Battle of the Sexes Revisited

Wife

Husband

Boxing Opera

Boxing	Opera	
2, 1	0, 0	
0, 0	1, 2	

There are two Nash equilibria: (B, B) and (O, O).

Battle of the Sexes Revisited

Boxing Opera

Wife

Boxing	Opera
2, 1	0, 0
0, 0	1, 2

- What if the wife knows that there is a probability of $\frac{1}{3}$ that the husband goes to Boxing, and $\frac{2}{3}$ that the husband goes to Opera?
- What if the chances are $\frac{1}{2}$ and $\frac{1}{2}$?

Mixed Strategies

Player 1's available actions $A_1 = \{a_1, a_2, a_3, a_4, a_5\}$.

A **mixed strategy** of player 1:

$$\alpha_1 = (a_1(0), a_2(\frac{1}{2}), a_3(0), a_4(\frac{1}{4}), a_5(\frac{1}{4})).$$

Notations:

$$\alpha_1(a_1) = 0, \ \alpha_1(a_2) = \frac{1}{2}, \ \alpha_1(a_3) = 0,$$

$$\alpha_1(a_4) = \frac{1}{4}, \ \alpha_1(a_5) = \frac{1}{4}.$$

Support of α_1 is $\{a_2, a_4, a_5\}$.

• Another **mixed strategy** of player 1:

$$\alpha_1' = (a_1(\frac{1}{2}), a_2(\frac{1}{6}), a_3(0), a_4(\frac{1}{6}), a_5(\frac{1}{6})).$$

$$\alpha'_1(a_1) = \frac{1}{2}, \ \alpha'_1(a_2) = \frac{1}{6}, \ \alpha'_1(a_3) = 0,$$

$$\alpha'_1(a_4) = \frac{1}{6}, \ \alpha'_1(a_5) = \frac{1}{6}.$$

Support of α'_1 is $\{a_1, a_2, a_4, a_5\}$.

Denote by $\Delta(A_1) = \{\alpha_1, \alpha_1', \alpha_1'', \alpha_1''', \ldots\}$ the set of mixed strategies over the set A_1 of player 1's available actions.

Denote by $\Delta(A_1) = \{\alpha_1, \alpha_1', \alpha_1'', \alpha_1''', \ldots\}$ the set of mixed strategies over the set A_1 of player 1's available actions.

Example. If
$$A_1 = \{a_1, a_2, a_3\}$$
 then $\Delta(A_1) = \{(a_1(\frac{1}{2}), a_2(\frac{1}{4}), a_3(\frac{1}{4})), (a_1(\frac{1}{4}), a_2(\frac{1}{12}), a_3(\frac{2}{3})), (a_1(0), a_2(\frac{1}{2}), a_3(\frac{1}{2})), (a_1(\frac{1}{9}), a_2(\frac{5}{9}), a_3(\frac{1}{3})), \dots\}$

Mixed Strategies

Wife

Husband

Boxing Opera

Boxing	Opera
2, 1	0, 0
0, 0	1, 2

$$A_h = \{B, O\}A_w = \{B, O\}$$

$$\Delta(A_h) = \{(B(p), O(q)): 1 \ge p \ge 0, 1 \ge q \ge 0, p + q = 1\}$$

$$\Delta(A_w) = \{(B(p), O(q)): 1 \ge p \ge 0, 1 \ge q \ge 0, p + q = 1\}$$

Wife

Husband

Boxing Opera

Boxing	Opera
2, 1	0, 0
0, 0	1, 2

$$\Delta(A_h) = \{ (B(p), O(q)) : 1 \ge p \ge 0, 1 \ge q \ge 0, p + q = 1 \}$$

$$\Delta(A_w) = \{ (B(p), O(q)) : 1 \ge p \ge 0, 1 \ge q \ge 0, p + q = 1 \}$$

A mixed strategy profile:

$$(\underbrace{((B(\frac{1}{2}),O(\frac{1}{2})))}_{\alpha_h},\underbrace{((B(\frac{1}{3}),O(\frac{2}{3})))}_{\alpha_w}) \in \Delta(A_h) \times \Delta(A_w)$$

If all *n* players are playing mixed strategies,

Player 1 plays
$$\alpha_1$$
;
Player 2 plays α_2 ;

. . .

Player *n* plays α_n .

