VPA 5300: The Digital Humanities in the Arts

Week 3 – 02 Tutorial: Inference

Outline

- Creating Data
- Methodological Distinctions
- Exploratory Data Analysis
 - Basic Visualizations
 - Descriptive Statistics
- Confirmatory Data Analysis
 - Hypothesis Testing
 - Correlational Designs
 - Experimental Designs

Research Pipeline

Digital Reception (Auto)Biographies

- 1) Select (shared) media platform.
- 2) Download/extract data from platform.
- 3) Explore data set.
- 4) Pose research question(s).
- 5) Scrape/query data OR annotate.
- 6) Analyze data.
- 7) Create presentation.

Research Pipeline

Digital Reception (Auto)Biographies

- 1) Select (shared) media platform.
- 2) Download/extract data from platform.
- 3) Explore data set.
- 4) Pose research question(s).
- 5) Scrape/query data OR annotate.
- 6) Analyze data.
- 7) Create presentation.

Creating Data

Decision Criteria

- 1. *Identifying Scope*
 - What are the boundaries of the phenomenon?
 - Time periods, countries, artists, artworks, genre
- 2. Choosing Objects
 - What objects will we represent and study?
 - Artworks, people, letters, scores
- 3. Choosing Characteristics and Methods
 - What characteristics of each object do we include?
 - Metadata (artist name), features (average brightness), properties, or attributes

Creating Data

(En)coding Data – Scales

• *Nominal* – a variable whose levels have no numerical, quantitative properties.

Ex: College Major (Musicology, Art History)

• Ordinal – the levels can be rank ordered.

Ex: Cadence Categories (PAC, IAC, HC)

• *Interval* – the intervals between levels are equal.

Ex: Preference (1–7 scale)

• *Ratio* – equal intervals and an absolute o.

Ex: Years of training (0–10)

Methodological Distinctions

Qualitative vs. Quantitative Methods

Qualitative Methods

- Evidence that cannot be easily quantified.
 - Participant-Observation
 - Interview
 - Textual Analysis

Quantitative Methods

- Evidence that can be expressed numerically.
 - Experiments
 - Surveys
 - Computational Modeling

Methodological Distinctions

Exploratory vs. Confirmatory Analysis

Exploratory Analysis

- Exploring (i.e., visualizing) data to generate research questions and/or hypotheses.
- Methods:
 - descriptive statistics
 - dimensionality reduction (i.e., data visualization)

Confirmatory Analysis

- Examining a specific research question and/or hypothesis using methods of statistical inference (i.e., falsification, replication)
- Methods:
 - inferential statistics (i.e., hypothesis testing)
 - correlational and experimental designs

Exploratory Data Analysis

Methods

Data visualization

- identify the relationships between objects.
- plots, charts, networks, tree diagrams, etc.
- Often requires algorithms to encode the data, extract features, and reduce complexity.

Common algorithms

- Descriptive statistics
- Dimensionality reduction
 - multidimensional scaling (MDS), principal components analysis (PCA), factor analysis

Basic Visualizations

(Frequency) Distributions – Bar

- List your preferred music genre (free response).
- 40 participants.

- Sears et al. (2018)

Basic Visualizations

(Frequency) Distributions – Pie

• Percentage of diatonic chord types in the Haydn corpus.

Basic Visualizations (Frequency) Distributions – Bar

Age.

Central Tendency

Central Tendency

Median – the center value of the distribution

Central Tendency

• *Mode* – the most frequent value in the distribution.

9/9/21

Variability

• *Variance* – measures the spread of the distribution.

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_i)^2$$

Basic Visualizations

Descriptive Statistics

- Sears, Verbeten, & Percival (in prep.)

Confirmatory Data Analysis

- Examining *a priori* research questions using methods of statistical inference (hypothesis testing).
- The null hypothesis is never proved or established, but is possibly disproved.

H_o The null hypothesis; there is no difference between two measured phenomena.

H₁ There is a difference between two measured phenomena.

Confirmatory Data Analysis

- Examining *a priori* research questions using methods of statistical inference (hypothesis testing).
- The null hypothesis is never proved or established, but is possibly disproved.

H_o Music training has no effect on pitch discrimination.

H₁ Music training improves pitch discrimination.

