2023 JC1 H1 Math Solutions (Students)

Qn	Solutions (Students) Solutions
(1)	$x^2 + x - 1 + k > 2$
	$x^2 + x - 3 + k > 0$
	For $x^2 + x - 3 + k > 0$ for all real values of x,
	Discriminant = $1^2 - 4(-3+k) < 0$
	4k > 13
	$k > \frac{13}{4} = 3.25$
2	$\log_{\alpha} \frac{x}{y} = \frac{9}{2} \Rightarrow \log_{\alpha} x - \log_{\alpha} y = \frac{9}{2} (1)$
	$\log_{\alpha} x^5 y^2 = 5 \Rightarrow 5\log_{\alpha} x + 2\log_{\alpha} y = 5 (2)$
	(1)+(2)x2: we have
	$7\log_{\alpha} x = 14$
	$\therefore \log_{\alpha} x = 2$
3	$T = 24 + 72(0.9)^0$
(i)	$T = 96 ^{o}\mathrm{C}$
(ii)	$t \to \infty, \ 0.9^t \to 0$
	$:T \to 24$
	T approaches/tends to 24 o C for large values of t .
	- upproduction, totals to 2.
(iii)	96
	24

(iv)	Add the line $T = 28$ to curve in (iii), use GC to find the intersection
	point: <i>t</i> =27.4 minutes.
4 (i)	(0.368,0) or (e ⁻¹ ,0) x=0 x=10
(ii)	$\ln x = \frac{11 - x}{x - 10}$ $1 + \ln x = 1 + \frac{11 - x}{x - 10}$ $Add y = 1 + \frac{11 - x}{x - 10}$ $= \frac{1}{x - 10}$

(5)(i)	$13R + 18J + 40W = 2830 \dots (1)$
	18R(0.8) + 30J(0.75) + 40W(0.9) = 2934 $14.4R + 22.5J + 36W = 2934 \dots (2)$
	$-4R + 10W = 165 \dots (3)$
	From GC $R = 50, J = 40, W = 36.5$
	The manufacturing cost for a pair of walkers is \$36.50.
(ii)	The manufacturing cost of 10 pairs of walkers is \$165 more than the manufacturing cost of 4 pairs of runners.

(iii)

From GC maximum point is x=349.99994, P=12248 Since x is an integer,

The number of pairs of shoes the manufacturer needs to manufacture is 350 and maximum profit is \$12248.

Method 1

When
$$P = 0$$
, $0 = -\frac{x^2}{10} + 70x - 2$

$$x = 0.04286$$
 or $x = 699.957$

The maximum number of shoes the manufacturer can manufacture so that the investment is profitable is 699 pairs of shoes

Method 2

From GC When $P \ge 0$

 $0.0285726 \le x \le 699.9714$

Largest value of *x* is 699

The maximum number of shoes the manufacturer can manufacture so that the investment is profitable is 699 pairs of shoes