Homework III

$\label{eq:Vicente} \mbox{ Vicente V. Figueira} - \mbox{ NUSP 11809301}$

May 23, 2025

Contents

Pr	blem 1	1
	A)	1
	B)	1
	C)	1
	D)	1
\mathbf{Pr}	blem 2	2
	2.A)	2
	2.B)	2
	2.C)	2
	(2.D)	2
\mathbf{Pr}	blem 3	3
	B.A)	3
	$(3.8)^{'}$	3
	$3.C^{'}$	3
	(3.D)	3
	$3.{ m E}^{'}$	3
	$3.F^{'}$	3
A	BRST A.1 Faddeev-Popov Gauge Fixing	4
Ρı	oblem 1	
1.	4)	
1.	3)	
1.		
1.))	

Problem 2

- 2.A)
- 2.B)
- 2.C)
- 2.D)

Problem 3

- 3.A)
- 3.B)
- 3.C)
- 3.D)
- 3.E)
- 3.F)

A BRST

A.1 Faddeev-Popov Gauge Fixing

We'll start with a discussion of the Faddeev-Popov procedure of gauge fixing, first, our action is,

$$S_X = \frac{1}{4\pi\alpha'} \int d^2\sigma \sqrt{|\mathrm{Det}[h_{ab}]|} h^{ab} \partial_a X^{\mu} \partial_b X_{\mu}$$

we would like to define the quantum theory by means of the path integral, that is, we expect that,

$$Z \stackrel{?}{=} \int \mathcal{D}X \mathcal{D}h \exp\left(-S_X[X, h]\right)$$

should give a well defined theory, but, the integral should be only over physical and inequivalent configurations of X, h, and as we know, we have Diff×Weyl gauge redundancies in this theory, this means in the integral measure we're over-counting physical configurations, this means instead of the integral $\int \mathcal{D}h$ being over the whole space of all possible metrics, it should be in the space of equivalence classes under Diff×Weyl of all possible metrics. Let \hat{h} denote a generic member of the space of metrics inequivalent up to Diff×Weyl, then, for any possible metric h, it's always possible to find \hat{h} such that h is,

$$h_{ab}(\sigma) = \exp(2\omega(\hat{\sigma})) \frac{\partial \hat{\sigma}^c}{\partial \sigma^a} \frac{\partial \hat{\sigma}^d}{\partial \sigma^b} \hat{h}_{cd}(\hat{\sigma})$$

that is, a composition of a Diff and Weyl transformation. We'll denote a given composition of a Diff followed by a Weyl by just ζ , so that

$$h = \zeta \circ \hat{h}$$

in this way is possible to separate the integral over all metrics $\int \mathcal{D}h$ into an integration over all inequivalent metrics $\int \mathcal{D}\hat{h}$ and an integration over all possible Diff×Weyl transformations $\int \mathcal{D}\zeta$, so that the partition function can be rewrote as,

$$Z \stackrel{?}{=} \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \exp\left(-S_X[X, \zeta \circ h]\right)$$

this still has the same problem of before, we're over-integrating the physical configurations, that is, \hat{h} are the physical configurations, but we're integrating also over the whole Diff×Weyl group in $\mathcal{D}\zeta$. One way of circumventing this problem is introducing by hand a Dirac delta to force $\zeta = 0$, what also forces we to integrate only over one copy of the physical configurations,

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \delta(\zeta) \exp\left(-S_X[X, \zeta \circ h]\right)$$

but this is not the most general way, we could set $\zeta = f(\sigma)$, for a arbitrary function, and this would still give the same theory,

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \delta(\zeta - f) \exp(-S_X[X, \zeta \circ h])$$

we can go even further and give a function $G(\zeta)$ such that the solution to $G(\zeta) = 0$ is only $\zeta = f$, so that we can use the relations between Dirac deltas to obtain,

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \delta(\zeta - f) \exp\left(-S_X[X, \zeta \circ h]\right)$$

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \left| \operatorname{Det} \left[\frac{\delta G}{\delta \zeta} \right] \right|_{\zeta = f} \left| \delta(G(\zeta)) \exp \left(-S_X \left[X, \zeta \circ \hat{h} \right] \right) \right|_{\zeta = f}$$
$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \left| \operatorname{Det} \left[\frac{\delta G}{\delta \zeta} \right] \right|_{\zeta = f} \left| \delta(G(\zeta)) \exp \left(-S_X \left[X, \zeta \circ \hat{h} \right] \right) \right|_{\zeta = f}$$

There are some details here, as ζ is to represent both a Weyl and a Diff, it has to represent both a function ω and a vector field ξ such that,

$$\zeta \circ h = h + 2\omega h + \pounds_{\xi} h + \mathcal{O}(\omega^2, \xi^2, \omega \xi)$$
$$[\zeta \circ h]_{\mu\nu} = h_{\mu\nu} + 2\omega h_{\mu\nu} + 2\nabla_{(\mu} \xi_{\nu)} + \mathcal{O}(\omega^2, \xi^2, \omega \xi)$$

this means both $\zeta = f$ and $G(\zeta) = 0$ are in fact a collection of various equations. In particular, we'll choose

$$G_{ab}(\zeta) = \left[\tilde{h}\right]_{ab} - \left[\zeta \circ \hat{h}\right]_{ab}$$

for a particular metric \tilde{h} . As $G_{ab}(\zeta)$ is in fact a function of $h = \zeta \circ \hat{h}$ alone,

$$G_{ab}(\zeta) = \left[\tilde{h}\right]_{ab} - \left[\zeta \circ \hat{h}\right]_{ab} = \left[\tilde{h}\right]_{ab} - [h]_{ab} = G_{ab}(h)$$

we can rewrite as,

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \left| \operatorname{Det} \left[\frac{\delta G_{ab}}{\delta \zeta} \right] \right|_{\zeta=f} \left| \delta(G_{ab}(\zeta)) \exp \left(-S_X \left[X, \zeta \circ \hat{h} \right] \right) \right|_{\zeta=f}$$

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \left| \operatorname{Det} \left[\frac{\delta G_{ab}}{\delta \zeta} \right] \right|_{G_{ab}(h)=0} \left| \delta(G_{ab}(h)) \exp \left(-S_X \left[X, h \right] \right) \right|_{\zeta=f}$$