Backpropagation-through-the-Void

Backpropagation through the Void: Optimizing control variates for black-box gradient estimation

· 作者: Will Grathwohl, Dami Choi, Yuhuai Wu, et al.

· 机构: University of Toronto and Vector Institute

· 会议: ICLR 2018

· 地址: https://arxiv.org/abs/1711.00123

· 代码: https://github.com/duvenaud/relax

文章概要

摘要

基于梯度的优化是deep learning、reinforcement learning的基础,但很难应用在不可微分或者未知的机理中。文章引入了一种低variance、unbiased的gradient estimator框架,可适用于包含离散或者连续随机变量的黑盒函数。使用神经网络构造Control variate,网络参数与原始参数联合优化。

贡献

· 在unbiased、low variance的前提下,能处理不可微黑盒函数

研究内容

问题定义

估计关于分布参数 heta 的梯度 $\mathbb{E}_{p(b| heta)}[f(b)]$.

$$egin{aligned} \partial_{ heta} \mathbb{E}_{p(b| heta)}[f(b)] &= \partial_{ heta} \int_{-\infty}^{\infty} f(b) p(b \mid heta) db \ &= \int_{-\infty}^{\infty} f(b) \partial_{ heta} p(b \mid heta) db \end{aligned}$$

想用简单的Mote Carlo估计,得有个数学期望的表达式。

方法:

- 1. score-function: $\partial_{\theta} \mathbb{E} p(b \mid \theta)[f(b)] = \mathbb{E} p(b \mid \theta)][f(b)\partial_{\theta} \log(p(b \mid \theta))]$
- 2. reparameterization: $\hat{g}_{\mathrm{reparam}}[f] = \frac{\partial}{\partial \theta} f(b) = \frac{\partial f}{\partial T} \frac{\partial T}{\partial \theta}, \quad \epsilon \sim p(\epsilon)$, $b = T(\theta, \epsilon)$

Goal

- 1. 可以处理不可微的 f
- 2. 可以处理离散随机变量的 b
- 3. unbiased
- 4. low variance

方法: Control variate

由

$$\mathbb{E}p(b\mid\theta)\left[C(b)\partial_{\theta}\log(p(b\mid\theta))\right] = \partial\theta\mathbb{E}_{p(b\mid\theta)}[C(b)]$$

减一项加一项(保证了unbiased):

$$\hat{g} = \mathbb{E}p(b \mid heta) \left[(f(b) - C(b)) \partial_{ heta} \log(p(b \mid heta))
ight] + \partial heta \mathbb{E}_{p(b \mid heta)} [C(b)]$$

- · 等式右边第二项可以用Reparameterization来求(C 已知)
- · 当 C=f ightharpoonup Reparameterization (low variance, 但需要 f 可微)
- · 当 C 为常数 → Score-function (high variance)
- · 当 $C \neq f$ ➡ 不需要 f 可微,并且variance不会大于SF
- 1. 找一个**可微**函数 h 来分解随机变量 b.
- 2. 用估计的梯度更新 θ
- 3. 更新 C 来最小化Variance

方法: Concrete (Gumbel-softmax trick)

- 1. 采样 $u \sim \mathrm{Unif}(0,1)$
- 2. 定义 $z=h(u,\theta)$. 考虑 b 是二项分布的时候: $z=\log\left(\frac{\theta}{1-\theta}\right)+\log\left(\frac{u}{1-u}\right)$
- 3. Reparameterization: $b=H(z)pprox\sigma_{\lambda}(z)=\left(1+\exp\left(-rac{z}{\lambda}
 ight)
 ight)^{-1}$

$$egin{aligned} \partial_{ heta} \mathbb{E}_{p(b| heta)}[f(b)] &pprox \partial_{ heta} \mathbb{E}_{p(z| heta)}\left[f\left(\sigma_{\lambda}(z)
ight)
ight] \ &= \partial_{ heta} \mathbb{E}_{p(u)}\left[f\left(\sigma_{\lambda}(h(u, heta))
ight)
ight] \ &= \mathbb{E}_{p(u)}\left[\partial_{ heta} f\left(\sigma_{\lambda}(h(u, heta))
ight)
ight] \end{aligned}$$

- · 处理了 b 是离散随机变量的情况
- · Biased,(unbiased需要 $\lambda \to 0$)
- · λ 大,小variance,大bias

- · λ 小,大variance,小bias
- ・也就必须要调 λ ,做bias-variance trade-off

REBAR

Control variates:

$$\hat{g} = \mathbb{E}p(b \mid heta) \left[(f(b) - C(b)) \partial_{ heta} \log(p(b \mid heta))
ight] + \partial heta \mathbb{E}_{p(b \mid heta)} [C(b)]$$

做法:使用Control variates并结合Concrete trick.

具体在于选择一个 C 能够尽可能降低variance.

