# Mid-Term Presentation



FEM and its application to static structures

Group A

#### Introduction

- Finite Element Method (FEM) is a procedure of numerical solution of a domain viewed as the collection of sub-domains.
- FEM on static structures computing the stress and displacement.
- The actual problem will be replaced by simpler ones to find one approximate solution.

## Gantt Chart : Progress

#### Working Schedule



# Progress so far.

- Problem Identification
   each member came up with various problems where FEM is
   used and we decided on trusses.
- Theoretical Background
  Went through basic ideas about FEM and the new concepts.

# Progress so far.

# Manual and Python Implementation wrote custom classes and procedures for solving the problem in python. Tested code against examples in book and worked on debugging.

#### Visualization

Worked on visualizing the structure and the deformations in python using the problem data and solution data.

#### **Class Implementation**

custom classs in jupyter notebook for nodes and matrices.

#### Mechanical Approach

followed joint and sectional method and verified .

#### Visualization

code for visualizing any problem given the coordinates.

#### Future Plans

#### Working of solution:

- Solution part is working for some problem but not for all.
- Why, how and in which cases the solution can work in all problem is to be worked on.

#### Software Visualization:

- Data has been generated, solved upon and visualized to an extent both theoretically and manually.
- The streamlining of all these components and compiling it is needed.

## Things left

#### Theoretical readings:

- As of now, we have only worked and implemented on software.
- Knowledge of mandatory principles and applications of FEM is to be thoroughly studied.

#### Report Writing:

• Final report of the project is to be written.

Thank You