+ LongNet 2.0

Analizador eléctrico SenNet con 1 ó 3 analizadores integrados y 3 interfaces de comunicación diferentes: (RS485 / RFNet / LongNet 2.0)

Características Generales				
Alimentación	90-265VAC (3W)			
Configuración	Webserver AP WIFI			
Comunicaciones	RS485 –Modbus RTU	RFNet	LongNet	
Comunicaciones	(SenNet CM/SM)	(SenNet CM/SM _{RFNet})	(SenNet CM/SM _{LongNet})	
RFNet	868MHz/915MHz @ 12mW (SMA-hembra)			
RF LongNet 2.0	433MHz@10mW / 869MHz (EU)-915MHz(US) @25mW RX sensibilidad -124dBm			
Medidor interno de energía CM	Energía (reactiva - activa - aparente) Debasia (reactiva - activa - aparente)			

Conexionado Compact Meter / Single Meter

La alimentación del dispositivo se realiza a través de una entrada alterna en un rango 100-265VAC, para mayor seguridad se aconseja utilizar a su entrada una protección.

Alimentación	100-265VAC	
Consumo	3W	

La versión CM_{RS485} con comunicación RS485 es la única que tiene habilitado dicho puerto, para la versiones con comunicación radio (RFNet / LongNet) será necesario utilizar la antena correspondiente.

Configuración y acceso a los datos capturados

Para configurar el equipo por primera vez se debe utilizar la red WIFI en modo AP (Access Point), conectándose a ella de manera directa.

La red creada por el equipo tiene el siguiente formato:

SSID_WIFI: SenNet-*MAC_dispositivo* ejemplo: SenNet-C4BE847654D8

Contraseña AP WIFI: 123456789

Una vez conectado al equipo a través de la WIFI, utilizamos el navegador para acceder al webserver del equipo.

www.sennet.net

usuario: admin clave: admin

Una vez dentro del webserver podemos configurar los parámetros de los medidores eléctricos, así como la configuración WIFI para conectar este dispositivo a un router WIFI (modo Station), añadiendo la SSID y clave del mismo. Para descubrir la IP asignada por el propio router WIFI se puede utilizar la APP desarrollada para IOs y Android, 'SenNet Discover'.

RS485 CM/SM

A través del webserver le debemos asignar un ID Modbus para acceder a los datos capturados por los medidores internos. Utilizar la tabla* modbus para conocer los registros de acceso.

*(ver último apartado de este manual)

RFNet CM/SMRFNet

A través de la red de radio propietaria RFNet es posible obtener los datos capturados por este dispositivo utilizando los datalogger serie 100/200. Para la configuración del datalogger vamos a necesitar el ID RFNet impreso en la pegatina del equipo y el ID modbus del Compact Meter.

RFNet versiones				
	Frecuencia	Modulación	Velocidad en el aire	Normativa
EU versión	868MHz	BPSK	20kbits/seg	IEEE 802.15.4-2006
US versión	915MHz	BPSK	40kbits/seg	IEEE 802.15.4-2006

RF características	
Nº canales RF	1
RX sensibilidad	-110dBm
TX potencia	11 dBm (12mW)

RFNet video explicativo

El protocolo RFNet está desarrollado bajo la capa física ZigBee PRO y ZigBee, con la flexibilidad de instalación de este tipo de redes. Se caracteriza por ser una red de tipo Mesh (autoconfigurable), con posibilidad de aplicar el rol de repetidor a los equipos con alimentación constante.

(*)Es posible superar este número de saltos, sólo en los casos que los equipos conectados tengan el rol de punto final y comunicación unidireccional.

La conexión inalámbrica se realizará de manera automática entre el datalogger y el **CM/SM**_{RFNet} cuando se alimente el equipo, existe un identificador unívoco para cada remota (ver etiqueta), con el cual se podrá identificar dentro del árbol de red.

Existe la posibilidad de que cohabiten distintas redes dentro del mismo entorno, hasta 4 redes distintas e independientes. Para realizar el cambio red es necesario que se especifique a fábrica ya que no se encuentra accesible por el cliente. (configuración de fábrica: red '1', envió de *Ping* de estado cada 1 minuto).

Cambio ROL RFNet

Es posible realizar un cambio de ROL del IoT CM_{RFNet} dentro de la red RFNet para que realice la función de Repetidor/Router. Por defecto esta función está desactivada. Con esta opción es posible extender el alcance de la red. El cambio se realizará a través del Webserver del datalogger y permanecerá almacenado en el equipo remoto.

No se debe abusar de esta opción, ya que es posible que la red se vuelva más inestable.

LongNet 2.0 LN

Esta versión de Compact Meter / Single Meter posee la vía de comunicación *LongNet*, red de radio de largo alcance, por sus características de emisión en banda estrecha posee una gran sensibilidad e inmunidad al ruido / interferencias, lo que le transfiere una cobertura superior.

