Why is this course IMPORTANT!!

8. WIDE DECK

What you will learn?

Engineering Drawing Syllabus!!

Mod. I

Types of lines, Dimensioning, Drawing Sheets, Scales, Pencils etc.

Projection of points and Projections of lines inclined to both planes

Projection of Planes: Triangular, Square, Rectangular, Pentagonal, Hexagonal and circular planes inclined to one reference plane and perpendicular to other.

Mod. II

Orthographic projections of simple machine parts by first angle method as recommended by Indian standards, Sectional views of simple machine parts (full section)

Mod. III

Introduction to Isometric drawing and construction of isometric drawing of machine parts

Mod. IV

Introduction to **Projection of Solids**, Classification of Solids and Projection of right **regular solids** (prism, pyramid, cylinder, and cone) inclined to both reference planes (excluding spheres, hollow and composite solids)

Mod. V

Projection of **sectional views for solids** (prism, pyramid, cylinder, and cone) cut by plane perpendicular to one and inclined to other reference planes (excluding curved cutting planes). **Lateral surface development** of prism, pyramid, cylinder, cone with section plane inclined to one reference plane only. (excluding reverse development)

Course Objectives

Course Outcomes	After successful completion of the course students should be able to:
1	Familiarize with the conventions and standards along with the principles of projections applied to lines and points
2	Apply the principles of orthographic projections to draw elevation, plan, End view, Isometric views etc.
3	Apply the principles of orthographic projections to draw to draw various views of regular solid objects
4	Apply the fundamentals of solid geometry and develop lateral surfaces of solids

Course Outcomes

Course Outcomes	After successful completion of the course students should be able to visualize and draw:			
CO1	Projection of lines and planes			
CO2	Orthographic and sectional views of any 3D object			
CO3	Isometric drawing			
CO4	Projection of regular solids			
CO5	Section and lateral development of regular solids			

References

Name/s of Author/s	Title of Book	Name of Publisher with country
N.D. Bhatt	Engineering Drawing (Plane	Charotar Publishing House
	and solid geometry)	Pvt. Ltd
N.D. Bhatt	Machine Drawing	Charotar Publishing House
V.M. Panchal		Pvt. Ltd
P. S. Gill	Engineering Graphics and Drafting	S.K. Kataria & Sons
P.J. Shah	Engineering Graphics	S. Chand Publications
Dhananjay Jolhe	Engineering Drawing	Tata McGraw Hill

Scheme

Course Code	Course Title						
111U06C105	Engineering Drawing						
	TH		Р		TUT	Total	
Teaching Scheme(Hrs.)	02				01*	03	
Credits Assigned	02				01	03	
	Marks						
Examination Scheme	C <i>A</i> ISE	IA	ESE	TW	0	P&O	Total
	30	20	50				100

^{*} Batch wise Tutorial

Terms and Conditions

- Please check your MS Team account regularly for announcements
- Always sit for the lecture with an unruled book and drawing instruments
- Be NEAT in your drawings!
- Tutorial submissions should be done on a separate A3 sized drawing book – scan and upload as pdf file
- You will need to scan and upload the solutions to the MS Teams Assignment folder
- Timely submissions is required
- Failure of submitting Term Work YOU LOOSE A YEAR !!

Drawing Instruments and Accessories

Types of lines

Type of lines!!

