

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

RADC-TR-83-217, Vol III (of three), Pt 3
Final Technical Report
September 1983

GENERAL ELECTROMAGNETIC MODEL FOR THE ANALYSIS OF COMPLEX SYSTEMS (GEMACS) Computer Code Documentation (Version 3)

The BDM Corporation

Dr. Diana L. Kediec and Dr. E. L. Coffee

THE PROPERTY OF THE PARTY OF TH

Approved for public release; distribution unlimited

IC FILE COPY

ROME AIR DEVELOPMENT CENTER Air Force Systems Command Griffiss Air Force Base, NY 13441

84 02 06 002

This report has been reviewed by the RADC Public Affairs Office (PA) aris releasable to the National Technical Information Service (NTIS). At NTI it will be releasable to the general public, including foreign nations.

RADC-TR-83-217, Volume III, Part 3 (of three) has been reviewed and is approved for publication.

APPROVED:

<u>ĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ</u>

KENNETH R. SIARKIEWICZ Project Engineer

KR Lasbiewice

APPROVED:

W.S. TUTHILL, Colonel, USAF

Chief, Reliability & Compatibility Division

FOR THE COMMANDER:

JOHN P. HUSS

Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization please notify RADC (RBCT) Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notic on a specific document requires that it be returned.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
1. REPORT NUMBER 2. GOYT ACCESSION NO	3. SCIPIENT'S CATALOG NUMBER		
RADC-TR-83-217, Vol III, Part 3 413750	7		
4. TITLE (and Subtitio)	5. TYPE OF REPORT & PERIOD COVERED		
GENERAL ELECTROMAGNETIC MODEL FOR THE ANALYSIS	Final Technical Report		
OF COMPLEX SYSTEMS (GEMACS)	February 81 - July 83 6. PERFORMING ORG. REPORT NUMBER		
COMPUTER CODE DOCUMENTATION (Version 3)	BDM/A-83-020-TR		
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(s)		
Dr. Diana L. Kadlec	F30602-81-C-0084		
Dr. Edgar L. Coffey]		
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK		
The BDM Corporation	AREA & WORK UNIT NUMBERS		
1801 Randolph Road, S.E.	23380333		
Albuquerque NM 87106			
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE		
Rome Air Development Center (RBCT)	September 1983		
Griffiss AFB NY 13441	442		
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)		
	UNCLASSIFIED		
Same	15a. DECLASSIFICATION/DOWNGRADING		
16. DISTRIBUTION STATEMENT (of this Report)	N/A		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	as Report)		
Same .			
18. SUPPLEMENTARY NOTES			
RADC Project Engineer: Kenneth R. Siarkiewicz (RBCT)		
19. KEY WORDS (Continue on reverse side if necessary and identify by block manber)			
	GTD Hybridization		
• •	adiation and Scattering		
Geometrical Theory of Diffraction (GTD) Antenna Analysis			
Matrix Equation Solution			
20. ABSTRACT (Continue on reverse side it necessary and identity by block number)			
GEMACS solves electromagnetic radiation and scat	tering problems. The		
Method of Moments (MOM) and Geometrical Theory o	f Diffraction (GTD) are		
used. MOM is formalized with the Electric Field	Integral Equation (EFIE)		
for wires and the Magnetic Field Integral Equati	on (MFIE) for patches. The		
code employs both full matrix decomposition and			
	Banded Matrix Iteration		
(BMI) solution techniques. The MOM, GTD and hyb	rid MOM/GTD techniques in		
(BMI) solution techniques. The MOM, GID and hyb	rid MOM/GTD techniques in		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

large object problems and combination sized object problems.

Volume I of this report is the User Manual. The code execution requirements, input language and output are discussed.

Volume II is the Engineering Manual. The theory and engineering approximations implemented in the code are discussed. Modeling criterion are given.

Volume III is the Computer Code Documentation Manual. This manual contains extensive software information of the code.

I	Acces	sion Fo	r	
	DTIC :	GRA&I TAB ounced fication	X	
	Ву			
		ibution labilit	y Codes	
		Avail Spec	and/or	
	All		,	

- 1. NAME: RADCV (GTD)
- 2. PURPOSE: To compute the longitudinal and transverse radii of curvature of the elliptic cylinder at a given point.
- 3. METHOD: The longitudinal radius of curvature of the elliptic cylinder (in the plane of incidence) at the point defined by elliptical angle VR (as shown in figure 1) is given by:

$$\rho_{g} = \frac{(A^{2} \sin^{2} VR + B^{2} \cos^{2} VR)^{3/2}}{AB \sin^{2} \alpha_{g}}$$

The transverse radius of curvature at the point defined by elliptical angle VR is given by:

$$\rho_{t} = \frac{(A^{2} \sin^{2} VR + B^{2} \cos^{2} VR)^{3/2}}{AB \sin^{2} (\alpha_{s} - \pi/2)},$$

where

$$\alpha_s = SAS$$
 $\rho_g = RG$
 $\rho_t = RT$

Figure 1. Illustration of Elliptical Cylinder Geometry Used in Computing the Radii of Curvature at Point X

RADCV (GTD)

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
A	Cylinder radius along the x axis

B Cylinder radius along the y axis

RG Radius of curvature in the plane of

incidence

RGT Radius of curvature of the elliptic

cylinder in the principal x-y plane

RT Radius of curvature transverse to the plane

of incidence

SAS The sine of AS, where AS is π minus THSR (THSR

is the theta angle of the observation direction in the reference coordinate system (RCS) relative to the cylinder axis

in radians)

SASP The absolute value of the sine of

AS - $\pi/2$, where AS is π minus THSR (THSR is the theta angle of the observation direction in the RCS relative to the

cylinder axis in radians)

VR Elliptic angle defining the desired point

on cylinder

5. I/O VARIABLES:

A. INPUT LOCATION

A /GEOMEL/

B /GEOMEL/

SAS /GTD/

SASP /GTD/

VR F.P.

B. OUTPUT LOCATION

RG F.P.

RT F.P.

RADCV (GTD)

6. CALLING ROUTINES:

RPLSCL

SCLRPL

SCTCYL

7. CALLED ROUTINE:

NONE

- 1. NAME: RCLDPL (GTD)
- 2. PURPOSE: To compute the unobstructed electric field from a unit source reflected by a cylinder and diffracted by edge ME of plate MP into the given far-field observation direction or to a given near-field point.
- 3. METHOD: RCLDPL is the driver routine which directs all the ray tracing, physics and field calculations for determining the electric field from a unit source reflected from a cylinder and then diffracted by a plate in a given far-field direction or to a given near-field observation point. Pertinent geometry is shown in figure 1.

Figure 1. Ray Reflected by Cylinder and then Diffracted by Plate Edge

The code first checks the wedge angle number of edge ME of plate MP. If it is greater than 2, indicating it is part of a wedge, and the edge has already been considered, the fields are set to zero. If

debug information is requested, it is printed on file LUPRNT. control is returned to the calling routine. If the wedge angle number is less than 2, the code then checks, for far field only, if diffraction is possible. If it is not possible, a flag is set which indicates that reflection point starting data are not available for the next time RCLDPL is called. The field is set to zero. information (if requested) is printed on file LUPRNT, and control is then returned to the calling routine. This check is not made for near field at this point in the code. Now for both near field and far field subroutine RFDFPT is called. RFDFPT computes the ray path and checks for near-field calculations if diffraction was possible. After returning from RFDFPT, the code makes three checks to determine if reflection and diffraction points are legal. The first check is to make sure that the reflection satisfies Snell's Law. Then the reflection point is checked to make sure it is on the curved surface of the cylinder. The diffraction point is checked to make sure it is on edge ME of the plate. If any of these checks fails, the fields are set to zero, debug information is printed if it was requested, and control is returned to the calling routine. If reflection and diffraction have occurred properly, then the complete ray path is checked for obstructions. If it is obstructed at any location, the fields are set to zero. Debug information is printed if it was requested, and then control returns to the calling routine. If a ray path is unobstructed, the field computations can begin.

The polarization unit vectors for the rays incident and diffracted on the plate and incident and reflected at the cylinder are The source field pattern factor is found by calling subroutine SOURCE. The first field computed is that which is incident on the cylinder. It is computed in components perpendicular and parallel to the plane of incidence. Then the cylinder reflected field is computed. Following this, the field incident on the plate can be computed in parallel and perpendicular components. The caustic distances and ray spreading factors are computed for the reflected-diffracted ray. The phase factor is computed. tion coefficients are found by calling subroutine DW. Now the total diffracted field can be computed and converted to theta and phi components in the reference coordinate system (RCS). Subroutine XYZFLD is called to compute the x, y, and z components of the field and to accumulate them with the fields from other interactions.

If debug information was requested, the total field magnitude is computed. The total field magnitude, and theta and phi components are printed on file LUPRNT. Control is then returned to the calling routine.

RCLDPL (GTD)

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
80	Diffracted field polarization unit vector parallel to edge
ВОР	Incident field polarization unit vector parallel to edge
DD	Normalization constant for cylinder tangent vector
DH	Edge diffraction coefficient for hard field components
DHIT	Distance from source to hit point (from PLAINT)
DOTP	Test parameter used to determine if reflection is legal
DPH	Slope diffraction coefficient for hard boundary condition
DPS	Slope diffraction coefficient for soft boundary condition
DS	Diffraction coefficient for soft field components
DV	Dot product of edge unit vector and diffracted ray propagation direction
EDPH	Phi component of diffracted field in RCS
EDPL	Diffracted field component parallel to edge
EDPR	Diffracted field component perpendicular to edge
EDTH	Theta component of diffracted field in RCS
EF	Theta component of source field pattern factor
EG	Phi component of source field pattern factor

EIPL	Component	of	field	incident	on	cylinder	(or
	*	-		•			2

plate) parallel to plane of incidence (or

edge)

EIPR Component of field incident on cylinder (or

plate) perpendicular to plane of incidence

(or edge)

EIX, EIY, EIZ Source pattern factors for x, y, z components

of incident E-field

ERX, ERY, ERZ X, Y, Z components of cylinder reflected

field in RCS

EXPH Complex phase and spreading factor

FN Wedge angle number

FNP 2π minus the wedge angle

GAM Dot product of vector to the diffraction

point with the observation unit vector

LHIT Set true if ray hits plate (from PLAINT)

LRDC Set true if reflection data are available

from previous pattern angle (or for next

pattern angle (when leaving routine))

ME Edge on plate MP where diffraction occurs

MP Plate where diffraction occurs

PH Diffracted field polarization unit vector

normal to edge

PHICR Phi component of field incident on cylinder

in RCS

PHO Incident field polarization unit vector

normal to edge

PS Diffracted ray phi angle in diffraction

point coordinate system in degrees

PSOR Incident ray phi angle in diffraction point

coordinate system

RCLDPL (GTD)

PSR	Diffracted ray phi angle in diffraction point coordinate system
RHI1	Caustic distance of cylinder reflected field incident on edge in the direction perpendicular to the edge
RHI2	Caustic distance of cylinder reflected field incident on edge in the direction parallel to the edge
RHIE	Edge caustic distance
RH01	Ray spreading radius at cylinder in plane normal to plane of incidence
RHO2	Ray spreading radius at cylinder in plane of incidence
\$80	Sine of the diffraction angle
SMAG	Length of ray from reflection point on cylinder to source and distance between reflection and diffraction points
SNF	Distance between diffraction point on plate and near-field observation point
SP	Distance between reflection and diffraction point
THICR	Theta component of incident ray direction on cylinder in RCS
ТРР	Distance parameter for edge-diffracted field
UB	Unit binormal of elliptic cylinder at phi angle at which reflection occurs (2-D)
UIPPX,UIPPY,UIPPZ	X,Y,Z components of incident polarization unit vector parallel to plane of incidence
UIPRX,UIPRY,UIPRZ	X,Y,Z components of incident/reflected polarization unit vector perpendicular to plane of incidence
UN	Unit normal of elliptic cylinder at phi angle at which reflection occurs (2-D)

(GTD) RCLDPL

URPPX,URPPY,URPPZ	X,Y,Z components of reflected polarization unit vector parallel to the plane of incidence
VI	X,Y,Z components of ray propagation direction of ray incident on diffraction point
VIC	X,Y,Z components of ray propagation direction of ray incident on cylinder
VR	Elliptical angle defining reflection point on cylinder (2-D)
XD	X,Y,Z components of diffraction point in RCS
XDMAG	Normalization constant for vector from RCS origin to diffraction point
XDP	Modified diffraction point location for shadowing test
X1MAG	Normalization constant for vector from RCS origin to second corner on edge ME
XMAG	Normalization constant for vector from origin to first corner on edge ME
XR	X,Y,Z components of reflection point on cylinder
XRR	Reflection point location on cylinder
XSS	Source location
I/O VARIABLES:	
A. INPUT	LOCATION

5.

Α.	INPUT	LOCATION
	A	/GEOMEL/
	8	/GEOMEL/
	BCD	/BNDRCL/
	CTC	/GEOMEL/
	0	/DIR/

RCLDPL (GTD)

/THPHUV/ DP **DPR** /PIS/ DT /THPHUV/ FLDPT /NEAR/ F.P. FN **LDEBUG** /TEST/ LNRFLD /NEAR/ **LRDC** /CLRDC/ LUPRNT /ADEBUG/ F.P. ME MEP /GEOPLA/ F.P. MP /DIR/ **PHSR** ΡI /PIS/ **THSR** /DIR/ TPI /PIS/ ٧ /GEOPLA/ /GEOPLA/ VN /GEOPLA/ ۷P /SORINF/ VXS /GEOPLA/ X /SORINF/ XS

ZC

В.

OUTPUT

EDPH

/GEOMEL/

LOCATION

F.P.

RCLDPL (GTD)

EDTH F.P.

CALLING ROUTINE: 6.

GTDDRV

7. CALLED ROUTINES:

> **ASSIGN RFDFPT BEXP**

> **SMAGNF** BTAN2

SOURCE

CYLINT STATIN

DW STATOT

NANDB TPNFLD

NFD WLKBCK

PLAINT XYZFLD

Page 1 of 3

Page 3 of 3

- 1. NAME: RCLRPL (GTD)
- 2. PURPOSE: To compute the geometrical optics field reflected from the elliptic cylinder and then reflected by plate MP.
- 3. METHOD: RCLRPL functions as a service routine for subroutine SCLRPL where the total cylinder-plate scattered fields are computed. The field components computed in RCLRPL which are used in SCLRPL are the hard (EHTHJ, EHPHJ) and soft (ESTHJ, ESPHJ) theta and phi components of the source field incident on the cylinder at the reflection point. These components, along with several other useful parameters, are passed to subroutine SCLRPL through common block /FUDGJ/.

The geometrical optics reflected field components ETH and EPH are computed in RCLRPL. These are calculated for the cylinder-reflected, plate-reflected fields from a unit source in the given far-field observation direction or to a given near-field observation point. These components are not used presently. The pertinent geometry for this routine is shown in figure 1.

Figure 1. Illustration of Ray Reflected by Cylinder and Then Reflected by Plate.

The code first determines the ray path cylinder and plate reflection points. The procedure followed is different for near-field and far-field calculations. The flowchart shows near-field and far-field paths.

The reflection point on the cylinder is found by imaging the observation direction for far field or the observation point for near field through plate MP. This point is checked to make sure it lies on the cylinder within the end caps. If it does not, the field is set to zero and control is returned to the calling routine. If it is a legal point, the reflection point on the plate is checked to make sure it is a legal point also. If plate reflection did not occur, the field is set to zero and control is returned to the calling routine. If the point is legitimate, the ray path from the source to the cylinder, to the plate, to the far-field observation direction or near-field observation point is checked for shadowing. If the path is shadowed anywhere, again the field is set to zero and control returns to the calling routine. If the path is clear, then at this point it is known that the cylinder-reflected, plate-reflected field does exist.

The physics and field computations begin by computing the source field pattern factor from the source by calling subroutine SOURCE. Then the spreading radii needed FDR including the effect that the curved cylinder wall has on spreading the cylinder-reflected wave is computed. Other parameters, polarization vectors, and image locations are calculated for the field computations. The code computes the fields incident on the cylinder, the cylinder-reflected field and the plate-reflected field. The plate-reflected field's phase factor is based on the cylinder reflection point imaged through plate MP. For far field, this refers the field to the origin of the reference coordinate system. For near field, the phase factor includes the spherical wave spreading factor. The code ends by computing the hard (theta and phi) and soft (theta and phi) components of the field incident on the cylinder.

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
A1, A2	Field components of ray incident on plate, normal and tangent to the plate
A3	Determinant of polarization transformation
C11,C12,C21,C22	Coefficients used to convert polarization from theta and phi components in RCS to components normal and tangent to plate (and vice-versa)
CTHW	2-D dot product of unit normal at cylinder reflection point and ray propagation direction between reflection points

RCLRPL (GTD)

D	Propagation direction after plate reflection in x,y,z RCS components
DD1	Dot product of unit vector of propagation direction and cylinder tangent unit vector through tangent point 1 (2-D)
DD2	Dot product of unit vector of propagation direction and cylinder tangent unit vector through tangent point 2 (2-D)
DHIT	Distance from source to hit point (from PLAINT)
DHJT	Distance between cylinder and plate reflection point (from subroutine PLAINT)
THC	Distance to hit point (from PLAINT and CYLINT)
DI	X,Y, and Z components of incident ray direction on cylinder in RCS
DJ	X,Y,Z components of propagation direction of ray incident on plate
DMAG	Distance between plate reflection point and near-field observation point
DOTP	Test variable
DP	Phi unit vector for observation direction D
DT	Theta unit vector for observation direction D
EF '	Pattern factor of theta component of incident field in RCS (also theta component of cylinder-reflected field in RCS)
EG .	Pattern factor of phi component of incident field in RCS (also phi component of cylinder-reflected field in RCS)
ЕНРНЈ	Phi component of hard component of field incident on cylinder
ЕНТНЈ	Theta component of hard component of field incident on cylinder (parallel to plane of incedence)

EIPP	Incident	field	component	parallel	to	plane

of incidence on cylinder

EIPR Incident field component perpendicular to

plane of incidence on cylinder

EPH Phi component of total cylinder-reflected,

plate-reflected field

ERPP Component of cylinder-reflected field

parallel to plane of incidence

ERPR Component of cylinder-reflected field per-

pendicular to plane of incidence

ERX, ERY, ERZ X,Y,Z components of cylinder-reflected

field in RCS

ESPHJ Phi component of soft component of field

incident on cylinder

ESTHJ Theta component of soft component of field

incident on cylinder

ETH Theta component of total cylinder-reflec-

ted, plate-reflected field

EX, EY, EZ X,Y,Z components of source field pattern

factor in RCS

FLDPTI X,Y,Z components of the location of the

near-field observation point image through

plate MP

GAM Phase constant

State and State State of the

LHIT Set true if ray hits plate (from PLAINT)

LRFS Set true if reflection data is available

from previous pattern angle (or for next

pattern angle (when leaving routine))

LTRFJ Set true if geometrical optics reflected-

reflected fields do not exist

MP Plate on which reflection occurs after

cylinder reflection

PH Complex phase constant

RCLRPL (GTD)

PHIR	Phi component of incident ray direction on cylinder in RCS
PHJR	Phi component of ray propagation direction between cylinder and plate in RCS
RGJ	Radius of curvature of cylinder at reflection point
RH01J	Ray spreading radius in plane of cylinder curvature at reflection point
RH02	Ray spreading radius in plane normal to plane of incidence at reflection point
\$1	Distance between reflection points on cylinder and plate
\$2	Distance between cylinder reflection point and near-field observation point image through plate MP (therefore distance of complete ray path between reflection point on cylinder and the near-field observation point)
SMAGJ	Length of ray from reflection point on cylinder to source
SNFF	Distance from plate reflection point to near-field observation point
SXN, SYN, SZN	X,Y,Z components of unit vector of ray from reflection point on cylinder to source location in RCS
THIR	Theta component of incident ray direction on cylinder
THJR	Theta component of ray propagation direction between cylinder and plate
UB	Unit binormal at the cylinder reflection point
UIPPX,UIPPY,UIPPZ	X,Y,Z components of incident polarization unit vector parallel to plane of incidence

RCLRPL (GTD)

UIPRX, UIPRY, UIPRZ X,Y,Z components of incident/reflected polarization unit vector perpendicular to plane of incidence UN Unit normal at the cylinder reflection point UR The z component of the location of the reflection point on the cylinder URPPX, URPPY, URPPZ X,Y.Z components of reflected polarization unit vector parallel to plane of incidence **VR** Phi angle used to define the x and y components of the reflection point on cylinder ۷T X, Y, Z components of polarization unit vector tangent to plate and normal to ray incident on plate VXS Matrix defining source coordinate system axes in RCS components XRJ X, Y, Z components of reflection point location on cylinder **XRR** Cylinder reflection point location Reflection point on plate (also cylinder reflection point image location in plate) XRS Also cylinder reflection point XSS Source location I/O VARIABLES:

5.

Α.	INPUT	LOCATION
	A	/GEOMEL/
	В	/GEOMEL/
	BTS	/BNDSCL/
	СТС	/GEOMEL/
	D	/DIR/
	DP	/THPHUV/

DT /THPHUV/
DTS /BNDSCL/

FLDPT /NEAR/

LNRFLD /NEAR/

LRFS /CLRFS/

MP F.P.

PHSR /DIR/

PI /PIS/

THSR /DIR/

TPI /PIS/

VN /GEOPLA/

VXS /SORINF/

XS /SORINF/

ZC /GEOMEL/

B. OUTPUT LOCATION

EHPHJ /FUDGJ/

EHTHJ /FUDGJ/

EPH F.P.

ESPHJ /FUDGJ/

ESTHJ /FUDGJ/

ETH F.P.

LRFS /CLRFS/

LTRFJ /FUDGJ/

RGJ /FUGDJ/

RHO1J /FUDGJ/

RCLRPL (GTD)

SMAGJ /FUDGJ/

SNFF /DIST/

TRANJ /FUDGJ/

XRJ /FUDGJ/

6. CALLING ROUTINE:

SCLRPL

7. CALLED ROUTINES:

ASSIGN NFD SOURCE

BEXP PLAINT STATIN

BTAN2 REFBP STATOT

CYLINT RFDFIN TPNFLD

IMAGE RFPTCL WLKBCK

NANDB SMAGNF

TO THE RATIO THE THE PROPERTY OF CHECKEN SECTION AND THE SECTION OF THE PROPERTY OF THE PROPER

- 1. NAME: RDEFIL (GTD, INPUT, MOM, OUTPUT)
- 2. PURPOSE: Read data from the logical unit specified and increment the internal file pointers to indicate the current file position.
- 3. METHOD: The number of words between the current file position and the end of file is determined and, if less than the number of words requested, a fatal error is generated. Otherwise, the file is read in the binary mode and the current file pointer is incremented to point at the last word read from the file.

4. INTERNAL VARIABLES:

VARIABLE DEFINITION

LUNIT Input argument designating logical unit to

read

NUMLFT Number of words left before the end of the

file from current pointer position

NWORDS Input argument designating number of words

to be read

XWORDS Input array into which the data will be

read

5. I/O VARIABLES:

A. INPUT LOCATION

DBGPRT /ADEBUG/

IOCKPT /SYSFIL/

IOFILE /IOFLES/

ISON /ADEBUG/

LUNIT F.P.

LUPRNT /ADEBUG/

MODCHK /SYSFIL/

NDFILE /IOFLES/

NWORDS F.P.

RDEFIL (GTD, INPUT, MOM, OUTPUT)

B. OUTPUT

LOCATION

IERRF

/ADEBUG/

IOFILE

/IOFLES/

XWORDS

F.P.

6. CALLING ROUTINES*:

BUBBLE (1)

RESTRT (1)

DECOMP (3)

RWCOMS (1,2,3,4)

GEODRV (1)

RWFILS (1,2,3,4)

GETSYM (1,2,3,4)

SOLDRV (3)

MOVFIL (1,2,3,4)

STRTUP (2,3,4)

PUTSYM (1,2,3,4)

SUBPAT (1)

7. CALLED ROUTINES:

ASSIGN

ERROR

STATIN

STATOT

WLKBCK

4-OUTPUT

^{*1-}INPUT

²⁻GTD

³⁻MOM

- 1. NAME: REBLCK (MOM)
- 2. PURPOSE: To reblock the interaction matrix into several square submatrices when structure symmetry is present.
- 3. METHOD: When structure symmetry is present the full square interaction matrix is not generated. Instead, only an NR x NC matrix is needed, where NC is the number of elements per symmetry cell, and NR is the total number of elements. NR is always an integer multiple of NC, this integer being the number of symmetry cells. Since the matrix problem will be solved in (NC x NC) blocks, the data must be reblocked into that format.

Each column of NC elements is read into core from the input symbol (the matrix is stored in transposed form), and the proper elements stored in the columns of each submatrix of the output data set, as shown in figure 1.

Figure 1. Illustrating the Reblocking of an NRxNC Matrix Into an NCxNR Matrix

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION	
JNC	Internal variable equal to NC	
JREC	Pointer to column number being read from input data set	
KREC	Pointer to column number being written to output data set	

REBLCK (MOM)

LOCNAM Pointer to input data set name in symbol

table

MORE Flag indicating a complex data set

N Loop index over symbol table entries and

submatrices

NAMEZ User-assigned name of input data set (NR x

NC)

NAMEZ1 User-assigned name of output data set (NC x

NR)

NBIAS Pointer to beginning of output for a column

of NAMEZ1

NBITS Attribute word of input data set

NC Number of columns of input data set

NPRELM Number of data words per matrix element

NR Number of rows of input data set

NUMMAT Number of symmetry cells in input data set;

number of submatrices in output data set

Z Temporary storage for matrix reblocking

5. I/O VARIABLES:

A. INPUT LOCATION

ISON /ADEBUG/

KBCPLX /PARTAB/

KOLBIT /PARTAB/

KOLNAM /PARTAB/

LUPRNT /ADEBUG/

NAMEZ F.P.

NAMEZI F.P.

NC F.P.

REBLCK (MOM)

NDATBL /PARTAB/
NPDATA /PARTAB/
NR F.P.

Z F.P.

B. OUTPUT LOCATION

IERRF /ADEBUG/ Z F.P.

6. CALLING ROUTINE:

ZIJDRV

7. CALLED ROUTINES:

ASSIGN GETSYM STATIN

CONVRT IBITCK STATOT

ERROR PUTSYM WLKBCK

- 1. NAME: REFBP (GTD)
- 2. PURPOSE: To calculate the incident ray direction needed in order to obtain the reflected ray in a given direction from a specified plate.
- 3. METHOD: The incident ray unit vector (VI) is found by imaging the reflected ray unit vector (DR) through the plate (MP). Figure 1 shows the important geometry. The equation for VI is:

$$\overset{\wedge}{VI} = \overset{\wedge}{DR} - 2(\overset{\wedge}{VN} \cdot \overset{\wedge}{DR}) \overset{\wedge}{VN}$$

The theta and phi angles which define $\hat{\text{VI}}$ are sent back to the calling routine.

Figure 1. Illustration of Incident and Reflected Rays on Plate

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
CPS	Cosine of PHSR
СТЅ	Cosine of THSR
DN	Cross product of DR and VN
DR	Reflected ray propagation direction in x,y,z RCS components
ERD	Error detection variable
LUPRNT	File on which warning message will be printed
MP	Plate upon which reflection occurs

REFBP (GTD)

PHIR Phi component of incident ray propagation

direction in RCS

PHSR Phi component of reflected ray propagation

direction in RCS

SPS Sine of PHSR

STS Sine of THSR

THIR Theta component of incident ray propagation

direction in RCS

THSR Theta component of reflected ray propa-

gation direction in RCS

VI X,Y,Z components of incident ray propa-

gation direction in RCS

VIN Dot product of plate normal and VI

VN Array which includes unit vector normal to

plate MP

5. I/O VARIABLES:

A. INPUT LOCATION

LUPRNT /ADEBUG/

MP F.P.

PHSR F.P.

THSR F.P.

VN /GEOPLA/

B. OUTPUT LOCATION

PHIR F.P.

THIR F.P.

REFBP (GTD)

6. CALLING ROUTINES:

DPLRPL RPLRCL

RCLRPL RPLRPL

REFPLA RPLSCL

RPLDPL SCLRPL

7. CALLED ROUTINE:

BTAN2

- 1. NAME: REFCAP (GTD)
- 2. PURPOSE: To calculate the unobstructed electric field resulting from the reflection of a unit source off a given cylinder end cap.
- 3. METHOD: REFCAP is the driver routine which directs all the ray tracing, physics and field calculations for determining the electric field reflected by an elliptical cylinder end cap in a given farfield direction or to a given near-field observation point from a unit source. The important geometry is shown in figure 1.

Figure 1. Illustration of Source Ray Reflection from End Cap

First, the ray from the source image location is checked to make sure it passes through the given cylinder end cap. If it does not, the theta and phi components of the field are set to zero, and no other computations except debug functions (if requested) are performed in this routine. If reflection can occur, the ray path from the reflection point in the far-field observation direction or to the near-field observation point is checked for obstructions. If it is blocked by a plate, the field components are set to zero, and no other computations except debug functions (if requested) are

performed in this routine. If the path is unobstructed, the ray path from the source location to the reflection point is checked for obstructions. If a plate blocks this path, the theta and phi field components are set to zero, and no other computations except debug functions (if requested) are performed in this routine. If this path is clear, it is then known that reflection off the given end cap did occur and that the complete ray path is unobstructed.

The source field pattern factor from the source image location is computed by calling subroutine SOURCE and multiplying the returned field values by the reflection coefficient. Then the phase factor is computed. For far field this factor refers the field to the reference coordinate system (RCS) origin. For near field, the phase factor includes the spherical wave spread factor. Now the theta and phi components of the field can be computed. The electric field is given by:

$$\bar{E} = (EF \hat{\theta}) + EG \hat{\phi})$$
 $e^{j2\pi(XIC \cdot \hat{D})}$, for far field theta component of source of source factor

and

$$\bar{E} = (EF \hat{\theta}) + EG \hat{\phi}) \qquad \underbrace{\frac{e^{-j2\pi SNF}}{SNF}}_{\text{SNF}}, \text{ for near field.}$$
theta component of source of source where SNF = |FLDPT - XIC factor

The x, y, z components of the field are then computed and added to the previous components due to other reflection-diffraction interactions. The values are stored in common block /FLDXYZ/.

If the debug capabilities have been requested, the end cap reflected field magnitude is computed. The magnitude, theta and phi complex components are printed on file LUPRNT.

REFCAP (GTD)

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
0	Observation direction unit vector
DHIT	Distance from source to hit point on plate (from PLAINT)
DHT	Distance from source to hit point on end cap (from CAPINT)
DI	Unit vector of incident ray propagation direction
DN	Dot product of reflected ray propagation direction and end cap unit normal
DNI	Dot product of incident ray and end cap unit normal
EF	Pattern factor for theta component of incident E-field
EG	Pattern factor for phi component of incident E-field
EIX	X component of source pattern factor of incident E-field
EIY	Y component of source pattern factor of incident E-field
EIZ	Z component of source pattern factor of incident E-field
EPH	Phi component of reflected E-field in RCS
ETH	Theta component of reflected E-field in RCS
EX	Phase term and for near field it also contains the spherical wave spread factor
FLDMAG	The electric field magnitude
FLDPT	The near-field observation point in x,y,z components
GAM	Phase term parameter

REFCAP (GTD)

LHIT Set true if ray hits plate (from PLAINT)

MC End cap where reflection occurs

N DO loop variable

NC Sign change variable

NI DO loop variable

NJ DO loop variable

PHSR Observation direction phi angle

SNF Distance from field observation point to

source image location

THSR Observation direction theta angle

VAX X,Y,Z components defining the image source

coordinate system in x,y,z RCS components

VN Unit normal to end cap in RCS x,y,z

components

XIS Source image location

XS Source location in x,y,z components

XSS Source location in x,y,z components in RCS

5. I/O VARIABLES:

A. INPUT LOCATION

CNC /GEOMEL/

D /DIR/

FLDPT /NEAR/

LDEBUG /TEST/

LNRFLD /NEAR/

LUPRNT /ADEBUG/

MC F.P.

REFCAP (GTD)

PHSR /DIR/

SNC /GEOMEL/

THSR /DIR/

TPI /PIS/

VXIC /IMCINF/

XIC /IMCINF/

XS /SORINF/

B. OUTPUT LOCATION

EPH F.P.

ETH F.P.

6. CALLING ROUTINE:

GTDDRV

7. CALLED ROUTINES:

ASSIGN

BEXP

CAPINT

NFD

PLAINT

SMAGNF

SOURCE

STATIN

STATOT

WLKBCK

XYZFLD

- 1. NAME: REFCYL (GTD)
- 2. PURPOSE: To compute the geometrical optics field due to reflection of a unit source off the curved surface of the elliptical cylinder.
- 3. METHOD: REFCYL functions as a service routine for subroutine SCTCYL, where the total cylinder-scattered field is computed. The field components computed in REFCYL which are used in SCTCYL are the hard (EHTH, EHPH) and soft (ESTH, ESPH) theta and phi components of the field incident on the cylinder at the cylinder reflection point. These components along with several other useful parameters are passed to subroutine SCTCYL through common block /FUDG/. The geometrical optics reflected field components ETH and EPH are computed in REFCYL. These are calculated for the cylinder-reflected field from a unit source in a given far-field observation direction or to a given near-field observation point. These components are not used presently. Pertinent geometry is shown in figure 1.

Figure 1. Geometry of Ray Reflected From Cylinder

The code first checks to see if reflection is possible. If it is not possible the code sets flags to indicate that starting point data are not available for the next time REFCYL is called and that reflection did not occur. The fields are set to zero and control is returned to the calling routine. If reflection is possible, the reflection point is computed by calling subroutine RFDFIN for near-field calculations and by calling subroutine RFPTCL for far-field calculations. Then the far-field reflection point is checked to make sure it satisfies the law of reflection. This is based on a returned value from RFPTCL. Then for both far-field and near-field cases, the reflection point is checked to make sure it lies on the

curved sides of the cylinder within the end cap boundaries. Next the ray path is checked to make sure it is not shadowed. If it is shadowed, the code sets the flag which indicates a reflected field did not occur and sets the field to zero. Control is then returned to the calling routine. If the ray path is unobstructed, then at this point it is known that reflection did occur and the fields can be computed.

