 0.0000 13 1.0210 0.0000 14 1.0730 0.0000 15 1.1240 0.0000 16 1.1750 0.0177 17 1.2260 0.0789 18 1.2780 0.2270 19 1.3290 0.3950 20 1.3800 0.6083 21 1.4310 0.7144 22 1.4830 0.7184 23 1.5340 0.7253 24 1.5850 0.7146 25 1.6880 0.5980 27 1.7390 0.4776 28 1.7900 0.2658 29 1.8410 0.0000	2		
5 0.6110 0.0000 6 0.6630 0.0000 7 0.7140 0.0000 8 0.7650 0.0000 9 0.8160 0.0000 10 0.8680 0.0000 11 0.9190 0.0000 12 0.9700 0.0000 13 1.0210 0.0000 14 1.0730 0.0000 15 1.1240 0.0000 16 1.1750 0.0177 17 1.2260 0.0789 18 1.2780 0.2270 19 1.3290 0.3950 20 1.3800 0.6083 21 1.4310 0.7144 22 1.4830 0.7184 23 1.5340 0.7253 24 1.5850 0.7146 25 1.6360 0.6797 26 1.6880 0.5980 27 1.7390 0.4776 28 1.7900<	3		
6 0.6630 0.0000 7 0.7140 0.0000 8 0.7650 0.0000 9 0.8160 0.0000 10 0.8680 0.0000 11 0.9190 0.0000 12 0.9700 0.0000 13 1.0210 0.0000 14 1.0730 0.0000 15 1.1240 0.0000 16 1.1750 0.0177 17 1.2260 0.0789 18 1.2780 0.2270 19 1.3290 0.3950 20 1.3800 0.6083 21 1.4310 0.7144 22 1.4830 0.7184 23 1.5340 0.7253 24 1.5850 0.7146 25 1.6360 0.6797 26 1.6880 0.5980 27 1.7390 0.4776 28 1.7900 0.2658 29 1.8410 0.0970 30 1.8930 0.0184	4		
7	5	0.6110	
8 0.7650 0.0000 9 0.8160 0.0000 10 0.8680 0.0000 11 0.9190 0.0000 12 0.9700 0.0000 13 1.0210 0.0000 14 1.0730 0.0000 15 1.1240 0.0000 16 1.1750 0.0177 17 1.2260 0.0789 18 1.2780 0.2270 19 1.3290 0.3950 20 1.3800 0.6083 21 1.4310 0.7144 22 1.4830 0.7184 23 1.5340 0.7253 24 1.5850 0.7146 25 1.6360 0.6797 26 1.6880 0.5980 27 1.7390 0.4776 28 1.7900 0.2658 29 1.8410 0.0970 30 1.8930 0.0184 31 1.9440 0.0000 32 1.9950 0.0000	6	0.6630	
9	7	0.7140	
10	8	0.7650	
11	9	0.8160	
12	10	0.8680	
13	11	0.9190	
13	12	0.9700	-
14 1.0730 0.0000 15 1.1240 0.0000 16 1.1750 0.0177 17 1.2260 0.0789 18 1.2780 0.2270 19 1.3290 0.3950 20 1.3800 0.6083 21 1.4310 0.7144 22 1.4830 0.7184 23 1.5340 0.7253 24 1.5850 0.7146 25 1.6360 0.6797 26 1.6880 0.5980 27 1.7390 0.4776 28 1.7900 0.2658 29 1.8410 0.0970 30 1.8930 0.0184 31 1.9440 0.0000 32 1.9950 0.0000 33 2.0460 0.0000 34 2.0980 0.0000 35 2.1490 0.0000 36 2.2000 0.0000 37 2.2510 0.0000	13	1.0210	* * * * * * * * * * * * * * * * * * * *
15	14	1.0730	*
16		1.1240	
17 1.2260 0.0789 18 1.2780 0.2270 19 1.3290 0.3950 20 1.3800 0.6083 21 1.4310 0.7144 22 1.4830 0.7184 23 1.5340 0.7253 24 1.5850 0.7146 25 1.6360 0.6797 26 1.6880 0.5980 27 1.7390 0.4776 28 1.7900 0.2658 29 1.8410 0.0970 30 1.8930 0.0184 31 1.9440 0.0000 32 1.9950 0.0000 33 2.0460 0.0000 34 2.0980 0.0000 35 2.1490 0.0000 36 2.2000 0.0000 37 2.2510 0.0000		1.1750	
18 1.2780 0.2270 19 1.3290 0.3950 20 1.3800 0.6083 21 1.4310 0.7144 22 1.4830 0.7184 23 1.5340 0.7253 24 1.5850 0.7146 25 1.6360 0.6797 26 1.6880 0.5980 27 1.7390 0.4776 28 1.7900 0.2658 29 1.8410 0.0970 30 1.8930 0.0184 31 1.9940 0.0000 32 1.9950 0.0000 33 2.0460 0.0000 34 2.0980 0.0000 35 2.1490 0.0000 36 2.2000 0.0000 37 2.2510 0.0000	_	1.2260	
19		1.2780	
20 1.3800 0.6083 21 1.4310 0.7144 22 1.4830 0.7184 23 1.5340 0.7253 24 1.5850 0.7146 25 1.6360 0.6797 26 1.6880 0.5980 27 1.7390 0.4776 28 1.7900 0.2658 29 1.8410 0.0970 30 1.8930 0.0184 31 1.9440 0.0000 32 1.9950 0.0000 33 2.0460 0.0000 34 2.0980 0.0000 35 2.1490 0.0000 36 2.2000 0.0000 37 2.2510 0.0000		1.3290	
22 1.4830 0.7184 23 1.5340 0.7253 24 1.5850 0.7146 25 1.6360 0.6797 26 1.6880 0.5980 27 1.7390 0.4776 28 1.7900 0.2658 29 1.8410 0.0970 30 1.8930 0.0184 31 1.9440 0.0000 32 1.9950 0.0000 32 1.9950 0.0000 33 2.0460 0.0000 34 2.0980 0.0000 35 2.1490 0.0000 36 2.2000 0.0000 37 2.2510 0.0000		1.3800	
23	21		
24 1.5850 0.7146 25 1.6360 0.6797 26 1.6880 0.5980 27 1.7390 0.4776 28 1.7900 0.2658 29 1.8410 0.0970 30 1.8930 0.0184 31 1.9440 0.0000 32 1.9950 0.0000 33 2.0460 0.0000 34 2.0980 0.0000 35 2.1490 0.0000 36 2.2000 0.0000 37 2.2510 0.0000	22	1.4830	
24 1.5850 0.7146 25 1.6360 0.6797 26 1.6880 0.5980 27 1.7390 0.4776 28 1.7900 0.2658 29 1.8410 0.0970 30 1.8930 0.0184 31 1.9440 0.0000 32 1.9950 0.0000 33 2.0460 0.0000 34 2.0980 0.0000 35 2.1490 0.0000 36 2.2000 0.0000 37 2.2510 0.0000	23	1.5340	
25	24		
26 1.6880 0.5980 27 1.7390 0.4776 28 1.7900 0.2658 29 1.8410 0.0970 30 1.8930 0.0184 31 1.9440 0.0000 32 1.9950 0.0000 33 2.0460 0.0000 34 2.0980 0.0000 35 2.1490 0.0000 36 2.2000 0.0000 37 2.2510 0.0000		1.6360	
27 1.7390 0.4776 28 1.7900 0.2658 29 1.8410 0.0970 30 1.8930 0.0184 31 1.9440 0.0000 32 1.9950 0.0000 33 2.0460 0.0000 34 2.0980 0.0000 35 2.1490 0.0000 36 2.2000 0.0000 37 2.2510 0.0000		1.6880	0.5980
28 1.7900 0.2658 29 1.8410 0.0970 30 1.8930 0.0184 31 1.9440 0.0000 32 1.9950 0.0000 33 2.0460 0.0000 34 2.0980 0.0000 35 2.1490 0.0000 36 2.2000 0.0000 37 2.2510 0.0000		1.7390	0.4776
29 1.8410 0.0970 30 1.8930 0.0184 31 1.9440 0.0000 32 1.9950 0.0000 33 2.0460 0.0000 34 2.0980 0.0000 35 2.1490 0.0000 36 2.2000 0.0000 37 2.2510 0.0000	_	1.7900	0.2658
30 1.8930 0.0184 31 1.9440 0.0000 32 1.9950 0.0000 33 2.0460 0.0000 34 2.0980 0.0000 35 2.1490 0.0000 36 2.2000 0.0000 37 2.2510 0.0000		1.8410	
31 1.9440 0.0000 32 1.9950 0.0000 33 2.0460 0.0000 34 2.0980 0.0000 35 2.1490 0.0000 36 2.2000 0.0000 37 2.2510 0.0000		1.8930	0.0184
32 1.9950 0.0000 33 2.0460 0.0000 34 2.0980 0.0000 35 2.1490 0.0000 36 2.2000 0.0000 37 2.2510 0.0000		1.9440	
33 2.0460 0.0000 34 2.0980 0.0000 35 2.1490 0.0000 36 2.2000 0.0000 37 2.2510 0.0000		1.9950	0.0000
34 2.0980 0.0000 35 2.1490 0.0000 36 2.2000 0.0000 37 2.2510 0.0000		2.0460	0.0000
3.5 2.1490 0.0000 3.6 2.2000 0.0000 3.7 2.2510 0.0000			0.0000
36 2.2000 0.0000 37 2.2510 0.0000			0.0000
37 2.2510 0.0000			0.0000
0.0000			0.0000
	38	2.3030	0.0000

