ATMOSPHERIC RADIO NOISE DATA BANGKOK, THAILAND—June-August 1966

By: RANGSIT CHINDAHPORN LT. CHAIKAMOL LUMJIAK PRAIUAB NIMITYONGSKUL

65268

Prepared for:

U.S. ARMY ELECTRONICS COMMAND FORT MONMOUTH, NEW JERSEY

CONTRACT DA-36-039 AMC-00040(E) ORDER NO. 5384-PM-63-91

Distribution of this document is unlimited.

SPONSORED BY
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER 371

FOR THE
THAI-U.S. MILITARY RESEARCH AND DEVELOPMENT CENTER
SUPREME COMMAND HEADQUARTERS
BANGKOK, THAILAND

STANFORD RESEARCH INSTITUTE
MENLO PARK, CALIFORNIA

ARCHIVE COPY

BEST AVAILABLE COPY

STANFORD RESEARCH INSTITUTE

January 1967

Geaphysical Data Repart

ATMOSPHERIC RADIO NOISE DATA BANGKOK, THAILAND—June-August 1966

Prepared for:

U.S. ARMY ELECTRONICS COMMAND FORT MONMOUTH, NEW JERSEY

CONTRACT DA-36-039 AMC-00040(E) ORDER NO. 5384-PM-63-91

By: RANGSIT CHI. DAHPORN LT. CHAIKAMOL LUMJIAK PRAJUAB NIMITYONGSKUL

SRI Praject 4240

Distribution of this document is unlimited.

SPONSORED BY
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER 371

FOR THE
THAI-U.S. MILITARY RESEARCH AND DEVELOPMENT CENTER
SUPREME COMMAND HEADQUARTERS
BANGKOK, THAILAND

Copy No. 29

LIST	OF ILLUSTRATION	s														iii
LIST	OF TABLES									•		•	•	•	•	iii
	INTRODUCTION .															
11	DISCUSSION		 •			•	•		•		•	•	•		•	7
APPE.	NDIX - BADIO NOIS	E VALIES														9

ILLUSTRATIONS

	- 1 -
Fig. 1 APN-3 Atmospheric Hadio Noise Measuring Equipment	2
Fig. 2 \(\subseteq \text{Location of the Radio Noise Recording St.tion} \) at Laem Chabang, Thailand \(\).	3
Fig. 3 Nadio Noise Recording Station,	4
Fig. 4 Nomogram for Transforming Effective Antenna Noise Figure to Noise Field Strength as a Function of Frequency 5	6
Fig. A-1 Three-Month Median Time-Block Values of Radio Noise Power	14

TABLES

Table I	Radio Noise Measuring Site at Laem Chabang, Thailand	5
Table II	ARN-3 Radio Noise Recorder Specifications	5
Table A-1	Month-Hour Values of Radio Noise	10
Table A-2	Three Month Time Black Values of Radio Noise	13

I INTRODUCTION

Measurements of atmospheric radio noise are being made by the Electronics Laboratory of the Military Research and Development Center (MRDC-EL), a joint Thailand-United States-organization in Bangkok. The noise-measuring equipment (Fig. 1), modeled after the U.S. National Bureau of Standards Radio Noise Recorder, Model ARN-2, is located near the village of Laem Chabang (Fig. 2), about 90 kilometers southeast of Bangkok, in order to minimize interference from man-made noise. A view of the site, showing the standard ARN-2 antenna and ground plane, is presented in Fig. 3.

The cooperation and participation of the staff members of the Thailand Ministry of Defense and the support of the United States Advanced Research Projects Agency and the U.S. Army Electronics Command, have made it possible for the data presented in this report to be accumulated.

Tables I and II, below, present information about the site and $t^{\dagger}_{i,e}$ equipment.

For convenience in applying the results in this study, a nomogram for transforming effective antenna noise figure to noise field strength as a function of frequency is presented in Fig. 4.

