National Park Service Channel Islands National Park

Technical Report CHIS-97-05

KELP FOREST ECOLOGICAL MONITORING 1982-1989

Daniel V. Richards Constance Gramlich Gary E. Davis Mike McNulty

Channel Islands National Park 1901 Spinnaker Drive Ventura, California 93001 1997

Abstract

This report presents the results of the first eight years of the Kelp Forest Ecological Monitoring program at Channel Islands National Park. This program was designed to monitor the population dynamics of indicator species within the kelp forest habitat of the southern California Channel Islands, a kind of health check-up for the for the ecosystem. Permanent sites were established at 16 locations around the five park islands providing a range of exposures and representing different biogeographic zones. From a list of nearly 1,000 species, 68 taxa were selected as indicators. Various sampling schemes were adapted to fit species size, mobility, and distribution based on samples taken during the design phase.

During the first eight years of the project, 132 divers participated, conducting thousands of dives. Some of the divers were staff marine biologists; many were volunteers from other programs in the National Park Service, other government agencies, universities, and the diving industry.

In 1983, the Channel Islands, and indeed much of the world was affected by climatic conditions associated with the largest El Niño event ever recorded. Storm waves and warm water combined to change the face of the kelp communities, some of the effects are still evident more than a decade later. Summaries from the various sampling techniques are presented in the appendices. Highlights from this period are discussed in the text.

Table of Contents

ABSTRACT	I
EXECUTIVE SUMMARY	1
INTRODUCTION	3
METHODS	4
RESULTS AND DISCUSSION	9
QUADRAT DATA:	
BAND TRANSECT DATA:	
POINT CONTACT DATA:FISH TRANSECTS:	
SIZE FREQUENCY DATA:	
SPECIES LIST:	
PHOTOGRAMMETRIC SAMPLING:	
OCEANOGRAPHIC DATA:	36
CONCLUSION	36
ACKNOWLEDGEMENTS	
LITERATURE CITED/REFERENCES	42
APPENDIX 1. QUADRAT DATA	1-1
APPENDIX 2. BAND TRANSECT DATA	2-1
APPENDIX 3. RANDOM POINT CONTACT DATA	3-1
APPENDIX 4. FISH TRANSECT DATA	4-1
APPENDIX 5. SIZE FREQUENCY DATA	5-1
APPENDIX 6. SPECIES LIST	6-1
ADDENDIY 7 OCEANOCDADHIC DATA	7.1

List of Figures

Figure 1. Kelp Forest Monitoring Locations (•) on Channel Islands National Park. Insert shows location of
the five park islands in the southern California Bight
Figure 2. Purple sea urchin (Strongylocentrotus purpuratus) densities at Arch Point and Southeast Sealion
Rookery, Santa Barbara Island.
Figure 3. Seastars (low density) at Arch Point and SE Sealion Rookery, Santa Barbara Island
Figure 4. Seastars (high density) at Wyckoff Ledge and Hare Rock, San Miguel Island
Figure 5. Seastars at Johnson's Lee North (shallow site) and Johnson's Lee South (deep site), Santa Rosa
Island
Figure 6. Wavy top snail (<i>Astraea undosa</i>) and giant kelp (<i>Macrocystis pyrifera</i>) at Pelican Bay and Scorpion Anchorage, Santa Cruz Island
Figure 7. Wavy top snail (Astraea undosa) and giant kelp (Macrocystis pyrifera) at Cathedral Cove,
Anacapa and Arch Point, Santa Barbara Island.
Figure 8a-8b. Red (Strongylocentrotus franciscanus), purple (S. purpuratus), and white (Lytechinus
anamesus) urchins at Yellowbanks, Santa Cruz and Admiral's Reef, Anacapa Island
Figure 9 Sun stars (<i>Pycnopodia helianthoides</i>) and sea urchins (S. <i>franciscanus</i> , S. <i>purpuratus</i>) at
Johnson's Lee North, Santa Rosa Island.
Figure 10. Example of red abalone (<i>Haliotis rufescens</i>) declines from Johnson's Lee North and South,
Santa Rosa and Gull Island, Santa Cruz Island and pink abalone (<i>H. corrugata</i>) from Scorpion
Anchorage, Santa Cruz Island
Figure 11a. Substrate composition and percentage of bare substrate and (11b) density of sea urchins at
Pelican Bay, Santa Cruz Island
Figure 12a. Substrate composition and percentage of bare substrate and (12b) density of sea urchins at
Scorpion Anchorage, Santa Cruz Island
Figure 13a-13b. Dominant brown algae at high White sea urchin (<i>Lytechinus anamesus</i>) density sites
Yellow banks, Santa Cruz Island and Admiral's Reef, Anacapa Island.
Figure 14. Percent cover of algae at Pelican Bay, Santa Cruz Island
Figure 15 a,b. Inverse relationship of red algae and encrusting coralline algae cover at Wyckoff Ledge,
San Miguel Island and Rodes Reef, Santa Rosa Island
Figure 16 Relationship of bare substrate and strawberry anemone (Corynactus califonica) at Gull Island,
Santa Cruz and Arch Point Santa Barbara Island. 21
List of Tables
Table 1. Regularly monitored species by taxonomic grouping, common name, scientific name, and
associated monitoring technique
• 1
Table 2. Station information
Table 3. Summary of sampling techniques used to monitor population dynamics of selected kelp forest
organisms
Table 4. Locations and years where population structures of <i>Strongylocentrotus franciscanus</i> reflected the
bimodality described by Tegner and Dayton (1981); " juveniles (up to 40mm) are protected by the
spine canopies of adults, urchins of intermediate size (50-80 mm) are very vulnerable to predators and
large adults (>90 mm) attain a partial refuge in size"
Table 5. Locations and years where recruitment size (≤ 20mm test diameter) <i>Strongylocentrotus</i>
purpuratus comprised more than 25% of the total S. purpuratus population
Table 6. Photogrammetric Quality Ratings for all stations between 1983 and 1989
Table 7. Kelp Forest Monitoring Project participating divers, 1982-1989

Executive Summary

At 16 sites around the five park islands, population dynamics of 68 taxa were monitored to provide insight into the health of the kelp forest ecosystem. Following specific protocol (Davis, 1988), nine sampling techniques were used to assess populations along a 100 m fixed transect. Quadrats, band transects, random-point-contacts, and visual transects were used to collect information on abundance and cover of algae, invertebrates and fish. Photogrammetric plots and video were used to document the sites, while size frequency measurements provided information on population structure. A general species list provided presence/ absence data and hydrothermographs provided temperature and tidal stage information at six sites. Most of the work was performed during five-day cruises between June and October each year.

During 1982-1986, monitoring was done as part of the design study. During this phase, some techniques were modified and species selections were adjusted. Most of the sites were established in 1981, but three sites were added later; Rodes Reef in 1983 and Cat Canyon and Yellow Banks in 1986. Sites at Sutil Island, Scorpion Rock, Gull Island North, and Nifty Rock were established in 1981 but abandoned during the design phase, mostly because of similarity to nearby sites. The monitoring protocol was published (Davis, 1988) and implemented by the National Park service in 1987.

Following El Niño events of large storm waves during the winter of 1982-1983 and exceptionally warm temperatures during the summer of 1983, giant kelp, *Macrocystis pyrifera*, declined at most sites. Sea urchins underwent a population explosion during 1984-1985. As a result most sites had very little kelp remaining in 1986. Surges of recruitment of juvenile kelp occurred in 1983, 1986, and 1988. Only the later event was successful at reestablishing mature kelp forests.

Purple sea urchin, *Strongylocentrotus purpuratus*, populations peaked at densities as high as 154 m⁻² at Arch Point on Santa Barbara Island. Where these high densities occurred, even the coralline algae was scraped from the rock. Wasting disease was observed in sea star populations during the warm water events and populations plummeted to lows in 1984 and 1985. As predators on sea urchins, the reduction in sea star numbers may have precipitated the sea urchin population explosion. Effects of the sea star wasting disease were less severe at the deeper and northwestern sites. Large storm swells in early 1988 may have reduced sea urchin numbers as we never observed any apparent disease at that time.

White sea urchins, *Lytechinus anamesus*, were negligible at all sites before 1985. The rapid growth of their populations required some adjustments to monitoring techniques. All sea urchin populations declined noticeably when sea star populations began to increase.

Sea urchin barrens are part of the natural cycle forming mosaics in the kelp forest community. Some species thrive in the absence of others. Cup coral populations did seem to benefit from the bare space created in the sea urchin barrens, increasing at many of the barrens sites. Wavy turban snails, *Astraea undosa,* initially thrived in many of the sea urchin barren sites but eventually declined where kelp did not return. Small sea cucumbers (mostly *Pachythyone rubra*) became spatial dominants at several sites around Santa Rosa and Santa Cruz Islands in the urchin barrens.

Other species seemed to be episodic in their recruitment. Black-eye goby densities blossomed in 1988 especially at Pelican Bay where densities reached 17 m⁻². Stalked tunicates, *Styela montereyensis*, had a massive recruitment at Rodes Reef in 1984 and were virtually gone two years later. The brown alga, *Desmarestia ligulata*, uncommon most years, dominated Wyckoff ledge in 1983 and 1988, and Rodes reef in 1988. Smaller blooms occurred at both these sites in 1986.

Red abalone *Haliotis rufescens*, at Wyckoff Ledge and pink abalone, *H. corrugata*, at Anacapa Landing Cove remained fairly stable during this period. The later site is in a State Ecological Reserve and harvest of marine life is prohibited. Populations at other sites generally declined, and red abalone numbers crashed at Johnson's Lee North, formerly one of the largest populations.

The Anacapa Landing Cove site also showed stability with other aspects of the community. Giant kelp, *Macrocystis pyrifera*, and sea urchin, *Strongylocentrotus* spp., populations remained at stable and low levels throughout this period. Sea star populations in the cove are very low, however lobster, *Panulirus interuptus*, and sheephead *Semicossyphus pulcher*, (both predators on sea urchins) have healthy populations.

Fish abundance most easily exemplifies the mix of the biogeographic provinces at the islands. Cold water species such rockfish and striped surfperch were seldom found at the southern islands while garibaldi and opaleye were not observed at the northern sites.

During the years reported here, 132 divers from different agencies and affiliations participated in the kelp forest monitoring program, making over 6,000 dives. This collaborative approach has been beneficial to the program, developing a cadre of professional scientist/divers who are familiar with the program's objectives and approach.

Introduction

The waters of Channel Islands National Park and Channel Islands National Marine Sanctuary harbor one-third of southern California's kelp forests (Davies, 1968). Over 1,000 species of macro flora and fauna can be found here (Woodhouse 1981, J. M. Engle pers. comm.). The giant kelp, *Macrocystis pyrifera* is the primary constituent of southern California kelp forests. Many other species, while not specifically part of the kelp forest community, are still dependent upon the existence and productivity of the kelp forest. The kelp forest serves as food, shelter, substrate and nursery to migratory as well as resident species. Kelp forest detrital flux provides an important source of nutrients to nearby rocky shore, sandy beach and estuary communities. The existence of kelp forests is essential to our commercial and sport fisheries as well as to recreation and the associated tourist industry.

Channel Islands National Park consists of five of the eight California Channel Islands (San Miguel, Santa Rosa, Santa Cruz, Anacapa, and Santa Barbara) and the submerged lands and waters within one nautical mile of each of the islands. The Channel Islands National Marine Sanctuary overlaps the subtidal portions of the park, and its boundary extends six miles seaward from the park islands. Channel Islands National Park also bears the designation of International Biosphere Reserve, State Ecological Reserves and state designated Areas of Special Biological Significance. The State of California maintains jurisdiction over the marine resources and manages them through the Department of Fish and Game.

The Federal Law which established Channel Islands National Park (16-USC-410) directed development of inventories and monitoring of the natural resources in the park. Kelp forest monitoring is part of the long-term ecological monitoring at the park designed to measure the health of the ecosystems. By determining the limits of normal variation and diagnosing abnormal conditions we hope to prescribe remedial action through management recommendations.

Monitoring sites were established in 1981. Species and techniques were refined during the design phase. Following a five year design study begun in 1982, the kelp forest monitoring was implemented in 1987 by the park resource management division, using the published protocol (Davis, 1988). Monitoring design rationale is discussed in Davis and Halvorson (1988). Preliminary results and specific design considerations can be found in reports written by Davis

(1984, 1985, 1986). Reports for individual years from 1990 through 1994 have been printed (Richards et al. 1993a, 1993b, Richards and Kushner 1994, Kushner et al. 1995a, 1995b).

This report uses a different format than those reports for the data presentation and describes the monitoring efforts and results for 1982-1989. Data summaries are presented in appendices for each of the monitoring techniques. Data for sites no longer monitored, are included as additional baseline information for the kelp forest environment. Both raw and summarized data are available in digital form, from Channel Islands National Park upon request to the park superintendent. Specifics of the methodology are reported here. We also discuss some of the more important points we have observed over the years. The purpose of this report is document the activities and findings of this program for the years 1982-1989.

Methods

Population dynamics of 68 taxa (Table 1) were measured at 16 fixed sites around the five park islands (Table 2, Fig. 1). Site and species selection criteria are provided in the Kelp Forest Monitoring Handbook (Davis, 1988). Sites were monitored between June and October from 1982 through 1989. Some data are presented for an additional five sites that were abandoned after a number of years during the design phase of the program.

Each site is marked by a 100 m-long transect permanently affixed to the seabed. The nine sampling techniques employed to gather population dynamics information are summarized in Table 3. At each station, randomly placed 1 m x 2 m quadrats and 3 m x 20 m band transects were used to determine densities and distribution of discrete benthic organisms, 1000 randomly selected points were used to determine percent cover of encrusting invertebrates, algae, and substrate composition, 2 m x 3 m x 100 m fixed transects were used to determine fish abundance and recorded on video tape to document site appearance, abundance and distributions of benthic organisms was documented in 20 m² photogrammetric plots, and size frequency measurements were collected to determine population structure. A general species list was made for each station, noting presence/absence and relative abundance for all recognizable species. Hydrothermographs measured benthic sea temperature and depth (tidal stage) hourly at six locations.

Specific sampling methods are provided in the monitoring handbook (Davis, 1988). Variations in protocol are discussed under each of the technique headings in the results. Species nomenclature used here has been kept consistent with Morris et al. (1980) and Abbott and Hollenberg (1976) to avoid confusion.

Some general changes in sampling methods should be noted. Starting in 1985, guadrat data were collected as number per 2 m² and entered as such. Because of extremely high densities, white urchins, Lytechinus anemesus, were sampled at some sites (SCIPB, SCIYB, ANIAR, and SBISESL) using quadrats rather than band transects, which are the usual technique. Sampling of three small benthic fish species (black eye goby, Coryphopterous nicholsii, blue-banded goby, Lythrypnus dalli, and island kelp fish, Alloclinus holderi) was included in the quadrat sampling after 1985. Random point contact (RPC) data collection has undergone the most changes, and variations in sample sizes and taxa groupings will be discussed below. An important change in the random point contact methods was the shift, in 1984, from SCUBA to surface-supplied-air with diver-to-surface communication, increasing sampling efficiency and accuracy. A variety of fish sampling techniques were employed during the design phase (Davis and Anderson 1989) including visual and video transects, visual and video circular plots, and baited-fish counts. Only the results of visual transects are reported here. Some changes were made in regards to species/taxa monitored during the design phase, particularly those used in the Random Point Contact method, and are discussed below in appropriate sections. Table 1 lists the years each taxa was monitored. Taxa broader than species were chosen based on what we felt gave the most consistent results with least loss of ecological data.

Table 1. Regularly monitored species by taxonomic grouping, common name, scientific name, and associated monitoring technique.

ALGAE Green Algae Red Algae Rriculate Coralline Algae Crustose Coralline Algae Crustose Coralline Algae Gelidium spp. Gelidium spp. Gigartina spp. Miscellaneous Brown Algae Desmarestia spp. Laminaria farlowii Cystoseira spp. Acid weed R 82-89 Appx. 3 Appx. 3 Miscellaneous Brown Algae Desmarestia spp. Laminaria farlowii Cystoseira spp. Bladder chain kelp R 82-89 Appx. 3 Appx. 3 Appx. 3 Acid weed R 83-89 Appx. 3 Appx. 3 Appx. 3 Acid weed R 82-89 Appx. 3 Appx. 3 Appx. 3 Acid weed R 82-89 Appx. 3 Appx. 3 Appx. 3 Appx. 3 Acid weed R 83-89 Appx. 1,3 Bladder chain kelp R 82-89 Appx. 3 Appx. 3 Appx. 3 Appx. 3 Appx. 3 Appx. 1 Bisenia (combined) Macrocystis pyrifera adult Macrocystis pyrifera adult Macrocystis pyrifera alul Eisenia arborea Arboroa Northern palm kelp Arboroa R 85-89 Appx. 1 Appx. 1 Northern palm kelp Q 82-89 Appx. 1 Appx. 1 Appx. 3 Appx. 3 Appx. 1 Appx. 3 Appx. 3 Appx. 3 Appx. 1 Appx. 3 Appx. 3 Appx. 3 Appx. 3 Appx. 1 Appx. 3 Appx. 3 Appx. 3 Appx. 1 Appx. 3 Appx. 3 Appx. 1 Appx. 3 Appx. 3 Appx. 3 Appx. 3 Appx. 1 Appx. 3 Appx. 3 Appx. 1 Appx. 3 Appx. 1 Appx. 3 Appx. 3 Appx. 1 Appx	TAXA	COMMON NAME	SAMPLING TECHNIQUE	YEARS MONITORED	DATA APPENDICES
Green Algae R 85-89 Appx. 3 Red Algae R 85-89 Appx. 3 Articulate Coralline Algae R 82-89 Appx. 3 Crustose Coralline Algae R 82-89 Appx. 3 Gelidium spp. Agar weed R 82-89 Appx. 3 Miscellaneous Brown Algae R 82-89 Appx. 3 Desmarestia spp. Acid weed R 82-89 Appx. 3 Laminaria farlowii Oar weed R, Q 82-89 Appx. 3 Cystoseira spp. Bladder chain kelp R 82-89 Appx. 1,3 Cystoseira spp. Bladder chain kelp R 82-89 Appx. 3 Macrocystis pyrifera adult Q, S 83-89 Appx. 3 Macrocystis pyrifera alu Giant kelp Q 82-89 Appx. 1 Eisenia arborea Southern palm kelp Q 82-89 Appx. 1 Pterygophora californica Northern palm kelp Q 82-89 Appx. 1 Leucetta losangelensis Sponge	ALGAE				
Red Algae R 85-89 Appx. 3 Articulate Coralline Algae R 82-89 Appx. 3 Crustose Coralline Algae R 82-89 Appx. 3 Gelidium spp. Agar weed R 82-89 Appx. 3 Gigartina spp. R 82-89 Appx. 3 Miscellaneous Brown Algae R 82-89 Appx. 3 Desmarestia spp. Acid weed R 82-89 Appx. 3 Laminaria farlowii Oar weed R 82-89 Appx. 3 Cystoseira spp. Bladder chain kelp R 82-89 Appx. 1,3 Cystoseira spp. Bladder chain kelp R 82-89 Appx. 3 Sargassum spp. R 85-89 Appx. 3 Macrocystis Prifera juvenile R 85-89 Appx. 3 Macrocystis pyrifera all Giant kelp Q 82-89 Appx. 1,6 Macrocystis pyrifera juvenile R R 85-89 Appx. 1 Macrocystis pyrifera all Eisenia arborea Southern palm kelp<			R	85-89	Appx. 3
Articulate Coralline Algae R 82-89 Appx. 3 Crustose Coralline Algae R 82-89 Appx. 3 Gelidium spp. Agar weed R 82-89 Appx. 3 Gigartina spp. R 82-89 Appx. 3 Miscellaneous Brown Algae R 82-89 Appx. 3 Desmarestia spp. Acid weed R 82-89 Appx. 3 Laminaria farlowii Oar weed R 82-89 Appx. 3 Cystoseira spp. Bladder chain kelp R 82-89 Appx. 1 Sargassum spp. R 82-89 Appx. 3 Macrocystis, Piterygophora, R 85-89 Appx. 3 Eisenia (combined) R 85-89 Appx. 3 Macrocystis pyrifera adult Q 83-89 Appx. 1 Macrocystis pyrifera adult Q 82-89 Appx. 1 Macrocystis pyrifera adult Q 82-89 Appx. 1 Macrocystis pyrifera adult Q 82-89 Appx. 1 Macrocystis pyrifera il weelle <td></td> <td></td> <td></td> <td></td> <td></td>					
Crustose Coralline Algae Agar weed R 82-89 Appx. 3 Gelidium spp. Agar weed R 82-89 Appx. 3 Miscellaneous Brown Algae R 82-89 Appx. 3 Desmarestia spp. Acid weed R 82-89 Appx. 3 Laminaria farlowii Oar weed R, Q 82-89 Appx. 1, 3 Cystoseira spp. Bladder chain kelp R 82-89 Appx. 1, 3 Cystoseira spp. Bladder chain kelp R 82-89 Appx. 3 Macrocystis pyrifera alul R 85-89 Appx. 3 Macrocystis pyrifera alul Q 83-89 Appx. 1, 6 Macrocystis pyrifera alul Q 83-89 Appx. 1 Macrocystis pyrifera alul Giant kelp Q 82-89 Appx. 1 Pteryogophora califormica Southern palm kelp Q 82-89 Appx. 1 Miscellaneous plants Southern palm kelp Q 82-89 Appx. 1 Inverse particula plants Sponge R 85-89 A	•	ae			
Gelidium spp. Agar weed R 82-89 Appx. 3 Gigartina spp. R 82-89 Appx. 3 Miscellaneous Brown Algae R 82-89 Appx. 3 Desmarestia spp. Acid weed R 82-89 Appx. 3 Laminaria farlowii Oar weed R, Q 82-89 Appx. 3 Cystoseira spp. Bladder chain kelp R 82-89 Appx. 3 Sargassum spp. Macrocystis Pyrifera adult R 82-89 Appx. 3 Macrocystis pyrifera adult Q,S 83-89 Appx. 1,6 Macrocystis pyrifera adult Q,S 83-89 Appx. 1,6 Macrocystis pyrifera all Giant kelp Q 82-89 Appx. 1 Eisenia arborea Southern palm kelp Q 82-89 Appx. 1 Pterygophora californica Northern palm kelp Q 82-89 Appx. 1 Lucetta losangelensis Sponge R 85-89 Appx. 3 Leucetta losangelensis Sponge R 82-84 Appx. 3 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
R 82-89 Appx. 3					
Miscellaneous Brown Algae R 82-89 Appx. 3 Desmarestia spp. Acid weed R 83-89 Appx. 1,3 Cystoseira spp. Bladder chain kelp R 82-89 Appx. 3 Sargassum spp. Macrocystis, Pterygophora, Eisenia (combined) R 85-89 Appx. 3 Macrocystis pyrifera adult Macrocystis pyrifera adult Macrocystis pyrifera all Q 83-89 Appx. 1,6 Macrocystis pyrifera all Eisenia arborea Giant kelp Q 82-89 Appx. 1 Miscellaneous plants Giant kelp Q 82-89 Appx. 1 Northern palm kelp Q 82-89 Appx. 1 Miscellaneous plants R 85-89 Appx. 1 INVERTEBRATES Sponge R 85-89 Appx. 3 Leucetta losangelensis Sponge R 85-89 Appx. 3 Leucetta losangelensis Sponge R 85-89 Appx. 3 Leucetta losangelensis Sponge R 85-89 Appx. 1,5 Oriaperocia californica So. staghorn bryozoan		1 .g 11 2 2 2			
Desmarestía spp. Acid weed R 83-89 Appx. 3 Laminaria farlowii Oar weed R,Q 82-89 Appx. 1,3 Cystoseira spp. Bladder chain kelp R 82-89 Appx. 3 Sargassum spp. R 82-84 Appx. 3 Macrocystis, Pterygophora, Eisenia (combined) R 85-89 Appx. 3 Macrocystis pyrifera adult Q,S 83-89 Appx. 1,6 Macrocystis pyrifera all Giant kelp Q 82-89 Appx. 1 Eisenia arborea Southern palm kelp Q 82-89 Appx. 1 Miscellaneous plants R 85-89 Appx. 1 INVERTEBRATES Sponge R 85-89 Appx. 3 INVERTEBRATES Sponge R 82-84 Appx. 3 Interprocecia californica Orange puffball sponge B,S 83-89 Appx. 1,5 Diaperoecia californica California hydrocoral R 82-89 Appx. 1,5 Diaperoecia californica California hydrocoral B,S 83-89 <td></td> <td>Maae</td> <td></td> <td></td> <td></td>		Maae			
Laminaria fariowii Oar weed R, Q 82-89 Appx. 1,3 Cystoseira spp. Bladder chain kelp R 82-84 Appx. 3 Sargassum spp. R 82-84 Appx. 3 Macrocystis, Pterygophora, Eisenia (combined) R 85-89 Appx. 1,6 Macrocystis pyrifera alult Q,S 83-89 Appx. 1,6 Macrocystis pyrifera juvenile Q 82-89 Appx. 1,6 Macrocystis pyrifera all Giant kelp Q 82-89 Appx. 1 Eisenia arborea Southern palm kelp Q 82-89 Appx. 1 Pterygophora californica Northern palm kelp Q 82-89 Appx. 1 Miscellaneous plants R 85-89 Appx. 1 Appx. 3 INVERTEBRATES Sponge R 85-89 Appx. 3 INVERTEBRATES Sponge R 82-84 Appx. 3 Sponges R R 82-89 Appx. 1,5 Diaperoecia californica So. staghorn bryozoan R 82-89 Appx. 1,5		-			
Cystoseira spp. Sargassum spp. Macrocystis, Pterygophora, Eisenia (combined) Macrocystis pyrifera adult Macrocystis pyrifera juvenile Macrocystis pyrifera il Macrocystis pyrifera all Eisenia arborea Pterygophora californica Miscellaneous plants INVERTEBRATES Sponges Leucetta losangelensis Tethya aurantia Orange puffball sponge Diaperoecia californica Californica California hydrocoral Bose anemone Bose an					
Sargassum spp. Macrocystis, Pterygophora, Eisenia (combined) Macrocystis pyrifera adult Macrocystis pyrifera adult Macrocystis pyrifera all Eisenia arborea Pterygophora californica Miscellaneous plants INVERTEBRATES Sponges Sponges Leucetta losangelensis Sponges Leucetta losangelensis Tethya aurantia Orange puffball sponge Diaperoecia californica Orange puffball sponge Resease Appx. 1,5 Diaperoecia californica California hydrocoral Red gorgonian Red gorgonian Brown gorgonian Brown gorgonian Balanophyllia elegans Corpractis californica Sand-castle worm Phragmatopoma californica Cypraea spadicea Chest hydrods Chest hydrods Chest hydroids Corpraed spinosus Cypraea spadicea Chest hydrods Chest hydrods Chest hydrods Corpraed spinosus Cypraea spadicea Chest hydrod spinosus Cypraea spadicea Chest hydrod spinosus Cypraeo spadicea Ch					
Macrocystis, Pterygophora, Eisenia (combined) R 85-89 Appx. 3 Macrocystis pyrifera adult Macrocystis pyrifera juvenile Macrocystis pyrifera all Eisenia arborea Q 83-89 Appx. 1 Macrocystis pyrifera all Eisenia arborea Giant kelp Q 82-89 Appx. 1 Pterygophora californica Miscellaneous plants Northern palm kelp Q 82-89 Appx. 1 Northern palm kelp Q 82-89 Appx. 1 Appx. 3 INVERTEBRATES Sponges R 85-89 Appx. 3 Sponges R 82-84 Appx. 3 Leucetta losangelensis Sponge R 82-84 Appx. 3 Tethya aurantia Orange puffball sponge B,S 83-89 Appx. 1,5 Diaperoecia californica So. staghorn bryozoan R 82-89 Appx. 3 Allopora californica California hydrocoral B,S 83-89 Appx. 1,5 Tealia lofotensis Rose anemone B,S 83-89 Appx. 1,5 Lophogorgia chilensis Red gorgonian B,S 83-89 Appx. 1,5					
Eisenia (combined) R 85-89 Appx. 3 Macrocystis pyrifera adult Q,S 83-89 Appx. 1,6 Macrocystis pyrifera givenile Q 83-89 Appx. 1 Macrocystis pyrifera all Giant kelp Q 82-89 Appx. 1 Eisenia arborea Southern palm kelp Q 82-89 Appx. 1 Pterygophora californica Northern palm kelp Q 82-89 Appx. 1 Miscellaneous plants R 85-89 Appx. 1 INVERTEBRATES Sponge R 85-89 Appx. 3 INVERTEBRATES Sponge R 82-84 Appx. 3 Leucetta losangelensis Sponge R 82-84 Appx. 3 Leucetta losangelensis Sponge R 82-84 Appx. 3 Leucetta losangelensis Sponge R 82-89 Appx. 1,5 Diaperoecia californica So. staghorn bryozoan R 82-89 Appx. 3 Other bryozoans R 85-89 Appx. 3 Appx. 3		ora.			
Macrocystis pyrifera adult Q,S 83-89 Appx. 1,6 Macrocystis pyrifera juvenile Q 83-89 Appx. 1 Macrocystis pyrifera all Giant kelp Q 82-89 Appx. 1 Eisenia arborea Southern palm kelp Q 82-89 Appx. 1 Pterygophora californica Northern palm kelp Q 82-89 Appx. 1 Miscellaneous plants Northern palm kelp Q 82-89 Appx. 1 INVERTEBRATES Sponges R 85-89 Appx. 3 Sponges R 82-84 Appx. 3 Leucetta losangelensis Sponge R 82-89 Appx. 3 Tethya aurantia Orange puffball sponge B,S 83-89 Appx. 1,5 Diaperoecia californica So. staghorn bryozoan R 82-89 Appx. 3 Other bryozoans R 85-89 Appx. 1,5 Appx. 3 Allopora californica California hydrocoral B,S 83-89 Appx. 1,5 Tealia lofotensis Rose anemone B,S			R	85-89	Appx. 3
Macrocystis pyrifera juvenile Macrocystis pyrifera allGiant kelpQ83-89Appx. 1Eisenia arborea Pterygophora californica Miscellaneous plantsSouthern palm kelp Northern palm kelp RQ82-89 82-89Appx. 1INVERTEBRATES Sponges Leucetta losangelensisSponge RR85-89Appx. 3Tethya aurantia Diaperoecia californica Allopora californicaSo. staghorn bryozoan RR82-84 82-89 RAppx. 3Other bryozoans Allopora californicaCalifornia hydrocoral Rose anemone 					
Macrocystis pyrifera allGiant kelpQ82-89Appx. 1Eisenia arboreaSouthern palm kelpQ82-89Appx. 1Pterygophora californicaNorthern palm kelpQ82-89Appx. 1Miscellaneous plantsR85-89Appx. 3INVERTEBRATESSpongesR85-89Appx. 3SpongesR82-84Appx. 3Leucetta losangelensisSponge puffball sponge B,S83-89Appx. 1,5Tethya aurantiaOrange puffball sponge B,S83-89Appx. 3Other bryozoansR85-89Appx. 3Allopora californicaCalifornia hydrocoral B,S83-89Appx. 1,5Tealia lofotensisRose anemone B,S83-89Appx. 1,5Lophogorgia chilensisRed gorgonian B,S83-89Appx. 1,5Muricea fructicosaBrown gorgonian B,S83-89Appx. 1,5Muricea californicaCa. Golden gorgonian B,S86-89Appx. 1,5Corynactis californicaStrawberry anemone R82-89Appx. 3Balanophyllia elegansOrange cup coral R82-89Appx. 3HydroidsR85-89Appx. 3Diopatra ornataOrnate tube worm R82-89Appx. 3Phragmatopoma californicaSand-castle worm R82-89Appx. 3Spirobranchus spinosusChestnut cowrie Q,S82-89Appx. 1,5Cypraea spadiceaChestnut cowrie Q,S82-89Appx. 1,5Astraea undosaWavy turban snail Q,S82-89Appx. 1,5					
Eisenia arborea Pterygophora californica Miscellaneous plants Northern palm kelp Pterygophora californica Miscellaneous plants Northern palm kelp R R R R R R R R R R R R R R R R R R R					• •
Pterygophora californica Miscellaneous plantsNorthern palm kelpQ R82-89Appx. 1Miscellaneous plantsAppx. 3Appx. 3INVERTEBRATES SpongesSpongeR85-89Appx. 3Leucetta losangelensisSpongeR82-84Appx. 3Tethya aurantiaOrange puffball spongeB,S83-89Appx. 1,5Diaperoecia californicaSo. staghorn bryozoanR82-89Appx. 3Other bryozoansR85-89Appx. 3Allopora californicaCalifornia hydrocoralB,S83-89Appx. 1,5Tealia lofotensisRose anemoneB,S83-89Appx. 1,5Lophogorgia chilensisRed gorgonianB,S83-89Appx. 1,5Muricea fructicosaBrown gorgonianB,S83-89Appx. 1,5Muricea californicaCa. Golden gorgonianB,S86-89Appx. 1,5Corynactis californicaStrawberry anemoneR82-89Appx. 3Balanophyllia elegansOrange cup coralR82-89Appx. 3Astrangia lajollaensisLa Jolla cup coralR82-89Appx. 3Phragmatopoma californicaSand-castle wormR82-89Appx. 3Spirobranchus spinosusChestnut cowrieQ,S82-89Appx. 1,5Oryaea spadiceaChestnut cowrieQ,S82-89Appx. 1,5Astraea undosaWavy turban snailQ,S82-89Appx. 1,5Patiria miniataBat starQ,S82-89		•			
Miscellaneous plants R 85-89 Appx. 3 INVERTEBRATES Sponges Leucetta losangelensis Tethya aurantia Orange puffball sponge B,S 83-89 Appx. 1,5 Diaperoecia californica Other bryozoans Allopora californica California hydrocoral R 82-89 Appx. 3 Allopora californica California hydrocoral R 85-89 Appx. 3 Appx. 1,5 Tealia lofotensis Rose anemone B,S 83-89 Appx. 1,5 Lophogorgia chilensis Red gorgonian B,S 83-89 Appx. 1,5 Muricea fructicosa Brown gorgonian B,S 83-89 Appx. 1,5 Muricea californica Ca. Golden gorgonian B,S 83-89 Appx. 1,5 Corynactis californica Ca. Golden gorgonian B,S 86-89 Appx. 1,5 Corynactis californica Strawberry anemone R 82-89 Appx. 3 Astrangia lajollaensis La Jolla cup coral R 82-89 Appx. 3 Appx. 3 Phragmatopoma californica Sand-castle worm R 82-89 Appx. 3 Phragmatopoma californica Sand-castle worm R 82-89 Appx. 3 Appx. 3 Phragmatopoma californica Sand-castle worm R 82-89 Appx. 3 Appx. 3 Phragmatopoma californica Sand-castle worm R 82-89 Appx. 3 Appx. 3 Phragmatopoma californica Sand-castle worm R 82-89 Appx. 3 Appx. 3 Phragmatopoma californica Sand-castle worm R 82-89 Appx. 3 Appx. 3 Phragmatopoma californica Sand-castle worm R 82-89 Appx. 3 Appx. 3 Phragmatopoma californica Sand-castle worm R 82-89 Appx. 3 Appx. 3 Phragmatopoma californica Sand-castle worm R 82-89 Appx. 3 Appx. 1,5 Appx. 3 Phragmatopoma californica Sand-castle worm R 82-89 Appx. 3 Appx. 1,5 Appx. 3 Phragmatopoma californica Sand-castle worm R 82-89 Appx. 1,5 Appx. 1,5 Appx. 1,5 Patiria miniata Bat star Q,S 82-89 Appx. 1,5 Pycnopodia helianthodes Sunflower star B,S 83-89					
INVERTEBRATES Sponges R 85-89 Leucetta losangelensis Sponge R 82-84 Appx. 3 Tethya aurantia Orange puffball sponge B,S 83-89 Appx. 1,5 Diaperoecia californica So. staghorn bryozoan R 82-89 Appx. 3 Other bryozoans Allopora californica California hydrocoral B,S 83-89 Appx. 1,5 Tealia lofotensis Rose anemone B,S 83-89 Appx. 1,5 Lophogorgia chilensis Red gorgonian B,S 83-89 Appx. 1,5 Muricea fructicosa Brown gorgonian B,S 83-89 Appx. 1,5 Muricea californica Ca. Golden gorgonian B,S 86-89 Appx. 1,5 Corynactis californica strawberry anemone R 82-89 Appx. 3 Balanophyllia elegans Orange cup coral R 82-89 Appx. 3 Hydroids Diopatra ornata Ornate tube worm R 82-89 Appx. 3 Phragmatopoma californica Sand-castle worm R 82-89 Appx. 3 Spirobranchus spinosus Cypraea spadicea Chestnut cowrie Q,S 82-89 Appx. 1,5 Pycnopodia helianthodes Sunflower star B,S 83-89 Appx. 1,5 Ap					
SpongesR85-89Appx. 3Leucetta losangelensisSpongeR82-84Appx. 3Tethya aurantiaOrange puffball spongeB,S83-89Appx. 1,5Diaperoecia californicaSo. staghorn bryozoanR82-89Appx. 3Other bryozoansR85-89Appx. 3Allopora californicaCalifornia hydrocoralB,S83-89Appx. 1,5Tealia lofotensisRose anemoneB,S83-89Appx. 1,5Lophogorgia chilensisRed gorgonianB,S83-89Appx. 1,5Muricea fructicosaBrown gorgonianB,S83-89Appx. 1,5Muricea californicaCa. Golden gorgonianB,S86-89Appx. 1,5Corynactis californicastrawberry anemoneR82-89Appx. 3Balanophyllia elegansOrange cup coralR82-89Appx. 3Astrangia lajollaensisLa Jolla cup coralR82-89Appx. 3HydroidsR85Appx. 3Diopatra ornataOrnate tube wormR82-89Appx. 3Phragmatopoma californicaSand-castle wormR82-89Appx. 3Spirobranchus spinosusR85Appx. 3Cypraea spadiceaChestnut cowrieQ,S82-89Appx. 1,5Astraea undosaWavy turban snailQ,S82-89Appx. 1,5Patiria miniataBat starQ,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx					1.1.
Leucetta losangelensisSpongeR82-84Appx. 3Tethya aurantiaOrange puffball sponge B,S83-89Appx. 1,5Diaperoecia californicaSo. staghorn bryozoan R82-89Appx. 3Other bryozoansR85-89Appx. 3Allopora californicaCalifornia hydrocoral B,S83-89Appx. 1,5Tealia lofotensisRose anemone B,S83-89Appx. 1,5Lophogorgia chilensisRed gorgonian B,S83-89Appx. 1,5Muricea fructicosaBrown gorgonian B,S83-89Appx. 1,5Muricea californicaCa. Golden gorgonian B,S86-89Appx. 1,5Corynactis californicastrawberry anemone R82-89Appx. 3Balanophyllia elegansOrange cup coral R82-89Appx. 3Astrangia lajollaensisLa Jolla cup coral R82-89Appx. 3HydroidsR85Appx. 3Diopatra ornataOrnate tube worm R82-89Appx. 3Phragmatopoma californicaSand-castle worm R82-89Appx. 3Spirobranchus spinosusR85Appx. 3Cypraea spadiceaChestnut cowrie Q,S82-89Appx. 1,5Astraea undosaWavy turban snail Q,S82-89Appx. 1,5Patiria miniataBat star Q,S82-89Appx. 1,5Pisaster giganteusGiant-spined star Q,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx. 1,5	INVERTEBRATES				
Tethya aurantiaOrange puffball spongeB,S83-89Appx. 1,5Diaperoecia californicaSo. staghorn bryozoanR82-89Appx. 3Other bryozoansR85-89Appx. 3Allopora californicaCalifornia hydrocoralB,S83-89Appx. 1,5Tealia lofotensisRose anemoneB,S83-89Appx. 1,5Lophogorgia chilensisRed gorgonianB,S83-89Appx. 1,5Muricea fructicosaBrown gorgonianB,S83-89Appx. 1,5Muricea californicaCa. Golden gorgonianB,S86-89Appx. 1,5Corynactis californicastrawberry anemoneR82-89Appx. 3Balanophyllia elegansOrange cup coralR82-89Appx. 3Astrangia lajollaensisLa Jolla cup coralR82-89Appx. 3HydroidsR85Appx. 3Diopatra ornataOrnate tube wormR82-89Appx. 3Phragmatopoma californicaSand-castle wormR82-89Appx. 3Spirobranchus spinosusR85Appx. 3Cypraea spadiceaChestnut cowrieQ,S82-89Appx. 1,5Astraea undosaWavy turban snailQ,S82-89Appx. 1,5Patiria miniataBat starQ,S82-89Appx. 1,5Pisaster giganteusGiant-spined starQ,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx. 1,5	Sponges		R	85-89	Аррх. 3
Diaperoecia californicaSo. staghorn bryozoanR82-89Appx. 3Other bryozoansCalifornia hydrocoralB,S83-89Appx. 1,5Allopora californicaRose anemoneB,S83-89Appx. 1,5Tealia lofotensisRose anemoneB,S83-89Appx. 1,5Lophogorgia chilensisRed gorgonianB,S83-89Appx. 1,5Muricea fructicosaBrown gorgonianB,S83-89Appx. 1,5Muricea californicaCa. Golden gorgonianB,S86-89Appx. 1,5Corynactis californicastrawberry anemoneR82-89Appx. 3Balanophyllia elegansOrange cup coralR82-89Appx. 3Astrangia lajollaensisLa Jolla cup coralR82-89Appx. 3HydroidsR85Appx. 3Diopatra ornataOrnate tube wormR82-89Appx. 3Phragmatopoma californicaSand-castle wormR82-89Appx. 3Spirobranchus spinosusR85Appx. 3Cypraea spadiceaChestnut cowrieQ,S82-89Appx. 1,5Astraea undosaWavy turban snailQ,S82-89Appx. 1,5Patiria miniataBat starQ,S82-89Appx. 1,5Pisaster giganteusGiant-spined starQ,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx. 1,5	Leucetta losangelensis	Sponge	R	82-84	Аррх. 3
Other bryozoans Allopora californica California hydrocoral B,S 83-89 Appx. 1,5 Tealia lofotensis Rose anemone B,S 83-89 Appx. 1,5 Lophogorgia chilensis Red gorgonian B,S 83-89 Appx. 1,5 Muricea fructicosa Brown gorgonian B,S 83-89 Appx. 1,5 Muricea californica Ca. Golden gorgonian B,S 86-89 Appx. 1,5 Corynactis californica strawberry anemone R 82-89 Appx. 3 Balanophyllia elegans Orange cup coral R 82-89 Appx. 3 Astrangia lajollaensis La Jolla cup coral R 85 Appx. 3 Hydroids Diopatra ornata Ornate tube worm Phragmatopoma californica Sand-castle worm R 82-89 Appx. 3 Appx. 3 Cypraea spadicea Chestnut cowrie Q,S 82-89 Appx. 1,5 Astraea undosa Wavy turban snail Q,S 82-89 Appx. 1,5 Patiria miniata Bat star Q,S 82-89 Appx. 1,5 Pycnopodia helianthodes Sunflower star B,S 83-89 Appx. 1,5	Tethya aurantia	Orange puffbal	l sponge B,S	83-89	Appx. 1,5
Allopora californicaCalifornia hydrocoralB,S83-89Appx. 1,5Tealia lofotensisRose anemoneB,S83-89Appx. 1,5Lophogorgia chilensisRed gorgonianB,S83-89Appx. 1,5Muricea fructicosaBrown gorgonianB,S83-89Appx. 1,5Muricea californicaCa. Golden gorgonianB,S86-89Appx. 1,5Corynactis californicastrawberry anemoneR82-89Appx. 3Balanophyllia elegansOrange cup coralR82-89Appx. 3Astrangia lajollaensisLa Jolla cup coralR82-89Appx. 3HydroidsR85Appx. 3Diopatra ornataOrnate tube wormR82-89Appx. 3Phragmatopoma californicaSand-castle wormR82-89Appx. 3Spirobranchus spinosusR85Appx. 3Cypraea spadiceaChestnut cowrieQ,S82-89Appx. 1,5Astraea undosaWavy turban snailQ,S82-89Appx. 1,5Patiria miniataBat starQ,S82-89Appx. 1,5Pisaster giganteusGiant-spined starQ,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx. 1,5	Diaperoecia californica	So. staghorn b	yozoan R	82-89	Аррх. 3
Tealia lofotensisRose anemoneB,S83-89Appx. 1,5Lophogorgia chilensisRed gorgonianB,S83-89Appx. 1,5Muricea fructicosaBrown gorgonianB,S83-89Appx. 1,5Muricea californicaCa. Golden gorgonianB,S86-89Appx. 1,5Corynactis californicastrawberry anemoneR82-89Appx. 3Balanophyllia elegansOrange cup coralR82-89Appx. 3Astrangia lajollaensisLa Jolla cup coralR82-89Appx. 3HydroidsR85Appx. 3Diopatra ornataOrnate tube wormR82-89Appx. 3Phragmatopoma californicaSand-castle wormR82-89Appx. 3Spirobranchus spinosusR85Appx. 3Cypraea spadiceaChestnut cowrieQ,S82-89Appx. 1,5Astraea undosaWavy turban snailQ,S82-89Appx. 1,5Patiria miniataBat starQ,S82-89Appx. 1,5Pisaster giganteusGiant-spined starQ,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx. 1,5	Other bryozoans		R	85-89	Аррх. 3
Lophogorgia chilensisRed gorgonianB,S83-89Appx. 1,5Muricea fructicosaBrown gorgonianB,S83-89Appx. 1,5Muricea californicaCa. Golden gorgonianB,S86-89Appx. 1,5Corynactis californicastrawberry anemoneR82-89Appx. 3Balanophyllia elegansOrange cup coralR82-89Appx. 3Astrangia lajollaensisLa Jolla cup coralR82-89Appx. 3HydroidsR85Appx. 3Diopatra ornataOrnate tube wormR82-89Appx. 3Phragmatopoma californicaSand-castle wormR82-89Appx. 3Spirobranchus spinosusR85Appx. 3Cypraea spadiceaChestnut cowrieQ,S82-89Appx. 1,5Astraea undosaWavy turban snailQ,S82-89Appx. 1,5Patiria miniataBat starQ,S82-89Appx. 1,5Pisaster giganteusGiant-spined starQ,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx. 1,5	Allopora californica	California hydro	ocoral B,S	83-89	Appx. 1,5
Muricea fructicosaBrown gorgonianB,S83-89Appx. 1,5Muricea californicaCa. Golden gorgonianB,S86-89Appx. 1,5Corynactis californicastrawberry anemoneR82-89Appx. 3Balanophyllia elegansOrange cup coralR82-89Appx. 3Astrangia lajollaensisLa Jolla cup coralR82-89Appx. 3HydroidsR85Appx. 3Diopatra ornataOrnate tube wormR82-89Appx. 3Phragmatopoma californicaSand-castle wormR82-89Appx. 3Spirobranchus spinosusR85Appx. 3Cypraea spadiceaChestnut cowrieQ,S82-89Appx. 1,5Astraea undosaWavy turban snailQ,S82-89Appx. 1,5Patiria miniataBat starQ,S82-89Appx. 1,5Pisaster giganteusGiant-spined starQ,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx. 1,5	Tealia lofotensis	Rose anemone	B,S	83-89	Appx. 1,5
Muricea californicaCa. Golden gorgonianB,S86-89Appx. 1,5Corynactis californicastrawberry anemoneR82-89Appx. 3Balanophyllia elegansOrange cup coralR82-89Appx. 3Astrangia lajollaensisLa Jolla cup coralR82-89Appx. 3HydroidsR85Appx. 3Diopatra ornataOrnate tube wormR82-89Appx. 3Phragmatopoma californicaSand-castle wormR82-89Appx. 3Spirobranchus spinosusR85Appx. 3Cypraea spadiceaChestnut cowrieQ,S82-89Appx. 1,5Astraea undosaWavy turban snailQ,S82-89Appx. 1,5Patiria miniataBat starQ,S82-89Appx. 1,5Pisaster giganteusGiant-spined starQ,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx. 1,5	Lophogorgia chilensis	Red gorgonian	B,S	83-89	Appx. 1,5
Corynactis californicastrawberry anemoneR82-89Appx. 3Balanophyllia elegansOrange cup coralR82-89Appx. 3Astrangia lajollaensisLa Jolla cup coralR82-89Appx. 3HydroidsR85Appx. 3Diopatra ornataOrnate tube wormR82-89Appx. 3Phragmatopoma californicaSand-castle wormR82-89Appx. 3Spirobranchus spinosusR85Appx. 3Cypraea spadiceaChestnut cowrieQ,S82-89Appx. 1,5Astraea undosaWavy turban snailQ,S82-89Appx. 1,5Patiria miniataBat starQ,S82-89Appx. 1,5Pisaster giganteusGiant-spined starQ,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx. 1,5	Muricea fructicosa	Brown gorgonia	an B,S	83-89	Appx. 1,5
Balanophyllia elegansOrange cup coralR82-89Appx. 3Astrangia lajollaensisLa Jolla cup coralR82-89Appx. 3HydroidsR85Appx. 3Diopatra ornataOrnate tube wormR82-89Appx. 3Phragmatopoma californicaSand-castle wormR82-89Appx. 3Spirobranchus spinosusR85Appx. 3Cypraea spadiceaChestnut cowrieQ,S82-89Appx. 1,5Astraea undosaWavy turban snailQ,S82-89Appx. 1,5Patiria miniataBat starQ,S82-89Appx. 1,5Pisaster giganteusGiant-spined starQ,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx. 1,5	Muricea californica	Ca. Golden go	gonian B,S	86-89	Appx. 1,5
Astrangia lajollaensisLa Jolla cup coralR82-89Appx. 3HydroidsR85Appx. 3Diopatra ornataOrnate tube wormR82-89Appx. 3Phragmatopoma californicaSand-castle wormR82-89Appx. 3Spirobranchus spinosusR85Appx. 3Cypraea spadiceaChestnut cowrieQ,S82-89Appx. 1,5Astraea undosaWavy turban snailQ,S82-89Appx. 1,5Patiria miniataBat starQ,S82-89Appx. 1,5Pisaster giganteusGiant-spined starQ,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx. 1,5				82-89	Аррх. 3
Astrangia lajollaensisLa Jolla cup coralR82-89Appx. 3HydroidsR85Appx. 3Diopatra ornataOrnate tube wormR82-89Appx. 3Phragmatopoma californicaSand-castle wormR82-89Appx. 3Spirobranchus spinosusR85Appx. 3Cypraea spadiceaChestnut cowrieQ,S82-89Appx. 1,5Astraea undosaWavy turban snailQ,S82-89Appx. 1,5Patiria miniataBat starQ,S82-89Appx. 1,5Pisaster giganteusGiant-spined starQ,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx. 1,5	Balanophyllia elegans	Orange cup co	ral R	82-89	Аррх. 3
Diopatra ornataOrnate tube wormR82-89Appx. 3Phragmatopoma californicaSand-castle wormR82-89Appx. 3Spirobranchus spinosusR85Appx. 3Cypraea spadiceaChestnut cowrieQ,S82-89Appx. 1,5Astraea undosaWavy turban snailQ,S82-89Appx. 1,5Patiria miniataBat starQ,S82-89Appx. 1,5Pisaster giganteusGiant-spined starQ,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx. 1,5	Astrangia lajollaensis			82-89	Аррх. 3
Diopatra ornataOrnate tube wormR82-89Appx. 3Phragmatopoma californicaSand-castle wormR82-89Appx. 3Spirobranchus spinosusR85Appx. 3Cypraea spadiceaChestnut cowrieQ,S82-89Appx. 1,5Astraea undosaWavy turban snailQ,S82-89Appx. 1,5Patiria miniataBat starQ,S82-89Appx. 1,5Pisaster giganteusGiant-spined starQ,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx. 1,5	Hydroids		R	85	Appx. 3
Spirobranchus spinosusR85Appx. 3Cypraea spadiceaChestnut cowrieQ,S82-89Appx. 1,5Astraea undosaWavy turban snailQ,S82-89Appx. 1,5Patiria miniataBat starQ,S82-89Appx. 1,5Pisaster giganteusGiant-spined starQ,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx. 1,5	Diopatra ornata	Ornate tube wo	rm R		
Cypraea spadiceaChestnut cowrieQ,S82-89Appx. 1,5Astraea undosaWavy turban snailQ,S82-89Appx. 1,5Patiria miniataBat starQ,S82-89Appx. 1,5Pisaster giganteusGiant-spined starQ,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx. 1,5	Phragmatopoma califor	rnica Sand-castle wo	rm R	82-89	
Astraea undosa Wavy turban snail Q,S 82-89 Appx. 1,5 Patiria miniata Bat star Q,S 82-89 Appx. 1,5 Pisaster giganteus Giant-spined star Q,S 82-89 Appx. 1,5 Pycnopodia helianthodes Sunflower star B,S 83-89 Appx. 1,5	Spirobranchus spinosu	'S	R	85	Appx. 3
Astraea undosaWavy turban snailQ,S82-89Appx. 1,5Patiria miniataBat starQ,S82-89Appx. 1,5Pisaster giganteusGiant-spined starQ,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx. 1,5			e Q,S	82-89	
Patiria miniataBat starQ,S82-89Appx. 1,5Pisaster giganteusGiant-spined starQ,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx. 1,5		Wavy turban si		82-89	
Pisaster giganteusGiant-spined starQ,S82-89Appx. 1,5Pycnopodia helianthodesSunflower starB,S83-89Appx. 1,5	Patiria miniata	Bat star			
Pycnopodia helianthodes Sunflower star B,S 83-89 Appx. 1,5					
		•	·		
				83-89	

Table 1. Regularly monitored species by taxonomic grouping, common name, scientific name, and associated monitoring technique.(continued)

TAXA	COMMON NAME	SAMPLING TECHNIQUE	YEARS MONITORED	DATA APPENDICES
Strongylocentrotus fran	nciscanus Red sea urch	82-89	Appx. 1,	
Strongylocentrotus pur			82-89	Appx. 1,5
Parastichopus parvime	ensis Warty sea cu		82-89	Appx. 1,5
Pachythyone rubra	Red sea cucu	ımber R	82-84,88-89	Appx. 3
Haliotis rufescens	Red abalone	B,S	83-89	Appx. 1,5
Haliotis corrugata	Pink abalone	B,S	83-89	Appx. 1,5
Haliotis fulgens	Green abalon	e B,S	83-89	Appx. 1,5
Kelletia kelletii	Kellet's whelk	B,S	83-89	Appx. 1,5
Megathura crenulata	Giant keyhole	limpet B,S	83-89	Appx. 1,5
Aplysia californica	Calif. Sea har	e B,S	83-89	Аррх. 1
Serpulorbis squamiger	us Scaled tube s	nail R	82-89	Аррх. 3
Hinnites giganteus	Rock scallop	B,S	83-89	Appx. 1,5
Balanus spp.	Barnacle	R	85-86	Аррх. 3
Panulirus interruptus	Calif. Spiny lo		83-89	Appx. 1
Tunicates		R	85-89	Аррх. 3
Styela montereyensis	Stalked tunica		82-89	Appx. 1
Miscellaneous Inverteb	orates	R	82-89	Аррх. 3
SUBSTRATE				
Bare Substrate		R	85-89	Аррх. 3
Substrates: Rock		R	82-89	Аррх. 3
Cobble		R	82-89	Аррх. 3
Sand		R	82-89	Аррх. 3
FISH				
Lythrypnus dalli	Blue-banded		85-89	Appx. 1
Coryphopterus nicholsi			85-89	Appx. 1
Alloclinus holderi	Island kelp fis		85-89	Appx. 1
Chromis punctipinnis	Blacksmith	V	85-89	Appx. 4
Oxyjulis californica	Señorita	V	85-89	Appx. 4
Sebastes mystinus	Blue rockfish	V	85-89	Appx. 4
Sebastes serranoides	Olive rockfish		85-89	Appx. 4
Sebastes atrovirens	Kelp rockfish	V	85-89	Appx. 4
Paralabrax clathratus	Kelp bass	V	85-89	Appx. 4
Semicossiphus pulcher		V	85-89	Appx. 4
Embiotoca jacksoni	Black surfper		85-89	Appx. 4
Embiotoca lateralis	Striped surfpe		85-89	Appx. 4
Damalichthys vacca	Pile srufperch		85-89	Appx. 4
Hypsypops rubicundus		V	85-89	Appx. 4
Girella nigricans	Opaleye	V	85-89	Appx. 4

B= Band Transect

Q= Quadrat Count

R= Random Point Contact

S= Size Frequency Measurement

V= Visual Transect

Figure 1. Kelp Forest Monitoring Locations (•) on Channel Islands National Park. Insert shows location of the five park islands in the southern California Bight

Table 2. Station information.

STATION NUMBER	ISLAND	LOCATION ABBRI	EVIATION	DEPTH (FEET)	YEAR EST.
1	San Miguel	Wyckoff Ledge	SMIWL	43-49	1981
2	San Miguel	Hare Rock	SMIHR	20-30	1981
3	Santa Rosa	Johnson's Lee North	SRIJLNO	31-36	1981
4	Santa Rosa	Johnson's Lee South	SRIJLSO	46-52	1981
5	Santa Rosa	Rodes Reef	SRIRR	43-49	1983
6	Santa Cruz	Gull Island South	SCIGISO	45-54	1981
7	Santa Cruz	Fry's Harbor	SCIFH	39-42	1981
8	Santa Cruz	Pelican Bay	SCIPB	21-27	1981
9	Santa Cruz	Scorpion Anchorage	SCISA	15-20	1981
10	Santa Cruz	Yellowbanks	SCIYB	48-51	1986
11	Anacapa	Admiral's Reef	ANIAR	42-49	1981
12	Anacapa	Cathederal Cove	ANICC	20-35	1981
13	Anacapa	Landing Cove	ANILC	15-40	1981
14	Santa Barbara	SE Sea Lion Rookery	SBISESL	40-46	1981
15	Santa Barbara	Arch Point	SBIAP	22-27	1981
16	Santa Barbara	Cat Canyon	SBICC	22-30	1986

Table 3. Summary of sampling techniques used to monitor population dynamics of selected kelp forest organisms.

TECHNIQUE	SAMPLE SIZE	NUMBER OF REPLECATES
Quadrat count	1 m X 1 m	40X / site
Band Transect count	3 m X 10 m	24X / site
Random Point Contact	40 points, (0.5 x 3 m)	25X / site
Visual Fish transects	2 m(w) X 3 m(h) X 100 m(l), (5 mir	nutes) 8X / sites
Video transects	5 minutes / 100 m	2X / site
Size frequency measurements	30 to 200 / species measurement dimensions below)	1X / site (see size frequency
Species Checklist	30 - 90 minutes	1X / site
Artificial Recruitment Modules	7 - 15 modules / site	

Results and Discussion

Sampling was conducted by divers using SCUBA or surface-supplied air. In 1987, 33 scientist-divers made 605 dives. In 1988, 33 scientist-divers made 632 dives, and in 1989, 38 scientist-divers made 779 dives during seven, week-long cruises aboard the NPS vessel <u>Pacific Ranger</u>. The 1989 dives included 55 diver hours devoted to the Abalone Habitat Project co-sponsored by

the California Department of Fish and Game. The scientist-divers included four resource management marine biologists, the boat crew and other NPS personnel from Channel Islands, personnel from other national parks, collaborating scientists from federal and state agencies, teachers from high schools, colleges and universities, college students, and representatives from diving related industries. The professional involvement and on-site critiques of approach, experimental design, and sampling techniques by the many participants are important facets of the project's long-term design. This collaborative approach developed a cadre of professional scientist/divers who are familiar with the program's objectives and approach. During the years reported here, 132 divers participated in the program making over 6,000 dives. Table 4 lists the diving participants from 1982-1989.

Site information and establishment dates are provided in Table 2. Results are presented in summary form for all years in appendices 1-7. Table 1 provides a reference to the data appendices for each species monitored. During 1982-1986, monitoring was done as part of the design study, and as a result, various techniques and sample sizes were used.

Data high points that demonstrate the kelp forest community dynamics in time and space are outlined below. For the sake of brevity, abbreviations are used for site names. Please refer to Table 2 for complete names and locations.

QUADRAT DATA:

Quadrat data summaries are presented in appendix 1. *Macrocystis pyrifera* declined at most stations in 1984 and 1985, resulting in many sites being devoid of kelp by 1986. Surges of recruitment in juvenile kelp occurred in 1983 (SCISA, ANIAR, ANICC, SRIJLNO), 1985 (SCISA), 1986 (SMIWL, ANILC), and 1988 (SRIRR, SRIJLNO, SRIJLSO). Except 1988, these massive recruitment's failed to reestablish kelp forests. *Pterygophora californica* also recruited successfully at SRIJLNO and SRIJLSO in 1988.

The purple sea urchin, *Strongylocentrotus purpuratus*, underwent a population explosion at most locations beginning in 1984-1985. The most extreme examples of this were at Santa Barbara Island, where density peaked at 154 m⁻² in 1986 at SBIAP, and 99 m⁻² in 1988 at SBISESL (Fig. 2).

Figure 2. Purple sea urchin (*Strongylocentrotus purpuratus*) densities at Arch Point and Southeast Sealion Rookery, Santa Barbara Island.

Population declines in *S. purpuratus* at these "urchin barrens", where even much of the encrusting coralline algae (see Random Point Contact results) had been scraped from the substrate, was most likely due to starvation or disease (although the lesions symptomatic of urchin disease were not evident). Many dead sea urchin tests were noted at the Santa Barbara Island sites in 1988 and 1989 with no apparent signs of predation.

Sea star populations plummeted to lows in 1984 and 1985 as a result of a wasting disease brought into California or exacerbated by the warm waters of El Niño (Schroeder and Dixon 1986, observations this study). The sea star wasting disease had an earlier, more prolonged effect at the southeastern sites than northwestern sites (Figs. 3 and 4) and deep sites were less affected than shallow sites (Figs. 3 and 5). Unlike the sites at San Miguel Island and Santa Rosa Island, the densities of sea urchin-eating sea stars at Santa Barbara Island remained low (*Patiria miniata*, *Pisaster giganteus* and *Astrometis sertulifera* [from species list]) or non-existent (*Orthasterias koehleri* [species list] and *Pycnopodia helianthoides* [band transects]). The increase in *P. miniata* density in 1988 at SBIAP diminished to zero by 1989 (Fig. 3).

Figure 3. Seastars (low density) at Arch Point and SE Sealion Rookery, Santa Barbara Island.

Figure 4. Seastars (high density) at Wyckoff Ledge and Hare Rock, San Miguel Island.

Figure 5. Seastars at Johnson's Lee North (shallow site) and Johnson's Lee South (deep site), Santa Rosa Island.

The densities of other sea urchin predators (i.e. the spiny lobster, *Panulirus interruptus* and the sheephead wrasse, *Semicossiphus pulcher* [see FISH TRANSECTS] which are also the only predators on the large red urchin, *S. franciscanus*, other than man (Tegner and Dayton, 1981)) remained low at the Santa Barbara Island sites.

S. franciscanus densities peaked in 1985-86 at stations 1-9 and have decreased at eleven stations since then, having reached a maximum of 14.7 m⁻² at SMIHR in 1985. Urchin densities indicative of *S. franciscanus*-caused barrens in a study at San Nicolas Island (Harrold and Reed, 1985) were only \leq 10 m⁻². Their study indicated that the mechanism driving the patch dynamics of that system involved a behavioral switch in the mode of feeding of the sea urchins that was independent of sea urchin density. SMIHR is unique in that, other than SCIGI - 1985, it has had consistently higher densities of *S. franciscanus* than other stations, ranging from 8.1 m⁻² to 11.85 m⁻².

One species that seems to have initially thrived and increased in number in the shallower urchin barren sites (SCIPB, SCISA, ANICC, and SBIAP) was the wavy turban snail, *Astraea undosa* (Fig. 6 and 7). Densities more than doubled at these four sites as *Macrocystis* disappeared. After five years without kelp at SCIPB, SCISA, and SBIAP, the *Astraea* densities declined in 1988 and 1989.

Figure 6. Wavy top snail (*Astraea undosa*) and giant kelp (*Macrocystis pyrifera*) at Pelican Bay and Scorpion Anchorage, Santa Cruz Island.

Figure 7. Wavy top snail (Astraea undosa) and giant kelp (Macrocystis pyrifera) at Cathedral Cove, Anacapa and Arch Point, Santa Barbara Island.

Coryphopterous nicholsii density reached 17 m⁻² at SCIPB in 1988. Other Santa Cruz and Anacapa stations reached densities of 2-4 m⁻² in 1988 and 1989. Increases were seen these years at all other stations as well.

Styela montereyensis is a good example of the variability within a species in the kelp forest system. In 1984, a massive recruitment occurred at SRIRR, reaching a density of 10 m⁻². Two years later, *S. montereyensis* was virtually gone from the site. *S. montereyensis* has been unremarkable at other sites.

BAND TRANSECT DATA:

Summaries of band transect data are presented in appendix 2. At locations where both band transects and quadrats were used to monitor white urchins, *Lytechinus anamesus*, (SRIRR, SCIGI, SCIPB, and SCIFH in 1986, and SBISESL in 1988 and 1989), results were similar for both techniques at all stations except SRIRR where *L. anamesus* density was 6.33 m⁻² on quadrats and only 2.70 m⁻² on band transects and at SBISESL where band transect densities were one-half in 1988 and one-third in 1989, of the densities found on quadrats. Comparison of the two techniques shows greater precision of measure in the band transect data.

Densities of *Lytechinus anamesus* were negligible at all stations until 1985. Highest densities of *L. anamesus* at two stations, (SCIYB and ANIAR) exceeded 38 m⁻² (Fig. 8). By 1989, the sites where *L. anamesus* had been the most dense (SRIRR, SCIGI, SCIFH, SCIPB, SCIYB, ANIAR, SBISESL, and SBIAP), showed marked declines in *L. anamesus* density.

Figure 8a-8b. Red (*Strongylocentrotus franciscanus*), purple (*S. purpuratus*), and white (*Lytechinus anamesus*) urchins at Yellowbanks, Santa Cruz and Admiral's Reef, Anacapa Island.

Pycnopodia helianthoides, the large, swift (up to 1 meter per minute), predatory "sunflower star" had been an early victim of the sea star wasting disease during the late 1970's at Santa Barbara Island (Schroeder and Dixon 1986) and was only present on band transects at SMIHR when monitoring of this species began in 1983. (P. helianthoides had been noted on species lists at stations 1-6 prior to 1984). Then, in 1985, P. helianthoides began to appear on the band transect surveys at all San Miguel and Santa Rosa Island stations. On all five of the transects at these two islands, the densities of the three urchin species, Lytechinus anamesus, Strongylocentrotus purpuratus, and S. franciscanus began to decline. Pycnopodia were observed in the process of consuming L. anamesus and S. purpuratus, and the clean, empty urchin tests typical of Pycnopodia kills (Mauzey et al. 1968) were fresh, plentiful and obvious at each of these five sites. At SRIRR, where Pycnopodia densities were highest, the affects upon sea urchin densities (especially S. purpuratus) were most abrupt (fig. 9).

Figure 9 Sun stars (*Pycnopodia helianthoides*) and sea urchins (S. *franciscanus*, *S. purpuratus*) at Johnson's Lee North, Santa Rosa Island.

Densities of *Haliotis rufescens*, and *H. corrugata* declined dramatically at Santa Rosa and Santa Cruz islands similar to the decline which occurred in the intertidal species, *H. cracherodii* (Haaker et al. 1989). *H. fulgens* is a shallow water species that only rarely occurred in transects. The most extreme decline took place at SRIJLNO (see Fig. 10). *Pycnopodia* was observed consuming a large *H. rufescens* at SMIHR in 1989, and is suspected as the main cause of mortality in hatchery abalone transplanted to artificial habitats located at SRIJLNO.

Figure 10. Example of red abalone (*Haliotis rufescens*) declines from Johnson's Lee North and South, Santa Rosa and Gull Island, Santa Cruz Island and pink abalone (*H. corrugata*) from Scorpion Anchorage, Santa Cruz Island.

Haliotis rufescens densities remained relatively stable on band transects, however fewer abalone were found for size frequency measurements. Pink abalone, *H. corrugata*, density was most consistent at ANILC which is located within an ecological reserve, and protected from exploitation by commercial and sport divers. Harvest, however, is unlikely as the sole factor of the decline. A series of events punctuated by El Niño is more likely the cause (Davis et al. 1989).

POINT CONTACT DATA:

Summaries of percent cover of algae, sessile invertebrates and substrate for all stations by species groupings are given in Appendix 3. Graphs of changes in percent cover for selected species and/or phylum groupings at selected stations are shown in Figures 11-16. Several changes have occurred in the species groupings monitored. The "other brown algae" category has been redefined since 1982, the most significant changes being the splitting-out of a separate *Macrocystis-Pterygophora-Eisenia* grouping in 1985, and the inclusion of *Sargassum* spp. into the "other brown algae" category beginning in 1985. Although *Macrocystis* and other phaeophytes were monitored separately in the field prior to 1985, during those years, all brown algae except *Desmarestia* spp., *Laminaria farlowii*, *Cystoseira* spp. were summed for data entry. In general, target species and phylum grouping categories have remained constant since 1985.

"Miscellaneous invertebrates" was the dominant encrusting invertebrate category at most locations because it is a catch-all for any invertebrate species that was not already included in the eleven general and specific encrusting invertebrate categories. Dominant invertebrate species within the miscellaneous invertebrate category differed between locations and years, and could be identified by the abundance ratings assigned to the species list and by notations in the daily activity log.

At all three Santa Barbara Island stations, *Spirobranchus spinosus* was a dominant in the miscellaneous invertebrate category. Small sea cucumbers (*Pacythyone rubra* and *Cucumaria* sp.) were important as miscellaneous invertebrates at some stations.

The proportions of rock/cobble/sand substrate remained relatively constant for each site since the monitoring began. The ecological significance of small changes in these proportions is not clear. In years where sand cover increased, the difference was apparently not extreme enough to cause any direct change in the densities of foliose algae or invertebrates.

"Bare substrate" was not regularly recorded prior to 1985. Our use of the term "bare" means that a spot was void of any visible encrusting life. This should be kept in mind when the term "urchin barrens" is used. Lawrence (1975), who coined this term, used it in reference to areas which still had encrusting coralline algae coating the substrate.

The peak value for bare substrate usually coincides with, or follows the year of peak *Strongylocentrotus purpuratus* density. In 1987, at SCIPB, bare substrate value peaked at 45.4% and the *S. purpuratus* density peaked at 16.2 m⁻² (fig. 11). During the same year at SCISA, 43.6% of the substrate was bare and *S. purpuratus* densities had peaked the year before at 64.7 m⁻² (fig.

12). As *S. purpuratus* densities declined in 1988 and 1989, bare substrate also declined. At SCIYB and ANIAR (fig. 8), where *Lytechinus anamesus* densities exceeded 30 m⁻² (1987, 1988), there was no coinciding peak in bare substrate. According to Austin and Hadfield (1983), "they [*L. anamesus*] consume smaller algae so effectively that reestablishment of algal growth on denuded surfaces occurs only when populations are below about 10 urchins per square meter." Yet algal cover, on average at SCIYB and ANIAR, slightly increased from 1987 to 1989 in spite of high *L. anamesus* densities (fig. 8 and 13).

Figure 11a. Substrate composition and percentage of bare substrate and (11b) density of sea urchins at Pelican Bay, Santa Cruz Island.

Figure 12a. Substrate composition and percentage of bare substrate and (12b) density of sea urchins at Scorpion Anchorage, Santa Cruz Island

Figure 13a-13b. Dominant brown algae at high White sea urchin (*Lytechinus anamesus*) density sites Yellow banks, Santa Cruz Island and Admiral's Reef, Anacapa Island.

The most dramatic example of algal cover decline following El Niño occurred in 1985 at SCIPB (fig. 14). All species of algae were affected including kelps, brown and red foliose algae, and articulate coralline algae. Foliose algae disappeared after El Niño, leaving the substrate clear and allowing invasion by encrusting corallines. Encrusting corallines are the last of the algal types to be destroyed by high urchin densities and often the first algae to recover the bare substrate (Johansen and Austen, 1970). After 1987, there were notable increases in the percent cover by foliose algae at all San Miguel and Santa Rosa Island stations. As foliose algae increased, there was a corresponding decrease in percent cover by encrusting coralline algae (fig. 15). Red algae cover increased at SMIWL in 1989 as a result of kelp canopy reduction. At the Santa Rosa Island stations, red algae cover increased along with kelp which formed a dense canopy. Articulate coralline algae followed the same pattern.

Figure 14. Percent cover of algae at Pelican Bay, Santa Cruz Island.

Figure 15 a,b. Inverse relationship of red algae and encrusting coralline algae cover at Wyckoff Ledge, San Miguel Island and Rodes Reef, Santa Rosa Island

In 1988, *Desmarestia sp.* temporarily covered more than 50% of the substrate at SMIWL and SRIRR. A smaller settlement occurred in 1986 at SMIWL and SRIRR. *Desmarestia* was a dominant cover at SMIWL in 1983, but was included in the miscellaneous brown algae category at that time. Other stations with a high percentage of miscellaneous brown algal cover in 1983 were most likely dominated by *Macrocystis* or *Eisenia*.

The reduction of algal cover in 1985 facilitated colonization by the Cnidarians *Astrangia lajollaensis* (SRIRR, SCIFH, and SCIPB), *Corynactis californica* (SRIJLSO, SCIGI, SBIAP, and SMIHR), and *Balanophyllia elegans* (SRIJLSO, SRIRR, SCIGI). *A. lajollaensis* was one of the three most dominant encrusting invertebrates at eight of the sixteen sites. *B. elegans* was one of the three most dominant encrusting invertebrates at six of sixteen stations. Gerrodette (1981) states that urchin barrens offer a superior habitat to *B. elegans*. *C. californica* has been described as an "aggressive colonizer that can invade and overgrow other organisms" (Lissner 1988). The suggestion that *C. californica* larvae may need clean substrate for settlement could explain the increased cover by *C. californica* at SBIAP in 1988 which followed the year of highest "bare" substrate (fig. 16). The more gradual increase in *C. californica* at SCIGI may be explained by *C. californica*'s alternate colonization strategy of cloning.

Figure 16 Relationship of bare substrate and strawberry anemone (*Corynactus califonica*) at Gull Island, Santa Cruz and Arch Point Santa Barbara Island.

FISH TRANSECTS:

Visual fish transects have been conducted since 1985. Tables of means presented in three different forms (by date of sample/adults and juveniles separate, by date of sample/adults and juveniles combined, and by year with samples and age classes combined) and can be found in Appendix 4. Inherent limitations to visual fish sampling techniques in variability in fish abundance with changing physical aspects through the day creates variance in population estimates. Our sampling tries to minimize variability by confining the sampling between 0900 and 1500 hrs. and by sampling each site on at least two different dates. Visibility and surge are measured each time and have not been shown to have any direct affect on population estimates. Daily fluctuations in water mass may cause population fluctuations, increasing variability in abundance estimates. Frequent sampling to overcome this is logistically and economically unfeasable.

Chromis punctipinnis, a planktivore, occurred in higher densities than any other target species. It was most plentiful at the Anacapa Island sites and SCIFH. SCIFH had consistently high densities

of adults. Adults may aggregate prior to breeding in June (North and Hubbs 1968), but numbers observed in early summer at our sites were not consistently greater than numbers observed in late summer. *C. punctipinnis* juveniles were extremely dense at all three Anacapa Island sites in October of 1987, and at SCIFH in August of 1988. *C. punctipinnis* reached it's highest density at 50% of the sites in 1987. The decreased density at SRIJLNO in 1988-1989 may be connected with the reappearance and expansion of the kelp forest.

The overall mean of combined samples for *Oxyjulis californica* was highest at SCIYB. Increased numbers at SRIJLSO coincided with the reappearance of the kelp forest. Densities at SRIJLNO did not parallel the increased kelp densities. Juveniles were noticeably absent from the Santa Cruz Island transects (see also species list).

Sebastes mystinus is one of three rockfish species monitored on fish transects. Few juveniles and no adults were observed at the sites southeast of Fry's Harbor (stations 8-16). SCIGI had consistently high numbers of juveniles in 1985 through 1988. Highest densities for blue rockfish (juveniles and adults combined) were found at SRIRR and SMIHR in 1985 and 1987, and SCIGI in 1987 and 1988.

Sebastes serranoides was most abundant at SMIWL and SMIHR, both in highest recorded densities and overall mean of combined samples from 1985 through 1989. Large numbers of juveniles were seen in July of 1986 at SMIWL, and in July 1988 at SMIWL and SMIHR. This species was not seen at ANILC or the Santa Barbara Island sites.

Sebastes atrovirens was common at the northwestern stations, but was also found at the southern stations including Santa Barbara Island. S. atrovirens showed an increase in density at Johnson's Lee which corresponded to the increase in Macrocystis in 1988. Higher numbers were recorded at SMIHR where there was little algal cover. Juveniles were rarely seen. Highest juvenile numbers were seen at SMIWL and SRIRR in September, 1988.

Paralabrax clathratus was most common in the transition zone especially at SCIFH and SCIPB. The highest densities of *P. clathratus* did not correspond to the years and locations of highest kelp density during the sampling period 1985-1989. Adult kelp bass do not require *Macrocystis* as part of their habitat (Feder et. al., 1974). In fact, total numbers were lower during kelp recovery years (1988, 1989) than the urchin barren years (1985-1987) at SRIJLNO and SRIJLSO.

Semicossyphus pulcher recruited to northern sites in 1984 (Davis 1985). It was thought at that time that the numbers would decrease at these northern sites as sea temperatures declined after the El Niño event. The highest numbers from 1985 to 1989 occurred at SCIFH and ANIAR. The highest densities of males occurred at ANILC. Females were much more abundant overall than males (male/female sex ratios ranged from 1:3 at ANILC to 1:184 at SRIJLNO).

Embiotoca jacksoni exhibited the highest densities at SRIJLNO and SRIJLSO. An abrupt decrease in density occurred in 1988, the year that the kelp forest and associated understory algae returned to Johnson's Lee. This corresponds with an abrupt increase in the density of *E. lateralis*. This data tends to support work (Schmitt and Holbrook 1986, Alevizon 1975, Hixon 1979) which showed that *E. lateralis* excludes most *E. jacksoni* in shallow depths (<6 m) where they are in competition for small crustacea that occur on red algae. Lowest densities of *E. jacksoni* occurred at SBISESL, SBICC, and SCIYB. Juveniles were rarely seen, but when they were seen, it was most often during late summer surveys. *Embiotoca lateralis* was most common at San Miguel and Santa Rosa Island. Density was highest at SMIHR even though this site had the lowest percent cover of algae of sites 1-5.

Hypsypops rubicundus was always present at sites 3, 6-9 and 11-16, and never present at 1,2,4,5 and 10. The most striking aspect of this data set is the lack of variability from year to year at some sites (in particular, ANILC) which may reflect the unchanging nature of the boundaries that this notoriously territorial fish defends.

Girella nigricans was never present on the San Miguel Island transects or at SBISESL. It was always present on the southern transects 11,13,15 and 16. At the transition zone sites 4-7 and 9, 1987 (the year of the mini El Niño) was the year of peak density.

SIZE FREQUENCY DATA:

Beginning in 1985, measurements for size frequency target species (Appx. 5) were obtained at each site. Four species: *Tethya aurantia*, *Pisaster giganteus*, *Pycnopodia helianthoides*, and *Lytechinus anamesus*, were added to the size frequency measurements in 1986. Over 800 size frequency distributions are available in histogram form for species where one dimension was measured. Data for *Allopora*, gorgonians, and *Macrocystis*, (where two or more measurements are taken for each specimen) is still being analyzed. Population age structure, recruitment cohorts, growth and mortality can be traced for some species at most locations (urchins, seastars, *Cypraea*, *Astraea*) while other species exhibited extremely variable population

structures (*Hinnites*, *Megathura*) and/or sample sizes were consistently low (*Kelletia*, *Tethya*), defying interpretation.

Tethya aurantia sample sizes were rarely \geq 10 at any site for all five years of sampling. The best set of records were obtained from SCIYB and SBISESL. Sizes ranged from 15 mm to 94 mm in diameter. Small sizes (<40 mm diameter) were present every year (1986-1989) at SBISESL. Progressively smaller sizes were detected each year from 1986 (minimum size = 36 mm), through 1989 (minimum size = 20 mm), but cohorts were not well defined, and growth rates cannot be determined. Confounding efforts to trace recruitment and growth, propagation in this sponge species can be by sexual as well as by several asexual means of reproduction (Morris, et. al., 1980).

Abalone, *Haliotis spp.*, as mentioned above (see BAND TRANSECTS), underwent declines in density. The only sites where reasonably consistent sample sizes could be obtained were at Anacapa Island for the pink abalone, *Haliotis corrugata*.

ANILC abalone densities were consistently high as a result of legal protection and ease of finding the abalone there. ANILC is the only site where recruitment (26% of the 1987 sample was below 35 mm) and survival to emergent size (\geq 40 mm) was detected. This may suggest that a minimum density of reproductive abalone over a long span (5-10 yrs) of time is essential for recovery of this species. If we estimate the age of 30 mm animals to be approximately one year old (Haaker, et. al. 1986), the density of the adult abalone population (1986) enabling this recruitment was 0.021 m⁻², which is relatively low. In the 1989 surveys, only ANILC, ANIAR, and SMIWL showed densities \geq 0.02 m⁻². Readers are cautioned that pre-emergent abalone (<40 mm) are very difficult to find and inconsistent efforts may have great influence on conclusions regarding recruitment.

In our samples of *Cypraea spadicea*, the population structure was unimodal. The population modes were slightly smaller at southern sites compared with northern sites. The most striking feature of the data set for this species, is the similarity of the population structures regardless of time, location, density and/or changes in densities of associated kelp forest species. Range was usually within 30-56 mm shell length, with an average mode of 42 mm. According to Morris et. al., 1980, *Cypraea spadicea* exhibits quick shell growth to 44 mm and then almost no shell growth, having the ability to dissolve partially or resorb the early whorls, making more room for its body as it ages (Keen, 1971).

At SMIWL, Astraea gibberosa was measured, while A. undosa was measured at all other sites. Diameters for A. gibberosa ranged, on average, between 48 mm and 75 mm for all years at SMIWL. A growth rate of approximately 12 mm/year is inferred from the histograms. A. undosa density/sample sizes are too low/inconsistent at sites 2-5 for analysis. The inferred growth rate at most stations averaged approximately 10 mm/year. Data from SCIFH suggests that growth rates decreased from 16 mm/year to 10 mm/year following the decline of the kelp forest. At SCIPB, where the disappearance of all foliose algae was most abrupt in 1985, the size range of the A. undosa population quickly became concentrated within a smaller size range. At SCISA, the size range gradually narrowed from a spread of 85 mm to 20 mm. SCIYB is unique in that larger sizes (90 mm-140 mm) were well represented in all sampling years (1986-1989). At all other sites, sizes larger than 95 mm occurred infrequently. At ANILC, where algae has been relatively more abundant, growth seemed more rapid (10-20 mm/year) and yet, no large (>94 mm) sizes were present. At SBISESL, there was evidence of good recruitment in 1985 (25% of the sample was near 27 mm). Over time, overall size range decreased and became consolidated between 49 mm and 72 mm, similar to a pattern seen at SCIPB and SCISA. Recruitment occurred at SBIAP in 1985, 1986 and 1989.

At SRIJLNO, *Megathura crenulata* growth rate was slow between 1985 and 1987 (approx. 5 mm/yr), then appeared to increase in 1988 and 1989 when food (algae and tunicates) was more abundant and limpet density was lower. At SCIFH, where food was much less abundant, growth rate was similar (4-8 mm/yr) to that at SRIJLNO prior to the return of the kelp forest. Although good sample sizes were regularly obtained, the histograms were rather amorphous.

Hinnites giganteus measurements are of shell diameter. This scallop is harvested by sport divers and has no minimum size limit. The most complete data are from ANILC, where harvesting is prohibited, seastar populations were low, and scallop densities remained consistently high. The clearest picture of population size distribution there, was obtained in 1987 when the sample size was temporarily doubled (N=62). Sizes ranged from 33 mm-127 mm with a distinct mode at 67 mm. The mode in 1988 was 72 mm, suggesting a growth rate of 5 mm/year.

Measurement for seastars is the arm length taken from the mouth to the tip of the longest ray. Patiria miniata has consistently had the best representation over the widest size ranges in a unimodal population structure at the northwesternmost sites (SMIWL, SMIHR, and SRIRR). Maximum size increased yearly from 1985 through 1989 at SMIWL and SMIHR, and successful recruitments occurred in 1987 through 1989. There was a distinct difference between the population structure of SRIJLNO (depth = 8-12 m) and SRIJLSO (depth = 15-18 m). The deeper, SRIJLSO population was similar in structure to the aforementioned northern sites, while SRIJLNO did not have sample sizes ≥ 10 until 1986, when a small recruitment was detected. By 1987, the population structure at SRIJLNO began to resemble that of the northern sites. It is likely that the quick recovery (1986-1987) was due to immigration from deeper water as well as recruitment and growth of new individuals. As one moves east and south through the sites in the transition zone around Santa Cruz Island and Anacapa Island, densities became progressively lower and sample sizes were progressively poorer over longer time periods. Recruitment took place at SCIPB in 1985 (and 1989) and ANILC in 1987 without subsequent survival and recovery of population densities. Santa Barbara Island had massive recruitments of *Patiria* beginning in 1987 at SBISESL, where over 70% of the population was within 11-35 mm armlength (recovering to a "normal" population structure by 1989). In 1988 at SBIAP, the entire population sample (N=50) was within 8-16 mm arm length. Data for 1989 shows survival and growth [10 mm/yr] of the 1988 cohort, and shows the appearance of some larger [>35 mm] animals.

Pisaster giganteus sizes were often spread out over such a wide range (16-304 mm), that an increase in the target sample size (from 30 to 50) is indicated for future monitoring. Definite recruitment occurred at SMIWL in 1988 (N=32, and 25% of the population was under 29 mm arm length). The population at SMIHR remained fairly stable, with the mode always near 80 mm. Recruitment took place at all three Santa Rosa Island sites in 1989. This recruitment may have been directly related to the return of the kelp forest. Herrlinger et al. (1987) suggest that Pisaster giganteus may specifically recruit to the Macrocystis canopy. The bulk of the populations at sites 1-6 were concentrated below 120 mm arm length. SCIGI showed no recruitment, but was similar in range and mode to stations 1-5. Sites with low *Pisaster* densities (stations 7-16), often had fewer individuals scattered over a wide range of sizes, sometimes followed by recruitment and/or the appearance of populations concentrated within a medium (80 mm-175 mm) size range (SCIFH, SCIYB, SBISESL, SBIAP, and SBICC). The northeastern sites on Santa Cruz Island (SCIPB and SCISA) and Anacapa Island had low seastar densities and small sample sizes. composed of large (> 95 mm-350 mm) individuals. At SBISESL, the population was scattered over a wide range in 1986 (24 mm-145 mm), and was concentrated around a mode of 88 mm by 1989 (range = 53-131 mm, 84% = 67-99 mm). No recruitment was seen at the Anacapa Island or Santa Barbara Island sites.

Sample sizes of *Pycnopodia helianthoides* were ≥ 10 at stations 2-5 between 1987 and 1989. Initially, sizes were scattered over a wide size range (28 mm -310 mm). Recruitment occurred at SRIRR in 1988, and at SMIHR and SRIJLNO in 1989. At SRIJLSO, the population structure went from a wide size range (62 mm-310 mm) to a population, where 94% of the sample was consolidated between 131-179 mm in 1989. SRIRR 1989 data suggest a growth rate of 24 mm/year for this species.

Lytechinus anamesus is a small urchin with a limited size range. Densities were high enough for complete sample sets (1986-1989) at SCIGI, SCIPB, SCIYB, ANIAR, SBISESL, and SBIAP. At each site, population structure was unimodal with the mode and range remaining unchanged, although there are intersite differences. In general, populations at the Santa Cruz and Anacapa Island stations included broader size ranges and larger sizes than the Santa Barbara Island stations. Recruitment was most notable at SCIFH and SCIPB in 1986, ANIAR and SCIGI in 1987, and SCIYB in 1987-88.

There are good data sets for both species of *Strongylocentrotus* for all sampling years at all locations. *Strongylocentrotus franciscanus* is a large, commercially harvested species which can grow to over 160 mm test diameter. The spine canopy of large (≥90 mm) *S. franciscanus* provides a refuge for young urchin recruits (Tegner and Dayton, 1981). According to Ebert (1977), *S. franciscanus* can attain a size of 30 to 40 mm during their first year. In our samples, urchins less than 30 mm represent the young of the year. The commercially harvested size range (≥ 90 mm test diameter) was absent at sites 1-5, with the exception of SRIJLSO, where 10% of the population was greater than 90 mm. In recent years, the bulk of the populations at sites 1-6 was below 50 mm test diameter. At SCIGI, sizes greater than 41 mm comprised only 9% of the population in 1988, and in 1989 the entire population was below 40 mm.

Red urchin recruitment occurred at most sites in 1985. At SCIFH and SCIYB and all three Anacapa Island stations, where sizes larger than 90 mm had not been totally extirpated, recruitment was frequent. At ANILC, which is protected from legal harvesting, recruitment sizes (<25 mm) were consistently present every year from 1985-1989, and the bulk of the population was greater than 90 mm. At most sites, growth was approximately 20 to 30 mm/year until 70 mm test diameter. The growth rate at ANILC was high, with the recruitment cohort of 1985 growing approximately 40 mm by 1986. At SCIPB and SCISA, where urchin barrens prevail, growth rates of red urchins slowed to 10 mm per year, and the bulk of the population remained less than 50 mm in diameter. At the urchin barrens at Santa Barbara Island, this pattern was repeated with large sizes present but not abundant. There was regular recruitment, and growth slowed over time. Few survivors remained above 50 mm test diameter, with the bulk of the population skewed towards the smaller sizes. The typical bimodal population structure model described by Tegner and Dayton (1981) which existed for S. franciscanus at deep (18 m) urchin beds at Point Loma, was occasionally reflected by our data. At some sites, the 40-90 mm size range predicted by Tegner and Dayton's model (1981) to be eliminated by predators has become a distinct mode instead.

The population structure of *Strongylocentrotus purpuratus* was typically unimodal, with sizes ranging from 4 to 80 mm test diameter. At locations where exceptionally large recruitment occurred, population structures showed a temporary bimodality. *S. purpuratus* grow 25 mm in their first year, and sizes less than 20 mm test diameter are considered the young of the year (Ebert, 1977). Recruitment of *S. purpuratus* was annual at most sites. Extraordinarily large recruitment occurred at some sites.

At sites where *S. purpuratus* densities had been the highest for the most prolonged periods (see QUADRATS; SRIJLNO, SCIGI, SCIPB, SCISA, SBISESL, SBIAP, and SBICC) there was a progressive decrease in the maximum sustainable size. In addition to this, the growth rate slowed to possibly as little as 3 mm/yr until, at densest sites, over half of the population was concentrated below 30 mm test diameter. There is a possibility that negative growth occurred. The higher the urchin density, the slower the growth rate and the lower the maximum supportable/sustainable size. The exception to this generalization occurred at SBIAP, which in 1986, had the highest density of any site (154 purple urchins m⁻²). Data show that during this year almost 90% of the population was within the 7-11 mm size range. This incredibly huge cohort survived and grew approximately 7-12 mm/year. At ANILC, where urchin predator populations remained high, algae abundant, and urchin density low, the mean size (40 mm) of *S. purpuratus* was almost double that seen at sites with urchin barrens (example: at SBIAP the average mean test diameter was 19 mm).

Table 4. Locations and years where population structures of *Strongylocentrotus franciscanus* reflected the bimodality described by Tegner and Dayton (1981); "...juveniles (up to 40mm) are protected by the spine canopies of adults, urchins of intermediate size (50-80 mm) are very vulnerable to predators and large adults (>90 mm) attain a partial refuge in size".

LOCATION	YEAR	+% 0F POPULATION	
		< 40 mm	> 90 mm
SRIJLNO	1989	16%	40%
SRIJLSO	1985	51%	10%
	1989	53%	9%
SCIGI	1985	24%	38%
	1986	66%	14%
	1987	50%	17%
SCIFH	1986	57%	16%
SCIYB	1989	66%	16%
ANICC	1985	7%	52%
	1986	45%	33%
	1988	37%	58%
	1989	19%	40%

ANILC	1985	34%	50%
	1986	3%	70%
	1987	2%	67%
	1989	27%	47%
SBISESL	1985	63%	12%
	1986	77%	5%
	1987	83%	6%
	1988	91%	3%
	1989	77%	9%
SBIAP	1985	82%	13%
	1986	57%	8%
	1987	43%	8%

Table 5. Locations and years where recruitment size (≤ 20mm test diameter) *Strongylocentrotus purpuratus* comprised more than 25% of the total *S. purpuratus* population.

LOCATION	YEAR	% OF POPULATION RE < 20mm TEST DIAMETER	ECRUITMENT SIZE RANGE
SMIHR	1985	74%	10-20mm
SRIJLNO	1989	21%	6-20mm
SRIJLSO	1985	35%	5-19mm
SRIRR	1987	30%	3-17mm
SCIGI	1986 1988	75% 57%	3-17mm 6-16mm
SCIFH	1985 1986	21% 68%	5-19mm 10-20mm
SCIPB	1987	44%	15-21mm
SCISA	1986	35%	10-20mm
SCIYB	1989	30%	8-18mm
	1987 1989	40% 42%	2-20mm 5-19mm
ANILC	1985 1989	44% 26%	4-18mm 5-19mm
SBISESL	1985 1986 1987 1988 1989	64% 88% 59% 33% 54%	3-17mm 3-17mm 5-19mm 7-17mm 7-17mm
SBIAP	1985 1986 1987 1989*	64% 87% 87% 46%	3-17mm 5-19mm 6-20mm 3-17mm
SBICC	1986	62%	2-20mm

SPECIES LIST:

Comprehensive species lists were compiled for monitoring sites and a limited number of other locations during Kelp Forest Monitoring cruises for the years 1982 through 1989. Only a combined list of species noted as present at each monitoring site is included here (Appx. 6). Lists for each year are available with relative abundance information. Compilation of thorough species lists at each location was dependent upon the monitoring crew's ability to identify over 1,000

possible species known to be associated with kelp forests. Species composition varied from site to site because of many factors including, but not limited to; biogeographical location, variability of habitat, proximity to currents and/or upwelling, exposure to wave action, light availability, and depth. Time allotted to the species list surveys was often limited. Given the variability in diver effort and the fact that the kelp forest surveys are annual, the temporal changes of each particular species are hard to trace and the appearance of seasonal, ephemeral species may be missed entirely. Those trends that can be traced are fascinating and enlightening, and pose a whole new set of questions for graduate students, researchers and scientists to answer.

The sixteen kelp forest monitoring sites were initially established in kelp forests. The species lists for 1982 show an absence of ephemeral algae species (i.e. *Ulva*, *Colpomenia*, *Giffordia*), predominance of perennials (i.e. *Gigartina*, *Rhodymenia*, and articulated corallines), and a low algal diversity indicative of mature kelp forests (Foster, 1975). After the disappearance of the kelp forests at most sites in 1984-1985, the vast extent of this clearance and the development of high urchin densities precluded the stages of algal succession known from much smaller, experimentally cleared patches and settlement experiments. As noted by North (1971), the recovery of kelp forests that have been reduced to barrens does not follow a classic, well-defined ecological succession. When urchin populations are sufficiently reduced (by predation, starvation, disease or migration) to permit algal recruitment, *Macrocystis* will not necessarily be the climax species. Although many similarities between our sites have been noted, the species composition and interaction within each site is unique and is in constant flux. The sites we have chosen to discuss were those from each island that have the most complete records.

At SMIWL, foliose red algae species were equally plentiful and even more diverse in 1988 than in 1982. Although algal density has fluctuated over the years, the diversity of algae, especially foliose reds, has always remained high at this site. The ephemeral *Desmarestia ligulata* was present every year, showing biennial percent cover peaks (see RPC's) which exceeded 70% in 1988. *Cryptolithodes sitchensis* is an example of a species typical of the Oregonian biogeographical province that was seen at this site and at no other. Unlike other sites, *Cancer* spp. were apparent every year and probably played an important role as urchin predators. The only other site where urchin densities were this low ($\leq 3 \text{ m}^{-2}$) was ANILC, which has a large population of another urchin predator, *Panulirus interruptus*.

Kelp curlers, a type of gammarid amphipod, were observed in 1989 at SMIWL. This amphipod was probably responsible for the poor condition of *Macrocystis* at that site. Kelp curlers were implicated in the kelp bed degradation at San Nicholas Island earlier that year (R. McPeak, pers.

comm.). In 1988, SRIJLNO had very large numbers of *Idotea resecata*, an isopod that feeds on the upper fronds of kelp. That outbreak apparently had no effect on the overall kelp bed however.

SMIHR had an algal assemblage very similar to SMIWL when it was established in 1982, but by 1983, most foliose algae had been much reduced or eliminated. By 1986 only eight types of algae were noted where once there had been at least twenty three. In 1984, the exposed substrate was temporarily colonized by rapid growing ephemeral algae; Giffordia/Ectocarpus, Bryopsis corticulans, Ulva sp. Cladophora graminea and Codium fragile were present as well. Since 1985, when green algae was added as an RPC category, percent cover has rarely risen above two percent at any other monitoring site, but in 1988, SMIHR had a uniquely high (8%) cover of green algae. The 1988 species list noted Ulva sp. as "common" and in addition to the ephemerals seen in 1984, Colpomenia sp., Desmarestia ligulata and fourteen species of foliose red algae species were noted. The algal density remained low (see RPC's and QUADRATS), but diversity greatly increased. The three primary factors which have led to kelp recovery at other sites are present at SMIHR: location within the boreal or transition zone; increased density and diversity of urchin-eating sea stars, especially Pycnopodia helianthoides; and reduced densities of the purple urchin, Strongylocentrotus purpuratus (from 44 m⁻² in 1986 to 8.2 m⁻² in 1988). But, this site has a unique, high density of the red urchin, S. franciscanus which has a marked preference for brown algae. The opaleye, Girella nigricans, which selectively grazes upon Ulva sp. (Leighton, 1971) has not been seen at SMIHR. There was a curious appearance of Pteropurpura trialata in 1986 which coincided with the peak in percent cover of Serpulorbis squamigerus (see RPC's), one of it's food items (Morris et al.,1980).

At SRIJLNO and SRIJLSO, the kelp forests which had disappeared by 1987, had fully returned by 1988. These two sites and the third Santa Rosa Island site, SRIRR, seem to have come the closest to reaching species compositions similar to what they were in 1982. The diversity of understory algae at SRIJLNO was higher in 1988 than 1982 which is an indication of the nascence of this kelp forest. As these kelp forests mature, we could anticipate that the diversity of the understory algae would decrease. Carpeting the substrate at these three sites were small cucumbers, *Cucumaria spp.* and *Pachythione rubra*. In 1985, SRIJLNO had a massive, temporary colonization by *Phragmatopoma californica* (see RPC's), and a temporary disappearance of the carpeting cucumbers.

At SCIPB, where almost all foliose algae disappeared in 1985, a noticeable rise in the number of algal species occurred from 12 in 1987 to 25 in 1988. This approaches the 31 species identified in 1982. Once again, as with other sites where urchin densities recently declined, ephemeral algae were present, diversity of all algae increased, but density (judged from species list field

ratings and RPC's) remained low. *Spirobranchus spinosus* was consistently present from 1982 to 1989. The increase in the miscellaneous invertebrate category (RPC's) in 1988 can be partly attributed to a settlement of the small white barnacle, *Tetraclita elegans*. Pelagic red crabs, *Pleuroncodes planipes*, (a southern, warm water species) were abundant in 1984 and noted in the mini-El Niño year of 1987.

At ANICC, where the decline in foliose algae following the El Niño event were more gradual than at most other sites, algal diversity gradually increased from 1983-1986, but by 1988, density was lowest of all years and diversity had declined below 1983 levels. In 1984, the peak in "miscellaneous invertebrates" was due to a settlement of *Tetraclita elegans*, which disappeared by 1986 and then reappeared in 1988. The spiny lobster, *Panulirus interruptus*, while present on band transects in varying numbers, has usually been rated "common" on species lists. Conversely, numbers and diversity of seastars were low at ANICC.

PHOTOGRAMMETRIC SAMPLING:

Photogrammetry is the process of surveying an area using photography. As used by the Kelp Forest Monitoring (KFM) project this technique means taking 80 underwater photographs of the same portion of the substrate at each of our 16 sites. The original purpose was to measure the densities of selected invertebrates and algae. Because of the relatively high accuracy and efficiency of the manual counts obtained by Quadrat sampling however, photogrammetry has become more of a visual backup for supporting conclusions or trends found in other data. It also continues to provide a permanent record of a part of each site.

In 1988 no photogrammetric samples were taken due to mechanical problems with the cameras.

In 1989, 11 of the 16 sites were sampled completely. At SBICC, the four permanent reference stakes could not be found. The other 4 sites (SMIHR, SMIWL, SCIFH, ANICC) were attempted but not completed because of various mechanical problems.

The data that were successfully collected do provide additional evidence for trends shown by the Quadrat sampling and Random Point Contacts.

In 1989, at Johnson's Lee North, *Macrocystis* or other macroalgae were present in all 80 plots; no urchins were visible in any. However, in 1987 and 1986 the opposite situation prevailed. No macroalgae were detectable in the grids, while urchins were in all of them in 1986 and in 63 out of

80 in 1987. This supports the Quadrat results as well as casual observation that this site, once an 'urchin barren', has recovered and is now a healthy Kelp Forest.

Scorpion Anchorage shows the continued dominance of urchins (mostly *Strongylocentrotus purpuratus*) and the absence of macroalgae through 1986, 1987, and 1989. This is additional support for the conclusion reached by other methods that this site has remained in the barren state.

The Photogrammetric sampling technique was originally devised for use in a Coral Reef habitat and certain characteristics encountered in our area make it more problematic here. Frequent swells often cause strong surge which can stir up sand and fine sediments, but more importantly can dramatically alter the amount of algae visible in any particular grid. Since this surge is not a constant unidirectional force there seems to be no way to balance out it's effects.

The desirability of having a chronological visual record of changes in benthic flora and fauna to examine makes the Photogrammetric approach worth continuing, but the problems mentioned above warrant a more limited use of it. Some sites have been historically troublesome, others have consistently given good, clear photos.

Based on this qualitative survey of past results it can be recommended that SMIWL, SCIYB, SCIPB, and SBICC be dropped from future photogrammetric data collections. The SRIJLNO site might also be dropped as slightly better results have been achieved at the SRIJLSO site and the northern site grid may therefore be redundant. Reducing the number of photogrid sites would increase efficiency by freeing up man hours, reduce the risk of equipment damage, and lower the quantity of film used.

Table 6. Photogrammetric Quality Ratings for all stations between 1983 and 1989.

Station			Year	r			
SMIWL SMIHR SRIJLN SRIJLS SRIRR SCIGI SCIFH SCIPB SCISA SCIYB ANIAR ANICC ANILC SBISESL SBIAP	1983 * G G,A(S) P,A,S,I G(D) G(S) D(B) P-F(S) P,M * * D G,A G(D) G(S)	1984 F-P,S G * G-F G(S) G(B)I G,A G * G(B)A G G,A,I G	1985 F-P(S) * F(S) P-F,S G F(S) * * * G,A * G,A F(S) P,S	1986 G,A G G G G G,D,B G G * * * G-F(B) G,D,A G(D,B) G	1987 F,S G,D G-P,S G G G(D) F,D,B(S) G-F(S,D) P-F(S)D F-P,A(S) F,D G(D)B G,A(D) F,S G(D)	1988 * * * * * * * * * * * * *	1989 I,P I,P G,A G,A F-P,I G G(B)I * G(B) P G,D(B) * G,D,A P(B)I G
SBICC	*	*	*	G,D	G-F	*	*

KEY: D=dark B=bould

B=boulders with shadows

M=murky

S=sand or sediment in water column

A=algae, thick understory

G=good visibility

F=fair visibility

P=poor visibility

I=incomplete, missing more than three slides

()=some slides show this condition

^{*=}photos not available

OCEANOGRAPHIC DATA:

Data reduction of oceanographic data was performed under contract to the NPS by Marine Resource Consultants, of Santa Barbara, under the direction of L. E. Fausak. Lists of deployment dates and data recovered are presented in Appendix 7 along with a few example plots. Complete listings of the data along with dBase III+ data files on 5½ inch floppy disks can be found in Fausak (1989).

CONCLUSION

Because data from this ongoing monitoring study date back to 1982, we have a fascinating record of the profound and unique impact that El Niño had on the kelp forest community species at each of the different sites. We can trace the reduction of lush forests to urchin barrens and then the reestablishment and recovery (or absence of recovery) of each target species. An explosive recovery of sea star populations from the devastating "wasting disease" of the early 1980's is now evident as well as a recent dramatic decline in subtidal abalone species numbers which coincides with the massive die-off of intertidal black abalone. The Kelp Forest Monitoring Program provides us with a priceless body of information which adds to and clarifies our understanding of kelp forest ecosystems.

The California Channel Islands are very complicated biogeographically. Though a relatively small area, wide biogeographic changes occur through the chain. Although the islands lie west-east, it is easier to think of them as a north south chain when relating them to the mainland. Distribution of fishes demonstrate this best. Rockfish and striped surfperch are abundant at San Miguel Island and Santa Rosa Island to the north and fade out to the south. *Paralabrax* (and *Semicossyphus*) are most abundant in the transition zone while garibaldi are most abundant in the south and rare or absent at San Miguel Island and Santa Rosa Island. Some invertebrates and algae also show these patterns. During climatic events, such as El Niño, the usual distributions may shift and species not usually seen in our area may appear at the edges.

Indirect effects of disturbance or community shifts may occur several years after the initial perturbation. For example kelp bass and señorita wrasse adults do not depend on kelp, however their juveniles do. Population changes are not immediately apparent as the adult population may remain at high levels before the effects of poor recruitment become obvious.

From the data we can see that there is considerable variability among years and between stations. Differences between years were most dramatic when a site shifted between urchin and kelp domination. The variation between sites is apparent in their response to the El Niño events

of the mid-1980's. Many sites lost their kelp forest, becoming urchin dominated. Since then, for example, sites at Johnson's Lee, Santa Rosa Island have recovered while at Cat Canyon, Santa Barbara Island the community shifted from healthy kelp forest to urchin barren during the same time. Other sites at Anacapa Island and Wyckoff Ledge, San Miguel Island maintained kelp forests through the 1980's, while sites at Santa Cruz and Santa Barbara Islands shifted to urchin barrens and showed little sign of recovery. These examples show that we cannot afford to sample less.

