GENERAL TOPOLOGY

DEVANSH TRIPATHI

ABSTRACT. We shall learn some general topology.

Definition 1. Induced metric: A metric which is derived from a norm. A normed space is a special metric space whose metric is derived from a norm.

Example 1. $\mathscr{C}[a,b]$: Set of all bounded continuous real function on a closed interval form the normed space with norm defined as

$$||f|| = \int_a^b |f(x)| dx$$
 or, $||f|| = \sup |f(x)|$

and the induced metric is

$$||f - g|| = \int_a^b |f(x) - g(x)| dx$$
 or, $||f - g|| = \sup |f(x) - g(x)|$

Definition 2. Distance of a point x from a set A:

$$d(x, A) = \inf\{d(x, a) \mid \forall a \in A\}$$

Diameter of the set:

$$d(A) = \sup\{d(a_1, a_2) \mid \forall a_1, a_2 \in A\}$$

Definition 3. Bounded mapping: A mapping f of a non-empty set into a metric space is said to be bounded if its range is bounded i.e. $\exists M \in \mathbb{R}$ such that $|f(x)| \leq M$

Example 2. A pseudo metric which is not a metric

 $f,g \in \mathbb{R}^2$ and d(f,g) := difference between their x coordinates

Definition 4. Interval: A set $A \subset \mathbb{R}$ is an interval if

$$\forall x, y \in A \text{ and } \forall t \in \mathbb{R} \colon x \le t \le y \implies t \in A$$

Theorem 1. Union of intervals with non empty intersection is an interval.

Proof. Let $\{I_i\}$ be the set of interval and $a \in \cap_i I_i$.

Proof Idea: Take any two points in the union and show that they contains every point in between them (take general point and show that it will belong to the union).

Let $x, y \in \bigcup_i I_i$ and let $t \in \mathbb{R}$: $x \leq t \leq y$ then there are following possiblities:

t < a,

t = a or,

t > a.

All are trivial to show that they lie in union.

1. Topological Spaces

Definition 5. Topology: A topology on a set X is a collection \mathcal{T} of subsets of X having the following properties:

- ϕ and X are in \mathcal{T} .
- The union of the elements of any subcollection of \mathcal{T} is in \mathcal{T} .
- The intersection of the elements of any finite subcollection of \mathcal{T} is in \mathcal{T} .

A set X with topology \mathcal{T} is called an topological space (X, \mathcal{T}) .

Definition 6. Open set of X: For the topological space (X, \mathcal{T}) , a subset U of X is an open set of X if U belongs to the collection \mathcal{T} .

Example 3. Discrete Topology: If X is any set then collection of all subsets of X is a topology on X, called **discrete topology**.

Example 4. Indiscrete or trivial topology: The topology consisting of only ϕ and the whole set X is called **trivial topology**.

Example 5. Finite complement topology: Let X be a set and \mathcal{T} be the collection of all subset U of X such that X - U is either finite or X. Then \mathcal{T} is called **finite complement topology**. (This topology is consists of subset of X whose complement is either finite or X.)

Proof. Let $\{U_i\}$ be the indexed family of subsets of X belongs to \mathcal{T} . ϕ and X are obviously there. Assume each $\bigcup_i U_i$ is non-empty (trivial for empty case):

$$X - \bigcup_{i} U_i = \bigcap_{i} (X - U_i)$$

Since each U_i is in \mathcal{T} , $X - U_i$ is finite. and $\bigcap \liminf_i X - U_i$ is contained in every $X - U_i$ hence it is finite.

To show $\bigcap_{i}^{n} X - U_{i}$ is in \mathcal{T} ,

$$X - \bigcap_{i}^{n} U_{i} = \bigcup_{i}^{n} (X - U_{i})$$

Rhs is finite union of finite sets hence it is finite.

Example 6. Let X be set and \mathcal{T}_c be the collection of all subsets U of X such that U^c is either countable or all of X. Then \mathcal{T}_c is a topology of X.

Proof. ϕ and X are trivial inside \mathcal{T}_c . Let U_i be the indexed family of subsets of X. Assume $\bigcup_i U_i$ is non-empty (trivial for empty case). To show that $\bigcup_i U_i$ is in \mathcal{T}_c

$$X - \bigcup_{i} U_i = \bigcap_{i} (X - U_i)$$

Since, $X - U_i$ is countable for each i and $\bigcap_i (X - U_i)$ is in U_i for each i. Hence, $\bigcap_i (X - U_i)$ is countable.

To show that $\bigcap_{i} U_{i}$ is in \mathcal{T}_{c} , use the same argument as last example and the fact that finite union of countable sets is countable.

