EM Algorithm to Train Neural Networks

Contents

- 1. EM Algorithm
- 2. Training Multilayer Perceptron Network
- 3. Training MLP: with Python
- 4. Discussion & Conclusion

1 EM Algorithm

The General EM Algorithm

- EM for latent
- X의 ML은 다음과 같다.

$$\max_{\theta} p(\mathbf{X}|\theta) = \sum_{\mathbf{Z}} p(\mathbf{X}, Z|\theta).$$

- X의 marginal을 계산하기 어렵기 때문에
 - Joint $p(X,Z|\theta)$ 를 사용한다.
- Latent Z의 marginal을 q(Z)라 하면 log-likelihood를 다음과 같이 쓸 수 있다.
- $\sqrt{ \ln p(\mathbf{X}|\theta) = L(q,\theta) + KL(q||p)}$
 - KL divergence가 반드시 0보다 크거나 같기 때문에 $L(q,\theta)$ 이 곧 log-likelihood의 lower bound가 된다.

- 즉 EM for latent의 의의는 lower bound가 maximum이 되도록 하는 θ 와 q(Z)의 값을 찾고, 그에 해당하는 log-likelihood의 값을 찾는 것이다.
- 구체적으로는 θ 와 q(Z)를 jointly optimize하는 문제가 어려운 문제라면 둘 중 한 variable을 고정해두고 나머지를 update한 다음, 나머지 variable을 같은 방식으로 update하는 alternating method이다.

The General EM Algorithm

E-step

- θ_{old} 값을 고정해두고, $L(q,\theta)$ 의 값을 최대로 만드는 q(Z)의 값을 찾는 과정
- KL divergence는 $q(Z) = p(Z|X, \theta_{old})$ 인 상황에서 0이 되기 때문에,q(Z)에 posterior distribution $p(Z|X, \theta_{old})$ 을 대입하는 것으로 해결할 수 있다.
- 따라서 E-step은 언제나 KL-divergence를 0으로 만들고, lower bound와 likelihood의 값을 일치시키는 과정이 된다.
- 즉 정리해보면 미리 정해 $(\mathrm{KL}(q||p))$ 포를 계산하는 과정이다. $\mathcal{L}(q,\theta^{\mathrm{old}})$ $\ln p(\mathbf{X}|\theta^{\mathrm{old}})$

M-step

- M-step에서는 그 반대로, q(Z)를 고정하고 log likelihood를 가장 크게 만드는 θ_{new} 를 찾는 optimization 문제를 푸는 단계이다.
- M-step에서는 θ 가 log likelihood에 직접 영향을 미치기 때문에 log likelihood 자체가 증가하게 된다.
- 즉 구한 Z를 기반으로 다시 반복해서 데이터와 비교하는 과정이기 때문에 θ 가 업데이트가 되면서 log likelihood 자체가 증가하게 되는 것이다.

The General EM Algorithm

- Summary
- 1) E-step : θ_{old} 에서 log likelihood와 최대한 근사한 L을 얻는다. (파란색)
- 2) M-step : L을 최대화하는 θ_{new} 를 얻는다.
- 3) E-step : θ_{new} 로부터 L을 새로 얻는다. (초록색)
- 4) 위의 E-M step을 수렴할 때까지 반복

An example of EM Algorithm

• EM Algorithm 예시

<COIN TOSS EXAMPLE>

- EM: state unknown 상태에서 probability 계산
- 상황: 2개의 코인 A,B, 무작위로 코인을 선택하여 10번 toss
- : toss 결과(앞/뒤) 만 알뿐, 어떤 코인을 던졌는지 모 름
- 목표 : 각 코인 A,B의 앞면 나올 확률을 추정해보자.
- 1) 초기화
- 각 코인 앞면 나올 확률을 임의로 설정

- 2) E-step
- 결과를 바탕으로 사용된 코인이 A/B일확률 계산

- 3) M-step

$$\hat{\theta}_{A}^{(1)} \approx \frac{21.3}{21.3 + 8.6} \approx 0.71$$

$$\hat{\theta}_{B}^{(1)} \approx \frac{11.7}{11.7 + 8.4} \approx 0.58$$

2 Training Multilayer Perceptron Networks

EM Algorithm and Multiclass Classification

Assume multiclass classification with g groups, $G_1, ..., G_g$

Problem: Infer the unknown membership of an unclassified entity with feature vector of p-dimensions Let $(\underline{x}_1^T, \underline{y}_1^T)^T, \dots, (\underline{x}_n^T, \underline{y}_n^T)^T$ be the n examples available for training the neural network and \underline{z} be

