2022-2023 MP2I

À chercher pour lundi 20/03/2023, corrigé

TD 22:

Exercice 11. Constante d'Euler. On pose $H_n = \sum_{k=1}^n \frac{1}{k}$.

1) On utilise une comparaison série/intégrale avec la fonction f(t) = 1/t qui est décroissante sur $[1, +\infty[$. Pour tout $k \in \mathbb{N}^*$ et $t \in [k, k+1]$, on a alors $f(k) \ge f(t) \ge f(k+1)$. En intégrant, on a alors $f(k) \ge \int_{k}^{k+1} f(t)dt \ge f(k+1)$. En sommant de 1 à n-1, on en déduit que pour tout $n \ge 2$:

$$\sum_{k=1}^{n-1} f(k) \ge \int_1^n f(t)dt \ge \sum_{k=1}^{n-1} f(k+1).$$

Ceci entraine que $H_n - \frac{1}{n} \ge \ln(n) \ge H_n - 1$. On a donc :

$$1 + \ln(n) \ge H_n \ge \ln(n) + \frac{1}{n}.$$

En divisant par $\ln(n)$ et en utilisant le théorème des gendarmes, on en déduit que $H_n \sim \ln(n)$.

2) Posons $u_n = H_n - \ln(n)$. D'après l'encadrement de la question précédente, on a $u_n \ge \frac{1}{n} \ge 0$ donc (u_n) est positive. On a de plus pour $n \in \mathbb{N}^*$:

$$u_{n+1} - u_n = \frac{1}{n+1} - \ln(n+1) + \ln(n)$$
$$= \frac{1}{n+1} + \ln\left(1 - \frac{1}{n+1}\right).$$

Ceci nous invite à étudier le signe de $x + \ln(1-x)$ pour $x \in [0,1[$. Une rapide étude de fonction montre que cette fonction est négative (car décroissante et s'annulant en 0). Ceci entraine en particulier que $u_{n+1} - u_n \le 0$, ce qui entraine la décroissante de la suite (u_n) .

Cette suite étant décroissante minorée, elle est donc convergente. Elle converge donc vers une constante γ . Ceci entraine en particulier, puisque $H_n = u_n + \ln(n)$ que $H_n = \ln(n) + \gamma + o(1)$.

3) On pose $H'_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. D'après le critère des séries alternées, (H'_n) est convergente. Notons I sa limite. On a alors (H'_n) qui converge vers la même limite (car c'est une suite extraite d'une

l sa limite. On a alors (H'_{2n}) qui converge vers la même limite (car c'est une suite extraite d'une suite convergente). On a de plus pour $n \in \mathbb{N}^*$, en séparant la somme en les n pairs et impairs :

$$H'_{2n} = \sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k}$$

$$= \sum_{j=1}^{n} \frac{(-1)^{2j+1}}{2j} + \sum_{j=1}^{n} \frac{(-1)^{2j-1+1}}{2j-1}$$

$$= -\frac{H_n}{2} + \sum_{j=1}^{n} \frac{1}{2j-1}$$

$$= -\frac{H_n}{2} + \sum_{j=1}^{n} \frac{1}{2j-1} + \sum_{j=1}^{n} \frac{1}{2j} - \sum_{j=1}^{n} \frac{1}{2j}$$

$$= -H_n + \sum_{k=1}^{2n} \frac{1}{k}$$

$$= -H_n + H_{2n}.$$

Ceci entraine d'après la question précédente que $H'_n = -(\ln(n) + \gamma + o(1)) + (\ln(2n) + \gamma + o(1))$, c'est à dire, puisque $\ln(2n) = \ln(n) + \ln(2)$ que $H'_n = \ln(2) + o(1)$. On a donc $H'_n \to \ln(2)$ quand n tend vers l'infini.

Exercice 12.

- 1) On a $f_n(a) \sim \frac{a}{n^2}$ (a est fixé et c'est bien n qui tend vers l'infini). Par comparaison de séries à termes positifs et puisque $\sum 1/n^2$ converge par critère de Riemann, on a donc $\sum_{n \in \mathbb{N}^*} f_n(a)$ qui converge.
- 2) La fonction g est bien dérivable sur $[1, +\infty[$ et pour $x \ge 1, g'(x) = \frac{-2ax}{(x^2 + a^2)^2} < 0$. Elle est donc décroissante. Par comparaison série/intégrale, on a donc (je vous laisse la réécrire en détail, cf le corrigé de l'exo 6 ou le cours) pour $N \ge 1$:

$$g(N) + \int_{1}^{N} g(x)dx \le \sum_{k=1}^{N} \frac{a}{k^2 + a^2} \le g(1) + \int_{1}^{N} g(x)dx.$$

Or, on a:

$$\int_{1}^{N} g(x)dx = \frac{1}{a} \int_{1}^{N} \frac{1}{(x/a)^{2} + 1} dx$$
$$= \left[\arctan(x/a)\right]_{1}^{N}$$
$$= \arctan(N/a) - \arctan(1/a).$$

En reprenant la comparaison série/intégrale, on peut donc faire tendre N vers l'infini et puisque toutes les limites existent, car $\lim_{N\to+\infty}g(N)=0$ et $\lim_{N\to+\infty}\int_1^Ng(x)dx=\frac{\pi}{2}-\arctan(1/a)$ puisque a>0, on a donc :

$$\frac{\pi}{2} - \arctan(1/a) \le \sum_{n=1}^{+\infty} f_n(a) \le \frac{a}{1+a^2} + \frac{\pi}{2} - \arctan(1/a).$$

