Measuring IPv6 Performance

Vaibhav Bajpai Jacobs University, Bremen

Munich Internet Research Retreat, Raitenhaslach, Germany

Joint Work with

Prof. Dr. Jürgen Schönwälder Jacobs University Bremen, Germany

Steffie Jacob Eravuchira | Sam Crawford SamKnows Limited, London, UK

Saba Ahsan Aalto University, Finland

Prof. Dr. Jörg Ott TU Munich, Germa

Overview

CP connect times

Who connects fa Preference

YouTube

Preference

Iappy Eyeballs

reference

owering HE Timer

Veb Similarity

uccess Rate Causality Analysi

keway

This research would not have been possible without these amazing people!

Overviev

TCP connect time

Who connec

VouTube

Latency

Preference

Happy Eyeball:

Slowness

Lowering HE Timer

veo Similarity

Causality Analysis

akeway

Overview

Overview

TCP connect times

Who connects

You Tube

Latency

Preference

appy Eyeballs

Preference

owness owering HE Timer

ah Cimilarita

uccess Rate

kewav

keway

Overview | Motivation

- Literature has *largely* focussed on measuring IPv6 adoption [5, 6, 7] ('10 -'14).
 - Addressing
 - Naming
 - ► Routing
 - Reachability
- ▶ Very little work [8] on measuring performance of service delivery over IPv6.
- Largely due to lack of available content over IPv6.
- ▶ A number of *significant* events occured during the span of this dissertation.
 - ► IANA IPv4 Address Exhaustion [9]
 - ► World IPv6 Day '11 [10]
 - ▶ World IPv6 Launch Day '12 [11]
 - ► RIR IPv4 Address Exhaustion [9]

APNIC	Apr'11
RIPE	Sep'12
LACNIC	Jun'14
ARIN	Sep'15

Overview

TCP connect time

Who connects faste

YouTube

Preference

Iappy Eyeballs

Slowness

Lowering HE Time

eb Similarity

Success Rate Causality Analysis

akeway

Overview | Motivation

- ▶ Large IPv6 broadband rollouts¹ [4].
- ▶ Global IPv6 adoption [12].

09/2012 0.85% 11/2016 12.46%

Belgium	47.38%
United States	30.12%
Switzerland	26.95%
Germany	26.61%

- ► This study *closes* the gap.
- ▶ It measures IPv6 performance of *operational* dual-stacked content delivery services.

Overview

TCP connect time
Trends
Who connects faster?

Latency

Preference

Preference Slowness

Veb Similarity

Success Rate Causality Anal

akeway

¹Comcast, Deutsche Telekom AG, AT&T, Verizon Wireless, T-Mobile USA

Overview | Measurement Trial

. CO.	PA MA CT FIN PB PE AL MT TO BA SE
Pagus Nem Australia Nem Zealan	ola Zambia Mozambique la Zimbabwe Madagascar South Africa

	NETWORK TYPE	#
E	RESIDENTIAL NREN / RESEARCH	55 11
ı	BUSINESS / DATACENTER	09
ı	OPERATOR LAB	04
	IXP	01

RIR	#
RIPE ARIN	42 29
APNIC	07
AFRINIC LACNIC	01 01

Overview

TCP connect times

Who connects faster

itency

Happy Eyeballs

Preference Slowness

wering HE Timer

eb Similarity

Causality Analysis

akeway

D/A

We measure from 80 dual-stacked SamKnows [13] probes.

Overview | TCP Connect Times

TCP connect times

^{*} entries are papers currently under review.

TCP Connect Times | Trends (2013 - 2016)

$$\Delta s_a(u) = t_4(u) - t_6(u)$$

where t(u) is the time taken to establish TCP connection to website u.

► TCP connect times to popular websites over IPv6 have *considerably* improved over time.

Trends

ALEXA top 10K websites (as of May 2016):

- ▶ 18% are *faster* over IPv6.
- ▶ 91% of the rest are at most 1 ms slower.
- ▶ 3% are at least 10 ms slower.
- ▶ 1% are at least 100 ms slower.

$$\Delta s_a(u) = t_4(u) - t_6(u)$$

Overview

TCP connect times

Who connects faster?

YouTube

atency Preference

Preference Slowness

owering HE Timer

Veb Similarity

Causality Analysis

O/A

TCP Connect Times | IPv6 Preference

- A 300 ms HE timer value leaves 2% chance for IPv4.
- 99% of top 10K ALEXA prefer IPv6 98% of time.