FIG. 1 ARN-3 ATMOSPHERIC RADIO NOISE MEASURING EQUIPMENT

FIG. 2 LOCATION OF THE RADIO NOISE RECORDING STATION AT LAEM CHABANG, THAILAND

FIG. 3 RADIO NOISE RECORIJING STATION

Table 1

BADIO NOISE MEASURING SITE AT LAEM CHABANG, THATLAND

GEOGRAPH1	C LOCATION	FIRMATION ANGLE OF HODINA
Latitude	Longitude	ELEVATION ANGLE OF HORIZON
13.55"N	100,90°E	Less than 3 degrees in all directions; zero degrees towards the west (Gulf of Thailand)

Table 11
ARN-3 RADIO NOISE RECORDER SPECIFICATIONS

Antenna	Candard 6.6294-meter (21.75 feet) vertical antenna with ground plane consisting of ninety radial wires, each approximately 100 feet long.							
Frequencies of Measurement	6, 13, 27, 160, 530, 2,300, 5,000, and 10,600 kilz.							
Effective noise bandwidth of receiver	200 Hz							
Recording chart speed	5 cm per hour							

 $E_n = F_a + 20 \log_{10} f_{MHz}$ -65.5 D8-4240-261 $F_a = \text{Effective Antenna Noise Figure} = \text{External Noise Power}$

Available from an Equivalent Short, Lossless,
Vertical Antenna in dB Above kTb.

 E_n = Equivalent Vertically Polarized Ground Wave rms. Noise Field Strength in db Above 1 $\mu V/meter$ for a 1-kHz Bardwidth. f_{MHz} = Frequency in MHz

Source: ESSA Tech. Report IER 18-ITSA 18-28

FIG. 4 NOMOGRAM FOR TRANSFORMING EFFECTIVE ANTENNA NOISE FIGURE TO NOISE FIELD STRENGTH AS A FUNCTION OF FREQUENCY

II DISCUSSION

The noise data contained in this report are compatible with the data in a series of Technical Notes published by ITSA,* (Series 18) "Quarterly Radio Noise Data." The following two parameters of the atmospheric noise are tabulated in the Appendix:

- (1) Mean power
- (2) Mean envelope voltage.

The mean power is a hosic parameter and is expressed as an effective antenna noise factor, F_a . F_a is defined as the noise power available from an equivalent loss-free antenna in dB above kTb, the thermal noise power available from a passive resistance, where

- $k = Boltzmann's constant (1.38 \times 10^{-23} joules per degree Kelvin)$
- b = Effective receiver noise b ndwidth (llz)
- T = Reference temperature taken as 288°Kelvin.

The mean envelope voltage, $\mathbf{V_d}$, is expressed as a deviation in dB below the mean power.

Four frequencies, either in the MF and HF bands or in the VLF and LF bands, may be recorded simultaneously for 30 minutes. Switching between the two sets of four frequencies is accomplished automatically each half hour. The average power and the mean envelope voltage are recorded on an 8-channel strip-chart recorder. The chirty-minute samples are taken as representing the noise condition for the full hour.

The month-hour medians for power and voltage, $F_{\text{l.m.}}$ and $V_{\text{d.m.}}$, respectively, are determined from the hourly values scaled from the chart recordings for each of the corresponding frequencies. Normally, from twenty-five to thirty observations of the mean power are obtained monthly

Institute for Telecomm, incation Sciences and Aeronomy, of the Institutes for Environmental Research, Environmental Science Services Administration, U.S. Department of Computer.

for each hour of the day and from ten to fifteen observations of the voltage deviations. When there are fewer than fifteen observations of the mean power or seven observations of the voltage deviations, the tabulated values in the Appendix are identified by an asterisk.

The extent of the variation of the noise power from day to day at a particular hour of the day can be determined from the upper and lower decile values of F_a . These are expressed in dB above and below the month-hour median, F_{am} , and designated by D_a and D_f , respectively, in Table A-1.

Time-block median values of noise are tabulated on a seasonal basis and are obtained by averaging all month-hour medians for the four hours of the day within the three-month period (see Table A-2 and Fig. A-1). The time-block values conform to the sensonal time-block values used in CCIR Report No. 322.

The results of the noise measurements at MF and HF for the months June, July, and August 1966 are given in this report. No date for LF and VLF for these months are available, but it is expected that deta for these frequency bands will be published in subsequent reports.

