Droites du plan

Remarque

Dans toute cette fiche, le plan est muni d'un repère.

Quelques calculs généraux pour commencer

Calcul 1.1

0000

Calculer:

a)
$$\frac{-2}{3} \times \frac{-7}{4} - \frac{1}{2}$$

c)
$$\frac{\frac{1}{3} - \frac{1}{2}}{\frac{-5}{3} + \frac{-3}{5}}$$

b)
$$\frac{3}{5}\sqrt{8} - \frac{7}{13}\sqrt{32}$$

d)
$$\frac{-2\sqrt{5} - \sqrt{45}}{-\sqrt{80} + 6\sqrt{5}}$$

Calcul 1.2

0000

Résoudre les équations suivantes, en donnant la valeur de leur unique solution.

a)
$$-3+4x-9+6x=0$$

c)
$$\sqrt{3}x - 3\sqrt{12} = \sqrt{27}x - 4\sqrt{75} \dots$$

b)
$$\frac{3}{5}x - \frac{1}{2} + x = -\frac{4}{3}$$

d)
$$\frac{5}{\sqrt{2}}x + \sqrt{8} = \frac{1}{\sqrt{2}}$$

Équations de droites

Calcul 1.3 — Avec un point et un vecteur directeur.

On considère la droite (d) passant par le point A(-7,4) et de vecteur directeur $\overrightarrow{u} \begin{pmatrix} -3 \\ -5 \end{pmatrix}$.

- a) Déterminer une équation cartésienne de (d)
- b) Déterminer l'équation réduite de (d)

Calcul 1.4 — Droites passant par deux points (I).

0000

On considère la droite (d) passant par les points $\mathcal{A}(-3,2)$ et $\mathcal{B}(6,-3).$

- a) Déterminer une équation cartésienne de (d)
- b) Déterminer l'équation réduite de (d)

Calcul 1.5 — Droites passant par deux points (II).

On considère la droite (d) passant par les points $A\left(-\frac{3}{2},-\frac{5}{3}\right)$ et $B\left(\frac{1}{3},-\frac{6}{5}\right)$.

- a) Déterminer une équation cartésienne de (d)
- b) Déterminer l'équation réduite de (d)

Calcul 1.6

On considère la droite (d) passant par les points $A\left(-3\sqrt{2},\sqrt{3}\right)$ et $B\left(\sqrt{8},-2\sqrt{12}\right)$.

- b) Calculer l'abscisse du point de (d) d'ordonnée nulle \ldots
- c) Calculer l'ordonnée du point de (d) d'abscisse -3

Calcul 1.7 — Détermination graphique.

On considère les droites (d_1) et (d_2) tracées dans le repère ci-dessous.

À l'aide du graphique, déterminer :

- a) les coordonnées d'un vecteur directeur de (d_1)
- b) une équation cartésienne de (d_1)
- c) l'équation réduite de (d_1)
- d) l'équation réduite de (d_2)

Calcul 1.8 — Des calculs de coordonnées de points.	0000
On considère la droite (d) d'équation cartésienne $-2x + 3y - 7 = 0$.	
a) Calculer l'ordonnée du point de (d) d'abscisse -6	
b) Calculer l'abscisse du point de (d) d'ordonnée $\frac{7}{3}$	
c) Calculer l'ordonnée du point de (d) d'abscisse $-\frac{\sqrt{3}}{2}$	
d) Déterminer les coordonnées du point de (d) dont l'abscisse et l'ordonnée sont égales \dots	
Calcul 1.9 — Des droites parallèles.	0000
On considère la droite (d) d'équation cartésienne $-\frac{2}{3}x + \frac{4}{5}y - \frac{1}{2} = 0$. Déterminer :	
a) une équation cartésienne de la droite (d') , parallèle à (d) , passant par le point de coordo	nnées $(-2,5)$
b) une équation cartésienne de la droite (d'') , parallèle à (d) , passant par le point de coordonn	ées (-30, 60)
Calcul 1.10 — Avec des paramètres (I).	0000
Soit $t \in \mathbb{R}$. On considère la droite (d) dirigée par le vecteur $\overrightarrow{u} \begin{pmatrix} -t+1 \\ t+2 \end{pmatrix}$ et passant par $\mathbf{A}(-3)$, 2).
a) Déterminer une équation cartésienne de la droite (d)	
b) Déterminer la valeur de t pour que la droite (d) soit parallèle à (Ox)	
Calcul 1.11 — Avec des paramètres (II).	0000
Soit $t \in \mathbb{R}$. On considère la droite (d) dirigée par $\overrightarrow{u} \begin{pmatrix} t^2 \\ -2t+1 \end{pmatrix}$ et passant par $A\left(-\frac{3}{4}, \frac{6}{7}\right)$.	
a) Déterminer une équation cartésienne de la droite (d)	
b) Déterminer la valeur de t pour que la droite (d) soit parallèle à $(\mathcal{O}y)$	

