Többségi képviselő kiválasztása

Iskolád tanulói két csoportba tartoznak. Tudjuk, hogy az egyik csoportban többen vannak, mint a másikban, ezt nevezzük többségi csoportnak. Ki kell választani egy tanulót, aki a többségi csoporthoz tartozik. Ehhez egyetlen műveletet használhatunk, nevezetesen két tanulótól megkérdezhetjük, hogy ugyanabba a csoportba tartoznak-e.

Feladat

Olyan programot kell írni, amelyik a lehető legkevesebb kérdéssel meghatároz egy többségi csoporthoz tartozó tanulót. A tanulókat sorszámukkal azonosítjuk.

A megoldáshoz a query modul három művelete használható.

Könyvtári műveletek

Size A tanulók n számát adja. Ezt kell először hívni.

Member Két tanuló sorszámát kell argumentumként megadni, és a függvény 1 értéket ad, ha a két tanuló ugyanazon csoport eleme, egyébként 0-át.

Answer Ezzel a művelettel kell közölni a kiválasztott, többségi csoportba tartozó tanuló sorszámát. Végrehajtásával a program végrehajtása befejeződik.

A query modul műveletei Pascal nyelv esetén

```
• function Size:integer;
```

```
• function Member(x, y: integer): integer;
```

procedure Answer(x: integer);

A query modul műveletei C/C++ nyelv esetén

```
• int Size();
```

```
• int Member(int x, int y);
```

void Answer(int x);

Feltételek és korlátozások

- A tanulók n számára $5 \le n \le 30000$ teljesül és n páratlan szám.
- Programod nem írhat és nem olvashat egyetlen fájlt sem, beleértve a standard bemenetet és kimenetet!
- A megoldást csak akkor fogadják el, ha a tanulók bármely olyan diszjunkt A és B részhalmazára, amely kompatibilis az általad feltett kérdésekkel, a közölt megoldás a nagyobb elemszámú részhalmazban van. A válaszadó arra kényszerít, hogy szükséges számú kérdést tegyél fel.

Gyakorlás

A könyvtári modul úgy használható, hogy a standard bemenet első és egyetlen sorába a tanulók n számát kell írni, ami páratlan szám kell legyen! A program a standard kimenetre kiírja a végrehajtott kérdéseket a válasszal, továbbá a választ és annak helyes vagy hibás voltát. Hibás válasz esetén azt is kiírja, hogy miért hibás a válasz.

Példa

Ha a bemenet 7, akkor a kimenet az alábbi lesz:

Size=7

Member(1,2)=1

Member(3,4)=1

Member(2,4)=0

Member(5,6)=1

Valaszod=6, Helyes

Többségi csoport:

3..6

Kissebségi csoport:

1 2 7

A végrehajtott kérdések száma: 4 A lehetséges maximális pontszám: 3

Pontszámod: 3

Azonban az 1 válasz nem elfogadható, mert minden feltett kérdésre a többségi csoport a $\{2, 5, 6, 7\}$, a kisebbségi pedig a $\{1, 3, 4\}$ halmaz, akkor a **Member** függvény ugyanazt eredményezné, de 1 nem eleme a $\{2, 5, 6, 7\}$ többségi csoportnak.

Pontozás

Helyes válasz esetén a kapott pontszám: $\max(0,n-k)$, ha a programod k Member műveletet hajtott végre. Megoldás

Jelölje $H = \{1, \dots, n\}$ a tanulók halmazát. Azt mondjuk, hogy egy $A \subseteq H$ részhalmaz homogén részhalmaz,

ha A minden eleme ugyanabba a csoportba tartozik, azaz ha $(\forall x, y \in A)(Member(x, y) = 1)$. Azt mondjuk, hogy $U, V \subseteq H$ ellentétes részhalmazok, ha egyrészt U és V homogén, továbbá U minden eleme az egyik, V minden eleme a másik csoportba tartozik, azaz ha $(\forall x \in U)(\forall y \in V)(Member(x, y) = 0)$.

