ЛАБОРАТОРНАЯ РАБОТА №2. ФРАКТАЛЬНАЯ ГРАФИКА

Цели лабораторной работы

- **1.** Познакомиться с такими понятиями, как фрактал и фрактальная графика.
- 2. Изучить основные виды фракталов и способы их построения.
- 3. Разработать программу на языке С#.

Теоретический материал

Под фракталом понимается нетривиальный предмет, являющийся самоподобным и обладающий дробной метрической размерностью. При этом нетривиальность структуры заключается в том, что увеличение масштаба не ведет к упрощению масштаба, то есть при любом увеличении мы увидим одинаково сложную картину.

Программы, работающие фрактальной \mathbf{c} генерируют изображение путем расчетов. Данный вид графики так же, как и векторная, является вычисляемым, но отличается от нее тем, что в памяти компьютера объекты не хранятся. Они строятся по уравнению или системе уравнений, которая, в свою очередь, находится в памяти. Даже незначительное изменение коэффициентов в уравнениях может привести к получению совершенно иного изображения. Фрактальная графика часто используется для моделирования образов живой природы и автоматической генерации необычных изображений. В данном случае речь не идет о рисовании или оформлении, речь идет только о программировании.

Фракталы можно разделить на три вида:

- геометрические;
- алгебраические;
- стохастические.

Первый тип фракталов получается путем простых геометрических построений. Обычно при построении этих фракталов берется некий геометрический объект, на основании которого будет строиться фрактал. Затем к этому объекту применяют набор правил, который этот объект преобразует в некоторую фигуру, а затем к каждой части фигуры применяется тот же набор правил. С каждым новым шагом фигура будет все больше усложняться.

Одним из способов построения геометрических фракталов является применение простой рекурсивной процедуры получения фрактальных кривых на плоскости. В этом случае пишется процедура, генерирующая произвольную ломаную с конечным числом звеньев. Затем данная процедура применяется к каждому отрезку прямой каждого из звеньев. Продолжая до бесконечности, получим фрактальную кривую. Для создания геометрических фракталов средствами технологии GDI+ вам потребуется только метод DrawLine и рекурсивная функция преобразования координат и вывода изображения.

На рис. 8 приведена так называемая «Кривая дракона», построенная указанным способом.

Рис. 8. Кривая дракона

Упрощенный алгоритм построения данного фрактала средствами GDI+ можно описать следующим образом:

- 1. Разместить на форме PictureBox и Button.
- 2. Определить функциональный метод, возвращающий объект класса Bitmap.
- 3. Внутри метода создать объект Bitmap и объект Graphics, настроенный на него.
- 4. Определить граничные точки, на основе которых будет строиться фрактал и количество итераций (обозначим его k).
- 5. Определить рекурсивный метод, принимающий координаты указанных точек, количество итераций и объект класса Graphics.
- 6. Внутри метода, если количество итераций равно 0, нарисовать линию от начальной точки до конечной. Иначе определить временную переменную tx и рассчитать ее значение по формуле (x1+x2)/2+(y2-y1)/2. Где x1,y1,x2,y2 координаты первой и второй точек соответственно. Здесь же определить переменную ty и рассчитать ее значение как: (y1+y2)/2-(x2-x1)/2. Дважды вызвать рекурсивный метод. Первый раз с параметрами x2,y2,tx,ty,k-1, второй раз с параметрами x1,y1,tx,ty,k-1.
- 7. Внутри кнопки свойству Image объекта pictureВох присвоить результат работы метода, объявленного на шаге 2.

К подобным геометрическим фракталам также относятся:

- кривая Леви. Строится по тому же алгоритму, только вызовы рекурсивной функции в шаге 6 происходят с параметрами x1, y1, tx, ty,k-1 и tx, ty, x2, y2, k-1;
- Koxa (снежинка Koxa). Шестой • кривая шаг рассмотренного алгоритма ДЛЯ построения фрактала меняется следующим образом. Внутри метода, если количество итераций равно 0, нарисовать линию от Иначе начальной точки ДО конечной. временные переменные и рассчитать их значения по формулам:

$$tx1 = x1 + (x2 - x1) \times 1/3;$$

 $ty1 = y1 + (y2 - y1) \times 1/3;$
 $tx2 = x1 + (x2 - x1) \times 2/3;$
 $ty2 = y1 + (y2 - y1) \times 2/3;$
 $cos60 = 0.5;$

```
\sin 60 = -0.866;

tx3 = tx1 + (tx2 - tx1) \times \cos 60 - \sin 60 \times (ty2 - ty1);

ty3 = ty1 + (tx2 - tx1) \times \sin 60 + \cos 60 \times (ty2 - ty1);

Затем вызвать четыре раза рекурсивный метод с

параметрами:
```

