Solutions Manual

William T. Thomson, Professor Emeritus

Department of Mechanical and Environmental Engineering University of California Santa Barbara, California

© 1988 by PRENTICE-HALL, INC. A Division of Simon & Schuster Englewood Cliffs, N.J. 07632

All rights reserved.

ISBN: 0-13-914581-8

Printed in the United States of America

CONTENTS

Pref	ace	
1	Oscillatory Motion	1
2	Free Vibration	8
3	Harmonically Excited Vibration	24
4	Transient Vibration	41
5	Introduction to Multi-Degree of Freedom Systems	65
6	Properties of Vibrating Systems	94
7	LaGrange's Equation	121
8	Normal Mode Vibration of Continuous Systems	137
9	Mode-Summation Procedures for Continuous Systems	146
10	Introduction to the Finite Element Method	160
11	Approximate Numerical Methods	212
12	Numerical Procedures for Lumped Mass Systems	243
13	Random Vibrations	279
14	Nonlinear Vibrations	302

PREFACE

This teacher's manual was assembled by the author to aid instructors teaching a course in Vibration from the author's text. There are 517 problems with discussions and solutions presented in this manual.

The author considers problem solving to be a major part of the learning process. It is only through involvement with carefully selected problems that the student will acquire a full understanding of the subject.

A variety of analytical procedures and computational methods are illustrated through these problems. The instructor will find that they emphasize and extend the scope of the text, and discussion of some of these problems in class will greatly aid the student.

The manual represents considerable effort on the part of the author, and although there is reasonable assurance of the correctness of the solutions presented, some errors could be expected. It is hoped that the intended use of the manual strictly by the instructor will be adhered to rigidly.

William T. Thomson

$$\frac{1-6}{2+3i}$$

$$\frac{2+3i}{4-i}$$

$$5um = \frac{4-i}{6+2i}$$

$$Z = Ae^{i\theta}$$

$$A = \sqrt{6^2+2^2} = 6.325$$

$$D = tan^{'}\frac{2}{6} = 18^{\circ}26' = 0.3217t$$

$$Z = 6.325 e^{0.32/7i}$$

$$= 6.325 \left(18^{\circ}26' \right)$$

$$Z = A (\cos \theta + i \sin \theta) = A e^{i\theta}$$

$$iZ = A (i\cos \theta - \sin \theta) = Z,$$

$$= A [\cos(\theta + 90) + i \sin(\theta + 90)]$$

$$\frac{\pi}{6} = 30^{\circ}$$

$$R_{x} = 5 + 4\cos 30^{\circ} = 5 + 3.47$$

$$= 8.47$$

$$R_{y} = 4\sin 30^{\circ} = 2.00$$

$$R = \sqrt{8.47^{2} + 2.0^{2}} = 8.70$$

$$\theta = \tan^{-1} \frac{2}{8.70} = 12^{\circ}.57'$$

$$t \qquad b_{m} = \frac{2}{\gamma} \int_{a}^{\gamma_{k}} x(t) \sin m\omega_{i} t dt$$

$$b_{n} = \frac{\omega_{i}}{\pi} \left[\int_{-\frac{\pi}{\omega_{i}}}^{(-1)} \sin n\omega_{i}t \, dt + \int_{0}^{\frac{\pi}{\omega_{i}}} (+1) \sin n\omega_{i}t \, dt \right]$$

$$= \frac{\omega_{i}}{\pi} \left[\frac{\cos n\omega_{i}t}{n\omega_{i}} \Big|_{-\frac{\pi}{\omega_{i}}}^{0} - \frac{\cos n\omega_{i}t}{n\omega_{i}} \Big|_{0}^{\frac{\pi}{\omega_{i}}} \right] = \frac{2}{m\pi} (1 - \cos n\pi)$$

$$i \cdot b_{n} = \begin{cases} 0 & \text{for } n \text{ even} \\ \frac{4}{n\pi} & \text{ii } n \text{ odd} \end{cases}$$

$$\chi(t) = \frac{4}{\pi} \left(\sin \omega_i t + \frac{1}{3} \sin 3\omega_i t + \frac{1}{5} \sin 5\omega_i t + \cdots \right)$$

$$b_{m} = 0 \quad \gamma_{12}$$

$$-\pi \quad 0 \quad \pi \quad a_{m} = \frac{2}{\gamma} \int x(t) \cos m\omega_{1}t \, dt$$

$$Q_{m} = \frac{1}{\pi} \int_{0}^{\infty} (-1)\cos n\omega_{t} t d(\omega_{t}t) + \frac{1}{\pi} \int_{0}^{\infty} (-1)\cos n\omega_{t} t d(\omega_{t}t) + \frac{1}{\pi} \int_{0}^{\infty} (-1)\cos n\omega_{t} t d(\omega_{t}t)$$

$$= \frac{1}{m\pi} \left\{ \pm 4 \right\} + \text{for } m = 1, 5, 9, \dots$$

$$= \frac{1}{m\pi} \left\{ \pm 4 \right\} - \text{for } m = 3, 7, 11, \dots$$

$$\gamma(t) = \frac{4}{\pi} \left(\cos \omega_i t - \frac{1}{3} \cos 3\omega_i t + \frac{1}{5} \cos 5\omega_i t - \cdots \right)$$

$$\frac{1-1}{\omega_{i}r}$$

$$\frac{1}{2}a_0$$
 = average value = $\frac{1}{2}$

$$C_{m} = \frac{1}{\pi} \int_{\pi}^{\pi} (t + \pi) \cos n\omega_{t} t d(\omega_{t}) + \frac{1}{\pi} \int_{\pi}^{\pi} (\pi - t) \cos m\omega_{t} t d(\omega_{t})$$

$$= \frac{2}{\pi} \int_{\pi}^{\pi} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) \qquad \text{because of symmetry}$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) \qquad \text{because of symmetry}$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) \qquad \text{because of symmetry}$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) \qquad \text{because of symmetry}$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) \qquad \text{because of symmetry}$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) \qquad \text{because of symmetry}$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) \qquad \text{because of symmetry}$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) \qquad \text{because of symmetry}$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) \qquad \text{because of symmetry}$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) \qquad \text{because of symmetry}$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) \qquad \text{because of symmetry}$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) \qquad \text{because of symmetry}$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) \qquad \text{because of symmetry}$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) \qquad \text{because of symmetry}$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) \qquad \text{because of symmetry}$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) \qquad \text{because of symmetry}$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) d(\omega_{t}) \qquad \text{because of symmetry}$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) d(\omega_{t}) d(\omega_{t}) \qquad \text{because of symmetry}$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) d(\omega_{t}) d(\omega_{t}) d(\omega_{t})$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) d(\omega_{t}) d(\omega_{t})$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t}) d(\omega_{t})$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t})$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t})$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t})$$

$$= \frac{2}{\pi} \int_{\pi}^{\omega_{t}} (\pi - t) \cos n\omega_{t} t d(\omega_{t})$$

$$= \frac{2}{\pi}$$

$$\alpha(t) = \frac{1}{2} + \frac{4}{\pi^2} \left(\cos \omega_i t + \frac{1}{3^2} \cos 3\omega_i t + \frac{1}{5^2} \cos 5\omega_i t + \cdots \right)$$

$$\frac{1-12}{\omega_{i}t} \qquad 0 \leq \omega_{i}t \leq 2\pi$$

$$\frac{2\pi}{\omega_{i}t} \qquad 0 \leq \omega_{i}t \leq 2\pi$$

$$C_{m} = \frac{\omega_{i}}{(2\pi)^{2}} \int_{0}^{2\pi} \frac{\omega_{i}t}{2\pi} e^{-im\omega_{i}t} dt$$

$$C_{m} = \frac{\omega_{i}}{(2\pi)^{2}} \int_{0}^{2\pi} \frac{\omega_{i}t}{(-in)^{2}} e^{-im\omega_{i}t} dt$$

$$= \frac{1}{(2\pi)^{2}} \int_{0}^{2\pi} e^{-in\omega_{i}t} dt$$

$$= \frac$$

$$\frac{1-13}{\sqrt{2\pi}}$$

$$\frac{1}{\sqrt{2\pi}} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} A^{2} \sin^{2} t \, dt = \lim_{T \to \infty} \frac{A^{2}}{T} \int_{0}^{t} \frac{1}{2} (1-\cos 2\omega t) \, dt$$

$$= \lim_{T \to \infty} \frac{A^{2}}{2} \left(\frac{t}{2} - \frac{\sin 2\omega t}{4\omega} \right) \begin{vmatrix} \frac{T}{2} \\ \frac{T}{2} \end{vmatrix} = \lim_{T \to \infty} \left(\frac{A^{2}}{4} - \frac{\sin \omega T}{\omega T} \right) = \frac{A^{2}}{4}$$

$$\therefore \chi_{RMS} = \sqrt{\chi^{2}} = \frac{A}{2}$$

$$\chi(t) = \frac{\xi}{2\pi} \qquad \chi^{2}(t) = \frac{1}{4\pi^{2}} \int_{0}^{2\pi} 0 \leq \xi \leq 2\pi$$

$$\chi^{2} = \frac{1}{2\pi} \int_{0}^{2\pi} \left(\frac{1}{4\pi^{2}} \xi^{2}\right) d\xi = \frac{1}{2\pi} \left(\frac{1}{4\pi^{2}} \frac{\xi^{3}}{3}\right) \Big|_{0}^{2\pi}$$

$$= \frac{1}{2\pi} \left(\frac{2\pi}{3}\right)^{2} = \frac{1}{3}$$

1-14 cant.

$$\chi(t) = \frac{1}{2} - \frac{1}{4} \left(\sin \omega_i t + \frac{1}{2} \sin 2\omega_i t + \frac{1}{3} \sin 3\omega_i t + \cdots \right)$$

$$\chi^{2}(t) = \frac{1}{4} - \frac{1}{\pi} \left(\sin \omega_{i} t + \frac{1}{2} \sin 2\omega_{i} t + \cdots \right)$$

$$+\frac{1}{\pi^2}\left(\sin\omega_it+\frac{1}{2}\sin2\omega_it+\cdots\right)^2$$

$$=\frac{1}{4}-\frac{1}{\pi r}\left(\sin\omega_{,t}+\frac{1}{2}\sin 2\omega_{,t}+\cdots\right)$$

$$\frac{1}{T} \int_{0}^{T} \chi^{2}(t) dt = \frac{1}{4} + \frac{1}{\pi \omega_{i} T} \cos \omega_{i} t \Big|_{0}^{T} + \frac{1}{4\pi \omega_{i} T} \cos 2\omega_{i} t \Big|_{0}^{T} + \frac{1}{9\pi \omega_{i} T} \cos 3\omega_{i} t \Big|_{0}^{T}$$

$$+\frac{1}{\pi^2T^2}\frac{1}{2}\left(t-\frac{\sin 2\omega_i t}{2\omega_i}\right)\Big|_{0}^{T}+\frac{1}{4\pi^2T^2}\frac{1}{2}\left(t-\frac{\sin 4\omega_i t}{4\omega_i}\right)\Big|_{0}^{T}+\cdots$$

$$\frac{1}{\chi^{2}} = \lim_{k \to \infty} \frac{1}{2\pi k} \int_{0}^{2\pi k} \chi^{2}(t) dt = \frac{1}{4} + \frac{1}{2\pi^{2}} + \frac{1}{2} \frac{1}{(2\pi)^{2}} + \frac{1}{2} \frac{1}{(3\pi)^{2}} + \cdots$$

$$= \frac{1}{4} + \frac{1}{2\pi^2} \left(1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots \right) = \frac{1}{3}$$

$$\frac{1-15}{\chi(t)} = \frac{1}{2} + \frac{4}{\pi^2} \left(\cos \omega_i t + \frac{1}{3} \cos 3\omega_i t + \frac{1}{5} \cos 5\omega_i t + \cdots \right)$$

Fourier Spectrum = plot of coefficients. For this case
$$b_m = 0$$

$$C_m = \sqrt{a_m^2 + b_n^2} = a_m \qquad c_0 = \frac{a_0}{2}$$

$$\frac{1-16}{k=\frac{2}{3}}$$

$$\omega_{i}t$$

$$c_{o} = \frac{a_{o}}{2} = average value = \frac{k\pi}{2\pi} = \frac{k}{2} = \frac{1}{3}$$

$$a_m = \frac{1}{n\pi} \sin m k \pi = \frac{1}{n\pi} \sin \frac{n}{3} 2\pi$$

$$b_m = \frac{1}{m \pi} \left(1 - \cos m k \pi \right) = \frac{1}{m \pi} \left(1 - \cos \frac{m}{3} 2\pi \right)$$

$$2 C_m = \sqrt{a_m^2 + b_m^2} = \frac{\sqrt{2}}{m \pi} \sqrt{(1 - \cos \frac{m}{3} 2\pi)}$$

n	Cm	ϕ_n
1	. 2758	-60°
2	.1379	60°
3	o	0

n	Cm	Pn
4	.0689	-60°
5	-055 2	60°
6	0	0

$$l+r-s=h\cos\theta+l\cos\phi$$

$$\therefore \cos\phi = \left[1 - \left(\frac{R}{L}\right)^2 \sin^2\theta\right]^{\frac{1}{2}}$$
$$= 1 - \frac{1}{2} \left(\frac{R}{L}\right)^2 \sin^2\theta - \frac{1}{8} \left(\frac{R}{L}\right)^4 \sin^4\theta \cdots$$

$$S = R \left[1 - \cos\theta + \frac{1}{2} \left(\frac{R}{L} \right) \sin^2\theta + \frac{1}{8} \left(\frac{2}{L} \right)^3 \sin^4\theta + \cdots \right]$$

using
$$\sin^2 \theta = \frac{1}{2}(1-\cos 2\theta)$$
,

using
$$\sin^2\theta = \frac{1}{2}(1-\cos 2\theta)$$
, $\sin^4\theta = \frac{1}{4}(\frac{3}{2}-2\cos 2\theta+\frac{1}{2}\cos 4\theta)$

$$S = h \left[1 - \cos \theta + \frac{1}{2} \left(\frac{h}{\ell} \right) \frac{1}{2} \left(1 - \cos 2\theta \right) + \cdots \right]$$

$$= \frac{n}{2} \left[1 - \cos \theta + \frac{1}{2} \left(\frac{\pi}{2} \right) \frac{1}{2} \left(1 - \cos 2\theta \right) + \cdots \right]$$

$$= n \left[1 + \frac{1}{4} \left(\frac{n}{2} \right) - \cos \theta - \frac{1}{4} \left(\frac{n}{2} \right) \cos 2\theta + \cdots \right] \quad \text{which retains only} \quad \left(\frac{n}{2} \right) \text{ to first power}$$

$$\frac{1-18}{x^{2}} = \lim_{T \to \infty} \frac{1}{T} \int_{x}^{T} \chi^{2}(t) dt = \frac{A^{2} * ?}{?} = & A^{2} = 0.10 A^{2}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = 0.3162 A$$

$$\frac{1-19}{x^{2}} = \int_{x}^{2} = (1-\frac{t}{\pi}) \qquad 0 \le t \le \pi$$

$$\chi^{2} = \int_{x}^{2} \frac{t}{\pi} + \frac{t^{2}}{\pi^{2}}$$

$$\frac{1}{x^{2}} = \lim_{T \to \infty} \int_{0}^{\pi} (1-\frac{2t}{\pi} + \frac{t^{2}}{\pi^{2}}) dt = \int_{0}^{\pi} \frac{1}{2}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} (1-\frac{2t}{\pi} + \frac{t^{2}}{\pi^{2}}) dt = \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} (1-\frac{2t}{\pi} + \frac{t^{2}}{\pi^{2}}) dt = \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} (1-\frac{2t}{\pi} + \frac{t^{2}}{\pi^{2}}) dt = \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} (1-\frac{2t}{\pi} + \frac{t^{2}}{\pi^{2}}) dt = \int_{0}^{\pi} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to \infty} \frac{1}{\sqrt{2}} = \lim_{T \to \infty} \int_{0}^{\pi} \frac{1}{\sqrt{2}}$$

$$\lim_{T \to$$

$$f = \frac{15.76}{\sqrt{\Delta_{mm}}} = \frac{15.76}{\sqrt{7.87}} = 5.62 \text{ Hz}$$

$$\frac{2-3}{5k}$$
 $m_1 = 4.53 kg$
 $r_2 = 0.455$

$$k = \left(\frac{2\pi}{\gamma_i}\right)^2 m_i = \left(\frac{2\pi}{4.5}\right)^2 4.53$$
= 883.5 N/m

$$\gamma_1 = 2\pi \sqrt{\frac{m_2}{4k}} = 2\pi \sqrt{\frac{2.26}{4\times883}}$$

$$= 0.159 \text{ s}$$

$$\frac{2-4}{\frac{k}{m}} = (2\pi f)^2 = (2\pi \frac{94}{60})^2 \qquad \frac{k}{m+.453} = (2\pi \frac{76.7}{60})^2$$

$$\frac{m+.453}{m} = (\frac{94}{76.7})^2 \qquad \therefore m = 0.9028 \text{ kg}$$

$$k = 87.48 \text{ N/m}$$

 $\dot{\chi} = -4 \sin 2t - 8 \cos 2t = 0 \quad \therefore \tan 2t_{p} = -2$ $\dot{\chi} = 116.57^{\circ} \quad \sin 1/6.57 = .8944 \quad \cos 1/6.57 = -.4472$ $\chi_{max} = 2(-.4472) - 4(.3944) = -4.472 \quad cm$ $\ddot{\chi}_{max} = \omega^{2} \chi_{max} = 4(\pm 4.472) = \pm 17.89 \quad cm/s^{2}$

$$2 - 7$$

$$J_{p}\ddot{\theta} = -Wr\theta \qquad \ddot{\theta} = -\omega^{2}\theta$$

$$\ddot{\theta} = -\omega^2 \theta$$

$$J_{p} = \frac{Wh}{\omega^{2}} = \frac{70 \times 6}{\left(\frac{2\pi}{1.22}\right)^{2}} = 15.83$$

$$J_o = J_p - \frac{W}{g}h^2 = 15.83 - \frac{70}{386} \times 6^2$$
$$= 9.30 \text{ Us in sec}^2$$

$$\omega = 2\pi \frac{53}{40} = 5.55 \text{ m/s}$$

$$J_{p} = \frac{Wh}{\omega^{2}} = \frac{21.35 \times .254}{5.55^{2}} = 0.1761$$

$$J_{cg} = J_0 - \frac{w n^2}{g} = 0.176/ - \frac{21.35 \times .254}{9.8/}^2 = 0.0356 \text{ kg m}^2$$

$$h\theta = k\alpha$$
 Work done = change in KE

$$\alpha = \frac{r\theta}{\ell}$$

$$W \stackrel{1}{=} \frac{h^2 \theta^2}{\theta^2} = \frac{1}{2} J \stackrel{2}{\theta} = \frac{1}{2} J \omega^2 \theta^2$$

$$\ell(i-conoi) = \ell[1-(1-\frac{1}{2}d^2+-)]$$

$$J = \frac{W}{g} \kappa^2 \quad \kappa = rad. of gyr.$$

$$= \frac{\ell \omega^2}{2} = \frac{\ell}{2} \left(\frac{n\theta}{\ell}\right)^2$$

$$\frac{\mathcal{K}_{\mathcal{L}^{2}}}{\ell} = \frac{\mathcal{K}_{\mathcal{K}^{2}}}{4} \omega^{2}$$

$$k = \frac{R}{\omega} \sqrt{\frac{9}{2}} = \frac{.254 \times 2.17}{277} \sqrt{\frac{9.81}{1.829}} = .2032$$

$$k = .4507 m$$

Moment about shaft = (a sin 8) w sind

$$(J + \frac{w}{g}a^2)\ddot{\theta} = -(a\sin\theta) w \sin\alpha$$

 $\simeq -(aw\sin\alpha)\theta$

$$\therefore f_m = \frac{1}{2\pi} \sqrt{\frac{wa \sin \alpha}{J + \frac{w}{4}a^2}}$$

i je parallel priverticle planes

$$T' = \frac{1}{2} m \dot{x}^{2} + \frac{1}{2} J_{0} \dot{\theta}^{2} \qquad k \dot{\theta} = \dot{x}$$

$$= \frac{1}{2} \left(m + \frac{J_{0}}{n^{2}} \right) \dot{x}^{2} \qquad \dot{x} = \omega x$$

$$U = \frac{1}{2} k x^{2} \qquad \therefore \omega = \sqrt{\frac{k}{m + J_{0}/n^{2}}}$$

$$T = 2\pi \sqrt{\frac{L}{g}} \qquad L = g \left(\frac{T}{2\pi} \right)^{2} = 9.8! \left(\frac{Z}{2\pi} \right)^{2} = 0.994 \text{ m}$$

$$V_{max} = L \left(\omega \theta_{0} \right) = \frac{0.03175}{0.01} m/s \qquad \theta_{0} = \frac{.3175}{.994 \text{ Tr}} = .0017 \text{ n} = 5.826$$

$$\frac{Z-13}{0.01} \qquad \text{water weighs } 9802. N/m^{3} \qquad \therefore \rho = 1.2 \times 9802. = 11762. N/m^{3}$$

$$\text{buoy ant force} = \pi \ln^{2} x \cdot \rho = m \dot{x} = \omega^{2} x$$

$$\frac{1}{\omega} = \frac{T}{2\pi} = \sqrt{\frac{m}{\pi r} r^{2} \rho} \qquad m = .0372 \text{ kg}$$

$$R = .0032 \text{ m}$$

$$T = 2\pi \sqrt{\frac{.0372}{\pi \times .0032^{2} \times 1762}} = 1.97 \text{ S}$$

$$\frac{Z-14}{moment} \qquad \text{about geom, center}$$

$$-W & \theta = J_{0} \dot{\theta} = -\omega^{2} J_{0} \dot{\theta}$$

$$J_{0} = \frac{8W}{\omega^{2}} = \frac{8W \left(1.3\right)^{2}}{(2\pi)^{2}} = 0.3428 \text{ W}$$

$$\frac{Z-15}{\omega} = \sqrt{\frac{J}{Wk}} \qquad T_{map} = \sqrt{\frac{J}{Wk}}$$

$$\frac{Z-16}{m} \qquad Displ. \text{ of } c_{g} = (R-\bar{R})\theta \qquad T_{map} = U_{map}$$

$$= \frac{1}{2} m \left[(R-\bar{R})^{2} + (R^{2}-\bar{R}^{2}) \right] \omega^{2} \theta_{map}^{2}$$

$$= \frac{1}{4} m \left[(R-\bar{R})^{2} + (R^{2}-\bar{R}^{2}) \right] \omega^{2} \theta_{map}^{2}$$

$$= \frac{1}{4} m \left[(R-\bar{R})^{2} + (R^{2}-\bar{R}^{2}) \right] \omega^{2} \theta_{map}^{2}$$

$$= \frac{1}{4} m \left[(R-\bar{R})^{2} + (R^{2}-\bar{R}^{2}) \right] \omega^{2} \theta_{map}^{2}$$

$$= \frac{1}{4} m \left[(R-\bar{R})^{2} + (R^{2}-\bar{R}^{2}) \right] \omega^{2} \theta_{map}^{2}$$

$$= \frac{1}{4} m \left[(R-\bar{R})^{2} + (R^{2}-\bar{R}^{2}) \right] \omega^{2} \theta_{map}^{2}$$

$$= \frac{1}{4} m \left[(R-\bar{R})^{2} + (R^{2}-\bar{R}^{2}) \right] \omega^{2} \theta_{map}^{2}$$

$$= \frac{1}{4} m \left[(R-\bar{R})^{2} + (R^{2}-\bar{R}^{2}) \right] \omega^{2} \theta_{map}^{2}$$

$$= \frac{1}{4} m \left[(R-\bar{R})^{2} + (R^{2}-\bar{R}^{2}) \right] \omega^{2} \theta_{map}^{2}$$

$$= \frac{1}{4} m \left[(R-\bar{R})^{2} + (R^{2}-\bar{R}^{2}) \right] \omega^{2} \theta_{map}^{2}$$

$$= \frac{1}{4} m \left[(R-\bar{R})^{2} + (R^{2}-\bar{R}^{2}) \right] \omega^{2} \theta_{map}^{2}$$

$$= \frac{1}{4} m \left[(R-\bar{R})^{2} + (R^{2}-\bar{R}^{2}) \right] \omega^{2} \theta_{map}^{2}$$

$$= \frac{1}{4} m \left[(R-\bar{R})^{2} + (R^{2}-\bar{R})^{2} \right] \omega^{2} \theta_{map}^{2}$$

$$= \frac{1}{4} m \left[(R-\bar{R})^{2} + (R^{2}-\bar{R})^{2} \right] \omega^{2} \theta_{map}^{2}$$

$$= \frac{1}{4} m \left[(R-\bar{R})^{2} + (R^{2}-\bar{R})^{2} \right] \omega^{2} \theta_{map}^{2}$$

$$= \frac{1}{4} m \left[(R-\bar{R})^{2} + (R^{2}-\bar{R})^{2} \right] \omega^{2} \theta_{map}^{2}$$

$$=$$

$$\frac{2-16 \ \text{cont}}{\omega^{2}} = \frac{T_{\text{may}}}{(R-\bar{h})^{2} + (R^{2}-\bar{h}^{2})} = \frac{\bar{h} g}{2R(R-\bar{h})}$$

$$\gamma = 2\pi \sqrt{\frac{2R(R-\bar{h})}{\bar{h} g}} \quad \text{but } \bar{h} = \frac{2R}{\bar{\pi}} \quad \therefore \quad \gamma = 2\pi \sqrt{\frac{R(\pi-2)}{\bar{g}}}$$

$$U = mgh (1 - cos \phi) = mgh \frac{1}{2}\phi^{2} \qquad h\phi = \frac{a}{2}\theta$$

$$= mg \frac{1}{2} \left(\frac{a\theta}{2h}\right)^{2} = mg \frac{a^{2}\theta^{2}}{h}$$

$$T = \frac{1}{2} \left(m \frac{L^{2}}{12}\right) \dot{\theta}^{2} = \frac{1}{2} \left(m \frac{L^{2}}{12}\right) \omega^{2} \theta^{2}$$

$$T_{max} = U_{max} \qquad \therefore \quad \gamma = 2\pi \frac{L}{a} \sqrt{\frac{h}{3g}}$$

$$\frac{2-18}{\gamma_{1}} = 2\pi\sqrt{\frac{k}{g}} \qquad \text{for } \gamma_{2} \qquad T = \frac{1}{2} m k^{2} \omega^{2} \theta^{2}$$

$$U = mg \frac{L^{2}}{s} \frac{\theta^{2}}{h}$$

$$\therefore \gamma_{2} = 2\pi\sqrt{\frac{4k \kappa^{2}}{gL^{2}}} \qquad \kappa = \frac{\gamma_{2}L}{2\pi}\sqrt{\frac{g}{4h}} = \frac{\gamma_{2}}{\gamma_{1}}\left(\frac{L}{2}\right)$$

$$\sum M_0 = \int_{cg} \dot{\theta} = -\frac{Wba}{a+b} \frac{\theta}{h} \cdot a - \frac{Wab}{a+b} \frac{\theta}{h} \cdot b$$

$$\frac{Wa}{a+b} \frac{W}{a+b} + \frac{Wab}{h} \cdot a = 0$$

$$\ddot{\theta} + \left(\frac{gab}{k^2k}\right) \theta = 0$$

$$\ddot{\psi} \frac{Wb}{a+b} \cdot a \frac{\partial}{\partial k} = 0$$

$$\ddot{\psi} \frac{Wb}{a+b} \cdot a \frac{\partial}{\partial k} = 0$$

$$\ddot{\psi} \frac{Ab}{a+b} \cdot a \frac{\partial}{\partial k} = 0$$

$$\frac{\text{Wa}}{\text{a+b}} \cdot \frac{\text{bot}}{\text{h}}$$

$$\frac{1}{1} \cdot \sum_{\text{horse}} F = 0$$

$$\frac{2-20}{J_0 \text{ of wheel}}$$

$$= m(K)$$

Jo of wheel about torsion bar =
$$J_{m} + m(24'')^{2}$$

= $m(\kappa^{2} + 24^{2}) = m(9^{2} + 24^{2}) = 657 m$

Stiff ness of torsion bar $K = \frac{GI_{p}}{I}$
 $I_{p} = \frac{\pi D^{4}}{32} = \frac{\pi}{32} (1.50)^{4} = 0.497 \text{ in}^{4} = \text{polar mom. inertia}$

of torsion bar

 $G = 1/.2 \times 10^{6}$ $U_{p}/U_{p}^{2} = Shear modulus of steel$

$$G = 11.2 \times 10^{\circ}$$
 (b/in² = Shear modulus of state
$$K = \frac{(11.2 \times 10^{\circ}) \times (0.497)}{50} = 0.1113 \times 10^{\circ}$$
 (b.in·/rad.

$$J_{o}\ddot{\theta} + K \theta = 0$$
 $f = \frac{1}{2\pi r} \sqrt{\frac{K}{J_{o}}} = \frac{1}{2\pi r} \sqrt{\frac{0.11B \times 10^{6} \times 386}{38 \times 657}} = 6.60 \text{ cps}$

With wheel free
$$J_0 = m(24)^2 = 576 m$$

$$f = \frac{1}{2\pi} \sqrt{\frac{0.1113 \times 10^6 \times 386}{38 \times 576}} = 7.05$$

$$\frac{2-21}{g} \dot{x} = -2x\rho \qquad \dot{x} + \frac{2g}{\ell} x = 0$$

$$\omega^2 = \frac{2g}{\ell} \qquad \gamma = 2\pi \sqrt{\frac{\ell}{2g}}$$

$$\frac{2-22}{k} = 2\left(\frac{12E\Gamma}{\ell^3}\right) \qquad \gamma = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{m\ell^3}{24E\Gamma}}$$

$$\frac{2-23}{y} = \frac{1}{2} y_{max} \left(1 - \cos \frac{\pi x}{\ell}\right) \sin \omega t$$

$$\frac{\dot{y}}{\dot{y}} = \frac{1}{2} \omega y_{max} \left(1 - \cos \frac{\pi x}{\ell}\right) \cos \omega t$$

$$T = \frac{1}{2} \int_{0}^{\ell} m(x) \dot{y}^{2} dx = \frac{1}{2} \frac{m}{4} y_{max}^{2} \int_{0}^{\ell} (1 - \cos \frac{\pi x}{\ell})^{2} \omega^{2} dx \cos^{2} \omega t$$

$$= \frac{1}{2} \cdot \frac{m}{4} y_{max}^{2} \omega^{2} \cos^{2} \omega t \int_{0}^{\ell} \left(1 - 2 \cos \frac{\pi x}{\ell} + \cos^{2} \frac{\pi x}{\ell}\right) dx$$

$$= \frac{1}{2} \cdot \frac{m}{4} y_{max}^{2} \omega^{2} \cos^{2} \omega t \int_{0}^{\ell} \left(1 - 2 \cos \frac{\pi x}{\ell} + \cos^{2} \frac{\pi x}{\ell}\right) dx$$

$$= \frac{1}{2} \cdot \frac{m}{4} y_{max}^{2} \omega^{2} \cos^{2} \omega t \int_{0}^{\ell} \left(1 - 2 \cos \frac{\pi x}{\ell} + \cos^{2} \frac{\pi x}{\ell}\right) dx$$

$$T = \frac{1}{2} \left[\frac{3}{2} \ell - 0 + 0 \right]$$
$$= \frac{1}{2} \left(\frac{m}{4} \cdot \frac{3\ell}{2} \right) \omega^2 y_{max}^2 \cos^2 \omega t$$

:.
$$m_{eff} = \left(\frac{3}{8} ml\right)$$
 for each column, where $ml = total mass of each column$

$$\frac{-24}{T'} = \frac{1}{2} m \dot{\chi}^{2} + \frac{1}{2} J \left(\frac{\dot{\chi}}{b}\right)^{2} \qquad \text{where } J = \text{moment of } inertia of linkage about}$$

$$\chi = \frac{b}{a} \chi_{m} \qquad \qquad \text{pivot.}$$

$$T' = \frac{1}{2} m \left(\frac{b}{a}\right)^{2} \dot{\chi}_{m}^{2} + \frac{1}{2} J \left(\frac{b}{a}\right)^{2} \frac{1}{b^{2}} \dot{\chi}_{m}^{2}$$

$$T = \frac{1}{2} m \left(\frac{b}{a}\right) \dot{x}_{m} + \frac{1}{2} J \left(\frac{b}{a}\right) \dot{b}_{x}^{2} m$$

$$= \frac{1}{2} \left[m \left(\frac{b}{a}\right)^{2} + \frac{J}{a^{2}} \right] \dot{x}_{m}^{2} : m_{eff} = \left[m \left(\frac{b}{a}\right)^{2} + \frac{J}{a^{2}} \right]$$

$$\frac{2-25}{T = \frac{1}{2} m \int_{0}^{\ell} \dot{y}^{2} dx = \frac{1}{2} \frac{m}{4} \dot{y}^{2} \int_{0}^{\ell} \left[q(\frac{x}{\ell})^{4} - 6(\frac{x}{\ell})^{5} + (\frac{x}{\ell})^{6} \right] dx}$$

$$= \frac{1}{2} m \dot{y}^{2} dx \left[\frac{q}{5} - 1 + \frac{1}{7} \right] = \frac{1}{2} \left(\frac{33}{140} m\ell \right) \dot{y}^{2}$$

$$\frac{2-26}{T} = \frac{1}{2} \left[J_0 \dot{\theta}^2 + m_1 (b \dot{\theta})^2 \right] = \frac{1}{2} \left[J_0 + m_1 b^2 \right] \dot{\theta}^2$$

$$\dot{\theta} = \dot{x}/b \qquad T' = \frac{1}{2} \left[J_0/b^2 + m_1 \right] \dot{x}^2 \qquad m_{eff} = J_0/b^2 + m_1$$

$$\frac{2-27}{T_R}$$
 Let θ_o = rotation of J , T_o = total torque T_L = torque to left of J T_R = " " right ""

$$\left(\frac{1}{K_{1}} + \frac{1}{K_{2}}\right)T_{L} = \theta_{o}$$
 $\left(\frac{1}{K_{2}}\right)T_{R} = \theta_{o}$

2-27 Cont.

$$T_{o} = T_{L} + T_{R} = \left[\frac{1}{\left(\frac{L}{K_{i}} + \frac{L}{K_{k}}\right)} + \frac{1}{\left(\frac{L}{K_{k}}\right)}\right]\theta_{o} = K \theta_{o}$$

$$\therefore K = \left(\frac{K_{i} K_{k}}{K_{i} + K_{k}} + K_{k}\right) \qquad \omega_{m} = \sqrt{\frac{K}{J}} = \frac{2\pi}{\gamma}$$

$$\frac{2-28}{T = \frac{1}{2} m_{i} \dot{x}^{2} + \frac{1}{2} J_{2} \left(\frac{\dot{x}}{R_{2}}\right)^{2} + \frac{1}{2} J_{3} \left(\frac{R_{2}}{R_{i}} \frac{\dot{x}}{R_{2}}\right)^{2}}$$

$$= \frac{1}{2} \left[m_{i} + J_{2} / R_{2}^{2} + J_{3} / R_{i}^{2}\right] \dot{x}^{2} = \frac{1}{2} m_{\text{eff}} \dot{x}^{2}$$

$$U = \frac{1}{2} k_{i} x^{2} + \frac{1}{2} K_{3} \left(\frac{x}{R_{i}}\right)^{2} = \frac{1}{2} \left[k_{i} + K_{3} / R_{i}^{2}\right] \dot{x}^{2} = \frac{1}{2} k_{\text{eff}} \dot{x}^{2}$$

2-29

$$T = \frac{1}{2} J_{i} \dot{\theta}_{i}^{2} + \frac{1}{2} J_{2} \left(\frac{h_{i}}{h_{2}} \dot{\theta}_{i} \right)^{2}$$

$$= \frac{1}{2} \left[J_{i} + J_{2} \left(\frac{h_{i}}{h_{2}} \right)^{2} \right] \dot{\theta}_{i}^{2} = \frac{1}{2} J_{eff} \dot{\theta}_{i}^{2}$$

$$\frac{2-30}{\dot{\theta}_{1}=\dot{x}/n_{1}} T = \frac{1}{2} J_{1} \dot{\theta}_{1}^{2} + \frac{1}{2} (m_{0}+m_{2}) \dot{x}^{2} + \frac{1}{2} J_{2} \dot{\theta}_{2}^{2}$$

$$\dot{\theta}_{1}=\dot{x}/n_{1} \qquad \dot{\theta}_{2}=\dot{x}/n_{2}$$

$$T = \frac{1}{2} \left[J_1 / \mu_1^2 + (m_0 + m_2) + J_2 / \mu_2^2 \right] \dot{\chi}^2$$

$$U = \frac{1}{2} k_1 (R\theta_1)^2 + \frac{1}{2} k_2 (R_2\theta_2)^2$$

$$= \frac{1}{2} k_1 \left(\frac{R}{R_1} \chi\right)^2 + \frac{1}{2} k_2 \left(R_2 \frac{\chi}{R_2}\right)^2$$

$$= \frac{1}{2} \left[k_1 \left(\frac{R}{R_1}\right)^2 + k_1\right] \chi^2$$

$$f = \frac{1}{2\pi} \sqrt{\frac{k_1 (\frac{R}{h_1})^2 + k_2}{J_1/h_1^2 + (m_1 + m_1) + J_1/h_2^2}}$$

(c)
$$5 = 1.0$$
 $\frac{x \omega_n}{v_0} = \omega_n t e^{-\omega_n t}$
 $E_{q_i}(2.3-19)$

$$2 - 35$$

$$\delta = \ln \frac{x_1}{x_1} = \ln \frac{1.00}{.980} = \ln 1.020408 = 0.0202$$

$$\xi = \frac{\delta}{2\pi} = .003215$$

$$\omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{750}{2,267}} = 27.78 \approx \omega_d$$

C = 2 m W 5 = 2 x 2, 267 x 27.78 x .003215 = .405 NS

(a)
$$S = \frac{C}{2m} \sqrt{\frac{m}{k}} = \frac{12.43}{2\times4.534} \sqrt{\frac{4.534}{3.500}} = 0.0493$$

$$\delta = \frac{2\pi \zeta}{\sqrt{1-\zeta^2}} = 0.3/0/$$

(c)
$$\frac{x_m}{x_{m+1}} = e^{\delta} = (2.7/8)^{.3/0/} = 1.364$$

(a)
$$5 = \frac{c}{2\sqrt{mR}} = \frac{70}{2\sqrt{17.5 \times 7000}} = 0.10$$

(b)
$$f_{x} = \frac{1}{2\pi} \sqrt{1-5^2} \sqrt{\frac{6}{m}} = \frac{1}{2\pi} \sqrt{1-.01} \sqrt{\frac{7000}{17.5}} = 3.167 \text{ Hz}$$

(c)
$$\delta = \frac{2\pi \zeta}{\sqrt{1-\zeta^2}} = .6315$$

$$\frac{(a)}{2^{-38}} = \frac{\chi_m/\chi_{m+1}}{2^{-38}} = \frac{(63)5}{2} = 1.874$$

$$\sum M_o = -ac(a\dot{o}) - ak(ao) = ml^{\dot{o}}$$

$$\frac{2M_0 = -a C(a\theta) - a R(a\theta) = m E \theta}{\theta + \frac{c}{m} \left(\frac{a}{\ell}\right)^2 \theta + \frac{k}{m} \left(\frac{a}{\ell}\right)^2 \theta = 0} \quad \text{let } \theta = e^{st}$$

$$\frac{1}{2m} \left(\frac{c}{\ell}\right)^2 \pm \sqrt{\left(\frac{ca^2}{2m\ell^2}\right)^2 - \frac{k}{m} \left(\frac{a}{\ell}\right)^2}$$

crit. damp.
$$\frac{C_c a^2}{2ml^2} = \frac{a}{l} \sqrt{\frac{l}{m}}$$
 $C_c = 2\frac{l}{a} \sqrt{\frac{l}{k}m}$

$$\omega_{d} = \frac{a}{e} \sqrt{\frac{k}{m} - \left(\frac{ca}{2me}\right)^{2}} = \frac{a}{e} \sqrt{\frac{k}{m}} \sqrt{1 - \left(\frac{ca}{2e/4m}\right)^{2}} = \omega_{m} \sqrt{1 - 5^{2}}$$

:
$$\omega_m = \frac{q}{l} \sqrt{\frac{k}{m}}$$
 $S = \frac{ca}{2l\sqrt{km}}$ identify from $\theta + 2Sw\theta + \omega_m^2\theta = 0$

$$\frac{2-39}{\partial \theta} = ma^2 \theta = -kb^2 \theta - ka^2 \theta$$

$$\frac{\partial \theta}{\partial \theta} + \frac{c}{m} (\frac{b}{a})^2 \theta = 0$$

...
$$\omega_{m} = \frac{b}{a}\sqrt{\frac{k}{m}}$$
 $\omega_{d} = \sqrt{\frac{k}{am}(\frac{b}{a})^{2}-(\frac{c}{2m})^{2}}$ $C_{c} = \frac{2b}{a}\sqrt{km}$

2-40

$$\delta = \ln \frac{1.0}{0.95} = \ln 1.0527 = .05129$$

$$S = \frac{2\pi S}{\sqrt{1-S^2}} = .05/29$$
 $S = .008/6$

2-42

$$\frac{w}{g} \stackrel{\sim}{x} + 2\mu A \stackrel{\sim}{x} + kx = 0$$

$$\stackrel{\sim}{x} + \frac{2\mu Ag}{w} \stackrel{\sim}{x} + \frac{kg}{w} x = 0 \qquad \therefore \gamma_{i} = 2\pi \sqrt{\frac{w}{kg}}$$

$$f_{2} = \frac{1}{\gamma_{i}} = \frac{1}{2\pi} \sqrt{\frac{kg}{w} - (\frac{\mu Ag}{w})^{2}} = \frac{1}{2\pi} \sqrt{(\frac{2\pi}{\gamma_{i}})^{2} - (\frac{\mu Ag}{w})^{2}}$$

square both sides

$$\left(\frac{2\pi}{\gamma_2}\right)^2 - \left(\frac{2\pi}{\gamma_1}\right)^2 = -\left(\frac{\mu AS}{w}\right)^2$$

$$\frac{2-43}{\omega_{m}} = \sqrt{\frac{20,000 \times 32.2}{1200}} = 23.17 \quad \frac{n}{s}$$

$$\frac{1}{2} m \dot{\chi}_{max}^{2} = \frac{1}{2} k \chi_{max}^{2} \qquad \dot{\chi}_{max} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{2} m \dot{\chi}_{max}^{2} = \frac{1}{2} k \chi_{max}^{2} \qquad \dot{\chi}_{max} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{2} m \dot{\chi}_{max}^{2} = \frac{1}{2} k \chi_{max}^{2} \qquad \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{2} m \dot{\chi}_{max}^{2} = \frac{1}{2} k \chi_{max}^{2} \qquad \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{2} m \dot{\chi}_{max}^{2} = \frac{1}{2} k \chi_{max}^{2} \qquad \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{2} m \dot{\chi}_{max}^{2} = \frac{1}{2} k \chi_{max}^{2} \qquad \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{2} m \dot{\chi}_{max}^{2} = \frac{1}{2} k \chi_{max}^{2} \qquad \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{2} m \dot{\chi}_{max}^{2} = \frac{1}{2} k \chi_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{2} m \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{2} m \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{2} m \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{2} m \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{2} m \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{2} m \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{2} m \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{2} m \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{2} m \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{4} m \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{4} m \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{4} m \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{4} m \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{4} m \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{4} m \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{4} m \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{4} m \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{4} m \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{4} m \dot{\chi}_{max}^{2} = 23.17 \times 4 = 92.66 \text{ ff}_{s}.$$

$$\frac{1}{4} m \dot{\chi}_{max}^{2} = 2$$

```
Eq. (2.3-16) for $(0) = 0
                                    x = 2(0) e \cos \sqrt{1-5^2} \omega_i t
                                  at \sqrt{1-5^2} \omega_n t = \pi \cos \sqrt{1-5^2} \omega_n t = -1
                      -.10 = 1 e - swnt (-1) solve by trial
                             \frac{\sqrt{1-5^2}}{\sqrt{1-5^2}} = \frac{-5\pi}{\sqrt{1-5^2}}
                               .8074
                                                                         ·1007 -
           1. 5, = 0.59
         If 5 = \frac{1}{2}5, = 0.295, \sqrt{1-5^2} = .9555
              \chi_{\text{overshoot}} = 1 e^{-.295 \frac{77}{0}} = 0.379 = 37.9\%
\ddot{\theta} + \frac{ca^2}{ml^2}\dot{\theta} + \frac{ka^2}{ml^2}\theta = 0
 \dot{\theta} + 2\xi \dot{\theta} + \omega_n^2 \theta = 0 \dot{\omega}_m = \frac{a\sqrt{k}}{\ell m} \zeta = \frac{1}{2}\frac{c}{m}(\frac{a}{\ell})^2 \frac{\ell \sqrt{m}}{a} = \frac{ca}{2\ell \sqrt{km}}
\omega_d = \frac{a}{\ell} \sqrt{\frac{\ell}{m}} \sqrt{1 - \frac{1}{\ell m} \left(\frac{ca}{\ell\ell}\right)^2}
  2-46 (Prob. 2-39 by V.W.)
  Sw = -mai.a80-caé.a60 - $60.680=0
```

$$k_{eff} = (k_1 + k_2)$$
 in series with k_3

$$= \frac{(k_1 + k_2) k_3}{k_1 + k_2 + k_3}$$

$$\frac{2-48}{+a+b} = \frac{4(x)}{6EIR} = \frac{Pbx}{6EIR} (e^2 - x^2 - b^2)$$

$$\frac{1}{2} = \frac{P}{4} = \frac{1}{4} = \frac{1}{4$$

$$F = k, b\theta + \frac{a}{b} k_2 a\theta$$

$$x = b\theta$$

$$\therefore F = k, x + \left(\frac{a}{b}\right)^2 k_2 x$$

$$k_2 = \frac{F}{x} = k, + \left(\frac{a}{b}\right)^2 k_2$$

$$\frac{2-50}{k_{eff}} = \frac{k_1 k_2}{k_1 + k_2}$$

$$\frac{2-50}{k_{eff}} = \frac{k_{i} k_{2}}{k_{i} + k_{2}}$$

$$\frac{2-51}{2} = \frac{2-51}{k_{i} + k_{2}} = \frac{-5\omega_{i}^{t}}{\sqrt{1-5^{2}}} = \frac{-5\omega_{i}^{t$$

at
$$\omega_m t = x \bar{x}$$
, 4π , $6\bar{x}$, etc. $\chi(t) \cong e^{-5\omega_m t} (0 + 1)$

		•	7(1)	= e		(0	-	' /			
m	ant	05amt e	Xm	F			mb:				
0	0	1.0	1.0		Х.	- X -	=	4 Fd	_ 4	X.054	= .20
1	21	.7304	٠8		///	,· 2	•	K	_	k	20
2	47	.5335	-6		メ	m =	/	.21	r		
3	6 TT	.3896	. 4	1-09			Γ_			·	ŀ
4	87	.2845	. 2	ક	7	~	- Cou	لطعم			:
5	10 1	.2078	0	•6	. :	-				 	
				.4	Y/S	aus-		2		ļ	
			ln	2 .3				1			
				.3							
				· 2		+	 	- -	\ 	┡	1

$$\frac{2-52}{T} = \frac{1}{2} m_{1} \dot{x}^{2} + \frac{1}{2} m_{2} \dot{x}^{2} + \frac{1}{2} I_{0} \left(\frac{\dot{x}}{h}\right)^{2}$$

$$U = \frac{1}{2} k_{1} x^{2} + \frac{1}{2} k_{2} \left(\frac{\alpha x}{h} + x\right)^{2}$$

$$\frac{d}{dx} (T+U) = \left(m_{1} \ddot{x} + m_{1} \ddot{x} + \frac{I_{0}}{h^{2}} \ddot{x}\right) \dot{x}$$

$$+ (k_{1} x + k_{2} x + \frac{a}{h} k_{2} x) \dot{x} = -\kappa \dot{x} \dot{x} = \frac{dW}{dt}$$

$$\left(m_{1} + m_{2} + I_{0} / h^{2}\right) \ddot{x} + (k_{1} + k_{2} + \frac{a}{h} k_{2}) x + c \dot{x} = 0$$

$$C_{c} = 2 \sqrt{k_{1} m_{eff}} = 2 \sqrt{(k_{1} + k_{2} + \frac{a}{h} k_{2}) (m_{1} + m_{2} + I_{0} / h^{2})}$$

$$\frac{2-53}{x} \qquad x^{2} + y^{3} = \ell^{2}$$

$$\frac{2}{x} \qquad 2 \times x dx + 2 y dy = 0 \qquad \therefore \frac{dy}{dx} = -\frac{x}{y}$$

$$\frac{1}{y} \qquad y = -\frac{3}{4} \dot{x}$$

$$T = \frac{1}{2} (m\ell) \frac{1}{3} \left(\frac{\dot{x}}{\ell}\right)^{2} + \frac{1}{2} (m\ell) \left[\left(\frac{\dot{x}}{2}\right)^{3} + \left(\frac{\dot{y}}{2}\right)^{3}\right] + \frac{1}{2} (m\ell) \frac{\ell^{2}}{2} \left(\frac{4\dot{x}}{3} + \frac{3}{3} \frac{\dot{y}}{4}\right) + \frac{1}{2} M\dot{y}^{2}$$

$$= \frac{1}{2} (m\ell) \left\{ \frac{1}{3} \left(\frac{\dot{x}}{\ell}\right)^{2} + \left[\left(\frac{\dot{x}}{2}\right)^{3} + \left(\frac{3\dot{x}}{3}\right)^{2}\right] + \frac{1}{12} \left[\frac{4}{3} \frac{\dot{x}}{\ell} + \frac{9}{40} \frac{\dot{x}}{\ell}\right]^{2} + \frac{1}{2} M \left(\frac{3\dot{x}}{4}\right)^{2} \right\}$$

$$= \frac{1}{2} (m\ell) \left[\frac{1}{3} + \frac{1}{4} + \frac{9}{44} + \frac{1}{12} \left(\frac{16}{25} + \frac{81}{400} + \frac{72}{100}\right) \dot{x}^{2} + \frac{1}{2} M \frac{9}{16} \dot{x}^{2}\right]$$

$$= \frac{1}{2} \left[\left(.854 \, ml\right) + .5625 \, M \right] \dot{x}^{2}$$

$$U = \frac{1}{2} k y^{2} = \frac{1}{2} k \frac{9}{16} x^{2}$$

$$\frac{d}{dt} (T+U) = -C \frac{2}{3} \ell \frac{\dot{x}}{\ell} = -\frac{2}{3} C \dot{x}$$

$$(0.8541 \, m\ell + .5625 \, M) \ddot{x} + .5625 \, k \, x + \frac{2}{3} C \dot{x} = 0$$

$$\delta W = \left[-M\ell \ddot{\theta} \, \ell \, \delta \theta - k \ell \theta \, \ell \delta \theta \right] - 2 \, K \theta \cdot \delta \theta - 2 \, \frac{m\ell^2}{3} \ddot{\theta} \, \delta \theta = 0$$

$$\left(M\ell^2 + \frac{2}{3} \, m\ell^2 \right) \ddot{\theta} + \left(k\ell^2 + 2 \, K \right) \theta = 0$$

Accel of c.g. in vertical direction = 0 but work done by gravity is not zero

$$\delta y_{cg.i} = \frac{\ell_i}{2} \sin \theta_i \delta \theta_i \cong \frac{\ell_i}{2} \theta_i \delta \theta_i$$

$$y_2 = \ell_1(1-\cos\theta_1) + \ell_2(1-\cos\theta_2)$$

$$L, \theta, \cong \ell_2 \theta_L$$
, $\theta_2 = \frac{\ell_2}{\ell_2} \theta_1$: $\delta \theta_2 = \frac{\ell_2}{\ell_2} \delta \theta_1$

$$\delta y_{z} = \ell_{i}(\theta_{i} + \frac{\ell_{i}}{\ell_{z}}\theta_{i})\delta\theta_{i} = \ell(i + \frac{\ell_{i}}{\ell_{z}})\theta_{i}\delta\theta_{i}$$

$$y_{cg2} = l_1(1-coo_1) + \frac{l_2(1-coo_2)}{2} :: \delta y_{cg2} = l_1\theta_1 \delta \theta_1 + \frac{l_2}{2} Q \delta \theta_2$$

$$= l_1\theta_1 \delta \theta_1 + \frac{l_2}{2} \frac{l_1\theta_1}{l_2} \theta_1 \delta \theta_1$$

$$= l_1(1+\frac{l_1}{2l_2})\theta_1 \delta \theta_1$$

$$\begin{split} \delta w &= - \Big(\frac{m_1 \ell_1^{1/2}}{3} \Big) \ddot{\theta}_1 \, \delta \theta_1 \, - \Big(\, \frac{m_2 \ell_2^{2/2}}{12} \, \ddot{\theta}_2 \, \Big) \delta \theta_2 \, - m_1 g \, \frac{\ell_1}{2} \theta_1 \, \delta \theta_1 - m_2 g \, \ell_1 \, (1 + \frac{\ell_1}{2\ell_1}) \theta_1 \, \delta \theta_1 \\ &- k \Big[\ell_1 (1 - \cos \theta_1) + \ell_2 \, (1 - \cos \theta_2) \Big] \ell \big(1 + \frac{\ell_1}{\ell_2} \big) \theta_1 \delta \theta_1 \, = \, 0 \end{split}$$

sub
$$\ddot{\theta}_{z} = \frac{\ell_{i}}{\ell_{z}} \ddot{\theta}_{i}$$
 , $\delta \theta_{z} = \frac{\ell_{i}}{\ell_{z}} \delta \theta_{i}$, $\theta_{z} = \frac{\ell_{i}}{\ell_{z}} \theta_{i}$

$$\left[m_{i}\frac{\ell_{i}^{2}}{3} + \frac{m_{z}\ell_{z}^{2}\left(\frac{\ell_{i}}{\ell_{z}}\right)^{2}\right]\dot{\theta}_{i} + \left[m_{i}g\frac{\ell_{i}}{2} + m_{z}g\ell_{i}\left(1 + \frac{\ell_{i}}{2\ell_{z}}\right)\right]\theta_{i} = 0$$
(Spring force is 2nd order infinitesmal)

$$\frac{3-1}{\chi_{\text{res.}}} = \frac{F}{L\omega_{\text{m}}} = \frac{F\gamma}{2\pi \kappa}$$

$$C = \frac{F\gamma}{2\pi \chi_{\text{res}}} = \frac{24.46 \times 0.20}{2\pi 1.27 \times 10^{-2}} = 61.3 \frac{NS}{m}$$

$$\frac{3-2}{X \text{ undamped}} = \sqrt{\frac{(\omega_{\text{m}}^2 - \omega^2)^2 + (c\omega_{\text{m}})^2}{(\omega_{\text{m}}^2 - \omega^2)^2}} = R$$

$$\frac{1}{X \text{ dampad}} = \frac{(\omega_m \omega) + (\gamma_m)}{(\omega_m^2 - \omega^2)^2} = R$$

$$\omega_m = \frac{2\pi}{\gamma} = \frac{6.283}{.20} = 31.4/6 \qquad \omega = 8\pi = 25.13$$

$$\frac{c\omega}{m} = \frac{61.3 \times 8\pi}{1.95} = 790.7$$

$$R = \sqrt{\frac{(3/.4^2 - 25.13^2)^2 + (790.1)^2}{(3/.4^2 + 25.13^2)^2}} = 2.44$$

$$\frac{3-3}{S} = \ln 4.2 = 1.435 = \frac{2\pi \zeta}{\sqrt{1-5^2}}$$

square 4 solve for 52

$$5^2 = \frac{2.059}{41.538} = .0496$$
, $5 = .223$

$$\omega_d = \frac{2\pi}{\gamma_d} = \frac{2\pi}{1.80} = \omega_m \sqrt{1-5^2}$$
 $\omega_m = \frac{2\pi}{1.80 \sqrt{1-.0496}} = 3.5806$

$$\omega = 3$$
 $\frac{\omega}{\omega_m} = .8378$

$$E_{q}(3.1-7) \times = \frac{F_{0}/k}{\sqrt{\left[1-\frac{(\omega_{m})^{2}}{(\omega_{m})^{2}}\right]^{2} + \left[25\frac{\omega}{\omega_{m}}\right]^{2}}} = \frac{2/525}{\sqrt{\left[1-.702\right]^{2} + .1396}}$$
$$= \frac{2/525}{.4779} = .00797 \ m = .797 \ cm$$

Eq (3.1-8)

$$\phi = \tan^{-1} \frac{25(\frac{\omega}{\omega_n})}{1 - (\frac{\omega}{\omega_n})^2} = \tan^{-1} \frac{.446 \times .8378}{.29801} = \tan^{-1} 1.2538 = 51.43^{\circ}$$

$$\frac{3-4}{\left(\frac{X}{X_0}\right)^2} = \frac{1}{\left(1-\Lambda\right)^2 + 45^2 \pi} \qquad \text{where } X_0 = \frac{F}{R}$$

$$\frac{\partial}{\partial h} \left(\frac{X}{X_0}\right)^2 = \frac{2(1-\Lambda) - 45^2}{(\text{denom.})^2} = 0 \quad \text{i. } h = 1-25^2 = (\text{Ww}_m)_p^2$$

$$\frac{\partial}{\partial h} \left(\frac{X}{X_0}\right) = \frac{1-25^2}{(\text{denom.})^2} = 0 \quad \text{i. } h = 1-25^2 = (\text{Ww}_m)_p^2$$

$$\frac{(\omega)}{(\omega_m)_p} = \sqrt{1-25^2}$$
At resonance $\frac{\omega}{\omega} = 1.0 \qquad X = \frac{1}{2} = .58$

$$\frac{3-5}{A^{2}} \text{ At resonance } \frac{\omega}{\omega_{m}} = 1.0 , \quad \frac{X}{X_{0}} = \frac{1}{25} = \frac{.58}{X_{0}}$$
When $\frac{\omega}{\omega_{m}} \neq 1.0$

$$\frac{X}{X_{0}} = \frac{1}{\left[1-\Lambda^{2}\right]^{2} + \left[25\pi\right]^{2}} = \frac{.46}{X_{0}}$$
Square 4 solve for 5^{2}

$$\frac{1}{\left[1-.64\right]^{2} + \left[25\right]^{2}.64} = \frac{.21/6}{(1.165)^{2}}$$

$$6.359 \quad 5^{2} = .1296 + 2.5605^{2} \qquad 5^{2} = .034/5$$

$$5 = .1847$$

$$E_{q,3,1-17} H(\omega) = \frac{1-h^2}{\left[1-h^2\right]^2 + \left[25h\right]^2} - i \frac{25h}{\left[1-h^2\right]^2 + \left[25h\right]^2}$$

$$= R + i I$$

5= .01

h_	/- /*	$(1-n^2)^2$	25r	(251)	Den.	R	I
.20	. 9999	.9998	.0040	.000016	.99982	1.00008	004001
- 40	-840	.7056	.0080	.000064	.70566	1.19037	011337
, Y				1 1 -			<u> </u>
.90	.1900	.0361	.0180	.000324	.036424	5,2/634	494180
.44	.1164	.013549	.01880	.000353	.0 13902	8.37263	1,35228
.96	1					12.0325	-2.94676

.3	-6	Cont.
_		

.990	.01990	.000396	.01980	.000392	.000 788	25,2525	-25,1256
498		! 		!		9.6428	-48.1658
.999				į	[4,9578	-49.5535
1.000		İ				0	-50.000
1.002		1			-	-9.5881	-47.988
1.020		0.5077			_	-19.725	-9.9602
7.000	-1236	.015277	.02/2	.000449	,015726	-7.8594	-1.348

$$\frac{3-7}{m\ddot{\varkappa}_{i}} = -c\dot{\varkappa}_{i} + \&(\varkappa_{1}-\varkappa_{i})$$

 $m\ddot{x}_1 + c\dot{x}_1 + kx_1 = kX_2 \sin \omega t$

Replace excitation by $k \times_2 e^{i\omega t}$, then $x = \times_1 e^{i(\omega t - \phi)}$

 $= X_i e^{-i\phi} e^{i\omega t} \bar{X} e^{i\omega t}$

$$\overline{X}_{i} = \frac{kX_{2}}{(k-m\omega^{2})+i\omega c} = \frac{kX_{k}e^{-i\phi}}{\sqrt{(k-m\omega^{2})^{2}+(c\omega)^{2}}}$$

$$\therefore X_{1} = \frac{kX_{2}}{\sqrt{(k-m\omega^{2})^{2}+(c\omega)^{2}}}, \quad \phi = \tan^{-1}\frac{c\omega}{k-m\omega^{2}}$$

$$\frac{3-8}{m \dot{x}} = c(\dot{y} - \dot{x}) + kx$$

$$m\ddot{x} + c\dot{x} + kx = c\dot{y}$$

$$\frac{3-8 \text{ Cmt.}}{\text{ let } y = Y e^{i\omega t}} \qquad x = x e^{i(\omega t - \phi)} x = i\omega t$$

$$y = i\omega Y e^{i\omega t} \qquad = \overline{x} e^{i\omega t}$$

$$\overline{x} = \frac{i\omega Y}{t - m\omega^{2} + i\omega c} = \frac{i\omega Y}{\sqrt{(k - m\omega^{2})^{2} + (c\omega)^{2}}} = x e^{-i\phi}$$

$$x = \frac{i\omega Y}{(k - m\omega^{2})^{2} + (c\omega)^{2}} = \frac{i\omega Y}{\sqrt{(k - m\omega^{2})^{2} + (c\omega)^{2}}} = x e^{-i\phi}$$

$$x = \frac{\omega Y}{\sqrt{(k - m\omega^{2})^{2} + (c\omega)^{2}}} = \frac{ie^{-2} Y}{(k - m\omega^{2})^{2} + (c\omega)^{2}} = x e^{-i\phi}$$

$$x = \frac{\omega Y}{\sqrt{(k - m\omega^{2})^{2} + (c\omega)^{2}}} = \frac{ie^{-2} Y}{ie^{-2} + ie^{-2} + ie^{-$$

$$3-10$$

$$M\ddot{x} + C\dot{x} + kx = (me\omega^{2}) \sin \omega t = F e^{i\omega t}$$

$$Let (me\omega^{4}) \sin \omega t = F e^{i\omega t}$$

$$then x = X e^{i(\omega t - \varphi)} = Xe^{i\varphi} e^{i\omega t} = X e^{i\omega t}$$

$$(-\omega^{2}M + ic\omega + k) X e^{i\omega t} = F e^{i\omega t}$$

$$X = \frac{F}{(k - \omega^{2}M) + i(C\omega)}$$

$$3-11 \qquad \omega = \frac{120Q}{6Q} = 20 \text{ nps} = 20 \times 2\pi \text{ rad/s}.$$

$$\omega_{m} = 18 \text{ cps} = 18 \times 2\pi \text{ rad/s}. \quad \omega_{m} = 1.111$$

$$Eq. 3.2-6 \qquad \text{sin} (\sqrt{1-5^{2}}\omega_{1}t - \varphi_{1}) + \sqrt{(k-m\omega^{2})^{2} + (c\omega)^{2}}$$

$$\frac{1}{transient} = \frac{1}{(me\omega^{2}/k)} \sin(-\varphi) + \sqrt{(me\omega^{2}/k)^{2} + (2s\omega^{2})^{2}}$$

$$dt = 0, x(0) = 0$$

$$0 = -X, \sin \varphi + \frac{(me\omega^{2}/k) \sin(-\varphi)}{\sqrt{(1-(\omega^{2}\omega_{1})^{2})^{2} + [2s\omega^{2}\omega_{1}]^{2}}}$$

$$dt = 0, \dot{x}(0) = 0$$

$$\dot{x}(t) = X_{1}e^{2\pi i \pi^{2}} \left[\sqrt{1-5^{2}} \omega_{1}Co(\sqrt{1-5^{2}}\omega_{1}t - \varphi_{1}) - 5\omega_{1}\sin(\sqrt{1-5^{2}}\omega_{1}t - \varphi_{1}) \right]$$

$$+ \frac{(me\omega^{2}/k)\omega \cos((\omega t - \varphi_{1})}{\sqrt{(1-(\omega^{2}\omega_{1})^{2})^{2} + [2s\omega^{2}\omega_{1}]^{2}}}$$

$$\dot{x}(0) = 0 = X_{1}[\omega_{1}\sqrt{1-5^{2}}\cos\varphi_{1} + g\omega_{1}\sin\varphi_{1}] + \frac{(me\omega^{2}/k)\omega\cos\varphi}{(me\omega^{2}/k)\omega\cos\varphi}$$

$$(2)$$

$$from(1) \quad X_{1} \sin \varphi = \frac{(me\omega^{2}/k)\sin\varphi}{(me\omega^{2}/k)\omega\cos\varphi}$$

from(2)

$$\chi_{1}\omega_{m}\sqrt{1-S^{2}}\cos\varphi_{1}+\zeta\omega_{m}\left[\frac{(me\omega/k)\sin\omega}{(me\omega/k)\omega\cos\varphi}\right]=0$$
dividing
$$-\sqrt{1-S^{2}}\sin\varphi$$

$$\frac{-\sqrt{1-5^2} \sin \varphi}{5 \sin \varphi} = \frac{-\sqrt{1-5^2} \sin \varphi}{5 \sin \varphi} = \frac{(3)}{\omega_m} \cos \varphi$$

at
$$t = \infty$$
, transient term = 0 due to $e^{-5\omega_{m}t}$

: final ampl. =
$$\chi(\infty) = \frac{(me \omega/k) \sin (\omega t - \varphi)}{\sqrt{[1-(\frac{\omega}{\omega_m})^2]^2 + [25 \frac{\omega}{\omega_m}]^2}}$$

phase
$$\varphi$$
 can then be solved from $\tan \varphi = \frac{25 \frac{\omega}{\omega_n}}{1 - (\frac{\omega}{\omega_n})^2} = \frac{\cdot 2(1.111)}{1 - (1.111)^2}$
= $- \cdot 94755$... $\varphi = -43.457^{\circ}$ Eq. (3.1-5)

Then
$$\phi$$
, solved from (3) $tan \phi$, = -.7820, ϕ , = 142°
Then solve for X, and sub. into Eq.(3.2-6) for build up eq.

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$
 where $k = \frac{48EI}{l^3}$, $I = \frac{\pi d^4}{64}$

$$k = \frac{48(29 \times 10^{2}) \pi (\frac{1}{2})^{4}}{(24)^{3} \times 64} = 309. \frac{16}{10}$$

$$.486.m = \frac{.486(.283)^{\frac{17}{4}(\frac{1}{2})^{2}(24)} = .648}{386}$$

$$m = \frac{10}{386} + \frac{1648}{386} = \frac{10.65}{386}$$

$$f = \frac{1}{2\pi} \sqrt{\frac{309 \times 386}{10.65}} = 16.84$$
 Cps = 1028 npm

$$\frac{3-13}{W} = 10 \text{ lb} = 44.48 \text{ N} \qquad m = \frac{44.48}{9.81} = 4.534 \text{ kg}$$

$$g = 386 \frac{m}{\text{Sec}} = 9.81 \text{ m/s}^2$$

$$f = \frac{48E\Gamma}{L^3} = \begin{cases} E = 200 \times 10^9 \text{ N/m}^2 \\ \ell = 2 \times .3048 = .6096 \text{ m} \\ d = .5 \times 2.54 \times 10^2 = 1.270 \times 10^{-2} \text{ m} \end{cases}$$

$$f = \frac{\pi d^4}{64} = .1277 \times 10^{-8}$$

$$f = \frac{200 \times 10^9 \times 48 \times .1277 \times 10^{-8}}{(.6096)^3} = 54116 \text{ N/m}$$

$$\frac{1.486 \text{ m}_{\text{sheft}}}{(.6096)^3} = .486 \times \frac{\pi}{4} (1.270 \times 10^2)^2 (.6096) \times (? = .2938)$$

$$f = \frac{1}{2\pi} \sqrt{\frac{54116}{4.534 + .2938}} = 16.86 \text{ Hz}$$

$$\frac{3-14}{dia} = 2.54 \text{ cm} \qquad I = \frac{\pi d^4}{64} = \frac{\pi \times 41.62}{64 \times 100^4} = 2.043 \times 10^8 \text{ m}^4$$

$$f = \frac{48E\Gamma}{L^3} = \frac{48(200 \times 10^9) 2.043 \times 10^8}{4064^2} = 2.922 \times 10^6 \text{ N/m}$$

$$m = 13.6 + .486 \left(\frac{\pi}{4} \times .0254 \times .4064\right) (7830) = 13.6 + .784$$

$$= 14.38 \text{ kg}$$

$$f_m = \frac{1}{2\pi} \sqrt{\frac{2.922 \times 10^6}{14.38}} = 71.74 \text{ Hz} = 430.4 \text{ Npm}$$

$$\frac{\omega}{\omega_m} = \frac{6.000}{4304} = 1.394 \qquad h = \frac{e\left(\frac{\omega}{\omega_m}\right)^2}{1-\left(\frac{\omega}{\omega_m}\right)^2} = -2.060 \text{ e}$$

$$me = .2879 \text{ kg cm} (9100) \qquad \therefore e = \frac{.2879}{13.6} = .02117 \text{ cm}$$

$$h = -2060 (.02117) = -.04316 \text{ cm}$$

$$F = m(1+e)\omega^2 = 14.38(-.04316 + .02117)(2\pi \times 100)^2 = 12.73 \text{ N}$$

$$\frac{3-14 \text{ Cont.}}{\text{for diam.}} = 1.905 \text{ cm}$$

$$.486 \text{ M}_{\text{shaft}} = .486 \left(\frac{T}{4} \times .01905^{2} \times .4064\right) \left(7830\right) = .4408$$

$$m = m_{\text{disk}} + .483 \text{ m}_{\text{shaft}} = 14.04 \text{ kg.}$$

$$\bar{I} = \frac{T}{64} 1.905 \times 100^{4} = .6464 \times 10^{-8}$$

$$R = 48 \left(200 \times 10^{9}\right) .6464 \times 10^{-8} = 0.6441 \times 10^{6}$$

$$k = \frac{48 (200 \times 10^{9}) \cdot 6464 \times 10^{-8}}{\cdot 4064^{3}} = 0.9441 \times 10^{6}$$

$$f_{\rm m} = 41.27 \ Hz = 2476 \ rpm \qquad \frac{\omega}{\omega_{\rm m}} = \frac{6000}{2476} = 2.423$$

$$h = \frac{02/17(2.423)^2}{1 - (2.423)^2} = -.02552 \qquad he = .00435$$

$$F = 14.042 \left(\frac{.00435}{100} \right) \left(2\pi \times \frac{600}{60} \right)^2 = 241.1 \text{ N}$$

$$n = n_0 + \frac{e\omega t}{2}$$
 (see Ex. 3.4-1)

$$t = \frac{.0508}{6.6602} = .0075 \text{ sec}$$

$$\frac{-16}{m\ddot{x} = -k(x-y)} \quad \text{where } x = displ. of n$$

 $m\ddot{x} = -k(x-y)$ where x = displ. of m measured from static equilib. in $2\pi Vt$ position of m with y = 0Let y = Y sin & TT Vt

then
$$m\ddot{\chi} + k\chi = kY\sin\frac{2\pi Vt}{Lt} = kY\sin\omega t$$

where $\omega = \frac{2\pi V}{L}$ Solis $\chi = X\sin\omega t$

$$\chi = \frac{\gamma}{1 - (\omega/\omega_n)^2} \qquad \omega_n = \sqrt{\frac{k}{m}}$$

The most unfavorable speed corresponds to $\frac{\omega}{\omega_n} = 1$

$$\therefore \quad V = \frac{\angle}{2\pi} \sqrt{\frac{k}{m}}$$

$$\frac{3-17}{Eq.(2.2-9)} \qquad \left(\begin{array}{c} \text{Ref. Prob } 3-16 \end{array} \right)$$

$$Eq.(2.2-9) \qquad \int_{m} = \frac{15.76}{\Delta_{mm}} = \frac{15.76}{\sqrt{101.6}} = 1.563 \quad H_{Z}$$

$$\omega_{m} = 2\pi f_{m} = 9.824 \quad h/s$$

$$V_{crit.} = \frac{L}{2\pi} \omega_{m} = \frac{14.63}{2\pi} \times 9.82 = 22.87 \quad m/s.$$

$$V \qquad 64.4 \quad \lim_{m} = \frac{64400}{60^{2}} = 17.89 \quad m/s$$

$$\omega = \frac{2\pi V}{L} = \frac{2\pi 17.89}{14.63} = 7.683 \quad h/s$$

$$\left(\frac{\omega}{\omega_{m}} \right)^{2} = \left(\frac{7.683}{9.824} \right)^{2} = 0.6177 \quad X = \frac{7.62 \text{ cm}}{1 - .617} = 19.62 \text{ cm}$$

$$\therefore X = \frac{X_0}{1 - (\omega/\omega_m)^2} \qquad \omega_m = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}}$$
when $\omega = (2 \omega_m) \qquad X = -X_0$

$$\therefore \text{ mode found at } \frac{1}{2}$$

$$\frac{1}{|X|} = \frac{1 - h}{|X_0|}$$

$$\frac{1}{|X|} = \frac{1 - h}{|X_0|} = 1 \quad \text{since } \frac{\omega}{\omega_m} > 1$$

$$\frac{1}{|X|} = \frac{1 - h}{|X_0|} = 1 \quad \text{since } \frac{\omega}{\omega_m} > 1$$

$$\frac{1}{|X_0|} = \frac{1 - h}{|X_0|} = 1 \quad \text{since } \frac{\omega}{\omega_m} > 1$$

$$\frac{1}{|X_0|} = \frac{1 - h}{|X_0|} = 1 \quad \text{since } \frac{\omega}{\omega_m} > 1$$

 $\frac{3-19}{m\ddot{x}+c\dot{x}+kx=c\ddot{y}+ky}$

y=Ysinwt

 $x = X \sin(\omega t - x)$

 $\dot{\chi} = \omega x \cos(\omega t - 7)$

y = wy conwt

 $\dot{x} = -\omega^2 x \sin(\omega t - 74)$

Sub. into DE.

(R-mw) X sin (wt-x) + cwx cos(wt-x) = cwY cosut + kY sin wt

Expand Sin (wt-4) 4 cos (wt-4) 4 equate coef of cowt + sinut

coef. of sinut -> [(k-mw2)cos4 + wcsin4]x = ky

" " cosut → [(k-mw)sing - wc cosy]X = - wcY

Divide & factor cosy from num. + denom. to get

$$\tan y = \frac{mc \, \omega^3}{k(k-m\omega^2) + (c\omega)^2} = E_{q_1}(3.5-q)$$

Solve for sing 4 cos 4 4 sub. into

$$\frac{X}{Y} = \frac{k}{(k-m\omega^2)^2 + \omega c \sin y} = \sqrt{\frac{k^2 + (\omega c)^2}{(k-m\omega^2)^2 + (c\omega)^2}} = Eq.(3.5-8)$$
after much algebra

See Sec. (3.6) $f = 15.76 \sqrt{\frac{1}{\triangle} (\frac{1}{TR} - 1)}$ $\frac{1600}{60} = 15.76 \sqrt{\frac{1}{\triangle} (\frac{1}{\cdot 15} - 1)}$

Solve for D = 2.678 mm.

Forf= 2200 cpm the FTR is smaller

 $\frac{3-21}{\left(\frac{\omega}{\omega_m}\right)^2-1} = 0.10 \qquad \left(\frac{\omega}{\omega_m}\right)^2 = 11.0$

 $\omega_n^2 = \frac{k}{m} = \frac{\omega^2}{11.0}$ $k = \frac{m\omega^2}{11} = \frac{65}{386} \left(\frac{580 \times 27}{60}\right)^2 \frac{1}{11} = 56.5 \frac{16}{11}$

Reperspring = 1 x 56,5 = 18,8 6/in

$$\frac{3-22}{k} = \frac{Mg}{\Delta} = \frac{453.4 \times 9.81}{.005080} = 875561 \frac{N}{m} = 8755.6 \frac{N}{cm}$$

$$\omega_{m}^{2} = \frac{k}{M} = \frac{8755.6 \times 10^{2}}{453.4} = 1931.1$$

$$\left(\frac{\omega}{\omega_{m}}\right)^{2} = \left(\frac{1200 \times 277}{60}\right)^{2} \frac{1}{1931.1} = 8.177$$

$$\times = \frac{me}{M} \left(\frac{\omega}{\omega_{m}}\right)^{2} = \frac{2303}{8.177 - 1} \times 8.177 = 0.000579 \text{ m}$$

$$F_{TR} = k \times = 875561 \times .000679 = 506.7 \text{ N}$$

$$\frac{3-23}{453.4} = 875561 \times .000679 = 506.7 \text{ N}$$

New M = 453.4 + 1136, = 1589.4 kg New R = 87556/ x 1589A = 3069.295 x 10 N $\frac{\omega}{\omega}$ is same $X = \frac{me}{M} \frac{\left(\frac{\omega}{\omega_m}\right)^2}{\left(\frac{\omega}{\omega_m}\right)^2 - 1} = \frac{453.4}{1589.4} \times .000579 = 0.165 \times 10^{-3}$

M = 68 + 1200 = 1268 kg.

