165B Machine Learning Learning CNN

Lei Li (leili@cs)
UCSB

Acknowledgement: Slides borrowed from Bhiksha Raj's 11485 and Mu Li & Alex Smola's 157 courses on Deep Learning, with modification

Recap

AlexNet

- 11 layers, bigger convolusion
- ReLu, Dropout, preprocessing

VGG

- Bigger and deeper AlexNet (repeated VGG blocks)
- VGG-16 and VGG-19

ResNet

- 50 or 153 layers
- Residual connection

Batch Normalization

Batch Normalization

- Loss occurs at last layer
 - Last layers learn quickly
- Data is inserted at first layer
 - Input layers change everything changes
 - Last layers need to relearn many times
 - Slow convergence
- This is like covariate shift
 - The distribution of each layer shift across over training process

Batch Normalization

 For each layer, compute mean and variance

$$\mu_B = \frac{1}{|B|} \sum_{i \in B} x_i \text{ and } \sigma_B^2 = \frac{1}{|B|} \sum_{i \in B} (x_i - \mu_B)^2 + \epsilon$$

and adjust it separately

$$x_{i+1} = \gamma \frac{x_i - \mu_B}{\sigma_B} + \beta$$

• γ and β are learnable parameters

Sergey Ioffe, Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. 2015

This was the original motivation ...

What Batch Norms really do

- Doesn't really reduce covariate shift (Lipton et al., 2018)
- Regularization by noise injection

Random offset

Random

scale

$$x_{i+1} = \gamma \frac{x_i - \hat{\mu}_B}{\hat{\sigma}_B} + \beta$$

- Random shift per minibatch
- Random scale per minibatch
- No need to mix with dropout (both are capacity control)
- Ideal minibatch size of 64 to 256

Code

torch.nn.BatchNorm1d(num_features)

```
torch.nn.BatchNorm2d(num_features)
>>> m = nn.BatchNorm2d(100)
>>> input = torch.randn(20, 100, 32, 32)
>>> output = m(input)
```

Quiz

 https://edstem.org/us/courses/16390/ lessons/29420/slides/168304

Learning CNN

Recap: Learning the Model

• Finding the parameter θ to minimize the empirical risk over training data

$$D = \{(x_n, y_n)\}_{n=1}^{N}$$

$$\hat{\theta} \leftarrow \arg\min_{\theta} L(\theta) = \frac{1}{N} \sum_{n} \mathcal{E}(y_n, f(x_n; \theta))$$

- Update rule: $\theta_{t+1} = \theta_t - \eta \, \nabla L(\theta_t)$

Gradient Descent

```
learning rate eta.
1.set initial parameter \theta \leftarrow \theta_0
2.for epoch = 1 to maxEpoch or until
  converge:
3. for each data (x, y) in D:
4. compute forward y hat = f(x; \theta)
5. compute gradient g = \frac{\partial \text{err}(y_{hat}, y)}{\partial x} using
  back-propagation
6. total_g += g
```

7. update $\theta = \theta$ - eta * total_g / num_sample

Backpropagation for Convolutional layers

 Forward: compute the network output for each layer

Backword:

- How to compute the derivatives w.r.t. the activation (easy, since element-wise)
- How to compute the derivative w.r.t. input Y(l-1) and and conv kernel w(l)
- FFN layers are already covered as previous

Back-Propagation for Convolutional layer

• Each Y(l-1,m,x,y) affects several z(l,n,x',y') terms

• Each Y(l-1,m,x,y) affects several z(l,n,x',y') terms

- Each Y(l-1,m,x,y) affects several z(l,n,x',y') terms
 - Affects terms in all l th layer Z maps

Summing over all Z maps

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} \frac{\partial z(l,n,x',y')}{\partial Y(l-1,m,x,y)}$$

Summing over all Z maps

 $\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} \frac{\partial z(l,n,x',y')}{\partial Y(l-1,m,x,y)}$

• Compute how $each\ x, y$ in Y influences various locations of z.

$$z(l, n, 0, 0) + = Y(l - 1, m, 2, 2)w_l(m, n, 2, 2)$$

$$z(l, n, x', y') + = Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$

$$z(l, n, 1, 0) + = Y(l - 1, m, 2, 2)w_l(m, n, 1, 2)$$

$$z(l, n, x', y') + = Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$

$$z(l, n, 2, 0) + = Y(l - 1, m, 2, 2)w_l(m, n, 0, 2)$$

$$z(l, n, x', y') + = Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$

$$z(l, n, 0, 1) + = Y(l - 1, m, 2, 2)w_l(m, n, 2, 1)$$

$$z(l, n, x', y') + = Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$

$$z(l, n, 1, 1) + = Y(l - 1, m, 2, 2)w_l(m, n, 1, 1)$$

$$z(l, n, x', y') + = Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$

$$z(l, n, 2, 1) + = Y(l - 1, m, 2, 2)w_l(m, n, 0, 1)$$

$$z(l, n, x', y') + = Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$

$$z(l, n, 0, 2) + = Y(l - 1, m, 2, 2)w_l(m, n, 2, 0)$$

$$z(l, n, x', y') + = Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$

$$z(l, n, 1, 2) + = Y(l - 1, m, 2, 2)w_l(m, n, 2, 1)$$

$$z(l, n, x', y') + = Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$

$$z(l, n, 2, 2) + = Y(l - 1, m, 2, 2)w_l(m, n, 0, 0)$$

$$z(l, n, x', y') + = Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$

$$z(l, n, x', y') + = Y(l-1, m, x, y)w_l(m, n, x - x', y - y')$$

$$z(l, n, x', y') + = Y(l - 1, m, x, y) w_l(m, n, x - x', y - y')$$

$$\frac{\partial z(l, n, x', y')}{\partial Y(l - 1, m, x, y)} = w_l(m, n, x - x', y - y')$$

Summing over all Z maps

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} \frac{\partial z(l,n,x',y')}{\partial Y(l-1,m,x,y)}$$

Summing over all Z maps

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

Computing derivative for Y(l-1, m, *, *)

• The derivatives for every element of every map in Y(l-1) by direct implementation of the formula:

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

- But this is actually a convolution!
 - Let's see how

$$z(l, n, 0, 0) + = Y(l - 1, m, 2, 2)w_l(m, n, 2, 2)$$

$$\frac{\partial \ell}{\partial Y(l-1,m,2,2)} + = \frac{\partial \ell}{\partial z(l,n,0,0)} w_l(m,n,2,2)$$

$$z(l, n, 1, 0) + = Y(l - 1, m, 2, 2)w_l(m, n, 1, 2)$$

$$\frac{\partial \ell}{\partial Y(l-1,m,2,2)} + = \frac{\partial \ell}{\partial z(l,n,1,0)} w_l(m,n,1,2)$$

$z(l, n, \mathbf{x}', \mathbf{y}')$		
0,0	1,0	2,0
		Î

$$z(l, n, 2, 0) + = Y(l - 1, m, 2, 2)w_l(m, n, 0, 2)$$

$$\frac{\partial \ell}{\partial Y(l-1,m,2,2)} + = \frac{\partial \ell}{\partial z(l,n,2,0)} w_l(m,n,0,2)$$

$z(l, n, \mathbf{x}', \mathbf{y}')$		
0,0	1,0	2,0
0,1		
1		

$$z(l, n, 0, 1) + = Y(l - 1, m, 2, 2)w_l(m, n, 2, 1)$$

$$\frac{\partial \ell}{\partial Y(l-1,m,2,2)} + = \frac{\partial \ell}{\partial z(l,n,0,1)} w_l(m,n,2,1)$$

$$z(l, n, 1, 1) + = Y(l - 1, m, 2, 2) w_l(m, n, 1, 1)$$

$$\frac{\partial \ell}{\partial Y(l - 1, m, 2, 2)} + = \frac{\partial \ell}{\partial z(l, n, 1, 1)} w_l(m, n, 1, 1)$$

$$z(l, n, 2, 1) + = Y(l - 1, m, 2, 2) w_l(m, n, 0, 1)$$

$$\frac{\partial \ell}{\partial Y(l - 1, m, 2, 2)} + = \frac{\partial \ell}{\partial z(l, n, 2, 1)} w_l(m, n, 0, 1)$$

$$z(l, n, 0, 2) + = Y(l - 1, m, 2, 2)w_l(m, n, 2, 0)$$

$$\frac{\partial \ell}{\partial Y(l-1,m,2,2)} + = \frac{\partial \ell}{\partial z(l,n,0,2)} w_l(m,n,2,0)$$

$$z(l, n, 1, 2) += Y(l-1, m, 2, 2)w_l(m, n, 2, 1)$$

$$\frac{\partial \ell}{\partial Y(l-1,m,2,2)} + = \frac{\partial \ell}{\partial z(l,n,1,2)} w_l(m,n,1,0)$$

$$z(l, n, 2, 2) + = Y(l - 1, m, 2, 2)w_l(m, n, 0, 0)$$

$$\frac{\partial \ell}{\partial Y(l-1,m,2,2)} + = \frac{\partial \ell}{\partial z(l,n,2,2)} w_l(m,n,0,0)$$

$$z(l, n, x', y')$$
 $0,0$ $1,0$ $2,0$
 $0,1$ $1,1$ $2,1$
 $0,2$ $1,2$ $2,2$

$$z(l, n, x', y') + = Y(l - 1, m, 2, 2) w_l(m, n, 2 - x', 2 - y')$$

$$\frac{\partial \ell}{\partial Y(l - 1, m, 2, 2)} + = \sum_{x', y'} \frac{\partial \ell}{\partial z(l, n, x', y')} w_l(m, n, 2 - x', 2 - y')$$

• The derivative at Y(l-1,m,2,2) is the sum of component-wise product of the filter elements and the elements of the derivative at z(l,m,...)

