=Q

下载APP

17 | 数据关联:不同的关联形式与实现机制该怎么选?

2021-10-18 吴磊

《零基础入门Spark》

课程介绍 >

讲述:吴磊

时长 19:59 大小 18.31M

你好,我是吴磊。

在上一讲,我们学习了 Spark SQL 支持的诸多算子。其中数据关联(Join)是数据分析场景中最常见、最重要的操作。毫不夸张地说,几乎在所有的数据应用中,你都能看到数据关联的"身影"。因此,今天这一讲,咱们继续详细说一说 Spark SQL 对于 Join 的支持。

而从**实现机制**的角度, Join 又可以分为 NLJ (Nested Loop Join)、SMJ (Sort Merge Join)和 HJ (Hash Join)。也就是说,同样是内关联,我们既可以采用 NLJ 来实现,也可以采用 SMJ 或是 HJ 来实现。区别在于,在不同的计算场景下,这些不同的实现机制在执行效率上有着天壤之别。因此,了解并熟悉这些机制,对咱们开发者来说至关重要。

今天,我们就分别从这两个角度,来说一说Spark SQL 当中数据关联的来龙去脉。

数据准备

为了让你更好地掌握新知识,我会通过一个个例子,为你说明 Spark SQL 数据关联的具体用法。在去介绍数据关联之前,咱们先把示例中会用到的数据准备好。

```
import spark.implicits._
import org.apache.spark.sql.DataFrame

// 创建员工信息表
val seq = Seq((1, "Mike", 28, "Male"), (2, "Lily", 30, "Female"), (3, "Raymond val employees: DataFrame = seq.toDF("id", "name", "age", "gender")

// 创建薪资表
val seq2 = Seq((1, 26000), (2, 30000), (4, 25000), (3, 20000))
val salaries:DataFrame = seq2.toDF("id", "salary")
```

如上表所示,我们创建了两个 DataFrame,一个用于存储员工基本信息,我们称之为员工表;另一个存储员工薪水,我们称之为薪资表。

数据准备好之后,我们有必要先弄清楚一些数据关联的基本概念。所谓数据关联,它指的是这样一个计算过程:给定关联条件(Join Conditions)将两张数据表以不同关联形式拼接在一起的过程。关联条件包含两层含义,一层是两张表中各自关联字段(Join Key)的选择,另一层是关联字段之间的逻辑关系。

在 上一讲我们说到, Spark SQL 同时支持 DataFrame 算子与 SQL 查询, 因此咱们不妨结合刚刚准备好的数据,分别以这两者为例,来说明数据关联中的基本概念。

数据关联的基本概念

首先,约定俗成地,我们把主动参与 Join 的数据表,如上图中的 salaries 表,称作"左表";而把被动参与关联的数据表,如 employees 表,称作是"右表"。

然后,我们来关注图中蓝色的部分。可以看到,两张表都选择 id 列作为关联字段,而两者的逻辑关系是"相等"。这样的一个等式,就构成了我们刚刚说的关联条件。接下来,我们再来看图中绿色的部分,inner 指代的就是内关联的关联形式。

关联形式,是我们今天要学习的重点内容之一。接下来,我们还是一如既往地绕过 SQL 查询这种开发方式,以 DataFrame 算子这种开发模式为例,说一说 Spark SQL 都支持哪些关联形式,以及不同关联形式的效果是怎样的。

关联形式 (Join Types)

在关联形式这方面, Spark SQL 的支持比较全面, 为了让你一上来就建立一个整体的认知, 我把 Spark SQL 支持的 Joint Types 都整理到了如下的表格中, 你不妨先粗略地过一遍。

关联形式	Join Type关键字
内关联	inner
左外关联	left / leftouter / left_outer
右外关联	right / rightouter / right_outer
全外关联	outer / full / fullouter / full_outer
左半关联	leftsemi / left_semi
左逆关联	leftanti / left_anti

Spark SQL支持的关联形式

结合已经准备好的数据,我们分别来说一说每一种关联形式的用法,以及它们各自的作用与效果。我们先从最简单、最基础、也是最常见的内关联说起。

内关联 (Inner Join)

对于登记在册的员工,如果我们想获得他们每个人的薪资情况,就可以使用内关联来实现,如下所示。

```
16 // 左表
17 salaries.show
19 /** 结果打印
20 +---+
21 | id|salary|
22 +---+
23 | 1 | 26000 |
24 | 2 | 30000 |
25 | 4 | 25000 |
26 | 3 | 20000 |
27 +---+
28 */
29
30 // 右表
31 employees.show
33 /** 结果打印
34 +---+
35 | id| name|age|gender|
36 +---+
37 | 1| Mike| 28| Male|
38 | 2| Lily| 30|Female|
39 | 3|Raymond| 26| Male|
40 | 5| Dave| 36| Male|
41 +---+
42 */
```

