Uganda Advanced Certificate of Education APPLIED MATHEMATICS P 425/2

TIME: 3 HOURS

Instructions;

- Attempt all the eight questions in Section A and five from section B.
- All working must be clearly shown.
- Clearly indicate the questions attempted.
- Begin each answer on a fresh sheet of paper
- Graph paper is provided
- Silent, non-programmable calculators may be used

SECTION A

- 1. Two events A and B are such that $P(A) = \frac{1}{5}$ and $P(B) = \frac{1}{2}$ Find P (AuB) when A and B are:
 - a) Independent event,

(b) mutually exclusive

2. The table below shows the values of two variables P and Q

Р	14	15	25	20	15	7
Q	30	25	20	18	15	22

Calculate the rank correlation coefficient between the two variables.

- 3. Events A and B are such that $P(AnB) = \frac{1}{12}$ and $P(A/B) = \frac{1}{3}$ Find $P(BnA^1)$.
- 4. Events A and B are independent such that P(A)=0.4, P(AuB)=0.7. find;
 - i) P(B)
 - ii) P(AnB)
 - iii) $P(A^1nB)$
- 5. A bag contains 5 Pepsi Cola and 4 Mirinda bottle tops. Three bottle tops are picked at random from the bag one after the other without replacement. Find the probability that the bottle tops picked are of the same type.
- 6. A box A contains 1 white ball and 1 blue ball. Box B contains only 2 white balls. If a ball is picked at random, find the probability that it is; (05 marks)
 - i) White
 - ii) From box A given that it is white
- 7. Two events A and B are such that P ($^A/_B$)= $^2/_5$, P (B) = $^1/_4$ and P (A) = $^1/_5$

Find:

i) P (A n B)

(02 marks)

P (A u B) (03 marks)

8. The table below shows number of boys in a certain school

Mass	15	20	25	30	35
Number of	5	6	10	20	9
boys					

Calculate the mean mass.

SECTION B

9. (a) A bag contains 30 white (W), 20 blue (B) and 20 red (R) balls. Three balls are drawn at random one after the other without replacement.

Prepared by;

APPLIED MATHEMATICS 2023

Determine the probability that the first ball is white and the third ball is also white.

(05 marks)

- (b) Events A and B are such that $P(A) = \frac{4}{7}$, $P(A \cap B^1) = \frac{1}{3}$ and $P(A/B) = \frac{5}{14}$. Find;
 - i. P(B)

- 10. Two events A and B are such that $P(B) = \frac{1}{8}$, $P(A \cap B) = \frac{1}{10}$ and $P(B/A) = \frac{1}{3}$ Determine the;
 - i) P (A)

(03 marks)

ii) P (A U B)

(03 marks)

iii) $P(A/_{\overline{B}})$

(06 marks)

11. The table below shows marks obtained by 100 students in a mathematics test.

marks	Number of students
20-<40	5
40-<50	15
50-<55	10
55-<60	15
60-<70	25
70-<80	25
90-<100	5

- a) Calculate the mean mark
- b) Draw a cumulative frequency curve and use it to find the;
 - i) Median mark
 - ii) Range of the middle 40% of the marks
- 12. A certain football team has three matches to play. The probabilities of winning the first, second and third matches are $\frac{3}{5}$, $\frac{2}{5}$ and $\frac{1}{5}$ respectively.
 - a) Find the probability that the team wins;
 - i) Exactly two matches
 - ii) All matches
 - iii) No match

(7 marks)

b) Two events A and B are such that P(A)=0.7, P(AnB)=0.45 and $P(A^1nB^1)=0.18$.

Find:

i) $P(B^1)$

- ii) P(A or B)
- 13. A survey of mass in kg of girls in Tosmic school of excellence was taken and results are shown below.

Mass (kg)	Number of girls
40-45	3
45-50	9
50-55	16
55-60	21
60-65	17
65-70	14
70-75	5
75-80	7
80-85	4
85-90	1

- a) Calculate the;
 - i) Mean
 - ii) Standard deviation of the masses

(07 marks)

- b) Draw a histogram and use it to estimate the modal mass (5 marks)
- 14. Observe the table below.

	Α	В	\cup	О	Е	F	G	Η		-	K	L
Number	12	24	20	10	32	30	28	15	18	40	27	35
of errors												
(x)												
Speed	130	136	124	120	153	160	155	142	145	172	140	157
(y) in												
seconds												

- i) Calculate the coefficient of rank correlation by spearman
- ii) Comment on your results
- iii) Plot the above data on a scatter diagram and draw a line of best fit through the points of a scatter diagram
- 15. A box contains 3 red sweets, 8 blue sweets and 7 green sweets. Three sweets are randomly drawn one after another without replacement.

 Using a probability tree diagram, Find the probability that;
 - i) All sweets are blue
 - ii) All sweets are red
 - iii) One of each color
- 16.On a certain day, fresh fish from lakes, Kyoga, Victoria, Albert and George were supplied to market in ratio 30%, 40%, 20% and 10% respectively.

Each lake had an estimated ratio of poisoned fish of 2%, 3%, 3% and 1% respectively. If a health inspector picked a fish at random;

- i) What is the probability that the fish was poisoned
- ii) Given that the fish was poisoned, what is the probability that it was from Lake Albert.