Chapter 6

SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

Learning Objectives At the conclusion of the chapter, the student will be able to:

- Simplify a context-free grammar by removing useless productions
- Simplify a context-free grammar by removing λ -productions
- Simplify a context-free grammar by removing unitproductions
- Determine whether or not a context-free grammar is in Chomsky normal form
- Transform a context-free grammar into an equivalent grammar in Chomsky normal form
- Determine whether or not a context-free grammar is in Greibach normal form
- Transform a context-free grammar into an equivalent grammar in Greibach normal form

Methods for Transforming Grammars

- The definition of a context-free grammar imposes no restrictions on the right side of a production
- In some cases, it is convenient to restrict the form of the right side of all productions
- Simplifying a grammar involves eliminating certain types of productions while producing an equivalent grammar, but does not necessarily result in a reduction of the total number of productions
- For simplicity, we focus on languages that do not include the empty string

A Useful Substitution Rule

- Theorem 6.1 states that, If A and B are distinct variables, a production of the form A □ uBv can be replaced by a set of productions in which B is substituted by all strings B derives in one step.
- Consider the grammar

```
V = \{A, B\}, T = \{a, b, c\}, and productions

A \rightarrow a \mid aaA \mid abBc

B \rightarrow abbA \mid b
```

 We can replace A →abBc with two productions that replace B (in red), obtaining an equivalent grammar with productions

```
A →a | aaA | ababbAc | abbc
B →abbA | b
```

Useless Productions

- A variable is useful if it occurs in the derivation of at least one string in the language
- Otherwise, the variable and any productions in which it appears is considered useless
- A variable is useless if:
 - No terminal strings can be derived from the variable
 - The variable symbol cannot be reached from S
- In the grammar below, B can never be reached from the start symbol S and is therefore considered useless

$$S \rightarrow A$$

 $A \rightarrow aA \mid \lambda$
 $B \rightarrow bA$

Removing Useless Productions

It is always possible to remove useless productions from a context-free grammar:

- Let V₁ be the set of useful variables, initialized to empty
- 2. Add a variable A to V_1 if there is a production of the form
 - A → terminal symbols or variables in V₁
 - (Repeat until nothing else can be added to V₁₎
- 3. Eliminate any productions containing variables not in V₁
- 4. Use a dependency graph to identify and eliminate variables that are unreachable from S

Application of the Procedure for Removing Useless Productions

Consider the grammar from example 6.3:

```
S \rightarrow aS \mid A \mid C

A \rightarrow a

B \rightarrow aa

C \rightarrow aCb
```

- In step 2, variables A, B, and S are added to V₁
- Since C is useless, it is eliminated in step 3, resulting in the grammar with productions

$$S \rightarrow aS \mid A$$

 $A \rightarrow a$
 $B \rightarrow aa$

 In step 4, B is identified as unreachable from S, resulting in the grammar with productions

$$S \rightarrow aS \mid A$$

 $A \rightarrow a$

λ-Productions

- A production with λ on the right side is called a λ -production
- A variable A is called *nullable* if there is a sequence of derivations through which A produces λ
- If a grammar generates a language not containing λ , any λ -productions can be removed
- In the grammar below, S₁ is nullable

$$S \rightarrow aS_1b$$

 $S_1 \rightarrow aS_1b \mid \lambda$

• Since the language is λ -free, we have the equivalent grammar

$$S \rightarrow aS_1b \mid ab$$

 $S_1 \rightarrow aS_1b \mid ab$

Removing λ-Productions

It is possible to remove λ -productions from a context-free grammar that does not generate λ :

- Let V_N be the set of nullable variables, initialized to empty
- 2. Add a variable A to V_N if there is a production having one of the forms:
 - $A \rightarrow \lambda$
 - A \rightarrow variables already in V_N

(Repeat until nothing else can be added to V_{N})

- 3. Eliminate λ -productions
- Add productions in which nullable symbols are replaced by λ in all possible combinations

Application of the Procedure for Removing λ -Productions

Consider the grammar from example 6.5:

```
\begin{array}{l} S \rightarrow ABaC \\ A \rightarrow BC \\ B \rightarrow b \mid \lambda \\ C \rightarrow D \mid \lambda \\ D \rightarrow d \end{array}
```

