

## RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General Degree) in Applied Sciences Second Year - Semester I Examination – September / October 2019

## **CHE 2205 – INORGANIC CHEMISTRY**

Time: Two (02) hours

Answer question No. 1(compulsory) and any other three questions.

| Electronic rest mass | $m_e$ | = | $9.11 \times 10^{-31} \text{ kg}$ | ī |
|----------------------|-------|---|-----------------------------------|---|
|                      |       |   |                                   |   |

Proton rest mass 
$$m_p = 1.672 \times 10^{-27} \text{ kg}$$

Neutron rest mass 
$$m_n = 1.675 \times 10^{-27} \text{ kg}$$

Avogadro number 
$$N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$$

Universal gas constant 
$$R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$$

Planck constant 
$$h = 6.63 \times 10^{-34} \text{ J s}$$

Speed of light in a vacuum 
$$c = 3.00 \times 10^8 \,\mathrm{m \ s^{-1}}$$

1 atomic mass unit (amu) 1 amu = 
$$1.66 \times 10^{-27}$$
 kg

$$1eV = 1.602 \times 10^{-19} J$$

The use of a non-programmable calculator is permitted.

- 1. a) i. Give the systematic name for the coordination compound [Cr(NH<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)<sub>3</sub>]Cl<sub>3</sub>.
  - ii. Write down the formula of

dicarbonylhydridobis(triphenylphosphane)iridium (I)

- b) Give one example of each of the following ligand:
  - i. Ambidentate ligands.
  - ii. Bidentate ligands.
  - iii. Hexadentate ligands.
- c) Identify whether the following ligands are strong field or weak field ligands.
  - i.  $C_2O_4^{2-}$
  - ii. SCN
  - iii. H<sub>2</sub>N-CH<sub>2</sub>-COO
  - iv. NH<sub>3</sub>
- d) List two differences between crystalline and amorphous solids and give two examples of each solid.
- e) If  $[Co(NH_3)_6]^{3+}$  ion is diamagnetic, find whether NH<sub>3</sub> a weak field ligand or a strong field ligand toward the Co<sup>3+</sup> transition metal ion?
- f) How many unpaired electrons are present in the high spin crystal field splitting diagram (CFSD) of the [CoCl<sub>4</sub>] tetrahedral complex ion? Write the electron configuration and calculate the crystal field stabilization energy (CFSE).
- g) If the decrease between 18 and 24 years in mass of radioactive isotope is 4 g, find its initial mass. The half-life of this isotope is 6 years.
- h) The mass defect for an isotope was found to be 0.410 amu / atom. Calculate the binding energy in kJ mol<sup>-1</sup> of atoms.

(130 marks)

- a) i. Draw labeled d orbital splitting diagrams for tetrahedral, square planar complexes.
   Find the spin only magnetic momentum for tetrahedral and square planar structures formed by the [ZnCl<sub>4</sub>]<sup>2+</sup> ions.
  - ii. Explain the Jahn-Teller distortion in [Cu(H<sub>2</sub>O)<sub>6</sub>] <sup>2+</sup>.

(40 marks)

b) i. The [PdCl<sub>4</sub>]<sup>2-</sup> ion is diamagnetic. What type of geometry does it have? Explain your answer.

ii. The  $[Co(NH_3)_6]^{3+}$  complex ion has a crystal field splitting energy of 272 kJ mol<sup>-1</sup>. Calculate the wavelength of light in nm that this ion will absorb.

(30 marks)

c) Draw the structures of geometrical isomerism for an octahedral complex of  $\left[\text{Co(NH}_3)_4\text{Cl}_2\right]^+$ 

(20 marks)

- 3. a) Define the following:
  - i. Unit cell.
  - ii. Crystal lattice.
  - iii. Atomic packing factor.

(15 marks)

b) Determine the Miller indices (hkl) of the shaded planes below:



(15 marks)

(c) (i) Determine the density of BCC iron, which has a cell edge of 0.2866 nm.

(Relative atomic mass of iron = 55.847 g mol<sup>-1</sup>)

(18 marks)

(ii) A metal of atomic mass of 75 g mol<sup>-1</sup> form a cubic lattice of edge length 5Å and density 2 g cm<sup>-3</sup>. Find the structure of the metal and calculate the radius in pm of the atom.

