

10-23-00

A

EL697650949

Practitioner's Docket No. SST/1032

PATENT

Preliminary Classification:
Proposed Class: 3627
Examiner: F. Saether

JC825 U.S. PRO
09/692674
10/18/00

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Box Patent Application
Assistant Commissioner for Patents
Washington, D.C. 20231

NEW APPLICATION TRANSMITTAL

Transmitted herewith for filing is the patent application of

Inventor(s): Michael W. Bugbee; Mark G. Crawford; Alfred D. Commins

CERTIFICATION UNDER 37 C.F.R. SECTIONS 1.8(a) AND 1.10*

(When using Express Mail, the Express Mail label number is **mandatory**;
Express Mail certification is optional.)

I hereby certify that, on the date shown below, this correspondence is being:

MAILING

- deposited with the United States Postal Service in an envelope addressed to the Assistant Commissioner for Patents,
Washington, D.C. 20231.
37 C.F.R. Section 1.8(a)
- with sufficient postage as first class mail.
- as "Express Mail Post Office to Address"
Mailing Label No. EL697650949US
(mandatory)

37 C.F.R. Section 1.10*

- transmitted by facsimile to the Patent and Trademark Office (703)

Date: 10-18-2000

TRANSMISSION

Signature

James R. Cypher

(type or print name of person certifying)

*WARNING: Each paper or fee filed by "Express Mail" **must** have the number of the "Express Mail" mailing label placed thereon prior to mailing. 37 C.F.R. Section 1.10(b).

"Since the filing of correspondence under [Section] 1.10 without the Express Mail mailing label thereon is an oversight that can be avoided by the exercise of reasonable care, requests for waiver of this requirement will **not** be granted on petition." Notice of Oct. 24, 1996, 60 Fed. Reg. 56,439, at 56,442.

For (title): SCREW FASTENER IN MULTI-PLY WOOD STRUCTURE SHEAR CONNECTION

1. Type of Application

This transmittal is for an original (nonprovisional) application.

2. Papers Enclosed

- A. Required for filing date under 37 C.F.R. 1.53(b) (Regular) or 37 C.F.R. 1.153 (Design) Application

14 Page(s) of Specification

4 Page(s) of Claims

7 Sheet(s) of Drawing(s)--Formal

B. Other Papers Enclosed

3 Page(s) of declaration and power of attorney

1 Page(s) of abstract

2 Page(s) of Notification of Filing of Continuation-in-Part Application

3. Additional Papers Enclosed

Information Disclosure Statement (37 C.F.R. 1.98)

Form PTO-1449 (PTO/SB/08A and 08B)

Authorization of Attorney(s) to Accept and Follow Instructions from Representative

4. Declaration or Oath

Enclosed

Executed by:

* inventors.

5. Inventorship Statement

The inventorship for all the claims in this application is the same.

14637620949

6. Language

English

7. Assignment

A copy of assignment of the invention to Simpson Strong-Tie Company, Inc. is attached. A copy of separate FORM PTO 1595 is also attached.

8. Fee Calculation (37 C.F.R. Section 1.16)

Regular Application

CLAIMS AS FILED

Claims (37 CFR 1.16(c))	Number Filed 8	Basic Fee Allowance - 20 =	Number Extra 0 x	Rate \$0.00	Basic Fee 37 CFR 1.16(a) \$710.00
Total Claims (37 CFR 1.16(c))	8	- 20 =	0 x	\$0.00	\$0.00
Independent Claims (37 CFR 1.16(b))	1	- 3 =	0 x	\$0.00	\$0.00
Multiple Dependent Claim(s), if any (37 CFR 1.16(d))			+ 0 x	\$0.00	\$0.00

Filing Fee Calculation \$710.00

9. Fee Payment Being Made at This Time

Enclosed **Filing Fee** **\$710.00**

Total Fees Enclosed \$710.00

10. Method of Payment of Fees

Check in the amount of \$750.00 is attached.

4697690949

11. Authorization to Charge Additional Fees

The Commissioner is hereby authorized to charge the following additional fees by this paper and during the entire pendency of this application to Account No. 03-4075.

37 C.F.R. Section 1.16(a), (f) or (g) (filing fees)

37 C.F.R. Section 1.16(b), (c) or (d) (presentation of extra claims)

12. Instructions as to Overpayment

Credit Account No. 03-4075.

**ADDED PAGES FOR NEW APPLICATION TRANSMITTAL WHERE BENEFIT OF
PRIOR U.S. APPLICATIONS CLAIMED**

13. Relate Back

Amend the specification by inserting, before the first line, the following sentence:

A. 35 U.S.C. Sections 120, 121 and 365(c)

"This application is a continuation-in-part of copending applications

Application number 09/487,981 filed on January 20, 2000.”

a. This application discloses and claims additional disclosure by amendment and a new declaration or oath is being filed. With respect to the prior application, the inventors in this application are more than in the prior application. The following additional inventors have been added:

Michael W. Bugbee and Mark G. Crawford

b. The inventorship for all the claims in this application is the same.

15. NOTIFICATION IN PARENT APPLICATION OF THIS FILING

A notification of the filing of this continuation-in-part is being filed in the parent application, from which this application claims priority under 35 U.S.C. Section 120.

Date: OCTOBER 18, 2010

James R. Cypher
Registration No. 22448
The Law Offices of James R. Cypher
405 14th Street
Suite 1607
Oakland, CA 94612-2747
U.S.A.
510-832-4111
Customer No. 498

AIA Software - Patent Application Filing System

1 SCREW FASTENER IN MULTI-PLY WOOD STRUCTURE SHEAR
CONNECTION

Background of the invention

This application is a continuation-in-part of pending application serial
5 number 09/487,981, filed January 20, 2000 which was based on U.S. Ser.
No. 08/920,417 now U.S. 6,109,850 granted Aug. 29, 2000.

