

Week 10: Risk & Risk Risk Risk Management-L2

Rachelle Bosua

rachelle.bosua@unimelb.edu.au

www.lms.unimelb.edu.au

Outline

- A bit of a recap
- Some things about the last weeks
- Risk what it is and what to look out for
- Risk processes
- Risk management
- Risk Assessment & Control
- Crisis Management
- Summary

THE RISK MANAGEMENT PROCESS

Risk Management

- Important b/c of uncertainties in SW development
- Need to anticipate risk,
- Understand impact of risk on project, product and business
- Take steps to avoid risks
- Draw up contingency plans

Risk Management Process

Risk Management (RM)

Performing RM

Identifying Risks

Risk is everywhere - 1

- All PM is risk management
- Software testing is 'risky'
- SLDC models mitigate risk, localizes to a phase/stage
- Generic risks
- Every process in a SE project mitigates risk

Risk is everywhere - 2

- Some risks specific to a project
- E.g using a 3rd party application from a vendor
- Specific risks
- Risk Manager role → assess and control risks
- SE process to control risks

Risk identification

Interviews/ surveys/ questionnaires

checklist

brainstorming

View on Risk

- Some authors → treat risk assessment as fun.
- Will improve risk management
- Need to avoid risks seen as a bad thing
- Encourage positive thinking
- Opportunities to find risks

HAZOP

HAZOP study - identifies hazards and risks in a process or operation

Combines key driven risk assessment, brainstorming & pondering

HAZOP proceeds with applying a set of *keywords*To a set of *parameters*

Each keyword a deviation of the design intent Parameters depend on the domain - "what if"

HAZOP guidewords

Guideword	Meaning		
NOT	The complete negation of the design intent		
MORE	Quantitative increase		
LESS	Quantitative decrease		
AS WELL AS	Qualitative increase		
PART OF	Qualitative decrease		
REVERSE	Logical opposite of the design intent		
OTHER THAN	Substitution of complete design intent		
EARLY	Earlier than expected according to clock time		
LATE	Later than expected according to clock time		
BEFORE	Earlier than expected according to sequence		
AFTER	Later than expected according to sequence		

HAZOP study report

Guideword	Meaning		
NOT	The complete negation of the design intent		
MORE	Quantitative increase		
LESS	Quantitative decrease		
AS WELL AS	Qualitative increase		
PART OF	Qualitative decrease		
REVERSE	Logical opposite of the design intent		
OTHER THAN	Substitution of complete design intent		
EARLY	Earlier than expected according to clock time		
LATE	Later than expected according to clock time		
BEFORE	Earlier than expected according to sequence		
AFTER	Later than expected according to sequence		

Guideword	Interpretation	Possible Causes	Consequences
MORE	Vendor delivers addi- tional functionality to what was expected.	Additional functionality desired by other users.	A license for the soft- ware may cost more than expected.
LESS	Some expected func- tionality missing.	Misunderstanding of customer base by ven- dor.Misunderstanding of the vendors inten- tions by the project team.	Package will not be suf- ficient for the needs of the project. Addi- tional functionality will need to be developed in house.
OTHER THAN	Package delivers func- tionality completely in- consistent with expecta- tions.	Misunderstanding of the vendors intentions by the project team.	Another package will need to be sourced or developed in house.
EARLY	Vendor delivers the package prior to ex- pected date.	Vendor is well- organised.	Some activities can be brought forward in the schedule.
LATE	Vendor delivers the package after the expected date.	Inaccurate planning by vendor. Problems may exists with the package.	Some activities will be delayed.

Risks ANALYSIS

Risk Management (RM)

Prioritizing Risk - 1

- Final step is to prioritize risk
- Use a quantifiable scale for risk impact
- Gives a total order b/w risks based on
 - -Risk exposure
- Risk prioritization is AS EASY as calculating the exposure
- Rank the higher exposure risks as
 - -Higher priority

Prioritizing Risk - 2

- Higher priority risks require more attention and control than lower priority
- Make decisions wisely, part of the project
 - e.g. \$10K loss for one project end in developers loosing jobs and company filing bankrupt but another loss not noticed

Prioritizing Risk - 3

- Identify risks → then
 - -Classify and
 - place in a risk register/log

WHY CLASSIFY ?

Risk CONTROL

Risk Management (RM)

Avoid the risk

Prevent risk from occurring, ensure: probability = 0 or impact =0

Mitigate the risk

Employee techn's
to reduce
probability of risk/
reduce impact of
risk= residual risk

Transfer the risk

Transfer risk burden to another party

Accept the risk

Believe risk is an acceptable exposure

MELBOURNE Risk reduction leverage

 Used to assess the effectiveness or risk control

Risk reduction leverage

<u>Initial Risk exposure – residual risk exp.</u>
Cost of Risk reduction

MELBOURNE Risk reduction leverage

- If < 1 then cost of implementing risk is higher than the benefit gained from it so not cost effective enough to implement
- So find a cost effective alternative or risk will have to be accepted
- higher the risk reduction leverage the more cost effective

Risk reduction leverage-1

Outcomes based on some estimates:

- 1) Critical fault is found need further debugging and development. Est loss is \$0.5M
- 2) Critical fault, but not found. Cost higher Est loss is \$5M
- 3) No critical fault in the system, Loss is \$0 (estimate these probabilities)

Risk reduction leverage-2

- 1) Probability no fault = 20%
- 2) Being a fault and finding it = 75% if doing regression testing but only 25% of not found
- 3) Critical fault and NOT finding it is 5% if doing regression testing but 55% if we do not
- 4) Regression testing est. = \$1.25M

MELBOURNE Risk reduction leverage

 Used to assess the effectiveness or risk control

Risk reduction leverage

\$2.875M - \$0.625M \$1.25M

= 1.8

CRISIS Management

MELBOURNE Crisis Management

Different from Risk Management

Process of dealing with an UNPRECTED event that has a negative impact

- 1) Positive impact not considered and
- 2) The event is unprecited

QUESTIONS?

Chapman, C and Ward S (1996) *Project Risk Management:* processes, techniques and insights, John Wiley Rook P (1993) Risk Management for SW development ESCOM Tutorial, Good Synthesis of Risk Management approaches