Function: A function $f: X \longrightarrow Y$ is a correspondance by which each element of X corresponds to a unique element of Y. Domain: If f: X -> Y is a function, then the set X is called the domain of the function f. It is denoted by Dt. Range: If f: X -> Y is a function, then the set

 $f(x):x\in X$ is called the mange of the function f. It is denoted by R_f .

Note: If $A,B\subseteq IR$ and $f:A\to B$ then the domain of the the definition A is the set of all real numbers for which f is defined. The grange is the set $\{f(a):a\in A\}$.

1. Find the domain of the definition and range of the following functions. Also draw their graphs (a) f(x) = x, (b) f(x) = |x|, (e) f(x) = 3, (d) f(x) = 2x - 1(e) $f(x) = [x], (f) f(x) = |x+1| + |x|, (g) f(x) = \frac{|x|}{x},$ (h) $f(n) = \begin{cases} x+2 & if -1 < x < 0 \\ x & if 0 < x < 1 \end{cases}$

(i) $f(x) = \begin{cases} 2-x & \text{if } 0 < x < 2 \\ x-1 & \text{if } 2 \leq x < 4 \end{cases}$

Sol? (a) Given,
$$f(x) = x$$

$$\therefore D_f = \mathbb{R} \text{ and } R_f = \mathbb{R}.$$

Now, form a table for different values of x and corresponding values of y=f(x).

X	-1	0	1
y=+/n)	-1	01	1/

The graph of the function is as follows:

(b) Given,
$$f(x) = |x| = \begin{cases} x & if x>0 \\ 0 & if x=0 \\ -x & if x<0 \end{cases}$$

Domain of the function $D_f = IR$ Range of the function $R_f = [0, \infty)$

Form a table for different values of x and corresponding values of y = f(n).

×	-2	-1	0	22 1	2
y=f(x)	2	1	0	1	2

The graph of the function is as follows:

(c) Given, f(x) = 3.

Domain of the function $D_f = IR$ Range of the function $R_f = {33}$

Form a table for different values of x and corresponding values of y = f(x).

×	-1	0	1
y=f(x)	3	3	3

Given f(x) = 2x-1

(d)

Domain of the function $D_f = IR$, Range of the function $R_f = IR$.

Form a table for different values of x and corresponding values of y = f(x).

X	1/2	0	1
y=f(x	0	- 1	1

f(x) = [x] = The greatest integer less than on equal to x.

Domain of the function $D_f = IR$ Range of the function $R_f = \mathbb{Z}$

Form a table for different values of x and the corresponding values y = f(x).

X	-3	-2.5	-2.1	-2	-1.5	-1,1	-1	5	0	• 5	.9	1	1.5	2	2.5	2	3.0
7=7(x)	-3	-3	-3	-2	-2	-2	-1	-1	O	0	0	1	1	2	2	3	3

(f)
$$f(x) = |x+1| + |x|$$

Domain of the function $D_f = |R|$ Range of the function $R_f = [1, \infty)$.

Form a table for different values of x and the corresponding values of y = f(x).

-3	-2	-1	-0.5	0	11	2	
5	3	1	1	1	3	5	

(g)
$$f(x) = \frac{|x|}{x} = \begin{cases} 1, & \text{if } x > 0 \\ -1, & \text{if } x < 0 \end{cases}$$

Domain of the function $D_f = |R \setminus \{0\}$. Range of the function $R_f = \{-1,1\}$.

Form a table for different values of x and the corresponding values of y=f(n)

X	71 +	01	D.1	1
y = f(x)	-1	-1	1	1

(h) sol? Given
$$f(x) = \begin{cases} x+2 & if -1 < x < 0 \\ x & if 0 < x < 1 \end{cases}$$

Domain of the function $D_f = (-1,0) \cup [0,1) = (-1,1)$

Range of the function $R_f = (1,2) \cup [0,1)$
 $= [0,2) \setminus \{1\}$

Form a table for different values of x and the corresponding values of y=f(n)

(i) Soly Given,
$$f(x) = \begin{cases} 2-x & \text{if } 0 < x < 2 \\ x-1 & \text{if } 2 \leq x < 4 \end{cases}$$

Domain of the function $D_f = (0,2) \cup [2,4) = (0,4)$ Range of the function $R_f = (0,2) \cup [1,3) = (0,3)$

Form the following table for different values of x and the corresponding values of y = f(n).

	·							
92 2	X	0.1	1	1.9	2	3	3.9	
	y=f(n)	1.9	1	0.1	1	2	2.9	
	1	Y						
	4							
	2					*		
	3 †					Q (4	,3)	
	20	(0,2)		(P)				
	1 +	80	•	(2,1)				
<		-		(2,1)		-1)		
X″ \	0	t	2	3		4	5	7 X
	Y	1				,		