7 (V) [xc4)

missing data or latent variable

- EM uses complete-data log likelihood to estimate unknown parameters Ψ

$$egin{aligned} \log L_c(m{\Psi};m{y},m{z},m{x}) &\propto \log \operatorname{pr}(m{Y},m{Z}|m{x};m{\Psi}) \ &= \log \operatorname{pr}(m{Y}|m{x},m{z};m{\Psi}) \ &+ \log \operatorname{pr}(m{Z}|m{x};m{\Psi}) \end{aligned}$$

$$Q(\boldsymbol{\Psi}; \boldsymbol{\Psi}^{(k)}) = E_{\boldsymbol{\Psi}^{(k)}} \{ \log L_c(\boldsymbol{\Psi}; \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{x}) | \boldsymbol{y}, \boldsymbol{x} \}$$

2) M-Step

: $\Psi^{(k)}$ is updated by taking $\Psi^{(k+1)}$ be the value of that maximizes Q-function

MLP(Multi-Layer Perceptron) neural network with one hidden layer of m units

 z_{hj} be the realization of the zero-one random variable Z_{hj}

$$(h = 1, ..., m ; j = 1, ..., n)$$

• Synaptic weight of the hth hidden unit:

$$\mathbf{w}_h = (w_{h0}, w_{h1}, \dots, w_{hp})^T$$
Conditional distribution given \mathbf{x}_j :
$$\operatorname{sigmoid function}$$

$$pr(Z_{hj} = 1 \mid \mathbf{x}_j) = \frac{\exp(\mathbf{w}_h^T \mathbf{x}_j)}{1 + \exp(\mathbf{w}_h^T \mathbf{x}_j)}$$

• The bias term (w_{h0}) is included in \mathbf{w}_h by adding a constant input $x_{0j}=1$ \Rightarrow input $\mathbf{x}_j=(x_{0j}$, x_{1j} , ..., x_{pj}) T

• Then,
$$\mathbf{w}_h^T \mathbf{x}_j = \sum_{l=1}^p w_{hl} x_{lj} + w_{h0} = \sum_{l=0}^p w_{hl} x_{lj}$$

• Synaptic weight of the ith hidden unit:

$$\mathbf{v}_{i} = (v_{i0}, v_{i1}, \dots, v_{im})^{T}$$
for $i = 1, \dots, g$

$$\mathbf{Conditional\ distribution\ given\ } \mathbf{x}_{j}, \mathbf{z}_{j}:$$

$$\mathbf{softmax\ function}$$

$$pr(Y_{ij} = 1 \mid \mathbf{x}_{j}, \mathbf{z}_{j}) = \frac{\exp(\mathbf{v}_{i}^{T} \mathbf{z}_{j})}{\sum_{r=1}^{g} \exp(\mathbf{v}_{r}^{T} \mathbf{z}_{j})}$$

- The bias term (v_{i0}) is included in v_i by adding a constant hidden u nit $z_{oj}=1$ \Rightarrow hidden layer $\mathbf{z}_j=(z_{oj}$, z_{1j} , ..., z_{mj}) T
- Then, $v_i^T z_j = \sum_{h=1}^m v_{ih} z_{hj} + v_{i0} = \sum_{h=0}^m v_{ih} z_{hj}$

Goal: Find ML estimate for unknown parameters $\Psi = (w_1^T, w_2^T, ..., w_{m}^T, v_1^T, v_2^T, ..., v_{g-1}^T)^T$ through **EM Steps**

using complete-data log likelihood
$$L_c(\Psi; y, z, x)$$
 $\sim \mathcal{D}r(\mathcal{Z}(\mathcal{Y}; \mathcal{Y})) + \mathcal{D}r(\mathcal{Y}(\mathcal{Y}, \mathcal{Z}, \mathcal{Y}))$

