副

減

৽

+

 \mathbb{E}

徙

盐

倒

昆明理工大学试卷(A)

考试科目: 大学物理 I 考试日期: 2014年6月23日 命题教师: 命题组

题号	选择题	填空题	计算题				总分
			1	2	3	4	心分
评分							
阅卷人							

物理基本常量:

真空的磁导率: $\mu_0 = 4\pi \times 10^{-7} \text{H/m}$; 真空的电容率 $\varepsilon_0 = 8.85 \times 10^{-12} \text{F/m}$; 电子静止质量: $m_e = 9.11 \times 10^{-31} \text{kg}$; $1 \text{nm} = 10^{-9} \text{m}$; $1 \text{eV} = 1.602 \times 10^{-19} \text{ J}$; 基本电荷: $e=1.602\times10^{-19}$ C: 普朗克常数: $h=6.63\times10^{-34}$ J·s 摩尔气体常数 R=8.31 J/mol·K

- 一、选择题 (每题3分,共33分) 答案请填在 [1 中
- 1、一小球沿斜面向上运动, 其运动方程为 $S = 5 + 4t t^2(SI)$, 则小球运动到 最高点的时刻是 []。
- (A) t=4 s (B) t=2 s (C) t=8 s (D) t=5 s

- 2、某物体的运动规律为 $\frac{dv}{dt} = -kv^2t$, 式中的 k 为大于零的常数。当 t=0 时,

初速为 v_0 ,则速度 v 与时间 t 的函数关系是 [

- (A) $v = \frac{1}{2}kt^2 + v_0$ (B) $v = -\frac{1}{2}kt^2 + v_0$
- (C) $\frac{1}{v} = \frac{1}{2}kt^2 + \frac{1}{v_0}$ (D) $\frac{1}{v} = -\frac{1}{2}kt^2 + \frac{1}{v_0}$
- 3、如图所示, P、Q、R和S是附于刚性 轻质细杆上的质量均为 2m 的四个质点, 且质点间的间距 PQ=QR=RS= 1,则系统 对 oo' 轴的转动惯量为 [

- (A) $6ml^2$
- (B) $12ml^2$
- (C) $24ml^2$ (D) $48ml^2$

第1页共6页

4、已知地球的质量为 m,太阳的质量为 M,地心与日心的距离为 R,引力常数为 G,则地球绕太阳作圆周运动的轨道角动量为:[(A) $m\sqrt{GMR}$ (B) $\sqrt{GMm/R}$ (C) $Mm\sqrt{G/R}$ (D) $\sqrt{GMm/2R}$ 5、一字航员要到离地球为 5 光年的星球去旅行,如果字航员希望把这路程缩短为 3 光年,则他所乘的火箭相对于地球的速度应是(c 为真空中的光速)[] (A) c/2 (B) 3c/5 (C) 4c/5(D) 9c/106、如果一个电子的运动速度达到 v=0.99c,则它的动能应该为(已知电子的静止能 量为 0.51MeV,c 为真空中的光速) [1 (A) 3.5MeV (B) 4.0MeV (C) 3.1MeV (D) 2.5MeV 7、点电荷Q被曲面S所包围,从无穷远处引入另一点电荷q至曲面外一点,如图 所示,则引入前后: [] (A) 曲面 S 上的电通量不变,曲面上各点场强不变; (B) 曲面S上的电通量变化,曲面上各点场强不变; (C) 曲面 S 上的电通量变化,曲面上各点场强变化; (D) 曲面S上的电通量不变,曲面上各点场强变化。

8、一电量为-q 的点电荷位于圆心 O 处,A、B、C、D 为同一圆周上的四点,如 图所示,现将一试验电荷从 A 点分别移动到 B、C、D 各点,则 [

- (A) 从 A 到 B, 电场力作功最大:
- (B) 从 A 到各点, 电场力作功相等;
- (C) 从A到D, 电场力作功最大;
- (D) 从A到C, 电场力作功最大。

9、无限长直导线在P点处弯成半径为R的圆,当通以电流I时,在圆心O点的磁 感应强度 B 的大小等于: [1

第2页共6页

卟 佻

奸名

专业班级

倒

财

뺓

K

(C)
$$\frac{\mu_0 I}{2R} (1 - \frac{1}{\pi})$$

(A)
$$\frac{\mu_0 I}{2\pi R}$$
 (B) $\frac{\mu_0 I}{4R}$ (C) $\frac{\mu_0 I}{2R} (1 - \frac{1}{\pi})$ (D) $\frac{\mu_0 I}{4R} (1 + \frac{1}{\pi})$

10、磁介质有三种,用相对磁导率 μ_r 表征它们各自的特性时,有: [

- (A) 顺磁质 $\mu_r > 0$, 抗磁质 $\mu_r < 0$, 铁磁质 $\mu_r >> 1$
- (B) 顺磁质 $\mu_r > 1$,抗磁质 $\mu_r = 1$,铁磁质 $\mu_r >> 1$
- (C) 顺磁质 $\mu_r > 1$, 抗磁质 $\mu_r < 1$, 铁磁质 $\mu_r >> 1$
- (D) 顺磁质 $\mu_r > 0$, 抗磁质 $\mu_r < 0$, 铁磁质 $\mu_r > 1$

