Nearest centroids, K-NN

Victor Kitov

v.v.kitov@yandex.ru

Table of Contents

- Nearest centroids
- 2 K nearest neighbours
- Special properties
- 4 Weighted account for objects

Nearest centroids algorithm

- Consider training sample $(x_1, y_1), ..., (x_N, y_N)$ with
 - N₁ representatives of 1st class
 - N₂ representatives of 2nd class
 - etc.
- Training:

Calculate centroids for each class c = 1, 2, ... C:

$$\mu_c = \frac{1}{N_1} \sum_{n=1}^{N} x_n \mathbb{I}[y_n = c]$$

- Classification:
 - For object xfind most close centroid:

$$c = \arg\min_{i} \rho(x, \mu_i)$$

2 Associate x the class of the most close centroid:

$$\widehat{y}(x) = c$$

Illustration

Decision boundaries for 3-class nearest centroids

Questions

- What are discriminant functions $g_c(x)$ for nearest centroid?
- What is the complexity for:
 - training?
 - prediction?
- What would be the shape of class separating boundary?
- Can we use similar ideas for regression? Consider clustering.
- Is this method prone to the curse of dimensionality?

Table of Contents

- Nearest centroids
- K nearest neighbours
- Special properties
- 4 Weighted account for objects

K-nearest neighbours algorithm

Classification:

- Find k closest objects to the predicted object x in the training set.
- Associate x the most frequent class among its k neighbours.

K-nearest neighbours algorithm

Classification:

- Find k closest objects to the predicted object x in the training set.
- Associate x the most frequent class among its k neighbours.

?

Regression:

- Find k closest objects to the predicted object x in the training set.
- Associate x average output of its k neighbours.

Comments

- K nearest neighbours algorithm is abbreviated as K-NN.
- k = 1: nearest neighbour algorithm¹
- Base assumption of the method²:
 - similar objects yield similar outputs

¹what will happen for K = N?

²what is simpler - to train K-NN model or to apply it?

Sample dataset

Example: K-NN regression

Nearest centroids, K-NN - Victor Kitov K nearest neighbours

Dealing with similar rank

When several classes get the same rank, we can assign to class:

Dealing with similar rank

When several classes get the same rank, we can assign to class:

- with higher prior probability
- having closest representative
- having closest mean of representatives (among nearest neighbours)
- which is more compact, having nearest most distant representative

Nearest centroids, K-NN - Victor Kitov K nearest neighbours

nearest neignbours

Parameters of the method

- Parameters:
 - the number of nearest neighbours K
 - distance metric $\rho(x, x')$
- Modifications:
 - forecast rejection option³
 - variable K⁴

³Propose a rule, under what conditions to apply rejection in a) classification b) regression

⁴Propose a method of K-NN with adaptive variable K in different parts of the feature space

Properties

• Advantages:

- only similarity between objects is needed, not exact feature values.
 - so it may be applied to objects with arbitrary complex feature description
- simple to implement
- interpretable (case based reasoning)
- does not need training
 - may be applied in online scenarios
 - Cross-validation may be replaced with LOO.

Disadvantages:

- slow classification with complexity O(N)
- accuracy deteriorates with the increase of feature space dimensionality

Table of Contents

- Nearest centroids
- 2 K nearest neighbours
- Special properties
- 4 Weighted account for objects

Nearest centroids, K-NN - Victor Kitov Special properties

Normalization of features

• Feature scaling affects predictions of K-NN?

Normalization of features

- Feature scaling affects predictions of K-NN?
 - yes, so normalize them
- Equal scaling equal impact of features
- Non-equal scaling non-equal impact of features
- Typical normalizations:

Name	Transformation	Properties of resulting feature
Autoscaling	$x_j' = \frac{x_j - \mu_j}{\sigma_j}$	zero mean and unit variance.
Range scaling	$x_j' = \frac{x_j - L_j}{U_j - L_j}$	belongs to $\left[0,1\right]$ interval.

where μ_j , σ_j , L_j , U_j are mean value, standard deviation, minimum and maximum value of the j-th feature.

 for non-negative features range scaling does not affect feature sparsity: 0->0.