Intersections de droites

Calculs plus avancés

Calcul 1.18

Soit a un réel. On considère la droite (d) d'équation cartésienne

$$\frac{1}{a^2+1}x + (a^2-1)y - 2 = 0.$$

- a) Déterminer, si elle existe, l'ordonnée du point de (d) d'abscisse a
- b) Déterminer l'abscisse du point de (d) d'ordonnée (a-1)

Calcul 1.19

Soit m un réel.

On considère

- (d_1) la droite d'équation cartésienne mx + 4(m-1)y + 11 = 0;
- (d_2) la droite d'équation cartésienne 2x + my + 2 = 0.
- a) Déterminer une condition sur le réel m pour que les droites (d_1) et (d_2) soient sécantes

.....

b) Dans les conditions précédentes, déterminer les coordonnées du point d'intersection de (d_1) et (d_2)

.....

Calcul 1.20

Soit f la fonction définie sur \mathbb{R} par $f(x) = -3x^2 + 2x + 1$. Soit m un réel.

On note

- $\mathsf{T}_{f,m}$ la tangente à \mathscr{C}_f au point d'abscisse m;
- (d) la droite d'équation 3x + 2y 5 = 0.
- a) Déterminer une équation de $\mathsf{T}_{f,m}$
- b) Déterminer les coordonnées de l'éventuel point d'intersection de $\mathsf{T}_{f,m}$ et de (d) . .

Calcul 1.21

Soient f et g les fonctions définies sur \mathbb{R} par $f(x) = 3x^2 + 5$ et $g(x) = -2x^2 + 3$. Soit $a \in \mathbb{R}^*$.

a) Déterminer une équation de $\mathsf{T}_{f,a}$, la tangente à \mathscr{C}_f au point d'abscisse a

.....

b) Déterminer une équation de $\mathsf{T}_{q,-a}$, la tangente à \mathscr{C}_q au point d'abscisse -a

.....

Réponses mélangées

$$(-5,-2) \quad y = -\frac{5}{9}x + \frac{1}{3} \quad y = \frac{14}{55}x - \frac{212}{165} \quad \frac{7}{15}x - \frac{11}{6}y - \frac{106}{45} = 0 \quad -\frac{2}{3}x + \frac{4}{5}y - \frac{16}{3} = 0$$

$$\frac{5}{68} \quad \binom{2}{3} - 5x + 3y - 47 = 0 \quad -\frac{2}{3}x + \frac{4}{5}y - 68 = 0 \quad \left(-\frac{\sqrt{3}}{3}, -\sqrt{2}\right) \quad \left(0, \frac{25}{7}\right)$$

$$(-2t+1)x - t^2y + \frac{6}{7}t^2 - \frac{3}{2}t + \frac{3}{4} = 0 \quad y = \frac{5}{3}x + \frac{47}{3} \quad \left(\frac{-7 - \sqrt{77}}{2}, 20 + 2\sqrt{77}\right)$$

$$\frac{6}{5} \quad (-11,10) \quad \left(\frac{5a^2 - 2}{2a}, 12a^2 - 1\right) \quad \frac{2}{3} \quad -\frac{25}{48} \quad -2\sqrt{3} + 3\frac{\sqrt{6}}{2} \quad -\frac{5}{3}$$

$$(t+2)x + (t-1)y + t + 8 = 0 \quad \left(-\frac{15}{2}, 0\right) \quad (7,7) \quad \left(\frac{75}{11}, \frac{75}{11}\right) \quad -\frac{5}{2} \quad \frac{7 - \sqrt{3}}{3}$$

$$-2\sqrt{2} \quad y = (-6m+2)x + 3m^2 + 1 \quad \sqrt{3}x + \sqrt{2}y + 2\sqrt{6} = 0 \quad \left(\frac{-3m - 8}{m^2 - 8m + 8}, \frac{22 - 2m}{m^2 - 8m + 8}\right).$$

$$-a^5 + a^4 + 2a^2 + a + 1 \quad \left(\frac{4 - 5\sqrt{2}}{2}, \frac{-2 - 5\sqrt{2}}{2}\right) \quad \left(\frac{-6m^2 + 3}{-12m + 7}, \frac{9m^2 - 30m + 13}{-12m + 7}\right)$$

$$0 \quad 3x + 2y - 5 = 0 \quad y = -\frac{3}{2} \quad y = -4 \times (-a)(x + a) - 2a^2 + 3 \quad 0$$

$$\frac{2a^2 - a + 2}{a^4 - 1} \text{ si } a \notin \{-1, 1\} \quad m \neq 4 - 2\sqrt{2} \text{ et } m \neq 4 + 2\sqrt{2} \quad -5x - 9y + 3 = 0$$

$$y = -\frac{3}{2}x + \frac{5}{2} \quad \frac{-3}{5} \quad 7 \quad y = 6a(x - a) + 3a^2 + 5 \quad -\frac{62}{65}\sqrt{2} \quad -2$$

