Матанализ 1 семестр ПИ, Лекции

Собрано 15 января 2022 г. в 16:57

Содержание

1.	Аксиомы вещественных чисел 1.1. Аксиомы сложения $(\mathbb{R} \times \mathbb{R} \to \mathbb{R})$	
2 .	Принцип математической индукции	4
3.	Супремум и инфимум	5
4.	Отображения	6
	Последовательности 5.1. Предел последовательности и его свойства 5.2. Монотонные последовательности 5.3. Теорема об арифметических действиях с пределами 5.4. Арифметические действия с бесконечностями 5.5. Неравенство Бернулли Пределы последовательностей 6.1. Число е 6.2. Теорема Штольца	7 7 8 9 10 11 12 12
7.	6.3. Подпоследовательности Ряды 7.1. Ряды 7.2. Свойства рядов	14 17 17 18
	Функции 8.1. Свойства пределов функций	19 19 22
9.	Пределы функций 9.1. ε-окрестности 9.2. Предел функции	23 23 23
10	. Непрерывность	25

11. Элементарные функции	28
11.1. Постоянная	28
11.2. Степенная функция	28
11.3. Показательная функция	29
11.3.1. Свойства показательной функции	30
11.4. Логарифм	31
11.4.1. Свойства логарифма	31
11.5. Тригонометрические функции	32
11.5.1. Обратные тригонометрические функции	33
12. Замечательные пределы	34
13. Сравнение функций	36
14. Дифференциальное исчисление	39
	39 40
14. Дифференциальное исчисление	
14. Дифференциальное исчисление 14.1. Связь с физикой	40
14. Дифференциальное исчисление 14.1. Связь с физикой	40 40 40 41
14. Дифференциальное исчисление 14.1. Связь с физикой	40 40 40 41 42
14. Дифференциальное исчисление 14.1. Связь с физикой 14.2. Связь с геометрией 14.3. Бесконечные производные 14.4. Правила дифференцирования	40 40 40 41 42 44
14. Дифференциальное исчисление 14.1. Связь с физикой	40 40 40 41 42 44 48
14. Дифференциальное исчисление 14.1. Связь с физикой	40 40 40 41 42 44
14. Дифференциальное исчисление 14.1. Связь с физикой	40 40 40 41 42 44 48
14. Дифференциальное исчисление 14.1. Связь с физикой	40 40 41 42 44 48 49
14. Дифференциальное исчисление 14.1. Связь с физикой 14.2. Связь с геометрией 14.3. Бесконечные производные 14.4. Правила дифференцирования 14.5. Формулы для вычисления производных 14.6. Теоремы о средних 14.7. Производные высших порядков 14.8. Формула Тейлора 14.9. Формулы Тейлора-Маклорена	40 40 41 42 44 48 49 51

Раздел #1: Аксиомы вещественных чисел

1.1. Аксиомы сложения $(\mathbb{R} \times \mathbb{R} \to \mathbb{R})$

- 1. $\forall a, b \in \mathbb{R} \rightarrow a + b = b + a$ (коммутативность сложения)
- 2. $\forall a, b, c \in \mathbb{R} \rightarrow (a+b) + c = a + (b+c)$ (ассоциативность сложения)
- 3. $\exists 0 \in \mathbb{R} : \forall a \in \mathbb{R} \to a + 0 = a$ (существование нуля)
- 4. $\forall a \in \mathbb{R} \to \exists (-a) \in \mathbb{R} : a + (-a) = 0 \ ((-a)$ противоположное число для a)

1.2. Аксиомы умножения $(\mathbb{R} \times \mathbb{R} \to \mathbb{R})$

- 1. $\forall a, b \in \mathbb{R} \rightarrow a \cdot b = b \cdot a$ (коммутативность умножения)
- 2. $\forall a, b, c \in \mathbb{R} \to (a \cdot b) \cdot c = a \cdot (b \cdot c)$ (ассоциативность умножения)
- 3. $\exists 1 \in \mathbb{R}, 1 \neq 0 : \forall x \in \mathbb{R} \rightarrow 1 \cdot x = x$ (существование единицы)
- 4. $\forall a \in \mathbb{R}, a \neq 0 \to \exists \frac{1}{a} : a \cdot \frac{1}{a} = 1 \ (\frac{1}{a}$ обратное число для a)

1.3. Дистрибутивность умножения относительно сложения

 $\forall a, b, c \in \mathbb{R} \rightarrow (a+b) \cdot c = a \cdot c + b \cdot c$

1.4. Аксиомы порядка ($\forall a, b \in \mathbb{R}$ установлено отношение $a \leq b$ или $b \leq a$)

- 1. $\forall a \in \mathbb{R} \rightarrow a \leq a$ (рефлексивность)
- 2. $\forall a, b, c \in \mathbb{R} : a \leq b, b \leq c \rightarrow a \leq c$ (транзитивность)
- 3. $\forall a, b \in \mathbb{R} : a \leq b, b \leq a \rightarrow a = b$ (антисимметричность)
- 4. $\forall a, b \in \mathbb{R} \rightarrow a \leq b$ или $b \leq a$
- 5. $\forall a, b, c \in \mathbb{R} : a \le b \rightarrow a + c \le b + c$
- 6. $\forall a, b \in R : 0 \le a, 0 \le b \rightarrow 0 \le a \cdot b$

1.5. Ещё несколько определений

- $a \le b \Leftrightarrow b \ge a$ (определение \ge)
- $a < b \Leftrightarrow a \le b$ и $a \ne b$ (определение <)
- $a > b \Leftrightarrow b < a$ (определение >)

1.6. Аксиома полноты

 $\forall A,B \subset \mathbb{R}: A \neq \varnothing, B \neq \varnothing: \forall x \in A, \forall y \in B, x \leq y \rightarrow \exists c \in \mathbb{R}: x \leq c \leq y$

1.7. Следствия из аксиом множества действительных чисел

Следствие 1.7.1. Число 0 единственно

Доказательство. Предположим обратное: ∃0′ ≠ 0, тогда рассмотрим следующее:

$$0' + 0 = 0'$$

$$0 + 0' = 0$$

Теперь заметим, что левые части равны по аксиоме о коммутативности сложения $\Rightarrow 0' = 0$, что противоречит предполагаемому.

Следствие 1.7.2. Число 1 единственно

Доказательство аналогично доказательству единственности нуля, только используется умножение вместо сложения.

Cnedcmeue 1.7.3. $\forall a, b, c \in \mathbb{R} : a = b \Leftrightarrow a + c = b + c$

Доказательство.

$$a = b \Rightarrow a \le b \Rightarrow a + c \le b + c$$

$$a = b \Rightarrow b \le a \Rightarrow b + c \le a + c$$

$$a + c \le b + c, \ b + c \le a + c \Rightarrow a + c = b + c$$

В обратную сторону аналогично:

$$a + c = b + c \Rightarrow a + c \le b + c \Rightarrow a \le b$$

 $a + c = b + c \Rightarrow b + c \le a + c \Rightarrow b \le a$
 $a \le b, b \le a \Rightarrow a = b$

Следствие 1.7.4. $\forall a \in \mathbb{R} \ (-a)$ единственно.

Доказательство. Пусть верно обратное: $\exists a \in \mathbb{R} : \exists (-a)_1, (-a)_2 \in \mathbb{R} : (-a)_1 \neq (-a)_2$

$$a + (-a)_1 = a + (-a)_2 = 0$$

Добавим к обеим частям $(-a)_1$:

$$(-a)_1 = (-a)_2$$

Пришли к противоречию.

Chedemeue 1.7.5. $\forall a, b \in \mathbb{R} : a \leq b \rightarrow -b \leq -a$

Доказательство.

$$a + ((-a) + (-b)) \le b + ((-a) + (-b))$$

 $-b \le -a$

Следствие 1.7.6. $\forall x \in \mathbb{R} \Rightarrow 0 \cdot x = 0$

Доказательство.

$$0 \cdot x = 0 \cdot x + 0 \cdot x + (-0 \cdot x) = x \cdot (0 + 0) + (-0 \cdot x) = 0 \cdot x + (-0 \cdot x) = 0$$

Cnedcmeue 1.7.7. $\forall x \in \mathbb{R} \rightarrow (-x) = (-1) \cdot x$

Доказательство. Предположим обратное: $\exists x \in \mathbb{R} : (-1) \cdot x = b, b \neq (-x)$

$$(-1) \cdot x + 1 \cdot x = b + 1 \cdot x$$
$$x \cdot (1 + (-1)) = b + 1 \cdot x$$
$$b + x = 0$$
$$b = -x$$

Противоречие.

Cледствие 1.7.8. 0 < 1

Доказательство. Предположим обратное: $0 \ge 1$, вариант 0 = 1 сразу отпадает из-за аксиомы о существовании единицы, значит $0 > 1 \Leftrightarrow -1 > 0$

Пусть $x \in \mathbb{R}$, x > 0, тогда $(-1) \cdot x \ge 0 \Leftrightarrow (-1) \cdot x + 1 \cdot x \ge 1 \cdot x \Leftrightarrow 0 \ge x$ Противоречие.

Теорема 1.7.9 (Теорема о вложенных отрезка). Пусть $[a_1, b_1] \supset [a_2, b_2] \supset [a_3, b_3] \supset ... \supset [a_n, b_n]$. Тогда

$$\exists a \in \bigcap_{n=1}^{\infty} [a_n, b_n]$$

Доказательство. $a_1 \leqslant a_2 \leqslant a_3 \leqslant \ldots \leqslant a_n \leqslant b_n \leqslant b_{n-1} \leqslant \ldots \leqslant b_1$

Значит, $\forall k, m \rightarrow a_k \leqslant b_m$

Пусть $A = \{a_n\}, B = \{b_n\}$. По аксиоме полноты $\exists c \in \mathbb{R} : \forall k, m \in \mathbb{N} \to a_k \leqslant c \leqslant b_m \Rightarrow c \in \bigcap_{n=1}^{\infty} [a_n, b_n]$

Замечания: 1) $\bigcap_{n=1}^{\infty} \left(0; \frac{1}{n}\right]$ = Ø. Важно, что именно отрезки, а не интервалы или полуинтервалы.

- $2) \cap_{n=1}^{\infty} [n; +\infty) = ?$
- 3) Без аксиомы полноты не работает. Например

$$[1.4; 1.5] \supset [1.41; 1.42] \supset \dots$$

$$\bigcap_{n=1}^{\infty} [a_n, b_n] = \{\sqrt{2}\}$$
, но не в $\mathbb Q$

Раздел #2: Принцип математической индукции

 $\{P_n\}_{n=1}^\infty$ - утверждения. Если

1. P_1 верно - база

2. $\forall n \in \mathbb{N} \to P_n \Rightarrow P_{n+1}$ - индукционный переход

Тогда $\forall n \in \mathbb{N} \to P_n$.

Def 2.0.1. $M \subset \mathbb{R}$ - undykmushoe, $ecnu \ 1 \in M \land (x \in M \Rightarrow x + 1 \in M)$.

Def 2.0.2. \mathbb{N} - минимальное индуктивное подмножество \mathbb{R}

Def 2.0.3 (Сдвиг индекса суммирования).

$$\sum_{n=m}^{k} a_n = \sum_{j=m+p}^{k+p} a_{j-p}, p \in \mathbb{Z}$$

Def 2.0.4. k!! - произведение целых чисел до k включительно одной четности c k.

Def 2.0.5 (Биномиальные коэффициенты).

$$C_n^k = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

Теорема 2.0.6 (Формула бинома Ньютона). Пусть $n \in \mathbb{Z}, x, y \in \mathbb{R}$. Тогда

$$(x+y)^n = \sum_{k=0}^n C_n^k x^k y^{n-k}$$

Доказательство. $n = 0 \rightarrow 1 = 1$, верно Индукционный переход:

$$(x+y)^{n+1} = (x+y)(x+y)^{n} = (x+y)\left(\sum_{k=0}^{n} C_{n}^{k} x^{k} y^{n-k}\right) =$$

$$= \sum_{k=0}^{n} C_{n}^{k} x^{k+1} y^{n-k} + \sum_{k=0}^{n} C_{n}^{k} x^{k} y^{n-k+1} = \sum_{j=1}^{n+1} C_{n}^{j-1} x^{j} y^{n+1-j} + \sum_{k=0}^{n} C_{n}^{k} x^{k} y^{n-k+1} =$$

$$= \sum_{k=1}^{n+1} C_{n}^{k-1} x^{k} y^{n+1-k} + \sum_{k=0}^{n} C_{n}^{k} x^{k} y^{n-k+1} = C_{n}^{n} x^{n+1} y^{0} + \sum_{k=1}^{n} \left(C_{n}^{k-1} x^{k} y^{n+1-k} + C_{n}^{k} x^{k} y^{n+1-k}\right) + C_{n}^{0} x^{0} y^{n+1} =$$

$$= C_{n+1}^{n+1} x^{n+1} y^{0} + \sum_{k=1}^{n} \left(C_{n}^{k-1} + C_{n}^{k}\right) x^{k} y^{n+1-k} + C_{n+1}^{0} x^{0} y^{n+1} = \sum_{k=0}^{n+1} C_{n+1}^{k} x^{k} y^{n+1-k}$$

Раздел #3: Супремум и инфимум

Def 3.0.1. $E \subset \mathbb{R}$ - ограниченное сверху, если $\exists A : \forall x \in E \to x \leqslant A$

Def 3.0.2. $E \subset \mathbb{R}$ - ограниченное снизу, если $\exists B : \forall x \in E \to x \geqslant B$

Def 3.0.3. $E \subset \mathbb{R}$ - ограниченное, если оно ограничено и снизу, и сверху.

Def 3.0.4. $M \in \mathbb{R}$ называется максимумом мн-ва E, если $\forall x \in E \rightarrow x \leqslant M \land M \in E$

Def 3.0.5. $K \in \mathbb{R}$ называется минимумом мн-ва E, если $\forall x \in E \rightarrow x \geqslant K \land K \in E$

<u>Теорема</u> 3.0.6 (Существование минимума и максимума у конечного множества из \mathbb{R}). Во всяком конечном непустом подмножестве \mathbb{R} есть наибольший и наименьший элементю

Доказательство. n = 1 - количество элементов (База)

Индукционный переход: $\exists \max\{x_1, x_2, ..., x_n\} = C$

Добавим x_{n+1} : если $x_{n+1} > C \Rightarrow \max\{x_1, ..., x_{n+1}\} = x_{n+1}$ если $x_{n+1} \leqslant C \Rightarrow \max\{x_1, ..., x_{n+1}\} = C$

Следствие 3.0.7. $\forall E \neq \emptyset \land E \subset \mathbb{Z} \land E$ - orp. $\rightarrow \exists \max E \land \min E$

Chedemeue 3.0.8. $\forall E \subset \mathbb{N}, E \neq \emptyset \rightarrow \exists \min E$

Далее везде $E \subset \mathbb{R}, E \neq \emptyset$

Def 3.0.9. Пусть E ограничено сверху, тогда $\sup E$ - наименьшаяя из верхних границ. (точная верхняя граница)

Def 3.0.10. Пусть E ограничено снизу, тогда inf E - наибольшая из нижних границ. (точная нижняя граница)

Теорема 3.0.11. $E \neq \emptyset$. Если E ограничено снизу, то $\exists!\inf E$

Доказательство. Пусть A - множество всех нижних границ $E(A \neq \emptyset)$

 $\forall a \in A, b \in E \rightarrow a \leq b$

Тогда по аксиоме полноты $\Rightarrow \exists c \in \mathbb{R} : a \leqslant c \leqslant b \ \forall a \in A, b \in E \Rightarrow$

$$\Rightarrow \begin{cases} c \leqslant b \ \forall b \in E \text{ - } c \text{ - } \text{нижняя граница,} \\ c \geqslant a \ \forall a \in A \text{ - } c \text{ - } \text{наибольшеe} \end{cases}$$

Def 3.0.12.

$$l = \sup E \Leftrightarrow \begin{cases} \forall x \in E \to x \leq l \\ \forall \varepsilon > 0 \to \exists y \in E : y > l - \varepsilon \end{cases}$$
$$m = \inf E \Leftrightarrow \begin{cases} \forall x \in E \to x \geq m \\ \forall \varepsilon > 0 \to \exists y \in E : y < l + \varepsilon \end{cases}$$

Если E не ограничено сверху, то $\sup E = +\infty$

Если $E=\emptyset$, то чаще всего $\sup E$ и $\inf E$ не определены, но иногда $\sup \emptyset = -\infty, \inf \emptyset = +\infty$ Утверждение 3.0.13. $\emptyset \neq B \subset A \subset \mathbb{R}$. Тогда если A ограничено снизу, то $\inf A \leqslant \inf B$

Доказательство. Если C - нижняя граница A, то $\forall x \in A \to C \leqslant x \Rightarrow \forall y \in B \to C \leqslant y \Rightarrow C$ - нижняя граница $B \Rightarrow \inf A$ - тоже нижняя граница $B \Rightarrow \inf A \leqslant \inf B$

 $Утверждение~3.0.14.~\varnothing \neq B \subset A \subset \mathbb{R}.$ Тогда если Aограничено сверху, то $\sup A \geqslant \sup B$

Раздел #4: Отображения

 $f: A \to B \ f(x) = y$ y – образ элемента X x – прообраз y f(A) – образ множества A $f^{-1}(B)$ – прообраз множества B $G_f = \{(x,y): x \in A, y = f(x)\}$

Def 4.0.1. $f: A \to B$. Если f(A) = B, то f сюръективно.

Def 4.0.2. $f: A \to B$. Если $(x_1 \neq x_2 \in A) \Leftrightarrow (f(x_1) \neq f(x_2))$, то f интективно.

Def 4.0.3. Биекция - f инъективно и сюръективно.

Def 4.0.4 (Композиция). g(x), f(x). $h(x) = g \circ f(x) = g(f(x))$ $f: X \to Y \ g: Y_0 \to Z, f(x) \subset Y_0$

Def 4.0.5. id_x - тождественное отображение: f(x) = x

Def 4.0.6. $f: X \to Y, X_0 \subset X$ $f|_{X_0}$ - сужение отображения f на X_0

Раздел #5: Последовательности

Def 5.0.1. Последовательность — это отображение $f: \mathbb{N} \to \mathbb{R}$

Пример **5.0.2.** $x_n = n^2 : x_n = \{1, 4, 9, ...\}$

5.1. Предел последовательности и его свойства

Def 5.1.1. Предел последовательности - это такое число $l = \lim_{n \to \infty} x_n$, что

$$\forall \varepsilon > 0 \to \exists N \in \mathbb{N} : \forall n \geqslant N \to |x_n - l| < \varepsilon$$

Также говорят, что вне любого интервала, содержащего l, лежит лишь конечно число элементов $\{X_n\}_{n=1}^{\infty}$

Пример 5.1.2.
$$x_n = \frac{1}{n}, \frac{1}{n} < \varepsilon \Leftrightarrow n > \frac{1}{\varepsilon}$$
. Тогда $N_\varepsilon = \left[\frac{1}{\varepsilon} + 1\right]$

Замечание 5.1.3. N необязательно наименьшее.

Def 5.1.4. Последовательность называется **сходящейся**, если она имеет конечный предел.

Def 5.1.5.
$$\lim_{n\to\infty} x_n = +\infty \Leftrightarrow \forall E \in \mathbb{R} \to \exists N \in \mathbb{N} : \forall n \geqslant N \to x_n > E$$

Def 5.1.6.
$$\lim_{n\to\infty} x_n = -\infty \Leftrightarrow \forall E \in \mathbb{R} \to \exists N \in \mathbb{N} : \forall n \geqslant N \to x_n < E$$

Def 5.1.7 (Беззнаковая бесконечность).

$$\lim_{n \to \infty} x_n = \infty \Leftrightarrow \forall E \in \mathbb{R} \to \exists N \in \mathbb{N} : \forall n \geqslant N \to |x_n| > E$$

Def 5.1.8. Последовательность называется бесконечно большой, если она стремится κ бесконечности

Def 5.1.9. Последовательность называется бесконечно малой, если она стремится к нулю Свойства пределов последовательности:

1. Последовательность не может иметь двух различных пределов.

Доказательство. Пусть $a \neq b$ - пределы, a < b. Возьмем $\varepsilon = \left(\frac{b-a}{3}\right)$. Тогда по определнию предела вне ε -окрестности a лежит конечно число членов последовательности, и вне ε -окрестности b лежит конечно число членов последовательности \Rightarrow сама последовательности конечна!?

2. Сходящаяся последовательность ограничена.

Доказательство. Пусть $\lim \{x_n\} = a$. По определению предела для $\varepsilon = 1$ найдем номер N такой, что при всех $n \ge N$ имеет место неравенство $|x_n - a| < 1$. Так как модуль суммы не превосходит суммы модулей, то

$$|x_n| = |x_n - a + a| \le |x_n - a| + |a|$$

Поэтому при всех $n \ge N$ выполняется неравенство

$$|x_n| < 1 + |a|$$

Положим $M=\max(1+|a|,|x_1|,...,|x_{N-1}|).$ Тогда $|x_n|\leqslant M \ \forall n\in\mathbb{N}$

Утверждение 5.1.10. Пусть $\lim x_n = a, \lim y_n = b.$ Тогда

$$\forall \varepsilon > 0 \to \exists N \in \mathbb{N} : \forall n \geqslant N \to \begin{cases} |x_n - a| < \varepsilon \\ |y_n - b| < \varepsilon \end{cases}$$

 N_2 - номер из определения $\lim y_n = b$

$$N = \max\{N_1; N_2\}$$

3. Пусть $\lim x_n = a, \lim y_n = b, \forall n \in \mathbb{N} \to x_n \leqslant y_n$. Тогда $a \leqslant b$ (предельный переход в неравенстве).

Доказательство. Пусть a > b. Тогда $\exists N$, начиная с которого в ε -окрестности b лежит бесконечное число членов y_n , а ε -окрестности a лежит бесконечное число членов x_n . Но тогда, если бы возьмем $\varepsilon = \frac{a-b}{3}$, то $\exists y_n \in (b-\varepsilon; b+\varepsilon) : y_n < x_n, x_n \in (a-\varepsilon; a+\varepsilon)$

Credemeue 5.1.11. 1. $\lim x_n = a, \forall n \to x_n \leq b \Rightarrow a \leq b$

2. $\lim y_n = b, \forall n \to y_n \ge a \Rightarrow a \le b$

4.

Теорема 5.1.12 (Теорема о сжатой последовательности, теорема о двух милиционерах). Пусть $\forall n \in \mathbb{N} \to x_n \leqslant z_n \leqslant y_n \land \lim x_n = \lim y_n = a$. Тогда $\lim z_n = a$

Доказательство. $\forall \varepsilon > 0 \to \exists N \in \mathbb{N} : \forall n \geqslant N \to x_n, y_n \in (a - \varepsilon; a + \varepsilon)$. Т.к. $x_n \leqslant z_n \leqslant y_n \Rightarrow z_n \in (a - \varepsilon; a + \varepsilon)$

5.2. Монотонные последовательности

Def 5.2.1. Последовательность называется возрастающей, если $x_1 \le x_2 \le x_3 \le \dots$

Def 5.2.2. Последовательность называется убывающей, если $x_1 \geqslant x_2 \geqslant x_3 \geqslant ...$

Def 5.2.3. Последовательность называется монотонной, если она возрастающая или убывающая.

Теорема 5.2.4 (О монотонной ограниченной последовательности). 1. Возрастающая и ограниченная сверху последовательность сходится

2. Убывающая и ограниченная снизу последовательность сходится

Доказательство. Пусть множество $E=\{x_1,x_2,\ldots\}, c=\sup E$ $\forall n\in\mathbb{N}\to x_n\leqslant c.$ Тогда

$$\forall \varepsilon > 0 \to \exists N \in \mathbb{N} : x_N > c - \varepsilon$$

T.к. x_n возрастает, то

$$\forall n > N \to x_n \geqslant x_N > c - \varepsilon \land x_n < c + \varepsilon \Leftrightarrow |x_n - c| < \varepsilon$$

Замечание 5.2.5. 1. Возрастающая и неограниченная сверху последовательность стремится к +∞.

