Adult ADHD Review Results

Joey W. Trampush, Ph.D.

Rating Scale and Diagnostic Interviews

Study Diagnostic Measure	Sen- si- tiv- ity	Specificity	Di- agnos- tic Ac- curacy	
Vizgaiti©AARS- et al. (20 33) (ADHD Index)	0.556	0.621	ac-	False positives most frequently diagnosed with anxiety disorders (33.3%) or depressive disorders (33.3%). All CAARS-S:L scales demonstrated very low PPV.
Vizgaiti CAARS- et al. (20 33) (DSM- IV Inatten- tive Symp- toms)		0.2	Low	Highest sensitivity and NPV among all CAARS-S:L scales
Vizgaiti@CAARS- et al. (20 83) (DSM- IV Hy- peractive/ Impul- sive Symp- toms)		0.653	Low	Better specificity than inattentive symptoms scale
Vizgaiti@CAARS- et al. (20 33) (DSM- IV ADHD Total Symp- toms)	0.889	0.305	Low	High sensitivity but low specificity
Har- CAARS-S rison (Self-Re- et al. (20 p6) rt)	NA	NA	Weak	High false positive and false negative rate, suggesting CAARS should not be the main method for diagnosing ADHD

Study	Diagnostic Measure	Sen- si- tiv- ity	Specificity	Di- agnos tic Ac- curacy	
Kwan et al. (2	CAARS- 0 840 ,	NA	NA	Good for rul- ing out Al	Study focused on determining cutoff scores to rule out ADHD; found CAARS scales have excellent negative predictive value but poor positive predictive value DHD
Van Vo et al. (2	ochrears- 0\$1) and CAARS-O (Observer)	NA	NA	Not report	Rating scales do not effectively distin- tegluish between ADHD and other adult psychiatric disorders; sample included 349 adults ages 18-70
van de Glin et al. (2		0.84	0.66	Good	The ASRS is sensitive in detecting ADHD, but not in detecting other externalizing disorders
Bas- ti- aens & Galu (2018)	ASRS-IV (categori- cal scoring s	Poor	0.36	4+ thr old)	e 61& 3
Bas- ti- aens & Galu (2018)	ASRS-5 (categori- cal scoring s	Poor	0.36	4+ throld)	e 6l8 6
Bas- ti- aens & Galu (2018)	ASRS- IV (di- mensional s scoring	Good	0.83	12 throld)	e sh 7-8
Bas- ti- aens & Galu (2018)	ASRS-5 (dimen- sional sscoring	Good	0.81	12 throld)	e s h7-4

Study Diagnostic Measure	Sen- si- tiv- ity	Specificity	Di- Notes agnos- tic Ac- curacy
Dak- ASRS-V1.1 war et al. (2012)	0.67	NA	Not Lower sensitivity compared to Conners reporte Adult ADHD Rating Scale
Bakare WURS- & brief Jordanova (2020)	•	0.133 (vs VADIVA or ACAADID)	Respectable consisted of 69 adults referred to a specialist adult ADHD outpatients clinic
Gift WURS-25 et al. (20 (Ms) clinical controls)	0.62	0.86	Mod- Study also evaluated full WURS agains er- abbreviated WURS-25 ate
Gift WURS-25 et al. (20(M) non- clinical controls)	0.91	0.92	Ex- Much better performance when compared ing with non-clinical controls lent
Gift WURS full et al. (2084)le (vs clinical controls)	0.84	0.94	Good Full WURS outperformed WURS-25 in distinguishing ADHD from anxiety and depression
Gift WURS full et al. (20%d)le (vs non-clin- ical con- trols)	0.95	0.94	Ex- Both full WURS and WURS-25 per cel- formed well vs. non-clinical controls lent
Gro- CAARS (I-gan nattention/ et al. (20 M) mory Problems)	0.82	0.81 (vs non- clinical con- trols); 0.50 (vs clinical con- trols)	Mod- Specificity drops substantially wherer-comparing with clinical controls vs. nonate clinical controls
Gro- CAARS gan (DSM Inat- et al. (20 16 1)tive Symp- toms)	0.95	0.74 (vs non- clinical con- trols); 0.43 (vs clinical con- trols)	Mod- Specificity drops substantially wherer-comparing with clinical controls vs. nonate clinical controls