Then we have a mixed strategy profile $(\alpha_1, \alpha_2, ... \alpha_n) = (\alpha_i)_{i \in \mathbb{N}}$, or simply (α_i) .

Note $(\alpha_1, \alpha_2, ... \alpha_n) \in \Delta(A_1) \times \Delta(A_2) \times ... \times \Delta(A_n)$ $(\alpha_1, \alpha_2, ... \alpha_n) \in \times_{i \in \mathbb{N}} \Delta(A_i)$

Boxing

Roxina

Wife

Onera

Onora

Husband

Boxing

Opera

Bounty	Operu	
prob.=1/6	prob.=1/3	
prob.=1/6	prob.=1/3	

Wife

Husband

Boxing

Opera

Βυλιτιχ	Ореги	
prob.=2/9	prob.=1/9	
prob.=4/9	prob.=2/9	

Let there be three players $N = \{1,2,3\}$. Consider a profile $(\alpha_1, \alpha_2, \alpha_3)$ of mixed strategies.

$$\alpha_{1} = (a_{1}(\frac{1}{2}), a_{2}(\frac{1}{12}), a_{3}(\frac{1}{4}), a_{4}(\frac{1}{12}), a_{5}(\frac{1}{12}))$$

$$\alpha_{2} = (b_{1}(\frac{1}{4}), b_{2}(\frac{1}{4}), b_{3}(0), b_{4}(\frac{1}{2}))$$

$$\alpha_{3} = (c_{1}(\frac{1}{3}), c_{2}(\frac{2}{3}), c_{3}(0))$$

With this $(\alpha_j)_{j\in N} \in \times_{j\in N} \Delta(A_j)$,

- The probability of (a₁, b₂, c₂) ∈ A is ½ × ½ × ½ = ½.
 The probability of (a₃, b₃, c₁) ∈ A is ½ × 0 × ½ = 0.
- and so on.

$$\alpha_{1} = (a_{1}(\frac{1}{2}), a_{2}(\frac{1}{12}), a_{3}(\frac{1}{4}), a_{4}(\frac{1}{12}), a_{5}(\frac{1}{12}))$$

$$\alpha_{2} = (b_{1}(\frac{1}{4}), b_{2}(\frac{1}{4}), b_{3}(0), b_{4}(\frac{1}{2}))$$

$$\alpha_{3} = (c_{1}(\frac{1}{3}), c_{2}(\frac{2}{3}), c_{3}(0))$$

- The probability of $(a_1, b_2, c_2) \in A$ is $\frac{1}{2} \times \frac{1}{4} \times \frac{2}{3} = \frac{1}{12}$.
- The probability of $(a_3, b_3, c_1) \in A$ is $\frac{1}{4} \times 0 \times \frac{1}{3} = 0$.
- The probability of $(a_3, b_4, c_2) \in A$ is $\frac{1}{4} \times \frac{1}{2} \times \frac{2}{3} = \frac{1}{12}$.
- and so on.

This particular profile $(\alpha_1, \alpha_2, \alpha_3) \in \times_{j \in N} \Delta(A_j)$ induces a probability for each member profile $a \in A = \times_{j \in N} A_j$.

- The probability of $(a_1, b_2, c_2) \in A$ is $\frac{1}{2} \times \frac{1}{4} \times \frac{2}{3} = \frac{1}{12}$.
- The probability of $(a_3, b_3, c_1) \in A$ is $\frac{1}{4} \times 0 \times \frac{1}{3} = 0$.
- The probability of $(a_3, b_4, c_2) \in A$ is $\frac{1}{4} \times \frac{1}{2} \times \frac{2}{3} = \frac{1}{12}$.
- and so on.

Q: How does player 1 evaluate this profile $(\alpha_j)_{j \in N}$?

A: Player 1's evaluation of the profile $(\alpha_j)_{j \in N}$ is

$$\left(\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{2}{3}\right) \cdot u_1\left((a_1, b_8, c_2)\right) + \left(\frac{1}{4} \cdot 0 \cdot \frac{1}{3}\right) \cdot u_1\left((a_3, b_9, c_1)\right) + \cdots$$

one term for each $a \in A$

In general,

Q: How does player *i* evaluate a profile $(\alpha_j)_{j \in N}$?

A: Player *i*'s evaluation of the profile $(\alpha_j)_{j \in N}$ is

$$U_i(\alpha) = \sum_{a \in A} \left(\prod_{j \in N} \alpha_j(a_j) \right) \cdot u_i(a)$$

if *A* is finite.

Hence $U_i:\times_{j\in N}\Delta(A_j)\to\mathbb{R}$ is the **utility function** for player i to evaluate the profiles of mixed strategies.

Note that $\langle N, (\Delta(A_i)), (U_i) \rangle$ can be seen as a strategic game.

- The set of players is *N*.
- The set of 'actions' available to player *i* is a set of mixed strategies.
- Each player uses $U_i:\times_{j\in N}\Delta(A_j)\to\mathbb{R}$ to evaluate a mixed strategy profile.

The game $\langle N, (\Delta(A_i)), (U_i) \rangle$ is called the **mixed** extension of $\langle N, (A_i), (u_i) \rangle$.

Mixed Extensions of Strategic Games

DEFINITION. The **mixed extension** of the strategic game $\langle N, (A_i), (u_i) \rangle$ is the strategic game $\langle N, (\Delta(A_i)), (U_i) \rangle$ in which $\Delta(A_i)$ is the set of probability distributions over A_i , and $U_i:\times_{j\in N}\Delta(A_j)\to\mathbb{R}$ assigns to each $\alpha\in\times_{j\in N}\Delta(A_j)$ the expected value, under u_i , of the lottery over A that is induced by α (so that $U_i(\alpha)=\sum_{a\in A}(\prod_{j\in N}\alpha_j(a_j))u_i(a)$ if A is finite).

Notation: Lottery

$$A = \{a, b, c, d, e\}$$

A sample lottery over *A*:

$$\left(a(1/_5),b(2/_5),c(1/_{10}),d(1/_{10}),e(1/_5)\right).$$

Other lotteries over *A*:

$$(a\left(\frac{1}{5}\right), b\left(\frac{1}{5}\right), c\left(\frac{1}{5}\right), d\left(\frac{1}{5}\right), e\left(\frac{1}{5}\right))$$

$$(a\left(\frac{1}{3}\right), b\left(\frac{1}{9}\right), c\left(\frac{1}{9}\right), d(0), e\left(\frac{4}{9}\right))$$

$$(a\left(\frac{1}{7}\right), b\left(\frac{3}{7}\right), c\left(\frac{1}{14}\right), d\left(\frac{2}{7}\right), e\left(\frac{1}{14}\right))$$

$$(a(1), b(0), c(0), d(0), e(0))$$

. . .

Mixed Strategy Nash Equilibrium

DEFINITION. A mixed strategy Nash equilibrium of a strategic game is a Nash equilibrium of its mixed extension.

That is, a **mixed strategy Nash equilibrium** of $\langle N, (A_i), (u_i) \rangle$ is defined to be a Nash equilibrium of $\langle N, (\Delta(A_i)), (U_i) \rangle$.

Class Discussion

Let there be three players $N = \{1,2,3\}$. Let $\alpha^* = (\alpha_1^*, \alpha_2^*, \alpha_3^*) \in \times_{j \in N} \Delta(A_j)$ be a **mixed strategy Nash equilibrium** of $G = \langle N, (A_i), (u_i) \rangle$, and

$$\alpha_1 = (a_1(1), a_2(0), a_3(0), a_4(0), a_5(0))$$

$$\alpha_2 = (b_1(0), b_2(1), b_3(0), b_4(0))$$

$$\alpha_3 = (c_1(0), c_2(1), c_3(0))$$

Q: Is $(a_1, b_2, c_2) \in A$ a Nash equilibrium of G?

Notations:

$$e(a_1) = (a_1(1), a_2(0), a_3(0), a_4(0), a_5(0))$$

$$e(b_2) = (b_1(0), b_2(1), b_3(0), b_4(0))$$

$$e(c_2) = (c_1(0), c_2(1), c_3(0))$$

That is, $e(a_i)$ denotes the degenerate mixed strategy of player i that attaches probability one to $a_i \in A_i$.

Notations:

If
$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n),$$

then

$$\alpha_{-i} = (\alpha_1, \alpha_2, \dots \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_n),$$

$$(\alpha_{-i}, \beta) = (\alpha_1, \alpha_2, \dots \alpha_{i-1}, \beta, \alpha_{i+1}, \dots, \alpha_n)$$

Notations:

If
$$\alpha_1 = (a_1(p_1), a_2(p_2), ..., a_n(p_n))$$
, then $\lambda \alpha_1 = (a_1(\lambda p_1), a_2(\lambda p_2), ..., a_n(\lambda p_n))$.