APPENDIX

RADIO NOISE VALUES

Table A-1 MONTH-HOUR VALUES OF RADIO NOISE

Station: LAEM CHABANG lat. $13.55^{\circ}N$ l.ong. 100.9°E Month June 1966

							Fi	REQUENC	CY (MH	z)		-				
HR. (LT)		0.5	3			2.3	3			5.0)			10.	0	
	Fam	D _u	D _I	V _{dm}	Fam	D _u	D _l	Vdm	Fam	D _u	D _l	V _{dm}	F _{am}	Du	Dį	V _{dm}
00	103	12	13	4.0	•73		•	4.0	66	6	15	2.0	53	15	13	3 0
01	102	12	q	4.0	•70			4.0	67	6	14	2.0	53	13	17	3.0
02	102	12	16	5.0	•69			4.0	63	9	12	2.0	52	16	22	3.5
03	99	13	13	5.0	•73		•	4.0	64	8	15	2.0	•49			3.0
04	90	13	11	5.0	•71			4.0	•61			2.0	•47			4.5
05	96	13	12	5.0	•74	••	••	4.0	•64			2.0	*52			4.0
06	•86	•-		3.0	•70		••	4.0	64	ιl	13	2.0	53	9	9	3.5
07	83	22	10	4.0	•70			2.0	*58			2.0	49	11	9	4, 0
08	82	20	10	4.0	*56			2.0	51	17	4	3.0	46	13	9	6.0
09	80	19	11	4.0	*55			3.0	*47			2.0	47	8	13	4.0
10	84	14	14	4.0	•51			3.0	•47			3.0	45	6	10	4.0
11	84	18	15	6.0	*48			3.0	*43	••		3.0	•45	••	••	4.5
12	88	12	17	7.0	49	16	11	4.0	45	7	13	2.0	43	8	13	4.5
13	88	14	14	7.0	49	9	12	4.0	44	6	10	3.0	44	8	14	5.0
14	93	12	19	7.0	•52			5.0	47	10	12	4.0	47	6	15	5.0
15	99	12	22	9.0	57	19	17	4.0	53	11	9	3.0	50	3	17	4.5
16	95	15	13	6.5	•66	••		3.0	58	13	13	2.0	52	3	16	4.0
17	98	14	5	6.0	•70	••		2.0	59	14	12	2.0	55	12	13	3.0
18	100	13	5	4.0	•73			2.0	66	14	12	2.0	55	12	13	3.0
19	101	13	11	4.0	*78			2.0	<i>1</i> 5	••		2.0	57	li	13	3.0
20	1 02	13	12	4.0	• 78	••		2.0	74	7	8	2.5	56	8	10	2.0
21	103	12	16	4.0	•78	••		2.0	•68			2.0	55	12	16	3.0
22	100	14	10	4.0	•77	-	•	2.0	68	8	14	2.0	57	14	19	3.5
23	103	11	12	4.5	•76			2.0	•66			2.0	55	11	15	3.0

^{*} Fewer observations than 15 days of mean power measurements or 7 days observations of voltage measurements.

 F_{am} = Median value of effective antenna noise in dB above kTb D_{ii} = Ratio of upper decile to median F_{am} in d3 D_{l} = Ratio of median F_{am} to lower decile in dB V_{jm} = Median deviation of average voltage in dB below mean power

Table A-1 (Continued)

