Supplementary Figures

Figure S1. Sample-specific variations in read depth (calculated from VCF files) against different GC%. Each line represent one animal. (a) 12 animals with shallow sequence coverage (average coverage $\leq 2x$); (b) 15 animals with deep sequence coverage (average coverage $\geq 30x$).

Figure S2. Average downstream imputation accuracy for SNPs and indels on chromosome 29. For each MAF bin of 5%, the average of Minimac r^2 was calculated. Dashed lines: reference panel phased using Beagle (Ref_{Beagle}). Solid lines: reference panel phased using Beagle followed by re-phasing using SHAPEIT (Ref_{Beagle_SHAPEIT}).

Supplementary Tables

Table S1. Percentage of WGS genotypes and markers with Beagle GP < 0.99

Chromosome	WGS markers	Total genotypes (GP <0.99)	Markers where >10% genotypes had GP <0.99		
			SNPs	Indels	Deletions
Chr1	922,721	2.2%	6.0%	16.5%	63.9%
Chr2	760,671	2.3%	6.1%	16.4%	64.5%
Chr3	683,688	2.5%	6.8%	18.4%	61.6%
Chr4	717,179	2.4%	6.7%	16.7%	66.3%
Chr5	699,826	3.0%	8.1%	19.2%	67.5%
Chr6	723,461	2.3%	6.2%	16.9%	64.9%
Chr7	620,036	2.7%	7.6%	17.9%	65.7%
Chr8	634,425	2.7%	7.5%	18.2%	61.2%
Chr9	613,418	2.5%	6.9%	16.6%	64.6%
Chr10	603,367	2.6%	7.0%	17.5%	65.0%
Chr11	600,604	2.3%	6.1%	17.3%	67.3%
Chr12	628,018	6.0%	16.9%	28.8%	67.8%
Chr13	448,903	2.5%	6.6%	19.2%	69.1%
Chr14	473,492	2.7%	7.6%	17.5%	70.9%
Chr15	532,254	2.6%	7.1%	18.7%	65.9%
Chr16	464,095	2.5%	6.8%	16.7%	67.0%
Chr17	466,624	2.9%	8.1%	19.9%	59.1%
Chr18	380,741	3.2%	8.5%	21.1%	75.9%
Chr19	357,785	3.1%	8.2%	21.7%	82.3%
Chr20	433,584	2.1%	5.5%	15.5%	66.1%
Chr21	416,612	2.6%	7.2%	17.5%	70.6%
Chr22	334,678	2.1%	5.6%	16.7%	61.7%
Chr23	394,583	2.7%	7.7%	19.1%	73.4%
Chr24	382,233	2.1%	5.7%	16.1%	71.1%
Chr25	266,059	2.4%	6.1%	20.2%	75.8%
Chr26	313,408	2.2%	5.8%	18.9%	66.7%
Chr27	297,277	2.6%	7.3%	19.1%	66.4%
Chr28	294,094	2.4%	6.2%	16.9%	66.4%
Chr29	342,261	2.8%	7.5%	19.5%	69.6%

21 Table S2. Average downstream imputation accuracy for SNPs and indels on chromosome 29

MAF bins	Average Minimac r ² (SD) for SNPs		Average Minimac r ² (SD) for INDELs	
	$\mathbf{Ref}_{\mathbf{Beagle}}$	Ref _{Beagle_SHAPEIT}	Ref _{Beagle}	Ref _{Beagle_SHAPEIT}
0< MAF ≤5%	0.809 (0.324)	0.818 (0.320)	0.803 (0.301)	0.824 (0.291)
5< MAF ≤10%	0.863 (0.279)	0.900 (0.244)	0.849 (0.254)	0.888 (0.230)
10< MAF ≤15%	0.892 (0.255)	0.921 (0.219)	0.850 (0.253)	0.905 (0.205)
15< MAF ≤20%	0.931 (0.193)	0.956 (0.149)	0.878 (0.238)	0.917 (0.189)
20< MAF ≤25%	0.956 (0.132)	0.973 (0.094)	0.891 (0.194)	0.933 (0.153)
25< MAF ≤30%	0.963 (0.116)	0.979 (0.079)	0.907 (0.181)	0.944 (0.128)
30< MAF ≤35%	0.970 (0.101)	0.981 (0.072)	0.925 (0.167)	0.948 (0.118)
35< MAF ≤40%	0.963 (0.113)	0.976 (0.085)	0.924 (0.173)	0.959 (0.106)
40< MAF ≤45%	0.958 (0.132)	0.976 (0.099)	0.926 (0.172)	0.949 (0.138)
45< MAF <50%	0.962 (0.116)	0.980 (0.076)	0.899 (0.196)	0.945 (0.136)

²² MAF: Minor allele frequency; 326,838 SNPs and 2,723 indels

Table S3. Average imputation accuracy in 1% MAF bins for SNPs, indels and deletions of

the 29 bovine autosomes

MAF bins	Average Minimac r ² (SD)				
WIAT DIIIS	SNPs	Indels	Deletions		
0< MAF ≤1%	0.528 (0.392)	0.550 (0.370)	0.713 (0.343)		
2%	0.844 (0.289)	0.828 (0.286)	0.907 (0.177)		
3%	0.895 (0.241)	0.879 (0.242)	0.918 (0.169)		
4%	0.905 (0.231)	0.893 (0.225)	0.943 (0.133)		
5%	0.910 (0.227)	0.896 (0.219)	0.967 (0.068)		
6%	0.915 (0.220)	0.900 (0.211)	0.950 (0.133)		
7%	0.915 (0.221)	0.904 (0.206)	0.960 (0.132)		
8%	0.919 (0.217)	0.898 (0.212)	0.959 (0.130)		
9%	0.923 (0.212)	0.904 (0.208)	0.960 (0.114)		
10%	0.924 (0.213)	0.899 (0.212)	0.944 (0.171)		
11%	0.929 (0.205)	0.913 (0.195)	0.966 (0.113)		
12%	0.932 (0.202)	0.912 (0.192)	0.960 (0.086)		
13%	0.939 (0.190)	0.916 (0.187)	0.962 (0.118)		
14%	0.941 (0.186)	0.924 (0.174)	0.938 (0.192)		
15%	0.948 (0.173)	0.921 (0.183)	0.972 (0.076)		
16%	0.952 (0.166)	0.926 (0.174)	0.965 (0.128)		
17%	0.955 (0.158)	0.929 (0.172)	0.968 (0.123)		
18%	0.960 (0.148)	0.931 (0.170)	0.930 (0.211)		
19%	0.963 (0.142)	0.938 (0.154)	0.956 (0.152)		
20%	0.965 (0.136)	0.935 (0.160)	0.972 (0.110)		
21%	0.966 (0.136)	0.943 (0.149)	0.935 (0.197)		
22%	0.968 (0.129)	0.940 (0.153)	0.988 (0.023)		
23%	0.968 (0.129)	0.938 (0.153)	0.961 (0.125)		
24%	0.970 (0.125)	0.943 (0.147)	0.929 (0.225)		

25%	0.973 (0.120)	0.943 (0.159)	0.931 (0.216)
26%	0.972 (0.122)	0.941 (0.158)	0.960 (0.159)
27%	0.974 (0.116)	0.940 (0.156)	0.962 (0.151)
28%	0.974 (0.115)	0.948 (0.136)	0.926 (0.241)
29%	0.974 (0.114)	0.947 (0.142)	0.969 (0.130)
30%	0.975 (0.116)	0.953 (0.131)	0.938 (0.208)
31%	0.975 (0.114)	0.959 (0.111)	0.946 (0.201)
32%	0.976 (0.113)	0.951 (0.137)	0.941 (0.184)
33%	0.976 (0.112)	0.953 (0.136)	0.949 (0.190)
34%	0.976 (0.111)	0.952 (0.143)	0.987 (0.022)
35%	0.977 (0.108)	0.952 (0.148)	0.985 (0.055)
36%	0.977 (0.108)	0.964 (0.109)	0.971 (0.135)
37%	0.979 (0.102)	0.957 (0.127)	0.940 (0.208)
38%	0.980 (0.100)	0.957 (0.129)	0.989 (0.018)
39%	0.979 (0.102)	0.962 (0.113)	0.980 (0.071)
40%	0.980 (0.100)	0.956 (0.128)	0.977 (0.076)
41%	0.981 (0.097)	0.964 (0.111)	0.964 (0.128)
42%	0.982 (0.092)	0.965 (0.109)	0.952 (0.172)
43%	0.980 (0.099)	0.964 (0.102)	0.973 (0.078)
44%	0.980 (0.100)	0.956 (0.124)	0.969 (0.144)
45%	0.980 (0.102)	0.962 (0.115)	0.967 (0.142)
46%	0.980 (0.102)	0.967 (0.113)	0.972 (0.138)
47%	0.979 (0.108)	0.961 (0.125)	0.986 (0.033)
48%	0.980 (0.104)	0.956 (0.126)	0.949 (0.212)
49%	0.981 (0.099)	0.970 (0.092)	0.955 (0.168)
50%	0.979 (0.104)	0.955 (0.141)	0.915 (0.269)

