$TUM\ ModSim,\ SoSe\ 2023$

Mitschriften basierend auf der Vorlesung von Dr. Hans-Joachim Bungartz

Zuletzt aktualisiert: 19. April 2023

Introduction

About

Hier sind die wichtigsten Konzepte der ModSim Vorlesung von Dr. Hans-Joachim Bungartz im Sommersemester 2023 zusammengefasst.

Die Mitschriften selbst sind in Markdown geschrieben und werden mithilfe einer GitHub-Action nach jedem Push mithilfe von Pandoc zu einem PDF konvertiert.t

Eine stets aktuelle Version der PDFs kann über modsim_SS23_IN2010_merge.pdf heruntergeladen werden.

Implementation

Außerdem befindet sich eine Implementation von verschiedenen Algorithmen im Ordner /algorithms auf GitHub. Diese sind in Python und unter der Verwendung von NumPy geschrieben.

How to Contribute

- 1. Fork this Repository
- 2. Commit and push your changes to your forked repository
- 3. Open a Pull Request to this repository
- 4. Wait until the changes are merged

Contributors

Inhaltsverzeichnis

Introduction								
About	 	 				 		
Implementation	 	 				 		
How to Contribute	 	 				 		
Contributors	 	 				 		
Focus Analysis / Calculus Foundations	 	 				 		
Functions and their representations								
Names for special types of functions								
Topology concepts in higher dimensions	 	 				 		
Continuity								

Focus Analysis / Calculus

Foundations

Functions and their representations

• One-Dimensional

$$f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m, x \mapsto f(x)$$

• Multidimensional

$$f: D \subseteq \mathbb{R} \to \mathbb{R}, x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto f(x) = \begin{pmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_m(x_1, \dots, x_n) \end{pmatrix}$$

Names for special types of functions

• Curves: n = 1 and $m \in \mathbb{N}$

- plane curves (2D): n = 1 and m = 2

- space curves (3D): n = 1 and m = 3

• Surfaces: n=2 and m=3

• Scalar fields: $n \in \mathbb{N}$ and m = 1

• Vector fields: n = m

Topology concepts in higher dimensions

There is an analogous concept to open and closed intervals in multi-dimensional spaces.

Given a domain $D \subseteq \mathbb{R}^n$ and its complement $D^c = \mathbb{R}^n \setminus D$ - A point x is called *inner point* if there exists an arbitrarily small ball around this points that fullly lies inside D. - The set of all inner points of D is called the *interior* of D and is denoted as \mathring{D} . - The domain is called open if $D = \mathring{D}$ - A point $x_0 \in \mathbb{R}^n$ is called *boundary point* if any arbitrarily small ball around this point intersects with both D and its complement D^c - The set of all boundary points of D is called the *boundary* of \$D, denoted ∂D - The set $\bar{D} = D \cup \partial D$ is called the *closure* of D

Using these definitions there are multiple attributes assignable to domains.

A domain D is called: - closed if $\partial D \subseteq D$, i.e. D = D - bounded if $\exists K \in \mathbb{R} : ||x|| < K, \forall x \in D$ - compact if it is closed and bounded - convex if all points on a straight line between to points in D are themselves element of D

Continuity

We define continuity in multi-dimensional spaces using converging vector sequences. A sequence $(x^{(k)})$ converges to the limit x if

$$\lim_{k \to \infty} ||x^{(k)} - x|| = 0$$

Converges of a vector sequence is also equivalent to the convergence of all components.

A vector function is then called continuous at $a \in D$ if for all sequences $(x^{(k)})_{k \in \mathbb{N}_0}$ in D converging to a the corresponding sequence $(f(x^{(k)}))_{k \in \mathbb{N}_0}$ in \mathbb{R}^m converges to f(a) and continuous on D if this holds for all points $a \in D$