

DEPARTAMENTO

Departamento de Ciencias

CURSO

Cálculo Vectorial

MALLA

2021

MODALIDAD

Blended

CREDITOS

3

REGLAS INTEGRIDAD ACADÉMICA

Todo estudiante matriculado en una asignatura de la Universidad de Ingeniería y Tecnología tiene la obligación de conocer y cumplir las reglas de integridad académica, cuya lista a continuación es de carácter enunciativo y no limitativo, ya que el/la docente podrá dar mayores indicaciones:

- 1. La copia y el plagio son dos infracciones de magnitud muy grave en la Universidad de Ingeniería y Tecnología (UTEC) conforme a lo establecido en el Reglamento de Disciplina de los Estudiantes. Tienen una sanción desde 2 semestres de suspensión hasta la expulsión.
- 2. Si se identifica la copia o plagio en evaluaciones individuales, el/la docente puede proceder a anular la evaluación.
- Si la evaluación es personal o grupal-individual, la interacción entre equipos o compañeros se considera copia o plagio, según corresponda. Si la evaluación calificada no indica que es grupal, se presume que es individual.
- 4. La copia, plagio, el engaño y cualquier forma de colaboración no autorizada no serán tolerados y serán tratados de acuerdo con las políticas y reglamentos de la UTEC, implicando consecuencias académicas y sanciones disciplinarias.
- 5. Aunque se alienta a los estudiantes a discutir las tareas y trabajar juntos para desarrollar una comprensión más profunda de los temas presentados en este curso, no se permite la presentación del trabajo o las ideas de otros como propios. No se permite el plagio de archivos informáticos, códigos, documentos o dibujos.
- 6. Si el trabajo de dos o más estudiantes es sospechosamente similar, se puede aplicar una sanción académica a todos los estudiantes, sin importar si es el estudiante que proveyó la información o es quien recibió la ayuda indebida. En ese sentido, se recomienda no proveer el desarrollo de sus evaluaciones a otros compañeros ni por motivos de orientación, dado que ello será considerado participación en copia.
- 7. El uso de teléfonos celulares, aplicaciones que permitan la comunicación o cualquier otro tipo de medios de interacción entre estudiantes está prohibido durante las evaluaciones o exámenes, salvo que el/la docente indique lo contrario de manera expresa. Es irrelevante la razón del uso del dispositivo.
- 8. En caso exista algún problema de internet durante la evaluación, comunicarse con el/la docente utilizando el protocolo establecido. No comunicarse con los compañeros dado que eso generará una presunción de copia.
- 9. Se prohíbe tomar prestadas calculadoras o cualquier tipo de material de otro estudiante durante una evaluación, salvo que el/la docente indique lo contrario.
- 10. Si el/la docente encuentra indicios de obtención indebida de información, lo que también implica no cumplir con las reglas de la evaluación, tiene la potestad de anular la prueba, advertir al estudiante y citarlo con su Director de Carrera. Si el estudiante no asiste a la citación, podrá ser reportado para proceder con el respectivo procedimiento disciplinario. Una segunda advertencia será reportada para el inicio del procedimiento disciplinario correspondiente.
- 11. Se recomienda al estudiante estar atento/a a los datos de su evaluación. La consignación de datos que no correspondan a su evaluación será considerado indicio concluyente de copia.

UNIVERSIDAD DE INGENIERÍA Y TECNOLOGÍA

SÍLABO DEL CURSO

1. ASIGNATURA

CC1104 - Cálculo Vectorial

2. DATOS GENERALES

2.1 Ciclo: NIVEL 2 2.2 Créditos: 3

2.3 Condición: Obligatorio para todas las carreras de ingeniería y computación.

2.4 Idioma de dictado: Español

2.5 Requisitos: CC1101 - Cálculo de una variable

3. INTRODUCCIÓN AL CURSO

El curso está enfocado en desarrollar la comprensión de problemas, entendimiento y aplicación de modelos matemáticos. Con este fin se desarrolla una metodología activa y participativa con uso racional de la tecnología y con espacios de trabajo colaborativo. Las sesiones son teóricas asociadas a situaciones contextualizadas que motivan al estudiante a involucrarse en su entendimiento y solución.

