

Visualizing Linear Models: An R Bag of Tricks Session 1: Getting Started

Michael Friendly SCS Short Course March, 2021

https://friendly.github.io/VisMLM-course/

Today's topics

- What you need for this course
- Why plot your data?
- Data plots
- Model (effect) plots
- Diagnostic plots

What you need

- R, version >= 3.6
 - Download from https://cran.r-project.org/
- RStudio IDE, highly recommended
 - https://www.rstudio.com/products/rstudio/
- R packages: see course web page
 - car
 - effects
 - heplots

 - candisc visreg

Why plot your data?

Getting information from a table is like extracting sunlight from a cucumber. --- Farguhar & Farguhar, 1891

Information that is imperfectly acquired, is generally as imperfectly retained; and a man who has carefully investigated a printed table, finds, when done, that he has only a very faint and partial idea of what he has read; and that like a figure imprinted on sand, is soon totally erased and defaced.

--- William Playfair, The Commercial and Political Atlas (p. 3), 1786

Cucumbers

Stevens et al. 2006, table 2: Determinants

	Coefficient
Variable	(Standard Error
Constant	.41 (.93)
Countries	
Argentina	1.31 (.33)**B,M
Chile	.93 (.32)**B,M
Colombia	1.31 (.33)**B,M .93 (.32)**B,M 1.46 (.32)**B,M
Mexico	.07 (.32)4,66,66
Venezuela	.96 (.37)**B,M
Threat	
Retrospective egocentric economic perceptions	.20 (.13)
Prospective egocentric	.22 (.12)#
economic perceptions Retrospective sociotropic	21 (.12)#
economic perceptions	
Prospective sociotropic	32 (.12)*
economic perceptions	07 (07)**
Ideological distance from president	27 (.07)**
Ideology	00 (07)++
Ideology Individual Differences	.23 (.07)**
	00 (04)
Age Female	.00 (.01)
Female Education	03 (.21)
	.13 (.14)
Academic Sector Business Sector	.15 (.29)
Government Sector	.31 (.25) 10 (.27)
R ²	10 (.27) .15
Adjusted R ²	.12
N	500

Results of a one model for authoritarian aggression

The information is overwhelmed by footnotes & significance **stars**

**p < .01, *p < .05, #p < .10 (twotailed) ^ACoefficient is significantly different from Argentina's at $^{\mathrm{B}}$ Coefficient is significantly different from Brazil's at p < .05; CHCoefficient is significantly different from Chile's at p < .05; coCoefficient is significantly different from Colombia's at ^MCoefficient is significantly different from Mexico's at p < .05; VCoefficient is significantly different from Venezuela's at

What's wrong with this picture?

Sunlight

Argentina Chile Colombia Mexico Venezuela Retrospective egocentric Prospective egocentric Retrospective sociotropic Prospective sociotropic Distance from president

 $R^2 = 0.15$ Adjusted $R^2 = .12$ n = 500 Ideology Age Female Education Academic sector Business sector Government sector

coefplot(model)

Why didn't they say this in the first place?

NB: This is a presentation graph equivalent of the table

Shows coefficient with 95% CI

Run, don't walk toward the sunlight

Graphs can give enlightenment

The greatest value of a picture is when it forces us to notice what we never expected to see.

-- John W. Tukey

Effect of one rotten point on regression

Dangers of numbers-only output

Student: You said to run descriptives and compute the correlation. What next?

Consultant: Did you plot your data?

X Mean: 54.26 Y Mean: 47.83 X SD : 16.76 Y SD : 26.93 Corr. : -0.06

With exactly the same stats, the data could be *any* of these plots

See how this in done in R: https://cran.r-project.org/web/packages/datasauRus/

10

Sometimes, don't need numbers at all

COVID transmission risk ~ Occupancy * Ventilation * Activity * Mask? * Contact.time

A complex 5-way table, whose message is clearly shown w/o numbers

There are 1+ unusual cells here. Can you see them?

From: N.R. Jones et-al (2020). Two metres or one: what is the evidence for physical distancing in covid-19? *BMJ* 2020;370:m3223, *doi:* https://doi.org/10.1136/bmj.m3223

If you do need tables – make them pretty

Several R packages make it easier to construct informative & pretty semi-graphic tables

Presentation graph
Perhaps too cute!
Distribution of variables shown

Flipper lengths (mm) of the famous penguins of Palmer Station, Antarctica.

