Modelo Entidade Relacionamento Estendido (ERE)

 A maioria dos BDs podem ser modelados por meio dos conceitos básicos do modelo ER, mas alguns aspectos podem ser expressos mais convenientemente por meio de algumas extensões do modelo básico.

Modelo Entidade Relacionamento Estendido (ERE)

 O modelo ER estendido engloba todos os conceitos do modelo ER mais os conceitos de generalização, especialização, subtipo, supertipo e conceito de herança de atributos.

- A especialização corresponde a ação de especializar entidades:
 - EMPREGADO pode ser especializado como ENGENHEIRO ou SECRETÁRIA.
- A generalização corresponde a ação de generalizar entidades:
 - Uma entidade ENGENHEIRO e SECRETÁRIA são generalizadas como uma entidade FUNCIONÁRIO.

- Os subtipos da entidade "pai" são as suas especializações:
 - ENGENHEIRO e SECRETÁRIA são subtipos de FUNCIONÁRIO.
- O supertipo de um subtipo é a entidade "pai":
 - FUNCIONÁRIO é o supertipo de ENGENHEIRO e SECRETÁRIA.

O que pode melhorar neste modelo ER?

Os subtipos podem herdar atributos do

Certos atributos aparecem somente em algum

subtipo:

Subtipos (tipos especializados)

 Alguns relacionamentos se aplicam apenas a determinado subtipo:

Generalização/Especialização Restrição Total

Generalização/Especialização Restrição Parcial

Generalização/Especialização Restrição Exclusiva (disjunção)

Generalização/Especialização Restrição Não Exclusiva (sobreposição)

Herança Múltipla

Exercício – Modelo ERE

 Modelo uma hierarquia de generalização e especialização para as entidades CARRO e CAMINHÃO. Defina as restrições para o modelo.

- Modelo introduzido por Edgar F. Codd em 1970, tendo como finalidade representar os dados como uma coleção de relações, onde cada relação é representada por uma tabela.
- Modelo com sólida base formal:
 - Baseado na teoria dos conjuntos (álgebra relacional)

- Cada linha da tabela representa uma coleção de dados relacionados:
 - Os dados podem ser interpretados como fatos que descrevem uma instância de uma entidade ou de um relacionamento.

- De acordo com a sua terminologia:
 - Tabela:
 - É chamada de relação
 - Conjunto não ordenado de tuplas
 - Representam entidades ou relacionamentos
 - São definidas por esquemas do tipo R(A₁, A₂, ..., Aₙ), onde R é o nome da relação e A₁, A₂, ..., Aռ é a lista de atributos.

- De acordo com a sua terminologia:
 - Linha da tabela:
 - o É chamada de tupla
 - Representa uma coleção de dados relacionados
 - Todas a tuplas de uma relação são distintas

- De acordo com a sua terminologia:
 - Coluna:
 - É denominada atributo
 - Nome que identifica uma propriedade da relação

Exemplo:

A₁ representa o atributo A₁ da relação R

- De acordo com a sua terminologia:
 - Tipo de dado:
 - É chamado domínio
 - É um conjunto de valores atômicos que caracterizam um atributo
 - Grau da relação:
 - Corresponde ao número de atributos da relação

R	A 1	A 2	A 3	A 4
ESTUDANTE	Nome	Matrícula	Classe	Departamento
Tuplas -	José	3217	1	DCT
	Ana Maria	2325	2	DCT
	Carla	4112	1	ENG

- ESTUDANTE é o nome da relação R, que tem 4 atributos (R de grau 4)
- dom(Nome)=Nome do aluno; dom(Matrícula)=Número da matrícula; dom(Classe)=Número da turma; dom(Departamento)=Código do departamento a que os cursos estão vinculados.

Chaves:

 Refere-se ao atributo ou conjunto de atributos que permite distinguir uma tupla das demais dentro da relação.

Chave Candidata:

 Atributo ou agrupamento de atributos que identifica unicamente uma ocorrência na relação.

- Chave Primária (PK Primary Key):
 - É a chave candidata escolhida pelo projetista do BD para identificar univocamente as tuplas de uma relação.
 - Ela deve ser preenchida obrigatoriamente, ou seja, seu valor não pode ser nulo.

Exemplo:

```
Clientes = {Codigo, <u>CPF</u>, RG, Nome, Endereco, 
LimCredito}
```

- Chave Primária Composta:
 - É a chave primária (PK) criada a partir da junção de dois ou mais atributos de uma relação.