• Likelihood Function ($Z_{hj} \sim \text{Bernoulli}$)

$$pr(\mathbf{Z}|\mathbf{x}; \boldsymbol{\Psi}) = \prod_{j=1}^{n} \prod_{h=1}^{m} u_{hj}^{z_{hj}} (1 - u_{hj})^{(1-z_{hj})}$$

where

$$u_{hj} = pr(Z_{hj} = 1 | x_j) = \frac{\exp(\sum_{l=0}^{p} w_{hl} x_{lj})}{1 + \exp(\sum_{l=0}^{p} w_{hl} x_{lj})}$$

$$(\boldsymbol{w}_h^T \boldsymbol{x}_j = \sum_{l=0}^p w_{hl} \boldsymbol{x}_{lj} \stackrel{\exp(\boldsymbol{w}_h^T \boldsymbol{x}_j)}{1 + \exp(\boldsymbol{w}_h^T \boldsymbol{x}_j)}$$
에 대입)

• Likelihood Function ($Y_i \sim Multinomial$)

$$pr(Y|x,z;\Psi) = \prod_{j=1}^{n} \prod_{i=1}^{g} o_{ij}^{y_{ij}}$$

where

$$o_{ij} = pr(Y_{ij} = 1 | \mathbf{x_j}, \mathbf{z_j}) = \frac{\exp(\sum_{h=0}^{m} v_{ih} z_{hj})}{1 + \sum_{r=1}^{g-1} \exp(\sum_{h=0}^{m} v_{rh} z_{hj})}$$

$$o_{gj} = pr(Y_{ij} = 1 | \mathbf{x_j}, \mathbf{z_j}) = \frac{1}{1 + \sum_{r=1}^{g-1} \exp(\sum_{h=0}^{m} v_{rh} z_{hj})}$$

$$(\mathbf{v}_i^T \mathbf{z}_j = \sum_{h=0}^{m} v_{ih} z_{hj} \stackrel{\text{def}}{=} \frac{\exp(\mathbf{v}_i^T \mathbf{z}_j)}{\sum_{r=1}^{g} \exp(\mathbf{v}_r^T \mathbf{z}_j)})$$
에 대입)

Goal: Find ML estimate for unknown parameters $\Psi = (w_1^T, w_2^T, ..., w_{m}^T, v_1^T, v_2^T, ..., v_{g-1}^T)^T$ through **EM Steps** using complete-data log likelihood $L_c(\Psi; y, z, x)$

Recall

• We will calculate the expectation of the complete-data log likelihood $\log L_c(\Psi; y, z, x)$ conditional on the current estimate $\Psi^{(k)}$ and the observed input and output vectors

• E-step

: Compute the Q-function

• Complete-data log likelihood에 대해 Expectation을 취하면 (marginalize out all possible Z) 다음과 같이 Q-function이 유도된다.

• Q-function은 가중치 w, v에 대한 식으로 각각 분해 된다.

• 따라서 M-step에서 Q_w , Q_v 를 **각각 최대화 하는 과 정을 통해 w와 v를 update**할 수 있다.

- M-step
- Set the differentiation of Q_w with respect to w as 0.
- Then we take $\mathbf{w}_h^{(k+1)} = \operatorname{argmax} Q_w$

$$\frac{\partial \mathcal{L}w}{\partial w} = \underbrace{\left[\sum_{j=1}^{n} \left[E_{\Psi^{(k)}}(Z_{hj}|\boldsymbol{y},\boldsymbol{x}) - u_{hj}\right]\boldsymbol{x}_{j} = \mathbf{0}\right]}_{\text{where}}(h = 1, \dots, m) \quad (12)$$

$$W_{h}^{\text{Total}} = \underbrace{\sum_{\boldsymbol{y}: z_{hj}=1} \operatorname{pr}_{\boldsymbol{\Psi}^{(k)}}(\boldsymbol{x}_{j}, \boldsymbol{y}_{j}, \boldsymbol{z}_{j})}_{\boldsymbol{\Sigma}_{\boldsymbol{y}}^{(k)}}(Z_{hj}|\boldsymbol{y}, \boldsymbol{x}) = \frac{\boldsymbol{z}_{j}: z_{hj}=1}{\sum_{\boldsymbol{z}_{j}} \operatorname{pr}_{\boldsymbol{\Psi}^{(k)}}(\boldsymbol{x}_{j}, \boldsymbol{y}_{j}, \boldsymbol{z}_{j})}$$
(13)

and where

$$\operatorname{pr}_{\boldsymbol{\Psi}^{(k)}}(\boldsymbol{x}_j, \boldsymbol{y}_j, \boldsymbol{z}_j) = \prod_{h=1}^m u_{hj}^{z_{hj}} (1 - u_{hj})^{(1 - z_{hj})} \prod_{i=1}^g o_{ij}^{y_{ij}}.$$
(14)

- Set the differentiation of Q_v with respect to v as 0.
- Then we take $v_i^{(k+1)} = argmax Q_v$

$$\underbrace{\sum_{j=1}^{n} \left[E_{\mathbf{\Psi}^{(k)}}(Z_{hj}|\mathbf{y}, \mathbf{x}) - u_{hj} \right] \mathbf{x}_{j} = \mathbf{0}}_{\text{here}} (h = 1, \dots, m) \quad (12)$$

$$\underbrace{\sum_{j=1}^{n} \left[y_{ij} E_{\mathbf{\Psi}^{(k)}}(Z_{hj}|\mathbf{y}, \mathbf{x}) - \frac{\sum_{j=1}^{n} o_{ij} \operatorname{pr}_{\mathbf{\Psi}^{(k)}}(\mathbf{x}_{j}, \mathbf{y}_{j}, \mathbf{z}_{j})}{\sum_{\mathbf{z}_{j}} \operatorname{pr}_{\mathbf{\Psi}^{(k)}}(\mathbf{x}_{j}, \mathbf{y}_{j}, \mathbf{z}_{j})} \right]}_{\mathbf{z}_{j}} = \mathbf{0}. \quad (15)$$

M-step for gradient descent: Since we cannot obtain our new parameters as a closed form.

3

Training MLP: with Python

Training MLP: with Python 5.1 3.5 1.4 0.2] [1. 0. 0.] 4.9 3. 1.4 0.2] [1. 0. 0.] [4.7 3.2 1.3 0.2] 1. 데이터 준비 및 전처리 [1. 0. 0.] [4.6 3.1 1.5 0.2] [1. 0. 0.] [5. 3.6 1.4 0.2] [1. 0. 0.] [5.4 3.9 1.7 0.4] 1. 0. 0.] [4.6 3.4 1.4 0.3] 1. 0. 0.] [5. 3.4 1.5 0.2] import numpy as np 1. 0. 0.] [4.4 2.9 1.4 0.2] [1. 0. 0.] [4.9 3.1 1.5 0.1] from sklearn.datasets import load_iris [1. 0. 0.] [5.4 3.7 1.5 0.2] [4.8 3.4 1.6 0.2] [1. 0. 0.] from sklearn.model selection import train test split [4.8 3. 1.4 0.1] [0. 1. 0.] from sklearn.preprocessing import OneHotEncoder [4.3 3. 1.1 0.1] [0. 1. 0.] [5.8 4. 1.2 0.2] [0. 1. 0.] [5.7 4.4 1.5 0.4] [0. 1. 0.] [5.4 3.9 1.3 0.4] # Iris dataset [5.1 3.5 1.4 0.3] iris = load_iris() [5.7 3.8 1.7 0.3] Iris 데이터셋 로드 [5.1 3.8 1.5 0.3] X = iris.data 4.5 y = iris.target 4.0 # One-hot encoding One – hot encoding encoder = OneHotEncoder(sparse=False) y = encoder.fit_transform(y.reshape(-1, 1)) species # train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)#, random_sta 2.5

학습 & 테스트 데이터 분할

2. 보조 함수 및 활성화 함수 정의

zlst(m) : 가능한 은닉층의 활성화 조합을 생성하는 함수

```
\begin{array}{lll} \text{def } z | \text{st}(m): & & & & & & & \\ z | \text{st} = \text{np.zeros}((2^{**m}, m)) & & & & & & & \\ \text{for } i \text{ in } range(2^{**m}): & & & & & \\ z | = \text{format}(i, 'b').z | \text{fill}(m) & & & & & \\ z | = \text{np.array}(list(z)) & & & & & & \\ z | \text{st}[i,:] = z & & & & & \\ \text{return } z | \text{st} & & & & & \\ \end{array}
```

```
import numpy as np
import random

def sigmoid(z):
        return 1 / (1 + np.exp(-z))

def softmax(z):
    exp_z = np.exp(z)
    return exp_z / np.sum(exp_z)
```

활성화 함수인 sigmoid와 softmax 함수 구현

3. 신경망 클래스 정의 (by using EM

Algorithm)

```
class NeuralNetwork:
   def __init__(self, input_size, hidden_size, output_size, lr): #p,m,g
       self.p = input size #p
       self.m = hidden size #m
       self.g = output size #g
       self.lr = lr
       self.zlst=zlst(self.m)
                                                     모델의 가중치 초기화
     # weight initialize & shape construction
       self.W = np.random.randn(self.p, self.m) #p*m
       self.V = np.random.randn(self.m, self.g) #m*g
                                                     Forward Propagation 구현
   def forward(self, X): #forward propagation
       self.A1 = self.W.T @ X #m*1
       self.U = sigmoid(self.A1) #m*1
       self.A2 = self.V.T @ self.U #g*1
       self.0 = softmax(self.A2) #g*1
       return self.0
```


$$\operatorname{pr}(Z_{hj} = 1 | \boldsymbol{x}_j) = \frac{\exp(\boldsymbol{w}_h^T \boldsymbol{x}_j)}{1 + \exp(\boldsymbol{w}_h^T \boldsymbol{x}_j)}$$
 (5)

$$pr(Y_{ij} = 1 | \boldsymbol{x}_j, \boldsymbol{z}_j) = \frac{\exp(\boldsymbol{v}_i^T \boldsymbol{z}_j)}{\sum_{r=1}^g \exp(\boldsymbol{v}_r^T \boldsymbol{z}_j)}$$
(6)

3. 신경망 클래스 정의 – E step 구현(1)

3. 신경망 클래스 정의 – E step 구현(2)

```
def E_step_V(self, j, X, y, i):
    self.forward(X[j,:])
    sumz=0
   for z in self.zlst:
       pr_xyz=1
        for h in range(self.m):
            pr xyz*=self.U[h]**z[h]*(1-self.U[h])**(1-z[h])
        for i in range(self.g):
            pr_xyz*=softmax(self.V.T @ z)[i]**y[j,i]
        sumz+=pr xyz
    sumzy=0
    for z in self.zlsth:
        pr xyz=1
       for h in range(self.m):
            pr_xyz*=self.U[h_]**z[h_]*(1-self.U[/_])**(1-z[h_])
        for i in range(self.g):
            pr_xyz*=softmax(self.V.T @ z)[i /**y
        pr_xyz*=y[j,i]-softmax(self.V.T @ z)[i]
        sumzy+=pr_xyz
    return sumz, sumzy
```

Expectation(summation) algorithm for M-step to update v

$$Q(\boldsymbol{\Psi}; \boldsymbol{\Psi}^{(k)}) = E_{\boldsymbol{\Psi}^{(k)}} \{ \log L_{c}(\boldsymbol{\Psi}; \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{x}) | \boldsymbol{y}, \boldsymbol{x} \}$$

$$= \sum_{j=1}^{n} \sum_{h=1}^{m} \left[E_{\boldsymbol{\Psi}^{(k)}}(Z_{hj} | \boldsymbol{y}, \boldsymbol{x}) \right]$$

$$\times \log \frac{u_{hj}}{1 - u_{hj}} + \log(1 - u_{hj})$$

$$+ \sum_{j=1}^{n} \sum_{i=1}^{g} y_{ij} E_{\boldsymbol{\Psi}^{(k)}}(o_{ij} | \boldsymbol{y}, \boldsymbol{x})$$

$$= Q_{w} + Q_{v}$$

$$(11)$$

$$\sum_{j=1}^{n} \left[y_{ij} E_{\Psi^{(k)}}(Z_{hj}|\boldsymbol{y},\boldsymbol{x}) - \frac{\boldsymbol{z}_{j} : z_{hj} - o_{ij} \operatorname{pr}_{\Psi^{(k)}}(\boldsymbol{x}_{j},\boldsymbol{y}_{j},\boldsymbol{z})}{\sum_{\boldsymbol{z}_{j}} \operatorname{pr}_{\Psi^{(k)}}(\boldsymbol{x}_{j},\boldsymbol{y}_{j},\boldsymbol{z}_{j})} \right] = 0. \quad (15)$$

3. 신경망 클래스 정의 – M step 구현

```
def M step(self, X, y): #EM algorithm
   grad W = np.zeros((self.p, self.m)) #p*m
   grad V = np.zeros((self.m, self.g)) #m*g
    for h in range(self.m):
        grad Wh=0
        self.zlsth=self.zlst[self.zlst[:,h]==1]
        for j in range(len(X)):
            sumz, sumzh=self.E step W(j,X,y)
            grad Wh += sumzh/sumz-self.U[h]*X[j,:]
        grad W[:,h]=grad Wh
    ##########
    for h in range(self.m):
        self.zlsth=self.zlst[self.zlst[:,h]==1]
        for i in range(self.g):
            for j in range(len(X)):
               sumz, sumzy = self.E step V(j, X, y, i)
               grad V[h,i] += sumzy/sumz
    ##########
    # update weight & bias
    self.W += grad * self.lr...
    self.V += grad V * self.lr
```

