Basisprüfung D-ITET

Name, Vorname:

Matrikel-Nr.:

Aufgabe NUS I-3: Messung einer Masse

25 Punkte

Zur Messung der Masse m eines Körpers wird die Masse gemäss **Fig. 3(a)** an eine Feder mit Federkonstante $D=25\,\mathrm{kN/m}$ gehängt. Die Auslenkung $k\cdot h$ der Feder, mit $k\in[0,1]$, wird mit Hilfe eines reibungsfreien Schleifkontaktes auf einer Widerstandsbahn der Höhe $h=5\,\mathrm{cm}$ gemessen. Für die Rückstellkraft F_{R} der Feder gilt: $F_{\mathrm{R}}=D\cdot k\cdot h$. Die Gravitationskraft \vec{F}_{G} wirkt in die eingezeichnete Richtung und die Erdbeschleunigung betrage $g=9.81\,\mathrm{m/s^2}$.

Fig. 3: (a) Aufbau zur Messung einer Masse m; (b) Elektrische Messschaltung; (c) Ersatzspannungsquelle mit Innenwiderstand; (d) Spannungsmessgerät mit Innenwiderstand $R_{\rm V}$.

Die Widerstandsbahn mit Schleifkontakt ist zur Erfassung des Messsignals in eine Brückenschaltung nach Fig. 3(b) mit $U_0 = 10 \,\mathrm{V}$ und $R_2 = 5 \,\mathrm{k}\Omega$ integriert. Der Widerstand R_D der Widerstandsbahn wird mit einem runden Draht mit der elektrischen Leitfähigkeit $\kappa = 5 \,\mathrm{S/m}$ und Durchmesser d gebildet.

a) Welchen Durchmesser d muss der Widerstandsdraht aufweisen, damit er einen Widerstand von $R_D = 10 \,\mathrm{k}\Omega$ aufweist?

(4 Pkt.)

b) Geben Sie die Federauslenkung $k \cdot h$ in Abhängigkeit der Masse m an. Ermitteln Sie die Messspannung $U_{\rm M}$ in Abhängigkeit der Masse m.

(6 Pkt.)

c) Um eine Warnung vor zu hohen Lasten zu ermöglichen, soll die Messspannung $U_{\rm M}$ für eine zu grosse Masse negativ werden. Dimensionieren Sie R_1 so, dass $U_{\rm M}=0$ für $m=100\,{\rm kg}$.

(4 Pkt.)

d) Bestimmen Sie die Ersatzspannungsquelle $U_{\rm E}$ und den Innenwiderstand $R_{\rm E}$ des in **Fig. 3(c)** gezeigten Ersatzschaltbildes bezüglich der Klemmen A und B für eine Masse $m=40\,\mathrm{kg}$.

(6 Pkt.)

e) Die Spannung $U_{\rm M}$ werde nun mit einem Spannungsmessgerät gemäss **Fig. 3(d)** mit einem Innenwiderstand von $R_{\rm V} = 250\,{\rm k}\Omega$ gemessen. Wie gross ist die Spannung $U_{\rm V}$ für $m=40\,{\rm kg}$? Auf welche scheinbare Masse m' schliessen Sie aus der gemessenen Spannung $U_{\rm V}$ ohne Kompensation des Widerstandes $R_{\rm V}$?

(5 Pkt.)