In order for a long-term monitoring program to survive it must be able to adapt to make use of improved techniques and to follow biological changes not foreseen during the project design. When adding new techniques, considerations for meshing with the old data are important. When deciding to drop a technique or index species, considerations regarding the value of the data, reasons for original inclusion, and the possibility of changes where it will be needed in the future, need to be studied carefully. A recommendation made here is to convene a workshop of interested biologists (preferably including those involved with the project design) to evaluate the techniques and species selections. The goal of this workshop would be to evaluate the efficacy of the different monitoring techniques, discuss improvements in sampling, and the value of incomplete data, as in some size frequencies. (Note: this workshop was held in 1995, see Davis et al. 1996).

It has become apparent that our limited, annual sampling of size frequencies is not frequent enough, nor sample sizes large enough, to clearly follow growth and mortality of cohorts in some species. The value of these problematic species as target species for this sampling technique must be reassessed. Since increasing the frequency of sampling is not feasible, we recommend increasing the minimum sample sizes or dropping some species altogether (to devote more time to sampling other species). Those species dropped could be added again if population sizes allowed larger samples. The problem with eliminating a target species from any monitoring project is the possibility that population recovery cycles are long-term, the current data set has been obtained during the apogee in a particular species' cycle, and that the valuable detection of recruitment leading to a recovery on density surveys (i.e. abalone) will be missed.

We need new methods that will give better information on recruitment without destructive sampling of the bottom, and can be sampled in a fashion that is more repeatable than what is done in size frequencies now. Recruitment is important for understanding past events and for predicting future trends. There is still much to be learned about population dynamics. For example, it appears that successful recruitment does not occur every year in many species, and this may have important implications to fisheries management.

ACKNOWLEDGEMENTS

The design of this ecological program was supported by the National Park Service in cooperation with the California Department of Fish and Game and the U.S. Department of Commerce, National Oceanographic and Atmospheric Administration, Marine Sanctuary Program. We are deeply indebted to the many divers who have participated in this endeavor. Of particular note were the sustained efforts of T.W. Anderson, D.C. Canestro, M.D. Conlin, J.M. Engle, D. Forcucci, D. Heilprin, T.J. Herrlinger, S.L. Kim, J.D. Lewis, M. McNulty, and J.W. Trone. Their broad experience and hard work made this program possible. We also appreciate the efforts of C. Bird, R. Bidwell, J. Provo, D. Richardson, D. Stoltz, and D. Willey for supporting us on the boats and keeping us afloat. Any errors or omissions in this report are those of the authors.

Table 7. Kelp Forest Monitoring Project participating divers, 1982-1989.

PARTICIPANTS	<u>AFFILIATION</u>	<u>YEARS</u>
Anderson, Todd	Channel Islands National Park*	84,85
Barnett, Dale	Yosemite National Park	83
Barsky, Kristine	Calif. Fish & Game	83-89
Barsky, Steve	Diving Systems Intl./VIKING	83-89
Bessett, Bob	Channel Islands National Park	84,85
Bidwell, Randy	Channel Islands National Park	89
Bjork, Jennifer	Southwest Regional Office	86
Blanchard, Linda	Orange County Marine Institute	89
Brannen, Jim	Moss Landing Marine Lab	83
Bretz, Carrie	Moss Landing Marine Lab	89
Buckley, Ray	Washington Dept. of Natural Res.	84
Bullard, Kent	Channel Islands National Park	83,84
Buttolph, Phil	Humboldt State University	88
Canestro, Don	Channel Islands National Park*	85,86
Coehlo, Don	Yosemite National Park	83
Conlin, Mark	Channel Islands National Park*	82-84
Conway, Mike	Santa Barbara City College	89
Cox, Tom	Channel Islands National Park	85
Coyer, Jim	Marymont College	85
Damico, Ronnie	Calif. State Univ. Long Beach	83,86,87
Daley, John	Yosemite National Park	83
Danno, Rob	Channel Islands National Park	88
Davis, Gary	Channel Islands National Park*	82-89
De Silva, Federico	U C Santa Barbara	89
Denega, Mike	Placerville Junior College	87
Divins, Dennis	U C Santa Barbara	87,88
Dixon, Mike	Yosemite National Park	83,85
Dodd, Thom	Santa Cruz	87-89
Donnemeyer, Jeff	Carlton College	83
Dougler, Hugh	Yosemite National Park	87
Dow, Ron	Point Mugu Test Center	84
Doyle, Lucy	Channel Islands National Park*	84
Duffy, John	Calif. Fish & Game	85,86
Eichenhorst, Jay	Golden Gate Natl Rec. Area	86
Ehorn, William	Channel Islands National Park	83,87
Engle, Jack	Channel Island Research Program*	83-86,88
Even, Carla	U C Santa Cruz	87
Farley, Corky	Channel Islands National Park	87,88
Feser, Larry	Lassen Volcanic National Park	83,85
Forcucci, Dave	Channel Islands National Park*	86-88
Given, Pat	Channel Islands National Park	83,86
Golden, Marty	Minerals Management Service	85,87
Gotshall, Dan	Calif. Fish & Game	83-86
Gramlich, Constance	Channel Islands National Park*	88-89
Grimm, Brigit	Moss Landing Marine Lab	86
Green, Diane	Channel Islands National Park	89
Haaker, Pete	Calif. Fish & Game	83-89
Halvorson, Bill	Channel Islands National Park	84,85
Hansch, Susan	Calif. Coastal Comm.	85
···, - ····		

Table 7. continued.

PARTICIPANTS	<u>AFFILIATION</u>	<u>YEARS</u>
Hardwick, Jim	Calif. Fish & Game	88
Heilprin, Daniel	Channel Islands National Park*	88,89
Heine, John	Moss Landing Marine Lab	85
Herrlinger, Tim	Channel Islands National Park*	82-83
Hill, Kevin	Moss Landing Marine Lab	83
Hill, Maurice	Mineral Management Service	85
Hocking, Richard	Seattle Aquarium	85,87
Hoffman, Bob	National Marine Fisheries Service	83
Inman, Bud	Lake Mead Natl. Rec. Area	86
Jackson, Annette	San Diego Zoo	89
Johnson, Craig	Channel Islands National Park	88,89
Johnston, Karen	Channel Islands National Park	83,84
Kelly, Dexter	Greater L A Council of Divers	87
Kelly, Steve	Lassen Volcanic National Park	83
Kim, Stacey	Channel Islands National Park*	85,86
Kunzman, Mike	University of Arizona-CPSU	33,33
Lang, Mike	Calif. State Univ. San Diego	84,86
Laurendine, Waring	Moss Landing Marine Lab	86
Lind, Terry	Haleakala National Park	84
Laurent, Bud	Calif. Fish & Game	83,84,86-89
Lea, Bob	Calif. Fish & Game	83
Lesko, Russ	Lassen Volcanic National Park	84
Loach, Jim	Yosemite National Park	83
Lewis, Greg	rosernite National Fark	85
Lewis, Greg Lewis, Jonathon	Channel Islands National Park*	82
	Calif. Fish & Game	
Lewis, Robin		86
N/lortin lim	Channel Islanda National Bark	96
Martin, Jim	Channel Islands National Park	86 95 97
Matthews, Feney	Univ. Washington	85,87
Matthews, Feney McAlister, Bob	Univ. Washington Calif. Fish & Game	85,87 88
Matthews, Feney McAlister, Bob McAlary, Flo	Univ. Washington Calif. Fish & Game Cypress College	85,87 88 83,84,89
Matthews, Feney McAlister, Bob McAlary, Flo McCluskey, Reed	Univ. Washington Calif. Fish & Game Cypress College Channel Islands National Park	85,87 88 83,84,89 84,85
Matthews, Feney McAlister, Bob McAlary, Flo McCluskey, Reed McCullough, Jim	Univ. Washington Calif. Fish & Game Cypress College Channel Islands National Park U C Santa Barbara	85,87 88 83,84,89 84,85 84
Matthews, Feney McAlister, Bob McAlary, Flo McCluskey, Reed McCullough, Jim McNulty, Mike	Univ. Washington Calif. Fish & Game Cypress College Channel Islands National Park U C Santa Barbara Channel Islands National Park*	85,87 88 83,84,89 84,85 84 88-89
Matthews, Feney McAlister, Bob McAlary, Flo McCluskey, Reed McCullough, Jim McNulty, Mike McPeak, Ron	Univ. Washington Calif. Fish & Game Cypress College Channel Islands National Park U C Santa Barbara Channel Islands National Park* KELCO	85,87 88 83,84,89 84,85 84 88-89 83-85,88
Matthews, Feney McAlister, Bob McAlary, Flo McCluskey, Reed McCullough, Jim McNulty, Mike McPeak, Ron Menard, Yvonne	Univ. Washington Calif. Fish & Game Cypress College Channel Islands National Park U C Santa Barbara Channel Islands National Park* KELCO Channel Islands National Park	85,87 88 83,84,89 84,85 84 88-89 83-85,88 88
Matthews, Feney McAlister, Bob McAlary, Flo McCluskey, Reed McCullough, Jim McNulty, Mike McPeak, Ron Menard, Yvonne Meyer, Dave	Univ. Washington Calif. Fish & Game Cypress College Channel Islands National Park U C Santa Barbara Channel Islands National Park* KELCO Channel Islands National Park San Gabriel Schoolteacher	85,87 88 83,84,89 84,85 84 88-89 83-85,88 88 88,89
Matthews, Feney McAlister, Bob McAlary, Flo McCluskey, Reed McCullough, Jim McNulty, Mike McPeak, Ron Menard, Yvonne Meyer, Dave Miller, Kathy-Ann	Univ. Washington Calif. Fish & Game Cypress College Channel Islands National Park U C Santa Barbara Channel Islands National Park* KELCO Channel Islands National Park San Gabriel Schoolteacher U C Berkeley	85,87 88 83,84,89 84,85 84 88-89 83-85,88 88 88,89 84,86
Matthews, Feney McAlister, Bob McAlary, Flo McCluskey, Reed McCullough, Jim McNulty, Mike McPeak, Ron Menard, Yvonne Meyer, Dave Miller, Kathy-Ann Miller, Roy	Univ. Washington Calif. Fish & Game Cypress College Channel Islands National Park U C Santa Barbara Channel Islands National Park* KELCO Channel Islands National Park San Gabriel Schoolteacher U C Berkeley Lake Mead Natl. Rec. Area	85,87 88 83,84,89 84,85 84 88-89 83-85,88 88 88,89 84,86 85,87-89
Matthews, Feney McAlister, Bob McAlary, Flo McCluskey, Reed McCullough, Jim McNulty, Mike McPeak, Ron Menard, Yvonne Meyer, Dave Miller, Kathy-Ann Miller, Roy Mitchell, Chuck	Univ. Washington Calif. Fish & Game Cypress College Channel Islands National Park U C Santa Barbara Channel Islands National Park* KELCO Channel Islands National Park San Gabriel Schoolteacher U C Berkeley Lake Mead Natl. Rec. Area Marine Biological Consultants	85,87 88 83,84,89 84,85 84 88-89 83-85,88 88 88,89 84,86 85,87-89 85
Matthews, Feney McAlister, Bob McAlary, Flo McCluskey, Reed McCullough, Jim McNulty, Mike McPeak, Ron Menard, Yvonne Meyer, Dave Miller, Kathy-Ann Miller, Roy Mitchell, Chuck Moreno, Guillermo	Univ. Washington Calif. Fish & Game Cypress College Channel Islands National Park U C Santa Barbara Channel Islands National Park* KELCO Channel Islands National Park San Gabriel Schoolteacher U C Berkeley Lake Mead Natl. Rec. Area Marine Biological Consultants Moss Landing Marine Lab	85,87 88 83,84,89 84,85 84 88-89 83-85,88 88 88,89 84,86 85,87-89 85
Matthews, Feney McAlister, Bob McAlary, Flo McCluskey, Reed McCullough, Jim McNulty, Mike McPeak, Ron Menard, Yvonne Meyer, Dave Miller, Kathy-Ann Miller, Roy Mitchell, Chuck Moreno, Guillermo Morris, Don	Univ. Washington Calif. Fish & Game Cypress College Channel Islands National Park U C Santa Barbara Channel Islands National Park* KELCO Channel Islands National Park San Gabriel Schoolteacher U C Berkeley Lake Mead Natl. Rec. Area Marine Biological Consultants Moss Landing Marine Lab Channel Islands National Park	85,87 88 83,84,89 84,85 84 88-89 83-85,88 88 88,89 84,86 85,87-89 85 89 84,86
Matthews, Feney McAlister, Bob McAlary, Flo McCluskey, Reed McCullough, Jim McNulty, Mike McPeak, Ron Menard, Yvonne Meyer, Dave Miller, Kathy-Ann Miller, Roy Mitchell, Chuck Moreno, Guillermo Morris, Don Moylan, Tom	Univ. Washington Calif. Fish & Game Cypress College Channel Islands National Park U C Santa Barbara Channel Islands National Park* KELCO Channel Islands National Park San Gabriel Schoolteacher U C Berkeley Lake Mead Natl. Rec. Area Marine Biological Consultants Moss Landing Marine Lab Channel Islands National Park Orange County Marine Institute	85,87 88 83,84,89 84,85 84 88-89 83-85,88 88 88,89 84,86 85,87-89 85
Matthews, Feney McAlister, Bob McAlary, Flo McCluskey, Reed McCullough, Jim McNulty, Mike McPeak, Ron Menard, Yvonne Meyer, Dave Miller, Kathy-Ann Miller, Roy Mitchell, Chuck Moreno, Guillermo Morris, Don Moylan, Tom Neubacher, Don	Univ. Washington Calif. Fish & Game Cypress College Channel Islands National Park U C Santa Barbara Channel Islands National Park* KELCO Channel Islands National Park San Gabriel Schoolteacher U C Berkeley Lake Mead Natl. Rec. Area Marine Biological Consultants Moss Landing Marine Lab Channel Islands National Park Orange County Marine Institute Point Reyes National Seashore	85,87 88 83,84,89 84,85 84 88-89 83-85,88 88 88,89 84,86 85,87-89 85 89 84,86 88,89 84,86
Matthews, Feney McAlister, Bob McAlary, Flo McCluskey, Reed McCullough, Jim McNulty, Mike McPeak, Ron Menard, Yvonne Meyer, Dave Miller, Kathy-Ann Miller, Roy Mitchell, Chuck Moreno, Guillermo Morris, Don Moylan, Tom Neubacher, Don Newbold, Robin	Univ. Washington Calif. Fish & Game Cypress College Channel Islands National Park U C Santa Barbara Channel Islands National Park* KELCO Channel Islands National Park San Gabriel Schoolteacher U C Berkeley Lake Mead Natl. Rec. Area Marine Biological Consultants Moss Landing Marine Lab Channel Islands National Park Orange County Marine Institute Point Reyes National Seashore Saddleback College	85,87 88 83,84,89 84,85 84 88-89 83-85,88 88 88,89 84,86 85,87-89 85 89 84,86 88,89
Matthews, Feney McAlister, Bob McAlary, Flo McCluskey, Reed McCullough, Jim McNulty, Mike McPeak, Ron Menard, Yvonne Meyer, Dave Miller, Kathy-Ann Miller, Roy Mitchell, Chuck Moreno, Guillermo Morris, Don Moylan, Tom Neubacher, Don Newbold, Robin Nikevich, Dan	Univ. Washington Calif. Fish & Game Cypress College Channel Islands National Park U C Santa Barbara Channel Islands National Park* KELCO Channel Islands National Park San Gabriel Schoolteacher U C Berkeley Lake Mead Natl. Rec. Area Marine Biological Consultants Moss Landing Marine Lab Channel Islands National Park Orange County Marine Institute Point Reyes National Seashore Saddleback College Channel Islands Research Program	85,87 88 83,84,89 84,85 84 88-89 83-85,88 88 88,89 84,86 85,87-89 85 89 84,86 88,89 84,86 88,89 84,86
Matthews, Feney McAlister, Bob McAlary, Flo McCluskey, Reed McCullough, Jim McNulty, Mike McPeak, Ron Menard, Yvonne Meyer, Dave Miller, Kathy-Ann Miller, Roy Mitchell, Chuck Moreno, Guillermo Morris, Don Moylan, Tom Neubacher, Don Newbold, Robin Nikevich, Dan Nishimoto, Mary	Univ. Washington Calif. Fish & Game Cypress College Channel Islands National Park U C Santa Barbara Channel Islands National Park* KELCO Channel Islands National Park San Gabriel Schoolteacher U C Berkeley Lake Mead Natl. Rec. Area Marine Biological Consultants Moss Landing Marine Lab Channel Islands National Park Orange County Marine Institute Point Reyes National Seashore Saddleback College Channel Islands Research Program Moss Landing Marine Lab	85,87 88 83,84,89 84,85 84 88-89 83-85,88 88 88,89 84,86 85,87-89 85 89 84,86 88,89 84,86 88,89 84
Matthews, Feney McAlister, Bob McAlary, Flo McCluskey, Reed McCullough, Jim McNulty, Mike McPeak, Ron Menard, Yvonne Meyer, Dave Miller, Kathy-Ann Miller, Roy Mitchell, Chuck Moreno, Guillermo Morris, Don Moylan, Tom Neubacher, Don Newbold, Robin Nikevich, Dan Nishimoto, Mary Owen, Sandy	Univ. Washington Calif. Fish & Game Cypress College Channel Islands National Park U C Santa Barbara Channel Islands National Park* KELCO Channel Islands National Park San Gabriel Schoolteacher U C Berkeley Lake Mead Natl. Rec. Area Marine Biological Consultants Moss Landing Marine Lab Channel Islands National Park Orange County Marine Institute Point Reyes National Seashore Saddleback College Channel Islands Research Program Moss Landing Marine Lab Calif. Fish & Game	85,87 88 83,84,89 84,85 84 88-89 83-85,88 88 88,89 84,86 85,87-89 85 89 84,86 88,89 84,86 88,89 84,86
Matthews, Feney McAlister, Bob McAlary, Flo McCluskey, Reed McCullough, Jim McNulty, Mike McPeak, Ron Menard, Yvonne Meyer, Dave Miller, Kathy-Ann Miller, Roy Mitchell, Chuck Moreno, Guillermo Morris, Don Moylan, Tom Neubacher, Don Newbold, Robin Nikevich, Dan Nishimoto, Mary Owen, Sandy Patterson, Leslie	Univ. Washington Calif. Fish & Game Cypress College Channel Islands National Park U C Santa Barbara Channel Islands National Park* KELCO Channel Islands National Park San Gabriel Schoolteacher U C Berkeley Lake Mead Natl. Rec. Area Marine Biological Consultants Moss Landing Marine Lab Channel Islands National Park Orange County Marine Institute Point Reyes National Seashore Saddleback College Channel Islands Research Program Moss Landing Marine Lab Calif. Fish & Game Channel Islands National Park	85,87 88 83,84,89 84,85 84 88-89 83-85,88 88 88,89 84,86 85,87-89 85 89 84,86 88,89 84,86 88,89 84,86 88,89 84,86 88,89 84,86
Matthews, Feney McAlister, Bob McAlary, Flo McCluskey, Reed McCullough, Jim McNulty, Mike McPeak, Ron Menard, Yvonne Meyer, Dave Miller, Kathy-Ann Miller, Roy Mitchell, Chuck Moreno, Guillermo Morris, Don Moylan, Tom Neubacher, Don Newbold, Robin Nikevich, Dan Nishimoto, Mary Owen, Sandy	Univ. Washington Calif. Fish & Game Cypress College Channel Islands National Park U C Santa Barbara Channel Islands National Park* KELCO Channel Islands National Park San Gabriel Schoolteacher U C Berkeley Lake Mead Natl. Rec. Area Marine Biological Consultants Moss Landing Marine Lab Channel Islands National Park Orange County Marine Institute Point Reyes National Seashore Saddleback College Channel Islands Research Program Moss Landing Marine Lab Calif. Fish & Game	85,87 88 83,84,89 84,85 84 88-89 83-85,88 88 88,89 84,86 85,87-89 85 89 84,86 88,89 84,86 88,89 84,86 88,89 84,86

Table 7. continued.

PARTICIPANTS	_	<u>AFFILIATION</u>		<u>YEARS</u>
Piombo, Heather		Santa Monica, school teacher		88
Platt, Jim		Channel Islands National Park		84
Provo, John		Channel Islands National Park		87-89
Quintero, Armando		Point Reyes National Seashore		84
Reid, Scott		Island Packers Company		89
Reilly, Paul		Calif. Fish & Game		83-87,89
Reynolds, J.T.		Albright Training Center		83,85
Richards, Daniel		Channel Islands National Park*		83-89
Richardson, Diane		Channel Islands National Park		88-89
Scott, Shannon		U C Santa Cruz		87
Schiff, Ken		Channel Islands National Park		87
Schmieder, Bob		Cordell Bank Expedition		85
Senning, Mark		Channel Islands National Park		87,88
Slinninger, Kim		Channel Islands National Park		89
Steicken, Dave		U C Santa Barbara		89
Stoltz, Dave		Channel Islands National Park		82-89
Swanson-Young, Joan		Arches National Monument		83
Thompson, James		U C Santa Cruz		88
Tilmant, Jim		Everglades National Park		84
Todd, Bob		Lake Mead NRA/ Redwood Natl. Park		85-87,89
Togstad, Heidi		Calif. Fish & Game		89
Trone, John		Channel Islands National Park*		86,87,89
Unser, Don		Channel Islands National Park		84
Valencic, Joe		Saddleback College		85
Vantresca,Dave		Calif. Fish & Game		88
Wagner, Amy		Moss Landing Marine Lab		89
Walchess, Lou		Scripps Inst. of Oceanography		88
Wendell, Fred		Calif. Fish & Game		87
Westgarth, Julie	Saddle	back College	87,89	
Weston, Jim		U C Santa Barbara		86
Whetzell, Earl		Channel Islands National Park		84,89
Willey, Dwight		Channel Islands National Park		89
Wiltz, Janet		Yosemite National Park		84
Yarrow, Al		Channel Islands National Park		84

^{* =} Kelp Forest Monitoring Project Biologist

LITERATURE CITED/REFERENCES

- Abbott, I. and G. Hollenberg. 1976. Marine Algae of California. Stanford Univ. Press. Stanford, CA. 827 pp.
- Alevizon, W. S. 1975. Spatial overlap and competition in congeneric surfperches (Embiotocidae) off Santa Barbara, California. Copeia 1975 (2):352-356.
- Barber, R. T. and Chavez, F. P. 1983. Biological consequences of El Nino. Science Vol. 222:1203-1210
- Bernard, F. R., Miller, D. C. 1973. Preliminary investigation on the red sea urchin resources of British Columbia [*Strongylocentrotus franciscanus* (Agassiz)]. Fish. Res. Bd. Can. Tech. Rep. 400:1-37
- Bernstein, B. B., Williams, B. E. and Mann, K. H. 1981. The role of behavioral responses to predators in modifying urchins' (*Strongylocentrotus drobachiensis*) destructive grazing and seasonal foraging patterns. Marine Biology Vol. 63:39-49
- Bodkin, J. L., 1988. Effects of kelp forest removal on associated fish assemblages in Central California. J. Exp. Mar. Biol. Ecol. Vol.117(3):227-238.
- Bray, Richard N. 1981. Influence of Water Currents and Zooplankton Densities on Daily Foraging Movements of Blacksmith, *Chromis punctipinnis*, a Planktivorous Reef Fish. Fishery Bull. Vol. 78, no.4:829-841
- Cane, M. A. 1983. Oceranographic events during El Nino. Science Vol.222:1189-1195
- Carr, Mark H. 1989. Effects of macroalgal assemblages on the recruitment of temperate zone reef fishes. J. Exp. Mar. Biol. Ecol., Vol. 126:59-76
- Cowen, R. K. 1983. The effect of sheephead (*Semicossyphus pulcher*) predation on red sea urchin (*Strongylocentrotus franciscanus*) populations: an experimental analysis. Oecologia (Berlin) 58:249-255
- Davies, D. H. 1968. Statistical analysis of the relation between kelp harvesting and sportfishing in the California kelp beds. In North, W. J. and Hubbs, C. L. (editors) Utilization of Kelp-bed Resources in Southern California. pp. 151-212. Calif. Dept. of Fish and Game Fish Bull. 139
- Davis, G. E. 1988. Kelp forest monitoring handbook for Channel Islands National Park, California. Channel Islands National Park Natural Science Reports. Ventura, California. 34 pp.
- Davis, G. E., Richards, D. V., Haaker, P. L., and Parker, D. O. 1989. Abalone population declines and fishery management in southern California. *In Abalone of the World:* Biology, Fisheries, and Culture. Proceedings of the First International Symposium on Abalone (Ed. By S. A. Shepard, M. J. Tegner and S. A. Guzman del Proo). Pp237-249. Blackwell Scientific Publications, Inc. Cambridge.
- Dawson, Yale E., and Foster, Michael S. 1982. Seashore Plants of California. Univ. of California Press. Berkeley, CA. 226 pp.

- Dayton, P. K., V. Currie, T. Gerrodette, B. Keller, R. Rosenthal, and D. Vantresca. 1984. Patch dynamics and stability of some California kelp communities. Ecological Monographs. Vol. 54:253-289
- Dayton, P. K. and Tegner, M. 1984a. The Importance of Scale in Community Ecology: A Kelp Forest Example with Terrestrial Analogs, Chapter 17. offprints from: <u>A New Ecology: Novel Approaches to Interactive Systems</u>. Chapter 17:457-481. John Wiley and Sons, Inc.
- Dayton, P. K. and Tegner, M. 1984b. Catastrophic storms, El Nino, and patch stability in a southern California kelp forest. Science Vol.224:835-844
- Dean, T. A., Schroeter, S. C. and Dixon, J. D. 1984. Effects of grazing by two species of sea urchins (*Strongylocentrotus franciscanus* and *Lytechinus anamesus*) on recruitment and survival of two species of kelp (*Macrocystis pyrifera* and *Pterygophora californica*). Marine Biology Vol. 78:301-313
- Dean, T. A., Thies, K., and Lagos, Steven. 1989. Survival of juvenile Giant Kelp: the Effects of Demographic Factors, Competitors, and Grazers. Ecology. 70(2):483-495
- Dungan, M. L., Miller, T. E., and Thomson, D. A. 1982. Catastrophic Decline of a Top Carnivore in the Gulf of California Rocky Intertidal Zone. Science. Vol. 216:989-991.
- Duggins, D. O., Simenstad, J. A. and Estes, J. A. 1989. Magnification of Secondary Production by Kelp Detritus in Coastal Marine Ecosystems. Science. Vol.245:170-175.
- Ebeling, A. W. and Laur, D. R. 1988. Fish populations in kelp forests without sea otters: Affects of severe storm damage and destructive sea urchin grazing. In, The Influence of Sea
 Otters on the Nearshosre Marine Ecosystem in the North Pacific, edited by G. R. VanBlaricom and J. A. Estes, Springer-Verlag, New York, pp.169-191.
- Ebert, T. A. 1975. Growth and mortality of post-larval echinoids. Amer. Zool. Vol. 15:55-75
- Ebert, T. A. 1967. Negative growth and longevity in the purple sea urchin *Strongylocentrotus* purpuratus (Stimson). Science 157::557-558
- Ebert, T. A. 1968. Growth rates of the sea urchin *Strongylocentrotus purpuratus* related to food availability and spine erosion. Ecology 49: 1075-1901
- Ebert, T. A. 1977. An experimental analysis of sea urchin dynamics and community interactions on a rock jetty. J. exp. mar. Biol Ecol. 27: 1-22
- Eschmeyer, W. N., E. S. Herald, and H. Hammann. 1983. A Field Guide to Pacific Coast Fishes of North America. Houghton Mifflin Co. Boston. 336 pp.
- Fausak, L. E. 1989. Bathythermograph data reduction, Kelp Forest Monitoring Program, Channel Islands National Park. Contract #PX8120-9-0657. National Park Service, Ventura, CA.
- Feder, H. M., Turner, C. H. and Limbaugh, C. 1974. Observations on Fishes Associated with Kelp Beds in Southern California. Calif. Dept. of Fish and Game. Bull. 160. 144 pp.
- Fiedler, P. C. 1984. Satellite observations of the 1982-1983 El Nino along the U.S. Pacific coast. Science Vol.224:1251-1254

- Foster, M. S. 1975. Regulation of Algal Community Development in a *Macrocystis pyrifera* forest. Mar Biol (Berl) 32:331-334
- Foster, M. S. 1975. Algal Succession in a *Macrocystis pyrifera* Forest. Mar Biol (Berl) 32:313-329
- Foster, M. S., Carter, J. W. and Schiel, D. R. 1983. The Ecology of Kelp Communities. from: Symposium on the Effects of Waste Disposal on Kelp Communities. U. S. Dept. of Commerce NOAA Southern Calif. Coastal Water Research Project. pp.53-69
- Garnick, Eric. 1989. Lobster (*Homarus americanus*) population declines, sea urchins, and 'barren grounds': a space-mediated competition hypothesis. Mar. Ecol. Prog. Ser. Vol 58:23-28
- Gerrodette, T. 1981. Dispersal of the solitary coral *Balanophyllia elegans* by demersal planular larvae. Ecology Vol. 62:611-619
- Gramlich, C. 1988-1990. (personal observations) Subtidal lobster survey transects initially established (winter 1988-1989 Catalina Island-Bird Rock South) in areas where sublegal lobster were present, were "filled in" by *Strongylocentrotus franciscanus* and, to a lesser extent, *S. purpuratus* (spring 1989 to present). Transects where this occurred also had a heavy supply of brown drift algae (mostly *Eisenia arborea* and *Macrocystis pyrifera*).
- Haaker, P. L., Henderson, K. C., and Parker, D. O., 1986. California Abalone. Calif. Dept. Fish and Game Marine Resources Leaflet No. 11. 16 pp.
- Haaker, P. L., Richards, D. V., Friedman, C., Davis, G., Parker, D. O. and Togstad, H. 1989.

 Mass mortality and withering syndrome in black abalone, <u>Haliotis cracherodii</u> in California. *In* Abalone of the World: Biology, Fisheries, and Culture. Proceedings of the First International Symposium on Abalone (Ed. By S. A. Shepard, M. J. Tegner and S. A. Guzman del Proo), pp 237-249. Blackwell Scientific Publications, Inc. Cambridge.
- Halpern, D., Hayes, S. P., Leetmaa, LA., Hansen, D. V. and Philander, S. G. H. 1983. Oceanopraphic observations of the 1982 warming of the tropical eastern Pacific. Science Vol.221:1173-1175
- Hardin, D. D, Foster, M. S., Laurie, M. K., and De Vogelaere. 1989. Study of the Rocky Intertidal Communities of Central and Northern California Years III and IV (Draft). Kinnetic Laboratories, Inc. for U.S. Dept. of Interior, Minerals Management Service, Pacific OCS Region, Contract No. 14-12-0001-30057. Vol. 1:1-209
- Harrold, Christopher and Reed, D. C. 1985. Food Availability, Sea Urchin Grazing, and Kelp Forest Community Structure. Ecology Vol. 66(4):1160-1169
- Herrlinger, T. J., Schroeter, S. C. and Dixon, J. 1987. Giant kelp blades: an asteroid nursery ground? Abstract. Western Society of Naturalists. 68th meeting, Long Beach, CA
- Hixon, M. A. 1979. Competition between California reef fishes (niche- inclusion of coextension?) pp170-178 in S. J. Lipovsky and C. A. Simenstadt, eds. Gutshop'78: fish food habits studies.
- Hobson, E. S. and Chess, J. R. 1976. Trophic interactions among fishes and zooplankters near shore at Santa Catalina Island, California. Fish. Bull. U.S. Vol.74:567-598

- Johansen, H. W. and Austin 1970. Growth rates in the articulated coralline *Calliarthron* (Rhodophyta). Can. J. Bot. Vol. 48:125-132
- Jones and Stokes Associates, Inc. 1981. Ecological characterization of the central and northern California coastal region. Vol. II, Part 2, Species. U.S. Fish and Wildlife Service, Office of Biological Services, and Bureau of Land Management, Pacific Outer Continental Shelf Office, Washington, D. C. FWS/OBS-80/46.2.
- Keen, A. M. 1971. Sea Shells of Tropical West America. 2nd ed. Stanford, Calif.: Stanford University Press. 1,064 pp.
- Lawrence, J. M., 1975. On the relationship between marine plants and sea urchins. Oceanogr. Mar. Biol. Annu. Rev. Vol.13:213-286
- Larson, R. J. and De Martini, E. E. 1984. Abundance and vertical distribution of fishes in a cobble-bottom kelp forest off San Onofre, Calif. U.S. Natl. Mar. Fish. Serv. Fish. Bull., Vol.82:91-110
- Leighton, D. L. 1971. Grazing activities of benthic invertebrates in southern California kelp beds. Nova Hedwigia Beihefte 32:421-453
- Leighton, D. L., and Phleger, C. F. 1977. The Purple-hinge rock scallop; A new candidate for marine aquaculture. Avault, J.W. (ed.) Prodeedings of the eighth annual meeting World Mariculture Society. Louisiana. Lousiana State University. pp. 457-469. NOAA Sea Grant 04-6-158-44021.
- Lobban, Christopher S. 1978. The growth and death of the *Macrocystis* sporophyte (Phaeophyceae, Laminariales). Phycologia Vol.17(2):196-212
- Lissner, A. (editor) 1988. Review of Recovery and Recolonization of Hard Substrate Communities of the Outer Continental Shelf. Science Applications International Corp. for U.S. Dept. of Interior, Minerals Management Service, Pacific OCS Region, Contract No. 14-12-0001-30388, -- pp.
- Mann, K. H. and Breen, P. A. 1972. The relation between lobster abundance, sea urchins, and kelp beds. J. Fish. Res. Bd. Canada 29:603-609
- Mauzey, K. P., Birkeland, C. and Dayton, P. K. 1968. Feeding behavior of asteroids and escape responses of their prey in the Puget Sound Region. Ecology Vol. 49:603-619.
- Moitoza, D. J. and Phillips, D. W. (1979). Prey defense, predator preference and non-random diet: the interactions between *Pycnopodia helianthoides* and two species of sea urchins. Mar. Biol. vol. 53:299-309.
- Murray, S. N., and Horn, M. H. 1989. Variations in standing stocks of central California macrophytes from a rocky intertidal habitat before and during the 1982-1983 El Niño. 1989. Mar. Ecol. Prog. Ser. Vol. 58:113-122
- Miller, D. J., and Lea, R. N. 1972. Guide to the Coastal Marine Fishes of California. Calif. Dept. of Fish and Game. Bull. 157. 235 pp.
- Morris, R. D., D. P. Abbott, and E. Haderlie. 1980. Intertidal Invertebrates of California. Stanford University Press. 690 pp.
- Norton, J., McLain, D., Brainard, R., Husby, D. 1985. The 1982-1983 El Nino event off Baja and Alta California and its ocean climate context. In: Wooster, W. S., Fluharty, D. L. (eds.) El

- Nino north. El Nino effects in the eastern Subarctic Pacific Ocean. Washington Sea Grant Program, Univ. Washington, Seattle, pp. 44-72.
- North, W. J., and Hubbs, C. L. 1968. Utilization of Kelp-Bed Resources in Southern California. Calif. Dept. of Fish and Game. Bull. 139. 264 pp.
- Pearse, J. S., and Hines, A. H. 1979. Expansion of a Central California Kelp Forest Following the Mass Mortality of Sea Urchins. Marine Biology Vol. 51:83-91
- Rasmusson, E. M., Wallace, J. M. 1983. Meteorological aspects of the El Nino/Southern Oscillation. Science. Vol.222:1195-1202
- Reed, Daniel C. and Foster, M. S. 1984. The effects of canopy shading on algal recruitment and growth in a giant kelp forest. Ecology 65(3):937-948
- Schroeter, S. C. and Dixon, J. D. 1988. The role of disease in southern California kelp forests.

 Abstract from Southern California Academy of Sciences annual meeting. May 6-7, 1988.
- Simpson, J. J. 1983. Large-scale thermal anomalies in the California Current during the 1982-1983 El Nino. Geophys. Res. Lett. Vol.10:937-940
- Simpson, J. J. 1983. El Nino-induced onshore transport in the California Current during 1982-1983. Geophys. Res. Lett. Vol.11:233-236
- Tegner, M. J. and Dayton, P. K. 1981. Population Structure, Recruitment and Mortality of Two Sea Urchins (*Strongylocentrotus franciscanus* and *S. purpuratus*) in a Kelp Forest. Mar. Ecol. Prog. Ser. Vol. 5:255-268
- Tegner, M. J. and Levin, L. A. 1983. Spiny Lobsters and Sea Urchins: Analysis of a Predator-Prey Interaction. J. Exp. Mar. Biol. Ecol. 1983. Vol. 73:125-150
- Wharton, W. G., Mann, K. H. 1981. Relationship between destructive grazing by the sea urchin, Strongylocentrotus droebachiensis, and abundance of American lobster, Homarus americanus, on the Atlantic coast of Nova Scotia. Can. J. Fish. Aquat. Sci. 38:1339-1349

Appendix 1. Quadrat Data

Appendix 2. Band Transect Data

Appendix 3. Random Point Contact Data

Appendix 4. Fish Transect Data

Appendix 5. Size Frequency Data

Appendix 6. Species List

Appendix 7. Oceanographic Data

Appendix 1. 1982-1989 Kelp Forest Monitoring Data - Quadrats

Introduction.

Following are summaries of data gathered during quadrat counts from 1982-1989 for all kelp forest monitoring program sampling sites. Means, standard deviations and total number of samples (cases) are given. Data were summarized with SPSSPC+ programs from translated dBase III+ files. (Readers should be aware that the number of significant digits is an artifact of the database program and does not imply this level of precision.) For details of methods and data management, refer to the monitoring handbook (Davis 1988).

Notes on methods:

Quadrats were sampled non-invasively, that is no rocks were turned or urchins pulled off while making counts. Means represent average counts obtained from 20 stratified random 1m X 2m quadrats, each the sum of two individual divers' counts in 1m X 1m quadrats. In 1982, 30 independent random quadrats were counted for a smaller selection of species. In 1983 and 1984, 40 quadrats were independently chosen and entered in the database as such. We began counting three demersal fish (*Lythrypnus dalli*, *Coryphopterus nicholsii*, and *Alloclinus holderi*) in quadrats in 1985. *Macrocystis pyrifera* is reported as Adult (plants >1 m tall), Juvenile (plants < 1 m tall) and as All (the summation of the previous two categories after 1982). *Astraea gibberosa* was counted occasionally as encountered, but was not systematically looked for. *Lytechinus anamesus* (see appx. 2) was counted in quadrats when present in dense numbers (too high to count in band transects). At Rodes Reef and Gull Island South in 1986, and Southeast Anchorage in 1989, *L. anamesus* were counted in both quadrats and band transects.

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

			Quadrats			
Variable	Value	Labe	el	Mean	Std Dev	Cases
SPECIES	2002 A	dult	Macrocystis pyrifera	0.4358	1.2419	2720
LOCATION	1	SMI	WYCKOFF LEDGE	0.6389	1.1212	180
YEAR	83			0.3500	0.6222	40
YEAR	84			0.3250	0.6155	40
YEAR	85			0.4000	0.5525	20
YEAR	86			1.9250	2.5250	20
YEAR	87			0.4500	0.5356	20
YEAR	88			1.1000	0.7182	20
	89			0.5250		20
YEAR	09			0.3230	0.5730	20
LOCATION	2	SMI	HARE ROCK	0.0111	0.1491	180
YEAR	83			0.0500	0.3162	40
YEAR	84			0.0000	0.0000	40
YEAR	85			0.0000	0.0000	20
YEAR	86			0.0000	0.0000	20
YEAR	87			0.0000	0.0000	20
YEAR	88			0.0000	0.0000	20
	89					20
YEAR	89			0.0000	0.0000	20
LOCATION	3	SRI	JOHNSONS LEE NORTH	1.3889	2.1045	180
YEAR	83			1.3750	1.8072	40
YEAR	84			1.8500	2.1786	40
YEAR	85			0.1000	0.2052	20
YEAR	86			0.0000	0.0000	20
YEAR	87			0.0000	0.0000	20
YEAR	88			4.1000	2.6685	20
YEAR	89			1.8500	1.9742	20
ILAN	0,5			1.0500	1.3/42	20
LOCATION	4	SRI	JOHNSONS LEE SOUTH	0.4389	0.8516	180
YEAR	83			0.7500	1.2558	40
YEAR	84			0.5000	0.9058	40
YEAR	85			0.1750	0.2936	20
YEAR	86			0.0000	0.0000	20
YEAR	87			0.0000	0.0000	20
YEAR	88			0.9250	0.8156	20
YEAR	89			0.3500	0.4617	20
11111	03			0.3300	0.1017	20
LOCATION	5	SRI	RODES REEF	0.3861	0.8437	180
YEAR	83			0.0250	0.1581	40
YEAR	84			0.2750	0.7841	40
YEAR	85			0.0000	0.0000	20
YEAR	86			0.0000	0.0000	20
YEAR	87			0.0000	0.0000	20
YEAR	88			1.8750	1.1571	20
YEAR	89			1.0000	0.7434	20
ILAN	0,5			1.0000	0.7454	20
LOCATION	6	SCI	GULL ISLAND SOUTH	0.3417	1.2023	180
YEAR	83			1.0000	1.9612	40
YEAR	84			0.4500	1.4133	40
YEAR	85			0.0500	0.1539	20
YEAR	86			0.0000	0.0000	20
YEAR	87			0.0000	0.0000	20
YEAR	88			0.0750	0.3354	20
YEAR	89			0.0500	0.2236	20
= -						

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 83 84 85 86 87 88	SCI FRYS HARBOR	0.0167 0.0000 0.0750 0.0000 0.0000 0.0000 0.0000	0.1284 0.0000 0.2667 0.0000 0.0000 0.0000 0.0000 0.0000	180 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 83 84 85 86 87 88	SCI PELICAN BAY	0.0944 0.3250 0.1000 0.0000 0.0000 0.0000 0.0000	0.3457 0.6155 0.3038 0.0000 0.0000 0.0000 0.0000 0.0000	180 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 83 84 85 86 87 88	SCI SCORPION ANCHORAGE	0.4806 0.2500 0.7000 2.4250 0.0000 0.0000 0.0000	1.2500 0.5883 1.0178 2.5919 0.0000 0.0000 0.0000	180 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR	10 86 87 88 89	SCI YELLOW BANKS	0.1813 0.1000 0.0000 0.0500 0.5750	0.4855 0.2616 0.0000 0.2236 0.7993	80 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 83 84 85 86 87 88 89	ANI ADMIRALS REEF	0.9639 2.0000 0.8250 0.4250 0.3500 0.4250 0.2500 1.5750	2.1875 4.1075 1.0350 0.6340 0.6091 0.6935 0.6177 1.5413	180 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 83 84 85 86 87 88 89	ANI CATHEDRAL COVE	0.5667 1.2500 0.9500 0.1750 0.0500 0.1750 0.0250 0.2750	1.2332 1.4277 1.8390 0.3726 0.2236 0.5447 0.1118 0.6382	180 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 83 84 85 86 87 88	ANI LANDING COVE	1.0250 0.9000 1.4250 1.1500 1.6250 1.0500 0.4250 0.3250	2.0099 1.6140 2.7909 1.2576 3.2561 1.4226 0.7122 0.5911	180 40 40 20 20 20 20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION	14	SBI SOUTHEAST SEALION	0.0056	0.0745	180
YEAR	83	ODI SOCIMENSI SEMEION	0.0250	0.1581	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
	88				
YEAR	89		0.0000	0.0000	20 20
YEAR	89		0.0000	0.0000	20
LOCATION	15	SBI ARCH POINT	0.0139	0.0979	180
YEAR	83		0.0250	0.1581	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0500	0.1539	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0250	0.1118	20
ILAK	0,5		0.0230	0.1110	20
LOCATION	16	SBI CAT CANYON	0.2625	0.5567	80
YEAR	86		0.2500	0.4136	20
YEAR	87		0.3500	0.4617	20
YEAR	88		0.4250	0.8926	20
YEAR	89		0.0250	0.1118	20
SPECIES	2004	Eisenia arborea	0.1778	0.7084	3110
LOCATION	1	SMI WYCKOFF LEDGE	0.0024	0.0345	210
YEAR	82		0.0000	0.0000	30
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0250	0.1118	20
111111	0,5		0.0230	0.1110	20
LOCATION	2	SMI HARE ROCK	0.0381	0.2366	210
YEAR	82		0.2000	0.5509	30
YEAR	83		0.0500	0.2207	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
IEAK	0,5				
LOCATION	3	SRI JOHNSONS LEE NORTH	0.0333	0.2270	210
YEAR	82		0.0000	0.0000	30
YEAR	83		0.0000	0.0000	40
YEAR	84		0.1750	0.5006	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
1111	33		3.0000	0.0000	20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 82 83 84 85 86 87 88	SRI JOHNSONS LEE SOUTH	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 83 84 85 86 87 88	SRI RODES REEF	0.0194 0.0250 0.0250 0.0250 0.0000 0.0000 0.0500 0.0000	0.1333 0.1581 0.1581 0.1118 0.0000 0.0000 0.2236 0.0000	180 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 82 83 84 85 86 87 88	SCI GULL ISLAND SOUTH	0.1048 0.3000 0.1500 0.0250 0.0000 0.0000 0.0000 0.0000 0.3000	0.4303 0.5350 0.4267 0.1581 0.0000 0.0000 0.0000 0.0000 1.0052	210 30 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 82 83 84 85 86 87 88	SCI FRYS HARBOR	0.1476 0.4667 0.3000 0.1000 0.0500 0.0000 0.0000 0.0000	0.5173 0.8996 0.7579 0.3038 0.1539 0.0000 0.0000 0.0000	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 82 83 84 85 86 87 88	SCI PELICAN BAY	0.0524 0.1000 0.1250 0.0750 0.0000 0.0000 0.0000 0.0000	0.2627 0.3051 0.4043 0.3499 0.0000 0.0000 0.0000 0.0000	210 30 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 82 83 84 85 86 87 88	SCI SCORPION ANCHORAGE	0.2500 0.9000 0.3750 0.2250 0.0750 0.0000 0.0000 0.0000	0.6363 1.0619 0.7742 0.4797 0.1832 0.0000 0.0000 0.0000	210 30 40 40 20 20 20 20 20

Channel Islands National Park Kelp forest Monitoring 1982-1989

Chamici	istanas na	Quadrats	MONIT COL IN	.g 1502 150	,
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION	10	SCI YELLOW BANKS	0.1313	0.3535	80
YEAR	86	SCI IELLOW DANKS	0.1513	0.2856	20
YEAR	87		0.0000	0.2030	20
	88				20
YEAR			0.3000	0.5712	
YEAR	89		0.0750	0.2447	20
LOCATION	11	ANI ADMIRALS REEF	0.7690	1.3279	210
YEAR	82		0.4333	0.8976	30
YEAR	83		1.9000	1.7365	40
YEAR	84		1.1500	1.5450	40
YEAR	85		0.2750	0.3796	20
YEAR	86		0.1000	0.2052	20
YEAR	87		0.0250	0.1118	20
YEAR	88		0.1750	0.3726	20
YEAR	89		0.7500	1.3717	20
LOCATION	12	ANI CATHEDRAL COVE	0.0286	0.2379	210
YEAR	82		0.0333	0.1826	30
YEAR	83		0.0250	0.1581	40
YEAR	84		0.1000	0.4961	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
LOCATION	13	ANI LANDING COVE	1.0976	1.7468	210
YEAR	82	Inti Empire Cott	1.0333	1.6078	30
YEAR	83		1.0250	1.2707	40
YEAR	84		1.1000	1.4987	40
YEAR	85		2.5000	3.3600	20
YEAR	86		0.7750	1.5259	20
YEAR	87		0.5500	0.8870	20
YEAR	88		0.8750	1.2863	20
YEAR	89		1.0250	1.7508	20
LOCATION	14	SBI SOUTHEAST SEALION	0.0095	0.1380	210
YEAR	82	DDI DOUTHEMBI DEMETON	0.0000	0.0000	30
YEAR	83		0.0500	0.3162	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
$I = \bigcap_{i \in \mathcal{N}} \prod_{j \in \mathcal{N}} \bigcap_{i \in \mathcal{N}} \bigcap_{j \in \mathcal{N}} \bigcap_{j \in \mathcal{N}} \bigcap_{i \in \mathcal{N}} \bigcap_{j \in \mathcal{N}} \bigcap_{j \in \mathcal{N}} \bigcap_{i \in \mathcal{N}} \bigcap_{j \in \mathcal{N}} \bigcap_{i \in \mathcal{N}} \bigcap_{j \in \mathcal{N}}$	15	SBI ABCH DOINM	U U333	0.1799	210
LOCATION YEAR	82	SBI ARCH POINT	0.0333		
				0.3457	30
YEAR	83		0.0750	0.2667	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR YEAR	88 89		0.0000	0.0000	20 20
LOCATION	16	SBI CAT CANYON	0.0000	0.0000	80
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
SPECIES	2005	Pterygophora californica	0.2487	1.8373	3140
LOCATION	1	SMI WYCKOFF LEDGE	0.1881	0.9237	210
YEAR	82		0.2667	0.6915	30

Appx. 1-6

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
YEAR	83		0.0750	0.2667	40
YEAR	84		0.0750	0.6400	40
	85		0.2730	0.1539	20
YEAR					
YEAR	86		0.7500	2.6680	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0500	0.1539	20
YEAR	89		0.0250	0.1118	20
LOCATION	2	SMI HARE ROCK	0.0000	0.0000	210
YEAR	82		0.0000	0.0000	30
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
LOCATION	3	SRI JOHNSONS LEE NORTH	1.7643	5.3327	210
YEAR	82		0.2000	0.6103	30
YEAR	83		7.3750	9.9632	40
YEAR	84		1.1750	3.3733	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.6750	0.9770	20
YEAR	89		0.4500	0.6469	20
LOCATION	4	SRI JOHNSONS LEE SOUTH	0.5976	2.7679	210
YEAR	82		0.0333	0.1826	30
YEAR	83		0.3750	1.2748	40
YEAR	84		0.1250	0.5158	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		3.0750	8.0741	20
YEAR	89		2.1500	1.9875	20
T O CA ET ON	-	ODT DODGE DEED	0 1057	1 0105	010
LOCATION	5	SRI RODES REEF	0.1857	1.2135	210
YEAR	82		0.0000	0.0000	30
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.1500	0.4007	20
YEAR	89		1.8000	3.6034	20
LOCATION	6	SCI GULL ISLAND SOUTH	0.0381	0.2740	210
YEAR	82		0.0000	0.0000	30
YEAR	83		0.1250	0.5633	40
YEAR	84		0.0750	0.2667	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
TDVI/	UĴ		0.0000	0.0000	20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION	7	SCI FRYS HARBOR	0.0000	0.0000	210
YEAR	82		0.0000	0.0000	30
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
LOCATION	8	SCI PELICAN BAY	0.0000	0.0000	210
YEAR	82		0.0000	0.0000	30
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
LOCATION	9	SCI SCORPION ANCHORAGE	0.0143	0.1189	210
YEAR	82		0.1000	0.3051	30
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
LOCATION	10	SCI YELLOW BANKS	0.5250	1.0759	80
YEAR	86		0.1000	0.2616	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.8000	1.3898	20
YEAR	89		1.2000	1.3318	20
LOCATION	11	ANI ADMIRALS REEF	0.4643	2.8520	210
YEAR	82		0.0333	0.1826	30
YEAR	83		2.3750	6.2376	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0500	0.2236	20
YEAR	88		0.0250	0.1118	20
YEAR	89		0.0000	0.0000	20
LOCATION	12	ANI CATHEDRAL COVE	0.0190	0.2179	210
YEAR	82		0.0333	0.1826	30
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0750	0.4743	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION	13	ANI LANDING COVE	0.2429	0.7438	210
YEAR	82		0.2000	0.6103	30
YEAR	83		0.3000	1.2237	40
YEAR	84		0.1500	0.4267	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.5250	0.6973	20
YEAR	88		0.3750	0.7048	20
YEAR	89		0.4500	0.8870	20
LOCATION	14	SBI SOUTHEAST SEALION	0.0048	0.0690	210
YEAR	82		0.0333	0.1826	30
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
LOCATION	15	SBI ARCH POINT	0.0000	0.0000	210
	82	SBI AKCII IOINI	0.0000	0.0000	30
YEAR					
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
LOCATION	16	SBI CAT CANYON	0.0000	0.0000	80
		3BI CAI CANTON			
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
SPECIES	2006	Laminaria farlowii	0.3976	1.3334	3110
LOCATION	1	SMI WYCKOFF LEDGE	0.0143	0.0835	210
YEAR	82		0.0000	0.0000	30
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
	86			0.1832	20
YEAR			0.0750		
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0750	0.1832	20
YEAR	89		0.0000	0.0000	20
LOCATION	2	SMI HARE ROCK	0.0000	0.0000	210
YEAR	82		0.0000	0.0000	30
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION	3	SRI JOHNSONS LEE NORTH	0.1048	0.6551	210
		SKI COMMSONS LEE NOKIM			
YEAR	82		0.0000	0.0000	30
YEAR	83		0.0000	0.0000	40
YEAR	84		0.3250	1.4392	40
YEAR	85		0.0250	0.1118	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.2500	0.3441	20
	89				
YEAR	09		0.1750	0.3726	20
LOCATION	4	SRI JOHNSONS LEE SOUTH	0.2548	0.6746	210
YEAR	82		0.2667	0.7849	30
YEAR	83		0.2250	0.6197	40
YEAR	84		0.1500	0.4830	40
	85		0.1500		
YEAR				0.4617	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.9000	1.1877	20
YEAR	89		0.4750	0.7159	20
LOCATION	5	SRI RODES REEF	0.2778	0.8816	180
YEAR	83		0.2250	0.5768	40
YEAR	84		0.6250	1.3902	40
YEAR	85		0.0500	0.2236	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.7500	1.3524	20
LOCATION	6	SCI GULL ISLAND SOUTH	0.0857	0.5639	210
YEAR	82		0.0000	0.0000	30
YEAR	83		0.4500	1.2393	40
YEAR	84		0.0000	0.0000	40
	85				
YEAR			0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
LOCATION	7	SCI FRYS HARBOR	0.1667	0.5584	210
YEAR	82		0.6000	0.9685	30
YEAR	83		0.1750	0.4465	40
YEAR	84		0.2500	0.7425	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
LOCATION	8	SCI PELICAN BAY	0.7952	1.7392	210
YEAR	82		2.9000	2.9636	30
YEAR	83		1.3250	1.5087	40
YEAR	84		0.6750	1.4392	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	
					20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20

Channel Islands National Park Kelp forest Monitoring 1982-1989
Ouadrats

			Quadrats			
Variable	Value	Labe	el	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 82 83 84 85 86 87 88	SCI	SCORPION ANCHORAGE	0.6405 3.0000 0.4000 0.6000 0.2250 0.0000 0.0000 0.0000	1.7528 3.4441 0.7779 1.2969 0.4128 0.0000 0.0000 0.0000	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR	10 86 87 88 89	SCI	YELLOW BANKS	0.6563 1.1500 0.2000 0.2500 1.0250	1.0299 1.3774 0.4974 0.4443 1.1295	80 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 82 83 84 85 86 87 88	ANI	ADMIRALS REEF	0.6190 1.2000 1.2750 0.6500 0.2000 0.0250 0.2500 0.2000 0.1750	1.6695 2.1238 2.8822 1.2720 0.5477 0.1118 0.5257 0.4104 0.3354	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 82 83 84 85 86 87 88	ANI	CATHEDRAL COVE	0.5976 2.1000 0.6250 0.2500 0.1750 0.0000 0.1500 0.0000 1.0500	1.5008 2.3831 0.8969 0.7071 0.3354 0.0000 0.3285 0.0000 2.8326	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 82 83 84 85 86 87 88	ANI	LANDING COVE	1.9595 2.5667 1.3500 1.3500 1.5000 2.1000 3.3500 0.9750 3.4000	2.9224 3.4808 2.0575 3.6272 2.2243 1.9235 2.4500 0.8503 4.0930	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 82 83 84 85 86 87 88	SBI	SOUTHEAST SEALION	0.1429 0.8333 0.1250 0.0000 0.0000 0.0000 0.0000 0.0000	0.7112 1.5775 0.6480 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	210 30 40 40 20 20 20 20 20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION	15	SBI ARCH POINT	0.0095	0.0974	210
YEAR	82		0.0667	0.2537	30
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
	89		0.0000		20
YEAR	89		0.0000	0.0000	20
LOCATION	16	SBI CAT CANYON	0.0125	0.0786	80
YEAR	86	ODI CIII CIIII CII	0.0500	0.1539	20
YEAR	87		0.0000	0.0000	20
	88		0.0000	0.0000	20
YEAR					
YEAR	89		0.0000	0.0000	20
SPECIES	2009	Juvenile <i>Macrocystis</i>	1.2608	4.1228	2720
LOCATION	1	SMI WYCKOFF LEDGE	0.8306	2.3153	180
YEAR	83		1.0750	3.7716	40
YEAR	84		0.9750	1.5104	40
YEAR	85		0.0250	0.1118	20
YEAR	86		2.4000	2.6238	20
	87				
YEAR			0.0000	0.0000	20
YEAR	88		0.2250	0.3796	20
YEAR	89		0.7250	2.2389	20
LOCATION	2	SMI HARE ROCK	0.0056	0.0745	180
YEAR	83		0.0250	0.1581	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
	87				20
YEAR			0.0000	0.0000	
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
LOCATION	3	SRI JOHNSONS LEE NORTH	3.0222	5.2994	180
YEAR	83		7.8250	7.3864	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.1000	0.3479	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		3.1750	1.9007	20
YEAR	89		8.2750	4.8760	20
ILAK	09		0.2730	4.0/00	20
LOCATION	4	SRI JOHNSONS LEE SOUTH	0.7278	1.5601	180
YEAR	83		1.0750	1.9921	40
YEAR	84		0.2250	0.7334	40
YEAR	85		0.2750	0.6973	20
YEAR	86		0.0250	0.1118	20
YEAR	87		0.0500	0.1539	20
YEAR	88		1.4500	1.0375	20
YEAR	89		2.1500	2.7198	20
TDAN	03		2.100	2.1130	20
LOCATION	5	SRI RODES REEF	0.5722	1.4884	180
YEAR	83		0.0250	0.1581	40
YEAR	84		0.1250	0.5158	40
YEAR	85		0.1000	0.3078	20
YEAR	86		0.0250	0.1118	20
YEAR	87		0.0000	0.0000	20
YEAR	88		4.0000	2.2478	20
YEAR	89		0.7250	0.8807	20
T 17171/	0.9		0.7230	0.0007	20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

			Quadrats			
Variable	Value	Label		Mean	Std Dev	Cases
I OGA ELIONI	_	COT CUIT	TOTAND COURT	0.1722	0 5740	100
LOCATION	6	SCI GULL	ISLAND SOUTH		0.5749	180
YEAR	83			0.6500	1.0266	40
YEAR	84			0.0250	0.1581	40
YEAR	85			0.0000	0.0000	20
YEAR	86			0.0000	0.0000	20
YEAR	87			0.0000	0.0000	20
YEAR	88			0.0000	0.0000	20
YEAR	89			0.2000	0.4974	20
LOCATION	7	SCI FRYS	HARBOR	0.0667	0.3441	180
YEAR	83			0.2500	0.6304	40
YEAR	84			0.0500	0.3162	40
YEAR	85			0.0000	0.0000	20
YEAR	86			0.0000	0.0000	20
YEAR	87			0.0000	0.0000	20
YEAR	88			0.0000	0.0000	20
YEAR	89			0.0000	0.0000	20
ILAK	09			0.0000	0.0000	20
LOCATION	8	SCI PELIC	AN BAY	0.0611	0.3200	180
YEAR	83			0.0250	0.1581	40
YEAR	84			0.2500	0.6304	40
YEAR	85			0.0000	0.0000	20
YEAR	86			0.0000	0.0000	20
YEAR	87			0.0000	0.0000	20
YEAR	88			0.0000	0.0000	20
YEAR	89			0.0000	0.0000	20
LOCATION	9	SCI SCORP	ION ANCHORAGE	2.7500	5.7313	180
YEAR	83			10.1750	7.6456	40
YEAR	84			0.0000	0.0000	40
YEAR	85			4.4000	4.7727	20
YEAR	86			0.0000	0.0000	20
YEAR	87			0.0000	0.0000	20
YEAR	88			0.0000	0.0000	20
YEAR	89			0.0000	0.0000	20
LOCATION	10	SCI YELLO	W BANKS	0.7313	1.6380	80
YEAR	86			0.8750	1.3657	20
YEAR	87			0.0000	0.0000	20
YEAR	88			1.2250	2.6131	20
YEAR	89			0.8250	1.2698	20
LOCATION	11	ANI ADMIR	AI.S REFE	3.4556	7.6843	180
		ANI ADMIK	UNO VEEL	13.5250	11.3114	
YEAR	83					40
YEAR	84			0.1500	0.5796	40
YEAR	85			1.3500	2.9429	20
YEAR	86			0.8250	0.9770	20
YEAR	87			0.0500	0.1539	20
YEAR	88			0.1500	0.4894	20
YEAR	89			1.3750	2.5333	20
LOCATION	12	ANI CATHE	DRAL COVE	3.0611	6.6975	180
YEAR	83			11.3250	10.2066	40
YEAR	84			1.2500	2.3066	40
YEAR	85			0.2250	0.3432	20
YEAR	86			0.1000	0.4472	20
YEAR	87			0.7250	1.7657	20
	88			0.7230	0.3479	20
YEAR					2.7362	
YEAR	89			1.2500	2./302	20

Channel Islands National Park Kelp forest Monitoring 1982-1989 Ouadrats

Quadrats					
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 83 84 85 86 87 88	ANI LANDING COVE	3.6139 3.8500 3.3250 1.0500 13.7750 1.2500 0.8000 1.3000	7.1773 4.3356 6.4902 1.3659 14.4491 2.6383 1.2917 2.2907	180 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 83 84 85 86 87 88	SBI SOUTHEAST SEALION	0.0528 0.2000 0.0250 0.0000 0.0250 0.0000 0.0000	0.3565 0.7232 0.1581 0.0000 0.1118 0.0000 0.0000 0.0000	180 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 83 84 85 86 87 88	SBI ARCH POINT	0.0694 0.1500 0.0000 0.3250 0.0000 0.0000 0.0000	0.5007 0.6998 0.0000 1.1154 0.0000 0.0000 0.0000	180 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR	16 86 87 88 89	SBI CAT CANYON	0.5813 1.6750 0.3250 0.1250 0.2000	1.0834 1.5667 0.4375 0.3932 0.6156	80 20 20 20 20
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2010 1 82 83 84 85 86 87 88	All Macrocystis pyrifer SMI WYCKOFF LEDGE	ra 1.6231 1.4690 1.4667 1.4250 1.3000 0.4250 4.3250 0.4500 1.3250 1.2500	4.4499 2.4955 1.8144 3.7614 1.6204 0.5447 3.2698 0.5356 0.8777 2.4575	3120 210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 82 83 84 85 86 87 88	SMI HARE ROCK	0.0762 0.4333 0.0750 0.0000 0.0000 0.0000 0.0000 0.0000	0.4079 0.8584 0.4743 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	210 30 40 40 20 20 20 20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

			Quadrats			
Variable	Value	Lab	el	Mean	Std Dev	Cases
LOCATION	3	SRT	JOHNSONS LEE NORTH	3.7182	5.7672	220
YEAR	82			0.6000	1.1940	40
YEAR	83			9.2000	8.0135	40
YEAR	84			1.8500	2.1786	40
YEAR	85			0.2000	0.4974	20
YEAR	86			0.0000	0.0000	20
YEAR	87			0.0000	0.0000	20
YEAR	88			7.2750	3.9118	20
YEAR	89			10.1250	5.7967	20
LOCATION	4	SRI	JOHNSONS LEE SOUTH	1.1143	1.8068	210
YEAR	82			0.8000	1.0954	30
YEAR	83			1.8250	2.3739	40
YEAR	84			0.7250	1.2401	40
YEAR	85			0.4500	0.7052	20
YEAR	86			0.0250	0.1118	20
YEAR	87			0.0500	0.1539	20
YEAR	88			2.3750	1.5634	20
YEAR	89			2.5000	2.8700	20
ILAK	09			2.3000	2.0700	20
LOCATION	5	SRI	RODES REEF	0.9583	2.0814	180
YEAR	83			0.0500	0.2207	40
YEAR	84			0.4000	0.9001	40
YEAR	85			0.1000	0.3078	20
YEAR	86			0.0250	0.1118	20
YEAR	87			0.0000	0.0000	20
YEAR	88			5.8750	2.6201	20
YEAR	89			1.7250	0.9797	20
LOCATION	6	SCI	GULL ISLAND SOUTH	0.4881	1.4414	210
YEAR	82			0.3333	0.5467	30
YEAR	83			1.6500	2.5973	40
YEAR	84			0.4750	1.4140	40
YEAR	85			0.0500	0.1539	20
YEAR	86			0.0000	0.0000	20
YEAR	87			0.0000	0.0000	20
YEAR	88			0.0750	0.3354	20
YEAR	89			0.2500	0.6977	20
IEAK	0,5			0.2300	0.0377	20
LOCATION	7	SCI	FRYS HARBOR	0.1333	0.4497	210
YEAR	82			0.4333	0.7279	30
YEAR	83			0.2500	0.6304	40
YEAR	84			0.1250	0.4043	40
YEAR	85			0.0000	0.0000	20
YEAR	86			0.0000	0.0000	20
YEAR	87			0.0000	0.0000	20
YEAR	88			0.0000	0.0000	20
YEAR	89			0.0000	0.0000	20
LOCATION	8	SCI	PELICAN BAY	0.2286	0.5747	210
YEAR	82			0.6667	0.9223	30
YEAR	83			0.3500	0.6222	40
YEAR	84			0.3500	0.6622	40
YEAR	85			0.0000	0.0000	20
YEAR	86			0.0000	0.0000	20
YEAR	87			0.0000	0.0000	20
YEAR	88			0.0000	0.0000	20
YEAR	89			0.0000	0.0000	20
TEAR	03			0.0000	0.0000	20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION	9	SCI SCORPION ANCHORAGE	3.0357	5.6687	210
YEAR	82	BOT BOOKLION THYOHOTHOD	1.8667	1.6965	30
YEAR	83		10.4250	7.7124	40
YEAR	84		0.7000	1.0178	40
			6.8250		
YEAR	85			6.5076	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
LOCATION	10	SCI YELLOW BANKS	0.9125	1.7462	80
YEAR	86		0.9750	1.4186	20
YEAR	87		0.0000	0.0000	20
YEAR	88		1.2750	2.6481	20
YEAR	89		1.4000	1.5441	20
LOCATION	11	ANI ADMIRALS REEF	3.8810	8.3912	210
YEAR	82		0.6667	1.3476	30
YEAR	83		15.5250	13.7430	40
YEAR	84		0.9750	1.1655	40
YEAR	85		1.7750	3.3383	20
YEAR	86		1.1500	1.2365	20
YEAR	87		0.4750	0.7518	20
YEAR	88		0.4000	0.7363	20
YEAR	89		2.9500	3.0946	20
IDAN	09		2.9300	3.0940	20
LOCATION	12	ANI CATHEDRAL COVE	3.6381	6.8673	210
YEAR	82		3.7000	3.3337	30
YEAR	83		12.5750	10.7510	40
YEAR	84		2.2000	3.6599	40
YEAR	85		0.4000	0.6609	20
YEAR	86		0.1500	0.6708	20
YEAR	87		0.9000	1.9642	20
YEAR	88		0.1250	0.4552	20
YEAR	89		1.5250	3.1891	20
LOCATION	13	ANI LANDING COVE	4.3381	7.4510	210
	82	ANI LANDING COVE	2.5333	2.4031	30
YEAR					
YEAR	83		4.7500	5.2416	40
YEAR	84		4.7500	8.6284	40
YEAR	85		2.2000	2.3586	20
YEAR	86		15.4000	14.2585	20
YEAR	87		2.3000	3.6034	20
YEAR	88		1.2250	1.8671	20
YEAR	89		1.6250	2.3501	20
LOCATION	14	SBI SOUTHEAST SEALION	0.1643	0.6132	210
YEAR	82		0.8000	1.1861	30
YEAR	83		0.2250	0.7334	40
YEAR	84		0.0250	0.1581	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0250	0.1118	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 82 83 84 85 86 87 88	SBI ARCH POINT	0.1476 0.5333 0.1750 0.0000 0.3750 0.0000 0.0000 0.0000	0.5784 0.7761 0.7121 0.0000 1.1341 0.0000 0.0000 0.0000	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR	16 86 87 88 89	SBI CAT CANYON	0.8250 1.9250 0.6750 0.4750 0.2250	1.2607 1.7417 0.6935 0.9525 0.6172	80 20 20 20 20
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9005 1 82 83 84 85 86 87 88	Cypraea spadicea SMI WYCKOFF LEDGE	0.1597 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.4819 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	2680 210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 83 84 85 86 87 88	SMI HARE ROCK	0.5528 0.4750 0.5250 0.5750 0.6750 0.5000 0.5500 0.6750	0.8514 0.9334 0.7506 0.7304 0.9770 0.5130 0.9854 1.0548	180 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 83 84 85 86 87 88	SRI JOHNSONS LEE NORTH	0.4833 0.2250 0.5750 0.8000 0.3500 0.3750 0.6750 0.5500	0.6909 0.6197 0.8130 0.8491 0.5155 0.4552 0.6742 0.6048	180 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 83 84 85 86 87 88	SRI JOHNSONS LEE SOUTH	0.3306 0.2000 0.2000 0.7000 0.6000 0.3250 0.2750	0.5913 0.5164 0.6076 0.8335 0.7182 0.4375 0.3796	180 40 40 20 20 20 20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 82 83 84 85 86 87 88	SRI RODES REEF	0.0375 0.0000 0.0000 0.0000 0.0750 0.1000 0.0750 0.0250	0.1541 0.0000 0.0000 0.0000 0.1832 0.2616 0.2447 0.1118	160 20 20 20 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 83 84 85 86 87 88	SCI GULL ISLAND SOUTH	0.4472 0.3500 0.2750 0.2500 1.0250 0.7500 0.3500 0.4000	0.7081 0.6998 0.5986 0.4730 0.7860 0.7522 0.6509 0.7539	180 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 83 84 85 86 87 88	SCI FRYS HARBOR	0.1194 0.0750 0.0250 0.3250 0.2250 0.1250 0.1500 0.0500	0.2864 0.2667 0.1581 0.4375 0.3432 0.2751 0.2351 0.2236	180 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 83 84 85 86 87 88 89	SCI PELICAN BAY	0.0306 0.0000 0.0250 0.0000 0.1500 0.0250 0.0000	0.1918 0.0000 0.1581 0.0000 0.4617 0.1118 0.0000 0.2236	180 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 83 84 85 86 87 88	SCI SCORPION ANCHORAGE	0.0444 0.0000 0.0000 0.0250 0.0500 0.0250 0.0250 0.2750	0.2321 0.0000 0.0000 0.1118 0.2236 0.1118 0.1118 0.5955	180 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR	10 86 87 88 89	SCI YELLOW BANKS	0.0188 0.0000 0.0000 0.0000 0.0750	0.1677 0.0000 0.0000 0.0000 0.3354	80 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 82 83 84 85 86 87 88	ANI ADMIRALS REEF	0.0381 0.0000 0.0000 0.0750 0.0000 0.0000 0.0250 0.2000 0.0250	0.2098 0.0000 0.0000 0.3499 0.0000 0.0000 0.1118 0.4104 0.1118	210 30 40 40 20 20 20 20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	12 85 86 87 88	ANI CATHEDRAL COVE	0.1500 0.0750 0.0250 0.0250 0.0000 0.6250	0.7703 0.1832 0.1118 0.1118 0.0000 1.6533	100 20 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 83 84 85 86 87 88	ANI LANDING COVE	0.0500 0.0000 0.0500 0.0250 0.0250 0.1250 0.1250 0.0500	0.2121 0.0000 0.3162 0.1118 0.1118 0.3193 0.2221 0.1539	180 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 83 84 85 86 87 88	SBI SOUTHEAST SEALION	0.0722 0.0250 0.0250 0.0500 0.0250 0.1500 0.1750 0.1500	0.2122 0.1581 0.1581 0.1539 0.1118 0.2856 0.2447 0.3285	180 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 83 84 85 86 87 88	SBI ARCH POINT	0.0611 0.0000 0.0000 0.3000 0.0000 0.1250 0.1000 0.0250	0.4717 0.0000 0.0000 1.3416 0.0000 0.3582 0.2616 0.1118	180 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR	16 86 87 88 89	SBI CAT CANYON	0.0250 0.0250 0.0000 0.0750 0.0000	0.1097 0.1118 0.0000 0.1832 0.0000	80 20 20 20 20
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9007 1 82 83 84 86 87 88	Astraea undosa SMI WYCKOFF LEDGE	0.9092 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1.9217 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	3100 190 30 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 82 83 84 85 86 87 88	SMI HARE ROCK	0.0762 0.0000 0.1000 0.0250 0.2000 0.3250 0.0000 0.0250 0.0000	0.3743 0.0000 0.3789 0.1581 0.4702 0.9216 0.0000 0.1118	210 30 40 40 20 20 20 20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION	3	SRI JOHNSONS LEE NORTH	0.0909	0.3681	220
YEAR	82	DIG COMMOCING EEE NOTTH	0.0000	0.0000	40
YEAR	83		0.0500	0.3162	40
YEAR	84		0.0250	0.1581	40
YEAR	85		0.5000	0.8885	20
YEAR	86		0.3250	0.4667	20
YEAR	87		0.0250	0.1118	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
LOCATION	4	SRI JOHNSONS LEE SOUTH	0.0000	0.0000	210
YEAR	82		0.0000	0.0000	30
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
	87				20
YEAR			0.0000	0.0000	
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
LOCATION	5	SRI RODES REEF	0.0222	0.1161	180
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0250	0.1581	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.1250	0.2221	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0250	0.1118	20
YEAR	89		0.0000	0.0000	20
11111					
LOCATION	6	SCI GULL ISLAND SOUTH	0.2976	0.6095	210
YEAR	82		0.1667	0.4611	30
YEAR	83		0.3750	0.7048	40
YEAR	84		0.4000	0.8712	40
YEAR	85		0.3500	0.5155	20
YEAR	86		0.3000	0.3770	20
YEAR	87		0.5750	0.6340	20
YEAR	88		0.1000	0.3078	20
YEAR	89		0.0000	0.0000	20
LOCATION	7	SCI FRYS HARBOR	0.7810	1.2236	210
YEAR	82		0.3667	0.6687	30
YEAR	83		0.1750	0.3848	40
YEAR	84		0.7500	1.2760	40
YEAR	85		1.1250	1.2126	20
YEAR	86		2.2000	1.6575	20
YEAR	87		0.8500	0.9333	20
YEAR	88		1.1750	1.7492	20
YEAR	89		0.4500	0.6469	20
LOCATION	8	SCI PELICAN BAY	2.4619	2.1131	210
YEAR	82		0.6667	1.0933	30
YEAR	83		1.5000	1.1323	40
YEAR	84		2.4250	1.7815	40
YEAR	85		1.7500	1.1865	20
YEAR	86		4.2750	1.9227	20
	87		5.2250	2.3140	
YEAR					20
YEAR	88		3.2750	2.0931	20
YEAR	89		2.4750	1.8812	20

Channel Islands National Park Kelp forest Monitoring 1982-1989 Ouadrats

			Quadrats			
Variable	Value	Labe	el	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 82 83 84 85 86 87 88	SCI	SCORPION ANCHORAGE	2.3190 1.1667 0.5500 1.4750 2.4750 3.9500 4.0250 4.4000	2.3418 1.7036 0.9858 1.3772 1.6422 1.8057 2.1913 3.0848	210 30 40 40 20 20 20 20
YEAR	89			3.7000	2.6626	20
LOCATION YEAR YEAR YEAR YEAR YEAR	10 86 87 88 89	SCI	YELLOW BANKS	0.8500 1.4250 0.5250 0.5000 0.9500	1.2232 1.5155 0.6172 0.7255 1.5551	80 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 82 83 84 85 86 87 88	ANI	ADMIRALS REEF	0.0571 0.1000 0.0500 0.0500 0.0750 0.0500 0.0750 0.0500 0.0000	0.2222 0.3051 0.2207 0.2207 0.2447 0.2236 0.1832 0.2236 0.0000	210 30 40 40 20 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 82 83 84 85 86 87 88	ANI	CATHEDRAL COVE	1.9262 0.3000 0.2250 0.6250 0.8500 4.4500 5.0750 3.5250 4.1750	2.7405 0.5960 0.4229 1.0048 1.1482 2.9375 3.2374 2.8538 3.2938	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 82 83 84 85 86 87 88	ANI	LANDING COVE	0.9357 0.3333 0.2000 0.4500 1.1000 1.2250 2.1250 2.3000 1.2750	1.5734 0.6065 0.5164 1.2393 2.1921 1.4000 2.4914 1.6654 1.1525	210 30 40 40 20 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 82 83 84 85 86 87 88	SBI	SOUTHEAST SEALION	0.7524 0.0000 0.0000 0.3250 3.8250 2.0000 0.6500 0.5250 0.2500	1.6980 0.0000 0.0000 0.6155 3.3728 2.0964 0.6304 0.4723 0.4136	210 30 40 40 20 20 20 20 20

Channel Islands National Park Kelp forest Monitoring 1982-1989 Quadrats Variable Value Label Mean Std Dev Cases 15 SBI ARCH POINT LOCATION 2.8786 3.7497 210 YEAR 82 1.8000 1.5177 30 YEAR 8.3 0.4500 1.1536 40 YEAR 3.9250 40 3.7306 YEAR 8.5 5.7250 3.2666 2.0 YEAR 86 5.3250 5.0322 20 87 88 5.8683 YEAR 5.6000 20 YEAR 1.2750 1.0321 20 YEAR 89 0.8500 1.4609 20 LOCATION 16 SBI CAT CANYON 1.0188 1.4462 86 0.8717 20 0.8750 YEAR YEAR 87 1.5250 2.0422 20 0.6996 YEAR 88 0.6000 2.0 YEAR 89 1.0750 1.6723 20 SPECIES 9008 Astraea gibberosa 0.2295 0.4706 0.5231 1 SMI WYCKOFF LEDGE 20 LOCATION 0.3000 85 0.3000 0.5231 2 SMI HARE ROCK LOCATION 0.3250 0.5684 20 0.3250 0.5684 86 20 YEAR 5 SRI RODES REEF 0.2390 LOCATION 0.0714 21 YEAR 8.5 1.0000 1 YEAR 86 0.0250 0.1118 SPECIES 11001 Patiria miniata 0.5880 1.7204 3119 LOCATION 1 SMI WYCKOFF LEDGE 1.1286 1.3387 210 YEAR 82 1.6000 2.2834 30 YEAR 83 1.4500 1.2598 40 84 0.7000 YEAR 1.1368 40 0.7750 0.6584 YEAR 86 1.2750 1.2924 20 YEAR YEAR 87 0.9250 0.8926 20 88 YEAR 1.0750 1.0915 20 YEAR 89 1.1000 0.7712 20 4.1753 2 SMI HARE ROCK LOCATION 210 3.0262 5.8113 YEAR 8.4333 30 YEAR 8.3 6.1250 4.1522 40 YEAR 84 0.3500 0.5796 40 0.6048 YEAR 8.5 0.4500 20 YEAR 86 1.1500 0.8288 20 YEAR 87 1.1500 0.8127 20 88 YEAR 1.5750 1.0548 20 1.8500 YEAR 89 1.3387 20 3 SRI JOHNSONS LEE NORTH LOCATION 1.2586 220 0.5614 82 1.7641 YEAR 2.6250 40

0.0750

0.0250

0.0250

0.1250

0.1750

0.2000

0.2000

0.2667

0.1581

0.1118

0.5590

0.2991

0.3403

0.3726

40

40

20

20

20

20

20

YEAR

YEAR

YEAR

YEAR

YEAR

YEAR

YEAR

83

84

8.5

86

87

88

89

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

Quadrats					
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 82 83 84 85 86 87 88	SRI JOHNSONS LEE SOUTH	2.2119 6.1667 3.2000 0.4500 0.8750 0.8500 2.2750 1.0500 1.6250	2.9638 3.8871 3.4803 0.9594 0.7048 1.0400 1.2191 1.0501 1.9322	210 30 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 83 84 85 86 87 88	SRI RODES REEF	1.0391 0.9250 0.5750 0.2895 0.7500 0.9500 1.7750 2.5500	1.3455 1.1851 1.5506 0.4508 0.8660 0.6863 1.4553 1.2237	179 40 40 19 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 82 83 84 85 86 87 88	SCI GULL ISLAND SOUTH	0.4429 0.7333 0.1250 0.0500 0.1750 0.3000 0.7000 0.5000 1.5250	0.8410 0.9444 0.3349 0.2207 0.2447 0.3770 0.6156 0.4588 1.7953	210 30 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 82 83 84 85 86 87 88	SCI FRYS HARBOR	0.1095 0.0667 0.0250 0.0250 0.0250 0.1500 0.1000 0.2000 0.4750	0.3014 0.2537 0.1581 0.1581 0.1118 0.2351 0.2052 0.3770 0.5955	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 82 83 84 85 86 87 88 89	SCI PELICAN BAY	0.0286 0.0000 0.0000 0.0000 0.0000 0.0250 0.1500 0.0250 0.1000	0.1520 0.0000 0.0000 0.0000 0.0000 0.1118 0.3663 0.1118	210 30 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 82 83 84 85 86 87 88 89	SCI SCORPION ANCHORAGE	0.0119 0.0000 0.0000 0.0000 0.0000 0.0000 0.0250 0.0750 0.0250	0.0764 0.0000 0.0000 0.0000 0.0000 0.0000 0.1118 0.1832 0.1118	210 30 40 40 20 20 20 20

Channel Islands National Park Kelp forest Monitoring 1982-1989 Quadrats Variable Value Label Mean Std Dev Cases LOCATION 10 SCI YELLOW BANKS 0.0375 0.1546 80 YEAR 86 0.0250 0.1118 20 YEAR 87 0.0000 0.0000 20 YEAR 88 0.0750 0.2447 20 YEAR 89 0.0500 0.1539 2.0 LOCATION 11 ANI ADMIRALS REEF 0.1619 0.4536 210 YEAR 82 0.0667 0.2537 30 YEAR 83 0.0000 0.0000 40 0.0250 YEAR 84 0.1581 40 85 0.0000 0.0000 20 YEAR 86 0.1000 0.2052 20 YEAR YEAR 87 0.2250 0.3796 20 88 YEAR 0.8250 1.0166 2.0 YEAR 89 0.4000 0.4757 20 LOCATION 12 ANI CATHEDRAL COVE 0.0429 0.2357 210 YEAR 82 0.0000 0.0000 30 YEAR 83 0.0000 0.0000 40 YEAR 84 0.0250 0.1581 40 8.5 0.0000 0.0000 20 YEAR YEAR 86 0.0000 0.0000 20 87 0.0250 0.1118 20 YEAR YEAR 88 0.1000 0.2616 20 YEAR 0.2750 0.6382 LOCATION 13 ANI LANDING COVE 0.0071 0.0770 210 YEAR 82 0.0000 0.0000 30 YEAR 83 0.0000 0.0000 40 YEAR 84 0.0250 0.1581 40 YEAR 85 0.0000 0.0000 20 YEAR 86 0.0000 0.0000 20 YEAR 87 0.0250 0.1118 20 0.0000 0.0000 YEAR YEAR 89 0.0000 0.0000 20 LOCATION 14 SBI SOUTHEAST SEALION 0.0310 0.2022 210 82 0.0000 0.0000 30 YEAR 83 0.0000 0.0000 40 YEAR 84 0.0000 0.0000 40 YEAR 85 0.0000 0.0000 20 YEAR 86 0.0250 0.1118 2.0 YEAR 87 0.0000 0.0000 20 YEAR 88 0.1750 0.5911 20 YEAR 89 0.1250 0.2221 20 LOCATION 15 SBI ARCH POINT 0.2416 210 0.0381 YEAR 82 0.0000 0.0000 30 0.0000 YEAR 83 0.0000 40 YEAR 84 0.0000 40 0.0000 YEAR 8.5 0.0000 0.0000 2.0 YEAR 86 0.0250 0.1118 20 0.1118 YEAR 87 0.0250 20

0.3500

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.7090

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

2.0

20

80

20

20

2.0

20

YEAR

YEAR LOCATION

YEAR

YEAR

YEAR

YEAR

88

89

86

87

88

89

16 SBI CAT CANYON

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11002 1 82 83 84 85 86 87 88	Pisaster giganteus SMI WYCKOFF LEDGE	0.1670 0.2167 0.2333 0.2000 0.1250 0.1000 0.1750 0.2250 0.2750 0.5000	0.4612 0.4959 0.5040 0.4641 0.3349 0.2616 0.4667 0.4435 0.7860 0.6489	3120 210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 82 83 84 85 86 87 88	SMI HARE ROCK	0.4095 0.1667 0.2000 0.2250 0.0750 0.5750 0.8250 0.5250 1.2000	0.7971 0.7466 0.5164 0.5305 0.1832 0.7122 1.0036 0.5730 1.3707	210 30 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 82 83 84 85 86 87 88 89	SRI JOHNSONS LEE NORTH	0.4091 0.5500 0.1000 0.1250 0.0500 1.0000 0.6250 1.2250	0.6747 0.7143 0.3038 0.3349 0.1539 0.1539 0.8885 0.7048 0.8025	220 40 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 82 83 84 85 86 87 88	SRI JOHNSONS LEE SOUTH	0.2500 0.1667 0.2000 0.1500 0.0750 0.5250 0.3250 0.4250 0.3250	0.4848 0.4611 0.4641 0.3616 0.3354 0.4993 0.6544 0.5684 0.4940	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 83 84 85 86 87 88 89	SRI RODES REEF	0.4306 0.2750 0.1250 0.1250 1.2750 0.5000 0.4750 0.7000	0.8063 0.6400 0.3349 0.2751 1.4371 0.5620 0.6781 0.9787	180 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 82 83 84 85 86 87 88	SCI GULL ISLAND SOUTH	0.3452 0.2667 0.1750 0.2750 0.2250 0.4250 0.7000 0.5000 0.4750	0.5522 0.5208 0.3848 0.4522 0.3796 0.5447 0.5938 0.6882 0.8188	210 30 40 40 20 20 20 20 20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

Quadrats					
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 82 83 84 85 86 87 88	SCI FRYS HARBOR	0.1452 0.1667 0.1000 0.0000 0.1000 0.1250 0.3500 0.3000 0.2000	0.3156 0.3790 0.3038 0.0000 0.2616 0.2221 0.4323 0.4104 0.2991	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 82 83 84 85 86 87 88 89	SCI PELICAN BAY	0.0214 0.0000 0.0000 0.0250 0.0000 0.0000 0.0250 0.0250 0.1250	0.1410 0.0000 0.0000 0.1581 0.0000 0.0000 0.1118 0.1118 0.3582	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 82 83 84 85 86 87 88	SCI SCORPION ANCHORAGE	0.0310 0.0667 0.0750 0.0000 0.0000 0.0250 0.0000 0.0250 0.0250	0.1629 0.2537 0.2667 0.0000 0.0000 0.1118 0.0000 0.1118	210 30 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR	10 86 87 88 89	SCI YELLOW BANKS	0.1188 0.0750 0.0500 0.0500 0.3000	0.3106 0.2447 0.1539 0.1539 0.4974	80 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 82 83 84 85 86 87 88	ANI ADMIRALS REEF	0.0143 0.0000 0.0000 0.0250 0.0000 0.0000 0.0500 0.0500 0.0000	0.0968 0.0000 0.0000 0.1581 0.0000 0.0000 0.1539 0.1539 0.0000	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 82 83 84 85 86 87 88	ANI CATHEDRAL COVE	0.0048 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0500 0.0000	0.0690 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2236 0.0000	210 30 40 40 20 20 20 20 20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION	13	ANI LANDING COVE	0.0071	0.0770	210
YEAR	82		0.0000	0.0000	30
YEAR	83		0.0250	0.1581	40
YEAR	84		0.0000	0.0000	4 0
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0250	0.1118	20
	1.4		0 1004	0 2126	01.0
LOCATION	14	SBI SOUTHEAST SEALION	0.1024	0.3136	210
YEAR	82		0.1667	0.4611	30
YEAR	83		0.1250	0.4043	40
YEAR	84		0.0750	0.2667	40
YEAR	85		0.0750	0.2447	20
YEAR	86		0.0750	0.1832	20
YEAR	87		0.1000	0.2616	20
YEAR	88		0.0750	0.1832	20
	89				20
YEAR	89		0.1000	0.2616	20
LOCATION	15	SBI ARCH POINT	0.0238	0.1363	210
YEAR	82		0.0333	0.1826	30
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0500	0.2207	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0250	0.1118	20
YEAR	87		0.0250	0.1118	20
YEAR	88		0.0500	0.1539	20
YEAR	89		0.0000	0.0000	20
111111	0,5		0.0000	0.0000	20
LOCATION	16	SBI CAT CANYON	0.1000	0.2164	80
YEAR	86	021 0111 011111011	0.0250	0.1118	20
YEAR	87		0.1750	0.2936	20
YEAR	88		0.0750	0.1832	20
YEAR	89		0.1250	0.2221	20
	44004		04 0045	05 0055	
SPECIES	11004	Lytechinus anamesus	21.0317	35.0277	300
LOCATION	5	SRI RODES REEF	7.2000	11.8371	20
YEAR	86		7.2000	11.8371	20
LOCATION	6	SCI GULL ISLAND SOUTH	4.3750	7.2871	20
YEAR	86		4.3750	7.2871	20
LOCATION	8	SCI PELICAN BAY	9.8500	12.9778	20
YEAR	87		9.8500	12.9778	20
LOCATION	10	SCI YELLOW BANKS	30.7063	34.7276	80
YEAR	86		35.3250	39.7897	20
YEAR	87		39.9000	33.7793	20
YEAR	88		32.9750	39.6174	20
YEAR	89		14.6250	18.2092	20
LOCATION	11	ANI ADMIRALS REEF	29.6813	51.8563	80
YEAR	86		33.1250	58.6030	20
	87		32.5500	54.6510	20
YEAR					
YEAR	88		38.4000	62.9500	20
YEAR	89		14.6500	21.4047	20
LOCATION	14	SBI SOUTHEAST SEALION	12.2250	12.3496	40
YEAR	86		8.8750	6.8573	20
YEAR	89		15.5750	15.5693	20
	0.5				2.0

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
anna-na	11005		2 0400	4 0066	2100
SPECIES	11005	S. franciscanus	3.8429	4.8866	3120
LOCATION	1	SMI WYCKOFF LEDGE	1.3000	3.8076	210
YEAR	82		0.5667	2.3442	30
YEAR	83		0.7500	2.5090	40
YEAR	84		0.3000	1.0427	40
YEAR	85		1.4500	3.2032	20
YEAR	86		3.0500	5.2287	20
YEAR	87		1.7500	5.3644	20
YEAR	88		1.8250	4.1716	20
YEAR	89		2.6250	6.5552	20
LOCATION	2	SMI HARE ROCK	9.0524	7.6828	210
YEAR	82		8.1000	13.5605	30
YEAR	83		6.4500	5.8087	40
YEAR	84		6.3750	4.0553	40
YEAR	85		9.5250	3.9785	20
YEAR	86		14.6750	7.9955	20
YEAR	87		10.6000	5.7734	20
YEAR	88		10.6000	7.2956	20
YEAR	89		11.8500	4.6597	20
LOCATION	3	SRI JOHNSONS LEE NORTH	2.7386	4.1698	220
YEAR	82	one commodite and month	4.5750	6.6867	40
	83		1.8250		
YEAR				4.4427	40
YEAR	84		2.3250	3.6260	40
YEAR	85		3.4000	2.0039	20
YEAR	86		2.7750	2.0292	20
YEAR	87		2.4250	2.3967	20
YEAR	88		1.5250	2.2796	20
YEAR	89		2.5500	3.2683	20
LOCATION	4	SRI JOHNSONS LEE SOUTH	3.8286	5.5102	210
YEAR	82		2.2000	5.3717	30
YEAR	83		2.4500	5.7287	40
YEAR	84		3.9500	5.4676	40
YEAR	85		6.8750	5.5911	20
YEAR	86		9.1000	5.0487	20
YEAR	87		3.4250	3.6465	20
YEAR	88		2.7000	5.0975	20
YEAR	89		2.0000	3.5946	20
LOCATION	5	SRI RODES REEF	5.6722	5.6334	180
YEAR	83		3.5250	4.2122	40
YEAR	84		5.7000	6.3213	40
YEAR	85		8.3000	6.8890	20
YEAR	86		9.9500		20
				4.4982	
YEAR	87		5.9500	4.5909	20
YEAR	88		4.4500	4.4748	20
YEAR	89		3.9500	5.5438	20
LOCATION	6	SCI GULL ISLAND SOUTH	6.0119	6.0021	210
YEAR	82		5.8000	5.2941	30
YEAR	83		3.6500	3.9324	40
YEAR	84		6.7000	6.0941	40
YEAR	85		12.8750	7.5566	20
YEAR	86		11.0750	6.6060	20
YEAR	87		5.5250	3.8848	20
YEAR	88		2.5500	2.5335	20
YEAR	89		1.7000	1.2074	20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 82 83 84 85 86 87 88	SCI FRYS HARBOR	2.2333 1.9667 2.5250 1.7750 2.3250 3.3500 2.6500 1.8250	2.0735 2.2967 2.3749 2.1302 1.2384 2.6112 1.8071 1.1840	210 30 40 40 20 20 20 20
YEAR	89		1.7500	1.6343	20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 82 83 84 85 86 87 88 89	SCI PELICAN BAY	3.1214 3.0667 3.0250 3.9000 3.3250 4.9250 2.3500 1.2750 2.4500	3.4514 4.2825 3.7926 4.0307 2.2727 3.7776 1.8432 1.1525 2.5593	210 30 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 82 83 84 85 86 87 88	SCI SCORPION ANCHORAGE	2.5667 2.4333 2.3250 2.2250 2.6750 5.4500 3.2500 0.7000 2.1250	2.8821 3.6548 2.8138 2.5868 3.1717 3.4101 1.1180 0.5938 2.0447	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR	10 86 87 88 89	SCI YELLOW BANKS	1.9000 3.9250 1.5000 1.4750 0.7000	3.3644 5.6272 1.7918 2.3366 0.7327	80 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 82 83 84 85 86 87 88	ANI ADMIRALS REEF	4.8190 3.3000 2.8750 4.5500 5.4750 5.7250 6.3000 6.7500 6.5500	3.8832 3.6213 2.7192 4.3733 2.7313 3.8712 2.7116 4.3905 4.4601	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 82 83 84 85 86 87 88	ANI CATHEDRAL COVE	4.4238 5.5000 4.1000 4.6750 4.9250 3.2500 3.8000 4.7000 3.9750	4.2605 4.7904 5.6831 5.4977 2.9347 1.8813 2.0417 3.1179 2.3813	210 30 40 40 20 20 20 20 20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION	13	ANI LANDING COVE	2.3048	2.9040	210
YEAR	82		1.7333	2.8276	30
YEAR	83		2.2750	3.2737	40
YEAR	84		2.2250	2.9395	40
YEAR	85		2.4250	2.9167	20
YEAR	86		1.9000	2.1497	20
YEAR	87		2.3750	2.9149	20
YEAR	88		3.0250	2.8399	20
YEAR	89		2.8750	3.0859	20
LOCATION	14	SBI SOUTHEAST SEALION	5.0024	5.3862	210
YEAR	82	CDI COCINDICI CDINDICI	5.5667	6.9465	30
YEAR	83		8.2500	6.6824	40
YEAR	84		5.5750	4.4715	40
YEAR	85		4.6750	3.2978	20
YEAR	86		5.4500	5.3702	20
YEAR	87		3.2000	3.2703	20
YEAR	88		1.7500	2.4198	20
YEAR	89		1.4500	2.2237	20
LOCATION	15	SBI ARCH POINT	2.7119	3.4380	210
YEAR	82		2.8667	5.4692	30
YEAR	83		2.3750	3.1678	40
YEAR	84		2.9250	3.5976	40
YEAR	85		3.3000	3.3380	20
YEAR	86		3.2500	3.3580	20
YEAR	87		3.1750	2.3242	20
YEAR	88		1.6750	1.4714	20
YEAR	89		2.1750	2.1230	20
LOCATION	16	SBI CAT CANYON	2.1625	1.9222	80
YEAR	86		1.4500	1.5295	20
YEAR	87		1.7500	1.8101	20
YEAR	88		2.6750	1.7112	20
YEAR	89		2.7750	2.3310	20
SPECIES	11006	S. purpuratus	16.8058	29.4495	3120
LOCATION	1	SMI WYCKOFF LEDGE	0.3643	1.2196	210
YEAR	82		0.1000	0.5477	30
YEAR	83		0.0500	0.3162	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.6000	1.1653	20
YEAR	86		1.8500	3.0092	20
YEAR	87		0.3500	0.7797	20
YEAR	88		0.3250	0.7122	20
YEAR	89		0.4500	1.0870	20
LOCATION	2	SMI HARE ROCK	12.5667	19.6355	210
YEAR	82		10.9333	19.6081	30
YEAR	83		5.4000	7.9994	40
YEAR	84		9.3000	11.1797	40
YEAR	85		13.4750	15.1314	20
YEAR	86		44.0000	34.4273	20
YEAR	87		15.5750	20.3038	20
YEAR	88		8.2000	10.9969	20
YEAR	89		4.9000	7.1958	20
THAN	UJ		4.3000	1.1300	20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

Quadrats					
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 82 83 84 85 86 87 88	SRI JOHNSONS LEE NORTH	23.1500 18.0500 21.0250 26.2250 43.8750 39.9000 35.3000 1.4250 3.5500	26.8673 16.7622 29.9773 38.5550 22.0053 11.5492 17.4404 3.9546 4.7041	220 40 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 82 83 84 85 86 87 88	SRI JOHNSONS LEE SOUTH	8.7619 6.1667 4.5500 7.2750 14.6250 27.2000 7.1750 0.8000 9.3000	10.2310 7.4975 5.4347 5.1540 8.8850 13.9929 9.8452 1.7122 7.7126	210 30 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 83 84 85 86 87 88	SRI RODES REEF	5.8278 2.4750 4.3000 6.7250 21.0750 7.3750 0.4500 3.2750	9.1917 4.2966 7.8518 8.1652 12.8322 5.1424 0.7416 7.6956	180 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 82 83 84 85 86 87 88	SCI GULL ISLAND SOUTH	30.0429 8.8000 9.8000 4.8750 27.1000 68.6750 54.0000 51.1750 71.9500	38.4459 14.1407 14.3852 8.6415 26.1778 62.7120 28.0052 39.4613 31.6938	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 82 83 84 85 86 87 88	SCI FRYS HARBOR	2.9214 1.3333 0.3500 0.5000 0.3500 5.6000 7.1500 5.9250 7.9500	5.8970 2.3829 0.8022 1.2403 0.6509 5.5265 12.2217 7.2444 6.0717	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 82 83 84 85 86 87 88 89	SCI PELICAN BAY	8.3786 3.9333 4.9000 6.4250 10.6750 15.7000 16.2000 8.5500 8.3000	9.6960 5.5952 7.0993 8.7819 9.4455 10.3890 14.9335 7.8033 7.2410	210 30 40 40 20 20 20 20 20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION	9	SCI SCORPION ANCHORAGE	25.7476	27.7304	210
YEAR	82	DOI DOOM TON THVOHOLDED	3.4667	3.7021	30
YEAR	83		8.6750	13.2033	40
YEAR	84		7.2000	8.9362	40
YEAR	85		8.2000	6.4531	20
YEAR	86		64.7000	24.4946	20
YEAR	87		57.9500	13.6564	20
YEAR	88		46.5500	15.5766	20
YEAR	89		56.0000	17.0842	20
LOCATION	10	SCI YELLOW BANKS	18.5813	18.2669	80
YEAR	86		21.7250	19.9727	20
YEAR	87		22.7250	19.4304	20
YEAR	88		9.3750	8.6646	20
YEAR	89		20.5000	20.3547	20
LOCATION	11	ANI ADMIRALS REEF	3.1857	3.8337	210
YEAR	82		3.3333	3.2835	30
YEAR	83		1.5250	2.2302	40
YEAR	84		1.4750	2.7362	40
YEAR	85		2.2000	3.0625	20
YEAR	86		4.4500	4.0062	20
YEAR	87		5.2500	5.4205	20
YEAR	88		4.9250	3.5254	20
YEAR	89		5.6250	4.8744	20
LOCATION	12	ANI CATHEDRAL COVE	2.3881	4.9520	210
YEAR	82		2.1000	3.1332	30
YEAR	83		0.8000	1.6672	40
YEAR	84		1.3750	2.3170	40
YEAR	85		2.2500	2.4089	20
YEAR	86		5.6000	8.4442	20
YEAR	87		1.9000	2.1374	20
YEAR	88		2.2500	3.6001	20
YEAR	89		5.5750	10.6750	20
LOCATION	13	ANI LANDING COVE	0.9310	1.7400	210
YEAR	82		0.6667	1.6678	30
YEAR	83		0.8750	2.1145	40
YEAR	84		0.2250	0.5305	40
YEAR	85		0.4000	0.5026	20
YEAR	86		0.9250	1.4534	20
YEAR	87		1.3000	2.2088	20
YEAR	88		2.0000	1.7396	20
YEAR	89		1.9500	2.2647	20
LOCATION	14	SBI SOUTHEAST SEALION	44.4143	46.8265	210
YEAR	82		15.9000	17.7809	30
YEAR	83		14.1250	15.2032	40
YEAR	84		10.0250	12.2506	40
YEAR	85		27.4250	13.8747	20
YEAR	86		96.7500	35.0163	20
YEAR	87		76.1000	46.7118	20
YEAR	88		98.5750	40.9596	20
YEAR	89		95.3500	42.5324	20

Channel Islands National Park Kelp forest Monitoring 1982-1989 Quadrats Variable Value Label Mean Std Dev Cases 15 SBI ARCH POINT LOCATION 50.1095 48.5532 210 YEAR 82 46.9667 38.7596 30 YEAR 8.3 36.2500 29.4512 40 YEAR 8.5171 40 5.3500 YEAR 8.5 30.6000 20.3377 2.0 YEAR 86 154.3000 39.0140 20 YEAR 87 70.6250 28.9845 20 88 YEAR 51.1000 23.3185 20 89 65.8750 34.9081 20 YEAR LOCATION 16 SBI CAT CANYON 34.5000 24.9716 86 11.9250 15.0624 20 YEAR YEAR 87 31.4750 26.2941 20 YEAR 88 50.7250 23.2019 2.0 YEAR 89 43.8750 14.8491 20 SPECIES 11007 Parastichopus parvamensis 0.6628 0.9965 3120 1 SMI WYCKOFF LEDGE 0.4949 0.2048 LOCATION 210 82 0.0333 0.1826 30 83 0.1750 YEAR 0.4465 40 YEAR 84 0.3250 0.7642 40 85 0.2250 0.4128 20 YEAR YEAR 86 0.2250 0.4128 20 YEAR 87 0.2250 0.4128 88 YEAR 0.2000 0.4413 2.0 YEAR 89 0.2250 0.4993 2 SMI HARE ROCK LOCATION 0.1738 0.3521 210 YEAR 82 0.0333 0.1826 3.0 YEAR 83 0.1250 0.3349 40 YEAR 84 0.2000 0.4641 40 YEAR 8.5 0.2750 0.3432 20 0.2750 0.4128 YEAR 87 0.0750 0.1832 20 YEAR 0.3000 YEAR 88 0.3770 20 YEAR 89 0.2000 0.2991 20 LOCATION 3 SRI JOHNSONS LEE NORTH 0.4955 0.8290 220 YEAR 82 0.7250 1.0857 40 YEAR 83 0.3000 0.8829 YEAR 84 0.2000 0.4641 40 YEAR 85 0.4750 0.8188 20 0.7587 YEAR 86 0.6250 20 YEAR 87 0.6250 0.7587 20 YEAR 88 0.4000 0.5982 20 YEAR 89 0.8750 0.8410 20 LOCATION 4 SRI JOHNSONS LEE SOUTH 0.3501 0.1524 210 YEAR 82 0.0667 0.2537 30 YEAR 8.3 0.0500 0.3162 40 YEAR 84 0.0000 0.0000 40 0.3250 YEAR 85 0.4064 20 YEAR 86 0.4250 0.4667 2.0 YEAR 87 0.2000 0.3770 20

YEAR

YEAR

88

89

0.4064

0.3796

20

20

0.1750

0.2750

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 83 84 85 86 87 88	SRI RODES REEF	0.0278 0.0000 0.0500 0.0000 0.0750 0.0500 0.0000 0.0250	0.1469 0.0000 0.2207 0.0000 0.1832 0.2236 0.0000 0.1118	180 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 82 83 84 85 86 87 88	SCI GULL ISLAND SOUTH	0.8667 0.4333 0.4750 0.5500 1.1250 1.1250 1.6000 1.3750 1.1750	0.9529 0.7739 0.7506 0.9044 0.7048 0.8410 1.0712 1.1107 0.8626	210 30 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 82 83 84 85 86 87 88 89	SCI FRYS HARBOR	2.1238 2.1667 2.4250 2.4250 1.8500 1.4500 1.9250 2.1500 1.9750	1.4130 1.5105 1.6929 1.6469 1.0650 0.7763 0.9770 1.1251 1.4371	210 30 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 82 83 84 85 86 87 88 89	SCI PELICAN BAY	0.8214 0.0000 0.0000 1.2500 1.1000 0.9750 1.1500 1.2500 1.6500	1.0085 0.0000 0.0000 1.1712 0.9403 0.7860 0.9191 0.8351 1.1482	210 30 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 82 83 84 85 86 87 88	SCI SCORPION ANCHORAGE	0.6976 0.7667 0.6500 0.2250 0.7750 0.7000 0.7000 1.2750 0.9750	0.8655 1.2229 0.9213 0.5768 0.8347 0.6569 0.5938 0.7340 0.7691	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR	10 86 87 88 89	SCI YELLOW BANKS	0.8875 0.6750 1.2000 1.2250 0.4500	1.0994 0.8315 0.9921 1.5600 0.6669	80 20 20 20 20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