$$\sum_{j=1}^{n} \left[E_{\Psi^{(k)}}(Z_{hj}|\boldsymbol{y}, \boldsymbol{x}) - u_{hj} \right] \boldsymbol{x}_{j} = \boldsymbol{0} \quad (h = 1, \dots, m) \quad (12)$$

$$\sum_{j=1}^{n} \left[y_{ij} E_{\mathbf{\Psi}^{(k)}}(Z_{hj}|\mathbf{y}, \mathbf{x}) - \frac{\sum_{\mathbf{z}_{j}: z_{hj}=1}^{n} o_{ij} \operatorname{pr}_{\mathbf{\Psi}^{(k)}}(\mathbf{x}_{j}, \mathbf{y}_{j}, \mathbf{z}_{j})}{\sum_{\mathbf{z}_{j}} \operatorname{pr}_{\mathbf{\Psi}^{(k)}}(\mathbf{x}_{j}, \mathbf{y}_{j}, \mathbf{z}_{j})} \right] = \mathbf{0}. \quad (15)$$

4. 모델 학습 및 평가

```
Train: 주어진 epochs만큼 모델 학습 및 손실 값 출력
def Train(self, X, y, epochs):
   for epoch in range(epochs):
       self.M step(X, y)
       losses=list()
       for n in range(len(X)):
           y pred = self.forward(X[n,:])
           loss = -np sum(y[n,:]*np.log(y pred)) #Cross Entropy Loss
           losses.append(loss)
       avgloss=np.mean(losses)
       if (epoch+1) % 1 == 0:
           print(f'Epoch {epoch+1}, Loss: {avgloss}')
                                                                    Test: 테스트 데이터를 사용하여 예측 수행
def Test(self, X):
   testoutput=[]
   for n in range(len(X)):
       y_pred = self.forward(X[n,:])
       testoutput.append(np.argmax(y_pred))
   return testoutput
```

Optimization via EM vs Backpropagation

5. 실험 결과1: Cross Entropy Loss 관측

EM

#setting hyperparameters epochs=50 Ir=0.005

NN=NeuralNetwork(4,7,3,1r)
NN.Train(X_train,y_train,epochs)

Epoch 0, Loss: 1.1427729846642725
Epoch 5, Loss: 0.8477192072820486
Epoch 10, Loss: 0.8088932560503146
Epoch 15, Loss: 0.8013409928099052
Epoch 20, Loss: 0.7953260351338284
Epoch 25, Loss: 0.7862787851641184
Epoch 30, Loss: 0.6765491949913677
Epoch 35, Loss: 0.6733092653604303
Epoch 40, Loss: 0.670328548725725
Epoch 45, Loss: 0.6676518890360496
Epoch 50, Loss: 0.6652140857718162

Backpropagation

#setting hyperparameters learning_rate=0.005 epochs=30

NN=NeuralNetwork(4,7,3,learning_rate)
NN.Train(X_train,y_train,epochs)

Epoch 0, Loss: 1.1799459307487936 Epoch 5, Loss: 0.7697343605798745 Epoch 10, Loss: 0.6724774620576618 Epoch 15, Loss: 0.5865647960528668 Epoch 20, Loss: 0.5445126310389149 Epoch 25, Loss: 0.5078813746853241 Epoch 30, Loss: 0.46463978978466247

Optimization via EM vs Backpropagation

5. 실험 결과2: 정확도 & test data 10개 sample

EM

```
testoutput = NN.Test(X_test)
y test labels = np.argmax(y test, axis=1)
#accuracy
accuracy = np.mean(testoutput == y test labels)
print(f'Accuracy: {accuracy * 100:.2f}%')
Accuracy: 93.33%
for i in range(10):
    pred=NN.forward(X_test[i,:])
    target=y test[i,:]
    print(pred, target, np.argmax(pred) == np.argmax(target))
 [0<del>.9362)9 / 0.04692205 0.01682896]</del>
[0.27988/311 0.32700521 0.39311167]
[0.28297146 0.33332921 0.38459933]
[0.95x91958 0.03276875 0.01131167]
[0.2/057917 0<u>.</u>31213924 <u>0.4172816</u> ]
   95479909 0.03355867 0.01164225]
                                                True
 [0.27467353 0.31926968 0.4060568 ]
                                     Na. 0. 1∕] True
 0.94897415 0.03924066 0.21378519]
[0.31662273 0.37827904 0.30509823] [d. 1. 0.] True
```

