Latent Variable Models, part 1

OxWaSP module 3: applied statistics

Xavier Didelot

November 2018

Question 1

- ▶ Download the file data.csv at http://bit.ly/2EXIScZ
- This contains the number of major earthquakes (magnitude 7 or greater) in the world, from 1900 until 2006
- ▶ Load this data using read.csv and plot it

Answer 1

Question 2

- We initially assume that the number of quakes is iid for each year.
- Which common probability distribution would you suggest as a first attempt to model the number of quakes?
- ▶ Does this fit well or not?

Answer 2

▶ A natural model would be a Poisson distribution with mean λ :

$$p(X_t = x_t) = e^{-\lambda} \lambda^{x_t} / x_t!$$

The variance of a Poisson distribution is equal to its mean λ. But here we have a mean of 19.364486 and a variance of 51.5734438. So the Poisson model does not fit due to overdispersion of the data.

Answer 2

Question 3

Given that the Poisson model does not fit well, what would you suggest?

Answer 3

- We could consider a model with over-dispersion, for example a Negative Binomial distribution
- However, the distribution seems to have multiple modes which would not be captured
- ► Instead, let us consider an independent mixture model of (at least) two Poisson distributions
- For example, consider that 70% of the observations are from Poisson($\lambda_1 = 15$) and 30% are from Poisson($\lambda_2 = 25$):

$$p(X_t = x_t) = 0.7e^{-\lambda_1} \lambda_1^{x_t} / x_t! + 0.3e^{-\lambda_2} \lambda_2^{x_t} / x_t!$$

- ▶ In other words, the t^{th} observation X_t is generated by sampling C_t from Bernouilli(0.3) and then sampling X_t from Poisson(λ_{1+c_t})
- ► The fit is improved (or is it?), and could be improved further by fitting the parameters and/or considering mixtures of more components

Answer 3

Question 4

- ▶ How can we fit the model which is a mixture of two Poisson?
- ► Three parameters
- ▶ Write the likelihood function, and optimise using optim

Answer 4

[1] -360.369

Question 5

- ► Instead let's use the package depmixS4
- $\,\blacktriangleright\,$ Use the function mix to form the model
- $\,\blacktriangleright\,$ Use the function fit to fit the model
- ▶ Use the function getpars to print the parameters
- ▶ Use the function logLik to print the likelihood

Answer 5

```
library(depmixS4)
m=mix(quakes-1,nstates=2,data=data,family=poisson())
m=fit(m)
getpars(m)

## pr1 pr2 (Intercept) (Intercept)
## 0.3248868 0.6751132 3.2894976 2.7582445
logLik(m)
```

Question 6

- ▶ Is this model really better than the Poisson model?
- ► Calculate the likelihood under both models
- Compare
- ▶ Is this comparison fair?

Answer 6

'log Lik.' -360.3691 (df=3)

```
sum(dpois(data$quakes,mean(data$quakes),log = T))
## [1] -391.9189
logLik(m)
## 'log Lik.' -360.3691 (df=3)
```

Answer 6

- ► Comparing the likelihoods is not fair, since the Poisson model has only one parameter and the mixture model has three
- ▶ The Poisson model can never win, since the mixture model can reduce to the Poisson model if we take $\lambda_1=\lambda_2$ or p=0 or p=1
- We need to correct for the complexity of the models when comparing them

Model selection

- ► Two criteria are in common use to account for the complexity of models when comparing them
- ► The Akaike information criterion:

$$AIC = -2\log(L) + 2p$$

▶ The Bayesian information criterion:

$$BIC = -2\log(L) + p\log(T)$$

- p is the number of parameters of the model, and T the number of observations
- ▶ The model with the smallest AIC or BIC is selected

Question 7

▶ How many states should we use in the mixture model?

Answer 7

```
res=matrix(NA,10,3)
for (i in 1:10) {
    m=mix(quakes=1,nstates=i,data=data,family=poisson())
    m=fit(m)
    res[i,1]=logLik(m)
    res[i,2]=AIC(m)
    res[i,3]=BIC(m)
}
```

Answer 7

logLik	AIC	BIC
-391.9189	785.8379	788.5107
-360.3691	726.7381	734.7566
-356.8490	723.6980	737.0622
-356.7489	727.4978	746.2076
-356.7343	731.4686	755.5241
-356.7431	735.4862	764.8873
-356.7342	739.4684	774.2152
-356.7383	743.4765	783.5689
-356.7356	747.4711	792.9092
-356.7374	751.4747	802.2585

Question 8

- ► So far we assumed that the number of quakes is independent for each year.
- ▶ Do you think this is acceptable?
- ▶ What are we going to do about it?