. 39 40	2.3540 2.4050	0.0000	
ITERATION 0 1 2 3 4 5 6 7 8 9 10 CORRELATION	SSQ 2.9583570 2.3833102 1.8883046 1.0679509 0.9037115 0.2358949 0.0712604 0.0467000 0.0465927 0.0465926 0.0465926 MATRIX	PECLET 5.00000 5.80803 13.34307 39.74408 91.46498 114.46765 182.02134 218.05743 221.29075 221.15155 221.15960	RF 1.00000 1.73222 1.30709 1.47595 1.25007 1.40446 1.35552 1.37170 1.37083 1.37086
1 1 1.000 2 0.061			

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

					95% CONFID	ENCE LIMITS
VARIA	BLE NAME	VALUE	S.E.COEFF.	T-VALUE	LOWER	UPPER
1	PECLET	221.15960	15.5099	14.26	189.7597	252.5595
2	RF	1.37086	0.0043	319.91	1.3622	1.3795

	ORI	DERED BY	COMPUTER	INPUT-		01	RDERED BY	Y RESIDU	JALS
P			ION RESI-		PORE		NTRATION	RESI	-
NO	VOLUME	OBS.	FITTED	DUAL	NO	VOLUME	OBS. I	FITTED	DUAL
1	0.406	0.000	0.000	0.000	27	1.739	0.478	0.383	0.094
2	0.458	0.000	0.000	0.000	20	1.380	0.608	0.525	0.083
3	0.509	0.000	0.000	0.000	26	1.688	0.598	0.529	0.069
4	0.560	0.000	0.000	0.000	21	1.431	0.714	0.664	0.050
5	0.611	0.000	0.000	0.000	19	1.329	0.395	0.371	0.024
6	0.663	0.000	0.000	0.000	25	1.636	0.680	0.667	0.013
7	0.714	0.000	0.000	0.000	28	1.790	0.266	0.253	0.012
8	0.765	0.000	0.000	0.000	1	0.406	0.000	0.000	0.000
9	0.816	0.000	0.000	0.000	2	0.458	0.000	0.000	0.000
10	0.868	0.000	0.000	0.000	3	0.509	0.000	0.000	0.000
11	0.919	0.000	0.000	0.000	4	0.560	0.000	0.000	0.000
12	0.970	0.000	0.000	0.000	5	0.611	0.000	0.000	0.000
13	1.021	0.000	0.001	-0.001	6	0.663	0.000	0.000	0.000
14	1.073	0.000	0.005	-0.005	7	0.714	0.000	0.000	0.000
15	1.124	0.000	0.018	-0.018	8	0.765	0.000	0.000	0.000
16	1.175	0.018	0.052	-0.034	9	0.816	0.000	0.000	0.000
17	1.226	0.079	0.119	-0.041	10	0.868	0.000	0.000	0.000
18	1.278	0.227	0.230	-0.003	40	2.405	0.000	0.000	0.000
19	1.329	0.395	0.371	0.024	11	0.919	0.000	0.000	0.000
20	1.380	0.608	0.525	0.083	39	2.354	0.000	0.000	0.000
21	1.431	0,714	0.664	0.050	38	2.303	0.000	0.000	0.000
22	1.483	0.718		-0.045	12	0.970	0.000	0.000	0.000
23	1.534	0.725		-0.073	37	2.251	0.000	0.000	0.000
24	1.585	0.715		-0.049	36	2.200	0.000	0.001	-0.001
- /									

25 26 27 28	1.636 1.688 1.739 1.790	0.680 0.598 0.478 0.266	0.667 0.529 0.383 0.253	0.013 0.069 0.094 0.012	13 35 18 34 14	1.021 2.149 1.278 2.098 1.073	0.000 0.000 0.227 0.000 0.000	0.001 0.001 0.230 0.004 0.005	-0.001 -0.001 -0.003 -0.004 -0.005
29	1.841	0.097	0.153				0.000	0.009	-0.009
30	1.893	0.018	0.084	-0.066	33	2.046			
31	1.944	0.000	0.043	-0.043	15	1.124	0.000	0.018	-0.018
32	1.995	0.000	0.020	-0.020	32	1.995	0.000	0.020	-0.020
-		0.000	0.009	-0.009	16	1.175	0.018	0.052	-0.034
33	2.046				17	1.226	0.079	0.119	-0.041
34	2.098	0.000	0.004	-0.004	•				-0.043
35	2.149	0.000	0.001	-0.001	31	1.944	0.000	0.043	
36	2.200	0.000	0.001	-0.001	22	1.483	0.718	0.763	-0.045
	_		0.000	0.000	24	1.585	0.715	0.763	-0.049
37	2.251	0.000	• •				0.097	0.153	-0.056
38	2.303	0.000	0.000	0.000	29	1.841			•
39	2.354	0.000	0.000	0.000	30	1.893	0.018	0.084	-0.066
40	2.405	0.000	0.000	0.000	23	1.534	0.725	0.798	-0.073