Exemplos:

Contatos={Nome, Telefone}

Contas={Agencia, Numero, Saldo,
CodCliente,DtAbertura}

Importante: poderá haver valores repetidos para cada um dos atributos-chave, porém, a junção dos atributos deve prover valor único.

- Chave Estrangeira (FK Foreign Key):
 - É a quando o atributo de uma relação é a chave primária de outra relação, ou seja, pode armazenar somente valores de uma chave primária de outra relação.

Exemplos:

```
Clientes={Codigo, Nome, Telefone}
```

Vendas={NotaFiscal, **CodCliente**,Produto}

Restrições do Modelo Relacional

- Restrições de cardinalidade:
 - Indica o número de relacionamentos dos quais uma entidade pode participar:
 - um para um (1:1)
 - um para muitos (1:N)
 - muitos para muitos (M:N)

Restrições do Modelo Relacional

- Restrições de integridade de domínio:
 - Os valores de um atributo devem pertencer ao domínio do atributo
- Restrições de integridade da chave:
 - Não podem existir duas ou mais tuplas de uma mesma relação com valores iguais na chave primária (PK)

Restrições do Modelo Relacional

- Restrições de integridade de entidade:
 - Os valores da chave primária não podem ser NULOS (NULL).
- Restrições de integridade referencial:
 - Estabelece que uma tupla de uma relação que se refere à outra relação deve se referir a uma tupla existente naquela relação.

Dependência Funcional

- Dependência funcional é uma restrição entre 2 conjuntos de atributos:
 - Seja R(A₁,A₂, ..., Aₙ) um esquema relacional e X e Y sejam dois subconjuntos de atributos de R. Dizse que X determina funcionalmente Y (ou que Y depende funcionalmente de X), representado por X→Y, se quaisquer duas tuplas de R têm os mesmos valores em X também têm os mesmos valores em Y:

t1[X] = t2[X], é obrigado a existir t1[y] = t2[Y]

Dependência Funcional

Exemplos:

```
Cliente={<u>Código</u>, Nome}
Código → Nome
```

Projeto={<u>NumProjeto</u>, Nome, Localização} NumProjeto → Nome,Localização

Dependência Funcional Total

 Numa relação R o atributo Y é funcionalmente dependente total de X, no caso de X ser um atributo composto, se, e apenas se, é funcionalmente dependente de X e não é funcionalmente dependente de qualquer subconjunto dos atributos de X.

Dependência Funcional Total

Exemplos:

```
Pedido={CodPedido, Cliente, DtPedido}

Produto = {CodProduto, Nome, Descrição}

ItemPedido={CodPedido, CodProduto, Quantidade}
```

CodPedido, CodProduto → Quantidade

Dependência Funcional Parcial

 Uma dependência funcional parcial é uma dependência funcional X → Y se existir um atributo A qualquer do componente X que pode ser removido e a dependência funcional X → Y não deixa de existir.

Dependência Funcional Parcial

Exemplos:

Notas={<u>NumMatricula</u>, <u>CodDisciplina</u>, <u>Período</u>, NomeDisciplina, Nota}

NomeDisciplina depende apenas do CodDisciplina.

Dependência Funcional Transitiva

 Ocorre quando atributos não chave da relação não dependem funcionalmente do atributo chave (ou de parte dela), mas de outros atributos da relação.

Exemplos:

Funcionário={Matricula, Nome, CodCargo, Cargo, SalárioCargo}

Cargo e Salário Cargo dependem funcionalmente do atributo não chave Cod Cargo.

CodCargo → Cargo, SalárioCargo

Normalização

- É um conjunto de regras que visa, principalmente, a organização de um projeto de banco de dados para reduzir a redundância de dados, aumentar a integridade dos dados e o desempenho.
- Por que normalizar?
 - Evitar anomalias de inserção, alteração e remoção
 - Facilitar a manutenção
 - Manter a integridade dos dados

Normalização

- Principais Formas Normais:
 - 1FN Primeira Forma Normal
 - 2FN Segunda Forma Normal
 - 3FN Terceira Forma Normal

Primeira Forma Normal – 1FN

 Para estar na primeira forma normal (1FN), todos os atributos da relação devem ser atômicos e monovalorados.