The curse of dimensionality

- The curse of dimensionality: with growing *D* data distribution becomes sparse and insufficient.
- Example: histogram estimation⁵

 $^{^{5}}$ At what rate should training size grow with increase of D to compensate curse of dimensionality?

Curse of dimensionality

- Case of K-nearest neighbours:
 - assumption: objects are distributed uniformly in feature space
 - ball of radius R has volume $V(R) = CR^D$, where $C = \frac{\pi^{D/2}}{\Gamma(D/2+1)}$.
 - ratio of volumes of balls with radius $R \varepsilon$ and R:

$$\frac{V(R-\varepsilon)}{V(R)} = \left(\frac{R-\varepsilon}{R}\right)^D \stackrel{D\to\infty}{\longrightarrow} 0$$

- most of volume concentrates on the border of the ball, so there lie the nearest neighbours.
- nearest neighbours stop being close by distance
- Good news: in real tasks the true dimensionality of the data is often less than D and objects belong to the manifold with smaller dimensionality.

Table of Contents

- Nearest centroids
- 2 K nearest neighbours
- Special properties
- Weighted account for objects

Equal voting

• Consider for object x: x_{i_1} most close neighbour, x_{i_2} - second most close neighbour, etc.

$$\rho(x, x_{i_1}) \le \rho(x, x_{i_2}) \le \dots \le \rho(x, x_{i_N})$$

Classification:

$$g_c(x) = \sum_{k=1}^K \mathbb{I}[y_{i_k} = c], \quad c = 1, 2, ...C.$$
 $\widehat{y}(x) = \underset{c}{\text{arg max}} g_c(x)$

Regression:

$$\widehat{y}(x) = \frac{1}{K} \sum_{k=1}^{K} y_{i_k}$$

Weighted voting

• Weighted classification:

$$g_c(x) = \sum_{k=1}^K w(k, \rho(x, x_{i_k})) \mathbb{I}[y_{i_k} = c], \quad c = 1, 2, \dots C.$$

$$\widehat{y}(x) = \arg\max_{c} g_c(x)$$

Weighted voting

• Weighted classification:

$$g_c(x) = \sum_{k=1}^K w(k, \rho(x, x_{i_k})) \mathbb{I}[y_{i_k} = c], \quad c = 1, 2, \dots C.$$

$$\widehat{y}(x) = \underset{c}{\operatorname{arg max}} g_c(x)$$

Weighted regression:

$$\widehat{y}(x) = \frac{\sum_{k=1}^{K} w(k, \, \rho(x, x_{i_k})) y_{i_k}}{\sum_{k=1}^{K} w(k, \, \rho(x, x_{i_k}))}$$

Commonly chosen weights

Index dependent weights:

$$w_k = \alpha^k, \quad \alpha \in (0,1)$$

$$w_k = \frac{K+1-k}{K}$$

Distance dependent weights:

$$w_k = \begin{cases} \frac{\rho(z_K, x) - \rho(z_k, x)}{\rho(z_K, x) - \rho(z_1, x)}, & \rho(z_K, x) \neq \rho(z_1, x) \\ 1 & \rho(z_K, x) = \rho(z_1, x) \end{cases}$$
$$w_k = \frac{1}{\rho(z_k, x)}$$

Example: K-NN regression with weights

Summary

- Important parameters of K-NN:
 - K: controls model complexity
 - $\rho(x,x')$
- Output depends on feature scaling.
 - scaling to equal / non-equal scatter possible.
- Prone to curse of dimensionality.
- Fast training but long prediction.
 - some efficiency improvements are possible though
- Weighted account for objects possible.
- Nearest centroid has different properties.