Tópicos de Matemática Discreta

Exercícios — 2011/2012 — 2011/2011/2012 — 2011/2012 — 2011/2012 — 2011/2012 — 2011/2012 — 2011/2012 — 2011/2012 —

Grafos

- 1. Considere o grafo $G = (V, A, \varepsilon)$ definido por $V = \{a, b, c, d, e, f, g, h\}$, $A = \{ab, ac, ae, bd, bg, cd, cf, df, dg, ef, gh\}$ e $\varepsilon(ab) = \{a, b\}$, $\varepsilon(ac) = \{a, c\}$, $\varepsilon(ae) = \{a, e\}$, $\varepsilon(bd) = \{b, d\}$, $\varepsilon(bg) = \{b, g\}$, $\varepsilon(cd) = \{c, d\}$, $\varepsilon(cf) = \{c, f\}$, $\varepsilon(df) = \{d, f\}$, $\varepsilon(dg) = \{d, g\}$, $\varepsilon(ef) = \{e, f\}$, $\varepsilon(gh) = \{g, h\}$.
 - (a) Represente G graficamente.
 - (b) Determine um caminho em G com 6 arestas.
 - (c) Indique um caminho de a a h que não seja simples.
 - (d) Indique um caminho de a a h que seja simples.
 - (e) Indique um caminho fechado em G que não seja ciclo.
 - (f) Indique um ciclo de G com 7 arestas.
- 2. Dê exemplo, caso exista, de
 - (a) um grafo sem vértices de grau ímpar;
 - (b) um grafo sem vértices de grau par;
 - (c) um grafo com exactamente um vértice de grau ímpar;
 - (d) um grafo com exactamente um vértice de grau par;
 - (e) um grafo com exactamente dois vértices de grau ímpar;
 - (f) um grafo com exactamente dois vértices de grau par.
- 3. Indique, ou justifique que não existe, um grafo simples cujos vértices têm graus
 - (a) 4, 4, 4, 3
- (b) 4, 4, 4, 4
- (c) 3, 3, 3, 2, 1
- (d) 1,1,1,1,1,1
- 4. Mostre que não existe nenhum grafo simples cujos vértices têm graus
 - (a) 5, 5, 4, 2, 2, 2
 - (b) 5, 4, 4, 3, 1, 1
- 5. Construa todas as árvores possíveis com:
 - (a) dois vértices;
- (b) três vértices;
- (c) quatro vértices;
- (d) cinco vértices.
- 6. Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:
 - (a) Num grafo simples o grau de um vértice pode ser maior ou igual ao número de vértices.
 - (b) Existe uma árvore com dois vértices e duas arestas.
 - (c) Cada grafo com n vértices e n-1 arestas é uma árvore.
 - (d) Existe uma árvore com pelo menos dois vértices e que admita um trilho euleriano.
 - (e) Existe um grafo com vértices de grau ímpar e que admite um trilho euleriano.