Soru 4) Beş katmanlı bir boruhattı yapısında katmanlar ve bunların tamamlanması için gereken süreler: instruction fetch (30ns), instruction decode (10ns), operand fetch (30ns), instruction execution (10ns) ve writeback (30ns) olarak verilmektedir. Boruhattının katmanlarının ortak bir saat işareti ile yürütülmesi istenmektedir. Komut setindeki komutların boruhattının tüm katmanlarını kullandığını varsayarak:

- a) Boruhattı için kullanılabilecek en yüksek saat frekansını hesaplayınız.
- b) 1000 adet komutun boruhattı kullanılarak yürütülmesinin ne kadar süreceğini hesaplayınız.
- c) 1000 adet komutun boruhattı kullanılMAdan yürütülmesinin ne kadar süreceğini hesaplayınız.
- d) Sırasıyla K1, K2, K3 ve K4 komutlarının boruhattı kullanılarak yürütülmesi istenmektedir. Aşağıdaki tabloyu kullanarak, verilen zaman aralığında, boruhattı katmanlarında hangi komutların yürütülmekte olduğunu belirtiniz.

Clock	Instruction	Instruction	Operand Fetch	Instruction	Write
Period	Fetch	Decode		execution	Back
T1	KI				
T2	K2	KI			
T3	K3	KZ	KI		
T4	KU	K3	K2	161	
T5		KU	K3	KZ	K
T6			Ku	K3	162
T7				KU	163
T8					K4

- a) Bornhattindo ortal saat Borett kullannak istensse en uzun katman süresi belirlegici olur => saat isorett periyodu 30 ns => saat isoreti frekası 1 Hz = 33.33 MHz
- b) 1000 komutun 5 katnanlı boru hattında yaritüle bilmesi iun 1004 alt işin yaritülmesi gerekir => 1004 x30 ns = 30120 = 30.12 Ms
- c) Bon hatti kullanılmadığında 1 komutus yanitülmesi 30+10+30+10+30 =110AS Süreq

1000 konutur bor hattiolnador = 1000 x 110n = 110 US

İsim :	BLM2612 Bilgisayar Donanımı	S1	S2	S3	S4	Σ
No :	2017/2 Vize 2 – 11 Mayıs 2018	(30p)	(20p)	(27p)	(23p)	(100p)
İmza :	Süre: 90 dk					

Soru 1) 32 bit adres yolu, 64 bit veri yolu genişliğine sahip bir mikroişlemci, 2MB kapasitesinde (tag alanları hariç), blok genişliği 32 byte olan cache yapısına sahiptir.

a) Aşağıda verilen cache konfigürasyonları için adres alanlarının genişliklerini belirleyiniz.

	tag	index	Word-Offset	Byte-offset
fully associative	27	O	2	3
direct mapped	11	16	2	3
2-way set associative	12	15	2 .	3
4-way set associative	13	14	2	3

b) Boş bir cache ile başlandığı varsayılarak, yukarıdaki direct mapped cache konfigürasyonu için sırasıyla aşağıdaki adreslere erişilmek istenirse oluşacak hit ve miss durumlarını belirtin.

Referans Adres (Hex)	Adres binary formda, alanlarına ayrıştırılarak						nag	H/M					
ABF908A0	1010	1011	111	1	1001	0000	1000	101	O	0	000		M
ABF908A8 *	1010	1011	111	١	1001	0000	1000	10	10	(000		H
ABF908A4	1010	1011	111	1.	10,01	0000	1000	10	10	d	100		H
ACF9BBAC	1010	1100	-111	1	(00)	1011	1011	10	10	1	00		M
ACF9BBA4	1010	1100	11	1	1001	1011	1011	10	10	0	100	v	H
ACF9BBA0	010)	1100	11	1	1001	1011	1011	10	10	C	000	7,	H

MP in word genislis = $\frac{66.611}{8.611}$ = 8.6016/mod byte of fact iain $\log_2 8$ = 3.6016/mod block = 3.6016/mod log_2 &= 3.6

Soru 2) Aşağıdaki şekilde verilen I/O cihazlarından 7 tanesinin, 8 bit adres yolu genişliğine sahip bir CPU ile bağlanması istenmektedir. I/O cihazlarının her birinin CS ucu farklı bir adres ucuna bağlanacaktır (A_7 yedinci cihazın CS ucuna, A_6 altıncı cihazın CS ucuna, ...). CPU'nun en düşük anlamlı adres ucu tüm I/O cihazlarının RS ucuna bağlanmıştır. Bu bağlantı sonucu tüm I/O cihazlarının yazmaçları için elde edilen adres değerlerini belirtiniz (toplamda 14 yazmaç için adres değeri).

Soru 3) Komut tablosu, datapath yapısı, komut çözümleme devresi ile komut formatı verilen tek-çevrim hardwired CPU için

a) Asağıda verilen komutlara karsılık komut cözümleme devresinin üreteceği binary değerleri tabloya yazınız. (5x3p=15p)

l _	a) Agabiaa verilei	rkomadara	Rai giiik Roini	at gozannenne			1	-0	,	1 /		
	Instruction	DA	AA	ВА	МВ	FS	MD	RW	MW	PL	JB	ВС
	ADD R0, R7, R6	000	[1]	llo	O	0040	0	1	0	0	0	0
	DEC R1, R0	001	000	XXX	0	0110	D	l	0	0	0	0
	NOT R3, R3	oll	011	XXX	0	1011	0	1	0 "	0	0	1
	OR R4, R2, R1	100	010	001	0	1001	0	1	0	0	0	1
	SHR R4, R2	100	XXX	010	0	1101	0	4	0	0	0	1

b) Aşağıda verilen komutların binary karşılıklarını bulunuz. (4x3p=12p)

Instruction	Opcode	DŖ	SA	SB or Operand
LD RO, R7	00100.00	000		X+X
XOR R4, R3, R5	0) 01 000	100	Oli	101
SHL RO, R1	0001110	000	· XXX	001
ADI R3, R2, 3	1,0000 (0	011	010	011

