

TRGN 515:

Advanced Human Genomic Analysis Methods

Week 6 – Lecture 12:

Machine learning models for genomic data analysis

Bilgenur Baloglu, Ph.D.

- Clinical Instructor of Translational Genomics, USC Keck School of Medicine
- Bioinformatics scientist III, Thermo Fisher Scientific

Email: baloglu@usc.edu

Some of the slides adapted from: Usman Roshan (NJIT) Saleh Alkhalifa (Amgen) Andrew Ng (Coursera) Bing Liu (UIC)

On tap today!

- Machine learning models
 - Supervised learning
 - Regression
 - Classification
 - Unsupervised learning
 - Cluster Analysis
 - Dimensionality reduction

What we focus on in this class: Machine Learning, not Deep Learning

- Find articles in the resources/articles directory
- This week's reading material:
 - Yang et al 2020, Review on the Application of Machine Learning Algorithms in the Sequence Data Mining of DNA
 - Monaco et al 2021, A primer on machine learning techniques for genomic applications
 - Wan et al 2021, Beyond sequencing: machine learning algorithms extract biology hidden in Nanopore signal data

Machine learning models

What models we'll cover

Types of Learning

Main differences between supervised and unsupervised learning.

Supervised learning	Unsupervised learning
Input data is labelled	Input data is unlabelled
There is a training phase	There is no training phase
Data is modelled based on training	Uses properties of given data for
dataset	classification
Divided into two types:	Most popular types: Clustering and
Classification and Regression	Dimensionality reduction
Known number of classes (for classification)	Unknown number of classes

Monaco et al. 2021

Supervised learning

Supervised learning

- For every example in the data there is always a predefined outcome
- Models the relations between a set of descriptive features and a target
- 2 groups of problems:
 - Regression: Predicts continuous values
 - prediction of a quantitative phenotype such as age
 - Classification: Predicts which class a given sample of data (sample of descriptive features) is part of (discrete value)
 - cancer type or disease trait classification

		,			
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa
9	4.4	2.9	1.4	0.2	setosa
10	4.9	3.1	1.5	0.1	setosa

0.0

0.0

100.0

0.0

96.0

4.0

0.0

Supervised learning: Regression

Supervised Learning: Regression

- Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Learn a function f(x) to predict y given x
 - y is real-valued == regression

Data from G. Witt. Journal of Statistics Education, Volume 21, Number 1 (2013)

Linear regression in simple terms

How do we represent h?

$$h_{\mathbf{g}}(x) = \Theta_0 + \Theta_1 x$$

Shorthard: $h(x)$

Supervised learning: Classification

Supervised Learning: Classification

- Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Learn a function f(x) to predict y given x
 - y is categorical == classification

Breast Cancer (Malignant / Benign)

Based on example by Andrew Ng

Logistic regression

Logistic regression predicts whether something is *True* or *False*, instead of predicting something continuous like *size*.

Supervised Learning: Classification

- x can be multi-dimensional
 - Each dimension corresponds to a feature

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape

Classification in Bioinformatics

- Computational diagnostic: early cancer detection
- Tumor biomarker discovery
- Protein structure prediction (threading)
- Protein-protein binding sites prediction
- Gene function prediction

Supervised learning for genomics data

Example: Breast tumor classification

van 't Veer et al (2002) Nature 415, 530

Dutch Cancer Institute (NKI)

Prediction of clinical outcome of breast cancer

DNA microarray experiment

117 patients

25000 genes

Is there work to do on van 't Veer et al. data?

- What is the minimum number of genes required in these classification models (to avoid chance classification)
- What is the maximum number of genes (avoid overfitting)

Evaluation metrics for supervised learning

Unsupervised learning

Unsupervised Learning

- The data have no target label
- We want to explore the data to capture some pattern
- Given $x_1, x_2, ..., x_n$ (without labels)
- Output hidden structure behind the x's
 - E.g., clustering

Unsupervised Learning

Genomics application: group individuals by genetic similarity

Individuals

Daphne Koller

Unsupervised Learning

Market segmentation

Social network analysis

Astronomical data analysis

Some applications of unsupervised learning in genetics and genomics

- binning of metagenomics contigs
- identification of plasmids and chromosomes
- clustering reads into chromosomes for better assembly
- clustering of reads as a preprocessor for assembly of reads

Unsupervised learning: Cluster Analysis

Recap: Classification vs. Clustering

Objects characterized by one or more features

- Classification (supervised learning)
 - Have labels for some points
 - Want a "rule" that will accurately assign labels to new points
 - Metric: Classification accuracy
- Clustering (unsupervised learning)
 - No labels
 - Group points into clusters based on how "near" they are to one another
 - Metric: independent validation features

Feature X (brain expression)

Feature X (brain expression)

Why use unsupervised approach?

- Class discovery: Unsupervised approach
 - Clinical heterogeneity: Only 40% of patients respond to chemotherapy
 - Hypothesis: Reflects molecular heterogeneity in tumors
 - Approach: Use clustering to discover new classes (There may be classes we are unaware of)
- Class prediction: Supervised approach
 - No single biomarker is enough

Acute Lymphoblastic Leukemia (ALL)

Golub et al., 1999

Acute Myelogenous Leukemia (AML)

Clustering process

- Clustering is a technique for finding similarity groups in data, called clusters
 - It groups data instances that are similar to (near) each other in one cluster and data instances that are very different (far away) from each other into different clusters

Aspects of clustering

- A clustering algorithm
 - Partitional clustering
 - Distance based (i.e., K-means)
 - Probabilistic
 - Hierarchical clustering
 - Agglomerative
 - Divisive
- A distance (similarity, or dissimilarity) function
- Clustering quality
- The quality of a clustering result depends on the algorithm, the distance function, and the application.