► Réponses et corrigés page 7

Fiche no 1. Droites du plan

Réponses

1.1 a)	1.7 c) $y = -\frac{3}{2}x + \frac{5}{2}$
1.1 b)	1.7 d) $y = -\frac{3}{2}$
1.1 c) $\frac{5}{68}$	1.8 a)
1.1 d)	1.8 b)
1.2 a)	1.8 c) $ \frac{7 - \sqrt{3}}{3} $
	1.8 d)
1.2 b) $\left[-\frac{25}{48} \right]$	1.9 a)
1.2 c)	
1.2 d)	1.9 b)
1.3 a) $ [-5x + 3y - 47 = 0] $	1.10 a) $(t+2)x + (t-1)y + t + 8 = 0$
	1.10 b)
1.3 b) $y = \frac{5}{3}x + \frac{47}{3}$	1.11 a) $ (-2t+1)x - t^2y + \frac{6}{7}t^2 - \frac{3}{2}t + \frac{3}{4} = 0 $
1.4 a) $ [-5x - 9y + 3 = 0] $	
1.4 b)	1.11 b)
1.5 a) $ \frac{7}{15}x - \frac{11}{6}y - \frac{106}{45} = 0 $	1.13 a)
1.5 b) $y = \frac{14}{55}x - \frac{212}{165}$	1.13 b)
1.6 a) $\sqrt{3}x + \sqrt{2}y + 2\sqrt{6} = 0$	(75.75)
1.6 b) $\boxed{-2\sqrt{2}}$	1.13 c)
1.6 c) $-2\sqrt{3} + 3\frac{\sqrt{6}}{2}$	1.14
1.7 a) $\begin{pmatrix} 2 \\ -3 \end{pmatrix}$	1.15 $\left(-\frac{\sqrt{3}}{3}, -\sqrt{2}\right)$
1.7 b) $3x + 2y - 5 = 0$	

1.16
$$\left(\frac{-7-\sqrt{77}}{2}, 20+2\sqrt{77}\right)$$
$$\left(\frac{-7+\sqrt{77}}{2}, 20-2\sqrt{77}\right)$$

1.19 b)
$$\left(\frac{-3m-8}{m^2-8m+8}, \frac{22-2m}{m^2-8m+8} \right).$$
1.20 a)
$$y = (-6m+2)x + 3m^2 + 1$$

1.20 a)
$$y = (-6m + 2)x + 3m^2 + 1$$

1.17
$$\left(\frac{4 - 5\sqrt{2}}{2}, \frac{-2 - 5\sqrt{2}}{2} \right)$$
$$\left(\frac{4 + 5\sqrt{2}}{2}, \frac{-2 + 5\sqrt{2}}{2} \right)$$

1.20 b).....
$$\left(\frac{-6m^2 + 3}{-12m + 7}, \frac{9m^2 - 30m + 13}{-12m + 7}\right)$$

1.18 a)
$$\frac{2a^2 - a + 2}{a^4 - 1} \text{ si } a \notin \{-1, 1\}$$

1.21 a)
$$y = 6a(x-a) + 3a^2 + 5$$

1.18 b)
$$-a^5 + a^4 + 2a^2 + a + 1$$

1.21 b)
$$y = -4 \times (-a)(x+a) - 2a^2 + 3$$

1.19 a)
$$m \neq 4 - 2\sqrt{2}$$
 et $m \neq 4 + 2\sqrt{2}$

1.21 c)....
$$\left(\frac{5a^2-2}{2a}, 12a^2-1\right)$$

Corrigés

1.1 a) On a
$$\frac{-2}{3} \times \frac{-7}{4} - \frac{1}{2} = \frac{7}{6} - \frac{3}{6} = \frac{4}{6} = \frac{2}{3}$$

1.1 b) On a
$$\frac{3}{5}\sqrt{8} - \frac{7}{13}\sqrt{32} = \frac{3}{5} \times 2\sqrt{2} - \frac{7}{13} \times 4\sqrt{2} = \frac{6}{5}\sqrt{2} - \frac{28}{13}\sqrt{2} = \frac{78}{65}\sqrt{2} - \frac{140}{65}\sqrt{2} = -\frac{62}{65}\sqrt{2}$$
.