Answer 8

- ► It is clear by visual inspection that there is significant serial dependence in the data
- ► This can be made even clearer and tested by plotting the autocorrelation function (ACF) which is the Pearson's correlation at different lag values (lag=length of interval between observations)
- ► There is significant autocorrelation, with the first 8 ACF values being significantly greater than zero

Answer 8

Answer 8

Latent Variable Models, part 2

OxWaSP module 3: applied statistics

Xavier Didelot

November 2018

A first hidden Markov model

- ➤ The independent mixture model we used does not capture serial dependence
- ▶ In this independent mixture model, the C_t variables representing which Poisson to sample X_t from were independently identically sampled from Bernouilli(0.3)
- ► Let us now instead consider that *C_t* is a Markov chain (homogenous, with order 1)
- The C_t variables are unobserved, but the X_t variables are observed
- ▶ The resulting process is therefore called a hidden Markov model
- ► It can be thought of as a natural extension to the independent mixture model

Dependency graph of a hidden Markov model

$$p(X_1,...,X_T,C_1,...,C_T) = p(C_1) \prod_{k=2}^T p(C_k|C_{k-1}) \prod_{k=1}^T p(X_k|C_k)$$

Refresher on Markov chains

► The Markov property states that:

$$p(C_t|C_{t-1}, C_{t-2}, ..., C_1) = p(C_t|C_{t-1})$$

A Markov chain is defined by the transition probabilities:

$$\gamma_{ij} = p(C_t = j | C_{t-1} = i)$$

- lacktriangle The matrix of transition probabilities is denoted lacktriangle
- ▶ If the Markov chain has m states, Γ is of size $m \times m$ with rows adding up to 1, so that it contains $m \times (m-1)$ free parameters. Such a matrix is sometimes called a Markov matrix.
- ▶ We can calculate the probability of a sequence of length *L*:

$$p(c_1,...,c_L) = p(c_1) \prod_{t=2}^{T} \gamma_{c_{t-1}c_t}$$

➤ The first term p(c1) is given by the initial distribution of the Markov chain

Stationary distribution

► The unconditional distribution of the Markov chain at *t* is:

$$u(t) = (p(C_t = 1), p(C_t = 2), ..., p(C_t = m))$$

- ▶ The initial distribution is therefore u(1)
- ${\blacktriangleright}$ A Markov chain with transition probability matrix ${\bf \Gamma}$ has stationary distribution δ if:

$$\delta \Gamma = \delta$$
 and $\delta 1' = 1$

- This can be solved as a system of equations, or by finding the eigenvector with eigenvalue equal to 1.
- If the initial distribution is the stationary distribution, the chain has the same unconditional distribution at all points, eg $u(2) = u(1)\Gamma = \delta\Gamma = \delta$. This is a stationary Markov chain.

HMM definition

- ► A Hidden Markov Model (HMM) is a Markov chain in which the sequence of states is not observed but hidden
- Instead of observing the sequence of states, we observe a stochastic function of them called emissions or observations
- ▶ Let X₁, ..., X_T denote the (observed) sequence of T emissions and C₁, ..., C_T denote the (hidden) sequence of states
- ► A HMM is defined by two quantities:
 - ▶ The transition matrix Γ of elements γ_{ij} where i and j are states:

$$\gamma_{ij} = p(C_t = j | C_{t-1} = i)$$

▶ The emission probabilities $p_i(x)$ where i is a state and x is an emission:

$$p_i(x) = p(X_t = x | C_t = i)$$

 Note that C_t is discrete, but X_t can be discrete, continuous, multivariate, etc.

A first hidden Markov model for the earthquake dataset

- ► HMM with two states
- ► Transition matrix:

$$\mathbf{\Gamma} = \begin{pmatrix} 0.94 & 0.06 \\ 0.14 & 0.86 \end{pmatrix}$$

▶ This gives the stationary distribution:

$$\delta = (0.7, 0.3)$$

► Emission probabilities:

$$p_1(x) = e^{-15}15^x/x!$$
 and $p_2(x) = e^{-25}25^x/x!$

Link between HMM and mixture model

- This HMM model has the same marginal distributions as our previous independent mixture model
- But the independent mixture model considered that the X_t are independent, whereas in the HMM the autocorrelation of X_t is explicitly modelled
- The HMM model would reduce to the mixture model if we defined:

$$\mathbf{\Gamma} = \begin{pmatrix} 0.7 & 0.3 \\ 0.7 & 0.3 \end{pmatrix}$$

▶ The HMM is therefore an extension of the mixture model

A bit of history... (1/2)

