AIRSYS-MODBUS RTU 通讯协议说明

(1) RS-485 接口硬件针脚接线

9 针母头针脚定义:

1+

2-

5 GND

(2) Setting and checking

Item Specification
Standard EIA RS-485
Communication speed 9600bps
Data • bit length 8bit
Stop • bit length 1bit
Data transfer direction LSB
Parity None
Letter code RTU mode

Slave address 1

Error check CRC method

Communication speed 更改方法: 触摸屏依次点击 MENU, MANAGER, Modbus set.

0 hex: Default (9,600); 3 hex: 1,200; 4 hex: 2,400; 5 hex: 4,800;

6 hex: 9,600; 7 hex: 19,200; 8 hex: 38,400; 9 hex: 57,600; A hex: 115,200;

B hex: 230,400

Parity 设置: NO 无校验。YES+EVEN 偶校验。YES+ODD 奇校验。

注意:改变任意通讯参数都需要断电重启生效。设置奇/偶校验后停止位应改为1.

(3) Register Map o

协议地 址	寄存器内容	备注- 保持寄存器 (4X) , 2byte, int signed
0000	ch1 远程启停	0 停止, 1 启动
0001	ch1 温度设定	0.1℃/dig(比如读取温度 755 代表 75.5℃)。 0.1dig/℃
0002	ch1 水泵频率设 定	0.1HZ/dig。预留
0003	ch1 温度回水	0.1℃/dig(比如读取温度 755 代表 75.5℃) 经过0FFSET修正
0004	ch1 温度供水	0.1℃/dig(比如读取温度 755 代表 75.5℃) 经过0FFSET修正
0005	ch1 流量	O.1LPM/dig
0006	ch1 温度外部	0.1℃/dig。预留
0009	ch2 远程启停	0 停止, 1 启动
000A	ch2 温度设定	0.1℃/dig(比如读取温度 755 代表 75.5℃)。 0.1dig/℃
000B	ch2 水泵频率设 定	0.1HZ/dig。预留
000C	ch2 温度回水	0.1℃/dig(比如读取温度 755 代表 75.5℃) 经过0FFSET修正
000D	ch2 温度供水	0.1℃/dig(比如读取温度 755 代表 75.5℃) 经过0FFSET修正
000E	ch2 流量	O.1LPM/dig
000F	ch2 温度外部	0.1℃/dig。预留

协议地 址	寄存器内容	寄存器位	备注-产生时置1
	ch1 报警	0	报警显示
0007	ch1 故障	1	故障会停机
	ch2 报警	2	报警显示
	ch2 故障	3	故障会停机
	ch1 运行	4	运行停止显示
	Ch2运行	5	运行停止显示
	ch1 LOW TEMP	0	低温
	ch1 OVER TEMP	1	超温
0008	ch1 HIGH TEMP	2	高温断电
	ch1 E.LEVEL	3	冷却液空
	ch1 PUMP LOAD	4	水泵过载

ch1 PUMP FAIL	5	水泵故障
ch1 WATER LEAK	6	漏液
ch2 LOW TEMP	7	低温
ch2 OVER TEMP	8	超温
ch2 HIGH TEMP	9	高温断电
ch2 E. LEVEL	10	冷却液空
ch2 PUMP LOAD	11	水泵过载
ch2 PUMP FAIL	12	水泵故障
ch2 WATER LEAK	13	漏液

(4) Supported Modbus-RTU Commands

标准的 mdobus-RTU 协议,建议帧间隔时间 100ms。如果对通讯间隔有要求,我司提供模拟 CHILLER 设备,实际测试是否满足。参考《SCU OPERATION MANUAL》9-4.

03H-读保持寄存器

1)描述: 读保持寄存器,字节指令操作,可读单个或者多个;

2)发送指令:

从机地址 0x01,保持寄存器起始地址 0x0032,读 2个保持寄存器

T	从机 地址	功能 码	寄存器起 始地址高 八位	寄存器起 始地址低 八位	寄存器数量 高八位	寄存器数 量低八位	CRCH	CRCL
	0x01	0x03	0x00	0x32	0x00	0x02	0xXX	0xXX

3)响应:

从机地址	功能码	返回字 节数	Data1H	Data1L	Data2H	Data2L	CRCH	CRCL
0x01	0x03	0x4	0xa5	0xd4	0x18	0x12	0xXX	0xXX

数据存储顺序

0x0035	0x0034	0x0033	0x0032
0x18	0x12	0xa5	0xd4

实例: 读地址 1,40000 开始 16 个寄存器 (字)

Tx:01 03 00 00 00 10 44 06

Rx:01 03 20 00 01 01 2C 02 58 00 C8 01 90 00 96 00 00 01 00 08 00 00 00 00 00 00 01 04 01 C2 00 A0 00 00 1D 5140007

报警汇总第0位为1,设备号系统存在报警。

40008 报警内容第 3 位为 1,设备 1 号系统冷却液位空 E.LEVEL

	Alias	00000	Alias	00010
0	ch1远程启停	1	ch2温度设定	0
1	ch1温度设定	300	ch2水泵频率设定	0
2	ch1水泵频率设定	600	ch2温度回水	260
3	ch1温度回水	200	ch2温度供水	450
4	ch1温度供水	400	ch2流量	160
5	ch1流量	150	ch2温度外部	0
6	ch1温度外部	0		
7	报警汇总	0000 0000 0000 0001		
8	报警内容	0000 0000 0000 1000		
9	ch2远程启停	0		

