Mathematik für die Informatik C Hausaufgabenserie 6

Henri Heyden, Nike Pulow stu240825, stu239549

$\mathbf{A1}$

Vor.: $a, b \in \mathbb{R}, a < b, C[a, b] := \{f : [a, b] \to \mathbb{R} \mid f \text{ ist stetig}\},$ $||\cdot||_1 : C[a, b] \to \mathbb{R}_{\geq 0}, f \mapsto \int |f|$

Beh.: $||\cdot||_1$ ist Norm auf C[a,b]

Bew.: Wir teilen die Aussage in drei Abschnitte auf:

1): $\forall f \in C[a,b] : ||f||_1 = 0 \Leftrightarrow f = 0$, wobei $0 : C[a,b], x \mapsto 0$ gemeint ist.

2):
$$\forall f \in C[a,b], \lambda \in \mathbb{R} : ||\lambda f||_1 = |\lambda| \cdot ||f||_1$$

3):
$$\forall f, g \in C[a, b] : ||f + g|| \le ||f||_1 + ||g||_1$$

Forab bemerke, dass $||\cdot||_1$ wohldefiniert ist, da jede Funktion in C[a, b] stetig auf eine kompakte, also beschränkte und abgeschlossene Menge und somit integrierbar.

Wir fangen mit der ersten Aussage an:

1): Es gilt: $0 = \int 0 = \int |0| = ||0||_1$.

Um die Eindeutigkeit zu zeigen, nehme an $0 \neq f \in C[a, b]$.

Dann existiert ein Intervall $I \subseteq [a, b]$, sodass $f^{\rightarrow}(I) > 0$ gilt.

Sei
$$\overline{I}:=[a,b]\setminus I$$
, dann gilt: $||f||_1=\int |f|=\int |f_{|I|}+\int |f_{|\overline{I}|}|\geq \int |f_{|I|}|>0$

Somit ist der erste Teil gezeigt. Fahre mit dem zweiten Teil fort:

2): Es gilt: $||\lambda f||_1 = \int |\lambda f| = \int (|\lambda| \cdot |f|) = |\lambda| \cdot \int |f| = |\lambda| \cdot ||f||_1$ Und nun die letzte Aussage:

3): Es gilt:
$$||f+g||_1 = \int |f+g|^{\text{Dreieck.}} \int (|f|+|g|) = \int |f|+\int |g| = ||f||_1+||g||_1$$

Somit ist alles gezeigt, was zu zeigen war.

Vor.: $||\cdot||_{\infty}, ||\cdot||_{1}$ Normen über C[0,1], wie auf Serie definiert,

Beh.: $||\cdot||_{\infty}$ und $||\cdot||_{1}$ sind nicht äquivalent.

Bew.: Wir zeigen, dass $\exists \alpha > 0 : \forall f \in C[0,1] : \alpha \cdot ||f||_{\infty} \leq ||f||_{1}$ nicht gilt, da somit die Aussage in Def. 4.18 (Äquivalente Normen) nicht gelten kann.

Also zeigen wir: $\forall \alpha > 0 : \exists f \in C[0,1] : \alpha \cdot ||f||_{\infty} > ||f||_{1}.$

Wähle $\alpha > 0$.

Hier werden wir zwei Fälle unterscheiden, 1.: $\alpha > \frac{1}{2}$ und 2.: $\alpha \leq \frac{1}{2}$:

Fall 1.: Sei $f \in C[0,1], x \mapsto -\alpha x + \alpha$, dann gilt:

$$\alpha \cdot ||f||_{\infty} = \alpha \cdot \sup_{x \in [0,1]} |f(x)| = \alpha \cdot \alpha = \alpha^2$$
, da $|f| = f$ gilt.

Des Weiteren gilt: $||f||_1 = \int_0^1 |f(x)| = \int_0^1 |-\alpha x + \alpha| = \int_0^1 -\alpha x + \alpha = \left[-\frac{\alpha}{2}x^2 + ax\right]_0^1 = -\frac{\alpha}{2} + \alpha = \frac{\alpha}{2}$

Da $a > \frac{1}{2}$, gilt: $\frac{\alpha}{2} < \alpha^2$, also ist der erste Fall gezeigt.

Fall 2.:1

Für $\alpha \leq \frac{1}{2}$ wählen wir $f \in C[0,1], x \mapsto \sqrt[\alpha]{\alpha(1-x)}$.

Dann ist f auch wirklich in C[0,1], größer 0 und streng monoton fallend mit Supremum $f(0) = \sqrt[\alpha]{\alpha}$.

Dann gilt: $\alpha \cdot \sup_{x \in [0,1]} |f(x)| = \alpha \cdot \sqrt[\alpha]{\alpha} = \alpha^{\frac{1}{\alpha}+1}$.

Es ergibt sich durch Finden der Stammfunktion von f durch einmalige Substitution und die bekannten Integrationsmethoden von ganzrationalen Funktionen: $\int_0^1 |f| = \int_0^1 f = \frac{\alpha^{\frac{1}{\alpha}+1}}{\alpha+1}$.

Dann gilt aufgrund des Nenners > 1: $\frac{\alpha^{\frac{1}{\alpha}+1}}{\alpha+1} < \alpha^{\frac{1}{\alpha}+1}$, – was zu zeigen war. \square

Vor.:

 $^{^1\}mathrm{Erst}$ nach dem Aufschreiben ist dem "Autor" aufgefallen, dass folgendes sogar für jedes $\alpha>0$ gilt . . . toll.

Beh.:

Bew.: