

Chapter 16

Greedy Algorithms

Greedy Algorithms

- Similar to dynamic programming, but simpler approach
 - Also used for optimization problems
- Idea: When we have a choice to make, make the one that looks best right now
 - Make a locally optimal choice in hope of getting a globally optimal solution
- Greedy algorithms don't always yield an optimal solution
- When the problem has certain general characteristics, greedy algorithms give optimal solutions

Algorithms

2

Activity Selection

 Schedule n activities that require exclusive use of a common resource

$$S = \{\alpha_1, \ldots, \alpha_n\}$$
 – set of activities

- a_i needs resource during period [s_i, f_i)
 - s_i = start time and f_i = finish time of activity a_i
 - $0 \le s_i < f_i < \infty$
- Activities a_i and a_j are compatible if the intervals [s_i, f_i) and [s_j, f_j) do not overlap

$$f_{j} \leq s_{i}$$

Activity Selection Problem

Select the largest possible set of nonoverlapping (*mutually compatible*) activities.

E.g.:

i	1	2	3	4	5	6	7	8	9	10	11
Si	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	8	9	10	11	12	13	14

- Activities are sorted in increasing order of finish times
- A subset of mutually compatible activities: {a₃, a₉, a₁₁}
- Maximal set of mutually compatible activities:
 {a₁, a₄, a₈, a₁₁} and {a₂, a₄, a₉, a₁₁}

Optimal Substructure

Define the space of subproblems:

$$S_{ij} = \{ a_k \in S : f_i \le s_k < f_k \le s_j \}$$

activities that start after a_i finishes and finish before a_j
 starts

- Activities that are compatible with the ones in S_{ij}
 - All activities that finish by f_i
 - All activities that start no earlier than s_i

Representing the Problem

Add fictitious activities

$$-a_0 = [-\infty, 0)$$

$$-a_{n+1} = [\infty, "\infty + 1"]$$

$$S = S_{0,n+1} \text{ entire space of activities}$$

$$S = S_{0,n+1} \text{ entire space of activities}$$

- Range for S_{ij} is $0 \le i, j \le n + 1$
- In a set S_{ij} we assume that activities are sorted in increasing order of finish times:

$$f_0 \le f_1 \le f_2 \le \dots \le f_n < f_{n+1}$$

- What happens if i ≥ j?
 - For an activity $a_k \in S_{ij}$: $f_i \le s_k < f_k \le s_j < f_j$ contradiction with $f_i \ge f_i!$
 - \Rightarrow S_{ij} = \emptyset (the set S_{ij} must be empty!)
- We only need to consider sets S_{ij} with 0 ≤ i < j ≤ n + 1

Optimal Substructure

- Subproblem:
 - Select a maximum size subset of mutually compatible activities from set S_{ii}
- Assume that a solution to the above subproblem includes activity a_k (S_{ii} is non-empty)

Solution to $S_{ij} = (Solution \ to \ S_{ik}) \cup \{a_k\} \cup (Solution \ to \ S_{kj})$ | Solution to $S_{ij} = |Solution \ to \ S_{ik}| + 1 + |Solution \ to \ S_{kj}|$

Optimal Substructure (cont.)

- Claim: Sets A_{ik} and A_{ki} must be optimal solutions
- Assume ∃ A_{ik}' that includes more activities than A_{ik}

$$Size[A_{ij}] = Size[A_{ik}] + 1 + Size[A_{kj}] > Size[A_{ij}]$$

 \Rightarrow Contradiction: we assumed that A_{ij} is the maximum # of activities taken from S_{ii}

Recursive Solution

• Any optimal solution (associated with a set S_{ij}) contains within it optimal solutions to subproblems S_{ik} and S_{kj}

 c[i, j] = size of maximum-size subset of mutually compatible activities in S_{ii}

• If
$$S_{ij} = \emptyset \Rightarrow c[i, j] = 0 \ (i \ge j)$$

Recursive Solution

If $S_{ij} \neq \emptyset$ and if we consider that a_k is used in an optimal solution (maximum-size subset of mutually compatible activities of S_{ii})

$$c[i, j] = c[i,k] + c[k, j] + 1$$

Recursive Solution

$$c[i, j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ \max_{i < k < j} \{c[i, k] + c[k, j] + 1\} & \text{if } S_{ij} \neq \emptyset \\ a_k \in S_{ij} & \end{cases}$$

