CLAIMS

- 1. A method of producing double low restorer lines of Brassica napus for Ogura cytoplasmic male sterility (cms) presenting radish introgression carrying the Rfo restorer gene deleted of the radish Pgi-2 allele and recombined with the Pgi-2 gene from Brassica oleracea, and having a good agronomic value characterised by female fertility, a good transmission rate of Rfo and a high vegetative vigour, said method including the step of:
- a) crossing double low cms lines of spring Brassica napus comprising a deleted radish insertion with the double low line of spring Drakkar for forming heterozygous restored plants of Brassica napus,
 - b) irradiating before meiosis the heterozygous restored plants obtained in step a) with gamma ray irradiation,
 - c) crossing pollen from flowers obtained in step b) with the cms double low spring Wesroona line,
 - d) testing the progeny for vigour, female fertility and transmission rate of the cms gene,
 - e) selecting progeny lines.
- 20 2. A method according to claim 1, wherein the irradiation dose in step b) is 65 Gray during 6 mn.
 - 3. A method according to claim 1 wherein the double low cms line of spring Brassica napus of step a) is R211.

25

15

- 4. A method according to claim 1 wherein the testing in step d) is performed with the combination of five markers selected from PGIol, PGIUNT, PGIint, BolJon and CP418.
- 30 5. Double low restorer lines of Brassica napus for Ogura cytoplasmic male sterility (cms) presenting a Rfo insertion deleted of the radish Pgi-2 allele and recombined with the Pgi-2 gene from Brassica oleracea, and having a

good agronomic value characterised by female fertility, a good transmission rate of Rfo and a high vegetative vigour.

- Double low restorer lines of Brassica napus according to claim 5, wherein
 they present a unique combination of five markers selected from PGIol,
 PGIUNT, PGIint, BolJon and CP418.
 - 7. Brassica napus hybrid plants and progeny thereof obtained through the steps of:
- a) providing a restorer line produced according to claim 1 and bred to be homozygous,
 - b) using said restorer line in a hybrid production field as the pollinator,
 - c) using cms sterile plants in a hybrid production field as the hybrid seed producing plant, and
- d) harvesting the hybrid seed from the male sterile plant.
 - 8. The seeds of Brassica plant developed from the Brassica line obtained in claim 1.
- 20 9. The seeds of Brassica napus obtained in claim 7.
 - 10. The seeds of Brassica napus obtained in claims 1 and 2 deposited in NCIMB Limited, 23 St Machar Drive, Aberdeen, Scotland, AB24 3RY, UK, on July 4, 2003, under the reference number NCIMB41183.

25

30

11. Use of the combination of at least four markers PGIol, PGIint, BolJon and CP418, or any portion of them comprising at least one polymorphic site, for characterising recombined restorer lines of Brassica napus for Ogura cms presenting a Rfo insertion deleted of the radish Pgi-2 allele and recombined with the Pgi-2 gene from Brassica oleracea, and having a good agronomic value characterised by female fertility, a good transmission rate of Rfo and a high vegetative vigour.

Use according to claim 11 wherein the combination is of five markers PGIol,
 PGIUNT, PGIint, BolJon and CP418.

5 13. Use according to claim 12, wherein:

- The marker PGIol is amplified using the primers: PGIol U and PGIol L (PGIol U: 5'TCATTTGATTGTTGCGCCTG3';

PGIol L: 5'TGTACATCAGACCCGGTAGAAAA3')

- The marker PGIint is amplified using the primers: PGIint U and PGIint L

10 (PGlint U: 5'CAGCACTAATCTTGCGGTATG3';

PGIint L: 5'CAATAACCCTAAAAGCACCTG3')

- The marker PGIUNT is amplified using the primers: PGIol U and PGIint L:

(PGIol U: 5'TCATTTGATTGTTGCGCCTG3';

PGIint L: 5'CAATAACCCTAAAAGCACCTG3')

- The marker BolJon is amplified using the primers: BolJon U and BolJon L:

(BolJon U: 5'GATCCGATTCTTCTCCTGTTG3';

BolJon L: 5'GCCTACTCCTCAAATCACTCT3')

- The marker CP418 is amplified using the primers: SG129 U and pCP418 L:

(SG129 U: cf Giancola et al (5)

20 pCP418 L: 5'AATTTCTCCATCACAAGGACC3')

14. PGIol marker whose sequence follows:

25	TCATTTGATT	GTTGCGCCTG	TCGCCTTGTT	GTGTTATGAT	GAATGAACAG	CAGTCATTTA	60
	ACATGTGGTT	AACTTAACAG	GGCTCCGGCT	GTTGCAAAAC	ACATGGTTGC	TGTCAGCACT	120
	AATCTTGCGG						
	GTTTTCGTAC						
	GATGTACA						248

15. PGIUNT marker whose sequence follows:

30		GTTGCGCCTG					60
	ACATGTGGTT	AACTTAACAG	GGCTCCGGCT	GTTGCAAAAC	ACATGGTTGC	TGTCAGCACT	120
	AATCTTGCGG	TATGAATTTG	TGATTAAATT	TGTTTGTTTG	TGACTCTTTC	TTCATTGTTC	180
		AATAAACCGA				ACCOCCICIO	
		CTAGTCTCCA					
35	ACAGTACAGA	AGAAAGTGTT	CAAAACTCTG	GATGTTTTAA	TTTACAGTTA	GTGGAGAAGT	360
	TCGGCATTGA	TCCGAACAAT	GCATTTGCAT	TTTGGGACTG	GGTTGGTGGA	AGGTACAGTG	420
		GTTTATTTGG				CITAGICITI	
	AACTGAAATT	CTTTTGCAGT	TTGCAGTGCT	GTTGGAGTCT	TACCATTGTC	TCTACAGTAT	540
	GGCTTCTCTG	TGGTTGAGAA	GTACGGTACC	TTCTACTTTA	TCAGCCATCT	CATAAAATGT	600

