Matgeo-q 2.3.2

Harichandana Varanasi-ai25btech11039

September 11, 2025

Question

Q. Find the angle between unit vectors **a** and **b** such that $\sqrt{3}$ **a** - **b** is also a unit vector.

Solution

Solution. Given: $\|\mathbf{a}\| = \|\mathbf{b}\| = 1$ and $\|\sqrt{3}\mathbf{a} - \mathbf{b}\| = 1$.

Use the length definition $||x||^2 = x^\top x$ and the scalar–product relation $\mathbf{a}^\top \mathbf{b} = ||\mathbf{a}|| \, ||\mathbf{b}|| \cos \theta$.

$$1 = \|\sqrt{3} \mathbf{a} - \mathbf{b}\|^{2}$$

$$= (\sqrt{3} \mathbf{a} - \mathbf{b})^{\top} (\sqrt{3} \mathbf{a} - \mathbf{b})$$

$$= 3 \mathbf{a}^{\top} \mathbf{a} + \mathbf{b}^{\top} \mathbf{b} - 2\sqrt{3} \mathbf{a}^{\top} \mathbf{b}$$

$$= 3 \cdot 1 + 1 \cdot 1 - 2\sqrt{3} \cos \theta$$

$$= 4 - 2\sqrt{3} \cos \theta.$$

Hence $2\sqrt{3}\cos\theta=3$, so $\cos\theta=\frac{\sqrt{3}}{2}$ and therefore $\theta=30^\circ$.

Plot

2D Illustration (xy-projection): Parallelogram spanned by \vec{a} and \vec{b}

Figure: xy-projection of **a** and **b**; $|\mathbf{a} \times \mathbf{b}| = 13\sqrt{3}$.