

IE0005 Mini-Project

Student Performance Prediction

Presented by: Muhammad Ameerul Bin Azman, Heng Zi Hui, Peng Teng Kang, Guerta Uno Gabriel Yap

UUUUU

What affects a student's grade?

The second secon

Ontaget taken from Kaggle

Our Project

- Data approaches student achievement in secondary education of two Portuguese schools
- Data attributes include student grades, demographic, social and school related features
- Collected by using school reports and questionnaires

Brief view of the Dataset

	id	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	 freetime	goout	Dalc	Walc	health	absences	G1	G2	G3	grades
0	1	GP	F	18	U	GT3	Α	4	4	at_home	 3	4	1	1	3	6	5	6	6	D
1	2	GP	F	17	U	GT3	Т	1	1	at_home	 3	3	1	1	3	4	5	5	6	D
2	3	GP	F	15	U	LE3	Т	1	1	at_home	 3	2	2	3	3	10	7	8	10	С
3	4	GP	F	15	U	GT3	Т	4	2	health	 2	2	1	1	5	2	15	14	15	В
4	5	GP	F	16	U	GT3	Т	3	3	other	 3	2	1	2	5	4	6	10	10	С

5 rows × 35 columns

Content

Visualization

Standard exploration and statistical visualization of the data

DS/ML

Usage of tools and techniques learnt from 1E0005 labs

Preparation of dataset

Cleaning, resizing/reshaping the dataset, removing outliers, balancing imbalanced classes and grouping rows/columns

Learning something new

Using new DS/ML beyond what was covered in 1E0005 labs

Vignaliantion

Visualisation of data

To determine the Final Grade (G3) that students will receive, we have used standard forms of visualisation of the data as taught in the course to determine the most important factors among study time, family relationship, health and absences

Some of the Visualisations used were Box Plot, Heat Map, Histogram, Violin plot and Joint Plot

Vignaliantion

By using pairplots, we have compared the different variables using different plots, however what can be found from these plots is that there specifics of the variables such as how well the is a low correlation among the variables

Similarly with subplots, not much can be concluded, however it can precisely show the class did for G3 and how much the students studied for the test

Vignalisation

Heat Maps on the other hand give a more accurate prediction due to it providing a numerical value to the correlation

Vignalisation

Of the chosen variables, studytime is the variable with the highest correlation based on the value of the heatmap, however this is not enough to predict the final score G3

Preparation of dataset

```
['GP' 'MS']
['F' 'M']
['U' 'R']
['GT3' 'LE3']
['A' 'T']
['at home' 'health' 'other' 'services' 'teacher']
['teacher' 'other' 'services' 'health' 'at_home']
['course' 'other' 'home' 'reputation']
['mother' 'father' 'other']
['yes' 'no']
      'yes']
['no'
['no' 'yes']
['no' 'yes']
['yes' 'no']
['yes' 'no']
['no' 'yes']
['no' 'yes']
```

One Hot Encoding (get_dummies)

	school	sex	address	famsize	Pstatus	Mjob	Fjob	reason	guardian	schoolsup	famsur
0	GP	F	U	GT3	Α	at_home	teacher	course	mother	yes	no
1	GP	F	U	GT3	Т	at_home	other	course	father	no	ye
2	GP	F	U	LE3	Т	at_home	other	other	mother	yes	no
3	GP	F	U	GT3	Т	health	services	home	mother	no	yes
4	GP	F	U	GT3	Т	other	other	home	father	no	ye

#One hot encoded data (Convert Object features into binary)

one_hot_encoded_data = pd.get_dummies(df_copy, columns = ['school', 'sex', 'address', 'famsize', 'Pstatus', 'Mjob', 'F]
print(one hot encoded data)

Before

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	 freetime	goout	Dalc	Walc	health	absences	G1	G2	G3	grades
0	GP	F	18	U	GT3	Α	4	4	at_home	teacher	 3	4	1	1	3	6	5	6	6	D
1	GP	F	17	U	GT3	Т	1	1	at_home	other	 3	3	1	1	3	4	5	5	6	D
2	GP	F	15	U	LE3	Т	1	1	at_home	other	 3	2	2	3	3	10	7	8	10	С
3	GP	F	15	U	GT3	Т	4	2	health	services	 2	2	1	1	5	2	15	14	15	В
4	GP	F	16	U	GT3	Т	3	3	other	other	 3	2	1	2	5	4	6	10	10	С

After

	age	Medu	Fedu	traveltime	studytime	failures	famrel	freetime	goout	Dalc	 higher_no	higher_yes	internet_no	internet_yes	romantic_no	romanti
0	18	4	4	2	2	0	4	3	4	1	 0	1	1	0	1	
1	17	1	1	1	2	0	5	3	3	1	 0	1	0	1	1	
2	15	1	1	1	2	3	4	3	2	2	 0	1	0	1	1	
3	15	4	2	1	3	0	3	2	2	1	 0	1	0	1	0	
4	16	3	3	1	2	0	4	3	2	1	 0	1	1	0	1	

Usage of USIML

Goodness of Fit of Model Explained Variance (R^2)

Mean Squared Error (MSE)

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE)

Train Dataset

: 0.8503019763082398 : 3.266947162743064

Test Dataset

: 0.7988748137372315

: 3.652922600411736

Goodness of Fit of Model Classification Accuracy

Goodness of Fit of Model

Classification Accuracy

Train Dataset : 0.7804054054054054

Test Dataset

: 0.7878787878787878

Decision Tree

Linear Regression

Learning Something new 1) Random Forest regression

Testing sample data

Prediction error

After tuning

Testing sample data

Prediction error

Conclusion: G2 (Second Period Grade) and Absences are the factors that affect G3 (Final Grade)

Learning Something new
2) Extreme Gradient Boosting Regression

Prediction error

Testing sample data

Before Tuning

Original Model

---R Square (Variance)----

Training accuracy (r_sq) is: 0.8826155538754211 Testing accuracy (r_sq) is: 0.7783179115786188

----Mean Squared Error----

Training mean squared error is: 2.587676181450642 Testing mean squared error is: 3.906408885956202

Learning something new 2) Extreme Gradient Boosting Regression

Mulle

Before Tuning

```
***Original Model***
----R Square (Variance)----
Training accuracy (r_sq) is: 0.8826155538754211
Testing accuracy (r_sq) is: 0.7783179115786188
----Mean Squared Error----
Training mean squared error is: 2.587676181450642
Testing mean squared error is: 3.906408885956202
```

K-Fold cross validation

```
***Original Model***
cross val training mean_squared_error is: 2.5614309505109425
cross val testing mean squared error is: 5.341055034213677
```

Overfitting!

Learning Something new 2) Extreme Gradient Boosting Regression

Prediction error

After Tuning

Family Relationship
Absences
school_GP
G1
G2

Ordinary Least Squares Grid Search

Testing sample data

```
***Final Model***
----R Square (Variance)----
Training accuracy (r_sq) is: 0.8901456368572296
Testing accuracy (r_sq) is: 0.925721497930853
----Mean Squared Error----
Training MSE after tuning is: 2.4216796033716963
Testing MSE after tuning is: 1.3089113450017726
-----Difference in MSE-----
```

The testing MSE has improved by 0.16599657807894586 after tuning. The testing MSE has improved by 2.5974975409544294 after tuning.

Learning Something new 2) Extreme Gradient Boosting Regression

After Tuning

```
***Final Model***
----R Square (Variance)----
Training accuracy (r_sq) is: 0.8901456368572296
Testing accuracy (r_sq) is: 0.925721497930853
----Mean Squared Error----
Training MSE after tuning is: 2.4216796033716963
Testing MSE after tuning is: 1.3089113450017726
-----Difference in MSE----
The testing MSE has improved by 0.16599657807894586 after tuning.
The testing MSE has improved by 2.5974975409544294 after tuning.
```

K-Fold cross validation

```
***Final Model***
cross val training mean_squared_error is: 2.1140157125925145
cross val testing mean_squared error is: 2.7227312723629233
```

Conclusion

What Affects a Student's Grades?

- Absences
- G2 [2nd Period Grade]

Contributions

Dataset Finding and Problem Statement		All							
Data Visualisation/Analysis	Muhammad Ameerul Bin Azman Peng Teng Kang								
Data Preparation	Heng Zi Hui								
Data Science/ Machine Learning	Guerta Uno (Decisio	• • • • • • • • • • • • • • • • • • •	Peng Teng Kang (Linear Regression)						
Learning something new	Guerta Uno Gabriel Yap (Random Forest Regression, yellowbrick)	Heng Zi Hui (XGBoost Regression, Tuning [OLS, Grid Search], One Hot Encoding)	Muhammad Ameerul Bin Azman (Bar Plot)						

Thomas you!

Do you have any questions before we go?