Kérdésekből származó ismeret ábrázolása

1. Észrevétel

Megmutatjuk, hogy a feltett kérdésekből származó ismeret ábrázolható diszjunk ellentétes részhalmaz-párok halmazaként. Tehát

$$I = \{(U_1, V_1), \dots, (U_k, V_k)\}$$

alakban, ahol U_i, V_i ellentétes, továbbá

$$\bigcup_{i=1}^{k} U_i \cup \bigcup_{i=1}^{k} V_i = \{1, \dots, n\}$$

Bizonyítás. Kezdetben nincs semmi ismeretünk, tehát $(\{i\},\emptyset)$ párok $(i=1,\ldots n)$ alkotják az ismeretet. Tegyük fel, hogy az eddig végrehajtott Member műveletek által szerzett ismeret megadható az

$$I = \{(U_1, V_1), \dots (U_k, V_k)\}$$

halmazzal és Member(x,y) kérdést tettük fel. x is és y is pontosan az egyik halmazba esik az U_i és V_i halmazok közül. Tehát az alábbi négy eset lehetséges:

$$x \in U_i$$
, és $y \in U_i$

$$x \in U_i$$
, és $y \in V_i$

$$x \in V_i$$
, és $y \in U_j$
 $x \in V_i$, és $y \in V_i$

Az általánosság megszorítása néélkül feltehetjük, hogy az 1. esetről van szó. Ha Member(x,y)=1 akkor vegyük az

$$U = U_i \cup U_j$$
 és $V = V_i \cup V_j$

halmazokat, ha pedig Member(x,y)=0, akkor a

$$U = U_i \cup V_i$$
 és $V = V_i \cup U_j$

halmazokat. Ekkor az új ismeretet úgy ábrázolhatjuk, hogy az I halmazból törüljük az (U_i, V_i) és (U_j, V_j) párokat és bevesszük az (U, V) párt.

2. Észrevétel

Ha $U,V\subseteq H$ homogén ellentétes részhalmazok, továbbá U és V elemszáma megegyezik (|U|=|V|), akkor H-ból törölve az U és V elemeit (H:=H-U-V), a megmaradt halmaz továbbra is tartalmaz egy többségi csoporthoz tartozó elemet.

3. Észrevétel

Ha mindig olyan x,y párra hajtjuk végre at Member(x,y) műveletet, amelyek teljesül, hogy az őket tartalmazó homogén részhalmazok elemszáma megegyezik, akkor az ismeret árázolásában minden V_i halmaz üres halmaz lesz:

$$I = \{(U_1, \emptyset), \dots, (U_k, \emptyset)\}\$$

Kezdetben $U_i = \{i\}$ és $V_i = \emptyset$. Ha Member(x,y) műveletet előtt teljesült a feltétel, akkor utána is teljesül. Valóban, ha Member(x,y)=1, akkor $U = U_i \cup U_j$ lesz, ha pedig Member(x,y)=0, akkor az 1. éstrevétel alapján töröljük I-ből (U_i, \emptyset) és (U_j, \emptyset) párt, és töröljük ki a H alaphalmazból is U_i és U_j elemeit.

Tehát ekkor minden U_i homogén halmaz elemszáma 2-hatvány, továbbá, ha bármely két U_i és U_j halmaz elemszáma megegyezik, akkor mindkettő egyelemű.

Mikor van elegendő ismeretünk a válasz megadására?

Ha az

$$I = \{(U_1, V_1), \dots, (U_k, V_k)\}$$

ismerettel rendelkezünk, és teljesül, hogy

$$|U_j| + \sum_{i=1}^k \min(|U_i|, |V_i|) - |V_j| > n/2$$

ahol U_j a legnagyobb elemszámú részhalmaz, akkor elegendő ismerettel rendelkezünk, meg tudunk adni egy többségi elemet.

Ha mindig azonos elemszámú homogén részhalmazokban lévő elemkre kérdezünk rá, akkor az

$$I = (U_1, \emptyset), \dots, (U_k, \emptyset)$$

ismeret elegendő, ha

$$|U_1| \ge \sum_{i=2}^k |U_i|$$

feltéve, hogy

$$|U_i| \ge |U_{i+1}| i = 1, \dots k-1$$

Ekkor U_1 bármelyik eleme többségi elem lesz. Ekkor, mivel a minden V_i részhalmaz üres, ezért az I ismeretben elég csak az U_i részhalmazokat megadni.

