

Operatore UNION

○ Operatore insiemistico di unione

A UNION B

- ☐ Esegue l'unione delle due espressioni relazionali
 A e B
 - le espressioni relazionali A e B possono essere generate da istruzioni SELECT
 - richiede la compatibilità di schema tra A e B
 - rimozione dei duplicati
 - UNION rimuove i duplicati
 - UNION ALL non rimuove i duplicati

 □ Trovare il codice dei prodotti di colore rosso o forniti dal fornitore F2 (o entrambe le cose)

☐ Trovare il codice dei prodotti di colore rosso o forniti dal fornitore F2 (o entrambe le cose)

P

CodP	NomeP	Colore	Taglia	Magazzino
P1	Maglia	Rosso	40	Torino
P2	Jeans	Verde	48	Milano
P3	Camicia	Blu	48	Roma
P4	Camicia	Blu	44	Torino
P5	Gonna	Blu	40	Milano
P6	Bermuda	Rosso	42	Torino

۲P

I F				
CodF	CodF CodP			
F1	P1	300		
F1	P2	200		
F1	P3	400		
F1	P4	200		
F1	P5	100		
F1	P6	100		
F2	P1	300		
F2	P2	400		
F3	P2	200		
F4	P3	200		
F4	P4	300		
F4	P5	400		

Operatore INTERSECT

○ Operatore insiemistico di intersezione

A INTERSECT B

- □ Esegue l'intersezione delle due espressioni relazionali A e B
 - le espressioni relazionali A e B possono essere generate da istruzioni SELECT
 - richiede la compatibilità di schema tra A e B

 □ Trovare le città che sono sia sede di fornitori, sia magazzino di prodotti

P

CodP	NomeP	Colore	Taglia	Magazzino
P1	Maglia	Rosso	40	Torino
P2	Jeans	Verde	48	Milano
P3	Camicia	Blu	48	Roma
P4	Camicia	Blu	44	Torino
P5	Gonna	Blu	40	Milano
P6	Bermuda	Rosso	42	Torino

F

CodF NomeF		NSoci	Sede
F1	Andrea	2	Torino
F2	Luca	1	Milano
F3	Antonio	3	Milano
F4	Gabriele	2	Torino
F5	Matteo	3	Venezia

Equivalenza con il join

- □ La clausola FROM contiene le relazioni interessate dall'intersezione
- □ La clausola WHERE contiene condizioni di join tra gli attributi presenti nella clausola SELECT delle espressioni relazionali A e B

Equivalenza con il join: esempio

□ Trovare le città che sono sia sede di fornitori, sia magazzino di prodotti

 $D_{M}^{B}G$

 □ Trovare le città che sono sia sede di fornitori, sia magazzino di prodotti

> SELECT Sede FROM F, P

Equivalenza con il join: esempio

 □ Trovare le città che sono sia sede di fornitori, sia magazzino di prodotti

> SELECT Sede FROM F, P WHERE F.Sede=P.Magazzino;

Equivalenza con l'operatore IN

- □ Una delle due espressioni relazionali diviene un'interrogazione nidificata mediante l'operatore IN
- ☐ Gli attributi nella clausola SELECT esterna, uniti da un costruttore di tupla, costituiscono la parte sinistra dell'operatore IN

Equivalenza con IN: esempio

□ Trovare le città che sono sia sede di fornitori, sia magazzino di prodotti

 $D_{M}^{B}G$

 □ Trovare le città che sono sia sede di fornitori, sia magazzino di prodotti

SELECT Magazzino
FROM P
WHERE Magazzino IN (SELECT Sede
FROM F);

Operatore EXCEPT

○ Operatore insiemistico di differenza

A EXCEPT B

- ∑ Sottrae l'espressione relazionale B all'espressione relazionale A
 - richiede la compatibilità di schema tra A e B

□ Trovare le città che sono sede di fornitori, ma non magazzino di prodotti

Р	CodP	NomeP	Colore	Taglia	Magazzino
	P1	Maglia	Rosso	40	Torino
	P2	Jeans	Verde	48	Milano
	P3	Camicia	Blu	48	Roma
	P4	Camicia	Blu	44	Torino
	P5	Gonna	Blu	40	Milano
	P6	Bermuda	Rosso	42	Torino

CodF **NSoci NomeF** Sede F1 Andrea 2 Torino F2 Luca 1 Milano F3 Antonio 3 Milano F4 Gabriele 2 Torino F5 3 Matteo Venezia

F

Equivalenza con l'operatore NOT IN

- ∠ L'operazione di differenza può essere eseguita anche mediante l'operatore NOT IN
 - l'espressione relazionale B è nidificata all'interno dell'operatore NOT IN
 - gli attributi nella clausola SELECT dell'espressione relazionale A, uniti da un costruttore di tupla, costituiscono la parte sinistra dell'operatore NOT IN

Equivalenza con l'operatore NOT IN: esempio

☐ Trovare le città che sono sede di fornitori, ma non magazzino di prodotti

 $D_{M}^{B}G$

□ Trovare le città che sono sede di fornitori, ma non magazzino di prodotti

SELECT Sede FROM F WHERE Sede NOT IN (SELECT Magazzino FROM P);

