Deep Neural Networks for Behavioral Modeling of Analog ICs

Introduction to the Research in Electrical and Computer Engineering

André Carneiro Amaral

Instituições Associadas

altice

Introduction

Challenges and Objectives (1)

Difficulties

Figure 1 – MS SoC Design [1]

Challenges and Objectives (2)

Importance

Why Analog Circuits Are Important?

Figure 2 – Analog Sensors

Figure 3 – Analog to Digital Converter

Figure 4 – 200MHz Cristal Oscillator

Challenges and Objectives (3)

Objectives

- 1) Create a model that capture the circuit behavior using Machine Learning Techniques
- 2) Speed-Up the simulations

Figure 5 – AIDAsoft [2]

Figure 6 – Motion-resilient heartbeat detection SoC architecture [3]

Challenges and Objectives (4)

Proposed Work

First lets see what already exists!

State-of-Art (1)

Charge Pump Circuits [4]

Results

 $\begin{tabular}{l} TABLE\ I\\ SIMULATED\ PARAMETER\ SETS\ FOR\ TRAINING\ AND\ VALIDATION\ DATA. \end{tabular}$

Parameter	Training	
$V_{ m dd}$	lin [1.2 : 0.6 : 3.6] V	lin []
$R_{ m load}$	log [100k : 10 : 1M] Ω	log [1
$f_{ m clk}$	lin [10M: 10M: 50M] Hz	lin [10]
N	250	

Validation
lin [1.2 : 0.3 : 3.6] V
log [100k : 20 : 1M] Ω
lin [10M : 5M : 50M] Hz
1620

Figure 10 – Model Results

State-of-Art (2)

Circuit's Power Consumption [5]

Figure 13: Transient Supply Current

Results

TABLE I
COMPARISON BETWEEN DIFFERENT REPRESENTATIONS OF THE
OSCILLATOR BLOCK.

	Simulation Time	Energy Consumption in Interval t=[0,55 µs]
Transistor Level	2 min 48 s	623 pJ
Functional Model	$0 \min 7 s$	$0\mathrm{pJ}$
Augmented Functional Model	$0 \min 12 s$	$640\mathrm{pJ}$

Figure 14: Model Results

State-of-Art (4)

Multiple Inputs Multiple Outputs [7]

Results

Graph of MSE

TABLE II
TRANSIENT SIMULATIONS PERFORMED FOR THE TRAINING DATA
COLLECTION PURPOSES

Simulation	Simulation Time	CPU time	Input	Output	# of samples	
Trimming	100 µs	1.4 a	Trimming inputs	Vout _{1V}	695	
Load Jump	540 µs	1.3 s	Load Profile	$Vout_1V$	433	
Line Jump	200 µs	1.8	V_{DD}	$Vout_1V$	501	

Model Results

State-of-Art (5)

Simple Oscillator [8]

Results

1) K_osc = 0.1698 Inverter Ring Oscillator.

2) K_osc = 0.5734 Inverter Ring Oscillator.

State-of-Art (6)

Oscillator with Buffer [9]

Results

K_osc = 1.95GHz Ring Oscillator with a Buffer.

State-of-Art (7)

Oscillator with Voltage Controller [10]

Results

Voltage Controller Oscillator (VCO)