Definition 7. Finer or strictly finer topology: For a set X, if \mathcal{T} and \mathcal{T}' are two topologies on X such that $\mathcal{T} \subset \mathcal{T}'$ then we say \mathcal{T}' is **finer** than \mathcal{T} and if \mathcal{T}' properly contains \mathcal{T} then we say it's **strictly finer**. Then \mathcal{T} is called **coarser** than \mathcal{T}' or, **strictly coarser** if it is contained in \mathcal{T}' properly.

Definition 8. Comparable: We say \mathcal{T} is comparable with \mathcal{T}' if either $\mathcal{T} \subset \mathcal{T}'$ or $\mathcal{T}' \subset \mathcal{T}$.

2. Basis for a Topology

Definition 9. If X is a set, a **basis** for a topology on X is a collection \mathcal{B} of subsets of X (called basis elements) such that

- For each $x \in X$, there is at least one basis element $B \in \mathcal{B}$ such that $x \in B$.
- If x belongs to the intersection of two basis elements B_1 and B_2 , then there is $B_3 \in \mathcal{B}$ such that $x \in B_3 \subset B_1 \cap B_2$.

We define a topology \mathcal{T} generated by \mathcal{B} as: A subset U of X is said to be open in X (e.g. an element of topology on X) if for all $x \in U$, there is a basis element $B \in \mathcal{B}$ such that $x \in B \subset U$.

Remark 1. Each element of the basis is an element of the topology.

Example 7. If X is any set then the collection of all one element subsets of X is a basis for the discrete topology on X.(Power set of X).

Proof. Trivial to see. (Caution: Do not take element of the topology on X. For basis, condition is on the elements of the set X hence take element of X and then check basis conditions.)

Lemma 1. The collection \mathcal{T} generated by the basis \mathcal{B} is a topology.

Proof. Let the collection $\mathcal{T} = \{U_i\}_{i \in I}$. Condition for the set U_i to belong to the collection is that for each $x \in U_i$ there exists an element $B \in \mathcal{B}$ and $x \in B \subset U_i$.

Membership of ϕ **and** X: For ϕ , it is vacuously true (true due to non-availability of elements in the set). For X, for each $x \in X$, there exists $B \in \mathcal{B}$ (by definition of basis) such that $x \in B$ and $B \subset X$.

Closure under arbitray union of elements. Now, assume that $\{U_i\}_{i\in I}$ is the indexed family of subsets of X which are elements of \mathcal{T} . We need to show that $\bigcup_{i\in I} U_i \in \mathcal{T}$. For each $x\in \bigcup_i U_i \implies x\in U_i$ for some i and $U_i\in \mathcal{T} \implies \exists B\in \mathcal{B}$ such that $x\in B\subset U_i$. This completes the argument.

Closure under finite intersection. We need to show that $\bigcap_{i=0}^{n} U_i \subset$

$$\mathcal{T}$$
. For each $x \in \bigcap_{i=0}^{n} U_i$
 $x \in U_i \ \forall i \implies \exists B_i \in \mathcal{B} \ \forall i \in \{0, 1, \dots n\}$

Since, $x \in \bigcap_{i=0}^{n} B_i$ and B_i 's are basis elements hence by definition of

basis,
$$\exists B' \in \mathcal{B}$$
 such that $x \in B' \subset \bigcap_{i=0}^{n} B_i$. Hence, $\bigcap_{i=0}^{n} U_i \subset \mathcal{T}$.

Lemma 2. Let X be a set; \mathcal{B} is the set of all basis elements of the topology \mathcal{T} on set X. Then \mathcal{T} equals the collection of all unions of elements of \mathcal{B} .

Proof. Since each element B of basis is in \mathcal{T} and hence their union. For other way around, let $U \in \mathcal{T}$, then for each $x \in U \exists B_x \in \mathcal{B} \subset U$ hence, $U = \bigcup_{x \in U} B_x$. Therefore, each $U \in X$ is union of basis elements. \square

Remark 2. Above lemma states that every set U in X can be expressed as union of basis elements of the topology, however this is **not unique.**

Lemma 3. Let X be an topological space. Suppose that \mathcal{C} is a collection of open sets of X such that for each open set U of X and each $x \in U$, there is an element C of \mathcal{C} such that $x \in C \subset \mathcal{C}$. Then \mathcal{C} is a basis of the topology of X.

Proof. First we will prove that \mathcal{C} is the basis of the topology on X.

First condition of basis: Since X is a open set of itself hence hypothesis, by for each $x \in X$ there exists $C \in \mathcal{C}$ such that $x \in C \subset \mathcal{C}$.