Versiones hardware disponibles

Versiones RF	Banda 433	Banda 868	
Frecuencia	433.99MHZ	869.2248MHz (EU versión)	
		915MHz (US versión)	
TX potencia	10mW 25mW		
RX sensibilidad	-124dBm @ 300bps		
Mínimo ancho canalización	6.25KHz		
Modulaciones	2-FSK / 2-GFSK / 4-FSK / 4GFSK		
Velocidad en el aire	300bps 50kbps		
Máximo buffer RF	125 bytes		

Por defecto todo el material entregado estará en la configuración para obtener la máxima cobertura:

Por defecto configuración 300bps @ 2FSK @ 6.25KHz

<u>Proceso emparejamiento $CM/SM_{LongNet}$ </u>: para realizar este proceso se puede hacer a través de 2 vías:

- Menú: a través del menú que monta en la consola del puerto mini-USB, para ello hay que insertar el jumper en la posición que se menciona más adelante, y tomar nota de los ID_Network por defecto que están definidos en las etiquetas de los productos.
- Emparejamiento automático, explicado en la siguiente tabla:

Test nivel de señal

Para conocer el nivel de señal del $CM/SM_{LongNet}$ con respecto a su padre en la jerarquía de red se debe mantener el jumper insertado (>50 segundos) .

no Longital proper i	1)	> 50 segundos
30 20	2)	Ping cada 5 segundos con nivel de señal
pain 8	3)	Comprobar el Webserver datalogger

Nota:

Después de cada proceso de emparejamiento realizar un reinicio a los equipos, tanto datalogger como remota.

Medidores Integrados

Compact Meter es un analizador que posee 1 ó 3 medidores integrados.

3 medidores trifásicos ó 9 monofásicos	Compact Meter
1 medidores trifásicos	Single Meter

Referencia de Tensión

Rango	110-220/240VAC (CAT III – 400V)	
Frecuencia	50-60Hz	
Aislamiento	2.5Kv @ 60seg	
Consumo	0.1 VA por fase	
Precisión	Clase 0.2 (+/-0.2%)	
4	Se aconseja utilizar una protección previa a esta toma de referencia.	

Referencia de intensidad

Precisión de la medida de intensidad: Clase 0.2 (+/-0.2%)

Se puede utilizar los transformadores CT (0.33V) y flexibles SenNet, dependiendo del rango de intensidad a medir.

Tipos de transformadores	Rango de medida	Salida	Precisión
CT 50	150 A	0.33VAC	+/-1% (5%100% In)
CT 100	1100 A	0.33VAC	+/-1% (5%100% ln)
CT 150	1150 A	0.33VAC	+/-1% (5%100% In)
CT 400	1400 A	0.33VAC	+/-1% (5%100% ln)
CT 800	1800 A	0.33VAC	+/-1% (5%100% In)
Flexible 5000 (7cm 🛮) (*)	105000 A	Rogowski	+/-1% (centrando cable a medir)
Flexible 5000 (12cm □) (*)	105000 A	Rogowski	+/-1% (centrando cable a medir)
Flexible 5000 (20cm □) (*)	105000 A	Rogowski	+/-1% (centrando cable a medir)

(*)Utilizando sondas flexibles SenNet, certificamos una medida de Clase 1, calibradas junto al analizador desde fábrica.

Precisiones en la medida intensidad		
Medidores internos + transformador SenNet CT	Clase 1	
Medidores internos + SenNet flexible	Clase 1	Calibrados de fábrica

Aislamiento	
Transformador CT	2.5KV / 0.5mA / 3seg
Flexible	600V CAT IV

Adquisición de la medida) di di
Muestreo canal intensidad	8000 muestras / seg	.dlllls
Muestreo canal tensión	8000 muestras / seg	
Resolución	24 bits	' '
Muestreo paso por cero	62.5 useg	1 11

Ejemplo de conexión para una carga monofásica y trifásica, ambas configuraciones es posible alternarlas en los medidores. Con las sondas flexibles SenNet pre-calibradas es importante mantener el orden para conservar la Clase 1 en la medida.

Precisión en la medida		
Tensión/Intensidad	Clase 0.2 (+/-0.2%)	
Potencia	Clase 1* (+/-1%)	
Energía	Clase 1* (+/-1%)	
(#) 01 0 = (/ 0 = 0() 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

(*) Clase 0.5 (+/-0.5%) servicio opcional para obtener esta clase en la medida

Envolvente / Montaje

Características ambientales		
Temperatura trabajo	-20ºC+60ºC	
Temperatura de almacenamiento	de almacenamiento -20ºC+75ºC	
Carcasa		
Dimensiones	128 x 107 x 49 mm	
Montaje	Carril DIN (DIN46277)	
Grado de protección	IP40	
Material	ABS – V0 autoextingible	

Rail DIN support

Garantía

Satel Spain garantiza sus productos contra todo defecto de fabricación por un periodo de 1 año.

No se aceptará ninguna devolución de material ni se reparará ningún equipo si no viene acompañado de un informe (RMA) indicando el defecto observado o los motivos de la devolución.

La garantía quedará sin efecto si el equipo ha sufrido "mal uso" o no se han seguido las instrucciones de almacenaje, instalación o mantenimiento de este manual. Se define "mal uso" como cualquier situación de empleo o almacenaje contraria al Código Eléctrico Nacional o que supere los límites indicados en este manual.

