Using Discrete Event Simulation to Analyze Pricing Strategies for Same-Location Car Rentals

Presented by:

Keyur Patel- 16010421073

Krishiv Patel - 16010421074

Objective

- The key objective of this research is to analyze and understand the effects of employing dynamic pricing strategies for same-location and different-location car rentals at a rental company.
- Specifically, the researchers aim to study pricing policies involving:
 - 1) Discounts offered to customers for rentals where the pick-up and drop-off location are the same place.
 - 2) Price increases applied to rentals where the pick-up and drop-off locations differ.
- The main goal is to identify optimized combinations of same-location discounts and different-location price increases in order to maximize total revenue for a car rental company.

Resources

The paper utilized several key resources to develop the discrete event simulation model.

1. Discrete event simulation model

Created using ExtendSim software.

2. Interviews with industry experts

• Provided real-world input to establish model requirements.

3. Car rental demand data

- Based on actual rental company information from Saudi Arabia
- Captures real-world customer arrival patterns

4. Pricing scenarios

- 195 experimental simulations testing different combinations of:
- Discounts for same-location rentals
- Price increases for different-location rentals.

Modelling

 A discrete event simulation model was developed using ExtendSim to represent the complex operations of a car rental network.

The model incorporates:

- 1. Multiple rental locations (at least 15 branches)
- 2. 5 vehicle classes (categories)
- 3. Customer types:
 - a. Walk-in rentals
 - b. Reservations

• Key rental parameters modeled probabilistically:

- 1. Customer arrival times (exponential distribution)
- 2. Rental duration (empirical distribution)
- 3. Time between reservation and pickup
- 4. Vehicle class preference
- 5. Pick-up and drop-off location preferences (see table)

Location Code	Pick-up probability		
1	0.0429		
2	0.0613		
3	0.0919		
4	0.0153		
5	0.0245		
6	0.0306		
7	0.0613		
8	0.0140		
9	0.0208		
10	0.0340		
11	0.0459		
12	0.1532		
13	0.1838		
14	0.1225		
15	0.0980		

Customer arrival probabilities to each pick-up location of car rental company.

Simulation:

- Pricing strategies implemented by:
 - Adjusting rental fees in different simulation scenarios
 - Applying discounts for same-spot rentals
 - Increasing prices for different-location rentals
- Outputs:
 - Total rental revenue
 - Customer satisfaction
 - Percentage of Unavailable cars
 - Percentage Budget exceeded
- The model captures the random and dynamic nature of demands and operations. By flexibly implementing different pricing policies, their impact could be reliably evaluated. This enabled finding revenue-maximizing discount and price increase levels.

Car rental system simulation model interface.

Results

- The table-2 presents the results of various scenarios, ordered by revenue, where different discount percentages are offered for same-location rentals.
- The findings indicate that offering a 5% discount for same-location rentals results in the highest revenue, yielding \$1,4O4,416, which is 1.6% higher than the scenario with no discount.
- However, it is important to note that additional discounts result in lower revenue for the company.
- The baseline scenario (Scenario 1) represents the revenue without any price increase for different-location rentals.
- The results show that introducing a 150% to 200% price increase for different-location rentals leads to the highest revenues.
- For example, Scenario IO, with a 150% price increase, results in a revenue of \$1,695,284, which is the highest among the scenarios. This represents a revenue increase of 22.7% compared to the baseline scenario.

Table 2: Results (ordered by revenue) when discounts are introduced for same-location rentals.

Scenario	Same- Location Discount	Increase for Different Locations	Revenue	Too Expensive	Unavailable	Satisfied
Baseline 1	0	0	\$1,381,945	0.636	0.238	0.126
16	5	0	\$1,404,416	0.629	0.241	0.130
31	10	0	\$1,395,115	0.620	0.247	0.132
46	15	0	\$1,374,876	0.612	0.254	0.134
61	20	0	\$1,365,784	0.601	0.262	0.136
76	25	0	\$1,346,902	0.592	0.269	0.140
91	30	0	\$1,328,862	0.582	0.276	0.142
106	35	0	\$1,301,543	0.570	0.285	0.145
121	40	0	\$1,288,734	0.560	0.292	0.149
136	45	0	\$1,250,919	0.547	0.303	0.150
151	50	0	\$1,228,162	0.535	0.310	0.154
166	55	0	\$1,182,858	0.521	0.322	0.157
181	60	0	\$1,157,840	0.506	0.331	0.162

Table 3: Results when price increases are introduced for different-location rentals.

