Fig. 1A

Fig. 1B

Reduction of Stable \(\beta\)-catenin Transactivation by Stable Expression of RXR α in 293 Cells

Fig. 1C

Inactivation of Endogenous \(\beta\)-Catenin in Gene Transactivation by AGN194204 via RXR α in Colon Cancer Cells

Fig. 2A

Protein-specific Reduction of β -Catenin by AGN194204 via RXRa

Fig. 2B

Time Course of Degradation of β -Catenin & RXR α by AGN194204 in Stable Cell Line RBC

Fig. 2C

RXR α Is Stoichiometrically Required for Reduction of β -Catenin

Fig 2D

RXR α -dependent Reduction of β -Catenin by AGN194204 -Stoichiometric Requirement for $RXR\alpha$

Fig. 2E

AGN194204 Ubiquitously Reduces Wild Type & Mutant β-Catenins

Fig. 2F

AGN194204 Does Not Affect the β -Catenin mRNA Level in Stable Cell Line RBC

Fig. 3

Time Course of Degradation of $\Delta N\beta\text{-}Catenin$ by AGN194204 in Stable Cell Line RmBC

High Potency of AGN194204 in Reduction of RXR $\!\alpha$ and $\beta\text{-}$ Catenin Proteins & Its Antagonism by AGN195393 Fig. 4A

Fig. 4B

Ligand-specificity in Reduction of RXR α and β -Catenin **Proteins**

 $10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-6} \ 10^{-6} \ 10^{-6}$

AGN194204-induced Reduction of RXR γ & β -Catenin Proteins

Fig. 4D

RAR α but not β and γ Minimally Reduces β -Catenin Protein

Fig. 4E

RXRa & Its Ligand Reduce Both RAR and \beta-Catenin Proteins

Fig. 5A

RXRa Deletion Mutants

Fig. 5B

Integrity of RXR α Is Required for AGN194204-induced Reduction of RXR\alpha & \beta-Catenin Proteins

Fig. 5C

Ability of RXRa Mutants in Transactivation

% WYXIWYT BESLONZE

Interaction of RXR α with β -Catenin

IP: M2 / IB: V5-HRP

IB: Total Lysate

