Категорная модель модального лямбда-исчисления, основанного на интуиционистской логике.

Даня Рогозин

МГУ

Март, 2018

Мотивация. Функциональное программирование на языке Haskell.

- ▶ Обратимся в рамках мотивации к функциональному программированию на таких языках, как Haskell, Purescript, Elm или Idris;
- ▶ Без ограничения общности разделим типы в языке Haskell (или в любом другом из языков выше) на две части: простые типы и параметризованные;
- ▶ Простые типы (Int, String, Char, etc) это привычные типы данных;
- ▶ Параметризованные типы (List Int, Maybe Char, IO String) используются для вычислений в рамках оговоренного вычислительного контекста;
- Аналогично можно и разделить функции.

Мотивация. Функтор.

Класс типов Functor — это общий интерфейс для "выполнения действия над параметризованным типом, обобщение функции map на списках":

```
class Functor f where fmap :: (a \rightarrow b) \rightarrow f a \rightarrow f b.
```

Motivation. Monad.

Согласно Hackage: "С точки зрения хаскеллиста лучше всего определять монаду как тип данных для произвольных действий". В частности, вычисления в мире ввода-вывода – частный случай монадических вычислений.

```
(Старое) определение монады:
class Functor m => Monad m where
return : a -> m a
(»=) :: m a -> (a -> m b) -> m b.
```

Монадическая композиция (композиция действий):

$$(>=>)$$
 :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c

Конечная цель: аппликативные функторы.

Аппликативные функторы сильнее функторов и слабее монад:

```
class Functor f => Applicative f where
  pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b
```

Используя аппликативный функтор, мы можем вложить значение в вычислительный контекст f с помощью pure и выполнить аппликацию внутри f применением f

Использование:

- ▶ Обобщение fmap для функции произвольной арности: pure f <*> a1 <*> ... <*> an
- Парсинг;
- ▶ Монада в современном Haskell является наследником аппликатива.

Монадические вычисления в теории.

- 1) Eugenio Moggi. "Notions of computation and monads." Inf. Comput., 93(1): 55-92, 1991.
- 2) Frank Pfenning and Rowan Davies. "A judgmental reconstruction of modal logic." Mathematical. Structures in Comp. Sci. 11, 4 (August 2001), 511—540.
- 3) Bierman, G., and De Paiva, V.. On an Intuitionistic Modal Logic. Studia Logica: An International Journal for Symbolic Logic, 65(3), 2000. 383–416. etc...

Аппликативные функторы.

К сожалению, аппликативный функтор является далеко не самой известной концепцией за вне сообщества хаскеллистов. Возможная причина: аппликативные функторы рассмотрены с программистской точки зрения, без теоретического рассмотрения, то есть теоретико-доказательного построения синтаксиса и алгебраической (категорной) модели.

Пример нескольких работ:

- 1) Conor McBride and Ross Paterson. "Applicative Programming with Effects." Journal of Functional Programming 18:1 (2008), pages 1–13.
- 2) Ross Paterson. "Constructing Applicative Functors." Mathematics of Program Construction, Madrid, 2012, Lecture Notes in Computer Science vol. 7342, pp. 300–323, Springer, 2012.

Белое пятно: стоит рассмотреть модальное лямбда-исчисление, которые могло бы аксиоматизировать вычисления с аппликативным функтором и имело хорошую алгебраическую модель.

Интуиционистская эпистемическая логика IEL⁻.

Данную проблему удобно решать, если мы располагает некоторой конструктивной модальной логикой с хорошими аксиомами, по которой мы можем построить интересное нам модальное лямбда-исчисление:

Определение

Интуиционистская эпистемическая логика IEL-:

- 1) Аксиомы ІРС:
- 2) $\mathbf{K}(A \rightarrow B) \rightarrow (\mathbf{K}A \rightarrow \mathbf{K}B)$ (нормальность);
- 3) $A \rightarrow \mathbf{K}A$ (ко-рефлексия);

Правило: МР.

- 1) Artemov S., Protopopescu T. (2014, June). Intuitionistic epistemic logic. ArXiv, math.LO 1406 1582v1
- 2) Krupski V. N., Alexey Y. "Sequent calculus for intuitionistic epistemic logic IEL" // Logical Foundations of Computer Science Vol. 9537 of Lecture Notes in Computer Science. Springer, 2016. P. 187–201.

Натуральный вывод для IEL^- .