		Fe	Female		Male
Species	Distribution	Avg.	Std. Dev.	Avg.	Std. Dev.
ANTILEY .	-	188	5.6	192	6.6
Constrain	-	192	5.8	200	6.0
GENTOD/	-	213	3.9	222	5.7

Artwork by @allison_horst

Visual table ideas: Heatmap shading

Heatmap shading: Shade the background of each cell according to some criterion

The trends in the US and Canada are made obvious

NB: Table rows are sorted by Jan. value, lending coherence

Unemployment rate in selected countries

January-August 2020, sorted by the unemployment rate in January.

country	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
Japan	2.4%	2.4%	2.5%	2.6%	2.9%	2.8%	2.9%	3.0%
Netherlands	3.0%	2.9%	2.9%	3.4%	3.6%	4.3%	4.5%	4.6%
Germany	3.4%	3.6%	3.8%	4.0%	4.2%	4.3%	4.4%	4.4%
Mexico	3.6%	3.6%	3.2%	4.8%	4.3%	5.4%	5.2%	5.0%
US	3.6%	3.5%	4.4%	14.7%	13.3%	11.1%		
South Korea	4.0%	3.3%	3.8%	3.8%	4.5%	4.3%	4.2%	3.2%
Denmark	4.9%	4.9%	4.8%	4.9%	5.5%	6.0%	6.3%	6.1%
Belgium	5.1%	5.0%	5.0%	5.1%	5.0%	5.0%	5.0%	5.1%
Australia	5.3%	5.1%	5.2%	6.4%	7.1%	7.4%	7.5%	6.8%
Canada	5.5%	5.6%	7.8%	13.0%	13.7%	12.3%	10.9%	10.2%
Finland	6.8%	6.9%	7.0%	7.3%	7.5%	7.8%	8.0%	8.1%

Source: OECD • Get the data • Created with Datawrappe

13

15

Visual table ideas: Heatmap shading

As seen on TV ...

Covid rate ~ Age x Date x UK region

Better: incorporate geography, not just arrange regions alphabetically

bbc.co.uk/news

4

Visual table ideas: Sparklines

Sparklines: Mini graphics inserted into table cells or text

Linear models

Model:

$$\mathbf{y}_{i} = \beta_{0} + \beta_{1} \mathbf{X}_{i1} + \beta_{2} \mathbf{X}_{i2} + \dots + \beta_{p} \mathbf{X}_{ip} + \varepsilon_{i}$$

- Xs: quantitative predictors, factors, interactions, ...
- Assumptions:
 - Linearity: Predictors (possibly transformed) are linearly related to the outcome, y. [This just means linear in the parameters.]
 - Specification: No important predictors have been omitted; only important ones included. [This is often key & overlooked.]
 - The "holy trinity":
 - Independence: the errors are uncorrelated
 - Homogeneity of variance: $Var(\varepsilon_i) = \sigma^2 = constant$
 - Normality: ε_i have a normal distribution

 $- \varepsilon_i \sim_{iid} N(0,\sigma^2)$

From: https://www.pluralsight.com/guides/tableau-playbook-sparklines

The General Linear Model

- "linear" models can include:
 - transformed predictors: \sqrt{age} , log(income)
 - polynomial terms: age², age³, poly(age, n)
 - categorical "factors", coded as dummy (0/1) variables
 - treated (Yes/No), Gender (M/F/non-binary)
 - interactions: effects of x₁ vary over levels of x₂
 - treated × age, treated × sex, (2 way)
 - treated × age × sex (3 way)
- Linear model means linear in the parameters (β_i),

$$y = \beta_0 + \beta_1 \text{age} + \beta_2 \text{age}^2 + \beta_3 \log(\text{income}) + \beta_4 (\text{sex="F"}) + \beta_5 \text{age} \times (\text{sex="F"}) + \delta$$

In R, all handled by lm(y ~ ...)

Fitting linear models in R: lm()

- In R, lm() for everything
 - Regression models (X1, ... quantitative)

```
lm(y ~ X1, data=dat)
lm(y \sim X1+X2+X3, data=dat)
lm(y \sim (X1+X2+X3)^2, data=dat)
lm(log(y) \sim poly(X,3), data=dat)
                                         # arbitrary transformations
```

simple linear regression # multiple linear regression # all two-way interactions

ANOVA/ANCOVA models (A, B, ... factors)

```
lm(y \sim A)
lm(y \sim A*B)
lm(y \sim X + A)
lm(y \sim (A+B+C)^2)
```

one way ANOVA # two way: A + B + A:B # one way ANCOVA # 3-way ANOVA: A, B, C, A:B, A:C, B:C

18

Fitting linear models in R: lm()

