Cross-Domain Collaborative Filtering

Bin Li

Machine Learning Research Group, NICTA, NSW 2015, Australia

NICTA

Motivation

Sparsity in Recommender Systems

Matrix Factorization Overfitting

Transfer Learning

Q: Can we transfer rating knowledge from one recommendation domain to another to improve its rating prediction performance?

A: Yes, as long as two domains are "related"

- Users are related in interest
- Items are related in attributes

MOVIES (e.g. IMDB)						BOOKS (e.g. Amazon)					
	A B							A	4	В	
Ι	3	က က	1	1			T	3	3	2	2
	3	3	1	1		i î	3	3	2	2	
II	2	2	3	3		II	1	1	3	3	
	2	2	3	3			1	1	3	3	

User/Item Group-Matching

A ⇔ B Romance Movies/Books

B ⇔ A Sci-Fi Movies/Books

I ⇔ II Girls on IMDB/AmazonII ⇔ I Boys on IMDB/Amazon

Asymmetric Setting

Codebook Transfer^[1] (CBT)

- Auxiliary domain: A dense rating matrix **X**aux (e.g., movie)
- Target domain: A sparse rating matrix **X**tgt (e.g., book)

 $\min_{\mathbf{U} \in \{0,1\}^{I \times K}, \mathbf{V} \in \{0,1\}^{J \times L}} \left\| \left(\mathbf{X}_{tgt} - \mathbf{U} \mathbf{B} \mathbf{V}^{\mathsf{T}} \right) \circ \mathbf{W} \right\|_{F}^{2}$

s.t.
$$U1 = 1, V1 = 1$$

Reconstructed

a b c d e

1 | 1 | 1 | 3 | 3 | 1

2 | 3 | 3 | 2 | **2** | 3

6 3 3 2 2 3

7 2 2 3 3 2

2 2 3 3 2

1 | 3 | 3 |

1 | **3** | 3 | 1

User-cluster Indicators

Symmetric Setting

Rating-Matrix Generative Model^[2] (RMGM)

- All the domains share the same group-level rating matrix **B**
- Each domain has specific membership matrices $\mathbf{P}^{(z)}$ and $\mathbf{Q}^{(z)}$

$$\hat{\mathbf{X}}^{(z)} = \mathbf{P}^{(z)}\mathbf{B}[\mathbf{Q}^{(z)}]^{\mathrm{T}} \text{ where } \mathbf{B}_{k,l} = \sum_{r} rp(r \mid k, l)$$
User $u^{(z)}$'s membership in user group $k : \mathbf{P}_{u,k}^{(z)} = p(k \mid u^{(z)})$

$$p(k \mid u^{(z)}) \propto p(u^{(z)} \mid k) p(k)$$
Item $m^{(z)}$'s membership in item group $l : \mathbf{Q}_{m,l}^{(z)} = p(l \mid m^{(z)})$

 $p(l \mid m^{(z)}) \propto p(m^{(z)} \mid l) p(l)$

E-Step:

$$p(k,l \mid x_{u,m}^{(z)}) = \frac{p(x_{u,m}^{(z)} \mid k,l) p(u^{(z)} \mid k) p(k) p(m^{(z)} \mid l) p(l)}{\sum_{k,l} p(x_{u,m}^{(z)} \mid k,l) p(u^{(z)} \mid k) p(k) p(m^{(z)} \mid l) p(l)}$$

M-Step:

$$p(k) = \frac{\sum_{z} \sum_{l} \sum_{w_{u,m}^{(z)}=1} p(k, l \mid x_{u,m}^{(z)})}{\sum_{z} \sum_{(u,m)} w_{u,m}^{(z)}}, \quad p(l) = \frac{\sum_{z} \sum_{k} \sum_{w_{u,m}^{(z)}=1} p(k, l \mid x_{u,m}^{(z)})}{\sum_{z} \sum_{(u,m)} w_{u,m}^{(z)}}$$

$$p(u^{(z)} \mid k) = \frac{\sum_{l} \sum_{w_{u,m}^{(z)}=1 \cap v=u} p(k, l \mid x_{v,m}^{(z)})}{p(k) \sum_{z} \sum_{(u,m)} w_{u,m}^{(z)}}, \quad p(m^{(z)} \mid l) = \frac{\sum_{k} \sum_{w_{u,m}^{(z)}=1 \cap m'=m} p(k, l \mid x_{u,m'}^{(k)})}{p(l) \sum_{z} \sum_{(u,m)} w_{u,m}^{(z)}}$$

$$p(r \mid k, l) = \frac{\sum_{w_{u,m}^{(z)}=1 \cap x_{u,m}^{(k)}=r} p(k, l \mid x_{u,m}^{(k)})}{\sum_{w_{u,m}^{(z)}=1} p(k, l \mid x_{u,m}^{(k)})}$$

Temporal Setting

Rating-Matrix Generative Model^[3] (RMGM-OT)

- Group-level rating matrix
 B unchanged over time
- $\mathbf{P}^{(t)}$ and $\mathbf{Q}^{(t)}$ vary over time but *dependent* on their predecessors

- 1. For joint group (k, l), draw $\mathbf{T}_{kl} \sim Dirichlet(\beta)$
- 2. For user u, draw $\mathbf{p}_{u}^{(t)} \sim Dirichlet(\lambda \mathbf{p}_{u}^{(t-1)})$
- 3. For item m, draw $\mathbf{q}_{m}^{(t)} \sim Dirichlet(\lambda \mathbf{q}_{m}^{(t-1)})$
- 4. For rating $x_{u,m,t}$
 - a) Draw a user group $z_{u,m,t}^{U} \sim Multinomial(\mathbf{p}_{u}^{(t)})$
 - b) Draw an item group $z_{u,m,t}^{I} \sim Multinomial(\mathbf{q}_{m}^{(t)})$
 - c) Draw the rating $x_{u,m,t} \sim Multinomial(\mathbf{T}_{z_{u,m,t}^{U}, z_{u,m,t}^{I}})$

References

- [1] Li et al.: Can Movies and Books Collaborate? Cross-Domain Collaborative Filtering for Sparsity Reduction, IJCAI 2009
- [2] Li et al.: Transfer Learning for Collaborative Filtering via a Rating-Matrix Generative Model, ICML 2009
- [3] Li et al.: Cross-Domain Collaborative Filtering over Time, IJCAI 2011
- [4] Li: Cross-Domain Collaborative Filtering: A Brief Survey, ICTAI 2011