Определение

Натуральное исчисление NIEL[—] для интуиционистской эпистемической логики IEL[—] – это расширение натурального исчисления для интуиционистской логики высказываний с добавлением следующих правил вывода для модальности:

$$\frac{\Gamma \vdash A}{\Gamma \vdash \mathsf{K}A} \mathsf{K}_{I}$$

$$\frac{\Gamma \vdash \mathsf{K}A_{1}, \dots, \Gamma \vdash \mathsf{K}A_{n} \qquad A_{1}, \dots, A_{n} \vdash B}{\Gamma \vdash \mathsf{K}B}$$

$\mathsf{Hatvpan}$ ьный вывод для IEL^- .

Лемма

$$\Gamma \vdash_{NIEL^{-}} A \Rightarrow IEL^{-} \vdash \bigwedge \Gamma \rightarrow A.$$

Proof

Индукция по построению вывода. Рассмотрим модальные случаи.

- 1) Если $\Gamma \vdash_{\mathsf{NIEL}} A$, тогда $\mathsf{IEL}^- \vdash \bigwedge \Gamma \to \mathsf{K} A$.
 - (1) $\Lambda \Gamma \rightarrow A$
 - (2) $A \rightarrow \mathbf{K}A$
 - (3) $(\Lambda \Gamma \to A) \to ((A \to \mathbf{K}A) \to (\Lambda \Gamma \to \mathbf{K}A))$ теорема IPC
 - (4) $(A \rightarrow KA) \rightarrow (\Lambda \Gamma \rightarrow KA)$
 - (5) $\Lambda \Gamma \rightarrow \mathbf{K} A$

предположение индукции ко-рефлексия

из (1). (3) и МР

из (2), (4) и МР

$\mathsf{Hatypanbhый}$ вывод для IEL^- .

Proof

2) Если
$$\Gamma \vdash_{\mathsf{NIEL}^-} \mathbf{K} \vec{A}$$
 и $\vec{A} \vdash B$, то $\mathsf{IEL}^- \vdash \bigwedge \Gamma \to \mathbf{K} B$.

(1)
$$\bigwedge \Gamma \to \bigwedge_{i=1}^n \mathsf{K} A_i$$
 предположение индукции

(2)
$$\bigwedge_{i=1}^{n} \mathsf{K} A_{i} \to \mathsf{K} \bigwedge_{i=1}^{n} A_{i}$$
 теорема IEL $^{-}$
(3) $\bigwedge \Gamma \to \mathsf{K} \bigwedge_{i=1}^{n} A_{i}$ по (1), (2) и и

(3)
$$\bigwedge \Gamma o \mathsf{K} \bigwedge_{i=1}^{r} A_i$$
 по (1), (2) и правилу силлогизма

(4)
$$\bigwedge_{i=1}^{n} A_i \to B$$
 предположение индукции

(5) $(\bigwedge_{i=1}^{n} A_i \to B) \to \mathsf{K}(\bigwedge_{i=1}^{n} A_i \to B)$ ко-рефлексия

(5)
$$(\bigwedge_{i=1}^n A_i o B) o \mathsf{K}(\bigwedge_{i=1}^n A_i o B)$$
 ко-рефлексия

6)
$$\mathsf{K}(\bigwedge_{i=1}^n A_i \to B)$$
 из (4), (5) и МР

(6)
$$\mathsf{K}(\bigwedge_{i=1}^{n} A_{i} \to B)$$
 из (4), (5) и МР (7) $\mathsf{K}\bigwedge_{i=1}^{n} A_{i} \to \mathsf{K}B$ по (6) и по нормальности

8)
$$\bigwedge \Gamma o \mathsf{K} B$$
 по (3), (7) и правилу силлогизма

4 D > 4 A > 4 B > 4 B > B 9 9 9

Натуральный вывод для IEL⁻.

Лемма

Если $IEL^ \vdash$ A, то $NIEL^ \vdash$ A.

Proof.

Построение выводов для модальных аксиом в NIEL⁻.

Модальное лямбда-исчисление по IEL-

Определение

Модальное λ -исчисление, основанное на исчислении IEL $^-$:

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash \mathbf{pure} \ M : \mathbf{K}A} \mathbf{K}_I$$

$$\frac{\Gamma \vdash \vec{M} : \mathbf{K}\vec{A} \qquad \vec{x} : \vec{A} \vdash N : B}{\Gamma \vdash \mathbf{let \ pure} \ \vec{x} = \vec{M} \ \mathbf{in} \ N : \mathbf{K}B} \ \mathit{let}_{\mathbf{K}}$$

 $\Gamma \vdash \vec{M} : \mathbf{K}\vec{A}$ – это синтаксический сахар для $\Gamma \vdash M_1 : \mathbf{K}A_1, \ldots, \Gamma \vdash M_n : \mathbf{K}A_n$ и $\vec{x} : \vec{A} \vdash N : B$ – это краткая форма для $x_1 : A_1, \ldots, x_n : A_n \vdash N : B$. **let pure** $\vec{x} = \vec{M}$ **in** N – это мгновенное локальное связывание в терме N. Мы будем использовать такую краткую форму вместо **let pure** $x_1, \ldots, x_n = M_1, \ldots, M_n$ **in** N.