For example, let
$$\alpha_1 = \left(a_1(0), a_2\left(\frac{1}{2}\right), a_3(0), a_4\left(\frac{1}{4}\right), a_5\left(\frac{1}{4}\right)\right),$$

$$\alpha_2 = \left(a_1\left(\frac{1}{2}\right), a_2\left(\frac{1}{3}\right), a_3(0), a_4\left(\frac{1}{12}\right), a_5\left(\frac{1}{12}\right)\right),$$
 then
$$\frac{1}{2}\alpha_1 + \frac{1}{2}\alpha_2 = \left(a_1\left(\frac{1}{4}\right), a_2\left(\frac{5}{12}\right), a_3(0), a_4\left(\frac{1}{6}\right), a_5\left(\frac{1}{6}\right)\right).$$

Multilinearity of Function U_i

Let α be a mixed strategy profile; β_i and γ_i two mixed strategies of player i; $\lambda \in [0,1]$ a real number.

We have

$$U_{i}(\alpha_{-i}, \lambda \beta_{i} + (1 - \lambda)\gamma_{i})$$

$$= \lambda U_{i}(\alpha_{-i}, \beta_{i}) + (1 - \lambda)U_{i}(\alpha_{-i}, \gamma_{i})$$

EXAMPLE. Suppose player 1 has only three available actions r, s and t. In a profile α , player 1 plays $\alpha_1 = \left(r\left(\frac{1}{7}\right), s\left(\frac{5}{6}\right), t\left(\frac{1}{42}\right)\right)$. Then by the multilinearity of U_i in α , we have

$$U_{1}(\alpha) = \frac{1}{7} \cdot U_{1}(\alpha_{-1}, e(r)) + \frac{5}{6} \cdot U_{1}(\alpha_{-1}, e(s)) + \frac{1}{42} \cdot U_{1}(\alpha_{-1}, e(t))$$

In general, we have

$$U_i(\alpha) = \sum_{a \in A_i} \alpha_i(a) U_i(\alpha_{-i}, e(a))$$

Class Discussion

Suppose player 2 has four available actions: $A_2 = \{u, v, w, x\}$. Let α be a profile such that

$$U_{2}((\alpha_{-2}, e(u))) = 5$$

$$U_{2}((\alpha_{-2}, e(v))) = 2$$

$$U_{2}((\alpha_{-2}, e(w))) = 0$$

$$U_{2}((\alpha_{-2}, e(x))) = 5$$

Q: What **mixed strategy** should player 2 play?

LEMMA. Let $G = \langle N, (A_i), (u_i) \rangle$ be a finite strategic game. Then $\alpha^* \in \times_{i \in N} \Delta(A_i)$ is a mixed strategy Nash equilibrium of G if and only if for every player $i \in N$, every pure strategy in the support of α_i^* is a best response to α_{-i}^* .

Every action in the support of any player's equilibrium mixed strategy yields that player the same payoff.

$$U_{2}((\alpha_{-2}, (u(\frac{1}{2}), v(0), w(0), x(\frac{1}{2})))) =$$

$$U_{2}((\alpha_{-2}, (u(\frac{1}{9}), v(0), w(0), x(\frac{8}{9})))) =$$

$$U_{2}((\alpha_{-2}, (u(0), v(0), w(0), x(1)))) =$$

$$U_{2}((\alpha_{-2}, (u(0), v(0), w(0), x(1)))) = \cdots = 5$$

Class Discussion

Let α be an arbitrary profile of mixed strategies. Suppose

$$U_{2}((\alpha_{-2}, e(u))) = 5$$

$$U_{2}((\alpha_{-2}, e(v))) = 2$$

$$U_{2}((\alpha_{-2}, e(w))) = 0$$

$$U_{2}((\alpha_{-2}, e(x))) = 5$$

Q: Does it make any difference if player 2 plays $(u(\frac{1}{2}), v(0), w(0), x(\frac{1}{2}))$, or (u(0), v(0), w(0), x(1)), or $(u(\frac{998}{1000}), v(0), w(0), x(\frac{2}{1000}))$ in response to α_{-2} ?