Quadrats					
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 82 83 84 85 86 87 88	ANI ADMIRALS REEF	1.0643 1.1333 0.7750 1.0750 0.8500 1.6750 1.2250 1.1000 0.9250	1.1644 0.8604 1.1873 1.6546 0.9047 1.2277 0.9931 0.6996 0.8926	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 82 83 84 85 86 87 88	ANI CATHEDRAL COVE	1.1119 0.2333 0.9250 1.5000 1.6250 1.2250 1.3250 1.0250 1.2750	1.0852 0.5040 0.9167 1.4500 1.0622 0.7159 0.8472 0.9525 1.1295	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 82 83 84 85 86 87 88	ANI LANDING COVE	0.5548 0.7000 0.6750 0.2000 0.0500 0.7250 0.3000 0.8750 1.0750	0.9785 1.3933 1.3280 0.5164 0.1539 0.8347 0.4413 0.6664 0.9770	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 82 83 84 85 86 87 88	SBI SOUTHEAST SEALION	0.8524 0.6333 0.7500 0.9500 1.0500 1.0000 0.8000 1.0250 0.7250	0.8269 0.8087 0.8697 0.9594 0.9018 0.6070 0.6366 0.9244 0.6382	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 82 83 84 85 86 87 88	SBI ARCH POINT	0.1762 0.1667 0.0500 0.1250 0.2750 0.1500 0.3250 0.2250 0.2750	0.3352 0.3790 0.2207 0.3349 0.3432 0.2856 0.4375 0.3024 0.3432	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR	16 86 87 88 89	SBI CAT CANYON	0.2813 0.4000 0.3000 0.2750 0.1500	0.3802 0.4472 0.3770 0.4128 0.2351	80 20 20 20 20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

Quadrats					
Variable	Value	Label	Mean	Std Dev	Cases
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12002 1 82 83 84 85 86 87	Styela montereyensis SMI WYCKOFF LEDGE	0.2622 0.2476 0.1333 0.0750 0.4500 0.3500 0.0000 0.2000	1.6162 0.6133 0.3457 0.2667 1.0115 0.4894 0.0000 0.3403	2920 210 30 40 40 20 20
YEAR YEAR	88 89		0.0500 0.7500	0.2236 0.8660	20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 82 83 84 85 86 87 88	SMI HARE ROCK	0.0762 0.5000 0.0250 0.0000 0.0000 0.0000 0.0000 0.0000	0.3302 0.7311 0.1581 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	210 30 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 82 83 84 85 86 87 88	SRI JOHNSONS LEE NORTH	0.3205 0.4500 0.0000 0.1500 0.4500 0.0000 0.0000 0.4500 1.4250	0.8802 1.0365 0.0000 0.4267 1.0625 0.0000 0.0000 0.6863 1.7035	220 40 40 40 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 82 83 84 85 86 87 88	SRI JOHNSONS LEE SOUTH	0.4429 0.6333 0.1500 0.8000 0.8500 0.0500 0.0000 0.1750 0.7250	0.8252 0.8087 0.3616 1.3048 0.7797 0.1539 0.0000 0.2936 0.8955	210 30 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 83 84 85 86 87 88 89	SRI RODES REEF	2.6500 0.2750 10.0750 2.2500 0.0500 0.0000 0.1250 0.7250	5.7555 0.8767 8.3709 3.5670 0.1539 0.0000 0.2751 0.7860	180 40 40 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR	6 85 86 87 88	SCI GULL ISLAND SOUTH	0.0050 0.0250 0.0000 0.0000 0.0000	0.0500 0.1118 0.0000 0.0000 0.0000	100 20 20 20 20 20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION	7	SCI FRYS HARBOR	0.0000	0.0000	180
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
LOCATION	8	SCI PELICAN BAY	0.0095	0.1380	210
YEAR	82	SCI IBBICAN BAI	0.0667	0.3651	30
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
LOCATION	9	SCI SCORPION ANCHORAGE	0.0000	0.0000	180
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
LOCATION	10	SCI YELLOW BANKS	0.0375	0.2487	80
YEAR	86		0.0000	0.0000	20
YEAR	87		0.1500	0.4894	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
LOCATION	11	ANI ADMIRALS REEF	0.0857	0.4715	210
YEAR	82		0.6000	1.1326	30
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
TOCAMION	10	ANT CAMHEDDAT COVE	0 0000	0 0272	100
LOCATION	12	ANI CATHEDRAL COVE	0.0028	0.0373	180
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0250	0.1118	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
					-
LOCATION	13	ANI LANDING COVE	0.1429	0.6019	210
YEAR	82		0.7333	1.2015	30
YEAR	83		0.1750	0.7121	4 0
YEAR	84		0.0250	0.1581	40
YEAR	85		0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

Quadrats						
Variable	Value	Label	Mean	Std Dev	Cases	
LOCATION YEAR YEAR YEAR	14 82 83 84	SBI SOUTHEAST SEALION	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	210 30 40 40	
YEAR	85		0.0000	0.0000	20	
YEAR	86		0.0000	0.0000	20	
YEAR	87		0.0000	0.0000	20	
YEAR	88		0.0000	0.0000	20	
YEAR	89		0.0000	0.0000	20	
LOCATION	15	SBI ARCH POINT	0.0143	0.1189	210	
YEAR	82		0.1000	0.3051	30	
YEAR	83		0.0000	0.0000	40	
YEAR	84		0.0000	0.0000	40	
YEAR	85		0.0000	0.0000	20	
YEAR	86		0.0000	0.0000	20	
YEAR	87		0.0000	0.0000	20	
YEAR	88		0.0000	0.0000	20	
YEAR	89		0.0000	0.0000	20	
LOCATION	16	SBI CAT CANYON	0.0000	0.0000	80	
YEAR	86		0.0000	0.0000	20	
YEAR	87		0.0000	0.0000	20	
YEAR	88		0.0000	0.0000	20	
YEAR	89		0.0000	0.0000	20	
IEAN	09		0.0000	0.0000	20	
SPECIES	14025	Lythrypnus dalli	0.2406	0.9058	1600	
LOCATION	1	SMI WYCKOFF LEDGE	0.0000	0.0000	100	
YEAR	85		0.0000	0.0000	20	
YEAR	86		0.0000	0.0000	20	
YEAR	87		0.0000	0.0000	20	
YEAR	88		0.0000	0.0000	20	
YEAR	89		0.0000	0.0000	20	
IEAK	0,5		0.0000	0.0000	20	
LOCATION	2	SMI HARE ROCK	0.0000	0.0000	100 20	
YEAR	85		0.0000	0.0000		
YEAR	86		0.0000	0.0000	20	
YEAR	87		0.0000	0.0000	20	
YEAR	88		0.0000	0.0000	20	
YEAR	89		0.0000	0.0000	20	
LOCATION	3	SRI JOHNSONS LEE NORTH	0.0000	0.0000	100	
YEAR	85		0.0000	0.0000	20	
YEAR	86		0.0000	0.0000	20	
YEAR	87		0.0000	0.0000	20	
YEAR	88		0.0000	0.0000	20	
YEAR	89		0.0000	0.0000	20	
LOCATION	4	SRI JOHNSONS LEE SOUTH	0.0000	0.0000	100	
YEAR	85		0.0000	0.0000	20	
YEAR	86		0.0000	0.0000	20	
YEAR	87		0.0000	0.0000	20	
YEAR	88		0.0000	0.0000	20	
YEAR	89		0.0000	0.0000	20	
T 171.71/	0.9		0.0000	0.0000	20	

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

		Quadrats			
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION	5	SRI RODES REEF	0.0000	0.0000	100
YEAR	85	THE TROPES TREET	0.0000	0.0000	20
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
LOCATION	6	SCI GULL ISLAND SOUTH	0.6600	1.8462	100
YEAR	85		3.0000	3.2118	20
YEAR	86		0.2250	0.4128	20
YEAR	87		0.0750	0.1832	20
YEAR	88		0.0000	0.0000	20
YEAR	89		0.0000	0.0000	20
LOCATION	7	SCI FRYS HARBOR	1.8950	1.9750	100
YEAR	85	SCI FRIS HANDON	0.0000	0.0000	20
YEAR	86		2.5500	1.5122	20
YEAR	87		2.3750	1.7612	20
YEAR	88		3.2250	2.5878	20
YEAR	89		1.3250	1.2489	20
LOCATION	8	SCI PELICAN BAY	0.6950	1.1654	100
YEAR	85		0.0000	0.0000	20
YEAR	86		0.9250	1.8868	20
YEAR	87		1.1000	1.0712	20
YEAR	88		1.1000	1.0208	20
YEAR	89		0.3500	0.5405	20
111111	03		0.0000	0.0100	20
LOCATION	9	SCI SCORPION ANCHORAGE	0.1650	0.5776	100
YEAR	85		0.6750	1.1387	20
YEAR	86		0.0500	0.1539	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.1000	0.2616	20
YEAR	89		0.0000	0.0000	20
111111	0,5		0.0000	0.0000	20
LOCATION	10	SCI YELLOW BANKS	0.0063	0.0559	80
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0250	0.1118	20
YEAR	89		0.0000	0.0000	20
LOCATION	11	ANI ADMIRALS REEF	0.1900	0.4912	100
YEAR	85		0.6000	0.8974	20
YEAR	86		0.0500	0.1539	20
YEAR	87		0.2250	0.3432	20
YEAR	88		0.0750	0.2447	20
YEAR	89		0.0000	0.0000	20
LOCATION	12	ANI CATHEDRAL COVE	0.1100	0.3523	100
	85	WIL CUITEDIVAL COAE	0.2000	0.4974	20
YEAR					
YEAR	86		0.0000	0.0000	20
YEAR	87		0.0000	0.0000	20
YEAR	88		0.3250	0.5447	20
YEAR	89		0.0250	0.1118	20
LOCATION	13	ANI LANDING COVE	0.1300	0.4121	100
YEAR	85		0.2250	0.5955	20
YEAR	86		0.1250	0.4552	20
YEAR	87		0.0500	0.2236	20
YEAR	88		0.1750	0.3726	20
YEAR	89		0.1750	0.3354	20
TEAN	03		0.0/30	0.3334	20

Channel Islands National Park Kelp forest Monitoring 1982-1989
Ouadrats

Quadrats					
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR	14 85 86 87 88	SBI SOUTHEAST SEALION	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	15 85 86 87 88 89	SBI ARCH POINT	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	100 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR	16 86 87 88 89	SBI CAT CANYON	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	80 20 20 20 20
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	14026 1 85 86 87 88	Coryphopterus nicholsii SMI WYCKOFF LEDGE	1.1000 0.0500 0.0250 0.0750 0.0000 0.0500 0.1000	2.7486 0.1946 0.1118 0.1832 0.0000 0.2236 0.3078	1600 100 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR	2 85 86 87 88 89	SMI HARE ROCK	0.5950 0.0750 0.3250 0.6000 1.9500 0.0250	1.2527 0.1832 0.6935 0.8675 2.0641 0.1118	100 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR	3 85 86 87 88	SRI JOHNSONS LEE NORTH	0.1200 0.1000 0.0250 0.1750 0.2750 0.0250	0.3701 0.2616 0.1118 0.4064 0.6382 0.1118	100 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR	4 85 86 87 88 89	SRI JOHNSONS LEE SOUTH	0.5400 0.0250 0.2500 0.4000 1.5250 0.5000	1.3403 0.1118 0.4443 1.0079 2.4251 0.9177	100 20 20 20 20 20
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	5 85 86 87 88	SRI RODES REEF	0.0300 0.0000 0.0000 0.1000 0.0500 0.0000	0.1193 0.0000 0.0000 0.2052 0.1539 0.0000	100 20 20 20 20 20

Channel Islands National Park Kelp forest Monitoring 1982-1989
Ouadrats

			Quadrats		,	
Variable	Value	Labe	el	Mean	Std Dev	Cases
LOCATION	6	SCT	GULL ISLAND SOUTH	1.1050	1.4307	100
YEAR	85	001	COLL TOLING COOTH	0.2750	0.3432	20
YEAR	86			0.2750	0.4435	20
YEAR	87			0.5750	0.5200	20
YEAR	88			2.1750	1.6325	20
YEAR	89			2.2250	1.7732	20
ILAK	09			2.2230	1.7732	20
LOCATION	7	SCI	FRYS HARBOR	1.3750	1.8605	100
YEAR	85			0.1000	0.2616	20
YEAR	86			0.2750	0.5250	20
YEAR	87			0.5750	0.5447	20
YEAR	88			2.0750	1.5583	20
YEAR	89			3.8500	2.0844	20
LOCATION	8	SCI	PELICAN BAY	7.4850	7.1292	100
YEAR	85			0.6750	0.5447	20
YEAR	86			3.0000	1.7622	20
YEAR	87			4.1750	2.0018	20
YEAR	88			17.4250	5.1485	20
YEAR	89			12.1500	4.7409	20
LOCATION	9	SCT	SCORPION ANCHORAGE	0.6450	1.1039	100
YEAR	85	001	DOGINITON THYONOTHIOD	0.0500	0.1539	20
YEAR	86			0.1000	0.2616	20
YEAR	87			0.1000	0.2616	20
YEAR	88			1.0250	1.0939	20
YEAR	89			1.9500	1.4318	20
LOCATION	10	SCI	YELLOW BANKS	1.2000	1.7185	80
YEAR	86			0.1750	0.3354	20
YEAR	87			0.9750	1.0192	20
YEAR	88			3.0000	2.4116	20
YEAR	89			0.6500	0.6509	20
LOCATION	11	ANT	ADMIRALS REEF	1.3000	1.8816	100
YEAR	85	21111	TIBITITUDO TODI	0.1000	0.2052	20
YEAR	86			0.1250	0.2032	20
	87					20
YEAR				0.9250	0.9497	
YEAR	88			3.7000	2.5464	20
YEAR	89			1.6500	1.2680	20
LOCATION	12	ANI	CATHEDRAL COVE	1.4150	1.8803	100
YEAR	85			0.0000	0.0000	20
YEAR	86			0.0500	0.1539	20
YEAR	87			0.5000	0.6070	20
YEAR	88			4.1250	1.9322	20
YEAR	89			2.4000	0.7712	20
LOCATION	13	ANT	LANDING COVE	0.5700	1.1591	100
YEAR	85			0.0000	0.0000	20
YEAR	86			0.0000	0.0000	20
YEAR	87			0.1000	0.2052	20
YEAR	88			1.5000	1.5131	20
YEAR	89			1.2500	1.5347	20
		c==	001111111111111111111111111111111111111	0 5150	0.0650	100
LOCATION	14	SBI	SOUTHEAST SEALION	0.5150	0.9652	100
YEAR	85			0.0500	0.1539	20
YEAR	86			0.1000	0.3479	20
YEAR	87			0.1000	0.2052	20
YEAR	88			1.4500	1.4318	20
YEAR	89			0.8750	0.9851	20
LOCATION	15	SBI Z	ARCH POINT	0.2100	0.6482	100
YEAR	85			0.0000	0.0000	20
YEAR	86			0.0000	0.0000	20

Appx. 1-41

Channel Islands National Park Kelp forest Monitoring 1982-1989 Quadrats Variable Value Label Mean Std Dev Cases 20 YEAR 87 0.0250 0.1118 YEAR 88 0.7500 1.2618 20 YEAR 89 0.2750 0.3796 20 LOCATION 0.4587 8.0 16 SBI CAT CANYON 0.1813 86 0.0000 0.0000 20 87 0.0000 0.0000 YEAR 20 YEAR 88 0.3750 0.7759 20 YEAR 89 0.3500 0.3663 20 14027 Alloclinus holderi 1600 SPECIES 0.2153 0.4418 LOCATION 1 SMI WYCKOFF LEDGE 0.0550 0.1866 100 YEAR 0.0000 0.0000 8.5 2.0 YEAR 86 0.0000 0.0000 20 YEAR 87 0.0000 0.0000 20 0.1500 0.2856 YEAR 88 2.0 YEAR 89 0.1250 0.2751 20 100 LOCATION 2 SMI HARE ROCK 0.0600 0.1917 85 0.1000 0.3078 20 YEAR YEAR 86 0.0500 0.1539 20 YEAR 87 0.0000 0.0000 20 YEAR 88 0.0750 0.1832 20 YEAR 0.0750 0.1832 LOCATION 3 SRI JOHNSONS LEE NORTH 0.0250 0.1095 100 85 0.0000 YEAR 0.0000 2.0 YEAR 86 0.0250 0.1118 20 YEAR 87 0.0500 0.1539 20 0.0000 YEAR 88 0.0000 20 YEAR 89 0.0500 0.1539 20 LOCATION 4 SRI JOHNSONS LEE SOUTH 0.0500 0.1667 100 85 0.0250 0.1118 20 YEAR YEAR 86 0.0000 0.0000 20 YEAR 87 0.0000 0.0000 20 YEAR 88 0.0000 0.0000 20 YEAR 89 0.2250 0.3024 20 LOCATION 5 SRI RODES REEF 0.0400 0.1537 100 85 YEAR 0.1000 0.2616 2.0 YEAR 86 0.0000 0.0000 20 YEAR 87 0.0000 0.0000 20 YEAR 88 0.0000 0.0000 20 YEAR 89 0.1000 0.2052 20 LOCATION 6 SCI GULL ISLAND SOUTH 0.3100 0.4191 100 85 YEAR 0.3250 0.4064 20 YEAR 86 0.2750 0.3796 20 YEAR 87 0.5250 0.5250 2.0

0.1500

0.2750

0.2351

0.4435

20

20

YEAR

YEAR

88

89

Channel Islands National Park Kelp forest Monitoring 1982-1989
Ouadrats

			Quadrats		5	
Variable	Value	Labe	el	Mean	Std Dev	Cases
LOCATION	7	SCT	FRYS HARBOR	0.1700	0.3274	100
YEAR	85	DCI	TRIS IMMEGIC	0.2750	0.4993	20
YEAR	86			0.2750	0.2751	20
YEAR	87			0.3000	0.2991	20
YEAR	88			0.1500	0.2856	20
YEAR	89			0.0000	0.0000	20
LOCATION	8	SCI	PELICAN BAY	0.1450	0.6447	100
YEAR	85			0.6000	1.3436	20
YEAR	86			0.0500	0.1539	20
YEAR	87			0.0750	0.2447	20
YEAR	88			0.0000	0.0000	20
YEAR	89			0.0000	0.0000	20
LOCATION	9	SCT	SCORPION ANCHORAGE	0.1750	0.3128	100
YEAR	85	001		0.3750	0.4253	20
YEAR	86			0.3250	0.3726	20
YEAR	87			0.1250	0.2221	20
YEAR	88			0.0500	0.1539	20
YEAR	89			0.0000	0.0000	20
LOCATION	10	SCI	YELLOW BANKS	0.0313	0.1218	80
YEAR	86			0.0500	0.1539	20
YEAR	87			0.0250	0.1118	20
YEAR	88			0.0000	0.0000	20
YEAR	89			0.0500	0.1539	20
LOCATION	11	ANT	ADMIRALS REEF	0.2350	0.3724	100
YEAR	85			0.4750	0.5250	20
YEAR	86			0.2500	0.3035	20
YEAR	87			0.2500	0.3035	20
	88			0.2000	0.3770	20
YEAR						
YEAR	89			0.0000	0.0000	20
LOCATION	12	ANI	CATHEDRAL COVE	0.3300	0.4726	100
YEAR	85			0.6500	0.6304	20
YEAR	86			0.3750	0.3193	20
YEAR	87			0.3250	0.3354	20
YEAR	88			0.2250	0.5730	20
YEAR	89			0.0750	0.1832	20
LOCATION	13	ΔΝΤ	LANDING COVE	0.1300	0.2525	100
YEAR	85	7 71 V T	EMINDING COVE	0.3000	0.3403	20
YEAR	86			0.2000	0.2513	20
YEAR	87			0.1250	0.2751	20
YEAR	88			0.0250	0.1118	20
YEAR	89			0.0000	0.0000	20
LOCATION	14	SBI	SOUTHEAST SEALION	0.5600	0.6000	100
YEAR	85			0.5500	0.6469	20
YEAR	86			0.4500	0.6048	20
YEAR	87			0.7500	0.5960	20
YEAR	88			0.5250	0.6584	20
YEAR	89			0.5250	0.4993	20
I OCA III OM	15	CDT	ADCU DOTNO	0.5500	0 6700	100
LOCATION		PRI	ARCH POINT	0.5500	0.6798	100
YEAR	85				0.7759	20
YEAR	86			0.5750	0.4940	20
YEAR	87			0.3750	0.4552	20
YEAR	88			0.3000	0.4413	20
YEAR	89			0.8750	0.9716	20
LOCATION	16	SBI	CAT CANYON	0.5125	0.6263	80
YEAR	86			0.6000	0.6407	20
YEAR	87			0.7250	0.8955	20

Appx. 1-43

Channel Islands National Park Kelp forest Monitoring 1982-1989 ${\tt Quadrats}$

Variable	Value	Label	Mean	Std Dev	Cases
YEAR	88		0.2750	0.3024	20
YEAR	89		0.4500	0.4560	20

Appendix 2. 1982-1989 Kelp Forest Monitoring Data - Band Transects

Introduction.

Following are summaries of data gathered during band transect counts from 1982-1989 for all kelp forest monitoring program sampling sites. Band transect sampling as a standard procedure started in 1983. Means, standard deviations and total number of samples (cases) are given. Data were summarized with SPSSPC+ programs from translated dBase III+ files. (Readers should be aware that the number of significant digits is an artifact of the database program and does not imply this level of precision.) For details of methods and data management, refer to the monitoring handbook (Davis 1988).

Notes on methods:

BAND TRANSECTS. Means represent average counts obtained from 12 stratified random 3m X 20m transects, each the sum of two individual divers' counts on 3m X 10m quadrats. In 1983 and 1984, only 10 band transects were counted. In 1988, a second count was performed at two stations on Santa Barbara Island. Station 50 represents the second count at Southeast Sealion Rookery and Station 52 represents the second count at Arch Point.

Muricea californica was not regularly counted from 1982-1989. *Lytechinus anamesus* were not counted in band transects at several sites where they were too numerous to count. These sites are indicated with N/D and were counted in quadrats. At Rodes Reef and Gull Island South in 1986, and Southeast Anchorage in 1989, *L. anamesus* were counted in both quadrats and band transects.

Channel Islands National Park Kelp Forest Monitoring 1982-1989
Band Transects

		Band Transects			
Variable	Value Lak	pel	Mean	Std Dev	Cases
SPECIES	5002	Tethya aurantia	0.0431	0.0677	1240
		SMI WYCKOFF LEDGE			
LOCATION		SMI WICKOFF LEDGE	0.0905	0.0760	80
YEAR	83		0.0800	0.0654	10
YEAR	84		0.0775	0.0740	10
YEAR	85		0.0542	0.0697	12
YEAR	86		0.1222	0.0604	12
YEAR	87		0.1014	0.0845	12
YEAR	88		0.1319	0.0970	12
YEAR	89		0.0625	0.0523	12
LOCATION	2	SMI HARE ROCK	0.0436	0.0449	80
YEAR	83		0.0725	0.0712	10
YEAR	84		0.0550	0.0369	10
YEAR	85		0.0417	0.0280	12
YEAR	86		0.0653	0.0548	12
YEAR	87		0.0444	0.0372	12
	88				12
YEAR			0.0264	0.0261	
YEAR	89		0.0069	0.0150	12
LOCATION	3	SRI JOHNSONS LEE NORTH	0.0416	0.0463	80
YEAR	83		0.0775	0.0606	10
YEAR	84		0.0800	0.0550	10
YEAR	85		0.0681	0.0510	12
					12
YEAR	86		0.0319	0.0219	
YEAR	87		0.0069	0.0132	12
YEAR	88		0.0153	0.0194	12
YEAR	89		0.0236	0.0219	12
LOCATION	4	SRI JOHNSONS LEE SOUTH	0.0604	0.0568	80
YEAR	83		0.1475	0.0558	10
YEAR	84		0.0725	0.0432	10
YEAR	85		0.0514	0.0463	12
YEAR	86		0.0264	0.0241	12
YEAR	87		0.0306	0.0368	12
YEAR	88		0.0639	0.0674	12
YEAR	89		0.0472	0.0308	12
LOCATION	5	SRI RODES REEF	0.1299	0.0820	80
YEAR	83		0.2125	0.0690	10
YEAR	84		0.2500	0.1000	10
YEAR	85		0.0944	0.0489	12
YEAR	86		0.0917	0.0597	12
	87				12
YEAR			0.1125	0.0370	
YEAR	88		0.0889	0.0410	12
YEAR	89		0.0931	0.0366	12
LOCATION	6	SCI GULL ISLAND SOUTH	0.0747	0.1103	80
YEAR	83		0.2425	0.1886	10
YEAR	84		0.1700	0.0926	10
YEAR	85		0.0778	0.0434	12
YEAR	86		0.0306	0.0300	12
YEAR	87		0.0222	0.0164	12
YEAR	88		0.0181	0.0181	12
	89		0.0056	0.0109	12
YEAR	09		0.0050	0.0103	12

		Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label		Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 SCI FRY 83 84 85 86 87 88 89	'S HARBOR	0.0739 0.1550 0.2325 0.1028 0.0111 0.0208 0.0139 0.0208	0.1002 0.1039 0.1302 0.0536 0.0179 0.0237 0.0255 0.0294	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 SCI PEI 83 84 85 86 87 88 89	LICAN BAY	0.0067 0.0400 0.0050 0.0000 0.0028 0.0000 0.0000 0.0042	0.0279 0.0699 0.0158 0.0000 0.0096 0.0000 0.0000 0.0104	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 SCI SCC 83 84 85 86 87 88 89	ORPION ANCHORAGE	0.0134 0.0225 0.0150 0.0111 0.0111 0.0097 0.0181 0.0083	0.0231 0.0399 0.0269 0.0164 0.0239 0.0132 0.0251	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR	10 SCI YEI 86 87 88 89	LLOWBANKS	0.0236 0.0292 0.0264 0.0125 0.0264	0.0303 0.0237 0.0313 0.0294 0.0366	48 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 ANI ADM 83 84 85 86 87 88 89	MIRALS REEF	0.0316 0.0350 0.1125 0.0250 0.0444 0.0056 0.0028 0.0097	0.0522 0.0337 0.0981 0.0251 0.0343 0.0109 0.0065 0.0207	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 ANI CAT 83 84 85 86 87 88 89	THEDRAL COVE	0.0021 0.0000 0.0050 0.0028 0.0028 0.0000 0.0014 0.0028	0.0072 0.0000 0.0158 0.0065 0.0065 0.0000 0.0048 0.0065	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 ANI LAN 83 84 85 86 87 88 89	NDING COVE	0.0033 0.0000 0.0000 0.0111 0.0042 0.0000 0.0028 0.0042	0.0090 0.0000 0.0000 0.0164 0.0075 0.0000 0.0096 0.0075	80 10 10 12 12 12 12 12

Channel	Islands Nationa	al Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label		Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 SBI 83 84 85 86 87 88	SOUTHEAST SEALION	0.0714 0.0675 0.0600 0.0653 0.0986 0.0500 0.0861 0.0694	0.0529 0.0313 0.0412 0.0641 0.0625 0.0396 0.0647 0.0492	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 SBI 83 84 85 86 87 88 89	ARCH POINT	0.0032 0.0225 0.0000 0.0014 0.0000 0.0014 0.0000 0.0000	0.0155 0.0399 0.0000 0.0048 0.0000 0.0048 0.0000 0.0000	80 10 10 12 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR	16 SBI 86 87 88 89	CAT CANYON	0.0021 0.0014 0.0042 0.0028 0.0000	0.0074 0.0048 0.0104 0.0096 0.0000	48 12 12 12 12
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR		opora californica WYCKOFF LEDGE	0.0029 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0190 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1240 80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 SMI 83 84 85 86 87 88 89	HARE ROCK	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 SRI 83 84 85 86 87 88 89	JOHNSONS LEE NORTH	0.0029 0.0000 0.0000 0.0000 0.0000 0.0000 0.0194 0.0000	0.0115 0.0000 0.0000 0.0000 0.0000 0.0000 0.0244 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 SRI 83 84 85 86 87 88 89	JOHNSONS LEE SOUTH	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR	5 SRI 83 84	RODES REEF	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	80 10 10

Appx. 2-4

Channel	Islands National Park Kelp 1 Band Transec	_	1982-1989	
Variable	Value Label	Mean	Std Dev	Cases
YEAR	85	0.0000	0.0000	12
	86			12
YEAR		0.0000	0.0000	
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	12
YEAR	89	0.0000	0.0000	12
LOCATION	6 SCI GULL ISLAND SC	O.0408	0.0628	80
YEAR	83	0.0550	0.0599	10
YEAR	84	0.0300	0.0483	10
YEAR	85	0.0569	0.0833	12
YEAR	86	0.0222	0.0328	12
YEAR	87	0.0833	0.1018	12
	88			12
YEAR		0.0194	0.0234	
YEAR	89	0.0194	0.0255	12
LOCATION	7 SCI FRYS HARBOR	0.0000	0.0000	80
YEAR	83	0.0000	0.0000	10
YEAR	84	0.0000	0.0000	10
YEAR	85	0.0000	0.0000	12
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.000	0.0000	12
YEAR	89	0.0000	0.0000	12
LOCATION	8 SCI PELICAN BAY	0.0000	0.0000	80
YEAR	83	0.0000	0.0000	10
YEAR	84	0.0000	0.0000	10
YEAR	85	0.0000	0.0000	12
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	12
YEAR	89	0.0000	0.0000	12
LOCATION	9 SCI SCORPION ANCHO	ORAGE 0.0000	0.0000	80
YEAR	83	0.0000	0.0000	10
YEAR	84	0.0000	0.0000	10
YEAR	85	0.0000	0.0000	12
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	12
YEAR	89	0.0000	0.0000	12
LOCATION	10 SCI YELLOWBANKS	0.0000	0.0000	48
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	12
YEAR	89	0.0000	0.0000	12
LOCATION	11 ANI ADMIRALS REEF	0.0002	0.0019	80
YEAR	83	0.0000	0.0000	10
YEAR	84	0.0000	0.0000	10
YEAR	85	0.0014	0.0048	12
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	12
YEAR	89	0.0000	0.0000	12

Channel	Islands Nationa	al Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label	Bana Transcees	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 ANI 83 84 85 86 87 88	CATHEDRAL COVE	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 ANI 83 84 85 86 87 88 89	LANDING COVE	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 SBI 83 84 85 86 87 88 89	SOUTHEAST SEALION	0.0003 0.0025 0.0000 0.0000 0.0000 0.0000 0.0000	0.0028 0.0079 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 SBI 83 84 85 86 87 88	ARCH POINT	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR	16 SBI 86 87 88 89	CAT CANYON	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	48 12 12 12 12
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR		lia lofotensis WYCKOFF LEDGE	0.0273 0.2145 0.2050 0.1675 0.2611 0.1889 0.1944 0.2167 0.2583	0.0697 0.1440 0.2108 0.1219 0.1538 0.0848 0.1296 0.0782 0.1974	1240 80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 SMI 83 84 85 86 87 88 89	HARE ROCK	0.0349 0.0300 0.0575 0.0292 0.0347 0.0389 0.0236 0.0333	0.0365 0.0497 0.0487 0.0319 0.0366 0.0358 0.0207 0.0293	80 10 10 12 12 12 12
LOCATION YEAR YEAR	3 SRI 83 84	JOHNSONS LEE NORTH	0.0114 0.0225 0.0050	0.0174 0.0275 0.0105	80 10 10

Channel	Islands Nation	nal Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label		Mean	Std Dev	Cases
YEAR	85		0.0167	0.0256	12
YEAR	86		0.0056	0.0082	12
YEAR	87		0.0056	0.0082	12
YEAR	88		0.0083	0.0082	12
YEAR	89		0.0167	0.0112	12
ILAR	09		0.0167	0.0139	12
LOCATION		I JOHNSONS LEE SOUTH	0.0794	0.0584	80
YEAR	83		0.0975	0.0571	10
YEAR	84		0.0475	0.0416	10
YEAR	85		0.1208	0.0935	12
YEAR	86		0.0694	0.0431	12
YEAR	87		0.0694	0.0517	12
YEAR	88		0.0486	0.0230	12
YEAR	89		0.1000	0.0420	12
LOCATION		I RODES REEF	0.0391	0.0331	80
YEAR YEAR	83 84		0.0225	0.0275 0.0197	10
YEAR YEAR			0.0300	0.0197	10
	85		0.0194		12
YEAR	86		0.0583	0.0525	12
YEAR	87		0.0569	0.0270	12
YEAR	88		0.0403	0.0305	12
YEAR	89		0.0417	0.0297	12
LOCATION	6 SC	I GULL ISLAND SOUTH	0.0017	0.0068	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0042	0.0104	12
YEAR	87		0.0056	0.0130	12
YEAR	88		0.0014	0.0048	12
YEAR	89		0.0000	0.0000	12
LOCATION	7 SC	I FRYS HARBOR	0.0317	0.0603	80
YEAR	83		0.0975	0.1096	10
YEAR	84		0.0875	0.0784	10
YEAR	85		0.0417	0.0261	12
YEAR	86		0.0111	0.0130	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0014	0.0048	12
YEAR	89		0.0028	0.0065	12
LOCATION	8 SC:	I PELICAN BAY	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION	9 SC	I SCORPION ANCHORAGE	0.0008	0.0037	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0042	0.0075	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0014	0.0048	12
YEAR	89		0.0000	0.0000	12
LOCATION	10 SC	I YELLOWBANKS	0.0028	0.0072	48
YEAR	86		0.0014	0.0048	12
YEAR	87		0.0097	0.0111	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12

Channel	Islands Nationa	al Park Kelp Forest Band Transects	t Monitoring	1982-1989	
Variable	Value Label		Mean	Std Dev	Cases
LOCATION	11 ANI	ADMIRALS REEF	0.0047	0.0134	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0025	0.0079	10
YEAR	85		0.0069	0.0111	12
YEAR	86		0.0208	0.0267	12
YEAR	87		0.0014	0.0048	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION	12 ANI	CATHEDRAL COVE	0.0002	0.0019	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0014	0.0048	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION	13 ANI	LANDING COVE	0.0002	0.0019	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0014	0.0048	12
YEAR	89		0.0000	0.0000	12
LOCATION	14 SBI	SOUTHEAST SEALION	0.0006	0.0041	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0042	0.0104	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION		ARCH POINT	0.0021	0.0134	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0139	0.0332	12
YEAR	89		0.0000	0.0000	12
LOCATION		CAT CANYON	0.0003	0.0024	48
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0014	0.0048	12
YEAR	89		0.0000	0.0000	12

Channel	Islands Na	tional Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Lal		Mean	Std Dev	Cases
SPECIES	6006	Lophogorgia chilensis	0.0628	0.1321	1240
LOCATION	1	SMI WYCKOFF LEDGE	0.0021	0.0072	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0028	0.0065	12
YEAR	86		0.0014	0.0048	12
YEAR	87		0.0042	0.0144	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0056	0.0082	12
LOCATION	2	SMI HARE ROCK	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION	3	SRI JOHNSONS LEE NORTH	0.0302	0.0516	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0722	0.0740	12
YEAR	86		0.0667	0.0674	12
YEAR	87		0.0458	0.0456	12
YEAR	88		0.0125	0.0226	12
YEAR	89		0.0042	0.0104	12
LOCATION	4	SRI JOHNSONS LEE SOUTH	0.2272	0.2169	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0175	0.0206	10
YEAR	85		0.3389	0.2947	12
YEAR	86		0.4069	0.2439	12
YEAR	87		0.3250	0.1368	12
YEAR	88		0.1708	0.0591	12
YEAR	89		0.2583	0.1359	12
LOCATION	5	SRI RODES REEF	0.0033	0.0090	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0056	0.0109	12
YEAR	86		0.0014	0.0048	12
YEAR	87		0.0083	0.0151	12
YEAR	88		0.0028	0.0065	12
YEAR	89		0.0042	0.0104	12
LOCATION	6	SCI GULL ISLAND SOUTH	0.1659	0.1329	80
YEAR	83		0.0450	0.0230	10
YEAR	84		0.0825	0.0426	10
YEAR	85		0.2194	0.1769	12
YEAR	86		0.2333	0.1823	12
YEAR	87		0.1583	0.0818	12
YEAR	88		0.2153	0.1338	12
YEAR	89		0.1736	0.0730	12

		Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label		Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR	7 SCI F 83 84 85	RYS HARBOR	0.1189 0.0425 0.1050 0.0486	0.1497 0.0487 0.1571 0.0429	80 10 10 12
YEAR YEAR YEAR YEAR	86 87 88 89		0.1403 0.1542 0.1708 0.1556	0.1774 0.1875 0.1780 0.1469	12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 SCI P 83 84 85 86 87 88	ELICAN BAY	0.0699 0.0575 0.0350 0.0736 0.0806 0.0653 0.0944 0.0750	0.0810 0.0624 0.0568 0.0965 0.0926 0.0773 0.0908 0.0839	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 SCI S 83 84 85 86 87 88	CORPION ANCHORAGE	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR	10 SCI Y 86 87 88 89	ELLOWBANKS	0.1250 0.0875 0.1861 0.0972 0.1292	0.0956 0.0574 0.1222 0.0696 0.0975	48 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 ANI A 83 84 85 86 87 88 89	DMIRALS REEF	0.1686 0.0825 0.0700 0.0667 0.0625 0.0611 0.1069 0.7000	0.2781 0.0708 0.0350 0.0508 0.0215 0.0416 0.0392 0.4241	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 ANI C 83 84 85 86 87 88 89	ATHEDRAL COVE	0.0010 0.0000 0.0000 0.0000 0.0014 0.0014 0.0014	0.0041 0.0000 0.0000 0.0000 0.0048 0.0048 0.0048	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 ANI L 83 84 85 86 87 88 89	ANDING COVE	0.0015 0.0000 0.0000 0.0056 0.0028 0.0000 0.0014 0.0000	0.0060 0.0000 0.0000 0.0109 0.0096 0.0000 0.0048 0.0000	80 10 10 12 12 12 12 12

Channel	Islands Nation	al Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label	Bana Transcess	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 SBI 83 84 85 86 87 88 89	SOUTHEAST SEALION	0.0783 0.0600 0.0250 0.0292 0.0403 0.0875 0.1389 0.1556	0.0697 0.0503 0.0471 0.0349 0.0251 0.0632 0.0509 0.0694	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 SBI 83 84 85 86 87 88 89	ARCH POINT	0.0032 0.0000 0.0025 0.0014 0.0028 0.0028 0.0083 0.0042	0.0101 0.0000 0.0079 0.0048 0.0065 0.0065 0.0207 0.0104	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR	16 SBI 86 87 88 89	CAT CANYON	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	48 12 12 12 12
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR		icea fruticosa WYCKOFF LEDGE	0.0029 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0127 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1228 80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 SMI 83 84 85 86 87 88	HARE ROCK	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 SRI 83 84 85 86 87 88	JOHNSONS LEE NORTH	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 SRI 83 84 85 86 87 88	JOHNSONS LEE SOUTH	0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0042 0.0000	0.0032 0.0000 0.0000 0.0000 0.0000 0.0000 0.0075 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR	5 SRI 83 84	RODES REEF	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	80 10 10

Appx. 2-11

Channel	Islands Nationa	l Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label	Bana Transcool	Mean	Std Dev	Cases
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION		GULL ISLAND SOUTH	0.0012	0.0052	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0014	0.0048	12
YEAR	89		0.0069	0.0111	12
LOCATION		FRYS HARBOR	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION	8 SCI	PELICAN BAY	0.0004	0.0026	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0014	0.0048	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0014	0.0048	12
YEAR	89		0.0000	0.0000	12
LOCATION	9 SCI	SCORPION ANCHORAGE	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION	10 SCI	YELLOWBANKS	0.0171	0.0362	36
YEAR	87		0.0014	0.0048	12
YEAR	88		0.0403	0.0534	12
YEAR	89		0.0097	0.0194	12
LOCATION	11 ANI	ADMIRALS REEF	0.0189	0.0292	80
YEAR	83		0.0100	0.0211	10
YEAR	84		0.0075	0.0121	10
YEAR	85		0.0306	0.0492	12
YEAR	86		0.0153	0.0166	12
YEAR	87		0.0292	0.0390	12
YEAR	88		0.0153	0.0194	12
YEAR	89		0.0208	0.0237	12

Channel	Islands Nation	al Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label		Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 ANI 83 84 85 86 87 88	CATHEDRAL COVE	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 ANI 83 84 85 86 87 88 89	LANDING COVE	0.0002 0.0000 0.0000 0.0014 0.0000 0.0000 0.0000	0.0019 0.0000 0.0000 0.0048 0.0000 0.0000 0.0000	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 SBI 83 84 85 86 87 88 89	SOUTHEAST SEALION	0.0113 0.0025 0.0025 0.0153 0.0194 0.0000 0.0111	0.0196 0.0079 0.0079 0.0241 0.0244 0.0000 0.0130 0.0271	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 SBI 83 84 85 86 87 88 89	ARCH POINT	0.0016 0.0000 0.0075 0.0000 0.0000 0.0014 0.0000 0.0028	0.0074 0.0000 0.0169 0.0000 0.0000 0.0048 0.0000 0.0096	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR	16 SBI 86 87 88 89	CAT CANYON	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	48 12 12 12 12
LOCATION YEAR	50 88		0.0153 0.0153	0.0166 0.0166	12 12
LOCATION YEAR	52 88		0.0014 0.0014	0.0048 0.0048	12 12
SPECIES LOCATION YEAR		icea californica PELICAN BAY	0.0113 0.0014 0.0014	0.0224 0.0048 0.0048	130 12 12
LOCATION YEAR YEAR YEAR YEAR	10 SCI 86 87 88 89	YELLOWBANKS	0.0038 0.0056 0.0014 0.0042 0.0042	0.0079 0.0082 0.0048 0.0075 0.0104	48 12 12 12 12
LOCATION YEAR YEAR	11 ANI 88 89	ADMIRALS REEF	0.0319 0.0250 0.0389	0.0361 0.0241 0.0451	24 12 12
LOCATION YEAR YEAR	14 SBI 84 87	SOUTHEAST SEALION	0.0148 0.0075 0.0208	0.0257 0.0237 0.0267	22 10 12

Channel Is	lands Nat	tional Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable V	/alue Lab		Mean	Std Dev	Cases
SPECIES	8001	Panulirus interruptus	0.0030	0.0145	1240
LOCATION	1	SMI WYCKOFF LEDGE	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION	2	SMI HARE ROCK	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	13
YEAR	88		0.0000	0.0000	11
YEAR	89		0.0000	0.0000	12
LOCATION	3	SRI JOHNSONS LEE NORTH	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION	4	SRI JOHNSONS LEE SOUTH	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION	5	SRI RODES REEF	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION	6	SCI GULL ISLAND SOUTH	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12

Channel	Islands Nation	al Park Kelp Forest Band Transects	. Monitoring	1982-1989	
Variable	Value Label		Mean	Std Dev	Cases
LOCATION YEAR YEAR	83 84	FRYS HARBOR	0.0004 0.0000 0.0000	0.0026 0.0000 0.0000	80 10 10
YEAR YEAR YEAR YEAR YEAR	85 86 87 88 89		0.0000 0.0000 0.0000 0.0028 0.0000	0.0000 0.0000 0.0000 0.0065 0.0000	12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 SCI 83 84 85 86 87 88	PELICAN BAY	0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014	0.0019 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0048	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 SCI 83 84 85 86 87 88 89	SCORPION ANCHORAGE	0.0025 0.0000 0.0050 0.0000 0.0000 0.0042 0.0056 0.0028	0.0092 0.0000 0.0158 0.0000 0.0000 0.0104 0.0130 0.0096	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR	10 SCI 86 87 88 89	YELLOWBANKS	0.0007 0.0000 0.0000 0.0000 0.0028	0.0034 0.0000 0.0000 0.0000 0.0065	48 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 ANI 83 84 85 86 87 88	ADMIRALS REEF	0.0024 0.0100 0.0075 0.0000 0.0000 0.0014 0.0000 0.0000	0.0092 0.0211 0.0121 0.0000 0.0000 0.0048 0.0000 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 ANI 83 84 85 86 87 88	CATHEDRAL COVE	0.0130 0.0200 0.0225 0.0000 0.0208 0.0153 0.0111 0.0042	0.0278 0.0329 0.0463 0.0000 0.0377 0.0230 0.0205 0.0075	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 ANI 83 84 85 86 87 88	LANDING COVE	0.0183 0.0150 0.0250 0.0069 0.0208 0.0208 0.0181 0.0222	0.0373 0.0474 0.0471 0.0150 0.0294 0.0267 0.0321 0.0570	80 10 10 12 12 12 12

Channel	Islands Nation	al Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label	Dana Transcood	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 SBI 83 84 85 86 87 88	SOUTHEAST SEALION	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 SBI 83 84 85 86 87 88 89	ARCH POINT	0.0033 0.0000 0.0000 0.0000 0.0028 0.0083 0.0000 0.0111	0.0093 0.0000 0.0000 0.0000 0.0005 0.0112 0.0000 0.0179	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR	16 SBI 86 87 88 89	CAT CANYON	0.0094 0.0069 0.0083 0.0028 0.0194	0.0268 0.0241 0.0195 0.0096 0.0431	48 12 12 12 12
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR		iotis rufescens WYCKOFF LEDGE	0.0090 0.0217 0.0200 0.0050 0.0153 0.0403 0.0056 0.0431 0.0194	0.0408 0.0345 0.0230 0.0158 0.0230 0.0617 0.0082 0.0351 0.0283	1240 80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 SMI 83 84 85 86 87 88	HARE ROCK	0.0094 0.0075 0.0125 0.0014 0.0319 0.0069 0.0042	0.0211 0.0169 0.0132 0.0048 0.0423 0.0132 0.0075 0.0048	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 SRI 83 84 85 86 87 88	JOHNSONS LEE NORTH	0.0489 0.1900 0.1325 0.0361 0.0111 0.0083 0.0014	0.1079 0.1990 0.1297 0.0631 0.0164 0.0112 0.0048 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 SRI 83 84 85 86 87 88 89	JOHNSONS LEE SOUTH	0.0415 0.1225 0.0575 0.0708 0.0444 0.0056 0.0028 0.0028	0.0868 0.1872 0.0764 0.0826 0.0416 0.0148 0.0065 0.0065	80 10 10 12 12 12 12
LOCATION YEAR YEAR	5 SRI 83 84	RODES REEF	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	80 10 10

Appx. 2-16

Channel	Islands National Park Kelp Fores Band Transects	st Monitoring	1982-1989	
Variable	Value Label	Mean	Std Dev	Cases
YEAR	85	0.0000	0.0000	12
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	12
YEAR	89	0.0000	0.0000	12
ILAN	09	0.0000	0.0000	12
LOCATION	6 SCI GULL ISLAND SOUTH	0.0154	0.0391	80
YEAR	83	0.0675	0.0858	10
YEAR	84	0.0175	0.0237	10
YEAR	85	0.0167	0.0236	12
YEAR	86	0.0153	0.0261	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	12
YEAR	89	0.0000	0.0000	12
	7	0.0004	0.0006	0.0
LOCATION	7 SCI FRYS HARBOR	0.0004	0.0026	80
YEAR	83	0.0000	0.0000	10
YEAR	84	0.0000	0.0000	10
YEAR	85	0.0014	0.0048	12
YEAR	86	0.0014	0.0048	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	12
YEAR	89	0.0000	0.0000	12
LOCATION	8 SCI PELICAN BAY	0.0003	0.0028	80
YEAR	83	0.0025	0.0079	10
YEAR	84	0.0000	0.0000	10
YEAR	85	0.0000	0.0000	12
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	12
YEAR	89	0.0000	0.0000	12
LOCATION	9 SCI SCORPION ANCHORAGI		0.0039	80
YEAR	83	0.0050	0.0105	10
YEAR	84	0.0000	0.0000	10
YEAR	85	0.0000	0.0000	12
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	12
YEAR	89	0.0000	0.0000	12
LOCATION	10 SCI YELLOWBANKS	0.0007	0.0048	48
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0028	0.0096	12
YEAR	89	0.0000	0.0000	12
IIIII	0,9	0.0000	0.0000	12
LOCATION	11 ANI ADMIRALS REEF	0.0005	0.0033	80
YEAR	83	0.0025	0.0079	10
YEAR	84	0.0000	0.0000	10
YEAR	85	0.0014	0.0048	12
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	12
YEAR	89	0.0000	0.0000	12

Channel	Islands Nationa	al Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label	Dana Transceed	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 ANI 83 84 85 86 87 88	CATHEDRAL COVE	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 ANI 83 84 85 86 87 88	LANDING COVE	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 SBI 83 84 85 86 87 88 89	SOUTHEAST SEALION	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 SBI 83 84 85 86 87 88	ARCH POINT	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR	16 SBI 86 87 88 89	CAT CANYON	0.0003 0.0014 0.0000 0.0000	0.0024 0.0048 0.0000 0.0000	48 12 12 12 12
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR		iotis corrugata WYCKOFF LEDGE	0.0138 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0389 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1240 80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 SMI 83 84 85 86 87 88	HARE ROCK	0.0002 0.0000 0.0000 0.0000 0.0014 0.0000 0.0000	0.0019 0.0000 0.0000 0.0000 0.0048 0.0000 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR	3 SRI 83 84	JOHNSONS LEE NORTH	0.0016 0.0000 0.0025	0.0058 0.0000 0.0079	80 10 10

Islands National	-	Monitoring	1982-1989	
Value Label	Bana Transcets	Mean	Std Dev	Cases
85 86 87 88 89		0.0042 0.0028 0.0000 0.0000 0.0014	0.0104 0.0065 0.0000 0.0000 0.0048	12 12 12 12 12
4 SRI J 83 84 85 86 87 88	OHNSONS LEE SOUTH	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12 12
5 SRI R 83 84 85 86 87 88 89	RODES REEF	0.0002 0.0000 0.0000 0.0000 0.0014 0.0000 0.0000	0.0019 0.0000 0.0000 0.0000 0.0048 0.0000 0.0000	80 10 10 12 12 12 12 12
6 SCI G 83 84 85 86 87 88	GULL ISLAND SOUTH	0.0026 0.0125 0.0000 0.0028 0.0028 0.0014 0.0000 0.0000	0.0121 0.0317 0.0000 0.0065 0.0065 0.0048 0.0000 0.0000	80 10 10 12 12 12 12 12
7 SCI F 83 84 85 86 87 88 89	TRYS HARBOR	0.0028 0.0150 0.0025 0.0028 0.0000 0.0014 0.0000 0.0000	0.0095 0.0211 0.0079 0.0065 0.0000 0.0048 0.0000 0.0000	80 10 10 12 12 12 12 12
8 SCI P 83 84 85 86 87 88	PELICAN BAY	0.0122 0.0450 0.0225 0.0222 0.0028 0.0000 0.0000	0.0277 0.0468 0.0299 0.0343 0.0065 0.0000 0.0000	80 10 10 12 12 12 12 12
83 84 85 86 87 88 89 10 SCI Y 86 87 88		0.0354 0.0850 0.0400 0.0556 0.0667 0.0097 0.0000 0.0135 0.0167 0.0194	0.0550 0.0603 0.0459 0.0514 0.0820 0.0207 0.0000 0.0000 0.0196 0.0284 0.0199 0.0109	80 10 10 12 12 12 12 12 12 12 48 12 12 12 12
	Value Label 85 86 87 88 89 4 SRI 3 83 84 85 86 87 88 89 5 SRI F 83 84 85 86 87 88 89 7 SCI F 83 84 85 86 87 88 89 8 SCI F 83 84 85 86 87 88 89 9 SCI F 83 84 85 86 87 88 89 9 SCI F 83 84 85 86 87 88 89 9 SCI F 83 84 85 86 87 88 89 9 SCI F 83 84 85 86 87 88 89 9 SCI F	Value Label 85	STI RODES REEF 0.0000	Value Label

Channel	Islands National	l Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label		Mean	Std Dev	Cases
LOCATION	11 ANI A	ADMIRALS REEF	0.0918	0.0868	80
YEAR	83		0.1275	0.0989	10
YEAR	84		0.1800	0.1019	10
YEAR	85		0.1056	0.1083	12
YEAR	86		0.0778	0.0538	12
YEAR	87		0.0861	0.0778	12
YEAR	88		0.0278	0.0205	12
YEAR	89		0.0583	0.0463	12
LOCATION	12 ANI (CATHEDRAL COVE	0.0173	0.0273	80
YEAR	83		0.0300	0.0350	10
YEAR	84		0.0300	0.0468	10
YEAR	85		0.0264	0.0261	12
YEAR	86		0.0181	0.0207	12
YEAR	87		0.0083	0.0112	12
YEAR	88		0.0069	0.0194	12
YEAR	89		0.0056	0.0148	12
LOCATION	13 ANI 1	LANDING COVE	0.0343	0.0479	80
YEAR	83		0.0400	0.0503	10
YEAR	84		0.0125	0.0270	10
YEAR	85		0.0361	0.0437	12
YEAR	86		0.0208	0.0319	12
YEAR	87		0.0347	0.0452	12
YEAR	88		0.0472	0.0531	12
YEAR	89		0.0458	0.0711	12
LOCATION	14 SBI S	SOUTHEAST SEALION	0.0026	0.0078	80
YEAR	83		0.0075	0.0169	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0042	0.0075	12
YEAR	86		0.0042	0.0075	12
YEAR	87		0.0014	0.0048	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0014	0.0048	12
LOCATION		ARCH POINT	0.0006	0.0041	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0042	0.0104	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION		CAT CANYON	0.0069	0.0132	48
YEAR	86		0.0042	0.0075	12
YEAR	87		0.0042	0.0075	12
YEAR	88		0.0083	0.0133	12
YEAR	89		0.0111	0.0205	12

Channel		tional Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Lal	bel	Mean	Std Dev	Cases
SPECIES	9004	Haliotis fulgens	0.0001	0.0015	1240
LOCATION	1	SMI WYCKOFF LEDGE	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION	2	SMI HARE ROCK	0.0002	0.0019	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0014	0.0048	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION	3	SRI JOHNSONS LEE NORTH	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION	4	SRI JOHNSONS LEE SOUTH	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION	5	SRI RODES REEF	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION	6	SCI GULL ISLAND SOUTH	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12

Channel	Islands National Par Bar	rk Kelp Forest nd Transects	Monitoring	1982-1989	
Variable	Value Label		Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 SCI FRYS 83 84 85 86 87 88 89	HARBOR	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 SCI PELIC 83 84 85 86 87 88 89	CAN BAY	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 SCI SCORE 83 84 85 86 87 88 89	PION ANCHORAGE	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR	10 SCI YELLO 86 87 88 89	DWBANKS	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	48 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 ANI ADMIE 83 84 85 86 87 88 89	RALS REEF	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 ANI CATHE 83 84 85 86 87 88 89	EDRAL COVE	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 ANI LANDI 83 84 85 86 87 88	ING COVE	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12 12

Channel	Islands Nation	al Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label	24114 1141100000	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 SBI 83 84 85 86 87 88	SOUTHEAST SEALION	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 SBI 83 84 85 86 87 88 89	ARCH POINT	0.0006 0.0000 0.0000 0.0028 0.0000 0.0000 0.0014 0.0000	0.0032 0.0000 0.0000 0.0065 0.0000 0.0000 0.0048 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR	16 SBI 86 87 88 89	CAT CANYON	0.0021 0.0028 0.0056 0.0000 0.0000	0.0056 0.0065 0.0082 0.0000 0.0000	48 12 12 12 12
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR		letia kelletii WYCKOFF LEDGE	0.0209 0.1153 0.0150 0.0625 0.1167 0.0806 0.2069 0.1806 0.1194	0.0525 0.1240 0.0337 0.1009 0.0927 0.0598 0.1769 0.1432 0.1020	1240 80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 SMI 83 84 85 86 87 88	HARE ROCK	0.0010 0.0000 0.0050 0.0000 0.0014 0.0000 0.0014	0.0061 0.0000 0.0158 0.0000 0.0048 0.0000 0.0048 0.0000	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 SRI 83 84 85 86 87 88	JOHNSONS LEE NORTH	0.0083 0.0000 0.0050 0.0056 0.0056 0.0181 0.0111	0.0147 0.0000 0.0105 0.0082 0.0109 0.0166 0.0164 0.0228	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 SRI 83 84 85 86 87 88	JOHNSONS LEE SOUTH	0.0494 0.1125 0.1025 0.0611 0.0236 0.0278 0.0056 0.0319	0.0611 0.0748 0.0721 0.0733 0.0261 0.0228 0.0148 0.0344	80 10 10 12 12 12 12
LOCATION YEAR YEAR	5 SRI 83 84	RODES REEF	0.0305 0.0000 0.0225	0.0656 0.0000 0.0478	80 10 10

Channel	Islands National Park I		1982-1989	
Variable	Value Label	ransects Mean	Std Dev	Cases
YEAR	85	0.0778	0.1303	12
YEAR	86	0.0597	0.0645	12
YEAR	87	0.0306	0.0465	12
YEAR	88	0.0056	0.0109	12
YEAR	89	0.0111	0.0148	12
ILAN	0.9	0.0111	0.0140	12
LOCATION	6 SCI GULL ISLA	AND SOUTH 0.0410	0.0531	80
YEAR	83	0.0400	0.0530	10
YEAR	84	0.0100	0.0129	10
YEAR	85	0.0208	0.0276	12
YEAR	86	0.0181	0.0194	12
YEAR	87	0.0472	0.0347	12
YEAR	88	0.0736	0.0740	12
YEAR	89	0.0722	0.0763	12
	7	0.0164	0.0040	0.0
LOCATION	7 SCI FRYS HARI		0.0242	80
YEAR	83	0.0175	0.0313	10
YEAR	84	0.0100	0.0175	10
YEAR	85	0.0028	0.0065	12
YEAR	86	0.0069	0.0111	12
YEAR	87	0.0292	0.0226	12
YEAR	88	0.0236	0.0372	12
YEAR	89	0.0236	0.0219	12
LOCATION	8 SCI PELICAN I	BAY 0.0193	0.0284	80
YEAR	83	0.0075	0.0121	10
YEAR	84	0.0250	0.0236	10
YEAR	85	0.0194	0.0172	12
YEAR	86	0.0097	0.0207	12
YEAR	87	0.0403	0.0520	12
	88		0.0320	12
YEAR YEAR	89	0.0167 0.0153	0.0236	12
TEAN	0.5	0.0193	0.0194	12
LOCATION	9 SCI SCORPION	ANCHORAGE 0.0004	0.0026	80
YEAR	83	0.0000	0.0000	10
YEAR	84	0.0000	0.0000	10
YEAR	85	0.0000	0.0000	12
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0028	0.0065	12
YEAR	88	0.0000	0.0000	12
YEAR	89	0.0000	0.0000	12
I OCAMITON	10 SCI YELLOWBA	NIZO 0.0160	0 0212	10
LOCATION			0.0313	48
YEAR	86	0.0181	0.0219	12
YEAR	87	0.0222	0.0259	12
YEAR	88	0.0222	0.0519	12
YEAR	89	0.0014	0.0048	12
LOCATION	11 ANI ADMIRALS	REEF 0.0168	0.0336	80
YEAR	83	0.0050	0.0105	10
YEAR	84	0.0275	0.0478	10
YEAR	85	0.0403	0.0625	12
YEAR	86	0.0028	0.0065	12
YEAR	87	0.0194	0.0244	12
YEAR	88	0.0181	0.0166	12
YEAR	89	0.0042	0.0104	12
		0.0012		

Channel	Islands National	l Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label		Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 ANI (83 84 85 86 87 88 89	CATHEDRAL COVE	0.0006 0.0000 0.0000 0.0000 0.0014 0.0000 0.0028 0.0000	0.0032 0.0000 0.0000 0.0000 0.0048 0.0000 0.0065 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 ANI 1 83 84 85 86 87 88 89	LANDING COVE	0.0114 0.0225 0.0150 0.0097 0.0083 0.0125 0.0069	0.0204 0.0416 0.0129 0.0181 0.0133 0.0126 0.0150 0.0194	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 SBI : 83 84 85 86 87 88 89	SOUTHEAST SEALION	0.0021 0.0000 0.0000 0.0083 0.0014 0.0014 0.0028 0.0000	0.0081 0.0000 0.0000 0.0167 0.0048 0.0048 0.0096	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 SBI 2 83 84 85 86 87 88 89	ARCH POINT	0.0025 0.0000 0.0050 0.0056 0.0000 0.0000 0.0056 0.0014	0.0084 0.0000 0.0158 0.0109 0.0000 0.0000 0.0109 0.0048	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR	16 SBI (86 87 88 89	CAT CANYON	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	48 12 12 12 12
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	_	thura crenulata WYCKOFF LEDGE	0.0615 0.0006 0.0000 0.0000 0.0014 0.0014 0.0014 0.0000	0.1013 0.0032 0.0000 0.0000 0.0048 0.0048 0.0048 0.0000 0.0000	1240 80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 SMI 1 83 84 85 86 87 88 89	HARE ROCK	0.0147 0.0000 0.0075 0.0139 0.0278 0.0361 0.0111	0.0226 0.0000 0.0169 0.0120 0.0351 0.0264 0.0130 0.0096	80 10 10 12 12 12 12
LOCATION YEAR YEAR	3 SRI 6 83 84	JOHNSONS LEE NORTH	0.0376 0.0250 0.0475	0.0339 0.0236 0.0362	80 10 10

Channel	Islands Natio	nal Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label		Mean	Std Dev	Cases
YEAR	85		0.0444	0.0351	12
YEAR	86		0.0611	0.0434	12
YEAR	87		0.0431	0.0261	12
YEAR	88		0.0306	0.0324	12
YEAR	89		0.0111	0.0109	12
LOCATION		I JOHNSONS LEE SOUTH	0.0177	0.0249	80
YEAR	83		0.0050	0.0105	10
YEAR	84		0.0150	0.0242	10
YEAR YEAR	85 86		0.0250 0.0361	0.0241 0.0368	12 12
YEAR	87		0.0208	0.0285	12
YEAR	88		0.0125	0.0161	12
YEAR	89		0.0069	0.0111	12
LOCATION	5 SR	I RODES REEF	0.0356	0.0494	80
YEAR	83		0.0100	0.0242	10
YEAR	84		0.0200	0.0230	10
YEAR	85		0.0347	0.0641	12
YEAR	86		0.0417	0.0405	12
YEAR	87		0.0681	0.0821	12
YEAR	88		0.0319	0.0305	12
YEAR	89		0.0361	0.0340	12
LOCATION	6 SC	I GULL ISLAND SOUTH	0.2426	0.1200	80
YEAR	83		0.2275	0.1145	10
YEAR	84		0.2550	0.1195	10
YEAR	85		0.2694	0.0950	12
YEAR	86		0.2597	0.1296	12
YEAR	87		0.2458	0.1281	12
YEAR YEAR	88 89		0.1764 0.2639	0.1043 0.1453	12 12
LOCATION	7 sc	I FRYS HARBOR	0.1592	0.1032	80
YEAR	83	T TRIB IIIINBOR	0.1550	0.0621	10
YEAR	84		0.1800	0.1123	10
YEAR	85		0.1639	0.1022	12
YEAR	86		0.1028	0.0748	12
YEAR	87		0.1750	0.1136	12
YEAR	88		0.1222	0.0922	12
YEAR	89		0.2181	0.1272	12
LOCATION	8 SC	I PELICAN BAY	0.0174	0.0224	80
YEAR	83		0.0400	0.0242	10
YEAR	84		0.0175	0.0313	10
YEAR	85		0.0194	0.0300	12
YEAR	86		0.0125	0.0126	12
YEAR	87		0.0139	0.0139	12
YEAR YEAR	88 89		0.0083 0.0139	0.0112 0.0186	12 12
LOCATION	9 SC	I SCORPION ANCHORAGE	0.1392	0.0625	80
YEAR	83	I beom ion invention	0.1332	0.0478	10
YEAR	84		0.1225	0.0506	10
YEAR	85		0.1361	0.0563	12
YEAR	86		0.1903	0.0687	12
YEAR	87		0.1833	0.0586	12
YEAR	88		0.1250	0.0474	12
YEAR	89		0.1097	0.0500	12
LOCATION		I YELLOWBANKS	0.0295	0.0258	48
YEAR	86		0.0194	0.0139	12
YEAR	87		0.0125	0.0126	12
YEAR	88		0.0306	0.0211	12
YEAR	89		0.0556	0.0296	12

Channel	Islands Nationa	al Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label		Mean	Std Dev	Cases
LOCATION	11 ANI	ADMIRALS REEF	0.1372	0.2042	80
YEAR	83		0.2900	0.1872	10
YEAR	84		0.5025	0.2284	10
YEAR	85		0.2097	0.0960	12
YEAR	86		0.0208	0.0360	12
YEAR	87		0.0208	0.0048	12
	88				12
YEAR YEAR	89		0.0125 0.0097	0.0247 0.0111	12
LOCATION	12 ANI	CATHEDRAL COVE	0.0257	0.0324	80
YEAR	83		0.0475	0.0492	10
YEAR	84		0.0450	0.0284	10
YEAR	85		0.0181	0.0241	12
YEAR	86		0.0403	0.0435	12
YEAR	87		0.0167	0.0174	12
YEAR	88		0.0083	0.0151	12
YEAR	89		0.0111	0.0130	12
LOCATION	13 ANI	LANDING COVE	0.0903	0.0738	80
YEAR	83	DANDING COVE	0.1450	0.1274	10
YEAR	84		0.0875	0.0592	10
YEAR	85		0.0694	0.0592	12
YEAR	86		0.1181	0.0321	12
YEAR	87		0.0903	0.0468	12
YEAR	88		0.0722	0.0625	12
YEAR	89		0.0583	0.0580	12
LOCATION	14 SBI	SOUTHEAST SEALION	0.0084	0.0193	80
YEAR	83		0.0425	0.0313	10
YEAR	84		0.0200	0.0197	10
YEAR	85		0.0042	0.0075	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
11111	03		0.0000	0.0000	12
LOCATION		ARCH POINT	0.0030	0.0106	80
YEAR	83		0.0225	0.0219	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0014	0.0048	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION	16 SBI	CAT CANYON	0.0069	0.0123	48
YEAR	86		0.0111	0.0130	12
YEAR	87		0.0111	0.0164	12
YEAR	88		0.0042	0.0104	12
YEAR	89		0.0014	0.0048	12
11111	0,9		0.0011	0.0010	

Channel	Islands Nat	cional Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Lab	pel	Mean	Std Dev	Cases
SPECIES	9010	Hinnites giganteus	0.0756	0.1727	1240
LOCATION	1	SMI WYCKOFF LEDGE	0.0164	0.0272	80
YEAR	83		0.0600	0.0489	10
YEAR	84		0.0075	0.0121	10
YEAR	85		0.0181	0.0150	12
YEAR	86		0.0181	0.0194	12
YEAR	87		0.0083	0.0151	12
	88				12
YEAR			0.0083	0.0133	
YEAR	89		0.0000	0.0000	12
LOCATION	2	SMI HARE ROCK	0.0275	0.0327	80
YEAR	83		0.0600	0.0489	10
YEAR	84		0.0550	0.0350	10
YEAR	85		0.0083	0.0112	12
YEAR	86		0.0389	0.0296	12
YEAR	87		0.0208	0.0203	12
YEAR	88		0.0181	0.0150	12
YEAR	89		0.0014	0.0048	12
T OCA ELONI	2	ODI TOUNGONG THE NORMI	0.0000	0 0167	0.0
LOCATION	3	SRI JOHNSONS LEE NORTH	0.0099	0.0167	80
YEAR	83		0.0275	0.0219	10
YEAR	84		0.0050	0.0158	10
YEAR	85		0.0097	0.0111	12
YEAR	86		0.0139	0.0199	12
YEAR	87		0.0056	0.0130	12
YEAR	88		0.0014	0.0048	12
YEAR	89		0.0083	0.0167	12
LOCATION	4	SRI JOHNSONS LEE SOUTH	0.0155	0.0255	80
YEAR	83		0.0375	0.0270	10
YEAR	84		0.0150	0.0269	10
YEAR	85		0.0097	0.0111	12
YEAR	86		0.0181	0.0305	12
YEAR	87		0.0167	0.0284	12
YEAR	88		0.0097	0.0288	12
YEAR	89		0.0056	0.0130	12
T OCA ELONI	=	ODI DODEG DEED	0 0115	0 0200	80
LOCATION	5	SRI RODES REEF	0.0115	0.0209	
YEAR	83		0.0225	0.0399	10
YEAR	84		0.0075	0.0169	10
YEAR	85		0.0111	0.0205	12
YEAR	86		0.0069	0.0111	12
YEAR	87		0.0208	0.0190	12
YEAR	88		0.0056	0.0130	12
YEAR	89		0.0069	0.0150	12
LOCATION	6	SCI GULL ISLAND SOUTH	0.0404	0.0494	80
YEAR	83		0.0950	0.0832	10
YEAR	84		0.0300	0.0524	10
YEAR	85		0.0264	0.0230	12
YEAR	86		0.0278	0.0312	12
YEAR	87		0.0611	0.0484	12
YEAR	88		0.0011	0.0075	12
YEAR	89		0.0458	0.0073	12
TEMI	0 9		0.0100	0.024/	+4

Channel	Islands Nationa	al Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label		Mean	Std Dev	Cases
LOCATION	7 SCI	FRYS HARBOR	0.0746	0.1147	80
YEAR	83		0.2350	0.2447	10
YEAR	84		0.1000	0.0842	10
YEAR	85		0.0528	0.0443	12
YEAR	86		0.0375	0.0396	12
YEAR	87		0.0583	0.0520	12
YEAR YEAR	88 89		0.0528 0.0167	0.0502 0.0201	12 12
LOCATION	8 SCI	PELICAN BAY	0.2055	0.1654	80
YEAR	83		0.2250	0.1242	10
YEAR	84		0.2525	0.1762	10
YEAR	85		0.3611	0.2683	12
YEAR	86		0.2292	0.1343	12
YEAR	87		0.1958	0.0776	12
YEAR	88		0.0847	0.0429	12
YEAR	89		0.1014	0.0571	12
LOCATION	9 SCI	SCORPION ANCHORAGE	0.0411	0.0424	80
YEAR	83		0.0425	0.0426	10
YEAR	84		0.0250	0.0264	10
YEAR	85		0.0250	0.0207	12
YEAR	86		0.0653	0.0543	12
YEAR	87		0.0764	0.0571	12
YEAR	88		0.0236	0.0230	12
YEAR	89		0.0278	0.0250	12
LOCATION	10 SCI	YELLOWBANKS	0.0010	0.0053	48
	86	IELLOWBANKS	0.0010		12
YEAR				0.0000	
YEAR	87		0.0028	0.0096	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0014	0.0048	12
LOCATION	11 ANI	ADMIRALS REEF	0.2329	0.2713	80
YEAR	83		0.4275	0.3090	10
YEAR	84		0.7625	0.2657	10
YEAR	85		0.1486	0.0726	12
YEAR	86		0.1444	0.0494	12
YEAR	87		0.1181	0.0694	12
YEAR	88		0.0694	0.0347	12
YEAR	89		0.0806	0.0674	12
LOCATION	12 ANI	CATHEDRAL COVE	0.0604	0.0856	80
YEAR	83	CITITIDIVII COVE	0.0350	0.0336	10
YEAR	84		0.0450	0.0665	10
YEAR	85		0.0306	0.0517	12
YEAR	86		0.0708	0.0742	12
YEAR	87		0.0708	0.0689	12
YEAR	88		0.0931	0.1598	12
YEAR	89		0.0708	0.0736	12
LOCATION	13 ANI	LANDING COVE	0.4125	0.3787	80
YEAR	83		0.4450	0.4392	10
YEAR	84		0.1750	0.1359	10
YEAR	85		0.3194	0.3289	12
YEAR	86		0.3583	0.2700	12
YEAR	87		0.6111	0.5334	12
YEAR	88		0.3931	0.2744	12
YEAR	89		0.5514	0.4320	12
THAI	0)		0.0017	0.7020	12

Channel	Islands Nation	nal Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label	Dana Transcoo	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 SB: 83 84 85 86 87 88	I SOUTHEAST SEALION	0.0055 0.0075 0.0050 0.0083 0.0083 0.0000 0.0056 0.0042	0.0116 0.0169 0.0158 0.0133 0.0112 0.0000 0.0109 0.0075	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 SB: 83 84 85 86 87 88 89	I ARCH POINT	0.0139 0.0075 0.0400 0.0000 0.0153 0.0167 0.0028 0.0181	0.0248 0.0169 0.0543 0.0000 0.0132 0.0159 0.0065 0.0166	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR	16 SB: 86 87 88 89	I CAT CANYON	0.0021 0.0014 0.0014 0.0028 0.0028	0.0056 0.0048 0.0048 0.0065 0.0065	48 12 12 12 12
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	-	lysia californica I WYCKOFF LEDGE	0.0186 0.0027 0.0050 0.0000 0.0125 0.0000 0.0014 0.0000 0.0000	0.0548 0.0172 0.0105 0.0000 0.0433 0.0000 0.0048 0.0000 0.0000	1240 80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 SM: 83 84 85 86 87 88 89	I HARE ROCK	0.0358 0.0250 0.0450 0.0028 0.0153 0.0444 0.0375 0.0806	0.0746 0.0425 0.0230 0.0065 0.0194 0.0457 0.0467	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 SR: 83 84 85 86 87 88 89	I JOHNSONS LEE NORTH	0.0083 0.0125 0.0025 0.0181 0.0083 0.0097 0.0056 0.0014	0.0139 0.0177 0.0079 0.0181 0.0133 0.0111 0.0148 0.0048	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 SR: 83 84 85 86 87 88 89	I JOHNSONS LEE SOUTH	0.0153 0.1125 0.0000 0.0000 0.0000 0.0028 0.0056 0.0000	0.0966 0.2639 0.0000 0.0000 0.0000 0.0005 0.0109 0.0000	80 10 10 12 12 12 12
LOCATION YEAR YEAR	5 SR 83 84	I RODES REEF	0.0181 0.0200 0.0500	0.0489 0.0329 0.0540	80 10 10

Channel	Islands National Park Kelp Fore Band Transects	st Monitoring	1982-1989	
Variable	Value Label	Mean	Std Dev	Cases
YEAR	85	0.0097	0.0166	12
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0028	0.0065	12
YEAR	88	0.0500	0.1025	12
YEAR	89	0.0000	0.0000	12
ILAN	0.9	0.0000	0.0000	12
LOCATION	6 SCI GULL ISLAND SOUTH	0.0189	0.0360	80
YEAR	83	0.0025	0.0079	10
YEAR	84	0.0250	0.0289	10
YEAR	85	0.0083	0.0112	12
YEAR	86	0.0069	0.0241	12
YEAR	87	0.0236	0.0321	12
YEAR	88	0.0597	0.0645	12
YEAR	89	0.0042	0.0075	12
	7 007 7740 43770	0.0000	0.0040	0.0
LOCATION	7 SCI FRYS HARBOR	0.0008	0.0043	80
YEAR	83	0.0050	0.0105	10
YEAR	84	0.0000	0.0000	10
YEAR	85	0.0014	0.0048	12
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	12
YEAR	89	0.0000	0.0000	12
LOCATION	8 SCI PELICAN BAY	0.0039	0.0086	80
YEAR	83	0.0000	0.0000	10
YEAR	84	0.0025	0.0079	10
YEAR	85	0.0000	0.0000	12
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0028	0.0096	12
YEAR	88	0.0026	0.0030	12
YEAR	89	0.0153	0.0082	12
LOCATION	9 SCI SCORPION ANCHORAG	E 0.0273	0.0705	80
YEAR	83	0.0050	0.0158	10
YEAR	84	0.0000	0.0000	10
YEAR	85	0.1556	0.1188	12
YEAR	86	0.0014	0.0048	12
YEAR	87	0.0097	0.0086	12
YEAR	88	0.0069	0.0086	12
YEAR	89	0.0042	0.0075	12
I OCAMITON	10 CCT VELLOWDANIC	0 0007	0 0034	40
LOCATION	10 SCI YELLOWBANKS	0.0007	0.0034	48
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0028	0.0065	12
YEAR	89	0.0000	0.0000	12
LOCATION	11 ANI ADMIRALS REEF	0.0055	0.0166	80
YEAR	83	0.0075	0.0169	10
YEAR	84	0.0000	0.0000	10
YEAR	85	0.0194	0.0308	12
YEAR	86	0.0042	0.0104	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0056	0.0192	12
YEAR	89	0.0014	0.0048	12
		-	-	

Channel	Islands Nationa	al Park Kelp Forest I Band Transects	Monitoring	1982-1989	
Variable	Value Label		Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 ANI 83 84 85 86 87 88	CATHEDRAL COVE	0.0121 0.0000 0.0150 0.0125 0.0056 0.0153 0.0111 0.0236	0.0220 0.0000 0.0394 0.0104 0.0148 0.0194 0.0148 0.0305	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 ANI 83 84 85 86 87 88	LANDING COVE	0.0055 0.0000 0.0025 0.0097 0.0000 0.0111 0.0028 0.0111	0.0166 0.0000 0.0079 0.0230 0.0000 0.0287 0.0065 0.0192	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 SBI 83 84 85 86 87 88 89	SOUTHEAST SEALION	0.0418 0.0100 0.0075 0.0486 0.0458 0.0444 0.0708 0.0542	0.0496 0.0242 0.0169 0.0760 0.0450 0.0278 0.0595 0.0409	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 SBI 83 84 85 86 87 88	ARCH POINT	0.0715 0.0050 0.0000 0.0097 0.0361 0.2542 0.1542 0.0181	0.1105 0.0158 0.0000 0.0111 0.0300 0.1264 0.0940 0.0230	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR	16 SBI 86 87 88 89	CAT CANYON	0.0069 0.0056 0.0000 0.0097 0.0125	0.0128 0.0148 0.0000 0.0111 0.0161	48 12 12 12 12
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR		nopodia helianthoides WYCKOFF LEDGE		0.0465 0.0135 0.0000 0.0000 0.0065 0.0075 0.0086 0.0148 0.0207	1240 80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 SMI 83 84 85 86 87 88 89	HARE ROCK	0.0343 0.0500 0.0075 0.0083 0.0292 0.0542 0.0264 0.0625	0.0354 0.0391 0.0121 0.0112 0.0363 0.0377 0.0241 0.0342	80 10 10 12 12 12 12
LOCATION YEAR YEAR	3 SRI 83 84	JOHNSONS LEE NORTH	0.0473 0.0000 0.0000	0.0722 0.0000 0.0000	80 10 10

Channel	Islands National	Park Kelp Forest	Monitoring	1982-1989	
Variable	Value Label	Dana Transcoop	Mean	Std Dev	Cases
YEAR YEAR YEAR	85 86 87		0.0000 0.0028 0.0694	0.0000 0.0065 0.0948	12 12 12
YEAR YEAR	88 89		0.1444 0.0986	0.0621 0.0468	12 12
LOCATION YEAR YEAR	4 SRI J 83 84	JOHNSONS LEE SOUTH	0.0593 0.0000 0.0025	0.0756 0.0000 0.0079	80 10 10
YEAR YEAR YEAR YEAR YEAR	85 86 87 88		0.0042 0.0069 0.1347 0.1417	0.0075 0.0086 0.0539 0.0793	12 12 12 12
YEAR	89		0.1056	0.0574	12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 SRI F 83 84 85 86 87 88	RODES REEF	0.0708 0.0000 0.0000 0.0028 0.0042 0.0778 0.1042 0.2833	0.1118 0.0000 0.0000 0.0065 0.0075 0.0372 0.0363 0.1320	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 SCI G 83 84 85 86 87 88	GULL ISLAND SOUTH	0.0005 0.0025 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014	0.0033 0.0079 0.0000 0.0000 0.0000 0.0000 0.0000 0.0048	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 SCI F 83 84 85 86 87 88 89	RYS HARBOR	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 SCI F 83 84 85 86 87 88 89	PELICAN BAY	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	83 84 85 86 87 88 89 10 SCI Y	CORPION ANCHORAGE	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	80 10 10 12 12 12 12 12
YEAR YEAR YEAR YEAR	86 87 88 89		0.0000 0.0000 0.0000 0.0028	0.0000 0.0000 0.0000 0.0096	12 12 12 12

Channel	Islands National	l Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label		Mean	Std Dev	Cases
LOCATION	11 ANI A	ADMIRALS REEF	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION	12 ANI (CATHEDRAL COVE	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION	13 ANI 1	LANDING COVE	0.0002	0.0019	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0014	0.0048	12
LOCATION	14 SBI S	SOUTHEAST SEALION	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION		ARCH POINT	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION		CAT CANYON	0.0000	0.0000	48
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12

Channel Islands National Park Kelp Forest Monitoring 1982-1989
Band Transects

		Band Transects			
Variable	Value La	bel	Mean	Std Dev	Cases
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11004 1 83 84 85 86 87 88	Lytechinus anamesus SMI WYCKOFF LEDGE	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1240 80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 83 84 85 86 87 88 89	SMI HARE ROCK	0.0078 0.0000 0.0175 0.0194 0.0167 0.0014 0.0000	0.0282 0.0000 0.0334 0.0382 0.0527 0.0048 0.0000 0.0000	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 83 84 85 86 87 88	SRI JOHNSONS LEE NORTH	0.0964 0.0000 0.0025 0.4778 0.1319 0.0306 0.0000	0.2337 0.0000 0.0079 0.4258 0.0839 0.0465 0.0000	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 83 84 85 86 87 88 89	SRI JOHNSONS LEE SOUTH	0.0432 0.0025 0.0200 0.0972 0.1667 0.0000 0.0000	0.1141 0.0079 0.0329 0.1218 0.2239 0.0000 0.0000 0.0148	80 10 10 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 83 84 85 86 87 88 89	SRI RODES REEF	0.9013 1.1225 0.7825 1.3639 2.7028 0.3542 0.0000 0.0000	1.2420 1.2224 0.8039 1.1369 1.4216 0.2881 0.0000 0.0000	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 83 84 85 86 87 88	SCI GULL ISLAND SOUTH	2.5910 0.0000 0.0000 2.5167 4.0847 3.3139 4.7569 2.6014	2.3807 0.0000 0.0000 2.6797 1.6293 1.5331 2.3307 1.6590	80 10 10 12 12 12 12 12

Channel	Islands Nationa	l Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label		Mean	Std Dev	Cases
LOCATION YEAR	7 SCI 83	FRYS HARBOR	0.5704	1.3140	80 10
				0.0000	
YEAR	84		0.0000		10
YEAR	85		0.2000	0.4580	12
YEAR	86 87		0.4722	0.4405	12 12
YEAR	88		0.0028	0.0096 1.7534	12
YEAR YEAR	89		1.0819 2.0458	2.2710	12
LOCATION	8 SCI	PELICAN BAY			80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.3958	0.2324	12
YEAR	86		4.1417	1.1124	12
YEAR	87		N/D	0.0000	12
YEAR	88		0.4847	0.7740	12
YEAR	89		0.1056	0.1909	12
LOCATION		SCORPION ANCHORAGE	0.0118	0.0425	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0025	0.0079	10
YEAR	85		0.0014	0.0048	12
YEAR	86		0.0500	0.0913	12
YEAR	87		0.0153	0.0479	12
YEAR	88 89		0.0097 0.0000	0.0132	12 12
YEAR	89		0.0000	0.0000	12
LOCATION		YELLOWBANKS	N/D	0.0000	48
YEAR	86		N/D	0.0000	12
YEAR	87		N/D	0.0000	12
YEAR	88		N/D	0.0000	12
YEAR	89		N/D	0.0000	12
LOCATION		ADMIRALS REEF			80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.4097	1.3416	12
YEAR	86		N/D	0.0000	12
YEAR	87		N/D	0.0000	12
YEAR	88		N/D	0.0000	12
YEAR	89		N/D	0.0000	12
LOCATION	12 ANI	CATHEDRAL COVE	0.0040	0.0201	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0264	0.0474	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION		LANDING COVE	0.0000	0.0000	80
YEAR	83		0.0000	0.0000	10
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	12
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12

Channel	Islands National	l Park Kelp Forest Band Transects	Monitoring	1982-1989	
Variable	Value Label	Dana Transceed	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 SBI: 83 84 85 86 87 88	SOUTHEAST SEALION	1.6436 0.0825 0.1200 2.5347 N/D 7.4403 11.5028 5.9611	8.8628 0.1208 0.0949 1.9490 0.0000 3.6288 2.5091 2.7471	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR		ARCH POINT	0.6904 0.0000 0.0000 0.0000 0.0528 3.3292 0.7986 0.4222	1.7185 0.0000 0.0000 0.0000 0.0568 3.2090 1.0417 0.5532	80 10 10 12 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR	16 SBI (86 87 88 89	CAT CANYON	0.0003 0.0014 0.0000 0.0000	0.0024 0.0048 0.0000 0.0000 0.0000	48 12 12 12 12

Appendix 3. 1982-1989 Kelp Forest Monitoring Data - Random Point Contact Quadrats

Introduction.

Following are summaries of data gathered during random point quadrat counts (RPCs) from 1982-1989 for all kelp forest monitoring program sampling sites. Means, standard deviations and total number of samples (cases) are given. Data were summarized with SPSSPC+ programs from translated dBase III+ files. (Readers should be aware that the number of significant digits is an artifact of the database program and does not imply this level of precision.) For details of methods and data management, refer to the monitoring handbook (Davis 1988).

Notes on methods:

RANDOM POINT CONTACTS. Means represent average percent cover for a given organism, or substrate, at 25 stratified random locations along the transect line. Forty points from each quadrat (1,000 points total) are used to determine percent cover of selected organisms and substrate within one meter of the bottom. Prior to 1985, sampling techniques varied somewhat. In 1982, 25 quadrats of 20 points each was used; in 1983, 40 quadrats of 10 points each was used; in 1984, 10 quadrats of 50 points each was used. During those three years, data were collected by SCUBA divers and quadrats were occasionally missed, giving inconsistent totals. Percent cover calculations were adjusted accordingly. The species list used was altered in the earlier years (see text). Bare substrate (not recorded before 1985) refers to a lack of visible encrusting organisms, and applies to any of the three substrate types. Percent cover may total greater than 100% because of layering.

Channel Variable	Islands Nat Value	cional Park Kelp Forest Label	Monitoring Mean	1982-1989 Std Dev	Cases
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	1001 1 85 86 87 88 89	Green algae SMI WYCKOFF LEDGE	0.7189 0.1600 0.1000 0.2000 0.0000 0.2000 0.3000	2.4855 0.6915 0.5000 1.0000 0.0000 0.6922 0.8292	2010 125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	2 85 86 87 88 89	SMI HARE ROCK	2.3000 0.6000 0.0000 0.0000 8.1000 2.8000	6.3309 2.1985 0.0000 0.0000 10.5396 6.4679	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	3 85 86 87 88 89	SRI JOHNSONS LEE NORTH	0.6400 0.1000 1.2000 0.4000 1.3000 0.2000	1.4516 0.5000 1.4649 1.5612 2.0565 0.6922	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	4 85 86 87 88 89	SRI JOHNSONS LEE SOUTH	0.1400 0.0000 0.2000 0.2000 0.2000 0.1000	0.5771 0.0000 0.6922 0.6922 0.6922 0.5000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	5 85 86 87 88 89	SRI RODES REEF	0.0600 0.1000 0.2000 0.0000 0.0000	0.3842 0.5000 0.6922 0.0000 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	6 85 86 87 88 89	SCI GULL ISLAND SOUTH	0.2800 0.0000 0.1000 0.3000 0.2000 0.8000	0.9101 0.0000 0.5000 1.0992 1.0000 1.1902	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	7 85 86 87 88 89	SCI FRYS HARBOR	1.2200 0.1000 0.8000 2.1000 1.1000 2.0000	2.6491 0.5000 1.5679 3.3603 1.7795 4.0182	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	8 85 86 87 88 89	SCI PELICAN BAY	1.8000 0.0000 0.1000 0.2000 1.8000 6.9000	4.3603 0.0000 0.5000 0.6922 2.3408 7.4750	125 25 25 25 25 25 25

Channel Variable	Islands Nati Value I	onal Park abel	Kelp Forest	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 S 82 83 84 85 86 87 88	SCI SCORPIO	N ANCHORAGE	0.4595 0.0000 0.0000 0.0000 2.0000 0.9000 0.0000 0.0000 0.5000	1.7460 0.0000 0.0000 0.0000 3.8864 1.8930 0.0000 0.0000 1.0206	185 25 25 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	10 S 86 87 88 89	CI YELLOWB	ANKS	0.2750 0.2000 0.6000 0.1000 0.2000	1.1729 0.6922 2.0767 0.5000 0.6922	100 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	11 A 85 86 87 88 89	NI ADMIRAL	S REEF	1.0000 1.7000 1.0000 0.6000 1.0000 0.7000	1.9828 2.5739 1.7678 1.4930 2.5000 1.1456	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	12 A 85 86 87 88 89	NI CATHEDR	AL COVE	0.7400 1.7000 0.0000 0.7000 0.5000 0.8000	2.1304 3.7997 0.0000 1.6956 1.0206 1.8708	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	13 A 85 86 87 88 89	ANI LANDING	COVE	0.4600 0.6000 0.3000 0.2000 0.5000 0.7000	1.5021 2.0767 1.0992 1.0000 1.2500 1.8428	125 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	14 S 85 86 87 88 89	BI SOUTHEA	ST SEALION	0.3400 0.4000 0.0000 0.3000 0.9000 0.1000	1.0211 0.9354 0.0000 1.0992 1.5943 0.5000	125 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	15 S 85 86 87 88 89	BBI ARCH PO	INT	0.8600 0.2000 0.2000 0.2000 1.4000 2.3000	2.0356 0.6922 0.6922 0.6922 3.3135 2.2730	125 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	16 S 86 87 88 89	BI CAT CAN	YON	0.8250 1.8000 1.0000 0.3000 0.2000	1.8483 2.2267 2.3936 1.0992 0.6922	100 25 25 25 25

Channel Variable		ional Park Label	Kelp Fores	t Monitoring Mean	1982-1989 Std Dev	Cases
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2001 1 82 83 84 85 86 87 88	Misc. brown SMI WYCKOFF	-	11.3564 15.3704 3.6000 90.3448 12.0000 0.2000 0.2000 0.6000 0.2000 1.8000	22.5554 33.3601 5.1072 21.4614 11.7757 0.6922 0.6922 1.3070 0.6922 4.4206	2959 189 25 29 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 82 83 84 85 86 87 88	SMI HARE RO	CK	5.7526 6.0000 26.1111 0.0000 0.9000 0.0000 0.0000 0.6000 0.0000	15.1311 7.0711 26.3252 0.0000 2.2684 0.0000 0.0000 1.8085 0.0000	196 25 36 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 82 83 84 85 86 87 88	SRI JOHNSON	S LEE NORTH	18.3750 2.6000 81.7500 18.0000 1.3000 0.1000 0.0000 4.8000 0.2000	33.7259 4.8132 21.8254 9.9331 3.7583 0.5000 0.0000 9.4626 0.6922	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 82 83 84 85 86 87 88	SRI JOHNSON	S LEE SOUTH	9.6225 8.8000 39.0000 6.2000 0.1000 0.8000 0.6000 0.6000 1.2000	20.1115 11.1131 28.7161 6.2858 0.5000 2.2500 1.4930 1.3070 1.7854	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 83 84 85 86 87 88	SRI RODES R	EEF	3.6229 13.7500 4.4000 0.2000 0.9000 0.0000 0.5000 0.0000	10.9412 19.5707 5.4813 0.6922 1.5943 0.0000 1.6137 0.0000	175 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 82 83 84 85 86 87 88	SCI GULL I	SLAND SOUTH	7.0879 2.4000 33.3333 3.8000 0.1000 0.1000 0.0000 0.3000 0.0000	16.1023 3.2660 21.3163 4.0497 0.5000 0.5000 0.0000 1.0992 0.0000	199 25 39 10 25 25 25 25

Channel Variable	Islands Nation	al Park Kelp Forest el	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 SCI 82 83 84 85 86 87 88	FRYS HARBOR	11.1375 0.6000 47.7500 29.0000 0.0000 0.3000 0.1000 0.1000 0.0000	21.7255 3.0000 21.4222 10.3816 0.0000 0.8292 0.5000 0.5000 0.0000	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 SCI 82 83 84 85 86 87 88	PELICAN BAY	3.4410 3.4000 8.0000 23.6000 0.2000 0.0000 0.3000 2.3000	7.7904 4.0104 11.5809 8.4222 0.6922 0.0000 0.0000 0.8292 3.1391	195 25 35 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 SCI 82 83 84 85 86 87 88	SCORPION ANCHORAGE	14.0850 9.8000 54.7500 9.2000 11.5000 0.0000 0.0000 0.0000	23.4571 8.4755 21.6010 8.5997 9.4097 0.0000 0.0000 0.0000	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	10 SCI 86 87 88 89	YELLOWBANKS	5.1750 2.3000 1.4000 8.7000 8.3000	7.9316 3.6027 2.9826 11.3450 7.8965	100 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 ANI 82 83 84 85 86 87 88	ADMIRALS REEF	24.8220 11.0000 82.6667 9.6000 6.1000 11.9000 7.3000 7.6000 7.0000	32.7573 12.7475 16.7060 8.5271 8.0390 11.4173 7.9359 6.8648 6.8084	205 25 45 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 ANI 82 83 84 85 86 87 88	CATHEDRAL COVE	11.5375 8.8000 27.0000 7.0000 12.5000 7.0000 10.3000 1.5000 6.2000	13.5396 10.1325 17.1270 9.2496 8.5391 10.3582 10.6390 2.9756 5.7337	200 25 40 10 25 25 25 25

Channel Variable		ional Park Kelp Forest Label	Monitoring Mean	1982-1989 Std Dev) Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 82 83 84 85 86 87 88	ANI LANDING COVE	15.1725 5.2000 50.2500 20.2000 2.6000 6.2000 10.6000 2.3000	24.1119 6.0346 31.8238 19.4010 3.1024 6.9267 13.2736 7.2529 3.9476	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 82 83 84 85 86 87 88	SBI SOUTHEAST SEALION	13.4475 3.0000 59.2500 11.2000 3.5000 0.8000 0.3000 0.1000 0.6000	25.3943 3.8188 22.6894 9.3429 6.0810 1.5679 1.0992 0.5000 1.6583	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 82 83 84 85 86 87 88	SBI ARCH POINT	9.8450 3.6000 27.7500 15.4000 7.4000 8.2000 1.7000 1.9000 5.4000	15.2122 5.1072 22.7007 20.4841 7.6540 6.7515 2.7689 2.9119 5.0353	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	16 86 87 88 89	SBI CAT CANYON	6.0500 11.1000 6.2000 4.3000 2.6000	9.8421 7.6404 16.0585 3.2692 5.5189	100 25 25 25 25
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2003 1 84 85 86 87 88 89	Desmarestia spp. SMI WYCKOFF LEDGE	3.5351 24.1000 1.6000 0.5000 53.7000 0.0000 73.0000 2.3000	15.0347 35.9438 4.4020 1.6137 37.1940 0.0000 22.5809 3.9476	2235 135 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	2 85 86 87 88 89	SMI HARE ROCK	0.0800 0.0000 0.0000 0.0000 0.4000 0.0000	0.8944 0.0000 0.0000 0.0000 2.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 83 84 85 86 87 88	SRI JOHNSONS LEE NORTH	2.2857 7.7500 0.0000 0.0000 0.0000 0.0000 2.1000 1.5000	8.3342 15.2732 0.0000 0.0000 0.0000 0.0000 5.9809 4.4488	175 40 10 25 25 25 25

Channel Variable	Islands Nat Value	ional Park Label	Kelp	Forest	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 83 84 85 86 87 88	SRI JOHNSON	NS LEE	SOUTH	11.9000 46.2500 0.0000 0.0000 6.9000 0.0000 1.2000 1.2000	26.7209 38.6097 0.0000 0.0000 12.2534 0.0000 3.4701 2.6141	175 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 83 84 85 86 87 88	SRI RODES F	REEF		9.1000 4.2500 0.0000 0.0000 0.0000 0.0000 53.7000 3.2000	21.2422 10.0989 0.0000 0.0000 0.0000 0.0000 25.0637 6.0605	175 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 83 85 86 87 88 89	SCI GULL 1	ISLAND	SOUTH	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	140 15 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	7 85 86 87 88 89	SCI FRYS HA	ARBOR		0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	8 85 86 87 88 89	SCI PELICAN	N BAY		0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	9 85 86 87 88 89	SCI SCORPIC	ON ANCE	HORAGE	0.0200 0.0000 0.1000 0.0000 0.0000	0.2236 0.0000 0.5000 0.0000 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	10 86 87 88 89	SCI YELLOWE	BANKS		0.0500 0.0000 0.1000 0.1000 0.0000	0.3518 0.0000 0.5000 0.5000 0.0000	100 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	11 85 86 87 88 89	ANI ADMIRAI	LS REEI	?	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	125 25 25 25 25 25 25

Channel Variable	Islands Nation Value Lab	al Park Kelp Forest el	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 ANI 82 83 84 85 86 87 88	CATHEDRAL COVE	0.0270 0.0000 0.0000 0.0000 0.2000 0.0000 0.0000 0.0000	0.2592 0.0000 0.0000 0.0000 0.6922 0.0000 0.0000 0.0000	185 25 25 10 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	13 ANI 85 86 87 88 89	LANDING COVE	0.0400 0.0000 0.0000 0.0000 0.0000 0.2000	0.3150 0.0000 0.0000 0.0000 0.0000 0.6922	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 SBI 83 84 85 86 87 88 89	SOUTHEAST SEALION	3.0857 13.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	11.8743 22.0198 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	175 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	15 SBI 85 86 87 88 89	ARCH POINT	0.0200 0.0000 0.0000 0.0000 0.0000 0.1000	0.2236 0.0000 0.0000 0.0000 0.0000 0.5000	125 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	16 SBI 86 87 88 89	CAT CANYON	0.0250 0.0000 0.1000 0.0000 0.0000	0.2500 0.0000 0.5000 0.0000 0.0000	100 25 25 25 25
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR		inaria farlowii WYCKOFF LEDGE	2.0991 0.0800 0.1000 0.3000 0.0000 0.0000	7.4230 0.4418 0.5000 0.8292 0.0000 0.0000	2751 125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	2 SMI 85 86 87 88 89	HARE ROCK	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 SRI 82 83 84 85 86 87 88	JOHNSONS LEE NORTH	0.2150 0.0000 0.0000 0.8000 0.0000 0.0000 0.0000 0.4000 1.0000	1.1857 0.0000 0.0000 2.5298 0.0000 0.0000 0.0000 2.0000 2.0412	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR		JOHNSONS LEE SOUTH	1.6025 1.2000 5.2500	8.4374 4.1533 17.8293	200 25 40

Appx. 3-8

Channel Variable	Islands Nation		Kelp For	est Monitoring Mean	1982-1989 Std Dev	Cases
variable	varue Lai	Dei		Mean	sta Dev	Cases
YEAR	84			0.8000	1.3984	10
YEAR	85			0.0000	0.0000	25
YEAR	86			0.0000	0.0000	25
YEAR	87			0.0000	0.0000	25
YEAR	88			0.3000	0.8292	25
YEAR	89			2.6000	4.6480	25
LOCATION	5 SR	RODES RE	EEF	1.0400	4.5234	175
YEAR	83			3.7500	8.6787	40
YEAR	84			2.2000	4.2635	10
YEAR	85			0.0000	0.0000	25
YEAR	86			0.1000	0.5000	25
YEAR	87			0.0000	0.0000	25
YEAR	88			0.0000	0.0000	25
YEAR	89			0.3000	1.0992	25
LOCATION	6 S	CI GULL IS	SLAND SOU	TH 0.0000	0.0000	200
YEAR	82			0.0000	0.0000	25
YEAR	83			0.0000	0.0000	40
YEAR	84			0.0000	0.0000	10
YEAR	85			0.0000	0.0000	25
YEAR	86			0.0000	0.0000	25
YEAR	87			0.0000	0.0000	25
YEAR	88			0.0000	0.0000	25
	89			0.0000		
YEAR	89			0.0000	0.0000	25
LOCATION	7 SC:	FRYS HAR	RBOR	0.5125	3.0930	200
YEAR	82			2.4000	5.7951	25
YEAR	83			1.0000	4.9614	40
YEAR	84			0.0000	0.0000	10
YEAR	85			0.0000	0.0000	25
YEAR	86			0.0000	0.0000	25
YEAR	87			0.1000	0.5000	25
YEAR	88			0.0000	0.0000	25
YEAR	89			0.0000	0.0000	25
LOCATION	8 SC	I PELICAN	BAY	4.2653	10.2427	196
YEAR	82			14.8000	12.6227	25
YEAR	83			11.1111	16.3494	36
YEAR	84			6.6000	7.3666	10
YEAR	85			0.0000	0.0000	25
YEAR	86			0.0000	0.0000	25
YEAR	87			0.0000	0.0000	25
YEAR	88			0.0000	0.0000	25
YEAR	89			0.0000	0.0000	25
LOCATION	9 SC:	SCORPION	N ANCHORA	GE 0.9625	3.2539	200
YEAR	82			5.2000	6.0346	25
YEAR	83			1.2500	4.0430	40
YEAR	84			1.0000	1.6997	10
YEAR	85			0.1000	0.5000	25
YEAR	86			0.0000	0.0000	25
YEAR	87			0.0000	0.0000	25
YEAR	88			0.0000	0.0000	25
YEAR	89			0.0000	0.0000	25
THAIN	0,5			0.0000	0.0000	2 5

Channel Variable		onal Park Ke ubel	lp Forest Monit Me	oring 1982-1989 an Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR	10 SG 86 87 88 89	I YELLOWBANK	S 7.95 21.30 2.30 3.10 5.10	00 15.1747 00 11.5000 00 7.0074	100 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 AN 82 83 84 85 86 87 88 89	II ADMIRALS R	EEF 2.22 0.60 4.22 3.20 3.70 0.90 1.20 0.90 2.10	1.6583 10.9729 00 8.7534 00 10.0809 00 1.8930 00 3.9607 00 2.4875	205 25 45 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 AN 82 83 84 85 86 87 88 89	II CATHEDRAL	COVE 2.42 11.00 3.25 5.00 0.40 0.00 0.20 0.00 0.60	00 13.9940 00 6.1550 00 10.2956 00 1.1815 00 0.0000 00 0.6922 00 0.0000	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 AN 82 83 84 85 86 87 88 89	II LANDING CO	VE 11.10 6.80 9.50 0.60 10.80 11.40 15.30 14.20 14.90	00 11.4455 00 14.6672 00 1.8974 00 11.6530 00 15.0014 00 16.3031 00 17.3163	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 SE 82 83 84 85 86 87 88	BI SOUTHEAST	SEALION 0.45 2.40 0.75 0.00 0.00 0.00 0.00 0.00	00 5.2281 00 2.6675 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	15 SE 85 86 87 88 89	BI ARCH POINT	0.00 0.00 0.00 0.00 0.00	00 0.0000 00 0.0000 00 0.0000 00 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	16 SE 86 87 88 89	BI CAT CANYON	0.40 1.20 0.40 0.00	00 5.0580 00 1.5612 00 0.0000	100 25 25 25 25

Channel Variable		tional Park Kelp Forest Label	Monitoring Mean	1982-1989 Std Dev	Cases
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2007 1 82 83 84 85 86 87 88	Cystoseira spp. SMI WYCKOFF LEDGE	2.2897 1.5582 0.4000 1.3793 2.2000 1.0000 4.6000 1.5000 0.6000 1.2000	8.0781 3.9949 2.0000 4.4111 4.4672 1.9094 7.3485 3.2275 2.0767 2.4066	2813 189 25 29 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	2 85 86 87 88 89	SMI HARE ROCK	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 82 83 84 85 86 87 88	SRI JOHNSONS LEE NORTH	2.0950 3.2000 2.7500 4.4000 0.3000 0.0000 0.0000 0.9000 6.2000	6.7285 7.4833 7.1567 5.9479 1.0992 0.0000 0.0000 1.8930 13.5039	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 82 83 84 85 86 87 88	SRI JOHNSONS LEE SOUTH	0.2050 0.0000 0.0000 0.6000 0.4000 0.0000 0.4000 0.6000	0.8420 0.0000 0.0000 0.9661 0.9354 0.0000 0.0000 1.3844 1.4930	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 83 84 85 86 87 88	SRI RODES REEF	2.3657 8.0000 9.4000 0.0000 0.0000 0.0000 0.0000	10.1122 18.1447 16.6280 0.0000 0.0000 0.0000 0.0000 0.0000	175 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 82 83 84 85 86 87 88	SCI GULL ISLAND SOUTH	0.1759 0.6000 0.5128 0.0000 0.0000 0.0000 0.0000 0.0000	1.5388 1.6583 3.2026 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	199 25 39 10 25 25 25 25

Channel Variable		ional Park Label	Kelp Fores	t Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION	7	SCI FRYS HA	RBOR	0.0200	0.2236	125
YEAR	85			0.0000	0.0000	25
YEAR	86			0.0000	0.0000	25
YEAR	87			0.1000	0.5000	25
YEAR	88			0.0000	0.0000	25
YEAR	89			0.0000	0.0000	25
LOCATION	8	SCI PELICAN	D 7/ V/	0.3744	2.2949	195
	82	SCI FELICAN	DAI			25
YEAR				0.6000	2.1985	
YEAR	83			1.4286	4.9366	35
YEAR	84			0.8000	1.3984	10
YEAR	85			0.0000	0.0000	25
YEAR	86			0.0000	0.0000	25
YEAR	87			0.0000	0.0000	25
YEAR	88			0.0000	0.0000	25
YEAR	89			0.0000	0.0000	25
LOCATION	9	SCI SCORPIO	N ANCHORAGE	5.1150	12.8787	200
YEAR	82			23.4000	18.4684	25
YEAR	83			8.7500	17.2742	40
YEAR	84			8.8000	9.9421	10
YEAR	85			0.0000	0.0000	25
YEAR	86			0.0000	0.0000	25
YEAR	87			0.0000	0.0000	25
YEAR	88			0.0000	0.0000	25
YEAR	89			0.0000	0.0000	25
LOCATION	10	SCI YELLOWB	ANKS	13.9750	18.4538	100
YEAR	86			17.0000	13.7878	25
YEAR	87			4.2000	9.9666	25
YEAR	88			14.3000	23.1562	25
YEAR	89			20.4000	20.6620	25
LOCATION	11	ANI ADMIRAL	S REEF	1.8000	4.7049	205
YEAR	82			3.0000	6.6144	25
YEAR	83			0.4444	2.0841	45
YEAR	84			2.4000	4.9710	10
YEAR	85			2.2000	4.8045	25
YEAR	86			1.5000	3.3072	25
YEAR	87			2.0000	4.8947	25
YEAR	88			1.1000	2.8940	25
YEAR	89			3.2000	7.2715	25
IDAN	0,5			3.2000	7.2713	23
LOCATION	12	ANI CATHEDR	AL COVE	0.6700	3.1349	200
YEAR	82			3.8000	6.9642	25
YEAR	83			0.7500	3.4991	40
YEAR	84			0.4000	0.8433	10
YEAR	85			0.0000	0.0000	25
YEAR	86			0.0000	0.0000	25
YEAR	87			0.0000	0.0000	25
YEAR	88			0.2000	0.6922	25
YEAR	89			0.0000	0.0000	25
LOCATION	13	ANI LANDING	COVE	2.5475	6.1031	200
YEAR	82			3.0000	8.0364	25
YEAR	83			2.0000	6.4847	40
YEAR	84			0.2000	0.6325	10
YEAR	85			5.2000	7.4972	25
YEAR	86			0.1000	0.5000	25
YEAR	87			3.6000	7.5028	25
YEAR	88			4.1000	5.7228	25
YEAR	89			1.1000	2.8025	25
11111	0,5			1.1000	2.0020	20

Channel Variable	Islands Na Value		Park Kelp Forest	Monitoring Mean	1982-1989 Std Dev	Cases	
I OCA ELONI	1.4	ant a	OUTHEAST SEALION	2 0450	12 1200	200	
LOCATION YEAR	82	SDI S	OUINEASI SEALION	3.9450 15.6000	13.1389 17.6376	200 25	
YEAR	83			4.5000	14.6672	40	
YEAR	84			2.4000	6.3105	10	
YEAR	85			7.8000	23.0751	25	
YEAR	86			0.0000	0.0000	25	
YEAR	87			0.0000	0.0000	25	
YEAR	88			0.0000	0.0000	25	
YEAR	89			0.0000	0.0000	25	
LOCATION	15	SBI A	RCH POINT	2.0625	5.9649	200	
YEAR	82			5.0000	8.5391	25	
YEAR	83			1.0000	4.9614	40	
YEAR	84			0.0000	0.0000	10	
YEAR	85			8.1000	9.1367	25	
YEAR	86			1.0000	4.5069	25	
YEAR	87			0.8000	4.0000	25	
YEAR	88			0.0000	0.0000	25	
YEAR	89			0.0000	0.0000	25	
LOCATION	16	SBI C	AT CANYON	5.2750	9.4541	100	
YEAR	86			8.6000	10.3853	25	
YEAR	87			10.9000	11.9434	25	
YEAR	88			1.5000	5.5434	25	
YEAR	89			0.1000	0.5000	25	
SPECIES	2008 Macro	cystis	, Eisenia, Pterygo	ophora 10.3	575 22.7	979	2070
LOCATION	1	SMI W	YCKOFF LEDGE	20.6600	23.2971	125	
YEAR	85			7.4000	12.3001	25	
YEAR	86			40.2000	28.4945	25	
YEAR	87			13.8000	17.6500	25	
YEAR	88			21.7000	20.3193	25	
YEAR	89			20.2000	22.0312	25	
LOCATION	2	SMI H	ARE ROCK	0.0000	0.0000	125	
YEAR	85			0.0000	0.0000	25	
YEAR	86			0.0000	0.0000	25	
YEAR	87			0.0000	0.0000	25	
YEAR	88			0.0000	0.0000	25	
YEAR	89			0.0000	0.0000	25	
LOCATION	3	SRI J	OHNSONS LEE NORTH	27.2400	34.3676	125	
YEAR	85			8.1000	12.3381	25	
YEAR	86			0.0000	0.0000	25	
YEAR	87			1.3000	4.6278	25	
YEAR	88			64.3000	30.4097	25	
YEAR	89			62.5000	20.5649	25	
LOCATION	4	SRI J	OHNSONS LEE SOUTH	23.2600	34.8010	125	
YEAR	85			14.7000	11.2574	25	
YEAR	86			0.0000	0.0000	25	
YEAR	87			4.3000	8.7655	25	
YEAR	88			37.8000	44.6591	25	
YEAR	89			59.5000	38.1677	25	
LOCATION	5	SRI R	ODES REEF	11.3400	17.3657	125	
YEAR	85			1.5000	4.2081	25	
YEAR	86			0.0000	0.0000	25	
YEAR	87			0.0000	0.0000	25	
YEAR	88			33.8000	17.1713	25	
YEAR	89			21.4000	15.6804	25	

Channel Variable	Islands Nation Value Lab	al Park Kelp Fores el	t Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR	6 SC 85 86 87 88 89	I GULL ISLAND SOUTE	1.2000 0.5000 0.0000 0.3000 0.4000 4.8000	4.7264 1.4434 0.0000 1.0992 1.1815 9.6803	125 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	7 SCI 85 86 87 88 89	FRYS HARBOR	0.1200 0.6000 0.0000 0.0000 0.0000 0.0000	0.6235 1.3070 0.0000 0.0000 0.0000 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 SCI 82 83 84 85 86 87 88	PELICAN BAY	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	185 25 25 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 SCI 82 83 84 85 86 87 88	SCORPION ANCHORAGE	0.6892 0.0000 0.0000 0.0000 5.1000 0.0000 0.0000 0.0000	2.7764 0.0000 0.0000 0.0000 5.9722 0.0000 0.0000 0.0000	185 25 25 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	10 SCI 86 87 88 89	YELLOWBANKS	9.4500 5.0000 0.5000 4.4000 27.9000	17.4931 7.3598 1.6137 8.4865 25.4612	100 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	11 ANI 85 86 87 88 89	ADMIRALS REEF	17.9000 13.5000 21.0000 9.7000 14.4000 30.9000	23.3366 17.0477 24.3349 13.2351 23.2545 30.4299	125 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	12 ANI 85 86 87 88 89	CATHEDRAL COVE	3.9200 2.4000 4.8000 7.9000 2.6000 1.9000	11.4359 4.9728 14.4503 14.0253 12.4892 7.9804	125 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	13 ANI 85 86 87 88 89	LANDING COVE	48.3600 67.4000 70.9000 44.2000 21.2000 38.1000	36.5237 38.2459 36.0691 33.5311 18.9588 29.0140	125 25 25 25 25 25

Channel	Islands Na	tional Park Kelp	Forest Monitoring	g 1982-1989)
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR	14 85 86 87 88	SBI SOUTHEAST SE	ALION 0.1200 0.6000 0.0000 0.0000 0.0000 0.0000	1.3416 3.0000 0.0000 0.0000 0.0000 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	15 85 86 87 88	SBI ARCH POINT	1.0400 4.2000 0.2000 0.0000 0.0000 0.8000	4.7219 9.5667 1.0000 0.0000 0.0000 3.0380	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	16 86 87 88 89	SBI CAT CANYON	9.7250 13.9000 16.5000 0.5000 8.0000	16.3566 11.2750 20.0650 1.0206 20.3741	100 25 25 25 25 25
SPECIES LOCATION YEAR YEAR YEAR YEAR	2011 8 82 83 84	Sargassum spp. SCI PELICAN BAY	0.6568 0.2143 0.2000 0.0000 1.0000	3.2541 1.0341 1.0000 0.0000 2.1602	370 70 25 35 10
LOCATION	9	SCI SCORPION ANC	HORAGE 2.2000	6.4326	75
YEAR	82		0.2000	1.0000	25
YEAR	83		3.7500	8.3781	40
YEAR	84		1.0000	3.1623	10
LOCATION	12	ANI CATHEDRAL CO	VE 0.1067	0.7273	75
YEAR	82		0.0000	0.0000	25
YEAR	83		0.0000	0.0000	40
YEAR	84		0.8000	1.9322	10
LOCATION	14	SBI SOUTHEAST SE	ALION 0.2000	1.2840	75
YEAR	82		0.2000	1.0000	25
YEAR	83		0.2500	1.5811	40
YEAR	84		0.0000	0.0000	10
LOCATION	15	SBI ARCH POINT	0.5333	2.2621	75
YEAR	82		1.6000	3.7417	25
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	10
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3001 1 82 83 84 85 86 87 88	Misc. red algae SMI WYCKOFF LEDG	13.7139 8.3095 52.6000 51.3793 29.8000 6.8000 39.3000 5.6000 37.4000 76.4000	19.6160 30.7365 23.4130 33.0286 24.0453 10.9335 21.8723 6.2617 19.3714 15.4630	2959 189 25 29 10 25 25 25 25

Channel Variable	Islands Nat Value	ional Park Label	Kelp	Forest	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 82 83 84 85 86 87 88	SMI HARE RO	CK		9.3112 39.6000 14.1667 7.0000 0.8000 1.2000 2.8000 2.0000 3.4000	18.2166 19.3067 26.1179 3.9158 1.3919 2.1794 4.4088 3.3850 3.4521	196 25 36 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 82 83 84 85 86 87 88	SRI JOHNSON:	S LEE	NORTH	13.9425 43.8000 17.5000 9.6000 4.3000 3.1000 2.9000 4.7000 20.9000	17.5809 18.3303 18.9128 6.0955 3.2692 3.4821 3.8649 5.3190 11.0604	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 82 83 84 85 86 87 88	SRI JOHNSON:	S LEE	SOUTH	22.3475 44.4000 41.0000 18.2000 9.5000 3.9000 7.3000 17.7000 23.1000	20.3097 17.8139 19.9743 10.2610 8.7202 4.0234 4.8905 13.8617 15.0914	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 83 84 85 86 87 88	SRI RODES RI	EEF		21.8714 50.7500 32.0000 15.8000 8.5000 1.9000 7.4000 25.5000	22.9009 25.1546 12.8927 10.3259 9.8160 2.1985 7.5512 11.9242	175 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	82 83 84 85 86 87 88	SCI GULL I	SLAND	SOUTH	11.4322 27.2000 14.1026 9.0000 6.9000 9.1000 4.6000 6.9000 10.7000	13.0106 15.4164 17.4292 5.6765 6.3852 7.2125 4.4884 8.2374 10.6927	199 25 39 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 82 83 84 85 86 87 88	SCI FRYS HAI	RBOR		6.2650 28.6000 4.0000 5.8000 3.2000 1.8000 2.3000 0.7000 4.8000	11.7231 15.1052 11.9400 4.5656 3.5000 2.4495 2.6926 1.3540 5.9037	200 25 40 10 25 25 25 25

Channel Variable	Islands Nation Value Lab		Kelp 1	Forest	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 SCI 82 83 84 85 86 87 88	PELICAN	BAY		4.0641 10.2000 7.7143 4.0000 0.5000 0.5000 0.3000 2.5000 5.3000	7.5549 10.6536 12.1476 2.1082 1.2500 1.4434 0.8292 2.8868 4.5254	195 25 35 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 SCI 82 83 84 85 86 87 88	SCORPION	N ANCHO	DRAGE	3.9400 10.8000 10.0000 1.8000 0.5000 0.0000 0.2000 1.3000 2.0000	8.1685 7.4554 13.9596 2.8983 1.0206 0.0000 0.6922 2.0565 2.3936	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	10 SCI 86 87 88 89	YELLOWBA	ANKS		5.8250 15.2000 2.2000 2.9000 3.0000	8.8339 12.2457 2.8247 4.3708 4.7324	100 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 ANI 82 83 84 85 86 87 88	ADMIRALS	S REEF		25.8390 33.2000 26.2222 12.2000 19.5000 31.3000 22.1000 27.0000 26.7000	19.0734 18.5338 21.9802 8.8669 10.8972 19.6204 13.1434 22.1265 21.0619	205 25 45 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 ANI 82 83 84 85 86 87 88	CATHEDRA	AL COVI	3	8.9725 21.4000 19.7500 4.2000 7.6000 4.9000 1.8000 1.5000 1.3000	13.0651 11.6833 19.8051 3.3267 5.1781 6.0156 3.3479 2.0412 1.6330	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 ANI 82 83 84 85 86 87 88	LANDING	COVE		20.0275 17.8000 34.7500 26.8000 9.8000 30.6000 9.9000 12.7000 13.1000	27.1330 20.8706 35.0082 24.0037 15.3080 35.2246 15.5034 25.8090 15.9961	200 25 40 10 25 25 25 25 25

Channel T	slands Na	tional Park Kelp Forest	: Monitorina	1982-1989)
Variable	Value	Label	Mean	Std Dev	Cases
LOCATION	14	SBI SOUTHEAST SEALION	4.3100	5.7971	200
YEAR	82		6.4000	6.0415	25
YEAR	83		3.0000	5.6387	40
YEAR	84		16.2000	9.4493	10
YEAR	85		4.2000	4.5484	25
YEAR	86		1.6000	2.7839	25
YEAR	87		5.5000	4.5069	25
YEAR	88		3.6000	3.6856	25
YEAR	89		1.9000	3.5561	25
LOCATION	15	SBI ARCH POINT	11.5550	12.9599	200
YEAR	82		8.6000	8.2310	25
YEAR	83		23.7500	19.8310	40
YEAR	84		5.6000	3.7476	10
YEAR	85		5.6000	5.4141	25
YEAR	86		5.9000	3.5998	25
YEAR	87		6.4000	6.7346	25
YEAR	88		18.3000	10.6975	25
YEAR	89		7.4000	6.5939	25
LOCATION	16	SBI CAT CANYON	4.6750	6.0161	100
YEAR	86		4.9000	4.5346	25
YEAR	87		5.3000	9.7980	25
YEAR	88		1.5000	1.9094	25
YEAR	89		7.0000	3.5355	25
PECIES	3002	Articulated coralline alo	gae 8.5184	14.9402	2888
LOCATION	1	SMI WYCKOFF LEDGE	5.0317	7.9554	189
YEAR	82		2.6000	5.9722	25
YEAR	83		3.4483	8.5673	29
YEAR	84		3.6000	4.2999	10
YEAR	85		4.1000	6.1186	25
YEAR	86		5.4000	6.0673	25
YEAR	87		3.4000	3.9449	25
YEAR	88		6.8000	9.7767	25
YEAR	89		10.3000	11.6664	25
					405
LOCATION	2	SMI HARE ROCK	0.3600	1.1317	125
YEAR	85		0.6000	1.3070	25
YEAR	86		0.1000	0.5000	25
YEAR	87		0.2000	0.6922	25
YEAR	88		0.5000	1.6137	25
YEAR	89		0.4000	1.1815	25
LOCATION	3	SRI JOHNSONS LEE NORTH	4.5950	6.6752	200
YEAR	82		7.4000	6.1441	25
YEAR	83		8.0000	9.9228	40
YEAR	84		6.4000	6.9154	10
YEAR	85		1.8000	2.6536	25
YEAR	86		3.1000	6.9702	25
YEAR	87		0.3000	0.8292	25
YEAR	88		3.3000	3.2048	25
	89		5.5000	5.1031	25
YEAR					
	A	CDT TOUNGONG THE COURT	2 6575	E 7110	200
LOCATION	4	SRI JOHNSONS LEE SOUTH	3.6575	5.7118	200
LOCATION YEAR	82	SRI JOHNSONS LEE SOUTH	4.0000	4.5644	25
LOCATION YEAR YEAR	82 83	SRI JOHNSONS LEE SOUTH	4.0000 3.5000	4.5644 7.6962	25 40
LOCATION YEAR YEAR YEAR	82 83 84	SRI JOHNSONS LEE SOUTH	4.0000 3.5000 4.4000	4.5644 7.6962 5.0596	25 40 10
LOCATION YEAR YEAR YEAR YEAR	82 83 84 85	SRI JOHNSONS LEE SOUTH	4.0000 3.5000 4.4000 4.3000	4.5644 7.6962 5.0596 5.9301	25 40 10 25
LOCATION YEAR YEAR YEAR	82 83 84 85 86	SRI JOHNSONS LEE SOUTH	4.0000 3.5000 4.4000	4.5644 7.6962 5.0596	25 40 10 25 25
LOCATION YEAR YEAR YEAR YEAR	82 83 84 85	SRI JOHNSONS LEE SOUTH	4.0000 3.5000 4.4000 4.3000	4.5644 7.6962 5.0596 5.9301	25 40 10 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	82 83 84 85 86	SRI JOHNSONS LEE SOUTH	4.0000 3.5000 4.4000 4.3000 0.8000	4.5644 7.6962 5.0596 5.9301 1.5679	25 40 10 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	82 83 84 85 86 87	SRI JOHNSONS LEE SOUTH	4.0000 3.5000 4.4000 4.3000 0.8000 0.9000	4.5644 7.6962 5.0596 5.9301 1.5679 1.7500	25 40 10 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	82 83 84 85 86 87 88	SRI JOHNSONS LEE SOUTH	4.0000 3.5000 4.4000 4.3000 0.8000 0.9000 5.4000	4.5644 7.6962 5.0596 5.9301 1.5679 1.7500 5.6679	25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	82 83 84 85 86 87 88		4.0000 3.5000 4.4000 4.3000 0.8000 0.9000 5.4000 6.5000	4.5644 7.6962 5.0596 5.9301 1.5679 1.7500 5.6679 6.4952	25 40 10 25 25 25 25 25

Appx. 3-18

Channel Variable	Islands Nationa Value Labe	al Park Kelp For el	est Monitoring Mean	1982-1989 Std Dev	Cases
YEAR YEAR YEAR YEAR YEAR	85 86 87 88 89		1.0000 0.1000 0.0000 0.2000 0.6000	2.0412 0.5000 0.0000 0.6922 1.3070	25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 SCI 82 83 84 85 86 87 88	GULL ISLAND SOU	TH 2.5779 2.2000 6.6667 2.8000 2.1000 1.3000 0.8000 1.4000 1.2000	9.3548 2.9155 20.1747 3.6757 2.9475 2.1794 1.7260 2.8025 1.9257	199 25 39 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 SCI 82 83 84 85 86 87 88	FRYS HARBOR	1.5600 1.8000 3.0000 6.2000 1.8000 0.6000 0.6000 0.0000 0.4000	3.7176 4.5369 5.6387 5.0288 2.7500 2.0767 1.3070 0.0000 0.9354	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 SCI 82 83 84 85 86 87 88	PELICAN BAY	5.3256 12.6000 14.8571 12.6000 0.7000 0.5000 0.5000 0.7000 0.7000	9.7103 10.3199 14.2192 9.5242 1.3540 1.2500 1.2500 1.3540 1.8428	195 25 35 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 SCI 82 83 84 85 86 87 88	SCORPION ANCHORA	GE 13.9425 25.4000 26.0000 23.6000 23.5000 7.0000 1.4000 1.8000	16.0398 15.3379 18.3694 10.2762 14.4338 6.5749 2.0514 2.1747 2.2267	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	10 SCI 86 87 88 89	YELLOWBANKS	8.9750 13.7000 5.6000 4.7000 11.9000	7.9383 8.3579 4.9096 6.4679 7.8156	100 25 25 25 25

Channel Variable	Islands Nati Value L	onal Park	Kelp F	orest	Monitoring Mean	1982-1989 Std Dev	Cases
Vallable	V4140 1				110011	50a 50v	00000
LOCATION	11 A	NI ADMIRAL	S REEF		3.6415	5.0105	205
YEAR	82				1.6000	3.4521	25
YEAR	83				2.8889	4.5837	45
YEAR	84				3.4000	2.9889	10
YEAR	85				5.9000	6.3689	25
YEAR	86				5.8000	6.1964	25
YEAR	87				2.7000	3.4551	25
YEAR	88				2.8000	4.8045	25
YEAR	89				4.5000	5.2540	25
LOCATION	12 A	NI CATHEDR	AL COVE		15.4850	13.3940	200
YEAR	82				31.8000	17.2530	25
YEAR	83				16.5000	14.0603	40
YEAR	84				14.2000	9.4493	10
YEAR	85				15.7000	10.9335	25
YEAR	86				7.3000	7.6689	25
YEAR	87				12.7000	7.8700	25
YEAR	88				8.1000	6.7423	25
YEAR	89				16.2000	11.5947	25
LOCATION	13 A	NI LANDING	COVE		21.1350	15.7166	200
YEAR	82				18.2000	15.8035	25
YEAR	83				17.7500	17.9011	40
YEAR	84				22.2000	13.0792	10
YEAR	85				23.7000	17.7822	25
YEAR	86				19.8000	12.0960	25
YEAR	87				23.5000	14.1237	25
YEAR	88				22.2000	15.9967	25
YEAR	89				24.4000	15.5000	25
LOCATION	14 S	BI SOUTHEA	ST SEAL	ION	1.9925	4.1065	200
YEAR	82				6.0000	8.2916	25
YEAR	83				0.7500	3.4991	40
YEAR	84				4.6000	4.0056	10
YEAR	85				1.5000	1.9094	25
YEAR	86				1.4000	2.2913	25
YEAR	87				2.3000	2.3848	25
YEAR	88				1.1000	1.7795	25
YEAR	89				0.6000	1.3070	25
LOCATION	15 S	BI ARCH PO	INT		21.2700	24.7301	200
YEAR	82				37.6000	19.3175	25
YEAR	83				30.7500	34.5215	40
YEAR	84				59.4000	25.0342	10
YEAR	85				34.0000	13.5976	25
YEAR	86				6.4000	6.1695	25
YEAR	87				5.3000	4.6949	25
YEAR	88				8.2000	8.2133	25
YEAR	89				5.7000	9.2286	25
LOCATION	16 S	BI CAT CAN	YON		36.2250	29.6305	100
YEAR	86				63.2000	16.4494	25
YEAR	87				59.0000	19.8694	25
YEAR	88				13.8000	11.3220	25
YEAR	89				8.9000	15.1052	25

Channel Variable	Islands Nat	ional Park Label	Kelp Fores	t Monitoring Mean	1982-1989 Std Dev	Cases
SPECIES		Crustose cor	_		20.1930	2959
LOCATION	1	SMI WYCKOFF	LEDGE	31.8148	21.2405	189
YEAR	82			7.2000	11.2805	25
YEAR	83			33.4483	23.0335	29
YEAR	84			37.8000	18.0481	10
YEAR	85			44.5000	18.3144	25
YEAR	86			53.8000	16.3955	25
YEAR	87			28.7000	13.9217	25
YEAR	88			27.4000	13.2971	25
YEAR	89			25.0000	17.0783	25
IDAN	09			23.0000	17.0703	23
LOCATION	2	SMI HARE RO	CK	32.9337	20.1455	196
YEAR	82			18.6000	14.5430	25
YEAR	83			37.7778	26.5234	36
YEAR	84			39.0000	21.5458	10
YEAR	85			25.2000	17.3494	25
YEAR	86			28.6000	16.9109	25
YEAR	87			39.7000	17.5790	25
YEAR	88			40.4000	16.8739	25
YEAR	89			35.7000	15.6545	25
LOCATION	3	SRI JOHNSON	S LEE NORTH	26.1000	18.2057	200
YEAR	82			26.4000	21.7715	25
YEAR	83			20.7500	18.4513	40
YEAR	84			28.0000	16.1933	10
YEAR	85			40.5000	23.1166	25
YEAR	86			21.1000	11.5488	25
YEAR	87			14.1000	8.4434	25
YEAR	88			39.0000	14.1421	25
YEAR	89			23.3000	7.7969	25
LOCATION	4	SRI JOHNSON	S LEE SOUTH	30.1225	20.9495	200
YEAR	82			17.6000	13.4722	25
YEAR	83			27.0000	26.7179	40
YEAR	84			26.2000	12.5945	10
	85			34.2000	13.8203	25
YEAR						
YEAR	86			43.3000	16.9362	25
YEAR	87			32.5000	11.2500	25
YEAR	88			46.9000	23.0972	25
YEAR	89			12.8000	10.2144	25
LOCATION	5	SRI RODES R	EEF	45.2400	20.7558	175
YEAR	83			39.7500	22.8133	40
YEAR	84			37.2000	18.1402	10
YEAR	85			50.0000	20.9040	25
YEAR	86			56.4000	23.1175	25
	87				14.5509	25
YEAR				58.2000		
YEAR	88			38.7000	15.6645	25
YEAR	89			34.9000	12.8184	25
LOCATION	6	SCI GULL I	SLAND SOUTH		18.1547	199
YEAR	82			46.2000	18.5562	25
YEAR	83			42.8205	24.9155	39
YEAR	84			37.4000	13.0316	10
YEAR	85			53.3000	15.4906	25
YEAR	86			46.0000	12.1407	25
YEAR	87			38.0000	12.7475	25
YEAR	88			34.7000	9.5011	25
YEAR	89			28.4000	15.8094	25
TUMIN	03			20.7000	10.0004	۷ ک

	Islands Nation Value Lab	al Park Kelp Forest	Monitoring Mean		Q
Variable	value Lab	eı	Mean	Std Dev	Cases
LOCATION	7 SCI	FRYS HARBOR	33.5300	16.6526	200
YEAR	82		28.0000	18.5966	25
YEAR	83		32.0000	19.3748	40
YEAR	84		40.6000	12.1491	10
YEAR	85		34.0000	10.0519	25
YEAR	86		46.5000	16.8480	25
YEAR	87		40.3000	10.7364	25
YEAR	88		36.1000	11.6833	25
YEAR	89		15.9000	6.4096	25
LOCATION	8 SCI	PELICAN BAY	25.3256	15.8419	195
YEAR	82		20.4000	15.8061	25
YEAR	83		24.0000	21.9893	35
YEAR	84		39.6000	19.3861	10
YEAR	85		23.1000	7.7487	25
YEAR	86		25.2000	9.6264	25
YEAR	87		22.9000	10.1211	25
YEAR	88		26.1000	10.1827	25
YEAR	89		30.4000	21.0367	25
LOCATION YEAR YEAR YEAR	82 83 84	SCORPION ANCHORAGE	29.3800 22.2000 24.2500 55.6000	16.6545 17.0220 19.9856 9.8342	200 25 40 10
YEAR	85		30.4000	17.3157	25
YEAR	86		23.0000	10.6311	25
YEAR	87		39.5000	10.0260	25
YEAR	88		34.5000	12.7066	25
YEAR	89		24.4000	7.9149	25
LOCATION YEAR YEAR YEAR YEAR YEAR		YELLOWBANKS	51.2000 49.8000 52.2000 49.3000 53.5000	13.2406 13.8052 13.5077 12.9808 13.0104	100 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 ANI 82 83 84 85 86 87 88	ADMIRALS REEF	31.4488 25.2000 36.6667 38.2000 49.6000 25.9000 18.9000 27.5000 29.5000	19.9845 16.1038 27.3030 13.5138 18.4091 16.6596 10.9468 10.9924 13.1498	205 25 45 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 ANI 82 83 84 85 86 87 88	CATHEDRAL COVE	29.6325 19.4000 15.2500 27.4000 19.6000 43.6000 46.4000 42.2000 30.5000	20.1953 14.2390 16.1702 17.7651 12.9639 18.1154 19.0679 17.3704 15.8771	200 25 40 10 25 25 25 25

Channel Variable	Islands Na Value	tional Park Kelp Forest Label	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION	13	ANI LANDING COVE	41.8800	24.5715	200
YEAR	82		34.2000	24.5238	25
YEAR	83		30.0000	21.8386	40
YEAR	84		48.6000	24.5864	10
YEAR	85		62.6000	20.1101	25
YEAR	86		33.1000	20.2880	25
YEAR	87		42.3000	20.8407	25
YEAR	88		47.3000	19.8158	25
YEAR	89		48.1000	29.0857	25
LOCATION	14	SBI SOUTHEAST SEALION	35.4500	19.5824	200
YEAR	82		41.8000	20.4573	25
YEAR	83		17.2500	17.3925	40
YEAR	84		17.0000	8.0691	10
YEAR	85		46.6000	16.1032	25
YEAR	86		41.4000	15.6804	25
YEAR	87		39.9000	19.4385	25
YEAR	88		39.5000	13.2091	25
YEAR	89		40.0000	15.0347	25
LOCATION	15	SBI ARCH POINT	35.6575	18.5885	200
YEAR	82		30.2000	12.9486	25
YEAR	83		20.5000	17.0895	40
YEAR	84		25.4000	15.0274	10
YEAR	85		43.0000	20.3101	25
YEAR	86		37.9000	10.0954	25
YEAR	87		37.2000	10.6878	25
YEAR	88		32.9000	13.8947	25
YEAR	89		61.1000	10.6086	25
LOCATION	16	SBI CAT CANYON	24.9750	14.2511	100
YEAR	86		13.2000	12.9003	25
YEAR	87		31.7000	11.4955	25
YEAR	88		26.8000	14.7817	25
YEAR	89		28.2000	10.7170	25
SPECIES	3004	Gelidium spp.	1.2617	6.8368	2600
LOCATION	1	SMI WYCKOFF LEDGE	0.0000	0.0000	125
YEAR	85		0.0000	0.0000	25
YEAR	86		0.0000	0.0000	25
YEAR	87		0.0000	0.0000	25
YEAR	88		0.0000	0.0000	25
YEAR	89		0.0000	0.0000	25
LOCATION	2	SMI HARE ROCK	0.0000	0.0000	125
YEAR	85		0.0000	0.0000	25
YEAR	86		0.0000	0.0000	25
YEAR	87		0.0000	0.0000	25
YEAR	88		0.0000	0.0000	25
YEAR	89		0.0000	0.0000	25
LOCATION	3	SRI JOHNSONS LEE NORTH	0.0000	0.0000	125
YEAR	85		0.0000	0.0000	25
YEAR	86		0.0000	0.0000	25
YEAR	87		0.0000	0.0000	25
YEAR	88		0.0000	0.0000	25
YEAR	89		0.0000	0.0000	25

	Islands Nat		Park	Kelp	Forest	_		
Variable	Value	Label				Mean	Std Dev	Cases
LOCATION YEAR	4 85	SRI J	OHNSON	S LEE	SOUTH	0.0000	0.0000	100 25
YEAR	86					0.0000	0.0000	25
YEAR	88					0.0000	0.0000	25
YEAR	89					0.0000	0.0000	25
LOCATION	5	SRI R	ODES R	EEF		0.0000	0.0000	125
YEAR	85					0.0000	0.0000	25
YEAR	86					0.0000	0.0000	25
YEAR	87					0.0000	0.0000	25
YEAR	88					0.0000	0.0000	25
YEAR	89					0.0000	0.0000	25
LOCATION	6	SCI G	ULL IS	LAND S	OUTH	0.2750	3.2561	200
YEAR	82					0.0000	0.0000	25
YEAR	83					0.2500	1.5811	40
YEAR	84					0.0000	0.0000	10
YEAR	85					0.0000	0.0000	25
YEAR	86					0.0000	0.0000	25
YEAR	87					1.8000	9.0000	25
YEAR	88					0.0000	0.0000	25
YEAR	89					0.0000	0.0000	25
LOCATION	7	SCI F	RYS HA	RBOR		0.2750	1.6202	200
YEAR	82					1.2000	3.6171	25
YEAR	83					0.2500	1.5811	40
YEAR	84					0.0000	0.0000	10
YEAR	85					0.6000	1.8085	25
YEAR	86					0.0000	0.0000	25
YEAR	87					0.0000	0.0000	25
YEAR	88					0.0000	0.0000	25
YEAR	89					0.0000	0.0000	25
LOCATION	8	SCI P	ELICAN	BAY		2.0615	7.0299	195
YEAR	82					12.8000	12.9164	25
YEAR	83					0.0000	0.0000	35
YEAR	84					8.2000	13.5138	10
YEAR	85					0.0000	0.0000	25
YEAR	86					0.0000	0.0000	25
YEAR	87					0.0000	0.0000	25
YEAR	88					0.0000	0.0000	25
YEAR	89					0.0000	0.0000	25
LOCATION	9	SCI S	CORPIO	N ANCH	ORAGE	2.0000	6.5846	200
YEAR	82					11.6000	12.8062	25
YEAR	83					2.0000	6.8687	40
YEAR	84					1.0000	1.4142	10
YEAR	85					0.8000	1.8708	25
YEAR	86					0.0000	0.0000	25
YEAR	87					0.0000	0.0000	25
YEAR	88					0.0000	0.0000	25
YEAR	89					0.0000	0.0000	25
LOCATION	10	SCI Y	ELLOWB	ANKS		0.0000	0.0000	100
YEAR	86					0.0000	0.0000	25
YEAR	87					0.0000	0.0000	25
YEAR	88					0.0000	0.0000	25
YEAR	89					0.0000	0.0000	25

Channel Variable	Islands Nationa Value Labe	-	Forest Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 ANI 82 83 84 85 86 87 88	ADMIRALS REEF	0.3756 0.0000 0.0000 0.2000 0.0000 2.6000 0.0000 0.4000 0.0000	1.5851 0.0000 0.0000 0.6325 0.0000 3.5707 0.0000 1.5612 0.0000	205 25 45 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 ANI 82 83 84 85 86 87 88	CATHEDRAL COV	E 1.2550 3.2000 2.2500 3.6000 1.7000 0.0000 0.1000 0.0000	4.1695 7.6212 5.7679 4.5019 3.1225 0.0000 0.5000 0.0000	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 ANI 82 83 84 85 86 87 88	LANDING COVE	9.9525 11.6000 16.5000 7.8000 8.0000 0.3000 15.3000 0.0000 14.9000	19.8884 17.8372 22.4808 11.8303 16.5044 1.5000 27.3701 0.0000 26.9884	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 SBI 82 83 84 85 86 87 88	SOUTHEAST SEA	LION 0.1000 0.8000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.8624 2.3629 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 SBI 82 83 84 85 86 87 88	ARCH POINT	0.1250 0.6000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000	0.7363 1.6583 0.0000 1.6997 0.0000 0.0000 0.0000 0.0000	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	16 SBI 86 87 88 89	CAT CANYON	0.0500 0.0000 0.2000 0.0000 0.0000	0.3518 0.0000 0.6922 0.0000 0.0000	100 25 25 25 25

Channel Variable		tional Park Kelp Forest Label	Monitorin Mean	g 1982-1989 Std Dev	Cases
SPECIES	3005	Gigartina spp.	0.4872	3.3960	2610
LOCATION	1	SMI WYCKOFF LEDGE	0.5079	1.9140	189
YEAR	82	SMI WICKOFF LEDGE	0.2000	1.0000	25
YEAR	83		0.0000	0.0000	29
YEAR	84		1.6000	4.4020	10
YEAR	85		1.1000	3.2339	25
YEAR	86		0.5000	1.4434	25
YEAR	87		0.1000	0.5000	25
YEAR	88		0.0000	0.0000	25
YEAR	89		1.3000	2.2958	25
LOCATION	2	SMI HARE ROCK	0.7908	3.5100	196
YEAR	82		6.2000	8.0726	25
YEAR	83		0.0000	0.0000	36
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	25
YEAR	86		0.0000	0.0000	25
YEAR	87		0.0000	0.0000	25
YEAR	88		0.0000	0.0000	25
YEAR	89		0.0000	0.0000	25
LOCATION	3	SRI JOHNSONS LEE NORTH	0.6250	3.7068	200
YEAR	82		0.0000	0.0000	25
YEAR	83		3.0000	7.9097	40
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	25
YEAR	86		0.0000	0.0000	25
YEAR	87		0.1000	0.5000	25
YEAR	88		0.0000	0.0000	25
YEAR	89		0.1000	0.5000	25
LOCATION	4	SRI JOHNSONS LEE SOUTH	3.3500	10.0515	200
YEAR	82		0.4000	1.3844	25
YEAR	83		14.0000	17.8023	40
YEAR	84		0.0000	0.0000	10
YEAR	85		0.0000	0.0000	25
YEAR	86		0.0000	0.0000	25
YEAR	87		1.7000	7.4903	25
YEAR	88		0.0000	0.0000	25
YEAR	89		2.3000	4.7828	25
LOCATION	5	SRI RODES REEF	0.0200	0.2236	125
YEAR	85		0.0000	0.0000	25
YEAR	86		0.0000	0.0000	25
YEAR	87		0.0000	0.0000	25
YEAR	88		0.0000	0.0000	25
YEAR	89		0.1000	0.5000	25
LOCATION	6	SCI GULL ISLAND SOUTH	0.0000	0.0000	125
YEAR	85		0.0000	0.0000	25
YEAR	86		0.0000	0.0000	25
YEAR	87		0.0000	0.0000	25
YEAR	88		0.0000	0.0000	25
YEAR	89		0.0000	0.0000	25

Channel Variable		onal Park Kelp Forest abel	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 SC 82 83 84 85 86 87 88 89	CI FRYS HARBOR	0.1125 0.0000 0.5000 0.0000 0.0000 0.0000 0.1000 0.0000 0.0000	1.0118 0.0000 2.2072 0.0000 0.0000 0.5000 0.0000 0.0000	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	8 SC 85 86 87 88 89	CI PELICAN BAY	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 SC 82 83 84 85 86 87 88 89	CI SCORPION ANCHORAGE	0.0500 0.4000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.7071 2.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	10 SC 86 87 88 89	CI YELLOWBANKS	0.3000 1.1000 0.1000 0.0000	1.7145 3.3135 0.5000 0.0000	100 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	11 AN 85 86 87 88 89	NI ADMIRALS REEF	0.0400 0.0000 0.0000 0.0000 0.0000 0.2000	0.3150 0.0000 0.0000 0.0000 0.0000 0.6922	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 AN 82 83 84 85 86 87 88	NI CATHEDRAL COVE	0.1350 0.0000 0.5000 0.2000 0.2000 0.0000 0.0000 0.0000	1.0642 0.0000 2.2072 0.6325 1.0000 0.0000 0.0000 0.0000	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 AN 82 83 84 85 86 87 88 89	NI LANDING COVE	0.5550 0.8000 1.0000 1.6000 0.6000 0.0000 0.0000 0.2000	2.4931 1.8708 4.4144 3.5024 1.8085 2.5290 0.0000 0.0000 0.6922	200 25 40 10 25 25 25 25 25

Channel Variable		ional Park Kelp Forest Label	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 S 82 83 84 85 86 87 88 89	BBI SOUTHEAST SEALION	0.0750 0.2000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000	0.7890 1.0000 1.5811 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	15 S 85 86 87 88 89	SBI ARCH POINT	0.0200 0.0000 0.1000 0.0000 0.0000	0.2236 0.0000 0.5000 0.0000 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	16 S 86 87 88 89	SBI CAT CANYON	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	100 25 25 25 25
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR		Misc. plants SMI WYCKOFF LEDGE	1.4577 6.7200 33.4000 0.0000 0.1000 0.1000 0.0000	4.8614 14.1543 10.3803 0.0000 0.5000 0.5000 0.0000	2010 125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	2 S 85 86 87 88 89	SMI HARE ROCK	0.3800 0.3000 0.2000 0.0000 0.7000	1.2722 1.5000 0.6922 0.0000 1.5343 1.6956	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	3 S 85 86 87 88 89	BRI JOHNSONS LEE NORTH	2.3800 6.8000 3.9000 0.7000 0.5000	4.0143 5.7064 3.2339 1.3540 1.7678 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	4 S 85 86 87 88 89	BRI JOHNSONS LEE SOUTH	1.5800 1.8000 4.5000 1.5000 0.1000 0.0000	3.5146 2.7500 6.1237 2.1651 0.5000 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	5 S 85 86 87 88 89	SRI RODES REEF	0.8400 2.9000 1.3000 0.0000 0.0000	2.2438 3.5119 2.6141 0.0000 0.0000	125 25 25 25 25 25 25

Channel Variable	Islands Nation Value Lab	al Park Kelp Forest el	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR	6 SCI 85 86 87 88 89	GULL ISLAND SOUTH	1.6600 5.7000 0.6000 0.7000 0.0000 1.3000	3.2057 4.6503 1.8085 1.3540 0.0000 2.0565	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	7 SCI 85 86 87 88 89	FRYS HARBOR	0.3000 0.9000 0.1000 0.4000 0.1000 0.0000	1.0814 2.0259 0.5000 0.9354 0.5000 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	8 SCI 85 86 87 88 89	PELICAN BAY	0.2600 0.0000 0.4000 0.7000 0.1000	0.8881 0.0000 0.9354 1.5343 0.5000 0.5000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 SCI 82 83 84 85 86 87 88	SCORPION ANCHORAGE	0.0405 0.0000 0.0000 0.0000 0.0000 0.3000 0.0000 0.0000	0.3166 0.0000 0.0000 0.0000 0.0000 0.8292 0.0000 0.0000	185 25 25 10 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	10 SCI 86 87 88 89	YELLOWBANKS	2.3250 0.5000 7.9000 0.9000 0.0000	5.0032 2.0412 7.0961 2.2684 0.0000	100 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	11 ANI 85 86 87 88 89	ADMIRALS REEF	2.4200 6.2000 0.0000 2.7000 3.2000 0.0000	4.7300 4.8477 0.0000 4.7280 6.4759 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	12 ANI 85 86 87 88 89	CATHEDRAL COVE	1.7400 0.0000 8.4000 0.3000 0.0000	5.0424 0.0000 8.5049 1.0992 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	13 ANI 85 86 87 88 89	LANDING COVE	0.3000 1.3000 0.1000 0.1000 0.0000	1.5424 3.2372 0.5000 0.5000 0.0000	125 25 25 25 25 25 25

Channel Variable		tional Park Kelp Forest Label	Monitoring Mean	1982-1989 Std Dev) Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	14 85 86 87 88 89	SBI SOUTHEAST SEALION	1.1400 1.4000 1.7000 2.3000 0.3000 0.0000	3.1028 2.4023 3.2851 5.2994 1.0992 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	15 85 86 87 88 89	SBI ARCH POINT	1.6200 2.1000 0.4000 4.7000 0.7000 0.2000	3.7735 5.1377 1.1815 5.4160 1.1456 0.6922	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	16 86 87 88 89	SBI CAT CANYON	0.2250 0.3000 0.1000 0.0000 0.5000	0.8021 1.0992 0.5000 0.0000 1.0206	100 25 25 25 25
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5001 1 85 86 87 88 89	Sponges SMI WYCKOFF LEDGE	0.8038 1.3200 2.2000 0.7000 1.5000 0.9000 1.3000	2.0833 2.6292 4.0389 2.1065 2.7003 1.5943 1.9257	1950 125 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	2 85 86 87 88 89	SMI HARE ROCK	0.0600 0.0000 0.2000 0.1000 0.0000	0.3842 0.0000 0.6922 0.5000 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	3 85 86 87 88 89	SRI JOHNSONS LEE NORTH	0.4200 0.9000 0.5000 0.1000 0.0000 0.6000	1.0403 1.5943 1.0206 0.5000 0.0000 1.0897	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	4 85 86 87 88 89	SRI JOHNSONS LEE SOUTH	1.1200 2.9000 0.9000 0.0000 0.5000 1.3000	2.3214 3.2819 2.2684 0.0000 1.2500 2.2958	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	5 85 86 87 88 89	SRI RODES REEF	1.0600 2.1000 2.0000 0.1000 0.2000 0.9000	2.2953 3.2819 3.0619 0.5000 0.6922 1.5943	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	6 85 86 87 88 89	SCI GULL ISLAND SOUTH	0.4800 1.3000 0.6000 0.3000 0.2000 0.0000	1.3356 2.4066 1.0897 0.8292 0.6922 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR	7 85 86	SCI FRYS HARBOR	0.3400 0.6000 0.3000	1.3599 2.5290 0.8292	125 25 25

Appx. 3-30

Channel	Islands Nat	ional Park	Kelp Forest	. Monitorina	1982-1989	
Variable		Label	1.010	Mean	Std Dev	Cases
YEAR	87			0.4000	0.9354	25
YEAR	88			0.4000	1.1815	25
YEAR	89			0.0000	0.0000	25
LOCATION	8 :	SCI PELICAN	J BAY	0.1000	0.4919	125
YEAR	85			0.0000	0.0000	25
YEAR	86			0.0000	0.0000	25
YEAR	87			0.1000	0.5000	25
YEAR	88			0.3000	0.8292	25
YEAR	89			0.1000	0.5000	25
LOCATION	9	SCI SCORPIC	ON ANCHORAGE	0.0600	0.3842	125
YEAR	85			0.0000	0.0000	25
YEAR	86			0.2000	0.6922	25
YEAR	87			0.1000	0.5000	25
YEAR	88			0.0000	0.0000	25
YEAR	89			0.0000	0.0000	25
LOCATION	10	SCI YELLOWE	BANKS	0.3500	1.0063	100
YEAR	86			0.3000	0.8292	25
YEAR	87			0.3000	0.8292	25
YEAR	88			0.3000	1.0992	25
YEAR	89			0.5000	1.2500	25
LOCATION	11	ANI ADMIRAI	LS REEF	1.6600	2.3748	125
YEAR	85			0.5000	1.0206	25
YEAR	86			1.8000	3.0208	25
YEAR	87			1.2000	1.6330	25
YEAR	88			2.0000	2.3936	25
YEAR	89			2.8000	2.7310	25
LOCATION	12	ANI CATHEDE	RAL COVE	0.3400	1.1155	125
YEAR	85			0.0000	0.0000	25
YEAR	86			0.4000	1.1815	25
YEAR	87			0.8000	1.8708	25
YEAR	88			0.4000	0.9354	25
YEAR	89			0.1000	0.5000	25
LOCATION	13	ANI LANDING	G COVE	2.5200	4.0473	125
YEAR	85			1.7000	3.7997	25
YEAR	86			4.7000	4.6949	25
YEAR	87			1.6000	2.7839	25
YEAR	88			2.6000	4.6480	25
YEAR	89			2.0000	3.4611	25
LOCATION		SBI SOUTHEA	AST SEALION	0.7400	1.6197	125
YEAR	85			0.3000	1.0992	25
YEAR	86			0.8000	1.5679	25
YEAR	87			0.5000	1.7678	25
YEAR	88			1.0000	2.0412	25
YEAR	89			1.1000	1.4577	25
LOCATION	15	SBI ARCH PO	TNIC	0.1800	0.7223	125
YEAR	85			0.6000	1.3070	25
YEAR	86			0.1000	0.5000	25
YEAR	87			0.0000	0.0000	25
YEAR	88			0.0000	0.0000	25
YEAR	89			0.2000	0.6922	25

Channel	Islands Nat	ional Park Kelp For	rest Monitoring	1982-1989	Cases
Variable	Value	Label	Mean	Std Dev	
LOCATION YEAR YEAR YEAR YEAR	16 86 87 88 89	SBI CAT CANYON	2.3250 0.7000 4.9000 3.5000 0.2000	3.4130 1.3540 4.2377 3.4611 0.6922	100 25 25 25 25 25
SPECIES LOCATION YEAR YEAR YEAR	5003 1 82 83 84	Leucetta losangelens SMI WYCKOFF LEDGE	0.2935 0.2500 0.4000 0.0000 0.6000	1.5678 1.0235 1.3844 0.0000 1.3499	736 64 25 29 10
LOCATION	2	SMI HARE ROCK	0.2083	1.7678	72
YEAR	82		0.6000	3.0000	25
YEAR	83		0.0000	0.0000	37
YEAR	84		0.0000	0.0000	10
LOCATION	4	SRI JOHNSONS LEE SOL	0.2000	1.2840	75
YEAR	82		0.6000	2.1985	25
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	10
LOCATION	6	SCI GULL ISLAND SOU	0.2000	0.9864	75
YEAR	82		0.6000	1.6583	25
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	10
LOCATION	7	SCI FRYS HARBOR	0.5333	1.7579	75
YEAR	82		1.6000	2.7839	25
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	10
LOCATION	8	SCI PELICAN BAY	0.7143	2.7301	70
YEAR	82		2.0000	4.3301	25
YEAR	83		0.0000	0.0000	35
YEAR	84		0.0000	0.0000	10
LOCATION	9	SCI SCORPION ANCHOR	GE 0.0667	0.5774	75
YEAR	82		0.2000	1.0000	25
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	10
LOCATION	11	ANI ADMIRALS REEF	0.1250	1.1180	80
YEAR	82		0.4000	2.0000	25
YEAR	83		0.0000	0.0000	45
YEAR	84		0.0000	0.0000	10
LOCATION	13	ANI LANDING COVE	0.6000	2.3191	75
YEAR	82		1.8000	3.7859	25
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	10
LOCATION	14	SBI SOUTHEAST SEALIC	0.0667	0.5774	75
YEAR	82		0.2000	1.0000	25
YEAR	83		0.0000	0.0000	40
YEAR	84		0.0000	0.0000	10
SPECIES LOCATION YEAR YEAR YEAR	5004 14 82 83 84	Polymastia pachymast SBI SOUTHEAST SEALIC		0.5774 0.5774 1.0000 0.0000	75 75 25 40 10

Channel Variable	Islands Nat Value	tional Park Kelp Fores [.] Label	t Monitoring Mean	1982-1989 Std Dev	Cases
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	6003 1 85 86 87 88	Corynactis californica SMI WYCKOFF LEDGE	2.5559 0.3800 0.5000 0.4000 0.9000 0.1000	6.6796 1.4219 2.0412 1.5612 1.7500 0.5000	2745 125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 82 83 84 85 86 87 88	SMI HARE ROCK	6.9949 0.6000 0.5556 0.6000 4.1000 7.8000 10.2000 11.5000 19.6000	10.3425 1.6583 2.3231 1.8974 4.3827 7.1923 9.7873 13.3073 13.5915	196 25 36 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 82 83 84 85 86 87 88	SRI JOHNSONS LEE NORTH	2.0625 1.6000 0.5000 0.0000 1.4000 0.0000 5.3000 3.6000 3.8000	5.7614 2.3805 2.2072 0.0000 3.3912 0.0000 9.8774 9.7916 5.4064	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 82 83 84 85 86 87 88	SRI JOHNSONS LEE SOUTH	4.3275 2.6000 1.2500 2.8000 1.7000 2.3000 6.6000 12.6000 5.7000	9.6485 7.0887 4.0430 4.2374 3.1225 4.9434 10.5050 19.3310 7.7567	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 83 84 85 86 87 88 89	SRI RODES REEF	0.4114 0.0000 0.2000 0.1000 0.7000 1.3000 0.4000 0.3000	2.4115 0.0000 0.6325 0.5000 2.5536 5.5490 0.9354 1.5000	175 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 82 83 84 85 86 87 88	SCI GULL ISLAND SOUTH	11.0628 5.8000 4.6154 7.4000 6.9000 12.1000 15.4000 18.1000 19.6000	12.3296 7.5939 9.4162 8.7458 7.2987 11.0321 11.8075 13.8120 15.9374	199 25 39 10 25 25 25 25

Channel Variable	Islands Nat Value	iona Labe		Kelp	Forest	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 82 83 84 85 86 87 88	SCI	FRYS HAF	RBOR		1.8675 3.0000 1.0000 1.6000 1.5000 1.3000 2.1000 1.4000 3.4000	3.7882 5.9512 3.0382 2.2706 2.9756 3.3166 3.6572 2.4023 4.6704	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 82 83 84 85 86 87 88	SCI	PELICAN	BAY		0.5641 0.2000 0.2857 0.0000 0.0000 0.2000 1.3000 0.3000 2.0000	1.7593 1.0000 1.6903 0.0000 0.0000 0.6922 2.0565 1.0992 3.2275	195 25 35 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 82 83 84 85 86 87 88	SCI	SCORPION	1 ANCH	ORAGE	0.1125 0.2000 0.0000 0.0000 0.0000 0.1000 0.2000 0.0000 0.4000	0.5769 1.0000 0.0000 0.0000 0.0000 0.5000 0.6922 0.0000 0.9354	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	10 86 87 88 89	SCI	YELLOWB#	ANKS		0.7750 0.3000 1.1000 1.2000 0.5000	1.8700 0.8292 1.9203 2.8062 1.2500	100 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 82 83 84 85 86 87 88	ANI	ADMIRALS	S REEF		0.8976 1.8000 0.4444 0.4000 1.0000 1.2000 0.0000 1.5000 0.9000	2.2474 2.8431 2.0841 0.8433 2.5000 3.1557 0.0000 2.0412 1.8930	205 25 45 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	12 85 86 87 88 89	ANI	CATHEDRA	AL COV	E	0.0400 0.0000 0.1000 0.0000 0.1000 0.0000	0.3150 0.0000 0.5000 0.0000 0.5000 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 82 83 84 85 86 87 88	ANI	LANDING	COVE		2.4375 3.8000 1.7500 2.0000 1.2000 1.1000 0.6000 3.2000 6.0000	6.2805 6.9642 3.8481 3.3993 2.8976 2.8025 1.8085 9.4240 10.8733	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR	14 85 86	SBI	SOUTHEAS	ST SEA	LION	1.2800 0.6000 0.9000	2.1208 1.6583 1.5943	125 25 25

Appx. 3-34

Channel Variable	Islands Na Value	tional Park Label	Kelp Fo	orest	Monitoring Mean	1982-1989 Std Dev	Cases
YEAR YEAR YEAR	87 88 89				0.6000 2.0000 2.3000	1.0897 2.7003 2.5941	25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 82 83 84 85 86 87 88	SBI ARCH POI	INT		3.1175 0.6000 0.7500 0.6000 0.5000 2.9000 2.4000 8.9000 8.2000	5.8327 1.6583 3.4991 1.3499 1.0206 3.6572 2.9297 8.8706 8.3079	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	16 86 87 88 89	SBI CAT CANY	YON		0.0250 0.0000 0.0000 0.1000 0.0000	0.2500 0.0000 0.0000 0.5000 0.0000	100 25 25 25 25
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6004 1 82 83 84 85 86 87 88	Balanophyll: SMI WYCKOFF	-	ans	2.6505 3.4392 1.0000 1.0345 2.0000 4.4000 5.2000 3.4000 4.5000 5.5000	5.1543 4.3018 2.0412 3.0993 3.5277 3.0856 5.4448 3.8784 4.0182 5.5434	2944 189 25 29 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 82 83 84 85 86 87 88 89	SMI HARE ROO	CK		4.4898 2.8000 3.3333 3.0000 4.0000 6.3000 4.1000 5.5000 6.5000	5.5431 3.8406 7.9282 3.1623 3.8188 5.1092 2.8759 5.9948 6.2915	196 25 36 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 82 83 84 85 86 87 88	SRI JOHNSONS	S LEE NO	ORTH	4.5875 5.4000 3.2500 7.0000 2.5000 4.8000 3.8000 6.9000 5.3000	4.7620 5.7591 5.7233 3.9158 2.6021 3.8810 3.5444 5.6954 3.4095	200 25 40 10 25 25 25 25 25

Channel Variable	Islands Nat Value	cional Park Label	Kelp	Forest	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 82 83 84 85 86 87 88	SRI JOHNSON	IS LEE	SOUTH	9.2725 10.8000 6.0000 4.2000 5.5000 6.6000 13.9000 14.0000 12.1000	8.9546 11.0567 9.8189 3.4577 4.5644 3.8784 7.9739 9.6014 9.0910	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 83 84 85 86 87 88 89	SRI RODES F	REEF		5.4714 2.5000 2.0000 3.3000 6.1000 8.3000 5.2000 10.6000	5.4144 4.9355 2.4944 3.1225 5.0559 5.4829 3.0551 5.9196	175 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 82 83 84 85 86 87 88	SCI GULL 1	SLAND	SOUTH	6.5754 2.8000 5.3846 3.6000 2.9000 7.3000 8.4000 10.7000 10.4000	8.0547 4.8045 7.5555 3.7476 4.6592 6.4517 6.9552 11.4683 10.0695	199 25 39 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 82 83 84 85 86 87 88	SCI FRYS HA	ARBOR		0.1475 0.2000 0.0000 0.2000 0.0000 0.4000 0.2000 0.3000 0.0000	0.7295 1.0000 0.0000 0.6325 0.0000 1.1815 0.6922 1.0992 0.0000	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 82 83 84 85 86 87 88 89	SCI PELICAN	1 BAY		0.5308 0.2000 0.0000 0.6000 0.4000 0.4000 0.5000 0.5000	1.5454 1.0000 0.0000 0.9661 0.9354 0.9354 1.0206 1.2500 3.3292	195 25 35 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 82 83 84 85 86 87 88 89	SCI SCORPIC	DN ANCH	ORAGE	0.5850 0.4000 0.5000 0.2000 0.9000 1.1000 0.4000 0.4000 0.6000	1.6595 1.3844 2.2072 0.6325 1.7500 1.9203 0.9354 1.1815 1.8085	200 25 40 10 25 25 25 25

Channel Variable	Islands Nationa Value Labe	al Park Kelp Forest el	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR	10 SCI 86 87 88 89	YELLOWBANKS	0.7250 0.2000 0.4000 0.8000 1.5000	1.7150 0.6922 1.5612 2.0052 2.0412	100 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 ANI 82 83 84 85 86 87 88	ADMIRALS REEF	0.8902 0.6000 0.4444 0.0000 1.3000 0.6000 0.5000 0.5000 3.0000	2.1792 1.6583 2.0841 0.0000 1.7854 1.3070 1.2500 1.2500 3.9528	205 25 45 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 ANI 82 83 84 85 86 87 88	CATHEDRAL COVE	0.2703 0.0000 0.0000 0.0000 0.1000 0.0000 1.7000 0.1000	1.1033 0.0000 0.0000 0.0000 0.5000 0.0000 2.4707 0.5000 0.5000	185 25 25 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 ANI 82 83 84 85 86 87 88	LANDING COVE	0.2075 0.6000 0.0000 0.4000 0.1000 0.1000 0.1000 0.6000 0.0000	1.0165 2.1985 0.0000 0.8433 0.5000 0.5000 1.4930 0.0000	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 SBI 82 83 84 85 86 87 88	SOUTHEAST SEALION	2.6925 2.0000 1.0000 1.6000 4.5000 4.5000 4.2000 5.5000	4.5866 4.5644 3.0382 2.4585 3.6084 5.4962 2.0259 3.7305 7.2529	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 SBI 82 83 84 85 86 87 88	ARCH POINT	0.1875 0.2000 0.5000 0.0000 0.0000 0.1000 0.0000 0.2000 0.2000	1.1739 1.0000 2.2072 0.0000 0.0000 0.5000 0.0000 1.0000	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	16 SBI 86 87 88 89	CAT CANYON	0.6250 0.9000 0.3000 0.1000 1.2000	2.0528 1.5943 0.8292 0.5000 3.6171	100 25 25 25 25

Channel Variable	Islands Nat Value	tional Park Kelp Fore Label	st Monitoring Mean	1982-1989 Std Dev	Cases
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6005 1 82 83 84 85 86 87 88	Astrangia lajollaensi SMI WYCKOFF LEDGE	\$ 4.7290 0.5688 0.2000 0.3448 0.0000 1.1000 0.3000 1.3000 0.6000 0.4000	8.4158 1.5813 1.0000 1.8570 0.0000 2.1747 1.0992 2.0565 1.4930 0.9354	2959 189 25 29 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 82 83 84 85 86 87 88	SMI HARE ROCK	3.3622 1.6000 3.3333 6.4000 1.5000 4.5000 4.3000 4.1000 3.0000	5.9742 3.1358 8.9443 7.2908 2.1651 6.6927 5.6605 5.6310 4.0825	196 25 36 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 82 83 84 85 86 87 88	SRI JOHNSONS LEE NORT:	H 2.5150 0.2000 2.0000 2.8000 1.6000 4.4000 2.6000 3.8000 3.2000	4.4030 1.0000 5.6387 4.3410 2.3805 5.0662 3.7137 5.2599 3.9211	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 82 83 84 85 86 87 88	SRI JOHNSONS LEE SOUT	H 1.4925 0.6000 1.2500 1.6000 1.0000 1.6000 3.8000 0.8000	3.2184 1.6583 4.0430 2.6331 2.1651 2.4875 5.3092 2.1651 1.7260	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 83 84 85 86 87 88	SRI RODES REEF	9.4457 8.5000 8.8000 6.0000 11.2000 16.5000 6.0000 9.3000	10.9654 10.5125 9.8522 5.9073 9.9247 15.9915 8.4471 10.6683	175 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 82 83 84 85 86 87 88 89	SCI GULL ISLAND SOUTH	2.8291 2.4000 3.3333 0.8000 1.2000 3.6000 4.1000 3.0000 2.7000	4.2839 5.7951 5.7735 2.5298 1.6330 4.1508 3.5998 3.8188 2.7876	199 25 39 10 25 25 25 25

Channel Variable	Islands Nat Value	tional Park Label	Kelp Forest	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 82 83 84 85 86 87 88 89	SCI FRYS HA	RBOR	21.9850 12.8000 28.2500 13.2000 11.3000 25.1000 22.4000 24.9000 28.9000	14.2273 9.3630 21.1087 9.8972 5.8683 10.2439 7.9215 12.7574 9.5764	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 82 83 84 85 86 87 88 89	SCI PELICAN	BAY	13.5692 5.4000 12.0000 10.6000 11.3000 19.4000 18.6000 16.7000 13.4000	8.9130 5.1881 10.7922 6.6030 5.0062 8.6084 8.1035 6.2799 8.6867	195 25 35 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 82 83 84 85 86 87 88 89	SCI SCORPIO	N ANCHORAGE	1.7500 0.2000 0.7500 2.0000 0.0000 2.8000 2.7000 3.0000 3.3000	3.1579 1.0000 2.6675 1.8856 0.0000 4.5254 3.9476 3.1458 3.0380	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	10 86 87 88 89	SCI YELLOWB	ANKS	2.7250 1.5000 4.1000 2.9000 2.4000	3.5904 2.3936 4.2007 3.9974 3.1853	100 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 82 83 84 85 86 87 88	ANI ADMIRAL	S REEF	4.9756 5.2000 4.2222 7.0000 4.0000 6.0000 4.2000 4.8000 6.2000	5.8284 6.0346 8.1153 5.6765 4.0825 4.7324 4.1282 5.1498 5.4544	205 25 45 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 82 83 84 85 86 87 88	ANI CATHEDR	AL COVE	1.9525 1.0000 1.2500 1.8000 1.2000 2.8000 0.0000 4.0000 3.9000	3.2856 2.5000 3.3493 2.5734 2.0565 3.0035 0.0000 3.6084 4.5689	200 25 40 10 25 25 25 25

Channel Variable	Islands Na Value	tional Park Kelp Fores Label	t Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 82 83 84 85 86 87 88	ANI LANDING COVE	2.1575 1.8000 1.0000 1.4000 2.6000 1.2000 2.1000 5.5000 1.9000	3.9318 2.8431 3.7893 2.5033 3.7137 3.2372 3.2016 6.2082 2.4238	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 82 83 84 85 86 87 88	SBI SOUTHEAST SEALION	2.0450 0.8000 1.0000 1.4000 1.6000 3.4000 1.5000 3.3000 3.6000	3.3163 1.8708 3.0382 2.9889 3.2977 3.7417 2.3936 3.5882 3.9581	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 82 83 84 85 86 87 88	SBI ARCH POINT	1.1875 2.0000 0.5000 1.0000 0.4000 2.0000 0.1000 2.7000 1.1000	2.4985 3.2275 2.2072 2.5386 1.1815 2.8868 0.5000 3.3789 1.7795	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	16 86 87 88 89	SBI CAT CANYON	0.5500 0.0000 0.4000 1.2000 0.6000	1.4026 0.0000 1.1815 2.0565 1.3070	100 25 25 25 25
SPECIES LOCATION YEAR	6009 1 85	Hydroids SMI WYCKOFF LEDGE	1.0333 2.2000 2.2000	2.3998 3.2532 3.2532	75 25 25
LOCATION YEAR	2 85	SMI HARE ROCK	0.3000 0.3000	0.8292 0.8292	25 25
LOCATION YEAR	7 85	SCI FRYS HARBOR	0.6000 0.6000	2.0767 2.0767	25 25
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7001 1 82 83 84 85 86 87 88	Diopatra ornata SMI WYCKOFF LEDGE	1.8897 10.8280 4.6000 7.9310 9.4000 13.7000 9.9000 12.0000 15.2000 13.5000	5.9224 11.9741 5.7591 10.1346 8.8969 13.8842 10.0385 12.8493 14.9638 12.9703	2959 189 25 29 10 25 25 25 25

Channel Variable		ional Park Label	Kelp Fores	t Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 82 83 84 85 86 87 88	SMI HARE RO	CK	2.3878 9.0000 3.6111 0.8000 2.0000 1.5000 0.1000 0.5000 0.1000	6.9147 14.4338 7.9831 1.0328 3.4611 2.6021 0.5000 1.7678 0.5000	196 25 36 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 82 83 84 85 86 87 88	SRI JOHNSON	S LEE NORTE	0.6575 0.2000 1.5000 0.4000 0.9000 0.8000 0.0000 0.3000 0.5000	3.2795 1.0000 6.6216 0.8433 2.1506 2.4707 0.0000 1.0992 1.6137	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 82 83 84 85 86 87 88	SRI JOHNSON	S LEE SOUTH	5.4050 5.0000 9.0000 7.6000 7.2000 7.1000 1.2000 0.6000 4.7000	10.1849 8.7797 15.4919 12.7819 10.7607 9.1481 2.1794 1.4930 7.2284	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 83 84 85 86 87 88	SRI RODES R	EEF	2.2029 2.7500 0.8000 1.9000 0.5000 0.5000 1.1000 6.7000	5.5157 8.1610 1.3984 4.3469 1.2500 1.0206 2.1747 7.4554	175 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 82 83 84 85 86 87 88	SCI GULL IS	LAND SOUTH	2.2688 2.8000 4.1026 2.4000 2.4000 3.3000 2.1000 0.0000 0.1000	7.0639 7.5111 12.0782 4.5995 5.3268 7.7298 3.2819 0.0000 0.5000	199 25 39 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 82 83 84 85 86 87 88	SCI FRYS HA	RBOR	0.3750 0.8000 0.2500 0.0000 0.2000 0.4000 0.3000 0.1000 0.8000	1.6577 3.1225 1.5811 0.0000 0.6922 1.1815 1.0992 0.5000 2.2500	200 25 40 10 25 25 25 25

Channel Variable	Islands Nation Value Lab		Kelp	Forest	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 SCI 82 83 84 85 86 87 88	PELICAN	BAY		2.7359 1.6000 3.4286 1.6000 2.2000 1.3000 4.2000 0.0000 6.6000	4.4268 3.1358 6.3906 2.4585 3.2532 1.6330 5.1901 0.0000 4.2007	195 25 35 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 SCI 82 83 84 85 86 87 88	SCORPIO:	N ANCH	ORAGE	0.2000 0.2000 0.2500 0.0000 0.0000 0.2000 0.0000 0.0000 0.8000	1.0137 1.0000 1.5811 0.0000 0.0000 1.0000 0.0000 0.0000 1.3919	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	10 SCI 86 87 88 89	YELLOWB.	ANKS		0.3750 0.2000 1.2000 0.0000 0.1000	1.7180 0.6922 3.2372 0.0000 0.5000	100 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 ANI 82 83 84 85 86 87 88	ADMIRAL	S REEF		0.2293 0.2000 0.0000 0.2000 0.4000 0.2000 0.8000 0.0000 0.2000	0.9081 1.0000 0.0000 0.6325 1.1815 0.6922 1.5679 0.0000 1.0000	205 25 45 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 ANI 82 83 84 85 86 87 88	CATHEDR.	AL COV	E	0.9275 1.2000 1.2500 0.8000 0.7000 0.8000 0.6000 0.5000 1.3000	2.8126 2.6141 5.1578 1.9322 1.5343 1.5679 1.3070 1.2500 2.2958	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 ANI 82 83 84 85 86 87 88	LANDING	COVE		0.1625 0.0000 0.2500 0.0000 0.3000 0.1000 0.1000 0.1000 0.3000	0.8710 0.0000 1.5811 0.0000 0.8292 0.5000 0.5000 0.5000 0.8292	200 25 40 10 25 25 25 25

Channel Variable	Islands Na Value	ational Park Kelp Forest Label	Monitoring Mean	1982-1989 Std Dev	9 Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 82 83 84 85 86 87 88	SBI SOUTHEAST SEALION	0.3100 2.0000 0.0000 0.2000 0.2000 0.1000 0.0000 0.1000 0.0000	1.6005 4.0825 0.0000 0.6325 0.6922 0.5000 0.0000 0.5000 0.0000	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 82 83 84 85 86 87 88	SBI ARCH POINT	0.0350 0.0000 0.0000 0.2000 0.1000 0.1000 0.0000 0.0000	0.2858 0.0000 0.0000 0.6325 0.5000 0.5000 0.0000 0.0000	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	16 86 87 88 89	SBI CAT CANYON	0.0750 0.0000 0.0000 0.2000 0.1000	0.4286 0.0000 0.0000 0.6922 0.5000	100 25 25 25 25
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7002 1 85 86 87 88	Phragmatopoma californic SMI WYCKOFF LEDGE	0.0635 0.5200 0.0000 0.0000 0.4000 0.2000 2.0000	5.1091 1.7762 0.0000 0.0000 1.1815 0.6922 3.3850	2731 125 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 82 83 84 85 86 87 88	SMI HARE ROCK	0.1020 0.6000 0.0000 0.0000 0.0000 0.2000 0.0000 0.0000	0.8335 2.1985 0.0000 0.0000 0.0000 0.6922 0.0000 0.0000	196 25 36 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 82 83 84 85 86 87 88	SRI JOHNSONS LEE NORTH	5.3175 0.2000 1.2500 0.6000 27.1000 8.3000 0.0000 0.0000 4.7000	13.7633 1.0000 4.0430 1.3499 28.0409 10.2754 0.0000 0.0000 4.8584	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 82 83 84 85 86 87 88 89 5 83	SRI JOHNSONS LEE SOUTH	1.1375 1.2000 0.0000 3.0000 6.2000 0.5000 0.0000 0.0000 0.0000 0.9286 0.0000 3.0000	4.1749 3.6171 0.0000 5.8310 8.9884 1.7678 0.0000 0.0000 0.0000 3.8884 0.0000 3.2998	200 25 40 10 25 25 25 25 25 27 40 10

Appx. 3-43

Channel Variable	Islands Nati Value L	onal Park abel	Kelp F	orest	Monitoring Mean	1982-1989 Std Dev	Cases
YEAR YEAR YEAR YEAR YEAR	85 86 87 88 89				3.3000 0.0000 0.0000 0.0000 2.0000	6.4840 0.0000 0.0000 0.0000 7.1078	25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	6 S 85 86 87 88 89	CI GULL IS:	LAND SC	UTH	0.0400 0.0000 0.2000 0.0000 0.0000	0.3150 0.0000 0.6922 0.0000 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	7 S 85 86 87 88 89	CI FRYS HAI	RBOR		0.1400 0.0000 0.0000 0.0000 0.7000 0.0000	0.7972 0.0000 0.0000 0.0000 1.6956 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 S 82 83 84 85 86 87 88	CI PELICAN	ВАУ		0.1103 0.0000 0.0000 0.4000 0.0000 0.0000 0.0000 0.7000	0.6192 0.0000 0.0000 0.8433 0.0000 0.0000 0.0000 1.5343	195 25 35 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 S 82 83 84 85 86 87 88	CI SCORPIO	N ANCHO	RAGE	0.2825 0.2000 0.0000 0.4000 0.1000 1.7000 0.0000 0.1000 0.0000	1.7455 1.0000 0.0000 1.2649 0.5000 4.5484 0.0000 0.5000 0.0000	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	10 S 86 87 88 89	CI YELLOWB	ANKS		0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	100 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 A 82 83 84 85 86 87 88	NI ADMIRAL:	S REEF		0.0683 0.0000 0.0000 1.4000 0.0000 0.0000 0.0000 0.0000	0.6380 0.0000 0.0000 2.6750 0.0000 0.0000 0.0000 0.0000	205 25 45 10 25 25 25 25

Channel Variable	Islands Nati	ional Park Label	Kelp Forest	t Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION	12 7	ANI CATHEDRA	AL COVE	0.2297	1.4209	185
YEAR	82	0111111111111111111111111111111111	00.2	0.0000	0.0000	25
YEAR	83			0.0000	0.0000	25
YEAR	84			0.0000	0.0000	10
YEAR	85			1.0000	3.5355	25
	86					25
YEAR				0.0000	0.0000	
YEAR	87			0.0000	0.0000	25
YEAR YEAR	88 89			0.3000 0.4000	0.8292 1.1815	25 25
LOCATION	13 7	ANI LANDING	COME	0.3500	1.7371	200
YEAR	82	MI DIMPING	COVE	0.2000	1.0000	25
YEAR	83			0.0000	0.0000	40
YEAR	84			0.0000	0.0000	10
YEAR	85			0.2000	0.6922	25
YEAR	86			0.0000	0.0000	25
YEAR	87			0.0000	0.0000	25
YEAR	88			0.6000	3.0000	25
YEAR	89			1.8000	3.4248	25
LOCATION	14 5	BBI SOUTHEAS	ST SEALION	0.0500	0.4987	200
YEAR	82			0.4000	1.3844	25
YEAR	83			0.0000	0.0000	40
YEAR	84			0.0000	0.0000	10
YEAR	85			0.0000	0.0000	25
YEAR	86			0.0000	0.0000	25
YEAR	87			0.0000	0.0000	25
YEAR	88			0.0000	0.0000	25
YEAR	89			0.0000	0.0000	25
LOCATION	15 \$	BBI ARCH PO	INT	2.1575	6.3979	200
YEAR	82			0.0000	0.0000	25
YEAR	83			0.0000	0.0000	40
YEAR	84			0.4000	0.8433	10
YEAR	85			13.2000	12.6968	25
YEAR	86			0.2000	0.6922	25
YEAR	87			0.0000	0.0000	25
YEAR	88			1.6000	2.9651	25
YEAR	89			2.1000	4.3108	25
LOCATION	16 8	BBI CAT CAN	YON	6.9750	9.0194	100
YEAR	86			1.8000	2.6536	25
YEAR	87			0.8000	1.8708	25
YEAR	88			14.1000	10.5050	25
YEAR	89			11.2000	8.6939	25
SPECIES			us spinosus		16.5372	25
LOCATION		BBI ARCH PO	INT	18.9000	16.5372	25
YEAR	85			18.9000	16.5372	25
SPECIES	8002 1	Balanus sp	0.	32.5000	13.4822	25
LOCATION		SMI HARE RO	-	32.5000	13.4822	25
YEAR	85		-	32.5000	13.4822	25
						_~

Channel Variable	Islands Nat Value	cional Park Label	Kelp For	rest Monitoring Mean	1982-1989 Std Dev	Cases
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9001 1 82 83 84 85 86 87 88	Serpulorbis SMI WYCKOFF		0.1429 0.0000 0.0000 0.2000 0.4000 0.2000 0.1000 0.2000 0.1000	4.0853 0.6322 0.0000 0.0000 0.6325 0.9354 1.0000 0.5000 0.6922 0.5000	2959 189 25 29 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 82 83 84 85 86 87 88	SMI HARE ROO	CK	1.0561 0.0000 1.3889 2.2000 1.7000 3.5000 0.2000 0.0000	3.0457 0.0000 4.2445 3.1903 2.7689 5.0518 0.6922 0.0000 0.0000	196 25 36 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 82 83 84 85 86 87 88	SRI JOHNSON:	S LEE NOF	4.2950 0.4000 4.7500 6.4000 10.2000 9.3000 2.9000 1.1000 0.3000	6.8309 1.3844 7.5064 4.5995 10.4563 7.1268 2.7651 2.7080 0.8292	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 82 83 84 85 86 87 88 89	SRI JOHNSON	S LEE SOU	0.2450 0.0000 0.5000 0.4000 0.8000 0.1000 0.1000 0.0000	1.2451 0.0000 2.2072 0.8433 1.8708 0.5000 0.5000 0.0000	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 83 84 85 86 87 88 89	SRI RODES RI	EEF	0.3457 0.0000 0.8000 0.7000 1.2000 0.2000 0.0000	1.2783 0.0000 1.3984 1.5343 2.6141 0.6922 0.0000 0.0000	175 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 82 83 84 85 86 87 88 89	SCI GULL IS:	LAND SOUT	1.0955 0.6000 2.3077 2.8000 1.3000 0.0000 0.4000 0.2000	3.2988 1.6583 6.2667 4.4422 1.9257 2.3936 0.0000 0.9354 0.6922	199 25 39 10 25 25 25 25

Channel Variable	Islands Nation Value Lab		Kelp F	orest	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR	7 SCI 82	FRYS HA	RBOR		1.6400	3.4750 2.5000	200 25
YEAR	83				1.0000	3.7893	40
YEAR	84				7.8000	5.8462	10
YEAR	85				1.9000	3.1689	25
YEAR	86				1.5000	2.2822	25
YEAR	87				2.5000	3.8188	25
YEAR	88				0.4000	1.5612	25
YEAR	89				1.1000	2.4023	25
LOCATION		PELICAN	BAY		1.5282	2.6951	195
YEAR	82				1.0000	2.5000	25
YEAR	83				0.5714	2.3550	35
YEAR	84				2.8000	2.8597	10
YEAR	85				3.2000	3.9870	25
YEAR	86				2.4000	3.0173	25
YEAR	87 88				0.7000	1.3540	25
YEAR YEAR	89				1.0000 1.7000	1.6137 2.2500	25 25
LOCATION		SCORPIO	N ANCHO	RAGE	7.3400	7.2947	200
YEAR	82				3.8000	3.3166	25
YEAR	83				1.7500	4.4650	40
YEAR	84				5.8000	3.5839	10
YEAR	85 9.6				5.4000	5.0353	25
YEAR	86 87				16.4000 9.3000	7.9412 6.1880	25 25
YEAR YEAR	88				11.0000	7.1443	25 25
YEAR	89				7.7000	6.4517	25
LOCATION	10 SCI	YELLOWB.	ANKS		0.0000	0.0000	100
YEAR	86				0.0000	0.0000	25
YEAR	87				0.0000	0.0000	25
YEAR	88				0.0000	0.0000	25
YEAR	89				0.0000	0.0000	25
LOCATION	11 ANI 82	ADMIRAL	S REEF		0.7561	1.8979 1.6583	205 25
YEAR YEAR	83				0.6000	0.0000	45
YEAR	84				1.0000	2.1602	10
YEAR	85				2.0000	3.3850	25
YEAR	86				1.1000	2.2913	25
YEAR	87				0.4000	1.1815	25
YEAR	88				0.8000	1.3919	25
YEAR	89				0.9000	1.7500	25
LOCATION		CATHEDR	AL COVE		3.0050	4.4704	200
YEAR	82				1.6000	3.4521	25
YEAR	83				0.7500	2.6675	40
YEAR	84				2.6000	2.1187	10
YEAR	85				3.0000	3.3072	25
YEAR	86				4.8000	5.2994	25
YEAR	87				2.4000	2.4452	25
YEAR	88 89				4.2000 5.8000	5.7609 6.1964	25 25
YEAR	09				J.0000	0.1904	۷ ک

Channal	Talanda Na	tional Dark Vola Forest	. Monitoring	1000 1000	
Variable		tional Park Kelp Forest Label	. Monitoring Mean	1982-1989 Std Dev	Cases
V4114010	74140	20001	110011	200 201	04000
LOCATION	13	ANI LANDING COVE	1.5800	3.2483	200
YEAR	82	111.1 2111.511.0 001.2	1.4000	2.7080	25
YEAR	83		0.2500	1.5811	40
YEAR	84		2.6000	2.5033	10
YEAR	85		2.3000	3.2210	25
YEAR	86		1.6000	2.0259	25
YEAR	87		0.7000	1.3540	25
YEAR	88		1.8000	3.2692	25
YEAR	89		3.4000	6.2032	25
LOCATION	14	SBI SOUTHEAST SEALION	0.2800	1.2457	200
YEAR	82		0.4000	1.3844	25
YEAR	83		0.5000	2.2072	40
YEAR	84		0.6000	0.9661	10
YEAR	85		0.0000	0.0000	25
YEAR	86		0.5000	1.0206	25
YEAR	87		0.2000	1.0000	25
YEAR	88		0.1000	0.5000	25
YEAR	89		0.0000	0.0000	25
LOCATION	15	SBI ARCH POINT	0.5375	1.7160	200
YEAR	82		0.0000	0.0000	25
YEAR	83		0.2500	1.5811	40
YEAR	84		0.0000	0.0000	10
YEAR	85		1.0000	2.0412	25
YEAR	86		1.5000	3.0619	25
YEAR	87		0.4000	0.9354	25
YEAR	88		1.0000	1.9094	25
YEAR	89		0.0000	0.0000	25
LOCATION	16	SBI CAT CANYON	4.4250	4.5485	100
YEAR	86		2.6000	2.9297	25
YEAR	87		2.7000	2.4917	25
YEAR	88		6.7000	5.0374	25
YEAR	89		5.7000	5.6143	25
anna-na	10001	_	4 0001	7 5000	1050
SPECIES	10001	Bryozoans	4.0821	7.5808	1950
LOCATION	1	SMI WYCKOFF LEDGE	11.3400 9.4000	9.7837	125
YEAR YEAR	85 86		5.5000	6.2617 7.0711	25 25
YEAR	87		13.9000	11.4127	25
YEAR	88		10.2000	6.6895	25
YEAR	89		17.7000	11.8568	25
ILAK	0,5		17.7000	11.0300	23
LOCATION	2	SMI HARE ROCK	1.8400	3.7720	125
YEAR	85		3.5000	6.1661	25
YEAR	86		0.2000	1.0000	25
YEAR	87		0.9000	1.7500	25
YEAR	88		2.2000	2.6339	25
YEAR	89		2.4000	4.1758	25
LOCATION	3	SRI JOHNSONS LEE NORTH	7.6400	10.6555	125
YEAR	85		8.4000	12.0087	25
YEAR	86		0.8000	1.5679	25
YEAR	87		0.3000	0.8292	25
YEAR	88		6.8000	6.1880	25
YEAR	89		21.9000	9.1081	25

Channel Variable		nal Park Kelp Forest bel	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	4 SR 85 86 87 88 89	I JOHNSONS LEE SOUTH	7.0600 26.8000 0.9000 0.1000 3.6000 3.9000	13.3201 18.9918 2.0259 0.5000 3.8243 4.2744	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	5 SR 85 86 87 88 89	I RODES REEF	2.6400 3.0000 2.9000 0.7000 1.8000 4.8000	4.6803 4.7871 5.2381 1.3540 2.3408 6.7670	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	6 SC 85 86 87 88 89	I GULL ISLAND SOUTH	2.4600 6.1000 1.1000 0.4000 2.5000 2.2000	4.0534 6.1695 2.2913 1.1815 3.1458 3.1721	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	7 SC 85 86 87 88 89	I FRYS HARBOR	6.6400 20.6000 3.7000 1.4000 4.1000 3.4000	10.0708 15.2459 2.9861 2.2913 3.5998 2.4875	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	8 SC 85 86 87 88 89	I PELICAN BAY	0.7600 0.0000 0.1000 0.6000 2.9000 0.2000	2.3163 0.0000 0.5000 1.3070 4.3708 0.6922	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	9 SC 85 86 87 88 89	I SCORPION ANCHORAGE	0.2200 0.0000 0.4000 0.0000 0.3000 0.4000	0.8989 0.0000 1.3844 0.0000 0.8292 1.1815	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	10 SC 86 87 88 89	I YELLOWBANKS	2.7000 1.0000 1.2000 4.2000 4.4000	3.9196 2.8868 2.1794 4.2525 4.6368	100 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 AN 85 86 87 88 89	I ADMIRALS REEF	5.2600 4.9000 4.7000 4.2000 8.9000 3.6000	6.1469 5.7045 5.4160 3.9344 8.3877 5.4045	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	12 AN 85 86 87 88 89	I CATHEDRAL COVE	0.9600 0.0000 0.6000 1.0000 1.9000 1.3000	2.1717 0.0000 2.0767 1.7678 2.5290 2.8976	125 25 25 25 25 25

Channel Variable		zional Park Kelp Forest Label	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR	13 85 86 87 88 89	ANI LANDING COVE	7.5000 3.0000 8.7000 7.7000 6.9000 11.2000	10.4245 4.9476 16.4905 7.6007 5.8754 11.6396	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	14 85 86 87 88 89	SBI SOUTHEAST SEALION	2.4600 1.8000 2.0000 1.6000 3.9000 3.0000	3.0451 2.5536 3.3850 1.8930 3.6856 2.9756	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	15 85 86 87 88 89	SBI ARCH POINT	1.7200 5.0000 0.2000 0.7000 0.5000 2.2000	3.1337 4.5069 0.6922 1.5343 1.2500 3.0890	125 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	16 86 87 88 89	SBI CAT CANYON	3.7750 0.1000 5.7000 7.0000 2.3000	5.4413 0.5000 6.0173 6.6144 3.3009	100 25 25 25 25 25
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR	10002 1 85 86 87 88 89	Diaperoecia californica SMI WYCKOFF LEDGE	1.1044 0.0333 0.0000 0.2000 0.0000 0.0000	3.4223 0.4082 0.0000 1.0000 0.0000 0.0000	2846 150 50 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 82 83 84 85 86 87 88	SMI HARE ROCK	0.1250 0.8000 0.0000 0.2000 0.0000 0.0000 0.1000 0.0000	0.8978 2.3629 0.0000 0.6325 0.0000 0.0000 0.5000 0.0000	196 25 36 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 82 83 84 85 86 87 88	SRI JOHNSONS LEE NORTH	0.1725 0.8000 0.0000 0.2000 0.0000 0.0000 0.0000 0.0000 0.5000	1.1023 2.7689 0.0000 0.6325 0.0000 0.0000 0.0000 1.2500	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	4 85 86 87 88 89	SRI JOHNSONS LEE SOUTH	0.2200 0.1000 0.3000 0.0000 0.5000 0.2000	0.8410 0.5000 0.8292 0.0000 1.4434 0.6922	125 25 25 25 25 25
LOCATION YEAR YEAR	5 83 84	SRI RODES REEF	0.6571 1.0000 0.0000	2.2577 3.0382 0.0000	175 40 10

Appx. 3-50

Channel Variable	Islands Nat	ional Label	Park	Kelp	Forest	Monitoring Mean	1982-1989 Std Dev	Cases
YEAR YEAR	85 86					0.0000 0.4000	0.0000 0.9354	25 25
YEAR	87					0.3000	0.8292	25
YEAR	88					0.2000	0.6922	25
YEAR	89					2.1000	4.0620	25
LOCATION		SCI G	ULL IS	LAND	SOUTH	2.0675	4.2375	200
YEAR	82					1.6000	3.4521	25
YEAR	83					0.0000	0.0000	40
YEAR	84					3.6000	3.9777	10
YEAR	85					5.7000	7.3072	25
YEAR	86					3.1000	4.6368	25
YEAR	87					0.3000	0.8292	25
YEAR	88					1.8000	2.4495	25
YEAR	89					2.6000	4.7588	25
LOCATION	7	SCI F	RYS HA	RBOR		4.0950	6.8040	200
YEAR	82					2.6000	4.1130	25
YEAR	83					0.5000	3.1623	40
YEAR	84					5.4000	5.8916	10
YEAR	85					0.0000	0.0000	25
YEAR	86					7.2000	10.6634	25
YEAR	87					5.9000	4.9413	25
YEAR	88					7.7000	6.1627	25
YEAR	89					6.4000	9.3285	25
LOCATION	8	SCI P	ELICAN	BAY		1.6923	3.3487	195
YEAR	82					3.2000	3.5000	25
YEAR	83					2.0000	4.0584	35
YEAR	84					7.0000	6.6165	10
YEAR	85					0.0000	0.0000	25
YEAR	86					0.5000	1.4434	25
YEAR	87					0.7000	1.3540	25
YEAR	88					1.1000	1.9203	25
YEAR	89					2.1000	3.2819	25
LOCATION		SCI S	CORPIO	N ANCE	IORAGE	0.0475	0.3347	200
YEAR	82					0.0000	0.0000	25
YEAR	83					0.0000	0.0000	40
YEAR	84					0.2000	0.6325	10
YEAR	85					0.0000	0.0000	25
YEAR	86					0.0000	0.0000	25
YEAR	87					0.2000	0.6922	25
YEAR	88					0.1000	0.5000	25
YEAR	89					0.0000	0.0000	25
LOCATION	10	SCI Y	ELLOWB.	ANKS		0.5000	1.5489	100
YEAR	86					0.8000	2.2500	25
YEAR	87					0.3000	0.8292	25
YEAR	88					0.5000	1.6137	25
YEAR	89					0.4000	1.1815	25

Channel Variable	Islands Na Value	tional Park Kelp Forest Label	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 82 83 84 85 86 87 88	ANI ADMIRALS REEF	2.1341 2.6000 0.0000 1.0000 2.1000 5.8000 2.3000 3.0000 1.3000	4.5981 5.4237 0.0000 1.4142 2.1262 8.1560 4.2032 5.5902 2.1794	205 25 45 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 82 83 84 85 86 87 88	ANI CATHEDRAL COVE	0.2375 0.0000 0.2500 0.0000 0.0000 0.7000 0.6000 0.0000	1.0808 0.0000 1.5811 0.0000 0.0000 1.6956 1.3070 0.0000 0.6922	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 82 83 84 85 86 87 88	ANI LANDING COVE	2.9600 4.0000 0.5000 0.2000 2.1000 4.9000 3.1000 5.6000	5.1676 5.2042 2.2072 0.6325 4.8777 6.6724 4.7478 3.9051 7.3343	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 82 83 84 85 86 87 88	SBI SOUTHEAST SEALION	0.4750 3.2000 0.2500 0.0000 0.0000 0.0000 0.0000 0.1000 0.1000	3.0220 7.8899 1.5811 0.0000 0.0000 0.0000 0.0000 0.5000	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 82 83 84 85 86 87 88	SBI ARCH POINT	0.1125 0.8000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1000 0.0000	0.8789 2.3629 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.0000	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	16 86 87 88 89	SBI CAT CANYON	1.2000 0.8000 0.7000 2.7000 0.6000	2.3963 2.2500 1.9791 2.2730 2.5290	100 25 25 25 25 25
SPECIES LOCATION YEAR	11008 1 89	Pachythyone rubra SMI WYCKOFF LEDGE	2.7478 0.4000 0.4000	8.1492 2.0000 2.0000	450 25 25
LOCATION YEAR LOCATION YEAR YEAR	2 88 3 Si 82 83	SMI HARE ROCK	0.1000 0.1000 2.4650 0.0000 0.2500	0.5000 0.5000 5.0758 0.0000 1.5811	25 25 100 25 40

Appx. 3-52

		tional Park Kelp Forest	_		
Variable	Value	Label	Mean	Std Dev	Cases
	0.4		1 4000	1 0074	1.0
YEAR	84 88		1.4000 8.9000	1.8974 6.5383	10 25
YEAR	88		8.9000	0.3383	25
LOCATION	4	SRI JOHNSONS LEE SOUTH	10.1000	9.4505	25
YEAR	88		10.1000	9.4505	25
LOCATION	5	SRI RODES REEF	0.0400	0.2828	50
YEAR	83		0.0000	0.0000	40
YEAR	84		0.2000	0.6325	10
	_				
LOCATION	6	SCI GULL ISLAND SOUTH	0.3000	1.5000	25
YEAR	89		0.3000	1.5000	25
LOCATION	7	SCI FRYS HARBOR	5.6040	13.0590	125
YEAR	82	SCI PRIS HARBOR	0.6000	1.6583	25
YEAR	83		0.0000	0.0000	40
YEAR	84		0.8000	1.0328	10
YEAR	88		8.9000	13.4645	25
YEAR	89		18.2000	20.7856	25
LOCATION	8	SCI PELICAN BAY	0.2000	1.2840	75
YEAR	82		0.2000	1.0000	25
YEAR	83		0.2500	1.5811	40
YEAR	84		0.0000	0.0000	10
SPECIES	12001	Municokoo	1 2710	2 0000	1950
		Tunicates	1.2718	2.9606	
LOCATION	1 85	SMI WYCKOFF LEDGE	1.6000	2.5872	125 25
YEAR	85 86		0.3000	0.8292	
YEAR YEAR	87		2.2000 1.7000	3.1721 2.8614	25 25
YEAR	88		1.4000	2.5083	25
YEAR	89		2.4000	2.5495	25
TEIM	0,5		2.4000	2.5455	2.5
LOCATION	2	SMI HARE ROCK	0.0800	0.5440	125
YEAR	85		0.1000	0.5000	25
YEAR	86		0.0000	0.0000	25
YEAR	87		0.2000	1.0000	25
YEAR	88		0.1000	0.5000	25
YEAR	89		0.0000	0.0000	25
	_				
LOCATION	3	SRI JOHNSONS LEE NORTH	1.7800	3.3872	125
YEAR	85		0.7000	1.3540	25
YEAR	86 87		1.0000	1.9094	25 25
YEAR YEAR	88		0.0000 1.8000	2.8431	25 25
YEAR	89		5.4000	5.1881	25
11111	0,9		3.1000	0.1001	2.5
LOCATION	4	SRI JOHNSONS LEE SOUTH	1.8400	3.6910	125
YEAR	85		6.1000	5.7319	25
YEAR	86		0.1000	0.5000	25
YEAR	87		0.0000	0.0000	25
YEAR	88		0.8000	1.7260	25
YEAR	89		2.2000	2.7310	25
LOCATION	5	SRI RODES REEF	1.9400	3.3730	125
YEAR	85		4.1000	4.9413	25
YEAR	86		1.4000	2.1747	25
YEAR	87		0.6000	1.0897	25
YEAR	88		0.2000	0.6922	25
YEAR	89	COT CILL TOTAND COURT	3.4000	3.9449	25
LOCATION	6	SCI GULL ISLAND SOUTH	0.9600	1.7616	125
YEAR YEAR	85 86		0.7000 2.2000	1.5343 2.6339	25 25
YEAR	87		0.9000	1.4216	25 25
YEAR	88		0.7000	1.3540	25
YEAR	89		0.3000	0.8292	25
	0,3				
		7 2 52			

Appx. 3-53

Channel Variable	Islands Nationa Value Lab	_	Forest Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	7 SCI 85 86 87 88 89	FRYS HARBOR	0.3200 0.6000 0.0000 0.0000 0.6000 0.4000	0.9512 1.3070 0.0000 0.0000 1.3070 0.9354	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	8 SCI 85 86 87 88 89	PELICAN BAY	0.2600 0.0000 0.3000 0.3000 0.3000 0.4000	0.8294 0.0000 1.0992 0.8292 0.8292 0.9354	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	9 SCI 85 86 87 88 89	SCORPION ANCH	ORAGE 0.0600 0.0000 0.0000 0.0000 0.3000 0.0000	0.4984 0.0000 0.0000 0.0000 1.0992 0.0000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	10 SCI 86 87 88 89	YELLOWBANKS	0.2250 0.0000 0.2000 0.2000 0.5000	0.7191 0.0000 0.6922 0.6922 1.0206	100 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	11 ANI 85 86 87 88 89	ADMIRALS REEF	1.5200 0.8000 1.8000 1.9000 2.1000	2.8022 1.7260 3.3479 3.4065 3.1192 1.9094	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	12 ANI 85 86 87 88 89	CATHEDRAL COV	0.4000 0.0000 0.0000 0.2000 0.3000 1.5000	1.3244 0.0000 0.0000 0.6922 0.8292 2.5000	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	13 ANI 85 86 87 88 89	LANDING COVE	2.5400 0.9000 1.2000 1.7000 3.1000 5.8000	4.3299 1.8930 1.9257 2.3629 4.6926 6.7206	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	14 SBI 85 86 87 88 89	SOUTHEAST SEA	1.4000 1.4000 1.7000 3.4000 3.7000 3.4000	3.5783 2.1747 3.9344 3.7417 3.4701 3.8784	125 25 25 25 25 25

Channel	Islands Nat	ional Park Kelp Forest	Monitoring	1982-1989	
Variable		Label	Mean	Std Dev	Cases
T OCATION	15	CDT ADGU DOINE	0.000	0.7660	105
LOCATION		SBI ARCH POINT	0.2600	0.7662 0.9354	125
YEAR	85		0.4000		25
YEAR	86		0.3000	0.8292	25
YEAR	87		0.0000	0.0000	25
YEAR	88		0.5000	1.0206	25
YEAR	89		0.1000	0.5000	25
LOCATION	16	SBI CAT CANYON	4.2250	5.8786	100
YEAR	86		0.1000	0.5000	25
YEAR	87		4.9000	5.5189	25
YEAR	88		10.2000	5.9913	25
YEAR	89		1.7000	3.7305	25
SPECIES	13001	Miscellaneous inverts	11.1689	13.2393	2961
LOCATION	1	SMI WYCKOFF LEDGE	9.1243	9.5356	189
YEAR	82		2.6000	5.4237	25
YEAR	83		0.6897	2.5788	29
YEAR	84		14.2000	7.6855	10
YEAR	85		14.9000	9.2837	25
YEAR	86		5.8000	5.4829	25
YEAR	87		8.4000	6.0759	25
YEAR	88		11.5000	8.8682	25
YEAR	89		19.3000	10.9335	25
LOCATION	2	SMI HARE ROCK	4.6300	6.7370	200
YEAR	82	SMI HARE ROCK	1.6000	2.3805	25
YEAR	83		0.0000	0.0000	40
YEAR	84		2.6000	2.6750	10
YEAR	85		1.4000	4.5689	25
YEAR	86		13.7000	7.8102	25
YEAR	87		6.0000	5.8630	25
YEAR	88		8.1000	7.7487	25
YEAR	89		5.2000	5.7699	25
			45 4506	4.6 = 4.40	4.0.0
LOCATION		SRI JOHNSONS LEE NORTH	15.4596	16.7449	198
YEAR	82		2.0833	4.8715	24
YEAR	83		5.8974	7.8532	39
YEAR	84		46.6000	19.9120	10
YEAR	85		5.6000	5.2678	25
YEAR	86		12.0000	9.4097	25
YEAR	87		38.6000	18.6397	25
YEAR	88		14.1000	8.3192	25
YEAR	89		22.3000	6.7670	25
LOCATION	4	SRI JOHNSONS LEE SOUTH	18.3750	19.6827	200
YEAR	82		1.6000	2.3805	25
YEAR	83		5.2500	6.7889	40
YEAR	84		35.0000	13.3749	10
YEAR	85		15.3000	12.8558	25
YEAR	86		25.9000	12.7655	25
YEAR	87		17.5000	7.9713	25
YEAR	88		11.3000	9.6857	25
YEAR	89		53.0000	22.6500	25
LOCATION	5	SRI RODES REEF	12.2314	13.4957	175
YEAR	83		3.7500	7.7418	40
YEAR	84		26.8000	16.0610	10
YEAR	85		12.1000	9.4285	25
YEAR	86		10.9000	9.4890	25
YEAR	87		6.1000	4.9519	25
YEAR	88		32.6000	13.7022	25
YEAR	89		7.2000	5.2202	25
			. , , ,		

Channel Variable	Islands Nat Value	ional Label		Kelp :	Forest	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION	6	SCI C	IIII TQ	LAND S	ALIMETI .	7.2538	8.8919	199
YEAR	82	SCI G	0111 13	TAMD 3	JUIN	1.4000	3.0687	25
YEAR	83					3.5897	9.0284	39
YEAR	84					25.6000	17.8836	10
YEAR	85					8.1000	7.3697	25
YEAR	86					6.0000	4.3899	25
YEAR	87					10.6000	5.4620	25
YEAR	88					4.7000	4.5254	25
YEAR	89					11.1000	5.9983	25
LOCATION	7	SCI F	RYS HA	RBOR		15.2475	15.4221	200
YEAR	82					0.0000	0.0000	25
YEAR	83					3.2500	6.5584	40
YEAR	84					14.2000	9.8184	10
YEAR	85					22.6000	9.8552	25
YEAR	86					35.1000	14.8864	25
YEAR	87					24.6000	13.8759	25
YEAR	88					10.1000	12.7574	25
YEAR	89					18.7000	10.5603	25
LOCATION	8	SCT P	ELICAN	BAY		11.2359	9.7748	195
YEAR	82					12.0000	10.7044	25
YEAR	83					1.1429	3.2280	35
YEAR	84					18.6000	7.7775	10
YEAR	85					17.1000	8.8588	25
YEAR	86					10.5000	7.7392	25
YEAR	87					3.5000	3.3072	25
YEAR	88					15.3000	7.6825	25
YEAR	89					20.2000	6.3705	25
LOCATION	9	SCI S	CORPIO	N ANCH	ORAGE	8.9350	9.6635	200
YEAR	82					13.6000	9.5219	25
YEAR	83					1.2500	3.3493	40
YEAR	84					13.2000	5.3500	10
YEAR	85					16.1000	11.3899	25
YEAR	86					3.9000	4.4535	25
YEAR	87					8.3000	7.8965	25
YEAR	88					8.0000	10.2825	25
YEAR	89					14.3000	9.8563	25
LOCATION	10	SCI Y	ELLOWB.	ANKS		4.3250	4.6310	100
YEAR	86					3.0000	2.8868	25
YEAR	87					3.4000	3.0516	25
YEAR	88					6.3000	6.9642	25
YEAR	89					4.6000	3.9317	25
LOCATION	11	ANI A	DMIRAL	S REEF		14.9317	15.8292	205
YEAR	82					1.6000	2.7839	25
YEAR	83					2.2222	5.1737	45
YEAR	84					29.6000	17.4305	10
YEAR	85					15.2000	10.2804	25
YEAR	86					14.2000	9.8351	25
YEAR	87					34.2000	20.9628	25
YEAR	88					27.7000	11.3862	25
YEAR	89					13.7000	7.1487	25

Channel Variable		tional Park Label	Kelp Forest	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 82 83 84 85 86 87 88	ANI CATHEDR.	AL COVE	15.1050 0.6000 9.2500 26.6000 25.4000 14.7000 7.3000 23.1000 24.3000	13.5194 2.1985 9.9711 13.8580 12.1338 9.8510 8.3516 9.7969 14.3889	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 82 83 84 85 86 87 88	ANI LANDING	COVE	8.1325 7.8000 4.7500 12.4000 4.0000 4.4000 9.1000 13.3000 13.9000	10.5383 9.3630 8.1610 17.7839 6.4145 6.3852 9.0104 12.1775 13.1315	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 82 83 84 85 86 87 88	SBI SOUTHEA	ST SEALION	11.5650 0.8000 2.2500 9.8000 8.8000 18.1000 16.3000 33.2000 7.8000	13.1724 2.3629 5.3048 10.7683 9.6588 9.4174 11.4819 12.9406 4.2279	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 82 83 84 85 86 87 88	SBI ARCH PO	INT	6.5825 3.6000 1.0000 11.4000 4.8000 7.5000 9.0000 14.2000 7.4000	8.0628 4.6815 3.7893 12.4025 5.5396 5.5902 10.4083 10.3511 4.0492	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	16 86 87 88 89	SBI CAT CAN	YON	13.0250 6.0000 10.1000 27.2000 8.8000	14.6822 8.7500 6.7500 20.1856 8.4508	100 25 25 25 25 25
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	15001 1 85 86 87 88 89	Bare substr		16.5956 11.2400 8.1000 1.1000 20.6000 14.7000 11.7000	17.9289 16.0695 10.4901 2.2913 18.9885 21.4491 13.3018	2250 125 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	2 85 86 87 88 89	SMI HARE RO	CK	28.3400 22.0000 39.6000 35.3000 21.3000 23.5000	19.9140 23.8812 19.5746 21.7864 11.7065 13.5401	125 25 25 25 25 25

Channel Variable		onal Park Kelp Forest abel	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	3 SR 85 86 87 88 89	RI JOHNSONS LEE NORTH	15.8400 8.6000 26.8000 32.2000 8.8000 2.8000	14.3507 6.8496 9.0864 11.3266 9.8984 4.5826	125 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	4 SP 85 86 87 88 89	RI JOHNSONS LEE SOUTH	9.9200 6.6000 9.6000 19.8000 9.0000 4.6000	11.1213 9.2387 8.6205 12.0960 10.8733 8.4373	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	5 SR 85 86 87 88 89	RI RODES REEF	7.6600 5.3000 6.1000 7.6000 15.3000 4.0000	11.0522 7.3711 7.0371 8.6446 18.7961 4.0182	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	6 SC 85 86 87 88 89	CI GULL ISLAND SOUTH	14.7400 8.9000 8.1000 15.3000 19.8000 21.6000	11.5215 11.9913 7.2270 8.8188 12.8274 9.4890	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 SC 82 83 84 85 86 87 88 89	CI FRYS HARBOR	8.4189 0.0000 0.0000 0.0000 13.7000 6.0000 8.1000 18.2000 16.3000	11.0289 0.0000 0.0000 0.0000 11.0661 6.9970 9.2218 12.1089 12.3558	185 25 25 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 SC 82 83 84 85 86 87 88 89	CI PELICAN BAY	26.4459 0.0000 0.0000 0.0000 42.5000 40.3000 45.4000 43.2000 24.3000	21.9259 0.0000 0.0000 0.0000 12.8695 12.7949 15.3039 10.6927 10.9335	185 25 25 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 SC 82 83 84 85 86 87 88 89	CI SCORPION ANCHORAGE	24.3649 0.0000 0.0000 0.0000 13.1000 37.3000 43.7000 39.0000 47.2000	22.6647 0.0000 0.0000 0.0000 9.7168 15.3589 12.8720 17.5891 13.6611	185 25 25 10 25 25 25 25 25

Channel Variable	Islands Nation Value Lak	nal Park Kelp Forest bel	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR	10 SCI 86 87 88 89	YELLOWBANKS	18.8750 11.0000 18.2000 22.9000 23.4000	15.3181 9.1856 13.1996 17.1191 17.6906	100 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	11 AN 85 86 87 88 89	ADMIRALS REEF	13.2200 6.8000 10.8000 20.6000 13.7000 14.2000	18.3679 13.1601 14.8029 26.7442 16.5063 16.0033	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 AND 82 83 84 85 86 87 88	CATHEDRAL COVE	13.7432 0.0000 0.0000 0.0000 23.2000 18.6000 13.1000 24.3000 22.5000	15.9975 0.0000 0.0000 0.0000 15.4029 11.1822 11.9085 13.7598 21.9611	185 25 25 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 ANT 82 83 84 85 86 87 88	LANDING COVE	4.3378 0.0000 0.0000 0.0000 4.2000 3.3000 6.9000 9.0000 8.7000	9.8804 0.0000 0.0000 0.0000 9.0058 5.4352 14.7775 9.7093 15.0886	185 25 25 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	14 SB3 85 86 87 88 89	SOUTHEAST SEALION	27.8000 31.3000 24.9000 27.7000 20.9000 34.2000	17.3890 19.4738 16.3376 17.0770 13.1672 18.3672	125 25 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	15 SB. 85 86 87 88 89	I ARCH POINT	24.1600 12.2000 22.7000 36.5000 27.8000 21.6000	14.4487 8.3016 10.4563 11.2036 15.9151 13.8233	125 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	16 SB: 86 87 88 89	CAT CANYON	20.3500 8.9000 7.4000 29.4000 35.7000	19.2111 7.9083 12.5308 18.5444 17.8027	100 25 25 25 25
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15002 Roc 1 SM: 82 83 84 85 86 87 88 89	ck I WYCKOFF LEDGE	77.4473 77.6323 62.6000 79.6552 92.0000 84.0000 88.2000 70.7000 74.7000 77.5000	25.1170 24.4885 33.9460 30.9934 13.7598 17.2904 11.6708 22.9642 22.7797 18.1142	2911 189 25 29 10 25 25 25 25 25

