VERGLEICHENDE SOZIALFORSCHUNG MIT MEHREBENENMODELLEN IN R

Forschungspraktikum I und II Dr. Christian Czymara Comparative social research

AGENDA

- Why are country comparisons interesting?
- How to compare countries
- How to combine different data sets
- Tutorial: Relationship between economic conditions and life satisfaction

COMPARATIVE RESEARCH

COMPARATIVE RESEARCH

- In a way, all empirical research is comparative
- For example, comparing groups, households, schools, corporations, products, ...
- · Here:

 - →comparing countries

RESEARCH QUESTIONS

- Many research questions deal with differences of individual outcome due to some other individual characteristic(s)
- But are such relationships universal (i.e., do they hold in different contexts)?
- If not: Why?
- Moreover: Other research is interested in differences in individual outcomes due to contexts

EXAMPLE

- Individual level relationship (micro-level only)
 - For example: Job loss affects well-being
- Country characteristic and individual outcome (macro-micro link)
 - For example: Economic conditions shape well-being
- Moreover, the former may depend on the latter
 - For example: Job loss has an stronger effect on well-being in economically poor countries

LIFE SATISFACTION ACROSS COUNTRIES

- Substantive differences of average life satisfaction across countries
- Two possible explanations:
 - Explanation 1: Individuals living in country A differ in a relevant way from those in country B (composition effect)
 - Explanation 2: Country A itself differs from country B in a way that affects individuals (context effect)
- Explanation 1: Individual-level relationships (difference in y across countries result of a different distribution of individual-level x)
- Explanation 2: Influences beyond the individual-level

LIFE SATISFACTION AND INCOME DISSATISFACTION

- Hypothesis: Less income satisfaction leads to less life satisfaction
- Supported by the data: Income explains almost 50 percent of the differences between countries (more next session)
- Which kind of explanation is this, composition or country effect?
- What would be an example of the other effect?

SUMMING UP

- Individual life satisfaction (y) varies across European countries
- Possible explanations:
 - Income (x) important for life satisfaction and individual income levels differ between countries (composition effect)
 - National unemployment rate, social system etc. (z) influence life satisfaction (country effect)

TYPES OF COMPARATIVE RESEARCH

COMPARATIVE RESEARCH

- Countries as object of research
- Countries as units of analysis
- Countries as contexts

COUNTRIES AS OBJECT OF RESEARCH

- Interest in certain countries
- Choice of countries crucial and often based on theoretical considerations
- In depth case studies of few countries
- Use of quantitative and / or qualitative methods possible
- For example: Comparison of social systems in Sweden, Germany and the US
- Potential problems: Generalizability? Causality?

COUNTRIES AS UNITS OF ANALYSIS

- Relate macro-level characteristics to another
- "Translate countries into variables"
- Larger samples of countries necessary
- Quantitative methods for statistical inference
- For example: Correlation between national unemployment rate and vote share of extreme right-wing parties
- Problem: ecological fallacy
- Hence, we will also not (only) look at macro-level relationships

ECOLOGICAL FALLACY

- Inference on the individual level based on macro-level relationships
- Example: Unemployment and far-right voting
- Finding: Far-right parties more successful where unemployment is high
- Can you conclude that the unemployed are more likely to vote far-right?

FICTIONAL EXAMPLE

	Country A	Country B
Unemployment rate (%)	20	40
Far-right vote share	2	4

UNDERLYING DISTRIBUTION

Country A	Unemployed	Employed	Total
Far-right vote share	0	2	2
Other parties vote share	20	78	98
Total	20	80	100
Country B	Unemployed	Employed	Total
Country B Far-right vote share	Unemployed 0	Employed 4	Total 4
Far-right vote			4

UNDERLYING DISTRIBUTION

Country A	Unemployed	Employed	Total
Far-right vote share	0	2	2
Other parties vote share	20	78	98
Total	20	80	100
Country B	Unemployed	Employed	Total
Country B Far-right vote share	Unemployed 0	Employed 4	Total 4
Far-right vote	• • •		

CONCLUSION

- No unemployed voted far-right in either country
- Hypothesis refuted on the individual-level
- More fine-grained data needed (here: voting within each labor market status groups)
- However, one might still argue that unemployment has a context effect
- E. g.: Living with many unemployed affects voting behavior of the employed