Class Discussion

Let α^* be a mixed strategy Nash equilibrium. Suppose

$$U_{2}((\alpha_{-2}, e(u))) = 5$$

$$U_{2}((\alpha_{-2}, e(v))) = 2$$

$$U_{2}((\alpha_{-2}, e(w))) = 0$$

$$U_{2}((\alpha_{-2}, e(x))) = 5$$

Q: Does it make any difference if player 2 plays $(u(\frac{1}{2}), v(0), w(0), x(\frac{1}{2}))$, or (u(0), v(0), w(0), x(1)), or $(u(\frac{998}{1000}), v(0), w(0), x(\frac{2}{1000}))$ in response to α_{-2} ?

That is, if

$$\left(\alpha_{-2}^*, (u(\frac{1}{2}), v(0), w(0), x(\frac{1}{2}))\right)$$

is a mixed strategy Nash equilibrium, then

$$\left(\alpha_{-2}^*, e(x)\right)$$
 or $\left(\alpha_{-2}^*, \left(u(\frac{998}{1000}), v(0), w(0), x(\frac{2}{1000})\right)\right)$

is not necessarily a mixed strategy Nash equilibrium.

Q:

$$U_2((\alpha_{-2}^*, (u(\frac{1}{2}), v(0), w(0), x(\frac{1}{2})))) = U_2((\alpha_{-2}^*, e(x)))?$$

Class Discussion

$$U_{i}(\alpha_{-i}, \lambda \beta_{i} + (1 - \lambda)\gamma_{i})$$

$$= \lambda U_{i}(\alpha_{-i}, \beta_{i}) + (1 - \lambda)U_{i}(\alpha_{-i}, \gamma_{i})$$

Q1: If $(e(a_1), e(b_8), e(c_2)) \in \Delta(A_1) \times \Delta(A_2) \times \Delta(A_3)$ is a mixed strategy Nash equilibrium of G, then is $(a_1, b_8, c_2) \in A$ a Nash equilibrium of G?

Q2: And vice versa? (Is it true that, if a^* is a Nash equilibrium of G, then $(e(a_i^*))$ is a mixed strategy Nash equilibrium of G?)

Existence of Mixed Strategy Nash Equilibrium

Proposition. Every finite strategic game has a mixed strategy Nash equilibrium.

Husband

Boxing Opera

Wife

Boxing	Opera	
2, 1	0, 0	
0, 0	1, 2	

Let (α_h, α_w) be a mixed strategy Nash equilibrium.

CASE 1.
$$\alpha_h(B) = 0$$
 or 1.

There are two Nash equilibria (B, B) and (O, O), as we already knew.

Wife

Husband

Boxing Opera

Boxing	Opera	
2, 1	0, 0	
0, 0	1, 2	

Let (α_h, α_w) be a mixed strategy Nash equilibrium.

CASE 2.
$$0 < \alpha_h(B) < 1$$
.

So we must have $U_h(e(B), \alpha_w) = U_h(e(O), \alpha_w)$, or $2 \cdot \alpha_w(B) + 0 \cdot \alpha_w(O) = 0 \cdot \alpha_w(B) + 1 \cdot \alpha_w(O)$. Since $\alpha_w(B) + \alpha_w(O) = 1$, we have $\alpha_w(B) = \frac{1}{3}$ and $\alpha_w(O) = \frac{2}{3}$.

Moreover, since $0 < \alpha_w(B) < 1$, we must also have $U_w(\alpha_h, e(B)) = U_w(\alpha_h, e(O))$, or $\alpha_h(B) = 2\alpha_h(O)$. Thus $\alpha_h(B) = \frac{2}{3}$.

Thus, the only nondegenerate mixed strategy Nash equilibrium of the game is $((B(\frac{2}{3}), O(\frac{1}{3})), (B(\frac{1}{3}), O(\frac{2}{3})))$, or more simply denoted $((\frac{2}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{2}{3}))$, .

Q: What are the husband's and the wife's payoffs in the mixed strategy Nash equilibrium $((\frac{2}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{2}{3}))$? **A**: Both are $\frac{2}{3}$

Wife

Husband

Boxing Opera

Boxing	Opera
2, 1	0, 0
0, 0	1, 2

An In-depth Investigation

Suppose $\alpha_h = (B(p_1), O(1-p_1))$ and $\alpha_w = (B(p_2), O(1-p_2))$. The expected utility of the wife is $U_w = p_1p_2 + 2(1-p_1)(1-p_2)$, or $(3p_1-2)p_2 - 2p_1 + 2$. To maximise it, the wife should take $p_2 = 0$ if $p_1 < \frac{2}{3}$; $p_2 = 1$ if $p_1 > \frac{2}{3}$; and $p_2 =$ any value $\in [0,1]$ if $p_1 = \frac{2}{3}$.