- Multivariate models: lm() with 2+ y vars
 - Multivariate regression

```
lm(cbind(y1, y2) \sim X1 + X2 + X3)
                                                 # std MMreg: all linear
lm(cbind(y1, y2) \sim poly(X1,2) + poly(X2,2))
```

MANOVA/MANCOVA models

```
lm(cbind(y1, y2, y3) \sim A * B)
                                    # 2-way MANOVA: A + B + A:B
lm(cbind(y1, y2, y3) \sim X + A)
                                    # MANCOVA (equal slopes)
lm(cbind(y1, y2) \sim X + A + X:A)
                                    # heterogeneous slopes
```

Generalized Linear Models: glm()

Transformations of y & other error distributions

- y ∈ (0/1): lived/died; success/fail; ...
- logit (log odds) model:

• logit(y) =
$$log \frac{Pr(y=1)}{Pr(y=0)}$$

• linear logit model: $logit(y) = \beta_0 + \beta_1 x_1 + \beta_2$ $X_2 + ...$

glm(better ~ age + treat, family=binomial, data=Arthritis)

Generalized Linear Models

Ordinal responses

- Improved ∈ ("None" < "Some" < "Marked")
- Models: Proportional odds, generalized logits, ...

library(MASS) polr(Improved ~ Sex + Treat + Age, data=Arthritis)

library(nnet) multinom(Improved ~ Sex + Treat + Age, data=Arthritis)

Model-based methods: Overview

- models in R are specified by a symbolic model formula, applied to a data.frame
 - mod<-lm(prestige ~ income + educ, data=Prestige)</p>
 - mod<-glm(better ~ age + sex + treat, data=Arthritis, family=binomial)
 - mod<-MASS:polr(improved ~ age + sex + treat, data=Arthritis)</p>
- result (mod) is a "model object", of class "lm", "glm", ...
- method functions:
 - plot(mod), plot(f(mod)), ...
 - summary(mod), coef(mod), predict(mod), ...

22

Plots for linear models

- Data plots:
 - plot response (y) vs. predictors, with smooth summaries
 - scatterplot matrix --- all pairs
- Model (effect) plots
 - plot predicted response (\hat{y}) vs. predictors, controlling for variables not shown.
- Diagnostic plots
 - Influence plots: leverage & outliers
 - Spread-level plots (non-constant variance?)

R packages

- car
 - Enhanced scatterplots
 - Diagnostic plots
- effects
 - Plot fitted effects of one predictor, controlling all others
- visreg
 - similar to effect plots, simpler syntax
- Both effects & visreg handle nearly all formula-based models
 - Im(), glm(), gam(), rlm, nlme(), ...

Occupational Prestige data

- Data on prestige of 102 occupations and
 - average education (years)
 - average income (\$)
 - % women
 - type (Blue Collar, Professional, White Collar)

<pre>> head(Prestige)</pre>						
	education	income	women	prestige	census	type
gov.administrators	13.11	12351	11.16	68.8	1113	prof
general.managers	12.26	25879	4.02	69.1	1130	prof
accountants	12.77	9271	15.70	63.4	1171	prof
purchasing.officers	11.42	8865	9.11	56.8	1175	prof
chemists	14.62	8403	11.68	73.5	2111	prof
physicists	15.64	11030	5.13	77.6	2113	prof

Informative scatterplots

Scatterplots are most useful when enhanced with annotations & statistical summaries

Data ellipse and regression line show the linear model, prestige ~ income

Point labels show possible outliers

Smoothed (loess) curve and CI show the trend

Boxplots show marginal distributions

26

Informative scatterplots

car::scatterplot() provides all these enhancements

Skewed distribution of income & nonlinear relation suggest need for a transformation

Arrow rule: move on the scale of powers in direction of the bulge e.g.: $x \rightarrow sqrt(income)$ or log(income)

Try log(income)

```
scatterplot(prestige ~ income, data=Prestige,
    log = "x",
    pch = 16,
    regLine = list(col = "red", lwd=3),
    ...)
```

Income now ~ symmetric

Relation closer to linear

Stratify by type?

```
scatterplot(prestige ~ income | type, data=Prestige,
    col = c("blue", "red", "darkgreen"),
    pch = 15:17,
    legend = list(coords="bottomright"),
    smooth=list(smoother=loessLine, var=FALSE, span=1, lwd=4))
```

Formula: | type → "given type"

Different slopes: interaction of income * type

Provides another explanation of the non-linear relation

This is a new finding!

