Posture Optimization of 3-DOF Humanoid Robot Leg

Searching for the optimal angle to decrease the torque in each joint of the humanoid robot leg

Humanoid Team

Simon Kang, Juntae Kim, Hyunteak Lim, Jiyun Lee, Jungu Heo, Seokwon Hong

Approach and Methodology

Introduction

Stable Robot Position

 \rightarrow

Approach and Methodology

Mathematical Modeling

Forward Kinematics
Jacobian
Dynamic Equation

3D Modeling

SOLIDWORKS -> URDF

MATLAB(Simulink)

- PD controller
- Optimization

Conclusion

 (\Rightarrow)

Optimal Θ and τ

Introduction: Soc Robot War / Stable position

<Humanoid Robot>

Main Goal: Find the optimal knee angle to decrease torque in the humanoid robot leg.

Positioning the robot in this stance during standby mode minimizes the torque generated by the motors. This reduction in torque leads to less energy consumption, making it the most efficient posture for humanoid robots in standby

Main Methodology: Forward Kinematics, Jacobian, Dynamic Analysis

#	θ	d	а	α
0-1	θ_1	0	76(a ₁)	0
1-2	θ_2	0	76(a ₂)	0
2-H	θ_3	0	99(a ₃)	0
U-0	0	0	35(a ₀)	0

Forward Kinematics, Jacobian, Dynamic Analysis

Dynamics equation(자중에 의한 torque(G(q))만 계산)

Link-1

$$a_{11} = 58.41(mm)$$

$$\theta = 6.146^{\circ}$$

$$_{c_{1}}^{0}\mathbf{P}=\begin{bmatrix}a_{11}cos(\theta_{1}-\theta)\\a_{11}sin(\theta_{1}-\theta)\\0\end{bmatrix}$$

$${}_{C_{2}}^{0}P = \begin{bmatrix} a_{1}C_{1} + \frac{a_{2}C_{2}}{2} \\ a_{1}S_{1} + \frac{a_{2}S_{2}}{2} \\ 0 \end{bmatrix}$$

$${}_{C_3}^0 \mathbf{P} = \begin{bmatrix} a_3 C_3 + a_2 C_2 + a_1 C_1 \\ a_3 S_3 + a_2 S_2 + a_1 S_1 \\ 0 \end{bmatrix}$$

$${}^{0}_{v_{1}}J = \begin{bmatrix} -a_{11}sin(\theta_{1} - \theta) & 0 & 0 \\ a_{11}cos(\theta_{1} - \theta) & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad {}^{0}_{v_{2}}J = \begin{bmatrix} -a_{1}S_{1} & -\frac{a_{2}S_{2}}{2} & 0 \\ a_{1}C_{1} & \frac{a_{2}C_{2}}{2} & 0 \end{bmatrix}$$

$$\begin{bmatrix}
 _{v_3}^0 \mathbf{J} = \begin{bmatrix}
 -a_1 S_1 & -a_2 S_2 & -a_3 S_3 \\
 a_1 C_1 & a_2 C_2 & a_3 C_3 \\
 0 & 0 & 0
\end{bmatrix}$$

Where

$$f(\theta_1) = -a_{11}\sin(\theta_1 - \theta)m_1g - a_1S_1(m_2g + m_3g)$$

$$f(\theta_2) = m_2 g(-\frac{a_2 S_2}{2} + a_2 S_2)$$

$$f(\theta_3) = -a_3 S_3$$

$$(m_1 = 89g, m_2 = 30g, m_3 = 618g)$$

$$\int_{v_2}^{0} \mathbf{J} = \begin{bmatrix}
 -a_1 S_1 & -\frac{a_2 S_2}{2} & 0 \\
 a_1 C_1 & \frac{a_2 C_2}{2} & 0 \\
 0 & 0 & 0
 \end{bmatrix}$$

Forward Kinematics, Jacobian, Dynamic Analysis

Equation oof Motion

$$T = M(q)[\ddot{q}] + C(q)[\dot{q}^2] + B(q)[\dot{q}\dot{q}] + G(q)$$

$$M(q) = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$$

$$m_{11} = a_{c1}^2 m_1 + a_1^2 m_2 + a_1^2 m_3 + I_{c1} + I_{c2} + I_{c3}$$

$$m_{12} = m_{21} = \left(\frac{m_2 a_1 a_2}{2} + m_3 a_1 a_2\right) \cos(\theta_1 - \theta_2) + I_{c2} + I_{c3}$$

$$m_{13} = m_{31} = m_3 a_1 a_3 \cos(\theta_1 - \theta_3) + I_{c3}$$

$$m_{22} = \frac{1}{4} m_2 a_2^2 + m_3 a_2^2 + I_{c2} + I_{c3}$$

$$m_{23} = m_{32} = m_3 a_2 a_3 \cos(\theta_2 - \theta_3) + I_{c3}$$

$$m_{33} = m_3 a_3^2 + I_{c3}$$

$$C(q) = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix}$$

$$c_{11} = c_{22} = c_{33} = 0$$

$$c_{12} = \left(\frac{m_2 a_1 a_2}{2} + m_3 a_1 a_2\right) \sin (\theta_1 - \theta_2)$$

$$c_{13} = m_3 a_1 a_3 \sin (\theta_1 - \theta_3)$$

$$c_{21} = -\left(\frac{m_2 a_1 a_2}{2} + m_3 a_1 a_2\right) \sin (\theta_1 - \theta_2)$$

$$c_{23} = m_3 a_2 a_3 \sin (\theta_2 - \theta_3)$$

$$c_{31} = -m_3 a_1 a_3 \sin (\theta_1 - \theta_3)$$

$$c_{32} = -m_3 a_2 a_3 \sin (\theta_2 - \theta_3)$$

$$\mathbf{B}(q) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ \mathbf{G}(q) = \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix}$$

$$g_1 = \frac{a_{c1}}{2} m_1 g \sin(\theta_1 - \alpha) + a_1 m_3 g \sin(\theta_1) + a_1 m_4 g \sin(\theta_1)$$

$$g_2 = \frac{a_2}{2} m_3 g \sin(\theta_2) + a_2 m_4 g \sin(\theta_2)$$

$$g_3 = a_3 m_4 g \sin(\theta_3)$$

3D Modeling for URDF

Leg

- 3 –LINK
- Mass = 425g

Motor

- Mass = 59g

Leg Link

- Mass = 30g

3D Modeling for URDF

Solidworks Rendering

<Link 3>

<Base>

<Link 2>

<Link 1>

Joint 3

Joint 2

Joint 1

Simulation : MATLAB Simulink

<Block Diagram for the Robot System on Simulink>

Simulation: MATLAB Robot System

<Block Diagram for the Robot(Plant) using Simulink>

Simulation : MATLAB Objective Function

<Objective Function inside the Block Diagram>

Simulation: MATLAB Result

<Initial Degrees
of the robot legs>

<Degrees found after
 optimization>

<Centroid(mm)>

Coordinate	Preset	Optimized
X	-26.3128	-5.8665
у	100.4182	107.1931

<Torque(N-m)>

Preset	Optimized
0.3730	0.3673

- Total torque decreased by 1.5%.
- Knee torque decreased by 11.34%

Simulation: MATLAB Result

<MATLAB Simulation>

Conclusion

<Optimized Posture>

Comparison between preset and optimized posture

- 1. Total torque decreased by 1.5%
- 2. Knee torque decreased by 11.34%
- 3. Positioning the robot in this stance during standby mode minimizes the torque generated by the motors. This reduction in torque leads to less energy consumption, making it the most efficient posture for humanoid robots in standby