- ► Andrey Markov (Russian Empire) studied Markov chains in the early 20th century
- Fundamental HMM results were first described by Ruslan Stratonovich (USSR) in Russian publications in the late 1950s and translated to English in 1960
- ► Thorough analysis of HMM by Leonard Baum (USA) in the second half of the 1960s

A bit of history... (2/2)

► In the 1970s, HMMs became popular for application to speech recognition

- A speech signal is recorded and divided each small pieces (frames) of ~10 milliseconds
- ▶ Each frame is classified into 256 categories
- $\,\blacktriangleright\,$ Aim is to recognise the sequence of words being spoken
- Also attracted interest for military applications (eg target tracking)
- In the second half of the 1980s, HMMs began to be applied in biostatistics
- ► Became hugely popular for DNA analysis in the 1990s and remains ubiquitous since
- Many extensions still under active research (eg SMC)

Univariate marginal distribution

- ▶ What is $p(X_t = x)$?
- ▶ Decompose over states at t:

$$p(X_t = x) = \sum_{i=1}^{m} p(C_t = i) p(X_t = x | C_t = i)$$

▶ It is convenient to rewrite in matrix notation:

$$p(X_t = x) = \boldsymbol{u}(t)\boldsymbol{P}(x)\mathbf{1}'$$

where P(x) is a diagonal matrix with $i^{\rm th}$ diagonal element equal to $p_i(x)$

▶ Since $u(t) = u(t-1)\Gamma$ we have $u(t) = u(1)\Gamma^{t-1}$ and therefore:

$$p(X_t = x) = \boldsymbol{u}(1)\boldsymbol{\Gamma}^{t-1}\boldsymbol{P}(x)\mathbf{1}'$$

▶ If the chain has initial distribution equal to the stationary distribution δ . then:

$$p(X_t = x) = \delta P(x) \mathbf{1}'$$

Bivariate marginal distribution

- ▶ What is $p(X_t = v, X_{t+k} = w)$?
- ▶ Decompose over states at both t and t + k:

$$p(X_t = v, X_{t+k} = w) = \sum_{i=1}^{m} \sum_{j=1}^{m} p(X_t = v, X_{t+k} = w, C_t = i, C_{t+k} = j)$$

$$=\sum_{i=1}^m\sum_{j=1}^m p(C_t=i)p_i(v)\gamma_{ij}(k)p_j(w)$$

where $\gamma_{ij}(k)$ denotes the (i,j) element of Γ^k

► In matrix format:

$$p(X_t = v, X_{t+k} = w) = \boldsymbol{u}(t)\boldsymbol{P}(v)\boldsymbol{\Gamma}^k\boldsymbol{P}(w)\boldsymbol{1}'$$

► If the Markov chain is stationary:

$$p(X_t = v, X_{t+k} = w) = \delta P(v) \Gamma^k P(w) \mathbf{1'}$$

Likelihood

The likelihood of a HMM is given by:

$$L_T = p(\boldsymbol{X}^{(T)} = \boldsymbol{x}^{(T)}) = \boldsymbol{u}(1)\boldsymbol{P}(x_1)\boldsymbol{\Gamma}\boldsymbol{P}(x_2)\boldsymbol{\Gamma}\boldsymbol{P}(x_3)...\boldsymbol{\Gamma}\boldsymbol{P}(x_T)\boldsymbol{1}'$$

Likelihood

Define the vector $lpha_t$ such that

$$\alpha_t(i) = p(\mathbf{X}^{(t)} = \mathbf{x}^{(t)}, C_t = i)$$

In particular:

$$\alpha_1(j) = p(X_1 = x_1, C_1 = j) = u_1(j)p_j(x_1)$$

In matrix format: $\alpha_1 = \textbf{\textit{u}}(1) \textbf{\textit{P}}(x_1)$

We have the recursion:

$$\alpha_t(j) = \sum_{k=1}^{m} p(\mathbf{X}^{(t)} = \mathbf{x}^{(t)}, C_t = j, C_{t-1} = k) = \sum_{k=1}^{m} \alpha_{t-1}(k) \gamma_{kj} p_j(x_t)$$

In matrix format: $\alpha_t = \alpha_{t-1} \mathbf{\Gamma} \mathbf{P}(x_t)$

Finally, note that $L_T = \sum_{k=1}^m \alpha_T(k) = \alpha_T \mathbf{1}'$ and the likelihood equation follows.