EQUILIBRIUM TRANSPORT (MODEL A) THIRD-TYPE BOUNDARY CONDITION PCE Run: 0% Methanol/100% Water

INITIAL VALUES OF COEFFICIENTS

NO	NAME	INITIAL VALUE				
1	PECLET	159.000				
2	RF	1.000				
3	PUL	0.334				

OBSERVED DATA

OBS. NO.	PORE VOLUME	CONCENTRATION
1	0.5520	0.0000
2	0.6030	0.0000
3	0.6550	0.0000
4	0.7060	0.0000
5	0.7570	0.0000
6	0.8080	0.0000
7	0.8600	0.0000
8	0.9110	0.0000
9	0.9620	0.0005
10	1.0130	0.0021
11	1.0650	0.0084
12	1.1160	0.0597
13	1.1670	0.2889
1.4	1.2180	0.5989
15	1.2700	0.8106
16	1.3210	0.9129
17	1.3720	0.9490
18	1.4230	0.9235
19	1.4750	0.7407
20	1.5260	0.4700
21	1.5770	0.2397
22	1.6280	0.1175
23	1.6800	0.0521
24	1.7310	0.0261
25	1.7820	0.0160
26	1.8330	0.0123
27	1.8850	0.0103
28	1.9360	0.0089
29	1.9870	0.0078
30	2.0380	0.0067
31	2.0900	0.0058
32	2.1410	0.0048
33	2.1920	0.0036
34	2.2430	0.0028
35-	2.2950	0.0022
36	2.3460	0.0017
37	2.3970	0.0013
38	2.4480	0.0011

39 40	2.5000 2.5510	0.0010 0.0008
ITERATION 0 1 2 3 4 5 CORRELATION	SSQ 3.5356415 0.3227643 0.2397820 0.2355492 0.2327444 0.2327444 MATRIX	RF 1.00000 1.16641 1.20674 1.19223 1.19765 1.19765
1 1.000	0	

1

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

VARIABLE NAME VALUE S.E.COEFF. T-VALUE LOWER UPPER 1 RF 1.19765 0.0097 124.03 1.1781 1.2172

	ORDERED BY COMPUTER			INPUT		ORDERED BY RESIDUALS			
PORE CONCENTRATION RESI-				PORE		CONCENTRATION RESI-			-
NO		OBS.	FITTED	DUAL	NO	VOLUME	OBS. I	FITTED	DUAL
1	0.552	0.000	0.000	0.000	18	1.423	0.923	0.741	0.182
2	0.603	0.000	0.000	0.000	17	1.372	0.949	0.788	0.161
3	0.655	0.000	0.000	0.000	16	1.321	0.913	0.768	0.145
4	0.706	0.000	0.000	0.000	15	1.270	0.811	0.686	0.124
5	0.757	0.000	0.000	0.000	19	1.475	0.741	0.637	0.104
6	0.808	0.000	0.000	0.000	14	1.218	0.599	0.557	0.042
7	0.860	0.000		-0.001	30	2.038	0.007	0.001	0.006
8	0.911	0.000		-0.007	29	1.987	0.008	0.002	0.006
9	0.962	0.001	0.025	-0.024	31	2.090	0.006	0.000	0.006
10	1.013	0.002		-0.065	32	2.141	0.005	0.000	0.005
11	1.065	0.008		-0.138	28	1.936	0.009	0.005	0.004
12	1.116	0.060	0.264	-0.204	33	2.192	0.004	0.000	0.004
13	1.167	0.289		-0.119	34	2.243	0.003	0.000	0.003
14	1.218	0.599	0.557	0.042	35	2.295	0.002	0.000	0.002
15	1.270	0.811	0.686	0.124	36	2.346	0.002	0.000	0.002
16	1.321	0.913	0.768	0.145	37	2.397	0.001	0.000	0.001
17	1.372	0.949	0.788	0.161	38	2.448	0.001	0.000	0.001
18	1.423	0.923	0.741	0.182	39	2.500	0.001	0.000	0.001
19	1.475	0.741	0.637	0.104	40	2.551	0.001	0.000	0.001
20	1.526	0.470		-0.032	27	1.885	0.010	0.010	0.000
21	1.577	0.240	•	-0.123	1	0.552	0.000	0.000	0.000
22	1.628	0.117		-0.124	2	0.603	0.000	0.000	0.000
23	1.680	0.052		-0.095	3	0.655	0.000	0.000	0.000
24	1.731	0.026		-0.058	4	0.706	0.000	0.000	0.000
25	1.782	0.016		-0.028	5	0.757	0.000	0.000	0.000
	1.833	0.012		-0.010	6	0.808	0.000	0.000	0.000
26	1.885	0.012	0.010	0.000	7	0.860	0.000	0.001	-0.001
27	1.885	0.010	0.005	0.004	8	0.911	0.000	0.007	-0.007
28	1.936	0.008	0.002	0.006	26	1.833	0.012	0.022	-0.010
29	2.038	0.007	0.001	0.006	9	0.962	0.001	0.025	-0.024
30		0.007	0.001	0.006	25	1.782	0.016	0.044	-0.028
31	2.090	0.000	0.000	0.000	40		3.423		

20 2 EUU U UUI U UUU U.UUT TT T.000 0.000	32 33 34 35 36 37 38 39	2.141 2.192 2.243 2.295 2.346 2.397 2.448 2.500	0.005 0.004 0.003 0.002 0.002 0.001 0.001	0.000 0.000 0.000 0.000 0.000 0.000	0.005 0.004 0.003 0.002 0.002 0.001 0.001	20 24 10 23 13 21 22	1.526 1.731 1.013 1.680 1.167 1.577 1.628	0.470 0.026 0.002 0.052 0.289 0.240 0.117 0.008	0.502 0.084 0.067 0.147 0.408 0.363 0.242 0.147	-0.0: -0.0: -0.0: -0.1: -0.1: -0.1: -0.2:
---	--	--	---	--	---	--	---	--	--	---

EQUILIBRIUM TRANSPORT (MODEL A) THIRD-TYPE BOUNDARY CONDITION PCE Run: 1% Methanol/99% Water

INITIAL VALUES OF COEFFICIENTS

NO	NAME	INITIAL VALUE
1	PECLET	153.000
2	RF	1.000
3	PUL	0.337
2		

OBSERVED DATA

	-	
OBS. NO.	PORE VOLUME	CONCENTRATION
1	0.5040	0.0000
2	0.5550	0.0001
3	0.6070	0.0005
4	0.6580	0.0013
5	0.7090	0.0028
6	0.7600	0.0057
7	0.8120	0.0099
8	0.8630	0.0165
9	0.9140	0.0247
10	0.9650	0.0359
11	1.0170	0.0530
12	1.0680	0.0820
13	1.1190	0.1413
14	1.1700	0.2641
15	1.2220	0.4469
16	1.2730	0.6510
17	1.3240	0.8571
18	1.3750	0.8900
19	1.4270	0.8853
20	1.4780	0.7760
21	1.5290	0.6292
22	1.5800	0.4164
23	1.6320	0.2006
24	1.6830	0.0725
25	1.7340	0.0227
26	1.7850	0.0105
27	1.8370	0.0073
28	1.8880	0.0059
29	1.9390	0.0052
30	1.9900	0.0050
31	2.0420	0.0048
32	2.0930	0.0047
33	2.1440	0.0048
34	2.1950	0.0050
35	2.2470	0.0049
36	2.2980	0.0048
37	2.3490	0.0042
38	2.4000	0.0038