降低手段一

C 的选择利用Concrete中的近似项

$$egin{aligned} C &= f\left(\sigma_{\lambda}(z)
ight) \ &\mathbb{E}_{p(z\mid heta)}\left[C(b)\partial_{ heta}\log(p(b\mid heta))
ight] = \ &\partial_{ heta}\mathbb{E}p(z\mid heta)f\left(\sigma\lambda(z)
ight) = \mathbb{E}_{p(z\mid heta)}\left[f\left(\sigma_{\lambda}(z)
ight)\partial_{ heta}\log(p(z\mid heta))
ight] \end{aligned}$$

原理: C 与 f 越相关,降低的方差就越大.

https://www.wikiwand.com/en/Control_variates

降低手段二

Law of Total variance: $\mathbb{E}[\operatorname{Var}(z \mid b)] = \operatorname{Var}(z) - \operatorname{Var}(\mathbb{E}(z \mid b))$

https://www.wikiwand.com/en/Law_of_total_variance

说明平均而言 z|b 的variance会更小,借助 $p(z\mid b)$ 来进一步减小variance

$$\mathbb{E}p(z\mid\theta)\left[f\left(\sigma_{\lambda}(z)\right)\partial_{\theta}\log(p(z\mid\theta))\right] = \mathbb{E}p(b)\left[\partial_{\theta}\mathbb{E}p(z\mid b)\left[f\left(\sigma_{\lambda}(z)\right)\right]\right] + \mathbb{E}p(b)\left[\mathbb{E}_{p(z\mid b)}\left[f\left(\sigma_{\lambda}(z)\right)\partial_{\theta}\log(p(b))\right]\right]$$

等式右边第一项就可以用Reparameterization:

$$\mathbb{E}p(b)\left[\partial heta \mathbb{E}p(z\mid b)\left[f\left(\sigma_{\lambda}(z)
ight)
ight]
ight] = \mathbb{E}p(b)\left[\mathbb{E}_{p(v)}\left[\partial_{ heta}f\left(\sigma_{\lambda}(ilde{z})
ight)
ight]
ight]$$

其中 $v \sim \mathrm{Unif}(0,1), ilde{z} = ilde{h}(v,b, heta)$

第二项:

 $\mathbb{E}p(b)\left[\mathbb{E}p(z\mid b)\left[f\left(\sigma_{\lambda}(z)\right)\partial_{\theta}\log(p(b\mid \theta))\right]\right]=\mathbb{E}p(b)\left[\mathbb{E}p(v)\left[f\left(\sigma_{\lambda}(\tilde{z})\right)\partial_{\theta}\log(p(b\mid \theta))\right]\right]$ 最后的梯度估计为:

$$\hat{g} heta = \mathbb{E}p(u,v)\left[\left(f(H(z)) - f\left(\sigma_{\lambda}(ilde{z})
ight)
ight)\partial_{ heta}\log(p(b)) + \partial_{ heta}f\left(\sigma_{\lambda}(z)
ight) - \partial_{ heta}f\left(\sigma_{\lambda}(ilde{z})
ight)
ight]$$

降低手段三

 λ 非超参,而是可优化的参数,优化目标是减少variance

$$egin{aligned} \hat{g}_{\lambda} &= \partial_{\lambda} \left(\mathbb{E} \left[\hat{g}_{ heta}^2
ight] - \left(\mathbb{E} \left[\hat{g}_{ heta}
ight]
ight)^2
ight) \ &= \partial_{\lambda} \mathbb{E} \left[\hat{g}_{ heta}^2
ight] \ \lambda \leftarrow \lambda - lpha * \hat{q}_{\lambda} \end{aligned}$$

问题:

- · 只有一个 λ 来控制variance,容易under fit
- ·梯度估计要求 f 可微

RELAX

将 C 替换成神经网络 C_{ϕ} , ϕ 为网络的weights

$$\hat{g} ext{reLAX} = \mathbb{E} p(u,v) \left[\left[f(b) - \left[C_{\phi}(ilde{z})
ight]
ight] \partial_{ heta} \log p(b \mid heta) - \partial_{ heta} \left[C_{\phi}(ilde{z})
ight]
ight] + \partial_{ heta} \left[C_{\phi}(z)
ight]$$

- · 在unbiased的前提下,利用网络weights ϕ 来控制降低variance
- · f 不需要可微

整体算法流程

```
Algorithm 1 LAX: Optimizing parameters and a gradient control variate simultaneously.
Require: f(\cdot), \log p(b|\theta), reparameterized sampler b = T(\theta, \epsilon), neural network c_{\phi}(\cdot),
               step sizes \alpha_1, \alpha_2
    while not converged do
         \epsilon \sim p(\epsilon)

    Sample noise

         b \leftarrow T(\epsilon, \theta)
                                                                                                                         \hat{g}_{\theta} \leftarrow [f(b) - c_{\phi}(b)] \nabla_{\theta} \log p(b|\theta) + \nabla_{\theta} c_{\phi}(b)
                                                                                                   ▷ Estimate gradient of objective
         \hat{g}_{\phi} \leftarrow \partial \hat{g}_{\theta}^2 / \partial \phi
                                                                                   ▶ Estimate gradient of variance of gradient
         \theta \leftarrow \theta - \alpha_1 \hat{q}_{\theta}
                                                                                                                   \phi \leftarrow \phi - \alpha_2 \hat{g}_{\phi}
                                                                                                              ▶ Update control variate
   end while
   return \theta
```

