Ausgabe: 04. Juli 2023 _____ Kleingruppenübungen: vom 11.07 bis zum 14.07

Einführung in die angewandte Stochastik

Kleingruppenübung 10

Quantilstabellen mit den Werten zur Normalverteilung, der t-Verteilung und der χ^2 - Verteilung befinden sich am Ende dieses Übungsblattes.

Aufgabe 38

Die monatliche Niederschlagsmenge (in mm) an einem bestimmten Messpunkt kann durch eine $\mathcal{N}(\mu, \sigma^2)$ -verteilte Zufallsvariable mit $\mu \in \mathbb{R}$ und $\sigma > 0$ beschrieben werden.

Aus 60 unabhängig voneinander gemessenen Niederschlagsmengen x_1, \ldots, x_{60} wurde die folgende Stichprobenvarianz berechnet:

$$\hat{\sigma}^2 = \frac{1}{59} \sum_{i=1}^{60} (x_i - \overline{x})^2 = 81.7 \text{ (mm}^2).$$

- (a) Bestimmen Sie ein einseitiges oberes 90%-Konfidenzintervall für σ^2 .
- (b) Testen Sie zum Signifikanzniveau $\alpha = 10\%$

die Hypothese $H_0: \sigma^2 \leq 60$ gegen die Alternative $H_1: \sigma^2 > 60$.

Aufgabe 39

Ein Unternehmer vertritt die Meinung, dass ein von ihm eingeführtes Geschäftsmodell den Umsatz seines Unternehmens gesteigert hat. Vor der Einführung des Modells hat das Unternehmen einen Umsatz von durchschnittlich $24\,500\,$ pro Monat erwirtschaftet. In den acht Monaten seit Einführung des neuen Modells wurden folgende monatlichen Umsätze (in \in) erzielt:

Monat	1	2	3	4	5	6	7	8
Umsatz	23 900	25500	25100	24500	26200	25300	24 100	25900

- (a) Bestimmen Sie einen geeigneten Test zur Überprüfung der Aussage des Unternehmers. Gehen Sie hierbei davon aus, dass man die Monatsumsätze als Realisationen stochastisch unabhängiger, jeweils $\mathcal{N}(\mu, \sigma^2)$ -verteilter Zufallsvariablen mit $\mu \in \mathbb{R}$ und $\sigma > 0$ ansehen kann.
- (b) Können Sie die Aussage des Unternehmers bei obigen Daten zum Niveau $\alpha = 0.05$ bestätigen?

Aufgabe 40

Ein Unternehmen produziert elektronische Bauteile, die von dem Mitarbeiter Herr A. von Hand in Kartons verpackt werden müssen. An vier Arbeitstagen wurde Herr A. jeweils gefragt, wie viele Bauteile er verpackt hat und wie viel Zeit er dafür jeweils benötigt hat. Die Ergebnisse sind in folgender Tabelle dargestellt:

Anzahl Kartons	2	4	2	4
benötigte Zeit t (in Stunden)	4	2	3	2

(a) Berechnen Sie aus den gegebenen Daten die zugehörige geschätzte Regressionsgerade

$$\hat{f}(t) = \hat{a} + \hat{b}t, \quad t \in I,$$

zur Erklärung der Anzahl verpackter Kartons in Abhängigkeit von der benötigten Zeit t, wobei die Koeffizienten \hat{a} und \hat{b} aus der Methode der kleinsten Quadrate resultieren. Geben Sie den Definitionsbereich I der geschätzten Regressionsgerade \hat{f} explizit an.

(b) In der nächsten Woche muss Herr A. 3 Kartons verpacken müssen. Wie viel Zeit wird er dafür benötigen?

278 C Tabellen

Verteilungsfunktion $\Phi(x+h)$										
x h										
	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
		.9975			.9977	.9978	.9979	.9979	.9980	.9981
Beispiel: $X \sim \mathcal{N}(3,9)$,										
$P(X \le 4.26) = P(\frac{X-3}{\sqrt{9}} \le \frac{4.26-3}{3}) = P(X \le 0.42) = 0.6628$										

q-Quantile der $t(df)$ -Verteilung							
q							
df 0.9 0.95 0.975	0.98						
1 3.078 6.314 12.706	15.895	31.821	63.657				
2 1.886 2.920 4.303	4.849	6.965					
3 1.638 2.353 3.182		4.541	5.841				
4 1.533 2.132 2.776	2.999	3.747	4.604				
5 1.476 2.015 2.571	2.757	3.365	4.032				
6 1.440 1.943 2.447	2.612	3.143	3.707				
	2.517						
8 1.397 1.860 2.306	2.449	2.896	3.355				
9 1.383 1.833 2.262	2.398	2.821	3.250				
10 1.372 1.812 2.228	2.359	2.764	3.169				
11 1.363 1.796 2.201	2.328	2.718	3.106				
12 1.356 1.782 2.179	2.303	2.681	3.055				
13 1.350 1.771 2.160	2.282	2.650	3.012				
14 1.345 1.761 2.145	2.264	2.624	2.977				
15 1.341 1.753 2.131							
16 1.337 1.746 2.120							
17 1.333 1.740 2.110							
18 1.330 1.734 2.101							
19 1.328 1.729 2.093							
20 1.325 1.725 2.086	2.197	2.528	2.845				
21 1.323 1.721 2.080	2.189	2.518	2.831				
22 1.321 1.717 2.074	2.183	2.508	2.819				
23 1.319 1.714 2.069	2.177	2.500	2.807				
24 1.318 1.711 2.064	2.172	2.492	2.797				
25 1.316 1.708 2.060	2.167	2.485	2.787				
26 1.315 1.706 2.056	2.162	2.479	2.779				
27 1.314 1.703 2.052	2.158	2.473	2.771				
28 1.313 1.701 2.048	2.154	2.467	2.763				
29 1.311 1.699 2.045	2.150	2.462	2.756				
30 1.310 1.697 2.042	2.147	2.457	2.750				
31 1.309 1.696 2.040							
$32\ 1.309\ 1.694\ \ 2.037$	2.141						
Beispiel: $X \sim t(8)$,							
$P(X \le c) = 0.95 \implies c = 1.860$							

q -Quantile der $\chi^2(df)$ -Verteilung							
q							
_	0.99	0.995					
36 47.212 50.998 54.437 55.489	58.619	61.581					
37 48.363 52.192 55.668 56.730	59.893	62.883					
38 49.513 53.384 56.896 57.969	61.162	64.181					
39 50.660 54.572 58.120 59.204	62.428	65.476					
40 51.805 55.758 59.342 60.436	63.691	66.766					
41 52.949 56.942 60.561 61.665	64.950	68.053					
42 54.090 58.124 61.777 62.892	66.206	69.336					
43 55.230 59.304 62.990 64.116	67.459	70.616					
44 56.369 60.481 64.201 65.337	68.710	71.893					
45 57.505 61.656 65.410 66.555	69.957	73.166					
46 58.641 62.830 66.617 67.771	71.201	74.437					
47 59.774 64.001 67.821 68.985	72.443	75.704					
48 60.907 65.171 69.023 70.197	73.683	76.969					
49 62.038 66.339 70.222 71.406	74.919	78.231					
50 63.167 67.505 71.420 72.613	76.154	79.490					
51 64.295 68.669 72.616 73.818	77.386	80.747					
52 65.422 69.832 73.810 75.021	78.616	82.001					
53 66.548 70.993 75.002 76.223	79.843	83.253					
54 67.673 72.153 76.192 77.422	81.069	84.502					
55 68.796 73.311 77.380 78.619	82.292	85.749					
56 69.919 74.468 78.567 79.815	83.513	86.994					
57 71.040 75.624 79.752 81.009	84.733	88.236					
58 72.160 76.778 80.936 82.201	85.950	89.477					
59 73.279 77.931 82.117 83.391	87.166	90.715					
60 74.397 79.082 83.298 84.580	88.379	91.952					
61 75.514 80.232 84.476 85.767	89.591	93.186					
62 76.630 81.381 85.654 86.953	90.802	94.419					
63 77.745 82.529 86.830 88.137	92.010	95.649					
64 78.860 83.675 88.004 89.320	93.217	96.878					
65 79.973 84.821 89.177 90.501	94.422	98.105					
66 81.085 85.965 90.349 91.681	95.626	99.330					
67 82.197 87.108 91.519 92.860	96.828	100.554					
68 83.308 88.250 92.689 94.037	98.028	101.776					
69 84.418 89.391 93.856 95.213	99.228	102.996					
$70\ 85.527\ 90.531\ 95.023\ 96.388$	100.425	104.215					