 $f_m = 160 \text{ cpm}$ $\omega_n = \frac{160}{60} \times 217 = 16.75 \text{ m/s}$ $\frac{\omega}{\omega_{\rm m}} = \frac{31.4}{16.75} = 1.8746$ $k = \omega_{\rm m}^2 M = 355951 \frac{N}{m}$ $X = \frac{100 / 0.3559 \times 10^{6}}{\left[1 - 1.875^{2}\right]^{2} + \left[0.2 \times 1375\right]^{2}} = 1/0.5 \times 10^{6} \text{ m}$

 $F_{T0} = k \times \sqrt{1 + (25 \frac{\omega}{\omega})^2} = .3559 \times 10^6 \times 110.5 \times 10^6 \sqrt{1 + .1406}$ - 42.0 N

$$\omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{280200}{113}} = 49.796$$

$$\omega = 217 \times 20 = 125.6$$
 $\frac{\omega}{\omega_m} = 2.5236$

Accel. =
$$15.24 = \omega^2 Y$$
 .', $Y = .000965$ cm

$$\left|\frac{X}{Y}\right| = \frac{\sqrt{1 + \left[.2 \times 2.5236\right]^2}}{\sqrt{\left[1 - 6.368\right]^2 + .2547}} = 0.2078$$

$$\omega^2 X = 3.166 \text{ cm/s}^2 = \text{transmitted accel.}$$

3-26 Add mass M to instrument i's increase W/wn

X must be reduced to $\left(\frac{2.03}{3.166}\right)$.0002005 = .0001285

$$\frac{X}{Y} = \frac{/285}{9650} = \frac{\cdot/332}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left(\frac{2\omega}{\omega_n}\right)^2}$$

Solve by trial: for
$$\frac{\omega}{\omega_m} = 3$$
, $\sqrt{} = ./32/$
for $\frac{\omega}{\omega_m} = 4$ $\sqrt{} = .0893$

both of these are OK

For
$$\frac{\omega}{\omega_m} = 4$$
 $\omega_m = 31.4 = \sqrt{\frac{k}{M_1 + M_0}} = \sqrt{\frac{280200}{M_1 + M_0}}$

 $M_i + M_o = 284$. .. $M_o = 171$, kg to be added.

3-27 Compare Eq.(3.5-8) with Eq.(3.6-2). They are same
$$TR = \sqrt{\frac{1 + (25\frac{\omega}{\omega_n})^2}{\left[1 - (\frac{\omega}{\omega_n})^2\right]^2 + \left[25\frac{\omega}{\omega_n}\right]^2}}$$
To calculate 20 log | TR|, first calculate TR with 5 fixed, varying $\frac{\omega}{\omega_m}$. Then find Db. Suggest computer program.

$$\frac{3-28}{\omega_m} = \pi c \omega x^2 = \pi 25\frac{\omega}{\omega_m} k x^2$$

$$\frac{3-28}{W_d} = \pi \kappa \omega \chi^2 = \pi 25 \frac{\omega}{\omega_m} k \chi^2$$

$$= \frac{\pi F^2}{k} \frac{25 \left(\frac{\omega}{\omega_m}\right)}{\left[1 - \left(\frac{\omega}{\omega_m}\right)^2\right]^2 + \left[25 \frac{\omega}{\omega_m}\right]^2}$$

$$\frac{3-30}{\chi} = \frac{\chi}{25} + 25\omega_{m}\dot{\chi} + \omega_{m}^{2}\chi = \frac{F}{m}\sin\omega t$$

$$\chi_{res.} = \frac{F}{25k} \qquad From Prob. 3-29 \qquad \eta_{res} = \frac{C\omega}{k} = \frac{C\omega_{m}}{k} \quad \text{at resonan.}$$

$$= \frac{C}{C_{c_{1}}} \frac{2m\omega^{2}}{k} = 25$$

$$\therefore \dot{\chi} + \eta_{nes.} \omega_{m} \dot{\chi} + \omega_{m}^{2}\chi = \frac{F}{m}\sin\omega t$$

$$\frac{3-3/}{\gamma_m} = \frac{\gamma_m}{\omega_d} = \frac{1}{\sqrt{1-\zeta^2}} \qquad \therefore \left(\frac{\gamma_m}{\gamma_d}\right)^2 = 1-\zeta^2$$

$$\left(\frac{\gamma_m}{\gamma_d}\right)^2 + \zeta^2 = 1 = \text{circle of radius } 1$$

$$\frac{3-32}{\overline{U}} = \frac{2\xi \pi k X^{2}}{\frac{1}{2}k X^{2}} = 45\pi$$

$$but S = 2\pi 5 \quad \therefore \quad \frac{Wa}{\overline{U}} \cong 2\delta , \qquad 5 = \frac{C}{2m\omega_{m}}$$

$$\delta = \frac{C\pi}{m\omega_{m}} = \frac{C\pi\omega_{m}}{k} = \frac{W_{d}}{2U}$$

$$3-33 \qquad W_d = f(X,\omega) = \pi C \omega X^2$$

$$\delta = \frac{W_d}{2D} = \frac{\pi C \omega X^2}{R X^2} = \frac{\pi C \omega}{R} \qquad \text{for viscous damping}$$

$$3-34 \qquad W_d = C_q \pi \omega X^2 = D + X \qquad \text{for Coulomb}$$

$$C_{eq} = \frac{dD}{\pi \omega X} \qquad \sum_{eq} = \frac{C_q}{C_c} = \frac{+D}{\pi \omega X} 2\pi \omega_m$$

$$2\sum_{eq} \frac{\omega}{\omega_m} = \frac{dD}{\pi \omega X} 2\pi \omega_m \frac{2\omega}{\omega_m} = \frac{dD}{\pi k X}$$

$$3-35 \qquad X = \frac{F_0/k}{\left[1-\left(\frac{\omega}{\omega_m}\right)^2\right]^2 + \left[\frac{dD}{d_m}\right]^2} \qquad 2\sum_{eq} \frac{\omega}{\omega_m} = \frac{dD}{\pi k X}$$

$$Square both sides and subst for \sum_{eq} \frac{2}{L_q \omega_m} = \frac{dD}{\pi k X}$$

$$X^2 \left[1-\left(\frac{\omega}{\omega_m}\right)^2\right]^2 + \left[\frac{dD}{\pi k X}\right]^2\right] = \left(\frac{F_0/k}{\pi k}\right)^2$$

$$X^2 \left[1-\left(\frac{\omega}{\omega_m}\right)^2\right]^2 = \left(\frac{F_0/k}{k}\right)^2 - \left(\frac{4D}{\pi k}\right)^2$$

$$X = \frac{\left(\frac{F_0/k}{L_q}\right)^2 - \left(\frac{4D}{\pi k}\right)^2}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{\left(\frac{F_0/k}{L_q}\right)^2 - \left(\frac{4D}{\pi k}\right)^2}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{\left(\frac{F_0/k}{L_q}\right)^2 - \left(\frac{4D}{\pi k}\right)^2}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{1-\frac{A}{L_q}D}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{1-\frac{A}{L_q}D}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{1-\frac{A}{L_q}D}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{1-\frac{A}{L_q}D}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{1-\frac{A}{L_q}D}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{1-\frac{A}{L_q}D}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{1-\frac{A}{L_q}D}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{1-\frac{A}{L_q}D}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{1-\frac{A}{L_q}D}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{1-\frac{A}{L_q}D}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{1-\frac{A}{L_q}D}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{1-\frac{A}{L_q}D}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{1-\frac{A}{L_q}D}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{1-\frac{A}{L_q}D}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{1-\frac{A}{L_q}D}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{1-\frac{A}{L_q}D}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{1-\frac{A}{L_q}D}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{1-\frac{A}{L_q}D}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for } X \text{ real}$$

$$X = \frac{1-\frac{A}{L_q}D}{1-\left(\frac{\omega}{\omega_m}\right)^2} \qquad \text{for }$$

$$\frac{Z}{Y} = \frac{\kappa^2}{\sqrt{(1-\kappa^2)^2 + (2\zeta\kappa)^2}}$$

$$\frac{Z}{Y} = \frac{\Lambda^2}{\sqrt{(1-\Lambda^2)^2 + (25\pi)^2}} \qquad \left(\frac{Z}{Y}\right)^2 = \frac{\left(\Lambda^2\right)^2}{\left(1-\Lambda^2\right)^2 + (25\pi)^2}$$

$$\frac{\partial}{\partial n^2} \left(\frac{Z}{Y} \right) = 0 \quad gives$$

$$\frac{\partial}{\partial n^2} \left(\frac{Z}{Y} \right) = 0 \quad gives \qquad r_p^2 = \frac{1}{1 - 25^2} \quad \text{for peak ampl.}$$

for (a)
$$\frac{Z}{Y} = 1.010$$

for (a)
$$\frac{Z}{Y} = 1.010$$
 Write above eq. as $R^4[1-(\frac{Y}{Z})^2]-R^2(2-45^2)+1=0$

For accuracy expand
$$1-(\frac{Y}{2})^2$$

$$= 1-\frac{1}{(\frac{Z}{2})^2} = 1-\frac{1}{(1+.01)^2}$$

$$= 1-(1+.01)^2 = 1-(1-.02+.0003-...)$$

$$= 0.0197 \qquad (2-45)=0.310$$

$$\frac{\omega}{\omega_m} = n = \begin{cases} 2.125 \\ 3.350 \end{cases}$$

:. Lowest freq. for 1% accuracy = 3.35 x 4.75 = 15.9 cps.

(b) For 2% above plot indicates we must use
$$\frac{Z}{Y} = 0.98$$

-0.0412 $R^4 - 0.310 R^2 + 1 = 0$, $\Lambda = 1.57$

$$Z = \frac{\left(\frac{\omega}{\omega_m}\right)^2 Y}{1 - \left(\frac{\omega}{\omega_m}\right)^2} \qquad Y = Z\left[\left(\frac{\omega}{\omega}\right)^2 - 1\right]$$
$$= 0.052\left[\left(\frac{1}{4}\right)^2 - 1\right] = -0.0488 \text{ cm}$$

sensitivity = 0.096 rms volts/cm per sec. 0.024 rms volts measured : comperses vel = .024 = 0,250 $\omega = 2\pi \times 30 = 188,49 \text{ M/s}.$

(a)
$$Vel = 0.250 = \omega \% = 188.49 \% cm. $\chi = 0.001326 \text{ nms, cm.}$$$

(b) ampl = 0.40 cm peak cannot be used since 0.40 cm exceeds clearance of 0.30 cm

3-41 sensitivity = 40 mu/cmpers. accel = w2 Y 19 accel = 9.81 m/s2 = 981 cm/s2 $w = \omega Y$. (a) at 10 cps $\omega = \lambda \pi_{10} = 62.83 \text{ A/s}$ $\omega Y = \frac{981}{42.83} = 15.6/$ cm/s. Output volts = 40 x 15.61 = 624.5 mv (b) at 2000 cps $\omega = 12566$ $\omega Y = \frac{981}{12566} = 0.07806$ cm/s. Output volts = 40x,07806 = 3.123 mm 3-42 For vel. pick-up $\frac{\omega}{\omega} >> 1$... Z = YVolts generated by instrument = $\omega Z = \omega Y$ 3-43 Sensitivity = 30 mv/cm. pers. 3 mv = accuracy Limit = 30 (wz) : wz = 0.10 cm/s = Limiting vel, $N_{\perp} = 0.10 = \frac{981}{2\pi f}$: f = 1561 cps = upper freq. Limit. At f = 200 $N = \frac{981}{277900} = 0.7807$ instr. reading = 30 x . 7807 = 23.42 mv. $C = 450 \ pF$ $Q = 18 \ pC/q$ Ccable = 5 × 50 = 250 pF $E = \frac{Q}{C} = \frac{18}{4.50} = 0.040 \text{ volts/g} = 40 \text{ mv/g} \frac{\text{open}}{\text{circuit}}$ With cable

$$E = 40 \times \frac{450}{450 + 250} = 25.7 \text{ m/g}$$

$$\frac{3-45}{U} = \frac{2\pi c \omega \chi^{2}}{\frac{1}{2}k \chi^{2}} = \frac{2\pi c \omega}{k}$$

$$c = \zeta c_{c} = \zeta 2 k m$$

$$\frac{Wa}{U} = 2\pi \cdot 25 k m \cdot \frac{\omega}{k} = 4\pi \zeta \frac{\omega}{\omega_{m}}$$

$$3-46$$

$$\frac{3-46}{U} = 4\pi \zeta \frac{\omega}{\omega_m} , \qquad 5 \approx \frac{S}{2\pi}$$
$$= 2 S \frac{\omega}{\omega_m}$$

$$\eta = \frac{W_d}{2\pi U} = \frac{1}{2\pi} \left(4\pi 5 \frac{\omega}{\omega_n} \right) = 25 \frac{\omega}{\omega_n}$$
but $25 = 7$ at resonance
$$\therefore \eta = 7 \frac{\omega}{\omega_n} = 7 \text{ at resonance}$$

3-48

Eq. (4.1-6) for impulsive response
$$\chi = \frac{\hat{F}}{m\omega_{m}\sqrt{1-5^{2}}} e^{-5\omega_{m}t} \sin \gamma_{1}-5^{2} \omega_{m}t$$

$$\frac{dy}{dt} = \frac{\hat{F}}{m\omega_{m}\sqrt{1-5^{2}}} e^{-5\omega_{m}t} \left\{ -5\omega_{m}\sin\sqrt{1-5^{2}}\omega_{m}t + \sqrt{1-6^{2}}\omega_{m}eos\sqrt{1-5^{2}}\omega_{m}t \right\} = 0$$
i. $\tan\sqrt{1-5^{2}}\omega_{m}t = \frac{\sqrt{1-5^{2}}}{5}$

Let
$$\theta = \sqrt{1-5^2} \omega_n t$$

$$tan \phi = \frac{\sqrt{1-5^2}}{5} from Prob 4-1$$
Sin $\phi = \sqrt{1-5^2}$

$$\frac{xk}{F_0} = 1 - \frac{e^{-5\omega_n t}}{\sqrt{1-5^2}} \cos(7-5^2\omega_n t - 24)$$

$$\tan y = \frac{5}{\sqrt{1-5^2}}$$
 For peak response $\frac{d}{d(\omega_t)}(\frac{\chi k}{F_0}) = 0$

$$tan \sqrt{1-5^2} \omega_n t \left[1+\frac{5^2}{1-5^2}\right] = tan \sqrt{1-5^2} \omega_n t = 0$$
 ... $\omega_n t = \frac{\pi}{\sqrt{1-5^2}}$

$$\frac{4-4}{\left(\frac{xk}{F_o}\right)} = 1 - \frac{1}{1-5^2} \exp\left(\frac{-5\pi}{\sqrt{1-5^2}}\right) \cos\left(\pi - \psi\right)$$

$$= 1 + \frac{1}{1-5^2} \exp\left(\frac{-5\pi}{\sqrt{1-5^2}}\right) \cos\psi$$

$$\left(\frac{xk}{F_o}\right)_{peak} = 1 + \exp\left(\frac{-5\pi}{\sqrt{1-5^2}}\right)$$

$$\left(\frac{xk}{F_o}\right)_{peak} = 1 + \exp\left(\frac{-5\pi}{\sqrt{1-5^2}}\right)$$

$$\frac{4-5}{k} \quad \text{From Ex. 4.2-1} \quad \chi = \frac{F_0}{k} (1 - \text{cosumt}) \quad t \ge 0$$
For neg. step of 2Fo applied at $t = t_0$, we have
$$\chi = -\frac{2F_0}{k} \left[1 - \text{cosum}(t - t_0) \right] \quad t \ge t_0$$

Adding
$$x = \frac{F}{k} \left\{ \cos \omega_n(t-t_0) - \cos \omega_n t \right\} \qquad t \ge t_0$$

4-6 With zero initial cond. Eq. 4.2-1 gives $\chi(t) = \int f(\xi) \sin \omega_m (t-\xi) d\xi = particular integral$ Solution for homogeneous eq. is from Eq. 2.2-6 $\chi(t) = \frac{\dot{\chi}(0)}{\omega_m} \sin \omega_m t + \chi(0) \cos \omega_m t$ Complete sol. is sum of these solutions

4-7. From Eq. 4.2-1 response to unit step function is $g(t) = \int_{0}^{t} h(t-\xi)d\xi$ Differentiate both sides w.r.t. time

$$\hat{g}(t) = R(t)$$

$$\frac{4-8}{From} P_{rob} 4-7 \quad g'(t-s) = k (t-s)$$

$$x(t) = \int_{0}^{t} f(s) g'(t-s) ds \quad \text{Integrate by parts}$$

$$x(t) = -f(s) g(t-s) \Big|_{0}^{t} + \int_{0}^{t} f(s) g(t-s) ds$$

$$= -f(t) g(0) + f(0) g(t) + \int_{0}^{t} f(s) g(t-s) ds$$

$$= -f(t) g(0) + f(0) g(t) + \int_{0}^{t} f(s) g(t-s) ds$$

$$= -f(t) g(0) + \int_{0}^{t} f(s) g'(t-s) ds$$

$$\frac{4-9}{x} = \frac{(ms+c) x(0) + m x(0)}{ms^{2} + cs + k}$$

$$= \frac{(s+25\omega_{m}) x(0)}{s^{2} + 25\omega_{m} s + \omega_{m}} + \frac{x(0)}{s^{2} + 15\omega_{m} s + \omega_{m}}$$

$$\frac{d}{s^{2} + 15\omega_{m} s + \omega_{m}} = \frac{derivative of above}{s^{2} + 25\omega_{m} s + \omega_{m} s +$$

$$\frac{4-11}{\ddot{\chi}} = F_0 \sin \frac{\pi}{t} t$$

$$\ddot{\chi} + \omega_m^2 \chi = \frac{F_0}{m} \sin \frac{\pi}{t} t$$

$$Gen Sol. \quad \chi(t) = A Sin \omega_t + B Cos \omega_t + \frac{F_0/m}{1 - \left(\frac{\pi}{t_i}\omega_m\right)^2}$$

$$For \quad \chi(0) = \dot{\chi}(0) = 0, \quad B = 0 \quad \text{and} \quad A = \frac{-F_0/m}{1 - \left(\frac{\pi}{t_i}\omega_m\right)^2}$$

$$W_1 th. \quad \frac{\pi}{t_i \omega_m} = \frac{\pi}{t_i} \frac{\gamma}{2\pi} = \frac{\gamma}{2t_i}$$

$$\chi(t) = \frac{F_0}{m} \left\{ \frac{-\hat{\chi}}{1 - \left(\frac{\gamma}{2t_i}\right)^2} + \frac{\sin \frac{\pi t}{t_i}}{1 - \left(\frac{\gamma}{2t_i}\right)^2} \right\}$$

$$= \frac{F_0/m}{\gamma_{2t_i} - \frac{\gamma}{2t_i}} \left\{ \sin \frac{\pi t}{\gamma} - \frac{\gamma}{2t_i} \sin \frac{\pi t}{t_i} \right\}$$

$$= \frac{F_0/m}{\gamma_{2t_i} - \frac{\gamma}{2t_i}} \left\{ \sin \frac{\pi t}{\gamma} - \frac{\gamma}{2t_i} \sin \frac{\pi t}{t_i} \right\}$$

$$t < t_i$$

For t>t, add same solution with t replaced by (t-t,)

4-12 The triangular force can be represented by

$$F_{i} = \frac{2F_{i}}{t_{i}}t \qquad 0 < t < \frac{t}{2}$$

$$F_{i} = -\frac{4F_{i}}{t_{i}}(t - t_{i/2}) + F_{i} \qquad t_{i/2} < t < t,$$

$$F_{i} = \frac{2F_{i}}{t_{i}}(t - t_{i}) + F_{i} \qquad t_{i} < t$$

Diff. Eq. for oct < til2 is

$$\frac{\ddot{\chi} + \omega_m \chi}{\chi(s)} = \frac{\chi_{mt}}{mt}, t = \left(\frac{2\omega_m^2 F_0}{kt}\right)t = Ct$$

$$\frac{\ddot{\chi}(s)}{\chi(s)} = \frac{C}{s^2(s^2 + \omega_m^2)} \quad \therefore \quad \chi(t) = \frac{C}{\omega_m^2}(\omega_n t - \sin\omega_n t) = \frac{\chi_{mt}}{k}\left(\frac{t}{t} - \frac{\gamma}{2\pi t}, \sin 2\pi t\right)$$

For F, additional excitation is -2Ct + Ct, = -2C(t-t/2)

Thus x,(t) must be supplimented by -2 x, (t-ti/2)

$$\chi_{\chi}(t) = \chi_{\chi}(t) - 2\chi_{\chi}(t - \pm t)$$
 $\pm t, < t < t,$

For F3 the excitation in addition to F2 is C(t-t,)

$$\chi_3(t) = \chi_2(t) + \chi_1(t-t_1)$$
 $t_1 < t$

$$\chi = \chi(0) \cos \omega_n t + \frac{\dot{\chi}(0)}{\omega_m} \sin \omega_n t$$

$$\dot{\chi} = -\omega_n \chi(0) \sin \omega_n t + \dot{\chi}(0) \cos \omega_n t$$

When returned to initial position

$$-\delta_{st} = -\delta_{st} \cos \omega_n t + \frac{v_o}{\omega_m} \sin \omega_n t$$
 \(\frac{1}{2} \text{ by con } \omega_n t \) \(\frac{1}{2} \text{ the two eqs.} \)
$$-v_o = \omega_n \delta_{st} \sin \omega_n t + v_o \cos \omega_n t$$
\(\frac{1}{2} \text{ the two eqs.} \)

$$\frac{\delta_{st}}{v_o} = \frac{-\delta_{st} + \frac{v_o}{\omega_m} \tan \omega_m t}{\omega_m \delta_{st} \tan \omega_m t + v_o}, \quad \tan \omega_m t = \frac{2 \delta_{st} \omega_m v_o}{v_o^2 - \delta_{st}^2 \omega_m^2}$$

$$\tan \omega_n t = \frac{\sqrt{\frac{m}{R}} gS}{S - \frac{gm}{4R}} \qquad \qquad \omega_n^{2} = \frac{k/m}{s}$$

$$S_{st} = \frac{g}{\omega_n^{2}} \qquad N_0 = \sqrt{gS}$$

$$\Delta = \frac{38.6}{6.40} = 6.04'', \quad M_{ax} \, displ. = 2\Delta = 12.08''$$

$$\omega_m = \sqrt{\frac{6.40 \times 386}{88.6}} = 8.0 \, rad/s, = \frac{2\pi}{\gamma}$$

$$\gamma = \frac{2\pi}{8} = 0.784 \, s. \quad t_{max} \, displ = \frac{1}{z} = 0.392 \, s.$$

$$\frac{A-15}{m \ddot{x} = -k(x-y)-f}$$
Let $z = x-y$

$$\ddot{z} + \omega_m^2 z = -\ddot{y} - \frac{f}{m}$$

$$Gen Sol. from Eq. (4.2-5) is$$

$$Z = \frac{1}{\omega_m} \int \begin{bmatrix} \ddot{y}(\xi) + f_m \end{bmatrix} \sin \omega_m(t-\xi) d\xi$$

$$= -\frac{N_0}{\omega_m} \int \left[S(t) - \frac{f}{t_1} + \sqrt{f_m} \right] \sin \omega_m(t-\xi) d\xi$$

$$= \frac{N_0}{\omega_m} \int \left[S(t) - \frac{f}{t_1} + \sqrt{f_m} \right] \sin \omega_m(t-\xi) d\xi$$

$$= \frac{N_0}{\omega_m} \int \left[S(t) - \frac{f}{t_1} + \sqrt{f_m} \right] \sin \omega_m(t-\xi) d\xi$$

$$\frac{A-16}{dt} = \frac{v_{0}}{\omega_{m}} \left\{ \frac{f}{f} \left(1 - \frac{ft}{ft} \right) \operatorname{Sen} \omega_{m} t - \omega_{m} (o_{0} \omega_{m} t) \right\} = 0$$

$$\frac{dz}{dt} = \frac{v_{0}}{\omega_{m}} \left\{ \frac{f}{f} \left(1 - \frac{ft}{ft} \right) \operatorname{Sen} \omega_{m} t - \omega_{m} (o_{0} \omega_{m} t) \right\} = 0$$

$$\frac{dz}{dt} = \frac{v_{0}}{\omega_{m}} \left\{ \frac{f}{f} \left(1 - \frac{ft}{ft} \right) \operatorname{Sen} \omega_{m} t - \omega_{m} (o_{0} \omega_{m} t) \right\} = 0$$

$$\frac{dz}{dt} = \frac{u_{m}t_{f}}{(u_{m}t_{f})^{2} + \left[1 - \frac{ft}{ft} \right] \operatorname{Mov}_{0}^{2}}}{\left[(u_{m}t_{f})^{2} + \left[1 - \frac{ft}{ft} \right] \operatorname{Mov}_{0}^{2} \right]^{2}} + \frac{u_{m}t_{f}}{\left[(u_{m}t_{f})^{2} + \left[1 - \frac{ft}{ft} \right] \operatorname{Mov}_{0}^{2} \right]^{2}} \right\} - \frac{u_{m}t_{f}}{\left[(u_{m}t_{f})^{2} + \left[1 - \frac{ft}{ft} \right] \operatorname{Mov}_{0}^{2} \right]^{2}} - \frac{u_{m}t_{f}}{\left[(u_{m}t_{f})^{2} + \left[1 - \frac{ft}{ft} \right] \operatorname{Mov}_{0}^{2} \right]^{2}} - \frac{u_{m}t_{f}}{\left[(u_{m}t_{f})^{2} + \left[1 - \frac{ft}{ft} \right] \operatorname{Mov}_{0}^{2} \right]^{2}} - \frac{u_{m}t_{f}}{\left[(u_{m}t_{f})^{2} + \left[1 - \frac{ft}{ft} \right] \operatorname{Mov}_{0}^{2} \right]^{2}} - \frac{u_{m}t_{f}}{\left[u_{m}z_{m}v_{f} \right]^{2}} - \frac{u_{m}t_{f}}{\left[u_{m}z_{f} \right]^{2}} - \frac{u_{m}t_{f}}{\left[u_{m}z_{m}v_{f} \right]^{2}} - \frac{u_{m}t$$

$$4-18 \qquad x = \frac{F_0}{R}(1-\cos\omega_n t) \qquad 0 < t < t_0$$

$$= \frac{F_0}{R}\left[\cos\omega_n(t-t_0) - \cos\omega_n t\right] \qquad t > t_0$$

$$\frac{F_0 r t < t_0}{dt} = \frac{F_0}{R}\omega_n \sin\omega_n t = 0 \qquad \begin{cases} \omega_n t_p = 11 \\ t_p = \frac{1}{2} \end{cases}$$

$$\left(\frac{\chi k}{F_0}\right)_{max} = 2 \qquad but \quad t_p = \frac{\chi}{2} < t_0$$

$$\frac{t_p}{T_0} = \frac{1}{2}$$

$$\frac{d\chi}{T_0} = \frac{\chi}{2} < t_0$$

$$\frac{d\chi}{T_0} = \frac{\chi}{T_0} = \frac{\chi}{T_0} < \chi$$

$$\frac{d\chi}{T_0} = \frac{\chi}{T_0} < \chi$$

$$\frac{\chi}{T_0} = \frac{\chi}{T_0} < \chi$$

Substinto eq. for t > to

$$\left(\frac{k_x}{F_o}\right)_{max} = \sqrt{2(1-\cos\omega_m t_o)} = 2\sin\frac{1}{2}\omega_m t_o = 2\sin\frac{\pi t_o}{T}$$

$$\frac{t_o}{T} < 0.50$$

$$A-19 \qquad \text{ for small } \frac{t}{T} \text{ the sine pulse approaches an impulse}$$

$$\hat{F} = F_o \int_0^{t_{cin}} \frac{\pi t}{t} dt = \frac{2}{T} F_o t,$$

$$Response = \chi = \frac{\hat{F}}{m\omega_o} \quad \text{sin } \omega_o t = \frac{F_o}{k} \frac{4t}{T} \sin \frac{\pi t}{T}$$

$$\left(\frac{\chi_b}{F_o}\right)_{mag} = \frac{4t}{T} \quad \text{at } t_p = \frac{N_f}{T} \quad \text{Reak response must occur}$$

$$at \ time >> t_i, \quad \frac{t}{T} << \frac{1}{4}$$

$$\text{Let } = \frac{t_i}{T}, \quad S = \frac{t}{t_i} \quad \text{for } t \geq t_i$$

$$\left(\frac{\chi_b}{F_o}\right) = \frac{1}{\left(\frac{1}{2} - 2\alpha\right)} \left[\frac{\sin \chi_T \alpha S}{T} + \frac{\sin \chi_T \alpha (S-1)}{T} \right]$$

$$\text{When } \alpha = \frac{1}{k} \quad \text{above eg. is indeterminate} = \frac{0}{0}$$

$$\text{Indifferentiate num. } S \text{ den. } \text{w.i.t. } \alpha \neq \text{divide}$$

$$\left(\frac{\chi_b}{F_o}\right) = -\frac{\pi}{2} \text{ Cost} \text{ TS} \quad \text{which is max when } S = 1 = \frac{t}{t_i}$$

$$\text{and } \left(\frac{\chi_b}{F_o}\right)_{d=\frac{1}{2}} = \frac{\pi}{2} = \frac{1.57}{1.57}$$

$$\frac{4-20}{S=1} \quad m = \frac{16.1}{586} = 0.0417 \quad \frac{t_i}{T} = \frac{0.40}{0.50} = 0.80$$

$$\text{From } F_{ic} P4-21 \quad \left(\frac{k\chi}{F_o}\right)_{mag} = 1.54$$

$$\omega_n = \frac{2\pi}{.50} = 4\pi \quad k = m\omega_m^{-1} = .0417 \left(4\pi\right)^2 = 6.585 \stackrel{\text{thin}}{m}$$

$$\chi_{mag} = 1.54 \stackrel{\text{To}}{k} \quad \hat{k} = m\omega_m^{-1} = .0417 \left(4\pi\right)^2 = 6.585 \stackrel{\text{thin}}{m}$$

$$\chi_{mag} = 1.54 \stackrel{\text{To}}{k} \quad \hat{k} = m\omega_m^{-1} = .0417 \left(4\pi\right)^2 = 6.585 \stackrel{\text{thin}}{m}$$

$$\hat{k} = \frac{1}{.50} = 10$$

 $\chi_{may} = 1.54 \times \frac{10}{6.585} = 2.339''$

Differentiate
$$3^{\frac{1}{16}}e_{ij}$$
. Prob. $4-12$

$$\frac{dx}{dt} = \frac{2F_0}{kt} \left\{ 1 \text{ cn } \frac{x\pi t}{T} \left(\frac{t}{t_0} - 0.5 \right) - \text{ cn } \frac{x\pi t}{T} \left(\frac{t}{t_0} - 1.0 \right) - \text{ cn } \frac{x\pi t}{T} \right\} = 0$$

or $2 \text{ cn } \frac{x\pi t}{T} \left(\frac{t}{t_0} - 0.50 \right) - \text{ en } \frac{x\pi t}{T} \left(\frac{t}{t_0} - 1 \right) - \text{ cn } \frac{x\pi t}{T} r = 0$

which g_i ies $t_p = t_i$

$$\frac{4-22}{Nith} \text{ suggested } \text{ subst } \text{ for } A \text{ cnpd } \text{ and } A \text{ Sin } \phi$$

$$x = \frac{A}{k} \left\{ \sin \omega_1 t \text{ cnpd } - \text{ en } \sin t \sin \phi \right\} = \frac{A}{k} \left\{ \sin (\omega_1 t - \phi) \right\}$$

Max response occurs when $(\omega_1 t - \phi) = \frac{T}{2}$

$$x_{max} = \frac{A}{k} \quad \text{where } \quad A = \omega_1 \left[\int_{0}^{t} f(s) \sin \omega_1 s \, ds \right]^{\frac{1}{2}} \left[\int_{0}^{t} f(s) \cos \frac{x}{k} \, ds \right]^{\frac{1}{2}}$$

$$\frac{4-23}{N} \quad F = F_0 \quad t_0 \quad t < t_0$$

$$= 0 \quad t > t_0$$

$$Eq. 4.2-1 \quad \text{with } \quad k(t) = \frac{1}{m\omega_1} \sin \omega_1 t \quad t_0$$

$$x(t) = \frac{F_0}{m\omega_1} \int_{0}^{t} \sin \omega_1 \left(t - \frac{x}{2} \right) \, ds = \frac{F_0}{k} \left(\frac{t}{t_0} - \frac{\sin \omega_1 t}{\omega_1 t_0} \right) \quad t \quad t_0$$

For $t > t_0$ integral does not change after t_0

$$x(t) = \frac{F_0}{m\omega_1} \int_{0}^{t} \sin \omega_1 \left(t - \frac{x}{2} \right) \, ds = \frac{F_0}{k} \left[\frac{t}{t_0} \cos \omega_1 \left(t - \frac{x}{2} \right) + \frac{\sin \omega_1 \left(t - \frac{x}{2} \right)}{\omega_1 t_0} \right] \quad t > t_0$$

$$= \frac{F_0}{k} \left[\cos \omega_1 \left(t - t_0 \right) + \frac{1}{k \sin \omega_1} \left\{ \sin \omega_1 \left(t - t_0 \right) - \sin \omega_1 t \right\} \right] \quad t > t_0$$

$$\frac{4-24}{K} \quad \text{Given } \text{vel.} = N = N_0 \left\{ x(t) - 1/t_1 \right\} = \frac{y}{2}(t)$$

Subst into $Eq. 4.2-5$

$$Z = -\frac{N_0}{\omega_m} \int_{0}^{t} \left\{ x(t) - \frac{t}{k} \right\} \sin \omega_1 \left(t - \frac{x}{2} \right) \, ds \quad 0 < t < t_1$$

 $= \frac{v_0}{\omega_m} \left\{ -\sin \omega_m t + \frac{1}{\omega_m t}, (1 - \cos \omega_m t) \right\} \quad 0 < t < t,$

$$\frac{dz}{dt} = \frac{N_0}{\omega_m} \left\{ -\omega_m \cos \omega_m t + \frac{t}{t_1} \sin \omega_m t \right\} = 0$$

$$\int_{1}^{1} \frac{dz}{dt} = \frac{N_0}{\omega_m} \left\{ -\omega_m \cos \omega_m t + \frac{t}{t_1} \sin \omega_m t \right\} = 0$$

$$\int_{1}^{1} \frac{dz}{dt} = \frac{N_0}{\omega_m t_1} \int_{1}^{\infty} \frac{dz}{dt} = \frac{\omega_m t_1}{\sqrt{1 + (\omega_m t_1)^2}} \int_{1}^{\infty} \frac{dz}{\sqrt{1 + (\omega_m t_1)^2}} \int_{1}$$

Find Z3 from Eq. (b) etc.

4-27 This problem is identical to Ex4.5-2 in the text. It is suggested that the instructor change the triangular impulse duration to 0.80 S, and follow the procedure of Ex. 4.5-2.

4-28... Ex. 4A-2 is for
$$\dot{y} = N_0 e^{-\frac{t}{2}}$$

Fig P4-28 is for $\dot{y} = 60 e^{-0.10t}$ applies for whith or who is $V_0 = 60$, $V_0 = 60$, $V_0 = 10$

For large whate $\left(\frac{2Z}{V_0 t_0}\right)_{ineq} \cong \frac{2}{\omega_n t_0}$ a rectangular hyperbola at what = 100 Fig. 4-18 gives $\left(\frac{2Z}{N_0 t_0}\right)_{mag} = 0.02$

For small whate $\left(\frac{2Z}{N_0 t_0}\right)_{mag} = 1.0$

 $\frac{4-29}{m\ddot{x}+c\ddot{x}+kx=F_0\sin\omega_mt}$

With zero initial conditions, response may be evaluated from (1)
(2) or (3) below

(1)
$$\widehat{\chi}(s) = \frac{\omega_m F_o/m}{(s^2 + 2s\omega_m + \omega_m^2)}$$

(1)
$$\chi(t) = X_1 e^{-3\omega_n t} \sin(\sqrt{1-5^2} \omega_n t + \phi_1) - \frac{F_0 \cos \omega_n t}{c\omega_n} \quad Eq.(3.1-11)$$

(3)
$$\chi(t) = F_0 \int \sin \omega_m (t-\tau) \cdot \frac{e^{-5\omega_m t}}{m\omega_m \sqrt{1-5^2}} \sin \sqrt{1-5^2} \omega_m t$$
 Eq. (4.2-2)

Result is:
$$\kappa(t) = \frac{F_0}{c\omega_n} \left\{ \frac{e^{-\zeta \omega_n t}}{\sqrt{1-\zeta^2}} \sin\left(\sqrt{1-\zeta^2} \omega_n t + \sin^{-1}\sqrt{1-\zeta^2}\right) - \cos\omega_n t \right\}$$

4-30 For small damping S= 275

At time $t = \frac{1}{f_m \delta}$, $\delta \omega_m t = \frac{2\pi r \delta}{\delta} = 1.0$ Subst. into Eq. above

$$\chi = \frac{F_0}{\kappa \omega_m} \left\{ e^{-1} \sin(\omega_n t + 90^\circ) - \cos \omega_n t \right\}$$

$$= \frac{F_0}{\kappa \omega_m} \left\{ e^{-1} - 1 \right\} \cos \omega_m t = (1 - e^{-1}) \left(\frac{-F}{\kappa \omega_m} \cos \omega_n t \right)$$

where steady state sol. = $\left(\frac{-F}{c\omega_m}\cos\omega_m t\right)$

4-31 Under harmonic force of freq. Wm, the steady State oscillation is $\chi(t) = \frac{F_o}{c\omega_m} \cos \omega_m t$ $\chi(0) = \frac{F_o}{c\omega_m} \dot{\chi}(0) = 0$ Transient sol. is $x(t) = X_i e^{-s\omega_n t}$ $x(t) = X_i e^{-s\omega_n t}$ $\sin(x_i - s^2 \omega_n t + \phi_i) = X_i e^{-s\omega_n t}$ $\sin(\omega_n t + \phi_i)$ for & small $\chi(0) = \chi, \sin \phi = \frac{F_0}{GW}$ $\dot{x}(0) = X, [\omega_m \cos \phi, -5\omega_m \sin \phi,] \cong X, \omega_m \cos \phi, = 0$ $i \cdot \phi_1 = 90^\circ$ and $X_1 = \frac{F_0}{C \omega_{min}}$ Then trans, sol. with above initial cond. is $\chi(t) = \frac{F_0}{cw_m} e^{-5w_m t} \cos w_m t$

At $S \omega_n t = \frac{2\pi S}{S} \cong 1.0$ $\chi(t) = e^{-1} \frac{F_0}{c \omega_n} \cos \omega_n t$ See Prob 4-30

4-32 $DE \ddot{x} = 0.25 F(t) - 500 x$

Let h = H = 0.02 t = T(I) = H * (I-I)[=1,2,--- $\alpha = X(I)$ X(I) = 0 $\ddot{x} = DX2(I)$

Let I go from 1 to 25 = N

Computer program follows

4-32 Cont:

```
DIMENSION T(28), X(28) DX 2 (28), F (28)
 N = 25
  H = .02
  T(I) = 0
  X(I) = 0
  DOI = 1, 25
  T(I) = H * (I-I)
  IF (I.GT.1) GO TO 2
 F(I) = 100
 DX2(I) = .25 * F(I) - 500 * X(I)
 X(I+I) = .50 * DX2(I) * H **2
  GO TO 3
2 IF(I.LT.6) F(I) = 100
  IF(I.GE.G) F(I) = 100 - 1000 * (T(I) - .10)
  IF(I.GT.10) F(I) = 0
  DX2(I) = .25 *F(I) - 500 *X(I)
X(I+I) = 2 * X(I) - X(I-I) + DX2(I) * H * 2
  IF(I = N+1) GO TO 4
3 CONTINUE
4 WRITE (6,5)
5 FORMAT (4 [H1, TIME, FORCE, DISPL)
  WRITE (6,6) ( [(I), F(I), X(I) )
6 FORMAT (3X, F6.3, 3X, F6.3, 3X, F6.4)
  STOP
  END
```

4-33

We will first discuss the case where the initial conditions are not zero. The discussion on plos then applies.

The acceleration from the D.E. is

 $\ddot{x}_{i} = \frac{F_{i}}{m} - \omega_{n}^{2} x_{i} - 25 \omega_{n} \dot{x}_{i} = f(x_{i} \dot{x}_{i} \dot{t}_{i})$ The two equations given from the Taylor series are

(a) $x_2 = x_1 + \dot{x}_1 h + \frac{h^2}{2} \left(\frac{F_1}{m} - \omega_m^2 x_1 - 25 \omega_m \dot{x}_1 \right)$

(b)
$$x_1 = x_2 - \dot{x}_1 h + \frac{h^2}{2} \left(\frac{F_2}{m} - \omega_m^2 x_2 - 25 \omega_m \dot{x}_2 \right)$$

Since the initial conditions x, \hat{x} , and F, are assumed to be given, Eq.(a) gives x_2 .

Eq.(b) is next solved for \hat{x}_2 which is

(c)
$$\dot{\chi}_{2} = \frac{\chi_{2} - \chi_{1} + \frac{h^{2}}{2} \left(\frac{F_{2}}{m} - \omega_{n} \chi_{2} \right)}{\left(h + h^{2} 5 \omega_{n} \right)}$$

Thus xe and xe for the first interval can be calculated from Eqs. (a) and (c).

Calculations for χ_s $\dot{\chi}_s$, χ_4 $\dot{\chi}_4$ etc are now made with Eq.(4.5-7') and Eq(c) generalized to index i as follows.

(d)
$$x_{i+1} = 2x_i - x_{i-1} + h^2 \left(\frac{F_i}{m} - \omega_n^2 x_i - 25\omega_n \hat{x}_i \right)$$

(e)
$$\dot{\chi}_{i+1} = \frac{\chi_{i+1} - \chi_i + \frac{\hbar^2}{2} \left(\frac{F_{i+1}}{m} - \omega_n^2 \chi_{i+1} \right)}{\left(h + h^2 \xi \omega_n \right)}$$

Flow diagram follows

Diagram is similar to Fig. 4.5-1 with added boxes for Eq(c) and Eq.(e) for the calculation of velocities.

4-33 Cont:

When initial values are zero and force = 0 Eq. (a) gives $X_2 = 0$ and hence calculations cannot be started. We must then use Eqs. 4.5-9 and 4.5-10 and substitute \ddot{X}_2 from D.E. The two equations so obtained must be solved simultaneously for X_2 and \ddot{X}_2 . With these values calculations may proceed with Eqs. (d) and (e)

$$\chi_{2} = \frac{h^{2}}{6} \left(\frac{F_{2}}{m} - \omega_{n}^{2} \chi_{2} - 25 \omega_{n} \dot{\chi}_{2} \right) \qquad (4.5-10)$$

$$\dot{\chi}_{2} = \frac{h}{3} \left(\frac{F_{2}}{m} - \omega_{n}^{2} \chi_{2} - 25 \omega_{n} \dot{\chi}_{2} \right) \qquad (4.5-9)$$

Rearrange to

$$\left(1 + \frac{R^2}{6} \omega_n^2\right) \chi_2 + \left(\frac{R^2}{3} 5 \omega_n\right) \dot{\chi}_2 = \frac{R^2}{6} \left(\frac{F_2}{6m}\right)$$

$$\left(\frac{R}{2} \omega_n^2\right) \chi_2 + \left(1 + K 5 \omega_n\right) \dot{\chi}_2 = \frac{R}{2} \left(\frac{F_2}{6m}\right)$$

Solution:

$$\chi_{2} = \frac{\frac{d^{2}\left(\frac{F_{2}}{m}\right)}{I + k\omega_{1}\left(\frac{k}{h} + 5\right)}}{(f)}$$

$$\dot{x}_{1} = \frac{\frac{4}{2} \left(\frac{F_{2}}{m}\right)}{1 + 4\omega_{n}\left(\frac{F_{2}}{6} + 5\right)} \tag{3}$$

Previous flow diagram can now be used with Eq.(a) replaced by Eq.(f) and Eq.(c) replaced by Eq.(f) and Eq.(c) replaced by Eq.(g). Right loop is unaltered. Calculation of F2 is necessary prior to Eq.(a).

DE. for base excitation is

 $m\ddot{x} + C(\dot{x} - \dot{y}) + k(x - y) = 0$

Let Z = x - y, then

 $\ddot{z} = -\dot{y} - \omega_m^2 z - 25\omega_m \dot{z}$

Thus the problem is same as that for force excitation with z replacing & and - if (t) replacing (F).

4-35 Refer to Prob. 4-33 and the given flow diagram. The exciting force E is now replaced by - ig

> y = yo Sin wt $\frac{F}{m} = -\ddot{y} = \omega^2 y_0 \sin \omega t$

The sine pulse terminates at wtp = TT. The time increment h should be chosen smaller than to or 10 (21) whichever is the smallest.

A program similar to Prob. 4-32 can be written with the IF statements modified.

4-36 use superposition of solution to each step function 1 step of Fo results in x(t) = Fo (1-cos wat) $2^{\text{nd}}_{\text{step}} \text{ of } -2F_0 \text{ at } t = \frac{\pi}{\omega} \text{ adds } -\frac{2F_0}{k} \left[1 - \cos\omega_n \left(t - \frac{\pi}{\omega}\right)\right]$ 3 -step of +2Fo at t=21 adds +2Fo[1-coswn(t-21)] etc. 1 F. Sum results in amplitudes increasing Linearly 1 t

$$\chi_{i+1} = \chi_{i} + \chi_{i} h + \chi_{i} \frac{\chi^{2}}{\chi} + \chi_{i} \frac{h^{3}}{h^{3}} + \chi_{i} \frac{h^{4}}{24} + \dots
\chi_{i-1} = \chi_{i} - \chi_{i} h + \chi_{i} \frac{h^{2}}{\chi} - \chi_{i} \frac{h^{3}}{6} + \chi_{i} \frac{h^{4}}{24} - \dots
\chi_{i+1} + \chi_{i-1} = 2\chi_{i} + \chi_{i} \frac{h^{2}}{\chi_{i}} + \chi_{i} \frac{h^{4}}{\chi_{i}} - \dots
\chi_{i} = \frac{\chi_{i-1} - 2\chi_{i} + \chi_{i+1}}{h^{2}} - \chi_{i} \frac{h^{2}}{12}$$

$$\chi_{i} = \frac{\chi_{i-1} - 2\chi_{i} + \chi_{i+1}}{h^{2}} - \chi_{i} \frac{h^{2}}{12} = O(h^{2})$$

$$error = -\frac{\chi_{i}}{12} h^{2} = O(h^{2})$$

4-38

Calculation of & by finite difference

using
$$\dot{x}_i = \frac{1}{2h} (x_{i+1} - x_{i-1})$$

$$h = 0.10$$
 $\dot{\chi}_1 = \frac{1}{2 \times .10} (1.3310 - .7290) = 3.010$
 $\therefore Error = .01 = .1^2 = h^2$
 $= O(h^2)$

$$h = 0.20$$
 $y'_{1} = \frac{1}{2 \times .20} (1.7280 - .5120) = 3.04$
 $\therefore Fror = .04 = .2^{2} = h^{2}$
 $= O(h^{2})$

D.E. $4\ddot{x} + 2000 x = F(t)$ i. m = 4, k = 2000 $F(t) = \frac{1}{2}$ $\omega_{11} = \sqrt{\frac{k}{m}} = 22.36$ 1st sol. due to step function (see Fig 4,5-4) $\chi_{i} = \frac{F}{k}(1-\cos \omega t) = \frac{100}{2000}(1-\cos 22.36 t)$ 0 ≤ t ≤ 0.10 2 nd sol, due to ramp function of 1000 (t-.10) at t ≥ .10 $DE \ddot{x} + 500 x = 250 t'$ where t' = t - .10Lapl. Trans $\chi(s) = \frac{250}{8^2(s^2 + 22.36^2)}$ $\chi_2 = \frac{250}{22.56^2} \left[22.36 t' - \sin 22.36 t' \right]$ = \ t' - , 02236 Sin 22.36 t'

i. add to first sol x_1 , the second sol, which is $X_2 = \frac{1}{2}(t-.10) - .02236 \sin 22.36(t-.10)$ at $t \ge .10$

Similarly the third sol. is same as x_{\perp} with (t-.20)

4-41

DE to be solved is

$$\ddot{x} + 16 \pi^2 x = 2 F(t)$$

Let $y = \hat{x}$, then

$$\dot{y} = f(x,t) = 2F(t) - 16\pi^2 x$$

where F(t) =

Follow Calc. procedure of Example 4.6-1

$$\omega_m = 4\pi = 12.56 = \frac{2\pi}{7}$$
 $\gamma = .500$

Runge-Kutta Program

```
PROBLEM 4-41 THOMSON
              DIMENSION T(50), T1(50), T2(50), T3(50), T4(50), X(50), X1(50), X2(50),
          1 \times 3 \times 50, \times 4 \times 50, \times 4 \times 50, \times 1 \times 50, \times 2 \times 50, \times 2 \times 50, \times 2 \times 50, \times 4 \times 50, \times 4 \times 50, \times 1 \times 50, \times 
          1F2(50), F3(50), F4(50)
              M=43
              DH=0.02
               X(1) = 0.0
              Y (1) =0.0
              T(1) = 0.0
               PRINTS
      5 FORMAT (20K, 'J', 5X, 'TIME', 9K, 'DISPL', 5X, 'ACCELERATION', 11X, 'F (J) ',
          110X, 'FORCE')
              DO 10 J=1.N
              P(J) = PXY(T(J), X(J), Y(J), DP)
              PRINTS, J, T (J), X (J), Y (J), F (J), DF
     8 FORMAT (18X, I3, 2X, F7.3, 2X, E12.3, 5X, E12.3, 3X, E12.3, 7X, F8.3)
              T1(J) = T(J)
              X1(J) = Y(J)
              Y1(J)=Y(J)
              F1(J) = FXY(T1(J), X1(J), Y1(J), DF)
              T2\{J\} = T\{J\} + DH/2.
              X2(J) = X(J) + Y1(J) *DH/2.
              Y2(J) = Y(J) + F1(J) * DH/2.
              F2(J) = FXY(T2(J), X2(J), Y2(J), DF)
              T3(J) = T(J) + DH/2.
              X3(J) = X(J) + Y2(J) * DH/2.
              Y3(J) = Y(J) + F2(J) * DH/2.
              F3(J) = FXX(T3(J), X3(J), Y3(J), DF
              \mathbb{E}G+\{U\}\mathbb{T}=\{U\}
              X4(J) = X(J) + Y3(J) *DH
              Y4(J) = Y(J) + P3(J) * DH
              F4(J) = FXY(T4(J), X4(J), Y4(J), DF)
              X(J+1) = Y(J) + DR/6 * (Y1(J) + 2 * Y2(J) + 2 * Y3(J) + Y4(J))
              Y(J+1)=Y(J)+DH/6.*(F1(J)+2.*P2(J)+2.*F3(J)+F4(J))
              T(J+1) = T(J) + DH
 10 CONTINUE
             STOP
             END
             FUNCTION FXY (T, X, Y, DF)
             IF (T.GT.0.4) GO TO 50
             IF (T. GT. 0. 2) GO TO 49
             DF=500.*T
             GO TO 51
49 Dr=200.-500.*T
             GO TO 51
50 DF=0.0
51 PXY=2.*DF-16.*3.1415**2*X
             RETURN
             END
```

4-41 Cont.

TIME	DISPL	ACCELERATION	P (J)	J	FORCE
0.000	0.000E 00	0.000E 00	0.0008 00	1	0.000
0.020	0.133E-02	0.199E 00	0.198E 02	2	10.000
0.040	0.105E-01	0.7838 00	0.383E 02	3	20.000
0.060	0.350E-01	0.1722 01	0.545E 02	4	30.000
0.080	0.811E-01	0.294E 01	0.672E 02	5	40.000
0.100	0-154E 00	0.438E 01	0.757E 02	6	50.000
0.120	0.257B 00	0.593E 01	0.794E 02	7	60.000
0.140	0.392% 00	0.752B 01	0.782E 02	8	70.000
0.160	0.557E 00	0.903E 01	0.720E 02	9	80.000
0.180	0.752E 00	0.104E 02	0.613E 02	10	90.000
0.200	0.970B 00	0.115E 02	0.468E 02	11	100.000
0.220	0.120E 01	0.1188 02	-0.103E 02	12	90.000
0.240	0.144R 01	0.1108 02	-0.667E 02	13	80.000
0.260	0.164E 01	0.918E 01	-0.119g 03	14	70,000
0.280	0.1808 01	0.6348 01	-0.164E 03	15	60.000
0.300	0.189E 01	0.271E 01	-0.198g 03	16	50.000
0.320	0.1908 01	-0.150E 01	-0.220E 03	17	40.000
0.340	0.1832 01	-0.601E 01	-0.328E 03	18	30.000
0.360	0.166R 01	-0.105B 02	-0.222E 03	19	20.000
0.380	0.141E 01	-0-148E 02	-0.202E 03	20	10.000
0.400	0.1078 01	-0.185E 02	-0.169E 03	21	0.000
0.420	0.671E 00	-0.213E 02	-0.106E 03	22	0.000
0.440	0.229% 00	-0.227B 02	-0.361E 02	23	0.000
0.460	-0.228E 00	-0.227E 02	0.360E 02	24	0.000
0.480	-0.671B 00	-0.213E 02	0.106E 03	25	0.000
0.500	-0.107E 01	-0.185E 02	0.169E 03	26	0.000
0.520	-0.140B 01	-0.146E 02	0.2228 03	27	0.000
0.540	-0.165B 01	-0.976E 01	0.260E 03	28	0.000
0.560	-0.179E 01	-0.430E 01	0.283E 03	29	0.000
0.580	-0.1828 01	0.143E 01	0.287E 03	30	0.000
0.600	-0.173E 01	0.707g 01	0.274E 03	31	0.000
0.620	-0.154E 01	0.123B 02	0.243E 03	32	0.000
0.640	-0.125E 01	0.167E 02	0.197E 93	33	0.000
0.660	-0.879E 00	0.201E 02	0.139E 03		0.000
0.680	-0.454E 00	0.222E 02	0.717E 02	34 35	0.000
0.700	-0.712E-03	0.229E 02	0.112E 00		0.000
0.700		0.222E 02	-0.715E 02	36	0.000
0.740	0.4538 00 0.878E 00	0.201E 02	-0.139E 03	37	0.000
				38	
0.760	0.125g 01	0.167E 02	-0.197E 03	39	0.000
0.780	0.154E 01	0.123E 02	-0.243E 03	40	0.000
0.800	0.173B 01	0.709E 01	-0.2748 03	41	0.000
0.320	0.1928 01	0.145E 01	-0.287E 03	42	0.000
0.840	0.1798 01	-0.428E 01	-0.283E 03	4.3	0.000
0.360	0.1658 01	-0.974E 01	-0.261E 03	44	0.000
0.889	0.1418 01	-0.146E 02	-0.222E 03	45	0.000
0.900	0.107E 01	-0.185g 02	-0.169E 03	46	0.000
0.920	0.672E 00	-0.213E 02	-0.106E 03	47	0.000
0.940	0.230E 00	-0.227E 02	-0.362E 02	48	0.000
0.960	-0.227g 00	-0.227E 02	0.359E 02	49	0.000

The stiffness of the crane boom is represented by the measured from the extended straight line.

$$\frac{\psi}{g}\ddot{y} = k_c(x-y) - W$$

$$\ddot{y} + \left(\frac{k_c g}{w}\right)y = \left(\frac{k_c g}{w}\right)x - g \qquad , \quad \omega^2 = \left(\frac{k_c g}{w}\right)$$

$$\ddot{y} + \omega^2 y = \omega^2 Vt - g \qquad , \quad \chi = Vt$$

By L.T.

$$s^{2}\overline{y}(s) - sy(0) - \dot{y}(0) + \omega^{2}\overline{y}(s) = \frac{\omega^{2}V}{5^{2}} - \frac{g}{s}$$

$$\overline{y}(s) = \frac{sy(0)}{s^{2} + \omega^{2}} + \frac{\dot{y}(0)}{s^{2} + \omega^{2}} + \frac{\omega^{2}V}{s^{2}(s^{2} + \omega^{2})} - \frac{g}{s(s^{2} + \omega^{2})}$$

Inverse L.T.

$$4(t) = y(0)\cos\omega t + \frac{\dot{y}(0)}{\omega}\sin\omega t + \frac{\dot{V}}{\omega}(\omega t - \sin\omega t) - \frac{\dot{g}}{\omega^2}(-\cos\omega t)$$

$$\frac{5-1}{m \overset{\sim}{x_{k}}} = -kx_{k} + k(x_{k} - x_{l})$$

$$m \overset{\sim}{x_{k}} = -k(x_{k} - x_{l})$$

$$m \overset{\sim}{x_{k}} = -k(x_{k} - x_{l})$$

$$(z - \frac{m\omega^{2}}{k}) X_{l} = X_{k}$$

$$X_{l} = (l - \frac{m\omega^{2}}{k}) X_{k}$$

$$2 + \frac{m\omega^{2}}{k} = \frac{m\omega^{2}}{k}$$

$$(x_{l} \times x_{k})_{l} = l - \lambda_{l} = 0.614$$

$$\lambda = \begin{cases} 0.382 & = \frac{m\omega^{2}}{k} \\ 2.618 & = \frac{m\omega^{2}}{k} \end{cases}$$

$$(x_{l} \times x_{k})_{l} = l - \lambda_{l} = -1.618$$

$$\frac{5-2.43}{k} \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \begin{pmatrix} \ddot{x}_{l} \\ \ddot{x}_{k} \end{pmatrix} + \begin{bmatrix} (k+nk) & -nk \\ -nk & (k+nk) \end{bmatrix} \begin{pmatrix} x_{l} \\ x_{k} \end{pmatrix} = \begin{cases} 0 \\ k \end{cases}$$

$$| (l+m-\lambda) - m \\ -nk & (l+m-\lambda) \end{pmatrix} = 0$$

$$\lambda = (l+m) \pm m, \quad x_{l} \times \frac{l+m-\lambda}{m}$$
For $m = l$.
$$\lambda_{l} = l = \frac{m\omega^{2}}{k} \qquad (x_{l} / x_{k})_{l} = l$$

$$\lambda_{k} = 5 = \frac{m\omega^{2}}{k} \qquad (x_{l} / x_{k})_{l} = l$$

$$\lambda_{k} = 5 = \frac{m\omega^{2}}{k} \qquad (x_{l} / x_{k})_{l} = l$$

$$\lambda_{k} = 5 = \frac{m\omega^{2}}{k} \qquad (x_{l} / x_{k})_{l} = 0$$

$$\lambda = \frac{l+m}{k} \pm \sqrt{(\frac{l+m}{k})^{2} - \frac{1}{3}} = \begin{cases} 0 \\ 0.570 = \frac{m\omega^{2}}{k} \\ 4.09l = \frac{m\omega^{2}}{k} \end{cases}$$

$$\frac{k}{x_{k}} = (4-\lambda) \qquad (\frac{x_{l}}{x_{k}})_{l} = 3.43 \qquad (\frac{x_{l}}{x_{k}})_{l} = -0.09l$$

$$\frac{5-5}{k} \qquad (1-\lambda) = 0 \qquad (1-\lambda) = 1 \qquad (1-\lambda) = 0$$

$$\lambda = \frac{l+m}{k} \pm \sqrt{(\frac{l+m}{k})^{2} - \frac{1}{3}} = \begin{cases} 0 \\ 0 = \frac{m\omega^{2}}{k} \\ 1.707 = J_{k} \omega^{2} \qquad (1-\lambda)^{2} - l = 0 \end{cases}$$

$$\lambda = 1 \pm \sqrt{k} \qquad \lambda = 1 \pm \sqrt{k}$$

$$\lambda_{l,k} = \begin{cases} 0.293 = J_{k} \omega^{2}_{k} \\ 1.707 = J_{k} \omega^{2}_{k} \end{cases} \qquad 0.707 \qquad (\frac{\theta_{l}}{\theta_{k}})_{l} = -0.707$$

In general
$$\frac{\partial}{\partial x} + K_{1}(\theta_{1} - \theta_{1}) = 0$$

$$\frac{\partial}{\partial x} + K_{2}(\theta_{2} -$$

$$K_{1} = \frac{GI_{P}}{\ell} = \frac{(11.5 \times 10^{6})}{12^{11}} \frac{\pi^{2}I^{4}}{32} = 0.0941 \times 10^{6}$$

$$K_{2} = \frac{(11.5 \times 10^{6})}{6^{11}} \frac{\pi^{2}I^{4}}{32} = 0.0595 \times 10^{6}$$

$$K_{3} = \frac{(11.5 \times 10^{6})}{6^{11}} \frac{\pi^{2}I^{4}}{32} = 0.0595 \times 10^{6}$$

$$\omega_{m} = \sqrt{\frac{J_{i} + J_{e}}{J_{i}J_{e}}} = \sqrt{\frac{8}{15} \times .0365 \times 10^{6}} = /39.4$$
 rad/s.

characteristic eq.

Total stiffness between cars = 16,000 #in System has node at middle of spring in oscillates as two single deg. freed. system with each spring of 2 & = 32,000 # in and mass m

$$\omega_m = \sqrt{\frac{2R}{m}} = \sqrt{R\left(\frac{m_j + m_E}{m_i m_E}\right)} = \sqrt{\frac{2 \times 16,000 \times 386}{50,000}} = 15.72 \text{ rady}_{5.}$$

For small amplitudes angles are $\frac{\chi_{1}}{\ell}$ and $\frac{\chi_{2}-\kappa_{1}}{\ell}$.

Tensions are approx 2mg and mg.

Use $\overline{Z}F_{\chi}$ $m\chi'_{1} = -2mg\left(\frac{\chi_{1}}{\ell}\right) + mg\left(\frac{\chi_{2}-\chi_{1}}{\ell}\right)$ $m\chi'_{2} = -mg\left(\frac{\chi_{2}-\chi_{1}}{\ell}\right)$ Let $\lambda = \frac{\omega^{2}\ell}{g}$ $\chi_{1} = -\chi_{2} = -\chi_{1}$ $\chi_{2} = -\chi_{3} = -\chi_{4}$ $\chi_{2} = -\chi_{4} = -\chi_{4}$ $\chi_{2} = -\chi_{4} = -\chi_{4}$ $\chi_{3} = -\chi_{4} = -\chi_{4}$ $\chi_{4} = -\chi_{4}$

$$\omega^4 - \left[\frac{K_1}{J_1} + \frac{K_2}{J_1} + \frac{K_2}{J_2}\right]\omega^2 + \frac{K_1}{J_1}\frac{K_2}{J_2} = 0$$

$$\frac{5-16}{\text{For } \chi_{1}(0) = A, \quad \chi_{2}(0) = 0} = 0$$

$$\lambda = \begin{cases} 0.5691 & (X./X_{2}) = 3.4309 \\ 4.0972 & (X./X_{2}) = -0.0972 \\ \dot{\chi}_{1}(0) = \dot{\chi}_{2}(0) = 0 \end{cases}$$

2, = 3.4309 C, Cos w, t - 0.0972 C2 Cos w. t x = 1.0000 C, cosw,t + 1,0000 C, cow,t

ie Mode 1 is multiplied by C, and mode 2 by Cz Att=0

A = 3.4309 C, - 0.0972 C2

$$0 = C_1 + C_2$$
 , $C_1 = -C_2$

5-16 Cont.

 $A = -3.4309 \, C_1 - 0.0972 \, C_2 = -3.528/ \, C_1$

 $C_2 = -0.2834A$, $C_3 = 0.2834A$

1 = 0.9724 A Cuswit + 0.0276 A Cuswit

 $x_2 = 0.2834 A \cos \omega_1 t - 0.2834 A \cos \omega_2 t$

Add A times mode 1 and B times mode 2

x, = 0.414 A Cosw, t -2.414 B Cosw t

 $\chi_{2} = 1.00 \text{ A } \cos \omega_{1} t + 1.00 \text{ B } \cos \omega_{2} t$ $At t = c \cdot \chi_{1}(0) = \chi_{2}(0) = \chi$

X = 0.4/4 A - 2.4/4 B

X = /A + /B $\therefore A = X - B$

$$X = 0.414(X-B) - 2.414B$$
 ... $B = -0.2072 X$

A = 1.2072 X

x, = X { 0.4998 cow, t + 0.5002 cowet }

 $x_{x} = X \left\{ 1.2072 \cos \omega_{x} t - 0.2072 \cos \omega_{x} t \right\}$

5-18 $\chi_{1}(0) = \dot{\chi}_{1}(0) = \chi_{2}(0) = 0$, $\dot{\chi}_{2}(0) = V$

From Prob 5-1 (X1/X2) = 0.6/4, (X,/X2)=-1.6/8

The 4 initial conditions require 4 arbitrary constants. We choose A times mode 1 , B times mode 2 and phase angles & and &

$$\begin{cases} \dot{x}_{1} \\ \dot{x}_{2} \end{cases} = -\omega_{1}^{2} A \begin{cases} 0.6/4 \\ 1.000 \end{cases} \sin(\omega_{1}t + \varphi_{1}) - \omega_{2}^{2} B \begin{cases} -1.618 \\ 1.000 \end{cases} \sin(\omega_{2}t + \varphi_{2})$$
For $t = 0$

$$\begin{cases} 0 \\ 0 \end{cases} = A \begin{cases} 0.614 \\ 1.000 \end{cases} \cos \varphi_1 + B \begin{cases} -1.618 \\ 1.000 \end{cases} \cos \varphi_2$$

5-18 Cont.

$$\begin{cases} 0 \\ V \end{cases} = -\omega_{1}A \begin{cases} 0.614 \\ 1.000 \end{cases} \sin \varphi_{1} - \omega_{2}B \begin{cases} -1.618 \\ 1.000 \end{cases} \sin \varphi_{2} \end{cases}$$
From $1^{\frac{6}{2}}$ two eqs. $\varphi_{1} = \varphi_{0}^{\circ}$

From $3^{\frac{6}{2}}$ eq. $\omega_{1}A(0.614) = \omega_{2}B(1.618)$

From $4^{\frac{6}{2}}$ eq. $V = \frac{-1.618}{0.614} \omega_{2}B - \omega_{2}B = -3.635 \omega_{2}B$

$$\therefore B = \frac{V}{3.635} \omega_{2} = -.2751 \frac{V}{\omega_{2}}$$

$$A = \frac{1.618}{.614} \frac{\omega_{2}}{\omega_{1}} \left(-.2751 \frac{V}{\omega_{2}} \right) = -0.7249 \frac{V}{\omega_{1}}$$

$$\begin{cases} \chi_{1} \\ \chi_{2} \end{cases} = 0.7249 \frac{V}{\omega_{1}} \begin{cases} 0.614 \\ 1.000 \end{cases} \sin \omega_{1}t + \frac{V}{3.635} \omega_{2} \begin{cases} -1.618 \\ 1.000 \end{cases} \sin \omega_{2}t$$

where $i = \omega_{1} = 0.618 \sqrt{\frac{1}{m}}, \quad \omega_{2} = 1.618 \sqrt{\frac{1}{m}}, \quad \varphi_{1} = \varphi_{2} = 90^{\circ}$

5-19 Using same gen. egs. of Prob. 5-18

$$\begin{cases} 0 \\ 1.0 \end{cases} = A \begin{cases} 0.614 \\ 1.000 \end{cases} \cos \varphi_1 + B \begin{cases} -1.618 \\ 1.000 \end{cases} \cos \varphi_2$$

$$\begin{cases} 0 \\ 0 \end{cases} = -\omega_1 A \begin{cases} 0.614 \\ 1.000 \end{cases} \sin \varphi_1 - \omega_2 B \begin{cases} -1.618 \\ 1.000 \end{cases} \sin \varphi_2$$

The second set of eqs. require 9 = 9 = 0i. 0.614 A = 1.618 B B=.3795 A 1.0 = A + .3795 A ii A = .7249 B = .2751

Subst. into gen. egs.

$$\frac{5-20}{4} \frac{k(x-\frac{1}{4})}{2} \frac{k(x+\frac{1}{4})}{J\ddot{\theta} = -k(x+\frac{1}{4}\theta) - k(x-\frac{1}{4}\theta)}$$

$$\int \ddot{\theta} = -k(x+\frac{1}{4}\theta) \frac{1}{2} + k(x-\frac{1}{4}\theta) \frac{1}{2}$$

$$\begin{bmatrix} m & o \\ o & J \end{bmatrix} \begin{Bmatrix} \ddot{x} \\ \ddot{\theta} \end{Bmatrix} + \begin{bmatrix} 2k & k\frac{1}{4} \\ k\frac{1}{2} & k\frac{52}{16} \end{Bmatrix} \begin{Bmatrix} x \\ \theta \end{Bmatrix} = \begin{cases} o \\ \end{cases}$$

$$\frac{4}{4} \frac{\sqrt{m}}{k} \frac{J}{k\ell} - \omega^2 J = 0$$

$$\frac{4}{4} \frac{\sqrt{m}}{k} \frac{J}{k\ell} - \omega^2 J = 0$$

$$\frac{\pi}{4} \frac{\sqrt{m}}{k} \frac{J}{k\ell} - \omega^2 J = 0$$

$$\frac{\pi}{4} \frac{\sqrt{m}}{k} \frac{J}{k\ell} - \omega^2 J = 0$$

$$\frac{\pi}{4} \frac{\sqrt{m}}{k} \frac{J}{k\ell} - \omega^2 J = 0$$

$$\frac{5-2I}{x_1} = \frac{1}{2} \operatorname{from} 2m$$

$$m \ddot{x}_1 + 2m \ddot{x}_2 = -k(2x_1 - x_2) - k(2x_2 - x_1)$$

$$\int_{cm} = m(\frac{1}{3}\ell)^2 + 2m(\frac{1}{3}\ell)^2 = \frac{2}{3}m\ell^2$$

$$\frac{1}{2} = \frac{2}{3}m\ell^2$$

$$\frac{1}{3} = \frac{2}{3}$$

$$\frac{5-22}{2m(\ddot{x}_{i}-l\ddot{\theta})+m\ddot{x}_{i}} = -k(x_{i}+l\theta)-k(x_{j}-2l\theta)}$$

$$\int_{cm} \ddot{\theta} = k(x_{i}-2l\theta)\frac{4k}{2} - k(x_{j}-l\theta)\frac{5k}{2}$$

Both static & dynamic coupling present.

