

AMENDMENTS TO THE CLAIMS

1-29. (cancelled)

5 30. (previously presented) A phase-locked loop comprising:
 a phase detector for receiving an input signal and a
 feedback signal, and for outputting a phase error
 signal based on a phase difference between the
 input signal the feedback signal;
10 a signal reshaper connected to the phase detector for
 reshaping the phase error signal;
 a charge pump connected to the signal reshaper for
 receiving the reshaped or unreshaped phase error
 signal from the signal reshaper and for outputting
15 a charge pump signal;
 a low pass filter connected to the charge pump for
 receiving the charge pump signal and outputting
 an output signal;
 a voltage-controlled oscillator connected between the
20 low pass filter and the phase detector for
 receiving the output signal and for outputting a
 corresponding oscillation signal, wherein the
 feedback signal inputted into the phase detector
 is generated from the oscillation signal; and
25 a controller connected to the signal reshaper and the
 charge pump for controlling the signal reshaper
 and the charge pump;
 wherein the unreshaped phase error signal causes the charge
 pump to output a charge pump signal that changes the
30 frequency of the feedback signal to match the frequency of
 the input signal, and the reshaped phase error signal causes
 the charge pump to output a charge pump signal that

synchronizes the output signal with a target frequency.

31. (previously presented) The phase-locked loop of claim 30
further comprising a frequency detector connected between
5 the voltage-controlled oscillator and the charge pump for
receiving the input signal and the feedback signal and for
outputting a frequency difference signal to the charge pump.
32. (previously presented) The phase-locked loop of claim 30
10 wherein when the frequency of the output signal is in a lower
range that is lower than the target frequency, the signal
reshaper reshapes the phase error signal to increase the
frequency of the output signal out of the lower range; and
when the frequency of the output signal is in an upper range
15 that is above the target frequency, the signal reshaper
reshapes the phase error signal to decrease the frequency
of the output signal out of the upper range.
33. (previously presented) The phase-locked loop of claim 32
20 wherein the lower range and the upper range are frequency
ranges where the unreshaped phase error signal is incapable
of synchronizing the output signal with the target
frequency.
- 25 34. (previously presented) The phase-locked loop of claim 30
wherein the signal reshaper is a pulse reshaper and the phase
error signal comprises up pulses and down pulses.
- 30 35. (previously presented) The phase-locked loop of claim 34
wherein the pulse reshaper lengthens or shortens a period
of a pulse of the phase error signal.

36. (previously presented) The phase-locked loop of claim 34 wherein the pulse reshaper increases or decreases a width of a pulse.

5 37. (previously presented) The phase-locked loop of claim 30 wherein the charge pump increases or decreases an amplitude of a current.

10 38. (previously presented) The phase-locked loop of claim 30 wherein the input signal is an eight-to-fourteen modulation (EFM) signal and the output signal is a clock signal, and the phase-locked loop is incorporated into a controller of a compact disk (CD) drive or a digital versatile disk (DVD) drive.