Second condition of basis: Let $x \in C_1 \cap C_2$ for some open sets $C_1, C_2 \in \mathcal{C}$. Since C_1, C_2 are open in X then so is $C_1 \cap C_2$ hence by hypothesis for each $x \in C_1 \cap C_2$ there exists $C_3 \in \mathcal{C}$ such that $x \in C_3 \subset C_1 \cap C_2$.

Topology generated by \mathcal{C} equals topology of X. Let \mathcal{T}_c be the topology generated by \mathcal{C} and \mathcal{T} be a topology on X. Let $U \in \mathcal{T}$. For each $x \in U$, by hypothesis, there exists $C_x \in \mathcal{C}$ such that $x \in C_x \subset U$ hence $U = \bigcup C_x$ (union of elements of \mathcal{C}) $\Longrightarrow \mathcal{T} \subset \mathcal{T}_c$.

Let $V \in \mathcal{T}_c \Longrightarrow V = \bigcup_{i \in I} C_i$ for each $C_i \in \mathcal{C}$ (by previous lemma).

Since each C_i are open in X hence $C_i \in \mathcal{T}$ and \mathcal{T} is a topology (their union will belong to \mathcal{T}). Hence, $V \in \mathcal{T} \implies \mathcal{T}_c \subset \mathcal{T}$. Therefore, $\mathcal{T}_c = \mathcal{T}$.

Lemma 4. Let \mathcal{B} and \mathcal{B}' be bases for the topologies \mathcal{T} and \mathcal{T}' , respectively, on X. TFAE

- (1) \mathcal{T}' is finer than \mathcal{T} .
- (2) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}'$ such that $x \in B' \subset B$.

Proof. (1) \Longrightarrow (2) We assume that $\mathcal{T} \subset \mathcal{T}'$. For all $x \in X$ there exists $B \in \mathcal{B}$ such that $x \in B \subset \mathcal{T}$. And $\mathcal{T} \subset \mathcal{T}' \Longrightarrow B \subset \mathcal{T}'$. Therefore, there exists a $B' \in \mathcal{B}'$ such that $\forall x \in B, x \in B' \subset B$.

(2) \Longrightarrow (1). Assume (2) and let $U \in \mathcal{T}$. We need to show that $U \in \mathcal{T}'$. For each $x \in U$ there exists $B \in \mathcal{B}$ such that $x \in B \subset U$. From condition (2), there exists a $B' \in \mathcal{B}'$ such that $x \in B' \subset B \subset U \Longrightarrow B' \subset U$. Therefore by definition of basis, $U \in \mathcal{T}' \Longrightarrow \mathcal{T} \subset \mathcal{T}'$.

Definition 10 (Standard Topology on \mathbb{R}). If \mathcal{B} is the collection of all open intervals in the real line

$$(a, b) = \{x \mid a < x < b\},\$$

the topology generated by \mathcal{B} is called the **standard topology** on the real line.

Definition 11 (Lower limit topology on \mathbb{R}). If \mathcal{B}' is the collection of all half-open interval of the form

$$[a, b) = \{x \mid a \le x < b\},\$$

where a < b, the topology generated by \mathcal{B}' is called the **lower limit** topology on \mathbb{R} . \mathbb{R} with this topology is denoted as \mathbb{R}_l .

Definition 12 (K-topology on \mathbb{R}). Let K denote the set of all number of the form 1/n, for \mathbb{Z}_+ , and let \mathcal{B} be the collection of all open intervals (a,b), along with all the set of the form (a,b)-K. Then the topology generated by \mathcal{B} is called K-topology on \mathbb{R} . \mathbb{R} with this topology is denoted as \mathbb{R}_K .

Exercise 1. Prove that the set $\mathcal{B} = \{(a,b) \mid a < b\} \cup \{(a,b) \setminus K \mid a < b\}$ is a basis of the topology on \mathbb{R} .

Solution. First condition of the basis is trivially satisfied since it contains the basis of standard topology.

For second condition: Let $x \in \mathbb{R}$ such that $x \in B_1 \cap B_2$, we need to show that there exists a $B_3 \in \mathcal{B}$ such that $x \in B_3 \subset B_1 \cap B_2$.

Case 1. If $B_1 = (a, b)$ and $B_2 = (a, b) - K$ then $B_1 \cap B_2 = B_2$ (which can be taken as B_3 .)

Case 2. If $B_1 \cap B_2$ are disjoint then $x \notin B_1 \cap B_2$.

Case 3. If $B_1 = (a, b)$ and $B_2 = (c, d) - K$ with $c \in (a, b)$ and d > b then $B_1 \cap B_2 = (c, b) - K = B_3$.