Computer Architecture

Big Picture

NAND TO APPS

NAND TO APPS

Hello World

```
// First Example in Programming 101
Class Main {
    function void main() {
        do Output.printString("Hello World!");
        do Output.println(); // New line
        return;
    }
}
```

How do these letters do anything?

```
// First Example in Programming 101
Class Main {
    function void main() {
        do Output.printString("Hello World!");
        do Output.println(); // New line
        return;
                       114
             112
                                  105
```

Nand to Tetris, Part I

Hardware Part

Hardware Part

Nand to Tetris, Part I

You have built a complete functioning computer

- That can run anything including games like Tetris
- Using only modest Nand gates

Low level languages

Programming at the end of Part I: Hack

Hack assembly code

(source language)

```
// Computes RAM[1]=1+...+RAM[0]
         // i = 1
    M=1
    @s um
         // sum = 0
    M=0
(LOOP)
          // if i>RAM[0] goto STOP
    D=M
    @R0
    D=D-M
    @STOP
    D: JGT
          // sum += i
    D=M
    @sum
    M=D+M
         // i++
    M=M+1
    @LOOP // goto LOOP
    0; JMP
```

Hack binary code

```
00000000000010000
11101111111001000
00000000000010001
1110101010001000
00000000000010000
11111110000010000
00000000000000000
1111010011010000
0000000000010010
11100011000000001
00000000000010000
1111110000010000
00000000000010001
1111000010001000
0000000000010000
11111110111001000
00000000000000100
11101010100000111
```

 How can we construct hardware units for basic operations?

Boolean Logic

Boolean Operation

NOT(0 OR (1 AND 1)) = NOT(0 OR 1) = NOT(1) = 0

Boolean Identities

```
Boolean Identities
• (x AND y) = (y AND x)
                                       Commutative Laws
• (x OR y) = (y OR x)
• (x \text{ AND } (y \text{ AND } z)) = ((x \text{ AND } y) \text{ AND } z)
                                                        Associative
• (x OR (y OR z)) = ((x OR y) OR z)
                                                         Laws
• (x \text{ AND } (y \text{ OR } z)) = (x \text{ AND } y) \text{ OR } (x \text{ AND } z)
                                                           Distributive
• (x OR (y AND z)) = (x OR y) AND (x OR z)
                                                           Laws
• NOT(x AND y) = NOT(x) OR NOT(y)
• NOT(x OR y) = NOT(x) AND NOT(y)
                                                       De Morgan
                                                        Laws
```

De Morgans Teorem

$$(X + Y)' = X' \cdot Y'$$

NOR is equivalent to AND
with inputs complemented

$$(X \cdot Y)' = X' + Y'$$

NAND is equivalent to OR
with inputs complemented

X	Y	X'	Y'	(X • Y)'	X' + Y'
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

◆ Example: Find the complement of Z = A'B'C + A'BC + AB'C + ABC'

$$Z' = (A'B'C + A'BC + AB'C + ABC')'$$

= $(A'B'C)' \cdot (A'BC)' \cdot (AB'C)' \cdot (ABC')'$
= $(A+B+C') \cdot (A+B'+C') \cdot (A'+B+C') \cdot (A'+B'+C)$

Boolean Algebra

Simplifing boolean expression via boolean algebra

```
Boolean Algebra
NOT(NOT(x) AND NOT(x OR y)) =
NOT(NOT(x) AND (NOT(x) AND NOT(y))) =
NOT((NOT(x) AND NOT(x)) AND NOT(y)) =
NOT(NOT(x) AND NOT(y)) =
NOT(NOT(x)) OR NOT(NOT(y)) =
x OR y
                      Double Negation
```

Same conclusion with truth table...

Boolean Function

Boolean Function

Boolean Functions

$$f(x, y, z) = (x \text{ AND } y) \text{ OR } (\text{NOT}(x) \text{ AND } z)$$
 Formula

x	У	z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Truth table

Truth Table to Boolean Expression

Finding the shortest expression NP hard problem

Theorem

Any Boolean function can be represented using an expression containing AND, OR and NOT operations.

Theorem

Any Boolean function can be represented using an expression containing AND and NOT operations.

Proof:

(x OR y) = NOT(NOT(x) AND NOT(y))

Question

What would be the logical equivalent of NAND(x,x)?

Remember NAND(x,x) is defined to be NOT(x AND x). Here is the truth table.

х	У	NAND
0	0	1
0	1	1
1	0	1
1	1	0

X

OR(x,x)

AND(x,x)

NOT(x)

Theorem

Any Boolean function can be represented using an expression containing only NAND operations.

Proof:

- 1) NOT(x) = (x NAND x)
- 2) (x AND y) = NOT(x NAND y)
- 3) (x OR y) = NOT(x) NAND NOT(y)

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	0
1	0	0
1	1	1

Desired OR Gate

NAND Construction

Q = A OR B

= (A NAND A) NAND (B NAND B)

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	1

Logic Gates

 Now we are going from abstract boolean logic to computer parts

Gate Logic

- A technique for implementing Boolean functions using logic gates
- Logic gates:
 - □ Elementary (Nand, And, Or, Not, ...)
 - □ Composite (Mux, Adder, ...)

Elementary logic gates: Nand

gate diagram:

functional specification: if (a==1 and b==1)
then out=0 else out=1

truth table:

а	b	out
0	0	1
0	1	1
1	0	1
1	1	0

Elementary logic gates: And, Or, Not

if (a==1 and b==1)
then out=1 else out=0

if (a==1 or b==1)
then out=1 else out=0

Composite gates

if (a==1 and b==1 and c==1)
 then out=1 else out=0

Gate Interface / Gate Implementation

gate interface

Circuit implementations

a	b	out
0	0	0
0	1	1
1	0	1
1	1	1

HARDWARE DESCRIPTION LANGUAGES

Hardware Part

Hardware Part

We can build the chip via using computers

Design: from requirements to interface

outputs 1 if one, and only one, of its inputs, is 1.

a	b	out

0	0	0
0	1	1
1	0	1
1	1	0

Requirement:

Build a gate that delivers this functionality

```
/** Xor gate: out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {
    IN a, b;
    OUT out;

PARTS:
    // Implementation missing
}
```

Design: from requirements to gate diagram

outputs 1 if one, and only one, of its inputs, is 1. a b out

0	0	0
0	1	1
1	0	1
1	1	0

Requirement:

Build a gate that delivers this functionality

out=1 when:

a And Not(b)

Or

b And Not(a)


```
/** Xor gate: out = (a And Not(b)) Or (Not(a) And b)) */

CHIP Xor {
    IN a, b;
    OUT out;

PARTS:
    Not (in=a, out=nota);
    Not (in=b, out=notb);
    And (a=a, b=notb, out=aAndNotb);
    And (a=nota, b=b, out=notaAndb);
    Or (a=aAndNotb, b=notaAndb, out=out);
}
```

- · HDL is a functional / declarative language
- · The order of HDL statements is insignificant
- · Before using a chip part, you must know its interface. For example:

```
Not(in= ,out=), And(a= ,b= ,out= ), Or(a= ,b= ,out= )
```

Hardware simulation in a nutshell

Simulation options:

· Interactive

Interactive simulation (using Xor as an example)

Xor.hdl

```
CHIP Xor {
    IN a, b;
    OUT out;

PARTS:
    Not (in=a, out=nota);
    Not (in=b, out=notb);
    And (a=a, b=notb, out=aAndNotb);
    And (a=nota, b=b, out=notaAndb);
    Or (a=aAndNotb, b=notaAndb, out=out);
}
```


Simulation process:

- Load the HDL file into the hardware simulator.
- Enter values (0's and 1's) into the chip's input pins (e.g. a and b)
- · Evaluate the chip's logic
- Inspect the resulting values of:
 - The output pins (e.g. out)
 - The internal pins (e.g. nota, notb, aAndNotb, notaAndb)

Interactive simulation

Main Parts of CPU

 A basic 16 bit computer processing unit has fallowing parts:

Implement Function via Basic Gates

- In a decoder when we give 0,0,0 to the input the first output becomes 1
 the others become 0; when we give 0,0,1 to the input the first output
 becomes 1 the others become 1; it goes like this...
- Boolean Expressions for outputs:
- O7=ABC; O6=ABC'; O5=AB'C; O4=AB'C'; O3=A'BC; O2=A'BC'; O1=A'B'C; O0=A'B'C'
- The trurh table and chip design is below

3 to 8 Decoder - Truth Table

A	В	С	0,	06	O ₅	0,	03	02	0,	00
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

2 bit adder

The boolean expressions of outputs S=A'B+B'A =AxorB; C=AB

2-bit adder with nand gates

- S=A'B+AB' =AXORB; C=AB
- we can represent all boolean expressions using NAND

```
// NOT(x)= (x NAND x);
\checkmark (x AND y)= NOT(x NAND y);
(x OR y) = NOT(x) NAND NOT(y)
   A'B=NOT(A'NANDB)
   AB'=NOT(A NAND B')
   A'B +AB'=NOT NOT(A' NAND B) NAND NOT NOT(A NAND B')
   A'B + AB' = (A' NAND B) NAND(A NAND B')
\star S=((A NAND A) NAND B) NAND (A NAND (B NAND B))
```

★ C=AB =NOT(A NAND B)=(A NAND B) NAND (A NAND B)

S=((A NAND A) NAND B) NAND (A NAND (B NAND B)) C=(A NAND B) NAND (A NAND B)

★ Circuit Design with NAND:

