Chapter 8 : Eigenvalues and eigenvectors

- **Oefinition.** Let V be a vector space over $\mathbb F$ and let $T:V\to V$ be a linear operator. A scalar $\lambda\in\mathbb F$ is said to be an **eigenvalue** of T if there is a nonzero vector $v\in V$ such that $T(v)=\lambda v$.
- ② We say that v is an **eigenvector** of T with eigenvalue λ .
- **③** Let A be a $n \times n$ matrix over \mathbb{F} . An eigenvalue and eigenvector of A are an eigenvalue and eigenvector of the linear map $T_A : \mathbb{F}^n \to \mathbb{F}^n$. given by $T_A(x) = Ax, \ x \in \mathbb{F}^n$, i.e., $\lambda \in \mathbb{F}$ is an eigenvalue of A if there exists a nonzero vector $x \in \mathbb{F}^n$ with $Ax = \lambda x$.
- **Example.** Let V be the real vector space of all smooth real valued functions on \mathbb{R} . Let $D:V\to V$ be the derivative map. The function $f(x)=e^{\lambda x}$ is an eigenvector with eigenvalue λ since $D(e^{\lambda x})=\lambda e^{\lambda x}$.
- **Example.** Let A be a diagonal matrix with scalars μ_1, \ldots, μ_n on the diagonal. We write this as $A = \text{diag}(\mu_1, \ldots, \mu_n)$.
- Then $Ae_i = \mu_i e_i$ and so $\{e_1, \dots, e_n\}$ are eigenvectors of A with (corresponding) eigenvalues μ_1, \dots, μ_n .

Eigenvalues and eigenvectors of linear operators

1 Let $T: V \to V$ be linear and let $\lambda \in \mathbb{F}$. It can be checked that

$$E_{\lambda} = \{ v \in V : T(v) = \lambda v \}$$

is a subspace of V. If $V_{\lambda} \neq \{0\}$, then λ is an eigenvalue of T.

- ② Any nonzero vector in V_{λ} is an eigenvector with eigenvalue λ .
- **1** In this case we say that E_{λ} is the **eigenspace** of the eigenvalue λ .
- **1 Theorem.** Let $T: V \to V$ be a linear operator. Let $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$ be distinct eigenvalues of T and let v_1, \ldots, v_n be corresponding eigenvectors.
- Then v_1, v_2, \ldots, v_n are linearly independent. **Proof.** Use induction on n., The case n = 1 is clear.
- Let n > 1. Assume $a_1v_1 + a_2v_2 + \cdots + a_nv_n = 0$. • Apply T to get $a_1\lambda_1v_1 + \cdots + a_n\lambda_nv_n = 0$. (1)
- Multiply $a_1v_1 + a_2v_2 + \cdots + a_nv_n = 0$ by λ_1 to get

$$a_1\lambda_1v_1 + a_2\lambda_1v_2 + \dots + a_n\lambda_1v_n = 0.$$
 (2)

- Hence $a_2(\lambda_2 \lambda_1)v_2 + \cdots + a_n(\lambda_n \lambda_1)v_n = 0$. Since $\lambda_1, \lambda_2, \dots, \lambda_n$ are distinct we get by induction, that $a_2 = \cdots = a_n = 0$. And now we get $a_1 = 0$.
- distinct we get by induction, that $a_2 = \cdots = a_n = 0$. And now we get $a_1 = 0$ Example. The functions $\{e^{\lambda_1 x}, \dots, e^{\lambda_n x}\}$ where $\lambda_1, \dots, \lambda_n$ are distinct real

numbers, are linearly independent as $D(e^{ax}) = ae^{ax}$ for all $a \in \mathbb{R}$.

