제 4 교시

과학탐구 영역(화학Ⅱ)

수험 번호 성명 제 [] 선택

1. 다음은 Na(s)과 NaCl(s)의 결정 구조에 대한 자료이다. Na(s)의 단위 세포는 한 변의 길이가 a인 정육면체이다.

 \circ Na(s)의 단위 세포에 포함된 원자 수는 \bigcirc 이다.

○ NaCl(s)은 □ 결정이다.

다음 중 ③과 ⑥으로 가장 적절한 것은?

- \bigcirc
- \bigcirc L
- \bigcirc L

- ① 1 금속
- ② 2 공유
- 3 2 이온

- \bigcirc 2 금속
- (5) 4 이온
- 2. 다음은 화합물 (가)~(다)에 대한 자료이다.

화합물	(フト)	(나)	(다)	
구조식	H H H-C-C-O-H H H	H O H-C-C-H H	H H H H-C-C-C-H H H H	
분자량	46	44	44	
기준 끓는점(℃) 78		21	-42	

- 액체 상태에서 (가) 분자 사이에 │ ① │ 결합이 존재한다.
- 액체 상태에서 분자 사이에 분산력이 존재하는 화합물은 모두 🕒 가지이다.

다음 중 ③과 ①으로 가장 적절한 것은?

- ① 금속
- ② 공유
- ③ 수소

- ④ 금속 3
- ⑤ 수소
- 3. 그림은 구리(Cu)와 철(Fe)을 전극 으로 사용한 화학 전지와, 전지 반응이 진행될 때 전자의 이동 방향을 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 온도는 25℃로 일정하고, 음이온은 반응하지 않는다.) [3점]

----<보 기>-

- ¬. Cu(s) 전극은 (+)극이다.
- L. Cu(s) 전극의 질량은 감소한다.
- ㄷ. 금속의 이온화 경향은 Fe > Cu이다.
- \bigcirc
- (2) L
- 37, 5 4 4, 5 5 7, 4, 5

4. 다음은 A(g)로부터 B(g)가 생성되는 반응의 화학 반응식과 반응 속도식이다. k는 반응 속도 상수이다.

$$A(g) \to 2B(g)$$
 $v = k[A]$

표는 온도 T에서 3개의 강철 용기에 A(g)를 각각 넣고 반응 시킨 실험 (가)~(다)에 대한 자료이다.

실험	A(g)의 초기 농도(M)	첨가한 촉매	반응 속도 상수 (s ⁻¹)	초기 반응 속도 (M·s ⁻¹)
(가)	a	없음	k_1	2v
(나)	3a	없음	k_2	6v
(다)	2a	$\chi(s)$		6v

다음 중 (다)에서 첨가한 X(s)의 종류(\bigcirc)와 k_1 , k_2 의 크기 비교(①)로 가장 적절한 것은? (단, 초기 농도와 촉매의 첨가를 제외한 반응 조건은 동일하다.)

- - <u>L</u>
- ① 부촉매 $k_1 = k_2$ ② 부촉매 $k_1 > k_2$ ③ 부촉매 $k_1 < k_2$
- ④ 정촉매 $k_1=k_2$ ⑤ 정촉매 $k_1>k_2$
- 5. 그림 (가)는 X(l)와 Y(l)의 증기 압력 곡선을, (나)는 외부 압력 1 atm에서 같은 양(mol)의 X(l)와 Y(l)를 각각 가열할 때, 가한 열량에 따른 온도를 나타낸 것이다. □과 □은 각각 X와 Y 중 하나이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

- \neg . t_1 $^{\circ}$ 에서 분자 사이의 인력은 $\mathbf{X}(l)$ 가 $\mathbf{Y}(l)$ 보다 크다.
- ㄴ. t_2 °C, 1 atm에서 Y의 안정한 상은 액체이다.
- \Box . t_3 $^{\circ}$ 에서 Y(l)의 증기 압력은 1 atm보다 작다.
- 1 7 ② L
- ③ ⊏
- ④ ¬, ∟ ⑤ ∟, ⊏

화 학

6. 다음은 25 ℃, 1 atm에서 4가지 열화학 반응식이다.

 $C_2H_5OH(l) \rightarrow C_2H_4(g) + H_2O(l)$

 $\Delta H = a \, kJ$

 $C_2H_5OH(l) \rightarrow C_2H_5OH(g)$

 $\Delta H = 42 \,\mathrm{kJ}$

 $H_2O(l) \rightarrow H_2O(g)$

 $\Delta H = 44 \text{ kJ}$

 $C_2H_5OH(g) \rightarrow C_2H_4(g) + H_2O(g)$

 $\Delta H = x \, kJ$

- 이 자료로부터 구한 x는? [3점]
- ① a-86 ② a-2 ③ a
- $\bigcirc a + 2$
- $\bigcirc a + 86$

2 (화학Ⅱ)

과학탐구 영역

7. 다음은 학생 A가 수행한 탐구 활동이다.

[탐구 과정]

(가) 그림과 같이 백금(Pt) 전극을 1 M $AgNO_3(aq)$ 에 넣고 전원 장치에 연결하여 전기 분해한 후 변화를 관찰한다.

(나) AgNO₃(aq) 대신 1 M CuSO₄(aq)을 사용하여 (가)와 동일한 조건으로 반복하여 실험한다.

(타구	プロし)

(0 1 0 1)		
과정	(フト)	(나)
⇒에서 석출된 금속	Ag(s)	Cu(s)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>--

- 기. (L)은 (-)극이다.
- ㄴ. (나)의 □에서 일어나는 반응의 화학 반응식은 $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$ 이다.
- C. 금속 1 mol이 석출될 때 금속 이온이 얻는 전자의 양(mol)은 (가)에서와 (나)에서가 같다.
- ① L
- ② ⊏
- 37, 47, 54, 5

- 8. 표는 A(aq) (가)와 (나)의 퍼센트 농도에 따른 증기 압력 내림 자료이다. 물의 증기 압력은 t_1 \mathbb{C} 와 t_2 \mathbb{C} 에서 각각 81 mmHg와 118 mmHg이다.

A(aq)	온도(℃)	퍼센트 농도(%)	증기 압력 내림(mmHg)
(フト)	t_1	4	a
(나)	t_2	x	3a

- x는? (단, 물과 A의 화학식량은 각각 18, 60이다. A는 비휘발성, 비전해질이고, 수용액은 라울 법칙을 따른다.) [3점]

- ① 6 ② 8 ③ 10 ④ 12
- **⑤** 14

9. 그림은 25 ℃, 1 atm에서 3가지 물질의 생성 엔탈피를 나타낸 것이다. 25℃, 1 atm에서 이 자료로부터 구한 C-H의 결합 에너지는 $\frac{x}{4}$ kJ/mol이다.

x는?

- $\bigcirc 1 a + 4b + c$
- $\bigcirc -a + 2b + c$
- 3 a + 2b c

- (4) a+4b+c
- ⑤ a+2b+c

10. 다음은 A(g)로부터 B(g)가, C(g)로부터 D(g)가 생성되는 반응의 화학 반응식과 반응 속도식이다. k와 2k는 온도 T에서의 반응 속도 상수이다.

$$A(g) \to B(g)$$
 $v = k[A]$

$$C(g) \rightarrow 2D(g)$$
 $v = 2k[C]$

실험 (r)는 VL 강철 용기에 A(g)를, 실험 (r)는 VL 강철 용기에 C(g)를 넣고 온도 T에서 반응시킨 것이다. 표는 반응 시간에 따른 순간 반응 속도를 나타낸 것이다.

반응 시간		0	t	2t
순간 반응 속도	(가)	8		2
(상댓값)	(나)	16	4	

(+)에서 $0\sim 2t$ 동안 C(g)의 평균 반응 속도 (+)이서 $0\sim 2t$ 동안 A(g)의 평균 반응 속도 (+)은? (단, 온도는 T로 일정하다.) [3점]

1

11. 다음은 약산 HA 의 이온화 반응식과 $25\,\mathrm{C}$ 에서의 이온화 상수(K_{a}) 이다.

$$HA(aq) + H_2O(l) \rightleftharpoons A^-(aq) + H_3O^+(aq)$$
 K_a

그림 (가)는 1 M HA(aq) 50 mL를, (나)는 (가)에 물을 추가한 것을, (다)는 (나)에 NaOH(s) x g을 모두 녹인 것을 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, NaOH의 화학식량은 40이고, 수용액의 온도는 25℃로 일정하다.)

---<보 기>-

- $\neg . \ x = 0.80$ 다.
- $L. \frac{[A^-]}{[HA]} 는 (나)가 (가)보다 크다.$
- ㄷ. (다)에 $1 \text{ M HCl}(aq) \ 1 \text{ mL를 첨가하면 } \frac{[\text{HA}]}{[\Lambda^-]} < \frac{3}{2}$ 이다.
- \bigcirc
- ② ⊏

- 37, 6 4 6, 5 7, 6, 6
- 12. 그림은 t \mathbb{C} 에서 $H_2O(l)$ w g 에 A(s)를 녹인 수용액의 몰랄 농도 (m)를 A(s)의 질량에 따라 나타낸 것이다. P에서 퍼센트 농도는 5y%이다.

x는? (단, A의 화학식량은 60이다.) [3점]

- ① 60
- 2 80
- 3 90
- 4 100
- (5) 120

13. 그림 (가)는 t_2 \mathbb{C} 에서 고정 장치로 피스톤이 고정된 실린더 속에서 H,O이 평형을 이루고 있는 상태를, (나)는 H,O의 상평형 그림을 나타낸 것이다.

(가)에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 외부 압력은 1 atm으로 일정하고, 피스톤의 질량과 마찰은 무시한다.)

- \neg . 고정 장치를 풀고 t_1 \mathbb{C} 에서 충분한 시간이 흐른 후 안정한 상은 기체이다.
- 상이 고체일 때 $a < t_1$ 이다.
- \Box . 고정 장치를 풀고 t_{2} \mathbb{C} 에서 피스톤의 높이를 1.5h로 고정 시킨 후 도달한 새로운 평형에서 $H_{\circ}O(g)$ 의 질량은 w g이다.

① L ② ⊏ 37, 6 47, 5 6, 6

14. 표는 실린더 (가)~(다)에 들어 있는 기체에 대한 자료이다. 실린더 속 전체 기체의 압력은 (γ) ~(다)에서 각각 P atm으로 같다.

실린더	질링		온도(K)	기체의 밀도	
	A(g)	B(g)		(상댓값)	
(フト)	w	0	T	3	
(나)	0	6w	$\frac{2}{3}T$	x	
(다)	w	6w	$\frac{3}{2}T$	8	

x는? (단, A와 B는 반응하지 않는다.) [3점]

- ① 6
- 2 16
- ③ 24
- 4 30
- (5) 36

15. 다음은 A(g)와 B(g)가 반응하여 C(g)가 생성되는 반응의 화학 반응식과 농도로 정의되는 평형 상수(K)이다.

$$A(g) + B(g) \rightleftharpoons C(g)$$
 K

그림 (가)는 TK에서의 평형 상태를, (나)는 (가)에서 온도를 aTK로 변화시킨 후 반응이 진행되어 도달한 새로운 평형 상태를 나타낸 것이다. (가)와 (나)의 평형 상수는 각각 K_1 과 K_2 이다.

 $a imes rac{K_2}{K_c}$ 는? (단, 외부 압력은 $1\,\mathrm{atm}$ 으로 일정하고, 피스톤의 질량과 마찰은 무시한다.)

- ① $\frac{3}{5}$ ② $\frac{4}{5}$ ③ 1 ④ $\frac{6}{5}$ ⑤ $\frac{7}{5}$

16. 다음은 A(g)로부터 B(g)와 C(g)가 생성되는 반응의 화학 반응식과 반응 속도식이다. *k*는 반응 속도 상수이다.

$$2A(g) \rightarrow 2B(g) + C(g)$$
 $v = k[A]$

표는 부피가 같은 2개의 강철 용기에 물질의 종류와 양을 달리 하여 넣고 반응시킨 실험 (가)와 (나)에 대한 자료이다. (가)와 (나)의 온도는 각각 T_1 과 T_2 로 일정하다.

(r)에서 $t = 1 \min 일 때 A(g)$ 의 질량(g) = 3이다. $\overline{(+)}$ 에서 $t=2\min 2$ 때 B(g)의 질량(g)

실	반응 전 용기 속 기체			B(g)		+ C(g)의 의 양(mol	
		종류	전체 양 (mol)	t = 0	t = 1 min	$t=2 \min$	t = 3 min
(7	가)	A(g), B(g)	3n	$\frac{1}{9}$		x	$\frac{23}{25}$
(1	나)	A(g), C(g)	2n	$\frac{1}{5}$		$\frac{2}{3}$	_

 $x \times \frac{(\downarrow)$ 에서 $t = 4 \min 2$ 때 C(g)의 질량(g) 은? (단, 역반응은 (\uparrow))에서 $t = 3 \min 2$ 때 B(g)의 질량(g)일어나지 않는다.) [3점]

- ① $\frac{1}{2}$ ② $\frac{2}{3}$ ③ 1 ④ $\frac{4}{3}$ ⑤ $\frac{5}{3}$

17. 다음은 T K에서 C_2 H $_4$ (g)의 연소 반응에 대한 화학 반응식이다.

$$C_3H_4(g) + 4O_2(g) \rightarrow 3CO_2(g) + 2H_2O(l)$$

그림은 TK에서 꼭지로 분리된 강철 용기에 $C_3H_4(g)$ 와 $O_2(g)$ 를 넣은 초기 상태를 나타낸 것이다. $C_3H_4(g)$ 를 완전 연소시켜 반응을

완결시킨 후, 꼭지를 열어 온도를 $\frac{4}{5}T$ K로 유지하며 충분한 시간이 흘렀을 때 $H_2O(l)$ 의 몰 분율은 x이고, 전체 압력은 P_2 atm이다.

 $x \times \frac{P_1}{P_2}$ 은? (단, C_3H_4 와 O_2 의 분자량은 각각 40, 32이다. 기체의 $\mathrm{H_2O}(l)$ 에 대한 용해, $\mathrm{H_2O}(l)$ 의 부피와 증기 압력, 연결관의 부피는 무시한다. $H_{\circ}O(l)$ 을 제외한 물질은 모두 기체이다.) [3점]

- ① $\frac{5}{16}$ ② $\frac{5}{12}$ ③ $\frac{15}{32}$ ④ $\frac{1}{2}$ ⑤ $\frac{5}{8}$

4 (화학Ⅱ)

과학탐구 영역

18. 그림은 25 ℃에서 약염기 X의 수용액과 약염기 Y의 수용액에 각각 HCl(aq)을 가할 때, 평형 상태에서 pH에 따른 $\frac{[X]}{[X]+[XH^+]}$ 또는 $\frac{[Y]}{[Y] + [YH^+]}$ 를 나타낸 것이다. P에서 $[OH^-] = 5 \times 10^{-6} \text{ M}$ 이고, 25 ℃에서 XH ⁺과 YH ⁺의 이온화 상수(K_a)는 각각 a와 b이다.

 $\frac{x \times a}{b}$ 는? (단, 수용액의 온도는 25 ℃로 일정하고, 25 ℃에서 물의 이온화 상수($K_{\rm w}$)는 1×10^{-14} 이다.) [3점]

- ① $\frac{1}{8}$ ② $\frac{1}{2}$ ③ $\frac{3}{2}$ ④ 2 ⑤ $\frac{8}{3}$

19. 다음은 A(g)와 D(g)가 각각 분해되는 반응의 화학 반응식과 반응 속도식을 나타낸 것이다. k_1 과 k_2 는 반응 속도 상수이다.

$$2A(g) \rightarrow 4B(g) + C(g)$$
 $v = k_1[A]$

$$2D(g) \rightarrow 2E(g) + C(g)$$
 $v = k_2[D]$

그림은 서로 다른 온도 T_1 과 T_2 에서 강철 용기 (가)와 (나)의 초기 상태를 나타낸 것이다. 표는 (가)와 (나)에서 반응이 진행될 때, 반응 시간에 따른 $\frac{\mathsf{C}(g)}{\mathsf{D}}$ 의 부분 압력 을 나타낸 것이다. 2t일 때 C(g)의 질량(g)은 (가)에서가 (나)에서의 2배이다.

반응 시간		t	2t	3t
C(g)의 부분 압력	(フト)		$\frac{3}{17}$	
전체 기체의 압력	(나)	x	$\frac{1}{7}$	$\frac{7}{43}$

 $x imes rac{(7)$ 에서 3t일 때 $\mathrm{B}(g)$ 의 양(mol) (나)에서 t일 때 $\mathrm{E}(g)$ 의 양(mol) 은? (단, 온도는 각각 T_1 과 T_2 로 일정하고, 역반응은 일어나지 않는다.)

- ① $\frac{1}{20}$ ② $\frac{1}{15}$ ③ $\frac{1}{10}$ ④ $\frac{1}{7}$ ⑤ $\frac{1}{5}$

20. 다음은 A(g)로부터 B(g)가 생성되는 반응의 화학 반응식과 온도 TK에서 농도로 정의되는 평형 상수(K)이다.

$$A(g) \rightleftharpoons 2B(g)$$
 $K=a$

그림은 T K에서 실린더 (γ) 에 A(g)가, (ψ) 에 B(g)가 각각 들어 있는 초기 상태를 나타낸 것이다.

반응이 진행되어 각각 도달한 평형 상태에서 A(g)의 양(mol)은 (가)에서와 (나)에서가 같고, B(g)의 양(mol)은 (가)에서와 (나) 에서가 같다.

평형 상태에서 고정 장치를 풀고 (가)의 부피를 10 L로 고정시킨 후 도달한 새로운 평형에서 [B] = x M이고, 평형 상태에서 (나)에 A(g) 3 mol을 추가하여 도달한 새로운 평형에서 [B] = y M이다.

 $\frac{x}{a \times y}$ 는? (단, 온도와 외부 압력은 각각 TK와 Patm으로 일정하고, 피스톤의 질량과 마찰은 무시한다.) [3점]

- ① 15
- 2 16
- ③ 18
- 4) 20
- $\bigcirc 5$ 25

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인