From Prob 5-9
$$\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} \begin{Bmatrix} \ddot{\chi}_1 \\
\ddot{\chi}_2
\end{Bmatrix} + \frac{9}{2} \begin{bmatrix} 3 & -1 \\
-1 & 1
\end{bmatrix} \begin{Bmatrix} \chi_1 \\
\chi_2
\end{Bmatrix} = 0 \quad \text{i. Static coupling}$$
From Prob 5-10
$$\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} \begin{Bmatrix} \ddot{\theta}_1 \\
\ddot{\theta}_2
\end{Bmatrix} + \frac{9}{2} \begin{bmatrix} 2 & -1 \\
0 & 1
\end{bmatrix} \begin{Bmatrix} \theta_1 \\
\theta_2
\end{Bmatrix} = 0 \quad \text{i. Static 4 dynamic coupling}$$

$$\frac{5-25}{k} \qquad m(\ddot{x}-e\ddot{\theta}) + k\alpha = 0$$

$$\frac{G}{G} = \frac{\pi}{2} + \kappa \theta + \kappa \theta + \kappa = 0$$

$$\int_{0}^{K} = \int_{0}^{L} dt + \kappa \theta + \kappa = 0$$

$$\int_{0}^{L} = \int_{0}^{L} dt + \kappa \theta + \kappa = 0$$

$$(\int_{0}^{L} -me^{2})\ddot{\theta} + \kappa \theta + \kappa = 0$$

$$\begin{bmatrix} m_{1} & 0 \\ 0 & m_{2} \end{bmatrix} \begin{Bmatrix} \dot{\chi}_{1} \\ \dot{i}\dot{\chi}_{2} \end{Bmatrix} + \begin{bmatrix} (k_{1}+k_{2}) - k_{2} \\ -k_{2} & k_{2} \end{bmatrix} \begin{Bmatrix} \chi_{1} \\ \chi_{2} \end{Bmatrix} = \begin{Bmatrix} F_{0} \\ 0 \end{Bmatrix} \sin \omega t$$

$$\begin{bmatrix} 0.01 & 0 \\ 0 & 0.005 \end{bmatrix} \begin{Bmatrix} \dot{\chi}_{1} \\ \dot{\chi}_{2} \end{Bmatrix} + \begin{bmatrix} 30 & -10 \\ -10 & 10 \end{bmatrix} \begin{Bmatrix} \chi_{1} \\ \chi_{2} \end{Bmatrix} = \begin{Bmatrix} F_{0} \\ 0 \end{Bmatrix} \sin \omega t$$

$$\begin{bmatrix}
(30 - 0.01 \omega^{2}) & -10 \\
-10 & (10 - 0.005 \omega^{2})
\end{bmatrix}
\begin{cases}
X_{1} \\
X_{2}
\end{bmatrix} = \begin{cases}
F_{0} \\
0
\end{cases}$$

$$\omega^{4} - 5000 \omega^{2} + 4 \times 10^{6} = 0$$

$$\omega^{2} = 2500 \pm \sqrt{2500^{2} - 4 \times 10^{6}} = 2500 \pm \sqrt{2.25 \times 10^{6}}$$

$$\omega_{1} = 31.6 \text{ rad/s} \qquad \left(\frac{X_{1}}{X_{2}}\right)_{1} = \frac{1}{2}$$

$$\omega_1 = 31.6$$
 rad/s

$$\left(\frac{X_{I}}{X_{2}}\right)_{2} = -1.0$$

$$\frac{5-27}{\theta}$$

$$\frac{1}{2}(x+\frac{1}{2}\theta)$$

$$\frac{1}{2}(x+\frac{1}{2}\theta)$$

$$\Sigma F = -kx + m r \omega^2 \cos \omega t = (M+m) \dot{x} = M \dot{x}$$

$$\Sigma M_0 = -k L^2 \theta + m r \omega^2 b \cos \omega t = J_0 \dot{\theta}$$

$$m \ll M$$

$$\begin{array}{c|c}
5-28 \\
\chi_{1} \\
\chi_{2} \\
\chi_{3} \\
\chi_{4} \\
\chi_{5} \\
\chi_{6} \\
\chi_{1} \\
\chi_{1} \\
\chi_{2} \\
\chi_{3} \\
\chi_{4} \\
\chi_{5} \\
\chi_{5} \\
\chi_{6} \\
\chi_{7} \\
\chi_{1} \\
\chi_{2} \\
\chi_{3} \\
\chi_{5} \\
\chi_{6} \\
\chi_{7} $

$$(1-\lambda)x_1 - x_2 = 0$$

$$-x_1 + (3-2\lambda)x_2 = 0$$

$$\frac{X_{I}}{X_{2}} = \frac{1}{I - \lambda} = \begin{cases} 2 \\ -I \end{cases}$$

$$(1-\lambda)\chi_{1} - \chi_{2} = 0$$

$$-\chi_{1} + (3-2\lambda)\chi_{2} = 0$$

$$\chi^{2} - \frac{5}{2}\lambda + 1 = 0$$

$$\chi = \begin{cases} \frac{1}{2} & \omega_{1} = \sqrt{\frac{2}{2m_{1}}} \\ \omega_{2} = \sqrt{\frac{2}{2m_{1}}} \end{cases}$$

$$\omega_{2} = \sqrt{\frac{2}{2m_{1}}}$$

$$\omega_{3} = \sqrt{\frac{2}{2m_{1}}}$$

$$\omega_{4} = \sqrt{\frac{2}{2m_{1}}}$$

$$\frac{5-2q}{\left\{\begin{array}{c} \chi_{1} \\ \chi_{2} \end{array}\right\}} = \left\{\begin{array}{c} 2 \\ 1 \end{array}\right\} A \cos \omega_{1} t + \left\{\begin{array}{c} -1 \\ 1 \end{array}\right\} B \cos \omega_{2} t \qquad Satisfies \\ \chi(0) = \chi(0) = 0$$

$$\begin{cases} 1 \\ 1 \\ 3 \end{array}\right\} = \left\{\begin{array}{c} 2 \\ 1 \end{array}\right\} A + \left\{\begin{array}{c} -1 \\ 1 \end{array}\right\} B \qquad \therefore A = \frac{4}{q} \quad , \quad B = -\frac{1}{q}$$

$$\begin{cases} \chi_{1} \\ \chi_{2} \end{array}\right\} = \left\{\begin{array}{c} 8/q \\ 4/q \end{array}\right\} \cos \omega_{1} t + \left\{\begin{array}{c} 4q \\ -1/q \end{array}\right\} \cos \omega_{2} t .$$
This is a linear condition of the same and the same

5-30 From Prob 5-29 $\omega_i = \sqrt{\frac{k_i}{2m_i}}$ $\chi_1 = \frac{8}{9}\cos\omega_1 t + \frac{1}{9}\cos\omega_2 t$ $\omega_{\lambda} = \sqrt{\frac{2k_{i}}{m}} = 2\omega_{i}$ $\chi_2 = \frac{4}{9} \cos \omega_1 t - \frac{1}{9} \cos \omega_2 t$ Shear in $1^{\underline{st}}$ story = $k_2 x_2 = 2k_1 x_2$ $Ratio = \frac{2x_2 \max}{(x_1 - x_2)}$ Ratio = $\frac{2x_2 \max}{(x_1 - x_2)_{\max}}$ $\frac{\partial x_2}{\partial t} = -\frac{4}{9}\omega_1 \sin \omega_1 t + \frac{1}{9}\omega_2 \sin \omega_2 t = 0$ $=-\frac{\omega_1}{9}\left\{4\sin\omega_1t-2\sin2\omega_1t\right\}=0$ = { 2 sin w, t - 2 sin w, t con w, t } = 0 i. $\cos \omega_i t = 1$, and $\omega_i t = 0$, 360° i. $\chi_{2_{\text{max}}} = \frac{4}{9} - \frac{1}{9} = \frac{1}{3}$ $\frac{\partial(x_i - x_z)}{\partial t} = -\frac{4}{9}\omega_i \sin \omega_i t - \frac{4}{9}\omega_i \sin 2\omega_i t = 0$ or $\sin \omega_i t \left(1 + 2 \cos \omega_i t \right) = 0$, $\cos \omega_i t = -\frac{1}{4}$, $\omega_i t = 120^\circ$: (x,-x2)max = \frac{4}{7}(-\frac{1}{2}) + \frac{2}{7}(-\frac{1}{2}) = \frac{1}{3} Ratio of shears = $\frac{2(\frac{1}{3})}{(\frac{1}{3})} = 2$

See Prob. 5-29 $\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} = \begin{bmatrix} 2 \\
1 \\
1 \end{bmatrix} A + \begin{bmatrix} -1 \\
1 \\
1 \end{bmatrix} B$ $A = \frac{2}{3}, B = \frac{1}{3}$ $\begin{Bmatrix} \chi_1 \\ \chi_2 \end{Bmatrix} = \begin{Bmatrix} 4/3 \\ 2/3 \end{Bmatrix} \cos \omega_1 t + \begin{Bmatrix} -\frac{1}{3} \\ \frac{1}{3} \end{Bmatrix} \cos \omega_2 t$

 $\frac{5-32}{5-32} \quad \text{See Prob. } 5-28 \quad \text{with } \lambda = \frac{\omega^2 m_1}{R_1}$ $\begin{bmatrix} (1-\lambda) & -1 \\ -1 & (3-2\lambda) \end{bmatrix} \begin{Bmatrix} \chi_1 \\ \chi_2 \end{Bmatrix} = \begin{Bmatrix} 0 \\ 2\chi_g \end{Bmatrix}$

$$\lambda_1 = \frac{1}{2}$$
 $\lambda_2 = 2$

$$\lambda_2 = 2$$

: Denominator = $(\lambda - \frac{1}{2})(\lambda - 2)$

use Cramer's rule

$$X_{i} = \frac{\begin{vmatrix} 0 & -1 \\ 2 & (3-2\lambda) \end{vmatrix} X_{g}}{(\lambda - \frac{1}{2})(\lambda - 2)} \qquad X_{g} = \frac{\begin{vmatrix} (1-\lambda) & 0 \\ -1 & 2 \end{vmatrix} X_{g}}{(\lambda - \frac{1}{2})(\lambda - 2)}$$

$$X_{z} = \frac{\begin{vmatrix} (1-\lambda) & 0 \\ -1 & 2 \end{vmatrix} X_{3}}{(\lambda - \frac{1}{2})(\lambda - 2)}$$

Response = $x_1 = X_1 \sin \omega t$

$$\frac{x_1}{X_g} = \frac{2 \sin \omega t}{(\lambda - \frac{1}{2})(\lambda - 2)}$$

$$\frac{\chi_1}{X_g} = \frac{2 \sin \omega t}{(\lambda - \frac{1}{\lambda})(\lambda - 2)} \qquad \frac{\chi_2}{X_g} = \frac{2(1 - \lambda) \sin \omega t}{(\lambda - \frac{1}{\lambda})(\lambda - 2)}$$

$$M(\ddot{y}_o - l_o \ddot{\theta}) = K_{\chi}(y_o - y_o)$$

MPO = Kp(yg-yo)lo -Kp0 + Mglo0 $\rho_{c} = rad. \text{ of gyration of blag about its c.m.}$ $\frac{5-34}{M\rho_{c}^{2}} \text{ Let } \omega_{h}^{2} = \frac{K_{h}}{M\rho_{c}^{2}}$

$$\frac{5-34}{M} \quad \text{Let } \omega_{k}^{2} = \frac{K_{h}}{M}$$

$$\omega_{\lambda}^{*} = \frac{K_{\lambda}}{M \rho_{c}^{2}}$$

$$\lambda = \frac{\omega}{\omega_k}$$
, $\left(\frac{\rho_k}{L_0}\right)^2 = \frac{1}{3}$, $\left(\frac{\omega_h}{\omega_k}\right)^2 = 4$

$$\left(\frac{\omega_n}{\omega_a}\right)^2 = 4$$

$$\begin{bmatrix} (1-\lambda^{2}) & \lambda^{2} \\ 1 & \frac{1}{3}(4-\lambda^{2}) \end{bmatrix} \begin{bmatrix} Y_{o} \\ \ell_{0}\theta_{o} \end{bmatrix} = Y_{G} \approx i\phi \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{array}{c} \text{Characteristic eg.} \\ \lambda^{4} - 8\lambda^{2} + 4 = 0 \end{array}$$

$$\lambda^{4} - 8\lambda^{2} + 4 = 0$$

$$= 4 \pm \sqrt{12} = 50.54$$

Ampl. ratio

$$\frac{\int_{-\infty}^{2t} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} = \frac{\lambda^2 - 4}{3} = -1.15$$

$$\lambda = \frac{\omega}{\omega_{k}} = \begin{cases} 0.734 \\ 2.73 \end{cases}$$

Let Y, = Yo - 2 lobo = displost top, then Y, = Yo - 2 = -1.15-2=-3.15

$$\frac{2^{\frac{mq}{2}} \text{ mode}}{Y_0 - U^{\frac{mq}{2}}}$$

$$\begin{cases} Y_0 = 1.15 \\ Y_1 = -.74 \end{cases}$$

$$\frac{2^{\frac{nd}{nod}} e^{\frac{2^{\frac{nd}{nod}} e^{\frac{2^{\frac{nd}{nod}} e^{\frac{nd}{nod}} e^{\frac{2^{\frac{nd}{nod}} e^{\frac{nd} e^{\frac{nd}} e^{\frac{nd} e^$$

$$\frac{5-35}{\text{From Prob.}} \quad 5-34 \quad \text{Det.} = \lambda^4 - 8\lambda^2 + 4$$

$$\text{For Det} = 0, \quad \lambda = \frac{\omega}{\omega_k} = \begin{cases} 0.732 & 1 \text{ st mode} \\ 2.732 & 2 \text{ mode} \end{cases}$$

$$\text{Using Cramer's rule}$$

$$\frac{Y_0}{Y_C} = \frac{\begin{vmatrix} 1 & \lambda^2 \\ 1 & \frac{1}{3}(4-\lambda^2) \end{vmatrix}}{\lambda^4 - 8\lambda^2 + 4} = \frac{4}{3} \frac{(1-\lambda^2)}{\lambda^4 - 8\lambda^2 + 4} \quad \text{Plot for various}$$

$$\frac{l_0\theta_0}{Y_C} = \frac{\begin{vmatrix} (1-\lambda^2) \\ 1 & 1 \end{vmatrix}}{\lambda^4 - 8\lambda^2 + 4} = \frac{-\lambda^2}{\lambda^4 - 8\lambda^2 + 4} \quad \text{Check Fig. P5-35}$$

Unfavorable speed is found from V7 = l $v = \frac{l}{n} = l f_n$

From Prob 5-24

$$f_1 = 0.962$$

f = 0.962 predominately bouncing

$$f_2 = 1.327$$

 $f_0 = 1.327$ " pitching

$$V_1 = 45 \times 0.962 = 43.29 \text{ ft/s} = 29.5 \text{ mph}$$

$$V_2 = 45 \times 1.327 = 59.72 \text{ ft/s} = 40.7 \text{ mph}$$

$$\frac{5-37}{m_{i}}$$

$$\frac{k_{i}}{\lambda} \geqslant \frac{k_{i}}{\lambda} + \chi_{1}$$

$$\frac{-37}{m_1 \ddot{x}_1 + k_1 x_1 + k_2 (x_1 - x_2)} = m_0 e \omega^2 \sin \omega t$$

$$\frac{m_1 \ddot{x}_1 + k_2 (x_1 - x_2)}{m_2 \ddot{x}_2 + k_2 (x_2 - x_1)} = 0$$

ks should equal exciting freq w

$$k_2 = \omega^2 m_2 = \left(\frac{2\pi 1800}{60}\right)^2 \left(\frac{50}{386}\right) = 4600 \text{ Lb/in}$$

The absorber will then make x, = 0 and the absorber force will be equal and opposite to the exciting force.

$$k_x X_x = m_0 e \omega^2$$

$$X_2 = \frac{m_0 e \omega^2}{k_2} = \frac{m_0 e}{m_2} = \frac{2}{50} = 0.04$$
"

$$\frac{5-38}{m_1 \dot{\chi}_1 + \mathcal{K}(\dot{\chi}_1 - \dot{\chi}_2) + k_1 \chi_1 + k_2 (\chi_1 - \chi_2)} = m_0 \omega^2 (e^{i\omega t})$$

$$\frac{m_1 \dot{\chi}_2}{m_2 + \mathcal{K}(\dot{\chi}_2 - \dot{\chi}_1) + k_2 (\chi_2 - \chi_1)} = 0$$
Let $\chi_1 = \chi_1 e^{i\omega t}$ $\chi_2 = \chi_2 e^{i\omega t}$ where $\chi_1 + \chi_2$ are complex
$$\left(\frac{k_1 + k_2}{m_1} - \omega^2 + i \frac{\omega_{\mathcal{K}}}{m_1}\right) \chi_1 - \left(\frac{k_2}{m_1} + \frac{i\omega_{\mathcal{K}}}{m_1}\right) \chi_2 = \frac{(m_0 e) \omega^2}{m_1}$$

$$- \left(\frac{k_2}{m_2} + \frac{i\omega_{\mathcal{K}}}{m_2}\right) \chi_1 + \left(\frac{k_2}{m_2} - \omega^2 + \frac{i\omega_{\mathcal{K}}}{m_2}\right) \chi_2 = 0$$

$$\chi_1 = \frac{(m_0 e) \omega^2 \left(k_2 - m_2 \omega^2 + i\omega_{\mathcal{K}}\right)}{\left[(k_1 + k_2) - m_1 \omega^2 + i\omega_{\mathcal{K}}\right] \left[k_2 - m_2 \omega^2 + i\omega_{\mathcal{K}}\right] - \left(k_2 + i\omega_{\mathcal{K}}\right)^2}$$

$$\frac{\chi_2}{\chi_1} = \frac{(k_2 - i\omega_{\mathcal{K}})}{\left(k_1 - m_2 \omega^2 + i\omega_{\mathcal{K}}\right)}$$

$$\frac{5-39}{I\dot{\theta}_{1}^{\prime} + 4 k \alpha^{2}(\theta_{1} - \theta_{2})} = M_{0} \sin \omega t$$

$$\frac{I_{d}\dot{\theta}_{2}^{\prime} + 4 k \alpha^{2}(\theta_{2} - \theta_{1})}{I_{0}} = 0$$
Let $\lambda = \frac{\omega^{2}I}{k\alpha^{2}}$ and $m = \frac{I_{d}}{I}$

$$\left[\begin{pmatrix} (4-\lambda) & -1 \\ -1 & (4-m\lambda) \end{pmatrix} \middle\{ \theta_{1} \\ \theta_{2} \end{pmatrix} = \begin{cases} M_{0} \\ 0 \end{cases} \sin \omega t$$

$$\theta_{1} = \frac{(4-m\lambda) M_{0} \sin \omega t}{m\lambda^{2} - 4(1+m)\lambda + 15} \quad \therefore \theta_{1} = 0 \text{ when } \lambda = \frac{4}{m}$$

5-40

Point of contact c of U with small circle moves

h = d, -d,

5-41 From Eq. 5.6-5 the natural freq. is
$$\omega_{m} = m \sqrt{\frac{R}{R}} = 4 \text{ (rot. speed)} = 4m$$

$$\therefore \frac{R}{R} = \frac{1}{16} \qquad R = d_{1} - d_{2} = \frac{3}{4}'' - d_{2}$$

$$\therefore h = \frac{R}{16} = \frac{4}{16}'' = \frac{1}{4} = \frac{3}{4} - d_{2} \qquad d_{2} = \frac{1}{2}''$$

5-42

Excit.
$$\omega = \frac{2\pi 600}{60} = 20 \pi \, \text{rad/s}$$
.

Nut. freq. of absorber must equal the excitation freq.

$$\omega_{22}^2 = \frac{k_1}{m_1} = \frac{386 \, k_1}{125} = (20 \, \pi)^2$$

Nat. freq. of system is found from the denominator of Eq5.5-1 which can be reduced to

$$\left(\frac{\omega}{\omega_{xx}}\right)^{4} - \left[1 + \left(\frac{\omega_{yy}}{\omega_{xx}}\right)^{2}\right] + \mu \left(\frac{\omega_{zz}}{\omega_{yy}}\right)^{2} \right] \left(\frac{\omega}{\omega_{zx}}\right)^{2} + \left(\frac{\omega_{yy}}{\omega_{zx}}\right)^{2} = 0$$

$$\mu = \frac{m_{z}}{m_{z}} = \frac{125}{500} = 0.25 , \qquad \left(\frac{\omega_{yy}}{\omega_{xx}}\right)^{2} = \left(\frac{400}{600}\right)^{2} = \frac{1}{2.25}, \quad \text{Let } \lambda = \frac{\omega}{\omega_{zx}}$$

$$\lambda^{4} - 1.695 \lambda^{2} + \frac{1}{2.25} = 0, \qquad \lambda^{2} = \left(\frac{\omega}{\omega_{zx}}\right)^{2} = 0.845 \pm .164$$

Refer to Fig 5.5-3

With trial weight of 2 lb tuned to 232 npm, the two nat. freqs.

$$\left(\frac{\omega}{\omega_{22}}\right) = \frac{198}{232} = 0.854$$
 and $\left(\frac{\omega}{\omega_{22}}\right) = \frac{272}{232} = 1.17$

These numbers establish the mass ratio from Fig 5.5-3 to be µ = 0.10

To move nat. freqs. outside specified freqs, of

$$\left(\frac{\omega}{\omega_{22}}\right) = \frac{160}{232} = 0.69$$
 and $\left(\frac{\omega}{\omega_{22}}\right) = \frac{320}{232} = 1.38$

FIG 5,5-3 shows M2 0.57

Since
$$\mu_1 = \frac{(m_2)_1}{m_1} = \frac{2}{m_1} = 0.10$$
 .; $m_1 = 20$

$$\mu_2 = \frac{(m_2)_2}{m_1} = 0.57$$
, $(m_2)_2 = .57 \times 20 = 11.4$ Lb.

The stiffness should be $k = m\omega^2 = \frac{11.4}{386} \left(\frac{2\pi}{60}\right)^2 = 17.9$ #/in

5-44 Assume Linear velocity distribution of fluid between disk and case. The torque is

$$T' = \mu(\text{velocity gradient})(\text{radius})(\text{area})$$

$$= 2 \int_{R} 2\pi \mu(\frac{\omega r}{R}) n^2 dr + 2\pi \mu(\frac{\omega R}{R}) R^2 b$$

$$= 2\pi \mu \frac{\omega R^3}{R} \left[\frac{1}{2} \left(R - \frac{R_0^4}{R^3} \right) + b \right]$$

5-45 Optimum damping given by Eq. 5.7-6

$$5_0 = \frac{u}{\sqrt{2(1+\mu)(2+\mu)}} = \frac{.25}{\sqrt{2(1.25)(2.25)}} = 0.1054$$

The freq. at which the damper is most effective (with peak ampl.) is given by Eq. 5.7-7

$$\frac{\omega}{\omega_{m}} = \sqrt{\frac{2}{2+\mu}} = \sqrt{\frac{2}{2.15}} = 0.943$$

5-46 The peak amplitude for any μ and ξ can be found from Fig 5.7-4. It is seen that the optimum (lowest point on curve) for μ =.25 is $\xi = .105$ as computed in Prob. 5-45. Thus

$$\frac{\theta_{\text{max}} \ S = .10}{\theta_{\text{max}} \ S = .105} \approx 1.0$$

5-47 In Fig 5.7-3 all curves pass through a common point p. This point is at the frequency for optimum damping. Thus by equating $\left|\frac{K\theta_0}{M_0}\right|^2$ for $\zeta=0$ and $\zeta=\infty$ Eq. 5.7-7 is obtained

$$\frac{\mu^{2}(\omega/\omega_{m})^{2}}{\mu^{2}(\omega/\omega_{m})^{2}(1-\omega/\omega_{m}^{2})} = \frac{4}{4\left[\mu\left(\frac{\omega}{\omega_{m}}\right)^{2}-\left(1-\omega/\omega_{m}^{2}\right)\right]^{2}}$$
or.
$$\frac{1}{1-(\omega/\omega_{m})^{2}} = \frac{1}{(\omega/\omega_{m})^{2}(1+\mu)-1}$$
Thus
$$\omega/\omega_{m} = \sqrt{\frac{2}{2+\mu}}$$

Eq. 5.7-6 is found by differentiating $\left|\frac{k\theta_0}{m_0}\right|^2$ wrt. $\left(\frac{\omega}{\omega_m}\right)^2$, equating it to zero and substituting Eq. 5.7-7

Let
$$h^2 = \frac{2}{2+\mu} = \left(\frac{\omega}{\omega_m}\right)^2$$
 $(1-h^2) = \frac{\mu}{2+\mu} = h^2(1+\mu) - 1$
 $q = \frac{45^2}{\mu^2}$ Rewrite Eq. 5.7-5

$$\left|\frac{\kappa\theta_{0}}{m_{0}}\right|^{2} = \frac{\hbar^{2}+q}{\hbar^{2}(1-\hbar^{2})^{2}+q\left[\hbar^{2}(1+\mu)-1\right]^{2}}$$

$$\frac{\partial \left[1\right]^{2}}{\partial \pi^{2}} = \hbar^{2}(1-\hbar^{2})^{2}+q\left[\hbar^{2}(1+\mu)-1\right]^{2}-(\hbar^{2}q)\left\{(1-\hbar^{2})^{2}-\lambda\hbar^{2}(1-\hbar^{2})\right\}$$

$$+2q\left[\hbar^{2}(1+\mu)-1\right](1+\mu) = 0$$

$$= n^{2}(1-n^{2})^{2} + q(1-n^{2})^{2} - (n^{2}+q)$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) \right] = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - \left(\frac{\mu}{2+\mu} \right)^{2} + 2n^{2} \left(\frac{\mu}{2+\mu} \right) - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) \right] = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) \right] = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{2}+q) \left(\frac{\mu}{2+\mu} \right)^{2} - 2q \left(\frac{\mu}{2+\mu} \right) (1+\mu) = 0$$

$$= (n^{$$

$$M\ddot{x}_1 = -kx_1 - c(\dot{x}_1 - \dot{x}_2) + Fe^{i\omega t}$$

 $m\ddot{x}_2 = c(\dot{x}_1 - \ddot{x}_2)$ Let $x_1 = X_1e^{i\omega t}$, $x_2 = X_2e^{i\omega t}$

$$\begin{bmatrix} \frac{i}{M} - \omega^{2} + i \begin{pmatrix} \omega \\ M \end{pmatrix} \end{bmatrix} X_{1} - i \begin{bmatrix} \omega \\ M \end{bmatrix} X_{2} = \frac{F}{M}$$

$$\begin{bmatrix} -\omega^{2} + i & \omega \\ m \end{bmatrix} X_{2} = i \begin{pmatrix} \omega \\ M \end{pmatrix} X_{1} \quad \text{eliminate } X_{2}$$

$$\begin{cases} \left[\frac{i}{M} - \omega^{2} + i \begin{pmatrix} \omega \\ M \end{pmatrix} \right] - i \begin{pmatrix} \omega \\ M \end{pmatrix} \frac{i \begin{pmatrix} \omega \\ M \end{pmatrix}}{(-\omega^{2} + i \frac{\omega}{M})} \right] X_{1} = \frac{F}{M}$$

$$\left\{ \left[\left(k - M\omega^{2} \right) + i c\omega \right] \left(-\frac{m\omega^{2} + i c\omega}{m} \right) + \frac{\left(c\omega \right)^{2}}{m} \right\} X = F \left(-\frac{m\omega^{2} + i c\omega}{m} \right)$$

$$\frac{X_1}{F} = \frac{(\omega^2 m - i c \omega)}{m\omega^2 (k - M\omega^2) + i c\omega [m\omega^2 - (k - M\omega^2)]}$$

$$\frac{1}{3} = \frac{1}{3} \frac{1}{m} x + \frac{1}{3} \frac{1}{m} y + \frac{1}{3} \frac{1}{$$

Flow diagram, computer program and plot of results follow.

Flow Diagram Prob 5-49

Computer Program - Prob 5-49 PROBLEM 5-49 THOMSON DIMENSION X (155), X (155), DX (155), DX (155), T (155) 1 2 DT = 3.203 F = 100.4 X(1) = 0.05 Y(1) = 0.06 0.0 = 0.07 DX(1) = F/3.8 T(1) = 0.09 I=5 5 IF (1.GT.2) GOTO 10 10 X(I) = 0.5*0X(I-1)*DT**211 Y(I) = X(I) *DT**2/(6.+4.*DT**2)12 13 GO TO 30 10 X(I) = DX(I-1) *DT**2+2.*X(I-1) - X(I-2)14 Y(I) = DY(I-1) *DT**2*2.*Y(I-1) -Y(I-2)15 IF(I.GT.95) GOTO 20 16 F = 100.17 GO TO 30 18 20 F=0.0 19 30 DX(I) = (-2.*X(I)+X(I)+F)/3.20 21 DY(I) = X(I) - 4.*Y(I)22 T(1) = T(1-1) + DT23 I=I+1 IF(I.LE. 151) GOTO 5 24 DO 50 I=1,150 25 26 50 PRINT, T(I), X(I), Y(I) 27 STOP 28 END 100 50 Зb **-5**0

$$5-50 \qquad 100 \stackrel{\times}{\times} = -4 \times 10^{3} (x-y) - (x) \frac{10^{3}}{3} (y-y)$$

$$100 \stackrel{\times}{y} = 4x \times 10^{3} (x-y) - (x) \frac{10^{3}}{3} (y-y)$$

$$100 \stackrel{\times}{y} = 4x \times 10^{3} (x-y) - (x) \frac{10^{3}}{3} (y-y)$$

$$100 \stackrel{\times}{y} = 4x \times 10^{3} (x-y) - (x) \frac{10^{3}}{3} (y-y)$$

$$100 \stackrel{\times}{y} = 4x \times 10^{3} (x-y) - (x) \frac{10^{3}}{3} (y-y)$$

$$100 \stackrel{\times}{y} = 4x \times 10^{3} (x-y) - (x) \frac{10^{3}}{3} (y-y)$$

$$100 \stackrel{\times}{y} = 4x \times 10^{3} (y-y)$$

$$100 \stackrel{\times}{y} = 4x$$

Computer Program

```
PROBLEM 5-50 THOMSON
   DIMENSION X (220), Y (220), DX (220), DY (220), T (220), Z (220)
   DT=0.05
   F = 100.
   x(1) = 0.9
   Y(1)=0.0
   DY (1) =0.0
   DX(1) = 0.
   T(1) = 0.0
   I=2
   Z(1) = 0.0
 5 T(I) = T(I-1) + DT
   IF(T(I).GT.4.) GO TO 10
   3(I) = 10.*SIN(3.14*T(I))
   GO TO 15
10 3(I) = 0.0
15 IF (I.GT.2) GOTO 20
   X(I)=(400.*6.*DT**4*2(I))/(36.+840.*DT**2+2400.*DT**4)
   Y(I) = (1+40./6.*DT**2)*X(I)/(40./6.*DT**2)
   GO TO 50
20 X(I) = DX(I-1) *DT**2+2.*Y(I-1) - X(I-2)
   Y(I) = DY(I-1) *DT**2+2.*Y(I-1) -Y(I-2)
50 by (I) = -40.*X(I) + 40.*Y(I)
   DY(I) = 40.*X(I) - 100.*Y(I) + 60.*Z(I)
   I=I+1
   IF (I.LE. 202) GOTO 5
   90 70 I=1,202
   PRINT60, T(I), Z(I), X(I), Y(I)
60 FORMAT (10x, 4F12.4)
70 CONTINUE
   CALL EZPLOT (T, X, 202)
   CALL EZPLOT(T,Y,-202)
   CALL FINISH
   STOP
   END
```


Freq. Eq. from either set of equations is

$$\omega^{4} - \left[\frac{K_{1}}{J_{1}} + \frac{K_{2}}{J_{2}} \left(I + \frac{K'_{1}}{K_{2}} + \frac{J_{2}}{J_{3}} \right) \right] \omega^{2} + \frac{K_{1}}{J_{1}} \frac{K_{2}}{J_{2}} \left(\frac{J_{1} + J_{2} + J_{3}}{J_{3}} \right) = 0$$

$$J_{1} \stackrel{m_{1}}{\rightarrow} J_{2} \stackrel{m_{2}}{\rightarrow} J_{3} \stackrel{d}{\rightarrow} I_{4} $

$$\begin{bmatrix}
\left[\kappa_{1}\left(1+\frac{J_{1}}{J_{1}}\right)-\omega^{2}J_{1}\right] & -\kappa_{2} \\
-\kappa_{1}\frac{J_{2}}{J_{1}} & \left[\kappa_{2}\left(1+\frac{J_{3}}{J_{2}}\right)-\omega^{2}J_{3}\right]
\end{bmatrix}
\begin{pmatrix} \phi \\ \gamma \end{pmatrix} = \left\{0\right\}$$

$$\frac{\phi}{\gamma} = \frac{K_2}{K_1(1+\frac{J_2}{J_1}) - \omega^2 J_2} = \frac{\theta_2 - \theta_1}{\theta_3 - \theta_2} = \frac{\frac{\theta_2}{\theta_1} - 1}{\frac{\theta_2}{\theta_1} - \frac{\theta_2}{\theta_1}}$$

Assign numerical values for K & J, and prove

$$J_{i}\theta_{i}^{(i)}\theta_{i}^{(j)} + J_{i}\theta_{i}^{(i)}\theta_{i}^{(j)} + J_{j}\theta_{j}^{(i)}\theta_{j}^{(i)} = 0$$

$$\frac{5-54}{x_{1}}$$

$$\frac{\chi_{1}}{k_{1}\chi_{1}}$$

$$\frac{\chi_{2}}{k_{1}\chi_{1}}$$

$$\frac{\chi_{2}}{k_{1}\chi_{2}}$$

$$\frac{\chi_{2}}{k_{2}\chi_{2}}$$

$$\frac{\chi_{2}}{k_{1}\chi_{2}}$$

$$\frac{\chi_{3}}{k_{2}\chi_{2}}$$

$$\frac{\chi_{3}}{k_{1}\chi_{2}}$$

$$\frac{\chi_{3}}{k_{2}\chi_{3}}$$

$$\frac{\chi_{3}}{k_{1}\chi_{2}}$$

$$\frac{\chi_{3}}{k_{2}\chi_{3}}$$

$$\frac{\chi_{3}}{k_{1}\chi_{3}}$$

$$\frac{\chi_{3}}{k_{1}\chi_{3}}$$

$$\frac{\chi_{3}}{k_{2}\chi_{3}}$$

$$\frac{\chi_{3}}{k_{1}\chi_{3}}$$

$$\frac{\chi_{3}}{k_{2}\chi_{3}}$$

$$\frac{\chi_{3}}{k_{1}\chi_{3}}$$

$$\frac{\chi_{3}}{k_{2}\chi_{3}}$$

$$\frac{\chi_{3}}{k_{1}\chi_{3}}$$

$$\frac{\chi_{3}}{k_{2}\chi_{3}}$$

$$\frac{5-55}{3} \qquad Equations to be solved are;$$

$$\ddot{x} = -720 \ x + 360 \ y \qquad (see p132)$$

$$\ddot{y} = 1440 (x-y) + 160$$

$$(s^2+720) \ \ddot{x}(s) - 360 \ \ddot{y}(s) = 0$$

$$-1440 \ \ddot{x}(s) + (s^2+1440) \ \ddot{y}(s) = \frac{160}{5}$$

$$from \ |^{52} eq. \qquad \ddot{x}(s) = \left(\frac{360}{s^2+720}\right) \ \ddot{y}(s)$$

$$subst. into \ 2^{\frac{nd}{eq}}, \qquad -1440 \left(\frac{360}{s^2+720}\right) \ \ddot{y}(s) + (s^2+1440) \ \ddot{y}(s) = \frac{160}{5}$$

$$x \ by \ (s^2+120)$$

$$\left[-518,400 + s^4 + 2160 s^2 + 1,036,800\right] \ \ddot{y}(s) = \frac{160(s^2+720)}{5}$$

$$\left[s^4 + 2160 s^2 + 518,400\right] \ \ddot{y}(s) = \frac{160}{5} (s^2+720)$$

$$\ddot{y}(s) = \frac{160(s^2+720)}{5(s^4+2160s^2+518,400)}$$

$$Roots: \ s^2 = -1080 \pm \sqrt{1,166,400-518,400}$$

$$= -1080 \pm \sqrt{648,000}$$

$$= -1080 \pm 804.9845$$

$$also \ s = 0 \ is \ a \ root.$$

5-55 Cont.

$$S_1^2 = -275.0155 S_1 = \pm i \cdot 16.5836$$

$$S_2^2 = -1884.9845 S_2 = \pm i \cdot 43.4164$$

Rewrite \$15) as

$$\frac{\overline{y}(s)}{s} = \frac{160 (s^{2} + 720)}{s (s^{2} + 175.0155)(s^{2} + 1884.9845)}$$

$$= \frac{160 (s^{2} + 720)}{s (s + i 16.5836)(s - i 16.5836)(s + i 43.4164)(s - i 43.4164)}$$

$$= \frac{C_{1}}{(s + i 16.5836)} + \frac{C_{2}}{(s - i 16.5836)} + \frac{C_{3}}{(s + i 43.4164)}$$

$$+ \frac{C_{4}}{(s - i 43.4164)} + \frac{C_{5}}{5}$$

$$C_5 = \frac{160(720)}{(275.0155)(1884.9845)} = 0.2222$$

5-55 Cont.

$$\frac{\ddot{y}(s) = \frac{.2222}{5} - \frac{.0804007}{(5+i.16.5836)} - \frac{.0804007}{(5-i.16.5836)} - \frac{.03071}{(5-i.43.4164)} - \frac{.03071}{(5-i.43.4164)}$$

Inverse

$$y(t) = 0.2222 - .0804007 \left(e^{-i16.5836} + e^{i16.5836} \right)$$

$$- .03071 \left(e^{-i43.4164} + e^{i43.4164} \right)$$

= 0.2222 - . 16 08 Cos 16.58t -. 06/42 Cos 43.41 t

= .1608 (1 - Cos 16,58t) + .06142 (1 - Cos 43,41t) meters

Move dec. pt. I places to left for centinieters

 $\bar{\chi}(s) = \frac{360}{(s^2 + 720)} \; \bar{y}(s) = \frac{360}{(s^2 + 720)} \cdot \frac{160(s^2 + 720)}{5(s^2 + 275.0155)(s^2 + 1884.9845)}$

fractions, the equation

$$\overline{\chi}(s) = \frac{57600}{5(s^2 + 275,0155)(s^2 + 1884.9845)}$$

<u>Ansi</u>

$$y(t) = .1301(1 - cos 16.58t) - .0190(1 - cos 43,41t)$$
 meters.

 $\frac{5-56}{9}$ Examine for example the subsidiary sol. for Prob 5-55 $\frac{Ci}{5-5i}$ where 5i are roots

.. Results are sums of normal modes

$$m\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{bmatrix} + k\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}\begin{bmatrix} x_1 \\ \chi_1 \end{bmatrix} = \begin{cases} \bar{F}_0 \\ 0 \end{cases} \sin \omega t$$

$$ms^2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} \overline{\chi}_1(s) \\ \overline{\chi}_2(s) \end{bmatrix} + k\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}\begin{bmatrix} \overline{\chi}_1(s) \\ \overline{\chi}_2(s) \end{bmatrix} = \begin{cases} \frac{\bar{F}_0 \omega}{s^2 + \omega^2} + ms \chi_1(0) + m \dot{\chi}_1(0) \\ ms \chi_2(0) + m \dot{\chi}_1(0) \end{cases}$$

$$\begin{bmatrix} (ms^2 + 2k) & -k \\ -k & (ms^2 + 2k) \end{bmatrix}\begin{bmatrix} \bar{\chi}_1(s) \\ \overline{\chi}_2(s) \end{bmatrix} = \begin{cases} 1 \\ 1 \end{cases}$$
Det. of matrix $(ms^2 + 2k)^2 - k^2 = 0$, $s^2 = -\frac{2k}{m} \pm \frac{k}{m}$

Det. of matrix
$$(m5^2+2k)^2-k^2=0$$
, $\delta^2=-\frac{2k}{m}\pm\frac{k}{m}$
 $(s^2+\frac{k}{m})(s^2+\frac{3k}{m})m$
 $[\frac{F_0\omega}{s^2+\omega^2}+ms\alpha_i(o)+m\alpha(o)]-k$

$$\overline{\chi}_{i}(s) = \frac{\left[\frac{F_{0}\omega}{S^{2}+\omega^{2}} + mS\chi_{i}(0) + m\chi(0)\right] - k}{\left[mS\chi_{e}(0) + m\chi_{e}(0)\right] (mS^{2}+2k)} \\
\frac{\left[mS\chi_{e}(0) + m\chi_{e}(0)\right] (mS^{2}+2k)}{\left(S^{2}+\frac{3k}{m}\right)m} \\
\frac{\left[mS^{2}+kk\right] \left[\frac{F_{0}\omega}{S^{2}+\omega^{2}} + mS\chi_{i}(0) + m\chi_{i}(0)\right]}{\left[-k\left[mS\chi_{e}(0) + m\chi_{e}(0)\right]\right]} \\
\frac{1}{\chi_{e}(s)} = \frac{\left[mS\chi_{e}(0) + m\chi_{e}(0)\right]}{\left(S^{2}+\frac{3k}{m}\right)m}$$

$$\overline{\mathcal{X}_{2}(5)} = \frac{\left[ms\chi_{2}(0) + m\chi_{2}(0)\right]}{\left(5^{2} + \frac{k}{m}\right)\left(5^{2} + \frac{3k}{m}\right)m}$$

For steady state vibration $\chi(0)$, $\dot{\chi}(0) = 0$ and $s = i\omega$

$$\chi_{j}(t) = \frac{\left(2\frac{1}{m} - \omega^{2}\right) F_{0} \sin \omega t}{\left(\frac{1}{m} - \omega^{2}\right)\left(3\frac{1}{m} - \omega^{2}\right)}$$

$$\chi_{2}(t) = \frac{k F_{o} \sin \omega t}{\left(\frac{k}{m} - \omega^{2}\right)\left(3\frac{k}{m} - \omega^{2}\right) m}$$

$$F_{1} = -k_{1}x_{1} - k_{1}(x_{1} - x_{2})$$

$$F_{2} = -k_{3}x_{2} - k_{2}(x_{2} - x_{1})$$

$$\begin{cases}
\overline{F_{1}} \\ \overline{F_{2}}
\end{cases} = \begin{bmatrix}
-(k_{1} + k_{1}) & k_{1} \\ k_{2} & -(k_{2} + k_{3})
\end{bmatrix} \begin{cases}
x_{1} \\ \overline{F_{2}}
\end{cases} = \begin{bmatrix}
K
\end{bmatrix}^{-1} \begin{cases}
\overline{F_{1}} \\ \overline{F_{2}}
\end{cases} = \frac{-1}{k_{1}k_{2} + k_{1}k_{3} + k_{2}k_{3}} \begin{bmatrix}
(k_{2} + k_{3}) & k_{1} \\ k_{2} & (k_{1} + k_{2})
\end{bmatrix} \begin{bmatrix}
\overline{F_{1}} \\ \overline{F_{2}}
\end{cases}$$

$$= \begin{bmatrix}
K
\end{bmatrix}^{-1} \begin{cases}
F_{1} \\ F_{2}
\end{cases} = \frac{-1}{k_{1}k_{2} + k_{1}k_{3} + k_{2}k_{3}} \begin{bmatrix}
(k_{2} + k_{3}) & k_{1} \\ k_{2} & (k_{1} + k_{2})
\end{bmatrix} \begin{bmatrix}
F_{1} \\ F_{2}
\end{cases}$$

$$= \begin{bmatrix}
K
\end{bmatrix}^{-1} \begin{cases}
F_{1} \\ F_{2}
\end{cases} = \frac{-1}{k_{1}k_{2} + k_{1}k_{3} + k_{2}k_{3}} \begin{bmatrix}
K_{2} \\ K_{2}
\end{cases} = \frac{-1}{k_{2}} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} = \frac{-1}{k_{2}} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} = \frac{-1}{k_{2}} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{3}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{3}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K_{3}
\end{cases} \begin{bmatrix}
K_{1} + K_{2}
\end{cases} \begin{bmatrix}
K_{2} + K$$

Then
$$F_1 = \delta R \cos \theta$$

$$F_2 = \delta R \cos (60 - \theta)$$

$$F_3 = \delta R \cos (60 + \theta)$$

$$F_3 = \delta R \cos (60 + \theta)$$

Force along δ is

$$F = F_1 \cos \theta + F_2 \cos (60 - \theta) + F_3 \cos (60 + \theta)$$

$$F = F_1 \cos \theta + F_2 \cos (60-\theta) + F_3 \cos (60+\theta)$$

$$= \Re \left[\cos^2 \theta + \cos^2 (60-\theta) + \cos^2 (60+\theta) \right] = 1.5 \, \text{k/s}$$

$$\frac{1}{15} = \frac{1}{1.5k}$$
 and independent of Θ

$$y = \frac{Pbx}{6EII} (e^{2} - x^{2} - b^{2}) \qquad x = a$$

$$y = \frac{Pbx}{6EII} (e^{2} - x^{2} - b^{2}) \qquad x = a$$

$$y = \frac{Pbx}{6EII} (e^{2} - x^{2} - b^{2}) \qquad x = a$$

$$Position (i) = 0.25l, \quad position (i) = 0.60l$$

$$a_{11} = \frac{(.75)(.25)l^{3}}{6EI} (1 - .25 - .75^{2}) = 0.0114 \frac{e^{3}}{EI}$$

$$y = \frac{Pbx}{6EIR} (e^2 - x^2 - b^2) \qquad z = a$$

$$\alpha_{11} = \frac{(.75)(.25)\ell^{3}}{6 \text{ ET}} (1 - .25 - .75^{2}) = 0.0114 \frac{\ell^{3}}{\text{ET}}$$

$$\alpha_{12} = \alpha_{21} = \frac{(0.55)(.40)\ell^{3}}{6 \text{ ET}} (1 - .40^{2} - .25^{2}) = 0.0130 \frac{\ell^{3}}{\text{ET}}$$

$$\alpha_{12} = \frac{(.40)(.60)\ell^{3}}{6 \text{ ET}} (1 - .60^{2} - .40^{2}) = 0.0192 \frac{\ell^{3}}{\text{ET}}$$

$$a = \frac{l^3}{EI} \begin{bmatrix} 0.0114 & 0.0130 \\ 0.0130 & 0.0192 \end{bmatrix}$$

Place unit Load at @ and repeat

$$\begin{array}{lll}
\alpha_{22} &=& \frac{\left(\frac{1}{2}\right)^3}{3 \, \overline{E} \, \Gamma} &=& \frac{\ell^3}{24 \, \overline{E} \, \Gamma} \\
\Theta_{22} &=& \frac{\left(\frac{1}{2}\right)^2}{2 \, \overline{E} \, \Gamma} &=& \frac{\ell^2}{8 \, \overline{E} \, \Gamma} \\
\alpha_{31} &=& \alpha_{21} + \theta_{12} \, \frac{\ell}{4} = \left(\frac{1}{24} + \frac{1}{32}\right) \frac{\ell^3}{E \, \Gamma} = \frac{7}{96} \, \frac{\ell^3}{E \, \Gamma} \\
\alpha_{42} &=& \left(\frac{7}{96} + \frac{1}{32}\right) \frac{\ell^3}{E \, \Gamma} &=& \frac{10}{96} \, \frac{\ell^3}{E \, \Gamma} \\
\Theta &=& \left(\frac{3}{4}\ell\right)^2 &=& \frac{9}{4} \, \frac{\ell^2}{E \, \Gamma}
\end{array}$$

$$a_{33} = \frac{\left(\frac{3}{4}\ell\right)^3}{3E\Gamma} = \frac{q}{64} \frac{\ell^3}{E\Gamma} , \qquad \Theta_{33} = \frac{\left(\frac{3}{4}\ell\right)^2}{1E\Gamma} = \frac{q}{32} \frac{\ell^2}{E\Gamma}$$

$$a_{43} = a_{31} + \theta_{32} \frac{4}{4} = (\frac{9}{4} + \frac{9}{128}) \frac{1}{128} = \frac{27}{128} \frac{1}{128}$$

$$a_{44} = \frac{\ell^3}{3 \, \text{ET}}$$

$$\alpha = \frac{\ell^{3}}{\overline{L1}} \begin{bmatrix}
\frac{1}{192} & \frac{2.5}{192} & \frac{4}{192} & \frac{5.6}{192} \\
\frac{2.5}{192} & \frac{1}{24} & \frac{7}{96} & \frac{10}{96} \\
\frac{4.0}{192} & \frac{7}{46} & \frac{9}{64} & \frac{27}{128} \\
\frac{5.5}{192} & \frac{10}{96} & \frac{27}{128} & \frac{1}{3}
\end{bmatrix} = \frac{\ell^{3}}{192} \begin{bmatrix}
t & 2.5 & 4.0 & 5.5 \\
2.5 & 8.0 & 14.0 & 20.0 \\
4.0 & 14.0 & 27.0 & 40.5 \\
5.5 & 20.0 & 40.5 & 64.0
\end{bmatrix}$$

Computer Program for Matrix Inversion

```
PROBLEM 5-4 THOMSON
     С
            REAL A (4,4), AINV (4,4), WKAREA (4)
            DO 10 I=1,4
 2
 3
            READ, (\Lambda(I,J),J=1,4)
         10 CONTINUE
 4
5
            00 16 J=1,4
            PRINT15, (A (I,J),J=1,4)
 6
         15 PORMAT (10X,4F12.4)
 7
         16 CONTINUE
 8
 9
            N = 4
            I \Lambda = 4
10
            IDGT=0
11
            CALL LINVIE (A, M, IA, AINV, IDGT, WKAPEA, IER)
12
13
            DO 25 I=1.4
            PRINT25, (AINV(I,J),J=1,4)
14
         25 FORMAT( 1,10Y,4F12.4)
15
         26 CONTINUE
16
            STOP
17
18
             END
```

_	Original	Matrix	
1.0000	2.5900	4.0000	5.5000
2.5000	9.0000	14.0000	20.0000
4.0000	14.0000	27.0000	40.5000
5.5000	20,0000	40.5000	64.0000

	Inverted	Matrix	
5.2630	-3.9391	1.4945	-0.2474
-3.9391	4.7835	-3.1959	0.8560
1.4945 -0.2474	-3.1959 3.8660	3.2390 -1.2165	-1.2165 0.5361

Give each disk a unit rotation holding

other disks with zero rotation. Torque
required is then:

$$\theta_1 = 1.0$$
 $T_1 = (K_1 + K_2)$, $T_0 = -K_1$, $T_2 = -K_2$, $T_3 = 0$

$$\theta_2 = 1.0$$
 $T_1 = -K_2$, $T_2 = (K_2 + K_3)$, $T_3 = -K_3$

$$\theta_3 = 1.0$$
 $T_1 = 0$, $T_2 = -K_3$, $\overline{I_3} = K_3$

$$\begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} (\kappa_{1} + \kappa_{2}) & -\kappa_{2} & 0 \\ -\kappa_{2} & (\kappa_{2} + \kappa_{3}) & -\kappa_{3} \\ 0 & -\kappa_{3} & \kappa_{3} \end{bmatrix}$$

$$\begin{bmatrix} \alpha \end{bmatrix} = \begin{bmatrix} k_{1} & k_{1} & k_{2} \\ k_{1} & (k_{1} + k_{2}) & (k_{1} + k_{2}) \\ k_{2} & (k_{1} + k_{2}) & (k_{2} + k_{3}) \end{bmatrix}$$

For flexibility apply unit torque to each disk in turn and measure rotation.

Zero. Then measure force required. ie for x,=1.0

\$\frac{\partial_{1.0}}{\partial_{1.0}} = \frac{\partial_{1.0}}{\partial_{1.0}} = \frac{\partial_{1.0}}{\partial_{1.0

$$F \longrightarrow (a)$$

$$(a) k = 2 \times \frac{12ET}{\ell^3}$$

$$= 24 \frac{ET}{\ell^3}$$

(a)
$$k = 2x \frac{12kI}{k^3}$$

$$= 24 \frac{EI}{k^3}$$

(b)
$$F = \frac{EI}{L^2} [24 - 6\theta_L - 6\theta_S - 6\theta_$$

Ratio
$$\frac{(a)}{(b)} = \frac{24}{16.8}$$

 \underline{a} is superposition of δ + θ , + θ_z

$$\frac{\theta_{i} \text{ mode}}{\frac{dEI}{L_{i}}} \leftarrow \frac{4EI}{L_{i}} \leftarrow \frac{4EI}{L_$$

$$F_{i} = -\frac{6E\Gamma_{i}}{\ell_{i}^{2}}\theta_{i} \qquad M_{2} = \left(\frac{4E\Gamma_{i}}{\ell_{i}} + \frac{4E\Gamma_{i}}{\ell_{2}}\right)\theta_{i} \qquad M_{3} = \left(\frac{2E\Gamma_{2}}{\ell_{2}}\right)\theta_{i}$$

6-12 Cont

 $\frac{\theta_1\text{-mode}}{\text{mode is same as above moved to}}$ $\frac{\theta_1\text{-mode}}{\text{right corner with }\theta_1\text{ replaced by }t\theta_2}$ Add results Γ_{LEE} aft $-3F\Gamma$

$$\begin{cases}
F \\
M_{1} \\
M_{2}
\end{cases} = \begin{bmatrix}
\frac{6E\Gamma}{\ell^{3}} & -3E\Gamma \\
-3E\Gamma \\
\ell^{2}
\end{bmatrix} & (\frac{3E\Gamma}{\ell} + \frac{4E\Gamma}{\ell}) & -\frac{3E\Gamma}{\ell} \\
-3E\Gamma \\
-3E\Gamma \\
\ell^{2}
\end{bmatrix} & (\frac{3E\Gamma}{\ell} + \frac{4E\Gamma}{\ell}) & (\frac{3E\Gamma}{\ell} + \frac{4E\Gamma}{\ell}) \\
\theta_{1} \\
\theta_{2}
\end{cases}$$

Since no moments were applied at corners $M_1 = M_2 = 0$ $0 = -\frac{3EI}{\ell^2} \delta + \frac{7EI}{\ell} \theta_1 - \frac{2EI}{\ell} \theta_2$ Subtr. we find $0 = -\frac{3EI}{\ell^2} \delta - \frac{2EI}{\ell} \theta_1 + \frac{7EI}{\ell} \theta_2$ as expected by symmetry $M_1 = -\frac{3EI}{\ell^2} \delta + \frac{5EI}{\ell} \theta = 0 \quad \text{i. } \theta = \frac{3\delta}{5\ell}$ $F = \frac{6EI}{\ell^3} \delta - \frac{6EI}{\ell^2} \left(\frac{3\delta}{5\ell}\right) = 2.40 \frac{EI}{\ell^3} \delta$

$$EI \Theta_{2i} = EI \Theta_{i2} = M, \ell_i = M_2 \ell_2$$

$$M_i = M_2 = 1$$

$$\therefore \ \theta_{i\lambda} = \ \theta_{\lambda i}$$

By Work done

M, 1st followed by
$$M_2$$
 $W = \frac{1}{2}M_1\Theta_1 + \frac{1}{2}M_2\Theta_{22} + M_1\Theta_{12}$

$$M_{2} \qquad \qquad W = \frac{1}{2}M_{2}\theta_{22} + \frac{1}{2}M_{1}\theta_{11} + M_{2}\theta_{21}$$

$$\frac{12\overline{E}}{4\overline{E}} \left(\frac{1}{2} \cdot \frac{12\overline{E}}{2} \cdot \ell \right) - \left(\frac{6\overline{E}}{\ell^2} \cdot \ell \right) = 0$$

$$\frac{6-15}{5k} \qquad m \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{bmatrix} + k \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{cases} 0 \end{cases} \qquad \text{Let } \lambda = \frac{m\omega^2}{k}$$

$$\frac{5k}{5k} \qquad \left| \begin{pmatrix} (2-3\lambda) & -1 \\ -1 & (1-\lambda) \end{pmatrix} \right| = 0 \qquad \lambda^2 - \frac{5}{3}\lambda + \frac{1}{3} = 0$$

$$\lambda = 0.8333 \pm \sqrt{.6944 - .3333}$$

$$\lambda = 0.8333 \pm \sqrt{.6944 - .3333}$$

$$Ad'_{5}. matrix = \begin{bmatrix} (1-\lambda) \\ 1 \end{bmatrix}$$

$$\lambda = 0.8333 \pm \sqrt{.6944 - .3133}$$

$$= 0.8333 \pm 0.6010 = \begin{cases} 0.2323 \\ 1.4343 \end{cases}$$

Subst.
$$\lambda_i$$
 into either column for 1st made = { .7677 }

Subst
$$\lambda_2$$
 into " " λ_1 made = $\{-0.4343\}$

$$\frac{6-16}{2} \frac{K}{K} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} = \begin{cases} J & O \\ O & 2J \end{bmatrix} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + \begin{bmatrix} 2K & -K \\ -K & K \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{cases} O \\ 0 \end{bmatrix}$$

$$\frac{1}{3} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} = \begin{cases} O \cdot 2 \cdot 192 \\ 2 \cdot 2 \cdot 193 \\ 2 \cdot 2 \cdot 193 \\ 2 \cdot 2 \cdot 193 \end{cases}$$

$$\frac{1}{2} \frac{5}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} = \begin{cases} O \cdot 2 \cdot 192 \\ 2 \cdot 2 \cdot 193 \\ 2 \cdot 2 \cdot 193 \\ 2 \cdot 2 \cdot 193 \end{cases}$$

$$\frac{1}{2} \frac{5}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} = \begin{cases} O \cdot 2 \cdot 192 \\ 1 \cdot 193 \\ 0 \end{cases} = \begin{cases} O \cdot 2 \cdot 192 \\ 2 \cdot 2 \cdot 193 \\ 0 \end{cases}$$

$$\frac{1}{2} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} = \begin{cases} O \cdot 2 \cdot 192 \\ O \cdot 2 \cdot 193 \\ 0 \end{cases} = \begin{cases} O \cdot 2 \cdot 192 \\ 0 \cdot 193 \\ 0 \end{cases} = \begin{cases} O \cdot 2 \cdot 192 \\ 0 \cdot 193 \\ 0 \end{cases} = \begin{cases} O \cdot 2 \cdot 192 \\ 0 \cdot 193 \\ 0 \end{cases} = \begin{cases} O \cdot 2 \cdot 192 \\ 0 \cdot 2 \cdot 193 \\ 0 \end{cases} = \begin{cases} O \cdot 2 \cdot 192 \\ 0 \cdot 2 \cdot 193 \\ 0 \end{cases} = \begin{cases} O \cdot 2 \cdot 192 \\ 0 \cdot 2 \cdot 193 \\ 0 \end{cases} = \begin{cases} O \cdot 2 \cdot 192 \\ 0 \cdot 2 \cdot 193 \\ 0 \end{cases} = \begin{cases} O \cdot 2 \cdot 192 \\ 0 \cdot 2 \cdot 193 \\ 0 \end{cases} = \begin{cases} O \cdot 2 \cdot 192 \\ 0 \cdot 2 \cdot 193 \\ 0 \end{cases} = \begin{cases} O \cdot 2 \cdot 192 \\ 0 \cdot 2 \cdot 193 \\ 0 \end{cases} = \begin{cases} O \cdot 2 \cdot 192 \\ 0 \cdot 2 \cdot 193 \\ 0 \end{cases} = \begin{cases} O \cdot 2 \cdot 192 \\ 0 \cdot 2 \cdot 193 \\ 0 \end{cases} = \begin{cases} O \cdot 2 \cdot 192 \\ 0 \cdot 2 \cdot 193 \\ 0 \end{cases} = \begin{cases} O \cdot 2 \cdot 193 \\ 0 \cdot 2 \cdot 193 \\ 0 \end{cases} = \begin{cases} O \cdot 2 \cdot 193 \\ 0 \cdot 2 \cdot 193$$

$$= \begin{bmatrix} 1.9217 & 0.0013 \\ 0.0013 & 28.388 \end{bmatrix} = \begin{bmatrix} 1.9217 & 0 \\ 0 & 28.388 \end{bmatrix}$$

$$\begin{cases}
 \alpha_1 \\
 \alpha_2 \\
 \alpha_3
 \end{cases} = \omega \begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
 \end{bmatrix} \begin{bmatrix}
 m_1 & 0 & 0 \\
 0 & m_1 & 0 \\
 0 & 0 & m_3
 \end{bmatrix} \begin{pmatrix}
 \alpha_1 \\
 \alpha_2 \\
 \alpha_3
 \end{pmatrix}$$

$$\begin{bmatrix} m & o \\ o & 2m \end{bmatrix} \begin{Bmatrix} \ddot{x}_{1} \end{Bmatrix} + \begin{bmatrix} 2k & -k \\ -k & 2k \end{bmatrix} \begin{Bmatrix} x_{1} \end{Bmatrix} = \begin{cases} o \end{Bmatrix} \quad k_{1} \end{Bmatrix} = \frac{m\omega}{k}$$

$$\begin{vmatrix} (2-\lambda) & -1 \\ -1 & (2-2\lambda) \end{vmatrix} = 0 \qquad \lambda^{2} - 3\lambda + \frac{3}{2} = 0$$

$$\lambda = \frac{3}{2} \pm \sqrt{\frac{4}{4} - \frac{3}{2}} = 1.5 \pm 0.866 = \begin{cases} 0.634 \\ 2.366 \end{cases}$$

$$\frac{x_{1}}{x_{2}} = \frac{2(1-\lambda)}{1} = \begin{cases} 0.732 & \therefore P = \begin{bmatrix} 0.732 & -2.732 \\ 1.000 & 1.000 \end{bmatrix}$$

$$P'MP \ddot{y} + P'KP \dot{y} = 0$$

$$\begin{bmatrix} 2.535 & 0 \\ 0.636 & 0 \\ 1.000 & 1.000 \end{bmatrix} \begin{Bmatrix} \ddot{y}_{1} \end{Bmatrix} + \begin{bmatrix} 1.606 & 0 \\ 0.22.33 \end{Bmatrix} \begin{Bmatrix} \ddot{y}_{2} \end{Bmatrix} = \begin{cases} o \end{Bmatrix} \quad \text{tun Coupled}.$$

$$\begin{bmatrix} 2.535 & 0 \\ 0 & 9.48 \end{bmatrix} \begin{bmatrix} \ddot{y}_1 \\ \ddot{y}_2 \end{bmatrix} + \begin{bmatrix} 1.606 & 0 \\ 0 & 22.33 \end{bmatrix} \begin{bmatrix} \dot{y}_1 \\ \dot{y}_2 \end{bmatrix} = \{ 0 \} \quad \text{uncoupled.}$$

$$\frac{\ell}{2} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \ddot{\theta}_1 \\ \ddot{\theta}_2 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = 0$$

i. dynamically complet.

$$\frac{1}{9} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \ddot{\theta}_1 \\ \ddot{\theta}_2 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = 0$$

$$\therefore \text{ dynamically co}$$

$$\begin{cases} \theta_1 \\ \theta_2 \end{cases} = \begin{cases} 0.707 \\ 1.00 \end{cases}$$

$$\begin{cases} \theta_1 \\ \theta_2 \end{cases} = \begin{cases} -0.707 \\ 1.00 \end{cases}$$

model
$$(.707 \ 1.0)$$
 $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{cases} .707 \\ 1.0 \end{cases} = 3.414$ mode 2 $(-.707 \ 1.0)$ $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{cases} -.707 \\ 1.00 \end{cases} = 0.586$

$$P = \begin{bmatrix} .707 & -.707 \\ 1.0 & 1.0 \end{bmatrix} \qquad \qquad \widehat{P} = \begin{bmatrix} .207 & -1.208 \\ .293 & 1.707 \end{bmatrix}$$

$$\hat{P} = \begin{bmatrix} .207 & -1.208 \\ .293 & 1.707 \end{bmatrix}$$

$$\widetilde{P}' \widetilde{M} \widetilde{P} = \begin{bmatrix} .207 & .293 \\ -1.207 & 1.707 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & i \end{bmatrix} \begin{bmatrix} .207 & -1.207 \\ .293 & 1.707 \end{bmatrix} = \begin{bmatrix} 0.293 & 0 \\ 0 & 1.707 \end{bmatrix}$$

$$\widehat{P}' \ltimes \widehat{P} = \begin{bmatrix} & & \\ & & \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} & & \\ & & \end{bmatrix} = \begin{bmatrix} .1714 & 0 \\ 0 & 5.82 \end{bmatrix}$$

Normalized eq. of motion becomes

$$\begin{bmatrix} (m_1 + m_2) & O & O \\ O & J_1 & O \\ O & O & J_2 \end{bmatrix} \begin{pmatrix} \ddot{\chi} \\ \ddot{\theta}_1 \\ \dot{\theta}_2 \end{pmatrix} + \begin{bmatrix} 2\underline{A}\underline{E}\underline{\Gamma}_1 & -\underline{C}\underline{E}\underline{\Gamma}_1 & -\underline{C}\underline{E}\underline{\Gamma}_1 \\ \underline{\ell}_1^2 & (\underline{A}\underline{E}\underline{\Gamma}_1 + \underline{A}\underline{E}\underline{\Gamma}_2) \\ -\underline{C}\underline{E}\underline{\Gamma}_1 & (\underline{A}\underline{E}\underline{\Gamma}_1 + \underline{A}\underline{E}\underline{\Gamma}_2) \\ \underline{\ell}_2^2 & (\underline{A}\underline{E}\underline{\Gamma}_1 + \underline{A}\underline{E}\underline{\Gamma}_2) \end{bmatrix} \begin{pmatrix} \chi \\ \theta_1 \\ \theta_2 \end{pmatrix} = \begin{bmatrix} O \\ \theta_2 \end{bmatrix}$$

Assign numbers before solving. 6-22 see Prob 6-12

$$\begin{bmatrix}
(m_1+m_2) & 0 & 0 \\
0 & J_1 & 0 \\
0 & 0 & J_2
\end{bmatrix}
\begin{pmatrix}
\frac{2}{0} \\
\frac{2}{0}
\end{pmatrix}
+
\begin{bmatrix}
\frac{4E\Gamma}{2^3} & -3\frac{E\Gamma}{2} \\
-3\frac{E\Gamma}{2}
\end{bmatrix}
\begin{pmatrix}
\frac{2}{2} \\
-3\frac{E\Gamma}{2}
\end{bmatrix}
\begin{pmatrix}
\frac{2}{0} \\
-3\frac{E\Gamma}{2}
\end{pmatrix}
\begin{pmatrix}$$

Assign numbers before solving

The problem is the superposition of the three modes below. Use Table 6.3-1 and examine the free-body-diagrams of members and corners.

$$6 - 24$$

$$m\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{Bmatrix} \ddot{x}_1 \\ \ddot{x}_1 \end{Bmatrix} + C\begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{Bmatrix} + k\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = \begin{Bmatrix} F_0 \\ 0 \end{Bmatrix} \text{sinut}$$

:. Damping is not proportional

$$\frac{6-25}{\text{char.eq.}} \begin{vmatrix} (2-\lambda) & -1 \\ -1 & (2-\lambda) \end{vmatrix} = 0 \qquad \lambda = \begin{cases} 1 \\ 3 \end{cases} \qquad \begin{cases} x_1 \\ x_2 \end{cases} = \begin{cases} 1 \\ 1 \end{cases}$$

$$\vdots \quad P = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \qquad \stackrel{\frown}{P} = \frac{1}{12m} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \qquad \begin{cases} x_1 \\ x_2 \end{pmatrix}_2 = \begin{cases} -1 \\ 1 \end{cases}$$

$$\vdots \quad P = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \qquad \stackrel{\frown}{P} = \frac{1}{12m} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \qquad \begin{cases} x_1 \\ x_2 \end{pmatrix}_2 = \begin{cases} -1 \\ 1 \end{cases}$$

$$\vdots \quad P = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad P = \frac{1}{12m}$$

$$\frac{\left(\frac{1}{m} - \omega^{2} + i \stackrel{\leftarrow}{\leq}_{m} \omega\right) Y_{1} - i \left(\frac{c}{\lambda m}\omega\right) Y_{2}}{-i \left(\frac{c}{\lambda m}\omega\right) Y_{1}} = \frac{F_{0}}{\sqrt{2m}}$$

$$-i \left(\frac{c}{\lambda m}\omega\right) Y_{1} + \left(\frac{3k}{m} - \omega^{2} + i \stackrel{\leftarrow}{\leq}_{m} \omega\right) Y_{2} = \frac{F_{0}}{\sqrt{2m}}$$

$$Y_{1} = \frac{\left|\frac{1}{m} - \omega^{2} + i \frac{c}{m} \frac{c}{m}\right| \frac{F_{0}}{\sqrt{2m}}}{\left(\frac{k}{m} - \omega^{2} + i \frac{c}{m} \frac{c}{m}\right) \left(\frac{3k}{m} - \omega^{2} + i \frac{c}{m} \frac{c}{m}\right) + \left(\frac{\omega c}{2m}\right)^{2}}$$

Let.
$$\omega_o^2 = \frac{k}{m}$$
, $\alpha = \frac{k_1}{c}$, $\beta = \frac{k_1}{m}$

The equations are rewritten as

$$\dot{x} = -\omega_0^2 x - \beta x_1 + \frac{F}{m}$$

$$\dot{x}_1 = \dot{x}_1 - \alpha x_1$$

Let
$$x_{i} = z_{i}$$

$$\dot{x}_{i} = \dot{z}_{i}$$

$$\dot{x}_{i} = z_{2}$$

$$\dot{x}_{i} = z_{3} = \dot{z}_{2}$$
then
$$\begin{cases}
\dot{z}_{i} \\
\dot{z}_{2} \\
\dot{z}_{3}
\end{cases} = \begin{bmatrix}
-\alpha & 0 & 1 \\
0 & 0 & 1 \\
-\beta & -\omega_{o}^{2} & 0
\end{bmatrix} \begin{pmatrix}
z_{1} \\
z_{2} \\
z_{3}
\end{pmatrix} + \begin{pmatrix}
0 \\
0 \\
F_{m}
\end{pmatrix}$$

$$\frac{1}{6-27} + \frac{x_{1}}{2} + \frac{x_{2}}{2}$$

$$F = kx + \mathcal{C}(\dot{x} - \dot{x}_1)$$
 (a)

$$k_i x_i = \mathcal{L}(\dot{x} - \dot{x}_i)$$
 (b)

Assume F to be harmonic; then from (b)

$$\chi_{i} = \frac{i\omega c}{k_{i} + i\omega c} \approx \frac{i(\omega c/k_{i})}{1 + i(\omega c/k_{i})} \approx$$

Subst. into (a)

$$F = kx + i\omega C \left[1 - \frac{i(\omega C/k_1)}{1 + i(\omega C/k_1)} \right] x$$

$$= \frac{\left[\frac{k(1 + \frac{i\omega C}{k_1}) + i\omega C}{(1 + \frac{i\omega C}{k_1})} \cdot \frac{(1 - \frac{i\omega C}{k_1})}{(1 - \frac{i\omega C}{k_1})} \right] x}{(1 + \frac{i\omega C}{k_1})}$$

$$= \left\{ \frac{k + (k + k_1)(\frac{\omega C}{k_1})^2}{1 + (\frac{\omega C}{k_1})^2} + \frac{i\omega C}{1 + (\frac{\omega C}{k_1})^2} \right\} x$$

$$= \left\{ \frac{k + (k + k_1)(\frac{\omega C}{k_1})^2}{1 + (\frac{\omega C}{k_1})^2} + \frac{i\omega C}{1 + (\frac{\omega C}{k_1})^2} \right\} x$$

$$\begin{array}{lll} & \begin{array}{c} G-28 & Refer to Prob. G-1G \\ X_1 = \left\{ \begin{array}{c} \theta_1 \\ \theta_2 \end{array} \right\}_1 = \left\{ \begin{array}{c} 1.00 \\ 1.781 \end{array} \right\} & X_2 = \left\{ \begin{array}{c} \theta_1 \\ \theta_2 \end{array} \right\}_2 = \left\{ \begin{array}{c} 1.00 \\ -0.2808 \end{array} \right\} \\ X_1' \text{ K } X_2 = \left(1.00 \ 1.781 \right) \text{ K} \left[\begin{array}{c} 2 \\ -1 \end{array} \right] \left\{ \begin{array}{c} 1.00 \\ -0.2808 \end{array} \right\} \\ & = \left(1.00 \ 1.781 \right) \left\{ \begin{array}{c} 2.2808 \\ -1.2808 \end{array} \right\} = 2.2808 - 2.2811 \\ & = -0.0003 \stackrel{\text{\tiny G}}{=} 0 \\ & \text{KP} = \left[\begin{array}{c} W_1 \text{ MP} \right] \text{ KP} \right] \\ \text{KM}^{-1} \text{ KP} = \left[\begin{array}{c} W_2 \text{ MP} \right] \text{ MP} \right] \\ \text{KM}^{-1} \text{ KP} = \left[\begin{array}{c} W_2 \text{ MP} \right] \text{ MP} \end{array} \right] = 0 \quad \text{for } n \neq 5 \\ \text{Repeat } & \text{KM}^{-1} \text{ KP} = \left[\begin{array}{c} W_2 \text{ KP} \right] \text{ KP} \\ \text{KM}^{-1} \text{ KP} \end{array} \right] = \left[\begin{array}{c} W_1 \text{ KP} \right] \text{ KP} \\ \text{KP} = \left[\begin{array}{c} W_1 \text{ KP} \right] \text{ KP} \\ \text{Repeat } \end{array} \right] = \left[\begin{array}{c} W_1 \text{ KP} \right] \text{ KP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ KP} \right] \text{ KP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ KP} \right] \text{ KP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ KP} \right] \text{ KP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ KP} \right] \text{ KP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ KP} \right] \text{ KP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ KP} \right] \text{ KP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ KP} \right] \text{ KP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ KP} \right] \text{ KP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ KP} \right] \text{ KP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ KP} \end{array} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ KP} \text{ KP} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ KP} \text{ KP} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ KP} \text{ KP} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ KP} \text{ MP} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ MP} \text{ MP} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ MP} \text{ MP} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ MP} \text{ MP} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ MP} \text{ MP} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ MP} \text{ MP} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ MP} \text{ MP} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ MP} \text{ MP} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ MP} \text{ MP} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ MP} \text{ MP} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ MP} \text{ MP} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ MP} \text{ MP} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ MP} \text{ MP} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ MP} \text{ MP} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ MP} \text{ MP} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ MP} \text{ MP} \right] \text{ RP} \\ \text{RP} = \left[\begin{array}{c} W_1 \text{ MP} \text{ MP$$

$$\frac{6-31}{\text{For second mode}} = \frac{6-31}{m_{11}} = \frac{Refer \ to \ Ex. \ 6.9-1}{\text{For ϕ_{i}}} = \frac{4}{m_{i}} \omega_{i}^{(0)}$$

$$m_{11} = \frac{10}{m_{i}} m_{i} \phi_{i}^{(0)} = 5.5235^{-1} m_{i}$$

$$C_{12} = 2\zeta_{1} \omega_{1} m_{22} = 2\zeta_{2}(0.445) \frac{1}{m} m_{22} = 0.8902 \zeta_{1} \frac{1}{m} m_{22}$$

$$k_{12} = \omega_{1}^{2} m_{22} = (0.1981 \frac{k}{m}) m_{22}$$

$$\sum_{i=1}^{10} m_{i} \phi(x_{i}) = -2.2470 m_{22}$$

$$\frac{\ddot{q}_{2}}{\ddot{q}_{2}} + 0.8902 \, \tilde{\zeta}_{2} \, / \frac{1}{m} \, \dot{q}_{2} + 0.1981 \, \frac{\dot{k}}{m} \, q_{2} = \frac{2.147}{5.5235} \, \ddot{u}_{o}(t)$$

$$= 0.4068 \, \ddot{u}_{o}(t)$$

For 3 2 mode

$$m_{33} = 8.5957 \text{ am}$$
, $c_{33}/m_{33} = 25_3(.7307\sqrt{\frac{k}{m}}) = 1.46145_2 \sqrt{\frac{k}{m}}$
 $k_{33} = 0.5339 \frac{k}{m}$, $\sum_{i=1}^{10} m_i \phi_3(x_i) = 2.8095 m$

$$\ddot{q}_3$$
 + 1.4614 ζ_3 \ddot{q}_3 + 0.5339 $\frac{1}{m}$ q_3 = -0.3268 $\ddot{u}_3(t)$

6-32 From Ex. 6.9-1

$$\ddot{q}_{i} + 0.2995, \sqrt{\frac{k}{m}} \dot{q}_{i} + 0.02235 \frac{k}{m} q_{i} = -1.2672 \ddot{u}_{o}(\epsilon)$$

$$\omega_{i}^{2} = 0.02235 \frac{k}{m} \qquad \omega_{i} = 0.1495 \sqrt{\frac{k}{m}} = \frac{2\pi}{\gamma_{i}}$$

$$\dot{\gamma}_{i} = \frac{2\pi}{1495} \sqrt{\frac{m}{k}} = 42.028 \sqrt{\frac{m}{k}}$$

$$\omega_{2} = \frac{2\pi}{\gamma_{2}} = 0.4451 \sqrt{\frac{k}{m}}, \qquad \gamma_{2} = 14.1168 \sqrt{\frac{m}{k}}$$

$$\omega_{3} = 0.7307 \sqrt{\frac{k}{m}}, \qquad \uparrow_{3} = 8.5989 \sqrt{\frac{m}{k}}$$

$$\dot{u}_{6} \qquad \qquad \delta = F_{1G} \quad 4.4-3 \quad \text{for shock spectrum}$$

$$\frac{t_{1}}{\gamma_{1}} = 0.50 \qquad \left(\frac{\chi k}{F_{6}}\right)_{max} = 1.5$$

$$= 17.$$

$$\frac{t_i}{\gamma_i} = 0.50$$

$$\left(\frac{\chi k}{F_o}\right)_{max} = 1.5$$

$$\frac{t_1}{\gamma_1} \frac{\gamma_1}{\gamma_2} = \frac{t_1}{\gamma_2} = .5 \frac{42.018}{14.116} = 1.4886 : \left(\frac{\chi k}{F_0}\right) = 1.5$$

$$\frac{t_1}{T_s} = .50 \frac{42.028}{8.5989} = 2.4438 \quad (\frac{\chi k}{F_0}) = 1.13$$

The right side of the DEs are:

$$-\ddot{u}(t)\frac{\sum m\dot{\phi}_{i}^{2}}{\sum m\dot{\phi}_{i}^{2}}=-1.2672\ddot{u}_{0}=\frac{F_{0}}{m}$$
 by comparison with $\ddot{q}+25\omega_{m}\dot{q}+\omega_{m}^{2}\dot{q}=\frac{F_{0}}{m}$

we use
$$\left(\frac{gk}{F_o}\right) = \frac{gk}{-1.2672 \, \text{mag}}$$
 for mode 1. = 1.5

i.
$$(9_1)_{max} = -1.5 \times 1.2672 \frac{m}{k} a_0 = -1.9008 \frac{ma_0}{R}$$

Similarly for 2 nd mode & 3 nd mode

$$(9^2)_{max} = 1.5 \times .4068 \stackrel{mao}{k} = 0.6102 \stackrel{mao}{k} = 0.6102 \stackrel{mao}{k} = 0.6102 \stackrel{mao}{k} = 0.3693 \stackrel{ma$$

$$\chi(t) = p_1 q_1 + p_2 q_2 + p_3 q_3 + \cdots$$

$$|\chi(10)|_{max} = (q_1)_{max} + \sqrt{(q_2)_{max}^2 + (q_3)_{max}^2}$$

$$= 1.90 + \sqrt{.610^2 + .369^2}$$

$$= 1.90 + 0.711 = 2.61 \frac{ma_2}{4}$$

Impuise = change in momentum

At t=0 mass at (2) will acquire

a velocity of
$$\frac{\hat{F}_0}{m} = V(0) = l \frac{\hat{g}}{g}(0)$$
 $\frac{\hat{g}}{g}(0) = \frac{\hat{F}}{ml} = 0$
 $\frac{\hat{g}}{g}(0) = 0$

a velocity of
$$\frac{\hat{F_o}}{m} = \mathcal{N}(o) = \hat{\mathcal{L}}(0)$$

$$\dot{\theta}_{2}(0) = \frac{\hat{F}}{m\ell} \qquad \dot{\theta}_{1}(0) = 0$$

$$= \begin{cases} .707 \\ 1.00 \end{cases} A \sin .764 / \frac{9}{2}t + \begin{cases} -.707 \\ 1.00 \end{cases} B \sin 1.85 / \frac{9}{2}t$$

$$\sqrt{\frac{1}{9}} \left\{ \begin{array}{c} \dot{\theta}_1 \\ \dot{\theta}_2 \end{array} \right\} = .764 \left\{ \begin{array}{c} .707 \\ 1.00 \end{array} \right\} A \cos .764 \left\{ \begin{array}{c} -.707 \\ 1.00 \end{array} \right\} B \cos 1.85 \left\{ \begin{array}{c} -.707 \\ 1.00 \end{array} \right\} B \cos 1.85 \left\{ \begin{array}{c} -.707 \\ 1.00 \end{array} \right\}$$

$$At t = 0$$

$$\sqrt{\frac{\ell}{g}} \left\{ \frac{0}{\hat{F}} \right\} = .764 \left\{ \frac{.707}{1.00} \right\} A + 1.85 \left\{ \frac{-.707}{1.00} \right\} B$$

$$\frac{6-33 \text{ Cont}}{0} = (.764)(.701)A - (1.85)(.701)B$$

$$B = 0.413A$$

$$\sqrt{\frac{1}{g}} \frac{\hat{F}_{0}}{m\ell} = .764A + 1.85(.413A) = 1.528A$$

$$\therefore A = 0.6544 \int_{\frac{1}{g}}^{e} \frac{\hat{F}}{m\ell}$$

$$B = 0.2703 \int_{\frac{1}{g}}^{e} \frac{\hat{F}}{m\ell}$$

$$\left\{ \frac{\theta_{1}}{\theta_{2}} \right\} = \sqrt{\frac{\ell}{g}} \frac{\hat{F}}{m\ell} \left\{ (0.6544) \left\{ \frac{.701}{1.00} \right\} \sin .764 \left\{ \frac{3}{\ell} \right\} + (.2703) \left\{ \frac{.701}{1.00} \right\} \sin .85 \left\{ \frac{3}{\ell} \right\}$$

$$\lambda = \frac{J\omega^{2}}{K}$$

$$\lambda = \frac{J\omega^{2}}{K}$$

$$\lambda = \frac{J\omega^{2}}{K}$$

$$\lambda = \frac{J\omega^{2}}{K}$$

$$\frac{.737}{J}$$
 MoU(t) $\frac{.328}{J}$ MoU(t) and $\frac{.328}{J}$ MoU(t)

6-34 Cont. .: Model egs. are

$$\frac{9}{9}, + (.198 \frac{K}{J})9, = .737 \text{ Mo } U(t)$$
For $U(t)$ the max

$$\frac{9}{9}, + (1.555 \frac{K}{J})9, = .591 \text{ Mo } U(t)$$

$$\frac{9}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

$$\frac{1}{9}, + (3.247 \frac{K}{J})9, = .328 \text{ Mo } U(t)$$

:
$$q_i(t) = \frac{.737 \, M_o}{\sqrt{(.198 \, \frac{K}{K})}} \left(1 - \cos \sqrt{.198 \, \frac{K}{F}} \, t\right) = 3.72 \, \frac{M_o}{K} \left(1 - \cos \omega_i t\right)$$

$$q_{2}(t) = \frac{-.591}{1.555} \frac{M_{o}}{K} (1 - con \omega_{e} t) = -0.380 \frac{M_{o}}{K} (1 - con \omega_{e} t)$$

$$q_3(t) = \frac{.328}{3.247} \frac{M_0}{K} (1-c_0 \omega_s t) = 0.101 \frac{M_0}{K} (1-c_0 \omega_s t)$$

$$\theta_{3}(t) = \phi_{1}(\theta_{3}) q_{1}(t) + \phi_{2}(\theta_{3}) q_{2}(t) + \phi_{3}(\theta_{2}) q_{3}(t)$$

= 0.737
$$q_1(t)$$
 - .591 $q_2(t)$ + .328 $q_3(t)$ = Superposition of above q_2

By Shock Spectrum technique

$$|\theta_{3}(t)|_{\max} = .737 \, q_{1 \max} + \sqrt{(.591 \, q_{2 \max})^{2} + (.328 \, q_{3 \max})^{2}}$$

$$= .737 \, (2 \times 3.72 \, \frac{M_{0}}{K}) + \sqrt{(.591 \times 2 \times .380 \, \frac{M_{0}}{K})^{2} + (.328 \times 2 \times .101 \, \frac{M}{K})^{2}}$$

$$= (5.483 + .454) \, \frac{M_{0}}{K} = 5.937 \, \frac{M_{0}}{K}$$

6-35

y(t) = \$\phi_{q_1} + \phi_{q_2} + \phi_{q_3} + \phi_{q_4} + \phi_{5} \quad 95

151 Two Normal Modes obtained from Computer

$$\frac{m\omega_{1}^{2}}{k} = 0.08101$$

$$\frac{1699}{3260} \cdot 4557 = \phi, \quad \frac{m\omega_{2}}{k} = 0.6903 \quad \begin{cases}
.4557 \\ .5969 \\
.5485
\end{cases}$$

$$\frac{m\omega_{1}^{2}}{k} = 7.563\sqrt{\frac{m}{k}} \quad \begin{cases}
.4557 \\ .5969 \\
.5485
\end{cases}$$

$$\frac{\sum m \phi_i}{\sum m \phi^2} = 2.097$$

$$\frac{\sum m\phi_2}{\sum m\phi^2} = 0.6602$$

For $K_R = \infty$, $\theta = 0$ and we have only translation of ground plus elastic translation of each floor. The more general case of $0 \neq 0$ should be deferred until Ch 8, with Lagrange's Eq.

