Basis Norm

Peter Büchel

HSLU W

March 19, 2021

Basis and Dimension

- Aim: Span a subspace with the *least* numbers of vectors
- Linear independence of vectors: Condition that span is as large as possible

Definition

Let U be a linear subspace of \mathbb{R}^n . The vectors $v_1, \ldots, v_k \in U$ are a *basis* of U, if

- ▶ they generate the whole subspace U, i.e., $U = \text{span}(v_1, \dots, v_k)$
- they are linearly independent

Remarks

- Let $v_1, \ldots, v_k \in U$ be a basis of U
- Then every vector $v \in U$ can be uniquely written as a linear combination

$$v = s_1 v_1 + \dots + s_k v_k \tag{1}$$

Proof

- Property a) of the definition of basis: Each vector of U can be written as a linear combination of v_1, \ldots, v_k
- What remains to be shown is the uniqueness
- So let us assume that the vector $v \in U$ has two representations:

$$v = s_1 v_1 + \cdots + s_k v_k$$
 and $v = t_1 v_1 + \cdots + t_k v_k$

Subtraction of these two equations yields

$$0 = v - v = s_1 v_1 + \dots + s_k v_k - (t_1 v_1 + \dots + t_k v_k) = (s_1 - t_1) v_1 + \dots + (s_k - t_k) v_k$$

- Linear combination of the zero vector with the coefficients $s_1 t_1, \ldots, s_k t_k$
- Since the v_1, \ldots, v_n are linearly independent, we conclude

$$s_i - t_i = 0 \implies s_i = t_i$$
 for all $1 \le i \le k$

• So the two representations are in fact identical: Uniqueness

Notation

• Coefficients s_1, \ldots, s_k in (1): Coordinates of v with respect the basis v_1, \ldots, v_k

• Write the coordinates as a column, the so-called *coordinate vector*.

$$\begin{bmatrix} s_1 \\ \vdots \\ s_k \end{bmatrix} \in \mathbb{R}^k$$

- Instead of considering the elements of U as column vectors with n components, we can also represent them by their coordinate vectors with k components
- Thus, if k < n, then we need not store as many numbers
- So, we need less memory and less computational effort
- This can be seen as a kind of data compression.

Example

• Standard basis (or canonical basis) of \mathbb{R}^n :

$$e_1 = egin{bmatrix} 1 \ 0 \ dots \ 0 \end{bmatrix} \quad e_2 = egin{bmatrix} 0 \ 1 \ dots \ 0 \end{bmatrix} \quad \dots \quad e_{n-1} = egin{bmatrix} 0 \ dots \ 1 \ 0 \end{bmatrix} \quad e_n = egin{bmatrix} 0 \ dots \ 0 \ 1 \end{bmatrix}$$

• The coordinates of the vectors $x \in \mathbb{R}^n$ with respect to the standard basis are its component, since

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ x_2 \\ \vdots \\ 0 \end{bmatrix} + \cdots + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \cdots + x_n \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} = x_1 e_1 + \cdots \times_n e_n$$

Example

• The following vectors generate the whole space \mathbb{R}^2 :

$$v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Sketch:

- ullet Since they are linearly independent, they form a basis of \mathbb{R}^2
- Example: Determine coordinates of the vector $v = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ with respect to the basis v_1, v_2
- Sketch:

• Need to find scalars s_1, s_2 so that $v = s_1v_1 + s_2v_2$, i.e.,

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = s_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + s_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} s_1 + s_2 \\ s_1 - s_2 \end{bmatrix}$$

• Obtain a linear system of equations: Solve with the Gaussian elimination method:

$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & -1 & 5 \end{bmatrix} Z_{12(-1)} \Leftrightarrow \begin{bmatrix} 1 & 1 & 3 \\ 0 & -2 & 2 \end{bmatrix}$$

- Thus $s_2 = -1$ and so $s_1 = 3 s_2 = 4$
- Therefore:

$$v = 4v_1 - v_2$$

Coordinate vector of v:

$$\begin{bmatrix} 4 \\ -1 \end{bmatrix}$$

Dimension

- ullet Each basis of a vector subspace U has the same number of elements
- This number is called the *dimension* of U, written dim U
- Example: Standardbasis shows: $\dim \mathbb{R}^n = n$