-39	2.4520	0.0034
40	2.5030	0.0031
ITERATION	SSQ	RF
	3.5295768	1.00000
0		1.15290
1	0.4832896	
2	0.1273274	1.23162
3	0.1200646	1.21627
4	0.1184520	1.22041
-	0.1184520	1.22041
5		1.22011
CORRELATION	MATRIX	
	**====	
1		
1 1.000	0	
	-	

0.416

0.201

0.072

0.023

0.011

0.007

0.006

0.005

0.005

0.005

1

22

23

24

25

26

27

28

29

30

1.580

1.632

1.683

1.734

1.785

1.837

1.888

1.939

2.042

1.990

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

								9	95% CONFI	DENCE LIMITS
			E NAME	VALUE	2	S.E.COE	FF. T-	-VALUE	LOWER	UPPER
			RF NAME		2041	0.00		71.67	1.2060	1.2348
		1	K.F	4.24	2041	0.00				
		OBT	epen av	COMPUTER	TNPIT		0	RDERED I	BY RESIDU	ALS
	-			ION RESI		PORE		ENTRATION		-
	-	RE CON VOLUME	OBS.	FITTED	DUAL		VOLUME	OBS.	FITTED	DUAL
	NO	0.504	0.000	0.000	0.000		1.427	0.885	0.755	0.131
	1		0.000	0.000	0.000		1.324		0.732	0.125
	2	0.555 0.607	0.001	0.000	0.000		1.375	0.890	0.775	0.115
	3	0.658	0.001	0.000	0.001		1.478	0.776	0.676	0.100
	4	0.838	0.003	0.000	0.003		1.529	0.629	0.558	0.071
	5		0.006	0.000	0.006		0.914	0.025	0.005	0.019
	6	0.760	0.010	0.000	0.010		1.273	0.651	0.634	0.017
	7	0.812	0.017	0.001	0.015		0.965	0.036	0.019	0.016
	8	0.863	0.025	0.005	0.019		0.863	0.017	0.001	0.015
	9	0.914 0.965	0.036	0.019	0.016		0.812	0.010	0.000	0.010
	0		0.053	0.055	-0.002		0.760	0.006	0.000	0.006
_	1	1.017	0.033	0.121	-0.039		2.195	0.005	0.000	0.005
	2	1.068	0.141	0.223	-0.082		2.247		0.000	0.005
	3	1.119	0.264	0.355	-0.091		2.298		0.000	0.005
	4	1.170	0.447	0.502	-0.055		2.144	0.005	0.000	0.005
	5	1.222	0.651	0.634	0.017		2.349	0.004	0.000	0.004
	6	1.273	0.857	0.732	0.125		2.093		0.001	0.004
_	7	1.324	0.890	0.775	0.115		2.400	0.004	0.000	0.004
	8	1.375	0.885	0.755	0.131		2.452	0.003	0.000	0.003
	9	1.427	0.776	0.676	0.100		2.042		0.002	0.003
	0	1.478	0.778	0.558	0.071		2.503		0.000	0.003
2	1	1.529	0.629	0.336			0.709	0.003	0.000	0.003

5

30

3

2

1

29

22

28

0.709 0.658 1.990

0.607

0.555

0.504

1.017

1.939

1.580

1.888

-0.008

-0.096

-0.120

-0.094

-0.056

-0.027

-0.012

-0.003

0.001

0.425

0.296

0.193

0.117

0.066

0.035

0.017

0.008

0.004

0.002

95% CONFIDENCE LIMITS

0.000

0.004

0.000

0.000

0.000

0.055

0.008

0.425

0.001

0.005

0.001

0.000

0.000

0.053

0.005

0.416

0.006

0.001

0.001

0.000

0.000

0.000

-0.002

-0.003

-0.008

0.017 -0.012

32	2.093	0.005	0.001	0.004	27	1.837	0.007	0.035	-0.027
	2.144	0.005	0.000	0.005	12	1.068	0.082	0.121	-0.039
33	2.144	0.005	0.000						0 055
34	2.195	0.005	0.000	0.005	15	1.222	0.447	0.502	-0.055
34	2.193	0.005					0 011	0.066	-0.056
35	2.247	0.005	0.000	0.005	26	1.785	0.011	0.000	-0.050
33	2.27	0.005					0 141	0.223	-0.082
36	2.298	0.005	0.000	0.005	13	1.119	0.141	0.223	-0.002
30		• • •				1 170	0.264	0.355	-0.091
37	2.349	0.004	0.000	0.004	14	1.170	0.204	0.333	-0.031
٠,				0.004	26	1.734	0.023	0.117	-0.094
38	2.400	0.004	0.000	0.004	25	1./34	0.023	0.117	0.034
50				0.003	23	1.632	0.201	0.296	-0.096
39	2.452	0.003	0.000	0.003	23	1.032	0.201	0.200	
		• •		0 000	24	1.683	0.072	0.193	-0.120
40	2.503	0.003	0.000	0.003	24	1.003	0.072	0.100	0.220

EQUILIBRIUM TRANSPORT (MODEL A) THIRD-TYPE BOUNDARY CONDITION

PCE Run: 5% Methanol/95% Water

INITIAL VALUES OF COEFFICIENTS

NO	NAME	INITIAL VALUE
1	PECLET	305.000
2	RF	1.000
3	PUII.	0.309

OBSERVED DATA

*======		
OBS. NO.	PORE VOLUME	CONCENTRATION
1	0.6060	0.0003
2	0.6580	0.0007
3	0.7090	0.0019
4	0.7600	0.0041
5	0.8110	0.0077
6	0.8630	0.0133
7	0.9140	0.0218
8	0.9650	0.0338
9	1.0160	0.0499
10	1.0680	0.0785
11	1.1190	0.1387
12	1.1700	0.2247
13	1.2210	0.3449
14	1.2730	0.5036
15	1.3240	0.7017
16	1.3750	0.8171
17	1.4260	0.8316
18	1.4780	0.7858
19	1.5290	0.6491
20	1.5800	0.3957
21	1.6310	0.1656
22	1.6830	0.0522
23	1.7340	0.0200
24	1.7850	0.0109
25	1.8360	0.0070
26	1.8880	0.0055
27	1.9390	0.0047
28	1.9900	0.0041
29	2.0410	0.0038
30	2.0930	0.0036
31	2.1440	0.0034
32	2.1950	0.0032
33	2.2460	0.0031
34	2.2980	0.0029
35 _	2.3490	0.0028
36	2.4000	0.0027
37	2.4510	0.0026
38	2.5030	0.0027

·39 40	2.5540 2.6050	0.0025 0.0023
ITERATION 0 1 2 3 4 5 CORRELATION	SSQ 4.4736667 2.1920920 0.3298729 0.0400964 0.0381951 0.0381951	RF 1.00000 1.09357 1.19663 1.24727 1.25170

