Facultad de Ciencias Exactas, Ingeniería y Agrimensura Departamento de Matemática - Escuela de Ciencias Exactas y Naturales Álgebra Lineal - LCC, LM, PM - 2024

Segunda Evaluación Parcial - 06/06/2024

Apellido y nombre: Carrera:

1. Considere la matriz $A \in \mathbb{C}^{4 \times 4}$ dada por

$$A = \begin{pmatrix} -2 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 \\ -1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Se tiene que el polinomio minimal de A está dado por $m_A(x) = (x+2)^2(x-2)$ (no hace falta probar esto).

- (a) Pruebe que A no es diagonalizable.
- (b) Calcule la forma de Jordan J_A y una matriz invertible P tal que $J_A = P^{-1}AP$.
- (c) La matriz P del ítem anterior es una matriz de cambio de bases de \mathbb{C}^4 . Indicar cuáles son estas bases.
- 2. Sea la transformación lineal en \mathbb{R}^3 dada por $T:\mathbb{R}^3\to\mathbb{R}^3,\ T(x,y,z)=(2y,2x,-2z).$ Considere el producto interno usual $\langle\cdot,\cdot\rangle$.
 - (a) Calcule la transformación adjunta de T.
 - (b) Pruebe que T es un operador autoadjunto.
 - (c) Si \mathcal{C} es la base canónica de \mathbb{R}^3 y $A = [T]_{\mathcal{C}}$, calcule una matriz diagonal D y una matriz ortogonal O tal que $D = O^t AO$.
- 3. Determine si las siguientes afirmaciones son verdaderas o falsas justificando su respuesta.
 - (a) La matriz $A=\begin{pmatrix}0&0&0\\2&0&2\\0&0&0\end{pmatrix}$ es nilpotente y diagonalizable.
 - (b) Sea $T \in L(\mathbb{R}^3)$ una transformación ortogonal. Entonces $\lambda = 1$ es el único autovalor de T.
 - (c) Sean $(V, \langle \cdot, \cdot \rangle)$ un espacio vectorial de dimensión finita con producto interno, $T \in L(V)$ y T^* la transformación adjunta de T. Entonces $\text{Im}(T^*) = (\ker(T))^{\perp}$.
 - (d) Sea $T \in L(V)$ una transformación lineal ortogonal y sea $U \subset V$ un subespacio T-invariante. Entonces $T(U^{\perp}) \subset U$.