Backpropagation

```
testoutput = NN.Test(X_test)
y_test_labels = np.argmax(y_test, axis=1)
#accuracy
accuracy = np.mean(testoutput == y test labels)
print(f'Accuracy: {accuracy * 100:.2f}%')
Accuracy: 96.67%
for i in range(10)
    pred=NN_forward(X_test[i,:])
    target=v test[i,:]
    print(pred,target,np.argmax(pred)==np.argmax(taxget))
 [0.79087513 0.17280196 0.03632291] [1. 0. 0.] True
[0.0147225 0.34725775 0.63801976]
[0.01470303 0.33480121 0.65049575]
 [0.83338793 0.13828392 0.02832815]
 [0.00902271 0.33238056 0.65859673]
 [0.17068413 0.52608564 0.30323023]
[0.8299676 0.14205715 0.02797525] [1. 0. 0.] True
[0.01058652 0.32585278 0.6635607 ]
بلا . (0.81611671 0.15257764 0:03130565) [1. 0. بلا
[0.13539729 0.5567226 0.30788011] [0.1. 0.] True
```

4

Discussion & Conclusion

Discussion

1. 코드 구현 과정에서 개선할 점

281

 2^{m}

 $\mathcal{O}(2^{\mathsf{M}} \cdot \sim)$

m2/0

1. E-step의 효율성

: E-step에서 가능한 모든 은닉층의 조합을 반복하여 확률을 계산하는 과정은 계산 비용이 매우 높음 (실제로 코드 실행까지 걸리는 시간이 길다)

→ 샘플링 또는 근사 방법을 사용하여 계산 비용을 줄이는 방법을 채택해볼 수 있음.

2. Hyperparameter 튜닝

: 모델 학습 과정에서 학습률(lr)과 은닉층 유닛의 수(m) 등의 hyperparameter를 튜닝하여 모델의 성능을 향상시키는 방법을 생각해볼 수 있음.

3. 입력 데이터의 정규화(Normalization)

: 입력 데이터를 정규화하여 모든 입력 특성이 동일 범위를 갖게 되면 특정 값이 다른 값보다 지나치게 큰 영향을 주는 것을 방지할 수 있고, M-step의 최적화 알고리즘이 더욱 빠르게 수렴하게끔 도와주며, 오버플로우 또는 언더플로우 문제를 줄여줄 수 있음.

Discussion

2. Backpropagation 방법론 신경망 학습과의 비교

Backpropagation

VS

Expectation – Maximization

일반적으로 GD 방법이 더 빠르게 수렴하며, 복잡한 손실함수 공간에서도 잘 작동함 E-step과 M-step이 교차하며 수렴 속도가 느려질 수 있고, 특히 고차원 데이터에서 결과값의 수렴이 어려울 수 있음

반복적인 손실 함수의 경사를 계산, 일반적으로 효율 적 가능한 모든 은닉층 유닛의 조합을 반복 계산, 높은 계산 비용이 필요하며, 큰 데이터셋에서 비효율 적

손실 함수가 단순히 예측값과 실제값 간의 차이를 나타내기 때문에, 데이터의 분포가 무엇인지와는 무관하게 작동함

잠재 변수의 추정을 기반으로 하기에, 가정된 분포에 대한 해석이 부족하면 성능 저하 우려

Conclusion

EM을 shallow Neural Network 이상으로 Deep Learning에 적용하기에는 적합하지 않다

1. 시간복잡도

: shallow network에서 hidden layer의 node수에 따른 $O(2^m*)$ 의 시간복잡도 발생, 2개 이상의 hidden layer에 대해서는 요구되는 연산량이 매우 증폭될 것으로 예상됨

2. 수렴 속도

: 실험 결과를 통해 확인한 수렴 속도는 backpropagation method보다 현저히 느림. 앞서 언급한 EM algorithm의 상당한 시간복잡도를 고려한다면 더욱 비효율적

3. 데이터의 분포 가정

: Deep Learning에서는 모델 파라미터와 데이터 간의 관계에 대한 비선형성이 더욱 강화되므로 latent variable z에 대한 분포를 적절하게 가정하기 어려움

감사합니다