43

$$Z(l, n, X', y')$$

$$x - 2y + 2 - 1y + 2 - 2$$

$$x - 2y + 1y + 3l - 1$$

$$x - 2y + 1y + 3l - 1$$

$$x - 2y + 1y + 3l - 1$$

$$x - 2y + 1y + 3l - 1$$

$$z(l, n, x', y') + = Y(l - 1, m, x, y) w_l(m, n, x - x', y - y')$$

$$\frac{\partial \mathcal{E}}{\partial Y(l - 1, m, x, y)} + = \sum_{x', y'} \frac{\partial \mathcal{E}}{\partial z(l, n, x', y')} w_l(m, n, x - x', y - y')$$

Contribution of the entire nth affine map z(l, n, *, *)

 $\partial z(l, n, x', y')$

 $\partial z(l, n, x', y')$

 $\partial z(l, n, x', y')$

 $\partial z(l, n, x', y')$

 $\partial z(l, n, x', y')$

 $\partial z(l, n, x', y')$

 $\partial z(l, n, x', y')$

 $\partial \mathscr{C}$

 $\partial Y(l-1,m,x,y)$

 $\partial \mathscr{C}$

 $\partial Y(l-1,m,x,y)$

BP: Convolutional layer

Summing over all Z maps

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

The actual convolutions

• The D_l affine maps are produced by convolving with D_l filters

The actual convolutions

- The D_l affine maps are produced by convolving with D_l filters
- The m^{th} Y map always convolves the m^{th} plane of the filters
- ullet The derivative for the $m^{ ext{th}}$ Y map will invoke the $m^{ ext{th}}$ plane of all the filters

$$n = 1$$

$$n=2$$

$$n = D_l$$

$$n = 1$$

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

$$n = 1$$

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

$$n = 1$$

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

$$n = 1$$

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

$$n = 1$$

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

$$n = 1$$

$$n = D_l$$

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

$$n = 1$$

$$\frac{\partial \mathcal{E}}{\partial Y(l-1,m,x,y)}$$

$$n = D_l$$

$$n = 1$$

$$\frac{\partial \mathcal{E}}{\partial Y(l-1,m,x,y)}$$

$$n = D_l$$

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

$$n = 1$$

$$n = 1$$

$$n = D_l$$

$$n = 1$$

$$n = D_l$$

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

$$n = 1$$

 $\partial Y(l-1,m,x,y)$

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

$$n = 1$$

8

$$n = D_l$$

$$\partial Y(l-1,m,x,y)$$

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

$$n = 1$$

$$\frac{\partial \mathcal{E}}{\partial Y(l-1,m,x,y)}$$

$$n = D_l$$

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

$$n = 1$$

 $\partial Y(l-1,m,x,y)$

$$n = D_l$$

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

$$n = 1$$

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)}$$

$$n = D_l$$

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

$$n = 1$$

$$\frac{\partial \mathcal{E}}{\partial Y(l-1,m,x,y)}$$

$$n = D_l$$

$$n = 1$$

$$\partial Y(l-1,m,x,y)$$

$$n = D_l$$

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

$$n = 1$$

$$\frac{\partial \mathcal{E}}{\partial Y(l-1,m,x,y)}$$

$$n = D_l$$

$$\frac{\partial \mathcal{E}}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \mathcal{E}}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

$$n = 1$$

$$n = 1$$

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

$$n = 1$$

$$\frac{\partial \ell}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \ell}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

$$n = 1$$

 $\partial Y(l-1,m,x,y)$

$$\frac{\partial \mathcal{E}}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{\partial \mathcal{E}}{\partial z(l,n,x',y')} w_l(m,n,x-x',y-y')$$

$$n = 1$$

$$n = 1$$

Computing the derivative for Y(l-1,m)

This is just a convolution of the zero-padded

$$\frac{\partial \mathcal{E}}{\partial z(l,n,x',y')}$$
 maps by the transposed and flipped filter

