NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK

Kontakt under eksamen: Jon Andreas Støvneng

Telefon: $45\ 45\ 55\ 33$

KONTINUASJONSEKSAMEN TFY4102 FYSIKK Fredag 12. august 2011 kl. 0900 - 1300

Hjelpemidler: C

- K. Rottmann: Matematisk formelsamling (alle språk).
- Typegodkjent kalkulator, med tomt minne, i henhold til liste utarbeidet av NTNU. (Citizen SR-270X eller HP30S.)

Side 2-5: Oppgaver Side 6-8: Formelliste

Prøven består av 4 oppgaver, i alt 16 deloppgaver. Hver deloppgave vil i utgangspunktet telle like mye på sluttkarakteren.

Sensuren kommer senest 2. september.

Oppgave 1. Mekanikk.

a) Vi ser på en ape som klatrer opp et tau som er festet til en bananklase, som vist i figuren under. Bananklasen ligger på en avsats over apen. Hva er den største snorkraften S_{kritisk} vi kan ha på bananklasen før den letter fra underlaget? Tyngdeakselerasjonen er $g = 9.81 \text{ m/s}^2$.

- b) Anta at vi kan se bort fra massen til trinsen og tauet, og at trinsen er friksjonsfri. Finn den største akselerasjonen $a_{\rm kritisk}$ apen kan klatre oppover tauet med for at bananklasen ikke skal lette fra underlaget.
- c) Når apen er 4.0 meter over bakken, mister den taket og faller. Hvor stor hastighet har den i det den treffer bakken? Anta at apen er i ro i det den mister taket i tauet.
- d) Senere på dagen er apen oppe og klatrer på et tak. Den mister festet og sklir utfor kanten av taket med en hastighet 4.0 m/s. Taket har en helning på 30° i forhold til bakken, og den nederste delen av taket er 10 m over bakken. Hvor langt unna veggen (i horisontalretningen) lander apen?

Oppgave 2. Bølger og svingninger.

a) En bil kjører med en hastighet 30 m/s mot en vegg mens sjåføren tuter med hornet. Hornet lager en lyd med frekvens f=300 Hz. i) Anta først at du står inne ved veggen. Hvilken frekvens vil du oppfatte at lyden som kommer fra bilen har? ii) Anta nå at du sitter i bilen. Hvilken frekvens vil du oppfatte for den reflekterte bølgen som kommer fra veggen? Lydhastigheten i luft er $v_{\rm lyd}=340$ m/s.

- b) Hva er bølgetall, bølgelengde og vinkelfrekvens, k, λ og ω for bølgen som kommer fra bilen?
- c) Vi ser nå på et helt annet system: En masse m er festet til en ideell fjær med fjærkonstant k. Massen svinger fram og tilbake og dempes av en kraft $-b\frac{\mathrm{d}x}{\mathrm{d}t}$, dvs. en kraft proporsjonal med hastigheten (b er en dempingskonstant). Se figuren under. Vis at bevegelsen til dette systemet oppfyller ligningen

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{b}{m} \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x = 0$$

 $\det \, \omega_0 = \sqrt{k/m}.$

d) Løsningen til ligningen over oppgis å være

$$x(t) = x_0 e^{-t/\tau} \cos \omega t.$$

Bruk dette til å vise at $\tau = 2m/b$. Bestem også vinkelfrekvensen ω .

Oppgave 3. Termisk fysikk.

- a) En ideell gass har opprinnelig et volum V_1 og trykk p_1 . Gassen utvider seg isotermt (og reversibelt) til et volum $V_2 = 2V_1$. Beregn arbeidet W_{iso} som gassen utfører på omgivelsene (uttrykt ved p_1 og V_1).
- b) Anta nå at den samme gassen i stedet fordobler volumet sitt adiabatisk (og fremdeles reversibelt). Beregn arbeidet $W_{\rm adi}$ i dette tilfellet. Anta at gassen består av enkeltatomer, slik at adiabatkonstanten er $\gamma = 5/3$.
- c) Skisser begge prosessene over i et pV-diagram. Forklar utifra figuren hvilket arbeid som er størst. Stemmer dette med resultatene fra pkt. a) og b)?
- d) Beregn også entropiendringene S_{iso} og S_{adi} for de to prosessene i hhv. a) og b).

Oppgave 4. Elektrisitet.

En lang og rett metalltråd har sirkulært tverrsnitt med radius R:

Metalltråden har netto ladning λ pr
 lengdeenhet ($\lambda > 0$). Vi lar r angi avstanden fra trådens akse (stiplet i figuren over).

- a) Hvorfor er den elektriske feltstyrken E(r) = 0 inne i metalltråden (dvs for r < R)? Hvor befinner metalltrådens nettoladning seg, og hvorfor?
- b) Bruk Gauss' lov til å vise at E(r) = A/r for r > R, og fastlegg på den måten konstanten A. Hva blir SI-enheten til konstanten A? Skisser funksjonen E(r) for 0 < r < 3R.

En tynnvegget metallsylinder med radius 3R legges koaksialt med metalltråden:

c) Vis at potensialforskjellen mellom metalltråden og den omgivende metallsylinderen kan skrives på formen

$$\Delta V = \frac{\lambda}{B} \ln D,$$

og fastlegg på den måten konstantene B og D. Hva blir SI-enhetene til konstantene B og D?

d) Hva blir denne koaksialkabelens kapasitans pr lengdeenhet (i enheten F/m)?

Formelliste

Fysiske konstanter 1

$$N_A = 6.0221 \cdot 10^{23} \text{ mol}^{-1}$$
 $k_B = 1.3807 \cdot 10^{-23} \text{ J/K}$ $R = N_A k_B = 8.3145 \text{ J mol}^{-1} \text{ K}^{-1}$
 $0^{\circ}\text{C} = 273.15 \text{ K}$ $\varepsilon_0 = 8.8542 \cdot 10^{-12} \text{ C}^2/\text{Nm}^2$ $e = 1.6022 \cdot 10^{-19} \text{ C}$
 $c = 2.9979 \cdot 10^8 \text{ m/s}$ $g = 9.81 \text{ m/s}^2$ $G = 6.6742 \cdot 10^{-11} \text{ N(m/kg)}^2$

Merk: k_B har også blitt skrevet som bare k i boka og i forelesningene.

2 Mekanikk

$$\vec{F} = m\vec{a} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t}$$
 $\vec{p} = m\vec{v}$ $\vec{v} = \frac{\mathrm{d}\vec{r}}{\mathrm{d}t}$

Konstant akselerasjon a:

$$x(t) = x_0 + v_0 t + \frac{1}{2}at^2$$
$$v(t) = v_0 + at$$
$$a(t) = a$$

Arbeid og energi:

$$W_{AB} = \int dW = \int_A^B \vec{F} \cdot d\vec{r}$$
$$= K_B - K_A = \frac{1}{2} m v_B^2 - \frac{1}{2} m v_A^2$$
$$K = \frac{1}{2} m v^2$$

Total energi E = K + U hvor $U = U(\vec{r})$ = potensiell energi. For tyngdekraft: U = mgh, og for fjærkraft: $U = \frac{1}{2}kx^2$. E = K + U = konstant, hvis kraften er konservativ.

$$\vec{F} = -\nabla U = -\frac{\partial U(x, y, z)}{\partial x}\mathbf{i} - \frac{\partial U(x, y, z)}{\partial y}\mathbf{j} - \frac{\partial U(x, y, z)}{\partial z}\mathbf{k}$$

Effekt: $P = \frac{\mathrm{d}W}{\mathrm{d}t}$ Gravitasjon: $F_g = G \frac{m_1 m_2}{r^2}, \; U_g = -G \frac{m_1 m_2}{r}$

Overflatefriksjon: $f_k = \mu_k n, f_s \leq \mu_s n$

Støt: $\sum \vec{F}_{\rm ext} = {\rm summen}$ av <u>eksterne</u> krefter $= 0 \Rightarrow \vec{p}_{\rm før} = \vec{p}_{\rm etter}$, kin. energi i støt: $K_{\rm etter} = K_{\rm før} + Q$, Q < 0 uelastisk, Q = 0 elastisk, Q > 0 superelastisk Impuls: $\vec{J} = \int_{t_1}^{t_2} \vec{F} \, {\rm d}t = \vec{p}_2 - \vec{p}_1 = \Delta \vec{p}$

Sirkelbevegelse: Vinkelhastighet $\omega = \frac{d\theta}{dt} = v/R$. Sentripetalakselerasjon: $a = v^2/R = \omega^2 R$

Hookes lov: $F_x = -kx$

3 Svingninger og bølger

Udempet syingning:

$$\frac{d^2x}{dt^2} + \omega_0^2 x = 0, \quad \omega_0 = \sqrt{k/m}, \quad T = 2\pi/\omega_0, \quad f = 1/T$$
$$x(t) = A\cos(\omega_0 t + \phi), \quad E = \frac{1}{2}kA^2$$

Dempet syingning: $\frac{d^2x}{dt^2} + \frac{b}{m}\frac{dx}{dt} + \omega_0^2x = 0$

For $\frac{b}{2m} < \omega_0$ ("underkritisk"): $x(t) = Ae^{-(b/2m)t}\cos(\omega t + \phi)$, $\omega = \sqrt{\omega_0^2 - (b/2m)^2}$ Tvungne svingninger: $\frac{d^2x}{dt^2} + \frac{b}{m}\frac{dx}{dt} + \omega_0^2x = F_{\text{max}}\cos(\omega_d t)$, amplitude: $A = \frac{F_{\text{max}}}{\sqrt{(k-m\omega_d^2)+b^2\omega_d^2}}$

Bølgeligningen:

$$\frac{\partial^2 y}{\partial t^2} - v^2 \frac{\partial^2 y}{\partial x^2} = 0, \quad v = \text{bølgehastighet}$$

Periodisk bølge: $y(x,t) = A\cos(kx \pm \omega t), v = |v| = \omega/k = \lambda/T$

Streng: $v = \sqrt{F/\mu}$, $\mu = \text{massetetthet [kg/m]}$

Stående bølger på streng: $L = n\lambda_n/2$, $f_n = v/\lambda_n = n\frac{v}{2L}$, n = 1, 2, 3, ...

Lyd: $v = \sqrt{B/\rho}$, B = bulkmodulus, $\rho = \text{massetetthet [kg/m}^3]$

Decibel skalaen: $\beta = 10 \log_{10}(I/I_0)$, I = P/A = effekt/areal = intensitet, og $I_0 = 10^{-12} \text{ W/m}^2$

Dopplereffekt (positiv hastighetsretn. fra lytter (L) til kilde (S)): $\frac{f_L}{v+v_L} = \frac{f_S}{v+v_S}$

Dobbelspalte-eksperimentet, konstruktiv interferens: $d \sin \theta = m\lambda$, $m = 0, \pm 1, \pm 2, \dots$

Diffraksjon fra spalte, destruktiv interferens: $\sin \theta = m\lambda/a, m = \pm 1, \pm 2, \dots$

4 Termisk fysikk

 $n = \text{antall mol}, N = nN_A = \text{antall molekyler}, f = \text{antall frihetsgrader}, k_B = \text{Boltzmanns konstant}$ $(k_B \text{ har også blitt skrevet som bare } k \text{ i boka og i forelesningene})$

Faseovergang: $Q = \pm mL$, $L = L_f$ for smeltepunkt eller L_v for kokepunkt

Varmeoverføring: $H = \frac{dQ}{dt} = -kA\frac{dT}{dx}$, varmestråling: $H = Ae\sigma T^4$ $\Delta U = Q - W$, $c = \frac{1}{m}\frac{\Delta Q}{\Delta T} \rightarrow \frac{1}{m}\frac{dQ}{dT}$, $C = \frac{1}{n}\frac{\Delta Q}{\Delta T} \rightarrow \frac{1}{n}\frac{dQ}{dT}$ Arbeid: $dW = p\,dV \Rightarrow W = \int_1^2 p\,dV$

$$\Delta U = Q - W, \ c = \frac{1}{m} \frac{\Delta Q}{\Delta T} \rightarrow \frac{1}{m} \frac{dQ}{dT}, \ C = \frac{1}{n} \frac{\Delta Q}{\Delta T} \rightarrow \frac{1}{n} \frac{dQ}{dT}$$

Ideell gass: $pV = nRT = Nk_BT$, $pV = \frac{2}{3}K$, $K = N(\frac{1}{2}m\bar{v}^2) = \text{kin. energi}$, $dU = nC_V dT$

Ekvipartisjonsprinsippet:

Legg til $\frac{1}{2}k_BT$ til den kinetiske energien per frihetsgrad per molekyl $\Rightarrow K = fN(\frac{1}{2}k_BT), C_V = f\frac{1}{2}R$, $C_p = C_V + R, \ \gamma = C_p/C_V$

Adiabat: $pV^{\gamma} = \text{konst}$, $TV^{\gamma-1} = \text{konst}$.

Varmemaskin: $e = \frac{W}{Q_H} = 1 + \frac{Q_C}{Q_H} = 1 - \left| \frac{Q_C}{Q_H} \right|$

Kjølemaskin: $K = \left| \frac{Q_C}{W} \right| = \frac{|Q_C|}{|Q_H| - |Q_C|}$

 $e_{\text{Carnot}} = 1 - T_C/T_H, e_{\text{Otto}} = 1 - 1/r^{\gamma - 1}, K_{\text{Carnot}} = \frac{T_C}{T_H - T_C}$

Entropi: $dS = \frac{dQ}{T}$, $S = \int_{1}^{2} \frac{dQ}{T}$ (langs reversibel prosess)

5 Elektrisitet

Coulomb:

$$\vec{F}(\vec{r}) = \frac{q_1 q_2}{4\pi \varepsilon_0 r^2} \hat{r}$$

$$\vec{E}(\vec{r}) = \frac{q}{4\pi \varepsilon_0 r^2} \hat{r}$$

$$V(r) = \frac{q}{4\pi \varepsilon_0 r}$$

$$\vec{E} = -\nabla V = -\frac{\partial V}{\partial x}\mathbf{i} - \frac{\partial V}{\partial y}\mathbf{j} - \frac{\partial V}{\partial z}\mathbf{k}, \ \Delta V = V_b - V_a = -\int_a^b \vec{E} \cdot d\vec{l}$$

Fluks gjennom flate, $S: \Phi = \int_S \vec{E} \cdot d\vec{l}$
Gauss lov:

$$\oint_{S} \vec{E} \cdot d\vec{A} = \frac{Q_{in}}{\varepsilon_{0}} \quad \text{(lukket flate } S\text{)}$$

Kapasitans: $C = \frac{Q}{\Delta V}$. For platekondensator: $C = \frac{\varepsilon_0 A}{d}$, $U = \frac{1}{2}CV^2 = \frac{1}{2}Q^2/C$ Energi per volum i elektrisk felt: $u_E = \frac{1}{2}\varepsilon_0 E^2$ Ohms lov:

$$\vec{E} = \rho \vec{j}$$

$$V = RI$$

Elektrisk effekt: $P=\frac{\Delta U}{\Delta t}=\frac{V\Delta Q}{\Delta t}=VI=RI^2=\frac{V^2}{R}$ Kirchhoffs regler:

1.
$$\sum_{j} I_{j} = 0$$
 i alle knutepunkt
2. \sum_{j} spenning = 0 for alle lukkede sløyfer

Oppladning av kondensator i RC-krets: $Q(t) = \varepsilon C(1 - e^{-t/RC})$, $I(t) = \frac{\varepsilon}{R} e^{-t/RC}$

Utladning av kondensator i RC-krets: $Q(t) = \varepsilon C e^{-t/RC}$, $I(t) = -\frac{\varepsilon}{R} e^{-t/RC}$ Kretsens tidskonstant: $\tau = RC$