Preference

Overview | Measuring YouTube

Overview

TCP connect

Who connects fa

YouTube

Latency

Jappy Evaballe

Preference

owering HE Timer

Similarity

iccess Rate

usality Analysi

keway

^{*} entries are papers currently under review.

YouTube | Latency

- ► TCP connect times
 - < 1 ms slower over IPv6</p>
 - ► Higher towards webpages
- ▶ Prebuffering durations
 - > 25 ms slower over IPv6
- Startup delay
 - > 100 ms slower over IPv6

$$\Delta t(y) = tc_4(y) - tc_6(y)$$

 $\Delta p(y) = pd_4(y) - pd_6(y)$
 $\Delta s(y) = sd_4(y) - sd_6(y)$

Overview

TCP connect tin

Who connects

YouTube

Latency Preference

Happy Eyeballs

Preference Slowness

Lowering HE Timer

Web Similarity

Success Rate Causality Ana

Takeway

Q/A

Latency is consistently *higher* over IPv6.

YouTube | IPv6 Preference

Media streams are preferred over IPv6 more than 97% of the time.

Overviev

TCP connect time

Who conne

YouTube

Preference

. . .

Happy Eyeball

Preference

Lowering HE Times

eb Similarity

Success Rate

.

akeway

Overview | Measuring Effects of Happy Eyeballs

TCP connect

Who connects

Latency

Preference

Happy Eyeballs

Preference Slowness

owering HE Timer

b Similarity

ausality Analysis

keway

^{*} entries are papers currently under review.

Happy Eyeballs | Preference

▶ Only \sim 1% of samples above HE timer value > 300 ms

Overviev

TCP connect time

Who conne Preference

YouTube

Preference

Happy Eyeball

Preference

Lowering HE Time

Lowering HE Times

eb Similarity

ausality Analys

akeway

akeway

Happy Eyeballs | Slowness

Samples where HE prefers IPv6 —

- ► HE prefers slower IPv6 connections 90% of the time.
- Absolute difference is not that far apart from IPv4
 - ▶ 30% at least 1 ms slower.
 - \triangleright 7% at least 10 ms slower.

$$\Delta s_a(u) = t_4(u) - t_6(u)$$

$$\Delta s_r(u) = \frac{t_4(u) - t_6(u)}{t_4(u)}$$

Can a lower HE timer provide same preference over IPv6 but not penalise IPv4 when it's faster?

Overview

TCP connect ti

Who connect

ouTube

Preference

Happy Eyeball

Slowness

owering HE Time

eb Similarity

Success Rate Causality Analysis

akeway

Happy Eyeballs | Lowering HE Timer

- ► We control two² parameters and lower the HE timer value.
- Each data point is the 1th percentile preference towards ALEXA 10K websites.

- Lowering to 150 ms retains preference levels over IPv6.
- ► We get margin benefit of 10% (18.9K) because timer cuts early.

TCP connect time

Preference

......

Preference

reference

lowness

Lowering HE Timer

Web Similarity

Success Rate

akeway

2/A

Overview

²99% ALEXA top 10K websites prefer IPv6 connections 98.6% of the time

Overview | Measuring Web Similarity

TCP connect ti

Who connects far

YouTube

Latency Preference

Iappy Eveballs

Preference

Siowness Lowering HE Timer

Web Similarity

cess Rate

isanty Analysis

keway

^{*} entries are papers currently under review.

Web Similarity | Success Rate

Can we fetch all webpage elements over IPv6?

- ▶ 27% of websites show some rate of failure over IPv6.
- > 9% exhibit more than 50% failures over IPv6.
- ▶ 6% show complete failure (0% success) over IPv6.

#	Webpage	Success Rat		te (%) W6LD	
	webpage	IPv6(↓)	IPv4	WOLD	
01	www.bing.com	0	100	/	
02	www.detik.com	0	100	<i>\ \ \ \</i>	
03	www.engadget.com	0	100	/	
04	www.nifty.com	0	100		
05	www.qq.com	0	100		
06	www.sakura.ne.jp	0	100		
07	www.flipkart.com	09	99	/	
80	www.folha.uol.com.br	13	100		
09	www.aol.com	48	100	/	
10	www.comcast.net	52	100	/	
11	www.yahoo.com	72	100	/	
12	www.mozilla.org	84	100	\ \ \ \	
13	www.orange.fr	86	100	/	
14	www.seznam.cz	89	100	/	
15	www.mobile.de	90	100	/	
16	www.wikimedia.org	90	100		
17	www.t-online.de	93	100	/	
18	www.free.fr	95	100		
19	www.usps.com	95	100		
20	www.vk.com	95	100	/	
21	www.wikipedia.org	95	100	/	
22	www.wiktionary.org	95	100		
23	www.elmundo.es	96	100	/	
24	www.uol.com.br	96	100	<i>y y y</i>	
25	www.marca.com	97	100	/	
26	www.terra.com.br	98	100	/	
27	www.youm7.com	99	100		

