Contents

Pa	rt I	Fraffic Data			
2	Traj	ectory and Floating-Car Data			
	2.1	Data Collection Methods			
	2.2	Time-Space Diagrams			
	Prob	lems			
3	Cros	Cross-Sectional Data			
	3.1	Microscopic Measurement: Single-Vehicle Data			
	3.2	Aggregated Data			
	3.3	Estimating Spatial Quantities from Cross-Sectional Data			
		3.3.1 Traffic Density			
		3.3.2 Space Mean Speed			
	3.4	Determining Speed from Single-Loop Detectors			
	Prob	lems			
4	Representation of Cross-Sectional Data				
	4.1	Time Series of Macroscopic Quantities			
	4.2	Speed-Density Relation			
	4.3	Distribution of Time Gaps			
	4.4	Flow-Density Diagram			
	4.5	Speed-Flow Diagram			
	Prob	lems			
5	Spat	iotemporal Reconstruction of the Traffic State			
	5.1	Spatiotemporal Interpolation			
	5.2	Adaptive Smoothing Method			

viii Contents

		5.2.1 Characteristic Propagation Velocities	41
		5.2.2 Nonlinear Adaptive Speed Filter	42
		5.2.3 Parameters	43
		5.2.4 Testing the Predictive Power: Validation	43
			44
	5.3		45
		5.3.1 Model-Based Validation of a Data	
			47
			48
	Probl		50
Par	t II	Traffic Flow Modeling	
6	Gene	ral Aspects	55
	6.1	History and Scope of Traffic Flow Theory	55
	6.2	Model Classification	56
			56
		6.2.2 Mathematical Structure	59
			61
	6.3		63
	Probl		65
7		V 1	67
	7.1		67
	7.2	7 1	69
		ϵ	70
		1	71
		7.2.3 Changes in the Number of Lanes	72
		7.2.4 Discussion	74
	7.3	Continuity Equation from the Driver's Perspective	75
	7.4	Lagrangian Description	77
	Probl	ems	79
8	The 1	Lighthill-Whitham-Richards Model	81
	8.1		81
	8.2	•	83
	8.3		84
		8.3.1 Formation	84
			86
		1 6	87
	8.4		90
	8.5		90 91
	0.5		91 92
			92 93
		0.J.4 CHAIACICHNIC FIUDCHICS	77

Contents ix

		8.5.3	Model Formulation with Measurable Quantities	96		
		8.5.4	Relation to Car-Following Models	97		
		8.5.5	Definition of Road Sections	99		
		8.5.6	Modeling Bottlenecks	100		
		8.5.7	Numerical Solution of the Cell-Transmission			
			Model	105		
		8.5.8	Solving the Section-Based Model	108		
		8.5.9	Examples	113		
	8.6		on and Burgers' Equation	121		
	Probl			123		
9	Macroscopic Models with Dynamic Velocity					
	9.1		scopic Acceleration Function	127		
	9.2		ies of the Acceleration Function	130		
		9.2.1	Steady-State Flow	130		
		9.2.2	Plausibility Conditions	130		
	9.3		l Form of the Model Equations	132		
		9.3.1	Local Speed Adaptation	132		
		9.3.2	Nonlocal Anticipation	133		
		9.3.3	Limiting Case of Zero Adaptation Time	133		
		9.3.4	Pressure Term	134		
		9.3.5	Diffusion Terms	136		
		9.3.6	On- and Off-Ramp Terms	137		
	9.4		ew of Second-Order Models	137		
		9.4.1	Payne's Model	138		
		9.4.2	Kerner-Konhäuser Model	140		
		9.4.3	Gas-Kinetic-Based Traffic Model	142		
	9.5		ical Solution	145		
		9.5.1	Overview	145		
		9.5.2	Upwind and McCormack Scheme	147		
		9.5.3	Approximating Nonlocalities	148		
		9.5.4	Criteria for Selecting a Numerical			
		,	Integration Scheme	148		
		9.5.5	Numerical Instabilities	150		
		9.5.6	Numerical Diffusion	153		
	Probl			153		
10	Elem	entary (Car-Following Models	157		
	10.1	-	l Remarks	157		
	10.2		natical Description	159		
	10.3	•				
	10.4		geneous Traffic	164		
	10.5		neet of Dynamical Model Characteristics	165		
		10.5.1	Highway Scenario	165		
			City Scenario.	168		

x Contents

	10.6	Optimal Velocity Model	168
	10.7	Full Velocity Difference Model	171
	10.8	Newell's Car-Following Model	173
	Probl	ems	178
11	Car-l	Following Models Based on Driving Strategies	181
	11.1	Model Criteria	181
	11.2	Gipps' Model	183
		11.2.1 Safe Speed	183
		11.2.2 Model Equation	184
		11.2.3 Steady-State Equilibrium	185
		11.2.4 Model Characteristics	185
	11.3	Intelligent Driver Model	187
		11.3.1 Required Model Properties	188
		11.3.2 Mathematical Description	188
		11.3.3 Parameters	189
		11.3.4 Intelligent Braking Strategy	191
		11.3.5 Dynamical Properties	193
		11.3.6 Steady-State Equilibrium	195
		11.3.7 Improved Acceleration Function	196
		11.3.8 Model for Adaptive Cruise Control	198
	Probl	ems	202
12	Mode	eling Human Aspects of Driving Behavior	205
	12.1	Man Versus Machine	205
	12.2	Reaction Times	207
	12.3	Estimation Errors and Imperfect Driving Capabilities	210
		12.3.1 Modeling Estimation Errors	210
		12.3.2 Modeling Imperfect Driving	213
	12.4	Temporal Anticipation	214
	12.5	Multi-Vehicle Anticipation	215
	12.6	Brake Lights and Further Exogenous Factors	218
	12.7	Local Traffic Context	219
	12.8	Action Points	220
	12.9	The Wiedemann Car-Following Model	221
	Probl	ems	223
13	Cellu	ılar Automata	225
	13.1	General Remarks	225
	13.2	Nagel-Schreckenberg Model	229
	13.3	Refined Models	232
		13.3.1 Barlovic Model	232
		13.3.2 KKW Model	233