1 1.000	0	

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

-			ION RESI		PORE	CONCE	TRATION	RESI	-
	RE CON VOLUME	OBS.	FITTED	DUAL	NO	VOLUME	OBS.	FITTED	DUAL
NO		0.000	0.000	0.000	11	1.119	0.139	0.083	0.056
1	0.606	0.000	0.000	0.001	10	1.068	0.079	0.025	0.054
2	0.658	0.001	0.000	0.002	9	1.016	0.050	0.005	0.045
3	0.709	0.002	0.000	0.004	8	0.965	0.034	0.001	0.033
4	0.760	0.004	0.000	0.008	19	1.529	0.649	0.618	0.031
5	0.811		0.000	0.013	12	1.170	0.225	0.202	0.023
6	0.863	0.013	0.000	0.022	7	0.914	0.022	0.000	0.022
7	0.914		0.001	0.033	6	0.863	0.013	0.000	0.013
8	0.965	0.034	0.001	0.045	5	0.811	0.008	0.000	0.008
9	1.016	0.050 0.079	0.005	0.054	18	1.478	0.786	0.781	0.004
10	1.068		0.023	0.056	27	1.939	0.005	0.001	0.004
11	1.119	0.139 0.225	0.202	0.023	4	0.760	0.004	0.000	0.004
12	1.170	0.225	0.202	-0.034	28	1.990	0.004	0.000	0.004
13	1.221		0.582	-0.078	29	2.041	0.004	0.000	0.004
14	1.273	0.504 0.702	0.362	-0.050	30	2.093	0.004	0.000	0.004
15	1.324	0.702	0.752	-0.037	26	1.888	0.005	0.002	0.004
16	1.375	0.817	0.867	-0.036	31	2.144	0.003	0.000	0.003
17	1.426	0.832	0.387	0.004	32	2.195	0.003	0.000	0.003
18	1.478		0.618	0.031	33	2.246	0.003	0.000	0.003
19	1.529	0.649	0.423	-0.027	34	2.298	0.003	0.000	0.003
20	1.580	0.396		-0.084	35	2.349	0.003	0.000	0.003
21	1.631	0.166	0.249	-0.072	38	2.503	0.003	0.000	0.003
22	1.683	0.052	0.124		36	2.400	0.003	0.000	0.003
23	1.734	0.020	0.054	-0.034	37	2.451	0.003	0.000	0.003
24	1.785	0.011	0.021	-0.010	-	2.554	0.003	0.000	0.002
25	1.836	0.007	0.007	0.000	39	2.605	0.003	0.000	0.002
26	1.888	0.005	0.002	0.004	40	0.709	0.002	0.000	0.002
27	1.939	0.005	0.001	0.004	3		0.002	0.000	0.001
28	1.990	0.004	0.000	0.004	2	0.658	0.001	0.000	0.000
29	2.041	0.004	0.000	0.004	1	0.606		0.007	0.000
30	2.093	0.004	0.000	0.004	25	1.836	0.007	0.007	-0.010
31	2.144	0.003	0.000	0.003	24	1.785	0.011	0.021	-0.010

32 33 34 35 36 37 38	2.195 2.246 2.298 2.349 2.400 2.451 2.503 2.554	0.003 0.003 0.003 0.003 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000	0.003 0.003 0.003 0.003 0.003 0.003 0.003	20 23 13 17 16 15 22	1.580 1.734 1.221 1.426 1.375 1.324 1.683 1.273	0.396 0.020 0.345 0.832 0.817 0.702 0.052	0.423 0.054 0.379 0.867 0.854 0.752 0.124 0.582	-0.027 -0.034 -0.036 -0.037 -0.050 -0.072
39 40	2.554	0.003	0.000	0.002	21	1.631	0.166	0.249	-0.084

EQUILIBRIUM TRANSPORT (MODEL A) THIRD-TYPE BOUNDARY CONDITION PCE Run: 10% Methanol/90% Water

INITIAL VALUES OF COEFFICIENTS

· · · · · · · · · · · · · · · · · · ·						
NO	NAME	INITIAL VALUE				
1	PECLET	276.000				
2	RF	1.000				
3	PIII.	0.320				

OBSERVED DATA

OBS. NO.	PORE VOLUME	CONCENTRATION
1	0.4500	0.0002
1 2 3	0.5010	0.0007
3	0.5530	0.0018
4	0.6040	0.0044
5	0.6550	0.0077
6	0.7060	0.0122
7	0.7580	0.0181
8	0.8090	0.0242
9	0.8600	0.0328
10	0.9110	0.0406
11	0.9630	0.0507
12	1.0140	0.0659
13	1.0650	0.0934
14	1.1160	0.1523
15	1.1680	0.2284
16	1.2190	0.3264
17	1.2700	0.5001
18	1.3210	0.6810
19	1.3730	0.7971
20	1.4240	0.8124
21	1.4750	0.7504
22	1.5260	0.6556
23	1.5780	0.4617
24	1.6290	0.2220
25	1.6800	0.0719
26	1.7310	0.0266
27	1.7830	0.0139
28	1.8340	0.0093
29	1.8850	0.0068
30	1.9360	0.0054
31	1.9880	0.0045
32	2.0390	0.0038
33	2.0900	0.0033
34	2.1410	0.0029
35	2.1930	0.0026
36	2.2440	0.0024
37	2.2950	0.0022
38	2.3460	0.0021
20	2.3400	

39 40	2.3980 2.4490	0.0020 0.0019
. ITERATION 0 1 2 3 4 5 CORRELATION	SSQ 4.1831929 1.9238347 0.2849047 0.0550446 0.0528172 0.0528172 MATRIX	RF 1.00000 1.09672 1.19765 1.24384 1.24887
1 1.0000)	

