MANTRA: A Scalable Approach to Mining Temporally Anomalous Sub-trajectories

ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2016)

Prithu Banerjee, Pranali Yawalkar, Sayan Ranu

17 June 2016

Introduction: Mining Temporally Anomalous Sub-Trajectories

Temporally Anomalous

- Time taken to cover the trajectory deviates significantly from the remaining population
- Both *over-speeding* and *under-speeding* are anomalous

Introduction: Mining Temporally Anomalous Sub-Trajectories

Why mine temporally anomalous *sub-trajectories*?

A non-anomalous trajectory may contain temporally anomalous sub-trajectories

Introduction

Introduction

Introduction: Mining Temporally Anomalous Sub-Trajectories

Why mine *maximal* anomalies?

- No extra information provided by T[1:2], T[5:9] over T[1:3] and T[4:10]
- Identifying longest stretches of anomalous driving

Introduction

Introduction

Applications

0000

Real Time Vehicle Monitoring:

- Abundance of GPS data from smart devices; MANTRA works directly on users' GPS data
- Identifying anomalous drivers (over-speeding & under-speeding) in real time; < 25 ms</p>
- Robust against all year weather & traffic conditions; useful in countries like India

Applications

0.00

Identifying Bus Bunching

- A common phenomenon in countries like *India*
- Buses do not maintain the distance between the following ones uniformly
- Undesirable behaviour of under-speeding to pick up maximum passengers followed by over-speeding to maintain the distance from the following bus

Applications

Rating cab drivers :

- GPS trackers already installed in all cabs
- Identifying *how* anomalous and *where* was the anomalous driving exhibited
- Real-time application; a pilot version already deployed by Uber

Applications

- Rating cab drivers
 - GPS trackers already installed in all cabs
 - Identifying how anomalous and where was the anomalous driving exhibited
 - Real-time application; a pilot version already deployed by Uber
- Personalized Car Insurance, Pay How You Drive (PHYD), Usage Based Insurance (UBI)
 - Direct approach to assess driving behaviour from user's historical driving records
 - Mutually beneficial scheme; for the insurance company and the driver
 - Efforts steered in *USA*, *Japan*, *Australia*, *EU* partnered with *Toyota*

Anomaly Model Introduction Problem Experimentation

Notations

0000 Notations

- **Road Network**: Directed graph G(V, E); set of nodes V and set of edges E
- D denote prevailing traffic conditions containing trajectories in history

Anomaly Model Introduction Problem Experimentation Notations

Notations

0000

- **Road Network**: Directed graph G(V, E); set of nodes V and set of edges E
- **Trajectory**

Notations

Introduction

○○○

Notations

- **Road Network**: Directed graph G(V, E); set of nodes V and set of edges E
- D denote prevailing traffic conditions containing trajectories in history
- **■** Trajectory

■ Time taken to traverse T times $(T) = \sum_{\forall e \in S} T.e_t$

Notations

Introduction

OOO

Notations

- **Road Network**: Directed graph G(V, E); set of nodes V and set of edges E
- D denote prevailing traffic conditions containing trajectories in history
- Trajector

- Time taken to traverse T times $(T) = \sum_{\forall e \in S} T.e$
- Sub-trajectory

Notations

Introduction

Notations

- **Road Network**: Directed graph G(V, E); set of nodes V and set of edges E
- D denote prevailing traffic conditions containing trajectories in history
- Trajectory

- Time taken to traverse T times $(T) = \sum_{\forall e \in S} T.e$
- Sub-trajectory

Maximal Anomalous Sub-Trajectory (MAS) S: no anomalous super-trajectory of S

Introduction Problem Anomaly Model Naïve BSW MANTRA Experimentation Conclusic 000 0 0000000 0000000 0 Problem Statement

PROBLEM STATEMENT

Given $\mathbb D$, the reference dataset of trajectories. For an input trajectory, identify all of its maximal temporally anomalous sub-trajectories under a user-provided threshold θ with respect to $\mathbb D$.