1.1 c) On a
$$\frac{\frac{1}{3} - \frac{1}{2}}{\frac{-5}{2} + \frac{-3}{2}} = \frac{\frac{2}{6} - \frac{3}{6}}{\frac{-25}{6} - \frac{9}{2}} = \frac{1}{6} \times \frac{15}{34} = \frac{5}{68}$$
.

1.1 d) On a
$$\frac{-2\sqrt{5} - \sqrt{45}}{-\sqrt{80} + 6\sqrt{5}} = \frac{-2\sqrt{5} - 3\sqrt{5}}{-4\sqrt{5} + 6\sqrt{5}} = -\frac{5}{2}$$
.

1.2 a) On a
$$-3 + 4x - 9 + 6x = 0 \iff 10x = 12 \iff x = \frac{12}{10} = \frac{6}{5}$$
.

1.2 b) On a
$$\frac{3}{5}x - \frac{1}{2} + x = -\frac{4}{3} \iff \frac{8}{5}x = -\frac{8}{6} + \frac{3}{6} \iff x = -\frac{5}{6} \times \frac{5}{8} \iff x = -\frac{25}{48}$$
.

1.2 c) On a
$$\sqrt{3}x - 3\sqrt{12} = \sqrt{27}x - 4\sqrt{75} \iff \sqrt{3}x - 3\sqrt{3}x = 3 \times 2\sqrt{3} - 4 \times 5\sqrt{3} \iff -2\sqrt{3}x = -14\sqrt{3}$$
.

On obtient x = 7.

1.2 d) On a
$$\frac{5}{\sqrt{2}}x + \sqrt{8} = \frac{1}{\sqrt{2}} \iff \frac{5}{\sqrt{2}}x = \frac{\sqrt{2}}{2} - 2\sqrt{2} \iff \frac{5}{\sqrt{2}}x = -\frac{3}{2}\sqrt{2} \iff x = -\frac{3}{2}\sqrt{2} \times \frac{\sqrt{2}}{5}$$
.

On obtient $x = -\frac{3}{5}$.

La droite (d) est dirigée par le vecteur $\vec{u} \begin{pmatrix} -3 \\ -5 \end{pmatrix}$; elle admet donc une équation cartésienne de la forme -5x + 3y + c = 0. Le point A(-7,4) appartient à la droite, donc ses coordonnées vérifient son équation. On a donc $-5 \times (-7) + 3 \times 4 + c = 0$, ce qui donne c = -47. La droite (d) admet donc pour équation cartésienne -5x + 3y - 47 = 0.

1.3 b) On a $-5x + 3y - 47 = 0 \iff 3y = 5x + 47 \iff y = \frac{5}{3}x + \frac{47}{3}$.

- **1.4** a) La droite (d) est dirigée par le vecteur $\overrightarrow{AB}\begin{pmatrix} x_B x_A \\ y_B y_A \end{pmatrix} = \begin{pmatrix} 9 \\ -5 \end{pmatrix}$. On obtient l'équation -5x 9y + 3 = 0.
- **1.5** a) La droite (d) est dirigée par $\overrightarrow{AB} \begin{pmatrix} \frac{11}{6} \\ \frac{7}{15} \end{pmatrix}$.

On obtient l'équation $\frac{7}{15}x - \frac{11}{6}y + c = 0$. En remplaçant x et y par les coordonnées de B, on obtient $c = -\frac{106}{45}$ ce qui donne l'équation cartésienne $\frac{7}{15}x - \frac{11}{6}y - \frac{106}{45} = 0$.

10 0 40

1.5 b) On a

$$\frac{7}{15}x - \frac{11}{6}y - \frac{106}{45} = 0 \iff \frac{11}{6}y = \frac{7}{15}x - \frac{106}{45} = 0 \iff y = \frac{6}{11} \times \left(\frac{7}{15}x - \frac{106}{45}\right) \iff y = \frac{14}{55}x - \frac{212}{165}x - \frac{106}{15}x - \frac{106}{15}$$

1.6 a) La droite
$$(d)$$
 est dirigée par $\overrightarrow{AB}\begin{pmatrix} 5\sqrt{2} \\ -5\sqrt{3} \end{pmatrix}$

On obtient une équation cartésienne de la forme $-5\sqrt{3}x - 5\sqrt{2}y + c = 0$ avec c réel. En remplaçant x et y par les coordonnées de A, on obtient $c = -10\sqrt{6}$, ce qui donne l'équation cartésienne $-5\sqrt{3}x - 5\sqrt{2}y - 10\sqrt{6} = 0$. En divisant par -5 on obtient $\sqrt{3}x + \sqrt{2}y + 2\sqrt{6} = 0$.