- After zero padding it first with K-1 zeros on every side

The size of the Y-derivative map

- We continue to compute elements for the derivative Y map as long as the (flipped) filter has at least one element in the (unpadded) derivative Zmap
 - I.e. so long as the Y derivative is non-zero
- The size of the Y derivative map will be $(H + K 1) \times (W + K 1)$
 - $-\ H$ and W are heidght and width of the Zmap
- ullet This will be the size of the actual Y map that was originally convolved

The size of the Y-derivative map

- If the Y map was zero-padded in the forward pass, the derivative map will be the size of the $\it zero-padded$ map
 - The zero padding regions must be deleted before further backprop

Stride greater than 1

- Observation: Convolving with a stride S greater than 1 is the same as convolving with stride 1 and "dropping" S-1 out of every S rows, and S-1 of every S columns
 - Downsampling by S
 - E.g. for stride 2, it is the same as convolving with stride 1 and dropping every 2nd entry

Derivatives with Stride greater than 1

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

• Derivatives: Backprop gives us the derivatives of the divergence with respect to the elements of the downsampled (strided) Z map

Derivatives with Stride greater than 1

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

 $\frac{\partial \ell}{(0,0)}$			$\frac{\partial \ell}{z(1,0)}$	
 $\frac{\partial \ell}{(0,1)}$			$\frac{\partial \ell}{z(1,1)}$	
S=2				
$\frac{\partial t}{z(0,$	0)	_ z	$\frac{\partial \ell}{\zeta(1,0)}$	<u> </u>
$\frac{\partial t}{z(0,$	1)	z	$\frac{\partial \ell}{(1,1)}$	7

- Derivatives: Backprop gives us the derivatives of the divergence with respect to the elements of the downsampled (strided) Z map
- We can place these derivative values back into their original locations of the full-sized \boldsymbol{Z} map

Derivatives with Stride greater than 1

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

- **Derivatives:** Backprop gives us the derivatives of the divergence with respect to the elements of the *downsampled* (strided) Z map
- We can place these values back into their original locations of the full-sized Z map
- The remaining entries of the Z map do not affect the divergence
 - Since they get dropped out
- The derivative of the divergence w.r.t. these values is 0

Computing derivatives with Stride > 1

						$\partial \mathscr{C}$	0	$\partial \ell$	
1	1	1	0	0	backprop			z(1,0)	
0	1	1	1	0		$\frac{\partial \ell}{z(0,1)}$	0	$\frac{\partial \ell}{z(1,1)}$	
0	0	1	1	1				S	= 2
0	0	1	1	0		$\frac{\partial t}{z(0, t)}$	(0)	$\frac{\partial \ell}{z(1,0)}$	<u> </u>
0	1	1	0	0		$\frac{\partial t}{z(0,$		$\frac{\partial \ell}{z(1,1)}$	7

Upsampling derivative map:

- Upsample the downsampled derivatives
- Insert zeros into the "empty" slots
- This gives us the derivatives w.r.t. all the entries of a full-sized (stride 1) Z map
- We can compute the derivatives for Y, using the full map

Computing $\frac{\partial \ell}{\partial w_l(m,n,x,y)}$

The derivatives for the weights

$$z(l, n, x, y) = \sum_{m} \sum_{x', y'} w_l(m, n, x', y') y(l - 1, m, x + x', y + y') + b_l(n)$$

• Each weight $w_l(m, n, x', y')$ affects several

– Consider the contribution of one filter components: $w_l(m,n,i,j)$ (e.g. $w_l(m,n,1,2)$)

- Each affine output is computed from multiple input maps simultaneously
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)

- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$

- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$

- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$

- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$

- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$

- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$

- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$

- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$

- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$

- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$

- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$

- Each filter component $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - The derivative of each z(l, n, x, y) w.r.t. $w_l(m, n, i, j)$ is given by

$$\frac{dz(l,n,x,y)}{dw_l(m,n,i,j)} = y(l-1,m,x+i,y+j)$$

- The final divergence is influenced by every z(l, n, x, y)
- The derivative of the divergence w.r.t $w_l(m, n, i, j)$ must sum over all z(l, n, x, y) terms it influences

$$\frac{\partial \ell}{\partial w_l(m,n,i,j)} = \sum_{x,y} \frac{\partial \ell}{\partial z(l,n,x,y)} \frac{\partial z(l,n,x,y)}{\partial w_l(m,n,i,j)}$$

