UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142.

PRACTICA 25. Aplicaciones Lineales.

Problema 1.Sea V un espacio vectorial sobre \mathbb{K} y sea $T:V\longrightarrow V$ una aplicación lineal tal que $T(T(v))=T(v), \forall v\in V$. Demuestre que $V=Kert(T)\bigoplus Im(T)$.

Problema 2. Considere la proyección ortogonal P de \mathbb{R}^3 sobre el subespacio $S = \{(x, y, z) \in \mathbb{R}^3 : x + y - 3z = 0\},$

$$P: \mathbb{R}^3 \longrightarrow S, \quad v \mapsto P(v) = proy_S v$$

Encuentre: [En práctica]

- 2.1) Núcleo y nulidad de P.
- (2.2) Imagen y rango de P.
- 2.3) La imagen y el núcleo de P, cuando S es un subespacio cualquiera de \mathbb{R}^3 .

Problema 3. Considere las bases $B_1 = \{(2,0,0), (0,3,0), (0,0,4)\}$ de \mathbb{R}^3 y $B_2 = \{(1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1)\}$ de \mathbb{R}^4 y la matriz

$$A = \left(\begin{array}{ccc} 0 & 6 & 0 \\ 2 & -3 & -4 \\ -2 & 0 & 4 \\ 2 & 0 & 0 \end{array}\right).$$

Defina la aplicación lineal T tal que $[T]_{B_1}^{B_2} = A$.

Problema 4. Considere la base $B = \{v_1, v_2, v_3\} = \{3x + 3x^2, -1 + 3x + 2x^2, 3 + 7x + 2x^2\}$ de $P_2(\mathbb{R})$ y $T: P_2(\mathbb{R}) \longrightarrow P_2(\mathbb{R})$ la aplicación lineal cuya matriz asociada en la base B es

$$A = \left(\begin{array}{ccc} 1 & 3 & -1 \\ 2 & 0 & 5 \\ 0 & -2 & 4 \end{array}\right).$$

Encuentre:

4.1)
$$[T(v_1)]_B$$
, $[T(v_2)]_B$ y $[T(v_3)]_B$. 4.2) $T(v_1)$, $T(v_2)$ y $T(v_3)$, 4.3) $T(1+x^2)$.

Problema 5. Sea V el espacio generado por $u_1 = \operatorname{sen}(x), u_2 = \cos(x)$. [En práctica]

- 5.1) Demuestre que $v_1 = 2 \operatorname{sen}(x) + \cos(x), v_2 = 3\cos(x)$ forman una base para V.
- 5.2) Encuentre la matriz de transición de $B = \{u_1, u_2\}$ a $B' = \{v_1, v_2\}$.
- 5.3) Calcule el vector de coordenadas $[h]_B$, para $h = 2\operatorname{sen}(x) 5\cos(x)$ y calcule $[h]_{B'}$ como $P[h]_B$.
- 5.4) Compruebe su respuesta calculando directamente $[h]_{B'}$.
- 5.5) Encuentre la matriz de transición de B' a B.

Problema 6. Se dice que una matriz es ortogonal si $A^{-1}=A^t$. Se puede probar que son equivalentes:

- i) $A \in M_n(\mathbb{R})$ es una matriz ortogonal.
- ii) Los vectores fila de A forman una base ortonormal de \mathbb{R}^n .
- ii) Los vectores columna de A forman una base ortonormal de \mathbb{R}^n .
- 6.1) Demuestre que si B_1 y B_2 son bases ortonormales de \mathbb{R}^n , entonces la matriz de paso es ortogonal.
- 6.2) Determinar si las siguientes matrices son ortogonales.

$$\left(\begin{array}{ccc} 0 & 1 & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{array}\right), \left(\begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{ccc} 1 & 5 & 2 \\ 2 & 3 & 0 \\ 0 & 0 & -1 \end{array}\right).$$

Problema 7. Encuentre la matriz de T con respecto a B y utilice teorema dado en clase para calcular la matriz de T con respecto a B'.

- 7.1) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ la proyección ortogonal sobre el plano $XY, B = \{(2,0,0), (0,3,0), (0,0,4)\}$ y B' la base canónica.
- 7.2) $T: P_1(\mathbb{R}) \longrightarrow P_1(\mathbb{R}), \quad T(a_0 + a_1 x) = a_0 + a_1(x+1), B = \{6+3x, 10+2x\} \text{ y}$ $B' = \{2, 3+2x\}.$
- 7.3) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, T(x,y,z) = (x+2y-z,-y,x+7z). B la base canónica y $B' = \{(1,0,0),(1,1,0),(1,1,1)\}$. [En práctica 7.2 y 7.3]

14.11.2002.

ACQ/LNB/acq.