STATS 217: Introduction to Stochastic Processes I

Lecture 9

Multi-step transition probabilities

• The transition probability p_{ij} tells us the probability of going from i to j in one step, i.e.

$$p_{ij} = \mathbb{P}[X_1 = j \mid X_0 = i].$$

• What about the probability of going from i to j in two steps i.e. what is

$$p_{ij}^2 := \mathbb{P}[X_2 = j \mid X_0 = i]$$
?

• Well, to go from i to j in two steps, we must go from i to some state $k \in S$ in one step and then from k to j in one step.

Multi-step transition probabilities

Using the law of total probability, we have

$$\mathbb{P}[X_2 = j \mid X_0 = i] = \sum_{k \in S} \mathbb{P}[X_1 = k \land X_2 = j \mid X_0 = i]
= \sum_{k \in S} \mathbb{P}[X_1 = k \mid X_0 = i] \cdot \mathbb{P}[X_2 = j \mid X_0 = i \land X_1 = k]
= \sum_{k \in S} \mathbb{P}[X_1 = k \mid X_0 = i] \cdot \mathbb{P}[X_2 = j \mid X_1 = k]
= \sum_{k \in S} p_{ik} p_{kj}
= (P^2)_{ij}.$$

Multi-step transition probabilities

 There is nothing special about two steps here and you should check that the same argument gives

$$p_{ij}^n := \mathbb{P}[X_n = j \mid X_0 = i] = (P^n)_{ij} \quad \forall n \geq 1.$$

• Since for any non-negative integers ℓ, m ,

$$P^{\ell+m} = P^{\ell}P^m$$
.

we obtain the Chapman-Kolmogorov equations

$$p_{ij}^{\ell+m} = \sum_{k \in S} p_{ik}^{\ell} p_{kj}^{m}.$$

Stopping times

- Let $(X_n)_{n>0}$ be a stochastic process on a discrete state space S.
- We say that a random variable T is a **stopping time** if whether or not we stop at time k i.e., the event $\{T = k\}$, can be determined by the values of the process up to and including time k i.e., by X_0, \ldots, X_k .
- **Example**: let $(X_n)_{n\geq 0}$ be a symmetric simple random walk starting at 0. Then, τ_1 , the first time to hit 1 is a stopping time.
- Indeed, for all k > 0,

$$\{T=k\}=\{X_0\neq 1,\ldots,X_{k-1}\neq 1,X_k=1\}.$$

• Non-example: let $(X_n)_{n\geq 0}$ be a symmetric simple random walk starting at 0. Then, $\tau'=\tau_1-1$ is not a stopping time.

Strong Markov property

Let $(X_n)_{n\geq 0}$ be a DTMC on S and let T be a stopping time. Then, for all $k\geq 0$, all $n\geq 0$, and for all $i,j\in S$,

$$\mathbb{P}[X_{T+k} = j \mid X_T = i, T = n] = \mathbb{P}[X_k = j \mid X_0 = i].$$

- This is called the **Strong Markov Property**. Why is this true?
- Let V_n be the set of all vectors $x=(x_0,\ldots,x_n)\in S^{n+1}$ such that

$$X_0 = x_0, \dots, X_n = x_n \implies T = n \text{ and } X_T = i.$$

• Since T is a stopping time,

$$\mathbb{P}[X_T = i, T = n] = \mathbb{P}[(X_0, \dots, X_n) \in V_n].$$

Lecture 9 STATS 217 6 / 13

Strong Markov property

By the law of total probability,

$$\mathbb{P}[X_{T+k} = j, X_T = i, T = n] = \sum_{x \in V_n} \mathbb{P}[X_{n+k} = j, X_n = x_n, \dots, X_0 = x_0]
= \sum_{x \in V_n} \mathbb{P}[X_{n+k} = j \mid X_n = x_n] \cdot \mathbb{P}[X_n = x_n, \dots, X_0 = x_0]
= \mathbb{P}[X_k = j \mid X_0 = i] \sum_{x \in V_n} \mathbb{P}[X_n = x_n, \dots, X_0 = x_0]
= \mathbb{P}[X_k = j \mid X_0 = i] \cdot \mathbb{P}[(X_0, \dots, X_n) \in V_n]
= \mathbb{P}[X_k = i \mid X_0 = i] \cdot \mathbb{P}[X_T = i, T = n].$$

