1 Les nombres réels

1.1 L'ensemble des nombres rationnels Q

L'ensemble des *nombres rationnels* est $\mathbb{Q} = \left\{ \frac{p}{q} \mid p \in \mathbb{Z}, q \in \mathbb{N}^* \right\}$.

 $\begin{tabular}{ll} \textbf{Proposition.} & \textit{Un nombre est rationnel si et seulement s'il admet une \'ecriture d\'ecimale p\'eriodique ou finie. \end{tabular}$

Proposition. $\sqrt{2}$ n'est pas un nombre rationnel : $\sqrt{2} \notin \mathbb{Q}$

La démonstration classique par l'absurde est à connaître! On représente les nombres réels sur la « droite numérique » :

 $\sqrt{2} \simeq 1,4142\ldots \quad \pi \simeq 3,14159265\ldots \quad e \simeq 2,718\ldots$ La droite numérique « achevée » est : $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty,\infty\}$

1.2 Propriétés de \mathbb{R}

Proposition (addition et multiplication). $(\mathbb{R}, +, \times)$ *est un* **corps commutatif.** *C'est-à-dire, pour* $a, b, c \in \mathbb{R}$ *on* a:

$$a+b=b+a \qquad a \times b=b \times a$$

$$0+a=a \qquad 1 \times a=a \text{ si } a \neq 0$$

$$a+b=0 \iff a=-b \qquad ab=1 \iff a=\frac{1}{b}$$

$$(a+b)+c=a+(b+c) \qquad (a \times b) \times c=a \times (b \times c)$$

$$a \times (b+c) = a \times b + a \times c$$

 $a \times b = 0 \iff (a = 0 \text{ ou } b = 0)$

Proposition (Ordre). La relation \leq sur $\mathbb R$ est une relation d'ordre, et de plus, elle est totale. Nous avons donc :

- pour tout $x \in \mathbb{R}$, $x \le x$ (réflexive),
- pour tout $x, y \in \mathbb{R}$, si $x \le y$ et $y \le x$ alors x = y (antisymétrique),
- pour tout $x, y, z \in \mathbb{R}$ si $x \le y$ et $y \le z$ alors $x \le z$ (transitive),
- pour tout $x, y \in \mathbb{R}$, on a $x \le y$ ou $y \le x$ (totale).

Proposition (Propriété d'Archimède). \mathbb{R} est archimédien, c'est-à-dire : Pour tout réel x, il existe un entier naturel n strictement plus grand que x.

Proposition. Soit $x \in \mathbb{R}$, il **existe** un **unique** entier relatif, la partie entière notée E(x), tel que :

$$E(x) \le x < E(x) + 1$$

Pour un nombre réel x, on définit la *valeur absolue* de x par :

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Proposition.

- 1. $|x| \ge 0$; |-x| = |x|; $|x| > 0 \iff x \ne 0$
- 2. $\sqrt{x^2} = |x|$
- 3. |xy| = |x||y|
- 4. Inégalité triangulaire $|x+y| \le |x| + |y|$
- 5. Seconde inégalité triangulaire $||x| |y|| \le |x y|$

Sur la droite numérique, |x-y| représente la distance entre les réels x et y; en particulier |x| représente la distance entre les réels x et 0.

De plus $|x - a| < r \iff x \in]a - r, a + r[$.

1.3 Densité de \mathbb{Q} dans \mathbb{R}

Définition. Soit a un réel, $V \subset \mathbb{R}$ un sous-ensemble. On dit que V est un *voisinage* de a s'il existe un intervalle ouvert I tel que $a \in I$ et $I \subset V$.

Théorème.

- 1. \mathbb{Q} est dense dans \mathbb{R} : tout intervalle ouvert (non vide) de \mathbb{R} contient une infinité de rationnels.
- 2. $\mathbb{R}\setminus\mathbb{Q}$ est dense dans \mathbb{R} : tout intervalle ouvert (non vide) de \mathbb{R} contient une infinité d'irrationnels.

1.4 Borne supérieure

Maximum, minimum

Définition. Soit A une partie non vide de \mathbb{R} . Un réel α est un *plus grand élément* (ou *maximum*) de A si :

$$\alpha \in A$$
 et $\forall x \in A \ x \le \alpha$.

S'il existe, le plus grand élément est unique, on le note alors maxA. Le *plus petit élément* de A, (ou *minimum*) noté minA, s'il existe est le réel α tel que $\alpha \in A$ et $\forall x \in A$ $x \ge \alpha$.

Le plus grand élément ou le plus petit élément n'existent pas toujours.

Définition. Soit A une partie non vide de \mathbb{R} . Un réel M est un *majorant* de A si $\forall x \in A$ $x \leq M$.

Un réel m est un minorant de A si $\forall x \in A \ x \ge m$.

Si un majorant (resp. un minorant) de A existe on dit que A est majorée (resp. minorée).

Définition. Soit *A* une partie non vide de $\mathbb R$ et α un réel.

- α est la *borne supérieure* de A si α est un majorant de A et si c'est le plus petit des majorants. S'il existe on le note supA.
- α est la borne inférieure de A si α est un minorant de A et si c'est le plus grand des minorants. S'il existe on le note infA.

Théorème ($\mathbb{R}4$). Toute partie de \mathbb{R} non vide et majorée admet une borne supérieure.

De la même façon : Toute partie de $\mathbb R$ non vide et minorée admet une borne inférieure.

Proposition (Caractérisation de la borne supérieure). *Soit A une partie non vide et majorée de* \mathbb{R} . *La borne supérieure de A est l'unique réel* sup *A tel que*

- (i) $si \ x \in A$, $alors \ x \leq sup A$,
- (ii) pour tout $y < \sup A$, il existe $x \in A$ tel que y < x.

Caractérisation très utile de la borne supérieure.

Proposition. Soit A une partie non vide et majorée de \mathbb{R} . La borne supérieure de A est l'unique réel supA tel que

- (i) sup A est un majorant de A,
- (ii) il existe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de A qui converge vers sup A.