Contents xi

	13.4	Comparison of Cellular Automata	
		and Car-Following Models	236
	Probl	ems	237
14	Lane	-Changing and Other Discrete-Choice Situations	239
	14.1	Overview	239
	14.2	General Decision Model	240
	14.3	Lane Changes	242
		14.3.1 Safety Criterion	242
		14.3.2 Incentive Criterion for Egoistic Drivers	243
		14.3.3 Lane Changes with Courtesy: MOBIL Model	244
		14.3.4 Application to Car-Following Models	245
	14.4	Approaching a Traffic Light	250
	14.5	Entering a Priority Road	252
	Probl	ems	253
15	Stabi	ility Analysis	257
	15.1	Formation of Stop-and-Go Waves	257
	15.2	Mathematical Classification of Traffic Flow Instabilities	259
	15.3	Local Instability	267
	15.4	String Instability.	272
	10.1	15.4.1 String Instability Conditions for	_,_
		Car-Following Models	272
		15.4.2 Flow Stability of Macroscopic Models	279
		15.4.3 Application to Specific Models	283
	15.5	Convective Instability and Signal Velocities	288
	15.6	Nonlinear Instability and the Stability Diagram	294
	15.7	Stability Classes	296
	15.8	Short-Wavelength Collective Instabilities	298
		ems	299
	~		• • •
16		oration and Validation	303
	16.1	General Aspects	304
		16.1.1 Mathematical Principles	304
		16.1.2 Nonlinear Optimization	307
		16.1.3 Assessing Models	311
		16.1.4 Implementing and Running a Calibration	313
	16.2	Calibration to Microscopic Observations	314
		16.2.1 Data Preparation	315
		16.2.2 Global Approach	318
		16.2.3 Local Approach	321
	16.3	Calibration to Macroscopic Observations	325
		16.3.1 Fitting Local Properties of Traffic Flow	326
		16.3.2 Calibration to Global Properties	328

xii Contents

	16.4 Probl	Validation	333 337
17	The 1	Phase Diagram of Congested Traffic States	339
	17.1	From Ring Roads to Open Systems	339
	17.2	Analysis of Traffic Patterns: Dynamic Phase Diagram	340
		17.2.1 Stability Class 1	342
		17.2.2 Stability Class 2	345
		17.2.3 Stability Class 3	346
	17.3	Simulating Congested Traffic Patterns	
		and the Phase Diagram	347
	17.4	Reality Check: Observed Patterns of Traffic Jams	350
	Probl	ems	350
Par	t III	Applications of Traffic Flow Theory	
18	Traff	fic Flow Breakdown and Traffic-State Recognition	355
10	18.1	Traffic Flow Breakdown: Three Ingredients	333
	10.1	to Make a Traffic Jam	355
	18.2	Do Phantom Traffic Jams Exist?	360
	18.3	Stylized Facts of Congested Traffic	361
	18.4	Empirical Reality: Complex Patterns.	363
	18.5	Fundamentals of Traffic State Estimation	364
		ems	365
19	Trav	el Time Estimation	367
	19.1	Definitions of Travel Time	367
	19.2	The Method of Trajectories	368
	19.3	The Method of Accumulated Vehicle Counts	369
	19.4	A Hybrid Method	371
	19.5	Virtual Stationary Detectors	373
	19.6	Virtual Trajectories	373
	19.7	Instantaneous Travel Time	375
	Probl	ems	376
20		Consumption and Emissions	379
	20.1	Overview	379
		20.1.1 Macroscopic Models	380
		20.1.2 Microscopic Models	382
		20.1.3 Relation Between Fuel Consumption	
		and CO ₂ Emissions	383

Contents xiii

	20.2	Speed-Profile Emission Models	383
	20.3	Modal Emission Models	385
		20.3.1 General Remarks	385
		20.3.2 Phenomenological Models	386
		20.3.3 Load-Based Models	387
	20.4	Physics-Based Modal Consumption Model	388
		20.4.1 Driving Resistance	388
		20.4.2 Engine Power	390
		20.4.3 Consumption Rate	391
		20.4.4 Characteristic Map for Engine Efficiency	392
		20.4.5 Output Quantities	394
		20.4.6 Aggregation to a Macroscopic Modal	
		Consumption Model	397
	Proble	ems	397
21		l-Based Traffic Flow Optimization	403
	21.1	Basic Principles	403
	21.2	Speed Limits	405
	21.3	Ramp Metering	407
	21.4	Dynamic Routing	411
	21.5	Efficient Driving Behavior and Adaptive Cruise Control	412
	21.6	Further Local Traffic Regulations	416
	21.7	Objective Functions for Traffic Flow Optimization	417
		21.7.1 Setting up the Frame	417
		21.7.2 Constraining Conditions	418
		21.7.3 Examples	419
Solutions to the Problems			423
	Index 4		

http://www.springer.com/978-3-642-32459-8

Traffic Flow Dynamics Data, Models and Simulation Treiber, M.; Kesting, A.

2013, XIV, 506 p., Hardcover

ISBN: 978-3-642-32459-8