Channel Variable	Islands Nat: Value I	ional Park Label	Kelp Forest	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 8 82 83 84 85 86 87 88 89	SMI HARE ROO	CK	76.2538 70.2000 77.0270 65.2000 78.9000 76.8000 80.5000 75.6000 78.8000	30.3323 36.1847 34.6302 33.9175 30.6703 28.5000 26.5460 24.4872 28.1654	197 25 37 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 8 82 83 84 85 86 87 88	SRI JOHNSONS	S LEE NORTH	93.7663 95.4000 97.4359 97.2000 93.5000 87.5000 91.0000 94.9000 93.2000	10.0576 13.1434 5.9462 5.6725 7.6035 15.0520 10.7044 5.0765 9.4240	199 25 39 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 8 82 83 84 85 86 87 88	BRI JOHNSONS	S LEE SOUTH	82.6375 80.6000 81.7500 79.0000 85.3000 82.0000 76.3000 87.5000	20.7458 27.1692 25.3071 26.0811 18.6430 17.7071 18.0584 13.4048 16.2019	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 8 83 84 85 86 87 88 89	BRI RODES RE	EEF	80.7229 77.5000 92.4000 84.9000 78.7000 78.4000 77.4000 84.7000	21.0583 28.1707 12.7819 18.3496 20.5665 19.8416 19.1822 14.5831	175 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 8 82 83 84 85 86 87 88	SCI GULL IS	LAND SOUTH	93.0779 94.2000 92.8205 89.0000 94.9000 91.6000 90.3000 92.6000 96.9000	11.6977 9.7553 17.0060 9.7183 8.2437 12.1381 11.9312 10.3702 6.1356	199 25 39 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 8 82 83 84 85 86 87 88 89	SCI FRYS HAI	RBOR	79.3389 84.0000 70.7500 82.6000 83.4000 84.8000 86.4000 79.1000 74.5000	20.6277 12.9422 30.3304 16.0546 13.2665 15.6804 16.6126 19.4052	180 5 40 10 25 25 25 25

	Islands Nat		Park	Kelp	Forest	_		_
Variable	Value	Label				Mean	Std Dev	Cases
LOCATION	8	SCI PE	LICAN	BAY		59.9382	20.5599	170
YEAR	83					58.8571	27.5223	35
YEAR	84					66.2000	21.9788	10
YEAR	85					49.2000	14.0446	25
YEAR	86					56.5000	18.6246	25
YEAR	87					56.3000	18.4012	25
YEAR	88					63.7000	14.2544	25
	89						16.7239	25
YEAR	89					73.0000	10.7239	25
LOCATION	9	SCI SC	ORPION	I ANCH	ORAGE	80.0075	19.5738	200
YEAR	82					82.6000	14.0030	25
YEAR	83					71.2500	34.2081	40
YEAR	84					84.4000	8.9343	10
YEAR	85					82.4000	11.4218	25
YEAR	86					79.9000	11.6476	25
YEAR	87					76.6000	14.1767	25
YEAR	88					86.2000	14.8976	25
YEAR	89					84.6000	11.7189	25
12111						01.0000		20
LOCATION		SCI YE	LLOWBA	NKS		70.6750	28.2906	100
YEAR	86					75.2000	22.4179	25
YEAR	87					72.6000	30.6907	25
YEAR	88					63.6000	31.8205	25
YEAR	89					71.3000	27.6899	25
LOCATION	11	ANI AD	MIRALS	REEF		76.2000	28.8887	205
YEAR	82					81.6000	32.2981	25
YEAR	83					66.8889	34.8909	45
YEAR	84					70.6000	25.3342	10
YEAR	85					76.9000	31.8712	25
YEAR	86					80.5000	25.3825	25
YEAR	87					77.9000	22.6578	25
YEAR	88					72.4000	26.2151	25
YEAR	89					86.9000	18.8232	25
LOCATION	12	ANT CA	THEDRA	J. COV	E	57.9900	27.1892	200
YEAR	82				_	56.8000	26.3739	25
YEAR	83					61.5000	32.6245	40
YEAR	84					55.8000	26.3894	10
YEAR	85					46.1000	24.5806	25
YEAR	86					54.2000	20.8631	25
YEAR	87					57.0000	26.2500	25
YEAR	88					63.3000	26.7387	25
YEAR	89					65.8000	26.8262	25
LOCATION		ANI LA	NDING	COVE		66.5404	32.9224	198
YEAR	82					72.1154	40.9188	26
YEAR	83					65.9459	40.6516	37
YEAR	84					72.0000	34.3058	10
YEAR	85					61.6000	29.0104	25
YEAR	86					63.3000	28.0413	25
YEAR	87					75.3000	25.3036	25
YEAR	88					63.1000	25.3443	25
YEAR	89					62.3000	33.5870	25

Channel Variable		tional Park Label	Kelp For	est Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 82 83 84 85 86 87 88	SBI SOUTHEA	ST SEALIO	N 79.8970 72.4000 79.2308 82.2000 78.5000 78.8000 78.6000 86.1000 85.1000	23.4469 26.1454 32.0677 23.3324 20.9040 21.7361 15.9276 13.3088 23.3350	199 25 39 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 82 83 84 85 86 87 88	SBI ARCH PO	INT	79.0525 75.0000 72.5000 88.8000 79.0000 84.0000 77.7000 82.9000 82.3000	20.8281 17.7951 34.3250 11.0030 13.2877 14.5952 13.6344 14.9074 18.4549	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	16 86 87 88 89	SBI CAT CAN	YON	82.7500 79.1000 86.6000 76.2000 89.1000	17.9030 17.8226 14.6643 22.1984 13.4412	100 25 25 25 25
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15003 1 82 83 84 85 86 87 88	Cobble SMI WYCKOFF	LEDGE	12.8143 6.8704 12.4000 16.5517 2.6000 4.9000 2.7000 4.8000 4.1000 2.8000	19.1854 15.5521 22.8728 27.9382 6.3979 9.8816 3.8134 7.2858 6.8038 5.4160	2910 189 25 29 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 82 83 84 85 86 87 88	SMI HARE RO	CK	14.4107 7.4000 15.0000 31.2000 14.0000 11.7000 7.5000 21.5000 16.8000	22.6460 19.4786 25.8014 30.9867 20.7666 19.5352 13.8067 22.9810 25.2953	196 25 36 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 82 83 84 85 86 87 88	SRI JOHNSON	S LEE NOR	TH 2.7025 3.8000 2.5000 0.8000 1.9000 1.7000 1.7000 3.7000 4.5000	5.9708 12.1861 5.8835 1.3984 2.5290 3.2851 2.8614 3.9607 6.2500	200 25 40 10 25 25 25 25 25

Channel Variable		ional Park Label	Kelp Fore	st Monitoring Mean		Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 : 82 83 84 85 86 87 88 89	SRI JOHNSON	S LEE SOUTI	4 2.6775 1.4000 3.7500 4.8000 2.5000 2.3000 2.6000 3.3000 1.4000	5.9345 6.0415 9.5239 5.8271 4.5644 4.3253 4.2377 4.8261 2.6101	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 83 84 85 86 87 88 89	SRI RODES R	EEF	12.3343 14.7500 5.6000 9.5000 14.7000 16.1000 10.2000 10.0000	16.5687 23.3136 9.8342 14.5774 17.5642 15.6472 11.2944 10.4583	175 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 : 82 83 84 85 86 87 88	SCI GULL IS:	LAND SOUTH	2.4548 2.0000 2.3077 6.6000 1.2000 2.9000 3.2000 2.4000 1.6000	4.7389 4.0825 6.2667 4.9035 2.8062 5.0867 5.0785 3.7137 3.6714	199 25 39 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 : 82 83 84 85 86 87 88	SCI FRYS HA	RBOR	16.0944 4.0000 26.0000 17.2000 12.1000 11.5000 8.4000 16.4000 18.2000	17.9516 6.5192 28.1753 12.4793 10.1211 9.3541 10.4053 14.9143 15.0955	180 5 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 : 83 84 85 86 87 88 89	SCI PELICAN	BAY	17.8618 15.1429 17.4000 21.5000 24.0000 22.5000 17.8000 7.5000	15.1854 17.2134 23.1526 9.6285 16.0889 15.8114 12.3178 7.1807	170 35 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 : 82 83 84 85 86 87 88	SCI SCORPIO	N ANCHORAGI	E 10.6775 2.8000 24.7500 9.8000 9.1000 6.9000 12.6000 3.1000 7.4000	17.1957 9.2511 30.8834 6.8928 9.1253 6.6254 9.9079 3.6286 8.5233	200 25 40 10 25 25 25 25

Channel Variable	Islands Nat Value	zional Park Kelp Fores Label	t Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR	10 86 87 88 89	SCI YELLOWBANKS	17.3000 12.4000 16.0000 23.0000 17.8000	17.2536 10.9326 18.5826 21.6627 15.2637	100 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 82 83 84 85 86 87 88	ANI ADMIRALS REEF	17.2390 7.4000 30.6667 17.4000 14.4000 13.2000 15.8000 21.2000 7.2000	23.3451 18.4910 32.3616 13.5335 19.4358 19.6919 16.7662 23.2191 11.3266	205 25 45 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 82 83 84 85 86 87 88	ANI CATHEDRAL COVE	28.7425 31.6000 34.2500 25.6000 35.0000 29.3000 30.0000 22.7000 16.3000	22.1882 22.0189 31.6947 15.8549 16.5202 16.3701 18.4701 20.3603 16.3955	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	13 82 83 84 85 86 87 88	ANI LANDING COVE	26.2944 20.6000 32.9730 26.0000 31.8000 27.8000 14.0000 24.6000 29.2000	28.9093 33.7676 39.5717 33.1059 23.7776 21.7145 18.3286 19.8258 29.2147	197 25 37 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	14 82 83 84 85 86 87 88	SBI SOUTHEAST SEALION	8.8618 10.2000 13.5897 6.6000 8.7000 7.4000 6.9000 5.1000 8.4000	14.5358 10.7510 26.8021 7.4267 7.5388 8.1803 8.6987 6.1441 13.0679	199 25 39 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15 82 83 84 85 86 87 88	SBI ARCH POINT	15.5800 13.4000 26.2500 8.6000 16.9000 12.6000 16.8000 8.2000 11.3000	19.1107 16.7531 32.4778 12.1856 12.9357 13.1395 12.7173 6.9041 11.1831	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR	16 86 87 88 89	SBI CAT CANYON	3.0250 2.1000 3.5000 2.9000 3.6000	5.4737 3.9317 5.8184 4.7148 7.1107	100 25 25 25 25

Channel Variable	Islands Nat Value	cional Park Label	Kelp Fores	st Monitoring Mean	1982-1989 Std Dev	Cases
SPECIES LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	15004 1 82 83 84 85 86 87 88	Sand SMI WYCKOFF	LEDGE	9.2940 15.2328 25.0000 2.0690 5.4000 11.1000 9.1000 24.5000 21.2000 19.7000	14.7012 19.0193 29.5099 5.5929 11.2763 12.1424 9.0680 19.3111 21.0421 16.7288	2910 189 25 29 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	2 82 83 84 85 86 87 88	SMI HARE ROO	ck	9.3291 22.4000 8.6111 3.6000 6.1000 11.5000 12.0000 2.9000 4.4000	18.8691 27.0463 25.5402 7.8202 10.0281 14.8605 22.4304 5.3852 7.0445	196 25 36 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	3 82 83 84 85 86 87 88	SRI JOHNSONS	S LEE NORTH	H 3.4200 0.8000 0.0000 0.4000 4.6000 10.8000 7.3000 1.4000 2.3000	7.8918 2.3629 0.0000 0.8433 7.6947 14.5545 9.8668 3.3912 4.5598	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	4 82 83 84 85 86 87 88	SRI JOHNSON	S LEE SOUTH	H 14.5850 17.6000 14.2500 16.2000 12.2000 15.7000 21.1000 9.7000 11.1000	19.8252 26.9691 23.5217 21.4673 19.2208 17.1014 17.1099 12.6927 15.6305	200 25 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	5 83 84 85 86 87 88 89	SRI RODES RI	EEF	5.7714 3.0000 2.0000 5.6000 6.6000 4.9000 12.4000 5.3000	9.5323 9.1147 3.5277 7.6130 6.5304 7.3414 16.0156 6.4679	175 40 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	6 82 83 84 85 86 87 88	SCI GULL IS	LAND SOUTH	4.4171 3.8000 4.6154 4.4000 3.9000 5.5000 6.5000 5.0000 1.5000	10.1632 9.6047 15.0169 6.5862 6.8875 9.6014 11.2036 9.4097 4.1458	199 25 39 10 25 25 25 25

Channel Variable	Islands Nation	al Park Kelp Forest el	Monitoring Mean	1982-1989 Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	7 SCI 82 83 84 85 86 87 88	FRYS HARBOR	4.2889 12.0000 2.0000 0.2000 4.5000 3.7000 5.2000 4.5000 7.3000	8.8494 14.4049 7.5786 0.6325 8.1968 6.8511 9.3240 7.7055 12.5192	180 5 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	8 SCI 83 84 85 86 87 88	PELICAN BAY	21.7735 24.5714 14.4000 29.2000 19.5000 21.2000 18.5000 19.5000	14.1283 19.3030 11.9555 12.7622 12.0977 13.5616 9.3263 11.4109	170 35 10 25 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	9 SCI 82 83 84 85 86 87 88	SCORPION ANCHORAGE	8.9125 14.2000 3.2500 6.0000 9.5000 12.2000 10.8000 9.0000 8.0000	10.5433 12.8841 5.7233 8.8443 9.2983 11.2574 11.0567 12.8290 8.4163	200 25 40 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR	10 SCI 86 87 88 89	YELLOWBANKS	12.0250 12.4000 11.4000 13.4000 10.9000	15.3153 15.3853 18.3155 12.0520 15.6937	100 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	11 ANI 82 83 84 85 86 87 88	ADMIRALS REEF	5.5854 3.0000 2.4444 12.0000 8.7000 6.3000 6.4000 5.9000	12.7531 6.2915 12.2763 18.2087 17.4571 9.1606 13.2704 12.1852 13.2067	205 25 45 10 25 25 25 25
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	12 ANI 82 83 84 85 86 87 88	CATHEDRAL COVE	13.2050 11.6000 4.2500 18.6000 18.9000 16.5000 15.4808 14.0000 14.8958	15.1242 12.4766 10.3497 17.5891 18.1010 10.0519 17.8888 14.7726 16.7215	200 25 40 10 25 25 26 25 24

Channel	Islands Nat	tional Park	Kelp Forest	Monitoring	1982-1989	
Variable	Value	Label		Mean	Std Dev	Cases
LOCATION	13	ANI LANDING	COVE	6.9289	12.6896	197
YEAR	82			7.8000	15.4164	25
YEAR	83			0.0000	0.0000	37
YEAR	84			2.0000	3.3993	10
YEAR	85			6.6000	11.4537	25
YEAR	86			7.9000	10.0177	25
YEAR	87			10.7000	14.4251	25
YEAR	88			12.3000	14.4684	25
YEAR	89			8.5000	17.0477	25
	1.4			0 1000	14 0074	100
LOCATION	14	SBI SOUTHEA	ST SEALION	9.1332	14.8374	199
YEAR	82 83			17.4000	19.6914	25 39
YEAR				3.3333	8.9834	
YEAR	84			11.0000	19.4651	10
YEAR	85			12.8000	18.9203	25
YEAR	86				5.9301	25
YEAR	87			14.4000	15.3141	25
YEAR	88			8.8000	10.6341	25
YEAR	89			6.5000	14.2705	25
LOCATION	15	SBI ARCH PO	INT	5.1675	9.2329	200
YEAR	82			11.6000	13.1276	25
YEAR	83			0.0000	0.0000	40
YEAR	84			2.6000	4.3256	10
YEAR	85			4.7000	6.8966	25
YEAR	86			3.2000	5.9301	25
YEAR	87			5.5000	4.7324	25
YEAR	88			8.9000	13.5224	25
YEAR	89			6.4000	11.3441	25
LOCATION	16	SBI CAT CAN	YON	13.8750	17.4598	100
YEAR	86	SEI OIII OIIIV		17.4000	17.6405	25
YEAR	87			9.9000	12.6137	25
YEAR	88				22.5564	25
YEAR	89			7.3000	12.3516	25
111111	0,0					23

Appendix 4. 1982-1989 Kelp Forest Monitoring Data - Fish Transects

Introduction.

Following are summaries of data gathered during fish transects from 1985-1989 for all kelp forest monitoring program sampling sites. Means, standard deviations and total number of samples (cases) are given. Data were summarized with SPSSPC+ programs from translated dBase III+ files. (Readers should be aware that the number of significant digits is an artifact of the database program and does not imply this level of precision.) For details of methods and data management, refer to the monitoring handbook (Davis 1988).

Notes on methods:

FISH TRANSECTS. Means represent the average of counts obtained on each pass by divers swimming the entire 100m transect line and observing fishes passing within a 2m X 3m "window" centered on the line. Cases listed refer to the total number of passes made during fish surveys for the year. Generally four passes were made on each of two different dates. Additional cases (passes) were usually counts by a second diver at the same time. Adults and juveniles are presented here separately with all surveys for one year combined. Data are available by sample date but are not included here. Horizontal sechi and surge measurements were made on each dive. All counts were conducted between 0900 and 1500 hours.

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects

Variable	Value	Fish Transects Label	Mean	Std Dev	Cases
SPECIES	Chromi	s punctipinnis adult	36.4572	60.4628	794
LOCATION	1	SMI WYCKOFF LEDGE	0.4318	1.2649	44
YEAR	85	SIII WIGHGII BBBGB	2.2500	2.8723	4
YEAR	86		0.0000	0.0000	8
YEAR	87		0.8333	1.4668	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	2	SMI HARE ROCK	17.4792	25.5551	48
YEAR	85		71.7500	41.8440	4
YEAR	86		12.3333	15.7037	12
YEAR	87		18.2500	14.5672	12
YEAR	88		22.6250	25.4779	8
YEAR	89		0.3333	0.6513	12
LOCATION	3	SRI JOHNSONS LEE NORTH	19.4643	25.5008	56
YEAR	85		42.3750	40.3447	8
YEAR	86		28.4167	15.9571	12
YEAR	87		28.5833	27.6388	12
YEAR	88		2.7500	5.2576	8
YEAR	89		2.8125	3.1031	16
LOCATION	4	SRI JOHNSONS LEE SOUTH	17.1600	29.7831	50
YEAR	85	DIG COMVECUE EEE BOOTH	2.3750	3.4200	8
YEAR	86		18.6667	27.9003	12
YEAR	87		52.9000	39.9985	10
YEAR	88		9.2500	17.8306	8
YEAR	89		1.0000	1.0445	12
LOCATION	5	SRI RODES REEF	13.2500	14.4480	48
YEAR	85		15.0000	17.3973	4
YEAR	86		9.3333	9.4420	12
YEAR	87		16.5833	11.1229	12
YEAR	88		0.0000	0.0000	8
YEAR	89		22.0833	18.8074	12
LOCATION	6	SCI GULL ISLAND SOUTH	36.5833	46.6685	48
YEAR	85	001 0022 102111.5 000111	111.0000	77.8674	4
YEAR	86		22.7500	33.3061	12
YEAR	87		32.2500	58.3487	12
YEAR	88		24.5000	21.1390	8
YEAR	89		38.0000	22.4175	12
LOCATION		SCI FRYS HARBOR	141.0227	139.9657	44
YEAR	86		256.5833	136.1767	12
YEAR	87		54.0833	30.2428	12
YEAR	88		204.2500	175.4209	8
YEAR	89		70.2500	79.7121	12
LOCATION	8	SCI PELICAN BAY	30.7500	33.7276	48
YEAR	85		0.7500	0.5000	4
YEAR	86		19.6667	28.7508	12
YEAR	87		39.5833	25.5573	12
YEAR	88		14.3750	15.0422	8
YEAR	89		53.9167	43.7003	12
			/		

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects

			Fish Transects			
Variable	Value	Label		Mean	Std Dev	Cases
LOCATION YEAR YEAR YEAR YEAR YEAR	9 85 86 87 88 89	SCI SC	ORPION ANCHORAGE	45.0833 64.0000 9.6667 57.0000 88.5833 5.6250	53.5616 5.7735 9.3160 19.2684 82.7312 12.2933	48 4 12 12 12 8
LOCATION YEAR YEAR YEAR YEAR	10 86 87 88 89	SCI YE	LLOW BANKS	15.0909 55.2500 1.1667 8.1250 8.9375	32.2676 61.1690 0.8348 7.7724 11.3341	44 8 12 8 16
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	11 85 86 87 88	ANI ADI	MIRALS REEF	48.8393 182.7500 9.0000 34.5000 73.0000 37.8750	64.0303 119.4526 9.5822 45.6897 60.9650 32.3107	56 4 12 12 12 16
LOCATION YEAR YEAR YEAR YEAR YEAR	12 85 86 87 88 89	ANI CA	THEDRAL COVE	67.5962 175.0000 71.0833 6.2500 112.7500 44.5000	83.4135 62.8331 40.3247 6.3978 130.9241 35.4183	52 4 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	13 85 86 87 88 89	ANI LA	NDING COVE	38.0833 79.5000 18.5000 15.0000 92.3333 0.0000	46.7041 39.0598 17.9063 21.2475 47.3600 0.0000	48 4 12 12 12 8
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	14 85 86 87 88 89	SBI SO	UTHEAST SEALION	32.8036 12.5000 88.0833 17.1000 17.8750 20.4167	37.6406 14.5258 38.7708 23.0101 4.6117 18.2730	56 4 12 20 8 12
LOCATION YEAR YEAR YEAR YEAR YEAR YEAR	15 85 86 87 88 89	SBI AR	CH POINT	48.3269 87.2500 14.7500 49.8333 51.5833 64.1667	43.2987 25.7213 16.7067 47.2360 40.9600 47.4875	52 4 12 12 12 12
LOCATION YEAR YEAR YEAR YEAR	16 86 87 88 89	SBI CA	I CANYON	15.6154 23.0000 10.5833 13.2500 13.1667	16.4712 22.6127 10.2554 15.6503 9.5330	52 16 12 12

Variable	Value	Fish Transects Label	Mean	Std Dev	Cases
SPECIES	Chromi	is punctipinnis juvenile	32.6725	133.2086	794
LOCATION	1	SMI WYCKOFF LEDGE	0.0000	0.0000	44
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	8
	87			0.0000	12
YEAR			0.0000		
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	2	SMI HARE ROCK	0.0208	0.1443	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0833	0.2887	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	3	SRI JOHNSONS LEE NORTH	7.1964	19.4688	56
YEAR	85		0.0000	0.0000	8
YEAR	86		0.0000	0.0000	12
YEAR	87		33.3333	30.7611	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.1875	0.5439	16
LOCATION	4	SRI JOHNSONS LEE SOUTH	1.0000	7.0711	50
YEAR	85		0.0000	0.0000	8
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	10
YEAR	88		6.2500	17.6777	8
YEAR	89		0.0000	0.0000	12
LOCATION	5	SRI RODES REEF	0.0417	0.2887	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.1667	0.5774	12
LOCATION	6	SCI GULL ISLAND SOUTH	6.6042	14.0739	48
YEAR	85		0.0000	0.0000	4
YEAR	86		6.0833	8.7226	12
YEAR	87		5.7500	10.9886	12
YEAR	88		21.7500	25.6668	8
YEAR	89		0.0833	0.2887	12
LOCATION	7	SCI FRYS HARBOR	29.5909	73.1206	44
YEAR	86		12.7500	25.5454	12
YEAR	87		2.5000	3.4772	12
YEAR	88		124.1250	138.2094	8
YEAR	89		10.5000	8.5440	12
LOCATION	8	SCI PELICAN BAY	7.6875	19.6113	48
YEAR	85		0.0000	0.0000	4
YEAR	86		21.5000	34.1561	12
YEAR	87		0.5000	0.6742	12
	88				8
YEAR YEAR	89		0.7500 8.2500	1.4880 12.3886	12
1007 = 100	-	001 000DDT01 1100001	E 0015	10 2625	4.0
LOCATION	9	SCI SCORPION ANCHORAGE	5.2917	10.3697	48
YEAR	85		0.0000	0.0000	4
YEAR	86		3.1667	4.7065	12
YEAR	87		0.3333	0.7785	12
YEAR	88		12.1667	15.5671	12
YEAR	89		8.2500	12.1861	8
LOCATION	10	SCI YELLOW BANKS	0.6364	1.9421	44
	86	COT THINOW DUMO	0.0000	0.0000	8
YEAR					
YEAR	87		0.0000	0.0000	12

Appx. 4-4

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects Variable Value Label Mean Std Dev Cases 3.7201 YEAR 88 3.1250 8 0.5439 YEAR 89 0.1875 16 LOCATION 11 ANI ADMIRALS REEF 111.9464 288.6168 56 YEAR 8.5 0.0000 0.0000 4 YEAR 86 15.5000 24.0964 12 YEAR 87 447.4167 507.4807 12 YEAR 88 25.6667 31.8072 12 25.2768 YEAR 89 25.3750 16 LOCATION 12 ANI CATHEDRAL COVE 186.2115 314.5288 52 YEAR 8.5 0.0000 0.0000 4 YEAR 86 56.7500 31.5022 12 87 467.5138 YEAR 585.4167 12 YEAR 88 138.4167 56.4969 12 YEAR 89 26.3333 28.1468 12 LOCATION 13 ANI LANDING COVE 96.2917 194.6659 48 0.0000 0.0000 YEAR 8.5 4 YEAR 86 12.1667 21.5526 12 87 350.0833 YEAR 259.8347 12 YEAR 88 10.5833 6.9734 12 YEAR 89 18.5000 13.4058 8 LOCATION 14 SBI SOUTHEAST SEALION 8.4464 13.3033 56 0.0000 YEAR 85 0.0000 4 YEAR 86 12.9167 16.6758 12 YEAR 3.9000 7.9333 2.0 87 YEAR 88 26.8750 11.7405 8 YEAR 89 2.0833 5.8225 12 15 SBI ARCH POINT 52 LOCATION 34.4038 51.8078 0.0000 YEAR 85 0.0000 4 YEAR 86 1.3333 1.8257 YEAR 87 80.4167 76.7125 12 26.2500 YEAR 88 29.3633 12 YEAR 89 41.0833 40.4912 12 LOCATION 16 SBI CAT CANYON 7.3077 15.7512 52 YEAR 86 5.6250 15.7982 16

7.3333

2.5833

23.9170

11.4442

5.0894

12

12

12

YEAR

YEAR

YEAR

87

88

89

Variable	Value	Fish Transects Label	Mean	Std Dev	Cases
SPECIES	Oxviul.	<i>is californic</i> a adult	7.0730	18.2777	794
	1	SMI WYCKOFF LEDGE			44
LOCATION	-	SMI WICKOFF LEDGE	16.5682	26.3636	
YEAR	85		0.7500	1.5000	4
YEAR	86		1.8750	1.9594	8
YEAR	87		19.3333	33.5650	12
YEAR	88		8.7500	15.0024	8
YEAR	89		34.0833	28.4364	12
ILAK	09		34.0033	20.4304	12
LOCATION	2	SMI HARE ROCK	0.3958	1.4103	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.7500	1.6026	12
YEAR	88		1.2500	2.7646	8
YEAR	89		0.0000	0.0000	12
IDAN	0,9		0.0000	0.0000	12
LOCATION	3	SRI JOHNSONS LEE NORTH	1.7679	4.0987	56
YEAR	85		1.8750	0.9910	8
YEAR	86		4.6667	7.9468	12
YEAR	87		0.5833	1.2401	12
YEAR	88		1.2500	2.0529	8
YEAR	89		0.6875	1.5798	16
LOCATION	4	SRI JOHNSONS LEE SOUTH	2.5400	4.1904	50
YEAR	85		6.2500	6.0178	8
YEAR	86		0.1667	0.3892	12
YEAR	87		0.0000	0.0000	10
YEAR	88		2.1250	3.3568	8
YEAR	89		4.8333	4.4687	12
LOCATION	5	SRI RODES REEF	16.7500	41.0296	48
YEAR	85		57.0000	82.1219	4
YEAR	86		29.0000	51.0241	12
YEAR	87		0.0000	0.0000	12
YEAR	88		28.3750	45.0204	8
YEAR	89		0.0833	0.2887	12
LOCATION	6	SCI GULL ISLAND SOUTH	3.5208	7.2493	48
YEAR	85	201 2022 102412 200111	10.2500	10.3722	4
YEAR	86		9.9167	10.0585	12
YEAR	87		0.3333	0.4924	12
YEAR	88		0.6250	1.7678	8
YEAR	89		0.0000	0.0000	12
LOCATION	7	SCI FRYS HARBOR	2.7500	4.8423	44
YEAR	86		3.1667	3.0699	12
YEAR	87		4.2500	5.2592	12
YEAR	88		3.3750	8.3484	8
YEAR	89		0.4167	1.1645	12
LOCATION	8	SCI PELICAN BAY	0.4167	1.2175	48
YEAR	85	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.0000	1.4142	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.1667	0.5774	12
YEAR	88		0.2500	0.7071	8
YEAR	89		0.0000	0.0000	12
LOCATION	9	SCI SCORPION ANCHORAGE	8 7202	6.9274	48
		SOT DOOM! TON ANCHOMAGE			
YEAR	85		15.2500	11.3541	4
YEAR	86		15.0000	5.9848	12
YEAR	87		4.7500	3.5194	12
YEAR	88		8.1667	4.2391	12
YEAR	89		2.8750	2.1002	8
T 002 m T 027	10	OOT VELLOW DANGS	07 0707	40.0044	4.4
LOCATION	10	SCI YELLOW BANKS	27.2727	43.6244	44
YEAR	86		76.0000	60.4460	8

Appx. 4-6

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects Variable Value Label Mean Std Dev Cases YEAR 87 36.5000 45.5482 12 12.7500 YEAR 88 15.9082 8 YEAR 89 3.2500 6.9618 16 11 ANI ADMIRALS REEF LOCATION 56 15.8214 14.8154 85 10.0000 4.5461 23.0833 20.3803 YEAR 86 12 87 YEAR 9.4167 5.2994 12 YEAR 88 22.3333 20.6456 12 YEAR 89 11.7500 5.2217 16 12 ANI CATHEDRAL COVE 52 LOCATION 2.1923 2.5823 YEAR 85 0.5000 1.0000 4 86 YEAR 1.7500 1.6583 12 YEAR 87 3.6667 3.4989 12 YEAR 88 1.9167 2.8110 12 YEAR 89 2.0000 2.0000 12 13 ANI LANDING COVE LOCATION 3.3125 4.1110 48 85 0.5000 0.5774 86 4.0000 5.6084 12 YEAR YEAR 87 2.6667 3.3121 12 YEAR 88 6.0000 3.5162 12 YEAR 89 0.6250 0.7440 8 LOCATION 14 SBI SOUTHEAST SEALION 7.7429 56 3.1071 20.2500 10.0789 YEAR 4 2.6328 YEAR 86 3.2500 12 YEAR 87 0.2500 0.6387 20 YEAR 88 5.0000 14.1421 8 YEAR 89 0.7500 2.5981 12 LOCATION 15 SBI ARCH POINT 5.1538 9.2808 52 14.7500 19.5171 YEAR 86 9.0833 13.6346 12 YEAR YEAR 87 1.8333 1.5275 12 YEAR 88 2.9167 5.5179 12 YEAR 89 3.5833 2.5030 12 LOCATION 16 SBI CAT CANYON 8.0582 52 5.9231 86 8.0000 13.5351 YEAR 16 2.5030 YEAR 87 4.4167 12 YEAR 88 4.7500 5.0475

3.0401

12

YEAR

89

		Fish Transects			
Variable	Value	Label	Mean	Std Dev	Cases
SPECIES	Oxyjul	is californica juvenile	0.7242	8.2673	794
LOCATION	1	SMI WYCKOFF LEDGE	2.7273	7.1247	44
YEAR	85		0.0000	0.0000	4
YEAR	86		1.3750	1.9955	8
YEAR	87		0.5833	1.4434	12
YEAR	88		0.2500	0.7071	8
YEAR	89		8.3333	12.0705	12
ILAN	09		0.3333	12.0705	12
LOCATION	2	SMI HARE ROCK	0.0833	0.4535	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.2500	0.8660	12
YEAR	88		0.1250	0.3536	8
YEAR	89		0.0000	0.0000	12
LOCATION	3	SRI JOHNSONS LEE NORTH	0.0179	0.1336	56
YEAR	85		0.0000	0.0000	8
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0625	0.2500	16
TOGAMITON	A	ODT TOUNGONG THE COURT	0 0000	0 0000	ΕΛ
LOCATION	4	SRI JOHNSONS LEE SOUTH	0.0000	0.0000	50
YEAR	85		0.0000	0.0000	8
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	10
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	5	SRI RODES REEF	0.0000	0.0000	48
YEAR	85	SKI KODBO KEBI	0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
					8
YEAR	88		0.0000	0.0000	
YEAR	89		0.0000	0.0000	12
LOCATION	6	SCI GULL ISLAND SOUTH	0.0000	0.0000	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
111111	0,5		0.0000	0.0000	12
LOCATION	7	SCI FRYS HARBOR	0.0000	0.0000	44
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
I OGA ET ON	^	OCT DELICAN DAY	0 0000	0 0000	4.0
LOCATION	8	SCI PELICAN BAY	0.0000	0.0000	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	9	SCI SCORPION ANCHORAGE	0.0417	0.2019	48
YEAR	85	DOI DOOMITON ANCHORAGE	0.0000	0.0000	40
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.1667	0.3892	12
YEAR	89		0.0000	0.0000	8
LOCATION	10	SCI YELLOW BANKS	0.0000	0.0000	44
YEAR	86	TI IIIIO. Dimio	0.0000	0.0000	8
THAIN	0.0		0.0000	0.0000	O

Appx. 4-8

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects Variable Value Label Mean Std Dev Cases YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 16 LOCATION 11 ANI ADMIRALS REEF 0.0000 0.0000 56 85 0.0000 0.0000 4 0.0000 0.0000 YEAR 86 12 YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 0.0000 YEAR 89 0.0000 16 52 LOCATION 12 ANI CATHEDRAL COVE 1.0385 2.8073 YEAR 85 0.0000 0.0000 4 86 0.0000 YEAR 0.0000 12 YEAR 87 1.8333 2.5879 12 0.0000 YEAR 88 0.0000 12 YEAR 89 2.6667 4.8492 12 LOCATION 13 ANI LANDING COVE 0.4792 1.7258 48 85 0.0000 0.0000 4 2.8749 86 0.9167 12 YEAR YEAR 87 0.4167 1.4434 12 YEAR 88 0.5833 1.3790 12 YEAR 89 0.0000 0.0000 8 LOCATION 14 SBI SOUTHEAST SEALION 0.0536 0.4009 56 0.0000 0.0000 YEAR 4 0.0000 YEAR 86 0.0000 12 YEAR 87 0.0000 0.0000 20 YEAR 88 0.3750 1.0607 8 YEAR 89 0.0000 0.0000 12 LOCATION 15 SBI ARCH POINT 0.0192 0.1387 52 0.0000 0.0000 YEAR 86 0.0000 0.0000 12 YEAR YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.0833 0.2887 12 LOCATION 16 SBI CAT CANYON 7.0577 30.9601 52

0.9167

0.2500

0.5000

54.0798

1.7816

0.8660

1.4460

16

12

12

86

87

88

89

YEAR

YEAR

YEAR

YEAR

		Fish Transects			
Variable	Value	Label	Mean	Std Dev	Cases
SPECIES	Sehasi	tes mystinus adult	0.6058	1.8850	794
LOCATION	1	SMI WYCKOFF LEDGE	1.5227	2.5288	44
		SMI WICKOFF LEDGE			
YEAR	85		0.2500	0.5000	4
YEAR	86		0.0000	0.0000	8
YEAR	87		4.3333	3.2845	12
YEAR	88		0.0000	0.0000	8
YEAR	89		1.1667	1.1934	12
ILAI	0,5		1.1007	1.1334	12
LOCATION	2	SMI HARE ROCK	2.6875	3.8875	48
YEAR	85		1.0000	1.1547	4
YEAR	86		1.5833	1.6765	12
YEAR	87		5.9167	5.5834	12
YEAR	88		0.3750	0.5175	8
YEAR	89		2.6667	3.5248	12
LOCATION	3	SRI JOHNSONS LEE NORTH	0.6964	1.1587	56
YEAR	85		0.2500	0.4629	8
YEAR	86		2.1667	1.4668	12
YEAR	87		0.5000	0.9045	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.3125	0.6021	16
LOCATION	4	SRI JOHNSONS LEE SOUTH	1.6000	2.3474	50
YEAR	85		1.5000	1.5119	8
YEAR	86		2.1667	3.0699	12
YEAR	87		3.1000	3.2128	10
YEAR	88		0.6250	0.7440	8
YEAR	89		0.5000	0.6742	12
LOCATION	5	SRI RODES REEF	2.3750	3.5826	48
YEAR	85	0112 110020 11221	0.0000	0.0000	4
YEAR	86		3.0000	2.8920	12
YEAR	87		3.7500	5.1720	12
YEAR	88		0.0000	0.0000	8
YEAR	89		2.7500	3.3063	12
LOCATION	6	SCI GULL ISLAND SOUTH	0.9792	2.3108	48
		SCI COME ISMAND SCOTA			
YEAR	85		0.2500	0.5000	4
YEAR	86		0.6667	2.3094	12
YEAR	87		0.1667	0.3892	12
YEAR	88		0.2500	0.4629	8
YEAR	89		2.8333	3.4597	12
			0 1106	0 2010	4.4
LOCATION		SCI FRYS HARBOR	0.1136	0.3210	44
YEAR	86		0.0833	0.2887	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.3333	0.4924	12
TOCATION	0	COT DELICAN DAY	0 0000	0 0000	4.0
LOCATION	8	SCI PELICAN BAY	0.0000	0.0000	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	9	SCI SCORPION ANCHORAGE	0.0000	0.0000	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
	87		0.0000	0.0000	12
YEAR					
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	8
LOCATION	10	SCI YELLOW BANKS	0.0000	0.0000	44
YEAR	86		0.0000	0.0000	8
	30		0.000	0.0000	0

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects Variable Value Label Mean Std Dev Cases YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 16 LOCATION 11 ANI ADMIRALS REEF 0.0000 0.0000 56 85 0.0000 0.0000 0.0000 0.0000 YEAR 86 12 YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 0.0000 YEAR 89 0.0000 16 0.0000 0.0000 52 LOCATION 12 ANI CATHEDRAL COVE YEAR 85 0.0000 0.0000 4 0.0000 YEAR 86 0.0000 12 YEAR 87 0.0000 0.0000 12 0.0000 YEAR 88 0.0000 12 0.0000 YEAR 89 0.0000 12 LOCATION 13 ANI LANDING COVE 0.0000 0.0000 48 85 0.0000 0.0000 4 86 0.0000 0.0000 12 YEAR YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.0000 0.0000 8 LOCATION 14 SBI SOUTHEAST SEALION 0.0000 0.0000 56 0.0000 0.0000 YEAR 4 0.0000 YEAR 86 0.0000 12 YEAR 87 0.0000 0.0000 20 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 12 LOCATION 15 SBI ARCH POINT 0.0000 0.0000 52 0.0000 0.0000 YEAR 86 0.0000 0.0000 12 YEAR YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.0000 0.0000 12 LOCATION 16 SBI CAT CANYON 0.0000 0.0000 52 86 0.0000 0.0000 YEAR 16

YEAR

YEAR

YEAR

87

88

89

0.0000

0.0000

0.0000

12

12

0.0000

0.0000

0.0000

		Fish Transects			
Variable	Value	Label	Mean	Std Dev	Cases
SPECIES	Sebast	tes mystinus juvenile	1.6108	5.5145	794
LOCATION	1	SMI WYCKOFF LEDGE	1.1136	3.1639	44
YEAR	85		7.7500	7.8475	4
YEAR	86		0.0000	0.0000	8
YEAR	87		1.4167	1.7816	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0833	0.2887	12
11111	0,5		0.0000	0.2007	12
LOCATION	2	SMI HARE ROCK	6.1667	10.3231	48
YEAR	85		32.0000	8.5245	4
YEAR	86		0.5000	1.1677	12
YEAR	87		8.5000	7.6574	12
YEAR	88		6.1250	9.6130	8
YEAR	89		0.9167	1.7299	12
LOCATION	3	SRI JOHNSONS LEE NORTH	0.1429	0.4835	56
YEAR	85		0.1250	0.3536	8
YEAR	86		0.3333	0.7785	12
YEAR	87		0.2500	0.6216	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	16
LOCATION	4	SRI JOHNSONS LEE SOUTH	1.4200	3.2394	50
YEAR	85		0.6250	1.4079	8
YEAR	86		5.4167	4.7186	12
YEAR	87		0.0000	0.0000	10
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0833	0.2887	12
LOCATION	5	SRI RODES REEF	3.1875	4.5131	48
YEAR	85		12.2500	3.0957	4
YEAR	86		1.2500	1.2881	12
YEAR	87		6.5000	4.7386	12
YEAR	88		1.2500	1.2817	8
YEAR	89		0.0833	0.2887	12
LOCATION	6	SCI GULL ISLAND SOUTH	12.5000	13.4212	48
YEAR	85		10.2500	13.9134	4
YEAR	86		8.0000	5.9696	12
YEAR	87		29.7500	12.3150	12
YEAR	88		13.1250	4.4219	8
YEAR	89		0.0833	0.2887	12
				0 5000	
LOCATION		SCI FRYS HARBOR	2.2045	3.7203	44
YEAR	86		0.0000	0.0000	12
YEAR	87		8.0833	1.5050	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
I OCATION	0	CCT DELICAN DAY	0 0000	0.0000	10
LOCATION	8	SCI PELICAN BAY	0.0000		48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
TOCATION	9	SCI SCORPION ANCHORAGE	0.0000	0.0000	48
LOCATION		SCI SCORFION ANCHURAGE		0.0000	
YEAR	85		0.0000		1 2
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	8
LOCATION	10	SCI YELLOW BANKS	0.0227	0.1508	44
YEAR	86	COI THINOW DAMI/O	0.00227	0.0000	8
IDAN	0.0		0.0000	0.0000	O

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects Variable Value Label Mean Std Dev Cases YEAR 87 0.0833 0.2887 12 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 16 LOCATION 11 ANI ADMIRALS REEF 0.0179 56 0.1336 85 0.2500 0.5000 0.0000 0.0000 YEAR 86 12 YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 0.0000 YEAR 89 0.0000 16 12 ANI CATHEDRAL COVE 0.2774 52 LOCATION 0.0385 YEAR 85 0.5000 1.0000 4 86 0.0000 YEAR 0.0000 12 YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 0.0000 YEAR 89 0.0000 12 LOCATION 13 ANI LANDING COVE 0.0000 0.0000 48 85 0.0000 0.0000 4 0.0000 86 0.0000 12 YEAR YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.0000 0.0000 8 LOCATION 14 SBI SOUTHEAST SEALION 0.0179 0.1336 56 0.0000 0.0000 YEAR 4 0.0000 YEAR 86 0.0000 12 YEAR 87 0.0500 0.2236 20 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 12 LOCATION 15 SBI ARCH POINT 0.0000 0.0000 52 0.0000 0.0000 YEAR 86 0.0000 0.0000 12 YEAR YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.0000 0.0000 12 LOCATION 16 SBI CAT CANYON 0.0000 0.0000 52

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

16

12

12

86

87

88

89

YEAR

YEAR

YEAR

YEAR

	Fish Transects			
Variable	Value Label	Mean	Std Dev	Cases
SPECIES	Sebastes serrinoides adult	0.3325	1.0391	794
LOCATION	1 SMI WYCKOFF LEDGE	0.4545	0.6973	44
YEAR	85	0.5000	0.5774	4
YEAR	86	0.0000	0.0000	8
YEAR	87	1.0833	0.9003	12
YEAR	88	0.2500	0.4629	8
YEAR	89	0.2500	0.4523	12
LOCATION	2 SMI HARE ROCK	2.2083	2.7363	48
YEAR	85	0.7500	1.5000	4
YEAR	86	1.5000	1.0871	12
YEAR	87	2.8333	3.2146	12
YEAR	88	3.2500	1.6690	8
YEAR	89	2.0833	3.9418	12
LOCATION	3 SRI JOHNSONS LEE NORT	н 0.3214	0.6904	56
YEAR	85	0.2500	0.4629	8
YEAR	86	0.3333	0.4924	12
YEAR	87	0.4167	0.7930	12
YEAR	88	0.0000	0.0000	8
YEAR	89	0.4375	0.9639	16
			0.05:=	= =
LOCATION	4 SRI JOHNSONS LEE SOUT		0.9817	50
YEAR	85	0.6250	1.1877	8
YEAR	86	0.1667	0.3892	12
YEAR	87	0.4000	0.6992	10
YEAR	88	0.3750	0.7440	8
YEAR	89	1.5833	1.0836	12
LOCATION	5 SRI RODES REEF	0.6875	1.4015	48
	85	0.0000	0.0000	4
YEAR				
YEAR	86	1.9167	2.2344	12
YEAR	87	0.1667	0.3892	12
YEAR	88	0.2500	0.7071	8
YEAR	89	0.5000	0.7977	12
LOCATION	6 SCI GULL ISLAND SOUTH	0.1875	0.7339	48
YEAR	85	1.7500	2.0616	4
YEAR	86	0.0000	0.0000	12
YEAR	87	0.1667	0.3892	12
YEAR	88	0.0000	0.0000	8
YEAR	89	0.0000	0.0000	12
111111		0.0000	0.0000	12
LOCATION	7 SCI FRYS HARBOR	0.4091	0.8161	44
YEAR	86	0.2500	0.4523	12
YEAR	87	0.5833	1.2401	12
YEAR	88	0.5000	0.9258	8
YEAR	89	0.3333	0.4924	12
LOCATION	8 SCI PELICAN BAY	0.2708	0.7068	48
YEAR	85	0.5000	0.5774	4
YEAR	86	0.5833	1.0836	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	8
YEAR	89	0.3333	0.7785	12
LOCATION	9 SCI SCORPION ANCHORAG	E 0.1042	0.3087	48
YEAR	85	0.0000	0.0000	4
YEAR	86	0.0000	0.0000	12
YEAR	87	0.1667	0.3892	12
YEAR	88	0.2500	0.4523	12
YEAR	89	0.0000	0.0000	8
THAIN		0.0000	0.0000	0
LOCATION	10 SCI YELLOW BANKS	0.1364	0.5537	44
YEAR	86	0.0000	0.0000	8
YEAR	87	0.0000	0.0000	12

Appx. 4-14

Fish Transects	Cases
Variable Value Label Mean Std Dev	Cases
YEAR 88 0.0000 0.0000	8
YEAR 89 0.3750 0.8851	16
LOCATION 11 ANI ADMIRALS REEF 0.0357 0.1873 YEAR 85 0.0000 0.0000	5 6 4
YEAR 85 0.0000 0.0000 YEAR 86 0.0000 0.0000	12
YEAR 87 0.0833 0.2887	12
YEAR 88 0.0000 0.0000	12
YEAR 89 0.0625 0.2500	16
LOCATION 12 ANI CATHEDRAL COVE 0.0192 0.1387	52
YEAR 85 0.0000 0.0000	4
YEAR 86 0.0833 0.2887	12
YEAR 87 0.0000 0.0000	12
YEAR 88 0.0000 0.0000	12
YEAR 89 0.0000 0.0000	12
LOCATION 13 ANI LANDING COVE 0.0000 0.0000	48
YEAR 85 0.0000 0.0000	4
YEAR 86 0.0000 0.0000	12
YEAR 87 0.0000 0.0000	12
YEAR 88 0.0000 0.0000	12
YEAR 89 0.0000 0.0000	8
LOCATION 14 SBI SOUTHEAST SEALION 0.0000 0.0000	56
YEAR 85 0.0000 0.0000	4
YEAR 86 0.0000 0.0000	12
YEAR 87 0.0000 0.0000	20
YEAR 88 0.0000 0.0000	8
YEAR 89 0.0000 0.0000	12
LOCATION 15 SBI ARCH POINT 0.0000 0.0000	52
YEAR 85 0.0000 0.0000	4
YEAR 86 0.0000 0.0000	12
YEAR 87 0.0000 0.0000	12
YEAR 88 0.0000 0.0000	12
YEAR 89 0.0000 0.0000	12
LOCATION 16 SBI CAT CANYON 0.0000 0.0000	52
YEAR 86 0.0000 0.0000	16
YEAR 87 0.0000 0.0000	12
YEAR 88 0.0000 0.0000	12
YEAR 89 0.0000 0.0000	12

Variable	Fish Transects Value Label	Mean	Std Dev	Cases
SPECIES	Sebastes serrinoides juvenile	0.8854	4.8577	794
	_			
LOCATION	1 SMI WYCKOFF LEDGE	7.4318	17.0763	44
YEAR	85	0.0000	0.0000	4
YEAR	86	17.5000	24.0476	8
YEAR	87	0.9167	0.9003	12
YEAR	88	21.8750	25.6985	8
YEAR	89	0.0833	0.2887	12
LOCATION	2 SMI HARE ROCK	3.9792	5.7556	48
YEAR	85	0.0000	0.0000	4
YEAR	86	2.0000	1.6514	12
YEAR	87	6.1667	5.0061	12
YEAR	88	11.2500	8.3794	8
YEAR	89	0.2500	0.4523	12
I OGA ETOM	2 ODT TOUNGOING THE NODELL	0 5170	0 4100	F.C
LOCATION	3 SRI JOHNSONS LEE NORTH	0.5179	2.4120	56
YEAR	85	0.5000	1.0690	8
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	3.1250	5.9387	8
YEAR	89	0.0000	0.0000	16
LOCATION	4 SRI JOHNSONS LEE SOUTH	0.1000	0.4165	50
YEAR	85	0.6250	0.9161	8
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	10
YEAR	88	0.0000	0.0000	8
YEAR	89	0.0000	0.0000	12
LOCATION	5 SRI RODES REEF	3.0417	5.1652	48
YEAR	85	6.7500	4.5000	4
YEAR	86	0.8333	1.7495	12
YEAR	87	0.3333	0.4924	12
YEAR	88	12.5000	4.6599	8
YEAR	89	0.4167	0.6686	12
LOCATION	6 SCI GULL ISLAND SOUTH	0.0000	0.0000	48
YEAR	85	0.0000	0.0000	4
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	8
YEAR	89	0.0000	0.0000	12
LOCATION	7 SCI FRYS HARBOR	0.0000	0.0000	44
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	8
YEAR	89	0.0000	0.0000	12
LOCATION	8 SCI PELICAN BAY	0.0000	0.0000	48
YEAR	85	0.0000	0.0000	4
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	8
YEAR	89	0.0000	0.0000	12
LOCATION	9 SCI SCORPION ANCHORAGE	0.0625	0.3200	48
YEAR	85	0.7500	0.9574	4
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	12
YEAR	89	0.0000	0.0000	8
I OCAMITON	10 001 VELLOW PANCE	0 0000	0 0000	4.4
LOCATION	10 SCI YELLOW BANKS	0.0000	0.0000	44
YEAR	86	0.0000	0.0000	8

Appx. 4-16

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects Variable Value Label Mean Std Dev Cases YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 16 LOCATION 11 ANI ADMIRALS REEF 0.0000 0.0000 56 85 0.0000 0.0000 0.0000 0.0000 YEAR 86 12 YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 0.0000 YEAR 89 0.0000 16 12 ANI CATHEDRAL COVE 52 LOCATION 0.0385 0.1942 YEAR 85 0.0000 0.0000 4 0.2887 YEAR 86 0.0833 12 YEAR 87 0.0000 0.0000 12 YEAR 88 0.0833 0.2887 12 YEAR 89 0.0000 0.0000 12 LOCATION 13 ANI LANDING COVE 0.0000 0.0000 48 85 0.0000 0.0000 4 86 0.0000 0.0000 12 YEAR YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.0000 0.0000 8 LOCATION 14 SBI SOUTHEAST SEALION 0.0000 0.0000 56 0.0000 0.0000 YEAR 4 0.0000 YEAR 86 0.0000 12 YEAR 87 0.0000 0.0000 20 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 12 LOCATION 15 SBI ARCH POINT 0.0000 0.0000 52 0.0000 0.0000 YEAR 86 0.0000 0.0000 12 YEAR YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.0000 0.0000 12

16 SBI CAT CANYON

86

87

88

89

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

52

16

12

12

LOCATION

YEAR

YEAR

YEAR

YEAR

Variable	Value	Fish Transects Label	Mean	Std Dev	Cases
SPECIES	Sebaste	s atrovirens adult	0.6322	1.4109	794
LOCATION		SMI WYCKOFF LEDGE	1.3864	1.6735	44
		SMI WICKOFF BEDGE			
YEAR	85		0.2500	0.5000	4
YEAR	86		0.5000	1.0690	8
YEAR	87		2.1667	1.6422	12
YEAR	88		1.8750	2.3566	8
YEAR	89		1.2500	1.4222	12
LOCATION	2	SMI HARE ROCK	2.7083	2.7441	48
YEAR	85		0.2500	0.5000	4
YEAR	86		2.5000	1.0000	12
YEAR	87		3.8333	2.0817	12
YEAR	88		5.3750	4.4701	8
YEAR	89		0.8333	1.1934	12
LOCATION		SRI JOHNSONS LEE NORTH	0.6250	1.0882	56
YEAR	85		0.1250	0.3536	8
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0833	0.2887	12
YEAR	88		0.7500	1.1650	8
YEAR	89		1.6875	1.3022	16
LOCATION	4	SRI JOHNSONS LEE SOUTH	1.0200	1.5713	50
YEAR	85		0.8750	1.6421	8
YEAR	86		0.1667	0.5774	12
YEAR	87		0.3000	0.4830	10
YEAR	88		0.5000	0.7559	8
YEAR	89		2.9167	1.7299	12
LOCATION	5	SRI RODES REEF	0.6042	1.2504	48
YEAR	85		1.2500	0.5000	4
YEAR	86		0.1667	0.3892	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.6250	1.1877	8
YEAR	89		1.4167	2.0207	12
LOCATION	6	SCI GULL ISLAND SOUTH	0.2500	0.4838	48
YEAR	85	001 0022 1021113 000111	0.7500	0.9574	4
YEAR	86		0.0833	0.2887	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.2500	0.4629	8
YEAR	89		0.5000	0.5222	12
LOCATION	7 S	CI FRYS HARBOR	2.5682	2.2557	44
YEAR	86		1.6667	1.8749	12
YEAR	87		1.5833	2.3916	12
YEAR	88		4.1250	2.5877	8
YEAR	89		3.4167	1.3790	12
LOCATION	8	SCI PELICAN BAY	0.6458	0.9338	48
YEAR	85		0.5000	1.0000	4
YEAR	86		0.3333	0.7785	12
YEAR	87		1.0000	0.9535	12
YEAR	88		1.5000	1.0690	8
YEAR	89		0.0833	0.2887	12
I.OCATTON	9	SCI SCORPION ANCHORAGE	0.0833	0.2793	48
LOCATION		SCI SCORFION ANCHURAGE			
YEAR	85		0.5000	0.5774	4
YEAR	86		0.0833	0.2887	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0833	0.2887	12
YEAR	89		0.0000	0.0000	8
LOCATION	10	SCI YELLOW BANKS	0.0227	0.1508	44
YEAR	86		0.0000	0.0000	8
YEAR	87		0.0833	0.2887	12

Appx. 4-18

Channel	Islands Na	ational Park Kelp Forest Fish Transects	Monitoring	1982-1989	
Variable	Value	Label	Mean	Std Dev	Cases
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	16
LOCATION	11	ANI ADMIRALS REEF	0.4286	0.6566	56
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.1667	0.3892	12
YEAR	88		0.8333	0.8348	12
YEAR	89		0.7500	0.6831	16
LOCATION	12	ANI CATHEDRAL COVE	0.0962	0.2977	52
YEAR	85		0.0000	0.0000	4
YEAR	86		0.1667	0.3892	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.2500	0.4523	12
LOCATION	13	ANI LANDING COVE	0.1250	0.3342	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.3333	0.4924	12
YEAR	88		0.1667	0.3892	12
YEAR	89		0.0000	0.0000	8
LOCATION	14	SBI SOUTHEAST SEALION	0.0000	0.0000	56
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	20
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	15	SBI ARCH POINT	0.0000	0.0000	52
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12
LOCATION	16	SBI CAT CANYON	0.0000	0.0000	52
YEAR	86		0.0000	0.0000	16
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	12

		Fish Transects			
Variable	Value		Mean	Std Dev	Cases
apparta.	a. 1		0.000	1 7001	704
SPECIES		tes atrovirens juvenile	0.2683	1.7221	794
LOCATION	1	SMI WYCKOFF LEDGE	1.6818	4.3710	44
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	8
YEAR	87		1.0833	1.6765	12
	88				8
YEAR			7.6250	7.8910	
YEAR	89		0.0000	0.0000	12
LOCATION	2	SMI HARE ROCK	1.0625	2.4356	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0833	0.2887	12
YEAR	87		2.6667	3.8218	12
YEAR	88		1.2500	1.1650	8
YEAR	89		0.6667	2.3094	12
LOCATION	3	SRI JOHNSONS LEE NORTH	0.1429	1.0690	56
YEAR	85		0.0000	0.0000	8
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.5000	2.0000	16
LOCATION	4	SRI JOHNSONS LEE SOUTH	0.0000	0.0000	50
YEAR	85		0.0000	0.0000	8
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	10
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	5	SRI RODES REEF	1.6458	4.4602	48
YEAR	85		3.2500	4.0311	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		8.0000	8.0888	8
YEAR	89		0.1667	0.5774	12
LOCATION	6	SCI GULL ISLAND SOUTH	0.0000	0.0000	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	7	SCI FRYS HARBOR	0.0000	0.0000	44
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88				8
			0.0000	0.0000	
YEAR	89		0.0000	0.0000	12
LOCATION	8	SCI PELICAN BAY	0.0000	0.0000	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	9	SCI SCORPION ANCHORAGE	0.0000	0.0000	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	8
LOCATION	10	SCI YELLOW BANKS	0.0000	0.0000	44
YEAR	86		0.0000	0.0000	8
	30			0.0000	0

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects Variable Value Label Mean Std Dev Cases YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 16 LOCATION 11 ANI ADMIRALS REEF 0.0000 0.0000 56 85 0.0000 0.0000 0.0000 0.0000 YEAR 86 12 YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 0.0000 YEAR 89 0.0000 16 12 ANI CATHEDRAL COVE 0.0000 0.0000 52 LOCATION YEAR 85 0.0000 0.0000 4 86 0.0000 YEAR 0.0000 12 YEAR 87 0.0000 0.0000 12 0.0000 YEAR 88 0.0000 12 0.0000 YEAR 89 0.0000 12 LOCATION 13 ANI LANDING COVE 0.0000 0.0000 48 85 0.0000 0.0000 4 0.0000 86 0.0000 12 YEAR YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.0000 0.0000 8 LOCATION 14 SBI SOUTHEAST SEALION 0.0000 0.0000 56 0.0000 0.0000 YEAR 4 0.0000 YEAR 86 0.0000 12 YEAR 87 0.0000 0.0000 20 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 12 LOCATION 15 SBI ARCH POINT 0.0192 0.1387 52 0.2500 0.5000 YEAR 86 0.0000 0.0000 12 YEAR YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.0000 0.0000 12 LOCATION 16 SBI CAT CANYON 0.0000 0.0000 52 86 0.0000 0.0000 YEAR 16 0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

12

12

YEAR

YEAR

YEAR

87

88

89

Variable	Value Lab	Fish Transects el	Mean	Std Dev	Cases
SPECIES	Paralabrax	<i>clathratus</i> adult	3.4043	6.0714	794
LOCATION		WYCKOFF LEDGE	0.0455	0.2107	44
		WICKOII BBDGB			
YEAR	85		0.0000	0.0000	4
YEAR	86		0.2500	0.4629	8
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
I OCA ETON	2 SMI	HADE DOOR	0 0000	0 0000	48
LOCATION		HARE ROCK	0.0000	0.0000	
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
			4 0000	0.0645	
LOCATION		JOHNSONS LEE NORTH	1.8393	2.3647	56
YEAR	85		3.3750	2.9731	8
YEAR	86		4.0833	2.8749	12
YEAR	87		1.4167	1.2401	12
YEAR	88		0.5000	0.7559	8
YEAR	89		0.3750	0.5000	16
LOCATION	4 SRI	JOHNSONS LEE SOUTH	1.6000	1.8070	50
YEAR	85		1.0000	0.9258	8
YEAR	86		2.2500	1.4222	12
YEAR	87		3.9000	1.8529	10
YEAR	88		0.2500	0.7071	8
YEAR	89		0.3333	0.4924	12
LOCATION	5 SRI	RODES REEF	1.8542	2.1927	48
YEAR	85		0.0000	0.0000	4
YEAR	86		2.6667	2.0597	12
YEAR	87		3.6667	2.6054	12
YEAR	88		0.0000	0.0000	8
YEAR	89		1.0833	0.9003	12
LOCATION	6 SCI	GULL ISLAND SOUTH	2.6250	2.1989	48
		COLL IOLIND DOOTH			
YEAR	85		6.7500	2.5000	4
YEAR	86		3.1667	1.8990	12
YEAR	87		3.3333	1.4355	12
YEAR	88		1.3750	1.1877	8
YEAR	89		0.8333	0.8348	12
IOCATION	7 001	FRYS HARBOR	13 3636	10 56/0	44
LOCATION		INIO MAKDUK	13.3636	18.5649	
YEAR	86		8.7500	9.9464	12
YEAR	87		30.9167	27.5267	12
YEAR	88		6.7500	2.7124	8
YEAR	89		4.8333	3.9274	12
LOCATION	8 SCI	PELICAN BAY	8.9167	5.8340	48
		I DDICAN DAI			
YEAR	85		1.2500		4
YEAR	86		6.3333	2.4246	12
YEAR	87		10.5833	5.8692	12
YEAR	88		7.7500	4.8033	8
YEAR	89		13.1667	6.1175	12
T 0 0 3 ET 0 3	2 2==	GGODDION ANGUESTS	1 01 65	1 5055	4.0
LOCATION		SCORPION ANCHORAGE		1.5957	48
YEAR	85		1.0000	1.4142	4
YEAR	86		2.5833	1.2401	12
YEAR	87		2.2500	2.0057	12
YEAR	88		1.5000	1.3143	12
	89				8
YEAR	89		1.5000	1.6903	ŏ
LOCATION	10 SCI	YELLOW BANKS	3.9773	3.5074	44
YEAR	86		9.6250	2.8253	8
					ŭ

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects Variable Value Label Mean Std Dev Cases YEAR 87 4.4167 2.5030 12 YEAR 88 2.6250 1.5059 8 YEAR 89 1.5000 1.0954 16 LOCATION 11 ANI ADMIRALS REEF 56 2.3214 2.1583 85 2.0000 1.8257 86 87 YEAR 2.1667 1.4035 12 YEAR 2.0000 1.4771 12 YEAR 88 1.0000 1.0445 12 2.9777 YEAR 89 3.7500 16 12 ANI CATHEDRAL COVE 52 LOCATION 6.0192 4.9645 YEAR 85 0.5000 0.5774 4 86 YEAR 2.3677 12 4.1667 YEAR 87 10.1667 4.1524 12 YEAR 88 5.4167 4.1661 12 YEAR 89 6.1667 6.3222 12 13 ANI LANDING COVE LOCATION 3.6667 2.8608 48 85 5.2500 2.2174 86 3.2500 1.9598 12 YEAR YEAR 87 5.5833 3.9648 12 YEAR 88 2.7500 2.2613 12 YEAR 89 2.0000 1.1952 8 LOCATION 14 SBI SOUTHEAST SEALION 56 2.0893 3.1811 1.2500 1.5000 YEAR 4 YEAR 86 2.2500 1.7123 12 YEAR 87 0.3500 0.4894 20 YEAR 88 2.1250 2.6424 8 YEAR 89 5.0833 5.1603 12 15 SBI ARCH POINT LOCATION 2.3077 2.0247 52 0.7500 0.9574 YEAR 86 2.4664 12 YEAR 2.4167 YEAR 87 1.9167 1.5050 12 YEAR 88 3.3333 2.4985 12 YEAR 89 2.0833 1.3790 12 LOCATION 16 SBI CAT CANYON 3.1538 3.2803 52

1.1875

6.5833

2.2500

3.2500

1.2230

4.6015

1.4848

2.2613

16

12

12

86

87

88

89

YEAR

YEAR

YEAR

		Fish Transects			
Variable	Value L	abel	Mean	Std Dev	Cases
SPECIES	Paralahr	ax clathratus juvenile	0.3287	1.8395	794
		<u>-</u>			
LOCATION		MI WYCKOFF LEDGE	0.0455	0.2107	44
YEAR	85		0.0000	0.0000	4
YEAR	86		0.1250	0.3536	8
YEAR	87		0.0833	0.2887	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	2 S	MI HARE ROCK	0.0000	0.0000	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	3 S	RI JOHNSONS LEE NORTH	0.1607	0.6260	56
YEAR	85		1.1250	1.3562	8
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	16
LOCATION	4 S	RI JOHNSONS LEE SOUTH	0.0600	0.3136	50
		KI COMMOCNE EEE COOTH	0.2500		
YEAR	85			0.7071	8
YEAR	86		0.0833	0.2887	12
YEAR	87		0.0000	0.0000	10
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
		D.T. D.O.D.G. D.D.D.			
LOCATION		RI RODES REEF	0.1042	0.3713	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.3333	0.6513	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0833	0.2887	12
LOCATION	6 S	CI GULL ISLAND SOUTH	0.0833	0.4535	48
YEAR	85		0.7500	1.5000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0833	0.2887	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	7 SC	I FRYS HARBOR	0.0455	0.2107	44
YEAR	86	1 11(10 111111201)			12
			0.1667	0.3892	
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	8 S	CI PELICAN BAY	1.9792	5.6172	48
		CI PELICAN DAI			
YEAR	85		19.5000	6.2450	4
YEAR	86		0.4167	0.9962	12
YEAR	87		0.1667	0.5774	12
YEAR	88		0.8750	0.9910	8
YEAR	89		0.2500	0.4523	12
ILAN	09		0.2300	0.4323	12
LOCATION		CI SCORPION ANCHORAGE	0.1042	0.5153	48
YEAR	85		1.2500	1.5000	4
YEAR	86		0.0000	0.0000	12
			0.0000		12
YEAR	87			0.0000	
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	8
LOCATION	10 S	CI YELLOW BANKS	0.2045	0.5937	44
	86		0.0000	0.0000	8
YEAR					
YEAR	87		0.0000	0.0000	12

Appx. 4-24

Channel	Islands Na		Park Kelp Forest	Monitoring	1982-1989	
Variable	Value	Label	ion riundeced	Mean	Std Dev	Cases
YEAR	88			0.0000	0.0000	8
YEAR	89			0.5625	0.8921	16
LOCATION	11	ANI ADM	IRALS REEF	0.1607	0.6816	56
YEAR	85			2.0000	1.8257	4
YEAR	86			0.0833	0.2887	12
YEAR	87			0.0000	0.0000	12
YEAR	88			0.0000	0.0000	12
YEAR	89			0.0000	0.0000	16
LOCATION	12	ANI CAT	HEDRAL COVE	0.6923	1.4625	52
YEAR	85			0.7500	0.9574	4
YEAR	86			0.0000	0.0000	12
YEAR	87			0.3333	0.4924	12
YEAR	88			1.6667	2.5702	12
YEAR	89			0.7500	1.0553	12
LOCATION	13	ANI LAN	DING COVE	0.0417	0.2019	48
YEAR	85			0.0000	0.0000	4
YEAR	86			0.0000	0.0000	12
YEAR	87			0.0000	0.0000	12
YEAR	88			0.1667	0.3892	12
YEAR	89			0.0000	0.0000	8
LOCATION	14	SBI SOU	THEAST SEALION	0.5714	3.4528	56
YEAR	85			8.0000	11.8040	4
YEAR	86			0.0000	0.0000	12
YEAR	87			0.0000	0.0000	20
YEAR	88			0.0000	0.0000	8
YEAR	89			0.0000	0.0000	12
LOCATION	15	SBI ARC	H POINT	0.4231	1.0165	52
YEAR	85			2.2500	2.6300	4
YEAR	86			0.6667	0.8876	12
YEAR	87			0.2500	0.6216	12
YEAR	88			0.0000	0.0000	12
YEAR	89			0.1667	0.3892	12
LOCATION	16	SBI CAT	CANYON	0.5000	1.4485	52
YEAR	86			0.4375	0.8139	16
YEAR	87			1.5000	2.6799	12
YEAR	88			0.0833	0.2887	12
YEAR	89			0.0000	0.0000	12

Variable	Fish Transec Value Label	ts Mean	Std Dev	Cases
variable	Varue Euser	nean	bea bev	cases
SPECIES	Semicossyphus pulcher male	e 0.2368	0.6307	794
LOCATION	1 SMI WYCKOFF LEDGE	0.0455	0.2107	44
YEAR	85	0.0000	0.0000	4
YEAR	86	0.0000	0.0000	8
YEAR	87	0.0000	0.0000	12
YEAR	88	0.1250	0.3536	8
YEAR	89	0.0833	0.2887	12
LOCATION	2 SMI HARE ROCK	0.0625	0.3200	48
YEAR	85	0.0000	0.0000	4
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.2500	0.7071	8
YEAR	89	0.0833	0.2887	12
TOGARION	2 ODT TOUNGONG THE N	OD MII 0 0170	0 1336	E.C.
LOCATION	3 SRI JOHNSONS LEE NO		0.1336	56
YEAR	85	0.0000	0.0000	8
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0833	0.2887	12
YEAR	88	0.0000	0.0000	8
YEAR	89	0.0000	0.0000	16
LOCATION	4 SRI JOHNSONS LEE SO	OUTH 0.4600	0.8855	50
YEAR	85	0.0000	0.0000	8
YEAR	86	0.0000	0.0000	12
YEAR	87	0.7000	1.0593	10
YEAR				
	88	1.0000	1.4142	8
YEAR	89	0.6667	0.7785	12
LOCATION	5 SRI RODES REEF	0.2708	0.5739	48
YEAR	85	0.0000	0.0000	4
YEAR	86	0.3333	0.6513	12
YEAR	87	0.0833	0.2887	12
YEAR	88	0.6250	0.9161	8
YEAR	89	0.2500	0.4523	12
LOCATION	6 SCI GULL ISLAND SO	UTH 0.7500	1.0000	48
YEAR	85	0.0000	0.0000	4
YEAR	86	0.0833	0.2887	12
YEAR	87	0.6667	0.7785	12
YEAR	88	1.0000	1.3093	8
YEAR	89	1.5833	0.9962	12
I OCA ETON	7 COT EDVO WARROW	0 4772	0 7001	4.4
LOCATION	7 SCI FRYS HARBOR	0.4773	0.7921	44
YEAR	86	0.2500	0.6216	12
YEAR	87	0.9167	0.7930	12
YEAR	88	0.7500	1.1650	8
YEAR	89	0.0833	0.2887	12
LOCATION	8 SCI PELICAN BAY	0.2083	0.4593	48
YEAR	85	0.0000	0.0000	4
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
	88			8
YEAR		0.2500	0.7071	
YEAR	89	0.6667	0.4924	12
LOCATION	9 SCI SCORPION ANCHOR		0.1443	48
YEAR	85	0.0000	0.0000	4
YEAR	86	0.0833	0.2887	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	12
YEAR	89	0.0000	0.0000	8
I OCAMITON	10 001 401104 0220	0 0045	0 4615	4.4
LOCATION	10 SCI YELLOW BANKS	0.2045	0.4615	44
YEAR	86	0.0000	0.0000	8

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects Variable Value Label Mean Std Dev Cases YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 8 YEAR 89 0.5625 0.6292 16 LOCATION 11 ANI ADMIRALS REEF 0.0893 0.3944 56 85 0.0000 0.0000 0.0000 0.0000 YEAR 86 12 YEAR 87 0.0833 0.2887 12 0.0000 YEAR 88 0.0000 12 0.2500 YEAR 89 0.6831 16 12 ANI CATHEDRAL COVE 0.8042 52 LOCATION 0.4808 YEAR 85 0.0000 0.0000 4 86 0.4523 YEAR 0.2500 12 YEAR 87 0.4167 0.6686 12 YEAR 88 1.1667 1.1934 12 YEAR 89 0.2500 0.4523 12 13 ANI LANDING COVE LOCATION 0.5417 1.1291 48 85 3.0000 2.7080 86 0.2500 0.6216 12 YEAR YEAR 87 0.1667 0.3892 12 YEAR 88 0.4167 0.5149 12 YEAR 89 0.5000 0.5345 8 LOCATION 14 SBI SOUTHEAST SEALION 0.4928 56 0.1071 0.0000 0.0000 YEAR 4 0.4167 0.9962 YEAR 86 12 YEAR 87 0.0500 0.2236 20 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 12 LOCATION 15 SBI ARCH POINT 0.0962 0.2977 52 0.0000 0.0000 YEAR 86 0.0000 0.0000 12 YEAR YEAR 87 0.1667 0.3892 12 YEAR 88 0.0833 0.2887 12 YEAR 89 0.1667 0.3892 12

86

87

88

89

0.0385

0.0000

0.0000

0.1667

0.0000

0.1942

0.0000

0.0000

0.3892

0.0000

52

16

12

12

LOCATION

YEAR

YEAR

YEAR

Variable	Value	Fish Transects Label	Mean	Std Dev	Cases
SPECIES	Semicos	syphus pulcher female	3.7003	4.0902	794
LOCATION		SMI WYCKOFF LEDGE	0.3182	0.5613	44
		DHI WICKOII BEDOE			
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	8
YEAR	87		0.5000	0.5222	12
YEAR	88		0.0000	0.0000	8
					12
YEAR	89		0.6667	0.7785	12
LOCATION		SMI HARE ROCK	1.8750	3.4618	48
YEAR	85		2.5000	1.0000	4
YEAR	86		0.5000	0.5222	12
YEAR	87		2.1667	2.3677	12
YEAR	88		5.8750	6.5778	8
YEAR	89		0.0833	0.2887	12
LOCATION	3	SRI JOHNSONS LEE NORTH	3.2857	2.2051	56
YEAR	85		4.7500	2.2520	8
YEAR	86		3.7500	1.5448	12
YEAR	87		4.4167	2.3143	12
YEAR	88		3.0000	1.4142	8
YEAR	89		1.5000	1.7512	16
LOCATION	4	SRI JOHNSONS LEE SOUTH	5.3000	3.5871	50
YEAR	85		2.6250	1.5059	8
YEAR	86		8.5000	3.1479	12
YEAR	87		8.1000	2.8848	10
YEAR	88		2.6250	1.8468	8
YEAR	89		3.3333	2.0151	12
LOCATION	5	SRI RODES REEF	2.7708	2.1659	48
		OKI KODEO KEEL			
YEAR	85		1.2500	0.9574	4
YEAR	86		2.5833	1.8320	12
YEAR	87		3.6667	1.6697	12
YEAR	88		0.5000	0.5345	8
YEAR	89		4.0833	2.4664	12
LOCATION	6	SCI GULL ISLAND SOUTH	4.2708	2.8415	48
		SCI GODD ISDAND SOOTH			
YEAR	85		6.0000	1.8257	4
YEAR	86		6.8333	3.6139	12
YEAR	87		3.0833	1.3114	12
YEAR	88		4.2500	2.0529	8
YEAR	89		2.3333	1.4975	12
I 007 TT 031	7 ~	CT FDVC IIADDOD	11 0455	C 0000	4.4
LOCATION		CI FRYS HARBOR	11.0455	6.8606	44
YEAR	86		11.0000	5.1698	12
YEAR	87		17.4167	8.4257	12
YEAR	88		6.5000	1.8516	8
			7.7500		
YEAR	89	007 007 0000		3.5961	12
LOCATION		SCI PELICAN BAY	5.7708	3.4656	48
YEAR	85		3.0000	1.6330	4
YEAR	86		5.1667	1.8990	12
YEAR	87		6.7500	4.1588	12
YEAR	88		8.3750	4.3732	8
YEAR	89		4.5833	2.6097	12
LOCATION	9	SCI SCORPION ANCHORAGE	2.3333	2.4086	48
YEAR	85		0.5000	0.5774	4
YEAR	86		2.5000	1.9306	12
YEAR	87		4.4167	2.9064	12
YEAR	88		1.9167	1.8809	12
YEAR	89		0.5000	0.7559	8
	0,5		0.0000	0.7000	5
LOCATION	10	SCI YELLOW BANKS	3.1818	2.1051	44
YEAR	86		4.6250	1.7678	8
	87		3.0833	1.8809	
YEAR	0 /		J.U033	1.0009	12

Channel	Islands Na	ational Park Kelp Forest Fish Transects	Monitoring	1982-1989	
Variable	Value	Label	Mean	Std Dev	Cases
YEAR	88		1.7500	1.6690	8
YEAR	89		3.2500	2.2657	16
LOCATION	11 85	ANI ADMIRALS REEF	7.9107 6.7500	5.6545 2.2174	56 4
YEAR YEAR	86		13.8333	9.5139	12
YEAR	87		6.2500	2.1373	12
YEAR	88		5.3333	1.3027	12
YEAR	89		6.9375	2.8860	16
ILAK	89		0.93/3	2.8860	10
LOCATION	12	ANI CATHEDRAL COVE	2.2885	2.0989	52
YEAR	85		1.0000	1.4142	4
YEAR	86		1.0833	0.7930	12
YEAR	87		2.2500	1.4848	12
YEAR	88		3.7500	2.9580	12
YEAR	89		2.5000	1.9306	12
LOCATION	13	ANI LANDING COVE	1.3958	1.2332	48
YEAR	85		0.0000	0.0000	4
YEAR	86		1.8333	1.1934	12
YEAR	87		0.8333	0.8348	12
YEAR	88		1.6667	1.3707	12
YEAR	89		1.8750	1.2464	8
LOCATION	14	SBI SOUTHEAST SEALION	2.5000	2.9045	56
YEAR	85		4.0000	1.8257	4
YEAR	86		5.4167	4.5619	12
YEAR	87		1.8500	1.0400	20
YEAR	88		1.7500	2.3146	8
YEAR	89		0.6667	0.4924	12
LOCATION	15	SBI ARCH POINT	2.1538	1.8827	52
YEAR	85		3.7500	2.3629	4
YEAR	86		3.4167	1.4434	12
YEAR	87		1.7500	1.2154	12
YEAR	88		2.6667	2.0151	12
YEAR	89		0.2500	0.4523	12
LOCATION	16	SBI CAT CANYON	2.9038	2.4754	52
YEAR	86		2.7500	1.6125	16
YEAR	87		3.5833	3.0883	12
YEAR	88		2.2500	3.1659	12
YEAR	89		3.0833	2.0652	12

		Fish Transe	ects		
Variable	Value	Label	Mean	Std Dev	Cases
SPECIES	Elpah i -	tica jacksomi od-1:	2 0670	4.9320	794
		<i>tica jacksoni</i> adult			
LOCATION	1	SMI WYCKOFF LEDGE	0.2955	0.6317	44
YEAR	85		0.7500	0.9574	4
YEAR	86		0.5000	0.5345	8
YEAR	87		0.4167	0.9003	12
YEAR	88		0.1250	0.3536	8
YEAR	89		0.0000	0.0000	12
ILAN	0.9		0.0000	0.0000	12
LOCATION	2	SMI HARE ROCK	0.7292	1.1059	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.3333	0.4924	12
YEAR	87		1.5000	1.6787	12
YEAR	88		0.7500	0.8864	8
YEAR	89		0.5833	0.7930	12
T OCA ETON	2	ODT TOUNGONG THE	NODEL 12 0000	10 2045	E.C.
LOCATION	3	SRI JOHNSONS LEE		10.3045	56
YEAR	85		20.6250	13.5745	8
YEAR	86		24.0833	9.1200	12
YEAR	87		12.5833	2.6097	12
YEAR	88		6.8750	2.4749	8
YEAR	89		4.2500	1.8439	16
LOCATION	4	SRI JOHNSONS LEE	SOUTH 6.7800	4.8162	50
YEAR	85	BILL COMMODING EEE	11.2500	4.2342	8
				4.1304	12
YEAR	86		10.8333		
YEAR	87		6.7000	2.6687	10
YEAR	88		2.1250	1.6421	8
YEAR	89		2.9167	1.6765	12
LOCATION	5	SRI RODES REEF	2.7708	2.8676	48
YEAR	85		7.5000	5.5076	4
YEAR	86		3.5000	2.4309	12
YEAR	87		3.0000	2.2962	12
YEAR	88		1.6250	1.1877	8
YEAR	89		1.0000	1.2792	12
LOCATION	6	SCI GULL ISLAND S	O.7500	0.9340	48
YEAR	85		2.0000	1.4142	4
YEAR	86		1.1667	1.0299	12
YEAR	87		0.5833	0.5149	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.5833	0.7930	12
I 003 ET 031	-	dot EDVG UZDDOD	4 7500	2 5065	4.4
LOCATION		SCI FRYS HARBOR	4.7500	3.5967	44
YEAR	86		4.9167	3.6546	12
YEAR	87		5.5833	4.7186	12
YEAR	88		5.2500	3.6154	8
YEAR	89		3.4167	1.9287	12
LOCATION	8	SCI PELICAN BAY	5.8125	3.1935	48
YEAR	85	- J L.L. O'''' D'''	4.0000		4
YEAR	86		6.0833	2.2344	12
YEAR	87		4.6667	2.7414	12
YEAR	88		5.2500	1.5811	8
YEAR	89		7.6667	4.5394	12
LOCATION	9	SCI SCORPION ANCH	IORAGE 2.6875	2.1749	48
YEAR	85		2.5000	2.3805	4
YEAR	86		5.0000	1.8586	12
YEAR	87		2.5833	2.0652	12
	88		1.5000	1.1677	12
YEAR					
YEAR	89		1.2500	1.0351	8
LOCATION	10	SCI YELLOW BANKS	0.4318	0.8183	44
YEAR	86		1.2500	1.2817	8

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects Variable Value Label Mean Std Dev Cases YEAR 87 0.5000 0.6742 12 YEAR 88 0.0000 0.0000 8 YEAR 89 0.1875 0.5439 16 LOCATION 11 ANI ADMIRALS REEF 56 2.3571 2.8568 85 8.0000 1.8257 86 87 3.3303 YEAR 5.0000 12 YEAR 0.8333 0.7177 12 0.7930 YEAR 88 1.0833 12 1.1236 YEAR 89 1.0625 16 12 ANI CATHEDRAL COVE 52 LOCATION 1.6923 2.1832 YEAR 85 1.0000 0.8165 4 86 2.0944 YEAR 2.7500 12 YEAR 87 0.9167 0.9962 12 3.2845 YEAR 88 2.6667 12 YEAR 89 0.6667 1.2309 12 13 ANI LANDING COVE LOCATION 1.5000 1.6759 48 85 4.0000 2.9439 0.9003 86 1.5833 12 YEAR YEAR 87 0.7500 1.2881 12 YEAR 88 1.5833 1.7299 12 YEAR 89 1.1250 1.3562 8 LOCATION 14 SBI SOUTHEAST SEALION 0.0000 0.0000 56 0.0000 0.0000 YEAR 4 0.0000 YEAR 86 0.0000 12 YEAR 87 0.0000 0.0000 20 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 12 LOCATION 15 SBI ARCH POINT 0.7500 2.9096 52 9.2500 6.2383 YEAR 86 0.0833 0.2887 12 YEAR 0.2887 YEAR 87 0.0833 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.0000 0.0000 12 LOCATION 16 SBI CAT CANYON 0.5000 0.7796 52 86 1.1875 0.9811 YEAR 16

YEAR

YEAR

YEAR

87

88

89

0.3892

0.3892

0.4523

12

12

0.1667

0.1667

0.2500

Variable	Value	Fish Transects Label	Mean	Std Dev	Cases
SPECIES	Embio	tica jacksoni juvenile	0.2683	1.0967	794
LOCATION	1	SMI WYCKOFF LEDGE	1.4545	3.3023	44
	85	SMI WICKOFF DEDGE			
YEAR			0.0000	0.0000	4
YEAR	86		0.1250	0.3536	8
YEAR	87		5.2500	4.5751	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
I OCATION	0	CMT HADE DOOR	0 2222	1 0202	4.0
LOCATION	2	SMI HARE ROCK	0.3333	1.0383	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		1.1667	1.8505	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.1667	0.3892	12
I OCATION	2	CDI TOUNCOME TEE MODEU	0 2014	0 0167	E.C.
LOCATION	3	SRI JOHNSONS LEE NORTH	0.3214	0.9167	56
YEAR	85		0.0000	0.0000	8
YEAR	86		0.2500	0.8660	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.9375	1.3889	16
I OCAMITON	A	CDT TOUNGONG THE GOVERN	0 1000	O F041	EO
LOCATION	4	SRI JOHNSONS LEE SOUTH	0.1600	0.5841	50
YEAR	85		0.0000	0.0000	8
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	10
YEAR	88		0.0000	0.0000	8
YEAR	89		0.6667	1.0731	12
ILAK	09		0.0007	1.0731	12
LOCATION	5	SRI RODES REEF	0.4375	0.8970	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.1667	0.3892	12
YEAR	87		1.5000	1.2432	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0833	0.2887	12
LOCATION	6	SCI GULL ISLAND SOUTH	0.0000	0.0000	48
YEAR	85		0.0000	0.0000	4
YEAR	86			0.0000	12
			0.0000		
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	7	SCI FRYS HARBOR	0.0000	0.0000	44
YEAR	86	-	0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	8	SCI PELICAN BAY	0.3542	1.3446	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
	87		0.0000		12
YEAR				0.0000	
YEAR	88		0.0000	0.0000	8
YEAR	89		1.4167	2.4664	12
LOCATION	9	SCI SCORPION ANCHORAGE	0.0000	0.0000	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	8
LOCATION	10	SCI YELLOW BANKS	0.0227	0.1508	44
YEAR	86		0.0000	0.0000	8
TEAN	00		0.0000	0.0000	O

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects Variable Value Label Mean Std Dev Cases YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0625 0.2500 16 LOCATION 11 ANI ADMIRALS REEF 0.0000 0.0000 56 85 0.0000 0.0000 4 0.0000 0.0000 YEAR 86 12 YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 0.0000 YEAR 89 0.0000 16 12 ANI CATHEDRAL COVE 0.9050 52 LOCATION 0.3462 YEAR 85 0.0000 0.0000 4 86 0.6216 YEAR 0.2500 12 YEAR 87 0.0000 0.0000 12 YEAR 88 0.8333 1.5275 12 YEAR 89 0.4167 0.7930 12 LOCATION 13 ANI LANDING COVE 0.7292 1.3486 48 85 0.0000 0.0000 4 0.6686 86 0.5833 12 YEAR YEAR 87 0.0000 0.0000 12 YEAR 88 0.7500 1.5448 12 YEAR 89 2.3750 1.8468 8 LOCATION 14 SBI SOUTHEAST SEALION 0.0000 0.0000 56 0.0000 0.0000 4 YEAR 0.0000 YEAR 86 0.0000 12 YEAR 87 0.0000 0.0000 20 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 12 LOCATION 15 SBI ARCH POINT 0.2500 0.6223 52 0.0000 0.0000 YEAR 86 0.0000 0.0000 12 YEAR YEAR 87 0.0000 0.0000 12 YEAR 88 1.0833 0.9003 12 YEAR 89 0.0000 0.0000 12

86

87

88

89

0.0385

0.0000

0.0000

0.1667

0.0000

0.1942

0.0000

0.0000

0.3892

0.0000

52

16

12

12

12

LOCATION

YEAR

YEAR

YEAR

Variable	Value Label	Mean	Std Dev	Cases
SPECIES	Embiotica lateralis adult	0.4484	1.1629	794
LOCATION	1 SMI WYCKOFF LEDGE	1.4318	1.4043	44
YEAR	85	2.0000	0.8165	4
YEAR	86	2.6250	1.9226	8
YEAR	87	1.2500	1.0553	12
YEAR	88	0.8750	1.3562	8
YEAR	89	1.0000	1.1282	12
LOCATION	2 SMI HARE ROCK	1.5208	1.7982	48
		2.5000		
YEAR	85		2.6458	4
YEAR	86	1.5833	1.3790	12
YEAR	87	1.0833	2.0652	12
YEAR	88	2.5000	1.3093	8
YEAR	89	0.9167	1.7299	12
LOCATION	2 ODT TOUNGONG THE NODE	TII 1 0140	1 (272	E.C.
LOCATION	3 SRI JOHNSONS LEE NOR		1.6372	56
YEAR	85	0.7500	0.8864	8
YEAR	86	0.3333	0.6513	12
YEAR	87	0.0000	0.0000	12
YEAR	88	3.5000	2.4495	8
YEAR	89	1.8750	1.0878	16
LOCATION	4 SRI JOHNSONS LEE SOU	TH 1.0000	1.1952	50
YEAR	85	2.2500	1.7525	8
YEAR	86	0.5000	0.7977	12
YEAR	87	0.3000	0.4830	10
YEAR	88	0.5000	0.7559	8
YEAR	89	1.5833	0.9003	12
LOCATION	5 SRI RODES REEF	1.6042	2.4818	48
YEAR	85	8.7500	2.0616	4
YEAR	86	1.1667	1.0299	12
YEAR	87	0.5000	0.7977	12
YEAR	88	0.0000	0.0000	8
YEAR	89	1.8333	1.1934	12
LOCATION	6 SCI GULL ISLAND SOUTE	н 0.2083	0.4104	48
YEAR	85	0.7500	0.5000	4
YEAR	86	0.0833	0.2887	12
YEAR	87	0.0833	0.2887	12
YEAR	88	0.0000	0.0000	8
YEAR	89	0.4167	0.5149	12
10077707	7 001 77 22 22 22	0 1501	0 5050	
LOCATION	7 SCI FRYS HARBOR	0.1591	0.5258	44
YEAR	86	0.1667	0.3892	12
YEAR	87	0.4167	0.9003	12
YEAR	88	0.0000	0.0000	8
YEAR	89	0.0000	0.0000	12
LOCATION	8 SCI PELICAN BAY	0.0000	0.0000	48
YEAR	85	0.0000	0.0000	4
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	8
YEAR	89	0.0000	0.0000	12
LOCATION	9 SCI SCORPION ANCHORAG	GE 0.0000	0.0000	48
YEAR	85	0.0000	0.0000	4
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	12
YEAR	89	0.0000	0.0000	8
I OCATITON	10 SCI YELLOW BANKS	0 0007	0 1500	44
LOCATION		0.0227	0.1508	
YEAR	86	0.0000	0.0000	8

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects Variable Value Label Mean Std Dev Cases YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0625 0.2500 16 LOCATION 11 ANI ADMIRALS REEF 0.0893 0.2877 56 85 0.2500 0.5000 0.3892 YEAR 86 0.1667 12 YEAR 87 0.0833 0.2887 12 YEAR 88 0.0000 0.0000 12 0.2500 YEAR 89 0.0625 16 12 ANI CATHEDRAL COVE 0.0000 0.0000 52 LOCATION YEAR 85 0.0000 0.0000 4 86 0.0000 YEAR 0.0000 12 YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 0.0000 YEAR 89 0.0000 12 LOCATION 13 ANI LANDING COVE 0.0417 0.2019 48 85 0.0000 0.0000 4 0.0000 86 0.0000 12 YEAR YEAR 87 0.0000 0.0000 12 YEAR 88 0.1667 0.3892 12 YEAR 89 0.0000 0.0000 8 LOCATION 14 SBI SOUTHEAST SEALION 0.0000 0.0000 56 0.0000 0.0000 YEAR 4 0.0000 YEAR 86 0.0000 12 YEAR 87 0.0000 0.0000 20 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 12 LOCATION 15 SBI ARCH POINT 0.0000 0.0000 52 0.0000 0.0000 YEAR 86 0.0000 0.0000 12 YEAR YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.0000 0.0000 12

86

87

88

89

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

52

16

12

12

12

LOCATION

YEAR

YEAR

YEAR

Variable	Fish Transects Value Label	Mean	Std Dev	Cases
		0.1106	0.5566	50.4
SPECIES	Embiotica lateralis juvenile	0.1196	0.5766	794
LOCATION	1 SMI WYCKOFF LEDGE	0.0682	0.2550	44
YEAR	85	0.0000	0.0000	4
YEAR	86	0.0000	0.0000	8
YEAR	87	0.0000	0.0000	12
YEAR	88	0.1250	0.3536	8
YEAR	89	0.1667	0.3892	12
LOCATION	2 SMI HARE ROCK	0.9583	1.5973	48
YEAR	85	0.0000	0.0000	4
YEAR	86	0.9167	1.1645	12
YEAR	87	0.6667	1.2309	12
		2.5000		
YEAR	88		2.5635	8
YEAR	89	0.5833	1.2401	12
LOCATION	3 SRI JOHNSONS LEE NORTH	0.2679	0.6740	56
YEAR	85	0.0000	0.0000	8
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	8
YEAR	89	0.9375	0.9979	16
LOCATION	4 SRI JOHNSONS LEE SOUTH	0.2000	0.5345	50
YEAR	85	0.0000	0.0000	8
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	10
YEAR	88	0.0000	0.0000	8
YEAR	89	0.8333	0.8348	12
LOCATION	5 SRI RODES REEF	0.3125	0.9927	48
YEAR	85	0.0000	0.0000	4
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	8
YEAR	89	1.2500	1.7123	12
LOCATION	6 SCI GULL ISLAND SOUTH	0.0208	0.1443	48
YEAR	85	0.0000	0.0000	4
YEAR	86	0.0000	0.0000	12
	87	0.0000		12
YEAR			0.0000	
YEAR	88	0.1250	0.3536	8
YEAR	89	0.0000	0.0000	12
LOCATION	7 SCI FRYS HARBOR	0.0000	0.0000	44
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	8
YEAR	89	0.0000	0.0000	12
LOCATION	8 SCI PELICAN BAY	0.0000	0.0000	48
YEAR	85	0.0000	0.0000	4
YEAR	86	0.0000	0.0000	12
	87	0.0000	0.0000	12
YEAR				
YEAR	88	0.0000	0.0000	8
YEAR	89	0.0000	0.0000	12
LOCATION	9 SCI SCORPION ANCHORAGE	0.0000	0.0000	48
YEAR	85	0.0000	0.0000	4
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	12
YEAR	89	0.0000	0.0000	8
LOCATION	10 SCI YELLOW BANKS	0.0227	0.1508	44
YEAR	86	0.0000	0.0000	8
22211		3.3000	3.3300	9

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects Variable Value Label Mean Std Dev Cases YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0625 0.2500 16 LOCATION 11 ANI ADMIRALS REEF 0.0000 0.0000 56 85 0.0000 0.0000 0.0000 0.0000 YEAR 86 12 YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 0.0000 YEAR 89 0.0000 16 12 ANI CATHEDRAL COVE 0.0000 0.0000 52 LOCATION YEAR 85 0.0000 0.0000 4 86 0.0000 YEAR 0.0000 12 YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 0.0000 YEAR 89 0.0000 12 LOCATION 13 ANI LANDING COVE 0.0833 0.4535 48 85 0.0000 0.0000 4 0.0000 86 0.0000 12 YEAR YEAR 87 0.0000 0.0000 12 YEAR 88 0.3333 0.8876 12 YEAR 89 0.0000 0.0000 8 LOCATION 14 SBI SOUTHEAST SEALION 0.0000 0.0000 56 0.0000 0.0000 YEAR 4 0.0000 YEAR 86 0.0000 12 YEAR 87 0.0000 0.0000 20 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 12 LOCATION 15 SBI ARCH POINT 0.0000 0.0000 52 0.0000 0.0000 YEAR 86 0.0000 0.0000 12 YEAR YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.0000 0.0000 12

86

87

88

89

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

52

16

12

12

LOCATION

YEAR

YEAR

YEAR

		Fish Transects			
Variable	Value	Label	Mean	Std Dev	Cases
CDECTEC	Domo 1	ishthus seess adult	0.0450	1 7470	794
SPECIES		ichthys vacca adult	0.9458	1.7479	
LOCATION	1	SMI WYCKOFF LEDGE	1.0682	2.1502	44
YEAR	85		3.0000	4.0825	4
YEAR	86		3.7500	2.5495	8
YEAR	87		0.3333	0.4924	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0833	0.2887	12
LOCATION	2	SMI HARE ROCK	1.4167	2.2582	48
YEAR	85		0.7500	1.5000	4
YEAR	86		2.5833	3.5792	12
YEAR	87		0.9167	1.1645	12
YEAR	88		2.2500	2.0529	8
YEAR	89		0.4167	0.9003	12
LOCATION	3	SRI JOHNSONS LEE NORTH	2.0714	1.8572	56
YEAR	85		2.8750	2.3566	8
YEAR	86		3.8333	2.0375	12
YEAR	87		1.4167	0.6686	12
YEAR	88		2.1250	1.6421	8
YEAR	89		0.8125	0.7500	16
LOCATION	4	SRI JOHNSONS LEE SOUTH	3.4400	2.4341	50
		SKI JOHNSONS LEE SOUTH			
YEAR	85		4.8750	1.6421	8
YEAR	86		5.9167	2.0207	12
YEAR	87		2.6000	1.8974	10
YEAR	88		0.6250	0.7440	8
YEAR	89		2.5833	1.3790	12
LOCATION	5	SRI RODES REEF	0.7708	1.2588	48
YEAR	85		2.5000	3.7859	4
YEAR	86		0.5833	0.7930	12
YEAR	87		0.9167	0.2887	12
YEAR	88		0.1250	0.3536	8
	89		0.6667	0.7785	12
YEAR	09		0.0007	0.7765	12
LOCATION	6	SCI GULL ISLAND SOUTH	1.1875	1.4389	48
YEAR	85		1.0000	0.8165	4
YEAR	86		0.7500	0.7538	12
YEAR	87		2.3333	2.1034	12
YEAR	88		1.6250	1.0607	8
YEAR	89		0.2500	0.4523	12
LOCATION	7	SCI FRYS HARBOR	2.6136	2.7971	44
YEAR	86	TIT INTO IMMOON	5.5833	3.4234	12
YEAR	87		2.0833	1.3790	12
YEAR	88		0.2500	0.7071	8
YEAR	89		1.7500	1.3568	12
LOCATION	8	SCI PELICAN BAY	1.6042	1.3951	48
YEAR	85		2.5000	2.5166	4
YEAR	86		2.1667	1.5275	12
YEAR	87		1.5000	1.2432	12
YEAR	88		0.2500	0.4629	8
YEAR	89		1.7500	0.7538	12
T 003 m = 0.2	^	001 00000100 3000000	0 0700	0 4040	4.0
LOCATION	9	SCI SCORPION ANCHORAGE	0.2708	0.4942	48
YEAR	85		0.2500	0.5000	4
YEAR	86		0.3333	0.4924	12
YEAR	87		0.0833	0.2887	12
YEAR	88		0.3333	0.6513	12
YEAR	89		0.3750	0.5175	8
LOCATION	10	SCI YELLOW BANKS	0.0000	0.0000	44
YEAR	86		0.0000	0.0000	8
THAIN	30		0.0000	0.0000	0

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects Variable Value Label Mean Std Dev Cases YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 16 LOCATION 11 ANI ADMIRALS REEF 0.6429 1.0690 56 85 1.0000 1.4142 0.3333 YEAR 86 0.4924 12 YEAR 87 0.1667 0.3892 12 0.2887 YEAR 88 0.0833 12 YEAR 89 1.5625 1.4127 16 12 ANI CATHEDRAL COVE 0.4303 52 LOCATION 0.1731 YEAR 85 0.2500 0.5000 4 86 YEAR 0.4167 0.5149 12 YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.2500 0.6216 12 13 ANI LANDING COVE LOCATION 0.0208 0.1443 48 85 0.2500 0.5000 4 0.0000 86 0.0000 12 YEAR YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.0000 0.0000 8 LOCATION 14 SBI SOUTHEAST SEALION 0.0000 0.0000 56 0.0000 0.0000 YEAR 4 0.0000 YEAR 86 0.0000 12 YEAR 87 0.0000 0.0000 20 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 12 LOCATION 15 SBI ARCH POINT 0.0577 0.2354 52 0.5000 0.5774 YEAR 86 0.0000 0.0000 12 YEAR YEAR 87 0.0833 0.2887 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.0000 0.0000 12

86

87

88

89

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

52

16

12

12

12

LOCATION

YEAR

YEAR

YEAR

		Fish Transects			
Variable	Value	Label	Mean	Std Dev	Cases
CDECTEC	D1:	-h4h	0 0270	0.4000	794
SPECIES		chthys vacca juvenile	0.0378	0.4828	
LOCATION	1	SMI WYCKOFF LEDGE	0.1136	0.4428	44
YEAR	85		0.0000	0.0000	4
YEAR	86		0.5000	0.9258	8
YEAR	87		0.0833	0.2887	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	2	SMI HARE ROCK	0.0208	0.1443	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0833	0.2887	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	3	SRI JOHNSONS LEE NORTH	0.1964	1.4699	56
YEAR	85		0.0000	0.0000	8
	86		0.0000		12
YEAR				0.0000	
YEAR	87		0.0000	0.0000	12
YEAR	88		1.3750	3.8891	8
YEAR	89		0.0000	0.0000	16
LOCATION	4	SRI JOHNSONS LEE SOUTH	0.0000	0.0000	50
YEAR		21.1 0011100110 1111 100111			
	85		0.0000	0.0000	8
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	10
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
ILAN	0,5		0.0000	0.0000	12
LOCATION	5	SRI RODES REEF	0.2292	1.0364	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		1.3750	2.3261	8
YEAR	89		0.0000	0.0000	12
LOCATION	6	SCI GULL ISLAND SOUTH	0.0000	0.0000	48
		SCI GOLL ISLAND SCOIN			
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
ILAK	09		0.0000	0.0000	12
LOCATION	7	SCI FRYS HARBOR	0.0455	0.2107	44
YEAR	86		0.1667	0.3892	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	8	SCI PELICAN BAY	0.0000	0.0000	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	9	SCI SCORPION ANCHORAGE	0.0000	0.0000	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
	87				
YEAR			0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	8
LOCATION	10	SCI YELLOW BANKS	0.0000	0.0000	44
YEAR	86		0.0000	0.0000	8
TEME	00		0.0000	0.0000	O

Appx. 4-40

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects Variable Value Label Mean Std Dev Cases YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 16 LOCATION 11 ANI ADMIRALS REEF 0.0000 0.0000 56 85 0.0000 0.0000 4 0.0000 0.0000 YEAR 86 12 YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 0.0000 YEAR 89 0.0000 16 12 ANI CATHEDRAL COVE 0.0000 0.0000 52 LOCATION YEAR 85 0.0000 0.0000 4 86 0.0000 YEAR 0.0000 12 YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 0.0000 YEAR 89 0.0000 12 LOCATION 13 ANI LANDING COVE 0.0000 0.0000 48 85 0.0000 0.0000 4 0.0000 86 0.0000 12 YEAR YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.0000 0.0000 8 LOCATION 14 SBI SOUTHEAST SEALION 0.0000 0.0000 56 0.0000 0.0000 4 YEAR 0.0000 YEAR 86 0.0000 12 YEAR 87 0.0000 0.0000 20 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 12 LOCATION 15 SBI ARCH POINT 0.0000 0.0000 52 0.0000 0.0000 YEAR 86 0.0000 0.0000 12 YEAR YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.0000 0.0000 12

86

87

88

89

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

52

16

12

12

LOCATION

YEAR

YEAR

YEAR

		Fish Transects			
Variable	Value	Label	Mean	Std Dev	Cases
SPECIES	Himeir	pops rubicundus adult	2.1398	3.2938	794
		· =			
LOCATION	1	SMI WYCKOFF LEDGE	0.0000	0.0000	44
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	8
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	2	SMI HARE ROCK	0.0000	0.0000	48
YEAR	85	on mad nock	0.0000	0.0000	4
			0.0000		12
YEAR	86			0.0000	
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	3	SRI JOHNSONS LEE NORTH	0.6071	0.8879	56
YEAR	85		0.1250	0.3536	8
YEAR	86		0.1667	0.3892	12
YEAR	87		1.0000	1.0445	12
YEAR	88		0.2500	0.4629	8
YEAR	89		1.0625	1.0626	16
LOCATION	4	SRI JOHNSONS LEE SOUTH	0.0000	0.0000	50
YEAR	85		0.0000	0.0000	8
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	10
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	5	SRI RODES REEF	0.0000	0.0000	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	6	SCI GULL ISLAND SOUTH	0.3542	0.5645	48
YEAR	85		0.2500	0.5000	4
YEAR	86		0.5833	0.7930	12
YEAR	87		0.5000	0.5222	12
YEAR	88		0.2500	0.4629	8
YEAR	89		0.0833	0.2887	12
T 0 0 3 ET 0 N	7	agt EDVa WADDOD	1 1126	1 0201	4.4
LOCATION		SCI FRYS HARBOR	1.1136	1.0391	44
YEAR	86		0.4167	0.6686	12
YEAR	87		1.8333	1.2673	12
YEAR	88		1.0000	0.9258	8
YEAR	89		1.1667	0.7177	12
LOCATION	8	SCI PELICAN BAY	4.1042	3.2956	48
YEAR	85		1.0000	0.8165	4
YEAR	86		3.2500	1.7645	12
	87				
YEAR			6.2500	5.4125	12
YEAR	88		4.8750	1.3562	8
YEAR	89		3.3333	1.4975	12
LOCATION	9	SCI SCORPION ANCHORAGE	1.5833	1.2688	48
YEAR	85		1.2500	1.5000	4
YEAR	86		1.5833	0.9003	12
YEAR	87		2.0833	1.6765	12
YEAR	88		1.9167	1.0836	12
YEAR	89		0.5000	0.5345	8
LOCATION	10	SCI YELLOW BANKS	0.0000	0.0000	44
YEAR	86		0.0000	0.0000	8
YEAR	87		0.0000	0.0000	12
11111	57		0.000	0.0000	12

Channel	Islands Na	ational Park Kelp Forest Fish Transects	Monitoring	1982-1989	
Variable	Value	Label	Mean	Std Dev	Cases
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	16
LOCATION	11	ANI ADMIRALS REEF	1.7143	1.1711	56
YEAR	85		1.7500	1.5000	4
YEAR	86		1.2500	0.6216	12
YEAR	87		1.6667	1.1547	12
YEAR	88		1.7500	1.0553	12
YEAR	89		2.0625	1.4818	16
LOCATION	12	ANI CATHEDRAL COVE	5.1923	2.8218	52
YEAR	85		2.0000	1.8257	4
YEAR	86		3.9167	2.1515	12
YEAR	87		7.8333	2.3290	12
YEAR	88		5.8333	2.3677	12
YEAR	89		4.2500	2.4168	12
LOCATION	13	ANI LANDING COVE	4.2917	2.1533	48
YEAR	85		4.7500	0.5000	4
YEAR	86		3.8333	1.2673	12
YEAR	87		4.5000	3.0000	12
YEAR	88		4.4167	2.4664	12
YEAR	89		4.2500	2.0529	8
LOCATION	14	SBI SOUTHEAST SEALION	0.6786	0.7887	56
YEAR	85		0.5000	0.5774	4
YEAR	86		0.5000	0.6742	12
YEAR	87		0.8500	0.9333	20
YEAR	88		0.5000	0.7559	8
YEAR	89		0.7500	0.7538	12
LOCATION	15	SBI ARCH POINT	10.6538	3.8901	52
YEAR	85		9.7500	3.7749	4
YEAR	86		12.1667	5.8284	12
YEAR	87		11.1667	3.4859	12
YEAR	88		10.6667	2.2697	12
YEAR	89		8.9167	2.9375	12
LOCATION	16	SBI CAT CANYON	3.1154	1.7110	52
YEAR	86		2.7500	1.6931	16
YEAR	87		4.5000	2.1106	12
YEAR	88		2.6667	1.3707	12
YEAR	89		2.6667	0.7785	12

Variable	Value Label	Mean	Std Dev	Cases
SPECIES	Hypsypops rubicundus juveniles	0.0919	0.3927	794
LOCATION	1 SMI WYCKOFF LEDGE	0.0000	0.0000	44
YEAR	85	0.0000	0.0000	4
YEAR	86	0.0000	0.0000	8
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	8
YEAR	89	0.0000	0.0000	12
ILAK	89	0.0000	0.0000	12
LOCATION	2 SMI HARE ROCK	0.0000	0.0000	48
YEAR	85	0.0000	0.0000	4
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	8
YEAR	89	0.0000	0.0000	12
LOCATION	3 SRI JOHNSONS LEE NORTH	0.0000	0.0000	56
YEAR	85	0.0000	0.0000	8
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	8
YEAR	89	0.0000	0.0000	16
LOCATION	4 SRI JOHNSONS LEE SOUTH	0.0000	0.0000	50
YEAR	85	0.0000	0.0000	8
	86			12
YEAR		0.0000	0.0000	
YEAR	87	0.0000	0.0000	10
YEAR	88	0.0000	0.0000	8
YEAR	89	0.0000	0.0000	12
LOCATION	5 SRI RODES REEF	0.0000	0.0000	48
	85			4
YEAR		0.0000	0.0000	
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	8
YEAR	89	0.0000	0.0000	12
LOCATION	6 SCI GULL ISLAND SOUTH	0.0000	0.0000	48
	85	0.0000	0.0000	4
YEAR				
YEAR	86	0.0000	0.0000	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	8
YEAR	89	0.0000	0.0000	12
LOCATION	7 SCI FRYS HARBOR	0.1591	0.5258	44
				12
YEAR	86	0.0000	0.0000	
YEAR	87	0.5833	0.9003	12
YEAR	88	0.0000	0.0000	8
YEAR	89	0.0000	0.0000	12
LOCATION	8 SCI PELICAN BAY	0.4375	0.7411	48
YEAR				
	85	0.0000	0.0000	4
YEAR	86	0.9167	0.7930	12
YEAR	87	0.8333	0.9374	12
YEAR	88	0.0000	0.0000	8
YEAR	89	0.0000	0.0000	12
I OCATITON	9 SCI SCORPION ANCHORAGE	0 0000	0 1445	40
LOCATION		0.0208	0.1443	48
YEAR	85	0.0000	0.0000	4
YEAR	86	0.0833	0.2887	12
YEAR	87	0.0000	0.0000	12
YEAR	88	0.0000	0.0000	12
YEAR	89	0.0000	0.0000	8
LOCATION	10 SCI YELLOW BANKS	0.0000	0.0000	44
YEAR	86	0.0000	0.0000	8

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects Variable Value Label Mean Std Dev Cases YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 16 LOCATION 11 ANI ADMIRALS REEF 0.0000 0.0000 56 85 0.0000 0.0000 0.0000 0.0000 YEAR 86 12 YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 0.0000 YEAR 89 0.0000 16 0.8004 52 LOCATION 12 ANI CATHEDRAL COVE 0.2885 YEAR 85 0.0000 0.0000 4 86 1.3484 YEAR 1.0000 12 YEAR 87 0.2500 0.6216 12 0.0000 YEAR 88 0.0000 12 0.0000 YEAR 89 0.0000 12 LOCATION 13 ANI LANDING COVE 0.2917 0.6174 48 85 0.0000 0.0000 4 0.7930 86 0.9167 12 YEAR YEAR 87 0.2500 0.6216 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.0000 0.0000 8 LOCATION 14 SBI SOUTHEAST SEALION 0.0000 0.0000 56 0.0000 0.0000 YEAR 4 0.0000 YEAR 86 0.0000 12 YEAR 87 0.0000 0.0000 20 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 12 LOCATION 15 SBI ARCH POINT 0.2692 0.5641 52 1.2500 1.2583 YEAR 86 0.3892 12 YEAR 0.1667 YEAR 87 0.0833 0.2887 12 YEAR 88 0.2500 0.4523 12 YEAR 89 0.2500 0.4523 12

86

87

88

89

0.0192

0.0625

0.0000

0.0000

0.0000

0.1387

0.2500

0.0000

0.0000

0.0000

52

16

12

12

12

LOCATION

YEAR

YEAR

YEAR

		Fish Transects			
Variable	Value	Label	Mean	Std Dev	Cases
anna			0 5655	1 00:-	=
SPECIES	Girell	<i>la nigricans</i> adult	0.7670	1.8649	794
LOCATION	1	SMI WYCKOFF LEDGE	0.0000	0.0000	44
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	8
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	2	SMI HARE ROCK	0.0000	0.0000	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
	87		0.0000	0.0000	12
YEAR					
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	3	SRI JOHNSONS LEE NORTH	0.1964	0.4832	56
YEAR	85		0.2500	0.4629	8
YEAR	86		0.0000	0.0000	12
	87				12
YEAR			0.0833	0.2887	
YEAR	88		0.5000	0.9258	8
YEAR	89		0.2500	0.4472	16
LOCATION	4	SRI JOHNSONS LEE SOUTH	0.1600	0.3703	50
YEAR	85		0.1250	0.3536	8
YEAR	86		0.0000	0.0000	12
YEAR	87		0.3000	0.4830	10
YEAR	88		0.0000	0.0000	8
YEAR	89		0.3333	0.4924	12
LOCATION	5	SRI RODES REEF	0.0417	0.2019	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.1667	0.3892	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	6	SCI GULL ISLAND SOUTH	0.9583	1.0711	48
YEAR	85		0.0000	0.0000	4
					12
YEAR	86		0.7500	0.6216	
YEAR	87		1.9167	1.3790	12
YEAR	88		0.5000	0.7559	8
YEAR	89		0.8333	0.8348	12
LOCATION	7	SCI FRYS HARBOR	0.3182	0.6388	44
YEAR	86	-	0.0833	0.2887	12
YEAR	87		0.7500	0.9653	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.3333	0.4924	12
LOCATION	8	SCI PELICAN BAY	0.2083	0.5035	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0833	0.2887	12
YEAR	87		0.3333	0.6513	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.4167	0.6686	12
LOCATION	9	SCI SCORPION ANCHORAGE	1.0000	1.6503	48
YEAR	85	The state of the s	0.0000	0.0000	4
YEAR	86		0.4167	0.6686	12
YEAR	87		2.0000	2.3355	12
YEAR	88		1.5000	1.7321	12
YEAR	89		0.1250	0.3536	8
LOCATION	10	SCI YELLOW BANKS	0.0682	0.3339	44
		COL IDDOM DIMINO			
YEAR	86		0.0000	0.0000	8

Appx. 4-46

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects Variable Value Label Mean Std Dev Cases YEAR 87 0.0833 0.2887 12 YEAR 88 0.0000 0.0000 YEAR 89 0.1250 0.5000 16 1.5357 LOCATION 11 ANI ADMIRALS REEF 56 2.1823 85 1.7500 2.0616 86 87 0.6686 YEAR 0.4167 12 YEAR 1.1667 1.3371 12 YEAR 88 1.0000 1.0445 12 YEAR 89 3.0000 3.2455 16 52 LOCATION 12 ANI CATHEDRAL COVE 0.8654 1.5846 YEAR 85 0.0000 0.0000 4 86 0.2887 YEAR 0.0833 12 YEAR 87 0.4167 1.1645 12 YEAR 88 1.4167 1.3790 12 YEAR 89 1.8333 2.4058 12 13 ANI LANDING COVE LOCATION 3.4167 4.5092 48 85 3.5000 2.6458 86 0.7500 0.9653 12 YEAR YEAR 87 1.0000 0.8528 12 YEAR 88 9.1667 5.5405 12 YEAR 89 2.3750 1.5980 8 LOCATION 14 SBI SOUTHEAST SEALION 0.0000 0.0000 56 0.0000 0.0000 YEAR 4 0.0000 YEAR 86 0.0000 12 YEAR 87 0.0000 0.0000 20 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 12 52 LOCATION 15 SBI ARCH POINT 2.7115 2.6072 2.2500 2.2174 YEAR 86 1.9598 12 YEAR 1.7500 YEAR 87 3.0000 2.4121 12 YEAR 88 3.4167 3.1467 12 YEAR 89 2.8333 2.9797 12

86

87

88

89

1.0893

0.3416

0.8528

0.2887

1.7753

0.5962

0.1250

1.0000

0.0833

1.3333

52

16

12

12

LOCATION

YEAR

YEAR

YEAR

		Fish Transects			
Variable	Value	Label	Mean	Std Dev	Cases
SPECIES	Girel	<i>la nigricans</i> juvenile	0.0013	0.0355	794
	1	= =			
LOCATION	-	SMI WYCKOFF LEDGE	0.0000	0.0000	44
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	8
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
ILAK	09		0.0000	0.0000	12
LOCATION	2	SMI HARE ROCK	0.0000	0.0000	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
ILAN	09		0.0000	0.0000	12
LOCATION	3	SRI JOHNSONS LEE NORTH	0.0000	0.0000	56
YEAR	85		0.0000	0.0000	8
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88				8
			0.0000	0.0000	
YEAR	89		0.0000	0.0000	16
LOCATION	4	SRI JOHNSONS LEE SOUTH	0.0000	0.0000	51
YEAR	85		0.0000	0.0000	8
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	10
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	13
LOCATION	5	SRI RODES REEF	0.0000	0.0000	47
YEAR	85	5112 110525 11221	0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	11
LOCATION	6	SCI GULL ISLAND SOUTH	0.0000	0.0000	48
		SCI GOLL ISLAND SCOIL			
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
I OCATION	7	CCT FDVC HADDOD	0 0000	0 0000	11
LOCATION		SCI FRYS HARBOR	0.0000	0.0000	44
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
LOCATION	8	SCI PELICAN BAY	0.0000	0.0000	48
		OCI IEHICAN DAI			
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	8
YEAR	89		0.0000	0.0000	12
1007 7707	-	ggt ggopptov	0 0000	0.0000	4.0
LOCATION	9	SCI SCORPION ANCHORAGE	0.0000	0.0000	48
YEAR	85		0.0000	0.0000	4
YEAR	86		0.0000	0.0000	12
YEAR	87		0.0000	0.0000	12
YEAR	88		0.0000	0.0000	12
YEAR	89		0.0000	0.0000	8
LOCATION	10	SCI YELLOW BANKS	0.0000	0.0000	44
YEAR	86		0.0000	0.0000	8
					-

Appx. 4-48

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Fish Transects Variable Value Label Mean Std Dev Cases YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 16 LOCATION 11 ANI ADMIRALS REEF 0.0179 0.1336 56 85 0.0000 0.0000 4 0.0000 0.0000 YEAR 86 12 YEAR 87 0.0000 0.0000 12 YEAR 88 0.0833 0.2887 12 0.0000 0.0000 YEAR 89 16 12 ANI CATHEDRAL COVE 0.0000 0.0000 52 LOCATION YEAR 85 0.0000 0.0000 4 86 0.0000 YEAR 0.0000 12 YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 0.0000 YEAR 89 0.0000 12 LOCATION 13 ANI LANDING COVE 0.0000 0.0000 48 85 0.0000 0.0000 4 0.0000 86 0.0000 12 YEAR YEAR 87 0.0000 0.0000 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.0000 0.0000 8 LOCATION 14 SBI SOUTHEAST SEALION 0.0000 0.0000 56 0.0000 0.0000 4 YEAR 0.0000 YEAR 86 0.0000 12 YEAR 87 0.0000 0.0000 20 YEAR 88 0.0000 0.0000 8 YEAR 89 0.0000 0.0000 12 LOCATION 15 SBI ARCH POINT 0.0000 0.0000 52 0.0000 0.0000 YEAR 86 0.0000 0.0000 12 YEAR 0.0000 YEAR 87 0.0000 12 YEAR 88 0.0000 0.0000 12 YEAR 89 0.0000 0.0000 12

86

87

88

89

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

52

16

12

12

12

LOCATION

YEAR

YEAR

YEAR

Appendix 5. 1982-1989 Kelp Forest Monitoring Data - Size Frequency Measurements

Introduction.