Scenario	Same- Location Discount	Increase for Different Locations	Revenue	Too Expensive	Unavailable	Satisfied
Baseline 1	0	0	\$1,381,945	0.636	0.238	0.126
2	0	5	\$1,423,105	0.647	0.228	0.125
3	0	10	\$1,461,308	0.657	0.217	0.125
4	0	20	\$1,496,372	0.676	0.202	0.122
5	0	30	\$1,545,204	0.691	0.187	0.121
6	0	40	\$1,572,883	0.707	0.174	0.119
7	0	50	\$1,559,218	0.723	0.160	0.116
8	0	75	\$1,622,024	0.748	0.139	0.113
9	0	100	\$1,670,148	0.770	0.118	0.113
10	0	150	\$1,695,284	0.801	0.087	0.113
11	0	200	\$1,693,955	0.819	0.067	0.114
12	0	250	\$1,650,656	0.832	0.052	0.116
13	0	300	\$1,592,085	0.838	0.044	0.118

Inferences

- The discrete event simulation method used is flexible for modeling complex rental systems and experiments showed it can provide useful insights for increasing revenues.
- Offering a small discount (5%) for same-location rentals (pickup and drop-off at the same place) can increase revenue compared to no discount. But larger discounts reduce revenue.
- Increasing prices significantly (150-200%) for different-location rentals (picking up at one location and dropping off elsewhere) can increase revenue substantially (over 20% in the study). This works due to high imbalance between pickup and drop-off locations.
- Simulation model allows testing pricing strategies with historiacal demand company data to find optimal dynamic pricing policies.

References:

- Alabdulkarim, A. 2018. "Simulating Different Levels of Car Class Upgrades in a Car Rental Company's Operations". In *Proceedings of the 2018 Winter Simulation Conference*, edited by M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, 1539–1550. Piscataway, NJ: Institute of Electrical and Electronics Engineers.
- Auto Rental News. 2015. "U.S. Car Rental Revenue and Fleet Size Comparisons 2005–2015". http://www.autorentalnews.com/fileviewer/2230.aspx, accessed 14th April.
- Bitran, G. and R. Caldentey. 2003. "An Overview of Pricing Models for Revenue Management". *Manufacturing and Service Operations Management* 5(3):203–229.
- Borshchev, A. and A. Filippov. 2004. "From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques, Tools". In *Proceedings of the 22nd International Conference of the System Dynamics Society*, 25th–29th June, Oxford, England.
- ExtendSim. 2019. "ExtendSim Power Tools for Simulation." www.extendsim.com, accessed 03.12.2019.
- Fink, A. and T. Reiners. 2006. "Modeling and Solving the Short-term Car Rental Logistics Problem". *Transportation Research Part E: Logistics and Transportation Review* 42(4):272–292.
- Haensel, A., M. Mederer, and H. Schmidt. 2012. "Revenue Management in the Car Rental Industry: A Stochastic Approach". Journal of Revenue and Pricing Management 11(1):99–108.
- Li, Z. and F. Tao. 2010. "On Determining Optimal Fleet Size and Vehicle Transfer Policy for a Car Rental Company". *Computer and Operations Research* 37(2):341–350.
- Oliveira, B., M. Carravilla, and F. Oliveira. 2017. "Fleet and Revenue Management in Car Rental Companies: A Literature Review and an Integrated Conceptual Framework". *Omega* 71:11–26.
- Pachon, J., E. Iskovou, C. Ip, and R. Aboudi. 2006. "Synthesis of Tactical Fleet Planning Models for the Car Rental Industry". *IEEE Transactions* 35(9):907–916.
- Pannirselvam, G. P., L. A. Ferguson, R. C. Ash, and S. P. Siferd. 1999. "Operations Management Research: An Update for the 1990s". *Journal of Operations Management* 18(1):95–112.

