

Overview

- · Model fitting
- · Model selection

2

Frequentist vs Bayesian

- Probabilistic Model p(y, x, w)
 - Frequentists: w is a parameter that should be estimated by model fitting
 - Bayesians: w is a random variable that has a prior distribution p(w)
 - How to set p(w)??

3

Example: Linear regression, what are parameters here? $y{\sim}w_0+\boldsymbol{w}\boldsymbol{x}+e,e{\sim}N(0,\sigma^2)$ $y \sim N(w_0 + \boldsymbol{w}\boldsymbol{x}, \sigma^2)$

- $\hat{\mathbf{w}} = \delta(D)$ (some function of your data) an **estimator**
- Optimal parameter values?→there can be many ways to compute them (MLE, shrinkage...)
 - Compare Bayesian: given estimators w^1 and w^2 , we can compare them! $p(w^1|D) > p(w^2|D)$

An estimator

- There is no easy way to compare estimators in frequentist tradition

Example: Linear regression

- Estimator 1: $\mathbf{w} = (X^T X)^{-1} X^T Y$ (maximum likelihood)
- Estimator 2: w = (0, ..., 0, 1)
- Which one is better?
 - A comparison strategy is needed!

Overfitting

• Complex model can overfit your data

732A99/TDDE01

5

Overfitting: solutions

- Observed: Maximum likelihood can lead to overfitting.
- Solutions
 - Selecting proper parameter values
 - · Regularized risk minimization
 - Selecting proper model type, for ex. number of parameters
 - · Houldout method
 - Cross-validation

732A99/TDDE01

6

Model selection

- Given a model, choose the optimal parameter values
 Decision theory
- Define loss $L(Y, \hat{y})$
 - How much we loose in guessing true Y incorrectly
- If we know the true distribution p(y, x|w) then we choose \hat{y}

 $\min_{\hat{f}} EL(y,\hat{y}) = \min_{\hat{y}} \int L(y,\hat{y}) p(y,x|w) dx dy$

732A99/TDDE0

Model selection

Example: Spam classification

- · Loss for incorrect classifying mails and spams
 - $\ L_{12} = 100, L_{21} = 1$

732A99/TDDE

7

Loss functions

- How to define loss function?
 - No unique choice, often defined by application
 - Normal practice: Choose the loss related to minus loglikelihood

Example: Predicting the amount of the product at the storage:

$$L(Y, \hat{y}) = \begin{cases} 10 + \frac{\hat{y}}{Y}, \hat{y} \ge Y \\ 1000, \hat{y} < Y \end{cases}$$

Example: Compute loss function related to

- Normal distribution

9

Guess why such loss function was chosen

Loss functions

- Classification problems
 - Common loss function $L(Y, \hat{y}) = \begin{cases} 0, Y = \hat{y} \\ 1, Y \neq \hat{y} \end{cases}$
 - When minimizing the loss, equivalent to misclassification rate

732A99/TDDE0

10

Model selection

- Problem: true model and true w are unknown→can not compute expected loss!
- · How to find an optimal model?
 - Consider what expected loss (**risk**) depends on $R(Y, \hat{y}) = E[L(Y, \hat{y}(X, D))]$
- · Random factors:
 - D training set
 - Y, X data to be predicted (validation set)

A99/TDDE01

Holdout method

- · Simplify the risk estimation:
 - Fix D as a particular training set T
 - Fix Y,X as a particular validation set V
- Risk becomes (empirical risk)

$$\hat{R}(y,\hat{y}) = \frac{1}{|V|} \sum_{(X,Y) \in V} L(Y,\hat{y}(X,T))$$

- Estimator is fit by Maximum Likelihood using training set
- Risk estimated by using validation set
- Model with minimum empirical risk is selected

732A99/TDDE01

12

11

Holdout method

Divide into training, validation and test sets

• Choose proportions in some way

732A99/TDDE01 14

13 14

Holdout method

 Given: training, validation, test sets and models to select between

Holdout method

 Training set is to used for fitting models to the dataset by using maximum likelihood

15

16

Holdout method

 Validation set is used to choose the best model (lowest risk)

17

732A99/TDDE01 17

Holdout method

 Test set is used to test a performance on a new data

18

Holdout method

19

Holdout in R

- How to partition into train/test?
 - Use set.seed(12345) in the labs to get identical results

n=dim(data)[1] set.seed(12345) id=sample(1:n, floor(n*0.7)) train=data[id,] test=data[-id,]