Following are summaries of data gathered during size frequency measurements from 1982-1989 for all kelp forest monitoring program sampling sites. Data were summarized with SPSSPC+ programs from translated dBase III+ files. SIZE FREQUENCY data are presented as percentiles falling within indicated size classes and total number of samples (cases) are given.

For details of methods and data management, refer to the monitoring handbook (Davis 1988).

Notes on methods:

SIZE FREQUENCY MEASUREMENTS. Cases (N) represent the number of organisms measured. The fraction of cases falling within given size classes are given as percentiles. Specific dimensions: *Tethya*- diameter in mm; *Haliotis*, and *Kelletia*-maximum shell length in mm; *Astraea*- maximum diameter of shell at base in mm; *Megathura*- estimated shell length between outside ends of shell under mantle in mm; Sea stars- maximum radius in mm; Urchins- test diameter in mm; *Macrocystis*- number of stipes (counted 1m above the substrate) and maximum holdfast-base diameters in cm. Gorgonians- maximum width and height in cm. Raw data will allow correlation between stipe number and holdfast diameter for individual kelp plants and between width and height for individual gorgonians.

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Size Frequencies

LOCATION 1 SAN MIGUEL ISLAND - WYCKOFF LEDGE

LOCATION I SAN MIGUR	EL ISLAND - WYCKOFF LEDGE		
1986 Tethya aurantia		1989 Tethya aurantia	
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm) mean mode	37 0.0 2.7% 16.2% 18.9% 27.0% 18.9% 13.5% 2.7% 0.0 0.0 0.0 12 71 44	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm) mean mode	31 0.0 0.0 0.0 3.2% 16.1% 12.9% 25.8% 29.0% 9.7% 3.2% 0.0 30 90 65
1987 Tethya aurantia			
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm) mean mode	31 0.0 3.2% 16.1% 3.2% 19.4% 25.8% 6.5% 12.9% 3.2% 0.0 6.5% 17		
1989 Tethya aurantia			
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm) mean mode	33 0.0 0.0 6.1% 15.2% 9.1% 12.1% 21.2% 12.1% 18.2% 3.0% 3.0% 26 119 62 39		

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Size Frequencies LOCATION 1 SAN MIGUEL ISLAND - WYCKOFF LEDGE

2001111011 1 0111 111001	and tolking without helps	_	
1984		1986	
Haliotis rufescens		Haliotis rufescens	
(cases) N=	5	(cases) N=	14
< 20 mm	0.0	< 20 mm	0.0
20 - 89	0.0	20 - 59	0.0
90 - 99	20.0%	60 - 69	7.1%
100 - 109	0.0	70 - 79	7.1%
110 - 119	0.0	80 - 89	0.0
120 - 129	20.0%	90 - 99	0.0
130 - 139	0.0	100 - 109	0.0
140 - 149	0.0	110 - 119	0.0
150 - 159	0.0	120 - 129	0.0
160 - 169	20.0%	130 - 139	7.1%
170 - 179	20.0%	140 - 149	0.0
180 - 189	20.0%	150 - 154	7.1%
190 - 199	0.0	155 - 159	14.3%
>199 mm	0.0	160 - 164	14.3%
min size (mm)	93	165 - 169	14.3%
max size (mm)	181	170 - 174	14.3%
mean	147	175 - 179	0.0
mode	93	180 - 184	0.0
		185 - 189	7.1%
1985		190 - 194	0.0
Haliotis rufescens		195 - 199	0.0
(a second N	1.2	>199 mm	7.1%
(cases) N=	13	min size (mm)	65
< 20 mm	0.0	max size (mm)	212
20 - 69 70 - 79	0.0 7.7%	mean mode	153 165
80 - 89	0.0	mode	100
90 - 99	0.0	1987	
100 - 109	0.0	Haliotis rufescens	
110 - 119	0.0	narrotto rarebeeno	
120 - 129	7.7%	(cases) N=	12
130 - 139	0.0	< 20 mm	0.0
140 - 149	7.7%	20 - 69	0.0
150 - 159	7.7%	70 - 79	8.3%
160 - 169	30.8%	80 - 89	0.0
170 - 179	23.1%	90 - 99	0.0
180 - 189	7.7%	100 - 109	0.0
>199 mm	7.7%	110 - 119	0.0
min size (mm)	75	120 - 129	8.3%
max size (mm)	210	130 - 139	0.0
mean	158	140 - 149	16.7%
mode	160	150 - 154	0.0
		155 - 159	8.3%
		160 - 164	8.3%
		165 - 169	8.3%
		170 - 174	16.7%
		175 - 179	0.0
		180 - 184	16.7%
		185 - 189	8.3%
		190 - 199	0.0
		>199 mm	0.0
		min size (mm)	78
		max size (mm)	188
		mean	156
		mode	78

Channel Islands National Park Kelp Forest Monitoring 1982-1989 Size Frequencies LOCATION 1 SAN MIGUEL ISLAND - WYCKOFF LEDGE

1988		1989	
Haliotis rufescens		Haliotis rufescens	
(cases) N=	30	(cases) N=	22
< 20 mm	0.0	< 20 mm	0.0
20 - 59	0.0	20 - 99	0.0
60 - 69	3.3%	100 - 109	0.0
70 - 79	0.0	110 - 119	0.0
80 - 89	3.3%	120 - 129	0.0
90 - 99	0.0	130 - 134	9.1%
100 - 109	3.3%	135 - 139	9.1%
110 - 119	3.3%	140 - 144	0.0
120 - 129	0.0	145 - 149	9.1%
130 - 139	10.0%	150 - 154	0.0
140 - 149	3.3%	155 - 159	4.5%
150 - 154	6.7%	160 - 164	4.5%
155 - 159	16.7%	165 - 169	4.5%
160 - 164	13.3%	170 - 174	0.0
165 - 169	10.0%	175 - 179	4.5%
170 - 174	6.7%	180 - 184	18.2%
175 - 179	3.3%	185 - 189	22.7%
180 - 184	13.3%	190 - 194	9.1%
185 - 189	0.0	195 - 199	0.0
190 - 194	10.0%	>199 mm	4.5%
195 - 199	0.0	min size (mm)	132
>199 mm	3.3%	max size (mm)	215
min size (mm)	60	mean	171
max size (mm)	201	mode	189
mean	156		
mode	130		

2001111011 1 0111 1110022 1	DEMIS WIGHT EBSCE		
1984 Kelletia kelletii		1987 Kelletia kelletii	
(cases) N= < 40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 >129 mm min size (mm) max size (mm) mean mode	31 0.0 0.0 3.2% 9.7% 6.5% 6.5% 38.7% 19.4% 16.1% 0.0% 0.0 58 117 94	(cases) N= < 40 mm 40 - 49m 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 >129 mm min size (mm) max size (mm) mean mode	39 2.6% 0.0% 0.0 10.3% 23.1% 30.8% 15.4% 17.9% 0.0 20 118 93 86
1985 Kelletia kelletii		1988 Kelletia kelletii	
(cases) N= < 40 mm 40 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 >139 mm min size (mm) max size (mm) mean mode 1986 Kelletia kelletii	36 0.0 0.0 22.2% 13.9% 27.8% 22.2% 13.9% 0.0 0.0 80 125 103 80	(cases) N= < 40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 >129 mm min size (mm) max size (mm) mean mode	30 0.0 0.0 20.0% 23.3% 20.0% 26.7% 0.0 0.0 0.0 55 108 74 59
(cases) N= < 40 mm	40 0.0	1989 Kelletia kelletii	
40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 >139 mm min size (mm) max size (mm) mean mode	2.5% 0.0 7.5% 22.5% 2.5% 27.5% 25.0% 10.0% 2.5% 0.0 0.0 47 120 92 97	(cases) N= < 40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 >129 mm min size (mm) max size (mm) mean mode	35 0.0 0.0 11.4% 14.3% 25.7% 17.1% 22.9% 0.0 0.0 56 119 80 73

LOCATION 1 SAN MIGUEL ISLAND - WYCKOFF LEDGE

1985 Tethya aurantia		1988 Tethya aurantia	
(cases) N= < 19 mm 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode 1986	30 0.0 0.0 0.0 3.3% 30.0% 53.3% 13.3% 0.0 0.0 0.0 0.0 0.0 47 76 62 62	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	11 0.0 0.0 0.0 0.0 9.1% 27.3% 54.5% 0.0 9.1% 0.0 0.0 0.0 49 81 62 67
Tethya aurantia		1989 Tethya aurantia	
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm) mean mode	30 0.0 0.0 0.0 0.0 6.7% 33.3% 46.7% 13.3% 0.0 0.0 0.0 48 74 62 57	(cases) N= < 19 mm 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm) mean mode	23 0.0 0.0 4.3% 26.1% 43.5% 21.7% 4.3% 0.0 0.0 0.0 35 72 53 42
1987 Tethya aurantia (cases) N= < 30 mm 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm) mean mode	24 0.0 0.0 8.3% 29.2% 62.5% 0.0 0.0 0.0 48 69 60 61		

200111011 1 01111 111		02	
1984		1987	
Patiria miniata		Patiria miniata	
(cases) N=	52	(cases) N=	50
(cases) N- < 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	2.0%
20 - 29	0.0	20 - 29	0.0
30 - 39	1.9%	30 - 39	2.0%
40 - 49	11.5%	40 - 49	2.0%
50 - 59	28.8%	50 - 59	10.0%
60 - 69	46.2%	60 - 69	44.0%
70 - 79	9.6%	70 - 79	32.0%
80 - 89	1.9%	80 - 89	8.0%
90 - 99	0.0	90 - 99	0.0
>100 mm	0.0	>100 mm	0.0
min size (mm)	31	min size (mm)	14
max size (mm)	80	max size (mm)	87
mean	61	mean mean	67
mode	64	mode	62
mode	0.4	mode	02
1985		1988	
Patiria miniata		Patiria miniata	
racirra miniaca		raciria miniaca	
(cases) N=	40	(cases) N=	54
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	1.9%
20 - 29	2.5%	20 - 29	7.4%
30 - 39	5.0%	30 - 39	7.4%
40 - 49	12.5%	40 - 49	29.6%
50 - 59	25.0%	50 - 59	16.7%
60 - 69	40.0%	60 - 69	24.1%
70 - 79	15.0%	70 - 79	3.7%
80 - 89	0.0	80 - 89	7.4%
90 - 99	0.0	90 - 99	1.9%
>100 mm	0.0	>100 mm	0.0
min size (mm)	29	min size (mm)	16
max size (mm)	78	max size (mm)	92
mean	59	mean	52
mode	68	mode	65
1986		1989	
Patiria miniata		Patiria miniata	
(cases) N=	50	(cases) N=	55
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	3.6%
20 - 29	0.0	20 - 29	1.8%
30 - 39	2.0%	30 - 39	7.3%
40 - 49	14.0%	40 - 49	0.0
50 - 59	38.0%	50 - 59	18.2%
60 - 69	32.0%	60 - 69	40.0%
70 - 79	14.0%	70 - 79	20.0%
80 - 89	0.0	80 - 89	5.5%
90 - 99	0.0	90 - 99	1.8%
>100 mm	0.0	>100 mm	1.8%
min size (mm)	39	min size (mm)	11
max size (mm	77	max size (mm)	103
mean	58	mean	61
mode	56	mode	60

LOCATION 1 SAN MIGUEL ISLAND - WYCKOFF LEDGE

1986		1989	
Pisaster giganteus		Pisaster giganteus	
(cases) N=	30		
< 20 mm	0.0	(cases) N=	46
20 - 39	10.0%	< 20 mm	4.3%
40 - 59	16.7%	20 - 39	17.4%
60 - 79	30.0%	40 - 59	34.8%
80 - 99	26.7%	60 - 79	23.9%
100 - 119	10.0%	80 - 99	8.7%
120 - 139	3.3%	100 - 119	4.3%
140 - 159	0.0	120 - 139	4.3%
160 - 179	0.0	140 - 159	0.0
180 - 199	3.3%	160 - 179	0.0
200 - 219	0.0	180 - 199	0.0
220 - 239	0.0	200 - 219	0.0
>239 mm	0.0	220 - 239	0.0
min size (mm)	33	240 - 259	0.0
max size (mm)	185	260 - 279	0.0
mean	78	280 - 299	0.0
mode	59	>299 mm	2.2%
mode	33	min size (mm)	3
1987		max size (mm)	309
Pisaster giganteus		mean	65
risastei giganteus		mode	50
(cases) N=	30	mode	30
< 20 mm	0.0		
20 - 39	3.3%		
40 - 59	36.7%		
60 - 79	46.7%		
80 - 99	10.0%		
100 - 119	3.3%		
120 - 139	0.0		
140 - 159	0.0		
>159 mm	0.0		
min size (mm)	32		
max size (mm)	104		
mean	66		
mode	68		
1000			
1988			
Pisaster giganteus			
() N-	3.0		
(cases) N=	32		
< 20 mm	0.0		
20 - 39	40.6%		
40 - 59	21.9%		
60 - 79	25.0%		
80 - 99	0.0		
100 - 119	6.3%		
120 - 139	6.3%		
140 - 159	0.0		
>159 mm	0.0		
min size (mm)	25		
max size (mm)	130		
mean	5 4		
mode	26		

LOCATION 1 SAN M	IGUEL ISLAND - WYCKOFF LEDGE		
1987		1989	
Pycnopodia helianti	hoides	Pycnopodia heliantho:	ides
(cases) N=	4		
< 20 mm	0.0	(cases) N=	33
20 - 39	25.0%	< 20 mm	3.0%
40 - 59	0.0	20 - 39	42.4%
60 - 79	0.0	40 - 59	27.3%
80 - 99	25.0%	60 - 79	12.1%
100 - 119	25.0%	80 - 99	0.0
120 - 139	25.0%	100 - 119	6.1%
140 - 159	0.0	120 - 139	0.0
160 - 179	0.0	140 - 159	0.0
180 - 199	0.0	160 - 179	3.0%
>199 mm	0.0	180 - 199	3.0%
min size (mm)	20	200 - 219	0.0
max size (mm)	132	220 - 239	3.0%
mean	85	240 - 259	0.0
mode	20	260 - 279	0.0
		>279 mm	0.0
		min size (mm)	10
		max size (mm)	230
		mean	57
		mode	20

1984		1986	
Strongylocentrotus	franciscanus	Strongylocentrotus	franciscanus
(cases) N=	68	(cases) N=	100
< 9 mm	0.0	< 9 mm	0.0
10 - 14	4.4%	10 - 14	0.0
15 - 19	4.4%	15 - 19	0.0
20 - 24	0.0	20 - 24	0.0
25 - 29		25 - 29	
	1.5%		3.0%
30 - 34	1.5%	30 - 34	3.0%
35 - 39	0.0	35 - 39	4.0%
40 - 44	0.0	40 - 44	5.0%
45 - 49	2.9%	45 - 49	10.0%
50 - 54	1.5%	50 - 54	8.0%
55 - 59	1.5%	55 - 59	5.0%
60 - 64	1.5%	60 - 64	8.0%
65 - 69	0.0	65 - 69	14.0%
70 - 74	2.9%	70 - 74	14.0%
75 - 79	2.9%	75 - 79	14.0%
80 - 84	7.4%	80 - 84	4.0%
85 - 89	8.8%	85 - 89	3.0%
90 - 94	11.8%	90 - 94	1.0%
95 - 99	10.3%	95 - 99	1.0%
100 - 104	11.8%	100 - 104	1.0%
104 - 109	7.4%	105 - 109	1.0%
>109 mm	13.2%	>109 mm	0.0
min size (mm)	11	min size (mm)	25
max size (mm)	132	max size (mm)	110
mean	86	mean mean	63
mode	83	mode	71
mode	05	mode	7 ±
1985		1987	
Strongylocentrotus		Strongylocentrotus	
Strongylocentrotus (cases) N=	113	Strongylocentrotus (cases) N=	100
Strongylocentrotus (cases) N= < 9 mm	113 0.0	Strongylocentrotus (cases) N= < 9 mm	100 0.0
Strongylocentrotus (cases) N=	113	Strongylocentrotus (cases) N=	100
Strongylocentrotus (cases) N= < 9 mm	113 0.0	Strongylocentrotus (cases) N= < 9 mm	100 0.0
Strongylocentrotus (cases) N= < 9 mm 10 - 14	113 0.0 0.0	Strongylocentrotus (cases) N= < 9 mm 10 - 14	100 0.0 0.0
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19	113 0.0 0.0 1.8%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19	100 0.0 0.0 1.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24	113 0.0 0.0 1.8% 4.4%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24	100 0.0 0.0 1.0% 0.0
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29	113 0.0 0.0 1.8% 4.4% 2.7%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29	100 0.0 0.0 1.0% 0.0 2.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	113 0.0 0.0 1.8% 4.4% 2.7% 0.9%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	100 0.0 0.0 1.0% 0.0 2.0% 5.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	113 0.0 0.0 1.8% 4.4% 2.7% 0.9% 1.8%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	100 0.0 0.0 1.0% 0.0 2.0% 5.0% 3.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	113 0.0 0.0 1.8% 4.4% 2.7% 0.9% 1.8% 3.5% 8.8%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	100 0.0 0.0 1.0% 0.0 2.0% 5.0% 3.0% 2.0% 17.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	113 0.0 0.0 1.8% 4.4% 2.7% 0.9% 1.8% 3.5% 8.8%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	100 0.0 0.0 1.0% 0.0 2.0% 5.0% 3.0% 2.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	113 0.0 0.0 1.8% 4.4% 2.7% 0.9% 1.8% 3.5% 8.8% 11.5% 16.8%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	100 0.0 0.0 1.0% 0.0 2.0% 5.0% 3.0% 2.0% 17.0% 12.0% 7.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	113 0.0 0.0 1.8% 4.4% 2.7% 0.9% 1.8% 3.5% 8.8% 11.5% 16.8%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	100 0.0 0.0 1.0% 0.0 2.0% 5.0% 3.0% 2.0% 17.0% 12.0% 7.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	113 0.0 0.0 1.8% 4.4% 2.7% 0.9% 1.8% 3.5% 8.8% 11.5% 16.8% 14.2% 8.8%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	100 0.0 0.0 1.0% 0.0 2.0% 5.0% 3.0% 2.0% 17.0% 12.0% 7.0% 10.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	113 0.0 0.0 1.8% 4.4% 2.7% 0.9% 1.8% 3.5% 8.8% 11.5% 16.8% 14.2% 8.8% 4.4%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	100 0.0 0.0 1.0% 0.0 2.0% 5.0% 3.0% 2.0% 17.0% 12.0% 7.0% 10.0% 11.0% 8.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	113 0.0 0.0 1.8% 4.4% 2.7% 0.9% 1.8% 3.5% 8.8% 11.5% 16.8% 14.2% 8.8% 4.4% 3.5%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	100 0.0 0.0 1.0% 0.0 2.0% 5.0% 3.0% 2.0% 17.0% 12.0% 7.0% 10.0% 11.0% 8.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	113 0.0 0.0 1.8% 4.4% 2.7% 0.9% 1.8% 3.5% 8.8% 11.5% 16.8% 14.2% 8.8% 4.4% 3.5% 5.3%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	100 0.0 0.0 1.0% 0.0 2.0% 5.0% 3.0% 2.0% 17.0% 12.0% 7.0% 10.0% 11.0% 8.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	113 0.0 0.0 1.8% 4.4% 2.7% 0.9% 1.8% 3.5% 8.8% 11.5% 16.8% 14.2% 8.8% 4.4% 3.5% 5.3% 0.9%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	100 0.0 0.0 1.0% 0.0 2.0% 5.0% 3.0% 2.0% 17.0% 12.0% 7.0% 10.0% 8.0% 11.0% 4.0% 2.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	113 0.0 0.0 1.8% 4.4% 2.7% 0.9% 1.8% 3.5% 8.8% 11.5% 16.8% 14.2% 8.8% 4.4% 3.5% 5.3% 0.9% 1.8%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	100 0.0 0.0 1.0% 0.0 2.0% 5.0% 3.0% 2.0% 17.0% 12.0% 7.0% 11.0% 8.0% 11.0% 4.0% 2.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	113 0.0 0.0 1.8% 4.4% 2.7% 0.9% 1.8% 3.5% 8.8% 11.5% 16.8% 14.2% 8.8% 4.4% 3.5% 5.3% 0.9% 1.8%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	100 0.0 0.0 1.0% 0.0 2.0% 5.0% 3.0% 2.0% 17.0% 12.0% 7.0% 11.0% 8.0% 4.0% 2.0% 11.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	113 0.0 0.0 1.8% 4.4% 2.7% 0.9% 1.8% 3.5% 8.8% 11.5% 16.8% 14.2% 8.8% 4.4% 3.5% 5.3% 0.9% 1.8%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	100 0.0 0.0 1.0% 0.0 2.0% 5.0% 3.0% 2.0% 17.0% 12.0% 7.0% 11.0% 8.0% 11.0% 4.0% 2.0% 1.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	113 0.0 0.0 1.8% 4.4% 2.7% 0.9% 1.8% 3.5% 8.8% 11.5% 16.8% 14.2% 8.8% 4.4% 3.5% 5.3% 0.9% 1.8% 0.9% 1.8%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	100 0.0 0.0 1.0% 0.0 2.0% 5.0% 3.0% 2.0% 17.0% 12.0% 7.0% 11.0% 8.0% 11.0% 4.0% 2.0% 1.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 >109 mm	113 0.0 0.0 1.8% 4.4% 2.7% 0.9% 1.8% 3.5% 8.8% 11.5% 16.8% 14.2% 8.8% 4.4% 3.5% 5.3% 0.9% 1.8% 0.9% 1.8%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 >109 mm	100 0.0 0.0 1.0% 0.0 2.0% 5.0% 3.0% 2.0% 17.0% 12.0% 7.0% 10.0% 11.0% 4.0% 2.0% 2.0% 0.0
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 >109 mm min size (mm)	113 0.0 0.0 1.8% 4.4% 2.7% 0.9% 1.8% 3.5% 8.8% 11.5% 16.8% 14.2% 8.8% 4.4% 3.5% 5.3% 0.9% 1.8% 0.9% 1.8%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 >109 mm min size (mm)	100 0.0 0.0 1.0% 0.0 2.0% 5.0% 3.0% 2.0% 17.0% 12.0% 7.0% 10.0% 11.0% 4.0% 2.0% 11.0% 2.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 >109 mm min size (mm) max size (mm)	113 0.0 0.0 1.8% 4.4% 2.7% 0.9% 1.8% 3.5% 8.8% 11.5% 16.8% 14.2% 8.8% 4.4% 3.5% 5.3% 0.9% 1.8% 0.9% 1.8% 0.9% 1.8% 1.8% 1.8% 1.8% 1.8%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 >109 mm	100 0.0 0.0 1.0% 0.0 2.0% 5.0% 3.0% 2.0% 17.0% 12.0% 7.0% 10.0% 11.0% 4.0% 2.0% 11.0% 2.0% 1.0% 2.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 >109 mm min size (mm) max size (mm) mean	113 0.0 0.0 1.8% 4.4% 2.7% 0.9% 1.8% 3.5% 8.8% 11.5% 16.8% 14.2% 8.8% 4.4% 3.5% 5.3% 0.9% 1.8% 0.9% 1.8% 1.8% 1.8% 1.8% 1.8% 1.8% 1.8% 1.8	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 >109 mm min size (mm) max size (mm) max size (mm) mean	100 0.0 0.0 1.0% 0.0 2.0% 5.0% 3.0% 2.0% 17.0% 12.0% 7.0% 10.0% 8.0% 11.0% 4.0% 2.0% 1.0% 2.0% 0.0
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 >109 mm min size (mm) max size (mm)	113 0.0 0.0 1.8% 4.4% 2.7% 0.9% 1.8% 3.5% 8.8% 11.5% 16.8% 14.2% 8.8% 4.4% 3.5% 5.3% 0.9% 1.8% 0.9% 1.8% 0.9% 1.8% 1.8% 1.8% 1.8% 1.8%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 >109 mm min size (mm) max size (mm)	100 0.0 0.0 1.0% 0.0 2.0% 5.0% 3.0% 2.0% 17.0% 12.0% 7.0% 10.0% 11.0% 4.0% 2.0% 11.0% 2.0% 1.0% 2.0%

1988		1989
Strongylocentrotus	franciscanus	Strongylocentrotus franciscanus
(cases) N=	103	(cases) N= 118
< 9 mm	0.0	< 9 mm 0.0
10 - 14	1.0%	10 - 14 0.0
15 - 19	1.0%	15 - 19 3.4%
20 - 24	0.0	20 - 24 6.8%
25 - 29	1.9%	25 - 29 7.6%
30 - 34	1.9%	30 - 34 7.6%
35 - 39	2.9%	35 - 39 1.7%
40 - 44	2.9%	40 - 44 0.8%
45 - 49	1.0%	45 - 49 4.2%
50 - 54	1.9%	50 - 54 6.8%
55 - 59	2.9%	55 - 59 5.1%
60 - 64	6.8%	60 - 64 7.6%
65 - 69	6.8%	65 - 69 13.6%
70 - 74	6.8%	70 - 74 5.1%
75 - 79	15.5%	75 - 79 6.8%
80 - 84	20.4%	80 - 84 7.6%
85 - 89	15.5%	85 - 89 7.6%
90 - 94	1.9%	90 - 94 2.5%
95 - 99	3.9%	95 - 99 1.7%
100 - 104	1.0%	100 - 104 2.5%
105 - 109	1.9%	105 - 109 0.8%
>109 mm	1.0%	>109 mm 0.0
min size (mm)	13	min size (mm) 16
max size (mm)	131	max size (mm) 108
mean	74	mean 59
mode	77	mode 66

		Size Frequencies
LOCATION 1 SAN MIGUEL	ISLAND - WYCKOFF	
1985		mean 37 mode 25
Srongylocentrotus purpur	atus	
(cases) N=	106	1988
< 9 mm 10 - 14	0.9% 4.7%	Srongylocentrotus purpuratus
15 - 19	10.4%	(cases) N= 66
20 - 24	18.9%	< 9 mm 0.0
25 - 29	22.6%	10 - 14 0.0
30 - 34	7.5%	15 - 19 1.5%
35 - 39	6.6%	20 - 24 6.1%
40 - 44 45 - 49	9.4% 9.4%	25 - 29 30 - 34 9.1%
50 - 54	5.7%	35 - 39 19.7%
55 - 59	2.8%	40 - 44 10.6%
60 - 64	0.9%	45 - 49 13.6%
>64 mm	0.0	50 - 54 7.6%
min size (mm)	7	55 - 59 13.6%
max size (mm)	63	60 - 64 7.6%
mean	31	65 - 69 0.0
mode	21	>69 mm 0.0 min size (mm) 15
1986		max size (mm) 64
Srongylocentrotus purpur	atus	mean 42
31 1 1		mode 59
(cases) N=	132	
< 9 mm	0.0	1989
10 - 14 15 - 19	5.3% 10.6%	Srongylocentrotus purpuratus
20 - 24	7.6%	(cases) N= 66
25 - 29	9.8%	< 9 mm 0.0
30 - 34	15.2%	10 - 14 6.1%
35 - 39	17.4%	15 - 19 12.1%
40 - 44	12.1%	20 - 24 10.6%
45 - 49	9.1%	25 - 29 9.1%
50 - 54 55 - 59	5.3% 6.1%	30 - 34 7.6% 35 - 39 10.6%
60 - 64	0.0	40 - 44 13.6%
65 - 69	1.5%	45 - 49 10.6%
> 69 mm	0.0	50 - 54 7.6%
min size (mm)	11	55 - 59 9.1%
max size (mm)	65	60 - 64 3.0%
mean	35 35	65 - 69 0.0 70 - 74 0.0
mode	33	75 - 79 0.0
1987		80 - 84 0.0
Srongylocentrotus purpur	atus	85 - 89 0.0
		90 - 94 0.0
(cases) N=	76	95 - 99 0.0
< 9 mm	0.0	>99 mm 0.0
10 - 14 15 - 19	5.3% 0.0	min size (mm) 12 max size (mm) 60
20 - 24	9.2%	mean 35
25 - 29	21.1%	mode 42
30 - 34	13.2%	
35 - 39	13.2%	
40 - 44	9.2%	
45 - 49 50 - 54	10.5% 5.3%	
55 - 59	6.6%	
60 - 64	3.9%	
65 - 69	1.3%	
70 - 74	1.3%	
>74 mm	0.0	
min size (mm)	12	
max size (mm)	71	Anny 5-12

LOCATION 2 SAN MIGUEL ISLAND - HARE ROCK

LOCATION 2 SAN MIGU	IEL ISLAND - HARE ROCK		
1986 Tethya aurantia		1989 Tethya aurantia	
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89	17 0.0 5.9% 5.9% 11.8% 29.4% 41.2% 0.0 5.9%	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89	27 0.0 0.0 11.1% 7.4% 11.1% 18.5% 18.5% 14.8%
90 - 99 >99 mm min size (mm) max size (mm) mean mode	0.0 0.0 13 75 46 50	90 - 99 >99 mm min size (mm) max size (mm) mean mode	0.0 0.0 24 86 59 50
1987 Tethya aurantia			
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm) mean mode	36 0.0 0.0 13.9% 8.3% 25.0% 27.8% 13.9% 5.6% 0.0 0.0 24 88 51		
1988 Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm) mean mode	30 0.0 6.7% 10.0% 6.7% 16.7% 36.7% 16.7% 0.0 6.7% 0.0 17 88 50		

1986 Haliotis rufesce	ens	1987 Haliotis rufescens	
(cases) N=	10	(cases) N=	6
<25 mm	0.0	<25 mm	0.0
25 - 29	10.0%	25 - 29	0.0
30 - 34	0.0	30 - 34	0.0
35 - 39	10.0%	35 - 39	0.0
40 - 44	0.0	40 - 44	0.0
45 - 49	20.0%	45 - 49	0.0
50 - 54	0.0	50 - 54	0.0
55 - 59	10.0%	55 - 59	0.0
60 - 64	0.0	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
100 - 104	0.0	100 - 104	0.0
105 - 109	0.0	105 - 109	16.7%
110 - 114	0.0	110 - 114	16.7%
115 - 119	0.0	115 - 119	0.0
120 - 124	0.0	120 - 124	0.0
125 - 129	0.0	125 - 129	0.0
130 - 134	0.0	130 - 134	0.0
135 - 139	10.0%	135 - 139	0.0
140 - 144	0.0	140 - 144	33.3%
145 - 149	0.0	145 - 149	0.0
150 - 154	20.0%	150 - 154	0.0
155 - 159	0.0	155 - 159	16.7%
160 - 164	0.0	160 - 164	0.0
165 - 169	0.0	165 - 169	0.0
170 - 174	0.0	170 - 174	16.7%
175 - 179	0.0	175 - 179	0.0
180 - 184	0.0	180 - 184	0.0
185 - 189	20.0%	185 - 189	0.0
190 - 194	0.0	190 - 194	0.0
195 - 199	0.0	195 - 199	0.0
>199 mm	0.0	>199 mm	0.0
min size (mm)	26	min size (mm)	109
max size (mm)	188	max size (mm)	171
mean	103	mean	139
mode	46	mode	109
-	-		

1988 Haliotis rufescens		1989 Haliotis rufescens	
			_
(cases) N=	39	(cases) N=	6
<25 mm	2.6%	<25 mm	33.3%
25 - 29	0.0	25 - 29	0.0
30 - 34	2.6%	30 - 34	0.0
35 - 39	2.6%	35 - 39	0.0
40 - 44	5.1%	40 - 44	0.0
45 - 49	5.1%	45 - 49	0.0
50 - 54	2.6%	50 - 54	0.0
55 - 59	7.7%	55 - 59	0.0
60 - 64	15.4%	60 - 64	0.0
65 - 69	10.3%	65 - 69	0.0
70 - 74	2.6%	70 - 74	0.0
75 - 79	7.7%	75 - 79	0.0
80 - 84	2.6%	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	16.7%
95 - 99	0.0	95 - 99	0.0
100 - 104	0.0	100 - 104	0.0
105 - 109	0.0	105 - 109	0.0
110 - 114	0.0	110 - 114	0.0
115 - 119	0.0	115 - 119	16.7%
120 - 124	0.0	120 - 124	0.0
125 - 129	2.6%	125 - 129	0.0
130 - 134	2.6%	130 - 134	0.0
135 - 139	0.0	135 - 139	0.0
140 - 144	0.0	140 - 144	0.0
145 - 149	0.0	145 - 149	0.0
150 - 154	10.3%	150 - 154	16.7%
155 - 159	7.7%	155 - 159	0.0
160 - 164	5.1%	160 - 164	0.0
165 - 169	2.6%	165 - 169	0.0
170 - 174	2.6%	170 - 174	16.7%
175 - 179	0.0	175 - 179	0.0
180 - 184	0.0	180 - 184	0.0
185 - 189	0.0	185 - 189	0.0
190 - 194	0.0	190 - 194	0.0
195 - 199	0.0	195 - 199	0.0
>199 mm	0.0	>199 mm	0.0
min size (mm)	23	min size (mm)	15
max size (mm)	170	max size (mm)	173
mean	90	mean	95
mode	61	mode	15

1984 Cypraea spadicea		1987 Cypraea spadicea	
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	34 0.0 0.0 14.7% 44.1% 35.3% 5.9% 0.0 0.0 36 51 44 44	(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	30 0.0 0.0 0.0 0.7% 0.7% 0.0 0.0 40 53 47
1985 Cypraea spadicea		1988 Cypraea spadicea	
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	30 0.0 0.0 6.7% 30.0% 36.7% 20.0% 3.3% 3.3% 3.8 61 47 40	30 - 34 3 35 - 39 10 40 - 44 43 45 - 49 40 50 - 54 3	30 0.0 .3% .0% .3% .0% .3% 0.0 0.0 34 50 44 43
1986 Cypraea spadicea		1989 Cypraea spadicea	
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	30 0.0 0.0 13.3% 36.7% 40.0% 10.0% 0.0 0.0 37 52 45 47	30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 6 43 43 10 16	30 0.0 0.0 0.7% .3% .3% .0% .7% 0.0 39 58 47 46

LOCATION 2 SAN MIGUEL ISLAND - HARE ROCK

1985 Astraea undosa		1987 Tethya aurantia
nocraca anacoa		romya darancia
(cases) N=	15	(cases) N= 16
< 10 mm	0	< 10 mm 0.0
10 - 19 20 - 29	0.0 6.7%	10 - 19 6.3% 20 - 29 12.5%
30 - 39	20.0%	20 - 29 12.5% 30 - 39 12.5%
40 - 49	13.3%	40 - 49 25.0%
50 - 59	26.7%	50 - 59 37.5%
60 - 69	13.3%	60 - 69 0.0
70 - 79	13.3%	70 - 79
80 - 89	6.7%	80 - 89 6.3%
90 - 99	0.0	90 - 99 0.0
% >99 & <110 mm	0.0	100 - 109 0.0
% >109 & <120 mm	0.0	110 - 119 0.0
% >119 mm	0.0	>119 mm 0.0
min size (mm)	26	min size (mm) 18
max size (mm)	82	max size (mm) 80
mean	52	mean 45
mode	54	mode 44
1987		
Astraea undosa		
(cases) N=	12	
< 10 mm	0.0	
10 - 19	0.0	
20 - 29 30 - 39	0.0	
40 - 49	0.0	
50 - 59	0.0	
60 - 69	0.0	
70 - 79	33.3%	
80 - 89	58.3%	
90 - 99	8.3%	
100 - 109	0.0	
110 - 119	0.0	
>119 mm	0.0	
min size (mm)	76	
max size (mm)	90	
mean	82	
mode	85	

1985 Megathura crenulata		1987 Megathura crenulata
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	26 0.0 0.0 0.0 7.7% 15.4% 19.2% 15.4% 23.1% 15.4% 0.0 3.8% 0.0 0.0 3.0 402 64	(cases) N= 8 < 10 mm
1986 Megathura crenulata		1988 Megathura crenulata
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	14 0.0 7.1% 0.0 14.3% 28.6% 14.3% 7.1% 7.1% 14.3% 7.1% 0.0 0.0 0.0 14 98 54 40	(cases) N= 32 < 10 mm

LOCATION 2 SAN MIGUEL ISLAND - HARE ROCK 1986 Hinnites giganteus Hinnites giganteus 25 (cases) N= < 10 mm 0.0 (cases) N= 22 10 - 19 0.0 0.0 < 10 mm 0.0 10 - 19 20 - 29 0.0 30 - 39 20 - 29 4.5% 30 - 39 40 - 49 18.2% 0.0 4.0% 20.0% 12.0% 50 - 59 40 - 49 22.7% 50 - 59 60 - 69 60 - 69 4.5% 70 - 79 22.7% 80 - 89 70 - 79 4.5% 80 - 89 90 - 99 8.0% 8.0% 20.0% 12.0% 0.0 100 - 109 90 - 99 9.1% 110 - 119 100 - 109 9.1% 120 - 129 4.0% 110 - 119 0.0 4.0% 4.0% 4.0% 130 - 139 140 - 149 120 - 129 130 - 139 4.5% 0.0 140 - 149 >149 mm 0.0 52 146 >149 mm min size (mm) 0.0 max size (mm) min size (mm) 26 93 123 mean max size (mm) mode 109 mean 61 32 mode 1985 1987 Hinnites giganteus Hinnites giganteus (cases) N= 25 0.0 24 < 10 mm (cases) N= 0.0 10 - 19 < 10 mm 0.0 4.0% 4.0% 8.0% 8.0% 8.0% 10 - 19 20 - 29 20 - 29 0.0 30 - 39 0.0 40 - 49 30 - 39 4.2% 40 - 49 50 - 59 60 - 69 50 - 59 0.0 60 - 69 12.5% 70 - 79 12.0% 16.7% 80 - 89 12.0% 70 - 79 8.3% 80 - 89 90 - 99 90 - 99 12.0% 20.0% 8.3% 4.2% 4.2% 100 - 109 110 - 119 100 - 109 4.0% 120 - 129 8.0% 110 - 119 8.3% 0.0 130 - 139 120 - 129 20.8% 140 - 149 130 - 139 8.3% 0.0 >149 mm 140 - 149 4.2% 29 127 >149 mm 0.0 min size (mm) max size (mm) min size (mm) 35 mean 82 max size (mm) 147 mode 79 mean 93 52 mode

1988		1989	
Hinnites giganteus		Hinnites giganteus	
() N-	10	(2222) N-	1.1
(cases) N=	12	(cases) N=	11
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	0.0
20 - 29	0.0	20 - 29	0.0
30 - 39	0.0	30 - 39	9.1%
40 - 49	16.7%	40 - 49	9.1%
50 - 59	0.0	50 - 59	9.1%
60 - 69	0.0	60 - 69	9.1%
70 - 79	0.0	70 - 79	9.1%
80 - 89	16.7%	80 - 89	0.0
90 - 99	8.3%	90 - 99	0.0
100 - 109	25.0%	100 - 109	9.1%
110 - 119	0.0	110 - 119	18.2%
120 - 129	8.3%	120 - 129	9.1%
130 - 139	0.0	130 - 139	18.2%
140 - 149	25.0%	140 - 149	0.0
>149 mm	0.0	>149 mm	0.0
min size (mm)	40	min size (mm)	33
max size (mm)	148	max size (mm)	132
mean	101	mean	90
mode	100	mode	33

2001111011 2 0111 1110022	1011110	•
1984		1987
Patiria miniata		Patiria miniata
(cases) N=	54	(cases) N= 54
< 10 mm	0.0	< 10 mm 0.0
10 - 19	1.9%	10 - 19 0.0
20 - 29	9.3%	20 - 29 9.3%
30 - 39	5.6%	30 - 39 7.4%
40 - 49	14.8%	40 - 49 14.8%
50 - 59	37.0%	50 - 59 31.5%
60 - 69		
	25.9%	60 - 69 29.6%
70 - 79	5.6%	70 - 79
80 - 89	0.0	80 - 89 0.0
90 - 99	0.0	90 - 99 0.0
>100 mm	0.0	>100 mm 0.0
min size (mm)	18	min size (mm) 25
max size (mm)	77	max size (mm) 79
mean	52	mean 53
mode	55	mode 60
1985		1988
Patiria miniata		Patiria miniata
racirra miniaca		racirra minica
(cases) N=	30	(cases) N= 50
< 10 mm	0.0	< 10 mm 0.0
10 - 19	0.0	10 - 19 2.0%
20 - 29	0.0	20 - 29 4.0%
30 - 39	3.3%	30 - 39 4.0%
40 - 49	16.7%	40 - 49 20.0%
50 - 59	23.3%	50 - 59 30.0%
60 - 69	30.0%	60 - 69 24.0%
70 - 79	23.3%	70 - 79 16.0%
80 - 89	3.3%	80 - 89 0.0
90 - 99	0.0	90 - 99 0.0
>100 mm	0.0	>100 mm 0.0
min size (mm)	38	min size (mm) 16
max size (mm)	82	max size (mm) 78
mean	61	mean 56
mode	53	mode 48
niode	33	ope 40
1986		1989
Patiria miniata		Patiria miniata
Patitia Milliata		Patifia Milliata
(22222) N-	E 1	(00000) No.
(cases) N=	51	(cases) N= 48
< 10 mm	0.0	< 10 mm 0.0
10 - 19	2.0%	10 - 19 0.0
20 - 29	2.0%	20 - 29 2.1%
30 - 39	13.7%	30 - 39 4.2%
40 - 49	11.8%	40 - 49 0.0
50 - 59	27.5%	50 - 59 16.7%
60 - 69	33.3%	60 - 69 27.1%
70 - 79	9.8%	70 - 79 33.3%
80 - 89	0.0	80 - 89 12.5%
90 - 99	0.0	90 - 99 4.2%
>100 mm	0.0	>100 mm 0.0
min size (mm)	15	min size (mm) 27
	77	
max size (mm)		
mean	55 67	mean 66
mode	67	mode 70

1986 Pisaster giganteus		1988 Pisaster giganteus	
risastei giganteus		Fisaster grganteus	
(cases) N=	30	(cases) N=	31
<20 mm	0.0	<20 mm	0.0
20 - 39	0.0	20 - 39	0.0
40 - 59	0.0	40 - 59	6.5%
60 - 79	3.3%	60 - 79	29.0%
80 - 99	26.7%	80 - 99	38.7%
100 - 119	20.0%	100 - 119	22.6%
120 - 139	16.7%	120 - 139	3.2%
140 - 159	13.3%	140 - 159	0.0
160 - 179	16.7%	160 - 179	0.0
180 - 199	3.3%	180 - 199	0.0
200 - 219	0.0	200 - 219	0.0
220 - 239	0.0	220 - 239	0.0
240 - 259	0.0	240 - 259	0.0
260 - 279	0.0	260 - 279	0.0
280 - 299	0.0	280 - 299	0.0
>299 mm	0.0	>299 mm	0.0
min size (mm)	75	min size (mm)	50
max size (mm)	181	max size (mm)	120
mean	124	mean	82
mode	86	mode	80
1987		1989	
1987 Pisaster giganteus		1989 Pisaster giganteus	
Pisaster giganteus (cases) N=	33	Pisaster giganteus (cases) N=	42
Pisaster giganteus (cases) N= <20 mm	0.0	Pisaster giganteus (cases) N= <20 mm	0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39	0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39	0.0 11.9%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59	0.0 0.0 12.1%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59	0.0 11.9% 26.2%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79	0.0 0.0 12.1% 36.4%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79	0.0 11.9% 26.2% 21.4%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99	0.0 0.0 12.1% 36.4% 33.3%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99	0.0 11.9% 26.2% 21.4% 26.2%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119	0.0 0.0 12.1% 36.4% 33.3% 6.1%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119	0.0 11.9% 26.2% 21.4% 26.2% 9.5%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139	0.0 0.0 12.1% 36.4% 33.3% 6.1% 6.1%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139	0.0 11.9% 26.2% 21.4% 26.2% 9.5% 2.4%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159	0.0 0.0 12.1% 36.4% 33.3% 6.1% 6.1% 3.0%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159	0.0 11.9% 26.2% 21.4% 26.2% 9.5% 2.4%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179	0.0 0.0 12.1% 36.4% 33.3% 6.1% 6.1% 3.0% 3.0%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179	0.0 11.9% 26.2% 21.4% 26.2% 9.5% 2.4% 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199	0.0 0.0 12.1% 36.4% 33.3% 6.1% 6.1% 3.0% 3.0%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199	0.0 11.9% 26.2% 21.4% 26.2% 9.5% 2.4% 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219	0.0 0.0 12.1% 36.4% 33.3% 6.1% 6.1% 3.0% 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219	0.0 11.9% 26.2% 21.4% 26.2% 9.5% 2.4% 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239	0.0 0.0 12.1% 36.4% 33.3% 6.1% 6.1% 3.0% 3.0% 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239	0.0 11.9% 26.2% 21.4% 26.2% 9.5% 2.4% 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259	0.0 0.0 12.1% 36.4% 33.3% 6.1% 6.1% 3.0% 3.0% 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259	0.0 11.9% 26.2% 21.4% 26.2% 9.5% 2.4% 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279	0.0 0.0 12.1% 36.4% 33.3% 6.1% 6.1% 3.0% 3.0% 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279	0.0 11.9% 26.2% 21.4% 26.2% 9.5% 2.4% 0.0 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	0.0 0.0 12.1% 36.4% 33.3% 6.1% 6.1% 3.0% 3.0% 0.0 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	0.0 11.9% 26.2% 21.4% 26.2% 9.5% 2.4% 0.0 0.0 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm	0.0 0.0 12.1% 36.4% 33.3% 6.1% 6.1% 3.0% 3.0% 0.0 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm	0.0 11.9% 26.2% 21.4% 26.2% 9.5% 2.4% 0.0 0.0 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	0.0 0.0 12.1% 36.4% 33.3% 6.1% 6.1% 3.0% 3.0% 0.0 0.0 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	0.0 11.9% 26.2% 21.4% 26.2% 9.5% 2.4% 0.0 0.0 0.0 0.0 0.0 0.0 32
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm) max size (mm)	0.0 0.0 12.1% 36.4% 33.3% 6.1% 6.1% 3.0% 3.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm) max size (mm)	0.0 11.9% 26.2% 21.4% 26.2% 9.5% 2.4% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	0.0 0.0 12.1% 36.4% 33.3% 6.1% 6.1% 3.0% 3.0% 0.0 0.0 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	0.0 11.9% 26.2% 21.4% 26.2% 9.5% 2.4% 0.0 0.0 0.0 0.0 0.0 0.0 32

1986		1988	
Pycnopodia helianthoides		Pycnopodia helianthoides	
Tyonopouru norramene	51400	ryomopouru morramomoru	
(cases) N=	20	(cases) N=	20
<20 mm	0.0	<20 mm	0.0
20 - 39	10.0%	20 - 39	0.0
40 - 59	10.0%	40 - 59	0.0
60 - 79	5.0%	60 - 79	0.0
80 - 99	0.0	80 - 99	5.0%
100 - 119	5.0%	100 - 119	0.0
120 - 139	0.0	120 - 139	15.0%
140 - 159	5.0%	140 - 159	10.0%
160 - 179	10.0%	160 - 179	10.0%
180 - 199	25.0%	180 - 199	20.0%
200 - 219	20.0%	200 - 219	25.0%
220 - 239	0.0	220 - 239	5.0%
240 - 259	5.0%	240 - 259	10.0%
260 - 279	0.0	260 - 279	0.0
280 - 299	5.0%	280 - 299	0.0
>299 mm	0.0	>299 mm	0.0
min size (mm)	28	min size (mm)	85
max size (mm)	282	max size (mm)	258
mean	157	mean	182
mode	178	mode	180
1987		1989	
1987 Pycnopodia heliantho	oides	1989 Pycnopodia helianthoid	es
	pides		es
	pides 26		es 31
Pycnopodia heliantho		Pycnopodia helianthoid	
Pycnopodia heliantho (cases) N=	26	Pycnopodia helianthoid (cases) N=	31
Pycnopodia heliantho (cases) N= <20 mm	26 0.0	Pycnopodia helianthoid (cases) N= <20 mm	31 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39	26 0.0 0.0	Pycnopodia helianthoid (cases) N= <20 mm 20 - 39	31 0.0 12.9%
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59	26 0.0 0.0 3.8%	Pycnopodia helianthoid (cases) N= <20 mm 20 - 39 40 - 59	31 0.0 12.9% 9.7% 12.9% 16.1%
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79	26 0.0 0.0 3.8% 7.7%	Pycnopodia helianthoid (cases) N= <20 mm 20 - 39 40 - 59 60 - 79	31 0.0 12.9% 9.7% 12.9% 16.1% 9.7%
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99	26 0.0 0.0 3.8% 7.7% 0.0	Pycnopodia helianthoid (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99	31 0.0 12.9% 9.7% 12.9% 16.1%
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119	26 0.0 0.0 3.8% 7.7% 0.0 30.8%	Pycnopodia helianthoid (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119	31 0.0 12.9% 9.7% 12.9% 16.1% 9.7%
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179	26 0.0 0.0 3.8% 7.7% 0.0 30.8% 7.7% 3.8% 3.8%	Pycnopodia helianthoid (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139	31 0.0 12.9% 9.7% 12.9% 16.1% 9.7% 3.2% 16.1% 3.2%
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159	26 0.0 0.0 3.8% 7.7% 0.0 30.8% 7.7% 3.8%	Pycnopodia helianthoid (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159	31 0.0 12.9% 9.7% 12.9% 16.1%
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219	26 0.0 0.0 3.8% 7.7% 0.0 30.8% 7.7% 3.8% 0.0	Pycnopodia helianthoid (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219	31 0.0 12.9% 9.7% 12.9% 16.1% 9.7% 3.2% 16.1% 3.2% 6.5%
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239	26 0.0 0.0 3.8% 7.7% 0.0 30.8% 7.7% 3.8% 3.8% 0.0 19.2% 15.4%	Pycnopodia helianthoid (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239	31 0.0 12.9% 9.7% 12.9% 16.1% 9.7% 3.2% 16.1% 3.2% 6.5% 6.5%
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259	26 0.0 0.0 3.88 7.78 0.0 30.88 7.78 3.88 3.88 0.0 19.28 15.48 3.88	Pycnopodia helianthoid (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259	31 0.0 12.9% 9.7% 12.9% 16.1% 9.7% 3.2% 16.1% 3.2% 6.5% 6.5%
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279	26 0.0 0.0 3.88 7.78 0.0 30.88 7.78 3.88 3.88 0.0 19.28 15.48 3.88 0.0	Pycnopodia helianthoid (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279	31 0.0 12.9% 9.7% 12.9% 16.1% 9.7% 3.2% 16.1% 3.2% 6.5% 6.5% 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	26 0.0 0.0 3.8% 7.7% 0.0 30.8% 7.7% 3.8% 3.8% 0.0 19.2% 15.4% 3.8% 0.0 0.0	Pycnopodia helianthoid (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	31 0.0 12.9% 9.7% 12.9% 16.1% 9.7% 3.2% 16.1% 3.2% 6.5% 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm	26 0.0 0.0 3.8% 7.7% 0.0 30.8% 7.7% 3.8% 3.8% 0.0 19.2% 15.4% 3.8% 0.0 0.0 3.8%	Pycnopodia helianthoid (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm	31 0.0 12.9% 9.7% 12.9% 16.1% 9.7% 3.2% 16.1% 3.2% 6.5% 0.0 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	26 0.0 0.0 3.8% 7.7% 0.0 30.8% 7.7% 3.8% 3.8% 0.0 19.2% 15.4% 3.8% 0.0 0.0 3.8% 56	Pycnopodia helianthoid (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	31 0.0 12.9% 9.7% 12.9% 16.1% 9.7% 3.2% 16.18 3.2% 6.5% 6.5% 0.0 0.0 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm	26 0.0 0.0 3.8% 7.7% 0.0 30.8% 7.7% 3.8% 3.8% 0.0 19.2% 15.4% 3.8% 0.0 0.0 3.8% 56 325	Pycnopodia helianthoid (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm	31 0.0 12.9% 9.7% 12.9% 16.1% 9.7% 3.2% 16.1% 3.2% 6.5% 0.0 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	26 0.0 0.0 3.8% 7.7% 0.0 30.8% 7.7% 3.8% 3.8% 0.0 19.2% 15.4% 3.8% 0.0 0.0 3.8% 56 325	Pycnopodia helianthoid (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	31 0.0 12.9% 9.7% 12.9% 16.1% 9.7% 3.2% 16.18 3.2% 6.5% 6.5% 0.0 0.0 0.0 0.0 24 230 110
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm) max size (mm)	26 0.0 0.0 3.8% 7.7% 0.0 30.8% 7.7% 3.8% 3.8% 0.0 19.2% 15.4% 3.8% 0.0 0.0 3.8% 56 325	Pycnopodia helianthoid (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm) max size (mm)	31 0.0 12.9% 9.7% 12.9% 16.1% 3.2% 16.18 3.2% 6.5% 6.5% 0.0 0.0 0.0 0.0 24 230

1004		1006	
1984	ia franciscanus	1986	najaanua
Strongylocentrotu	is italiciscallus	Strongylocentrotus fra	uiciscanus
(cases) N=	103	(cases) N=	100
< 5 mm	0.0	< 5 mm	0.0
5 - 9	0.0	5 - 9	0.0
10 - 14	0.0	10 - 14	0.0
15 - 19	0.0	15 - 19	4.0%
20 - 24	0.0	20 - 24	16.0%
25 - 29	1.0%	25 - 29	6.0%
30 - 34	0.0	30 - 34	8.0%
35 - 39	2.9%	35 - 39	24.0%
40 - 44	4.9%	40 - 44	15.0%
45 - 49	4.9%	45 - 49	4.0%
50 - 54	8.7%	50 - 54	6.0%
55 - 59	15.5%	55 - 59	5.0%
60 - 64	16.5%	60 - 64	4.0%
65 - 69	11.7%	65 - 69	2.0%
70 - 74	7.8%	70 - 74	5.0%
75 - 79	7.8%	75 - 79	0.0
80 - 84	4.9%	80 - 84	1.0%
85 - 89	4.9%	85 - 89	0.0
90 - 94	2.9%	90 - 94	0.0
95 - 99	3.9%	95 - 99	0.0
100 - 104	1.0%	100 - 104	0.0
105 - 109	0.0	> 104 mm	0.0
> 109 mm	1.0%	min size (mm)	16
min size (mm)	25	max size (mm)	81
max size (mm)	120	mean	40
mean	65	mode	38
mode	61		
	0 ±		
	01	1987	
1985		1987 Strongylocentrotus fra	anciscanus
		Strongylocentrotus fra	
1985 Strongylocentrotu	ns franciscanus	Strongylocentrotus fra	98
1985 Strongylocentrotu (cases) N=	ns franciscanus 115	Strongylocentrotus fra (cases) N= < 14 mm	98 0.0
1985 Strongylocentrotu (cases) N= < 5 mm	ns franciscanus 115 0.0	Strongylocentrotus fra (cases) N= < 14 mm 15 - 19	98 0.0 0.0
1985 Strongylocentrotu (cases) N= < 5 mm 5 - 9	ns franciscanus 115 0.0 0.0	Strongylocentrotus fra (cases) N= < 14 mm 15 - 19 20 - 24	98 0.0 0.0 6.1%
1985 Strongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14	ns franciscanus 115 0.0 0.0 0.0	Strongylocentrotus fra (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29	98 0.0 0.0 6.1% 6.1%
1985 Strongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	115 0.0 0.0 0.0 0.0 0.0	Strongylocentrotus fra (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34	98 0.0 0.0 6.1% 6.1%
1985 Strongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	115 0.0 0.0 0.0 0.0 0.9% 1.7%	Strongylocentrotus fra (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	98 0.0 0.0 6.1% 6.1% 15.3%
1985 Strongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	115 0.0 0.0 0.0 0.0 0.9% 1.7% 16.5%	Strongylocentrotus fra (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	98 0.0 0.0 6.1% 6.1% 15.3% 14.3% 16.3%
1985 Strongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	115 0.0 0.0 0.0 0.0 0.9% 1.7% 16.5% 14.8%	Strongylocentrotus fra (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	98 0.0 0.0 6.1% 6.1% 15.3% 14.3% 16.3%
1985 Strongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	115 0.0 0.0 0.0 0.0 0.9% 1.7% 16.5% 14.8% 1.7%	Strongylocentrotus fra (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	98 0.0 0.0 6.1% 6.1% 15.3% 14.3% 16.3% 7.1%
1985 Strongylocentrote (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	115 0.0 0.0 0.0 0.9% 1.7% 16.5% 14.8% 1.7%	Strongylocentrotus fra (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	98 0.0 0.0 6.1% 6.1% 15.3% 14.3% 16.3% 7.1%
1985 Strongylocentrote (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	115 0.0 0.0 0.0 0.0 0.9% 1.7% 16.5% 14.8% 1.7% 1.7%	Strongylocentrotus fra (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	98 0.0 0.0 6.1% 6.1% 15.3% 14.3% 16.3% 7.1% 3.1%
1985 Strongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	115 0.0 0.0 0.0 0.0 0.9% 1.7% 16.5% 14.8% 1.7% 1.7% 1.7%	Strongylocentrotus fra (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	98 0.0 0.0 6.1% 6.1% 15.3% 14.3% 16.3% 14.3% 7.1% 3.1% 4.1%
1985 Strongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	115 0.0 0.0 0.0 0.0 0.9% 1.7% 16.5% 14.8% 1.7% 1.7% 9.6% 12.2%	Strongylocentrotus fra (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	98 0.0 0.0 6.1% 6.1% 15.3% 14.3% 7.1% 3.1% 4.1% 5.1%
1985 Strongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	115 0.0 0.0 0.0 0.0 0.9% 1.7% 16.5% 14.8% 1.7% 1.7% 9.6% 12.2% 19.1% 7.8%	Strongylocentrotus fra (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	98 0.0 0.0 6.1% 6.1% 15.3% 14.3% 7.1% 3.1% 4.1% 5.1%
1985 Strongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	115 0.0 0.0 0.0 0.9% 1.7% 16.5% 14.8% 1.7% 1.7% 9.6% 12.2% 19.1% 7.8% 6.1%	Strongylocentrotus fra (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	98 0.0 0.0 6.1% 6.1% 15.3% 14.3% 16.3% 14.3% 7.1% 3.1% 4.1% 5.1% 4.1% 0.0%
1985 Strongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	115 0.0 0.0 0.0 0.9% 1.7% 16.5% 14.8% 1.7% 1.	Strongylocentrotus fra (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	98 0.0 0.0 6.1% 6.1% 15.3% 14.3% 16.3% 7.1% 3.1% 4.1% 5.1% 4.1% 2.0% 0.0
1985 Strongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	115 0.0 0.0 0.0 0.9% 1.7% 16.5% 14.8% 1.7% 1.2% 1.2% 1.2% 1.2% 1.2% 1.3% 1.4% 1.5% 1.4% 1.5% 1.	Strongylocentrotus fra (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	98 0.0 0.0 6.1% 6.1% 15.3% 14.3% 16.3% 14.3% 7.1% 3.1% 4.1% 2.0% 0.0 0.0
1985 Strongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	115 0.0 0.0 0.0 0.9% 1.7% 16.5% 14.8% 1.7% 1.7% 1.7% 1.7% 1.7% 1.7% 1.7% 1.7% 2.6% 12.2% 19.1% 7.8% 6.1% 2.6% 1.7% 2.6%	Strongylocentrotus fra (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	98 0.0 0.0 6.1% 6.1% 15.3% 14.3% 16.3% 14.3% 7.1% 3.1% 4.1% 5.1% 4.1% 2.0% 0.0 1.0% 0.0
1985 Strongylocentrote (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	115 0.0 0.0 0.0 0.9% 1.7% 16.5% 14.8% 1.7% 1.7% 9.6% 12.2% 19.1% 7.8% 6.1% 2.6% 1.7% 2.6% 0.9%	Strongylocentrotus fra (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	98 0.0 0.0 6.1% 6.1% 15.3% 14.3% 16.3% 14.3% 7.1% 3.1% 4.1% 5.1% 4.0% 0.0 0.0 1.0% 0.0
1985 Strongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	115 0.0 0.0 0.0 0.9% 1.7% 16.5% 14.8% 1.7% 1.7% 1.7% 9.6% 12.2% 19.1% 7.8% 6.1% 2.6% 1.7% 2.6% 0.9%	(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	98 0.0 0.0 6.1% 6.1% 6.18 15.3% 14.3% 16.3% 14.3% 7.1% 3.1% 4.1% 5.1% 0.0 0.0 1.0%
1985 Strongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 > 94 mm	115 0.0 0.0 0.0 0.0 0.9% 1.7% 16.5% 14.8% 1.7% 9.6% 12.2% 19.1% 7.8% 6.1% 2.6% 1.7% 2.6% 0.9% 0.0	(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	98 0.0 0.0 6.1% 6.1% 6.18 15.3% 14.3% 16.3% 14.3% 7.1% 3.1% 4.1% 5.1% 0.0 0.0 1.0% 0.0
1985 Strongylocentrote (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 > 94 mm min size (mm)	115 0.0 0.0 0.0 0.9% 1.7% 16.5% 14.8% 1.7% 1.78 9.6% 12.2% 19.1% 7.8% 6.1% 2.6% 1.7% 2.6% 0.9% 0.0	(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	98 0.0 0.0 6.1% 6.1% 15.3% 14.3% 16.3% 14.3% 7.1% 3.1% 4.1% 5.1% 2.0% 0.0 0.0 1.0% 0.0 1.0% 0.0 20
1985 Strongylocentroto (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 > 94 mm min size (mm) max size (mm)	115 0.0 0.0 0.0 0.0 0.9% 1.7% 16.5% 14.8% 1.7% 9.6% 12.2% 19.1% 7.8% 6.1% 2.6% 1.7% 2.6% 0.9% 0.0	(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	98 0.0 0.0 6.1% 6.1% 15.3% 14.3% 14.3% 14.3% 7.1% 3.1% 4.1% 5.1% 0.0 0.0 1.0% 0.0
1985 Strongylocentrote (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 > 94 mm min size (mm)	115 0.0 0.0 0.0 0.9% 1.7% 16.5% 14.8% 1.7% 1.7% 1.7% 9.6% 12.2% 19.1% 7.8% 6.1% 2.6% 1.7% 2.6% 1.7% 2.6% 0.9%	(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	98 0.0 0.0 6.1% 6.1% 15.3% 14.3% 16.3% 14.3% 7.1% 3.1% 4.1% 5.1% 2.0% 0.0 0.0 1.0% 0.0 1.0% 0.0 1.0% 0.0

1988		1989	
Strongylocentrotus franciscanus		Strongylocentrotus franciscanus	
(cases) N=	104	(cases) N=	100
< 5 mm	0.0	< 5 mm	0.0
5 - 9	0.0	5 - 9	2.0%
10 - 14	1.0%	10 - 14	0.0
15 - 19	0.0	15 - 19	5.0%
20 - 24	1.9%	20 - 24	2.0%
25 - 29	3.8%	25 - 29	10.0%
30 - 34	3.8%	30 - 34	5.0%
35 - 39	4.8%	35 - 39	2.0%
40 - 44	5.8%	40 - 44	2.0%
45 - 49	13.5%	45 - 49	7.0%
50 - 54	24.0%	50 - 54	10.0%
55 - 59	9.6%	55 - 59	15.0%
60 - 64	9.6%	60 - 64	12.0%
65 - 69	7.7%	65 - 69	10.0%
70 - 74	11.5%	70 - 74	8.0%
75 - 79	2.9%	75 - 79	6.0%
80 - 84	0.0	80 - 84	1.0%
85 - 89	0.0	85 - 89	1.0%
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	2.0%
100 - 104	0.0	100 - 104	0.0
105 - 109	0.0	105 - 109	0.0
> 109 mm	0.0	> 109 mm	0.0
min size (mm)	11	min size (mm)	5
max size (mm)	79	max size (mm)	98
mean	53	mean	52
mode	50	mode	26

1004		1006	
1984		1986	nn+a
Srongylocentrot	us purpuratus	Srongylocentrotus pur	puratus
(cases) N=	114	(cases) N=	103
< 5 mm	0.0	< 5 mm	0.0
5 - 9	0.0	5 - 9	0.0
10 - 14	0.0	10 - 14	2.9%
15 - 19	0.0	15 - 19	5.8%
20 - 24	4.4%	20 - 24	31.1%
25 - 29	7.0%	25 - 29	28.2%
30 - 34	21.9%	30 - 34	11.7%
35 - 39	30.7%	35 - 39	9.7%
40 - 44	22.8%	40 - 44	4.9%
45 - 49	7.9%	45 - 49	2.9%
50 - 54	3.5%	50 - 54	2.9%
55 - 59	1.8%	55 - 59	0.0
60 - 64	0.0	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
100 - 104	0.0	100 - 104	0.0
105 - 109	0.0	105 - 109	0.0
> 109 mm	0.0	> 109 mm	0.0
min size (mm)	22	min size (mm)	13
max size (mm)	56	max size (mm)	52
mean	37	mean	28
mode	38	mode	23
	38		23
1985		1987	
1985 Srongylocentrot	us purpuratus	1987 Srongylocentrotus pur	puratus
1985		1987	
1985 Srongylocentrot (cases) N=	us purpuratus 107	1987 Srongylocentrotus pur (cases) N=	puratus 102
1985 Srongylocentrot (cases) N= < 5 mm	us purpuratus 107 0.0	1987 Srongylocentrotus pur (cases) N= < 5 mm	puratus 102 2.0%
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9	us purpuratus 107 0.0 0.0	1987 Srongylocentrotus pur (cases) N= < 5 mm 5 - 9	puratus 102 2.0% 0.0
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14	us purpuratus 107 0.0 0.0 21.5%	1987 Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14	puratus 102 2.0% 0.0 2.9%
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	us purpuratus 107 0.0 0.0 21.5% 44.9%	1987 Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	puratus 102 2.0% 0.0 2.9% 19.6%
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	107 0.0 0.0 21.5% 44.9% 11.2%	1987 Srongylocentrotus pur, (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	puratus 102 2.0% 0.0 2.9% 19.6% 56.9%
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	107 0.0 0.0 21.5% 44.9% 11.2% 3.7%	1987 Srongylocentrotus pur, (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	puratus 102 2.0% 0.0 2.9% 19.6% 56.9% 10.8%
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	107 0.0 0.0 21.5% 44.9% 11.2% 3.7% 5.6%	1987 Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	102 2.0% 0.0 2.9% 19.6% 56.9% 10.8%
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	107 0.0 0.0 21.5% 44.9% 11.2% 3.7% 5.6% 8.4%	1987 Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	102 2.0% 0.0 2.9% 19.6% 56.9% 10.8% 1.0% 2.0%
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	107 0.0 0.0 21.5% 44.9% 11.2% 3.7% 5.6% 8.4% 2.8%	1987 Srongylocentrotus pur, (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	102 2.0% 0.0 2.9% 19.6% 56.9% 10.8% 1.0% 2.0% 3.9%
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	107 0.0 0.0 21.5% 44.9% 11.2% 3.7% 5.6% 8.4% 2.8% 0.9%	1987 Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	102 2.0% 0.0 2.9% 19.6% 56.9% 10.8% 1.0% 2.0% 3.9% 0.0
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	107 0.0 0.0 21.5% 44.9% 11.2% 3.7% 5.6% 8.4% 2.8% 0.9% 0.9%	1987 Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	102 2.0% 0.0 2.9% 19.6% 56.9% 10.8% 1.0% 2.0% 3.9% 0.0
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	107 0.0 0.0 21.5% 44.9% 11.2% 3.7% 5.6% 8.4% 2.8% 0.9% 0.9%	1987 Srongylocentrotus pur, (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	102 2.0% 0.0 2.9% 19.6% 56.9% 10.8% 1.0% 2.0% 3.9% 0.0 0.0
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	107 0.0 0.0 21.5% 44.9% 11.2% 3.7% 5.6% 8.4% 2.8% 0.9% 0.9% 0.0	1987 Srongylocentrotus pur, (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	puratus 102 2.0% 0.0 2.9% 19.6% 56.9% 10.8% 1.0% 2.0% 3.9% 0.0 1.0% 0.0
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	107 0.0 0.0 21.5% 44.9% 11.2% 3.7% 5.6% 8.4% 2.8% 0.9% 0.9% 0.0 0.0	1987 Srongylocentrotus pur, (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	puratus 102 2.0% 0.0 2.9% 19.6% 56.9% 10.8% 1.0% 2.0% 3.9% 0.0 0.0 0.0
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	107 0.0 0.0 21.5% 44.9% 11.2% 3.7% 5.6% 8.4% 2.8% 0.9% 0.9% 0.9%	1987 Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	puratus 102 2.0% 0.0 2.9% 19.6% 56.9% 10.8% 1.0% 2.0% 3.9% 0.0 0.0 0.0 0.0
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	107 0.0 0.0 21.5% 44.9% 11.2% 3.7% 5.6% 8.4% 2.8% 0.9% 0.9% 0.9% 0.00 0.0	1987 Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	102 2.0% 0.0 2.9% 19.6% 56.9% 10.8% 1.0% 2.0% 3.9% 0.0 0.0
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	107 0.0 0.0 21.5% 44.9% 11.2% 3.7% 5.6% 8.4% 2.8% 0.9% 0.9% 0.9% 0.00 0.0 0.0 0.0	1987 Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	102 2.0% 0.0 2.9% 19.6% 56.9% 10.8% 1.0% 2.0% 3.9% 0.0 0.0
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	107 0.0 0.0 21.5% 44.9% 11.2% 3.7% 5.6% 8.4% 2.8% 0.9% 0.9% 0.9% 0.00 0.0 0.0 0.0 0.0	1987 Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	102 2.0% 0.0 2.9% 19.6% 56.9% 10.8% 1.0% 2.0% 3.9% 0.0 0.0 0.0 0.0
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	107 0.0 0.0 21.5% 44.9% 11.2% 3.7% 5.6% 8.4% 2.8% 0.9% 0.9% 0.9% 0.0 0.0 0.0	1987 Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	102 2.0% 0.0 2.9% 19.6% 56.9% 10.8% 1.0% 2.0% 3.9% 0.0 0.0 1.0% 0.0 0.0
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 > 95 mm	107 0.0 0.0 21.5% 44.9% 11.2% 3.7% 5.6% 8.4% 2.8% 0.9% 0.9% 0.0 0.0 0.0 0.0 0.0 0.0	1987 Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 > 95 mm	102 2.0% 0.0 2.9% 19.6% 56.9% 10.8% 1.0% 2.0% 3.9% 0.0 0.0 0.0 0.0 0.0 0.0
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 > 95 mm min size (mm)	107 0.0 0.0 21.5% 44.9% 11.2% 3.7% 5.6% 8.4% 2.8% 0.9% 0.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1987 Srongylocentrotus pury (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 > 95 mm min size (mm)	102 2.0% 0.0 2.9% 19.6% 56.9% 10.8% 1.0% 2.0% 3.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1985 Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 > 95 mm min size (mm) max size (mm)	107 0.0 0.0 21.5% 44.9% 11.2% 3.7% 5.6% 8.4% 2.8% 0.9% 0.9% 0.9% 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0	1987 Srongylocentrotus pury (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 > 95 mm min size (mm) max size (mm)	102 2.0% 0.00 2.9% 19.6% 56.9% 10.8% 1.0% 2.0% 3.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

1988		1989	
Srongylocentrotus purpuratus		Srongylocentrotus purpuratus	
(cases) N=	176	(cases) N=	117
< 5 mm	0.0	< 5 mm	0.0
5 - 9	0.6%	5 - 9	1.7%
10 - 14	1.1%	10 - 14	1.7%
15 - 19	1.1%	15 - 19	7.7%
20 - 24	4.5%	20 - 24	10.3%
25 - 29	22.2%	25 - 29	15.4%
30 - 34	45.5%	30 - 34	27.4%
35 - 39	16.5%	35 - 39	16.2%
40 - 44	2.8%	40 - 44	9.4%
45 - 49	1.1%	45 - 49	6.0%
50 - 54	2.8%	50 - 54	3.4%
55 - 59	1.7%	55 - 59	0.9%
60 - 64	0.0	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
100 - 104	0.0	100 - 104	0.0
105 - 109	0.0	105 - 109	0.0
> 109 mm	0.0	> 109 mm	0.0
min size (mm)	8	min size (mm)	6
max size (mm)	59	max size (mm)	56
mean	32	mean	32
mode	31	mode	31

LOCATION 3 SANTA ROSA ISLAND - JOHNSONS'S LEE NORTH

٠	
٠	

min size (mm)

max size (mm)

mean mode

:			
1986		1989	
Tethya aurantia		Tethya aurantia	
(cases) N=	36	(cases) N=	18
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	0.0
20 - 29	0.0	20 - 29	0.0
30 - 39	5.6%	30 - 39	5.6%
40 - 49	11.1%	40 - 49	5.6%
50 - 59	33.3%	50 - 59	11.1%
60 - 69	27.8%	60 - 69	5.6%
70 - 79	5.6%	70 - 79	16.7%
80 - 89	0.0	80 - 89	22.2%
90 - 99	5.6%	90 - 99	5.6%
>99 mm	8.3%	>99 mm	27.8%
min size (mm)	30	min size (mm)	36
max size (mm)	111	max size (mm)	122
mean	65	mean	82
mode	59	mode	82
1000			
1988			
Tethya aurantia			
(cases) N=	44		
< 10 mm	0.0		
10 - 19	0.0		
20 - 29	0.0		
30 - 39	2.3%		
40 - 49	6.8%		
50 - 59	9.1%		
60 - 69	22.7%		
70 - 79	18.2%		
80 - 89	6.8%		
90 - 99	9.1%		
>99 mm	22.7%		

35

124 78 41

1984		1985	
Haliotis rufescens		Haliotis rufescens	
(cases) N=	43	(cases) N=	31
< 34 mm	0.0	< 45 mm	0.0
35 - 39	0.0	45 - 49	0.0
40 - 44	2.3%	50 - 54	0.0
45 - 49	0.0	55 - 59	0.0
50 - 54	0.0	60 - 64	0.0
55 - 59	0.0	65 - 69	3.2%
60 - 64	0.0	70 - 74	0.0
65 - 69	0.0	75 - 79	0.0
70 - 74	2.3%	80 - 84	3.2%
75 - 79	2.3%	85 - 89	0.0
80 - 84	0.0	90 - 94	3.2%
85 - 89	0.0	95 - 99	0.0
90 - 94	0.0	100 - 104	3.2%
95 - 99	0.0	105 - 109	3.2%
100 - 104	0.0	110 - 114	3.2%
105 - 109	0.0	115 - 119	3.2%
110 - 114	9.3%	120 - 124	3.2%
115 - 119	7.0%	125 - 129	0.0
120 - 124	7.0%	130 - 134	3.2%
125 - 129	2.3%	135 - 139	9.7%
130 - 134	14.0%	140 - 144	9.7%
135 - 139	2.3%	145 - 149	3.2%
140 - 144	9.3%	150 - 154	3.2%
145 - 149	2.3%	155 - 159	9.7%
150 - 154	4.7%	160 - 164	9.7%
155 - 159	4.7%	165 - 169	16.1%
160 - 164	4.7%	170 - 174	3.2%
165 - 169	4.7%	175 - 179	3.2%
170 - 174	4.7%	180 - 184	3.2%
175 - 179	4.7%	185 - 189	0.0
180 - 184	7.0%	190 - 194	0.0
185 - 189	4.7%	195 - 199	0.0
190 - 194	0.0	> 199 mm	0.0
> 194 mm	0.0	min size (mm)	66
min size (mm)	42	max size (mm)	181
max size (mm)	189	mean	142
mean	139	mode	164
mode	112		

1986		BA ISLAND - JOHNSONS'S		
(cases) N= 10 (cases) N= 13 < 25 mm	1986		1987	
c 25 mm 20.0% < 25 mm 0.0 25 - 29 10.0% 25 - 29 0.0 30 - 34 0.0 30 - 34 0.0 40 - 44 0.0 40 - 44 0.0 45 - 49 0.0 45 - 49 0.0 55 - 59 0.0 50 - 54 0.0 65 - 69 0.0 65 - 69 0.0 65 - 69 0.0 65 - 69 0.0 70 - 74 0.0 70 - 74 0.0 75 - 79 0.0 75 - 79 0.0 85 - 89 0.0 85 - 89 0.0 85 - 89 0.0 85 - 89 0.0 90 - 94 0.0 95 - 99 0.0 100 - 104 0.0 100 - 104 0.0 105 - 109 10.0% 105 - 109 7.7% 110 - 114 0.0 110 - 114 0.0 125 - 129 0.0 120 - 124 0.0 125 - 129 0.0 122 - 124 0.0 <t< td=""><td>Haliotis rufescens</td><td></td><td>Haliotis rufescens</td><td></td></t<>	Haliotis rufescens		Haliotis rufescens	
25 - 29	(cases) N=	10	(cases) N=	13
25 - 29		20.0%		0.0
30 - 34		10.0%		0.0
40 - 44 0.0 40 - 44 0.0 45 - 49 0.0 45 - 49 0.0 50 - 54 0.0 50 - 54 0.0 55 - 59 0.0 65 - 69 0.0 60 - 64 0.0 66 - 69 0.0 65 - 69 0.0 70 - 74 0.0 75 - 79 0.0 75 - 79 0.0 80 - 84 0.0 85 - 89 0.0 85 - 89 0.0 95 - 99 0.0 90 - 94 0.0 95 - 99 0.0 100 - 104 0.0 100 - 104 0.0 105 - 109 10.0% 105 - 109 7.7% 110 - 114 0.0 110 - 114 0.0 120 - 124 0.0 120 - 124 0.0 125 - 129 0.0 120 - 124 0.0 135 - 139 0.0 120 - 124 0.0 135 - 139 0.0 135 - 139 7.7% 140 - 144 20.0% 140 - 144 15.4% 155 - 159 0.0 135 - 159 7.7% 160 - 164 <td></td> <td>0.0</td> <td></td> <td></td>		0.0		
40 - 44 0.0 40 - 44 0.0 45 - 49 0.0 45 - 49 0.0 50 - 54 0.0 50 - 54 0.0 55 - 59 0.0 65 - 69 0.0 60 - 64 0.0 66 - 69 0.0 65 - 69 0.0 70 - 74 0.0 75 - 79 0.0 75 - 79 0.0 80 - 84 0.0 85 - 89 0.0 85 - 89 0.0 95 - 99 0.0 90 - 94 0.0 95 - 99 0.0 100 - 104 0.0 100 - 104 0.0 105 - 109 10.0% 105 - 109 7.7% 110 - 114 0.0 110 - 114 0.0 120 - 124 0.0 120 - 124 0.0 125 - 129 0.0 120 - 124 0.0 135 - 139 0.0 120 - 124 0.0 135 - 139 0.0 135 - 139 7.7% 140 - 144 20.0% 140 - 144 15.4% 155 - 159 0.0 135 - 159 7.7% 160 - 164 <td>35 - 39</td> <td>0.0</td> <td>35 - 39</td> <td>0.0</td>	35 - 39	0.0	35 - 39	0.0
45 - 49 0.0 45 - 49 0.0 50 - 54 0.0 50 - 54 0.0 55 - 59 0.0 55 - 59 0.0 60 - 64 0.0 60 - 64 0.0 65 - 69 0.0 65 - 69 0.0 70 - 74 0.0 70 - 74 0.0 80 - 84 0.0 80 - 84 0.0 85 - 89 0.0 85 - 89 0.0 90 - 94 0.0 90 - 94 0.0 95 - 99 0.0 95 - 99 0.0 100 - 104 0.0 100 - 104 0.0 105 - 109 10.0% 105 - 109 7.7% 110 - 114 0.0 115 - 119 0.0 125 - 129 0.0 125 - 129 0.0 125 - 129 0.0 125 - 129 0.0 130 - 134 0.0 135 - 139 7.7% 140 - 144 20.0% 135 - 139 7.7% 140 - 144 20.0% 135 - 139 7.7%				
50 - 54 0.0 50 - 54 0.0 55 - 59 0.0 55 - 59 0.0 60 - 64 0.0 60 - 64 0.0 65 - 69 0.0 65 - 69 0.0 70 - 74 0.0 70 - 74 0.0 80 - 84 0.0 80 - 84 0.0 85 - 89 0.0 85 - 89 0.0 90 - 94 0.0 95 - 99 0.0 100 - 104 0.0 95 - 99 0.0 105 - 109 10.0% 105 - 109 7.7% 110 - 114 0.0 115 - 119 0.0 125 - 129 0.0 115 - 119 0.0 125 - 129 0.0 125 - 129 0.0 130 - 134 0.0 135 - 139 7.7% 140 - 144 20.0% 140 - 144 15.4% 145 - 149 10.0% 135 - 139 7.7% 140 - 144 20.0% 135 - 139 7.7% 140 - 144 20.0% 135 - 139 7.7%	45 - 49			
60 - 64 0.0 60 - 64 0.0 65 - 69 0.0 65 - 69 0.0 70 - 74 0.0 70 - 74 0.0 75 - 79 0.0 75 - 79 0.0 80 - 84 0.0 80 - 84 0.0 85 - 89 0.0 95 - 89 0.0 90 - 94 0.0 95 - 99 0.0 100 - 104 0.0 100 - 104 0.0 105 - 109 10.0% 105 - 109 7.7% 110 - 114 0.0 110 - 114 0.0 15 - 119 0.0 110 - 114 0.0 120 - 124 0.0 120 - 124 0.0 120 - 124 0.0 125 - 129 0.0 130 - 134 0.0 125 - 129 0.0 130 - 134 0.0 135 - 139 7.7% 140 - 144 20.0% 140 - 144 15.4% 145 - 149 10.0% 145 - 149 0.0 150 - 154 10.0% 155 - 159 7.7%	50 - 54	0.0	50 - 54	0.0
65 - 69 0.0 65 - 69 0.0 70 - 74 0.0 70 - 74 0.0 80 - 84 0.0 80 - 84 0.0 85 - 89 0.0 85 - 89 0.0 90 - 94 0.0 90 - 94 0.0 95 - 99 0.0 100 - 104 0.0 105 - 109 10.0% 105 - 109 7.7% 110 - 114 0.0 115 - 119 0.0 120 - 124 0.0 120 - 124 0.0 125 - 129 0.0 125 - 129 0.0 130 - 134 0.0 130 - 134 0.0 135 - 139 0.0 135 - 139 7.7% 140 - 144 20.0% 140 - 144 15.4% 145 - 149 10.0% 145 - 149 0.0 150 - 154 10.0% 145 - 149 0.0 150 - 154 10.0% 145 - 149 0.0 150 - 154 0.0 155 - 159 7.7% 165 - 169 0.0 155 - 159	55 - 59	0.0	55 - 59	0.0
65 - 69 0.0 65 - 69 0.0 70 - 74 0.0 70 - 74 0.0 80 - 84 0.0 80 - 84 0.0 85 - 89 0.0 85 - 89 0.0 90 - 94 0.0 90 - 94 0.0 95 - 99 0.0 100 - 104 0.0 105 - 109 10.0% 105 - 109 7.7% 110 - 114 0.0 115 - 119 0.0 120 - 124 0.0 120 - 124 0.0 125 - 129 0.0 125 - 129 0.0 130 - 134 0.0 130 - 134 0.0 135 - 139 0.0 135 - 139 7.7% 140 - 144 20.0% 140 - 144 15.4% 145 - 149 10.0% 145 - 149 0.0 150 - 154 10.0% 145 - 149 0.0 150 - 154 10.0% 145 - 149 0.0 150 - 154 0.0 155 - 159 7.7% 165 - 169 0.0 155 - 159	60 - 64	0.0	60 - 64	0.0
75 - 79 0.0 75 - 79 0.0 80 - 84 0.0 80 - 84 0.0 85 - 89 0.0 85 - 89 0.0 90 - 94 0.0 90 - 94 0.0 95 - 99 0.0 100 - 104 0.0 100 - 104 0.0 100 - 104 0.0 105 - 109 10.0% 105 - 109 7.7% 110 - 114 0.0 115 - 119 0.0 120 - 124 0.0 120 - 124 0.0 120 - 124 0.0 120 - 124 0.0 125 - 129 0.0 125 - 129 0.0 130 - 134 0.0 135 - 139 7.7% 140 - 144 20.0% 140 - 144 15.4% 145 - 149 10.0% 145 - 149 0.0 150 - 154 10.0% 155 - 159 7.7% 165 - 169 0.0 155 - 159 7.7% 165 - 169 0.0 165 - 169 7.7% 170 - 174 20.0% 175 - 179				
75 - 79 0.0 75 - 79 0.0 80 - 84 0.0 80 - 84 0.0 85 - 89 0.0 85 - 89 0.0 90 - 94 0.0 90 - 94 0.0 95 - 99 0.0 100 - 104 0.0 100 - 104 0.0 100 - 104 0.0 105 - 109 10.0% 105 - 109 7.7% 110 - 114 0.0 115 - 119 0.0 120 - 124 0.0 120 - 124 0.0 125 - 129 0.0 120 - 124 0.0 125 - 129 0.0 125 - 129 0.0 130 - 134 0.0 135 - 139 7.7% 140 - 144 20.0% 140 - 144 15.4% 145 - 149 10.0% 145 - 149 0.0 150 - 154 10.0% 155 - 159 7.7% 165 - 169 0.0 155 - 159 7.7% 165 - 169 0.0 165 - 169 7.7% 170 - 174 20.0 175 - 179	70 - 74	0.0	70 - 74	0.0
85 - 89 0.0 85 - 89 0.0 90 - 94 0.0 90 - 94 0.0 95 - 99 0.0 95 - 99 0.0 100 - 104 0.0 100 - 104 0.0 105 - 109 10.0% 105 - 109 7.7% 110 - 114 0.0 115 - 119 0.0 120 - 124 0.0 115 - 119 0.0 120 - 124 0.0 120 - 124 0.0 130 - 134 0.0 125 - 129 0.0 130 - 134 0.0 135 - 139 7.7% 140 - 144 20.0% 140 - 144 15.4% 145 - 149 10.0% 145 - 149 0.0 150 - 154 10.0% 145 - 149 0.0 150 - 154 10.0% 150 - 154 7.7% 160 - 164 0.0 165 - 169 7.7% 160 - 164 0.0 165 - 169 7.7% 170 - 174 20.0% 170 - 174 0.0 175 - 179 0.0 185 - 189 0.0 190 - 194 0.0 195 - 199 0.0	75 - 79		75 - 79	
85 - 89 0.0 85 - 89 0.0 90 - 94 0.0 90 - 94 0.0 95 - 99 0.0 95 - 99 0.0 100 - 104 0.0 100 - 104 0.0 105 - 109 10.0% 105 - 109 7.7% 110 - 114 0.0 115 - 119 0.0 120 - 124 0.0 115 - 119 0.0 120 - 124 0.0 120 - 124 0.0 130 - 134 0.0 130 - 134 0.0 135 - 139 0.0 135 - 139 7.7% 140 - 144 20.0% 140 - 144 15.4% 145 - 149 10.0% 145 - 149 0.0 150 - 154 10.0% 145 - 149 0.0 150 - 154 10.0% 150 - 154 7.7% 160 - 164 0.0 165 - 169 7.7% 160 - 164 0.0 165 - 169 7.7% 170 - 174 20.0% 170 - 174 0.0 175 - 179 0.0 185 - 189 0.0 190 - 194 0.0 195 - 199 0.0	80 - 84	0.0	80 - 84	0.0
90 - 94 0.0 95 - 99 0.0 95 - 99 0.0 95 - 99 0.0 100 - 104 0.0 100 - 104 0.0 105 - 109 10.0% 105 - 109 7.7% 110 - 114 0.0 110 - 114 0.0 120 - 124 0.0 120 - 124 0.0 125 - 129 0.0 125 - 129 0.0 130 - 134 0.0 135 - 139 7.7% 140 - 144 20.0% 140 - 144 15.4% 145 - 149 10.0% 145 - 149 0.0 150 - 154 10.0% 150 - 154 7.7% 160 - 164 0.0 155 - 159 7.7% 160 - 164 0.0 155 - 159 7.7% 170 - 174 20.0% 170 - 174 0.0 175 - 179 0.0 175 - 179 0.0 180 - 184 0.0 180 - 184 23.1% 185 - 189 0.0 185 - 189 0.0 195 - 199 0.0 195 - 199 0.0 > 199 mm 0.0 195 - 199 0.0	85 - 89		85 - 89	0.0
100 - 104 0.0 100 - 104 0.0 105 - 109 10.0% 105 - 109 7.7% 110 - 114 0.0 110 - 114 0.0 115 - 119 0.0 115 - 119 0.0 120 - 124 0.0 120 - 124 0.0 130 - 134 0.0 130 - 134 0.0 135 - 139 0.0 135 - 139 7.7% 140 - 144 20.0% 140 - 144 15.4% 145 - 149 10.0% 145 - 149 0.0 150 - 154 10.0% 150 - 154 7.7% 155 - 159 0.0 155 - 159 7.7% 165 - 169 0.0 165 - 169 7.7% 170 - 174 20.0% 170 - 174 0.0 175 - 179 0.0 175 - 179 0.0 180 - 184 0.0 185 - 189 0.0 190 - 194 0.0 195 - 199 0.0 > 199 mm 0.0 > 195 - 199 0.0 > 199 mm 0.0 > 195 - 199 0.0 > 199 mm 0.0 > 195 - 199	90 - 94		90 - 94	0.0
100 - 104 0.0 100 - 104 0.0 105 - 109 10.0% 105 - 109 7.7% 110 - 114 0.0 110 - 114 0.0 115 - 119 0.0 115 - 119 0.0 120 - 124 0.0 120 - 124 0.0 130 - 134 0.0 130 - 134 0.0 135 - 139 0.0 135 - 139 7.7% 140 - 144 20.0% 140 - 144 15.4% 145 - 149 10.0% 145 - 149 0.0 150 - 154 10.0% 150 - 154 7.7% 155 - 159 0.0 155 - 159 7.7% 160 - 164 0.0 160 - 164 23.1% 165 - 169 0.0 165 - 169 7.7% 170 - 174 20.0% 170 - 174 0.0 185 - 189 0.0 185 - 189 0.0 190 - 194 0.0 195 - 199 0.0 > 199 mm 0.0 195 - 199 0.0 > 199 mm 0.0 195 - 199 mm 0.0 min size (mm) 11 max size (mm)	95 - 99	0.0	95 - 99	0.0
110 - 114 0.0 110 - 114 0.0 115 - 119 0.0 115 - 119 0.0 120 - 124 0.0 120 - 124 0.0 125 - 129 0.0 125 - 129 0.0 130 - 134 0.0 130 - 134 0.0 135 - 139 0.0 135 - 139 7.7% 140 - 144 20.0% 140 - 144 15.4% 145 - 149 10.0% 145 - 149 0.0 150 - 154 10.0% 150 - 154 7.7% 165 - 159 0.0 155 - 159 7.7% 160 - 164 0.0 160 - 164 23.1% 165 - 169 0.0 165 - 169 7.7% 170 - 174 20.0% 170 - 174 0.0 180 - 184 0.0 185 - 189 0.0 185 - 189 0.0 185 - 189 0.0 190 - 194 0.0 195 - 199 0.0 195 - 199 0.0 195 - 199 0.0 > 199 mm 0.0 195 - 199 mm 0.0 min size (mm) 11 min size (mm)	100 - 104	0.0	100 - 104	0.0
115 - 119 0.0 115 - 119 0.0 120 - 124 0.0 120 - 124 0.0 125 - 129 0.0 125 - 129 0.0 130 - 134 0.0 130 - 134 0.0 135 - 139 0.0 135 - 139 7.7% 140 - 144 20.0% 140 - 144 15.4% 145 - 149 10.0% 145 - 149 0.0 150 - 154 10.0% 150 - 154 7.7% 155 - 159 0.0 155 - 159 7.7% 160 - 164 0.0 160 - 164 23.1% 165 - 169 0.0 165 - 169 7.7% 170 - 174 20.0% 170 - 174 0.0 175 - 179 0.0 175 - 179 0.0 180 - 184 0.0 185 - 189 0.0 190 - 194 0.0 195 - 199 0.0 195 - 199 0.0 195 - 199 0.0 > 199 mm 0.0 > 199 mm 0.0 min size (mm) 11 min size (mm) 180 mean 109 mean 155	105 - 109	10.0%	105 - 109	7.7%
120 - 124 0.0 120 - 124 0.0 125 - 129 0.0 125 - 129 0.0 130 - 134 0.0 130 - 134 0.0 135 - 139 0.0 135 - 139 7.7% 140 - 144 20.0% 140 - 144 15.4% 145 - 149 10.0% 145 - 149 0.0 150 - 154 10.0% 150 - 154 7.7% 155 - 159 0.0 155 - 159 7.7% 160 - 164 0.0 160 - 164 23.1% 165 - 169 0.0 165 - 169 7.7% 175 - 179 0.0 175 - 179 0.0 180 - 184 0.0 180 - 184 23.1% 185 - 189 0.0 185 - 189 0.0 190 - 194 0.0 195 - 199 0.0 195 - 199 0.0 195 - 199 0.0 > 199 mm 0.0 195 - 199 0.0 min size (mm) 11 min size (mm) 107 max size (mm) 180 180	110 - 114	0.0	110 - 114	0.0
125 - 129 0.0 125 - 129 0.0 130 - 134 0.0 130 - 134 0.0 135 - 139 0.0 135 - 139 7.7% 140 - 144 20.0% 140 - 144 15.4% 145 - 149 10.0% 145 - 149 0.0 150 - 154 10.0% 150 - 154 7.7% 155 - 159 0.0 155 - 159 7.7% 160 - 164 0.0 160 - 164 23.1% 165 - 169 0.0 165 - 169 7.7% 170 - 174 20.0% 170 - 174 0.0 175 - 179 0.0 175 - 179 0.0 180 - 184 0.0 180 - 184 23.1% 185 - 189 0.0 185 - 189 0.0 190 - 194 0.0 190 - 194 0.0 195 - 199 mm 0.0 > 199 mm 0.0 min size (mm) 11 min size (mm) 107 max size (mm) 107 max size (mm) 180	115 - 119	0.0	115 - 119	0.0
130 - 134 0.0 130 - 134 0.0 135 - 139 0.0 135 - 139 7.7% 140 - 144 20.0% 140 - 144 15.4% 145 - 149 10.0% 145 - 149 0.0 150 - 154 10.0% 150 - 154 7.7% 155 - 159 0.0 155 - 159 7.7% 160 - 164 0.0 160 - 164 23.1% 165 - 169 0.0 165 - 169 7.7% 170 - 174 20.0% 170 - 174 0.0 180 - 184 0.0 180 - 184 23.1% 185 - 189 0.0 185 - 189 0.0 190 - 194 0.0 195 - 199 0.0 195 - 199 0.0 > 195 - 199 0.0 min size (mm) 11 min size (mm) 107 max size (mm) 109 mean 155	120 - 124	0.0	120 - 124	0.0
135 - 139 0.0 135 - 139 7.7% 140 - 144 20.0% 140 - 144 15.4% 145 - 149 10.0% 145 - 149 0.0 150 - 154 10.0% 150 - 154 7.7% 155 - 159 0.0 155 - 159 7.7% 160 - 164 0.0 160 - 164 23.1% 165 - 169 0.0 165 - 169 7.7% 170 - 174 20.0% 170 - 174 0.0 175 - 179 0.0 175 - 179 0.0 180 - 184 0.0 180 - 184 23.1% 185 - 189 0.0 185 - 189 0.0 190 - 194 0.0 195 - 199 0.0 195 - 199 0.0 195 - 199 0.0 min size (mm) 11 min size (mm) 107 max size (mm) 173 max size (mm) 180 mean 109 mean 155	125 - 129	0.0	125 - 129	0.0
140 - 144 20.0% 140 - 144 15.4% 145 - 149 10.0% 145 - 149 0.0 150 - 154 10.0% 150 - 154 7.7% 155 - 159 0.0 155 - 159 7.7% 160 - 164 0.0 160 - 164 23.1% 165 - 169 0.0 165 - 169 7.7% 170 - 174 20.0% 170 - 174 0.0 175 - 179 0.0 175 - 179 0.0 180 - 184 0.0 180 - 184 23.1% 185 - 189 0.0 185 - 189 0.0 190 - 194 0.0 195 - 199 0.0 195 - 199 0.0 195 - 199 0.0 > 199 mm 0.0 > 199 mm 0.0 min size (mm) 11 min size (mm) 107 max size (mm) 173 max size (mm) 180 mean 109 mean 155	130 - 134	0.0	130 - 134	0.0
145 - 149 10.0% 145 - 149 0.0 150 - 154 10.0% 150 - 154 7.7% 155 - 159 0.0 155 - 159 7.7% 160 - 164 0.0 160 - 164 23.1% 165 - 169 0.0 165 - 169 7.7% 170 - 174 20.0% 170 - 174 0.0 175 - 179 0.0 175 - 179 0.0 180 - 184 0.0 180 - 184 23.1% 185 - 189 0.0 185 - 189 0.0 190 - 194 0.0 190 - 194 0.0 195 - 199 0.0 195 - 199 0.0 > 199 mm 0.0 > 199 mm 0.0 min size (mm) 11 min size (mm) 107 max size (mm) 173 max size (mm) 180 mean 109 mean 155	135 - 139	0.0	135 - 139	7.7%
150 - 154 10.0% 150 - 154 7.7% 155 - 159 0.0 155 - 159 7.7% 160 - 164 0.0 160 - 164 23.1% 165 - 169 0.0 165 - 169 7.7% 170 - 174 20.0% 170 - 174 0.0 175 - 179 0.0 175 - 179 0.0 180 - 184 0.0 180 - 184 23.1% 185 - 189 0.0 185 - 189 0.0 190 - 194 0.0 190 - 194 0.0 195 - 199 0.0 195 - 199 0.0 > 199 mm 0.0 > 199 mm 0.0 min size (mm) 11 min size (mm) 107 max size (mm) 173 max size (mm) 180 mean 109 mean 155	140 - 144	20.0%	140 - 144	15.4%
155 - 159 0.0 155 - 159 7.7% 160 - 164 0.0 160 - 164 23.1% 165 - 169 0.0 165 - 169 7.7% 170 - 174 20.0% 170 - 174 0.0 175 - 179 0.0 175 - 179 0.0 180 - 184 0.0 180 - 184 23.1% 185 - 189 0.0 185 - 189 0.0 190 - 194 0.0 190 - 194 0.0 195 - 199 0.0 195 - 199 0.0 > 199 mm 0.0 > 199 mm 0.0 min size (mm) 11 min size (mm) 107 max size (mm) 173 max size (mm) 180 mean 109 mean 155	145 - 149	10.0%	145 - 149	0.0
160 - 164 0.0 160 - 164 23.1% 165 - 169 0.0 165 - 169 7.7% 170 - 174 20.0% 170 - 174 0.0 175 - 179 0.0 175 - 179 0.0 180 - 184 0.0 180 - 184 23.1% 185 - 189 0.0 185 - 189 0.0 190 - 194 0.0 190 - 194 0.0 195 - 199 0.0 195 - 199 0.0 > 199 mm 0.0 > 199 mm 0.0 min size (mm) 11 min size (mm) 107 max size (mm) 173 max size (mm) 180 mean 109 mean 155	150 - 154	10.0%	150 - 154	7.7%
165 - 169 0.0 165 - 169 7.7% 170 - 174 20.0% 170 - 174 0.0 175 - 179 0.0 175 - 179 0.0 180 - 184 0.0 180 - 184 23.1% 185 - 189 0.0 185 - 189 0.0 190 - 194 0.0 190 - 194 0.0 195 - 199 0.0 195 - 199 0.0 > 199 mm 0.0 > 199 mm 0.0 min size (mm) 11 min size (mm) 107 max size (mm) 173 max size (mm) 180 mean 109 mean 155	155 - 159		155 - 159	
170 - 174 20.0% 170 - 174 0.0 175 - 179 0.0 175 - 179 0.0 180 - 184 0.0 180 - 184 23.1% 185 - 189 0.0 185 - 189 0.0 190 - 194 0.0 190 - 194 0.0 195 - 199 0.0 195 - 199 0.0 > 199 mm 0.0 > 199 mm 0.0 min size (mm) 11 min size (mm) 107 max size (mm) 173 max size (mm) 180 mean 109 mean 155				
175 - 179 0.0 175 - 179 0.0 180 - 184 0.0 180 - 184 23.1% 185 - 189 0.0 185 - 189 0.0 190 - 194 0.0 190 - 194 0.0 195 - 199 0.0 195 - 199 0.0 > 199 mm 0.0 > 199 mm 0.0 min size (mm) 11 min size (mm) 107 max size (mm) 173 max size (mm) 180 mean 109 mean 155				
180 - 184 0.0 180 - 184 23.1% 185 - 189 0.0 185 - 189 0.0 190 - 194 0.0 190 - 194 0.0 195 - 199 0.0 195 - 199 0.0 > 199 mm 0.0 > 199 mm 0.0 min size (mm) 11 min size (mm) 107 max size (mm) 173 max size (mm) 180 mean 109 mean 155				
185 - 189 0.0 185 - 189 0.0 190 - 194 0.0 190 - 194 0.0 195 - 199 0.0 195 - 199 0.0 > 199 mm 0.0 > 199 mm 0.0 min size (mm) 11 min size (mm) 107 max size (mm) 173 max size (mm) 180 mean 109 mean 155	175 - 179	0.0	175 - 179	
190 - 194 0.0 190 - 194 0.0 195 - 199 0.0 195 - 199 0.0 > 199 mm 0.0 > 199 mm 0.0 min size (mm) 11 min size (mm) 107 max size (mm) 173 max size (mm) 180 mean 109 mean 155			180 - 184	
195 - 199 0.0 195 - 199 0.0 > 199 mm 0.0 > 199 mm 0.0 min size (mm) 11 min size (mm) 107 max size (mm) 173 max size (mm) 180 mean 109 mean 155				
> 199 mm 0.0 > 199 mm 0.0 min size (mm) 11 min size (mm) 107 max size (mm) 173 max size (mm) 180 mean 109 mean 155				
min size (mm) 11 min size (mm) 107 max size (mm) 173 max size (mm) 180 mean 109 mean 155				
max size (mm) 173 max size (mm) 180 mean 109 mean 155				
mean 109 mean 155	' '		, ,	
mode 11 mode 160				
	mode	11	mode	160