Примеры деревьев вывода

$$\frac{x:A \vdash \mathsf{pure}\, x: \mathsf{K}A}{\vdash (\lambda x. \mathsf{pure}\, x): A \to \mathsf{K}A}$$

$$\frac{f : \mathbf{K}(A \to B) \vdash f : \mathbf{K}(A \to B)}{f : \mathbf{K}(A \to B)} \quad x : \mathbf{K}A \vdash x : \mathbf{K}A \qquad \frac{g : A \to B \vdash g : A \to B \qquad y : A \vdash y : A}{g : A \to B, y : A \vdash gy : B} | \mathsf{let}_{\mathbf{K}}$$

$$\frac{f : \mathbf{K}(A \to B), x : \mathbf{K}A \vdash \mathsf{let} \; \mathsf{pure} \; g, y = f, x \; \mathsf{in} \; gy : \mathbf{K}B}{f : \mathbf{K}(A \to B) \vdash \lambda x. \mathsf{let} \; \mathsf{pure} \; g, y = f, x \; \mathsf{in} \; gy : \mathbf{K}A \to \mathbf{K}B}$$

$$\vdash \lambda f. \lambda x. \mathsf{let} \; \mathsf{pure} \; g, y = f, x \; \mathsf{in} \; gy : \mathbf{K}(A \to B) \to \mathbf{K}A \to \mathbf{K}B$$

 $x:A\vdash x:A$

Подстановка

Определение

```
Подстановка:
```

- 1) x[x := N] = N, x[y := N] = x;
- 2) (MN)[x := N] = M[x := N]N[x := N];
- 3) $(\lambda x.M)[x := N] = \lambda x.M[y := N], y \in FV(M);$
- 4) (M, N)[x := P] = (M[x := P], N[x := P]);
- 5) $(\pi_i M)[x := P] = \pi_i(M[x := P]), i \in \{1, 2\};$
- 6) (pure M)[x := P] = pure (M[x := P]);
- 7) (let pure $\vec{x} = \vec{M}$ in N)[y := P] = let pure $\vec{x} = (\vec{M}[y := P])$ in N.

Редукция

Определение

Правила β -редукции и η -редукции:

- 1) $(\lambda x.M)N \rightarrow_{\beta} M[x := N];$
- 2) $\pi_1\langle M, N \rangle \rightarrow_{\beta} M$;
- 3) $\pi_2\langle M, N \rangle \rightarrow_{\beta} N$;
- 4) let pure $\vec{x}, y, \vec{z} = \vec{M}$, let pure $\vec{w} = \vec{N}$ in Q, \vec{P} in $R \rightarrow_{\beta}$ let pure $\vec{x}, \vec{w}, \vec{z} = \vec{M}, \vec{N}, \vec{P}$ in R[y := Q]
- 5) let pure $\vec{x} = \mathsf{pure}\ \vec{M}$ in $N \to_{\beta} \mathsf{pure}\ N[\vec{x} := \vec{M}]$
- 6) let pure $\underline{} = \underline{}$ in $M \to_{\beta}$ pure M, где $\underline{}$ это пустая последовательность термов.
- 7) $\lambda x.fx \rightarrow_{\eta} f$;
- 8) $\langle \pi_1 P, \pi_2 P \rangle \rightarrow_{\eta} P$;
- 9) let pure x = M in $x \rightarrow_{\eta} M$;

Метатеоретические свойства системы

Теорема

Редукция субъекта Если $\Gamma \vdash M : A$ и $M \to_{\beta n} N$, тогда $\Gamma \vdash N : A$

Теорема

Отношение $\twoheadrightarrow_{\beta}$ сильно нормализуемо;

Теорема

Отношение $\rightarrow \beta$ конфлюентно.

Теорема

Нормальная форма λ_{K} со стратегией вычисления с вызовом по имени обладает свойством подформульности: если M в нормальной форме, то всего его подтермы также в нормальной форме.