Diagonalizable matrices and linear operators

- Definition. Let V be a f.d.v.s. over F and let T: V → V be a linear operator. We say that T is diagonalizable if there exists a basis of V consisting of eigenvectors of T.
- ② If $B = (v_1, \dots, v_n)$ is an ordered basis with $T(v_i) = \lambda_i v_i, \ \lambda_i \in \mathbb{F}$ then

$$M_B^B(T) = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

- **Definition.** An $n \times n$ matrix A over \mathbb{F} is said to be diagonalizable if $T_A : \mathbb{F}^n \to \mathbb{F}^n$, given by $T_A(x) = Ax$, $x \in \mathbb{F}^n$, is diagonalizable.
- **Proposition.** An $n \times n$ matrix A over \mathbb{F} is diagonalizable if and only if $P^{-1}AP$ is a diagonal matrix, for some invertible matrix P over \mathbb{F} .
- **1** In that case, the columns of P are eigenvectors of A and the ith diagonal entry of $P^{-1}AP$ is the eigenvalue associated with the ith column of P.
- **9 Proof.** Let A be diagonalizable and let $\{v_1, \ldots, v_n\}$ be a basis of \mathbb{F}^n with $T_A(v_i) = Av_i = \lambda_i v_i$.
- Let $P = [v_1 \ v_2 \dots v_n]$ and $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Then

$$AP = A[v_1 \ v_2 \dots v_n] = [\lambda_1 v_1 \ \lambda_2 v_2 \dots \lambda_n v_n] = PD \implies P^{-1}AP = D.$$

Diagonalizable matrices and linear operators

- Suppose $P^{-1}AP = D$, where D is diagonal. Then AP = PD.
- ② Therefore the *i*th column of P is an eigenvector with eigenvalue λ_i .
- **Operation.** Let A be a $n \times n$ matrix over \mathbb{F} . We define the **characteristic** polynomial P_A of A to be $P_A(t) = \det(tI A)$.
- $P_A(t)$ is a monic polynomial of degree n, i.e., the coefficient of t^n is 1.
- **Our Proposition.** If $A = PBP^{-1}$ then $P_A(t) = P_B(t)$.
- Proof. We have

$$P_A(t) = \det(tI - PBP^{-1}) = \det(P(tI - B)P^{-1})$$

= $\det(P)\det(tI - B)\det(P^{-1}) = P_B(t)$.

- **Proposition.** (1) Eigenvalues of a square matrix A are the roots of $P_A(t)$ lying in \mathbb{F} . (2) For a scalar $\lambda \in \mathbb{F}$, $V_{\lambda} = \text{nullspace of } A \lambda I$.
- **Proof.** (1) $\lambda \in \mathbb{F}$ is an eigenvalue of $A \iff Av = \lambda v$ for some nonzero $v \iff (A \lambda I)v = 0$ for some nonzero v.
- **1** (2) $V_{\lambda} = \{ v \mid Av = \lambda v \} = \{ v \mid (A \lambda I)v = 0 \} = \mathcal{N}(A \lambda I).$

Computation of eigenvalues and eigenspaces

Example. Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. To find the eigenvalues of A we solve:

$$\det(\lambda I - A) = \det \left[\begin{array}{cc} \lambda - 1 & -2 \\ 0 & \lambda - 3 \end{array} \right] = (\lambda - 1)(\lambda - 3) = 0.$$

- Hence the eigenvalues of A are 1 and 3.
- 3 Let us calculate the eigenspaces V_1 and V_3 . By definition

$$V_1 = \{ v \mid (A - I)v = 0 \} \text{ and } V_3 = \{ v \mid (A - 3I)v = 0 \}.$$

1 Then
$$\begin{bmatrix} -2x+2y \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
. Hence $x = y$. Thus $E_3 = L(\{(1,1)\})$.

Eigenvalues and eigenspaces of the rotation matrix

- **1 Example.** We use the notation $i = \sqrt{-1}$.
- **2** Let $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, where $\theta \neq 0, 2\pi$. Now

$$P_A(t) = \det \begin{bmatrix} t - \cos \theta & \sin \theta \\ -\sin \theta & t - \cos \theta \end{bmatrix}$$
$$= (t - \cos \theta)^2 + \sin^2 \theta$$
$$= (t - e^{i\theta})(t - e^{-i\theta}),$$

- 3 So, the real matrix A has no eigenvalues and thus no eigenvectors.
- **1** Note that A represents counter clockwise rotation by θ .
- **5** But as a complex matrix A has two distinct eigenvalues $e^{i\theta}$ and $e^{-i\theta}$.
- **3** An eigenvector corresponding to $e^{i\theta}$ is $(1, -i)^t$ and an eigenvector corresponding to $e^{-i\theta}$ is $(-i, 1)^t$.

Computation of powers of a matrix using eigenvalues

- **Solution** Example. Find A^8 , where $A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$. The eigenvalues of A are 2, 1.

