Exploratory data analysis with pandas in python, part 2

Andras Zsom, Lead Data Scientist at CCV

github.com/brown-ccv/dscov_data_science

https://ccv-research.jupyter.brown.edu/

Overview of part 1

- read in csv, excel, and sql data into a pandas data frame
- filter rows in various ways
- · select columns
- merge and append data frames

Learning objectives for today

By the end of this talk, you will be able to

- visualize one column (continuous or categorical data)
- visualize column pairs (all variations of continuous and categorical columns)
- · visualize multiple columns simultaneously

Dataset of the day

Adult dataset, see here (<a href="https://archive.ics.uci.edu/ml/datasets/Adult)

Packages of the day

matplotlib and pandas

By the end of this talk, you will be able to

- · visualize one column (categorical or continuous data)
- visualize column pairs (all variations of continuous and categorical columns)
- visualize multiple columns simultaneously

Let's load the data first!

```
In [59]: import pandas as pd
   import numpy as np
   import matplotlib
   from matplotlib import pylab as plt
   df = pd.read_csv('data/adult_data.csv')
   print(df.dtypes)
```

```
age
                   int64
                  object
workclass
fnlwgt
                   int64
education
                  object
                  int64
education-num
marital-status
                  object
occupation
                  object
relationship
                  object
race
                  object
sex
                  object
capital-gain
                   int64
capital-loss
                   int64
hours-per-week
                   int64
                  object
native-country
gross-income
                  object
dtype: object
```

Column is categorical

In [60]: print(df['occupation'].value_counts()) Prof-specialty 4140 Craft-repair 4099 Exec-managerial 4066 3770 Adm-clerical Sales 3650 Other-service 3295 2002 Machine-op-inspct 1843 1597 Transport-moving Handlers-cleaners 1370 Farming-fishing 994 928 Tech-support 649 Protective-serv Priv-house-serv 149 9 Armed-Forces Name: occupation, dtype: int64

In [61]: pd.value_counts(df['occupation']).plot.bar()
 plt.ylabel('count')
 plt.show()


```
In [62]: pd.value_counts(df['occupation'],normalize=True).plot.bar()
    plt.ylabel('fraction')
    plt.show()
```


Column is continuous

```
In [63]:
         print(df['age'].describe())
                   32561.000000
         count
         mean
                      38.581647
         std
                      13.640433
         min
                      17.000000
         25%
                      28.000000
         50%
                      37.000000
         75%
                      48.00000
                      90.00000
         max
         Name: age, dtype: float64
```


By the end of this talk, you will be able to

- visualize one column (categorical or continuous data)
- visualize column pairs (all variations of continuous and categorical columns)
- visualize multiple columns simultaneously

Overview

Visualization types	column continuous	column categorical	
column continuous	scatter plot, heatmap	category-specific histograms, box plot, violin plot	
column categorical	category-specific histograms, box plot, violin plot	stacked bar plot	

Continuous vs. continuous columns

scatter plot

```
In [66]: df.plot.scatter('age', 'hours-per-week')
plt.show()

100
80
40
20
20
40
60
80
age
```

Continuous vs. continuous columns

heatmap

```
In [68]: plt.imshow(heatmap.T, origin='lower') # use log count
    plt.xlabel('age')
    plt.ylabel('hours-per-week')
    plt.xticks(np.arange(nbins)[::int(nbins/4)],xedges[::int(nbins/4)].astyp
    e(int))
    plt.yticks(np.arange(nbins)[::int(nbins/4)],yedges[::int(nbins/4)].astyp
    e(int))
    plt.colorbar(label='count')
    plt.show()
```


Categorical vs. categorical columns

stacked bar plot

gross-income	<=50K	>50K
race		
Amer-Indian-Eskimo	275	36
Asian-Pac-Islander	763	276
Black	2737	387
Other	246	25
White	20699	7117

```
In [70]: count_matrix.plot(kind='bar', stacked=True)
   plt.ylabel('fraction of people in group')
   plt.legend(loc=4)
   plt.show()
```


Continuous vs. categorical columns

• category-specific histograms

```
In [71]: import matplotlib
from matplotlib import pylab as plt

categories = df['gross-income'].unique()
bin_range = (df['age'].min(),df['age'].max())

for c in categories:
    plt.hist(df[df['gross-income']==c]['age'],alpha=0.5,label=c,range=bi
    n_range,bins=20,density=True)
plt.legend()
plt.ylabel('pdf')
plt.xlabel('age')
plt.show()
```


Continuous vs. categorical columns

box plot

```
In [72]: df[['age','gross-income']].boxplot(by='gross-income')
    plt.ylabel('age')
    plt.show()
```


Continuous vs. categorical columns

• violin plot

By the end of this talk, you will be able to

- visualize one column (categorical or continuous data)
- visualize column pairs (all variations of continuous and categorical columns)
- · visualize multiple columns simultaneously

Scatter matrix

By now, you can

- visualize one column (continuous or categorical data)
- visualize column pairs (all variations of continuous and categorical columns)
- · visualize multiple columns simultaneously