# Final Project

Wisdom Takumah and Yohannes Tecleab

April 6, 2017

#### Introduction

According to the National Organization for Rare Disorders (NORD) cervical dystonia is a neurological disorder that cuase neck muscles to contract involuntarily. These spasms lead to pain and abnormal posturing of the neck and head. Prevalence of this disorder is higher in women and in older individuals. Botulinum toxin injection to the affected area is the common method of alleviating pain and disability in patients. In this project we analyze the effect Botolium injection on pain and disability. The data is from an experiment where subjects from nine different locations in the USA were randomly assigned to three groups. A placebo group, a 5000U units dose of botulinum group and a 10000U dose of botulinum group. Within each site between 18 - 41 subjects were assigned to the three treatments. After the adminstration of the treatment patients were followed for six time points including the baseline. Time points were 0 (baseline), 2, 4, 8, 12, and 16 weeks. At each time point a measure of pain based on the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) was recorded. TWSTRS is a composite score of severity, disability, and pain.

The dataset is originally from the book Statistical Methods for the Analysis of Repeated Measurements by Charles S. Davis, pp. 161-163 (Springer, 2002). Previously, the data has been analyzed using response profile analysis in the book Regression modeling strategies: with applications to linear models, logistic regression and ordinal regression, and survival analysis Frank E Harrel. They analyze the data using Generalized Least Squares.

## 'geom smooth()' using method = 'loess'

Table 1: Placebo group: estimated covariance matrix of pain from Cervical Dystonia at different time points

|        | week0    | week2     | week4     | week8     | week12    | week16    |
|--------|----------|-----------|-----------|-----------|-----------|-----------|
| week0  | 86.82964 | 83.57863  | 87.73992  | 91.47581  | 74.04133  | 75.85887  |
| week2  | 83.57863 | 134.99597 | 94.80242  | 114.82258 | 110.96976 | 90.26613  |
| week4  | 87.73992 | 94.80242  | 131.18952 | 139.53226 | 105.93750 | 100.58871 |
| week8  | 91.47581 | 114.82258 | 139.53226 | 179.35484 | 130.23387 | 117.48387 |
| week12 | 74.04133 | 110.96976 | 105.93750 | 130.23387 | 151.34577 | 139.04435 |
| week16 | 75.85887 | 90.26613  | 100.58871 | 117.48387 | 139.04435 | 189.08065 |

Table 2: Placebo group: estimated correlation matrix of pain from Cervical Dystonia at different time points

|        | week0     | week2     | week4     | week8     | week12    | week16    |
|--------|-----------|-----------|-----------|-----------|-----------|-----------|
| week0  | 1.0000000 | 0.7719708 | 0.8220792 | 0.7330198 | 0.6458848 | 0.5920370 |
| week2  | 0.7719708 | 1.0000000 | 0.7123763 | 0.7379218 | 0.7763528 | 0.5649902 |
| week4  | 0.8220792 | 0.7123763 | 1.0000000 | 0.9096378 | 0.7518220 | 0.6386694 |
| week8  | 0.7330198 | 0.7379218 | 0.9096378 | 1.0000000 | 0.7904643 | 0.6379669 |
| week12 | 0.6458848 | 0.7763528 | 0.7518220 | 0.7904643 | 1.0000000 | 0.8219486 |
| week16 | 0.5920370 | 0.5649902 | 0.6386694 | 0.6379669 | 0.8219486 | 1.0000000 |



Figure 1: Profile of mean pain by sex and treatment.



Figure 2: Profile of mean pain (top) and loess fits with mean points (bottom) for treatment and control groups.

#### Exploratory analysis

The data is balanced with all subjects being measured at the same time points. Exploration of the data revealed that there were several missing values (see Figure 3). In one case a subject had only one measurement at the start. This subject was removed from further analysis. For analysis of response profile and auc, the missing values were inputed using last observation forward method (LOCF).

Covariance and correlation matrices of the three groups were estimated (Tables 1-6). In both treatment groups variance tends to initially increase in time then decrease. For the placebo group there is no clear trend in the variance. It appears that following injection the variance increases then stabilized towards the end of the experiment. the correlation matrix reveals strong positive correlation between timepoints as is expected in longitudinal studies. In addition, the correlation declines in time.

