Rozdział 1

Płyn idealny

Naszym celem jest uzasadnienie podstawowych równań ruchu cieczy idealnej.

Niech (M,g) będzie zwartą, orientowalną n-rozmaitością Riemannowską z brzegiem i $\omega \in \Omega^n(M)$ będzie formą objętości na M. Przypomnijmy, że g jest indeksowaną przez M rodziną iloczynów skalarnych określonych na przestrzeniach stycznych do M, $g_p: T_pM \times T_pM \to \mathbb{R}$ dla $p \in M$ i $p \mapsto g_p(X_p, Y_p)$, gdzie X i Y są różniczkowalnymi polami wektorowymi na M.

Polem wektorowym zależnym od czasu klasy C^r na M nazywamy odwzorowanie $X: \mathbb{R} \times M \to TM$ takie, że $X_t(m) := X(t, m) \in T_m M$ jest wektorem stycznym w m w chwili t dla wszytkich par $(t, m) \in \mathbb{R} \times M$. Przez $X_t \in \mathfrak{X}^r(M)$ oznaczamy pole wektorowe na M w chwili t, gdzie $\mathfrak{X}^r(M)$ to zbiór wszystkich pól wektorowych klasy C^r na M.

Przepływem (także operatorem ewolucji) na M nazywamy 1-parametrową grupę dyfeomorfizmów $\varphi_t: M \to M$ z operacją składania $\varphi_{t_1} \circ \varphi_{t_2} = \varphi_{t_1+t_2}$ dla $t_1, t_2 \in \mathbb{R}$, gdzie φ_0 jest elementem neutralnym i $\varphi_t \circ \varphi_{-t} = \varphi_0$ dla dowolnego $t \in \mathbb{R}$.

Trajektorią (także: linią przepływu, krzywą całkową) pola wektorowego X w punkcie $m \in M$ nazywamy krzywą $c : \mathbb{R} \supset I \to M$ o początku w m, taką, że c'(t) = X(c(t)) dla każdego $t \in I$.

Pojęcia pola wektorowego, przepływu i trajektorii wiąże następujące twierdzenie

Twierdzenie 1.1 (O lokalnym istnieniu trajektorii). Niech p będzie dowolnym punktem rozmaitości M i $X_p \in T_pM$ dowolnym wektorem stycznym w p. Wówczas dla pewnego $\varepsilon > 0$ istnieje gładka krzywa $c:] - \varepsilon, \varepsilon[\to M \text{ o początku } w \text{ p taka, że } c'(0) = X_p.$

Wówczas u(x,t) oznacza prędkość cząsteczki próbnej przechodzącej przez punkt $x \in M.$

Bibliografia