Examples to distance measures

Manhattan distance	
(city-block distance, L1 norm)	$d_{g} = \sum_{c} \left e_{gc} - e_{gc} \right $
Euclidean distance (L2 norm)	$d_{ig} = \sqrt{\sum_{c} (e_{fc} - e_{gc})^2}$
Mahalanobis distance	$d_{ig}=(\mathbf{e}_i-\mathbf{e}_g)^{\mathrm{T}}\Sigma^{-1}(\mathbf{e}_f-\mathbf{e}_g)$, where Σ is the (full or within-cluster) covariance matrix of the data
Pearson correlation (centered correlation)	$d_{ig} = 1 - r_{ig}, \text{ with } r_{ig} = \frac{\sum_{c} (e_{fc} - \bar{e}_{f})(e_{gc} - \bar{e}_{g})}{\sqrt{\sum_{c} (e_{fc} - \bar{e}_{f})^{2} \sum_{c} (e_{gc} - \bar{e}_{g})^{2}}}$
Uncentered correlation (angular separation, cosine angle)	$d_{fg} = 1 - r_{fg}$, with $r_{fg} = \frac{\sum_{c} e_{fc} e_{gc}}{\sqrt{\sum_{c} e_{fc}^2 \sum_{c} e_{gc}^2}}$
Spellman rank correlation	As Pearson correlation, but replace e_{gc} with the rank of e_{gc} within the expression values of gene g across all conditions $c=1C$
Absolute or squared correlation	$d_{ig} = 1 - r_{ig} \text{ or } d_{ig} = 1 - r_{ig}^2$

Unsupervised learning: K-means clustering

- K-means is a partitional clustering algorithm
- The k-means algorithm partitions the given data into k clusters
 - Each cluster has a cluster center, called centroid.
 - *k* is specified by the user

K-means algorithm

- Given *k*, the *k-means* algorithm works as follows:
 - 1. Randomly choose *k* data points (seeds) to be the initial centroids, cluster centers
 - 2. Assign each data point to the closest centroid
 - 3. Re-compute the centroids using the current cluster memberships.
 - 4. If a convergence criterion is not met, go to 2).

How do we select k?

Problem: we can always make clusters more compact if we increase their number (in the extreme case, number of clusters = number of samples

Guess: Educated guess or try out and see what we like

Robustness: e.g. remove samples or add noise to measurements at random and see how resilient to change

Define K (how?)

C1

C2

C3

Randomly initialize clusters (K=3)

Assign data points to nearest clusters

Re-calculate clusters, as the centroids of current samples

Repeat (1): assign to clusters

Repeat (1): re-calculate clusters, as the centroids of current samples

Strengths of k-means

- Strengths:
 - Simple: easy to understand and to implement
 - Works well with high dimensional data
 - Efficient: Time complexity: O(tkn),
 where n is the number of data points,
 k is the number of clusters, and
 t is the number of iterations
 - Since both *k* and *t* are small. *k*-means is considered a linear algorithm

Weaknesses of k-means

- The algorithm is only applicable if the mean is defined.
 - For categorical data, *k*-mode the centroid is represented by most frequent values.
- The user needs to specify k.
- The algorithm is sensitive to outliers
 - Outliers are data points that are very far away from other data points.
 - Outliers could be errors in the data recording or some special data points with very different values.

(A): Undesirable clusters

(B): Ideal clusters

Unsupervised learning: Hierarchical clustering

In the dendrogram the order of the leaves within a cluster is random; this can have a big visual impact

Hierarchical clustering

Start with each point in a separate cluster ("leaves")

At each step:

- Choose a pair of closest clusters
- Merge

Repeat until only one cluster remains, with all samples ("root")

Hierarchical clustering

Choose a pair of closest clusters: based on some distance measure (e.g. Euclidean, correlation)

Merge: re-calculate distance between new cluster and other clusters

Unsupervised learning: Dimensionality Reduction

Dimensionality reduction

Uses:

- Data Visualization
- Data Reduction
- Data Classification
- Trend Analysis
- Making the process faster and less computationally intensive
- Noise Reduction

Unsupervised learning: principal component analysis

What kind of problem is it?

You're running a company, and you want to develop learning algorithms to address each of two problems.

Problem 1: You have a large inventory of identical items. You want to predict how many of these items will sell over the next 3 months.

Problem 2: You'd like software to examine individual customer accounts, and for each account decide if it has been hacked/compromised.

Should you treat these as classification or as regression problems?

- Treat both as classification problems.
- Treat problem 1 as a classification problem, problem 2 as a regression problem.
- Treat problem 1 as a regression problem, problem 2 as a classification problem.
- O Treat both as regression problems.

What kind of problem is it?

Of the following examples, which would you address using an unsupervised learning algorithm? (Check all that apply.)

- Given email labeled as spam/not spam, learn a spam filter.
- Given a set of news articles found on the web, group them into set of articles about the same story.
- Given a database of customer data, automatically discover market segments and group customers into different market segments.
- Given a dataset of patients diagnosed as either having diabetes or not, learn to classify new patients as having diabetes or not.