Algorithm 2 RELAX: Low-variance control variate optimization for black-box gradient estimation.

```
Require: f(\cdot), \log p(b|\theta), reparameterized samplers b = H(z), z = S(\epsilon, \theta) and \tilde{z} = S(\epsilon, \theta|b),
                neural network c_{\phi}(\cdot), step sizes \alpha_1, \alpha_2
    while not converged do
          \epsilon_i, \widetilde{\epsilon_i} \sim p(\epsilon)

    Sample noise

         z_i \leftarrow S(\epsilon_i, \theta)
                                                                                               b_i \leftarrow H(z_i)
                                                                                                                                   \widetilde{z_i} \leftarrow S(\widetilde{\epsilon_i}, \theta|b_i)
                                                                                                   \hat{g}_{\theta} \leftarrow [f(b_i) - c_{\phi}(\widetilde{z_i})] \nabla_{\theta} \log p + \nabla_{\theta} c_{\phi}(z_i) - \nabla_{\theta} c_{\phi}(\widetilde{z_i})
                                                                                                                              ▷ Estimate gradient
                                                                                          > Estimate gradient of variance of gradient
          \hat{g}_{\phi} \leftarrow \partial \hat{g}_{\theta}^2 / \partial \phi
         \theta \leftarrow \theta - \alpha_1 \hat{g}_{\theta}
                                                                                                                             ▶ Update parameters
          \phi \leftarrow \phi - \alpha_2 \hat{g}_{\phi}
                                                                                                                       ▶ Update control variate
   end while
    return \theta
```

实验

Figure 2: Histograms of samples from the gradient estimators that create LAX. Samples generated from our one-layer VAE experiments (Section 6.2).

Toy experiment

最小化目标: $\mathbb{E}_{p(b|\theta)}\left[(b-t)^2\right]$

Figure 1: Left: Training curves comparing different gradient estimators on a toy problem: $\mathcal{L}(\theta) = \mathbb{E}_{p(b|\theta)}[(b-0.499)^2]$ Right: Log-variance of each estimator's gradient.

Figure 4: Training curves for the VAE Experiments with the one-layer linear model. The horizontal dashed line indicates the lowest validation error obtained by REBAR.

RELAX的梯度始终大于0,说明梯度估计中的Reparameterization部分提供的梯度方向信息始终是正确的

离散VAE

To take advantage of the available structure in the loss function

$$c_{\phi}(z) = f\left(\sigma_{\lambda}(z)
ight) + \hat{r}_{
ho}(z)$$

Dataset	Model	Concrete	NVIL	MuProp	REBAR	RELAX
MNIST	Nonlinear linear one-layer linear two-layer	-102.2 -111.3 -99.62	-101.5 -112.5 -99.6	-101.1 -111.7 -99.07	-81.01 -111.6 -98.22	-78.13 -111.20 -98.00
Omniglot	Nonlinear linear one-layer linear two-layer	-110.4 -117.23 -109.95	-109.58 -117.44 -109.98	-108.72 -117.09 -109.55	-56.76 -116.63 -108.71	-56.12 -116.57 -108.54

Table 1: Highest training ELBO for discrete variational autoencoders.

Dataset	Model	REBAR	RELAX
MNIST	one-layer linear	-114.32	-113.62
	two-layer linear	-101.20	-100.85
	Nonlinear	-111.12	119.19
Omniglot	one-layer linear	-122.44	-122.11
	two-layer linear	-115.83	-115.42
	Nonlinear	-127.51	128.20

Table 3: Highest obtained validation ELBO.

Model	Cart-pole	Lunar lander	Inverted pendulum
A2C	1152 ± 90	162374 ± 17241	6243 ± 164
LAX/RELAX	472 ± 114	68712 ± 20668	2067 ± 412

Table 2: Mean episodes to solve tasks. Definitions of solving each task can be found in Appendix E.

过拟合:

We believe the decreasein validation performance for the nonlinear models was due to overfitting caused by improved optimization of an under-regularized model. We leave exploring this phenomenon to further work.

强化学习

Figure 3: The optimal relaxation for a toy loss function, using different gradient estimators. Because REBAR uses the concrete relaxation of f, which happens to be implemented as a quadratic function, the optimal relaxation is constrained to be a warped quadratic. In contrast, RELAX can choose a free-form relaxation.

Figure 5: *Top row:* Reward curves. *Bottom row:* Log-variance of policy gradients. In each curve, the center line indicates the mean reward over 5 random seeds. The opaque bars in the top row indicate the 25th and 75th percentiles. The opaque bars in the bottom row indicate 1 standard deviation. Since the gradient estimator is defined at the end of each episode, we display log-variance per episode.