

SQuIDS: A Tool to Solve Time Evolution in finite dimensional (open) Quantum Systems

An Application to Neutrino Oscillations

arxiv:1412.3832

Dominik Hellmann

TU Dortmund WG Päs

May 3, 2023

2 Installation

3 Exercises

6 / 15

Clone the Repo!

Git Repository inlcuding all needed files:

Instructions

```
cd to the location where to place the repo
git clone git@github:path/to/repo.git
cd repo
```

From SM to BSM - 2023

Prerequisites

What do we need for this tutorial?

- ► A unix-like (sub-)system
 - ► Linux
 - ► Mac (+ Xcode developer tools!)
 - On Windows: WSL
- ► A C++ compiler
- ► Make, wget, Git

Use scripts install_gsl.sh and install_SQuIDS.sh from the repo!

Const class exercise

- 1. Declare a default constructed const class object
- 2. Answer the following questions:
 - 2.1 How many eV^{-1} correspond to 300 km
 - 2.2 How many radians correspond to 25°
 - 2.3 If you are 24 years old, how many eV^{-1} are you old?
- 3. Set the mixing parameters for three neutrino generations to:
 - $\theta_{12} = 33.48^{\circ}$
 - $\theta_{13} = 8.55^{\circ}$
 - $\theta_{23} = 42.3^{\circ}$
- 4. Set the energy differences to:
 - $\Delta m_{21}^2 = 7.5 \cdot 10^{-5} \, \text{eV}^2$
 - $\Delta m_{31}^{21} = 2.45 \cdot 10^{-3} \, \text{eV}^2$

SU vector exercise

- 1. Declare an empty SU vector corresponding to a 3D Hilbert space
- 2. Initialize an array of projectors for the three mass eigenstates (B_0)
- 3. Rotate them to the flavor basis (B_1)
- 4. Initialize a SU vector corresponding to the matrix (B_0)

Exercises

SQuIDS application: Neutrino oscillations in vacuum

Exercises

Exercises

BACK UP