[1V, 3V] – Range of voltage controller sweeping

Ref.	Device/Circuit	Method(s)	Objective	HDL	Error	Time	Data
1.0	Deviour on our	metriod(s)	o Special Co		(circuit vs model)	(time reduction)	(simulator / dataset [in], [out])
[4]	RF- microwave components and MESFET	ANN (several)	Review of ANN based CAD for microwave designs.	-	-	-	Spectre / [v_{gs} , V_{ds} , f], [Drain Current]
[7]	Three-stage cross- coupled charge pump	ANN (MLP)	Model a charge Pump circuits	Verilog-AMS	4.85%	7s	Spice / $[v_{dd}, R_{load}, f_{clk}]$, [Output Voltage]
[10]	Low Relaxation Oscillator	ANN (TDNN)	Model to analyze the Power consumption	SystemVerilog	2.70%	2min	Spectre / [f, clk, EN], [Supply Current]
[11]	Analog-n/d	ANN (Bprop)	Modeling the power consumption.	Verilog-XL	1.53%	-	- / [f, V _{out}], [Power]
[12]	RF Receiver, Sigma Delta, Low-Dropout Regulator	ANN (RNN) + Genetic Algorithm	Surrogate Model with Collaborative Stimulus	Verilog-A	RMSE: 31 μV	30* Faster	- / [Stimulus], [Adapted Stimulus]
[13]	CMOS band-gap voltage reference circuit (BGR)	CompNN (NARX + TDNN)	Capture the dynamic of analog MIMO circuits	Verilog-A	5.00%	17* Faster	- / [Trimming, Load Jump, Line Jump], [1V-Out]
[15]	Inverter Ring Oscillator	ANN (FFNN)	Capture the periodicity of oscillator output waveform	Verilog-A	•	10* Faster	Spectre / [Time Step, f_{osc}], [Output Voltage]
[16]	Ring Oscillator with a Buffer	ANN (FFNN + RNN)	Capture the periodicity of the oscillator + buffer output waveform	Verilog-A	RMSE: 0.0034	10* Faster	Spectre / [Time Step, f_{osc}], [Output Voltage]
[17]	Transistor-Level VCO Circuit	ANN (2 FFNN + RNN)	Model the oscillatory frequency and see the effects on the output waveform.	Verilog-A	RMSE: 0.0061	10* Faster	Spectre / [Time Step, f_{osc} , $V_{controller}$], [Output Voltage]
[21]	SCFL Buffer Cell, Resistive Mixer, Voltage Controller Oscillator	SVM (ε – SV regression)	Robust modeling of GaAs transistors and circuits.	-	MSE: 3*10 ⁻⁷	-	- / [V(n), I(n-k)], [Output Current]
[22]	Analog Circuits- CMOS	SVM	Efficient active learning scheme for feasible	-	-	-	Spice / [Heigth, Width]

design space selection

Error

Time

Data

State-of-Art (8)

Verilog and ANN [11]

Results (4)

```
T_O = T - p_num[5];
DEL_OT=(2.0*T_O * p_num[5] * (1.0-p_num[5])) / u;
 for(i = 0;i < 2;i = i + 1)begin
   DEL_HD[i] = (2.0*p_num[5]*w3[1]*p_num[3]
             *(1.0-p_num[3])) / u;
                                  Calculate the local errors of
 end
 for(i = 1; i <= 2; i = i + 1) begin
   ow3[i] = alpha * DEL_OT * p_num(i+2);
   w3[i] = w3[i] + ow3[i]:
                                         Update the synaptic
 esd
                                          weights and offsets.
         V(T now) < + T:
        V(vh1_1) <+ w1[1];
                                                 Outputs
        V(vh1_2) <+ w1[2];
        V(vh1_3) <+ theta[1];
```

- Calculates the error of the output and the hidden layers.
- The weights are updated and the outputs are formulated.

Reference	Neural Network Type	VHD Language
[23]	Backpropagation	Verilog-A
[24]	RNN	Verilog-A

Proposed Work (1)

Why use Artificial Neural Networks?

Tribe	Origins	Master Algorithm	Examples of Methods
Symbolist	Logic	Inverse Deduction	Decision Trees
Connectionist	Neuroscience	Backpropagation	Deep Neural Networks, Perceptron
Evolutionaries	Evolutionary Biology	Genetic Programming	Genetic Algorithm
Bayesians	Statistics	Probabilistic Inference	Naïve-Bayes, LDA, PCA
Analogizers	Psychology	Kernel Machines	SVM, KNN

Baysians & Analogizers – Commonly used for classification problems (not only!).

Symbolist – In case of a lot of constraints is hard to produce an efficient solution.

Evolutionary – High simulation time

Proposed Work (2)

Proposed Workflow

Proposed Work (3)

Data Acquisition and Organization (1)

- Data Acquired through SPICE Simulations;
- 1. The input parameters are sweep to obtain better representation.
- 2. The output waveform is extracted for each set of inputs.
- Using a set of different Amplifiers topologies;
- 1. Widley studied, providing a good baseline to evaluate the results.
- 2. Readily available in ICG-Lx group, and were used in AIDA and DeepPlacer tools.
- 3. The implemented techniques can be easily integrated into larger systems.

Proposed Work (4)

Data Acquisition and Organization (2)

- Data Organized in a Graph;
- 1. Nodes represent the devices.
- 2. Edges represent the number of wires that connect devices.

- Data Curation;
- 1. Remove null values.
- Filter the adjacency matrix.
- 3. Normalize the adjacency matrix rows.
- 4. Normalize the input features.

Proposed Work (5)

Graph Neural Network

Some math....

$$H^{L+1} = \sigma[(\widehat{D}^{-\frac{1}{2}}A\widehat{D}^{-\frac{1}{2}})H^{L}W^{L}]$$

A -> Adjacency Matrix

D -> Diagonal Node Degree Matrix

 H^L -> Previous Hidden Layer

 H^{L+1} -> Next Hidden Layer

Proposed Work (6)

"Long-Short Term Memory" Neural Network (LSTM)

Problems to Avoid!

