Wiktor Kuchta

8/1b

Załóżmy, że $g: M \to N$ jest monomorfizmem. Udowodnić, że g(M) jest składnikiem prostym modułu $N \iff \exists f: N \to M, \ f \circ g = \mathrm{id}_M.$

$$(\Longrightarrow)$$

Monomorfizm g indukuje izomorfizm $M \to g(M)$, więc mamy też izomorfizm odwrotny $g' \colon g(M) \to M$.

Z własności uniwersalnej koproduktu g' się faktoryzuje na pewne $f \colon N \to M$ i włożenie $i \colon g(M) \to N$, tzn. $g' = f \circ i$. Składając prawostronnie z g otrzymujemy id $_M = f \circ i \circ g = f \circ g$, bo i to w tym wypadku po prostu inkluzja.

$$(\Leftarrow)$$

Zauważmy, że

$$n = (n - g(f(n))) + g(f(n)),$$

więc $N = \ker f + \operatorname{Im} g$. Jeśli $n \in \ker f \cap \operatorname{Im} g$, to f(n) = 0 i n = g(m) dla pewnego m. Mamy 0 = f(n) = f(g(m)) = m, więc $N = \ker f \oplus \operatorname{Im} g$.

8/2

$$(a) \implies (b)$$

Załóżmy, że dla każdego epimorfizmu $f\colon M\to N$ dowolnych modułów M,N i każdego $g\colon P\to N$ istnieje $h\colon P\to M$ takie, że $f\circ h=g$.

Weźmy epimorfizm $f: M \to P$ i $g = id_P$, wtedy mamy $h: P \to M$ takie, że $f \circ h = id_P$. Z 8/1a to oznacza, że f się rozszczepia, zatem P jest projektywny.

$$(b) \implies (c)$$

Załóżmy, że moduł P jest projektywny. To oznacza, że dla każdego epimorfizmu $f: M \to P$ jądro f jest składnikiem prostym M.

Niech M to moduł wolny składający się z formalnych kombinacji liniowych elementów P. Istnieje epimorfizm $f\colon M\to P$ interpretujący napis formalny operacjami modułowymi P, więc $M=\ker f\oplus M'$ dla pewnego podmodułu $M'\subseteq M$. Z zasadniczego twierdzenia o homomorfizmie mamy

$$P \cong M/(\ker f) = (\ker f \oplus M')/(\ker f) \cong M'.$$

$$(c) \implies (a)$$

Załóżmy, że istnieje moduł L taki, że $P \oplus L$ jest wolny z bazą X.

Niech p to rzut $P \oplus L \to P$.

Weźmy epimorfizm $f\colon M\to N$ i homomorfizm $g\colon P\to N$. Dla każdego $x\in X$ mamy wartość $n=g(p(x))\in N$, więc istnieje $m\in M$ taki, że f(m)=n. To wyznacza pewną funkcję $X\to M$, która się rozszerza do homomorfizmu $h\colon P\oplus L\to M$ takiego, że

$$f \circ h = q \circ p$$
.

Składając prawostronnie z włożeniem $i \colon P \to P \oplus L$ otrzymujemy

$$f \circ (h \circ i) = g \circ p \circ i = g,$$

gdzie $h \circ i \colon P \to M$.

8/4a

 (\Longrightarrow)

Załóżmy, że $M=\oplus_{i\in I}M_i$ jest projektywny. To oznacza, że M jest składnikiem prostym pewnego modułu wolnego, zatem każdy jego składnik prosty M_i też jest składnikiem prostym modułu wolnego.

$$(\Leftarrow)$$

Załóżmy, że M_i jest projektywny dla każdego $i \in I$.

Weźmy epimorfizm $f: L \to N$ i homomorfizm $g: M \to N$. Niech j_i to włożenia $M_i \to M$, wtedy $g \circ j_i \colon M_i \to N$. Z projektywności M_i i zad. 8/2a istnieją $h_i \colon M_i \to L$ takie, że $f \circ h_i = g \circ j_i$. Z uniwersalnej własności koproduktu istnieje $h: M \to L$ takie, że $h \circ j_i = h_i$, więc

$$f \circ h \circ j_i = g \circ j_i$$
.

Z uniwersalnej własności koproduktu $\varphi = f \circ h - g$ jest jedynym homomorfizmem spełniającym

$$\varphi \circ j_i = 0$$
,

a więc jest homomorfizmem zerowym i $f \circ h = g$. Zatem M jest projektywny.