The forward algorithm

- An important consequence of the likelihood equation is that the likelihood can be calculated using the forward algorithm:
 - Set $\alpha_1 = \mathbf{u}(1)\mathbf{P}(x_1)$
 - For t from 2 to T, calculate $\alpha_t = \alpha_{t-1} \mathbf{\Gamma} P(x_t)$
 - Return the likelihood $L_T = \alpha_T \mathbf{1}'$
- ► This algorithm calculates the likelihood using a number of operations of order Tm²
- ▶ This is much more efficient than the brute force approach of calculating the likelihood by summing over all m^T possible values for $C^{(T)}$

Dynamic programming

- ► The forward algorithm, and other algorithms we will see later, is an example of dynamic programming
- In dynamic programming, a costly computation is replaced with a simpler one by exploiting a recursive form
- ▶ If we calculated all m^T combinations of $\boldsymbol{C}^{(T)}$, many subcalculations would be done over and over again
- By rearranging terms of the summation, or in other words reusing rather than recalculating certain terms, the algorithm becomes much more efficient

Dynamic programming

- Dynamic programming was developed by Richard Bellman in the 1950s
- Simplifying a complicated problem by breaking it down into simpler sub-problems in a recursive manner
- ► Divide and conquer
- Don't recalculate the same thing multiple times - memoisation

Filtering and smoothing

- ▶ The distribution $p(C_T|\mathbf{X}^{(T)})$ is often of interest
- This is the distribution of the last hidden state, at the end of the observed sequence
- ► The forward algorithm is a solution to this problem called **filtering**
- ▶ By definition $\alpha_T(j) = p(\mathbf{X}^{(T)} = \mathbf{x}^{(T)}, C_T = j)$ and therefore:

$$p(C_T = j | \boldsymbol{X}^{(T)}) = \frac{\alpha_T(j)}{\sum_{i=1}^m \alpha_T(i)} = \frac{\alpha_T(j)}{L_T}$$

- ▶ More generally, we might want to know the distribution $p(C_t|\mathbf{X}^{(T)})$ of hidden state at some point in the observed sequence
- ► This problem is called **smoothing** but can't be solved just using the forward algorithm...

Backward recursion

▶ Define the vector β_t such that

$$\beta_t(i) = p(X_{t+1} = x_{t+1}, X_{t+2} = x_{t+2}, ..., X_T = x_T | C_t = i)$$

= $p(\mathbf{X}_{t+1}^T = \mathbf{x}_{t+1}^T | C_t = i)$

► In particular:

$$\beta_{T-1}(i) = p(X_T = x_T | C_{T-1} = i) = \sum_{k=1}^m \gamma_{ik} p_k(x_T)$$

- ▶ In matrix format: $\beta'_{T-1} = \Gamma P(x_T) \mathbf{1}'$
- ▶ We have the recursion:

$$\beta_{t}(i) = \sum_{k=1}^{m} p(X_{t+1} = X_{t+1}, \boldsymbol{X}_{t+2}^{T} = \boldsymbol{X}_{t+2}^{T}, C_{t+1} = k | C_{t} = i)$$

$$= \sum_{k=1}^{m} \beta_{t+1}(k) \gamma_{ik} p_{k}(X_{t+1})$$

▶ In matrix format: $\beta'_t = \Gamma P(x_{t+1}) \beta'_{t+1}$

Backward algorithm

- We deduce the backward algorithm which has similar properties to the forward algorithm:
 - $\blacktriangleright \mathsf{Set} \; \boldsymbol{\beta}_{T-1}' = \boldsymbol{\Gamma} \boldsymbol{P}(x_T) \mathbf{1}'$
 - For t from T-2 down to 1, calculate $\beta'_t = \mathbf{\Gamma} P(x_{t+1}) \beta'_{t+1}$
 - Return the likelihood $L_T = \mathbf{u}(1)\mathbf{P}(x_1)\beta_1'$
- ► This algorithm calculates the likelihood in an alternative manner to the forward algorithm, which is redundant, but it is important because of the next slide

Combining forward and backward values

▶ We have:

$$\alpha_{t}(i)\beta_{t}(i) = p(\mathbf{X}^{(t)}, C_{t} = i)p(\mathbf{X}_{t+1}^{T}|C_{t} = i)$$

$$= p(C_{t} = i)p(\mathbf{X}^{(t)}|C_{t} = i)p(\mathbf{X}_{t+1}^{T}|C_{t} = i)$$

$$= p(\mathbf{X}^{(T)} = \mathbf{x}^{(T)}, C_{t} = i)$$

► Therefore:

$$\alpha_t \beta_t' = p(\boldsymbol{X}^{(T)} = \boldsymbol{x}^{(T)}) = L_T$$

- We now have T redundant ways of calculating L_T
- ► More importantly:

$$p(C_t = i | \mathbf{X}^{(T)} = \mathbf{x}^{(T)}) = \frac{p(C_t = i, \mathbf{X}^{(T)} = \mathbf{x}^{(T)})}{p(\mathbf{X}^{(T)} = \mathbf{x}^{(T)})} = \alpha_t(i)\beta_t(i)/L_T$$