- Then $P^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$ and $A = PDP^{-1}$.
- **9** We find A^8 using the eigenvalues.

$$A^{8} = (PDP^{-1})^{8} = (PDP^{-1}) \cdots (PDP^{-1}) = PD^{8}P^{-1}$$

$$= \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2^{8} & 0 \\ 0 & 1^{8} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 256 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 766 & -765 \\ 510 & -509 \end{bmatrix}.$$

Algebraic and geometric multiplicity of eigenvalues

- **1** Let $T: V \to V$ be a linear transformation of a fdvs over \mathbb{F} .
- **②** We define the **characteristic polynomial** $P_T(t)$ of T to be $P_A(t)$, where $A = M_B^B(T)$ wrt an ordered basis of V.
- **a** as similar matrices have same characteristic polynomials it is immaterial which ordered basis *B* we take.
- Let f(x) be a polynomial with coefficients in \mathbb{F} .
- **1** Let $\mu \in \mathbb{F}$ be a root of f(x). Then $(x \mu)$ divides f(x).
- **•** The **multiplicity** of the root μ is the largest positive integer k such that $(x \mu)^k$ divides f(x) but $(x \mu)^{k+1}$ does not.
- **①** Let V be a fdvs over $\mathbb F$ and let $T:V\to V$ be a linear operator.
- **3** Let μ be an eigenvalue of T, **geometric multiplicity** of $\mu := \dim V_{\mu}$.
- **1 algebraic multiplicity** of $\mu :=$ multiplicity of μ as a root of $P_T(t)$.

Geometric multiplicity \leq algebraic multiplicity

- **Theorem.** Let T be a fdvs over \mathbb{F} . Then the geometric multiplicity of an eigenvalue $\mu \in \mathbb{F}$ of T is less than or equal to the algebraic multiplicity of μ .
- **Proof.** Suppose that the algebraic multiplicity of μ is k and the geometric multiplicity of μ is g. Hence V_{μ} has a basis of g eigenvectors v_1, v_2, \ldots, v_g . We can extend this basis of V_{μ} to an ordered basis of V say $B = (v_1, v_2, \ldots, v_g, \ldots, v_g)$. Now

$$M_B^B(T) = \begin{bmatrix} \mu I_g & D \\ \hline & 0 & C \end{bmatrix}$$

- **3** D is an $g \times (n-g)$ matrix and C is an $(n-g) \times (n-g)$ matrix.
- From the form of $M_B^B(T)$, $(\lambda \mu)^g$ divides $\det(A \lambda I)$. Thus $g \leq k$.

Criterion for diagonalizability

- Theorem. Let T: V → V be a linear operator, where V is a n-dimensional vector space over F. Then (1) T is diagonalizable ←⇒ ∑_λ dim V_λ = dim V.
 (2) Assume F = C. Then T is diagonalizable iff the algebraic and geometric multiplicities are equal for each eigenvalue of T.
- **2 Proof.** (1) Suppose that T is diagonalizable. Let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of T. Let B_i be a basis of V_{λ_i} for $i = 1, 2, \ldots, k$.
- **3** Note that $V_{\lambda} \cap V_{\mu} = (o)$ for $\lambda \neq \mu$.
- **①** Therefore $B_1 \cup B_2 \cup \cdots \cup B_k$ is a basis of V having eigenvectors of T.
- **5** (2) Let $\mathbb{F} = \mathbb{C}$. Let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of T.
- **1** By the Fundamental theorem of Algebra, $P_T(t) = \prod_{i=1}^k (t \lambda_i)^{m_i}$, where m_i is the algebraic multiplicity of λ_i .
- **②** Since $\sum_{i} m_{i} = n$, and m_{i} =geometric multiplicity of λ_{i} , the result follows.
- **SExample.** $A = \begin{bmatrix} 3 & 0 & 0 \\ -2 & 4 & 2 \\ -2 & 1 & 5 \end{bmatrix}$, $det(\lambda I A) = (\lambda 3)^2(\lambda 6)$.
- **9** Hence eigenvalues of A are 3 and 6. The eigenvalue $\lambda = 3$ has **algebraic multiplicity** 2 and the algebraic multiplicity of 6 is one.