Vanishing Gradients

The gradient can decrease exponentially if the derivatives are very small.

- Use ReLU
- · Batch Normalization
- Different weights initializations (Xavier Initialization)

Exploding Gradients

The gradient can increase exponentially if the derivatives are very large.

- Use Gradient Cliping:
 - → Norm Clipping
 - → Elementwise Clipping
- Batch Normalization

Proposed Work (7)

Proposed Workflow Detailed

Preliminary Results (1)

Graph and Adjacency Matrix

Adjacency Matrix Construction

	1	2	3	4	5	6	7	8
1	0	0	1	0	0	0	1	0
2	0	0	0	0	0	1	0	1
3	1	0	1	1	0	0	1	0
4	0	0	1	1	1	0	1	1
5	0	0	0	1	1	1	1	1
6	0	1	0	0	1	1	0	1
7	1	0	1	1	1	0	0	1
8	0	1	0	1	1	1	1	0

Each node is linked to what nodes?

Preliminary Results (2)

Dataset

Data Curation Code

```
def sliding_windows(data1, data2, seq_length):
    x = []
    y = []

    for i in range(len(data1)-seq_length-1):
        _x = data1[i:(i+seq_length)] # input: the seq_length of data
        _y = data2[i+seq_length] #output: the next value after the input
        x.append(_x)
        y.append(_y)

    return np.array(x),np.array(y)
```

training set param = df.drop(['/out- Y', '/out+ Y'], axis = 1).values

Sliding Window

Features and Labels

```
scaler = MinMaxScaler()
training_set_param = scaler.fit_transform(training_set_param)
```

Normalization

Preliminary Results (3)

LSTM Model

Training Phase

```
number of epochs = 500
for epoch in range(number_of_epochs):
    # Initialize the gradient to avoid value agregations
    optimizer.zero grad()
   # Predict the model using the training set
   y pred = lstm(trainX)
    # Obtain the Loss
    loss = criterion(y pred, trainY)
    # Backpropagation
    loss.backward()
    optimizer.step()
```


Preliminary Results (4)

Results Obtained

$$MSE = 1.2706 * 10^{-5}$$

References

- [1] Martins, R., Horta, N. and Lourenço, N., "Automatic Analog IC Sizing and Optimization Constrained" (1st ed.), Springer, 2017
- [2] https://www.aidasoft.com/Home
- [3] Bose S., Shen B., Johnstion M. (2020). "A Batteryless Motion-Adaptive Heartbeat Detection System-on-Chip Powered by Human Boady Heat". IEEE Journal of Solid-State Circuits, Vol. 55, No.11.
- [4] Grabmann, M., Landrock, C. and Gläser, G. (2021), "Machine Learning in Charge: Automated Behavioral Modeling of Charge Pump Circuits". SMACD / PRIME 2021.
- [5] Grabmann, M., Landrock, C. and Gläser, G. (2019), "Power to the Model: Generating Energy-Aware Mixed-Signal Models using Machine Learning". SMACD 2019, Lausanne, Switzerl.
- [6] Lei, J.Y and Chatterjee, A. (2021), "Automatic Surrogate Model Generation and Debugging of Analog/Mixed-Signal Designs Via Collaborative Stimulus Generation and Machine Learning". 26th Asia and South Pacific Design Automation Conference.
- [7] Hasani, R. M., Haerle, D., Baumgartner, C. F., Lomuscio, A. R. and Grosu, R. (2017). "Compositional neural-network modeling of complex analog circuits". International Joint Conference on Neural Networks.
- [8] Yu, H., Swaminathan, M., Ji, C. and White, D. (2017). "A method for creating behavioral models of oscillators using augmented neural networks". Conference on Electrical Performance of Electronic Packaging and Systems.
- [9] Yu, H., Swaminathan, M., Ji, C. and White, D. (2018). "Behavioral Modeling of Steady-State Oscillators with Buffers Using Neural Networks". Conference on Electrical Performance of Electronic Packaging and Systems.
- [10] Yu, H., Swaminathan, M., Ji, C. and White, D. (2018). "A Nonlinear Behavioral Modeling Approach for Voltage-controlled Oscillators Using Augmented Neural Networks". IEEE/MTT-S International Microwave Symposium IMS.
- [11] Suzuki K., Nishio A., Kamo A., Watanabe T. and Asai H., (2000). "An application of Verilog-A to modelling of back propagation algorithm in neural networks". 43rd IEEE Midwest Symposium on Circuits and Systems.