2. Убывающая и неограниченная снизу последовательность стремится к −∞

Доказательство.
$$\forall E \to \exists N : x_N > E \text{ и } x_n \geqslant x_N \ \forall n \geqslant N$$

5.3. Теорема об арифметических действиях с пределами

Теорема 5.3.1 (Теорема об арифметических действиях с пределами). Пусть $\lim x_n = a, \lim y_n = \overline{b, a, b \in \mathbb{R}}$. Тогда

1.
$$\lim |x_n| = |a|$$

$$2. \lim(x_n + y_n) = a + b$$

3.
$$\lim (x_n - y_n) = a - b$$

4.
$$\lim(x_n \cdot y_n) = a \cdot b$$

5.
$$\forall n \in \mathbb{N} \to b \neq 0 \land y_n \neq 0$$
, to $\lim \frac{x_n}{y_n} = \frac{a}{b}$

Доказательство. 1. $\forall \varepsilon > 0 \to \exists N : \forall n \geqslant N \to |x_n - a| < \varepsilon$. Заметим, что

$$||x_n| - |a|| < |x_n - a| < \varepsilon$$

2.
$$|(x_n + y_n) - (a + b)| \le |x_n - a| + |y_n - b| < \varepsilon$$

3. Вместо y_n рассмотрим $-y_n$

4.
$$\forall \varepsilon > 0 \to \exists N : \forall n \geqslant N \to \begin{cases} |x_n - a| < \frac{\varepsilon}{M + |a|} \\ |y_n - b| < \frac{\varepsilon}{M + |a|} \end{cases}$$
 , $M : \forall n \to |y_n| < M$

$$|x_n \cdot y_n - ab| = |x_n y_n - ab - a \cdot y_n + a \cdot y_n| = |y_n (x_n - a) + a(y_n - b)| \le |y_n| |x_n - a| + |a| |y_n - b| < \varepsilon$$

5. Достаточно доказать, что $\lim \frac{1}{y_n} = \frac{1}{b}$.

$$\left|\frac{1}{y_n} - \frac{1}{b}\right| = \frac{|y_n - b|}{|y_n||b|} \leqslant \frac{|y_n - b|}{\left|\frac{b}{2}\right||b|} < \frac{\frac{b^2 \varepsilon}{2}}{\left|\frac{b}{2}\right||b|} = \varepsilon$$

 $Утверждение 5.3.2.\ x_n$ - бесконечно малая, y_n - ограниченная. Тогда $\lim x_n\cdot y_n$ = 0

Доказательство.
$$|x_n y_n| < |x_n| \cdot M < \varepsilon \cdot M, M : \forall n \in \mathbb{N} \to |y_n| < M$$

 $Утверждение 5.3.3. \ \forall n \to x_n \neq 0. \$ Тогда x_n - бесконечно большая $\Leftrightarrow \frac{1}{x_n}$ - бесконечно малая

Доказательство.
$$|x_n| > E \Leftrightarrow \frac{1}{|x_n|} < \frac{1}{E}$$

5.4. Арифметические действия с бесконечностями

- 1. $\lim x_n = +\infty, y_n$ ограничено снизу. Тогда $\lim (x_n + y_n) = +\infty$
- 2. $\lim x_n = -\infty, y_n$ ограничено сверху. Тогда $\lim (x_n + y_n) = -\infty$
- 3. $\lim x_n = +\infty, y_n \ge c > 0$. Тогда $\lim (x_n \cdot y_n) = +\infty$
- 4. $\lim x_n = +\infty, y_n \le c < 0$. Тогда $\lim (x_n \cdot y_n) = -\infty$
- 5. $\lim x_n = a \neq 0, \lim y_n = 0.$ Тогда $\lim \left(\frac{x_n}{y_n}\right) = \infty$
- 6. $\lim x_n = a \in \mathbb{R}, \lim y_n = \infty$. Тогда $\lim \left(\frac{x_n}{y_n}\right) = 0$
- 7. $\lim x_n = \infty, \lim y_n = b \in \mathbb{R} \wedge y_n \neq 0$. Тогда $\lim \left(\frac{x_n}{y_n}\right) = \infty$

Замечание 5.4.1. $\lim x_n = a \in \overline{\mathbb{R}}, \lim y_n = b \in \overline{\mathbb{R}}, \text{ то } \lim(x_n * y_n) = a * b$ Запрещенные операции (неопределённости):

- 1. $\pm \infty + (\mp \infty)$
- 2. $\pm \infty (\pm \infty)$
- 3. $0 \cdot \infty$
- 4. $\frac{0}{0}$
- $5. \frac{\infty}{\infty}$

5.5. Неравенство Бернулли

Теорема 5.5.1 (Неравенство Бернулли). Пусть $x > -1, n \in \mathbb{N}$. Тогда $(1+x)^n \geqslant 1+nx$

Доказательство. База $n=1:(1+x)^1\geqslant 1+1\cdot x$

Индукционный переход $n \to n+1$

$$(1+x)(1+x)^n \ge (1+x)(1+nx) = 1+n(x+1)+nx^2 \ge 1+(n+1)x$$

Раздел #6: Пределы последовательностей

6.1. Число *е*

Пусть $x_n = \left(1 + \frac{1}{n}\right)^n$, $y_n = \left(1 + \frac{1}{n}\right)^{n+1}$. Тогда

$$\frac{y_{n-1}}{y_n} = \frac{\left(1 + \frac{1}{n-1}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}} = \frac{\left(\frac{n}{n-1}\right)^n}{\left(\frac{n+1}{n}\right)^{n+1}} = \frac{\frac{n^n}{(n-1)^n}}{\frac{(n+1)^{n+1}}{n^{n+1}}} = \frac{n^n}{(n-1)^n} \cdot \frac{n^{n+1}}{(n+1)^{n+1}} = \frac{n^{2n}}{(n^2-1)^n} \cdot \frac{n}{n+1}$$

$$= \frac{n^{2n+2}}{(n^2-1)^{n+1}} \cdot \frac{n-1}{n} = \left(\frac{n^2}{n^2-1}\right)^{n+1} \cdot \frac{n-1}{n} = \left(1 + \frac{1}{n^2-1}\right)^{n+1} \cdot \frac{n-1}{n} \geqslant$$

$$\geqslant \left(1 + \frac{n+1}{n^2-1}\right) \cdot \frac{n-1}{n} = \left(1 + \frac{1}{n-1}\right) \cdot \frac{n-1}{n} = \frac{n}{n-1} \cdot \frac{n-1}{n} = 1 \Rightarrow \frac{y_{n-1}}{y_n} \geqslant 1 \Rightarrow$$

$$\Rightarrow y_{n-1} \geqslant y_n \Rightarrow y_n \text{ убывающая } \Rightarrow \exists \lim y_n \Rightarrow \exists \lim x_n, \text{ т.к. } x_n = \frac{y_n}{1 + \frac{1}{n}} \Rightarrow \lim x_n = \lim y_n$$

Def 6.1.1. $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$

Теорема 6.1.2. $x_n > 0 \land \lim \frac{x_{n+1}}{x_n} < 1$. Тогда $\exists \lim x_n = 0$

Доказательство. Пусть $q=\lim \frac{x_{n+1}}{x_n}, q<1.$ $\exists N: \forall n\geqslant N \to \frac{x_{n+1}}{x_n}<\frac{1+q}{2}.$ Тогда

$$0 < x_n = \frac{x_n}{x_{n-1}} \cdot \frac{x_{n-1}}{x_{n-2}} \cdot \frac{x_{n-2}}{x_{n-3}} \cdot \dots \cdot \frac{x_{N+1}}{x_N} \cdot x_N \leqslant x_N \cdot \left(\frac{1+q}{2}\right)^{n-N} \to 0$$

Следствие 6.1.3. $a > 1, k \in \mathbb{N}, \lim \frac{n^k}{a^n} = 0$

$$\frac{x_{n+1}}{x_n} = \frac{(n+1)^k}{a^{n+1}} \cdot \frac{a^n}{n^k} = \left(\frac{n+1}{n}\right)^k \cdot \frac{1}{a} \to \frac{1}{a} < 1$$

Cледствие 6.1.4. $\lim \frac{a^n}{n!} = 0$

$$\frac{x_{n+1}}{x_n} = \frac{a^{n+1}}{(n+1)!} \cdot \frac{n!}{a^n} = \frac{a}{n+1} \to 0 < 1$$

Cледствие 6.1.5. $\lim \frac{n!}{n^n} = 0$

$$\frac{x_{n+1}}{x_n} = \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!} = \left(\frac{n}{n+1}\right)^n = \frac{1}{\left(\frac{n+1}{n}\right)^n} = \frac{1}{\left(1 + \frac{1}{n}\right)^n} \to \frac{1}{e} < 1$$

6.2. Теорема Штольца

 $\frac{\text{Теорема}}{\exists \lim \frac{x_n}{y_n} = l}$ 6.2.1 (Теорема Штольца). $y_1 < y_2 < y_3 < \lim y_n = +\infty \land \lim \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = l \in \overline{\mathbb{R}}$ Тогда

Доказательство. 1. l = 0. $\varepsilon_k = \frac{x_k - x_{k-1}}{y_k - y_{k-1}}$. $\forall \varepsilon > 0 \ \exists m : \forall k \geqslant m \to |\varepsilon_k| < \varepsilon$ $x_k - x_{k-1} = \varepsilon_k (y_k - y_{k-1})$

$$x_n - x_m = (x_n - x_{n-1}) + (x_{n-1} - x_{n-2}) + \dots + (x_{m+1} - x_m) = \sum_{k=m+1}^n (x_k - x_{k-1}) = \sum_{k=m+1}^n \varepsilon_k (y_k - y_{k-1})$$

$$|x_n - x_m| = \sum_{k=m+1}^n |\varepsilon_k| (y_k - y_{k-1}) \leqslant \varepsilon \sum_{k=m+1}^n (y_k - y_{k-1}) = \varepsilon (y_n - y_m) \leqslant \varepsilon \cdot y_n$$

Тогда $|x_n| \leq |x_m| + \varepsilon y_n$

$$0 \le \left| \frac{x_n}{y_n} \right| \le \left| \frac{x_m}{y_n} \right| + \varepsilon \Rightarrow \lim \frac{x_n}{y_n} = 0$$

2. $l \neq 0, l \in \mathbb{R}$. Рассмотрим $\widetilde{x}_n = x_n - l \cdot y_n$. Тогда

$$\frac{\widetilde{x}_n - \widetilde{x}_{n-1}}{y_n - y_{n-1}} = \frac{x_n - l \cdot y_n - x_{n-1} + l \cdot y_{n-1}}{y_n - y_{n-1}} = \frac{x_n - x_{n-1}}{y_n - y_{n-1}} - l \to 0$$

Тогда по п. 1 $\frac{\widetilde{x}_n}{y_n} \to 0$. $\frac{x_n}{y_n} = \frac{\widetilde{x}_n + l \cdot y_n}{y_n} = \frac{x_n}{y_n} + l \to l$

3. $l=+\infty$. $\frac{x_n-x_{n-1}}{y_n-y_{n-1}}\to +\infty$. Начиная с некоторого номера > 1

$$x_n - x_{n-1} > y_n - y_{n-1} \Leftrightarrow x_n - x_m > y_n - y_m \to +\infty$$

Тогда x_n возрастает и стремится к $+\infty$

$$\frac{y_n - y_{n-1}}{x_n - x_{n-1}} \to 0 \Rightarrow \frac{y_n}{x_n} \to 0 \Rightarrow \frac{x_n}{y_n} \to +\infty$$

4. $l \to -\infty$. Следует рассмотреть $\{-x_n\}$

Теорема 6.2.2. $y_1 > y_2 > ... > 0 \land \lim y_n = \lim x_n = 0$. Если $\lim \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = l \in \overline{\mathbb{R}}$, тогда $\exists \lim \frac{x_n}{y_n} = l$ Доказательство. Докажем для l = 0.

$$\varepsilon_k = \frac{x_k - x_{k-1}}{y_k - y_{k-1}}, \forall \varepsilon > 0 \ \exists N : \forall k \geqslant N \to |\varepsilon_k| < \varepsilon$$

Пусть $n > m \ge N$

$$|x_n - x_m| = \sum_{k=n+1}^m |\varepsilon_k| \cdot |y_{k-1} - y_k| \leqslant \varepsilon \sum_{k=n+1}^m (y_k - y_{k-1}) = \varepsilon (y_m - y_n)$$

$$|x_n - x_m| \le \varepsilon (y_m - y_n) \Leftrightarrow |x_m| \le \varepsilon \cdot y_m \Rightarrow \frac{|x_m|}{y_m} < \varepsilon$$

Доказали, что $\forall \varepsilon > 0 \ \exists N : \forall m \geqslant N \to \left| \frac{x_m}{y_m} \right| < \varepsilon$

Для $l \neq 0$ доказывается аналогично предыдущей теореме.

6.3. Подпоследовательности

Def 6.3.1. Пусть дана последовательность $\{x_n\}_{n=1}^{\infty}$. Подпоследовательностью этой последовательности называется $\{x_{n_k}\}_{k=1}^{\infty}: n_1 < n_2 < n_3 < \dots$

Теорема 6.3.2 (О стягивающихся отрезках). $[a_1,b_1] \supset [a_2,b_2] \supset [a_3,b_3] \supset ..., \lim(b_n-a_n) = 0.$ Тогда $\bigcap_{n=1}^{\infty} [a_n,b_n]$ состоит из одной точки. Если эта точка c, то $\lim a_n = \lim b_n = c$

Доказательство. $\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$ (по лемме о вложенных отрезках). Пусть c < d принадлежит этому пересечению.

$$0 < d-c \leqslant b_n-a_n \to 0 \Rightarrow 0 \leqslant c-a_n \leqslant 0 \Rightarrow$$
 точка единственна
$$0 \leqslant c-a_n \leqslant b_n-a_n \to \Rightarrow 0 \leqslant c-a_n \leqslant 0 \Rightarrow a_n \to c$$

$$0 \leqslant b_n-c \leqslant b_n-a_n \Rightarrow b_n \to c$$

Теорема 6.3.3 (Теорема Больцано-Вейерштрасса). Из всякой ограниченной последовательности можно извлечь сходящуюся подпоследовательность.

Доказательство. Возьмем $a_1 \leq b_1$ так, чтобы вся последовательность лежала между ними. $x_{n_1} \in [a_1,b_1]$. Поделим отрезок пополам и возьмем ту половину, в которой лежит бесконечное число членов последовательности. Обозначим её $[a_2,b_2]$. Теперь возьмем $x_{n_2} \in [a_2,b_2]$ и $n_2 > n_1$. $[a_3,b_3]$ - ту половину $[a_2,b_2]$, в которой бесконечное число членов последовательности и т.д.

$$\begin{bmatrix} a_1,b_1 \end{bmatrix} \supset \begin{bmatrix} a_2,b_2 \end{bmatrix} \supset \begin{bmatrix} a_3,b_3 \end{bmatrix} \supset \dots \text{ и длина } \begin{bmatrix} a_k,b_k \end{bmatrix} = \frac{b_1-a_1}{2^k} \to 0$$

$$\bigcap_{n=1}^{\infty} [a_n,b_n] = \{c\} \text{ , } \lim a_n = \lim b_n = c$$

 $n_1 < n_2 < n_3 < \dots \ \{x_{n_k}\}_{k=1}^{\infty}$ — подпоследовательность $\{x_n\}$ и

$$a_k \leqslant x_{n_k} \leqslant b_k \Rightarrow \lim_{k \to \infty} x_{n_k} = c$$

Теорема 6.3.4. 1. Если последовательность неограничена сверху, то из неё можно выделить подпоследовательность, стремящуюся κ +∞

2. Если неограничена снизу, то можно выделить подпоследовательность, стремящуюся к $-\infty$

Доказательство.

$$\exists n_1 : x_{n_1} > 1$$

$$\exists n_2 : x_{n_2} > 2 \land n_2 > n_1$$

$$\exists n_k : x_{n_k} > k \land n_k > n_{k-1}$$

Следствие 6.3.5. Из любой последовательсти можно выбрать подпоследовательность имеющую предел (конечный или бесконечный).

Def 6.3.6. Частичные пределы последовательности $\{x_{n_k}\}_{n=1}^{\infty}$ – пределы её подпоследовательностей.

3амечание 6.3.7. $\lim x_n = a, \{x_{n_k}\}$ - подпоследовательность $\Rightarrow x_{n_k} \to a$

Def 6.3.8. Последовательность $\{x_n\}$ – фундаментальная, если

$$\forall \varepsilon > 0 \ \exists N : \forall m, n \geqslant N \rightarrow |x_m - x_n| < \varepsilon$$

Свойства:

- 1. Фундаментальная последовательность ограничена
- 2. Сходящаяся последовательность фундмаентальна

Доказательство. $a = \lim x_n$

$$\forall \varepsilon > 0 \ \exists N : \forall n \geqslant N \to |x_n - a| < \frac{\varepsilon}{2}$$
$$|x_n - x_m| = |x_n - a + a - x_m| \leqslant |x_n - a| + |x_m - a| < \varepsilon$$

3. Если у фундаментальной последовательности есть сходящаяся подпоследовательность, то эта последовательность сходится.

Доказательство. $\lim_{k\to\infty} x_{n_k} = a, \forall \varepsilon > 0 \ \exists K : \forall k \geqslant K \to |x_{n_k} - a| < \frac{\varepsilon}{2}$

$$\forall \varepsilon > 0 \ \exists N : \forall m, n \geqslant N \rightarrow |x_n - x_m| < \frac{\varepsilon}{2}$$

$$M = \max\{n_K, N\}$$
. Тогда $\forall n \ge M \to |x_n - a| \le |x_n - x_{n_k}| + |x_{n_k} - a| < \varepsilon$

<u>Теорема</u> **6.3.9** (Критерий Коши сходимости последовательности). Последовательность сходится ⇔ она фундаментальна

Доказательство. "⇒". Свойство 2.

" \Leftarrow ". Фундаментальа \Rightarrow ограничена (свойство 1) \Rightarrow 3 сходящаяся подпоследовательность (теорема Больцано-Вейерштрасса) \Rightarrow сходится

Def 6.3.10. $\{x_n\}$ – ограничена сверху.

 $\overline{\lim_{n\to\infty}} x_n = \limsup_{n\to\infty} x_k = \lim_{n\to\infty} \sup_{k\geqslant n} x_k - \sec x$ ний предел.

 $\underline{\lim_{n\to\infty}} x_n = \liminf_{n\to\infty} x_k = \lim_{n\to\infty} \inf_{k\geqslant n} x_k - нижний предел.$

Теорема 6.3.11. Пусть $y_n = \inf_{k \geqslant n} x_k, z_n = \sup_{k \geqslant n} x_k$. Тогда

$$\exists \underline{\lim} x_n, \overline{\lim} x_n \wedge \underline{\lim} x_n \leqslant \overline{\lim} x_n$$

Доказательство. 1. Если неограничена сверху, то $\overline{\lim x_n} = +\infty$

2. Пусть $\{x_n\}$ – ограчичена. $\forall n \to x_n \leqslant M$

$$z_1 \geqslant z_2 \geqslant z_3 \geqslant \dots \land z_n \leqslant M \Rightarrow \exists \lim z_n$$

- 3. Аналогично для y_n
- 4. $\forall n \to y_n \leqslant z_n \Rightarrow \underline{\lim} x_n \leqslant \overline{\lim} x_n$

Теорема 6.3.12. 1. $\overline{\lim} x_n$ – наибольший частичный предел $\{x_n\}$

- 2. $\underline{\lim} x_n$ наименьший частичный предел $\{x_n\}$
- 3. $\exists \lim x_n \ \mathbb{R} \Leftrightarrow \overline{\lim} x_n = \underline{\lim} x_n$

Доказательство. 1. $\{x_n\}$ — ограниченная последовательность, $b=\overline{\lim}x_n$. Построим $\{x_{n_k}\}$: $x_{n_k} \xrightarrow[k \to \infty]{} b \ z_1 = \sup\{x_1, x_2, \ldots\} > b - \frac{1}{2} \Rightarrow \exists x_{n_1} > b - \frac{1}{2}$ $z_{n_1} = \sup\{x_{n_1+1}, x_{n_1+2}, \ldots\} > b - \frac{1}{3} \Rightarrow \exists x_{n_2} > b - \frac{1}{3}, n_2 > n_1$

$$b - \frac{1}{k} < x_{n_k} \le z_{n_k} \Rightarrow x_{n_k} \to b$$

Рассмотрим $x_{m_k} \to c$. Тогда $x_{m_k} \leqslant z_{m_k} \Rightarrow c \leqslant b$ Если $\{x_n\}$ неограничена

- cbepxy: $\exists \overline{\lim} x_n = +\infty \Rightarrow \exists \{x_{n_k}\} : x_{n_k} \to +\infty$
- ullet снизу: а) $\exists \overline{\lim} x_n = b \in \mathbb{R}$ аналогично п.1. б) $\exists \overline{\lim} x_n = -\infty \Rightarrow x_n \to -\infty$
- 2. Аналогично
- 3. "\Rightarrow". $\exists \lim x_n = l \Rightarrow \forall \{x_{n_k}\} \to \lim x_{n_k} = \underline{l} \Rightarrow \overline{\lim} x_n = \underline{\lim} x_n = \underline{l}$ "\Lefta". $y_n \leqslant x_n \leqslant z_n \Rightarrow \underline{\lim} x_n \leqslant \overline{\lim} x_n \leqslant \overline{\lim} x_n \Rightarrow \exists \lim x_n = \overline{\lim} x_n = \underline{\lim} x_n$

Теорема 6.3.13 (характеристические свойства $\overline{\lim} x_n$ и $\underline{\lim} x_n$).

$$a = \underline{\lim} x_n \Leftrightarrow \begin{cases} \forall \varepsilon > 0 \ \exists N : \forall n \geqslant N \to x_n > a - \varepsilon \\ \forall \varepsilon > 0, \forall N \ \exists n \geqslant N : x_n < a + \varepsilon \end{cases}$$

$$b = \overline{\lim} x_n \Leftrightarrow \begin{cases} \forall \varepsilon > 0 \ \exists N : \forall n \geqslant N \to x_n < a + \varepsilon \\ \forall \varepsilon > 0, \forall N \ \exists n \geqslant N : x_n > a - \varepsilon \end{cases}$$

Раздел #7: Ряды

7.1. Ряды

Def 7.1.1. Дана $\{a_n\}_{n=1}^{\infty}$. Рассмотрим $S_n = a_1 + a_2 + ... + a_n = \sum_{k=1}^{n} a_k$.

Tогда ряд — $\sum_{k=1}^{\infty} a_k = a_1 + a_2 + \dots$

 $Ecnu\ \hat{S}_n \to S \in \mathbb{R}, \ mo\ S$ называют суммой ряда $\sum_{k=1}^{\infty} a_k \ (pяд\ cxodumcs\ \kappa\ S).$

Eсли S_n не имеет предела в \mathbb{R} , то ряд называют расходящимся.

Пример 7.1.2. $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$, т.е.

$$S_n = \sum_{k=1}^{\infty} \frac{1}{2^k} = 1 - \frac{1}{2^n} \to 1$$

Пример 7.1.3. $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ Пусть

$$\sum_{k=1}^{\infty} \frac{1}{k} = S$$

Тогда, если $S \in \mathbb{R}$, то $\frac{S}{2} = \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \dots$ Значит

$$\frac{S}{2} = S - \frac{S}{2} = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} > \frac{S}{2} \Rightarrow \sum_{k=1}^{\infty} \frac{1}{k} = +\infty$$

Данный ряд называется гармоническим

3амечание 7.1.4. S_n частичные суммы ряда

Пример 7.1.5. $1-1+1-1+1-1+\dots = \sum_{k=1}^{\infty} (-1)^{k+1}$

$$S_1 = 1, S_2 = 0, S_3 = 1, S_4 = 0 \Rightarrow S_n = \frac{1 + (-1)^{n+1}}{2} \Rightarrow$$
 не существует $\lim S_n$

Теорема 7.1.6 (Необходимое условие сходимости ряда). Если $\sum_{k=1}^{\infty} a_k$ сходится, то $\lim_{k\to\infty} a_k = 0$ Доказательство.

$$\exists \lim S_n = S, a_n = S_n - S_{n-1} \Rightarrow a_n \to 0$$

Пример 7.1.7. Гармонический ряд.

