The GAPic Package

Lukas Schnelle

GAPDays Spring 2024

Let X_0 ("vertices"), X_1 ("edges") and X_2 ("faces") subsets of \mathbb{N}_0 and \prec a symmetric relation between the sets called *incidence*.

Let X_0 ("vertices"), X_1 ("edges") and X_2 ("faces") subsets of \mathbb{N}_0 and \prec a symmetric relation between the sets called *incidence*. We call (\prec, X_0, X_1, X_2) triangular complex if

Let X_0 ("vertices"), X_1 ("edges") and X_2 ("faces") subsets of \mathbb{N}_0 and \prec a symmetric relation between the sets called *incidence*.

We call (\prec, X_0, X_1, X_2) triangular complex if

(i) \prec is transitive, i.e. $\forall v \in X_0, e \in X_1, f \in X_2$:

$$(v \prec e) \land (e \prec f) \Rightarrow v \prec f$$

(ii) $\forall e \in X_1 \exists f \in X_2 \text{ such that } e \prec f$

Let X_0 ("vertices"), X_1 ("edges") and X_2 ("faces") subsets of \mathbb{N}_0 and \prec a symmetric relation between the sets called *incidence*.

We call (\prec, X_0, X_1, X_2) triangular complex if

(i) \prec is transitive, i.e. $\forall v \in X_0, e \in X_1, f \in X_2$:

$$(v \prec e) \land (e \prec f) \Rightarrow v \prec f$$

(ii) $\forall e \in X_1 \exists f \in X_2 \text{ such that } e \prec f$

Let X_0 ("vertices"), X_1 ("edges") and X_2 ("faces") subsets of \mathbb{N}_0 and \prec a symmetric relation between the sets called *incidence*. We call (\prec, X_0, X_1, X_2) triangular complex if

(i) \prec is transitive, i.e. $\forall v \in X_0, e \in X_1, f \in X_2$:

$$(v \prec e) \land (e \prec f) \Rightarrow v \prec f$$

- (ii) $\forall e \in X_1 \exists f \in X_2$ such that $e \prec f$
- (iii) $\forall e \in X_1 \exists ! v_1 \neq v_2 \in X_0$ such that $v_1, v_2 \prec e$

Let X_0 ("vertices"), X_1 ("edges") and X_2 ("faces") subsets of \mathbb{N}_0 and \prec a symmetric relation between the sets called *incidence*. We call (\prec, X_0, X_1, X_2) triangular complex if

(i)
$$\prec$$
 is transitive, i.e. $\forall v \in X_0, e \in X_1, f \in X_2$:

$$(v \prec e) \land (e \prec f) \Rightarrow v \prec f$$

- (ii) $\forall e \in X_1 \exists f \in X_2$ such that $e \prec f$
- (iii) $\forall e \in X_1 \exists ! \ v_1 \neq v_2 \in X_0 \text{ such that } v_1, v_2 \prec e$
- (iv) $\forall f \in X_2 \exists ! \ v_1 \neq v_2 \neq v_3 \in X_0 \text{ such that } v_1, v_2, v_3 \prec f$

Let X_0 ("vertices"), X_1 ("edges") and X_2 ("faces") subsets of \mathbb{N}_0 and \prec a symmetric relation between the sets called *incidence*. We call (\prec, X_0, X_1, X_2) *triangular complex* if

vve can (\(\sigma, \text{\$\chi_0}, \text{\$\chi_1}, \text{\$\chi_2}\) triangular complex ii

(i) \prec is transitive, i.e. $\forall v \in X_0, e \in X_1, f \in X_2$:

$$(v \prec e) \land (e \prec f) \Rightarrow v \prec f$$

- (ii) $\forall e \in X_1 \exists f \in X_2 \text{ such that } e \prec f$
- (iii) $\forall e \in X_1 \exists ! \ v_1 \neq v_2 \in X_0 \text{ such that } v_1, v_2 \prec e$
- (iv) $\forall f \in X_2 \exists ! \ v_1 \neq v_2 \neq v_3 \in X_0 \text{ such that } v_1, v_2, v_3 \prec f$
- (v) $\forall f \in X_2 \exists ! e_1 \neq e_2 \neq e_3 \in X_1 \text{ such that } e_1, e_2, e_3 \prec f$

Let X_0 ("vertices"), X_1 ("edges") and X_2 ("faces") subsets of \mathbb{N}_0 and \prec a symmetric relation between the sets called *incidence*. We call (\prec, X_0, X_1, X_2) *triangular complex* if

vve can (\(\sigma, \text{\$\chi_0}, \text{\$\chi_1}, \text{\$\chi_2}\) triangular complex ii

(i) \prec is transitive, i.e. $\forall v \in X_0, e \in X_1, f \in X_2$:

$$(v \prec e) \land (e \prec f) \Rightarrow v \prec f$$

- (ii) $\forall e \in X_1 \exists f \in X_2 \text{ such that } e \prec f$
- (iii) $\forall e \in X_1 \exists ! \ v_1 \neq v_2 \in X_0 \text{ such that } v_1, v_2 \prec e$
- (iv) $\forall f \in X_2 \exists ! \ v_1 \neq v_2 \neq v_3 \in X_0 \text{ such that } v_1, v_2, v_3 \prec f$
- (v) $\forall f \in X_2 \exists ! e_1 \neq e_2 \neq e_3 \in X_1 \text{ such that } e_1, e_2, e_3 \prec f$

Let (\prec, X_0, X_1, X_2) be a triangular complex.

Then we call (\prec, X_0, X_1, X_2) simplicial surface if

Let (\prec, X_0, X_1, X_2) be a triangular complex.

Then we call (\prec, X_0, X_1, X_2) simplicial surface if

(i)
$$\forall e \in X_1 : |\{f \in X_2 \mid e \prec f\}| \le 2$$

Let (\prec, X_0, X_1, X_2) be a triangular complex.

Then we call (\prec, X_0, X_1, X_2) simplicial surface if

(i)
$$\forall e \in X_1 : |\{f \in X_2 \mid e \prec f\}| \le 2$$

(ii)
$$\forall v \in X_0 : |\{f \in X_2 \mid v \prec f\}| < \infty$$

Let (\prec, X_0, X_1, X_2) be a triangular complex.

Then we call (\prec, X_0, X_1, X_2) simplicial surface if

(i)
$$\forall e \in X_1 : |\{f \in X_2 \mid e \prec f\}| \leq 2$$

(ii)
$$\forall v \in X_0 : |\{f \in X_2 \mid v \prec f\}| < \infty$$

(iii) $\forall v \in X_0$: there is an ordering of the $e_i, f_j \prec v$ such that

$$e_1 \prec f_1 \prec e_2 \prec f_2 \prec \cdots \prec f_n \prec e_n$$

Let (\prec, X_0, X_1, X_2) be a triangular complex.

Then we call (\prec, X_0, X_1, X_2) simplicial surface if

(i)
$$\forall e \in X_1 : |\{f \in X_2 \mid e \prec f\}| \le 2$$

(ii)
$$\forall v \in X_0 : |\{f \in X_2 \mid v \prec f\}| < \infty$$

(iii) $\forall v \in X_0$: there is an ordering of the $e_i, f_j \prec v$ such that

$$e_1 \prec f_1 \prec e_2 \prec f_2 \prec \cdots \prec f_n \prec e_n$$

with $e_1 = e_n$ if condition (i) is exactly 2.

Let (\prec, X_0, X_1, X_2) be a triangular complex.

Then we call (\prec, X_0, X_1, X_2) simplicial surface if

(i)
$$\forall e \in X_1 : |\{f \in X_2 \mid e \prec f\}| \leq 2$$

(ii)
$$\forall v \in X_0 : |\{f \in X_2 \mid v \prec f\}| < \infty$$

(iii) $\forall v \in X_0$: there is an ordering of the $e_i, f_j \prec v$ such that

$$e_1 \prec f_1 \prec e_2 \prec f_2 \prec \cdots \prec f_n \prec e_n$$

with $e_1 = e_n$ if condition (i) is exactly 2.

Condition (iii) is called the umbrella condition.

Simplicial Surface

0000

Let (\prec, X_0, X_1, X_2) be a triangular complex.

Let (\prec, X_0, X_1, X_2) be a triangular complex.

Then we define an *embedding* of (\prec, X_0, X_1, X_2) as a map

$$c: X_0 \to \mathbb{R}^3$$

Let (\prec, X_0, X_1, X_2) be a triangular complex.

Then we define an *embedding* of (\prec, X_0, X_1, X_2) as a map

$$c: X_0 \to \mathbb{R}^3$$

The image of $v \in X_0$ is called *coordinate of v*.

Let (\prec, X_0, X_1, X_2) be a triangular complex.

Then we define an *embedding* of (\prec, X_0, X_1, X_2) as a map

$$c: X_0 \to \mathbb{R}^3$$

The image of $v \in X_0$ is called *coordinate of v*.

Example

Embedded triangular complex

Let (\prec, X_0, X_1, X_2) be a triangular complex.

Then we define an *embedding* of (\prec, X_0, X_1, X_2) as a map

$$c: X_0 \to \mathbb{R}^3$$

The image of $v \in X_0$ is called *coordinate of v*.

Example

Embedded triangular complex

Embedded simplicial surface

Simplicial Surfaces Package

- Has functionality for displaying simplicial surfaces
 - Generates a .html file
 - Uses three.js

Simplicial Surfaces Package

- Has functionality for displaying simplicial surfaces
 - Generates a .html file
 - Uses three.js

Fachpraktikum

Was a project with the goal to improve the visualizations by adding shading/local lighting.

Fachpraktikum

Was a project with the goal to improve the visualizations by adding shading/local lighting.

After some work it turns out: central class used in implementation is deprecated.

THREE.Geometry will be removed from core with r125

Discussion

geometry

The upcoming release r125 will contain a major, potentially breaking change. The class THREE.Geometry will be no longer part of the core but moved to jsm/deprecated/Geometry.js. It will only be available as an ES6 module and not as a global script.

Fachpraktikum

Was a project with the goal to improve the visualizations by adding shading/local lighting.

After some work it turns out: central class used in implementation is deprecated.

THREE.Geometry will be removed from core with r125

(4)

Discussion

Mugen87 €

aeometry

3 🥒 Jan '21

The upcoming release r125 will contain a major, potentially breaking change. The class THREE.Geometry will be no longer part of the core but moved to jsm/deprecated/Geometry.js. It will only be available as an ES6 module and not as a global script.

→ Decided to rewrite whole functionality

Advancements after rewrite

- New security requirements of JavaScript and modern browsers: need to load the code from some server \rightarrow way smaller file sizes (for small examples 9kB vs. 539kB)

Advancements after rewrite

- New security requirements of JavaScript and modern browsers: need to load the code from some server → way smaller file sizes (for small examples 9kB vs. 539kB)
- More efficient Animations, faster loading, less memory (Demo in Browser)

Advancements after rewrite

- New security requirements of JavaScript and modern browsers: need to load the code from some server \rightarrow way smaller file sizes (for small examples 9kB vs. 539kB)
- More efficient Animations, faster loading, less memory (Demo in Browser)
- Also works for triangular complexes
 - ightarrow Does not depend on umbrella condition for visualization (Demo in Browser)

GAPic ●00

Afterwards decided to roll this feature into new package:

GAP image creator

Afterwards decided to roll this feature into new package:

GAP image creator

Goal is to divide up working with triangular complexes/simplicial surfaces in SimplicialSurfaces and to visualize them in GAPic.

- Most settings available via GUI in real time

- Most settings available via GUI in real time
- normalsMaterial for visualizing angles of faces
 - \rightarrow maps colors of a face smoothly depending on the normal

- Most settings available via GUI in real time
- normalsMaterial for visualizing angles of faces
 - ightarrow maps colors of a face smoothly depending on the normal
- Intersection planes
 - → allows seeing inside complexes

- Most settings available via GUI in real time
- normalsMaterial for visualizing angles of faces
 - ightarrow maps colors of a face smoothly depending on the normal
- Intersection planes
 - \rightarrow allows seeing inside complexes
- Parameterized coordinates
 - ightarrow allows coordinates to be defined as any equation JavaScript can evaluate

- Currently in beta
 - \rightarrow need to finish manual

- Currently in beta
 - \rightarrow need to finish manual
- Partial rewrite with new data structure
 - ightarrow will reduce storage especially for big animations
- Add library of often used coordinates
 - ightarrow e.g. icosahedra of length 1[1]

- Currently in beta
 - \rightarrow need to finish manual
- Partial rewrite with new data structure
 - → will reduce storage especially for big animations
- Add library of often used coordinates
 - ightarrow e.g. icosahedra of length 1[1]
- Make compatible with objects from other packages
 - ightarrow e.g. simpcomp package or

- Currently in beta
 - \rightarrow need to finish manual
- Partial rewrite with new data structure
 - \rightarrow will reduce storage especially for big animations
- Add library of often used coordinates
 - ightarrow e.g. icosahedra of length 1[1]
- Make compatible with objects from other packages
 - → e.g. simpcomp package or your package?

Thank you for your attention

Want to get involved? \rightarrow github.com/GAP-ART-RWTH/GAPic

References:

[1] Karl-Heinz Brakhage et al. *The icosahedra of edge length 1*. 2019. DOI: 10.48550/ARXIV.1903.08278. URL: https://arxiv.org/abs/1903.08278.