Line	Description	General applications
Α	Continuous thick or Continuous wide	Visible outlines, visible edges; crests of screw threads; limits of length of full deph thread, lines of cuts and section arrows; parting lines of moulds in views; main representations in diagrams, maps, flow charts; system lines(structural metal engg.)
В	Continuous thin (narrow) (straight or curved)	Imaginary lines of intersection; grid, dimension, extension, projection, short centre, leader, reference lines; hatching; outlines of revolved sections; root of screw threads; interpretation lines of tapered features; framing of details; indication of repetitiv details;
C ~~~	Continuous thin (narrow) freehand	Limits of partial or interrupted views and sections, if the limit is not a chain thin line
D	Continuous thin (narrow) with zigzags (straight)	Long-break line
E	Dashed thick (wide)	Line showing permissible of surface treatment
F — — — — —	Dashed thin (narrow)	Hidden outlines; hidden edges
G	Chain thin Long-dashed dotted (narrow)	Centre line; lines of symmetry; trajectories; pitch circle of gears, pitch circle of holes,
H THICK THIN THICK	Chain thin (narrow) with thick (wide) at the ends and at changing of position	Cutting planes
J	Chain thick or Long-dashed dotted (wide)	Indication of lines or surfaces to which a special requirement applies
К	Chain thin double-dashed or long-dashed double-dotted (narrow)	Outlines of adjacent parts Alternative and extreme positions of movable parts Centroidal lines Initial outlines prior to forming Parts situated in front of the cutting plane

Type of lines!!

Dimensioning

Aligned and Unidirectional System

Dimension lines Vs Extension lines

Ways to dimension features!

Ways to dimension features!

Drawing sheet layout and size

Scales

Metals

Scaling is used for shrinking a large object on paper

OR

To enlarge an object which otherwise is too small to draw on the paper.

(i)	Reducing scales	1:2	1:5	1:10
1,11		1:20	1:50	1:100
	1947 - 124 17	1:200	1:500	1:1000
		1 : 2000	1 : 5000	1 : 10000
(n)	Enlarging scales	50:1	20 ; 1	10:1
		5:1	2;1	
(11)	Full size scales			1:1

Projection of Points

What is Projection?

- In engineering, 3-dimensional objects and structures are represented graphically on a 2-dimensional media. The act of obtaining the image of an object is termed "projection". The image obtained by projection is known as a "view". A simple projection system is shown in figure.
- All projection theory are based on two variables:
 - Lines of projection (sight): It is an imaginary ray of light between an observer's eye and an object.
 - Plane of projection: It is an imaginary flat plane which the image is created.

What is Projection?

Orthographic Projection: The projection in which the projectors are parallel to each other and perpendicular to the plane

Quadrant System

Quadrant System

First Quadrant

Projection of Points in various Quadrants

Second Quadrant

Third Quadrant

Fourth Quadrant

Special Cases

Problems

A Point A is 20 mm below HP and 30 mm behind VP. Draw its projections

Problems

Projection of Lines

Line in First Quadrant - Case I

Line in First Quadrant - Case II

Line in First Quadrant – Case III

Line in First Quadrant – Case IV

Line in First Quadrant – Case V

Lines inclined to both planes!

Are the angles shown here the real inclinations?

What about the true length of the line?

How to find the true length and inclinations of the line?

Orthographic Projections
Means Fv & Tv of Line AB
are shown below,
with their apparent Inclinations
α & β

Here TV (ab) is not // to XY line
Hence it's corresponding FV
a' b' is not showing
True Length &
True Inclination with Hp.

When Fv & Tv known, How to find True Length. (Views are rotated to determine True Length & it's inclinations with Hp & Vp).

In this sketch, TV is rotated and made // to XY line. Hence it's corresponding FV a' b₁' Is showing True Length

True Inclination with Hp.

Note the procedure

When True Length is known,
How to locate Fv & Tv.
(Component a-1 of TL is drawn
which is further rotated
to determine Fv)

Here a -1 is component
of TL ab₁ gives length of Fv.
Hence it is brought Up to
Locus of a' and further rotated
to get point b'. a' b' will be Fv.
Similarly drawing component
of other TL(a' b₁') Tv can be drawn.

Description	Notation
Actual line	AB
F.V. of line	a'b'
T.V. of line	ab
S.V. of line	a"b"
Line assumed parallel to the V.P.	AB_1
Corresponding true length of assumed line AB_1	a'b'i
Corresponding plan length of assumed line AB_1	ab ₁
Line assumed parallel to the H.P.	AB_2
Corresponding true length of assumed line AB_2	ab ₂
Corresponding elevation length of assumed line AB_2	a'b
True Inclination of a line with the H.P.	θ
True Inclination of a line with the V.P.	ф
Apparent Inclination of F.V. of a line with the XY line	α
Apparent Inclination of T.V. of a line with the XY line	β

b 1 TRUST

Line AB is 75 mm long and it is 30° and 40° inclined to HP and VP respectively. End A is 12mm above HP and 10 mm in front of VP. Draw the projections. Assume line is in the first quadrant.