- In step 2, variables B, C, and A (in that order) are added to $V_{\scriptscriptstyle N}$
- In step 3, λ-productions are eliminated
- In step 4, productions are added by replacing nullable symbols with in λ all possible combinations, resulting in

```
S \rightarrow ABaC \mid BaC \mid AaC \mid Aba \mid aC \mid Aa \mid Ba \mid aA \rightarrow B \mid C \mid BC \mid B \rightarrow bC \rightarrow DD \rightarrow d
```

Unit-Productions

- A production of the form A → B (where A and B are variables) is called a *unit*production
- Unit-productions add unneeded complexity to a grammar and can usually be removed by simple substitution
- Theorem 6.4 states that any context-free grammar without λ -productions has an equivalent grammar without unit-productions
- The procedure for eliminating unitproductions assumes that all λ -productions have been previously removed

Removing Unit-Productions

- Draw a dependency graph with an edge from A to B corresponding to every A → B production in the grammar
- Construct a new grammar that includes all the productions from the original grammar, except for the unit-productions
- 3. Whenever there is a path from A to B in the dependency graph, replace B using the substitution rule from Theorem 6.1, but using only the productions in the new grammar

Application of the Procedure for Removing Unit-Productions

Consider the grammar from example 6.6:

```
S \rightarrow Aa \mid B

A \rightarrow a \mid bc \mid B

B \rightarrow A \mid bb
```

The dependency graph contains paths from S to A, S to B, B to A, and A to B

 After removing unit-productions and adding the new productions (in red), the resulting grammar is

```
S → Aa | a | bc | bb
A → a | bc | bb
B → a | bc | bb
```

Simplification of Grammars

- Theorem 6.5 states that, for any contextfree language that <u>does not include λ</u>, there is a context-free grammar without useless, λ-, or unit-productions
- Since the removal of one type of production may introduce productions of another type, undesirable productions should be removed in the following order:
 - 1. Remove λ -productions
 - 2. Remove unit-productions
 - 3. Remove useless productions

Chomsky Normal Form

- In Chomsky normal form, the number of symbols on the right side of a production is strictly limited.
- A context-free grammar is in Chomsky normal form if all of its productions are in one of the forms below (A, B, C are variables; a is a terminal symbol)
 - $A \rightarrow BC$
 - A → a
- The grammar below is in Chomsky normal form

$$S \rightarrow AS \mid a$$

 $A \rightarrow SA \mid b$

Transforming a Grammar into Chomsky Normal Form

For any context-free grammar that does not generate λ , it is possible to find an equivalent grammar in Chomsky normal form:

- 1. Copy any productions of the form $A \rightarrow a$
- For other productions containing a terminal symbol x on the right side, replace x with a variable X and add the production X → x
- 3. Introduce additional variables to reduce the lengths of the right sides of productions as necessary, replacing long productions with productions of the form W → YZ (W, Y, Z are variables)

Application of the Procedure for Removing Unit-Productions

 Consider the grammar from example 6.8, which is clearly not in Chomsky normal form

```
S \rightarrow ABa

A \rightarrow aab

B \rightarrow Ac
```

 After replacing terminal symbols with new variables and adding new productions (in red), the resulting grammar is

```
S \rightarrow AC
C \rightarrow BX
A \rightarrow XD
D \rightarrow XY
B \rightarrow AZ
X \rightarrow a
Y \rightarrow b
Z \rightarrow C
```

Greibach Normal Form

- In Greibach normal form, there are restrictions on the positions of terminal and variable symbols
- A context-free grammar is in *Greibach Normal Form* if, in all of its productions, the right side consists of single terminal followed by any number of variables
- The grammar below is in Greibach normal form

Transforming a Grammar into Greibach Normal Form

- For any context-free grammar that does not generate λ , it is possible to find an equivalent grammar in Greibach normal form
- Consider the grammar from example 6.10, which is clearly not in Greibach normal form

```
S → abSb | aa
```

 After replacing terminal symbols with new variables and adding new productions (in red), the resulting grammar is

```
S \rightarrow aBSB \mid aA

A \rightarrow a

B \rightarrow b
```