Introduction

- Standard z-score based anomaly model with Normal Distribution
- Distribution of travel times along $S = N(\mu_S, \sigma_S^2)$, where μ_S is the **mean** and σ_S^2 is the variance

Introduction

- Compute μ_S and σ_S^2 from the background set of S in \mathbb{D}

Introduction

Issue of data sparsity; non existent background set for sub-trajectory size > 10

Managing Data Sparsity

 Covariance cov(e, e') captures the dependence between travel times of the two edges e and e'

Managing Data Sparsity

Introduction

- $\forall e, e' \in E, cov(e, e') \geq 0$

Managing Data Sparsity

Introduction

Anomaly Model

- Covariance cov(e, e') captures the dependence between travel times of the two edges e and e'
 - $\forall e, e' \in E \text{ more than 5 hops away, } cov(e, e') \approx 0$
- For $\forall e \in E$, fit a normal distribution $time(e) = \mathcal{N}(\mu_e, \sigma_e^2)$

Managing Data Sparsity

Introduction

OOOO

Anomaly Model

- Covariance cov(e, e') captures the dependence between travel times of the two edges e and e'

 - $\forall e, e' \in E, cov(e, e') > 0$
- For $\forall e \in E$, fit a normal distribution $time(e) = \mathcal{N}(\mu_e, \sigma_e^2)$

■ Modelling travel times along *S* as multivariate distribution of its edges

$$\sigma_{\mathcal{S}}^2 = \sum_{\forall e \in \mathcal{S}} \sigma_e^2 + 2 \sum_{\forall \{e, e'\} \in \mathcal{S}} cov(e, e') \tag{1}$$

Deviation of S as an *aggregate* of the deviation in its constituent edges

$$I(e)(\mu_e-t_e)^2 = 0 \, 0.5 \, 1.5 \, 2 \, 0.5 \, -1 \, -1.5 \, -2.5$$

Road Segment 1 2 3 4 5 6 7 8 MAS 1 MAS 2

Deviation of S as an aggregate of the deviation in its constituent edges

$$I(e)(\mu_e-t_e)^2 = 0 \ 0.5 \ 1.5 \ 2 \ 0.5 \ -1 \ -1.5 \ -2.5$$
 Road Segment 1 2 3 4 5 6 7 8 $\frac{1}{2}$ MAS 1 MAS 2

$$\operatorname{dist}(S) = \sum_{\forall e \in S} \mathcal{I}(e)(\mu_e - S.t_e)^2 \tag{2}$$

$$\mathcal{I}(e) = \begin{cases} 1 & \text{if } S.t_e >= \mu_e : \text{Over-speeding} \\ -1 & \text{if } S.t_e < \mu_e : \text{Under-speeding} \end{cases}$$
(3)

Deviation of S as an aggregate of the deviation in its constituent edges

$$\mathsf{dist}(\mathsf{S}) = \ \sum \ \mathcal{I}(\mathsf{e})(\mu_{\mathsf{\theta}} - S.t_{\mathsf{e}})^2$$

$$\mathcal{I}(e) = \begin{cases} 1 & \text{if } S.t_e >= \mu_e : \text{Over-speeding} \\ -1 & \text{if } S.t_e < \mu_e : \text{Under-speeding} \end{cases}$$
 (3)

S is anomalous if

$$\frac{|\operatorname{dist}(S)|}{\sigma_{S}^{2}} > \theta \tag{4}$$

Deviation of S as an aggregate of the deviation in its constituent edges

$$\operatorname{dist}(S) = \sum_{\forall e \in S} \mathcal{I}(e)(\mu_e - S.t_e)^2 \tag{2}$$

$$\mathcal{I}(e) = \begin{cases} 1 & \text{if } S.t_{\theta} >= \mu_{\theta} : \text{Over-speeding} \\ -1 & \text{if } S.t_{\theta} < \mu_{\theta} : \text{Under-speeding} \end{cases}$$
(3)

S is anomalous in

$$\frac{|\operatorname{dist}(S)|}{\sigma_S^2} > \theta \tag{4}$$

- Anomalous sub-trajectory can contain non-anomalous edges.
- Anomalous sub-trajectory must contain at least one anomalous edge.

