Basic Computer Architecture

- Computers consist of:
 - Datapath
 - Control Assignment Project Exam Help
- It is designed to implement to particular instruction set.
- The individual instructions are the engineering add WeChat powcoder equivalent of the mathematician's

$$ightharpoonup z = f(x,y)$$

Opcode – Destination -Operands

- ▶ OPCODE
 - Selects the function
- DESTINATION DE LA COMPRISION DE L
 - Is nearly awaystapath register
- **▶** OPERANDS
 - Usually come from datapath register

Instruction Format Examples

Instruction Formats

- ► Where Digning A Propaging the painting processor of the gisters in the datapath
- ►But Operandvis@teelfvandmmediate operand

Data and Instructions in Memory

Example for a 16 Bit processor, with 7, 3, 3, 3 bits

Decimal address	Memory contents ASS19111	Decimal Project	Other specified	Operation
25	0000101 001 010 011	5 (Subtract)	Exam Help DR:1, SA:2 SB:3	R1 ← R2 – R3
	http	s://powcode	r.com	
35	0100000 000 100 101	32 (Store)	SA:4 SB:5	M [R4] ← R5
	Add	d WeChat po	wcoder	
45	1000010 010 111 011	66 (Add Immedi- ate)	DR:2 SA:7 OP:3	R2 ← R7 + 3
55	1100011 101 110 100	96 (Branch on zero)	AD: 44 SA:6	If R6 = 0, PC ← PC - 20
70	0000000 011 000 000	Data = 192. After e	xecution of instruction in	35, Data = 80.

User View of Storage Program Counter (PC) Register Filassignment Project Exam Help 32 x 32 https://powcoder.com Add WeChat powcoder Instruction Data Memory Memory $2^{32} \times 16$ $2^{32} \times 16$ CSU22022, 14th Lecture, Dr. M. Manzke, Page: 6

Memory Module [entity]

```
librar A F. Fig. ment Project Exam Help use IEEE. STD_LOGIC_1164.ALL; use IEEE. STD_LOGIC_1164.ALL; use IEEE. STD_LOGIC_1164.ALL; use IEEE. STD_LOGIC_166.ARL in entity memory is — use unsigned for memory address.

Port (address W. C. Signed Std Cogic_vector(31 downto 0); write_data: in std_logic_vector(31 downto 0); MemWrite, MemRead: in std_logic; read_data: out std_logic_vector(31 downto 0)); end memory;
```

Memory Module [architecture]

```
architecture Behavioral of memory is
-- we will use the least significant 9 bit of the address - array(0 to 512)
type mem_array is array(0 to 7) of std_logic_vector(31 downto 0);
-- define type, for memory arrays
begissignment Project Exam Help
mem process: process (address, write data)
-- initialize data memory. X denotes hexadecimal number
variable data_mem : mem_array := (
X"00000000", X"00000000", X"00000000", X"00000000",
x"00000Addd" Weeldhat powedd by p0000000");
variable addr:integer
begin -- the following type conversion function is in std_logic_arith
addr:=conv integer(address(2 downto 0));
if MemWrite ='1' then
data mem(addr):= write data;
elsif MemRead='1' then
read_data <= data_mem(addr) after 10 ns;</pre>
end if.
end process;
end Behavioral;
```

A Single-cycle Hardwired Control Unit

- ► We briefly consider a system with the simplest possible control Project Exam Help
- ► The control unit: //powcoder.com
- Maps each OPCODE to a single datapath operation.
 Add WeChat powcoder
 Instructions are fetched from an instruction
- Instructions are fetched from an instruction memory
- ► This is what all present systems with separate instruction and data code do.

- ▶ PL=1
 - ► Jumpgom Branchjedaton the IPC
- ► PL=0 https://powcoder.com
 - PC is incremented powcoder
- ► PL=1 ∧ JB=0
 - ▶ Jump
- ▶ PL=1 ∧ JB=1
 - ► Conditional branch

Truth Table BIT15 - BIT13

► The following operations classification helps with the implementation of the instruction of the instruction of the left instruction of the inst

https://powcoder.com

Control Word Bits

Instruction Function Type Add	BW	eChat	4powt	oder	MD	RW	MW	PL	JB
ALU function using registers	0	0	0	0	0	1	0	0	X
Shifter function using registers	0	0	1	0	0	1	0	0	X
Memory write using register data	0	1	0	O	X	0	1	0	X
Memory read using register data	0	1	1	0	1	1	0	0	X
ALU operation using a constant	1	0	0	1	0	1	0	0	X
Shifter function using a constant	1	0	1	1	0	1	0	0	X
Conditional Branch	1	1	0	X	X	0	0	1	0
Unconditional Jump	1	1	1	X	X	0	0	1	1

Single-Cycle Computer Instruction Example

Operation code	Symbolic name	Format	Description	Function	МВ	MD	RW	MW	PL	JB
1000010	ADI	Immedatesi	Sperand Proj	ecte Exam Heip	1	0	1	0	0	0
0110000	LD	Register	Load memory	$R[DR] \leftarrow M[R[SA]]$	0	1	1	0	0	1
			https://powc	coder.com						
0100000	ST	Register	Store register	$M[R[SA]] \leftarrow R[SR]$	0	1	0	1	0	0
			Add WeCha	at powcoder						
0011000	SL	Register	Shift left	$R[DR] \leftarrow slR[SB]$	0	0	1	0	0	1
0001110	NOT	Register	Complement register	$R[DR] \leftarrow \overline{R[SA]}$	0	0	1	0	0	0
1100000	BRZ	Jump/Branch	If $R[SA] = 0$, branch	If $R[SA] =$	1	0	0	0	1	0
	gro	1 1 152	to PC + se AD	$0, PC \leftarrow PC + \text{se}AD$, If $R[SA] \neq 0, PC \leftarrow PC + 1$						

Single-cycle Problem

- A single-cycle control unit cannot implement Project Exam Help
 - more complex addressing modes https://powcoder.com
 - Composite functions
 - E.g. Maddli Wie Chat powcoder
- ► A single-cycle control unit has long worst case delay path.
 - ► Slow clock.

Multiple-Cycle Microprogrammed Computer

Control Word Information for Datapath

Example, our project is different!

27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	NΑ					MS		МС	L	P	P L	T D	T A	T B	МВ			FS			МО	R W	M M	M W

Assignment Project Exam Help

TD	TA Select	тв	МВ	0	FS	3	MD	RW	MM Select	MW	
Select		Select	Select	Cdqe	trosi//p)O W@ (rder.	. @@¶ ¶		Function	Code
R[DR]	R[SA]	R[SB]	Register	0	F = A	00000	FnUt	No write (NW)	Address	No write (NW)	0
R 8	R 8	R 8	Constant	1 A			pow	vvoder	PC	Write (WR)	1
					$F = A + \underline{B} + \overline{B}$ $F = A + \overline{B}$	00100					
					$F = A + \overline{B} + F = A - 1$	00110					
					$F = A$ $F = A \wedge B$ $F = A \vee B$	00111 01000 01010					
					$F = A \oplus B$ $F = \overline{A}$	01100 01110					
					$F = B$ $F = \operatorname{sr} B$	10000 10100					
					$F = \operatorname{sl} B$	11000					