Naive Bayes

Lluís Talavera, 2022

A reminder of Bayes theorem

Given two events A and B,

```
P(A \mid B) = \langle P(A \mid B) \rangle = \frac{P(A \mid B)}{P(B)} = \frac{P(A \mid B)}{P(B)}
```

- P(A) = probability of A ocurring (prior)
- P(B) = probability of B ocurring (evidence)
- P(B|A) = conditional probability of B given A (probability of B ocurring if a has ocurred, likelihood)
- P(A|B) = conditional probability of A given (probability of A ocurring if B has ocurred, posterior)

Naive Bayes

It is a conditional probability model. Given an example x represented by n features $(x_1,x_2,...,x_n)$ it assigns P(y|x) for each possible class.

Using the Bayes theorem it can be decomposed as:

$$P(y|x) = \left(P(y) \cdot P(x|y)\right)$$

We are only interested in the numerator because P(x) is constant among all the classes. P(y) is easy to compute. If we assume that every pair of features are **conditionally independent** given any class, estimation of the likelihood is easy:

$$P(x|y) = \frac{i=1}^n P(x_i|y) = P(x_1|y) \cdot P(x_2|y) \cdot P(x_n|y)$$

The independence assumption may be too naive for real data!

Gaussian Naive Bayes

The likelihood of a value for column \$i\$ is assumed to follow a Gaussian distribution:

 $P(x_i|y) = \frac{1}{\sqrt{2 \pi (2 \pi y)}} normalsize exp(-\frac{x_i - \frac{1}{2 \pi ($

Naive Bayes algorithm

Training

Estimate $P(y=y_k)$ for each class label and $P(X|y=y_k)$ for each feature and class label from the training data.

(for Gaussian, estimate class conditional mean \$\mu_{ik}\$ and variance \$\sigma^{2}_{ik}\$ for each feature \$i\$ and class label \$k\$)

Prediction

Return the class of a new example $x = (x_1, x_2, \det x_n)$ as

 $\displaystyle \frac{y}{\operatorname{argmax}} P(y) \operatorname{end}_{i=1}^n P(x_i|y)$

An example (I)

Brake?	Distance	Speed
Y	2.4	11.3
Y	3.2	70.2
N	75.7	72.7
N	2.8	15.2
?	79.2	12.1

Given a dataset with two features that represent the *Distance* to a corner of a player in a game and his *Speed*, determine if the player would brake or not.

Training the Gaussian NB model we obtain:

\$ y\$	\$P(y)\$	
Y	0.5	
N	0.5	

Prior probability

	Distance	Speed
\$\mu_Y\$	2.8	40.75
\$\mu_N\$	39.25	43.95
\$\sigma_Y^2\$	0.32	1734.605
\$\sigma_N^2\$	2657.205	1653.125

Parameters estimated to calculate the likelihood

An example (II)

Given the new example \$x\$:

Brake?	Distance	Speed	
?	79.2	12.1	

Use the probability density function for the Normal distribution with the estimated parameters to calculate the probability of the new example given each of the classes. For example:

$$$P(speed=12.1 | Y)=\frac{1}{\sqrt{2\cdot \cot \pi 1734.605}} \cdot \frac{1}{12.1-40.75}^2}{2\cdot \cot 1734.605} \cdot \frac{1734.605}{right}$$

Prediction:

 $P(Y|x)=0.5\cdot 0.0\cdot 0.00756=0.0$

 $P(N|x)=0.5\cdot 0.00573\cdot 0.00722 = \mathbb{1}$

NB decision boundaries

The decision boundaries can be linear (if variance is similar across the classes) or quadratic, as in the following example:

Some remarks about NB

- Fast training and prediction.
- The independence assumption often does not hold true in practice but, nevertheless, Naive Bayes may perform well!
- The naive assumption often leads to poor probabilities estimates, but it still can be a good classifier because it ranks the probabilites correctly.
- Not sensitive to irrelevant features.
- Correlated features can degrade performance.
- Imports with sklearn

from sklearn.naive_bayes import GaussianNB