Satel Spain declina toda responsabilidad por los posibles daños, en el equipo o en otras partes de las instalaciones y no cubrirá las posibles penalizaciones derivadas de una posible avería, mala instalación o "mal uso" del equipo. En consecuencia, la garantía no es aplicable a las averías producidas en los siguientes casos.

- Por sobretensiones y/o perturbaciones eléctricas en el suministro.
- Por agua, si el producto no tiene la clasificación IP apropiada.
- Por exponer al equipo a temperaturas extremas, que superen el límite de temperatura de funcionamiento o almacenaje.
- Por una modificación del producto por parte del cliente sin previo aviso a Satel Spain.

Tabla – Modbus RTU

Modbus RTU: 9600 kbits – 8N1

Formato: Float inverse16 bit cada registro (2 bytes)

• Base 0

Meter 1	Register	Register	Description	Format	Units
1	00000	00001	Frequency Hz	32 bit Float Inverse	Hz
1	00002	00003	Phase 1 Power factor	32 bit Float Inverse	
1	00004	00005	Phase 2 Power factor	32 bit Float Inverse	
1	00006	00007	Phase 3 Power factor	32 bit Float Inverse	
1	00008	00009	Phase 1 to Neutral Voltage	32 bit Float Inverse	V
1	00010	00011	Phase 2 to Neutral Voltage	32 bit Float Inverse	V
1	00012	00013	Phase 3 to Neutral Voltage	32 bit Float Inverse	V
1	00014	00015	Phase 1 Line current	32 bit Float Inverse	Α
1	00016	00017	Phase 2 Line current	32 bit Float Inverse	А
1	00018	00019	Phase 3 Line current	32 bit Float Inverse	А
1	00020	00021	Phase 1 Active Power	32 bit Float Inverse	W
1	00022	00023	Phase 2 Active Power	32 bit Float Inverse	W
1	00024	00025	Phase 3 Active Power	32 bit Float Inverse	W
1	00026	00027	Phase 1 Reactive Power	32 bit Float Inverse	VAr
1	00028	00029	Phase 2 Reactive Power	32 bit Float Inverse	VAr
1	00030	00031	Phase 3 Reactive Power	32 bit Float Inverse	VAr
1	00032	00033	Phase 1 Apparent Power	32 bit Float Inverse	kVA
1	00034	00035	Phase 2 Apparent Power	32 bit Float Inverse	kVA
1	00036	00037	Phase 3 Apparent Power	32 bit Float Inverse	kVA
1	00038	00039	Phase 1 Active Energy Partial	32 bit Float Inverse	kWh
1	00040	00041	Phase 2 Active Energy Partial	32 bit Float Inverse	kWh
1	00042	00043	Phase 3 Active Energy Partial	32 bit Float Inverse	kWh
1	00044	00045	Phase 1 Reactive Energy Partial	32 bit Float Inverse	kVArh
1	00046	00047	Phase 2 Reactive Energy Partial	32 bit Float Inverse	kVArh
1	00048	00049	Phase 3 Reactive Energy Partial	32 bit Float Inverse	kVArh
1	00050	00051	Phase 1 Apparent Energy Partial	32 bit Float Inverse	kVAh
1	00052	00053	Phase 2 Apparent Energy Partial	32 bit Float Inverse	kVAh
1	00054	00055	Phase 3 Apparent Energy Partial	32 bit Float Inverse	kVAh
1	00056	00057	Phase 1 Active Energy Total	32 bit Float Inverse	kWh
1	00058	00059	Phase 2 Active Energy Total	32 bit Float Inverse	kWh
1	00060	00061	Phase 3 Active Energy Total	32 bit Float Inverse	kWh
1	00062	00063	Phase 1 Reactive Energy Total	32 bit Float Inverse	kVArh
1	00064	00065	Phase 2 Reactive Energy Total	32 bit Float Inverse	kVArh
1	00066	00067	Phase 3 Reactive Energy Total	32 bit Float Inverse	kVArh
1	00068	00069	Phase 1 Apparent Energy Total	32 bit Float Inverse	kVAh
1	00070	00071	Phase 2 Apparent Energy Total	32 bit Float Inverse	kVAh
1	00072	00073	Phase 3 Apparent Energy Total	32 bit Float Inverse	kVAh
1	00074	00075	Active Energy Total	32 bit Float Inverse	kWh
1	00076	00077	Reactive Energy Total	32 bit Float Inverse	kVArh
1	00078	00079	Apparent Energy Total	32 bit Float Inverse	kVAh
1	00080	00081	Event power quality SAG (PH1-bit1/PH2-bit2/PH3-bit3) Over Voltage(PH1-bit4/PH2-bit5/PH3-bit6) Voltage Secuence Error (bit 7) (reset with every read operation)	32 bit unsigned	*

Meter 2	A la tabla anterior sumar 100 a cada registro Modbus
Meter 3	A la tabla anterior sumar 200 a cada registro Modbus
Meter 4	A la tabla anterior sumar 300 a cada registro Modbus
Meter 5	A la tabla anterior sumar 400 a cada registro Modbus
Meter 6	A la tabla anterior sumar 500 a cada registro Modbus