²⁶ Imputed WGS SNPs = 14,070,960, Indels = 122,054, and deletions = 5,730

Supplementary Methods

- Here, we presented the scripts used for calculating expected read depth from the VCF file, Phasing
- 30 and Imputation. All the scripts are available in github repository
- 31 https://github.com/MMesbahU/ImputeDelPipeline.git.
- 32 1. Expected Read Depth Calculation
- 33 1.1 Calculation of GC% in bins of 100 bp

```
# Bovine reference genome UMD3.1 was downloaded from
      #"http://128.206.12.216/drupal/sites/bovinegenome.org/files/data/umd3.1/UMD3
      .1 chromosomes.fa.gz"
      # To Prepare reference FASTA file with 100bp per line
      # used "fasta formatter" from "FASTX Toolkit version 0.0.14"
      fasta formatter -w 100 -i umd31.fa -o formatted umd31.fa
      # FASTA header formating
      grep '^>' formatted umd31.fa | sed -e 's:^>gnl|UMD3.1|::g' \
      -e 's:Chromosome :Chr:g' | awk '{print $1"\t"$2}' > fastaHeader.txt
34
     # In Python 3.7
      # Calculate GC% in bins of 100 bp
      import os
      import subprocess
      import pandas as pd
      # GC percent function
      # output: GC% and Number of N bases
      def GC percent(DNA):
            N Bases = DNA.count('n') + DNA.count('N')
            GC = float(DNA.count('c') + DNA.count('C') + DNA.count('g') +
     DNA.count('G')) * 100.0/(len(DNA) - N Bases)
            return(round(GC,0), N Bases)
      #### Chromosome dictionary
      UMD31 header = pd.read table('fastaHeader.txt', sep='\t', header=None)
      ChromDict = dict( zip(UMD31 header[0], UMD31 header[1]) )
      # BED file Header
      P1 = subprocess.Popen('echo -e "#Chrom\tSTART\tEND\tGC%\ttot N bases" >
      umd31 GC content.bed', shell=True)
      os.waitpid(P1.pid, 0)
      # Read formatted fasta file
      f = open('formatted umd31.fa', 'r+')
      # Append outputs to an existing file
      o = open('umd31 GC content.bed','a+')
      lineNum=0
      for line in f:
            if line.startswith('>'):
                  lineNum=0
                  a=line.strip().split(' ')[0]
                  b=a.strip().split('|')[2]
                  chrom=ChromDict[b]
                  continue
            else:
```

```
gc n=GC percent(line)
            lineNum += 1
            o.write("\t".join([str(chrom), str((lineNum*100)-99),
str(lineNum*100), str(gc n[0]), str(gc n[1]) ]) + "\n")
f.close()
o.close()
# END
# Filtering the BED interval:
# (1) Keeping Bovine Autosomes: Chr1-Chr29
# (2) Exclude last line from each Chromosome (it is usually < 100bp)
# (3) Exclude intervals that contain "N" bases. These are assembly gaps.
GCfile=umd31 GC content.bed
for chr in {1..29}
do
    grep -w Chr${chr} ${GCfile} | sed '$ d' | \
      awk -v OFS='\t' '$NF==0 {print $1, $2, $3, $4}' \
      >> Chr1 29.noGAPs.umd31.bed
done
# (4) Exclude Repeat regions
# repeat annotation:
http://hgdownload.soe.ucsc.edu/goldenPath/bosTau6/database/nestedRepeats.txt
repeatRegions=nestedRepeats.txt.gz
for chr in {1..29}
do
    zgrep -w chr${chr} ${repeatRegions} | \
        awk -v OFS='\t' '{gsub(/chr/, "Chr",$2)}{print $2, $3, $4}'|\
        sort -V | uniq >> Chr1 29 NestedRepeats.bed
done
# bedtools intersect
intersectBed -a Chr1 29.noGAPs.umd31.bed -b Chr1 29 NestedRepeats.bed \
    -v > Chr1 29.noGAPs.noRepeats.umd31.bed
## (5) Exclude known CNV and SV regions, such as from DGVA -
# studies with UMD3.1 mapping: such as,
# estd223 Boussaha et al 2015; nstd135 Karimi et al 2016
# nstd131 Keel et al 2016; estd234 Mesbah-Uddin et al 2017
# nstd69 Bickhart et al 2012; nstd60 Hou et al 2011
# nstd61 Hou et al 2011b; nstd56 Liu et al 2010
wget -i CNV_SV_file_from_DGVA_22Jan2019.list
# Keeping CNVs or SV region <= 1MB size, in authosomes
for file in $(ls *Bos taurus UMD 3.1*); do
zgrep -v '^#' ${file} | awk -v OFS='\t' '{print $1,$4,$5,($5-$4+1)}'| sed -e
's:chr::g' -e 's:Chr::g' | awk awk -v OFS='\t' '$1~/^[0-9*]/ && $4<=1e6
{print "Chr"$1, $2, $3}' | sort -V | uniq >>
Chr1_29.UMD31_DGVA CNVs SVs.bed; done
# Excluding CNV/SV regions
intersectBed \
      -a Chr1_29.noGAPs.noRepeats.umd31.bed \
      -b Chr1 29.UMD31 DGVA CNVs SVs.bed \
      -v >> Chr1 29.noGAPs.noRepeats.noCNVs.umd31.bed
```

1.2 Calculation of genome-wide average read depth for each animal for each 1% GC bins

```
GC_annotation=Chr1_29.noGAPs.noRepeats.noCNVs.umd31.bed
# Extract Read depth from VCF file
```

```
# Filter: Bi-allelic SNPs only; SNP quality >=30;
# no SNPs within 10 bp of one other
for chr in {1..29}
do
vcftools --gzvcf Chr (chr) .VCF 1KBGP.vcf.gz \
     --minQ 30 \
      --min-alleles 2 \
      --max-alleles 2 \
     --remove-indels \
     --thin 10 \
     --keep IDs for 597 animals.list \
     --extract-FORMAT-info AD \
     --out temp.Chr${chr}.readDepth
cat temp.Chr ($chr).readDepth.AD.FORMAT | perl -ane 'if ($.==1) {print
join("\t",@F),"\n"; next} print shift @F,"\t",shift @F;while(@F){
$v=shift @F;($v1,$v2)=split(",",$v); print "\t",$v1+$v2} print "\n";' >
Output Read depth Chr (chr).txt
totalCols=`awk 'NR==2 {print NF}' Output_Read_depth_Chr${chr}.txt`
# BED style
paste -d '\t' <(awk -v OFS='\t' 'NR>1 {print $1, $2-1, $2}'
Output Read depth Chr (chr).txt) < (awk -v OFS='\t' 'NR>1 {print $0}'
Output Read depth Chr (chr).txt | cut -f3-(totalCols) >>>
Output Read depth Chr $ { chr } . bed
# Bedtools intersect
while read lines
do
intersectBed -a <(awk -v OFS='\t' -v CHR=Chr${chr} -v GC=${lines}
Output Read depth Chr (chr).bed -wb >> ReadDepth.Chr1 29.GC (lines).dat
done < <(awk '{print $NF}' ${GC annotation} | sort -V | uniq )</pre>
done
####
# Finally, for each "ReadDepth.Chr1 29.GC${lines}.dat" file, we
calculated mean and variance
# R Script
# Summary stats for 29 autosomes for all samples
# Calculate mean and variance per GC%
\# e.g. for GC=50%
# d <- read.table("ReadDepth.Chr1 29.GC50.dat", header=T,</pre>
stringsAsFactors=F, sep='\t')
# remove columns:1-6
\# dat <- d[,-c(1:6)]
# Results = t( rbind( round(apply(dat, 2, mean),2), round(apply(dat, 2,
var), 2) ))
# write.table(Results, "ReadDepth.Chr1 29.GC50.txt", row.names = FALSE,
col.names = FALSE, quote = FALSE, sep = '\t')
```

