IN 2100 - Forelesning 5

Terminering

Peter Ölveczky (Universitetet i Oslo)

Innhold

Terminering: Basics

Bevise ikke-terminering

Bevise terminering med "vektfunksjoner"

Stiordninger

Leksikografisk stiordning

Multisett stiordning

Pensum

- Bevis for uavgjørbarhet av terminering
- Teori rundt forenklingsordninger

ikke pensum

Terminering: Basics

Terminering Basics (I)

Definition (Terminering)

Terminering: Finnes ingen uendelig avledning

$$t_0 \rightsquigarrow t_1 \rightsquigarrow t_2 \rightsquigarrow \cdots$$

4

Terminering Basics (I)

Definition (Terminering)

Terminering: Finnes ingen uendelig avledning

$$t_0 \rightsquigarrow t_1 \rightsquigarrow t_2 \rightsquigarrow \cdots$$

 Maude antar – men sjekker ikke – at din likhets-spesifikasjon er terminerende

4

Terminering: Basics (II)

• Tilstrekkelig å sjekke sekvenser av grunntermer

Terminering: Basics (II)

- Tilstrekkelig å sjekke sekvenser av grunntermer
- Antagelser:
 - minst én grunnterm
 - én sort; ingen betingede ligninger, ingen funksjonsattributter

Example

• $\{a = b, b = c, b = a\}$ ikke terminerende

6

- $\{a = b, b = c, b = a\}$ ikke terminerende
- $\{f(f(x)) = f(x)\}\$ terminerende

- $\{a = b, b = c, b = a\}$ ikke terminerende
- $\{f(f(x)) = f(x)\}\$ terminerende
- $\{0 + x = x, s(x) + y = s(x + y)\}$ burde være terminerende
 - kan du bevise det?

- $\{a = b, b = c, b = a\}$ ikke terminerende
- $\{f(f(x)) = f(x)\}\$ terminerende
- $\{0 + x = x, s(x) + y = s(x + y)\}$ burde være terminerende
 - kan du bevise det?
- Er $\{f(g(x,y)) = g(g(f(f(x)),y),y)\}\$ terminerende?

- $\{a = b, b = c, b = a\}$ ikke terminerende
- $\{f(f(x)) = f(x)\}\$ terminerende
- $\{0 + x = x, \ s(x) + y = s(x + y)\}$ burde være terminerende
 - kan du bevise det?
- Er $\{f(g(x,y)) = g(g(f(f(x)),y),y)\}\$ terminerende?
- (Kaffebønne-spillet, versjon 2)
 - $\{ \bullet \bullet \longrightarrow \circ \circ \circ \circ, \bullet \circ \longrightarrow \circ \circ \circ \bullet, \circ \bullet \longrightarrow \bullet, \circ \circ \longrightarrow \circ \}$

Sjekke terminering

```
Ønskelig med algoritme/program

char[] terminerer(spesifikasjon S) {
    ...
    if <S er terminerende>
        return "terminerer";
    else return "terminerer ikke";
}
```

Sjekke terminering

Ønskelig med algoritme/program

```
char[] terminerer(spesifikasjon S) {
    ...
    if <S er terminerende>
        return "terminerer";
    else return "terminerer ikke";
}
```

Teorem

Det er uavgjørbart hvorvidt en likhetspesifikasjon terminerer

Ikke-terminering

Hvordan bevise at en spec ikke er terminerende?

Hvordan bevise at en spec ikke er terminerende?

Teorem

En spec er ikke-terminerende hvis den har en "gjentagende" sekvens

$$t_0 \rightsquigarrow \cdots \rightsquigarrow t_j \rightsquigarrow \cdots \rightsquigarrow t_k$$

hvor t_j er en (ekte eller ikke-ekte) subterm av t_k for en j < k

Hvordan bevise at en spec ikke er terminerende?

