INTERRO DE COURS 11

Exercice 1 – Soit $(X_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires indépendantes qui suivent toutes la loi binomiale de paramètres n = 400 et $p = \frac{1}{4}$. On pose pour tout $n \in \mathbb{N}^*$,

$$M_n = \frac{1}{n} \sum_{k=1}^n X_k.$$

Montrer que pour tout $n \in \mathbb{N}^*$ et tout $\varepsilon > 0$,

$$P(|M_n-100|\geqslant \varepsilon)\leqslant \frac{75}{n\varepsilon^2}.$$

Solution : Rappelons l'inégalité de Bienaymé-Tchebychev : pour toute variable aléatoire X admettant une variance et tout $\varepsilon > 0$,

$$P(|X - E(X)| \ge \varepsilon) \le \frac{V(X)}{\varepsilon^2}.$$

Appliquons cette inégalité à $X = M_n$. On a par linéarité de l'espérance que

$$E(M_n) = E\left(\frac{1}{n}\sum_{k=1}^n X_k\right) = \frac{1}{n}\sum_{k=1}^n E(X_k).$$

Or pour tout $k \in [1, n]$, $E(X_k) = n \times p = 400 \times \frac{1}{4} = 100$. Donc

$$E(M_n) = \frac{1}{n} \sum_{k=1}^{n} 100 = \frac{1}{n} \times n \times 100 = 100.$$

Par ailleurs, comme les variables aléatoires X_k sont indépendantes, on a

$$V(M_n) = V\left(\frac{1}{n}\sum_{k=1}^n X_k\right) = \frac{1}{n^2}\sum_{k=1}^n V(X_k).$$

Or pour tout $k \in [1, n]$, $V(X_k) = n \times p(1 - p) = 100 \times \frac{3}{4} = 75$. Donc

$$V(M_n) = \frac{1}{n^2} \sum_{k=1}^{n} 75 = \frac{1}{n^2} \times n \times 75 = \frac{75}{n}.$$

Ainsi, en réinjectant ces valeurs dans l'inégalité de Bienaymé-Tchebychev, on obtient bien

$$P(|M_n-100|\geqslant \varepsilon)\leqslant \frac{75}{n\varepsilon^2}.$$