Einführung in die Logistik, Übung 5

HENRY HAUSTEIN

Aufgabe 15

 $\label{thm:condition} \mbox{Vogel'sche Approximations} \mbox{methode}$

	j=1	j = 2	j = 3	j = 4	Angebot	Strafe
i = 1	0	1	1	4	5	1
i = 2	1	0	1	2 (2)	$3 \rightarrow 1$	1
i = 3	1	1	0	1	0	
i = 4	4	2	1	0	0	
Nachfrage	2	2	2	$2 \rightarrow 0$		
Strafe	1	1	0	2		
	I				I	
	j=1	j=2	j=3	j=4	Angebot	Strafe
i = 1	0 (2)	1	1	4	$5 \rightarrow 3$	1
i = 2	1	0	1	2 (2)	1	1
i = 3	1	1	0	1	0	
i = 4	4	2	1	0	0	
Nachfrage	$2 \rightarrow 0$	2	2	0		
Strafe	1	1	0			
	j = 1	j=2	j=3	j=4	Angebot	Strafe
i = 1	0 (2)	1	1	4	3	0
i = 2	1	0 (1)	1	2 (2)	$1 \to 0$	1
i = 3	1	1	0	1	0	
i = 4	4	2	1	0	0	
Nachfrage	0	$2 \rightarrow 1$	2	0		
Strafe		1	0			

	j = 1	j=2	j = 3	j = 4	Angebot	Strafe
i = 1	0 (2)	1 (1)	1 (2)	4	$3 \rightarrow 0$	
i = 2	1	0 (1)	1	2 (2)	$1 \rightarrow 0$	
i = 3	1	1	0	1	0	
i = 4	4	2	1	0	0	
Nachfrage	0	$1 \rightarrow 0$	$2 \rightarrow 0$	0		
Strafe						

Gesamtkosten: $2 \cdot 0 + 1 \cdot 1 + 2 \cdot 1 + 1 \cdot 0 + 2 \cdot 2 = 7$.

Aufgabe 16

 $\label{thm:conditions} \mbox{Vogel'sche Approximations} \mbox{methode}$

			E	7	F	ΙΗ	K		М	Aı	ngebot	St	rafe
	F	7 0 ($\overline{(2)}$		20	180		420	$3 \rightarrow 1$		180	
	KA	KA 14		40 6		40	320		280		3	140	
	\mathbf{S}		21	0	7	00	390		210	3		0	
	Nachfra	ge	2 -) ()	2	3		2				
	Strafe)	14	10	120		140	40 70					
			F		НН		K		Μ		Angebot	Ç	Strafe
	F		0 (2))	520	1	180 (1)	420		$1 \rightarrow 0$		240
	KA		140		640		320		280		3		40
	S		210		700		390		210		3		180
	Nachfrage	Э	0		2		$3 \rightarrow 2$)	2				
	Strafe				120		140		70				
			F	H	ΙΗ		K		Μ		Angeb	ot	Strafe
	F	0	(2)	5	20	180	(1)		420		0		
	KA	1	140	6	40	3	320		280		3		40
	S	2	210	7	00	3	390		210 (2)	$3 \rightarrow 1$	1	180
Na	achfrage		0		2		2		$2 \rightarrow$	0			
	Strafe			6	60		70		70				
			F	H	ΙΗ		K		Μ		Angeb	ot	Strafe
	F	0	(2)	5	20	180	(1)		420		0		
	KA	1	140	6	40	320	(2)		280		$3 \rightarrow 1$	1	340
	S	2	210	7	00	3	390		210 (2)	1		310
Na	achfrage		0		2	2	$\rightarrow 0$		0				_
	Strafe			6	60		70						

	F	НН	K	M	Angebot	Strafe
F	0 (2)	520	180 (1)	420	0	
KA	140	640 (1)	320 (2)	280	$1 \rightarrow 0$	
\mathbf{S}	210	700 (1)	390	210 (2)	$1 \rightarrow 0$	
Nachfrage	0	$2 \rightarrow 0$	0	0		
Strafe						

Gesamtkilometer: $2 \cdot 0 + 1 \cdot 1801 + 1 \cdot 640 + 2 \cdot 320 + 1 \cdot 700 + 2 \cdot 210 = 2580$

Aufgabe 17

(a) Bestimmung des Minimalgerüsts

- (b) Es handelt sich um ein knotenorientiertes Problem. Da der Graph ungerichtet ist, ist dieses Problem ein symmetrisches TSP.
- (c) 1 $\stackrel{4}{\rightarrow}$ 2 $\stackrel{3}{\rightarrow}$ 3 $\stackrel{4}{\rightarrow}$ 4 $\stackrel{9}{\rightarrow}$ 5 $\stackrel{8}{\rightarrow}$ 9 $\stackrel{1}{\rightarrow}$ 8 $\stackrel{4}{\rightarrow}$ 10 $\stackrel{4}{\rightarrow}$ 6 $\stackrel{6}{\rightarrow}$ 7 $\stackrel{19}{\rightarrow}$ 1, Gesamtlänge: 62

Aufgabe 18

- (a) Rundreiseproblem: 1 Tour, alle Ziele besuchen, keine Rückkehr zum Depot unterwegs Tourenproblem: mehrere Touren um alle Ziele zu besuchen, Rückkehr zum Depot nach einer Tour
- (b) Hamilton-Tour: jeden Knoten genau einmal besuchen Euler-Tour: jede Kante genau einmal besuchen
- (c) 1 $\xrightarrow{2}$ 3 $\xrightarrow{1}$ 2 $\xrightarrow{3}$ 4 $\xrightarrow{4}$ 5 $\xrightarrow{6}$ 1, Gesamtlänge: 16