The Players' Best Response Functions in the Mixed Extension of Battle of the Sexes

Class Discussion

Player 2

		Head	Tail
Player 1	Head	1, -1	-1, 1
	Tail	-1, 1	1, -1

Find a mixed strategy Nash equilibrium (α_1, α_2) . Assume $0 < \alpha_1(H) < 1$.

- $U_1(e(H), \alpha_2) = U_1(e(T), \alpha_2).$
- $\alpha_2(H) + (-1) \cdot \alpha_2(T) = (-1) \cdot \alpha_2(H) + \alpha_2(T)$.
- Therefore, $\alpha_2(H) = \alpha_2(T) = \frac{1}{2}$.

Wife

Husband

Boxing

Opera

Boxing	Opera
2, 1	0, 0
0, 0	1, 2

Husband		Wife
χ	В	В
y	O	O

Wife

Husband

Boxing

Opera

Boxing	Opera
2, 1	0, 0
0, 0	1, 2

H	Husband	Wife
<i>x</i>	$a_{h,1}$	a .
y	<i>a.</i> -	$a_{w,1}$
Z	$a_{h,2}$	$a_{w,2}$

	Husband	Wife
\overline{x}	$a_{h,1}$	<i>a</i> .
y (prob. = p)	a.	$a_{w,1}$
z (prob. = q)	$a_{h,2}$ –	$a_{w,2}$

If the husband is informed that either y or z has occurred, then he chooses an action $a_{h,2}$ that is optimal given that the wife chooses $a_{w,1}$ with probability $\frac{p}{p+q}$ and $a_{w,2}$ with probability $\frac{q}{p+q}$.

Ω	π	Husband	Wife
\overline{x} (]	prob. = r)	$a_{h,1}$	a
y (1	prob. = p		$a_{w,1}$
z (1	prob. = q)	$a_{h,2}$ -	$a_{w,2}$

Set of states: $\Omega = \{x, y, z\}$.

Probability measures: $\pi(x) = r$, $\pi(y) = p$, $\pi(z) = q$.

Husband's Information Partition: $\mathcal{P}_h = \{\{x\}, \{y, z\}\}.$

Husband's Strategy: $\sigma_h = \{x \mapsto a_{h,1}, y \mapsto a_{h,2}, z \mapsto a_{h,2}\}.$

Wife's Information Partition: $\mathcal{P}_w = \{\{x, y\}, \{z\}\}.$

Wife's Strategy: $\sigma_w = \{x \mapsto a_{w,1}, y \mapsto a_{w,1}, z \mapsto a_{w,2}\}.$

Ω	π	Husband	Wife
\overline{x}	(prob. = r)	$a_{h,1}$	a
y	$(prob. = p)^{-}$	<i>a</i> -	$a_{w,1}$
Z	(prob. = q)	$a_{h,2}$ -	$a_{w,2}$

Husband's Strategy:
$$\sigma_h = \{ \underbrace{x \mapsto a_{h,1}}_{x}, \underbrace{y \mapsto a_{h,2}, z \mapsto a_{h,2}}_{y,z} \}$$

Consider: $\tau_h = \{ \underbrace{x \mapsto a'_{h,1}}_{x}, \underbrace{y \mapsto a'_{h,2}, z \mapsto a'_{h,2}}_{y,z} \}$.

We say σ_h is better than τ_h if and only if $ru_h(a_{h,1}, a_{w,1}) + pu_h(a_{h,2}, a_{w,1}) + qu_h(a_{h,2}, a_{w,2}) > ru_h(a'_{h,1}, a_{w,1}) + pu_h(a'_{h,2}, a_{w,1}) + qu_h(a'_{h,2}, a_{w,2})$

Correlated Equilibrium

If both the husband and the wife are choosing their best strategies, that is, for any τ_h and τ_w we have $ru_h(a_{h,1},a_{w,1})+pu_h(a_{h,2},a_{w,1})+qu_h(a_{h,2},a_{w,2}) \ge ru_h(a'_{h,1},a_{w,1})+pu_h(a'_{h,2},a_{w,1})+qu_h(a'_{h,2},a_{w,2})$ and $ru_w(a_{h,1},a_{w,1})+pu_w(a_{h,2},a_{w,1})+qu_w(a_{h,2},a_{w,2}) \ge ru_w(a_{h,1},a'_{w,1})+pu_w(a_{h,2},a'_{w,1})+qu_w(a_{h,2},a'_{w,2})$ then the situation is said to be in **correlated equilibrium**.