1984 Cypraea spadicea		1987 Cypraea spadicea	
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	41 0.0 0.0 4.9% 24.4% 39.0% 26.8% 4.9% 0.0 37 59 47 45	<pre>< 30 mm</pre>	5%
1985 Cypraea spadicea		1988 Cypraea spadicea	
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 > 59 mm min size (mm) max size (mm) mean mode	48 0.0 0.0 18.8% 33.3% 33.3% 10.4% 2.1% 2.1% 36 67 45 41	< 30 mm 0 0 30 - 34 0 0 35 - 39 8. 40 - 44 34. 45 - 49 28. 55 - 59 0 0 0 min size (mm) max size (mm) mean mode	3% 6%
1986 Cypraea spadicea		1989 Cypraea spadicea	
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	31 0.0 0.0 0.0 6.5% 51.6% 32.3% 9.7% 0.0 42 56 49 48	<pre>< 30 mm</pre>	7% 0% 3%

1987 Kelletia kelletii		1985 Astraea undosa	
(cases) N= < 40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm min size (mm) max size (mm)	16 0.0 0.0 0.0 0.0 0.0 12.5% 25.0% 25.0% 18.8% 18.8% 0.0 0.0 0.0 85	10 - 19 0 20 - 29 0 30 - 39 0 40 - 49 3 50 - 59 50 60 - 69 30 70 - 79 13 80 - 89 3 90 - 99 0 100 - 109 0 110 - 119 0	30 0.0 0.0 0.0 0.0 0.0 3% .0% .3% .00 0.0 0.0 0.0 0.0 0.0 46
mean mode	106 97	mean mode	61 55
1989 Kelletia kelletii		1986 Astraea undosa	
(cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm	15 0.0 0.0 0.0 0.0 0.0 0.0 6.7% 46.7% 33.3% 13.3% 0.0	10 - 19 0 20 - 29 0 30 - 39 34 40 - 49 20 50 - 59 37 60 - 69 8 70 - 79 0 80 - 89 0 90 - 99 0 100 - 109 0 110 - 119 0	35 0.0 0.0 0.0 3% .0% .1% .6% 0.0 0.0

1984 Megathura crenulata		1987 Megathura crenulata	
(cases) N= < 29 m 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	21 0.0 0.0 0.0 4.8% 0.0 52.4% 38.1% 4.8% 0.0 0.0 0.0 51 94 79 79	(cases) N= < 29 mm 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	26 0.0 0.0 3.8% 11.5% 19.2% 15.4% 30.8% 7.7% 7.7% 3.8% 0.0 49 110 76
1985 Megathura crenulata		1988 Megathura crenulata	
(cases) N= < 29 mm 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode 1986	34 0.0 0.0 2.9% 5.9% 8.8% 47.1% 29.4% 5.9% 0.0 0.0 0.0 48 95 75	(cases) N < 29 mm 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode 1989	33 0.0 0.0 0.0 0.0 6.1% 39.4% 39.4% 15.2% 0.0 0.0 0.0 99 81 79
Megathura crenulata (cases) N= < 29 mm 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	38 0.0 0.0 0.0 2.6% 15.8% 44.7% 34.2% 2.6% 0.0 0.0 0.0 53 94 76 78	(cases) N= < 29 mm 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	23 0.0 0.0 0.0 0.0 8.7% 17.4% 30.4% 26.1% 0.0 13.0% 4.3% 62 122 90 87

1989 Hinnites giganteus		1987 Patiria miniata	
3 3			
(cases) N=	19	(cases) N=	35
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	0.0
20 - 29	0.0	20 - 29	5.7%
30 - 39	5.3%	30 - 39	8.6%
40 - 49	0.0	40 - 49	20.0%
50 - 59	10.5%	50 - 59	20.0%
60 - 69	15.8%	60 - 69	28.6%
70 - 79 80 - 89	10.5% 10.5%	70 - 79 80 - 89	17.1% 0.0
90 - 99	15.8%	90 - 99	0.0
100 - 109	10.5%	>100 mm	0.0
110 - 119	21.1%	min size (mm)	22
120 - 129	0.0	max size (mm)	77
130 - 139	0.0	mean	55
>139 mm	0.0	mode	60
min size (mm)	38	mode	00
max size (mm)	117	1988	
mean	84	Patiria miniata	
mode	65	raciiia miniaca	
		(cases) N=	46
1985		< 10 mm	0.0
Patiria miniata		10 - 19	2.2%
		20 - 29	0.0
(cases) N=	60	30 - 39	6.5%
< 10 mm	0.0	40 - 49	26.1%
10 - 19	0.0	50 - 59	17.4%
20 - 29	3.3%	60 - 69	26.1%
30 - 39	8.3%	70 - 79	17.4%
40 - 49	10.0%	80 - 89	4.3%
50 - 59	38.3%	90 - 99	0.0
60 - 69	25.0%	>100 mm	0.0
70 - 79	13.3%	min size (mm)	18
80 - 89	1.7%	max size (mm)	82
>89 mm	0.0	mean	57
min size (mm)	25	mode	40
max size (mm)	81		
mean	57	1989	
mode	59	Patiria miniata	
1986		(cases) N=	34
Patiria miniata		< 10 mm	0.0
		10 - 19	2.9%
(cases) N=	12	20 - 29	2.9%
< 10 mm	0.0	30 - 39	2.9%
10 - 19	8.3%	40 - 49	17.6%
20 - 29	25.0%	50 - 59	38.2%
30 - 39	8.3%	60 - 69	32.4%
40 - 49	8.3%	70 - 79	2.9%
50 - 59	8.3%	80 - 89	0.0
60 - 69	41.7%	90 - 99	0.0
70 - 79	0.0	>100 mm	0.0
>79 mm	0.0	min size (mm)	19
min size (mm)	18	max size (mm)	74
max size (mm)	68	mean	54
mean	4.5	mode	50
mode	22		

1986		1988	
Pisaster giganteus		Pisaster giganteus	
(cases) N= <20 mm	30 0.0	(cases) N= <20 mm	36 5.6%
20 - 39	0.0	20 - 39	2.8%
40 - 59	3.3%	40 - 59	19.4%
60 - 79	23.3%	60 - 79	36.1%
80 - 99	20.0%	80 - 99	16.7%
100 - 119	26.7%	100 - 119	16.7%
120 - 139	23.3%	120 - 139	0.0
140 - 159	3.3%	140 - 159	0.0
160 - 179	0.0	160 - 179	0.0
180 - 199	0.0	180 - 199	0.0
200 - 219	0.0	200 - 219	2.8%
220 - 239 240 - 259	0.0	220 - 239 240 - 259	0.0
260 - 279	0.0	260 - 279	0.0
280 - 299	0.0	280 - 299	0.0
>299 mm	0.0	>299 mm	0.0
min size (mm)	54	min size (mm)	7
max size (mm)	145	max size (mm)	203
mean	100	mean	75
mode	71	mode	58
1987		1989	
1987 Pisaster giganteus		1989 Pisaster giganteus	
Pisaster giganteus	35	Pisaster giganteus	38
Pisaster giganteus (cases) N=	35 0.0	Pisaster giganteus (cases) N=	38 13.2%
Pisaster giganteus	0.0	Pisaster giganteus (cases) N= <20 mm	13.2%
Pisaster giganteus (cases) N= <20 mm		Pisaster giganteus (cases) N=	
Pisaster giganteus (cases) N= <20 mm 20 - 39	0.0 2.9%	Pisaster giganteus (cases) N= <20 mm 20 - 39	13.2% 5.3%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59	0.0 2.9% 31.4%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59	13.2% 5.3% 44.7%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79	0.0 2.9% 31.4% 28.6%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79	13.2% 5.3% 44.7% 23.7%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99	0.0 2.9% 31.4% 28.6% 28.6%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99	13.2% 5.3% 44.7% 23.7% 5.3%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119	0.0 2.9% 31.4% 28.6% 28.6% 8.6%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119	13.2% 5.3% 44.7% 23.7% 5.3% 5.3%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179	0.0 2.9% 31.4% 28.6% 28.6% 8.6% 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179	13.2% 5.3% 44.7% 23.7% 5.3% 0.0 2.6% 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199	0.0 2.9% 31.4% 28.6% 28.6% 8.6% 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199	13.2% 5.3% 44.7% 23.7% 5.3% 5.3% 0.0 2.6% 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219	0.0 2.9% 31.4% 28.6% 28.6% 8.6% 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219	13.2% 5.3% 44.7% 23.7% 5.3% 5.3% 0.0 2.6% 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239	0.0 2.9% 31.4% 28.6% 28.6% 8.6% 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239	13.2% 5.3% 44.7% 23.7% 5.3% 5.3% 0.0 2.6% 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259	0.0 2.9% 31.4% 28.6% 28.6% 8.6% 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259	13.2% 5.3% 44.7% 23.7% 5.3% 5.3% 0.0 2.6% 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279	0.0 2.9% 31.4% 28.6% 28.6% 8.6% 0.0 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279	13.2% 5.3% 44.7% 23.7% 5.3% 0.0 2.6% 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	0.0 2.9% 31.4% 28.6% 28.6% 8.6% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	13.2% 5.3% 44.7% 23.7% 5.3% 0.0 2.6% 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm	0.0 2.9% 31.4% 28.6% 28.6% 8.6% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm	13.2% 5.3% 44.7% 23.7% 5.3% 5.3% 0.0 2.6% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	0.0 2.9% 31.4% 28.6% 28.6% 8.6% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	13.2% 5.3% 44.7% 23.7% 5.3% 5.3% 0.0 2.6% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm) max size (mm)	0.0 2.9% 31.4% 28.6% 28.6% 8.6% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm) max size (mm)	13.2% 5.3% 44.7% 23.7% 5.3% 5.3% 0.0 2.6% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 158
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	0.0 2.9% 31.4% 28.6% 28.6% 8.6% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	13.2% 5.3% 44.7% 23.7% 5.3% 5.3% 0.0 2.6% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1987		1989	
Pycnopodia heliantho	pides	Pycnopodia helianthoid	des
7 - 1		2 - 1	
(cases) N=	28	(cases) N=	31
<20 mm	0.0	<20 mm	0.0
20 - 39	0.0	20 - 39	12.9%
40 - 59	0.0	40 - 59	32.3%
60 - 79	0.0	60 - 79	9.7%
80 - 99	0.0	80 - 99	6.5%
100 - 119	3.6%	100 - 119	3.2%
120 - 139	7.1%	120 - 139	12.9%
140 - 159	25.0%	140 - 159	6.5%
160 - 179	42.9%	160 - 179	6.5%
180 - 199	10.7%	180 - 199	3.2%
200 - 219	7.1%	200 - 219	3.2%
220 - 239	0.0	220 - 239	0.0
240 - 259	0.0	240 - 259	0.0
260 - 279	0.0	260 - 279	3.2%
280 - 299	3.6%	280 - 299	0.0
>299 mm	0.0	>299 mm	0.0
min size (mm)	119	min size (mm)	35
max size (mm)	285	max size (mm)	260
mean	167	mean	95
mode	143	mode	35
1988		1986	
1988 Pycnopodia heliantho	pides	1986 <i>LYTECHINUS ANAMESUS</i>	
	ides		
	oides 30		131
Pycnopodia heliantho		LYTECHINUS ANAMESUS	131 0.0
Pycnopodia heliantho (cases) N=	30	LYTECHINUS ANAMESUS (cases) N=	
Pycnopodia heliantho (cases) N= <20 mm	30 0.0	LYTECHINUS ANAMESUS (cases) N= < 5 mm	0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39	30 0.0 0.0	LYTECHINUS ANAMESUS (cases) N= < 5 mm 5 - 9	0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59	30 0.0 0.0 3.3%	LYTECHINUS ANAMESUS (cases) N= < 5 mm 5 - 9 10 - 14	0.0 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79	30 0.0 0.0 3.3% 0.0	LYTECHINUS ANAMESUS (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	0.0 0.0 0.0 0.8
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99	30 0.0 0.0 3.3% 0.0 3.3%	LYTECHINUS ANAMESUS (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	0.0 0.0 0.0 0.8% 25.2%
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119	30 0.0 0.0 3.3% 0.0 3.3% 10.0%	LYTECHINUS ANAMESUS (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	0.0 0.0 0.0 0.8% 25.2% 38.9%
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139	30 0.0 0.0 3.3% 0.0 3.3% 10.0% 20.0%	LYTECHINUS ANAMESUS (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	0.0 0.0 0.8 25.2% 38.9% 27.5%
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159	30 0.0 0.0 3.3% 0.0 3.3% 10.0% 20.0% 16.7%	LYTECHINUS ANAMESUS (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	0.0 0.0 0.8 25.2 38.9 27.5 7.6
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179	30 0.0 0.0 3.3% 0.0 3.3% 10.0% 20.0% 16.7% 26.7%	LYTECHINUS ANAMESUS (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	0.0 0.0 0.8 25.2 38.9 27.5 7.6 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199	30 0.0 0.0 3.3% 0.0 3.3% 10.0% 20.0% 16.7% 26.7% 3.3%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	0.0 0.0 0.0 0.8% 25.2% 38.9% 27.5% 7.6% 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219	30 0.0 0.0 3.3% 0.0 3.3% 10.0% 20.0% 16.7% 26.7% 3.3% 6.7%	LYTECHINUS ANAMESUS (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm	0.0 0.0 0.8 25.2 38.9 27.5 7.6 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239	30 0.0 0.0 3.3% 0.0 3.3% 10.0% 20.0% 16.7% 26.7% 3.3% 6.7% 0.0	Cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 >49 mm min size (mm)	0.0 0.0 0.8% 25.2% 38.9% 27.5% 7.6% 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259	30 0.0 0.0 3.3% 0.0 3.3% 10.0% 20.0% 16.7% 26.7% 3.3% 6.7% 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm) max size (mm)	0.0 0.0 0.8 25.2 38.9 27.5 7.6 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279	30 0.0 0.0 3.3% 0.0 3.3% 10.0% 20.0% 16.7% 26.7% 3.3% 6.7% 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 >49 mm min size (mm) max size (mm) mean	0.0 0.0 0.8% 25.2% 38.9% 27.5% 7.6% 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	30 0.0 0.0 3.3% 0.0 3.3% 10.0% 20.0% 16.7% 26.7% 3.3% 6.7% 0.0 3.3% 3.3%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 >49 mm min size (mm) max size (mm) mean	0.0 0.0 0.8 25.2 38.9 27.5 7.6 0.0 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm	30 0.0 0.0 3.3% 0.0 3.3% 10.0% 20.0% 16.7% 26.7% 3.3% 6.7% 0.0 3.3% 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 >49 mm min size (mm) max size (mm) mean	0.0 0.0 0.8 25.2 38.9 27.5 7.6 0.0 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	30 0.0 0.0 3.3% 0.0 3.3% 10.0% 20.0% 16.7% 26.7% 3.3% 6.7% 0.0 3.3% 3.3% 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 >49 mm min size (mm) max size (mm) mean	0.0 0.0 0.8 25.2 38.9 27.5 7.6 0.0 0.0 0.0

15 - 19 5.1% 25 - 29 20 - 24 6.1% 30 - 34	99 0.0 0.0
5 mm 0.0 < 14 mm	0.0 0.0 1.0%
5 - 9 0.0 15 - 19 10 - 14 2.0% 20 - 24 15 - 19 5.1% 25 - 29 20 - 24 6.1% 30 - 34	0.0 1.0%
10 - 14 2.0% 20 - 24 15 - 19 5.1% 25 - 29 20 - 24 6.1% 30 - 34	1.0%
15 - 19 5.1% 25 - 29 20 - 24 6.1% 30 - 34	
20 - 24 6.1% 30 - 34	2.0%
	0.0
	1.0%
30 - 34 1.0% 40 - 44	7.1%
	7.1%
40 - 44 1.0% 50 - 54	7.1%
45 - 49 3.1% 55 - 59 1	7.2%
50 - 54 2.0% 60 - 64	9.1%
55 - 59 6.1% 65 - 69	6.1%
60 - 64 8.2% 70 - 74	2.1%
	1.1%
	7.1%
	9.1%
	2.0%
	1.0%
90 - 94 3.1% 100 - 104	0.0
95 - 99 1.0% 105 - 109	0.0
100 - 104 1.0% > 109 mm	0.0
105 - 109 0.0 min size (mm)	20 96
> 109 mm	64
max size (mm) 121 mode	59
mean 62	33
mode 78 1987	
Strongylocentrotus franciscanu	S
1985	
Strongylocentrotus franciscanus (cases) N=	105
< 9 mm	0.0
(cases) N= 106 10 - 14	0.0
	1.0%
	1.0%
	1.0% 1.0%
	6.7%
	5.7%
	2.4%
	0.5%
	9.5%
	3.3%
	3.3%
70 - 74 17.9% 70 - 74 1	0.5%
75 - 79 11.3% 75 - 79	3.8%
80 - 84 9.4% 80 - 84	7.6%
	1.0%
	1.0%
	1.0%
100 - 104 0.9% 100 - 104	0.0
105 - 109 0.0 105 - 109	0.0
> 109 mm	0.0
min size (mm) 41 min size (mm)	18
max size (mm) 104 max size (mm)	95 50
mean 69 mean mode 78 mode	59 48
mode /o mode	40

1988		1989	
Strongylocentrotus franciscanus		Strongylocentrotus franciscanus	
(cases) N=	115	(cases) N=	112
< 5 mm	0.0	< 5 mm	0.0
5 - 9	0.9%	5 - 9	0.0
10 - 14	0.9%	10 - 14	1.8%
15 - 19	0.0	15 - 19	1.8%
20 - 24	0.0	20 - 24	2.7%
25 - 29	0.0	25 - 29	4.5%
30 - 34	0.0	30 - 34	3.6%
35 - 39	1.7%	35 - 39	1.8%
40 - 44	0.0	40 - 44	4.5%
45 - 49	1.7%	45 - 49	0.9%
50 - 54	2.6%	50 - 54	1.8%
55 - 59	2.6%	55 - 59	0.0
60 - 64	5.2%	60 - 64	1.8%
65 - 69	14.8%	65 - 69	1.8%
70 - 74	18.3%	70 - 74	4.5%
75 - 79	18.3%	75 - 79	3.6%
80 - 84	18.3%	80 - 84	8.9%
85 - 89	10.4%	85 - 89	13.4%
90 - 94	2.6%	90 - 94	20.5%
95 - 99	1.7%	95 - 99	13.4%
100 - 104	0.0	100 - 104	4.5%
105 - 109	0.0	105 - 109	3.6%
> 109 mm	0.0	> 109 mm	0.0
min size (mm)	9	min size (mm)	11
max size (mm)	95	max size (mm)	110
mean	73	mean	76
mode	69	mode	92

1984		1986	
Srongylocentrot	us purpuratus	Srongylocentrotus purp	ouratus
DIONG/IDDONOLOG	as purpuratus	STONG/TOOMSTOOMS PAIR	5414545
(cases) N=	138	(cases) N=	102
< 5 mm	0.0	< 5 mm	0.0
5 - 9	0.0	5 - 9	0.0
10 - 14	2.2%	10 - 14	2.0%
15 - 19	3.6%	15 - 19	2.9%
20 - 24	4.3%	20 - 24	8.8%
25 - 29	10.1%	25 - 29	9.8%
30 - 34	11.6%	30 - 34	13.7%
35 - 39 40 - 44	20.3%	35 - 39 40 - 44	17.6%
45 - 49	17.4% 15.2%	45 - 49	19.6% 14.7%
50 - 54	10.9%	50 - 54	9.8%
55 - 59	3.6%	55 - 59	1.0%
60 - 64	0.7%	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
100 - 104	0.0	100 - 104	0.0
105 - 109	0.0	105 - 109	0.0
> 109 mm	0.0	> 109 mm	0.0
min size (mm)	11	min size (mm)	14
max size (mm)	62	max size (mm)	59
mean	38	mean	37
mode	35	mean mode	43
mode	35	mode	43
mode 1985 Srongylocentrote	35 us purpuratus	mode 1987 Srongylocentrotus purp	43 ouratus
mode 1985 Srongylocentrote (cases) N=	35 us purpuratus 101	mode 1987 Srongylocentrotus purp (cases) N=	43 ouratus 118
mode 1985 Srongylocentrote	35 us purpuratus	mode 1987 Srongylocentrotus purp	43 ouratus
mode 1985 Srongylocentrote (cases) N= < 5 mm	35 us purpuratus 101 0.0	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm	43 puratus 118 0.0
mode 1985 Srongylocentrote (cases) N= < 5 mm 5 - 9	35 us purpuratus 101 0.0 0.0	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm 5 - 9	43 Duratus 118 0.0 0.0
mode 1985 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	35 us purpuratus 101 0.0 0.0 0.0 0.0	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14	43 Duratus 118 0.0 0.0 0.0
mode 1985 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	35 us purpuratus 101 0.0 0.0 0.0 1.0% 1.0% 2.0%	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	43 Duratus 118 0.0 0.0 0.0 2.5% 17.8% 37.3%
mode 1985 Srongylocentrote (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	35 us purpuratus 101 0.0 0.0 0.0 1.0% 1.0% 2.0% 6.9%	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	43 Duratus 118 0.0 0.0 0.0 2.5% 17.8% 37.3% 19.5%
mode 1985 Srongylocentrote (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	35 us purpuratus 101 0.0 0.0 1.0% 1.0% 2.0% 6.9% 6.9%	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	43 Duratus 118 0.0 0.0 0.0 2.5% 17.8% 37.3% 19.5% 11.9%
mode 1985 Srongylocentrote (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	35 us purpuratus 101 0.0 0.0 0.0 1.0% 1.0% 2.0% 6.9% 6.9% 14.9%	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	43 Duratus 118 0.0 0.0 0.0 2.5% 17.8% 37.3% 19.5% 11.9% 5.9%
mode 1985 Srongylocentrote (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	35 us purpuratus 101 0.0 0.0 0.0 1.0% 1.0% 2.0% 6.9% 6.9% 14.9% 24.8%	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	43 Duratus 118 0.0 0.0 0.0 2.5% 17.8% 37.3% 19.5% 11.9% 5.9% 5.1%
mode 1985 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	35 us purpuratus 101 0.0 0.0 0.0 1.0% 1.0% 2.0% 6.9% 6.9% 14.9% 24.8% 19.8%	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	43 Duratus 118 0.0 0.0 2.5% 17.8% 37.3% 19.5% 11.9% 5.9% 5.1% 0.0
mode 1985 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	35 us purpuratus 101 0.0 0.0 0.0 1.0% 1.0% 2.0% 6.9% 6.9% 14.9% 24.8% 19.8% 19.8%	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	43 Duratus 118 0.0 0.0 2.5% 17.8% 37.3% 19.5% 11.9% 5.9% 5.1% 0.0 0.0
mode 1985 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	35 us purpuratus 101 0.0 0.0 0.0 1.0% 1.0% 2.0% 6.9% 6.9% 14.9% 24.8% 19.8% 15.8% 5.0%	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	118 0.0 0.0 0.0 2.5% 17.8% 37.3% 19.5% 11.9% 5.9% 5.10 0.0
mode 1985 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	35 us purpuratus 101 0.0 0.0 0.0 1.0% 1.0% 2.0% 6.9% 6.9% 14.9% 24.8% 19.8% 15.8% 5.0% 2.0%	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	43 Duratus 118 0.0 0.0 2.5% 17.8% 37.3% 19.5% 11.9% 5.9% 5.1% 0.0 0.0 0.0
mode 1985 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	35 us purpuratus 101 0.0 0.0 0.0 1.0% 1.0% 2.0% 6.9% 6.9% 14.9% 24.8% 19.8% 15.8% 5.0% 2.0% 0.0	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	43 puratus 118 0.0 0.0 0.0 2.5% 17.8% 37.3% 19.5% 11.9% 5.9% 5.1% 0.0 0.0 0.0
mode 1985 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	35 us purpuratus 101 0.0 0.0 0.0 1.0% 1.0% 2.0% 6.9% 6.9% 14.9% 24.8% 19.8% 15.8% 5.0% 2.0% 0.0	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	43 Duratus 118 0.0 0.0 0.0 2.5% 17.8% 37.3% 19.5% 11.9% 5.9% 5.1% 0.0 0.0 0.0 0.0 0.0
mode 1985 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	35 us purpuratus 101 0.0 0.0 0.0 1.0% 1.0% 2.0% 6.9% 6.9% 14.9% 24.8% 19.8% 15.8% 5.0% 2.0% 0.0	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	43 Duratus 118 0.0 0.0 0.0 0.0 2.5% 17.8% 37.3% 19.5% 11.9% 5.9% 5.1% 0.0 0.0 0.0 0.0 0.0 0.0 0.0
mode 1985 Srongylocentrote (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	35 us purpuratus 101 0.0 0.0 0.0 1.0% 1.0% 2.0% 6.9% 6.9% 14.9% 24.8% 19.8% 15.8% 5.0% 2.0% 0.0 0.0	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	43 Duratus 118 0.0 0.0 0.0 2.5% 17.8% 37.3% 19.5% 11.9% 5.9% 5.1% 0.0 0.0 0.0 0.0 0.0
mode 1985 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	35 us purpuratus 101 0.0 0.0 0.0 1.0% 1.0% 2.0% 6.9% 6.9% 14.9% 24.8% 19.8% 15.8% 5.0% 2.0% 0.0 0.0 0.0	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	43 Duratus 118 0.0 0.0 2.5% 17.8% 37.3% 19.5% 11.9% 5.9% 5.1% 0.0 0.0 0.0 0.0 0.0 0.0 0.0
mode 1985 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 > 89 mm	35 us purpuratus 101 0.0 0.0 0.0 1.0% 1.0% 2.0% 6.9% 6.9% 14.9% 24.8% 19.8% 15.8% 5.0% 2.0% 0.0 0.0 0.0 0.0	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 > 89 mm	43 Duratus 118 0.0 0.0 2.5% 17.8% 37.3% 19.5% 11.9% 5.9% 5.1% 0.0 0.0 0.0 0.0 0.0 0.0 0.0
mode 1985 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 > 89 mm min size (mm)	35 us purpuratus 101 0.0 0.0 0.0 1.0% 1.0% 2.0% 6.9% 6.9% 14.9% 24.8% 19.8% 15.8% 5.0% 2.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 > 89 mm min size (mm)	43 Duratus 118 0.0 0.0 0.0 2.5% 17.8% 37.3% 19.5% 11.9% 5.9% 5.1% 0.0 0.0 0.0 0.0 0.0 0.0 17 48 30
mode 1985 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 > 89 mm min size (mm) max size (mm)	35 us purpuratus 101 0.0 0.0 0.0 1.0% 1.0% 2.0% 6.9% 6.9% 14.9% 24.8% 19.8% 15.8% 5.0% 2.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18	mode 1987 Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 > 89 mm min size (mm) max size (mm)	43 couratus 118 0.0 0.0 0.0 2.5% 17.8% 37.3% 19.5% 11.9% 5.9% 0.0 0.0 0.0 0.0 0.0 0.0 17 48

1988		1989	
Srongylocentrotus purpuratus		Srongylocentrotus purpuratus	
(cases) N=	102	(cases) N=	189
< 5 mm	0.0	< 5 mm	0.0
5 - 9	0.0	5 - 9	1.6%
10 - 14	0.0	10 - 14	5.3%
15 - 19	0.0	15 - 19	11.6%
20 - 24	0.0	20 - 24	5.8%
25 - 29	0.0	25 - 29	5.8%
30 - 34	14.7%	30 - 34	14.8%
35 - 39	13.7%	35 - 39	11.6%
40 - 44	23.5%	40 - 44	20.1%
45 - 49	22.5%	45 - 49	14.3%
50 - 54	16.7%	50 - 54	4.8%
55 - 59	2.9%	55 - 59	3.7%
60 - 64	4.9%	60 - 64	0.5%
65 - 69	0.0	65 - 69	0.0
70 - 74	1.0%	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
100 - 104	0.0	100 - 104	0.0
105 - 109	0.0	105 - 109	0.0
> 109 mm	0.0	> 109 mm	0.0
min size (mm)	30	min size (mm)	6
max size (mm)	70	max size (mm)	60
mean	44	mean	35
mode	48	mode	44

1986 Tethya aurantia		1988 Tethya aurantia
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm) mean	11 0.0 0.0 9.1% 27.3% 27.3% 27.3% 9.1% 0.0 0.0 0.0	(cases) N= 14 < 10 mm
mode	20	mode 68
1987 Tethya aurantia		1989 Tethya aurantia
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm) mean mode	13 0.0 0.0 7.7% 0.0 7.7% 23.1% 7.7% 7.7% 7.7% 15.4% 23.1% 26 149 81 97	(cases) N= 24 < 10 mm

1984 Haliotis rufescens		1985 Haliotis rufescens	
mailotis lulescens		naliotis lulescens	
(cases) N=	43	(cases) N=	32
< 25 mm	0.0	< 25 mm	0.0
25 - 29	2.3%	25 - 29	0.0
30 - 34	7.0%	30 - 34	0.0
35 - 39	0.0	35 - 39	0.0
40 - 44	0.0	40 - 44	0.0
45 - 49	0.0	45 - 49	3.1%
50 - 54	0.0	50 - 54	0.0
55 - 59	4.7%	55 - 59	0.0
60 - 64	4.7%	60 - 64	3.1%
65 - 69	0.0	65 - 69	0.0
70 - 74	4.7%	70 - 74	9.4%
75 - 79	0.0	75 - 79	3.1%
80 - 84	7.0%	80 - 84	15.6%
85 - 89	11.6%	85 - 89	3.1%
90 - 94	0.0	90 - 94	0.0
95 - 99	7.0%	95 - 99	0.0
100 - 104	4.7%	100 - 104	3.1%
105 - 109	7.0%	105 - 109	0.0
110 - 114	2.3%	110 - 114	3.1%
115 - 119	2.3%	115 - 119	6.3%
120 - 124	0.0	120 - 124	0.0
125 - 129	4.7%	125 - 129	0.0
130 - 134	2.3%	130 - 134	3.1%
135 - 139	0.0	135 - 139	0.0
140 - 144	4.7%	140 - 144	3.1%
145 - 149	0.0	145 - 149	12.5%
150 - 154	4.7%	150 - 154	3.1%
155 - 159	4.7%	155 - 159	6.3%
160 - 164	7.0%	160 - 164	3.1%
165 - 169	0.0	165 - 169	0.0
170 - 174	0.0	170 - 174	3.1%
175 - 179	2.3%	175 - 179	6.3%
180 - 184	0.0	180 - 184	3.1%
185 - 189	2.3%	185 - 189	3.1%
190 - 194 195 - 199	0.0	190 - 194 195 - 199	3.1%
	0.0 2.3%		0.0
> 199 mm	2.3%	> 199 mm	0.0 49
min size (mm) max size (mm)	216	min size (mm)	191
, ,	107	max size (mm)	123
mean mode	30	mean mode	71
mode	30	mode	/ 1

1986		1987	
Haliotis rufescens		Haliotis rufescens	
(cases) N=	26	(cases) N=	8
< 25 mm	0.0	< 104 mm	0.0
25 - 29	0.0	105 - 109	0.0
30 - 34	0.0	110 - 114	0.0
35 - 39	0.0	115 - 119	12.5%
40 - 44	0.0	120 - 124	12.5%
45 - 49	3.8%	125 - 129	0.0
50 - 54	0.0	130 - 134	0.0
55 - 59	0.0	135 - 139	12.5%
60 - 64 65 - 69	3.8% 0.0	140 - 144 145 - 149	12.5%
70 - 74	3.8%	145 - 149	0.0
75 - 79	0.0	155 - 159	0.0
80 - 84	0.0	160 - 164	12.5%
85 - 89	0.0	165 - 169	0.0
90 - 94	0.0	170 - 174	25.0%
95 - 99	0.0	175 - 179	0.0
100 - 104	0.0	180 - 184	0.0
105 - 109	7.7%	185 - 189	12.5%
110 - 114	7.7%	190 - 194	0.0
115 - 119	3.8%	195 - 199	0.0
120 - 124	0.0	> 199 mm	0.0
125 - 129	11.5%	min size (mm)	119
130 - 134	3.8%	max size (mm)	189
135 - 139 140 - 144	0.0	mean	152 119
145 - 149	3.8% 3.8%	mode	119
150 - 154	0.0	1988	
155 - 159	7.7%	Haliotis rufescens	
160 - 164	11.5%		
165 - 169	0.0	(cases) N=	2
170 - 174	7.7%	< 104 mm	0.0
175 - 179	0.0	105 - 109	0.0
180 - 184	15.4%	110 - 114	0.0
185 - 189	0.0	115 - 119	0.0
190 - 194	3.8%	120 - 124	0.0
195 - 199	0.0	125 - 129	0.0
> 199 mm	0.0 48	130 - 134	0.0
min size (mm) max size (mm)	191	135 - 139 140 - 144	0.0 50.0%
mean	139	145 - 149	0.0
mode	164	150 - 154	50.0%
	101	155 - 159	0.0
		160 - 164	0.0
		165 - 169	0.0
		170 - 174	0.0
		175 - 179	0.0
		180 - 184	0.0
		185 - 189	0.0
		190 - 194	0.0
		195 - 199	0.0
		> 199 mm	0.0
		min size (mm) max size (mm)	140 152
		mean	146
		mode	140

1984 Cypraea spadicea		1987 Cypraea spadicea
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	46 0.0 0.0 0.0 15.2% 43.5% 41.3% 0.0 0.0 40 53 48 51	(cases) N= 30 < 30 mm
1985 Cypraea spadicea		1988 Cypraea spadicea
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode 1986	30 0.0 0.0 6.7% 33.3% 30.0% 26.7% 3.3% 0.0 37 56 46 51	(cases) N= 33 < 30 mm
Cypraea spadicea		Cypraea spadicea
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	30 0.0 0.0 3.3% 20.0% 60.0% 16.7% 0.0 0.0 36 53 47	(cases) N= 30 < 30 mm

1984 Kelletia kelletii		1987 Kelletia kelletii
(cases) N= <40 mm	46 0.0	(cases) N= 18 <40 mm 0.0
40 - 49	0.0	40 - 49 0.0
50 - 59	4.3%	50 - 59 0.0
60 - 69	13.0%	60 - 69 0.0
70 - 79	10.9%	70 - 79 11.1%
80 - 89	15.2%	80 - 89 27.8%
90 - 99	26.1%	90 - 99 22.2%
100 - 109	17.4%	100 - 109 27.8%
110 - 119	8.7%	110 - 119 5.6%
120 - 129	0.0	120 - 129 5.6%
130 - 139	4.3%	130 - 139 0.0
140 - 149	0.0	140 - 149 0.0
>149 mm	0.0	>149 mm 0.0
min size (mm)	54	min size (mm) 76
max size (mm)	130	max size (mm) 129
mean	90	mean 96
mode	90	mode 93
4.005		
1985		
Kelletia kelletii		
(cases) N=	32	
<40 mm	0.0	
40 - 49	0.0	
50 - 59	3.1%	
60 - 69	18.8%	
70 - 79	12.5%	
80 - 89	25.0%	
90 - 99	18.8%	
100 - 109	6.3%	
110 - 119	9.4%	
120 - 129	0.0	
130 - 139	3.1%	
140 - 149	3.1%	
>149 mm	3.1%	
min size (mm)	59	
max size (mm)	144	
mean	88	

91

mode

Megathura crenulata Megathura crenulata (cases) N= 17 (cases) N= 28 < 49 mm 0.0 < 10 mm 0.0 50 - 59 0.0 10 - 19 0.0 60 - 69 11.8% 20 - 29 0.0 70 - 79 17.6% 30 - 39 0.0 80 - 89 23.5% 40 - 49 0.0 90 - 99 41.2% 50 - 59 10.7% 100 - 109 5.9% 60 - 69 7.1% 110 - 119 0.0 70 - 79 32.1% >119 mm 0.0 80 - 89 32.1% min size (mm) 67 90 - 99 14.3%
< 49 mm
< 49 mm
50 - 59 0.0 10 - 19 0.0 60 - 69 11.8% 20 - 29 0.0 70 - 79 17.6% 30 - 39 0.0 80 - 89 23.5% 40 - 49 0.0 90 - 99 41.2% 50 - 59 10.7% 100 - 109 5.9% 60 - 69 7.1% 110 - 119 0.0 70 - 79 32.1% >119 mm 0.0 80 - 89 32.1%
60 - 69 11.8% 20 - 29 0.0 70 - 79 17.6% 30 - 39 0.0 80 - 89 23.5% 40 - 49 0.0 90 - 99 41.2% 50 - 59 10.7% 100 - 109 5.9% 60 - 69 7.1% 110 - 119 0.0 70 - 79 32.1% >119 mm 0.0 80 - 89 32.1%
70 - 79 17.6% 30 - 39 0.0 80 - 89 23.5% 40 - 49 0.0 90 - 99 41.2% 50 - 59 10.7% 100 - 109 5.9% 60 - 69 7.1% 110 - 119 0.0 70 - 79 32.1% >119 mm 0.0 80 - 89 32.1%
80 - 89 23.5% 40 - 49 0.0 90 - 99 41.2% 50 - 59 10.7% 100 - 109 5.9% 60 - 69 7.1% 110 - 119 0.0 70 - 79 32.1% >119 mm 0.0 80 - 89 32.1%
90 - 99 41.2% 50 - 59 10.7% 100 - 109 5.9% 60 - 69 7.1% 110 - 119 0.0 70 - 79 32.1% >119 mm 0.0 80 - 89 32.1%
100 - 109 5.9% 60 - 69 7.1% 110 - 119 0.0 70 - 79 32.1% >119 mm 0.0 80 - 89 32.1%
110 - 119 0.0 70 - 79 32.1% >119 mm 0.0 80 - 89 32.1%
>119 mm 0.0 80 - 89 32.1%
>119 mm 0.0 80 - 89 32.1%
min size (mm) 67 90 - 99 14.3%
max size (mm) 106 100 - 109 3.6%
mean 86 110 - 119 0.0
mode 88 >119 mm 0.0
min size (mm) 50
1985 max size (mm) 102
Megathura crenulata mean 79
megachura cremuraca mean 73
(cases) N= 30
< 49 mm 0.0 1988
50 - 59 0.0 Megathura crenulata 60 - 69 3.3%
70 - 79 30.0% (cases) N= 12 80 - 89 23.3% < 10 mm 0.0
90 - 99 33.3% 10 - 19 0.0
100 - 109 6.7% 20 - 29 0.0 110 - 119 3.3% 30 - 39 0.0
>119 mm 0.0 40 - 49 0.0
min size (mm) 60 50 - 59 8.3%
max size (mm) 110 60 - 69 8.3%
mean 86 70 - 79 66.7%
mode 79 80 - 89 8.3%
90 - 99 8.3% 1986 100 - 109 0.0
Megathura crenulata 110 - 119 0.0 >119 mm 0.0
<pre>< 10 mm</pre>
10 - 19 0.0 mean 73
20 - 29 4.8% mode 72
30 - 39 0.0
40 - 49 0.0
50 - 59 4.8%
60 - 69 0.0
70 - 79 14.3%
80 - 89 4.8%
90 - 99 19.0%
100 - 109 14.3%
110 - 119 23.8%
>119 mm 9.5%
min size (mm) 27
max size (mm) 129
mean 97
mode 115

1984		1988	
Hinnites giganteus		Hinnites giganteus	
(cases) N=	12	(cases) N=	16
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	0.0
20 - 29	0.0	20 - 29	0.0
30 - 39	16.7%	30 - 39	0.0
40 - 49	0.0	40 - 49	0.0
50 - 59	16.7%	50 - 59	6.3%
60 - 69	16.7%	60 - 69	25.0%
70 - 79	16.7%	70 - 79	31.3%
80 - 89	0.0	80 - 89	18.8%
90 - 99	0.0	90 - 99	6.3%
100 - 109	0.0	100 - 109	0.0
110 - 119	8.3%	110 - 119	12.5%
120 - 129	0.0	120 - 129	0.0
130 - 139	8.3%	130 - 139	0.0
140 - 149	0.0	140 - 149	0.0
>149 mm	8.3%	>149 mm	0.0
min size (mm)	35	min size (mm)	53
max size (mm)	184	max size (mm)	115
mean	86	mean	78
mode	35	mode	53

1984 Patiria miniata		1987 Patiria miniata	
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm min size (mm) max size (mm) mean mode	73 0.0 1.4% 4.1% 9.6% 30.1% 30.1% 21.9% 2.7% 0.0 0.0 0.0 19 74 51	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm min size (mm) max size (mm) mean mode	53 0.0 1.9% 5.7% 9.4% 11.3% 18.9% 34.0% 17.0% 1.9% 0.0 0.0 14 84 56 61
1985 Patiria miniata		1988 Patiria miniata	
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm min size (mm) max size (mm) mean mode 1986	51 0.0 2.0% 2.0% 15.7% 11.8% 23.5% 33.3% 7.8% 3.9% 0.0 0.0 19 89 55 43	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm min size (mm) max size (mm) mean mode 1989	54 0.0 0.0 1.9% 5.6% 16.7% 20.4% 14.8% 24.1% 13.0% 1.9% 29 101 63 52
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm min size (mm) max size (mm) mean mode	78 1.3% 0.0 10.3% 17.9% 3.8% 14.1% 26.9% 19.2% 6.4% 0.0 0.0 6 87 55	Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm min size (mm) max size (mm) mean mode	62 0.0 0.0 8.1% 12.9% 19.4% 17.7% 27.4% 9.7% 4.8% 0.0 0.0 21 81 54

1986 Pisaster giganteus		1988 Pisaster giganteus	
(cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	50 0.0 0.0 32.0% 22.0% 36.0% 10.0% 0.0 0.0 0.0 0.0 0.0	(cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	54 0.0 0.0 20.4% 48.1% 18.5% 11.1% 0.0 0.0 0.0 0.0 0.0 0.0
>299 mm min size (mm) max size (mm) mean mode 1987 Pisaster giganteus	0.0 47 112 75 49	>299 mm min size (mm) max size (mm) mean mode 1989 Pisaster giganteus	0.0 48 165 75 63
(cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm) max size (mm) mean mode	29 0.0 0.0 48.3% 34.5% 6.9% 6.9% 0.0 3.4% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 43 142 66 69	(cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm) max size (mm) mean mode	37 10.8% 2.7% 32.4% 54.1% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

1987		1989	
Pycnopodia heliantho	ides	Pycnopodia helianthoic	les
2 - 12 - 1 - 1		2 - 1	
(cases) N=	32	(cases) N=	31
<20 mm	0.0	<20 mm	0.0
20 - 39	0.0	20 - 39	0.0
40 - 59	0.0	40 - 59	0.0
60 - 79	6.3%	60 - 79	0.0
80 - 99	0.0	80 - 99	0.0
100 - 119	12.5%	100 - 119	3.2%
120 - 139	34.4%	120 - 139	12.9%
140 - 159	12.5%	140 - 159	41.9%
160 - 179	12.5%	160 - 179	29.0%
180 - 199	3.1%	180 - 199	9.7%
200 - 219	0.0	200 - 219	3.2%
220 - 239	6.3%	220 - 239	0.0
240 - 259	3.1%	240 - 259	0.0
260 - 279	3.1%	260 - 279	0.0
280 - 299	3.1%	280 - 299	0.0
>299 mm	3.1%	>299 mm	0.0
min size (mm)	62	min size (mm)	117
max size (mm)	310	max size (mm)	206
mean	156	mean	158
mode	130	mode	145
1 0 0 0		1006	
1988		1986	
1988 Pycnopodia heliantho	ides	1986 LYTECHINUS ANAMESUS	
Pycnopodia heliantho		LYTECHINUS ANAMESUS	27
Pycnopodia heliantho (cases) N=	30	LYTECHINUS ANAMESUS (cases) N=	27
Pycnopodia heliantho (cases) N= <20 mm	30 0.0	LYTECHINUS ANAMESUS (cases) N= < 5 mm	0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39	30 0.0 0.0	LYTECHINUS ANAMESUS (cases) N= < 5 mm 5 - 9	0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59	30 0.0 0.0 0.0	LYTECHINUS ANAMESUS (cases) N= < 5 mm 5 - 9 10 - 14	0.0 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79	30 0.0 0.0 0.0 0.0	LYTECHINUS ANAMESUS (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	0.0 0.0 0.0 18.5%
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99	30 0.0 0.0 0.0 0.0 0.0	LYTECHINUS ANAMESUS (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	0.0 0.0 0.0 18.5% 33.3%
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119	30 0.0 0.0 0.0 0.0 0.0 10.0%	LYTECHINUS ANAMESUS (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	0.0 0.0 0.0 18.5% 33.3% 25.9%
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139	30 0.0 0.0 0.0 0.0 0.0 10.0% 33.3%	LYTECHINUS ANAMESUS (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	0.0 0.0 0.0 18.5% 33.3% 25.9% 14.8%
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159	30 0.0 0.0 0.0 0.0 0.0 10.0% 33.3% 13.3%	LYTECHINUS ANAMESUS (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	0.0 0.0 0.0 18.5% 33.3% 25.9% 14.8% 7.4%
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179	30 0.0 0.0 0.0 0.0 0.0 10.0% 33.3% 13.3% 30.0%	LYTECHINUS ANAMESUS (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	0.0 0.0 0.0 18.5% 33.3% 25.9% 14.8% 7.4% 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199	30 0.0 0.0 0.0 0.0 0.0 10.0% 33.3% 13.3% 30.0% 6.7%	LYTECHINUS ANAMESUS (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	0.0 0.0 0.0 18.5% 33.3% 25.9% 14.8% 7.4% 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219	30 0.0 0.0 0.0 0.0 0.0 10.0% 33.3% 13.3% 30.0% 6.7%	Cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm	0.0 0.0 0.0 18.5% 33.3% 25.9% 14.8% 7.4% 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239	30 0.0 0.0 0.0 0.0 0.0 10.0% 33.3% 13.3% 30.0% 6.7% 6.7%	Cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm)	0.0 0.0 0.0 18.5% 33.3% 25.9% 14.8% 7.4% 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259	30 0.0 0.0 0.0 0.0 0.0 10.0% 33.3% 13.3% 30.0% 6.7% 6.7% 0.0	Cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 >49 mm min size (mm) max size (mm)	0.0 0.0 0.0 18.5% 33.3% 25.9% 14.8% 7.4% 0.0 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279	30 0.0 0.0 0.0 0.0 0.0 10.0% 33.3% 13.3% 30.0% 6.7% 6.7% 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm) max size (mm) mean	0.0 0.0 0.0 18.5% 33.3% 25.9% 14.8% 7.4% 0.0 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	30 0.0 0.0 0.0 0.0 0.0 10.0% 33.3% 13.3% 30.0% 6.7% 6.7% 0.0	Cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 >49 mm min size (mm) max size (mm)	0.0 0.0 0.0 18.5% 33.3% 25.9% 14.8% 7.4% 0.0 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm	30 0.0 0.0 0.0 0.0 0.0 10.0% 33.3% 13.3% 30.0% 6.7% 6.7% 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm) max size (mm) mean	0.0 0.0 0.0 18.5% 33.3% 25.9% 14.8% 7.4% 0.0 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	30 0.0 0.0 0.0 0.0 0.0 10.0% 33.3% 13.3% 30.0% 6.7% 6.7% 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm) max size (mm) mean	0.0 0.0 0.0 18.5% 33.3% 25.9% 14.8% 7.4% 0.0 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm) max size (mm)	30 0.0 0.0 0.0 0.0 0.0 10.0% 33.3% 13.3% 30.0% 6.7% 6.7% 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm) max size (mm) mean	0.0 0.0 0.0 18.5% 33.3% 25.9% 14.8% 7.4% 0.0 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm) max size (mm) mean	30 0.0 0.0 0.0 0.0 0.0 10.0% 33.3% 13.3% 30.0% 6.7% 6.7% 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm) max size (mm) mean	0.0 0.0 0.0 18.5% 33.3% 25.9% 14.8% 7.4% 0.0 0.0 0.0
Pycnopodia heliantho (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm) max size (mm)	30 0.0 0.0 0.0 0.0 0.0 10.0% 33.3% 13.3% 30.0% 6.7% 6.7% 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm) max size (mm) mean	0.0 0.0 0.0 18.5% 33.3% 25.9% 14.8% 7.4% 0.0 0.0 0.0

1984		1986	
Strongylocentrotus	franciscanus	Strongylocentrotus	franciccanus
(cases) N=	110	(cases) N=	104
< 9 mm	0.0	< 5 mm	0.0
10 - 14	0.9%	5 - 9	1.0%
15 - 19	0.0	10 - 14	0.0
20 - 24	7.3%	15 - 19	0.0
25 - 29	5.5%	20 - 24	1.0%
30 - 34	4.5%	25 - 29	1.9%
35 - 39	0.9%	30 - 34	8.7%
40 - 44	8.2%	35 - 39	6.7%
45 - 49	5.5%	40 - 44	4.8%
50 - 54	5.5%	45 - 49	7.7%
55 - 59	2.7%	50 - 54	10.6%
60 - 64	9.1%	55 - 59	6.7%
65 - 69	11.8%	60 - 64	5.8%
70 - 74	9.1%	65 - 69	11.5%
75 - 79	6.4%	70 - 74	5.8%
80 - 84	3.6%	75 - 79	3.8%
85 - 89	7.3%	80 - 84	6.7%
90 - 94	4.5%	85 - 89	6.7%
95 - 99	4.5%	90 - 94	4.8%
100 - 104	0.0	95 - 99	2.9%
105 - 109	0.9%	100 - 104	1.9%
> 109 mm	1.8%	105 - 109	1.0%
min size (mm)	14	> 109 mm	0.0
max size (mm)	130	min size (mm)	9
mean	61	max size (mm)	105
mode	66	mean	61
mode	00	mode	52
		mode	52
1985			
1985 Strongvlocentrotus	franciscanus	1987	
Strongylocentrotus		1987 Strongylocentrotus	franciscanus
	195	Strongylocentrotus	franciscanus
Strongylocentrotus (cases) N=	195 0.0	Strongylocentrotus (cases) N=	102
Strongylocentrotus (cases) N= < 5 mm 5 - 9	195 0.0 0.5%	Strongylocentrotus (cases) N= < 5 mm	102 1.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14	195 0.0 0.5% 7.7%	Strongylocentrotus (cases) N= < 5 mm 5 - 9	102 1.0% 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9	195 0.0 0.5%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14	102 1.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	195 0.0 0.5% 7.7% 9.7%	Strongylocentrotus (cases) N= < 5 mm 5 - 9	102 1.0% 0.0 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	195 0.0 0.5% 7.7% 9.7% 12.8%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	102 1.0% 0.0 0.0 1.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	102 1.0% 0.0 0.0 1.0% 1.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7% 6.7%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	102 1.0% 0.0 0.0 1.0% 1.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7% 6.7%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	102 1.0% 0.0 0.0 1.0% 1.0% 2.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7% 6.7% 6.2% 2.6%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	102 1.0% 0.0 0.0 1.0% 1.0% 2.0% 6.9%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7% 6.7% 6.2% 2.6% 6.7%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	102 1.0% 0.0 0.0 1.0% 1.0% 2.0% 6.9% 18.6%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7% 6.2% 2.6% 6.7% 4.1%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	102 1.0% 0.0 0.0 1.0% 1.0% 2.0% 6.9% 18.6% 21.6%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7% 6.2% 2.6% 6.7% 4.1% 2.1%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	102 1.0% 0.0 0.0 1.0% 1.0% 1.0% 2.0% 6.9% 18.6% 21.6% 10.8%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7% 6.2% 2.6% 6.7% 4.1% 2.1% 3.1%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	102 1.0% 0.0 0.0 1.0% 1.0% 1.0% 2.0% 6.9% 18.6% 21.6% 10.8% 9.8%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7% 6.2% 2.6% 6.7% 4.1% 2.1% 3.1% 4.1%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	102 1.0% 0.0 0.0 1.0% 1.0% 1.0% 2.0% 6.9% 18.6% 21.6% 10.8% 9.8% 5.9%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7% 6.2% 2.6% 6.7% 4.1% 2.1% 3.1% 4.1% 2.1%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	102 1.0% 0.0 0.0 1.0% 1.0% 1.0% 2.0% 6.9% 18.6% 21.6% 10.8% 9.8% 5.9% 2.9%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7% 6.2% 2.6% 6.7% 4.1% 2.1% 3.1% 4.1% 2.1%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	102 1.0% 0.0 0.0 1.0% 1.0% 1.0% 2.0% 6.9% 18.6% 21.6% 10.8% 9.8% 5.9% 2.9% 4.9% 6.9%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7% 6.2% 2.6% 6.7% 4.1% 2.1% 3.1% 4.1% 2.1% 5.1%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	102 1.0% 0.0 0.0 1.0% 1.0% 1.0% 2.0% 6.9% 18.6% 21.6% 10.8% 9.8% 5.9% 2.9%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7% 6.2% 2.6% 6.7% 4.1% 2.1% 3.1% 4.1% 5.6%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	102 1.0% 0.0 0.0 1.0% 1.0% 1.0% 2.0% 6.9% 18.6% 21.6% 10.8% 9.8% 2.9% 4.9% 6.9% 3.9%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7% 6.7% 6.2% 2.6% 6.7% 4.1% 2.1% 3.1% 4.1% 2.1% 5.6% 5.1% 4.1%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	102 1.0% 0.0 0.0 1.0% 1.0% 1.0% 1.0% 2.0% 6.9% 18.6% 21.6% 10.8% 9.8% 5.9% 2.9% 4.9% 4.9% 3.9% 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7% 6.2% 2.6% 6.7% 4.1% 2.1% 3.1% 4.1% 2.1% 5.1% 5.1% 4.1%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	102 1.0% 0.0 0.0 1.0% 1.0% 1.0% 2.0% 6.9% 18.6% 21.6% 10.8% 9.8% 5.9% 2.9% 4.9% 6.9% 3.9% 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7% 6.7% 6.2% 2.6% 6.7% 4.1% 2.1% 3.1% 4.1% 2.1% 5.1% 5.6% 3.6% 4.1%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 104	102 1.0% 0.0 0.0 1.0% 1.0% 1.0% 1.0% 2.0% 6.9% 18.6% 21.6% 10.8% 9.8% 5.9% 2.9% 4.9% 4.9% 6.9% 3.9% 0.0 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7% 6.2% 2.6% 6.7% 4.1% 2.1% 3.1% 4.1% 2.1% 5.6% 3.6% 4.1% 5.6% 3.6% 4.1%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 104 105 - 109	102 1.0% 0.0 0.0 1.0% 1.0% 1.0% 1.0% 2.0% 6.9% 18.6% 21.6% 10.8% 9.8% 5.9% 2.9% 4.9% 6.9% 6.9% 0.0 0.0 0.0 2.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7% 6.7% 6.2% 2.6% 6.7% 4.1% 2.1% 3.1% 4.1% 2.1% 5.1% 4.1% 5.6% 3.6% 4.1% 5.6% 3.6% 4.1% 5.6%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 104 105 - 109 > 109 mm min size (mm)	102 1.0% 0.0 0.0 1.0% 1.0% 1.0% 2.0% 6.9% 18.6% 21.6% 10.8% 9.8% 5.9% 2.9% 4.9% 6.9% 3.9% 0.0 0.0 0.0 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7% 6.2% 2.6% 6.7% 4.1% 2.1% 3.1% 4.1% 2.1% 5.1% 5.6% 3.6% 4.1% 5.6% 0.5% 0.5%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 104 105 - 109 > 109 mm	102 1.0% 0.0 0.0 1.0% 1.0% 1.0% 1.0% 2.0% 6.9% 18.6% 21.6% 10.8% 9.8% 5.9% 2.9% 4.9% 6.9% 3.9% 0.0 0.0 0.0 2.0% 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	195 0.0 0.5% 7.7% 9.7% 12.8% 6.7% 6.7% 6.2% 2.6% 6.7% 4.1% 2.1% 3.1% 4.1% 2.1% 5.6% 3.6% 4.1% 5.6% 3.6% 4.1% 5.6% 3.6% 4.1%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	102 1.0% 0.0 0.0 1.0% 1.0% 1.0% 2.0% 6.9% 18.6% 21.6% 10.8% 9.8% 5.9% 2.9% 4.9% 6.9% 3.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 105

1988		1989		
Strongylocentrotus franciscanus		Strongylocentrotus franciscanus		
(cases) N=	119	(cases) N=	85	
< 5 mm	0.0	< 5 mm	0.0	
5 - 9	0.0	5 - 9	0.0	
10 - 14	2.5%	10 - 14	1.2%	
15 - 19	0.8%	15 - 19	7.1%	
20 - 24	0.0	20 - 24	10.6%	
25 - 29	0.8%	25 - 29	9.4%	
30 - 34	0.8%	30 - 34	11.8%	
35 - 39	0.8%	35 - 39	9.4%	
40 - 44	5.0%	40 - 44	16.5%	
45 - 49	5.0%	45 - 49	7.1%	
50 - 54	1.7%	50 - 54	4.7%	
55 - 59	13.4%	55 - 59	0.0	
60 - 64	10.9%	60 - 64	1.2%	
65 - 69	13.4%	65 - 69	2.4%	
70 - 74	14.3%	70 - 74	1.2%	
75 - 79	5.0%	75 - 79	1.2%	
80 - 84	7.6%	80 - 84	3.5%	
85 - 89	5.0%	85 - 89	4.7%	
90 - 94	3.4%	90 - 94	2.4%	
95 - 99	4.2%	95 - 99	2.4%	
100 - 104	0.8%	100 - 104	1.2%	
105 - 109	1.7%	105 - 109	2.4%	
> 109 mm	1.7%	> 109 mm	0.0	
min size (mm)	12	min size (mm)	13	
max size (mm)	118	max size (mm)	108	
mean	67	mean	45	
mode	59	mode	22	

1984		1986	
Srongylocentrotus purpuratus		Srongylocentrotus purpuratus	
(cases) N=	100	(cases) N=	108
< 5 mm 5 - 9	0.0	< 5 mm 5 - 9	0.0
10 - 14	0.0	10 - 14	0.0 0.9%
15 - 19	0.0	15 - 19	1.9%
20 - 24	1.0%	20 - 24	8.3%
25 - 29	5.0%	25 - 29	38.0%
30 - 34	16.0%	30 - 34	26.9%
35 - 39	16.0%	35 - 39	11.1%
40 - 44	20.0%	40 - 44	7.4%
45 - 49	16.0%	45 - 49	0.9%
50 - 54	15.0%	50 - 54	2.8%
55 - 59	8.0%	55 - 59	0.9%
60 - 64	2.0%	60 - 64	0.9%
65 - 69	1.0%	65 - 69	0.0
70 - 74 75 - 79	0.0	70 - 74	0.0
75 - 79 80 - 84	0.0	75 - 79 80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
> 99 mm	0.0	>99 mm	0.0
min size (mm)	23	min size (mm)	14
max size (mm)	65	max size (mm)	61
mean	43	mean	31
mode	45	mode	28
1985			
1985 Srongylocentrot	us purpuratus	1987 Srongylocentrotus purp	ouratus
Srongylocentrot		Srongylocentrotus purp	
Srongylocentrot (cases) N=	us purpuratus 198 0.0	Srongylocentrotus purp (cases) N=	ouratus 109 0.0
Srongylocentrot	198	Srongylocentrotus purp	109
Srongylocentrot (cases) N= < 5 mm	198 0.0	Srongylocentrotus purp (cases) N= < 5 mm	109 0.0
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	198 0.0 2.5% 8.6% 12.6%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	109 0.0 0.0 0.0 1.8%
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	198 0.0 2.5% 8.6% 12.6% 18.7%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	109 0.0 0.0 0.0 1.8% 9.2%
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	198 0.0 2.5% 8.6% 12.6% 18.7% 7.6%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	109 0.0 0.0 0.0 1.8% 9.2% 43.1%
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	198 0.0 2.5% 8.6% 12.6% 18.7% 7.6% 4.0%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	109 0.0 0.0 0.0 1.8% 9.2% 43.1% 28.4%
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	198 0.0 2.5% 8.6% 12.6% 18.7% 7.6% 4.0% 5.1%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	109 0.0 0.0 0.0 1.8% 9.2% 43.1% 28.4% 12.8%
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	198 0.0 2.5% 8.6% 12.6% 18.7% 7.6% 4.0% 5.1% 6.6%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	109 0.0 0.0 0.0 1.8% 9.2% 43.1% 28.4% 12.8% 2.8%
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	198 0.0 2.5% 8.6% 12.6% 18.7% 7.6% 4.0% 5.1% 6.6% 8.1%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	109 0.0 0.0 0.0 1.8% 9.2% 43.1% 28.4% 12.8% 2.8% 0.9%
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	198 0.0 2.5% 8.6% 12.6% 12.6% 4.0% 5.1% 6.6% 8.1%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	109 0.0 0.0 0.0 1.8% 9.2% 43.1% 28.4% 12.8% 2.8% 0.9%
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	198 0.0 2.5% 8.6% 12.6% 18.7% 7.6% 4.0% 5.1% 6.6% 8.1%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	109 0.0 0.0 0.0 1.8% 9.2% 43.1% 28.4% 12.8% 2.8% 0.9%
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	198 0.0 2.5% 8.6% 12.6% 12.6% 4.0% 5.1% 6.6% 8.1% 12.1% 7.1%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	109 0.0 0.0 0.0 1.8% 9.2% 43.1% 28.4% 12.8% 2.8% 0.9% 0.9%
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	198 0.0 2.5% 8.6% 12.6% 18.7% 7.6% 4.0% 5.1% 6.6% 8.1% 12.1% 7.1% 3.0%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	109 0.0 0.0 0.0 1.8% 9.2% 43.1% 28.4% 12.8% 2.8% 0.9% 0.9%
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	198 0.0 2.5% 8.6% 12.6% 18.7% 7.6% 4.0% 5.1% 6.6% 8.1% 7.1% 3.0% 3.0% 3.0% 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	109 0.0 0.0 0.0 1.8% 9.2% 43.1% 28.4% 12.8% 0.9% 0.9% 0.00 0.0
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	198 0.0 2.5% 8.6% 12.6% 18.7% 7.6% 4.0% 5.1% 6.6% 8.1% 12.1% 7.1% 3.0% 3.0% 1.0% 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	109 0.0 0.0 0.0 1.8% 9.2% 43.1% 28.4% 12.8% 2.8% 0.9% 0.0 0.0 0.0 0.0
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	198 0.0 2.5% 8.6% 12.6% 18.7% 7.6% 4.0% 5.1% 6.6% 8.1% 12.1% 7.1% 3.0% 3.0% 1.0% 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	109 0.0 0.0 0.0 1.8% 9.2% 43.1% 28.4% 12.8% 2.8% 0.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	198 0.0 2.5% 8.6% 12.6% 12.6% 18.7% 7.6% 4.0% 5.1% 6.6% 8.1% 12.1% 7.1% 3.0% 3.0% 1.0% 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	109 0.0 0.0 0.0 1.8% 9.2% 43.1% 28.4% 12.8% 2.8% 0.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	198 0.0 2.5% 8.6% 12.6% 12.6% 18.7% 7.6% 4.0% 5.1% 6.6% 8.1% 12.1% 7.1% 3.0% 3.0% 1.0% 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	109 0.0 0.0 0.0 1.8% 9.2% 43.1% 28.4% 12.8% 2.8% 0.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	198 0.0 2.5% 8.6% 12.6% 12.6% 18.7% 7.6% 4.0% 5.1% 6.6% 8.1% 12.1% 7.1% 3.0% 3.0% 1.0% 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	109 0.0 0.0 0.0 1.8% 9.2% 43.1% 28.4% 12.8% 2.8% 0.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	198 0.0 2.5% 8.6% 12.6% 18.7% 7.6% 4.0% 5.1% 6.6% 8.1% 12.1% 7.1% 3.0% 3.0% 1.0% 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	109 0.0 0.0 0.0 1.8% 9.2% 43.1% 28.4% 12.8% 2.8% 0.9% 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	198 0.0 2.5% 8.6% 12.6% 112.6% 118.7% 7.6% 4.0% 5.1% 6.6% 8.1% 12.1% 7.1% 3.0% 3.0% 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 955 - 99 > 99 mm min size (mm) max size (mm)	109 0.0 0.0 0.0 1.8% 9.2% 43.1% 28.4% 12.8% 2.8% 0.9% 0.09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 54
Srongylocentrot (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	198 0.0 2.5% 8.6% 12.6% 18.7% 7.6% 4.0% 5.1% 6.6% 8.1% 12.1% 7.1% 3.0% 3.0% 1.0% 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	109 0.0 0.0 0.0 1.8% 9.2% 43.1% 28.4% 12.8% 2.8% 0.9% 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

1988		1989	
Srongylocentrotus purpuratus		Srongylocentrotus purpuratus	
(cases) N=	102	(cases) N=	144
< 5 mm	0.0	< 5 mm	0.0
5 - 9	1.0%	5 - 9	0.0
10 - 14	2.9%	10 - 14	0.7%
15 - 19	2.9%	15 - 19	6.3%
20 - 24	1.0%	20 - 24	15.3%
25 - 29	16.7%	25 - 29	12.5%
30 - 34	31.4%	30 - 34	16.0%
35 - 39	28.4%	35 - 39	20.1%
40 - 44	12.7%	40 - 44	18.8%
45 - 49	1.0%	45 - 49	4.2%
50 - 54	2.0%	50 - 54	4.9%
55 - 59	0.0	55 - 59	1.4%
60 - 64	0.0	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
100 - 104	0.0	100 - 104	0.0
105 - 109	0.0	105 - 109	0.0
> 109 mm	0.0	> 109 mm	0.0
min size (mm)	6	min size (mm)	11
max size (mm)	54	max size (mm)	59
mean	33	mean	34
mode	33	mode	38

1986 Tethya aurantia		1988 Tethya aurantia	
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm) mean mode	26 0.0 7.7% 7.7% 19.2% 30.8% 23.1% 3.8% 3.8% 0.0 0.0 0.0	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm) mean mode	10 0.0 0.0 0.0 30.0% 30.0% 40.0% 0.0 0.0 0.0 43 69 56 63
1987 Tethya aurantia	38	mode 1989 Tethya aurantia	63
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm) mean mode	26 0.0 0.0 0.0 11.5% 7.7% 15.4% 30.8% 11.5% 15.4% 7.7% 0.0 35 99 65 36	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm) mean mode	31 0.0 0.0 9.7% 12.9% 9.7% 19.4% 16.1% 6.5% 6.5% 6.5% 20 112 59

1985 Cypraea spadicea		1988 Cypraea spadicea	
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	20 0.0 0.0 0.0 5.0% 25.0% 40.0% 20.0% 10.0% 44 63 52 53	(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 > 59 mm min size (mm) max size (mm) mean mode	16 0.0 0.0 6.3% 25.0% 37.5% 25.0% 6.3% 0.0 38 56 47 46
1986 Cypraea spadicea		1989 Cypraea spadicea	
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) mean mode	30 0.0 0.0 6.7% 20.0% 26.7% 30.0% 13.3% 0.0 35 60 49 53	(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 > 59 mm min size (mm) max size (mm) mean mode	17 0.0 0.0 0.0 11.8% 52.9% 29.4% 5.9% 0.0 42 57 49
1987 Cypraea spadicea			
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	23 0.0 0.0 0.0 21.7% 39.1% 30.4% 8.7% 0.0 40 58 48 43		

1984		1988
Kelletia kelletii		Kelletia kelletii
<pre>Kelletia kelletii (cases) N= <50 mm 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm min size (mm) max size (mm) mean</pre>	14 0.0 14.3% 7.1% 7.1% 7.1% 0.0 0.0 0.0 21.4% 14.3% 21.4% 28.6% 58 151	(cases) N= 14 <40 mm
mode	127	mean 85 mode 69
1985 Kelletia kelletii		1989 Kelletia kelletii
(cases) N= <50 mm 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm min size (mm) max size (mm) mean mode 1987 Kelletia kelletii	34 0.0 0.0 11.8% 26.5% 17.6% 5.9% 11.8% 5.9% 2.9% 0.0 0.0 666 131 90 66	(cases) N= 11 <40 mm
(cases) N= <60 mm 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 >139 mm min size (mm) max size (mm) mean mode	13 0.0 0.0 15.4% 23.1% 30.8% 15.4% 7.7% 0.0 7.7% 0.0 77 138 96	

1984		1987	
Megathura crenulata		Megathura crenulata	
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean	34 0.0 2.9% 0.0 0.0 2.9% 2.9% 5.9% 8.8% 14.7% 44.1% 17.6% 0.0 0.0 18 108 86	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119	32 0.0 0.0 0.0 0.0 3.1% 3.1% 8.1% 1.9% 5.6% 8.8% 6.3% 6.3% 6.3%
mode	90	mode	79
1985 Megathura crenulata		1988 Megathura crenulata	
(cases) N= < 40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	32 0.0 0.0 6.3% 6.3% 9.4% 15.6% 21.9% 12.5% 15.6% 9.4% 52 145 96	70 - 79 80 - 89	41 0.0 0.0 0.0 9.5% 4.4% 6.3% 9.8% 0.0 0.0 0.0 98 79 83
1986 Megathura crenulata		1989 Megathura crenulata	
(cases) N= < 30 mm 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	25 0.0 0.0 0.0 4.0% 20.0% 32.0% 24.0% 8.0% 12.0% 4.0% 0.0 57 109 80	80 - 89 90 - 99	10 0.0 0.0 0.0 0.0 0.0 0.0% 0.0% 0.0% 0.

1984		1985	
Hinnites giganteus		Hinnites giganteus	
	2.1	4	1.0
(cases) N=	31	(cases) N=	13
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	0.0
20 - 29	16.1%	20 - 29	0.0
30 - 39	25.8%	30 - 39	7.7%
40 - 49	22.6%	40 - 49	7.7%
50 - 59	12.9%	50 - 59	7.7%
60 - 69	9.7%	60 - 69	7.7%
70 - 79	6.5%	70 - 79	15.4%
80 - 89	0.0	80 - 89	38.5%
90 - 99	3.2%	90 - 99	7.7%
100 - 109	3.2%	100 - 109	7.7%
110 - 119	0.0	110 - 119	0.0
120 - 129	0.0	120 - 129	0.0
130 - 139	0.0	130 - 139	0.0
140 - 149	0.0	140 - 149	0.0
>149 mm	0.0	>149 mm	0.0
min size (mm)	24	min size (mm)	35
max size (mm)	109	max size (mm)	103
mean	49	mean	72
mode	39	mode	80

1984 Patiria miniata		1987 Patiria miniata	
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm min size (mm) max size (mm) mean mode	63 0.0 1.6% 1.6% 17.5% 28.6% 34.9% 14.3% 1.6% 0.0 0.0 0.0 18 71 49 50	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm min size (mm) max size (mm) mean mode	51 0.0 0.0 5.9% 19.6% 21.6% 31.4% 17.6% 3.9% 0.0 0.0 27 72 49 38
1985 Patiria miniata		1988 Patiria miniata	
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm min size (mm) max size (mm) mean mode 1986	50 0.0 2.0% 8.0% 20.0% 14.0% 26.0% 30.0% 0.0 0.0 0.0 14 69 49 62	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm min size (mm) max size (mm) mean mode 1989	58 0.0 1.7% 17.2% 39.7% 27.6% 8.6% 5.2% 0.0 0.0 0.0 18 64 38 35
Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm min size (mm) max size (mm) mean mode	55 0.0 0.0 9.1% 16.4% 18.2% 40.0% 14.5% 0.0 1.8% 0.0 0.0 20 82 49	Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm min size (mm) max size (mm) mean mode	50 0.0 2.0% 6.0% 18.0% 22.0% 32.0% 16.0% 2.0% 2.0% 0.0 0.0 18 89 49 51

1986 Pisaster giganteus		1988 Pisaster giganteus	
(cases) N=	30	(cases) N=	37
<20 mm	3.3%	<20 mm	0.0
20 - 39	0.0	20 - 39	13.5%
40 - 59	43.3%	40 - 59	37.8%
60 - 79	33.3%	60 - 79	37.8%
80 - 99	16.7%	80 - 99	10.8%
100 - 119	0.0	100 - 119	0.0
120 - 139	3.3%	120 - 139	0.0
140 - 159	0.0	140 - 159	0.0
160 - 179	0.0	160 - 179	0.0
180 - 199	0.0	180 - 199	0.0
200 - 219	0.0	200 - 219	0.0
220 - 239	0.0	220 - 239	0.0
240 - 259	0.0	240 - 259	0.0
260 - 279	0.0	260 - 279	0.0
280 - 299	0.0	280 - 299	0.0
>299 mm	0.0	>299 mm	0.0
min size (mm)	17	min size (mm)	26
max size (mm)	124	max size (mm)	92
mean	65	mean	58
mode	58	mode	60
1987		1989	
1987 Pisaster giganteus		1989 Pisaster giganteus	
Pisaster giganteus	31	Pisaster giganteus	30
Pisaster giganteus (cases) N=	31 0.0	Pisaster giganteus (cases) N=	30 0.0
Pisaster giganteus (cases) N= <20 mm	0.0	Pisaster giganteus (cases) N= <20 mm	0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39	0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39	0.0 23.3%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59	0.0 0.0 25.8%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59	0.0 23.3% 40.0%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79	0.0 0.0 25.8% 48.4%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79	0.0 23.3% 40.0% 30.0%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99	0.0 0.0 25.8% 48.4% 16.1%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99	0.0 23.3% 40.0% 30.0%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119	0.0 0.0 25.8% 48.4% 16.1% 3.2%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119	0.0 23.3% 40.0% 30.0% 0.0 6.7%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139	0.0 0.0 25.8% 48.4% 16.1% 3.2% 3.2%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139	0.0 23.3% 40.0% 30.0% 0.0 6.7% 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159	0.0 0.0 25.8% 48.4% 16.1% 3.2% 3.2% 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159	0.0 23.3% 40.0% 30.0% 0.0 6.7% 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179	0.0 0.0 25.8% 48.4% 16.1% 3.2% 3.2% 0.0 3.2%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179	0.0 23.3% 40.0% 30.0% 0.0 6.7% 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199	0.0 0.0 25.8% 48.4% 16.1% 3.2% 3.2% 0.0 3.2% 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199	0.0 23.3% 40.0% 30.0% 0.0 6.7% 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219	0.0 0.0 25.8% 48.4% 16.1% 3.2% 3.2% 0.0 3.2% 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219	0.0 23.3% 40.0% 30.0% 0.0 6.7% 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239	0.0 0.0 25.8% 48.4% 16.1% 3.2% 3.2% 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239	0.0 23.3% 40.0% 30.0% 0.0 6.7% 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259	0.0 0.0 25.8% 48.4% 16.1% 3.2% 3.2% 0.0 3.2% 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259	0.0 23.3% 40.0% 30.0% 0.0 6.7% 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279	0.0 0.0 25.8% 48.4% 16.1% 3.2% 0.0 3.2% 0.0 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279	0.0 23.3% 40.0% 30.0% 0.0 6.7% 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	0.0 0.0 25.8% 48.4% 16.1% 3.2% 0.0 3.2% 0.0 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	0.0 23.3% 40.0% 30.0% 0.0 6.7% 0.0 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm	0.0 0.0 25.8% 48.4% 16.1% 3.2% 0.0 3.2% 0.0 0.0 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm	0.0 23.3% 40.0% 30.0% 0.0 6.7% 0.0 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	0.0 0.0 25.8% 48.4% 16.1% 3.2% 0.0 3.2% 0.0 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	0.0 23.3% 40.0% 30.0% 0.0 6.7% 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm) max size (mm)	0.0 0.0 25.8% 48.4% 16.1% 3.2% 0.0 3.2% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm) max size (mm)	0.0 23.3% 40.0% 30.0% 0.0 6.7% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	0.0 0.0 25.8% 48.4% 16.1% 3.2% 0.0 3.2% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	0.0 23.3% 40.0% 30.0% 0.0 6.7% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1987		1989	
Pycnopodia helianthoides		Pycnopodia helianthoides	
(cases) N=	26	(cases) N=	24
<20 mm	0.0	<20 mm	0.0
20 - 39	3.8%	20 - 39	0.0
40 - 59	3.8%	40 - 59	16.7%
60 - 79	7.7%	60 - 79	41.7%
80 - 99	15.4%	80 - 99	37.5%
100 - 119	26.9%	100 - 119	0.0
120 - 139	26.9%	120 - 139	0.0
140 - 159	3.8%	140 - 159	0.0
160 - 179	0.0	160 - 179	0.0
180 - 199	0.0	180 - 199	0.0
200 - 219	3.8%	200 - 219	4.2%
220 - 239	3.8%	220 - 239	0.0
240 - 259	0.0	240 - 259	0.0
260 - 279	0.0	260 - 279	0.0
280 - 299	3.8%	280 - 299	0.0
>299 mm	0.0	>299 mm	0.0
min size (mm)	27	min size (mm)	47
max size (mm)	290	max size (mm)	212
mean	119	mean	80
mode	109	mode	58
1988			
Pycnopodia helianthoi	des		
(cases) N=	39		
<20 mm	0.0		
20 - 39	43.6%		
40 - 59	35.9%		
60 - 79	10.3%		
0.0	F 10		

LOCATION 5 SANTA ROSA ISLAND - RODES REEF

1986		1987	
Lytechinus anamesus		Lytechinus anamesus	
(cases) N=	95	(cases) N=	104
< 5 mm	1.1%	< 5 mm	1.0%
5 - 9	0.0	5 - 9	3.8%
10 - 14	0.0	10 - 14	21.2%
15 - 19	1.1%	15 - 19	52.9%
20 - 24	18.9%	20 - 24	18.3%
25 - 29	50.5%	25 - 29	2.9%
30 - 34	21.1%	30 - 34	0.0
35 - 39	7.4%	35 - 39	0.0
40 - 44	0.0	40 - 44	0.0
45 - 49	0.0	45 - 49	0.0
>49 mm	0.0	>49 mm	0.0
min size (mm)	3	min size (mm)	3
max size (mm)	39	max size (mm)	29
mean	27	mean	17
mode	26	mode	19

1984 Strongylocentrotus franciscanus		1985 Strongylocentrotus f	ranciscanus
(cases) N= 112 < 14 mm 0.0		(cases) N= < 9 mm	171 0.0
1 = 10	1 00	10 14	2.00

(cases) N=	112	(cases) N=	171
< 14 mm	0.0	< 9 mm	0.0
15 - 19	1.8%	10 - 14	2.9%
20 - 24	7.1%	15 - 19	11.1%
25 - 29	17.0%	20 - 24	8.8%
30 - 34	17.0%	25 - 29	7.0%
35 - 39	1.8%	30 - 34	6.4%
40 - 44	8.0%	35 - 39	7.6%
45 - 49	7.1%	40 - 44	8.2%
50 - 54	6.3%	45 - 49	9.4%
55 - 59	4.5%	50 - 54	11.7%
60 - 64	1.8%	55 - 59	5.8%
65 - 69	5.4%	60 - 64	3.5%
70 - 74	3.6%	65 - 69	2.9%
75 - 79	2.7%	70 - 74	1.8%
80 - 84	2.7%	75 - 79	1.8%
85 - 89	2.7%	80 - 84	2.3%
90 - 94	3.6%	85 - 89	2.3%
95 - 99	0.9%	90 - 94	0.6%
100 - 104	2.7%	95 - 99	1.2%
105 - 109	2.7%	100 - 104	1.2%
> 109 mm	0.9%	105 - 109	1.2%
min size (mm)	15	> 109 mm	1.8%
max size (mm)	115	min size (mm)	10
mean	50	max size (mm)	132
mode	29	mean	46
		mode	44

1986 Strongylocentrotus	s franciscanus	1988 Strongylocentrotus f	ranciscanus
(cases) N=	105	(cases) N=	176
< 5 mm	1.0%	< 5 mm	0.0
5 - 9	0.0	5 - 9	2.3%
10 - 14	4.8%	10 - 14	2.8%
15 - 19	4.8%	15 - 19	4.0%
20 - 24	1.9%	20 - 24	5.1%
25 - 29	4.8%	25 - 29	3.4%
30 - 34	2.9%	30 - 34	0.6%
35 - 39	7.6%	35 - 39	0.6%
40 - 44	5.7%	40 - 44	3.4%
45 - 49	3.8%	45 - 49	9.1%
50 - 54	13.3%	50 - 54	20.5%
55 - 59	6.7%	55 - 59	15.3%
60 - 64	12.4%	60 - 64	9.1%
65 - 69	7.6%	65 - 69	13.1%
70 - 74	10.5%	70 - 74	5.1%
75 - 79	4.8%	75 - 79	2.8%
80 - 84	1.9%	80 - 84	1.1%
85 - 89	1.0%	85 - 89	1.1%
90 - 94	1.9%	90 - 94	0.6%
95 - 99	1.9%	95 - 99	0.0
100 - 104	1.0%	> 100 mm	0.0
> 104 mm	0.0	min size (mm)	6
min size (mm)	3	max size (mm)	94
max size (mm)	100	mean	51
mean	53	mode	54
mode	54		
1987	s franciscanus	1989 Strongylocentrotus f	ranciscanus
1987 Strongylocentrotus	s franciscanus	1989 Strongylocentrotus f	ranciscanus
	s franciscanus 102	$Strongylocentrotus\ f$ (cases) N=	ranciscanus 99
Strongylocentrotus		Strongylocentrotus f (cases) N= < 5 mm	
Strongylocentrotus (cases) N= < 5 mm 5 - 9	102 0.0 1.0%	Strongylocentrotus f (cases) N= < 5 mm 5 - 9	99
<pre>(cases) N= < 5 mm 5 - 9 10 - 14</pre>	102 0.0 1.0% 1.0%	Strongylocentrotus f (cases) N= < 5 mm 5 - 9 10 - 14	99 0.0 0.0 1.0%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	102 0.0 1.0% 1.0% 1.0%	Strongylocentrotus f (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	99 0.0 0.0 1.0% 1.0%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	102 0.0 1.0% 1.0% 1.0% 4.9%	Strongylocentrotus f (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	99 0.0 0.0 1.0% 1.0% 3.0%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6%	Strongylocentrotus f (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	99 0.0 0.0 1.0% 1.0% 3.0% 6.1%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9%	Strongylocentrotus f (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	99 0.0 0.0 1.0% 1.0% 3.0% 6.1% 5.1%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9% 2.9%	Strongylocentrotus f (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	99 0.0 0.0 1.0% 1.0% 3.0% 6.1% 5.1% 3.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9% 2.9% 6.9%	Strongylocentrotus f (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	99 0.0 0.0 1.0% 1.0% 3.0% 6.1% 3.0% 6.1%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9% 2.9% 6.9%	Strongylocentrotus f (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	99 0.0 0.0 1.0% 1.0% 3.0% 6.1% 3.0% 6.1% 3.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9% 2.9% 6.9% 11.8%	Strongylocentrotus f (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	99 0.0 0.0 1.0% 1.0% 3.0% 6.1% 3.0% 6.1% 3.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9% 2.9% 6.9% 11.8% 7.8% 4.9%	Strongylocentrotus f (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	99 0.0 0.0 1.0% 1.0% 3.0% 6.1% 5.1% 3.0% 6.1% 3.0% 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9% 2.9% 6.9% 11.8% 7.8% 4.9%	Strongylocentrotus f (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	99 0.0 0.0 1.0% 1.0% 3.0% 6.1% 5.1% 3.0% 6.1% 3.0% 6.1% 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9% 2.9% 6.9% 11.8% 7.8% 4.9%	Strongylocentrotus f (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	99 0.0 0.0 1.0% 1.0% 3.0% 6.1% 5.1% 3.0% 6.1% 3.0% 6.1% 7.1%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9% 2.9% 6.9% 11.8% 7.8% 4.9% 12.7% 4.9% 4.9%	Strongylocentrotus f (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	99 0.0 0.0 1.0% 1.0% 3.0% 6.1% 5.1% 3.0% 6.1% 7.1% 10.1%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9% 2.9% 6.9% 11.8% 7.8% 4.9% 12.7% 4.9% 4.9% 3.9%	Strongylocentrotus f (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	99 0.0 0.0 1.0% 1.0% 3.0% 6.1% 3.0% 6.1% 3.0% 0.0 0.0 1.0% 7.1% 10.1% 18.2%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9% 2.9% 6.9% 11.8% 7.8% 4.9% 12.7% 4.9% 3.9% 2.9%	Strongylocentrotus f (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	99 0.0 0.0 1.0% 1.0% 1.0% 3.0% 6.1% 3.0% 6.1% 3.0% 0.0 0.0 6.1% 7.1% 10.1% 18.2% 14.1%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9% 2.9% 6.9% 11.8% 7.8% 4.9% 12.7% 4.9% 3.9% 4.9%	Strongylocentrotus f (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	99 0.0 0.0 1.0% 1.0% 3.0% 6.1% 3.0% 6.1% 3.0% 6.1% 10.1% 11.1% 12.% 14.1% 7.1%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9% 2.9% 6.9% 11.8% 7.8% 4.9% 12.7% 4.9% 12.7% 4.9% 12.7% 4.9%	Strongylocentrotus f (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	99 0.0 0.0 1.0% 1.0% 3.0% 6.1% 3.0% 6.1% 3.0% 6.1% 10.1% 11.1% 12.2% 14.1% 7.1% 6.1%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9% 2.9% 6.9% 11.8% 7.8% 4.9% 12.7% 4.9% 12.7% 4.9% 2.9% 4.9%	Strongylocentrotus f (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	99 0.0 0.0 1.0% 1.0% 3.0% 6.1% 3.0% 6.1% 3.0% 0.0 0.0 6.1% 7.1% 10.1% 18.2% 14.1% 7.1% 6.1% 2.0%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 100 mm	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9% 2.9% 6.9% 11.8% 7.8% 4.9% 12.7% 4.9% 12.7% 4.9% 2.9% 6.9%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	99 0.0 0.0 1.0% 1.0% 3.0% 6.1% 3.0% 6.1% 3.0% 0.0 0.0 6.1% 7.1% 10.1% 18.2% 14.1% 7.1% 6.1% 2.0% 1.0%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 100 mm min size (mm)	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9% 2.9% 6.9% 11.8% 7.8% 4.9% 12.7% 4.9% 4.9% 3.9% 2.9% 2.0% 2.0% 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	99 0.0 0.0 1.0% 1.0% 3.0% 6.1% 5.1% 3.0% 6.1% 3.0% 0.0 0.0 6.1% 7.1% 10.1% 18.2% 14.1% 7.1% 6.1% 2.0% 1.0% 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 100 mm min size (mm) max size (mm)	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9% 2.9% 6.9% 11.8% 7.8% 4.9% 12.7% 4.9% 12.7% 4.9% 3.9% 2.9% 2.0% 2.0% 2.0%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	99 0.0 0.0 1.0% 1.0% 3.0% 6.1% 5.1% 3.0% 6.18 3.0% 0.0 0.0 6.1% 7.1% 10.1% 18.2% 14.1% 7.1% 6.1% 2.0% 0.0 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 100 mm min size (mm) max size (mm) mean	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9% 2.9% 6.9% 11.8% 7.8% 4.9% 12.7% 4.9% 4.9% 3.9% 2.9% 2.0% 2.0% 2.0% 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	99 0.0 0.0 1.0% 1.0% 1.0% 3.0% 6.1% 3.0% 6.1% 3.0% 0.0 0.0 1.0% 18.2% 14.1% 7.1% 6.1% 2.0% 1.0% 0.0 0.0 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 100 mm min size (mm) max size (mm)	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9% 2.9% 6.9% 11.8% 7.8% 4.9% 12.7% 4.9% 4.9% 3.9% 2.0% 2.0% 2.0% 2.0% 2.0%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	99 0.0 0.0 1.0% 1.0% 1.0% 3.0% 6.1% 3.0% 6.1% 3.0% 0.0 0.0 1.1% 18.2% 14.1% 7.1% 6.1% 2.0% 1.0% 0.0 0.0 0.0 14
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 100 mm min size (mm) max size (mm) mean	102 0.0 1.0% 1.0% 1.0% 4.9% 17.6% 4.9% 2.9% 6.9% 11.8% 7.8% 4.9% 12.7% 4.9% 4.9% 3.9% 2.0% 2.0% 2.0% 2.0% 2.0%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	99 0.0 0.0 1.0% 1.0% 3.0% 6.1% 5.1% 3.0% 6.1% 3.0% 0.0 0.0 6.1% 10.1% 18.2% 14.1% 7.1% 6.1% 2.0% 1.0% 0.0 0.0

1984 Srongylocentrotus	s purpuratus	1987 Srongylocentrotus purpura	tus
92	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	5 1 91 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
(cases) N=	173	(cases) N=	133
< 15 mm	0.0	< 5 mm	4.5%
15 - 19	0.0	5 - 9	11.3%
20 - 24	5.2%	10 - 14	6.0%
25 - 29	20.2%	15 - 19	0.8%
30 - 34	18.5%	20 - 24	9.8%
35 - 39 40 - 44	24.9%	25 - 29	9.0%
45 - 49	15.6% 6.9%	30 - 34 35 - 39	21.8% 21.8%
50 - 54	8.1%	40 - 44	12.0%
55 - 59	0.6%	45 - 49	2.3%
> 59 mm	0.0	50 - 54	0.8%
min size (mm)	21	55 - 59	0.0
max size (mm)	55	> 59 mm	0.0
mean mean	36	min size (mm)	3
mode	35	max size (mm)	51
		mean	28
1985		mode	30
Srongylocentrotus	s purpuratus		
		1988	
(cases) N=	176	Srongylocentrotus purpura	tus
< 10 mm	0.0		
10 - 14	1.1%	(cases) N=	37
15 - 19	2.3%	< 15 mm	0.0
20 - 24	4.0%	15 - 19	8.1%
25 - 29	7.4%	20 - 24	10.8%
30 - 34	15.3%	25 - 29	0.0
35 - 39	30.7%	30 - 34	5.4%
40 - 44	28.4%	35 - 39	27.0%
45 - 49	7.4%	40 - 44	24.3%
50 - 54	2.3%	45 - 49	16.2%
55 - 59	1.1%	50 - 54	2.7%
> 59 mm	0.0	55 - 59 60 - 64	2.7%
min size (mm)	55	> 64 mm	2.7%
max size (mm) mean	37	min size (mm)	15
mode	40	max size (mm)	60
mode	40	mean	38
		mode	44
1986			
Srongylocentrotus	s purpuratus	1989	
91	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Srongylocentrotus purpura	tus
(cases) N=	124	31	
< 5 mm	0.0	(cases) N=	99
5 - 9	2.4%	< 5 mm	0.0
10 - 14	4.8%	5 - 9	1.0%
15 - 19	0.8%	10 - 14	1.0%
20 - 24	3.2%	15 - 19	8.1%
25 - 29	16.1%	20 - 24	11.1%
30 - 34	12.9%	25 - 29	9.1%
35 - 39	21.0%	30 - 34	16.2%
40 - 44	25.0%	35 - 39	13.1%
45 - 49	8.9%	40 - 44	14.1%
50 - 54	3.2%	45 - 49	10.1%
55 - 59	0.8%	50 - 54	9.1%
60 - 64	0.8%	55 - 59	6.1%
> 64 mm	0.0	60 - 64	1.0%
min size (mm)	7 62	> 64 mm	0.0
max size (mm)	62 35	min size (mm) max size (mm)	8 63
mean mode	37	mean	36
mouc	5 /	mode	32
		mode	J.

