

Continuous Assessment Test (CAT)- 1- November 2022

Programme	: B.Tech.	Semester 1	Fall 2022-2023
Course Title	: Calculus	Code /	BMATIOIL B2+TB2
Faculty	Dr. Radha S Dr. Abhishek Kumar Singh Dr. Manivannan Dr. P. Vijay Kumar Dr. Ashish Kumar Dr. Kalyan Dr. Ashis Bera Dr. Surath Dr. Rajesh Kumar Mohaopatra Dr. Biswajit Mallick Dr. Soumendu Roy	Class Nbr	C112022231700265 CH2022231700549 CH2022231700269 CH2022231700551 CH2022231700555 CH2022231700619 CH2022231700263 CH2022231700271 CH2022231700261 CH2022231700261 CH2022231700261

Answer all the Questions (5×10=50)

Q.No.	Sub.	Question Description	Marks
1.	Sec.	Verify Rolle's theorem for the function $f(x) = \log \left[\frac{x^2 + ab}{x(a+b)} \right]$ in $[a, b]$ and $0 \in [a, b]$. Also find the value of 'c' for which $f'(c) = 0$.	[5]
	[b]	Show that the function $y = \log(1+x) - \frac{2x}{2+x}$ is an increasing function of x, when x is	[5]
2.	[a]	positive and deduce that $\log (1+x) > x+2$ Find the local maxima and local minima of the function defined by $f(x) = 3x^4 + 8x^3 - 18x^2 + 60$.	[7]
	[b]	Find the points of inflexion for the curve $y = \frac{x+1}{x^2+1}$.	[3]
3		Sketch the common region included between the curve $\frac{y+B}{x} = x - 2$ and the x-axis and find the volume of the solid generated by revolving the common area about the line $x + B$	[10]
4.		5 = 0. Show that $\lim_{(x,y)\to(0,0)} \frac{(x^3+y^3)}{ x + y }$ exists by using $\varepsilon - \delta$ method.	[10]
5.	[a]	If $u = xyz$, $v = xy + yz + xz$, $w = x + y + z$, show that $\frac{\partial (u,v,w)}{\partial (x,y,z)} = (x - y)(y - z)(z - x)$	[5]
]	[b]	If $u = x^2 + y^2 + z^2$ and $x = e^{2t}$, $y = e^{2t} \cos 3t$, $z = e^{2t} \sin 3t$. Find $\frac{du}{dt}$ as a total derivative.	[5]

Reg. No.: Name:

Continuous Assessment Test (CAT)- I- October 2022

Programme	: B.Tech.		
		Semester	: Fall 2022-2023
Course Title	: Calculus		: BMAT101L
Faculty	: Dr. Ralamurugan Dr. Caratty	Slot	: A2+TA2
3	: Dr. Balamurugan, Dr. Saroj Kumar Dash, Dr. Mini Ghosh, Dr. Manimaran, Dr. Sowndarrajan, Dr.	Class ID	: C112022231700410.
Duration	Prabhakar, Dr. Rajesh Kumar, Dr. Soumendu Roy		416,429,440, 443 ,57 3,604,610
	1 72220113	Max. Marks	: 50

Answer all the Questions (50 marks)

Q.No.	Onestion Description	
1.	Question Description (a). Verify Rolle's theorem for the function $f(x) = x^3 - 7x^2 + 16x - 12$ in [2,3].	Marks
	(b). Let $f(x) = \frac{x^3}{4} - 3x, x \in \mathbb{R}$. Find the intervals on which $f(x)$ is increasing (or) decreasing.	[5]
2.		[5]
	Find the maximum and minimum values of $f(x) = 4 - x^2 , x \in [-4,4]$. Also find the absolute maximum and absolute minimum, if they exist.	[10]
	the curve $x^2 + y^2 = -2x$ and below by x-axis and the line $y = x + 1$	tto
-	Find f_x , f_y , f_{xy} and f_{yx} at each point of the domain of $f(x, y)$, where $f(x, y) = \sqrt{x^2 + y^2}$.	[10]
		[10]
g le th	a). The time period 'T' of a pendulum of length 'L' is: $T = \frac{2\pi\sqrt{L}}{\sqrt{g}}$, where 'g' is the acceleration due to gravity. A pendulum is moved from the "Canal one", where g=32.09 feet per second square, to "Greenland", where =32.23 feet per second square. Because of the change in temperature, the ngth of the pendulum changes from 2.5 feet to 2.48 feet. Find the error in e time period of the pendulum.	[5]
(b). If $u(x,y) = xy - (\sqrt{1-x^2})(\sqrt{1-y^2})$ and $v(x,y) = cos^{-1}(x) + s^{-1}(y)$, then find the relation between 'u' and 'v', if there is any relation tween them.	[5]

Name

Continuous Assessment Test I - October 2022

Programme	: B.Tech	October 2022	
	Calculus	Semester	FALLSEM 2022
Course		Code	: BMAT1011
aculty	Dr. R. Radha	Slot	AI+TAI
ne	Dr. N. Nathiya Dr. Sowndarrajan P T Dr. Manoj Kumar Singh Dr. Harshavarthini Shanmugam Dr. Manimaran J	Class Number	CH202223170029 CH202223170042 CH202223170042 CH202223170029 CH202223170061 CH202223170060
		Max. Marks	: 50

Answer ALL the Questions ($5 \times 10 = 50$ marks)

Q.No. Sec

Question Description

Marks

5

5

- 1. a. Suppose that f(x) is continuous and differentiable on the interval [-2,2] such that f(-2) = 3 and $f'(x) \le 4$. What is the largest possible value for f(2)?
 - Find the intervals in which the given function $f(x) = \frac{1}{2x^2+5}$ is increasing, decreasing, concave up and concave down.
- Find the dimensions of a right circular cylinder of maximum volume that can 2. be inspired in a sphere of radius 10 cm. What is the maximum volume? 10
- Find the volume of the solid generated by revolving the region in the first 3. quadrant bounded above by the curve $y = x^2$, below by x-axis and on the right side by x = 1 about the line x = -1. 10

Show that the function
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 is continuous.

If
$$x = u - y - z$$
, $y = uv - z$, $z = uvw$ and $u = \frac{x_2 x_3}{x_1}$, $v = \frac{x_3 x_1}{x_2}$, $w = \frac{x_1 x_2}{x_3}$, find $\frac{\partial(x_1 x_2 x_3)}{\partial(x_1 x_2 x_3)}$.

Continuous Assessment Test (CAT)- I- October 2022

Programme	1:	B.Tech.	Semester	: Fall Se
	100.9			I 2022-
C Title	T	Calculus .	Code	: BMAT
Course Title	1:		Slot	: E1+TE
Faculty			Class Nbr	: CH2022
		Rajivganthi, Dr. Harshavarthini, Dr. Prosenjit, Dr. Ashis		189, 191
		Bera, Dr. Ankit Kumar, Dr. Sandip Saha, Dr. Kriti Arya		194, 257
Duration	1:	1 1/2 Hours	Max. Marks :	50

Answer all the Questions (50 marks)

Q.No.	Question Description	Mark
1.	a) Using Mean Value Theorem (MVT) prove that $0 < \frac{1}{x} \log \left(\frac{e^{x} - 1}{x} \right) < 1$ for $x > 0$.	[5]
2.	 b) Find the intervals on which the function f(x) = 3x² - 4x³, x ∈ R is increasing or decreasing? Examine the extreme values of the function f(x) = x⁵ - 5x⁴ + 5x³ + 12, x ∈ R. Also find the intervals on which the function f(x) is concave up and concave down. 	[5] [10]
3.	Find the volume of the solid formed by revolving the region enclosed by the parabola $v^2 = 4ax$ and the straight line $y = x$, (i) about x-axis, (ii) about y-axis.	[10]
4.	Let $f(x, y) = (x^2 + y^2)^{2/3}$. Find f_x , f_y , f_{xy} and f_{yx} at each point in \mathbb{R}^2 .	[10]
5.	a) The inductance L (in microhenrys) of a straight nonmagnetic wire in free space is: $L = 0.00021 \left[ln \left(\frac{2h}{r} \right) - 0.75 \right]$, where 'h' is the length of the wire in the millimetre and 'r' is the radius of the circular cross section. Find the maximum possible error of L , when $r = 2 \pm \frac{1}{16}$	[5]
	circular cross section. Find the millimetres. millimetres and $h = 100 \pm \frac{1}{100}$ millimetres. b) Find $\frac{\partial(u.v.w)}{\partial(x.y.z)}$, where $u = \cos x \cosh y$, $v = \sin x \cosh y$ and $w = \sinh z$.	5]

Let's Connect....!!

VIT-C 27 (Satya Helpzz)

VIT-C 26 (Satya Helpzz)

₩ Wanna be among first few ones to get stuffs Like this.....???

Subscribe to my **Youtube** channel & Join my group now! Don't miss out!

Ultimate VIT Exam Strategy!

Youtube

Instagram

LinkedIn

Facebook