 $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots$

$$\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n} \ge n \cdot \frac{1}{2n} = \frac{1}{2}$$

Тогда $H_{2^n} \geqslant \frac{1}{2}(n+1) \to +\infty \Rightarrow H_n \to +\infty$ (т.к. H_n возрастает)

Пример 7.1.8. $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots$

$$S_n = \sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{n}$$

7.2. Свойства рядов

- 1. Ряд не может иметь двух различных сумм.
- 2. Если ряд сходится к S, то к S сходится и ряд, полученный из данного любой расстановкой скобок.

$$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 \Rightarrow (a_1 + a_2) + a_3 + (a_4 + a_5 + a_6)$$

Пусть $b_1 = a_1 + a_2, b_2 = a_3, b_3 = a_4 + a_5 + a_6$ и т.д. Заметим, что $\{S_n^b\}$ является подпоследовательность S_n^a .

Замечание 7.2.1. "раскрывать скобки" вообще говоря нельзя.

$$\sum_{k=1}^{\infty} (1-1) = (1-1) + (1-1) + \dots = 0$$

Но если раскрыть скобки, то получится пример 7.1.5

3. Добавление или отбрасывание конечного числа слагаемых не влияет на сходимость (но может повлиять на сумму)

Раздел #8: Функции

8.1. Свойства пределов функций

Теорема 8.1.1 (Единственность предела функции). Пусть $D \subset \mathbb{R}, a$ – предельная точка $D, f: D \to R$. Если A и $B \in \overline{\mathbb{R}}$ и $f(x) \xrightarrow[x \to a]{} A, f(x) \xrightarrow[x \to a]{} B \Rightarrow A = B$

Доказательство. Возьмем $\{x_n\}: x_n \in D, x_n \neq a, x_n \to a$. По Гейне $f(x_n) \to A \land f(x_n) \to B$. Но $\{x_n\}$ имеет единственный предел $\Rightarrow A = B$.

Замечание 8.1.2. Беззнаковая бесконечность: $A = +\infty, B = -\infty \Rightarrow f(x) \xrightarrow[x \to a]{} \infty$

Теорема 8.1.3 (Локальная ограниченность функции, имеющей предел). $D \subset \mathbb{R}$, a – предельная точка D, $f: D \to \mathbb{R}$, $A \in \mathbb{R}$, $f(x) \xrightarrow[x \to a]{} A$. Тогда $\exists V(a): f(x)$ ограничена в $D \cap V(a)$

Доказательство. Пусть ε = 1. $\exists \dot{V}(a): |f(x)-A| < 1 \ \forall x \in \dot{V}(a) \cap D$. Тогда |f(x)| < |A| + 1. Если $a \in D$, то $|f(x)| < \max\{|A| + 1, f(a)\}$

Теорема 8.1.4 (Стабилизация знака функции, имеющей предел). $D \subset \mathbb{R}, a$ – предельная точ-ка $D, f: D \to \mathbb{R}$. Пусть $\lim_{x\to a} f(x) = B \in \overline{\mathbb{R}} \setminus \{0\}$. Тогда $\exists V(a)$ такая, что знаки f(x) и B совпадают на $\dot{V}(a) \cap D$

Доказательство. Пусть B > 0. Докажем от противного, т.е.

$$\forall n \ \exists x_n \in \dot{V}_{\frac{1}{n}}(a) \cap D \wedge f(x_n) \leq 0$$

Тогда $x_n \to a, x_n \neq a \Rightarrow f(x_n) \to B$, но $f(x_n) \leq 0 \Rightarrow B \leq 0$.

Теорема 8.1.5 (Арифметические действия над функциями, имеющими предел). $D \subset \mathbb{R}$, \overline{a} – предельная точка $D, f, g: D \to \mathbb{R}, f \xrightarrow[x \to a]{} A, g \xrightarrow[x \to a]{} B$. Тогда

- 1. $f(x) + g(x) \rightarrow A + B$
- 2. $f(x) \cdot g(x) \rightarrow A \cdot B$
- 3. $f(x) g(x) \rightarrow A B$
- 4. $|f(x)| \rightarrow |A|$
- 5. Если $B \neq 0$, то $\frac{f(x)}{g(x)} \rightarrow \frac{A}{B}$

Доказательство. Рассмотрим $\{x_n\}: x_n \to a, x_n \neq a, x_n \in D$. Тогда $f(x_n) \to A, g(x_n) \to B$. Достаточно применить теорему об арифметических действиях с пределами последовательностей.

Замечание 8.1.6. Пункт 5) т.к. $B \neq 0$, то $\exists V(a) : \text{sign}(g(x)) = \text{sign}\, B$ в V(a). Поэтому излишне требовать $g(x) \neq 0$

Теорема 8.1.7 (Предел композиции функций). $f: D \to \mathbb{R}, g: E \to \mathbb{R}, f(D) \subset E$

1.
$$f(x) \xrightarrow[x \to a]{} A \in \overline{\mathbb{R}}$$

2. A – предельная точка множества E и $g(x) \xrightarrow[x \to A]{} B \in \overline{R}$

3.
$$\exists V(a) : f(x) \neq A \ \forall x \in \dot{V}(a) \cap D$$

Тогда
$$(g \circ f)(x) \xrightarrow[x \to a]{} B$$

Доказательство. Возьмем $\{x_n\}: x_n \in D, x_n \to a, x_n \neq a.$

Обозначим $y_n = f(x_n) \Rightarrow y_n \in E, y_n \to A$. По 3) начиная с некоторого номера $x_n \in V(a)$, а значит $y_n \neq A$. Тогда $g(y_n) \to B$, т.е. $g(f(x_n)) \xrightarrow[n \to \infty]{} B$. Значит $(g \circ f)(x) \xrightarrow[x \to a]{} B$

Теорема 8.1.8 (Предельный переход в неравенстве). $D \subset \mathbb{R}, a$ — предельная точка D. $f, g: D \to \mathbb{R}$.

$$f(x) \xrightarrow[x \to a]{} A \in \overline{\mathbb{R}}, g(x) \xrightarrow[x \to a]{} B \in \overline{\mathbb{R}}, f(x) \leq g(x) \ \forall x \in D \setminus \{a\}$$

Тогда $A \leq B$

Доказательство.

$$\{x_n\}: x_n \in D, x_n \to a, x_n \neq a \Rightarrow f(x_n) \to A, g(x_n) \to B = A \leqslant B$$

Теорема 8.1.9 (о сжатой функции). $D \subset \mathbb{R}, a$ – предельная точка $D, f, h, g : D \to \mathbb{R}$ и

$$f(x) \leq g(x) \leq h(x), \forall x \in D \setminus \{a\} \ f(x) \xrightarrow[x \to a]{} A, h(x) \xrightarrow[x \to a]{} A, A \in \mathbb{R}$$

Тогда $g(x) \xrightarrow[x \to a]{} A$

Доказательство. $\{x_n\}: x_n \in D, x_n \to a, x_n \neq a \Rightarrow f(x_n) \to A, h(x_n) \to A$

$$f(x_n) \le g(x_n) \le h(x_n) \Rightarrow A \le \lim_{n \to \infty} g(x_n) \le A \Rightarrow \exists \lim_{n \to \infty} g(x_n) = A \Rightarrow g(x) \to A$$

Замечание 8.1.10. $f(x) \le g(x) \ \forall x \in D \setminus \{a\}, f(x) \xrightarrow[x \to a]{} +\infty \Rightarrow g(x) \xrightarrow[x \to a]{} +\infty$

Def 8.1.11. $f: D \to \mathbb{R}$, a – предельная точка $D_1 \subset D$. Тогда $\lim_{x\to a} f|_{D_1}(x)$ – предел f в точке a по множеству D_1 .

Def 8.1.12. $f: D \to \mathbb{R}, D_1 = D \cap (-\infty, a), a$ — предельная точка D_1 . Предел f в точке a по множеству D_1 называется левосторонним пределом в точке a. Обозначение:

$$\lim_{x \to a^{-}} f(x), \lim_{x \to a^{-}} f(x)$$

Def 8.1.13. $f: D \to \mathbb{R}, D_1 = D \cap (a, +\infty), a$ — предельная точка D_1 . Правосторонний предел — предел f в точке a по множеству D_1 Обозначение:

$$\lim_{x \to a+} f(x), \lim_{x \to a+0} f(x)$$

Def 8.1.14. Левосторонний предел на разных "языках".

- $\forall \varepsilon \ \exists \delta > 0 : \forall x \in D, 0 < a x < \delta \rightarrow |f(x) A| < \varepsilon$
- $\forall V(A) \ \exists \delta > 0 : \forall x \in D, 0 < a x < \delta \rightarrow f(x) \in V(A)$
- $\forall \{x_n\} : x_n \in D, x_n \to a, x_n < a \ f(x_n) \to A$

Замечание 8.1.15. $f: D \to \mathbb{R}, a \in \mathbb{R}$ — предельная точка для $D_1 = D \cap (-\infty, a), D_2 = D \cap (a, +\infty)$ Тогда

$$\exists \lim_{x \to a} f(x) \Leftrightarrow \exists \lim_{x \to a^{-}} f(x), \exists \lim_{x \to a^{+}} f(x) \land \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$

Доказательство. "⇒". Очевидно.

" \Leftarrow ". Возьмем δ_1 из определения левостороннего предела, δ_2 из определения правостороннего предела. $\delta = \min\{\delta_1, \delta_2\}$. Тогда

$$\forall \varepsilon > 0 \ \exists \delta : \forall x \in D : |x - a| < \delta \rightarrow |f(x) - A| < \varepsilon$$

Теорема 8.1.16 (Предел монотонной функции). $D \in \mathbb{R}, f : D \to \mathbb{R}, a \in (-\infty, +\infty]$ $D_1 = D \cap (-\infty, a), a$ — предельная точка D.

- 1. Если f возрастает и ограничена сверху на D_1 , то $\exists \lim_{x\to a^-} f(x) \in \mathbb{R}$
- 2. Если f убывает и ограничена снизу на D_1 , то $\exists \lim_{x\to a^-} f(x) \in \mathbb{R}$

Доказательство. 1. Пусть $A = \sup_{x \in D_1} f(x)$. Тогда $A \in \mathbb{R}$, т.к. f ограничена сверху. Докажем, что $\lim_{x \to a^-} f(x) = A$

$$\forall \varepsilon > 0 \ \exists x_0 \in D_1 : f(x_0) > A - \varepsilon$$

Тогда $\forall x \in D_1 : x > x_0$

$$A - \varepsilon < f(x_0) \le f(x) \le A < A + \varepsilon$$

Пусть $\delta = a - x_0$. Тогда $|f(x) - A| < \varepsilon \ \forall x : 0 < a - x < \delta$ Если $a = +\infty \Rightarrow \Delta = \max\{x_0, 1\}$

3 aмечание 8.1.17. fвозрастает и не ограничена сверху $\Rightarrow \lim_{x \to a^-} f(x) = + \infty$

Теорема 8.1.18 (Критерий Больцано-Коши для функций). $D \subset \mathbb{R}$. Тогда существование конечного $\lim_{x\to a} f(x)$ равносильно утверждению:

$$\forall \varepsilon > 0 \ \exists V(a) : \forall x_1, x_2 \in \dot{V}(a) \cap D \to |f(x_1) - f(x_2)| < \varepsilon$$

Доказательство. " \Rightarrow ". $\exists \lim_{x\to a} f(x) = A \in \mathbb{R}$. Возьмем $\varepsilon > 0$ Тогда $\exists V(a) : |f(x) - A| < \frac{\varepsilon}{2}$. Если $x_1, x_2 \in D \cap \dot{V}(a)$, то

$$|f(x_1) - A| + |f(x_2) - A| < \varepsilon$$

С другой стороный $|f(x_1) - f(x_2)| < |f(x_1) - A| + |f(x_2) - A| < \varepsilon$ " \Leftarrow ". $\{x_n\}: x_n \in D, x_n \neq a, x_n \to a$ и докажем, что $\exists \lim f(x_n) \in \mathbb{R}$. Пусть $\varepsilon > 0$.

$$\exists N : \forall n \geqslant N \rightarrow x_n \in \dot{V}(a)$$

$$\forall n,l\geqslant N \rightarrow |f(x_n)=f(x_l)| — фундаментальна$$

Значит $\{f(x_n)\}$ сходится.

8.2. Непрерывные функции

Def 8.2.1. $D \subset \mathbb{R}, a \in D$. Функция f называется непрерывной в точке a, если выполнено одно из следующих условий:

- 1. Предел f в точке а существует и равен f(a) (только если a предельная точка).
- 2. $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in D : |x a| < \delta \rightarrow |f(x) f(a)| < \varepsilon$
- 3. $\forall V(f(a)) \exists V(a) : f(V(a) \cap D) \subset V(f(a))$
- $4. \ \forall \{x_n\} : x_n \to a, x_n \in D \ f(x_n) \to f(a)$
- 5. Бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции (если a предельная точка)

$$\Delta x = x - a, \Delta f = f(x) - f(a) \Rightarrow \Delta f \xrightarrow{\Delta x \to 0} 0$$

Замечание 8.2.2. Если a – изолированная точка D, то

$$f(V(a) \cap D) = \{f(a)\} \subset V(f(a))$$

T.e. любая f непрерывна в точке a

Def 8.2.3. $D \subset \mathbb{R}, a \in D, f : D \to \mathbb{R}$.

а называется точкой разрыва f, если f не непрерывна в точке a

Def 8.2.4. $D_1 = D \cap (-\infty, a], D_2 = D \cap [a, +\infty).$

Если сужение $f|_{D_1}$ непрерывно в точке a, то f непрерывна в точке a слева. Если сужение $f|_{D_2}$ непрерывно в точке a, то f непрерывна в точке a справа

Def 8.2.5. Если $\exists \lim_{x\to a^+} f(x), \lim_{x\to a^-} f(x), f(a)$ – конечные, но не все равны, то а – точка разрыва I рода.

Def 8.2.6. Если хотя бы один предел не существует или бесконечен – II рода.

Def 8.2.7. Если в точке а разрыв, но мы можем доопределить или переопределить f в точке a до непрерывности, то a – точка устранимого разрыва.

Раздел #9: Пределы функций

9.1. ε -окрестности

Def 9.1.1. ε -окрестность точки $a - V_{\varepsilon}(a) : (a - \varepsilon, a + \varepsilon)$ проколотая ε -окрестность $a - \dot{V}_{\varepsilon} : (a - \varepsilon, a) \cup (a + \varepsilon)$

Def 9.1.2. $D \subset \mathbb{R}, a \in \mathbb{R}$. Точка а называется точкой сгущения D, если в любой окрестности а найдется точка из D, отличная от a

$$\forall \dot{V}(a) \ \exists x \in D : x \in \dot{V}(a) \land x \neq a$$

Пример 9.1.3. D = [1, 2). Точки сгущения: [1, 2]

Замечание 9.1.4. Точка сгущения может принадлежать множеству, а может и не принадлежать.

Замечание 9.1.5. Если a — точка сгущения, тогда в $\forall \dot{V}(a)$ бесконечно много точек из D.

3 aмечание 9.1.6. Точки сгущения называют предельными точками множества.

a – точка сгущения $\Leftrightarrow \exists \{x_n\} : x_n \in D, x_n \neq a, x_n \to a$

Доказательство. " \Rightarrow ". $\varepsilon = \frac{1}{k} \Rightarrow |x_k - a| < \frac{1}{k} \Rightarrow 0 \le \lim |x_k - a| < 0 \Rightarrow \exists \lim x_k = 0$ " \Leftarrow ". В $\forall V(a)$ лежит бесконечно много точек $\{x_n\}, x_n \neq a \Rightarrow a$ – точка сгущения.

Def 9.1.7. $a \in D$, но a — не предельная точка. Тогда а называется изолированной точкой множества D

Замечание 9.1.8. +∞ может быть предельной точкой множества

$$\dot{V}(+\infty) = (E, +\infty)$$

9.2. Предел функции

Def 9.2.1. $f: D \to \mathbb{R}, D \subset \mathbb{R}, a \in \mathbb{R}$ – предельная точка D.

Число $A \in \mathbb{R}$ называется пределом f в точке a

$$\lim_{x \to a} f(x) = A \text{ unu } f(x) \xrightarrow[x \to a]{} A$$

если выполняется одно из следующих условий:

- 1. $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in D \setminus \{a\} : |x a| < \delta \rightarrow |f(x) A| < \varepsilon \ (Oпределение по Коши, определение на языке <math>\delta, \varepsilon$)
- 2. $\forall V(A) \; \exists V(a) : f(\dot{V}(a) \cap D) \subset V(A)$ (Определение на языке окрестностей)
- 3. $\forall \{x_n\}: x_n \in D, x_n \neq a, x_n \rightarrow a \Rightarrow f(x_n) \rightarrow A$ (Определение по Гейне, на языке последовательностей)

<u>Теорема</u> **9.2.2** (Эквивалентность определения по Коши и по Гейне). Определения 1) и 3) эквивалентны.

Доказательство. 1) \Rightarrow 3). Рассмотрим какую-то $\{x_n\}: x_n \neq a, x_n \in D, x_n \rightarrow a$ (она существует по доказанному). Нужно доказать, что $f(x_n) \rightarrow A$. Пусть $x_n \rightarrow a$, то

$$\forall \delta > 0 \ \exists N : \forall n \geqslant N \rightarrow |x_n - a| < \delta \Rightarrow |f(x_n) - A| < \varepsilon$$

3) \Rightarrow 1). Пусть это не так, т.е. 1) не выполнено

$$\exists \varepsilon > 0 : \forall \delta > 0 \ \exists x \in D, x \neq a, |x - a| < \delta : |f(x) - A| \ge \varepsilon$$

Возьмем последовательность $\delta_n = \frac{1}{n}$.

$$|x_n - a| < \frac{1}{n} \Rightarrow x_n \to a \Rightarrow f(x_n) \to A, \text{ Ho } |f(x_n) - A| \geqslant \varepsilon$$

3амечание 9.2.3. в $\overline{\mathbb{R}}$

1.

$$\lim_{x \to 5} f(x) = \infty \Leftrightarrow \forall E \ \exists \delta > 0 : \forall x \in D \setminus \{5\}, |x - 5| < \delta \to f(x) > E$$

2.

$$\lim_{x \to -\infty} f(x) = 2 \Leftrightarrow \forall E > 0 \ \exists \Delta : \forall x \in D, x < \Delta \to |f(x) - 2| < E$$

Замечание 9.2.4. В определении по Гейне есть " $\forall \{x_n\}$ ". Если x_n и y_n подходят под условия, то $\lim f(x_n) = \lim f(y_n)$

Доказательство. Возьмем $z_n: z_1 = x_1, z_2 = y_1, z_3 = x_2, z_4 = y_2$ и т.д. $\{z_n\}$ подходит под определение $\Rightarrow \exists \lim f(z_n)$

Замечание 9.2.5. В определении предела функции не участвует значения функции в точке а. Замечание 9.2.6. Последовательность – частный случай функции.

Раздел #10: Непрерывность

Def 10.0.1. Функция называется непрерывной на множестве D, если она непрерывна в каждой точке D.

C(D) – множество функций, непрерывных на D. (a,b) – промежуток (неважно, включаются концы или нет).

Теорема 10.0.2 (об арифметических действиях над непрерывными функциями). $f, g: D \to \mathbb{R}, D \in \mathbb{R}$ – непрерывны в точке $x_0 \in D$. Тогда $f + g, f - g, |f|, f \cdot g$ также непрерывны в точке x_0 . Если $g(x_0) \neq 0$, то $\frac{f}{g}$ тоже непрерывна в точке x_0 .

Доказательство. • x_0 – изолированная точка D – очевидно.

• x_0 – предельная точка. $f(x) \xrightarrow[x \to x_0]{} f(x_0)$ и $g(x) \xrightarrow[x \to x_0]{} g(x_0)$. Тогда $f(x) + g(x) \xrightarrow[x \to x_0]{} f(x_0) + g(x_0)$. Далее по теореме об арифметических действиях с пределами функций, имеющих предел.

Замечание 10.0.3. Если f непрерывна в точке $x_0 \in D$ и $f(x_0) \neq 0$, то найдется $V(x_0)$, что знак f в $V(x_0) \cap D$ совпадает со знаком $f(x_0)$

Теорема 10.0.4 (О непрерывности композиции). $f: D \to \mathbb{R}, g: E \to R, f(D) \subset E$. Пусть f непрерывна в точке $x_0 \in D$ и g непрерывна в точке $f(x_0)$. Тогда $g \circ f$ непрерывна в точке x_0 .

Доказательство. Пусть $x_n \in D, x_n \to x_0$. Обозначим $y_n = f(x_n), y_0 = f(x_0)$. Т.к. f непрерывна в точке x_0 , то $y_n \to y_0$. Тогда $g(y_n) \to g(y_0)$, т.к. g непрерывна в точке y_0 .

$$g(y_n) = g(f(x_n)) \rightarrow g(f(x_0))$$

Теорема 10.0.5 (Первая теорема Вейерштрасса). Непрерывная на отрезке функция ограничена.

Доказательство. $f \in C[a,b]$. Пусть f не ограничена на [a,b], т.е.

$$\forall n \in \mathbb{N} \exists x_n \in [a, b] : |f(x_n)| > n$$

 x_n – ограничена $\Rightarrow \exists \{f(x_{n_k})\}_{k=1}^\infty : x_{n_k} \to c \in [a,b]$. Т.к. f непрерывна, то $f(x_{n_k}) \to f(c) \Rightarrow \{f(x_{n_k})\}$ ограничена, т.к. сходится, но

$$|f(x_{n_k})| > n_k \geqslant k \ \forall k \in \mathbb{N}$$

Получили противоречие

Замечание 10.0.6. Если возьмем интервал (a,b), то теорема не выполняется.

Теорема 10.0.7 (Вторая теорема Вейерштрасса). Непрерывная на отрезке функция принимает наибольшее и наименьшее значение.

Доказательство. $M = \sup_{x \in [a,b]} f(x_0)$. По первой теореме Вейерштрасса f ограничена на $[a,b] \Rightarrow M \in \mathbb{R}$. Пусть f не достигает M. Тогда f(x) < M на [a,b]. Рассмотрим $\varphi(x) = \frac{1}{M-f(x)}$ — непрерывна на [a,b]. Значит она ограничена на [a,b]. $\exists m : \varphi(x) \leqslant m \ \forall x \in [a,b]$

$$\frac{1}{M - f(x)} \le m \Leftrightarrow \frac{1}{m} \le M - f(x) \Leftrightarrow f(x) \le M - \frac{1}{m}$$

Значит M – не супремум – противоречие

Теорема 10.0.8 (Больцано-Коши о промежуточном значении). f – непрерывна на [a,b]. Тогда $\forall C$, лежащего между f(a) и f(b) $\exists c \in (a,b) : f(c) = C$

Доказательство. • Пусть f(a) и f(b) – разных знаков. Тогда докажем, что $\exists c \in (a,b)$: f(c) = 0. Пусть f(a) < 0 < f(b). Рассмотрим точку $\frac{a+b}{2}$. Если $f(\frac{a+b}{2}) = 0$, то теорема доказана. Если $f(\frac{a+b}{2}) > 0$, то будем далее рассматривать отрезок $[a, \frac{a+b}{2}]$, иначе будем рассматривать отрезок $[\frac{a+b}{2}, b]$.