In regions of the country subject to earthquake and hurricane events, it
is becoming increasingly common to provide metal straps and anchors for
affixing wood frame structures to their concrete foundations. For many
10 years manufacturers such as Simpson Strong-Tie Company, Inc. have
designed holdowns for use with bolts. (see Simpson catalog, January 1,
1996 pages 14 and 15 which illustrates holdowns such as HD2A covered by
U.S. Patent 4,665,672). These holdowns are very effective, but their load
rating is affected by the material which must be drilled out of the wood studs
15 in order to receive the stud bolts which range in diameter from 5/8" up to
1". Moreover, some undesirable looseness is inherent in the connection by
contractors who may inadvertently overdrill the bolt holes, or simply by the
fact that wood shrinkage occurs after installation of the bolts.

The use of nails instead of bolts in holdowns has greatly reduced the
20 shrinkage and looseness problem of bolts and has led to the development of
strap holdowns as illustrated on pages 20, 22, and 23 e.g. of the Simpson
catalog supra, (see e.g. U.S. 5,150,553.) The problem with holdowns
which use nails is the fact that they must be very long to accommodate the
many nails that are required. See e.g. Simpson catalog page 23 in which the
25 HPAHD22-2p requires 23 -16d nails and may be 22" to 42" in length.

Many contractors now use nailing guns to drive the nails, but for the person
who does not have a nailing gun, the prospect of driving 23 nails for each
strap holdown means the expenditure of a great deal of energy driving the
nails.

30 With the increasing use of powered drills, the feasibility of using wood
screws as fasteners instead of nails and bolts is now a reality. The problem
with screws, particularly for large loading in shear is that standard screws
have several weaknesses. First, it was found that the heavy duty power
drivers snapped the heads off a high percentage of standard screws before
35 the clutch disengaged the drive at the end of the driving cycle when the head
abruptly reached the immovable sheet metal connector plate. Second, those

- 1 screws which had adequate unthreaded shank portions to resist the large shear loads, split the wood upon installation or shortly thereafter because the diameters of the unthreaded portions were larger than the bore made by the threaded portion of the screw. Third, adequate self drilling features
5 were difficult to find in large size wood screws. Finally, existing screw fasteners with unthreaded portions adjacent the head which had smaller diameters to prevent wood splitting, were too loose. Looseness in standard screw fasteners between the unthreaded shank and the side of the bore hole which are subject only to pull out, is not a problem. Looseness, between the
10 unthreaded shank portion and the side of the bore hole is a major problem when the screw fastener is subject to shear loads; particularly when the shear loads are cycling loads as they are in earthquakes and hurricanes. In such situations, each reversal of the shear loading tends to widen the bore opening until major loosening occurs and now the loads are impact loads
15 which endanger the structure due to wood splitting.

In multi-ply wood structural connections where wood trusses, wood joists, wood beams, engineered wood members or other wood structural members were joined in load sharing connections, one practice was to join the wood members with bolts inserted into bore holes formed in the wood.

- 20 This practice weakened the wood members because of the wood material removed in forming the bolt holes. More importantly, a tight fit between the bolts and wood was difficult to achieve initially, and nearly impossible to maintain due to wood shrinkage. Looseness in such bolted connections resulted in a loss of load sharing ability, leading to structural failures,
25 particularly in cyclic load reversals present during seismic or wind generated occurrences.

Truss brackets such as U.S. 5,653,079 have been used to join trusses together but these brackets are expensive, difficult to install and thus far limited to connections between the narrow edges of wood chords rather than
30 the broad faces of the chords.

In three ply wood structural members, such members were normally joined by nailing.

1 Summary of the invention

This application describes a wood screw which solves the aforesaid problems. First, a higher strength steel was used in the wood screw of the present invention.

5 Second, the wood screw of the present invention is formed with a cutting means at the entering end so that bore holes need not be predrilled.

Finally, the major problem of looseness between the sides of the fastener and the bore hole has been solved by the use of a knurled section which functions in a unique manner described herein below.

10 The use of the wood screw of the present invention solves the problems introduced by bolts by eliminating the need to predrill large openings in the wood which weaken the wood member in tension as introduced by earthquake and hurricane loadings.

The use of the wood screw of the present invention solves the 15 problem introduced by nails by enabling the strap connection to the wood frame to be significantly reduced in length thus saving in metal costs and installation problems.

The wood screw of the present invention is primarily for connecting wood structural members to sheet metal connectors in shear, but may also 20 be used with heavy metal members or even wood to wood connections.

This application is specifically directed to the use of the special screws of the present invention in joining the top and bottom wood chords and other truss members in multi-ply wood trusses. Such a connection obviates the problems formerly experienced in joining multi-ply trusses by boring bolt 25 openings and inserting bolts. Such a procedure also obviates the problems of using sheet metal connectors which are expensive to make and even more expensive to install. In some applications, the screws replace the use of nails. Primarily, multi-ply trusses joined by screws of the present invention, far out perform multi-ply trusses joined by sheet metal connectors in sharing 30 loads through events such as earthquakes and hurricanes.

Still another use of the screws of the present invention is to join multi-ply wood members in load sharing shear structural connections.

1 Brief Description of the Drawings

FIG. 1 is a side elevational view of a wood screw which is representative of one embodiment of the present invention:

FIG. 2 is an enlarged scale, partial central sectional view of the

5 fastener shown in FIG. 1 in operative association with a portion of a wood structural member and a portion of a sheet metal member. Portions of the wood screw have been cut to indicate portions of the axial length of the wood screw have been removed so that the wood screw may meet the drawing paper restrictions. The upper portion of the wood screw is only
10 partially in cross section to clarify the details of the invention. In this view, the pointed end portion 7 and substantially all of the threaded shank portion 8 has moved through the opening in the sheet metal member 5 and entered the wood structural member 2. The knurled section 14 has not yet entered the bore opening 3.

15 FIG. 3 is partial central sectional view of the wood screw shown in FIGS. 1 and 2 in which the knurled portion 14 has just passed through the opening in the sheet metal member 5 and has entered the wood structural member 2. A portion of the knurled means 14 has been removed to show how the portions between the knurls fill up with mashed wood fibers from
20 the wood structural member.

FIG. 4 is a partial central sectional view of the wood screw shown in FIGS 1, 2 and 3 in which the wood screw is fully installed.

FIG. 5 is a side cross sectional view of the screw shown in FIG. 1 installed in a typical installation. A foundation to frame sheet metal
25 connector is illustrated connecting a wood frame member to a concrete foundation..

FIG. 6 is a cross sectional view of another use of the wood screws of the present invention.

Fig. 7 is an example of a typical truss profile.

30 Fig. 8 is an enlarged portion of a truss chord of the truss illustrated in Fig. 7 illustrating a typical spacing of the screws.

Fig. 9 is a cross section of the truss chord illustrated in Fig. 7. As an example, the screws are driven into one face of the truss chord. In some applications the screws may be driven from both sides.

1 Fig. 10 is an example of a cross section of a multi-ply beam
2 illustrating an existing sawn beam sistered by two engineered wood
3 members such as Microlam® members.

4 Fig. 11 is an example of an assembly consisting of two 1 3/4"
5 members joined by 1/4" x 3 1/2" screws. Other examples are illustrated in
6 Figs. 12 - 16.

7 Fig. 12 is an assembly consisting of three 1 3/4" members joined by
8 1/4" x 3 1/2" screws.

9 Fig. 13 is an assembly consisting of four 1 3/4" members joined by
10 1/4" x 6" screws.

11 Fig. 14 is an assembly consisting of one 1 3/4" member and one 3
12 1/2" member joined by 1/4" x 3 1/2" screws.

13 Fig. 15 is an assembly consisting of two 1 3/4" members and one 3
14 1/2" member joined by 1/4" x 3 1/2" screws.

15 Fig. 16 is an assembly consisting of two 3 1/2" members joined by
16 1/4" x 6" screws.

Description of the Invention

17 Referring to the drawings, and in particular FIG. 1, the wood screw 1
18 of the present invention is adapted to hold a wood structural member 2
19 formed with a first bore 3 to a sheet metal member 5 in shear.

20 While the wood screw 1 of the present invention has excellent pull out
21 value, the design is primarily directed to resisting shear forces. Two
22 examples of environments in which the wood screw of the present invention
23 is subject to shear forces are illustrated in the drawings.

24 Referring to FIG. 5, wood screw 1 connects a retrofit holdown device
25 36 to a wood sill member 37 resting on concrete foundation 38. Wood
26 screw 1 is inserted through opening 45' in sheet metal member 5'. A bolt
27 39 connects the retrofit holdown device 36 to foundation 38. Arrow 40
28 represents an upward force exerted on wood sill member 37 which may
29 occur during either an earthquake or a high wind force such as a hurricane.
30 Such an upward force as represented by arrow 40 exerts a shear force along
31 shear plane 41 as shown in FIG. 5. As may be understood, a force acting in
32 the direction of arrow 42 exerts a pull out force on wood screw 1.

33 Another example of shear forces exerted on wood screws 1 of the
34 present invention is illustrated in FIG. 6. Here, a sheet metal holdown 43 is
35 connected to a foundation 38' by anchor bolt 39' and securely holds wood

- 1 sill member 37' to foundation 38'. Wood screws 1 of the present invention are inserted through openings 45" in sheet metal member 5" of holdown 43 into wood stud member 46. Arrow 40' represents an upward force imposed by an earthquake or high winds such as a hurricane which imposes a shear
- 5 load along shear plane 41'. Arrow 42' represents a horizontal load imposed by an earthquake or high winds such as a hurricane which imposes a pullout force on wood screws 1.

Referring now in detail to the wood screw 1 of the present invention as most clearly shown in FIGS. 1 and 2, the screw 1 includes; a shank 6 having an overall length 44 ; a pointed end portion 7 formed on an entering extremity of the shank 6; the shank 6 having a threaded shank portion 8 having thread convolutions 9 with an outer diameter 10 greater than the diameter of the first bore 3 and beginning at a first point 11 adjacent the pointed end portion 7 and extending axially along the periphery of the shank 15 6 to a second point 12 and adapted to form and engage threads 13 in the wood structural member 2; knurled means 14 formed in a portion of the shank 6 having a first point 15 adjacent the second point 12 of the threaded shank portion 8 and extending axially along the shank 6 to a second point 16 and having an outside diameter 17 generally equal to the outer diameter 20 10 of the thread convolutions 9 in the threaded shank portion 8 and having an inside diameter 18 (see FIG. 4) less than the outside diameter 17 of the knurled means 14; the shank 6 having an unthreaded shank portion 19 having a diameter 20 generally equal to the outside diameter 17 of the knurled means 14 and having a first point 21 adjacent the second point 16 25 of the knurled means 14 and extending axially along the shank 6 and terminating at a second point 22; the knurled means 14 being adapted for mashing over and radially outwardly without severing a substantial proportion of the wood fibers of the inner portions 23 of the threads 13 formed in the wood structural member 2 forming an annular zone 55 of 30 mashed and severed, as well as unsevered wood fibers having an outer diameter 56 greater than the diameter 20 of the unthreaded shank portion 19 and forming a tight fit between the unthreaded shank portion 19 and the annular zone 55 of mashed and severed, as well as unsevered, wood fibers of the wood structural member 2; and a head 26 integrally connected to 35 the shank 6 adjacent the second point 22 of the unthreaded shank portion 19.

1 The wood screw of the present invention need not have a threaded
pointed end or a means for cutting its own bore and threads in a wood
member if a bore is predrilled. It is highly advantageous, however, to form a
wood screw 1 which will drill its own bore and threads in a wood member
5 since predrilling a bore is expensive in installation time. Power drivers to
drive large diameter wood screws are now widely available and thus,
referring to FIGS. 1 and 4, a preferred form of the wood screw 1 of the
present invention adapted to hold a wood structural member 2 to a sheet
metal member 5 in shear includes; a shank 6; a pointed end portion 7
10 formed on an entering extremity of the shank 6 having a plurality of
convolutions 27 and a recess 28 providing a cutting edge 29 adapted for
forming a first bore 3 having a diameter 4; and the shank 6 having a
threaded shank portion 8 having thread convolutions 9 similar to the thread
convolutions 27 on the pointed end portion 7 with an outer diameter 10
15 greater than the diameter 4 of the first bore 3 and beginning at a first point
11 adjacent the pointed end portion 7 and extending axially along the
periphery of the shank 6 to a second point 12 and adapted to form and
engage threads 13 in the wood structural member 2. All other elements of
the preferred form of wood screw 1 are identical to the previously described
20 wood screw and for purposes of brevity are not repeated.

Referring to FIG. 3, knurled means 14 may be double knurled in a cross hatched pattern or have single straight knurls formed at an angle to the axis of the screw. It has been found, however, that straight knurls 30 (see FIG. 2) having a dull edge 47 and valleys 48 between the dull edges 47
25 perform satisfactorily.

It has also been found that where the axial length 31 (see FIG. 1) of the knurled means 14 is substantially less than the axial length 32 of the unthreaded shank portion 19 satisfactory results are obtained.

Providing wood screw 1 with an unthreaded portion 19 reduces the
30 power requirements to drive the screw and maximizes the amount of metal
at the shear plane 41 and 41' (see FIGS. 5 and 6) adjacent the head 26 of
the wood screw 1. Accordingly, the axial length 32 of the unthreaded
portion 19 is preferably substantially less than the axial length 33 of the
threaded portion 8.

35 To accommodate the power driven tool and provide maximum gripping
power, the head 26 is preferably hexagonal in shape.

1 The head 26 is preferably formed with an integral washer 35 for several reasons. First, the upper surface 49 serves as an abutment for the nose of the power tool. Second, the undersurface 50 of washer 35 provides surface area to prevent the power drill from inserting the hex head
5 26 through opening 45. Finally, undersurface 50 frictionally engages sheet metal member 5 and the increased friction of the washer 35 against sheet metal member 5 imposes greater resistance which may cause slip clutches in the power tool to operate and stop the driving of the wood screw 1.

Operation of the wood screw of the present invention is as follows.

10 Referring to FIG. 2, the power tool nose is inserted over hexagonal head 26 with a portion of the power tool nose in abutment with upper surface 49 of washer 35. The point 51 of wood screw 6 is then inserted through opening 45 in the sheet metal member 5 and rotation of the wood screw 6 is begun. Cutting means as formed by edge 29, recess 28, and curved surface 52
15 immediately begins to form first bore 3 (see FIG. 4) and to cut threads 13 into wood member 2. The cutting means on the wood screw 6 of the present invention is well known in the industry and is similar to the cutting means disclosed in Stern, U.S. 2,871,752.

Thread convolutions 27 on pointed end portion 7 which are part of
20 cutting edge 29, cut threads in wood structural member 2 which enable thread convolutions 9 on threaded shank portion 8 to easily follow into the wood. As stated above, threads 13 are formed in the wood structural member having inner portions 23 extending to the outer diameter 4 of first bore 3.

25 Referring to FIG. 3, as the tapered entering portion 54 (see FIG. 3) of knurled means 14 of wood screw 1 reaches outer face 53 of wood structural member 2, the dull edges 47 of each knurl 30 engage inner portions 23 of threads 13. It is preferable to taper the entering portions 54 of the knurled means 14 as shown in the drawings to lessen the shock as the knurls 30
30 strike the inner portions 23 of threads 13. Referring to FIG. 2, tapered entering portion 54 is bounded by lower bevel end 60 and upper bevel end 59. This is especially important since as previously stated edges 47 of the knurls 30 are dull and thus there is a greater resistance encountered by the wood screw 1 as it proceeds through the wood structural member 2.
35 The function of the dull edges 47 of knurls 30 is to bend the inner portions 23 of threads 13 in the structural wood member so as to mash

1 rather than to sever a substantial portion of the wood fibers of the structural
wood member. These bent over and mashed wood fibers as well as the
severed wood fibers are illustrated in FIGS. 3 and 4 and are indicated
generally by the number 55 which represents an annular zone of mashed and
5 severed, as well as unsevered, wood fibers. The annular zone of mashed
wood fibers 55, as seen when wood screw 1 is fully seated, is bounded by
the space outboard of diameter 20 of unthreaded shank portion 19 and
outer diameter 56 of the mashed fiber annular zone. Annular zone of
mashed wood fibers 55 as seen in FIG. 4 extends from outer face 53 of
10 wood structural member 2 to penetration point 61 (see FIG. 4) of upper
bevel end 59 of knurled means 14 (see FIG. 2).

As the knurled means 14 proceeds into the wood structural member 2,
the valleys 48 between the dull edge ridges 47 of knurls 30 fill with the
unsevered fiber ends as well as severed wood fibers of the mashed over
15 inner portions 23 of threads 13 and loose cuttings from the cutting edge 29
on the pointed end portion 7 of the wood screw 1. This filling of the valleys
48 in the knurls 30 further reduces the cutting or severing of the wood
fibers as the knurl means 14 continues through the wood structural
member 2.

20 The effects of the previously described mashing of the wood fibers is
shown in FIG. 4. In this view, the wood screw 1 has been fully inserted into
the structural wood member 2 and is now in place to resist shear forces
acting between sheet metal member 5 and the wood structural member 2.

The result of the wood mashing of inner portions 23 of threads 13 of the
25 wood structural member 2 is that the mashed wood fibers form an annular
zone 55 which tightly fills any space between the outer diameter 20 of
unthreaded shank portion 19 and the outer diameter 56 of the mashed fiber
annular zone 55. This annular zone 55 of tightly packed mashed wood fibers
mixed with some cuttings from cutting edge 29 on the pointed end portion 7
30 of the wood screw 1 prevents essentially all looseness between the wood
screw 1 and the structural member 2. This tight fit of the wood screw 1
with the structural wood member serves to increase the wood screws
resistance to lateral displacement which contributes to the increase in shear
resistance along the shear planes 41 and 41' as seen, e.g. in FIGS 5 and 6.

35 By sizing the knurled means 14 with an outside diameter 17 generally
equal to the outer diameter 10 of the thread convolutions 9 in the threaded

- 1 shank portion 8 and generally equal to the diameter 20 of the unthreaded shank portion 19, wood splitting as the unthreaded shank portion enters the wood structural member 2 is obviated.

As an example, the wood screw 1 of the present invention may be
5 manufactured from 1022 steel (SAE Grade 5) with a finish coat of zinc and dichromate. The hex washer head 26 may be 0.375 inch (9.5 mm). The self drilling tip or pointed end portion 7 may be a Type-17, and allows for driving without lead holes. Lead holes, however, may be required by the local building official, depending on wood type and moisture content in
10 accordance with Section 2339.112 of the Code of International Conference of Building Officials (ICBO).

Some typical dimensions of wood screws of the present invention having an overall shank length 44 measured from the underside 50 of washer 35 to the point 51 ranging from 1 1/2" to 3 1/2" are as follows: The length
15 33 of the threaded section 8 may vary from 7/8" to 3 1/4" while the axial length 31 of the knurled section 14 remains at a constant .250". and the length 32 of the unthreaded shank portion 19 varies with the length of the wood screw 1. For example, where the shank length is 1 1/2", the unthreaded shank portion 19 may be 5/8" whereas an overall shank length
20 44 of 3 1/2" may have an unthreaded shank length 19 of 1 1/4". Outer diameter 10 of thread convolutions 9 may have a diameter of 0.259 - 0.250" and an inner diameter of 0.187" to 0.183".

While the wood screw of the present invention is shown in FIGS. 5 and 6 for use with holdown connectors used in attaching wood frame
25 buildings to concrete foundations, the wood screw as above described may be used anywhere that wood screws of the size and type described may be used. The wood screws of the present invention may be used with heavy metal members or wood to wood connections.

Referring to FIGS. 7, 8, and 9, a truss 70 is illustrated having top
30 chords 71 and 72, web members 76 and a bottom chord 73. To share loads, additional trusts may be placed side by side and at least one of the chords of each adjacent truss should be wood and joined by screws 1. As illustrated, all of the chords 71 - 73 are wood and all of the multi-ply chords 71 - 73 are joined by screws 1.

35 Fig 8 illustrates the typical spacing of the screws with screws 1' forming a row near the upper edge of a wood chord such as the bottom

1 chord 73 of truss 70. In the bottom chord, the screws in the upper row are indicated by the number 1' and the screws in the lower row are indicated by the number 1". Each of the multi-ply chords 73', 73", 73'', and 73''' making up the bottom chord 73, as shown in Fig. 9, are joined by screws 1' 5 and 1" in shear.

The screws 1 are staggered and edge distance 75, as illustrated in Fig. 8, must meet edge distances required by the codes. The spacing 74 varies according to the loads.

In a design example of a 3 or 4 ply girder truss, the bottom chord 73 10 may be 2 x 6 Douglas Fir-Larch and the top chords 71 and 72 2 x4 Douglas Fir Larch. For such a truss the total load on the bottom chord for example might be 500 pounds per lineal foot. The allowable load on each screw 1 could be 340 pounds for a roof live load condition. Spacing of the screws 1 might be 16" on center maximum for this example.

15 For the top chord in this example, one row of screws was used with spacing of 24" on center.

The screws in this example are $\frac{1}{4}$ " x 4 1/2" for a 3 ply truss and 1/4" x 6" for a 4 ply truss.

In installing the screws of the present invention it may be noted that: 20 No pre-drilling is required, but predrilling may be permitted in retrofit applications, for instance, where the wood is very dry.

Screws may be installed from one side of the truss, as illustrated in Fig. 9, for faster fabrication thereby eliminating the need to flip the truss. As shown in Fig. 13, in some applications, the screws may be driven from 25 both sides.

Screws must be installed in the same truss ply that the hangers are attached to for best results.

Screws may be used to field-join trusses if specified by the Engineer.

Screw location and minimum spacing must follow the requirements of 30 the applicable design codes.

Screws must be installed in the bottom and top truss chords for best results, and may be installed in the truss webs if required by the Truss Engineer.

The screws should not be over driven.

35 All plies of the truss lateral bracing should normally be connected.

1 Other general considerations in joining multi-ply wood trusses are as follows:

All screws must penetrate a minimum of 1 inch into the last truss ply for best results.

5 A maximum gap of 1/8 inch is allowed between each truss ply as long as the penetration required of one inch into the last ply is provided.

Spacing of screws shall not exceed 24 inches on center.

The Truss Engineer shall ensure that adequate lateral bracing is provided to prevent displacement of the truss and the truss bottom chord

10 due to the torsion created by the structural members framing into the side of the multi-ply girder truss.

If the screws are installed in the wrong face of the truss (the screws should be installed on the face of the truss where hangers are installed), then additional screws should be installed in the correct face with a

15 maximum spacing of 2 times the required spacing, not to exceed 24 inches on center. The additional screws shall be offset from the existing screws to prevent splitting. (This caution is especially true where screws are being installed in both faces of the truss).

The screws should not be installed through metal truss plates unless 20 approved by the Truss Engineer.

One row of screws should normally be used in 2 x 4 members; 2 rows in 2 x 6 members, and 3 rows in 2 x 10 members. Rows should be staggered.

Individual screw locations may be adjusted up to 1/2 of the required 25 screw spacing to avoid conflicts with other hardware or to avoid lumber defects.

Attaching multiple plies of structural composite lumber and sawn lumber with the screws of the present invention.

30 Referring to Figs. 11 - 16 of the drawings, installation of the screws of the present invention may be installed in multiple plies of composite engineered lumber such as Laminated Veneer Lumber (LVL), Parallam® (PSL) TimberStrand® sawn lumber or other engineered wood products.

Installation may be done by hand or power tools. If driven by power 35 tools, the screws of the present invention should not be over driven. The number and spacing of screws must be specified by an Engineer and is

- 1 dependent upon loads, spacing of the loads, type of lumber serving as the structural lumber and placement of the loads.

Referring to Fig. 10, multiple plies of structural members are joined by screws of the present invention. The center member 77 illustrated may be a 5 sawn lumber ceiling joist found in an existing structure. If in a remodel of a building structure such as might occur if it was desired to remove posts and create a room with a clear span, or where it might be desirable for the ceiling joists to support greater loads, one or more sawn lumber members or engineered members such as one or more micro-lam® beams 78 and 79 or 10 other type of composite engineered wood beam may be "sistered" to the existing joist member 77. The special screws 1' and 1" of the present invention are most effective in this situation because of their unique ability to cause the structural wood members to share loads reliably under design loads for specified vertical loads, seismic events or wind load events.

15 Again, it is the special ability of the screws 1 to form tight fitting shear connections that makes this result possible.

Referring to Figs. 11 - 16, further examples of multiple plies of structural members are illustrated. All of the examples may be in either retrofit or new construction. For most reliable results as to design loads, 20 new materials of like material should be used.

In Fig. 11, two engineered lumber members, 80 and 81 are joined by an upper row of screws 1' of the present invention and a lower row of screws 1" of the present invention.

In Fig. 12, three engineered lumber members 82, 83, and 84 are 25 joined by an upper row of screws 1' of the present invention and a lower row of screws 1" of the present invention which are driven from one direction, and an upper row of screws 1" ' of the present invention and a lower row of screws 1" " of the present invention which are driven from the opposite direction.

30 In Fig. 13, four engineered lumber members 85, 86, 87, and 88 and are joined by an upper row of screws 1' of the present invention and a lower row of screws 1" of the present invention which are driven from one direction, and an upper row of screws 1" ' of the present invention and a lower row of screws 1" " of the present invention which are driven from the 35 opposite direction. Because of the greater thickness of the four plies, the

1 1/4" x 3 1/2" screws used in Figs. 11, and 12 are replaced by screws 1/4" x 6".

In Fig. 14, an example is shown in which structural member 90 is substantially of greater width than structural member 89. The two members
5 are shown joined by screws of the present invention with the upper row of screws 1' being 1/4" x 3 1/2" and the lower rows of screws 1" being the same size and length.

In Fig. 15, an example is illustrated of a relatively wider structural member 91 "sistered" by relatively narrower structural members 92 and 93.
10 In the example, screws of the present invention may be 1/4" x 3 1/2" arranged in an upper row of screws 1', a lower row of screws 1", and an upper row of screws 1'" and a lower row of screws 1"" driven from the opposite side.

In the last example, Fig 16, two structural members 94 and 95, each
15 3 1/2" in thickness, are illustrated joined by screws of the present invention having a dimension of 1/4" x 6". An upper row of screws 1' and a lower row of screws 1" are driven from one direction and an upper row of screws 1"" and a lower row of screws 1"" are driven from the opposite direction

20

25

30

35

1 We Claim

1. In a multi-ply wood structure shear connection including a wood screw fastener and a plurality of wood structural members formed with a first bore comprising; said wood screw fastener including:
 - 5 a. a shank having a head end;
 - b. a pointed end portion formed on an entering extremity of said shank opposite said head end for insertion through [said opening in said metal connector and into] said first bore in said wood structural members;
 - 10 c. said shank having a threaded shank portion having thread convolutions with an outer diameter greater than the diameter of said first bore and beginning at a first point adjacent said pointed end portion and extending axially along the periphery of said shank to a second point and adapted to form and engage threads in said wood structural member;
 - 15 d. said shank having a knurled portion formed with a plurality of knurls having dull edges and having a first point adjacent said second point of said threaded shank portion and extending axially along said shank to a second point and having an outside diameter generally equal to the outer diameter of said thread convolutions in said threaded shank portion and having an inside diameter substantially less than said outside diameter of said knurled portion and equal to or only slightly greater than the diameter of said first bore;
 - 20 e. said knurls are formed with a tapered entering portion forming a smooth transition between the inner diameter of said shank and said outside diameter of said knurled portion;
 - 25 f. said shank having an unthreaded shank portion having a diameter generally equal to said outside diameter of said knurled portion and having a first point adjacent said second point of said knurled portion and extending axially along said shank a distance substantially greater than the length of said knurled portion and the thickness of said metal connector at said planar portion and terminating at a second point adjacent said head end;
 - 30 g. said knurls having said dull edges bend over buckle and crush without severing, a substantial proportion of the wood fibers of the inner portions of said threads formed in said wood structural member
 - 35

- 1 forming a nominal annular zone of bent over buckled and crushed
wood fibers, having an outer diameter nominally greater than said
diameter of said unthreaded shank portion and forming a tight fit
between said unthreaded shank portion and said nominal annular zone
5 of bent over buckled and crushed wood fibers, of said wood
structural members;
h. a head integrally connected to said shank at said head end; and
I. said unthreaded shank portion extending a substantial distance
within said wood structural members.
- 10 2. In a multi-ply wood structure shear connection including a plurality of
wood screw fastener and a wood structural members comprising; said
screw fastener including,
a. a shank having a head end;
15 b. a pointed end portion formed on an entering extremity of said
shank, opposite said head end, having a plurality of thread
convolutions and a recess providing a cutting edge for [insertion
through said metal connector and] forming a first bore in said wood
structural members and having a selected outer diameter;
20 c. said shank having a threaded shank portion having thread
convolutions similar to said thread convolutions on said pointed end
portion with an outer diameter greater than said diameter of said first
bore and beginning at a first point adjacent said pointed end portion
and extending axially along the periphery of said shank to a second
25 end point and adapted to form and engage threads in said wood
structural members;
d. said shank having a knurled portion formed with a plurality of
knurls having dull edges and having a first point adjacent said second
point of said threaded shank portion and extending axially along said
30 shank to a second point and having an outside diameter generally
equal to the outer diameter of said thread convolutions in said
threaded shank portion and having an inside diameter substantially
less than said outside diameter of said knurled portion and equal to or
only slightly greater than the diameter of said first bore;

- 1 e. said knurls are formed with a tapered entering portion forming a smooth transition between the inner diameter of said shank and said outside diameter of said knurled portion;
- 5 f. said shank having an unthreaded shank portion having a diameter generally equal to said outside diameter of said knurled portion and having a first point adjacent said second point of said knurled portion and extending axially along said shank a distance substantially greater than the length of said knurled portion and the thickness of said metal connector at said planar portion and terminating at a second point adjacent said head end;
- 10 g. said knurls having said dull edges bend over, buckle and crush without severing, a substantial proportion of the wood fibers of the inner portions of said threads formed in said wood structural members forming a nominal annular zone of bent over, buckled and crushed, wood fibers having an outer diameter nominally greater than said diameter of said unthreaded shank portion and forming a tight fit between said unthreaded shank portion and said nominal annular zone of bent over, buckled and crushed wood fibers of said wood structural member;
- 15 h. a head integrally connected to said shank at said head end; and
- 20 i. said unthreaded shank portion extending a substantial distance within said wood structural members.
- 25 3. In a multi-ply wood structure including a wood screw fastener and a plurality of wood structural members as described in claim 1 wherein:
- 30 a. said wood structural members are trusses having at least one wood member for receipt of said screw.
- 35

1 4. In a multi-ply wood structure including a wood screw fastener and
a plurality of wood structural members as described in claim 2
wherein:

5 a. said wood structural members are trusses having at least
one wood member for receipt of said screw.

10 5. In a multi-ply wood structure including a wood screw fastener and a
plurality of wood structural members as described in claim 1 wherein:

15 a. said wood structural members are wood beams.

20 6. In a multi-ply wood structure including a wood screw fastener and a
plurality of wood structural members as described in claim 2
wherein:

25 a. said wood structural members are wood beams.

30 7. In a multi-ply wood structure including a wood screw fastener and a
plurality of wood structural members as described in claim 3 wherein:

35 a. said wood trusses are roof trusses.

PRINTED IN U.S.A. 100% RECYCLED PAPER

1

ABSTRACT OF THE DISCLOSURE

A wood screw for joining multi-ply wood structures in a shear connection such as roof trusses and multiple plies of structural composite or sawn lumber holding a wood structural member to another member such as a sheet metal member a heavy metal member or another wood member wherein the screw includes a shank having a threaded portion and an unthreaded portion. A knurled means is provided on the shank between the threaded and the unthreaded portion for forming an annular zone of mashed and severed, as well as unsevered, wood fibers for preventing wood splitting and laterally holding the screw to the wood structural members in a tight fit.

15

20

25

30

35

FIG. 4

+

5/7

+

FIG.-13

FIG.—12

FIG.—11

7/7

FIG.-14

FIG.-15

FIG.-16

+

Practitioner's Docket No. SST/1032

PATENT**COMBINED DECLARATION AND POWER OF ATTORNEY****(ORIGINAL, DESIGN, NATIONAL STAGE OF PCT, SUPPLEMENTAL, DIVISIONAL,
CONTINUATION, OR C-I-P)**

As a below named inventor, I hereby declare that:

TYPE OF DECLARATION

This declaration is for an original application.

INVENTORSHIP IDENTIFICATION

My residence, post office address and citizenship are as stated below, next to my name. I believe that I am an original, first and joint inventor of the subject matter that is claimed, and for which a patent is sought on the invention entitled:

TITLE OF INVENTION

Screw Fastener in Multi-Ply Wood Structure Shear Connection

SPECIFICATION IDENTIFICATION

The specification is attached hereto.

ACKNOWLEDGMENT OF REVIEW OF PAPERS AND DUTY OF CANDOR

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information, which is material to patentability as defined in 37, Code of Federal Regulations, Section 1.56, and which is material to the examination of this application, namely, information where there is a substantial likelihood that a reasonable Examiner would consider it important in deciding whether to allow the application to issue as a patent.

POWER OF ATTORNEY

I hereby appoint the following practitioner(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith.

APPOINTED PRACTITIONER(S)

James R. Cypher	22448
Charles R. Cypher	41,694

REGISTRATION NUMBER(S)

I hereby appoint the practitioner(s) associated with the Customer Number provided below to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith.

SEND CORRESPONDENCE TO**DIRECT TELEPHONE CALLS TO:**

James R. Cypher
510-832-4111

James R. Cypher
1607 Financial Center Building
405 14th Street
Oakland, CA 94612-2747
U.S.A.

Customer Number 498

DECLARATION

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

7169765 0949

SIGNATURE(S)

Alfred D. Commins

Inventor's signature

Date

Residence Friday Harbor, WA U.S.A.

Post Office Address 800 Douglas Road, Friday Harbor, WA 98250 U.S.A.

91

Com

Alfred D. Commins Oct 620w

Country of Citizenship U.S.A.

Practitioner's Docket No. SST/1032

PATENT

COMBINED DECLARATION AND POWER OF ATTORNEY

**(ORIGINAL, DESIGN, NATIONAL STAGE OF PCT, SUPPLEMENTAL, DIVISIONAL,
CONTINUATION, OR C-I-P)**

As a below named inventor, I hereby declare that:

TYPE OF DECLARATION

This declaration is for an original application.

INVENTORSHIP IDENTIFICATION

My residence, post office address and citizenship are as stated below, next to my name. I believe that I am an original, first and joint inventor of the subject matter that is claimed, and for which a patent is sought on the invention entitled:

TITLE OF INVENTION

Screw Fastener in Multi-Ply Wood Structure Shear Connection

SPECIFICATION IDENTIFICATION

The specification is attached hereto.

ACKNOWLEDGMENT OF REVIEW OF PAPERS AND DUTY OF CANDOR

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information, which is material to patentability as defined in 37, Code of Federal Regulations, Section 1.56, and which is material to the examination of this application, namely, information where there is a substantial likelihood that a reasonable Examiner would consider it important in deciding whether to allow the application to issue as a patent.

POWER OF ATTORNEY

I hereby appoint the following practitioner(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith.

APPOINTED PRACTITIONER(S)

James R. Cypher

Charles R. Cypher

REGISTRATION NUMBER(S)

22448

41,694

I hereby appoint the practitioner(s) associated with the Customer Number provided below to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith.

SEND CORRESPONDENCE TO**DIRECT TELEPHONE CALLS TO:**James R. Cypher
510-832-4111

James R. Cypher
1607 Financial Center Building
405 14th Street
Oakland, CA 94612-2747
U.S.A.

Customer Number 498

DECLARATION

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

SIGNATURE(S)

Michael W. Bugbee
Inventor's signature

Date 10-17-00

Residence Danville, CA 94526

Post Office Address 330 Durham Court, Danville, CA 94526 U.S.A.

Country of Citizenship U.S.A.

Mark G. Crawford
Inventor's signature

Date 10-17-00

Residence Visalia, CA U.S.A.

Post Office Address 1826 South Oakhurst Court, Visalia, CA 93292 U.S.A.

Country of Citizenship U.S.A.

REDACTED

Practitioner's Docket No. SST/1032

PATENT**IN THE UNITED STATES PATENT AND TRADEMARK OFFICE**

In re application of: Bugbee, Michael W.; Crawford, Mark G.; and Commins, Alfred D.

Application No.: Group No.:
 Filed: Examiner:
 For: Screw Fastener in Multi-Ply Wood Structure Shear Connection

Assistant Commissioner for Patents
Washington, D.C. 20231

**POWER OF ATTORNEY BY ASSIGNEE OF ENTIRE INTEREST
 (REVOCATION OF PRIOR POWERS)**

As assignee of record of the entire interest of the above identified application,

REVOCATION OF PRIOR POWERS OF ATTORNEY

all powers of attorney previously given are hereby revoked and

NEW POWER OF ATTORNEY

the following practitioners are hereby appointed to prosecute and transact all business in the Patent and Trademark Office connected therewith.

James R. Cypher, Registration No. 22448
 Charles R. Cypher, Registration No. 41,694

**AUTHORIZATION OF ATTORNEYS TO ACCEPT AND
 FOLLOW INSTRUCTIONS FROM REPRESENTATIVES**

The undersigned to this power of attorney hereby authorizes the U.S. attorneys named herein to accept and follow instructions from

James R. Cypher
 The Law Offices of James R. Cypher
 1607 Financial Center Building
 405 14th Street
 Oakland, CA 94612-2747
 U.S.A.

Charles R. Cypher
 The Law Offices of James R. Cypher
 1607 Financial Center Building
 405 14th Street
 Oakland, CA 94612-2747
 U.S.A.

as to any actions to be taken in the Patent and Trademark Office regarding this application without direct

communication between the U.S. attorneys and the undersigned. In the event of a change in the persons from whom instructions may be taken, the U.S. attorneys will so be notified by the undersigned.

SEND CORRESPONDENCE TO:

Customer No.: 498

DIRECT TELEPHONE CALLS TO:

-- (510) 832-4111

Assignee:

Simpson Strong Tie Company, Inc.
4637 Chabot Drive, Suite 200
Pleasanton , CA 94588U.S.A.

Recorded herewith

ASSIGNEE STATEMENT

Attached to this power is a "STATEMENT UNDER 37 C.F.R. section 3.73(b)."

Date: 10/3/00

Signature
Simpson Strong Tie Company, Inc.
Assignee
Stephen B. Lamson
President of Simpson Strong-Tie Co., Inc.

Practitioner's Docket No. SST/1032

PATENT**IN THE UNITED STATES PATENT AND TRADEMARK OFFICE**

In re application of: Bugbee, Michael W.; Crawford, Mark G.; and Commins, Alfred D.

Application No.: Group No.:
 Filed: Examiner:
 For: Screw Fastener in Multi-Ply Wood Structure Shear Connection

**Assistant Commissioner for Patents
 Washington, D.C. 20231**

**STATEMENT UNDER 37 C.F.R. section 3.73(b)
 ESTABLISHING RIGHT OF ASSIGNEE TO TAKE ACTION**

1. The assignee(s) of the entire right, title and interest hereby seek(s) to take action in the PTO in this matter.

IDENTIFICATION OF ASSIGNEE

2. Name of assignee: Simpson Strong Tie Company, Inc.
 Type of assignee: Corporation

PERSON AUTHORIZED TO SIGN

3. Name of person authorized to sign on behalf of assignee: Stephen B. Lamson

CERTIFICATION UNDER 37 C.F.R. sections 1.8(a) and 1.10*
*(When using Express Mail, the Express Mail label number is mandatory;
 Express Mail certification is optional.)*

I hereby certify that, on the date shown below, this correspondence is being:

MAILING

- deposited with the United States Postal Service in an envelope addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

37 C.F.R. section 1.8(a)

- with sufficient postage as first class mail.

37 C.F.R. section 1.10*

- as "Express Mail Post Office to Address"
 Mailing Label No. _____ (**mandatory**)

TRANSMISSION

- transmitted by facsimile to the Patent and Trademark Office.

Date: 9-29-00 10-18-2000 DR

Signature

James R. Cypher

(type or print name of person certifying)

***WARNING:** Each paper or fee filed by "Express Mail" must have the number of the "Express Mail" mailing label placed thereon prior to mailing. 37 C.F.R. section 1.10(b).
 "Since the filing of correspondence under [section] 1.10 without the Express Mail mailing label thereon is an oversight that can be avoided by the exercise of reasonable care, requests for waiver of this requirement will not be granted on petition." Notice of Oct. 24, 1996, 60 Fed. Reg. 56,439, at 56,442.

Title of person authorized to sign: President of Simpson Strong-Tie Co., Inc.

BASIS OF ASSIGNEE'S INTEREST

Ownership by the assignee is established as follows:

A.

1. An assignment (document) separately being submitted for recordal herewith.

COPIES OF DOCUMENTS IN CHAIN OF TITLE

Copies of the assignment(s) or other document(s) in the chain of title are attached as follows:

A1

Date: 9-29-00

Signature of authorized person

Stephen B. Lamson
President of Simpson Strong-Tie Co., Inc.

James R. Cypher
Registration No. 22448
The Law Offices of James R. Cypher
1607 Financial Center Building
405 14th Street
Oakland, CA 94612-2747
U.S.A.
510-832-4111
Customer No. 498

United States Patent & Trademark Office
Office of Initial Patent Examination -- Scanning Division

SCANNED # 12

Application deficiencies were found during scanning:

- Page(s) 1 of 6 of transmittal were not present
for scanning. (Document title)
- Page(s) _____ of _____ were not present
for scanning. (Document title)
- Scanned copy is best available.

- Transmittal numbered 1 of 14 but should
be 1 of 6