可以看到,基于 join 算子的一般用法,我们只要在第3个参数中指定"inner"这种关联形式,就可以使用内关联的方式,来达成两表之间的数据拼接。不过,如果仔细观察上面打印的关联结果集,以及原始的薪资表与员工表,你会发现,左表和右表的原始数据,并没有都出现在结果集当中。

例如,在原始的薪资表中,有一条 id 为 4 的薪资记录;而在员工表中,有一条 id 为 5、 name 为 "Dave" 的数据记录。这两条数据记录,都没有出现在内关联的结果集中,而这正是"内关联"这种关联形式的作用所在。

内关联的效果,是仅仅保留左右表中满足关联条件的那些数据记录。以上表为例,关联条件是 salaries("id")=== employees("id"),而在员工表与薪资表中,只有 1、2、3 这三个值同时存在于他们各自的 id 字段中。相应地,结果集中就只有 id 分别等于 1、2、3 的这三条数据记录。

理解了内关联的含义与效果之后,你再去学习其他的关联形式,比如说外关联,就会变得轻松许多。

外关联(Outer Join)

外关联还可以细分为 3 种形式,分别是左外关联、右外关联、以及全外关联。这里的左、右,对应的实际上就是左表、右表。

由简入难,我们先来说左外关联。要把 salaries 与 employees 做左外关联,我们只需要把 "inner" 关键字,替换为 "left" 、 "leftouter" 或是 "left_outer" 即可,如下所示。

不难发现,左外关联的结果集,实际上就是内关联结果集,再加上左表 salaries 中那些不满足关联条件的剩余数据,也即 id 为 4 的数据记录。值得注意的是,由于右表 employees 中并不存在 id 为 4 的记录,因此结果集中 employees 对应的所有字段值均为空值 null。

没有对比就没有鉴别,为了更好地理解前面学的内关联、左外关联,我们再来看看右外关联的执行结果。为了计算右外关联,在下面的代码中,我们把"left"关键字,替换为"right"、"rightouter"或是"right outer"。

```
旦复制代码

1 val jointDF: DataFrame = salaries.join(employees, salaries("id") === employees

2

3 jointDF.show
```

仔细观察,你会发现,与左外关联相反,右外关联的结果集,恰恰是内关联的结果集,再加上右表 employees 中的剩余数据,也即 id 为 5、name 为 "Dave"的数据记录。同样的,由于左表 salaries 并不存在 id 等于 5 的数据记录,因此,结果集中 salaries 相应的字段置空,以 null 值进行填充。

理解了左外关联与右外关联,全外关联的功用就显而易见了。全外关联的结果集,就是内关联的结果,再加上那些不满足关联条件的左右表剩余数据。要进行全外关联的计算,关键字可以取"full"、"outer"、"fullouter"、或是"full outer",如下表所示。

到这里,内、外关联的作用我们就讲完了。聪明的你可能早已发现,这里的"内",它指的是,在关联结果中,仅包含满足关联条件的那些数据记录;而"外",它的含义是,在

关联计算的结果集中,还包含不满足关联条件的数据记录。而外关联中的"左"、"右"、"全",恰恰是在表明,那些不满足关联条件的记录,来自于哪里。

弄清楚"内"、"外"、"左"、"右"这些说法的含义,能够有效地帮我们避免迷失在种类繁多、却又彼此相关的关联形式中。其实除了内关联和外关联,Spark SQL 还支持左半关联和左逆关联,这两个关联又是用来做什么的呢?

左半 / 逆关联 (Left Semi Join / Left Anti Join)

尽管名字听上去拗口,但它们的含义却很简单。我们先来说左半关联,它的关键字有"leftsemi"和"left_semi"。左半关联的结果集,实际上是内关联结果集的子集,它仅保留左表中满足关联条件的那些数据记录,如下表所示。

```
■ 复制代码
 1 // 内关联
2 val jointDF: DataFrame = salaries.join(employees, salaries("id") === employees
4 jointDF.show
5
6 /** 结果打印
7 +---+---+
8 | id|salary| id| name|age|gender|
9 +---+
10 | 1 | 26000 | 1 | Mike | 28 | Male |
11 | 2 | 30000 | 2 | Lily | 30 | Female |
12 | 3 | 20000 | 3 | Raymond | 26 | Male |
13 +---+----
14 */
15
16 // 左半关联
17 val jointDF: DataFrame = salaries.join(employees, salaries("id") === employees
18
19 jointDF.show
20
21 /** 结果打印
22 +---+
23 | id|salary|
24 +---+
25 | 1 | 26000 |
26 | 2 | 30000 |
27 | 3 | 20000 |
28 +---+
29 */
```

