My formalization project

Howard Straubing, Soleil Repple, Ayden Lamparski, Nathan Hartdog September 3, 2025

Chapter 1

Green's Relations

Definition 1 (Green's R-preorder). Let M be a monoid and let $x, y \in M$. We define $x \leq_{\mathcal{R}} y$ if there exists $z \in M$ such that $x = y \cdot z$. Equivalently, x lies in the principal right ideal generated by y.

Definition 2 (Green's L-preorder). Let M be a monoid and let $x, y \in M$. We define $x \leq_{\mathcal{L}} y$ if there exists $z \in M$ such that $x = z \cdot y$. In other words, x lies in the principal left ideal generated by y.

Definition 3 (Green's J-preorder). Let M be a monoid and let $x, y \in M$. We define $x \leq_{\mathcal{J}} y$ if there exist $u, v \in M$ such that $x = u \cdot y \cdot v$. Equivalently, x lies in the two-sided ideal generated by y.

Definition 4 (Green's H-preorder). Let M be a monoid and let $x, y \in M$. We define $x \leq_{\mathcal{H}} y$ if both $x \leq_{\mathcal{H}} y$ and $x \leq_{\mathcal{L}} y$ hold, that is, x is simultaneously in the right and left ideals generated by y. Unwinding the definition, this means there exist elements $z_1, z_2 \in M$ with $x = y \cdot z_1$ and $x = z_2 \cdot y$.

Lemma 5 ($\leq_{\mathcal{R}}$ is a preorder (reflexive & transitive)). The relation $\leq_{\mathcal{R}}$ on M is a preorder; in particular:

- Reflexivity. For every $x \in M$, $x \leq_{\mathcal{R}} x$ (witness z = 1 since $x = x \cdot 1$).
- Transitivity. If $x \leq_{\mathcal{R}} y$ and $y \leq_{\mathcal{R}} z$, pick witnesses $v, u \in M$ with x = yv and y = zu; then x = z(uv), so $x \leq_{\mathcal{R}} z$.

Lemma 6 ($\leq_{\mathcal{L}}$ is a preorder (reflexive & transitive)). The relation $\leq_{\mathcal{L}}$ on M is a preorder; in particular:

- Reflexivity. For every $x \in M$, $x \leq_{\mathcal{L}} x$ (witness z = 1 since $1 \cdot x = x$).
- Transitivity. If $x \leq_{\mathcal{L}} y$ and $y \leq_{\mathcal{L}} z$, pick witnesses $u, v \in M$ with x = uy and y = vz; then x = (uv)z, so $x \leq_{\mathcal{L}} z$.

Lemma 7 ($\leq_{\mathcal{J}}$ is a preorder (reflexive & transitive)). The relation $\leq_{\mathcal{J}}$ on M is a preorder; in particular:

- Reflexivity. For every $x \in M$, $x \leq_{\mathcal{J}} x$ (witness u = v = 1 so $x = 1 \cdot x \cdot 1$).
- Transitivity. If $x \leq_{\mathcal{J}} y$ and $y \leq_{\mathcal{J}} z$, pick $u_1, v_1, u_2, v_2 \in M$ with $x = u_1 y v_1$ and $y = u_2 z v_2$; then $x = u_1 (u_2 z v_2) v_1 = (u_1 u_2) z (v_2 v_1)$, so $x \leq_{\mathcal{J}} z$.

Lemma 8 ($\leq_{\mathcal{H}}$ is a preorder (reflexive & transitive)). The relation $\leq_{\mathcal{H}}$ on M is a preorder; in particular:

- Reflexivity. For every $x \in M$, $x \leq_{\mathcal{H}} x$ since $x \leq_{\mathcal{R}} x$ and $x \leq_{\mathcal{L}} x$.
- Transitivity. If $x \leq_{\mathcal{H}} y$ and $y \leq_{\mathcal{H}} z$, then $x \leq_{\mathcal{R}} y \leq_{\mathcal{R}} z$ and $x \leq_{\mathcal{L}} y \leq_{\mathcal{L}} z$; hence $x \leq_{\mathcal{R}} z$ and $x \leq_{\mathcal{L}} z$, so $x \leq_{\mathcal{H}} z$.

1.1 Equivalences from Preorders

To obtain equivalence relations from a preorder we take its symmetric closure. Given any preorder p, we define an equivalence relation by declaring two elements equivalent exactly when both $p \, x \, y$ and $p \, y \, x$ hold. This construction works uniformly for all preorders and, in particular, produces Green's equivalence relations from Green's preorders.

Definition 9 (Equivalence of a preorder). Let α be a type and let $p: \alpha \to \alpha \to \text{Prop}$ be a preorder. For $x, y: \alpha$ we define EquivOfLE $p \, x \, y$ to hold when both $p \, x \, y$ and $p \, y \, x$ hold. In other words, EquivOfLE p is the symmetric closure of the relation p.

Lemma 10 (EquivOfLE is an equivalence relation). If p is a preorder on α then EquivOfLE p is an equivalence relation.

Proof. We verify the three properties of an equivalence relation. For reflexivity, if p is a preorder then it is reflexive, so for every x we have both $p \, x \, x$ and $p \, x \, x$; hence EquivOfLE $p \, x \, x$ holds. Symmetry is immediate: if EquivOfLE $p \, x \, y$ holds, meaning $p \, x \, y$ and $p \, y \, x$, then the pair $p \, y \, x$ and $p \, x \, y$ shows EquivOfLE $p \, y \, x$. For transitivity, suppose EquivOfLE $p \, x \, y$ and EquivOfLE $p \, y \, z$. Then we have $p \, x \, y$ and $p \, y \, z$; by transitivity of the preorder $p \, x \, y$ we obtain $p \, x \, z$. Similarly from $p \, z \, y$ and $p \, y \, x$ we deduce $p \, z \, x$. Thus EquivOfLE $p \, x \, z$ holds, completing the proof.

1.2 Green's Equivalences $(\mathcal{R}, \mathcal{L}, \mathcal{J}, \mathcal{H})$

Definition 11 (Right equivalence). Let M be a monoid. For $x, y \in M$ we define $x \mathcal{R} y$ to hold if both $x \leq_{\mathcal{R}} y$ and $y \leq_{\mathcal{R}} x$ hold. In other words, two elements are right equivalent when they lie in the principal right ideals generated by each other.

Lemma 12 (Right equivalence is an equivalence relation). The relation \mathcal{R} defined in Definition 11 is an equivalence relation on M.

Definition 13 (Left equivalence). For $x, y \in M$ we define $x \mathcal{L} y$ to hold when both $x \leq_{\mathcal{L}} y$ and $y \leq_{\mathcal{L}} x$ hold. This expresses that x and y generate the same principal left ideals.

Lemma 14 (Left equivalence is an equivalence relation). The relation \mathcal{L} defined in Definition 13 is an equivalence relation on M.

Definition 15 (J equivalence). For $x, y \in M$ we define $x \mathcal{J} y$ to hold when both $x \leq_{\mathcal{J}} y$ and $y \leq_{\mathcal{J}} x$ hold, i.e., each lies in the two-sided ideal generated by the other.

Lemma 16 (J equivalence is an equivalence relation). The relation \mathcal{J} defined in Definition 15 is an equivalence relation on M.

Definition 17 (H equivalence). For $x, y \in M$ we define $x \mathcal{H} y$ to hold when both $x \leq_{\mathcal{H}} y$ and $y \leq_{\mathcal{H}} x$ hold. This captures when two elements are simultaneously right and left equivalent.

Lemma 18 (H equivalence is an equivalence relation). The relation \mathcal{H} defined in Definition 17 is an equivalence relation on M.

1.3 Basic Preorder Properties

Lemma 19 (Multiplication decreases for $\leq_{\mathcal{R}}, \leq_{\mathcal{L}}, \leq_{\mathcal{J}}$). For all M a monoid and $x, y, u, v \in M$, the following hold:

- $(\mathbf{R}) \ x \cdot y \leq_{\mathcal{R}} x$.
- (L) $y \cdot x \leq_{\mathcal{L}} x$.
- (**J**) $u \cdot x \cdot v \leq_{\mathcal{J}} x$.

Proof. • (R) By definition of $\leq_{\mathcal{R}}$, we need u with $x \cdot u = x \cdot y$. Take u := y.

- (L) By definition of $\leq_{\mathcal{L}}$, we need u with $u \cdot x = y \cdot x$. Take u := y.
- (J) By definition of $\leq_{\mathcal{J}}$, we need s,t with $s \cdot x \cdot t = u \cdot x \cdot v$. Take s := u, t := v.

Lemma 20 (Cancellation for $\leq_{\mathcal{J}}, \leq_{\mathcal{R}}, \leq_{\mathcal{L}}$). Let M be a monoid and $x, y, z \in M$.

- (**J**-**L**) If $x \leq_{\mathcal{I}} y \cdot z$, then $x \leq_{\mathcal{I}} z$.
- (**J-R**) If $x \leq_{\mathcal{I}} y \cdot z$, then $x \leq_{\mathcal{I}} y$.
- (R-R) If $x \leq_{\mathcal{R}} y \cdot z$, then $x \leq_{\mathcal{R}} y$.
- (L-L) If $x \leq_{\mathcal{L}} y \cdot z$, then $x \leq_{\mathcal{L}} z$.

 $\begin{array}{ll} \textit{Proof.} & \bullet & \textbf{(J-L)} \text{ From } x \leq_{\mathcal{J}} yz, \text{ pick } u,v \text{ with } u \cdot (yz) \cdot v = x. \text{ By associativity, } (uy) \cdot z \cdot v = x. \\ \text{Set } u' := uy, \ v' := v. \text{ Then } x \leq_{\mathcal{J}} z. \end{array}$

- (J–R) From $x \leq_{\mathcal{J}} yz$, pick u, v with $u \cdot (yz) \cdot v = x$. By associativity, $u \cdot y \cdot (zv) = x$. Set $u' := u, \ v' := zv$. Then $x \leq_{\mathcal{J}} y$.
- (R–R) From $x \leq_{\mathcal{R}} yz$, pick u with $(yz) \cdot u = x$. By associativity, $y \cdot (zu) = x$. Set u' := zu. Then $x \leq_{\mathcal{R}} y$.
- (L–L) From $x \leq_{\mathcal{L}} yz$, pick u with $u \cdot (yz) = x$. By associativity, $(uy) \cdot z = x$. Set u' := uy. Then $x \leq_{\mathcal{L}} z$.

Lemma 21 (Idempotent characterizations for $\leq_{\mathcal{R}}$ and $\leq_{\mathcal{L}}$). Let M be a monoid and let $e \in M$ be idempotent $(e \cdot e = e)$. For any $x \in M$,

(R)
$$x \leq_{\mathcal{R}} e \iff e \cdot x = x$$
, (L) $x \leq_{\mathcal{L}} e \iff x \cdot e = x$.

Proof. Assume $e^2 = e$.

- (R) (\Rightarrow) If $x \leq_{\mathcal{R}} e$, pick t with $e \cdot t = x$. Then $e \cdot x = e \cdot (e \cdot t) = (e \cdot e) \cdot t = e \cdot t = x$. (\Leftarrow) If $e \cdot x = x$, take t := x; then $e \cdot t = x$, so $x \leq_{\mathcal{R}} e$.
- **(L)** (\Rightarrow) If $x \leq_{\mathcal{L}} e$, pick t with $t \cdot e = x$. Then $x \cdot e = (t \cdot e) \cdot e = t \cdot (e \cdot e) = t \cdot e = x$. (\Leftarrow) If $x \cdot e = x$, take t := x; then $t \cdot e = x$, so $x \leq_{\mathcal{L}} e$.

1.4 R–L multiplicative compatibility

Lemma 22 (Left multiplication: compatibility with $\leq_{\mathcal{R}}$ and \mathcal{R} -equivalence). For all $x, y, z \in M$:

- (Preorder) If $x \leq_{\mathcal{R}} y$, then $z \cdot x \leq_{\mathcal{R}} z \cdot y$.
- (Equivalence) If $x \mathcal{R} y$, then $z \cdot x \mathcal{R} z \cdot y$.
- *Proof.* (**Preorder**) From $x \leq_{\mathcal{R}} y$ pick u with $y \cdot u = x$. Then $(z \cdot y) \cdot u = z \cdot (y \cdot u) = z \cdot x$ by associativity, hence $z \cdot x \leq_{\mathcal{R}} z \cdot y$.
 - (Equivalence) If $x \mathcal{R} y$, then $x \leq_{\mathcal{R}} y$ and $y \leq_{\mathcal{R}} x$. Apply the preorder case to both inclusions to get $z \cdot x \leq_{\mathcal{R}} z \cdot y$ and $z \cdot y \leq_{\mathcal{R}} z \cdot x$, whence $z \cdot x \mathcal{R} z \cdot y$.

Lemma 23 (Right multiplication: compatibility with $\leq_{\mathcal{L}}$ and \mathcal{L} -equivalence). For all $x, y, z \in M$.

- (Preorder) If $x \leq_{\mathcal{L}} y$, then $x \cdot z \leq_{\mathcal{L}} y \cdot z$.
- (Equivalence) If $x \mathcal{L} y$, then $x \cdot z \mathcal{L} y \cdot z$.
- *Proof.* (**Preorder**) From $x \leq_{\mathcal{L}} y$ pick u with $u \cdot y = x$. Then $u \cdot (y \cdot z) = (u \cdot y) \cdot z = x \cdot z$ by associativity, hence $x \cdot z \leq_{\mathcal{L}} y \cdot z$.
 - (Equivalence) If $x \mathcal{L} y$, then $x \leq_{\mathcal{L}} y$ and $y \leq_{\mathcal{L}} x$. Apply the preorder case to both inclusions to get $x \cdot z \leq_{\mathcal{L}} y \cdot z$ and $y \cdot z \leq_{\mathcal{L}} x \cdot z$, hence $x \cdot z \mathcal{L} y \cdot z$.

1.5 R-L commutativity

Lemma 24 (Commutativity of $\leq_{\mathcal{L}}$ and $\leq_{\mathcal{R}}$). For any $x, y \in M$, there exists an element z with $x \leq_{\mathcal{L}} z$ and $z \leq_{\mathcal{R}} y$ if and only if there exists an element w with $x \leq_{\mathcal{R}} w$ and $w \leq_{\mathcal{L}} y$.

Proof. First suppose there exists $z \in M$ such that $x \leq_{\mathcal{L}} z$ and $z \leq_{\mathcal{R}} y$. Unwinding the definitions, there are witnesses u and v with $u \cdot z = x$ and $y \cdot v = z$. Taking $w = u \cdot y$ we have

$$w \leq_{\mathcal{L}} y$$
 since $w = u \cdot y$

and

$$x = u \cdot z = u \cdot (y \cdot v) = (u \cdot y) \cdot v = w \cdot v,$$

so $x \leq_{\mathcal{R}} w$. Conversely, suppose there exists $w \in M$ with $x \leq_{\mathcal{R}} w$ and $w \leq_{\mathcal{L}} y$. Then there are witnesses v and u with $w \cdot v = x$ and $u \cdot y = w$. Let $z = y \cdot v$. We compute

$$z \leq_{\mathcal{R}} y$$
 because $y \cdot v = z$,

and

$$x = w \cdot v = (u \cdot y) \cdot v = u \cdot (y \cdot v) = u \cdot z,$$

showing $x \leq_{\mathcal{L}} z$. This establishes the equivalence.

Lemma 25 (Commutativity of right and left equivalence). For any $x, y \in M$, there exists $z \in M$ such that $x \mathcal{L} z$ and $z \mathcal{R} y$ if and only if there exists $w \in M$ such that $x \mathcal{R} w$ and $w \mathcal{L} y$.

Proof. Suppose there exists z with $x \mathcal{L} z$ and $z \mathcal{R} y$. Write this as $x \leq_{\mathcal{L}} z \wedge z \leq_{\mathcal{L}} x$ and $z \leq_{\mathcal{R}} y \wedge y \leq_{\mathcal{R}} z$. From the left and right preorder conditions we have witnesses u_1, u_2, v_1, v_2 satisfying

$$u_1 \cdot z = x, \qquad z \cdot u_2 = x, \qquad y \cdot v_1 = z, \qquad z \cdot v_2 = y.$$

Set $w = u_1 \cdot y$. Then using the first pair of equations we have

$$w \leq_{\mathcal{L}} y$$
 since $w = u_1 \cdot y$,

and from the remaining equations we compute

$$x = u_1 \cdot z = u_1 \cdot (y \cdot v_1) = (u_1 \cdot y) \cdot v_1 = w \cdot v_1,$$

so $x \leq_{\mathcal{R}} w$. Moreover, by applying Lemma ?? to the equivalence $z \mathcal{R} y$ we deduce $u_1 \cdot z$ is \mathcal{R} -equivalent to $u_1 \cdot y$. Since $u_1 \cdot z = x$, this shows $x \mathcal{R} w$. Combined with the previous observation that w and y are \mathcal{L} -equivalent, we obtain the right-to-left implication.

Conversely, assume there exists w such that $x \mathcal{R} w$ and $w \mathcal{L} y$. This means $x \leq_{\mathcal{R}} w$ and $w \leq_{\mathcal{L}} y$ and $y \leq_{\mathcal{L}} w$. Pick witnesses v_1, v_2, u_1, u_2 with

$$w \cdot v_1 = x,$$
 $x \cdot v_2 = w,$ $u_1 \cdot y = w,$ $y \cdot u_2 = w,$

Let $z=y\cdot v_1$. Then z and y are \mathcal{R} -equivalent because both $y\leq_{\mathcal{R}} z$ and $z\leq_{\mathcal{R}} y$ hold via the witnesses above. Using Lemma $\ref{lem:supprob}$? applied to the \mathcal{L} -equivalence $w\,\mathcal{L}\,y$, we have $x\cdot u_1$ is \mathcal{L} -equivalent to $w\cdot u_1=u_1\cdot y$. Since $x\cdot u_1=(w\cdot v_1)\cdot u_1$ and $z=y\cdot v_1$, a straightforward computation shows $x\leq_{\mathcal{L}} z$ and $z\leq_{\mathcal{L}} x$. Hence $x\,\mathcal{L}\,z$ and $z\,\mathcal{R}\,y$, completing the proof. \Box

1.6 The D-equivalence

Definition 26 (D-equivalence). Let M be a monoid. For $x, y \in M$ we say $x \mathcal{D} y$ holds if there exists $z \in M$ such that $x \mathcal{R} z$ and $z \mathcal{L} y$. Equivalently, there is a chain $x \mathcal{R} z$ and $z \mathcal{L} y$.

Lemma 27 (D-equivalence symmetry). For all $x, y \in M$,

$$x \mathcal{D} y \iff (\exists z, \ x \mathcal{R} z \land z \mathcal{L} y) \iff (\exists w, \ y \mathcal{R} w \land w \mathcal{L} x),$$

and in particular $x \mathcal{D} y \Rightarrow y \mathcal{D} x$.

Proof. • The first equivalence is just Definition 26 unfolded.

- The second equivalence uses the commutation of \mathcal{R} and \mathcal{L} -equivalences: any chain $x \mathcal{R} z \mathcal{L} y$ can be rotated to a chain $y \mathcal{R} w \mathcal{L} x$ (Lemma rEquiv_lEquiv_comm).
- Taking x, y swapped in the second characterization yields the symmetry $x \mathcal{D} y \Rightarrow y \mathcal{D} x$.

Lemma 28 (Closure under \mathcal{L} - and \mathcal{R} -equivalence). Let $x, y, z \in M$.

- If $x \mathcal{D} y$ and $y \mathcal{L} z$, then $x \mathcal{D} z$.
- If $x \mathcal{D} y$ and $y \mathcal{R} z$, then $x \mathcal{D} z$. (by duality from the previous bullet, using symmetry)

Proof. • Write $x \mathcal{D} y$ as $x \mathcal{R} u$ and $u \mathcal{L} y$ for some u. If $y \mathcal{L} z$, then by transitivity of \mathcal{L} -equivalence, $u \mathcal{L} z$. Hence $x \mathcal{R} u \mathcal{L} z$, i.e. $x \mathcal{D} z$.

• For the \mathcal{R} -closure: from $x \mathcal{D} y$ get $y \mathcal{D} x$ by symmetry (Lemma 27); combine with $y \mathcal{R} z$ and apply the previous bullet in the dual form to obtain $y \mathcal{D} z$, then symmetrize back to $x \mathcal{D} z$.

Lemma 29 (Transitivity of \mathcal{D}). If $x \mathcal{D} y$ and $y \mathcal{D} z$ then $x \mathcal{D} z$.

Proof. Choose witnesses $x \mathcal{R} u \mathcal{L} y$ and $y \mathcal{R} v \mathcal{L} z$. Apply the \mathcal{R} -closure to get $x \mathcal{D} v$, then the \mathcal{L} -closure to conclude $x \mathcal{D} z$.

Lemma 30 (\mathcal{D} is an equivalence relation). The relation \mathcal{D} on M is reflexive, symmetric, and transitive.

Proof. • Reflexive: take z := x and use reflexivity of \mathcal{R} and \mathcal{L} .

- Symmetric: Lemma 27.
- Transitive: Lemma 29.

1.7 Equivalence classes

Green's equivalence relations partition a monoid into subsets called equivalence classes. Concretely, given an element $a \in M$, the \mathcal{R} -class of a is the set of all x such that $x \mathcal{R} a$. Similarly for $\mathcal{L}, \mathcal{J}, \mathcal{H}$ and \mathcal{D} .

Definition 31 (Right class). For $a \in M$ we define RClass(a) to be the set $\{x \in M \mid x \mathcal{R} a\}$.

Definition 32 (Left class). For $a \in M$ we define LClass(a) to be the set $\{x \in M \mid x \mathcal{L} a\}$.

Definition 33 (J class). For $a \in M$ we define JClass(a) to be the set $\{x \in M \mid x \mathcal{J} a\}$.

Definition 34 (H class). For $a \in M$ we define $\mathrm{HClass}(a)$ to be the set $\{x \in M \mid x \mathcal{H} a\}$.

Definition 35 (D class). For $a \in M$ we define DClass(a) to be the set $\{x \in M \mid x \mathcal{D} a\}$.

Chapter 2

Location Theorem

2.1 Location Theorem (Proposition 1.6)

Throughout this section, let M be a monoid and write multiplication multiplicatively.

Proposition 36 (Location Theorem). For any $x, y \in M$, the following are equivalent:

$$\left(\exists\,e\in M,\;e^2=e,\;e\,\mathcal{L}\,x,\;e\,\mathcal{R}\,y\right)\quad\Longleftrightarrow\quad (xy)\,\mathcal{R}\,x\;\;and\;\;(xy)\,\mathcal{L}\,y.$$

Proof. (\Rightarrow). Suppose there is an idempotent e with $e \mathcal{L} x$ and $e \mathcal{R} y$. For idempotent e, we have the characterizations

$$e \mathcal{L} x \iff xe = x, \qquad e \mathcal{R} y \iff ey = y.$$

Thus xe = x and ey = y. Green-equivalence is compatible with multiplication: from $y \mathcal{R} e$ we get $xy \mathcal{R} xe$, hence $xy \mathcal{R} x$. Similarly, from $x \mathcal{L} e$ we get $xy \mathcal{L} ey$, hence $xy \mathcal{L} y$.

 (\Leftarrow) . Assume $(xy) \mathcal{R} x$ and $(xy) \mathcal{L} y$. Consider the right-translation map $\rho_y \colon M \to M, \ z \mapsto zy$. Under $(xy) \mathcal{R} x$, the restriction of ρ_y to the \mathcal{R} -class of x is a bijection onto the \mathcal{R} -class of xy. Since also $(xy) \mathcal{L} y$, the element xy (hence y) lies in the ρ_y -image of that class. Thus there exists $t \in M$ such that

$$ty \mathcal{R} xy$$
 and $ty \mathcal{L} y$.

From these, one extracts a witness $u \in M$ with

$$tyu = t$$
 (a "right-stabilizer" identity).

Set e := t. Then

$$e^2 = e(t) = e(tyu) = (ey) u = (ty) u = t = e,$$

using associativity and the stabilizer identity. Hence e is idempotent. Moreover, from $ty \mathcal{L} y$ we obtain $e \mathcal{R} y$ (take the standard witnesses from the \mathcal{L} -equivalence), and from $ty \mathcal{R} xy$ we obtain $e \mathcal{L} x$. Thus there exists an idempotent e with $e \mathcal{L} x$ and $e \mathcal{R} y$.

Notes / Dependencies to establish (working backwards).

- Idempotent \mathcal{L}/\mathcal{R} characterizations.
 - $-(e^2 = e \& e \mathcal{L} x) \implies xe = x$; equivalently $e \mathcal{L} x \iff xe = x$ when e is idempotent.
 - $-\ (e^2=e\ \&\ e\,\mathcal{R}\,y)\ \Rightarrow\ ey=y; \ \text{equivalently}\ e\,\mathcal{R}\,y\ \Longleftrightarrow\ ey=y\ \text{when}\ e\ \text{is idempotent}.$

(Labels to prove: lem:L-idem-char, lem:R-idem-char.)

- Compatibility of Green's equivalences with multiplication.
 - If $a \mathcal{R} b$ then $ca \mathcal{R} cb$ for all c.
 - If $a \mathcal{L} b$ then $ac \mathcal{L} bc$ for all c.

(Labels: lem:REquiv-mul-left, lem:LEquiv-mul-right.)

- Right-translation bijection on \mathcal{R} -classes. If $(xy) \mathcal{R} x$, then $\rho_y : z \mapsto zy$ restricts to a bijection from the \mathcal{R} -class of x onto the \mathcal{R} -class of xy. (Label: lem:right-translation-bijection.)
- Surjectivity toward the \mathcal{L} -class of y. Using $(xy) \mathcal{L} y$ and the previous item, find t with $ty \mathcal{L} y$ and $ty \mathcal{R} xy$. (Label: lem:translation-hits-Lclass.)
- Right-stabilizer identity. From $ty \mathcal{R} xy$ and $ty \leq_{\mathcal{L}} t$ (the latter follows from $ty \mathcal{L} y$), obtain u with tyu = t. (Label: lem:right-id-from-REquiv-and-LLE.)
- Idempotence criterion. If tyu = t and ty is \mathcal{R} -equivalent to xy, then $t^2 = t$. (Label: lem:idempotence-from-stabilizer.)
- Recovering \mathcal{L}/\mathcal{R} for e=t. From $ty \mathcal{L}y$ build witnesses for $t\mathcal{R}y$; from $ty \mathcal{R}xy$ build witnesses for $t\mathcal{L}x$. (Labels: lem:from-tyL-to-eRy, lem:from-tyR-to-eLx.)

Remark (Dual version). The left-right dual statement also holds: exchanging \mathcal{L} and \mathcal{R} , the roles of left and right multiplications, and using the analogous left-translation bijection yields the dual location theorem. (TODO: record as a separate proposition.)