06H-写单个保持寄存器

1)描述: 写单个保持寄存器,字节指令操作,只能写一个;

2)发送指令:

写 0x0032 保持寄存器为 0x1232;

从机 地址	功能码	寄存器起 始地址高 八位	寄存器起 始地址低 八位	DATAH	DATAL	CRCH	CRCL
0x01	0x06	0x00	0x32	0x12	0x32	0xXX	0xXX

3)响应:同发送指令;

实例 1: 地址 1, 2 号系统启动命令, 40000 置 1

Tx:01 06 00 09 00 01 98 08

Rx:01 06 00 09 00 01 98 08

实例 2: 地址 1, 1 号系统温度设定 30°C, 40001 设置为 300 (12CH)

Tx:01 06 00 01 01 2C D8 47

Rx:01 06 00 01 01 2C D8 47

	Alias	00000	Alias	00010
0	ch1远程启停	1	ch2温度设定	0
1	ch1温度设定	300	ch2水泵频率设定	0
2	ch1水泵频率设定	600	ch2温度回水	260
3	ch1温度回水	200	ch2温度供水	450
4	ch1温度供水	400	ch2流量	160
5	ch1流量	150	ch2温度外部	0
6	ch1温度外部	0		
7	报警汇总	0000 0000 0000 0001		
8	报警内容	0000 0000 0000 1000		
9	ch2远程启停	1		

10H-写多个保持寄存器

1)描述: 写多个保持寄存器,字节指令操作,可写多个;

2)发送指令:

保持寄存器起始地址为 0x0034,写 2 个寄存器 4 个字节的数据;

从机 地址	功能码	ADDR EH	ADDR EL	寄存 器数 量高 字节	寄存 器数 量低 字节	字节 数	DATA1 H	DATA1 L	DATA2 H	DATA2 L	CRCH	CRCL
0x01	0x10	0x00	0x34	0x00	0x02	0x04	0x0C	0x02	0X12	0X45	0xXX	0xXX

3)响应:

从机地址	功能码	ADDREH	ADDREL	寄存器 数量高 字节	寄存器 数量低 字节	CRCH	CRCL
0x01	0x10	0x00	0x34	0x00	0x02	0xXX	0xXX

(5) CRC-16

在 CRC 计算时只用 8 个数据位,起始位及停止位,如有奇偶校验位也包括奇偶校验位,都不参与 CRC 计算。

CRC 计算方法是:

- 1、加载一值为 OXFFFF 的 16 位寄存器, 此寄存器为 CRC 寄存器。
- 2、 把第一个 8 位二进制数据(即通讯信息帧的第一个字节)与 16 位的 CRC 寄存器的相异或,异或的结果仍存放于该 CRC 寄存器中。
- 3、把 CRC 寄存器的内容右移一位,用 0 填补最高位,并检测移出位是 0 还是 1。
- 4、 如果移出位为零,则重复第三步(再次右移一位);如果移出位为1, CRC 寄存器与0XA001进行异或。
- 5、 重复步骤 3 和 4, 直到右移 8 次, 这样整个 8 位数据全部进行了处理。
- 6、 重复步骤 2 和 5, 进行通讯信息帧下一个字节的处理。
- 7、 将该通讯信息帧所有字节按上述步骤计算完成后,得到的 16 位 CRC 寄存器的高、低字节进行交换
- 8、 最后得到的 CRC 寄存器内容即为: CRC 校验码。

C#代码:

登录后复制

}

```
}
cmd[i++] = (byte) (CRC16 & 0x00FF);
cmd[i++] = (byte) ((CRC16 & 0xFF00)>>8);
}
```

(6) Error

例:地址码为 0x01,写操作 0x10,寄存器地址为 0x018E,CRC 校验。如寄存器可读写的话,返回正常,如寄存器只读,返回异常。

下发指令: 01 10 01 8E 00 01 02 00 00 69 BE(向寄存器 0x018E 写入一个数值为 0 的数据)

正确回应指令: 01 10 01 8E 00 01 60 1E(向寄存器地址 0x018E 写操作一个寄存器)

错误回应指令: 01 90 01 8D CO (写操作非法功能,可能是向输入寄存器写数据)

地址:发生错误的从站地址;

功能码: 主站所发送功能码的最高位置 1,如主机发送 16#01 时,若发生错误,此处为 16#81;

错误码:

2	Length	Data
Function Code	1 byte	Function code + 80 hex
Exception Code	1 byte	Error code

Error code	Name	Description
01	Illegal function	There is an error in the specified function code. A function code not supported by the Serial Communications Board/Unit was specified.
02	Illegal data address	There is an error in the specified starting address. The combination of the specified starting address and data length (quantity of registers/coils) exceeds the valid range. The specified data length (quantity of registers/coils) exceeds the valid range. The specified data length (quantity of registers/coils) differs from the actual data length. Less than 4 bytes of data was received.
03	Illegal data value	There is an error in the specified data. (The data for the Write Single Coil Command is not 0000 hex or FF00 hex.)
04	Slave device failure	Reading or writing could not be performed because an error occurred in the CPU Unit.