37

2. Phasing and Imputation

38

39

2.1 Phasing genotype likelihood (PL) data using Beagle4

40 2.2 Genotype calls using SHAPEIT2 v2.r837

```
GEN=$(basename ${vcfSNPindelDEL} .PL.vcf.gz).GEN
genSAM=$(basename ${vcfSNPindelDEL} .PL.vcf.gz).GEN
HAP=$(basename ${vcfSNPindelDEL} .PL.vcf.gz).HAP
hapSAM=$(basename ${vcfSNPindelDEL} .PL.vcf.gz).HAP
outMax=$(basename ${vcfSNPindelDEL} .PL.vcf.gz).ShapeITv2r837
outGraph=$(basename ${vcfSNPindelDEL} .PL.vcf.gz).ShapeITv2r837.graph
# STEP 2.2.1: Convert VCF to GEN and HAP files
# GEN/SAMPLES
bcftools convert \
     ${vcfBeagle}.vcf.gz \
     --gensample ${GEN} \
     --vcf-ids \
     --tag GP \
     --chrom Chr${chr}
# HAP/SAMPLE
bcftools convert \
     ${vcfBeagle}.vcf.gz \
     --hapsample ${HAP} \
     --vcf-ids
# Step 2.2.2 : Run SHAPEIT2 v2.r837
# --window 0.1 for WGS
\# --window 2 for 50k and 777k
shapeIT2=shapeit.v2.r837/bin/shapeit
logs ShapeIT=Chr${chr}.ShapeITv2r837.772Animals.log
${shapeIT2} \
     -call \
     --aligned \
     --input-gen ${GEN}.gen.gz ${genSAM}.samples \
     --input-init ${HAP}.hap.gz ${hapSAM}.sample \
     --effective-size 1000 \
     --input-thr 0.99 \
     --window 0.1 \
     --burn 0 \
     --run 12 \
     --prune 4 \
```

```
--main 20 \
          --states 400 \
          --states-random 200 \
          --thread 6 \
          --output-max $\foutMax\}.hap.gz $\foutMax\}.sample \
          --output-graph ${outGraph}.gz \
          --output-log ${logs ShapeIT}
     # Step 2.2.3: Convert SHAPEIT2 haplotypes to VCF
     ShapeIT_haplotypes=$\frac{$\{outMax\}}{}\.hap.gz
     ShapeIT_Samples=${outMax}.sample
     vcfShapeIT=${outMax}.vcf.gz
     logHap2vcf=${outMax}.haps2vcf.log
     ${shapeIT2} \
          -convert \
          --input-haps ${ShapeIT haplotypes} ${ShapeIT Samples} \
          --output-vcf ${vcfShapeIT} \
          --output-log ${logHap2vcf}
     41
    2.3 Imputation using Minimac3 (Version 2.0.1)
     ******
     Reference VCF=${vcfShapeIT}
     targetVCF=Chr${chr}.imputed N genotyped 777kAnimals.vcf.gz
     outMinimac=imputed.Chr${chr}.combined777k to FullSeqDels
     Minimac3=Minimac3/bin/Minimac3-omp
     ${Minimac3} \
          --refHaps ${Reference VCF} \
          --haps ${targetVCF} \
          --prefix ${outMinimac} \
          --format GT,DS,GP \
          --myChromosome Chr${chr} \
          --log \
          --allTypedSites \
          --cpus 6
     42
```