1.6 b) L'abscisse x du point de (d) d'ordonnée nulle est la solution de l'équation $\sqrt{3}x + \sqrt{2} \times 0 + 2\sqrt{6} = 0$, ce qui donne $x = \frac{-2\sqrt{6}}{\sqrt{3}} = -2\sqrt{2}$.

1.6 c) L'ordonnée y du point de (d) d'abscisse -3 est la solution de l'équation $\sqrt{3} \times (-3) + \sqrt{2}y + 2\sqrt{6} = 0$, ce qui donne $\sqrt{2}y = -2\sqrt{6} + 3\sqrt{3}$ et donc $y = -2\sqrt{3} + \frac{3\sqrt{6}}{2}$.

1.7 a) En repérant les points du quadrillage par lesquels passe (d_1) , on trouve $\begin{pmatrix} 2 \\ -3 \end{pmatrix}$.

1.7 b) Comme un vecteur directeur de (d_1) est $\begin{pmatrix} 2 \\ -3 \end{pmatrix}$, une équation cartésienne de (d_1) est de la forme 3x + 2y + c = 0. Pour déterminer c, remarquons que le point de coordonnées (1,1) appartient à (d_1) . On a donc $3 \times 1 + 2 \times 1 + c = 0$ et donc c = -5.

1.7 d) On détermine graphiquement l'équation réduite de (d_2) . C'est $y = -\frac{3}{2}$.

1.8 a) On cherche y tel que $-2 \times (-6) + 3y - 7 = 0$, ce qui donne 5 + 3y = 0, c'est-à-dire $y = -\frac{5}{3}$.

1.8 b) On cherche x tel que $-2x + 3 \times \frac{7}{3} - 7 = 0$, ce qui donne -2x + 7 - 7 = 0, c'est-à-dire x = 0.

1.8 c) On cherche y tel que $-2 \times \frac{-\sqrt{3}}{2} + 3y - 7 = 0$, ce qui donne $\sqrt{3} - 7 + 3y = 0$, c'est-à-dire $y = \frac{7 - \sqrt{3}}{3}$.

1.8 d) On cherche x et y tels que x = y et -2x + 3y - 7 = 0 ce qui est équivalent à x = y et -2x + 3x - 7 = 0, ce qui donne x = y = 7. Le point a donc pour coordonnées (7,7).

1.9 a) Deux droites parallèles sont dirigées par les mêmes vecteurs directeurs, donc le vecteur $\vec{u} \begin{pmatrix} -\frac{4}{5} \\ -\frac{2}{3} \end{pmatrix}$ dirige aussi (d'). La droite (d') a donc une équation cartésienne de la forme $-\frac{2}{3}x + \frac{4}{5}y + c = 0$.

On remplace x et y par les coordonnées du point : $-\frac{2}{3} \times (-2) + \frac{4}{5} \times 5 + c = 0$, ce qui donne $c = -4 - \frac{4}{3} = -\frac{16}{3}$. On obtient $-\frac{2}{3}x + \frac{4}{5}y - \frac{16}{3} = 0$.

1.9 b) De même qu'au calcul précédent, (d'') a une équation cartésienne de la forme $-\frac{2}{3}x + \frac{4}{5}y + c = 0$.

On remplace x et y par les coordonnées du point : $-\frac{2}{3} \times (-30) + \frac{4}{5} \times 60 + c = 0$, ce qui donne c = -68.

On obtient $-\frac{2}{3}x + \frac{4}{5}y - 68 = 0$.

1.10 a) La droite (d) est dirigée par le vecteur $\overrightarrow{u} \begin{pmatrix} -t+1 \\ t+2 \end{pmatrix}$, donc elle admet une équation cartésienne de la forme (t+2)x+(t-1)y+c=0.

Le point A(-3,2) appartient à la droite, donc ses coordonnées vérifient son équation, on obtient donc l'équation $(t+2) \times (-3) + (t-1) \times 2 + c = 0$, ce qui donne c = t+8.

La droite (d) admet donc pour équation cartésienne (t+2)x + (t-1)y + t + 8 = 0.

1.10 b) La droite (d) est parallèle à l'axe des abscisses si, et seulement si, la seconde coordonnée de tous ses vecteurs directeurs est nulle, ce qui donne t + 2 = 0, c'est-à-dire t = -2.

.....