Cliente={CÓDIGO, NOME, TELEFONE, ENDEREÇO}

<u>CÓDIGO</u>	NOME	TELEFONE	ENDEREÇO
1	EMANUEL	1111-1111	RUA ARARÍPE, № 10, CENTRO, SALVADOR
		1010-1010	
2	JOSÉ	1234-5678	AV PADRE AMÁRO, № 201, LESTE, SÃO PAULO

Primeira Forma Normal – 1FN

• É necessário reestruturar a relação para que ela atenda à 1FN.

Cliente={CÓDIGO, LOGRADOURO, NÚMERO, BAIRRO, CIDADE}

<u>CÓDIGO</u>	NOME	LOGRADOURO	NÚMERO	BAIRRO	CIDADE
1	EMANUEL	RUA ARARÍPE	10	CENTRO	SALVADOR
2	JOSÉ	AV PADRE AMÁRO	201	LESTE	SÃO PAULO

Primeira Forma Normal – 1FN

Cliente_Telefone={CÓDIGO_CLIENTE, TELEFONE_CLIENTE}

CÓDIGO_CLIENTE	TELEFONE CLIENTE
1	1111-1111
1	1010-1010
2	1234-5678

 Para estar na segunda forma normal (2FN), a relação deve, obrigatoriamente, estar na 1FN e todos os atributos não chave devem depender funcionalmente de toda a chave primária (composta).

```
Cliente={CÓD, CLIENTE}

Filme={CÓD, FILME}

Locação={CÓD-CLIENTE, CÓD-FILME, SALDO}
```

Cliente={CÓD, CLIENTE}

<u>CÓD</u>	CLIENTE
1	EMANUEL
2	JOSÉ

Filme={CÓD, FILME}

<u>CÓD</u>	FILME
1	CAPITÃO AMÉRICA
2	THOR

Locação={CÓD-CLIENTE, CÓD-FILME, SALDO}

CÓD-CLIENTE	CÓD-FILME	SALDO
1	1	2,50
2	2	0,00
1	2	0,00

 Na relação Locação, o atributo SALDO depende funcionalmente apenas de parte da chave composta da relação.

CÓD-CLIENTE, CÓD-FILME → SALDO
CÓD-FILME → SALDO

CÓD-CLIENTE	CÓD-FILME	SALDO
1	1	2,50
2	2	0,00
1	2	0,00

 Temos que transpor o atributo SALDO para relação CLIENTE para que a relação Locação atenda à 2FN:

Cliente={CÓD, CLIENTE, SALDO}

<u>CÓD</u>	CLIENTE	SALDO
1	EMANUEL	0,00
2	JOSÉ	0,00

Locação={CÓD-CLIENTE, CÓD-FILME}

CÓD-CLIENTE	CÓD-FILME
1	1
2	2
1	2

Terceira Forma Normal – 3FN

 Para estar na terceira forma normal (3FN), a relação deve, obrigatoriamente, estar na 2FN e não haver dependência transitiva entre os atributos não chave da relação.

Funcionário={<u>CÓD</u>, FUNCIONÁRIO, CÓD-CARGO, CARGO, SALÁRIO-CARGO}

<u>CÓD</u>	FUNCIONÁRIO	CÓD-CARGO	CARGO	SALÁRIO-CARGO
1	EMANUEL	1	MÉDICO	15000
2	JOSÉ	2	DENTISTA	6000

Terceira Forma Normal – 3FN

- Os atributos CARGO e SALÁRIO-CARGO dependem funcionalmente apenas do atributo não chave CÓD-CARGO:
 CÓD-CARGO → CARGO, SALÁRIO-CARGO
- É necessário retirar os atributos CARGO e SALÁRIO-CARGO da relação Funcionário e transferi-los para uma nova relação:

Terceira Forma Normal – 3FN

Funcionário={CÓD, FUNCIONÁRIO, CÓD-CARGO}

<u>CÓD</u>	FUNCIONÁRIO	CÓD-CARGO
1	EMANUEL	1
2	JOSÉ	2

Cargo={CÓD, CARGO, SALÁRIO-CARGO}

<u>CÓD</u>	CARGO	SALÁRIO-CARGO
1	MÉDICO	15000
2	DENTISTA	6000

Resumo

 A normalização é utilizada para evitar anomalias de inserção, alteração e remoção, facilitar a manutenção e manter a integridade dos dados, mas deve ser utilizada com cautela, pois há citações em que uma certa "desnormalização" é requerida para melhorar o desempenho.