Scatterplot matrix

Fit a model

```
> mod1 <- lm(prestige ~ education + poly(women, 2) +</pre>
                       log(income)*type, data=Prestige)
> summary(mod1)
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
                      -137.500
(Intercept)
                                  23.522
                                           -5.85 8.2e-08
                                                  2.0e-06 ***
                        2.959
education
                                   0.582
poly(women, 2)1
                       28.339
                                  10.190
                                                    0.0066 **
                                            2.78
                                                   0.0800
poly(women, 2)2
                       12.566
                                   7.095
log(income)
                       17.514
                                   2.916
                                                   4.1e-08 ***
typeprof
                       74.276
                                  39.495
typewc
                        0.969
                                            0.02
                                                    0.9805
log(income):typeprof
                       -7.698
                                   3.451
                                            -2.23
                                                    0.0282
log(income):typewc
                                           -0.10
                                                   0.9199
                       -0.466
                                   4.620
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
Multiple R-squared: (0.879) Adjusted R-squared: 0.868
F-statistic: 81.1 on 8 and 89 DF, p-value: <2e-16
```

- allow women² term
- interaction of log(income) and type

Fits very well!

Model (effect) plots

- We'd like to see plots of the predicted value (\hat{y}) of the response against predictors (x_i)
 - Ordinary plot of y vs. x_i doesn't allow for other correlations
 - → Must control for other predictors (x_{-j}) not shown in a given plot
 - Variables not shown (x_{-i}) are averaged over.
 - Slopes of lines reflect the partial coefficient in the model
 - Partial residuals can be shown also

For details, see vignette("predictor-effects-gallery", package="effects)

32

Model (effect) plots: education

library("effects")
mod1.e1 <- predictorEffect("education", mod1)
plot(mod1.e1)</pre>

This graph shows the partial slope for education

For each ↑ year in education, fitted prestige ↑2.96 points, (other predictors held fixed)

Model (effect) plots

mod1.ela <- predictorEffect("education", mod1, residuals=TRUE)
plot(mod1.ela,
 residuals.pch=16, id=list(n=4, col="black"))</pre>

Partial residuals show the residual of prestige controlling for other predictors

Unusual points here would signal undue influence

education predictor effect plot

Model (effect) plots: women

Surprise! Prestige of occupations ↑ with % women (controlling for other variables)

Model (effect) plots: income

plot(predictorEffect("income", mod1),
 lines=list(multiline=TRUE, lwd=3),
 key.args = list(x=.7, y=.35))

Income interacts with type in the model

The plot is curved because log(income) is in the model

visreg plots: Air quality data

Daily air quality measurements in New York, May - Sep 1973

How does Ozone concentration vary with solar radiation, wind speed & temperature?

```
> head(airquality)
  Ozone Solar.R Wind Temp Month Day
     41
            190
                 7.4
                        67
     36
            118 8.0
                        72
     12
            149 12.6
                        74
     18
            313 11.5
                        62
     NA
             NA 14.3
     28
             NA 14.9
```

see: https://pbreheny.github.io/visreg/ for examples & details

Air quality: main effects model

```
> fit1 <- lm(Ozone ~ Solar.R + Wind + Temp. data=airquality)</pre>
> summary(fit1)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -64.3421
                        23.0547
                                  -2.79
                                          0.0062 **
Solar.R
              0.0598
                         0.0232
             -3.3336
                         0.6544
                                  -5.09
Wind
                                        1.5e-06 ***
              1.6521
                         0.2535
                                   6.52 2.4e-09 ***
Temp
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 21.18 on 107 degrees of freedom
  (42 observations deleted due to missingness)
Multiple R-squared: 0.6059, Adjusted R-squared: 0.5948
F-statistic: 54.83 on 3 and 107 DF, p-value: < 2.2e-16
```

visreg conditional plots

```
op <- par(mfrow=c(1,3), cex.lab=1.5)
visreg(fit1, "Solar.R")
visreg(fit1, "Wind")
visreg(fit1, "Temp")
par(op)</pre>
```

model summary =
predicted values (line) +
confidence band (uncertainty) +
partial residuals (objections)

Factor variables & interactions

cut Temp into three ordered levels of equal range airquality\$Heat <- cut(airquality\$Temp, 3, labels=c("Cool","Mild","Hot"))

fit model with interaction of Wind * Heat

fit2 <- Im(Ozone ~ Solar.R + Wind*Heat, data=airquality) visreg(fit2, "Wind", by="Heat", layout=c(3,1), points=list(cex=1))