Table 3: Treatment (5000u) group: estimated covariance matrix of pain from Cervical Dystonia at different time points

|        | week0    | week2    | week4    | week8    | week12   | week16   |
|--------|----------|----------|----------|----------|----------|----------|
| week0  | 115.2989 | 124.1075 | 143.6495 | 132.2516 | 119.9215 | 101.3538 |
| week2  | 124.1075 | 205.4473 | 201.8538 | 171.5387 | 146.6828 | 137.2237 |
| week4  | 143.6495 | 201.8538 | 238.4581 | 202.2925 | 176.4774 | 162.8935 |
| week8  | 132.2516 | 171.5387 | 202.2925 | 202.7892 | 172.4677 | 148.4860 |
| week12 | 119.9215 | 146.6828 | 176.4774 | 172.4677 | 158.6366 | 133.4247 |
| week16 | 101.3538 | 137.2237 | 162.8935 | 148.4860 | 133.4247 | 151.9785 |
|        |          |          |          |          |          |          |

Table 4: Treatment (5000u) group: estimated correlation matrix of pain from Cervical Dystonia at different time points

|       |           |           | 3         |           |           |           |
|-------|-----------|-----------|-----------|-----------|-----------|-----------|
|       | week0     | week2     | week4     | week8     | week12    | week16    |
| week0 | 1.0000000 | 0.8063717 | 0.8663340 | 0.8649000 | 0.8867124 | 0.7656604 |
| week2 | 0.8063717 | 1.0000000 | 0.9119701 | 0.8404066 | 0.8125074 | 0.7765827 |

Table 6: Treatment (10000U) group: estimated correlation matrix of pain from Cervical Dystonia at different time points

|        | week0     | week2     | week4     | week8     | week12    | week16    |
|--------|-----------|-----------|-----------|-----------|-----------|-----------|
| week0  | 1.0000000 | 0.5848859 | 0.6259442 | 0.8034396 | 0.7071619 | 0.6496213 |
| week2  | 0.5848859 | 1.0000000 | 0.7613707 | 0.7067162 | 0.5730499 | 0.4538820 |
| week4  | 0.6259442 | 0.7613707 | 1.0000000 | 0.8628464 | 0.6530755 | 0.5591347 |
| week8  | 0.8034396 | 0.7067162 | 0.8628464 | 1.0000000 | 0.7774048 | 0.6703704 |
| week12 | 0.7071619 | 0.5730499 | 0.6530755 | 0.7774048 | 1.0000000 | 0.8699948 |
| week16 | 0.6496213 | 0.4538820 | 0.5591347 | 0.6703704 | 0.8699948 | 1.0000000 |

#### Analysis based on summary statistics

#### Analysis of slope and intercept

The scatter plot of intercept and slope by treatment and sex shows no clear pattern. There is a slight tendency for the slopes of hte higher dose to be higher. In addition, there is no correlation between slope and intercept. Comparison of the mean slope in relation to treatment and sex indicates that there is no effect of both teatment and sex. MANOVA analysis on slope and intercept, also reveals that there is no effect of treatment and sex.

Table 7: Anova test of mean slope by treatment and sex

|           | Df  | Sum Sq     | Mean Sq   | F value   | Pr(>F)    |
|-----------|-----|------------|-----------|-----------|-----------|
| treat     | 2   | 0.9165637  | 0.4582818 | 1.1988160 | 0.3056832 |
| sex       | 1   | 0.2056032  | 0.2056032 | 0.5378358 | 0.4649810 |
| Residuals | 104 | 39.7569882 | 0.3822787 | NA        | NA        |

Table 8: MANOVA test of mean slope and intercept by treatment and sex

|             | Df  | Pillai    | approx F    | num Df | den Df | Pr(>F)    |
|-------------|-----|-----------|-------------|--------|--------|-----------|
| (T , , , )  |     |           |             |        |        |           |
| (Intercept) | 1   | 0.9353072 | 744.5699035 | 2      | 103    | 0.0000000 |
| treat       | 2   | 0.0249074 | 0.6557595   | 4      | 208    | 0.6234389 |
| sex         | 1   | 0.0185638 | 0.9741169   | 2      | 103    | 0.3809760 |
| Residuals   | 104 | NA        | NA          | NA     | NA     | NA        |

#### Area under the curve (auc) based analysis

Here we used the auc() function from the R package MESS. The auc() computes the area under the curve using linear or natural spline interpolation for two vectors. In the present case one vector is the weeks (x) and the corresponding y vector is twrstrs (pain) values. The function has linear interpolation and natural cubic polynomial spline options for specifiying the type of smoothing. The use of natural spline makes the auc estimate to be more accurate.

```
##
## Call:
## glm(formula = auc ~ treat + age + sex, data = auc)
```



Figure 3: Missing and incomplete observations (top) prior to LOCF (bottom) after LOCF.



Figure 4: Box plot of slope (top) by sex and treatment (bottom) by site and treatment.



Figure 5: Boxplot of of auc (top) by sex and treatment.

```
##
## Deviance Residuals:
##
       Min
                 10
                      Median
                                   30
                                           Max
  -483.28 -122.25
                       26.94
                               137.29
                                         458.41
##
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                                      7.285 6.71e-11 ***
## (Intercept) 654.8315
                            89.8933
## treat5000U
                 16.9194
                            45.0641
                                      0.375
                                               0.708
## treatPlacebo 19.5129
                            44.7174
                                      0.436
                                               0.663
                 -0.1981
                             1.5068
                                     -0.131
                                               0.896
                -36.5325
                            38.1444
                                     -0.958
## sexM
                                               0.340
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 35226.49)
##
##
       Null deviance: 3664835
                                       degrees of freedom
                               on 107
## Residual deviance: 3628328
                               on 103 degrees of freedom
## AIC: 1444.1
##
## Number of Fisher Scoring iterations: 2
```

#### Response profile analysis

Advantages of Response Profile Analysis

- 1. It allows arbitrary patterns in the mean response overtime and arbitrary patterns in the covariances of the responses, hence the method has robustness since the potential risks of bias due to misspecification of the model for means and covariances are minimal.
- 2. Response profile analysis can be applied to incomplete data resulting from missing response data.
- 3. Response profile analysis does not coerce the analyst to test certain hypothesis that are not scientifically meaningful unlike the "traditional profile analyses".
- 4. It permits alternative approaches for making adjustment for baseline response unlike the traditional profile analyses.
- 5. In response profile analyses, individuals can be group according to more than a single factor.

Disadvantages of Response Profile Analysis

- 1. It cannot be applied when vectors of repeated measures are obtained at different sequences of time, except by moving an observation to the nearest planned measurement time. Hence, the method is not well suited to handle mistimed measurements.
- 2. Response profile analyses ignores the time ordering of the repeated measures in a longitudinal study.
- 3. Response profile analyses produces overall test of effects, it may have low power to detect group differences in specific trends in the mean response overtime. Single degree of freedom tests of specific time trends are more powerful.
- 4. In analyses of response profiles, the estimated parameters grows rapidly with the number of measurement occasions.

```
FALSE 'data.frame': 648 obs. of 9 variables:

FALSE $ site : Factor w/ 9 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 1 ...

FALSE $ id : Factor w/ 19 levels " 1"," 2"," 3",..: 1 2 3 4 5 6 7 8 9 10 ...
```

```
FALSE $ treat : Factor w/ 3 levels "10000U","5000U",...: 2 1 2 3 1 1 2 3 2 3 ...

FALSE $ age : num 32 37 31 26 42 26 38 7 19 14 ...

FALSE $ sex : Factor w/ 2 levels "F","M": 1 1 1 1 1 1 2 2 1 2 ...

FALSE $ week : Factor w/ 6 levels "week0","week2",..: 1 1 1 1 1 1 1 1 1 1 1 1 ...

FALSE $ twstrs: num 32 60 44 53 53 49 42 34 41 27 ...

FALSE $ ID2 : int 1 2 3 4 5 6 7 8 9 10 ...

FALSE $ week2 : num 1 1 1 1 1 1 1 1 1 ...
```

Table 9: AIC: of different model with different covariance structure

| Covariance models       | AIC              |
|-------------------------|------------------|
| Unstructured covariance | 4440.75314771645 |
| Compund symmetry        | 4499.3331613689  |
| Autoregressive order 1  | 4462.39566358877 |
| Exponential             | 4462.39566358876 |

Table 10: Model coefficients

|                               | Value      | Std.Error | t-value    | p-value   |
|-------------------------------|------------|-----------|------------|-----------|
| (Intercept)                   | 44.9274715 | 2.141870  | 20.9758180 | 0.0000000 |
| treat10000U                   | 2.6944465  | 2.803591  | 0.9610697  | 0.3368864 |
| treat5000U                    | 2.9342488  | 2.812614  | 1.0432461  | 0.2972351 |
| as.factor(week2)2             | -3.5142857 | 1.259012  | -2.7913038 | 0.0054090 |
| as.factor(week2)3             | -4.4285714 | 1.689835  | -2.6207129 | 0.0089866 |
| as.factor(week2)4             | -2.3714286 | 1.968187  | -1.2048798 | 0.2287028 |
| as.factor(week2)5             | -1.4571429 | 2.165603  | -0.6728577 | 0.5012849 |
| as.factor(week2)6             | -0.3142857 | 2.311688  | -0.1359550 | 0.8919003 |
| $\operatorname{sexM}$         | -2.8901073 | 1.928996  | -1.4982442 | 0.1345715 |
| treat10000U:as.factor(week2)2 | -6.8370656 | 1.756287  | -3.8929103 | 0.0001096 |
| treat5000U:as.factor(week2)2  | -5.5968254 | 1.768104  | -3.1654384 | 0.0016233 |
| treat10000U:as.factor(week2)3 | -7.2741313 | 2.357271  | -3.0858268 | 0.0021190 |
| treat5000U:as.factor(week2)3  | -4.8492063 | 2.373133  | -2.0433772 | 0.0414313 |
| treat10000U:as.factor(week2)4 | -6.0339768 | 2.745565  | -2.1977178 | 0.0283330 |
| treat5000U:as.factor(week2)4  | -4.6563492 | 2.764039  | -1.6846174 | 0.0925585 |
| treat10000U:as.factor(week2)5 | -2.6509653 | 3.020955  | -0.8775255 | 0.3805363 |
| treat5000U:as.factor(week2)5  | -2.0428571 | 3.041283  | -0.6717090 | 0.5020156 |
| treat10000U:as.factor(week2)6 | 1.6386100  | 3.224740  | 0.5081371  | 0.6115353 |
| treat5000U:as.factor(week2)6  | -0.5746032 | 3.246439  | -0.1769949 | 0.8595694 |