► We can therefore combine the forward and backward values to perform smoothing

Forward-backward algorithm

- The forward-backward algorithm can be used to perform smoothing
- It is simply the combination of the forward and backward algorithms
- lacktriangle Firstly we run the forward algorithm to calculate the values of $lpha_t$ and the likelihood L_T
- \blacktriangleright Secondly we run the backward algorithm to calculate the values of β_t
- Finally we compute the values of $p(C_t = i | \mathbf{X}^{(T)})$ using:

$$p(C_t = i | \mathbf{X}^{(T)} = \mathbf{x}^{(T)}) = \alpha_t(i)\beta_t(i)/L_T$$

Decoding terminology

- ▶ The smoothing problem is also called **local decoding**
- Decoding means to find the values of the hidden states. Local decoding means we find the value at a given point, as opposed to global decoding where we try and find the joint distribution of hidden states at all timepoints
- The path made from selecting the states with the highest marginal probability is called the maximum accuracy path
- But this path is not always best, and can even have a probability of zero
- A more principled solution is to try and find the path $c^{(T)}$ with maximum probability, ie to maximise:

$$p(\mathbf{C}^{(T)} = \mathbf{c}^{(T)} | \mathbf{X}^{(T)} = \mathbf{x}^{(T)}) \propto p(\mathbf{C}^{(T)} = \mathbf{c}^{(T)}, \mathbf{X}^{(T)} = \mathbf{x}^{(T)})$$

Global decoding

• We want to find the most probable state path π^* , ie the one with maximum probability:

$$\pi^* = \operatorname{argmax}_{\boldsymbol{c}^{(T)}}(p(\boldsymbol{X}^{(T)} = \boldsymbol{x}^{(T)}, \boldsymbol{C}^{(T)} = \boldsymbol{c}^{(T)}))$$

- ▶ Could we consider all states paths? There are m^T possible paths, so even for the simplest of HMMs with m=2 states this will not be doable for a short sequence of T=100 observations...
- Luckily, this can be solved in a similar way as the likelihood calculation: using dynamic programming, ie using a recursive solution
- Let v_k(i) denote the probability of the most probable path ending in state k for the sequence up to the ith observation x_i
- ▶ Suppose $v_k(i)$ is known for all k. Then the probabilities can be calculated up to observation x_{i+1} using:

$$v_l(i+1) = p_l(x_{i+1}) \max_k (v_k(i)\gamma_{kl})$$

The Viterbi algorithm (1/2)

- ▶ The probability that the chain starts in state k is $u_k(1)$ (for which we would often use the stationary distribution of the Monte Carlo with transition matrix Γ)
- We first calculate recursively the $v_k(i)$ for i from 1 to T using the equation on the previous slide
- At the end of this recursion, we obtain the $v_k(T)$ for all k and we have that $\pi_T^* = \max_k(v_k(T))$ is the probability of the optimal path, and we know that this optimal path finishes in state $\operatorname{argmax}_k(v_k(T))$
- ▶ We then trace our steps back from T down to 1 to reconstruct the chain of states that gave this optimal probability (to do this, we have to record pointers in the forward step)

The Viterbi algorithm (2/2)

We deduce the famous Viterbi algorithm:

- ▶ Initialisation (i = 1):
 - $v_k(1) = u_k(1)p_k(x_1)$ for all k = 1..m
- ▶ Recursion (i = 2..T):
- ► Termination:
 - $p(x,\pi^*) = \max_k(v_k(T))$
- ▶ Traceback (*i* = *T*..1):
 - $\qquad \qquad \pi_{i-1}^* = \operatorname{ptr}_i(\pi_i^*)$

Pointers

The pointer $\operatorname{ptr}_i(I)$ stores from which state in step i-1 did we reach state I in step i. Recursively, this identifies a unique optimal path from the start (step 1) to state I in step i.