Factor variables & interactions

overlay=TRUE → superpose panels gg=TRUE → uses ggplot

This allow slope for Wind to vary with Heat e.g., Wind has no effect when Cool

This model still assumes linear effects of Heat & Wind

Non-linear effects

+2

Response surface models (visreg2d)

Fit quadratics in both Wind & Temp and interaction Wind * Temp fitp <- Im(Ozone ~ Solar.R + poly(Wind,2) * poly(Temp,2), data=airquality)

visreg2d(fitp, "Wind", "Temp", plot.type="gg") + geom_contour(aes(z=z), color="black") visreg2d(fitp, "Wind", "Temp", plot.type="persp")

Diagnostic plots

- The linear model, $y=X\beta+\delta$ assumes:
 - Residuals, ε_i are normally distributed, $\varepsilon_i \sim N(0,\sigma^2)$
 - (Normality not required for Xs)
 - Constant variance, $Var(\varepsilon_i) = \sigma^2$
 - Observations y_i are statistically independent
- Violations → inferences may not be valid
- A variety of plots can diagnose all these problems
- Other methods (boxCox, boxTidwell) diagnose the need for transformations of y or Xs.

The "regression quartet"

In R, plotting a 1m model object → the "regression quartet" of plots

plot(mod1, lwd=2, cex.lab=1.4)

- 1 Residuals: should be flat vs. fitted values
- 2 Q-Q plot: should follow the 45° line
- 3 Scale-location: should be flat if constant variance
- 4 Resids vs. leverage: can show influential observations

Unusual data: Leverage & Influence

- "Unusual" observations can have dramatic effects on least-squares estimates in linear models
- Three archetypal cases:
 - Typical X (low leverage), bad fit -- Not much harm
 - Unusual X (high leverage), good fit -- Not much harm
 - Unusual X (high leverage), bad fit -- BAD, BAD, BAD
- Influential observations: unusual in both X & Y
- · Heuristic formula:

Influence = X leverage x Y residual

Influence plots

Influence (Cook's D) measures impact of individual obs. on coefficients, fitted values

Spread-level plots

- To diagnose non-constant variance, plot:
 - log |Std. residual| vs. log (x)
 - log (IQR) vs log (median) [for grouped data]
- If \approx linear w/ slope b, transform y \rightarrow y ^(1-b)

Artificial data, generated so $\sigma \sim x$

- $b \approx 1 \rightarrow power = 0$
- → analyze log(y)

Spread-level plot: baseball data

Data on salary and batter performance from 1987 season

Suggested power transformation: 0.2609

slope = .74 \rightarrow p = .26 i.e., y \rightarrow log(y) or y^{1/4}

NB: both axes plotted on log scale

Box Cox transformation

- Box & Cox proposed to transform y to a power, $y \to y^{(\lambda)}$ to minimize the residual SS (or maximize the likelihood)
 - Makes y^(λ) more nearly normal
 - Makes y^(λ) more nearly linear in with X

Formula for $y^{(\lambda)}$

- y⁽⁰⁾: log_e(y)
- λ < 0: flip sign to keep same order

$$y_i^{(\lambda)} = egin{cases} rac{y_i^{\lambda} - 1}{\lambda} & ext{if } \lambda
eq 0, \ \ln{(y_i)} & ext{if } \lambda = 0, \end{cases}$$

Power(p)	Transformation	Name
1	Y^2	Square
	Y (No transformation)	Original Data
½ "0" -½	√ Y	Square root
"0"	log Y or log 10 (Y)	Logarithm
-1/2	-1 / √ Y	Reciprocal Root
-1 -2	-1 / Y	Reciprocal
-2	-1 / Y^2	Reciprocal Square

51

Example: Cars93 data

How does gas mileage (MPG.city) depend on vehicle weight?

Relationship clearly non-linear

Tukey arrow rule: transform Y (or X) as arrow thru the curve bulges $y \to \sqrt{y}$, log(y), 1/y $x \to \sqrt{x}$, log(x), 1/x

MASSextra package

> library(MASSExtra)

> box_cox(cars.mod) # plot log likelihood vs. lambda

> lamba(cars.mod)

[1] -1.26

The plot of – $log(L) \sim RSS$ shows the minimum & CI

plot (bc(MPG.city, lamba(cars.mod))

Summary

- Tables are for look-up; graphs can give insight
- "Linear" models include so much more than ANOVA & regression
- Data plots are more effective when enhanced
 - data ellipses → strength & precision of correlation
 - regression lines and smoothed curves
 - point identification → noteworthy observations
- Effect plots show informative views of models
 - Visualize conditional effects, holding others constant
- Diagnostic plots can reveal influential observations and need for transformations.