COUNTRIES AS CONTEXTS

- How do individuals in certain countries act?
- Do national contexts affect (or moderate) individual actions?
- Possible with qualitative (generally few countries) & quantitative methods (many countries)

HIERARCHICAL LINEAR MODELS

- Combines the country as contexts approach with the countries as units of analysis approach
- Countries as contexts
 - Modelling individual-level differences between different contexts
- Countries as units of analysis
 - Understanding countries as units that have variables
 - Modelling how country-level variables affect the individuallevel outcome variables
 - Many countries needed

QUANTITATIVE COUNTRY COMPARISONS

- Using micro- (x) or macro-level (z) characteristics as independent variables to explain a micro-level outcome (y)
- Moreover, one can test whether certain individual level relationships $(x \rightarrow y)$ depend on country characteristics (z)
 - For example, is the effect of unemployment on life satisfaction especially strong in countries with low levels of social security?
 - So-called cross-level interactions

NEW INSIGHTS OF COUNTRY COMPARISONS

- Generalizability of individual-level findings
 - Does the effect of x on y hold across different political, cultural, economic, etc. contexts?
 - If not, how and why does this effect vary between countries?
 - →Adapt theory

NEW INSIGHTS OF COUNTRY COMPARISONS

- Reasons for differences between countries
 - Are the individuals different in a specific way that relates to x and y?
 - Are there aspects specific to the countries which affect its residents?

(SOME) CHALLENGES OF QUANTITATIVE COMPARATIVE RESEARCH

CHALLENGES

- Are the variables we measure actually comparable across countries?
- Possible issues: Do the translations capture the same concept?
 Do the used concepts have the same meaning in different countries? ...
- Technically, this is about measurement equivalence
- Measurement equivalence can be tested with structural equation modelling (not covered)

EXAMPLE: LEFT-RIGHT-ORIENTATION (THORISDOTTIR ET AL. 2007)

- "Left" and "right" considered core aspect of political identity
- However, left-right-scale differently understood in Western and Eastern (post-Sovjet) Europe
- Resistance to change correlates with right-wing conservatism in both regions
- Acceptance of inequality is associated with right-wing orientation in West Europe only
- Openness to experience related to left-wing orientation in Western Europe and right-wing orientation in Eastern Europe
- Needs for security associated with right-wing orientation in Western Europe and left-wing orientation in Eastern Europe

CHALLENGES

• "There is a curious inconsistency in the way researchers interpret the results from [...] replications [...]. Failure to reproduce a finding in the same culture [...] leads the investigator to question the reliability, validity and comparability of the research procedures [...]. But failure to corroborate the same finding in a different culture often leads to claim of having discovered "cultural" differences." (Finifter in Kohn 1987: p. 720)

COMBINING DATA IN R

IMPORTING DIFFERENT FILE TYPES

- There are numerous ways to store data, each needs a different import function in R
- Stata's dta files: read_dta() (haven package)
- Excel xlsx files: read_excel() (readxl package)
- CSV files: read.csv() (base R)
- (Rdate files: load() (base R)
- And a lot more...

BINDING DATA

- Binding means combining rows (rbind()) or columns (cbind()) of two tables
- For example: Two countries

ID	cntry	age	4			
1	DE	36		ID	cntry	age
2	DE	42		4	RU	18
3	DE	40	7	5	RU	16

ID	cntry	age
1	DE	36
2	DE	42
3	DE	40
4	RU	18
5	RU	16

BINDING ROWS

Binding countries means adding rows → rbind()

ID	cntry	age
1	DE	36
2	DE	42
3	DE	40
4	RU	18
5	RU	16

BINDING COLUMNS

Binding variables means adding columns → cbind()

BINDING DATA

- A drawback of rbind() is that it will only work when both tables have the same number of columns
- ... and cbind() only when both data sets have the same number of rows
- Hence, rbind() will only work when both data sets have the exact same variables (as in the example)
- ... and cbind() is useful when you have the exact same respondents in two datasets (hardly the case)

JOIN()

- The functions of the join() family of the dplyr package combine two (or more) tables / data sets
- Let us call table 1 master data. It is the one to which we add other data (e. g.: the ESS)
- Table 2 should be added to data set 1, let us call it using data (e. g.: additional country-level data)
- Finally, we need to know based on which column(s) we want to merge both data sets, let us call this the key variable
- The general syntax is: join type (masterData, usingData, by = keyVariable)
- For example: innerJoinDf <- inner_join(ESS, countrydata, by = "ID")