The physics and field calculations begin by computing the source field pattern factor from the source and computing the cylinder-reflected wave spreading radii. Other parameters and polarization vectors are then calculated for the field computations. (See the flowchart). The code computes the field incident on the cylinder and the field reflected from the cylinder. The phase factor refers the far-field cylinder-reflected field to the origin of the reference coordinate system (RCS), and includes for near-field calculations the spherical wave spreading factor. The code ends by computing the hard (theta and phi) and soft (theta and phi) components of the field incident on the cylinder at the reflection point.

Additional, in-depth details to this solution are given on pages 105-107 of reference A.

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
CSV	Cosine of VR
СТНІ	Dot product of cylinder normal and reflection propagation direction unit vector
CW	Cosine of WR
D	Propagation direction after reflection in x,y,z RCS components
D1	Variable used in various near-field calculations as a unit vector to indicate the direction between two points
D2	Variable used in various near-field calculations as a unit vector to indicate the direction between two points
D12	Dot product of source vectors tangent to cylinder (2-D)

DD	Normalization constant for reflection point unit normal (from RFPTCL)
DD1	Dot product of unit vector of propagation direction and cylinder tangent unit vector through tangent point 1 (2-D)
DD2	Dot product of unit vector of propagation direction and cylinder tangent unit vector through tangent point 2 (2-D)
DHIT	Distance from source to hit point (from PLAINT)
DICOEF	X,Y, and Z components of incident ray direction in RCS
DOTP	Difference of dot products returned from subroutine RFPTCL (2-D)
DP	The phi unit vector for observation direction D
DT	The theta unit vector for observation direction D
DXY	Dot product of vector from origin to source and propagation direction (2-D)
EF	Pattern factor of theta component of incident field in RCS
EG	Pattern factor of phi component of incident field in RCS
ЕНРН	Phi component of the hard component of field incident on cylinder
ЕНТН	Theta component of the hard component of field incident on cylinder
EIPP	Incident field component parallel to plane of incidence
EIPR	Incident field component perpendicular to plane of incidence
EPH	Phi component of reflected E-field

ERPP	Reflected field component parallel to plane of incidence
ERPR	Reflected field component perpendicular to plane of incidence
ERX,ERY,ERZ	X,Y,Z components of reflected field in RCS (Also used to define components incident on cylinder)
ESPH	Phi component of the soft component of field incident on cylinder
ESTH	Theta component of the soft component of field incident on cylinder
ETH	Theta component of reflected E-field
EX,EY,EZ	Pattern factor of x,y,z components of incident field in RCS
FPTXY	The equivalent near-field observation point in the x-y plane
LHIT	Set true if ray hits plate (from PLAINT)
LRFC	Set true if reflection data are available from previous pattern angle (or for next pattern angle when leaving routine)
LTRF	Set true if geometrical optics reflected field does not exist

PH	Phase	and	magnitude	constant	for	incident
	or ref	lecte	ed field			

PHIR	Phi	component	of	incident	ray	direction
------	-----	-----------	----	----------	-----	-----------

PHSR1	Variable used in various near-field calcu-
	lations to indicate the phi angle between
	two points

PHSR2 Variable used in various near-field calculations to indicate the phi angle between two points

REFCYL (GTD)

RG	Parameter used in transition function
RHO1	Ray spreading radius in plane of cylinder curvature at reflection point
RHO2	Ray spreading radius in plane normal to plane of incidence at reflection point
S	Distance from source to reflection point in x-y plane
SMAG	Distance from source to reflection point
SNF	Distance between near-field observation point and the reflection point
SNV	Sine of VR
SNX	X component of normal at cylinder reflection point
SNY	Y component of normal at cylinder reflection point
SQRH	Spreading factor
SW	Sine of WR
SXN,SYN,SZN	X, Y , and Z components of unit vector of ray from reflection point to source in RCS
THIR	Theta component of incident ray direction
THSR1	Variable used in various near-field calcu- lations to indicate the theta angle between two points
THSR2	Variable used in various near-field calcu- lations to indicate the theta angle between two points
TRAN	Parameter used in transition function
TX1	X component of source vector tangent to tangent point $1 \ (2-D)$
TX2	X component of source vector tangent to tangent point 2 (2-D)

TY1	Y component of source vector tangent to tangent point $1\ (2-D)$
TY2	Y component of source vector tangent to tangent point 2 (2-D)
UB	X,Y components of unit vector tangent to cylinder reflection point in RCS (2-D)
UIPPX,UIPPY,UIPPZ	X,Y,Z components of incident field polar- ization unit vector parallel to plane of incidence
UIPRX,UIPRY,UIPRZ	X,Y,Z components of incident/reflected field polarization unit vector perpendicular to plane of incidence
UN	X,Y components of unit normal to cylinder reflection point in RCS (2-D)
URPPX,URPPY,URPPZ	X,Y,Z components of reflected field polarization unit vector parallel to plane of incidence
VR	Elliptical angle defining reflection point in RCS x-y plane
VXS	X,Y,Z components of unit vectors defining source coordinate system axes in RCS
WR	Phi angle defining propagation direction in cylinder reflection point coordinate system
XE1	Point which lies on the infinite cylinder whose z component is equal to the intersection point on the z axis with the more positive end cap and whose x and y values are based on the elliptical cylinder's radii at the phi angle of a vector from the RCS origin to the field point
XE2	Point which lies on the infinite cylinder whose z component is equal to the intersection point on the z axis with the more negative end cap and whose x and y values are based on the elliptical cylinder's radii at the phi angle of a vector from the RCS origin to the field point

REFCYL (GTD)

Location of reflection point in x, y, z XR coordinates XSS Source location in x,y,z components XT1 The x,y,z components of tangent point 1 (2-D)XT2 The x,y,z components of tangent point 2 (2-D)5. I/O VARIABLES: INPUT LOCATION Α. /GEOMEL/ Α В /GEOMEL/ **BTS** /BNDSCL/ **CPS** /DIR/ CTC /GEOMEL/ **CTHS** /DIR/ D /DIR/ DP /THPHUV/ DT /THPHUV/ DTS /BNDSCL/ **FLDPT** /NEAR/ LNRFLD /NEAR/ LRFC /CLRFC/ **PHSR** /DIR/ PΙ /PIS/ SPS /DIR/

/DIR/

STHS

/SORINF/

THSR /DIR/

TPI /PIS/

VTS /BNDSCL/

VXS /SORINF/

ZC /GEOMEL/

B. OUTPUT LOCATION

XS

EHPH /FUDG/

EHTH /FUDG/

EPH F.P.

ESPH /FUDG/

ESTH /FUDG/

ETH F.P.

LTRF /FUDG/

RG /FUDG/

RHO1 /FUDG/

SMAG /FUDG/

TRAN /FUDG/

XR /FUDG/

6. CALLING ROUTINE:

SCTCYL

7. CALLED ROUTINES:

ASSIGN RFPTCL

BEXP SMAGNF

BTAN2 SOURCE

REFCYL (GTD)

NANDB STATIN

NDF STATOT

PLAINT TPNFLD

RFDFIN WLKBCK

8. REFERENCE:

A. R. J. Marhefka, "Analysis of Aircraft Wing-Mounted Antenna Patterns," Report 2902-25, June 1976, The Ohio State University ElectroScience Laboratory, Department of Electrical Engineering; prepared under Grant No. NGL 36-008-138 for National Aeronautics and Space Administration.

- (INPUT) 1. NAME: REFLCT
- 2. PURPOSE: To execute a coordinate reflection for the geometry processor.
- 3. METHOD: The axis along which the reflection is to take place is determined, that coordinate sign is changed, and control is returned to the calling subroutine.
- INTERNAL VARIABLES: 4.

VARIABLE

DEFINITION

IRF

Input argument determining axis of reflection: IRF=1 for X axis, =2 for Y axis, =3 for Z axis

JAXIS

Variable IRF minus 2 for arithmetic IF statement

5. I/O VARIABLES:

> INPUT A.

LOCATION

IRF

F.P.

X

F.P.

F.P.

Z

F.P.

OUTPUT В.

LOCATION

X

F.P.

F.P.

Z

F.P.

CALLING ROUTINES:

WYRDRV

SPWDRV

7. **CALLED ROUTINES:**

NONE

PREVIOUS PAGE IS BLANK

- 1. NAME: REFPLA (GTD)
- 2. PURPOSE: To calculate the unobstructed electric field due to single reflection from a given plate from a unit source.
- 3. METHOD: REFPLA is the driver routine which directs all the ray tracing, physics and field calculations for determining the electric field resulting from single reflection off a given plate in a given far-field direction or to a given near-field point from a unit source. The significant geometry is shown in figure 1.

Figure 1. Geometry for Source Ray Reflection from Plate

First the ray path from the source image location in the desired direction is checked to make sure it does pass through the plate being considered. If it does not, the theta and phi components of the electric field are set to zero, and no other calculations except for debug functions (if requested) are performed in this routine. If reflection can occur, the ray path from the reflection point on the plate in the given far-field observation direction or to the given near-field observation field point is checked for obstructions. If the path is obstructed, the fields are set to zero, and no other calculations except for debug functions (if requested) are performed in this routine. If the path is clear, then the ray path from the source to the reflection point is checked. If this path is

blocked by another plate or a cylinder, the fields are set to zero, and no other calculations except for debug functions (if requested) are performed. If this path is clear, reflection from the given plate did occur and the complete ray path is unobstructed.

The source field pattern factor from the source image location is computed by calling subroutine SOURCE and multiplying the returned values by the reflection coefficient. Next the phase factor is computed. For far field, this will refer the field back to the origin of the reference coordinate system. For near field, the phase factor includes the spherical wave spread factor. Now the theta and phi components of the electric field are computed. The electric field in theta and phi components is given by:

$$\bar{E} = (EF \ \hat{\theta} \ + EG \ \hat{\phi}) \qquad e^{j2\pi(XIS \ \cdot \ D)}, \ \text{for far field}$$
 theta component of source of source factor

and

$$\bar{E} = (EF \hat{\theta}) + EG \hat{\phi}) \qquad \frac{e^{-j2\pi SNF}}{SNF}, \text{ for near field.}$$
theta component of source of source of source factor where $SNF = |FLDPT - XIS|$

The x,y,z components of the electric field are computed and added to the previous components due to other reflection-diffraction interactions. The values are stored in the /FLDXYZ/ common block.

If the debug capabilities have been requested, the field magnitude is computed. The magnitude, theta and phi components are printed on file LUPRNT.

4. INTERNAL VARIABLES:

VARIABLE DEFINITION

CPHI Cosine of PHIR

REFPLA (GTD)

СТНІ	Cosine of THIR
D	Unit vector x,y,z components of ray propagation direction after reflection in RCS
DHIT	Distance from source to reflection point (from PLAINT)
DHT	Distance from source to hit point (from PLAINT and CYLINT)
DICOEF	Unit vector <,y,z components of incident ray propagation direction in RCS
EF	Pattern factor for theta component of source field in RCS
EG	Pattern factor for phi component of source field in RCS
EIX	X component of source factor
EIY	Y component of source factor
EIZ	Z component of source factor
ERP	Phi component of reflected field in RCS
ERT	Theta component of reflected field in RCS
EX	Complex phase factor
FLDMAG	The electric field magnitude
FLDPT	The x,y,z components of the field point location
FX,FY,FZ	The x,y,z components of the accumulated electric field from all geometry interactions
GAM	Phase distance to origin (dot product of image location and reflected ray propagation direction)
LDEBUG	Logical variable set true if debug requested

REFPLA (GTD)

LHIT Set true if ray intersects a plate or

cylinder (from PLAINT or CYLINT)

LNRFLD Flag to indicate if near-field (LNRFLD=1)

or far-field (LNRFLD=0) calculations were

requested

LUPRNT Output file number

MP Plate from which reflection occurs

N DG loop variable

NI 00 loop variable

NJ DO loop variable

PHIR Phi component of incident ray propagation

direction in RCS

PHSR Phi component of ray propagation direction

after reflection in RCS

SNF Distance between source image and field

point

SPHI Sine of PHIR

STHI Sine of THIR

THIR Theta component of incident ray propagation

direction in RCS

THSR Theta component of ray propagation direc-

tion after reflection in RCS

TPI 2π

VAX X,Y,Z components defining unit vectors of

the source image coordinate system axes in

RCS

VXI Array of components defining unit vectors

of the source image coordinate system axes

in RCS

XI Triply dimensioned array of image locations

(GTD) **REFPLA**

X,Y,Z components of source image location (single reflection from plate MP) XIS

X,Y,Z components of source image location XQS

XS Source location in x,y,z RCS

I/O VARIABLES: 5.

> LOCATION Α. INPUT

> > D /DIR/

FLDPT /NEAR/

FX /FLDXYZ/

FΥ /FLDXYZ/

FΖ /FLDXYZ/

LDEBUG /TEST/

LNRFLD /NEAR/

LUPRNT /ADEBUG/

MP F.P.

PHSR /DIR/

/DIR/ **THSR**

/PIS/ TPI

VXI /IMAINF/

ΧI /IMAINF/

XS /SORINF/

LOCATION OUTPUT В.

> **ERP** F.P.

FX /FLDXYZ/

ERT

F.P.

REFPLA (GTD)

FY /FLDXYZ/
FZ /FLDXYZ/

6. CALLING ROUTINE:

GTDDRV

7. CALLED ROUTINES:

ASSIGN

BEXP

CYLINT

NFD

PLAINT

REFBP

SMAGNF

SOURCE

STATIN

STATOT

WLKBCK

- 1. NAME: RESTRT (INPUT)
- 2. PURPOSE: Read common blocks and data sets from the checkpoint file.
- 3. METHOD: RESTRT searches for the desired checkpoint on the specified logical unit. The commons are read, the peripheral files are opened, and the data sets are restored. The search continues until the desired checkpoint has been read. If the desired checkpoint is not found, the routine writes an error message and terminates execution.

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
ICHKPT	The checkpoint number that will be used for restarting (default = 1)
ICKLOP	Loop index for reading commons and peripheral files
IEOF	Flag indicating that an end-of-file occur- red while reading the checkpoint file
ISDBON	Flag for debug command
ISTRDT	Flag to tell when to store data on peripheral files
LOCTPO	Pointer for argument list
LUFILE	Checkpoint logical unit number specified by RSTART command
NAM	Temporary Hollerith location
NAMCPF	Name of module asked for by RESTRT command (default = INPUT)
NAME	File name or data set name
NDXNCD	Index of a keyword in the NCODES array
NREAD	Flag to tell RWCOMS to read common areas from IOCKPT
NUMCPF	Pointer to keyword of module for which

RESTRT is requested

RESTRT (INPUT)

5. I/O VARIABLES:

Α.	INPUT	LOCATION
	IOCKPT	/SYSFIL/
	ISOFF	/ADEBUG/
	ISON	/ADEBUG/
	KOLCOL	/PARTAB/
	KOLNAM	/PARTAB/
	KWCHKP	/PARTAB/
	KWNAME	/PARTAB/
	LUPRNT	/ADEBUG/
	NAMSEG	/SEGMNT/
	NARGTB	/PARTAB/
	NCODES	/PARTAB/
	NDATBL	/PARTAB/
	NDEBUG	/SCNPAR/
	NDXBLK	/SEGMNT/
	NOPCOD	/ADEBUG/
	NPDATA	/PARTAB/
	NPTASK	/PARTAB/
	NTSKTB	/PARTAB/
	NUMCHK	/SYSFIL/
	RSTART	/SYSFIL/
	SEGTBL	/SEGMNT/

RESTRT (INPUT)

OUTPUT LOCATION В. **CHKWRT** /SYSFIL/ **DBGPRT** /ADEBUG/ **IERRF** /ADEBUG/ **IMDCHK** /ADEBUG/ INTARG /ARGCOM/ **IRSTRT** /ADEBUG/ /SYSFIL/ **LSTSYS** LUDBUG /ADEBUG/ **NDEBUG** /SCNPAR/ /IOFLES/ **NFINCD** /PARTAB/ **NPTASK** NTSKTB /PARTAB/ **RSTART** /SYSFIL/ **RSTRTA** /SYSFIL/

6. CALLING ROUTINE:

INPDRV

7. CALLED ROUTINES:

ASSIGN RDEFIL
CONVRT RWCOMS
ERROR RWFILS
GETSYM STATIN
POSTIP STATOT
PUTSYM WLKBCK

<u>Marita de la caractera de la c</u>

- 1. NAME: RFDFIN (GTD)
- 2. PURPOSE: To determine the reflection point on an elliptic cylinder for a given source and observation location in the near field of the cylinder.
- 3. METHOD: This subroutine solves a polynomial equation which is based on the geometry and satisfies Snell's law. The roots define possible reflection point locations. The true point is singled out using the laws of reflection. This procedure is explained in chapter IV of reference A. The coefficients are given on page 100 of the reference.

INTERNAL VARIABLES:

VARIABLE	DEFINITION
A	Cylinder radius along the x axis
В	Cylinder radius along the y axis
CA	Complex coefficients of sixth order poly- nomial equation
RT	Roots of polynomial equation
S	Smallest distance from source to reflection point to observation point
SM	Distance from source to reflection point plus the distance from the reflection point to the observation point
UR	Z component of reflection point on cylinder in RCS
VI	X,Y,Z components of reflected ray propaga- tion direction
VIM	Normalization constant for VI
VM	Elliptical angle defining possible reflection point on cylinder
VR	Phi angle defining \boldsymbol{x} and \boldsymbol{y} components of reflection point
xc	X,Y,Z components of the observation point in the near field of the cylinder

XR

X,Y,Z components of reflection point location on cylinder

XS

Source location

5. I/O VARIABLES:

A. INPUT

LOCATION

Α

/GEOMEL/

В

/GEOMEL/

XC

F.P.

xs *

/SORINF/

B. OUTPUT

LOCATION

UR

F.P.

۷I

F.P.

VR

F.P.

6. CALLING ROUTINES:

GEOMPC

RCLRPL

REFCYL

RPLRCL

7. CALLED ROUTINES:

BTAN2

POLYRT

8. REFERENCE:

A. R. J. Marhefka, "Analysis of Aircraft Wing-Mounted Antenna Patterns," Report 2902-25, June 1976, the Ohio State University ElectroScience Laboratory, Department of Electrical Engineering; prepared under Grant No. NGL 36-008-138 for National Aeronautics and Space Administration.

- 1. NAME: RFDFPT (GTD)
- 2. PURPOSE: To compute the ray path for a source ray which is reflected by the cylinder and then diffracted by a given edge on a given plate.
- METHOD: The reflection point on an elliptic cylinder and the diffraction point on a plate edge for the reflected-diffracted ray in a given observation direction is calculated via an iterative The equations are based on a first order Taylor series approximation to the equations governing the laws of reflection and diffraction. The details of the analysis are given on pages 141-148 of reference A. The iteration process follows the same basic scheme outlined in the description for subroutines RFPTCL and DFRFPT. initial start-up procedure for this subroutine is composed of locating the reflection point on the cylinder for a known diffraction point which is taken to be on the corners of the plate edge under consideration. The details of this procedure are discussed on pages 149-154 of reference A. Pertinent geometry is shown in figure 1. To avoid the 2π -to-0 transition in ϕ (a numerical jump in the variable representing the angle), the reference ϕ value is rotated to place this branch cut behind the cylinder (shadowed from the plate edge).

Figure 1. Illustration of Ray Reflected from Cylinder and then Diffracted by a Plate Edge

The iteration begins with an initial reflected-diffracted ray which satisfies the laws of diffraction and reflection. Starting data are obtained in one of two ways. If a previous call to this routine (for the same plate edge and source) has successfully found the reflected-diffracted ray path, this previous path is used as starting data. Otherwise the starting diffraction point is defined on the corner of the edge closest to the cylinder. Then the corresponding reflection point is found by enforcing Snell's law. The first method is preferred to the second since, in general, farfield ray directions (D) in subsequent calls to RFDFPT will not For example, in calculating a far-field pattern differ greatly. cut, the far-field θ and ϕ angles will differ by only a few degrees, and the closeness of the starting point will lead to fewer iterations in order to obtain convergence.

The path of the starting ray defines the initial cylinder reflection point (\overline{XR}) and the edge diffraction point (\overline{XD}) . In almost every instance, the resulting radiation direction of this ray will not be the desired radiation direction. The angular difference between (θ,ϕ) of the starting ray (THOR, PHORP) and the (θ,ϕ) of the desired direction (THSR, PHSRP) is divided into a number of small angular The purpose of the iteration is to steps $(\Delta\theta, \Delta\phi) = (DTSR, DPSR)$. move the reflection and diffraction points from their initial positions in small steps corresponding to angular changes $(\Delta\theta, \Delta\phi)$ so that when the iteration is complete the resulting \overline{XR} and \overline{XD} will define the reflection and diffraction points that give the desired The number of steps to be taken (IVD) is deter-D-directed ray. mined from the starting data. Should convergence not be reached in IVD steps, the number of steps is doubled (up to 32 steps) and the iteration repeated. The doubling process is the outer loop of the Should convergence be reached with IVD steps and the flowchart. Snell's law error be significantly smaller than required, IVD for the plate and edge under consideration is halved prior to exiting the routine.

The iterations which step through the (θ,ϕ) angles by $(\Delta\theta,\Delta\phi)$ correspond to the inner loop of the flowchart. Each iteration has three steps:

- (1) Compute the diffraction point (\overline{XD}) from known reflection point (\overline{XR}) , source point (\overline{XS}) and edge unit vector $(\sqrt[q]{V})$. This is done by a simple application of Snell's law. All the far-field calculations are contained in this subroutine, but, to determine the near-field diffraction point, subroutine DFPTWD is called.
- (2) The change in cylinder elliptic angle (DV) and z coordinate (DU) are computed from a Taylor series expansion. The expansion requires the calculation of functions and partial

derivatives of equations defining elliptic angle (VR) and z coordinate (UR) in terms of the angles (θ,ϕ) . The equations are given in reference A.

(3) The coordinates of \overline{XR} are computed from the new values of UR and VR.

At the end of the prescribed number of iterations, the initial observation direction has been stepped slowly to the desired direction and the initial reflection-diffraction points have been stepped from their initial values to candidate reflection-diffraction points. Snell's law is then applied to the final reflection and final diffraction points to see if they qualify as the bona fide ray path. If the error is sufficiently small, the outer loop is exited. Otherwise, the number of steps is doubled, as described above. Should the routine not converge with 32 steps (the maximum number), a warning message is printed on LUPRNT.

This routine is called by RCLDPL (reflection from a cylinder, diffraction from a plate) and also by DPLRCL (diffraction from a plate, reflection from a cylinder). DPLRCL only calls this routine for the near-field case since, if the observation point and the source point are reversed, the ray path would be the same.

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
A	The x axis radius of the cylinder
В	The y axis radius of the cylinder
BCD	Diffraction limit for ray reflected by the cylinder and diffracted from the plate
D	The unit vector of the observation direction
DC	X,Y,Z components of diffracted ray propaga- tion used in iteration
DCP	X,Y components of phi polarization unit vector for diffracted ray used in iteration
DCT	X,Y,Z components of theta polarization unit vector for diffracted ray used in iteration
DE	Dot product of diffracted ray direction and edge vector of edge ME

DOTP	Test parameter used to determine if reflection is legal
DPSR	Phi angle increment size
DR	X,Y,I components of ray direction between reflection and diffraction points
DRM	Distance from reflection point to the diffraction point
DRP	Partial derivative of DR with respect to phi
DRT	Fartial derivative of DR with respect to theta
DRU	Partial derivative of DR with respect to UR
DRV	Partial derivative of DR with respect to VR
DTSR	Theta angle increment size
Cu	Change in UR for one iteration using Taylor series expansion
DV	Change in VR for one iteration using Taylor series expansion
ERC	Error detection variable
FI	Equation governing the law of reflection
FLDPT	The x,y,z components of the near-field observation point
FP	Partial derivative of FI with respect to phi
FT	Partial derivative of FI with respect to theta
FU	Partial derivative of FI with respect to UR
FV	Partial derivative of FI with respect to VR
GI	Equation governing the law of reflection

GP	Partial derivative of GI with respect to phi
GT	Partial derivative of GI with respect to theta
GU	Partial derivative of GI with respect to UR
GV	Partial derivative of GI with respect to VR
IVD	Stored number of steps used in iteration
LNRFLD	Flag to indicate near-field (LNRFLD = 1) or far-field (LNRFLD = 0) calculations were requested
LRDC	Set true if starting point data are avail- able from previous pattern angle
ME	Edge on plate MP where diffraction occurs
MEP	Array which contains the number of edges on each plate
MP	Plate where diffraction occurs
PHCR	Phi component of diffracted ray direction used in iteration
PHOR	Phi component of diffracted ray direction from previous time RFDFPT was called (or present value for next time routine is called)
PHORP, PHSPR	Phi angle of diffracted ray direction in rotated RCS system (branch cut placed behind cylinder)
PHSR	The phi angle of the observation direction
PHWR	Branch cut displacement angle for the diffraction point along edge ME of plate MP
PI	π
SNM	Normalization constant for cylinder tangent

SNPX

Partial derivative of SNX with respect to angle $\ensuremath{\mathsf{VR}}$

SNPY	Partial derivative of SNY with respect to angle VR
SNX	X component of normal to cylinder
SNY	Y component of normal to cylinder
STP	Number of steps used in iteration
THCR	Theta component of diffracted ray direction used in iteration
THOR	Theta component of diffracted ray direction from previous time RFDFPT was called (or for next time routine is called)
THSR	The theta angle of the observation direction
TPI	2π
UCD	Z component of reflection point location on cylinder for cylinder-reflected ray diffracted by a corner on edge ME of plate MP used as the starting point if previous data do not exist
UR	Z component of reflection point location on cylinder
URO	Stored components defining z component of starting reflection point locations on cylinder
V	Matrix of edge unit vectors for all edges of all plates
VCD	Elliptical angle defining reflection point on cylinder (2-D) for ray which is reflected by cylinder and diffracted by a corner on edge ME of plate MP used for the starting point location if previous data do not exist
VI	X,Y,Z components of unit vector of ray incident on cylinder
VIM	Distance from source to reflection point

VIU Partial derivative of VI with respect to UR VIV Partial derivative of VI with respect to angle VR VR Elliptical angle defining reflection point on cylinder (2-D) **VRO** Stored elliptical angles defining starting reflection point locations on cylinder X Matrix which contains all the corner locations for all the plates XD X,Y,Zcomponents of diffraction point location XR X,Y,Zreflection components of point location on cylinder XS The x,y,z components of the source location in RCS I/O VARIABLES:

5.

۹.	INPUT	LOCATION
	A	/GEOMEL/
	В	/GEOMEL/
	BCD	/BNDRCL/
	D	/DIR/
	DE	F.P.
	FLDPT	/NEAR/
	LNRFLD	/NEAR/
	LRDC	F.P.
	LUPRNT	/ADEBUG/
	ME	F.P.
	MEP	/GEOPLA/

F.P. MP /D1R/ PHSR /BRNPHW/ **PHWR** ΡI /F1S/ THSR /DIR/ TPI /PIS/ UCD /BNDRCL/ /GEOPLA/ ٧ VCD /BNDRCL/ X /GEOPLA/ XS /SORINF/ OUTPUT LOCATION в. F.P. DOTP OR F.P. F.P. DRM LRDC F.P. F.P. SNM F.P. ۷I F.P. VIM ۷R F.P.

6. CALLING ROUTINES:

XD

XR

DPLRCL

RCLDPL

F.P.

F.P.

7. CALLED ROUTINES:

BTAN2

DFPTWD

NFD

8. REFERENCE:

A. R. J. Marhefka, "Analysis of Aircraft Wing-Mounted Antenna Patterns," Report 2902-25, June 1976, The Ohio State University ElectroScience Laboratory, Department of Electrical Engineering; prepared under Grant No. NGL 36-008-138 for National Aeronautics and Space Administration.

Control of the second of the control of the control

1. NAME: RFPTCL (GTD)

KARRA TOTALIA CARRAGE PRESENT SOFTERE

- 2. PURPOSE: To calculate the reflection point on the elliptic cylinder for a source ray reflected in a given direction. The routine also computes cylinder reflection points for source rays that are reflected by a given plate and then reflected by the cylinder.
- METHOD: Figures 1, 2 and 3 show the geometry involved. The reflec-3. tion point for a ray reflected in a direction defined by the phi angle PHSR is calculated via an iterative process. The routine starts with the tangent ray nearest to the reflected ray direction (or other nearby reflected ray whose reflection point is known) and steps along the cylinder surface, calculating the approximate reflection point for each reflected ray phi angle PHPR (which is stepped from PHOR to PHSR in evenly spaced steps). Each reflection point calculation uses the previous reflection point as a reference. As long as the steps are sufficiently small, the approximation is The equations are based on a first order Taylor series accurate. approximation of the equation governing the laws of reflection. Further details are given on pages 102-104 of reference A. point obtained at the end of the process is the estimated reflection The routine then takes the sum of dot products of the cylinder normal and the incident and reflected rays (which should be zero in order to satisfy the law of reflection). If it is larger than some minimal amount, the number of iteration steps for angle PHPR is doubled and the calculation is redone. If the error is much smaller than necessary, the number of steps used in the next calculation is divided by two.

Once a reflection point is calculated for a particular geometry, the elliptical angle defining the reflection point (VRO(MR)) is saved, along with the number of steps used to calculate it (IVD(MR)) for the next time RFPTCL is called for the same geometry. Since the next pattern angle is likely to be quite close to the previous one, this gives the computer a good starting point in defining the next reflection point, hence minimizing computer time. LRFC is a logical variable which if true tells the user that there are data from the previous pattern angle available to compute the next reflection point. If a reflection does not occur, LRFC is set false, and the next time the routine is called, it will start at the nearest tangent point.

An important note to users is that if the same problem is run with a different starting angle or with a different angle increment, the answers may not be precisely the same due to the iterative approach.

Figure 1. Illustration of Cylinder Reflection Point

Figure 2. Geometry for Calculating Reflection Point

= \hat{x} A CSV + \hat{y} B SNV

Figure 3. Illustration of Iterative Method Used in Computing the Cylinder Reflection Point

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
A	Radius of cylinder along the x axis
В	Radius of cylinder along the y axis
BTI	This defines unit vectors for the two rays reflected by each plate and tangent to the cylinder. The unit vector for the source ray reflected from plate MP tangent to tangent point 1 is given by: $T1 = \hat{x} * BTI(MP,1) + \hat{y} * BTI(MP,2)$

The unit vector for the source ray reflected from plate MP tangent to tangent point 2 is given by:

$$\stackrel{\wedge}{\mathbf{T2}} = \mathbf{x} * \mathbf{BTI}(\mathbf{MP}, 3) + \mathbf{\hat{y}} * \mathbf{BTI}(\mathbf{MP}, 4)$$

BTS

This defines unit vectors of the two source rays tangent to the cylinder. The unit vector for the source ray tangent to tangent point 1 is given by:

$$\stackrel{\wedge}{\text{T1}} = \stackrel{\wedge}{\mathbf{x}} * \text{BTS}(1) + \stackrel{\wedge}{\mathbf{y}} * \text{BTS}(2)$$

The unit vector for the source ray tangent to tangent point 2 is given by:

$$\stackrel{\wedge}{\mathbf{T2}} = \stackrel{\wedge}{\mathbf{x}} * \mathbf{BTS}(3) + \stackrel{\wedge}{\mathbf{y}} * \mathbf{BTS}(4)$$

CPP Cosine of PHPR

CPS Cosine of PHSR

CSV Cosine of VR

DD Normalization constant for reflection point

normal vector

DOTP One half the difference between the dot

products of the reflected ray direction and cylinder unit normal and the incident ray

direction and cylinder unit normal

DPSR Size of angle step used in iteration

DPX.DPY X and Y components of partial derivative of

reflected ray direction with respect to phi

observation angle

DR Dot product of incident ray unit vector and

cylinder unit normal

DS Dot product of reflected ray propagation

direction unit vector and cylinder unit

normal

DV Change in angle VR

REPTCL (GTD)

DVB	Partial derivative of the reflection law equation (FI) with respect to elliptical angle VR
DVT	Partial derivative of the reflection law equation (FI) with respect to the phi angle of the observation direction
DX,DY	X and Y components of unit vector of reflected ray (direction defined by angle PHPR) in RCS
ERC	Error parameter (sum of DS and DR)
ERCA	Absolute value of ERC
FI	Equation satisfying the law of reflection
IVD	Number of iterations used to find reflec- tion point the last time RFPTCL was called for plate MP
IVDM	Number of steps used in iteration
LRFC	(Entering routine) set true if reflection occurred last time REFCYL was called. (LRFC set true when leaving routine if reflection occurred this time)
MP	Used to specify whether source or source image is used MP=0 designates source MP>0 designates source image for reflection from plate MP
MPXR	Maximum number of plates present
MR	Index variable (MP+MPXR+I) for storing data for next call to RFPTCL
PHE	Phi angle between reflected ray direction and tangent point 2
PHEP	Phi angle between reflected ray direction and tangent point $\boldsymbol{1}$
PHIR	Phi component of source location in RCS

GENERAL ELECTROMAGNETIC MODEL FOR THE ANALYSIS OF COMPLEX SYSTEMS (GEMACS. (U) BDM CORP ALBUQUERQUE ND L KADLEC ET AL SEP 83 BDM/A-83-020-TR-V0L-3-PT-3 RADC-TR-83-217-V0L-3-PT-3 F30602-81-C-0084 F/G 20/14 AD-A137 509 2/5 UNCLASSIFIED NL

Contraction of the second second

RFPTCL (GTD)

PHOR Reflected ray phi angle (stored as starting

point parameter for next time routine is

called)

PHORB Phi angle defining ray tangent to tangent

point 1

PHORP Phi angle of cylinder reflected ray direc-

tion in rotated RCS

PHPR Reflected ray phi angle (iterated from PHOR

to PHSR)

PHSPR Phi angle defining reflected ray direction

in rotated RCS

PHSR Phi component of reflected ray propagation

direction in RCS

PΙ π

S Distance from source to reflection point in

x-y plane

SIPX, SIPY X and Y components of partial derivative of

incident ray vector with respect to ellip-

tical angle VR

SIX, SIY X and Y components of incident ray propaga-

tion vector in RCS (not always normalized)

SNPX, SNPY X and Y components of partial derivative of

cylinder normal at reflection point with

respect to elliptical angle VR

SNV Sine of VR

SNX, SNY X and Y components of ray normal to

cylinder reflection point in RCS (not

always normalized)

SPP Sine of PHPR

SPS Sine of PHSR

STP Number of steps used in iteration

TPI 2m

RFPTCL (GTD)

VR Elliptical angle defining reflection point in RCS x-y plane

VRO

Elliptical angles defining tangent points
for source ray (or source ray reflected
from plate) tangent to cylinder

Array of elliptical angles defining for each plate the two tangent points on the cylinder for rays which are reflected from that plate

Consists of two elliptical angles defining the two tangent points on the cylinder from the source

Array which contains the source image locations in wavelengths for all plate single and double reflections

XIS Source location

XS X,Y and Z components of source location

5. I/O VARIABLES:

VTI

VTS

XI

A. INPUT LOCATION

A /GEOMEL/

B /GEOM.L/

BTI /BNDICL/

BTS /BNDSCL/

LRFC F.P.

LUPRNT /ADEBUG/

MP F.P.

MPXR /GROUND/

PHSR F.P.

PI /PIS/

TPI /PIS/

VTI

/BNDICL/

VTS

/BNDSCL/

XI

/IMAINF/

XS

/SORINF/

B. OUTPUT

LOCATION

DD

F.P.

DOTP

F.P.

LRFC

F.P.

S

F.P.

VR

F.P.

6. CALLING ROUTINES:

RCLRPL

REFCYL

RPLRCL

7. CALLED ROUTINE:

BTAN2

- 8. REFERENCE:
 - A. R. J. Marhefka, "Analysis of Aircraft Wing-Mounted Antenna Patterns," Report 2902-25, June 1976, The Ohio State University ElectroScience Laboratory, Department of Electrical Engineering; prepared under Grant No. NGL 36-008-138 for National Aeronautics and Space Administration.

Page 1 of 2

- 1. NAME: ROMBNT (GTD, MOM)
- 2. PURPOSE: To numerically compute the integral of the function exp (-jkr)/kr for a wire segment or $[(1/kr)^3 + j(1/kr)^2]$ exp (-jkr) for a patch observation point.
- 3. METHOD: To evaluate the field due to a segment, a local cylindrical coordinate system is defined with origin at the center of the segment and z axis in the segment direction. This geometry is illustrated in the discussion of subroutine TNEFLD. Subroutine ROMBNT is called by subroutines TNEFLD and SOURCE to evaluate the integral

$$G = \int_{-k\Lambda/2}^{k\Delta/2} \frac{e^{-jkr}}{kr} d(kz)$$

where

$$r = \left[\rho'^2 + (z - z')^2\right]^{1/2}$$

and other symbols are defined in the discussion of subroutine TNEFLD. To evaluate the magnetic field at a patch observation point, this subroutine is called by the subroutine TNHFLD to evaluate the integral

$$G = \int_{-k\Delta/2}^{k\Delta/2} \left[\frac{1}{(kr)^3} + \frac{i}{(kr)^2} \right] e^{-jkr} d(kz)$$

The numerical integration technique of Romberg integration with variable interval width is used. The Romberg integration formula is obtained from the trapezoidal formula by an iterative procedure (see reference A). The trapezoidal rule for integration of the function f(x) over an interval (a, b) using 2^k subintervals is

$$T_{0k} = (b - a)/N$$
 $\left[1/2 f_0 + f_1 + ... + f_{N-1} + 1/2 f_N\right]$

where

$$N = 2^{k}$$

$$f_{i} = f(x_{i})$$

$$x_{i} = a + i (b - a)/N$$

These trapezoidal rule answers are then used in the iterative formula

$$T_{m,n} = 1/(4^m - 1)$$
 $\left| 4^m T_{m-1,n+1} - T_{m-1,n} \right|$

The results T_{mn} may be arranged in a triangular matrix of the form

where the elements in the first column, T_{0k} , represent the trapezoidal rule results and the elements in the diagonal, T_{k0} , are the Romberg integration results for 2^k subintervals.

Convergence to increasingly accurate answers takes place down the first column and the diagonal as well as toward the right along the rows. The row convergence generally provides a more realistic indication of error magnitude than two successive trapezoidal rule or Romberg answers.

This convergence along the rows is used to determine the interval width in the variable interval width scheme. The complete integration interval is first divided into a minimum number of subintervals (presently set to one) and T_{00} , T_{01} , and T_{10} are computed on the first subinterval. The relative difference of T_{01} and T_{10} is then computed and if less than the error criterion, $R_{\rm X}$, T_{10} is accepted as the integral over that interval and integration proceeds to the next interval. If the difference of T_{01} and T_{10} is too great, T_{02} , T_{11} , and T_{20} are computed. The relative difference of T_{11} and T_{20} is then computed and if less than $R_{\rm X}$, T_{20} is accepted as the integral over the subinterval. If the difference of T_{11} and T_{20}

is too great, the subinterval is divided in half and the process repeated starting with T_{00} for the new left-hand subinterval. The subinterval is repeatedly halved until convergence to less than $R_{\rm X}$ is found. The process is repeated for successive subintervals until the right-hand side of the integration interval is reached. When convergence has been obtained with a given subinterval size, the routine attempts doubling the subinterval size for a few times to maintain the largest subinterval size that will give the required accuracy. Thus, the routine will use many points in a rapidly changing region of a function and few points where the function is smoothly varying.

Since the function to be integrated is complex, the convergence of both real and imaginary parts is tested and both must be less than $R_{\rm X}$. The same subinterval sizes are used for real and imaginary parts.

When the field of a segment is being computed at the segment's own center the length r becomes

$$r = \left[b^2 + (z - z')^2\right]^{1/2}$$

where b is the wire radius. For small values of b, the real part of the integrand is sharply peaked and hence difficult to integrate numerically. Therefore, the integral is divided into the components

$$G' = \int_{-k\Delta/2}^{k\Delta/2} \frac{e^{-jkr}-1}{kr} d(kz)$$

$$G'' = \int_{-k\Delta/2}^{k\Delta/2} \frac{1}{kr} d(kz)$$

$$G = G' + G''$$

G' must be computed numerically, however the integrand is no longer peaked. G'', which contains the sharp peak, can be computed as

$$G'' = 2\log \left[(\sqrt{b^2 + \Delta^2} + \Delta)/b \right]$$

To further reduce integration time for the self term, the integral of G' is computed from $-k\Delta/2$ to 0 and the result doubled to obtain G'.

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
ВК	Wire radius, b
DZ	Subinterval size on which T_{00} , T_{01} ,are computed
DZOT	0.5 DZ
EL1	-k∆/2
EL2	kΔ/2
EP	Tolerance for ending the integration interval $k\Delta/\text{NM} \!$
FNM	Real number equivalent of NM
FNS	Real number equivalent of NS
G1I	Imaginary part of f ₁
G1R	Real part of f
G2I	Imaginary part of f ₂
G2R	Real part of f ₂
G31	Imaginary part of f ₃
G3R	Real part of f ₃
G4I	Imaginary part of f ₄
G4R	Real part of f ₄
G51	Imaginary part of f ₅
G5R	Real part of f ₅

ROMBNT (GTD, MOM)

IJ	Indicates self-term integration when equal to zero, or patch observation point when equal to one
NM	$65536 = 2^{16}$
NS	Present subinterval size is kΔ/NS
NT	Counter to control increasing of sub- interval size
NTS	Larger values retard increasing of sub- interval size
NX	Maximum allowed subinterval size is $k\Delta/NX$
RX	$R_{\mathbf{x}}$
SGI	Imaginary part of G
SGR	Real part of G
SS	Δ
TE1I	Relative difference of T_{01} and T_{10} for imaginary part
TE1R	Relative difference of T_{01} and T_{10} for real part
TE2I	Relative difference of T_{11} and T_{20} for imaginary part
TE2R	Relative difference of T_{11} and T_{20} for real part
100T	Imaginary part of T ₀₀
TOOR	Real part of T ₀₀
T011	Imaginary part of T ₀₁
TO1R	Real part of T ₀₁
T02I	Imaginary part of T _{O2}
TO2R	Real part of T _{O2}
T10I	Imaginary part of T ₁₀

ROMBNT (GTD, MOM)

T10R Real part of T_{10}

T11I Imaginary part of T_{11}

T11R Real part of T_{11}

T20I Imaginary part of T₂₀

T20R Real part of T₂₀

Z Integration variable at left-hand side of

subinterval

ZE $k\Delta/2$

ZEND $k\Delta/2$ - EP (EP = tolerance term)

ZP Integration variable

5. I/O VARIABLES:

A. INPUT LOCATION

BK F.P.

EL1 F.P.

EL2 F.P.

IJ F.P.

B. OUTPUT LOCATION

ICALL /ADEBUG/

NUMWRD /ADEBUG/

SGI F.P.

SGR F.P.

6. CALLING ROUTINES:*

SOURCE (2)

TNEFLD (3)

TNHFLD (3)

*2-GTD 3-MOM

ROMBNT (GTD, MOM)

7. CALLED ROUTINES:

ASSIGN

CNVTST

NTGRAN

STATIN

STATOT

WLKBCK

8. REFERENCES:

CHARLE COUNTY CONTROL OF THE STATE OF THE ST

A. A. Ralston, "A First Course in Numerical Analysis," McGraw-Hill, 1965, p. 212.

CONTROL STREET, SECTION

- 1. NAME: ROTATE (GTD, INPUT)
- 2. PURPOSE: To rotate a point to or from the origin of a given coordinate system.
- 3. METHOD: The coordinates of a point rotated in a given coordinate system are given by

$$\begin{bmatrix} X' \\ Y' \\ Z' \end{bmatrix} = \begin{bmatrix} R_{\mathbf{Z}} \end{bmatrix} \cdot \begin{bmatrix} R_{\mathbf{Y}} \end{bmatrix} \cdot \begin{bmatrix} R_{\mathbf{X}} \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

where

$$\begin{bmatrix} R_{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \Psi & -\sin \Psi \\ 0 & \sin \Psi & \cos \Psi \end{bmatrix}$$

$$\begin{bmatrix} R_{y} \end{bmatrix} = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$$

$$\begin{bmatrix} R_z \end{bmatrix} = \begin{bmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

and Ψ , θ , ϕ are the rotation angles about the x, y, and z axis respectively.

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
Anna	The components of the rotation matrix
СР	cosф
CS	cosy
СТ	cosθ
NOP	Operation code to designate rotation from or to the origin
PHI	φ, the rotation about the z axis

ROTATE (GTD, INPUT)

PHISV Saved value of PHI

PSI Ψ , the rotation about the x axis

PSISV Saved value of PSI

RX,RY,RZ Rotation angle about the x, y, and z axis,

respectively

SP sind

SS sin¥

ST sin0

THETA θ , the rotation about the y axis

THTSV Saved value of THETA

X,Y,Z Coordinates of input/output variables to be

changed

5. I/O VARIABLES

される。「これにはないない」というとはない。

A. INPUT LOCATION

ISOFF /ADEBUG/

NOP F.P.

RX,RY,RZ F.P.

X,Y,Z F.P.

B. OUTPUT LOCATION

X,Y,Z F.P.

6. CALLING ROUTINES:*

COORDS (1)

CYAXIS (2)

GTDCS (1)

PATCH (1)

WYRDRV (1)

*1-INPUT 2-GTD ROTATE (GTD, INPUT)

7. CALLED ROUTINES:

ASSIGN

STATIN

STATOT

WLKBCK

- 1. NAME: ROTRAN (GTD)
- 2. PURPOSE: To transform and rotate a point or vector defined in the global coordinate system (as stored in the segment table SEGTBL) to the cylinder-centered reference coordinate system (RCS) used for the GTD calculations.
- 3. METHOD: The point X_X defined in the global coordinate system may be represented by point X_{rt} in the cylinder-centered RCS where (refer to figure 1):

$$\overline{X}_{tt} = \left[V_{cl}\right]\overline{X}_{t}$$
, where $\overline{X}_{t} = \overline{X}_{x} - \overline{X}_{o}$

or

where \vec{x}_0 is the location of the cylinder-centered RCS origin defined in the global coordinate system and \hat{x} , \hat{y} , \hat{z} are unit vectors defining the cylinder centered RCS axes in global coordinate system (g) components:

$$\hat{x} = \hat{x}_{g} \text{ XCL}(1) + \hat{y}_{g} \text{ XCL}(2) + \hat{z}_{g} \text{ XCL}(3)$$

$$\hat{y} = \hat{x}_{g} \text{ YCL}(1) + \hat{y}_{g} \text{ YCL}(2) + \hat{z}_{g} \text{ YCL}(3)$$

$$\hat{z} = \hat{x}_{g} \text{ ZCL}(1) + \hat{y}_{g} \text{ ZCL}(2) + \hat{z}_{g} \text{ ZCL}(3).$$

Figure 1. Illustration of Old and New Reference Coordinate Systems

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
XCL	This defines the cylinder-centered reference coordinate system x axis unit vector in global system components
XO	X,Y, and Z components of the cylinder- centered reference coordinate system origin location defined in the global coordinate system
XRT	X,Y, and Z components of point location in RCS
XT	X,Y, and Z components of point location after translating global coordinate system origin to point XO
XX	X,Y, and Z components of point location in global coordinate system
YCL	This defines the cylinder-centered reference coordinate system y axis in global reference system components

ROTRAN (GTD)

ZCL

This defines the cylinder-centered reference coordinate system z axis in global reference system components

5. I/O VARIABLES:

A. INPUT

LOCATION

XCL

/ROTRDT/

XO

F.P.

XX

F.P.

YCL

/ROTRDT/

ZCL

/ROTRDT/

B. OUTPUT

LOCATION

XRT

F.P.

6. CALLING ROUTINE:

GTDDRV

7. CALLED ROUTINE:

NONE

- 1. NAME: RPLDPL (GTD)
- 2. PURPOSE: To calculate the unobstructed electric field for a unit source ray that is reflected off plate MR and diffracted by edge ME on plate MP into a given far-field observation direction or to a given near-field observation point.
- 3. METHOD: RPLDPL is the driver routine to compute the plate-reflected and then edge-diffracted fields. Pertinent geometry is shown in figure 1 and computation details are given in references A-C. The fields are first initialized to zero. Then the diffraction point on edge ME of plate MP is found for the given observation direction or point based on the location of the source imaged through plate MR. The diffraction point is computed in subroutine DFPTWD. If diffraction did not occur, debug information (if requested) is printed on file LUBRNT and control is returned to the calling routine. If diffraction did occur on the vector tangent to the edge, the point location is checked to see if it is between the corners. If it is not, the diffraction point is set at the closest corner and a flag, LDIF, is set to indicate only corner-diffracted fields exist.

Figure 1. Illustration of a Ray Reflected by a Plate and Then Diffracted by a Plate Edge

Now the ray path is checked for any obstructions. If the path is shadowed, debug information (if requested) is printed and control returns to the calling routine. If the path is clear the field computations begin.

First, necessary diffraction angles and geometry are calculated. Then the source field pattern factor is found by calling subroutine SOURCE and is multiplied by the reflection coefficient. Then the incident field perpendicular and parallel to the edge can be computed.

If slope diffraction is requested, the incident slope field pattern factor is computed by calling subroutine SOURCP. This factor also must be multiplied by the reflection coefficient to account for axis direction changes due to single reflection.

The phase term is now computed. The edge diffraction coefficient is determined in subroutine DW. Now the edge-diffracted fields are computed, first in terms of a parallel and perpendicular orientation and then in theta and phi components. By calling subroutine XYZFLD the x, y, z components of the edge-diffracted field are computed and accumulated with all other fields computed by other reflection and diffraction interactions.

If corner diffraction was requested, the far-field corner-diffracted fields are computed for each corner on edge ME in the same manner as for the edge diffraction.

After all fields have been computed and the x, y, z components accumulated, debug information (if requested) is printed on file LUPRNT. This consists of the field magnitude and theta and phi components of the total field. Control is then returned to the calling routine.

4. INTERNAL VARIABLES:

The second second second second second

VARIABLE	DEFINITION
ADN	Dot product of vector from plate MP to the source image and the plate unit normal
AFN	Wedge angle number
BETN	Difference in diffracted and incident phi angles
BETP	Sum of diffracted and incident phi angles
ВО	Diffracted field beta polarization unit vector in diffraction edge-fixed coordinate system (in x,y,z RCS components)
ВОР	Incident field beta polarization unit vector in diffraction edge-fixed coordinate system (in x.y.z RCS components)

BRD Lower and upper limit for edge diffraction angle CNP Cosine of half wedge angle CORN Corner diffraction coefficient **CPH** Cosine of PSR **CPHJ** Cosine of PHJR **CPHO** Cosine of PSOR CTH Cosine of THR Cosine of THJR **CTHJ CTHP** Cosine of THPR DEL Parameter used in transition function DH Diffraction coefficient for hard boundary condition DHIR Distance from reflection point to diffraction point DHIT Distance from source to reflection point (from PLAINT) DHT Distance from source to hit point (from PLAINT and CYLINT) Edge diffraction coefficient (from subrou-DIN tine DICOEF) for incident diffracted field DIP Edge diffraction coefficient (from subroutine DICOEF) for reflected diffracted field DPH Slope diffraction coefficient for hard boundary condition **OPS** Slope diffraction coefficient for soft boundary condition DS Diffraction coefficient for soft boundary condition

Dot product of edge unit vector and

diffracted ray propagation direction unit

vector

ECPH Phi component of corner-diffracted E-field

ECTH Theta component of corner-diffracted

E-field

EDPH Phi component of edge-diffracted E-field

EDPL Component of diffracted field parallel to

the edge

EDPR Component of diffracted field perpendicular

to the edge

EDTH Theta component of edge-diffracted E-field

EF Theta component of corner-diffracted

E-field in RCS

EG Phi component of corner-diffracted E-field

in RCS

EIPL Component of incident field parallel to the

edge

EIPLP Pattern factor for component of incident

slope field parallel to the edge

EIPR Component of incident field perpendicular

to the edge

EIPRP Pattern factor for component of incident

slope field perpendicular to the edge

EIX, EIY, EIZ Source pattern factor for x, y, and z compo-

nents of incident E-field

EXPH Complex phase term

FN Wedge angle number

FNN Wedge angle indicator

FNP Angle exterior to wedge in degrees

GAM	Dot product of the diffracted ray direction and the vector from the origin to the diffraction point
ISN	Sign change variable
J	Index variable
LDIF	Logical variable set true if diffraction point is on edge tangent but not within corners. (The diffraction is set to the closest corner)
LDIFFR	Logical variable set true if edge diffrac- tion exists (from subroutine DFPTWD)
LHIT	Set true if ray hits a plate or cylinder (from PLAINT or CYLINT)
MC	Index variable used to step through corners
ME	Edge on plate MP where diffraction occurs
MEC	Corner at end of edge ME
MP	Plate for which diffraction occurs
MR	Plate where reflection occurs
N	DO loop variable
NI	DO loop variable
NJ	DO loop variable
PD	Dot product of diffraction edge binormal and diffracted ray propagation direction
РН	Diffracted field phi polarization unit vector in diffraction edge-fixed coordinate system (in x,y,z RCS components)
PHIR	Phi component of reflected ray propagation direction in RCS
PHJR	Phi component of incident (source) ray propagation direction

PHO PHO	Incident field phi polarization unit vector in diffraction edge-fixed coordinate system (in x,y,z RCS components)
PHSR	Phi component of ray propagation direction after diffraction in RCS
PP	Negative dot product of diffraction edge binormal and incident ray unit vector
PS	PSR*DPR
PSD	Diffracted ray phi angle in edge-fixed coordinate system
PSO	PSOR*DPR
PSOD	Incident ray phi angle in edge-fixed coor- dinate system
PSOR	Phi component of incident ray direction in edge-fixed coordinate system
PSR	Phi component of diffracted ray propagation direction in edge-fixed coordinate system
QD	Dot product of diffraction plate normal and diffracted ray propagation direction
Į	Negative of dot product of diffracted plate normal and incident ray propagation direc- tion
SBO	Sine of BO, the angle the diffracted ray makes with the edge
SNF	Distance between diffraction point and near-field observation point
SNP	Sine of half wedge angle
SP	Distance from source image to diffraction point (from subroutine DFPTWD)
SPH	Sine of PSR
SPHJ	Sine of PHJR
SPHO	Sine of PSOR

SPP	⇒Distance from source image to modified diffraction point
STHJ	Sine of THJR
STHR	Sine of THR
TERM	Coefficient of corner-diffracted fields
THIR	Theta component of reflected ray direction in RCS
THJR	Theta component of incident (source) ray propagation direction
THPR	Angle diffracted ray makes with edge
THR	Angle between edge unit vector and ray from source image location to corner MC
ТРР	Distance parameter used in calculating diffraction coefficients
VAX	3 X 3 matrix defining the source image coordinate system axes
VC	Unit vector from source image to corner 1 or 2 of edge ME
VCM	Distance from source image to corner 1 or 2 of edge ME
VECT	Vector used to move diffraction point off edge for shadowing tests
VI	Unit vector of ray incident on edge from plate reflection (from subroutine DFPTWD)
VIP	Unit vector of ray from source image to modified diffraction point
VJ	X,Y, and Z components of source ray propagation direction
VMG	Distance along the edge from first corner of edge to diffraction point
X1	Single reflection source image location

XC Corner location

XD Diffraction point (calculated in subroutine

DFPTWD) in RCS

XD1 Diffraction point location

XDP Modified diffraction point used for

shadowing tests

XIS Source image location (for reflection from

plate MR)

XS Source location in RCS

XSS Single reflection source image location

ZP Dot product of propagation direction unit

vector and vector from diffraction point to

corner MC

5. I/O VARIABLES:

A. INPUT LOCATION

D /DIR/

DP /THPHUV/

DPR /PIS/

DT /THPHUV/

FLDPT /NEAR/

FNN F.P.

LCORNR /LOGDIF/

LDEBUG /TEST/

LNRFLD /NEAR/

LSLOPE /LOGDIF/

LSURF /SURFAC/

LUPRNT /ADEBUG/

ME F.P.

MEP /GEOPLA/

MP F.P.

MR F.P.

PHSR /DIR/

PI /PIS/

THSR /DIR/

TPI /PIS/

V /GEOPLA/

VMAG /EDMAG/

VN /GEOPLA/

VP /GEOPLA/

VXI /IMAINF/

X /GEOPLA/

XI /IMAINF/

XS /SORINF/

B. OUTPUT LOCATION

ECPH F.P.

ECTH F.P.

EDPH F.P.

EDTH F.P.

6. CALLING ROUTINE:

GTDDRV

7. CALLED ROUTINES:

ASSIGN

BEXP

BTAN2

CYLINT

DFPTWD

DICOEF

DW

FFCT

NFD

PLAINT

REFBP

SMAGNF

SOURCE

SOURCP

STATIN

STATOT

TPNFLD

WLKBCK

XYZFLD

8. REFERENCES:

A. R. G. Kouyoumjian and P. H. Pathak, "A Uniform Geometrical Theory of Diffraction for an Edge in a Perfectly Conducting Surface," Proc. IEEE, Vol. 62, November 1974, pp. 1448-1461.

- B. W. D. Burnside and P. H. Pathak, "A Corner Diffraction Coefficient," to appear.
- C. Y. M. Hwang and R. G. Kouyoumjian, "A Dyadic Diffraction Coefficient for an Electromagnetic Wave Which Is Rapidly Varying at an Edge," USNC-URSI 1974 Annual Meeting, Boulder, CO., Oct. 1974.

- 1. NAME: RPLRCL (GTD)
- 2. PURPOSE: To compute the unobstructed electric field from a unit source reflected by plate MP and then reflected by the cylinder into the far-field observation direction or to the near-field observation point.
- 3. METHOD: RPLRCL functions as a service routine for subroutine RPLSCL, where the actual plate-cylinder fields are computed. The geometrical optics reflected field components ETH and EPH computed in RPLRCL are used only for reference purposes. The field components calculated in RPLRCL, which are used in RPLSCL, are the hard and soft components of the plate-reflected field incident on the cylinder at the reflection point. These components, along with several other useful parameters, are passed to subroutine RPLSCL through common block FUDGI. Pertinent geometry is shown in figure 1.

Figure 1. Illustration of Plate-Reflected, Cylinder-Reflected Ray

The code first makes two checks to determine if it is possible for reflection to occur off the cylinder. One check determines if the observation direction or point is in the lit or dark geometrical optic region of the cylinder. The other check is to determine if the observation direction or point is in the paraxial region beyond the end caps. If reflection cannot occur, a flag is set to indicate starting data are not available for the next time subroutine RPLRCL is called. Another flag is also set to indicate the field does not exist. The fields are set to zero and control is returned to the calling routine.

If cylinder reflection could occur, the reflection point is determined by calling subroutine RFDFIN for near-field calculations and subroutine RFPTCL for far-field calculations. The code then checks to see if the cylinder reflection point is beyond the cylinder end If it is, a flag is set to indicate that the geometrical optics field does not exist. The fields are set to zero and control is returned to the calling routine. If the reflection point is on the curved surface of the cylinder, the ray path from the cylinder reflection point in the far-field observation direction or to the near-field observation point is checked for obstructions. code checks to see if reflection occurs from plate MP. remainder of the complete ray path is checked for obstructions. at any point the ray path is shadowed or reflection does not occur from plate MP, the code sets a flag to indicate that the geometrical optics field does not exist. Those fields are set to zero and control is returned to the calling routine.

If the plate and cylinder reflections do occur, and the ray path is not obstructed, the field computations can begin. First, the source field pattern factor is found by calling subroutine SOURCE. The source factor is then multiplied by the reflection coefficient. Next, the polarization unit vectors perpendicular and parallel to the plane of incidence are computed. These are used to compute the incident field components parallel and perpendicular to the plane of incidence. The plate-reflected field components parallel and perpendicular to the plane of incidence are then computed. Next, the theta and phi components of the reflected field are computed. The subroutine then ends by computing the theta and phi components of the hard and soft field components incident upon the cylinder.

4. INTERNAL VARIABLES:

VARIABLE DEFINITION

CTHW Dot product of cylinder normal and reflec-

tion propagation direction unit vector

CW Cosine of WR

D	Propagation direction after cylinder reflection in x , y , z RCS components
01	Direction unit vector used for determining if cylinder reflection is possible
02	Direction unit vector used for determining if cylinder reflection is possible
DD	X-Y distance from the z axis to the cylinder reflection point
DD1	Dot product of unit vector of propagation direction and cylinder tangent unit vector through tangent point 1 (2-D)
DD2	Dot product of unit vector of propagation direction and cylinder tangent unit vector through tangent point 2 (2-D)
DHIS	Distance from reflection point on plate to reflection point on the cylinder
DHIT	Distance from source to hit point (from PLAINT)
DHT	Distance to hit point (from subroutine PLAINT)
DICOEF	X,Y, and Z components of incident ray direction on cylinder in RCS
DOTP	Variable used to indicate if reflection occurred and satisfied Snell's Law
DJ	X,Y,Z components of propagation direction of ray incident on plate
DXY	Dot product of vector from origin to source image location and propagation direction (2-D)
EF	Pattern factor of theta component of incident field in RCS
EG	Pattern factor of phi component of incident field in RCS

ЕНРНІ	Phi component of the hard component of field incident on cylinder (parallel to plane of incidence)
ЕНТНІ	Theta component of the hard component of field incident on cylinder (parallel to plane of incidence)
EIPP	Incident cylinder field component parallel to plane of incidence
EIPR	Incident cylinder field component perpendicular to plane of incidence
EPH	Phi component of cylinder-reflected E-field
ERPP	Cylinder-reflected field component parallel to plane of incidence
ERPR	Cylinder-reflected field component perpendicular to plane of incidence
ERX,ERY,ERZ	X,Y,Z components of field incident on (or reflected from) cylinder in RCS
ESPHI	Phi component of the soft component of field incident on cylinder (perpendicular to plane of incidence)
ESTHI	Theta component of the soft component of field incident on cylinder (perpendicular to plane of incidence)
ETH	Theta component of cylinder-reflected E-field
EX,EY,EZ	Pattern factor of x,y,z components of source field incident on cylinder in RCS
FPTXY	Location of field point in $z=0$, $x-y$ plane
LHIT	Set true if ray hits plate (from PLAINT)
LRFI	Set true if reflection data are available from previous pattern angle (or for next pattern angle (when leaving routine))

LTRFI Set true if geometrical optics reflected-

reflected field does not exist

MP Plate on which reflection occurs

ORIGIN The origin of the reference coordinate

system (RCS) (0., 0., 0.)

PH Complex phase and ray spreading coefficient

PHIR Phi component of incident ray direction on

cylinder

PHJR Phi angle for direction of ray incident on

plate

PHSR1 Phi angle of D1

PHSR2 Phi angle of D2

RHO1I Ray spreading radius in plane of cylinder

curvature at reflection point

RHO2 Ray spreading radius normal to plane of

incidence at reflection point

S Distance from source image to cylinder

reflection point

SMAGI Length of ray from reflection point on

cylinder to source image

SNF Distance between field point and cylinder

reflection point

SQRH Part of spr:ading factor

SXN,SYN,SZN X,Y, and Z components of unit vector of

ray from reflection point on cylinder to

source image location in RCS

THIR Theta component of incident ray direction

on cylinder

THJR Theta angle which defines direction of ray

incident on plate

THSR1 Theta angle of D1

THSR2	Theta angle of D2
UB	Unit vector of binormal to cylinder at reflection point (2-D)
UN	Unit vector of normal to cylinder at reflection point (2-D)
UIPPX,UIPPY,UIPPZ	X,Y,Z components of incident field polar- ization unit vector parallel to plane of incidence
UIPRX,UIPRY,UIPRZ	X,Y,Z components of incident reflected field polarization unit vector perpendicular to plane of incidence
URPPX,URPPY,URPPZ	X,Y,Z components of reflected field polarization unit vector parallel to plane of incidence
VAX	Matrix defining source coordinate system axes in RCS components
VR	Phi angle at which cylinder reflection occurs
XE1	Vector in the direction of the more posi- tive end cap used to determine if cylinder reflection can occur
XE2	Vector in the direction of the more nega- tive end cap used to determine if cylinder reflection can occur
XIS	X,Y,Z components of source image location also reflection point on plate
XPI	Location of reflection point on cylinder in x,y,z RCS
XSS	Source image location
XT1	Cylinder tangent point one location in x-y plane of vector from source image
XT2	Cylinder tangent point two location in x-y plane of vector from source image

5. I/O VARIABLES:

A.	INPUT	LOCATION
	A	/GEOMEL/
	В	/GEOMEL/
	BTI	/BNDICL/
	CPS	/DIR/
	СТС	/GEOMEL/
	CTHS	/DIR/
	D	/DIR/
	DP	/THPHUV/
	DT	/THPHUV/
	DTI	/BNDICL/
	FLDPT	/NEAR/
	LDEBUG	/TEST/
	LNRFLD	/NEAR/
	LRFI	/CLRFI/
	LUPRNT	/ADEBUG/
	MP	F. P.
	PHSR	/DIR/
	PI	/PIS/
	SPS	/DIR/
	STHS	/DIR/
	THSR	/DIR/
	TPI	/PIS/
	VTI	/BNDICL/

VXI /IMAINF/ XI /IMAINF/ XS /SORINF/ ZC /GEOMEL/ В. OUTPUT LOCATION CPS /DIE/ EHPHI /FUDGI/ EHTHI /FUDGI/ **EPH** F. P. **ESPHI** /FUDGI/ **ESTHI** /FUDGI/ **ETH** F. P. **LRFI** /CLRFI/ LTRFI /FUDGI/ RGII /FUDGI/ RH01I /FUDGI/ SMAGI /FUDGI/ SPS /DIR/ TRANI /FUDGI/ XRI /FUDGI/

6. CALLING ROUTINE:

RPLSCL

7. CALLED ROUTINES:

ASSIGN RFDFIN **BEXP RFPTCL** BTAN2 **SMAGNF CYLINT** SOURCE NANDB STATIN NFD STATOT **PLAINT TPNFLD** REFBP WLKBCK

1. NAME: RPLRPL (GTD)

- 2. PURPOSE: To compute the unobstructed electric field from a unit source due to double reflection from specified plates (reflection off plate MP and then plate MPP).
- 3. METHOD: RPLRPL is the driver routine which directs the ray tracing, physics and field calculations for double reflection off specified plates in a given far-field direction or to a near-field observation point from a unit source. The pertinent geometry is shown in figure 1.

Figure 1. Geometry for Double Reflected Ray

First the ray path from the double reflection source image is checked to see if it passes through plate MPP. If it does, the ray path from the reflection point on plate MPP in the desired far-field

direction or to the near-field observation point is checked for obstructions. If this ray did not hit another plate or a cylinder, the rays between the first and second reflection points and between the source and first reflection point are also checked to see if they are blocked. If none of these separate paths is blocked, then it is known that reflections on the two plates specified did occur in the correct order and that the complete ray path is unobstructed. If at any check the ray was blocked by another plate or a cylinder, or the ray did not pass through plates MP and MPP as required for double reflection, the code immediately sets the theta and phi components of the electric field to zero, and no other computations except debug functions (if requested) are performed in this routine.

If the ray path is unobstructed and the reflections occurred, the source field pattern factor at the double reflection source image location is computed in subroutine SOURCE. The phase factor is then computed. For far field this will refer the electric field back to the origin of the reference coordinate system (RCS). For near field the phase factor includes the spherical wave spread factor. Now the theta and phi components of the electric field are computed. The electric field is given as:

$$\bar{E} = (EF \ \hat{\theta} \ + EG \ \hat{\phi}) \qquad e^{\textstyle j2\pi(XIJ \ \cdot \ D)}, \ \text{for far field}$$
 from subroutine from sub- EX - phase factor source - theta component of source of source factor

and

$$\bar{E} = (EF \hat{\theta} + EG \hat{\phi})$$

$$\frac{e^{-J2\pi SNF}}{SNF}, \text{ for near field.}$$
from subroutine SOURCE - SOURCE - where SNF = |FLDPT - XIJ| theta component of source of source factor

The x, y, z components of the electric field are computed and accumulated by calling subroutine XYZFLD.

If the debug capabilities have been requested, the doubly reflected field magnitude is computed. The magnitude, theta and phi complex components of the field are printed on file LUPRNT.

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
CPHI	Cosine of PHIR
СРНЈ	Cosine of PHJR
СТНІ	Cosine of THIR
СТНЈ	Cosine of THJR
D	X,Y,Z components of ray propagation direction after second reflection in RCS
DHIJ	Distance from double reflection image to hit point on plate MPP
DHIS	Distance between reflection points
DHIT	Distance from source to reflection point (from PLAINT)
DHT	Distance (calculated in PLAINT or CYLINT) from source or point from which ray originates to hit point
DICOEF	X,Y,Z components of incident ray propaga- tion direction in RCS
DJ	X,Y,Z components of propagation direction of ray incident on plate MPP
EF	Theta component of source field pattern factor
EG	Phi component of source field pattern factor
EIX,EIY,EIZ	X,Y,Z components of source field pattern factor

ERP Phi-component of electric field

ERT Theta component of electric field

EX Complex phase factor

FLDMAG The electric field magnitude

FLDPT The x,y,z location of the near-field obser-

vation point

GAM Phase distance to origin (dot product of

double reflection image location and

reflected ray propagation direction)

LDEBUG Logical variable set true if debug option

requested

LHIT Set true if ray intersects a plate or

cylinder (from PLAINT or CYLINT)

LNRFLD Flag to indicate if far-field (LNRFLD=0) or

near-field (LNRFLD=1) calculations are

requested

MP Plate from which first reflection occurs

MPP Plate from which second reflection occurs

PHIR Phi angle of incident ray propagation

direction in RCS

PHJR Phi angle of ray direction between reflec-

tions in RCS

PHSR Phi angle of ray propagation direction

after reflection in RCS

SNF Distance from double reflection image loca-

tion to observation field point

SPHI Sine of PHIR

SPHJ Sine of PHJR

STHI Sine of THIR

STHJ Sine of THJR

THIR Theta angle of incident ray propagation direction in RCS

THUR

Theta angle of ray direction between reflections in RCS

THSR Theta angle of ray propagation direction

after reflections in RCS

VAX X,Y,Z components defining unit vectors of the source image coordinate system axes in

RCS components

VAXP X,Y,Z components defining unit vectors of

the source image coordinate system axes in

RCS for double reflection

XI Triply dimensioned array of image locations

XIJ X,Y,Z components of double reflection image

location

XIS X,Y,Z components of single reflection

source image location (single reflection

from plate MP)

XQ X,Y,Z components of double reflection image

location

XS Source location in x,y,z RCS

5. I/O VARIABLES:

D

A. INPUT LOCATION

/DIR/

FLDPT /NEAR/

LDEBUG /TEST/

LNRFLD /NEAR/

LUPRNT /ADEBUG/

MP F.P.

MPP F.P.

PHSR /DIR/

THSR /DIR/

TPI /PIS/

VXI /IMAINF/

XI /IMAINF/

XS /SORINF/

B. OUTPUT LOCATION

ERP F.P.

ERT F.P.

6. CALLING ROUTINE:

GTDDRV

7. CALLED ROUTINES:

ASSIGN

BEXP

CYLINT

IMDIR

NFD

PLAINT

REFBP

SMAGNF

SOURCE

STATIN

CONTROL OF STATES AND SECTION OF SECURITY

STATOT

WLKBCK

XYZFLD

SUPPLIES ASSESSED

- 1. NAME: RPLSCL (GTD)
- 2. PURPOSE: To compute the unobstructed electric field from a unit source reflected by plate MP and then scattered by the cylinder in the given far-field observation direction or to a given near-field observation point.
- 3. METHOD: RPLSCL is the driver routine which directs all the ray tracing, physics and field calculations for determining the electric field reflected by a plate and then scattered by the cylinder in the given far-field observation direction or to a given near-field observation point. The geometry is shown in figure 1.

Figure 1. Illustration of Ray Reflected by a Plate and Then Scattered by the Clyinder

The code begins by initializing the fields to zero. The code then makes a check to see if the plate-reflected rays can illuminate the cylinder curved surface. If they cannot, debug information (if requested) is printed on file LUPRNT. Control is then returned to the calling routine. If the plate-reflected rays can illuminate the curved surface of the cylinder, the code steps through the tangent vectors to calculate fields based on a value ALR. ALR is the reflected ray phi angle in the tangent point coordinate system. The tangents are found from the image of the source through plate MP tangent to the cylinder curved surface. If ALR is less than π_{\star} a plate-reflected cylinder-reflected ray can be determined. If ALR is greater tha. π_{\star} a creeping wave exists for this tangent on the

cylinder. If ALR is approximately π , grazing incidence occurs on the cylinder. After the fields associated with one tangent have been found, the code proceeds to the next tangent and calculates the new value of ALR. The fields associated with this tangent are then determined. All the fields are accumulated in subroutine XYZFLD in common block FLDXYZ. After the total field is found, debug information (if requested) is printed on file LUPRNT. The debug information consists of field magnitude, theta and phi components of the total field. Control is then returned to the calling routine.

If ALR is less than π , a reflected ray path will possibly be found on the cylinder. Subroutine RPLRCL calculates the ray path for a plate-reflected ray followed by a cylinder-reflected ray. calculates parameters associated with this ray path and field. These parameters and the field incident upon the cylinder are passed to subroutine RPLSCL through common block FUDGI. Once control is returned to RPLSCL, this subroutine checks to make sure reflected fields are present. If they are not, the code will proceed to the next tangent. If reflected fields are present, the code checks to see if reflection should be handled by the second tangent. should, the tangent index is set for the second tangent. The hard and soft components of the computations can now begin. field incident on the cylinder, obtained from common block FUDGI, are converted into the cylinder-reflected field. This is the total plate-reflected cylinder-reflected field. The x, y, z components of this field are computed in subroutine XYZFLD. The field is also accumulated in this subroutine with fields from other interactions.

If ALR is greater than π , a creeping wave can occur along the cylinder. The code to determine the incident point and the point at which the creeping wave leaves the cylinder is different for nearfield and far-field calculations. Please refer to the accompanying flowchart for the specifics of this procedure. While in the different near-field and far-field paths, the code does compute the same The x, y, z components of the point at which the creeping wave leaves the cylinder and the x,y,z components of the point at which the creeping wave begins on the cylinder are computed. These points are checked to make sure that they exist on the curved surface of the cylinder and not beyond the end caps. Also, the code checks to see if reflection from plate MP can occur. The ray path between the reflection and initial diffraction point are checked for The ray path from the source to the plate reflection point is checked for shadowing also. While still in the separate near-field/far-field paths, the incident source field pattern factor is computed by calling subroutine SOURCE. The source factor is multiplied by the reflection coefficient. Various other parameters associated with the path lengths needed for phase factors and ray spreading radii are computed. The code comes back together and checks if the cylinder-diffracted ray is obstructed. If not, the total phase factor is computed, and the hard and soft components of the creeping wave are determined. From this, the total platereflected cylinder-diffracted field can be found. It is converted into x,y,z components and accumulated in subroutine XYZFLD.

If ALR is approximately equal to π , grazing incidence can occur on In this section, the code first checks to see if the cylinder. reflection from plate MP can occur. If it can, the ray between the reflection point and the far-field observation direction or nearfield observation point is checked for obstructions. Then the source ray is checked for shadowing. If the ray paths are clear, Then the the grazing incident point is computed. This point is checked to make sure it is on the curved surface of the cylinder and not beyond the end caps. If the ray path is legitimate, then the source field pattern factor is computed by calling subroutine SOURCE. The source factor is multiplied by the reflection coefficient. A phase factor The hard and soft components of the field incident is determined. at the grazing point are determined. By combining this field with the grazing incident transition field, the total plate-reflected cylinder-scattered field can be determined. The x,y,z components of the grazing incidence field are computed and accumulated in subroutine XYZFLD.

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
ALR	Cylinder-reflected ray phi angle in tangent point coordinate system (2-D)
ALS	Phi angle defining direction of ray from RCS origin to source image in tangent point coordinate system
BX,BY,BZ	X,Y,Z components of polarization unit vector of soft component of field incident on cylinder (parallel to cylinder surface and normal to incident ray propagation direction)
CCC	Real part of the Fresnel integral
CFH	Hard transition field coefficient
CFS	Soft transition field coefficient
DEPH	Phi component of transition field in RCS
DETH	Theta component of transition field in RCS

DHIT	Distance from source image to plate reflec- tion point (from PLAINT)
DHIV	Distance from plate reflection point to cylinder
DHT	Distance from source to hit point (from PLAINT)
DICOEF	Unit vector of ray incident on cylinder
DIJ	X,Y plane vector from a source image tangent ray to the point the creeping wave leaves the cylinder.
DIJXDJ	Cross product of DIJ and DJT
DIT	Cylinder incident ray vector
DIXDIJ	Cross product of DIT and DIJ
DJ	X,Y,Z components of unit vector of propaga- tion direction of source ray incident on plate
DJT	X-Y plane components of observation direction
DMAG	Distance between plate reflection point and the near-field observation point for grazing incidence calculations
EF	Pattern factor for theta component of incident field in RCS
EG	Pattern factor for phi component of incident field in RCS
ЕНР	Phi component of hard component of field incident on cylinder in RCS
EHT	Theta component of hard component of field incident on cylinder in RCS
EIX,EIY,EIZ	Pattern factor for x,y,z components of incident field in RCS
EP	Phi component of cylinder-scattered E-field with phase referred to RCS origin

RPLSCL (GTD)

ER	Dot product of unit vector tangent to cylinder and the propagation direction unit vector
ERP	Phi component of field reflected by plate then reflected by cylinder
ERT	Theta component of field reflected by plate then reflected by cylinder
ESP	Phi component of soft component of field incident on cylinder in RCS
EST	Theta component of soft component of field incident on cylinder in RCS
ET	Theta component of cylinder-scattered E-field with phase referred to RCS origin
FPTXY	The x-y plane components of the near-field observation field point
I	Variable used to step through tangent points
LHIT	Set true if ray hits a plate (from PLAINT)
LTRFI	(Returned from RPLRCL) set true if geo- metrical optics cylinder-reflected field does not exist
LVJ	Logical variable set true first time creeping wave computations begin
MP	Plate where reflection occurs
ORIGIN	RCS origin (0.,0.,0.)
PHIR	Phi component of propagation direction of ray incident on cylinder
PHJR	Phi component of propagation direction of source ray incident on plate
S	Length of vector from source image to tangent point (2 or 3-D). Also, the total distance between the source image point and the cylinder incidence point

\$1	X-Y plane distance between the source image and incident point
S2	X-Y plane distance between the field point and the point on the cylinder at which the creeping wave leaves
SNF	Distance between near-field observation point and point at which ray path leaves cylinder (from reflection or creeping wave)
SS	Distance of path along the cylinder
SSS	Imaginary part of the Fresnel integral
STA	Elliptical angle defining the source tangent point x-y location
THIR	Theta component of propagation direction of ray incident on cylinder
THJR	Theta component of propagation direction of source ray incident on plate
UB	Unit binormal at reflection point phi angle (2-D) in x-y plane
UN	Unit normal at reflection point phi angle (2-D) in x-y plane
VAX	Source image axes
VD	Elliptical angle defining point where creeping wave leaves cylinder
VI	Elliptical angle used to define tangent points (2-D)
VJ	Elliptical angles defining the two tangent points on the cylinder for the vector from the field point tangent to the cylinder
VJB	The elliptical angle defining the x-y plane point on the cylinder at which the creeping wave leaves the cylinder
VL	Elliptical angle defining lower range of creeping wave travel on cylinder (2-D)

RPLSCL (GTD)

VU Elliptical angle defining upper range of creeping wave travel on cylinder (2-D) XD,YD,ZD X,Y,Z components of direction of ray from source to cylinder tangent point (incident ray for creeping and grazing incidence cases) XII,YII,ZII X,Y,Z components of point where incident creeping wave (or grazing wave) meets cylinder XIS X,Y,Z components of image source location (for reflection from plate MP) **XPP** X,Y,Z components of point where ray leaves cylinder **XPT** Incident point on cylinder **XRF** X,Y,Z components of point where creeping wave leaves cylinder XSS Source image location through plate MP XXX Argument of the Fresnel integral 5. I/O VARIABLES: **INPUT** Α. LOCATION Α /GEOMEL/ AS /GTD/ В /GEOMEL/ BTI /BNDICL/

CJ /COMP/

CPI4 /COMP/

CPS /DIR/

CTC /GEOMEL/

CTHS /DIR/

D /DIR/ DTI /BNDICL/ **EHPHI** /FUDGI/ EHTHI /FUDGI/ **ESPHI** /FUDGI/ **ESTHI** /FUDGI/ **FLDPT** /NEAR/ ID /GTD/ **LDEBUG** /TEST/ LNRFLD /NEAR/ LRFI /CLRFI/ LTRFI /FUDGI/ LUPRNT /ADEBUG/ MP F.P. ΡI /PIS/ **PHSR** /DIR/ RGII /FUDGI/ RH01I /FUDGI/ SAS /GTD/ **SMAGI** /FUDGI/ SPS /DIR/ STHS /DIR/ **THSR** /DIR/ TPI /PIS/ TRANI /FUDGI/

ITV

/BNDICL/

RPLSCL (GTD)

VXI /IMAINI/

XI /IMAINI/

XRI /FUDGI/

XS /SORINF/

ZC /GEOMEL/

B. OUTPUT LOCATION

EP F.P.

ERP F.P.

ERT F.P.

ET F.P.

LRFI /CLRFI/

6. CALLING ROUTINE:

GTDDRV

7. CALLED ROUTINES:

ASSIGN QFUN

BEXP RADCV

BTAN2 REFBP

CYLINT RPLRCL

DQG32 SMAGNF

FCT SOURCE

FKARG STATIN

FRNELS STATOT

NANDB TANG

NFD WLKBCK

PFUN XYZFLD

PLAINT

Society Contract.

SUPPLIED CONTROL CONTR

- 1. NAME: RWCOMS (GTD, INPUT, MOM, OUTPUT)
- 2. PURPOSE: To read or write common blocks on the checkpoint file.
- 3. METHOD: RWCOMS uses arrays the same length as each common area. These common arrays can be read from, or written to, the checkpoint file.

4. INTERNAL VARIABLES:

JNCN

MDLE

VARIABLES	DEFINITION
ADEBG	Array the same length as ADEBUG common
AMPZJ	Array the same length as AMPZIJ common
ARGCM	Array the same length as ARGCOM common
CSTM	Array the same length as CSYSTM common
DFDT	Array the same length as DEFDAT common
FLDCM	Array the same length as FLDCOM common
GEODT	Array the same length as GEODAT common
GTDDT	Array the same length as GTDDAT common
ICOM	Index to commons
ICOMSV	Save the index
IEOF	End-of-file indicator
IFILE	File number for input or output (CHKPNT or MODCHK)
INDXP1	INDXWB+1
INDXWB	Size of array NAMOLD
INTM	Array the same length as INTMAT common
IOFLS	Array the same length as IOFLES common
IWBSAV	Saved value of walk back table index

Array the same length as JUNCOM common

Array the same length as MODULE common

RWCOMS (GTD, INPUT, MOM, OUTPUT)

NAMCOM Contains the names of commons written to

the checkpoint file

NAME Name of common block being read in

NAMOLD Array to store first four locations of

walkback table

NCOMSZ Array containing the length of each common

NMWRDS Number of words in common being read

NREAD Input variable that will indicate a read or

write

NUMCOM Number of commons

PARTB Array the same length as PARTAB common

SCNPR Array the same length as SCNPAR common

SGMNT Array the same length as SEGMNT common

SMSTR Array the same length as SYMSTR common

SYSFL Array the same length as SYSFIL common

TEMP Array the same length as TEMPO1 common

5. I/O VARIABLES:

A. INPUT LOCATION

ADEBG /ADEBUG/

AMPZJ /AMPZIJ/

ARGCM /ARGCOM/

CSTM /CSYSTM/

DFDT /DEFDAT/

FLDCM /FLDCOM/

GEODT /GEODAT/

GTDDT /GFDDAT/

IFILE F.P.

RWCOMS (GTD, INPUT, MOM, OUTPUT)

IOFLS /IOFLES/ **ISOFF** /ADEBUG/ ISON /ADEBUG/ **JNCN** /JUNCOM/ LUPRNT /ADEBUG/ **MDLE** /MODULE/ MXWALK /ADEBUG/ **NAMRTN** /ADEBUG/ F.P. **NREAD NRSUBS** /ADEBUG/ **PARTB** /PARTAB/ **SCNPR** /SCNPAR/ **SGMNT** /SEGMNT/ **SMSTR** /SYMSTR/ **SYSFL** /SYSFIL/ **TEMP** /TEMPO1/ **OUTPUT** LOCATION **ADEBG** /ADEBUG/ **AMPZJ** /AMPZ1J/ **ARGCM** /ARGCOM/ **CSTM** /CSYSTM/ **DFDT** /DEFDAT/ FLDCM /FLDCOM/

В.

GEODT

/GEODAT/

RWCOMS (GTD, INPUT, MOM, OUTPUT)

GTDDT /GTDDAT/

IEOF F.P.

IOFILE /IOFLES/

IOFLS /IOFLES/

JNCN /JUNCOM/

MDLE /MODULE/

NAMRTN /ADEBUG/

NOGOFG /ADEBUG/

NRTIMS /ADEBUG/

PARTB /PARTAB/

RSUMS /ADEBUG/

SCNPR /SCNPAR/

SGMNT /SEGMNT/

SMSTR /SYMSTR/

SYSFL /SYSFIL/

TEMP /TEMPO1/

6. CALLING ROUTINES:*

RESTRT (1)

STRTUP (2,3,4)

WRTCHK (1,2,3,4)

⁻ INPUT - GTD - MOM - OUTPUT

RWCOMS (GTD, INPUT, MOM, OUTPUT)

7. CALLED ROUTINES:

ASSIGN

RDEFIL

STATIN

STATOT

WLKBCK

WRTFIL

- 1. NAME: RWFILS (GTD, INPUT, MOM, OUTPUT)
- 2. PURPOSE: Read or write all data files to/from a checkpoint file.
- 3. METHOD: The symbol table is searched for a data file that is not null. The data set name is read/written and file attributes calculated. PUTSYM is called to handle the file-to-file transfer via the TEMP or SEGTBL array. Should TEMP not be large enough to handle one record of the file, a fatal error is generated.

4. INTERNAL VARIABLES:

I Pointer to symbol table entry

IFILE Checkpoint file number, either IOCKPT or

MODCHK

IR1 Internal variable equal to zero

KGEOM Flag indicating geometry data set

NAME User-assigned name of data set

NBITWD Data set bit attribute word

NDF Internal variable to save file length while

reinitializing file

NFILE Logical unit number for data set

NPRBUF Number of records which will fit into

buffer array

NPRELM Number of words per data set element

NPRREC Number of words on data set record

NREAD Flag indicating whether to read (ISOFF) or

write (ISON) files

NRECS Internal variable equal to NPRREC

NS Hollerith equivalent of NAME

NUMREC Number of records contained in data set

RWFILS (GTD, INPUT, MOM, OUTPUT)

5. I/O VARIABLES:

A. INPUT LOCATION

IFILE F.P.

ISOFF /ADEBUG/

ISON /ADEBUG/

KBCPLX /PARTAB/

KBGEOM /PARTAB/

KOLBIT /PARTAB/

KOLCOL /PARTAB/

KOLLOC /PARTAB/

KOLNAM /PARTAB/

KOLROW /PARTAB/

LUPRNT /ADEBUG/

NDATBL /PARTAB/

NDFILE /IOFLES/

NPDATA /PARTAB/

NREAD F.P.

NTEMPS /TEMP01/

SEGTBL /SEGMNT/

TEMP /TEMP01/

B. OUTPUT LOCATION

IERRF /ADEBUG/

RWFILS (GTD, INPUT, MOM, OUTPUT)

CALLING ROUTINES:* 6.

RESTRT (1)

STRTUP (2,3,4)

WRTCHK (1,2,3,4)

CALLED ROUTINES: 7.

ASSIGN

CLSFIL

CONVRT

IBITCK

OPNFIL

PUTSYM

RDEFIL

STATIN

STATOT

WLKBCK

WRTFIL

BASSS DIBBON RESERVE DIBBON SSERVES

1 - INPUT 2 - GTD 3 - MOM 4 - OUTPUT

1. NAME: SCALE2 (MOM, OUTPUT)

2. PURPOSE: To scale a linear axis.

3. METHOD: Given a minimum value XMIN, a maximum value XMAX, and the number of intervals N, SCALE2 finds a new maximum XMAXP, a new minimum XMINP, and the size of the intervals DIST.

4. INTERNAL VARIABLES:

VARIABLE DEFINITION

A Approximate interval size

AL Log₁₀ of A

B A scaled

DEL Round-off error

DIST Distance between each scale mark

FM1 Minimum value divided by the interval size

FM2 Maximum value divided by the interval size

M1 Variable used to keep points within the

minimum value

M2 Variable used to keep points within the

maximum value

N Input number of intervals

NAL Variable used to make the minimum/maximum

interval large enough

NP Check for the number of intervals

VINT Array containing number of interval sizes

XMAX Input maximum value

XMAXP Output maximum value

XMIN Input minimum value

XMINP Output minimum value

SCALE2 (MOM, OUTPUT)

5. I/O VARIABLES:

A. INPUT LOCATION

LUPRNT /ADEBUG/

N F.P.

XMAX F.P.

XMIN F.P.

B. OUTPUT LOCATION

DIST F.P.

XMAXP F.P

XMINP F.P.

6. CALLING ROUTINE:

PAGPLT

7. CALLED ROUTINES:

ASSIGN

STATIN

STATOT

WLKBCK

1. NAME: SCALE3 (MOM, OUTPUT)

2. PURPOSE: To scale a log axis.

3. METHOD: Given a minimum value XMIN, a maximum value XMAX, and N intervals where N is greater than one, SCALE3 finds a new range XMINP and XMAXP divided into N equal logarithmic intervals. The ratio of adjacent uniformly spaced scale values is DIST.

4. INTERNAL VARIABLES:

VARIABLE DEFINITION

A Approximate interval size

AL Log₁₀ of A

B A scaled

DEL Round-off error

DIST Output distance between scale marks

DISTL Approximate interval size

FM1 Approximate minimum limits

FM2 Approximate maximum limits

FN Number of intervals

M1 Minimum limit factor

M2 Maximum limit factor

N Input number of decades

NAL Integer power of the full interval

NP Approximate number of decades

NX Minimum power

VINT Integer containing number of decades

XMAX Input maximum value

XMAXL Logarithmic value of XMAX

SCALE3 (MOM, OUTPUT)

XMAXP

Output maximum value

XMIN

Input minimum value

XMINL

Logarithmic value of XMIN

XMINP

Output minimum value

5. I/O VARIABLES:

A. INPUT

LOCATION

LUPRNT

/ADEBUG/

N

F.P.

XMAX

F.P.

XMIN

F.P.

B. OUTPUT

LOCATION

DIST

F.P.

XMAXP

F.P.

XMINP

F.P.

6. CALLING ROUTINE:

PAGPLT

7. CALLED ROUTINES:

ASSIGN

STATIN

STATOT

WLKBCK

- 1. NAME: SCAN (INPUT)
- 2. PURPOSE: Scan the input command and generate the scan tables for the parsing routine.
- 3. METHOD: SCAN breaks up the input command text into fields. are numeric, alpha, keyword, and operator fields. The numeric field is converted into an integer or floating point number and put in the NVAL or VAL array. The alpha field is packed into the NVAL array. Keyword fields have the keyword number put in the NVAL array. The operator number is put in the NVAL array. Then a field code for each will be put in the NCODE array.

When the SCAN table is completed, the next command is read to look for a possible end of file before the END command.

If the IGNORE flag is on, the scan table is scanned for monadic signs. These signs are added to the number that follows it in the SCAN table.

INTERNAL VARIABLES: 4.

VARIABLE	DEFINITION
FIRST	This flag tells SCAN that the input data are the first of this record
FRAC	Fractional portion of a floating point number
IFOUND	This flag tells SCAN that the exponent was found for this number
INTOVR	Flag that gets set when a number has too many digits
IP	Exponent sign
IPROVR	Flag for too many digits in the exponent
IPWR	Exponent for a number
IS	Sign of numbers in SCAN table, used in compressing tables
ISHIFT	Byte shifter
NCOMCD	Flag for comment card

SCAN (INPUT)

NDCARD Variable containing the code for the END

command

NDXEND Index to the NCODES array for the keyword

END

NFLDS Number of entries in the SCAN table

NP1 Index N plus one

NTABSV Saves the value of NTAB

NTAB1 NTAB plus one

NUMCHR Number of characters in an alpha field

NUMDEC Number of decimals in a number

NUMFLD Field counter

NUMREC Record counter

NXTCHR Next character in a field

5. I/O VARIABLES:

TO A MINISTER OF THE PROPERTY OF THE PROPERTY

A. INPUT LOCATION

IBLANK /SCNPAR/

ICOMMA /SCNPAR/

IDIG /SCNPAR/

IGNORE /SCNPAR/

IMINUS /SCNPAR/

IPER /SCNPAR/

IPLUS /SCNPAR/

IRIGHT /SCNPAR/

ISLASH /SCNPAR/

ISOFF /ADEBUG/

ISON /ADEBUG/

SCAN (INPUT)

ISTAR /SCNPAR/ **ISYMBL** /SCNPAR/ **JDIG** /SCNPAR/ **KWEND** /PARTAB/ **KWNAME** /PARTAB/ LETR /SCNPAR/ **LSTCOL** /SCNPAR/ LUPRNT /ADEBUG/ /ADEBUG/ **LUTASK MXANCT** /SCNPAR/ **MXEXFP** /SCNPAR/ **MXFPCT** /SCNPAR/ **MXINCT** /SCNPAR/ **MXSYMB** /SCNPAR/ **NBYTSZ** /ADEBUG/ **NCARD** /SCNPAR/ **NCODES** /PARTAB/ **NCOMCH** /SCNPAR/ **NCONCH** /SCNPAR/ NOFILE /IOFLES/ NTALPH /ADEBUG/ NTEND /ADEBUG/ NTFLPT /ADEBUG/ NTINT /ADEBUG/ NTKEYW /ADEBUG/

SCAN (INPUT)

NTSYMB /ADEBUG/ **NVALMX** /SCNPAR/ В. OUTPUT LOCATION **NARGS** /SCNPAR/ /SCNPAR/ **NCARD NCARDS** /SCNPAR/ **NCCARD** /SCNPAR/ **NCHAR** /SCNPAR/ **NCODE** /SCNPAR/ **NDFILE** /IOFLES/ **NOGOFG** /ADEBUG/ **NSCNER** /SCNPAR/ **NSCOL** /SCNPAR/ /SCNPAR/ **NTAB** NVAL /SCNPAR/ VAL /SCNPAR/

6. CALLING ROUTINES:

INPDRV

WYRDRV

7. CALLED ROUTINES:

ASSIGN

GETKWD

STATIN

STATOT

WLKBCK

- 1. NAME: SCLRPL (GTD)
- 2. PURPOSE: To compute the unobstructed electric field from a unit source scattered by an elliptic cylinder and then reflected by plate MP in the given far-field observation direction or to the given near-field observation point. The cylinder scattering can occur by a creeping wave and a reflected ray or by two creeping waves.
- 3. METHOD: SCLRPL is the driver routine which directs all the ray tracing physics and field calculations for determining the electric field scattered by a cylinder and then reflected by plate MP in a given far-field direction or to the given near-field observation point. The ray paths are shown in figures 1 and 2.

The code begins by making two special checks. One check is to determine if the source location is in the paraxial region beyond the end caps such that it cannot illuminate the curved surface of the cylinder. The other check is to make sure the ray path which leaves the cylinder can cause reflection to occur from plate MP in the correct direction. If the result of either of these checks is such that cylinder-scattered plate-reflected fields cannot be found, the code will print debug information, if requested, on file LUPRNT. Control is then returned to the calling routine. If the correct interaction can be found, the tangent vectors from the source to the cylinder are specified. Ray tracing and field computations are performed for both of these tangents. The type of field calculation is based on the value ALR. ALR is the reflected ray phi angle in the tangent coordinate system. If it is approximately π , grazing incidence occurs. If ALR is greater than π , a cylinder creeping wave occurs for this tangent. If ALR is less than π , a reflected wave After performing the ray path calculations and field calculations, the code will check to see if the second tangent remains to be addressed. If it does, a new value of ALR will be computed and the appropriate field calculations will be performed. tangents have been addressed, debug information (if requested) will be printed on file LUPRNT. The debug information consists of the total field magnitude and the theta and phi components of the field. Control is then returned to the calling routine.

If ALR is less than π , it is possible that a reflected ray can occur from the cylinder. Subroutine RCLRPL calculates the ray path for a ray reflected by a cylinder and then reflected by a plate. It also computes the incident field upon the cylinder at the cylinder reflection point and other geometry-specific terms. These terms and field are passed to SCLRPL through common block FUDGJ. The ray spreading radii and phase factor are computed in this subroutine based upon parameters from common block FUDGJ. Then the field computations can begin. First, the cylinder-reflected field is computed. Then the field reflected from plate MP is computed in

Figure 1. Illustration of Ray Scattered by the Cylinder and Reflected by a Plate into the Far Field

Figure 2. Illustration of Ray Scattered by Cylinder and Reflected by Plate to the Near-Field Observation Point

theta and phi components. This is the total cylinder-relected plate-reflected field. Subroutine XYZFLD is called to compute the x, y, z components of the total field and to accumulate them with other fields from previous interactions.

If ALR is approximately equal to π , grazing incidence occurs. grazing incidence portion of the code first checks to make sure that reflection from plate MP can occur. If it cannot, the code will check to see if the second tangent remains and will address it appropriately. If reflection from plate MP can occur, the ray path is checked to see if it is shadowed anywhere. If it is, the code If shadowing did not occur the will check for another tangent. grazing incidence point is computed. This point is checked to make sure that it is on the curved surface of the cylinder. The source field pattern factor is found by calling subroutine SOURCE. the phase factor is computed. The hard and soft theta and phi components of the cylinder field are now found. The grazing incidence-From this the total field being scattered field is now computed. made up of the grazing incidence-scattered field and the field reflected from the plate is computed in theta and phi components. The x, y, z components are computed by calling subroutine XYZFLD.

If ALR is greater than π , a creeping wave can occur from the The location of the point at which the creeping wave cylinder. leaves the cylinder and the point at which the creeping wave begins on the cylinder are computed in two different manners depending upon whether near field or far field was requested. For the computation sequence, see the accompanying flowchart. While in the separate field computation paths, the code checks the ray from the source to the cylinder for obstructions. If the path is blocked, the code proceeds to the next tangent. If the path is clear, calculations continue for this tangent. The incident source field pattern factor is computed by calling subroutine SOURCE. For both near field and far field, the code checks to see if reflection can occur from plate MP. If it cannot, the code will look to see if a tangent remains to be addressed. If reflection does occur on plate MP, the ray from the cylinder to the plate and into the observation direction or to the observation point is checked for any obstruction. If it is obstructed, the code will proceed to the next tangent. If the rav in unobstructed, the phase factor is computed, the hard and soft creeping waves are computed, and then the total cylinder creeping wave field is computed. From this, the total field scattered by the cylinder and reflected by the plate is computed in theta and phi Subroutine XYZFLD is called to compute and accumulate components. the x, y, z components.

SCLRPL (GTD)

4. INTERNAL VARIABLES:

INTERNAL VARIABLES.	
VARIABLE	DEFINITION
A1,A2	Field components of ray incident on plate normal and tangent to plate
A3	Determinant of polarization transformation
ALR	Phi angle defining propagation direction in tangent point coordinate system (2-D)
ALRS	Difference between ALS and ALR
ALS	Phi angle defining direction of ray from RCS origin to source in tangent point coordinate system
AN	Distance from plate MP plane to the observation field point (from subroutine IMAGE)
ANR	Distance from plate plane to XRF, the point at which the creeping wave leaves the cylinder (from subroutine IMAGE)
BX,BY,BZ	X,Y,Z components of polarization unit vector of soft component field incident on cylinder (parallel to cylinder surface and normal to incident field propagation direction)
C11,C12,C21,C22	Coefficients used to convert polarization from theta and phi components in RCS to components normal and tangent to plate (and vice-versa)
CCC	Real part of Fresnel integral (from subrou- tine FRNELS)
CF	Phase term and ray spreading factor
CFH	Hard transition field coefficient
CFS	Soft transition field coefficient
DEPH	Phi component of transition field in RCS
DETH	Theta component of transition field in RCS

DHIT	Distance from source to plate hit point (from subroutine PLAINT)
DHJT	Distance from where ray leaves cylinder and hits plate MP (from subroutine PLAINT)
DHT	Distance to hit point (from subroutine PLAINT and CYLINT)
DICOEF	X,Y, and Z components of incident ray direction on cylinder in RCS
DIJ	X-Y plane vector from a source tangent to the point the creeping wave leaves the cylinder
DIJXDJ	Cross product of DIJ and DJT
DIT	Incident ray vector
DIXDIJ	Cross product of DIT and DIJ
DJ	X,Y,Z components of propagation direction of ray between cylinder and plate in RCS
DJ1	Direction unit vector towards XE1
DJ2	Direction unit vector towards XE2
DJT	X-Y plane components of observation direction
DMAG	Distance between the observation field point and the plate reflection point
EF	Theta component of source field pattern factor in RCS
EG	Phi component of source field pattern factor in RCS
ЕНР	Phi component of hard component of geometrical optics field incident on cylinder in RCS
ЕНТ	Theta component of hard component of geo- metrical optics field incident on cylinder in RCS

EIX	X component of the source field pattern factor
EIY	Y component of the source field pattern factor
EIZ	Z component of the source field pattern factor
EP	Phi component of scattered-reflected field in RCS
ER	Dot product of cylinder tangent unit vector and reflected ray propagation direction (2-D)
ERP	Phi component of geometrical optics reflected-reflected field in RCS
ERT	Theta component of geometrical optics reflected-reflected field in RCS
ESP	Phi component of soft component of geomet- rical optics field incident on cylinder in RCS
EST	Theta component of soft component of geo- metrical optics field incident on cylinder in RCS
ET	Theta component of scattered-reflected field in RCS
FLOPTI	Near-field observation field point image location (imaged through plate MP)
FPTXY	The x-y plane location of the field point image
GM	Intermediate variable for transition function
LHIT	Logical variable set true if a plate is hit (from subroutine PLAINT and CYLINT)
LTRFJ	Logica! variable set true if cylinder- reflected field is not present

SCLRPL (GTD)

LVJ	Logical variable set true the first time creeping wave computations begin
MP	Plate where reflection occurs
ORIGIN	Origin of the reference coordinate system (0., 0., 0.)
PHIR	Phi angle of incident ray direction on cylinder
PHJR	Phi angle of ray propagation direction between cylinder and plate
PHJR1	Phi angle of DJ1
PHJR2	Phi argle of DJ2
RGF	Longitudinal radius of curvature of the cylinder at the point the creeping wave leaves the cylinder
RGI	Longitudinal radius of curvature of the cylinder at the creeping wave incidence point
RT	Transverse radius of curvature of the cylinder
S	The total distance between the source point and the incident point
S1	X-Y plane distance between the source and incident point
S2	X-Y plane distance between the field point image and the point on the cylinder at which the creeping wave leaves the cylinder
SKWIG	Parameter used in transition function
SNF	Distance between plate reflection point and field point
SPHJ	Sine of PHJR
SS	Distance of path along the cylinder

GENERAL ELECTROMAGNETIC MODEL FOR THE ANALYSIS OF COMPLEX SYSTEMS (GEMACS. (U) BDM CORP ALBUQUERQUE NM D L KADLEC ET AL SEP 83 BDM/A-83-020-TR-VOL-3-PT-3 RADC-TR-83-217-VOL-3-PT-3 F30602-81-C-0084 F/G 20/14 3/5 AD-R137 509 NL UNCLASSIFIED

555	lmaginary part of freshe integral (from subroutine FRM: 5)
STA	filiptical angle defining the sour element point all ocation
STILJ	Sine of THUR
THIR	Theta component of incident ray direct union cylinder
THUR	Theta amponent of ray propagation sire. tion between cylinder and plate
THURS	Theta angle of DJ1
TILUR2	Theta angle of DJ2
TIM	Parameter used in transition function
TH1,TV1	1-Y components of ray from source tangent to tangent point $1 \ (2 \ D)$
TH2,TV2	N-Y components of ray from source tangent to tangent point 2 (2.0)
	II-Y components of unit vector tangent to cylinder at tangent point
	E-Y components of unit vector normal to cylinder at tangent point
10	Phi angle at which crosping wave leaves cylinder
AI	Elliptical angle used to define tangent paints (2-0)
พ	Elliptical engles defining the two tangent points on the cylinder for the vector from the field point image tangent to the cylinder
V.38	The elliptical angle defining the cylinder at which the creeking wave leaves the cylinder
M	Elliptical angle defining lower limit of

VT	E,T,Z components of polarization unit vector perpendicular to plane of incidence for ray incident on plate
W	Elliptical angle defining upper limit of crooping wave travel on cylinder
10,10,29	1,7,2 components of direction of ray from source to cylinder tangent point (incident ray for crosping and grazing incidence cases)
11.VI.ZI	<pre>X,Y,Z components of point where incident creeping wave (or grazing wave) meets cylinder</pre>
IPT	Point at which crooping wave begins on cylinder
	X,Y,2 components of point where crosping wave leaves cylinder
WAS .	X,Y,Z components of reflection point location on plate IIP; also point where creeping wave leaves cylinder; also image of ERF in plate IIP
KSS	Source location
	Transition function

5. I/O WARIABLES:

٨.	LUFUT	LECATION
	A	/MEDEL/
	AS	/676/
	•	/0E00EL/
	875	************
	CAS	·*n/
	ui	, 300 ,
	C014	AC COMMON A

CTC /GEOMEL/ /DIR/ /THPHUN/ DT /THPHUN/ DTS /BMDSCL/ ENPNU /FUBSJ/ ENTRY /FUELJ/ ESPAJ /FUSSJ/ ESTNU /FUESJ/ FLOPT MEAR! 10 /6TB/ /TEST/ LEEBUS LIBELD MEMA! /CLMS/ LIFS LTMJ /FUELJ/ /ADEBUS/ LUPRET F.P. /01R/ Pl M15/ /FVESJ/ /FWELI/ /618/ /6TD/ /FUBSJ/ /01ST/

305 F

THE /DIR/ TPI /P15/ TRANJ /FUESJ/ /GEOPLA/ VTS /BHDSCL/ /508 LW / MIS /FUELJ/ rs /500 LUF / K MEDEL! CUTPUT LOCATION /6T9/ AS CAS /6TB/ EP F.P. F.P. F.P. ERT ET F.P. /STO/ /CLEFS/ /STD/

/STO/

CALLINS MOUTINE:

CTREEV

CALLED MOUTINES: 7.

ASS ION

MY

STARE

MCLAPL

CYLIUT

MIP

1000

FCT

SOURCE

FLASS

STATIO

PRINCLS

STATOT

TRUFU

WARD

MAC

Page 1 of 5

- 1. MARE: SCTCVL (GTD)
- 2. PURPOSE: To compute the unobstructed electric field of a unit source scattered by the elliptic cylinder's curved surface in the given far-field direction or to the given near field observation point.
- 3. ME THERE: SCICIL is the driver routine which directs all the ray tracing, physics, and field calculations for scattering by a cylinder. A Uniform Geometrical Theory of Diffraction solution (see reference A) is used to compute the reflected and diffracted fields of a source in the presence of the curved surface of an emightic Cylinder. In a given observation direction the solution contains two terms. In the lit region the solution is composed of a reflected field and the dominant crosping wave field, as Elustrated in figures 1 and 2. In the shadowed region the solution is composed of a clockwise and a counterclockwise reeping wave field, as filustrated in figures 3 and 4. The reflected field and reeping weve field are modified versions of the usual GTD solution, that is, they are obtained from a uniform solution that is valid at the shedow boundaries (tangent point rector regions) and that goes to the goodstrical optics solution in the deep lit region and the usual creaning wave solution in the doep shadow region. The solution is presented in reference A and on pages 112-113 of reference B.

Figure 1. Illustration of deflected and Creeping wave 5. attering by the Elliptic Cylinder for a Given far field Cheervation Direction

Figure 2 | Illustration of Heffected and treeping wave platte income the Elliptic Cylinder to a wiver hear the tracerustics Point

Figure 1 decimetry of respiring make constraints, in the con-

Figure 4. Illustration of ocattering by Two creeping wave off the Elliptic cylinder to a other Mean Freid Observation Point

The file do are initial led to levil at the beginning of the routine. Then a new by made to make our the propagation itrection of the source ray is towards their , index, and another held is made to ensure that the observation control begund an end as in the parax a lines on which the tire to sturie has low simple reach. I proper unination is not passitly, debug information sif requesteds is printed on the uPRNI and ontroll's returned to the latting routine. It is noter a after by a was ble, the code then determines what types if scattering and or based upon the angle Ach, which is shown in figure by Ach is the angle between the source may tangent to the yonder and the observation direction. the scattering possiblities are reflective, leeping wave, or grazing incidence. After the field associated with one langent point or on that side of the , inder has been amputed, the field associated with the other tangent point in the new side is amputed. The tangent point condinate system is shown in figure 6. .ast, debug information of requested) is printed on the JPRNI control is then returned to the latting routine

for reflected freids, ALM is essithen to the reflection point on the cylinder is found in subroutine REFLY. The hard and soft theta and philipapponents of the freid incident at the primiter reflection point (EHTH, ETPH, ESTH, ESPH) and other important parameters needed for the reflected field calculations are found in REFCYL and passed to SCTCYL in common block (FUDG). The ray path is there and philipappeness are computed in SCTCYL. The solutions are computed in SCTCYL. The solutions are computed in subroutine EYZFLU.

for creeping wave fields. ALR is greater than a. The process to determine the ray path for the creeping wave is different for far field and near field calculations, as shown in the accompanying flowchart, but the end results are the same. If the ray paths are obstructed or if the path meets or leaves the cylinder at an end ap instead of on the cylinder's curved sides, the fields are left at zero. If the path is correct, the field is calculated. The accompanying components are computed and accomplated in subroutine IVZFLD.

for grazing incidence, ALR is approximately x. The point at which the ray is incident on the spirader is computed and checked to make sure it is between the end aps. If it is not, the fields are left at zero. If the point is principle, the field is alculated. The x, y, z components are computed and accumulated in subroutine xyZFLD.

Figure 5. Geometry of Angles in Cyclinder Scattering Problem

Figure 6. Illustration of langent Point Gordinate system

4. INTERNAL VARIABLES:

MUNITABLE	DEFINITION
ALPMA	Angle between creeping wave path on cylinder and line perpendicular to the 2 axis
ALS.	Phi angle defining radiation direction in tangent point coordinate system (2-0)
ALRS	Difference between ALS and ALR
ALS	Phi angle defining direction of ray from RCS origin to source in tangent point our direct system; also angle between reeping wave path on cylinder and line parallel to 2 axis
AS	Angle between creeping wave path on in der and line parallel to 2 axis
\$2,07,52	1,1,2 components of polarization unit vector of seft component of field incident on cylinder (parallel to cylinder surface and normal to incident ray propagation direction)
ccc	Med1 part of the fresnel integra: (from subroutine FRMELS)
Œ	Complex phase and ray spreading coefficient
CFN	Herd transition field coefficient
as	Soft transition field coefficient
CSAS	Dot product of cylinder tangent unit rector and vector from origin to source
•	Propagation direction unit vector for ray scattered from sylinder in 1,7,2 RCS components
•1	Observation unit vector used in determining if observation point or direction is in the personal region above the more positive and

D3	Observation unit vector used in determining
	if observation point or direction is in the
	parasia! region above the more negative end

. 40

BEPN Phi component of transition field in RCS

DETN Theta component of transition field in RCS

Distance from source to hit point ifrom

PLAINT)

BICOEF

I, Y, Z components of unit vector of propagation direction of ray incident on cylinder

A-Y plane vector from a source tangent to

the point the creeping wave leaves the cultinder

OIJMAJ (ross product of DIJ and DJ!

DIT Incident ray vector

DIJ

DIMBIJ Cross product of DI1 and DIJ

BUT I-Y plane commonents of observation

direction

Distance between point at which creeping

wave leaves cylinder and the near field

observation point

EF Pattern factor for theta commonent of

incident field in RCS

Fattern factor for phi component of

incident field pattern factor in ACS

EMP Phi component of hard component of field

incident on cylinder or crossing wave field

In ACS

ENT Theta component of hard component of field

incident on cylinder or creesing were field

in MCS

EIN, EIV, Ell I, F, i components of incident field pattern

factor

	6
{ P	Phi amponent of yillnder t field
[B	Dot product of unit sector tangent to
	yithder and the propagation direction unit wester
	•
(M)	<pre>Ph: .ampument of yeametrical aptics reflected field</pre>
ERT	Theta component of geometrical optics reflected field
(SP	Phi component of soft amponent of field incldent on cylinder or creeping wave field
	in MCS
EST	Theta component of soft component of field
	incident on cylinder or creeping were field
	IN RCS
ET	Theta component of cylinder E-field
fl	Peremeter used in transition function
FPTTY	The sleep levelies of the seep dials
****	The x-y piece location of the near-field chargestion maint
	observetion point
•	• •
	abservetien point
	veriable used in transition function Variable used to step through tangent
••• I	veriable used in transition function veriable used to step through tengent points
I IC LMIT	veriable used in transition function veriable used to step through tangent points index veriable Set true if ray hits a plate (from PLAINT)
I IC	veriable used in transition function variable used to step through tangent points index variable
I IC LMIT	veriable used in transition function veriable used to step through temport points index veriable Set true if ray hits a plate (from PLAINT) Set true when crosping wave computations begin (Returned from MPLRCL) set true if geomet-
I IC LINET LIFET	veriable used in transition function veriable used to step through tengent points index veriable Set true if ray hits a plate (from PLAINT) Set true when creeping wave computations begin
I IC LINIT LIPET	veriable used in transition function veriable used to step through tangent points index veriable Set true if ray hits a plate (from PLAINT) Set true when crosping wave computations begin (Returned from RPLRCL) set true if geomet- rical aptics cylinder reflected field does not exist
I IC LINET LIFET	veriable used in transition function veriable used to step through temport points index veriable Set true if ray hits a plate (from PLAINT) Set true when crosping wave computations begin (Returned from RPLRCL) set true if geomet- rical optics cylinder reflected field does
I IC LINIT LIPET	veriable used in transition function veriable used to step through tangent points index veriable Set true if ray hits a plate (from PLAINT) Set true when creeping wave computations begin (Returned from RPLRCL) set true if geometrical optics cylinder reflected field does not exist.

Pula	Phi component of propagation direction of ray incident on cylinder
PHSR1	Phi angle of DI
PHSR2	Phi angle of D2
₩	Radius of curvature of cylinder at point ARF in x-y plane
K i	Radius of curvature of cylinder at incident ray point on cylinder in a y plane
RT	Transverse radius of curvature of the Cylinder
S	The total distance between the source point and the incident point
SI	E-Y plane distance between the source and incident points
S	I-V plane distance between the field point and the point on the cylinder at which the creaping wave loaves
SIMA	Bot product of cylinder unit normal and cylinder-scattered ray propagation direction unit vector
31016	Perameter used in transition function
3006	Bot product of cylinder unit normal and vector from origin to source
**	Distance between last specular point on cylinder and near-field observation point
95	Distance of path along the cylinder
\$85	imaginary part of fresnel integral (from subroutine FRMELS)
\$1A	Elliptical angle defining the source tangent point x-y location
THE	Theta component of propagation direction of ray incident on cylinder

rusa i	ineta angle of DI
THER?	Thete engle of D2
TTOO	Peremeter used in transition function
THI, TVI	I and I components of unit vector of ray from source tangent to angent point i of ellipt cylinder (-3)
TH2.TV2	I and I component, of this vector of ray from fource tangent to take at point 2 of allights cylinder (2.0)
	I, r components of unit vector tangent to cylinder at tangent point (2.0)
	I, I components of unit normal to by inderest tangent point (2-0)
•	Computational variable
•	Computational variable
VI.	Eliiptical angle used to define tangent points (2-0)
ABBUT	Meximum of VI(1) and VI(2)
VERMEN	Minimum of VI(1) and VI(2)
W	Elliptical angles defining the two tangent points on the cylinder for the vector from the field point tangent to the cylinder. Blassiened two
W	The elliptical angle defining the any plane point on the cylinder at which the crooping wave looves the cylinder
W	Elliptical angle defining point where crosping wave meets cylinder
*	Elliptical angle defining point where creeping wave leaves cylinder

(4505)

I,1,2 components of direction of ray from source to cylinder tangent point (incident ray for crossing and grazing incidence

10,10

EXE (imit of integration for freshel integral)

Peremeter used in transition function

5. I/O WARTABLES:

EES

~ U	ANETWORF?:	
	19941	LOCATION
	A	/GEOMEL/
	AS	/610 /
	•	/CECNEL/
	075	/BNBSCL/
	u	/CBO/
	CP14	/COP/
	CPS	/DIR/
	CTC	/GEOGL/
	CPHS	/018/
	0	/018/
	075	/enesct/
	EMPH	/FV85/
	ENTH	/FUOS/
	ESPH	/f v06/
	ESTN	/FUES/

FLOPT /ME AA! 186 /610/ LDEBUG /1651/ LIMFLD /MEAR/ LMC /CLMF (/ /f uos / LIM LUPRET /ADE BUG/ PHISA /014/ PI /215/ /FU06/ 100 **K** /FUSS/ SAS /610/ /FUES/ 595 /010/ STRES /01R/ THEA /012/ TPI /P15/ TRAN /FUES/ /BMBSCL/ VTS /500 INF / WES /FUES/ Ŋ /SORIMF/

n

MEDEL/

6. CUTPUT LOCATION

EP F.P.

ERP F.P.

ERT F.P.

6. CALLINS MOUTINE:

STEERY

7. CALLED MONTIMES:

ASSIGN GFUN
BEND MARCY
BYANE REFCYL
BURGE SHARE
FUT SOURCE
FUARS STATIN
FUNELS STATOT
MARCH TARE
BYON MARCK
PPARS TARE

O. DEPENBUCES:

PLAINT

A. P. H. Pethet, M. B. Burnside and R. J. Herhefta, "A Uniform GTD Analysis of the Diffrection of Electromagnetic Moves by a Smooth Convex Surface," submitted for publication to IEEE Trans. on Antonna and Promonation. (Also report 784663-4, April 1979, The Unio State University ElectroScience Laboratory, Reportment of Electrical Engineering; propored under Contract No. 188288-76-C-8664 for Noval Air Bovelegment Conter-

8. R. J. Marnefaa, "Analysis of Arrivati wing Mounted Antenna Patterns," Report 2902-25, June 1976, The Onto State university ElectroScience Laboratory, Department of treatman ing neering; prepared under Grant No. NG. 36-006 (38-107 National Aeronautics and Space Administration

- 1. MARE: SEJKON GIU, MUNI
- PURPOSE: To fit the segment orne tor data compor area and compute the interpolation length for the current basic function.
- METMOD: for a wire source, the overstrates of the wire ended for ì. the interaction matrix generator are retrieved from the Julia array the onnection sate for the given your en-1774 47 retrieved from the seament from array SEGIB: interpolation computed as the average distance from the a sport of connected to the end of the source regment. The a patient for both ends of the source segment. dinates of the patch, the priental on it includes the tory to and the patch areas are retrieved from the sturbs area, source sall, ontrovers transferred to top that statement soc and the coordinates, prientation and connection parameters : of a work Legislant are retrieved from the SEGIBL array and baded into the AMP213. However, for a patch observation segment the patch point and the prientation of the unit vectors to and to are paded Into the comon area AWIII.

4. INTERNAL VARIABLES:

VARIABLE	DEF INITION
AREA	Surface area of a patch
•	wire redius of sour e segment
CAGI	Observation segment unit rector in the address tion
LAGU	Source segment unit vector on the significant
DIE	wire ength from enter of segment to enter of following segment
Oit	dire ength from enter of segment to enter of preceding segment
FMCOM	Number of tata segments onne ted to either end of the sour e segment
IBLE	Jata 5 a mdex
1 CQm	onne fion data for wire abservation segment

(COM)	Pointer to the west segment orne tea to employ the control of the course segment.
10 002	Pointer to the next segment representation
1001	Pointer to the next segment preenting to end 1 of the observation regment
IC 05	Pointer to the next segment crowning to end 2 if the observation segment
I E NO.	teron ring
I Miller	Segment number for simple junction
I SQMD1	Ubservation segment number
ISGIBL	Array ontaining segment information
ITYP	imput argument designating a
J	cocation of source segment within data
JB IAS 1	An integer to bias onnection data to indi- cate end one is connected to source segment
JB1AS2	An integer to bies connection data to indi- cate end two is connected to source segment
JB (AS)	An integer to indicate onnection of wire segment to a patch
JBLX .	The data block where desired sour e segment is located
JOB	Segment connection data word for source segment
JC01	Painter to next segment onne ted to end 1 of the source segment
)CO3	Pointer to next segment connected to end ? of the source segment
Jii	Array containing numbers of the segments which have end 1 connected to end $_{\rm c}$ of the sawrce segment

7115	Array containing the integer values if the segments which have end 2 connected if end 1 of the source segment
JOX	Array containing the numbers of the seg- ments which have end to onne ted to end of of the source segment
J0.1	Array containing the identify at un of the segments which have end 2 connected to end 2 of the source segment.
JSE6	imput argument designating segment number to be retrieved
JSDONT	Segment identification number of segment stored in the USEG ocation of SEGIBL array
LIPPAR	Same as USEG
MARCON	Meximum number of connections allowed
MARSEG	Maximum number of segments per data blo a
MALJIC	Integer representation of FNCQN
MC (II	integer value of the number of segments which have end I connected to end I of the source segment
acts	integer value of the number of segments which have end I connected to end 2 of the source segment
INCOR	integer value of the number of segments which have end ? connected to end 1 of the source segment
MCB?	integer value of the number of segments which have end 2 connected to end 2 of the source segment
MANUAL TO SERVICE AND ADDRESS OF THE SERVICE AND	Data block (urrently in use
marile 6	Total number of wire and patch data seg

\$	wire segment ength
SAGI	Observat on segment unit vector in the particle of
SABJ	Source segment unit veltor in the plantage on
SALP!	Observation segment unit vector in the . direction
SALPJ	Source regment unit vector in the . direction
SEGTOL	Array untaining segment information, equivalent to ISGTB:
SUI	If negative, flag indicating multiple junction at end i of source segment; if zero, flag indicating a simple junction at end i of source segment
S)S	Same as variable SJ1 for end 2 of source segment
SMC	Total length of segments connected to end of source segment
T181,T1V1,T121	I, v, and i components of the unit vector for the observation patch
TIMA, TIVA, TIZA	I.V. and \mathbb{C} components of t_1 unit vector for the source patch
1281,17871,17821	E.T. and : components of to unit vector for the observation patch
1811, 1811, LEST	I, I, and I components of ty unit vectors for the source patch
N1, 14, 21	I.V. and I components of center point of wire or patch observation point
£3,43,23	E.T. and . components of center point of wire or patch source point

5. I/O VARIABLES:

IMPUT LOCATION DESPRI / ADE BUG/ 19217 /GEODATA ISSTAL /SECONT. ISOFF / ACE BUG/ I SOM /ADEBUG/ ITYP F . P MIASI /SECONT/ MIASZ /SECONT/ JBIAS 3 /SEGOT/ JSEG F . P . LUPRET /ADEBUS/ MAJICON / JUNCON/ MISEE /SEMM1/ MOMPLE /SEGIGIT/ **MARKE** /SEMMT/ MIM /SEMMI/ SEGTOL /SECONT/ CUTPUT LOCATION /AMMA/ /ARMA/ / WP 213/ /40021J/

CASI

/ME 213/

i ABJ	A96
014	APP
Oli	APP
:(01	APP
1002	APR .
i (RA)	AUF BUG
KOI	M , ,
X03	APP 1
211	
42) U\$ #
101	沙海
J0.i	
154.6	
MC I II	JUNK OM
WC11	- JAMAL COM
4(08	- JUAN COM
MCS/	/ JUNK (IM)
S	(NOT 2)
SABI	(MAP (,)
SAGJ	1 1000 (1.3)
SALPI	/ NOT ()
SALPJ	1447 (1)
TAME. TAVE. TAZE	(NO::)
(18J, [19J, [12]	/ NP 213
1281,12V1,1221	** ; ; ; .
L781, L81, LEST	1 MP (1)

#1.V1.21

APP ! I

1J. VJ. ZJ

APP. LIJ.

6. CALLING MOUTINES:

CASC (3)

ZGTORY (2)

ZIJSET (3)

7. CALLED MOUTINES:

ASSIGN

ERROR

GETSEG

STATIN

STATOT

MARICA

9 610

±, ₩ .

- 2 PURPOSE But to the But to the sequence of a second or an expension of the sequence of the se
- ## THOS A a small eight to remain a correct marriage party along with their age marriage of the engineers of the age ment of the engineers of the marriage errors are small entering to the age of the

some Reywords and late more transfer to the restriction of the restrictions are a sed sequent as the restrictions are a sed sequent as the restrictions are a sed sequent as the restriction of the 15106 (15) to the restriction of the 15106 (15) to the restriction of the restricti

The TMERT RMT gramm of SETTB makes treat to add an additional interaction to SETTM. For example, suppose the interaction of (K,J) + 1.8 were to be added with segment 18 to the proved proper the new Reyword would be added in row 22.

27 Reyword number (#) y y n

The MEET the entry in row 4 would become 22, 45 shown

8 7° ₩ 22 22

The deposit interaction is 100 in a process of the second of the second

, Alle

# Jbs					•	*
WE!	.,€1∞. q	water .	the contract	1		4 .
	je	* .		-		
	?	•		•		
•	•	<i>U</i> r⊑	4	4		
4	? t	84				
•	24	9 5	•	·		**
٤.	7 %	31				
	4.5	門施		•		•
•		P	•	•		
•	y	֥				
•	4					
	? *	₹#				
*	29	200				
•	3*	D.	4	-		
4	3	•	•			
•	37	. •	*	•		
¢	3.3	C				
	34	3 -	je.	•		
•	3.	104	9	•		
9	40	ŧ	X	4 4		
x	施	ŧ.,		÷		
	39	₹ J	'			
22	- M-		<u>u</u>			

Figure . The Stiff Array for at 18% offers to be keywird.

4 INTERNA, VAPIABLES

VAR IABLE	DESIGN TO THE
	nde: over argument is an entries
1:	rest of a jim array
:SE*	How number of sevents or 50.75
S*0#	e conti, i hear of the experient to be अग्र ताक्तकार
6 , 7	State Miller of the first of th
-	sa th

4.6

7 MA

•

N 1944

F A MIL → L MIL

i ii

A •

A

- . NAME SECURS MEM
- 2 PURPOSE SUBTINE THE THE FOLLOWING THE MINARY
- HE THEEL THE Type of the service of

4 MITHMA, AB ABC.

, AB ' AB; +	
(394) - 1	nterna okan atoko elleri ili oli golko gyolko. ■G exokan atok
•	The Communication of the Commu
ARG	ndex 1 1 the 4 guest 1
.()** (1	t aug indicating it genomes youth ing tiready been typest ong ex
10.7	norst ouder forest at the Content about
14.7	ast comment can at it is not caded
; MOx	what in final at e , we sagest a free MOATBs afray
i M E A i	n ag hvá at hig that var able to he laden n hot ar hteger arna,
101	to the time of variation of the aded
(R2	451 to 1 at 4t r 1 be later
WARS VIII	Committee of the second of the agency
1 175	Hit of stir bute will in the car at a
w(Oc.)	Number 1 James of a new order variable of the same at the same state of the same at the same state of

. . . .

Mt.	Number of the second se
and mit is an	A. C. T. T. C.
were a	Number of making on a personal section of the second
MROWS	Market of the Company
et A.	Albert Michigan State of the second of the second s
ů v	No. 18 and the state of the sta
CO PARIABLES	
A . IMPU*)(A = 3 6
FLTARS	- Alfrig - pr
HTANG	AMG. M
PASS	ARG: IM
ESOF F	ADI BUG
1 50N	ADI BUG
KOCPL I	PARTAS.
ROME AL	PADIA
4018 11	PAR'AS
401 (01	PARTAS
KOL MAR	PAD ' AG
KOL MON	PARIA
(UPROT	ADE BUG
MDATBL	PARTAS:
40 PC 00	ADI BU.

Se Se Property

Line Control

	MIT HOPS	" HOPE A
	MIF.P"	AOI BUG
5	JUTPUT	OLA", On
	't ##f	ACH BUG
	* 	'{ 100 0 i

6 ALLING ROUTINE

'SKEQ!

ALLED ROUTINES

ASSIGN	PU! SYN
CONVET	57A14m
ERROR	STATOT
GE TARE	2 AMDE &
GE 15 YM	W. KBC II
1811Cs	

MARKE SHEEL (GTD, NPC), MORE NOTICE!

- PURPOSE: Subroutine to perform a she court
- 3. METHOD A shell sorting technique is used to generate an indexing array to be returned to the lawing submoutone.
- 4. INTERNAL VARIABLES

WARTABLE HERE

HI index to the upper she to be no content.

under to the ordering array for the owe

She

IN character the crops on array a line cope

126

ITEMS 15t of tems to be a sted passed the ways.

as a inglargument

Manifest of teach a percent

be surted

index to sort items in ower she

OC Ordering array for sort passed through as

4111ng argument

M Increment between ower and upper she

NITEMS Total number of tems to be sorted

5. I/O VARIABLES:

A. IMPUT .0(A'10m

LTEMS P

MITEMS + P

8. OUTPUT DEAT TON

(00

(ALLING ROUTINES.

GEMACS (1)

STATEM (1.2.3.4)

.AccED MOUTINES:

*1-18PVT 2-6TB 3-4CB 4-00TPVT

i	MANE SHAGAN	
?	PURPOSE to amous	te the 1 stan e between him points.
j	METHOD PROTUR & Q	peonal investition impute the toytan e
4	197699A, +AR, AB, +3	
	4A8.4843	
	• . 0 • ·	ne to the two points trope we have totance properties social site have point
	546	he : stan e
	i	une of the two points to be an inches the distance of amounted to the source of a service of a s
5 .	T/C VARTABLES	
	A [MPG*	. OK A 1 (Om
	F i DP '	• , •
	1	+ F
	8. OUTPUT	. OCA* (On
	SMF	• •
) .	CALLING MOUTINES.	
	DIFPLT	
	DPL RC1	
	OPL API	
	EMDIF	
	GTBORY	
	INCFLO	

RCLDP

REFERP REFER REFPLA RPLOP:

#PL SC.

SCTCVI

". CALLED ROUTINE

HOME

perendine the major of the second of the sec

THEN I THE THE THE THE THE THEORY OF THE SEARCH THE PROPERTY OF THE THEORY

e November Segment of Stationer (1997) (executive section) (execut

21 ex orthoginal camer is a anec

3 Three orthogonal symmetric area

•

•

•

.

•

•

• .

•

₩g # U

▼ 1 •

4

#±

. er _ u.e.

4.

.

•

•

• **•**

•

• .

.

.

•

.÷ •••

•

3.

A 40 - 40

· • •

sy**le**r ∎

·

A *

à

a 18 1

- 2 PORPOSE TO THE SERVER OF THE COMMENT OF THE SERVER OF TH
- MACHELIA DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DE LA COMPANIA DEL COMPANIA D

The ution to which has been considered as a second of the end of t

where it is the min tat on any to the time again to the second

• •

Control of the second

, **.**

m †

great the care and many the care

i MP

to the engence of the common one of the common of the comm

The first of the second of the

4 N' - MA . AH . AE . .

•

	Madiya tarak kananta ak
U R €	***
FF See	the second of a second
∶ ψ∮ θ η	Miles to the second of the sec
• * i	May have part of carpert you have
+ 5 m	Med part to cargers a contract
· Taglipa	merse fact
HE ACH	39 4 Rob t header of reat a contest
AAG	index 1 N'ARG greg.
:((meergen ei citer a niger
COPI	C for one expytem
IMBEA	index to the symbol lab with A
ENDES	Prode a 10 mbs 14b a 154 A
1401(ndex to the symbol table for
MDII 2	Index to the symbol table for t
I MDE T	nder to the symbol table for t
IREAL	O for ree system
IMECI	first record index
1 MC2	.ast record nde.
ISTAT	O for antenna sour e segment
KBARD	Attribute indicating banded matrix
. 1 111	ndex of the last symbol conted to A
. I TOKE	Index of the ast symbol named to R
.148(ndex of the ast symbol insection

(W. 1 . WILL 1.0001 (第2 OK CUM ~ OC + 1 EXCER. X RHS 1 OK \$01 reation of his atom in items areas 51110 Fred tited number of terations requires a onvergen, e MAX [] # M10119 performed before predicting the number Merations needed for invergen a 100119 Add 11 tone interet ons lineau red onvergen + Dutput near tor 4

mACELL Number of "EMP Le is for matrix storage

MONAG Mollerith argument names

Matter the onvergence names

MANEA Name of Symbol A

MARE Of Lymbol B

NAME OF NYMBO (

MAREL MADE STATE

NAME I NAME I STORE I

i e jaka 🙀 🙀 🙀

WCELLS. MCOLA WCOL 8 MCOL (WCOL I WCOL * ₩£0 WHE ! H

WECS MACHA MOMB. MONI NYRSTN OL DOC P OLDIRE -PRELTE 7011 PURLOS RELEM SOL I RE SOLING AF 1 21 Z1 005Q

MING

PMS	1 * # 1 * - *
7 0	tes store (41) importent
. AR ∶ AB. + .	
A NOTE OF	• A M
HEPN	\$ 4 \$ 6 3
P+ PM	5 + 5 +
106.9 0	AIN BUL
	Ge (XDA *
· APU	APG (III
j nj † Adht,	APGC (IM
10L # P 1	5450 (1. c
1001.0	Ø€ : £ \$
105(*)	5+5F 1.
1050#7	S+S+1
1 PASS	AAGCON
[P7]	/ GE CIDA 1
! S# 6	St Con 1
! \$610 i	SECONT
15064	ADE BUG
t som	ADE BUG
KBBARE	PARTA
CDC ₹1	PAS' NO
«BG€ CI III	PAR! AB
CBL OAL	PAR AM

#85x11 %	- A# - A#
€ 0€	PARTAB
Cty Ox	res sp
E (24) 400	PAU, AB
CH NAP	PASTAF
€0€ #U ₩	PAB 1p
. ₽8 %	4(A) P &
MAIS:	SE 🦛
MDA * B i	P. 4.0 . 4.8
NDA 1901	PAB ' AB
40P (0 0	ADE BUG
WPDA'A	PAR 1 AB
m TERRY	1600
MTF, PT	ADE BUG
NAMAG	ARGLON
₩1 00	- \$ { CPO L [†]
566100	/ SE COO M
UP08(#	/SECONT
Z E 10 0	/ ADE BUG
OUTPU'	. OCATEON
I E MMF	ADE BUG
10(EP '	\$ *\$ #.1.
406046	ADE BUG
' f 🕪	*{*** 0;

6 A. M. den mi

SALL

- According

A reading to the

ASSIGN	· 11 12	•	4
BA: SUF	.• 4 ₩ .	≥ ••	•
GOO [B H :	45 16	· •	• 100 0
> *	≱ * - ∑ * ∈	4 (36 ·)	• 🖦 🖟
(M. JUL)	٠.٠٠	3 44 4 ° # 1	

+ +

•

•

•

- NAME AND A SECOND
- The Property of the Committee of the Com
- B. METHOE Transport to employ the second of the second of
- 4 411 44 . AN . AN . .

AB AB	
A	angan dan kantan kan memberah dan kantan kan menggan menggan menggan bermanggan menggan bermanggan menggan ber Angan dan menggan bermanggan bermanggan bermanggan bermanggan bermanggan bermanggan bermanggan bermanggan ber Menggan bermanggan bermanggan bermanggan bermanggan bermanggan bermanggan bermanggan bermanggan bermanggan berm
BARC	ing the state of the top of the grade to be determined to the state of
31 %	he may rary compresent to the consideration of superal considerations.
··· I aga	The cease of the company of the company is empirically a second of the company of
(PAG	Magnifyte to the tragens wilden
13, 13 5Av	in other to a paper or group, it
I MIDIE	FINE FRANCE CONTRACTOR OF THE SERVICE OF THE SERVIC
(ORD) #	o rgou f exgu e rent tay, not at my riger to nat tie
JSP	The districts of particular to the property of the particular of t
<i>1</i> 5 *	And the state of t

.'•	
. •	
	4 v
٤	the second of th
MONON	the southern the early and expect the expect the early and expect the expect there expect the expect th
₩ 1	
₩	TO A CONTRACT OF
WCOLS	nterne car escar escar e
•	The residence with a second
₩MI,	Popular de guarante de la composición del composición de la compos
MPRE (M	oterna variable to whea
•	"Dut 41 gument, humber of the will be a
MACHIS	internal variable for we
ME AL	ogit ell verteble genyt ny a lies metric.
3401	The accumulated sum of the oner product a the the theory has been for a complete material
SUM	the accumulated sum of the real part of the inner the product for a materies
Thouse	cogical veriable ndileting a transposed matrix when 1904
•	input engument out a province on a the
∀1	the mag have barr to the south only the

N PAR ABOVE

A MP1 1 MAY MA

曜()) 6

5.胂 《使物质》

bi . ;

№

aut Print Or At ton

y 6 P

6. CALLING MOUTINE

BAC SUB

7. CALLED MONTIMES:

ASSIGN

STATIN

STATO

W KBCI

- PURPOSE ROUTING to pertain through the winds of a second and a second se
- 3 METHOD to reserve to the matter of granting and provided the second of the matter of the part of the second of t
- 4 MILENA FAR, ABITS

VARIABLE	2 · • • •
A	The second of th
BARC	GO BOOK BOOK BOOK TANDER OF THE SECOND SECON
(() () ()	A region contrator may also amples. Matrix where their
01461	the teagriners part of the traggle of empire
01	the magnitude of the treatment in emet
0144	the real part of the diagraph ement
161	i nput arquee nt sesignat nu toost oo 🚁 e. Alinoogre
167	Chout argument tex gret so the extremity of
(f w ()	Frag Paul Core for treatment a money or pequal Core for be a Nation to the
i i	Index to the maginary part of the $s_{\rm S}$ it we seek that
! •	Index to the real parts to the google will be seen to the company of the company
	c nde) to the column being constitutions by the so-

X 1	
ж 7	Merchanical Company
¥ .™ .	(1.1 • 1.1 • 1.
J :	enter de la companya de la companya Na companya de la co
jih	A to a second of
) 0 '	······································
) (1	the state of the s
•	* Sec. 24 C * 1 C C C C C C C C C C C C C C C C C
4F)	
EP?	At the Control of the
ESTAR"	en e
•	maput angumer sekola akong kong kong mengelik kenalagan kenalagan kenalagan kenalagan kenalagan kenalagan kena J∰man
MCOLS	
	, •
MCD(S	
MCOLS MLAST	Number 1 Jen 1 The extra action of the control of
WCOUS WLAST	Number 1 Jen 1 The ast a second seco
WCOUS WLAST	Number 1 Jen 1 The last was recommended to the putter words per element of the material when the content of th
MCOUS MLAST MPRA (J MPRE LA	Number 1 Jan
MCDUS MLAST MPRA[J] MPRE LM MDDWS	Number 1 Jen 1 The lest was recommended with a second of the many of the second of the many of the second of the many of the second of the se

entre de la companya del companya de la companya de la companya del companya de la companya del la companya del la companya de :: . 1. 5041 ACH RUL ACK BUE,

A A COME, ACCOUNT ON

BAL SIM

4 y 5 198

- *A * •
- . * **A** *
- **∉. €⊕. €**

NAME IN

That I have a series of the se

The sylver entrype of the many sections in the section of the sect

Marian Carlos Antonios de Carlos de

 $oldsymbol{\Psi}_{i_1,\ldots,i_{k-1}}$, $oldsymbol{\mu}_{i_1,\ldots,i_{k-1}}$

•

·

•

.

•

•

. .

And the second s

• • •

Medical Conference of the State of the State

ar red spherial richard

 $(\pmb{y}_{q}) = (\pmb{y}_{q} - p_{q}) \cdot p_{q} \cdot p_{q}$

IN . . Pu se surface current in pat h. Mear Freid

$$\frac{2 \cdot \left(2 + 2 \cdot \frac{1}{4 \cdot 4} \cdot \left(1 + 2 \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \left(1 + 2 \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \left(1 + 2 \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \left(1 + 2 \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \left(1 + 2 \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \left(1 + 2 \cdot \frac{1}{4} \cdot \frac{1}$$

where

.

 $\Psi_{\Phi} = \frac{18\pi}{4\pi} \frac{\Psi_{\Phi}}{V} \frac{18\pi}{V} = \int_{-\Delta_{\phi}}^{\Delta_{\phi}} \frac{1}{2} \exp(-kx) \exp(-kx) \frac{1}{2} \exp(-kx) \exp(-kx) \frac{1}{2} \exp(-kx) \exp(-$

(M. + 2 / ylledrical wave ... Not the emperies.

IN . 3 Spherical wave

Near Field: (spherical sportinates.)

 $E_{\rho} = 0 \qquad E_{\varphi} = 0 \qquad e_{\varphi} \leq \frac{18R}{R} \qquad E_{\varphi} \qquad e_{\varphi} = \frac{18R}{R}$

far field: (spherical coordinates)

. . 0

 $\mathbf{R}_{0} \rightarrow \mathbf{0}$ $\mathbf{r} \cdot \mathbf{R}_{0} \rightarrow \mathbf{J} \hat{\mathbf{h}} = \hat{\mathbf{h}} \cdot \begin{bmatrix} \mathbf{g} & \mathbf{j} \hat{\mathbf{h}} \cdot \mathbf{r} \\ \mathbf{r} \end{bmatrix}$

 $\mathbf{E}_{\phi} = \mathbf{0} \quad \forall \quad \mathbf{E}_{\mathbf{0}} = \mathbf{0}^{(\mathbf{0})} \quad \hat{\mathbf{B}}^{(\mathbf{0})} \left[\mathbf{e}^{-(\mathbf{0})} \right]$

TET CONTRACTOR OF ATEN

the transfer of the second of

et et et

1	Committee of the second of the
	disk proper backers.
9	v Sast to Sucha a current amp meter
•	te for eque months
•	Magn 1 ide (i
	An tame as management, if a

	te sangu ar i mochents if a					
r. • . • .	et ánda rd G illeone nts	spher +	personate	5,5100		
- 0 - 1 € - 1 E	itanderd magonents	, nor 4	ward that e	Sistem		

•) : B & .	· •) 🖛 :	
•	(equent		

~	Mara Territi	medani e	 	D4 .
) '6			

•	1-4	4.	***que,	• •

SUPPORT OF ANYTHER MEANING OF AN EAST OF A SECOND

It show if he noted that it star each will be have meet a perfect of each engine to perfect of the head of the perfect of the

"wo sour e parameters are used to pass geometro a ligitarity saw it.

SF1 wire radius wave engine or jat his erea square wave lengths

SP2 wire ength (wavelengths

4 INTERNAL VARIABLES

VARIABLE	横手音動 (1.5. m)
A(THP	Absolute value of the some of which some open a
6 4	Mare number ""mes wire had",s
. Dit 2	More rumber filmes wire had ength filmes
(101	integra of ositriin de ver wire engin
COINC	change in vector direction due it, monzero wire radius
CONST	divided by 8+2
(P)	costne of a cats systems
(PMP	osine of a isource pordinate system
CR1	(n/2k)/os(br)//(br) //sed in amouting eire
(810	₽ \$2 (**).
(#100	Blog be of
(@ ?	Thirthis subtractions used in mouthing wire made from its

878	d 2 · •···:
# ?# #	
y '	is the contract of the second of the contract of the second of the contract of the second of the sec
f ju	and the second of the second o
'##	Some the contract of the second
182	MANA CONTRACT COMPLETE OF THE CONTRACTOR
91	n dense talt i petember tallt e till till t om and glane make undbagat och till och och till i esk than och åj the tell till och och and kand till som de
{ •	#adia component of wire the toxic expose a condent a system
ERRC .ERT:	Rea and maginary mpunent to the toologs no unrent distribution
t mas , f m (s	Pea and rmaginary ampenents of swifty public urrent distribution
(mas, (m) s	Real and reaginer, sepanents to the for- sine urrent distribution
£#,£*,£;	Rectangular omponents of source treations source operatinate system
ERPTI, ERITI	Real and imaginary omponents of patch source near flelds is omponents
EIPAGG	Phase argument of plane wave
(1)	Angulier sependence of topolie fer the its
€ *# ₹1,€ * { [†] }	Rea and maginary approperty to get his source near fields a component
F700.8710	West sout maginary makements to the termination of the control of
(7 0 0,67):	tea and maginary exponent to the topologically be seen that the puttern

E7#5,E715	প্ৰথম প্ৰতিয়া গালাৰার তাৰতে। প্ৰথম প্ৰতিয়া বিভাগ বিভাগ মহাত্যালয় বিভাগ
#2 0 15,#221	Pear and May have separate to the carticles of the second states of the second
. 48:	Chata component of a
· APG	Philosophine (for the control of the
64,6+,6°	Pertangular degument to color our color reference portinate castima
₩	Philodoponent of path magnetic constraints
M [†]	Theta component is patit that en it is not to some the source of the sou
* 38	nterna sarration out at my than confiniteral transfer out to be a latest
(#)	GTO source type
[PAT(H	Fileg and setting to the visit of the parties of a parties of
ç mm f i <u>(</u> .	Eleg shelt atting whether near twisting shelter near twisting shelter the discussion shelter to be a second to the ase of
PH	Phase of plane wave at itselfation point
PHS	Phase of spheria wave at inservation
•	Source observation separation (instance)
Aja	end of sequent to disease to be a regarded.
MIKS	efe.e/s
•?	***

• / 6	en e
+/ t	
•	• •
w+ \$	
•	
• H4	
4 se-	en e
del of	
•	. • •
# N	-••
a	 In the second of the second of
Ac	(1864) A Proposition (1864) A Proposition (1864) A Proposition (1864) A Proposition (1864
64 (4)	
44B.	**************************************
## .# · .#	
å *	• • • • • • • • • • • • • • • • • • •
y d	was the second s

;

Constant Constant

4 6 646

y •	en la gradi nation de la companya del companya del companya de la	
	e de la companya del companya de la companya de la companya del companya de la co	
2 m	e de la company	
5種音樂	NB · · · · · · · · · · · · · · · · · · ·	
58.84	v i n − v v	
V4 ?		
\# <i>7</i> 4	s *	
5# 7 # 6	. i	
35.	The state of the s	
u Y be	the state of the s	
7. 106	Street to the street of the st	
, s , .	ቅ ምል። ቁጥ ም ገ መል። የሚልተው ይልተለር ነገር ነገር የሚከቁጥን በልናቀ። ነክር ል (ሀና ል) የሚ ይልነ የ ነውልና ነገል ነር	
16 800	Phase and spread to the spread a wave-	
74,77,73,74	Tempore and strong general contempore great and so in the second of the second strong strong and second sec	
110,11	MPA And Mas nary say to the A	

الوريو Agentus (الموريو Agentus (Agentus (

en de la frago de deservición de la frago de la frago

e de transportant de la composition de la La composition de la

A COMPANIE CONTRACTOR OF THE PROPERTY OF THE P

Pt Superior Symbol Superior Community States Superior States States Superior States St

AL AK

. Lab

SOUND WASTERN TO SEE THE TO TO THE TOTAL OF THE TOTAL OF

SOURCE (GTD)

DPLRPL REFCYL RPLSCL

ENDIF REFPLA SCLRPL

INCFLD RPLDPL SCTCYL

RCLDPL

CALLED ROUTINES:

ASSIGN

ROMBNT

STATIN

STATOT

WLKBCK

- 1. NAME: SOURCP (GTD)
- 2. PURPOSE: To compute the tangential components of the normal derivative, $\frac{\partial \bar{E}}{\partial n}$, of the incident field pattern factor for a source ray incident on a given edge.
- 3. METHOD: A source is located and oriented according to figure 1 and emits a ray incident on a diffracting edge. The slope field is given by

$$\frac{\partial \vec{E}}{\partial n} = \frac{1}{s' \sin \beta_0} \cdot \frac{\partial \vec{E}}{\partial \phi_0} \tag{1}$$

where

$$\bar{E} = \bar{E}_{O}(\theta', \phi') \frac{e^{-jks'}}{s'}$$
 (2)

 θ' and ϕ' are the spherical angles of the source ray in the source coordinate system. s' is the distance from the source to the edge.

Figure 1. Pertinent Geometry for Slope Diffraction. The Unit Vectors $\hat{\theta}'$, $\hat{\phi}'$, $\hat{\beta}_0'$, and $\hat{\phi}_0$ Are Defined in the Standard Way.

The required derivative in (1) is computed from the spherical components of the source field and their derivatives (in the source coordinate system) by using the chain rule of taking derivatives:

$$\frac{9\dot{\mathbf{E}}}{9\dot{\mathbf{E}}} = \frac{9\dot{\mathbf{\Phi}}^{0}}{9(\mathbf{E}^{0},\hat{\mathbf{\Theta}},)} + \frac{9\dot{\mathbf{\Phi}}^{0}}{9(\mathbf{E}^{0},\hat{\mathbf{\Phi}},)}$$
(3)

$$= \hat{\theta}' \frac{\partial E_{\theta'}}{\partial \phi_{O}} + E_{\theta'} \frac{\partial \hat{\theta}'}{\partial \phi_{O}} + \hat{\phi}' \frac{\partial E_{\phi'}}{\partial \phi_{O}} + E_{\phi'} \frac{\partial \hat{\phi}'}{\partial \phi_{O}}$$

$$= \hat{\theta}' \frac{\partial E_{\theta'}}{\partial \Phi_{O}} + E_{\theta'} \frac{\partial \hat{\theta}'}{\partial \phi_{O}} + \hat{\phi}' \frac{\partial E_{\phi'}}{\partial \phi_{O}} + E_{\phi'} \frac{\partial \hat{\phi}'}{\partial \phi_{O}}$$
(4)

$$\frac{\partial \mathbf{E}_{\theta'}}{\partial \Phi_{\mathbf{O}}} = \underbrace{\frac{\partial \mathbf{E}_{\theta'}}{\partial \theta'}}_{\mathbf{ETP}} \underbrace{\frac{\partial \Phi_{\mathbf{O}}}{\partial \Phi'}}_{\mathbf{ETP}} + \underbrace{\frac{\partial \mathbf{E}_{\theta'}}{\partial \Phi'}}_{\mathbf{ETP}} \underbrace{\frac{\partial \Phi_{\mathbf{O}}}{\partial \Phi'}}_{\mathbf{ETP}}$$
(5)

$$\frac{3\Phi^{O}}{3E^{\Phi'}} = \frac{3\Theta^{O}}{3E^{\Phi'}} \frac{3\Phi^{O}}{3\Theta^{O}} + \frac{3\Phi^{O}}{3E^{\Phi'}} \frac{3\Phi^{O}}{3\Phi^{O}}$$
(6)

The angular derivatives are given by

$$\frac{\partial \theta'}{\partial \phi_{O}} = -\sin \beta'_{O} \cdot \hat{\theta}' \qquad \frac{\partial \phi'}{\partial \phi_{O}} = -\frac{\sin \beta'_{O}}{\sin \theta'} \cdot \hat{\phi}_{O} \cdot \hat{\phi}' \qquad (7)$$
TPHO

TPHO

$$\frac{3\hat{\theta}'}{3\phi_0} = \sin \beta_0' \left[\underbrace{(\hat{\phi}_0 \cdot \hat{\theta}') \hat{s}' - \cot \theta' (\hat{\phi}_0 \cdot \hat{\phi}') \hat{\phi}'}_{\text{PPHO}} \right]$$
(8)

$$\frac{3\hat{\phi}^{*}}{3\hat{\phi}_{O}} = \frac{\sin \beta_{O}^{*}}{\sin \theta^{*}} \underbrace{(\hat{\phi}_{O} \cdot \hat{\phi}^{*})}_{\text{PPHO}} \hat{\rho}^{*}$$
(9)

$$\hat{\rho}' = \sin \theta' \quad \hat{s}' + \cos \theta' \quad \hat{\theta}'$$
STHP VI CTHP

$$\hat{\boldsymbol{\theta}}' = (XTH, YTH, ZTH)$$
 (11)

$$\hat{\phi}' = (XPH, YPH, ZPH) \tag{12}$$

The above expressions may be combined to yield:

$$\frac{\partial \tilde{E}}{\partial n} = \left\{ \begin{bmatrix} \frac{\partial E_{\theta'}}{\partial \theta'} & (\hat{\phi}_{O} + \hat{\theta}') & \hat{\theta}' & -\frac{\partial E_{\phi'}}{\partial \theta'} & (\hat{\phi}_{O} + \hat{\theta}') & \hat{\phi}' \end{bmatrix} \right.$$

$$+ \frac{1}{\sin \theta'} \left[-\frac{\partial E_{\theta'}}{\partial \phi'} & (\hat{\phi}_{O} + \hat{\phi}') & \hat{\theta}' & -\frac{\partial E_{\phi'}}{\partial \phi'} & (\hat{\phi}_{O} + \hat{\phi}') & \hat{\phi}' \right]$$

$$+ \cot \theta' \left[-E_{\theta'} & (\hat{\phi}_{O} + \hat{\phi}') & \hat{\phi}' + E_{\phi'} & (\hat{\phi}_{O} + \hat{\phi}') & \hat{\theta}' \right] \right\} \frac{e^{-jks'}}{s'^{2}}$$
(13)

Note that $\sin \beta_0'$ is eliminated from the expression in (13). Also, only the tangential components are retained.

SOURCP returns the quantity within the brackets, as the term $\frac{e^{-jks'}}{s'^2}$ is added elsewhere in the code. The two field components EIPRP and EIPLP are given by:

$$\frac{\partial \vec{E}}{\partial n} = [EIPRP \hat{\phi}_{0} + EIPLP \hat{\beta}_{0}'] \frac{e^{-jks'}}{s'^{2}}$$
 (14)

EIPRP is computed by taking the dot product of (13) with $\hat{\phi}_0$. ignoring the exponential term. EIPLP is obtained by dotting (13) with $\hat{\beta}_0^i$.

Since E_{Θ} and E_{Φ} for GTD and MOM sources are analytic in the far field, it is straightforward to obtain the necessary partial derivatives. For example, consider a wire segment with pulse current (IM=1):

$$\mathbf{ET} = \mathbf{E}_{\theta}, = \frac{\mathbf{j} \, \mathbf{n}}{2} \, \left(\frac{\Delta \ell}{\lambda} \right) \quad \sin \theta \, \qquad \qquad \mathbf{EP} = \mathbf{E}_{\phi}, = 0$$

ETT =
$$\frac{\partial E_{\theta'}}{\partial \theta^i}$$
 = $\frac{i\eta}{2}$ ($\frac{\Delta \ell}{\lambda}$) cos θ^i EPT = $\frac{\partial E_{\phi'}}{\partial \theta^i}$ = 0

$$\mathbf{ETP} = \frac{\partial \Phi_{i}}{\partial \Phi_{i}} = 0 \qquad \qquad \mathbf{EPP} = \frac{\partial \Phi_{i}}{\partial \Phi_{i}} = 0$$

(15)

These terms are then substituted into the formulas for EIPRP and EIPLP at statement 100.

4. INTERNAL VARIABLES:

VARIABLE DEFINITION

ACTHP Absolute value of the cosine of θ' (source

coordinate system)

BOP Rectangular components of the beta-

component of the incident field in RCS

system

CCDK2 Cosine of CDK2

CDK2 Wave number times wire half-length times

cosine of θ'

CNDK2 Cosine of 5x2

CONST $j_{\eta}(\frac{1}{2}\ell/\lambda)^*\lambda$ used in computing patch slope

fields

CPHP Cosine of ϕ' (source coordinate system)

CTHP Cosine of θ' (source coordinate system)

SOURCP (GTD)

DK2	Wave number times wire half-length		
E1,E2	Temporary storage for terms used to compute slope fields of stiff dipole source		
EA,EB	Temporary storage for terms used to compute slope fields of stiff dipole source		
EFA	Partial derivative of dipole pattern factor with respect to theta		
EFB	Dipole pattern factor divided by $sin(\theta')$		
EIPLP	Parallel polarized component (soft) of normal derivative of incident fields (parallel to edge)		
EIPRP	Perpendicularly polarized (hard) component of normal derivative of incident fields (perpendicular to edge)		
EP	Phi polarized component of incident field (source coordinate system)		
EPP	Partial derivative of EP with respect to phi		
EPT	Partial derivative of EP with respect to theta		
ET	Theta polarized component of incident field (source coordinate system)		
ETP	Partial derivative of ET with respect to phi		
ETT	Partial derivative of ET with respect to theta		
IM	GTD source type		
PHO	Rectangular components of the phi-component of the incident field in RCS		
PP80	Dot product of phi polarization unit vector of source coordinate system and beta polarization unit vector of edge-centered coordinate system		

SOURCP (GTD)

РРНО	Dot product of phi polarization unit vector of source coordinate system and phi polarization unit vector of edge-centered coordinate system
RDX	Projection of incident ray direction onto source x axis
RDY	Projection of incident ray direction onto source y axis
SCDK2	Sine of CDK2
SN	Sign of CTHP
SNDK2	Sine of DK2
SP1	Source parameter one: wire radius (wave- lengths) or patch area (square wavelengths)
SP2	Source parameter two: wire length (wave-lengths)
SPHP	Sine of ϕ' (source coordinate system)
STHP	Sine of θ ' (source coordinate system)
TPB0	Dot product of theta polarization unit vector of source coordinate system and the beta polarization unit vector of edge-centered coordinate system
ТРНО	Dot product of theta polarization unit vector of source coordinate system and the phi polarization unit vector of edge-centered coordinate system
VAX	Source axes direction cosines (RCS rectangular component projections)
VI	Direction cosines of incident ray propagation direction
XPH,YPH,ZPH	Rectangular components of the phi unit polarization unit vector in the source coordinate system (RCS components)
XTH,YTH,ZTH	Rectangular components of the theta unit polarization unit vector in the source coordinate system (RCS components)

5. I/O VARIABLES:

A. INPUT LOCATION

BOP F.P.

CJ /COMP/

ETA /AMPZIJ/

IM /SRC/

PHO F.P.

PI /PIS/

SP1 /SRC/

SP2 /SRC/

TPI /PIS/

VAX F.P.

VI F.P.

B. OUTPUT LOCATION

EIPLP F.P.

EIPRP F.P.

6. CALLING ROUTINES:

DIFPLT

DPLRPL

RPLDPL

7. CALLED ROUTINES:

ASSIGN

STATIN

STATOT

WLKBCK

- 1. NAME: SPWDRV (MOM)
- 2. PURPOSE: Generate the plane or spherical wave excitation on the structure.
- 3. METHOD: The coordinate system and parameters are illustrated in figure 1, where \bar{E} is the linear component and \bar{EP} is the polarization component of the incident electric field. The eccentricity ε specifies $|\bar{EP}|/|\bar{E}|$ and for positive ε , the wave vector \bar{k} has direction given by \bar{E} x \bar{EP} for negative ε , the wave vector \bar{k} has direction given by \bar{E} x \bar{EP} and for negative ε , \bar{k} has direction given by \bar{EP} x \bar{EP} and for negative ε , \bar{k} has direction given by \bar{EP} x \bar{EP} and for negative ε , \bar{k} has direction given by

Figure 1. Geometry for Plane or Spherical Wave Excitation

whereas for spherical wave excitation, \bar{k} is oriented toward the observation point. The total field is given by

$$\bar{\mathbf{E}}^{\mathbf{t}} = \bar{\mathbf{E}}^{\mathbf{I}} + \bar{\mathbf{E}}^{\mathbf{R}}$$

$$\bar{E}^{I} = \bar{E} + j\bar{E}\bar{P}$$

where \overline{E}^{R} is the reflected field. \overline{E}^{R} is given by:

$$\tilde{\mathbf{E}}^{\mathbf{R}} = (\tilde{\mathbf{E}}_{\parallel}^{\mathbf{n}} + \tilde{\mathbf{E}}_{\parallel}^{\mathbf{P}}) \mathbf{R}_{\parallel} - \tilde{\mathbf{E}}_{\perp} \mathbf{R}_{\perp}$$

where $\bar{E}_{||}^{n}$ and $\bar{E}_{||}^{P}$ are the components of the total field incident normal to (n) and parallel to (P) the reflective surface. \bar{E}_{\perp} is the total incident field perpendicular to the plane of reflection. R $_{||}$ and R $_{\perp}$ are the modified Fresnel reflection coefficients for the in-plane and out-of-plane components as described in the Engineering Manual.

The excitation for a segment located at \bar{R}_i oriented parallel to $\bar{\ell}_i$ with length $|\bar{\ell}_i|$ is

$$\mathbf{E}_{i} = -\mathbf{\bar{\ell}}_{i} \cdot \mathbf{\bar{E}}^{t} (\mathbf{R}_{i})$$

where

$$\mathbf{\bar{E}}^{t}(\mathbf{R_{i}}) = \mathbf{\bar{E}}^{I} e^{-j\mathbf{\bar{k}}_{i} \cdot \mathbf{\bar{R}}_{i}} + \mathbf{\bar{E}}^{R} e^{-j\mathbf{\bar{k}}_{r} \cdot \mathbf{\bar{R}}_{i}}$$

$$\vec{k}_i = \frac{2\pi}{\lambda} \hat{k}_i$$

$$\vec{k}_r = \frac{2\pi}{\lambda} \hat{k}_r$$

SPWDRV (MOM)

INTERNAL VARIABLES:

ETAP

EXI

. INTERNAL VARIABLES:		
VARIABLE	DEFINITION	
ARGI	$\frac{2\pi}{\lambda}$ $\tilde{k}_i \cdot \tilde{R}_i$	
ARGR	$\frac{2\pi}{\lambda} \tilde{k}_i \cdot \tilde{R}_i$	
COSARG	^ ' -jk ⋅ R; Real component of e	
COSETA	(Ē · φ̂)/ Ē	
COSP	Cosine of ϕ	
COST	Cosine of 0	
DXSW	X component of source with respect to specular point	
DYSW	Y component of source with respect to specular point	
DZSW	Z component of source with respect to specular point	
ECCN = ECCEN	Eccentricity (EP / E)	
EM	Magnitude E	
EPRX,EPRY,EPRZ	X,Y,Z components of reflected polarization component of incident wave	
EPX,EPY,EPZ	X,Y,Z components of reflected linear component of incident wave	
ERX, ERY, ERZ	X,Y,Z components of reflected linear component of incident wave	
ESX,ESY,ESZ	X,Y,Z components of linear component of incident wave	
ETAE	Angle between \bar{E} and $\hat{\boldsymbol{\theta}}$	
ETAINV	1/377 (mho)	

Polarization angle

Total x component of incident wave

-jk · R_i

EXPARG

EXR Total x component of reflected wave

EXRI In-plane reflected x component

EXS Linear x component

EYI Total y component of incident wave

EYR Total y component of reflected wave

EYR1 In-plane reflected y component

EYS Linear y component

EZI Total z component of incident wave

EZR Total z component of reflected wave

EZRI In-plane reflected z component

F Logical .FALSE.

GROUND Logical .TRUE. if ground present

HCNVRT Logical .TRUE. if convert to H-field for

plane wave

HXI, HYI, HZI X, Y, Z components of incident H-field for

patches

HXR, HYR, HZR X, Y, Z components of reflected H-field for

patches

KIX $\bar{k}_{\star} \cdot \hat{x}$

KIXSQ (KIX)²

KIY $\bar{k}_{*}\cdot\hat{Y}$

KIYSQ (KIY)²

KIZ $\bar{\mathbf{k}}_{i} \cdot \hat{\mathbf{Z}}$

KRX k. . .

KRXSQ (KRX)²

SPWDRV (MOM)

KRY (KRY)² **KRYSO** KRZ

KSYMP 1 = no ground 2 = ground

KXKY KIX * KIY

LBLK Block number containing subsection being

considered

LINEAR .TRUE. for ECC = 0.FALSE. for ECC > 0

NAMEXC Symbolic name of excitation data set

NDXBLK Block number of current geometry data

NI Index to TEMP array for imaginary component

NR Index to TEMP array for real component

NUMYRS Number of wire segments

NX,NY,NZ Components of patch normal vector

PHI Spherical angle ϕ in radians

PHIS Spherical angle ϕ in degrees

PLNWAV .TRUE. for plane wave excitation

.FALSE. for spherical wave excitation

 \geq 0 - location of spherical wave source < 0 = plane wave source R

RF Distance from source to specular point

RFI I/RF

RHO Reflection plane component of RF

(RHO)² RHOSQ

RI Distance from source to field point

SPWDRV (MOM)

RINP In-plane reflection coefficient

ROUT Out-of-plane reflection coefficient

RS Location of wave excitation source

RSQ R²

SINARG Imaginary component of e $-j\bar{k} + \bar{R}_{i}$

SINETA (1-COSETA²)

SINP Sine (ϕ)

SINT Sine (θ)

T Logical .TRUE.

T1X,T1Y,T1Z Internal symbols for SEGTBL parameters

T2X,T2Y,T2Z Internal symbols for SEGTBL parameters

THETA θ (radians)

THETS θ (degrees)

VI Unused

VMAG | E + je EP|

VOLTS Total excitation

VR Unused

WIRE Logical .TRUE. if element is a wire

XC X coordinate of field point

XR X coordinate of specular point

XS X coordinate of source point

XW X component of $\bar{\mathfrak{L}}_{i}$

YC Y coordinate of field point

YR Y coordinate of specular point

YS Y coordinate of source point

SPWDRV (MOM)

YW Y component of $\bar{\mathbf{z}}_{\mathbf{i}}$

ZC Z coordinate of field point

ZR Z coordinate of specular point

ZRSQRT Intermediate value in calculation of RINP

and ROUT

ZS Z coordinate of source point

ZW Z component of $\bar{\mathfrak{L}}_i$

5. I/O VARIABLES:

A. INPUT LOCATION

DGTORD /GEODAT/

ECCEN F.P.

ETA /AMPZIJ/

ETAP F.P.

IPERF /AMPZIJ/

ISGTBL /SEGMNT/

ISOFF /ADEBUG/

ISON /ADEBUG/

KSYMP /AMPZIJ/

MAXSEG /SEGMNT/

NAMEXC F.P.

NDXBLK /SEGMNT/

NPATCH /SEGMNT/

NWIRE /SEGMNT/

PHIS F.P.

RS F.P.

SPWDRV (MOM)

SEGTBL /SEGMNT/

THETS F.P.

VI F.P.

VMAG F.P.

VR F.P.

WAVNUM /AMPZIJ/

ZRATI /AMPZIJ/

B. OUTPUT LOCATION

TEMP /TEMP01/

UPDBLK /SEGMNT/

6. CALLING ROUTINE:

EXCORV

7. CALLED ROUTINES:

ASSIGN

GETSEG

STATIN

STATOT

WLKBCK

ند کرد در درگذر در کرد درگزد در دو در دو میگیرها <mark>میگیرها بی میگیرهای میگیره بی میگیرهای بی بی بی بی بی بی میگ</mark>یر

1125

- 1. NAME: STATFN (GTD, INPUT, MOM, OUTPUT)
- 2. PURPOSE: Subroutine to print the timing statistics compiled during code execution and to write the end-of-module checkpoint.
- 3. METHOD: The number of times a subroutine is entered, the total time to run the subroutine, and its percentage of the total code execution time are compiled and printed.

4. INTERNAL VARIABLES:

VARIABLE DEFINITION

IMDCHK Flag indicating that an end-of-module

checkpoint is being written

ITEMS Dummy array used to store the subroutine

times for sorting

J Pointer to the next subroutine statistics

to be printed

LOC An order array used to indicate the sorted

subroutine timing statistics

MODCHK End-of-module checkpoint file logical unit

NITEMS The number of entries for which there will

be timing statistics

PCNT The percentage of time spent in any one

subroutine

RITEMS Real array equivalenced to ITEMS

TOTAL Total amount of GEMACS code computer time

accounted for in subroutines

5. I/O VARIABLES:

A. INPUT LOCATION

CHKPNT /SYSFIL/

IERRF /ADEBUG/

IOCKPT /SYSFIL/

ISOFF /ADEBUG/

STATFN (GTD, INPUT, MOM, OUTPUT)

ISON /ADEBUG/

LUPRNT /ADEBUG/

MODCHK /SYSFIL/

MODNAM /MODULE/

NRNAMS /ADEBUG/

NRSUBS /ADEBUG/

NRTIMS /ADEBUG/

RSUMS /ADEBUG/

B. OUTPUT LOCATION

COMPLT /SYSFIL/

IMDCHK /ADEBUG/

LSTMOD /MODULE/

MODLST /MODULE/

RSTRTA /SYSFIL/

6. CALLING ROUTINES:

MAIN PROGRAM

ERROR

7. CALLED ROUTINES:

CLSFIL

OPNFIL

SHELL

WRTCHK

atorit atoritation of a fortal fortal fortal a fortal a factoritation and a factoritation and a factority.

- 1. NAME: STATIN (GTD, INPUT, MOM, OUTPUT)
- 2. PURPOSE: To initialize timing statistics for all subroutines which call it.
- 3. METHOD: The current wall clock time is entered into the RTINS array. The NRTIMS array is incremented by 1 and the total time in the previous subroutine is loaded in the RSUMS array.

4. INTERNAL VARIABLES:

VARIABLE DEFINITION

MSAVE Input array containing the statistics for

the previous subroutine.

N Subroutine number of the previous subrou-

tine to call this routine.

NAME Input argument, current subroutine name.

NRTIMS Array to accumulate the number of times a

given subroutine is entered.

NUMSB Subroutine number of calling subroutine.