Получим $[a_1,b_1]$: $f(a_1) < 0 < f(b_1)$ и т.д. $[a_n,b_n]$ — стягивающиеся отрезки $\Rightarrow \exists ! c \in \bigcap_{n=1}^{\infty} [a_n,b_n], a_n,b_n \to c$

$$f(a_n) < 0 < f(b_n) \Leftrightarrow f(c) \le 0 \le f(c) \Rightarrow f(c) = 0$$

• Рассмотрим $\varphi(x) = f(x) - C$, $\varphi \in C[a, b]$, $\varphi(a)$ и $\varphi(b)$ разных знаков. Тогда $\exists c \in (a, b) : \varphi(c) = 0 \Rightarrow f(c) = C$

Следствие 10.0.9. Если непрерывная на отрезке функция принимает какие-то два значения, то она принимает и все значения между ними.

Теорема 10.0.10 (О сохранении промежутка). Множество значений непрерывной на промежутке функции есть промежуток.

Доказательство. Пусть $f \in C\langle a, b \rangle$

$$m = \inf_{x \in (a,b)} f(x), M = \sup_{x \in (a,b)} f(x)$$

 $m, M \in \overline{\mathbb{R}}, E = f(\langle a, b \rangle)$. Возьмем $x_1, x_2 \in \langle a, b \rangle$. f принимает все значения между $f(x_1)$ и $f(x_2)$. Если E не промежуток, то $\exists y \in E : f(x) \neq y \ \forall x \in \langle a, b \rangle$, но $\exists y_1 < y < y_2 : \exists x_1 : f(x_1) = y_1, \exists x_2 : f(x_2) = y_2$

Теорема 10.0.11 (О разрывах и непрерывности монотонной функции). $f: \langle a, b \rangle \to \mathbb{R}$, мононтонна. Тогда

- 1. f не может иметь разрывов II рода
- 2. f непрерывная \Leftrightarrow её множество значения промежуток

Доказательство. 1. Пусть f возрастает. $x \in (a,b), x_1 \in (a,x_0)$. Тогда $f(x_1) \leq f(x) \leq f(x_0) \ \forall x \in (x_1,x_0) \Rightarrow f$ возрастает и ограничена сверху на $(x_1,x_0) \Rightarrow \exists$ конечный $f(x_0-)$. Кроме того, по используя предельный переход:

$$f(x_1) \leqslant f(x_0-) \leqslant f(x_0)$$

Повторим для $f(x_0+) \Rightarrow$ нет разрывов II рода.

2. "⇒". Доказано

" \Leftarrow ". $f(\langle a,b\rangle)$ – промежуток. Докажем непрерывность слева в точке $x_0 \in (a,b)$. Пусть $f(x_0-) < f(x_0)$. Возьмем $y \in (f(x_0-),f(x_0))$. Тогда если $a < x_1 < x_0$, то $y \in [f(x_1),f(x_0)]$. Значит y - значение функции. С другой стороны $\forall x \in \langle a,x_0 \rangle \to f(x) \leq f(x_0-) < y, \forall x \in [x_0,b\rangle \to f(x) \geq f(x_0) > y \Rightarrow f$ не принимает значение y – противоречие. Аналогично для $f(x_0+)$

Теорема 10.0.12 (Существование и непрерывность обратной функции). $f \in C\langle a,b \rangle, f$ строго мононтонна

$$m = \inf_{x \in \langle a, b \rangle} f(x), M = \sup_{x \in \langle a, b \rangle} f(x)$$

Тогда

- 1. f обратима, $f^{-1}:\langle m,M\rangle \to \langle a,b\rangle$ биекция.
- 2. f^{-1} строго монотонна (одноименно с f)
- 3. f^{-1} непрерывна на $\langle m, M \rangle$

Доказательство. Пусть f возрастает.

- 1. $x_1, x_2 \in \langle a, b \rangle, x_1 < x_2$. Тогда $f(x_1) < f(x_2) \Rightarrow f$ обратима. $f(\langle a, b \rangle) = \langle m, M \rangle$. $f^{-1} : \langle m, M \rangle \rightarrow \langle a, b \rangle$. Если $y_1 \neq y_2 \in \langle m, M \rangle \Rightarrow f^{-1}(y_1) \neq f^{-1}(y_2)$
- 2. $y_1 < y_2 \in \langle m, M \rangle \Rightarrow y_1 = f(x_1), y_2 = f(x_2), x_1, x_2 \in \langle a, b \rangle$. $x_1 = f^{-1}(y_1), x_2 = f^{-1}(y_2), x_1 < x_2$ из-за возрастания f
- 3. f^{-1} строго возрастает на $\langle m, M \rangle$, множество значений функции f^{-1} промежуток $\Rightarrow f^{-1}$ непрерывна по предыдущей теореме.

Раздел #11: Элементарные функции

11.1. Постоянная

 $f(x) = c, x \mapsto c$, непрерывна на \mathbb{R}

11.2. Степенная функция

$$e_{\alpha}(x) = x^{\alpha}$$

При α = 1 $e_1(x)$ = x – непрерывна на $\mathbb R$

При $\alpha = n \in \mathbb{N}$

$$e_{\alpha}(x) = x^n$$

Следовательно $e_n(x)$ непрерывна на \mathbb{R} как произведение непрерывных.

При $\alpha = -n, n \in \mathbb{N}$

$$x^{-n} = \frac{1}{x^n}, \mathbf{x} \in \mathbb{R} \setminus \{0\}$$

Непрерывна на $\mathbb{R} \setminus \{0\}$ как частное непрерывных.

При $\alpha = 0$ полагаем $x^0 = 1$ при всех $x \neq 0$. Можно доопределить до непрерывности ($0^0 = 1$)

Если n нечётно, то e_n строго возрастает на \mathbb{R} , $\sup_{x \in \mathbb{R}} e_n(x) = +\infty$, $\inf_{x \in \mathbb{R}} e_n(x) = -\infty$. По теореме о сохранении промежутка $e_n(\mathbb{R}) = \mathbb{R}$.

Если n четно, то функция e_n строго возрастает на $\mathbb{R}_+, \sup_{x \in \mathbb{R}_+} e_n(x) = +\infty, \min_{x \in \mathbb{R}_+} e_n(x) = 0, e_n(\mathbb{R}_+) = \mathbb{R}_+$. По теореме о существовании и непрерывности обратной функции существует и непрерывна функция

$$e_{\frac{1}{n}} = \begin{cases} e_n^{-1}, n \not 1 & 2\\ (e_n|_{R_+})^{-1}, n \vdots & 2 \end{cases}$$

Это $\sqrt[n]{x}$, строго возрастает и непрерывна на \mathbb{R}_+

Теперь определим x^{α} при рациональном $\alpha = r = \frac{p}{q}, p \in \mathbb{Z}, q \in \mathbb{N}, \frac{p}{q}$ несократима.

$$x^r = (x^p)^{\frac{1}{q}} (e_r = e_{\frac{1}{q}} \circ e_p)$$

Таким образом, x^r определено следующим образом.

$$x > 0$$
, r любое.

$$x = 0, r \geqslant 0,$$

$$x < 0, q \ne 2$$

 e_r непрерывна на своей области определения, строго возрастает на $[0, +\infty)$ при r > 0, строго убывает на $(0, +\infty)$ при r < 0

11.3. Показательная функция

 $0^x = 0 \ \forall x > 0$

Пусть a>0. Пока что a^x определена только для $x\in\mathbb{Q}$. Обозначим эту функцию $a^x|_{\mathbb{Q}}$. Её свойства:

- 1. $r < s \Rightarrow a^r < a^s, a > 1$ и $a^r > a^s, 0 < a < 1$
- $2. \ a^{r+s} = a^r a^s$
- 3. $(a^r)^s = a^{rs}$
- 4. $(ab)^r = a^r b^r$

Def 11.3.1. Пусть $a > 0, x \in \mathbb{R}$ Положим

$$a^x = \lim_{r \to x} a^r |_{\mathbb{Q}}$$

<u>Lm</u> 11.3.2. Пусть $a > 0, \{r_n\}$ – последовательность рациональных чисел, $r_n \to 0$. Тогда $a^{r_n} \to 1$.

Доказательство. При a = 1 лемма очевидно, т.к. $a^{r_n} = 1 \ \forall n$.

Пусть a > 1. Докажем лемму в частном случае $r_n = \frac{1}{n}$. Поскольку $a^{\frac{1}{n}} > 1$, имеем $a^{\frac{1}{n}} = 1 + \alpha_n, \alpha_n > 0$. Тогда по неравенству Бернулии

$$a = (1 + \alpha_n)^n \geqslant 1 + n\alpha_n$$

Откуда $0 < \alpha_n < \frac{a-1}{n} \Rightarrow \alpha_n \to 0 \Rightarrow a^{\frac{1}{n}} \to 1.$

Далее, по доказанному

$$a^{-\frac{1}{n}} = \frac{1}{a^{\frac{1}{n}}} \to \frac{1}{1} = 1$$

Пусть теперь $\{r_n\}$ – произвольная последовательность из условия леммы. Возьмем $\varepsilon > 0$. $\exists N_0$:

$$1 - \varepsilon < a^{-\frac{1}{N_0}} < a^{\frac{1}{N_0}} < 1 + \varepsilon$$

Поскольку $r_n \to 0$, найдется такой номер N, что $\forall n > N \to -\frac{1}{N_0} < r_n < \frac{1}{N_0}$. В силу строгой монотонности показательной функции рационального аргумента

$$1 - \varepsilon < a^{-\frac{1}{N_0}} < a^{r_n} < a^{\frac{1}{N_0}} < 1 + \varepsilon$$

Значит $a^{r_n} \to 1$

Если 0 < a < 1, то $\frac{1}{a} > 1$, и по доказанному

$$a^{r_n} = \frac{1}{\left(\frac{1}{a}\right)^{r_n}} \to 1$$

<u>Lm</u> 11.3.3. Пусть $a > 0, x \in \mathbb{R}, \{r_n\}$ – последовательность рациональных чисел, $r_n \to x$. Тогда существует конечный предел последовательности $\{a^{r_n}\}$

Пусть a > 1. Возьмем какую-либо возрастающую последовательность $\{s_n\}$ рациональных чисел, стремящуюся к x. Например

$$s_n = \frac{[10^n x]}{10^n}$$

Тогда $x - \frac{1}{10^n} < s_n \le x \Rightarrow s_n \to x$. Докажем, что последовательность $\{s_n\}$ возрастает. Пусть $A = 10^n x$. Тогда $s_n \le s_{n+1} \Leftrightarrow 10[A] \le [10A]$, но 10[A] – целое число, не превосходящее 10A. $\{a^{s_n}\}$ возрастает и ограничена сверху числом $a^{[x]+1}$. Значит $\{a^{s_n}\}$ сходится к некоторому пределу L. Но тогда

$$a^{r_n} = a^{r_n - s_n} a^{s_n} \to L$$

Потому что $a^{r_n-s_n} \to 1$ по предыдущей лемме.

Если 0 < a < 1, то $\frac{1}{a} > 1$ и по доказанному $\left(\frac{1}{a}\right)^{r_n} \to L, L > 0.$ Тогда

$$a^{r_n} = \frac{1}{\left(\frac{1}{a}\right)^{r_n}} \to \frac{1}{L}$$

11.3.1. Свойства показательной функции

1. a^x строго возрастает на $\mathbb R$ при a>1 и строго убывает на $\mathbb R$ при $a\in(0,1)$

 \mathcal{A} оказательство. a>1. Пусть x< y. Докажем, что $a^x< a^y$. Возьмем два числа $\overline{r},\overline{\overline{r}}\in\mathbb{Q}$ между x и y. Возьмем $\{\overline{r}_n\}_{n=1}^\infty,\{\overline{\overline{r}}\}_{n=1}^\infty:$ последовательности из $\mathbb{Q}:\overline{r}_n\to x,\overline{\overline{r}}_n\to y$. По доказанному $a^{\overline{r}_n}< a^{\overline{r}}< a^{\overline{r}}< a^{\overline{r}_n}$

$$\Rightarrow a^x \leqslant a^{\overline{r}} < a^{\overline{\overline{r}}} \leqslant a^y \Rightarrow a^x < a^y$$

 $a \in (0,1)$. Рассмотрим $b = \frac{1}{a} > 1$.

 $2. \ a^{x+y} = a^x \cdot a^y$

Доказательство. $\{\overline{r}_n\}, \{\overline{\overline{r}}_n\}$ как в 1)

$$a^{\overline{r}_n + \overline{\overline{r}}_n} = a^{\overline{r}_n} \cdot a^{\overline{\overline{r}}_n} \Rightarrow a^{x+y} = a^x \cdot a^y$$

- 3. $a^{-x} = a^0 \cdot a^{-x} = \frac{1}{a^x}$
- 4. a^x непрерывна на $\mathbb R$

Доказательство. $a > 1, \{x_n\} : x_n \to 0$. Докажем непрерывность в нуле.

$$\forall \varepsilon > 0 \ \exists N : \forall n \geqslant N \to |x_n| < \varepsilon \Rightarrow -\frac{1}{n_0} < x_n < \frac{1}{n_0}, n_0 \in \mathbb{N}$$

Тогда $1 - \varepsilon < a^{-\frac{1}{n_0}} < a^{x_n} < a^{\frac{1}{n_0}} < 1 + \varepsilon \ \left(a^{\frac{1}{n}} \to 1 \Rightarrow \exists n_0 : \left|a^{\frac{1}{n}} - 1\right| < \varepsilon\right)$

$$\forall \varepsilon > 0 \ \exists N' : \forall n \geqslant N \rightarrow |a^{x_n} - 1| < \varepsilon \Leftrightarrow a^{x_n} \rightarrow 1$$

Докажем непрерывность в точке $x_0 \neq 0$.

Рассмотрим $a^{x_0+x_n} - a^{x_0} = a^{x_0}(a^{x_n} - 1) \to 0$

 $5. (ab)^x = a^x b^x$

Доказательство. $\{r_n\}$ из \mathbb{Q} , $r_n \to x$. Тогда

$$(ab)^{r_n} = a^{r_n} \cdot b^{r_n} \Rightarrow (ab)^x = a^x b^x$$

6. $(a^x)^y = a^{xy}$

Доказательство. $x_n \to x, y_n \to y, \{x_n\}, \{y_n\}$ из \mathbb{Q} . Тогда по непрерывности показательной и степенной функций

$$(a^{x_n})^{y_m} = a^{x_n \cdot y_m} \Longrightarrow_{n \to \infty} (a^x)^{y_m} = a^{x \cdot y_m} \Longrightarrow_{m \to \infty} (a^x)^y = a^{x \cdot y_m}$$

7. a^x – биекция из \mathbb{R} на $(0, +\infty)$

Доказательство. a > 1. Тогда a^x строго возрастает на \mathbb{R} .

$$a^n = (1 + \alpha)^n \ge 1 + n\alpha \to +\infty \Rightarrow \lim_{x \to +\infty} a^x = +\infty$$

$$\lim_{x \to -\infty} a^x = 0$$

11.4. Логарифм

Def 11.4.1. $T.\kappa. \ a^x : \mathbb{R} \to (0, +\infty) - \text{биекция, mo } \exists f^{-1} : (0, +\infty) \to \mathbb{R}.$

$$\log_a x: (0, +\infty) \to \mathbb{R}$$

Из теоремы об обратной функции $\log_a x$ монотонна и непрерывна.

11.4.1. Свойства логарифма

1. $\log_a x + \log_a y = \log_a(xy), a \in (0,1) \cup (1,+\infty), x,y > 0$

Доказательство.

$$a^{\log_a x + \log_a y} = a^{\log_a x} \cdot a^{\log_a y} = x \cdot y = a^{\log_a (xy)}$$

2. $\log_a x^b = b \log_a x, a \in (0,1) \cup (1,+\infty), x > 0, b \in \mathbb{R}$

Доказательство.

$$a^{b\log_a x} = (a^{\log_a x})^b = x^b = a^{\log_a x^b}$$

3. $\log_a x = \frac{\log_b x}{\log_b a}, a, b \in (0, 1) \cup (1, +\infty), x > 0$

Доказательство.

$$b^{\log_a x \cdot \log_b a} = (b^{\log_b a})^{\log_a x} = a^{\log_a x} = x = b^{\log_b x}$$

 $\mathbf{Def}\ \mathbf{11.4.2.}\ \ln x$ – натуральный логарифм ($\log_e x$)

Вернемся к степенной функции:

Def 11.4.3. $x > 0, \alpha \in \mathbb{R}$ $x^{\alpha} = e^{\alpha \cdot \ln x}$. $0^{\alpha} = 0$. Покажем непрерывность справа в точке 0.

$$x_n \to 0, x_n > 0$$

Пусть $y_n = \ln x_n \xrightarrow[n \to \infty]{} -\infty$. Значит $x_n^{\alpha} = e^{\alpha \ln x_n} \xrightarrow[n \to \infty]{} 0$

$$x^{\alpha}: [0, +\infty) \to [0, +\infty), \alpha > 0$$
 – биекция
 $x^{\alpha}: (0, +\infty) \to (0, +\infty), \alpha < 0$ – биекция

11.5. Тригонометрические функции

Утверждение 11.5.1. $x \in (0, \frac{\pi}{2})$. Тогда $\sin x < x < \operatorname{tg} x$.

Доказательство. Нужно доказать: BC < AB < AD $\triangle OBA \subset \nabla OAB \subset \triangle OAD \Leftrightarrow S_{\triangle OBA} < S_{\nabla OAB} < S_{\triangle OAD}$

$$S_{\triangle OBA} = \frac{1}{2}|OA| \cdot |BC| = \frac{\sin x}{2}$$

$$S_{\nabla OAB} = \frac{1}{2} \cdot x \cdot |OA|^2 = \frac{x}{2}$$

$$S_{\triangle OAD} = |OA| \cdot |AD| \cdot \frac{1}{2} = 1 \cdot \operatorname{tg} x \cdot \frac{1}{2} = \frac{\operatorname{tg} x}{2}$$

Отсюда

$$\frac{\sin x}{2} < \frac{x}{2} < \frac{\operatorname{tg} x}{2} \Leftrightarrow \sin x < x < \operatorname{tg} x$$

Следствие 11.5.2. $|\sin x| \le |x| \ \forall x \in \mathbb{R}$ (причем равенство достигается только в 0) При $x \in (0, \frac{\pi}{2})$ доказано.

$$x \geqslant \frac{\pi}{2} : |\sin x| \leqslant 1 < \frac{\pi}{2} \leqslant x$$
$$x \leqslant -\frac{\pi}{2} : |\sin x| = |\sin(-x)| < |-x| = x$$

Свойства:

1. $\sin x$ – непрерывная на \mathbb{R} функция.

$$\lim_{x \to x_0} \sin x = \sin x_0$$

Доказательство.

$$|\sin x - \sin x_0| = \left| 2 \cdot \sin \frac{x - x_0}{2} \cdot \cos \frac{x + x_0}{2} \right| \le 2 \left| \sin \frac{x - x_0}{2} \right| \le 2 \left| \frac{x - x_0}{2} \right| \le |x - x_0| \to 0$$

2. $\cos x = \sin\left(\frac{\pi}{2} - x\right)$ – непрерывна.

3. $\operatorname{tg} x = \frac{\sin x}{\cos x}, x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + \pi k, k \in \mathbb{Z} \right\}$

4. $\operatorname{ctg} x = \frac{\cos x}{\sin x}, x \in \mathbb{R} \setminus \{\pi k, k \in \mathbb{Z}\}$ – непрерывны на области определения.

11.5.1. Обратные тригонометрические функции

 $\sin x: \mathbb{R} \to [-1,1]$ не обратимая. $\sin x|_{x\in \left[-\frac{\pi}{2},\frac{\pi}{2}\right]}: \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \to [-1,1]$ — биекция

Def 11.5.3. $\arcsin x = \left(\sin x|_{x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]}\right)^{-1}$. Монотонно возрастает и непрерывна

Def 11.5.4. $\arccos x = (\cos x|_{x \in [0,\pi]})^{-1}$. Убывает, непрерывна

Def 11.5.5. $\arctan x = \left(\operatorname{tg} x|_{x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)} \right)^{-1}$. *Непрерывна, строго возрастает.*

Def 11.5.6. $\operatorname{arcctg} x = \left(\operatorname{ctg} x|_{x \in (0,\pi)}\right)^{-1}$

Замечание 11.5.7. Для обратимости строго монотонной функции непрерывность не нужна.

Раздел #12: Замечательные пределы

Def 12.0.1. Первый замечательный предел:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

 \mathcal{A} оказательство. $\sin x < x < \operatorname{tg} x$ на $\left(0, \frac{\pi}{2}\right)$, $\cos x < \frac{\sin x}{x} < 1$ $\cos x, \frac{\sin x}{x}, 1$ — четные функции, значит верно и для $x \in \left(-\frac{\pi}{2}, 0\right)$. Перейдем к пределу при $x \to 0$

$$1 \leqslant \lim_{x \to 0} \frac{\sin x}{x} \leqslant 1 \Rightarrow \exists \lim_{x \to 0} \frac{\sin x}{x} = 1$$

Следствие 12.0.2. $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$

Доказательство. $\cos 2\alpha = 1 - 2\sin^2 \alpha \Leftrightarrow \sin^2 \alpha = \frac{1-\cos 2\alpha}{2}$

$$\frac{1 - \cos x}{x^2} = \frac{2\sin^2\frac{x}{2}}{x^2} = \frac{1}{2} \cdot \frac{\sin^2\frac{x}{2}}{\left(\frac{x}{2}\right)^2} = \frac{1}{2} \left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right)^2 \to \frac{1}{2}$$

Cледствие 12.0.3. $\lim_{x\to 0} \frac{\operatorname{tg} x}{x} = 1$

Доказательство.

$$\frac{\operatorname{tg} x}{x} = \frac{\sin x}{x} \cdot \frac{1}{\cos x} \xrightarrow[x \to 0]{} 1$$

Cледствие 12.0.4. $\lim_{x\to 0} \frac{\arcsin x}{x} = 1$

Доказательство. $\frac{\sin x}{x} = \frac{y}{\arcsin y}$, $y = \sin x$ в окрестности $x \in (-\varepsilon, \varepsilon) \Rightarrow \arcsin y = x$. $\arcsin x$ непрерывна в нуле, в 0 равен 0. $\frac{\sin x}{x}$ непрерывна в $(-\varepsilon, \varepsilon) \setminus \{0\}$

$$g(x) = \begin{cases} \frac{\sin x}{x}, x \neq 0 \\ 1, x = 0 \end{cases}$$
 – непрерывна на \mathbb{R}

 \Rightarrow по теореме о непрерывности композиции $\frac{y}{\arcsin y} \xrightarrow[y \to 0]{} 1$

 $Cnedcmoue \ 12.0.5. \ \lim_{x\to 0} \frac{\arctan x}{x} = 1$

Доказательство. Аналогично предыдущему следствию.

Def 12.0.6. Второй замечательный предел

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e$$

Доказательство. $f(x) = (1 + \frac{1}{x})^x$ задана на $\mathbb{R} \setminus [-1, 0]$. Пусть $x_n \to +\infty$. Нужно доказать, что $f(x_n) \to e$.

- 1. Рассмотрим $\{x_n\}$ из \mathbb{N} . $f(x_n) \to e$ как подпоследовательность.
- 2. $\{x_n\}$ из \mathbb{R} . Начиная с некоторого номера $x_n \geqslant 1$.

$$\left(1 + \frac{1}{[x_n] + 1}\right)^{[x_n]} \le \left(1 + \frac{1}{x_n}\right)^{x_n} \le \left(1 + \frac{1}{[x_n]}\right)^{[x_n] + 1}$$

Очевидно, $[x_n] \le x_n \le [x_n] + 1$. Тогда

$$\frac{1}{1 + \frac{1}{|x_n|+1}} \cdot f([x_n] + 1) \leqslant f(x_n) \leqslant f([x_n]) \cdot \left(1 + \frac{1}{|x_n|}\right)$$

 $\{[x_n]\}_{n=1}^{\infty}$ — последовательность из \mathbb{N} . Выполним предельный переход в неравенстве.

$$e \le \lim_{n \to \infty} f(x_n) \le e \Rightarrow \exists \lim_{n \to \infty} f(x_n) = e$$

Def 12.0.7. Третий замечательный предел (обычно не нумеруется).