Teorem

En spec er ikke-terminerende hvis den har en "gjentagende" sekvens

$$t_0 \rightsquigarrow \cdots \rightsquigarrow t_j \rightsquigarrow \cdots \rightsquigarrow t_k$$

hvor t_j er en (ekte eller ikke-ekte) subterm av t_k for en j < k

Example

• $\{f(x) = f(f(x))\}\$ har gjentagende $f(x) \rightsquigarrow f(f(x))$

Hvordan bevise at en spec ikke er terminerende?

Teorem

En spec er ikke-terminerende hvis den har en "gjentagende" sekvens

$$t_0 \rightsquigarrow \cdots \rightsquigarrow t_j \rightsquigarrow \cdots \rightsquigarrow t_k$$

hvor t_j er en (ekte eller ikke-ekte) subterm av t_k for en j < k

- $\{f(x) = f(f(x))\}\$ har gjentagende $f(x) \rightsquigarrow f(f(x))$
- $\{a = b, b = a\}$ har gjentagende $a \rightsquigarrow b \rightsquigarrow a$

Hvordan bevise at en spec ikke er terminerende?

Teorem

En spec er ikke-terminerende hvis den har en "gjentagende" sekvens

$$t_0 \rightsquigarrow \cdots \rightsquigarrow t_j \rightsquigarrow \cdots \rightsquigarrow t_k$$

hvor t_j er en (ekte eller ikke-ekte) subterm av t_k for en j < k

Example

- $\{f(x) = f(f(x))\}\$ har gjentagende $f(x) \rightsquigarrow f(f(x))$
- $\{a = b, b = a\}$ har gjentagende $a \rightsquigarrow b \rightsquigarrow a$

Det finnes ikke-terminerende systemer uten gjentagende avledninger: $\{f(x) = f(g(x))\}$

Example (Toyama)

Hva med $\{f(a, b, x) = f(x, x, x), g(y, z) = y, g(y, z) = z\}$?

Example (Toyama)

Hva med $\{f(a, b, x) = f(x, x, x), g(y, z) = y, g(y, z) = z\}$?

- union $\{f(a,b,x) = f(x,x,x)\}\$ og $\{g(y,z) = y,\ g(y,z) = z\}$
- ... som begge er terminerende

Example (Toyama)

Hva med $\{f(a, b, x) = f(x, x, x), g(y, z) = y, g(y, z) = z\}$?

- union $\{f(a,b,x) = f(x,x,x)\}\$ og $\{g(y,z) = y,\ g(y,z) = z\}$
- ... som begge er terminerende
- er også $\{f(a,b,x)=f(x,x,x),\ g(y,z)=y,\ g(y,z)=z\}$ terminerende?

Example (Toyama)

Hva med $\{f(a, b, x) = f(x, x, x), g(y, z) = y, g(y, z) = z\}$?

- union $\{f(a,b,x) = f(x,x,x)\}\$ og $\{g(y,z) = y,\ g(y,z) = z\}$
- ... som begge er terminerende
- er også $\{f(a,b,x)=f(x,x,x),\ g(y,z)=y,\ g(y,z)=z\}$ terminerende?

Nei: Uendelig avledning

$$f(a, b, g(a, b))$$

$$\rightsquigarrow f(g(a, b), g(a, b), g(a, b))$$

Example (Toyama)

Hva med $\{f(a, b, x) = f(x, x, x), g(y, z) = y, g(y, z) = z\}$?

- union $\{f(a,b,x) = f(x,x,x)\}\$ og $\{g(y,z) = y,\ g(y,z) = z\}$
- ... som begge er terminerende
- er også $\{f(a,b,x)=f(x,x,x),\ g(y,z)=y,\ g(y,z)=z\}$ terminerende?

Nei: Uendelig avledning

$$f(a, b, g(a, b))$$

$$\rightsquigarrow f(g(a, b), g(a, b), g(a, b))$$

$$\rightsquigarrow f(a, g(a, b), g(a, b))$$

Example (Toyama)

Hva med $\{f(a, b, x) = f(x, x, x), g(y, z) = y, g(y, z) = z\}$?

