Practica 1: Modelos Avanzados de Computación

Eloy Bedia García 13 de Marzo de 2018

1. EJERCICIO 1

Describir de manera informal MTs con varias cintas que enumeren (produzcan como salida una lista que contenga todas sus palabras) los siguientes lenguajes (se supone que los números se escriben en binario):

(a) El conjunto de los cuadrados perfectos.

$$n^2 = \sum_{k=1}^{n} (2k-1) = (n-1)^2 + (2n-1), \forall n \in \mathbb{N}$$

Cinta 1: $n^2, n \in \mathbb{N}$

Cinta 2: $n \in \mathbb{N}$

Cinta 3: Calculos Auxiliares

Inicilización:

Cinta $1 \leftarrow 0$

Cinta 2 \leftarrow 0

Cinta $3 \leftarrow \emptyset$

Mientras SIEMPRE:

Añadir X al final de la Cinta 1 como separador

Incrementar n en la Cinta 2

Copiar Cinta 2 en Cinta 3

Añadir 0 al final de n la Cinta 3 (2n)

Decrementar n en la Cinta 3(2n-1)

Sumar último n^2 de la Cinta 1 a la Cinta 3

Añadir Cinta 3 a la Cinta 1

Borrar Cinta 3

(b) El conjunto de todos los naturales primos.

Cinta 1: Números Primos

Cinta 2: $n \in \mathbb{N}$

Cinta 3: Calculos Auxiliares

Cinta 4: Contador

Cinta 3: Contador Auxiliar

Inicialización

Cinta 1 \leftarrow 2

Cinta 2 \leftarrow 2

Cinta 3 $\leftarrow \emptyset$

Cinta $4 \leftarrow 1$

Cinta $3 \leftarrow \emptyset$

Mientras SIEMPRE:

Añadir X al final de la Cinta 1 como separador

Incrementar n en la Cinta 2

Copiar Contador 4 en Cinta 5

Mientras Cinta 5 < 0:

Copiar Cinta 2 en Cinta 3

Dividir Cinta 2entre ${\bf N}^{\rm o}$ Pr
mo de la Cinta 1

Si el resto de la division es = 0:

Descartar numero (Salir del bucle))

Si Cinta 5 = 0:

Añadir Cinta 2 a Cinta 1

Incrementar Cinta 4

En otro caso:

Elegir siguiente número primo

Decrementar Cinta 5

(c) El conjunto de todos los números naturales n tales que la MT cuya descripción es la palabra w_n acepta la palabra w_n como entrada (w_n es la palabra sobre 0, 1 cuyo número asociado es n).

Cinta 1: $n \in \mathbb{N}$ aceptados

Cinta 2: $n\in\mathbb{N}$

Cinta 3: Maquina de Turing codificada

Cinta 4: Palabra

Inicilización:

Cinta 1 $\leftarrow \emptyset$

Cinta 2 \leftarrow 1

Cinta $3 \leftarrow \emptyset$

Cinta $4 \leftarrow \emptyset$

Mientras SIEMPRE:

Copiar Cinta 2 en Cinta 3

Copiar Cinta 2en Cinta $4\,$

Ejecutar Maquina de Turing de la Cinta 3 sobre la Cinta 4

Si acepta la palabra

Añadir Cinta 2 a Cinta 1

Añadir Xcomo separador en la Cinta 1

Incrementar Cinta $2\,$

2. **EJERCICIO 2**

Sean $L_1, ..., L_k (k \ge 2)$ un conjunto de lenguajes sobre el alfabeto A tales que:

- (a) Para cada $i \neq j$, tenenos que $L_i \cap L_j = \emptyset$.
- (b) $\bigcup_{i=1}^{k} L_i = A^*$. (c) $\forall i \in 1, ..., k$, el lenguaje L_i es r.e.

Demostrar que $\forall i \in 1, ..., k$, el lenguaje L_i es recursivo.

La unión de lenguajes es cerrada para los lenguajes r.e, es decir, la unión de dos lenguajes r.e, da otro lenguaje r.e.

Según las condiciones (a) y (b), $\overline{L_i} = \cup_{j=0, i \neq j}^k L_j$

Dicho esto, según la condición (c) y lo explicado anteriormente con respecto a la unión de lenguajes r.e, podemos confirmar que $\overline{L_i}$ es r.e.

Como $\overline{L_i}$ y L_i son recursivamente enumerables, entonces L_i también es recursivo

3. EJERCICIO 3

Sea L r.e., pero no recursivo. Considérese el lenguaje $L' = \{0w|w \in L\} \cup \{1w|w \notin L\}$

¿Puede asegurarse que L' o su complementario son recursivos, r.e. o no r.e.?

$$L_1 = \{0\}$$

$$L_2 = \{1\}$$

$$L_3 = \{0w|w \in L\} = L_1L$$

$$L_4 = \{1w|w \notin L\} = L_2\overline{L}$$

 L_1 y L_2 son recursivamente enumerables y recursivos.

$$L' = L_3 \cup L_4$$

Como la unión de lenguajes es cerrada para los lenguajes r.e y recursivos, entonces:

Si L_3 y L_4 son r.e, entonces L' será r.e. Si L_3 y L_4 son r, entonces L' será r.

Como la concatenación de lenguajes es cerrada para los lenguajes r.e y recursivos

- a) $L_3=L_1L$, sabemos que L_1 es r
 y r.e; y L es r.e pero no r, por tanto L_3 es r.e.
- b) $L_4=L_2\overline{L}$, sabemos que L_2 es r y r.e; pero como el complemento de un lenguaje r.e es tambien r.e si y solo si el lenguaje tambien es recursivo, \overline{L} no es ni r.e ni r, por tanto no podemos asegurar nada sobre L_4

$$\overline{L'} = \overline{L_3 \cup L_4} = \overline{L_3} \cap \overline{L_4} = \overline{L_1L} \cap \overline{L_2}L$$

En el caso del complementario nos pasaría lo contrario, no podemos asegurar nada de $\overline{L_3}$ sin embargo podemos asegurar que, $\overline{L_4}$ es r.e.

Respondiendo a la pregunta, no puedo asegurar nada con respecto a L' o $\overline{L'}$