1.11 a) La droite (d) est dirigée par le vecteur $\overrightarrow{u} \begin{pmatrix} t^2 \\ -2t+1 \end{pmatrix}$, donc elle admet une équation cartésienne de la forme $(-2t+1)x-(t^2)y+c=0$.

Le point $A\left(-\frac{3}{4},\frac{6}{7}\right)$ appartient à la droite, donc ses coordonnées vérifient son équation. On obtient donc l'équation $(-2t+1)\times(-\frac{3}{4})-t^2\times\frac{6}{7}+c=0$, ce qui donne $c=\frac{6}{7}t^2-\frac{3}{2}t+\frac{3}{4}$.

La droite (d) admet donc pour équation cartésienne $(-2t+1)x-t^2y+\frac{6}{7}t^2-\frac{3}{2}t+\frac{3}{4}=0$.

1.11 b) La droite (d) est parallèle à l'axe des ordonnées si, et seulement si, la première coordonnée de tous ses vecteurs directeurs est nulle, ce qui donne $t^2 = 0$, c'est-à-dire t = 0.

Les coordonnées (x, y) du point d'intersection de (d_1) et (d_2) sont les solutions du système $\begin{cases} x + y + 1 = 0 \\ x + 11 = 0 \end{cases}$

Or, on a $\begin{cases} x+y+\ 1=0 \\ x + 11=0 \end{cases} \iff \begin{cases} x=-11 \\ y=10 \end{cases}$. D'où le résultat.

1.13 a) Les coordonnées (x, y) du point d'intersection de (d) et de l'axe des abscisses sont les solutions du système $\begin{cases} -\frac{2}{3}x + \frac{7}{5}y - 5 = 0 \\ y = 0 \end{cases}$. L'unique solution de ce système est $\left(-\frac{15}{2}, 0\right)$.

- 1.13 b) Les coordonnées (x,y) du point d'intersection de (d) et de l'axe des ordonnées sont les solutions du système $\begin{cases} -\frac{2}{3}x + \frac{7}{5}y 5 = 0 \\ x = 0 \end{cases}$. L'unique solution de ce système est $\left(0, \frac{25}{7}\right)$.
- 1.13 c) Les coordonnées (x, y) du point d'intersection de (d) et de la première bissectrice sont les solutions du système $\begin{cases} -\frac{2}{3}x + \frac{7}{5}y 5 = 0 \\ y = x \end{cases}$

Or, on a
$$\begin{cases} -\frac{2}{3}x + \frac{7}{5}y - 5 = 0 \\ y = x \end{cases} \iff \begin{cases} -\frac{10}{15}x + \frac{21}{15}x - 5 = 0 \\ y = x \end{cases} \iff \begin{cases} x = \frac{75}{11} \\ y = x \end{cases} \iff \begin{cases} x = \frac{75}{11} \\ y = \frac{75}{11} \end{cases}$$

Les coordonnées (x, y) du point d'intersection de (d_1) et (d_2) sont solutions de $\begin{cases} 2x - 3y = -4 \\ -5x + 9y = 7 \end{cases}$.

On a
$$\begin{cases} 2x - 3y = -4 \\ -5x + 9y = 7 \end{cases} \iff \begin{cases} 10x - 15y - 10x + 18y & = -20 + 14 \\ 6x - 9y - 5x + 9y & = -12 + 7 \end{cases} \iff \begin{cases} 3y = -6 \\ x = -5 \end{cases} \iff \begin{cases} x = -5 \\ y = -2 \end{cases}$$

1.15 Les coordonnées (x, y) du point d'intersection de (d_1) et (d_2) sont les solutions du système

$$\begin{cases} 3\sqrt{3}x - \sqrt{2}y + 1 = 0\\ -\sqrt{12}x + \sqrt{8}y + 2 = 0 \end{cases}$$

On a
$$\begin{cases} 3\sqrt{3}x - \sqrt{2}y + 1 = 0 \\ -\sqrt{12}x + \sqrt{8}y + 2 = 0 \end{cases} \iff \begin{cases} 3\sqrt{3}x - \sqrt{2}y = -1 \\ -2\sqrt{3}x + 2\sqrt{2}y = -2 \end{cases} \iff \begin{cases} 6\sqrt{3}x - 2\sqrt{2}y - 6\sqrt{3}x + 6\sqrt{2}y = -2 - 6 \\ 6\sqrt{3}x - 2\sqrt{2}y - 2\sqrt{3}x + 2\sqrt{2}y = -2 - 2 \end{cases}$$

On obtient
$$\begin{cases} 4\sqrt{2}y = -8 \\ 4\sqrt{3}x = -4 \end{cases}$$
, ce qui donne
$$\begin{cases} y = -\sqrt{2} \\ x = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3} \end{cases}$$
.