History of the Viterbi algorithm

- This algorithm is named after Andrew Viterbi, an Italian-born American electrical engineer
- ▶ He discovered the algorithm in 1967
- However, others discovered the algorithm independently soon before or after
- Discovered for military applications and kept secret?
- The Viterbi algorithm is another example of dynamic programming

Earthquake model

► Transition matrix:

$$\mathbf{\Gamma} = \begin{pmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{pmatrix}$$

▶ We use as starting distribution the stationary distribution:

$$u(1) = \delta = (0.5, 0.5)$$

► Emission probabilities:

$$p_1(x) = e^{-15}15^x/x!$$
 and $p_2(x) = e^{-25}25^x/x!$

Practical

- In depmixS4 we can build a HMM model using the command depmix instead of mix which we used previously to build an independent mixture model
- Use setpars to set parameters, ie u(1) = (0.5, 0.5),

$$\Gamma = \begin{pmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{pmatrix}$$
, $\lambda_1 = 15$ and $\lambda_2 = 25$

- Use the command forwardback and viterbi to run the algorithms we have described
- ► Compare local and global decoding for the quake data

Earthquake example

St1

St2

```
library(depmixS4)
data=read.csv('data.csv')
m=depmix(quakes-1,data=data,nstates=2,family=poisson())
m=setpars(m,c(0.5,0.5,0.9,0.1,0.1,0.9,log(15),log(25)))
local=forwardbackward(m)$gamma #Local decoding
global=viterbi(m)$state #Global decoding
summary(m)

## Initial state probabilties model
## pr1 pr2
## pr1 pr2
## toS1 toS2
## fromS1 0.9 0.1
## fromS2 0.1 0.9
##
## Response parameters
## Response parameters
## Resp 1 : poisson
##
## Resi (Intercept)
```

Earthquake example: local decoding

```
plot(data,type='o',ylim=c(0,50),pch=20)
lines(data$year,50*local[,2],col='red')
axis(4,at = seq(0,50,10),labels = seq(0,1,0.2),col='red',col.axis='red')

8
9
9
9
1900
1920
1940
1960
1980
2000
```

Earthquake example: local decoding

3.219

Earthquake example: global decoding

Latent Variable Models, part 3

OxWaSP module 3: applied statistics

Xavier Didelot

November 2018

Parameter estimation

- ► So far we discussed how to calculate the likelihood, and how to estimate the hidden states
- ▶ This assumed that we knew in advance the value of the transition matrix Γ and emission probabilities $p_i(x)$
- lacktriangle We are concerned with estimation of these parameters heta
- We consider that the structure of the HMM is known, especially the number of states, since this can be addressed using AIC/BIC as we saw for the independent case

Notation

- ▶ The following notations are going to be convenient:
- $u_j(t) = 1$ if and only if $c_t = j \ (t = 1, 2, ..., T)$
- $ightharpoonup v_{jk}(t)=1$ if and only if $c_{t-1}=j$ and $c_t=k$ (t=2,3,...,T)
- If we know the c_t then we can compute the $u_i(t)$ and $v_{ik}(t)$
- ▶ The likelihood can be rewritten using these notations

Using training data with known states

- Sometimes we have training data where the hidden states are known
- ▶ In machine learning terminology, this is supervised learning
- ► For example, in speech recognition, we may have a training dataset in which we know the spoken sentences
- ▶ In this case, we can count the number $f_{jk} = \sum_{t=2}^{T} v_{jk}(t)$ of transitions from state i to state j, and the transition probability can be estimated as:

$$\widehat{\gamma}_{jk} = \frac{f_{jk}}{\sum_{k=1}^{m} f_{jk}}$$

▶ This corresponds to the maximum likelihood estimate of γ_{jk} given $\mathbf{x}^{(T)}$ and $\mathbf{c}^{(T)}$

Using training data with known states

- ▶ The emission probabilities $p_k(x)$ can be estimated likewise via maximum likelihood for the positions where the state was k
- ▶ The exact form depends on the type of emission function $p_k(x)$
- For example if the emission distribution in state k is a Poisson distribution with mean λ_k (eg earthquake example), we have:

$$\widehat{\lambda}_k = \frac{\sum_{t=1}^T x_t u_k(t)}{\sum_{t=1}^T u_k(t)}$$

Maximising the likelihood

- ▶ Previously, we showed that the likelihood $L_T = p(\mathbf{X}^{(T)} = \mathbf{x}^{(T)})$ can be calculated using the forward algorithm
- We can therefore estimate the parameters using a standard numerical maximisation technique like the R command optim
- Risk of numerical underflow if the likelihood is calculated without directly without scaling or transformation
- $\,\blacktriangleright\,$ There are constraints to satisfy, especially the fact that the rows of Γ must add up to one
- ▶ Risk of convergence to a local rather than global maximum

Baum-Welch Algorithm

- ► The Baum-Welch algorithm is a very popular alternative approach to estimate the parameters, first described by Leonard Baum and colleagues in 1970
- It is a special case of the Expectation-Maximisation (EM) algorithm
- ► The Baum-Welch algorithm was described before the general EM algorithm in 1977
- ▶ First we will describe the general EM algorithm

Expectation-maximisation

- ► The EM algorithm is a general algorithm for maximum-likelihood estimation with missing data
- lacktriangle We want to estimate the parameters heta given some data x
- ▶ The likelihood $p(x|\theta)$ is complicated due to missing data
- ▶ But if there was no missing data, the likelihood would be a relatively simple function $f(\theta)$
- \blacktriangleright We initiate the EM algorithm with a starting value for θ
- ► The E step and M step are repeated until convergence is reached
- ightharpoonup E step: Compute the expectation of the (functions of the) missing data that appear in $f(\theta)$
- M step: Find the θ that maximises $f(\theta)$ in which the (functions of the) missing data are replaced by their expectations computed in the E step.