Write force ey, for one mass (say 3 floor)

$$m(\ddot{u} + \ddot{y}_3) = -k(y_3 - y_2) + k(y_4 - y_3)$$

The 5 equations like the above can be

written in matrix form

٥r

Let $y = \varphi_1 q_1 + \varphi_2 q_2$ \Rightarrow decouple by P'KP or $\begin{cases} y_1 \\ y_2 \end{cases} = [[\varphi_1][\varphi_2]] \begin{Bmatrix} q_1 \\ q_2 \end{Bmatrix} = Pq$

P'MPq + P'KPq = - P'M "

The modal eys. become

$$\ddot{q}_{1} + \omega_{1}^{2} q_{1} = -\frac{\sum m\phi_{1}}{\sum m\phi_{1}^{2}} \ddot{u}$$

$$\ddot{q}_{2} + \omega_{2}^{2} q_{2} = -\frac{\sum m\phi_{2}}{\sum m\phi_{2}^{2}} \ddot{u}$$

$$\phi \approx \frac{a}{2} \frac{6}{L}$$

p= a f Torsional Oscil

$$J\ddot{\theta} = \frac{1}{2} \frac{mq}{2} \frac{\alpha \theta}{2} = -mq \frac{\alpha^2}{4\ell} \theta$$

$$\therefore \omega_T^2 = \frac{mq \alpha^2}{4\ell J} = \frac{mq \alpha^2}{4\ell m_L^2} = 3q \left(\frac{\alpha}{L}\right)^2$$

Out-of plane oscillation is that of simple pendulum with $\omega^2 = \frac{9}{4}$. For $\omega^2 = \omega_r^2$

$$\frac{2}{\ell} = 3 \frac{2}{\ell} \left(\frac{\alpha}{L}\right)^2 \qquad \therefore \quad \frac{\alpha}{L} = \frac{1}{\sqrt{3}}$$

With small eccentricity to excite torsional oscil, there will be beating (see Prob. 1-4)

$$X(t) = \sum_{i} X_{i} (A_{i} \sin \omega_{i} t + B_{i} \cos \omega_{i} t)$$

$$\dot{X}(t) = \sum_{i} \omega_{i} X_{i} (A_{i} \cos \omega_{i} t - B_{i} \sin \omega_{i} t)$$

$$\dot{X}(0) = \sum_{i} \omega_{i} X_{i} A_{i}$$

$$\dot{X}(M) = \sum_{i} \omega_{i} X_{i} A_{i}$$

$$\dot{X}(M) = \sum_{i} \omega_{i} X_{i} M_{i} A_{i} = \omega_{i} X_{i} M_{i} A_{i}$$

$$\dot{X}(M) = \sum_{i} \omega_{i} X_{i} M_{i} A_{i} = \omega_{i} X_{i} M_{i} X_{i} A_{i}$$

$$\dot{X}(M) = \sum_{i} \omega_{i} X_{i} M_{i} X_{i} A_{i} = \omega_{i} X_{i} M_{i} X_{i} A_{i}$$

$$\dot{X}(M) = \sum_{i} \omega_{i} X_{i} M_{i} X_{i} A_{i} = \omega_{i} X_{i} M_{i} X_{i} A_{i}$$

$$\dot{X}(M) = \sum_{i} \omega_{i} X_{i} M_{i} X_{i} A_{i} = \omega_{i} X_{i} M_{i} X_{i} A_{i}$$

$$\dot{X}(M) = \sum_{i} \omega_{i} X_{i} M_{i} X_{i} A_{i} = \omega_{i} X_{i} M_{i} X_{i} A_{i}$$

$$\dot{X}(M) = \sum_{i} \omega_{i} X_{i} M_{i} X_{i} A_{i} = \omega_{i} X_{i} M_{i} X_{i} A_{i}$$

$$\dot{X}(M) = \sum_{i} \omega_{i} X_{i} M_{i} X_{i} A_{i} = \omega_{i} X_{i} M_{i} X_{i} A_{i}$$

$$\dot{X}(M) = \sum_{i} \omega_{i} X_{i} M_{i} X_{i} A_{i} = \omega_{i} X_{i} M_{i} X_{i} A_{i}$$

$$\dot{X}(M) = \sum_{i} \omega_{i} X_{i} M_{i} X_{i} A_{i} = \omega_{i} X_{i} M_{i} X_{i} A_{i}$$

$$\dot{X}(M) = \sum_{i} \omega_{i} X_{i} M_{i} X_{i} A_{i} = \omega_{i} X_{i} M_{i} X_{i} A_{i}$$

$$\dot{X}(M) = \sum_{i} \omega_{i} X_{i} M_{i} X_{i} A_{i} = \omega_{i} X_{i} M_{i} X_{i} A_{i}$$

$$\dot{X}(M) = \sum_{i} \omega_{i} X_{i} M_{i} X_{i} A_{i} = \omega_{i} X_{i} M_{i} X_{i} A_{i}$$

$$\dot{X}(M) = \sum_{i} \omega_{i} X_{i} M_{i} X_{i} A_{i} = \omega_{i} X_{i} M_{i} X_{i} A_{i}$$

$$\dot{X}(M) = \sum_{i} \omega_{i} X_{i} M_{i} X_{i} A_{i} = \omega_{i} X_{i} M_{i} X_{i} A_{i}$$

$$\dot{X}(M) = \sum_{i} \omega_{i} X_{i} M_{i} X_{i} A_{i} = \omega_{i} X_{i} M_{i} X_{i} A_{i}$$

$$\dot{X}(M) = \sum_{i} \omega_{i} X_{i} M_{i} X_{i} A_{i} A_{i} = \omega_{i} X_{i} M_{i} X_{i} A_{i}$$

$$\dot{X}(M) = \sum_{i} \omega_{i} X_{i} M_{i} X_{i} A_{i} $

6-41. The bending of the shaft is measured from the slope of the bearing, which is β . Thus y and θ in Example 6.1-4 must first be replaced by η and $(\theta-\beta)$ respectively.

$$\left\{ \begin{array}{l} \gamma \\ \theta - \beta \end{array} \right\} = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right] \left\{ \begin{array}{l} P \\ M \end{array} \right\}$$

From geometry Fig P6-41

$$y = \frac{P}{k} + \beta l + \eta$$

$$M_B = K\beta = Pl + M \qquad \therefore \beta = \frac{Pl}{K} + \frac{M}{K}$$
and $\eta = y - \frac{P}{k} - \beta l = y - \frac{Pl^2}{K} - \frac{Ml}{K}$

$$y - \frac{P}{K} - \frac{Pl^2}{K} - \frac{Ml}{K} = a_{11}P + a_{12}M$$

$$\theta - \frac{Pl}{K} - \frac{M}{K} = a_{21}P + a_{22}M$$

$$\begin{bmatrix}
m_1 & 0 & 0 \\
0 & m_2 & 0 \\
0 & 0 & m_3
\end{bmatrix}
\begin{bmatrix}
\dot{\chi}_1 \\
\dot{\chi}_2 \\
\dot{\chi}_3
\end{bmatrix} + \begin{bmatrix}
(k_1+k_2) & -k_2 & 0 \\
-k_2 & (k_2+k_3) & -k_3 \\
0 & -k_3 & k_3
\end{bmatrix}
\begin{bmatrix}
\chi_1 \\
\chi_2 \\
\chi_3
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$$

$$M \ddot{X} + K X = 0$$

$$\begin{bmatrix}
-\omega^2 & \Gamma + M^{-1}K \\
X & = 0
\end{bmatrix}$$

$$\begin{bmatrix}
A - \chi & \Gamma \\
X & = 0
\end{bmatrix}$$
where $A = M^{-1}K$

Next Follow Footnote p165

$$Q = M^{\frac{1}{2}} = \begin{bmatrix} \sqrt{m}, & 0 & 0 \\ 0 & \sqrt{m}, & 0 \\ 0 & 0 & \sqrt{m}_3 \end{bmatrix} \qquad Q = \begin{bmatrix} \sqrt{m}, & 0 & 0 \\ 0 & \sqrt{m}, & 0 \\ 0 & 0 & \sqrt{m}_3 \end{bmatrix} = Q^{T}$$

New
$$A = Q \times Q = \begin{bmatrix} \frac{1}{\sqrt{m_1}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{m_2}} & 0 \\ 0 & 0 & \frac{1}{\sqrt{m_3}} \end{bmatrix} \begin{bmatrix} (k_1+k_2)-k_2 & 0 \\ -k_2 & (k_2+k_3)-k_3 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{m_1}} & 0 \\ 0 & 0 & \frac{1}{\sqrt{m_2}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m_1}(k_1+k_2) & -\frac{1}{m_2}k_2 & 0 \\ -\frac{1}{m_1}m_2k_2 & \frac{1}{m_2}(k_2+k_3) & -\frac{1}{m_2}m_3 \end{bmatrix} \text{ i. Symmetric}$$

$$= \frac{1}{m_1m_2}k_2 & \frac{1}{m_2}k_3 & \frac{1}{m_3}k_3 & \text{ i. Symmetric}$$

$$= \frac{1}{m_1m_3}k_3 & \frac{1}{m_3}k_3 & \text{ i. Symmetric}$$

$$= \frac{1}{m_1m_3}k_3 & \frac{1}{m_3}k_3 & \text{ i. Symmetric}$$

$$= \frac{1}{m_1m_3}k_3 & \frac{1}{m_3}k_3 & \text{ i. Symmetric}$$

This procedure is valid for M a full symmetric matrix such as those encountered in the finite element formulation

Disregard
$$u_2 = u_7 = 0$$
Constraints are
$$u_1 = u_4$$

$$u_i = u_4$$

7-2

7 Coordinates are u, u3 u4 u5 u6 u8 u9 4 of the above coordinates are associated with the two constraint equations, u, u, u, us us.

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{cases} u_1 \\ u_2 \\ u_3 \\ u_8 \end{cases} = \left\{ 0 \right\}$$

Above can be written as $\{u_i\} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \{u_4\}$ where $u_4 \neq u_8$ are chosen $\{u_5\} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \{u_8\}$ as gen. coords.

-ml, q = l2 [co 0 - cos (0+60)]+ml, g = [si(0+80)-sin0]=0 $l_{2}^{2}[\cos\theta - (\cos\theta \cos\theta - \sin\theta \sin\theta)] + l_{1}^{2}[\sin\theta \cos\theta + \cos\theta \sin\theta] = 0$ $\cos\theta \cong l_{1} \quad \sin\theta \cong \theta\theta$ $l_{2}^{2}[\sin\theta \cdot \delta\theta] + l_{1}^{2}[\cos\theta \cdot \delta\theta] = 0$ $\therefore \tan \Theta = \left(\frac{\ell_{I}}{T_{-}}\right)^{2}$

8x = 2l Sino So

Sw=mglcooso -Palsinoso = 0 i. $\tan \theta = \frac{mq}{2P}$

 $h = \sqrt{R^2 - \left(\frac{\ell}{2}\right)^2}$ $2h = \sqrt{(1R)^2 - \ell^2}$

SU=mg[-RSinoso-&coroso] + m= f[-hsin 080+ & con 080]= 0

 $-(m_1+m_2)h\sin\theta+(m_2-m_1)\oint \cos\theta=0$

ten
$$\theta = \frac{(m_2 - m_1) \frac{\ell_2}{\ell_2}}{(m_1 + m_2) h} = \left(\frac{m_1 - m_1}{m_2 + m_1}\right) \frac{\ell}{\sqrt{(2R)^2 + \ell^2}}$$

7-6 Top mass position $x = l \sin \theta$ y = 1 cos 0, Give O, virtual displ So, $\delta \chi = L \cos \theta, \delta \theta,$ 84 = - 15m 0, 50, SW = 4 mg (- LSin O, SO,) + FL COO, SO, = 0 : tan 0, = \frac{F}{4ma} Give 02 virtual displ. 802 SW = 3 mg (-1 sin 02 SO2) + Fl con 0. SO2 = 0 $\tan \theta_3 = \frac{F}{2mg}$, $\tan \theta_4 = \frac{F}{mg}$ etc. dotted lines show original position in equilibrium δW = m, q δy, - m, q δy, = 0 The middle length rotates & Os about 0. l so, = a so, 1802 = 680. Sy, = 280, coo, = a 80, coo, 842 = 8802 Cos 02 = 6803 Cos 02 :. 8 W = (m, g a cono, - mg b conox) 803 = 0 Geometric Eqs. (l+a)cno, +(l+b)cno= h (sine, - 1 sind = 6 sine - a sino, a, b, 0, , 0, l= (acno,+bcno,)2+ (bsino, -a sino,)2

$$\sin(\theta_1 + \theta_2) = \frac{R}{L} \frac{(m_1 \cos \theta_1 \sin \theta_2 - m_2 \cos \theta_2 \sin \theta_1)}{(m_1 \cos \theta_1 - m_2 \cos \theta_2)}$$

$$y = n \sin \theta$$

$$\delta y = n \cos \delta \theta$$

$$x = 2n \cos \delta \theta$$

$$\delta x = -2n \sin \delta \delta \theta$$

Spring force =
$$R(\frac{3}{4}k - y)$$

$$y = \frac{3}{4}h - \frac{mq}{2k}$$

$$\sin\theta = \frac{4}{\ell} = \frac{1}{\ell} \left(\frac{3\ell}{4} - \frac{mg}{2\ell} \right)$$

With no horizontal force on the bar, the c.g. must move along the vertical line.

Let
$$\delta \circ \circ \widetilde{\theta}$$
 : $\theta \circ \circ \widetilde{\theta}$

$$(\theta_0 - \tilde{\theta}) \stackrel{\sim}{=} \cos \theta_0 + \tilde{\theta} \sin \theta_0$$

Forces are balanced at θ_0 . Sy = $l \sin \theta_0 - l \sin (\theta_0 - \bar{\theta}) = (l \cos \theta_0) \bar{\theta}$

$$\delta W = \left(-k \, l \, cn \, \theta_{\bullet}\right) \tilde{\theta} \cdot \left(l \, cn \, \theta_{\bullet}\right) \tilde{\theta} - \left(\frac{m}{2} \, l \, cn \, \theta_{\bullet}\right) \tilde{\theta} \left(l \, cn \, \theta_{\bullet}\right) \tilde{\theta} - \left(\frac{m \, \ell^{2}}{12} \, \tilde{\theta}\right) \tilde{\theta} = 0$$

$$\left(m\frac{\ell^2}{12} + \frac{m\ell^2}{4}\cos^2\theta_o\right)\ddot{\theta} + \left(k L^2\cos^2\theta_o\right)\ddot{\theta} = 0$$

For small to above ag. reduces to

$$\left(\frac{m\ell^2}{3}\right) \ddot{\theta} + (k\ell^2) \ddot{\theta} = 0$$

$$\frac{7-1}{\left[\left(m\,\ell_{i}\right)\frac{\ell_{i}^{2}}{3}+\left(m\,\ell_{2}\right)\frac{\ell_{i}^{2}}{3}\right]\dot{\theta}=-\left(m\,\ell_{1}g\right)\frac{l_{1}}{2}\sin\theta+\left(m\,\ell_{1}g\right)\frac{\ell_{1}}{2}\cos\theta}$$
Let $\theta=\theta_{0}+\theta_{N}$

Sin $\theta\cong\sin\theta_{0}+\theta_{N}\cos\theta_{0}$

Cos $\theta\cong\cos\theta_{0}-\theta_{N}\sin\theta_{0}$

but $-\left(m\,\ell_{2}g\right)\frac{\ell_{1}}{2}\sin\theta_{0}+\left(m\,\ell_{1}g\right)\frac{\ell_{1}}{2}\cos\theta_{0}=0$

$$\frac{m\,\ell_{1}^{3}}{3}+\frac{m\,\ell_{2}^{3}}{3}\dot{\theta}=-\frac{m\,g}{2}\left(\ell_{2}\cos\theta_{0}+\ell_{1}\sin\theta_{0}\right)\theta_{N}$$
 $\dot{\theta}_{N}+\frac{3}{2}g\left(\frac{\ell_{1}^{2}\cos\theta_{0}+\ell_{1}^{2}\sin\theta_{0}}{\ell_{1}^{3}+\ell_{2}^{3}}\right)\theta_{N}=0$

where $\tan\theta_{0}=\left(\frac{\ell_{1}}{\ell_{2}}\right)^{2}$

$$\frac{7-12}{T} = \frac{1}{2} (m_1 + m_2) R^2 \hat{\theta}^2$$

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \hat{\theta}} \right) = (m_1 + m_2) R^2 \hat{\theta}$$

$$h = \sqrt{R^2 + (\frac{R}{2})^2}$$

 $U = -(m_1 + m_2)gh \cos \theta - (m_2 - m_1)g\frac{1}{2}\sin \theta$ $\frac{\partial U}{\partial \theta} = (m_1 + m_2)gh \sin \theta - (m_2 - m_1)g\frac{1}{2}\cos \theta$

hagranges Eq.

 $(m_1+m_2)R^2\ddot{\theta} + (m_1+m_2)gh\sin\theta - (m_2-m_1)g\frac{1}{2}\cos\theta = 0$ Let $\theta = \theta_0 + \theta_{\infty}$

(m,+mz) R 0, + [(m,+mz)gh coso+ (m,-mi)g = sino) 0, = 0

Motion of each mass is along circle of radius L. Virtual $displ = L\widetilde{\theta},$ and $L\widetilde{\theta},$ where $\theta = \theta + \widetilde{\theta}$, and $\theta = \widetilde{\theta} + \widetilde{\theta}$

$$\delta \theta_1 = \widetilde{\theta}_1 = \frac{\alpha}{\ell} \delta \theta_2 = \frac{\alpha}{\ell} \widetilde{\theta}_2$$

$$\delta \theta_2 = \widetilde{\theta}_2 = \frac{b}{\ell} \delta \theta_3 = \frac{b}{\ell} \widetilde{\theta}_3 = \frac{b}{\alpha} \widetilde{\theta}_4$$

Also by EM

(m, g, co, 0,) (i = (m) g co, 02) b same eq. us Prob7-8

For dynamics include inertia forces med, & med, in tangential direction Lo, and lo. Then work dome by virtual displ. lo, and lo, is

$$\begin{split} \delta W &= \left(m_i l \ddot{\tilde{\theta}}_i - m_i q \cos \theta_i \right) k \ddot{\theta}_i + \left(m_i l \ddot{\tilde{\theta}}_i + m_i q \cos \theta_i \right) k \ddot{\theta}_i = 0 \\ For small $\tilde{\theta}$ with $\theta = \tilde{\theta} \pm \tilde{\theta}$ $\cos \theta_i = \cos \tilde{\theta}_i - \tilde{\theta}_i \sin \tilde{\theta}_i$ $\cos \theta_i = \cos \tilde{\theta}_i + \tilde{\theta}_i \sin \tilde{\theta}_i$ $\tilde{\theta}_i = \frac{k}{\tilde{\theta}} \tilde{\theta}_i = \frac{m_i}{m_i} \frac{\cos \tilde{\theta}_i}{\cos \tilde{\theta}_i} \tilde{\theta}_i$$$

 $+\left[m_{i}\ell+m_{i}\ell\left(\frac{b}{a}\right)^{2}\right]\widehat{\theta}_{i}^{2}\widehat{\theta}_{i}^{2}-9\left\{m_{i}\left(c_{i}\widehat{\theta}_{i}-\widetilde{\theta}_{i}\sin\overline{\theta}_{i}\right)\widetilde{\theta}_{i}-m_{i}\left(c_{i}\widehat{\theta}_{i}+\frac{b}{a}\widetilde{\theta}_{i}\sin\overline{\theta}_{i}\right)\stackrel{b}{a}\widetilde{\theta}_{i}\right\}=0$ Since micro, a - m. cono. b = 0 from Prob.8-64 above $\left[m_{i}l+m_{i}l\left(\frac{b}{a}\right)^{2}\right]\widetilde{\theta}_{i}\widetilde{\theta}_{i}+g\left\{m_{i}\sin\widetilde{\theta}_{i}+m_{i}\left(\frac{m_{i}\cos\widetilde{\theta}_{i}}{m_{i}\cos\widetilde{\theta}_{i}}\right)^{2}\right\}\widetilde{\theta}_{i}\widetilde{\theta}_{i}=0$ $\left[m_{i}+m_{2}\left(\frac{m_{i}\left(n\bar{\theta}_{i}\right)^{2}}{m_{i}\left(n\bar{\theta}_{i}\right)^{2}}\right)^{2}\right]\widetilde{\theta}_{i}+\frac{q}{\varrho}\left[m_{i}\sin\bar{\theta}_{i}+m_{2}\left(\frac{m_{i}}{m_{e}}\cos\bar{\theta}_{i}\right)^{2}\right]\widetilde{\theta}_{i}=0$

$$\omega_{m}^{2} = \frac{g}{\ell} \cdot \frac{m_{i} \operatorname{Sin}\overline{\theta}_{i} + m_{1} \left(\frac{m_{i} \operatorname{Co}\overline{\theta}_{i}}{m_{2} \operatorname{Co}\overline{\theta}_{i}}\right)^{2}}{m_{i} + m_{1} \left(\frac{m_{1} \operatorname{Co}\overline{\theta}_{i}}{m_{2} \operatorname{Co}\overline{\theta}_{i}}\right)^{2}}$$

$$\frac{7-14}{t_0}$$

$$\frac{1}{t_0}$$

$$\frac$$

Let
$$\theta_0 = equilib$$
 angle

Spring force = F_0 at $\theta = \theta_0$
 $x = l\cos \delta x = -l\sin \delta, \delta \delta$
 $y = l\sin \delta \delta y = l\cos \delta, \delta \theta$

$$\delta W = 2 \, \text{mg} \, \frac{\delta y}{2} + 2 \, \overline{f_{50}} \, \delta \chi = 0$$

$$\left(\, \text{mg} \, \cos \theta_0 \, - 2 \, \overline{f_{50}} \, \sin \theta_0 \right) \ell \delta \theta = 0$$

If
$$F_s = 0$$
 at $\theta = 0$ then $F_s = k(\ell-x) = kk(\iota-cos\theta_0)$

$$tan \theta_0 = \frac{mg}{2k\ell(\iota-cos\theta_0)}$$
solve by trial for given value of $\frac{mg}{2k\ell}$

$$T = \frac{1}{2} m_0 (i \dot{0})^2 + i \dot{1} + \frac{1}{2} (m \frac{e^2}{2}) \dot{0}^2$$

$$U = \frac{1}{z} k (n - n_0)^2 - m_0 g h con - m_0 \frac{1}{z} con \theta$$

$$\frac{\partial T}{\partial \dot{\phi}} = m_0 h^2 \dot{\phi} + m \frac{\ell^2}{3} \dot{\phi} \qquad \frac{\partial T}{\partial \phi} = 0$$

$$\frac{\partial U}{\partial \phi} = m_0 g R \sin \theta + m g \frac{\ell}{2} \sin \theta$$

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{\phi}}\right) - \frac{\partial T}{\partial \phi} + \frac{\partial V}{\partial \phi} = 0$$

$$m_0 \left[n\ddot{\theta} + 2\dot{n}\dot{\theta} \right] n + \frac{ml^2}{3}\ddot{\theta} + \left(m_0 g n + mg \frac{l}{2} \right) \sin \theta = 0$$

$$\frac{\partial T}{\partial \dot{n}} = m_0 \dot{n} \qquad \frac{\partial T}{\partial n} = m_0 n \dot{o}^2$$

$$\frac{\partial U}{\partial r} = -m_0 g \cos \theta + k (r - r_0)$$

$$\frac{d}{dt}\left(\frac{\partial I}{\partial \dot{n}}\right) - \frac{\partial I}{\partial n} + \frac{\partial U}{\partial n} = 0$$

$$m_0 \ddot{n} - m_0 r \dot{o}^2 + k(r - r_0) - m_0 g \cos \theta = 0$$

$$T = \frac{1}{2} \int m \dot{y}^{2} dx$$

$$U = \frac{1}{2} k y^{2}(\ell) + \frac{1}{2} k y^{2}(0) + \frac{1}{2} \int EI \left(\frac{d^{2} x}{dx^{2}}\right)^{2} dx$$

$$y = \frac{x}{\ell} q_{1} + q_{2} \sin \frac{\pi x}{\ell}$$

$$\dot{y}^{2} = \left(\frac{x}{\ell}\right)^{2} \dot{q}_{1}^{2} + \mathcal{L}\left(\frac{x}{\ell}\right) \dot{q}_{1} \dot{q}_{2} \sin \frac{\pi x}{\ell} + \dot{q}_{2}^{2} \sin^{2} \frac{\pi x}{\ell}$$

$$\dot{y}^{2} = \left(\frac{x}{\ell}\right)^{2} \dot{q}_{2}^{2} + \mathcal{L}\left(\frac{x}{\ell}\right) \dot{q}_{1} \dot{q}_{2} \sin \frac{\pi x}{\ell} + \dot{q}_{2}^{2} \sin^{2} \frac{\pi x}{\ell}$$

$$\dot{y}^{2} = \frac{1}{\ell^{2}} q_{1}^{2} + \frac{2}{\ell^{2}} g_{2} \frac{\pi}{\ell} \cos \frac{\pi x}{\ell} + q_{2}^{2} \left(\frac{\pi}{\ell}\right)^{2} \cos^{2} \frac{\pi x}{\ell}$$

$$\dot{y}^{2} = -q_{2} \left(\frac{\pi}{\ell}\right)^{2} \sin \frac{\pi x}{\ell}$$

$$\dot{y}^{2} = -q_{3} \int_{0}^{\infty} m \left(\frac{x}{\ell}\right)^{2} dx + \dot{q}_{3}^{2} \int_{0}^{\infty} \sin \frac{\pi x}{\ell} dx = \frac{m\ell}{\pi} \ddot{q}_{1}^{2} + \frac{\ell}{\pi} \ddot{q}_{2}^{2}$$

$$\dot{y}^{2} = \ddot{q}_{1} \int_{0}^{\infty} \frac{x}{\ell} \sin \frac{\pi x}{\ell} dx + \ddot{q}_{3} \int_{0}^{\infty} \sin \frac{\pi x}{\ell} dx = \frac{m\ell}{\pi} \ddot{q}_{1}^{2} + \frac{\ell}{\pi} \ddot{q}_{2}^{2}$$

$$\dot{y}^{2} = \dot{q}_{1} \int_{0}^{\infty} \frac{x}{\ell} \sin \frac{\pi x}{\ell} dx + \ddot{q}_{3} \int_{0}^{\infty} \sin \frac{\pi x}{\ell} dx = \frac{\ell}{\pi} \ddot{q}_{1}^{2} + \frac{\ell}{\pi} \ddot{q}_{2}^{2}$$

$$\frac{\partial U}{\partial q_{1}} = kq_{1} + \frac{k\pi}{\ell^{2}} q_{1} + k\left(\frac{\pi}{\ell}\right)^{2} q_{2} + EI\left(\frac{\pi}{\ell}\right)^{4} \dot{q}_{2}^{2}$$

$$\dot{q}^{2} = \frac{1}{\ell^{2}} \left[\ddot{q}_{1} \right] \left[\ddot{q}_$$

$$m\ell \begin{bmatrix} \frac{1}{3} & \frac{1}{2\pi} \\ \frac{1}{2\pi} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \hat{q}_1 \\ \hat{q}_2 \end{bmatrix} + \frac{EI}{\ell^3} \begin{bmatrix} (k + \frac{K}{\ell^2}) \frac{\ell^3}{EI} & -\frac{\pi r_K}{\ell^2} \frac{\ell^3}{EI} \\ -\frac{\pi r_K}{\ell^2} \frac{\ell^3}{EI} & (\frac{\pi^4}{2} + \frac{\pi r_K}{\ell^2} \frac{\ell^3}{EI}) \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \{0\}$$

$$T = \frac{1}{2} \left(\frac{m\ell^2}{3} \right) \dot{\theta}_i^2 + \frac{1}{2} \left(\frac{m\ell^2}{12} \right) \dot{\theta}_2^2 + \frac{1}{2} m \left(\ell \dot{\theta}_i + \frac{\ell}{2} \dot{\theta}_2 \right)^2$$

$$U = \frac{1}{2} k \left(\frac{\ell}{2} \theta_i \right)^2 + mg \frac{\ell}{2} (i - coi\theta_i) + mg \left[\ell (i - coi\theta_i) + \frac{\ell}{2} (i - coi\theta_i) \right]$$

$$\frac{d}{dt} \frac{\partial T}{\partial \dot{\theta}_i} = \left(\frac{m\ell^2}{3} \right) \ddot{\theta}_i + m \left(\ell \ddot{\theta}_i + \frac{\ell}{2} \ddot{\theta}_2 \right) \ell$$

$$\frac{d}{dt} \frac{\partial T}{\partial \dot{\theta}_2} = \left(\frac{m\ell^2}{12} \right) \ddot{\theta}_2^2 + m \left(\ell \ddot{\theta}_i + \frac{\ell}{2} \ddot{\theta}_2 \right) \frac{\ell}{2}$$

$$\frac{\partial U}{\partial \theta_i} = k \left(\frac{\ell}{2} \theta_i \right) + mg \frac{\ell}{2} \sin \theta_i + mg \ell \sin \theta_i$$

$$\frac{\partial U}{\partial \theta_i} = mg \frac{\ell}{2} \sin \theta_2$$

$$\begin{bmatrix}
\left(\frac{m\ell^{2} + m\ell^{2}}{3} + m\ell^{2}\right) & m\frac{\ell^{2}}{2} \\
m\frac{\ell^{2}}{2} & \left(\frac{m\ell^{2} + m\ell^{2}}{12} + \frac{m\ell^{2}}{4}\right)
\end{bmatrix}
\begin{bmatrix}
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{bmatrix} + \begin{bmatrix}
\left(\frac{k\ell}{2} + \frac{3}{2} mg\ell\right) & 0 \\
\dot{\theta}_{2}
\end{bmatrix}
\begin{bmatrix}
\theta_{1} \\
\theta_{2}
\end{bmatrix} = \{0\}.$$

Refer to Fig 7.1-4 Assume l=l, = l

$$\begin{cases}
F_{1} \\
F_{2} \\
M_{3} \\
M_{4} \\
M_{5} \\
M_{6}
\end{cases} = \frac{EI}{\ell^{3}} \begin{bmatrix}
24 & 0 & 0 & 0 & 0 & 0 \\
-24 & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-6\ell & 1 & 1 & 1 & 1 & 1 \\
-$$

Examine FBD of each of the four corners for above Refer to table 7.3-1

$$\begin{pmatrix} F_{1} \\ F_{2} \\ M_{3} \\ M_{4} \\ M_{5} \\ M_{4} \end{pmatrix} = \frac{E!}{t^{3}} \begin{bmatrix} 0 & 0 - 6\ell & 0 & 0 & 0 \\ \vdots & 6\ell & \vdots & \vdots & \vdots \\ 8\ell^{2} & \vdots & \vdots & \vdots & \vdots \\ 2\ell^{2} & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \vdots & \vdots & \vdots \\ 0 & 0 & \vdots & \vdots \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ Q_{3} \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} 24 & -24 & | -6\ell & -6\ell & -6\ell & -6\ell \\ -24 & 48 & | 6\ell & 6\ell & 0 & 0 \\ -6\ell & 6\ell & 8\ell^2 & 2\ell^2 & 2\ell^2 & 0 \\ -6\ell & 6\ell & | 2\ell^2 & 8\ell^2 & 0 & 2\ell^2 \\ -6\ell & 0 & | 2\ell^2 & 0 & | 2\ell^2 & 2\ell^2 \\ -6\ell & 0 & | 0 & 2\ell^2 & 2\ell^2 & | 2\ell^2 \end{bmatrix}$$

$$\begin{bmatrix}
 m
 \end{bmatrix} =
 \begin{bmatrix}
 2m & 0 & 0 & 0 & 0 & 0 \\
 0 & 2m & 0 & 0 & 0 & 0 \\
 0 & 0 & J & 0 & 0 & 0 \\
 0 & 0 & 0 & J & 0 & 0 \\
 0 & 0 & 0 & 0 & J
 \end{bmatrix}$$

$$\begin{bmatrix}
 mL
 \end{bmatrix} \{\ddot{q}\} +
 \begin{bmatrix}
 kL
 \end{bmatrix} \{q\} = 0$$

$$\begin{cases}
F_1 \\
M_2
\end{cases} = \frac{EI}{\ell^3} \begin{bmatrix}
20.44 & -5.25\ell \\
-5.25\ell & 7.0 \ell^2
\end{bmatrix} \begin{Bmatrix} q_1 \\
q_2
\end{Bmatrix}$$

From Table 6.2-1 rotation of right end is

$$\frac{due\ to\ q_1}{\frac{3}{5}8} = \frac{3}{2} \left(\frac{3}{5} \times \frac{5}{4} + \frac{q_1}{2}\right) = \frac{9}{8} \cdot \frac{q_1}{2}$$

$$T' = \frac{1}{2} (m_1 + m_2) \dot{q}_1^2 + \frac{1}{2} J_1 \dot{q}_2^2 + \frac{1}{2} J_2 \left(\frac{q}{8} \dot{\frac{q}{k}}' + \frac{1}{2} \dot{q}_2 \right)^2$$

$$\frac{d}{dt} \frac{\partial T}{\partial \dot{q}_{i}} = (m_{i} + m_{i}) \dot{q}_{i}^{i} + J_{2} \left(\frac{q_{i}}{8j!} \ddot{q}_{i} + \frac{1}{2} \ddot{q}_{2}\right) \frac{q_{i}}{8\ell}$$

$$\frac{d}{dt} \frac{\partial T}{\partial \dot{q}_2} = J_1 \ddot{q}_2 + J_2 \left(\frac{q}{g^2} \ddot{q}_1 + \frac{1}{2} \ddot{q}_2 \right) \frac{1}{2}$$

$$U = \frac{1}{2} (q_1 q_2) \left[\frac{1}{2} \right] \left\{ \frac{q_2}{q_2} \right\} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \right\} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \right\} \right\} \left\{ \frac{q_1}{q_2} \right\} = \begin{bmatrix} \left\{ \frac{20.44}{13} + \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} $

Eq. of motion

$$\begin{bmatrix}
\{m_1 + m_2 + (\frac{q}{2e})^2 J_2 \} & \{\frac{1}{2} \times \frac{q}{2e} J_2 \} \\
\{\frac{1}{2} \times \frac{q}{2e} J_2 \} & \{J_1 + \frac{1}{2} J_2 \} \end{bmatrix} \begin{bmatrix} \ddot{q}_1 \\ \ddot{q}_2 \end{bmatrix}$$

$$+ \left[\left\{ 20.44 \frac{EI}{2}, + k_0 + \left(\frac{9}{82} \right)^2 K_0 \right\} \left\{ -5.25 \frac{EI}{2} + \frac{9}{162} K_0 \right\} \left\{ 7.0 \frac{EI}{2} + \frac{1}{2} K_0 \right\} \right] \left\{ q_1 \right\} = \left\{ 0 \right\}$$

Assign numbers for m, m, J, J, ko, K, & l for normal mode determination.

$$\frac{R(L_1 r l_2)}{EI_1}$$

$$\frac{Rl_2}{EI_2}$$

$$R(L_2 r l_2)$$

$$\frac{Rl_2}{EI_2}$$

$$R(L_3 r l_3)$$

$$\frac{D_{\text{ne to}P}}{y_{\text{P}}} = \frac{Pl^{3}}{3 \text{ EI}_{1}} \qquad y_{\text{P}}' = \frac{Pl^{2}_{1}}{2 \text{ EI}_{1}}$$

$$y_P' = \frac{Pl_i^2}{2EI_i}$$

$$\therefore \, \mathcal{Y}_{R} = \frac{P\ell_{i}^{3}}{3EI_{i}} + \left(\frac{P\ell_{i}^{2}}{2EI_{i}}\right)\ell_{2}$$

$$\mathcal{G}_{R} = \left(\frac{1}{2} \frac{R'\ell_{2}}{E \overline{\ell}_{1}} \ell_{1}\right) \frac{2}{3} \ell_{2} + \left(\frac{R'\ell_{2}}{E \overline{\ell}_{1}}, \ell_{1}\right) \left(\ell_{1} + \frac{1}{2} \ell_{1}\right)$$

$$+\left(\frac{1}{2}\frac{R_{i}^{\prime}\ell_{i}}{EI_{i}},\ell_{i}\right)\left(\ell_{2}+\frac{2}{3}\ell_{i}\right)$$

Equate y due to P and due to R' (use E1 = 2)

$$\frac{P}{EE_{1}} \left[\frac{\ell_{1}^{3} + \ell_{1}^{3} \ell_{2}}{3} + \frac{\ell_{1}^{3} \ell_{2}}{2} \right] = \frac{R'}{EE_{1}} \left[\frac{2}{3} \ell_{2}^{3} + \ell_{1} \ell_{2}^{2} + \ell_{2} \ell_{1}^{2} + \frac{\ell_{1}^{3}}{3} \right]$$

$$= R' [b]$$

Due to M
$$y_{M} = \left(\frac{M}{E L_{1}}, \ell_{1}\right) \frac{\ell_{1}}{z}$$

$$y_{R} = \frac{M}{EI}, \frac{\ell_{1}^{2}}{2} + \frac{M\ell_{1}\ell_{2}}{EI_{1}}$$
Due to R"

yr same as that for R' with R' replaced by R"

Equate 4 due to M and due to R"

$$\frac{M}{ET_{1}} \left(\frac{\ell_{1}^{2}}{2} + \ell_{1}\ell_{2} \right) = \frac{R''}{ET_{1}} \left[\frac{2}{3} \ell_{2}^{3} + \ell_{1}\ell_{2}^{2} + \ell_{2}\ell_{1}^{2} + \frac{\ell_{1}^{3}}{3} \right]$$

$$= R'' [b]$$

$$M_1 = -M - Pl_1 + R(l_1+l_2)$$
 where $R = R' + R''$

$$R = \frac{P(\frac{1}{3}\ell_1^3 + \frac{1}{2}\ell_1^2\ell_2) + M(\frac{1}{2}\ell_1^2 + \ell_1\ell_2)}{\frac{2}{3}\ell_2^3 + \ell_1\ell_2^2 + \ell_2\ell_1^2 + \frac{1}{3}\ell_1^3}$$

Need Stiffness matrix for M, P and M2 at end of beam

$$y_R = \frac{M_2}{EI_1} \ell_1 (\ell_1 + \frac{\ell_2}{2}) + \frac{M_2}{EI_2} \frac{\ell_2^2}{2}$$

$$y_{R} = \frac{R^{11}}{E\Gamma_{I}} \left[\frac{2}{3} \ell_{1}^{3} + \ell_{1} \ell_{2}^{2} + \ell_{2} \ell_{1}^{2} + \frac{1}{3} \ell_{1}^{5} \right]$$

$$\sum_{k=1}^{M_2} \left[\ell_i \ell_i + \frac{\ell_i}{2} + 2 \cdot \frac{\ell_i}{2} \right] = \frac{R}{|E|} [b]$$

7-23 Cont:

Determine y, 0, y, 02 Set. $y_2 = 0$ to find R

Determine flexibility matrix & invert.

EI, = 2 EIz

$$\begin{aligned} y_{1} &= \frac{P\ell_{1}^{5}}{3EL_{1}} + \frac{M\ell_{1}^{2}}{2EL_{1}} + \frac{M_{2}\ell_{1}^{2}}{2EL_{1}} - \frac{1}{2} \left[\frac{R(\ell_{1}+\ell_{2})\ell_{1}}{EL_{1}} - \frac{R\ell_{1}\ell_{2}}{EL_{1}} \right] \frac{1}{2}\ell_{1} - \frac{R\ell_{2}}{EL_{1}} \frac{\ell_{1}^{2}}{2}\ell_{1} \\ \theta_{1} &= \frac{P\ell_{1}^{2}}{2EL_{1}} + \frac{M\ell_{1}}{EL_{1}} + \frac{M_{2}\ell_{1}}{EL_{1}} - \frac{1}{2} \left[\frac{R(\ell_{1}+\ell_{2})}{EL_{1}} + \frac{R\ell_{2}}{EL_{1}} \right] \ell_{1} \end{aligned}$$

$$\begin{aligned} y_{2} &= \frac{1}{2} \frac{P \ell_{1}^{2}}{E I_{1}} \left(\frac{2}{3} \ell_{1} + \ell_{2} \right) + \frac{M \ell_{1}^{2}}{E I_{1}} \left(\frac{1}{2} \ell_{1} + \ell_{2} \right) + \frac{M_{2}^{2} \ell_{1}^{2}}{E I_{1}} \left(\frac{\ell_{1}^{2}}{2} + \ell_{2} \right) + \frac{M_{2}^{2}}{E I_{2}} \frac{\ell_{2}^{2}}{2} \\ &- \frac{1}{2} \frac{R(\ell_{1} + \ell_{2})}{E I_{1}} \left(\ell_{1} + \ell_{2} \right) \frac{2}{3} \left(\ell_{1} + \ell_{2} \right) - \frac{1}{2} \left[\frac{R \ell_{2}^{2}}{E I_{2}} - \frac{R \ell_{2} \ell_{2}}{E I_{1}} \right] \frac{\pi}{3} \ell_{2} \end{aligned}$$

$$\Theta_{\lambda} = \frac{P\ell_{1}^{2}}{\lambda E I_{1}} + \frac{M\ell_{1}}{E I_{1}} + \frac{M_{2}\ell_{1}}{E I_{1}} + \frac{M_{2}\ell_{2}}{E I_{2}} - \frac{1}{\lambda} R \frac{(\ell_{1} + \ell_{2})^{2}}{E I_{1}} - \frac{1}{\lambda} \left(\frac{R\ell_{2}}{E I_{2}} - \frac{R\ell_{2}}{E I_{1}} \right) \ell_{2}$$

To simplify algebra let L, = l2 = l & EI, = 2.EIz, result is

$$\begin{cases} y, \\ \Theta_{1} \\ \Theta_{2} \\ y_{2} = 0 \end{cases} = \frac{1}{EI_{1}} \begin{cases} \frac{\ell^{3}}{3} & \frac{\ell^{2}}{2} & \frac{\ell^{2}}{2} & -\frac{5}{6}\ell^{3} \\ \frac{\ell^{2}}{2} & \ell & \ell & -\frac{3}{2}\ell^{2} \\ \frac{\ell^{2}}{2} & \ell & 3\ell & -\frac{5}{2}\ell^{2} \\ \frac{5}{6}\ell^{3} & \frac{3}{2}\ell^{2} & \frac{5}{2}\ell^{2} & -3\ell^{3} \end{cases} \begin{cases} P \\ M \\ M_{2} \\ R \end{cases}$$

from $y_2=0$ $R = \frac{5}{18}P + \frac{1}{2}\frac{M}{R} + \frac{5}{6}\frac{M^2}{R}$ Subst. into above to obtain

$$\begin{cases} y_1 \\ \theta_1 \\ \theta_2 \end{cases} = \frac{1}{EI_1} \begin{bmatrix} 0.1018 \ell^3 & 0.0833 \ell^2 & -0.1944 \ell^2 \\ 0.0833 \ell^2 & 0.25 \ell & -0.25 \ell \\ -0.1944 \ell^2 & -0.25 \ell & 0.0916 \ell \end{bmatrix} \begin{cases} P \\ M \\ M_2 \end{cases}$$

invert by computer program to obtain stiffness matrix (see Frob. 6-4) need numeric value of l.

Resolve all forces including inertia forces along i & j & dot product with 180, i

 $\mathcal{I}(F-Mni), lso, i = -(m_1+m_2)g \sin \theta_1 - (m_1+m_2)loi, -m_loi \cos (\theta_2-\theta_1) + m_loi \sin (\theta_2-\theta_1) = 0$ $(m_1+m_2)loi, + m_loi \cos (\theta_2-\theta_1) - m_loi \sin (\theta_2-\theta_1) + (m_1+m_2)g \sin \theta_1 = 0$

Resolve all forces along new i j

1 + 11 to le and dot with 180 i

 $m_1 l \ddot{\theta}_1 + m_1 l \ddot{\theta}_1 cn(\theta_1 - \theta_1) + m_1 l \dot{\theta}_1 sm(\theta_2 - \theta_1) + m_2 g sm \theta_2 = 0$ Try checking these equations from Lagrange's eqs.

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{\theta}_{i}}\right) - \frac{\partial T}{\partial \dot{\theta}_{i}} + \frac{\partial U}{\partial \dot{\theta}_{i}} = 0$$

at x=0 y = 0 :. B = 0

At x=l y = y(l,t) of spring mass

Vertical force =
$$-T \frac{dy}{dx}(l,t)$$

$$= (-TA \overset{\omega}{\smile} \cos \overset{\omega}{\smile}) \sin \omega t$$

$$= m \overset{\omega}{\dot{y}} + ky$$

$$\therefore y(l) = \frac{TA \overset{\omega}{\smile} \cos \overset{\omega}{\smile}}{R - m\omega^{2}} = \frac{-TA \overset{\omega}{\smile} \cos \overset{\omega}{\smile}}{m\omega^{2}(1 - \overset{\omega^{2}}{\smile})}, \quad \omega = \int_{-m}^{R} m$$

or $\tan \overset{\omega}{\smile} = -\left(\frac{T}{kl}\right) \frac{\left(\overset{\omega}{\smile}\right)^{2} \left(\frac{mc^{2}}{Rl^{2}}\right)}{1 - \left(\overset{\omega}{\smile}\right)^{2} \left(\frac{mc^{2}}{Rl^{2}}\right)}$

$$\frac{8-4}{y_1} = a \cos kx \sin \omega t, \qquad y_2 = a \cos \left(\frac{k}{2} + \frac{\pi}{2}\right) \sin \left(\omega t + \frac{\pi}{2}\right)$$

$$= -a \sin kx \cos \omega t$$

$$y = y_1 + y_2 = a \left[\cos kx \sin \omega t - \sin kx \cos \omega t\right]$$

$$= a \sin \left(\omega t - kx\right) = a \sin k \left(\frac{\omega}{k}t - x\right) \therefore C = \frac{\omega}{k}$$

$$C = \sqrt{\frac{E}{\rho}} = \sqrt{\frac{200 \times 10^9}{7810}} = 5060 \text{ m/s} = 16,600 \text{ ft/s}$$

$$\frac{8-7}{\ddot{y}} = \frac{y(x) \cos \omega t}{\ddot{y}}$$

$$= -\omega^{2} \gamma(x) \cos \omega t$$

$$-\omega^{2} \gamma(x) = g\left(x \frac{d^{2}\gamma(x)}{dx^{2}} + \frac{d^{2}\gamma(x)}{dx}\right)$$

$$Let z^{2} = \frac{4\omega^{2}}{g} x \qquad dx = \frac{9}{4\omega^{2}} 2z dz, \quad (dx)^{2} = \left(\frac{92z}{4\omega^{2}}\right)^{2} dz^{2}$$

$$-\omega^{2} \gamma = g\left\{\frac{9}{4\omega^{2}} z^{2} + \frac{2\omega^{2}}{4\omega^{2}} dz^{2} + \frac{2\omega^{2}}{9z} \frac{d\gamma}{dz}\right\}$$

$$\frac{d^{2}\gamma}{dz^{2}} + \frac{1}{2} \frac{d\gamma}{dz} + \gamma = 0 \quad \text{Bessel's D. E}$$

8-8

Assume mode shape as shown. Accel. at y is ig - ywo

$$T \frac{\partial y}{\partial x^{2}} = \rho(\ddot{y} - y\omega_{\bullet}^{2}) \qquad \text{Let} \quad y = Y(x) e^{i\omega t}$$

$$\frac{\partial^{2} Y}{\partial x^{2}} + \left[\left(\frac{\omega}{c}\right)^{2} + \left(\frac{\omega}{c}\right)^{2}\right] Y(x) = 0 \qquad C = \sqrt{\frac{T}{\rho}}$$

$$Y(0) = 0$$
 ... $B = 0$ and $Y(x) = A \sin \Omega x + 0$
where $\Omega = \sqrt{\left(\frac{\omega}{c}\right)^2 + \left(\frac{\omega}{c}\right)^2}$

$$Y(\ell) = 0 \qquad \therefore \quad \text{Sin } \Omega L = 0$$

$$\sqrt{\left(\frac{\omega}{c}\right)^{2} + \left(\frac{\omega_{0}}{c}\right)^{2}} L = \Pi \qquad \qquad \omega^{2} \cdot \left(\mathbb{E}^{c}\right)^{2} - \omega_{0}^{2}$$

$$\omega^2 = \left(\frac{\pi}{\ell}\right)^2 \left(\frac{m\omega_0^2\ell}{\ell}\right) - \omega_0^2$$

8 - 9

$$u = (A \sin \frac{\omega x}{2} + B \cos \frac{\omega x}{2}) \sin \omega t$$

$$\mathcal{T} = E\left(\frac{\partial u}{\partial x}\right)_{x=\ell} = 0 \quad \text{i.} \quad \frac{\omega}{c} \cdot \cos \frac{\omega \ell}{c} = 0$$

$$\frac{\omega \ell}{c} = \frac{\pi}{2} \cdot \frac{3\pi}{2} \cdot \frac{5\pi}{2} \quad --- = (n+1)\pi \quad \text{i. i. } n = 0, 1, 2 \quad ---$$

$$f_{m} = \frac{\omega}{2\pi} = (n+1)\frac{c}{2\ell} \quad n = 0, 1, 2, \quad ---$$

$$8 - 10$$

$$u = C, \sin \frac{\omega x}{c} \sin \omega t$$

$$F = A\sigma = AE \frac{\partial u}{\partial x} = AEC, \frac{\omega}{c} \cos \frac{\omega x}{c} \sin \omega t$$

$$= -\frac{w}{4} \ddot{u}(t)$$

$$\therefore AE \stackrel{\omega}{=} \cos \frac{\omega t}{c} = \omega^2 w \sin \omega t$$

$$\frac{\omega_{l} \tan \omega_{l}}{C} = \frac{Apl}{W} = \frac{W_{red}}{W_{end}}$$

$$\frac{8-11}{F_{rom}} \frac{P_{rob}.5-10}{F_{rob}.5-10} \quad \tan \omega_{l} = \frac{\binom{m_{ord}}{M}}{\omega_{l}}$$

Let freq. eq. be
$$\omega_1 = m_1 \sqrt{\frac{Eq}{R_w}}$$

$$\omega_{i} = m_{i} \sqrt{\frac{EA}{L}} \frac{gl^{2}}{l^{2}} = m_{i} l \sqrt{\frac{EA}{L}} \frac{g}{l^{2}} = m_{i} l \sqrt{\frac{l^{2}}{m_{rod}}}$$

Let
$$r = \frac{m}{M}$$
, then $\omega_i = m_i \ell \sqrt{\frac{k}{hM}}$

Approx 501,
$$\omega_{\text{app.}} = \sqrt{\frac{AE/\ell}{M + \frac{1}{3}m_{\text{red}}}} = \sqrt{\frac{k}{M + \frac{\alpha}{3}M}}$$

$$\frac{\omega_{a \neq n}}{\omega_{i}} = \sqrt{\frac{k}{M(i + \frac{1}{3}n)}} \sqrt{\frac{nM}{k}} \left(\frac{1}{n_{i} \ell}\right) = \frac{1}{\beta_{i}} \sqrt{\frac{3k}{3+n}}$$

8-12

$$\left(\frac{\partial u}{\partial x}\right)_{x=1} = 0$$
 .. $\cos \frac{\omega \ell}{c} = 0$ $\frac{\omega \ell}{c} = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2} = -$

$$\omega_{i} = \frac{\pi}{L} \frac{c}{2} = \frac{\pi}{20} \sqrt{\frac{Eq}{c}} = 2\pi (20,000)$$

$$L = \frac{1}{4 \times 20,000} \sqrt{\frac{EG}{C}} = \frac{10^3}{80,000} \sqrt{\frac{30.38C}{0.31}} = 7.64^{\circ}$$

Note
$$\rho = \frac{\rho_w}{g} = mass density$$

$$m\frac{\partial u}{\partial t^2} = A E \frac{\partial u}{\partial x^2} - \alpha \frac{\partial u}{\partial t} + \frac{p_0}{L} p(\alpha) f(t)$$

$$u = \sum_{i} \phi_i(x) q_i(t)$$

 $u = \sum_{i} \phi(x) q_i(t)$ Subst into eq. above

$$m\sum_{i}\phi_{i}\dot{q}_{i}=AE\sum_{i}\phi_{i}''q_{i}-\omega\sum_{i}\phi_{i}\dot{q}_{i}+\frac{p_{i}}{2}\phi(\alpha)f(t)$$

multiby of dx and integrate over x = 0 to l

$$m \int_{\phi_{i}}^{e} \sum_{i} \phi_{i} \dot{q}_{i} dx = AE \int_{\phi_{i}}^{e} \sum_{i} \phi_{i}^{i} \dot{q}_{i} dx - \alpha \int_{\phi_{i}}^{e} \sum_{i} \phi_{i} \dot{q}_{i} dx + \int_{\theta_{i}}^{e} \int_{\phi_{i}}^{e} \rho(\alpha) \dot{\phi}_{i} dx f(t)$$

Since & and & are orthogonal

$$\ddot{q}_{j}^{i} \int_{0}^{\infty} q_{j}^{i} dx = A E q_{j} \int_{0}^{\phi} dy_{j}^{i} dy_{j} - \alpha \dot{q}_{j}^{i} \int_{0}^{\phi} dy_{j} + \frac{f_{0}}{\epsilon} f(t) \int_{0}^{\rho(x)} dy_{j} dy_{j}$$
 $\ddot{q}_{j}^{i} + 25 \omega_{j} \dot{q}_{j}^{i} + \omega_{j}^{i} \dot{q}_{j}^{i} = \frac{f_{0}}{m \ell} f(t) \int_{0}^{\rho(x)} dy_{j} dx_{j}$

with
$$b_j = \frac{1}{L} \int_{0}^{L} p(x) \phi_j dx$$

 $q_{i} = \frac{f_{0}}{m} b_{i} \int f(t-r) e^{-5w_{i}r} \sin \omega_{i} (r-s^{2}r) dr$

for steel G = 12 × 10° psi

(w = 0.282 4/in3

8 -15

 $\left(\frac{\partial \theta}{\partial x}\right)_{x=1} = 0$. Cor $\frac{\omega \ell}{2c} = 0$

$$\mathcal{E} = \frac{16}{J_0 \ddot{\theta}_{\kappa=0}} = G I_{\kappa} \left(\frac{d\theta}{d\kappa} \right)_{\kappa=0}$$

$$J_0 \ddot{\theta}_{\kappa=0} = -G I_{\kappa} \left(\frac{d\theta}{d\kappa} \right)_{\kappa=0}$$

$$-\omega^2 J_o \left[A \sin \frac{\omega t}{2} + B \cos \frac{\omega t}{2} \right] = -G I_o \frac{\omega t}{c} \left[A \cos \frac{\omega t}{2} - B \sin \frac{\omega t}{2} \right]$$

$$A = -\frac{GI_{e}}{\omega_{G}J_{e}}A$$

$$\frac{GI_{o}}{\omega cJ_{o}} = \frac{GI_{p}}{\omega cJ_{o}} \frac{Pl}{8} \frac{g}{PL} = \frac{Gg}{r} \frac{J_{c}}{J_{o}} \frac{J_{c}}{\omega lc} = \frac{J_{s}}{J_{o}} \frac{c}{\omega l}$$

$$\left| \int_{C}^{\infty} \int_{C}^{\infty} \left\{ 1 + \left(\frac{J_{S}}{J_{o}} \right)^{2} \right\} = 2 \frac{J_{S}}{J_{o}} \frac{c}{\omega \ell}$$

When ends are free (Jo=0) $\omega = \frac{\pi}{L}$. The effect of Jo is to Lower nat. freq. If Jo/Js is very large the right side of eq $\frac{2}{(J_{\omega}\omega_{L})}$ Fundamental freq. has note at center

$$\omega_{i} \cong \sqrt{\frac{2GI_{i}R}{J_{o} + \frac{i}{L}J_{o}}} = \sqrt{\frac{2Gg}{J_{o} + \frac{i}{L}J_{o}}} = \frac{c}{\ell}\sqrt{\frac{2J_{o}}{J_{o} + \frac{i}{L}J_{o}}} = \frac{c}{\ell}\sqrt{\frac{2}{J_{o}} + \frac{i}{L}}$$

When
$$\frac{J_e}{J_s} = 0$$
 $\frac{\omega_1 \ell}{C} = \sqrt{3}$

When
$$\frac{J_0}{J_0} = 5$$
, exact eq $\frac{J_0}{J_0} = \frac{J_0}{J_0} = \frac{J_0}{J_$

Approx eq.
$$\frac{\omega_1 \ell}{c} = \sqrt{\frac{2}{5+t}}$$
 gives 0.62

$$\theta = (A \sin \frac{\omega x}{x} + B \cos \frac{\omega x}{x}) \sin \omega t$$

$$\theta = (A \sin \frac{\omega x}{x} + B \cos \frac{\omega x}{x}) \sin \omega t$$

$$\theta = A(\sin \frac{\omega x}{x} - \tan \frac{\omega x}{x}) \cos \omega t$$

$$Torque at $\alpha = 0 = K\theta(0) = KA(-\tan \frac{\omega x}{x})$

$$\left(\frac{d\theta}{dx}\right)_{x=0} = A \frac{\omega}{c}(1)$$

$$GI_{p}\left(\frac{d\theta}{dx}\right)_{x=0} = A \frac{\omega}{c}GI_{p} = -KA \tan \frac{\omega x}{c}$$

$$i' \cdot \tan \frac{\omega x}{c} = -\frac{I_{p}G}{Kc} \left(\frac{\omega x}{c}\right)$$$$

$$S = \frac{19}{M \text{ omentum}} = \frac{1}{M \text{ in } \frac{\pi M}{L}}$$

$$m \int_{0}^{\infty} (\sin \pi y - L) dx = 0 \qquad \text{gives} \quad b = \frac{1}{M}$$

$$T = \frac{1}{M} \text{ min} \int_{0}^{\infty} (\sin \pi y - L)^{2} dx = \frac{1}{M} \text{ min} \left[\frac{1}{2} - \frac{3}{M}l + \frac{4}{M}l\right] - \frac{1}{M} \text{ min} \left(\frac{1}{2} - \frac{4}{M}l\right)$$

$$U = \frac{1}{2} EI \int_{0}^{\infty} (\frac{1}{M}l)^{2} dx = \frac{1}{2} EI \left(\frac{\pi}{L}\right)^{2} \frac{1}{2} \left(1 - \cos \frac{\pi M}{L}\right) dx = \frac{1}{2} EI \left(\frac{\pi}{L}\right)^{4} \frac{1}{2}$$

$$Equate \quad T \neq U \qquad \omega_{1} = \frac{\pi^{4}}{M^{2}} \left(\frac{EI}{M^{2}}\right) = 5/2 \left(\frac{EI}{M^{2}}\right)$$

$$\omega_{1} = 24.L \sqrt{\frac{EI}{M^{2}}} \qquad \text{node at } \left(\sin \frac{\pi M}{L} - \frac{1}{M}\right) = 0 \quad \text{or } \frac{M}{L} = 0.22$$

$$S = 20$$

$$\frac{S-20}{2\pi f} = 22.4 \sqrt{\frac{EI}{ml^{4}}} = 2\pi 1690$$

$$m = 2 \times 2 \times 1 \times \frac{153}{1732} \times \frac{1}{386} = 9/6 \times 10^{-6}$$

$$I = \frac{2 \times 2^{3}}{12} = \frac{4}{3} \qquad \frac{EI}{ml^{4}} = \left(\frac{2\pi \times 1690}{21.4}\right) = 224,000$$

$$E = \frac{224,000 \times 9/6 \times 10^{-6} \times 12^{\frac{1}{4}}}{4/2} = 3,480,000 \text{ lb/in} = \frac{24}{12}$$

8-21

Start with Eq. A-12, At
$$x=0$$
 and $x=L$, $y=\frac{dy}{dy}=0$

A + 0 + C + 0 = 0 | C = -A

0 + B + 0 + D = 0 | D = -B

A(coshpe-cospe) + B(smilpe-singe) = 0

A(smilpe+singe) + B(coshpe-cospe) = 0

- $\frac{A}{B} = \frac{\text{smilpe-singe}}{\text{coshpe-cospe}} = \frac{\text{coshpe-cospe}}{\text{smilpe+singe}}$

or $\frac{A}{B} = \frac{\text{coshpe-cospe}}{\text{coshpe-cospe}} = \frac{\text{coshpe-cospe}}{\text{smilpe+singe}}$

8 - 22 Start with Eq. 8-4-12

At
$$x=0$$
, $y=\frac{dy}{dx}=0$ gives $C=-A$
 $D=-B$

$$At x = \ell \qquad y = \frac{d^2y}{dx^2} = 0$$

is coshpessinge - Sinhpe coope = 0

or tank gl = tan ml

8 -23

$$C = -A$$
 $D = -B$

At
$$\alpha = \ell$$
 -ET $\frac{d^2y}{dx^3} = -V = \frac{W_0}{4} \cdot \ddot{y}(\ell)$

$$-\beta^{3} \left[A \left(\text{Simlpe-Simple} \right) + B \left(\text{coshpe+cosple} \right) \right]$$

$$= -\frac{W}{3} \cdot \frac{\omega^{2}}{ET} \left[A \left(\text{coshpe-cosple} \right) + B \left(\text{Simlpe-Simple} \right) \right]$$

At
$$\alpha = \ell$$
 $-M = -EI \frac{d^2 a}{dx^2} = J_* \left(\frac{dy}{dx} \right) = 0$

$$\beta^{2}$$
 [A (codpl + cope) + B (suitpl + singl)] = 0

$$-\frac{A}{B} = \frac{\left(\cosh\beta\ell + \cosh\ell\right) - \frac{w_0 \, \omega^2}{\beta^2 \, g \, ET} \left(\sinh\beta\ell - \sinh\ell\right)}{\left(\sinh\beta\ell - \sinh\ell\right) - \frac{w_0 \, \omega^2}{\beta^2 \, g \, ET} \left(\cosh\beta\ell - \cosh\ell\right)} = \frac{\left(\sinh\beta\ell + \sinh\ell\right)}{\left(\cosh\beta\ell + \cosh\ell\right)}$$

$$\beta^2 = \omega \sqrt{\frac{w\ell}{gEI\ell}} = \omega \sqrt{\frac{W_b}{gEI\ell}}$$

$$\frac{8-24}{At \ x=0, \ y=y, \ y=A+C}$$

$$At \ x=0 \quad \frac{d^{2}y}{dx^{2}}=0 \quad f(x) \quad C=A$$

$$At \ x=0 \quad \frac{d^{2}y}{dx^{2}}=0$$

$$\beta^{2}\left[A\left(\cosh \theta C-\cosh \theta C\right)+B\sinh \theta C-D\sinh \theta C\right]=0$$

$$\beta^{3}\left[A\left(\sinh \theta C+\sinh \theta C\right)+B\cosh \rho C-D\cosh \theta C\right]=0$$

 $At x=\ell , \quad y=y_{\ell}$ Me - A (coshpe + cospe) + B Sinhpe + D sinpl

$$\frac{y_0}{HR} = \frac{2A}{A(CL+C) + 8SL + D5} = \frac{2A}{A(CL+C) + 3SL + A(CL-C) + 8SL}$$

25

Boundary $y_1(0) = 0$ Yintermediate cond, $\frac{d^2y_1(0)}{dx^2} = 0$

$$\frac{d^2 y_1(0)}{d x^2} = 0$$

$$y_{i}(0) = A_{i} + C_{i} = 0$$
 i', $C_{i} = -A_{i}$

$$y_{i}''(0) = A_{i} - C_{i} = 0$$
 i'. $C_{i} = +A_{i}$

$$y_{i} = B_{i} \cdot Suik_{p} \times + D_{i} \cdot Suik_{p} \times$$

$$y_{i}(\ell_{i}) = B_{i} \sin \beta \ell + D_{i} \sin \beta \ell = 0$$
 ... $B_{i} = -D_{i} \frac{\sin \beta \ell_{i}}{\sin \beta \ell_{i}}$
 $y_{i} = D_{i} \left(\sin \beta x - \frac{\sin \beta \ell_{i}}{\sin \beta \ell_{i}} \right) = \phi_{i}(x)$

$$y_{2}^{"}(0) = A_{2} - C_{1} = 0$$
 ... $C_{k} = A_{2}$
 $y_{3}^{"'}(0) = B_{4} - D_{k} = 0$... $D_{2} = B_{2}$

$$y_2(l_1) = A_1 \left(\cosh \rho l_1 + \cosh \rho l_2 \right) + B_2 \left(\sinh \rho l_1 + \sinh \rho l_2 \right)$$

$$\therefore B_2 = -A \frac{\cosh \rho l_2 + \cosh \rho l_2}{\sinh \rho l_1 + \sinh \rho l_2}$$

$$y_{1} = A_{2} \left(\cos k \beta \alpha + \cos \beta \alpha \right) - \left(\frac{\cos k \beta \ell_{2} + \cos \beta \ell_{1}}{\sin k \beta \ell_{2} + \sin \beta \ell_{2}} \right) \left(\sin k \beta \alpha + \sin \beta \alpha \right) \right\} = \phi_{2}(\alpha)$$

$$\frac{q-1}{x} = \frac{R}{R} \left(1 - \cos \omega t \right), \quad \omega = \sqrt{\frac{R}{R}}$$

$$\frac{R}{R} \left(1 - \cos \omega t \right), \quad \omega = \sqrt{\frac{R}{R}}$$

$$\frac{R}{R} \left(1 - \cos \omega t \right), \quad \omega = \sqrt{\frac{R}{R}}$$

$$\frac{R}{R} \left(1 - \frac{R}{R} \right) \left(1 - \frac{R}{R$$

$$\frac{q-5}{\epsilon+o} \quad K_{i} = \lim_{\epsilon \to o} \frac{1}{\epsilon} \int_{0}^{\epsilon} \left[\frac{\delta(x-a-\epsilon) - \delta(x-a)}{\epsilon} \right] d_{i}(x) dx$$

$$= \lim_{\epsilon \to o} \left[\frac{d_{i}(x)}{\epsilon} \right] = \left[\frac{d_{i}(x)}{\epsilon} \right] \left[\frac{d_{i}(x)}{\epsilon} \right] = a$$

$$= \lim_{\epsilon \to o} \left[\frac{d_{i}(x)}{\epsilon} \right] = \left[\frac{d_{i}(x)}{\epsilon} \right] = a$$

$$= \lim_{\epsilon \to o} \left[\frac{d_{i}(x)}{\epsilon} \right] = \lim_{\epsilon \to o} \left[\frac{d_{i}(x)}{\epsilon} \right] = a$$

$$= \lim_{\epsilon \to o} \left[\frac{d_{i}(x)}{\epsilon} \right] = \lim_{\epsilon \to o} \left[\frac{d_{i}(x)}{\epsilon} \right] = a$$

$$= \lim_{\epsilon \to o} \left[\frac{d_{i}(x)}{\epsilon} \right] = \lim_{\epsilon \to o} \left[\frac{d_{i}(x)}{\epsilon} \right] = a$$

$$= \lim_{\epsilon \to o} \left[\frac{d_{i}(x)}{\epsilon} \right] = \lim_{$$

$$\frac{9-8}{\phi_{m}} = \frac{1}{12} \frac{1$$

Normal mode $u(x) = a \sin \frac{\omega x}{c} + B \cos \frac{\omega x}{c}$ $\frac{du}{dx} = \frac{\omega}{c} \left\{ a \cos \frac{\omega x}{c} - B \sin \frac{\omega x}{c} \right\}$ $x = 0, \quad du = 0 \quad \therefore \quad a = 0$ $x = l, \quad u = 0 \quad \therefore \quad b \cos \frac{\omega l}{c} = 0$ $u(x) = b \cos \frac{\omega x}{c}$ $\frac{dl}{l} = \frac{\pi}{2} \cdot \frac{3\pi}{2} \cdot \frac{5\pi}{2} \cdot \frac{\pi}{2}$ $\int_{0}^{M} b^{2} \cos^{2} \frac{\omega x}{c} dx = M = \int_{0}^{2} \int_{0}^{1} \left(1 + \cos^{2} \frac{\omega x}{c}\right) dx = \int_{0}^{2} \int_{0}^{1} \left(1 + \cos^{2} \frac{\omega x}{c}\right) dx = \int_{0}^{2} \int_{0}^{1} \left(1 + \cos^{2} \frac{\omega x}{c}\right) dx = \int_{0}^{2} \int_{0}^{1} \left(1 + \cos^{2} \frac{\omega x}{c}\right) dx = \int_{0}^{2} \int_{0}^{1} \left(1 + \cos^{2} \frac{\omega x}{c}\right) dx = \int_{0}^{2} \int_{0}^{1} \left(1 + \cos^{2} \frac{\omega x}{c}\right) dx = \int_{0}^{2} \int_{0}^{1} \left(1 + \cos^{2} \frac{\omega x}{c}\right) dx = \int_{0}^{2} \int_{0}^{1} \left(1 + \cos^{2} \frac{\omega x}{c}\right) dx = \int_{0}^{2} \int_{0}^{1} \left(1 + \cos^{2} \frac{\omega x}{c}\right) dx = \int_{0}^{2} \int_{0}^{1} \left(1 + \cos^{2} \frac{\omega x}{c}\right) dx = \int_{0}^{2} \int_{0}^{1} \left(1 + \cos^{2} \frac{\omega x}{c}\right) dx = \int_{0}^{2} \int_{0}^{1} \left(1 + \cos^{2} \frac{\omega x}{c}\right) dx = \int_{0}^{2} \int_{0}^{1} \left(1 + \cos^{2} \frac{\omega x}{c}\right) dx = \int_{0}^{2} \left(1 +$

$$\frac{q-q \quad (ent)}{g_{m}^{2} + \omega_{m}^{2}} q_{m}^{2} = \frac{f(t)}{M} \int_{0}^{T} \int_{0}^{t} f(x) \int_{0}^{t} c(x) \int_{0}^{t} cs \frac{\pi \pi x}{2 \cdot t} dx = \frac{f_{0}}{M} \int_{0}^{t} f(t)$$

$$q_{m}^{2} = \frac{f_{0}}{\omega_{m}^{2}} \frac{D_{m}(t)}{M} = \frac{f_{0}^{2} f_{0}^{2}}{(\frac{\pi \pi x}{2})^{2}} \frac{D_{m}(t)}{M} = \frac{f_{0}^{2} f_{0}^{2}}{(\frac{\pi \pi x}{2})^{2}} \frac{D_{m}(t)}{M} \int_{0}^{t} f(t)$$

$$U(x,t) = \int_{0}^{t} \frac{d_{m}(x)}{dx} g_{m}^{2}(t) = \frac{2f_{0}^{2} f_{0}^{2}}{EA} \left\{ \frac{cor \pi x}{2t} \cdot D_{n}(t) + \frac{cor \pi x}{2t} \cdot D_{n$$

$$\begin{split} & \frac{q-12}{T} - \frac{1}{2} \int_{0}^{\infty} m \dot{g}^{2} dm = \frac{1}{2} \int_{0}^{\infty} (\varphi_{i} \dot{g}_{i} + \varphi_{i} \dot{g}_{i})^{2} dx \\ & = \frac{1}{2} \int_{0}^{\infty} m \dot{g}^{2} dm = \frac{1}{2} \int_{0}^{\infty} (\varphi_{i} \dot{g}_{i} + \varphi_{i} \dot{g}_{i})^{2} dx \\ & = \frac{1}{2} \int_{0}^{\infty} m \dot{g}^{2} dm = \frac{1}{2} \int_{0}^{\infty} (\varphi_{i} \dot{g}_{i} + \varphi_{i} \dot{g}_{i})^{2} dx \\ & = \frac{1}{2} \int_{0}^{\infty} (\varphi_{i} \dot{g}_{i}) + \frac{1}{2} \int_{0}^{\infty} (\varphi_{i} \dot{g}_{i})^{2} + \frac{1}{2} \int_{0}^{\infty} (\varphi_{i} \dot{g}_{i})^{2} dx \\ & = \frac{1}{2} \int_{0}^{\infty} (\varphi_{i} \dot{g}_{i})^{2} + \frac{1}{$$

$$\frac{q-13}{q=\sum_{n}\phi_{n}q_{n}}$$

Generalized force

$$=P_{s}f(t)\int_{-\infty}^{\ell}\phi(x)\delta(x-\frac{\ell}{2})dx =P_{s}\phi_{m}(\frac{\ell}{2})f(t)$$

$$y(\frac{1}{2},t) = \sum_{n} \phi(\frac{1}{2}) g_n(t)$$
 where $g_n = solution$ of $g_n + \omega_n g_n = \frac{P_0}{M} \phi(\frac{1}{2}) f(t)$

Solution

$$q_n(t) = q(0)\cos\omega_n t + \frac{1}{\omega_n} \dot{q}_n(0)\sin\omega_n t + \frac{P_0 \dot{q}_n(\frac{1}{2})}{M\omega_n^2} \omega_n \int_{0}^{t} f(\xi)\sin\omega_n (t-\xi) d\xi$$

From Appendix D

$$\phi_{1}(\frac{1}{2}) = 1.583$$

$$\Phi_2(\frac{\ell}{2}) = 0$$

$$\phi_{2}^{"}(0) = 2.0$$

$$\phi_2(\frac{6}{2}) = -1.372$$

$$\phi_3''(o) = 2.0$$

$$M_o = EI \left(\frac{d^2 y}{d x^2}\right)_0 = EI \sum_{m} q_m(t) \left(\frac{d^2 \phi_n}{d x^2}\right)_{x=0} = EI \sum_{m} q_n(t) \beta_m^2 \phi_m'(0)$$

$$K_i = \frac{1}{\ell} \int_0^\ell \phi_i(x) \, dx$$

The above integral for Ki can be evaluated from tables in App. D. Add column of \$1(x) and mult. by interval \$ = 0.04 1 st mode column sum is 20.57 : 20.57 x 0.04 = 0.822. Exact value from integrating Eq. 8.4-12 with proper boundary conditions is 0.783. i.e. use y(x) = (coshpa-cospa) - (sulfl-single) (sulfx-single) Note: The number 20.57 is too large since it was computed with the largest deflection of 2.0x.04 + 1.89x.04 + - - etc. If the sum is started with 1.89x.04 + ···etc, then a figure of 18.57 is obtained. Averaging & (18.57 + 20.57) x.04 we obtain the exact value 0.783.

Letting on = Sinhpl-Single Coshpl + cospl the integral can be shown to $\int \phi(x) \, \frac{dx}{\ell} = \frac{2 \, \alpha_m}{\beta_m \ell}$ be

$$\frac{q-15}{1-(\omega_{1})^{2}} = \frac{k}{M} \frac{q^{2}(\xi)}{(\xi)} \frac{1}{\omega_{1}} = \frac{q^{2}(\xi)}{(\xi)} $

Freq. Eq. becomes

 $\frac{q-17}{}$ We use here a somewhat different procedure than that of the text in that the influence coefs, are found from the beam eq. $F(a,t) = -k y(\frac{1}{3})$ $\alpha(a,x) = \alpha(\frac{1}{3},\frac{1}{3}) = \frac{\binom{1}{3}\binom{21}{3}}{\binom{2}{3}}\binom{2^2-\frac{1}{4}^2-\frac{1}{4}^2}{\binom{2}{3}} = \frac{4}{243}\frac{1}{EI}$

From Eq. 9.4-4

$$y(\frac{1}{3}) = -ky(\frac{1}{3}) \frac{4}{243} \frac{l^{3}}{EI} + (\frac{\omega}{\omega_{i}}) \frac{1}{4}, \psi(\frac{1}{3}) + (\frac{\omega}{\omega_{i}}) \frac{1}{4} \frac{1}{3} + \cdots$$
Using $1^{\underline{st}}$ mode only

$$y(\frac{4}{3})[1+\frac{4}{243}\frac{8\ell^3}{ET}]=(\frac{\omega}{\omega_i})^2q_i\phi_i(\frac{4}{3})$$

but $y(\frac{1}{3}) = \phi_1(\frac{1}{3})q_1 + higher modes which are neglected.$

$$\frac{1}{100} \left(\frac{\omega}{\omega_{i}} \right)^{2} = 1 + \frac{4}{243} \frac{kl^{3}}{EI}$$

$$\frac{1.5}{174} = 0.0154$$

$$\frac{4}{243} = 0.0165$$

$$\frac{q-18}{\phi_{i}(a)\overline{q}_{i}(t)} = F(at) \alpha(a,a) - \left(\frac{\omega}{\omega_{i}}\right)^{2} \overline{q}_{i}(t) \phi_{i}(a)$$

$$\phi_{i}(a)\overline{q}_{i}(t) = -k \phi_{i}(a) \overline{q}_{i}(t) \frac{\phi_{i}(a)}{w_{i}\omega_{i}^{2}} - \left(\frac{\omega}{\omega_{i}}\right)^{2} \overline{q}_{i}(t) \phi_{i}(a)$$

$$\therefore \left(\frac{\omega}{\omega_{i}}\right)^{2} = 1 + \frac{k}{m} \omega_{i}^{2} \phi_{i}^{2}(a)$$

$$\frac{q-1q}{\overline{q}_{i}(\omega_{i}^{2}-\omega^{2})} = -\frac{K}{m} \varphi_{i}^{\prime}(0) \left[\overline{q}_{i} \varphi_{i}^{\prime}(0) + \overline{q}_{k} \varphi_{i}^{\prime}(0)\right]$$

$$\overline{q}_{i}(\omega_{i}^{2}-\omega^{2}) = -\frac{K}{m} \varphi_{i}^{\prime}(0) \left[\overline{q}_{i} \varphi_{i}^{\prime}(0) + \overline{q}_{k} \varphi_{i}^{\prime}(0)\right]$$
Freq. eq. becomes
$$\left[\left(\omega_{i}^{2}-\omega^{2}\right) + \frac{K}{m} \varphi_{i}^{\prime}(0)\right] \quad \frac{K}{m} \varphi_{i}^{\prime}(0)\varphi_{i}^{\prime}(0)$$

$$\qquad K \varphi_{i}^{\prime}(0) \varphi_{i}^{\prime}(0) \quad \left[\left(\omega_{i}^{2}-\omega^{2}\right) + \frac{K}{m} \varphi_{i}^{\prime}(0)\right]$$

$$\omega_{i}^{2} = 16 \omega_{i}^{2} \quad \text{for simply supported beam}, \quad \text{Let } \lambda = 0$$

 $\omega_z^2 = 16 \, \omega_z^2$ for simply supported beam. Let $\lambda = \left(\frac{\omega}{\omega_z}\right)^2$

$$\left[(1-\lambda) + \frac{K}{M\omega_{i}} \varphi_{i}^{(0)} \right] \left[(16-\lambda) + \frac{K}{M\omega_{i}} \varphi_{i}^{(2)} (0) \right] - \left(\frac{K}{M\omega_{i}} \right)^{2} \left[\varphi_{i}^{(0)} \varphi_{i}^{(0)} \right]^{2} = 0$$

$$\lambda^{2} - \left\{ 17 + \frac{K}{M\omega_{i}} \left[\varphi_{i}^{(1)} + \varphi_{i}^{(2)} (0) \right] \right\} \lambda + \left\{ 16 + \frac{K}{M\omega_{i}} \left[\varphi_{i}^{(0)} + 16 \varphi_{i}^{(0)} \right] \right\} = 0$$

$$\varphi_{i}(x) = \sqrt{2} \sin \frac{\pi i x}{\ell} \qquad \varphi_{i}'(0) = \sqrt{2} \frac{\pi}{\ell} \qquad \varphi_{i}'^{2}(0) = 2\left(\frac{\pi}{\ell}\right)^{2}$$

$$\varphi_{i}'(2) = \sqrt{2} \sin \frac{2\pi i x}{\ell} \qquad \varphi_{i}'(0) = 2\sqrt{2} \frac{\pi}{\ell} \qquad \varphi_{i}'^{2}(0) = 8\left(\frac{\pi}{\ell}\right)^{2}$$

If
$$k = 0$$

$$\lambda^{2} - 17\lambda + 16 = (\lambda - 1)(\lambda - 16) = 0$$

$$\therefore \begin{cases} \lambda_{1} = 1 \\ \lambda_{2} = 16 \end{cases}$$
If $k \neq 0$ Let $d = \frac{k}{M\omega^{2}}$

 $\left[\lambda^{2} - \left[17 + 10 \left(\frac{\pi}{L} \right)^{2} \alpha \right] \lambda + \left[16 + 40 \left(\frac{\pi}{L} \right)^{2} \alpha \right] = 0$

$$\frac{q-20}{\bar{q}_{1}(\omega_{1}^{2}-\omega^{2})} = -\frac{K}{M} \varphi'(o) \left[\bar{q}_{1} \varphi'(o) + \bar{q}_{2} \varphi'(o) \right] - \frac{K}{M} \varphi'(t) \left[\bar{q}_{1} \varphi'(t) + \bar{q}_{2} \varphi'(t) \right] }{\bar{q}_{1}(\omega_{1}^{2}-\omega^{2}) = -\frac{K}{M} \varphi'(o) \left[\bar{q}_{1} \varphi'(o) + \bar{q}_{2} \varphi'(o) \right] - \frac{K}{M} \varphi'_{1}(t) \left[\bar{q}_{1} \varphi'(t) + \bar{q}_{2} \varphi'(t) \right] }{\bar{q}_{1}(\omega_{1}^{2}-\omega^{2}) + \frac{K}{M} \left[\varphi'(o) + \varphi'(t) \right] } \left[\frac{K}{M} \left[\varphi'(o) \varphi'(o) + \varphi'(t) \varphi'(t) \right] \right] = 0$$

$$\frac{K}{M} \left[\varphi'(o) \varphi'(o) + \varphi'(t) \varphi'(t) \right] \qquad (\omega_{1}^{2}-\omega) + \frac{K}{M} \left[\varphi'(o) + \varphi'(t) \varphi'(t) \right] }{\bar{q}_{1}(o) = \varphi'_{1}(o) + \varphi'(t) \varphi'(t) } = 0$$

$$\varphi'(0) \varphi'(0) = \varphi'_{1}(t) \qquad (\varphi'(0)) \varphi'(0) = -\varphi'(t) \qquad (\varphi'(0)) \varphi'(0) \qquad (\varphi$$

Cantilever modes

 $y(x,t) = \varphi_0 q_0(t) + \sum_{m=1}^{\infty} \varphi_m(x) q_m(t)$ For free-free natural modes, momentum must be zero.

$$2 \int_{m}^{\infty} q(x,t) dx + M_0 y(0,t) = 0$$

$$2 \sum_{m=1}^{\infty} q_n(t) \int_{0}^{\infty} m \varphi_m(x) dx + (M_0 + 2m) \varphi_0 q_0 = 0$$

If only I made + translation is used (M+2m)90+29, ml (.783) =0 $q_{\bullet} = -\left(\frac{2 \times .783 \, m! \, \ell}{M_{\bullet} + 2 \, m}\right) q_{\bullet}$

$$T = \frac{1}{2} \int_{0}^{2} 2m \dot{y}^{2}(x,t) dx + \frac{1}{2} M_{o} \dot{y}^{2}(o,t)$$

$$= \int_{0}^{2} m \left[\varphi_{o} \dot{q}_{o} + \varphi_{i} \dot{q}_{i} \right]^{2} dm + \frac{1}{2} M_{o} \varphi_{o}^{2} \dot{q}_{o}^{2}$$

$$\frac{q-21 \text{ Cont:}}{T=\int_{0}^{t} m\varphi^{2}\dot{q}^{2} dm + \int_{0}^{t} 2m\varphi\varphi_{0}\dot{q}_{0}\dot{q}_{0}dx + \int_{0}^{t} m\varphi_{0}\dot{q}_{0}^{2} dx + \frac{1}{2}M_{0}\varphi_{0}\dot{q}_{0}^{2}$$

$$= \frac{1}{2}\dot{q}^{2} \left\{ M_{0} + 2m\ell \right\} + \left\{ 2m\ell \cdot 783 \right\} \dot{q}_{0}\dot{q}_{1} + m\ell \dot{q}_{1}^{2}$$

$$U = \frac{1}{2} \int_{0}^{t} EIy''(x,t)dx = \frac{1}{2} \left\{ 2\omega_{1}^{2} m\ell q_{1}^{2} \right\} \quad \text{See Eq. 9.1-7}$$

$$Respect Fes. \qquad (1.44.48) + 2x.782m\ell \dot{q}_{1} = 0$$

Lagranges Eqs.
$$\ddot{q}_{o}(M_{o}+2ml) + 2x.783ml \ddot{q}_{o}' = 0$$

 $\ddot{q}_{o}(2ml + 2x.783ml \ddot{q}_{o} + 2\omega_{o}^{2}mlq_{o} = 0$

Let
$$2ml = M$$

$$-(M_0 + M)\omega^2(\omega,^2 - \omega^2)M - (.783)^2M^2\omega^4 = D$$

$$\frac{\omega}{\omega_1} = \sqrt{\frac{M_0M + M^2}{M_0M + .387M^2}} \quad \text{where } \omega_1 = 1 \text{ nat. freq. of cantilever}$$

$$\frac{\omega}{M_0M + .387M^2} \quad \text{beam of length ℓ and mass $\frac{1}{2}M$}$$

If
$$M_0 \rightarrow 0$$
, then $\omega = \omega_1 \sqrt{\frac{1}{\sqrt{.387}}} = 1.61 \omega_1$
Since $\omega_1 = 3.52 \sqrt{\frac{EI}{ml^4}}$ and for free-free beam of length 21 has not, freq $\omega_{1f} = 21.4 \sqrt{\frac{EI}{m(20)^4}} = 5.57 \sqrt{\frac{EI}{ml^4}}$

5.57 = 1.58. Since the airplane becomes a free-free beam of length 20 as Mo > 0, the above result is approximately correct.

9-22

$$\theta_0 = \left(\frac{dy}{dx}\right)_{x=0} = \frac{q_0}{\ell}$$

$$T = \frac{1}{2} I_{o} \left(\frac{\dot{q}_{o}}{\ell} \right)^{2} + \frac{1}{2} \int_{0}^{2} 2m \left[\dot{q}_{o} \frac{x}{\ell} + \varphi_{i} \dot{q}_{i} \right]^{2} dx$$

$$= \frac{1}{2} I_{o} \left(\frac{\dot{q}_{o}}{\ell} \right)^{2} + \frac{1}{3} m \ell \dot{q}_{o}^{2} + 2m \dot{q}_{o} \dot{q}_{i} \int_{0}^{x} \varphi_{i}(x) dx + m \dot{q}_{i}^{2} \int_{0}^{x} \varphi_{i}^{2} dx$$

$$U = \frac{1}{2} \left\{ 2\omega_i^2(ml) g_i^2 \right\}$$
 See Eq. 9.1-7

Lagranges Eq. 4 Characteristic eq.

$$\begin{vmatrix} -\left(\frac{\hat{I}_0}{\ell^2} + \frac{2m\ell}{3}\right)\omega^2 & -\frac{2m\omega^2}{\ell} \int_0^{\ell} \alpha \, \varphi_i \, dx \\ -\frac{2m\omega^2}{\ell} \int_0^{\ell} \alpha \, \varphi_i \, dx & 2m(\ell\omega^2 - \omega^2) \varphi_i^2 \, dx \end{vmatrix} = 0$$

For cantilever
$$\int_{0}^{\ell} \varphi_{1}^{2} dx = \ell$$
, $\int_{0}^{\ell} x \varphi_{1} dx = \frac{2\ell}{\beta_{1}^{2}} = \frac{2\ell}{3.516} = \frac{\ell^{2}}{1.758}$

$$\omega^{4}\left[2ml\left(\frac{I_{o}}{l^{2}}+\frac{2}{3}ml\right)-\frac{\left(2ml\right)^{2}}{3.08}\right]=\omega^{2}\omega^{2},\quad 2ml\left(\frac{I_{o}}{\ell^{2}}+\frac{2}{3}ml\right)$$

$$\omega = \omega, \sqrt{\frac{(I_0 + \frac{2}{3}ml^3)}{(I_0 + \frac{2}{3}ml^3) - \frac{2}{3.090}l^3}}$$

To check for case I = 0, the results should be the 2 mode of a hinged-free beam of length l or 2 nd mode of free-free beam of Length 28.

For
$$L_0=0$$
, $\omega=\omega$, $\sqrt{\frac{3.09}{.090}}=\omega$, $\sqrt{34.5}=5.85\omega$,
$$=20.6\sqrt{\frac{EI}{ml^4}}$$
* However correct result should be 15.4 \sqrt{EI}

* Difficulty due to difference of two numbers in denominator which is small. Needs 2nd mode of for better results.

T has added term $2(\frac{1}{2})M$, $y^2(\ell,t)$ M M M M M M

= M, [\q \deg 0 + \q,(e) \deg,] = M, \q^2 \deg 0 + 2M, \q, \q, (e) \deg 0 \deg, + M, \q, \deg (e) \deg 2

Lagrange's Eq. same as Prob9-21 + 2M, [q0+4, (e)q,]+2M, (q(e)q0+p,(e)q) New freq. eq.

The additional mass changes only $T = \frac{1}{2}m_1\dot{y}^2 + \frac{1}{2}J_1\dot{y}^{12} + \frac{1}{2}\int\dot{y}^2dm$

$$y(x,t) = \varphi(x) \, q_1(t)$$

$$T' = \frac{1}{2} \, m_1 \, \varphi_1^2(\alpha) \, \dot{q}_1^2 + \frac{1}{2} \, J_1 \, \varphi_1'(\alpha) \, \dot{q}_1^2 + \frac{1}{2} \int \varphi_1'(x) \, dm \cdot \dot{q}_1^2 dx$$

$$= \frac{\partial T}{\partial \dot{q}_1} = m_1 \, \varphi_1^2(\alpha) \, \ddot{q}_1^2 + J_1 \, \varphi_1'(\alpha) \, \ddot{q}_1^2 + \ddot{q}_1^2 \int \varphi_1'(x) \, dx$$

$$= \left[M_1 + m_1 \, \varphi_1^2(\alpha) + J_1 \, \varphi_1'(\alpha) \right] \, \ddot{q}_1^2 dx$$

$$= M_1 \left[1 + \frac{m_1}{M_1} \, \varphi_1^2(\alpha) + \frac{J_1}{M_1} \, \varphi_1'(\alpha) \right] \, \ddot{q}_1^2 dx$$

$$= M_1 \left[1 + \frac{m_1}{M_1} \, \varphi_1^2(\alpha) + \frac{J_1}{M_1} \, \varphi_1'(\alpha) \right] \, \ddot{q}_1^2 dx$$

$$\vdots \, \frac{C_1}{M_1} = 25' \, \omega_1 = \frac{C_1}{M_1 \left[1 + \frac{m_1}{M_1} \, \varphi_1^2(\alpha) + \frac{J_1}{M_1} \, \varphi_1'(\alpha) \right]}$$

$$\frac{K_l}{M'} = \omega^{/2} = \frac{k}{\text{same denominator}}$$
 etc.

93 (x) (x) (x) (x) The modes are available in App. D.

/ Boundary conditions (4 eqs.)

$$w_i(l) = u(0)$$
 $q(l)p_i + q(l)p_j = p_4$

$$w_1'(\ell) = w_1'(\ell)$$

$$u_{\ell}(\ell) = \omega_{3}(\ell)$$

$$\frac{q-25 \text{ Cont:}}{U = \frac{1}{2} \int_{0}^{l_{1}} \dot{w}_{1}^{2} dx + \frac{1}{2} \int_{0}^{l_{2}} \dot{w}_{1}^{2} dx + \frac{1}{2} \int_{0}^{l_{1}} \dot{w}_{2}^{2} dx$$

$$U = \frac{1}{2} EI \int_{0}^{l_{1}} \dot{w}_{1}^{2} dx + \frac{1}{2} EI \int_{0}^{l_{1}} \dot{w}_{2}^{2} dx$$

Constraint Eqs.

$$\begin{pmatrix}
p_1 \\
p_2 \\
p_3 \\
p_4 \\
p_5 \\
p_6
\end{pmatrix} = \begin{bmatrix}
2\times6 \\
Matrix
\end{bmatrix}
\begin{cases}
q_1 \\
q_2
\end{cases}$$
where $q_1 \neq q_2 = may$

$$be any of the p_3

$$q_2$$$$

System reduces to a 2x2 matrix equation.

Let
$$W_{1}(x) = \phi_{1}p_{1} + \phi_{2}p_{2} + \phi_{3}p_{3}$$

$$\theta_{1}(x) = \phi_{4}p_{4}$$

$$W_{1}(x) = \phi_{5}p_{5} + \phi_{1}p_{1} + \phi_{7}p_{7}$$

$$\theta_{2}(x) = \phi_{8}p_{8} + \phi_{7}p_{7}$$

Subst. into
$$T = \frac{1}{2} \int \dot{w}^2 dm + \frac{1}{2} \int \frac{J}{A} \dot{\theta}^2 dm$$

$$U = \frac{1}{2} \int EI \left(\frac{d^2w}{dx^2}\right)^2 dx + \frac{1}{2} \int C \left(\frac{d\theta}{dx}\right)^2 dx$$
to establish m_{ij} and k_{iij}

9-26 Cont: Constraint eq. at junction of @ and @

$$(1) \quad w_i(\ell) = w_i(\ell)$$

$$(2) \quad \theta_{i}(\ell) = -\frac{\omega_{i}^{\prime}(\ell)}{2}$$

(3)
$$C \theta_{1}'(\ell) = E l w_{1}''(\ell)$$

(4)
$$w_{i}'''(\ell) = -w_{i}'''(\ell)$$

(5)
$$EI w_{i}''(\ell) = -C \theta_{i}'(\ell)$$

(6)
$$\omega_1'(\ell) = \theta_2(\ell)$$

Stiffness k_{11} k_{12} k_{13} k_{21} k_{22} k_{33} k_{34} Matrix k_{31} k_{32} k_{33} k_{34} k_{34} k_{37} k_{49}

3 gen. coords.
$$\begin{cases} q_1 \\ q_2 \\ q_3 \end{cases}$$

Result is
$$\begin{bmatrix} M \\ 3 \times 3 \end{bmatrix} \begin{cases} \ddot{q}_1 \\ \ddot{q}_2 \\ \ddot{q}_3 \end{cases} + \begin{bmatrix} K \\ 3 \times 3 \end{bmatrix} \begin{cases} q_1 \\ q_2 \\ q_3 \end{cases} = \{ 0 \}$$

with
$$u_1 = 0$$

Mass Matrix = $\frac{1}{6}\begin{bmatrix} 2(M_a + M_b) & M_b \\ M_b & 2M_b \end{bmatrix}$

Ex. 10.1-1

Stiffness Matrix = $\begin{bmatrix} (k_a + k_b) & -k_b \\ -k_b & k_b \end{bmatrix}$

Diff. Eq. of Mation with "= - wu

$$\left(\frac{-\frac{2}{\omega}M}{3\times6}\begin{bmatrix}6&2\\2&4\end{bmatrix}+\frac{EA}{2\ell}\begin{bmatrix}9&-3\\-3&3\end{bmatrix}\right)\left\{\begin{array}{c}u_{2}\\u_{3}\end{array}\right\} = \begin{cases}0\\0\end{cases}$$
Let $\lambda = \frac{\frac{2}{\omega}M}{18} \cdot \frac{1\ell}{EA} = \frac{\frac{\omega^{2}M\ell}{9EA}}{9EA}$

Characteristic Eq.

$$\begin{vmatrix} (9-6\lambda) & -(3+2\lambda) \\ -(3+2\lambda) & (3-4\lambda) \end{vmatrix} = 0 \Rightarrow \lambda^{2}-3.30\lambda + .90 = 0$$

$$\lambda = \begin{cases} .30 \\ 3.00 \end{cases}$$

$$\omega^{2} = 9 \times \begin{cases} .3 \\ 3.00 \end{cases} \qquad \omega_{1} = 1.643 \sqrt{\frac{EA/Ml}{EA/Ml}} \qquad \text{Exact} \Rightarrow \begin{cases} 1.5708 \\ 4.7124 \end{cases}$$

:. 1st mode is 4.690 high

 2^{md} mode is 10.3% high With Sta. at $\frac{1}{2}$, $\lambda^2 - \frac{10}{7}\lambda + \frac{1}{7} = 0$ $\omega_1 = 1.6115\sqrt{\frac{EA}{M\ell}} = 1.025 \times \text{Exact} = 2.6\%$ high $\omega_2 = 5.6293\sqrt{\frac{EA}{M\ell}} = 1.1946 \times " = 19.5\%$ high

$$\frac{10-2}{k-\frac{\ell}{2}} = \frac{EA_{1}}{m_{1}} = 2 EA_{2}$$

$$\frac{e}{k_{1}} = \frac{\ell}{2} = \frac{e}{k_{2}}$$

$$\frac{e}{k_{2}} = \frac{e}{k_{2}} = \frac{e}{k_{2}}$$

$$\frac{e}{k$$

Mode shapes
$$(3-6\lambda)u_1 = (1+\lambda)u_2$$
 or
$$(1+\lambda)u_1 = (1-2\lambda)u_2$$

$$(\frac{u_1}{u_2})_1 = \frac{(1-2\lambda)}{(1+\lambda)} = .5773$$

$$(\frac{u_1}{u_2})_2 = -.5258$$
 mode 1

$$\frac{M}{18} \begin{bmatrix} 4 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} \ddot{u}_1 \\ \ddot{u}_2 \\ \ddot{u}_3 \end{bmatrix} + \frac{3EA}{\ell} \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Computer solution: $\lambda = \frac{Ml\omega^2}{54EA}$

$$\omega_{1} = 1.522 \overline{EA}$$
 $\omega_{2} = 5.1545$
 $\omega_{3} = 9.4329$
 $\omega_{3} = 9.4329$
 $\omega_{4} = 1.521 \overline{EA}$
 $\omega_{5} = 9.4329$
 $\omega_{6} = 1.521 \overline{EA}$
 $\omega_{7.85} = 1.521 \overline{EA}$
 $\omega_{1.571} = 1.521 \overline{$

Mode Shapes

(0 .415) (-.811) (-.410) (-.684) (-.684) (-.602)

10-4 With linear twist, the problem is identical to that of the longitudinal vibration.

Torsional element of length l

$$J_p = \frac{MR^2}{2}$$
 = mass polar moment of inertia

Mass matrix =
$$\frac{PAl}{G}\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 Stiffness = $\frac{TG}{l}\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$

10 - 5

$$\begin{cases} \frac{1}{2} & (a) & 2 & (b) & 3 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 1 \end{cases}$$
Torsion

$$M_a \frac{R^2}{2} = J_a$$
 Let $J = mass polar moment of inertia for entire rod
Then $J_a = \frac{1}{2}J$, $K_a = \frac{I_pG}{I_a} = 2I_pG$$

$$\int_{0}^{1} \begin{bmatrix} 2 & 0 & 0 & 0 \\ 4 & 1 & 0 \\ 6 & 0 & 2 \end{bmatrix} \begin{bmatrix} \theta_{1} \\ \theta_{2} \\ \theta_{3} \end{bmatrix} + K_{a} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & -1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Units:
$$J = mass in^2$$
, $I_p = in^4$, $G = lb/in^2$, $l = in$.

Let
$$\lambda = \frac{\omega^2 J_a}{6 K_a}$$
 $J_a = \frac{J_a}{2}$, $K_a = 2 K$

Same prob, as longitudinal vibr.

$$\omega = \begin{cases} 1.6114 & \frac{K}{J} \\ 5.629 & \frac{K}{J} \end{cases} \quad \text{where } K = \frac{I_p G}{\ell}, \quad J = M \frac{R^2}{2}$$

10-6 Lumped mass torsional system

$$\begin{bmatrix}
J_{1} & J_{3} \\
J_{2} & O \\
O & J_{3}
\end{bmatrix} \begin{bmatrix}
\ddot{\Theta}_{1} \\
\ddot{\Theta}_{3}
\end{bmatrix} + \begin{bmatrix}
(K_{2}+K_{3}) - K_{3} \\
-K_{3} & K_{3}
\end{bmatrix} \begin{bmatrix}
\Theta_{2} \\
\Theta_{3}
\end{bmatrix} = \begin{bmatrix}
O \\
O
\end{bmatrix}$$

$$\begin{bmatrix}
(K_{2}+K_{3}) - \omega^{2} J_{2} \\
-K_{3}
\end{bmatrix} - K_{3}
\begin{bmatrix}
K_{3} - \omega^{2} J_{3}
\end{bmatrix} \begin{bmatrix}
\Theta_{2} \\
\Theta_{3}
\end{bmatrix} = \begin{bmatrix}
O \\
O
\end{bmatrix}$$
is same form

The problem here is assigning proper values of J_2 and J_3 , to be equivalent to distributed system.

Longitudinal Vibration
$$R_2 = \frac{R_1}{2}$$
 $\xi = \frac{9}{2}$ ξ

$$m_{12} = m_1 \int_{0}^{1} (1-\frac{1}{2}\xi)(1-\xi)\xi d\xi = \frac{3}{24} m_1$$

$$m_{22} = m_1 \int_0^1 (1-\frac{1}{2}\xi)\xi^2 d\xi = \frac{5}{24} m_1$$

$$['. \quad m = \frac{m_i}{24} \begin{bmatrix} 7 & 3 \\ 3 & 5 \end{bmatrix}$$

$$\mathcal{L}_{ii} = E^{\frac{2\pi t R_{i}}{\ell^{2}}} \int_{1}^{1} (1 - \frac{1}{2}\xi) \ell d\xi = \frac{EA_{i}}{\ell} (1 - \frac{1}{4}) = \frac{3}{4} \frac{EA_{i}}{\ell}$$

$$k_{12} = -\frac{3}{4} \frac{EA_1}{\ell} = k_{21}$$
, $k_{22} = \frac{3}{4} \frac{EA_1}{\ell}$

Eq. of motion

$$\frac{\rho_{A_1}l}{24}\begin{bmatrix} 7 & 3 \\ 3 & 5 \end{bmatrix}\begin{cases} \ddot{u}_1 \\ \ddot{u}_2 \end{cases} + \frac{3}{4}\frac{E_{A_1}l}{2}\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}\begin{cases} u_1 \\ u_2 \end{cases} = \begin{cases} 0 \\ 0 \end{cases}$$
Let $\lambda = \frac{3^2\rho l^2}{18E}$

$$\begin{vmatrix} (1-7\lambda) & -(1+3\lambda) \\ -(1+3\lambda) & (1-5\lambda) \end{vmatrix} = 0 \quad \therefore \quad \lambda (26\lambda - 6) = 0$$

$$\lambda_0 = 0$$

$$\lambda_1 = \frac{6}{26} = \frac{\omega^2 \rho L^2}{18E} = \frac{\omega^2 (\rho A_1 \ell) \ell}{18E A_1} = \frac{\omega^2 m_1 \ell}{18E A_1}$$

$$\omega_{1}^{2} = \left(\frac{6}{26} \times 18\right) \left(\frac{E}{\rho L^{2}}\right) = 4.1538 \left(\frac{E}{\rho L^{2}}\right)$$

$$\omega_{1} = 2.038 \sqrt{\frac{EA_{1}}{m_{1}l}} = 2.038 \sqrt{\frac{E}{\rho L^{2}}} \qquad \text{for 1-element solution for Longit. vib.}$$

where A = cross section area at 1)

M, = m, l = mass of entire uniform cylinder of radius R, and length l.

If we have a uniform cylinderical shell of Radius R, and length L, with one end fixed with other end free, treated like a helical spring with effective mass $\frac{m_1}{3}$ at free end, the natural frequency will be

$$\omega_1 = \sqrt{\frac{EA_1}{(\frac{m_1}{3})\ell}} = 1.732 \sqrt{\frac{EA_1}{m_1 \ell}}$$

10-8 Same conical tube as in 10-7 treated as two elements of equal length, 1-2 and 2-3.

$$R_{i-2} = R \left(1 - \frac{1}{4} \frac{x}{\ell_i} \right)$$

$$\overline{\xi} = \frac{x}{\ell_i}$$

$$m_{ij} = \int \varphi_i \varphi_j \, dm = \left(\varphi_i \varphi_i \, 2\pi \rho t \, R_{i-2} \, dx = 2\pi \rho t \, R \right) \left(1 - \frac{1}{4} \frac{x}{5} \right) \varphi_i \varphi_i \xi_i d\xi$$

$$m_{11} = 2\pi \rho t R L_1 \int_{0}^{1} (1-\frac{1}{45})(1-\frac{1}{5})^2 d\xi = 2\pi \rho t R L_1 (.3125)$$

$$m_{12} = \dots \int_{1}^{1} (1-\frac{1}{45})(1-5)\xi d\xi = \dots (-1458)$$

$$m_{22} = " \int_{0}^{1} (1 - \frac{1}{4} \xi) \xi^{2} d\xi = " (.2708)$$

10-8 Cont. Assemble element matrices

$$m = 2\pi \rho t R l_1 \begin{bmatrix} .3/25 & .1458 & 0 \\ .1458 & (.2708+2292) & .1042 \\ 0 & .1042 & .1875 \end{bmatrix}$$

$$R = \frac{\pi REt}{l_1} \begin{bmatrix} 1.75 & -1.75 \\ -1.75 & (1.75 + 1.25) & -1.25 \\ & -1.25 & 1.25 \end{bmatrix} \qquad \lambda = \frac{\omega P l_1}{E}$$

with u, = 0, eqs. of motion leads to chara. eq.

$$\left| -\lambda \begin{bmatrix} .5000 & .1042 \\ .1042 & .1875 \end{bmatrix} + \begin{bmatrix} 3.00 & -1.25 \\ -1.25 & 1.25 \end{bmatrix} \right| = 0$$

$$\begin{vmatrix} (3.00 - .500 \lambda) & -(1.25 + .1042 \lambda) \\ -(1.25 + .1042 \lambda) & (1.25 - .1875 \lambda) \end{vmatrix} = 0$$

$$\lambda^2 - 17.46 \lambda + 26.380 = 0$$

$$\lambda_{1} = 1.6708$$
 $\Omega_{1} = 1.2926 \sqrt{\frac{E}{P l_{1}^{2}}}$
 $\lambda_{2} = 15.7892$
 $\Omega_{2} = 3.9736 \sqrt{\frac{E}{P l_{1}^{2}}}$
 $l_{1} = \frac{l}{2}$

$$\omega_{1} = 2.585 \sqrt{\frac{E}{Pl^{2}}}$$

$$\omega_{2} = 7.947 \sqrt{\frac{E}{Cl^{2}}}$$

$$\log_{1} t \text{ udinal vibr (2 elements)}$$

10-9(a) Torsional Vibration of Conical Shell

Stiffness of element 1-2.

$$k_{ij} = G \int I_{p} \varphi_{i}' \varphi_{i}' dx = G \cdot 2\pi t R^{3} \int (1 - \frac{1}{4}\xi)^{3} \varphi_{i}' \varphi_{i}' \ell_{i} d\xi$$

$$k_{ij} = G \cdot 2\pi t R^{3} \int (1 - \frac{1}{4}\xi)^{3} \frac{1}{\ell_{i}^{2}} \ell_{i} d\xi = \frac{G2\pi t R^{3}}{\ell_{i}} \int (1 - \frac{3}{4}\xi + \frac{3}{16}\xi^{2} - \frac{1}{4}\xi^{3}) d\xi$$

$$= \frac{G2\pi t R^{3}}{\ell_{i}} \left(1 - \frac{3}{8} + \frac{1}{16} - \frac{1}{256}\right) = \frac{G2\pi t R^{3}}{\ell_{i}} \left(.6836\right)$$

$$k_{12} = k_{21} = -k_{11}, \qquad k_{22} = k_{11}$$

$$\vdots \qquad k_{1-2} = \frac{G2\pi t R^{3}}{\ell_{i}} \left(.6836\right) \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$\frac{St_{i}ff_{ness}}{\ell_{i}} \text{ of element } 2 - 3$$

$$k_{11} = \frac{G2\pi t}{\ell_{i}} \left(.75R\right)^{3} \int (1 - \frac{1}{3}\xi)^{3} d\xi = \frac{G2\pi t R^{3}}{\ell_{i}} \left(.4219\right) \int (1 - \frac{1}{3}\xi)^{2} d\xi$$

$$= \frac{G2\pi t R^{3}}{\ell_{i}} \left(.4219\right) \left(.6019\right) = \frac{G2\pi t R^{3}}{\ell_{i}} \left(.2539\right)$$

$$k_{2-3} = \frac{G2\pi t R^{3}}{\ell_{i}} \left(.2539\right) \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \frac{G2\pi t R^{3}}{\ell_{i}} \left(.6836\right) \begin{bmatrix} .3714 - .3714 \\ -.3714 & .3714 \end{bmatrix}$$

$$\frac{10-9 \text{ (a) Cont.}}{\text{Combined stiffness}} = \frac{G2\pi t R^3}{l_{1/2}} (.6836) \begin{bmatrix} 1 & -1 \\ -1 & 1.3714 & -.3714 \\ & -.3714 & .3714 \end{bmatrix}$$

For
$$\theta_1 = 0$$

$$K\theta = (1.3672) \frac{G2\pi tR^3}{L} \begin{bmatrix} 1.37/4 & -.37/4 \\ -.37/4 & .37/4 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_3 \end{bmatrix}$$

Mass matrix, element 1-2

$$J_{ij} = \int_{0}^{i} \varphi \varphi dJ = 2\pi \rho t R^{3} \int_{0}^{i} (1 - \frac{1}{4}\xi)^{3} \varphi \varphi \ell_{i} d\xi$$

$$J_{ii} = 2\pi \rho t R^{3} \int_{0}^{i} (1 - \frac{1}{4}\xi)^{3} (1 - \xi)^{2} \ell_{i} d\xi$$

$$= 2\pi \rho t R^{3} \ell_{i} \int_{0}^{i} (1 - \frac{11}{4}\xi)^{3} + \frac{43}{16}\xi^{2} - \frac{73}{64}\xi^{3} + \frac{7}{32}\xi^{4} - \frac{1}{64}\xi^{5}) d\xi$$

$$= i \left(1 - \frac{11}{4} + \frac{43}{48} - \frac{73}{256} + \frac{7}{160} - \frac{1}{384}\right)$$

$$= 2\pi \rho t R^{3} \ell_{i} \left(.2768\right)$$

$$J_{i2} = 2\pi \rho t R^{3} \ell_{i} \int_{0}^{i} (1 - \frac{1}{4}\xi)^{3} (1 - \xi)\xi d\xi$$

$$= 2\pi \rho t R^{3} \ell_{i} \left(.1730\right)$$

$$J_{i2} = 2\pi \rho t R^{3} \ell_{i} \left(.1730\right)$$

$$J_{i2} = 2\pi \rho t R^{3} \ell_{i} \left(.1730\right)$$

$$J_{i3} = 2\pi \rho t R^{3} \ell_{i} \left(.1730\right)$$

$$J_{i4} = 2\pi \rho t R^{3} \ell_{i} \left(.1730\right)$$

$$J_{i5} = 2\pi \rho t R^{3} \ell_{i} \left(.1730\right)$$

$$J_{i6} = 2\pi \rho t R^{3} \ell_{i} \left(.1730\right)$$

$$J_{i7} = 2\pi \rho t R^{3} \ell_{i} \left(.1730\right)$$

$$J_{i8} = 2\pi \rho t R^{3} \ell_{i} \left(.1730\right)$$

10-9(a) Cont

$$J_{i-2} = 2\pi \rho t R^3 \ell_i \left[\begin{array}{cc} .2768 & .1/30 \\ .1/30 & .1804 \end{array} \right] \qquad (\ell_i = \frac{\ell}{2})$$

Mass matrix, element 2-3
$$dJ = 2\pi h t \rho \cdot h^{2} = 2\pi \rho t \left(\frac{3}{4}R\right)^{3} \left(1 - \frac{1}{3}\xi\right)^{3}$$

$$J_{22} = 2\pi \rho t R^{3} \left(.4219\right) \int_{0}^{1} \left(1 - \frac{1}{3}\xi\right)^{3} \left(1 - \xi\right)^{2} \ell_{1} d\xi$$

$$\ell_{1} \int_{0}^{1} \left(1 - \frac{1}{3}\xi\right)^{3} \left(1 - \xi\right)^{2} \ell_{1} d\xi$$

$$\ell_{1} \int_{0}^{1} \left(1 - \frac{1}{3}\xi\right)^{3} \left(1 - \xi\right)^{2} \ell_{1} d\xi$$

$$= 2\pi \rho t R^{3} \left(.4219\right) \left(.2605\right) = 2\pi \rho t R^{3} \ell_{1} \left(.1099\right)$$

$$J_{23} = same \ term \times \ell_{1} \int_{0}^{1} \left(1 - \frac{1}{3}\xi\right)^{3} \left(1 - \xi\right) \xi d\xi$$

$$= 2\pi \rho t R^{3} \ell_{1} \left(.4219\right) \left(.0988\right) = 2\pi \rho t R^{3} \ell_{1} \left(.0417\right)$$

$$J_{3} = same \ term \times \ell_{1} \int_{0}^{1} \left(1 - \frac{1}{3}\xi\right)^{3} d\xi = 2\pi \rho t R^{3} \ell_{1} \left(.0417\right)$$

$$J_{3} = same \ term \times \ell_{1} \int_{0}^{1} \left(1 - \frac{1}{3}\xi\right)^{3} d\xi = 2\pi \rho t R^{3} \ell_{1} \left(.0417\right)$$

 $J_{33} = same \ term \times L, \int_{0}^{1} (1 - \frac{1}{3} \vec{s})^{3} \vec{s}^{2} d\vec{s} = 2\pi \rho t R^{3} l_{1} (.0607)$ $= 2\pi \rho t R^{3} l_{1} (.0607)$

Combined mass term with 0, = 0

$$2\pi r t R^{3} l, \begin{cases} (.1099 + .1804) & .0417 \\ .0417 & .0607 \end{cases} \begin{cases} \dot{\theta}_{2} \\ \dot{\theta}_{3} \end{cases} \qquad (l_{1} = \frac{l}{2})$$

$$J = \pi \rho t R^3 k \begin{bmatrix} .2903 & .0417 \\ .0417 & .0607 \end{bmatrix}$$

Results unchecked.

Assume short elements: constant radius for each section. Element stiffness:

$$A = 2\pi h_i t, \quad I_{p_i} = A n_i^2, \quad GI_{p_i} = G A_i h^2$$

$$K_i = \frac{GI_{p_i}}{\ell_i} = G \frac{2\pi t}{\ell_i} h_i^3$$

Assume straight line variation in twist: φ , φ , applies to each element $\varphi_{i} = (i-\xi)$, $\varphi_{i} = \xi$ where $\xi = \frac{\nu}{L_{i}}$. Then $k = GI_{P_{i}} \int_{Y_{i}} \varphi_{i}^{2} \ell_{i} d\xi$ $\int_{Q_{i}} \varphi_{i}^{2} \ell_{i} d\xi = \pm 1$ $K \text{ for element } = G\left(\frac{2\pi t n_{i}}{\ell_{i}}\right) \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ $\ell = \frac{\ell}{n}$

<u>Element mass:</u>

$$J ext{ for element} = \frac{2\pi t \rho l_i r_i^3}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Element 1-2
$$\alpha = 30^{\circ}$$
 $C = .866$, $S = .500$
 $C^{2} = .750$ $S^{2} = .250$ $CS = .433$

$$\begin{array}{cccc}
& & & & & & & & & & & \\
\hline
\hline
2 & & & & & & & \\
\hline
2 & & & & & & \\
\hline
2 & & & \\
2 & & & \\
\hline
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & \\
2 & & & \\
2 & & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2 & & \\
2$$

Element 2-3.
$$d = 150^{\circ}$$
 $C = -.866$ $S = .56$

$$\frac{E}{k_{23}} = \frac{EA}{\ell} \begin{bmatrix} .750 & -.433 & -.750 & .433 \\ -.433 & .250 & .433 & -.250 \\ -.750 & .433 & .750 & .433 \\ .433 & -.250 & -.433 & .250 \end{bmatrix} \begin{bmatrix} \overline{u}_{2} \\ \overline{v}_{1} \\ \overline{u}_{3} \\ \overline{v}_{3} \end{bmatrix}$$

Assemble

$$\begin{cases}
F_{2x} = 0 \\
F_{2y} = -P
\end{cases} = \frac{EA}{\ell} \begin{bmatrix}
1.50 & 0 & | & .75 & .433 \\
0 & .50 & | & .433 & | & .25 \\
-.75 & .433 & | & .75 & | & .433
\end{cases} \begin{bmatrix}
\bar{u}_{2} \\
\bar{v}_{2} \\
\bar{u}_{3} = 0
\end{bmatrix}$$

$$F_{3x} = 0 = \frac{EA}{\ell} \begin{bmatrix}
1.50 & \bar{u}_{2} \\
.433 & | & .25
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
\bar{v}_{3} = 0
\end{bmatrix}$$

$$F_{2x} = 0 = \frac{EA}{\ell} \begin{bmatrix}
1.50 & \bar{u}_{2} \\
.433 & | & .25
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
\bar{v}_{3} = 0
\end{bmatrix}$$

$$F_{2y} = -P = \frac{EA}{\ell} \begin{bmatrix}
1.50 & \bar{u}_{2} \\
.433 & | & .25
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}
\bar{u}_{2} \\
.75 & | & .433
\end{bmatrix} \begin{bmatrix}$$

$$\overline{k}_{n} = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \qquad \overline{m}_{n} = \frac{me}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Element 2-3 &=90°, 5=1, C=0

$$\hat{R} = \sum_{13} \left[\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ \hline 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \end{array} \right]$$

Element 3-4
$$\alpha = 180^{\circ}$$
 $S = 0$, $C = -1$

$$\overline{R}_{3-4} = \overline{RA} \begin{bmatrix} 1 & 0 & 1-1 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} 3$$

Element 4-1 &= 270° S=-1, C=0

$$\vec{R}_{41} = \vec{E} A \begin{cases} 0 & 0 & | & 0 & 0 \\ 0 & | & | & 0 & -1 \\ \hline 0 & 0 & | & 0 & 0 \\ 0 & -1 & | & 0 & 1 \\ \end{cases}$$

Element 1-3 $\alpha = 45^{\circ}$, $S = \frac{\sqrt{2}}{2}$, $C = \frac{\sqrt{2}}{2}$ length= $\sqrt{2}l$

Since all displacements for
$$0$$

and 0 are zero, we need only the Lower part of this matrix or the lower right section of 0
 \overline{F}_{13}
 \overline{F}_{23}
 \overline{F}_{34}
 \overline{F}_{34}
 \overline{F}_{34}
 \overline{F}_{44}
 \overline{F}

Element Ra- and Ris must be placed as follows:

Element 1-3			
/	看看	~看~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1
2	1		2
3	-% · % -% -%	看着	3
4			4
superimpose this onto diagram on Left.			

Considering only those terms in lower right quarter, we have

$$\begin{pmatrix}
\bar{F}_{3x} = 0 \\
\bar{F}_{3x} = 0 \\
\bar{F}_{4y} = 0
\end{pmatrix} = \begin{bmatrix}
EA \\
-1 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}
\begin{pmatrix}
\bar{u}_{3} \\
\bar{v}_{3} \\
\bar{v}_{4} \\
0 & 0 & 0
\end{bmatrix}
\begin{pmatrix}
\bar{u}_{3} \\
\bar{v}_{3} \\
\bar{v}_{4} \\
\bar{v}_{4}
\end{pmatrix}$$

10-11 Cont. The last matrix give

(2)
$$0 = \frac{EA}{\ell} \left[\frac{5}{2} \overline{u}_3 + (1 + \frac{5}{2}) \overline{u}_3 \right] \rightarrow \overline{u}_3 = -3.828 \overline{v}_3$$

$$P = \frac{EA}{e} \left[-\overline{u}_3 + \overline{u}_4 \right]$$

$$(4) \qquad 0 = \stackrel{\text{EA}}{=} \left[\overline{V_4} \right] \qquad \therefore \overline{V_4} = 0$$

add(1) ana(3) to eliminate u, & subst (2) into it.

$$\frac{P\ell}{EA} = \frac{.5}{\sqrt{2}} \overline{u}_3 + \frac{.5}{\sqrt{2}} \overline{v}_3 \rightarrow \overline{u}_3 + \overline{v}_3 = \frac{1}{.3536} \frac{P\ell}{AE}$$

$$\overline{u}_3 - \frac{1}{3.818} \overline{u}_3 = \frac{P\ell}{.3536 AE}$$

$$\overline{v}_3 = -\frac{P\ell}{AE}$$

$$\overline{v}_3 = -\frac{P\ell}{AE}$$
Complete Equation
$$\overline{u}_4 = 4.828 \frac{P\ell}{AE}$$

Elements 1-2, $d = 60^{\circ}$ C = .5, S = .866, CS = .433 $C^{2} = .250$ $S^{2} = .750$

$$\overline{k} = \frac{EA}{k} \begin{bmatrix} .250 & .432 & | -.250 & -.433 \\ .432 & .750 & | -.433 & -.750 \\ \hline & .250 & .433 \\ \hline & .750 \end{bmatrix}$$

Elements 2-3 $d = 300^{\circ}$ C=.5 S=-.866 CS=-.433 $C^2 = .250$ S²= .750

$$\frac{1}{2} = \frac{EA}{\ell}$$

$$\frac{1}{2} = \frac{EA}{\ell}$$

$$\frac{1}{2} = \frac{1}{2} $

Element 1-3
2-4
$$d = 0$$
 C=1 $S = 0$ $C = 0$
3-5 $C^2 = 1$ $S^2 = 0$

$$\overline{R} = \overline{\ell} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

From Example 10.5-1 and noting that the ends 1 and 3 are fixed, the stiffness matrix and displacement vectors are:

$$\begin{pmatrix}
F_{2} \\
M_{2} \\
F_{3} \\
M_{3}
\end{pmatrix} = \begin{cases}
8EI \\
\frac{0}{2} \\
\frac{2\ell^{2} + -3\ell}{-3\ell} \\
\frac{-3\ell}{12} \\
\frac{-3\ell}{-3\ell}
\end{vmatrix} = \begin{cases}
0 \\
0 \\
0 \\
0
\end{cases}$$

$$\begin{cases}
F_{2} \\
H_{3}
\end{cases} = \begin{cases}
-P \\
-M
\end{cases} = \begin{cases}
8EI \\
0 \\
0
\end{cases}$$

$$\begin{cases}
F_{2} \\
M_{2}
\end{cases} = \begin{cases}
-P \\
-M
\end{cases} = \begin{cases}
8EI \\
\ell^{3}
\end{cases}$$

$$\begin{cases}
0 \\
0 \\
0
\end{cases}$$

$$\begin{cases}
F_{2} \\
M_{2}
\end{cases} = \begin{cases}
-P \\
-M
\end{cases} = \begin{cases}
8EI \\
\ell^{3}
\end{cases}$$

$$\begin{cases}
0 \\
0 \\
0
\end{cases}$$

$$\begin{cases}
\sqrt{J_{2}} \\
\theta_{2}
\end{cases}$$

$$(3I_{2}) \\
0 \\
0 \\
0
\end{cases}$$

$$(3I_{2}) \\
0 \\
0$$

$$(3I_{2}) \\
0 \\
0
\end{cases}$$

$$(3I_{2}) \\
0 \\
0$$

$$(3I_{2}) \\
0 \\
0$$

$$(3I_{2}) \\
0 \\
0$$

$$(3I_{2}) \\
0$$

$$(3I_{2$$

$$M_3 = \frac{8EI}{\ell^3} \left[3\ell \, \overline{N_2} + .5\ell^2 \theta_2 \right] = \frac{8EI}{\ell^3} \left[3\ell \left(\frac{-P\ell^3}{192EI} \right) + .5\ell^2 \left(\frac{-M\ell}{16EI} \right) \right]$$

$$\frac{10-14}{840} \quad \text{Refer to Prob } 10.5-1 \quad \text{with } \quad v_3 = \theta_3 = 0$$

$$\begin{bmatrix} -\omega^2 m \ell & 312 & 0 \\ 840 & 0 & 2\ell^2 \end{bmatrix} + \frac{8EI}{L^3} \begin{bmatrix} 24 & 0 \\ 0 & 2\ell^2 \end{bmatrix} \end{bmatrix} \begin{cases} V_2 \\ \theta_2 \end{cases} = \begin{cases} 0 \\ 0 \end{cases}$$
Let $\lambda = \left(\frac{\omega^2 m \ell}{840}\right) \left(\frac{\ell^3}{8EI}\right) = \frac{m\ell^4 \omega^2}{6720EI}$

$$\begin{bmatrix} (24 - 312 \lambda) & 0 \\ 0 & 2\ell^2(1-\lambda) \end{bmatrix} = 0 \quad \lambda_1 = \frac{24}{312} = \frac{m\ell^4 \omega^2}{6720EI}$$

$$\lambda_2 = 1 = \frac{m\ell^4 \omega^2}{6720EI}$$

$$\omega_1 = 22.74 \sqrt{\frac{EI}{m\ell^4}} \quad \longrightarrow 1.6 \% \text{ high}$$

$$\omega_2 = 81.98 \sqrt{\frac{EI}{m\ell^4}} \quad \longrightarrow 33\% \text{ high}.$$

Exact values
$$\{ \omega_1 = 22.37 \}$$

 $\{ \omega_2 = 61.67 \}$

Element 1-2

$$\overline{k} = \frac{EI_{i}}{\ell_{i}^{3}} \begin{bmatrix} \overline{v} & \overline{v} & \overline{v} \\ 0 & 12 & -6\ell_{i} \\ 0 & -6\ell_{i} & 4\ell_{i}^{2} \end{bmatrix} \begin{bmatrix} \overline{v}_{2} \\ \overline{v}_{2} \\ \overline{v}_{2} \\ \overline{v}_{2} \end{bmatrix} = \frac{m_{i}\ell_{i}}{420} \begin{bmatrix} 156 & -22\ell_{i} \\ -22\ell_{i} & 4\ell_{i}^{2} \end{bmatrix} \begin{bmatrix} \overline{v}_{2} \\ \overline{\theta}_{2} \end{bmatrix}$$

Element 2-3

$$\overline{m} = \frac{m_1 l_2}{420} \begin{bmatrix} 156 & 22 l_2 & 0 & 54 & -13 l_2 \\ 0 & 156 & 22 l_2 & 0 & 13 l_2 & -3 l_2 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 \\ \hline 0 & -13 l_2 & -3 l_2 & 0 & -2 l_2 & 4 l_2 \\ \hline 0 & -13 l_2 & -3 l_2 & 0 & -2 l_2 & 4 l_2 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0$$

Free vibr. eq.

$$\frac{1}{420} \begin{cases}
156 \left(m_{1} \ell_{1} + m_{2} \ell_{2} \right) & 12 \left(m_{2} \ell_{2}^{2} - m_{1} \ell_{1}^{2} \right) & -13 \quad m_{2} \ell_{2}^{2} \\
22 \left(m_{2} \ell_{2}^{2} - m_{1} \ell_{1}^{2} \right) & 4 \left(m_{2} \ell_{2}^{3} + m_{1} \ell_{1}^{3} \right) & -3 \quad m_{2} \ell_{2}^{3} \\
-13 \quad m_{2} \ell_{2}^{3} & -3 \quad m_{2} \ell_{2}^{3} & 4 \quad m_{2} \ell_{2}^{3}
\end{cases}$$

$$+ E \begin{bmatrix} i \lambda \left(\frac{\Gamma_{1}}{\ell_{1}^{2}} + \frac{\Gamma_{1}}{\ell_{1}^{2}} \right) & 6 \left(\frac{\Gamma_{2}}{\ell_{2}^{2}} - \frac{\Gamma_{1}}{\ell_{1}^{2}} \right) & 6 \left(\frac{\Gamma_{2}}{\ell_{2}^{2}} - \frac{\Gamma_{1}}{\ell_{1}^{2}} \right) & 6 \left(\frac{\Gamma_{2}}{\ell_{2}^{2}} \right) \\ 6 \left(\frac{\Gamma_{2}}{\ell_{2}^{2}} - \frac{\Gamma_{1}}{\ell_{1}^{2}} \right) & 4 \left(\frac{\Gamma_{2}}{\ell_{2}} + \frac{\Gamma_{1}}{\ell_{1}} \right) & 2 \left(\frac{\Gamma_{2}}{\ell_{2}} \right) \\ 6 \left(\frac{\Gamma_{2}}{\ell_{2}^{2}} - \frac{\Gamma_{2}}{\ell_{2}^{2}} \right) & 2 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{2}}{\ell_{2}} \right) \\ 6 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{2}}{\ell_{2}} \right) & 4 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{2}}{\ell_{1}} \right) \\ 6 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{2}}{\ell_{2}} \right) & 4 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{2}}{\ell_{1}} \right) \\ 6 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{2}}{\ell_{2}} \right) & 4 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{2}}{\ell_{1}} \right) \\ 6 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{2}}{\ell_{2}} \right) & 4 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{2}}{\ell_{1}} \right) \\ 6 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{2}}{\ell_{1}} \right) & 4 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{1}}{\ell_{1}} \right) \\ 6 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{2}}{\ell_{2}} \right) & 4 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{2}}{\ell_{1}} \right) \\ 6 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{2}}{\ell_{1}} \right) & 4 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{2}}{\ell_{1}} \right) \\ 6 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{2}}{\ell_{1}} \right) & 4 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{2}}{\ell_{1}} \right) \\ 6 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{2}}{\ell_{1}} \right) & 4 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{2}}{\ell_{1}} \right) \\ 6 \left(\frac{\Gamma_{2}}{\ell_{2}} - \frac{\Gamma_{2}}{\ell_{2}} \right) \\ 6 \left($$

Element 1-2
$$d=45^{\circ}$$
 C=.707 S=.707

 $c^{2}=5^{2}=C5=.50$
 $\ell_{12}=2\ell$

$$\overline{R} = \left(\frac{EI}{R\ell^{3}}\right) \begin{pmatrix} (.5R+6) & .50(R-12) & 12\ell \cdot 707 \\ .50(R-12) & .5(R+12) & -12\ell \cdot 707 \\ 12\ell \cdot 707 & -12\ell \cdot 707 & 16\ell^{2} \end{pmatrix} \begin{pmatrix} \overline{u}_{z} \\ \overline{v}_{z} \\ \Theta_{z} \end{pmatrix}$$
All $R_{1-2} = \frac{A}{I}(2\ell)^{2} = \frac{4A\ell^{2}}{I}$

All
$$R_{1-2} = \frac{A}{I} (2\ell)^2 = \frac{4A\ell^2}{I}$$

All
$$R_{2-3} = \frac{Ae^2}{I} = \frac{1}{4} R_{1-2}$$

Assembled with all Rs = Rn = R

$$\frac{1}{R} = \left(\frac{EI}{8l^3}\right) \begin{bmatrix} (.5R + 2R + 6) & .5(R - 12) & .707 \times 12l \\ .5(R + 12) & .5(R - 12) + 96 & -.707 \times 12l + 48l \\ 12 \times .707 l & -.707 \times 12l + 48l & 16l^2 + 32l^2 \end{bmatrix} \begin{bmatrix} \overline{U}_2 \\ \overline{V}_2 \\ \Theta_2 \end{bmatrix}$$

$$\begin{cases} 0 \\ -P \\ M \end{cases} = \begin{pmatrix} EI \\ 8L^{3} \end{pmatrix} \begin{bmatrix} (2.5R+6) & .5(R-12) & 8.484l \\ .5(R-12) & (.5R+102) & 39.52l \\ 8.484l & 39.52l & 48l^{2} \end{bmatrix} \begin{pmatrix} \bar{u}_{2} \\ \bar{\nu}_{z} \\ \theta_{2} \end{pmatrix}$$

$$R = \frac{4Ml^{2}}{I}$$

Element 1-2

Element 1-2

$$\frac{1}{R} = \left(\frac{EI}{8l^3}\right)$$

$$\frac{1}{8.484 l}$$

$$\frac{5(R-12)}{8.484 l}$$

$$\frac{5(R-12)}{8.484 l}$$

$$\frac{16l^2}{8.484 l}$$

Element 2-3

$$\frac{1}{R} = \left(\frac{EI}{\ell^3}\right) \begin{bmatrix} R_{2-3} & 0 & 0 \\ 0 & 3 & 3\ell \\ 0 & 3\ell & 3\ell^2 \end{bmatrix} = \left(\frac{EI}{8\ell^3}\right) \begin{bmatrix} 2R & 0 & 0 \\ 0 & 24 & 24\ell \\ 0 & 24\ell & 24\ell^2 \end{bmatrix}$$

Assembled

$$\begin{cases}
0 \\
-P \\
M
\end{cases} = \left(\frac{EI}{8\ell^3}\right) \begin{bmatrix} (2.5R+6) & .5(R-12) & 8.484\ell \\
.5(R-12) & (.5R+30) & 15.52\ell \\
8.484\ell & .15.52\ell & 40\ell^2 \end{bmatrix} \begin{bmatrix} \bar{u}_1 \\ \bar{v}_2 \\ \theta_2 \end{bmatrix}$$

From 1st of above equation express ū in terms of \bar{v} , and θ , and write

$$\frac{1}{R} = \frac{1}{R} = \frac{1}{R^{3}} \begin{bmatrix}
R & O & O & | -R & O & O \\
O & 12 & 6l & | & O & -12 & 6l \\
0 & 6l & 4l^{2} & | & O & -6l & 2l^{2} \\
-R & O & O & | & R & O & O \\
O & -12 & -6l & | & O & 12 & -6l \\
O & 6l & 2l^{2} & | & O & -6l & 4l^{2}
\end{bmatrix}$$
vectors
$$\frac{\overline{u}_{1}=0}{\overline{v}_{1}} = 0$$

$$\overline{v}_{1}=0$$

$$\overline{v}_{2}=0$$

$$\overline{v}_{4}=0$$

$$\overline{v}_{4}=0$$

$$\overline{v}_{4}=0$$

Only displacements involving 2 and 3 need to be considered. Thus we need only to add lower right quarter of R_2-3, and upper left quarter of R_2-3, and upper left qtr. of R_3-4 to lower right qtr. of R_2-3

10-18(a) Cont.

For no axial extension $\overline{u}_2 = -\overline{u}_3 = 0$ this eliminates $1^{\frac{5t}{4}}$ and $4^{\frac{th}{4}}$ columns Then $F_{2x} = F_{3x} = 0$ and the $1^{\frac{5t}{4}}$ and $4^{\frac{th}{4}}$ rows requires that $\Theta_3 = -\Theta_2$ which eliminates the $1^{\frac{5t}{4}}$ and $4^{\frac{th}{4}}$ rows, leaving the 4×4 matrix

$$\begin{pmatrix}
-P \\
0 \\
0 \\
0
\end{pmatrix} = \frac{EI}{\ell^3} \begin{bmatrix} (R+i2) & -6\ell & -R & 0 \\
-6\ell & 8\ell^2 & 0 & 2\ell^2 \\
-R & 0 & (R+i2) & 6\ell & 8\ell^2 \\
0 & 2\ell^2 & 6\ell & 8\ell^2 \end{bmatrix} \begin{pmatrix} \overline{N_z} \\ \overline{\theta_2} \\ \overline{N_z} \\ \overline{\theta_3} \end{pmatrix}$$
symmetric

Since $\overline{U_3} = \overline{U_2}$ add $3^{\frac{nd}{d}}$ column to $1^{\frac{st}{d}}$ column. Also since $\theta_3 = -\theta_2$, subtract $4^{\frac{th}{d}}$ col. From $2^{\frac{nd}{d}}$ col. This also reduces the matrix to a 2×2

$$\begin{cases} -P \\ 0 \end{cases} = \frac{EI}{\ell^3} \begin{bmatrix} 12 & -6\ell \\ -6\ell & 6\ell^2 \end{bmatrix} \begin{Bmatrix} \overline{v_2} \\ \theta_2 \end{Bmatrix}$$

Solving the two equations

$$l\theta_{2} = \overline{U}_{2}$$

$$\overline{V}_{2} = \frac{-Pl^{3}}{6EI}$$

$$\theta_{3} = \frac{-Pl^{2}}{6EI}$$

P 3

Flements 1-2 and 2-3 are already available from Prob 10-18(a) by interchanging 1-2 and 2-3

The new element 3-4 is obtained from Eq. (10,8 -3) with d=-90° C=0, S=-1

Element 3-4

We need only the central part of the matrix

$$\overline{U}_1 = \overline{V}_2 = \overline{V}_3 = 0$$
 : eliminate cols 2 4 5

$$\begin{pmatrix}
\bar{F}_{2x} = \bar{F} \\
\bar{M}_{2} \\
\bar{F}_{3x} \\
\bar{M}_{3}
\end{pmatrix} = \underbrace{\Xi}_{0} \begin{bmatrix} (R+12) & -6\ell & -R & 0 \\
-6\ell & 8\ell^{2} & 0 & 2\ell^{2} \\
-R & 0 & (R+3) & 3\ell \\
0 & 2\ell^{2} & 5\ell & 7\ell^{2} \\
\end{pmatrix} \begin{pmatrix} \bar{u}_{2} \\
\Theta_{2} \\
\bar{u}_{3} \\
\Theta_{3} \end{pmatrix}$$

$$\overline{u}_1 = \overline{u}_3$$
 :, add col 3 to 1

$$\begin{cases} \frac{Pl^{3}}{EI} \\ 0 \\ 0 \\ 0 \\ 0 \end{cases} = \begin{cases} 12 & -6l & 0 \\ -6l & 8l^{2} & 2l^{2} \\ 3 & 0 & 3l \\ 3l & 2l^{2} & 7l^{2} \end{cases} \begin{cases} u_{z} \\ \theta_{z} \\ \theta_{3} \\ 3l \bar{u}_{z} + 2l^{2}\theta_{z} + 7l^{2}\theta_{z} = 0 \end{cases} (2)$$

$$\frac{Pl^{3}}{EI} = 12 \bar{u}_{z} - 6l \theta_{z} \qquad (1)$$

$$-4l \bar{u}_{z} + 8l \theta_{z} + 2l^{2}\theta_{z} = 0 \end{cases} (2)$$

$$3 \bar{u}_{z} \qquad +3l \theta_{z} = 0 \end{cases} (3)$$

$$3 l \bar{u}_{z} + 2l^{2}\theta_{z} + 7l^{2}\theta_{z} = 0 \end{cases} (4)$$

$$2x(4) + (2) = 0 u_{2} + 12 \ell^{2} \theta_{2} + (6 \ell^{2} \theta_{3} = 0) ; \quad \theta_{2} = -\frac{4}{3} \theta_{3}$$
(3) gives $\bar{u}_{2} = -\ell \theta_{3} ; = \frac{3}{4} \ell \theta_{2}$
Subst $\theta_{2} = -\frac{4}{3} \theta_{3}$ into (1)

$$\frac{Pl^{3}}{Er} = 12u_{2} - 6l\left(-\frac{4}{3}\theta_{3}\right) = 12\overline{u}_{2} + 8l\theta_{3} = 12\overline{u}_{2} - 8\overline{u}_{2} = 4\overline{u}_{2}$$

$$\therefore \overline{u}_{2} = \frac{Pl^{3}}{4Er} \qquad \theta_{3} = \frac{Pl^{2}}{4Er} \qquad \theta_{4} = \frac{Pl^{2}}{3Er}$$

Comparing with Prob (10-181a) the deflection under P is larger with pinned end, and the two rotations are dissimular and also larger. Conclusion: Pinned end leads to more flexible structure.

Element

$$1-2$$
 $C=0$, $S=1$
 $2-3$ $C=1$, $S=0$
 $3-4$ $C=0$, $S=-1$
 $4-1$ $C=-1$ $S=0$

Element stiffness

Displacements.

$$\overline{u}_1 = \overline{v}_1 = 0$$

$$\overline{v}_2 = \overline{v}_3 = 0$$

$$\overline{u}_2 = \overline{u}_3$$

$$\overline{v}_4 = 0$$

$$\overline{u}_4 = 0$$

Coordinates not zero \overline{u}_2 , \overline{u}_3 , θ , θ_2 , θ_3 , θ_4 none of the of need to be equal, however we can assume that u= u This leaves 5 unknowns

Assembled matrix (symmetric)

5th and 8th equations are identical — both give $0_2 = -\theta_3$ (remove 5th & 8th eqs. after subtracting 4th col from 3nd col.)

10-18(c) Cont Rewrite eq with col 4 subtracted from col 3 and 5th a 8th eqs. removed

Eqs. for Fig and Fig are equal but of opposite signs

6th eq and Fax are of opposite signs but 6th eq = 0

Eqs for Fix and P are of opposite signs

$$F_{IX} = -P$$

Moment about 1 gives

The above is just for checking, since these results can be obtained from statics.

10-18(c) Cont.

Rewrite unused egs from 10x4 matrix

$$\frac{Pl^3}{EI} = 6l\theta_1 + 12\overline{u}_2 + 6l\theta_2 \tag{1}$$

$$-\frac{Ml^2}{ET} = 2l\theta_1 + 6\overline{U}_2 + 6l\theta_2 \tag{2}$$

$$0 = 8\ell^{2}\theta_{1} + 6\ell \bar{u}_{2} + 2\ell^{2}\theta_{2} + 2\ell^{2}\theta_{4}$$
 (3)

$$0 = 2\ell^{2}\theta_{1} + 6\ell\bar{u}_{2} - 2\ell^{2}\theta_{2} + 8\ell^{2}\theta_{4}$$
 (4)

Eliminate of betw. (3) & (4)

$$0 = 30l^{2}\theta_{1} + 18l \bar{u}_{2} + 10l^{2}\theta_{2}$$
 (5)

Eqs. (1) (2) + (5) has 3 unknowns with 3 eqs.

In (5) solve for le, in terms of uz and Oz

$$\ell\theta_1 = -(.60 \, \overline{U}_2 + .3333 \, \ell\theta_2)$$
 subst. into(1) and(2)

$$\frac{P\ell^{3}}{EI} = (J2 - 3.60)\overline{u}_{z} + (6\ell - 2\ell)\theta_{z} = 8.40\overline{u}_{z} + 4\ell\theta_{z}$$

$$-\frac{M\ell^{2}}{EI} = (6 - 1.2c)\overline{u}_{z} + (6\ell - .666\ell)\theta_{z} = 4.80\overline{u}_{z} + 5.333\ell\theta_{z}$$

Eliminate & for eq. for Uz, then eliminate Uz

$$\bar{u}_{2} = \frac{1}{4.80} \left(\frac{P\ell^{3}}{EI} + .75 \frac{M\ell^{2}}{EI} \right)$$

$$\theta_{2} = \frac{-1}{5.333} \ell \left(\frac{P\ell^{3}}{EI} + 1.75 \frac{M\ell^{2}}{EI} \right)$$

For the assembly we can first consider a matrix space of 6×6 each of which is composed of a 3×3 elements. ie. k_{2-3} has 4 sub-matrices, each corner of which has a 3×3 matrix. Since \mathbb{O} , \mathbb{O} , \mathbb{O} and \mathbb{O} all have zero deflections, we will be concerned only with the displacements of \mathbb{O} and \mathbb{O} which occupies the central portion of the 6×6 space.

55

Shown in 6x6 space

3,0

3,3

The matrix of interest which is indicated by the square in double lines also involves the lower right quarter of \$12, all of \$23 and upper left quarter of \$3-4

Note that
$$\begin{cases} \bar{u}_2 = \bar{u}_3 = 0 & \text{cross out cols. I and 4} \\ \bar{v}_2 = \bar{v}_3 & \text{add col. 5 to 2} \\ \theta_2 = \theta_3 & \text{add col. 6 to 3} \end{cases}$$

Resulting equations

$$\begin{cases}
\bar{F}_{2}y=-P \\
\bar{M}_{2}=0
\end{cases} = \frac{E[}{\alpha^{2}} \begin{bmatrix} (12)[1+(\frac{\alpha}{b})^{3}] & 4\ell[(\frac{\alpha}{b})^{2}-1] \\
4\ell[(\frac{\alpha}{b})^{2}-1] & 4\ell^{2}[2.5+(\frac{\alpha}{b})] \end{bmatrix} \begin{cases}
\bar{V}_{2} \\
\Theta_{2}
\end{cases}$$

$$O_3$$

$$P = k \overline{u}_3$$

$$O_2$$

$$\begin{cases} 0 \\ -M \\ 0 \\ 0 \end{cases} = \frac{EI}{\ell^{3}} \begin{bmatrix} 12 & -6\ell & 0 & 0 \\ -6\ell & 8\ell^{2} & 6\ell & 2\ell^{2} \\ 0 & 6\ell & (12 + \frac{2\ell^{2}}{EI}) & 6\ell \\ 0 & 2\ell^{2} & 6\ell & 2\ell^{2} \\ 0 & 2\ell^{2} & 6\ell & 2\ell^{2} \\ \end{cases} \begin{cases} \vec{v}_{z} \\ \vec{v}_{$$

4 egs, 4 unknowns

 $\overline{U}_2 = \overline{U}_2$: add col. 8 to col 5

10-18(e) Cont.

$$\bigcirc \qquad = 12 \, \overline{N}_2 - 6 \, \ell \, \theta_2$$

$$0 = 60\theta_2 + (12 + \frac{kp^3}{E_1})\overline{u}_3 + 60\theta_3$$

From ①
$$\overline{V_2} = \frac{\ell}{2} \theta_2$$
 Sub into ②

$$(2) - \frac{M\ell^3}{ET} = 5\ell^2 \Theta_2 + 6\ell \overline{u}_3 + 2\ell^2 \Theta_3$$

From
$$\Theta$$
 $\Theta_2 = -\frac{3}{L} \overline{u}_3 - 2 \Theta_3$

Sub. into (3)
$$0 = -6l\left(\frac{3}{2}\overline{u}_3 + 2\theta_3\right) + (12 + \frac{kl^3}{EI})\overline{u}_3 + 6l\theta_3$$
$$= (-18 + 12 + \frac{kl^3}{EI})\overline{u}_3 - 12 \cdot l\theta_3 + 6l\theta_3$$

$$\frac{1}{1}$$
 $\frac{6l\theta_{3}}{6l\theta_{3}} = \frac{(-6 + \frac{kl^{3}}{EI}) \overline{u_{3}}}{1}$

$$-\frac{Ml^{3}}{E1} = 5l^{2}\left(-\frac{3}{l}\vec{u}_{3} - 2\theta_{3}\right) + 6l\vec{u}_{3} + 2l^{2}\theta_{3} = -9l\vec{u}_{3} - 8l^{2}\theta_{3}$$

Sub for O, in above eq.

$$-\frac{Ml^{3}}{EI} = -9l \, \bar{u}_{3} - 8l^{2} \left(-\frac{6 + \frac{6l^{3}}{EI}}{6l} \right) \bar{u}_{3} = \left(-l - \frac{4}{3} \frac{8l^{3}}{EI} \right) \bar{u}_{3}$$

$$\theta_2 = -\frac{3}{L} \, \overline{u}_3 - 2 \, \theta_3 \qquad \overline{v}_2 = -\frac{3}{2} \, \overline{u}_3 - \ell \, \theta_2$$

$$\theta_3 = \frac{1}{6!} \frac{(-6 + \frac{20^3}{EI})}{(1 + \frac{4}{3} \frac{20^3}{EI})} \frac{Ml^2}{EI}$$

$$\widetilde{\mathcal{N}}_{2} = -\frac{3}{2}\widetilde{\mathbf{u}}_{3} - \ell \Theta_{2}$$

$$10 - 19(a)$$

Upper left qtr = lower right qtr of elem. 10-12 plus upper left qtr of elem. 2-13.

Lower right qtr = upper left qtr of elem. 3-4 plus Lower right qtr of elem. 3-3.

mass matrix
$$\frac{3nl}{420}$$
 | $\frac{11}{21}$ |

Assumptions $\bar{u}_2 = \bar{u}_3$, $\bar{V}_2 = \bar{V}_3 = 0$, two modes $\begin{cases} \theta_3 = -\theta_2 \\ \theta_3 = \theta_2 \end{cases}$ spring not involved.

$$\frac{m\ell}{420} \begin{bmatrix} (156+N) & 22\ell & \frac{1}{2}N & O \\ \frac{22\ell}{1} & 8\ell^{2} & O & -3\ell^{2} \\ \frac{1}{2}N & O & (156+N) & 22\ell \\ O & -3\ell^{2} & 22\ell & 8\ell^{2} \end{bmatrix} \begin{pmatrix} \ddot{u}_{z} \\ \dot{\theta}_{z} \\ \ddot{\theta}_{3} \end{pmatrix} + \frac{EI}{\ell^{3}} \begin{pmatrix} (2+R) & 6\ell & -R & O \\ 6\ell & 8\ell^{2} & O & 2\ell^{2} \\ -R & O & (12+R+\frac{k\ell^{3}}{E_{1}}) & 6\ell \\ O & 2\ell^{2} & 6\ell & 8\ell^{2} \end{pmatrix} \begin{pmatrix} \ddot{u}_{z} \\ \dot{\theta}_{z} \\ O \end{pmatrix} = \begin{pmatrix} O \\ 0 \\ O \end{pmatrix}$$

Symmetric mode
$$\bar{u}_{2} = \bar{u}_{3} = 0$$
 ... cross out col $\bar{0}$, col $\bar{0}$
 $\theta_{3} = -\theta_{2}$ row $\bar{0}$, row $\bar{0}$
 $ML = \frac{1}{2} \left[\frac{8\ell^{2}}{2\ell} - 3\ell^{2} \right] \left(\frac{\theta_{2}}{\theta_{3}} \right] + \frac{1}{2} \left[\frac{8\ell^{2}}{2\ell^{2}} + \frac{2\ell^{2}}{2\ell^{2}} \right] \left(\frac{\theta_{2}}{\theta_{3}} \right) = \begin{cases} 0 \\ \theta_{3} \end{cases} = \begin{cases} 0 \\ \theta_{3} \end{cases}$

$$\left[-\frac{\omega^{2}}{420} \frac{ml}{(11)} + \frac{EI}{\ell^{3}} (6) \right] \ell^{2} \theta_{2} = 0$$

$$\omega^{2} = \frac{6 \times 420}{11} \frac{EI}{ml^{4}} \qquad \omega = 15 \cdot 14 \frac{EI}{ml^{4}}$$

Antisym. mode $\bar{u}_{2} = \bar{u}_{3} \neq 0$, $\theta_{2} = \theta_{3}$

$$\left[-\frac{\omega^{2} m\ell}{420} \left[(5(+\frac{3}{2}N) + 22\ell) + \frac{EI}{\ell^{3}} \left[(12+\frac{k\ell}{\ell}) \cdot 6\ell) \right] \left(\bar{u}_{3} \right) \right] = \begin{cases} 0 \\ 0 \end{cases}$$

with $\lambda = \left(\frac{\omega m\ell^{2}}{420EI} \right) = 140$ Characteristic eq. =
$$\left[(12+\frac{2\ell^{3}}{EI} - 366\lambda) + (6-22\lambda)\ell + (6-22\lambda)\ell + (6-22\lambda)\ell \right] = 0$$

$$\lambda^{2} = (2.6657 + 0.03715 \frac{\ell^{2}}{EI}) + 0.062407 = 0$$

 $\lambda^{2} - (2.6657 + .0037/5 \frac{\text{Re}^{3}}{\text{EI}})\lambda + .062407 = 0$ in must decide on numerical value of $\frac{\text{Re}^{3}}{\text{EI}}$ before solving

If $\frac{\text{Re}^{3}}{\text{EI}} = 0$, then $\lambda_{1} = .0236$ $\omega_{1} = 3.149 \sqrt{\text{EI/ml}^{4}}$ (Note numerical error on p279 text)

Element Stiffness 1-2 and 2-3 Eq. (10.2-1) with l= &

$$\frac{8EI}{\ell^{3}} \begin{bmatrix}
12 & 3\ell & -12 & 3\ell \\
3\ell & -3\ell & \frac{1}{2}\ell^{2} \\
-12 & -3\ell & |(10\ell - \frac{\ell \ell^{2}}{8E_{3}}) & -3\ell \\
3\ell & \frac{1}{2}\ell^{2} & -3\ell & (\ell^{2} + \frac{K\ell^{2}}{8E_{3}})
\end{bmatrix}$$

$$\frac{6}{\sqrt{3}} \begin{cases}
\frac{7}{\sqrt{3}} & \frac{7}{\sqrt{3}} & \frac{7}{\sqrt{3}} \\
\frac{7}{\sqrt{3}} & \frac{7}{\sqrt{3}} & \frac{7}{\sqrt{3}} \\
\frac{7}{\sqrt{3}} & \frac{7}{\sqrt{3}} & \frac{7}{\sqrt{3}} & \frac{7}{\sqrt{3}}
\end{cases}$$
or
$$\begin{cases}
\frac{7}{\sqrt{3}} & \frac{7}{\sqrt{3}} & \frac{7}{\sqrt{3}} \\
\frac{7}{\sqrt{3}} & \frac{7}{\sqrt{3}} & \frac{7}{\sqrt{3}} \\
\frac{7}{\sqrt{3}} & \frac{7}{\sqrt{3}} & \frac{7}{\sqrt{3}} \\
\frac{7}{\sqrt{3}} & \frac{7}{\sqrt{3}} & \frac{7}{\sqrt{3}} & \frac{7}{\sqrt{3}}
\end{cases}$$

The term kl is used only in one of the Nz elements

Element Mass 1-2 and 2-3 Eq.(10.2-10) with l= = =

$$\frac{m\ell}{840} = \begin{bmatrix}
1.56 & 11\ell & 54 & -6.5\ell \\
11\ell & \ell^{2} & 6.5\ell & -.75\ell^{2} \\
54 & 6.5\ell & 156 & -11\ell \\
-6.5\ell & -.75\ell^{2} & -11\ell & \ell^{2}
\end{bmatrix}$$

Assembled

1. delete cols I and 5 and rows I and 5

10-19(b) Cont.