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

VARIABLE NAME	VALUE	S.E.COEFF.	T-VALUE	LOWER	UPPER
1 RF	1.24887	0.0038	325.63	1.2411	1.2566
			ODDEREE.	DV DECIDIN	

	ORT	ERED BY	COMPUTER	INPUT-			RDERED BY	RESIDU	ALS
,	PORE CON	CENTRAT	ION RESI-		PORE	CONCE	NTRATION	RESI	
		OBS.	FITTED	DUAL	NO	VOLUME	OBS. I	FITTED	DUAL
N		0.000	0.000	0.000	13	1.065	0.093	0.030	0.063
1	0.450 0.501	0.001	0.000	0.001	14	1.116	0.152	0.093	0.060
2	0.553	0.002	0.000	0.002	12	1.014	0.066	0.007	0.059
3		0.004	0.000	0.004	11	0.963	0.051	0.001	0.050
4	0.604	0.004	0.000	0.008	10	0.911	0.041	0.000	0.041
5	0.655	0.008	0.000	0.012	9	0.860	0.033	0.000	0.033
6	0.706	0.012	0.000	0.018	8	0.809	0.024	0.000	0.024
7	0.758		0.000	0.024	7	0.758	0.018	0.000	0.018
8	0.809	0.024	0.000	0.033	15	1.168	0.228	0.215	0.013
9	0.860	0.033	0.000	0.041	-6	0.706	0.012	0.000	0.012
10	0.911	0.041	0.000	0.050	5	0.655	0.008	0.000	0.008
11	0.963	0.051	0.001	0.059	22	1.526	0.656	0.650	0.005
12	1.014	0.066		0.063	4	0.604	0.004	0.000	0.004
13	1.065	0.093	0.030	0.060	30	1.936	0.005	0.001	0.004
14	1.116	0.152	0.093	0.013	31	1.988	0.004	0.000	0.004
15	1.168	0.228	0.215	-0.061	32	2.039	0.004	0.000	0.004
16	1.219	0.326	0.388		33	2.090	0.003	0.000	0.003
17	1.270	0.500	0.578	-0.077	33 29	1.885	0.007	0.004	0.003
18	1.321	0.681	0.741	-0.060	34	2.141	0.003	0.000	0.003
19	1.373	0.797	0.845	-0.048		2.193	0.003	0.000	0.003
20	1.424	0.812	0.866	-0.053	35		0.003	0.000	0.002
21	1.475	0.750	0.796	-0.046	36	2.244	0.002	0.000	0.002
22	1.526	0.656	0.650	0.005	37	2.295	0.002	0.000	0.002
23	1.578	0.462	0.463	-0.001	38	2.346	0.002	0.000	0.002
24	1.629	0.222	0.289	-0.067	39	2.398	+	0.000	0.002
25	1.680	0.072	0.158	-0.086	40	2.449	0.002		0.002
26	1.731	0.027	0.075	-0.049	3	0.553	0.002	0.000	
27	_	0.014	0.031	-0.017	2	0.501	0.001	0.000	0.001
28	1.834	0.009	0.012	-0.002	1	0.450	0.000	0.000	0.000
29	1.885	0.007	0.004	0.003	23	1.578	0.462	0.463	-0.001
30	1.936	0.005	0.001	0.004	28	1.834	0.009	0.012	-0.002
31	1.988	0.004	0.000	0.004	27	1.783	0.014	0.031	-0.017

32 33	2.039 2.090	0.004 0.003	0.000	0.004	21 19	1.475 1.373 1.731	0.750 0.797 0.027	0.796 0.845 0.075	-0.046 -0.048 -0.049
34 35	2.141 2.193	0.003	0.000	0.003	26 20	1.424	0.812	0.866	-0.053
36 37	2.244	0.002	0.000	0.002 0.002 0.002	18 16 24	1.219	0.326	0.388	-0.061
38 39	2.346	0.002	0.000	0.002	17 25	1.270	0.500	0.578 0.158	-0.077 -0.086

EQUILIBRIUM TRANSPORT (MODEL A)
THIRD-TYPE BOUNDARY CONDITION
PCE Run: 20% Methanol/80% Water

INITIAL VALUES OF COEFFICIENTS

NO	NAME	INITIAL VALUE
1	PECLET	328.000
2	RF	1.000
3	PUII.	0.313

OBSERVED DATA

*****	*==	
OBS. NO.	PORE VOLUME	CONCENTRATION
1	0.4830	0.0125
2	0.5350	0.0172
3	0.5860	0.0221
4	0.6370	0.0276
5	0.6880	0.0330
6	0.7400	0.0374
7	0.7910	0.0444
8	0.8420	0.0516
9	0.8930	0.0607
10	0.9450	0.0735
11	0.9960	0.0930
12	1.0470	0.1491
13	1.0980	0.2285
14	1.1500	0.3114
15	1.2010	0.3575
16	1.2520	0.4748
17	1.3030	0.6591
18	1.3550	0.8305
	1.4060	0.8706
19 20	1.4570	0.7595
	1.5080	0.6463
21	1.5600	0.4454
22	1.6110	0.2223
23	1.6620	0.0708
24	1.7130	0.0333
25	1.7650	0.0120
26		0.0140
27	1.8160	0.0111
28	1.8670	0.0092
29	1.9180	
30	1.9700	0.0075
31	2.0210	0.0072
32	2.0720	0.0056
33	2.1230	0.0052
34	2.1750	0.0047
35_	2.2260	0.0046
36	2.2770	0.0044
37	2.3280	0.0043
38	2.3800	0.0044

	0.0043
2.4820	0.0040
SSQ	RF
3.7921204	1.00000
1.8465650	1.08619
0.4169640	1.17352
0.1260098	1.22018
0.1150433	1.23034
0.1150326	1.23175
0.1150326	1.23175
MATRIX	
)	
	1.8465650 0.4169640 0.1260098 0.1150433 0.1150326 0.1150326 MATRIX

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

VARIABLE NAME VALUE S.E.COEFF. T-VALUE LOWER UPPER 1 RF 1.23175 0.0053 233.02 1.2211 1.2424

		DERED BY				0	RDERED B	Y RESIDU	ALS
		NCENTRAT	ION RESI	-	PORE		NTRATION		
NO			FITTED	DUAL	NO	VOLUME	OBS.	FITTED	DUAL
1	0.483	0.013	0.000	0.013	13	1.098	0.229	0.070	0.158
2	0.535	0.017	0.000	0.017	12	1.047	0.149	0.018	0.131
3	0.586	0.022	0.000	0.022	14	1.150	0.311	0.189	0.122
4	0.637	0.028	0.000	0.028	11	0.996	0.093	0.003	0.090
5	0.688	0.033	0.000	0.033	10	0.945	0.073	0.000	0.073
6	0.740	0.037	0.000	0.037	9	0.893	0.061	0.000	0.061
7	0.791	0.044	0.000	0.044	8	0.842	0.052	0.000	0.052
8	0.842	0.052	0.000	0.052	7	0.791	0.044	0.000	0.044
9	0.893	0.061	0.000	0.061	6	0.740	0.037	0.000	0.037
10	0.945	0.073	0.000	0.073	5	0.688	0.033	0.000	0.033
11	0.996	0.093	0.003	0.090	4	0.637	0.028	0.000	0.028
12	1.047	0.149	0.018	0.131	3	0.586	0.022	0.000	0.022
13	1.098	0.229	0.070	0.158	2	0.535	0.017	0.000	0.017
14	1.150	0.311	0.189	0.122	1	0.483	0.013	0.000	0.013
15	1.201	0.357	0.373	-0.015	28	1.867	0.011	0.001	0.010
16	1.252	0.475		-0.108	22	1.560	0.445	0.436	0.009
17	1.303	0.659		-0.103	29	1.918	0.009	0.000	0.009
18	1.355	0.831	0.874	-0.043	27	1.816	0.014	0.005	0.009
19	1.406	0.871	0.893	-0.022	30	1.970	0.007	0.000	0.007
20	1.457	0.759	0.813	-0.053	31	2.021	0.007	0.000	0.007
21	1.508	0.646	0.647	0.000	32	2.072	0.006	0.000	0.006
22	1.560	0.445	0.436	0.009	33	2.123	0.005	0.000	0.005
23	1.611	0.222	0.251	-0.028	34	2.175	0.005	0.000	0.005
24	1.662	0.071	0.122	-0.051	35	2.226	0.005	0.000	0.005
25	1.713	0.033	0.050	-0.017	38	2.380	0.004	0.000	0.004
26	1.765	0.012	0.017	-0.005	36	2.277	0.004	0.000	0.004
27	1.816	0.014	0.005	0.009	39	2.431	0.004	0.000	0.004
28	1.867	0.011	0.001	0.010	37	2.328	0.004	0.000	0.004
29	1.918	0.009	0.000	0.009	40	2.482	0.004	0.000	0.004
30	1.970	0.007	0.000	0.007	21	1.508	0.646	0.647	0.000
					-				