Hitting times

- Let $(X_n)_{n\geq 0}$ be a Markov chain on S with $X_0 \sim \mu_0$.
- This just means that the initial state X_0 is a random variable with

$$\mathbb{P}[X_0 = j] = \mu_0(j) \quad \forall j \in S.$$

• For a subset $A \subset S$, we define the first A-hitting time by

$$\tau_{A,\mu_0} := \min\{n \geq 1 : X_n \in A\}.$$

- If $\mu_0(s)=1$ for some $s\in S$ (i.e., $\mu_0=\delta_s$) then we lighten the notation a bit and write this as $\tau_{A,s}$.
- Note that the minimum is taken over $n \ge 1$. Therefore,

$$\tau_{\{s\},s} =: T_s$$

is the first time we return to s, starting from s.

Number of visits

• For every $s \in S$, we let

$$f_s := \mathbb{P}[T_s < \infty].$$

In words, f_s is the probability that chain will ever return to s, provided that it starts at s.

• For every $s \in S$ and initial distribution μ_0 , we let

$$N_{\mu_0}(s) = \sum_{n=1}^{\infty} 1[X_n = s].$$

In words, $N_{\mu_0}(s)$ is the number of times we visit s (counting from time 1 onwards), starting with an initial state distributed according to μ_0 .

• For lightness of notation, we set

$$N(s) := N_{\delta_s}(s).$$

Number of returns

• Just as for the symmetric simple random walk, we have for any $k \ge 1$ that

$$\mathbb{P}[N(s) \ge k \mid X_0 = s] = \mathbb{P}[N(s) \ge k - 1 \mid X_0 = s] \cdot f_s.$$

• By induction, this shows that for all $k \ge 1$,

$$\mathbb{P}[N(s) \geq k \mid X_0 = s] = f_s^k.$$

• Therefore, for all $k \ge 0$

$$\mathbb{P}[N(s) = k \mid X_0 = s] = f_s^k (1 - f_s),$$

and

$$\mathbb{E}[N(s) \mid X_0 = s] = \frac{f_s}{(1 - f_s)}.$$

Number of returns

How do we show that

$$\mathbb{P}[N(s) \ge k \mid X_0 = s] = \mathbb{P}[N(s) \ge k - 1 \mid X_0 = s] \cdot f_s$$
?

- Let T be the time of the $(k-1)^{st}$ return to s. Note that T is a stopping time.
- By the Strong Markov property, we have

$$\mathbb{P}[N(s) \ge k \mid T = n, X_T = s] = \mathbb{P}[N(s) \ge 1 \mid X_0 = s] = f_s.$$

• By Bayes' rule,

$$\mathbb{P}[N(s) \ge k, T = n, X_T = s] = f_s \cdot \mathbb{P}[T = n, X_T = s].$$

Number of returns

• Summing this over *n* and using the law of total probability, we have

$$\mathbb{P}[N(s) \ge k] = \mathbb{P}[N(s) \ge k, T < \infty]$$

$$= \sum_{n=0}^{\infty} \mathbb{P}[N(s) \ge k, T = n, X_T = s]$$

$$= f_s \cdot \sum_{n=0}^{\infty} \mathbb{P}[T = n, X_T = s]$$

$$= f_s \cdot \mathbb{P}[T < \infty]$$

$$= f_s \cdot \mathbb{P}[N(s) \ge k - 1].$$

Recurrence and transience

Let $(X_n)_{n\geq 0}$ be a DTMC on S.

- $s \in S$ is a recurrent state if $f_s = 1$.
- $s \in S$ is a transient state if $f_s < 1$.
- By the formula

$$\mathbb{E}[N(s) \mid X_0 = s] = \frac{f_s}{1 - f_s},$$

we see that

- f_s is recurrent $\iff \mathbb{E}[N(s) \mid X_0 = s] = \infty$.
- f_s if transient $\iff \mathbb{E}[N(s) \mid X_0 = s] < \infty$.