CSCI 305 Assignment 1

Isaac Boaz

October 11, 2023

Problem 1

1	for i = 1 to n	cost	$_{ m time}$
2	i = 1	C_1	n+1
3	$\mathbf{while} \ \mathbf{j} \leq \mathbf{i} \ \mathbf{do}$	C_2	n
4	j = 2.5 * j	C_3	$(n+1)\log_{2.5}$
-	j = 2.0 · j	C_4	$n \log_{2.5} n$

Detailed Runtime:

$$C_1 \cdot (n+1) + C_2 \cdot n + C_3 \cdot \lceil (n+1) \log_{2.5} \rceil + C_4 \cdot \lceil n \log_{2.5} n \rceil$$

Asymptotic Runtime:

$$\Theta(n \log n)$$

Problem 2

0	def factorial(n):	cost	$_{ m time}$
1	x = 1	C_1	1
2	while $n > 1$:	C_2	$n \\ n-1 \\ n-1$
3	x = x * n	C_3	n-1
4	n = n - 1	C_4	n-1 n
5	return x	C_5	n

Detailed Runtime:

$$C_1 \cdot 1 + C_2 \cdot n + C_3 \cdot (n-1) + C_4 \cdot (n-1) + C_5 \cdot n$$

Asymptotic Runtime:

O(n)

Problem 3

```
worst
    def Binary_InsertionSort(A):
                                                       n
                                                               n
         for j = 2 to n:
1
                                                              n-1
              key = A[j]
2
3
              // insert A[j] into the
                   \mathbf{sorted} \ \ \mathsf{sequence} \ \ A \, [\, 1 \ldots j \, -1]
                                                      n-1
                                                              n-1
4
              left = 1
                                                      n-1
              right = j - 1
5
                                                      \log_2
              while right > left:
7
                   mid = floor((left + right))
                   ) / 2)
if key > A[mid]:
left = mid + 1
8
9
10
                   else right = mid
              if \text{ key} > A[left]:
11
12
                   left = left + 1
13
              for i = j downto (left + 1):
                   A[i] = A[i - 1]
14
15
              A[left] = key
```

1. Note that regardless of input, the for loop will always run n times, with the contents of the loop running n-1 times.

Worst Case occurs when the array is reverse sorted. The while loop will run $\log_2 j$ times, and the for loop will run j-1 times.

$$\sum_{j=2}^{n} log_2(j)$$

Worst Case occurs when the array is sorted in reverse order, as the left and right bounds will need to be updated $\log_2 j$ times.

Best Case occurs when the array is already sorted, as the left and right bounds will only need to be updated once.

2. Worst Case for the *while* block is the same in the best and worst case scenario, running $\lceil \log_2 j \rceil$ times.