Integrated Electronics & Design

nMOS logic IC design

Gary Chun Zhao, PhD

Chun.Zhao@xjtlu.edu.cn

May 2024

OUTLINE

- NMOS logic (examples)
 - Calculation

- Layout
- Design Exercise

When
$$\underline{V_{DS}} \leq \underline{V_{GS}} - \underline{V_{T}}$$
: $I_D = \beta_0 \text{ W/L } [(V_{GS} - V_T)V_{DS} - V_{DS}^2/2]$
 $\beta_0 = \mu_n C_{ox}$

Transistor in **Saturation Mode**

Assuming $V_{GS} > V_T$

When
$$V_{DS} \ge V_{GS} - V_{T}$$
: $I_D = (\beta_0/2) \text{ W/L } [(V_{GS} - V_{T})^2]$

Calculate **W/L** with the following specification:

$$\beta_0 = \mu C_{ox}$$

- 1) $R_L = 5k$. 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$. $\beta_0 = \mu C_{0x}$
- 3) $V_T = 0.3V$. 4) $V_{DD} = 5V$.

The aspect ratio, W/L, is ??

Calculate **W/L** with the following specification:

- 1) $R_L = 5k.$ 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.
- 3) $V_T = 0.3V.$ 4) $V_{DD} = 5V.$

Solution:

If
$$V_{in} = V_{DD}$$
, let $V_{out} = 0.1V \ll V_{T}$

Potential divider:

$$R_D/(R_D+R_L)=V_{Out}/V_{DD}=0.1/5=0.02$$

$$\rightarrow$$
 $R_D \approx 100\Omega$

$$I_{D} = \beta[(V_{G} - V_{T})V_{D} - V_{D}^{2}/2] \approx \beta[(V_{G} - V_{T})V_{D}]$$

$$R_D = V_{Out}/I_D = \{\beta[(V_{DD}-V_T)]\}^{-1} = 1/[\beta(5-0.3)] = 100\Omega$$

 $\rightarrow \beta \approx 20*10^{-4}$. Therefore, the aspect ratio, W/L, is <u>12</u>.

Calculate W/L with the following specification:

1) $R_L = 5k.$ 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.

3) $V_T = 0.3V.$ 4) $V_{DD} = 5V.$

Calculate W/L with the following specification:

- 1) $R_L = 5k.$ 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.
- 3) $V_T = 0.3V.$ 4) $V_{DD} = 5V.$

Calculate W/L of Load with the following specification: 1) The aspect ratios of D is 12. $V_{
m DD}$ 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$. 3) $V_T = 0.3V.4) V_{DD} = 5V.$ D L?

Calculate W/L of Load with the following specification:

1) The aspect ratios of D is 12.

- 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.
- 3) $V_T = 0.3V.4) V_{DD} = 5V.$

Solution:

If
$$V_{in} = V_{DD}$$
, let $V_{Out} = 0.1V$:

$$I_D = \beta_D[(V_{in}-V_T)V_{Out}-V_{Out}^2/2]$$

$$R_D = V_{Out}/I_D = (12\beta_0[(V_{DD}-V_T)])^{-1} = 100 \Omega$$

$$[R_D/(R_D+R_L)]=V_{Out}/V_{DD}=0.1/5=0.02$$

$$\rightarrow R_L \approx 5k\Omega$$

$$I_D = \beta_L (V_{DD} - V_T)^2 / 2$$

$$R_L = (V_{DD}-V_{out})/I_D = 4.9*2/[β_L(5-0.3)^2] = 5kΩ$$

 $\rightarrow β_L = 8.9*10^{-5} \rightarrow \text{aspect ratio of load} = \underline{\textbf{0.5}}$

Calculate W/L of Load with the following specification:

- 1) The aspect ratios of D is 12.
- 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.
- 3) $V_T = 0.3V.4) V_{DD} = 5V.$

W/L of Load= 0.5

 V_{DD}

Calculate W/L of Load with the following specification:

1) The aspect ratios of D is 12.

