## Analyse Numérique

## Travaux Pratiques - Série 2

# Interpolation polynomiale

Le but de l'interpolation polynomiale est de construire un polynôme  $p_n(x)$  de degré au maximum n satisfaisant

$$p_n(x_i) = y_i$$
 pour  $i = 0, 1, 2, \dots, n$ ,

où les  $(x_i, y_i)$  sont les points d'interpolation donnés avec  $a \le x_0 < x_1 < \cdots < x_n \le b$ . Dans les exercices suivants, on discutera de la construire le polynôme d'interpolation.

### 1. Polynômes de Lagrange.

1. Les fonctions  $\ell_k$  sont des polynômes de degré n. Écrire une fonction de MATLAB

qui calcule les coefficients de  $\ell_k$ , étant donné les  $(x_k)$  comme le vecteur **nodes**. On peut utiliser les coefficients c pour évaluer  $\ell_k$  en x comme ci :

$$Lx=polyval(c,x).$$

**Indication 1 :** On peut utiliser poly(r).

Indication 2 : sum(a) et prod(a) calculent la somme et le produit des éléments du a.

2. Utiliser coeff\_LK pour écrire une fonction MATLAB

qui calcule les coefficients de Lagrange avec **nodes** est un vecteur qui contient les  $x_i$  et data est le vecteur des images. Vérifier votre programme en interpolant la fonction

$$f(x) = \sin(10\log(1+x))$$

sur [0,1]. Utiliser n=5,15 et des nodes équidistants. Reproduire la figure 1.

3. Qu'est-ce qui se passe quand on interpole

$$f(x) = 2x^3 + x - 1$$

en utilisant les mêmes points?





FIGURE 1 – Lagrange polynomial for  $f(x) = \sin(10 \log(1+x))$  and nodes  $x_i = \frac{i}{n}, i = 0, 1, ...n$  for n = 5 and n = 15.

2. Points d'interpolation. Dans les exercices précédents, on a utilisé des points d'interpolation équidistants. Dans la pratique, les abscisses de Chebyshev sont souvent utilisées. Les abscisses de Chebyshev dans l'intervalle (-1,1) sont définies par

$$x_i = \cos\left(\frac{2i+1}{2n+2}\pi\right)$$
, pour  $i = 0, \dots, n$ .

a. Calculer les poids  $w_i$  pour n = 50 pour les points équidistants et les abscisses de Chebyshev. Vérifier numériquement les formules suivantes :

$$w_i = \frac{(-1)^{n-i}}{h^n \, n!} \binom{n}{i}$$
, où  $h = 2/n$  (pas de discrétisation)

pour les points équidistants, et

$$w_i = (-1)^i \frac{2^{n-1}}{n} \sin \theta_i$$
, où  $\theta_i = \frac{(2i+1)\pi}{2n+2}$ , pour  $i = 0, ..., n$ 

pour les abscisses de Chebyshev.

b. Utiliser les abscisses de Chebyshev comme points d'interpolation pour les deux fonctions suivantes sur l'intervalle (-1,1)

$$f(x) = |x| + x/2 - x^2$$
 et  $g(x) = \frac{1}{1 + 25x^2}$ .

Comparer le résultat avec le cas de points équidistants – voir par exemple la Figure 2. (**Indice** : Utiliser un repère semi-logarithmique **semilogy** pour tracer le graphique de l'erreur, car autrement dans une échelle normale l'erreur serait trop petite pour être discernée.)

#### 3. Formule de Newton.

a. On peut aussi construire le polynôme d'interpolation en utilisant la formule de Newton

$$p_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \dots + c_n(x - x_0) + \dots + c_{n-1}(x - x_{n-1}), \quad (1)$$

οù

$$c_k = \delta^k y[x_0, x_1, \dots, x_k], \text{ pour } k = 0, \dots, n,$$

sont les différences divisées (voir la Définition 1.2 dans les polycopiés du cours).

(i) Écrire une fonction Matlab pour générer les coefficients  $[c_0, c_1, \ldots, c_n]$  pour des noeuds différents deux à deux.

- (ii) Vérifier que les coefficients  $[c_0, c_1, ..., c_n]$  ne dépendent pas de l'ordre des couples  $(x_i, y_i)$ .
- b. Écrire une fonction Matlab pour évaluer  $p_n(x)$  de l'équation (1), étant donnés  $\{x_i\}_{i=0}^n$ ,  $\{c_i\}_{i=0}^n$ , et le point d'évaluation x. Assurez-vous que x peut être un vecteur.
- c. Comme dans l'exercice (1.c), essayer d'interpoler la fonction f(x) en utilisant votre programme.
  - **Bonus**:  $(\star)$  Si on ajoute un nouveau point d'interpolation  $(x_{n+1}, y_{n+1})$ , comment peut-on calculer efficacement  $p_{n+1}(x)$  à partir de  $p_n(x)$ ?
- d. Est-il possible de traiter le cas où  $x_{n-1} = x_n$  et  $y_n = f'(x_n)$ ? Dans ce cas  $p_n(x)$  est un polynôme de Hermite de f(x), comme expliqué dans la Section 1.5 des polycopiés.



FIGURE 2 – **En haut** : La fonction  $f(x) = |x| + x/2 - x^2$  (ligne noire, solide) et son polynôme d'interpolation  $p_n(x)$  (ligne rouge, discontinue). Les points d'interpolation sont dessinés sous forme de o. En haut à droite : erreur absolue  $|f(x) - p_n(x)|$ . **En bas** : La fonction de Runge  $g(x) = (1 + 25x^2)^{-1}$  (ligne noire, solide) et son polynôme d'interpolation  $p_n(x)$  (ligne rouge, discontinue). En bas à droite : erreur absolue  $|g(x) - p_n(x)|$ .