为了方便你进行对比,我分别打印出了内关联与左半关联的计算结果。这里你需要把握左半关联的两大特点:首先,左半关联是内关联的一个子集;其次,它只保留左表 salaries 中的数据。这两个特点叠加在一起,很好地诠释了"左、半"这两个字。

有了左半关联的基础,左逆关联会更好理解一些。左逆关联同样只保留左表的数据,它的 关键字有"leftanti"和"left_anti"。但与左半关联不同的是,它保留的,是那些不满足 关联条件的数据记录,如下所示。

通过与上面左半关联的结果集做对比,我们一眼就能看出左逆关联和它的区别所在。显然,id 为 4 的薪资记录是不满足关联条件 salaries("id")=== employees("id")的,而左逆关联留下的,恰恰是这些"不达标"的数据记录。

好啦,关于 Spark SQL 支持的关联形式,到这里我们就全部说完了。根据这些不同关联形式的特点与作用,再结合实际场景中的业务逻辑,相信你可以在日常的开发中做到灵活取舍。

关联机制 (Join Mechanisms)

不过,从功能的角度出发,使用不同的关联形式来实现业务逻辑,可以说是程序员的一项必备技能。要在众多的开发者中脱颖而出,咱们还要熟悉、了解不同的关联机制。哪怕同样是内关联,不同的 Join 实现机制在执行效率方面差异巨大。因此,掌握不同关联机制的原理与特性,有利于我们逐渐培养出以性能为导向的开发习惯。

在本讲的开头,我们提到 Join 有 3 种实现机制,分别是 NLJ(Nested Loop Join)、SMJ(Sort Merge Join)和 HJ(Hash Join)。接下来,我们以内关联为例,结合 salaries 和 employees 这两张表,来说说它们各自的实现原理与特性。

NLJ: Nested Loop Join

对于参与关联的两张表,如 salaries 和 employees,按照它们在代码中出现的顺序,我们约定俗成地把 salaries 称作"左表",而把 employees 称作"右表"。在探讨关联机制的时候,我们又常常把左表称作是"驱动表",而把右表称为"基表"。

一般来说,驱动表的体量往往较大,在实现关联的过程中,驱动表是主动扫描数据的那一方。而基表相对来说体量较小,它是被动参与数据扫描的那一方。

在 NLJ 的实现机制下,算法会使用外、内两个嵌套的 for 循环,来依次扫描驱动表与基表中的数据记录。在扫描的同时,还会判定关联条件是否成立,如内关联例子中的 salaries("id")=== employees("id")。如果关联条件成立,就把两张表的记录拼接在一起,然后对外进行输出。

₩ 极客时间

Nested Loop Join实现原理

在实现的过程中,外层的 for 循环负责遍历驱动表的每一条数据,如图中的步骤 1 所示。 对于驱动表中的每一条数据记录,内层的 for 循环会逐条扫描基表的所有记录,依次判断记录的 id 字段值是否满足关联条件,如步骤 2 所示。

不难发现,假设驱动表有 M 行数据,而基表有 N 行数据,那么 NLJ 算法的计算复杂度是 O(M*N)。尽管 NLJ 的实现方式简单、直观、易懂,但它的执行效率显然很差。

SMJ: Sort Merge Join

鉴于 NLJ 低效的计算效率, SMJ 应运而生。Sort Merge Join, 顾名思义, SMJ 的实现思路是先排序、再归并。给定参与关联的两张表, SMJ 先把他们各自排序, 然后再使用独立的游标, 对排好序的两张表做归并关联。

Sort Merge Join实现原理

具体计算过程是这样的:起初,驱动表与基表的游标都会先锚定在各自的第一条记录上,然后通过对比游标所在记录的 id 字段值,来决定下一步的走向。对比结果以及后续操作主要分为3种情况:

满足关联条件,两边的 id 值相等,那么此时把两边的数据记录拼接并输出,然后把驱动表的游标滑动到下一条记录;

不满足关联条件,驱动表 id 值小于基表的 id 值,此时把驱动表的游标滑动到下一条记录;

不满足关联条件,驱动表 id 值大于基表的 id 值,此时把基表的游标滑动到下一条记录。

基于这 3 种情况, SMJ 不停地向下滑动游标, 直到某张表的游标滑到尽头, 即宣告关联结束。对于驱动表的每一条记录, 由于基表已按 id 字段排序, 且扫描的起始位置为游标所在位置, 因此, SMJ 算法的计算复杂度为 O(M + N)。

然而,计算复杂度的降低,仰仗的其实是两张表已经事先排好了序。但是我们知道,排序本身就是一项很耗时的操作,更何况,为了完成归并关联,参与 Join 的两张表都需要排序。

