Name: Peter Bozzo

The micro and macro technique for calculating the precision, recall and F score was initially used to evaluate this model.

The following was the formula used for calculating micro precision, recall and F Score:

$$P = \frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FP_{c}}$$

$$R = \frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FN_{c}}$$

Macro precision, recall and F score:

$$Precision_{M} = \frac{\sum_{i=1}^{c} Precision(i)}{c} \qquad Recall_{M} = \frac{\sum_{i=1}^{c} Recall\ (i)}{c}$$

From our code, it was observed that micro averaging gives the same result for all 3 attributes. While macro averaging shows similar scores off roughly 0.7 for precision, recall and F score.

```
micro precision: 0.7155172413793104 micro recall: 0.7155172413793104 micro F1: 0.7155172413793104 macro precision: 0.7129811270600743 macro recall: 0.7075854700854701 macro F1: 0.710273051564907 weighted average precision: 0.7162027489046546 weighted average recall: 0.6545184939581492
```

Upon further evaluating and research, it was realised that for a multi-class classifier, when calculating True-Negatives (TN), True-Positives (TP), False-Positive (FP), False-Negative (FN) from a Confusion Matrix, the resulting FN = FP.

FN is equal to FP because as you traverse the matrix to aggregate scores for TP, TN, FP, FN, every False instance is FP for a class, and at the same time every Negative instance will be a FN for a class.

This results in both precision and recall to always be equal based on their respective formulas. Since precision and recall are now equivalent, F score will now also be equivalent since F score is simply the sum of average of all precisions and recalls. Another way of showing this is by transformation and reduction of the F score formula:

$$F1 = 2rac{P*R}{P+R} = 2rac{P*P}{P+P} = 2rac{P^2}{2P} = rac{P^2}{P} = P$$

F1 = P, hence F1 = P = R.

Following our result of micro averaging, a decision was made to perform a weighted average of precision and recall on the model since micro averaging did not provide any valuable information. Upon completion, it was found that both weighted average precision and recall scores were congregated at around 0.7 and 0.65 respectively.

Macro average recall does not take into account weighted bias in the dataset, meaning that a class that has 400 instances is weighted the same as a class with 50 instances.

Hence even with high values for both macro precision and recall, it is not completely deterministic of the model performance. However, if one was to observe the Confusion Table, we can see that the majority of predicted classes are in the TP diagonal lines, with very few outer errors. This in the least was a great indication that our Naive Bayes model performed well overall. The original accuracy of the model was:

accuracy: 71.55172413793103

Euclidean distance between each key pair was the chosen characteristic for each new feature. This was done by employing the sklearn euclidean_distance() function that calculates the distance of each pair of points to each other pair of points within the given dataset. The resulting 2D array stores 11x11 columns, since we are comparing each distance to all of the others. The 2D array has a dimension of 121x747, a significant increase in size from the original 22x747. Due to the large increase in the number of attributes within our dataset, Chi Squared was chosen as the feature selection technique, in order to select the most correlated features to the given class labels from our dataset. K = 22 was chosen for Chi Squared, this was to keep the numbers of attributes selected to be equal to the original dataset. After Chi Squared evaluation, the resulting 2D array shows:

	feature1_x2	feature2_x2	feature3_x2	feature4_x2	feature5_x2	\
0	121.456106	123.961773	132.815286	86.724648	112.039619	
1	9.399098	39.152864	90.070921	95.283228	205.292640	
2	112.668433	96.623463	131.224467	204.761463	126.984569	
3	122.302388	210.699560	218.018303	217.027645	168.004357	
4	192.319403	191.993091	215.233186	188.849239	117.033427	
742	48.448869	189.132938	285.619807	202.327890	258.284194	
743	93.588034	209.392603	246.115041	305.197945	280.622121	
744	113.072668	224.422076	244.408034	340.918365	272.759912	
745	27.009445	152.421351	216.475837	216.675874	251.382615	
746	72.454321	186.378063	220.949403	276.125933	279.950657	
	feature6 x2	feature7 x2	feature8 x2	feature9 x2	feature10 x2	٠ ١
0	99.423570	139.247485	78.918661	118.160739	99.423570	
1	57.126067	27.109553	12.756109	30.132535	57.126067	
	108.184771	101.232863	10.993585	15.568378	108.184771	
3	54.157991	60.757601	80.080250	87.936493	54.157991	
4	207.252991	69.319602	126.020347	61.055029	207.252991	
742	267.787800	134.497900	51.525298	82.708434	267.787800	
743	301.843344	145.417426	58.801076	99.156259	301.843344	
744	293.797496	161.016085	55.334086	78.035250	293.797496	
745	241.035405	120.304799	49.093992	71.842309	241.035405	
746	298.831444	151.413257	57.981461	91.294917	298.831444	
740	230.031444	131.413237	37.301401	51.254517	230.031444	•••
	feature13 x2	feature14 x2	feature15 x	2 feature16	x2 feature1	7 x2 \
0	139.247485	118.160739	_		_	_
1	27.109553	30.132535				
2	101.232863	15.568378				
3	60.757601	87.936493				
4	69.319602	61.055029				
		01.033023				
742	134.497900	82.708434				
743	145.417426	99.156259				
744	161.016085	78.035250				
745	120.304799	71.842309				
746	151.413257	91.294917				
740	131.413237	31.234317	250.72270	.0 100.570	220.54	7403
	feature18 x2	feature19 x2	feature20 x	2 feature21	l x2 feature2	2 v2
0	46.294615	112.039619	_		_	_
1	76.688826	205.292640				
2	107.480887	126.984569				
3	10.553161	168.004357				
4	27.692464	117.033427				
742	296.872412	258.284194			 7890 296.87	2412
742	290.872412	280.622121				
744	300.508771	272.759912				
745	210.544562	251.382615				
746	245.598993	279.950657				
740	243.330993	2/9.93005/	230./22/0	2/0.12	243.39	כפכט

[747 rows x 22 columns]

The engineered features were passed into the Naiive Bayes algorithm, during the testing face, the test() function had to also perform feature engineering on the test inputs to ensure consistency during testing. The accuracy that the system gave is:

accuracy: 29.310344827586203

This was significantly lower than the original accuracy obtained without feature engineering. Euclidean distance between each pair of points may not have been a better predictor than the x and y asyms of each key point, hence making the model more error prone.