RSUMS Total time accumulated in the previous sub-

routine to call this routine.

RTINS The current clock time for the current sub-

routine calling this subroutine.

TIMIN Current clock time.

5. I/O VARIABLES:

A. INPUT LOCATION

ISON /ADEBUG/

LTRACE /ADEBUG/

LUPRNT /ADEBUG/

MSAVE F.P.

NAME F.P.

NUMSB F.P.

PREVIOUS PAGE IS BLANK STATIN (GTD, INPUT, MOM, OUTPUT)

B. OUTPUT LOCATION

NRTIMS /ADEBUG/

RSUMS /ADEBUG/

RTINS /ADEBUG/

6. CALLING ROUTINES:

All major routines.

7. CALLED ROUTINES:

NONE

1133

1. NAME: STATOT (GTD, INPUT, MOM, OUTPUT)

2. PURPOSE: To close the timing statistic upon exit from a subroutine.

3. METHOD: The index of the calling subroutine is retrieved. The wall clock time is then determined, and the accumulated time for the current subroutine is determined. Then the clock is restarted for the subroutine which called the calling subroutine.

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
MSAVE	Input argument array containing the sub- routine which called the calling subroutine
N	The subroutine number of the subroutine which called the calling subroutine
NAME	Input argument containing the name of the

subroutine for which the statistic is being accumulated

NUMSB The subroutine number of the subroutine for which the statistic is being accumulated

RSUMS

The accumulated time spent in the subrountine for which the statistic is being accumulated

RTINS

The current time reset for the subroutine which called the calling subroutine

TIMOUT Current wall clock time

5. I/O VARIABLES:

	NUMSB	F.P.	IS BLANK
			PREVIOUS PAGE IS BLANK
	NAME	F.P.	
	MSAVE	F.P.	
	LUPRNT	/ADEBUG/	
	LTRACE	/ADEBUG/	•
	ISON	/ADEBUG/	
A.	INPUT	LOCATION	

STATOT (GTD, INPUT, MOM, OUTPUT)

B. OUTPUT

LOCATION

RSUMS

/ADEBUG/

RTINS

/ADEBUG/

6. CALLING ROUTINES:

All major routines.

7. CALLED ROUTINES:

None.

- 1. NAME: STRTUP (GTD, MOM, OUTPUT)
- 2. PURPOSE: Initalize commons and reset data files to begin module execution.
- 3. METHOD: The last checkpoint on module checkpoint file MODCHK is read to initialize commons and read in data files. If the RSTART flag is on, the module name requested in the RESTRT command is compared to the name of this module. If they do not match, execution stops so that this same checkpoint can be used by a subsequent module for restarting. If a match occurs, the routine returns to GEMACS, which invokes TSKXQT to continue execution.

For standard module start-up (no RSTART flag), the error flag is first checked. If an error occurred in a previous module, execution is terminated with an appropriate warning message. Otherwise, parameters are reset to their default values and data sets rewound to just before the first word of their first editions.

4. INTERNAL VARIABLES:

VARIABLE	DESCRIPTION
I	Loop index pointing to symbol table entry
ICHKPT	Maximum number of checkpoints on tape
ICKLOP	Loop index over number of checkpoints read
IEOF	Flag indicating end-of-file on LUFILE
IOSTOR	Logical unit number of data set
IRSAV	Internal variable to save value of IRSTRT
J	Loop index over module names
KCODE	Array of keyword numbers describing module names
LOCNOW	Present position of data file
LUFILE	Internal variable set to MODCHK
MOD	Array of Hollerith format module names
MODNOW	Internal variable equal to MODNAM
NREAD	Flag set to ISOFF so that commons and files are read from MODCHK

STRTUP (GTD, MOM, OUTPUT)

5. I/O VARIABLES:

A.	INPUT	LOCATION
	IERRF	/ADEBUG/
	IOFILE	/IOFLES/
	IRSTRT	/ADEBUG/
	ISOFF	/ADEBUG/
	ISON	/ADEBUG/
	KOLAST	/PARTAB/
	KOLFST	/PARTAB/
	KOLLOC	/PARTAB/
	LSTMOD	/MODULE/
	LSTSYS	/SYSFIL/
	LUPRNT	/ADEBUG/
	MODCHK	/SYSFIL/
	MODLST	/MODULE/
	MODNAM	/MODULE/
	NDATBL	/PARTAB/
	NPDATA	/PARTAB/
В.	OUTPUT	LOCATION
	CHKWRT	/SYSFIL/
	DBGPRT	/ADEBUG/
	FRQMHZ	/AMPZIJ/
	IMDCHK	/ADEBUG/
	IRSTRT	/ADEBUG/
	KJFLD	/INTMAT/

STRTUP (GTD, MOM, OUTPUT)

KJGTD /INTMAT/

KJMOM /INTMAT/

NDATBL /PARTAB/

NOSTAT /ADEBUG/

RSTART /SYSFIL/

6. CALLING ROUTINE:

GEMACS

7. CALLED ROUTINES:

ASSIGN

GETSYM

MOVFIL

PUTSYM

RDEFIL

RWCOMS

RWFILS

STATIN

STATOT

WLKBCK

Page 2 of 2

- 1. NAME: SUBPAT (INPUT)
- 2. PURPOSE: Augments the segment table when a wire-patch connection is found.
- 3. METHOD: First, the subroutine SUBPAT determines the maximum number of entries and the maximum number of data blocks that will result from all wire-patch connections. Then, the segment table is searched for the first patch that is connected to a wire segment. This patch is divided into four smaller patches of equal area and oriented with respect to the surface vectors \hat{t}_1 and \hat{t}_2 as shown in figure 1.

Figure 1. Orientation of Subpatches Connected to a Wire Segment

Also, the unit vector of each of the smaller patches is the same as that of the original patch. The geometry data of the four subpatches are stored in a temporary array along with all succeeding patch data and any patches augmented by a connection to a wire. After all patches have been searched, the data in the temporary array are stored in the segment table starting at the point where the first wire-patch connection was found. Finally, all wire segments are checked for a connection to a patch. If such a connection is found, the connection data are corrected to reflect the new patch number which has resulted from the increase in the number of patches due to a wire-to-patch connection.

4. INTERNAL VARIABLES:

VARIABLE DEFINITION

AREA Surface area of patch

IBLK Index for wire segment data blocks

IBLKSV	The index to the data block which locates the first patch connected to a wire segment
ICOL	Number of columns in the connection array
ICOLSV	Saved value of ICOL
ICON	Connection data for wire segment
ICON1	Connection data for end 1 of wire segment
ICON2	Connection data for end 2 of wire segment
ICONT	Flag indicating whether a wire segment connected to patch has been found
IFILE	Logical unit on which symbol is stored
ILIM	The number of segments in requested data block
INBLKS	The data block with the first wire segment- to-patch connection
INPBLK	Index to data block containing the initial patch data
IOFILE	An array containing current position pointer for the search file
IOSCR2	Scratch file for temporary storage of SEGTBL data
IPCN1	Integer identifying which patch is connected to end 1 of wire segment
IPCN2	Integer identifying which patch is connected to end 2 of wire segment
IPLIM	The number of patches in requested data block
IPLOW	The location of first patch in requested data block
IROW	Number of rows in connection data array
ISEGSV	Location within data block of first patch with connection to a wire segment

ITAG	Tag	identifier
------	-----	------------

IWORDS Equivalenced to WORDS

JBIAS3 Integer to bias connection data to a patch

JMAX The number of connections in each column of

connection array

MAXBLK Total number of data blocks

MAXSEG Maximum number of segments per data block

MBLK The total number of data blocks after

accounting for wire segment-to-patch

connections

MXBLKW The total number of data blocks containing

wire segments

NCON An array containing the old and new patch

numbers for a wire segment-to-patch

connection

NCONT The number of wire segment-to-patch

connections

NDXBLK Index to current data block

NELMNT The original number of wires and patches

before augmenting for wire segment-to-patch

connections

NN Counter for a new location of patches in

SEGTBL

NNCON Maximum length of array containing old and

new patch numbers for wire segment-to-patch

connections

NOGOFG No go flag

STATE OF THE PROPERTY OF THE P

NOLD Original patch number before patches were

divided

NPATCH The total number of patches

NPRSEG The number of data items for each SEGTBL

entry

NUMSEG The total number of wire segments and

patches adjusted for wire-to-patch

connections

NUMMP Number of wire segments and patches in

geometry

NWIRE The total number of wire segments

NXTBLK Index to the next data block

RH $\sqrt{(XNPA * XNPA + YNPA * YNPA)}$

SIDE The x or y dimension for the distance from

the center point of the patch to the center

point of a subpatch

T1X,T1Y,T1Z The x,y, and z components of t_1

T2X, T2Y, T2Z The x,y, and z components of t_2

WORDS Temporary storage array

XNPA, YNPA, ZNPA X,Y, and Z components of patch normal

vector

XPC, YPC, ZPC X,Y, and Z components of the center point

of the patch

XSUBPA The x coordinate of the subpatch with

respect to the patch center (= SIDE)

YSUBPA The y coordinate of the subpatch with

respect to the patch center (= SIDE)

5. I/O VARIABLES:

A. INPUT LOCATION

IOFILE /IOFLES/

IOSCR2 /SYSFIL/

IP217 /GEODAT/

ISGTBL /SEGMNT/

ISOFF /ADEBUG/

ISON /ADEBUG/ JBIAS3 /SEGMNT/ **KBREAL** /PARTAB/ **KOLCOL** /PARTAB/ **KOLLOC** /PARTAB/ **KOLNAM** /PARTAB/ **LUPRNT** /ADEBUG/ **MAXBLK** /SEGMNT/ **MAXSEG** /SEGMNT/ **NAMSEG** /SEGMNT/ **NCONT** F.P. **NDATBL** /PARTAB/ **NDXBLK** /SEGMNT/ NOPCOD /ADEBUG/ **NPATCH** /SEGMNT/ **NPDATA** /PARTAB/ **NPRSEG** /SEGMNT/ NUMGTD /GTDDAT/ NUMSEG /SEGMNT/ **NWIRE** /SEGMNT/ **SEGTBL** /SEGMNT/ **ZERO** /ADEBUG/ OUTPUT LOCATION **ISGTBL** /SEGMNT/ MAXBLK /SEGMNT/

В.

NDATBL /PARTAB/
NOGOFG /ADEBUG/
NPATCH /SEGMNT/
NUMSEG /SEGMNT/

NUMSEG /SEGMNT/
SEGTBL /SEGMNT/

SEGTBL /SEGMNT/

UPDBLK /SEGMNT/

6. CALLING ROUTINE:

GEODRV

7. CALLED ROUTINES:

ASSIGN MOVFIL STATIN SYMDEF

CLSFIL OPNFIL STATOT WLKBCK

GETSEG PUTSYM SYMDEF WRTFIL

GETSYM RDEFIL SYMUPD

CONTRACTOR

- 1. NAME: SYMDEF (GTD, INPUT, MOM, OUTPUT)
- 2. PURPOSE: To define or redefine a symbol during program execution.
- 3. METHOD: The symbol name is searched for in the NDATBL array and if located the warning message is printed out to the user that the symbol is being redefined. If the attributes of the symbol as defined match the attributes in the call to SYMDEF, only a new edition of the symbol is created, not a completely new file. Otherwise, the present symbol is purged from the symbol table, its data file closed, and an entry made in the symbol table with new attributes as specified in the call. Data on the file are lost.

If not located, the symbol name is added to the end of NDATBL, and the next file available for storage is assigned to the symbol. The file is opened, and the NDATBL pointers are reset. Should there not be a file available, a fatal error is generated. If the addition of this symbol would overflow the NDATBL array, a fatal error is generated.

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
IBIT1	Bit set attributes of present edition of symbol
IBITS	Input attribute containing the bit set attributes of the symbol being defined
INEW	Flag indicating new data set (INEW=1) or new edition of present data set (INEW=0)
IOSTOR	Logical unit designator of file for this symbol
LOCFST	Index to first data entry of this edition of symbol, either core storage or file storage.
LOCLST	Index to last data entry of this edition of symbol, either core storage or file storage.
NAME	User-assigned name of symbol to be defined or redefined

SYMDEF (GTD, INPUT, MOM, OUTPUT)

NCOL1 Number of columns defined for present

edition of symbol

NCOLS Number of columns required for symbol being

defined or redefined

NEED Amount of in-core storage required to store

data in FLTSYM

NEWSYM Internal variable for NAME

NPDASV Saved value of variable NPDATA upon entry

to SYMDEF

NROW1 Number of rows defined for present edition

of symbol

NROWS Number of rows required for symbol being

defined or redefined

NSYMBL Number of active entries in the NDATBL

array

5. I/O VARIABLES:

A. INPUT LOCATION

DBGPRT /ADEBUG/

IBITS F.P.

IOFILE /IOFLES/

IOSCR1 /SYSFIL/

IOSCR2 /SYSFIL/

IOSYMB /SYSFIL/

IPASS /ARGCOM/

ISON /ADEBUG/

KBCPLX /PARTAB/

KOLAST /PARTAB/

KOLBIT /PARTAB/

KOLCOL /PARTAB/

KOLFST /PARTAB/

SYMDEF (GTD, INPUT, MOM, OUTPUT)

KOLLOC /PARTAB/

KOLNAM /PARTAB/

KOLROW /PARTAB/

LUPRNT /ADEBUG/

MAXSTR /SYMSTR/

NAME F.P.

NCOLS F.P.

NDATBL /PARTAB/

NDATMX /PARTAB/

NFILES /IOFLES/

NPDATA /PARTAB/

NROWS F.P.

NXTSYM /SYMSTR/

B. OUTPUT LOCATION

IERRF /ADEBUG/

NDATBL /PARTAB/

NPDATA /PARTAB/

NXTSYM /SYMSTR/

6. CALLING ROUTINES*:

BANDIT (3) GEODRV (1) SOLDRV (3)

DMPDRV (1,2,3,4) LODDRV (3) SUBPAT (1)

EGFMAT (3) LUDDRV (3) TSKXQT (2,3,4)

EXCDRV (2,3) PUTSYM (1,2,3,4) ZIJDRV (2,3)

FLDDRV (2,3,4) SETDRV (3)

^{*1-}INPUT

²⁻GTD

³⁻MOM

⁴⁻OUTPUT

SYMDEF (GTD, INPUT, MOM, OUTPUT)

7. CALLED ROUTINES:

ASSIGN GETSYM STATOT

CLSFIL IBITCK WLKBCK

CONVRT OPNFIL

ERROR STATIN

- 1. NAME: SYMLIT (INPUT)
- 2. PURPOSE: Search the symbol and literal tables for the next entry in the scan table and, if found, load the index to the proper table into the next argument list table entry.
- 3. METHOD: If the next scan table entry is an alpha field, the subroutine SYMSCH is called to find the next scan table entry. If the entry is not found, an error condition is set; if it is found, the index to the symbol table is loaded into the argument list table. If the next scan table entry is not an alpha, subroutine LITSCH is called and the index is returned and loaded into the segment list table.

4. INTERNAL VARIABLES:

VARIABLE DEFINITION

INC Inline function to position NPARGL

INDEX Index to symbol table

INDEX1 Index to literal table

5. I/O VARIABLES:

A. INPUT LOCATION

ISOFF /ADEBUG/

NARGMX /PARTAB/

NCODE /SCNPAR/

NPARGL /PARTAB/

NPEARG /INPERR/

NPRSER /SCNPAR/

NTAB /SCNPAR/

NTALPH /ADEBUG/

NVAL /SCNPAR/

SYMLIT (INPUT)

B. OUTPUT LOCATION

NARGTB /PARTAB/

NPARGL /PARTAB/

NPRSER /SCNPAR/

NUMWRD /ADEBUG/

6. CALLING ROUTINES:

FNDARG

PARSE

7. CALLED ROUTINES

ASSIGN STATIN SYMSCH

FABLO2 STATOT WLKBCK

LITSCH

1. NAME: SYMMOD (MOM)

- 2. PURPOSE: This subroutine forms a symmetrical combination of an input matrix by using an input symmetry operator.
- 3. METHOD: If Z is a matrix containing N submatrices and S is the matrix representation of the symmetry operator, then the operation

$$[z] = [s][z]$$

forms the symmetrical combinations of the submatrices Z.

4. INTERNAL VARIABLES:

VARIABLE DEFINITION

D Scratch array

DS Scratch accumulation

IC Number of columns in the input matrix

IR Number of rows in the input matrix

IS Dimension of the symmetry operator

KA Index pointer

SYMOP S matrix

Z Input matrix

5. I/O VARIABLES:

D

A. INPUT LOCATION

F.P.

IC F.P.

IR F.P.

IS F.P.

SYMOP F.P.

Z F.P.

SYMMOD (MOM)

B. OUTPUT LOCATION

D F.P.

Z F.P.

6. CALLING ROUTINES:

SOLDRV

ZIJDRV

7. CALLED ROUTINES:

ASSIGN STATOT

STATIN WLKBCK

- 1. NAME: SYMSCH (INPUT)
- 2. PURPOSE: Search the NDATBL array for the occurrence of the symbol name specified in the argument list.
- 3. METHOD: The symbol table is searched for the occurrence of the name specified in the subroutine argument list. If the name is found, and was not supposed to be previously entered, an error flag is set. If the name is not found, and was supposed to be previously entered, an error flag is set. If the name was not found and was not supposed to be previously entered, it is entered into the symbol table and the index is returned through the subroutine argument call.
- 4. INTERNAL VARIABLES:

VARIABLES DEFINITION

IEND Last entry in the symbol table

INDEX Index to the symbol table

NAME Symbol name

5. I/O VARIABLES:

A. INPUT LOCATION

ISOFF /ADEBUG/

ISON /ADEBUG/

KOLNAM /PARTAB/

MATCH /SCNPAR/

NAME F.P.

NDATBL /PARTAB/

NDATMX /PARTAB/

NOMTCH /SCNPAR/

NPDATA /PARTAB/

NPENOM /INPERR/

NPESEX /INPERR/

SYMSCH (INPUT)

NPESYM /INPERR/

NTAB /SCNPAR/

B. OUTPUT LOCATION

INDEX F.P.

NCODE /SCNPAR/

NDATBL /PARTAB/

NPDATA /PARTAB/

NPRSER /SCNPAR/

NTAB /SCNPAR/

NUMWRD /ADEBUG/

6. CALLING ROUTINES:

FNDARG

PLIST

SYMLIT

7. CALLED ROUTINES:

ASSIGN STATOT

FABLO2 WLKBCK

STATIN

- 1. NAME: SYMUPD (GTD, INPUT, MOM, OUTPUT)
- 2. PURPOSE: Update attributes of entries in the NDATBL array.
- 3. METHOD: The attribute of the symbol to be updated is called through the argument list. The column to be changed in the NDATBL array is checked for validity and, if invalid, a fatal error is generated. If valid, the appropriate column is updated.

4. INTERNAL VARIABLES:

VARIABLE DEFINITION

IFILE Logical unit on which the symbol is stored

KLM Input argument designating column of NDATBL

array to be changed

KOL Internal variable for KLM

NAMSYM Symbolic name for symbol to be updated

NEWDAT Argument containing new data to be placed

in NDATBL array

NEWNAM Internal representation for argument NAMSYM

NS Saved value of loop indexed while searching

NDATBL array

NSYMBL Number of entries in the NDATBL array

5. I/O VARIABLES:

A. INPUT LOCATION

DBGPRT /ADEBUG/

ISON /ADEBUG/

KLM F.P.

KOLAST /PARTAB/

KOLBIT /PARTAB/

KOLCOL /PARTAB/

KOLFST /PARTAB/

PREVIOUS PAGE IS BLANK

SYMUPD (GTD, INPUT, MOM, OUTPUT)

KOLLNK /PARTAB/

KOLLOC /PARTAB/

KOLNAM /PARTAB/

KOLROW /PARTAB/

LUPRNT /ADEBUG/

NATSYM F.P.

NDATBL /PARTAB/

NDFILE /IOFLES/

NEWDAT F.P.

NPDATA /PARTAB/

B. OUTPUT LOCATION

IERRF /ADEBUG/

NDATBL /PARTAB/

6. CALLING ROUTINES*:

BANDIT (3) PUTSEG (1,2,3)

EXCDRV (2,3) SOLDRV (3)

FLDDRV (2,3,4) SUBPAT (1)

GEODRV (1) TSKXQT (1,2,3,4)

LODDRV (3) ZIJDRV (2,3)

LUDDRV (3)

7. CALLED ROUTINES:

ASSIGN STATIN

CONVRT STATOT

ERROR WLKBCK

*1-INPUT

2-GTD

3-MOM

4-OUTPUT

- 1. NAME: SYSCHK (GTD, INPUT, MOM, OUTPUT)
- 2. PURPOSE: Determine if time for checkpoint has passed.
- 3. METHOD: The current time is retrieved and if less than the next checkpoint time, control is returned to the calling subroutine. If it is greater than the next checkpoint time, the checkpoint time is incremented and subroutine WRTCHK is called to write a checkpoint.
- 4. INTERNAL VARIABLES:

VARIABLE DEFINITION

DT Delta time

ET Elapsed time from last time check

ETIME Total elapsed time from beginning of run

FLTINC Time increment

TIMCHK Internal variable for checking time elapsed

TLAST Time of last time checkpoint

TNOW Current clock time

5. I/O VARIABLES:

A. INPUT LOCATION

CHKPNT /SYSFIL/

COMPLT /SYSFIL/

INCCHK /SYSFIL/

ISON /ADEBUG/

LUPRNT /ADEBUG/

TIMTGO /SYSFIL/

ZERO /ADEBUG/

B. OUTPUT LOCATION

COMPLT /SYSFIL/

IERRF /ADEBUG/

CALLING ROUTINES*: 6.

DECOMP (3)

FLDDRV (2)

TSKXQT (1,2,3,4)

ZIJDRV (2,3)

CALLED ROUTINES: 7.

ASSIGN

ERROR

STATIN

STATOT

TICHEK

WLKBCK

WRTCHK

^{*1-}INPUT 2-GTD 3-MOM

⁴⁻OUTPUT

- 1. NAME: SYSRTN (GTD, INPUT, MOM, OUTPUT)
- 2. PURPOSE: A system-dependent subroutine to return various auxiliary information depending on local subroutine library capability.
- 3. METHOD: The quantity desired is indicated by the input argument I, and the quantity to be returned is stored in argument variable J.

4. INTERNAL VARIABLES:

VARIABLE DEFINITION

DJ = IJ Time of day

I Input argument indicating information

desired

IDATE Date of execution

ITIME Intermediate value of time of day in

minutes

J Output argument containing information

desired.

JHOURS Intermediate value of time of day (hours)

JMINIT Intermediate value of time of day (minutes)

TIME Time of day

NOTE: Explicit form of this subroutine depends on local library

subroutines available.

5. I/O VARIABLES:

A. INPUT LOCATION

I F.P.

B. OUTPUT LOCATION

J F.P.

6. CALLING ROUTINE:

GEMACS

SYSRTN (GTD, INPUT, MOM, OUTPUT)

7. CALLED ROUTINES:

ASSIGN

STATIN

STATOT

WLKBCK

CHANGE CONTRACT CONTRACT CONTRACT CONTRACT

- 1. NAME: TANG (GTD)
- 2. PURPOSE: To compute vectors from a source that are tangent to the cylinder in the x-y plane.
- 3. METHOD: The unit tangent vectors are determined by solving a set of equations found by setting the incident vector from the source equal to the general unit tangent vector to the elliptic surface. Details are given in pages 90-93 in reference A. General tangents and tangent points are shown in figure 1.

Figure 1. Geometry of Source Vectors Tangent to the Cylinder in the X-Y Plane

TANG (GTD)

4. INTERNAL VARIABLES:

VARIABLE DEFINITION

A Radius of cylinder along x axis

AA Distance from source to tangent point

AL Computational variable

B Radius of cylinder along y axis

BB Distance from origin to tangent point

BEJ Computational variable

BT X and Y components of tangent unit vectors

in reference coordinate system

CV Cosine of tangent point elliptical angle

CVE Cosine of VE

DPR Degrees per radian (=180./ π)

Dot product of unit vectors of the two

source rays tangent to the cylinder (2-D)

DV1 Angle V1 in degrees

DV2 Angle V2 in degrees

Error detection variable

Error detection variable

RHOE Distance from z axis to point where ray

from origin to source intersects the

cylinder

RHOS Distance from source to z axis

Sine of tangent point elliptical angle

SVE Sine of VE

SX X component of ray from tangent point to

source

TANG (GTD)

SY	Y component of ray from tangent point to source
T1X	X component of tangent ray unit vector (tangent point 1)
T1Y	Y component of tangent ray unit vector (tangent point 1)
T2X	X component of tangent ray unit vector (tangent point 2)
T2Y	Y component of tangent ray unit vector (tangent point 2)
V1	Elliptical angle defining tangent point 1
V2	Elliptical angle defining tangent point 2
VE	Elliptical angle of ray from origin to source
VT	Elliptical angle defining tangent point location in RCS x-y plane
XS	Source location
XT	X component of tangent point location
XY	Computational variable
YT	Y component of tangent point location
I/O VARIABLES:	
A. INPUT	LOCATION
A	/GEOMEL/
8	/GEOMEL/
DPR	/PIS/
LUPRNT	/ADEBUG/

5.

XS

F.P.

LOCATION

B. OUTPUT

BT F.P.

DT F.P.

VT F.P.

6. CALLING ROUTINES:

CYLINT

GEOMC

GEOMPC

RPLSCL

SCLRPL

SCTCYL

7. CALLED ROUTINE:

BTAN2

8. REFERENCE:

A. R. J. Marhefka, "Analysis of Aircraft Wing-Mounted Antenna Patterns," Report 2902-25, June 1976, The Ohio State University ElectroScience Laboratory, Department of Electrical Engineering; prepared under Grant No. NGL 36-008-138 for National Aeronautics and Space Administration.

- 1. NAME: TICHEK (GTD, INPUT, MOM, OUTPUT)
- 2. PURPOSE: To obtain the current clock time and the time elapsed since the last call to the subroutine.
- 3. METHOD: The time is initialized to zero and a library subroutine is called to retrieve the current processor time. The elapsed time is computed and the current time is saved for the next call.
- 4. INTERNAL VARIABLES:

VARIABLE DEFINITION

DT Output argument for elapsed time since last

call

T Output argument for current processor time

TLAST Saved value of current processor time to

compute DT on next call

TS Current time in hours

5. I/O VARIABLES:

A. INPUT LOCATION

None

B. OUTPUT LOCATION

F.P.

T F.P.

6. CALLING ROUTINES:*

DT

DECOMP (3) WRTCHK (1,2,3,4)

SYSCHK (1,2,3,4) ZGTDRV (2)

TSKXQT (1,2,3,4) ZIJSET (3)

7. CALLED ROUTINES:

None.

*1 - INPUT

2 - GTD

3 - MOM

4 - OUTPUT

PREVIOUS PAGE IS BLANK

- 1. NAME: TNEFLD (MOM)
- 2. PURPOSE: To compute the electric field at a point in space due to the current on a wire segment. The field is computed for three current distributions: sine, cosine, and constant functions of unit amplitude.
- 3. METHOD: The wire segment is considered to be located at the origin of a local cylindrical coordinate system with the point at which the field is computed being (ρ', ϕ', z') . The geometry for a filament of current of length Δ is shown in figure 1.

Figure 1. Geometry for Fields Due to a Filament of Current

For a sine or cosine current distribution the field can be written in closed form (see reference A). The ρ and z field components for a current

$$I_{o} \left\{ \begin{array}{c} \sin kz \\ \cos kz \end{array} \right\} are:$$

$$E_{z}(\rho', z') = I_{0} j \frac{\eta}{2} \left\{ \frac{e^{-jkr_{2}}}{kr_{2}} \left\{ \frac{\cos k\Delta/2}{-\sin k\Delta/2} \right\} - \frac{e^{-jkr_{1}}}{kr_{1}} \left\{ \frac{\cos k\Delta/2}{\sin k\Delta/2} \right\} \right\}$$

$$-\left(j + \frac{1}{kr_{2}}\right) \frac{e^{-jkr_{2}}}{(kr_{2})^{2}} (kz' - k\Delta/2) \begin{cases} \sin k\Delta/2 \\ \cos k\Delta/2 \end{cases}$$

$$+\left(j + \frac{1}{kr_{1}}\right) \frac{e^{-jkr_{1}}}{(kr_{1})^{2}} (kz' + k\Delta/2) \begin{cases} -\sin k\Delta/2 \\ \cos k\Delta/2 \end{cases}$$

$$\vdots \\ e^{-jkr_{1}} = I_{0} \left(-j \frac{\eta}{2}\right) \frac{1}{k\rho'} \left[(kz' - k\Delta/2) \frac{e^{-jkr_{2}}}{kr_{2}} \begin{cases} \cos k\Delta/2 \\ -\sin k\Delta/2 \end{cases}$$

$$-(kz' + k\Delta/2) \frac{e^{-jkr_{1}}}{kr_{1}} \begin{cases} \cos k\Delta/2 \\ \sin k\Delta/2 \end{cases} + \frac{e^{-jkr_{2}}}{kr_{2}} \begin{cases} \sin k\Delta/2 \\ \cos k\Delta/2 \end{cases}$$

$$-(kz' - k\Delta/2)^{2} \left(j + \frac{1}{kr_{2}}\right) \frac{e^{-jkr_{2}}}{(kr_{2})^{2}} \begin{cases} \sin k\Delta/2 \\ \cos k\Delta/2 \end{cases}$$

$$-\frac{e^{-jkr_{1}}}{kr_{1}} \left\{ -\sin k\Delta/2 \\ \cos k\Delta/2 \right\} + (kz' + k\Delta/2)^{2} \left(j + \frac{1}{kr_{1}}\right)$$

$$\frac{e^{-jkr_{1}}}{(kr_{1})^{2}} \cdot \begin{cases} -\sin k\Delta/2 \\ \cos k\Delta/2 \end{cases}$$

The expression for the field of a constant current distribution involves an integral of exp (-jkr)/r which must be evaluated numerically. The field components for a current I_0 are:

$$E_{\rho} \left(\rho', z'\right) = I_{o} \left(-j \frac{\eta}{2}\right) \left(k\rho'\right) \left[\left(j + \frac{1}{kr_{2}}\right) \frac{e^{-jkr_{2}}}{\left(kr_{2}\right)^{2}}\right]$$

$$-\left(j + \frac{1}{kr_{1}}\right) \frac{e^{-jkr_{1}}}{(kr_{1})^{2}}$$

$$E_{z}(\rho', z') = I_{0}\left(-j\frac{\eta}{2}\right) \left[\int_{-\Delta/2}^{\Delta/2} \frac{e^{-jkr}}{r} dz + \left(j + \frac{1}{kr_{2}}\right)\right]$$

$$(kz' - k\Delta/2) \cdot \frac{e^{-jkr_{2}}}{(kr_{2})^{2}} - \left(j + \frac{1}{kr_{1}}\right)(kz' + k\Delta/2) \frac{e^{-jkr_{1}}}{(kr_{1})^{2}}$$

These expressions are separated into real and imaginary parts for evaluation in the program. The coordinate ρ' for a wire segment is taken as the distance from the observation point to a point on the side of the segment as shown in figure 2.

Figure 2. Geometry for the Determination of ρ

Also, the component E_ρ is multiplied by ρ/ρ ' to account for the change in vector direction. The current, I_0 , is set to one for evaluation in TNEFLD.

TNEFLD (MOM)

4. INTERNAL VARIABLES:

VARIABLE DEFINITION

B Radius of wire segment

BK kb

CINT $\int_{-\Delta/2}^{\Delta/2} \frac{\Delta/2}{\cos (kr)/r} dz$

COINC P/p'

CR1 $(\eta/2) \cos (kr_1)/(kr_1), (\eta = \sqrt{\mu_0/\epsilon_0})$

CR1R $CR1/(kr_1)$

CR1RR $CR1/(kr_1)^2$

CR2 $(\eta/2) \cos (kr_2)/(kr_2)$

CR2R $CR2/(kr_2)$

CR2RR $CR2/(kr_2)^2$

CST $\cos (k\Delta/2)$

ERIC Imaginary part of E_{ρ} for cosine current

ERIK Imaginary part of E_{ρ} for constant current

ERIS Imaginary part of E_p for sine current

ERRC Real part of E_p for cosine current

ERRK Real part of E_{ρ} for constant current

ERRS Real part of E_p for sine current

ETA $\eta = \sqrt{\mu_0/\epsilon_0}$

EZIC Imaginary part of E_Z for cosine current

EZIK Imaginary part of E_Z for constant current

EZIS Imaginary part of E_Z for sine current

EZRC Real part of E_Z for cosine current

TNEFLD (MOM)

Real part of $\mathbf{E}_{\mathbf{Z}}$ for constant current **EZRK** Real part of $\mathbf{E}_{\mathbf{Z}}$ for sine current **EZRS** IJX Flag for numerical integration A flag indicating a patch observation point **IPATCH** RH RHK kρ RKB kρ¹ $(kp')^2$ RKB2 R1K kr1 $(kr_1)^2$ R1KS R2K kr2 $(kr_2)^2$ R2KS Length of segment S $\int_{-\Delta/2}^{\Delta/2} \sin (kr)/r dz$ SINT kΔ/2 SKT $(\eta/2) \sin (kr_1)/(kr_1)$ SR1 $SR1/(kr_1)$ SR1R $SR1/(kr_1)^2$ SR1RR SR2 $(\eta/2) \sin (kr_2)/(kr_2)$

 $SR2/(kr_2)$

 $SR2/(kr_2)^2$

 $sin (k\Delta/2)$

SR2R

SR2RR

SST

T1 T1S T2 T2S T3S T3S T4 T4S

Temporary storage of terms in electric field expressions

WAVLGH

λ

WAVNUM

 $k = 2\pi/\lambda$

ZD1

 $kz' + k\Delta/2$

ZD2

kz' - kΔ/2

ΖP

z'

ZPK

kz¹

ZZ

$$\eta/2$$
, $(\eta = \sqrt{\mu_0/\epsilon_0})$

5. I/O VARIABLES:

A. INPUT

LOCATION

В

/AMPZIJ/

ETA

/AMPZIJ/

IJX

F.P.

ISOFF

/ADEBUG/

RH

F.P.