Confirmatory Data Analysis

Errors of Inference

		True State in Population	
		Null Hypothesis Is True	Null Hypothesis Is False
Decision	Reject the Null Hypothesis	Type I Error (α)	Correct Decision (1 – β)
	Accept the Null Hypothesis	Correct Decision $(1 - \alpha)$	Type II Error (β)

• "Lady Tasting Tea" experiment

– Fisher (1935)

H_o Muriel Bristol cannot tell whether the tea or the milk was added first to the cup.

H₁ Muriel Bristol can tell whether the tea or the milk was added first to the cup.

"Lady Tasting Tea" experiment

– Fisher (1935)

Muriel Bristol cannot tell whether the tea or the milk was added first to the cup.

Muriel Bristol can tell whether the tea or the milk was added first to the cup.

"Lady Tasting Tea" experiment

– Fisher (1935)

Muriel Bristol cannot tell whether the tea or the milk was added first to the cup.

Muriel Bristol can tell whether the tea or the milk was added first to the cup.

$$\frac{8!}{4!(8-4)!} = 70 \text{ possible combinations}$$

"Lady Tasting Tea" experiment

– Fisher (1935)

Muriel Bristol cannot tell whether the tea or the milk was added first to the cup.

Ms. Bristol can tell whether the tea or the milk was added first to the cup.

$$\frac{1}{70} = .014$$

• "Lady Tasting Tea" experiment

– Fisher (1935)

Muriel Bristol cannot tell whether the tea or the milk was added first to the cup.

Ms. Bristol can tell whether the tea or the milk was added first to the cup. 1.4%

$$p = .014$$

Study Designs

Correlational Studies

- Task: Measure associations among variables.
- Purpose: prediction.
- Limitation: Causality & 3rd variable problem.

Experimental Studies

- Task: Determine how manipulating one variable (Independent) affects another (dependent).
- Purpose: Causality and prediction.

Statistics

- *Correlation*: Measures the strength of the relationship between two variables (r: -1.0 to 1.0).
- *Regression*: measures whether changes in one variable predict changes in another (R^2 : o to 1).

H_o Age does not affect hearing loss.

H₁ Age affects hearing loss.

Statistics

- *Correlation*: Measures the strength of the relationship between two variables (r: -1.0 to 1.0).
- *Regression*: measures whether changes in one variable predict changes in another (R^2 : o to 1).

Pearson's r

- *Correlation*: Measures the strength of the relationship between two variables (r: –1.0 to 1.0).
- *Regression*: measures whether changes in one variable predict changes in another (R^2 : o to 1).

3rd variable problem / Causality

Confounding variables

Study Designs

Correlational Studies

- Task: Measure associations among variables.
- Purpose: prediction.
- Limitation: Causality & 3rd variable problem.

Experimental Studies

- Task: Determine how manipulating one variable (Independent) affects another (dependent).
- Purpose: Causality and prediction.

- Example: Acting Proficiency (case)
 - Create control group (*N*=100). Measure acting proficiency on an interval/ratio scale (e.g., -30 to 30).
 - Variable-match the controls with our case participant (age, vocation, years of training, etc.).

H_o Daniel Day Lewis is an average actor.

H₁ Daniel Day Lewis is a better-than-average actor.

- Example: Acting Proficiency (case)
 - Create control group (*N*=100). Measure acting proficiency on an interval/ratio scale (e.g., -30 to 30).
 - Variable-match the controls with our case participant (age, vocation, years of training, etc.).

Histogram for Normal Distribution (mean = 3.8, sd = 4.3)

Sample Size / Effect Size

- As N increases, σ decreases.
- As *N* increases, the
 p-value for H_o decreases.
- Effect size measures the size of the difference.

- Example: Acting Proficiency (2 Groups)
 - Create two groups (*trained*, *untrained*). Measure acting proficiency on an interval/ratio scale (e.g., -30 to 30).
 - Variable-match the controls with our case participant (age, vocation, years of training, etc.).

H_o Training does not increase acting proficiency.

H. Training increases acting proficiency.

Critical Value for Two-Tailed Test with .05 Significance Level

Critical Value for One-Tailed Test with .05 Significance Level

Next Class (Tuesday, 9/14)

Representation

Homework:

• READING: Hoover, "Arguments, Evidence..." (20 pages)