Quick Summary

- Traditional BGP encoding
- Constructing PG from existing BGP configs (verification, synthesis?)
- Abstract topology safety analysis
 - Reachability under k-failures
 - Aggregation safety
- Proof of compilation correctness

Traditional BGP Encoding

BGP ranked paths

BAD GADGET

BGP ranked paths

BAD GADGET

BGP ranked paths

(130 u 210 u 420 u 3420) >> (10 u 20 u 30 u 430) >>

BAD GADGET

From BGP to PG

BGP Configs to PG

Challenges:

- 1. Import export filters
- 2. Arbitrary local preferences
- 3. Regex filters can occur anywhere
- 4. Community tags are non-local

Local Preferences

Each unique LP value becomes a unique PG preference!

Local Preferences

Regex Filters

Track the truth of each regex filter while building PG!

Same as when we usually build PG from automata

Regex Filters

Filter encoded by (E,2) (A,2) edge, which knows that the regex is satisfied

Regex Filters

Possible Optimization:

merge nodes when tracking information becomes irrelevant?

Track which community tags are attached in PG

Same idea as before!

No edge allowed here

Does traffic sent from B always go through X?

Does traffic sent from B always go through X?

Yes!

Does traffic always leave the DC through P1 when this is possible?

Does traffic always leave the DC through P1 when this is possible?

Nope!

How many failures to disconnect B?

How many failures to disconnect B?

1!

How many failures to disconnect B?

1!

Abstract Safety Analysis

Destination

Source

Destination

Source

Abstract reachability tells us that all nodes are reachable

Destination

Source

Inference Rules:

$$L \in \{A,S\}$$

Destination

Source

Destination

Source

How many failures required to turn this **A** into an **N**

In order to infer **N**, a single edge must result in **N**

Destination

Source

How many failures required to turn this **A** into an **N**

In order to infer **N**, a single edge must result in **N**

Edge-by-edge, how many failures change the inference

Conservatively assume only S is reachable for each node

How many failures required to turn this **A** into an **N**

In order to infer **N**, a single edge must result in **N**

Edge-by-edge, how many failures change the inference

Destination

Source

Conservatively assume only S is reachable for each node

How many failures required to turn this **A** into an **N**

Min-cut = 4

Destination

Source

Destination

How many failures required to turn this **A** into an **S**

Destination

Source

How many failures required to turn this **A** into an **S**

Destination

Source

How many failures required to turn this **A** into an **S**

Destination

How many failures required to turn this **A** into an **S**

Destination

Source

How many failures required to turn this A into an S

Destination

Source

Destination

Destination

Source

Idea: generate a "worst" case concrete topology, and find a lower bound on the min-cut of this topology

Destination

Source

Idea: generate a "worst" case concrete topology, and find a lower bound on the min-cut of this topology

Keep the topology abstract (small)

Destination

Source

Claim: Take the min of every edge/node, and this will be the worst topology

Destination

Source

Claim: Take the min of every edge/node, and this will be the worst topology

Destination

Claim: Take the min of every edge/node, and this will be the worst topology

Why: Can always fail more nodes/edges to get this topology

Destination

Source

Claim: Take the min of every edge/node, and this will be the worst topology

Idea: Find a lower bound on the number of disjoint paths in the concrete topology.

Destination

Claim: Take the min of every edge/node, and this will be the worst topology

Idea: Find a lower bound on the number of disjoint paths in the concrete topology.

Destination

Destination

Destination

We care about disconnecting some arbitrary node at the top from some arbitrary node at the bottom

Source

Destination

We care about disconnecting some arbitrary node at the top from some arbitrary node at the bottom

Source

Destination

Source

4 disjoint edges to 4 disjoint nodes

Destination

4 disjoint edges to 3 disjoint nodes

4 disjoint edges to 4 disjoint nodes

Destination

3 disjoint edges to 1 node

4 disjoint edges to 3 disjoint nodes

4 disjoint edges to 4 disjoint nodes

Destination

Source

3 disjoint edges to 1 node

4 disjoint edges to 3 disjoint nodes

4 disjoint edges to 4 disjoint nodes

 $min{3,4,4} = 3$

Compilation Correctness

More preferred

Proof of Correctness (High level)

Statement:

Traffic always flows along **some best simple** path to source *s* when such a path exists in the network (given failures)

Assume path P is one of the highest rank simple paths in the network given the failures

Then path P exists in the PG with (best) rank of r for source s

Assume path P is one of the highest rank simple paths in the network given the failures

Then path P exists in the PG with (best) rank of r for source s

The only way traffic does not flow along path P is if some node on P prefers a different advertisement

The only way traffic does not flow along path P is if some node on P prefers a different advertisement

What we know:

- 1) advertisement reaches N₂
- 2) Failure analysis prefers N₂
- 3) N_2 has the same path b to $r' \le r$

What we know:

- 1) advertisement reaches N₂
- 2) Failure analysis prefers $N_2 \ge N_1$
- 3) N_2 has the same path b to $r' \le r$

$$r' \leq r$$

What we know:

- 1) advertisement reaches N₂
- 2) Failure analysis prefers $N_2 \ge N_1$
- 3) N_2 has the same path b to $r' \le r$

$$r' \leq r$$

Case 1 (a'.b is a simple path)

Proceed by induction on path length of b

$$r' \leq r$$

Case 2 (a'.b is not simple)

a' must be simple (advertisement)

b must be simple (since P is simple)

Case 2 (a'.b is not simple)

From failure analysis, $X_1 \ge X_2$

Case 2 (a'.b is not simple)

start X_{I} a N_{I} N_2 е X_2

From failure analysis, $X_1 \ge X_2$ Induction on smaller paths c,f