S

/AMPZIJ/

WAVLGH

/AMPZIJ/

WAVNUM

/AMPZIJ/

ΖP

F.P.

TNEFLD (MOM)

В. OUTPUT LOCATION ERIC, EZIC F.P. ERIK, EZIK F.P. ERIS, EZIS F.P. ERRC, EZRC F.P. F.P. ERRK, EZRK ERRS, EZRS F.P. IJ /TMI/ **IPATCH** /IMI/ RHK /IMI/ RKB2 /TMI/ ZPK /IMT/

6. CALLING ROUTINES:

NERFLD

NTRPLT

7. CALLED ROUTINES:

ASSIGN

ROMBNT

STATIN

STATOT

WLKBCK

8. REFERENCE:

A. Stratton, J. A. <u>Electromagnetic Theory</u>, McGraw Hill Book Co., New York, 1941, p. 454.

- 1. NAME: TNHFLD (MOM)
- 2. PURPOSE: To compute the near magnetic field at a point in space due to the current on a wire segment. The field is computed for three current distributions: sine, cosine, and constant functions, each of unit amplitude.
- 3. METHOD: The wire segment is considered to be located at the origin of a local cylindrical coordinate system with the point at which the field is computed being (ρ' , φ' , z'). The geometry for a filament of current of length Δ is shown in figure 1.

Figure 1. Geometry for Fields Due to a Filament of Current

For a sine or cosine current distribution the field can be written in closed form. The ρ field component for a current

$$I_{o} \left\{ \begin{array}{c} \sin kz \\ \cos kz \end{array} \right\} \text{ is:}$$

$$\begin{split} H_{\varphi} &(\rho', z') = \frac{-jI_{o}}{4\pi\rho'} \left\{ exp(-jkr_{2}) \begin{bmatrix} \cos(k\Delta/2) \\ -\sin(k\Delta/2) \end{bmatrix} - exp(-jkr_{1}) \begin{bmatrix} \cos(k\Delta/2) \\ \sin(k\Delta/2) \end{bmatrix} \right. \\ & \left. - j(z' - \Delta/2) \frac{exp(-jkr_{2})}{r_{2}} \begin{bmatrix} \sin(k\Delta/2) \\ \cos(k\Delta/2) \end{bmatrix} \right. \\ & \left. + j(z' + \Delta/2) \frac{exp(-jkr_{1})}{r_{1}} \begin{bmatrix} -\sin(k\Delta/2) \\ \cos(k\Delta/2) \end{bmatrix} \right. \end{split}$$

where $I_0 = 1$ is assumed in this routine.

For small values of ρ with $|z'|>\Delta/2$, this equation may produce large numerical errors due to cancellation of large terms. Hence, for z'>0 and $\rho'/(z'\pm\Delta/2)<10^{-3}$, a more stable approximation for small $\rho'/(z'\pm\Delta/2)$ is used:

$$H_{\phi} (\rho', z') = \frac{I_{\phi} \rho'}{8\pi} \exp(-jkz') \left\{ \left[\frac{k}{(z' + \Delta/2)} - \frac{k}{(z' - \Delta/2)} \right] \left[\frac{1}{-j} \right] + \left[\frac{\exp(jk\Delta/2)}{(z' - \Delta/2)^2} \left(\frac{\sin(k\Delta/2)}{\cos(k\Delta/2)} \right) - \frac{\exp(-jk\Delta/2)}{(z' + \Delta/2)^2} \left(\frac{-\sin(k\Delta/2)}{\cos(k\Delta/2)} \right) \right] \right\}$$

For z'<0, the above equation is evaluated for $H_{\varphi}(\rho',-z')$. The field of a sin kz current is multiplied by -1 in this case, since it is an odd function of z.

The field due to a constant current is obtained by numerical integration, which is performed by subroutine ROMBNT. If ρ^{\prime} is zero, all field quantities are set to zero, since H_{Φ} is undefined.

4. INTERNAL VARIABLES:

ANKIABLE	DELINITION
CDHK	cos(k∆/2)
CONST	1/(4πρ')
CONST1	ρ'/8π
CONST2	ο' k2/4π

CR1K cos(kr₁)

CR2K $cos(kr_2)$

CZPK cos(kz')

DH $\Delta/2$

DHK kΔ/2

HPIC, HPRC The imaginary and real parts of the ϕ

component of the magnetic field due to a

cosine current

HPIK, HPRK

The imaginary and real parts of the ϕ

component of the magnetic field due to a

constant current

HPIS, HPRS The imaginary and real parts of the ϕ

component of the magnetic field due to a

sine current

HSS The sign of z

IPATCH A flag indicating that the magnetic field

at a patch is to be computed

RH ρ'

RHK ρ'k

RHZ $\rho'/(z'-\Delta/2)$

 r_1

R1K kr1

R2 r₂

R2K kr2

S Δ , the segment length

SDHK $\sin (k\Delta/2)$

SR1K sin (kr₁)

SR2K $\sin (kr_2)$

TNHFLD (MOM)

SZPK sin (kz') T1 T1K **T2** Temporary storage variables used in Ccomputing the magnetic field **T2** T2S **T3C T3S WAVNUM** $2\pi/\lambda$ **ZD1** $z' + \Delta/2$ ZD2 $z' - \Delta/2$ ZΡ z ¹ **ZPK** kz' **ZPSV** Save value of z' I/O VARIABLES INPUT LOCATION Α. **ISON** /ADEBUG/ RH F.P. S /AMPZIJ/ TWOPI /AMPZIJ/ **WAVNUM** /AMPZIJ/ ΖP F.P. OUTPUT В. LOCATION HPIC, HPRC F.P. HPIK, HPRK F.P.

5.

TNHFLD (MOM)

HPIS, HPRS

F.P.

IPATCH

/TMI/

RHK

/TMI/

ZPK

/TMI/

CALLING ROUTINE:

NTRPLT

CALLED ROUTINES:

ASSIGN

ROMBNT

STATIN

STATOT

WLKBCK

1204

1. NAME: TPNFLD (GTD)

2. PURPOSE: To calculate the theta and phi unit vectors for the near-field observation direction.

3. METHOD: Vector algebra is used to compute the two unit vectors. Figure 1 shows the geometry required.

4. INTERNAL VARIABLES:

VARIABLE

DEFINITION

DP

Phi unit vector

DT

Theta unit vector

РН

Phi angle

TH

Theta angle

5. I/O VARIABLES:

A. INPUT

LOCATION

PH

F.P.

TH

F.P.

B. OUTPUT

LOCATION

DP

F.P.

DT

F.P.

6. CALLING ROUTINES:

DIFPLT

ENDIF

REFCYL

DPLRCL

RCLDPL

RPLOPL

DPLRPL

RCLRPL

RPLRCL

SCLRPL

7. CALLED ROUTINE:

NONE

Figure 1. Illustration of The Theta (DT) and Phi (DP) Unit Vectors

- 1. NAME: TRCEBK (GTD, INPUT, MOM, OUTPUT)
- 2. PURPOSE: To print out the table of subroutines generated by WLKBCK for locating a fatal error.
- 3. METHOD: Prints out the table of subroutines called before the fatal error which was generated by WLKBCK. This table is contained in array NAMRTN and is indexed by INDXWB.
- 4. INTERNAL VARIABLES:

VARIABLE

DEFINITION

11

Internal variable set to Hollerith name of subroutine for error output message

12

Internal variable set to Hollerith name of subroutine for error output message

NAMSUB

Internal variable set to Hollerith name of subroutine

- 5. I/O VARIABLES:
 - A. INPUT

LOCATION

INDXWB

/ADEBUG/

LUPRNT

/ADEBUG/

NAMRTN

/ADEBUG/

B. OUTPUT

LOCATION

INDXWB

/ADEBUG/

6. CALLING ROUTINES:

ERROR

WLKBCK

7. CALLED ROUTINES:

NONE

- 1. NAME: TRNLAT (INPUT)
- 2. PURPOSE: Translates a point to or from the origin of a coordinate system.
- 3. METHOD: The point is translated along its cartesian coordinate axes, and the operation code specifies whether it is a translation to or from the origin.

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
DX	The amount of the translation along x axis
DY	The amount of the translation along y axis
DZ	The amount of the translation along z axis
NOP	Translation operation code. If greater than zero, a translation to origin. If less than zero, a translation from the origin
X	Input/output of x coordinate
Υ	Input/output of y coordinate
Z	Input/output of z coordinate

5. I/O VARIABLES:

Α.	INPUT	LOCATION
	DX	F.P.
	DY	F.P.
	DZ	F.P.
	NOP	F.P.
	X	F.P.
	Y	F.P.
	Z	F.P.

TRNLAT (INPUT)

B. OUTPUT LOCATION

X F.P.

Y F.P.

Z F.P.

6. CALLING ROUTINES:

COORDS

WYRDRV

7. CALLED ROUTINES:

ASSIGN

STATIN

STATOT

WLKBCK

THE PROPERTY OF THE PROPERTY O

- 1. NAME: TSKXQT (GTD)
- 2. PURPOSE: To read the task list and call the appropriate processors to execute the tasks.
- 3. METHOD: The task list is scanned twice: during the first scan the subroutines necessary to execute the tasks are called in order to initialize the required parameters. During the second pass the subroutines are called to perform the tasks as specified by the user.

Task execution normally begins with the first task in the task list and proceeds sequentially through the list unless a LABEL task is encountered. The LABEL task will redirect execution to its associated LOOP task until the required number of LOOP/LABEL loops has been fulfilled. Task execution terminates when an END command is encountered, the end of the task list is reached, or an error occurs in executing a task.

If the task list has been generated by a RSTART command, execution may not necessarily begin at the top of the task list. Normally, restart is begun from the task which wrote the checkpoint read in to generate the task list. In modules subsequent to the one which generated the checkpoint, execution can begin at the top of the task list (if the preceding run did not complete its execution) or at the restart task (if execution was successfully completed).

The following tasks are active in the GTD module:

FORTRAN LABEL	TASK <u>NAME</u>	GTD MODULE FUNCTION
120	BACSUB	Link data set of solution vector to interaction matrix data set and identify it as a solution data set
130	BAND	Link banded matrix data set to full matrix data set
150	CHKPNT	Retrieve timed checkpoint parameters or write a command checkpoint
180	DEBUG	Turn off or on the debug flags
190	DECOMP	Link data sets of decomposed matrix to its parent data set
200	END	Terminate module execution

Second Procession and property and an account

TSKXQT (GTD)

250	ВМІ	Link data set of solution vector to interaction matrix data set and identify it as a solution data set
260	LABEL	Decrement loop counter and branch to LOOP if positive
270	LOOP	Initialize loop counter
390	RESTRT	Process RSTART command error
410	SOLVE	Link solution to excitation and excitation to interaction matrices
440	WIPOUT	Process WIPOUT command error
480	GMDATA	Advance edition of geometry data set and reinitialize GTD geometry data
490	ZGEN	Call ZIJDRV to generate GTD interactions
490 530	ZGEN EFIELD	Call ZIJDRV to generate GTD interactions Call FLDDRV to generate incident field matrix and scattered field Green's function matrix
		Call FLDDRV to generate incident field matrix and scattered field Green's function
530	EFIELD	Call FLDDRV to generate incident field matrix and scattered field Green's function matrix

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
TOTAL	

CPFRWD Checkpoint file rewind flag

DBGPRT Debug print flag

DT Time interval between calls to TICHEK

IBIT Attribute word

IBITS Attribute word for geometry data set

INCCHK Checkpoint time increment

TSKXQT (GTD)

INDXA, INDXB, INDXC Pointer to symbol table entry for a data

INDXG, INDXX set

IOCKPT Logical unit number of checkpoint file

ITASK Pointer to task in task list being executed

JTASK Internal variable equal to ITASK

KOUNT The number of times the loop terminating on

the reference label has been executed

LINDX Index to the loop table entry currently

being executed

LINKA Pointer to data set linked to data set

pointed to by INDXA

LOCARG Pointer to task argument in NARGTB

LOCNXT Pointer to NARGTB for the next task to be

executed

LOCTP1 Pointer to first argument for a given task

LOCTSK Location of task parameter in NARGTB

LSTARG Location in argument list

LSTTPF Pointer to last task executed for a restart

job

LTRACE Trace flag for debug

N Loop index

NAMDAT User-assigned name of geometry data set

NAMEB, NAMEC, NAMEX User-assigned names of INTARG data sets

NAMGEO Pointer to default geometry data set name

in NCODES

NDX Index to NCODES array for the task name

mnemonic

NOP No operation flag

TSKXQT (GTD)

NOSTAT Logical flag set if statistics have not

been requested

NPRREC Number of words per geometry data set used

NT Hollerith name of task

NUMARG Number of INTARG arguments for a task

NUMTSK Task identification number

NXTTSK Pointer to the next task to be executed

TNOW Current processor time

TRACST Logical flag set if trace statistics are

desired

YSSTAT Logical flag set if statistics have been

requested

5. I/O VARIABLES:

A. INPUT LOCATION

CHKPNT /SYSFIL/

CHKWRT /SYSFIL/

COMPLT /SYSFIL/

DBGPRT /ADEBUG/

ISOFF /ADEBUG/

ISON /ADEBUG/

KBGEOM /PARTAB/

KBREAL /PARTAB/

KBSOLN /PARTAB/

KOLBIT /PARTAB/

KOLCNT /PARTAB/

KOLCOL /PARTAB/

KOLLNK	/PARTAB/
KOLNAM	/PARTAB/
KOLTIM	/PARTAB/
KOLTSK	/PARTAB/
KWOFF	/PARTAB/
KWON	/PARTAB/
KWSTAT	/PARTAB/
KWTRAC	/PARTAB/
LOOPMX	/PARTAB/
LSTTPF	/SYSFIL/
LUPRNT	/ADEBUG/
MAXBLK	/SEGMNT/
MAXSEG	/SEGMNT/
MXARGS	/ARGCOM/
NAMTSK	/PARTAB/
NARGTB	/PARTAB/
NCODES	/PARTAB/
NDATBL	/PARTAB/
NLOOPS	/PARTAB/
NOGOFG	/ADEBUG/
NOPCOD	/ADEBUG/
NOSTAT	/ADEBUG/
NPRSEG	/PARTAB/
NPTASK	/SEGMNT/
NTINT	/ADEBUG/

TSKXQT (GTD)

	NTSKTB	/PARTAB/
	NXTTSK	/ADEBUG/
	RSTART	/SYSFIL/
	RSTRTA	/SYSFIL/
В.	OUTPUT	LOCATION
	CHKWRT	/SYSFIL/
	CPFRWD	/SYSFIL/
	DBGPRT	/ADEBUG/
	IERRF	/ADEBUG/
	INCCHK	/SYSFIL/
	INTARG	/ARGCOM/
	IOCKPT	/SYSFIL/
	IPASS	/ADEBUG/
	LSTTPF	/SYSFIL/
	MAXBLK	/SEGMNT/
	NOGOFG	/ADEBUG/
	NOSTAT	/ADEBUG/
	NUMARG	/ARGCOM/
	NXTTSK	/ADEBUG/
	RSTART	/SYSFIL/

6. CALLING ROUTINE:

GEMACS

TSKXQT (GTD)

7. CALLED ROUTINES:

ASSIGN	GETGEO	SYSCHK
CONVRT	GTDDRV	TICHEK
DMPDRV	SET	WLKBCK
ERROR	STATIN	WRTCHK
EXCDRV	STATOT	ZIJDRV
FLDDRV	SYMDEF	
GETARG	SYMUPD	

- 1. NAME: TSKXQT (INPUT)
- 2. PURPOSE: To read the task list and call the appropriate processors to execute the tasks.
- 3. METHOD: The task list is scanned twice: during the first scan the subroutines necessary to execute the tasks are called in order to initialize the required parameters. During the second pass the subroutines are called to perform the tasks as specified by the user.

Task execution normally begins with the first task in the task list and proceeds sequentially through the list unless a LABEL task is encountered. The LABEL task will redirect execution to its associated LOOP task until the required number of LOOP/LABEL loops has been fulfilled. Task execution terminates when an END command is encountered, the end of the task list is reached, or an error occurs in executing a task.

If the task list has been generated by a RSTART command, execution may not necessarily begin at the top of the task list. Normally, restart is begun from the task which wrote the checkpoint read in to generate the task list. In modules subsequent to the one which generated the checkpoint, execution can begin at the top of the task list (if the preceding run did not complete its execution) or at the restart task (if execution was successfully completed).

The following tasks are active in the INPUT module:

FORTRAN LABEL	TASK NAME	INPUT MODULE FUNCTION
120	BACSUB	Link data set of solution vector to data set of interaction matrix
130	BAND	Link banded matrix data set to full matrix data set
150	CHKPNT	Recover the checkpoint file rewind flag
180	DEBUG	Turn off or on the debug flags
190	DECOMP	Link data sets of decomposed matrix to its parent data set
200	END	Terminate module execution
230	INPUT	Call GEODRV to process input data

250	BMI	Link data set of solution vector to data set of interaction matrix
260	LABEL	Decrement loop counter and branch to LOOP if positive
270	LOOP	Initialize loop counter
390	RESTRT	Process RSTART command error
410	SOLVE	Link data set of solution vector to data set of interaction matrix
440	WIPOUT	Process WIPOUT command error
480	GIMDATA	Call GEODRV to process geometry input
490	ZGEN	Link data set of interaction matrix to geometry data set
530	EFIELD	Call EFDGEO to assure that EFIELD argument is linked to geometry data set
540	DMP	Call DMPDRV to process direct manipulations
550	ESRC, VSRC	Link data set of excitation vector to geometry data set

4. INTERNAL VARIABLES:

VARIABLE DEFINITION

CPFRWD Checkpoint file rewind flag

DBGPRT Debug print flag

DT Time interval between calls to TICHEK

INDEX Pointer to geometry data set

INDXA, INDXB, INDXX Pointer to symbol table entry for a data

set

IOCKPT Logical unit number of checkpoint file

ISAV2 Temporary storage for argument 2 of INTARG

array

ISAV3 Temporary storage for argument 3 of INTARG

array

ITASK Pointer to task in task list being executed

KOUNT The number of times the loop terminating on

the reference label has been executed

LINDX Index to the loop table entry currently

being executed

LINKA Pointer to data set linked to data set

pointed to by INDXA

LOCARG Pointer to task argument in NARGTB

LOCNXT Pointer to NARGTB for the next task to be

executed

LOCTP1 Pointer to first argument for a given task

LOCTSK Location of task parameter in NARGTB

LSTARG Location in argument list

LSTTPF Pointer to last task executed for a restart

job

LTRACE Trace flag for debug

N Loop index

NAMEA, NAMEB, NAMEX User-assigned names of INTARG data sets

NAMGEO Pointer to default geometry data set name

in NCODES

NDX Index to NCODES array for the task name

mnemonic

NOP No operation flag

NOSTAT Logical flag set if statistics have not

been requested

NPRREC Number of words per geometry data set

record

NT Hollerith name of task

NUMARG Number of INTARG arguments for a task

NUMTSK Task identification number

NXTTSK Pointer to the next task to be executed

TNOW Current processor time

TRACST Logical flag set if trace statistics are

desired

YSSTAT Logical flag set if statistics have been

requested

5. I/O VARIABLES:

A. INPUT LOCATION

CHKWRT /SYSFIL/

COMPLT /SYSFIL/

DBGPRT /ADEBUG/

ISOFF /ADEBUG/

ISON /ADEBUG/

KOLCNT /PARTAB/

KOLLNK /PARTAB/

KOLNAM /PARTAB/

KOLTIM /PARTAB/

KOLTSK /PARTAB/

KWGEOM /PARTAB/

KWNAME /PARTAB/

KWOFF /PARTAB/

KWON /PARTAB/

KWSTAT /PARTAB/

KWTRAC	/PARTAB/
LOOPMX	/PARTAB/
LSTTPF	/SYSFIL/
LUPRNT	/ADEBUG/
MXARGS	/ARGCOM/
NAMTSK	/PARTAB/
NARGTB	/PARTAB/
NCODES	/PARTAB/
NDATBL	/PARTAB/
NLOOPS	/PARTAB/
NOGOFG	/ADEBUG/
NOPCOD	/ADEBUG/
NOSTAT	/ADEBUG/
NPTASK	/PARTAB/
NTSKTB	/PARTAB/
NXTTSK	/ADEBUG/
RSTART	/SYSFIL/
RSTRTA	/SYSFIL/
OUTPUT	LOCATION
CHKPNT	/SYSFIL/
CHKWRT	/SYSFIL/
CPFRWD	/SYSFIL/
DBGPRT	/ADEBUG/
IERRF	/ADEBUG/
INTARG	/ARGCOM/
IOCKPT	/SYSFIL/
TOWN I	/31311L/

В.

|| 「これのできる | 「「これのできる | 「これのできる |

IPASS /ADEBUG/
LSTTPF /SYSFIL/
LTRACE /ADEBUG/
NOSTAT /ADEBUG/
NUMARG /ARGCOM/
RSTÁRT /SYSFIL/
TRACST /ADEBUG/

6. CALLING ROUTINE:

GEMACS

7. CALLED ROUTINES:

ASSIGN STATIN

CONVRT STATOT

DMPDRV SYMUPD

EFDGEO SYSCHK

ERROR TICHEK

GEODRV WLKBCK

ZZXDUM

1. NAME: TSKXQT (MOM)

- 2. PURPOSE: To read the task list and call the appropriate processor to execute the tasks.
- 3. METHOD: The task list is scanned twice: during the first scan the subroutines necessary to execute the tasks are called in order to initialize the required parameters. During the second pass the subroutines are called to perform the tasks as specified by the user.

Task execution normally begins with the first task in the task list and proceeds sequentially through the list unless a LABEL task is encountered. The LABEL task will redirect execution to its associated LOOP task until the required number of LOOP/LABEL loops has been fulfilled. Task execution terminates when an END command is encountered, the end of the task list is reached, or an error occurs in executing a task.

If the task list has been generated by a RSTART command, execution may not necessarily begin at the top of the task list. Normally, restart is begun from the task which wrote the checkpoint read in to generate the task list. In modules subsequent to the one which generated the checkpoint, execution can begin at the top of the task list (if the preceeding run did not complete its execution) or at the restart task (if execution was successfully completed).

The following tasks are active in the MOM module.

FORTRAN LABEL	TASK NAME	MOM MODULE FUNCTION
120	BACSUB	Call SOLDRV to back substitute to find solution vector
130	BAND	Call BANDIT to band a matrix
150	CHKPNT	Retrieve timed checkpoint parameters or write a command checkpoint
180	DEBUG	Turn off or on the debug flags
190	DECOMP	Call LUDDRV to decompose matrix into upper and lower triangular matrices
200	END	Terminate module execution
250	BMI	Call SOLDRV to perform banded matrix iteration

260	LABEL	Decrement loop counter and branch to LOOP if positive
270	LOOP	Initialize loop counter
310	WRITE	Call PRTSYM to write symbol data to output file
340	PRINT	Call PRTSYM to write symbol data to output file
350	PURGE	Purge symbol from NDATBL and close data file
390	RESTART	Process RSTART command error
400	SET	Call SETDRV to set data set entries
410	SOLVE	Call LUDDRV and SOLDRV to obtain solution vector
440	WIPOUT	Process WIPOUT command error
460	ZSET	Call SETDRV
480	GMDATA	Advance edition of geometry data set
490	ZGEN	Call ZIJDRV to generate MOM inter- action matrix
520	ZLOADS	Call LODDRV to generate load vector
530	EFIELD	Call FLDDRV to generate total field from incident and scattered fields
540	DMP	Call DMPDRV to process direct manipulations
550	ESRC, VSRC	Call EXCDRV to generate MOM excitation
570	SETINT	Call SET to select GTD, MOM, and incident field interactions

4. INTERNAL VARIABLES:

VARIABLE DEFINITION

CPFRWD Checkpoint file rewind flag

DBGPRT Debug print flag

A.T.	
DT	Time interval between calls to TICHEK
I	Loop index
IBITS	Attribute word for geometry data set
INCCHK	Checkpoint time increment
INDXG	Pointer to symbol table entry for a data set
IOCKPT	Logical unit number of checkpoint file
ISAV2	Temporary storage for argument 2 of INTARG array
ISAV3	Temporary storage for argument 3 of INTARG array
ITASK	Pointer to task in task list being executed
KOUNT	The number of times the loop terminating on the reference label has been executed
LINDX	Index to the loop table entry currently being executed
LOCARG	Pointer to task argument in NARGTB
LOCFIL	Logical file associated with symbol to be purged
LOCNXT	Pointer to NARGTB for the next task to be executed
LOCSYM	Location pointer for a symbol name
LOCTP1	Pointer to first argument for a given task
LOCTP2	Pointer to second argument for a given task
LOCTSK	Location of task parameters in NARGTB
LSTARG	Location in argument list
LSTTPF	Points to last task executed for a restart job
LTRACE	Trace flag for debug

N Loop index

NAMDAT User-assigned name of geometry data set

NAMGEO Pointer to default geometry data set name

in NCODES

NDX Index to NCODES array for the task name

mnemonic

NOP No operation flag

NOSTAT Logical flag set if statistics have not

been requested

NPRREC Number of words for geometry data set

record

NT Hollerith name of a task

NUMARG Number of INTARG arguments for a task

NUMTSK Task identification number

NXTTSK Pointer to the next task to be executed

TNOW Current processor time

TRACST Locical flag set if trace statistics are

desired

YSSTAT Logical flag set if statistics have been

requested

I/O VARIABLES:

A. INPUT LOCATION

CHKWRT /SYSFIL/

COMPLT /SYSFIL/

DBGPRT /ADEBUG/

ISOFF /ADEBUG/

ISON /ADEBUG/

KBGEOM /PARTAB/

TSKXQT	(MOM)
	(

KBREAL	/PARTAB/
KOLCNT	/PARTAB/
KOLCOL	/PARTAB/
KOLLOC	/PARTAB/
KOLNAM	/PARTAB/
KOLTIM	/PARTAB/
KOLTSK	/PARTAB/
KWOFF	/PARTAB/
KWON	/PARTAB/
KWSTAT	/PARTAB/
KWTRAC	/PARTAB/
LSTTPF	/SYSFIL/
LOOPMX	/PARTAB/
LUPRNT	/ADEBUG/
MAXBLK	/SEGMNT/
MAXSEG	/SEGMNT/
MXARGS	/ARGCOM/
NAMTSK	/PARTAB/
NARGTB	/PARTAB/
NCODES	/PARTAB/
NDATBL	/PARTAB/
NLOOPS	/PARTAB/
NOGOFG	/ADEBUG/
NOPCOD	/ADEBUG/
NOSTAT	/ADEBUG/

	NPRSEG	/SEGMNT/
	NPTASK	/PARTAB/
	NTINT	/ADEBUG/
	NTSKTB	/PARTAB/
	NXTTSK	/ADEBUG/
	RSTART	/SYSFIL/
	RSTRTA	/SYSFIL/
В.	OUTPUT	LOCATION
	CHKPNT	/SYSFIL/
	CHKWRT	/SYSFIL/
	CPFRWD	/SYSFIL/
	DBGPRT	/ADEBUG/
	IERRF	/ADEBUG/
	INCCHK	/SYSFIL/
	INTARG	/ARGCOM/
	IOCKPT	/SYSFIL/
	IPASS	/ADEBUG/
	LSTTPF	/SYSFIL/
	LTRACE	/SYSFIL/
	MAXBLK	/SEGMNT/
	NOGOFG	/ADEBUG/
	NOSTAT	/ADEBUG/
	NUMARG	/ARGCOM/
	NXTTSK	/ADEBUG/
	RSTART	/SYSFIL/

6. CALLING ROUTINE:

GEMACS

7. CALLED ROUTINES:

ASSIGN	EXCDRV	OPNFIL	STATOT	WRTCHK
BANDIT	FLDDRV	PRTSYM	SYMDEF	ZCDRVR
CLSFIL	GETARG	SET	SYMUPD	ZIJDRV
CONVRT	GETGEO	SETDRV	SYSCHK	ZZXDUM
DMPDRV	LODDRY	SOLDRV	TICHEK	
ERROR	LUDDRV	STATIN	WLKBCK	

- 1. NAME: TSKXQT (OUTPUT)
- 2. PURPOSE: To read the task list and call the appropriate processor to execute the tasks.
- 3. METHOD: The task list is scanned twice: during the first scan the subroutines necessary to execute the tasks are called in order to initialize the required parameters. During the second pass the subroutines are called to perform the tasks as specified by the user.

Task execution normally begins with the first task in the task list and proceeds sequentially through the list unless a LABEL task is encountered. The LABEL task will redirect execution to its associated LOOP task until the required number of LOOP/LABEL loops has been fulfilled. Task execution terminates when an END command is encountered, the end of the task list is reached, or an error occurs in executing a task.

If the task list has been generated by a RSTART command, execution may not necessarily begin at the top of the task list. Normally, restart is begun from the task which wrote the checkpoint read in to generate the task list. In modules subsequent to the one which generated the checkpoint, execution can begin at the top of the task list (if the preceding run did not complete its execution) or at the restart task (if execution was successfully completed).

The following tasks are active in the OUTPUT module:

FORTRAN LABEL	TASK <u>NAME</u>	OUTPUT MODULE FUNCTION
150	CHKPNT	Retrieve timed checkpoint parameters or write a command checkpoint
180	DEBUG	Turn off or on the debug flags
200	END	Terminate module execution
260	LABEL	Decrement loop counter and branch to LOOP if positive
270	LOOP	Initialize loop counter
390	RESTART	Process RSTART command error
440	WIPOUT	Process WIPOUT command error
480	GMDATA	Advance edition of geometry data set

530	EFIELD	Call FLDDRV to print and plot scattered and incident fields
540	DMP	Call DMPDRV to process direct manipulations
570	SETINT	Call SET to select GTD, MOM, and incident field interactions

When the OUTPUT module execution is complete, the alternate restart flag is turned off and the pointer to the last task executed is set to the last task of the run.

4. INTERNAL VARIABLES:

VARIABLE DESCRIPTION

CPFRWD Checkpoint file rewind flag

DBGPRT Debug print flag

DT Time interval between calls to TICHEK

IBITS Attribute word for geometry data set

INCCHK Checkpoint time increment

INDXG Pointer to symbol table entry for a data

set

IOCKPT Logical unit number of checkpoint file

ITASK Pointer to task in task list being executed

KOUNT The number of times the loop terminating on

the reference label has been executed

LINDX Index to the loop table entry currently

being executed

LOCARG Pointer to task argument in NARGTB

LOCNXT Pointer to NARGTB for the next task to be

executed

LOCTP1 Pointer to first argument for a given task

LOCTSK Location of task parameters in NARGTB

LSTARG Location in argument list

LSTTPF Pointer to last task executed for a restart

job

LTRACE Trace flag for debug

N Loop index

NAMOAT User-assigned name of geometry data set

NAMGEO Pointer to default geometry data set name

in NCODES

NDX Index to NCODES array for the task name

Decoded of the South State Stat

mnemonic

NOP No operation flag

NPRREC Number of words per geometry data set

record

NOSTAT Logical flag set if statistics have not

been requested

NT Hollerith name of a task

NUMARG Number of INTARG arguments for a task

NUMTSK Task identification number

NXTTSK Pointer to the next task to be executed

TNOW Current processor time

TRACST Logical flag set if trace statistics are

desired

YSSTAT Logical flag set if statistics have been

requested

5. I/O VARIABLES:

A. INPUT LOCATION

CHKWRT /SYSFIL/

COMPLT /SYSFIL/

DBGPRT /ADEBUG/

ISOFF /ADEBUG/ ISON /ADEBUG/ **KBGEOM** /PARTAB/ **KBREAL** /PARTAB/ **KOLCNT** /PARTAB/ **KOLCOL** /PARTAB/ **KOLNAM** /PARTAB/ KOLTIM /PARTAB/ **KOLTSK** /PARTAB/ **KWOFF** /PARTAB/ KWON /PARTAB/ **KWSTAT** /PARTAB/ **KWTRAC** /PARTAB/ LOOPMX /PARTAB/ **LSTTPF** /SYSFIL/ **LUPRNT** /ADEBUG/ **MAXBLK** /SEGMNT/ MAXSEG /SEGMNT/ **MXARGS** /ARGCOM/ **NAMTSK** /PARTAB/ **NARGTB** /PARTAB/ **NCODES** /PARTAB/ **NDATBL** /PARTAB/ **NLOOPS** /PARTAB/ **NOGOFG** /PARTAB/

	NOGOFG	/ADEBUG/
	NOPCOD	/ADEBUG/
	NOSTAT	/ADEBUG/
	NPRSEG	/SEGMNT/
	NPTASK	/PARTAB/
	NTINT	/ADEBUG/
	NTSKTB	/PARTAB/
	NXTTSK	/ADEBUG/
	RSTART	/\$YSFIL/
	RSTRTA	/\$YSFIL/
3.	OUTPUT	LOCATION
	CHKPNT	/SYSFIL/
	CHKWRT	/SYSFIL/
	COMPLT	/SYSFIL/
	CPFRWD	/SYSFIL/
	DBGPRT	/ADEBUG/
	IERRF	/ADEBUG/
	INCCHK	/SYSFIL/
	INTARG	/ARGCOM/
	IOCKPT	/SYSFIL/
	IPASS	/ADEBUG/
	LSTTPF	/SYSFIL/
	MAXBLK	/SEGMNT/
	NOGOFG	/ADEBUG/
	NOSTAT	/ADEBUG/

NUMARG /ARGCOM/

NXTTSK /ADEBUG/

RSTART /SYSFIL/

RSTRTA /SYSFIL/

6. CALLING ROUTINE:

GEMACS

7. CALLED ROUTINES:

ASSIGN

CONVRT

DMPDRV

ERROR

FLDDRV

GETARG

GETGEO

SET

STATIN

STATOT

SYMDEF

SYMUPD

SYSCHK

TICHEK

WLKBCK

WRTCHK

· ASSESSED IN

MISSION of Rome Air Development Center

RADC plans and executes research, development, test and selected acquisition programs in support of Command, Control Communications and Intelligence (C³I) activities. Technical and engineering support within areas of technical competence is provided to ESP Program Offices (POs) and other ESD elements. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.

*่งคางคางคางคางคางคางคางคางคางคางคางคางคา*งคา

END

FILMED.
3-84

DTIC