Computer Networks - Assignment 9

Jannis Kühl, Henri Heyden stu241399, stu240825

Task 1

a)

We marked the predecessors for the shortest paths in the following image:

Because the table states that the shortest path from u to w is a direct connection, we can set a to 3, because a is the wheight of the connection between u to w.

Since we also know that the shortest path to v has its predecessor as w, and we know the shortest path to w, which is $u \to w$ with wheight 9, we know b must be bigger or equal to 9.

b)

1: Distance vectors before x is added

Destination	dv(u)	dv(v)	dv(w)
u	0	2	6
V	2	0	4
W	6	4	0

2: Initial distance vector of x

Destination	dv(x)
u	$+\infty$
V	2
W	1
X	0

3: Distance vector of x after receiving distance vectors of v and w

Destination	dv(x)
u	4
V	2
W	1
X	0

4: Distance vectors of v, w after receiving the new distance vector of x

Destination	dv(v)	dv(w)
u	2	5
v	0	3
W	3	0
X	2	1

(v \rightarrow x and w \rightarrow x changed from $+\infty$ to their values now, so they have to be marked)