1.16 Les coordonnées (x, y) du point d'intersection de (d) et de la parabole \mathscr{P} sont les solutions du système

$$\begin{cases} 4x + y = 6\\ y = x^2 + 3x - 1 \end{cases}$$

Ce système est équivalent à $\begin{cases} y=-4x+6\\ y=x^3+3x-1 \end{cases}$ lui-même équivalent à $\begin{cases} y=-4x+6\\ x^2+7x-7=0 \end{cases}$.

On résout $x^2 + 7x - 7 = 0$, dont le discriminant vaut $7^2 - 4 \times 1 \times (-7) = 77$. Ses solutions sont $x_1 = \frac{-7 - \sqrt{77}}{2}$ et $x_2 = \frac{-7 + \sqrt{77}}{2}$. On obtient comme ordonnées correspondantes $y_1 = -4x_1 + 6 = 14 + 2\sqrt{77} + 6 = 20 + 2\sqrt{77}$ et $y_2 = -4x_2 + 6 = 14 - 2\sqrt{77} + 6 = 20 - 2\sqrt{77}$.

Les coordonnées des points d'intersection cherchés sont donc $\left(\frac{-7-\sqrt{77}}{2},20+2\sqrt{77}\right)$ et $\left(\frac{-7+\sqrt{77}}{2},20-2\sqrt{77}\right)$.

1.17 Les coordonnées (x,y) du point d'intersection de (d) et de $\mathscr E$ sont les solutions du système

$$\begin{cases}
-x + y + 3 = 0 \\
(x - 2)^2 + (y + 1)^2 = 25
\end{cases}$$

Ce système est équivalent à $\begin{cases} y=x-3 \\ \left(x-2\right)^2+\left(x-3+1\right)^2=25 \end{cases},$ lui-même équivalent à $\begin{cases} y=x-3 \\ 2x^2-8x-17=0 \end{cases}.$

Les deux solutions des $2x^2 - 8x - 17 = 0$ sont $x_1 = \frac{4 - 5\sqrt{2}}{2}$ et $x_2 = \frac{4 + 5\sqrt{2}}{2}$. On obtient comme ordonnées correspondantes $y_1 = x_1 - 3 = \frac{-2 - 5\sqrt{2}}{2}$ et $y_2 = x_2 - 3 = \frac{-2 + 5\sqrt{2}}{2}$.

Les coordonnées des points d'intersection cherchés sont donc $\left(\frac{4-5\sqrt{2}}{2},\frac{-2-5\sqrt{2}}{2}\right)$ et $\left(\frac{4+5\sqrt{2}}{2},\frac{-2+5\sqrt{2}}{2}\right)$.

1.18 a) On remplace x par a dans l'équation de (d), on obtient $\frac{1}{a^2+1}a+(a^2-1)y-2=0$, ce qui donne $(a^2-1)y=2-\frac{a}{a^2+1}$. Si $a\neq \pm 1$, on obtient $y=\frac{2(a^2+1)-a}{(a^2-1)(a^2+1)}=\frac{2a^2-a+2}{a^4-1}$. Sinon, il n'y a pas de point d'abscisse a sur la droite

.....

1.18 b) On remplace y par a-1 dans l'équation de (d): $\frac{1}{a^2+1}x + (a^2-1)(a-1) - 2 = 0$, ce qui donne $x = (2-(a^2-1)(a-1)) \times (a^2+1)$, c'est-à-dire $x = -a^5 + a^4 + 2a^2 + a + 1$.

1.19 a) Les droites (d_1) et (d_2) sont sécantes si, et seulement si, elles sont dirigées par des vecteurs non colinéaires.

Or, (d_1) est dirigée par $\overrightarrow{u} \begin{pmatrix} 4(1-m) \\ m \end{pmatrix}$ et (d_2) par $\overrightarrow{v} \begin{pmatrix} -m \\ 2 \end{pmatrix}$.

Ces deux vecteurs sont colinéaires si, et seulement si, $4(1-m)\times 2-(-m)\times m=0$.

On obtient l'équation $m^2 - 8m + 8 = 0$ dont les deux solutions sont $m_1 = \frac{8 - \sqrt{32}}{2} = 4 - 2\sqrt{2}$ et $m_2 = 4 + 2\sqrt{2}$.

On en déduit que les droites (d_1) et (d_2) sont sécantes si, et seulement si, $m \neq 4 - 2\sqrt{2}$ et $m \neq 4 + 2\sqrt{2}$.

