163 HWK 7

James Gillbrand

$May\ 2024$

Question 1

Proof. Let (a_n) be a sequence of nonzero real numbers.

Case 1

Assume that $(|\frac{a_n+1}{a_n}|)$ diverges to ∞ . Then, for any M>0 there exists an $N\in\mathbb{N}$ such that for each $n\in\mathbb{N}$ if $n\geq N$, then

$$\left|\frac{a_{n+1}}{a_n}\right| > M$$

Hence,

$$|a_{n+1}| > |a_n|M$$

Consequently, we can choose an M such for each $n \geq N$,

$$|a_n| > \epsilon$$

for any epsilon. Hence, (a_n) does not converge to 0 and thus,

$$\sum_{n=1}^{\infty} a_n$$

diverges.

Case 2

Assume $(|\frac{a_n+1}{a_n}|)$ is convergent and that $\lim_{n\to\infty} |\frac{a_n+1}{a_n}|>1.$ Then

$$\lim_{n \to \infty} |a_n| \neq 0$$

Hence, the sum does not converge by the nth term test.

Proof. Consider the power series,

$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$

Assume that $0 \le x \le 1$, then

$$\frac{x^n}{n^2} \le \frac{1}{n^2}$$

Because the sum of $\frac{1}{n^2}$, is convergent, by the comparison test, so too does

$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$

for $0 \le x \le 1$. If x = -1, it is also convergent by the alternating series test. If x > 1, then

$$\lim_{n\to\infty}\frac{x(n^2)}{(n+1)^2}=x>1$$

Hence it doesn't converge. Thus the interval of convergence is [-1,1] and the radius is 1.

Proof. Let a be a nonzero number. Let $f:\{x\in\mathbb{R}:x\neq a\}\to\mathbb{R}$ be defined as

$$f(x) \stackrel{\text{def}}{=} \frac{1}{x - a_0}$$

By the ratio test we know that

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$$

Let $r = \frac{x}{a_0}$ and $a = -\frac{1}{a_0}$. Then,

$$\sum_{n=0}^{\infty} ar^n = \frac{1}{-a_0(1 - \frac{x}{a_0})} = \frac{1}{x - a_0} = f(x)$$

Hence, by the geometric series test, f(x) is convergent exactly when $|\frac{x}{a_0}| < 1$. So for $|x| < a_0$. Thus the radius of convergence is $(-|a_0|, |a_0|)$

(a)

 ${\it Proof.}$ The following series, obtained from the geometric series test will allow us to obtain the desired series.

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

Taking the derivative,

$$(\sum_{n=0}^{\infty} x^n)' = \frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} nx^{n-1}$$
$$\frac{x}{(1-x)^2} = \sum_{n=0}^{\infty} nx^n$$

For $x = \frac{1}{2}$, because x < 1 we know that this series converges and that

$$\sum_{n=0}^{\infty} nx^n = \sum_{n=0}^{\infty} \frac{n}{2^n} = \frac{\frac{1}{2}}{(1 - \frac{1}{2})^2} = 2$$

(b)

Proof. Proceeding by the same reasoning as above,

$$\frac{x}{(1-x)^2} = \sum_{n=0}^{\infty} nx^n$$
$$(\sum_{n=0}^{\infty} nx^n)' = \sum_{n=0}^{\infty} n^2 x^{n-1} = \frac{-x-1}{(1-x)^3}$$
$$\sum_{n=0}^{\infty} n^2 x^n = \frac{-x^2 - x}{(1-x)^3}$$

So, for $x = \frac{1}{2}$

$$\sum_{n=0}^{\infty} n^2 x^n = \sum_{n=0}^{\infty} \frac{n^2}{2^n} = \frac{-1/4 - 1/2}{(1 - 1/2)^3}$$
$$= \frac{-3/4}{1/8} = \frac{-24}{4} = -6$$

(a)

Proof. Define,

$$f(x) \stackrel{\text{def}}{=} \sum_{n=0}^{\infty} a_n (x-c)^n$$

Let k be a natural number. Proceed with induction on the derivative of f.

