Imputation as Anomaly Detection

Matt Calder

Board of Assessors City of Framingham

A Remarkable Algorithm

SoftImpute (Mazumder et al 2014)

Minimize the rank of imputed matrix subject to the constraint that the imputation agrees on non-missing values.

$$\min_{\hat{X}} ||X - \hat{X}||_{F_{\Omega}} + \lambda ||\hat{X}||_{*}$$

Solution is to iterate (1) - (2) until convergence:

(1)
$$\widehat{X} = UDV^T$$

 $\widehat{M} \leftarrow US_{\lambda}(D)V^T$

(2)
$$\widehat{X} \leftarrow P_{\Omega}(X) + P_{\Omega}^{\perp}(\widehat{M})$$

A Few Tricks

- Sparse SVD (sparse plus low-rank)
- Alternative: A sequence of regressions (replaces (1))

minimize
$$\frac{1}{2} \| \widehat{X} - AB^T \|_F^2 + \frac{\lambda}{2} (\|A\|_F^2 + \|B\|_B^2)$$

Spin-off: Row + Column scaling

$$\tilde{X}_{ij} = \frac{X_{ij} - \mu_{ij}}{\sigma_{ij}} \\
= \frac{X_{ij} - \alpha_i - \beta_j}{\tau_i \gamma_j}$$

Data Handling

Containerized Environment

```
FROM ubuntu:latest
RUN apt-get update
RUN DEBIAN FRONTEND=noninteractive apt-get -y install tzdata
RUN apt-get install -y git wget sudo curl cmake python3 python3-dev python3-pip ffmpeg libopency-dev python3-opency jupyter
RUN pip3 install numpy pandas matplotlib scikit-learn jupyterlab pillow torch torchvision jupyter client
RUN pip3 install tensorflow
RUN pip3 install fancyimpute
RUN pip3 install graphviz
RUN apt-get install -y graphviz
RUN groupadd -g 999 user && useradd -r -u 999 -g user -ms /bin/bash user && usermod -aG sudo user && usermod -u 1000 user
RUN echo "\nuser ALL=(ALL) NOPASSWD: ALL" >> /etc/sudoers
RUN usermod -a -G video user
USER user
WORKDIR /home/user
CMD ["jupyter-lab", "--ip='*'", "--no-browser", "--NotebookApp.token=''", "--NotebookApp.password=''"]
```

Data Handling

Inspection & Encoding

```
# Check distribution of high-count columns
# Counter(df asm.MUNICODE).most common()
# Counter(df asm.SCHOOLCODE).most common()
# Counter(df asm.NEIGHCODE).most common(150)
# Use a 20 one-hot cutoff
noh = 20
ohc = []
for c in df pad[df pad.handle == 'oh'].FieldName:
    n = df asm[c].nunique()
    if n == 0: continue
   if n < noh:
        ohc.append(pd.get dummies(df asm[c], prefix = c + ' 0', dummy na = True))
    else:
        ohc.append(pd.get dummies(f order(df asm[c], noh), prefix = c + K', dummy na = True))
df ohc = pd.concat(ohc, axis = 1, ignore index = True)
print(df ohc.shape)
df ohc.head()
```

Data Handling

Filtering

```
# Extract single family homes
df_asm = df_asm[(df_asm.CLASSDESC == 'RESIDENTIAL') & (df_asm.USEDESC == 'SINGLE FAMILY')].copy()
df_asm.reset_index(drop = True, inplace = True)
# Delete the county assessment (keeping LOCAL)
del df_asm['COUNTYBUILDING']
del df_asm['COUNTYLAND']
del df_asm['COUNTYTOTAL']
df_asm.shape
```

(373244, 92)

Scaling

```
def n_range(x):
    """

    Rescale the numerical series x to [0, 1] via rank, map NaN to -1.
    :param x: Numerical series
    :return: rank(x) / len(x) (NaN = -1)
    """

    y = np.argsort(np.argsort(x)) / len(x)
    y[np.isnan(x)] = -1
    return y
```

Imputation

Imputation

Anomaly Detection

```
# Generate n-cycles of imputation over m-fraction of data
np.random.seed(543)
n. m = 100, 0.2
E, N = None, None
for i in range(n):
    # Worry line
    print((i, datetime.now()))
    # Copy data array
    X = df dat.values.copy()
    # Randomly set nan values in each column
    for c in range(X.shape[1]):
        X[np.random.randint(0, len(df dat), int(m * len(df dat))), c] = float('nan')
    # Impute nan
    Y = softimpute als.SoftImpute(J = 20).fit(X).predict(X)
    # Pickle result
    with open(f"/home/user/Fidelity/imputations/imp {i}.pkl", 'wb') as p:
        joblib.dump({'X': X, 'Y': Y}, p, compress='zlib')
    # Initialize E. N
    if F is None:
        E = np.zeros(X.shape)
        N = np.zeros(X.shape)
    # Keep sign of error
    E[np.isnan(X)] += (df dat.values[np.isnan(X)] - Y[np.isnan(X)])
    N[np.isnan(X)] += 1
with open(f"/home/user/Fidelity/imputations/errors.pkl", 'wb') as p:
    joblib.dump({'E': E, 'N': N}, p, compress='zlib')
```

Abatement or Inspection

What's That Blob?

Extremely large lot sizes lead to an over estimate of land value in the imputation

Causal Connections

Measure MSE of LOCALTOTAL imputation when each other variable is NaN / not NaN. Most MSE reducing variables shown here.