GEOMETRY

CHAPTER 21

1 th

ÁREA DE REGIONES

TRIÁNGULARES

MOTIVATING | STRATEGY

ÁREA DE REGIONES TRIANGULARES

REGIÓN PLANA.- Es la unión de una línea plana cerrada y su interior.

ÁREA.- Es un número real positivo que indica la medida de una región.

REGIONES EQUIVALENTES.- Son aquellas regiones que tienen igual área.

ÁREA DE REGIONES TRIANGULARES

 TEOREMA BÁSICO:

$$S_{ABC} = \frac{bh}{2}$$

TEOREMA TRIGONOMÉTRICO:

$$S_{ABC} = \frac{bc}{2} \cdot sen\alpha$$

 ÁREA DE UNA REGIÓN TRIANGULAR EQUILÁTERA:

$$S_{ABC} = \frac{a^2\sqrt{3}}{4}$$

1. En el gráfico: Halle el área de la región triangular ABC.

RESOLUCIÓN

2. Calcule el área de la región sombreada.

3. Calcule el área de la región limitada por un triángulo rectángulo, si la hipotenusa y un cateto miden 13 m y 12 m.

4. Calcule el área de la región sombreada.

RESOLUCIÓN

5. En el gráfico: Calcule el área de la región ABC.

6. Calcule el área de la región sombreada.

EI △CHB: Notable 45° y 45°

S ABC =
$$\frac{7.8}{2}$$

$$S_{ABC} = 21 \text{ m}^2$$

7. Se tiene un parque ABC y un canal para agua \overline{BH} . Si AH = 2 m y HC = 8 m, ¿Qué área tiene dicho parque?

RESOLUCIÓN

$$BH = 4$$

 $h^2 = n.m$

$$S_{ABC} = 20 \text{ m}^2$$