There are j – i – 1 possible values for k

$$- k = i+1, ..., j-1$$

 $-a_k$ cannot be a_i or a_j (from the definition of S_{ij})

$$S_{ij} = \{ a_k \in S : f_i \le s_k < f_k \le s_j \}$$

We check all the values and take the best one

We could now write a dynamic programming algorithm

Algorithms

Theorem

Let $S_{ij} \neq \emptyset$ and a_m the activity in S_{ij} with the earliest finish time:

$$f_m = min \{ f_k : a_k \in S_{ij} \}$$

Then:

- a_m is used in some maximum-size subset of mutually compatible activities of S_{ij}
 - There exists some optimal solution that contains a_m
- 2. $S_{im} = \emptyset$
 - Choosing a_m leaves S_{mj} the only nonempty subproblem

Proof

2. Assume $\exists a_k \in S_{im}$

$$f_i \le s_k < f_k \le s_m < f_m$$

 \Rightarrow $f_k < f_m$ contradiction!

a_m did not have the earliest finish time

$$\Rightarrow$$
 There is no $a_k \in S_{im} \Rightarrow S_{im} = \emptyset$

Proof: Greedy Choice Property

- a_m is used in some maximum-size subset of mutually compatible activities of S_{ii}
- A_{ij} = optimal solution for activity selection from S_{ij}
 - Order activities in A_{ii} in increasing order of finish time
 - Let a_k be the first activity in $A_{ii} = \{a_k, ...\}$
- If $a_k = a_m$ Done!
- Otherwise, replace a_k with a_m (resulting in a set A_{ij}')
 - since $f_m \le f_k$ the activities in A_{ii} will continue to be compatible
 - A_{ij} will have the same size with $A_{ij} \Rightarrow a_m$ is used in some maximum-size subset

Why is the Theorem Useful?

	Dynamic programming	Using the theorem
Number of subproblems in the optimal solution	2 subproblems: S _{ik} , S _{kj}	1 subproblem: S_{mj} $S_{im} = \emptyset$
Number of choices to consider	j – i – 1 choices	1 choice: the activity with the earliest finish time in S _{ij}

- Making the greedy choice (the activity with the earliest finish time in S_{ii})
 - Reduce the number of subproblems and choices
 - Solve each subproblem in a top-down fashion

Greedy Approach

- To select a maximum size subset of mutually compatible activities from set S_{ii}:
 - Choose $a_m \in S_{ii}$ with earliest finish time (greedy choice)
 - Add a_m to the set of activities used in the optimal solution
 - Solve the same problem for the set S_{mj}
- From the theorem
 - By choosing a_m we are guaranteed to have used an activity included in an optimal solution
 - \Rightarrow We do not need to solve the subproblem S_{mj} before making the choice!
 - The problem has the GREEDY CHOICE property

Characterizing the Subproblems

- The original problem: find the maximum subset of mutually compatible activities for S = S_{0, n+1}
- Activities are sorted by increasing finish time

$$a_0, a_1, a_2, a_3, ..., a_{n+1}$$

- We always choose an activity with the earliest finish time
 - Greedy choice maximizes the unscheduled time remaining
 - Finish time of activities selected is strictly increasing

A Recursive Greedy Algorithm

```
Alg.: REC-ACT-SEL (s, f, i, n) a_m
1. m \leftarrow i + 1
2. while m \le n and S_m < f_i Find first activity in S_{i,n+1}
            dom \leftarrow m + 1
   if m ≤ n
       then return \{a_m\} \cup REC-ACT-SEL(s, f, m, n)
6. else return \varnothing
```

- Activities are ordered in increasing order of finish time
- Running time: $\Theta(n)$ each activity is examined only once
- Initial call: REC-ACT-SEL(s, f, 0, n)

An Incremental Algorithm

Alg.: GREEDY-ACTIVITY-SELECTOR(s, f, n)

```
1. A \leftarrow \{a_1\}
2. i \leftarrow 1
3. for m \leftarrow 2 to n
4. do if s_m \ge f_i
5. then A \leftarrow A \cup \{a_m\}
6. i \leftarrow m \quad a_i \text{ is most recent addition to } A
7. return A
```

- Assumes that activities are ordered in increasing order of finish time
- Running time: $\Theta(n)$ each activity is examined only once

