U.S. Application No.: 10/540,028

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

1. (withdrawn): A curable composition for use in obtaining a hydrothermally resistant

electroconductive cured product which has a Tg of 160°C or more and a bending strength of 30

MPa or more in accordance with JIS K 6911, the composition comprising:

(A) a hydrocarbon compound having a plurality of carbon-carbon double bonds, and

(B) a carbonaceous material,

wherein the hydrocarbon compound (A) having a plurality of carbon-carbon double

bonds is a polymer wherein the ratio of a monomer unit having a side-chain containing a carbon-

carbon double bond and saturated main chain is 60 mole % or more, based on the total number of

monomer units constituting the polymer, and wherein the hydrocarbon compound (A) having a

plurality of carbon-carbon double bonds is at least one kind selected from the group consisting of

1,2-polybutadiene and 3,4-polyisoprene.

2. (canceled).

3. (canceled).

4. (canceled).

5. (canceled).

6. (canceled).

7. (canceled).

2

U.S. Application No.: 10/540,028

8. (withdrawn): A curable composition according to claim 1, wherein the hydrocarbon compound (A) having a plurality of carbon-carbon double bonds is at least one kind selected from the group consisting of the compounds which have been obtained by hydrogenating a portion of the carbon-carbon double bonds in the side chain of 1,2-polybutadiene and 3,4-polyisoprene.

9. (withdrawn): A curable composition according to claim 1, wherein the hydrocarbon compound (A) having a plurality of carbon-carbon double bonds is a blend comprising:

at least one kind selected from the group consisting of the compounds which have been obtained by hydrogenating a portion of the carbon-carbon double bonds in the side chain of 1,2-polybutadiene and/or 3,4-polyisoprene; and

at least one kind selected from the group consisting of 1,2-polybutadiene and/or 3,4-polyisoprene.

10. (withdrawn): A curable composition according to claim 1, wherein the hydrocarbon compound (A) having a plurality of carbon-carbon double bonds comprises:

5 to 80 mass % of at least one kind selected from the group consisting of the compounds which have been obtained by hydrogenating a portion of the carbon-carbon double bonds in the side chain of 1,2-polybutadiene and/or 3,4-polyisoprene; and

20 to 95 mass % of at least one kind selected from the group consisting of 1,2-polybutadiene and/or 3,4-polyisoprene.

11. (withdrawn): A curable composition according to claim 1, wherein the carbonaceous material (B) is selected from the group consisting of, or a combination of at least two kinds of:

U.S. Application No.: 10/540,028

natural graphite, artificial graphite, expanded graphite, carbon black, carbon fiber, vapor-phase grown carbon fiber, and carbon nanotube.

12. (withdrawn): A curable composition according to claim 1, wherein the carbonaceous material (B) has a powder electric resistivity in the right angle direction that is 0.1 Ω cm or less with respect to the applied pressure direction in a state where the carbonaceous material is pressed so as to provide a bulk density of the carbonaceous material of 1 g/cm³.

- 13. (withdrawn): A curable composition according to claim 1, wherein the carbonaceous material (B) contains 0.05 mass % to 10 mass % of boron.
- 14. (withdrawn): A curable composition according to claim 1, which further contains a reactive monomer (C).
- 15. (withdrawn): A hydrothermally resistant electroconductive cured product which has been obtained by curing the curable composition according to claim 1.
- 16. (previously presented): A hydrothermally resistant electroconductive cured product which has a Tg of 160°C or more, and a bending strength of 30 MPa or more in accordance with JIS K 6911, by curing a curable composition comprising:
 - (A) a hydrocarbon compound having a plurality of carbon-carbon double bonds, and
 - (B) a carbonaceous material,

wherein the hydrocarbon compound (A) having a plurality of carbon-carbon double bonds is a polymer wherein the ratio of a monomer unit having a side-chain containing a carbon-carbon double bond and saturated main chain is 60 mole % or more, based on the total number of monomer units constituting the polymer, and wherein the hydrocarbon compound (A) having a

U.S. Application No.: 10/540,028

plurality of carbon-carbon double bonds is at least one kind selected from the group consisting of 1,2-polybutadiene and 3,4-polyisoprene.

17. (currently amended): A hydrothermally resistant electroconductive cured product according to claim—15_16, which has a rate of mass change in the range of +1.5 % to -1.5 %, when a test piece of the cured product having a size of 30 mm × 30 mm × 3 mm is subjected to a hydrothermal resistance test at 180°C, for 168 hours.

18. (previously presented): The hydrothermally resistant electroconductive cured product according to claim 16 in the form of a hydrothermally resistant molded product wherein at least one flow channel for a gas is formed on one side or both sides thereof.

19. (previously presented): The hydrothermally resistant electroconductive cured product according to claim 16 in the form of a fuel cell separator wherein at least one flow channel for a gas is formed on one side or both sides thereof.

20. (currently amended): A fuel cell separator formed from the hydrothermally resistant electroconductive product according to claim 19, which has a Tg of 160°C or more, and a bending strength of 30 MPa or more in accordance with JIS K 6911; and has a rate of mass change in the range of +1.5 % to -1.5 %, when a test piece of the fuel cell separator having a size of 30 mm × 30 mm × 3 mm is subjected to a hydrothermal resistance test at 180°C, for 168 hours.

21. (original): A process for producing the hydrothermally resistant molded product according to claim 18, wherein the molded product is produced by any of compression molding, transfer molding, injection molding or injection compression molding.

U.S. Application No.: 10/540,028

22. (original): A process for producing the fuel cell separator according to claim 19, wherein the fuel cell separator is produced by any of compression molding, transfer molding, injection molding or injection compression molding.

- 23. (withdrawn): A curable composition for the fuel cell separator, which comprises the curable composition according to claim 1.
 - 24. (canceled).
 - 25. (canceled).
- 26. (withdrawn): The curable composition according to claim 1 further comprising a curing initiator.
- 27. (withdrawn): The curable composition according to claim 26, wherein the curing initiator is a peroxide curing agent.