Correlated Equilibrium

DEFINITION. A correlated equilibrium of a strategic game $\langle N, (A_i), (u_i) \rangle$ consists of

- a finite probability space (Ω, π) $(\Omega$ is a set of states and π is a probability measure on Ω)
- for each player $i \in N$ a partition \mathcal{P}_i of Ω (player i's **information partition**)

• for each player $i \in N$ a function $\sigma_i : \Omega \to A_i$ with $\sigma_i(\omega) = \sigma_i(\omega')$ whenever $\omega \in P_i$ and $\omega' \in P_i$ for some $P_i \in \mathcal{P}_i$ (σ_i is player i's **strategy**)

such that for every $i \in N$ and every function $\tau_i : \Omega \to A_i$ for which $\tau_i(\omega) = \tau_i(\omega')$ whenever $\omega \in P_i$ and $\omega' \in P_i$ for some $P_i \in \mathcal{P}_i$ (*i.e.* for every strategy of player i) we have

$$\sum_{\omega \in \Omega} \pi(\omega) u_i (\sigma_{-i}(\omega), \sigma_i(\omega)) \ge \sum_{\omega \in \Omega} \pi(\omega) u_i (\sigma_{-i}(\omega), \tau_i(\omega)).$$

Correlated Equilibrium and Mixed Strategy Nash Equilibrium

PROPOSITION. For every mixed strategy Nash equilibrium α of a finite strategic game $\langle N, (A_i), (u_i) \rangle$ there is a correlated equilibrium $\langle (\Omega, \pi), (\mathcal{P}_i), (\sigma_i) \rangle$, in which for each player $i \in N$ the distribution on A_i induced by σ_i is α_i .

Wife

Roxina

Husband

Boxing

Opera

Doxing	Ореги
2, 1	0, 0
0, 0	1, 2

Onora

The mixed strategy Nash equilibrium: $((\frac{2}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{2}{3}))$. The corresponding correlated equilibrium is:

.
$$\Omega = \{x_{BB}, x_{BO}, x_{OB}, x_{OO}\}.$$

$$\pi(x_{BB}) = \pi(x_{OO}) = \frac{2}{9}, \ \pi(x_{BO}) = \frac{4}{9}, \ \pi(x_{OB}) = \frac{1}{9}.$$

$$\mathcal{P}_h = \{\{x_{BB}, x_{BO}\}, \{x_{OB}, x_{OO}\}\}.$$

$$\mathcal{P}_{w} = \{\{x_{BB}, x_{OB}\}, \{x_{BO}, x_{OO}\}\}.$$

.
$$\sigma_h = \{x_{BB} \mapsto B, x_{BO} \mapsto B, x_{OB} \mapsto O, x_{OO} \mapsto O\}.$$

.
$$\sigma_w = \{x_{BB} \mapsto B, x_{BO} \mapsto O, x_{OB} \mapsto B, x_{OO} \mapsto O\}.$$

There is yet another correlated equilibrium.

$$\Omega = \{x, y\}.$$

$$\pi(x) = \pi(y) = \frac{1}{2}$$
.

$$\mathcal{P}_h = \mathcal{P}_w = \{ \{x\}, \{y\} \}.$$

$$. \ \sigma_h = \sigma_w = \{x \mapsto B, y \mapsto O\}.$$

Q: Is this a correlated equilibrium?

Q: What are the husband's and the wife's payoffs?

A: Both are $\frac{3}{2}$.

Consider the following game.