Steps Toward Our Greedy Solution

- 1. Determined the optimal substructure of the problem
- 2. Developed a recursive solution
- 3. Proved that one of the optimal choices is the greedy choice
- 4. Showed that all but one of the subproblems resulted by making the greedy choice are empty
- Developed a recursive algorithm that implements the greedy strategy
- 6. Converted the recursive algorithm to an iterative one

Designing Greedy Algorithms

- Cast the optimization problem as one for which: we make a choice and are left with only one subproblem to solve
- 2. Prove that there is always an optimal solution to the original problem that makes the greedy choice
 - Making the greedy choice is always safe
- 3. Demonstrate that after making the greedy choice: the greedy choice + an optimal solution to the resulting subproblem leads to an optimal solution

Correctness of Greedy Algorithms

1. Greedy Choice Property

 A globally optimal solution can be arrived at by making a locally optimal (greedy) choice

2. Optimal Substructure Property

- We know that we have arrived at a subproblem by making a greedy choice
- Optimal solution to subproblem + greedy choice ⇒
 optimal solution for the original problem

Activity Selection

Greedy Choice Property

There exists an optimal solution that includes the greedy choice:

- The activity a_m with the earliest finish time in S_{ij}
- Optimal Substructure:

If an optimal solution to subproblem S_{ij} includes activity $a_k \Rightarrow$ it must contain optimal solutions to S_{ik} and S_{kj} Similarly, a_m + optimal solution to $S_{im} \Rightarrow$ optimal sol.

Dynamic Programming vs. Greedy Algorithms

Dynamic programming

- We make a choice at each step
- The choice depends on solutions to subproblems
- Bottom up solution, from smaller to larger subproblems

Greedy algorithm

- Make the greedy choice and THEN
- Solve the subproblem arising after the choice is made
- The choice we make may depend on previous choices, but not on solutions to subproblems
- Top down solution, problems decrease in size

The Knapsack Problem

The 0-1 knapsack problem

- A thief rubbing a store finds n items: the i-th item is worth v_i dollars and weights w_i pounds (v_i, w_i integers)
- The thief can only carry W pounds in his knapsack
- Items must be taken entirely or left behind
- Which items should the thief take to maximize the value of his load?

The fractional knapsack problem

- Similar to above
- The thief can take fractions of items

- Knapsack capacity: W
- There are n items: the i-th item has value v_i and weight w_i
- Goal:
 - find x_i such that for all $0 \le x_i \le 1$, i = 1, 2, ..., n
 - $\sum w_i x_i \leq W$ and
 - $\sum x_i v_i$ is maximum

- Greedy strategy 1:
 - Pick the item with the maximum value
- E.g.:
 - W = 1
 - $w_1 = 100, v_1 = 2$
 - $w_2 = 1, v_2 = 1$
 - Taking from the item with the maximum value:

Total value taken =
$$v_1/w_1$$
 = 2/100

Smaller than what the thief can take if choosing the other item

Total value (choose item 2) =
$$v_2/w_2 = 1$$

Algorithms

28

Greedy strategy 2:

- Pick the item with the maximum value per pound v_i/w_i
- If the supply of that element is exhausted and the thief can carry more: take as much as possible from the item with the next greatest value per pound
- It is good to order items based on their value per pound

$$\frac{v_1}{w_1} \ge \frac{v_2}{w_2} \ge \dots \ge \frac{v_n}{w_n}$$

```
Alg.: Fractional-Knapsack (W, v[n], w[n])
```

- 1. While w > 0 and as long as there are items remaining
- 2. pick item with maximum v_i/w_i
- 3. $x_i \leftarrow \min(1, w/w_i)$
- 4. remove item i from list
- 5. $\mathbf{w} \leftarrow \mathbf{w} \mathbf{x}_i \mathbf{w}_i$

- w the amount of space remaining in the knapsack (w = W)
- Running time: Θ(n) if items already ordered; else Θ(nlgn)

 Algorithms

Fractional Knapsack - Example

• E.g.:

\$6/pound \$5/pound \$4/pound

31

Greedy Choice

1 2 3 ... j ... n x_1 x_2 x_3 x_j x_n x_1' x_2' x_3' x_i' x_n' Items: Optimal solution: Greedy solution:

- We know that: x₁' ≥ x₁
 - greedy choice takes as much as possible from item 1
- Modify the optimal solution to take x₁' of item 1
 - We have to decrease the quantity taken from some item j: the new x_i is decreased by: $(x_1' - x_1) w_1/w_i$
- Increase in profit: $(x_1, -x_1) v_1$
- Decrease in profit: $(x_1' x_1)w_1 v_i/w_i$

$$(x_1' - x_1) v_1 \ge (x_1' - x_1) w_1 v_j / w_j$$

$$v_1 \ge w_1 \, rac{v_j}{w_j} \quad \Rightarrow \quad rac{v_1}{w_1} \ge rac{v_j}{w_j} \qquad \mbox{True, since x_1 had the best value/pound ratio}$$

Optimal Substructure

- Consider the most valuable load that weights at most W pounds
- If we remove a weight w of item j from the optimal load
- ⇒ The remaining load must be the most valuable load weighing at most W w that can be taken from the remaining n 1 items plus w_j w pounds of item j

The 0-1 Knapsack Problem

- Thief has a knapsack of capacity W
- There are n items: for i-th item value v_i and weight w_i
- Goal:
 - find x_i such that for all $x_i = \{0, 1\}$, i = 1, 2, ..., n
 - $\sum w_i x_i \leq W$ and
 - $\sum x_i v_i$ is maximum

0-1 Knapsack - Greedy Strategy

\$6/pound \$5/pound \$4/pound

- None of the solutions involving the greedy choice (item 1) leads to an optimal solution
 - The greedy choice property does not hold

0-1 Knapsack - Dynamic Programming

- P(i, w) the maximum profit that can be obtained from items 1 to i, if the knapsack has size w
- Case 1: thief takes item i

$$P(i, w) = v_i + P(i - 1, w - w_i)$$

Case 2: thief does not take item i

$$P(i, w) = P(i - 1, w)$$

36

0-1 Knapsack - Dynamic Programming

Example:

W = 5

P(i, w) = max	$x \{v_i + P(i -$	- 1, w-w _i)	, P(i -	1, w)
---------------	-------------------	-------------------------	---------	-------

Item	Weight	Value
1	2	12
2	1	10
3	3	20
4	2	15

	0	1	2	3	4	5
0	0 🖈	0/	0/	0 /	0	0
1	0	/ _0	/ 12 ×	/ 12 _× /	/ 12 ×	12
2	0	10+	_2/ _12/ 	/22/ /*	22	22
3	0	0 _10/	_2/	22•	/30/	32
4	0	10	/ 15	_25	30	`37

$$P(1, 1) = P(0, 1) = 0$$

$$P(1, 2) = max\{12+0, 0\} = 12$$

$$P(1, 3) = max\{12+0, 0\} = 12$$

$$P(1, 4) = max\{12+0, 0\} = 12$$

$$P(1, 5) = max\{12+0, 0\} = 12$$

$$P(2, 1) = max\{10+0, 0\} = 10$$

$$P(3, 1) = P(2,1) = 10$$

$$P(4, 1) = P(3,1) = 10$$

$$P(2, 2) = max\{10+0, 12\} = 12$$
 $P(3, 2) = P(2,2) = 12$

$$P(3, 2) = P(2,2) = 12$$

$$P(4, 2) = max\{15+0, 12\} = 15$$

$$P(2, 3) = max\{10+12, 12\} = 22$$
 $P(3, 3) = max\{20+0, 22\} = 22$ $P(4, 3) = max\{15+10, 22\} = 25$

$$P(3, 3) = \max\{20+0, 22\} = 22$$

$$P(2, 4) = max\{10+12, 12\} = 22 P(3, 4) = max\{20+10,22\} = 30 P(4, 4) = max\{15+12, 30\} = 30$$

$$P(3, 4) = \max\{20 + 10, 22\} = 30$$

$$P(4, 4) = max\{15+12, 30\}=30$$

$$P(2, 5) = max\{10+12, 12\} = 22$$
 $P(4, 5) = max\{20+12,22\} = 32$ $P(4, 5) = max\{15+22, 32\} = 37$

$$P(4, 5) = max\{20+12,22\}=32$$

Reconstructing the Optimal Solution

- Item 4
- Item 2
- Item 1

- Start at P(n, W)
- When you go left-up ⇒ item i has been taken
- When you go straight up ⇒ item i has not been taken

Optimal Substructure

- Consider the most valuable load that weights at most W pounds
- If we remove item j from this load
- \Rightarrow The remaining load must be the most valuable load weighing at most W w_j that can be taken from the remaining n 1 items

Overlapping Subproblems

 \mathcal{E} .g.: all the subproblems shown in grey may depend on P(i-1, w)