Polyakov loop correlations

The untraced Polyakov loop

$$L(\vec{x}) = \prod_{\tau} U_4(\vec{x}, \tau)$$

is related to the color-averaged free energy of a quark-antiquark pair¹

$$F_{q\bar{q}}(r,T) = -T \log \left\langle \frac{1}{9} \operatorname{tr} L(\vec{x}) \operatorname{tr} L(\vec{y})^{\dagger} \right\rangle \qquad r = |\vec{x} - \vec{y}|.$$

Also of interest to us will be color-singlet free energy²

$$F_1(r,T) = -T \log \left\langle \frac{1}{3} \operatorname{tr} L(\vec{x}) L(\vec{y})^{\dagger} \right\rangle.$$

¹L. D. McLerran and B. Svetitsky, Phys. Rev. D, 24.2, 450–460 (1981).

²S. Nadkarni, Phys. Rev. D, 34.12, 3904-3911 (1986).

Debye mass m_D

- $r_D=1/m_D$ characterizes distance at which in-medium modifications of quark-antiquark interaction dominate (color screening)
- Extract m_D from large r behavior of quark-antiquark free energy

$$F_1(r,T) \sim \frac{\alpha(T)}{r} e^{-r m_D(T)}$$

ullet m_D dependence on ${\mathcal T}$ and ${\mathcal N}_f$ can be seen, e.g. in lattice simulations 3

QUESTION: How does m_D depend on m_ℓ ?

³O. Kaczmarek, PoS(CPOD07), 043 (2008).

Deconfinement criteria

Pure $SU(N_c)$ and quenched QCD:

- Polyakov loop is the order parameter
- At finite N_s , the susceptibility peaks near $\beta_c(N_s)$
- ullet Can use this to extract the critical temperature T_c

Finite quark mass:

- Peaks no longer contain information on deconfinement
- One may not find a peak anyway

GOAL: Also examine these observables as a function of m_{ℓ}

Debye mass: Additional details

- \bullet F_1 measured in Coulomb gauge; gauge fixing with OR
- Free energies renormalized using qq-scheme⁴
- Scale is set with r₁
- ullet m_D extracted from long-distance $(rT\gtrsim 1)$ behavior of F_1
- But F_1 tends to be noisy at large distances
- IDEA: smooth using gradient flow to improve the signal

⁴O Kaczmarek et al., Phys. Lett. B, 543.1-2, 41-47 (2002).

Preliminary: T dependence of F_1

Preliminary: m_ℓ dependence of different Fs

