Controle de um Sistema de Levitação a Ar *

Michael Feliphe da Silva Barbosa*

* Programa de Pós-graduação em Engenharia de Automação e Sistemas, Universidade Federal de Santa Catarina, SC (e-mail: michael.fsb@posgrad.ufsc.br).

Abstract: In a levitation system, a sphere is held suspended by a flow of air. The levitation system has a non-linear dynamic behavior, which makes it difficult to apply linear control techniques. To control this system, the non-linear control technique of linearization for feedback (FCL) was used and a state-space controller are used. In order to facilitate the visualization of the controlled system, a 3D animation was developed.

Resumo: Em um sistema de levitação a ar uma esfera é mantida suspensa por um fluxo de ar. O sistema de levitação possui comportamento dinâmico não linear o que gera dificuldades para aplicação técnicas de controle linear. Para controlar esse sistema utilizou-se a técnica de controle não linear de linearização por realimentação (FCL) e um controlador no espaço de estados. De modo a facilitar a visualização do sistema controlado, uma animação em 3D foi desenvolvida.

Keywords: Nonlinear system, Feedback linearisation, Air-levitation.

Palavras-chaves: Sistema não-linear, Linearização por realimentação, Levitação a ar.

1. INTRODUÇÃO

Engenheiros precisam cada vez mais trabalhar com sistemas não-lineares. Para isto, hoje a teoria de sistemas lineares é mais utilizada. Sua aplicação em sistemas não-lineares se da por meio de aproximações lineares em torno de um ponto de operação. Isso faz com que a analise é o controle do sistema sejam validos apenas para o entorno ponto deste ponto (Pagano, 2007). Desta forma faz-se necessário o estudo de técnicas para sistemas não-lineares.

O objeto de estudo deste trabalho é um sistema de levitação a ar de uma esfera pois possui comportamento não linear. Escolheu-se o levitador pois é de fácil construção e seu custo é baixo quando comparado com outros sistemas utilizados em laboratórios de ensino de engenharia controle. O estudo de Chacon et al. (2017) traz uma construção deste sistema.

O sistema de levitação, apresentado na Figura 1, é composto por uma esfera inserida um cilindro transparente graduado e por um ventilador na base do cilindro. O fluxo de ar tem sentido contrário a aceleração da gravidade de forma que possibilita a esfera levitar no ar. Neste trabalho realizou-se uma analise em malha aberta e o controle utilizando a técnica de controle não-linear de linearização por realimentação.

2. MODELO

A modelagem de um sistema é um passo fundamental e primário para analise e controle de um sistema. Pagano (202?) apresta um modelo para o sistema de levitação a ar que concedera que a velocidade do tubo é aproximadamente

Figura 1. Representação em 3D de um sistema de levitação a ar (esquerda). Foto de uma esfera levitando (direita). Fonte: Adaptada de Chacon et al. (2017)

inversa a altura e que há três forças atuando sobre a esfera: força da gravidade, força de arrasto aerodinâmico e força causado pelo gradiente de pressão (Em fase de elaboração). Neste trabalho utilizou-se o modelo de dinâmica vertical apresentado por Pagano (202?) como

$$\ddot{z} = \alpha \left(\dot{z} - k \frac{u}{z} \right)^2 - \gamma k^2 \frac{u^2}{z^3} - g, \tag{1}$$

com,

$$\alpha = \frac{3}{4a}\gamma$$
 e $\gamma = \frac{\rho_a}{\rho_b}$,

em que os parâmetros são exibidos na Tabela 1 e variáveis são: \ddot{z} a aceleração da esfera, \dot{z} a velocidade da esfera, z a altura da esfera e u o sinal de controle.

^{*} Relatório elaborado para o projeto da disciplina Sistemas Não Lineares (DAS410071), ministrada pelo Professor Daniel Juan Pagano do Centro Tecnológico da Universidade Federal de Santa Catarina.

Tabela 1. Parâmetros do sistema levitador

Parâmetro	Valor	Unidade
\overline{a}	0.025	m
$ ho_a$	1.184	${\rm kgm^{-3}}$
$ ho_b$	10.4	${ m kg}{ m m}^{-3}$
g	9.81	${ m ms^{-2}}$
k	0.2	

3. ANALISE EM MALHA ABERTA

Uma analise em malha aberta do sistema foi realizada a fim de compreender o comportamento do sistema. Esta analise foi realizada em torno de um ponto de operação escolhido $z_0=0.5$ m. A entrada necessário para manter a bola nesse ponto, $u_0=4.3857$, foi obtida substituindo z_0 na equação (1) e fazendo $\ddot{z}=\dot{z}=0$.

O aplicativo, para MATLAB, PhasePlane versão $1.02^{\,1}$ foi utilizado para traçar o plano de fases do sistema no ponto de operação, Figura 2, e a reposta no tempo para algumas condições inciais, Figura 3. No plano de fases, há um ponto de equilibro em E=(0.5,0), um ponto de sela em S=(0.033,0) e uma região de escape para velocidades inciais altas. Para as condições iniciais P1, P2, P3 e P4 o sistema converge para o ponto de equilíbrio E. Já para condição P5 a esfera não muda de posição pois esta à esquerda do ponto de sela S. A simulação com condição inicial P6 esta na região de escape e por a posição da esfera diverge.

Figura 2. Plano de fase do sistema para entrada fixa $u = u_0$. Fonte: Elaborada pelo autor.

4. CONTROLADOR

O Controle de linearização por realimentação (FLC), do inglês Feedback Linearization Control, é uma técnica para sistemas não-lineares que utiliza a entrada de controle para cancelar os comportamentos não lineares do sistema. Essa tencina possui duas variações: linearização entradasaída — ou input-output linearization — e linearização de estados completa — ou full-state linearization. A diferenaça entre elas é que na segunda todas não linearidades são canceladas e enquanto na linearização entrada-saída os estados podem manter um comportamento não linear (Khalil, 2002, Cap. 13).

Figura 3. Resposta temporal do sistema para entrada fixa $u=u_0$ e diferentes condições inciais. Fonte: Elaborada pelo autor.

Reescrevendo o modelo do sistema, equação (1), na forma de espaço de estados com $x_1=z$ e $x_2=\dot{z}$ tem-se

$$\dot{x}_1 = x_2
\dot{x}_2 = k^2 \left(\frac{\alpha}{x_1^2} - \frac{\gamma}{x_1^3} \right) u^2 - 2\alpha k \frac{x_2}{x_1} u + \alpha x_2^2 - g.$$
(2)

Para realizar a linearização, a partir da equação (2) escolheu-se a entrada u como

$$u = \frac{-B + \sqrt{B^2 - 4AC}}{2A}$$

$$A = k^2 \left(\frac{\alpha}{x_1^2} - \frac{\gamma}{x_1^3}\right)$$

$$B = -2\alpha k \frac{x_2}{x_1}$$

$$C = \alpha x_2^2 - v - g,$$
(3)

em que v é a nova entrada de controle da planta. Par que a lei controle seja realizável $2A \neq 0$, portando

$$2k^2 \left(\frac{\alpha}{x_1^2} - \frac{\gamma}{x_1^3}\right) \neq 0$$
$$x_1 \neq \frac{4a}{3} \approx 0.033$$

Assumindo que o cancelamento sera perfeito, o sistema resultante da substituição da equação (3) na equação (2) é dado por

$$\dot{x}_1 = x_2
\dot{x}_2 = v.$$
(4)

Um controlador no espaço de estados foi projetado para atender os requisitos enunciados do trabalho: 1 - Levitar a esfera em uma dada altura (metade do tubo); 2 - Oscilar a posição da esfera entrono de um ponto. Os requisitos de desempenho escolhido foram: 1 - Tempo de acomodação similar ao tempo de acomodação do ensaio em malha aberta para o ponto P4, 1 segundo; 2 - Sobressinal nulo.

Aplicativo disponível no Github da Mathworks. Url do repositório: https://github.com/MathWorks-Teaching-Resources/ Phase-Plane-and-Slope-Field.

Dessa forma escolheu-se que os polos em malha fechada do sistema deve estar em -4 e -20 e que o ganho em malha fechada deve ser unitário. Estes requisitos resultam no seguinte controlador, que foi calculado utilizando o comando place do MATLAB.

$$v = 80r - (80x_1 + 24x_2), (5)$$

em que r é o sinal de referência para altura da esfera.

5. ANIMAÇÃO EM 3D

Desenvolveu-se uma visualização 3D do sistema controlado pois isso possibilita uma melhor compressão do sistema, principalmente no ensino remoto. Para isso, desenhou-se no software SOLIDWORKS 2017 o levitador a ar, a esfera e uma régua com indicador. Estes desenhos foram montados para forma o sistema e a montagem foi exportada para ser utilizada na animação. No MATLAB, utilizou-se o Simulink 3D Animation para fazer a animação 2 . A Figura 4 mostra uma captura de tela com a janela da animação.

Figura 4. Captura de tela com a janela da animação 3D. Fonte: Elaborada pelo autor.

6. RESULTADOS

A Figura 5 exibe a reposta ao degrau em t=0, com z(0)=0.035 e $\dot{z}(0)=0$, do sistema e malha aberta e do sistema controlado com linearização por realimentação. Verificou-se que o controle no espaço de estados no sistema

linearizado gerou o resultado projetado para o sistema linear da equação (4). Isto implica que o cancelamento dos comportamentos não lineares do modelo foi realizado com sucesso.

Na Figura 6 é apresentado a resposta do sistema a entrada senoidal com frequência de 1 rad s $^{-1}$ e amplitude de 0.05 m. Observou-se para este caso que o sistema segue a referencia entretanto com um diferença de fase de forma que o erro em regime premante não é nulo.

Figura 5. Resposta ao degrau do levitador em malha aberta e controlado com linearização de realimentação. Fonte: Elaborada pelo autor.

Figura 6. Resposta a entrada senoidal do sistema controlado. Fonte: Elaborada pelo autor.

7. CONCLUSÃO

O levitador a ar é um importante sistema para ensino de técnicas de controle não-linear. Neste trabalho, realizouse a analise em malha aberta e o controle por meio de linearização por realimentação. O controlador projeta cumpriu os requisitos de projeto para entrada em degrau e entrada senoidal.

² Arquivos do SOLIDWORS e do SIMULINK disponibilizados em repositório do Github. Url do repositório: https://github.com/michaelfsb/air-levitation-system.

Para aplicação em um sistema real deste controlador, é necessário um estudo de robustez para verificar o comportamento quando o cancelamento da não linearidade não é completo. Outro ponto possível de continuide para este trabalho é a criação de um aplicativo, utilizando o MATLAB App Desinger, com o arquivo de simulação e animação 3D no SIMULINK. O aplicativo possibilitaria um uso mais intuitivo e dinâmico em aulas praticas de controle de sistemas não lineares.

REFERÊNCIAS

- Chacon, J., Saenz, J., Torre, L.D.l., Diaz, J.M., and Esquembre, F. (2017). Design of a low-cost air levitation system for teaching control engineering. *Sensors*, 17(10). doi:10.3390/s17102321. URL https://www.mdpi.com/1424-8220/17/10/2321.
- Khalil, H. (2002). *Nonlinear Systems*. Pearson Education. Prentice Hall.
- Pagano, D.J. (2007). Síntese de sistemas não-lineares. In L.A. Aguirre (ed.), *Enciclopédia de Automática: Controle e Automação*, chapter 9, 188–217. Blucher, São Paulo.
- Pagano, D.J. (202?). Modelling and control of an airlevitation system for teaching nonlinear control systems. Em fase de elaboração.