5

Due Tuesday March 27, at the start of the recitation.

Explain your reasoning. A correct answer poorly explained will not get full marks.

- 1. We approximate $\int_0^{\pi/2} \cos(\sqrt{x}) dx$ using a power series.
 - (a) Find a Taylor polynomial, p(x), that approximates $f(x) = \cos(\sqrt{x})$ to within $2 \cdot 10^{-4}$ i.e., so that $|p(x) f(x)| \le 2 \cdot 10^{-4}$, for all x in $[0, \pi/2]$.
 - (b) If $P(t) = \int_0^t p(x) \, dx$, then the polynomial P(t) approximates $F(t) = \int_0^t \cos(\sqrt{x}) \, dx$. Find P(t) and give a reasonable bound for error |P(t) - F(t)| for t in $[0, \pi/2]$. Hint: You can write P(t) - F(t) as an integral of p(x) - f(x).
 - (c) Find $P(\pi/2)$ and an error bound for how well it approximates $\int_0^{\pi/2} \cos(\sqrt{x}) dx$.