- union $\{f(a,b,x) = f(x,x,x)\}\$ og $\{g(y,z) = y,\ g(y,z) = z\}$
- ... som begge er terminerende
- er også $\{f(a,b,x)=f(x,x,x),\ g(y,z)=y,\ g(y,z)=z\}$ terminerende?

Nei: Uendelig avledning

$$f(a, b, g(a, b))$$

 $\leadsto f(g(a, b), g(a, b), g(a, b))$
 $\leadsto f(a, g(a, b), g(a, b))$
 $\leadsto f(a, b, g(a, b)) \leadsto \cdots$

Example (Toyama)

Hva med $\{f(a, b, x) = f(x, x, x), g(y, z) = y, g(y, z) = z\}$?

- union $\{f(a,b,x) = f(x,x,x)\}\$ og $\{g(y,z) = y,\ g(y,z) = z\}$
- ... som begge er terminerende
- er også $\{f(a,b,x)=f(x,x,x),\ g(y,z)=y,\ g(y,z)=z\}$ terminerende?

Nei: Uendelig avledning

$$f(a, b, g(a, b))$$

 $\rightsquigarrow f(g(a, b), g(a, b), g(a, b))$
 $\rightsquigarrow f(a, g(a, b), g(a, b))$
 $\rightsquigarrow f(a, b, g(a, b)) \rightsquigarrow \cdots$

Sentralt problem innen data: egenskaper ikke modulære

• Ikke-terminerende hvis det er en ny variabel i høyresiden av en ligning: $\{f(x) = g(x, y)\}$ gir gjentagende $f(x) \leadsto g(x, f(x))$

- Ikke-terminerende hvis det er en ny variabel i høyresiden av en ligning: $\{f(x) = g(x, y)\}$ gir gjentagende $f(x) \leadsto g(x, f(x))$
- Ikke-terminerende hvis venstreside er en variabel: $\{x = g(a)\}$

Bevise terminering med

"vektfunksjoner"

Bevise terminering

Bevise ikke-terminering er "lett", men hvordan bevise terminering?

Bevise terminering

Bevise ikke-terminering er "lett", men hvordan bevise terminering?

• Uavgjørbart ⇒ ingen metode som alltid kan brukes

Bevise terminering

Bevise ikke-terminering er "lett", men hvordan bevise terminering?

- Uavgjørbart ⇒ ingen metode som alltid kan brukes
- Vi skal se på metoder som ofte kan brukes til å bevise at et gitt system S er terminerende

Vektfunksjoner

Hvordan bevise at $\{f(x) = x\}$ terminerer for all input?

Vektfunksjoner

Hvordan bevise at $\{f(x) = x\}$ terminerer for all input?

• "Vekt": "antall symboler" (eller "antall f'er") i en term minsker i hvert forenklingsteg

Vektfunksjoner

Hvordan bevise at $\{f(x) = x\}$ terminerer for all input?

- "Vekt": "antall symboler" (eller "antall f'er") i en term minsker i hvert forenklingsteg
- ... kan aldri bli mindre enn 0

Vektfunksjoner

Hvordan bevise at $\{f(x) = x\}$ terminerer for all input?

- "Vekt": "antall symboler" (eller "antall f'er") i en term minsker i hvert forenklingsteg
- ... kan aldri bli mindre enn 0
- ergo: finnes ingen uendelig avledning

$$t_0 \rightsquigarrow t_1 \rightsquigarrow t_2 \rightsquigarrow \cdots$$

fordi den ville ført til uendelig sekvens

$$size(t_0) > size(t_1) > size(t_2) > \cdots$$

av naturlige tall

Vektfunksjoner (II)

Teorem

En spesifikasjon er terminerende hvis det finnes en funksjon $vekt: \mathcal{T}_{\Sigma} \to \mathbb{N}$ slik at vekt(t) > vekt(t') hvis $t \leadsto t'$

Vektfunksjoner (II)