Application of EM to the mixture of two Poisson

• We want to estimate the parameters $\theta = \{\lambda_1, \lambda_2, q\}$ given some data $x = (x_1, ..., x_T)$ independently identically distributed from a mixture of two Poissons:

$$p(x|\theta) = \prod_{t=1}^{T} q d_{\text{Pois}}(x_t|\lambda_1) + (1-q) d_{\text{Pois}}(x_t|\lambda_2)$$

▶ This can be seen as a problem of missing data. Let $c = (c_1, ..., c_T)$ denote from which Poisson each x_t was sampled, then we have:

$$p(x,c|\theta) = \prod_{t=1}^{T} \left(q d_{\mathrm{Pois}}(x_t|\lambda_1)\right)^{c_t} \left((1-q) d_{\mathrm{Pois}}(x_t|\lambda_2)\right)^{1-c_t}$$

Application of EM to the mixture of two Poisson

▶ E step. Compute the expectation of c given x and θ .

$$\widehat{c}_t = \frac{q d_{\mathrm{Pois}}(x_t | \lambda_1)}{q d_{\mathrm{Pois}}(x_t | \lambda_1) + (1 - q) d_{\mathrm{Pois}}(x_t | \lambda_2)}$$

▶ M step. Find the θ that maximises the likelihood of c and x.

$$\widehat{\lambda}_1 = \frac{\sum_{i=1}^T x_t c_t}{\sum_{i=1}^T c_t}$$

$$\widehat{\lambda}_2 = \frac{\sum_{i=1}^T x_t (1 - c_t)}{\sum_{i=1}^T 1 - c_t}$$

$$\widehat{q} = \frac{\sum_{i=1}^T c_t}{T}$$

Application of EM to the mixture of two Poisson

▶ For example \hat{q} is derived as follows:

$$\begin{split} \log p(x,c|\theta) &= \sum_{t=-1}^{T} c_t \log(q) + (1-c_t) \log(1-q) + \dots \\ &\frac{\partial \log p(x,c|\theta)}{\partial q} = \sum_{t=1}^{T} \frac{c_t}{q} - \frac{1-c_t}{1-q} \\ &0 = \sum_{t=1}^{T} c_t - \hat{q} \\ &\hat{q} = \frac{\sum_{t=1}^{T} c_t}{T} \end{split}$$

Baum-Welch Algorithm

- ▶ In the case of a HMM, the functions we need to estimate in the E step are the probability to be in a given state $u_j(t)$ and probability to transit from one step to another $v_{ik}(t)$
- Using local decoding and the forward-backward algorithm, we have already seen that:

$$\hat{u}_i(t) = \alpha_t(j)\beta_t(j)/L_T$$

► Similarly we have:

$$\hat{\mathbf{v}}_{ik}(t) = \alpha_{t-1}(j)\gamma_{ik}p_k(\mathbf{x}_t)\beta_t(k)/L_T$$

- ▶ In the E step, we compute $\widehat{u}_j(t)$ and $\widehat{v}_{jk}(t)$
- ▶ In the M step, we use the same equations to update θ that we described when the states were known (ie supervised learning), except that we replace $u_j(t)$ and $v_{jk}(t)$ with $\hat{u}_j(t)$ and $\hat{v}_{jk}(t)$, respectively.