Study Diagnostic Measure	Sen- si- tiv- ity	Specificity	Di- agnos tic Ac- curacy	
Gro- CAARS gan (DSM To- et al. (20 1 al) Symp- toms)	0.76	0.78 (vs non- clinical con- trols); 0.36 (vs clinical con- trols)	Mod- er- ate	Specificity drops substantially when comparing with clinical controls vs. non-clinical controls
MehringAssesset al. (2002)nt of Hyperactivity and Attention (AHA)	0.8	0.6	Good	AUC = 0.79; Total predictive value = 0.70; Useful as screening tool but requires fur- ther evaluation for diagnosis
Palma- MINI-Plus Ál- ADHD varez module et al. (2023)	0.75	0.91	Good	Kappa = 0.60; Validated in adults with substance use disorders
Eich SCL-90- et al. (20 R 2) based ADHD scale	0.75	0.54	Mod- er- ate	New scale derived from SCL-90-R items; showed internal consistency over 0.8
Hous- PSA (Paton tient Selfet al. (2014s)sessment)	Not repor	Not reported ted	Not report	Screening instrument for multiple disorteders including ADHD for primary care
Young BAARS-IV et al. (2016)	0.379	0.963	Poor	Original BAARS-IV performed poorly in prison population
Young BAARS- et al. (20 1%) Brief (6 items)	0.82	0.84	Good	Brief version developed specifically for prison population showed much better performance

Neuroimaging

Stud § ample Size	Age (Mean ± SD)	Gender	ADHD Sub- types	Imakey Demographic Notes ing Modal- ity
Alve\$0 ADHD, (2024)0 controls	Not fully extracted	Not fully extracted	Not fully ex- tracted	fMRAnalysis used blood oxygenation level-dependent (BOLD) time series data
Ameth,006 (2021ADHD, 129 con- trols	Not fully extracted	Not fully extracted	Combined, Inattentive, and Hy- peractive	SPECaFge retrospective analysis; ADHD patients with no comorbidities; Controls had no psychiatric diagnosis, brain injury, or substance use
Chai n ADHD, Avan na niontrols (2017)	27.0 ± 6.0 (ADHD)	52 males/15 females (ADHD)	36 Inat- ten- tive, 31 Com- bined	MREducation: 13.5 ± 2.6 years; Male-only subgroup (n=52) also analyzed
Schn N =427, der 40% (2014).DHD, 60% Other Psych	40.9 years ± 15.7	Not fully extracted	DSM- IV cri- teria	DTPediatric population (younger than 18 years); Focus on white matter tracts
Wan§0 ADHD, (2023)0 controls	Not fully extracted	Not fully extracted	Inat- ten- tive, Hy- perac- tive/ Impul- sive, Com- bined	fMRUsed ADHD-200 dataset; analysis using convolu- tional neural networks

Stud § ample Size	Age (Mean ± SD)	Gender	ADHD Sub- types	Imakey Demographic Notes ing Modal- ity
Wang3 ADHD, (2013) 3 controls	35.14 ± 9.75 (ADHD), 32.04 ± 9.23 (Controls)	18 males/5 females in both groups	All Com- bined Type	MRFocus on resting-state fMRI; All patients met life- time criteria for Combined Type ADHD
Wolfarsa (2016ADHD, 103 unaf- fected sib- lings, 128 controls	Not fully extracted	Not fully extracted	Not fully ex- tracted	fMRIsed Stop-Signal Task paradigm to assess response inhibition; included unaffected siblings as comparison group
Yao 112 (2018) DHD, 77 controls (adults); 34 ADHD, 28 controls (children)	Adults: 25.93±4.86 (ADHD), 26.04±3.94 (controls); Children: 9.79±1.86 (ADHD), 10.29±1.67 (controls)	Adults: 37F/75M (ADHD), 34F/43M (controls); Children: All male	Not fully ex- tracted	fMRUsed two separate datasets (adults and children); Fo- cus on default mode net- work

Neuropsychological and Cognitive Tests

Overview of Current Research Findings

The research available in your collection provides substantial evidence regarding the effectiveness and limitations of neuropsychological tests for diagnosing ADHD in adults. The evidence points to several consistent findings:

Limited Standalone Diagnostic Value

Most studies indicate that neuropsychological tests alone have poor discriminative validity when used as standalone diagnostic tools for adult ADHD. Pettersson et al. (2018) found that "neuropsychological tests have a poor ability to discriminate between patients diagnosed with ADHD and patients not diagnosed with ADHD." Similarly, research by Nikolas et al. (2019) found that "single test measures provided performed poorly in identifying ADHD participants."

Better Results in Combination with Other Measures

The research consistently shows that neuropsychological tests provide the most value when used as part of a comprehensive assessment approach. Nikolas et al. (2019) reported that "a combined approach using self and informant symptom ratings, positive family history of ADHD, and a reaction time (RT) variability measure correctly classified 87% of cases." This suggests that while

neuropsychological tests have limitations as standalone measures, they can contribute meaningfully to diagnostic accuracy when used as part of a more comprehensive evaluation protocol.

Specific Findings on Test Performance

Most Promising Measures

Several specific neuropsychological domains have shown more utility than others:

- 1. **Reaction Time Variability**: Multiple studies identified RT variability as one of the most sensitive measures. Nikolas et al. (2019) found that "measures of working memory, sustained attention, response speed, and variability best discriminated ADHD and non-ADHD participants."
- Sustained Attention Measures: Tests that assess sustained attention, particularly computerized continuous performance tests (CPTs), showed better discrimination capabilities than other measures.
- 3. **Working Memory Tasks**: Measures of working memory were consistently identified as having some utility in distinguishing adults with ADHD.

ObTest Performance

The QbTest, a computerized test designed to measure all three core ADHD symptoms (inattention, hyperactivity, and impulsivity), showed mixed results:

- 1. **Brunkhorst-Kanaan (2020)** found that the QbTest has "low discriminative power" with an AUC (Area Under the Curve) of only 0.65, sensitivity of 76%, and specificity of 40%. They concluded that "the QbTest is not able to discriminate between ADHD patients and non-ADHD patients in an outpatient clinic."
- 2. **Edebol et al. (2013)** reported more positive findings, with sensitivity of 86% and specificity of 83%. However, they noted that sensitivity dropped substantially when trying to differentiate between individuals with ADHD and other clinical groups.
- 3. **Adamou et al. (2022)** advised "caution when interpreting QbTest+ results in clinical populations," as their study found that QbTest+ scores failed to differentiate between patients diagnosed with ADHD and those without the diagnosis.
- 4. **Söderström et al. (2014)** found that "the self-rating scales exhibited high sensitivity values but very low specificity values" while "the QBImpulsivity and QBInattention variables [showed] high specificity values and low sensitivity values."

Challenges and Limitations

1. Overlap with Other Clinical Conditions

A significant challenge in using neuropsychological tests for ADHD diagnosis is the overlap of cognitive deficits with other psychiatric conditions:

• Pettersson et al. (2018) noted that "when adults with ADHD are compared with other psychiatric patients, the results are more inconsistent."

• Nikolas et al. (2019) highlighted the "substantial overlap between ADHD symptoms and cognitive symptoms of other mental health conditions, such as depression and anxiety."

2. Heterogeneity of ADHD Presentation

The neuropsychological profile of adults with ADHD is heterogeneous:

- Nikolas et al. (2019) found that "adults with above average global cognitive abilities may underperform on some of these tasks relative to their IQ, even though their performance may be within an average range when compared with a broader population of adults."
- This suggests that using standard cutoff scores may not be appropriate, particularly for high-functioning adults or those with higher education levels.

3. Test Sensitivity and Ecological Validity

- Sensitivity and specificity issues persist across most tests, with no single measure providing both high sensitivity and specificity.
- Ecological validity remains a concern, as performance in structured testing environments may not reflect real-world functioning.

Optimal Assessment Approach

Based on the research findings, the optimal approach for diagnosing adult ADHD appears to involve:

- 1. **Comprehensive Clinical Interview**: All studies emphasized the importance of a thorough clinical interview as the foundation of assessment.
- 2. **Structured Rating Scales**: Both self-report and informant-report scales provide valuable information about symptom presentation.
- 3. **Selective Neuropsychological Testing**: Rather than extensive batteries, focused testing of sustained attention, working memory, and reaction time variability appears most useful.
- 4. **Performance Validity Testing**: Including performance validity measures is essential, particularly given concerns about symptom exaggeration in adult ADHD assessment.
- 5. **Family History Assessment**: Several studies found that including family history information significantly improved diagnostic accuracy.

Conclusion

The research suggests that neuropsychological tests have a limited but valuable role in adult ADHD assessment. While they should not be relied upon as standalone diagnostic tools, selective neuropsychological tests focusing on sustained attention, reaction time variability, and working memory can contribute to diagnostic accuracy when used as part of a comprehensive assessment approach that includes clinical interviews, rating scales, and family history.

The QbTest specifically appears to have some utility in quantifying ADHD symptoms, but its diagnostic accuracy is insufficient to serve as a primary diagnostic tool, particularly when attempting to differentiate ADHD from other psychiatric conditions. The test may be most useful for tracking treatment response or quantifying symptom severity rather than establishing diagnosis.

These findings align with the broader consensus in the field that adult ADHD diagnosis should involve multiple assessment methods, with a structured clinical interview remaining the cornerstone of the diagnostic process.

Study	Assessment Measure	Sensitivity (%)	Specificity (%)	Sample Size (ADHD/Control)	Notes
Edebol et al. (2013)	QbTest+ (Hy- peractivity)	86	83	55/202	Motion tracking combined with CPT
Edebol et al. (2013)	QbTest+ (vs. Bipolar II)	36	-	-	Reduced sensitivity with comorbidity
Edebol et al. (2013)	QbTest+ (vs. Border- line PD)	41	-	-	Reduced sen- sitivity with comorbidity
Hirsch & Christiansen (2017)	QbTest+	90	45	773 patients total	High sensi- tivity but low specificity
Adamou et al. (2022)	QbTest+	47-67	72-84	Not specified	Range indi- cates vari- able perfor- mance
Lovejoy et al. (1999)	Controlled Oral Word Association	58	92	26/26	Verbal flu- ency mea- sure
Lovejoy et al. (1999)	California Verbal Learn- ing Test	38	92	26/26	Verbal mem- ory assess- ment
Lovejoy et al. (1999)	Stroop Neu- ropsycholog- ical Test	23	100	26/26	Inhibition measure
Lovejoy et al. (1999)	Trail Making Test Part A	19	100	26/26	Processing speed mea- sure
Lovejoy et al. (1999)	Trail Making Test Part B	23	96	26/26	Set-shifting measure

Study	Assessment Measure	Sensitivity (%)	Specificity (%)	Sample Size (ADHD/Control)	Notes
Lovejoy et al. (1999)	WAIS-R Freedom from Dis- tractibility	38	100	26/26	Attention/ concentra- tion index
Lovejoy et al. (1999)	Composite (1+ impaired tests)	96	85	26/26	Battery approach with high sensitivity
Lovejoy et al. (1999)	Composite (2+ impaired tests)	69	96	26/26	Better bal- anced sensi- tivity/speci- ficity
Nielsen & Wiig (2011)	AQT Color	43	97	30/30	Simple nam- ing task
Nielsen & Wiig (2011)	AQT Form	43	100	30/30	Simple nam- ing task
Nielsen & Wiig (2011)	AQT Color- Form	73	100	30/30	Dual naming task
Nielsen & Wiig (2011)	AQT Over- head	87	87	30/30	Processing efficiency measure
Nielsen & Wiig (2011)	AQT Color- Form or Overhead	93	100	30/30	Combined approach
Grodzinsky & Barkley (1997)	COWAT-FAS	Not specified	Not specified	Not specified	Verbal flu- ency mea- sure
Epstein & Kollins (2006)	CAADID	Reported as "high"	Reported as "good"	Not fully specified	Structured diagnostic interview
Gorlin et al. (2016)	Semi-struc- tured DSM- based inter- view	Reported as "reliable"	Reported as "valid"	Not specified	Test-retest reliability mentioned

Study	Assessment Measure	Sensitivity (%)	Specificity (%)	Sample Size (ADHD/Con- trol)	Notes
Adler et al. (2008)	Self vs. Investigator ratings	Variable reli- ability	Variable va- lidity	Not specified	Examines concordance between raters
Emser et al. (2018)	Objective measures only	80	77	30/30 (children)	Cognitive performance tests only
Emser et al. (2018)	Objective measures only	82	76	38/38 (adults)	Cognitive performance tests only
Emser et al. (2018)	Combined subjective & objective	83	90	30/30 (children)	Multi- method as- sessment
Emser et al. (2018)	Combined subjective & objective	90	90	38/38 (adults)	Multi- method as- sessment
Pagán et al. (2023)	Conner's CPT	Variable (not specified)	Variable (not specified)	Systematic review	Sensitivity/ specificity varies by sample
Varela et al. (2024)	Various CPTs	Variable (not specified)	Variable (not specified)	Systematic review	Limited utility reported as sole measure
Taylor et al. (2011)	Various adult ADHD scales	Variable (not specified)	Variable (not specified)	Systematic review	Reviewed identification scales

The document mentions several other assessment tools that are commonly used in adult ADHD diagnosis, though without specific sensitivity/specificity data:

1. Structured Interviews:

- Diagnostic Interview for ADHD in Adults (DIVA 2.0)
- Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL) adapted for adults
- Wender Reimherr Interview (WRI)

2. Self-Report Rating Scales:

- Adult ADHD Self-Report Scale (ASRS-V1.1)
- Conners' Adult ADHD Rating Scales (CAARS) both self and observer versions
- Wender Utah Rating Scale (WURS)
- Brown Attention-Deficit Disorder Scales

3. Additional Neuropsychological Tests:

- Wisconsin Card Sorting Test
- Digit Span (WAIS)
- Sustained Attention to Response Task (SART)
- D-KEFS (Delis-Kaplan Executive Function System)

Research Findings on Assessment Approaches

The document emphasizes several key points about neuropsychological assessment of adult ADHD:

- 1. **Single tests have limited utility:** Individual neuropsychological measures typically show moderate to low sensitivity (19-58%) with higher specificity (72-100%), making them better at ruling in rather than ruling out ADHD.
- 2. **Battery approaches are superior:** Using multiple tests or composite measures substantially improves diagnostic accuracy, with sensitivity and specificity both potentially reaching 90%.
- 3. **Combined methods are most effective:** Integrating subjective measures (rating scales, interviews) with objective neuropsychological tests provides the highest diagnostic accuracy.
- 4. **Reaction time variability (RTV)** emerges as one of the most consistent neuropsychological markers in adult ADHD across studies.
- Comorbidities reduce diagnostic accuracy: The presence of other conditions like bipolar disorder or borderline personality disorder significantly decreases the sensitivity of neuropsychological measures.