Geometric and algebraic multiplicity of eigenvalues

• Let us find the eigenspaces V_3 and V_6 .

$$\lambda=3:A-3I=\begin{bmatrix}0&0&0\\-2&1&2\\-2&1&2\end{bmatrix}.\quad \text{Hence } \operatorname{rank}(A-3I)=1.$$
 Therefore nullity $(A-3I)=2$. By solving the system $(A-3I)v=0$, we find

- that $\mathcal{N}(A-3I) = V_3 = L(\{(1,0,1)^t, (1,2,0)^t\}).$
- **3** So the geometric multiplicity of $\lambda = 3$ is 2.

•
$$\lambda = 6: A - 6I = \begin{bmatrix} -3 & 0 & 0 \\ -2 & -2 & 2 \\ -2 & 1 & -1 \end{bmatrix}$$
. Hence $rank(A - 6I) = 2$.

- Therefore dim $V_6 = 1$. We can show that $\{(0,1,1)^t\}$ is a basis of V_6 .
- **1** Therefore the algebraic and geometric multiplicities of $\lambda = 6$ are one.

• Let
$$P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
, then $P^{-1}AP = \text{diag}(3,3,6)$.

- **Example.** Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Then $\det(\lambda I A) = (\lambda 1)^2$.
- **9** Show that dim $E_1 = 1$. Hence A is not diagonalizable.

Orthogonally and unitarily diagonalizable matrices

- **Q** Recall that a complex $n \times n$ matrix A is **diagonalizable** if ithere is an invertible matrix $P \in \mathbb{C}^{n \times n}$ so that $P^{-1}AP = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$.
- ② An $n \times n$ real matrix is called **orthogonal** if the column vectors of A form an orthonormal basis of \mathbb{R}^n . Equivalently $A^tA = I$.
- **3** A complex $n \times n$ matrix is called **unitary** if the column vectors of A form an orthonormal basis of \mathbb{C}^n . Equivalently $A^*A = I$.
- **Operation.** A matrix $A \in \mathbb{C}^{n \times n}$ is called **unitarily diagonalizable** if there is an orthonormal basis of \mathbb{C}^n consisting of eigenvectors of A.
- **Definition.** A real $n \times n$ matrix A is called **orthogonally diagonalizable** if there is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A.
- **Spectral Theorem for real matrices.** $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix $\iff A$ is orthogonally diagonalizable.
- **1 Theorem.** (a) $A \in \mathbb{R}^{n \times n}$ is orthogonally diagonalizable $\implies A = A^t$.
- **1** (b) $A \in \mathbb{C}^{n \times n}$ is unitarily diagonalizable $\implies A^*A = AA^*$.
- **9 Proof.** (a) Let A be a real $n \times n$ orthogonally diagonalizable matrix.
- **②** Let v_1, v_2, \ldots, v_n be an orthonormal basis of \mathbb{R}^n with $Av_i = \lambda_i v_i$, $\lambda_i \in \mathbb{R}$ and let $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$.

Normal and symmetric matrices

- Let P be the $n \times n$ matrix with i^{th} column v_i . Then AP = PD.
- ② Since the v_i are orthonormal we have $P^tP = I$. Therefore

$$A = PDP^t$$
 and $A^t = PD^tP^t$.

- 3 Since D is a diagonal matrix we have $D = D^t$ and hence $A = A^t$.
- **1** (b) Let A be a complex $n \times n$ unitarily diagonalizable matrix.
- **1** Let v_1, v_2, \ldots, v_n be an orthonormal basis of \mathbb{C}^n with $Av_i = \lambda_i v_i$, $\lambda_i \in \mathbb{C}$ and let $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$.
- **1** Let P be the $n \times n$ matrix with i^{th} column v_i . Then AP = PD.
- **②** Since the v_i are orthonormal we have $P^*P = I$. Thus

$$A = PDP^*$$
 and $A^* = PD^*P^*$.

- Therefore $AA^* = (PDP^*)(PD^*P^*) = PDD^*P^*$ and $A^*A = PD^*DP^*$.
- 9 Since D is a diagonal matrix, $D^*D = DD^*$ and therefore $AA^* = A^*A$.
- **a** A square complex matrix A is called **normal** if $A^*A = AA^*$.
- **1** A square complex matrix is called Hermitian (resp. skew Hermitian) if $A^* = A$ (resp. $A^* = -A$. Note that a real symmetric matrix is Hermitian and Hermitian matrices are normal.

