南京航空航天大学

二O二一~三O二二 学年 第I学期 《复变函数》考试试题

班号					学号			姓名			
题号	_	=	Ξ	四	五	六	七	八	九	+	总分
得分											

一、填空题 (每题三分)

- 1. 复数 $\frac{1+i}{1-i} + 1$ 的三角表达式为_____
- 2. 已知 $z^3 2 = 0$, 则 z =______
- 3. 已知 $e^z = 1 + i$, 则 z =______
- $4.i^{1+i} =$ ______
- $5.\oint_{|z|=1} \frac{\sin z}{z-2} dz = \underline{\hspace{1cm}}$
- $6.\int_0^i z dz = \underline{\hspace{1cm}}$
- 7. 幂级数 $\sum_{n=1}^{\infty} \frac{1}{n^{2021}} z^n$ 的收敛半径为_____
- 8. 幂级数 $\sum_{n=1}^{\infty} \frac{1}{n!} z^n$ 的收敛半径为_____
- $9.Res[\frac{1}{z-2021i}, 2021i] =$ ______
- $10.Res[\frac{1-\cos z}{z^5},0] = \underline{\hspace{1cm}}$
- 二、函数 $f(z)=2xy+1+x^2yi+3i$ 在何处可导? 何处解析? 在可导点处求出该函数的导数.

三、证明 $u(x,y)=2x(3y-x)+2y^2$ 为调和函数,并求出解析函数 f(z)=u(x,y)+iv(x,y),使满足 f(i)=2+i.

四、计算以下积分.

$$1. \oint_{|z-1|=1} \frac{\cos z}{(z-1)^5} dz$$

$$2. \oint_{|z|=1} \frac{2z}{(z-\frac{i}{2})(z^2+2)} dz$$

$$3. \oint_{|z|=8} \frac{e^z}{z(z-1)(z-2)^2} dz$$

五、(1) 将 $f(z)=\frac{1}{z^2-4z+3}$ 在 $2<|z-3|<+\infty$ 内展成洛朗级数;

(2)将 $f(z)=z^4\sin\frac{1}{z}$ 在 $0<|z|<+\infty$ 内展成洛朗级数.

六、求将上半平面 Imz>0 映射成单位圆 |w|<1 的分式线性映射 w=f(z), 使满足条件: f(i)=0, f(0)=1.