Assembled.

Eq. of motion is a 4x4

$$\begin{bmatrix} \frac{2}{6.5l} & \frac{1}{6.5l^{2}} & \frac{1}{6.5l^{2}} & 0 & 0 & 0 \\ -\frac{2}{6.5l} & \frac{3}{12} & 0 & -\frac{6}{5l^{2}} & 0 \\ -\frac{7}{5l^{2}} & 0 & \frac{2}{8l^{2}} & -\frac{7}{5l^{2}} & 0 \\ 0 & -\frac{1}{6.5l} & -\frac{7}{5l^{2}} & l^{2} \end{bmatrix}$$

$$+ \frac{8EI}{l^{3}} \begin{bmatrix} l^{2} & -3l & .5l^{2} & 0 \\ -3l & (24 + \frac{kl^{3}}{8EI}) & 0 & 3l \\ .5l^{2} & 0 & 2l^{2} & .5l^{2} \\ 0 & 3l & .5l^{2} & (l^{2} + \frac{kl^{3}}{8EI}) \end{bmatrix} \begin{bmatrix} \theta_{1} \\ N_{2} \\ \theta_{2} \\ \theta_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Element
$$O-Q$$
 See Eq.(10.7-4)
Since $\overline{V_i} = 0$ only $Q \neq Q$
are needed.

$$\vec{F}_{2} = \int_{0}^{1} p_{0} \left(1 - \frac{1}{2} \frac{5}{5}\right) \left(3 \frac{5^{2}}{5^{2}} - 2 \frac{5^{3}}{5^{3}}\right) \ell_{1} d5$$

$$M_{2} = \int_{0}^{1} p_{0} \left(1 - \frac{1}{2} \frac{5}{5}\right) \left(-\ell \frac{5^{2}}{5^{2}} + \ell \frac{5^{3}}{5^{3}}\right) \ell_{1} d5$$

Integrated results.

Assembly of both sections

$$\begin{pmatrix}
\overline{F_{2}} \\
M_{1} \\
\overline{F_{3}} \\
\overline{F_{3}}
\end{pmatrix} = -P_{0} \begin{pmatrix}
.325 l_{1} + .250 l_{2} \\
-.0583 l_{1}^{2} - .850 l_{2}^{2} \\
.0750 l_{1} \\
.0583 l_{2}^{2}
\end{pmatrix}$$
with $l_{1} = l_{2} = l_{2}$

$$\begin{cases}
\bar{F_{2}} \\
M_{2} \\
\bar{F_{3}} \\
M_{3}
\end{cases} = -p \ell \begin{cases}
-2875 \\
-.227/\ell \\
.0375 \\
.0146 \ell
\end{cases}$$

Element 2-3 See Eq.(10.7-4) all 4 4 are necessary

$$\bar{F}_{3} = \int_{\frac{\pi}{2}}^{f_{0}} (1-5)(35^{2}-25^{3}) l_{2} d\xi$$

$$M_{3} = \int_{\frac{\pi}{2}}^{f_{0}} (1-5)(1-5)(1-35^{2}+25^{3}) l_{2} d\xi$$

$$\bar{F}_{2} = -\int_{\frac{\pi}{2}}^{f_{0}} (1-5)(1-35^{2}+25^{3}) l_{2} d\xi$$

$$M_{3} = \int_{\frac{\pi}{2}}^{f_{0}} (1-5)(1-35^{2}+25^{3}) l_{2} d\xi$$

M =- \ \forall (1-\forall)(15-215+15) \ 1 d\ 5 Integrated results

$$F_2 = .25 \text{ poly}$$
 $M_2 = -.850 \text{ poly}$
 $F_3 = .0750 \text{ poly}$
 $M_3 = .0583 \text{ poly}$

$$\begin{cases}
\bar{F_{2}} \\ M_{2} \\ \bar{F_{3}} \\ M_{3}
\end{cases} = -P_{0} \ell \begin{cases}
-2875 \\
-.217/\ell \\
.0375 \\
.0146 \ell
\end{cases}$$

$$\overline{F}_{2} = -p \int_{y_{2}}^{y} l \, d\xi = -p \int_{y_{2}}^{y_{2}} (3\xi^{2} - 2\xi^{3}) l \, d\xi = -p l \int_{y_{2}}^{y_{2}} (3\xi^{2} - 2\xi^{3}) l \, d\xi = -p l \int_{y_{2}}^{y_{2}} (-p l + 203) \, d\xi = -p l \int_{y_{2}}^{y_{2}} (-l + \xi^{2} + l + \xi^{3}) l \, d\xi = .0286 p l^{2}$$

with
$$\overline{V}_1 = \overline{V}_3 = \theta_1 = \theta_3 = 0$$
 (See Ex. 10.6-1)

$$v', \bar{v}_2 = -\frac{2031}{192} \frac{p\ell^4}{EI}$$

$$\theta_2 = - \frac{.0286}{16} \frac{Pl^3}{EI}$$

$$\frac{1}{k} = \frac{EI}{k^3} \begin{cases}
12 & 6l & |-12| & 6l \\
6l & 4l^2 & |-6l| & 2l^2 \\
-12 & -6l & |12| & -6l \\
6l & 2l^2 & |-6l| & 4l^2
\end{cases}$$

$$\frac{156}{420} \frac{22l}{54} \frac{4l^2}{|3l|} \frac{|3l|}{|56|} \frac{-3l^2}{-22l} \frac{1}{420} \frac{1}{|3l|} \frac{1}{|56|} \frac{-22l}{|54|} \frac{1}{|56|} \frac{1}{|56|$$

$$\bar{R} = \frac{EI}{\ell^{3}} \begin{bmatrix}
12 & 4\ell & -12 & 4\ell \\
6l & 4l^{2} & -6\ell & 2l^{2} \\
-12 & -6\ell & 24^{2} & -6\ell & 2\ell^{2}
\end{bmatrix}$$

$$\frac{1}{6\ell} = \frac{EI}{\ell^{3}} \begin{bmatrix}
12 & 6\ell & -12 & 6\ell \\
6\ell & 2\ell^{2} & 0 & 8\ell^{2} & -6\ell & 2\ell^{2} \\
-12 & -6\ell & 12 & -6\ell & 4\ell^{2}
\end{bmatrix}$$

$$\frac{1}{6\ell} = \frac{EI}{\ell^{3}} \begin{bmatrix}
12 & 6\ell & -12 & 6\ell \\
6\ell & 2\ell^{2} & -6\ell & 4\ell^{2}
\end{bmatrix}$$

$$\frac{1}{6\ell} = \frac{EI}{\ell^{3}} \begin{bmatrix}
12 & 6\ell & -12 & 6\ell \\
6\ell & 2\ell^{2} & -6\ell & 4\ell^{2}
\end{bmatrix}$$

must replace l by lo

$$\bar{m} = \frac{ml}{420} \begin{bmatrix} 15l & 22l & 54 - 13l \\ 22l & 4l^2 & 13l & -3l^2 \\ 54 & 13l & 312 & 0 & 54 & -13l \\ -13l & -3l^2 & 0 & 8l^2 & 13l & -3l^2 \\ \hline 54 & 13l & 156 & -22l \\ \hline -13l & -3l^2 & -22l & 4l^2 \end{bmatrix}$$

For Loads, must determine generalized forces & moments at stations

$$\begin{pmatrix}
\overline{F_1} - k \overline{V_1} \\
\overline{M_1} \\
\overline{F_2} \\
\overline{M_2} \\
\overline{F_3} - k \overline{V_3} \\
\overline{M_3}
\end{pmatrix} = \begin{pmatrix}
-.50 - k \overline{V_1} \\
-.0833 \ell \\
-.1.0
\end{pmatrix}$$

$$\begin{pmatrix}
F_0 \ell f(t) \\
O \\
-.50 - k \overline{V_3} \\
0.0833 \ell
\end{pmatrix}$$

-k \overline{v}_1 and -k \overline{v}_3 must now be shifted to stiffness matrix as + k \overline{v}_1 and + k \overline{v}_3

10-21 Cont General equation of motion 6x6

$$\frac{ml}{420} = \frac{158}{54} = \frac{12l}{312} = \frac{54}{312} = \frac{12l}{0} $

$$\overline{U_1} = \overline{V_3}$$
, $\theta_2 = 0$ $\theta_1 = -\theta_3$

Due to symmetry only $\bar{V_i}$ Θ_i and $\bar{V_2}$ are necessary From above equation we have

$$\frac{m\ell}{420} \begin{bmatrix} 156 & 22\ell & 54 \\ 22\ell & 4\ell^{2} & 13\ell \\ 54 & 13\ell & 3/2 \end{bmatrix} \begin{Bmatrix} \ddot{V}_{1} \\ \ddot{\psi}_{2} \end{Bmatrix} + \underbrace{\frac{EI}{\ell^{3}}} \begin{bmatrix} (n_{1} + \frac{k\ell^{2}}{EF}) & 6\ell & -12 \\ 6\ell & 4\ell^{2} & -6\ell \\ -12 & -6\ell & 24 \end{bmatrix} \begin{Bmatrix} \ddot{V}_{1} \\ \ddot{V}_{2} \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \\ 0 \end{Bmatrix}$$

10-23 Problem deals with uniform cantilever equation in Ex. 10.5-1 whose equation is

$$\begin{bmatrix} 3/2 & 0 & 54 & -6.5\ell \\ 0 & 2\ell^2 & 6.5\ell & -.75\ell^2 \\ 54 & 6.5\ell & 156 & -11\ell \\ -6.5\ell & -75\ell^2 & -11\ell & \ell^2 \end{bmatrix} + \begin{bmatrix} 24 & 0 & -12 & 3\ell \\ 0 & 2\ell^2 & -3\ell & .5\ell^2 \\ -12 & -3\ell & 12 & -3\ell \\ 3\ell & .5\ell & -3\ell & \ell^2 \end{bmatrix} \begin{bmatrix} \overline{v_2} \\ \theta_2 \\ \overline{v_3} \\ \theta_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Numerical value of l is needed

Let
$$\ell = 20''$$

$$\lambda = \left(\frac{\omega^2 m \ell}{840}\right) \left(\frac{\ell^3}{8EI}\right) = \frac{\omega^2 m \ell^3}{6720 EI}$$

Then
$$M = \begin{bmatrix} 320 & 0 & 54 & -130 \\ 0 & 800 & 130 & -300 \\ 54 & 130 & 156 & -220 \\ -130 & -300 & -220 & 400 \end{bmatrix} \quad K = \begin{bmatrix} 24 & 0 & -12 & 60 \\ 0 & 800 & -60 & 200 \\ -12 & -60 & 12 & -60 \\ 60 & 200 & -60 & 400 \end{bmatrix}$$

$$K = \begin{bmatrix} 24 & 0 & -12 & 60 \\ 0 & 860 & -60 & 200 \\ -12 & -60 & 12 & -60 \\ 60 & 200 & -60 & 400 \end{bmatrix}$$

Computation was carried by two different computer programs. For the program CAL (which is somewhat similar to NROOT in that only M and K needed to be inputted) the eigenvalues and eigenvectors were printed out. The mode shapes are for the original displacement X (see computational notes)

Computer program CAL.

```
LOAD M R=4 C=4
ARRAY NAME = M NUMBER OF ROWS = 4 NUMBER OF COLUMNS =
PM
                             2
COL#
                                         3
                 1
                     .00000
        320.00000
                                 54.00000 -130.00000
ROW
      1
                    800.00060
                               130.00000
ROW
      2
          .00000
                                            -300.00000
      3
          -54.00000 130.00000 154.00000 ~220.00000
ROW
    4 -130.00000 -300.00000 -220.00000
ROW
                                           400.00000
LOAD K R=4 C=4
ARRAY NAME = K
                 NUMBER OF ROWS = 4 NUMBER OF COLUMNS =
PK
COL#
                                         Э
                                                     4
                 1
          24.00000
ROW
      1
                        .00000 -12.00000
                                             60.00000
      2
           .00000
                     800.00000
                                             200,00000
RON
                                 -60,00000
      3
          -12.00000
                     -60.00000
                                 12.00000 -40.0000
ROW
         60.00000
                     200.00000 --40.00000
                                             400,00000
ROW
     4
JACOBI K V M E
PV
                        Eigen vectors
                                         3
COL#
                       ~.04958
ROW
      1
             .08341
                                   -.00759
                                                .03200
            .00401
                       .00154
                                   .02962
ROW
                                                .03379
             .06891
                        .06961
                                   -.07766
POW
                                                ,12991
ROW
                        .01663
                                   -.03745
                                                .12536
PE
COL#
                 1
ROW
            .00183
                       Eigen values = )
ROW
     5
            .07203
ROW
            .84016
           7.02150
ROW
RETURN
              W
           3.507
22.001
75,139
217,220
```

Computational Notes

The matrix equation for the normal mode vibration is generally written as

$$[-M \lambda + K] X = 0$$
 (1)

where M and K are both symmetric matrices and λ is related to the natural frequencies by $\lambda = \omega^2$. Premultiplying the above equation by M⁻¹, we have another form of the equation

$$[-\lambda I + A] X = 0$$
 (2)

where

$$A = M^{-1}K \tag{3}$$

is called the dynamic matrix. In general M'K is not symmetric.

It is desirable to introduce a coordinate transformation to rewrite the above equation in the standard form incorporated into most computer programs. This standard form is

$$[-\lambda I + \widetilde{A}]U = 0$$
 (4)

where I is a unit matrix and $\widetilde{\mathbf{A}}$ is a symmetric matrix.

For this transformation, let

$$X = Q^{-1}U$$
 (5)

and substitute into Eq. (1).

Premultiply by the transpose of Q which we will designate by Q^{-T}

$$[-\lambda Q^{\mathsf{T}} \mathsf{M} Q^{\mathsf{T}} + Q^{\mathsf{T}} \mathsf{K} Q^{\mathsf{T}}] \mathsf{U} = 0$$

If we now decompose M as

$$M = Q^{\mathsf{T}} Q \tag{6}$$

the first term of the last equation becomes a unit matrix.

i.e.
$$Q Q Q Q = I$$

We note here that

$$M = Q^{\mathsf{T}} Q = M^{\frac{1}{2}} M^{\frac{1}{2}}$$

and since M is symmetric, we obtain

$$Q = Q^{\mathsf{T}} = M^{\frac{1}{2}} \tag{7}$$

and

$$\widetilde{A} = \widetilde{Q}^{\mathsf{T}} K \widetilde{Q} = M^{-\frac{1}{2}} K M^{-\frac{1}{2}} \tag{8}$$

which is symmetric. Thus the standard form of the computer equation for the eigenvalues and eigenvectors is achieved.

The eigenvalues, λ , of Eq.(4) will be identical to those of Eqs.(1) or (2). However, the eigenvectors of the computer equation, Eq.(4), will now be U instead of X. To obtain the eigenvactors of the original equation, the transformation equation, Eq.(5), must be used.

For lumped mass systems, where the coordinates are chosen at each mass, the mass matrix is diagonal and $Q=M^{1/2}$ is easily determined. However when M is a full matrix, as in most finite element formulations, the determination of $M^{1/2}$ is not a simple task. For such cases, $M^{1/2}$ is determined from the equation

$$M^{\frac{1}{2}} = Y \Lambda^{\frac{1}{2}} Y^{T} \qquad (9)$$

where Λ is the diagonal matrix of the eigenvalues of M and Y is the orthonormal matrix of the eigenvectors of M,

i.e. $Y^TY = I$. (M must here be a positive definite real symmetric matrix, which the mass matrix satisfies. See Meirovitch, L. Analytical Methods in Vibration, p 76, The Macmillan Co., N.Y., 1967)

Ref: Meirovitch, L. Computational Methods in Structural Dynamics, p61, Sijthoff & Noordhoff, The Netherlands, 1980.

10-23 Cont. (2nd Procedure) The steps in Computational Notes were carried out on MacPlus with BASIC programs in Math Package and Scientific Analysis Program SAP

INPUT MATRIX M IN SYMMETRIC FORM

CORRESPONDING EIGENVECTORS (COLS) OF M

$$\begin{pmatrix} -.112511 & -.816598 & -.256548 & .5046688 \end{pmatrix} \begin{pmatrix} -.112511 \\ -.816598 \\ -.256548 \\ -.5046688 \end{pmatrix}$$

= .01266 + .666832 + .065817 + .25491 = 1.0000

The Ys are orthonormal as shown above checking

Computation for YNYP = M/2

THE PRODUCT MATRIX [C] = [A] X [B] IS : -3.605737 14.42981 -9.925963 .4699552
-26.17285 -9.7121 -4.602424 .3907904
-7.900571 5.90799 6.310462 3.701984
16.17293 -9.49373 -6.450883 2.618845

THE PRODUCT MATRIX [C] = [A] X [B] IS : -17.46832 ~.5734422 1.011564 ~3.660839 -.5723705 27.45703 2.207047 ~6.432595 .9751865 1.94517 9.515408 ~7.450424 -3.661047 ~6.428366 ~7.611399 16.95033

The inverse of the input matrix is : -0.0608 0.0050 0.0068 0.0180 0.0186 $= O_{\perp}$ 0.00500.0405 0.0050 0.0070 0.0063 0.1635 0.0758 0.1040 0.0181 0.0193 0.0768

Multiplication for QKQ
by SAP (Matrix)

THE PRODUCT MATRIX [C] = [A] X IB] IS : 2.4612 7.2 -2.0316 11.468
1.2024 35.882 -3.5724 15.742
2.8092 9.550001 -3.0276 22.318
5.7624 31.132 -6.6624 41.852

THE PRODUCT MATRIX [C] = [A] X [B] IS : $^{-}$.3789906 .5124393 .601312 1.216898 .5124393 1.740547 .8124846 2.055429 .601312 .8124846 1.285862 2.319776 1.216898 2.055429 2.319776 4.530376

INPUT MATRIX A IN SYMMETRIC FORM

Eigen Values 4-Vectors by Math Package (SYMEIG)

.37899 .51243 1.7405 .601312 .81248 1.2858 1.2168 2.0554 2.3197 4.5303

EIGENVALUES OF A

$$\begin{array}{c}
7.0278455556106 \\
.83378223012746 \\
.072052235090057 \\
.0019099791723867
\end{array}$$

$$\omega^{2} = \frac{6720. \text{ E1}}{\text{Ml}^{3}} \lambda$$

$$47226.$$

$$5603.$$

$$484.$$

$$12.83$$

CORRESPONDING EIGENVECTORS (COLS) OF $\widetilde{\mathsf{A}} = \mathsf{U}$

.21289484519686 .092870186818959 -.856536608263 .46086435313892 .39308961378661 - .88527738654973 .11908614674759 .21813526548855 .40095055035245 .4060306420499 .49588307863158 .65458211571615 .79962178346634 .20687724616463 -.079142281272342 -.55816064689359 must change to $\alpha = Q'U$

use SAP(MAT)

Criginal eigenvectors X

Checking mode shapes (for 1st mode)

$$\left(\frac{\overline{V_2}}{\overline{V_3}}\right) = \frac{.0235}{.0693} = .339 \qquad \left(\frac{\Theta_2}{\Theta_3}\right) = \frac{.004029}{.004773} = .844$$

211

$$T = \pm m \dot{x}_1^2 + \pm (2m) \dot{x}_1^2$$

$$T = \frac{1}{2} m \dot{x}_{1}^{2} + \frac{1}{2} (2m) \dot{x}_{2}^{2} \qquad U = \frac{1}{2} k x_{1}^{2} + \frac{1}{2} (3k) (x_{2} - x_{1})^{2} + \frac{1}{2} (2k) x_{2}^{2}$$

$$\omega^{2} m \chi_{1}^{2} + 2 \omega^{2} m \chi_{2}^{2} = k \chi_{1}^{2} + 3 k (\chi_{2} - \chi_{1})^{2} + 2 k \chi_{2}^{2}$$

Let
$$x_2/x_1 = \alpha_1$$
 then

$$\frac{\omega^2 m}{R} = \frac{1+3(n-1)^2+2n^2}{1+2n^2}$$

Can be checked by

$$\frac{\partial}{\partial m} \left(\frac{\omega_m}{R} \right) = 0 \quad \Rightarrow gives \quad m = -.5 \quad and \quad m = 1.0$$

$$m = -.5$$
 and $m = 1.0$

$$\frac{1}{k} = 5.50$$

Roots are
$$\frac{\omega m}{k} = 1.0$$
 and $\frac{\omega m}{k} = 5.50$

$$\frac{11-2}{A_7} \qquad \frac{2M}{4_3} \qquad \frac{Mbx}{6!EI}(l^2-x^2-b^2)$$

$$0 < x < (l-b)$$

Due to 2M

$$y_1 = \frac{(2Mg)^{\frac{2}{3}}\ell^{\frac{1}{$$

$$y_2 = \frac{(2Mg)\frac{1}{3}\ell \frac{1}{3}\ell \left[\ell^2 - \left(\frac{\ell}{3}\right)^2 - \left(\frac{\ell}{3}\right)^2\right]}{6\ell EI} = \frac{14}{486} \left(\frac{Mg\ell^3}{EI}\right)$$

$$y_1 = \frac{Mg \frac{1}{3} l \frac{1}{3} l}{(8 - l)^2 - (\frac{2}{3})^2 - (\frac{2}{3})^2} = \frac{7}{486} \left(\frac{Mg l^3}{EI} \right)$$

$$y_{2} = \frac{Mg \frac{1}{3} \ell \frac{2}{3} \ell}{6 \ell E E} \left[\ell^{2} - \left(\frac{2}{3} \ell \right)^{2} - \left(\frac{\ell}{3} \right)^{2} \right] = \frac{8}{486} \left(\frac{Mg \ell^{3}}{E E} \right)$$

Add
$$y_1 = \frac{23}{486} \left(\frac{Mg\ell^3}{ET} \right)$$
 $y_2 = \frac{22}{407} \left(\frac{Mg\ell^3}{ET} \right)$

$$y_2 = \frac{22}{486} \left(\frac{Mg \ell^3}{EI} \right)$$

$$\omega_{1}^{2} = g \frac{\left[(1M) \frac{23}{486} + (M) \frac{22}{486} \right]}{\left[2M \left(\frac{23}{486} \right)^{2} + M \left(\frac{22}{486} \right)^{2} \right]} \frac{1}{Mg!} = 21.43 \frac{EI}{Ml^{3}}$$

$$\omega_{1} = 4.63 \sqrt{\frac{EI}{Ml^{3}}}$$
 rad/s.

$$\frac{11-3}{4(x) = \frac{Px^{2}}{6ET}}(3a-x) \qquad 0 \le x \le 0$$

$$= \frac{Pa^{1}}{6ET}(3x-a) \qquad 0 \le x \le 1$$

$$= \frac{Pa^{1}}{6ET}(3x-a) \qquad 0 \le x \le 1$$

$$\frac{1}{1} \qquad \frac{1}{1} \qquad \frac{$$

$$\frac{11-4 \, \text{Cont.}}{42 \, \lambda^2} - 38 \, \lambda + 1 = 0$$

$$\lambda^2 - 0.9048 \, \lambda + 0.0238 = 0$$

$$\lambda = 0.4524 \pm \sqrt{.2048 - .0238} = 0.4524 \pm 0.4253$$

$$\lambda = \frac{\omega^2 M \ell^3}{96 \text{EI}} = \begin{cases} 0.0271 & \omega = \begin{cases} 2.6016 & \frac{\text{EI}}{\text{ML}^3} \\ 84.2576 & \frac{\text{EII}}{\text{ML}^3} \end{cases}$$

$$\omega = \begin{cases} 1.6129 & \frac{\text{EII}}{\text{ML}^3} & \frac{X_1}{X_2} \\ 9.1792 & \frac{\text{EII}}{\text{ML}^3} & \frac{X_1}{X_2} \\ 1 - 6 \lambda & \frac{1}{1 - 6 \lambda} \end{cases} = 0.3237$$

$$0 = \frac{(.3237 \, 1.0) \begin{bmatrix} 8 - 2.5 \\ -2.5 & 1 \end{bmatrix} \begin{bmatrix} .3257 \\ 1.0 \end{bmatrix}}{(.3257 \, 1.0) \begin{bmatrix} 1.5 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} .5257 \\ 1.0 \end{bmatrix}} = 2.605 \frac{\text{EI}}{\text{ML}^3}$$

$$\omega = \frac{X'MX}{X'M'2MX} = \frac{X'MX}{X'M'2MX} = \frac{X'MX}{X'M'2MX} = \frac{(.3237 \, 1.0) \begin{bmatrix} 1.5 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} .3257 \\ 1.0 \end{bmatrix}}{(.3257 \, 1.0) \begin{bmatrix} 1.5 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} .3257 \\ 1.0 \end{bmatrix}} = \frac{(.3257)}{(.3257)} = \frac{(.3$$

$$\omega^{2} = \frac{X^{\prime}MX}{X^{\prime}M^{\prime}aMX} = \frac{(.3237 \text{ l.o}) \begin{bmatrix} 1.5 \text{ o} \\ 0 \text{ l} \end{bmatrix} \begin{bmatrix} .3237 \\ 1.0 \end{bmatrix}}{\begin{bmatrix} 1.5 \text{ o} \\ 0 \text{ l} \end{bmatrix} \begin{bmatrix} 1.5 \text{ o} \\ 1.0 \end{bmatrix}} \frac{96E\Gamma}{ML^{3}}$$

$$= \frac{(.3237 \text{ l.o}) \begin{bmatrix} 1.5 \text{ o} \\ 0 \text{ l} \end{bmatrix} \begin{bmatrix} 4 \text{ lo} \\ 10 \text{ 32} \end{bmatrix} \begin{bmatrix} 1.5 \text{ o} \\ 0 \text{ l} \end{bmatrix} \begin{bmatrix} .3237 \\ 1.0 \end{bmatrix}}{42.654} \frac{96E\Gamma}{ML^{3}} = 2.6045 \frac{E\Gamma}{ML^{3}}$$

$$\omega_{1} = 1.6138 \frac{E\Gamma}{ML^{3}}$$

$$\frac{1}{1-x} \rightarrow \frac{y=y \cdot \left(\frac{x}{\ell}\right)^{\ell}}{y \cdot \left(\frac{x}{\ell}\right)^{\ell}} y.$$

$$V(x) = Mg \omega^2 y, \qquad \frac{\ell}{\lambda} \leq x \leq \ell$$

$$= 1.375 \text{ Mgwy}, \quad 0 \leq x \leq \frac{\ell}{2}$$

$$M(x) = \int_{x}^{\ell} V(\xi) d\xi = Mg \omega_{y_0}^{2} \xi = Mg \omega_{y_0}^{2} (\ell - x) \quad \stackrel{\ell}{\leq} x \leq \ell$$

=
$$Mg \omega_{y_0}^2 \left[\frac{l}{2} + 1.375 \left(\frac{l}{2} - 2 \right) \right]$$

$$0 \le \alpha \le \frac{\ell}{2}$$

 $\dot{y} = \omega y = \omega y_0 \left(\frac{x}{\ell}\right)^2$

ÿ = -ω y = -ω y . (ξ) 2

For Lumped mass, dynamic

and w21,5Myog[4]+

at (1) = w Mg yo 1.375

ω2 M 4.9 [!]

winyog at (2)

-m= = w y(2)m

$$U = \frac{1}{2} \int \frac{M^{2}}{EI} dx = \frac{(Mg\omega^{2}y_{0})^{2}}{2EI} \left[\int_{y_{2}}^{2} (l-x)^{2} dx + \int_{0}^{y_{2}} \left[\frac{l}{2} + 1.375(\frac{l}{2}-x) \right] dy}{\int_{0}^{2} \left[\frac{1}{24} + \frac{9.0156}{24} \right]} = \frac{1}{2} \frac{Mg\omega^{2}y_{0}}{EI} \left[\frac{1}{24} + \frac{9.0156}{24} \right] = \frac{1}{2} \frac{Mg\omega^{2}y_{0}}{EI} \left(0.4173 \right)$$

$$T = \frac{1}{2} M \omega^2 y_0^2 + \frac{1}{2} (1.5M) \omega^2 y_0^2 (\frac{1}{2})^4 = \frac{1}{2} M \omega^2 y_0^2 (1.0938)$$

$$U = T \quad \text{gives}$$

$$\omega^{2} = \frac{1.0938}{0.4173} \frac{EI}{Ml^{3}} = 2.619 \frac{EI}{Ml^{3}}$$

$$\omega_{1} = 1.618 \sqrt{\frac{EI}{Ml^{3}}} \quad Exact val = 1.6129 \sqrt{\frac{EI}{Ml^{3}}}$$

$$II - 7$$

$$II_{1}, m$$

$$II_{2}, (2m)$$

$$II_{3}, m$$

$$II_{4}, m$$

$$II_{$$

11-7 Cont:

(a) if EI₂ = EI₁
$$q m_1 = m$$
, $m_2 = 2m$

$$\omega_1 = .7416 \text{ ft}^2 \sqrt{\frac{EI_1}{m_1 l^4}} = 7.32 \sqrt{\frac{EI_1}{m_1 l^4}}$$

(b) if EI₂ = 4EI,

$$\omega_1 = 1.3785 \, \pi^2 \sqrt{\frac{EI_1}{ml^4}}$$

$$\frac{d^{2}y}{dx^{2}} = -y_{0} \frac{\chi}{\ell} \left(1 - \frac{\chi}{\ell}\right) \qquad \frac{dy}{dx} = \frac{y_{0}}{\ell} \left(1 - 2\frac{\chi}{\ell}\right)$$

$$\frac{d^{2}y}{dx^{2}} = -y_{0} \frac{\chi}{\ell^{2}}$$

$$U = \frac{1}{\ell} \frac{4y_{0}^{2}}{\ell^{2}} \left[2EI_{1} \int_{0}^{\infty} dx + 2EI_{2} \int_{0}^{\infty} dy_{1} \right] = \frac{1}{2} \left(\frac{4y_{0}^{2}}{\ell^{2}}\right) \frac{\ell}{\ell} \left[EI_{1} + EI_{2}\right]$$

$$= \frac{y_{0}^{2}}{\ell^{3}} \left[EI_{1} + EI_{2}\right]$$

$$+ 2m\ell \left\{ Same \right\}_{\ell}^{\ell}$$

$$+ 2m\ell \left\{ Same \right\}_{\ell}^{\ell}$$

$$= \frac{y_{0}^{2}}{\ell^{3}} \left[(.008659) + (.0264)\right] = .03506 \omega^{2}y_{0}^{2} m\ell$$

$$+ 2m\ell \left\{ Same \right\}_{\ell}^{\ell}$$

$$= \frac{y_{0}^{2}}{\ell^{3}} \left[(.008659) + (.0264)\right] = .03506 \omega^{2}y_{0}^{2} m\ell$$

$$+ 2m\ell \left\{ Same \right\}_{\ell}^{\ell}$$

$$= \frac{y_{0}^{2}}{\ell^{3}} \left[(.008659) + (.0264)\right] = .03506 \omega^{2}y_{0}^{2} m\ell$$

$$+ 2m\ell \left\{ Same \right\}_{\ell}^{\ell}$$

$$= \frac{y_{0}^{2}}{\ell^{3}} \left[(.008659) + (.0264)\right] = .03506 \omega^{2}y_{0}^{2} m\ell$$

$$+ 2m\ell \left\{ Same \right\}_{\ell}^{\ell}$$

$$= \frac{y_{0}^{2}}{\ell^{3}} \left[(.008659) + (.0264)\right] = .03506 \omega^{2}y_{0}^{2} m\ell$$

$$+ 2m\ell \left\{ Same \right\}_{\ell}^{\ell}$$

$$= \frac{y_{0}^{2}}{\ell^{3}} \left[(.008659) + (.0264)\right] = .03506 \omega^{2}y_{0}^{2} m\ell$$

$$+ 2m\ell \left\{ Same \right\}_{\ell}^{\ell}$$

$$= \frac{y_{0}^{2}}{\ell^{3}} \left[(.008659) + (.0264)\right] = .03506 \omega^{2}y_{0}^{2} m\ell$$

$$+ 2m\ell \left\{ Same \right\}_{\ell}^{\ell}$$

$$= \frac{y_{0}^{2}}{\ell^{3}} \left[(.008659) + (.0264)\right] = .03506 \omega^{2}y_{0}^{2} m\ell$$

$$+ 2m\ell \left\{ Same \right\}_{\ell}^{\ell}$$

$$+ 2m\ell \left\{ Same \right\}_{\ell}^{\ell}$$

$$= \frac{y_{0}^{2}}{\ell^{3}} \left[(.008659) + (.0264)\right] = .03506 \omega^{2}y_{0}^{2} m\ell$$

$$+ 2m\ell \left\{ Same \right\}_{\ell}^{\ell}$$

$$+ 2m\ell \left\{ Same$$

$$U = \frac{1}{\lambda} E I \int_{0}^{L} (y'')^{2} dx + \frac{1}{\lambda} (\frac{k}{\lambda}) y^{2}_{x=0} + \frac{1}{\lambda} (\frac{k}{\lambda}) y^{2}_{x=0}$$

$$U = \frac{1}{\lambda} E I \int_{0}^{L} (y'')^{2} dx + \frac{1}{\lambda} (\frac{k}{\lambda}) y^{2}_{x=0} + \frac{1}{\lambda} (\frac{k}{\lambda}) y^{2}_{x=0}$$

$$U_{max} = \frac{1}{\lambda} E I \int_{0}^{L} (\frac{k}{\lambda})^{2} dx + \frac{1}{\lambda} k b^{2}$$

$$T'_{max} = \frac{1}{\lambda} \int_{0}^{L} (\frac{k}{\lambda})^{2} dx = \frac{1}{\lambda} \omega^{2} \int_{0}^{L} (\sin^{2} \pi x + 2b \sin^{2} \pi x + b^{2}) dx$$

$$= \frac{M\omega^{2}}{\lambda} (\frac{1}{\lambda} + \frac{4b}{\pi} + b^{2})$$

$$Equating U_{max} = I_{max} \qquad \omega^{2}_{i} = \frac{2k}{M} \left(\frac{k}{\lambda} \frac{\pi^{4}}{4} + \frac{b^{2}}{\lambda} + \frac{b^{2}}{2k} + \frac{b^$$

$$J = J_{m} \left[3\left(\frac{x}{\ell} \right) - 4\left(\frac{x}{\ell} \right)^{3} \right] \qquad 0 \leq x \leq \frac{1}{2}$$

$$M(x) = M_{0}\left(\frac{x}{\ell} \right) \left(1 - \frac{x}{\ell} \right)$$

$$I_{m}^{2} = \frac{1}{2} \times 2 \int M(x) \frac{1}{2} dx = M_{0} \frac{1}{2} \frac{x^{2}}{2} \left[q\left(\frac{x}{\ell} \right)^{2} - 24\left(\frac{x}{\ell} \right)^{4} + 16\left(\frac{x}{\ell} \right)^{\ell} \right] dx$$

$$= M_{0} \frac{1}{2} \frac{1}{2} \left[\frac{q}{4} \left(\frac{1}{2} \right)^{4} - \frac{24}{6} \left(\frac{1}{2} \right)^{6} + \frac{16}{8} \left(\frac{1}{2} \right)^{8} - \frac{q}{5} \left(\frac{1}{\ell} \right)^{5} + \frac{24}{7} \left(\frac{1}{\ell} \right)^{7} - \frac{16}{9} \left(\frac{1}{\ell} \right)^{9} \right]$$

$$= 0.0529 \quad M_{0} \ell \quad \omega^{2} y_{m}^{2}$$

$$U_{m} = \frac{1}{4} \times 2 \int_{0}^{4} EI \left(\frac{d_{x}^{2}}{dx^{2}} \right)^{2} dx = y_{m}^{2} EI \int_{0}^{24} \frac{24}{\ell^{2}} x^{2} dx = y_{m}^{2} EI \frac{24}{\ell^{2}} \left[\frac{1}{2} \right]^{3}$$

$$E_{quating}$$

$$\omega_{1}^{2} = 453 \frac{EI}{(m_{0}\ell)\ell^{3}} \qquad \omega_{1} = 21.30 \sqrt{\frac{EI}{(m_{0}\ell)\ell^{3}}}$$

To check , first find total mass

$$\int m dx = 2m_0 \int \left(\frac{x}{\ell} - \frac{x^3}{\ell^3}\right) dx = 2m_0 \left[\frac{x^2}{2\ell} - \frac{x^4}{4\ell^3}\right]_0^{\ell_2} = 0.2188 \, m_0 \ell = M_{\perp}$$

The For massless beam with M at midspan $k = \frac{48EI}{\ell^3}$

$$T = \frac{1}{2} m_{eff} c_{eff}^{f} f_{m} = 0.0529 \ m_{o}l \ p_{gm}^{f} f_{rom above}$$

$$\therefore m_{eff} = .1058 \ m_{o}l = N \ M_{T} = N \ .2188 \ m_{o}l$$

$$\therefore N = .4835 \qquad \therefore m_{eff} = .4835 \ (total mass)$$

$$\omega^2 = \frac{k}{m_{eff}} = \frac{48E\Gamma}{4835M_T}\ell^3 = 99.28 \frac{E\Gamma}{M_T\ell^3}$$

$$\omega = 9.96 \sqrt{\frac{EL}{M_{p}l^3}}$$
 :, results appear to be reasonable

From Eq. 11,2-3
$$\frac{1}{\omega_{1}^{2}} \approx a_{11}m_{1}$$
, $+ a_{12}m_{2} + a_{33}m_{3}$
 $\frac{1}{2} \frac{m_{0}}{m_{0}} \frac{1}{2} \frac{m_{1}}{m_{1}} \frac{m_{1}}{m_{2}} \frac{m_{1}}{m_{1}} \frac{m_{1}}{m_{2}} \frac{m_{1}}{m_{1}} \frac{m_{1}}{m_{2}} \frac{m_{1}}{m_{1}} \frac{m_{1}}{m_{2}} \frac{m_{1}}{m_{1}} \frac{m_{1}}{m_{2}} \frac{m_{1}}{m_{2}} \frac{m_{1}}{m_{1}} \frac{m_{1}}{m_{2}} \frac{m_{1}}{m_{2}} \frac{m_{1}}{m_{2}} \frac{m_{1}}{m_{1}} \frac{m_{1}}{m_{2}} \frac{m_{1}}{m_{$

$$\frac{(1-15)}{(\omega_{1})_{1}^{2}} - \frac{1}{\omega_{11}^{2}} = a_{22}(m_{2})_{1}$$

$$\frac{1}{(\omega_{1})_{2}^{2}} - \frac{1}{\omega_{11}^{2}} = a_{22}(m_{2})_{2} \quad \text{divide to eliminate } a_{22}$$

$$\frac{(\omega_{1})_{2}^{2} - (\omega_{1})_{1}^{2}}{(\omega_{1})_{2}^{2}} \frac{(\omega_{1})_{2}^{2} \mathcal{I}_{11}^{2}}{(\omega_{1})_{2}^{2}} = \frac{(m_{2})_{1}}{(m_{2})_{2}}$$

$$(\omega_{1})_{1}^{2} = 435 \times 27 \quad (m_{2})_{1}^{2} = 5.44$$

$$(\omega_{1})_{2}^{2} = 398 \times 27 \quad (m_{2})_{2}^{2} = 5.44 + 4.52 = 9.96$$

$$(\frac{398}{435})^{2} \left[\frac{f_{11}^{2} - 435^{2}}{f_{12}^{2} - 398^{2}} \right] = \frac{5.44}{9.96} \quad \text{if } f_{11}^{2} = 245219$$

$$f_{11}^{2} = 495.2 \text{ cps}$$

$$\frac{11-16}{11-16}$$

$$\eta_{1} = \frac{\chi}{\ell}, \quad \phi_{2} = \sin \frac{\pi \chi}{\ell}$$

$$m_{11} = \int m \phi_{1} \phi_{1} d\chi = \frac{m}{\ell^{2}} \int \chi^{2} d\chi = \frac{m\ell}{3}$$

$$m_{12} = \int m \frac{\chi}{\ell} \cdot \sin \frac{\pi \chi}{\ell} d\chi = \frac{m\ell\ell}{3} \int \left(\frac{\pi \chi}{\ell}\right) \sin\left(\frac{\pi \chi}{\ell}\right) d\left(\frac{\pi \chi}{\ell}\right)$$

$$= \frac{m\ell}{3} \left[\sin \frac{\pi \chi}{\ell} - \left(\frac{\pi \chi}{\ell}\right) \cos \frac{\pi \chi}{\ell} \right] = \frac{m\ell}{3}$$

$$m_{22} = m \int \sin \frac{\pi \chi}{\ell} d\chi = m \int_{2}^{2} \left[1 - \cos \frac{2\pi \chi}{\ell} \right] d\chi = \frac{m\ell}{2}$$

$$II-16 \quad Cont.$$

$$EI \int_{0}^{t} \phi_{1}^{"} dx = 0 \qquad EI \int_{0}^{t} \phi_{1}^{"} dx = 0$$

$$EI \int_{0}^{t} \phi_{2}^{"} dx = EI \left(\frac{\pi}{2}\right) \int_{0}^{t} \sin^{2} \frac{\pi x}{\ell} dx = \left(\frac{\pi}{\ell}\right)^{4} EI \frac{\ell}{2}$$

$$u = C, \phi_{1}(x) + C_{2} \phi_{2}(x)$$

$$U = \frac{1}{2} \int_{0}^{t} EI \left(u^{"}\right)^{2} dx + \frac{1}{2} k_{0} u^{2}(\ell) \qquad \text{where } u^{2}(\ell) = C^{2}$$

$$= \frac{1}{2} k_{0} C^{2}_{1} + \frac{1}{2} \left(\frac{\pi}{\ell}\right)^{4} EI \frac{\ell}{2} C^{2}_{2}$$

$$\frac{\partial U}{\partial C_{1}} = k_{0} C_{1} \qquad \frac{\partial U}{\partial C} = \left(\frac{\pi}{\ell}\right)^{4} EI \frac{\ell}{2} C_{2}$$

i. Eq. 11.3 -7 becomes

$$\begin{bmatrix} \left(\frac{1}{2} - \omega^{2} \frac{m\ell}{3} \right) & -\omega^{2} \frac{m\ell}{2} \\ -\omega^{2} \frac{m\ell}{2} & \left\{ \left(\frac{T}{L} \right)^{2} E I_{\frac{L}{2}} - \omega^{2} \frac{m\ell}{2} \right\} \end{bmatrix} \begin{pmatrix} C_{1} \\ C_{2} \end{pmatrix} = \left\{ 0 \right\}$$

$$\left[\left(\frac{1}{6} - \frac{1}{\pi^2}\right)(m\ell)^2\right] \omega^4 - m\ell \left[\frac{\pi^4 E \bar{I}}{6 \ell^3} + \frac{\ell_0}{2}\right] \omega^2 + \frac{\ell_0}{2} \pi^4 \frac{E \bar{I}}{\ell^3} = 0$$

$$m(x) = m_o (1 - \frac{x}{2})$$

$$b(x) = b_o (1 - \frac{x}{2})$$

$$I(x) = \frac{bh^3}{/2} = \frac{h^3}{/2} b_o (1 - \frac{x}{2})$$

$$\therefore EI = EI_o \left(1 - \frac{\alpha}{2} \right)$$

$$y = C_{1}x^{2} + C_{2}x^{3} = C_{1}\phi_{1} + C_{2}\phi_{2}$$
 $\phi_{1} = x^{2}$
 $\phi_{2} = x^{3}$
 $f_{ij} = \int EI \phi_{i}^{"}\phi_{j}^{"}dx$
 $f_{ij}^{"} = 2$
 $f_{2}^{"} = 6x$
 $f_{2}^{"} = 6x$
 $f_{3}^{"} = \int m(x) \phi_{1}\phi_{2}dx$

$$k_{11} = 4E\bar{I}_{0} \int_{0}^{\ell} (1 - \frac{\alpha}{2}) dx = 4E\bar{I}_{0} \left(\ell - \frac{\ell}{2}\right) = 2E\bar{I}_{0} \ell$$

$$k_{12} = 12E\bar{I}_{0} \int_{0}^{\ell} \chi(1 - \frac{\alpha}{2}) dx = 12E\bar{I}_{0} \left(\frac{\ell^{2}}{2} - \frac{\ell^{3}}{3\ell}\right) = 2E\bar{I}_{0} \ell^{2}.$$

$$k_{22} = 36 E I_o \int_0^{\ell} \chi^2 (1 - \frac{\chi}{\ell}) d\chi = 3k \left(\frac{\ell^3}{3} - \frac{\ell^4}{4\ell}\right) = 3 E I_o \ell^3$$

$$m_{11} = m_0 \int_{0}^{\ell} \chi^4 (1 - \frac{\chi}{\ell}) d\chi = m_0 (\frac{\ell^5}{5} - \frac{\ell^6}{6\ell}) = \frac{1}{30} m_0 \ell^5$$

$$m_{12} = m_0 \int_0^{\infty} x^5 (1-\frac{x}{2}) dx = m_0 (\frac{\ell^6}{6} - \frac{\ell^6}{7}) = \frac{1}{42} m_0 \ell^6$$

$$m_{22} = m_0 \int_{0}^{2} \chi^6 (1 - \frac{\chi}{2}) d\chi = m_0 (\frac{\ell^7}{7} - \frac{\ell^7}{8}) = \frac{1}{56} m_0 \ell^7$$

$$\begin{bmatrix}
\left(2EI_{0}\ell - \omega^{2} \frac{m\ell^{5}}{30}\right) & \left(2EI_{0}\ell^{2} - \omega^{2} \frac{m_{0}\ell^{6}}{42}\right) \\
\left(2EI_{0}\ell^{2} - \omega^{2} \frac{m_{0}\ell^{6}}{42}\right) & \left(3EI_{0}\ell^{3} - \omega^{2} \frac{m_{0}\ell^{7}}{56}\right)
\end{bmatrix} \begin{pmatrix} C_{1} \\ C_{2} \end{pmatrix} = \begin{cases} 0 \end{cases}$$

$$6(EI_0)^2 \ell^4 - \omega^2 \left[\frac{m_0 \ell^5}{30} 3 EI_0 \ell^3 + \frac{m_0 \ell^7}{56} 2 EI_0 \ell \right] + \omega^4 \left(\frac{m_0 \ell^5}{30}, \frac{m_0 \ell^7}{56} \right)$$

$$-4(EI_0)^2 \ell^4 + \left[4 EI_0 \ell^2 \frac{m \ell^4}{42} \right] \omega^2 - \omega^4 \left(\frac{m_0^2 \ell^{12}}{42^2} \right) = 0$$

$$\omega^{4} \left[m_{o}^{2} \ell^{12} \left(\frac{1}{30 \times 56} - \frac{1}{4 \chi^{2}} \right) \right] - \omega^{2} \left[m_{o} E I_{o} \ell^{8} \left(\frac{3}{30} + \frac{2}{56} - \frac{4}{42} \right) \right] + 2 \left(E I_{o} \right)^{2} \ell^{4} = 0$$

$$(28.345 \times 10^{-6} \text{ m}_{\circ}^{2} \text{ l}^{12}) \omega^{4} - (0.0405 \text{ m}_{\circ} \text{ EI}_{\circ} \text{ l}^{3}) \omega^{2} + 2 (\text{EI}_{\circ})^{2} \text{ l}^{4} = 0$$

$$\omega^4 - 1429.3 \left(\frac{EI_o}{m_o l^4}\right) \omega^2 + 70559. \left(\frac{EI_o}{m_o l^4}\right)^2 = 0$$

$$\omega^2 = \left\{ \frac{51.20}{378} \right\} \times \frac{EI_0}{m_0 \ell^4}$$

$$\omega_{1} = 7.155 \sqrt{\frac{EI_{0}}{m_{0}\ell^{4}}}$$

$$\omega_{\chi} = 37.12 \sqrt{\frac{EI_o}{m_o l^4}}$$

Normal modes of fixed-free uniform rods

$$\phi_{i} = \operatorname{Sin} \frac{\pi}{2} \frac{\alpha}{2}$$

$$\phi_2 = \sin \frac{3\pi}{2} \frac{\chi}{\ell} \qquad \text{See Eq. 8.2-8}$$

$$U(\alpha) = C, \sin \frac{\pi}{2} \frac{\chi}{\ell} + C_2 \sin \frac{3\pi}{2} \frac{\chi}{\ell}$$

$$\frac{\partial u}{\partial \chi} = C, \frac{\pi}{2\ell} \cos \frac{\pi}{2} \frac{\chi}{\ell} + C_2 \frac{3\pi}{2} \cos \frac{3\pi}{2} \frac{\chi}{\ell}$$

$$U = \frac{1}{2} A E \int_{0}^{\ell} \left(\frac{\partial u}{\partial x} \right)^{2} dx + \frac{1}{2} k_{0} u^{2}(e)$$

$$=\frac{1}{2}AE\int_{0}^{L}C_{1}\left(\frac{\pi}{2\ell}\right)^{2}\cos\frac{\pi}{2}\frac{\alpha}{\ell}dx + AEC_{1}C_{2}\int_{0}^{\infty}\left(\frac{\pi}{2\ell}\right)^{2}\cos\frac{\pi}{2}\frac{\alpha}{\ell}\cos\frac{\pi}{2}\frac{\alpha}{\ell}dx$$

$$+ \frac{1}{2}AE \int_{0}^{2} C_{2}^{2} \left(\frac{3\pi}{2L}\right)^{2} C_{0}^{2} \frac{3\pi}{2L} \times dx + \frac{1}{2} k_{o} \left(C_{1} - C_{2}\right)^{2}$$

$$\frac{\partial U}{\partial C_{i}} = \left[AE\left(\frac{\pi}{2\ell}\right)^{2}\int_{0}^{\ell}eo^{2}\frac{\pi}{2}\frac{\alpha}{\ell}dx + k_{0}\right]C_{i} - k_{0}C_{2}$$

+ AE
$$C_2$$
 $\int \left(\frac{T}{\lambda \ell}\right)^{\left(\frac{3T}{\lambda \ell}\right)} \cos \frac{T}{\lambda} \cos \frac{3T}{\lambda} \cos \frac{3T}{\lambda} dx$

$$\frac{\partial U}{\partial C_2} = \left[A E \left(\frac{3\pi}{2e} \right)^2 \int_0^2 co^2 \frac{3\pi}{2e} \kappa \, dx \right] C_2 - k_o C_1 + k_o C_2$$

$$i. k_{ii} = AE \left(\frac{\pi}{\lambda L}\right)^{2} \int_{0}^{L} \cos^{2}\frac{\pi}{2} \frac{\chi}{L} d_{i}c + k_{0}$$

$$k_{22} = AE \left(\frac{3\pi}{2L}\right)^2 \int_0^L \cos^2 \frac{3\pi}{2L} dx + k_0$$

$$\frac{11-18 \quad Cont}{Since} \int_{0}^{2} Con^{2}m\theta d\theta = \frac{L}{2} \qquad m = \overline{L}_{12} \quad \frac{1}{22},$$

$$k_{ij} = AE\left(\frac{\pi}{2\ell}\right)^2 \ell + k_0$$
 $k_{ij} = -k$

$$k_{12} = AE\left(\frac{3\pi}{2\ell}\right)^2 \ell + k.$$

$$m_{ij} = \int_{0}^{\ell} m \, \phi_{i} \, \phi_{j} \, dx = \begin{cases} m_{ij} = m \frac{\ell}{2} \\ m_{ik} = 0 \end{cases}$$
 $m_{ij} = 0$
 $m_{2k} = \frac{m\ell}{2}$

Substinto Eq. 11.3-7

$$\begin{bmatrix}
\left\{AE\left(\frac{\pi}{2\ell}\right)^{2}\frac{\ell}{2}+k_{0}-\omega^{2}\frac{m\ell}{2}\right\} - k_{0} \\
-k_{0} & \left\{AE\left(\frac{2\pi}{2\ell}\right)^{2}\frac{\ell}{2}+k_{0}-\omega^{2}\frac{m\ell}{2}\right\}
\end{bmatrix} \begin{pmatrix} C_{1} \\ C_{2} \end{pmatrix} = \begin{cases} 0 \end{pmatrix}$$

Frey. Eq.

$$\left(\frac{m\ell}{2}\omega^{2}\right)^{2} - \left(\frac{m\ell}{2}\omega^{2}\right)\left[AE\left(\frac{\pi}{2\ell}\right)^{2} + k_{o} + AE\left(\frac{3\pi}{2\ell}\right)^{2} + k_{o}\right] + \left[AE\left(\frac{\pi}{2\ell}\right)^{2} + k_{o}\right]\left[AE\left(\frac{3\pi}{2\ell}\right)^{2} + k_{o}\right] - k_{o}^{2} = 0$$

Reduces to

$$\omega^4 - \omega^2 \left[10 \left(\frac{\pi}{12} \right)^2 \frac{AE}{m} + \frac{4 \frac{k^2}{m^2}}{m^2} \right] + \left[9 \left(\frac{\pi}{12} \right) \left(\frac{AE}{m} \right)^2 + 20 \left(\frac{\pi}{12} \right)^2 \frac{AE}{m} \frac{k_0}{m^2} \right] = 0$$

$$k_{11} = A E \left(\frac{T}{2\ell}\right)^2 \frac{\ell}{2}$$

$$k_{22} = A E \left(\frac{3T}{2\ell}\right)^2 \frac{\ell}{2}$$

Additional KE =
$$\frac{1}{2}$$
 m_o $ii(e) = \frac{1}{2}$ m_o $(c, -c_2)^2$

$$= \frac{1}{2} m_0 (\dot{C}_1^2 - 2\dot{C}_1 \dot{C}_2 + \dot{C}_2^2)$$

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{c}_{i}} = m_{o} \ddot{c}_{i} - m_{o} \ddot{c}_{2}$$

$$\frac{d}{dt}(\frac{\partial T}{\partial \dot{c}_{i}}) = -m_{o} \ddot{c}_{i} + m_{o} \ddot{c}_{2}$$

$$m_{12} = m_{21}^{2} + m_{0}$$

$$m_{12} = m_{21} = -m_{0}$$

$$m_{22} = m_{12}^{2} + m_{0}$$

$$\begin{bmatrix}
\left\{AF\left(\frac{\pi}{2\ell}\right)^{\frac{2}{\ell}} - \omega^{2}\left(\frac{m\ell}{2} + m_{o}\right)\right\} & \omega^{2}m_{o} \\
\omega^{2}m_{o} & \left\{AF\left(\frac{3\pi}{2\ell}\right)^{\frac{2}{\ell}} - \omega^{2}\left(\frac{m\ell}{2} + m_{o}\right)\right\} \end{bmatrix} \begin{pmatrix} C_{1} \\ C_{2} \end{pmatrix} = \begin{cases} C \end{pmatrix}$$

$$m(x) = m_0 \frac{\chi}{\ell} (1 - \frac{\chi}{\ell})$$

$$\phi_1 = \sin \frac{\pi x}{\ell} \qquad \phi_2 = \sin \frac{2\pi x}{\ell}$$

$$\psi_1 = \phi_1 \quad q_1 + \phi_2 \quad q_2$$

$$k_{11} = EI \int_0^1 \phi_1'' dx = EI(\frac{\pi}{\ell})^4 \int_0^1 \sin^2 \frac{\pi x}{\ell} dx = EI(\frac{\pi}{\ell})^4 \int_0^2 \frac{\pi x}{\ell} dx = EI(\frac{\pi}{\ell})^4 \int_0^2 \frac{\pi x}{\ell} dx = EI(\frac{\pi}{\ell})^4 \int_0^2 \frac{\pi x}{\ell} dx = EI(\frac{\pi x}{\ell})^4 \int_0^2 \frac{\pi x}{\ell} dx = m_0 \int_0^1 \frac{\pi x}{$$

$$m_{22} = m_0 \int \left(\frac{\chi}{\ell}\right) \left(1 - \frac{\chi}{\ell}\right) \sin^2 2\pi \chi \, d\chi = m_0 \int \frac{\chi}{\ell} \left(1 - \frac{\chi}{\ell}\right) \frac{1}{2} \left(1 - \cos^4 \frac{\pi \chi}{\ell}\right) \, d\chi$$

$$= \frac{m_0 \ell}{12} - \frac{m_0}{2} \int \frac{\chi}{\ell} \left(1 - \frac{\chi}{\ell}\right) \cos^4 \frac{\pi \chi}{\ell} \, d\chi = \frac{m_0 \ell}{12} + \frac{m_0 \ell}{(4\pi)^2}$$

= 0.08966 mol

$$m_{12} = m_0 \int (\frac{x}{\ell})(1-\frac{x}{\ell}) \sin \frac{\pi x}{\ell} \sin \frac{2\pi x}{\ell} dx = 0$$
 by inspection ie $\frac{x}{\ell}(1-\frac{x}{\ell}) = \text{symmetric function}$

$$\sin \frac{\pi x}{\ell} \sin \frac{2\pi x}{\ell} = \text{unsymmetric function}$$

Eq. (1.3-7) becomes

$$\begin{bmatrix}
\left[EI\left(\frac{\pi}{\ell}\right)^{\frac{4}{2}} - 0.10866 \, m_0 \ell \, \omega^2\right] \left[0\right] \\
\left[0\right] \left[EI\left(\frac{2\pi}{\ell}\right)^{\frac{4}{2}} - 0.08966 \, m_0 \ell \, \omega^2\right] \left\{C_1\right\} = 0
\end{bmatrix}$$

: C, & C2 are independent & Rayleigh-Ritz method fails. However from above

 $\left[\widetilde{EI}\left(\frac{\pi}{2}\right)^{\frac{1}{2}} - 0.10866 \, m_0 \left[\omega\right] = 0 \quad \left[\widetilde{EI}\left(\frac{\pi\pi}{2}\right)^{\frac{1}{2}} - 0.08966 \, m_0 \left[\omega\right] = 0\right]$ reduces to two Rayleigh's method.

$$\omega_{1}^{2} = \frac{\pi^{4}}{2 \times .10866} \left(\frac{EI}{m_{0} \ell^{4}} \right) = 448 \frac{EI}{m_{0} \ell^{4}} \qquad \omega_{1} = 21,2 \sqrt{\frac{EI}{m_{0} \ell^{4}}}$$

$$\omega_{\lambda}^{2} = \frac{8\pi^{4}}{.08966} \left(\frac{EI}{m_{0}\ell^{4}} \right) = 8691 \frac{EI}{m_{0}\ell^{4}}$$
 $\omega_{\lambda} = 93 \sqrt{\frac{EI}{m_{0}\ell^{4}}}$

1 st mode is sine TV, 2 mode is sin 2 TTV Compare with Prob11-11.

$$\phi_{i} = \frac{\lambda}{0}$$

$$\phi_2 = \sin \frac{\pi x}{e}$$

$$k_{12} = EI \left(\frac{\pi}{\ell}\right)^4 \int \sin^2 \pi u \, dx = EI \left(\frac{\pi}{\ell}\right)^4 \frac{\ell}{2}$$

$$k_{33} = EI\left(\frac{2\pi}{2}\right)^{4}\frac{\ell}{2}$$

$$k_{23} = EI\left(\frac{\pi}{\ell}\right)^{2}\left(\frac{2\pi}{\ell}\right)^{2}\int \sin\frac{\pi x}{\ell} \cdot \sin\frac{2\pi x}{\ell} dx = 0$$

$$m_{ij} = m_0 \int \phi_i^2 dx = m_0 \int \left(\frac{x}{\ell}\right)^2 dx = \frac{m_0 \ell}{3}$$

$$m_{\chi\chi} = m_0 \int_0^{2\pi} \sin^2 \pi \chi \, d\chi = m_0 \ell$$

$$m_{33} = m_0 \int \sin^2 x \pi x \, dx = \frac{m_0!}{2}$$

$$m_{12} = m_0 \int_{0}^{\frac{\pi}{\ell}} \sin \frac{\pi x}{\ell} dx = \frac{m_0}{\ell} \left[\frac{\sin \frac{\pi x}{\ell}}{\left(\frac{\pi}{\ell}\right)^2} - \frac{x \cos \frac{\pi x}{\ell}}{\left(\frac{\pi}{\ell}\right)} \right]^{\ell}$$

$$=\frac{m_o\ell}{T}=m_{2}$$

$$m_{13} = m_0 \int_{\ell}^{\ell} \frac{x}{\ell} \sin 2\pi x dx = -\frac{m_0 \ell}{2\pi}$$

$$m_{23} = m_0 \int \sin \frac{\pi x}{\ell} \sin^2 \frac{\pi x}{\ell} dx = 0$$

$$\begin{bmatrix}
\left(0 - \omega^{2} \frac{m_{0}\ell}{3}\right) & \left(0 - \omega^{2} \frac{m_{0}\ell}{7T}\right) & \left(0 + \omega^{2} \frac{m_{0}\ell}{2T}\right) \\
\left(0 - \omega^{2} \frac{m_{0}\ell}{T}\right) & \left(EI\left(\frac{T}{L}\right)^{2}L - \omega^{2} \frac{m_{0}\ell}{2}\right) & \left(0 - 0\right) \\
\left(0 - \omega^{2} \frac{m_{0}\ell}{2T}\right) & \left(0 - 0\right) & \left(EI\left(\frac{2T}{L}\right)^{2}L - \omega^{2} \frac{m_{0}\ell}{2}\right)
\end{bmatrix}
\begin{bmatrix}
C_{1} \\
C_{2} \\
C_{3}
\end{bmatrix} = \left\{0\right\}$$

Freg. Eq.

$$-\omega^{2} \frac{m_{0}l}{3} \left[EI(\frac{\pi}{l})^{\frac{3}{2}} - \omega^{2} \frac{m_{0}l}{2} \right] \left[EI(\frac{2\pi}{l})^{\frac{3}{2}} - \omega^{2} \frac{m_{0}l}{2} \right]$$

$$+ \omega^{2} \frac{m_{0}l}{\pi} \left[-(\omega^{2} \frac{m_{0}l}{\pi}) \left\{ EI(\frac{2\pi}{l})^{\frac{3}{2}} - \omega^{2} \frac{m_{0}l}{2} \right\} \right]$$

$$- \omega^{2} \frac{m_{0}l}{2\pi} \left[-(\omega^{2} \frac{m_{0}l}{2\pi}) \left\{ EI(\frac{2\pi}{l})^{\frac{3}{2}} - \omega^{2} \frac{m_{0}l}{2} \right\} \right] = 0$$

$$-\left(\omega^{2}m_{o}\ell\right)^{3}\left[\frac{1}{12}-\frac{1}{2\pi^{2}}+\frac{1}{8\pi^{2}}\right]+\left(\omega^{2}m_{e}\ell\right)^{2}EI\left[\frac{\ell}{12}\left(\frac{\pi}{2}\right)^{4}+\frac{\ell}{12}\left(\frac{2\pi}{2}\right)^{4}+\frac{\ell}{2\pi^{2}}\left(\frac{2\pi}{2}\right)^{4}+\frac{\ell}{8\pi^{2}}\left(\frac{2\pi}{2}\right)^{4}\right]$$
$$-\left(\omega^{2}m_{o}\ell\right)\left(EI\right)^{2}\frac{\ell^{2}}{12}\left(\frac{\pi}{\ell}\right)^{4}\left(\frac{2\pi}{\ell}\right)^{4}=0$$

$$-0.045338(\omega^{2})^{3} + 60.273(\omega^{2})^{2} \left(\frac{EI}{m_{0}l^{4}}\right) - 12651.37 \omega^{2} \left(\frac{EI}{m_{0}l^{4}}\right)^{2} = 0$$

$$(\omega^{2})^{2} - \left(1329.4146 \frac{EI}{m_{0}l^{4}}\right) \omega^{2} + 279045.61 \left(\frac{EI}{m_{0}l^{4}}\right)^{2} = 0$$

$$\omega^{2} = \left(664.70 \pm 403.47\right) \left(\frac{EI}{m_{0}l^{4}}\right) = \begin{cases} 261.23 \\ 1068.17 \end{cases} \frac{EI}{m_{0}l^{4}}$$

$$(0.0)$$

$$(0.0)$$

$$(0.0)$$

$$(0.0)$$

$$\omega = \begin{cases} 0.0 \\ 16.16 \\ 32.68 \end{cases} \sqrt{\frac{EI}{m_0 \ell^4}} \qquad \text{Exact Sol} \quad \omega = \begin{cases} 0 \\ 15.4 \\ 50. \end{cases} \sqrt{\frac{EI}{m_0 \ell^4}}$$

From Ex. 6.1-2

$$[a] = \frac{\ell^3}{3EI} \begin{bmatrix} 27 & 14 & 4 \\ 14 & 8 & 2.5 \\ 4 & 2.5 & 1 \end{bmatrix}$$

$$\begin{cases} \chi_1 \\ \chi_2 \\ \chi_3 \end{cases} = \lambda \begin{bmatrix} 27 & 14 & 4 \\ 14 & 8 & 2.5 \\ 4 & 2.5 & 1 \end{bmatrix} \begin{cases} \chi_1 \\ \chi_2 \\ \chi_3 \end{cases} \quad \text{where } \lambda = \frac{m\omega^2 l^3}{3 \, \text{EI}}$$

Start iteration with

$$\Rightarrow \begin{cases} 35.047 \\ 18.632 \\ 5.4819 \end{cases} = 35.047 \begin{cases} 1.00 \\ .5316 \\ .1564 \end{cases} \Rightarrow \begin{cases} 35.068 \\ 18.6438 \\ 5.4854 \end{cases} = 35.068 \begin{cases} 1.00 \\ .5316 \\ .1564 \end{cases}$$

1.
$$35.068 \frac{m\omega_{i}^{2}\ell^{3}}{3 EI} = 1 \qquad \omega_{i}^{3}$$

$$\omega_1^2 = .0855 \frac{EI}{ml^3}$$

$$\omega_{1} = 0.2925 \sqrt{\frac{EI}{m\ell^{3}}}$$

$$\begin{cases} \chi_{1} \\ \chi_{2} \\ \chi_{3} \end{cases} = \begin{cases} 1.00 \\ .5316 \\ .1564 \end{cases}$$

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & -\frac{\chi_1}{\chi_1} & -\frac{\chi_3}{\chi_1} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -.5316 & -.1564 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 27 & 14 & 4 \\ 14 & 8 & 2.5 \\ 4 & 2.5 & 1 \end{bmatrix} \begin{bmatrix} 0 & -.5316 & -.1564 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -.3532 & -.2228 \\ 0 & .5576 & .3184 \\ 0 & .3736 & .3744 \end{bmatrix}$$

Start iteration with

$$\begin{cases} 1 \\ 0 \\ -.5 \end{cases} \longrightarrow \begin{cases} -.11/4 \\ -.1592 \\ -.1868 \end{cases} = \begin{cases} 1.00 \\ -1.429 \\ -1.677 \end{cases} \xrightarrow{2^{\text{nd}}} \xrightarrow{\text{ite}} \begin{pmatrix} .8784 \\ -1.3308 \\ -1.1617 \end{pmatrix} = \begin{cases} 1.00 \\ -1.5750 \\ -1.3225 \end{cases}$$

$$\begin{array}{c}
3^{10} \\
-1.2658 \\
-1.0611
\end{array}
= \begin{cases}
1.00 \\
-1.57254 \\
-1.2787
\end{cases}
\longrightarrow \begin{cases}
.8237 \\
-1.2577 \\
-1.0486
\end{cases}
= \begin{cases}
1.00 \\
-1.57269 \\
-1.2731
\end{cases}$$

$$\Rightarrow \begin{cases}
.8229 \\
-1.2568 \\
-1.0471
\end{cases} = \begin{cases}
1.00 \\
-1.5273 \\
-1.2725
\end{cases}
\Rightarrow \begin{cases}
.8229 \\
-1.2568 \\
-1.0470
\end{cases} = .8229 \begin{cases}
1.00 \\
-1.5273 \\
-1.2723
\end{cases}$$

1.
$$\omega_{2}^{2} = \frac{3}{.8229} \frac{EI}{ml^{3}} = 3.645 L \left(\frac{EI}{ml^{3}}\right)$$

$$\omega_{2} = 1.9094 \sqrt{\frac{EI}{m\ell^{3}}} \qquad \begin{cases} \chi_{1} \\ \chi_{2} \\ \chi_{3} \end{cases} = \begin{cases} 1.00 \\ -1.5273 \\ -1.2723 \end{cases}$$

3 rd mode

$$C_1 = \overline{\chi}_1 + .5316 \overline{\chi}_2 + .1564 \overline{\chi}_3 = 0$$

$$C_2 = \overline{x}_1 - 1.5273 \overline{x}_2 - 1.2723 \overline{x}_3 = 0$$

$$\overline{X}_2 = -1.1207 \overline{X}_3$$
 subst. back into C,

to get
$$\bar{\chi}_1 = .4394 \, \bar{\chi}_3$$
 :. $\bar{\chi}_3 = 2.2758 \, \bar{\chi}_1$

$$\overline{x}_{s} = 2.2758 \ \overline{x}_{j}$$

$$\begin{bmatrix} 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1.00 \\ 0 & 0 & -2.5505 \\ 0 & 0 & 2.2758 \end{bmatrix}$$
 Mult. by [a]

$$\begin{cases} \chi_1 \\ \chi_2 \\ \chi_3 \end{cases} = \lambda \begin{bmatrix} 0 & 0 & .3962 \\ 0 & 0 & -.7145 \\ 0 & 0 & -.1005 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix}$$

Start iteration with

$$\begin{cases} 1 \\ 1 \\ 1 \end{cases} \Rightarrow \begin{cases} 1.3962 \\ -.7145 \\ -.1005 \end{cases} = \begin{cases} 1.00 \\ -1.8034 \\ -.2537 \end{cases} \xrightarrow{2^{\text{matter}}} \begin{cases} -.1005 \\ -.1812 \\ -.0255 \end{cases} = .1005 \begin{cases} 1.00 \\ -.2537 \end{cases}$$

$$1. \frac{1005 \text{ mw}^2 l^3}{3EI} = 1$$

$$\omega_3^2 = 29.851 \frac{EI}{ml^3}$$

$$\begin{cases} \chi_1 \\ \chi_2 \\ \chi_3 \end{cases} = \begin{cases} 1.00 \\ -1.803 \\ -.2537 \end{cases}$$

$$\omega_3 = 5.4636 \sqrt{\frac{EI}{m \ell^3}}$$

$$\omega_1 = 0.584 \sqrt{\frac{k}{m}}$$

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & -\frac{2}{3} \left(\frac{.600}{.265} \right) - \left(\frac{1}{3} \right) \left(\frac{1.00}{.265} \right) \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1.660 & -1.258 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\{x\} = \lambda [a][m][S]\{x\}$$

$$\begin{cases} x_1 \\ x_2 \\ x_3 \end{cases} = \lambda \begin{bmatrix} 0 & -2.980 & -2.774 \\ 0 & 1.020 & -.774 \\ 0 & 1.020 & 3.226 \end{bmatrix} \begin{cases} x_1 \\ x_2 \\ x_3 \end{cases}$$
 Start with
$$\begin{cases} -.2 \\ .6 \\ 1.0 \end{cases}$$

took 13 iteration to stabilize

$$|3\% \begin{cases} -1.466 \\ -1.222 \\ 2.778 \end{cases} = 2.778 \begin{cases} -.528 \\ -.440 \\ 1.00 \end{cases} \qquad \omega_{2} = 1.440 \frac{k/m}{m}$$

$$\begin{bmatrix} 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1.581 \\ 0 & 0 & -1.710 \\ 0 & 0 & 1.00 \end{bmatrix} \quad \begin{cases} \chi_1 \\ \chi_2 \\ \chi_3 \end{cases} = \lambda \begin{bmatrix} 0 & 0 & 2.323 \\ 0 & 0 & -2.517 \\ 0 & 0 & 1.483 \end{bmatrix} \begin{cases} \chi_1 \\ \chi_2 \\ \chi_3 \end{cases}$$

$$|.483 \frac{m\omega^{2}}{4k} = 1 \qquad \omega_{3}^{2} = 2.697 \frac{k}{m}$$

$$\omega_{8} = 1.642 \sqrt{\frac{k}{m}}$$

$$a_{11} = a_{21} = a_{12} = a_{31} = a_{13} = \frac{1}{k}$$

$$a_{12} = a_{32} = a_{33} = \frac{1}{K} + \frac{1}{K} = \frac{2}{K}$$

$$[a] = \frac{1}{k} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

$$\begin{cases}
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{cases} = \frac{\omega^{2} J}{K} \begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{bmatrix} \begin{Bmatrix} \theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{Bmatrix}$$

Start with

$$\begin{cases} 1 \\ 1 \\ 1 \end{cases} \rightarrow \begin{cases} 3 \\ 5 \\ 6 \end{cases} = \begin{cases} .50 \\ .833 \\ 1.00 \end{cases} \rightarrow \begin{cases} 2.337 \\ 4.1646 \\ 5.1644 \end{cases} = \begin{cases} .4516 \\ .8065 \\ 1.000 \end{cases} \rightarrow \begin{cases} 2.2581 \\ 4.0645 \\ 5.0646 \end{cases} = \begin{cases} .458 \\ .8065 \\ 1.000 \end{cases}$$

$$\Rightarrow \begin{cases} 2.2483 \\ 4.0508 \\ 5.0508 \end{cases} = \begin{cases} .4451 \\ .8020 \\ 1.000 \end{cases} \Rightarrow \begin{cases} 2.2471 \\ 4.0491 \\ 5.0491 \end{cases} = \begin{cases} .4450 \\ .8019 \\ 1.000 \end{cases} \Rightarrow \begin{cases} 2.2469 \\ 4.0488 \\ 5.0488 \end{cases} = \begin{cases} .4450 \\ .8019 \\ 1.000 \end{cases}$$

$$\omega_{1} = \sqrt{\frac{1}{5.0488} \frac{k}{J}} = 0.4450 \sqrt{\frac{k}{J}}$$

2 nd mode

$$\overline{\Theta}_1 = -\frac{.8019}{.4450} \overline{\Theta}_2 - \frac{1.00}{.4450} \overline{\Theta}_3 = -1.8020 \overline{\Theta}_2 - 2.2472 \overline{\Theta}_3$$

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & -1.8020 & -22472 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

11-24 Cont.

$$\begin{cases} \theta_{1} \\ \theta_{2} \\ \theta_{3} \end{cases} = \frac{\omega J}{K} \begin{cases} 0 -.8020 -1.2472 \\ 0 .1980 -.2472 \\ 0 .1980 .7528 \end{cases} \begin{cases} \theta_{1} \\ \theta_{2} \\ \theta_{3} \end{cases}$$
 converges to
$$\begin{cases} -.8019 \\ -.3571 \\ -.3571 \\ -.6429 \end{cases} = (-.5394)$$

$$\omega_2 = \sqrt{\frac{1}{.6429} \frac{k}{J}} = 1.247 \sqrt{\frac{k}{J}}$$

3 rd mode

$$C_1 = 0$$
 gives $\overline{\Theta}_1 = -1.802 \overline{\Theta}_2 - 2.2472 \overline{\Theta}_3$
 $C_2 = 0$ ii $\overline{\Theta}_1 = -1.4451 \overline{\Theta}_2 + .8018 \overline{\Theta}_3$
 $0 = -1.3569 \overline{\Theta}_2 - 3.0490 \overline{\Theta}_3$
 $\overline{\Theta}_2 = -2.247 \overline{\Theta}_3$
 $\overline{\Theta}_3 = 1.8020 \overline{\Theta}_3$

$$\begin{bmatrix} 5 \end{bmatrix}_{2} = \begin{bmatrix} 0 & 0 & 1.8020 \\ 0 & 0 & -2.247 \\ 0 & 0 & 1.00 \end{bmatrix}$$

$$\begin{cases}
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{cases} = \frac{\omega J}{K} \begin{bmatrix}
0 & -.8020 & -1.2472 \\
0 & .1980 & -.2472 \\
0 & 1980 & .7528 \\
0 & 0 & | 1.000
\end{cases}$$

$$= \frac{\omega^{2}J}{K} \begin{bmatrix}
0 & 0 & .5557 \\
0 & 0 & -.6921 \\
0 & 0 & .3079
\end{bmatrix} \begin{cases}
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{cases} = \frac{(.5557)}{(.692)} = \begin{cases}
1.803 \\
-2.245 \\
1.000
\end{cases}$$

$$\omega_3 = \sqrt{\frac{1}{.3079}} = 1.802 \sqrt{\frac{k}{J}}$$

$$11 - 25$$

T= tension

From unit defl. at each pt. + \(\subseteq F

$$a_n = \frac{4}{5} \frac{\ell}{T}$$

$$a_{21} = a_{12} = \frac{3}{5} \frac{\ell}{T}$$

$$a_{11} = \frac{4}{5} \frac{\ell}{T}$$
 $a_{21} = a_{12} = \frac{3}{5} \frac{\ell}{T}$ $a_{31} = q_{13} = \frac{2}{5} \frac{\ell}{T}$

$$a_{41} = \frac{1}{5} \frac{1}{T}$$
 $a_{22} = \frac{1}{5} \frac{1}{T}$ $a_{32} = \frac{4}{5} \frac{1}{T}$ $a_{42} = \frac{2}{5} \frac{1}{T}$

$$a_{32} = \frac{4}{5} \frac{\ell}{T}$$

$$a_{42} = \frac{2}{5} \frac{\ell}{T}$$

$$a = \frac{\ell}{5T} \begin{cases} 4 & 3 & 2 & 1 \\ 3 & 6 & 4 & 2 \\ 2 & 4 & 6 & 3 \\ 1 & 2 & 3 & 4 \end{cases} \qquad m = m \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$m = m \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{cases} 7.5 \\ 12.50 \\ 12.50 \\ 7.5 \end{cases} = \begin{cases} 1.00 \\ 1.666 \\ 1.00 \end{cases} \Rightarrow \begin{cases} 13.333 \\ 21.646 \\ 21.646 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.000 \end{cases} \Rightarrow \text{etc}$$

Corverges to

$$\begin{cases}
13.095 \\
21.190 \\
21.190 \\
13.095
\end{cases} = 13.095 \begin{cases}
1.000 \\
1.618 \\
1.618 \\
1.000
\end{cases}
\qquad \omega_1 = 0.618 \frac{1}{ml}$$

$$\omega_{r}^{2} = \frac{5}{13.09} \frac{T}{ml}$$

$$\omega_1 = 0.618 \sqrt{\frac{\tau}{ml}}$$

$$\begin{bmatrix} S \end{bmatrix}_{1} = \begin{bmatrix} 0 & -1.618 & -1.618 & -1.000 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Y = \lambda [a][s], Y$$
, $\lambda = \frac{\omega^2 m \ell}{5T}$

$$\begin{cases} y_1 \\ y_2 \\ y_3 \\ y_4 \end{cases} = \lambda \begin{bmatrix} 0 & -3.4720 & -4.4720 & -3.000 \\ 0 & 1.1460 & -0.8540 & -1.000 \\ 0 & 0.7640 & 2.7640 & 1.000 \\ 0 & 0.3820 & 1.3820 & 3.000 \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}$$

2nd mode will be unsymmetric . . Start with

$$\begin{cases}
1.0 \\
-6 \\
-1.0
\end{cases}
\Rightarrow
\begin{cases}
3.6000 \\
2.2000 \\
-2.2000 \\
-3.6000
\end{cases}
=
\begin{cases}
-1.000 \\
-6111 \\
1.000
\end{cases}
\Rightarrow
\begin{cases}
-3.6111 \\
-2.2222 \\
3.6111
\end{cases}
=
\begin{cases}
-1.000 \\
-6154 \\
1.000
\end{cases}$$

etc. converges after 4 more iterations to

$$\begin{cases} -3.6180 \\ -2.2360 \\ 2.2360 \\ 3.3180 \end{cases} = 3.3180 \begin{cases} -1.000 \\ -.6180 \\ .6180 \\ 1.000 \end{cases} \qquad \omega_{x}^{2} = \frac{5}{3.318} \frac{1}{ml}$$

$$= 1.3820 \frac{1}{ml}$$

$$\omega_{x}^{2} = \frac{5}{3.3/8} \frac{T}{ml}$$

$$= 1.3820 \frac{T}{ml}$$

$$\omega_{1} = 1.1756 \sqrt{\frac{T}{ml}}$$

$$\begin{cases} y_1 \\ y_2 \\ y_3 \\ y_4 \end{cases} = \lambda \begin{bmatrix} 0 & 0 & 3.2914 & 3.9440 \\ 0 & 0 & -3.416.5 & -3.2920 \\ 0 & 0 & 1.0557 & -.5280 \\ 0 & 0 & .5278 & 2.2360 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$

3rd mode must have 2 modes & be symmetric, start with

$$\begin{cases}
1.0 \\
-.6 \\
-.6 \\
1.0
\end{cases}$$

$$\Rightarrow converges to \begin{cases}
1.9098 \\
-1.1806 \\
-1.1806 \\
1.9098
\end{cases}$$

$$= \begin{cases}
1.0000 \\
-.6182 \\
1.000
\end{cases}$$

$$\omega_{8}^{2} = \frac{5}{1.9098} \frac{T}{ml} = 2.618 \frac{T}{ml}$$
 $\omega_{3} = 1.618 \sqrt{\frac{T}{ml}}$

4th mode

$$C_{1} = 0 = 1.0 \,\overline{y}, + 1.618 \,\overline{y}_{2} + 1.618 \,\overline{y}_{3} + 1.00 \,\overline{y}_{4}$$

$$C_{2} = 0 = -1.00 \,\overline{y}, -.618 \,\overline{y}_{2} + .618 \,\overline{y}_{3} + 1.00 \,\overline{y}_{4}$$

$$C_{3} = 0 = 1.00 \,\overline{y}, -.618 \,\overline{y}_{2} -.618 \,\overline{y}_{3} + 1.00 \,\overline{y}_{4}$$

$$Solving \qquad \overline{y}_{2} = 1.618 \,\overline{y}_{4} \qquad \overline{y}_{3} = -1.618 \,\overline{y}_{4}$$

$$\overline{y}_{1} = 0.618 \,\overline{y}_{3}$$

$$Y=\lambda \left[and [s] [s] [s] \right]$$

$$\begin{cases}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4
 \end{cases} = \lambda
 \begin{cases}
 0 & 0 & 0 & -1.3815 \\
 0 & 0 & 0 & 2.2357 \\
 0 & 0 & 0 & -2.2361 \\
 0 & 0 & 0 & 1.3820
 \end{cases}
 \begin{cases}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4
 \end{cases}$$

$$\omega_4^2 = \frac{5}{1.382} \frac{T}{ml} = 3.6/78 \frac{T}{ml}$$

12-1 Using the HP-25 programmable calculator the following simple program consisting of 36 program steps is written

1 × 10 2×10 5

		$J_i = S$ $J_{k} = H$	$J_3 = 22$	
	Program Mode	Program Gives	Run Mode	Disply
00	F PRGM		F PRGM	. /
02	1 1	Θ,	ω [g] 2	
04	5 函	J,	STO O	
06	RCL O X	ω · J,	R/S	Τ3
07	STO 1	ພີ J,		
12	1 EEX 5 🗦 🗀	$\theta_{z} = 1 - \frac{\partial^2 J_i}{K_i}$	RCL 2	$\Theta_{\mathbf{z}}$
13	STO 2	Θ,	RCL 4	Θ_{3}
14	11 ×	$J_{\bullet} \Theta_{\bullet}$	RCL 0	ω²
18	RCL O X	$\omega_{r} 2^{r} \theta^{r}$	手厂	ယ
20	RCL 1 +	$T_{\mathbf{x}} = \omega^{2} J_{j} + \omega^{2} J_{z} \theta_{\mathbf{x}}$		•
21	(500) 3	$T_{\mathbf{L}}$		
25	2 [5] 5	Ta/K 2		
28	RCL 2 - CHS	$\Theta_3 = \Theta_A - \frac{T_A}{1 \le r}$		
29	STO 4	3		
32	22 <u>×</u>	$\mathcal{J}_{\mathbf{z}} \theta_{\mathbf{z}}$		
34	RCL OX	ω [*]		
36	RCL 3 +	$T_s = T_s + \omega J_s \theta_s$	Newton meters	

The first column indicates the number of steps (49 are allowed), After the program is Keyed in, switch to the Run Mode. Choosing any ω , ω^2 is stored in space O and by pressing [R/S] the calculations in the program mode is executed automatically with T3 displayed. RCL2 and RCL4 then displays θ_2 and θ_3 respectively. To repeat for any other frequency it is only necessary to input the new ω in the run mode and press [R/S].

