(43) 国際公開日 2001年9月7日(07.09.2001)

PCT

(10) 国際公開番号

(51) 国際特許分類7:

WO 01/64848 A1

木ノ内伊吹 (KINOUCHI, Ibuki); 〒417-8505 静岡県富

5/00, C12M 3/00, 1/36, 1/04 (21) 国際出願番号:

C12N 5/08,

PCT/JP01/01516

(22) 国際出願日:

2001年2月28日(28.02.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2000-57585

2000年3月2日 (02.03.2000) JP

士市西柏原新田201番地 高木産業株式会社内 Shizuoka (JP). 水野秀一 (MIZUNO, Shuichi); 02446 マサチュー セッツ州 ブルックライン ロングウッドアベニュー 60 アパートメント401 Massachusetts (US). グロワッキー ジュリー (GLOWACKI, Julie); 02130 マサチューセッ ツ州 ジャマイカプレイン パーキンスストリート 76 Massachusetts (US).

- (74) 代理人: 弁理士 畝本正一(UNEMOTO, Shoichi); 〒 167-0032 東京都杉並区天沼3丁目29番9号 畝本特許 事務所 Tokyo (JP).
- (81) 指定国 (国内): AU, CA, CH, CN, DE, ES, GB, KR, SE.
- (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(71) 出願人: 高木産業株式会社 (TAKAGI INDUSTRIAL CO., LTD.) [JP/JP]; 〒417-8505 静岡県富士市西柏原新 田201番地 Shizuoka (JP). ブリガム アンド ウーメンズ ホスピタル (THE BRIGHAM & WOMEN'S HOSPI-TAL, INC.) [US/US]; 02115 マサチューセッツ州 ボス トン フランシスストリート 75 Massachusetts (US).

(72) 発明者: 高木多佳雄 (TAKAGI, Takao). 渡辺節雄 (WATANABE, Setsuo). 高井秀忠 (TAKAI, Hidetada). 添付公開書類:

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: METHOD AND APPARATUS FOR CULTURING CELL OR TISSUE

(54) 発明の名称: 細胞又は組織の培養方法及びその装置

- ...CULTURING APPARATUS
- ..CLOSED SPACE ..CULTURING MEDIA SUPPLIER
- ...PRESSURE DEVICE FOR CULTURE
- CULTURE MEDIA TANK
- 10...GAS ABSORBING DEVICE 11...VALVE
- 12...LIQUID FEEDING DEVICE
- 14...PRIVING DEVICE
- 16...PRESSURE APPLYING DEVICE 18...PRESSURE ABSORBING DEVICE
- 20...CULTURE CHAMBER 22...PRESSURE VESSEL
- 24...DRIVING DEVICE 26 PRESSURE RELEASING VALVE
- 30...INJECTING DEVICE FOR PRESSURING LIQUID 32...TEMPERATURE CONTROLLER
- 34...TEMPERATURE CONTROLLER 36...GAS MIXING CONCENTRATION CONTROLLER
- 40...CONTROLLING DEVICE
- 68...FRESSURIZED WATER TANK

(57) Abstract: A method for culturing a cell or a tissue, characterized in that it comprises providing a culture point (a culture chamber (20)) under a circumstance being freely controlled, such as a circumstance in imitation of a living being, supplying culture media (3) to the culture point while holding the cell (5) or the tissue, to thereby culture the cell or the tissue in the above culture point being held under an ideal circumstance; and an apparatus for practicing the method. The method can be employed for preventing contamination and at the same time carrying out an external culturing of the cell or the tissue with good efficiency.

/続葉有/

(57) 要約:

汚染の防止とともに効率的な体外培養を実現した細胞又は組織の培養方法及び その装置である。この細胞又は組織の培養方法及びその装置は、生体を模倣した 環境等、任意に制御される環境下に培養位置(培養チャンバ20)を設置すると ともに、前記培養位置に細胞(5)又は組織を保持しながら培養メディア(3) を供給し、理想的な環境下にある前記培養位置で前記細胞又は前記組織を培養す ることで、汚染防止を図るとともに、前記細胞又は前記組織の効率的な体外培養 を実現することができる。

1

明 細 書

細胞又は組織の培養方法及びその装置

5 技術分野

本発明は、細胞組織工学や遺伝子治療等の応用であるティッシュ・エンジニア リングに用いられる細胞・組織培養技術に係り、人体の欠損組織の修復等に必要 な細胞や組織の体外培養に用いられる、細胞又は組織の培養方法及びその装置に 関する。

10

15

20

25

背景技術

生体の欠損箇所や異常箇所の修復には次のような方法がある。その第1は、欠 損箇所や異常箇所の修復手段として、プラスチック、金属、セラミック等の生体 以外の材料で代用する方法である。代用品としては骨用のセラミック、ステンレ ススチール、関節用のポリエチレン樹脂、血管用のビニール樹脂等がある。第2 は、他の動物、他の部位等の生体材料を代用する方法がある。この代用品には例 えば、皮膚等がある。また、第3は、他人の臓器を移植する方法である。

第1の方法では、プラスチック、金属、セラミック等の生体以外の材料の摩耗、消耗によって定期的に交換の必要が生じたり、摩耗等により分離した物質が生体に対して悪影響を与えることがある。また、合成樹脂の血管では、血管が長期間の使用により、内部が詰まってくるという事例も報告されている。第3の方法では、移植すべき臓器の提供者がいなければ実施は不可能であるし、実施した場合でも臓器間の拒否反応の問題が残る。

このため、実用化の期待がかかる修復方法は、生体細胞をその体内又は体外で 細胞又は組織を培養して得られた細胞や組織を欠陥部位の修復にあてるという方 法である。現在の研究では、皮膚、軟骨、骨、血管、肝臓、膵臓等多くの組織に その可能性があることが報告されている。生体の細胞から患者の体内、体外で細 胞又は組織を培養し、その培養によって得られた細胞や組織を欠損部分の修復に あてれば、体内で再生不可能な組織の再生ができ、しかも、修復に用いた組織は

患者自身の遺伝子を持った組織であるから拒否反応はなく、また、例えば合成樹脂等のように生体材料以外の化学物質が生体に悪影響を与えるということもない。 理想的な治療が可能になる。

5

10

15

20

25

ところで、従来、この種の技術として特開平9-313166号「細胞培養装 置」が提案されている。この技術では、培養毎に各部品を分解して洗浄、滅菌を 行った後、再度装置を組み立てなければならず、滅菌後に細菌に汚染されるおそ れがある。汚染を防ぐために装置を組み立ててから、オートクレーブ (121° C絶対圧2気圧)等の滅菌処理を行うことは可能であるが、ポンプや圧力センサ は多くの電子部品や特殊な樹脂、オイルを含んでいるから、汚染防止上、用いる ことができない。そのため、ポンプや圧力センサはその一部を分解して培養メデ ィアの通路部分のみを取り出して薬品による滅菌を行い、他の部品はオートクレ ープにより滅菌を行い、その後、ポンプや圧力センサと装置を組み立てることに. なるため、手間がかかるとともに雑菌汚染の危険性が高い。また、インキュベー 夕(培養庫)を用いて培養することは、ポンプや制御装置が温度、湿度により悪 影響を受け易く、容積に限りがあるインキュベータに全ての装置を収容すること ができない。このため、インキュベータの貫通穴に配管や電源、制御用の電線を 通すため、インキュベータと外気とを連結した状態で装置を組み上げなければな らない。また、培養メディアの回路全体に圧力をかけるため、ポンプや配管等の 部品を含め、全体を耐圧構造にしなければならないが、高い圧力 (例えば 1 M P a以上)の設定は非常に難しく、高圧力を与えようとすると、全体を高耐圧構造 としなければならず、コストアップが問題となる。

また、従来、物理的刺激として圧力を加えながら生体組織を培養する研究はハーバードメディカルスクールの水野秀一博士他から報告されている [Materials Science and Engineering C6 (1998)301-306)。この研究によれば、第26図に示すように培養装置が構成されており、この培養装置における各要素とその機能について説明すると、ポンプ400は、培養メディア402を循環させる役割と、培養チャンバ404の内部を加圧して細胞406又は組織に静水圧を与える役割を果たし、例えば、液体クロマト用のポンプが用いられ、一定流量を流すための制御装置が内蔵されている。

3

バックプレッシャレギュレータ408は、細胞406又は組織に与えようとする圧力以上になると弁410を開いて圧力を逃がし、培養チャンバ404内部の圧力を一定に保つ。細胞406に与えようとする圧力に応じて、バックプレッシャレギュレータ408を選択して取り付ける。

培養チャンバ404は細胞406又は組織を培養する空間を構成し、この培養チャンバ404にはコラーゲンで形成されたスポンジからなる足場412に細胞406又は組織を植え付けたものを収容する。細胞406又は組織は、コラーゲンのスポンジからなる足場412で増殖する。

5

10

15

20

25

圧力センサ414は、培養チャンバ404内の圧力を検知し、圧力モニタ416は圧力センサ414の検出圧力を表示する。ポンプ400は、この検出圧力によって制御され、その検出圧力が過大となった場合、ポンプ400の運転を停止する。

培養メディア槽418は、培養する細胞406又は組織に適する培養メディア402を溜め、この培養メディア402は、例えば、アミノ酸類、糖類、塩類等からなる。培養メディア槽418は、閉塞栓420に貫通させた通気チューブ422を通して外気に通じ、通気フィルタ424は外気による汚染を防止する。

この培養装置は、密閉空間であるインキュベータに収容される。このインキュベータは、快適な培養雰囲気を形成する空間であって、細胞、組織に最適な温度、湿度及びガス濃度(酸素、炭酸ガス)に維持されている。そして、培養メディア402はポンプ400によって回路426内に満たされて循環する。酸素、炭酸ガスは通気フィルタ424を通過して培養メディア402に溶け込み、培養メディア402は適度な酸素濃度、炭酸ガス濃度に保たれる。ポンプ400を運転すると、次第に培養チャンバ404の中の圧力が上昇し、バックプレッシャレギュレータ408の弁410が開いて培養メディア402を排出し、培養メディア402が排出した分だけ、培養メディア402の圧力が低下するため、弁410が閉じる。このような動作の繰り返しにより、一定圧力が維持され、同時に、一定量の培養メディア402の循環が繰り返される。細胞406又は組織はこのような圧力刺激を受けながら増殖する。

4

この培養装置では一定圧力を維持できるものの、圧力の昇降を繰り返すことができない。圧力上昇はポンプ400によるため、圧力の上昇速度がポンプ400の能力により決まり、培養メディア402の循環量を増すと、上昇速度が速くなり、その循環量を少なく設定すると、圧力上昇が緩慢になる。このため、圧力サイクルを連続的に繰り返す場合、圧力を下降させるには、第27図のように、バックプレッシャレギュレータ408に並列にバイパス弁428とオリフィス弁(ニードル弁)430を備えたバイパス路432を設置する方法がある。この方法では、降圧が可能になるものの、1周期に要する時間が長くなると同時に、繰り返し周期の設定と培養メディア402の循環量を独立させることができず、また、オリフィス弁430の調節が微妙となり、圧力低下の割合が不安定になるという欠点がある。

5

10

15

20

25

そして、培養の実施の度に各部品を分解して洗浄、滅菌を行った後、装置を組み立てなければならないため、滅菌後に細菌汚染のおそれがある。汚染防止のため、組み立てた装置をオートクレーブ(121°C絶対圧2気圧)等の滅菌処理を施すことが考えられるが、ポンプや圧力センサは多くの電子部品や特殊な樹脂、オイルが含まれているために不可能である。このため、現状では、ポンプや圧力センサは一部を分解して培養メディアの通路部分のみを取り出し、薬品による滅菌を行い、他の部分はオートクレーブにより滅菌を行った後、ポンプや圧力センサと装置を組み立てなければならず、手間がかかり、雑菌汚染のおそれも高い。

培養メディアへの酸素、炭酸ガスの取り込みはフィルタを通しているが、周囲の雰囲気から直接行っているため、汚染のおそれもある。また、この培養装置は、インキュベータに収容されるが、ポンプユニットや圧力モニタは温度、湿度により悪影響を受け易く、インキュベータにポンプユニットや圧力モニタを収容することは容積的に困難である。このため、インキュベータの貫通穴に配管用のチューブや電源、制御用の電線を通してその内部と外部とを連結することにより、装置を組み上げなければならない。

また、圧力の設定は設定圧力に応じたバックプレッシャレギュレータを選択して組み込むため、圧力の設定を変えるには、バックプレッシャレギュレータを取り替えなければならないため、手間がかかるとともに雑菌汚染の危険性も高い。

