By N we mean tre integers, $N := \mathbb{Z}_{\geqslant 1}$.

I Roots of positive reals

Let $a \in \mathbb{R}^+$, a > 1, and $n \in \mathbb{N}$

Lemma 1: If $x,y \in \mathbb{R}^+$ S.t. $x^n = y^n = a$ then x = y.

Proof: WLOG x>y. Then $x^n>y^n \Rightarrow \alpha>\alpha (\Rightarrow \Leftarrow)$,

Theorem: $\exists n \in \mathbb{R}^+ \text{ s.t. } x^n = a.$

Pf: $S = \begin{cases} t \in \mathbb{R}^+ : t^n < \alpha \end{cases} \subseteq \mathbb{R}$ Goal: Show that $\alpha = \sup S$ works $OS \neq \phi$ (why? 1 \in S)

Os is bold above (an ub is a)

By lub property of \mathbb{R} , sup S essists. Say $n:=\sup S$.

 $x^n < a$

 $\chi^{\eta} = \alpha$

 $\chi^{\eta} > \alpha$

Exercise: If n>s

 $\gamma^{n} - s^{n} < (\gamma - s) \cdot \eta \cdot \gamma^{n-1}$

Case 1: Suppose $x^n < a$. $(a-x^n > 0)$

Strategy: to find some $\varepsilon > 0$ s.t. $x + \varepsilon \in S$ this will contradict that x is an $u \cdot b$.

€ ∈ (0,1) S.t. Pick

 $\varepsilon < \frac{\alpha - x^{n}}{n (x+1)^{n-1}}$

Take \leq to be harf of min $\{1, \frac{\alpha-\alpha^n}{n(n+1)^{n-1}}\}$ $(x+\varepsilon)^{\eta}-x^{\eta}$ < ε · $n\cdot(x+\varepsilon)^{\eta-1}$

 $< \epsilon n \cdot (x+1)^{n-1}$

 $< a - x^n$

 $\Rightarrow (x+\hat{\epsilon})^n < \alpha \Rightarrow x+\epsilon \in S$ contradicts maximality of x. Case 2: $\chi^{\eta} - a > 0$

Strategy: To find E>O S.t. N-E is an N.b. of S. Choose E>O S.f. $\varepsilon < \frac{\kappa^{n} - \alpha}{n \alpha^{n-1}}$

$$\chi^{N} - (\chi - \varepsilon)^{N} < n \cdot \varepsilon \cdot \chi^{N-1} < \chi^{N} - \alpha$$
 $\Rightarrow \quad \alpha < (\chi - \varepsilon)^{N} \Rightarrow \chi - \varepsilon \text{ is an } u \cdot b \cdot \nabla f \cdot S.$
 $\Rightarrow \quad \chi \text{ is not least} \quad u \cdot b \cdot \nabla f \cdot S. \quad (\Rightarrow \Leftarrow)$

Only other possibility is $x^n = a$.

I. Extended real no. system

 $\mathbb{R} = \mathbb{R} \cup \{+\infty, -\infty\}$ is said to be the extended real no. System

These symbols must satisfy (defn): (YxER)

$$\frac{\chi}{-\infty} = 0 = \frac{\chi}{+\infty}$$

$$0 \quad \chi > 0 \Rightarrow \chi (+ \infty) = + \infty , \quad \chi (-\infty) = -\infty$$

$$\chi < 0 \Rightarrow \chi (+ \infty) = -\infty , \quad \chi (-\infty) = + \infty$$

$$0 \quad (+ \infty) + (+ \infty) = + \infty = (+ \infty) (+ \infty) = (-\infty) (-\infty)$$

$$() (+ \infty) + (+ \infty) = + \infty = (+ \infty) (+ \infty) = (-\infty) (-\infty)$$

$$(+ \infty) (-\infty) = (-\infty) + (-\infty) = -\infty$$

If $S \subseteq R$ is unbounded above then we say $\sup S = +\infty$. Similarly "below inf $S = -\infty$.

Open nbds of $-\infty$ are of the form $(-\infty, x)$ $(x \in \mathbb{R})$

II. Normed field Q. We have the notion of an "absolute value" or a "norm" 1.1: Q → R₇₀ defined by $|x| = \begin{cases} x \\ -x \end{cases}$ if a≥0 if 2 < 0 as 1.100 or the on norm. Verify: $|x| = 0 \Leftrightarrow x = 0$ |xy| = |x||y|iii> 12"+y1 = 121 + 1y1 It turns out that every norm on Q "looks like" | . | p or | . 1 & (Ostrowski's theorem). Fix a prime p. For an integer x (+0) we can define $v_p(x) = highest power of p divides x$ $V_5(50) = V_5(2x5^2) = 2$ = highest $n \in \mathbb{Z}_{>0}$ s.t. $p^n \mid n$ v₅ (3) = 0 $V_p(x) = V_p(-x)$ = The unique n EZ/30 S.t. pn | x but pn+1 / a. Observe that $v_p(x,y) = v_p(x) + v_p(y)$. $\forall x,y \in \mathbb{Z}$ This can be extended to rationals by Saying that of $x = (a/b) \in \mathbb{R}(A, b \in \mathbb{Z})$ then define $v_p(x) = v_p(a) - v_p(b)$ (n = ca/cb) then $v_p(n) = v_p(ca) - v_p(cb) = v_p(a) - v_p(b)$ $|\cdot|_p: Q \longrightarrow \mathbb{R}_{\geqslant 0}$ by $|x|_p = \begin{cases} 0 & \text{if } x = 0 \\ p^{-\nu_p(x)} \end{cases}$ It turns out that $|\cdot|_p$ is a norm \forall primes p. Stronger: $|x+y|_p \leq \max\{|x|_p, |y|_p\}$ (proof not given here)