Teorem

En spesifikasjon er terminerende hvis det finnes en funksjon $vekt: \mathcal{T}_{\Sigma} \to \mathbb{N}$ slik at vekt(t) > vekt(t') hvis $t \leadsto t'$

Example
$$(\{f(x) = x\})$$

 $vekt(t) = \text{``antall symbol for ekomster i } t$ '', eller
 $vekt(t) = \text{``antall } f$ 'er i t ''

Vektfunksjoner (II)

Teorem

En spesifikasjon er terminerende hvis det finnes en funksjon $vekt: \mathcal{T}_{\Sigma} \to \mathbb{N}$ slik at vekt(t) > vekt(t') hvis $t \leadsto t'$

Example $(\{f(x) = x\})$ vekt(t) = ``antall symbol for ekomster i t'', eller vekt(t) = ``antall f'er i t''

• Må bevise vekt(t) > vekt(t') for uendelig mange $t \rightsquigarrow t'$

Vektfunksjoner (III)

Definition (Monotoni)

vekt er monoton hvis, for hvert funksjonsymbol f og alle grunntermer t, t':

```
vekt(t) > vekt(t')
impliserer
vekt(f(...,t,...)) > vekt(f(...,t',...))
```

Vektfunksjoner (III)

Definition (Monotoni)

vekt er monoton hvis, for hvert funksjonsymbol f og alle grunntermer t, t':

```
vekt(t) > vekt(t')
impliserer
vekt(f(...,t,...)) > vekt(f(...,t',...))
```

Teorem

En spesifikasjon er terminerende hvis det finnes en monoton vektfunksjon vekt : $\mathcal{T}_{\Sigma} \to \mathbb{N}$ slik at vekt $(I\sigma) > \text{vekt}(r\sigma)$ for hver ligning I = r og hver substitusjon σ

Vektfunksjoner (III)

Definition (Monotoni)

vekt er monoton hvis, for hvert funksjonsymbol f og alle grunntermer t, t':

```
vekt(t) > vekt(t')
impliserer
vekt(f(...,t,...)) > vekt(f(...,t',...))
```

Teorem

En spesifikasjon er terminerende hvis det finnes en monoton vektfunksjon vekt : $\mathcal{T}_{\Sigma} \to \mathbb{N}$ slik at vekt $(I\sigma) > \text{vekt}(r\sigma)$ for hver ligning I = r og hver substitusjon σ

Må sjekke for uendelig mange substitusjoner $\sigma!$

Example

 $\{f(x) = x\}$ og vekt(t) ="antall funksjonsymbolforekomster i t".

For å bevise terminering må vi vise:

Example

 $\{f(x) = x\}$ og vekt(t) ="antall funksjonsymbolforekomster i t". For å bevise terminering må vi vise:

1. vekt er monoton:

```
vekt(t) > vekt(t') \Rightarrow vekt(f(t)) > vekt(f(t'))
```

Example

 $\{f(x) = x\}$ og vekt(t) ="antall funksjonsymbolforekomster i t". For å bevise terminering må vi vise:

- 1. vekt er monoton:
 - $vekt(t) > vekt(t') \Rightarrow vekt(f(t)) > vekt(f(t'))$
- 2. $vekt(f(x)\sigma) > vekt(x\sigma)$ for alle σ : holder, siden $f(x)\sigma$ er lik $f(x\sigma)$ slik at $vekt(f(x)\sigma) = 1 + vekt(x\sigma)$, som er større enn $vekt(x\sigma)$ for enhver σ

Fler eksempler I

Example

• En bra vektfunksjon for $\{f(x) = g(x)\}\$ er ...

Fler eksempler I

- En bra vektfunksjon for $\{f(x) = g(x)\}\$ er . . .
- En bra vektfunksjon for $\{f(x) = g(x), g(b) = f(a)\}$ er vekt(t) = (2 * "antall b'er i t") + "antall f'er i t"

Fler eksempler II

Vektfunksjon often definert rekursivt (for hvert funksjonsymbol)

- $\{f(x) = g(x), g(b) = f(a)\}\$ kan vises å terminere med vektfunksjon
 - vekt(a) = 1,
 - vekt(b) = 88,
 - vekt(f(t)) = 4 + vekt(t), og
 - vekt(g(t)) = vekt(t).
- Monoton og vektminskende?

