

Compositional Video Understanding with Spatiotemporal Structure-based Transformers

Hoyeoung Yun^{1*}, Jinwoo Ahn^{1*}, Minseo Kim¹ and Eun-Sol Kim^{1†} 1 Hanyang University, Seoul, Korea

Introduction

Research Problem

- How to understand multi-granular semantic structures encompassing objects, scenes and video-wide contexts?
- ► How to understand video composed of **complex semantic structures**?

Key Insights

- **Spatiotemporal symbolic graph** as an input representation of a given video
- ► **Tokenizing** spatiotemporal graph and getting **semantic unit representation**
- Semantic units are then combined to represent more complex semantics

Underlying Semantic Structure

Complex Semantic Representation

Compositional Generalization Ability

Ability to understand conceptual combinations unseen in the training process.

Semantic Units

Human Understanding Process (Train)

Compositional Generalization Ability (Inference)

Contributions

- ► A novel **object-oriented video understanding method** to learn the **multi**granular semantic structure of long videos is suggested
- A novel data split for compositional generalization test of video understanding algorithms is proposed
- In experiments with both synthetic and real-world videos, we achieve new stateof-the-art performances

Proposed Method

Compositional Learning Framework

Spatiotemporal Graph Construction → Spatiotemporal Graph Transformer → Object-oriented Video Encoder → Embedding Disentangling Module

Spatiotemporal Graph Tokenizer & Graph Transformer

- ✓ All elements (**node, spatial edge, temporal edge**) are **tokenized** to be fed into the transformer as inputs
- ✓ We introduce total adjacency matrix which involves temporal auxiliary edges describing the temporal connection between two adjacent time
- ✓ As a positional embedding vector, graph Laplacian of total adjacency matrix is adapted

Embedding Disentangling Module

Overall Architecture

Spatiotemporal

Graph Transformer

- ✓ To achieve compositional generalization ability, we introduce a method where predictions are made for each semantic elements. (e.g. object, action, temporal relation)
- ✓ To resolve this, entangled feature embeddings are projected onto each independent subspace. (implemented by learnable embedding)
- ✓ By concatenating each embedding, classification head is applied to predict semantic labels that was previously decomposed.

Spatiotemporal Symbolic Graph Construction

Spatiotemporal Graph Tokenizer

Spatiotemporal

Graph Transformer

Object-wise Token Rearrangement

Experiments

Evaluation Methods

- Action Recognition with Synthetic Video Dataset (by CATER)
- ► Action Recognition with Real-world Video Dataset (by MOMA-LRG)
- ► Compositional Generalization Test (by newly suggested data splits)

Compositional Generalization Test & Suggested Data Split

- Each of individual semantic elements is seen. (ex. "sphere", "pick place" is seen)
- But specific combinations of semantic elements is unseen. (ex. "sphere pick place" is unseen)

Test Phase

Input video containing "sphere pick place" is given

Trainset & Testset Example of Object + Action Combination

Quantitative Results

Method	mAP	ViViT [1] FROZEN [2] Ours		mAP 65.09	# params 99M	Interence tin			Valid		ation	
FasterRCNN [29] R3D [4, 12]	25.45 44.2 45.9			69.36 72.83	115M 7.3M	40 20			Baseline 25.78		Ours	
R3D + NL [37] R3D + LSTM [10] R3D + NL + LSTM [10]	53.4 53.1			pes]	Dataset		$\overline{\mathcal{D}^1_{test}}$			72.95	
SCI3D + LSTM [29]	66.71	N	SE	TE	CATER	MON	MA-LRG	\mathcal{D}^1_{train}	93.9	05	98.9	
Single stream SCI3D + LSTM [29] ViViT[1] FROZEN[2]	69.76 66.18 66.64	√ ✓	- <	-	72.49 74.49 74.48	6	49.76 56.47 56.78	Split			R3D	F
Ours	75.40		✓	V	75.40	72.83		Validat	tion \mathcal{D}^2_{test}	\mathcal{D}^2_{test}	4.31	
Method	mAP			7	Task 1 Task 2		vanua	uon	\mathcal{D}^2_{train}	60.32		
R3D [4, 12]	98.8			val	test	val	test			\mathcal{D}^2_{test}	3.47	
R3D + NL [37] Ours	98.9 99.88	L_{vid} L_{vid} +	L_{comp}	90.42 99.89	90.38 99.88	56.16 76.07	53.53 75.40	Test		\mathcal{D}_{train}^{2}	58.23	

Action Recognition Performance & Ablation Study

Compositional Generalization Result

Qualitative Results

Acknowledgement

This work is supported by IITP grant funded by MSIT (Grant No. 2022-0-00264/40%, 2022-0-00612/20%, 2022-0-00951/20%,) and IITP Artificial Intelligence Graduate School Program for Hanyang University funded by MSIT (Grant No. RS-2020-II201373/20%).