Statement of the Spectral Theorems

- **Spectral Theorem for real symmetric matrices.** Any symmetric real $n \times n$ matrix A is orthogonally diagonalizable. In other words, there is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A.
- **Spectral Theorem for normal matrices.** Let A be an $n \times n$ complex normal matrix. Then there is an orthonormal basis of \mathbb{C}^n consisting of eigenvectors of A. In other words, A is unitarily diagonalizable.
- We shall prove the Spectral Theorem for Hermitian matrices first and then deduce the one for normal matrices.
- **Theorem.** The eigenvalues of a Hermitian matrix are real.
- **1** Let A be a Hermitian matrix. Then for any $v \in \mathbb{C}^n$

$$(v^*Av)^* = v^*A^*v = v^*Av.$$

1 Therefore v^*Av is a real number. Let λ be an eigenvalue of A with eigenvector v. Then $v^*Av = v^*(\lambda v) = \lambda (v^*v) = \lambda ||v||^2 \implies \lambda \in \mathbb{R}$.

Self-adjoint operators on inner product spaces

- Though a proof of the spectral theorem for self-adjoint matrices can be given working only with matrices, a coordinate free approach is more intuitive.
- We now develop a coordinate free version of the concept of a self-adjoint matrix. The following definition covers both the real and complex cases.
- **Operation.** Let V be a finite dimensional inner product space over \mathbb{F} . A linear operator $T:V\to V$ is said to be **self-adjoint** if

$$\langle x, T(y) \rangle = \langle T(x), y \rangle, x, y \in V.$$

- **Example.** Let $A \in \mathbb{R}^{n \times n}$ be symmetric and $T_A : \mathbb{R}^n \to \mathbb{R}^n$ be the associated linear operator. Then T_A is self-adjoint.
- **§** Proof. Let $x, y \in \mathbb{R}^n$. Then $\langle x, Ay \rangle = x^t Ay = x^t A^t y = \langle Ax, y \rangle$.
- **⑤** Exercise. Prove: if *A* is Hermitian then $T_A : \mathbb{C}^n \to \mathbb{C}^n$ is self-adjoint.

Characterization of self-adjoint operators

- **Theorem.** Let V be a finite dimensional inner product space over \mathbb{F} and let $T:V\to V$ be a linear operator. Then T is self-adjoint iff $M_B^B(T)$ is self-adjoint for every ordered orthonormal basis B of V.
- **2 Proof.** Let $B = (v_1, \dots, v_n)$ be an ordered orthonormal basis of V
- ③ Suppose that T is self-adjoint and $A = (a_{ij}) = M_B^B(T)$.. Then $T(v_j) = \sum_{k=1}^n a_{kj} v_k$. So $\langle T(v_j), v_i \rangle = \langle \sum_{k=1}^n a_{kj} v_k, v_i \rangle = a_{ij}$.
- Therefore $a_{ij} = \langle T(v_j), v_i \rangle = \langle v_j, T(v_i) \rangle = \langle v_j, \sum_{k=1}^n a_{ki} v_k \rangle = \overline{a_{ji}}$.
- **②** Conversely suppose that $A = (a_{ij}) = M_B^B(T)$ is self-adjoint. Then $\langle T(v_j), v_i \rangle = \langle v_j, T(v_i) \rangle$. Let $x = \sum_{j=1}^n a_j v_j$ and $y = \sum_{i=1}^n b_i v_i$.

$$\langle x, T(y) \rangle = \langle \sum_{j} a_{j} v_{j}, \sum_{i} b_{i} T(v_{i}) \rangle = \sum_{j,i} \overline{a_{j}} b_{i} \langle v_{j}, T(v_{i}) \rangle,$$
$$\langle T(x), y \rangle = \langle \sum_{j} a_{j} T(v_{j}), \sum_{i} b_{i} v_{i} \rangle = \sum_{j,i} \overline{a_{j}} b_{i} \langle T(v_{j}), v_{i} \rangle.$$

Therefore T is self-adjoint.