5	TTCCCGTTTT GATCCAGCTG AGCATTGATA AGTTGTGTGA	AGTGTAGTCA	GTTGTTACTG TTTTTTAAAT GTCCACACCG TTCTTGTCTT	TCTCTAAATC TGGACTGCAG TTTGAGAAGA TTTGCTATGT	AAGAAGAAAC GTTTTTAAAG ATATACCCGT CCATCAACAC	CTTCTTAGTA GGGAGCTTCA GAGTTGCATT TAGAGATTCG		
	16. PGIint marker whose sequence follows:							
10	ATTGTTCGTT GGGTCTGATG TATTCAGACA	TACAATGCTA GTACAGAAGA	AAACCGAATG GTCTCCATGT AAGTGTTCAA	TATAATCTTT TCTTGGGGAT AACTCTGGAT	TTGTTTGTGA TACAAACTGA CATGATTTAT GTTTTAATTT	ATTTTCTACC TTTCTACATG ACAGTTAGTG	60 120 180 240	
15	TACAGTGGTA AGTGTATAAC ACAGTATGGC		TATTTGGTTG TTGCAGTTTG TTGAGAAGTA	TATAAATTTC CAGTGCTGTT	GGGACTGGGT TCGTCCATTT GGAGTCTTAC TACTTTATCA TAATGATTTC	CATTGTCTCT GCCATCTCAT	300 360 420 480 540	
20	TATTGCATTC CTTAGTAGAT AGCTTCAAGC TTGCATTAGT AGATTCGTGA	CCGTTTTATT CCAGCTGATA ATTGATAAGC TGTGTGATTA AGTTATTAGT TGCTTTAGGG	TTCAAAAGTT TTCAGCCTTT ATTTCCAGTC TACAGTTTTC GTAGTCAACG	GTTACTGTCT TTTAAATTGG CACACCGTTT TTGTCTTTTT	CTAAATCAAG ACTGCAGGTT GAGAAGAATA GCTATGTCCA	AAGAAACCTT TTTAAAGGGG TACCCGTGAG TCAACACTAG	600 660 720 780	
25	CGATTIONS	1004 1111000						
	17. BolJo	on marker who	se sequence f	ollows:				
30	CTTTACTTGC GGGATAACAG CCAGTAGGCG GAAAGCTGGT ATTATAAAGG	TTCTCCTGTT TAAATGGAAC TGTAGAAAAC TTTTTCACAT AACATGTGAA TCAGACCTTT CATGGTCTGC	ATGACAAGAG AAACCGTCTG TGAAGCGCAT GGATATACAA GTTCACATTC	ATAGAAAATC TAAGATTTTC ATCTACTTTG GCATTGATAC TGGCCTCCAG	TTGCTCATAG TCCCTGATCC GTATTCACTG ACCAAGTAGT GACCACCGCT	TCTCACTTAA AATAAAAAAA	180 240 300 360	
35	ATACAAACAA TCGATAGTAA CAAAATTCTA GTAAATATTT	ATAACATTGT AACTATGCGA CATCCTCTGC AATTTCTCCA CCATCAAAAT	ACAGATCAAA AAGTACCAAA TCACAAGGAC GACTAGAGAA	ACTACTACAG GAGATAGCAA CTACAGAATA CAGAGTTCTT	AACACAGTTC ATGAAACTAT GAGTTATCAT ATAACATTAT		480 540 600 660 720	
40	ACCACTACAG CTTTCCCCGT	CCACTACATA AACAAAGCTC AAATGAGCTT AGATTAGAAC	CTATAACATT AATATCACCC	GTTTATACAA AAAGATGTTT	AGTTTCACTA CAATCAGATA	AATCTACAAA AAGAGTACGA	840	
	18. CP418 marker whose sequence follows:							
45	CCATCAAAAT	TCACAAGGAC GACTAGAGAA GCAGAGTTCT	CAGAGTTCTT	ATAACATTAT	CTGTAAATGT	TCCAACAAAA	120	
50	AACAAAGCTC AAATGAGCTT GAGATTAGAA GAGCTAGCTC ACTTTCCGAT	CTATAACATT AATATCACCC CAAACTGAAA TCTCCTCCGC CACCGCCACC	GTTTATACAA AAAGATGTTT CTTACGTAGA CTCATGAAGC AGAATTCGAC	AGTTTCACTA CAATCAGATA GTGATTTGAG ATCTGTTGCA GCCGCGCATC	AATCTACAAA AAGAGTAACG GAGTAGGCTC CCTGAGACAA GGAAGGATCC	CTTTCCCCGT ACATCGTTTT GTTGCCAGCA CCGTGACGAA GAATCGGGAA	240 300 360 420 480	
55	ATTTCGACGA	AGAGTGGAAG GATTGCCGCC	AGGAGAGGGT	GGTGGATAAA	CTCGCGTATG	ATCAAGTTCG	600	