

precision 0.5%, 1% tolerance thick film chip resistor

features

 Marking: 1F, 1H: no marking, black body 1E: blue body, no marking

1J: three-digit black marking (E-24 only) on blue protective coat. 2A ~ 3A four-digit black marking on blue protective coat.

- Products with lead-free terminations meet EU RoHS requirements. EU RoHS regulation is not intended for Pb-glass contained in electrode, resistor element and glass.
- AEC-Q200 Qualified: 0201 (1H), 0402 (1E), 0603 (1J), 0805 (2A), 1206 (2B), 1210 (2E), 2010 (2H/W2H), 2512 (3A/W3A)

and construction							
Solder							
Plating Ni Plating							
← d → Protective Coating Resistive Inner Film Electrode							
Ceramic Substrate Derating Curve							

Derating Curve										
100					_					
80										
% Rated Power										
# 40 %							1F	1E, 1H, 348	1J, 2A, 2E A, W2H, W	, 2E, 2H, 3A
20								\		
0 20 40 60 \$\text{\tinc{\text{\tin}\text{\tex{\tex										
Ambient Temperature (°C)										

dimensions

For resistors operated at an ambient temperature of 70°C or above, a power rating shall be derated in accordance with the above derating curve.

	- 1	00												
		00	!						1E, 1J,	2A, 2B, 2 2H,W2H,	E, W2H,	۱.\		
		80	!	_					WSA,	en/wen,	SAV WSA			
		00	!									l! \		
	≷	60	1									1		
	Ē	00	П									I 1		
	% Rated Power	40	1									\perp	1	
	æ	40	1										\	
		20	1									\perp		
		20	1									1	\	
		٥	1											
80		-60) A -4	0 -2	20 0) 2	0 4	0 6	0 8	0 10	00 120) A 14	40 4 16	06
	0 -60 ^A -40 -20 0 20 40 60 80 100 120 ^A 140 4160 -55 125 155													
	Terminal Part Temperature (°C)													

For resistors operated at a terminal part temperature of described for each size or above, a power rating shall be derated in accordance with the above derating curve. Please refer to "Introduction of the derating curve based on the terminal part temperature" on the beginning of our catalog before use.

Type*	Dimensions inches (mm)							
(Inch Size Code)	L	W	С	d	t			
1F (01005)	.016±.0008 (0.4±0.02)	.008±.0008 (0.2±0.02)	.004±.001 (0.1±0.03)	.004±.001 (0.11±0.03)	.005±.0008 (0.13±0.02)			
1H (0201)	.024±.001 (0.6±0.03)	.012±.001 (0.3±0.03)	.004±.002 (0.1±0.05)	.006±.002 (0.15±0.05)	.009±.001 (0.23±0.03)			
1E (0402)			.008±.004 (0.2±0.1)	.01 +.002 004 (0.25 +0.05)	.014±.002 (0.35±0.05)			
1J (0603)	.063±.008 (1.6±0.2)	.031±.004 (0.8±0.1)	.012±.004 (0.3±0.1)	.012±.004 (0.3±0.1)	.018±.004 (0.45±0.1)			
2A (0805)	.079±.008 (2.0±0.2)	.049±.004 (1.25±0.1)	.016±.008 (0.4±0.2)	.012 +.008 004 (0.3 +0.2)	.02±.004 (0.5±0.1)			
2B (1206)	.126±.008	.063±.008 (1.6±0.2)						
2E (1210)	(3.2±0.2)	.102±.008 (2.6±0.2)		.016 +.008 004 (0.4 +0.2)				
2H (2010)	.197±.008	.098±.008	00.010	-0.17	004 004			
W2H (2010)	(5.0±0.2)	(2.5±0.2)	.02±.012 (0.5±0.3)	.026±.006 (0.65±0.15)	.024±.004 (0.6±0.1)			
3A (2512)	.248±.008	.122±.008		.016 +.008 004 (0.4 +0.2)				
W3A (2512)	(6.3±0.2)	(3.1±0.2)		.026±.006 (0.65±0.15)				

