Máquina de Turing como Reconhecedor de Linguagens

Teoria da Computação

INF05501

Recapitulando...

- Uma Máquina de Turing é composta por uma fita, uma unidade de controle e um programa (função de transição) e pode ser representada por um grafo ou uma tabela de transição
- Processamento de uma palavra w envolve operações de leitura e gravação de símbolos, movimentos à esquerda ou à direita e mudanças de estado da máquina
- A processar uma palavra w, **máquina pode parar ou entrar em** loop infinito
- Se máquina para, palavra pode ser aceita (programa atinge estado final) ou rejeitada (função indefinida ou movimento inválido)

Reconhecimento de Linguagens

- Uma das abordagens do estudo das Máquinas de Turing (MT) ou das Máquinas Universais em geral - é como reconhecedores de linguagens
- Reconhecer uma linguagem significa determinar se uma dada palavra sobre um alfabeto de entrada pertence ou não a uma certa linguagem

Linguagem Aceita por uma MT

Seja $M = (\Sigma, Q, \Pi, q_0, F, V, \beta, \triangleright)$ uma Máquina de Turing. A **linguagem** aceita por M, denotada por ACEITA(M) ou L(M), é o conjunto de todas as palavras pertencentes a alf^* aceitas por M, ou seja:

```
ACEITA(M) = \{w|M, ao processar w \in \Sigma^*, para em um estado q_f \in F\}
```

A linguagem rejeitada por M, denotada por REJEITA(M), é o conjunto de todas as palavras de Σ^* rejeitadas por M, ou seja:

```
REJEITA(M) = \{w|M, ao processar w \in \Sigma^*, para em um estado q \notin F\}
```

A linguagem para a qual M fica em loop infinito, denotada por LOOP(M) é o conjunto de todas as palavras de Σ^* para as quais M fica processando indefinidamente

```
ACEITA(M) \cap REJEITA(M) = ?
ACEITA(M) \cap LOOP(M) = ?
REJEITA(M) \cap LOOP(M) = ?
ACEITA(M) \cap REJEITA(M) \cap LOOP(M) = ?
ACEITA(M) \cup REJEITA(M) \cup LOOP(M) = ?
```

```
ACEITA(M) \cap REJEITA(M) = \emptyset
ACEITA(M) \cap LOOP(M) = ?
REJEITA(M) \cap LOOP(M) = ?
ACEITA(M) \cap REJEITA(M) \cap LOOP(M) = ?
ACEITA(M) \cup REJEITA(M) \cup LOOP(M) = ?
```

```
ACEITA(M) \cap REJEITA(M) = \emptyset
ACEITA(M) \cap LOOP(M) = \emptyset
REJEITA(M) \cap LOOP(M) = ?
ACEITA(M) \cap REJEITA(M) \cap LOOP(M) = ?
ACEITA(M) \cup REJEITA(M) \cup LOOP(M) = ?
```

```
ACEITA(M) \cap REJEITA(M) = \emptyset
ACEITA(M) \cap LOOP(M) = \emptyset
REJEITA(M) \cap LOOP(M) = \emptyset
ACEITA(M) \cap REJEITA(M) \cap LOOP(M) = ?
ACEITA(M) \cup REJEITA(M) \cup LOOP(M) = ?
```

```
ACEITA(M) \cap REJEITA(M) = \emptyset
ACEITA(M) \cap LOOP(M) = \emptyset
REJEITA(M) \cap LOOP(M) = \emptyset
ACEITA(M) \cap REJEITA(M) \cap LOOP(M) = \emptyset
ACEITA(M) \cup REJEITA(M) \cup LOOP(M) = ?
```

```
ACEITA(M) \cap REJEITA(M) = \emptyset
ACEITA(M) \cap LOOP(M) = \emptyset
REJEITA(M) \cap LOOP(M) = \emptyset
ACEITA(M) \cap REJEITA(M) \cap LOOP(M) = \emptyset
ACEITA(M) \cup REJEITA(M) \cup LOOP(M) = \Sigma^*
```

Por consequência, o complemento de:

ACEITA(M) é $REJEITA(M) \cup LOOP(M)$

REJEITA(M) é $ACEITA(M) \cup LOOP(M)$

LOOP(M) é $ACEITA(M) \cup REJEITA(M)$

Considere a seguinte linguagem:

$$Duplo_Bal = \{a^nb^n | n \ge 0\}$$

Dada a Máquina de Turing:

$$MT_Duplo_Bal = (\{a,b\}, \{q_0, q_1, q_2, q_3, q_4\}, \Pi, q_0, \{q_4\}, \{A,B\}, \beta, \triangleright)$$

```
ACEITA(MT\_Duplo\_Bal) = ?
REJEITA(MT\_Duplo\_Bal) = ?
LOOP(MT\_Duplo\_Bal) = ?
```