Overview

CD -----

Who connects

ouTube -

reference

ppy Eyeballs

Preference Slowness

Lowering HE Timer

Success Rate

Causality Analysis

Takewa

Web Similarity | Success Rate

ALEXA top 100 dual-stacked websites:

► 6% show complete failure over IPv6.

	Webpage	Success R	ate (%)	W6LD
#	webpage	IPv6(↓)	IPv4	WOLD
01	www.bing.com	0	100	1
02	www.detik.com	0	100	/
03	www.engadget.com	0	100	/
04	www.nifty.com	0	100	
05	www.qq.com	0	100	
06	www.sakura.ne.jp	0	100	

Metrics that measure IPv6 adoption should account for *changes* in IPv6-readiness.

Overviev

TCP connect time

Who connects Preference

ouTube

Preference

Happy Eyeballs

Preference

Slowness Lowering HE Timer

Web Similarity

Causality Analysis

Гакеway

Where in the network does the failure occur?

- CURLE_COULDNT_RESOLVE_HOST is the major contributor to failure rates.
- ► AAAA entries missing for these webpage elements in the DNS.

Overview

TCP connect time

Who connects faste Preference

rouTube

Preference

lappy Eyeballs

reference

Lowering HE Timer

Veb Similarity

Causality Analysis

ausanty Analysis

akewa

Which type of objects fail more than others?

▶ image/*, */javascript, */json and */css content contribute to the majority of the failure over IPv6.

Overview

TCP connect tim

.....

Latency

reference

appy Eyebans

Slowness

Lowering HE Timer

eb Similarity

Causality Analysis

Causality Analysis

O/A

Where do the failing objects originate from?

▶ Both same and cross origin sources contribute to the failure of webpage elements over IPv6.

Overview

TCP connect times

Preference

YouTube

Preference

appy Eyeballs

reference

Lowering HE Timer

eb Similarity

ccess Rate

Causality Analysis

O/A

What is failure contribution of same-origin sources?

12% of websites have more than 50% webpage elements that belong to the same origin source and fail over IPv6.

#	Webpage	Same Origin (↓)
01	www.bing.com	100%
02	www.detik.com	100%
03	www.engadget.com	100%
04	www.nifty.com	100%
05	www.usps.com	100%
06	www.qq.com	100%
07	www.sakura.ne.jp	100%
80	www.comcast.net	85%
09	www.yahoo.com	83%
10	www.terra.com.br	74%
11	www.marca.com	70%
12	www.wikimedia.org	65%
13	www.elmundo.es	37%
14	www.vk.com	31%
15	www.t-online.de	30%
16	www.youm7.com	24%
17	www.wiktionary.org	22%
18	www.wikipedia.org	22%
19	www.free.fr	13%
20	www.folha.uol.com.br	12%
21	www.mozilla.org	7%
22	www.uol.com.br	7%
23	www.mobile.de	7%
24	www.aol.com	5%
25	www.orange.fr	5%
26	www.seznam.cz	4%
27	www.flipkart.com	1%

Overview

CP connect

Who connects fas

YouTube

Preference

lappy Eyeba

lowness

eb Similarity

Causality Analysis

Takeway

What is failure contribution of cross-origin sources?

Some of the cross-origin sources contribute to the failure of multiple websites.

Overview

TCP connect time

Preference

YouTube

Preference

appy Eveballs

eference

Lowering HE Timer

1 01 11

o Sillillarity

Causality Analysis

akeway

Takeway

- ▶ ISPs should ensure CDN caches are dual-stacked form the very outset.
- ► ISPs should put latency as a first-class citizen.
- Measurements should be used to inform protocol-engineering.
- ▶ Metrics that measure IPv6 adoption should account for changes in IPv6-readiness.
- Limiting to root webpage can lead to overestimation of IPv6 adoption numbers.
- Let's deem a website IPv6-ready when there is no partial failure over IPv6.

