Example: Magnetic Dipole

Determine the magnetic field intensity above the center of a circular loop of radius a carrying current I, at a point P(0, 0, z).

$$d\mathbf{H} = \frac{I}{4\pi} \frac{d\mathbf{l} \times (\mathbf{R} - \mathbf{R}')}{|\mathbf{R} - \mathbf{R}'|^3}$$

Magnetic Flux Density

H is magnetic <u>field intensity</u> (in A/m)

B is magnetic <u>flux density</u> (in Wb/m²) μ is magnetic permeability (in H/m)

$$\mathbf{B} = \mu \mathbf{H}$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$$

in free space (and for non-magnetic materials)

$$\Psi_{\text{electric}} = \iint_{S} \mathbf{D} \cdot d\mathbf{S} = Q_{\text{enc}}$$
 ...flux of **D** out of a surface = charge enclosed

for magnetic fields,

$$\nabla \cdot \mathbf{B} = 0$$

(...Divergence Theorem...)

$$\Psi_{\text{magnetic}} = \iint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$$

flux of **B** out of a surface = zero → no magnetic charge

N S	
N S	
N S	
N	

magnetic flux lines are always continuous

Dr. Gregory J. Mazzaro Spring 2015

ELEC 318 – Electromagnetic Fields

Lecture 5(c)

Forces on Moving Charge

Forces on Moving Charges

Magnetic fields describe the forces experienced by moving charges in the presence of other moving charges.

The force experienced by a <u>moving</u> <u>charge</u> (with velocity **u**) in the presence of a <u>magnetic</u> field is

(deflection of a wire, carrying current, in a uniform magnetic field)

The force experienced by a charge in the presence of an <u>electric</u> field is

$$\mathbf{F}_{\mathrm{e}} = q(\mathbf{E})$$

$$\mathbf{F}_{\mathrm{m}} = q(\mathbf{u} \times \mathbf{B})$$

The **Lorentz force** is the sum of these electric and magnetic forces.

Forces on Current-Carrying Conductors

Magnetic fields describe the forces experienced by moving charges in the presence of other moving charges.

The force experienced by a <u>moving</u> <u>charge</u> (with velocity **u**) in the presence of a magnetic field is

(deflection of a wire, carrying current, in a uniform magnetic field)

The force experienced by a <u>current-carrying</u> <u>conductor</u> in the presence of a magnetic field is

$$\mathbf{F} = \int_{L} d\mathbf{F} = \int_{L} \frac{dq}{dt} (d\mathbf{I} \times \mathbf{B})$$
$$= \mathbf{I} \int_{L} d\mathbf{I} \times \mathbf{B}$$

 $\mathbf{F} = q(\mathbf{u} \times \mathbf{B})$

Example: Magnetic Force, Wire

A rectangular loop carrying current I_2 is placed parallel to an infinitely-long wire carrying current I_1 , as shown in the figure. Determine the magnetic force on the loop.

$$\mathbf{F} = I \int_{L} d\mathbf{l} \times \mathbf{B}$$

$$\mathbf{B}_{\text{wire}}^{\text{inf}} = \frac{\mu_0 I}{2\pi r} \hat{\boldsymbol{\phi}}$$

Dr. Gregory J. Mazzaro Spring 2015

ELEC 318 – Electromagnetic Fields

Lecture 5(d)

Magnetic Torque

Magnetic Torque

torque

- -- force applied at a distance from a fulcrum
- moves an object to pivot/spin around the axis of the fulcrum

magnetic torque, T (N-m)

- -- magnetic force on a currentcarrying loop (mounted to pivot around an axis)
- -- causes the loop to rotate
- -- direction = axis of rotation

$$\mathbf{T} = \mathbf{d} \times \mathbf{F}$$
$$|\mathbf{T}| = |\mathbf{d}||\mathbf{F}|\sin\theta$$

Example: Magnetic Torque

A rectangular loop carrying current I and with side lengths a and b (as shown in the figure) is mounted so that it may pivot around the y axis. Determine the magnetic torque experienced by the loop (around the y axis) if \mathbf{B} is along the x axis and the loop is tilted to make an angle θ between the x axis and the normal (\mathbf{n}) to the loop.

$$\mathbf{T} = \mathbf{d} \times \mathbf{F}$$
$$\mathbf{F} = I \int_{L} d\mathbf{l} \times \mathbf{B}$$

Magnetic Dipole Moment

$$\mathbf{T} = \mathbf{d} \times \mathbf{F}$$

$$= I \cdot ab \cdot |\mathbf{B}| \sin \theta \, \hat{\mathbf{y}}$$

$$= (I \cdot S) |\mathbf{B}| \sin \theta \, \hat{\mathbf{y}}$$

$$T = m \times B$$

dipole moment

- -- product of loop area (S) and the direction normal to that area (**n**)
- -- a quantity convenient for calculating torque (i.e. magnitude & direction of rotation)

$$S = \pi a^2$$

$$\mathbf{m} = I \cdot S \hat{\mathbf{n}}$$

-- a current-carrying loop tends to rotate until its dipole moment aligns with the external **B** field

Example: Dipole Moment

- (a) Determine the magnetic dipole moment of the triangular loop.
- (b) Describe the rotation of the loop in the presence of $\mathbf{B} = 2 \mathbf{z} \mathbf{Wb/m^2}$.

$$T = m \times B$$