Nash equilibrium payoff profiles:

- (2,7) and (7,2) (*pure*)
- $(4\frac{2}{3}, 4\frac{2}{3})$ (mixed)

$$L \quad R \quad . \quad \Omega = \{x_{TL}, x_{TR}, x_{BL}\}.$$

$$T \quad 6, \quad 2, \quad . \quad \pi(x_{TL}) = \pi(x_{TR}) = \pi(x_{BL}) = \frac{1}{3}.$$

$$P_1 = \{\{x_{BL}\}, \{x_{TL}, x_{TR}\}\}.$$

$$P_2 = \{\{x_{TL}, x_{BL}\}, \{x_{TR}\}\}.$$

$$\sigma_1 = \{x_{BL} \mapsto B, x_{TL} \mapsto T, x_{TR} \mapsto T\}.$$

$$\sigma_2 = \{x_{BL} \mapsto L, x_{TL} \mapsto L, x_{TR} \mapsto R\}.$$

Q: Is this a correlated equilibrium?

Q: What is the payoff profile?

A: (5,5).

Evolutionary Equilibrium

Consider a population of animals, the set of available actions of each animal is the same *B*.

An animal does not consciously choose actions. It plays by its instincts.

Evolutionary Equilibrium

From time to time, mutations occur: for every possible $b \in B$ some mutants will follow b.

The animals interact with each other pairwise. Each match is a two player symmetric strategic game

$$\langle \{1,2\}, (B,B), (u_i) \rangle,$$

where
$$u_1(a, b) = u_2(b, a) = u(a, b)$$
.

Suppose in an equilibrium all animals take the action b^* . Now a fraction $\varepsilon > 0$ of the population mutates and take the action b.

For b^* to be an evolutionary equilibrium ('evolutionarily stable solution (ESS)'), we require $(1-\varepsilon)u(b,b^*)+\varepsilon u(b,b)<(1-\varepsilon)u(b^*,b^*)+\varepsilon u(b^*,b)$ for any value of ε sufficiently small.

$$(1 - \varepsilon)u(b, b^*) + \varepsilon u(b, b) < (1 - \varepsilon)u(b^*, b^*) + \varepsilon u(b^*, b)$$

This inequality is satisfied if and only if for every $b \neq b^*$, either

- $u(b, b^*) < u(b^*, b^*)$, or
- $u(b, b^*) = u(b^*, b^*)$ and $u(b, b) < u(b^*, b)$, or
- $u(b, b^*) > u(b^*, b^*)$ (but this is impossible...)

Therefore, this inequality is satisfied if for every best response $b \in B$ to b^* with $b \neq b^*$, $u(b,b) < u(b^*,b)$.

Evolutionary Equilibrium

DEFINITION. Let $G = \langle \{1,2\}, (B,B), (u_i) \rangle$ be a symmetric strategic game, where $u_1(a,b) = u_2(b,a) = u(a,b)$ for some function u. An **evolutionarily stable solution** (ESS) of G is an action $b^* \in B$ for which (b^*,b^*) is a Nash equilibrium of G and $u(b,b) < u(b^*,b)$ for every best response $b \in B$ to b^* with $b \neq b^*$.

EXAMPLE. Two cats in a population always fight over a rat. Cats can behave like a dove (D) or like a hawk (H).

	D	Н
D	$\frac{1}{2'}$ $\frac{1}{2}$	0, 1
Н	1, 0	$\frac{1}{2}(1-c), \frac{1}{2}(1-c)$

Q: Show a mixed strategy Nash equilibrium if c > 1.

Q: What if c < 1?

	D	Н
D	$\frac{1}{2'}$ $\frac{1}{2}$	0, 1
Н	1, 0	$\frac{1}{2}(1-c), \frac{1}{2}(1-c)$

A: If c > 1, the unique mixed strategy Nash equilibrium is $\left(\left(1 - \frac{1}{c}, \frac{1}{c}\right), \left(1 - \frac{1}{c}, \frac{1}{c}\right)\right)$. This equilibrium mixed strategy $\left(1 - \frac{1}{c}, \frac{1}{c}\right)$ is the only ESS.

A: If c < 1, the unique mixed strategy Nash equilibrium is (e(H), e(H)). This equilibrium strategy H is the only ESS.

$\frac{1}{2}$, $\frac{1}{2}$	1, -1	-1, 1
	$\frac{1}{2}$, $\frac{1}{2}$	1, -1
	-1, 1	$\frac{1}{2}$, $\frac{1}{2}$

Q: Show a mixed strategy Nash equilibrium.

Q: What about a mutant that uses a pure strategy?

Q: Is the equilibrium mixed strategy an ESS?