Con relación al contenido del curso, los temas a estudiar son: Vectores, Funciones de Varias Variables, Derivadas Parciales, Integrales dobles y Series. Estos temas son evaluados por medio de exámenes, prácticas semanales y proyectos a lo largo del curso

4. OBJETIVOS

- Sesión 1: Escribir las ecuaciones paramétricas de curvas en el espacio y definir un vector con todas sus características, así como las operaciones vectoriales usando el vector unitario en los ejes cartesianos, método del paralelogramo y descomposición vectorial.
- Sesión 2: Usar el método del paralelogramo y descomposición vectorial, así como entender el sistema de coordenadas rectangulares tridimensional, y el producto escalar de dos vectores, y expresar los cosenos directores de un vector en el espacio
- Sesión 3: Entender las diferencias entre proyección y componentes vectoriales junto con las propiedades algebraicas y geométricas del producto vectorial y la aplicar el triple producto escalar.
- Sesión 4: Entender las ecuaciones paramétricas para una recta y planos en el espacio, asimismo calcular la ecuación del plano algebraico y trazado de planos en el espacio

- Sesión 5: Usar las curvas en el espacio para su posterior derivación, integración, curvatura, componentes tangenciales y normales de una función vectorial.
- Sesión 6: Entender la notación de una función de varias variables con el objetivo de dibujar las curvas y superficies de nivel, asimismo, y usar las derivadas parciales de una función de dos o más variables para su interpretación geométrica.
- Sesión 7: Entender los conceptos de incrementos y diferenciales y usar el concepto de diferenciabilidad para funciones de dos variables en problemas de aproximaciones y en teoría de errores
- Sesión 8: Utilizar la regla de la cadena y las derivadas direccionales de una función de dos variables para calcular la gradiente de una función de dos o más variables
- Sesión 9: Entender cómo las gradientes son dibujadas en las curvas de nivel y su uso en el cálculo de la maximización de la derivada direccional
- Sesión 10: Resolver los extremos relativos de una función de varias variables, utilizando el criterio de las segundas derivadas parciales. Evaluar los conocimientos mediante un examen parcial.
- Sesión 11: Resolver problemas de optimización sin y con restricciones con el uso de los multiplicadores de Lagrange. Presentar el proyecto
- Sesión 12: Evaluar y utilizar una integral iterada para hallar el área de una región plana y el volumen en coordenadas cartesianas
- Sesión 13: Expresar y evaluar las integrales dobles en coordenadas polares para áreas y volúmenes
- Sesión 14: Entender la definición de sucesiones convergentes y serie infinita geométricas, tipo p y armónicas.
- Sesión 15: Entender el uso del criterio del cociente, así como la definición de una serie de potencia y hallar una serie de Taylor o de Maclaurin para una función
- Sesión 16: Evaluar los conocimientos mediante un examen final

5. COMPETENCIAS Y CRITERIOS DE DESEMPEÑO

Competencias Especificas ABET - COMPUTACION

 Analizar un problema computacional complejo y aplicar principios de computación y otras disciplinas relevantes para identificar soluciones.

Competencias Generales ABET - COMPUTACION

- Comunicarse eficazmente en una variedad de contextos profesionales.
- Funcionar efectivamente como miembro o líder de un equipo comprometido en actividades apropiadas a la disciplina del programa.

Competencias Especificas ABET - INGENIERIA

• La capacidad de identificar, formular y resolver problemas complejos de ingeniería mediante la aplicación de principios de ingeniería, ciencias y matemáticas.

