CLAIMS

What is claimed is:

1	1. A system for generating amplitude matched, phase shifted signals,
2	comprising:
3	a filter arrangement including a plurality of nodes, each node configured to
4	provide an associated vector that is offset in phase from a vector associated with each
5	other node; and
6	an adjustable element associated with each node, the adjustable element
7	configured to substantially equalize an amplitude of each vector associated with each
8	node.
1	2. The system of claim 1, wherein four nodes are associated with the filter
2	arrangement, each node having an associated vector.
1	3. The system of claim 2, further comprising:
2	an adder element configured to add the four vectors resulting in eight phase shifted
3	vectors.
1	4. The system of claim 3, further comprising:
2	a scaler configured to scale the amplitude of the four vectors resulting in eight
3	amplitude matched phase shifted vectors.
1	5. The system of claim 4, wherein the adjustable element is an adjustable
2	resistance.
1	6. The system of claim 5, wherein the adjustable resistance is a metal oxide
2	semiconductor field effect transistor (MOSFET) adjustable resistance.
1	7. The system of claim 4, wherein the adjustable element is an adjustable
2	capacitance.

1	8. The system of claim 7, wherein the adjustable capacitance is a varactor.
1	9. A method for generating amplitude matched, phase shifted signals,
2	comprising:
3	providing a plurality of vectors, each vector associated with a node, each vector
4	offset in phase from each other vector associated with each other node; and
5	adjusting each node to substantially equalize an amplitude of each vector
6	associated with each node.
1	10. The method of claim 9, wherein a resistance associated with each node is
2	adjusted to substantially equalize an amplitude of each vector associated with each node.
1	11. The method of claim 9, wherein a capacitance associated with each node is
2	adjusted to substantially equalize an amplitude of each vector associated with each node.
1	12. The method of claim 10, further comprising adjusting the resistance using
2	a metal oxide semiconductor field effect transistor (MOSFET) adjustable resistance.
1	13. The method of claim 12, further comprising combining four vectors
2	associated with each of four nodes resulting in eight phase shifted vectors.
1	14. The method of claim 13, further comprising scaling the four vectors
2	resulting in eight substantially amplitude matched phase shifted vectors.
1	15. The method of claim 11, further comprising adjusting the capacitance
2	using a varactor.
1	16. The method of claim 15, further comprising combining four vectors
2	associated with each of four nodes resulting in eight phase shifted vectors.
_	

1	17. The method of claim 16, further comprising scaling the four vectors
2	resulting in eight amplitude matched phase shifted vectors.
1	18. A system for generating amplitude matched, phase shifted signals,
2	comprising:
3	filter means including a plurality of nodes, the filter means for providing a
4	plurality of associated vectors that are offset in phase from each other vector associated
5	with each other node; and
6	means for substantially equalizing an amplitude of each vector associated with
7	each node.
1	19. The system of claim 18; wherein the means for substantially equalizing an
2	amplitude of each vector comprises adjustable resistance means.
1	20. The system of claim 18, wherein the means for substantially equalizing an
2	amplitude of each vector comprises adjustable capacitance means.
1	21. The system of claim 19, wherein the adjustable resistance means
2	comprises a metal oxide semiconductor field effect transistor (MOSFET) adjustable
3	resistance.
1	22. The system of claim 21, further comprising:
2	adder means for combining four vectors associated with each of four nodes
3	resulting in eight phase shifted vectors.
1	23. The system of claim 22, further comprising:
2	scaler means for scaling an amplitude of the four vectors resulting in eight
3	substantially amplitude matched phase shifted vectors.

1	24. A system for generating amplitude matched, phase shifted signals, in a
2	portable communication device, comprising:
3	a portable communication device including a transmitter and a receiver;
4	a synthesizer for providing a local oscillator signal;
5	a filter arrangement configured to operate on the local oscillator signal, the filter
6	arrangement including a plurality of nodes, each node configured to provide an associated
7	vector that is offset in phase from a vector associated with each other node; and
8	an adjustable element associated with each node, the adjustable element
9	configured to substantially equalize an amplitude of each vector associated with each
10	node.
1	25. The system of claim 24, wherein four nodes are associated with the filter
2	arrangement, each node having an associated vector.
1	26. The system of claim 25, further comprising:
2	an adder element configured to add the four vectors resulting in eight phase shifted
3	vectors.
1	27. The system of claim 26, further comprising:
2	a scaler configured to scale an amplitude of the four vectors resulting in eight
3	substantially amplitude matched phase shifted vectors.
1	28. The system of claim 27, wherein the adjustable element is an adjustable
2	resistance.
1	29. The system of claim 28, wherein the adjustable resistance is a metal oxide
2	semiconductor field effect transistor (MOSFET) adjustable resistance.
1	30. The system of claim 27, wherein the adjustable element is an adjustable
2	capacitance.

31. The system of claim 30, wherein the adjustable capacitance is a varactor.

1