Approach 1: The Naïve Approach

Introduction

Approach 1: The Naïve Approach

Introduction

Computation complexity of T with n edges = $\mathbb{O}(n^2)$; not scalable

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

$$I(e)(\mu_e-t_e)^2$$
 0 0.5 1.5 2 0.5 -1 -1.5 -2.5
Road Segment 1 2 3 4 5 6 7 8 MAS 1 MAS 2

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

$$I(e)(\mu_e-t_e)^2$$
 0 0.5 1.5 2 0.5 -1 -1.5 -2.5 Road Segment 1 2 3 4 5 6 7 8 MAS 1 MAS 2

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

$$I(e)(\mu_e-t_e)^2$$
 0 0.5 1.5 2 0.5 -1 -1.5 -2.5
Road Segment 1 2 3 4 5 6 7 8 MAS 1 MAS 2

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

$$I(e)(\mu_e-t_e)^2$$
 0 0.5 1.5 2 0.5 -1 -1.5 -2.5 Road Segment 1 2 3 4 5 6 7 8 MAS 1 MAS 2

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

$$I(e)(\mu_e-t_e)^2$$
 0 0.5 1.5 2 0.5 -1 -1.5 -2.5
Road Segment 1 2 3 4 5 6 7 8 MAS 1 MAS 2

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

$$I(e)(\mu_e - t_e)^2$$
 0 0.5 1.5 2 0.5 -1 -1.5 -2.5
Road Segment 1 2 3 4 5 6 7 8 MAS 1 MAS 2

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

$$I(e)(\mu_e - t_e)^2$$
 0 0.5 1.5 2 0.5 -1 -1.5 -2.5
Road Segment 1 2 3 4 5 6 7 8 MAS 1 MAS 2

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

$$I(e)(\mu_e-t_e)^2$$
 0 0.5 1.5 2 0.5 -1 -1.5 -2.5 Road Segment 1 2 3 4 5 6 7 8 $\frac{1}{2}$

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

$$I(e)(\mu_e-t_e)^2$$
 0 0.5 1.5 2 0.5 -1 -1.5 -2.5
Road Segment 1 2 3 4 5 6 7 8 MAS 1 MAS 2

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

$$I(e)(\mu_e-t_e)^2$$
 0 0.5 1.5 2 0.5 -1 -1.5 -2.5
Road Segment 1 2 3 4 5 6 7 8 MAS 1 MAS 2

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

$$I(e)(\mu_e-t_e)^2$$
 0 0.5 1.5 2 0.5 -1 -1.5 -2.5 Road Segment 1 2 3 4 5 6 7 8 MAS 1 MAS 2

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

$$I(e)(\mu_e-t_e)^2$$
 0 0.5 1.5 2 0.5 -1 -1.5 -2.5 Road Segment 1 2 3 4 5 6 7 8 $\frac{1}{2}$

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

$$I(e)(\mu_e-t_e)^2$$
 0 0.5 1.5 2 0.5 -1 -1.5 -2.5
Road Segment 1 2 3 4 5 6 7 8 $\frac{1}{2}$

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

$$I(e)(\mu_e-t_e)^2 = 0$$
 0.5 1.5 2 0.5 -1 -1.5 -2.5 Road Segment 1 2 3 4 5 6 7 8 MAS 1 MAS 2

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

$$I(e)(\mu_e - t_e)^2$$
 0 0.5 1.5 2 0.5 -1 -1.5 -2.5
Road Segment 1 2 3 4 5 6 7 8 MAS 1 MAS 2

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

$$I(e)(\mu_e-t_e)^2$$
 0 0.5 1.5 2 0.5 -1 -1.5 -2.5 Road Segment 1 2 3 4 5 6 7 8 MAS 1 MAS 2

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

$$I(e)(\mu_e-t_e)^2$$
 0 0.5 1.5 2 0.5 -1 -1.5 -2.5 Road Segment 1 2 3 4 5 6 7 8 MAS 1 MAS 2

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

$$I(e)(\mu_e-t_e)^2 = 0 \ 0.5 \ 1.5 \ 2 \ 0.5 \ -1 \ -1.5 \ -2.5$$
Road Segment $\ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 1$
MAS $\ 1 \ MAS \ 2$

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

$$I(e)(\mu_e-t_e)^2$$
 0 0.5 1.5 2 0.5 -1 -1.5 -2.5
Road Segment 1 2 3 4 5 6 7 8 MAS 1 MAS 2

- Avoid evaluating non-maximal anomalous sub-trajectories
- Evaluating longer sub-trajectories first

1. Best scenario for Bi-Directional Sliding Window

2. Best scenario for Bi-Directional Sliding Window

MANTRA's Mantra

Introduction

MANTRA

MANTRA identifies segments of input trajectory which are best suited for Bi Directional Sliding Window.

MANTRA applies BSW on these special segments, called *Islands*.

Introduction

Seeds (contiguous anomalous edges): $S_1 = T[3:4]$ and $S_2 = T[7:8]$

$$I(e)(\mu_e - t_e)^2$$
 0 0.5 1.5 2 0.5 -1 -1.5 -2.5
Road Segment 1 2 3 4 5 6 7 8

Introduction

■ Seeds (contiguous anomalous edges) :
$$S_1 = T[3:4]$$
 and $S_2 = T[7:8]$

Left Boundary:

Introduction

- Right Boundary:

$$I(e)(\mu_e-t_e)^2 \ \, 0 \ \, 0.5 \ \, 1.5 \ \, 2 \ \, 0.5 \ \, -1 \ \, -1.5 \ \, -2.5$$
 Road Segment 1 2 3 4 5 6 7 8

Introduction

Impact Region:

■ S₁

Introduction

Impact Region: S_1

■ S₂

$$I(e)(\mu_e-t_e)^2 \ 0 \ 0.5 \ 1.5 \ 2 \ 0.5 \ -1 \ 1.5 \ -2.5$$
 Road Segment 1 2 3 4 5 6 7 8

$$I(e)(\mu_e-t_e)^2 \ 0 \ 0.5 \ 1.5 \ 2 \ 0.5 \ -1 \ -1.5 \ -2.5$$
 Road Segment 1 2 3 4 5 6 7 8

Introduction

Impact Regions separated by more than one non-anomalous edges DO NOT interact.

Such Impact Regions are called *Islands*.

All MASs are contained within Islands and do not span across them.

Islands are best suited for Bi Directional Sliding Window.

Introduction Problem Anomaly Model Naïve BSW MANTRA Experimentation Conclusii
000 0 0000000 0 0000000 0
Pipeline

MANTRA Pipeline

APPROACH 3. MANTRA

Introduction Problem Anomaly Model Naïve BSW MANTRA Experimentation Conclusion 0000 0 00000000 0 00000000 0 Example

MANTRA Example

Road Segment ID 1 2 3 4 5 6 7 8 9 10 11 12 13

MANTRA Example

Example

Seed identification

Road Segment ID 1 2 3 4 5 6 7 8 9 10 11 12 13 1

Introduction Problem Anomaly Model Naïve BSW MANTRA Experimentation Conclusion Cool o conclusion C

MANTRA Example

Seed identification

■ Compute impact region of the seeds

Introduction Problem Anomaly Model Naïve BSW MANTRA Experimentation Conclusis

OOO O OOOOOOO O

Example

Continued

■ Merge interacting impact regions of seeds till convergence

Introduction Problem Anomaly Model Naïve BSW MANTRA Experimentation Conclusi
0000 0 000000 0000000 0

Example

Continued

■ Merge interacting impact regions of seeds till convergence

1st iteration :

z.....

3......

■ Merge interacting impact regions of seeds till convergence

1st iteration :

2nd iteration :

Merge interacting impact regions of seeds till convergence

1st iteration

2nd iteration

■ Final seeds : ST1[1:3] and ST5[6:12]

Merge interacting impact regions of seeds till convergence

1st iteration

2nd iteration

- Final seeds : ST1[1 : 3] and ST5[6 : 12]
- Islands : non-interacting impact regions

Merge interacting impact regions of seeds till convergence

1st iteration

2nd iteration

- Final seeds : ST1[1 : 3] and ST5[6 : 12]
- Islands : non-interacting impact regions
- **Perform Bi-Directional Sliding Window on the islands**

Set Up and Datasets

Set up

EXPERIMENTATION SET UP

- Java JDK 1.7.0
- 12GB memory

- Intel i5 2.60GHz quad core processor
- Ubuntu 13.04

DATASETS FROM BEIJING

- T-drive dataset
 - Largest publicly available trajectory dataset
 - 136,759 trajectories

- Geolife dataset
 - 18760 trajectories
 - Vehicle annotated trajectories : car, walk, bus

Introduction Problem Anomaly Model Naïve BSW MANTRA Experimentation Conclusis 0000 0 0000000 0 €000000 0 Scalability

Effect of Trajectory Size

- MANTRA is upto 3 orders of magnitude faster; less number of edges processed
- For longer trajectories, MANTRA consumes < 25 ms

Introduction Problem Anomaly Model Naïve BSW MANTRA Experimentation Conclusis 0000 0 0000000 00€00000 0 Scalability

Effect of Number of Anomalous Edges

- For sliding window, number of anomalous edges ↑ ⇒ running time ↓, # edges processed ↓

Introduction Problem Anomaly Model Naïve BSW MANTRA Experimentation Conclusis 0000 0 0000000 00€00000 0 Scalability

Effect of Number of Anomalous Edges

- For sliding window, number of anomalous edges ↑ ⇒ running time ↓, # edges processed |
- Sliding Window overtakes MANTRA; islands formation redundant with \(\gamma\) in anomalous edges

Effect of Anomaly Threshold on Runtime

- \blacksquare \uparrow threshold \Longrightarrow \downarrow anomalous edges
- Running time for Naive ↓ with ↑ in threshold; less anomalous sub-trajectories
- Running time Sliding Window ↑ with ↑ in threshold; less anomalous edges
- Hump

 convergence of island formation

Efficacy and Applications

Are we able to identify sub-trajectories that would be considered anomalous by humans?

Efficacy and Applications

Are we able to identify sub-trajectories that would be considered anomalous by humans?

Intuition :

- Car trajectory least anomalous against Car population
- Car trajectory more anomalous against Walk and Bus population

Introduction Problem Anomaly Model Naïve BSW MANTRA Experimentation Conclusio

O OO O OOOOOO OOOO●OO O

Efficacy and Applications

Trajectory Classification: Classification Model

Trajectory Classification

Trajectory Classification

- Majority Walk trajectories have higher anomaly score against Car
- Car vs Walk is more drastic than Car vs Bus

Trajectory Classification

- Majority Walk trajectories have higher anomaly score against Cal
- Car vs Walk is more drastic than Car vs Bus
- Two class classification f-score

Class label	Walk	Bus
Car	0.85	0.74
Walk	-	0.75

Trajectory Classification

- Majority Walk trajectories have higher anomaly score against Cal
- Car vs Walk is more drastic than Car vs Bus
- Two class classification f-score

Class label	Walk	Bus
Car		0.74
Walk		0.75

Three class classification f-score

Class combination	car	walk	bus
Car-Walk-Bus	0.62	0.69	0.47

Trajectory Segmentation

Trajectory Segmentation

- Segmentation model :
 - Identify MASs on test trajectory against each of Walk, Car, Bus model
 - Assign class labels to MASs edges to the closest class; i.e the model it is least anomalous against

Trajectory Segmentation

- Segmentation model :
 - Identify MASs on test trajectory against each of Walk, Car, Bus model
 - Assign class labels to MASs edges to the closest class; i.e the model it is least anomalous against
- F-score based on number of edges identified correctly

Class label	Walk	Bus
Car	0.80	0.65
Walk -		0.76

Problem Anomaly Model Naïve BSW MANTRA Experimentation Conclusion
O 000 0 000 0000000

•

Conclusions

Introduction

Conclusion

- Unique problem of mining Maximal Anomalous Sub-trajectories
- MANTRA refines the search space and identifies islands where all the MASs are present
- MANTRA is observed to be 3 orders of magnitude faster than baseline
- MANTRA conforms to human intuition of anomaly demonstrated through classification and segmentation
- MANTRA facilitates a unique tool to classify segments of trajectories based on vehicle type from their GPS traces