- Starting with a vector $v_1 \neq 0$ from a vector subspace U of \mathbb{R}^n
- Repeatedly search for additional linearly independent vectors
- At some point, can not find any linear independent vector anymore
- If we have then obtained k linearly independent vectors v_1, \ldots, v_k , each additional vector $v \in U$ must be a linear combination of v_1, \ldots, v_k
- ullet Therefore, these vectors generate U

ullet So they form a basis and the dimension of U is k

Dimension

Let $U \subseteq \mathbb{R}^n$ be a subspace and $v_1, \ldots, v_k \in U$

- ▶ If $v_1, ..., v_k$ are linearly independent, then $k \le \dim U$
- ▶ If $V = \operatorname{span}(v_1, \ldots, v_k)$, then $k \ge \dim U$
- If $k = \dim U$, then we have

$$v_1,\ldots,v_k$$
 is a basis of U \iff v_1,\ldots,v_k are linearly independent \iff $U=\operatorname{span}(v_1,\ldots,v_k)$

 3rd Statement: Useful to determine a basis of a subspace when we know its dimension.

Example

Do the vectors

$$b_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad b_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

form a basis of \mathbb{R}^2 ?

- It is almost obvious that none of the vectors b_1 , b_2 is a scalar multiple of the other one, so they are linearly independent
- To check this formally, we calculate the determinant

$$\det \begin{bmatrix} b_1 & b_2 \end{bmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} = 5$$

- Since it is different from zero, the vectors are indeed linearly independent
- ullet Furthermore, we know from that dim $\mathbb{R}^2=2$
- 3rd statement of the previous box implies that the vectors b_1, b_2 form a basis of \mathbb{R}^2

- How can we find a basis of a vector subspace U of \mathbb{R}^n ?
- It certainly depends on how the subspace is given
- If it is given as the span of a finite family of vectors, then an algorithm can be given

Algorithm: Finding a basis of $U = \operatorname{span}(v_1, \ldots, v_k) \subseteq \mathbb{R}^n$

• Write down the $(n \times k)$ -matrix consisting of the column vectors v_i

$$A = \begin{bmatrix} v_1 & \cdots & v_k \end{bmatrix}$$

- Transform A in a echelon row form by using elementary row transformations.
- Let j_1, \ldots, j_p be the whole set of columns containing pivot elements, then the vectors

$$v_{j_1},\ldots,v_{j_p}$$
 a basis of U

- The above procedure tells us that there is always a subset of the given vectors which is a basis
- We need the previous algorithm only to find this subset
- Note that the row operations change the column vectors, so the new ones may not even be contained in U!
- The procedure only finds the *indices* j_1, \ldots, j_p , such that the *original* vectors v_{j_1}, \ldots, v_{j_p} from a basis of U

Be careful

It is important to take the original vectors and not the ones in the rows echelon form.

Norm, dot product

- Motivation of norm: Consider \mathbb{R}^2 and \mathbb{R}^3
- Vectors: As arrows with initial point in origin

- The length of a vector x in \mathbb{R}^2 and \mathbb{R}^3 : Norm of x
- Denoted by: ||x||

• It follows from the Pythagorean Theorem for $x \in \mathbb{R}^2$:

$$||x|| = \sqrt{x_1^2 + x_2^2}$$

• For $x \in \mathbb{R}^3$:

$$||x|| = \sqrt{x_1^2 + x_2^2 + x_3^2}$$

• Generalisation to \mathbb{R}^n obvious (though no sketches for n > 3):

$$||x|| = \sqrt{x_1^2 + \ldots + x_n^2}$$

• Norm not linear in \mathbb{R}^n

Definition of norm

Definition:

Definition Dot product

For $x, y \in \mathbb{R}^n$, the *dot product* of x and y is defined by

$$x \bullet y = x_1y_1 + \ldots + x_ny_n$$

- Also $x \cdot y$ or $\langle x, y \rangle$
- $\langle \dots, \dots \rangle$ also used for more general *inner product*
- Note: Dot product is a *number*, not a vector

- Dot product in \mathbb{R}^n has the following properties:
 - $x \bullet x \geq 0$
 - $x \cdot x = 0$ if and only if x = 0
 - ▶ For $y \in \mathbb{R}^n$ fixed, $x \bullet y$ is linear:

$$\star (x+z) \bullet y = x \bullet + z \bullet y) \star (\lambda x) \bullet y = \lambda (x \bullet y)$$

- $\triangleright x \bullet y = y \bullet x$
- Obviously for all $x \in \mathbb{R}^n$:

$$x \bullet x = ||x||^2$$

Norm

Norm more general than described above

Definition Norm

A norm $\|\cdot\|$ on vector space \mathbb{R}^n is function $\mathbb{R}^n \to \mathbb{R}$ which assigns each vector $x \in \mathbb{R}^n$ a length $\|x\| \in \mathbb{R}$ such that for all $\lambda \in \mathbb{R}$ and $x,y \in \mathbb{R}^n$ the following hold:

- ▶ $||x + y|| \le ||x|| + ||y||$ (triangle inequality)
- $\|x\| \ge 0$ and $\|x\| = 0 \iff x = 0$
- Triangle inequality:

Example: Manhattan Norm

• Manhattan norm on \mathbb{R}^n :

$$||x||_1 = |x_1| + \ldots + |x_n|$$

• Figure: All vectors $x \in \mathbb{R}^2$ with $||x||_1 = 1$:

Example: Euclidean Norm

• Already seen:

$$||x||_2 = \sqrt{x_1^2 + \ldots + x_n^2}$$

• Figure: All vectors $x \in \mathbb{R}^2$ with $||x||_1 = 1$:

• From now on: $\|\cdot\| = \|\cdot\|_2$

Example: Hamming distance

- Important in information theory
- ullet Vector in \mathbb{R}^n : Components can take only values 0 and 1
- Example in \mathbb{R}^n :

$$x = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

 Vector x contains information, that is being sent through a channel (TV, internet) • Due to "noise": Information doesn't arrive exactly as x, but

$$y = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Hamming distance: Number of entries, which arrived incorrectly:

$$||x - y||_H = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = 1$$

• Number of 1's and -1's in difference vector: Number of incorrect transmitted entries

- $||x y||_H = 5$: All entries were transmitted incorrectly
- $||x y||_H = 0$: All entries were transmitted correctly

Remark: Angles

• We can determine the angle between two vectors $x, v \neq 0$ in \mathbb{R}^2 :

$$\cos \omega = \frac{x \bullet y}{\|x\| \|y\|}$$

• Example: Determine angle between

$$x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $y = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Sketch:

• For ω :

$$\cos \omega = \frac{x \bullet y}{\|x\| \|y\|} = \frac{1+2}{\sqrt{1^1 + 1^1}\sqrt{1^2 + 2^2}} = \frac{3}{\sqrt{10}} = 0.6882472$$

Hence:

$$\omega = \arccos(0.6882472) = 0.32 \approx 18^{\circ}$$

Special case: Perpendicular vectors

• For $x, y \in \mathbb{R}^2$: Vectors x are y perpendicular if and only of $x \bullet y = 0$

$$x \bullet y = 0 \iff x \perp y$$

• Example:

$$x = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$
 and $y = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

Sketch:

• Dot product:

$$x \bullet y = 1(-1 + 0.5 \cdot 2) = 0$$

Orthogonal vectors

Definition:

Definition Orthogonal vectors

Two vectors $u, v \in \mathbb{R}^n$ are called *orthogonal* if $x \bullet y = 0$

• Orthogonal is just a fancy word for perpendicular

Orthogonal projection

- Important tool in machine learning: Principal component analysis (PCA)
- ullet Orthogonal projection of data point to a subspace of \mathbb{R}^n
- Example:

Sketch:

- We're interested of orthogonal projection of u on v
- Hence: Find λ
- Because λv and w orthogonal:

$$(v) \bullet w = 0$$

• But
$$w = u - \lambda v$$

Hence:

$$v \bullet w = v \bullet (u - \lambda v) = v \bullet u - \lambda v \bullet v = u \bullet v - \lambda ||v||^2 = 0$$

• Solving for λ :

$$\lambda = \frac{u \bullet v}{\|v\|^2}$$

Example

Let

$$x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $y = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Then:

$$\lambda = \frac{u \bullet v}{\|v\|^2} = \frac{1 \cdot 1 + 1 \cdot 2}{1^2 + 1^2} = \frac{3}{2} = 1.5$$

Therefore

$$w = u - \lambda v = \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 1.5 \\ 1.5 \end{bmatrix} = \begin{bmatrix} 0.5 \\ -0.5 \end{bmatrix}$$

We can now write

$$u = \lambda v + w = \begin{bmatrix} 1.5 \\ 1.5 \end{bmatrix} + \begin{bmatrix} 0.5 \\ -0.5 \end{bmatrix}$$

- Hence, *u* is the sum of two vectors which are orthognal
- Orthogonal decomposition of u

An orthogonal decomposition

- Suppose $u, v \in \mathbb{R}^n$, with $v \neq 0$
- Set

$$\lambda = \frac{u \bullet v}{\|v\|^2}$$
 and $w = u - \frac{u \bullet v}{\|v\|^2}v$

• Then:

$$w \bullet v = 0$$
 and $u = \lambda v + w$