- Each filter component $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - The derivative of each z(l, n, x, y) w.r.t. $w_l(m, n, i, j)$ is given by

$$\frac{dz(l,n,x,y)}{dw_l(m,n,i,j)} = y(l-1,m,x+i,y+j)$$

- The final divergence is influenced by every z(l, n, x, y)
- The derivative Already computed event $w_l(m,n,i,j)$ must sum over all z(l,n,x,y) terms it influences

$$\frac{\partial \mathcal{E}}{\partial w_l(m,n,i,j)} = \sum_{x,y} \frac{\partial \mathcal{E}}{\partial z(l,n,x,y)} \frac{\partial z(l,n,x,y)}{\partial w_l(m,n,i,j)}$$

- Each filter component $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - The derivative of each z(l, n, x, y) w.r.t. $w_l(m, n, i, j)$ is given by

$$\frac{dz(l, n, x, y)}{dw_l(m, n, i, j)} = y(l - 1, m, x + i, y + j)$$

- The final divergence is influence by every $\frac{7(1, n, x, y)}{2}$
- The derivative Already computed event $w_l(m,n,i,j)$ must sum over all z(l,n,x,y) terms it influences

$$\frac{\partial \mathcal{E}}{\partial w_l(m,n,i,j)} = \sum_{x,y} \frac{\partial \mathcal{E}}{\partial z(l,n,x,y)} \frac{\partial z(l,n,x,y)}{\partial w_l(m,n,i,j)}$$

- Each filter component $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - The derivative of each z(l, n, x, y) w.r.t. $w_l(m, n, i, j)$ is given by

$$\frac{dz(l,n,x,y)}{dw_l(m,n,i,j)} = Y(l-1,m,x+i,y+j)$$

- The final divergence is influenced by every z(l, n, x, y)
- The derivative of the divergence w.r.t $w_l(m, n, i, j)$ must sum over all z(l, n, x, y) terms it influences

$$\frac{\partial \ell}{\partial w_l(m,n,i,j)} = \sum_{x,y} \frac{\partial \ell}{\partial z(l,n,x,y)} Y(l-1,m,x+i,y+j)$$

But this too is a convolution

$$\frac{\partial \ell}{\partial w_l(m,n,i,j)} = \sum_{x,y} \frac{\partial \ell}{\partial z(l,n,x,y)} Y(l-1,m,x+i,y+j)$$

 The derivatives for all components of all filters can be computed directly from the above formula

In fact it is just a convolution

$$\frac{\partial \ell}{\partial w_l(m,n)} = \frac{\partial \ell}{\partial z(l,n)} \otimes Y(l-1,m)$$

How?

Recap: Convolution

Forward computation: Each filter produces an affine map

Recap: Convolution

• Y(l-1,m) influences Z(l,n) through $w_l(m,n)$

- The derivatives of the divergence w.r.t. every element of $\boldsymbol{Z}(\boldsymbol{l},\boldsymbol{n})$ is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{132}$

- The derivatives of the divergence w.r.t. every element of $\boldsymbol{Z}(\boldsymbol{l},\boldsymbol{n})$ is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{133}$

- The derivatives of the divergence w.r.t. every element of $\boldsymbol{Z}(\boldsymbol{l},\boldsymbol{n})$ is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{134}$

- The derivatives of the divergence w.r.t. every element of $\boldsymbol{Z}(\boldsymbol{l},\boldsymbol{n})$ is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{135}$

- The derivatives of the divergence w.r.t. every element of $\boldsymbol{Z}(\boldsymbol{l},\boldsymbol{n})$ is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{136}$

- The derivatives of the divergence w.r.t. every element of $\boldsymbol{Z}(\boldsymbol{l},\boldsymbol{n})$ is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{137}$

- The derivatives of the divergence w.r.t. every element of $\boldsymbol{Z}(\boldsymbol{l},\boldsymbol{n})$ is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{138}$

- The derivatives of the divergence w.r.t. every element of $\boldsymbol{Z}(\boldsymbol{l},\boldsymbol{n})$ is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{139}$

- The derivatives of the divergence w.r.t. every element of $\boldsymbol{Z}(\boldsymbol{l},\boldsymbol{n})$ is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{140}$

- The derivatives of the divergence w.r.t. every element of $\boldsymbol{Z}(\boldsymbol{l},\boldsymbol{n})$ is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{141}$

• The derivative of the n^{th} affine map Z(l,n) convolves with every output map Y(l-1,m) of the $(l-1)^{\text{th}}$ layer, to get the derivative for $w_l(m,n)$, the m^{th} "plane" of the n^{th} filter

 $\frac{\partial t}{\partial z(l,n,x,y)}$ must be upsampled if the stride was greater than 1 in the forward pass

If Y(l-1,m) was zero padded in the forward pass, it must be zero padded for backprop

Next Up

Advanced optimization methods