Lecture-8

Topics: Needle electrodes

Needle electrodes

- Electrodes used within the body to detect bio potentials
 - Percutaneous electrodes
 - Internal electrodes

Percutaneous electrodes:

♦ Electrode itself or the lead wire crosses the skin

Internal electrodes:

 The connection is to an implanted electronic circuit such as radio telemetry transmitter

Advantages:

- No electrolyte-skin interface and associated limitations
- Electrode behaves by the electrode-electrolyte interface
- No gel is required to maintain the interface because the extracellular fluid is present

Disadvantages:

It is an invasive method of acquiring the bio potentials

Percutaneous Needle electrodes

Basic Needle electrode:

- The basic needle electrode consists of a solid needle, usually made of stainless steel with a sharp point
- The shank of the needle is insulated with a coating such as varnish and only tip is left exposed
- ♦ A lead wire is attached to the other end of the needle
- ♦ Joint is encapsulated in a plastic hub to protect it
- When place in muscle it obtains the EMG from that muscle accurately and can be removed

Percutaneous Needle electrodes

Shielded percutaneous electrode:

- It consists of a small gage hypodermic needle
- It has been modified by running an insulated fine wire down the centre of its lumen
- Filling the remainder of the lumen with an insulating material
 - An epoxy resin
- When the resin has set, the tip of the needle is files to its original level exposing an oblique cross section of the central wire
 - It serves as the active electrode
- The needle itself is connected to ground through a shield of co-axial cable, there by extending the coaxial structure to its very tip

Percutaneous Needle electrodes

Bipolar coaxial electrode:

- Multiple electrodes in a single needle can be formed
- Two wires are placed within the lumen of the needle and can be connected differently
 - so as to be sensitive to electrical activity only in the immediate vicinity of the electrode tip

Advantages of percutaneous electrodes:

It is used in the chronic recordings

Disadvantages of percutaneous electrodes:

 Can not be used for short term measurements, because of the their stiffness and size

Needle electrodes

Wire electrodes:

- A fine wire is made
 - Stainless steel
 - Diameter 25 to 125 micro meter
 - Insulated by varnish within a few millimetre of the tip
 - Non insulated tip is bent back to form a J-shaped structure
- ♦ The tip is introduced into the lumen of the needle

Inserting the electrode:

- The needle is inserted through the skin in to the muscle at the desired location desired path
- It is then withdrawn leaving the electrode in place
- The bent over portion of wire serves as a barb holding the wire in place in the muscle

Removing the electrode:

 To remove the wire a mild uniform force to straighten out the barb and pulls it out though the wires track

Needle electrodes

Disadvantages of wire electrode:

- Wire electrodes chronically implanted in the active muscles undergo a great amount of flexing as the muscle moves and it cause the
 - Wire to slip as it passes through the skin
 - Increase irritation
 - Risk of infection at this point
 - Cause wire to break

Helical electrode or coiled fine wire electrode:

- Made by
 - A very fine insulated wire coiled into a tight helix
 - Diameter of 150 micrometre
 - Place in the lumen of the inserting needle
- The un-insulated barb protrudes from the tip of the needle and it is bent back along the needle before insertions
 - ♦ It holds wire in the place in the tissue when the needle is removed from muscle
- External end of the electrode passes through the needle and before the electrode is connected to the recordings needle should be
 - Removed
 - Protected

Fetal heart beat measurement

- Percutaneous electrodes are used for monitoring fetal heart beats
- ECG from fetus during labour is measured by direct connection to the presenting part through the uterine cervix
- ♦ The fetus lies in a bath of amniotic fluid contains ions and is conductive
 - Surface electrodes do not provide adequate ECG as a result of shortening effect of the amniotic acid
- Thus the electrode used to obtain fetal ECG must penetrate the skin of the fetus

Suction Electrode:

- A sharp pointed probe in the centre of a suction cup can be applied to the fetal presenting part
- ♦ Suction is applied after cup is placed against the fetal skin
 - Surface of the skin is drawn into the cup
 - Central electrode pierces the stratum corneum contacting the deep layers of the epidermis

Fetal heart beat measurement

Suction Electrode (continues):

- Reference electrode is kept at the back of the suction electrode,
 - It contacts the fluid and
 - The signal seen between these two electrodes is the voltage drop across the resistance of the stratum corneum
- Thus although the amniotic fluid is essentially places all the body surface of the fetus at a common potential, the potentials beneath the stratum corneum can be different
- Fetal ECG
 - Peak amplitude of order 50-70 micro meter can be recorded

Helical electrode:

- It consists of a stainless steel needle shaped approximately like one turn of a helix mounted on a plastic hub
- Reference electrode is placed at the back surface of the hub using stainless steel

Fetal heart beat measurement

Helical electrode (continues):

- When the labour has proceeded far enough.
 - Electrode is attached to the fetal presenting part
 - Rotate the electrode so that the needle twists just beneath the surface of the skin
 - A corks screw shallowly penetrating a cork
 - Electrode remains firmly attached
- Because of the shortness of the helical needle it does not penetrate deep enough into the skin to cause the significant risk to fetus

- Implantable electrodes are designed to function entirely within the body without requiring any external wires to penetrate the skin.
- Signal transmission is achieved using a radio transmitter embedded within the body, ensuring a seamless and wireless communication system.

Wire Loop Electrodes

- Wire loop electrodes are a specific type of implantable electrode constructed using insulated, multistranded wires. Materials commonly used for these electrodes include:
- Stainless Steel: Durable and biocompatible.
- Platinum: Highly conductive and corrosion-resistant.

Construction Process:

1.Wire Preparation:

- 1. One end of the insulated wire is stripped to expose the strands.
- 2. An eyelet is formed by individually twisting the strands together at the point where the insulation ends.

2.Reinforcement:

1. Each strand is spot-welded to the wire mass at the junction to ensure durability and electrical integrity.

3.Placement:

1. The formed eyelet is sutured to the desired location in the body to establish an electric contact point.

Wire Loop Electrode Material Considerations:

- Silver should not be used for this type of electrode because:
 - Silver is toxic to surrounding tissues.
 - It can negatively impact biocompatibility and cause adverse tissue reactions.

This meticulous design and material selection process ensures the electrode's effectiveness, longevity, and safety within the body.

Platinum sphere cortical surface potential electrode:

- It is used to measure the cortical surface potentials from brain
- The electrode consists of a
 - Metallic sphere of 2 mm diameter located at the tip of the cylindrical Teflon insulator through which the electrode wires passes
- The calvarium is exposed through an incision in the scalp and burr hole is drilled
- A small slit is made in the exposed dura and sliver sphere is introduced through this opening so that it rests on the surface of the cerebral cortex
- The assembly is then cemented in place onto the calvarium by means of

a dental acrylic material

dura mater arachnoid laver

Multi element depth electrode:

- A cluster of fine insulated wires held together by a varnish binder
- Each wire has been cut transversely to expose an un-insulated cross section that serves as the active electrode surface
- The other end of the electrode can be attached to appropriate implantable electronic device or to a connector cemented on the skull to allow connection to an external recording apparatus

Disadvantages:

- Time consuming and expensive
- Wire clusters are made individually and each one will be different from other

- The electrode array consist of square Ag/AgCl electrodes, each measuring 40 µm on a side, fabricated on thin-film gold conductors.
- These components are deposited onto either a **flexible polyimide substrate** or a **more robust molybdenum substrate**, depending on the application requirements.
- To ensure proper insulation, the substrates are coated with an anodically grown oxide layer.
- The overall probe dimensions are designed for precise functionality, being: 10 mm in length, 0.5 mm in width, and 125 µm in thickness.
- Lead wires are attached to **bonding pads** located at the proximal end of the probe to facilitate electrical connectivity.
- These probes are specifically designed for measuring transmural potential distributions in the beating myocardium.
- The use of a **flexible substrate** is critical to minimize tissue damage during the contraction and relaxation of the myocardial muscle, ensuring reliable measurements and reducing potential harm to the surrounding tissue.

Two dimensional linear arrays:

- It is used to map the electrical potential across surface of the heart
- A pattern of miniature electrode is formed on a
 - Rigid surface
 - Flexible surface
- It is connected by conductors to the associated instrumentation
 - Large arrays require more number of connections
- Silver spheres socket electrodes is used
 - Diameter is 1mm
 - Each sphere is at the tip of an insulated wire

Disadvantages:

- Difficult to build an array of large number of electrodes
- ♦ Awkward to use the large number wires coming from the socket

Two dimensional linear arrays (continues):

- Difficulties can be overcome by
 - Using a Multilayer ceramic integrated circuit package as the electrode array
 - 144 miniature Ag/AgCl electrodes can be formed on polyimide substrates
 - Thin gold film serves as conductors and base for the Ag/AgCl electrode
- Interconnection is made by ribbon cable
- Further amplifiers can also be connected to array probes
- These have been used in the extra cellular recordings of neural signals in animal study

Three dimensional linear arrays:

- It is made using silicon micro fabrication technology
 - 1.5 mm long
 - Surrounded with insulating material up to the tip
 - The exposed tip serves as the electrode
- Wire connection on the base of the structure was needed to make contact with the tine electrode

Disadvantages:

- Require extensive fabrication
- High Costs

Difficulties can be overcome by

- Three dimensional electrode array can be fabricated by taking three set of one dimensional electrode array
- Micro electrode probe
- Inexpensive arrays can be build by ribbon cable can
 - It can produce 4-400 electrodes