Base Case

Let k = 1, then,

$$f'(x) = \sum_{n=0}^{\infty} n a_n (x - c)^{n-1}$$
$$= \sum_{n=0}^{\infty} \frac{n!}{(n-1)!} a_n (x - c)^{n-1}$$

Inductive Step and Hypothesis

Let $k \in \mathbb{N}$ and assume that,

$$f^{k}(x) = \sum_{n=0}^{\infty} \frac{n!}{(n-k)!} a_{n}(x-c)^{n-k}$$

Proof of Inductive Step

Take

$$f^{k+1}(x) = \left(\sum_{n=0}^{\infty} \frac{n!}{(n-k)!} a_n (x-c)^{n-k}\right)'$$

$$= \sum_{n=0}^{\infty} (n-k) \frac{n!}{(n-k)!} a_n (x-c)^{n-k-1}$$

$$= \sum_{n=0}^{\infty} \frac{n!}{(n-(k+1))!} a_n (x-c)^{n-(k+1)}$$

Hence, by induction

$$f^{k}(x) = \sum_{n=0}^{\infty} \frac{n!}{(n-k)!} a_{n}(x-c)^{n-k}$$

(b)

Proof. Let k be a nonnegative integer. Then,

$$f^{k}(c) = \sum_{n=0}^{\infty} \frac{n!}{(n-k)!} a_{n}(c-c)^{n-k}$$

This term is only nonzero when n = k, hence,

$$f^k(c) = k! a_k$$

(c)

Proof. Assume that f(x) = 0 for each x in (c - R, c + R). Then, per a problem from quarter 1, f'(x) = 0. Inductively this can be extended to all nonnegative derivatives $f^k(x)$. Hence,

$$f^k(x) = 0 = k!a_k$$

Thus,

$$a_k = 0$$

Proof. Define,

$$g(x) \stackrel{\text{def}}{=} \sum_{n=0}^{\infty} a_n (x-c)^n$$

Assume that there exists some convergent subsequence $(x_k) \in (c - R, c + R)$ such that $x_k \neq c$, $\lim_{n \to \infty} x_k = c$ and $g(x_k) = 0$. Since, g(x) is power series, it is continuous on (c - R, c + R). Hence by assignment 3 problem 1,

$$\lim_{k \to \infty} g(x_k) = g(\lim_{n \to \infty} x_k) = g(c) = 0$$

Also,

$$\lim_{k \to \infty} g(x_k) = \lim_{k \to \infty} \sum_{n=0}^{\infty} a_n (x_k - c)^n = a_0 + \lim_{k \to \infty} \sum_{n=1}^{\infty} a_n (x_k - c)^n$$

Define,

$$f(x) \stackrel{\text{def}}{=} \sum_{n=1}^{\infty} a_n (x-c)^n$$

Then, similarly,

$$\lim_{k \to \infty} f(x_k) = f(\lim_{n \to \infty} x_k) = f(c) = 0$$

Hence,

$$a_0 + \lim_{k \to \infty} \sum_{n=1}^{\infty} a_n (x_k - c)^n = a_0 + 0 = 0$$

Let c be a real number and (a_n) be a sequence of real numbers. Assume that R > 0 is the radius of convergence for the following power series. Define $f: (c - R, c + R) \to \mathbb{R}$ by,

$$f(x) \stackrel{\text{def}}{=} \sum_{n=0}^{\infty} a_n (x-c)^n$$

Assume that there exists a convergent subsequence (x_k) in (c - R, c + R) such that

- $x_k \neq c$
- $\bullet \ \lim_{n \to \infty} x_k = c$
- $f(x_k) = 0$ for each natural k

For each nonnegative integer k, define $g_k : (c - R, c + R) \to \mathbb{R}$ as,

$$g_k(x) = \sum_{n=k}^{\infty} a_n (x-c)^{n-k}$$

(a/b)

Proof. Proceed by induction,

Base Case:

Let k=0. There is nothing to prove as

$$(x-c)^{0}g_{0}(x) = \sum_{n=0}^{\infty} a_{n}(x-c)^{n} = f(x)$$

Also,

$$0 = f(x_j) = (x_j 0c)^0 g_0(x_j) = \sum_{n=0}^{\infty} a_n (x_j - c)^n$$

By question 6, $a_0 = 0$

Inductive Step and Hypothesis

Let $k \geq 0$. Assume that

$$f(x) = (x-c)^k g_k(x) = (x-c)^k \sum_{n=k}^{\infty} a_n (x-c)^{n-k}$$

and that $a_k = 0$

Proof of Inductive step

Take the case of k + 1. Then,

$$f(x) = (x - c)^k \sum_{n=k}^{\infty} a_n (x - c)^{n-k}$$

$$= (x - c)^k (a_k (x - c)^0) + (x - c)^k \sum_{n=k+1}^{\infty} a_n (x - c)^{n-k}$$

$$= (x - c)^k (a_k) + (x - c)^{k+1} \sum_{n=k+1}^{\infty} a_n (x - c)^{n-k-1}$$

$$= (x - c)^{k+1} \sum_{n=k+1}^{\infty} a_n (x - c)^{n-k-1}$$

This expression is the same as,

$$f(x) = (x - c)^{k+1} g_{k+1}(x)$$

since,

$$g_{k+1}(x) = \sum_{n=k+1}^{\infty} a_n (x-c)^{n-(k+1)}$$

Also, by question 6, $a_{k+1} = 0$.

Thus by induction the proof is complete.

Proof. Let c be a real number. Let (a_n) and (b_n) be sequences of real numbers. Assume that r is a positive real number such that the power series,

$$\sum_{n=0}^{\infty} a_n (x-c)^n \quad \text{and} \quad \sum_{n=0}^{\infty} b_n (x-c)^n$$

are pointwise convergent on (c-r,c+r). Assume that

$$\sum_{n=0}^{\infty} a_n (x - c)^n = \sum_{n=0}^{\infty} b_n (x - c)^n$$

for each $x \in (c-r,c+r)$. Define $f:(c-r,c+r) \to \mathbb{R}$ as

$$f(x) \stackrel{\text{def}}{=} \sum_{n=0}^{\infty} a_n (x-c)^n - \sum_{n=0}^{\infty} b_n (x-c)^n$$

Define (c_n) as the sequence where the nth term is given by $c_n = a_n - b_n$. Then,

$$f(x) = \sum_{n=0}^{\infty} c_n (x - c)^n$$

Also, f(x) = 0 for each $x \in (c - r, c + r)$ by assumption. Consequently by question 5, part c, each $c_n = 0$. Hence,

$$a_n - b_n = 0$$
$$a_n = b_n$$

Let the sequence (a_n) be the Fibonnaci Sequence, defined by $a_1 \stackrel{\text{def}}{=} 1$, $a_2 \stackrel{\text{def}}{=} 1$, and

$$a_{n+1} \stackrel{\text{def}}{=} a_n + a_{n-1}$$

for each n=2,3,4... Assume that $(\frac{a_{n+1}}{a_n})$ is convergent.

(a)

Proof.

$$\frac{a_{n+1}}{a_n} = \frac{a_n + a_{n-1}}{a_n} = 1 + \frac{a_{n-1}}{a_n} = 1 + \frac{a_{n-1}}{a_{n-1} + a_{n-2}}$$

Because each a_n is a positive term,

$$\frac{a_{n-1}}{a_{n-1} + a_{n-2}} < 1$$

Hence

$$1 + \frac{a_{n-1}}{a_{n-1} + a_{n-2}} < 2$$

(b)

Proof. Consider the following power series

$$\sum_{n=1}^{\infty} a_n x^{n-1}$$

Since the center is 0, proving that the series is convergent at $x = \frac{1}{2}$ is enough to show that the radius, $R \ge \frac{1}{2}$. So we must consider the following series,

$$\sum_{n=1}^{\infty} a_n \frac{1}{2^{n-1}}$$

Proceeding with the ratio test we will examine the following limit:

$$\lim_{n\to\infty}\frac{a_{n+1}x^n}{a_nx^{n-1}}=\lim_{n\to\infty}\frac{a_{n+1}x}{a_n}=\frac{1}{2}\cdot\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$$

By part 1, this limit is less than or equal to 2. Hence,

$$_{n\to\infty}\frac{a_{n+1}x^n}{a_nx^{n-1}}<1$$

Consequently the power series converges for $|x| \leq \frac{1}{2}$. Thus, $R \geq \frac{1}{2}$.

(c)

Proof. Define $f:(-R,R)\to\mathbb{R}$ as,

$$f(x) \stackrel{\text{def}}{=} \sum_{n=1}^{\infty} a_n x^{n-1}$$

Then,

$$f(x) - xf(x) - x^{2}f(x) = \sum_{n=1}^{\infty} a_{n}x^{n-1} - \sum_{n=1}^{\infty} a_{n}x^{n} - \sum_{n=1}^{\infty} a_{n}x^{n+1}$$

$$= a_{1}x^{0} + \sum_{n=2}^{\infty} a_{n}x^{n-1} - \sum_{n=1}^{\infty} a_{n}x^{n} - \sum_{n=1}^{\infty} a_{n}x^{n+1}$$

$$= 1 + \sum_{n=1}^{\infty} a_{n+1}x^{n} - \sum_{n=1}^{\infty} a_{n}x^{n} - \sum_{n=1}^{\infty} a_{n}x^{n+1}$$

$$= 1 + \sum_{n=1}^{\infty} (a_{n} + a_{n-1})x^{n} - \sum_{n=1}^{\infty} a_{n}x^{n} - \sum_{n=2}^{\infty} a_{n-1}x^{n}$$

$$= 1 + \sum_{n=1}^{\infty} a_{n-1}x^{n} - \sum_{n=2}^{\infty} a_{n-1}x^{n}$$

$$= 1 + 0 + \sum_{n=2}^{\infty} a_{n-1}x^{n} - \sum_{n=2}^{\infty} a_{n-1}x^{n} = 1$$

Thus,

$$f(x)(1 - x - x^{2}) = 1$$
$$f(x) = \frac{-1}{x^{2} + x - 1}$$

(d)

Proof. Define,

$$\alpha \stackrel{\text{def}}{=} \frac{-1 - \sqrt{5}}{2}$$
 and $\beta \stackrel{\text{def}}{=} \frac{-1 + \sqrt{5}}{2}$

Let $x \in \mathbb{R}$ and assume that $x \neq \alpha$, $x \neq \beta$. Then,

$$\frac{1/\sqrt{5}}{x-\alpha} - \frac{1/\sqrt{5}}{x-\beta} = \frac{1/\sqrt{5}((x-\beta) - (x-\alpha))}{x^2 - x\alpha - x\beta + \alpha\beta}$$
$$= \frac{\alpha - \beta}{\sqrt{5}(x^2 + 2x/2 + 1/4(1-5))}$$
$$= \frac{-\sqrt{5}}{\sqrt{5}(x^2 + x - 1)}$$
$$= \frac{-1}{x^2 + x - 1}$$

(e)

Proof. Take the following equation,

$$\frac{1/\sqrt{5}}{x-\alpha} - \frac{1/\sqrt{5}}{x-\beta}$$

By question 3, these can be approximated by the following power series:

$$\frac{1}{\sqrt{5}}(\sum_{n=1}^{\infty} -\frac{1}{\alpha}(\frac{x}{\alpha})^n - \sum_{n=1}^{\infty} -\frac{1}{\beta}(\frac{x}{\beta})^n)$$

(f)

Proof.

$$\frac{1}{\sqrt{5}} \left(\sum_{n=1}^{\infty} -\frac{1}{\alpha} \left(\frac{x}{\alpha} \right)^n - \sum_{n=1}^{\infty} -\frac{1}{\beta} \left(\frac{x}{\beta} \right)^n \right) = \sum_{n=1}^{\infty} \frac{1}{\sqrt{5}} \left(-\frac{1}{\alpha^{n+1}} + \frac{1}{\beta^{n+1}} \right) x^n$$

$$= \sum_{n=1}^{\infty} \frac{1}{\sqrt{5}} \left(\frac{\alpha^{n+1} - \beta^{n+1}}{\alpha^{n+1} \beta^{n+1}} \right) x^n$$

$$= \sum_{n=1}^{\infty} \frac{1}{\sqrt{5}(-1)^{n+1}} (\alpha^{n+1} - \beta^{n+1}) x^n$$

$$= \sum_{n=1}^{\infty} \frac{(\alpha^n - \beta^n)}{\sqrt{5}(-1)^n} x^{n-1}$$

$$= \sum_{n=1}^{\infty} a_n x^{n-1}$$

Hence, $a_n = \frac{(\alpha^n - \beta^n)}{\sqrt{5}}$.