Elvi algoritmus

```
I := \emptyset
x = 0
ciklus amíg I nem biztos ismeret
  x := x+1
  y := x+1
  ha Member(x, y) = 1 akkor
    U := \{ x, y \};
    ciklus amíg van olyan U_i \in I, hogy |U| = |U_i|
       y := U_i tetsőleges eleme;
       I := I - \{ U_i \}
       ha Member(x,y) akkor
         U := U \cup U_i
       egyébként
         kilépés a ciklusból
       elágazás vége
     ciklus vége
  elágazás vége
ciklus vége
```

Belátható, hogy az algoritmus legfeljebb n-b(n) kérdéssel megtalál egy többségi elemet, ahol b(n) az n szám kettes számrendszerbeli leírásában az 1-es jegyek száma. A válaszadó tudja kényszeríteni ennyi kérdésre a kérdezőt. Így működik a mintamegoldáshoz adott **query** modul, tehát a legtöbb kérdésre kényszerít. A megvalósítás során elég minden részhalmazt egy elemmel reprezentálni. Mivel adott k-ra legfeljebb egy 2^k elemszámú részhalmaz van az I ismerethalmazban, így B[] bitvektorral megadható, és ezért egyszerűen eldonthető, hogy adott k-ra van-e 2^k elemszámú részhalmaz I-ben.

Megvalósítás C++ nyelven

```
1 #include "query.h"
 2 #define MaxN
                         30000
                                   //max. méret
 3 #define MaxK
                         20
                                   //MaxN<=2^MaxK
   int main(){
 4
      int N;
                          //a tanulók száma
 5
                          //az aktuális elemszám
 6
      int M;
 7
      int Fel;
                          //az aktuális elemszám fele
 8
     bool B[MaxK];
                          //B[k]=true, akkor és csak akkor, ha van 2<sup>k</sup> elemszámú részhalmaz
                          //Rep[k] a 2<sup>k</sup> elemszámú részhalmaz egy eleme
9
     int Rep[MaxK];
10
      int Pow2[MaxK];
                         //Pow2[k]=2^k 2-hatványok
                          //a legnagyobb elemszámú részhalmaz elemszáma 2^L
11
      int L:
      int i, k;
12
13
     Pow2[0] = 1;
14
      for (k = 1; k \le MaxK; k++){
15
        Pow2[k] = Pow2[k-1] << 1;
16
        B[k]=false;
17
     }
18
     N = Size();
19
     M = N - 1;
20
     Fel = M/2 + 1;
21
     L = 0;
22
      i = 0;
23
     while (i < N){
24
        k = 0;
25
        B[0] = true;
26
        Rep[0] = ++i;
27
        i++; //
        if (i > N) break;
28
                                       //van két 2<sup>k</sup> elemszámú részhalmaz
29
        while (B[k]){
30
          if (Member(Rep[k],i)==1){ //egyesítsük a két 2^k elemszámú részhalmazt
31
             B[k] = false;
32
             k++;
33
             if (k>L) L=k;
                                       //új legnagyobb elemszámú részhalmaz
34
             continue;
35
          }
                                       //M := M-2^(k+1)
36
          M \rightarrow Pow2[k+1];
37
          Fel -= Pow2[k];
                                       //Fel:=Fel-2^k
          B[k] = false;
                                       //töröljük a részhalmazt
38
                                       //L aktualizálása
39
          if (k==L)
40
             while (L>0 && !B[L]) L--;
41
          k = -1;
42
          break:
43
        }//while
        if (k>=0) {
44
45
          B[k] = true;
                                       //form a new subgroup having 2 k elements
                                       //i az új részhalmaz reprezentálása
46
          Rep[k] = i;
47
48
        if (L>0 && Pow2[L]>=Fel)
                                       //van elég ismeretünk
49
          break;
50
                                       //a legnagyobb részhalmaz egy eleme a megoldás
      Answer(Rep[L]);
51
52
   }//main
```