Financial Reporting and Market Efficiency with Extrapolative Investors

Milo Bianchi & Philippe Jehiel (2015)

Presented by Silvio Ravaioli

February 5, 2019

Overview

- Model of financial market
 - Investors have limited attention (sampling)
 - Companies report financial data strategically
- How do stock prices differ from the fundamental values?
 - A monopolist can induce a stock price bounded away from the fundamental
 - The valuation of the marginal investor exceeds the average valuation competition:
- What is the effect of competition (number of companies)?
 - Mispricing increases with the number of companies
 - Additional effect from self-selection of investors

Introduction

- Firms can deliberately obfuscate their financial statements
 - Transparent: simple statement, single number summarizing the overall profitability
 - Opaque: large set of numbers describing the profitability of each single activity
- Investors may not be able to recognize the opaqueness
- ▶ What should be the regulatory response?
 - ► Impose disclosure requirements
 - Educate the investors
- ▶ The simple model in the paper mildly suggests the former

Model (Introduction)

- ► Firm problem: choose financial report, maximize trading price
- ► The report is a set of signals with correct mean but companies are free to choose the *noise* level
- Investors are boundedly rational: they cannot observe the whole report
- Report's complexity (opacity) creates disagreement in beliefs
- Sampling heuristic (collect K signals from the report)
- "Overextrapolate" the value of firms from a small sample
 - Representativeness as law of small numbers in Kahneman-Tversky
 - Winner's curve in a common value auctions

Model (Notation)

- \blacktriangleright *j* firm index j = 1, ..., F
- i investor index (unitary mass of investors)
- $\varphi \in \mathbb{R}_+$ profitability (true value)
- ▶ $σ^j ∈ Σ$ financial report (distribution of activities)
 - $\bar{x} = \varphi$ constraint
 - ▶ $X_i \subset \mathbb{R}_+$ support of σ^j
- \hat{x}_i^j sample heuristic
- r stock to trade (buy/sell)
- $ightharpoonup p^j$ price of the stock in equilibrium
- ightharpoonup ω tie-breaking rule
- ▶ $D^{j}(\sigma, p, \omega) = S^{j}(\sigma, p, \omega)$ market clearing condition

Monopoly

- F = 1 one firm, K = 1 one signal
- Median beliefs = market clearing price (half buy, half sell)
- ▶ **Proposition 1**: If F=1 and K=1, the monopolist chooses

$$\sigma_{\mathcal{M}} = \left\{0, \frac{1}{2}; 2\varphi, \frac{1}{2}\right\}$$

and the equilibrium price is p_M = 2φ

- The result is driven by different samples collected by investors
- Investors are ex ante identical and ex post different in beliefs

Monopoly and Sophistication

- F = 1 one firm, K > 1 more signals
- Failure in the l.l.n. since the report is endogenous in K
- ► The optimal two-signal distribution is

$$\sigma_K = \left\{0, \left(\frac{1}{2}\right)^{1/K}; h(K), 1 - \left(\frac{1}{2}\right)^{1/K}\right\}$$

- Generate a skewed distribution: more 0s, few higher values¹
- ▶ **Proposition 2**: If F=1, K=1, the equilibrium price is no smaller than $\frac{\varphi}{\ln(2)} > \varphi$

¹Note that the result requires unboundedly high returns.

Oligopoly

- Proposition 3: No equilibrium with full transparency
- ▶ **Proposition** 4: No stock price is below the fundamental value
- ▶ Equilibrium predictions are generally difficult (we cannot find any equilibrium price), but we can find the highest equilibrium price in the case of K = 1
- ▶ **Lemma 1**: maximum price $p^* = \frac{\varphi}{2\mu^*}$, report $\sigma^* = \{0, 1 \mu^*; \frac{\varphi}{\mu^*}, \mu^*\}$ with $\mu^* = 1 (1/2)^{1/F}$
- ▶ **Lemma 2**: p^* and σ^* are an equilibrium (just add the tie-breaking rule)

Oligopoly

Main results (combining Lemmas 1 and 2):

- ▶ **Proposition 5**: The maximal price achieved in a symmetric equilibrium is $p^*(F) = \frac{\varphi}{2[1-(1/2)^{1/F}]}$. This price increases in F.
- ▶ **Proposition 6**: For F > 1 there is a symmetric equilibrium with market clearing prices $p = \varphi$. It is very fragile² and transparency increases in F.
- ▶ For F = 2, σ is a uniform distribution on $[0, 2\varphi]$.

²Why is it fragile? An obvious and simpler alternative best-response would be to report just the fundamental value, but this would not be an equilibrium (Proposition 3).

Discussion

- Bounded rationality
 - Alternative heuristics would lead to smaller bias but the same sign as in the current model
- Trading constraints
 - Relax the assumption of "one unit of one stock"
 - ▶ If K = 1, F = 1 and $f(\cdot)$ is strictly concave, the firm can achieve a price $p > \varphi$ [Proposition 7]

Further extensions

- Upper bound on firms' reports
- Reporting overall profitability
- Asymmetric and/or stochastic fundamentals
- Correlation between investors' draws
- Introduce a fraction of rational investors