- 1. x1, y1, tx1, ty1, k-1;
- 2. tx1, ty1, tx3, ty3, k-1;
- 3. tx3, ty3, tx2, ty2, k-1;
- 4. tx2, ty2, x2, y2, k-1;
- кривая Минковского. В шестом шаге определение дополнительных переменных имеют вид:

$$xb = x1 + (x2 - x1) \times 1/4;$$

 $yb = y1 + (y2 - y1) \times 1/4;$
 $xe = x1 + (x2 - x1) \times 2/4;$
 $ye = y1 + (y2 - y1) \times 2/4;$
 $xh = x1 + (x2 - x1) \times 3/4;$
 $yh = y1 + (y2 - y1) \times 3/4;$
 $cos90 = 0;$
 $sin90 = -1;$
 $xc = xb + (xe - xb) \times cos90 - sin90 \times (ye - yb);$
 $yc = yb + (xe - xb) \times sin90 + cos90 \times (ye - yb);$
 $xd = xc + (xe - xb);$
 $yd = yc + (ye - yb);$
 $sin90 = 1;$
 $xf = xe + (xh - xe) \times cos90 - sin90 \times (yh - ye);$
 $yf = ye + (xh - xe) \times sin90 + cos90 \times (yh - ye);$
 $xg = xf + (xh - xe);$
 $yg = yf + (yh - ye);$

Рекурсия вызывается со следующими параметрами:

- 1. x1, y1, xb, yb, k 1;
- 2. xb, yb, xc, yc, k 1;
- 3. xc, yc, xd, yd, k 1;
- 4. xd, yd, xe, ye, k 1;
- 5. xe, ye, xf, yf, k 1;
- 6. xf, yf, xg, yg, k 1;
- 7. xg, yg, xh, yh, k 1;
- 8. xh, yh, x2, y2, k-1;

Некоторые геометрические фракталы могут быть рассмотрены как неподвижные точки сжимающих отображений. Под сжимающим отображением случае понимается отображение данном метрического пространства в себя, уменьшающее расстояние между любыми двумя точками в несколько раз. Пример такого фрактала – строящийся Серпинского, на треугольник основе правильных шаге сжимающий изображение треугольников И на каждом предыдущего шага в 2 раза. На рис. 9 представлены изображения этого треугольника на 1, 2, 3 и 5 шагах.

Рис. 9. Треугольник Серпинского

Теперь перейдем к алгебраическим фракталам. Свое название они получили потому, что строятся на основе алгебраических формул. Классический алгебраический фрактал — множество Мандельброта. Функционально оно определяется как $Zn+1=Zn\times Zn+C$. Тогда суть алгоритма будет в следующем: для всех точек на комплексной плоскости в интервале от -2+2i до 2+2i выполняем некоторое достаточно большое количество раз $Zn=Z0\times Z0+C$, каждый раз проверяя абсолютное значение Zn. Если это значение больше 2, что рисуем точку с цветом, равным номеру итерации, на котором абсолютное значение превысило 2, иначе

рисуем точку черного цвета. В итоге получим изображение, представленное на рис. 10.

Рис. 10. Множество Мандельброта

Если мы рассчитаем Z0=a+bi, а C присвоим произвольные значения, то получим множество Жюлиа. Таким образом, меняя функцию, условия выхода из цикла, можно получать другие фракталы.

Для построения данного множества векторных возможностей технологии GDI+ будет недостаточно. Здесь необходимо напрямую работать пикселями картинки. Для этого используется метод SetPixel, который в качестве параметров принимает координаты пикселя и его цвет. Этот метод вызывается непосредственно у объекта класса Віtmap.

Последний вид фракталов, который мы рассмотрим, — стохастические фракталы. Самый типичный представитель этого вида — плазменный фрактал. Алгоритм его построения следующий. Возьмем прямоугольник и для каждого его угла определим случайный цвет. Затем берем точку в центре прямоугольника и вычисляем ее цвет как среднее арифметическое цветов угловых точек (в формате RGB) плюс некоторое случайное число. Пример плазменного фрактала представлен на рис. 11.

Рис. 11. Плазменный фрактал

Введя в алгоритм формирования фрактала такие характеристики, как зернистость, редкость и разрешение, мы можем менять получаемое изображение. Редкость — влияет на то, как часто будут появляться зоны с не основным цветом. Чем меньше значение — тем чаще. Зернистость — отвечает за само построение фрактала: чем больше значение, тем больше будет углубляться алгоритм (то есть будут появляться «маленькие» зоны с не основным цветом). Разрешение — размер картинки в пикселях. Чтобы получить хорошую картинку, разрешение нужно установить не меньше 128, иначе картинка просто не сможет отразить зернистость.

Задание на лабораторную работу

Используя возможности технологии GDI+, разработать программу, генерирующую заданный по варианту фрактал. Для геометрических фракталов обеспечить возможность задания глубины фрактала, чтобы в конечном итоге картинка не превратилась в сплошной черный рисунок.

Вариант №	Название фрактала
1.	Кривая Коха.
2.	Кривая Минковского.
3.	Кривая Леви.
4.	Кривая дракона.
5.	Треугольник Серпинского.
6.	Плазменный фрактал.
7.	Множество Мандельброта.
8.	Кривая Пеано.
9.	Множество Жюлиа.
10.	Множество Кантора.

Контрольные вопросы к лабораторной работе №2

- 1. Дайте определение фракталу.
- 2. Перечислите основные виды фракталов.
- 3. Расскажите алгоритм построения кривой дракона.
- 4. Расскажите алгоритм построения множества Мандельброта.
- 5. Расскажите алгоритм построения плазменного фрактала.