Spectral Theorem for self-adjoint operators

- **Quantification** (Spectral Theorem for Self-Adjoint Operators) Let V be a finite dimensional inner product space over \mathbb{F} and let $T:V\to V$ be a self-adjoint linear operator. Then there exists an orthonormal basis of V consisting of eigenvectors of T.
- **Proof.** By the fundamental theorem of algebra and the fact that Hermitian matrices have only real eigenvalues, there exists $\lambda \in \mathbb{R}$ and a unit vector $v \in V$ with $T(v) = \lambda v$. Put $W = L(\{v\})^{\perp}$.
- Claim. w ∈ W implies T(w) ∈ W, and T: W → W is self-adjoint.
 Proof. ⟨T(w), v⟩ = ⟨w, T(v)⟩ = ⟨w, λv⟩ = λ⟨w, v⟩ = 0, since w ∈ W.
- Therefore $T(w) \in W$.
- **3** By induction on dimension, there is an orthonormal basis B of W consisting of eigenvectors of $T: W \to W$. Hence $\{v\} \cup B$ is an orthonormal basis of V.
- **Spectral Theorem for Hermitian matrices** Let A be an $n \times n$ Hermitian matrix with eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Set $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Then there exists an $n \times n$ unitary matrix U such that $U^*AU = D$.
- **Spectral Theorem for Real Symmetric matrices** Let A be a $n \times n$ real symmetric matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$. Set $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$.
- Then there exists an $n \times n$ real orthogonal matrix S such that $S^t AS = D$.

Eigenspaces of self-adjoint matrices are mutually $oldsymbol{\perp}$

- **Proposition.** Let T be a self-adjoint operator on a finite-dimensional inner product space V. Let u,v be eigenvectors of T with distinct eigenvalues λ and μ respectively. Then $u \perp v$.
- **2 Proof.** As T is self-adjoint, $\lambda, \mu \in \mathbb{R}$. Therefore,

$$(\lambda - \mu)\langle u, v \rangle = \langle \lambda u, v \rangle - \langle u, \mu v \rangle$$
$$= \langle Tu, v \rangle - \langle u, Tv \rangle$$
$$= \langle u, Tv \rangle - \langle u, Tv \rangle = 0.$$

- **3** Since $\lambda \neq \mu$, u and v are mutually perpendicular.
- **Theorem.** Let T be a self-adjoint linear operator on a finite dim inner product space V. Let $\lambda_1, \ldots, \lambda_r$ be the distinct eigenvalues of T. Then

$$V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_r}$$
 and dim $V = \sum_{i=1}^r \dim E_{\lambda_i}$.

9 Proof. As T is self-adjoint, V has an orthonormal basis of eigenvectors of T .

- Let $B_i = \{v_{i1}, \dots, v_{in_r}\}$ be an orthonormal basis for the eigenspace V_{λ_i} .
- Thus $V = V_{\lambda_1} + \cdots + V_{\lambda_r}$. Let $v_1 + v_2 + \cdots + v_r = 0$ where $v_i \in V_{\lambda_i}$.
- **3** Since eigenvectors corresponding to distinct eigenvalues are linearly independent, each $v_i = 0$. Therefore

$$V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_r}$$
 and dim $V = \sum_{i=1}^r \dim E_{\lambda_i}$.

Diagonalization of a real symmetric matrix

- **Example.** Consider the real symmetric matrix $A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{bmatrix}$.
- ② Solve $det(\lambda I A) = 0$. Check that the eigenvalues of A are 3, 3, -3.
- **3** The eigenvectors for $\lambda = 3$ are in the null space of $\mathcal{N}(A 3I)$.
- They are are the nonzero solutions of

$$\begin{bmatrix} -2 & 2 & -2 \\ 2 & -2 & 2 \\ -2 & 2 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

1 Hence we obtain the single equation x - y + z = 0.

$$E_3 = \{(y-z,y,z) \mid y,z \in \mathbb{R}\} = L(\{u_1 = (0,1,1)^t, u_2 = (-1,1,2)^t\}).$$

1 Apply Gram-Schmidt process to get an orthonormal basis of E_3 :

$$v_1 = \left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^t$$
 and $v_2 = \left(-\sqrt{\frac{2}{3}}, -\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^t$.

- O Check that $\{v_3 = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})^t\}$ is an orthonormal basis of V_{-3} .
- **3** Set $S = [v_1, v_2, v_3]$ and D = diag(3, 3, -3). Then $S^t A S = D$.