1.19 b) Dans les conditions précédentes, les coordonnées du point d'intersection des droites (d_1) et (d_2) sont les solutions du système $\begin{cases} mx + 4(m-1)y = -11 \\ 2x + my = -2 \end{cases}$.

Or, on a

$$\begin{cases} 2mx + 8(m-1)y = -22 \\ 2x = -my - 2 \end{cases} \iff \begin{cases} -m^2y - 2m + 8(m-1)y = -22 \\ x = -\frac{1}{2}my - 1 \end{cases} \iff \begin{cases} (-m^2 + 8m - 8)y = -22 + 2m \\ x = -\frac{1}{2}my + 1 \end{cases}$$
$$\iff \begin{cases} y = \frac{2m - 22}{-m^2 + 8m - 8} \\ x = \frac{m(11 - m)}{-m^2 + 8m - 8} - 1 \end{cases} \iff \begin{cases} y = \frac{22 - 2m}{m^2 - 8m + 8} \\ x = \frac{m^2 - 11m - m^2 + 8m - 8}{m^2 - 8m + 8} \end{cases}.$$

Le point d'intersection des deux droites a donc pour coordonnées $\left(\frac{-3m-8}{m^2-8m+8}, \frac{22-2m}{m^2-8m+8}\right)$.

.....

1.20 a) La fonction f est polynomiale, donc dérivable sur \mathbb{R} . Pour tout réel x, on a f'(x) = -6x + 2.

La tangente à \mathscr{C}_f au point d'abscisse m a donc pour équation $y = (-6m+2)(x-m) - 3m^2 + 2m + 1$, c'est-à-dire $y = (-6m+2)x + 3m^2 + 1$.

1.20 b)

Cherchons maintenant l'éventuel point d'intersection de cette droite et de la droite (d).

La tangente est dirigée par le vecteur $\overrightarrow{u} \begin{pmatrix} 1 \\ -6m+2 \end{pmatrix}$, la droite (d) est dirigée par le vecteur $\overrightarrow{v} \begin{pmatrix} -2 \\ 3 \end{pmatrix}$.

Ces deux vecteurs sont colinéaires si, et seulement si, $-2(-6m+2)-3=0 \iff 12m-7=0 \iff m=\frac{7}{12}$.

Plaçons nous maintenant dans le cas où $m \neq \frac{7}{12}$. Les coordonnées (x, y) du point d'intersection de (d) et de la tangente sont les solutions du système

$$\begin{cases} y = (-6m+2)x + 3m^2 + 1\\ 3x + 2y - 5 = 0 \end{cases}$$

Or, on a

$$\begin{cases} y = (-6m+2)x + 3m^2 + 1 \\ 3x + 2y - 5 = 0 \end{cases} \iff \begin{cases} y = (-6m+2)x + 3m^2 + 1 \\ 3x + 2(-6m+2)x + 6x^2 + 2 - 5 = 0 \end{cases} \iff \begin{cases} y = (-6m+2)x + 3m^2 + 1 \\ (-12m+7)x = -6m^2 + 3 \end{cases}$$
$$\iff \begin{cases} x = \frac{-6m^2 + 3}{-12m + 7} \\ y = (-6m+2) \times \frac{-6m^2 + 3}{-12m + 7} + 3m^2 + 1 \end{cases} .$$

Les coordonnées du point d'intersection des deux droites sont donc $\left(\frac{-6m^2+3}{-12m+7}, \frac{9m^2-30m+13}{-12m+7}\right)$.

Si $m = \frac{7}{12}$, les droites sont parallèles et donc n'ont pas de point d'intersection.

.....

1.21 a) La droite
$$\mathsf{T}_{f,a}$$
 a pour équation $y = f'(a)(x-a) + f(a)$, c'est-à-dire $y = 6a(x-a) + 3a^2 + 5$.

1.21 b) La droite
$$\mathsf{T}_{g,-a}$$
 a pour équation $y = g'(-a)(x+a) + g(-a)$, c'est-à-dire $y = -4 \times (-a)(x+a) - 2a^2 + 3$.

1.21 c) L'abscisse du point d'intersection est solution de $-4 \times (-a)(x+a) - 2a^2 + 3 = 6a(x-a) + 3a^2 + 5$, ce qui donne si $a \neq 0, x = \frac{5a^2 - 2}{2a}$.

On obtient
$$y = 6a(x-a) + 3a^2 + 5 = 6a\left(\frac{5a^2 - 2}{2a} - a\right) + 3a^2 + 5 = 15a^2 - 6 - 6a^2 + 3a^2 + 5 = 12a^2 - 1$$
.

Le point d'intersection a donc pour coordonnées $\left(\frac{5a^2-2}{2a},12a^2-1\right)$.