

REVISIONS TO CLAIMS

1 Claim 1 (previously presented): A method of manufacturing a circular optical storage disc,
2 comprising:
3 providing a substrate with a first surface and a periphery; and
4 providing a coating on the first surface by applying a liquid, rotating the substrate,
5 and solidifying the liquid; and
6 wherein:
7 when applying the liquid onto the first surface, the substrate is present in a
8 separate extension body;
9 the extension body having substantially circumferential contact with the periphery
10 of the substrate;
11 the extension body having a surface substantially flush with the first surface of the
12 substrate, wherein said extension body further comprises at least two parts; and
13 after substantial solidification of the liquid, the extension body and the substrate
14 are separated.

Claim 2 (previously presented): The method as claimed in Claim 1, wherein said extension body
has an outer periphery which has a circular shape.

Claim 3 (previously presented): The method as claimed in Claim 1, wherein said extension body
has an outer periphery which has a polygonal shape.

REVISIONS TO CLAIMS

Claim 4 (previously presented): The method as claimed in Claim 3, wherein said extension body has an outer periphery which has a regular polygonal shape.

Claim 5 (previously presented): The method as claimed in Claim 1, wherein the surface of the extension body consists of substantially the same material as the substrate of the optical storage disc.

Claim 6 (previously presented): The method as claimed in Claim 1, wherein the surface of the extension body consists of a material to which the coating adheres relatively poorly.

Claim 7 (previously presented): The method as claimed in Claim 1, wherein said at least two parts have surfaces substantially flush with the first surface of the substrate.

Claim 8 (previously presented): The method as claimed in Claim 1, wherein the liquid is solidified by exposure to UV light.

Claims 9-14 (cancelled)

Claim 15 (previously presented): The method of Claim 1, wherein the substantial solidification being sufficient so that coating breaks off at the periphery of the substrate.

Claim 16 (previously presented): The method of Claim 1, wherein the substantial solidification being sufficient so that the separation releases coating from the extension body.

REVISIONS TO CLAIMS

Claim 17 (previously presented): The method of Claim 1, wherein the at least two parts of said extension body are congruent.

- 1 | Claim 18 (currently amended): The method as claimed in Claim 3, wherein a number ~~sides-parts~~
2 | for the at least two ~~sides-parts~~ used to form said polygonal shape is equal to half of the sides
3 | within said polygonal shape.

Claim 19 (currently amended): The method as claimed in Claim 18, wherein each of said number of ~~sides-parts~~ is congruent.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.