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}, a > 0, a \neq 1$$

Доказательство. $\log_a(1+x) = \frac{\ln(1+x)}{\ln a}$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = \ln e = 1$$

Def 12.0.8. Четвертый замечательный предел (обычно не нумеруется)

$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha, \alpha \in \mathbb{R}$$

Доказательство. $\alpha = 0$ тривиально. $\alpha \neq 0$. $x_n \to 0, x_n \neq 0, |x_n| < 1 \ \forall n$. Обозначим

$$y_n = (1+x_n)^{\alpha} - 1 \xrightarrow[n\to\infty]{} 0, y_n \neq 0 \Rightarrow \alpha \ln(1+x_n) = \ln(1+y_n)$$

Тогда

$$\frac{(1+x_n)^{\alpha}-1}{x_n} = \frac{y_n}{x_n} = \frac{y_n}{\ln(1+y_n)} \cdot \frac{\alpha \ln(1+x_n)}{x_n} \to \alpha$$

Def 12.0.9. Пятый замечательный предел (обычно не нумеруется) $\lim_{x\to 0} \frac{a^x-1}{x} = \ln a, a > 0$

Доказательство. a = 1 тривиально.

$$a \neq 1. \ x_n \to 0, x_n \neq 0$$

$$y_n = a^{x_n} - 1 \to 0, y_n \neq 0, \ln(1 + y_n) = x_n \cdot \ln a$$

$$\frac{a^{x_n} - 1}{x_n} = \frac{y_n}{x_n} = \frac{y_n}{\ln(1 + y_n)} \cdot \frac{x_n \ln a}{x_n} \xrightarrow[n \to \infty]{} \ln a$$

Раздел #13: Сравнение функций

Def 13.0.1. $f,g:D\to\mathbb{R},D\subset\mathbb{R},x_0$ – предельная точка D и $\exists \varphi:D\to\mathbb{R}:f(x)=\varphi(x)\cdot g(x)$ в $V(x_0) \cap D$.

1. Если $\varphi(x)$ ограничена на $\dot{V}(x_0) \cap D$, то говорят, что f ограничена по сравнению c g при

$$f(x) = O(g(x)), x \rightarrow x_0$$

2. Если $\varphi(x) \xrightarrow[x \to x_0]{} 0$, то говорят, что f бесконечно малая по сравнению c g при $x \to x_0$

$$f(x) = o(g(x)), x \rightarrow x_0$$

3. Если $\varphi(x) \xrightarrow[x \to x_0]{} 1$, то говорят, что f и g асимптотически равны.

$$f(x) \sim g(x), x \rightarrow x_0$$

Замечание 13.0.2. 1. $\frac{f(x)}{g(x)}$ ограничена в $\dot{V} \cap D$

- 2. $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$
- 3. $\lim_{x\to x_0} \frac{f(x)}{g(x)} = 1$

3амечание 13.0.3. Все пункты при $x \to x_0$

- 1. $f \sim g, g \sim h \Rightarrow f \sim h$
- 2. f ~ f
- 3. $f \sim g, f = g + o(g), f = g + o(f)$ равносильные утверждения.
- 4. Если f = o(q), то f = O(q)

Следствие 13.0.4. При $x \to 0$

$$\sin x = x + o(x) \qquad \ln(1+x) = x + o(x)$$

$$\tan x = x + o(x) \qquad \arcsin x = x + o(x)$$

$$\cos x = 1 - \frac{x^2}{2} + o(x^2) \qquad a^x = 1 + x \ln a + o(x)$$

$$(1+x)^{\alpha} = 1 + \alpha x + o(x)$$

Теорема 13.0.5 (О замене на эквивалентные). $f, \widetilde{f}, g, \widetilde{g}: D \to \mathbb{R}, x_0$ – предельная точка D, $f \sim \widetilde{f}, g \sim \widetilde{g}$ при $x \to x_0$. Тогда

- 1. $\lim_{x\to x_0} f(x) \cdot g(x) = \lim_{x\to x_0} \widetilde{f}(x) \cdot \widetilde{g}(x)$
- 2. $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{\widetilde{f}(x)}{\widetilde{g}(x)}$ (если x_0 предельная точка области определения $\frac{f}{g}$)

Доказательство. $\exists u(x_0) \ \exists \varphi : \varphi(x) \xrightarrow[x \to x_0]{} 1. \ f = \varphi \cdot \widetilde{f} \ \mathsf{B} \ u(x_0) \cap D$

 $\exists v(x_0) \ \exists \psi : \psi(x) \xrightarrow[x \to x_0]{} 1. \ g = \psi \cdot \widetilde{g} \ \mathrm{B} \ v(x_0) \cap D$

 $w(x_0) = u(x_0) \cap v(x_0)$. Тогда $f \cdot g = (\varphi \cdot \psi) \cdot \widetilde{f} \cdot \widetilde{g}$ в $w(x_0)$. Пусть $\lim_{x \to x_0} g \cdot f = A \in \mathbb{R} \Leftrightarrow \text{т.к. } \varphi \cdot \psi \xrightarrow[x \to x_0]{} 1$,

то $\lim_{x\to x_0}\widetilde{f}\cdot\widetilde{g}=A$. Если $\lim_{x\to x_0}g\cdot f$ не существует, то $\lim_{x\to x_0}\widetilde{f}\widetilde{g}$ не существует.

Для частного доказательство аналогично

Замечание 13.0.6. Заменять на эквивалентные можно только в произведении и частном.

Def 13.0.7. Пусть $f \sim g$, $f \sim h$, $x \to x_0$. Если f - h = o(f - g), то говорят, что асимптотическое равенство $f \sim h$ точнее, чем $f \sim g$.

Пусть $f: D \to \mathbb{R}, D \in \mathbb{R}, x_0$ — предельная точка D. Пусть задана система функций $\{g_k\}_{k=0}^N : \forall k \in [0, N-1] \cap \mathbb{Z}_+ \to g_{k+1}(x) = o(g_k(x)), x \to x_0$

$$f(x) = \sum_{k=0}^{N} c_k \cdot g_k(x) + o(g_N(x))$$

Многочлены получаются, если $g_k(x) = (x - x_0)^k$.

Если $f(x) \sim C \cdot (x-x_0)^k (C \neq 0)$, то $C \cdot (x-x_0)^k$ – главная степенная часть.

Теорема 13.0.8 (О единственности асимптотического разложения). $D \in \mathbb{R}, x_0$ – предельная точка $D, n \in \mathbb{Z}_+; f, g_k : D \to \mathbb{R}, g_{k+1}(x) = o(g_k(x)), x \to x_0 \ \forall k = 0, ..., n-1 \ u \ \forall V(x_0) \ \exists$ точка в $\dot{V}(x_0)$: в ней g_n не ноль. Тогда если существует асимптотическое разложение f по системе функций $\{g_k\}$, то оно единственно.

Доказательство. Пусть не единственное. Тогда $\exists c_k, d_k, k = 0, ..., n : \exists i \ c_i \neq d_i$.

 $f(x) = \sum_{k=0}^{n} c_k \cdot g_k(x) + o(g_n(x))$ и $f(x) = \sum_{k=0}^{n} d_k \cdot g_k(x) + o(g_n(x))$ при $x \to x_0$.

Т.к. $g_{k+1}(x) = o(g_k(x))$, то $g_{k+1}(x) = o(g_l(x)) \ \forall l \leq k$ при $x \to x_0$.

Обозначим $E_k = \{x : g_k(x) \neq 0\}, k = 0, ..., n$. Если $g_k = 0$ на $V(x_0)$, то $g_{k+1} = 0$ на $V(x_0)$, $g_n = 0$ на $V(x_0)$.

$$g_{k+1} = o(g_k) \Leftrightarrow \exists \varphi : g_{k+1} = \varphi \cdot g_k$$

Если x_0 – предельная точка E_{k_0} , то она предельная точка всех E_k . Пусть m – наименьший номер $: c_m \neq d_m$. Тогда

$$f(x) = \sum_{k=0}^{m} c_k g_k(x) + o(g_m(x)), f(x) = \sum_{k=0}^{m} d_k g_k(x) + o(g_m(x))$$

Вычтем: $0 = (c_m - d_m)g_m(x) + o(g_m(x))$. Поделим на $g_m(x)$

$$0 = (c_m - d_m) + \frac{o(g_m(x))}{g_m(x)} \xrightarrow[x \to x_0]{} c_m - d_m \Rightarrow c_m = d_m$$

Def 13.0.9. $x_0 \in \mathbb{R}$, f задана хотя бы на (a, x_0) или (x_0, b) и действует в \mathbb{R} . Тогда прямая $x = x_0$ называется вертикальной асимптотой функции f, если

$$\lim_{x\to x_0+} f(x) = \pm \infty \vee \lim_{x\to x_0-} f(x) = \pm \infty$$

Def 13.0.10. $(a, +\infty) \subset D \subset \mathbb{R}, f : D \to \mathbb{R}, \alpha, \beta \in \mathbb{R}$. Прямая $y = \alpha x + \beta$ – наклонная асимптота f при $x \to +\infty$, если $f(x) = \alpha x + \beta + o(1)$ при $x \to +\infty$.

Def 13.0.11. При $x \to -\infty$ аналогично.

Теорема 13.0.12 (Уравнение наклонной асимптоты). $(a, +\infty) \subset D \subset \mathbb{R}, f : D \to \mathbb{R}. \ \alpha, \beta \in \mathbb{R}.$

Прямая $y = \alpha x + \beta$ является асимптотой f при $x \to +\infty \Leftrightarrow \alpha = \lim_{x \to +\infty} \frac{f(x)}{x}, \beta = \lim_{x \to +\infty} (f(x) - \alpha x)$

 Глава #13.
 37/65
 Автор: Илья Дудников

Доказательство. " \Rightarrow ". По определению $f(x) = \alpha x + \beta + \varphi(x), \varphi \xrightarrow[x \to +\infty]{} 0$. Тогда $\frac{f(x)}{x} = \alpha + \frac{\beta}{x} + \frac{\varphi(x)}{x}$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \alpha$$

$$f(x) - \alpha x = \beta + \varphi(x)$$

$$\lim_{x\to +\infty} (f(x)-\alpha x)=\beta$$

"←". Проделаем те же рассуждения "в обратную сторону".

Раздел #14: Дифференциальное исчисление

Пусть $f: E \to \mathbb{R}, E \subset \mathbb{R}, a$ — предельная точка $E, n \in \mathbb{Z}_+$. Хотим найти многочлен степени не выше n $(P(x) = \sum_{k=0}^{n} c_k (x - x_0)^k)$

$$f(a) = P(a), f(x) = P(x) + o((x-a)^n), x \to a$$
 (1)

Замечание 14.0.1. Если такой многочлен существует, то он единственный.

Доказательство. Пусть $\exists P(x), Q(x)$, удовлетворяющие условию (1). Тогда

$$0 = P(x) - Q(x) + o((x - a)^n)$$

Если $P(x) \neq Q(x)$, то $P(x) - Q(x) = \sum_{k=0}^{n} r_k (x-a)^k = r(x)$

$$\Rightarrow r(x) = o((x-a)^n), x \to a$$

 $r(x) = r_m(x-a)^m + ... + r_n(x-a)^n, m \le n, r_m \ne 0$

$$\Rightarrow \frac{r(x)}{(x-a)^m} = o((x-a)^{n-m}) \Rightarrow r_m = 0$$

Def 14.0.2. Многочлен, удовлетворяющий условию (1) называется многочленом Тейлора функции f в точке а порядка п $T_{a,n}f$

Def 14.0.3. Функция f называется дифференцируемой в точке a ($\langle A, B \rangle \rightarrow \mathbb{R}, a \in (A, B)$), если $\exists k \in \mathbb{R}$:

$$f(x) = f(a) + k(x - a) + o(x - a), x \rightarrow a$$

Def 14.0.4. $f:\langle A,B\rangle \to \mathbb{R}, a\in (A,B), \ ecnu\ \exists \lim_{x\to a} \frac{f(x)-f(a)}{x-a}=K\in \mathbb{R}, \ mo\ K$ называется производной функции f в точке a. (Обозначение $f'(a), \frac{df}{dx}(a), Df(a)$) $\Delta_a f = f(x) - f(a)$ – приращение функции f в точке a. $x-a=\Delta_a x.$

$$f'(a) = \lim_{\Delta_a x \to 0} \frac{\Delta_a f}{\Delta_a x}$$

Теорема 14.0.5. $f: \langle A, B \rangle \to \mathbb{R}, a \in (A, B)$. Тогда равносильны три утверждения:

- 1. f дифференцируема в точке a
- 2. $\lim_{x \to a} \frac{f(x) f(a)}{x a}$ существует и равен k
- 3. $\exists F(x): F: \langle A,B\rangle \to \mathbb{R}, F$ непрерывна в точке a, F(a) = k и $f(x) f(a) = F(x)(x-a), x \in \langle A,B\rangle$

Доказательство. 1) \Rightarrow 2). $\exists k : f(x) - f(a) = k(x-a) + o(x-a), x \rightarrow a$

$$\frac{f(x) - f(a)}{x - a} = k + \frac{o(x - a)}{x - a} \to k$$

 $2) \Rightarrow 3$).

$$F(x) = \begin{cases} \frac{f(x) - f(a)}{x - a}, & x \neq a \\ k, & x = a \end{cases}$$

из 2) следует непрерывность F в точке a 3) \Rightarrow 1). По 3) $\exists F$:

$$f(x) - f(a) = F(x)(x - a) \Leftrightarrow f(x) = f(a) + F(x)(x - a) = f(a) + k(x - a) + (F(x) - k) \cdot (x - a)$$
$$F(x) \xrightarrow[x \to a]{} F(a) = k \Rightarrow (F(x) - k)(x - a) = o((x - a))$$

14.1. Связь с физикой

$$\lim_{\Delta t \to 0} \frac{\Delta S}{\Delta t}$$
 — мгновенная скорость

14.2. Связь с геометрией

Рассмотрим функции: $l_k(x) = f(a) + k(x - a)$, графики – прямые, проходящие через точку (a; f(a))

$$f(x) - l_k(x) = f(x) - f(a) - k(x - a)$$

Если f(x) дифференцируема в точке a

$$f(x) = f(a) + f'(a)(x-a) + o(x-a) \Leftrightarrow f(x) - l_k(x) = (x-a) \cdot (f'(a) - k) + o(x-a)$$

При k = f'(a) разность есть o(x - a).

$$y = f(a) + f'(a)(x - a)$$

касательная в точке a к функции f. $\operatorname{tg} \alpha = f'(a)$.

14.3. Бесконечные производные

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = +\infty \Rightarrow f'(a) = +\infty$$

В таком случае f не является дифференцируемой в точке a.

Односторонняя производная:

$$\exists \lim_{x \to a \pm} \frac{f(x) - f(a)}{x - a}$$

Замечание 14.3.1. Если f дифференцируема в точке a, то f непрерывна в точке a.

Доказательство.

$$f(x) - f(a) = f'(a)(x - a) + o(x - a), x \rightarrow a \Rightarrow f(x) \xrightarrow[x \rightarrow a]{} f(a)$$

Обратное не выполняется. Например, f(x) = |x|

14.4. Правила дифференцирования

Теорема 14.4.1 (Производная композиции). $f: \langle A, B \rangle \to \langle C, D \rangle, g: \langle C, D \rangle \to \mathbb{R}, a \in \langle A, B \rangle$. Если f дифференцируема в точке a, g дифференцируема в точке f(a), то $g \circ f$ дифференцируема в точке a и

$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$$

Доказательство. $\exists F : \langle A, B \rangle \to \mathbb{R}, F(a) = f'(a)$ и $f(x) - f(a) = F(x)(x - a), x \in \langle A, B \rangle, F$ непрерывна в точке a

 $\exists G: \langle C, D \rangle \to \mathbb{R}, G(f(a)) = g'(f(a))$ и $g(y) - g(f(a)) = G(y)(y - f(a)), y \in \langle C, D \rangle$, G непрерывна в точке f(a) Подставим y = f(x)

$$g(f(x)) - g(f(a)) = G(f(x))(f(x) - f(a)) = G(f(x))F(x)(x - a) = H(x)(x - a)$$

H(x) – непрерывна в точке $x=a, H: \langle A,B \rangle \to \mathbb{R}$. Тогда $(g \circ f)'(a) = H(a) = G(f(a)) \cdot F(a) = g'(f(a)) \cdot f'(a)$.

Замечание 14.4.2. Это "правило цепочки".

$$(g \circ h \circ f)'(a) = g'(h \circ f(a)) \cdot h'(f(a)) \circ f'(a)$$

Теорема 14.4.3 (Арифметические операции). $f, g : \langle A, B \rangle \to \mathbb{R}, a \in \langle A, B \rangle, f, g$ — дифференцируемы в точке a. Тогда

1. $\forall \alpha, \beta \in \mathbb{R}$, то $\alpha f + \beta g$ – дифференцируемая в точке a функция и

$$(\alpha f + \beta g)'(a) = \alpha f'(a) + \beta g'(a)$$

2. $f \cdot g$ – дифференцируема в точке a и

$$(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$$

3. если $g(a) \neq 0$, то $\frac{f}{g}$ – дифференцируема в точке a и

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{g^2(a)}$$

Доказательство. 1. $(\alpha f + \beta g)'(a) = \lim_{x \to a} \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(a)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(a)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(a)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(a)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(a)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(a)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(a)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(a)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(a)) - (\alpha f(a) + \beta g(a))}{x - a} = \frac{(\alpha f(x) + \beta g(a))}{x - a} = \frac{(\alpha f$

$$= \lim_{x \to a} \left(\alpha \cdot \frac{f(x) - f(a)}{x - a} + \beta \cdot \frac{g(x) - g(a)}{x - a} \right) = \alpha \lim_{x \to a} \frac{f(x) - f(a)}{x - a} + \beta \lim_{x \to a} \frac{g(x) - g(a)}{x - a} = \alpha f'(a) + \beta g'(a)$$

2. Докажем частный случай g = f, т.е. докажем $(f^2)'(a) = 2f'(a)f(a)$. Возьмем $h(t) = t^2$, тогда $f^2(x) = (h \circ f)(x)$. Тогда по предыдущей теореме

$$(f^2)'(a) = h'(f(a)) \cdot f'(a) = 2 \cdot f(a) \cdot f'(a)$$

Вернемся к общей формуле:

$$f \cdot g = \frac{1}{4}((f+g)^2 - (f-g)^2) \Rightarrow (f \cdot g)'(a) = \frac{1}{4}((f+g)^2 - (f-g)^2)'(a) =$$

$$= \frac{1}{4}(2 \cdot (f(a) + g(a)) \cdot (f'(a) + g'(a)) - 2(f(a) - g(a)) \cdot (f'(a) - g'(a))) =$$

$$= \frac{1}{2}(2f(a) \cdot g'(a) + 2f'(a) \cdot g(a)) = f(a)g'(a) + f'(a)g(a)$$

Упражнение 14.4.4. Получить эту формулу непосредственно из определения производной

3.
$$\left(\frac{1}{g}\right)'(a) = -\frac{g'(a)}{g^2(a)}$$
. Возьмем $h(t) = \frac{1}{t} \Rightarrow \frac{1}{g(x)} = (h \circ g)(x)$

$$\left(\frac{1}{g}\right)'(a) = h'(g(a)) \cdot g'(a) = -\frac{1}{g^2(a)} \cdot g'(a)$$

Теперь $f \cdot \frac{1}{q}$.

$$\left(\frac{f}{g}\right)'(a) = \left(f \cdot \frac{1}{g}\right)'(a) = f'(a) \cdot \frac{1}{g(a)} + f(a) \cdot -\frac{g'(a)}{g^2(a)} = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}$$

Следствие 14.4.5.

$$(f \cdot (h \cdot g))'(a) = f'(a) \cdot (h \cdot g)(a) + f(a) \cdot (h \cdot g)'(a) = f'(a) \cdot h(a) \cdot g(a) + f(a)(h'(a)g(a) + h(a)g'(a)) =$$

$$= f'(a)h(a)g(a) + f(a)h'(a) + g(a) + f(a)h(a)g'(a)$$

Теорема 14.4.6 (Дифференцирование обратной функции). f – строго монотонная непрерывная функция на $\langle A, B \rangle$, $a \in \langle A, B \rangle$, f – дифференцируема в точке a и $f'(a) \neq 0$. Тогда f^{-1} – дифференцируема в точке f(a) и $(f^{-1})'(f(a)) = \frac{1}{f'(a)}$.

Замечание 14.4.7. Геометрический смысл. Рисунок: ТООО

Доказательство. $g(x) = f^{-1}(x), f(a) = b.$ $f : \langle A, B \rangle \xrightarrow{\text{на}} \langle C, D \rangle, g : \langle C, D \rangle \xrightarrow{\text{на}} \langle A, B \rangle$ – непрерывны. f – дифференцируема, тогда $\exists F(x) : \langle A, B \rangle$ непрерывная в точке a

$$F(a) = f'(a), f(x) - f(a) = F(x)(x - a)$$

f строго монотонна $\Rightarrow \forall x \neq a \ f(x) \neq f(a) \Rightarrow F(x) \neq 0$ если $x \neq a$ и по условию $f'(a) = F(a) \neq 0$, т.е. $F(x) \neq 0 \ \forall x \in \langle A, B \rangle$

$$x = g(y) \ (y = f(x))$$

Тогда $y-b=f(x)-f(a)=F(x)(x-a)=F(g(y))(g(y)-g(b))\Rightarrow g(y)-g(b)=\frac{1}{F(g(y))}(y-b)=H(y)(y-b)$

H определена на (C, D), непрерывна в точке $b = f(a) \Rightarrow g'(b) = H(b) = \frac{1}{F(g(b))} = \frac{1}{F(a)} = \frac{1}{f'(a)}$

14.5. Формулы для вычисления производных

 $f'(a), a \in E \ a \mapsto f'(a)$

1. $f(x) \equiv 1, a \in \mathbb{R}$

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{1 - 1}{x - a} = 0$$

2. $f(x) = b^x, b > 0, a \in \mathbb{R}$

$$f'(x) = \lim_{x \to a} \frac{b^x - b^a}{x - a} = \lim_{x \to a} b^a \cdot \frac{b^{x - a} - 1}{x - a} = b^a \cdot \ln a$$

B частности, $(e^x)' = e^x$

3. $f(x) = \log_b x, b > 0, b \neq 1, a \in (0, +\infty)$

$$\lim_{x \to a} \frac{\log_b x - \log_b a}{x - a} = \lim_{x \to a} \frac{\log_b \frac{x}{a}}{x - a}$$

$$\frac{x}{a} \xrightarrow[x \to a]{} 1 \Rightarrow \log_b \frac{x}{a} = \frac{\ln \frac{x}{a}}{\ln b} = \frac{\ln \left(1 + \left(\frac{x}{a} - 1\right)\right)}{\ln b} \sim \frac{\frac{x}{a} - 1}{\ln b}$$

$$\Rightarrow \lim_{x \to a} \frac{\log_b \frac{x}{a}}{x - a} = \lim_{x \to a} \frac{\frac{x}{a} - 1}{(x - a)\ln b} = \lim_{x \to a} \frac{x - a}{a(x - a)\ln b} = \frac{1}{a\ln b}$$

Значит

$$(\log_b x)' = \frac{1}{x \ln b}$$

B частности, $(\ln x)' = \frac{1}{x}$

4. $f(x) = x^{\alpha}, \alpha \neq 0$

- $\alpha \in \mathbb{Z} \setminus \mathbb{N}, x \in \mathbb{R} \setminus \{0\}$ $\alpha \in \mathbb{Q}, \alpha = \frac{m}{2n+1}, n \in \mathbb{N}, x \in \mathbb{R}(\alpha > 0), x \in \mathbb{R} \setminus \{0\}(\alpha < 0)$
 - $\alpha \in \mathbb{R} \setminus \mathbb{Q}, x \in [0, +\infty)(\alpha > 0), x \in (0, +\infty)(\alpha < 0)$

$$\lim_{x \to a} \frac{x^{\alpha} - a^{\alpha}}{x - a} = \lim_{x \to a} a^{\alpha} \cdot \frac{\left(\frac{x}{a}\right)^{\alpha} - 1}{x - a} = \lim_{x \to a} a^{\alpha} \cdot \frac{\left(1 + \left(\frac{x}{a} - 1\right)\right)^{\alpha} - 1}{x - a} = \lim_{x \to a} a^{\alpha} \cdot \frac{\alpha \cdot \left(\frac{x}{a} - 1\right)}{x - a} = \lim_{x \to a} a^{\alpha} \cdot \frac{\alpha \cdot (x - a)}{a(x - a)} = \alpha \cdot a^{\alpha - 1}$$

$$f'(0) = \lim_{x \to 0} \frac{x^{\alpha}}{x} = \lim_{x \to 0} x^{\alpha - 1} = \begin{cases} 0, \alpha > 1 \\ 1, \alpha = 1 \\ \infty, \alpha < 1 \end{cases}$$

Выводы: $(x^{\alpha})' = \alpha \cdot x^{\alpha-1}$ (с точностью до области определения функции).