31	2.021	0.007	0.000	0.007	26	1.765	0.012	0.017	-0.005
32	2.072	0.006	0.000	0.006	15	1.201	0.357	0.373	-0.015
33	2.123	0.005	0.000	0.005	25	1.713	0.033	0.050	-0.017
34	2.175	0.005	0.000	0.005	19	1.406	0.871	0.893	-0.022
35	2.226	0.005	0.000	0.005	23	1.611	0.222	0.251	-0.028
36	2.277	0.004	0.000	0.004	18	1.355	0.831	0.874	-0.043
37	2.328	0.004	0.000	0.004	24	1.662	0.071	0.122	-0.051
38	2.380	0.004	0.000	0.004	20	1.457	0.759	0.813	-0.053
39	2.431	0.004	0.000	0.004	17	1.303	0.659	0.762	-0.103
40	2.482	0.004	0.000	0.004	16	1.252	0.475	0.583	-0.108

EQUILIBRIUM TRANSPORT (MODEL A) THIRD-TYPE BOUNDARY CONDITION PCE Run: 50% Methanol/50% Water

INITIAL VALUES OF COEFFICIENTS

NO	NAME	INITIAL VALUE
1	PECLET	221.000
2	RF	1.000
2	PUL	0.326

OBSERVED DATA

OBS. NO.	PORE VOLUME	CONCENTRATION
1	0.4330	0.0084
2	0.4850	0.0136
3	0.5360	0.0191
4	0.5870	0.0237
5	0.6380	0.0296
6	0.6900	0.0352
7	0.7410	0.0384
8	0.7920	0.0453
9	0.8430	0.0511
10	0.8950	0.0757
11	0.9460	0.0688
12	0.9970	0.0902
13	1.0480	0.1298
14	1.1000	0.2016
15	1.1510	0.2740
16	1,2020	0.3354
17	1.2530	0.4179
18	1.3050	0.5865
19	1.3560	0.8007
20	1.4070	0.9018
21	1.4580	0.8672
22	1.5100	0.7320
23	1.5610	0.4621
24	1.6120	0.2397
25	1.6630	0.1438
26	1.7150	0.0839
27	1.7660	0.0619
28	1.8170	0.0458
29	1.8680	0.0300
	1.9200	0.0191
30	1.9710	0.0122
31	2.0220	0.0083
32	2.0730	0.0057
33	2.1250	0.0048
34	2.1760	0.0039
35-	2.2270	0.0034
36	2.2770	0.0030
37	2.3300	0.0036
38	2.3300	0.0020

39 40	2.3810 2.4320	0.0024 0.0022
ITERATION 0 1 2 3 4 CORRELATION	SSQ 3.8082657 1.5077115 0.1944039 0.1126366 0.1126193	RF 1.00000 1.10596 1.20882 1.23999 1.24035
1 1.000	0	

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

VARIABLE NAME VALUE S.E.COEFF. T-VALUE LOWER UPPER 1 RF 1.24035 0.0061 204.98 1.2281 1.2526

									VIC
	ORD	ERED BY	COMPUTER	INPUT		OR	DERED BY	RESIDUA RESI	шэ
PO		CENTRAT	ON RESI-		PORE		TRATION	ITTED	DUAL
NO	VOLUME	OBS.	FITTED	DUAL	NO	VOLUME	020.	0.103	0.099
1	0.433	0.008	0.000	0.008	14	1.100	0.202	0.103	0.092
2	0.485	0.014	0.000	0.014	13	1.048	0.130 0.090	0.011	0.080
3	0.536	0.019	0.000	0.019	12	0.997	0.090	0.788	0.079
4	0.587	0.024	0.000	0.024	21	1.458	0.867	0.000	0.075
5	0.638	0.030	0.000	0.030	10	0.895	0.902	0.835	0.067
6	0.690	0.035	0.000	0.035	20	1.407	0.962	0.002	0.067
7	0.741	0.038	0.000	0.038	11	0.946	0.732	0.669	0.063
В	0.792	0.045	0.000	0.045	22	1.510 1.151	0.732	0.215	0.059
9	0.843	0.051	0.000	0.051	15	0.843	0.051	0.000	0.051
10	0.895	0.076	0.000	0.075	9 8	0.792	0.045	0.000	0.045
11	0.946	0.069	0.002	0.067	7	0.741	0.038	0.000	0.038
12	0.997	0.090	0.011	0.080	6	0.690	0.035	0.000	0.035
13	1.048	0.130	0.038	0.092 0.099	5	0.638	0.030	0.000	0.030
14	1.100	0.202	0.103	0.059	4	0.587	0.024	0.000	0.024
15	1.151	0.274	0.215	-0.035	28	1.817	0.046	0.026	0.020
16	1.202	0.335	0.370	-0.035	29	1.868	0.030	0.011	0.019
17	1.253	0.418	0.541	-0.124	3	0.536	0.019	0.000	0.019
18	1.305	0.587	0.698	-0.001	30	1.920	0.019	0.004	0.015
19	1.356	0.801	0.801	0.067	2	0.485	0.014	0.000	0.014
20	1.407	0.902	0.835	0.079	31	1.971	0.012	0.001	0.011
21	1.458	0.867	0.788	0.063	ī	0.433	0.008	0.000	0.008
22	1.510	0.732	0.669	-0.049	32	2.022	0.008	0.000	0.008
23	1.561	0.462	0.511	-0.109	33	2.073	0.006	0.000	0.006
24	1.612	0.240	0.349	-0.070	34	2.125	0.005	0.000	0.005
25	1.663	0.144	0.214	-0.032	27	1.766	0.062	0.058	0.004
26	1.715	0.084	0.116	0.004	35	2.176	0.004	0.000	0.004
27	1.766	0.062	0.058	0.020	36	2.227	0.003	0.000	0.003
28	1.817	0.046	0.026	0.019	37	2.278	0.003	0.000	0.003
29	1.868	0.030	0.011	0.015	38	2.330	0.003	0.000	0.003
30	1.920	0.019	0.004	0.013	39	2.381	0.002	0.000	0.002
31	1.971	0.012	0.001	0.001	40	2.432	0.002	0.000	0.002
32	2.022	0.008	0.000	0.000	- 0	- · · · ·			

33 34 35 36 37 38 39	2.073 2.125 2.176 2.227 2.278 2.330 2.381	0.006 0.005 0.004 0.003 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000	0.006 0.005 0.004 0.003 0.003 0.003 0.002	19 26 16 23 25 24 18	1.356 1.715 1.202 1.561 1.663 1.612 1.305	0.801 0.084 0.335 0.462 0.144 0.240 0.587 0.418	0.801 0.116 0.370 0.511 0.214 0.349 0.698 0.541	-0.001 -0.032 -0.035 -0.049 -0.070 -0.109 -0.111
--	---	--	--	---	--	---	--	--	--

References:

Augustijn, D.C.M., R.E. Jessup, P.S.C. Rao and A.L. Wood, 1994. "Remediation of Contaminated Soils by Solvent Flushing." *J. Environ. Eng.*, 120(1), 42-57.

