Universidade Veiga deAlmeida

Curso: Básico das Engenharias

Disciplina: Cálculo Vetorial e Geometria Analítica

Professora: Adriana Nogueira

4^a Lista de exercícios

Exercício 1: Dados os vetores $\overrightarrow{u}=(0,0,2), \ \overrightarrow{v}=(-3,1,3), \ \overrightarrow{w}=(1,1,0),$ calcule:

- (a) $\overrightarrow{u} \times \overrightarrow{u}$;
- (b) $\overrightarrow{u} \times \overrightarrow{v}$;
- (c) $\overrightarrow{v} \times \overrightarrow{w}$;
- (d) $(\overrightarrow{u} \times \overrightarrow{v}) + (\overrightarrow{v} \times \overrightarrow{u});$
- (e) $\overrightarrow{v}.(\overrightarrow{u}\times\overrightarrow{v});$
- (f) $(2\overrightarrow{v}) \times (3\overrightarrow{v})$;
- (g) $(\overrightarrow{u} \overrightarrow{v}) \times (\overrightarrow{u} + \overrightarrow{v})$.

Exercício 2: Calcule:

- (a) $(5\overrightarrow{i}) \times (3\overrightarrow{i} + 4\overrightarrow{j})$
- (b) $(2\overrightarrow{j} + \overrightarrow{k}) \times (8\overrightarrow{k})$
- (c) $(4\overrightarrow{i} 5\overrightarrow{j}) \times (3\overrightarrow{j})$
- (d) $(5\overrightarrow{k} 3\overrightarrow{j}) \times (8\overrightarrow{j})$

Exercício 3: Dados os pontos $A=(1,2,0),\ B=(-1,-2,3)$ e C=(2,-1,1), determine o ponto D para que se tenha $\overrightarrow{AD}=\overrightarrow{BC}\times\overrightarrow{AC}.$

Exercício 4: Sabendo que $|\overrightarrow{u}| = 1$, $|\overrightarrow{v}| = 7$ e o ângulo entre os vetores \overrightarrow{u} e \overrightarrow{v} é $\theta = \frac{\pi}{6}$ calcule:

- (a) $|\overrightarrow{u} \times \overrightarrow{v}|$;
- (b) $\left|\frac{1}{3}\overrightarrow{u} \times \frac{3}{4}\overrightarrow{v}\right|$

Exercício 5: Calcule a área do paralelogramo formado pelos vetores $\overrightarrow{u} = (1, 1, -1)$ e $\overrightarrow{v} = (2, 1, 4)$.

Exercício 6: Calcule a área do triângulo formado pelos vetores $\overrightarrow{u} = (0,1,3)$ e $\overrightarrow{v} = (-1,1,0)$.

Exercício 7: Ache um vetor ortogonal a:

- (a) $\overrightarrow{u} = (1, 1, -1) \ e \ \overrightarrow{v} = (0, 1, 3);$
- (b) $\vec{v} = (1, 1, -1) \ e \ \vec{v} = (0, 1, 3) \ e \ unitário;$
- (c) $\overrightarrow{u} = (1, 1, -1)$ e $\overrightarrow{v} = (0, 1, 3)$ com módulo 3.

Exercício 8: Calcule a área do paralelogramo ABCD sabendo-se que os vértices A, B e C são dados por A = (1, 3, 1), B = (2, 0, 3) e C = (0, 1, -1).

Exercício 9: Calcule a área do triângulo ABC sabendo-se que os vértices A, B e C são dados por A = (1, 1, 2), B = (2, 1, 5) e C = (2, 3, 2).

Exercício 10: Dados os vetores $\overrightarrow{u} = (2,1,2), \overrightarrow{v} = (3,2,6),$ calcule:

- (a) $|\overrightarrow{u}|$ e $|\overrightarrow{v}|$;
- (b) A área do paralelogramo formado pelos vetores \overrightarrow{u} e \overrightarrow{v} ;
- (c) A altura do paralelogramo formado pelos vetores \overrightarrow{u} e \overrightarrow{v} relativa a base formada por \overrightarrow{u} ;
 - (d) A área do triângulo formado pelos vetores \overrightarrow{u} e \overrightarrow{v} ;
- (e) A altura do triângulo formado pelos vetores \overrightarrow{u} e \overrightarrow{v} relativa a base formada por \overrightarrow{v} .