圧力サイクルを変更する場合、第27図に示す培養装置は、低圧側の設定をすることができず、オリフィス弁430である程度の圧力調整が可能であるとしても、設定された圧力がポンプ400の循環流量で変化する。

このように、従来の生体の細胞又は組織の培養方法では、インキュベータ(培養庫)内の温度、湿度、二酸化炭素濃度、酸素濃度を最適な条件に設定し、その中で細胞を培養している。このようなインキュベータによる培養では、シャーレの上での平面的(2次元的)培養であり、3次元的な培養の試みが成されている。しかも、このような培養方法においては、外気に晒された培養メディアや細胞又は組織が細菌に汚染され易く、安定的な培養が難しい。

しかも、生体の細胞は常に物理的刺激下にあり、それらの刺激は細胞の代謝機能の制御、細胞分裂サイクル、生物刺激の濃度勾配や分散等に間接的に影響を与えているが、それを安定的に実現することが難しく、物理的刺激の量、変化、周期等の設定や変更は非常に困難であった。そして、培養にあたっては微妙な圧力設定や調整が必要となり、培養担当者の熟練を要する。

このため、従来の生体細胞の体外培養は、修復すべき部位の大きさに成長させるのに時間がかかり、汚染等により正常な培養が損なわれることがあった。

そこで、本発明は、汚染の防止とともに効率的な体外培養を実現した細胞又は 組織の培養方法及びその装置を提供することを課題とする。

20 発明の開示

5

10

15

25

本発明は、生体を模倣した環境等、任意に制御される環境下に培養位置(培養チャンバ)を設置するとともに、前記培養位置に細胞又は組織を保持しながら培養メディアを供給し、理想的な環境下にある前記培養位置で前記細胞又は前記組織を培養することで、汚染防止を図るとともに、前記細胞又は前記組織の効率的な体外培養を実現したものである。

本発明の細胞又は組織の培養方法は、生体の細胞又は組織を特定の培養位置 (培養チャンバ)に保持し、生体を模倣した環境下に前記細胞又は前記組織を設 定するとともに前記細胞又は前記組織に培養メディアを供給し、前記培養位置で 前記細胞又は前記組織を培養することを特徴とする。

6

即ち、欠損した生体の一部等の修復に必要な組織は、その生体の細胞や組織を用いることが理想的である。これを実現するためには、生体から採取した細胞や組織を用いてそれを体外培養することである。この体外培養で重要なことは、汚染防止と、生体と同等の培養環境、即ち、生体を模倣した環境を人工的に実現することである。そこで、人工的に形成した環境に培養位置を設定し、この培養位置に細胞又は組織を保持し、培養メディアを供給することにより、細胞又は組織の体外培養を実現している。ここで、環境とは、細胞又は組織によって形成される生体を基準とし、その生命を健康的に維持するに必要な体内、体外の刺激を含む生存条件を示す。また、培養メディアは、細胞又は組織の生命を維持するとともに生育に必要な栄養源を含む。この場合、培養メディアの供給は、細胞又は組織に静水圧と流れという物理的刺激を与え、細胞又は組織が代謝機能、分裂サイクル、生物刺激の濃度勾配や分散に影響を受け、その培養が促進され、その結果、体内組織に近く、また、体内組織と融合し易い細胞又は組織を培養することが可能となる。

5

10

15

20

25

本発明の細胞又は組織の培養方法は、生体の細胞(5)又は組織を特定の培養位置(培養チャンバ20)に保持し、生体を模倣した環境下に前記細胞又は前記組織を設定するとともに前記細胞又は前記組織に培養回路(培養回路ユニット4)を通して培養メディアを連続的又は断続的に供給するとともに、前記細胞又は前記組織に連続、間欠又は周期的に変化する圧力を加え、前記培養位置で前記細胞又は前記組織を培養することを特徴とする。

培養位置の設定や環境設定については、既に述べた通りである。培養位置に設定された細胞又は組織に対し、培養回路を通して培養メディアを連続的又は断続的に供給する。外界と分離又は遮断された培養回路を通して培養メディアを供給することにより、培養メディアの供給形態を連続的又は断続的に行うことができると同時に、汚染防止を図ることができる。培養メディアの供給形態についても、生体の環境に対応して制御することで、生体を模倣することができ、効率的に細胞又は組織の培養を行うことができる。そして、培養中に細胞又は組織には所望の圧力を作用させて物理的刺激を加えており、その圧力の形態は、連続、間欠又は周期的な変化とすることにより、生体を模倣し、培養される細胞又は組織に必

7

要な柔軟性や耐久性等の生体に必要な物理的、機械的な強度を付与することができる。これは、修復すべき生体の部位に対応した理想的かつ実用的な細胞又は組織、即ち、体内組織に近く、体内組織と融合し易い細胞又は組織の培養に寄与することになる。

本発明の細胞又は組織の培養方法は、前記培養位置に培養すべき前記細胞又は前記組織を前記培養メディア中に浮遊状態又は非浮遊状態で保持させる保持手段を備えることを特徴とする。即ち、培養すべき細胞又は組織は、静的状態に保持することが培養効率を高める上で必要であることが実験により確認されている。そこで、細胞又は組織は、培養メディア中に浮遊又は非浮遊の状態で保持することにより、効率的な培養を実現することができる。

5

10

15

20

25

本発明の細胞又は組織の培養方法は、前記保持手段に前記細胞又は前記組織を前記培養メディア中に浮遊状態で保持させるハイドロジェル、又は、前記細胞又は前記組織を保持するとともにその成長により前記細胞又は前記組織に吸収される足場を用いたことを特徴とする。即ち、培養すべき細胞又は組織をどのように保持しても良く、この場合、ハイドロジェル又は足場はその一例である。ハイドロジェルは、培養すべき細胞又は組織を包み込んで浮遊状態に保持する手段であり、培養が完了した時点でそのハイドロジェルから細胞や組織を取り出すことができる。また、足場は、タンパク質からなる多孔体で構成することができ、培養される細胞又は組織は、その足場に保持されるが、成長とともにその足場を養分として吸収する。

本発明の細胞又は組織の培養方法は、前記培養メディアを各種アミノ酸、糖類、 塩類又はタンパク質の1又は2以上を含んで構成したことを特徴とする。即ち、 培養メディアには、培養すべき細胞又は組織に応じたものを使用でき、例えば、 各種アミノ酸、糖類又はタンパク質の1つ又はこれらから選択された2以上の物 質又は全てを含んで構成したものを用いることができる。培養メディアの選択は、 効率的な培養や品質の良い細胞又は組織を形成する上で主要な要素である。

本発明の細胞又は組織の培養方法は、前記細胞又は前記組織を培養する前記環境が、前記生体の部位の生理的条件、又はこの生理的条件に加えて年齢、身長、体重、性別、その他の前記生体毎の固有情報に応じて設定されることを特徴とす

8

る。即ち、生体の一部を修復するに用いる細胞又は組織は、その生体と整合する ことが最も重要であり、その一要素としてその生体の固有情報を用いて培養環境 を設定する。

本発明の細胞又は組織の培養方法は、前記環境が前記培養メディアを通して供給される窒素、酸素又は二酸化炭素等のガス、温度又は湿度によって設定されることを特徴とする。即ち、細胞又は組織を培養すべき環境は生体に対応した環境が望ましいことから、例えば、窒素、酸素、二酸化炭素が培養空間に供給され、温度、湿度が培養に適した温度、湿度に設定されることにより、生体環境が所望の状態に制御される。

5

10

15

20

25

本発明の細胞又は組織の培養方法は、前記細胞又は前記組織に加える前記圧力 を前記細胞又は前記組織の前記部位に応じて任意に設定することを特徴とする。 即ち、修復すべき生体の部位に対応して圧力を加えることにより、理想的かつ実 用的な細胞又は組織を形成することができる。

本発明の細胞又は組織の培養方法は、前記細胞又は前記組織に加える前記圧力が連続、間欠又は周期的に変化する圧力又はこれらの組合せからなる圧力であることを特徴とする。即ち、圧力のパターンを連続、間欠又は周期的に変化する形態とし、それを選択し、又は組み合わせることにより、理想的な物理的刺激を実現することができ、細胞の代謝機能や分裂サイクル、生物刺激の濃度勾配や分散に影響を与え、培養の促進を図ることができる。

本発明の細胞又は組織の培養装置は、細胞又は組織を収容する培養チャンバを 備えて培養メディアを供給する培養ユニット(培養回路ユニット)と、前記培養 チャンバ内の前記細胞又は前記組織に圧力を付与する加圧手段(圧力印加装置)と、前記培養ユニットに前記培養メディアを間欠的又は連続的に供給させる培養 メディア供給手段(培養メディア供給装置)とを備えたことを特徴とする。

即ち、培養ユニットは、培養すべき細胞又は組織を培養チャンバに収容し、外 気と遮断された細胞又は組織に必要な培養メディアを供給する。外気と遮断され た細胞又は組織は、菌体等の汚染から防護され、その結果、品質の良い組織に成 長する。また、細胞又は組織には、培養メディアによる静水圧と流れによる物理 的刺激に加え、加圧手段によって所望の圧力が付与される。この結果、細胞の代

9

謝機能、分裂サイクル、生物刺激の濃度勾配や分散に影響を受け、細胞又は組織の培養が促進される。また、細胞又は組織への培養メディアの供給形態は培養メディア供給手段によって任意に設定され、間欠的又は連続的に供給することができるので、バリエーションのある物理的刺激によって培養の促進が図られる。培養メディアの供給形態は、常に新しい培養メディアの供給、培養メディアを繰り返し循環させる供給の何れか一方又は双方を含むものである。循環させる形態では、培養メディアを節約できるが、一方向的な供給の場合には培養メディアの濃度変化を防止できる点で有利であろう。

5

10

15

20

25

本発明の細胞又は組織の培養装置は、前記加圧手段又は前記培養メディア供給 手段を制御する制御手段を備えたことを特徴とする。即ち、加圧手段又は培養メ ディア供給手段は、任意に制御することができるが、コンピュータ等の制御手段 を用いることにより、フィードバック制御やフィードフォワード制御等の各種の 制御、プログラム制御等が可能である。勿論、割り込みによる人的な補正制御を 加味することは可能であり、修正制御を排除するものではない。

本発明の細胞又は組織の培養装置は、前記加圧手段から前記細胞又は前記組織に加えられる前記圧力を前記細胞又は前記組織に応じて任意に設定することを特徴とする。圧力の加え方、即ち、圧力パターンは培養すべき細胞又は組織に対応して設定することにより、より効率的な培養を行うことができる。

本発明の細胞又は組織の培養装置は、前記加圧手段から前記細胞又は前記組織に加えられる前記圧力が、断続状態、一定時間毎の連続した繰り返し、一定時間毎に増減させることを特徴とする。即ち、圧力パターンはあらゆる形態を想定することができ、その選択により効率的に細胞又は組織の培養を行うことができる。

本発明の細胞又は組織の培養装置は、前記培養ユニットを培養装置本体から独立して分離可能であることを特徴とする。即ち、培養した細胞又は組織を収容する培養チャンバを備える培養ユニットは、培養装置本体と独立して分離、着脱可能とすることにより、外気と分離された培養ユニットとともに細胞又は組織を移動させることができ、移動中に菌体等による汚染から細胞又は組織を防護することができる。

本発明の細胞又は組織の培養装置は、外気と遮断された密閉空間に前記培養ユ

1 0

ニットを収容してなることを特徴とする。即ち、密閉空間が培養空間であり、外気と遮断されることにより、所望のガスの供給による培養環境の設定が可能になるとともに、外気による汚染から細胞又は組織を防護することができる。

本発明の細胞又は組織の培養装置は、窒素、酸素又は二酸化炭素等のガスを吸収可能な気体吸収手段を備えたことを特徴とする。即ち、密閉空間に収容される培養ユニットに窒素、酸素又は二酸化炭素等のガスを供給するとともに、培養ユニットに気体吸収手段を備えることにより、ガスを細胞又は組織に付与することができ、ガスの供給及び制御によって生体環境を模倣することができる。

5

10

15

20

25

本発明の細胞又は組織の培養装置は、前記密閉空間に窒素、酸素又は二酸化炭素等のガスを充塡させてなることを特徴とする。即ち、密閉空間によって形成される培養空間に窒素、酸素又は二酸化炭素等のガスを充塡させることにより、生体環境を模倣することができる。

本発明の細胞又は組織の培養装置は、前記培養ユニットに供給すべき前記培養 メディアを溜める培養メディア槽を備えることを特徴とする。即ち、培養ユニッ トに必要な培養メディアを供給又は循環させるためには培養メディア供給源が必 要であり、培養メディア槽はその供給源である。特に、外気と遮断された密閉空 間内に培養メディア槽を設置すれば、保存している培養メディアの汚染を防止で きる。

本発明の細胞又は組織の培養装置は、前記培養チャンバに外部から圧力を受ける受圧膜を備えたことを特徴とする。即ち、受圧膜を設置したことにより、培養チャンバに収容されている細胞又は組織に対し、外気と遮断した状態で加圧刺激を与えることができるとともに、生体環境を模倣した刺激等、所望の加圧刺激を実現できる。

本発明の細胞又は組織の培養装置は、前記培養ユニットに圧力緩衝手段を備えたことを特徴とする。即ち、培養ユニットの一部を加圧した場合、その圧力調整を圧力緩衝手段で行えば、生体環境に近い物理的刺激を実現することができ、細胞又は組織の培養の促進を図ることができる。

本発明の細胞又は組織の培養装置は、前記培養チャンバに前記受圧膜を介して 圧力チャンバを取り付け、この圧力チャンバに水圧、油圧又は空気圧を作用させ て前記培養チャンバ内の前記細胞又は前記組織に圧力を加えるようにしたことを 特徴とする。即ち、圧力の形成手段として、水圧、油圧又は空気圧の何れを用い ても所望の加圧刺激を実現でき、生体環境を精度良く模倣することができる。

本発明の細胞又は組織の培養装置は、前記培養ユニットに送液チャンバを設け、この送液チャンバに取り込んだ前記培養メディアを加圧して送り出す送液装置で前記培養メディア供給手段を構成したことを特徴とする。即ち、培養メディア供給手段は、培養ユニットに培養メディアを供給又は循環させる手段であって、その形態は各種のものが想定できるが、例えば、送液チャンバを設け、この送液チャンバに取り込んだ培養メディアを加圧して送り出す送液装置で構成すれば、加圧量を制御することで所望の送液量を設定できる。

5

10

15

20

25

本発明の細胞又は組織の培養装置は、前記培養ユニットに圧力逃し弁を設置し、前記培養メディアの圧力が前記圧力逃し弁に任意に設定される一定圧力を越えるとき、前記圧力逃し弁を開いて前記培養メディアの圧力を降下させることを特徴とする。即ち、培養メディアに加えられる圧力を緩衝することは、理想的な加圧刺激を細胞又は組織に付与するために極めて重要であり、その一手段として、圧力逃し弁を用いて培養メディアの圧力が圧力逃し弁に任意に設定される一定圧力を越えるとき、圧力逃し弁を開いて培養メディアの圧力を降下させれば、培養メディアを汚染させることなく、理想的な圧力状態に制御することができる。

本発明の細胞又は組織の培養装置は、前記密閉空間が加熱手段又は加湿手段が 設置され、所望の温度又は湿度に維持、制御されることを特徴とする。即ち、培 養ユニットが収容される密閉空間の温度及び湿度を制御し、生体環境に合致する 培養空間を形成することができる。

本発明の細胞又は組織の培養装置は、前記培養ユニットの前記培養チャンバに 超音波等の音波を付与する音波発生装置を備えたことを特徴とする。即ち、生体 は外界からの音響的刺激を受けており、音波発生装置を併用することにより、生 体環境を音響的に模倣することができる。また、培養チャンバに培養すべき細胞 又は組織を注入する際に、超音波を併用して効率的かつ信頼性の高い注入を行う ことができる。

本発明の細胞又は組織の培養装置は、前記密閉空間に供給されるガス濃度を制

5

御する制御手段を備えことを特徴とする。即ち、密閉空間に供給されるガス濃度 を制御手段によって制御することにより、生体環境を模倣することができ、細胞 又は組織の培養促進を図ることができる。

なお、本発明の目的、特色、利益等は、第1ないし第4の実施形態、詳細な説明及び図面の参酌により一層明確になるであろう。

図面の簡単な説明

第1図は、本発明の細胞又は組織の培養方法及びその装置の第1の実施形態を 示すブロック図である。

10 第2図は、細胞又は組織の培養方法及びその装置を示す図である。

第3図は、培養装置の培養回路ユニットの一部、培養メディア供給装置、圧力 印加装置及び圧力緩衝装置を拡大して示した図である。

第4図は、培養装置と培養回路ユニットとの分離状態を示す図である。

第5図は、制御装置を示すブロック図である。

15 第6図は、本発明の細胞又は組織の培養方法を示すフローチャートである。

第7図は、本発明の細胞又は組織の培養方法における初期設定を示すフローチャートである。

第8図は、本発明の細胞又は組織の培養方法における初期設定を示すフローチャートである。

20 第9図は、本発明の細胞又は組織の培養方法における初期設定を示すフローチャートである。

第10図は、圧力印加装置における加圧ピストンの変位、移動量に対する圧力 チャンバ内の圧力を示す図である。

第11図は、圧力逃し弁におけるアクチュエータの変位に対する弁の調整圧力 25 を示す図である。

第12図は、圧力可変培養モードの実行形態を示すタイミングチャートである。

第13図は、圧力可変培養モードの他の実行形態を示すタイミングチャートである。

第14図は、本発明の細胞又は組織の培養方法及びその装置の第2の実施形態

WO 01/64848 PCT/JP01/01516 .

1 3

である培養装置の正面側を示す図である。

- 第15図は、第14図の培養装置の側面側を示す図である。
- 第16図は、培養装置本体の部分及び培養回路ユニットを示す図である。
- 第17図は、培養装置本体から分離した培養回路ユニットを示す図である。
- 5 第18図は、培養回路ユニットを外した培養装置本体の部分を示す部分断面図 である。
 - 第19図は、培養回路ユニットにおける圧力印加装置を示す部分断面図である。
 - 第20図は、培養回路ユニットにおける培養メディア供給装置を示す部分断面 図である。
- 10 第21図は、培養回路ユニットにおける圧力緩衝装置を示す部分断面図である。 第22図は、培養回路ユニットにおける培養メディア供給装置の他の構成例を 示す部分断面図である。
 - 第23図は、本発明の細胞又は組織の培養方法及びその装置の第3の実施形態 を示す図である。
- 15 第24図は、本発明の細胞又は組織の培養方法及びその装置の第4の実施形態 を示す図である。
 - 第25図は、加圧制御を示す図である。
 - 第26図は、従来の細胞又は組織の培養方法及びその装置を示す図である。
 - 第27図は、従来の他の細胞又は組織の培養方法及びその装置を示す図である。

発明を実施するための最良の形態

20

25

第1図は、本発明の細胞又は組織の培養方法及びその装置の第1の実施形態を 示している。

細胞又は組織の培養方法を実現する培養装置1は、その培養空間として密閉空間2を備えており、この密閉空間2には、培養すべき細胞又は組織に培養メディア3を供給する培養ユニットとしての培養回路ユニット4が設置されている。この培養回路ユニット4は、装置本体側と分離、着脱可能に設定することができる。この培養回路ユニット4は、培養メディア槽9、培養メディア供給装置6、培養加圧装置8、気体吸収装置10及び弁11を備えているとともに分岐路13を備

1 4

えており、この分岐路13には弁15が設けられている。培養メディア3は、培養しようとする細胞や組織に養分を与えるキャリアであって、必須アミノ酸や各種アミノ酸とグルコース(糖類)を含んだ液体であり、培養しようとする細胞や組織に応じてNa⁺、Ca⁺⁺等の無機質が追加されたり、血清等のタンパク質を含む場合もある。また、これらの装置は、フッ素樹脂、PEEK、高耐熱グレードポリプロピレン、シリコーン、ステンレススチール等の十分な耐熱性を持ち、生体に影響を与えるような物質の溶出のない樹脂材料を用いて構成することにより、構成部品での汚染を防止することができる。

5

10

15

20

25

弁11、15は、ピンチバルブ等で構成することができ、培養回路ユニット4は、弁15を閉じ弁11を開くことで閉ループ回路、弁15を開き弁11を閉じることで全開ループ回路、弁11、15を共に開くことで一部開ループ回路となる。また、培養回路ユニット4は、部分的に設置した気体吸収装置10に代えて、二点鎖線で示す気体吸収部41と、実線で示す耐圧部43とを備えても良く、気体吸収部41は密閉空間2に充満させたガスを培養メディア3に吸収させる部分、耐圧部43は培養メディア3の加圧部分に対応して信頼性のある送液を確保して液漏れを防止する部分である。気体吸収部41には、例えば、CO2、O2ガス等のガスを透過し易いエラストマ材料等で形成されたチューブを用いることができる。

培養メディア槽 9 は、密閉空間 2 に収容されて細胞又は組織の培養に必要な培養メディア 3 を溜める手段である。また、培養メディア供給装置 6 は培養回路ユニット 4 に培養メディア 3 を供給する手段であって、培養回路ユニット 4 に挿入された送液装置 1 2 を駆動装置 1 4 によって駆動し、所定量の培養メディア 3 を培養回路ユニット 4 に供給する。培養加圧装置 8 は、培養すべき細胞 5 (第 3 図)又は組織に加圧する手段であって、圧力印加装置 1 6 及び圧力緩衝装置 1 8 を備えている。圧力印加装置 1 6 は、培養回路ユニット 4 の培養チャンバ 2 0 に圧力容器 2 2 を取り付け、駆動装置 2 4 によって任意の圧力を培養チャンバ 2 0 に作用させる。培養チャンバ 2 0 にはコラーゲン等から成形された足場に培養すべき細胞又は組織が植え付けられて収容され、外界から隔離される。

圧力緩衝装置18は、培養加圧装置8で加圧される培養メディア3の圧力を緩

1 5

衝する手段であって、所定値を越える培養メディア3の圧力に対し、培養回路ユニット4に挿入された圧力逃し弁26を駆動装置28で駆動して最大圧を設定し、その最大圧を越える培養メディア3の圧力が作用したとき、培養メディア3を逃がすことにより圧力を緩衝する。また、圧力容器22には、培養加圧装置8に併設された加圧用液体注入装置30から加圧用液体が注入される。

5

10

15

20

25

また、この培養装置1には湿度調節装置32、温度調節装置34及びガス混合・濃度調節装置36が設置されており、雰囲気の湿度、温度及びガス混合・濃度が調節される。また、操作装置38は管理者によって所望の調整操作を行うためのものであって、制御装置40は培養メディア供給装置6、培養加圧装置8、加圧用液体注入装置30、湿度調節装置32、温度調節装置34及びガス混合・濃度調節装置36等の各種装置を操作装置38からの操作入力や制御プログラムによって制御する手段である。

次に、この装置を用いた細胞又は組織の培養方法を説明すると、培養準備として、制御装置40に対して操作装置38等の操作によって培養条件等の必要事項を入力する。この場合、必要事項は、培養メディア3にどのような圧力を設定するかであり、その設定形態は、最大圧力、最小圧力、その昇圧又は減圧等の圧力傾斜、加圧周期、培養メディア3の流量、培養温度、培養時間等である。また、培養回路ユニット4は、弁11、15の開閉を切り換えることにより、閉ループとするか、開ループとするかを選択する。

次に、培養チャンバ20の中にコラーゲンのスポンジ等の足場7(第3図)を 設置し、この足場に培養すべき細胞5(第3図)又は組織を植え付ける。コラー ゲンのスポンジは、培養チャンバ20内でコラーゲン液を凍結乾燥することによ って形成しても良い。

次に、培養メディア槽9に規定量の培養メディア3を入れ、密閉空間2を閉鎖した後、運転スイッチを投入し、培養運転の準備(自動運転)により、加圧用液体注入装置30から圧力容器22側に加圧用液体が供給される。

培養メディア供給装置6が駆動されると、送液装置12を通じて培養メディア3が培養チャンバ20側に流れ、培養すべき細胞又は組織に培養メディア3が供給される。この培養メディア3の供給形態は、連続、間欠的、周期的又はこれら

1 6

の組合せの何れかが選択される。

5

10

15

20

25

また、培養メディア3で満たされた培養チャンバ20には、足場によって保持された細胞又は組織が収容されており、この細胞又は組織には圧力容器22から圧力が加えられる。この圧力は、培養準備で設定された圧力パターンによる。

そして、培養メディア3に加えられる圧力が設定圧力を越えた場合には、圧力 逃し弁26を通して培養メディア3が耐圧部43から流出し、圧力調整が行われ る。

このような動作を所定の培養時間中繰り返すことにより、細胞又は組織が培養チャンバ20内で所望の大きさに成長する。足場にコラーゲンのスポンジを用いている場合には、培養される細胞又は組織がそのコラーゲンを吸収し、足場は自然に消失する。

また、ハイドロジェルを保持手段に用いた場合には、そのハイドロジェル内に 細胞又は組織が浮遊状態で収容されて保持されている。

また、弁15を閉じ、弁11を開いて培養回路ユニット4を閉ループ化した場合には、培養メディア3は、培養回路ユニット4内を循環し、培養すべき細胞又は組織側には培養メディア3が供給される。また、弁11を閉じ、弁15を開いて培養回路ユニット4を開ループ化した場合には、培養メディア3は、分岐路13側に流れ、加圧用液体注入装置30側、即ち、加圧水槽68(第2図)側に流れ、培養すべき細胞又は組織側には常に新鮮な培養メディア3を供給することができる。

そして、培養中、培養回路ユニット4の気体吸収装置10又は気体吸収部41には、通流する培養メディア3に密閉空間2内から窒素、酸素、二酸化炭素等のガスが吸収され、生体と同様のガス交換に必要なガスが細胞又は組織に培養メディア3を通じて供給される。

このように、細胞又は組織には、生体を模倣した培養環境が設定されて体外培養を、菌体等に汚染されることなく、効率的に行うことができる。即ち、細胞又は組織は、培養チャンバ20内で培養メディア3の静水圧と流れによる物理的刺激が加えられるので、代謝機能、分裂サイクル、生物刺激の濃度勾配や分散に影響を受け、培養が促進される。また、細胞又は組織は、圧力印加装置16による

1 7

加圧及びその加圧形態に応じて物理的刺激を受ける。この結果、細胞又は組織の 培養が促進され、体内の組織に近い、また、体内組織と融合し易い組織を培養す ることができる。また、耐圧部 4 3 を部分的に設定することにより、耐圧構造に 要するコストを低減することができる。

次に、第2図は培養装置1の具体的な実施形態を示し、第3図は培養装置1の 培養回路ユニット4の一部、培養メディア供給装置6、培養加圧装置8の圧力印 加装置16及び圧力緩衝装置18を拡大して示している。培養装置1は、第4図 に示すように、培養回路ユニット4が着脱される構成である。

5

10

15

20

25

この培養装置1は、密閉可能な培養庫42を備えており、ドア270 (第14 図) の開閉がドアスイッチ44によって検出される。この培養庫42には、培養メディア3を供給する培養回路ユニット4が収容される。この培養回路ユニット4は、培養チャンバ20、送液装置12、圧力逃し弁26を介して培養メディア3を溜める培養メディア槽としての培養メディアバッグ48をチューブ50A、50B、50C、50D、50Eで連結した着脱可能なチューブユニットである。チューブ50A、50D、50Eは、気体吸収部41 (第1図) であって、培養庫42内のガスを吸収可能なエラストマ材料等で構成された通気チューブで構成され、また、チューブ50B、50Cは耐圧部43 (第1図) であって、培養メディア3の圧力に耐える耐圧チューブで構成される。そして、チューブ50Eには、チューブ50Eを屈曲させて培養回路ユニット4内のガスを吸収するガス吸収部52が形成されている。

培養メディアバッグ48は培養庫42の壁面に重量検知手段としての検知スイッチ54を備えるフック56を以て支持されており、培養メディアバッグ48内の培養メディア3の容量がその重量により検知スイッチ54によって検知される。この検知スイッチ54が培養メディアバッグ48の所定重量の減少を検知したとき、制御装置40を通して表示手段(表示装置232)や電話等を通じてその異常を告知する。ガス吸収部52と送液装置12との間のチューブ50A、50Eには培養メディア排出部58が分岐して設けられ、チェック用バルブ59によって開閉される。このチェック用バルブ59は、培養回路ユニット4内の培養メディア3を採取するための手段であって、培養メディア排出部58から採取された

1 8

5

10

15

20

25

培養メディア3は、その変性状態、即ち菌体等の物質によって汚染されているか 否か、pH、濃度、生成物、酸素濃度、二酸化炭素濃度等の検査に供することが できる。

培養すべき細胞 5 はコラーゲン等で形成された足場 7 に着床させ、足場 7 とともに培養チャンバ2 0 に収容される。この培養チャンバ2 0 は培養容器 6 1 によって構成され、培養容器 6 1 は、圧力チャンバ6 0 に複数のボルト 6 2 等の固定手段によって取外し可能に取り付けられており、インジェクションポート 6 3 が設けられている。このインジェクションポート 6 3 は、培養チャンバ2 0 内に設置した足場 7 に培養すべき細胞 5 を外部から注射器等によって着床させるために用いる。培養チャンバ2 0 の固定には例えばクランパのような他の固定手段を用いても良い。圧力チャンバ6 0 及び培養容器 6 1 は 0 リング等のシール材によって封止される。培養チャンバ2 0 の圧力チャンバ6 0 側の面部が受圧膜 6 4 で閉塞されて密閉空間を形成しており、この受圧膜 6 4 を介して培養チャンバ2 0 に圧力チャンバ6 0 内の加圧水6 5 が接している。

圧力チャンバ60には給水管路66を通して加圧水(液)槽68が連結されており、給水管路66には流水センサ70、ポンプ80、バイパス弁82及び封止弁84が設けられ、バイパス弁82には中間にオリフィス86を持つバイパス管路88が設けられている。即ち、バイパス弁82及び封止弁84を開いてポンプ80を駆動することにより、加圧水65を加圧水槽68から圧力チャンバ60内に充塡することができる。加圧水槽68の加圧水位は水位センサ96によって検出されるので、その水位に応じて給水バルブ92を開閉することにより、加圧水槽68に加圧水65を給水管路94を通じて補充するので、加圧水槽68のか位を常に最適水位に保持することができる。また、加圧水槽68の給水管路66には排水管路98が分岐されており、細胞5の培養終了時、排水バルブ100を開いて加圧水65が排水される。

また、圧力チャンバ60には加圧水槽68側に向かう回収管路102が設けられ、この回収管路102には封止弁104及び循環ポンプ106が設けられている。回収管路102の先端部は加圧水槽68内の加圧水65中に浸漬している。即ち、封止弁84を開きかつバイパス弁82を閉じて循環ポンプ106を駆動す

1 9

ると、圧力チャンバ60内が減圧されて、圧力チャンバ60や各管路66、102等の内壁に付着している気泡等を加圧水槽68側に排出することができる。また、この圧力チャンバ60の加圧水65は、ポンプ80、106の同時駆動により加圧水槽68から給水管路66を通して圧力チャンバ60に供給しつつ回収管路102を通して加圧水槽68に戻し、加圧水槽68との間で循環させることも可能である。

5

10

15

20

25

圧力チャンバ60の壁面部にはヒータ108、温度センサ110、圧力センサ112及び音波発生装置114が設けられており、収容されている加圧水65の加熱と、その温度又は圧力が検出されるとともに、圧力チャンバ60には、必要に応じて音波発生装置114から超音波等の音波を加えることができる。

そして、圧力チャンバ60には加圧手段として加圧ピストン116が進退自在に設けられ、加圧ピストン116は圧力チャンバ60の壁面部に突出させた支持筒部117によって支持され、支持筒部117と加圧ピストン116との間には封止手段であるOリング119によって封止されている。この加圧ピストン116には加圧用スプリング118を介して加圧駆動手段としてアクチュエータ120及びモータ122が取り付けられている。モータ122は例えば、ステッピングモータで構成され、このモータ122の回転がアクチュエータ120によって進退動に変換されて加圧用スプリング118に加えられ、加圧ピストン116の進退に応じて圧力チャンバ60内の圧力を増減させることができ、加圧ピストン116の進入時、高圧、加圧ピストン116の後退時、低圧を生じさせ、その圧力変化が受圧膜64を通して足場7上の細胞5に加圧刺激を与える。また、加圧ピストン116の位置は位置センサ123によって検出されており、その検出データは加圧ピストン116の進退の制御、即ち、加圧刺激の制御に用いられる。

この場合、圧力チャンバ60には加圧水65が充塡されており、加圧ピストン116から加えられる圧力は、加圧水65を通じて受圧膜64に全面的に作用し、その圧力が受圧膜64から培養メディア3を通して細胞5や組織に均等に静水圧を作用させることができ、ストレイン(変位)も同様に均等に作用させることができる。しかも、加圧ピストン116の移動量の制御で圧力変化量のダイナミックレンジを大きくでき、小さい値から大きな値まできめ細かい制御が可能である。

2 0

そして、加圧ピストン116の移動は位置センサ123によって検出されて制御装置40によって監視され、その移動量が限界位置に到達した場合には、培養装置1の異常として制御装置40から警報出力が発せられ、制御装置40に接続されている表示手段(第5図の表示装置232等)に警告表示を行い、又は、電話等の通信回線を通じて管理者に告知することができる。

5

10

15

20

25

また、培養チャンバ20に連続的又は間欠的に培養メディア3を送る送液装置 12は、出入側に送出側逆流防止弁124、吸引側逆流防止弁126を有する送液チャンバ128を備え、培養庫42にネジ130によって取外し可能に取り付けられている。送液チャンバ128には送液ピストン132が進退自在に取り付けられ、この送液ピストン132の中途部には殺菌液溜134が設けられるとともに、加圧用スプリング136が取り付けられている。送液ピストン132と送液チャンバ128の本体部との間には封止手段である〇リング133、135が設けられている。殺菌液溜134には、殺菌剤、消毒液又はペニシリン等の抗生物質が充塡され、外部からの菌体や異物の侵入を阻止している。加圧用スプリング136は、防護筒137内に収容されている。

送液ピストン132の後端部には駆動手段としてアクチュエータ138及びモータ140が取り付けられている。モータ140は例えば、ステッピングモータで構成され、このモータ140の回転がアクチュエータ138によって進退動に変換されて加圧用スプリング136に加えられ、送液ピストン132の進退に応じて送液チャンバ128内の圧力が増減し、その圧力変化が各逆流防止弁124、126の弁体142、144に加えられる。送液ピストン132が送液チャンバ128から引き出されると、送液ピストン132の引出し分だけ送液チャンバ128内が負圧になって弁体142はスプリング143の復元力によって引き下げられて送出側逆流防止弁124が閉じるとともに、弁体144がスプリング145の加圧力に逆らって引き上げられて吸引側逆流防止弁126が開くことにより、送液チャンバ128内に培養メディア3が吸い込まれる。また、送液ピストン132が送液チャンバ128内に増入すると、送液チャンバ128内が加圧されて弁体144が下降して吸引側逆流防止弁126が閉じ、弁体142が上昇して送出側逆流防止弁124が開くので、送液チャンバ128内の培養メディア3が培

2 1

養チャンバ20側に送り出される。

5

10

15

20

25

また、培養メディア3の圧力緩衝装置18は圧力逃し弁26を備えており、圧 力逃し弁26は培養庫42にネジ146によって取外し可能に取り付けられてい る。この圧力逃し弁26は、弁室148に進退して開閉可能な弁体150が取り 付けられ、この弁体150のプランジャ152の中途部には殺菌液溜153が設 けられている。プランジャ152と弁室148の本体部との間には封止手段であ る〇リング155、157が設けられている。殺菌液溜153には、殺菌剤、消 毒液又はペニシリン等の抗生物質が充塡され、外部からの菌体や異物の侵入を阻 止している。また、弁体150のプランジャ152の後端部には緩衝スプリング 154を介して駆動手段としてのアクチュエータ156及びモータ158が取り 付けられている。モータ158は例えば、ステッピングモータで構成され、この モータ158の回転がアクチュエータ156によって進退動に変換されて緩衝ス プリング154に加えられ、弁体150を開く動作圧は緩衝スプリング154の 圧縮度に応じて調整される。即ち、緩衝スプリング154の圧縮度が高いとき、 弁体150を開くために必要な培養メディア3からの圧力が高くなり、また、緩 衝スプリング154の圧縮度が低いとき、弁体150を開くために必要な培養メ ディア3からの圧力が低くなる。このような圧力緩衝装置18を設けるのは、培 養チャンパ20の培養メディア3に加えられる加圧力を培養回路ユニット4側で 緩衝するためである。

この圧力逃し弁26の弁室148と培養メディアバッグ48とを連結するチューブ50Dにはピンチバルブ162とともに吸引チューブ164が分岐して設けられ、この吸引チューブ164にはピンチバルブ166、逆流防止弁168及び培養メディア溜170が設けられており、培養メディア溜170は吸引チューブ165を通じて回収管路102に連結されている。ピンチバルブ162はチューブ50Dを開閉し、また、ピンチバルブ166は吸引チューブ164の開閉に用いられる。逆流防止弁168は、弁体169をスプリング171の加圧力によって閉止させており、培養メディア3の圧力がスプリング171の加圧力を越えるとき、培養メディア3が吸引チューブ164を通して培養メディア溜170側に流れる。ピンチバルブ166は逆流防止弁168とは無関係にその操作によって

2 2

吸引チューブ164を閉止でき、その閉止によって培養メディア3の通流を阻止することができる。また、ピンチバルブ166が開いているとき、培養メディア溜170は密閉容器であるから、封止弁104を閉じ、循環ポンプ106を駆動すると、培養メディア溜170内が減圧されるので、スプリング171の加圧力に対抗して弁体169を移動させ、逆流防止弁168を開くことができ、このとき、培養メディア3を培養メディア溜170側に引き込むことができる。

5

10

15

20

25

また、培養庫42にはガス混合・濃度調節装置36としてN。ガスボンベ172、O。ガスボンベ174、CO。ガスボンベ176がそれぞれ管路178、180、182を通して連結され、各管路178、180、182にはガス開閉バルブ184、186、188、流量調節弁190、192、194、フローメータ196、198、200、圧力調整器202、204、206及びバルブ208、210、212が設置されている。即ち、ガス開閉バルブ184~188を選択的に開閉することにより、N。、O。又はCO。の1又は2以上が供給されて混合される。

また、培養庫42には加湿手段である湿度調節装置32として加湿用水214を溜める加湿用水受皿216及び攪拌用ファン218が設置されるとともに、加熱手段である温度調節装置34として気体加熱用ヒータ220、庫内温度センサ222及び攪拌用ファン218が設置されている。攪拌用ファン218は、ファンモータ224によって駆動される。

なお、培養装置1の異常発生時、警告を発することを言及しているが、管理者が必要な処置を行うまで、異常の種別に関係なく培養中の細胞5や組織を保存するため、制御装置40は、培養庫42内の保温制御、ガス濃度の制御、送液運転を継続する。このような継続運転は、所定の培養時間が到来しても、また、正常に運転が終了した場合にも、培養庫42内の保温制御、ガス濃度の制御、送液運転を同様に継続させる。

次に、第5図は、操作装置38及び制御装置40の構成例を示している。操作 装置38及び制御装置40は、パーソナルコンピュータ等で構成された主制御装置230を備えている。主制御装置230にはディスプレイ、液晶等の表示装置232、ハードディスク、光ディスク、フロッピィディスク、ICカード等の外

2 3

部記憶装置234、キーボードの入力装置236が接続されている。入力装置236は、操作装置38の一部又は全部を構成する。

主制御装置230には、温度検出回路238を通じて温度センサ110の検出出力、温度検出回路240を通じて庫内温度センサ222の検出出力、圧力検出回路242を通じて圧力センサ112の検出出力、位置センサ123の検出出力及び検知スイッチ54の検知出力が加えられ、モータ122の駆動出力が駆動回路244、モータ140の駆動出力が駆動回路246、モータ158の駆動出力が駆動回路248、ヒータ108の駆動出力が駆動回路250、バルブ184、186及びバルブ188の駆動出力が駆動回路252、ファンモータ224の駆動出力が駆動回路254、ヒータ220の駆動出力が駆動回路256から得られるとともに、音波発生装置114の駆動出力が得られる。

5

10

15

20

25

次に、本発明の細胞又は組織の培養方法を第6図に示す動作フローチャートを 参照して説明する。

ステップS1は初期設定モードである。この初期設定モードは、培養回路ユニット4の装着後に、圧力チャンバ60内に加圧水65を満たし、培養回路ユニット4内に培養メディア3を満たす工程と、設定入力された圧力値に相当する培養加圧装置8の圧力印加装置16、圧力緩衝装置18の動作量をサンプリングして記憶保持する工程を含む。培養回路ユニット4及び受圧膜64を構成する材質の伸び率が異なり、かつ圧力チャンバ60内に残留する気泡等によって設定圧力を得るための動作量が異なる。そこで、初期設定モードでは、これらの設定値を修正する。

培養回路ユニット4が装着されると、ガス混合・濃度調節装置36、湿度調節装置32及び温度調節装置34を動作させ、培養庫42の内部にガスを充塡するとともに適湿及び適温に制御する。そして、給水バルブ92を開いて加圧水槽68に上水等からなる加圧水65を設定水位まで補充し、バイパス弁82、封止弁84、104を開き、ポンプ80を動作させて圧力チャンバ60内に加圧水65を供給する。圧力チャンバ60への加圧水65の供給量は流水センサ70で検出され、所定量の加圧水65が検出されたとき、ポンプ80を停止し、循環ポンプ106による循環動作に切り換える。

2 4

循環動作では、バイパス弁82を閉じてバイパス管路88への流路に切り換える。このとき、オリフィス86によって加圧水65の通流量が制限され、循環ポンプ106の吸引力によって圧力チャンバ60内が負圧となり、圧力チャンバ60内に残留する気泡が加圧水槽68側に排出される。このとき、ピンチバルブ162を閉じ、ピンチバルブ166を開いて、循環ポンプ106によって生じる負圧により培養メディアバッグ48内の培養メディア3をチューブ50E、50A、50Bを通して培養チャンバ20に充塡する。循環ポンプ106を所定時間動作させて培養メディア3を培養チャンバ20に充塡させた後、ピンチバルブ166を閉じ、ピンチバルブ162とバイパス弁82を開き、循環流による負圧を解除し、かつ循環ポンプ106を停止させる。続いて封止弁84、104を閉じた後、ヒータ108により圧力チャンバ60内の加圧水65を加熱し、その温度を温度センサ110で検出することにより、温度制御を開始する。

5

10

15

20

25

次に、圧力緩衝装置18のモータ158を動作させ、圧力逃し弁26を閉じ、チューブ50Cを一定圧で閉塞させる。モータ122を動作させて予め設定した最大圧力Pmaxが検出されるまで圧力印加装置16を動作させる。最大圧力Pmaxが検出されたとき、モータ122のパルスカウントを主制御装置230のメモリに記憶する。次に、圧力緩衝装置18のモータ158を現在の圧力値が低下するまで回転させ、この圧力値を最大圧力Pmaxの位置としてモータ158のパルスカウントを主制御装置230のメモリに記憶する。

次に、圧力印加装置16のモータ122を予め設定した最小圧力Pminが検出されるまで回転させる。最小圧力Pminが検出されたとき、モータ122のパルスカウントを主制御装置230のメモリに記憶する。次に、圧力緩衝装置18のモータ158を回転させ、最小圧力Pminより減少を開始する位置にてモータ158を停止し、そのとき、このモータ158のパルスカウント値を主制御装置230のメモリに記憶する。

次に、この初期設定モードの後、ステップS2に移行し、圧力可変培養モードか否かを判定する。即ち、圧力を周期的に変更して培養を行うか否かが判定され、圧力可変を行うときはステップS3の圧力可変培養モードに移行し、また、一定圧力で培養するときはステップS7の固定圧力培養モードに移行する。

5

10

15

ステップS3の圧力可変培養モードでは、周期T毎に加圧、圧力保持、減圧、 圧力保持を繰り返して培養チャンバ20の細胞5を加圧刺激し、かつ培養メディ ア3の送液を行う。

2 5

ステップS4では、圧力印加装置16、圧力緩衝装置18の動作による圧力と Pmax、Pminとの誤差が所定値以上か否かが判定される。所定値以上の誤差が生じたとき、ステップS5に移行して最大圧力Pmax、最小圧力Pmin の各値と一致する圧力印加装置16、圧力緩衝装置18の移動量をサンプリングして主制御装置230のメモリの記憶値を修正する。

次に、ステップS6では、所定の培養時間 t が経過するまでステップS3〜ステップS6を繰り返し、所定の培養時間 t が経過したとき、培養終了とし、ステップS11に移行する。

また、ステップS 7 の固定圧力培養モードでは一定の圧力によって細胞 5 又は組織を刺激し、かつ培養メディア 3 の送液を行う。即ち、ステップS 8 では圧力印加装置 1 6、圧力緩衝装置 1 8 の動作による圧力と設定圧力 P s との誤差が所定値以上か否かが判定される。所定値以上の誤差が生じたとき、ステップS 9 に移行して設定圧力 P s と一致する圧力印加装置 1 6、圧力緩衝装置 1 8 の移動量をサンプリングして主制御装置 2 3 0 のメモリの記憶値を修正する。そして、ステップS 1 0 では、所定の培養時間 t が経過したとき、培養終了とし、ステップS 1 1 に移行する。

20 次に、ステップS 1 1 では生体細胞保存運転モードを実行する。細胞 5 又は組織の培養が完了、即ち、組織が生成されても、移植のための移送を開始するまでの間、その細胞 5 ないし組織を健全に保存する必要がある。生体細胞保存運転モードでは、細胞 5 を所定温度に維持しつつ、培養メディア 3 を供給して生体細胞を健全な状態に保持する。

25 次に、ステップS 1 2 では生体細胞を移植か否か、即ち、細胞 5 からなる組織 の移植のために運転停止命令が入力されたか否かを判定し、運転停止命令により 培養メディア 3 の循環と温度制御を停止する。培養回路ユニット 4 を脱離させ、 細胞 5 ないし組織は培養回路ユニット 4 とともに移送される。

次に、第7図、第8図及び第9図は、初期設定モードにおける設定入力動作を

2 6

示し、符号a、b、c、d及びe は、分割して記載したフローチャートの結合子であって、符号a \sim e の一致は結合部である。

ステップS21では培養チャンバ20を周期的な加圧下での培養か、又は一定 圧力下での培養かを入力する。ステップS22において、圧力を周期的に可変さ せるとき、ステップS24に移行して「圧力可変」を表示する。また、一定圧力 下で培養を行うとき、ステップS23に移行して「圧力一定」を表示する。

5

10

15

20

25

ステップS25では、圧力を可変させる周期Tを入力する。ステップS26では入力された周期Tが実行可能な範囲内であるか否かを判定し、実行範囲外のときはステップS27に移行して「周期Tの再入力」を表示して告知し、ステップS25に移行して再入力を行う。実行範囲内であれば、ステップS28に移行して設定した「周期T」の表示と、主制御装置230のメモリへの記憶が行われる。

ステップS 2 9 では最大圧力 P m a x の保持時間 t 、を入力する。ステップS 3 0 では入力された時間 t 、が周期 T の動作範囲内にあるか否かを判定する。動作範囲外であればステップS 3 1 に移行して「t 」の再入力」の表示により告知し、ステップS 2 9 に移行して再入力を行う。動作範囲内であればステップS 3 2 に移行して「最大圧保持時間 t 」の表示と主制御装置 2 3 0 のメモリへの記憶が行われる。

ステップS 3 3 では最小圧力 Pmino保持時間 t 。を入力する。ステップS 3 4 では入力された時間 t 。が周期T の動作範囲内にあるか否かを判定する。動作範囲外であればステップS 3 5 に移行し「t 。の再入力」を表示し、ステップS 3 3 に移行して再入力を行う。動作範囲内であればステップS 3 6 に移行して「最小圧保持時間 t 。」の表示と、主制御装置 2 3 0 のメモリへの記憶を行う。

ステップS37では入力された周期Tと時間(t_1+t_2)の差時間を2分して加圧、減圧時間 t_3 を演算する。ステップS38では時間 t_3 が動作範囲内にあるか否かを判定する。動作範囲外にあるとき、周期T、時間 t_1 、 t_2 の値が適切なものでないと判断し、ステップS25に戻る。時間 t_3 が動作範囲内にあるとき、演算された時間 t_3 を主制御装置230のメモリに格納し、ステップS39において「加圧、減圧時間 t_3 」を表示する。ステップS40では加圧、減圧時に緩急の変化を付けるか否かの入力を行う。ステップS41において緩急を

2 7

付けるときにはステップS 4 2 に移行し、緩急を付けないときはステップS 4 6 に移行する。ステップS 4 2 では加圧、減圧時に緩急を付けるための変化量の入力が行われる。ステップS 4 3 では入力された変化量が動作可能か否かを判定する。動作不能のときはステップS 4 4 に移行し「加圧、減圧変化量の再入力」を表示してステップS 4 2 に移行して再入力を行う。また、動作可能であればステップS 4 5 に移行して「加圧、減圧量」の表示と、主制御装置 2 3 0 のメモリへの記憶とを行う。このとき、圧力変位のシュミレーション画面を表示させても良い。

5

10

15

20

25

ステップS46では最小圧力Pminを入力する。ステップS47では圧力印加装置16が実行可能な範囲内にあるか否かを判定する。実行範囲外であればステップS48に移行し「最小圧力Pminの再入力」を表示し、ステップS46で再入力が行われる。また、実行範囲内であればステップS49に移行し「最小圧力Pmin」の表示と、主制御装置230のメモリへの記憶を行う。

ステップS50では最大圧力Pmaxe入力し、ステップS51では圧力印加装置16が実行可能な範囲内にあるか否かを判定する。実行範囲外であればステップS52に移行し「最大圧力Pmaxo再入力」を表示し、ステップS50で再入力が行われる。また、実行範囲内であればステップS53に移行し「最大圧力Pmax」の表示と、主制御装置230のメモリへの記憶を行う。

ステップS58では培養回路ユニット4の培養メディア3の循環流量 f を入力する。ステップS59では実行可能な範囲内にあるか否かが判定される。実行範囲外であればステップS60に移行し、「循環流量 f の再入力」を表示して告知し、ステップS58で再入力を行う。また、実行範囲内であればステップS61に移行し「循環流量 f 」の表示と、主制御装置 f 3 0 のメモリへの記憶を行う。

5

25

ステップS62では運転時間の入力を行う。ステップS63では「運転時間」 の表示と、主制御装置230のメモリへの記憶を行う。

$$K \times L_2 = P \times A$$

 $L_2 = (P \times A) / K$ · · · (1)

10 となる。即ち、加圧ピストン116が移動するとき、加圧用スプリング118の 弾性力が加圧ピストン116に作用し、加圧ピストン116は圧力チャンバ60 内の加圧水65を圧縮する。圧縮されることにより圧力チャンバ60内は圧力が 上昇し、圧力センサ112でその圧力が検出される。この加圧ピストン116の 変位、即ち、移動量(mm)と圧力P(kg/cm²)との関係は、例えば、第10図 のようになる。第10図において、 L_1 はモータ122による移動量、 L_2 は加 15 圧用スプリング118の収縮量、L₃は加圧用スプリング118を用いない場合 の加圧ピストン116の移動量、L, は混入している空気の収縮による加圧ピス トン116の移動量、L。は水の収縮による加圧ピストン116の移動量、L。 は培養チャンバ20及び圧力チャンバ60の容器の変形による加圧ピストン11 20 6の移動量を示している。L。はL,、L。、L。の総和であり、L,はL。、 L:の総和を表している。この圧力印加装置16による加圧ピストン116の移 動量と、圧力センサ112の圧力値の関係を主制御装置230のメモリに格納す る。

空気の収縮による加圧ピストン116の移動量を説明すると、空気の容積(1気圧時)をV(cm³)、空気の容積(加圧時)をVa(cm³)とし、1×V=(Pa+1)×Va=一定とすると、空気の容積Vaは、Va=V/(Pa+1)となり、空気の収縮による加圧ピストン116の移動量L、(mm)は、

$$L_{\bullet} = 1 \ 0 \times \{ (V - Va) / A \}$$

= $[\{V - V / (Pa + 1) \} / A] \times 1 \ 0$. . . (2)

2 9

となる。

5

20

25

また、水及び培養メディア3の圧縮による加圧ピストン116の移動量は以下のようになる。即ち、水及び培養メディア3の体積をW(cm³)、水の圧縮率(40°C)を0.44×10 $^{-5}$ (cm²/kg)とすると、水及び培養メディア3の圧縮量 Δ W(cm³)は、 Δ W=0.44×10 $^{-5}$ ×P×Wとなり、水及び培養メディア3の圧縮による加圧ピストン116の移動量 L_5 (mm)は、

$$L_{5} = \Delta W / A \times 1 \ 0$$

$$= 1 \ 0 \times \{ (0. \ 4 \ 4 \times 1 \ 0^{-5} \times P \times W) / A \}$$

$$\cdot \cdot \cdot (3)$$

10 となる。ここで、圧力容器 2 2 及び培養容器 6 1 の変形によるみかけの収縮率を Ct とすると、収縮量 ΔWt は、 ΔWt = $W \times Ct$ であるから、容器の変形による加圧ピストン 1 1 6 の移動量 L 。は、

$$L_6 = (\Delta Wt /A) \times 10 = 10 \times \{ (W \times Ct) /A \}$$

$$\cdot \cdot \cdot (4)$$

15 となる。したがって、加圧ピストン1 1 6 の総移動量は式(1)、(2)、(3)及び(4)を加算した値L」となる。

また、圧力緩衝装置18側では、緩衝スプリング154に加える圧力を減らしていくと、培養チャンバ20内の圧力が、圧力逃し弁26にかかる圧力に打ち勝ち、圧力逃し弁26が開き、培養メディア3が圧力逃し弁26を通過し、培養チャンバ20側の圧力が低下する。緩衝スプリング154の加圧力と培養メディア3側の圧力が釣り合ったところで落ち着く。圧力緩衝装置18の圧力逃し弁26に加えられる力を説明すると、圧力逃し弁26による閉塞面積をB(cm²)、圧力をP(kg/cm²)、圧力Pと釣り合う力をF(kgf)とすると、F=P×Bとなり、緩衝スプリング154のがネ定数をK(kgf/mm)、緩衝スプリング154の縮み量をm(mm)とすると、釣り合う力FはF=K×mとなり、緩衝スプリング154の縮み量mはm=P×B/Kによって表される。第11図は、圧力逃し弁26側に加える圧力、即ち、アクチュエータ156側の移動量(緩衝スプリング154の縮み量)と圧力逃し弁26に作用する圧力、即ち、調整圧力との関係を示す。第11図において、 m_1 は単一の緩衝スプリング154を用いた場合、

3 0

5

10

15

 m_2 は緩衝スプリング 1 5 4 に異なる 2 つのスプリングを用いた場合を示している。

送液装置12の容積が小さいため、培養メディア3の収縮や容器の変形、気体の収縮等はほとんど無視することができる。そのため、送液ピストン132の送液量V(ml)は送液ピストン132の断面積C(cm²)、移動量1(cm)とすると、V=C×1であるので、移動量1は1=V/Cとなり、送液量に応じて移動量が決定する。送液装置12の送液ピストン132の移動量が多い場合は、送液ピストン132の移動後すぐに元の位置に戻すが、培養メディア3の移動量が少ない場合は戻さず、次の送液動作のときはその位置からさらに送液ピストン132を移動させ、移動不可能な位置まで移動したら元の位置に戻す。このとき、設定の降下圧力の許容値より高くなった場合は運転前に記憶した圧力逃し弁26のアクチュエータ156の移動量と圧力の関係のデータをこの値を元に補正する必要がある。

次に、第12図は、第6図のステップS3で実行される圧力可変培養モードの 実行形態を表している。即ち、第12図は、培養チャンバ20に印加される圧力 状態と加圧タイミングを表すタイミングチャートであって、(a)は培養チャン バ20の圧力推移、(b)は圧力緩衝装置18の動作タイミング、(c)は圧力 印加装置16の加圧タイミング、(d)は培養メディア供給装置6の送液タイミ ングを示している。

20 培養チャンバ20は周期Tで最大圧力Pmaxと最小圧力Pminの間で加圧、 減圧が繰り返される。t」は最大圧力Pmaxを保持する時間であり、t2は最 小圧力Pminを保持する時間である。また、t。は加圧、減圧時の動作時間で ある。これら最大圧力Pmax、最小圧力Pmin、時間t1、t2、t3は生 体内の外部培養させる部位に応じて任意に変更することができる。また、培養す べき細胞5における生体の年齢、性別、身長、体重、生体内の部位等のデータに よって適切な数値を選択して加圧、減圧を行うこともできる。

圧力緩衝装置18は加圧を開始する前に時間t。で最大速力にて最大圧力Pmaxを得られる位置まで動作させてチューブ50Cを閉塞する。その後、t,の遅延時間を経て圧力印加装置16の動作を開始し、時間t。に相当する速度で最

3 1

小圧力 Pminから最大圧力 Pmaxまで加圧を行う。

5

10

15

20

25

最大圧力 P m a x の時間 t 1 で保持した後、圧力印加装置 1 6 が再び動作し、時間 t 3 に相当する速度で最大圧力 P m a x から最小圧力 P m i n まで減圧を開始する。圧力印加装置 1 6 が動作してから時間 t 6 だけ遅延して圧力緩衝装置 1 8 が時間 t 7 だけ動作して、チューブ 5 0 C の閉塞力を解除する。

また、圧力制御を開始したとき、圧力0付近から最大圧力Pmaxまで増加させる。このとき、圧力緩衝装置18は最大速度で閉塞位置まで移動し、時間t。 経過後に圧力印加装置16を動作させ、時間t。に相当する速度で最大圧力Pmaxに到達するまでの時間t。の間加圧を行う。

最小圧力Pminに保持されてから時間 t 11の経過後に培養メディア供給装置 6 が時間 t 12だけ動作して培養メディア 3 を培養チャンバ 2 0 に送出する。時間 t 12を変更することにより送液量を任意に設定することができる。送液後、時間 t 13だけ経過後に時間 t 12とほぼ等しい時間 t 14の間、送液ピストン 1 3 2 を後退させる。なお、この例では最小圧力 Pminの保持時間 t 2 で送液を行ったが、最大圧力 Pmaxの保持時間 t 1 又は加圧、減圧時間 t 2 で送液を行ったが、最大圧力 Pmaxの保持時間 t 1 又は加圧、減圧時間 t 2 で送液を行っても良い。次に、第 1 3 図は、第 6 図のステップ S 3 で実行される圧力可変培養モードの他の実行形態を表している。即ち、第 1 3 図は、培養チャンバ 2 0 に印加される圧力状態と加圧タイミングを表すタイミングチャートであって、(a) は培養チャンバ 2 0 の圧力推移、(b) は圧力緩衝装置 1 8 の動作タイミング、(c) は圧力印加装置 1 6 の加圧タイミング、(d) は培養メディア供給装置 6 の送液タイミング、即ち、培養チャンバ 2 0 に印加する圧力パターンの変形例を示す。

次に、第14図ないし第21図は、本発明の細胞又は組織の培養装置の第2の 実施形態を示し、第14図は培養装置の正面側配置、第15図は培養装置の側面

3 2

側配置、第16図は培養装置の要部、第17図は培養回路ユニット4、第18図は培養回路ユニット4を除いた培養装置の要部、第19図は圧力印加装置16、第20図は培養メディア供給装置6、第21図は圧力緩衝装置18を示している。第1の実施形態と同一部分には同一符号を付してある。

この培養装置は単一のハウジング260を以て構成され、ハウジング260は 培養室262、機械室264及び制御・電源室266に区画されている。培養室 262の内部には培養庫42が収容されており、培養庫42内の構成は第1の実 施形態と同様であるが、異なる点は、培養メディア供給装置6、圧力印加装置1 6及び圧力緩衝装置18等が単一の処理部268で構成されている。

5

10

15

20

25

培養室262及び機械室264には独立して開閉されるドア270、272が設けられ、機械室264には培養メディア供給装置6、圧力印加装置16及び圧力緩衝装置18の機構部分とともに加圧水槽68等が収容されており、各アクチュエータ120、138、156は、第15図に示すように、共通の取付板269で機械室264の背面側に支持されている。機械室264の壁面には、給水口274、排水口276が設けられている。制御・電源室266には制御装置40及び電源装置が収容されており、その前面パネル側に表示装置232とともに電源スイッチ278が設置されている。

次に、第16図に示すように、培養室262には培養庫42が収容されており、 培養庫42には培養回路ユニット4及び処理部268が収容されている。処理部 268には、第17図及び第18図に示すように、培養回路ユニット4側の処理 ユニット280が着脱可能に構成されている。

次に、第19図は、培養チャンバ20を構成する培養容器61、圧力容器22を含む圧力印加装置16を示している。この場合、圧力印加装置16のアクチュエータ120は、ハウジング282にボールスクリュ284を取り付け、このボールスクリュ284の後端部にモータ122をカップリングジョイント286で結合したものである。ボールスクリュ284には回転によって前後動する移動ベッド288が設けられ、この移動ベッド288とボールスクリュ284の前端部側に設けられた支持フランジ290との間に重合させた2つの加圧用スプリング118A、118Bが設置されている。即ち、加圧用スプリング118A、11

