Seconde		Fiche d'exercices 1
	Vecteurs	

Exercice 1

Soit (ABCD) un parallélogramme. On pose $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AD}$.

Exprimez à l'aide de \vec{u} et \vec{v} les vecteurs \overrightarrow{BA} , \overrightarrow{DA} , \overrightarrow{CB} , \overrightarrow{DC} , \overrightarrow{CD} , \overrightarrow{AC} , \overrightarrow{CA} .

Exercice 2

Soit A, B, C, D, E cinq points quelconques.

- a) Représentez le vecteur \vec{u} défini par $\vec{u} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE}$.
- b) Simplifiez et représentez :

$$\vec{s} = \overrightarrow{AB} \cdot \overrightarrow{AC}, \ \vec{v} = \overrightarrow{AC} + \overrightarrow{BA} + \overrightarrow{CB}, \ \vec{w} = \overrightarrow{MA} - \overrightarrow{MB} - \overrightarrow{AB}, \ \vec{t} = \overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{DC} - \overrightarrow{DB}$$

Exercice 3

Démontrez que pour tout point A, B, C, D et E on a : $\overrightarrow{AC} + \overrightarrow{BD} + \overrightarrow{CE} + \overrightarrow{DA} + \overrightarrow{EB} = \vec{0}$.

Exercice 4

Dans la figure ci-dessus, $\vec{u} = \vec{FR}$ et $\vec{v} = \vec{FE}$.

On construit les points G, S, T et H tels que $\overrightarrow{FG} = -\vec{v}$ et FESR, FGTR et FSHT sont des parallèlogrammes.

- 1) Donnez un représentant de la somme vectorielle : $\vec{u} + \vec{v}$; $\vec{u} \vec{v}$; $\vec{u} + \vec{v} + (\vec{u} \vec{v})$.
- 2) Où se situe le point R ? A-t-on FR + RT = FT ?

Exercice 5

A, B, C et D sont quatre points du plan.

- a) Construire le point M tel que $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC} \overrightarrow{BC}$.
- b) Construire le point N tel que $\overrightarrow{AN} = \overrightarrow{AB} \overrightarrow{AC} + \overrightarrow{AD}$.
- c) Démontrez que $\overrightarrow{NM} = \overrightarrow{AC} + \overrightarrow{DB}$.

							₹	I			
						J.					~~~c
		_	F			_	M				
Е	₩			В	<u>i</u>					₽	Н
		ū						, <u>*</u>			
Α							G				
	D	_					К	Ž	-	L	

A l'aide du schéma ci-dessus, recopiez et complétez le tableau suivant :

-	ocopiez et compiet		
AB et CD ont même direction.	$\overrightarrow{AB} = -\frac{1}{2}\overrightarrow{CD}$	$\vec{CD} = -2 \vec{AB}$	AB et CD sont colinéaires. ū et v sont colinéaires.
u et v ont même direction.	$\vec{\mathbf{u}} = -\frac{1}{2} \vec{\mathbf{v}}$	$\vec{v} = -2 \vec{u}$	
$\stackrel{\rightarrow}{AB}$ et $\stackrel{\rightarrow}{EF}$			
AB et GH			
\overrightarrow{AB} et \overrightarrow{IJ}			
\overrightarrow{AB} et \overrightarrow{KL}			
$\stackrel{\rightarrow}{AB}$ et $\stackrel{\rightarrow}{BM}$			

Exercice 7

ABC est un triangle. Construire les points D et E tels que $\overrightarrow{BD} = 2\overrightarrow{AC} - 3\overrightarrow{AB}$ et $\overrightarrow{CE} = \overrightarrow{AC} - 2\overrightarrow{AB}$. Que remarque-t-on ? Justifiez.

Exercice 8

ABC est un triangle. Construire le point D tel que $\overrightarrow{BD} = 3\overrightarrow{BA} - 2\overrightarrow{BC}$.

Montrez que D appartient à la droite (AC) (On pourra par exemple exprimer \overrightarrow{AD} en fonction $\overrightarrow{de} \overrightarrow{AC}$).

Exercice 9
Soient A, B et C trois points du plan.

E et F sont les points tels que $\overrightarrow{AE} = \overrightarrow{AB} + 2\overrightarrow{AC}$ et $\overrightarrow{BF} = \frac{2}{3}\overrightarrow{BC}$.

- 1) Faire la figure.
- 2) En utisant la relation de Chasles, démontrez que $\overrightarrow{AF} = \frac{1}{3} \overrightarrow{AB} + \frac{2}{3} \overrightarrow{AC}$.
- 3) Démontrez que les points A, E et F sont alignés.

Exercice 10

ABCD est un carré.

- 1) Placez les points M et N tels que $\overrightarrow{AM} = \frac{2}{3} \overrightarrow{BC}$ et $\overrightarrow{DN} = -\frac{1}{2} \overrightarrow{DC}$.
- 2) Exprimez chacun des vecteurs \overrightarrow{MN} et \overrightarrow{NB} en fonction de \overrightarrow{DA} et \overrightarrow{DC} .
- 3) Démontrez que B, N et M sont alignés.