Parentheses indicate EIA package size codes.

ordering information

New Part # RK73H Type

1J for below options: 2A L: SnPb 2B (1E, 1J, 2A, 2B, 2E, 2H, 3A) W2H G: Au W3A (1E ~ 2A:		
1H (1F ~ 3A) 1E (1F ~ 3A) 1E (1F ~ 3A) Contact factory for below options: 2A L: SnPb 2B (1E, 1J, 2A, 2B, 2E, 2H, 3A) W2H G: Au W3A (1E ~ 2A: 100 ~ 1MO)	Size	
X: Bondable (1J ~ 2E: 10Ω ~ 1ΜΩ)	1H 1E 1J 2A 2B 2E W2H W3A 2H	(1F ~ 3A) Contact factory for below options: L: SnPb (1E, 1J, 2A, 2B, 2E, 2H, 3A) G: Au (1E ~ 2A: $10\Omega \sim 1M\Omega$) X: Bondable (1J ~ 2E:

Packaging
TX: 01005 only: 4mm width - 1mm pitch plastic embossed
TBL: 01005 only: 2mm pitch pressed paper
TA: 0201 only: 1mm pitch pressed paper
TC: 0201 only: 7" 2mm pitch pressed paper
(TC: 10,000 pcs/reel, TCM: 15,000 pcs/reel)
TCD: 0201 only: 10" 2mm pitch pressed paper
TPD: 0402 only: 10" plastic embossed
TPL: 0402 only: 2mm pitch punch paper
TP: 0402, 0603, 0805: 7" 2mm pitch punch paper
TD: 0603, 0805, 1206, 1210:
7" 4mm pitch punched paper
TDD: 0603, 0805, 1206, 1210: 10" paper tape
TE: 0805, 1206, 1210, 2010 & 2512:
7" embossed plastic
TED:0805, 1206, 1210, 2010 & 2512: 10" embossed plastic

TD

decimal on value <100 Ω For further information on packaging, please refer to Appendix A

1003 Nominal Tolerance Resistance 3 significant D: ±0.5% figures + 1 F: ±1% multiplier "R" indicates

Specifications given herein may be changed at any time without prior notice. Please confirm technical specifications before you order and/or use.

11/27/14

precision 0.5%, 1% tolerance thick film chip resistor

applications and ratings

Part	T.C.R.	Power	Resistan	ce Range	Maximum	Maximum	Rated Terminal	Operating
Designation	(x10 ⁻⁶ /K)	Rating @ 70°C	D±0.5% E-24, E-96	F±1% E-24, E-96	Working Voltage	Overload Voltage	Part Temperature	Temperature Range
	±200		_	100 k Ω - 1 Μ Ω ¹				
RK73H1F (01005)	±250	0.03W	_	100Ω - $91kΩ$ ¹	20V	30V		-55°C to
(01003)	±300]	_	10Ω - $91\Omega^1$			_	+125°C
RK73H1H	±200	0.05144	10Ω - 1ΜΩ	10Ω - $10MΩ$ ¹	05) (50) (
(0201)	±400	0.05W	_	$1.0\Omega - 9.1\Omega^{1}$	25V	50V		
	±100		10Ω - 1ΜΩ	10Ω - 1ΜΩ				
RK73H1E (0402)	±200	0.063W (0.1W*)	_	1.0Ω - 9.76Ω 1.02MΩ - 10MΩ				
	±100		10Ω - 1ΜΩ	10Ω - 1ΜΩ	50V	100V	-	
RK73H1J (0603)	±200	0.1W (0.125W*)	_	1.0Ω - 9.76Ω 1.02ΜΩ - 10ΜΩ				
RK73H2A (0805)	±100		10Ω - 1ΜΩ	10Ω - 1ΜΩ	150V	200V		
	±200	0.125W (0.25W*)	_	1.0Ω - 9.76Ω				
	±400		_	1.02ΜΩ - 10ΜΩ				
	±100		10Ω - 1ΜΩ	10Ω - 1ΜΩ				
RK73H2B (1206)	±200	0.25W	_	1.0Ω - 9.76Ω 1.02MΩ - 5.6MΩ			125°C	-55°C to
	±400		_	5.62 M Ω - 10 M Ω				+155°C
RK73H2E (1210)	±100	0.5W	10Ω - 1kΩ	10Ω - 1ΚΩ				
		0.33W (0.5W*)	1.02kΩ - 1MΩ	1.02ΚΩ - 1ΜΩ				
	±200 ±200	0.5W		1.0Ω - 9.76Ω 1.02MΩ - 5.6MΩ	200V	400V		
	±200 ±400	0.33W (0.5W*) 0.33W (0.5W*)	_	1.02ΜΩ - 3.6 ΜΩ - 10 ΜΩ				
	±100	0.3377 (0.377)	 10Ω - 1MΩ	$10\Omega - 1M\Omega$				
RK73HW2H/2H (2010)	±200	0.75W		1.0Ω - 9.76Ω 1.02ΜΩ - 5.6ΜΩ				
	±400	1 1	_	5.62MΩ - 10MΩ				
	±100		10Ω - 1ΜΩ	10Ω - 1ΜΩ				
RK73HW3A/3A (2512)	±200	1.0W	_	1.0Ω - 9.76Ω 1.02MΩ - 5.6MΩ	200V (500V*)	400V (500V*)		
	±400		_	5.62 M Ω - 10M Ω		· í		

Rated ambient temperature: +70°C

Rated voltage = $\sqrt{\text{Power rating x resistance value}}$ or max. working voltage, whichever is lower

Please refer to the "Higher Power Ratings" statement in the beginning of the catalog. Also, contact KOA prior to usage and for the max. working voltage and max. overload voltage.

environmental applications

Performance Characteristics								
	Requirement A	Δ R (%+0.1Ω)						
Parameter	Limit	Typical	Test Method					
Resistance	Within specified tolerance	_	25°C					
T.C.R.	Within specified T.C.R.	_	+25°C/-55°C and +25°C/+125°C					
Overload (Short time)	±2%	±1%: 1F ±0.5% Another	Rated Voltage x 2.5 for 5 seconds (2B: Rated Voltage x 2 for 5 seconds)					
Resistance to Soldering Heat	±1%: 1F ~ W3A (10Ω≤R≤1MΩ); ±3%: 1H ~ W3A (R<10Ω, R>1MΩ)	±0.5%: 1F ~ W3A (10Ω <r<1μω); 1h="" ~<br="" ±1%:="">W3A (R<10Ω, R>1ΜΩ)</r<1μω);>	260°C ± 5°C, 10 seconds ± 1 second					
Rapid Change of Temperature	±1%: 1F ±0.5% Another	±0.5%: 1F ±0.3% Another	-55°C (30 minutes), +125°C (30 minutes), 100 cycles					
Moisture Resistance	±2%: 1J, 2A, 2B ±3%: Another	±0.75%: 1J, 2A, 2B; ±1.5%:1F, ±1%: Another	40°C ± 2°C, 90%-95% RH, 1000 hours, 1.5 hr ON, 0.5 hr OFF cycle					
Endurance at 70°C	±2%: 1J, 2A, 2B ±3%: Another	±0.75%: 1J, 2A, 2B ±1%: Another	$70^{\circ}\text{C} \pm 2^{\circ}\text{C}$, 1000 hours, 1.5 hr ON, 0.5 hr OFF cycle					
High Temperature Exposure	±1%	±0.5%: 1F ±0.3%: Another	+125°C, 1000 hours: 1F; +155°C, 1000 hours: 1E, 1H, 1J, 2A, 2B, 2E, 2H/W2H, 3A/W3A					

Specifications given herein may be changed at any time without prior notice. Please confirm technical specifications before you order and/or use.

12/05/14

 $^{^{1}}$ 1F: 10~1MΩ: E-24. 1H: 1.0~9.1, 1M~10MΩ: E-24.