MONTH-HOUR VALUES OF RADIO NOISE

Station: LAEM CHABANG Lat. 13.55°N Long. 100.9°E Month July 1966

1111.								EQUEN	CY (MIL									
(LT)		0.5	3			2,3				5.0)			.0.	0			
	Fam	Du	\mathbf{p}_{l}	V _{dm}	Fan	D _q	\mathfrak{v}_{l}	V _{dm}	Fam	E _u	\mathbf{p}_t	$\mathbf{v}_{\mathbf{d}_{m}}$	i' am	D _u	\mathbf{p}^{f}	V _{dm}		
00	191	13	15	2.0	48	12	8	2.5	64	11	16	1.0	54	15	17	5.0		
(1)	100	12	12	2.0	66	11	5	2.5	64	11	15	1.0	•58			4.0		
02	100	11	12	3.0	66	7	5	3.0	62	10	13	2.0	•62		••	4.0		
03	101	ij	13	3.0	65	9	4	4.0	62	12	13	2.0	*51		•-	5. î		
04	99	11	13	3.0	65	9	5	4.0	61	15	12	2.0	•55			5.0		
05	98	11	14	4.0	6.1	13	5	4.0	ь0	12	11	2.0	*56			5.0		
0 6	92	16	g	3.0	68	13	7	2.0	60	11	11	1.0	53	8	11	5.0		
07	86	17	b	4.0	68	4	12	2.0	54	18	8	1.5	50	12	13	6.0		
08	83	19	12	3.0	6·l	8	15	2.0	47	10	8	2.0	47	8	12	5.0		
99	88	6	12	5.0	59	14	14	2.0	49	14	15	2.0	40	7	9	4.0		
16	84	8	13	4.0	56	13	15	2.0	48	6	16	1.0	41	9	9	4.0,		
11	83	13	15	4.0	57	8	15	2.0	44	13	13	2.0	36	13	3	4.0		
12	8:1	7	12	3.0	58	6	19	3.0	45	14	13	2.0	40	8	9	6.0		
13	86	ь	G	3.0	59	14	15	3.0	44	11	12	2.0	40	12	9	4, 0		
14	87	IJ	6	3.0	58	13	12	1.0	46	16	10	2.0	45	8	15	4.0		
15	88	10	14	3.0	60	6	10	3.0	52	9	11	2.0	47	17	7	5.0		
16	92	h	19	3.0	66	9	17	2.0	57	12	13	2.0	51	12	12	4.0		
17	96	12	19	3.0	75	7	25	2.0	65	9	26	2.0	55	13	14	3.0		
18	100	10	16	3.0	75	1.4	16	2.0	70	7	22	2.0	62	7	19	4.0		
19	102	14	17	2.5	77	12	14	1.0	74	8	26	2.0	61	10	18	4.0		
20	194	10	13	3.0	78	15	19	1.0	73	11	24	2.0	63	9	21	1.0		
21	103	10	17	4.0	7.7	11	11	2.0	71	11	22	1.0	53	17	9	5.0		
22	102	11	14	5.5	74	15	11	2.0	70	9	22	2.0	54	23	11	4.0		
23	102	11	15	2.5	70	11	5	2.0	64	14	16	2.0	57	22	16	4.0		

^{*} Fewer observations than 15 days of mean power measurements or 7 days observations of voltage measurements.

 $[\]begin{array}{l} F_{am} = \text{Median value of effective antenna noise in dB above kTb} \\ D_u = \text{Ratio of upper decile to median } F_{am} \text{ in dB} \\ D_{\underline{J}} = \text{Ratio of median } F_{am} \text{ to lower decile in dB} \\ V_{dm} = \text{Median deviation of average voltage in dB below mean power} \end{array}$

Table A-1 (Concluded)

MONTH-HOLB VALUES OF BADTO NOISE

Station: LAEM CHABANG Lat. 13.55°N Long. 100,9°E Month August 1966

	FREQUENCY (HM2)															
HR. (LT)		0.5	3			2.3				5.0				10.	0	
	F _{am}	D _u	b_t	Vdm	F _{am}	Đ	D_l	V _{dm}	Fam	D _u	D _t	V _{dm}	Fam	D	\mathbf{p}_{t}	V _{dm}
00	97	7	10	10.0	71	10	10	3.0	61	19	9	2.0	49	13	20	5.0
01	96	8	14	9.0	72	7	8	3.5	60	22	9	2.0	47	21	11	5.0
0.2	96	5	13	7.0	72	5	10	4.0	62	19	9	2.0	45	23	9	5.0
03	96	b	15	8.0	70	7	10	5.0	64	14	12	2.0	48	7	13	7.5
04	95	5	15	8.0	69	7	11	6.0	61	10	12	2.0	42	9	16	6,0
05	90	8	9	8.5	70	6	12	5.0	59	11	9	2.0	45	5	10	6.0
06	89	8	20	8.0	71	14	17	2.0	60	8	12	2.0	46	19	6	4.0
07	83	9	6	10.0	70	10	20	2.)	56	9	16	2.0	41	11	7	6.5
08	82	15	8	4.0	65	i3	17	2 0	50	17	13	2.0	38	11	5	6.0
09	80	14	17	4.0	57	22	10	2.0	49	8	17	2.0	34	14	5	6.5
10	79	17	10	4.0	54	19	6	2.0	4tı	13	18	2.0	34	16	5	6.0
11	82	17	11	10.0	58	19	11	9.0	49	9	14	2.0	33	17	7	6.0
12	84	16	11	11.0	64	15	18	21.0	46	12	12	2.0	38	9	16	6.5
13	87	13	11	6.0	66	13	18	2.5	48	9	10	4.0	39	7	17	8.0
14	91	10	13	8.0	70	9	19	4.0	51	8	8	4.0	43	5	10	8.0
15	93	8	15	11.0	68	10	13	3.5	52	8	7	2.0	44	5	8	8.0
16	92	13	11	8.0	73	7	15	2.0	60	9	8	2.0	47	9	8	6.0
17	95	9	9	6.0	77	8	16	2.0	65	7	11	15	55	9	l۲	4.0
18	96	6	7	7.0	80	7	13	2.0	69	5	9	1.5	54	11	16	4.5
19	100	3	11	5.5	82	5	16	2.0	68 	11	11	2.0	51	9	30	6.0
20	97	7	9	4.5	81	9	11	2.0	69	14	9	1.5	51	8	25	5.0
21	97	5	8	6.0	82	5	19	2.0	68	15	8	2.0	51	14	18	4.5
22	97	5	10	6.⊎	78	7	8	2.0	67	11	8	2.0	54	7	17	4.0
23	96	8	9	9.5	73	9	10	2.5	63	9	8	2.0	48	8	13	4.0

^{*} Fewer observations than 15 days of mean power measurements or 7 days observations of voltage measurements. F_{am} = Median value of effective antenna noise in dB above kTb D_{u} = Ratio of upper decile to median F_{am} in dB D_{l} = Ratio of median F_{am} to lower decile in dB V_{dm} = Median deviation of average voltage in dB below mean power

Table A-2

THREE-ARNTH TIME-BLOCK VALUES OF RADIO NOISE

£1 [
160			a B	5.0	2.0	2.0	4.0
gust		2400	ď	2	=		16
- Au		2000-2400	a°	<u>°</u>	10	=	13
-Ju¦y		2 (Fam	100	77	89	55
Period June-July-August 1906			$F_{am} D_{ii} D_{l} V_{dm} F_{am} D_{u} D_{l} V_{dm} F_{am} D_{u} D_{l} V_{dm} F_{am} F_{am} D_{u} D_{l} V_{dm} V_{dm} F_{am} D_{u} D_{l} V_{dm} V$	5.0 91 12 11 5.5 83 15 12 5.0 89 12 14 90 97 11 12 5.0 100 10 12 12 5.0	4.0 69 10 11 3.0 57 15 13 2.0 59 12 15 3.5 74 9 17 2.0 77 10 11 2.0	2.0 60 12 12 1.9 48 12 13 2.0 48 10 11 3.0 66 10 15 2.0 68 11 14 2.0	4.0 49 11 10 5.0 41 11 8 7.5 43 8 13 6.0 55 10 16 4.0 55 13 16 4.0
riod		0007	^l a	12	11	15	16
4		1600-2000	a a	11	6	01	10
		ì	Fan	16	12	99	55
Long. 100.9°E			v dm	0 6	3.5	3.0	6.0
100.		1600	\mathbf{D}_l	14	15	1.1	13
8	ST)	1200-1600	D	12	12	10	8
Lo	KS (L	-	Fam	68	59	\$	43
	TIME BLOCKS (LST)		Vdm	5.0	2.0	2.0	7.5
- I	TIM	200	¹ d	12	13	13	8
550		0800-1200	ב"	15	15	12	11
Lat. 13.55°N		0	F. am	83	57	48	41
l.at			μPΛ	2*2	3.0	1.9	5.0
		9800	$l_{\mathbf{G}}$	11	11	12	10
		0400-0800	D "	12	10	12	11
AND		0	T am	16	69	09	49
THALL			Vdm	5.0	4.0		
,e		0010	, 1	13	8	13	15
IABA		0000-0400	¹a "a	<u>01</u>	Ó	12 13	15
AEN CI		Ö	Fam	E1 01 66	02	63	52
Station: LAEM CHABANG, THAILAND		FREQUENCY (MDz)		0.53	2.3	2	10

 $F_{\mbox{\scriptsize am}} = \mbox{\scriptsize Median value of effective antenna noise in dB in kTb}$

 $D_u=$ Hatio of upper decile to median $F_{a,n}$ in dB $D_f=$ Ratio of median F_{am} to lower decile in dB $V_{dm}=$ Median deviation of average voltage in dB below mean power

FIG. A-1 THREE-MONTH MEDIAN TIME-BLOCK VALUES OF RADIO NOISE POWER

UNCLASSIFIED			
Security Classification			
DOCUMEN	IT CONTROL DATA - R	& D	
(Security classification of title, body of abstract and	d indexing annotation must be		المستحدث والمستحدد والمستحدد
1. ORIGINATING ACTIVITY (Corporate author) Stanford Besearch Institute Menlo Park, California 94025		UNCLASSI	ECURITY CLASSIFICATION FLED
monto turn, Carrittilla 79020		Zb. GROUP	· · · · · · · · · · · · · · · · · · ·
3. REPORT TITLE			
ATMOSPHERIC RADIO NOISE DATA, BANGKOK, THAILAN	D-lune-August 1966		
4. OESCRIPTIVE NOTES (Type of report and inclusive dates) Geophysical Data Report Covering the Period Ju			
5. AUTHOR(3) (Fizet name, middle initial, last name)			
Bangsit Chindahporn, Lt. Chaikamol Lumjiak, Pr	rajuab Nimityongskul		
6. REPORT OATE	78. TOTAL NO.	OF PAGES	76. NO. OF REFS
January 1967	2		
Contract DA-36-039-AMC-00040(E)		N'S REPORT NUM	
b. PROJECT NO.	Geophysica SRI Projec	al Data Report et 4240	
Order No. 5384-PM-63-91			
с.	96. OTHER REP	ORT NO(5) (Any	other numbers that may be assigned
ARPA Örder No. 371	inia report)		
d.			
10. DISTRIBUTION STATEMENT			•
Distribution of this document is unlimited,			
11. SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACT	IVITY
	Advanced	Research Proje	ects Agency
	Washingto	n, D.G.	
19. ABSTRACT			
=			
None: Data Report			
·			

DD FORM .. 1473

(PAGE 1)

UNCLASSIFIED

Security Classification

BLANK PAGE

Security Classification

	Security Classification							
14	KEY WORDS	LIN	A N	LIN	1 K B	LINKC		
	NET WORDS	ROLE	W1	ROLE	w r	ROLE	WT	
					 			
l	Atmospheric radio noise							
	VLF. LF. MF, HF				1			
							ļ	
	Mean power, F							
Ì	Mean envelope voltage, V _d Four-hour time blocks							
1					Ī			
l	Monthly Summary				Ì			
	Quarterly Summary				ł			
	ARV-2		1			1		
ı	AIN-3				!			
1	June, July, August 1966				ł			
1	Laem Chabang (near Sirracha), Thailand							
1			i					
Ì					l		ļ	
				l]	<u> </u>	
1								
1					1			
1			ł	ŀ			ŀ	
Ì					1			
İ					1			
						ŀ	ļ	
]	j				
1							i i	
		i i		•		1		
1			ĺ					
1				1	1			
			l			Ì		
						1		
1			1				ĺ	
1			1		Ì			
			1	İ				
ŀ								
ı			ļ					
1					1			
			l					
1								
		İ						
							ì	
			1					
1								
							I	
							I	
						i l		
J								
4		_1		L 1				

DD FORM 1473 (BACK)
(PAGE 2)

UNCLASSIFIED

Security Classification

M-652.685

ERRATUM

Ref: "Atmospheric Radio Noise Data, Bangkok, Thailand--June-August 1966,"
Geophysical Data Report, by Rangsit Chindahporn, Lt. Chaikamol
Lumjiak, and Prajuab Nimityongskul, Contract DA 36-039 AMC-00040(E),
SRI Project 42-10. Stanford Research Institute, Menlo Park, California
(January 1967).

An error has been found in Fig. A-1 of the report as printed. The illustration has been corrected and is attached. Please correct the copy(ies) of this report as submitted to you.

FIG. A-1 THREE-MONTH MEDIAN TIME-BLOCK VALUES OF RADIO NOISE POWER