Given Data:

TL

True inclinations to HP and VP (θ and ϕ) Position of point A wrt. HP and VP

b`

A line AB, 50 mm long has its end A in both HP and VP. It is inclined at 30° to HP and 45° to VP. Draw the projections.

Given Data:

TL

True inclinations to HP and VP (θ and ϕ) Position of point A wrt. HP and VP

Somanya TRUST

Line AB is 75 mm long makes 45° inclination with VP while its FV makes 55°. End A is 10mm above HP and 15 mm in front of VP. If the line is in the first Quadrant, draw the projections and find its inclination with HP.

Given Data:

TL

True inclinations to VP (φ)
Apparent inclination with HP (α)
Position of point A wrt. HP and VP

FV of line AB is 50° inclined to XY and measures 55 mm long while it's TV is 60° inclined to XY line. If end A is 10 mm above HP and 15 mm in front of VP, draw it's projections, find TL, inclinations of line with HP & VP.

Given Data:

FV

Apparent inclinations to VP (φ)

Apparent inclination to HP (β)

Position of point A wrt. HP and VP

The top view of a 75 mm line AB measures 65 mm, while its front view measures 50 mm. Its one end A is in HP and 12 mm in front of VP. Draw the projections of AB and determine its inclination with HP and VP.

Given Data:

TV and TL

FV

Position of point A wrt. HP and VP

Ans. θ=31°

Ans. Ø=49°

:

The top view of a 75 mm line AB measures 65 mm, while its front view measures 50 mm. Its one end A is in HP and 12 mm in front of VP. Draw the projections of AB and determine its inclination with HP and VP.

Given Data:

TV and TL

FV

Position of point A wrt. HP and VP

A line AB is 65 mm long has its end A 20 mm above HP and 25 mm in front of VP. The end B is 40 mm above HP and 65 mm in front of VP. Draw the projections of AB and show its

inclination with HP.

Given Data:

TL

Position of point A and B wrt. HP and VP

T.V. of a 75 mm long Line CD, measures 50 mm. End C is in HP and 50 mm in front of VP. End D is 15 mm in front of VP and it is above HP. Draw projections of CD and find angles with HP and VP.

Given Data:

TL, TV
Position of point C wrt. HP and VP
Position of point D wrt. VP

A line AB, 75mm long, has one end A in VP. Other end B is 15 mm above HP and 50 mm in front of VP.Draw the projections of the line when sum of it's Inclinations with HP & VP is 90°, Find the true angles with reference planes.

Given Data:

TL

Position of point B wrt. HP and VP Position of point A wrt. VP

Line in two quadrants

The projectors of the ends of a line AB are 50 mm apart . The end A is 20 mm above the HP and 30 mm in front of the VP. The end B is 10 mm below the HP and 40 mm behind the VP. Determine the true length and its inclinations with the two planes.

Given Data:

Distance between end projectors Position of point A wrt. HP and VP Position of point B wrt. HP and VP

The top view of a 75 mm long line CD measures 50 mm. The end C is 15 mm below HP and 50 mm in front of VP. End D is 15 mm in front of VP and it is above HP. Draw the projections of CD and find angles with HP and VP

Given Data:

TL, TV
Position of point C wrt. HP and VP
Position of point D wrt. VP

End A of a line AB is in HP and 25 mm behind VP. End B is in VP and 50 mm above HP. Distance between the end projectors is 70 mm. Draw the projections and find the angles made by the line with HP and VP.

Given Data:

TL, TV
Position of point C wrt. HP and VP
Position of point D wrt. VP