- 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.
- 3) $V_T = 0.3V.4) V_{DD} = 5V.$

NMOS Logic (NOR): Example 3

Calculate W/L of Load with the following specification:

- 1) The aspect ratios of D is 12.
- 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.
- 3) $V_T = 0.3V.4) V_{DD} = 5V.$

Solution:

let $V_{Out} = 0.1V$:

$$I_{D} = \beta_{D}[(V_{inA}-V_{T})V_{Out}-V_{Out}^{2}/2]$$

$$R_D = V_{Out}/I_D = (\beta_D[(V_{DD}-V_T)])^{-1} = 100 \Omega$$

$$[0.5R_D/(0.5R_D+R_L)]=V_{Out}/V_{DD}=0.1/5=0.02$$

 \rightarrow R_L=2.5k Ω

$$I_D = \beta_L (V_{DD} - V_T)^2 / 2$$

$$R_L = (V_{DD}-V_{out})/I_D = 4.9*2/[β_L(5-0.3)^2] = 2.5kΩ$$

 $\rightarrow β_L = 1.8*10^{-4} \rightarrow \text{aspect ratio of Load} = \underline{1}.$

- It consists of an n channel NOR gate feeding an inverter.
- The transistors A and B are the termed driver MOSFETs.
- The process parameters are defined:
 - \Rightarrow $2\lambda = 1\mu m$
 - $\beta_0 = 1.8 \times 10^{-4} \text{AV}^{-2}$
 - $V_{\rm T} = 0.3 V$
 - \rightarrow $V_{DD} = 5V$
 - \rightarrow $V_{in} = V_{DD}$
 - $ightharpoonup R_S = 100\Omega/sq$

Layout design of the NMOS IC

 $\mu C_{ox} = \beta_0$

- It consists of an n channel NOR gate feeding an inverter.
- The transistors A and B are the termed driver MOSFETs.
- The process parameters are defined:
 - $2\lambda = 1\mu m$
 - $\beta_0 = 1.8 \times 10^{-4} \text{AV}^{-2}$
 - $V_{\rm T} = 0.3 V$
 - \rightarrow $V_{DD} = 5V$
 - \rightarrow $V_{in} = V_{DD}$
 - $R_s = 100\Omega/sq$

NMOS Logic (NOR): Example 4

Calculate W/L with the following specification:

- 1) $R_1 = 5k$. 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.
- 3) $V_T = 0.3V.4) V_{DD} = 5V.$

Solution:

If
$$V_A = V_B = V_{DD}$$
, let $V_{Out} = 0.1V << V_T$

Potential divider:

$$0.5R_D/(0.5R_D+R_L)=V_{Out}/V_{DD}=0.1/5=0.02$$

$$\rightarrow$$
 R_D \approx 200 Ω

$$I_D = \beta[(V_G - V_T)V_D - V_D^2/2] \approx \beta[(V_G - V_T)V_D]$$

$$R_D = V_{Out}/I_D = \{\beta[(V_{DD}-V_T)]\}^{-1} = 1/[\beta(5-0.3)] = 200\Omega$$

 $\rightarrow \beta \approx 10*10^{-4}$. Therefore, the aspect ratio, W/L, is <u>6</u>

Layout design of the nMOS IC shown in Fig.1

- It consists of an n channel NOR gate feeding an inverter.
- The transistors A and B are the termed driver MOSFETs.
- The process parameters are defined:
 - \Rightarrow $2\lambda = 1\mu m$
 - $\beta_0 = 1.8 \times 10^{-4} \text{AV}^{-2}$
 - $V_{\rm T} = 0.3V$
 - $V_{DD} = 5V$
 - \triangleright $V_{in} = V_{DD}$
 - $ightharpoonup R_s = 100\Omega/sq$

Calculate W/L of Load with the following specification:

- 1) The aspect ratios of D is 6.
- 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.
- 3) $V_T = 0.3V.4) V_{DD} = 5V.$

Solution:

If
$$V_{in} = V_{DD}$$
, let $V_{Out} = 0.1V$:

$$I_D = \beta_D[(V_{in}-V_T)V_{Out}-V_{Out}^2/2]$$

$$R_D = V_{Out}/I_D = (6\beta_0[(V_{DD}-V_T)])^{-1} = 200 \Omega$$

$$[R_D/(R_D+R_L)]=V_{Out}/V_{DD}=0.1/5=0.02$$

$$\rightarrow R_L \approx 10k\Omega$$

$$I_D = \beta_L (V_{DD} - V_T)^2 / 2$$

R_L =
$$(V_{DD}-V_{out})/I_D = 4.9*2/[β_L(5-0.3)^2] = 10kΩ$$

 $\rightarrow β_L = 4.4*10^{-5} \rightarrow \text{aspect ratio of load} = \underline{\textbf{0.25}}$

Layout design of the nMOS IC shown in Fig.1

- It consists of an n channel NOR gate feeding an inverter.
- The transistors A and B are the termed driver MOSFETs.
- The process parameters are defined:
 - $2\lambda = 1\mu m$
 - $\beta_0 = 1.8 \times 10^{-4} \text{AV}^{-2}$
 - $V_{\rm T} = 0.3 V$
 - \triangleright $V_{DD} = 5V$
 - \triangleright $V_{in} = V_{DD}$
 - $R_s = 100\Omega/sq$

OUTLINE

- NMOS logic (examples)
 - Calculation

- Layout
- Design Exercise

NMOS Logic (NOR): Example 3

OUTLINE

- NMOS logic (examples)
 - Calculation
 - Layout
- Design Exercise

Layout design of the nMOS IC shown in Fig.1

 $\mu C_{ox} = \beta_0$

- It consists of an n channel NOR gate feeding an inverter.
- The transistors A and B are the termed driver MOSFETs.
- The process parameters are defined:
 - \Rightarrow $2\lambda = 1\mu m$
 - $\beta_0 = 1.8 \times 10^{-4} \text{AV}^{-2}$
 - $V_T = 0.3V$
 - $V_{DD} = 5V$
 - \rightarrow $V_{in} = V_{DD}$
 - Arr $R_s = 100\Omega/sq$

- Design rules:
- The driver transistors should have channel length L equal to the minimum feature size λ_m. The width of the drivers W, which must always be a whole number (n) of minimum feature sizes (nλ_m), and the overall value of W must be chosen to give the required output voltage. This must be significantly less than the threshold voltage of the third gate C if this transistor is to stay off.
- The layouts must take account of the alignment accuracy λ_a .
- $\bullet \qquad \lambda_{\mathsf{m}} = 2\lambda_{\mathsf{a}}$

- 1) The Design involves producing the patterns corresponding to each of the stages of the process already discussed.
- 2) Each of the patterns should be drawn on graph paper with a stipulated scale. (e.g 1μm per cm.)
- 3) The patterns would be transferred at a later stage to glass masks, as opaque regions. There are 4 masks:
 - M1. define the device area (active)
 - M2. define the gate stripe (poly)
 - M3. define the contacts (contact)
 - M4. define the metal pattern (metal)

- It consists of an n channel NOR gate feeding an inverter.
- The transistors A and B are the termed driver MOSFETs.
- The process parameters are defined:
 - \Rightarrow $2\lambda = 1\mu m$
 - $\beta_0 = 1.8 \times 10^{-4} \text{AV}^{-2}$
 - $V_T = 0.3V$
 - $V_{DD} = 5V$
 - \rightarrow $V_{in} = V_{DD}$
 - ho R_S = 100 Ω /sq
- HINTS: Liverpool notes.

V_{DD} L Mask2 $V_{\text{out}} \\$

V_{DD} Mask3 V_{out}