Applications of spectral theorem to geometry

- **Operation.** Let V be a real inner product space with orthonormal basis $\{e_1, e_2, \dots, e_n\}$. Let $A = (a_{ii})$ be an $n \times n$ real matrix.
- **②** The **quadratic form** associated with A is $Q:V\to\mathbb{R}$ defined by :

$$Q_A(x) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j, \quad x_1, x_2, \dots, x_n \in \mathbb{R}$$

- **1** If $A = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ then $Q_A(x) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_n x_n^2$ is called a **diagonal form**.
- **9 Proposition.** Let $X = (x_1, x_2, \dots, x_n)^t$. Then $Q_A(x) = X^t A X$.
- **SExample.** (1) $A = \begin{bmatrix} 1 & 1 \\ 3 & 5 \end{bmatrix}$, $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Then

$$X^{t}AX = [x_1, x_2]A[x_1, x_2]^{t} = x_1^2 + 4x_1x_2 + 5x_2^2.$$

Theorem 5. Example. (2) Let $B = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$, $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Then

$$X^{t}BX = [x_{1}, x_{2}]\begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} = x_{1}^{2} + 4x_{1}x_{2} + 5x_{2}^{2}.$$

4 A and B give rise to same Q(x) and $B = \frac{1}{2}(A + A^t)$ is a symmetric matrix.

Examples of quadratic forms

9 Proposition. For any $n \times n$ matrix A and $X = (x_1, x_2, \dots, x_n)^t$,

$$X^t A X = X^t B X$$
 where $B = \frac{1}{2}(A + A^t)$.

- 2 So every quadratic form is associated with a symmetric matrix.
- **9 Proof.** X^tAX is a 1×1 matrix. Hence $(X^tAX)^t = X^tA^tX = X^tAX$.
- Therefore

$$X^{t}AX = \frac{1}{2}X^{t}AX + \frac{1}{2}X^{t}A^{t}X = X^{t}\frac{1}{2}(A + A^{t})X = X^{t}BX.$$

- **Theorem.** Let X^tAX be the quadratic form associated to a real symmetric matrix A. Let U be an orthogonal matrix so that $U^tAU = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$. Then $X^tAX = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$.
- **The Proof.** Since X = UY, $X^tAX = (UY)^tA(UY) = Y^t(U^tAU)Y$.
- Since $U^t A U = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$, we get

$$X^t A X = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2.$$

Diagonalization quadratic forms

- **Example.** Let us determine the orthogonal matrix U which reduces the quadratic form $Q(x) = 2x_1^2 + 4x_1x_2 + 5x_2^2$ to a diagonal form.
- We write $Q(x) = \begin{bmatrix} x_1, x_2 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = X^t A X$.
- The eigenvalues of $A = \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix}$ are $\lambda_1 = 1$ and $\lambda_2 = 6$.
- **9** An orthonormal set of eigenvectors for λ_1 and λ_2 is

$$u_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
 and $u_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

- Hence $U = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$. Check that $U^t A U = \operatorname{diag}(1,6)$.
- Now use X = UY to get the diagonal form $Y^t \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix} Y = y_1^2 + 6y_2^2$.

Identification of conic sections

lacktriangle A conic section is the locus in the Cartesian plane \mathbb{R}^2 of an equation

$$ax^2 + bxy + cy^2 + dx + ey + f = 0.$$

- 2 It can be proved that this equation represents one of the following:
- (i) the empty set (ii) single point (iii) one or two straight lines
- (iv) ellipse (v) hyperbola (vi) parabola.
- **5** We consider the second degree part $Q(x, y) = ax^2 + bxy + cy^2$
- This is a quadratic form. This determines the type of the conic.
- **②** We can write the matrix form after setting $x = x_1, y = x_2$:

$$[x_1, x_2] \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + [d, e] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + f = 0$$

- Write $A = \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix}$. Let $U = [u_1, u_2]$ be an orthogonal matrix where u_1 and u_2 are eigenvectors of A with eigenvalues λ_1 and λ_2 .
- Apply the change of variables $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = U \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ to diagonalize the quadratic form $Q(x_1, x_2)$ to the diagonal form $\lambda_1 y_1^2 + \lambda_2 y_2^2$.

