微算機系統 Fall 2020 Microprocessor Systems

Instructor: Yen-Lin Chen(陳彥霖), Ph.D. Professor Dept. Computer Science and Information Engineering National Taipei University of Technology 實驗一:七段顯示器解碼電路

繳交規定

- 檢查期限: 9/28(一)下午17:00截止
- •報告繳交期限:9/30(三)早上10:10前上傳至北科i學園PLUS→作業/報告
- · 繳交格式:北科i學園PLUS→課程公告→實驗報告與評分標準
- · 詳細繳交規定請參照2020 Fall 微算機系統社團發文

配分方式

- 實驗目標一 50%
- 實驗目標二 20%

• 實驗報告 30%

- 實驗與報告遲交一週內打8折,第二週再打6折
- 之後不接受補交實驗與報告

實驗目的

透過學習七段顯示器解碼過程,練習如何以VHDL邏輯函數方式實驗邏輯電路,並配合實作熟悉硬體電路架構與配置部分。

基本概念

• 七段顯示器共有a, b, c, d, e, f, g等七段用來顯示數字0~9及一點p來顯示小數點。

共陽極接法

共陽極七段顯示器解碼電路設計

	數字	W	X	Y	\mathbf{Z}	a	b	c	d	e	f	g
	0	0	0	0	0	0	0	0	0	0	0	1
	1	0	0	0	1	1	0	0	1	1	1	1
	2	0	0	1	0	0	0	1	0	0	1	0
	3	0	0	1	1	0	0	0	0	1	1	0
	4	0	1	0	0	1	0	0	1	1	0	0
	5	0	1	0	1	0	1	0	0	1	0	0
	6	0	1	1	0	0	1	0	0	0	0	0
Ì	7	0	1	1	1	0	0	0	1	1	1	1
	8	1	0	0	0	0	0	0	0	0	0	0
	9	1	0	0	1	0	0	0	1	1	0	0
	A	1	0	1	0	0	0	0	1	0	0	0
	В	1	0	1	1	1	1	0	0	0	0	0
ø	C	1	1	0	0	1	1	1	0	0	1	0
	D	1	1	0	1	1	0	0	0	0	1	0
	E	1	1	1	0	0	1	1	0	0	0	0
	F	1	1	1	1	0	1	1	1	0	0	0

分析:

分析後可以得到左側真值 表

註:DE2-115實驗版為共陽極,如果遇到共陰極之七段顯示器,則將上圖真值表部分0和1互換即可,意即加上一個NOT閘。

共陽極七段顯示器解碼電路設計

化簡a~g輸出布林代數式如下:

•
$$a = f(W,X,Y,Z) = \Sigma\{1,4,11,12,13\}$$

• b = f (W,X,Y,Z) =
$$\Sigma$$
 {5,6,11,12,14,15}

•
$$c = \overline{W}\overline{X}Y\overline{Z} + WX\overline{Z} + WXY$$

•
$$d = \bar{X}\bar{Y}Z + \bar{W}X\bar{Y}\bar{Z} + XYZ + W\bar{X}Y\bar{Z}$$

•
$$e = \overline{W}Z + \overline{W}X\overline{Y} + \overline{X}\overline{Y}Z$$

•
$$f = \overline{W}\overline{X}Z + \overline{W}\overline{X}Y + \overline{W}YZ + WX\overline{Y}$$

•
$$g = \overline{W}\overline{X}\overline{Y} + \overline{W}XYZ$$

電路設計

右圖為以Quartus之RTL所viewer產生的電路圖

指定腳位

- 右表為範例所使用七段 顯示器為HEXO,如需 使用到其他顆七段顯示 器,請自行查詢規格書 第36、37、38頁。(社團 上可供下載)
- 完成之後按下實驗板上 自己設定之腳位的指撥 開關,即可輸入4-bit訊 號給七段顯示器。

Name	Pin Location
$Z_{(SW[0])}$	PIN_AB28
Y(sw[1])	PIN_AC28
X(sw[2])	PIN_AC27
W (SW[3])	PIN_AD27
a (HEX0[0])	PIN_G18
b (HEX0[1])	PIN_F22
C (HEX0[2])	PIN_E17
d (HEX0[3])	PIN_L26
e (HEX0[4])	PIN_L25
f (HEX0[5])	PIN_J22
g (HEX0[6])	PIN_H22

實驗目標一

• 透過指撥開關控制七段顯示器顯示0 ~ F之間任意數字 (4個Switch)

實驗目標二

• 透過指撥開關控制七段顯示器顯示0 ~ FF之間任意數字 (十位數、個位數分開輸入,共8個Switch)