Fler eksempler II

Vektfunksjon often definert rekursivt (for hvert funksjonsymbol)

- $\{f(x) = g(x), g(b) = f(a)\}\$ kan vises å terminere med vektfunksjon
 - vekt(a) = 1,
 - vekt(b) = 88,
 - vekt(f(t)) = 4 + vekt(t), og
 - vekt(g(t)) = vekt(t).
- Monoton og vektminskende?
- $\{f(g(x)) = g(f(x))\}\$ vises terminerende med vektfunksjon
 - vekt(a) = 2 for hver konstant a
 - $vekt(f(t)) = (vekt(t))^3$
 - $vekt(g(t)) = 2 \cdot vekt(t)$
- Monoton og vektminskende?

Fler eksempler III

Example

En ok vektfunksjon for $\{f(f(x)) = f(g(f(x)))\}\$ er . . .

Fler eksempler III

Example

En ok vektfunksjon for $\{f(f(x)) = f(g(f(x)))\}\$ er . . .

- ... "antall f-nabo-par"
- Ikke monoton!

Fler eksempler III

Example

En ok vektfunksjon for $\{f(f(x)) = f(g(f(x)))\}\$ er ...

- ... "antall f-nabo-par"
- Ikke monoton!

Naturlige tall av og til ikke nok

Definisjon (Velfundert strikt partiell ordning)

En strikt partiell order \succ over en mengde S er velfundert hvis det ikke finnes noen uendelig sekvens $s_1 \succ s_2 \succ \cdots$ av S-elementer

Definisjon (Velfundert strikt partiell ordning)

En strikt partiell order \succ over en mengde S er velfundert hvis det ikke finnes noen uendelig sekvens $s_1 \succ s_2 \succ \cdots$ av S-elementer

Example

Hvilke er velfunderte strikte partielle ordninger?

(N,>)

Definisjon (Velfundert strikt partiell ordning)

En strikt partiell order \succ over en mengde S er velfundert hvis det ikke finnes noen uendelig sekvens $s_1 \succ s_2 \succ \cdots$ av S-elementer

Example

Hvilke er velfunderte strikte partielle ordninger?

•
$$(\mathbb{Z}, >)$$

Definisjon (Velfundert strikt partiell ordning)

En strikt partiell order \succ over en mengde S er velfundert hvis det ikke finnes noen uendelig sekvens $s_1 \succ s_2 \succ \cdots$ av S-elementer

Example

Hvilke er velfunderte strikte partielle ordninger?

(N, <)

Definisjon (Velfundert strikt partiell ordning)

En strikt partiell order \succ over en mengde S er velfundert hvis det ikke finnes noen uendelig sekvens $s_1 \succ s_2 \succ \cdots$ av S-elementer

Example

Hvilke er velfunderte strikte partielle ordninger?

•
$$(\mathbb{Q}^+, >)$$

Definisjon (Velfundert strikt partiell ordning)

En strikt partiell order \succ over en mengde S er velfundert hvis det ikke finnes noen uendelig sekvens $s_1 \succ s_2 \succ \cdots$ av S-elementer

Example

Hvilke er velfunderte strikte partielle ordninger?

• $(\mathbb{N} \times \mathbb{N}, >^{lex})$

Definisjon (Velfundert strikt partiell ordning)

En strikt partiell order \succ over en mengde S er velfundert hvis det ikke finnes noen uendelig sekvens $s_1 \succ s_2 \succ \cdots$ av S-elementer

Example

Hvilke er velfunderte strikte partielle ordninger?

• $(\mathbb{N}^k, >^{lex})$

Definisjon (Velfundert strikt partiell ordning)

En strikt partiell order \succ over en mengde S er velfundert hvis det ikke finnes noen uendelig sekvens $s_1 \succ s_2 \succ \cdots$ av S-elementer

Example

Hvilke er velfunderte strikte partielle ordninger?

• $(\mathcal{T}_{\Sigma}, \stackrel{+}{\leadsto})$ når spec'en er terminerende

Generaliserte vektfunksjoner

Teorem

En spesifikasjon er terminerende hvis det finnes en velfundert strikt partiell ordning (S,\succ) og en funksjon vekt : $\mathcal{T}_{\Sigma} \to S$ slik at $t \leadsto t'$ medfører vekt $(t) \succ vekt(t')$ for alle grunntermer t,t'

Generaliserte vektfunksjoner

Teorem

En spesifikasjon er terminerende hvis det finnes en velfundert strikt partiell ordning (S,\succ) og en funksjon vekt : $\mathcal{T}_{\Sigma} \to S$ slik at $t \leadsto t'$ medfører vekt $(t) \succ vekt(t')$ for alle grunntermer t,t'

• Generalisering av vektfunksjon der $(\mathbb{N},>)$ generaliseres til en velfundert strikt partielt ordnet mengde (S,\succ)

Example

```
 \{ f(g(g(x))) = f(f(g(f(g(f(x)))))), 
 f(f(f(x))) = f(g(f(x))) \}
```

• Spec terminerer (?), men vrient å vise med tidligere teknikker

Example

```
 \{ f(g(g(x))) = f(f(g(f(g(f(x)))))), 
 f(f(f(x))) = f(g(f(x))) \}
```

- Spec terminerer (?), men vrient å vise med tidligere teknikker
- La vekt være et par av naturlige tall:

```
vekt(t) =
("antall g-nabo-par i t", "antall f'er i t")
```

som sammenlignes med $>^{lex}$ over $\mathbb{N} \times \mathbb{N}$

Example

```
 \{ f(g(g(x))) = f(f(g(f(g(f(x)))))), 
 f(f(f(x))) = f(g(f(x))) \}
```

- Spec terminerer (?), men vrient å vise med tidligere teknikker
- La vekt være et par av naturlige tall:

```
vekt(t) = ("antall g-nabo-par i t", "antall f'er i t")
```

som sammenlignes med $>^{lex}$ over $\mathbb{N} \times \mathbb{N}$

- Må vise at *vekt* er vektminskende for alle forenklingssteg
 - Merk: vekt ikke monoton

Stiordninger

Stiordninger

- "Vektfunksjoner":
 - trenger genialitet!
 - forskjellige vektfunksjoner for hver spec
 - ikke mekaniserbar

Stiordninger

- "Vektfunksjoner":
 - trenger genialitet!
 - forskjellige vektfunksjoner for hver spec
 - ikke mekaniserbar
- Stiordninger:
 - ganske kraftige
 - mekaniserbare
 - ingen tenking!!
 - bygger på teorien om forenklingsordninger

Leksikografisk stiordning (I)

Start: definér en presedens, en strikt partiell ordning \succ over funksjonsymbolene i Σ .

- $* \succ + \succ s \succ 0$
- $f \succ b \succ g \succ a$

Leksikografisk stiordning (II)

Definisjon (Leksikografisk stiordning (Ipo))

Den leksikografiske stiordningen (lpo) utvider en presedens \succ på funksjonsymboler til en ordning \succ_{lpo} over grunntermer som følger:

```
Ipo-1: f(...,t_i,...) \succ_{lpo} u hvis (t_i \succ_{lpo} u eller t_i = u)
Ipo-2: f(t_1,...,t_n) \succ_{lpo} g(u_1,...,u_m) hvis
(f \succ g \text{ og } f(t_1,...,t_n) \succ_{lpo} u_i \text{ for hver } i \leq m)
Ipo-3: f(t_1,...,t_n) \succ_{lpo} f(u_1,...,u_n) hvis
((t_1,...,t_n) \succ_{lpo} (u_1,...,u_n) \text{ og } f(t_1,...,t_n) \succ_{lpo} u_i
for alle 2 \leq i \leq n)
```

