

Tunnel-K Prototype Review

December 5, 2011

Agenda

- Tunnel-K Introduction
 - Use Cases
 - Exhibit Flow
- GUI Mockup
- Virtual Wind Tunnel
 - Environment
 - Whiteboard
 - Visualization
- Physical Wind Tunnel
 - Hall Effect Sensor
 - Fan Motor Control
 - Temperature/Humidity
 - Ethernet Shield
- Future Work

Use Case Perspective

Exhibit Flow for a Younger Visitor

Exhibit Flow for an Older Visitor

Virtual Wind Tunnel

Set Tunnel Conditions

Set Airfoil Shape

Rotate Shape

Simulate >>

Virtual Wind Tunnel

Set Airfoil Shape

Draw Your Own Shape

Next >>

Virtual Wind Tunnel

Draw Your Own Shape

<Pencil Icon>

<Eraser Icon>

Clear Screen

Next >>

Running... 40%

Virtual Wind Tunnel

Results

Tweet Results

Email Results

Lift: 1.895

Drag: 0.643

Mach Number

Pressure

New Sim >>

Virtual Wind Tunnel

- Environment
- Whiteboard
- Visualization

Virtual Wind Tunnel: Environment

- Android 2.3.3 target
 - To support x-large screen devices
- NDK
 - To utilize existing 2dflowsolver code
 - Tried to utilize unchanged cpp code as much as possible
- Development Environment/workflows
 - Eclipse
 - GUI, refactoring, layout, etc
 - o Ant
 - Command line driven, vi, etc
- Testing
 - TunnelkTest project in Eclipse
 - Android JUnit support

Virtual Wind Tunnel: Whiteboard

- Currently based on FingerPaint.java example code
- Problems
 - Some custom shapes won't work
 - Open shapes
 - Concavities
 - Kids draw the darnedest things
- Possible different approaches
 - Bezier curves
 - Limit to only pre-existing shape set

Virtual Wind Tunnel: Visualization

- Only mocked up in prototype
- Possible approaches
 - OpenGL ES
 - Low level graphics library
 - Processing for Android
 - Java-based graphics IDE
 - Pre-render using other apps
 - Only an option if limited to pre-existing shape set

Physical Wind Tunnel

- Hall Effect Sensor
- Fan Motor Control
- Temperature/humidity
 - Ethernet shield
 - Tweeting / logging capabilities

Physical Wind Tunnel: Hall Effect Sensor

Physical Wind Tunnel: Hall Effect Sensor

- Sensor to be mounted within 0.5" of fan blade mounted magnets
 - Any further distance causes invalid readings
- Arduino runs fast enough to support an readings of over 6700 RPM, far faster than the fan being used will run
- Prototype displays both hall effect sensor measurement as well as PC fan tachometer measurement for validation

Physical Wind Tunnel: Fan Motor Control

- Remote control light dimmer switch
 - Simple: Attach stepper motor to existing light dimmer switch currently controlling motor.
 - Advanced: Use X10 or SmartHome network connected light dimmer switch to control motor.

• Issues:

- X10/SmartHome light dimmer with enough electrical rating to handle motor
- Stepper motor with Audrino connections and enough granularity to provide control loop feedback response

Physical Wind Tunnel: Temperature and Humidity

- Currently using IC based temperature sensors
- Currently using uC based humidity sensors
- Mounting to proto-board in appropriate places on tunnel surfaces
- May explore different humidity measurement technique to achieve better stability in readings.
- Currently using Audrino Ethernet shield to tweet temperature and humidity, and send to data logging service for long term storage
- Plans to implement internal web page for virtual wind tunnel look up of current tunnel conditions.

Future Plans

Physical Wind Tunnel

- More surfaces made from plexiglass / acrylic for strength and student / visitor visibility
- A "measurement" tunnel exhibit flow for older students / visitors
- Debug Tweets when system has issues or when executing normal startup/shutdown procedures
- Interfacing with the Virtual Wind Tunnel

Future Plans

Virtual Wind Tunnel

- Full integration of application inputs to 2D Flow Solver
 - Setting Tunnel Conditions within Application
 - Whiteboarding an airfoil shape
 - Image Checking to prevent malformed airfoils
- Visualization Work
 - Better examination of results from simulation
- Interfacing with the Physical Wind Tunnel

Future Plans

Non-Functional Requirements Coverage

- Resiliency to hardware/power failure
- Ease of use, Safety, Resiliency to use/misuse
 - Chris and Josh have graciously volunteered their children for testing purposes

Suggestions for Change?

Acknowledgments

- Dr. Jeffery Kulick
- Sean Smith
- Misty Marshall
- Jim Masters

Thank You!!