DPLYER'S JOIN TYPES

- Inner Join (inner_join()): Combines observations of data 1 and 2 that are available in both data sets
- Left Join (left_join()): Adds data 2 to data 1
- Right Join (right join ()): Adds data 1 to data 2
- Full Join (full_join()): Combines observations of data 1 and 2 that are available in either data set
- Semi Join (semi_join()): Similar to inner_join()
- Anti Join (anti_join ()): Only keeps observations of data 1 that are not available in data 2

INNER_JOIN()

- Adds master data to using data based on key variable
- Only includes observations that exist in both data
- E.g.: inner_join(master, using, by = "cntry")

cntry	x1
AT	1
BE	2
DE	3

cntry	x2
AT	Α
BE	В
ES	С

cntry	x 1	x2
AT	1	A
BE	2	В

LEFT JOIN()

- left_join(x, y)
- Adds using data to master data based on key variable
- Only includes observations that are included in the master data
- Generates NA if observation missing in using data
- E.g.: left join (master, using, by = "cntry")

cntry	x 1
AT	1
BE	2
DE	3

cntry	x2
AT	Α
BE	В
ES	С

cntry	x 1	x2
AT	1	A
BE	2	В
DE	3	NA

RIGHT JOIN()

- right_join(x, y)
- Adds master data to using data based on key variable
- Only includes observations that are included in the using data
- Generates NA if observation missing in master data
- E.g.: right join (master, using, by = "cntry")

cntry	x1
AT	1
BE	2
DE	3

cntry	x2
AT	Α
BE	В
ES	С

cntry	x1	x2
AT	1	Α
BE	2	В
ES	NA	С

FULL_JOIN()

- Adds master data to using data based on key variable
- Includes all observations that exist in either data
- E.g.: full join (master, using, by = "cntry")

cntry	x 1
AT	1
BE	2
DE	3

cntry	x1	x2
AT	1	Α
BE	2	В
DE	3	NA
ES	NA	С

cntry	x2
AT	Α
BE	В
ES	С

SEMI_JOIN()

- Adds master data to using data based on key variable
- Only includes observations that exist in both data
- ... but only keeps variables that exist in the master data
- E.g.: semi join (master, using, by = "cntry")

cntry	x1
AT	1
BE	2
DE	3

cntry	x2
AT	Α
BE	В
ES	С

cntry	x1
AT	1
BE	2

ANTI_JOIN()

- Keeps observations of the master data that do not match the using data
- Generates NA if missing in master data
- E.g.: anti join (master, using, by = "cntry")

cntry	x1
AT	1
BE	2
DE	3

cntry	x2
AT	Α
BE	В
ES	С

cntry	x1
DE	3

JOIN WITH MULTI-NATIONAL DATA

- The logic of each join function similarly applies for cross-national data, where we have several observations per key variable value (i. e.: multiple respondents per country)
- In this case, each respondent of the country in data 1 will get the country's value in data 2

For example: inner join():

Respondent_ID	cntry	age
1	AT	34
2	AT	57
3	BE	35
4	BE	64
5	DE	24
6	DE	36

cntry	x2
AT	Α
BE	В
ES	С

Respondent_ID	cntry	age	x2
1	AT	34	A
2	AT	57	Α
3	BE	35	В
4	BE	64	В

• • •

MULTIPLE KEY VARIABLES

 Sometimes you may want to combine data sets based on multiple key variables (e. g. countries and years):

```
→ left_join(data1, data2, by=c("cntry", "year"),
match="all")
```

Or you may want to combine more than two data sets:

```
→left_join(data1, data2, by = "cntry") %>%
left_join(., data3, by = "cntry")) %>%
left_join(., data4, by = "cntry"))
```

Of couse, don't forget to assign these operations to an object

LITERATURE

- Kohn (1987): <u>Cross-National Research as an Analytic Strategy</u>, American Sociological Review, Vol. 52 (6), 713-731
- More on joining: http://rstudio-pubs-static.s3.amazonaws.com/227171_618ebdce0b9d44f3af65700e833593db.html