Total No.	\mathbf{of}	Questions	:	6]
-----------	---------------	-----------	---	------------

P5386

SEAT No.:	
[Total	No. of Dogos . 2

T.E./Insem.-644

T.E. (Information Technology) **OPERATING SYSTEM (Semester - I)** (2015 **Pattern**)

Time: 1 hour] [Max. Marks:30

Instructions to the candidates:

- Answer Q.1 or Q.2, Q.3or Q.4, Q.5 or Q.6.
- Neat diagrams must be drawn wherever necessary.
- Figures to the right indicate full marks.
- Assume suitable data, if necessary.
- State and explain different services provided by an Operating System. [6] *Q1*) a)
 - Explain the following shell commands with example.
- [4]

[4]

- Chmod ii) Grep

OR

- Explain the concept of virtual machine with its benefits. **Q2)** a)
 - Write a shell script for sorting a given list of numbers using any sorting b) strategy.
- For the table given below calculate average waiting time and average **Q3**) a) turnaround time and draw a Gantt Chart illustrating the process execution using following scheduling algorithms. [8]
 - RR (Time slice-2units) ii) SJF (non-preemptive) i)

Process	Arrival Time	Burst Time
P1	0	8
P2	1	5
P3	3	3
P4	4	1
P5	6	4

Differentiate between process and thread. b)

[2]

P.T.O.

Q4) a) For the table given below, calculate average waiting time and average turnaround time, also draw a Gantt Chart illustrating the process execution using following scheduling algorithms.[8]

i) FCFS

ii) SJF (preemptive)

Process	Arrival Time	Burst Time
P1 \	0	9
P2	1	1
P3	2	7
P4	3	1,2
P5	4	6

b) Define Context Switch.

[2]

Q5) a) Consider the following snapshot of a system:

[6]

	Allo	ocatio	n		Maximum				Available			
	A	В	C	D	A	В	C	D	A	В	C	D
P0	0	0	1	2	0	0	1	2	1	5	2	0
P1	1	0	0	0	P	7	5	0				
P2	1	3	5	4	2	3	5	6				
P3	0	6	3	2	0	6	5	2				
P4	0	0	1	4.0.	0	6	5	6				

Answer the following questions using banker's algorithm.

- i) What are the contents of Need matrix?
- ii) Is the system in a safe state?
- b) Explain busy waiting with appropriate example?

[4]

OR

- **Q6)** a) Write a pseudo code for producer-consumer problem using semaphores.[6]
 - b) Explain the necessary and sufficient conditions for the occurrence of a deadlock. [4]