(18 marks)

| d) | One form of silicon has density of 2.33 g cm <sup>-3</sup> and crystallizes in a cubic lattice |
|----|------------------------------------------------------------------------------------------------|
|    | with a unit cell edge of 543 pm. Calculate;                                                    |

- i. the mass of each unit cell,
- ii. the number of silicon atoms contain in one unit cell. (Relative atomic weight of Si = 28.09 g mol-1)

(24 marks)

- 4. a) i. Find the coordination numbers of the Fe atom in  $K_3[Fe(C_2O_4)_3]$  and the Au atom in  $K[Au(CN)_2(SCN)_2]$ .
  - ii. Calculate the oxidation state of the metal atom and the number of d electrons in the following coordination complexes:
    - a)  $\left[\operatorname{CoCl}_{4}\right]^{2}$ .
    - b)  $[Fe(bpy)_3]^{3+}$ .

(30 marks)

- b) Predict the number of unpaired electrons, the spin-only magnetic moments at 25°C for each of the following complex ions.
  - i.  $[Fe(CN)_6]^{4}$
  - ii. [Ru(NH<sub>3</sub>)<sub>6</sub>] <sup>3+</sup>
  - iii.  $[Cr(NH_3)_6]^{2+}$

(30 marks)

- c) Determine the configuration (in the form  $t_{2g}^{\ m}e_{g}^{\ n}$  or  $e^{\ m}t_{2}^{\ n}$ , as appropriate), the number of unpaired electrons, and the ligand field stabilization energy as a multiple of  $\Delta o$  or  $\Delta T$  for each of the following complexes:
  - i.  $[Co(NH_3)_6]^{3+}$ .
  - ii.  $[Fe(OH_2)_6]^{2+}$ .
  - iii.  $[Cr(NH_3)_6]^{3+}$ .

(30 marks)

- 5. a) Identify the parent isotope and write a balanced nuclear reaction for each process.
  - i. Iodine-130 is formed by ejecting an electron and gamma ray from a nucleus.
  - ii. Uranium-240 is formed by an alpha decay.
  - iii. Curium-247 is formed by releasing an alpha particle and gamma ray. (30 marks)

b) i. Explain the term binding energy. The mass of isotope of fluorine -19 is 18.9984 amu, calculate the binding energy of one mole of fluorine -19 in kJ/mol.

ii. Calculate the amount of energy produced when 1.00 g of plutonium-238 undergoes an alpha decay. The masses of plutonium-238 , uranium-238 and alpha particle are  $3.953 \times 10^{-22}$  g ,  $3.886 \times 10^{-22}$  g and  $6.64 \times 10^{-24}$  respectively.

(30 marks)

- c) i. Drive a mathematical expression for radioactivity decay and show that the half-life  $(t_{1/2})$  is independent of the initial concentration of the radioactive isotope. State any assumptions you have made in obtaining the expressions.
  - ii) phosphorus-32 is a radioactive isotope used as a tracer in the liver. Estimate the amount of phosphorus-32 was originally used, if there is only 3.50 mg left in a sample after 288 hours.

    (t<sub>1/2</sub> of phosphorus-32 -32 is 14.3 days)

(30 marks)

--- END ---

## The Periodic Table of the Elements

|         | 2                |   |    |                        |     |    |                         |    | Ш        |                      | Т         |     |       | -1                   | J   |       | 1                     |      | 1 = | $\neg$                 |
|---------|------------------|---|----|------------------------|-----|----|-------------------------|----|----------|----------------------|-----------|-----|-------|----------------------|-----|-------|-----------------------|------|-----|------------------------|
| 2<br>He | Helium<br>4.003  |   |    | (4                     |     |    |                         |    |          |                      |           |     |       |                      |     |       |                       |      |     |                        |
|         | -                | 6 | F  | Fluorine<br>18.9984032 | 17  | C  | Chlorine<br>35,4527     | 35 | Br       | Bromine<br>79 904    | 200       | 53  | I     | Lodine<br>126.90447  | 85  | At    | Astutine<br>(210)     |      |     |                        |
|         |                  | ∞ | 0  | Oxygen<br>15.9994      | 16  | Ø  | Sulfur<br>32.066        | 34 | Se       | Selenium<br>78 96    | 000       | 25  | Te    | Tellurium<br>127.60  | 84  | $P_0$ | Polonium<br>(209)     |      |     |                        |
|         | 9                | 7 | Z  | Nitrogen<br>14.00674   | 15  | A  | Phosphorus<br>30.973761 | 33 | As       | Arsenic<br>74 02 160 | 7.72100   | 51  | Sb    | Antimony<br>121.760  | 83. | Bi    | Віѕтиth<br>208.98038  |      |     |                        |
|         |                  | 9 | C  | Carbon<br>12.0107      | 14  | Si | Silicon<br>28.0855      | 32 | Ge       | Germanium<br>72 K1   | 10.77     | 20  | Sn    | Tin<br>118.710       | 82  | Pb    | Lead<br>207.2         | 1114 | jj  |                        |
|         |                  | S | B  | 10.811                 | 13  | Al | Aluminum<br>26.981538   | 31 | Ga       | Qallium<br>20 703    | 102.72    | 49  | In    | Indium<br>114.818*   | 81  | I     | Thallium<br>204.3833  | 113  |     |                        |
|         |                  |   |    |                        |     |    |                         | 30 | Zn       | Zinc                 | 03.39     | 48  | Cq    | Cadmium<br>112,411   | 80  | Hg    | Mercury<br>200.59     | 112  |     | (772)                  |
|         |                  |   |    |                        |     |    |                         | 29 | Cu       | Copper               | 05,340    | 47  | Ag    | Silvor<br>107.8682   | 79  | Au    | Gold<br>196.96655     | 1111 |     | (272)                  |
|         |                  |   |    |                        |     |    |                         | 28 | Z        | Nickel               | 28.0934   | 46  | Pd    | Palladium<br>106,42  | 78  | Pt    | Platinum<br>195,078   | 110  |     | (269)                  |
|         |                  |   |    | ii.                    |     |    |                         | 27 | Co       | Cobalt               | 28.933200 | 45  | Rh    | Rhodium<br>102.90550 | 77  | Ir    | Iridium<br>192.217    | 109  | Mt  | Meimerium<br>(266)     |
|         |                  |   |    |                        |     |    |                         | 26 | Fe       | Iron                 | 55.845    | 44  | Ru    | Ruthenium<br>101.07  | 92  | Os    | Osmium<br>190,23      | 108  | Hs  | Hassium<br>(265)       |
|         |                  |   |    |                        |     |    |                         | 25 | Mn       | Manganose            | 54.938049 | 43  | Tc    | Technotium<br>(98)   | 75  | Re    | Rhenium<br>186,207    | 107  | Bh  | Bohrium*<br>(262)      |
|         |                  |   |    |                        |     |    |                         | 24 | Cr       | Chromium             | 51.9961   | 42, | $M_0$ | Molybdenum<br>95.94  | 74  | W     | Tungsten<br>183.84    | 106  | S   | Seaborgium<br>(263)    |
|         |                  |   |    | 9                      |     |    |                         | 23 | >        | Vanadium             | 50.9415   | .41 | NP    | Niobium<br>92,90638  | 73  | La    | Tantalum<br>180.9479  | 105  | Db  | Dubnium<br>(262)       |
|         |                  |   |    |                        |     |    |                         | 22 | Ti       | Titanium             | 47.867    | 40  | Zr    | Zirconium<br>91,224  | 72  | Hf    | Hafnium<br>178.49     | 104  | Rf  | Rutherfordium<br>(261) |
|         |                  |   |    |                        |     |    |                         | 21 | Sc       | Scandium             | 44.955910 | 39  | ×     | Yurium<br>88 90585   | 57  | I,a   | Lanthanum<br>138,9055 | 68   | Ac  | Actinium<br>(227)      |
|         |                  | 4 | Be | Beryllium.             | 12  | Μσ | Magnestum<br>24.3050    | 20 | Ca       | Calcium              | 40.078    | 38  | Sr    | Strontium<br>87.62   | 56  | Ba    | Barium<br>137 327     | 88   | Ra  | Radium<br>(226)        |
| <u></u> | Hydrogen 1 00794 | 3 |    | Lithium<br>6 941       | 111 | Z  | Sodium<br>22 989770     | 19 | <b>×</b> | Potassium            | 39.0983   | 37  | Rb    | Rubidium<br>85 4678  | 55  | Ű     | Cesium<br>132 90545   | 87   | Fr  | Fлапстит<br>(223)      |

| 59 60 61 62 63 64<br>D. N. D. C. F. C. | 61 62 63<br>Dm Cm Fu        |
|----------------------------------------|-----------------------------|
| Neodymium Promethium                   | Neodymium Promethium        |
| 92 93 94                               | 92 93 94                    |
| U Np Pu                                | U Np Pu                     |
| Uranium Neptunium Plutonium            | Uranium Neptunium Plutonium |
| (447) (727) (870.857                   | (447) (77) (870.857         |