QUESTION 1 0.75 points Save Answer If u and v are vectors in \mathbb{R}^n , such that ||u|| = 3, ||u+v|| = 5 and u and v are orthogonal, then ||v|| is 04 $0\sqrt{5}$ 00 02 0.75 points Save Answer **QUESTION 2** The Vectors (2, 1, 2) and (-1, 0, u) are orthogonal if $\bigcirc u = 2$ $\bigcirc u = 1$ $\bigcirc u = 0$ $\bigcirc u = -1$ QUESTION 3 0.75 points Save Answer If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, then adj $A = \begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix}$, then adj $A = \begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix}$ $\bigcirc \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ O 1 0 0 0 1 0 0 1 0 1 0 1 $\bigcirc \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ 0.75 points Save Answer **QUESTION 4** For $u, v \in \mathbb{R}^n$, with $||u||^2 = 5$, $||v||^2 = 1$ and $u \cdot v = -2$, the expression $(u + 2v) \cdot (4u - v)$ equals O 20 O 18 **QUESTION 5** 0.75 points Save Answer If $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 6$, then $\begin{vmatrix} 2c & 2d \\ a & b \end{vmatrix}$ equals O 12 O -24 O -12 08 1 points Save Answer **QUESTION 6** What is x if det(A-2I)=10 and the matrix A is x 0 0 2 0 0 _14-3] \bigcirc x = -3 $\bigcirc x = 2$ \bigcirc x = 3 $\bigcirc x = -2$

QUESTION 7

0.75 points Save Answer

0.75 points Save Answer

QUESTION 7

If
$$A = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, then $det^{(A^T)}$ equals

- \bigcirc 2
- 04
- $O(\frac{1}{2})$

QUESTION 8

0.75 points Save Answer

If $A = \begin{bmatrix} 2 & 0 & 3 \\ 1 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, then the cofactor C_{12} equals

- \bigcirc 0
- O -2
- 02
- 01

QUESTION 9

0.75 points Save Answer

If A is a 3x3 matrix such that $A = -A^{T}$, then

- \bigcirc det(A) = 0
- O A is symmetric
- \bigcirc det(A) \neq 0
- $\bigcirc det(A) = -\frac{1}{2}$

QUESTION 10

0.75 points Save Answer

If u = (-3, 4, x) has norm ||u|| = 6, then x equals

- $\bigcirc \pm \sqrt{2}$
- 01
- ±√11
- O 6

QUESTION 11

0.75 points Save Answer

Let $V = \mathbb{R}^2$ be the vector space on which addition is defined by $u + v = (u_1 + v_1 + 1, u_2 + v_2 - 1)$, for all $u = (u_1, u_2)$, $v = (v_1, v_2) \in \mathbb{R}^2$, $k \in \mathbb{R}$. The zero vector $\mathbf{0}_{\mathbf{V}}$ is

- 0(0,0)
- (1, -1)
- O (-1,1)
- (-1,-1)

QUESTION 12

0.75 points Save Answer

For the linear system ${2x-6y=a\over x+7y=b}$, the value of x is given by (using Cramer's rule)

- - $det \begin{bmatrix} a & b \\ 1 & 7 \end{bmatrix}$

0.75 points Save Answer

0.75 points Save Answer

0.75 points Save Answer

0.75 points Save Answer

Remaining Time: 1 hour, 59 minutes, 55 seconds.

¥ Question Completion Status:

QUESTION 12

For the linear system $\frac{2x-6y=a}{x+7y=b}$, the value of x is given by (using Cramer's rule)

$$\bigcirc \frac{\det \begin{bmatrix} 2 & -6 \\ 1 & 7 \end{bmatrix}}{\det \begin{bmatrix} a & -6 \\ b & 7 \end{bmatrix}}$$

$$\bigcirc \frac{\det \begin{bmatrix} 2 & -6 \\ 1 & 7 \end{bmatrix}}{\det \begin{bmatrix} a & b \\ 1 & 7 \end{bmatrix}}$$

$$O\frac{\det\begin{bmatrix} a & -6 \\ b & 7 \end{bmatrix}}{\det\begin{bmatrix} 2 & -6 \\ 1 & 7 \end{bmatrix}}$$

$$\bigcirc \frac{\det \begin{bmatrix} a & b \\ 1 & 7 \end{bmatrix}}{\det \begin{bmatrix} 2 & -6 \\ 1 & 7 \end{bmatrix}}$$

QUESTION 13

If $A = \begin{bmatrix} 3 & 4 \\ 2 & 5 \end{bmatrix}$, then the product between A and adj(A) equals

 \bigcirc I_2

O 712

07

QUESTION 14

If u = (1, -2, 1) and v = (2, 1, 1), then the values of a and b such that au + bv = (-6, -8, -2) are

$$\bigcirc$$
 $a = 2, b = -4$

$$\bigcirc a = -4, b = 2$$

$$\bigcirc a = b = 2$$

$$\bigcirc a = b = 4$$

QUESTION 15

The angle between u = (4, 1, 2) and v = (1, 0, -2) is

$$\bigcirc \frac{\pi}{3}$$

$$O(\frac{\pi}{2})$$

$$\bigcirc \frac{\pi}{4}$$

0

QUESTION 16

There exist vectors $u, v \in \mathbb{R}^n$, such that ||u+v|| = ||u|| + ||v||.

○ True

○ False

QUESTION 17

If A and B are 3x3 matrices, with det(A) = -1 and $det(3A^2BA^{-1}) = -54$, then

 \bigcirc det(B) = -18

O det(B) = 18

Click Save and Submit to save and submit. Click Save All Answers to save all answers.

0.75 points Save Answer

0.75 points Save Answer

Save All Answers

 ${\it Click Save \ and \ Submit \ to \ save \ and \ submit. \ Click \ Save \ All \ Answers \ to \ save \ all \ answers.}$

Save All Answers Save and Submit

uestion Completion Status:	
O √13	
0 13	
○ ^(2,3)	
○ ⁵	
QUESTION 22	0.75 points Sav
If $u = (1, 2, 1)$, then the values of the number k , such that $ ku = \sqrt{24}$ are	
$\bigcirc k = \pm \sqrt{6}$	
\bigcirc $k = \pm 6$	
○ k = ± 2	
$\bigcirc k = \pm \sqrt{2}$	
QUESTION 23	0.75 points Sav
	5.75 points 360
If A is a square matrix having all entries on its main diagonal equal to 0, then det (A) = 0. \bigcirc True	
○ False	
QUESTION 24	0.75 points Sav
[1 2 -1]	
If $A = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 2 & 5 \\ 1 & 4 & -2 \end{bmatrix}$, then the determinant of A equals	
Q 4	
○ ⁻⁴ ○ ⁻¹²	
00	
QUESTION 25	1 points Sav
21 × 3.6.5 (***) - 5.6.5 (***) - 5.6.5 (***)	
If $A = \begin{bmatrix} -1 & 2 & 6 \\ d & 0 & 3 \\ 1 & 0 & 2 \end{bmatrix}$	
$\bigcirc \det(A) = -4d + 6$	
det(A) = -4d + 6 $det(A) = 4d - 3$ $det(A) = -4d + 3$	0.75 points Sav
det(A) = -4d + 6 $ det(A) = 4d - 3 $ $ det(A) = -4d + 3 $ $ QUESTION 26$	0.75 points Sav
$det(A) = -4d + 6$ $det(A) = 4d - 3$ $det(A) = -4d + 3$ QUESTION 26 If A and B are square matrices of the same size, then $det(A^2B^5)$ equals	0.75 points Sav
$det(A) = -4d + 6$ $det(A) = 4d - 3$ $det(A) = -4d + 3$ QUESTION 26 If A and B are square matrices of the same size, then det (A^2B^5) equals $(2det(A))((5 det(B)))$	0.75 points sav
$det(A) = -4d + 6$ $det(A) = 4d - 3$ $det(A) = -4d + 3$ QUESTION 26 If A and B are square matrices of the same size, then det (A^2B^5) equals $(2det(A)((5 det(B)))$ $2det(A) + 5det(B)$	0.75 points Sav
$det(A) = -4d + 6$ $det(A) = 4d - 3$ $det(A) = -4d + 3$ QUESTION 26 If A and B are square matrices of the same size, then det (A^2B^5) equals $(2det (A))((5 det (B)))$ $2det (A) + 5det (B)$ $(det (A))^2(det (B))^5$	0.75 points sav
$ det(A) = 4d - 6 $ $ det(A) = -4d + 6 $ $ det(A) = 4d - 3 $ $ det(A) = -4d + 3 $ $ QUESTION 26 $ If A and B are square matrices of the same size, then det (A ² B ⁵) equals $ (2det (A)((5 det (B))) $ $ (2det (A) + 5det (B) $ $ (det (A))^2(det (B))^5 $ $ (det (A)det (B))^{10} $	0.75 points Sav