Competencias Generales ABET - INGENIERIA

- La capacidad de comunicarse efectivamente con diversos tipos de audiencias.
- La capacidad de funcionar de manera efectiva en un equipo cuyos miembros conjuntamente brindan liderazgo, crean un entorno colaborativo e inclusivo, establecen metas, planifican tareas y cumplen objetivos.

6. RESULTADOS DE APRENDIZAJE

- Calcular y analizar funciones de varias variables relacionadas al campo de la ciencia, ingeniería y computación.
- Describir de forma eficiente el proceso de desarrollo del problema propuesto.
- Trabajar de manera colaborativa y eficiente para lograr el desarrollo del problema planteado
- Calcular y analizar funciones de varias variables relacionadas al campo de la ciencia, ingeniería y computación.
- Describir de forma eficiente el proceso de desarrollo del problema propuesto.
- Trabajar de manera colaborativa y eficiente para lograr el desarrollo del problema planteado

7. TEMAS

1. Vectores y geometría del espacio

- 1.1 Vectores en 2D y 3D
- 1.2 Producto escalar y vectorial de dos vectores 2D y 3D
- 1.3 Rectas y planos en el espacio

2. Derivadas parciales

- 2.1 Diferenciales, Regla de la Cadena
- 2.2 Derivadas direccionales y gradientes
- 2.3 Extremos de funciones de dos variables: Método de multiplicadores de Lagrange

3. Integrales dobles

- 3.1 Integrales dobles en coordenadas cartesianas
- 3.2 Integrales dobles en coordenadas polares

4. Series

- 4.1 Sucesiones y convergencia
- 4.2 Criterio del cociente para convergencia de Series de Taylor y de Maclaurin

8. PLAN DE TRABAJO

8.1 Metodología

El curso está enfocado en desarrollar capacidades de resolución de problemas, razonamiento y comunicación de los estudiantes. Con este fin se desarrolla una

metodología activa y participativa con uso racional de la tecnología y espacios de trabajo colaborativo. Las actividades diseñadas para cada sesión van desde una aproximación intuitiva hacia altos niveles de demanda cognitiva.

Las sesiones son de dos tipos: Una sesión de conceptos, desarrollada en un ambiente plenario, y una sesión de afianzamiento de conceptos desarrollada en aula. El alumno contará adicionalmente con espacios para el acompañamiento académico.

8.2 Sesiones de teoría

El curso está enfocado en desarrollar capacidades de resolución de problemas, razonamiento y comunicación de los estudiantes. Con este fin se desarrolla una metodología activa y participativa con uso racional de la tecnología y espacios de trabajo colaborativo. Las actividades diseñadas para cada sesión van desde una aproximación intuitiva hacia altos niveles de demanda cognitiva.

Las sesiones son de dos tipos: Una sesión de conceptos, desarrollada en un ambiente plenario, y una sesión de afianzamiento de conceptos desarrollada en aula. El alumno contará adicionalmente con espacios para el acompañamiento académico.

9. SISTEMA DE EVALUACIÓN

El curso consta de los siguientes espacios de evaluación:

	Teoría
Evaluación	TEORÍA 100% 1 Examen Parcial (15%) EP
	1 Examen Final (35%) EF
	1 Proyecto (10%) P
	2 Promedios de evaluación continua (40%) C
	100%

10. REFERENCIAS BIBLIOGRÁFICAS

Básica:

Stewart, J. (2012). Cálculo de varias variables. Trascendentes tempranas (7th ed.) México D.F., México: Cengage Learning Latin America.

Complementaria:

Zill, D. W. W. S. G. (2011). Matemáticas 3 Cálculo de varias variables (4th ed.). New York, United States: McGraw-Hill Education.

Larson, R. (2018). MATEMÁTICAS III. cálculo de varias variables (1 ed.). México D.F., México: Cengage Learning Latin America..

Stewart, J. (2017). Precálculo Matemáticas para el Cálculo. Bachillerato / 7 ED. (10th ed.). México D.F., México: Cengage.

