

Congratulations! You passed!

Next Item

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

decimal point.

Correct Response

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives) • F_1 score = (2 * precision * recall) / (precision + recall)

Enter your answer in the box below. If necessary, provide at least two values after the

What is the classifier's recall (as a value from 0 to 1)?

0.85

There are 85 true positives and 15 false negatives, so recall is 85 / (85 + 15) = 0.85.

Suppose a massive dataset is available for training a learning algorithm. Training on a lot

of data is likely to give good performance when two of the following conditions hold true. Which are the two?

We train a learning algorithm with a

large number of parameters (that is able to

will underfit the large training set.

learn/represent fairly complex functions).

You should use a "low bias" algorithm with many parameters, as it will be able to make use of the large dataset provided. If the model has too few parameters, it

Correct

The features \boldsymbol{x} contain sufficient

information to predict y accurately. (For example, one

way to verify this is if a human expert on the domain can confidently predict y when given only x).

It is important that the features contain sufficient information, as otherwise no amount of data can solve a learning problem in which the features do not contain

enough information to make an accurate prediction.

We train a model that does not use regularization. **Un-selected is correct**

We train a learning algorithm with a

overfit). **Un-selected** is correct

small number of parameters (that is thus unlikely to

Currently, you predict 1 if $h_{ heta}(x) \geq ext{threshold}$, and predict 0 if $h_{ heta}(x) < ext{threshold}$, where currently the threshold is set to 0.5.

Suppose you have trained a logistic regression classifier which is outputing $h_{\theta}(x)$.

that apply. The classifier is likely to now have lower recall.

Suppose you decrease the threshold to 0.3. Which of the following are true? Check all

Un-selected is correct

The classifier is likely to have unchanged precision and recall, and

Un-selected is correct

The classifier is likely to have unchanged precision and recall, but

thus the same F_1 score.

Un-selected is correct

higher accuracy.

The classifier is likely to now have lower precision.

Lowering the threshold means more y = 1 predictions. This will increase both true

Suppose you are working on a spam classifier, where spam emails are positive examples (y=1) and non-spam emails are

in which 99% of the emails are non-spam and the other 1% is spam. Which of the following statements are true? Check all

negative examples (y=0). You have a training set of emails

and false positives, so precision will decrease.

If you always predict non-spam (output y=0), your classifier will have an accuracy of

Correct Since 99% of the examples are y = 0, always predicting 0 gives an accuracy of

any spam.

set.

99%.

that apply.

A good classifier should have both a high precision and high recall on the cross validation

99%. Note, however, that this is not a good spam system, as you will never catch

Correct For data with skewed classes like these spam data, we want to achieve a high $F_{
m 1}$ score, which requires high precision and high recall.

If you always predict non-spam (output

y=0), your classifier will have 99% accuracy on the

training set, but it will do much worse on the cross

data. Un-selected is correct

validation set because it has overfit the training

If you always predict non-spam (output y=0), your classifier will have 99% accuracy on the

the cross validation set.

Correct The classifier achieves 99% accuracy on the training set because of how skewed the classes are. We can expect that the cross-validation set will be skewed in the

training set, and it will likely perform similarly on

Which of the following statements are true? Check all that apply.

It is a good idea to spend a lot of time collecting a large amount of data before building

same fashion, so the classifier will have approximately the same accuracy.

Un-selected is correct

Using a **very large** training set makes it unlikely for model to overfit the training

your first version of a learning algorithm.

This should be selected

If your model is underfitting the

data.

training set, then obtaining more data is likely to help.

Un-selected is correct

On skewed datasets (e.g., when there are

is not a good measure of performance and you should instead use F_1 score based on the precision and recall.

more positive examples than negative examples), accuracy

After training a logistic regression

This should be selected

for predicting whether an example is positive or

classifier, you **must** use 0.5 as your threshold

negative.

Un-selected is correct