3 3

5

10

15

20

25

8 Bは、ボールスクリュ 2 8 4 の回転に応じて移動する移動ベッド 2 8 8 により 圧縮状態が変化し、各加圧用スプリング 1 1 8 A、 1 1 8 Bの弾性特性が加圧ピ ストン 1 1 6 側に作用する。ボールスクリュ 2 8 4 に代えてベルトやカム等でア クチュエータ 1 2 0 を構成しても良い。

次に、第20図は、培養メディア供給装置6を示している。アクチュエータ1 38は、ハウジング291にボールスクリュ292を取り付け、このボールスク リュ292の後端部にモータ140をカップリングジョイント294で結合した ものである。ボールスクリュ292には回転によって前後動する移動ベッド29 6が設けられ、この移動ベッド296に取り付けられたピストン押板298の前 面部には送液ピストン132の後端部が接触している。即ち、モータ140によ るボールスクリュ292の回転に応じて移動する移動ベッド296が前進するこ とにより、加圧用スプリング136が圧縮されると、送液ピストン132が前進 し、移動ベッド296が後進することにより、加圧用スプリング136の圧縮が 解かれ、加圧用スプリング136の復帰力によって送液ピストン132が後退す る。送液ピストン132の進退によって培養メディア3を送り出すことができる。 次に、第21図は、圧力緩衝装置18を示している。アクチュエータ156は、 ハウジング300にボールスクリュ302を取り付け、このボールスクリュ30 2の後端部にモータ158をカップリングジョイント304で結合したものであ る。ボールスクリュ302には回転によって前後動する移動ベッド306が設け られ、この移動ベッド306には重合させた緩衝スプリング154A、154B を介してプランジャ押板308が取り付けられ、このプランジャ押板308の前 面部には圧力逃し弁26のプランジャ152の後端部が接触している。即ち、モ ータ158によるボールスクリュ302の回転に応じて移動する移動ベッド30 6が前進することにより、緩衝スプリング154A、154Bとともにプランジ ャ押板308を前進させ、緩衝スプリング154A、154Bの圧縮状態が変化 する。即ち、弁体150が圧縮状態にある緩衝スプリング154A、154Bを 介して押し付けられ、圧力逃し弁26が閉塞状態に保持される。この保持状態は、 ボールスクリュ302の回転と、それに伴う緩衝スプリング154A、154B の圧縮状態によって変化する。

3 4

次に、第22図は、培養メディア供給装置6の変形例を示している。第2図、第3図及び第14図に示す培養メディア供給装置6では、送液ピストン132に加圧用スプリング136を設置したが、加圧用スプリング136を除き、アクチュエータ138のボールスクリュ292で移動する移動ベッド296に連結シャフト310を取り付け、この連結シャフト310の先端に送液ピストン132の後端部を固定ピン312等の固定手段を以て連結するようにしても良い。このように構成しても、ボールスクリュ292の正逆転によって送液ピストン132を進退させることができる。

5

10

15

20

25

次に、第23図は、本発明の細胞又は組織の培養装置の第3の実施形態を示し ている。この実施形態では、圧力印加装置16の圧力容器22で形成される圧力 チャンバ60の内部に図示しないコンプレッサから矢印Prで示すように、加圧 空気を圧力調整器314、昇圧バルブ316及びニードルバルブ318を備えた 管路67を通して作用させ、圧力チャンバ60内の加圧空気をニードルバルブ3 20及び降圧バルブ322を備えた回収管路102を通して排出させ、チューブ 50 D側に弁11 (第1図) 又はピンチバルブ162 (第2図) に代えて、アク チュエータ321の回転によって開閉されるバルブ323を設けても良い。バル ブ323を間欠的に閉塞させる動作と、加圧空気を作用させて受圧膜64を加圧 する動作とを併用することにより、細胞5に加圧刺激を加えることができる。こ の場合、加圧刺激に変化を付与するには、昇圧バルブ316及び降圧バルブ32 2の開閉制御によって行うことができる。このような空気を用いた場合には、低 圧では単位移動量あたりの圧力変化量を小さく、また、高圧では単位移動量あた りの圧力変化量を大きくできるとともに、細胞又は組織に圧力を印加する際、モ ータやアクチュエータ等から発生する不要な振動の吸収が可能となり、細胞又は 組織に対する加圧刺激の精度を高めることができる。

次に、第24図及び第25図は、本発明の細胞又は組織の培養装置の第4の実施形態を示している。培養すべき細胞5はコラーゲン等から成形された足場7に移植されており、足場7毎に培養チャンバ20に格納される。培養チャンバ20には培養メディア3が培養メディア槽49から培養回路ユニット4を通して供給される。培養回路ユニット4は、閉回路を構成しており、この培養回路ユニット

3 5

5

10

15

20

25

4には、送液装置12としてのポンプ324、圧力センサ326及び圧力緩衝装置18が設けられている。圧力センサ326の検出圧力は圧力制御器328に加えられ、その検出圧力に応じた制御出力が圧力制御器328からポンプ324に加えられている。即ち、培養メディア3の圧力Pが一定に制御されている。

また、圧力緩衝装置18は、培養回路ユニット4の一部に挿入された圧力逃し 弁26の弁体150のプランジャ152に緩衝スプリング154を介在してアク チュエータ156を取り付け、このアクチュエータ156にモータ158を連結 したものである。モータ158の回転、即ち、正転、逆転、停止及び回転速度が 制御装置40によって制御される。即ち、モータ158の回転がボールスクリュ 302に伝達され、ボールスクリュ302の回転によって移動ベッド306がそ の回転方向に応じて前後に移動する。この移動は、緩衝スプリング154を介し て弁体150のプランジャ152に伝達されるので、弁体150の閉止力が移動 ベッド306の位置及び緩衝スプリング154の圧縮力によって設定される。ポ ンプ324による培養メディア3の圧力が弁体150の閉止力に打ち勝つとき、 弁体150が開かれ、圧力逃し弁26を培養メディア3が通過する。

そして、培養メディア槽49には、酸素又は二酸化炭素等のガスを取り入れる空気管路330が設けられ、空気管路330には雑菌、異物等の侵入を防止するフィルタ332が設けられている。即ち、空気管路330から取り入れられた酸素又は二酸化炭素は培養メディア3とともに培養チャンバ20の細胞5に伝達される。

このような構成によれば、ポンプ324を駆動することにより、培養メディア3が培養回路ユニット4に供給されて培養チャンバ20に通流し、細胞5に必要な養分と酸素又は二酸化炭素等のガスを供給する。圧力緩衝装置18を駆動することにより培養回路ユニット4が閉塞され、ポンプ324から培養メディア3に加えられる圧力によって培養チャンバ20内の圧力が上昇する。圧力緩衝装置18の緩衝力、即ち、弁体150の閉止力の調整によって、ポンプ324から加えられた圧力と平衡する任意の圧力値を得ることができる。

第25図はこの加圧動作を示している。圧力緩衝装置18を周期的に動作させることにより、最大圧力Pmaxと最小圧力Pminを交互に細胞5に付与する

3 6

ことができる。即ち、細胞5には最大圧力Pmaxが時間t」、最小圧力Pminが時間t2、また、昇圧時間t3及び降圧時間t3が設定され、生体と同様に培養メディア3の圧力循環が得られ、生体と同等の成長環境が実現される。そして、圧力緩衝装置18の動作速度を制御することにより、時間t1、t2、t3を任意に調整でき、培養する細胞5の特性や生体部位に応じた最適状態を実現することができる。

以上説明したように、本発明によれば、次の効果が得られる。

5

10

15

25

a 生体内環境を模倣した環境下で汚染されることなく効率良く培養することができ、体内組織に近い、しかも、体内組織と融合し易い細胞又は組織を培養することができる。

b 生体の細胞又は組織を特定の培養位置に保持し、生体を模倣した環境下に 設定して培養メディアを連続的又は断続的に供給し、連続、間欠又は周期的に変 化する圧力を加えることにより、修復すべき生体の部位に対応した理想的かつ実 用的な組織、即ち、体内組織に近く、体内組織と融合し易い組織の培養を実現す ることができる。

- c 培養すべき細胞又は組織を培養メディア中に浮遊又は非浮遊の状態で保持し、極めて安定した状態で効率的な培養を行うことができる。
- d 細胞又は組織を培養メディア中に浮遊状態でハイドロジェル、又は足場に よって保持するので、細胞又は組織の培養を促進することができる。
- 20 e 培養メディアを培養すべき細胞又は組織に応じた、例えば、各種アミノ酸、 糖類、塩類又はタンパク質の1つ又はこれらから選択された2以上の物質又は全 てを含んで構成したものを用いるので、効率的な培養や品質の良い細胞又は組織 を培養することができる。
 - f 培養環境を生体の部位の生理的条件、又はこの生理的条件に加えて年齢、 身長、体重、性別、その他の生体毎の固有情報に応じて設定するので、体内組織 と融合し易い細胞又は組織を培養することができる。
 - g 窒素、酸素又は二酸化炭素等のガスの供給及び制御、温度又は湿度の設定 及び制御により生体環境を設定するので、生体に近い環境制御を実現でき、体内 組織に近い、しかも、体内組織と融合し易い細胞又は組織の培養に寄与すること

3 7

ができる。

5

10

15

20

25

h 修復すべき生体の部位に対応して圧力を加えることにより、理想的かつ実 用的な細胞又は組織を形成することができる。

i 圧力のパターンを連続、間欠又は周期的に変化する形態とし、それを選択し、又は組み合わせることにより、理想的な物理的刺激を実現することができ、細胞の代謝機能や分裂サイクル、生物刺激の濃度勾配や分散に影響を与え、培養の促進を図ることができる。

j 培養ユニットは、培養すべき細胞又は組織を培養チャンバに収容して外気と遮断された細胞又は組織に必要な培養メディアを供給するので、外気と遮断された細胞又は組織は、菌体等の汚染から防護され、その結果、品質の良い組織を培養することができる。また、細胞又は組織は、培養メディアによる静水圧と流れによる物理的刺激に加え、加圧手段によって所望の圧力が付与されるので、細胞の代謝機能、分裂サイクル、生物刺激の濃度勾配や分散に影響を受け、細胞又は組織の培養を促進することができる。また、細胞又は組織への培養メディアの供給形態は培養メディア供給手段によって任意に設定され、間欠的又は連続的に供給することができるので、バリエーションのある物理的刺激によって培養の促進を図ることができる。

k 加圧手段又は培養メディア供給手段は、任意に制御することができ、コンピュータ等の制御手段を用いることにより、フィードバック制御やフィードフォワード制御等の各種のプログラム制御を行うことにより、生体環境を模倣するとともに、所望の環境を設定でき、効率の良い培養を行うことができる。

1 圧力の加え方、即ち、圧力パターンは培養すべき細胞又は組織に対応して 設定することにより、より効率的な培養を行うことができる。

m 圧力パターンはあらゆる形態に設定でき、その選択及び組合せを以て効率 的に細胞又は組織の培養を行うことができる。

n 培養した細胞又は組織を収容する培養チャンパを備える培養ユニットは、 培養装置本体と独立して分離、着脱可能であるので、外気と分離された培養ユニットとともに細胞又は組織を移動させることができ、移動中に菌体等による汚染から細胞又は組織を防護でき、生体の修復等の信頼性を高めることができる。

3 8

- o 培養空間である密閉空間が外気と遮断されることにより、所望のガスの供給による培養環境の設定が可能になるとともに、外気による汚染から細胞又は組織を防護することができる。
- p 密閉空間に収容される培養ユニットに窒素、酸素又は二酸化炭素等のガスを供給するとともに、培養ユニットに気体吸収手段を備えることにより、ガスを細胞又は組織に付与することができ、ガスの供給及び制御によって生体環境を模倣することができる。

5

10

15

- q 密閉空間によって形成される培養空間に窒素、酸素又は二酸化炭素等のガスを充塡させることにより、生体環境を模倣し、所望の培養空間を形成することができる。
- r 培養ユニットに必要な培養メディアを供給又は循環させるための培養メディア槽を備え、しかも、外気と遮断された密閉空間内に培養メディア槽を設置するので、培養メディアの汚染防止を図ることができる。
- s 受圧膜の設置により、培養チャンバに収容されている細胞又は組織に対し、 外気と遮断した状態で加圧刺激を与えることができるとともに、生体環境を模倣 した刺激等、所望の加圧刺激を実現できる。
- t 培養ユニットの一部を加圧した場合、その圧力調整を圧力緩衝手段で行えば、生体環境に近い物理的刺激を実現することができ、細胞又は組織の培養の促進を図ることができる。
- 20 u 圧力の形成手段として、水圧、油圧又は空気圧の何れを用いても所望の加 圧刺激を実現でき、生体環境を精度良く模倣することができる。
 - v 培養メディア供給手段を送液チャンバに取り込んだ培養メディアを加圧して送り出す送液装置で構成すれば、培養ユニットに効率良く培養メディアを供給 又は循環させることができ、この加圧量を制御することで所望の送液量を設定で きる。
 - w 培養メディアに加えられる圧力を緩衝するので、理想的な加圧刺激を細胞 又は組織に付与することができ、例えば、圧力逃し弁を用いて、培養メディアの 圧力を圧力逃し弁の制御により、圧力逃し弁を開いて培養メディアの圧力を降下 させれば、培養メディアを汚染させることなく、理想的な圧力状態に制御するこ

3 9

とができる。

x 培養ユニットが収容される密閉空間の温度及び湿度を制御し、生体環境に 合致する培養空間を形成することができる。

y 生体は外界からの音響的刺激を受けており、音波発生装置を併用することにより、生体環境を音響的に模倣することができ、しかも、培養チャンバに培養すべき細胞又は組織を注入する際に、超音波を併用して効率的かつ、信頼性の高い注入を行うこともできる。

z 密閉空間に供給されるガス濃度を制御手段によって制御することにより、 生体環境を模倣することができ、細胞又は組織の培養促進に寄与することができ る。

なお、本発明の実施形態としての構成、作用及び効果について述べたが、本発明は、上記の実施形態や実施例に限定されるものではなく、本発明の目的、実施の形態によって推測される各種の構成、変形例等、当業者が予測ないし推測できる全ての構成を包含するものである。

15

20

10

5

産業上の利用可能性

以上のように、本発明の細胞又は組織の培養方法及びその装置は、細胞組織工学や遺伝子治療等の応用であるティッシュ・エンジニアリングに用いられる細胞・組織培養技術として有用であって、特に、細胞や組織の体外培養に用いるのに適しているとともに、培養された細胞や組織は人体の欠損組織の修復等に用いるのに適している。

4 0

請求の範囲

1. 生体の細胞又は組織を特定の培養位置に保持し、生体を模倣した環境下に前記細胞又は前記組織を設定するとともに前記細胞又は前記組織に培養メディアを供給し、前記培養位置で前記細胞又は前記組織を培養することを特徴とする細胞又は組織の培養方法。

5

10

- 2. 生体の細胞又は組織を特定の培養位置に保持し、生体を模倣した環境下に 前記細胞又は前記組織を設定するとともに前記細胞又は前記組織に培養回路を通 して培養メディアを連続的又は断続的に供給するとともに、前記細胞又は前記組 織に連続、間欠又は周期的に変化する圧力を加え、前記培養位置で前記細胞又は 前記組織を培養することを特徴とする細胞又は組織の培養方法。
- 3. 前記培養位置に培養すべき前記細胞又は前記組織を前記培養メディア中に 浮遊状態又は非浮遊状態で保持させる保持手段を備えることを特徴とする請求項 1又は2記載の細胞又は組織の培養方法。
- 15 4. 前記保持手段に前記細胞又は前記組織を前記培養メディア中に浮遊状態で保持させるハイドロジェル、又は、前記細胞又は前記組織を保持するとともにその成長により前記細胞又は前記組織に吸収される足場を用いたことを特徴とする請求項1又は2記載の細胞又は組織の培養方法。
- 5. 前記培養メディアは、各種アミノ酸、糖類、塩類又はタンパク質の1又は 2以上を含んで構成したことを特徴とする請求項1又は2記載の細胞又は組織の 培養方法。
 - 6. 前記細胞又は前記組織を培養する前記環境は、前記生体の部位の生理的条件、又はこの生理的条件に加えて年齢、身長、体重、性別、その他の前記生体毎の固有情報に応じて設定されることを特徴とする請求項1又は2記載の細胞又は組織の培養方法。
 - 7. 前記環境は、前記培養メディアを通して供給される窒素、酸素又は二酸化 炭素等のガス、温度又は湿度によって設定されることを特徴とする請求項1又は 2記載の細胞又は組織の培養方法。
 - 8. 前記細胞又は前記組織に加える前記圧力は、前記細胞又は前記組織の前記

4 1

部位に応じて任意に設定することを特徴とする請求項2記載の細胞又は組織の培養方法。

- 9. 前記細胞又は前記組織に加える前記圧力は、連続、間欠又は周期的に変化する圧力又はこれらの組合せからなる圧力であることを特徴とする請求項2記載の細胞又は組織の培養方法。
- 10. 細胞又は組織を収容する培養チャンバを備えて培養メディアを供給する 培養ユニットと、

前記培養チャンバ内の前記細胞又は前記組織に圧力を付与する加圧手段と、 前記培養ユニットに前記培養メディアを間欠的又は連続的に供給させる培養メ ディア供給手段と、

を備えたことを特徴とする細胞又は組織の培養装置。

5

10

- 11. 前記加圧手段又は前記培養メディア供給手段を制御する制御手段を備えたことを特徴とする請求項10記載の細胞又は組織の培養装置。
- 12. 前記加圧手段から前記細胞又は前記組織に加えられる前記圧力は、前記細胞又は前記組織に応じて任意に設定することを特徴とする請求項10記載の細胞又は組織の培養装置。
 - 13. 前記加圧手段から前記細胞又は前記組織に加えられる前記圧力は、断続状態、一定時間毎の連続した繰り返し、一定時間毎に増減させることを特徴とする請求項10記載の細胞又は組織の培養装置。
- 20 14. 前記培養ユニットを培養装置本体から独立して分離可能であることを特徴とする請求項10記載の細胞又は組織の培養装置。
 - 15. 外気と遮断された密閉空間に前記培養ユニットを収容してなることを特 徴とする請求項10記載の細胞又は組織の培養装置。
- 16. 窒素、酸素又は二酸化炭素等のガスを吸収可能な気体吸収手段を備えた 25 ことを特徴とする請求項10記載の細胞又は組織の培養装置。
 - 17. 前記密閉空間に窒素、酸素又は二酸化炭素等のガスを充塡させてなることを特徴とする請求項10記載の細胞又は組織の培養装置。
 - 18. 前記培養ユニットに供給すべき前記培養メディアを溜める培養メディア 槽を備えることを特徴とする請求項10記載の細胞又は組織の培養装置。

4 2

- 19. 前記培養チャンバに外部から圧力を受ける受圧膜を備えたことを特徴とする請求項10記載の細胞又は組織の培養装置。
- 20. 前記培養ユニットに圧力緩衝手段を備えたことを特徴とする請求項10記載の細胞又は組織の培養装置。
- 5 21. 前記培養チャンバに前記受圧膜を介して圧力チャンバを取り付け、この 圧力チャンバに水圧、油圧又は空気圧を作用させて前記培養チャンバ内の前記細 胞又は前記組織に圧力を加えるようにしたことを特徴とする請求項10記載の細 胞又は組織の培養装置。
- 22. 前記培養メディア供給手段は、前記培養ユニットに送液チャンバを設け、 10 この送液チャンバに取り込んだ前記培養メディアを加圧して送り出す送液装置で 構成したことを特徴とする請求項10記載の細胞又は組織の培養装置。
 - 23. 前記培養ユニットに圧力逃し弁を設置し、前記培養メディアの圧力が前記圧力逃し弁に任意に設定される一定圧力を越えるとき、前記圧力逃し弁を開いて前記培養メディアの圧力を降下させることを特徴とする請求項10記載の細胞又は組織の培養装置。
 - 24. 前記密閉空間は、加熱手段又は加湿手段が設置され、所望の温度又は湿度に維持、制御されることを特徴とする請求項10記載の細胞又は組織の培養装置。
- 25. 前記培養ユニットの前記培養チャンバに超音波等の音波を付与する音波 20 発生装置を備えたことを特徴とする請求項10記載の細胞又は組織の培養装置。
 - 26. 前記密閉空間に供給されるガス濃度を制御する制御手段を備えたことを特徴とする請求項10記載の細胞又は組織の培養装置。

1/27

第 | 図

3/27

第 3 図

4/27

第 4 図

6/27

第 6 図

7/27

第 7 図

8/27

第 8 図

9/27

第 9 図

10/27

第 10 図

L₁: モータ122 による移動量

L₂: 加圧用スプリング118 の収縮量

L3: 加圧用スプリング118 を用いない場合の加圧ピストン116

の移動量

L1: 混入している空気の収縮による加圧ピストン116 の移動量

Ls: 水の収縮による加圧ピストン116 の移動量

し。: 培養チャンバ20及び圧力チャンバ60の容器の変形による加

圧ピストン116 の移動量

11/27

第 | 図

m1:単一の緩衝スプリング154を用いた場合

m2:緩衝スプリング154に異なる2つのスプリングを用いた場合

14/27

第 14 図

15/27

第 15 図

17/27

第 17 図

第 24 図

26/27

第 26 図

27/27

第 27 図

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/01516

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl7 C12N5/08, C12N5/00, C12M3/00, C12M1/36, C12M1/04						
According to International Patent Classification (IPC) or to both national classification and IPC						
	B. FIELDS SEARCHED					
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ Cl2N5/08, Cl2N5/00, Cl2M3/00, Cl2M1/36, Cl2M1/04						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) JICST FILE (JOIS)						
C. DOCUI	C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap		Relevant to claim No.			
X Y	JP, 2000-41660, A (development Ce 15 February, 2000 (15.02.00)		1,2 3-26			
Х	JP, 7-184634, A (Ajinomoto Co.,	Inc.),	1,2			
Y	25 July, 1995 (25.07.95) & EP, 661380, A & BR, 9405 & CN, 1110316, A & HU, 7284	292, A 3, T	3-26			
Y	Syuichi M. et al. "Effects of physical stimulation on chondrogenesis in vitro", Materials Science and Engineering(1998), Vol.C6, pp.301-306		1-26			
Y	Tetsuya TATEISHI, et al., "Joint research for development", Kagaku Gijutsu Shinkou Chouseihi ni yoru Nikokukangata Kyoudou Kenkyuu Seikashuu, Heisei 9 nendo" Kagaku Gijutsucho Kagaku Gijutsu Shinkoukyoku (1998), pp.430-435					
	r documents are listed in the continuation of Box C.	See patent family annex.				
 Special categories of cited documents: "A" document defining the general state of the art which is not 		"T" later document published after the in priority date and not in conflict with				
	red to be of particular relevance document but published on or after the international filing	understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be				
date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other		considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be				
special reason (as specified) considered to invol			tep when the document is			
means "P" docume	ent published prior to the international filing date but later e priority date claimed	combined with one or more other su combination being obvious to a pers document member of the same pater	on skilled in the art			
	actual completion of the international search lay, 2001 (15.05.01)	Date of mailing of the international search report 22 May, 2001 (22.05.01)				
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer				
Facsimile No.		Telephone No.				

国際出願番号 PCT/JP01/01516

発明の属する分野の分類(国際特許分類(IPC)) Int.Cl' C12N5/08, C12N5/00, C12M3/00, C12M1/36, C12M1/04 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int.Cl' C12N5/08, C12N5/00, C12M3/00, C12M1/36, C12M1/04 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) JICSTファイル (JOIS) 関連すると認められる文献 関連する 引用文献の 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 カテゴリー* TP. 2000-41660. A (デベロプメント センター フォー バイオテク ノロジー) 15.2月.2000(15.02.00) ファミリーなし JP, 7-184634, A(味の素株式会社) 25.7月.1995(25.07.95) & EP. 661380, A & BR. 9405292, A & CN, 1110316, A & HU, 72843, T 1 - 26Syuichi M. et al. "Effects of physical stimulation on Y chondrogenesis in vitro", Materials Science and Engineering (1998), Vol. C6, p. 301-306

× C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「O」ロ頭による開示、使用、展示等に含及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 15.05.01 国際調査報告の発送日 22.05.01 国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 単便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3488

国際調査報告

国際出願番号 PCT/JP01/01516

C (続き).	関連すると認められる文献	関連する
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
Y	立石 哲也 et al. "Joint research for development", 科学技 術振興調整費による二国間型国際共同研究成果集 平成9年度" 科学技術庁 科学技術振興局(1998), 第430-435頁	1-26

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.