11、自感为 0.25H 的线圈中, 当电流在 (1/16)s 内由 2A 均匀减小到零时, 线圈中 自感电动势的大小为:[

- (A) $7.8 \times 10^{-3} \text{ V}$

- (B) 2.0V (C) 8.0V (D) $3.1\times10^{-2}V$

二、填空题(共32分)

- 1、质点沿半径为R的圆周运动,运动方程为 $\theta = 2t^2 + 3$ (SI),则t时刻质点的角 加速度 α =
- 2、火车以10m/s的速率行驶,相对于地面竖直下落的雨滴在列车窗子上形成偏离 竖直方向 30^0 的雨迹,则雨滴相对于地面的速率是 (m/s) .
- 3、一水平的匀质圆盘,可绕通过盘心的竖直光滑固定轴自由转动。圆盘质量为M, 半径为R,对轴的转动惯量为 $\frac{1}{2}MR^2$,当圆盘以角速度 ω_0 转动时,有一质量为m的子弹沿盘的直径方向射入并嵌入在盘的边缘上。子弹射入后, 圆盘的角速度

第3页共6页

4、	爱因斯坦的两条基本假设是		
	和	o	
5、	观察者甲以0.8c的速度相对于静止的观察者乙运动,若甲携带一质量	为1kg	的物
	体,则(1)甲测得此物体的总能量为(J);	(2)	乙狈
	得此物体的总能量为(J)_。		
6,	两个平行的"无限大"均匀带电平面,其电荷面密度分别为 $+\sigma$ 和 $+2\sigma$,	如图原	沂示,
	则A、B、C三个区域的电场 +σ +2c	σ	
	强度分别为:(设方向向右为正)		
	$E_{\rm A} =$		
	$E_{\rm B}$ =	C	
	$E_{\rm C}=$		
7、	静电场的环路定理的数学表示式为 $\oint_L ar{E} \cdot dar{l} = 0$,该定理表明,静电	场是	
8、	一空气电容器充电后切断电源,电容器储能为W ₀ ,若此时在极板间:	灌入相	对介
	电常数(相对电容率)为 ε_{r} 的煤油,则电容器储能变为 W_{0} 的	1	立 。
9、	如图所示,矩形线框高h,与通有稳恒电	dr	
	流 I 的无限长直导线共面,两者间隔 I,	→ ´	
	如果矩形线框的宽度 dr 很窄,因而线框 I		h
	内各点的磁感强度可以视为相同,则通		
	过线框的磁通量 $d\Phi_{\mathrm{m}}$ =。	>ı ∨	
10	. 平行板电容器的电容 C 为20.0 μ F,两板上的电压变化率为 dU/dt =1.50	0×10 ⁵ V	V_{S}^{-1} ,
	则该平行板电容器中的位移电流为(A)_。		
三、	. 计算题 (共 35 分)		
1,	$(10分)$ 在半径分别为 R_1 、 R_2 的阶梯型滑轮 R_2)	
上月	反向绕有两根轻绳,各悬挂质量分别为 <i>m</i> ₁ 、 <i>m</i> ₂	1	
的华	物体,若滑轮与轴间的摩擦忽略不计,滑轮的		
转	动惯量为J,求滑轮的角加速度 α 及各绳中的张 F_{T2}	F_{T1}	
力	$F_{\text{T1}}, F_{\text{T2}}$ m_2	n_1	

第4页共6页

课序号考试座位号	谷閥	
任课教师姓名	빤	
华	内 大	2 、(10 分) 一球形电容器由两个同心导体球壳组成,内球壳半径为 R_1 ,外球壳半径为 R_2 ,中间充满电容率(相对介电常数)为 ε_r 的各向同性均匀电介质,如果内、外球壳分别带有等量异号电荷+ Q 和- Q ,试求: (1) 半径 r 处($R_1 < r < R_2$)电位移矢量的大小 D ; (2) 半径 r 处($R_1 < r < R_2$)电场强度的大小 E ; (3) 两极板间电势差的大小 U ; (4) 球形电容器的电容值 C
群	尜	
专业班级	本	
学院	[後]	第5页共6页

- 3、(10分)如图所示,一长直导线通有稳恒电流*I*,边上有一U形导体线框与长直导线共面,框上有一金属细杆垂直于长直导线,并沿平行于长直导线的方向以恒定速率v滑动,如果长直导线到U形导体线框的距离为*a*,导体线框的宽度为*b*,
 - (1) 试判断U形导体线框中感应电流I_i的方向;
 - (2) 计算U形导体线框中感应电动势ε_i的大小。

- 4、(5 分) 观测者甲和乙分别静止于两个惯性参照系 K 和 K'中,甲测得在同一地 点发生的两个事件的时间间隔为 4s ,而乙测得这两个事件的时间间隔为 5s 。求:
- (1) K'相对于 K 的运动速度。
- (2) 乙测得这两个事件发生地点的距离。