12-1 Cont. The following ω_s were keyed in to obtain T_3 and θ_2 θ_3 at natural frequencies

$$\frac{\omega}{20} = \frac{T_3 \times 10^3}{14.66} = \frac{\theta_1}{14.66} = \frac{\theta_2}{14.66} = \frac{\theta_3}{14.66} = \frac{14.66}{14.66} =$$

This problem may be solved by digital computer using Eqs. (12.21) + (12.2-2), however for these simple systems, the hand calculator can be easily programmed, as in Prob. 12-1. Only slight changes are necessary.

1st mode was also obtained by matrix iteration as $\omega_1 = 281.3$ Eq. for iteration $\Rightarrow \begin{cases} \theta_1 \\ \theta_2 \\ \theta_3 \end{cases} = \frac{J\omega^2}{6K} \begin{bmatrix} 11 & 5 & 2 \\ 5 & 5 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix}$

12-2 Cout: Use same computer program HP-25 as in Prob. 1-1 with following changes.


```
C
                 PROBLEM 10.3 THOMSON
                 DIMENSION RJ[4], RK(4), 4(60), DE [60,4), T(60,4), TF (60)
9992
0003
                 L=50
0004
0005
                 READ5, (RJ(J),J=1,M)
0006
               5 FORMAT (4F10.3)
                 PEADS, (3K(J), J=1, X)
0007
               6 FOPMAT (4310.3)
0008
0009
                 50 28 I=1,L
0010
                 DE (I, 1) = 1.
0311
                 W(X) = (Y-Y) * 10
                 T(I,1) = W(I) **2*EJ(1) *DE(I,1)
0012
                 00 10 J=2,4
0013
                 DE(E, J) = DE(E, J-1) - m(E, J-1) / BK(J-1)
U014
                 T(T,J) = T(I,J-1) + W(I) **?*BJ(J) *DE(I,J)
0015
              10 CONTINUE
0016
0017
              20 CONTINUE
                 no 25 J=1, A
9018
                 PRINTS4, J, RJ (J) , RK (J)
0019
              24 FORMAT (20 (.13,5X,FR.3,5Y,RB.3)
0920
0021
              25 COMPINGE
                 00 40 I=1,L
0022
0023
                 TP(I) = T(I,M)
0024
                 PRINTSO, W(I), DR(I, M), T(I, M)
              35 PORMAT (10X, FB, 2, 10X, F12.4, 10X, F12.4)
0025
             40 CONTINUE
0026
                 CALL EXPLOT(W.TF.L)
0027
                 CALL FINISH
0029
0029
                 STOP
                 END
0030
```


12-3 W	<u> </u>	<u></u>
0.0	1.0000	9.0
10.00	0.9965	563 . 9 05 8
20.00	0.9860	2242.5156
30.00	0.9686	4996.6680
40.00	9.944 4	8761.6445
50.00	0.9135	13447.9648
60.00	0.8761	18942.5312
70.00	0.8325	25110.0469
80.00	0.7829	31794.7812
90.00	0.7276	38822, 5586
100.00	0.6670	46003.1094
110.00	0.6015	53132.5898
120.00	0.5315	59996.4297
130.00	0.4574	66372.3125
140-00	0.3797	72033.5000
150.00	0.2930	76752.1875
160.00	0.2157	90303.0000
170.00	0.1304	82466.8750
180.00	0.0438	83034.6875
190.00	-0.0436	81811.2500
200.00	-0.1312	78618.8750
210.00	-0.2183	73301.9375
220.00	-0.3042	65729.9375
230.00	-0.3884	55801.7617
240.00	-9.4701	43449.1133
250.00	-0.5488	28640.1875
260.00	-0.6236	11382-6250
270.00	-0.6941	-8273-0625
280.00	-0.7596	-30 231. 3125
290.00	-0.8194	-54348.7500
300.00	-0.8730	-80432.5000
310.00	-0.9197	-108238.687
320.00	-0.9590	-137471.437
330.00	-0.9905	-157782.687
340.00	-1.0137	-198772.437
350.00	-1.0230	-229990.312
360.00	-1.0332	-250936.125
370.00	-1.0290	-291063.687
380.00	-1.0150	-319784.562
390.00	-0.9911	-346471.562
400.00	-0.9571	-370465.062
410.00	-0.9131	-391080.900
420.00	-0.8591	-407613.687
430.00	-0.7952	-419355.500
440.00	-0.7216	-425595.937
450.00	-0.6387	-425642.500
460.00	-0.5470	-418828.125 -404532.187
470.00	-0.4471 -0.3395	-382193 ₊ 375
480.00 490.00	-0.2253	-382193-375 -351330.875
500.00	-0.1054	-311564.437
510.00	0.0192	-262637. V62
520.00	0.1470	-204442, 125
530.00	0.2767	-137046.375
540.00	0.4066	-60724.3125
550.00	0.5349	24013.4375
560.00	0.6595	116383-625
570.00	0.7780	215294.125

Programmed for HP-25

RILL Mode

I PRGM

ယ 🚹

 $\boxed{9}2 = \omega^2$

 $R/s = \chi_4$

 $RCL 2 = \chi_3$

RCL 1 = X2

= 🕰

Program Mode

OOF PRGM

$$m_1 = 1$$
 $\boxed{9}2 = \omega^2$ $1 - \omega^2 m_1 = \chi_2$ $\boxed{5To}0 = \omega^2$

$$(1+x_z)$$

09 RCL 0
$$\times$$
 $\omega^2(1+\chi^2) = F_2$

$$\omega^{2}(1+\chi^{2})=\overline{F_{2}}$$

$$\chi = \chi_z - 1$$

$$x_2 + x_3$$

$$\omega^2(1+\chi_1+\chi_2)=F_3$$

Freq, Plot. Scan.

$$\omega_1 \stackrel{?}{\Rightarrow} \stackrel{?}{\leftarrow} \qquad \begin{array}{c} .768 \\ -.5587 \end{array}$$

$$\omega_{1} \rightarrow 1.5$$
 1.422

$$\omega_3 - \frac{1.7}{1.9} - 2.545$$

$$\chi_4$$
 χ_3 χ_2 χ_1

$$\omega_1 = 1.247$$
 .0001 -1.247 -.535 1.00 $\omega_2 = 1.247$ $\sqrt{\frac{1}{R}}$

$$\omega_2 = 1.802 - .0$$

$$\omega_3 = 1.802 - .00/2 /.8027 - 2.247 /.00 = 1.802 \sqrt{\frac{k}{m}}$$

Mode Shapes

$$F_{1} = m\omega^{2}$$

$$X_{2} = 1 - \frac{m\omega^{2}}{k}$$

$$F_{3} = 2m\omega^{2} \chi_{2}$$

$$F_{5} + F_{2} = m\omega^{2} + 2m\omega^{2} \chi_{2}$$

$$F_{5} + F_{5} = m\omega^{2} + 2m\omega^{2} \chi_{3} + 3m\omega^{2} \chi_{3}$$

$$F_{7} + F_{5} + F_{5} = m\omega^{2} + 2m\omega^{2} \chi_{1} + 3m\omega^{2} \chi_{3}$$

$$\chi_{4} = \chi_{3} - \frac{F_{7} + F_{5}}{2k}$$

$$Prog f PRGM$$

$$RCL O = STO 1 = \chi_{2}$$

$$RCL O = STO 1 = \chi_{2}$$

$$RCL O = STO 1 = \chi_{3}$$

$$RCL O = STO 1 = \chi_{4}$$

Result only of nat. Freq.

$$m_1$$
 ω_m χ_4 χ_3 χ_2 χ_1
1 .4385 -.0004 .3330 .8164 1.00
2 1.000 .000 -1.00 .000 1.00 ... $\omega_1 = .4385 \sqrt{\frac{k}{m}}$
3 1.3478 .0003 .3336 -.8166 1.00 etc.

12-7 Same program as Prob 10-4 but extended to $F_4 = 0$

Program identical

Through 22

28 STO 3

$$\chi_{+}$$
 χ_{5}
 χ_{7}
ω	F ₄	**	× 3	× <u>,</u>	× ,
.01	.0004		_Mod	e Shape	
. 2	.144				
٠4	- 4 08				•
- 4	.407			4.44	
· 76537	000011	-1.00	41 4 2	.4142	1.00
.8	/ 3 /				
1.0	-1.000				
1.4	- 1,567				
1.4142	_ , 000Z	1.00	- 1.00	- 1.00	1.00
1.6	2. 4 17				
1.8	1.858				
1.848	. 0	-1.00	2.418	- 2.418°	1.00
2.0	-16.00				
2.4	-262,0	\wedge	ω,	= .76537	$\sqrt{\frac{k}{m}}$
F ₄	/		ω.	= 1.4142	$\sqrt{\frac{k}{m}}$
0	1:0	2.0	_		
			ಬ್ಯ	= 1.848	$\frac{1}{m}$

<u>Sta.</u>	J	<u> </u>
1	50,900	0.150E+08
2	138.000	0.3002+08
3	145.000).220E+08
4	181.000	0-360E+08
5	260.000	il. 120E+09
6	70000.000	0.0

```
PROBLEM 10.9 THOMSON, ANTISYMMETRIC
   DIMENSION RJ (15), RK (15), W (200), DE (200, 15), T (200, 15), TF (200)
   ≒= ∩
   L = 100
   READ5, (RJ(J), J=1, M)
 5 FORMAT (6F10.3)
   READ6, (RK(J), J=1,M)
 6 FORMAT (6E10.3)
   DO 20 I=1,L
   DE(I, 1) = 1.
   \Re(I) = (I-1) * 10
   T(I,1) = R(I) **2*RJ(1) *DE(I,1)
   00 10 J=2.M
   DE(I,J) = DE(I,J-1) - T(I,J-1) / RK(J-1)
   T(T,J) = T(I,J-1) + R(I) + 2 + RJ(J) + DE(I,J)
10 CONTINUE
20 CONTINUE
   00 25 J=1,8
   PRINT 24, J, RJ (J) , EK (J)
24 FORMAT (20X, 13, 5X, F10, 3, 5X, F10, 3)
25 CONTINUE
   00 40 I=1,L
   TF(I) = T(I, M)
   PRINTSO, W(I), DE(I, M), T(I, M)
30 FORMAT (10X, F8. 2, 10X, F12. 4, 10X, F12. 4)
40 CONTINUE
   CALL EZPLOT(W,TF,L)
   CALL PINISH
   STOP
   END
```

<u>ω</u>	<u> </u>	To
0.0	1.0000	0.0
10.99	0.9955	0-7045E+07
20.00	0.9819	0.2780E+08
30-00	0.9594	0.61132+08
40.00	3. 9283	0.10528+09
50-00	0.8889	0.1574E+09
60.00	9.8416	0.2147E+09
70-00	0.7870	0.2733E+09
80.00	0.7256	0.32948+09
90.00	0.6581	0.3784E+09
100.00	0.5352	0.4158E+09
110-00	0.5078	0.4372E+09 0.4381E+09
120.09	0.4267 0.3428	0.4143E+09
130.00	0.2570	0.3621E+09
140.00 150.00	0.1702	0.2781E+09
	0.0934	0.1600B+09
169.00 ω, Antesym.	-0.0023	0.5965E+07
180.00	-0.0862	-0.1848E+09
190.00	-0.1672	+0-4122E+09
209.00	-0.2446	-0.67432+09
210.00	-0.3173	-0.9702E+09
220.00	-0.3846	-0.1295E+10
230.00	-0.4459	-0.1644E+10
240.00	-0.5004	-0.2012E+10
250.00	-0.5475	-0-2392E+10
260.00	-0.5869	-0.2775E+10
270.00	-0.6180	-0-3154E+10
280.00	-0.6406	+0.3519E+10
290.00	-0.6546	-0.3859E+10
300.00	-0.6598	-0.4166E+10 -0.4427E+10
310.00	-0.6564 -0.6445	-0.44278+10
320.00	-0.6244	-0.4777E+10
330.00 340.00	+0.5966	-0.4848E+10
350.00	-0.5615	-0.4837E+10
360.00	-0.5197	-0.4740E+10
370.00	-0.4721	-0.4552E+10
380.00	-0.4195	-0.4270E+10
390.00	-0.3628	-0.3894E+10
400.00	-0.3030	-0.3426F+10
419.00	-0.2411	-0.2871E+10
420.00	-0.1783	-0.22368+10
430_00	-0-1157	-0.1532E+10
440.00	-0.0545	-0.7713E+09
450.00	0.0042	0.2731E+08
460.00	0.0592	0.8467E+09
470.00	0.1094	0.16658+10
480.00	0.1539	0,2457E+10
490.00	0.1916	0.3199E+10 0.3863E+10
500.00	0.2218	177 2003 et 10

12-8 Cont

ω		 -
	<u> </u>	16
510.00	0.2436	0-4422E+10
520.00	0.2566	0.4848E+10
530-00	9.2633	0.5115E+10
540.00	9.2546	0.5198E+10
550.00	0.2394	0.5075E+10
560.00	3.2149	0.4729E+10
570-99	0.1817	0-4147E+10
580.00	9.1403	0.3323E+10
590.00	J. 0918	9.2258E+10
600.00	0.0372	0.9615E+09
610.00	-0.0219	-0.5465E+09
620.00	-0.0840	-0.2237E+10
630.00	-0.1472	-0-4068E+10
640.00	-7.2095	-0.5989R+10
650.00	-0.2698	-0.7935E+10
660.00	-3.3227	-0.9833E+10
670.00	÷0.43690	-J. 1169E+11
680.99	-0.4056	-3.1314E+11
690-00	-0.4302	-0.1436E+11
700.00	-0.4411	-0.1516E+11
710.00	-0.4366	-0.1546E+11
720.00	-0.4159	-0.1515E+11
730.00	-0.3784	-0.1419E+11
740.00	-0.3247	-0.1253E+11
750.00	-0.2563	-0.1018E+11
760.00	-0.1759	-0.7202E+10
770.09	-0-0878	-0.3728E+10
780.90	9.0913	0.1259E+08
790.00	0.0849	0_3671E+10
800.00	0.1506	0.6753E+10
810.00	0.1853	9-8583E+10
820.00	0.1722	0.8265E+10
830.00	0.0905	0-46432+10
840.00	-0.0848	-0.3753E+10
850.00	-0.3835	-J-1876E+11
860.00	-0.8410	-0.4266E+11

Comments: System was cut at centerline using $\frac{1}{2}$ the J of the fuselage. Antisymmetric modes are given for $\theta_6=0$ and Symmetric modes for $T_6=0$. Note that they are very close to each other because of the very large J_6

From conservation of momentum

$$\frac{m}{l} = m$$

$$(y+y_*) = \frac{P\ell^3}{3EI} = \frac{(m\omega^2y)\ell^3}{3EI} = y + \frac{2m}{M}y = y(1+\frac{2}{m})$$

$$\omega^{2} = \frac{3EI}{M\ell^{3}} \left(m+2 \right) = \frac{6EI}{M\ell^{3}} \left(1 + \frac{m}{2} \right) \qquad \omega = \sqrt{\frac{6EI}{M\ell^{3}} \left(1 + \frac{m}{2} \right)}$$

$$\begin{cases}
-V_3 \\
M_3 \\
0 \\
0
\end{cases} = \begin{bmatrix}
1 & 0 & 0 & m_1 \omega^2 \\
0 & 0 & m_1 \omega^2 \\
0 & 0 & m_2 \omega^2 \\
0 & 0 & 0
\end{cases}$$
where
$$d = \frac{l}{6EI}$$

Calculation can be limited to last 2 rows of last two columns.

$$u_{33} + u_{34}\theta_{1} = 0$$
 $u_{43} + u_{44}\theta_{1} = 0$
or
$$u_{43} - u_{44}\theta_{2} = 0$$

$$freq. eq.$$

For
$$A^2 = AA = U$$
, $u_{ij} = \sum_{k} a_{ik} a_{kj}$

:
$$u_{33} = \sum_{k} a_{3k} a_{k3} = 1 + mcs^2 3 \propto \ell^2$$

$$U_{44} = \sum_{k} G_{2k} G_{44} = m\omega^{2}\alpha l^{2} + m\omega^{2}3\alpha l^{2} + (1+m\omega^{2}\alpha l^{2})^{2}$$
$$= 1 + 9m\omega^{2}\alpha l^{2} + (m\omega^{2}\alpha l^{2})^{2}$$

$$U_{34} = \sum_{k} a_{3k} a_{k4} = m\omega^{2} 3\alpha l + m\omega^{2} 6\alpha l + m\omega^{2} 3\alpha l + m\omega^{2} 3\alpha l (1+m\omega^{2} 0)^{2}$$

$$= 15 m\omega^{2} \alpha l + 3(m\omega^{2} \alpha l)^{2} l$$

$$u_{43} = l + l(1 + m\omega^2 \alpha l^2) = 2l + m\omega^2 \alpha l^3$$

 $\frac{12-10 \text{ Cont:}}{(1+m\omega^{2}3\alpha\ell^{2})[1+q\omega^{2}m\alpha\ell^{2}+(m\omega^{2}\alpha\ell^{2})^{2}]}$ $+(2\ell+m\omega^{2}d\ell^{3})[-15m\omega^{2}d\ell-3\ell(m\omega^{2}\alpha\ell)^{2}]=0$ or $1-18(m\omega^{2}d\ell^{2})+7(m\omega^{2}d\ell^{2})^{2}=0$ let $\beta=m\omega^{2}d\ell^{2}$ then $\beta^{2}-\frac{18}{7}\beta+\frac{1}{7}=0$ $\beta=1.2857\pm\sqrt{1.6531-.1429}=1.2857\pm1.2289$ $\beta=\begin{cases} .0568\\ 2.5615 \end{cases} \forall \beta=\begin{cases} .2384\\ 1.5857 \end{cases} \omega=\begin{cases} .584\\ 3.884 \end{cases} \sqrt{\frac{EI}{m\ell^{3}}}$

12 -//

Fortran H program given here can be used for other 3 mass cantilever system.

If all m_s are equal 4 all l_s are equal, the results for m=1, l=1, and $EI=1\times 10^6$ can be used for other values of m and l and EI by evaluating l, and l,

SYSTEM/370 FORTRAN H EXTENDED (ENHANCED)

```
PROBLEM 10.12 THOMSON
    DIMENSION ZV (2,4), ZM (2,4), ZD (2,4), ZY (2,4), WM (3), NL (3), WBI (3),
   10E (200) , DY (200) , R (200)
    4=4
    1=200
    N= 4-1
    READ5, (NM(J), J=1,N)
 5 FORMAT (3F19.3)
    READS, (\text{WL}(J), J=1, N)
 6 FORMAT (3F10.3)
    READ7, (WEL(J), J=1,N)
 7 FORMAT (3E10.3)
    30(1,1)=0.0
    2D(2, 1) = 1.9
    27(1,1)=1.0
    2\mathbf{Y}(2,1) = 0.0
    DO 60 K=1, L
   % (K) = (K-1) *10.
   00.59 I=1.2
   ZV(I,1) = 0.0
   2H (I, 1) =0.0
   50 40 J=2.M
   VV(I,J) = V(V) **2*VM(J-1)*VV(I,J-1) + 2V(I,J-1)
    ZH(I,J) = W(K) **2*HM(J-1)*WL(J-1)*ZY(I,J-1)+ZM(I,J-1)+WL(J-1)*
  13V (I, J-1)
   ZD (I, J) =W (K) **2*WM (J-1) *WL (J-1) **2/ (2.*WBI(J-1) ) *ZY (I, J-1) +
  120(T,J-1)+WL(J-1)/WET(J-1)*ZM(I,J-1)+WL(J-1)**2/(2.*WET(J-1))*
  13V (I, J-1)
   ZY(I, J) = (1.+W(K) **2*Wd(J-1) *WL(J-1) **3/(6.*WEI(J-1))) *ZY(I, J-1)+
  1 NL (J-1) *ZD (I, J-1) +NL (J-1) **2/(2.*NET (J-1)) *Z# (I, J-1) +NL (J-1) **3/
  1 (6.*WEI (J-1) ) *ZV (I,J-1)
40 CONTINUE
50 CONTINUE
   DE(K) = -2D(1, 4)/2D(2, 4)
   DY(K) = ZY(1,M) + ZY(2,M) * DZ(K)
60 CONTINUE
   DO 70 J=1,N
   PRINT65, WM (J) , WL (J) , WEI (J)
65 FORMAT (10X, F10, 3, 5X, F10, 3, 5X, E10, 3)
70 CONTINUE
   90 30 K=1,L
   PRINT75, W(K), DY(K)
75 FORMAT (20X, F8. 2, 5X, F12. 4)
80 CONTINUE
   CALL EZPLOT (W.DY, L)
   CALL FINISH
   STOP
   CMS
```

m	l	ΕI
1.000	1.000	0.1003+07
1.000	1.000	0.1902+07
1.000	1.000	0.1009+07

ω	y ₄	۵	y 4
150.00	0.6955	1750.00	-0.+357
160.00	0.6456	1770.00	-0.4984
170.00	0.6038	1730.00	-0.3903
130.00	0.5505	1730.30	+0.3532
190.00	0.5155	1800.00	-0.3255
200.00	0.4694	1810.40	-9.2977
210.00	0-4220	1820.00	-0.2698
220.00	0.3734	1830.00	-0.2419
230.00	0.3239	1840.00 1850.00	+9_2137 -9_1955
240.00	0.2735	1860.00	-0.1572
250.00	0.2224	1870.00	-0.1299
260.00	0. 1707	1880.00	-0.1005
270.00	o . 11 85	1890.00	-0.0729
230.00	0.0660	1900.00	-0.0434
ر <i>ند ب</i> 00 و 290	<u>0.0</u> 131	1910.00 \(\Omega_{\begin{subarray}{c} \omega_{\begin{subarray}{c} \omega_{\begin}\omega_{\begin{subarray}{c} \omega_{\begin{subarray}{c} \omega_{\begin{subarray}{c} \o	-0.0148
300.00	-0.0399	1920.00	0.0139
310.00	-0.0920	1930.09	0.0427
320.00	-0.1458	1940.00	0.0715
330.00	-0.1987	1950.00	0.1004
340.00	-9.2513	1950.00	0.1293
350.00	-0.3036	1970.00	0.1583
360.00	-0.3556	1930.00	0.1873
370.00	-0.4071	1990.00	2.2164
390.00	-0.4581	100000	14 2 1 0 4

Data obtained for m=1, l=1, and $EI=1\times10^6$ For other values of m, l, and EI, first evaluate β from $\omega_i = \beta_i \sqrt{\frac{EI}{ml^3}}$. This β can then be used for other m, l, $\neq EI$. i.e. for $l^{\leq l}$ mode $\omega_i = \beta_i / \frac{10^6}{l}$... $\beta_i = \omega_i \times 10^{-3}$ Ξ 0.290 From Prob 11-22 $\omega_i = 0.2925 / \frac{EI}{ml^3}$ $\omega_2 = 1.909 / \frac{EI}{ml^3}$. B from computer sol. = 1.915

Stations must be numbered as 1 to 5 with $m_1 = m_5 = 0$

$$\begin{cases} - \vee \\ 0 \\ \Theta \\ 0 \end{cases} = \begin{bmatrix} - & - & | - & - \\ u_{x1} & - & | u_{23} & - \\ - & - & | - & - \\ u_{41} & - & | u_{43} & - \end{bmatrix} \begin{cases} - \vee \\ 0 \\ \Theta \\ 0 \end{cases}$$

$$m_2 = m_4 = 0$$

$$\begin{cases} -V \\ O \\ \Theta \\ O \end{cases} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} sec 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} sec 3 \\ \Theta_1 \\ 1 \end{bmatrix} \begin{cases} 0 \\ \Theta_1 \\ 1 \end{bmatrix} = \begin{bmatrix} -- & -- \\ -- & u_2 \\ u_4 \end{bmatrix} \begin{bmatrix} 0 \\ O \\ \Theta_1 \\ 1 \end{bmatrix}$$

$$\left| \begin{array}{ccc} u_{23} & u_{24} \\ u_{43} & u_{24} \end{array} \right| = 0$$

12-1-+ Eqs. 12.4-1 to 6 can be arranged in the following matrix form

$$\left\{ \begin{array}{c} \nabla \\ \overline{W} \end{array} \right\}_{3} = \left[\begin{array}{c} A & 2B \\ 2C & D \end{array} \right] \left[\begin{array}{c} A & B \\ C & D \end{array} \right] \left\{ \begin{array}{c} \overline{V} \\ \overline{W} \end{array} \right\}_{1}$$

from Sec1 by 2C; in place of C;.

Section 2 differs

$$= \left[\frac{(A^2 + 2BC)}{(2AC + CD)} \frac{(AB + 2BD)}{(2BC + D^2)} \right] \left\{ \frac{\nabla}{\nabla} \right\}_{1}$$

Set determinant to zero for nat. freqs.

$$\begin{cases}
\kappa_{i} = \infty \\
m_{i}
\end{cases}$$

$$\begin{cases}
\kappa_{i} = \infty \\
m_{i}
\end{cases}$$

$$\begin{cases}
\chi_{i} = 1 \\
\kappa_{i} = 0
\end{cases}$$

$$\begin{cases}
\chi_{i} = 1 \\
-m_{i}
\end{cases}$$

$$\begin{cases}
\chi_{i} = 1 \\
-m_$$

Boundry Cond.

$$\therefore x_4 = x_3 + \frac{F_3}{k_4} = k_0$$

Problem is identical in calculation to torsional system and same program as Prob 12-10 can be used

$$\begin{cases} \theta \\ T \end{cases}_{o}^{R} = \begin{cases} 1 \\ -\omega^{2}J_{1} \end{cases}$$

$$\begin{cases} \theta \\ T \end{cases}_{m}^{R} = \begin{bmatrix} 1 & 0 \\ -\omega^{2}J & 1 \end{bmatrix}_{m} \begin{bmatrix} 1 & \frac{1}{K+i\omega g} \\ 0 & 1 \end{bmatrix}_{m}^{R} \begin{bmatrix} \theta \\ T \end{bmatrix}_{m-1}^{R} = \begin{bmatrix} 1 & \frac{1}{K+i\omega g} \\ -\omega J & (1-\frac{\omega^{2}J}{K+i\omega g}) \end{bmatrix}_{m}^{R} \begin{cases} \theta \\ T \end{bmatrix}_{m-1}^{R}$$

$$Elements of above transfer matrix are:$$

$$\frac{1}{K+i\omega g} = \begin{bmatrix} \frac{K}{K^{2}+(\omega g)^{2}} \end{bmatrix} - \lambda \begin{bmatrix} \frac{\omega g}{K^{2}+(\omega g)^{2}} \end{bmatrix}$$

$$1 - \frac{\omega^{2}J}{K+i\omega g} = \begin{bmatrix} 1 - \frac{\omega^{2}JK}{K^{2}+(\omega g)^{2}} \end{bmatrix} + \lambda \begin{bmatrix} \frac{\omega^{2}J\omega g}{K^{2}+(\omega g)^{2}} \end{bmatrix}$$

 $Sample calc. \ for \ \omega^{2} = 0.5 \times 10^{5}$ $\begin{cases} \theta \\ T \end{cases}^{R} = \begin{cases} 1.0 \\ -1 \times 10^{6} \end{cases}$ $\begin{cases} \theta \\ T \end{cases}^{R} = \begin{cases} 1 - i(.446 \times 10^{6}) \\ -1 \times 10^{6} \end{cases} \begin{cases} 1.0 \\ -1 \times 10^{6} \end{cases} = \begin{cases} 1 + .446i \\ (-6 - i2.23) \times 10^{6} \end{cases}$ $\begin{cases} \theta \\ T \end{cases}^{R} = \begin{bmatrix} 1 & .2 \times 10^{5} \\ -.5 \times 10^{6} & .90 \end{cases} \begin{cases} 1 + .446i \\ (-6 - i2.23) \times 10^{6} \end{cases}$ $\begin{cases} \theta \\ T \end{cases}^{R} = \begin{bmatrix} 1 & .2 \times 10^{5} \\ -.5 \times 10^{6} & .90 \end{cases} \begin{cases} 1 + .446i \\ (-6 - i2.23) \times 10^{6} \end{cases} = \begin{cases} -.20 \\ (-5.9 - i2.23) \times 10^{6} \end{cases}$ $\begin{cases} \theta \\ T \end{cases}^{R} = \begin{bmatrix} 1 & .10 \times 10^{6} \\ -1.5 \times 10^{6} & .85 \end{cases} \begin{cases} -.20 \\ (-5.9 - i2.23) \times 10^{6} \end{cases} = \begin{cases} -.79 - i.223 \\ (-4.72 - i1.9) \times 10^{6} \end{cases}$ $\begin{cases} \theta \\ T \end{cases}^{R} = \begin{cases} 1 & .10 \times 10^{6} \\ -.59 - i2.23 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.223 \\ -.79 - i.23 \times 10^{6} \end{cases}$ $\begin{cases} \theta \\ T \end{cases}^{R} = \begin{cases} 1 & .10 \times 10^{6} \\ -.20 & .85 \end{cases} \begin{cases} -.20 & .23 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.223 \\ -.472 - i.1.9 \times 10^{6} \end{cases}$ $\begin{cases} \theta \\ T \end{cases}^{R} = \begin{cases} 1 & .10 \times 10^{6} \\ -.59 - i2.23 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.223 \\ -.79 - i.23 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.223 \\ -.79 - i.23 \times 10^{6} \end{cases}$ $\begin{cases} \theta \\ T \end{cases}^{R} = \begin{cases} 1 & .10 \times 10^{6} \\ -.20 & .85 \end{cases} = \begin{cases} -.79 - i.23 \times 10^{6} \\ -.472 - i.1.9 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.233 \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.233 \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.233 \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.233 \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.233 \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.233 \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.233 \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.233 \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.233 \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.233 \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.233 \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.233 \times 10^{6} \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.233 \times 10^{6} \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.233 \times 10^{6} \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.233 \times 10^{6} \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.79 - i.233 \times 10^{6} \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.49 - i.233 \times 10^{6} \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.49 - i.233 \times 10^{6} \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.49 - i.233 \times 10^{6} \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.49 - i.233 \times 10^{6} \\ -.49 - i.233 \times 10^{6} \end{cases} = \begin{cases} -.49 - i.233 \times 10^{6} \\ -.49 - i.233 \times 10^{6} \end{cases} =$


```
Eqs. 12.6-3 4 12.6-4
```

```
Ĵz
            92
           K_= 0
                            K
n
           J
                                                                  a
                                              C
                        0.0000E 00
                                            0.0000E 00
                                                                0.0000E 00
1
         20.000
2
        100.000
                        0.0000E 00
                                            0.0000E 00
                                                                0.1000@ 05
3
                                            0.0000E 00
                                                                0.0000E 00
         10.000
                        0.5000E 07
4
         30.000
                        0.1000E 08
                                            0.0000E 00
                                                                0.0000E 00
           PROBLEM 10.21 THOMSON
           DIMENSION RJ (4), RK (4), RC (4), RG (4), W (60)
           COMPLEX DE (60,4), T(60,4), CRJ(4), CRK(4), CMPLX
           M=4
           L=60
           READ, (PJ(J), J=1, M)
           READ, (RK(J), J=1, M)
           READ, (RC(J), J=1, M)
           READ, (RG(J), J=1, M)
           DO 20 I=1,L
           R(I) = I * 10
           DO 5 J=1.4
           2R = -W(I) **2*RJ(J)
           ZI=W(I)*RC(J)
           CRJ(J) = CMPLX(ZR_ZI)
           ZR = RK(J)
           ZI=W(I) *RG(J)
           CRK(J) = CMPLX(ZR_ZI)
         5 CONTINUE
           DE (I, 1) = 1.
           T(I,1) = CRJ(1) * DE(I,1)
           DO 10 J=2,M
           DE(I,J) = DE(I,J-1) + T(I,J-1) / CRK(J)
           T(I,J) = CRJ(J) *DE(I,J-1) + (1.+CRJ(J)/CRK(J)) *T(I,J-1)
        10 CONTINUE
        20 CONTINUE
           DO 25 J=1,M
           PRINT24, J, RJ (J), RK (J), RC (J), RG (J)
        24 FORMAT(20x,13,5x,F8.3,5x,E12.4,5x,E12.4,5x,E12.4)
        25 CONTINUE
           DO 40 I=1.I.
           PRINT30, W(I), DE(I, M), T(I, M)
        30 FORMAT (10x, F8.2, 10x, 2E12.4, 10x, 2E12.4)
        40 CONTINUE
           STOP
           END
```

ω	O _{real}	0 imag	Treal	Timag
10.00	0.9963E 00		-0.1599E	05 -0.2798E 03
20.00	0.9852E 00	0.39508-01	-0.6378E	05 -0.2233E 04
30.00	0.9667E 00	0.58338-01	-0.1429E	06 -0.75058 04
40.00	0.94098 00	0.7604E-01	-0.2525E	06 -0.1769E 05
50.00	0.9077E 00	0.9226E-01	-0.3916E	06 -0.3429E 05
50.00	0.8671E 00	0.1066E 00	-0.55852	06 -0.5873E 05
70.00	0.8193E 00	0.1188E 00	-0.7517E	06 -0.9225E 05
80.00	0.7642E 00	0.1284E 00	-0.9689E	06 -0.1360E 06
90.00	0.7019E 00	0.1350E 00	-0.1208E	07 -0.1908E 06
100.00	0.6324E 00	0.1384E 00	-0.1466e	07 -0.2575E 06
110.00	0.5558E 00	0.1381E 00	-0.1740E	07 -0.3365E 06
120.00	0.4722E 00	0.1339E 00	-0.2026E	07 -0.4280E 06
130.00	0.3816E 00	0.1253E 00	-0.2322E	07 -0.5320E 06
140.00	0.2840E 00	0.1120E 00	-0.2623E	07 -0.6480E 06
150.00	0.1797E 00	0.9379E-01	-0.2925E	07 -0.7754E 06
160.00	0.6853E-01	0.70248-01	-0.3223E	07 -0.9131E 06
170.00	-0.4925E-01	0-4107E-01	-0.3514E	07 -0-1060E 07
180.00	-0.1736E 00	0.59758-02	-0.3791E	07 -0.1213R 07
190-00		-0.3535E-01	-0.4051E	07 -0.1372E 07
200.00		-0.8320E-01	-0.4286E	07 -0.1532E 07
210-00		-0.1378E 00	-0.4492E	07 -0.1692E 07
220.00		-0.19968 00	-0.4663E	07 -0.1847E 07
230.00		-0.2686E 00	-0.4793E	07 -0.1993E 07
240.00		-0.3452R 00	-0.4875E	07 -0.2126E 07
250.00		-0.4297E 00	-0.4902E	07 -0.2241E 07
260.00		-0.5222E 00	+0.4869E	07 -0.2332E 07
270-00		-0.6229E 00	-0.4768E -0.4593E	07 -0.2394E 07 07 -0.2419E 07
280.00 290.00		-0.7322E 00 -0.8501E 00	-0.4336E	07 -0.2419E 07 07 -0.2400E 07
300.00		-0.9768E 00	-0.3990E	07 -0.2331E 07
310.00		-0.1113E 01	-0.3547E	07 -0.2201E 07
320.00		-0.1257B 01	-0.3001E	07 -0.2004E 07
330.00		-0-1412E 01	-0-2344E	07 -0-1729E 07
340.00		-0.1575E 01		07 -0.1367E 07
350.00 W		-0.1748E 01	-0.6651E	06 -0.9071E 06
360.00		-0.1931E 01		06 -0.3387E 06
370.00		-0.21238 01	0.1550E	07 0.3497E 06
380.00		-0.2325B 01	0.2877E	07 0.1170E 07
390.00		-0.2537E 01	0.43628	07 0.2135E 07
400.00	-0.4306E 01	-0.2758E 01	0.6011E	07 0.3256F 07
410.00	-0-4542E 01	-0.2990E 01	0.7832E	07 0.4549E 07
420.00	-0.4780E 01	-0.3231E 01	0.9832E	07 0.6025E 07
430.00	-0.5021E 01	-0.3481E 01	0.1202E	03 0.7700E 07
440.00	-0.5264E 01	-0.3742E 01	0.1440E	08 0.9588B 07
450.00	-0.5508E 01	-0.4012E 01	0.1698E	08 0.1170E 08
460.00	-0.5755E 01	-0.4291E 01		08 0.1406g 08
470.00		-0.4580E 01		08 0.1668E 08
480.00		-0.4877E 01		09 0.1958E 08
490.00		-0.5184E 01		08 0.2276E 08
500.90		-0.5500E 01		08 0.2625E 08
510.00		-0.5824E 01		08 0.3006E 08
520.00		-0.6157E 01		08 0.34228 08
530.00		-0.6498E 01		08 0.3873E 08
540.00	-0.7748E 01	-0.6846E 01	0.50288	08 0.4361E 08

After reduction to equivalent single shaft system, the freq.eq. of the degenerate $J=24 = (6+4\times 2)=14$ 3-DOF system may be used.

$$\omega^{4} - \left[\frac{K_{I}}{J_{I}} + \frac{K_{2}}{J_{2}}\left(1 + \frac{K_{I}}{K_{2}} + \frac{J_{2}}{J_{3}}\right)\right] \omega^{2} + \frac{K_{I}}{J_{I}} \frac{K_{2}}{J_{2}}\left(\frac{J_{I} + J_{2} + J_{3}}{J_{3}}\right) = 0$$

$$\omega^{4} - \left[\left(\frac{62.8}{24}\right) + \frac{59.7}{14}\left(1 + \frac{62.8}{.597} + \frac{14}{40}\right)\right] 0^{4} \omega^{2} + \left[\frac{62.8}{24} \cdot \frac{59.7}{14}\left(\frac{24 + 14 + 40}{40}\right)\right] 0^{3} = 0$$

$$\omega^{4} - 12.82 \times 10^{4} \omega^{2} + 21.8 \times 10^{6} = 0$$

$$\omega^{2} = \begin{cases} 10.86 \times 10^{4} & \omega = \begin{cases} 32.9.2 \text{ T/s} \\ 2.01 \times 10^{4} \end{cases} & \omega = \begin{cases} 52.30 & H_{2} \\ 141.8 & 11 \end{cases}$$

12 - 17

$$\omega^{2} = \frac{(J_{1} + n^{2}J_{1})K_{2}(n^{2}K_{1})}{(n^{2}J_{1})J_{2}(K_{2} + n^{2}K_{1})}$$

$$K_1 = G \frac{\pi D^4}{32\ell} = \frac{(12 \times 10^6) \pi (1..5)^4}{32 \times 40} = 0.1492 \times 10^6$$

$$K_2 = \frac{(12 \times 10^6) \, \text{Tr} (2)^4}{32 \times 30} = 0.628 \times 10^6$$

$$\omega^{2} = \frac{(24+40)(.628)(.1492)\times10^{2}}{(240)(.628+.5975)\times10^{6}} = 2.04\times10^{4}$$

$$\int_{2}^{2} = 24$$

$$\int_{2}^{30} \frac{30}{K_{2}} \frac{40}{K_{1}} \int_{3}^{3} = 10$$

$$\omega = 22.7 \text{ Hz}$$

$$\int_{2}^{3} \frac{K_{2}}{K_{2}} \frac{m^{2}K_{1}}{K_{1}} \int_{3}^{4} \frac{M^{2}J_{1}}{K_{2}} dx$$

JAK along shaft B are multiplied by m = 16 so that the gear ratio is reduced to 1:1

Then
$$\theta_{A_i}^R = -\theta_{B_i}^R = \theta_i^L$$
 and $T_{A_i}^R + T_{B_i}^R = T_i^L$

$$\begin{cases} \frac{\theta}{T} \\ \frac{1}{\sigma} \end{cases} = \begin{cases} \frac{1}{1-15\omega^2} \end{cases} = \text{starting eq.}$$

$$\begin{cases} \frac{\theta}{T} \\ \frac{1}{T} \end{cases} = \begin{bmatrix} \frac{1}{1-15\omega^2} \\ \frac{1}{1-15\omega^2} \\ \frac{1}{1-15\omega^2} \end{cases} = \begin{cases} \frac{1-7.5\times10^{-6}}{1-15\omega^2} \\ \frac{1}{1-15\omega^2} \\ \frac{1}{1-15\omega^2} \end{cases} = \begin{cases} \frac{1}{1-15\omega^2} \\ \frac{1}{1-15\omega^2} \\ \frac{1}{1-15\omega^2} \\ \frac{1}{1-15\omega^2} \end{cases} = \begin{cases} \frac{1}{1-15\omega^2} \\ \frac{1}{1-15\omega^2} \\ \frac{1}{1-15\omega^2} \\ \frac{1}{1-15\omega^2} \\ \frac{1}{1-15\omega^2} \end{cases} = \begin{cases} \frac{1}{1-15\omega^2} \\ \frac{1}{1-1$$

$$\begin{cases} \theta \\ T \end{cases}^{R} = \begin{bmatrix} 1 & 0/5 \zeta \times 10^{-6} \\ -96\omega^{2} & (1-1.5\times10^{-6}\omega^{2}) \end{bmatrix} \begin{cases} \theta \\ T \end{cases}^{R}$$

$$\begin{cases} \theta \\ T \end{cases}^{R} = \begin{bmatrix} 1 & .625^{-} \times 10^{-6} \\ -10\omega^{2} & (1-6.25^{-} \times 10^{-6}\omega^{2}) \end{bmatrix} \begin{cases} \theta \\ T \end{cases}_{A1}$$

Solution

$$\omega_1 = 377.2 \qquad \left\{ \begin{array}{c} \theta_1 \\ \theta_2 \end{array} \right\}^{(1)} = \left\{ \begin{array}{c} 1.0 \\ -4.35 \end{array} \right\}$$

$$\omega_{z} = 427.0 \qquad \left\{ \begin{array}{l} \theta_{1} \\ \theta_{2} \end{array} \right\}^{(2)} = \left\{ \begin{array}{l} 1.0 \\ 2.605 \end{array} \right\}$$

$$\omega_3 = 940.0 \qquad \left\{ \begin{array}{c} \theta_1 \\ \theta_2 \end{array} \right\}^{(3)} = \left\{ \begin{array}{c} 1.0 \\ 1.725 \end{array} \right\}$$

With $m = \frac{1}{3.5}$ the rear wheels and axle are replaced by 20°Jw and 20°Ka, In series with the drive shaft the stiffness is Let $N = \frac{1}{3}$ = transmission gear ratio, and refer all stiffnesses and inertias to engine speed by multiplying by N2. System then

12-21

 $J = J_1 = J_2 = J_3 = J_4 = 0.20$ lb in sect

Approximation to first nat freq as two mass system

$$\omega = \sqrt{\frac{K(J_1 + J_2)}{J_1 J_2}} = 10^3 \sqrt{\frac{.0017(13,1 + .168)}{13,1 \times .168}}$$

$$= 10^3 \sqrt{.0102} \approx 100 \text{ rad/sec}.$$

computer solution follows

Flow diagram for digital computation of

Prob 12-21

FORTRAN IV G LEVEL 21

```
DIMENSION SJ(6), SK(5), THETA(2000, 6), TR(2000, 6), TL(2000, 6),
  S CMEG(2000)
   ₽=2000
   CF=50.
   STEP=20.
   CC 10 I=1,3
   SJ(I)=.2
10 SK(I)=0.61E 07
   SJ(4)=.2
   SJ{5}=12.3
   $1(6)=.168
   SK(4)=0.45E 07
   SK(5)=0.17E 04
   EC 40 I=1,M
   TL(I,1)=0.
   THETA(I,1)=1.
   C#SQ=CM++2
   TR(I_1) = -CMSG*SJ(1)
   CC 30 K=1,5
   L≖K+l
   THETA(I,L)=THETA(I,K)+TR(I,K)/SK(K)
   IL(I,L)=TR(I,K)
30 TR(I,L)=TL(I,L)-CMSQ*SJ(L)*THETA(I,L)
   CMEG(IJ=OM
46 CM=UM+STEP
   N=#/2
   PRINT 50
   PRINT 60, ((OMEG(1), TR(1,6), OMEG(1+N), TR(1+N,6)), I=1, N)
50 FORMAT('1',' OMEGA',10X,'TR(CM,6)',33X,'OMEGA',10X,'TR(OM,6)'
60 FORMAT(' '.F7.1,5X,E15.4.30X,F7./, 5X,E15.4)
   STOP
   END
```


The system is first reduced to the above model The equations in matrix form are

$$K \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix} = -\omega J \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 6 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix}$$

Rearrange to

Results of iteration with sweeping matrix

$$\omega_{0} = 0 , \begin{cases} 1.0 \\ 1.0 \\ 1.0 \end{cases} \qquad \omega_{1} = 1.272 \left\{ \frac{k}{J} , \begin{cases} 1.00 \\ -1.614 \\ -1.137 \\ 1416 \end{cases} \right\}$$

$$\omega_{1} = .5375 \left\{ \frac{k}{J} , \begin{cases} 1.00 \\ .714 \\ .239 \\ -.326 \end{cases} \right\} \qquad \omega_{3} = 1805 \left\{ \frac{k}{J} , \begin{cases} 1.00 \\ -2.27 \\ 1.87 \\ -.1005 \end{cases} \right\}$$

From Eq. 12.9-5

$$\begin{bmatrix}
-\sqrt{M} \\
0 \\
0
\end{bmatrix} = \begin{bmatrix}
-\frac{1}{1} - \frac{1}{m\omega^2 \ell^2} \\
0 \\
0
\end{bmatrix} \begin{pmatrix}
0 \\
0 \\
0
\end{bmatrix}$$

$$\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}$$

$$\begin{pmatrix}
1 \\
1 \\
1 \\
1 \\
0
\end{pmatrix}$$

$$\left| \frac{1}{2EI} \frac{m\omega^2 \ell^2}{2EI} \right| = 0 \qquad \omega = \sqrt{\frac{3EI}{m\ell^3}}$$

From Eq. 12.9 -5 Let a = e/GET

$$\begin{cases} -V \\ M \\ O \\ O \end{cases} = \begin{bmatrix} 1 & D & O & m\omega^2 \\ \ell & I & O & m\omega^2 \\ 3 & \ell & 6 & \alpha & I & 3 & m\omega^2 & \ell \\ 3 & \ell & 6 & \alpha & I & 3 & m\omega^2 & \ell \\ \alpha & \ell^2 & 3 & \alpha & \ell & \ell & (1 + m\omega^2 & \ell^2) \end{bmatrix}^2 \begin{cases} O \\ O \\ \Theta \\ I \end{cases}_{I}$$

We need only to calculate the last two columns of the last two rows, which are:

$$\begin{cases}
(1 + 3 m w d l^{2}) & [15 m w d l + 3 (m w d)^{2} l^{3}] \\
(2 l + m w d l^{3}) & [1 + 9 m w d l^{2} + (m w d l^{2})^{2}]
\end{cases}
\begin{cases}
0 \\
0
\end{cases}$$

Det, set to zero gives

$$(m\omega^2 \alpha l^2)^2 - 3(m\omega^2 \alpha l^2) + \frac{1}{6} = 0$$
Solving
$$\omega = \begin{cases} 0.583 & \frac{EI}{ml^3} \\ 4.20 & \frac{EI}{ml^3} \end{cases}$$

(2 - 25)

$$\left\{ \begin{array}{c} O \\ M \\ O \\ y \end{array} \right\}_{3} = \left\{ \begin{array}{c} u_{i,i} \end{array} \right\} \left\{ \begin{array}{c} O \\ O \\ O \\ y \end{array} \right\}_{i}$$

Freq. eq.
$$\begin{vmatrix} u_{13} & u_{14} \\ u_{23} & u_{34} \end{vmatrix} = 0$$

Freq. eq.
$$\begin{vmatrix} u_{23} & u_{24} \\ u_{43} & u_{44} \end{vmatrix} = 0$$

$$-J\omega^{2}\theta_{N} = K(\theta_{N} - \theta_{N}) - K(\theta_{N} - \theta_{N-1})$$

$$\theta_{N-1} - 2(1 - \frac{\omega^{2}J}{2K})\theta_{N} + \theta_{N+1} = 0 \qquad \text{Let } \theta_{N} = e^{\lambda n}$$

$$e^{-\lambda} - 2(1 - \frac{\omega^{2}J}{2K}) + e^{\lambda} = 0$$

$$\vdots \quad \frac{\omega^{2}J}{K} = 2(1 - \cos k\lambda) \qquad \lambda = i\beta$$

$$= 2(1 - \cos \beta) \qquad \theta_{N} = e^{i\beta n} = \cos \beta n + i \sin \beta n$$

$$Assume sol. \quad \theta_{N} = A \sin \beta n + B \cos \beta n$$

$$Boundary \qquad \theta_{0} = 0 \qquad i \quad B = 0 \qquad \text{and} \quad \theta_{N} = A \sin \beta n$$

$$Boundary \qquad -\omega^{2}J\theta_{N} = -K(\theta_{N} - \theta_{N-1})$$

$$(1 - \frac{J\omega^{2}}{K})\theta_{N} = \theta_{N-1}$$

$$[1 - 2(1 - \cos \beta)] \sin \beta N = \sin \beta(N-1)$$

$$Reduces to \qquad 2 \sin \beta N \cos \beta = \sin \beta(N-1) + \sin \beta N$$

$$2 \cos \beta (N + \frac{1}{2}) \sin \frac{\beta}{2} = 0 \qquad i \quad \beta = 0, 2\pi, ---$$

$$\omega_{N} = 2\sqrt{\frac{K}{J}} \sin \frac{(ak - i)\pi}{2(2N + 1)} \qquad k = 1, 2, 3, --N$$

<u> 12- 27</u>

12-27 Cont:

$$1 - \frac{\omega^{2}me}{2T} = \frac{e^{i\beta} + e^{-i\beta}}{2} = \cos \beta$$

$$\frac{\omega^{2}me}{2T} = 1 - \cos \beta = 2 \sin^{2} \beta$$

$$\frac{1}{2}$$

$$\frac{1$$

12-28

$$m \ddot{x}_{m} = k(x_{m+1} - x_{m}) - k_{m}(x_{m} - x_{m-1})$$

$$x_{m+1} - \lambda(1 - \frac{x_{m}^{2}m}{k})x_{m} + x_{m-1} = 0$$

This problem is identical to Prob.12-27 with changes in boundary conditions i. w = 2/k sin kt k=1,2--

12-29

$$m \dot{\alpha}_{m} = \frac{T_{m+1}}{\ell} \left(\chi_{m+1} - \chi_{m} \right) - \frac{T_{m}}{\ell} \left(\chi_{m} - \chi_{m-1} \right)$$

$$T_{m} = T_{m+1} + m g$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m+1} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}} \left(\chi_{m} - \chi_{m} \right)$$

$$T_{m} = \frac{m g \ell}{T_{m}}$$

$$J_{a}, \theta_{a}$$

$$J_{a}, \theta_{a}$$

$$T'_{1} = XK(\theta' - \theta_{1})$$

$$T_{2} = T_{1} = -\omega^{2}J\theta'$$

$$T_{2} = XK(\theta_{2} - \theta')$$

$$T_{3} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} T_{2} $

Boundary Conditions

$$\theta_1 - \theta_a = \frac{T_1}{\kappa_a} = -\frac{\omega^2 J_a \theta_a}{\kappa_a}$$
, $T_{N+1} = 0$

$$\Theta_{i} = \operatorname{cosh} N\lambda \cdot \Theta_{N+1} = \left(1 - \frac{\omega J_{a}}{\kappa_{a}}\right) \Theta_{a}$$

Divide

$$\frac{Z \sin \ln N}{\cosh N} = \frac{-\omega^2 J_a}{\left(1 - \frac{\omega^2 J_a}{\kappa_a}\right)}$$

$$\frac{2k\left(i-cosh\lambda\right)}{sink\lambda}\cdot\frac{sinkN\lambda}{coshN\lambda}=\frac{-\omega^{4}J_{\alpha}}{\left(i-\frac{\omega^{4}J_{\alpha}}{2}\right)}$$

$$-2K \left[\frac{1}{2} \frac{\sinh N\lambda \cosh \lambda - \sinh N\lambda}{1 + \frac{4K \ln \sinh^2 \lambda}{K_0 \ln N}} \cdot \frac{\sinh \lambda}{2} \cdot \frac{\sinh \lambda}{2} \right]$$

(-2 sinh H) cosh) + 2 sinh N) (1 - 4 K Ja sinh 2) = 2 Ja sinh 2 Sinh 2 Sinh 2 Sinh 2 Sinh 2 Sinh 3

(-sin NB COSB + sin NB)(1+4 & Je sin B) =-2 \(\frac{1}{2} \) sin B COS NB

Solve for & & subst. into freq. eq

$$\omega = 2\sqrt{\frac{k}{J}} \sin \frac{\beta}{2}$$

This problem can also be solved by using stations at the disks instead of at points midway between disks. The equations

0 = A singm + B copm , M= 0,1,2 ... N

can be used provided to = 1/ko + 1/k is used.

12-31

At top of the bldg,
$$m\ddot{x}_N = -k(x_N - x_{N-1}) - K_N x_N$$

or
$$X_{N-1} = \left(1 + \frac{K_N}{4} - \frac{m\omega^2}{4}\right) \chi_N$$

sing(N-1) - sing N + 2 (1-cosp) sing N = KN sin B N

12-31 Cont

$$Sin \beta N Coop - CospN Sin \beta - Sin \beta N + 2 Sin \beta N - 2 Sin \beta N Coop = \frac{K_N}{R} Sin \beta N$$

$$- Sin \beta N Coop - Cop N Sin \beta + Sin \beta N = \frac{K_N}{R} Sin \beta N$$

$$\therefore - Sin \beta (N+1) + Sin \beta N = \frac{K_N}{R} Sin \beta N$$

$$2 Cos \beta (N+\frac{1}{2}) - Sin \beta = 2 \left[Cop N Cos \beta Sin \beta - Sin \beta N Sin \beta \right] = \left[Cosp N Sin \beta - Sin \beta N Cos \beta \right]$$

$$= Cos \beta N Sin \beta - Sin \beta N Cos \beta$$

$$\therefore - 2 Cos \beta (N+\frac{1}{2}) \cdot Sin \beta = \frac{K_N}{R} Sin \beta N$$

12-32

System is Same as those of Figs. P12-27 4 P12-28

$$\lambda_{i} \omega_{m} = 2 \sqrt{\frac{R}{m}} \sin \frac{m\pi}{2(N+1)}$$

12-33

Let h = height between stories

$$\begin{split} m \dot{y}_{n} &= -k \left[(y_{n} - nh\theta) - (y_{n-1} - nh\theta) \right] + k \left[(y_{n+1} - nh\theta) - (y_{n-1} - nh\theta) \right] \\ &= -k \left[(y_{n} - y_{n-1} - h\theta) \right] + k \left[(y_{n+1} - y_{n} - h\theta) \right] \\ &= k \left[(y_{n+1} - 2y_{n} + y_{n-1}) \right] \end{split}$$

i. for harmonic motion

$$Y_{m+1} - 2\left(1 - \frac{m\omega^2}{2k}\right)Y_m + Y_{m-1} = 0$$

boundary
$$Y_N = Y_0 \cos \beta N + B \sin \beta N$$

$$B = \frac{Y_N - Y_0 \cos \beta N}{\sin \beta N}$$

Gen sol. becomes

$$Y_m = Y_0 \frac{\sin \beta(N-m)}{\sin \beta N} + Y_m \frac{\sin \beta m}{\sin \beta N}$$

boundary eg. for Nth mass

$$=\omega^2 m Y_N = -k \left[Y_N - Y_{N-1} + h \theta \right]$$

$$\frac{\left(i-\frac{\omega^{2}m}{k}\right)Y_{N}=Y_{N-1}-k\theta}{Torque E_{q}}$$

$$\sum_{m=1}^{N}mk\left(\frac{m\ddot{y}_{N}}{y_{N}}\right)-K_{\theta}\theta=\left(N+1\right)m\rho^{2}\ddot{\theta}$$

$$-\omega^{2}mk\sum_{m=1}^{N}nY_{m}-K_{\theta}\theta=-\left(N+1\right)m\rho^{2}\omega^{2}\theta$$
or
$$\omega^{2}mk\sum_{m=1}^{N}nY_{m}-\left(k_{\theta}-\left(N+1\right)m\rho^{2}\omega^{2}\right)\theta=0$$

Flow diagram of Fig. 12.2-3 may be used From Prob.12-3 range of ω may be from 0 to 5000 ie ω , \approx 264, ω \approx 550 ω \approx 5000. We may choose $\Delta\omega$ = 20 which will require 30 steps to get past ω . For ω > 550 it may be advisable to choose Larger steps, ie $\Delta\omega$ = 100 to locate ω 3 after which a finer interval could be used,

Computer program may be written somewhat after that of Prob 12-3

12-35 Eq. 10-8 gives $\beta_k = \frac{(2k-1)\pi}{(2N+1)}$ | N = DOFEq. 10-9 gives $\omega_k = 2\sqrt{\frac{k}{m}} \sin \frac{(2k-1)\pi}{2(2N+1)}$ | k = mode numberThen $X_m = B \sin \beta m$ where m = floor number

- (1) noise in radio reception wide freq. range 4 probably stationary.
- (2) ground motion of earthquake non stationary
- (3) ocean wave heights non stationary and dependent on wind or sea state

13-4 Make table as suggested here

Throw	Н	7	Sum	sum + n
n = /		0	0	0
2	/		/	1/2
3		0	/	1/3
4		0	/	1/4
5	/		2	2/5
6	/		3	3/6
7		0	3	3/7
etc		[l

Mean square value
$$\frac{7}{\chi^{2}} = \frac{1}{7} \left\{ \int_{0}^{\infty} \left(\frac{2t}{7} \right)^{2} dt + \int_{\gamma_{A}}^{\infty} \left[2 - \frac{2t}{7} \right]^{2} dt \right\}$$

$$= \frac{1}{7} \left\{ \frac{4}{7^{2}} \frac{t^{3}}{3} \right|_{0}^{\gamma_{A}} + \left(4t - \frac{8}{7} \frac{t^{2}}{2} + \frac{4}{7^{2}} \frac{t^{3}}{3} \right) \right|_{\gamma_{A}}^{\gamma}$$

$$= \frac{1}{3}$$

 $X = A_0 + A_1 Sin \omega t$ - Mean val. = A_0 by inspection Let $\omega t = 0$

$$\frac{1}{2\pi} = \frac{1}{2\pi} \int_{0}^{2\pi} (A_{\circ}^{2} + 2A_{\circ}A_{i}\sin\theta + A_{i}^{2}\sin^{2}\theta) d\theta$$

$$= \frac{1}{2\pi} \left\{ A_{\circ}^{2}\theta - 2A_{\circ}A_{i}\cos\theta + \frac{A_{i}^{2}\theta}{2} - \frac{A_{i}^{2}\sin^{2}\theta}{2} \right\}_{0}^{2\pi}$$

$$= \frac{1}{2\pi} \left\{ A_{\circ}^{2}2\pi - 2A_{\circ}A_{i}(1-1) + \frac{A_{i}^{2}}{2}2\pi - 0 \right\} = A_{\circ}^{2} + \frac{1}{2}A_{i}^{2}$$

<u> 13 - 7</u>

 $\overline{x} = \frac{A}{\pi} \int \sin \theta \, d\theta = \frac{A}{\pi} \left(-\cos \theta \right) \Big|_{\theta}^{\pi} = \frac{2A}{\pi}$

 $\overline{\chi^2} = \frac{A^2}{\pi} \int \sin^2 \theta \ d\theta = \frac{A^2}{\pi} \frac{\theta}{2} \Big|^{\overline{V}} = \frac{A^2}{2}$

13-8 Peak values are positive quantities : cannot have a probability in the negative region. Also probability of zero or infinite peaks is zero.

Area under normal probability curve = 1.0

$$\int \frac{e^{-\frac{\chi^2}{2\sigma^2}}}{\sigma \sqrt{2\pi}} d\chi = \frac{\sigma \sqrt{2\pi}}{\sigma \sqrt{2\pi}} = 1.0$$
 (a)

For higher moments let
$$\alpha = \frac{1}{2\sigma^2}$$
 and
$$I = \int_{-\infty}^{\infty} e^{-\alpha x^2} dx \qquad ---- (b)$$

From (a)
$$I = \sqrt{12\pi} = \sqrt{\pi} \alpha^{-\frac{1}{2}}$$

Start with $I = \int_{-\infty}^{\infty} e^{-\alpha x^{2}} dx = \sqrt{\pi} \alpha^{-\frac{1}{2}}$ (c)

Differentiate w.r.t. &

$$\frac{\partial I}{\partial \alpha} = -\int_{-\infty}^{\infty} \alpha^2 e^{-\alpha x^2} dx = -\frac{1}{2} \sqrt{\pi} \alpha$$

$$= -\frac{1}{2} \sqrt{\pi} \left(2 \sigma^2 \right)^{3/2} = -\sqrt{2\pi} \sigma^3$$

$$= -\frac{1}{2} \sqrt{\pi} \left(2 \sigma^2 \right)^{3/2} = -\sqrt{2\pi} \sigma^3$$

$$\int_{-\infty}^{\infty} \frac{x^2 e^{-x/x^2}}{\sigma \sqrt{2\pi}} dx = \frac{\sigma^2}{\sigma^2} = E(x^2)$$

$$\int_{-\infty}^{\infty} x^{4} e^{-\alpha x^{2}} dx = -\frac{1}{2} \sqrt{\pi} \left\{ -\frac{3}{2} \alpha^{-\frac{5}{2}} \right\} = \frac{3}{4} \sqrt{\pi} (20^{2})^{\frac{5}{2}}$$

$$\therefore \int_{-\infty}^{\infty} \int_{0}^{\infty} x^{4} e^{-\alpha x^{2}} dx = \underbrace{E(x^{2})}_{-\infty} = \underbrace{30^{4}}_{0}$$

Repeat $\frac{\partial}{\partial \alpha} \left\{ \frac{3}{4} | \overline{\pi} \propto \right\} = -\frac{3}{4} \cdot \frac{5}{2} | \overline{\pi} \propto = -\frac{3}{4} \cdot \frac{5}{2} | \overline{\pi} (20^2)^{\frac{7}{2}}$

$$+by C \sqrt{2\pi}$$
 $E(x^{6}) = 3.5 C^{6}$

General Eq. is
$$E(x^n) = 1 \cdot 3 \cdot 5 \cdot \cdots \cdot (n-1) \cdot \sigma^n$$
 (for meven)

by inspection $E(x^n) = 0$ for n odd.

$$\theta = \sin^{-1} \frac{x}{A}$$

$$P(x) = \frac{1}{2} \pm \sin \frac{x}{A}$$

When
$$x = 0$$
 $P(x) = \frac{1}{2}$
i.e. half the time x is less
than $x = 0$.

As we increase & from x=0we add $\frac{2\theta}{2\pi}$ to the probability

$$p(x) = \frac{dP(x)}{dx} = \frac{1}{\pi} \frac{d}{dx} \left(\sin \frac{x}{A} \right) = \frac{1}{\pi \sqrt{A^2 - x^2}}$$

13-11 Measure the total length of line at -A and divide by total length at A and-A. Let this fraction be k; then the cumulative prob. curve will appear as in (a). Density curve is shown in (b)

$$13 - 12 \qquad \chi(t) = A \cos t$$

$$x(t+T) = A\cos(t+T)$$

= $A[\cos t \cos T - \sin t \sin T]$

$$\chi(t) \chi(t+T) = A^{2} [\cos^{2}t \cos T - \cos t \sin t \sin T]$$

$$R(\gamma) = \lim_{T \to \infty} \frac{A^2}{T} \int_{-T/2}^{T/2} [\cos \gamma, \frac{1}{2}(1+\cos 2t) - \sin \gamma \cdot \sin t \cot t] dt$$

13-15 This problem is similar to Prob. 13-14 Integrate the area under y(t), $y(t+\tau)$ curve. Start curve with $R(\tau) = 5$ at t=0 and linearly decrease to $R(\tau) = 1.0$ at t=1, etc. Shift traced curve as suggested.

$$\frac{13-17}{\chi^{2}} = .20 \frac{g^{2}}{Hz} \times 500 \text{ Hz} = 100 \text{ g}^{2}$$

$$= 100 \times 9.81^{2} = 9623.6$$

$$RMS = \overline{\chi} = \sqrt{9623.6} = 98.1 \text{ m/s}^{2}$$

 $Area = 1 \times 900 + 2 \times 1000 = 2900 g^{2}$ $RMS = 9.81 \sqrt{2900} = 528.3 \text{ m/s}^{2}$

13 - 19

DB = 10 log 1.0 = 6.02 db/octave

The log-log plot is replotted on linear scale $x^2 = \text{total area} = 1436$ RMS = 37.9 $\frac{m}{s^2}$

13-19 Cont:

Tourier series and plot the quantity $\frac{1}{2}C_{m}C_{m}^{*}$ where $C_{m} = C_{m} - i b_{m}$. Note that $C_{m}C_{m}^{*} = C_{m}^{2} + b_{m}^{2}$ i.e. for F_{16} . 13-20 (a), $\chi(t)=\frac{1}{2}-\frac{1}{\pi}\left[\sin \omega_{t}t+\frac{1}{2}\sin \omega$

 $\frac{1}{x^2} = .002 \times 1980 = 3.96 \text{ m}^2$

RMS =
$$\sqrt{\bar{x}^2} = 1.99$$
 in

$$\bar{x} = \sqrt{3.0} = 1.732$$

$$G^z = \widehat{\chi}^z - (\overline{\chi})^z$$

$$6 = 0.9799$$

Cm found by multiplying f(t) by e inwt

and integrating over one period

$$C_{m} = \frac{1}{7} \int_{0}^{7/2} f(t) e^{-im\omega t} dt$$

 $C_{m} = im\omega_{o}t$ $C_{m} = \frac{1}{2}(q_{m} - ib_{m})$ $Re(C_{m} = im\omega_{o}t) = \frac{1}{2}(C_{m}e^{im\omega_{o}t} + C_{m}e^{im\omega_{o}t})$

$$C_{n} = \frac{1}{2} (a_{m} - i b_{m})$$

$$C_{o} = \frac{1}{2} a_{o}$$

$$i m \omega_{o}^{t} + -i m \omega_{o}^{t}$$

$$f(t) = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} \left(C_n e^{in\omega_0 t} + C_n^* e^{-in\omega_0 t} \right)$$

but Cm = Cm :.

$$f(t) = \sum_{m=-\infty}^{\infty} \frac{1}{2} c_m e^{im\omega_0 t} = \sum_{m=-\infty}^{\infty} c_m e^{im\omega_0 t}$$

13-24 Same procedure as Prob 13-20

ie
$$F_{1G}P_{13-24}$$
 (See Prob 1-11)

$$x(t) = \frac{1}{2} + \frac{1}{17^{2}}(\cos \omega_{1}t + \frac{1}{3^{2}}\cos \omega_{1}t + ---)$$

$$S(f) = \sum_{n=1}^{\infty} \frac{C_{n}C_{n}}{2} = \sum_{n=1}^{\infty} \frac{C_{n}^{2}}{2}$$

$$\frac{13-25}{2} \qquad \text{See Ch. 1 Sec. 1.2}$$

$$\frac{13-26}{2} \qquad \text{i.i.t.}$$

See Ch. 1 Sec. 1.2

$$\lambda = \sum_{m=-\infty}^{\infty} C_m e^{i\omega_m t}$$

$$\lambda = \sum_{$$

$$\frac{13-27}{(F)} = \frac{1}{\sqrt{(1-\eta^2)^2 + (25\eta)^2}} \quad \text{where } \eta = \frac{f}{f_m} = \frac{\omega}{\omega_m}$$
At $\eta = 1$ $\frac{\chi k}{F} = \frac{1}{25}$ At helf power pt. $\frac{\chi k}{F} = \frac{1}{12} \cdot \frac{1}{25}$

$$\frac{1}{2} \left(\frac{1}{25}\right)^2 = \frac{1}{(1-\eta^2)^2 + (25\eta)^2}$$

$$\frac{1}{2} \left(\frac{1}{25}\right)^2 = \frac{1}{(1-\eta^2)^2 + (25\eta)^2}$$

$$\frac{1}{2} \left(\frac{1}{25}\right)^2 = \frac{1}{(1-\eta^2)^2 + (25\eta)^2}$$

$$\frac{1}{2} \left(\frac{1}{25}\right)^2 = \frac{1}{(1-25^2)^2 + (1-85^2)} = 0$$

$$\frac{1}{2} \left(\frac{1}{25}\right)^2 = \frac{1}{25} + \frac{1}{25} + \frac{1}{25}$$

$$\frac{1}{25} \left(\frac{1}{25}\right)^2 = \frac{1}{25}$$

$$\frac{1}{25} \left(\frac{1}{25}\right)$$

$$f_{1} = f_{m}(1-5) = f_{m}(1-\frac{1}{2Q})$$

$$f_{2} = f_{m}(1+5) = f_{m}(1+\frac{1}{2Q})$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

$$\int \frac{d\eta}{(1-\eta^2)^2 + (25\eta)^2} \quad \text{where } \eta = \frac{f}{f_n}$$

Sea Theory of Residues \$ 135-137 Laplace Transformation by W.T. Thomson - Prentice-Hall, Inc.