因此, SMJ 的计算过程我们可以用"先苦后甜"来形容。苦, 指的是要先花费时间给两张表做排序, 而甜, 指的则是有序表的归并关联能够享受到线性的计算复杂度。

HJ: Hash Join

考虑到 SMJ 对于排序的苛刻要求,后来又有人推出了 HJ 算法。HJ 的设计初衷是以空间换时间,力图将基表扫描的计算复杂度降低至 O(1)。

₩ 极客时间

Hash Join实现原理

具体来说,HJ的计算分为两个阶段,分别是 Build 阶段和 Probe 阶段。在 Build 阶段,在基表之上,算法使用既定的哈希函数构建哈希表,如上图的步骤 1 所示。哈希表中的 Key 是 id 字段应用(Apply)哈希函数之后的哈希值,而哈希表的 Value 同时包含了原始的 Join Key (id 字段)和 Payload。

在 Probe 阶段,算法依次遍历驱动表的每一条数据记录。首先使用同样的哈希函数,以动态的方式计算 Join Key 的哈希值。然后,算法再用哈希值去查询刚刚在 Build 阶段创建好的哈希表。如果查询失败,则说明该条记录与基表中的数据不存在关联关系;相反,如果查询成功,则继续对比两边的 Join Key。如果 Join Key 一致,就把两边的记录进行拼接并输出,从而完成数据关联。

好啦,到此为止,对于 Join 的 3 种实现机制,我们暂时说到这里。对于它们各自的实现原理,想必你已经有了充分的把握。至于这 3 种机制都适合哪些计算场景,以及 Spark SQL 如何利用这些机制在分布式环境下做数据关联,我们留到下一讲再去展开。

重点回顾

今天这一讲,我们重点介绍了数据关联中的关联形式(Join Types)与实现机制(Join Mechanisms)。掌握了不同的关联形式,我们才能游刃有余地满足不断变化的业务需求。而熟悉并理解不同实现机制的工作原理,则有利于培养我们以性能为导向的开发习惯。

Spark SQL 支持的关联形式多种多样,为了方便你查找,我把它们的含义与效果统一整理到了如下的表格中。在日后的开发工作中,当你需要区分并确认不同的关联形式时,只要回顾这张表格,就能迅速得到结论。

关联形式	Join Type关键字	含义与效果
内关联	inner	结果集中只包含满足关联条件的数据记录
左外关联	left / leftouter / left_outer	内关联结果集,外加左表中不满足关联条件的剩余数据
右外关联	right / rightouter / right_outer	内关联结果集,外加右表中不满足关联条件的剩余数据
全外关联	outer / full / fullouter / full_outer	内关联结果集,外加左、右表中不满足关联条件的剩余数据
左半关联	leftsemi / left_semi	内关联结果集,但只保留左表部分的数据记录
左逆关联	leftanti / left_anti	左表中不满足关联条件的数据记录

极客时间

Spark SQL支持的关联形式

在此之后,我们又介绍了 Join 的 3 种实现机制,它们分别是 Nested Loop Join、Sort Merge Join 和 Hash Join。这 3 种实现机制的工作原理,我也整理成了表格,方便你随时 查看。

Join实现机制	工作原理
Nested Loop Join	在驱动表与基表之上,使用嵌套的双层for循环来实现关联,效率最低,算法复杂度为O(M * N)
Sort Merge Join	首先将两表排序,然后以独立游标滑动的方式实现关联,算法复杂度为O(M + N)
Hash Join	关联过程分为两个阶段,即Build与Probe。在Build阶段,使用哈希算法在基表建立哈希表。在Probe阶段,遍历驱动表每一条数据,动态计算哈希值,通过查找Build阶段的哈希表来实现关联计算。由于哈希表查询效率为O(1),因此Hash Join的复杂度为O(M)

₩ 极客时间

不同Join实现机制的工作原理

每课一练

对于 Join 的 3 种实现机制,也即 Nested Loop Join、Sort Merge Join 和 Hash Join,结合其实现原理,你能猜一猜,它们可能的适用场景都有哪些吗?或者换句话说,在什么样的情况下,更适合使用哪种实现机制来进行数据关联?

欢迎你在留言区跟我交流互动,也推荐你把这一讲分享给身边的同事、朋友。

分享给需要的人, Ta订阅后你可得 20 元现金奖励

🕑 生成海报并分享

△ 赞 0 **△** 提建议

⑥ 版权归极客邦科技所有,未经许可不得传播售卖。页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。

上一篇 16 | 数据转换:如何在DataFrame之上做数据处理?

精选留言

由作者筛选后的优质留言将会公开显示,欢迎踊跃留言。