5. $f(x) = \sin x, a \in \mathbb{R}$

$$f'(a) = \lim_{x \to a} \frac{\sin x - \sin a}{x - a} = \lim_{x \to a} \frac{2 \sin \frac{x - a}{2} \cos \frac{x + a}{2}}{x - a} = \lim_{x \to a} 2 \frac{\frac{x - a}{2} \cdot \cos a}{x - a} = \cos a$$

6. $f(x) = \cos x$

$$(\cos x)' = \left(\sin\left(\frac{\pi}{2} - x\right)\right)' = \cos\left(\frac{\pi}{2} - x\right) \cdot \left(\frac{\pi}{2} - x\right)' = -\sin x$$

7. $f(x) = \operatorname{tg} x, a \neq \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$

$$(\operatorname{tg} x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{(\sin x)'\cos x - \sin x(\cos x)'}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

8. $f(x) = \operatorname{ctg} x, a \neq \pi k, k \in \mathbb{Z}$

$$(\operatorname{ctg} x)' = \left(\operatorname{tg}\left(\frac{\pi}{2} - x\right)\right)' = \frac{1}{\cos\left(\frac{\pi}{2} - x\right)} \cdot \left(\frac{\pi}{2} - x\right)' = -\frac{1}{\sin^2 x}$$

9. $f(x) = \arcsin x, x \in [-1, 1]$. Пусть $g(y) = \sin y \Rightarrow b = \arcsin a, g'(b) = \cos b > 0$, т.к. $b \in [-\frac{\pi}{2}, \frac{\pi}{2}]$

$$f'(a) = \frac{1}{g'(b)} = \frac{1}{\cos b} = \frac{1}{\sqrt{1 - \sin^2 b}} = \frac{1}{\sqrt{1 - a^2}}$$
$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}, x \in (-1, 1)$$

10.
$$(\arccos x)' = (\frac{\pi}{2} - \arcsin x) = -\frac{1}{\sqrt{1-x^2}}, x \in (-1, 1)$$

11.
$$f(x) = \arctan x, g(y) = \operatorname{tg} y, b = \arctan a, b \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$f'(a) = \frac{1}{g'(b)} = \cos^2 b = \frac{1}{\operatorname{tg}^2 b + 1} = \frac{1}{a^2 + 1}$$
$$(\operatorname{arctg} x)' = \frac{1}{1 + x^2}$$

12.
$$(\operatorname{arcctg} x)' = (\frac{\pi}{2} - \operatorname{arctg} x)' = -\frac{1}{x^2+1}$$

14.6. Теоремы о средних

Теорема 14.6.1 (Теорема Ферма). $a \in (A, B), f : \langle A, B \rangle \to \mathbb{R}$ – дифференцируема в точке a. Если $f(a) = \max_{a \in \langle A, B \rangle} f$ или $f(a) = \min_{a \in \langle A, B \rangle} f$, то f'(a) = 0. Геометрический смысл:

Рис. 1: Горизонтальная касательная

Доказательство. $f(a) = \max_{\langle A,B \rangle} f \Rightarrow f(x) - f(a) \leqslant 0 \ \forall x \in \langle A,B \rangle$. Если x > a, то $\frac{f(x) - f(a)}{x - a} \leqslant 0$

$$f'_{+}(a) = \lim_{x \to a+} \frac{f(x) - f(a)}{x - a} \le 0$$

Если x < a, то $\frac{f(x)-f(a)}{x-a} \geqslant 0$

$$f'_{-}(a) = \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} \ge 0$$

f дифференцируема в точке $a\Rightarrow f'_{-}(a)=f'_{+}(a)=f'(a)\Rightarrow f'(a)=0$

Теорема 14.6.2 (Теорема Ролля). $f : [a, b] \to \mathbb{R}$. Если

- 1. f дифференцируема на (a,b) (т.е. дифференцируема в каждой точке).
- 2. непрерывна на [a,b]
- 3. f(a) = f(b)

Тогда $\exists c \in (a,b) : f'(c) = 0$

Рис. 2: Теорема Ролля

Доказательство. f непрерывна на $[a,b] \Rightarrow f$ достигает наибольшего и наименьшего значения. Если a,b — те точки, в которых достигается наибольшее и наименьшее значение, то f постоянная на $[a,b] \Rightarrow f'(x) = 0 \ \forall x \in (a,b)$.

Если хотя бы в одной из точек a и b не достигает наибольшего или наименьшего значения, тогда одно из них достигается на (a,b). Тогда по теореме Ферма в этой точке производная равна нулю.

Замечание 14.6.3. Все три условия существенны.

Теорема 14.6.4 (Теорема Лагранжа или формула конечных приращений.). $f:[a,b] \to \mathbb{R}$. f непрерывна на [a,b], f — дифференцируема на (a,b). Тогда $\exists c \in (a,b): f(b) - f(a) = f'(c)(b-a)$ Геометрический смысл: $\frac{f(b)-f(a)}{b-a} = f'(c)$.

Рис. 3: Теорема Лагранжа

Доказательство. g(x) = f(x) - kx — непрерывна на [a, b], дифференцируема на (a, b). Хотим подобрать k : g(a) = g(b)

$$f(a) - ka = f(b) - kb \Rightarrow k = \frac{f(b) - f(a)}{b - a}$$

Тогда $g(x) = f(x) - x \cdot \frac{f(b) - f(a)}{b - a}$ подходит под условия теоремы Ролля. Тогда $\exists c \in (a, b) : g'(c) = 0$.

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a} \Rightarrow \exists c \in (a, b) : f'(c) = \frac{f(b) - f(a)}{b - a}$$

Теорема 14.6.5 (Теорема Коши). $f,g:[a,b] \to \mathbb{R}, f,g$ – непрерывны на [a,b], дифференцируемы на $(a,b), \ \forall x \in (a,b) \ g'(x) \neq 0$. Тогда $\exists c \in (a,b) : \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$

Доказательство. h(x) = f(x) - kg(x) — непрерывна на [a,b], дифференцируема на (a,b). Подберем k:h(a)=h(b)

$$f(a) - kg(a) = f(b) - kg(b) \Rightarrow k = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Тогда $h(x) = f(x) - g(x) \cdot \frac{f(b) - f(a)}{g(b) - g(a)} \Rightarrow \exists c \in (a, b) : h'(c) = 0$

$$f'(c) - g'(c) \cdot \frac{f(b) - f(a)}{g(b) - g(a)} = 0$$

Замечание 14.6.6. 1. Точка <math>c может быть не единственной.

- 2. Теорема Лагранжа частный случай теоремы Коши, теорема Ролля частный случай теоремы Лагранжа.
- 3. Теорему Лагранжа можно записать в следующем виде:

$$\frac{f(b) - f(a)}{b - a} = f'(a + \Theta \cdot (b - a)), \Theta \in (0, 1)$$

Следствие 14.6.7 (Оценка конечных приращений). f непрерывна на [a,b], дифференцируема на (a,b). Если $\exists m, M \in \mathbb{R} : m \leq f'(x) \leq M \ \forall x \in (a,b)$, тогда

$$m(b-a) \leqslant f(b) - f(a) \leqslant M(b-a)$$

В частности, если $\exists M \in \mathbb{R} : |f'(x)| \leq M \ \forall x \in (a,b)$, то

$$|f(b) - f(a)| \le M \cdot (b - a)$$

Доказательство. По теореме Лагранжа $\exists c \in (a,b) : f(b) - f(a) = f'(c)(b-a)$

$$m(b-a) \leqslant f(b) - f(a) = f'(c)(b-a) \leqslant M(b-a)$$

Следствие 14.6.8. Если $\forall x \in (a,b) \ f'(x) \ge 0$, то f нестрого монотонно возрастает.

Доказательство. $x_1 < x_2 \in (a, b)$. $\exists c \in (x_1, x_2)$:

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1) \Rightarrow f(x_2) \ge f(x_1)$$

Следствие 14.6.9. Если $\forall x \in (a,b) \ f'(x) > 0$, то f строго возрастает.

Следствие 14.6.10. Если $\forall x \in (a,b)$ $f'(x) \leq 0$, то f нестрого монотонно убывает.

 $Cnedcmeue\ 14.6.11.$ Если $\forall x \in (a,b)\ f'(x) < 0$, то f строго монотонно убывает.

Замечание 14.6.12. Если f дифференцируема на (a,b) и f строго монотонно убывает ⇒ $f'(x) < 0 \ \forall x \in (a,b)$ — вообще говоря, неверно.

 $f(x) = -x^3, f'(x) = -3x^2 \le 0$ и равенство достигается при x = 0.

Теорема 14.6.13 (Теорема Дарбу). $f:[a,b] \to \mathbb{R}$ – дифференцируема на [a,b]. Пусть C лежит строго между f'(a) и f'(b). Тогда $\exists c \in (a,b): f'(c) = C$

Доказательство. 1. C = 0. Для определенности f'(a) < 0 < f'(b). f непрерывна на $[a,b] \Rightarrow f$ достигает наибольшего и наименьшего значения на [a,b]. При таких знаках производной наименьшее значение достигается на $(a,b) \Rightarrow$ в такой точке минимума f'(c) = 0 (по теореме Ферма).

2. $C \neq 0$. Рассмотрим h(x) = f(x) - Cx.

$$h'(a) = f'(a) - C, h'(b) = f'(b) - C \Rightarrow h'(a)$$
 и $h'(b)$ – разных знаков

Тогда по предыдущему пункту $\exists c \in (a,b) : h'(c) = 0 \Rightarrow f'(c) = C$

Теорема 14.6.14 (Правило Лопиталя). Пусть $-\infty \le a < b \le +\infty$. $f, g:(a, b) \to \mathbb{R}$, дифференцируемы на $(a, b), g'(x) \ne 0 \ \forall x \in (a, b)$ и $\lim_{x \to b^{-}} f(x) = \lim_{x \to b^{-}} g(x) = 0$. Если $\lim_{x \to b^{-}} \frac{f'(x)}{g'(x)} = l \in \overline{\mathbb{R}}$, то $\exists \lim_{x \to b^{-}} \frac{f(x)}{g(x)} = l$

Доказательство. g дифференцируема на $(a,b) \Rightarrow g$ непрерывна на (a,b). Кроме того, $g'(x) \neq 0 \ \forall x \in (a,b) \Rightarrow g$ строго монотонна на $(a,b) \Rightarrow$ знакопостоянна на (a,b) (и ни в какой точке не равна нулю).

По Гейне: $\forall \{x_n\} : x_n \to b, x_n \in (a,b) \ g(x_n) \to 0$. Возьмем строго возрастающую последовательность $\{x_n\} : x_n \in (a,b), x_n \to b$. Тогда $\{g(x_n)\}$ строго монотонна. Тогда по теореме Штольца

$$\lim_{n \to \infty} \frac{f(x_n)}{g(x_n)} = \lim_{n \to \infty} \frac{f(x_n) - f(x_{n-1})}{g(x_n) - g(x_{n-1})}$$

если предел справа существует.

По теореме Коши:

$$\exists c_n \in (x_{n-1}, x_n) : \frac{f(x_n) - f(x_{n-1})}{g(x_n) - g(x_{n-1})} = \frac{f'(c_n)}{g'(c_n)}$$

$$\lim_{n\to\infty} \frac{f'(c_n)}{g'(c_n)} = \lim_{x\to b^-} \frac{f'(x)}{g'(x)} - \text{существует и равен } l$$

T.K. $x_n \to b \Rightarrow c_n \to b$.

Теорема 14.6.15 (правило Лопиталя для бесконечностей). Условия те же, но $\lim_{x\to b^-} f(x) = \lim_{x\to b^-} g(x) = +\infty$. Тогда если $\lim_{x\to b^-} \frac{f'(x)}{g'(x)} = l \in \overline{\mathbb{R}}$, то $\exists \lim_{x\to b^-} \frac{f(x)}{g(x)} = l$.

Замечание 14.6.16. Обратить правило Лопиталя нельзя. $f(x) = x + \sin x, g(x) = x$

$$\lim_{x \to +\infty} \frac{x + \sin x}{x} = \lim_{x \to +\infty} \left(1 + \frac{\sin x}{x} \right) = 1$$

Но

$$\frac{f'(x)}{g'(x)} = \frac{1 + \cos x}{1} \Rightarrow \nexists \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$$

14.7. Производные высших порядков

f дифференцируема на $E. x \mapsto f'(x)$ область определения E.

Если f'(x) дифференцируема на E_1 , то f дифференцируема на E_1 дважды.

Def 14.7.1. Второй производной функции f в точке a называется (f')'(a) = f''(a), третья производная -f'''(a) = (f'')'(a). n-ая производная $-(f^{(n-1)})' = f^{(n)}$

Пример 14.7.2. $(x^3)^{\prime\prime\prime} = (3x^2)^{\prime\prime} = (6x)^{\prime} = 6$

Пример 14.7.3. $(\sin x)^{(14)} = (\cos x)^{(13)} = (-\sin x)^{(12)} = (-\cos x)^{(11)} = (\sin x)^{(10)} = (\sin x)'' = -\sin x$

Теорема 14.7.4 (Арифметические действия с производными высших порядков). f и g n раз дифференцируемы в точке a. Тогда

1. $\forall \alpha, \beta \in \mathbb{R} \ \alpha f + \beta g - n$ раз дифференцируема и

$$(\alpha f + \beta g)^{(n)}(a) = \alpha \cdot f^{(n)}(a) + \beta \cdot g^{(n)}(a)$$

2. $f \cdot g - n$ раз дифференцируема в точке a и

$$(fg)^{(n)}(a) = \sum_{k=0}^{n} C_n^k \cdot f^{(k)}(a) \cdot g^{(n-k)}(a)$$

Доказательство. 1. База при n = 1 – верно.

Индукционный переход: пусть верно для l. Тогда для l+1:

$$(\alpha f + \beta g)^{(l+1)} = ((\alpha f + \beta g)^{(l)})' = (\alpha f^{(l)} + \beta g^{(l)})' = \alpha f^{(l+1)} + \beta g^{(l+1)}$$

2. База при n = 1: (fg)' = fg' + f'g.

Индукционный переход: пусть верно для l

$$(fg)^{(l+1)} = ((fg)^{(l)})' = \left(\sum_{k=0}^{l} C_{l}^{k} f^{(k)} g^{(l-k)}\right)' = \sum_{k=0}^{l} C_{l}^{k} \left(f^{(k)} g^{(l-k)}\right)' =$$

$$= \sum_{k=0}^{l} C_{l}^{k} \left(f^{(k+1)} g^{(l-k)} + f^{(k)} g^{(l+1-k)}\right) = \sum_{k=0}^{l} C_{l}^{k} f^{(k+1)} g^{(l-k)} + \sum_{k=0}^{l} C_{l}^{k} f^{(k)} g^{(l+1-k)} =$$

$$= \sum_{j=1}^{l+1} C_{l}^{j-1} f^{(j)} g^{(l+1-j)} + \sum_{k=0}^{l} C_{l}^{k} f^{(k)} g^{(l+1-k)} =$$

$$= C_{l}^{l} f^{(l+1)} g + \sum_{j=1}^{l} \left(C_{l}^{j-1} + C_{l}^{j}\right) f^{(j)} g^{(l+1-j)} + C_{l}^{0} f g^{(l+1)}$$

$$= \sum_{k=0}^{l+1} C_{l+1}^{k} f^{(k)} g^{(l+1-k)}$$

Утверждение 14.7.5. $(f(\alpha x + \beta))^{(n)} = \alpha^n + f^{(n)}(\alpha x + \beta)$

Def 14.7.6. f дифференцируема на E и f' непрерывна на E. Тогда f называется непрерывно дифференцируемой.

 $f \in C^1(E)$ – непрерывно дифференцируемые функции.

 $f \in C^2(E)$ – дважды непрерывно дифференцируемые функции.

 $f \in C^n(E)$ – n раз непрерывно дифференцируемые функции.

 $f \in C^{\infty}(E)$ – бесконечно непрерывно дифференцируемые функции.

Пример 14.7.7. $f(x) = |x| \in C(\mathbb{R})$, но $f(x) \notin C^1(\mathbb{R})$

Пример 14.7.8. $f(x) = x^2 \in C^{\infty}(\mathbb{R})$

Пример 14.7.9. $f(x) = x^{\frac{4}{3}}$ на \mathbb{R} . $f'(x) = \frac{4}{3}x^{\frac{1}{3}}$ на \mathbb{R} . $f''(x) = \frac{4}{3} \cdot \frac{1}{3} \cdot x^{-\frac{2}{3}}$ на \mathbb{R} разрывна в нуле. Тогда $f(x) \in C^1(\mathbb{R})$, но $f(x) \notin C^2(\mathbb{R})$

Упражнение 14.7.10. $g(x) = \begin{cases} x^2, x \in \mathbb{Q} \\ 0, x \notin \mathbb{Q} \end{cases}$. Дифференцируема ли g(x) в нуле?

14.8. Формула Тейлора

P(x) многочлен степени не выше $n, a \in \mathbb{R}$

$$P(x) = \sum_{k=0}^{n} c_k (x - a)^k, c_i \in \mathbb{R}$$

 $c_0 = P(a)$

Теорема 14.8.1 (Формула Тейлора для многочлена). Пусть $n \in \mathbb{Z}_+, P$ – многочлен степени не выше n. Тогда $\forall a, x \in \mathbb{R}$

$$P(x) = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (x - a)^{k}$$

Доказательство. Проверим, что $((x-a)^k)^{(m)}\Big|_{x=a} = \begin{cases} 0, k \neq m \\ k!, k = m \end{cases}$.

k > m

$$((x-a)^k)^{(m)} = (k(x-a)^{k-1})^{(m-1)} = k...(k-m+1)(x-a)^{k-m} = 0$$

 $k < m \Rightarrow ((x - a)^k)^{(m)} = 0$

k = m

$$\left((x-a)^k\right)^{(k)} = k!$$

$$P(x) = \sum_{k=0}^{n} c_k (x - a)^k \Rightarrow P^{(m)}(a) = c_m \cdot m! \Rightarrow c_m = \frac{P^{(m)}(a)}{m!}$$

<u>Lm</u> 14.8.2. Пусть $E \subset \mathbb{R}, a \in E, g : E \to \mathbb{R}, n \in \mathbb{N}$. Предположим, что g дифференцируема в точке a n раз и $g(a) = g'(a) = g''(a) = g^{(n)}(a) = 0$. Тогда $g(x) = o((x-a)^n), x \to a$.

Доказательство. База: k = 1.g(a) = g'(a) = 0

$$g(x) = g(a) + g'(a)(x - a) + o(x - a), x \rightarrow a \Rightarrow g(x) = o(x - a), x \rightarrow a$$

Индукционный переход: Пусть при n=k выполняется. При n=k+1 g k+1 раз дифференцируема в точке a и $g(a)=g'(a)=...=g^{(k+1)}(a)=0$

$$g'(a) = (g')'(a) = \dots = (g')^{(k)}(a) = 0 \Rightarrow g'(x) = o((x-a)^k), x \to a$$

 $|g'(x)| \le \varepsilon |x-a|^k, |x-a| < \delta.$ По формуле конечных приращений

$$\exists \Theta : g(x) - g(a) = g'(a + \Theta(x - a)) \cdot (x - a)$$

$$|a+\Theta(x-a)-a|=\Theta(x-a)<\delta$$
. Тогда $|g'(a+\Theta(x-a))|\leqslant \varepsilon\cdot |x-a|^k$

$$|g(x)| = |g'(a + \Theta(x - a)) \cdot (x - a)| \le \varepsilon |x - a|^k \cdot |x - a| = \varepsilon |x - a|^{k+1}$$

$$\Rightarrow g(x) = o((x-a)^{n+1})$$

Теорема 14.8.3 (Формула Тейлора). $E \subset \mathbb{R}, a \in E, f : E \to \mathbb{R}, n \in \mathbb{N}$. Пусть f n раз дифференцируема в точке a. Тогда

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \underbrace{o((x-a)^n)}_{n}, x \to a$$

Доказательство. Положим $P(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} \cdot (x-a)^{k}$. По формуле Тейлора для многочлена:

$$P(x) = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (x - a)^k \Rightarrow f^{(k)}(a) = P^{(k)}(a) \ \forall k = 0, ..., n$$

Возьмем g = f - P.

$$g(a) = f(a) - P(a) = 0$$

$$g'(a) = f'(a) - P'(a) = 0$$

$$g^{(n)}(a) = f^{(n)}(a) - P^{(n)}(a) = 0$$

 \Rightarrow По лемме $g(x) = o((x-a)^n), x \rightarrow a \Rightarrow f(x) = P(x) + o((x-a)^n), x \rightarrow a$, т.е.

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + o((x-a)^{n})$$

Теорема 14.8.4 (Формула Тейлора-Лагранжа). $a, x \in \mathbb{R}, a \neq x$. Обозначим $\Delta_{a,x}$ – отрезок [a,x] или [x,a], $\widetilde{\Delta}_{a,x}$ – интервал с концами a и x. $n \in \mathbb{Z}_+$, f n+1 раз дифференцируема в на $\langle A,B \rangle$, $a,x \in \langle A,B \rangle$. Тогда $\exists c \in \widetilde{\Delta}_{a,x}$, для которой

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

остаток в форме Лагранжа

Замечание 14.8.5. Точка c зависит от x, поэтому, вообще говоря, не многочлен. Можно взять $c = a + \Theta(x - a), \Theta(0, 1)$

Доказательство. $t \in \Delta_{a,x}$. Пусть $\varphi(t) = (x-t)^{n+1}$, $F(t) = f(x) - f(t) - \sum_{k=1}^{n} \frac{f^{(k)}(t)}{k!} (x-t)^{k}$. Тогда $t \in \widetilde{\Delta}_{a,x}$.

$$F'(t) = 0 - f'(t) - \sum_{k=1}^{n} \left(\frac{f^{(k+1)}(t)}{k!} (x - t)^{k} - \frac{f^{(k)}(t)}{k!} \cdot k \cdot (x - t)^{k-1} \right)$$

$$= -f'(t) + \sum_{k=1}^{n} \frac{f^{(k)}(t)}{(k-1)!} (x - t)^{k-1} - \sum_{k=1}^{n} \frac{f^{(k+1)}(t)}{k!} (x - t)^{k}$$

$$= -f'(t) + \sum_{m=0}^{n-1} \frac{f^{(m+1)}(t)}{m!} (x - t)^{m} - \sum_{k=1}^{n} \frac{f^{(k+1)}(t)}{k!} (x - t)^{k}$$

$$= -f'(t) + f'(t) - \frac{f^{(n+1)}(t)}{(n)!} (x - t)^{n} = -\frac{f^{(n+1)}(t)}{n!} (x - t)^{n}$$

По теореме Коши $\exists c \in \widetilde{\Delta}_{a,x}$:

$$\frac{F(a)}{(x-a)^{n+1}} = \frac{F(a) - F(x)}{\varphi(a) - \varphi(x)} = \frac{F'(c)}{\varphi'(c)} = \frac{\frac{-f^{(n+1)}(c)}{n!}(x-c)^n}{-(n+1)(x-c)^n} = \frac{f^{(n+1)}(c)}{(n+1)!}$$

$$\Rightarrow F(a) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

3амечание 14.8.6. Формула Тейлора-Пеано ← формула Тейлора-Лагранжа. f-n раз дифференцируема в точке a, $f^{(n)}$ – непрерывна в точке a.

