Math 325, Section 1

Exam 1 Solutions

1. (20 pts.) What must be true of a (non-empty) set $S \subseteq \mathbb{R}$ if $\inf(S) = \sup(S)$?

 $\inf(S)$ is a lower bound for S, so for every $x \in S$ we have $\inf(S) \leq x$. $\sup(S)$ is an upper bound for S, so for every $x \in S$ we have $x \leq \sup(S)$.

But because $\inf(S) = \sup(S) = M$, this means that for every $x \in S$ we have $M \le x \le M$, so x = M (since otherwise either x < M, a contradiction, or x > M, a contradiction!). So $x \in S$ implies that x = M, which means that M is the only element of the set S; that is, $S = \{M\} ! \underline{So} S$ contains exactly one real number, namely M.

2. (25 pts.) Show, using the Rational Roots Theorem, that $\alpha = \sqrt{2 + \sqrt{7}}$ is **not** a rational number.

There are (at least) two ways to show this. Via the Rat'l Roots Thm, we find a polynomial having α as a root:

$$\alpha^2 = 2 + \sqrt{7}$$
, so $\alpha^2 - 2 = \sqrt{7}$, so $(\alpha^2 - 2)^2 = 7$, so $(\alpha^2 - 2)^2 - 7 = \alpha^4 - 4\alpha^2 + 4 - 7 = \alpha^4 - 4\alpha^2 - 3 = 0$.

So α is a root of the polynomial $p(x) = x^4 - 4x^2 - 3$. But the Rat'l Roots Thm. tells us that the only possible rational roots of this polynomial are 1, -1, 3, and/or -3. But we can either plug all of these into p and note that none of them are roots of p (this is probably the preferred way?), or we can be a little sneakier. Note that $\alpha^2 = 2 + \sqrt{7} > 2 + \sqrt{4} = 2 + 2 = 4$, so $\alpha > 2$, but $\alpha^2 = 2 + \sqrt{7} \le 2 + \sqrt{9} = 2 + 3 = 5 < 9$, so $\alpha < 3$. So α cannot be equal to any of these possible roots. In either case we then know that α , which is a root of p, cannot be equal to any of the possible rational roots of p, so α cannot be rational!

Alternate proof: suppose $\alpha = p/q$ is rational. Then $\alpha^2 = p^2/q^2$ is also rational, so $\alpha^2 - 2 = (p^2 - 2q^2)/q^2$ is rational. But! by the work above, $\alpha^2 - 2 = \sqrt{7} = \beta$ is then rational. But β is a root of $r(x) = x^2 - 7$, whose only possible rational roots, 1, -1, 7, -7, aren't roots! So β isn't rational. But if α is rational so is β ! So α cannot be rational.

3. (30 pts.) We will define a sequence $(a_n)_{n=1}^{\infty}$ by setting $a_1 = 2$, and for $n \ge 1$ (inductively) setting

$$a_{n+1} = 3 + \sqrt{2a_n} .$$

Show that this sequence is both monotonically increasing and bounded from above (so the sequence converges).

 $a_2=3+\sqrt{2\cdot 2}=3+\sqrt{4}=3+2=5\geq 2=a_1$, so $a_2\geq a_1$, which gets us started on an induction. If we now suppose (as our inductive hypothesis) that $a_{n+1}\geq a_n$, then $2a_{n+1}\geq 2a_n$ (since $2a_{n+1}-2a_n=2(a_{n+1}-a_n)$ is the product of a positive number (2) and a non-negative one). But then $\sqrt{2a_{n+1}}\geq \sqrt{2a_n}$, from a result in class, and so $a_{n+2}=3+\sqrt{2a_{n+1}}\geq 3+\sqrt{2a_n}=a_{n+1}$.

So $a_{n+1} \ge a_n$ implies that $a_{n+2} \ge a_{n+1}$, giving our inductive step. So $a_{n+1} \ge a_n$ for every $n \ge 1$, by induction.

To show that the sequence is bounded, we could just pick an impossibly large number and give it a try. Or we could use techniques like we have before to find out when $M = 3 + \sqrt{2M}$, and use that. Or we could note that the thing which controls the size of a_{n+1} is $\sqrt{2a_n}$, which for a_n "large" is a lot smaller than a_n , for example, $a_n = 50$ gives $a_{n+1} = 3 + \sqrt{100} = 13$, which is a lot smaller than 50.

So let's pick M=50, say, and show that $a_n \le 50$ for every n, by induction! $a_1=2 \le 50$ is true, so our base case works. Then if $a_n \le 50$, then $2a-n \le 100$; so $\sqrt{2a_n} \le \sqrt{100} = 10$, so $a_{n+1}=3+\sqrt{2a_n} \le 3+10=13 \le 50$. This is our inductive step; $a_n \le 50$ implies that $a_{n+1} \le 50$. So $a_n \le 50$ for all $n \ge 1$, by induction; so the sequence is bounded above.

Because it is a monotone increasing sequence which is bounded above, it then follows that the sequence converges.

[N.B.: We can, in fact, find the limit of the sequence; as with examples from class our limit properties allow us to conclude that the limit, L, satisfies $L = 3 + \sqrt{2L}$, so $(L-3)^2 - 2L = L^2 - 8L + 9 = 0$. Using the quadratic formula, we conclude that

$$L = (8 \pm \sqrt{64 - 36})/2 = (8 \pm 2\sqrt{7})/2 = 4 \pm \sqrt{7}.$$

Since $L \ge a_2 = 5$ (since $a_n \ge a_2$ for every $n \ge 2$) and $4 - \sqrt{7} \le 4 - \sqrt{4} = 4 - 2 = 2$, we conclude that $L = 4 + \sqrt{7}$.]

4. (25 pts.) Given sequences $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$, show that <u>if</u> the sequences

$$c_n = a_n + b_n$$
 and $d_n = a_n - b_n$

both converge, then the sequences a_n and b_n also both converge!

Since c_n and d_n both converge, we know that $c_n + d_n = (a_n + b_n) + (a_n - b_n) = 2a_n$ also converges. So $a_n = (1/2)(2a_n)$ also converges!

But then a_n and $c_n = a_n + b_n$ converge, and so $c_n - a_n = (a_n + b_n) - a_n = b_n$ must converge, as well. So both $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ must be convergent sequences.

A somewhat different way to write the same thing is:

If $c_n = a_n + b_n \to L$ and $d_n = a_n - b_n \to M$, then $c_n + d_n = 2a_n \to L + M$, so $a_n = (1/2)(2a_n) \to (1/2)(L+M)$. In particular a_n has a limit, so it converges! Then $b_n = (a_n + b_n) - a_n \to L - (1/2)(L+M) = (1/2)(L-M)$, so b_n has a limit, so b_n converges!

[There are several other, roughly equivalent, ways to see how to build a_n and b_n out of c_n and d_n , leading to the same conclusions.]