On peut à présent faire tendre a vers l'infini. Les limites de gauche et de droite valent $\frac{\pi}{2}$ (la seule forme indéterminée est $\frac{a}{1+a^2} \sim \frac{1}{a}$ qui tend vers 0). Par théorème des gendarmes, on a donc :

$$\lim_{a \to +\infty} \sum_{n=1}^{+\infty} f_n(a) = \frac{\pi}{2}.$$

3) On a $f_n(a) \sim \frac{a}{a^2} \sim \frac{1}{a}$ quand a tend vers l'infini (ici n est fixé). On a donc $\lim_{a \to +\infty} f_n(a) = 0$. On a donc :

$$\sum_{n=1}^{+\infty} \lim_{a \to +\infty} f_n(a) = \sum_{n=1}^{+\infty} 0 = 0.$$

On ne peut donc pas intervertir les limites et les sommes infinies (ou de manière générale, les limites quand on a plusieurs variables, ici $\lim_{a\to+\infty}$ et $\lim_{N\to+\infty}$. L'ordre dans lequel on fait les opérations est important!

4) Pour $n \in \mathbb{N}$, on a $\frac{\binom{2n}{n}}{4^n} = \frac{(2n)!}{(n!)^2 4^n}$. Ceci est positif donc on en cherche un équivalent (avec la formule de Stirling):

$$\frac{(2n)!}{(n!)^24^n} \sim \frac{(2n)^{2n}e^{-2n}\sqrt{4\pi n}}{n^{2n}e^{-2n}2\pi n} \times \frac{1}{4^n} \sim \frac{1}{\sqrt{\pi n}}.$$

Puisque $\sum \frac{1}{\sqrt{n}}$ est divergente (par critère de Riemann), on en déduit par comparaison de SATPs que $\sum \frac{\binom{2n}{n}}{4^n}$ est divergente.

Exercice 13. Critère de d'Alembert.

- 1) Puisque $\lim_{n\to +\infty}\frac{u_{n+1}}{u_n}=l>1$, alors en prenant la définition de la limite en $\varepsilon=\frac{l-1}{2}>0$, on a qu'à partir d'un certain rang $N,\,\frac{u_{n+1}}{u_n}>\frac{l+1}{2}>1$. On en déduit qu'à partir d'un certain rang, la suite (u_n) est strictement croissante. Puisqu'elle est à termes strictement positifs, elle ne peut alors pas tendre vers 0 et donc $\sum_{n\in \mathbb{N}}u_n$ diverge grossièrement.
- 2) On reprend la définition de la limite cette fois en $\varepsilon = \frac{1-l}{2} > 0$. Il existe donc un rang $N \in \mathbb{N}$ tel que $\forall n \geq N, \ \frac{u_{n+1}}{u_n} \leq l+\varepsilon = \frac{l+1}{2}$. Puisque $u_n > 0$, on a donc bien à partir de ce rang que $\forall n \geq N, u_{n+1} \leq \left(\frac{l+1}{2}\right)u_n$.

On peut alors montrer par récurrence que $\forall n \geq N, u_n \leq \left(\frac{l+1}{2}\right)^{n-N} \times u_N$. L'initialisation se fait en n=N et pour l'hérédité, on utilise le fait que tout est positif et que l'on peut donc faire des produits d'inégalités.

Ceci entraine que $u_n = O\left(\left(\frac{l+1}{2}\right)^n\right)$. Or, $\sum \left(\frac{l+1}{2}\right)^n$ converge par théorème sur les séries géométriques. Par comparaison de séries à termes positifs, on en déduit que la série $\sum_{n\in\mathbb{N}}u_n$ converge.

3) En prenant $u_n = \frac{1}{n}$ et $v_n = \frac{1}{n^2}$, on a dans les deux cas $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1$ et $\lim_{n \to +\infty} \frac{v_{n+1}}{v_n} = 1$ mais par critère de Riemann, $\sum u_n$ diverge et $\sum v_n$ converge.

TD 23:

Exercice 2. Puisque la fonction nulle 0_E est constante, elle est croissante et on a donc $0_E \in \Delta$ puisque $0_E = 0_E - 0_E$.

Soit $h \in \Delta$. Alors il existe $f, g \in \mathcal{C}$ telles que h = f - g. Soit $\lambda \in \mathbb{R}$. On a alors deux cas :

- Si $\lambda \geq 0$, alors λf et λg sont croissantes donc $\lambda h = \lambda f \lambda g \in \Delta$.
- Si $\lambda \leq 0,$ alors $-\lambda f$ est croissante ainsi que $-\lambda g$ et on a :

$$\lambda h = -\lambda g - (-\lambda f)$$

donc $\lambda h \in \Delta$.

Dans tous les cas, on a $\lambda h \in \Delta$.

Fixons \tilde{A} présent $h_1, h_2 \in \Delta$. Il existe alors f_1, g_1, f_2, g_2 des fonctions croissantes telles que $h_1 = f_1 - g_1$ et $h_2 = f_2 - g_2$. On a alors :

$$h_1 + h_2 = (f_1 + f_2) - (g_1 + g_2) \in \Delta$$

puisqu'une somme de fonctions croissantes est croissante.

On a donc bien montré que Δ est un espace vectoriel.