Viterbi training

- Viterbi training algorithm:
 - lacktriangle Start with some parameter values heta
 - ▶ Find the hidden states using the Viterbi algorithm
 - Estimate new parameter values as if the states were known to be the output of the Viterbi algorithm (ie supervised learning)
 - ► Repeat until convergence
- ▶ This is less principled than the Baum-Welch algorithm
- ▶ It does not maximize the likelihood $p(\mathbf{x}^{(T)}|\theta)$
- ▶ Instead, it finds the value of θ maximising $p(\mathbf{x}^{(T)}|\theta, \pi^*)$ ie the contribution to the likelihood from the most probable path π^*
- ▶ The Viterbi algorithm is faster than the Baum-Welch algorithm
- ▶ If the final aim is to produce good global decoding with the Viterbi algorithm, maybe it makes sense to train using it

Practical

- ▶ In depmixS4, working with a HMM is almost as easy as working with an independent mixture model!
- ▶ We use depmix instead of mix to build the model
- ▶ Fit as before using fit, this uses the EM algorithm
- ▶ Use this to fit the 2-states model to the quakes data

Baum-Welch algorithm on quake data

Practical

- Now it's time to combine together everything we've learnt today!
- Compare the HMM and IMM with different numbers of parameters on the quake data

Application to earthquakes data

- ▶ HMM = hidden Markov model $(p = m^2)$
- ▶ IMM = independent mixture (p = 2m 1)

Model	m	р	logL	AIC	BIC
НММ	1	1	-391.9189	785.8	788.5
HMM	2	4	-342.3183	692.6	703.3
HMM	3	9	-329.4603	676.9	701.0
HMM	4	16	-327.8316	687.7	730.4
HMM	5	25	-325.9000	701.8	768.6
HMM	6	36	-324.2270	720.5	816.7
IMM	1	1	-391.9189	785.8	788.5
IMM	2	3	-360.3690	726.7	734.8
IMM	3	5	-356.8489	723.7	737.1
IMM	4	7	-356.7337	727.5	746.2

Application to earthquakes data

Application to earthquakes data

- ▶ Both AIC and BIC select the HMM with m = 3 states
- ▶ More generally, BIC and AIC do not always agree
- ightharpoonup When $T>e^2$ (as is usually the case) the BIC penalizes larger models more than the AIC
- ► Independent mixture models are not as good as HMM for this dataset, despite the higher number of parameters in HMM

Model checking

- ► Even after selection of the best model, there remains the question of how good the model is in absolute terms
- ▶ Need to assess the goodness of fit of the model
- ► This is something commonly done for simpler model and that we need to adapt for HMM
- ► For example, in a simple linear regression model we have:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

with $\epsilon_i \sim \text{Norm}(0, \sigma^2)$

- ▶ The residuals $y_i \beta_0 \beta_1 x_i$ are therefore expected to be independently and identically distributed as $Norm(0, \sigma^2)$ and this can be used to check the model
- ▶ For a HMM, what is the residual for each observation X_t ?

HMM pseudo-residuals

- ightharpoonup We consider that X_t is continuous (similar results can be derived for the discrete case)
- ▶ If X_t is from a distribution with cumulative density F_{X_t} then we can consider the pseudo-residual:

$$z_t = \Phi^{-1}(F_{X_t}(x_t))$$

where Φ is the cumulative density of a Normal(0,1)

- ▶ Since X_t has cumulative density F_{X_t} we have that $F_{X_t}(x_t)$ should be distributed as Unif(0,1) and therefore z_t should be distributed as Normal(0,1)
- ▶ What is the distribution of X_t ?

HMM pseudo-residuals

- ▶ What is the distribution of X_t ?
- One approach is to use the conditional distribution given all other data:

$$f_{X_t}(x) = p(X_t = x | \mathbf{X}^{(-t)} = \mathbf{x}^{(-t)})$$

▶ Using our previous calculation of the likelihood, we find:

$$f_{X_t}(x) = \frac{u(1)P(x_1)\Gamma...P(x_{t-1})\Gamma P(x)\Gamma P(x_{t+1})...\Gamma P(x_T)1'}{u(1)P(x_1)\Gamma...P(x_{t-1})\Gamma \Gamma P(x_{t+1})...\Gamma P(x_T)1'}$$

▶ Using the definitions of the forward and backward vectors:

$$f_{X_t}(x) \propto \alpha_{t-1} \mathbf{\Gamma} \mathbf{P}(x) \beta_t'$$

HMM pseudo-residuals

- lacktriangle Use forward-backward algorithm to calculate vectors $lpha_t$ and eta_t
- ightharpoonup Compute distribution of X_t given all other observations
- ightharpoonup Compute pseudo-residual z_t for each x_t
- ► This can be used to detect outliers
- ► Can also be used to check validity of a model
- ▶ Plot distribution of pseudo-residuals vs Normal distribution
- Q-Q plot of observed (y-axis) vs expected (x-axis)
- ► ACF of pseudo-residuals

Model checking for earthquakes dataset

Observed vs expected ACF

- ► The observed ACF in the data can be compared to the ACF expected under the HMM
- ▶ $Corr(X_t, X_{t+k})$ can be computed analytically or simulated
- ▶ In the earthquake example, ACF of real data (bold) vs HMM with m=1,2,3 states:

