Unit 2

Booth's Algorithm

- The booth algorithm is a multiplication algorithm that allows us to multiply the two signed binary integers in 2's complement, respectively.
- It is also used to speed up the performance of the multiplication process.
- It is very efficient too.
- It works on the string bits 0's in the multiplier that requires no additional bit only shift the right-most string bits and a string of 1's in a multiplier bit weight 2^k to weight 2^m that can be considered as 2^{k+1} 2^m.

- 1. Multiplier and multiplicand are placed in the Q and M register respectively.
- 2. Result for this will be stored in the AC and Q registers.
- 3. Initially, AC and Q_{-1} register will be 0.
- 4. Multiplication of a number is done in a cycle.
- 5. A 1-bit register Q_{-1} is placed right of the least significant bit Q_0 of the register Q.
- 6. In each of the cycle, Q₀ and Q₋₁ bits will be checked.
 - 1. If Q_0 and Q_{-1} are 11 or 00 then the bits of AC, Q and Q_{-1} are shifted to the right by 1 bit.
 - 2. If the value is shown 01 then multiplicand is added to AC. After addition, AC, Q_0 , Q_{-1} register are shifted to the right by 1 bit.
 - 3. If the value is shown 10 then multiplicand is subtracted from AC. After subtraction AC, Q_0 , Q_{-1} register is shifted to the right by 1 bit.

START $A \leftarrow 0, Q_{-1} \leftarrow 0$ $M \leftarrow Multiplicand$ $Q \leftarrow Multiplier$ Count $\leftarrow n$ = 10= 01 Q_0, Q_{-1} = 11 = 00 $A \leftarrow A - M$ $A \leftarrow A + M$ Arithmetic shift Right: A, Q, Q₋₁ $Count \leftarrow Count - 1$ Count = 0? END

Figure 10.13 Example of Booth's Algorithm (7×3)

M	Q_{-1}	Q	A
0111 Initia	0	0011	0000
0111 A ←A	0	0011	1001
0111 Shift	1	1001	1100
0111 Shift	1	0100	1110
0111 A ← A 0111 Shift	1	0100 1010	0101 0010
0111 Shift	0	0101	0001

Restoring Division Algorithm

- Restoring Division Algorithm is used to divide two unsigned integers.
- This algorithm is called restoring because it restores the value of Accumulator(A) after each or some iterations.

- Step-1: First the registers are initialized with corresponding values (Q = Dividend, M = Divisor, A = 0, n = number of bits in dividend)
- **Step-2:** Then the content of register A and Q is shifted left as if they are a single unit
- Step-3: Then content of register M is subtracted from A and result is stored in A
- Step-4: Then the most significant bit of the A is checked if it is 0 the least significant bit of Q is set to 1 otherwise if it is 1 the least significant bit of Q is set to 0 and value of register A is restored i.e the value of A before the subtraction with M
- Step-5: The value of counter n is decremented
- **Step-6:** If the value of n becomes zero we get of the loop otherwise we repeat from step 2
- **Step-7:** Finally, the register Q contain the quotient and A contain remainder

Restoring Division Algorithm For Unsigned Integer

11(Dividend)/3(Divisor)=3(Quotient) & 2 (Reminder)

-M=11101

N	M=(Divisor)	A=initialize to o	Q=Divide nd	Operation
4	00011	00000	1011	Initialize
		00001	011?	Shift left
		11110	011?	A=A-M
				A=A+2's Complement of M
3		00001	0110	A[n]=1 Q[o]=0 & Restore A
		00010	110?	Shift left
		11111	110?	A=A-M
				A=A+2's Complement of M
2		00010	1100	A[n]=1 Q[o]=0 & Restore A
		00101	100?	Shift Left
		00010	100?	A=A-M
				A=A+2's Complement of M
1		00010	1001	A[n]=1 Q[o]=1 No Restoration
		00101	001?	Shift left
		00010	001?	A=A-M
				A=A+2's Complement of M
		00010	0011	A[n]=1 Q[o]=1 No Restoration

Floating Point Representation

- It has three parts
- 1. Mantissa
- 2.Base
- 3. Exponent

Scientific Notation:

$$\pm M \times B^E$$

Numer	Mantissa	Base	Exponent
9 x 10 ⁸	9	10	8
4364.784	4364784	10	-3

 IEEE 754 numbers are divided into two based on the above three components: single precision and double precision.

Single Precision
IEEE 754 Floating-Point Standard

Double Precision IEEE 754 Floating-Point Standard

TYPES	SIGN	BIASED EXPONENT	NORMALISED MANTISA	BIAS
Single precision	1(31st bit)	8(30-23)	23(22-0)	127
Double precision	1(63rd bit)	11(62-52)	52(51-0)	1023

Representation Format

Step 1: Convert Decimal number into binary number.

Step 2 : Normalize the number

Step 3 : Single Precision format

$$[1.N]2^{E-127}$$

Step 4 : Double Precision format

$$[1.N]2^{E-1023}$$

Eg.float num =10.75

• Step1. Covert Decimal number to binary number $10 \rightarrow (1010)_2$ $0.75 - > (11)_2$ (10.75) = 1010.11• Step2: Normalize the number 1. Significat bit * 2^{exponent} 1.01011×2^3 Here 01011 is significant bit 3 is a Exponent Step3. Calculate Exponent For Single precision E-127=3E = 130

Convert 130 in binary form (10000010)

Single Precision IEEE 754 Floating-Point Standard

For Double precision
E-1023=3
E=1026
Convert 1026 In binary form
(1000000010)

Double Precision
IEEE 754 Floating-Point Standard

Example

- 1. 1259.125
- 2. 85.125
- 3. 17.125