ED 6

Zadanie 1

- A. Wczytaj dane z pliku k_means_data.csv.
- B. Zastosuj algorytm hierarchiczny aglomeracyjny i wyszukaj w zbiorze danych klastry.
- C. Zastosuj **algorytm k-średnich** i wyszukaj w zbiorze danych klastry.

Zadanie 2

Zaimplementuj samodzielnie algorytm k-średnich dla danych z pliku k_means_data.csv.

Zadanie 3

Napisz program pozwalający obliczać podobieństwo między sekwencjami DNA traktowanymi jako ciągi znaków.

Zadanie 4

Załaduj do pliku zbiór danych iris.csv.
Opis zbioru: https://scikit-learn.org/stable/auto examples/datasets/plot iris dataset.html

- 2. Narysuj **wykres rozrzutu** dla współrzędnych **sepal_length** i **sepal_width**. Spróbuj oznaczyć kolorami różne klasy kwiatów.
- 3. Znajdź wartości **minimalne**, **maksymalne** oraz **średnie odchylenie kwadratowe** dla atrybutów zbioru.
- 4. Policz współczynniki korelacji między atrybutami.
- 5. Czy prawdziwe jest stwierdzenie: **petal_length** klasy **Setosa** <u>jest krótsze niż</u> **petal_length** innych klas?
- 6. Zastosuj **algorytm k-średnich** i znajdź **podział na klastry** dla współrzędnych **sepal_length** i **sepal_width**.
- 7. Zastosuj **algorytm hierarchiczny aglomeracyjny** i znajdź **podział na klastry** dla współrzędnych **sepal_length** i **sepal_width**.