Seconde	Fiche d'exercices 2

Les vecteurs

Exercice 11

ABC est un triangle. E est le point tel que $\overrightarrow{AE} = \frac{1}{3} \overrightarrow{AB}$ et F le point tel que $\overrightarrow{AF} = 3 \overrightarrow{AC}$. Démontrez que les droites (CE) et (FB) sont parallèles.

Exercice 12

ABCD est un parallèlogramme de centre I, B est le milieu du segment [AE], G est le centre de gravité du triangle ACE et $\overrightarrow{BF} = 2\overrightarrow{BA} + \overrightarrow{AD}$.

Déterminez les relations liant les vecteurs \overrightarrow{AE} et \overrightarrow{CD} , \overrightarrow{CG} et \overrightarrow{CB} , puis \overrightarrow{EI} et \overrightarrow{EG} .

Calculez IE+ IF puis montrez que E, G et F sont alignés.

Exercice 13

Soit ABCD un parallélogramme. P est le mimieu du segment [AD], le point R est le symétrique de B par rapport à D et Q est le point vérifiant $\overrightarrow{AQ} = \frac{1}{3} \overrightarrow{AB}$.

On veut démontrer que les points P, Q et R sont alignés.

1) Méthode vectorielle.

Exprimez les vecteurs \overrightarrow{PQ} et \overrightarrow{PR} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AD} .

En déduire l'alignement des trois points.

2) Méthode analytique.

Déterminez les coordonnées des points A, B, C, D, P, Q et R dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AD})$. En

déduire les coordonnées des vecteurs \overrightarrow{PQ} et \overrightarrow{PR} et l'alignement des trois points.

Exercice 14

Soit (A, B, C) un repère du plan.

Quelles sont les coordonnées de :

- a) A, B et C.
- b) du point D tel que ABCD parallélogramme.
- c) de O centre du parallélogramme.
- d) de A', B', C' milieux respectifs de [BC], [AC] et [AB].
- e) de G centre de gravité du triangle ABC.

Exercice 15

Soit ABCD un carré de côté 4 cm.

On nomme I le milieu de [BC] et E le point tel que $\overrightarrow{CE} = \frac{1}{2}\overrightarrow{DE}$.

- 1) Exprimez, à l'aide du calcul vectoriel, DE en fonction de DC.
- 2) Faîtes la figure.
- 3) On se place dans le repère (D, C, A).
 - a) Déterminez la base associée.
 - b) Trouvez les coordonnées des points A, B, C, D, I et E.
 - c) Montrez que I est aussi le milieu de [AE].
- c) Que peut-on en déduire quant la nature du quadrilatère ABEC ?

Exercice 16

Dans un repère (O, \vec{i}, \vec{j}) , on donne les points A(3; 2), B(-1; 5) et C(-2; -2).

1) Déterminez les coordonnées des points M, N et P définis par :

$$\overrightarrow{AM} = \overrightarrow{BC}$$
; $\overrightarrow{BN} = \frac{1}{3}\overrightarrow{AC}$; $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{0}$.

- 2) Quelle est la nature des quadrilatères AMCB et BNCA?
- 3) Déterminez les coordonnées du milieu I de [BC], puis vérifiez que $\overrightarrow{AP} = \frac{2}{3}\overrightarrow{AI}$. Que représente le point P pour le triangle ABC ?

Exercice 17

- 1) A(2, 3); B(-3, 1); C(4, -3) dans un repère (O, \vec{i}, \vec{j}) . Déterminez les coordonnées de D, point sur l'axe des abscisses, tel que (AB) // (CD).
- 2) A(-5, 2); B(-3, 1); C(1, -3) dans un repère (O, i, j). Déterminez les coordonnées de D, point sur l'axe des ordonnées, tel que (AB) // (CD).

Exercice 18

$$A(3,7)$$
; B(8,2); $C(-4,-2)$; $\vec{u} \binom{2}{5}$

A tout réel x, on associe le point M défini par $\overrightarrow{CM} = x \vec{u}$.

- 1) Déterminez en fonction de x les coordonnées de M puis de \overrightarrow{AM} .
- 2) Comment choisir x pour que M soit sur la droite (AB) ?

Exercice 19

 (O, \vec{i}, \vec{j}) un repère orthonormal. Soit A(1, 2), B(5, 0) et T(1, -3). Montrez que T appartient à la médiatrice de [AB].

Exercice 20

 (O, \vec{i}, \vec{j}) un repère orthonormal. Soit A(2, 2), B(3, 0), C(2, -2) et D(1, 0). Montrez que ABCD est un losange.

Exercice 21

On donne les points A(-1; 1), B(1; 2) et C(3; -2).

Placez ces points dans un repère.

- 1) Calculez les longueurs des côtés du triangle ABC. Que peut-on en déduire quant à la nature de ce triangle ?
- 2) Donnez le centre Ω et le rayon R du cercle circonscrit (C) au triangle ABC.
- 3) Soit E(3; 1). Montrez que E appartient à (C).
- 4) Calculez $\cos\hat{C}$ et en déduire une valaur arrondie de l'angle \hat{C} , arrondi au degré près.