Considere a seguinte linguagem:

$$Duplo_Bal = \{a^nb^n | n \ge 0\}$$

Dada a Máquina de Turing:

$$MT_Duplo_Bal = (\{a,b\}, \{q_0, q_1, q_2, q_3, q_4\}, \Pi, q_0, \{q_4\}, \{A,B\}, \beta, \triangleright)$$

$$ACEITA(MT_Duplo_Bal) = Duplo_Bal$$

 $REJEITA(MT_Duplo_Bal) = ?$
 $LOOP(MT_Duplo_Bal) = ?$

Considere a seguinte linguagem:

$$Duplo_Bal = \{a^nb^n | n \ge 0\}$$

Dada a Máquina de Turing:

$$MT_Duplo_Bal = (\{a,b\}, \{q_0, q_1, q_2, q_3, q_4\}, \Pi, q_0, \{q_4\}, \{A,B\}, \beta, \triangleright)$$

$$ACEITA(MT_Duplo_Bal) = Duplo_Bal$$

$$REJEITA(MT_Duplo_Bal) = \Sigma^* - Duplo_Bal$$

$$LOOP(MT_Duplo_Bal) = ?$$

Considere a seguinte linguagem:

$$Duplo_Bal = \{a^nb^n | n \ge 0\}$$

Dada a Máquina de Turing:

$$MT_Duplo_Bal = (\{a,b\}, \{q_0, q_1, q_2, q_3, q_4\}, \Pi, q_0, \{q_4\}, \{A,B\}, \beta, \triangleright)$$

$$ACEITA(MT_Duplo_Bal) = Duplo_Bal$$

$$REJEITA(MT_Duplo_Bal) = \Sigma^* - Duplo_Bal$$

$$LOOP(MT_Duplo_Bal) = \emptyset$$

Exemplo (cont.)

Exemplo (cont.)

Π	\triangleright	a	b	A	B	eta
q_0	(q_0, \triangleright, D)	(q_1, A, D)			(q_3, B, D)	(q_4,eta,D)
q_1		(q_1, a, D)	(q_2, B, E)		(q_1, B, D)	
q_2		(q_2, a, E)		(q_0, A, D)	(q_2, B, E)	
q_3					(q_3, B, D)	(q_4, eta, E)
q_4						

Exemplo (cont.)

Funcionamento:

- Programa reconhece o primeiro símbolo a, o qual é marcado como A, e movimenta a cabeça da fita para a direita, procurando o b correspondente, o qual é marcado como B
- Ciclo é repetido sucessivamente até identificar, para cada a, o seu correspondente b
- Programa garante que qualquer outra palavra que não esteja na forma a^nb^n é rejeitada
- Note que o símbolo de início de fita não tem influência na solução

Critério de Reconhecimento de Linguagens

Se a máquina para para toda palavra da linguagem sobre o alfabeto de entrada, então ela é reconhecida pela Máquina de Turing (ou Turing-reconhecível)

Linguagens Enumeráveis Recursivamente

- Uma linguagem aceita por uma Máquina de Turing é dita enumerável recursivamente
- Enumerável deriva do fato de que as palavras de qualquer linguagem enumerável recursivamente podem ser enumeradas ou listadas por uma MT
- Recursivamente é um termo matemático, anterior ao computador, com significado similar ao de recursão, utilizado na Computação

Linguagens Enumeráveis Recursivamente (cont.)

- A Classe das Linguagens Enumeráveis Recursivamente define:
 - Todas as linguagens que podem ser reconhecidas mecanicamente (Ex.: linguagens livres de contexto)
 - Outras linguagens para as quais não se pode, mecanicamente, determinar se uma dada palavra pertence ou não à linguagem

Linguagens Enumeráveis Recursivamente (cont.)

Seja L uma linguagem enumerável recursivamente que **não pode ser mecanicamente reconhecida**. Para qualquer máquina M que aceita a linguagem L, existe pelo menos **uma palavra** $w \notin L$, que, ao ser processada por M, resulta em que a máquina entre em loop infinito.

Ou seja:

- Se $w \in L$, M para e aceita a entrada
- Se $w \notin L$, M pode parar e rejeitar a palavra ou permanecer processando indefinidamente (loop)

Linguagens Recursivas

- São uma subclasse das Linguagens Enumeráveis Recursivamente
- Linguagem é dita recursiva se existe pelo menos uma MT tal que:

$$ACEITA(M) = L$$

$$REJEITA(M) = \Sigma^* - L$$

$$LOOP(M) = \emptyset$$

Linguagens Recursivas (cont.)

- Portanto, as linguagens recursivas definem todas as linguagens que podem ser reconhecidas mecanicamente
- Isto é, para cada linguagem recursiva, existe uma MT correspondente que sempre para para qualquer entrada, aceitando ou rejeitando a mesma

Propriedades de Linguagens Recursivas

- Se uma linguagem L sobre um alfabeto Σ qualquer é recursiva, então seu complemento $\Sigma^* L$ também é uma linguagem recursiva
- Uma linguagem L sobre um alfabeto Σ qualquer é recursiva sss L e seu complemento são enumeráveis recursivamente
- A Classe das Linguagens Recursivas está contida propriamente na Classe das Linguagens Enumeráveis Recursivamente

Exercícios

- 1. Desenvolva Máquinas de Turing que reconheçam as seguintes linguagens:
 - (a) $Triplo_Bal = \{a^nb^nc^n|n \ge 0\}$
 - (b) $Duplo_Bal_Duplo = \{w|w = a^nb^n \text{ ou } b^na^n\}$
 - (c) $Pal = \{w|w = w^R\}$, onde w^R representa a palavra w lida em reverso (i.e., da direita para a esquerda)
- 2. As linguagens definidas acima são recursivas? Justifique.