Ball, W.P., C. Buehler, T.C. Harmon, D.M. Mackay and P.V. Roberts, 1990. "Characterization of a Sandy Aquifer Material at the Grain Scale." *J. Contam. Hydrol.*, 5(3), 253-295.

Ball, W.P. and P.V. Roberts, 1991a. "Long-Term Sorption of Halogenated Organic Chemicals by Aquifer Material. 1. Equilibrium." *Environ. Sci. Technol.* 25(7), 1223-1237.

Ball, W.P. and P.V. Roberts, 1991b. "Long-Term Sorption of Halogenated Organic Chemicals by Aquifer Material. 2. Intraparticle Diffusion." *Environ. Sci. Technol.* 25(7), 1237-1249.

Bear, J., 1972. Dynamics of Fluids in Porous Media. American Elsevier, New York.

Bouwer, E.J., B.E. Rittman and P.L. McCarty, 1981. "Anaerobic Degradation of Halogenated 1- and 2-Carbon Organic Compounds," *Environ. Sci. Technol.*, 15(5), 596-599.

Brusseau, M.L., A.L. Wood and P.S.C. Rao, 1991. "Influence of Organic Cosolvents on the Sorption Kinetics of Hydrophobic Organic Chemicals," Environ. Sci. Technol., 25(5), 903-910.

Chiou, C.T., P.E. Porter, and D.W. Schmedding, 1983. "Partition equilibria of nonionic organic compounds between soil organic matter and water," *Environ. Sci. Technol.*, 17(4), 227-231.

Curtis, G.P., P.V. Roberts, and M. Reinhard, 1986. "A natural gradient experiment on solute transport in a sand aquifer, 4, Sorption of organic solutes and its influence on mobility," *Water Resour. Res.*, 22(13), 2059-2067.

Freeze, R.A., and J.A. Cherry, 1979. Groundwater, Prentice-Hall, englewood Cliffs, N.J.

Fu, J-K, and R.G. Luthy, 1986. "Effect of Organic Solvent on Sorption of Aromatic Solutes onto Soils." *J. Environ. Eng.*, 112(2), 346-366.

Harmon, T.C., W.P. Ball and P.V. Roberts, 1989. "Nonequilibrium transport of Organic Contaminants in Groundwater," *Reactions and Movement of Organic Chemicals in Soils*, SSSA Special Publication No. 22, Soil Science Society of America, Inc., Madison, WI, Chapter 16.

Harmon, T.C. and P.V. Roberts, 1994. "A Comparison of Intraparticle Sorption and Desorption Rates for a Halogenated Alkene in a Sandy Aquifer Material," *Environ. Sci. Technol.*, 28(9), 1650-1660.

Harmon, T.C., B.K. Dela Barre, S.K. Bearden and E. Leung. 1994. *The Behavior of Methanol in Water-Saturated Soil Columns*. Final Report, Universitywide Energy Research Group, Berkeley, CA.

Harmon, T.C., B.K. Dela Barre and E. Leung, 1995. "Soil Sorption Parameters for Modeling Bioremediation of Diesel Fuel-Contaminated Soils," UCLA School of Engineering and Applied Science Technical Report 95-119.

Imhoff, P.T., S.N. Gleyzer, J.F. McBride, L.A. Vancho, I. Okuda, and C.T. Miller, 1995. "Cosolvent-Enhanced Remediation of Residual Dense Nonaqueous Phase Liquids: Experimental Investigation," *Environ. Sci. Technol.*, 29, 8, 1966-1976.

Karickhoff, S.W., D.S. Brown, and L.A. Scott, 1979. "Sorption of hydrophobic pollutants on natural sediments," *Water Res.*, 13, 241-248.

Kong, D. and T.C. Harmon, 1995. "Using the Multiple Cell Balance Method to Solve the Problem of Two-Dimensional groundwater Flow and Contaminant Transport with Nonequilibrium Sorption," *J. Contam. Hydrology*.

Lake, L.W., 1983. Enhanced Oil Recovery for Independent Producers, Southern Methodist University, Dallas, TX.

Larson, R.G., H.T. Davis, L.E. Scriven, 1982. J. Petrol. Technol., 34, 243-258.

Mackay, D.M., P.V. Roberts, and J.A. Cherry, 1985. "Transport of organic contaminants in groundwater," *Environ. Sci. Technol.*, 19(5), 364-392.

Nkedi-Kizza, P., P.S.C. Rao, and A.G. Hornsby, 1985. "Influence of Organic Cosolvents on Sorption of Hydrophobic Organic Chemicals in Soils." *Environ. Sci. Technol.*, 19(10), 975-979.

Nkedi-Kizza, P., M. Brusseau, P.S.C. Rao, and A.G. Hornsby, 1989. "Nonequilibrium Sorption during Displacement of Hydrophobic Organic Chemicals and through Soil Columns with Aqueous and Mixed Solvents, *Environ. Sci. Technol.*, 23, 7, 814-820.

Othmer, K., 1979. Encyclopedia of Chemical Technology. 3rd Edition, Volume 8, John Wiley & Sons, New York, p. 64.

Palmer, C.D. and W. Fish, 1992. "Chemical Enhancements to Pump-and-Treat Remediation," *USEPA Report EPA*/540/S-92/001.

Rao, P.S.C., L.S. Lee, and R. Pinal, 1990. "Cosolvency and Sorption of Hydrophobic Organic Chemicals." *Environ. Sci. Technol.*, 24(6), 647-654.

Reed, R.L., R.N. Healy, 1977. Improved Oil Recovery by Surfactant and Polymer Flooding, Academic Press, New York.

Roberts, P.V., M.N. Goltz, and D.M. Mackay, 1986. "A natural gradient experiment on solute transport in a sand aquifer, 3, Retardation estimates and mass balances for organic solutes," *Water Resour. Res.*, 22(13), 2047-2058.

Rabideau, A.J. and C.T. Miller, 1994. "Two-dimensional modeling of aquifer remediation influenced by sorption nonequilibrium and hydraulic conductivity heterogeneity," *Water Resources Research*, 30(5), 1457-1470.

Schwarzenbach, R.P. P.M. Gschwend and D.M. Imboden, 1993. *Environmental Organic Chemistry*, John Wiley & Sons, Inc., New York.

Toxic and Hazardous Industrial Chemicals Safety Manual For Handling and disposal with Toxicity and Hazard Data. International Technical Information Institute Toranomon-Tachikawa, Tokyo, Japan, 1976, p. 507-8.

Udey, N. and T.J.T Spanos, 1993. "The Equation of Miscible Flow with Negligible Molecular Diffusion," *Transport in Porous Media*, 10(1), 1-41.

Ullman's Encyclopedia of Industrial Chemistry. 5th Edition, Vol. A16. B. Eluers, S. Hawkins, and G. Schulz (Eds.) VCH Publishers, 1990, Weinheim, FRG.

van Genuchten, M.T., 1981. "Non-equilibrium Transport Parameters from Miscible Displacement Experiments," *Research Report No. 119*, United States Department of Agriculture Science and Education Administration, U.S. Salinity Laboratory, Riverside, California.

Yalkowsky, S.H., S.C. Valvani and G.L. Amidon, 1976. "Solubility of Nonelectrolytes in Polar Solvents: IV. Nonpolar Drugs in Mixed Solvents, *J. Pharmacol. Sci.*, Vol. 65, 1488-1494.