## Model diagnostics







#### Mixed effects model

Our study did not analyze linear mixed effect model for the data because profile plots shows that the model is highly nonlinear. Hence we resort to semi-parametric regression which assumes that the mean function depends on parameters and nonparametric functions through a known nonlinear functional. Semi-parametric nonlinear regression models are natural extensions of both parametric and nonparametric regression models. It is sometimes difficult, if not impossible, to obtain a specific functional form. Semi-parametric regression methods such as smoothing splines (Wahba, 1990) provide flexible alternatives in these situations.

#### Semi-paramteric regression

We fited penalized splines to the twstrs (pain) intensity with 4 knots located at the measurement weeks (2, 4, 8,12, 16). The fitted model is:

$$Y_{ij} = \beta_1 + \beta_2 week_{ij} + \sum_{m=1}^{4} a_m (t_{ij} - k_m)_+ + b_{1i} + b_{2i} + \epsilon_{ij}$$

```
## The following object is masked _by_ .GlobalEnv:
##
##
       ID1
  Linear mixed-effects model fit by REML
##
##
    Data: NULL
##
          AIC
                    BIC
                           logLik
##
     4422.671 4475.885 -2199.335
##
## Random effects:
    Formula: ~-1 + df1 + df2 + df3 + df4 | Const
```

```
Structure: Multiple of an Identity
##
                df1
                        df2
                                 df3
                                          df4
## StdDev: 1.070919 1.070919 1.070919
##
##
  Formula: ~week | ID1 %in% Const
   Structure: General positive-definite
##
              StdDev
                         Corr
## (Intercept) 10.5791610 (Intr)
## week
               0.3635298 -0.079
## Residual
               5.8252965
## Fixed effects: twstrs ~ week + treat + sex + treat * week
                       Value Std.Error DF t-value p-value
## (Intercept)
                    45.03142 1.9717587 519 22.838198 0.0000
                    -3.75489 0.4005207 519 -9.375015 0.0000
## week
## treat5000U
                     1.93099 2.6955543 104 0.716362
                                                      0.4754
## treatPlacebo
                     2.78002 2.6761601 104 1.038810
                                                      0.3013
## sexM
                    -2.59555 2.2159344 104 -1.171311
## week:treat5000U
                    -0.19793 0.1321569 519 -1.497663
                                                      0.1348
## week:treatPlacebo -0.31252 0.1334134 519 -2.342474 0.0195
## Correlation:
##
                     (Intr) week
                                  t5000U trtPlc sexM
                                                       w:5000
                    -0.234
## week
## treat5000U
                    -0.587 0.040
                    -0.613 0.041 0.502
## treatPlacebo
                    -0.274 0.007 -0.210 -0.129
## week:treat5000U
                     0.166 -0.166 -0.243 -0.120 -0.005
## week:treatPlacebo 0.164 -0.165 -0.118 -0.247 -0.005 0.493
## Standardized Within-Group Residuals:
##
                       Q1
                                               QЗ
## -4.77194502 -0.53441505 -0.02765926 0.54182788 2.97457249
##
## Number of Observations: 630
## Number of Groups:
           Const ID1 %in% Const
##
##
                1
                            108
```

Table 11: Estimated coefficients and their standard errors

|                    | Value      | Std.Error | DF  | t-value    | p-value   |
|--------------------|------------|-----------|-----|------------|-----------|
| (Intercept)        | 45.0314165 | 1.9717587 | 519 | 22.8381980 | 0.0000000 |
| week               | -3.7548873 | 0.4005207 | 519 | -9.3750153 | 0.0000000 |
| treat5000U         | 1.9309921  | 2.6955543 | 104 | 0.7163618  | 0.4753735 |
| treatPlacebo       | 2.7800213  | 2.6761601 | 104 | 1.0388098  | 0.3013024 |
| sexM               | -2.5955482 | 2.2159344 | 104 | -1.1713109 | 0.2441504 |
| week:treat $5000U$ | -0.1979265 | 0.1321569 | 519 | -1.4976633 | 0.1348287 |
| week:treatPlacebo  | -0.3125174 | 0.1334134 | 519 | -2.3424736 | 0.0195333 |

## model diagnostics













### Conclusion