 $(\succ_{lpo}^{lex}$ er den leksikografiske utvidelsen av $\succ_{lpo})$

Leksikografisk stiordning (III)

• Definisjonen innbefatter også konstanter! (f og/eller g er konstanter når n = 0 og/eller m = 0)

Leksikografisk stiordning (III)

- Definisjonen innbefatter også konstanter!
 (f og/eller g er konstanter når n = 0 og/eller m = 0)
- Kan utvides til termer med variable:
 - en variabel kan ikke sammenlignes med noe annet symbol i >
 - $l \succ_{lpo} r$ medfører $l\sigma \succ_{lpo} r\sigma$ for enhver σ

Example

- Da har vi:
 - $f(x) \succ_{lpo} g(x)$

Example

- Da har vi:
 - $f(x) \succ_{lpo} g(x)$
 - $f(f(a)) \succ_{lpo} f(g(a))$

Example

- Da har vi:
 - $f(x) \succ_{lpo} g(x)$
 - $f(f(a)) \succ_{lpo} f(g(a))$
 - $g(b) \succ_{lpo} f(a)$

Example

- Da har vi:
 - $f(x) \succ_{lpo} g(x)$
 - $f(f(a)) \succ_{lpo} f(g(a))$
 - $g(b) \succ_{lpo} f(a)$
- Hva med:
 - $f(x) \succ_{lpo} g(y)$?

Example

- Da har vi:
 - $f(x) \succ_{lpo} g(x)$
 - $f(f(a)) \succ_{lpo} f(g(a))$
 - $g(b) \succ_{Ipo} f(a)$
- Hva med:
 - $f(x) \succ_{lpo} g(y)$?
 - $h(a, f(x)) \succ_{lpo} h(a, g(x))$?

Example

- Da har vi:
 - $f(x) \succ_{lpo} g(x)$
 - $f(f(a)) \succ_{lpo} f(g(a))$
 - $g(b) \succ_{lpo} f(a)$
- Hva med:
 - $f(x) \succ_{lpo} g(y)$?
 - $h(a, f(x)) \succ_{lpo} h(a, g(x))$?
 - $h(f(x), a) \succ_{lpo} h(g(x), b)$?

lpo: Terminering

Teorem

En (endelig) spesifikasjon er terminerende hvis

$$l \succ_{lpo} r$$

for hver ligning l = r i spec'en

Leksikografisk stiordning (IV)

Mekaniserbar: kan sjekke alle mulige presedenser

Leksikografisk stiordning (IV)

Mekaniserbar: kan sjekke alle mulige presedenser

Example

 $\{0 + x = x, \ s(x) + y = s(x + y)\}$ vises terminerende med presedens der $+ \succ s$:

- $0 + x \succ_{Ipo} x$
- $s(x) + y \succ_{lpo} s(x + y)$

Multisett stiordning

Multisett stiordning (mpo): multisett sammenligning i stedet for leksikografisk sammenligning i lpo-3:

mpo-3:
$$f(t_1, \ldots, t_n) \succ_{mpo} f(u_1, \ldots, u_n)$$
 hvis
$$\{t_1, \ldots, t_n\} \succ_{mpo}^{mul} \{u_1, \ldots, u_n\}$$

Multisett stiordning

Multisett stiordning (mpo): multisett sammenligning i stedet for leksikografisk sammenligning i lpo-3:

mpo-3:
$$f(t_1, \ldots, t_n) \succ_{mpo} f(u_1, \ldots, u_n)$$
 hvis
$$\{t_1, \ldots, t_n\} \succ_{mpo}^{mul} \{u_1, \ldots, u_n\}$$

Oppgave

Gitt spec'er

$$E_1 = \{f(a, b) = f(b, a)\}$$

og

$$E_2 = \{g(x, a) = g(b, x)\}.$$

Hvilken kan vises terminerende med lpo? med mpo?