Form contour with infinite circle. Poles are 7 = 1 + 15

Integrate around contour

25 -- S = 271 i Residues within contour

Residues at the two poles are

$$\frac{1}{F'(\eta)} = \frac{1}{2(1-\eta^2)(-2\eta) + 85^2\eta} = \frac{1}{2(1-\eta^2)(-2\eta) + 85^2\eta} = \frac{1}{2(1+i\xi)}$$

$$\frac{1}{2} = \frac{1}{4\xi} = \frac{1}{4\xi} = \frac{1}{2\xi}$$

$$\frac{1}{4\xi} = \frac{1}{2\xi} = \frac{1}{2\xi}$$

$$\frac{1}{4\xi} = \frac{1}{2\xi} = \frac{1}{2\xi}$$

n= 1+ i25

Since
$$\int_{0}^{\infty} = 0$$
 we have
$$-2 \int_{0}^{\infty} = 2\pi i \left(\frac{i}{45}\right) = -\frac{\pi}{25}$$

$$\int_{(1-\eta')^{2}+(25\eta)^{2}}^{\infty} = \frac{\pi}{45}$$

can also be checked by numerical integration (must use very small An)

from definition

$$\overline{\chi(s)} = \frac{F(s)}{ms^2 + R(1+it)} = \overline{H(s)} \, \overline{F(s)}$$

$$H(\omega) = \frac{1}{2} \sqrt{\left[1 - \left(\frac{\omega}{\omega}\right)^{2}\right]^{2} + \left[25\frac{\omega}{\omega}\right]^{2}}$$

Each component can be treated separately. For $1^{\frac{5t}{2}}$ component F Cos $(.5w_m t - \theta_i)$, the mean square response is

$$\frac{1}{\left[1-(.5)^{2}\right]^{2}+\left[.2\times.5\right]^{2}}\times\frac{1}{2}\left(\frac{F}{k}\right)^{2}=1.746\times\frac{1}{2}\left(\frac{F}{k}\right)^{2}$$

similarly other components are

$$2^{nd} comp = \frac{1}{[\cdot 2]^2} \frac{1}{2} \left(\frac{F}{R}\right) = 25 \times \frac{1}{2} \left(\frac{F}{R}\right)^2$$

$$3^{2d} comp$$
 $\frac{1}{[1-2^2]^2 + [.2\times2]^2} \frac{1}{2} \left(\frac{F}{R}\right)^2 = .109 \times \frac{1}{2} \left(\frac{F}{R}\right)^2$

$$\frac{1}{12} = \left[1.746 + 25 + .109 \right] \frac{1}{2} \left(\frac{F}{R} \right)^{2} = 26.85 \times \frac{1}{2} \left(\frac{F}{R} \right)^{2}$$

$$= 13.43 \left(\frac{F}{6} \right)^{2}$$

 $\frac{13-31}{\text{From Sec } 13.4 + \text{Ex. } 13.8-1, \quad 0 = 26.6g}$ $P\left[-20 \le \chi(t) \le 20\right] = 95.4\%$

$$P[X \ge 2\sigma] = 13.5 \%$$

$$\omega = 2\pi \times 2.20 = 13.82$$

$$k = m\omega_m^2 = 40 \times 13.82^2 = 7643$$

$$\omega_{r} = \frac{2\pi}{T}$$

$$X = \frac{F_0}{k} \frac{\sin(\omega t - \phi)}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_m}\right)^2\right]^2 + \left[25\frac{\omega}{\omega_m}\right]^2}}$$

F.S. of the excitation is a cosine series

$$a_{m} = \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \chi(t) \cos m\omega_{i}t \, dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} P \cos m\theta \, d\theta$$

$$=\frac{P}{\pi\omega},\frac{\sin n\theta}{n}\Big|_{-\frac{\pi}{4}}^{\frac{\pi}{4}}=\left(\frac{P}{n\pi\omega}\right)^{2}\sin \frac{n\pi}{4}$$

$$= \left(\frac{\mathcal{P}}{n \, \text{fr}} \omega_i\right)^2 \, \sin \, \frac{m \, \text{Tr}}{4}$$

$$= \left(\frac{2P}{\pi\omega_{i}}\right) \left(\frac{\sin m \pi}{m}\right)$$

$$a_{o} = \frac{2}{T} \left(\frac{T}{T}\right) P dt = \frac{P}{2}$$

13-32 Cont:

$$S_{p}(\omega) = \frac{a^{2}}{2} + \sum_{m=1}^{\infty} \frac{a^{2}_{m}}{2} = \frac{P^{2}}{8} + \sum_{m=1}^{1} \left(\frac{2P}{\pi\omega_{i}}\right)^{2} \frac{\sin^{2}\pi}{m^{2}}$$

$$= 10^{12} \left[\frac{1}{8} + \left(\frac{2}{\pi^{2}\omega_{i}^{2}}\right)\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{18} + 0 + \frac{1}{50} + \cdots\right)\right]$$

Response Spectrum
$$\overline{y}^2 = \int_0^\infty HH^*S_p df = \overline{\chi}^2$$

$$= \int_0^\infty HH^*S_p$$

$$HH^* = \frac{1}{k^2} \frac{1}{\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right)^2 + \left[25 \frac{\omega}{\omega_n}\right]^2}$$

$$\omega = n\omega$$
, $= n\frac{2\pi}{T}$ $\omega_m = 2\pi f_m = 2\pi 2.2$

$$\frac{\omega}{\omega_n} = m\left(\frac{1}{2.2T}\right)$$
 Subst. into $\bar{\chi}^2$

J3-33 For base motion, the relative motion is given by Eq. 3.5-4, which can be written as $Z = \frac{\left(\frac{\omega}{\omega_m}\right)^2 Y}{\left[1-\left(\frac{\omega}{\omega_m}\right)^2\right]^2 + \left[25\frac{\omega}{\omega_m}\right]^2}$

Thus with 5 (f) = Spectral density of excitation

$$\overline{Z^{2}} = \int_{0}^{\infty} S_{\gamma}(f_{+}) \frac{\left(\frac{f}{f_{m}}\right)^{4} df}{\left(1 - \left(\frac{f}{f_{m}}\right)^{2}\right)^{2} + \left[25\frac{f}{f_{m}}\right]^{2}} = S_{\gamma}(f_{m}) \cdot f_{m} \cdot \int_{0}^{\infty} \frac{\xi^{2} d\xi}{\left(1 - \xi^{2}\right)^{2} + \left[25\frac{f}{f_{m}}\right]^{2}}$$

$$\frac{13-34}{2} = \frac{(k+i\omega_c)}{k-m\omega^2 + i\omega_c} \stackrel{ij}{ij} = \frac{1+i(25\frac{f}{f_m})}{1-(\frac{f}{f_m})^2 + i(25\frac{f}{f_m})} \stackrel{ij}{ij}$$

$$\frac{1}{2} = \int_{m}^{\infty} \frac{1+i(25\frac{f}{f_m})}{1-(\frac{f}{f_m})^2 + i(25\frac{f}{f_m})} \cdot \frac{1-i(25\frac{f}{f_m})}{1-(\frac{f}{f_m})^2 - i(25\frac{f}{f_m})} \stackrel{ij}{f_m}$$

$$= \int_{0}^{\infty} (f) \cdot f_m \cdot \frac{1+(25\frac{f}{f_m})^2}{[1-(\frac{f}{f_m})^2]^2 + [25\frac{f}{f_m}]^2} \cdot d(\frac{f}{f_m})$$

$$\frac{13-35}{\omega^2} = \frac{k}{m} = \frac{k}{60} = (2\pi \cdot 4)^2$$

$$\frac{k}{m} = \frac{60 \times (8\pi)^2}{k^2 - 1436 \cdot \times 10^6} \times \frac{N}{m^2}$$

$$\frac{1436 \times 10^6 \left\{ [1-(\frac{\omega}{8\pi})^2]^2 + [2(\cdot 05)\frac{\omega}{8\pi}]^2 \right\}$$

$$\frac{\pi}{4} = \int_{0}^{\infty} H^2 S(\omega) d\omega \approx \frac{S(\omega_n)}{k^2} f_m \frac{\pi}{45}$$

$$I_{436 \times 10^{6}} \left\{ \left[1 - \left(\frac{\omega}{8\pi} \right)^{2} \right]^{2} + \left[2(.05) \frac{\omega}{8\pi} \right]^{2} \right\}$$

$$\overline{y}^{2} = \int_{0}^{2} H^{2} 5(\omega) d\omega \stackrel{\sim}{=} \frac{5(\omega_{n})}{k^{2}} f_{n} \frac{\pi}{45}$$

$$= \frac{100 \times 10^{3}}{1436 \times 10^{6}} \cdot \frac{\pi}{4 \times .05} = .00438$$

$$C^{2} = \overline{y}^{2} = .00438 \text{ m}^{2}, \quad C = .0662 \text{ m}$$

$$y = .132 = 1.99 C$$

$$P[y > 1.996] = 4.6\%$$

$$\frac{13-36}{m} = 272 \text{ kg} \qquad \qquad \int_{m} = 26 \text{ Hz} \\
\omega = 2\pi f = 163,36$$

$$k = m\omega^{2} = 272 \times (163,36)^{2} \qquad \qquad \zeta = 0.10$$

$$= 72.58 \times 10^{3} \quad N/m$$

$$k^{2} = 52.689 \times 10^{1/2}$$

$$\tau^{2} = \frac{4 \times 10^{6}}{52.689 \times 10^{1/2}} \times 26 \times \frac{\pi}{4 \times .10} = 15,50 \times 10^{6}$$

$$\tau = \frac{4 \times 10^{6}}{52.689 \times 10^{1/2}} \times 26 \times \frac{\pi}{4 \times .10} = 15,50 \times 10^{6}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.012 m = 3.05 \text{ G}$$

$$\tau = .003937 \qquad 0.00337 \qquad 0.0$$

$$\chi(t) = \int_{0}^{\infty} f(t-\xi) g(\xi) d\xi$$

$$\chi(i\omega) = \int_{-\infty}^{\infty} \chi(t) e^{-i\omega t} dt = \int_{-\infty}^{\infty} \int_{0}^{\infty} f(t-\xi) g(\xi) d\xi e^{-i\omega t} dt$$

$$= \int_{-\infty}^{\infty} \int_{0}^{\infty} f(t-\xi) e^{-i\omega(t-\xi)} dt g(\xi) e^{-i\omega\xi} d\xi$$

$$\chi(i\omega) = \int_{0}^{\infty} \left[\int_{-\infty}^{\infty} f(t-\xi) e^{-i\omega(t-\xi)} dt \right] g(\xi) e^{-i\omega\xi} d\xi$$

$$= \int_{0}^{\infty} \left[\int_{-\infty}^{\infty} f(\tau) e^{-i\omega\tau} d\tau \right] g(\xi) e^{-i\omega\xi} d\xi$$

$$= \int_{0}^{\infty} \left[\int_{-\infty}^{\infty} f(\tau) e^{-i\omega\tau} d\tau \right] g(\xi) e^{-i\omega\xi} d\xi$$

$$= \int_{0}^{\infty} f(\tau) e^{-i\omega\tau} d\tau \int_{0}^{\infty} g(\xi) e^{-i\omega\xi} d\xi = F(i\omega) H(i\omega)$$

$$= \int_{0}^{\infty} \lim_{T\to\infty} \frac{1}{2\pi T} X(i\omega) X^{*}(i\omega) H(i\omega) H^{*}(i\omega) d\omega$$

$$= \int_{0}^{\infty} g_{F}(\omega) |H(i\omega)|^{2} d\omega$$

13-39

$$H(i\omega) = |H(i\omega)| e^{i\phi(\omega)}$$

$$H'(i\omega) = |H(i\omega)| e^{-i\phi(\omega)}$$

$$\therefore \frac{H(i\omega)}{H'(i\omega)} = e^{i2\phi(\omega)}$$

Let
$$X(f) = F.T.$$
 of vectangular pulse $X(f) = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{L} e^{-2\pi ft} d = (\frac{1}{L}) \frac{e^{-i2\pi ft}}{e^{-i2\pi ft}} = \frac{1}{\pi f} \left[\frac{e^{i2\pi f \frac{1}{2}}}{2i} - e^{-i2\pi f \frac{1}{2}} \right] = \frac{\sin \pi f L}{\pi f L}$
 $\chi(f)$
 $\chi(f)$
 $\chi(f)$

$$\int_{-\infty}^{13-4} |f(t)| dt = \int_{-\infty}^{\infty} u(t) dt = \int_{0}^{\infty} |dt| = \infty$$

i. Unit step function cannot have a F.T.

$$S_{FX}(\omega) = \lim_{T \to \infty} \frac{1}{2\pi T} F_{(i\omega)}^* X(i\omega)$$

$$= \left[\lim_{T \to \infty} \frac{1}{2\pi T} F_{(i\omega)}^* F_{(i\omega)}^* \right] H(i\omega) = S_F(i\omega) H(i\omega)$$

$$S_{XF}(\omega) = \lim_{T \to \infty} \frac{1}{2\pi T} X^* F = \lim_{T \to \infty} \frac{1}{2\pi T} F^* H^* F = S_F(i\omega) H^*(i\omega)$$

$$\frac{S_{FX}}{S_{XF}} = \frac{S_F |H|}{S_F |H|} \frac{i\phi}{e^{-i\phi}} = e^{-i2\phi(\omega)}$$

13-42 Cont:

$$\frac{S_F}{S_{XF}} = \frac{S_K}{S_K} + \frac{S_{FX}}{S_F} = \frac{S_F H}{S_K} - H$$

$$\frac{S_F}{S_{XF}} = \frac{I}{a - ib} = \frac{(a + ib)}{(a^2 + b^2)} = \frac{H(i\omega)}{|H|^2}$$

13-43

$$\frac{d^{2} \bar{u}(x,s)}{dx^{2}} = (\frac{s}{c})^{2} \bar{u}(x,s)$$

$$\bar{u}(x,s) = C_{1}e^{\frac{sx}{c}} + C_{2}e^{-\frac{sx}{c}}$$

$$\bar{F}(x,s) = AE \frac{d\bar{u}}{dx} = AE \frac{s}{c} \left[C_{1}e^{\frac{sx}{c}} - C_{2}e^{-\frac{sx}{c}} \right]$$

$$\bar{F}(0,s) = AE \frac{s}{c} \left[C_{1} - C_{2} \right]$$

$$\bar{F}(0,s) = 0 = C_{1}e^{\frac{sx}{c}} - C_{2}e^{-\frac{sx}{c}}$$

$$C_{2} = \frac{-c\bar{F}(0,s)}{AEs(1-e^{-\frac{2sx}{c}})}$$

$$\bar{u}(x,s) = \frac{-c\bar{F}(0,s)}{AEs(1-e^{-\frac{2sx}{c}})} \left[e^{-\frac{sx}{c}} + e^{-\frac{sx}{c}} \right]$$

$$= \frac{-c\bar{F}(0,s)e^{-\frac{sx}{c}}}{AEs(1-e^{-\frac{2sx}{c}})} \left[e^{\frac{sx}{c}} + e^{-\frac{sx}{c}} \right]$$

$$= \frac{-c\bar{F}(0,s)e^{-\frac{sx}{c}}}{AEs(1-e^{-\frac{2sx}{c}})} \left[e^{\frac{sx}{c}} + e^{-\frac{sx}{c}} \right]$$

$$\overline{p}(x,t) = \overline{f} e^{i\omega t} S(x)$$

$$\overline{p}(x,s) = \frac{F_o}{s-i\omega} S(x) , \overline{F}(o,s) = \int \overline{p}(x,s) dx = \frac{F_o}{s-i\omega}$$

$$\overline{u}(x,s) = \frac{-cF_o}{s(s-i\omega)AE(i-e^{-\frac{2si}{c}})} \left[e^{\frac{s}{c}(x-e)} + e^{-\frac{s}{c}(x-e)} \right]$$

$$i' \cdot u(x,t) = \frac{-cF_o}{\omega AE} \frac{e^{i\omega t}}{c} cos \frac{\omega L(x-i)}{c}$$

$$\overline{u}(x,t) = \frac{-cF_o}{\omega AE} \frac{e^{i\omega t}}{c} cos \frac{\omega L(x-i)}{c}$$

$$\overline{u}(x,t) = \frac{-cF_o}{\omega AE} \frac{e^{i\omega t}}{c} cos \frac{\omega L(x-i)}{c}$$

$$\overline{u}(x,t) = \frac{-cF_o}{\omega AE} \frac{e^{i\omega t}}{c} cos \frac{\omega L(x-i)}{c}$$

$$U(x,t) = \sum_{m=0}^{\infty} \phi_{m}(x) q_{m}(t)$$

$$O(x,t) = E du = E \sum_{m=1}^{\infty} \phi_{m}(x) q_{m}(t) \quad \text{where } \phi' = \frac{d\phi}{dx}$$

$$O(x,t) O(x',t) = \lim_{m \to \infty} \frac{1}{2T} \int_{T} O(x,t) O(x',t) dt$$

$$= \frac{1}{2} \int_{T \to \infty}^{t} \lim_{x \to T} \int_{T} O(x,t) O(x',t) dt$$

$$= \frac{1}{2} \int_{T \to \infty}^{t} \lim_{x \to T} \int_{T} O(x,t) O(x',t) dt$$

$$O(x,t) O(x',t) = \frac{E}{2} \sum_{m=1}^{\infty} \sum_{k=1}^{\infty} \int_{T} \phi_{m}(x) \phi_{m}'(x)$$

$$O(x,t) O(x',t) = \frac{E}{2} \sum_{m=1}^{\infty} \sum_{k=1}^{\infty} \int_{T} \phi_{m}(x) \phi_{m}'(x) \int_{T} \lim_{x \to T} \int_{T} f(x,t) Q(x,t) dt$$

$$Q_{m}(x,t) = \lim_{x \to T} \int_{T} $

Greatest contribution occurs when k=m : change double I to single summation with k=m.

13-45 Cont:

$$\overline{G(x,t)G(x)} = \frac{E^2}{2} \sum_{m} \phi_{m}(x) \phi_{m}(x) \phi_{m}(0) \frac{1}{m^2 l^2 \omega_{m}^2} \int_{[1-(\omega_{m})]^2 + \gamma^2}^{\infty} \frac{S(i\omega) d\omega}{[1-(\omega_{m})]^2 + \gamma^2}$$

$$\overline{G^2(x,t)} = \frac{E^2}{2} \sum_{m} \phi_{m}(x) \phi_{m}(0) \frac{1}{m^2 l^2 \omega_{m}^3} S(\omega_{m}) \frac{\pi}{\gamma}$$
where;
$$\phi_{m} = \sqrt{2} Co_{m} \pi \left(\frac{x}{\ell} - 1\right)$$

$$\omega_{m} = n\pi C$$

$$C = \sqrt{\frac{AE}{m}}$$

$$E = \frac{C^2 m}{A}$$

$$C = \sqrt{\frac{AE}{m}}$$

Prove
$$FT[\chi(t-t_0)] = e^{-i2\pi ft_0} \chi(f)$$

where $\chi(f) = FT[\chi(t)]$

From Eq.(13.6-1) $\chi(t-t_0) = \int_{-\infty}^{\infty} \chi(f) e^{-i2\pi ft_0} \chi(f)$

$$= \int_{-\infty}^{\infty} e^{-i2\pi ft_0} \chi(f) e^{i2\pi ft} df$$

Comparison with Eq.(13.6-2) shows $e^{-i2\pi ft_0} \chi(f) = FT[\chi(t-t_0)]$

13-47 Prove $FT[\chi(t) * y(t)] = \chi(f) \chi(f)$
 $\chi(t) * \chi(t) = \int_{-\infty}^{\infty} \chi(f) y(t-f) df = \text{convolution of } \chi(t) * \chi(t)$

From Eq.(13.6-2)

 $FT[\chi(t) * y(t)] = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \chi(f) y(t-f) df \right] e^{-i2\pi ft} df$

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \chi(f) e^{-i2\pi ff} df \right] \chi(f) df$$

Let $(t-f) = f$, $t = f + f$ $dt = df$

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \chi(f) e^{-i2\pi ff} df \right] \chi(f) e^{-i2\pi ff} df$$

$$= \int_{-\infty}^{\infty} \chi(f) e^{-i2\pi ff} df \int_{-\infty}^{\infty} \chi(f) e^{-i2\pi ff} df$$

$$= \int_{-\infty}^{\infty} \chi(f) e^{-i2\pi ff} df \int_{-\infty}^{\infty} \chi(f) e^{-i2\pi ff} df$$

$$X(\omega) = FT[x(t)] = AT \frac{Sin(\frac{\omega T}{2})}{(\frac{\omega T}{2})}$$

$$FT[\dot{x}(t)] = i\omega FT[x(t)] = i\omega FT[\dot{x}(t)] = i\omega FT[\dot{x}$$

 $\frac{14-1}{1} \quad \text{If } \quad x_1 = 9_1(t) \quad \text{and} \quad x_2 = 9_2(t) \quad \text{are solutions of}$ the equation $x_1 + x_2 = 0$, then they will satisfy

$$\ddot{\varphi}_1 + {\varphi}_2^3 = 0$$
 and $\ddot{\varphi}_2 + {\varphi}_2^3 = 0$

Adding, the following is also true

$$\left(\ddot{p}_{i} + \ddot{p}_{i}\right) + \left(p_{i}^{3} + p_{i}^{3}\right) = 0 \tag{a}$$

If we assume $x = \varphi_1 + \varphi_2$ and substitute into the D.E. we would obtain

$$(\ddot{\varphi}_{1} + \ddot{\varphi}_{2}) + (\varphi_{1}^{3} + 3\varphi_{1}^{2}\varphi_{1} + 3\varphi_{1}\varphi_{2}^{2} + \varphi_{2}^{3}) = 0$$

which does not agree with the correct result (a)
Superposition of solutions are in general not solutions
of nonlinear equations.

$$\sum F_{x} = -2T \sin \theta = m\ddot{\chi}$$

$$\sin \theta = \frac{\chi}{\ell} = \frac{\chi}{\ell_{o}^{2} + \chi^{2}} \stackrel{?}{=} \frac{\chi}{\ell_{o}} \left[1 - \frac{1}{2} \left(\frac{\chi}{\ell_{o}} \right)^{2} \right]$$

$$T = T_{o} + k \left(\ell - \ell_{o} \right) = T_{o} + k \left[\ell_{o} \left(1 + \frac{\chi^{2}}{\ell_{o}^{2}} \right)^{2} - \ell_{o} \right]$$

$$\stackrel{?}{=} T_{o} + k \frac{1}{2} \left(\frac{\chi}{\ell_{o}} \right)^{2}$$

$$\stackrel{?}{=} m \ddot{\chi} + 2 \left[T_{o} + \frac{k}{2} \left(\frac{\chi}{\ell_{o}} \right)^{2} \right] \frac{\chi}{\sqrt{\ell_{o}^{2} + \chi^{2}}} = 0$$

 $m\ddot{\alpha} + \frac{2}{\ell_0} \left[T_0 + \frac{k}{2} \left(\frac{\chi}{L_0} \right)^2 \right] \left[1 - \frac{1}{2} \left(\frac{\chi}{L_0} \right)^2 \right] \chi = 0$

 $\frac{14-3}{k-x_0}$ $\frac{1}{k-x_0}$ $\frac{1}{k}$ $\frac{1}{k}$ $\frac{1}{k}$ $\frac{1}{k}$ $\frac{1}{k}$ $\frac{1}{k}$ $\frac{1}{k}$

Vol. of cone =
$$\frac{1}{3}\pi R^{2}(k-x)$$

From Similar triangles $\frac{k_{0}}{k-x_{0}} = \frac{R}{k-x_{0}}$
 $\frac{1}{3}$ i. $R = R_{0}\left(\frac{k-x}{k-x_{0}}\right)$

Difference in vol. = $f \mathcal{R} \left[\mathcal{R}(k-x) - \mathcal{R}_0 \left(k - x_0 \right) \right]$

Buoyant force = $| 2\Delta V = \frac{\pi}{3} \rho n_0^2 \left[\left(\frac{A-x}{h-\alpha_0} \right)^2 (h-x) - (h-\alpha_0) \right]$ = weight of water displaced.

$$m \tilde{\chi} = \frac{\pi}{3} \rho R_o^2 \left[\frac{(k-y)^3}{(k-\kappa_o)^2} - (k-\kappa_o) \right]$$

$$= \frac{\pi}{3} \left[\frac{R_o^2}{(k-\kappa_o)^2} + \left((k-\kappa_o)^3 - (k-\kappa_o)^3 \right) \right]$$

Since system is conservative $\frac{d}{dt} (T+U) = 0 \qquad (a)$ Vel. of m is $\vec{v} = (l+R\theta)\hat{\theta} \vec{j}$ $(l+R\theta)\cos\theta - R\sin\theta$ $\vec{U} = mg[l-(l+R\theta)\cos\theta + R\sin\theta]$ $\vec{U} = mg[l-(l+R\theta)\cos\theta + R\sin\theta]$

Subst. into (a) $\theta \left\{ \theta \left(\ell + R\theta \right)^2 + \theta \left(\ell + R\theta \right) R + g \left(\ell + R\theta \right) \sin \theta - R\cos \theta + R\cos \theta \right\} = 0$

$$\ddot{\theta} + \frac{R\dot{\theta}^2}{\ell + R\theta} + \frac{q}{\ell + R\theta} \sin \theta = 0$$

$$\ddot{x} + \omega_m^2 x = 0$$

$$\ddot{x} = \dot{x} \frac{d\dot{x}}{dx}$$
, Let $V = \frac{\dot{x}}{\omega_w}$

then above eq. becomes

$$\frac{dy}{dx} = -\frac{x}{v} \quad \text{or} \quad v' + x' = f'$$

Phase-plane traj. is a circle

$$U = \pm kx^2$$
 a parabola

$$\frac{14-7}{\gamma} = 4 \int_{0}^{\chi_{max}} \frac{U(x) = \frac{1}{2} \frac{k}{m} x^{2}}{\sqrt{2[E-U(x)]}} = \frac{1}{2} \frac{k}{m} x^{2}$$
per unit mass
$$E = \frac{1}{2} x^{2} + \frac{1}{2} \frac{k}{m} x^{2}$$

$$U(x) = \pm \frac{k}{m} x^2$$

$$\dot{\chi} = 0$$
 when $\chi = \chi_{max}$ if $\chi_{max} = \sqrt{\frac{2Em}{k}}$

$$\gamma = 4 \int_{0}^{\frac{1Em}{k}} \frac{dx}{2\left[E - \frac{1}{2}\frac{k}{m}x^{2}\right]} \qquad but \frac{k}{m}x^{2} = \omega_{m}^{2}x^{2}$$

$$C^{2} = 2E$$

but
$$\frac{k}{m}x^2 = \omega_m^2 x^2$$

$$C^2 = 2E$$

$$\gamma = \frac{4}{\omega_n} \int_{0}^{u=\omega_n \chi_{may}} = C$$

$$\frac{du}{\sqrt{c^2 - u^2}} = \frac{4}{\omega_n} \sin\left(\frac{u}{c}\right) = \frac{4}{\omega_n} \frac{\pi}{2} = \frac{2\pi}{\omega_n}$$

$$\frac{14-8}{N=\frac{x}{\omega_m}}$$

$$\frac{x(0) = A}{x} \qquad x(0) = 0$$
Let $y = x$ $y = -\omega x$

$$V = \sqrt{x^2 + y^2} = \sqrt{y^2 + \omega_m^4} x^2$$

$$V = 0 \quad only \quad \text{if} \quad x = u = 0$$

$$\alpha(0) = A$$

$$\dot{\alpha}(0) = 0$$

$$V = \sqrt{\dot{x}^2 + \dot{y}^2} = \sqrt{\dot{y}^2 + \omega_m^4} x^2 = 0$$

 $\chi = \cos \pi t + \sin 2\pi t$

4 = 2 = - 11 Sin 11 + 21 Cos 21 t

t	2	4	
0	1	27	
.25	3	.7 જ	
150	0	- 17	
.75	•3	.7 m	
1.0	-/	28	
1.25	-1.7	~.7m	
1.5	0	-37	
1.75	1.7	77	
2.0	1	21	
	ļ.	i ,	l

$$\frac{14-10}{2} = \frac{1}{2} + 25 \omega_{m} \dot{x} + \omega_{m}^{2} x = 0$$

$$\dot{x} \frac{d\dot{x}}{dx} = -25\omega_{m}\dot{x} - \omega_{m}^{2}x$$

$$\frac{1}{\omega_n}\frac{d\hat{x}}{dx} = -25 - \frac{\omega_n}{\hat{x}}$$

Let
$$N = \frac{\dot{x}}{\omega_m}$$

$$\frac{dv}{dx} = -25 - \frac{x}{v}$$
 Trajectory is a spiral.

see next page for Problet-11

$$U = \frac{q}{L} \cos \theta$$

$$U(\theta)$$

$$\frac{\pi}{\lambda} = \frac{q}{L} \cos \theta$$

The origin of phase plane is shifted to To, as compared to Fig 14.4-2 B=0 and 211 are unstable points

$$\frac{14-13}{dx} = \frac{2x+2y}{5x-y} = \frac{P}{Q}$$

singular points are
$$\frac{P}{Q} = \frac{O}{O}$$

$$\begin{cases} \dot{u} \\ \dot{v} \end{cases} = \begin{bmatrix} 5 & -1 \\ 2 & 2 \end{cases} \begin{cases} u \\ v \end{cases} \quad E_{q.} 4.3-8$$

$$2x + 2y = 0$$

$$5x - y = 0$$

$$12x = 0$$

$$x = 0 \quad y = 0$$

$$\frac{\lambda_{2}=4.0}{\frac{14-14}{\left\{\dot{y}\right\}}=\left[\begin{matrix}\dot{x}\\\dot{y}\end{matrix}\right]=\left[\begin{matrix}\dot{x}\\2\end{matrix}\right]\left\{\begin{matrix}\dot{x}\\y\end{matrix}\right\}}\begin{vmatrix}\dot{y}\\-\dot{y}\end{vmatrix}=\left[\begin{matrix}\dot{x}\\2\end{matrix}\right]\left\{\begin{matrix}\dot{x}\\y\end{matrix}\right\}}\begin{vmatrix}\dot{y}\\-\dot{y}\end{vmatrix}=0$$
Subst λ into eq.
$$\frac{3}{4}$$

$$\begin{vmatrix} (5-\lambda) & -1 \\ 2 & (2-\lambda) \end{vmatrix} = 0$$
gives $\lambda = \begin{cases} 3 \\ 4 \end{cases}$

subst à into eq.

$$\chi^{(1)} = .5 \chi^{(1)}$$
 $\chi^{(2)} = 1.0 \chi^{(2)}$

$$P = \begin{bmatrix} \cdot s & 1 \\ 1 & 1 \end{bmatrix}$$

Transformation to decouple is $\begin{cases} x \\ y \end{cases} = \begin{bmatrix} .5 \\ 1 \end{bmatrix} \begin{cases} 3 \\ \gamma \end{cases}$

$$\begin{bmatrix} .5 \ / \] \begin{Bmatrix} 5 \\ / \ / \end{Bmatrix} = \begin{bmatrix} 5 \ -/ \] \begin{Bmatrix} .5 \ / \] \begin{Bmatrix} 5 \\ 1 \end{bmatrix}$$

$$\begin{cases} \dot{\mathbf{g}} \\ \dot{\eta} \end{cases} = \begin{bmatrix} .5 & 1 \end{bmatrix} \begin{bmatrix} 5 & -1 \end{bmatrix} \begin{bmatrix} .5 & 1 \end{bmatrix} \begin{cases} \mathbf{g} \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix} \begin{Bmatrix} \mathbf{g} \\ \eta \end{Bmatrix}$$

:
$$\dot{g} = 3\ddot{f}$$
 and $\dot{\eta} = 4\eta$ decoupled eqs.

Uncoupled eqs.
$$\left\{ \begin{array}{ll} \dot{\xi} = \lambda_1 \dot{\xi} \\ \dot{\eta} = \lambda_2 \dot{\eta} \end{array} \right\}$$
 can be written as $\frac{d\xi}{d\eta} = \left(\frac{\lambda_1}{\lambda_2} \right) \frac{\xi}{\eta}$ Integrating $\xi = \xi_0 \left(\frac{\eta}{\eta_0} \right)^{\frac{\lambda_1}{\lambda_2}}$

For
$$\frac{\lambda_1}{\lambda_2} = .5$$
, the traj. are tangent to ξ as shown

If
$$\frac{\lambda_i}{\lambda_k} = 2$$
, the traj. are
Tangent to η

$$u = A \eta^2 + B \eta = x - x_5$$

$$v = C \eta^2 + D \eta = y - y_5$$

$$\begin{cases} shift of origin \end{cases}$$

Need original eq.

$$\left\{ \begin{array}{c} \dot{u} \\ \dot{v} \end{array} \right\} = \left\{ \begin{array}{cc} a & b \\ c & e \end{array} \right\} \left\{ \begin{array}{c} u \\ v \end{array} \right\}$$

a,b,c,e must be known before plotting.

Use Eq. 12.3-9

From Eq. 14.3-8

$$\begin{vmatrix} (a-\lambda) & b \\ c & (e-\lambda) \end{vmatrix} = 0 \quad \therefore \quad \frac{u_1}{v_1} = \frac{-b}{a-\lambda_1}$$

14-16 Cont Since only relative values of u, v are essential, Let $W_1 = V_2 = 1.0$ and $u_1 = \frac{-b}{a-\lambda_1}$ $u_2 = \frac{-b}{a-\lambda_2}$ Using Eq. 14.3-8 we have $P\left\{\frac{\dot{s}}{\dot{\eta}}\right\} = \begin{bmatrix} a & b \\ c & e \end{bmatrix} P\left\{\frac{\dot{s}}{\dot{\eta}}\right\}$ $\begin{cases} \dot{\xi} \\ \dot{\eta} \end{cases} = P^{-1} \begin{bmatrix} a & b \\ c & e \end{bmatrix} P \begin{Bmatrix} \dot{\xi} \\ \dot{\eta} \end{Bmatrix} = \left[\Lambda \right] \begin{Bmatrix} \dot{\xi} \\ \dot{\eta} \end{Bmatrix}$... $P' \begin{bmatrix} a & b \\ c & e \end{bmatrix} P = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$ where $P = \begin{bmatrix} -b \\ \overline{a} - \lambda_1 & \overline{a} - \lambda_2 \\ 1 & 1 \end{bmatrix}$ Equating the two elements on the two sides of the above eq. These 4 egs. can be solved [(au,+b)-(cu,+e)] = 0 for a, b, c, e, then subst.

into Eq. 14.3-9

Other alternative is to [-u_(au,+b)+u,(cu,+e)] = 0 $\frac{1}{(u, v_e - u, v_r)} \left[(au, +b) - (cu, +e) \right] = \lambda_1$ solve for u + v from $\frac{1}{(u,v_1-u,v_1)}\left[-u_1(au_1+b)+u_1(cu_1+e)\right]=\lambda_2$ | Solve for $u \neq v$ from Eq. 14.3-12 for chosenvalues 14-17 From given eq. $\begin{cases} \dot{v} \\ \dot{u} \end{cases} = \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix} \begin{bmatrix} v \\ u \end{bmatrix} \qquad \begin{bmatrix} (\alpha - \lambda) & -\beta \\ -\beta & (\alpha - \lambda) \end{bmatrix} = 0$

$$\begin{cases}
\dot{u} \\ = \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix} \begin{cases} U \\ U \\ \end{bmatrix} = 0$$

$$\begin{cases}
\dot{x} \\ -\beta & \alpha \end{cases} \begin{cases} U \\ -\beta & (\alpha - \lambda) \end{cases} = 0$$

$$\begin{vmatrix} \lambda^2 - 2\alpha \lambda + \alpha^2 + \beta^2 = 0 \quad \text{and} \quad \lambda = -\alpha \pm i\beta$$

 $14-18 \qquad u=\rho\cos\theta \qquad N=\rho\sin\theta$

 $du = d\rho \cos\theta - \rho \sin\theta d\theta$ $dv = d\rho \sin\theta + \rho \cos\theta d\theta$

Subst. 4 & V in Eq. for Prob. 14-17

$$\frac{dr}{du} = \frac{\beta R \cos \theta + \alpha R \sin \theta}{dR \cos \theta - \beta R \sin \theta} = \frac{d\rho \sin \theta + \rho \cos \theta d\theta}{d\rho \cos \theta - \rho \sin \theta d\theta}$$

(de sir e + cono de) (a cono - p si e) = (de cono - si e de) (e cono + a si e) \$\begin{align} \delta \con \delta \con \delta \con \delta \con \delta \ (= e = 0 $\therefore \frac{d\rho}{\rho} = \frac{\alpha}{\beta} d\theta$

Eq. in x,y plane is xy=±C node point at origin is unstable

$$\frac{dv}{du} = \frac{v + u}{u}$$

$$\begin{cases} \dot{v} \\ \dot{u} \end{cases} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{cases} v \\ u \end{cases}$$

Characteristic eq.

$$\left| \begin{array}{ccc} (1-\lambda) & 1 \\ 0 & (1-\lambda) \end{array} \right| = 0 \quad \text{leads to two equal roots } \lambda = 1$$

Transformation eq. 1-1.3-9 cannot be applied

14-21 Differentiate the eq. $x^2 + 2xy + 3y^2 = C$ 2x dx + 2x dy + 2 y dx + 6 y dy = 0 $(2x+6y) dy = -(2x+2y) dx : \frac{dy}{dx} = \frac{-x-4}{x+34}$

14-22 Let $N=\dot{x}$ then the eq. $\ddot{x}+2\zeta \omega_n \dot{x}+\omega_n^2 \alpha=0$ becomes $\dot{N}+2\zeta \omega_n N+\omega_n^2 \chi=0$, $N \frac{dV}{dx}+2\zeta \omega_n N+\omega_n^2 \chi=0$

Let de = constant for isocline = C,

V(C, +25 Wm) + Wm x = 0 = Straight Line through origin

As to so the points on the isoclines more towards the origin: stable

 $\frac{14-23}{dy} = xy(y-2) = constant for isocline$

ιβ	$\therefore y(y-2) = \frac{C}{2}$	_ 4_	4(4-2)	X for C=1
4 ∤ ∤	***	-3	15	.066
3 \		-2	8	./25
~		-/	3	.333
fit to the town		0	0	ص
		/	-/	- /
	~	2		ص ِ
-11		3	3	.333
-2 / Isoch	nes for C=1	4	8	125
~1/			•	

4 dy + w x + p x = 0

or
$$2T + 2U = 2E$$

Since $y = \frac{dx}{dt}$ $dt = \frac{dx}{y} = \frac{dx}{\sqrt{2E - 2U}}$

For
$$\frac{1}{4}$$
 period $\frac{1}{4} = \int_{0}^{A} \frac{dx}{\sqrt{2(E-U)}}$

14-25 From Prob. 14-24
$$\frac{dy}{dx} = \frac{-\omega_m^2 x - \mu x^3}{4} = C$$

Let
$$\frac{\omega^{L}}{C} = 4 + \frac{\mu}{C} = 2$$

_%	4+12	y=-x(4+2x*)
-/	6	6
0	4	0
1	۷	-6
2	12	- 24
3	22	-66
		,

$$\frac{14-26}{4x} - \mu x (1-x^{2}) + x = 0$$

$$\frac{dy}{dx} - \mu y (1-x^{2}) + x = 0$$

$$\frac{dy}{dx} = \frac{\mu y (1-x^{2}) - x}{y} = \mu (1-x^{2}) - \frac{x}{y} = \frac{1}{2} = \frac{1}{2} = \frac{x}{2} = \frac{$$

Then
$$\dot{x} = \omega_m \dot{y}$$
 $\dot{x} = \omega_m \dot{y}$ \dot{x}

Above eq. can be written as given: $\omega_n^2 = 25$, $\mu = 5$ $(\alpha + \frac{C}{m}) y = -(x + \frac{H}{\omega_{m}^2 m} x^3)$ where $\alpha = \frac{dy}{dx}$ $\frac{C}{m} = 2.0$ $(\alpha + 2) y = -(x + 0.2 x^3)$ Assign different values for α and plot the field of isoclines. From prob. Ai-27 $\dot{\alpha}(0) = \omega_m y(0) = 0$ $\dot{\alpha}$ Start with $\dot{\alpha}(0) = 4$, $\dot{\alpha}(0) = 0$: $\dot{\alpha}(0) = 0$ and fill in trajectory All isoclines are vertical along $\dot{\alpha}$ axis. The right side $\dot{\alpha}$ $\dot{\alpha}$

14-29
$$\ddot{\theta} + \frac{q}{4} \sin \theta = 0$$
 Let $x = \theta$, $\omega_0^2 = \frac{g}{g}$?

 $y = \frac{\dot{\phi}}{\omega_0} = \frac{\dot{x}}{\omega_0} = \frac{dx}{dx}$
 $y = \frac{\dot{\phi}}{\omega_0} = \frac{\dot{x}}{\omega_0} = \frac{dx}{dx}$
 $dx + \frac{g}{4} \sin x = 0$ with $\alpha = \frac{dy}{dx} = constant$
 $dx = -\left(\frac{g}{\ell\omega_0^2}\right) \sin x$ or $y = -\frac{g}{\alpha \ell\omega_0^2} \sin x = ey$, for isocline with $\alpha = const$.

Since $\frac{g}{\ell\omega_0^2} = 1$

Trajectory for $y = -\frac{1}{2} \sin x = 1$
 Integrate
$$\frac{\partial^{2}}{\partial z} - \frac{2}{4} \cos \theta = 0$$
 $\frac{\partial}{\partial z} + \frac{2}{4} \sin \theta = 0$

Integrate $\frac{\partial^{2}}{\partial z} - \frac{2}{4} \cos \theta = E$ i. $U = -\frac{2}{4} \cos \theta$

At $t = 0$ $\theta = 60^{\circ}$ $\theta = 0$ i. $0 - \frac{2}{4} \cos \theta^{\circ} = E$

Since $\theta = \frac{\partial \theta}{\partial t}$ $dt = \frac{\partial \theta}{\partial t}$ $E = -\frac{2}{4} = -\frac{2}{4} \cos \theta$

$$dt = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \cos \theta = \frac{\partial}{\partial t} \cos \theta = \frac{\partial}{\partial t} \cos \theta$$

$$dt = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \cos \theta = \frac{\partial}{\partial t} \cos \theta = \frac{\partial}{\partial t} \cos \theta$$

$$dt = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \cos \theta = \frac{\partial}{\partial t} \cos \theta$$

$$dt = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \cos \theta = E$$

$$d\theta = \frac{\partial}{\partial t} \cos \theta = \frac{\partial}{\partial t} \cos \theta$$

$$d\theta = \frac{\partial}{\partial t} \cos \theta = \frac{\partial}{\partial t} \cos \theta$$

$$d\theta = \frac{\partial}{\partial t} \cos \theta = \frac{\partial}{\partial t} \cos \theta$$

$$d\theta = \frac{\partial}{\partial t} \cos \theta = \frac{\partial}{\partial t} \cos \theta$$

$$d\theta = \frac{\partial}{\partial t} \cos \theta = \frac{\partial}{\partial t} \cos \theta$$

$$d\theta = \frac{\partial}{\partial t} \cos \theta = \frac{\partial}{\partial t} \cos \theta$$

$$d\theta = \frac{\partial}{\partial t} \cos \theta = \frac{\partial}{\partial t} \cos \theta$$

$$d\theta =$$

$$t = \sqrt{\frac{\xi}{g}} \int \frac{d\phi}{\sqrt{1 - \sin^2 \theta}} = \sqrt{\frac{\xi}{g}} \int \frac{d\phi}{\sqrt{1 - \xi^2 \sin^2 \phi}}$$

:, period
$$\gamma = 4\sqrt{\frac{l}{g}} \int \frac{\sqrt[N]{k}}{\sqrt{1-k^2 \sin^2 d}}$$
 $k = \sin \frac{\theta_0}{2}$

Since sin
$$\phi = \frac{\sin \frac{\theta}{2}}{\sin \frac{\theta}{2}}$$
, when $\theta = 0$, $\phi = \frac{\pi}{2}$ = $\frac{1}{4}$ cycle

$$\frac{14-31}{x^2+\omega_n^2} + C \operatorname{sgn}(x) = 0 \qquad f = \omega_n t$$

$$\frac{\dot{x}}{dx} \frac{d\dot{x}}{dx} + \omega_n^2 x + C sgn(\dot{x}) = 0$$
 Let $\frac{dx}{d\tau} = \dot{y} = \frac{\dot{x}}{\omega_n}$

$$\omega_{m}^{2} y \frac{dy}{dx} + \omega_{m}^{2} x + C sqn(y) = 0$$

$$\frac{dy}{dx} = -\frac{\int_{\infty}^{\infty} C sqn(y) + x}{y} = -\frac{f(y) + x}{y}$$

14-32 Initial values
$$x(0) = 20^{\circ}$$
 $y(0) = 0$

$$\omega_{m} = \sqrt{\frac{3.60}{.10}} = 6$$
, $\mu = 0.20$

For the undamped pendulum the trajectory is an ellipse, For the damped pendulum the curve is inside of the ellipse, as shown

$$\frac{14-34}{6+\omega_m^2}\sin\theta=0\qquad \sin\theta=0-\frac{\theta^3}{6}$$

$$\ddot{\theta} + \omega_m^2 \left(\theta - \frac{\theta^3}{6}\right) = 0$$

From Eq. 12.6 - 9

$$\omega^{2} = \omega_{n}^{2} + \frac{3}{4} \mu A^{2} = \omega_{n}^{2} \left[1 + \frac{3}{4} \times \frac{1}{4} \Theta_{n}^{2} \right]$$

$$\omega = \omega_m \sqrt{1 + \frac{1}{8} \theta_0^2} \cong \omega_m \left(1 + \frac{1}{16} \theta_0^2 \right) \qquad \omega_m = \sqrt{\frac{2}{8}}$$

1.7-35 From Prob 14-34

$$\omega = \frac{2\pi}{r} \cong \frac{2\pi}{r_m} \left(1 + \frac{1}{r_m} \Theta_o^2 \right) : \gamma \cong \widetilde{r_m} \left(\frac{1}{1 + \frac{1}{r_m} \Theta_o^2} \right)$$

$$\frac{14-36}{2}$$
 $\frac{2}{3}$ + 0.15 \(\hat{x}\) + 10 \(\lambda\) + \(\chi^3\) = 5 \(\chi_3\) (\(\omegat\) + \(\rho\)

$$\omega_{m}^{*} = 10$$
, $C = .15$, $\mu = 1.0$, $F = 5$

Eq. 4.6-11 becomes

$$25 = \left[(10 - \omega^2)A + \frac{3}{4}A^3 \right]^2 + \left[.15 - \omega A \right]^2$$

Rearrange to

$$\omega^{4} - (20 + \frac{3}{2}A^{2} - .0225)\omega^{2} + (100 + 15A^{2} + \frac{9}{16}A^{2} - \frac{25}{A^{2}}) = 0$$

$$\omega^{4} - 6\omega^{2} + C = 0$$

14-36 Cont:

•				ພ້	ا دم ا
1		ь	<u> </u>	<u>ω</u>	w/wm
	o	19.98	~ ~	∞	∞
	,	2/.48	90.5	{5,7 15.78	{ · 755 { / · 255
	2	25.98	162.7	{10.69 15.29	{ 1.036 { 1.24
	3	32, 4 8	272.7	сотркх 🚤	this indicates the peak to be below A = 3
	≃ . 5				O

 $\frac{1-37}{\sqrt{\omega_{m}}} = \frac{\omega_{\omega_{m}}}{\sqrt{\omega_{m}}} =$

subst. w 4 A from Prob. 14-36

$$(\tan \phi)_{A=1} = \frac{.15\sqrt{5.7}}{(10-5.7)+.75} = \frac{.358}{5.05} = .071, \quad \phi = 4^{\circ} 4^{\circ}$$

$$(\tan \phi)_{A=1} = \frac{.15 \sqrt{15.78}}{(10-15.78)+.75} = \frac{.60}{-5.03} = -.119 \qquad \phi = 173°12'$$

$$(\tan \phi)_{A=2} = \frac{.15\sqrt{10.69}}{(10-10.69)+3} = \frac{.490}{2.31} = .213 \quad \phi = 12^{\circ}$$

$$=\frac{.15\sqrt{15.29}}{(10-15.29)+3}=\frac{.590}{-2.29}=-.257 \qquad \phi=185^{\circ}35'$$

$$(\tan \phi)_{A=0} = \frac{\infty}{-\infty^2} = -1 = -0$$
 $\phi = 180^\circ -$

$$(\tan \phi)_{A=.5} = \frac{0}{(10-0)+315} = 0$$
 $\phi = 0^{\circ}$

14-38 Moment eq. about an accelerating point A is

 $\vec{M}_A = \vec{I}_A \vec{\omega} + \vec{f}_{Ac} \times m \vec{Q}_A$ (See Dynamics by Pestel 4 Thomson p 213) where C is the center of mass and \vec{f}_{Ac} (McGraw Hill.) is a vector from A to C. For this problem $y_A = y_0 \cos 2\omega t$

$$I_A = ml^2$$
 $|P_{AC}| = l$ $|\alpha_A| = -4 y_0 \omega^2 conx \omega t$

Pac x man = L(sino i - cosoj) x m (-4 you cossut) j

$$\ddot{\theta} + \left(\frac{q}{\ell} - \frac{q}{\ell} y \cdot \omega^2 \cos 2\omega t\right) \sin \theta = 0$$

For the inverted pendulum
$$\theta = \pi - \phi$$
 $\sin \theta = \sin \phi$
 For small ϕ
 $\phi + \left(-\frac{g}{2} + \frac{4\omega_0^2 g}{2} \cos 2\omega t\right) \sin \phi = 0$

Compare with Eq. (g) Sec. 1... which is

 $\frac{dy}{dz^2} + \left(\alpha - 2b \cos 2z\right) y = 0$

which results in

 $y = \phi$, $y = \phi$, $y = \omega dt$

Rewrite eq.

 $\omega^2 \frac{d\phi}{dz^2} + \left(-\frac{g}{2} + \frac{4\omega^2 g}{2} \cos 2z\right) \phi = 0$
 $\frac{d\phi}{dz^2} + \left(-\frac{g}{2} + \frac{4\omega^2 g}{2} \cos 2z\right) \phi = 0$
 $\frac{d\phi}{dz^2} + \left(-\frac{g}{2} + \frac{4\omega^2 g}{2} \cos 2z\right) \phi = 0$
 $\frac{d\phi}{dz^2} + \left(-\frac{g}{2} + \frac{4\omega^2 g}{2} \cos 2z\right) \phi = 0$

Shaded regions are stable

The plot indicates of the production of inverted pendulum inverted pendulum

for prob.

The plot indicates that a stable oscillations of the inverted pendulum is possible if a is a small number and b is also negative between 0 4 -1, as shown by the point .

sin 0 = sin \$

14-40 New Length after displis l = lo(1+ xt) = lo(1+ 1 xt)

Let To = initial tension. Since increase in length is #2, the increase in tension is $K \frac{x^2}{L_0}$. Total tension = $(T_0 + K \frac{x^2}{L_0})$

Eq of motion

$$m\ddot{x} = -\frac{\chi}{\ell} 2 \left(T_0 + k \frac{\chi^2}{\ell_0} \right) \qquad \frac{\chi}{\ell} \cong \frac{\chi}{\ell_0}$$

$$m \ddot{x} + \left(\frac{\chi T_0}{\ell_0} \right) \chi + \left(\frac{\chi K}{\ell_0^2} \right) \chi^3 = 0$$

Assume sol. $x = x_1 + \mu x_2 + ---$ where u = arbitrary parameter and $x_2 << x_1$. Then $x^3 = x_1^3 + 3\mu x_1^2 x_2$. Subst. in D.E.

$$m\ddot{x}_{i} + \frac{2T}{\ell_{o}} \alpha_{i} + \alpha_{i} \alpha_{i}^{3} = 0$$
 $d = \frac{2k}{\ell_{o}^{2}}$

$$\mu\left[m\dot{x}_{1}+\frac{2T_{0}}{l_{0}}\chi_{1}+3\pi\chi_{1}^{2}\chi_{2}\right]=0$$

If a is small, then a, = A coscunt, wm = \(\frac{2T}{0} \) and 2 md ey becomes

$$m\ddot{x}_2 + 2\frac{T_0}{C}x_2 + (3\alpha A^2 Co^2\omega_n t)x_2 = 0$$

$$m\tilde{\chi}_{1}^{2} + \left[\left(\frac{2T_{0}}{R_{0}} + \frac{3}{2}\alpha A^{2}\right) + \frac{3}{2}\alpha A^{2}\cos 2\omega_{n}t\right]\chi_{1} = 0$$

which is Mathieu eq.

```
PROBLEM 14.41 THOMSON
    DIMENSION T(100), T1(100), T2(100), T3(100), T4(100), X(100), X1(100),
   1X2(100), X3(100), X4(100), Y(100), Y1(100), Y2(100), Y3(100), Y4(100),
   1F(100), F1(100), F2(100), F3(100), F4(100)
    N = 70
    DH=0.1
    X(1) = 3.1415/3.
    Y(1) = 0.0
    T(1) = 0.0
    PRINTS
  5 FORMAT (20 Y, J', 5 X, 'TIME', 9 X, 'DISPL', 5 X, 'ACCELERATION', 11 X, 'F (J) ')
    DO 10 J=1,N
    P(J) = PXY(T(J), X(J), Y(J))
    PRINTS, J, T (J), X (J), Y (J), F (J)
  8 FORMAT (18X, 13, 2X, F7. 3, 2X, E12. 3, 5X, E12. 3, 3X, E12. 3)
    T1(J) = T(J)
    X1(J)=X(J)
    Y1(J) = Y(J)
    F1(J) = FXY(T1(J), X1(J), Y1(J))
    T2(J) = T(J) + DH/2.
    X2(J) = X(J) + Y1(J) *DH/2.
    Y2(J) = Y(J) + F1(J) * DH/2.
    F2(J) = FXY(T2(J), X2(J), Y2(J))
    T3(J) = T(J) + DH/2.
    X3(J) = X(J) + Y2(J) *DH/2.
    Y3(J) = Y(J) + P2(J) * DH/2.
    F3(J) = FXY(T3(J), X3(J), Y3(J))
    T4(J) = T(J) + 9H
    X4(J) = X(J) + Y3(J) *DH
    Y4(J) = Y(J) + F3(J) * DH
    F4(J) = FXY(T4(J), X4(J), Y4(J))
    x(J+1) = Y(J) + DH/6.*(Y1(J) + 2.*Y2(J) + 2.*Y3(J) + Y4(J))
    Y(J+1) = Y(J) + DH/6.*(F1(J) + 2.*F2(J) + 2.*F3(J) + F4(J))
    T (J+1) =T (J) +DH
 10 CONTINUE
    STOP
    END
    FUNCTION FXY (T, X, Y)
    FXY=-SIN(X)
    RETURN
    END
```

	mT # 7	NIC DI	ACCUI ED AMION	r (1)
J 1	TIME 0.000	DISPL 0.105E 01	ACCELERATION 0.000E 00	F(J) -0.866E 00
2	0.000	0.194E 01	-0.865E-01	-0.864E 00
3	0.200	0.103E 01	-0.173E 00	-0.857E 00
4	0.300	0.1038 01	-0.258E 00	-0.846E 00
5	0.409	0.9785 00	-0.342E 00	-0.830E 00
6	0.500	0.9409 00	-0.424E 00	-0.308E 00
7	0.600	0.894E 00	-0.503E 00	-0.779E 00
ģ	0.700	0.8408 00	-0.579E 00	-0.7448 00
9	0.800	0.778E 00	-0.652E 00	-0.702E 00
10	0.900	0.7098 00	-0.7198 20	-0.651F 00
11	1.000	0.634E 00	-0.782E 00	-0.593E 00
12	1.100	0.5538 00	-0.838R 00	-0.526F 00
13	1.200	0.467E 00	-0.886E 00	-0.4505 00
14	1.300	9.376E 00	-0.927E 00	-0.367E 00
15	1.400	0.282E 00	-0.960E 00	-0.278E 00
16	1.500	0.185E 99	-0.983E 00	-0.184E 00
17	1.600	0.856E-01	-0.996E 00	-0.855E-01
18	1.700	-0.1438-01	-0.100E 01	0.143E-01
19	1.800	-0.114E 00	-0.993E 00	0.1148 00
20	1.900	-0.2138 00	-0.977E 00	0.211E 00
21	2.000	-0.309E 00	-0.9518 00	0.304E 00
22	2.100	-0.403B 00	-0.917E 00	0.3927 00
23	2.200	-0.4928 00	-0.873E 00	9.473E 90
24	2.300	-0.577B 00	-0.822E 00	0.5468 00
25	2.400	-0.656% 00	-0.764E 00	0.610E 00
26	2.500	-0.730E 00	-0.701E 00	0.667% 00
27	2.600	-0.796E 00	-0.631E 00	0.7158 00
28	2.700	-0.856R 00	-0.558E 00	0.7558 00
29	2.800	-0.909E 00	-0.481E 00	0.788E 00
30	2.900	-0.952E 00	-0.400R 00	0.8143 00
31	3.090	-0.983E 00	-3.318E 00	0.835E 00
32	3.100	-0.102E 01	-0.2348 00	0.8509 00
33	3.200	-0.103E 01	-0.1488 00	C-860E 00
34	3.300	-0.104E 01	-0.619E-01	0.865E 00
35	3.400	-0.105B 01	0.247E-01	0.8668 00
36	3.500	-0.1048 01	0.111E 00	0.862E 00
37	3.609	-0.102B 01	0.197E 00	0.855g 00
38	3.700	-0.100E 01	0.2822 00	0.842E 00
39	3.800	-0.9685 00	0.3658 00	0.3248 00
40	3.900	-0.9298 00	0.446E 00	0.8002 00

41	4.000	-0.879E 00	0.5258 00	0.770E 00
42	4.100	-0.9238 00	0.6008 00	0.7338 00
43	4.200	-0.7598 00	0.671E 00	0.6888 00
44	4.300	-0.6898 00	0.7388 00	0.636E 00
45	4.400	-0.6128 00	0.798E 00	0.574E 00
46	4.500	-0.529g 00	0.852E 00	0.505E 00
47	4.600	-0.4428 00	0.899E 00	0.427E 00
48	4.700	-0.350E 00	0.937E 00	0.343R 00
49	4.800	-0.254E 00	0.967E 00	0.252E 00
50	4.900	-0.157E 00	0.9882 00	0.156E 00
51	5.000	-0.5728-01	0.998E 00	0.572E-01
52	5.100	0.4288-01	0.999E 00	-0.427E-01
53	5.200	0.1428 00	0.990E 00	-0.142E 00
54	5.300	0.240R 00	0.971E 00	-0.238E 00
55	5.400	0.336E 00	0.942E 00	-0.330F 00
56	5.500	0.4298 00	0.905E 00	-0.416E 00
57	5.600	0.517E 00	0.859E 00	-0.494E 00
57 58	5.700	0.6008 00	0.806E 00	-0.565E 00
	5.800	0.678g 00	0.747E 00	-0.627E 00
59	5.900	0.378% 00 0.7498 00	0.6818 00	-0.681E 00
60	5.900 6.000	0.8148 00	0.611E 00	-0.727E 00
61	6.100	0.871E 00	0.536E 00	-0.765E 00
62	6.200	0.921E 00	0.458g 00	-0.796E 00
63	5.300	0.9638 00	0.3778 00	-0.821E 00
64		0.9968 00	0.294E 00	-0.840E 00
65	6.400 6.500	0.4908 00	0.209E 00	-0.853E 00
56	6.500	0.104E 01	0.124E 00	-0.862E 00
67	6.600 6.700		0.372E-01	-0.866E 00
58	5.700	* -	-0.494E-01	-0.865E 00
69	6.800	0.105E 01	-0.136E 00	-0.861E 00
70	6.900	0.104E 01	-0.1365 00	Off at go • O =

```
Damped Pendulum (large angles)
\ddot{\theta} + \sin \theta + 0.30 \dot{\theta} = 0, \quad \frac{9}{2} = 1.0
\theta(0) = \frac{\pi}{3} = 60^{\circ}, \quad \dot{\theta}(0) = 0
Runge-Kutta Program
```

```
PROBLEM 14.42 THOMSON
     DIMENSION T (100), T1 (100), T2 (100), T3 (100), T4 (100), X (100), X1 (100),
   1 \times 2 (100), \times 3 (100), \times 4 (100), \times (100), \times 1 (100), \times 2 (100), \times 3 (100), \times 4 (100),
   18 (100), 81 (100), 82 (100), 83 (100), 84 (100)
    N = 70
    DH=0.1
    X(1) = 3.1415/3.
    Y(1)=0.0
    T(1) = 0.0
    PRINTS
  5 FORMAT (20X, J', 5X, TIME', 9X, OISPL', 5X, ACCELERATION', 11X, F (J) ')
    DO 10 J=1.4
    F(J) = PXY(T(J), X(J), Y(J))
    PRINT8, J, T(J), X(J), Y(J), P(J)
  8 FORMAT (18X,13,2X,F7.3,2X,E12.3,5X,E12.3,3X,E12.3)
    T1(J) = T(J)
    X1(J) = X(J)
    Y1(J) = Y(J)
    P1(J) = FXY(T1(J), X1(J), Y1(J))
    T2(J) = T(J) + DH/2.
    X2(J) = X(J) + Y1(J) *DH/2.
    Y2(J) = Y(J) + P1(J) * DH/2.
    F2(J) = FXY(T2(J), X2(J), Y2(J))
    T3(J) = T(J) + DH/2.
    X3(J) = X(J) + Y2(J) * DH/2.
    Y3(J) = Y(J) + P2(J) * DH/2.
    F3(J) = FXY(T3(J), X3(J), Y3(J))
    T4(J) = T(J) + DH
    X4(J) = X(J) + Y3(J) *DH
    Y4(J) = Y(J) + P3(J) *DH
    F4(J) = FXY(T4(J), X4(J), Y4(J))
    X(J+1) = X(J) + DH/6.*(Y1(J) + 2.*Y2(J) + 2.*Y3(J) + Y4(J))
    Y(J+1)=Y(J)+DH/6.*(F1(J)+2.*P2(J)+2.*P3(J)+F4(J))
    T(J+1) = T(J) + DH
TO CONTINUE
    STOP
    END
    FUNCTION FXY (T, X, Y)
    FXY=-SIN(Y)-0.3*Y
    RETURN
    END
```

J	TIME	DISPL	ACCELERATION	F(J)
1	0.000	0.105E 01	0.000E 00	-0.866E 00
2	0.100	0.1048 01	-0.852E-01	-0.838F 00
3	0.200	0.103E 01	-0.168E 00	-0.8078 00
4	0.300	0.1018 01	-0.247E 00	-0.7738 00 -0.7348 00
5	9.400	0.981E 00	-0.322E 00	-0.734E 00 -0.693E 00
6	0.500	0.945R 00	-0.393E 00	-0.647E 00
7	0.600	0.9038 00	-0.460E 00 -0.523E 00	-0.597a 00
9	0.700	0.8538 00	-0.580E 00	-0.542E 00
9	0.800	0.798E 00	-0.631E 00	-0.483E 00
10	0.900	0.738F 00 0.672E 00	-0.676E 00	-0.4208 00
11	1.000	0.6038 00	-0.715E 00	-0.352E 00
12	1.100 1.200	0.530% 00	-0.746E 00	-0.281E 00
13	1.300	0.454E 00	-0.771E 00	-0.207E 00
14	1.400	0.3768 00	-0.788E 00	-0.131E 00
15 16	1.500	0.296E 00	-0.797E 00	-0.529B-01
17	1.600	0.216E 00	-0.798E 00	0.247E-01
18	1.700	0.137E 00	-0.792E 00	0.101E 00
19	1.800	0.593E-01	-0.778E 00	0.175E 00
20	1.900	-0.185E-01	-0.757E 00	0.246E 00
21	2.009	-0.9295-01	-0.729E 00	0.311E 00
23	2.100	-0.1648 00	-0.695E 00	0.372E 00
23	2.200	-0.232E 00	-0.655E 00	0.426E 00
24	2.300	-0.295E 00	-0.610E 00	0.474R 00
25	2.400	-0.354E 00	-0.5618 00	0.5142 00
26	2.500	-0.407E 80	-0.5078 00	0.548E 00
27	2.600	-0.455E 00	-0.451E 00	0.575E 00
28	2.700	-0.4978 00	-0.393E 00	0.5958 00
20	2.800	-0.533E 00	-0.332E 00	0-608E 00
30	2,900	-9.564E 00	-9.2718 00	0.6168 00
31	3.000	-0.583E 00	-0.210E 00	0-6178 00
32	3. 100	-0.6058 00	-0.1482 00	0.613E 00
33	3.200	-0.617E 00	-0.870E-01	0.605E 00
34	3.300	-0.623E 00	-0.271E-01	0.591E 00
35	3-400	-0.623E 00	0.3128-01	0.574E 00
36	3.500	-0.617E 00	0.875E-01	0.552B 00
37	3.600	-0.605E 00	0.141E 00	0.5272 00
38	3.790	-0.588E 00	0.193E 00	0.497E 00
39	3.800	-0.567E 00	0-2418 00	0.465E 00 0.429E 00
40	3.900	-0.540E 00	0.286% 00 0.326E 00	
41		-0.510F 00 -0.475F 00		0.390E 00 0.349E 00
42	4.100	-0.4/05 09	0.363E 00	V. 3476 VV

43	4.200	-0.437E 00	0.396E 00	0.305E 00
44	4.300	-0.396E 00	0.424E 00	0.259E 00
45	4.400	-0.3532 00	0.448E 00	0.211E 00
46	4.500	-0.307g 00	0.466E 00	0.162E 00
47	4.600	-0.259E 00	0.480E 00	0-112E 00
48	4.700	-0.211E 00	0.489E 00	0.627R-01
49	4.300	-0-1623 00		
			0-493E 00	0.1338-01
50	4,900	-0.113R 00	0.492E 00	-0.352E-01
51	5.000	-0.636E-01	0.486E 00	-0-821E-01
52	5. 100	-0.156E-01	9.475E 00	-0.127E 00
53	5.200	0.313E-01	0.460E 00	-0-169E 00
54	5.300	0.7648-01	0.441E 00	-0.209R 00
55	5-400	0.119E 00	0.419E 00	-0.245E 00
56	5.500	0.160E 00	0.393E 00	-0.277E 00
57	5.600	0.198E 00	0-363E 00	-0-306E 00
58	5.700	0.233E 00	0.332E 00	-0.330E 00
59	5.800	0-264E 00	0.298E 00	-0.350E 00
60	5.900	0.292R 00	0.262E 00	-0.366E 00
61	6.000	0.316E 00	0.224E 00	-0.379E 00
62	6.100	0.337E 00	0.186E 00	-0.3868 00
63	6.200	0.354E 00	0.147E 00	-0.390g 00
64	6.300	0.366% በዐ	0.108E 00	-0.391E 00
65	6.400	0.375E 00	0.6938-01	-0.387g 00
66	6.500	0.380% ባፀ	9.309E-01	-0.380E 00
67	6.600	0.381E 00	-0.6718-02	-0-370g 00
68	6.700	0.3798 00	-0.4318-01	-0.357E 00
69	6.800	0.373E 00	-0.780E-01	-0.3418 00
70	6.900	0.363E 00	-0.111E 00	-0.322E 00
1	_	! !	1	
1.0	_0 rad	· · · · · · · · · · · · · · · · · · ·		
			1	
,8				
,,,				
	X			
.6				
		1	j 1	
.4				
`	\	ļ		
	\	[
.2				
		\		time sec
۰ ـــــــ				Lime Sec
O i	ď	* 3	# #5	6 7
.2			/	
~~				· [
.4		\		
.6				<u> </u>
- 1	I	1	ĺ	

$$\frac{14-43}{\xi+\xi} = 0$$

$$\frac{\xi+\xi+0.2\xi^3}{\xi-\frac{\chi}{L_0}} = 0$$

$$\frac{\xi(0)=0.20}{\xi(0)=0}$$

Runge-Kutta Program

```
PROBLEM 14.43 THOMSON
    DIMENSION T (100), T1 (100), T2 (100), T3 (100), T4 (100), X (100), X1 (100),
   1 (100) , X3 (100) , X4 (100) , Y (100) , Y 1 (100) , Y 2 (100) , Y 3 (100) , Y 4 (100) ,
   1F(100), F1(100), F2(100), F3(100), F4(100)
    N = 70
    DH=0.1
    X(1) = 0.2
    V = 0.0
    T(1) = 0.0
    PRINT5
  5 FORMAT (20X, "J', 5X, "TIME", 9X, "DISPL", 5X, "ACCELERATION", 11X, "F (J) ")
    DO 10 J=1.N
    F(J) = FXY(T(J) X(J) Y(J))
    PRINTS, J, T (J), K (J), Y (J), P (J)
  8 FORMAT (18X,13,2X,F7.3,2X,R12.3,5X,E12.3,3X,E12.3)
    T1\{J\}=T\{J\}
    X1(J) = X(J)
    Y1(J) = Y(J)
    P1(J) = PXY(T1(J), X1(J), Y1(J))
    T2(J) = T(J) + DH/2.
    X?(J) = X(J) + Y1(J) * DH/2.
    Y2(J) = Y(J) + F1(J) * DH/2.
    F2(J) = FXY(T2(J), X2(J), Y2(J))
    T3(J) = T(J) + DH/2.
    X3(J) = X(J) + Y2(J) + DH/2.
    Y3(J) = Y(J) + F2(J) * DH/2.
    F3(J) = FXY(T3(J), X3(J), Y3(J))
    HG + (U) T = (U) + TH
    X4(J) = X(J) + Y3(J) *DIC
    Y4(J) = Y(J) + P3(J) * DH
    F4(J) = FXX(T4(J), X4(J), Y4(J))
    X(J+1) = X(J) + DH/6.*(Y1(J) + 2.*Y2(J) + 2.*Y3(J) + Y4(J))
    Y(J+1) = Y(J) + DH/6.*(P1(J) + 2.*P2(J) + 2.*P3(J) + P4(J))
    T(J+1) = T(J) + DH
 10 CONTINUE
    STOP
    END
    FUNCTION FXY (T, X, Y)
    FXY=-X-0.2*X**3
    RETURN
    END
```

J	TIME	DISPL	ACCELERATION	T 4 15
1	0.000	J.20JR 00	0.000E 00	F(J) -0.202E 00
ž	0.100	0.1993 00	-0.201E-01	-0.201E 00
3	0.200	0.1965 00	-9.400g-01	-0.197E 00
4	0.300	0.1918 00	-0.596E-01	-0.1923 00
5	0.400	0.1848 00	-0.785E-01	-0.185g 00
6	0.500	0.1753 00	-0.9668-01	-0.1768 00
7	0.600	0.1658 90	-0.1148 00	-0.1668 00
á	0.700	9.153E 00	-0.130E 00	-0.153# 00
9	0.800	0.1398 00	-0.144E-00	-0.139E 00
10	0.900	0.1248 00	-0.1578 00	-0.124E 00
11	1.000	0.1078 00	-0.169E 00	-0-108E 00
12	1.100	0.9018-01	-9.179E 90	-0.902E-01
13	1.200	0.7178-01	-0.187E 00	-0.718E-01
14	1.300	0.5278-01	-0.193R 00	-0.527E-01
15	1.400	0.3318-01	-0.198F 00	-0.331E-01
16	1.500	0.1329-01	-9.200E 00	-0.132F-01
17	1.600	-0.6798-02	-0.200g 00	0.6795-02
18	1. 700	-0.268R-01	-9.199E 00	0.268E-01
19	1.800	-0.464E-01	-0.195E 00	0.465E-01
20	1.900	-0.6578-01	-0.189E 00	0.657E-01
21	2.000	-0.842E-01	-0-182E 00	0-944E-01
22	2. 100	-0.102E 00	-0.172E 00	0.102E 00
23	2.200	-0.119E 00	-0.161E 00	0-119E 00
24	2,300	-0.134E 00	-0.149R 00	0.135E 00
25	2.400	-0.148E 00	-0.135E 00	0.149E 90
26	2.500	-0.161E 00	-0.1195 00	0.1625 00
27	2.600	-0.172R 00	-9.102E 00	0.173E 00
28	2.700	-9.131E 90	-0.844E-01	0.183E 00
29	2.800	-0.189E 00	-0.657E-01	0.190E 00
30	2.900	-0.1958 00	+0.464E-01	0.1962 00
31 32	3.000	-0.193E 00	-0.266E-01	0.200E 00
	3.100	-9.200E 00	-0.6498-02	0.201E 00
33 34	3.200 3.300	-0.200E 00 -0.197E 00	0.1372-01	0.2012 00
35	3.400	-0.197E 00 -0.193E 00	0.3378+01	0.1998 00
36	3.500	-0.187E 00	0.533E-01 0.724E-01	0.194E 00
3 7	3.600	-0.1788 00	0.908E-01	0.188E 00 0.179E 00
38	3.700	-0.1683 00	0.103E 00	0.1798 00 0.169E 00
39	3.800	-0.157g 00	0.125g 00	0.158E 00
40	3.900	-0.1448 00	0.140B 00	0.144E 00
41	4.000	-0.129E 00	0.153E 00	0-129E 00
42	4.100	-0.113E 00	0.166E 00	0.113E 00
,	7			4. 1. 13B GO

	time	displ.	accel.	F(J)
43	4.200	-0.958E-01	0-176E 00	0.9608-01
44	4.300	-0.777E-01	0.185E 00	0.778E-01
45	4_400	-0.589R-01	0.1928 00	0.5892-01
46	4.500	-0.395E-01	0.196E 00	0.3958-01
47	4.600	-0.197E-01	0.1992 00	0.197E-01
48	4.700	0.3358-03	0.200E 00	-0.3352-03
49	4.800	0.2038-01	0.199E 00	-0.203E-01
50	4.900	0.401E-01	0.196E 00	-0.402E-01
51	5.000	0.5958-01	0-191E 00	-0.596E-01
52	5.100	0.783E-01	0.184E 00	-0.784E-01
53	5.200	0.9648-01	0.176E 00	-0.965E-01
54	5.300	0.113R 00	0.165E 00	-0.114E 00
55	5.400	0.129E 00	0.153E 00	-0-130E 00
56	5.500	0.144E 00	0.139E 00	-0.145E 00
57	5.600	0.1578 00	0.124E 00	-0.158E 00
58	5.700	0.169E 00	0.108E 00	-0.170E 00
59	5.800	0.1798 00	0.902E-01	-0.180E 00
60	5.900	0.187E 00	0.7188-01	-0.188E 00
61	6.000	0.1938 00	0.527E-01	-0-194E 00
62	5.100	0.197E 00	0.330E-01	-0.199E 00
63	6.200	0.200E 00	0.130E-01	-0-201E 00
64	6.300	0.200E 00	-0.717E-02	-0.201E 00
65	6.400	0.1988 00	-0.272R-01	-0.200E 00
66	6.500	0.1948 00	-0.470E-01	-0.196E 00
67	6.600	0.1892 00	-0.664g-01	-0.190E 00
68	6, 709	0.1818 00	-0.850E-01	-0.182E 00
69	6.809	0.172E 00	-0.103E 00	-0-173E 00
70	6.900	0.161F 00	-0.119E 00	-0.161E 00