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n)}(c(x))}{n!} (x-a)^n = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n)}(c(x))}{n!} (x-a)^n - \frac{f^{(n)}(a)}{n!} (x-a)^n$$

Рассмотрим:

$$\frac{f^{(n)}(c(x)) - f^{(n)}(a)}{n!} (x - a)^n, c(x) \in \widetilde{\Delta}_{a,x} \Rightarrow |c(x) - a| < |x - a|$$

Значит, если $x \to a$, то $c(x) \to a$. $f^{(n)}(c(x)) \xrightarrow[x \to a]{} f^{(n)}(a)$ (по непрерывности). Тогда $\frac{f^{(n)}(c(x))-f^{(n)}(a)}{n!}(x-a)^n = o((x-a)^n), x \to a$

Замечание 14.8.7. Обозначения: $T_{a,n}f$ – многочлен Тейлора фукнции f в точке a порядка n. Остаток: $R_{a,n}f(x)\left(f(x)-T_{a,n}f\right)$

14.9. Формулы Тейлора-Маклорена

Пусть $n \in \mathbb{Z}_+$. Выведем формулы при $x \to 0$.

1.
$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n)$$

Доказательство. $f(x) = e^x, f^{(x)} = e^x \ \forall x \in \mathbb{N}, x \in \mathbb{R} \Rightarrow f^{(k)}(0) = 1$

$$T_{0,n}f(x) = \sum_{k=0}^{n} \frac{x^k}{k!}$$

2.
$$\sin x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

Доказательство.
$$f(x) = \sin x$$

 $f^{(m)}(x) = \sin \left(x + \frac{\pi m}{2}\right) \ \forall m \in \mathbb{Z}_+$

Доказательство. m = 0 верно (база).

$$f^{(m+1)}(x) = \cos\left(x + \frac{\pi m}{2}\right) = \sin\left(x + \frac{\pi m}{2} + \frac{\pi}{2}\right) = \sin\left(x + \frac{\pi(m+1)}{2}\right)$$

$$f^{(m)}(0) = \sin \frac{\pi m}{2} = \begin{cases} 0, m : 2\\ (-1)^{\frac{m-1}{2}}, \text{иначе} \end{cases}$$

$$f(x) = 0 + x + -\frac{x^3}{3!} + 0 + \frac{x^5}{5!} + (*)$$

(*): если n — нечетное, то $(*)=(-1)^n\frac{x^n}{n!}+o(x^n)$. Заметим, что $T_{0,2k+1}f=T_{0,2k+2}f=\sum_{k=0}^n(-1)^k\frac{x^{2k+1}}{(2k+1)!}$. Если n — четное, то последнее слагаемое в $T_{0,n}f$ равно 0

3.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1}) = \sum_{k=0}^n (-1)^k \frac{x^{2k}}{(2k)!} + o(x^{2n+1})$$

4.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n+1} \frac{x^n}{n} + o(x^n) = \sum_{k=1}^n (-1)^{k+1} \frac{x^k}{k} + o(x^n)$$

Доказательство. $f(x) = \ln(1+x), f'(x) = \frac{1}{1+x}, f'' = -\frac{1}{(1+x)^2}, f'''(x) = \frac{2}{(1+x)^3}$

$$\Rightarrow f^{(m)}(x) = (-1)^{m+1} \frac{(m-1)!}{(1+x)^m}, x > -1$$

$$\Rightarrow f^{(m)}(0) = (-1)^{m+1} \cdot (m-1)!$$

Рассмотрим m-тое слагаемое:

$$\frac{f^{(m)}(0)}{m!}(x-0)^m = \frac{(-1)^{m+1}(m-1)!}{m!}x^m = \frac{(-1)^{m+1}}{m}x^m$$

Гипотеза 14.9.1. У четных функций только четные степени, у нечетных функций – только нечетные. У функций общего вида – и те, и другие.

Упражнение 14.9.2. Объяснить это.

5.
$$(1+x)^{\alpha} = \sum_{k=0}^{n} C_{\alpha}^{k} x^{k} + o(x^{n}). \ \alpha \in \mathbb{R}, k \in \mathbb{Z}_{+}. \ C_{\alpha}^{k} = \frac{\alpha(\alpha-1)(\alpha-2)...(\alpha-k+1)}{k!}$$

Замечание 14.9.3. При $\alpha \in \mathbb{N}$ $f(x) = (1+x)^{\alpha} = T_{0,\alpha}f(x)$

Доказательство. $f(x) = (1+x)^{\alpha}$

$$f^{(m)}(x) = \alpha(\alpha - 1)(\alpha - 2)...(\alpha - m + 1)(1 + x)^{\alpha - m}$$
$$f^{(m)}(0) = \alpha(\alpha - 1)(\alpha - 2)...(\alpha - m + 1)$$
$$f(0) = 1$$

$$T_{0,n}f(x) = \sum_{k=0}^{n} \frac{\alpha(\alpha-1)...(\alpha-k+1)}{k!} x^{k}$$

Утверждение 14.9.4. $\forall n \in \mathbb{N} \exists c \in (0,1)$:

$$e^{1} = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \frac{e^{c}}{(n+1)!}$$

Следствие 14.9.5. $e - \left(1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!}\right) < \frac{3}{(n+1)!}$

Следствие 14.9.6. е – иррациональное число.

Доказательство. Пусть $e \in \mathbb{Q}, e \in (2,3), e = \frac{m}{n}, m, n \in \mathbb{N}$.

$$\frac{m}{n} = e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \frac{e^c}{(n+1)!}, c \in (0,1) = 0$$

$$=\underbrace{m(n-1)!}_{\in \mathbb{Z}} = \underbrace{n! + n! + \frac{n!}{2!} + \dots + 1}_{\in \mathbb{Z}} + \underbrace{\frac{e^c}{n+1}}_{} \Rightarrow \underbrace{\frac{e^c}{n+1}}_{} \in Z$$

HO $0 < e^c < e < 3, n + 1 \ge 3$!?

Утверждение 14.9.7 (Критерий постоянства). Пусть f непрерывна на (A, B) и дифференцируема на (A, B). Тогда равносильны следующие утверждения:

- 1. f постоянна на $\langle A, B \rangle$
- 2. $f' = 0 \ \forall x \in (A, B)$

Доказательство. 1) \Rightarrow 2) очевидно.

2) \Rightarrow 1). $f'(x) = 0 \ \forall x \in (A, B) \Rightarrow f'(x) \geqslant 0, f'(x) \leqslant 0 \Rightarrow f$ нестрого убывает и нестрого возрастает $\Rightarrow f$ – постоянна.

Пример 14.9.8. $\arccos x + \arcsin x = \frac{\pi}{2}$.

Доказательство. $f(x) = \arccos x + \arcsin x$. $f'(x) = -\frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{1+x^2}} = 0 \ \forall x \in (-1,1) \Rightarrow f$ – постоянна.

$$f(0) = \frac{\pi}{2} + 0 = \frac{\pi}{2} \Rightarrow f(x) = \frac{\pi}{2} \ \forall x \in [-1, 1]$$

Утверждение 14.9.9. f, g непрерывны на [A, B) и дифференцируемы на (A, B). Если $f(A) = g(A), f'(x) > g'(x) \ \forall x \in (A, B)$. Тогда

$$f(x) > g(x) \ \forall x \in (A, B)$$

Доказательство. h = f - g непрерывна на [A, B), дифференцируема на $(A, B), h'(x) > 0 \ \forall x \in (A, B), h(A) = 0 \Rightarrow h$ строго возрастает $\Rightarrow h(x) > 0 \ \forall x \in (A, B)$

Пример 14.9.10. $\cos x > 1 - \frac{x^2}{2} \ \forall x > 0$.

Доказательство. $\cos 0 = 1 - \frac{0^2}{2}, (\cos x)' = -\sin x, (1 - \frac{x^2}{2})' = -x. \sin x < x \ \forall x > 0 \Leftrightarrow -\sin x > -x \Rightarrow \cos x > 1 - \frac{x^2}{2}$

Def 14.9.11. $E \subset \mathbb{R}, f : E \to \mathbb{R}, a \in E$.

- 1. Пусть $\exists \delta > 0 : \forall x \in (a \delta, a + \delta) \cap E \to f(x) \geqslant f(a)$. Тогда a mочка (локального) минимума f. Если выполнено $f(x) \leqslant f(a)$, то a точка (локального) максимума f.
- 2. Если $\forall x \in (a \delta, a + \delta) \setminus \{a\}$ неравенства строгие, то a точка строгого минимума или максимума.
- 3. Такие точки а называются точками (локального) экстремума.

Теорема 14.9.12 (Необходимое условие экстремума). $f: \langle A, B \rangle \to \mathbb{R}, a \in (A, B), f$ — дифференцируема в точке a. Если a является точкой экстремума f, то f'(a) = 0.

Доказательство. Пусть a — точка минимума. $\exists \delta > 0 : [a - \delta, a + \delta] \subset (A, B), f(x) \geqslant f(a) \ \forall x \in [a - \delta, a + \delta]$. Рассмотрим сужение $f|_{[a - \delta, a + \delta]}$. По теореме Ферма f'(a) = 0.

Def 14.9.13. Точки, в которых f' = 0 называются стационарными.

Def 14.9.14. Пусть $a \in (A, B)$. Будем называть а критической точкой (точкой, подозрительной на экстремум), если f'(a) = 0 или f не дифференцируема в точке a.

План исследования на наибольшее и наименьшее значение на отрезке:

- 1. Найти множество всех критических точек C.
- 2. Посчитать значения f в каждой точке из C и на концах отрезка.
- 3. Выбрать наибольшее и наименьшее.

Теорема 14.9.15 (Достаточное условие экстремума в терминах первой производной). $f: \overline{\langle A,B\rangle} \to \mathbb{R}, a \in (A,B), \delta: (a-\delta,a+\delta) \subset \langle A,B\rangle$. Пусть f непрерывна в точке a и дифференцируема на $(a-\delta,a) \cup (a,a+\delta)$

- 1. Если f'(x) < 0 при $x \in (a \delta, a), f'(x) > 0$ при $x \in (a, a + \delta),$ то a точка строгого минимума.
- 2. Если f'(x) > 0 при $x \in (a \delta, a), f'(x) < 0$ при $x \in (a, a + \delta),$ то a точка строгого максимума.

Доказательство. Докажем первое утверждение.

f строго убывает на $(a - \delta, a] \Rightarrow f(x) > f(a) \ \forall x \in (a - \delta, a)$

f строго возрастает на $[a, a + \delta) \Rightarrow f(x) > f(a) \ \forall x \in (a, a + \delta) \Rightarrow a$ — точка строгого локального минимума.

Замечание 14.9.16. Если f' не меняет знак на $(a - \delta, a) \cup (a, a + \delta)$, то f не имеет экстремума в точке a.

Доказательство. f монотонна на $(a - \delta, a + \delta)$

Замечание 14.9.17. Верно ли, что если f дифференцируема на (A,B) и в точке $a \in (A,B)$ f имеет строгий локальный минимум, то $\exists \delta : f'(x) < 0 \ \forall x \in (a-\delta,a)$ и $f'(x) > 0 \ \forall x \in (a,a+\delta)$ Спойлер: нет.

Пример 14.9.18.

$$f(x) = \begin{cases} x^2 \left(\sin \frac{1}{x} + 2\right), x \neq 0 \\ 0, x = 0 \end{cases}$$

f дифференцируема на \mathbb{R} . f(0) = 0 и f(x) > 0 $\forall x \neq 0 \Rightarrow 0$ точка строгого минимума.

$$f'(x) = 2x\left(\sin\frac{1}{x} + 2\right) + x^2\cos\frac{1}{x} \cdot -\frac{1}{x^2} = 2x\left(\sin\frac{1}{x} + 2\right) - \cos\frac{1}{x}$$

При $x \to 0+$: $2x\left(\sin\frac{1}{x}+2\right) \to 0$. А $\cos\frac{1}{x}$ может принимать все значения он [-1,1] при $x \in (0,\delta) \ \forall \delta > 0$

Теорема 14.9.19 (Достаточное условие экстремума в терминах второй производной). $f: \overline{\langle A,B\rangle} \to \mathbb{R}, a \in (A,B)$. Пусть f дважды дифференцируема в точке a и f'(a) = 0.

- 1. Если f''(a) > 0, то a точка строгого минимума.
- 2. Если f''(a) < 0, то a точка строгого максимума.

Доказательство. Докажем первое утверждение. Применим к f формулу Тейлора с остатком в форме Пеано:

$$f(x) = f(a) + f'(a) \cdot (x - a) + f''(a) \cdot \frac{(x - a)^2}{2} + o((x - a)^2)$$

$$f(x) - f(a) = f''(a) \cdot \frac{(x - a)^2}{2} + o((x - a)^2) = (x - a)^2 \cdot \frac{f''(a)}{2} (1 + o(1))$$

$$f(x) - f(a) = (x - a)^2 \frac{f''(a)}{2} (1 + o(1))$$

т.к. $1 + o(1) \xrightarrow[x \to a]{} 1$, то $\exists \delta > 0 : \forall x \in (a - \delta, a + \delta) \to (1 + o(1)) > 0$. Тогда $\forall x \in (a - \delta, a + \delta) \setminus \{a\}$ f(x) - f(a) > 0

Замечание 14.9.20. Если f''(a) = 0, то эта теорема не дает ответа на вопрос об экстремуме.

Теорема 14.9.21 (О связи экстремума со старшими производными). $f: \langle A, B \rangle, a \in (A, B), n \in \mathbb{N}$. Пусть f n раз дифференцируема в точке a, причем $f'(a) = f''(a) = \dots = f^{(n-1)}(a) = 0$. Тогда

- 1. Если n нечетно, то f не имеет экстремума в точке a.
- 2. Если n четно и $f^{(n)}(a) > 0$, то a точка строгого минимума.
- 3. Если n четно и $f^{(n)}(a) < 0$, то a точка строгого максимума.

14.10. Выпуклость

Def 14.10.1. $f: \langle A, B \rangle \to \mathbb{R}$

1. Пусть $\forall a,b \in \langle A,B \rangle$ и $\lambda \in (0,1)$ справедливо неравенство

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$

Тогда f называется выпуклой на $\langle A, B \rangle$

- $2.\ \, Eсли\$ знак в неравенстве строгий, то f строго выпукла.
- 3. Если знак " \geqslant " ,то f называется вогнутой на $\langle A, B \rangle$.
- 4. Если знак ">" ,то f называется строго вогнутой на $\langle A,B \rangle$.

Замечание 14.10.2. Не умаляя общности, a < b.

3амечание 14.10.3. Если a = b, то знак "="

Замечание 14.10.4. Иногда называются выпуклая вниз и выпуклая вверх.

Замечание 14.10.5. $x = \lambda a + (1 - \lambda)b$. При $\lambda \in (0, 1)$ точка x пробегает (a, b).

$$\lambda = \frac{b-x}{b-a}, 1-\lambda = \frac{x-a}{b-a}$$

То есть определение можно переписать так:

$$f(x) \leqslant \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a} \cdot f(b)$$

хорда, проходящая через (a,f(a)),(b,f(b))

т.е. график f лежит не выше, чем любая хорда.

3амечание 14.10.6. Пусть f и g – выпуклые на $\langle A, B \rangle$

- 1. f + g тоже выпуклая на $\langle A, B \rangle$
- 2. $\forall \alpha > 0 \ \alpha \cdot f$ выпуклая
- 3. $\forall \alpha < 0 \ \alpha \cdot f$ вогнутая.

<u>Lm</u> 14.10.7 (Лемма о трех хордах). $f: \langle A, B \rangle \to \mathbb{R}$. Тогда равносильны следующие утверждения:

- 1. f строго выпукла на $\langle A, B \rangle$
- 2. $\forall a, b, c \in \langle A, B \rangle : a < c < b$ выполняется

$$\frac{f(c) - f(a)}{c - a} < \frac{f(b) - f(c)}{b - c}$$

3. $\forall a, b, c \in \langle A, B \rangle : a < c < b$ выполнены неравенства:

$$\frac{f(c)-f(a)}{c-a} < \frac{f(b)-f(a)}{b-a} < \frac{f(b)-f(c)}{b-c}$$

Замечание 14.10.8. Рисунок **ТОДО**

 \square оказательство. 3) \Rightarrow 2) очевидно.

1) \Rightarrow 3). f строго выпукла. Положим $\lambda = \frac{b-c}{b-a} \in (0,1)$. Тогда $c = \lambda a + (1-\lambda)b$.

$$f(c) < \lambda f(a) + (1 - \lambda)f(b)$$

Перепишем это неравенство в двух разных формах:

$$f(c) - f(b) < \lambda(f(a) - f(b)) \Leftrightarrow f(b) - f(c) > \frac{b - c}{b - a}(f(b) - f(a)) \Leftrightarrow \frac{f(b) - f(c)}{b - c} > \frac{f(b) - f(c)}{b - a}$$

$$\frac{f(c) - f(a) < (1 - \lambda)(f(b) - f(a)) \Leftrightarrow f(c) - f(a) < \frac{c - a}{b - a}(f(b) - f(a)) \Leftrightarrow \frac{f(c) - f(a)}{c - a} < \frac{f(b) - f(a)}{b - a}$$
Глава #14.
56/65 Автор: Илья Дудников

2) \Rightarrow 1). Пусть $a,b \in \langle A,B \rangle$. Обозначим $c=\lambda a+(1-\lambda)b,\lambda \in (0,1)$. Тогда $\lambda=\frac{b-c}{b-a}$ и $1-\lambda=\frac{c-a}{b-a}$

$$\Rightarrow \frac{c-a}{1-\lambda} = \frac{b-c}{\lambda}$$

Тогда

$$\frac{f(c) - f(a)}{c - a} < \frac{f(b) - f(c)}{b - c} \Leftrightarrow \frac{f(c) - f(a)}{1 - \lambda} < \frac{f(b) - f(c)}{\lambda} \Leftrightarrow \lambda(f(c) - f(a)) < (1 - \lambda)(f(b) - f(c))$$

$$\Leftrightarrow \lambda f(c) - \lambda f(a) < f(b) - f(c) - \lambda f(b) + \lambda f(c) \Leftrightarrow f(c) < (1 - \lambda)f(b) + \lambda f(a)$$

Следствие 14.10.9. $f: \langle A, B \rangle \to \mathbb{R}, a \in \langle A, B \rangle$ и

$$F(x) = \frac{f(x) - f(a)}{x - a}$$

Тогда

- 1. Если f выпукла на $\langle A, B \rangle$, то F возрастает на $\langle A, B \rangle \setminus \{a\}$.
- 2. Если f строго выпукла на $\langle A, B \rangle$, то F строго возрастает на $\langle A, B \rangle \setminus \{a\}$.

Доказательство. Докажем 2. Пусть $x < y \in \langle A, B \rangle \setminus \{a\}$. Докажем, что F(x) < F(y).

- $a < x < y \Rightarrow$ по лемме о трех хордах $\Rightarrow \frac{f(x) f(a)}{x a} < \frac{f(y) f(a)}{y a} \Rightarrow F(x) < F(y)$.
- $x < y < a \Rightarrow \frac{f(a) f(x)}{a x} < \frac{f(a) f(y)}{a y} \Rightarrow F(x) < F(y)$.
- $x < a < y \Rightarrow \frac{f(a) f(x)}{a x} < \frac{f(y) f(a)}{y a} \Rightarrow F(x) < F(y)$.

Пример 14.10.10. $f(x) = x^2$ строго выпукла на \mathbb{R} .

Доказательство. Пусть a < c < b. Тогда

$$\frac{f(c) - f(a)}{c - a} - \frac{f(b) - f(c)}{b - c} = \frac{c^2 - a^2}{c - a} - \frac{b^2 - c^2}{b - c} = (c + a) - (b + c) = a - b < 0$$

$$\Rightarrow f(x)$$

строго выпукла.

Теорема 14.10.11 (Об односторонних производных). $f:\langle A,B\rangle \to \mathbb{R}, f$ – выпукла на $\langle A,B\rangle$. Тогда

- 1. $\forall a < B \ \exists f'_{+}(a) \in [-\infty, +\infty), \forall a > A \ \exists f'_{-}(a) \in (-\infty, +\infty]$
- 2. Если $a \in (A, B)$, то $f'_{+}(a)$ и $f'_{-}(a)$ конечны и $f'_{-}(a) \leqslant f'_{+}(a)$.

Доказательство. Рассмотрим $F(x) = \frac{f(x) - f(a)}{x - a}, F : \langle A, B \rangle \setminus \{a\} \to \mathbb{R}.$

1. Пусть a < B. Тогда F возрастает на (a, B). Тогда

 $\exists \lim_{x \to a^+} F(x) \in [-\infty, +\infty)$ (по т. о пределе монотонной функции)

$$\lim_{x \to a+} \frac{f(x) - f(a)}{x - a} = f'_{+}(a)$$

Для $f'_{-}(a)$ аналогично.

2. Пусть $a \in (A, B)$. Возьмем $x < a < y, x, y \in (A, B)$. Тогда по следствию

$$F(x) < F(y) \xrightarrow[x,y\to a]{} f'_{-}(a) \le f'_{+}(a)$$

 $f'_{-}(a) \in (-\infty, +\infty], f'_{+}(a) \in [-\infty, +\infty) \Rightarrow$ обе конечны.

Cледствие 14.10.12. Если f выпукла на $\langle A, B \rangle$, то она непрерывна на (A, B).

Доказательство. Пусть $a \in (A, B)$. Т.к. $\exists f'_{+}(a)$, то f непрерывна в точке a справа, т.к. $\exists f'_{-}(a)$, то f непрерывна на т. a слева $\Rightarrow f$ непрерывна в точке a.

Пример 14.10.13. Рисунок **TODO**.

$$f(x) = \begin{cases} -\sqrt{1 - x^2}, x \in (-1, 1] \\ 1, x = -1 \end{cases}$$

Упражнение 14.10.14. $f'_{+}(-1) = ?, f'_{-}(1) = ?.$

Теорема 14.10.15 (Критерий выпуклости в терминах касательных). $f: \langle A, B \rangle \to \mathbb{R}, f$ дифференцируема на $\langle A, B \rangle$. Тогда

- 1. Функция f выпукла на $\langle A,B\rangle \Leftrightarrow \forall a,x\in \langle A,B\rangle \to f(x)\geqslant T_{a,1}f(x)$
- 2. Функция f строго выпукла $\Leftrightarrow \forall a \neq x \in \langle A, B \rangle \to f(x) > T_{a,1}f(x)$.

Упражнение 14.10.16. Доказать.

Теорема 14.10.17 (Выпуклость и асимптоты). $f:(A, +\infty) \to \mathbb{R}$ и имеет асимптоту y = kx + b. Тогда

- 1. Если f выпукла на $(A, +\infty)$, то $f(x) \geqslant kx + b \ \forall x \geqslant A$
- 2. Если f строго выпукла на $(A, +\infty)$, то $f(x) > kx + b \ \forall x > A$.

Упражнение 14.10.18. Доказать.