Exercício 11: Calcule:

(a)
$$\langle \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k} \rangle$$
;

(b)
$$< 2\overrightarrow{i}, \overrightarrow{j}, 5\overrightarrow{k} >;$$

$$(c) < 3\overrightarrow{i}, 6\overrightarrow{j} + 3\overrightarrow{k}, 2\overrightarrow{k} >$$

Exercício 12: Calcule o volume do paralelepípedo determinado pelos vetores $\overrightarrow{u} = (3, -1, 4), \ \overrightarrow{v} = (2, 0, 1) \ \text{e} \ \overrightarrow{w} = (-2, 1, 5).$

Exercício 13: Dados os vetores $\overrightarrow{u} = (-1, 1, 0), \ \overrightarrow{v} = (1, 2, 1)$ e $\overrightarrow{w} = (0, 1, 5),$ calcule:

- (a) Calcule o volume do paralelepípedo determinado pelos vetores \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} ;
- (b) Calcule a altura do paralelepípedo determinado pelos vetores \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} relativa à base constituída pelos vetores \overrightarrow{u} e \overrightarrow{v} .

RESPOSTAS

Exercício 1:

(a)
$$\overrightarrow{u} \times \overrightarrow{u} = \overrightarrow{0}$$
;

(b)
$$\overrightarrow{u} \times \overrightarrow{v} = (-2, -6, 0);$$

(c)
$$\vec{v} \times \vec{w} = (-3, 3, -4);$$

(d)
$$(\overrightarrow{u} \times \overrightarrow{v}) + (\overrightarrow{v} \times \overrightarrow{u}) = \overrightarrow{0};$$

(e)
$$\overrightarrow{v}.(\overrightarrow{u}\times\overrightarrow{v})=0$$
;

(f)
$$(2\overrightarrow{v}) \times (3\overrightarrow{v}) = \overrightarrow{0}$$
;

(g)
$$(\overrightarrow{u} - \overrightarrow{v}) \times (\overrightarrow{u} + \overrightarrow{v}) = (-4, -12, 0).$$

- **Exercício 2:** (a) $20 \overrightarrow{k}$ (b) $16 \overrightarrow{i}$ (c) $12 \overrightarrow{k}$ (d) $-40 \overrightarrow{i}$

Exercício 3: D = (-4, -3, -10)

- **Exercício 4:** (a) $|\overrightarrow{u} \times \overrightarrow{v}| = \frac{7}{2}$; (b) $|\frac{1}{3}\overrightarrow{u} \times \frac{3}{4}\overrightarrow{v}| = \frac{7}{8}$
- Exercício 5: $A = \sqrt{62}$.
- Exercício 6: $A = \frac{\sqrt{19}}{2}$.

Exercício 7:

- (a) $\overrightarrow{w} = (4, -3, 1);$ (b) $\overrightarrow{w} = (\frac{2\sqrt{26}}{13}, \frac{-3\sqrt{26}}{26}, \frac{\sqrt{26}}{26});$ (c) $\overrightarrow{w} = (\frac{6\sqrt{26}}{13}, \frac{-9\sqrt{26}}{26}, \frac{3\sqrt{26}}{26}).$
- Exercício 8: $A = 5\sqrt{5}$
- Exercício 9: $A = \frac{7}{2}$

Exercício 10:

- (a) $|\overrightarrow{u}| = 3 \text{ e } |\overrightarrow{v}| = 7;$
- (b) $A = \sqrt{41}$;
- (c) $h = \frac{\sqrt{41}}{3}$;
- (d) $A = \frac{\sqrt{41}}{2}$;
- (e) $h = \frac{\sqrt{41}}{7}$.

Exercício 11:

- (a) $\langle \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k} \rangle = 1$;
- (b) $\langle 2\overrightarrow{i}, \overrightarrow{j}, 5\overrightarrow{k} \rangle = 10$;
- $(c) < 3\overrightarrow{i}, 6\overrightarrow{i} + 3\overrightarrow{k}, 2\overrightarrow{k} > = 36$

Exercício 12: V = 17.

Exercício 13: (a) V = 14 (b) $h = \frac{14\sqrt{11}}{11}$