Identification of conic sections

- The orthonormal basis $\{u_1, u_2\}$ determines new coordinate axes.
- ② The locus of the equation $X^tAX + BX + f = 0$

$$0 = Y^{t} \operatorname{diag}(\lambda_{1}, \lambda_{2})Y + (BU)Y + f$$

$$= Y^{t} \operatorname{diag}(\lambda_{1}, \lambda_{2})Y + (BU)Y + f$$

$$= \lambda_{1}y_{1}^{2} + \lambda_{2}y_{2}^{2} + [d, e][u_{1}, u_{2}] \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix} + f.$$

Example of an ellipse. We shall identify the conic section represented by

$$2x_1^2 + 4x_1x_2 + 5x_2^2 + 4x_1 + 13x_2 - 1/4 = 0.$$

- We have earlier diagonalized the quadratic form $2x_1^2 + 4x_1x_2 + 5x_2^2$.
- The associated symmetric matrix, the eigenvectors and eigenvalues are displayed in the equation of diagonalization :

$$U^{t}AU = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix} \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix}.$$

An Ellipse

• Set $t = 1/\sqrt{5}$. Then the new coordinates are defined by

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{cc} 2t & t \\ -t & 2t \end{array}\right] \left[\begin{array}{c} y_1 \\ y_2 \end{array}\right],$$

- ② This means $x_1 = t(2y_1 + y_2)$ and $x_2 = t(-y_1 + 2y_2)$
- Substitute these into the original equation to get

$$y_1^2 + 6y_2^2 - \sqrt{5}y_1 + 6\sqrt{5}y_2 - \frac{1}{4} = 0.$$

Omplete the square to write this as

$$(y_1 - \frac{1}{2}\sqrt{5})^2 + 6(y_2 + \frac{1}{2}\sqrt{5})^2 = 9.$$

- **1** This represents an ellipse with center $(\frac{1}{2}\sqrt{5}, -\frac{1}{2}\sqrt{5})$ in the y_1y_2 -plane.
- **1** The y_1 and y_2 axes are determined by the eigenvectors u_1 and u_2 .
- **Example.** Let us identify the locus of the equation

$$2x_1^2 - 4x_1x_2 - x_2^2 - 4x_1 + 10x_2 - 13 = 0.$$

We write the equation in matrix form as

$$\begin{bmatrix} x_1, x_2 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} -4, 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - 13 = 0.$$

A hyperbola

- Let $t = 1/\sqrt{5}$. The eigenvalues of A are $\lambda_1 = 3, \lambda_2 = -2$.
- ② An orthonormal set of eigenvectors is $\{u_1 = t(2,-1)^t, u_2 = t(1,2)^t\}$.
- Now write $U = t \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = U \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$.
- The transformed equation becomes

$$3y_1^2 - 2y_2^2 - 4t(2y_1 + y_2) + 10t(-y_1 + 2y_2) - 13 = 0$$

$$\implies 3y_1^2 - 2y_2^2 - 18ty_1 + 16ty_2 - 13 = 0.$$

Omplete the square to get $3(y_1 - 3t)^2 - 2(y_2 - 4t)^2 = 12$. Therefore

$$\frac{(y_1-3t)^2}{4}-\frac{(y_2-4t)^2}{6}=1.$$

- **1** This represents a hyperbola with center (3t, 4t) in the y_1y_2 -plane.
- **1** The vectors u_1 and u_2 are the directions of positive y_1 and y_2 axes.

A parabola

- **Solution** Example. Consider $9x_1^2 + 24x_1x_2 + 16x_2^2 20x_1 + 15x_2 = 0$.
- **②** The symmetric matrix for the quadratic part is $A = \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix}$.
- **1** The eigenvalues are $\lambda_1 = 25, \lambda_2 = 0$.
- Put a = 1/5. An orthonormal set of eigenvectors is $\{u_1 = a(3,4)^t, u_2 = a(-4,3)^t\}$
- **3** An orthogonal diagonalizing matrix is $U = a \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix}$.
- The equations of change of coordinates are

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = U \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \implies x_1 = a(3y_1 - 4y_2), \ x_2 = a(4y_1 + 3y_2).$$

- The equation in y_1y_2 -plane is $y_1^2 + y_2 = 0$.
- This is an equation of parabola with its vertex at the origin.