• How to partition into train/valid/test?

nddim(data)[1] set.seed(12345) id=sample(1:n, floor(n*0.4)) traln-data[id,] idl=setdiff(1:n, id) set.seed(12345) id2=sample(id1, floor(n*0.3)) valid-data[id2,] id3=setdiff(id1,id2) test=data[id3,]

700400/TDDE

20

Bias-variance tradeoff

- Bias of an estimator $Bias(\hat{y}(x_0)) = E[\hat{y}(x_0) f(x_0)], f(x_0)$ is expected response
 - If $Bias(\hat{y}(x_0)) = 0$, the estimator is **unbiased**
 - ML estimators are asymptotically unbiased if the model is enough complex
 - However, unbiasedness does not mean a good choice!

32A99/TDDE01 21

Bias-variance tradeoff

• Assume loss is $L(Y, \hat{y}) = (Y - \hat{y})^2$ $R(Y(x_0), \hat{y}(x_0)) = \sigma^2 + Bias^2(\hat{y}(x_0)) + Var(\hat{y}(x_0))$

When loss is not quadratic, no such nice formula exist

732A99/TDDF01

22

Cross-validation

· Compared to holdout method:

21

— Why do we use only some portion of data for training- can we use more (increase accuracy)?

Cross-validation (Estimates Err)

K-fold cross-validation (rough scheme, show picture):

- 1. Permute the observations randomly
- 2. Divide data-set in K roughly equally-sized subsets
- 3. Remove subset #i and fit the model using remaining data.
- 4. Predict the function values for subset #i using the fitted model.
- 5. Repeat steps 3-4 for different i
- CV= squared difference between observed values and predicted values (another function is possible)

32A99/TDDE01 23

Cross-validation

Cross-validation

Note: if K=N then method is *leave-one-out* cross-validation.

 $\kappa: \{1, \dots, N\} \mapsto \{1, \dots, K\}$

K-fold cross-validation: $CV = \frac{1}{N} \sum_{i=1}^{N} L(Y_i, \hat{y}^{-k(i)}(x_i))$

What to do if N is not a multiple of K?

732/

A99/TDDE01

23

Cross-validation vs Holdout

- Holdout is easy to do (a few model fits to each data)
- Cross validation is computationally demanding (many model fits)
- · Holdout is applicable for large data
 - Otherwise, model selection performs poorly
- · Cross validation is more suitable for smaller data

TDDE01 25

Analytical methods

Analytical expressions to select models

 AIC (Akaike's information criterion)

Idea: Instead of $R(Y, \hat{y}) = E[L(Y, \hat{y}(X, D))]$ consider **in-sample** risk (only Y in D is random):

$$R_{in}(Y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} E_{Y_i} [L(Y_i, \hat{y}(X, D)) | D, X \in D]$$

32A99/TDDE01

25

27

26

Analytical methods

One can show that

$$R_{in}(Y, \hat{y}) \approx R_{train} + \frac{2}{N} \sum_{i} cov(\hat{y}_i, Y_i)$$

where $R_{train} = \sum_{X_i, Y_i \in T} L(Y_i, \widehat{y_i})$

- Recall, degrees of freedom $df(model) = \frac{1}{\sigma^2} \sum_i cov(\hat{y}_i, Y_i)$
 - When model is linear, *df* is the number of parameters.
- If loss is defined by minus two loglikelihood, $AIC \equiv -2loglik(D) + 2df(model)$

732A99/TDDE01

27

Model selection

Example Computer Hardware Data Set: performance measured for various processors and also

- · Cycle time
- Memory
- · Channels
- ...

28

Build model predicting performance

32A99/TDDE01

Cross-validatation

• Try models with different predictor sets

data=read.csv("machine.csv", header=F)
library(cvTools)

fit1-lm(V9-V3-V4+V5-V6+V7+V8, data=data)
fit2-lm(V9-V3-V4+V5-V6+V7, data=data)
fit2-lm(V9-V3-V4-V5-V6-V7, data=data)
fit3-lm(V9-V3-V4-V5-V6, data=data)
fildy="consecutive")
f2-vcrit(fit1, y-wdata5V9, data=data, K-10, foldType="consecutive")
f3-vcrit(fit3, y-wdata5V9, data=data, K-10, foldType="consecutive")
f3-vcrit(fit3, y-wdata5V9, data=data, K-10, foldType="consecutive")
res=vcSelect(f1, f2, f3)
plot(res)

2A99/TDDE01