Overview

TCP connect times

Who connects fas

YouTube

Profesence

Preference

Iappy Eyeballs

Preference

Lowering HE Time

eb Similarity

Success Rate Causality Analysis

Takeway

O/A

Impact

Measuring IPv6 Performance

Measuring TCP Connect Times

► Measuring YouTube Performance

Measuring Effects of Happy Eyeballs

► Measuring Web Similarity

[NETWORKING '15]

[PAM '15]

[ANRW '16]

[CNSM '16]

Relevance:

- ▶ Network operators in *early* stages of IPv6 deployment.
- Content providers to see how their *service delivery* over IPv6 compares to IPv4.
- Drive related standards work in the IETE

O/A

www.vaibhavbajpai.com

v.bajpai@jacobs-university.de | @bajpaivaibhav

References

- S. Ahsan, V. Bajpai, J. Ott, and J. Schönwälder, "Measuring YouTube from Dual-Stacked Hosts," in Passive and Active Measurement - 16th International Conference, PAM 2015, New York, NY, USA, March 19-20, 2015, Proceedings, 2015, pp. 249–261. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-15509-8_19
- [2] V. Bajpai and J. Schönwälder, "Measuring the effects of happy eyeballs," in Proceedings of the 2016 Applied Networking Research Workshop, ser. ANRW 16. New York, NY, USA: ACM, 2016, pp. 38–44. [Online]. Available: http://doi.acm.org/10.1145/2959424.2959429
- [3] S. J. Eravuchira, V. Bajpai, J. Schönwälder, and S. Crawford, "Measuring web similarity from dual-stacked hosts," in 12th International Conference on Network and Service Management, CNSM 2016, 2016.
- [4] V. Bajpai and J. Schönwälder, "IPv4 versus IPv6 who connects faster?" in Proceedings of the 14th IFIP Networking Conference, Networking 2015, Toulouse, France, 20-22 May, 2015, 2015, pp. 1–9. [Online]. Available: http://dx.doi.org/10.1109/IFIPNetworking.2015.7145323
- [5] L. Colitti, S. H. Gunderson, E. Kline, and T. Refice, "Evaluating IPv6 Adoption in the Internet," ser. PAM '10, 2010, pp. 141–150. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-12334-4_15
- 6] A. Dhamdhere, M. Luckie, B. Huffaker, k. claffy, A. Elmokashfi, and E. Aben, "Measuring the Deployment of IPv6: Topology, Routing and Performance," in *Proceedings of the 2012 ACM Conference on Internet*

Measurement Conference, ser. IMC '12. New York, NY, USA: ACM, 2012, pp. 537–550. [Online]. Available: http://doi.acm.org/10.1145/2398776.2398832

- J. Czyz, M. Allman, J. Zhang, S. Iekel-Johnson, E. Osterweil, and M. Bailey, "Measuring IPv6 adoption," ser. ACM SIGCOMM '14, pp. 87–98. [Online]. Available: http://doi.acm.org/10.1145/2619239.2626295
- [8] M. Nikkhah, R. Guérin, Y. Lee, and R. Woundy, "Assessing IPv6 Through Web Access a Measurement Study and Its Findings," in Proceedings of the Seventh COnference on Emerging Networking EXperiments and Technologies, ser. CoNEXT '11. New York, NY, USA: ACM, 2011, pp. 26:1–26:12. [Online]. Available: http://doi.acm.org/10.1145/2079296.2079322
- 9] P. Richter, M. Allman, R. Bush, and V. Paxson, "A Primer on IPv4 Scarcity," Computer Communication Review, vol. 45, no. 2, pp. 21–31, 2015. [Online]. Available: http://doi.acm.org/10.1145/2766330.2766335
- [10] Internet Society, "World IPv6 Day 2011," http://worldipv6day.org, [Online; accessed 25-January-2016].
- [11] The Internet Society, "World IPv6 Launch," http://www.worldipv6launch.org, [Online; accessed 11-January-2016].

Overview

'CP connect tim

Who connects fa

YouTube

atency

appy Eyeballs

Preference Slowness

Vols Cinnilanita

Success Rate Causality Analysis

keway

[12] "Google IPv6 Adoption Statistics," http://www.google.com/intl/en/ipv6/statistics.html, [Online; accessed 11-]anuary-2016].

[13] V. Bajpai and J. Schönwälder, "A survey on internet performance measurement platforms and related standardization efforts," *IEEE Communications Surveys and Tutorials*, vol. 17, no. 3, pp. 1313–1341, 2015. [Online]. Available: http://dx.doi.org/10.1109/COMST.2015.2418435

Overview

TCP connect t

Trends

Who connects faster

YouTube

Latency

Iappy Eyeballs

Preterence

Lowering HE Time

Web Similarity

Causality Analys

.

O/A