Step1: identify entities:

Step2: identify key attribute/s for each entity.

Step 3: draw the relationships.

According to the missing value check, a track will always be assigned to an album

```
combined_df['artist_id'].isnull().any()

v 0.0s

False

combined_df['album_id'].isnull().any()

v 0.0s

False

combined_df['track_id'].isnull().any()

v 0.0s

False
```

And this part of code shows that a track belongs to one album only, an album belongs to one artist only.

So the relationships:

Step 4: add non-key attributes:

Record_date -> multivalued attribute

Popularity -> multivalued attribute

Artist popularity -> multivalued attribute

Step 5: remove multivalued attribute and create a new entity

artist_tracking track_popularity record_date record_date PF artist_id PF track_id popularity popularity followers record has artist track artist id track_id artist_name Produced track_name artist url track_duration artist_genre track_url energy key loudness Made mode speechiness acousticness instrumentalness album liveness valence album_id tempo album_name duration_ms album_type track_preview album_tracks time_signature album_url artist_id album_release_date album_id

Step 6: Drawing Logical Model, Identify Primary Key and Foreign Key

Step7: Set constraint and add new entity based on case study

case: spotify has top songs playlist for country, all of these tracks are found from those playlists

Action: add playlist entity

A playlist contains one or more tracks, and a track can belong to one or more playlist, now it is a composite entity. Therefore, I will create a bridge entity: Playlist_track_id