Теорема 14.10.19 (Критерий выпуклости в терминах первой производной). $f: \langle A, B \rangle \to \mathbb{R}$, непрерывна на $\langle A, B \rangle$ и дифференцируема на (A, B). Тогда

- 1. f выпукла на $\langle A, B \rangle \Leftrightarrow f'$ возрастает на (A, B).
- 2. f строго выпукла на $\langle A, B \rangle \Leftrightarrow f'$ строго возрастает на (A, B).

Доказательство. Докажем 2. " \Rightarrow " Возьмем $x < y \in (A, B)$. Покажем, что $f'(x) < \frac{f(y) - f(x)}{y - x} < f'(y)$.

$$F(t) = \frac{f(t) - f(x)}{t - x}, t \neq x$$

Т.к. f строго выпукла, то F строго возрастает на (x,y]

$$\Rightarrow f'(x) = \lim_{t \to x+} F(t) = \inf_{t \in (x,y]} F(t) < F(y) = \frac{f(y) - f(x)}{y - x}$$

Аналогично: f'(y) > F(y).

" \Leftarrow ". Достаточно показать, что $\forall a < c < b \in \langle A, B \rangle$ верно

$$\frac{f(c) - f(a)}{c - a} < \frac{f(b) - f(c)}{b - c}$$

По теореме Лагранжа $\exists \alpha \in (a,c) : \frac{f(c)-f(a)}{c-a} = f'(\alpha), \exists \beta \in (c,b) : \frac{f(b)-f(c)}{b-a} = f'(\beta) \Rightarrow \alpha < \beta,$ т.к. f' строго возрастает, то $f'(\alpha) < f'(\beta)$

Теорема 14.10.20 (Критерий выпуклости в терминах второй производной). $f: \langle A, B \rangle \to \mathbb{R}$, непрерывна на $\langle A, B \rangle$ и дважды дифференцируема на (A, B). Тогда

- 1. f выпукла на $\langle A, B \rangle \Leftrightarrow f''(x) \geqslant 0 \ \forall x \in (A, B)$.
- 2. Если $f''(x) > 0 \ \forall x \in (A, B)$, то f строго выпукла.

Замечание 14.10.21. Обратное к 2 не всегда выполнено: $f(x) = x^4$ – строго выпукла, но $f''(x) = 12x^2$, f''(0) = 0

Доказательство. 1. По предыдущей теореме выпуклость \Leftrightarrow возрастанию $f' \Leftrightarrow f''(x) \geqslant 0$.

2. $f''(x) > 0 \Rightarrow f'(x)$ строго возрастает $\Rightarrow f$ строго выпукла.

Пример 14.10.22. $f(x) = \sin x$ на $\left[0, \frac{\pi}{2}\right]$. $f'(x) = \cos x$, $f''(x) = -\sin x \le 0$ на $\left[0, \frac{\pi}{2}\right] \Rightarrow f$ строго вогнута на $\left(0, \frac{\pi}{2}\right)$ (f''(x) = 0 только при x = 0) $\Rightarrow \sin x > \frac{2}{\pi}x$ на $\left(0, \frac{\pi}{2}\right)$.

Def 14.10.23. $f:\langle A,B\rangle \to \mathbb{R}, a\in (A,B)$. Предположим, что выполнены следующие условия:

- 1. $\exists \delta > 0 : (a \delta, a + \delta) \subset (A, B), f$ имеет разный характер выпуклости на $(a \delta, a]$ и $[a, a + \delta)$.
- 2. f непрерывна в точке a.
- 3. $f'(a) \in \overline{\mathbb{R}}$

Tогда а называется точкой перегиба функции f.

Теорема 14.10.24 (Необходимое условие перегиба). $f: \langle A, B \rangle \to \mathbb{R}, a \in (A, B)$. Пусть f дважды дифференцируема в точке a. Если a является точкой перегиба, то f''(a) = 0.

Доказательство. Пусть f вогнута слева от a, выпукла справа от a. Возьмем $\delta > 0 : f$ дифференцируема на $(a - \delta, a + \delta)$. Тогда f' убывает на $(a - \delta, a]$ и f' возрастает на $[a, a + \delta)$. Тогда a -точка минимума $f' \Rightarrow f''(a) = 0$.

Теорема 14.10.25 (Достаточное условие перегиба). $f: \langle A, B \rangle \to \mathbb{R}, a \in (A, B), f$ непрерывна в точке a и $f'(a) \in \mathbb{R}$. Пусть $\exists \delta > 0 : f$ дважды дифференцируема на $(a - \delta, a) \cup (a, a + \delta)$ и выполнено одно из следующих условий:

- 1. f'' > 0 на $(a \delta, a)$ и f'' < 0 на $(a, a + \delta)$
- 2. f'' < 0 на $(a \delta, a)$ и f'' > 0 на $(a, a + \delta)$

Тогда a — точка перегиба.

Доказательство. Пусть выполнено 1. Тогда f выпукла на $(a - \delta, a)$, вогнута на $(a, a + \delta) \Rightarrow a$ точка перегиба.

План исследования функции:

- 1. Область определения функции (и множество значений функции).
- 2. Нули функции, знакопостоянство.
- 3. Четность/нечетность.
- 4. Периодичность.
- 5. Разрывы функции.
- 6. Монотонность (экстремумы).
- 7. Выпуклость (перегибы).
- 8. Асимптоты.

Утверждение 14.10.26 (Обобщение неравенства Бернулли). $\alpha > 1$. Тогда $(1+x)^{\alpha} > 1 + \alpha x \ \forall x > -1, x \neq 0$.

Доказательство. $f(x) = (1+x)^{\alpha}$, $f''(x) = \alpha(\alpha-1)(1+x)^{\alpha-2} > 0 \ \forall x > -1 \Rightarrow f$ строго выпукла. $1 + \alpha x = T_{0,1}f(x)$. По теореме о касательных f лежит над своей касательной в x = 0, т.е. $f(x) > T_{0,1}f(x)$ (при x = 0 равен).

14.11. Классические неравенства

p,q > 1 и $\frac{1}{p} + \frac{1}{q} = 1$ — сопряженные показатели.

Теорема 14.11.1 (Неравенство Юнга). Пусть $x, y \ge 0, p, q$ — сопряженные показатели. Тогда

$$xy \leqslant \frac{x^p}{p} + \frac{y^q}{q}$$

Причем равенство достигается тогда и только тогда, когда $x^p = y^q$.

Доказательство. Если x=0 или y=0, то очевидно. Будем считать, что x>0 и y>0. Возьмем $f(t)=\ln t$. f строго вогнутая на $(0,+\infty)$. Подставим в определение точки x^p и y^q .

$$\forall \lambda \in (0,1) \ f(\lambda x^p + (1-\lambda)y^q) > \lambda f(x^p) + (1-\lambda)f(y^q)$$

Причем равенство возможно лишь когда $x^p = y^q$. Возьмем $\lambda = \frac{1}{p}$, тогда $1 - \lambda = \frac{1}{q}$.

$$\ln\left(\frac{1}{p}x^p + \frac{1}{q}y^q\right) > \frac{1}{p}\ln x^p + \frac{1}{q}\ln y^q = \ln(xy)$$

Т.к. $\ln x$ строго возрастает на $(0, +\infty)$, то $\frac{x^p}{p} + \frac{y^q}{q} > xy$.

Векторы в \mathbb{R}^n . $x = (x_1, ..., x_n), y = (y_1, ..., y_n), x, y \in \mathbb{R}^n$

- 1. $x + y = (x_1 + y_1, ..., x_n + y_n)$
- 2. $\lambda x = (\lambda x_1, ..., \lambda x_n)$
- 3. Скалярное произведение: $x \cdot y = x_1 y_1 + ... + x_n y_n$.
- 4. Длина вектора: $|x| = \sqrt{x_1^2 + ... + x_n^2}$
- 5. *p*-норма вектора: $||x||_p = \sqrt[p]{|x_1|^p + ... + |x_n|^p}$ (обощение понятия длины).
- 6. x и y коллинеарны, если либо один из них нулевой, либо $\exists \lambda \in \mathbb{R} \setminus \{0\} : x = \lambda y$.
- 7. x и y сонаправлены, если либо один из них нулевой, либо $\exists \lambda > 0 : x = \lambda y$.

Теорема 14.11.2 (Неравенство Минковского для неотрицательных чисел). $n \in \mathbb{N}, p \geqslant 1$. Предположим, что векторы x и $y \in \mathbb{R}^n$ имеют неотрицательные координаты. Тогда

$$\left(\sum_{k=1}^{n} (x_k + y_k)^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} y_k^p\right)^{\frac{1}{p}}$$

Равенство \Leftrightarrow либо p = 1, либо x и y сонаправлены.

Доказательство. Если p = 1, то очевидно.

Пусть p > 1 и x и y ненулевые.

$$X = ||x||_p, Y = ||y||_p, X, Y > 0$$

Рассмотрим $f(x) = x^p$ — строго выпуклая на $[0, +\infty)$. $f''(x) = p(p-1)x^{p-2} > 0$ при x > 0 и f непрерывна в точке 0. Запишем определение выпуклости для $\frac{x_k}{Y}$ и $\frac{y_k}{Y}$.

$$\forall \lambda \in (0,1) \ f\left(\lambda \frac{x_k}{X} + (1-\lambda) \frac{y_k}{Y}\right) \leq \lambda f\left(\frac{x_k}{X}\right) + (1-\lambda) f\left(\frac{y_k}{Y}\right)$$

Равенство тогда и только тогда, когда $\frac{x_k}{X} = \frac{y_k}{Y}$. Возьмем $\lambda = \frac{X}{X+Y}, 1 - \lambda = \frac{Y}{X+Y}$

$$f\left(\frac{x_k + y_k}{X + Y}\right) \le \frac{X}{X + Y}f\left(\frac{x_k}{X}\right) + \frac{Y}{X + Y}f\left(\frac{y_k}{Y}\right)$$

$$\frac{(x_k + y_k)^p}{(X + Y)^p} \leqslant \frac{X}{X + Y} \cdot \frac{x_k^p}{X^p} + \frac{Y}{X + Y} \cdot \frac{y_k^p}{Y^p} \quad \forall k = 1, ..., n$$

Сложим все неравенства:

$$\frac{\sum_{k=1}^{n} (x_k + y_k)^p}{(X+Y)^p} \le \frac{X}{X+Y} \cdot \frac{\sum_{k=1}^{n} x_k^p}{X^p} + \frac{Y}{X+Y} \cdot \frac{\sum_{k=1}^{n} y_k^p}{Y^p} =$$

Заметим, что $\sum_{k=1}^{n} \frac{x_k^p}{X^p} = \frac{1}{\|x\|_p^p} \sum_{k=1}^{n} x_k^p = 1$

$$= \frac{X}{X+Y} + \frac{Y}{X+Y} = 1 \Rightarrow ||x+y||_p \leqslant X + Y = ||x||_p + ||y||_p$$

Равенство \Leftrightarrow равенство $\forall k$, т.е. $\frac{x_k}{X} = \frac{y_k}{Y} \Rightarrow x_k = \frac{X}{Y} y_k \Rightarrow x$ и y сонаправлены.

Следствие 14.11.3 (Неравенство Минковского в \mathbb{R}^n). Пусть $n \in \mathbb{N}, p \ge 1, x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \mathbb{R}^n$. Тогда

$$\left(\sum_{k=1}^{n} |x_k + y_k|^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{k=1}^{n} |x_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} |y_k|^p\right)^{\frac{1}{p}}$$

C случае p > 1 равенство тогда и только тогда, когда x и y сонаправлены.

- p = 1 очевидно (неравенство треугольника).
- p > 1, x и y ненулевые. Применим теорему к векторам с координатами $|x_k|$ и $|y_k|$

$$\left(\sum_{k=1}^{n}|x_{k}+y_{k}|^{p}\right)^{\frac{1}{p}} \leqslant \left(\sum_{k=1}^{n}\left(|x_{k}|+|y_{k}|\right)^{p}\right)^{\frac{1}{p}} \leqslant \left(\sum_{k=1}^{n}|x_{k}|^{p}\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n}|y_{k}|^{p}\right)^{\frac{1}{p}}$$

Первый переход превращается в равенство, если x_k и y_k одного знака.

Упражнение 14.11.4. Когда равенство при p = 1?

Замечание 14.11.5. Можно записать в виде

$$||x + y||_p \le ||x||_p + ||y||_p$$

При p=2 неравенство треугольника с вершинами в точках 0, x, x+y. Равенство, если эти три точки лежат на одной прямой. Т.е. неравенство Минковского обобщает неравенство треугольника.

Теорема 14.11.6 (Неравенство Гёльдера для неотрицательных чисел). p и q — сопряженные показатели, $n \in \mathbb{N}$. $x, y \in \mathbb{R}^n$ — с неотрицательными координатами. Тогда

$$\sum_{k=1}^n x_k y_k \leqslant \left(\sum_{k=1}^n x_k^p\right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^n y_k^q\right)^{\frac{1}{q}}$$

Равенство тогда и только тогда, когда $x_k^p ||y||_q^q = y_k^q ||x||_p^p \ \forall k = 1, ..., n.$

Доказательство. $a_k = \frac{x_k}{||x||_p}, b_k = \frac{y_k}{||y||_q} \ \forall k = 1, ..., n.$

$$\sum_{k=1}^{n} a_{k}^{p} = \frac{1}{||x||_{p}^{p}} \sum_{k=1}^{n} x_{k}^{p} = 1, \sum_{k=1}^{n} b_{k}^{q} = 1$$

По неравенству Юнга $a_k b_k \leqslant \frac{a_k^p}{p} + \frac{b_k^q}{q} \ \forall k = 1, ..., n.$

$$\sum_{k=1}^{n} a_k b_k \leqslant \frac{1}{p} \sum_{k=1}^{n} a_k^p + \frac{1}{q} \sum_{k=1}^{n} b_k^q = \frac{1}{p} + \frac{1}{q} = 1$$

$$\sum_{k=1}^{n} x_k y_k \le ||x||_p \cdot ||y||_q$$

Равенство \Leftrightarrow равенство для любого $k:a_k^p=b_k^q$ – из неравенства Юнга.

Замечание 14.11.7. Равенство $x_k^p ||y||_q^q = y_k^q ||x||_p^p \ \forall k = 1, ..., n$ означает, что векторы $(x_1^p, x_2^p, ..., x_n^p)$ и $(y_1^q, y_2^q, ..., y_n^q)$ коллинеарны.

$$x_k^p = y_k^q \cdot \frac{||x||_p^p}{||y||_q^q}$$

Следствие 14.11.8 (Неравенство Гёльдера в \mathbb{R}^n). $n \in \mathbb{N}, p, q$ — сопряженные показатели, $x, y \in \mathbb{R}^n$. Тогда

$$\left|\sum_{k=1}^n x_k y_k\right| \leqslant \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}} \cdot \left(\sum_{k=1} |y_k|^q\right)^{\frac{1}{q}}$$

Доказательство. По неравенству Гёльдера для $(|x_1|, |x_2|, ..., |x_n|), (|y_1|, ..., |y_n|)$

$$\left|\sum_{k=1}^n x_k y_k\right| \leqslant \sum_{k=1}^n |x_k| |y_k| \leqslant \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}} \cdot \left(\sum_{k=1} |y_k|^q\right)^{\frac{1}{q}}$$

Теорема 14.11.9 (Неравенство Коши в \mathbb{R}^n). $n \in N, x, y \in \mathbb{R}^n$. Тогда

$$\left| \sum_{k=1}^{n} x_k y_k \right| \leqslant \sqrt{\sum_{k=1}^{n} x_k^2} \cdot \sqrt{\sum_{k=1}^{n} y_k^2}$$

Равенство $\Leftrightarrow x$ и y коллинеарны.

Доказательство. • Если x или y нулевой – очевидно.

ullet Пусть x и y — ненулевые.

$$\left| \sum_{k=1}^{n} x_k y_k \right| \leqslant \sum_{k=1}^{n} |x_k| |y_k|$$

Равенство \Leftrightarrow все $(x_k y_k)$ имеют один знак. По неравенству Гёльдера при p = q = 2:

$$\sum_{k=1}^{n} |x_k| |y_k| \leqslant \sqrt{\sum_{k=1}^{n} x_k^2} \cdot \sqrt{\sum_{k=1}^{n} y_k^2}$$

Равенство $\Leftrightarrow x_k^2 = \frac{\|x\|_2}{\|y\|_2} y_k^2$, т.е. x и y коллинеарны.

Замечание 14.11.10. В \mathbb{R}^2 $x \cdot y = |x| \cdot |y| \cdot \cos \alpha \Leftrightarrow |x \cdot y| \leq |x| \cdot |y|$

Теорема 14.11.11 (Неравенство Йенсена). $f:\langle A,B\rangle \to \mathbb{R}, n \in \mathbb{N}$ $x_1,x_2,...,x_n \in \langle A,B\rangle, \lambda_1,\lambda_2,...,\lambda_n$ – положительные числа: $\sum_{k=1}^n \lambda_k = 1$. Тогда

1. Если f выпукла на $\langle A,B \rangle$, то

$$f(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n) \leq \lambda_1 f(x_1) + \lambda_2 f(x_2) + \dots + \lambda_n f(x_n)$$

2. Если f строго выпукла, то

$$f(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n) < \lambda_1 f(x_1) + \lambda_2 f(x_2) + \dots + \lambda_n f(x_n)$$

Если $x_1 = x_2 = ... = x_n$, то равенство.

Доказательство. • Если все x_k совпадают – очевидно.

• Пусть не все x_k совпадают

$$c = \lambda_1 x_1 + \dots + \lambda_n x_n \in (A, B)$$

По индукции: n = 1 – очевидно $f(x_1) = f(x_1)$. Пусть $\lambda_1 + \lambda_2 + ... + \lambda_n = 1 - \lambda_{n+1}$ и

$$a = \frac{\sum_{k=1}^{n} \lambda_k x_k}{1 - \lambda_{n+1}}$$

По предположению индукции:

$$f(a) \le \frac{\lambda_1}{1 - \lambda_{n+1}} f(x_1) + \frac{\lambda_2}{1 - \lambda_{n+1}} f(x_2) + \dots + \frac{\lambda_n}{1 - \lambda_{n+1}} f(x_n)$$

Тогда

$$f((1 - \lambda_{n+1}) \cdot a + \lambda_{n+1} \cdot x_{n+1}) \leq (1 - \lambda_{n+1}) f(a) + \lambda_{n+1} \cdot f(x_{n+1}) \leq$$

$$\leq \lambda_1 f(x_1) + \lambda_2 f(x_2) + \dots + \lambda_{n+1} f(x_{n+1})$$

Замечание 14.11.12. Для вогнутых поменять знак.

Замечание 14.11.13. $n = 2, \lambda_1 + \lambda_2 = 1, \lambda_2 = 1 - \lambda_1$ – определение выпуклости.

Замечание 14.11.14. Точка $c = \lambda_1 x_1 + ... + \lambda_n x_n \in \langle A, B \rangle$ – упражнение. Если $x_1 = x_2 = ... = x_n$, то $c = x_i$.

Если не все равны, то $c \in (A, B)$.

Если $x_1 \le x_2 \le ... \le x_n$ и не все равны, то $x_1 < c < x_n$ – упражнение.

14.12. Дифференциалы

 $d_a f(h) : x \mapsto f'(a) \cdot h$ – линейная часть приращения.

1. Композиции : $d_a(g \circ f) = d_{f(a)}g \circ d_a f$

Доказательство.
$$d_a(g \circ f) = (g \circ f)'(a) \cdot h = g'(f(a)) \cdot f'(a) h = d_{f(a)}g(d_af(h)) = d_{f(a)}g \circ d_af(h)$$

- 2. Обратная функция $d_{f(a)}f^{-1} = (d_af)^{-1}$ упражнение.
- 3. Старшие дифференциалы:

$$d_a^n f(h) = d_a(d_a^{n-1} f(h))$$

$$d_a^2 f(h) = d_a(d_a f(h)) = d_a(f'(a)h) = f''(a)h^2$$

$$d_a^n f(h) = f^{(n)}(a)h^n$$

4. Формула Тейлора.

$$f(x) = \sum_{k=0}^{n} \frac{d_a^k f(x-a)}{k!} + o((x-a)^n)$$

5. $d_a(f \cdot g) = (f'(a) \cdot g(a) + f(a) \cdot g'(a))h = g(a) \cdot d_a f(h) + f(a) d_a g(h)$

f непрерывна на $\langle A, B \rangle$

$$\forall x_0 \in \langle A, B \rangle \ \forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \ |x - x_0| < \delta, x \in \langle A, B \rangle \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x_0 \in \langle A, B \rangle \ \forall x : |x - x_0| < \delta, x \in \langle A, B \rangle \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

Def 14.12.1. $f: D \to \mathbb{R}$ называется равномерно непрерывной на D, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x_1, x_2 \in D : |x_1 - x_2| < \delta \rightarrow |f(x_1) - f(x_2)| < \varepsilon$$

Теорема 14.12.2 (Теорема Кантора). Непрерывная на отрезке функция равномерна непрерывна.

Доказательство. $f \in C[a,b]$. Пусть f не равномерна непрерывна. Тогда

$$\exists \varepsilon > 0 : \forall \delta > 0 \ \exists x_1, x_2 \in [a, b] : |x_1 - x_2| < \delta |f(x_1) - f(x_2)| \geqslant \varepsilon$$

Будем рассматривать $\delta = \frac{1}{n}, n \in \mathbb{N}$

$$|\overline{x}_n - \overline{\overline{x}}_n| < \frac{1}{n}$$

По принципу выбора Больцано-Вейерштрасса

$$\exists \{\overline{x}_{n_k}\}_{k=1}^{\infty} : \overline{x}_{n_k} \to c \in [a, b]$$

Тогда $\overline{\overline{x}}_{n_k} \to c$. Тогда $f(\overline{x}_{n_k}) \to f(c)$, т.к. f непрерывна, $f(\overline{\overline{x}}_{n_k}) \to f(c)$.

$$|f(\overline{x}_{n_k}) - f(\overline{\overline{x}}_{n_k})| \geqslant \varepsilon *$$

Теорема 14.12.3. f дифференцируема на $\langle A, B \rangle$ и $\exists M > 0 \mid f'(x) \mid \leqslant M \ \forall x \in \langle A, B \rangle$. Тогда f равномерное непрерывна.

Доказательство. Пусть $\varepsilon > 0, \delta = \frac{\varepsilon}{M}$. Если $x, y \in \langle A, B \rangle$ и $|x - y| < \delta$, то

$$\exists c \in \langle A, B \rangle : f(x) - f(y) = f'(c)(x - y) \Rightarrow |f(x) - f(y)| \leq M \cdot |x - y| \leq M \cdot \delta = \varepsilon$$

Def 14.12.4. $f: \langle A, B \rangle \to \mathbb{R}, F: \langle A, B \rangle \to \mathbb{R}$ называется первообразной функцией f, если F дифференцируема на $\langle A, B \rangle, F'(x) = f(x) \ \forall x \in \langle A, B \rangle$.

Теорема 14.12.5. Пусть $f, F, G : \langle A, B \rangle \to \mathbb{R}, F$ — первообразная f. Тогда G — первообразная $f \Leftrightarrow \exists c \in \mathbb{R} : F(x) + c = G(x)$.

Доказательство. $H(x) = F(x) - G(x) \Leftrightarrow H'(x) = F'(x) - G'(x) = f(x) - f(x) = 0 \Leftrightarrow H'(x) = 0 \Rightarrow H(x) \equiv \text{const}$

$$(F(x) + c)' = (G(x))' \Leftrightarrow f(x) = F'(x) = G'(x) \Rightarrow G$$
 – первообразная.

Def 14.12.6. $f: \langle A, B \rangle \to \mathbb{R}, F$ – первообразная f. Множество функций $\{F(x) + c, c \in \mathbb{R}\}$ называется неопределенным интегралом f.

$$\int f(x)dx = F(x) + c, c \in \mathbb{R}$$