1986		1988	
Tethya aurantia		Tethya aurantia	
(cases) N=	29	(cases) N=	17
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	0.0
20 - 29	6.9%	20 - 29	0.0
30 - 39	10.3%	30 - 39	5.9%
40 - 49	10.3%	40 - 49	17.6%
50 - 59	24.1%	50 - 59	5.9%
60 - 69	20.7%	60 - 69	23.5%
70 - 79	20.7%	70 - 79	23.5%
80 - 89	3.4%	80 - 89	5.9%
90 - 99	3.4%	90 - 99	5.9%
>99 mm	0.0	>99 mm	5.9%
min size (mm)	22	min size (mm)	30
max size (mm)	97	max size (mm)	119
mean	57	mean	69
mode	70	mode	64

1984		1985	
Haliotis rufescens		Haliotis rufescens	
(cases) N=	36	(cases) N=	45
< 40 mm	0.0	< 40 mm	0.0
40 - 44	4.4%	40 - 44	4.4%
45 - 49	0.0	45 - 49	0.0
50 - 54	0.0	50 - 54	0.0
55 - 59	2.8%	55 - 59	0.0
60 - 64	0.0	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	2.8%	80 - 84	0.0
85 - 89	0.0	85 - 89	4.4%
90 - 94	2.8%	90 - 94	2.2%
95 - 99	0.0	95 - 99	0.0
100 - 104	2.8%	100 - 104	2.2%
105 - 109	0.0	105 - 109	0.0
110 - 114	0.0	110 - 114	0.0
115 - 119	0.0	115 - 119	2.2%
120 - 124	0.0	120 - 124	2.2%
125 - 129	0.0	125 - 129	0.0
130 - 134	2.8%	130 - 134	2.2%
135 - 139	2.8%	135 - 139	0.0
140 - 144	2.8%	140 - 144	4.4%
145 - 149	2.8%	145 - 149	2.2%
150 - 154	5.6%	150 - 154	4.4%
155 - 159	8.3%	155 - 159	2.2%
160 - 164	8.3%	160 - 164	13.3%
165 - 169	11.1%	165 - 169	6.7%
170 - 174	19.4%	170 - 174	8.9%
175 - 179	5.6%	175 - 179	8.9%
180 - 184	5.6%	180 - 184	13.3%
185 - 189	0.0	185 - 189	6.7%
190 - 194	8.3%	190 - 194	8.9%
195 - 199	0.0	195 - 199	0.0
> 199 mm	5.6%	> 199 mm	0.0
min size (mm)	57	min size (mm)	43
max size (mm)	204	max size (mm)	192
mean	159	mean	155
mode	172	mode	160

LOCATION 6 SANTA CRUZ ISLAND - GULL ISLAND SOUTH

1986 Haliotis rufescens

80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 110 - 114 115 - 119 120 - 124 125 - 129 130 - 134 135 - 139 140 - 144 145 - 149 150 - 154 155 - 159 160 - 164 165 - 169 170 - 174 175 - 179 180 - 184 185 - 189 190 - 194 195 - 199 mm min size (mm) max size (mm)	8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
, ,	

LOCATION 6 SANTA CRUZ ISLAND - GULL ISLAND SOUTH

LOCATION 6 SANTA CA	.02 ISLAND - GOLL ISLAND	5001H	
1984 Haliotis corrugata		1988 Haliotis corrugata	
(cases) N= < 100 mm 100 - 104 105 - 109 110 - 114 115 - 119 120 - 124 125 - 129 130 - 134	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 25 mm 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm)	1 0.0 0.0 100.0% 0.0 0.0 0.0 0.0
135 - 139 140 - 144 145 - 149 150 - 154 155 - 159 > 159 mm min size (mm) max size (mm) mean mode	0.0 100.0% 0.0 0.0 0.0 0.0 143 143 143 143	max size (mm) mean mode	33 33 33
1985 Haliotis corrugata	143		
(cases) N= < 50 mm 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 110 - 114 115 - 119 120 - 124 125 - 129 130 - 134 135 - 139 140 - 144 145 - 149 150 - 154 155 - 159 160 - 164 165 - 169 > 169 mm min size (mm) max size (mm) mean mode	17 0.0 0.0 0.0 5.9% 5.9% 5.9% 6.9% 0.0 11.8% 5.9% 0.0 5.9% 0.0 5.9% 0.0 5.9% 0.0 5.9% 5.9% 17.6% 5.9% 5.9% 17.6% 5.9% 17.6% 5.9% 17.6% 5.9% 17.6% 5.9% 17.6% 5.9% 17.6% 5.9% 17.6% 5.9% 17.6% 5.9% 17.6% 5.9% 17.6% 5.9% 17.6% 5.9% 5.9% 5.9% 5.9% 5.9% 5.9% 5.9% 5.9		

1984 Cypraea spadicea		1987 Cypraea spadicea	
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	35 0.0 0.0 2.9% 8.6% 54.3% 28.6% 5.7% 0.0 39 56 48	45 - 49 50 - 54 4	62 0.0 0.0 0.0 3.2% 18.4% 10.3% 8.1% 0.0 41 57 50 47
1985 Cypraea spadicea		1988 Cypraea spadicea	
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode 1986	28 0.0 0.0 3.6% 10.7% 57.1% 21.4% 7.1% 0.0 39 56 48 49	40 - 44 45 - 49 7	34 0.0 0.0 8.8% 8.8% 70.6% 1.8% 0.0 0.0 35 52 46 46
Cypraea spadicea		Cypraea spadicea	
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	34 0.0 0.0 0.0 14.7% 41.2% 41.2% 2.9% 0.0 42 58 49 52	35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	30 0.0 3.3% 3.3% 20.0% 80.0% 30.0% 30.0% 30.0% 30.0% 50.0%

1985 Kelletia kelletii		1988 Kelletia kelletii	
(cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm min size (mm) max size (mm)	15 0.0 0.0 0.0 6.7% 6.7% 6.7% 20.0% 20.0% 40.0% 0.0 0.0 0.0	50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119	35 0.0 2.9% 0.0 5.7% 4.3% 4.3% 4.3% 5.7% 2.9% 0.0 0.0 47 122
mean mode	98 110	mean mode	96 101
1987 Kelletia kelletii		1989 Kelletia kelletii	
(cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm min size (mm) max size (mm) mean mode	13 0.0 0.0 0.0 0.0 0.0 0.0 7.7% 61.5% 23.1% 0.0 0.0 7.7% 0.0 0.0 82 130 98	80 - 89 90 - 99 100 - 109	19 0.0 0.0 0.0 0.0 5.3% 0.5% 2.1% 1.6% 0.5% 0.0 0.0 0.0

	CRUZ ISLAND - GULL ISLAND :		
1984 Astraea undosa		1987	
ASTIAEA UNGOSA		Astraea undosa	
(cases) N=	29	(cases) N=	35
< 10 mm	3.4%	< 10 mm	0.0
10 - 19	0.0	10 - 19	0.0
20 - 29	0.0	20 - 29	0.0
30 - 39	0.0	30 - 39	0.0
40 - 49	0.0	40 - 49	0.0
50 - 59	0.0	50 - 59	14.3%
60 - 69	0.0	60 - 69	40.0%
70 - 79	0.0	70 - 79	37.1%
80 - 89	20.7%	80 - 89	8.6%
90 - 99	51.7%	90 - 99	0.0
100 - 109	24.1%	100 - 109	0.0
110 - 119	3.4%	110 - 119	0.0
>119 mm	0.0	>119 mm	0.0
min size (mm)	5	min size (mm)	52
max size (mm)	109	max size (mm)	89
mean	92	mean	68
mode	93	mode	78
1985		1988	
Astraea undosa		Astraea undosa	
(cases) N=	31	(cases) N=	43
< 30	0.0	< 10 mm	0.0
30 - 39	3.2%	10 - 19	0.0
40 - 49	16.1%	20 - 29	0.0
50 - 59	22.6%	30 - 39	0.0
60 - 69	25.8%	40 - 49	4.7%
70 - 79	6.5%	50 - 59	4.7%
80 - 89	16.1%	60 - 69	51.2%
90 - 99	3.2%	70 - 79	32.6%
100 - 109	6.5%	80 - 89	4.7%
>109 mm	0.0	90 - 99	2.3%
min size (mm)	30	100 - 109	0.0
max size (mm)	104	110 - 119	0.0
mean	65	>119 mm	0.0
mode	51	min size (mm)	46
1006		max size (mm)	90
1986		mean	67 70
Astraea undosa		mode	70
(cases) N=	44		
< 30	0.0		
30 - 39	2.3%		
40 - 49	4.5%		
50 - 59	18.2%		
60 - 69	13.6%		
70 - 79	38.6%		
80 - 89	6.8%		
90 - 99	11.4%		
100 - 109	2.3%		
110 - 119	2.3%		
>119 mm	0.0		
min size (mm)	38		
max size (mm)	110		
mean	70		
mode	71		

1984		1987
Megathura crenulata		Megathura crenulata
(cases) N=	86	(cases) N= 51
< 50 mm	0.0	< 30 mm 0.0
50 - 59	0.0	30 - 39 0.0
	2.3%	
60 - 69		40 - 49 0.0
70 - 79	26.7%	50 - 59 7.8%
80 - 89	55.8%	60 - 69 19.6%
90 - 99	14.0%	70 - 79 45.1%
100 - 109	1.2%	80 - 89 27.5%
110 - 119	0.0	90 - 99 0.0
>119 mm	0.0	100 - 109 0.0
min size (mm)	65	110 - 119 0.0
max size (mm)	102	>119 mm 0.0
mean	82	min size (mm) 50
mode	82	max size (mm) 85
		mean 74
1985		mode 78
Megathura crenulata		
nogachara crenaraca		1988
(cases) N=	30	Megathura crenulata
< 30 mm	0.0	negathara crenarata
30 - 39	0.0	(cases) N= 37
40 - 49	3.3%	,
	3.3%	
50 - 59		10 - 19 0.0
60 - 69	3.3%	20 - 29 0.0
70 - 79	40.0%	30 - 39 2.7%
80 - 89	33.3%	40 - 49 0.0
90 - 99	16.7%	50 - 59 8.1%
100 - 109	0.0	60 - 69 24.3%
110 - 119	0.0	70 - 79 37.8%
>119 mm	0.0	80 - 89 13.5%
min size (mm)	47	90 - 99 8.1%
max size (mm)	98	100 - 109 2.7%
mean	79	110 - 119 2.7%
mode	75	>119 mm 0.0
		min size (mm) 34
1986		max size (mm) 115
Megathura crenulata		mean 73
- 9		mode 70
(cases) N=	38	
< 10 mm	0.0	1989
10 - 19	0.0	Megathura crenulata
20 - 29	0.0	negathara crenarata
30 - 39	0.0	(cases) N= 18
		,
40 - 49 50 - 59	0.0	< 40 mm 0.0
	5.3%	40 - 49 0.0
60 - 69	13.2%	50 - 59 5.6%
70 - 79	31.6%	60 - 69 16.7%
80 - 89	34.2%	70 - 79 33.3%
90 - 99	7.9%	80 - 89 44.4%
100 - 109	5.3%	90 - 99 0.0
110 - 119	0.0	100 - 109 0.0
>119 mm	2.6%	110 - 119 0.0
min size (mm)	50	>119 mm 0.0
max size (mm)	122	min size (mm) 56
mean	79	max size (mm) 89
mode	77	mean 75
		mode 80

LOCATION 6 SANTA CRUZ ISLAND - GULL ISLAND SOUTH

mode

7 0 4 0

1004		1006	
1984 Hinnites giganteus		1986 Hinnites giganteus	
(cases) N=	13	(cases) N=	40
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	0.0
20 - 29 30 - 39	0.0	20 - 29 30 - 39	5.0%
40 - 49	7.7% 15.4%	40 - 49	7.5% 40.0%
50 - 59	15.4%	50 - 59	5.0%
60 - 69	15.4%	60 - 69	7.5%
70 - 79	0.0	70 - 79	5.0%
80 - 89	15.4%	80 - 89	10.0%
90 - 99	7.7%	90 - 99	2.5%
100 - 109	7.7%	100 - 109	0.0
110 - 119	7.7%	110 - 119	12.5%
120 - 129	7.7%	120 - 129	0.0
130 - 139	0.0	130 - 139	2.5%
140 - 149	0.0	140 - 149	0.0
>149 mm	0.0	>149 mm	2.5%
min size (mm)	38	min size (mm)	21
max size (mm)	129	max size (mm)	154
mean	74 65	mean	65
mode	65	mode	45
1985			
Hinnites giganteus			
(cases) N=	30		
< 10 mm 10 - 19	0.0		
20 - 29	3.3%		
30 - 39	3.3%		
40 - 49	20.0%		
50 - 59	10.0%		
60 - 69	26.7%		
70 - 79	3.3%		
80 - 89	10.0%		
90 - 99	6.7%		
100 - 109	6.7%		
110 - 119	0.0		
120 - 129	3.3%		
130 - 139	3.3%		
140 - 149	0.0		
>149 mm min size (mm)	3.3% 25		
min size (mm) max size (mm)	25 153		
mean	70		

2001112011 0 011111		5 500111	
1984		1987	
Patiria miniata		Patiria miniata	
(cases) N=	10	(cases) N=	39
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	2.6%
20 - 29	0.0	20 - 29	7.7%
30 - 39	0.0	30 - 39	30.8%
40 - 49	0.0	40 - 49	28.2%
50 - 59	10.0%	50 - 59	7.7%
60 - 69	60.0%	60 - 69	17.9%
70 - 79	30.0%	70 - 79	0.0
80 - 89	0.0	80 - 89	5.1%
90 - 99	0.0	90 - 99	0.0
>100 mm	0.0	>100 mm	0.0
min size (mm)	52	min size (mm)	19
max size (mm)	75	max size (mm)	84
mean	67	mean	45
mode	64	mode	42
1985		1988	
Patiria miniata		Patiria miniata	
(1.0	/	F.0
(cases) N=	10	(cases) N=	50
< 10 mm 10 - 19	0.0	< 10 mm	0.0
20 - 29	0.0 10.0%	10 - 19 20 - 29	0.0 2.0%
30 - 39	30.0%	30 - 39	10.0%
40 - 49	30.0%	40 - 49	18.0%
50 - 59	10.0%	50 - 59	18.0%
60 - 69	10.0%	60 - 69	30.0%
70 - 79	0.0	70 - 79	18.0%
80 - 89	10.0%	80 - 89	0.0
90 - 99	0.0	90 - 99	2.0%
>100 mm	0.0	>100 mm	2.0%
min size (mm)	25	min size (mm)	23
max size (mm)	80	max size (mm)	105
mean	48	mean	59
mode	48	mode	70
1986		1989	
Patiria miniata		Patiria miniata	
(cases) N=	17	(cases) N=	51
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	0.0
20 - 29	11.8%	20 - 29	2.0%
30 - 39	17.6%	30 - 39	3.9%
40 - 49	17.6%	40 - 49	11.8%
50 - 59	11.8%	50 - 59	23.5%
60 - 69	17.6%	60 - 69	23.5%
70 - 79	23.5%	70 - 79	25.5%
80 - 89	0.0	80 - 89	7.8%
90 - 99	0.0	90 - 99	2.0%
>100 mm	0.0	>100 mm	0.0
min size (mm)	24	min size (mm)	28
max size (mm)	79 51	max size (mm)	90
mean mode	51 69	mean mode	62 54
mode	0 9	mode	34

1986 Pisaster giganteus		1988 Pisaster giganteus	
(cases) N= <20 mm 20 - 39	38 0.0 2.6%	(cases) N= <20 mm 20 - 39	32 0.0 0.0
40 - 59 60 - 79	23.7% 28.9%	40 - 59 60 - 79	6.3% 34.4%
80 - 99 100 - 119 120 - 139	21.1% 15.8% 2.6%	80 - 99 100 - 119 120 - 139	34.4% 18.8% 3.1%
140 - 159 160 - 179	0.0 5.3%	140 - 159 160 - 179	0.0 3.1%
180 - 199 200 - 219 220 - 239	0.0 0.0 0.0	180 - 199 200 - 219 220 - 239	0.0 0.0 0.0
240 - 259 260 - 279	0.0	240 - 259 260 - 279	0.0
280 - 299 >299 mm min size (mm)	0.0 0.0 29	280 - 299 >299 mm min size (mm)	0.0 0.0 49
max size (mm) mean mode	174 81 55	max size (mm) mean mode	168 88 67
	00		0,
1987		1989	
1987 Pisaster giganteus		1989 Pisaster giganteus	
Pisaster giganteus (cases) N= <20 mm	38 0.0	Pisaster giganteus (cases) N= <20 mm	30 0.0
Pisaster giganteus (cases) N=		Pisaster giganteus (cases) N=	
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119	0.0 0.0 26.3% 44.7% 23.7% 5.3%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119	0.0 0.0 0.0 23.3% 43.3% 20.0%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99	0.0 0.0 26.3% 44.7% 23.7%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99	0.0 0.0 0.0 23.3% 43.3%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219	0.0 0.0 26.3% 44.7% 23.7% 5.3% 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219	0.0 0.0 0.0 23.3% 43.3% 20.0% 6.7% 6.7% 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279	0.0 0.0 26.3% 44.7% 23.7% 5.3% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279	0.0 0.0 0.0 23.3% 43.3% 20.0% 6.7% 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm	0.0 0.0 26.3% 44.7% 23.7% 5.3% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm	0.0 0.0 0.0 23.3% 43.3% 20.0% 6.7% 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	0.0 0.0 26.3% 44.7% 23.7% 5.3% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	0.0 0.0 0.0 23.3% 43.3% 20.0% 6.7% 6.7% 0.0 0.0 0.0 0.0

1986 Lytechinus anamesus		1988 Lytechinus anamesus	
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 >49 mm min size (mm) max size (mm) mean	107 0.0 0.9% 12.1% 29.0% 35.5% 20.6% 1.9% 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm) max size (mm) mean	117 0.0 0.9% 7.7% 36.8% 33.3% 18.8% 2.6% 0.0 0.0 0.0
mode	25	mode	18
1987 Lytechinus anamesus		1989 Lytechinus anamesus	
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 >49 mm min size (mm) max size (mm) mean mode	102 0.0 0.0 28.4% 57.8% 13.7% 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm) max size (mm) mean mode	178 0.0 5.1% 30.9% 45.5% 14.6% 3.9% 0.0 0.0 0.0 7 29 16 16

1984		1986	
Strongylocentrotus	franciscanus	Strongylocentrotus	franciscanus
(cases) N=	114	(cases) N=	104
< 5 mm	0.0	< 5 mm	0.0
5 - 9	11.4%	5 - 9	1.0%
10 - 14	0.9%	10 - 14	2.9%
15 - 19	1.8%	15 - 19	7.7%
20 - 24	0.0	20 - 24	15.4%
25 - 29	0.9%	25 - 29	23.1%
30 - 34	0.0	30 - 34	12.5%
35 - 39 40 - 44	1.8%	35 - 39	3.8% 1.9%
45 - 49	3.5%	40 - 44 45 - 49	1.9%
50 - 54	1.8%	50 - 54	2.9%
55 - 59	4.4%	55 - 59	2.9%
60 - 64	4.4%	60 - 64	1.0%
65 - 69	4.4%	65 - 69	1.0%
70 - 74	4.4%	70 - 74	2.9%
75 - 79	8.8%	75 - 79	0.0
80 - 84	13.2%	80 - 84	1.0%
85 - 89	8.8%	85 - 89	5.8%
90 - 94	6.1%	90 - 94	5.8%
95 - 99	4.4%	95 - 99	1.9%
100 - 104	2.6%	100 - 104	0.0
105 - 109	0.9%	105 - 109	1.9%
> 109 mm	15.8%	> 109 mm	2.9%
min size (mm) max size (mm)	5 142	min size (mm) max size (mm)	9 125
mean	74	mean	43
mode	82	mode	25
	0.5		20
1985		1987	
1985 Strongylocentrotus	franciscanus	1987 Strongylocentrotus	franciscanus
1985 Strongylocentrotus (cases) N=	franciscanus	1987 Strongylocentrotus (cases) N=	franciscanus
Strongylocentrotus		Strongylocentrotus	
Strongylocentrotus (cases) N=	100	Strongylocentrotus (cases) N=	102
Strongylocentrotus (cases) N= < 5 mm	100 0.0	Strongylocentrotus (cases) N= < 5 mm	102 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	100 0.0 1.0% 2.0% 10.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	102 0.0 0.0 0.0 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	100 0.0 1.0% 2.0% 10.0% 5.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	102 0.0 0.0 0.0 0.0 2.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	102 0.0 0.0 0.0 0.0 2.0% 8.8%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0% 1.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	102 0.0 0.0 0.0 0.0 2.0% 8.8% 20.6%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0% 1.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	102 0.0 0.0 0.0 0.0 2.0% 8.8% 20.6% 6.9%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0% 1.0% 1.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	102 0.0 0.0 0.0 2.0% 8.8% 20.6% 6.9% 16.7%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0% 1.0% 1.0% 5.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	102 0.0 0.0 0.0 0.0 2.0% 8.8% 20.6% 6.9% 16.7% 6.9%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0% 1.0% 1.0% 5.0% 3.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	102 0.0 0.0 0.0 0.0 2.0% 8.8% 20.6% 6.9% 16.7% 6.9% 5.9%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0% 1.0% 1.0% 5.0% 3.0% 2.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	102 0.0 0.0 0.0 0.0 2.0% 8.8% 20.6% 6.9% 16.7% 6.9% 5.9%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0% 1.0% 1.0% 5.0% 3.0% 2.0% 5.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	102 0.0 0.0 0.0 0.0 2.0% 8.8% 20.6% 6.9% 16.7% 6.9% 5.9% 1.0% 2.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0% 1.0% 1.0% 5.0% 3.0% 2.0% 5.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	102 0.0 0.0 0.0 2.0% 8.8% 20.6% 6.9% 16.7% 6.9% 5.9% 1.0% 2.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0% 1.0% 1.0% 5.0% 3.0% 2.0% 5.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	102 0.0 0.0 0.0 0.0 2.0% 8.8% 20.6% 6.9% 16.7% 6.9% 5.9% 1.0% 2.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0% 1.0% 1.0% 1.0% 5.0% 3.0% 2.0% 5.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	102 0.0 0.0 0.0 2.0% 8.8% 20.6% 6.9% 16.7% 6.9% 5.9% 1.0% 2.0% 2.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0% 1.0% 1.0% 5.0% 5.0% 2.0% 5.0% 5.0% 6.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	102 0.0 0.0 0.0 2.0% 8.8% 20.6% 6.9% 16.7% 6.9% 5.9% 1.0% 2.0% 2.0% 2.9%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0% 1.0% 1.0% 5.0% 3.0% 2.0% 5.0% 5.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	102 0.0 0.0 0.0 2.0% 8.8% 20.6% 6.9% 16.7% 6.9% 5.9% 1.0% 2.0% 2.9%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0% 1.0% 1.0% 5.0% 3.0% 2.0% 5.0% 5.0% 5.0% 4.0% 7.0% 8.0% 7.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	102 0.0 0.0 0.0 0.0 2.0% 8.8% 20.6% 6.9% 16.7% 6.9% 5.9% 2.0% 2.0% 2.0% 2.9% 3.9% 5.9%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0% 1.0% 1.0% 5.0% 3.0% 2.0% 5.0% 5.0% 6.0% 4.0% 7.0% 8.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	102 0.0 0.0 0.0 0.0 2.0% 8.8% 20.6% 6.9% 16.7% 6.9% 5.9% 2.0% 2.0% 2.0% 2.9% 2.9% 3.9% 3.9% 3.9%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0% 1.0% 1.0% 5.0% 3.0% 2.0% 5.0% 2.0% 5.0% 6.0% 4.0% 7.0% 8.0% 7.0% 8.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	102 0.0 0.0 0.0 0.0 2.0% 8.8% 20.6% 6.9% 16.7% 6.9% 5.9% 1.0% 2.0% 2.0% 2.9% 2.9% 3.9% 3.9% 3.9% 3.9% 2.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0% 1.0% 1.0% 5.0% 3.0% 2.0% 5.0% 5.0% 6.0% 4.0% 7.0% 8.0% 7.0% 8.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	102 0.0 0.0 0.0 0.0 2.0% 8.8% 20.6% 6.9% 16.7% 6.9% 5.9% 2.0% 2.0% 2.9% 3.9% 3.9% 3.9% 3.9% 2.0% 2.9%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0% 1.0% 1.0% 5.0% 5.0% 5.0% 5.0% 5.0% 6.0% 4.0% 7.0% 8.0% 7.0% 8.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	102 0.0 0.0 0.0 0.0 2.0% 8.8% 20.6% 6.9% 16.7% 6.9% 1.0% 2.0% 2.0% 2.9% 1.0% 2.9% 3.9% 5.9% 3.9% 5.9%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0% 1.0% 1.0% 1.0% 5.0% 3.0% 2.0% 5.0% 2.0% 5.0% 4.0% 7.0% 8.0% 7.0% 8.0% 1.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	102 0.0 0.0 0.0 0.0 2.0% 8.8% 20.6% 6.9% 16.7% 6.9% 1.0% 2.0% 2.0% 2.0% 2.9% 1.0% 2.9% 3.9% 5.9% 3.9% 2.0% 2.0% 2.9% 3.9%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	100 0.0 1.0% 2.0% 10.0% 5.0% 3.0% 1.0% 1.0% 5.0% 5.0% 5.0% 5.0% 5.0% 6.0% 4.0% 7.0% 8.0% 7.0% 8.0%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	102 0.0 0.0 0.0 0.0 2.0% 8.8% 20.6% 6.9% 16.7% 6.9% 1.0% 2.0% 2.0% 2.9% 1.0% 2.9% 3.9% 5.9% 3.9% 5.9%

1988		1989	
Strongylocentrotus	franciscanus	Strongylocentrotus	franciscanus
(cases) N=	109	(cases) N=	76
< 5 mm	0.0	< 5 mm	0.0
5 - 9	0.0	5 - 9	1.3%
10 - 14	0.0	10 - 14	1.3%
15 - 19	2.8%	15 - 19	7.9%
20 - 24	16.5%	20 - 24	17.1%
25 - 29	33.9%	25 - 29	28.9%
30 - 34	31.2%	30 - 34	26.3%
35 - 39	9.2%	35 - 39	13.2%
40 - 44	1.8%	40 - 44	3.9%
45 - 49	0.0	45 - 49	0.0
50 - 54	0.0	50 - 54	0.0
55 - 59	0.0	55 - 59	0.0
60 - 64	0.0	60 - 64	0.0
65 - 69	0.9%	65 - 69	0.0
70 - 74	0.9%	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.9%	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	1.8%	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
100 - 104	0.0	100 - 104	0.0
105 - 109	0.0	105 - 109	0.0
> 109 mm	0.0	> 109 mm	0.0
min size (mm)	19	min size (mm)	6
max size (mm)	92	max size (mm)	42
mean	31	mean	28
mode	30	mode	30

1984		1986	
Srongylocentrotu	s purpuratus	Srongylocentrotus pur	puratus
		-	-
(cases) N=	58	(cases) N=	115
< 5 mm	1.7%	< 5 mm	3.5%
5 - 9	5.2%	5 - 9	14.8%
10 - 14 15 - 19	3.4% 0.0	10 - 14 15 - 19	44.3% 20.0%
20 - 24	10.3%	20 - 24	9.6%
25 - 29	31.0%	25 - 29	1.7%
30 - 34	29.3%	30 - 34	1.7%
35 - 39	6.9%	35 - 39	1.7%
40 - 44	6.9%	40 - 44	2.6%
45 - 49	5.2%	45 - 49	0.0
50 - 54	0.0	50 - 54	0.0
55 - 59	0.0	55 - 59	0.0
60 - 64	0.0	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94 95 - 99	0.0
95 - 99 > 99 mm	0.0 0.0	95 - 99 > 99 mm	0.0
min size (mm)	4	min size (mm)	3
max size (mm)	47	max size (mm)	43
mean	29	mean	15
mode	27	mode	12
mode	2 /	mode	12
1985		1987	
1985 Srongylocentrotu	s purpuratus	1987 Srongylocentrotus pur	puratus
Srongylocentrotu		Srongylocentrotus pur	-
Srongylocentrotu (cases) N=	99	Srongylocentrotus pur (cases) N=	104
Srongylocentrotu	99 0.0	Srongylocentrotus pur	104
Srongylocentrotu (cases) N= < 5 mm	99	Srongylocentrotus pur (cases) N= < 5 mm	104
<pre>(cases) N= < 5 mm 5 - 9</pre>	99 0.0 6.1%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9	104 0.0 0.0
(cases) N= < 5 mm 5 - 9 10 - 14	99 0.0 6.1% 3.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14	104 0.0 0.0 6.7%
<pre>(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19</pre>	99 0.0 6.1% 3.0% 3.0%	<pre>Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19</pre>	104 0.0 0.0 6.7% 1.0%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	99 0.0 6.1% 3.0% 3.0% 1.0% 31.3% 37.4%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	104 0.0 0.0 6.7% 1.0% 22.1% 26.0% 25.0%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	99 0.0 6.1% 3.0% 3.0% 1.0% 31.3% 37.4% 14.1%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	104 0.0 0.0 6.7% 1.0% 22.1% 26.0% 25.0% 13.5%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	99 0.0 6.1% 3.0% 3.0% 1.0% 31.3% 37.4% 14.1% 4.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	104 0.0 0.0 6.7% 1.0% 22.1% 26.0% 25.0% 13.5% 4.8%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	99 0.0 6.1% 3.0% 3.0% 1.0% 31.3% 37.4% 14.1% 4.0% 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	104 0.0 0.0 6.7% 1.0% 22.1% 26.0% 25.0% 13.5% 4.8% 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	99 0.0 6.1% 3.0% 3.0% 1.0% 31.3% 37.4% 14.1% 4.0% 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	104 0.0 0.0 6.7% 1.0% 22.1% 26.0% 25.0% 13.5% 4.8% 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	99 0.0 6.1% 3.0% 3.0% 1.0% 31.3% 37.4% 14.1% 4.0% 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	104 0.0 0.0 6.7% 1.0% 22.1% 26.0% 25.0% 13.5% 4.8% 0.0 1.0%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	99 0.0 6.1% 3.0% 3.0% 1.0% 31.3% 37.4% 14.1% 4.0% 0.0 0.0 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	104 0.0 0.0 6.7% 1.0% 22.1% 26.0% 25.0% 13.5% 4.8% 0.0 1.0% 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	99 0.0 6.1% 3.0% 3.0% 1.0% 31.3% 37.4% 14.1% 4.0% 0.0 0.0 0.0 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	104 0.0 0.0 6.7% 1.0% 22.1% 26.0% 25.0% 13.5% 4.8% 0.0 1.0% 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	99 0.0 6.1% 3.0% 3.0% 1.0% 31.3% 37.4% 14.1% 4.0% 0.0 0.0 0.0 0.0 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	104 0.0 0.0 6.7% 1.0% 22.1% 26.0% 25.0% 13.5% 4.8% 0.0 1.0% 0.0 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	99 0.0 6.1% 3.0% 3.0% 1.0% 31.3% 37.4% 14.1% 4.0% 0.0 0.0 0.0 0.0 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	104 0.0 0.0 6.7% 1.0% 22.1% 26.0% 25.0% 13.5% 4.8% 0.0 1.0% 0.0 0.0
Srongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	99 0.0 6.1% 3.0% 3.0% 1.0% 31.3% 37.4% 14.1% 4.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	104 0.0 0.0 6.7% 1.0% 22.1% 26.0% 25.0% 13.5% 4.8% 0.0 1.0% 0.0 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	99 0.0 6.1% 3.0% 3.0% 1.0% 31.3% 37.4% 14.1% 4.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	104 0.0 0.0 6.7% 1.0% 22.1% 26.0% 25.0% 13.5% 4.8% 0.0 1.0% 0.0 0.0 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	99 0.0 6.1% 3.0% 3.0% 1.0% 31.3% 37.4% 14.1% 4.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	104 0.0 0.0 6.7% 1.0% 22.1% 26.0% 25.0% 13.5% 4.8% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	99 0.0 6.1% 3.0% 3.0% 1.0% 31.3% 37.4% 14.1% 4.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	104 0.0 0.0 6.7% 1.0% 22.1% 26.0% 25.0% 13.5% 4.8% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	99 0.0 6.1% 3.0% 3.0% 3.0% 1.0% 31.3% 37.4% 14.1% 4.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	104 0.0 0.0 6.7% 1.0% 22.1% 26.0% 25.0% 13.5% 4.8% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	99 0.0 6.1% 3.0% 3.0% 3.0% 1.0% 31.3% 37.4% 14.1% 4.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	104 0.0 0.0 6.7% 1.0% 22.1% 26.0% 25.0% 13.5% 4.8% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	99 0.0 6.1% 3.0% 3.0% 1.0% 31.3% 37.4% 14.1% 4.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	104 0.0 0.0 6.7% 1.0% 22.1% 26.0% 25.0% 13.5% 4.8% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	99 0.0 6.1% 3.0% 3.0% 1.0% 31.3% 37.4% 14.1% 4.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	104 0.0 0.0 6.7% 1.0% 22.1% 26.0% 25.0% 13.5% 4.8% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1988		1989	
Srongylocentrotus purpuratus		Srongylocentrotus purpuratus	
(cases) N=	115	(cases) N=	195
< 5 mm	0.0	< 5 mm	1.0%
5 - 9	1.7%	5 - 9	4.6%
10 - 14	15.7%	10 - 14	3.6%
15 - 19	63.5%	15 - 19	10.8%
20 - 24	16.5%	20 - 24	45.6%
25 - 29	2.6%	25 - 29	31.3%
30 - 34	0.0	30 - 34	2.6%
35 - 39	0.0	35 - 39	0.5%
40 - 44	0.0	40 - 44	0.0
45 - 49	0.0	45 - 49	0.0
50 - 54	0.0	50 - 54	0.0
55 - 59	0.0	55 - 59	0.0
60 - 64	0.0	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
100 - 104	0.0	100 - 104	0.0
105 - 109	0.0	105 - 109	0.0
> 109 mm	0.0	> 109 mm	0.0
min size (mm)	6	min size (mm)	4
max size (mm)	28	max size (mm)	36
mean	17	mean	22
mode	15	mode	23

1986 Tethya aurantia		1988 Kelletia kelletii	
(cases) N=	18	(cases) N=	18
< 10 mm	0.0	<40 mm	0.0
10 - 19	0.0	40 - 49	0.0
20 - 29	5.6%	50 - 59	0.0
30 - 39	44.4%	60 - 69	0.0
40 - 49	27.8%	70 - 79	11.1%
50 - 59	16.7%	80 - 89	0.0
60 - 69	5.6%	90 - 99	27.8%
70 - 79	0.0	100 - 109	11.1%
80 - 89	0.0	110 - 119	38.9%
90 - 99	0.0	120 - 129	11.1%
>99 mm	0.0	130 - 139	0.0
min size (mm)	28	140 - 149	0.0
max size (mm)	65	>149 mm	0.0
mean	43	min size (mm)	74
mode	35	max size (mm)	121
		mean	104
1989		mode	110
Tethya aurantia			
(cases) N=	30		
< 10 mm	0.0		
10 - 19	3.3%		
20 - 29	3.3%		
30 - 39	26.7%		
40 - 49	53.3%		
50 - 59	6.7%		
60 - 69	6.7%		
70 - 79	0.0		
80 - 89	0.0		
90 - 99	0.0		
>99 mm	0.0		
min size (mm)	18		
max size (mm)	60		
mean	42		
mode	36		

1985 Cypraea spadicea		1988 Cypraea spadicea	
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	31 0.0 0.0 0.0 9.7% 38.7% 45.2% 6.5% 0.0 41 57 50 53	(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	32 0.0 0.0 0.0 15.6% 46.9% 34.4% 3.1% 0.0 41 58 48
1986 Cypraea spadicea		1989 Cypraea spadicea	
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode 1987	43 0.0 0.0 2.3% 14.0% 44.2% 25.6% 14.0% 0.0 37 57 49	(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	30 0.0 0.0 3.3% 30.0% 36.7% 23.3% 6.7% 0.0 39 57 47 46
Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44	22 0.0 0.0 0.0 0.0 13.6%		
45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	31.8% 45.5% 9.1% 0.0 43 58 49		

LOCATION / SANIA	CRUZ ISLAND - FRI S HARBOR	\	
1984		1987	
Astraea undosa		Astraea undosa	
(cases) N=	30	(cases) N=	30
< 30 MM	0.0	< 30 mm	0.0
30 - 39	0.0	30 - 39	6.7%
40 - 49	6.7%	40 - 49	10.0%
50 - 59	13.3%	50 - 59	36.7%
60 - 69	10.0%	60 - 69	26.7%
70 - 79	6.7%	70 - 79	16.7%
80 - 89	16.7%	80 - 89	3.3%
		90 - 99	
90 - 99	33.3%		0.0
100 - 109	6.7%	> 99 mm	0.0
110 - 119	10.0%	min size (mm)	36
>119 mm	0.0	max size (mm)	88
min size (mm)	47	mean	59
max size (mm)	112	mode	51
mean	83		
mode	97	1988	
		Astraea undosa	
1985			
Astraea undosa		(cases) N=	35
		< 30 mm	0.0
(cases) N=	30	30 - 39	0.0
< 30 mm	0.0	40 - 49	8.6%
30 - 39	10.0%	50 - 59	20.0%
40 - 49	50.0%	60 - 69	45.7%
50 - 59	16.7%	70 - 79	11.4%
60 - 69	10.0%	80 - 89	5.7%
70 - 79	10.0%	90 - 99	5.7%
80 - 89	0.0	100 - 109	2.9%
90 - 99	0.0	110 - 119	0.0
100 - 109	3.3%	>119 mm	0.0
>110 mm	0.0	min size (mm)	43
min size (mm)	33	max size (mm)	104
max size (mm)	100	mean	66
mean	52	mode	62
mode	45		
		1989	
1986		Astraea undosa	
Astraea undosa			
		(cases) N=	42
(cases) N=	31	< 10 mm	0.0
< 30 mm	0.0	10 - 19	0.0
30 - 39	25.8%	20 - 29	2.4%
40 - 49	38.7%	30 - 39	2.4%
50 - 59	9.7%	40 - 49	2.4%
60 - 69	12.9%	50 - 59	14.3%
70 - 79			
	3.2%	60 - 69	42.9%
80 - 89	3.2%	70 - 79	23.8%
90 - 99	0.0	80 - 89	7.1%
100 - 109	3.2%	90 - 99	4.8%
110 - 119	3.2%	100 - 109	0.0
>119 mm	0.0	110 - 119	0.0
min size (mm)	31	>119 mm	0.0
max size (mm)	113	min size (mm)	25
mean	52	max size (mm)	97
mode	38	mean	66
		mode	61

LOCATION / SANIA CRO	JZ ISLAND - FRI S HARBO	N.	
1984		1987	
Megathura crenulata		Megathura crenulata	
(cases) N=	30	(cases) N=	30
< 30 mm	0.0	< 30 mm	0.0
30 - 39	0.0	30 - 39	0.0
40 - 49	0.0	40 - 49	0.0
50 - 59	0.0	50 - 59	16.7%
60 - 69	36.7%	60 - 69	23.3%
70 - 79	40.0%	70 - 79	40.0%
80 - 89	6.7%	80 - 89	13.3%
90 - 99	16.7%	90 - 99	6.7%
100 - 109	0.0	100 - 109	0.0
110 - 119	0.0	110 - 119	0.0
>119 mm	0.0	>119 mm	0.0
min size (mm)	61	min size (mm)	56
max size (mm)	96	max size (mm)	95
mean	75	mean	72
mode	68	mode	78
1985		1988	
Megathura crenulata		Megathura crenulata	
(cases) N=	32	(cases) N=	53
< 30 mm	0.0	< 30 mm	0.0
30 - 39	0.0	30 - 39	0.0
40 - 49	0.0	40 - 49	0.0
50 - 59	9.4%	50 - 59	0.0
60 - 69	18.8%	60 - 69	22.6%
70 - 79	31.3%	70 - 79	39.6%
80 - 89	37.5%	80 - 89	34.0%
90 - 99	3.1%	90 - 99	3.8%
100 - 109	0.0	100 - 109	0.0
110 - 119	0.0	110 - 119	0.0
>119 mm	0.0	>119 mm	0.0
min size (mm)	56	min size (mm)	60
max size (mm)	90	max size (mm)	96
mean	75	mean	76
mode	81	mode	85
1986		1989	
Megathura crenulata		Megathura crenulata	
(cases) N=	38	(cases) N=	29
< 30 mm	0.0	< 30 mm	0.0
30 - 39	0.0	30 - 39	0.0
40 - 49	0.0	40 - 49	0.0
50 - 59	7.9%	50 - 59	0.0
60 - 69	13.2%	60 - 69	3.4%
70 - 79	31.6%	70 - 79	58.6%
80 - 89	23.7%	80 - 89	27.6%
90 - 99	23.7%	90 - 99	10.3%
100 - 109	0.0	100 - 109	0.0
110 - 119	0.0	110 - 119	0.0
>110 113 >119 mm	0.0	>119 mm	0.0
min size (mm)	56	min size (mm)	62
	99		97
max size (mm)		max size (mm)	
mean	78 73	mean	80
mode	73	mode	78

1984		1986	
Hinnites giganteus		Hinnites giganteus	
minimizees giganeeas		minited giganeeas	
(cases) N=	30	(cases) N=	31
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	0.0
20 - 29	3.3%	20 - 29	3.2%
30 - 39	3.3%	30 - 39	29.0%
40 - 49	20.0%	40 - 49	16.1%
50 - 59	16.7%	50 - 59	6.5%
60 - 69	13.3%	60 - 69	12.9%
70 - 79	16.7%	70 - 79	6.5%
70 - 79 80 - 89	6.7%	80 - 89	9.7%
90 - 99	6.7%	90 - 99	6.5%
	6.7%		3.2%
100 - 109	3.3%	100 - 109	0.0
110 - 119		110 - 119	
120 - 129	0.0	120 - 129	0.0
130 - 139	3.3%	130 - 139	3.2%
140 - 149	0.0	140 - 149	3.2%
>149 mm	0.0	>149 mm	0.0
min size (mm)	25	min size (mm)	26
max size (mm)	130	max size (mm)	140
mean	65	mean	62
mode	50	mode	34
4005		4.005	
1985		1987	
1985 Hinnites giganteus		1987 Hinnites giganteus	
Hinnites giganteus		Hinnites giganteus	
Hinnites giganteus (cases) N=	32	Hinnites giganteus (cases) N=	24
Hinnites giganteus (cases) N= < 10 mm	0.0	Hinnites giganteus (cases) N= < 10 mm	0.0
Hinnites giganteus (cases) N= < 10 mm 10 - 19	0.0	Hinnites giganteus (cases) N= < 10 mm 10 - 19	0.0
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29	0.0 0.0 3.1%	Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29	0.0 0.0 0.0
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39	0.0 0.0 3.1% 3.1%	Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39	0.0 0.0 0.0 12.5%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49	0.0 0.0 3.1% 3.1% 3.1%	Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49	0.0 0.0 0.0 12.5% 25.0%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59	0.0 0.0 3.1% 3.1% 3.1% 12.5%	Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59	0.0 0.0 0.0 12.5% 25.0% 12.5%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69	0.0 0.0 3.1% 3.1% 3.1% 12.5% 18.8%	Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69	0.0 0.0 0.0 12.5% 25.0% 12.5% 12.5%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79	0.0 0.0 3.1% 3.1% 3.1% 12.5% 18.8% 15.6%	Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79	0.0 0.0 0.0 12.5% 25.0% 12.5% 12.5% 4.2%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89	0.0 0.0 3.1% 3.1% 3.1% 12.5% 18.8% 15.6% 25.0%	Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89	0.0 0.0 0.0 12.5% 25.0% 12.5% 12.5% 4.2% 12.5%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99	0.0 0.0 3.1% 3.1% 3.1% 12.5% 18.8% 15.6% 25.0%	Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99	0.0 0.0 0.0 12.5% 25.0% 12.5% 12.5% 4.2% 12.5% 0.0
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109	0.0 0.0 3.1% 3.1% 3.1% 12.5% 18.8% 15.6% 25.0% 12.5% 3.1%	Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89	0.0 0.0 0.0 12.5% 25.0% 12.5% 12.5% 4.2% 12.5% 0.0
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99	0.0 0.0 3.1% 3.1% 3.1% 12.5% 18.8% 15.6% 25.0%	Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99	0.0 0.0 0.0 12.5% 25.0% 12.5% 12.5% 4.2% 12.5% 0.0
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109	0.0 0.0 3.1% 3.1% 3.1% 12.5% 18.8% 15.6% 25.0% 12.5% 3.1%	Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109	0.0 0.0 0.0 12.5% 25.0% 12.5% 12.5% 4.2% 0.0 0.0 4.2% 12.5%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119	0.0 0.0 3.1% 3.1% 3.1% 12.5% 18.8% 15.6% 25.0% 12.5% 3.1% 3.1%	Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119	0.0 0.0 0.0 12.5% 25.0% 12.5% 12.5% 4.2% 0.0 0.0
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129	0.0 0.0 3.1% 3.1% 3.1% 12.5% 18.8% 15.6% 25.0% 12.5% 3.1% 3.1% 0.0	Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129	0.0 0.0 0.0 12.5% 25.0% 12.5% 12.5% 4.2% 0.0 0.0 4.2% 12.5%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139	0.0 0.0 3.1% 3.1% 3.1% 12.5% 18.8% 15.6% 25.0% 12.5% 3.1% 3.1% 0.0 0.0	Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139	0.0 0.0 0.0 12.5% 25.0% 12.5% 12.5% 4.2% 0.0 0.0 4.2% 12.5% 4.2%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149	0.0 0.0 3.1% 3.1% 3.1% 12.5% 18.8% 15.6% 25.0% 12.5% 3.1% 3.1% 0.0 0.0 0.0	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149	0.0 0.0 0.0 12.5% 25.0% 12.5% 12.5% 4.2% 12.5% 0.0 0.0 4.2% 12.5% 4.2%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm	0.0 0.0 3.1% 3.1% 3.1% 12.5% 18.8% 15.6% 25.0% 12.5% 3.1% 0.0 0.0 0.0 0.0	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm	0.0 0.0 0.0 12.5% 25.0% 12.5% 4.2% 12.5% 0.0 0.0 4.2% 12.5% 4.2%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm min size (mm)	0.0 0.0 3.1% 3.1% 3.1% 12.5% 18.8% 15.6% 25.0% 12.5% 3.1% 3.1% 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm min size (mm)	0.0 0.0 0.0 12.5% 25.0% 12.5% 12.5% 4.2% 12.5% 0.0 0.0 4.2% 12.5% 4.2%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm min size (mm) max size (mm)	0.0 0.0 3.1% 3.1% 3.1% 12.5% 18.8% 15.6% 25.0% 12.5% 3.1% 3.1% 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm min size (mm) max size (mm)	0.0 0.0 0.0 12.5% 25.0% 12.5% 12.5% 4.2% 12.5% 0.0 0.0 4.2% 12.5% 4.2% 0.0 0.0 33

1988		1989	
Hinnites giganteus		Hinnites giganteus	
(cases) N=	30	(cases) N=	36
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	0.0
20 - 29	0.0	20 - 29	0.0
30 - 39	10.0%	30 - 39	5.6%
40 - 49	6.7%	40 - 49	38.9%
50 - 59	6.7%	50 - 59	25.0%
60 - 69	10.0%	60 - 69	13.9%
70 - 79	20.0%	70 - 79	2.8%
80 - 89	13.3%	80 - 89	5.6%
90 - 99	3.3%	90 - 99	2.8%
100 - 109	23.3%	100 - 109	2.8%
110 - 119	3.3%	110 - 119	2.8%
120 - 129	0.0	120 - 129	0.0
130 - 139	0.0	130 - 139	0.0
140 - 149	0.0	140 - 149	0.0
>149 mm	3.3%	>149 mm	0.0
min size (mm)	37	min size (mm)	33
max size (mm)	152	max size (mm)	114
mean	79	mean	57
mode	70	mode	47

1986		1988	
Patiria miniata		Patiria miniata	
(cases) N=	41	(cases) N=	41
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	0.0
20 - 29	2.4%	20 - 29	2.4%
30 - 39	17.1%	30 - 39	14.6%
40 - 49	14.6%	40 - 49	17.1%
50 - 59	9.8%	50 - 59	41.5%
60 - 69	29.3%	60 - 69	17.1%
70 - 79	19.5%	70 - 79	4.9%
80 - 89	4.9%	80 - 89	2.4%
90 - 99	2.4%	90 - 99	0.0
>100 mm	0.0	>100 mm	0.0
min size (mm)	28	min size (mm)	28
max size (mm)	90	max size (mm)	82
mean	58	mean	52
mode	38	mode	50
1987		1989	
Patiria miniata		Patiria miniata	
(cases) N=	16	(cases) N=	66
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	0.0
20 - 29	12.5%	20 - 29	0.0
30 - 39	12.5%	30 - 39	6.1%
40 - 49	12.5%	40 - 49	6.1%
50 - 59	6.3%	50 - 59	19.7%
60 - 69	31.3%	60 - 69	43.9%
70 - 79	25.0%	70 - 79	19.7%
80 - 89	0.0	80 - 89	4.5%
90 - 99	0.0	90 - 99	0.0
>100 mm	0.0	>100 mm	0.0
min size (mm)	24	min size (mm)	31
max size (mm)	76	max size (mm)	86
mean	55	mean	63
mode	60	mode	66

		Size Frequencies
LOCATION 7 SANTA CRUZ	ISLAND - FRY'S HARE	
1986		1988
Pisaster giganteus		Pisaster giganteus
(cases) N=	37	(cases) N= 43
(Cases) N- <40 mm	0.0	<40 mm 0.0
40 - 59	2.7%	40 100 0.0
60 - 79	2.7%	60 - 79 4.7%
80 - 99	5.4%	80 - 99 14.0%
100 - 119	37.8%	100 - 119 20.9%
120 - 139	18.9%	120 - 139 9.3%
140 - 159	10.8%	140 - 159 16.3%
160 - 179	8.1%	160 - 179 18.6%
180 - 199	2.7%	180 - 199 9.3%
200 - 219	0.0	200 - 219 2.3%
220 - 239	8.1%	220 - 239 2.3%
240 - 259	0.0	240 - 259 2.3%
260 - 279	2.7%	260 - 279 0.0
>279 mm	0.0	>279 mm 0.0
min size (mm)	58	min size (mm) 66
max size (mm)	265	max size (mm) 252
mean	132	mean 139
mode	100	mode 99
1987		1989
Pisaster giganteus		Pisaster giganteus
(cases) N=	29	(cases) N= 29
<40 mm	0.0	<40 mm 0.0
40 - 59	3.4%	40 - 59 3.4%
60 - 79	6.9%	60 - 79 3.4%
80 - 99	10.3%	80 - 99 10.3%
100 - 119	44.8%	100 - 119 10.3%
120 - 139	17.2%	120 - 139 17.2%
140 - 159	0.0	140 - 159 31.0%
160 - 179	6.9%	160 - 179 20.7%
180 - 199	3.4%	180 - 199 0.0
200 - 219	3.4%	200 - 219 3.4%
220 - 239	3.4%	220 - 239 0.0
240 - 259	0.0	240 - 259 0.0
>259 mm	0.0	>259 mm 0.0
min size (mm)	58	min size (mm) 52
max size (mm)	220	max size (mm) 207
mean	121	mean 136
mode	115	mode 89
LOCATION 7 SANTA CRUZ	Z ISLAND - FRY'S HARE	OR
1986		1989
Lytechinus anamesus		Lytechinus anamesus
(cases) N=	134	(cases) N= 104
< 5 mm	0.7%	< 5 mm 0.0
5 - 9	0.7%	5 - 9 1.0%
10 - 14	44.8%	10 - 14 14.4%
15 - 19	33.6%	15 - 19 32.7%
20 - 24	10.4%	20 - 24 46.2%
25 - 29	9.0%	25 - 29 4.8%
30 - 34	0.7%	30 - 34
35 - 39	0.0	35 - 39 0.0
40 - 44	0.0	40 - 44 0.0
45 - 49	0.0	45 - 49 0.0
>49 mm	0.0	>49 mm 0.0
min size (mm)	4	min size (mm)
max size (mm)	30	max size (mm) 31
mean	16	mean 19
mode	14	mode 21
mode	T 4	mode 21

1984		1986	
Strongylocentrotus	franciscanus	Strongylocentrotus	franciscanus
(cases) N=	100	(cases) N=	90
< 10 mm	0.0	< 10 mm	0.0
10 - 14	0.0	10 - 14	5.6%
15 - 19	2.0%	15 - 19	16.7%
20 - 24	5.0%	20 - 24	4.4%
25 - 29	1.0%	25 - 29	5.6%
30 - 34	2.0%	30 - 34	10.0%
35 - 39	0.0	35 - 39	4.4%
40 - 44	1.0%	40 - 44	4.4%
45 - 49	3.0%	45 - 49	6.7%
50 - 54	0.0	50 - 54	3.3%
55 - 59	2.0%	55 - 59	0.0
60 - 64	5.0%	60 - 64	3.3%
65 - 69	6.0%	65 - 69	4.4%
70 - 74	6.0%	70 - 74	3.3%
75 - 79	7.0%	75 - 79	2.2%
80 - 84	10.0%	80 - 84	5.6%
85 - 89			2.2%
90 - 94	10.0% 7.0%	85 - 89 90 - 94	2.28 6.78
95 - 99	7.0% 6.0%	95 - 99	2.2%
100 - 104	7.0%	100 - 104	3.3%
105 - 109	7.0%	105 - 109	1.1%
> 109 mm	12.0%	> 109 mm	4.4%
min size (mm)	17	min size (mm)	13
max size (mm)	134	max size (mm)	122
mean	81	mean	51
mode	20	mode	18
1985		1987	
1985 Strongylocentrotus		1987 Strongylocentrotus	
	101	Strongylocentrotus (cases) N=	94
Strongylocentrotus (cases) N= < 10 mm	101 0.0	Strongylocentrotus (cases) N= < 10 mm	94 0.0
Strongylocentrotus (cases) N=	101	Strongylocentrotus (cases) N= < 10 mm 10 - 14	94
Strongylocentrotus (cases) N= < 10 mm	101 0.0	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19	94 0.0
Strongylocentrotus (cases) N= < 10 mm 10 - 14	101 0.0 0.0	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24	94 0.0 0.0
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19	101 0.0 0.0 2.0%	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19	94 0.0 0.0 1.1%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24	101 0.0 0.0 2.0% 0.0	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	94 0.0 0.0 1.1% 5.3%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29	101 0.0 0.0 2.0% 0.0 0.0	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29	94 0.0 0.0 1.1% 5.3% 9.6%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	101 0.0 0.0 2.0% 0.0 0.0	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	94 0.0 0.0 1.1% 5.3% 9.6% 5.3%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	101 0.0 0.0 2.0% 0.0 0.0 0.0 0.0	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	94 0.0 0.0 1.1% 5.3% 9.6% 5.3% 5.3% 11.7% 4.3%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	101 0.0 0.0 2.0% 0.0 0.0 0.0	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	94 0.0 0.0 1.1% 5.3% 9.6% 5.3% 5.3% 11.7%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	101 0.0 0.0 2.0% 0.0 0.0 0.0 0.0 1.0% 1.0% 3.0%	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	94 0.0 0.0 1.1% 5.3% 9.6% 5.3% 5.3% 11.7% 4.3%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	101 0.0 0.0 2.0% 0.0 0.0 0.0 0.0 1.0%	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	94 0.0 0.0 1.1% 5.3% 9.6% 5.3% 5.3% 11.7% 4.3%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	101 0.0 0.0 2.0% 0.0 0.0 0.0 0.0 1.0% 1.0% 3.0%	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	94 0.0 0.0 1.1% 5.3% 9.6% 5.3% 5.3% 11.7% 4.3% 11.7% 2.1%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	101 0.0 0.0 2.0% 0.0 0.0 0.0 0.0 1.0% 1.0% 3.0% 4.0%	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	94 0.0 0.0 1.1% 5.3% 9.6% 5.3% 5.3% 4.3% 4.3% 11.7% 4.3% 5.3%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	101 0.0 0.0 2.0% 0.0 0.0 0.0 0.0 1.0% 1.0% 3.0% 4.0% 8.9%	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	94 0.0 0.0 1.1% 5.3% 9.6% 5.3% 5.3% 4.3% 4.3% 4.1.7% 2.1% 5.3% 3.2%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	101 0.0 0.0 2.0% 0.0 0.0 0.0 0.0 1.0% 1.0% 3.0% 4.0% 8.9%	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	94 0.0 0.0 1.1% 5.3% 9.6% 5.3% 5.3% 11.7% 4.3% 11.7% 2.1% 5.3% 3.2% 7.4%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	101 0.0 0.0 2.0% 0.0 0.0 0.0 0.0 1.0% 1.0% 3.0% 4.0% 8.9% 8.9%	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	94 0.0 0.0 1.1% 5.3% 9.6% 5.3% 5.3% 11.7% 4.3% 11.7% 2.1% 5.3% 3.2% 7.4%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	101 0.0 0.0 2.0% 0.0 0.0 0.0 0.0 1.0% 1.0% 3.0% 4.0% 8.9% 8.9% 5.0% 11.9%	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	94 0.0 0.0 1.1% 5.3% 9.6% 5.3% 5.3% 11.7% 4.3% 11.7% 2.1% 5.3% 3.2% 7.4% 3.2% 6.4%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	101 0.0 0.0 2.0% 0.0 0.0 0.0 0.0 1.0% 1.0% 3.0% 4.0% 8.9% 8.9% 5.0% 11.9% 10.9%	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	94 0.0 0.0 1.1% 5.3% 9.6% 5.3% 5.3% 11.7% 4.3% 11.7% 2.1% 5.3% 3.2% 7.4% 3.2% 6.4%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	101 0.0 0.0 2.0% 0.0 0.0 0.0 0.0 1.0% 1.0% 3.0% 4.0% 8.9% 8.9% 5.0% 11.9% 10.9%	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	94 0.0 0.0 1.1% 5.3% 9.6% 5.3% 11.7% 4.3% 11.7% 2.1% 5.3% 3.2% 7.4% 3.2% 7.4% 6.4% 8.5% 5.3%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	101 0.0 0.0 2.0% 0.0 0.0 0.0 0.0 1.0% 1.0% 3.0% 4.0% 8.9% 8.9% 5.0% 11.9% 10.9% 10.9%	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	94 0.0 0.0 1.1% 5.3% 9.6% 5.3% 5.3% 11.7% 4.3% 11.7% 2.1% 5.3% 3.2% 7.4% 8.5% 8.
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	101 0.0 0.0 2.0% 0.0 0.0 0.0 0.0 1.0% 1.0% 3.0% 4.0% 8.9% 8.9% 11.9% 10.9% 10.9% 10.9% 8.9%	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	94 0.0 0.0 1.1% 5.3% 9.6% 5.3% 11.7% 4.3% 11.7% 2.1% 5.3% 3.2% 7.4% 3.2% 7.4% 3.2% 6.4% 8.5% 5.3%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	101 0.0 0.0 2.0% 0.0 0.0 0.0 0.0 1.0% 1.0% 1.0% 3.0% 4.0% 8.9% 8.9% 5.0% 11.9% 10.9% 11.9% 10.9	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	94 0.0 0.0 1.1% 5.3% 9.6% 5.3% 5.3% 11.7% 4.3% 11.7% 2.1% 5.3% 3.2% 7.4% 3.2% 6.4% 8.5% 8.5% 2.1% 1.1% 1.1% 1.1%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	101 0.0 0.0 2.0% 0.0 0.0 0.0 0.0 0.0 0.0 1.0% 1.0% 3.0% 4.0% 8.9% 5.0% 11.9% 10.9% 11.9% 10.9% 11.9% 10.9% 4.0%	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	94 0.0 0.0 1.1% 5.3% 9.6% 5.3% 5.3% 11.7% 2.1% 5.3% 3.2% 7.4% 3.2% 6.4% 8.5% 6.4% 8.5% 2.1%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	101 0.0 0.0 2.0% 0.0 0.0 0.0 0.0 1.0% 1.0% 3.0% 4.0% 8.9% 5.0% 11.9% 10	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	94 0.0 0.0 1.1% 5.3% 9.6% 5.3% 11.7% 4.3% 11.7% 2.1% 5.3% 3.2% 6.4% 8.5% 5.3% 2.1% 1.1% 1.1% 1.1%
Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	101 0.0 0.0 2.0% 0.0 0.0 0.0 0.0 1.0% 1.0% 3.0% 4.0% 8.9% 8.9% 5.0% 11.9% 10.9% 10.9% 11.9% 10.9% 11.9% 10.9% 11.9% 10.9% 11.9% 10.9% 10.9% 11.9% 10.9% 11.9% 10.9% 11.9% 10.9% 11.9% 10.9% 10.9% 11.9% 10.	Strongylocentrotus (cases) N= < 10 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	94 0.0 0.0 1.1% 5.3% 9.6% 5.3% 5.3% 11.7% 4.3% 11.7% 2.1% 5.3% 3.2% 7.4% 3.2% 6.4% 8.5% 5.3% 2.1% 1.1% 0.0 15 105

1988		1989	
Strongylocentrotus franciscanus		Strongylocentrotus franciscanus	
	100		101
(cases) N=	102	(cases) N=	101
< 5 mm	0.0	< 5 mm	0.0
5 - 9	0.0	5 - 9	0.0
10 - 14	0.0	10 - 14	0.0
15 - 19	0.0	15 - 19	6.9%
20 - 24	2.0%	20 - 24	5.9%
25 - 29	2.0%	25 - 29	5.9%
30 - 34	2.9%	30 - 34	7.9%
35 - 39	7.8%	35 - 39	6.9%
40 - 44	9.8%	40 - 44	2.0%
45 - 49	11.8%	45 - 49	4.0%
50 - 54	12.7%	50 - 54	1.0%
55 - 59	3.9%	55 - 59	5.0%
60 - 64	8.8%	60 - 64	6.9%
65 - 69	9.8%	65 - 69	4.0%
70 - 74	3.9%	70 - 74	8.9%
75 - 79	5.9%	75 - 79	8.9%
80 - 84	5.9%	80 - 84	6.9%
85 - 89	4.9%	85 - 89	7.9%
90 - 94	3.9%	90 - 94	4.0%
95 - 99	1.0%	95 - 99	3.0%
100 - 104	0.0	100 - 104	1.0%
105 - 109	2.9%	105 - 109	1.0%
> 109 mm	0.0	> 109 mm	1.0%
min size (mm)	20	min size (mm)	15
max size (mm)	107	max size (mm)	112
mean orze (mm)	59	mean	59
mode	49	mode	74
	19		, -

1984		1986	
Srongylocentrotus	s purpuratus	Srongylocentrotus pur	nuratus
5101197 10001101000	parparadad	stong, too one to cae par	paradao
(cases) N=	40	(cases) N=	105
< 5 mm	0.0	< 5 mm	0.0
5 - 9	0.0	5 - 9	0.0
10 - 14	0.0	10 - 14	18.1%
15 - 19	2.5%	15 - 19	35.2%
20 - 24	15.0%	20 - 24	25.7%
25 - 29	5.0%	25 - 29	15.2%
30 - 34	5.0%	30 - 34	2.9%
35 - 39	15.0%	35 - 39	1.0%
40 - 44	12.5%	40 - 44	0.0
45 - 49	7.5%	45 - 49	1.0%
50 - 54	7.5%	50 - 54	1.0%
55 - 59	5.0%	55 - 59	0.0
60 - 64	7.5%	60 - 64	0.0
65 - 69	7.5%	65 - 69	0.0
70 - 74 75 - 79	10.0%	70 - 74 75 - 79	0.0
75 - 79 80 - 84	0.0	75 - 79 80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
> 99 mm	0.0	> 99 mm	0.0
min size (mm)	16	min size (mm)	10
max size (mm)	71	max size (mm)	51
mean	45	mean mean	20
mode	24	mode	15
mode	2.1	mode	10
1985		1987	
1985 Srongylocentrotus	s purpuratus	1987 Srongylocentrotus pur	puratus
Srongylocentrotus	s purpuratus 102	Srongylocentrotus pur	puratus 109
			_
Srongylocentrotus (cases) N=	102	Srongylocentrotus pur (cases) N=	109
Srongylocentrotus (cases) N= < 5 mm	102 0.0	Srongylocentrotus pur (cases) N= < 5 mm	109 2.8%
Srongylocentrotus (cases) N= < 5 mm 5 - 9	102 0.0 2.9%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9	109 2.8% 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14	102 0.0 2.9% 6.9%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14	109 2.8% 0.0 3.7%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	102 0.0 2.9% 6.9% 9.8%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	109 2.8% 0.0 3.7% 17.4%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	102 0.0 2.9% 6.9% 9.8% 4.9%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	109 2.8% 0.0 3.7% 17.4% 26.6%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	102 0.0 2.9% 6.9% 9.8% 4.9% 1.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	109 2.8% 0.0 3.7% 17.4% 26.6% 22.0%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	102 0.0 2.9% 6.9% 9.8% 4.9% 1.0% 8.8%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	109 2.8% 0.0 3.7% 17.4% 26.6% 22.0% 14.7%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	102 0.0 2.9% 6.9% 9.8% 4.9% 1.0% 8.8% 9.8% 12.7%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	109 2.8% 0.0 3.7% 17.4% 26.6% 22.0% 14.7% 7.3% 1.8%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	102 0.0 2.9% 6.9% 9.8% 4.9% 1.0% 8.8% 9.8% 12.7% 10.8% 13.7%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	109 2.8% 0.0 3.7% 17.4% 26.6% 22.0% 14.7% 7.3% 1.8%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	102 0.0 2.9% 6.9% 9.8% 4.9% 1.0% 8.8% 9.8% 12.7% 10.8% 13.7%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	109 2.8% 0.0 3.7% 17.4% 26.6% 22.0% 14.7% 7.3% 1.8% 1.8% 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	102 0.0 2.9% 6.9% 9.8% 4.9% 1.0% 8.8% 9.8% 12.7% 10.8% 13.7%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	109 2.8% 0.0 3.7% 17.4% 26.6% 22.0% 14.7% 7.3% 1.8% 1.8%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	102 0.0 2.9% 6.9% 9.8% 4.9% 1.0% 8.8% 9.8% 12.7% 10.8% 13.7% 10.8% 3.9% 2.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	109 2.8% 0.0 3.7% 17.4% 26.6% 22.0% 14.7% 7.3% 1.8% 1.8% 0.0 0.0 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	102 0.0 2.9% 6.9% 9.8% 4.9% 1.0% 8.8% 9.8% 12.7% 10.8% 13.7% 10.8% 3.9% 2.0% 2.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	109 2.8% 0.0 3.7% 17.4% 26.6% 22.0% 14.7% 7.3% 1.8% 1.8% 0.0 0.0 0.0 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	102 0.0 2.9% 6.9% 9.8% 4.9% 1.0% 8.8% 9.8% 12.7% 10.8% 13.7% 10.8% 3.9% 2.0% 2.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	109 2.8% 0.0 3.7% 17.4% 26.6% 22.0% 14.7% 7.3% 1.8% 1.8% 0.0 0.0 0.0 0.0 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	102 0.0 2.9% 6.9% 9.8% 4.9% 1.0% 8.8% 9.8% 12.7% 10.8% 13.7% 10.8% 2.0% 2.0% 2.0% 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	109 2.8% 0.0 3.7% 17.4% 26.6% 22.0% 14.7% 7.3% 1.8% 1.8% 0.0 0.0 0.0 0.0 0.0 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	102 0.0 2.9% 6.9% 9.8% 4.9% 1.0% 8.8% 9.8% 12.7% 10.8% 13.7% 10.8% 2.0% 2.0% 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	109 2.8% 0.0 3.7% 17.4% 26.6% 22.0% 14.7% 7.3% 1.8% 1.8% 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	102 0.0 2.9% 6.9% 9.8% 4.9% 1.0% 8.8% 9.8% 12.7% 10.8% 13.7% 10.8% 3.9% 2.0% 2.0% 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	109 2.8% 0.0 3.7% 17.4% 26.6% 22.0% 14.7% 7.3% 1.8% 1.8% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	102 0.0 2.9% 6.9% 9.8% 4.9% 1.0% 8.8% 9.8% 12.7% 10.8% 13.7% 10.8% 3.9% 2.0% 2.0% 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	109 2.8% 0.0 3.7% 17.4% 26.6% 22.0% 14.7% 7.3% 1.8% 1.8% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	102 0.0 2.9% 6.9% 9.8% 4.9% 1.0% 8.8% 9.8% 12.7% 10.8% 13.7% 10.8% 3.9% 2.0% 2.0% 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	109 2.8% 0.0 3.7% 17.4% 26.6% 22.0% 14.7% 7.3% 1.8% 1.8% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	102 0.0 2.9% 6.9% 9.8% 4.9% 1.0% 8.8% 9.8% 12.7% 10.8% 13.7% 10.8% 3.9% 2.0% 2.0% 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	109 2.8% 0.0 3.7% 17.4% 26.6% 22.0% 14.7% 7.3% 1.8% 1.8% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	102 0.0 2.9% 6.9% 9.8% 4.9% 1.0% 8.8% 9.8% 12.7% 10.8% 13.7% 10.8% 3.9% 2.0% 2.0% 2.0% 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	109 2.8% 0.0 3.7% 17.4% 26.6% 22.0% 14.7% 7.3% 1.8% 1.8% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm) mean	102 0.0 2.9% 6.9% 9.8% 4.9% 1.0% 8.8% 9.8% 12.7% 10.8% 13.7% 10.8% 2.0% 2.0% 2.0% 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm) max size (mm)	109 2.8% 0.0 3.7% 17.4% 26.6% 22.0% 14.7% 7.3% 1.8% 1.8% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	102 0.0 2.9% 6.9% 9.8% 4.9% 1.0% 8.8% 9.8% 12.7% 10.8% 13.7% 10.8% 3.9% 2.0% 2.0% 2.0% 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	109 2.8% 0.0 3.7% 17.4% 26.6% 22.0% 14.7% 7.3% 1.8% 1.8% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

1988	988 1989		
Srongylocentrotus purpuratus		Srongylocentrotus purpuratus	
(cases) N=	86	(cases) N=	117
< 5 mm	0.0	< 5 mm	0.9%
5 - 9	0.0	5 - 9	0.0
10 - 14	0.0	10 - 14	2.6%
15 - 19	2.3%	15 - 19	0.0
20 - 24	16.3%	20 - 24	8.5%
25 - 29	32.6%	25 - 29	34.2%
30 - 34	26.7%	30 - 34	32.5%
35 - 39	12.8%	35 - 39	10.3%
40 - 44	5.8%	40 - 44	7.7%
45 - 49	3.5%	45 - 49	1.7%
50 - 54	0.0	50 - 54	1.7%
55 - 59	0.0	55 - 59	0.0
60 - 64	0.0	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
100 - 104	0.0	100 - 104	0.0
105 - 109	0.0	105 - 109	0.0
> 109 mm	0.0	> 109 mm	0.0
min size (mm)	17	min size (mm)	4
max size (mm)	47	max size (mm)	54
mean	30	mean	30
mode	26	mode	31

LOCATION 8 SANTA	CRUZ ISLAND - PELICAN BAY	-	
1984		1985	
Haliotis corrugata	1	Haliotis corrugata	
(cases) N=	31	(cases) N=	30
< 25 mm	3.2%	< 25 mm	13.3%
25 - 29	3.2%	25 - 29	0.0
30 - 34	0.0	30 - 34	10.0%
35 - 39	0.0	35 - 39	13.3%
40 - 44	3.2%	40 - 44	3.3%
45 - 49	0.0	45 - 49	0.0
50 - 54	0.0	50 - 54	0.0
55 - 59	3.2%	55 - 59	0.0
60 - 64	0.0	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	3.3%
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	3.3%
85 - 89	0.0	85 - 89	0.0
90 - 94	9.7%	90 - 94	0.0
95 - 99	3.2%	95 - 99	6.7%
100 - 104	0.0	100 - 104	3.3%
105 - 109	3.2%	100 - 104	0.0
110 - 114	3.2%	110 - 114	0.0
115 - 119	6.5%	115 - 119	10.0%
120 - 124	12.9%	120 - 124	6.7%
125 - 129	9.7%	120 - 124	3.3%
130 - 134	6.5%	130 - 134	3.3%
135 - 139	6.5%	135 - 139	0.0
140 - 144	9.7%	140 - 144	6.7%
145 - 149	0.0	145 - 149	3.3%
150 - 154	6.5%	150 - 154	3.3%
155 - 159	6.5%	155 - 159	0.0
160 - 164	0.0	160 - 164	6.7%
165 - 169	3.2%	165 - 169	0.0
> 169 mm	0.0	> 169 mm	0.0
min size (mm)	22	min size (mm)	14
max size (mm)	165	max size (mm)	164
mean	116	mean	86
mode	122	mode	22
1986			
Haliotis corrugata			
(cases) N=	4		
< 25 mm	50.0%		
25 - 29	0.0		
30 - 34	0.0		
35 - 39	25.0%		
40 - 44	0.0		
45 - 129	0.0		
130 - 134	0.0		
135 - 139	25.0%		
> 139 mm	0.0		
min size (mm)	20 135		
max size (mm)	135 54		
mcan			

54

mean

mode

LOCATION 8 SANTA CRUZ ISLAND - PELICAN BAY

1985		1988	
Cypraea spadicea		Cypraea spadicea	
(cases) N=	30	(cases) N=	28
< 30 mm	26.7%	< 30 mm	0.0
30 - 34	3.3%	30 - 34	3.6%
35 - 39	10.0%	35 - 39	32.1%
40 - 44	23.3%	40 - 44	28.6%
45 - 49	20.0%	45 - 49	28.6%
50 - 54	16.7%	50 - 54	7.1%
55 - 59	0.0	55 - 59	0.0
>59 mm	0.0	>59 mm	0.0
min size (mm)	20	min size (mm)	34
max size (mm)	51	max size (mm)	52
mean	39	mean	42
mode	50	mode	38
1987		1989	
1987 Cypraea spadicea		1989 Cypraea spadicea	
	15		28
Cypraea spadicea	15 0.0	Cypraea spadicea	28 0.0
Cypraea spadicea (cases) N=		Cypraea spadicea (cases) N=	
Cypraea spadicea (cases) N= < 30 mm	0.0	Cypraea spadicea (cases) N= < 30 mm	0.0
Cypraea spadicea (cases) N= < 30 mm 30 - 34	0.0 6.7%	Cypraea spadicea (cases) N= < 30 mm 30 - 34	0.0 7.1%
Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39	0.0 6.7% 26.7%	Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39	0.0 7.1% 17.9%
Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44	0.0 6.7% 26.7% 20.0%	Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44	0.0 7.1% 17.9% 39.3%
Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49	0.0 6.7% 26.7% 20.0% 33.3%	Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49	0.0 7.1% 17.9% 39.3% 21.4%
Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	0.0 6.7% 26.7% 20.0% 33.3% 13.3%	Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	0.0 7.1% 17.9% 39.3% 21.4% 7.1%
Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	0.0 6.7% 26.7% 20.0% 33.3% 13.3% 0.0	Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	0.0 7.1% 17.9% 39.3% 21.4% 7.1% 3.6%
Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm	0.0 6.7% 26.7% 20.0% 33.3% 13.3% 0.0	Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm	0.0 7.1% 17.9% 39.3% 21.4% 7.1% 3.6% 3.6%
Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm)	0.0 6.7% 26.7% 20.0% 33.3% 13.3% 0.0 0.0	Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm)	0.0 7.1% 17.9% 39.3% 21.4% 7.1% 3.6% 3.6% 32

1984		1989	
Kelletia kelletii		Kelletia kelletii	
(cases) N=	10	(cases) N=	15
<40 mm	10.0%	<40 mm	0.0
40 - 49	0.0	40 - 49	0.0
50 - 59	0.0	50 - 59	0.0
60 - 69	10.0%	60 - 69	0.0
70 - 79	0.0	70 - 79	0.0
80 - 89	20.0%	80 - 89	0.0
90 - 99	10.0%	90 - 99	0.0
100 - 109	0.0	100 - 109	6.7%
110 - 119	10.0%	110 - 119	26.7%
120 - 129	20.0%	120 - 129	40.0%
130 - 139	20.0%	130 - 139	20.0%
140 - 149	0.0	140 - 149	6.7%
>149 mm	0.0	>149 mm	0.0
min size (mm)	35	min size (mm)	105
max size (mm)	135	max size (mm)	140
mean	100	mean	122
mode	35	mode	111
1987			

Kelletia kelletii

(cases) N=	17
<40 mm	0.0
40 - 49	5.9%
50 - 59	0.0
60 - 69	0.0
70 - 79	5.9%
80 - 89	5.9%
90 - 99	11.8%
100 - 109	29.4%
110 - 119	23.5%
120 - 129	5.9%
130 - 139	5.9%
140 - 149	5.9%
>149 mm	5.9%
min size (mm)	46
max size (mm)	144
mean	104
mode	101

LOCATION 8 SANTA CRUZ ISLAND - PELICAN BAY 1987 1984 Astraea undosa Astraea undosa 31 (cases) N= (cases) N= 60 < 10 mm 0.0 0.0 10 - 19 < 10 mm 0.0 0.0 10 - 19 20 - 29 0.0 1.7% 1.7% 20 - 29 30 - 39 0.0 40 - 49 19.4% 30 - 39 40 - 49 8.3% 50 - 59 64.5% 11.7% 12.9% 50 - 59 60 - 69 70 - 79 60 - 69 3.2% 70 - 79 11.7% 80 - 89 0.0 80 - 89 90 - 99 16.7% 0.0 90 - 99 6.7% >99 mm 0.0 >99 mm 0.0 min size (mm) 42 min size (mm) 24 max size (mm) 78 96 56 max size (mm) mean mean 67 mode 56 mode 64 1988 Astraea undosa Astraea undosa (cases) N= 30 33 0.0 < 10 mm (cases) N= 0.0 < 10 mm 10 - 19 0.0 10 - 19 0.0 20 - 29 0.0 20 - 29 0.0 30 - 39 0.0 15.2% 15.2% 30 - 39 40 - 49 0.0 40 - 49 50 - 59 76.7% 50 - 59 42.4% 60 - 69 23.3% 60 - 69 70 - 79 15.2% 0.0 70 - 79 80 - 89 9.1% 0.0 80 - 89 0.0 90 - 99 0.0 90 - 99 3.0% >99 mm 0.0 0.0 >99 mm min size (mm) 51 max size (mm) min size (mm) 3.0 67 90 max size (mm) mean 58 5.5 54 mean mode mode 47 1989 1986 Astraea undosa Astraea undosa 50 (cases) N= (cases) N= 30 < 10 mm 0.0 < 10 mm 0.0 10 - 19 0.0 20 - 29 10 - 19 0.0 0.0 20 - 29 30 - 39 0.0 0.0 40 - 49 30 - 39 0.0 0.0 50 **-** 59 60 **-** 69 3.3% 40 - 49 6.0% 50 - 59 66.7% 82.0% 60 - 69 70 - 79 23.3% 8.0% 0.0 70 - 79 80 - 89 2.0% 80 - 89 90 - 99 0.0 2.0% 90 - 99 6.7% >99 mm 0.0 >99 mm 0.0 min size (mm) 57 min size (mm) 47 90 max size (mm) 95 max size (mm) mean 65 59 62 mode mean 58 mode

1984 Megathura crenulata		1987 Megathura crenulata	
(cases) N= < 30 mm 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) mean mode	15 0.0 0.0 6.7% 0.0 0.0 13.3% 46.7% 33.3% 0.0 0.0 0.0 49 95 82 82	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean	36 0.0 0.0 8.3% 0.0 0.0 13.9% 30.6% 36.1% 8.3% 2.8% 0.0 0.0 20
1985 Megathura crenulata		mode	76
(cases) N= < 30 mm 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode 1986 Megathura crenulata (cases) N=	26 0.0 3.8% 19.2% 19.2% 15.4% 15.4% 19.2% 0.0 3.8% 0.0 30 110 66 43	1988 Megathura crenulata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	14 0.0 14.3% 0.0 0.0 7.1% 7.1% 21.4% 35.7% 14.3% 0.0 0.0 0.0 0.0 16 82 62 71
<pre>< 20 mm 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode</pre>	0.0 6.3% 0.0 0.0 0.0 0.0 25.0% 18.8% 6.3% 18.8% 6.3% 25 127 90 25		

1984 Hinnites giganteus		1986 Hinnites giganteus	
(cases) N=	30	(cases) N=	36
< 10 mm	0.0	< 10 mm	0.0
10 - 19	3.3%	10 - 19	0.0
20 - 29	0.0	20 - 29	0.0
30 - 39	10.0%	30 - 39	5.6%
40 - 49	26.7%	40 - 49	8.3%
50 - 59	26.7%	50 - 59	11.1%
60 - 69	20.0%	60 - 69	13.9%
70 - 79	6.7%	70 - 79	25.0%
80 - 89	3.3%	80 - 89	13.9%
90 - 99	3.3%	90 - 99	11.1%
100 - 109	0.0	100 - 109	2.8%
110 - 119	0.0	110 - 119	8.3%
120 - 129	0.0	120 - 129	0.0
130 - 139	0.0	130 - 139	0.0
140 - 149	0.0	140 - 149	0.0
>149 mm	0.0	>149 mm	0.0
min size (mm)	16	min size (mm)	30
max size (mm)	90	max size (mm)	117
mean	54	mean	74
mode	35	mode	73
1985		1987	
1985 Hinnites giganteus		1987 Hinnites giganteus	
Hinnites giganteus	30	Hinnites giganteus	36
Hinnites giganteus (cases) N=	30 0.0	Hinnites giganteus (cases) N=	36 0.0
Hinnites giganteus (cases) N= < 10 mm	0.0	Hinnites giganteus (cases) N= < 10 mm	0.0
Hinnites giganteus (cases) N= < 10 mm 10 - 19	0.0	Hinnites giganteus (cases) N= < 10 mm 10 - 19	0.0 2.8%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29	0.0 0.0 3.3%	Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29	0.0 2.8% 0.0
Hinnites giganteus (cases) N= < 10 mm 10 - 19	0.0	Hinnites giganteus (cases) N= < 10 mm 10 - 19	0.0 2.8%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39	0.0 0.0 3.3% 10.0% 16.7%	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49	0.0 2.8% 0.0 0.0
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59	0.0 0.0 3.3% 10.0% 16.7% 16.7%	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59	0.0 2.8% 0.0 0.0 2.8% 16.7%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69	0.0 0.0 3.3% 10.0% 16.7% 16.7% 20.0%	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69	0.0 2.8% 0.0 0.0 2.8% 16.7%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79	0.0 0.0 3.3% 10.0% 16.7% 16.7% 20.0% 13.3%	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79	0.0 2.8% 0.0 0.0 2.8% 16.7% 16.7%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89	0.0 0.0 3.3% 10.0% 16.7% 20.0% 13.3% 10.0%	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89	0.0 2.8% 0.0 0.0 2.8% 16.7% 16.7% 8.3%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99	0.0 0.0 3.3% 10.0% 16.7% 20.0% 13.3% 10.0% 6.7%	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99	0.0 2.8% 0.0 0.0 2.8% 16.7% 16.7% 8.3% 13.9%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89	0.0 0.0 3.3% 10.0% 16.7% 20.0% 13.3% 10.0%	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109	0.0 2.8% 0.0 0.0 2.8% 16.7% 16.7% 8.3%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109	0.0 0.0 3.3% 10.0% 16.7% 16.7% 20.0% 13.3% 10.0% 6.7% 3.3%	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99	0.0 2.8% 0.0 0.0 2.8% 16.7% 16.7% 8.3% 13.9% 11.1%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129	0.0 0.0 3.3% 10.0% 16.7% 16.7% 20.0% 13.3% 10.0% 6.7% 3.3% 0.0	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119	0.0 2.8% 0.0 0.0 2.8% 16.7% 16.7% 16.7% 13.9% 11.1% 8.3%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119	0.0 0.0 3.3% 10.0% 16.7% 16.7% 20.0% 13.3% 10.0% 6.7% 3.3% 0.0	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129	0.0 2.8% 0.0 0.0 2.8% 16.7% 16.7% 16.7% 13.9% 11.1% 8.3% 2.8%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139	0.0 0.0 3.3% 10.0% 16.7% 16.7% 20.0% 13.3% 10.0% 6.7% 3.3% 0.0 0.0	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139	0.0 2.8% 0.0 0.0 2.8% 16.7% 16.7% 11.1% 8.3% 11.1% 8.3% 2.8%
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149	0.0 0.0 3.3% 10.0% 16.7% 16.7% 20.0% 13.3% 10.0% 6.7% 3.3% 0.0 0.0 0.0	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149	0.0 2.8% 0.0 0.0 2.8% 16.7% 16.7% 16.7% 13.9% 11.1% 8.3% 2.8% 0.0
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm	0.0 0.0 3.3% 10.0% 16.7% 16.7% 20.0% 13.3% 10.0% 6.7% 3.3% 0.0 0.0 0.0 0.0	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm	0.0 2.8% 0.0 0.0 2.8% 16.7% 16.7% 16.7% 8.3% 11.1% 8.38 2.8% 0.0 0.0
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm min size (mm)	0.0 0.0 3.3% 10.0% 16.7% 20.0% 13.3% 10.0% 6.7% 3.3% 0.0 0.0 0.0 0.0	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm min size (mm)	0.0 2.8% 0.0 0.0 2.8% 16.7% 16.7% 8.3% 13.9% 11.1% 8.3% 2.8% 0.0 0.0 0.0
Hinnites giganteus (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm min size (mm) max size (mm)	0.0 0.0 3.3% 10.0% 16.7% 20.0% 13.3% 10.0% 6.7% 3.3% 0.0 0.0 0.0 0.0 0.0	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm min size (mm) max size (mm)	0.0 2.8% 0.0 0.0 2.8% 16.7% 16.7% 8.3% 13.9% 11.1% 8.3% 2.8% 0.0 0.0 0.0

1988		1989	
Hinnites giganteus		Hinnites giganteus	
(cases) N=	23	(cases) N=	35
< 10 mm	0.0	< 10 mm	2.9%
10 - 19	0.0	10 - 19	0.0
20 - 29	0.0	20 - 29	2.9%
30 - 39	0.0	30 - 39	8.6%
40 - 49	0.0	40 - 49	8.6%
50 - 59	0.0	50 - 59	17.1%
60 - 69	4.3%	60 - 69	8.6%
70 - 79	13.0%	70 - 79	14.3%
80 - 89	26.1%	80 - 89	14.3%
90 - 99	17.4%	90 - 99	11.4%
100 - 109	21.7%	100 - 109	0.0
110 - 119	8.7%	110 - 119	5.7%
120 - 129	8.7%	120 - 129	5.7%
130 - 139	0.0	130 - 139	0.0
140 - 149	0.0	140 - 149	0.0
>149 mm	0.0	>149 mm	0.0
min size (mm)	68	min size (mm)	0
max size (mm)	129	max size (mm)	123
mean	94	mean	69
mode	81	mode	52

LOCATION 8 SANTA CRUZ ISLAND - PELICAN BAY

Patiria miniata

(case	es)	N=	16
< 10	mm		6.3%
10 -	19		56.3%
20 -	29		12.5%
30 -	39		6.3%
40 -	49		6.3%
50 -	59		6.3%
60 -	69		6.3%
70 -	79		0.0
80 -	89		0.0
90 -	99		0.0
>100	mm		0.0
min :	size	e (mm)	9
max	size	e (mm)	63
mean			24
mode			14

1988

Patiria miniata

(cases) N=	18
< 10 mm	0.0
10 - 19	0.0
20 - 29	0.0
30 - 39	5.6%
40 - 49	27.8%
50 - 59	38.9%
60 - 69	22.2%
70 - 79	5.6%
80 - 89	0.0
90 - 99	0.0
>100 mm	0.0
min size (mm)	30
max size (mm)	75
mean	54
mode	45

1989 Patiria miniata

(cases)	N=	44
< 10 mm		0.0
10 - 19		6.8%
20 - 29		4.5%
30 - 39		6.8%
40 - 49		11.4%
50 - 59		43.2%
60 - 69		15.9%
70 - 79		9.1%
80 - 89		2.3%
90 - 99		0.0
>100 mm		0.0
min size	e (mm)	12
max size	, ,	85
mean	- (/	52
mode		56

LOCATION 8 SANTA CRUZ ISLAND - PELICAN BAY

1987		1989	
Pisaster giganteus		Pisaster giganteus	
(cases) N=	15	(cases) N=	29
<20 mm	0.0	<20 mm	0.0
20 - 39	0.0	20 - 39	0.0
40 - 59	0.0	40 - 59	0.0
60 - 79	13.3%	60 - 79	0.0
80 - 99	13.3%	80 - 99	0.0
100 - 119	0.0	100 - 119	3.4%
120 - 139	26.7%	120 - 139	13.8%
140 - 159	13.3%	140 - 159	10.3%
160 - 179	6.7%	160 - 179	17.2%
180 - 199	13.3%	180 - 199	20.7%
200 - 219	0.0	200 - 219	20.7%
220 - 239	0.0	220 - 239	3.4%
240 - 259	0.0	240 - 259	6.9%
260 - 279	0.0	260 - 279	3.4%
280 - 299	0.0	280 - 299	0.0
>299 mm	13.3%	>299 mm	0.0
min size (mm)	72	min size (mm)	114
max size (mm)	330	max size (mm)	260
mean	155	mean	180
mode	72	mode	185
1988			
Pisaster giganteus			
(cases) N=	26		
<20 mm	0.0		
20 - 39	0.0		
40 - 59	0.0		
60 - 79	0.0		
80 - 99	11.5%		
100 - 119	26.9%		
120 - 139	0.0		
140 - 159	15.4%		
160 - 179	15.4%		
180 - 199	7.7%		
200 - 219	3.8%		
220 - 239	7.7%		
240 - 259	0.0		
260 - 279	0.0		
280 - 299	0.0		
>299 mm	11.5%		
min size (mm)	90		
max size (mm)	323		
mean	167		

90 167 110

mean mode

1986 Lytechinus anamesus		1988 Lytechinus anamesus	
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm) max size (mm)	113 0.0 0.0 4.4% 12.4% 44.2% 37.2% 1.8% 0.0 0.0 0.0 0.0 10 31	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm) max size (mm)	99 0.0 0.0 1.0% 28.3% 48.5% 21.2% 1.0% 0.0 0.0 0.0 13 30
mean mode	23 25	mean mode	21 20
1987 Lytechinus anamesus		1989 Lytechinus anamesus	
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm) max size (mm) mean mode	115 0.0 0.0 0.9% 16.5% 49.6% 28.7% 4.3% 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm) max size (mm) mean mode	100 0.0 0.0 0.0 2.0% 66.0% 32.0% 0.0 0.0 0.0 0.0 16 29 24

1984		1986	
Strongylocentrotus	franciscanus	Strongylocentrotus fra	nciscanus
(cases) N=	107	(cases) N=	106
< 5 mm	0.0	< 14 mm	0.0
5 - 9	0.9%	15 - 19	0.0
10 - 14	0.9%	20 - 24	0.9%
15 - 19	0.9%	25 - 29	1.9%
20 - 24	5.6%	30 - 34	2.8%
25 - 29	0.9%	35 - 39	4.7%
30 - 34	8.4%	40 - 44	5.7%
35 - 39	5.6%	45 - 49	3.8%
40 - 44	5.6%	50 - 54	5.7%
45 - 49	8.4%	55 - 59	9.4%
50 - 54	4.7%	60 - 64	5.7%
55 - 59	4.7%	65 - 69	7.5%
60 - 64	6.5%	70 - 74	12.3%
65 - 69	6.5%	75 - 79	5.7%
70 - 74	4.7%	80 - 84	10.4%
75 - 79	5.6%	85 - 89	8.5%
80 - 84	8.4%	90 - 94	9.4%
85 - 89	4.7%	95 - 99	3.8%
90 - 94	5.6%	100 - 104	0.9%
95 - 99	1.9%	105 - 109	0.9%
100 - 104	3.7%	> 109 mm	0.0
105 - 109	0.9%	min size (mm)	24
> 109 mm	4.7%	max size (mm)	105
min size (mm)	9	mean	68
max size (mm)	125	mode	72
mean	63		
mode	49	1987	
		Strongylocentrotus fra	
1985		(cases) N=	108
Strongylocentrotus		(cases) N= < 5 mm	108 0.0
Strongylocentrotus (cases) N=	132	(cases) N= < 5 mm 5 - 9	108 0.0 0.0
Strongylocentrotus (cases) N= < 14 mm	132 0.0	(cases) N= < 5 mm 5 - 9 10 - 14	108 0.0 0.0 0.0
Strongylocentrotus (cases) N= < 14 mm 15 - 19	132 0.0 0.8%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	108 0.0 0.0 0.0 0.9%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24	132 0.0 0.8% 0.8%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	108 0.0 0.0 0.0 0.9% 19.4%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29	132 0.0 0.8% 0.8% 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	108 0.0 0.0 0.0 0.9% 19.4% 22.2%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34	132 0.0 0.8% 0.8% 0.0 2.3%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	108 0.0 0.0 0.0 0.9% 19.4% 22.2% 15.7%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	132 0.0 0.8% 0.8% 0.0 2.3% 2.3%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	108 0.0 0.0 0.0 0.9% 19.4% 22.2% 15.7% 10.2%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	132 0.0 0.8% 0.8% 0.0 2.3% 2.3% 3.0%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	108 0.0 0.0 0.0 0.9% 19.4% 22.2% 15.7% 10.2% 4.6%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	132 0.0 0.8% 0.8% 0.0 2.3% 2.3% 3.0% 3.8%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	108 0.0 0.0 0.0 0.9% 19.4% 22.2% 15.7% 10.2% 4.6% 2.8%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	132 0.0 0.8% 0.8% 0.0 2.3% 2.3% 3.0% 3.8% 7.6%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	108 0.0 0.0 0.0 0.9% 19.4% 22.2% 15.7% 10.2% 4.6% 2.8% 4.6%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	132 0.0 0.8% 0.8% 0.0 2.3% 2.3% 3.0% 3.8% 7.6% 9.8%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	108 0.0 0.0 0.0 0.9% 19.4% 22.2% 15.7% 10.2% 4.6% 2.8% 4.6% 3.7%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	132 0.0 0.8% 0.8% 0.0 2.3% 2.3% 3.0% 3.8% 7.6% 9.8% 6.1%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	108 0.0 0.0 0.9% 19.4% 22.2% 15.7% 10.2% 4.6% 2.8% 4.6% 3.7% 0.0
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	132 0.0 0.8% 0.8% 0.0 2.3% 2.3% 3.0% 3.8% 7.6% 9.8% 6.1%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	108 0.0 0.0 0.9% 19.4% 22.2% 15.7% 10.2% 4.6% 2.8% 4.6% 3.7% 0.0 1.9%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	132 0.0 0.8% 0.8% 0.0 2.3% 2.3% 3.0% 3.8% 7.6% 9.8% 6.1% 6.1%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	108 0.0 0.0 0.0 0.9% 19.4% 22.2% 15.7% 10.2% 4.6% 2.8% 4.6% 3.7% 0.0 1.9%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	132 0.0 0.8% 0.8% 0.0 2.3% 2.3% 3.0% 3.8% 7.6% 9.8% 6.1% 6.1% 15.2% 9.1%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	108 0.0 0.0 0.0 0.9% 19.4% 22.2% 15.7% 10.2% 4.6% 2.8% 4.6% 3.7% 0.0 1.9% 1.9%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	132 0.0 0.8% 0.8% 0.0 2.3% 2.3% 3.0% 3.8% 7.6% 9.8% 6.1% 6.1% 15.2% 9.1% 11.4%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	108 0.0 0.0 0.0 0.9% 19.4% 22.2% 15.7% 10.2% 4.6% 2.8% 4.6% 3.7% 0.0 1.9% 4.6% 3.7%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	132 0.0 0.8% 0.8% 0.0 2.3% 2.3% 3.0% 3.8% 7.6% 9.8% 6.1% 15.2% 9.1% 11.4% 9.8%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	108 0.0 0.0 0.0 0.9% 19.4% 22.2% 15.7% 10.2% 4.6% 2.8% 4.6% 3.7% 0.0 1.9% 1.9% 4.6% 3.7%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	132 0.0 0.8% 0.8% 0.0 2.3% 2.3% 3.0% 3.8% 7.6% 9.8% 6.1% 6.1% 15.2% 9.1% 11.4% 9.8% 4.5%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	108 0.0 0.0 0.0 0.9% 19.4% 22.2% 15.7% 10.2% 4.6% 2.8% 4.6% 3.7% 0.0 1.9% 4.6% 3.7% 0.9% 0.9%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	132 0.0 0.8% 0.8% 0.0 2.3% 2.3% 3.0% 3.8% 7.6% 9.8% 6.1% 6.1% 15.2% 9.1% 11.4% 9.8% 4.5% 5.3%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	108 0.0 0.0 0.0 0.9% 19.4% 22.2% 15.7% 10.2% 4.6% 2.8% 4.6% 3.7% 0.0 1.9% 4.6% 3.7% 0.0 0.9%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	132 0.0 0.8% 0.8% 0.0 2.3% 2.3% 3.0% 3.8% 7.6% 9.8% 6.1% 6.1% 15.2% 9.1% 11.4% 9.8% 4.5% 5.3% 1.5%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	108 0.0 0.0 0.0 0.9% 19.4% 22.2% 15.7% 10.2% 4.6% 2.8% 4.6% 3.7% 0.0 1.9% 1.9% 4.6% 3.7% 0.0 0.9% 0.9% 0.9% 0.9%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	132 0.0 0.8% 0.8% 0.0 2.3% 2.3% 3.0% 3.8% 7.6% 9.8% 6.1% 6.1% 15.2% 9.1% 11.4% 9.8% 4.5% 5.3% 1.5% 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	108 0.0 0.0 0.0 0.9% 19.4% 22.2% 15.7% 10.2% 4.6% 2.8% 4.6% 3.7% 0.0 1.9% 1.9% 4.6% 3.7% 0.0 0.9% 0.9% 0.9% 0.9%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	132 0.0 0.8% 0.8% 0.0 2.3% 2.3% 3.0% 3.8% 7.6% 9.8% 6.1% 6.1% 15.2% 9.1% 11.4% 9.8% 4.5% 5.3% 1.5% 0.0 0.8%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	108 0.0 0.0 0.0 0.9 19.4% 22.2% 15.7% 10.2% 4.6% 2.8% 4.6% 3.7% 0.0 1.9% 4.6% 3.7% 0.9% 0.9% 0.9% 0.9%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	132 0.0 0.8% 0.8% 0.0 2.3% 2.3% 3.0% 3.8% 7.6% 9.8% 6.1% 6.1% 15.2% 9.1% 11.4% 9.8% 4.5% 5.3% 1.5% 0.0 0.8% 1.5%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	108 0.0 0.0 0.0 0.9 19.4% 22.2% 15.7% 10.2% 4.6% 2.8% 4.6% 3.7% 0.0 1.9% 1.9% 4.6% 3.7% 0.9% 0.9% 0.9% 0.9% 0.9% 1.9%
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	132 0.0 0.8% 0.8% 0.0 2.3% 2.3% 3.0% 3.8% 7.6% 9.8% 6.1% 6.1% 15.2% 9.1% 11.4% 9.8% 4.5% 5.3% 1.5% 0.0 0.8% 1.5%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	108 0.0 0.0 0.0 0.9% 19.4% 22.2% 15.7% 10.2% 4.6% 2.8% 4.6% 3.7% 0.0 1.9% 1.9% 4.6% 3.7% 0.9% 0.9% 0.9% 0.9% 0.9% 19 116
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm) mean	132 0.0 0.8% 0.8% 0.0 2.3% 2.3% 3.0% 3.8% 7.6% 9.8% 6.1% 15.2% 9.1% 11.4% 9.8% 4.5% 5.3% 1.5% 0.0 0.8% 1.5%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm) max size (mm) mean	108 0.0 0.0 0.0 0.9% 19.4% 22.2% 15.7% 10.2% 4.6% 2.8% 4.6% 3.7% 0.0 1.9% 1.9% 4.6% 3.7% 0.9% 0.9% 0.9% 0.9% 0.00 0.00 0.9% 19 116 40
Strongylocentrotus (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	132 0.0 0.8% 0.8% 0.0 2.3% 2.3% 3.0% 3.8% 7.6% 9.8% 6.1% 6.1% 15.2% 9.1% 11.4% 9.8% 4.5% 5.3% 1.5% 0.0 0.8% 1.5%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	108 0.0 0.0 0.0 0.9% 19.4% 22.2% 15.7% 10.2% 4.6% 2.8% 4.6% 3.7% 0.0 1.9% 1.9% 4.6% 3.7% 0.9% 0.9% 0.9% 0.9% 0.9% 19 116

1988		1000	
Strongylocentrot	us franciscanus	1989 Strongylocentrotus fra	anciscanus
belongy locenero.	and Transferance	belongy locentioeab ile	ancibeanab
(cases) N=	95	(cases) N=	97
< 5 mm	0.0	< 5 mm	0.0
5 - 9	0.0	5 - 9	0.0
10 - 14	0.0	10 - 14	0.0
15 - 19	0.0	15 - 19	0.0
20 - 24	0.0	20 - 24	0.0
25 - 29	5.3%	25 - 29	1.0%
30 - 34	10.5%	30 - 34	0.0
35 - 39	12.6%	35 - 39	1.0%
40 - 44	13.7%	40 - 44	2.1%
45 - 49	13.7%	45 - 49	5.2%
50 - 54	10.5%	50 - 54	14.4%
55 - 59	10.5%	55 - 59	19.6%
60 - 64	11.6%	60 - 64	15.5%
65 - 69	6.3%	65 - 69	15.5%
70 - 74	3.2%	70 - 74	13.4%
75 - 79	1.1%	75 - 79	3.1%
80 - 84	1.1%	80 - 84	7.2%
85 - 89	0.0	85 - 89	0.0
90 - 94 95 - 99	0.0	90 - 94	2.1%
100 - 104	0.0 0.0	95 - 99 100 - 104	0.0
105 - 109	0.0	105 - 109	0.0
> 109 mm	0.0	> 109 mm	0.0
min size (mm)	25	min size (mm)	29
max size (mm)	83	max size (mm)	91
mean	48	mean	62
mode	45	mode	59
LOCATION 8 SAN 1984 Srongylocentroti	NTA CRUZ ISLAND - PELICAN BAY	1985 Srongylocentrotus purp	ouratus
1984	us purpuratus		puratus
1984 Srongylocentrotu (cases) N=	us purpuratus 113	Srongylocentrotus purp (cases) N=	110
1984 Srongylocentrotu (cases) N= < 5 mm	us purpuratus 113 0.0	Srongylocentrotus purp (cases) N= < 5 mm	110 0.0
1984 Srongylocentrotu (cases) N= < 5 mm 5 - 9	us purpuratus 113 0.0 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9	110 0.0 0.0
1984 Srongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14	113 0.0 0.0 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14	110 0.0 0.0 0.0
1984 Srongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	113 0.0 0.0 0.0 0.9% 5.3%	<pre>Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19</pre>	110 0.0 0.0 0.0 0.0
1984 Srongylocentroto (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	113 0.0 0.0 0.0 0.9% 5.3% 8.8%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	110 0.0 0.0 0.0 1.8% 0.9%
1984 Srongylocentroto (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	113 0.0 0.0 0.9% 5.3% 8.8% 7.1%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	110 0.0 0.0 0.0 1.8% 0.9% 9.1%
1984 Srongylocentroto (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	113 0.0 0.0 0.9 5.3% 8.8% 7.1% 21.2%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	110 0.0 0.0 0.0 1.8% 0.9% 9.1% 22.7%
1984 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	113 0.0 0.0 0.0 0.9% 5.3% 8.8% 7.1% 21.2% 15.0%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	110 0.0 0.0 0.0 1.8% 0.9% 9.1% 22.7% 26.4%
1984 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	113 0.0 0.0 0.0 0.9% 5.3% 8.8% 7.1% 21.2% 15.0% 23.0%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	110 0.0 0.0 0.0 1.8% 0.9% 9.1% 22.7% 26.4% 12.7%
1984 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	113 0.0 0.0 0.0 0.9% 5.3% 8.8% 7.1% 21.2% 15.0% 23.0% 13.3%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	110 0.0 0.0 0.0 1.8% 0.9% 9.1% 22.7% 26.4% 12.7% 16.4%
1984 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	113 0.0 0.0 0.0 0.9% 5.3% 8.8% 7.1% 21.2% 15.0% 23.0% 13.3% 5.3%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	110 0.0 0.0 0.0 1.8% 0.9% 9.1% 22.7% 26.4% 12.7% 16.4% 7.3%
1984 Srongylocentrote (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	113 0.0 0.0 0.9% 5.3% 8.8% 7.1% 21.2% 15.0% 23.0% 13.3% 5.3% 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	110 0.0 0.0 0.0 1.8% 0.9% 9.1% 22.7% 26.4% 12.7% 16.4% 7.3% 2.7%
1984 Srongylocentroto (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	113 0.0 0.0 0.9% 5.3% 8.8% 7.1% 21.2% 15.0% 23.0% 13.3% 5.3% 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	110 0.0 0.0 0.0 1.8% 0.9% 9.1% 22.7% 26.4% 12.7% 16.4% 7.3% 2.7% 0.0
1984 Srongylocentrote (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	113 0.0 0.0 0.9% 5.3% 8.8% 7.1% 21.2% 15.0% 23.0% 13.3% 5.3% 0.0 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	110 0.0 0.0 0.0 1.8% 0.9% 9.1% 22.7% 26.4% 12.7% 16.4% 7.3% 2.7%
1984 Srongylocentroto (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	113 0.0 0.0 0.9% 5.3% 8.8% 7.1% 21.2% 15.0% 23.0% 13.3% 5.3% 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	110 0.0 0.0 0.0 1.8% 0.9% 9.1% 22.7% 26.4% 12.7% 16.4% 7.3% 2.7% 0.0
1984 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	113 0.0 0.0 0.9% 5.3% 8.8% 7.1% 21.2% 15.0% 23.0% 13.3% 5.3% 0.0 0.0 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	110 0.0 0.0 0.0 1.8% 0.9% 9.1% 22.7% 26.4% 12.7% 16.4% 7.3% 2.7% 0.0
1984 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	113 0.0 0.0 0.9% 5.3% 8.8% 7.1% 21.2% 15.0% 23.0% 13.3% 5.3% 0.0 0.0 0.0 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	110 0.0 0.0 0.0 1.8% 0.9% 9.1% 22.7% 26.4% 12.7% 16.4% 7.3% 2.7% 0.0
1984 Srongylocentroto (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	113 0.0 0.0 0.9% 5.3% 8.8% 7.1% 21.2% 15.0% 23.0% 13.3% 5.3% 0.0 0.0 0.0 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	110 0.0 0.0 0.0 1.8% 0.9% 9.1% 22.7% 26.4% 12.7% 16.4% 7.3% 2.7% 0.0 0.0
1984 Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	113 0.0 0.0 0.9% 5.3% 8.8% 7.1% 21.2% 15.0% 23.0% 13.3% 5.3% 0.0 0.0 0.0 0.0 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	110 0.0 0.0 0.0 1.8% 0.9% 9.1% 22.7% 26.4% 12.7% 16.4% 7.3% 2.7% 0.0 0.0
1984 Srongylocentroto (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	113 0.0 0.0 0.9% 5.3% 8.8% 7.1% 21.2% 15.0% 23.0% 13.3% 5.3% 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	110 0.0 0.0 0.0 1.8% 0.9% 9.1% 22.7% 26.4% 12.7% 16.4% 7.3% 2.7% 0.0 0.0
1984 Srongylocentroto (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	113 0.0 0.0 0.9% 5.3% 8.8% 7.1% 21.2% 15.0% 23.0% 13.3% 5.3% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	110 0.0 0.0 0.0 1.8% 0.9% 9.1% 22.7% 26.4% 12.7% 16.4% 7.3% 2.7% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15
1984 Srongylocentroto (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	113 0.0 0.0 0.9% 5.3% 8.8% 7.1% 21.2% 15.0% 23.0% 13.3% 5.3% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	110 0.0 0.0 0.0 1.8% 0.9% 9.1% 22.7% 26.4% 12.7% 16.4% 7.3% 2.7% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
1984 Srongylocentroto (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	113 0.0 0.0 0.9% 5.3% 8.8% 7.1% 21.2% 15.0% 23.0% 13.3% 5.3% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	110 0.0 0.0 0.0 1.8% 0.9% 9.1% 22.7% 26.4% 12.7% 16.4% 7.3% 2.7% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15

1986	a numuratus	1988	
Srongylocentroti	is purpuratus	Srongylocentrotus purp	ouratus
(cases) N=	107	(cases) N=	198
< 5 mm	0.0	< 5 mm	0.0
5 - 9	0.0	5 - 9	0.0
10 - 14	0.9%	10 - 14	0.5%
15 - 19	6.5%	15 - 19	0.5%
20 - 24	11.2%	20 - 24	12.1%
25 - 29	11.2%	25 - 29	29.8%
30 - 34	16.8%	30 - 34	27.3%
35 - 39	21.5%	35 - 39	17.2%
40 - 44	21.5%	40 - 44	10.6%
45 - 49	8.4%	45 - 49	2.0%
50 - 54	1.9%	50 - 54	0.0
55 - 59	0.0	55 - 59	0.0
60 - 64	0.0	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74 75 - 79	0.0	70 - 74 75 - 79	0.0
75 - 79 80 - 84	0.0	75 - 79 80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
> 99 mm	0.0	100 - 104	0.0
min size (mm)	12	105 - 109	0.0
max size (mm)	51	> 109 mm	0.0
mean mean	34	min size (mm)	11
mode	41	max size (mm)	47
		mean	31
1987		mode	28
Srongylocentrotu	ıs purpuratus		
		1989	
(cases) N=	102	1989 Srongylocentrotus purp	ouratus
< 5 mm	0.0		ouratus
< 5 mm 5 - 9	0.0	Srongylocentrotus purp (cases) N=	103
< 5 mm 5 - 9 10 - 14	0.0 0.0 0.0	Srongylocentrotus purp (cases) N= < 5 mm	103 0.0
< 5 mm 5 - 9 10 - 14 15 - 19	0.0 0.0 0.0 7.8%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9	103 0.0 0.0
< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	0.0 0.0 0.0 7.8% 44.1%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14	103 0.0 0.0 0.0
< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	0.0 0.0 0.0 7.8% 44.1% 30.4%	<pre>Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19</pre>	103 0.0 0.0 0.0 1.0%
< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	0.0 0.0 0.0 7.8% 44.1% 30.4% 5.9%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	103 0.0 0.0 0.0 1.0% 1.0%
5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	0.0 0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	103 0.0 0.0 0.0 1.0% 1.0% 9.7%
< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	0.0 0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9% 5.9%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	103 0.0 0.0 1.0% 1.0% 9.7% 37.9%
< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	0.0 0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9% 5.9% 2.0%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	103 0.0 0.0 0.0 1.0% 1.0% 9.7% 37.9% 34.0%
< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	0.0 0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9% 5.9% 2.0% 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	103 0.0 0.0 0.0 1.0% 1.0% 9.7% 37.9% 34.0% 9.7%
< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	0.0 0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9% 5.9% 2.0% 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	103 0.0 0.0 0.0 1.0% 1.0% 9.7% 37.9% 34.0% 9.7% 5.8%
< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	0.0 0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9% 5.9% 2.0% 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	103 0.0 0.0 0.0 1.0% 1.0% 9.7% 37.9% 34.0% 9.7% 5.8% 1.0%
< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	0.0 0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9% 5.9% 2.0% 0.0 0.0 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	103 0.0 0.0 0.0 1.0% 1.0% 9.7% 37.9% 34.0% 9.7% 5.8% 1.0%
< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	0.0 0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9% 5.9% 2.0% 0.0 0.0 0.0 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	103 0.0 0.0 0.0 1.0% 1.0% 9.7% 37.9% 34.0% 9.7% 5.8% 1.0% 0.0
< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	0.0 0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9% 5.9% 2.0% 0.0 0.0 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	103 0.0 0.0 0.0 1.0% 1.0% 9.7% 37.9% 34.0% 9.7% 5.8% 1.0%
<pre>5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79</pre>	0.0 0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9% 5.9% 2.0% 0.0 0.0 0.0 0.0 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	103 0.0 0.0 0.0 1.0% 1.0% 9.7% 37.9% 34.0% 9.7% 5.8% 1.0% 0.0
< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	0.0 0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9% 5.9% 2.0% 0.0 0.0 0.0 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	103 0.0 0.0 0.0 1.0% 1.0% 9.7% 37.9% 34.0% 9.7% 5.8% 0.0 0.0
<pre>5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99</pre>	0.0 0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9% 5.9% 2.0% 0.0 0.0 0.0 0.0 0.0 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	103 0.0 0.0 0.0 1.0% 1.0% 9.7% 37.9% 34.0% 9.7% 5.8% 1.0% 0.0 0.0
< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9% 5.9% 2.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	103 0.0 0.0 0.0 1.0% 1.0% 9.7% 37.9% 34.0% 9.7% 5.8% 1.0% 0.0 0.0
<pre>5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)</pre>	0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9% 5.9% 2.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	103 0.0 0.0 0.0 1.0% 1.0% 9.7% 37.9% 34.0% 9.7% 5.8% 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
<pre>5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)</pre>	0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9% 5.9% 2.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	103 0.0 0.0 0.0 1.0% 1.0% 9.7% 37.9% 34.0% 9.7% 5.8% 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
<pre>< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm) mean</pre>	0.0 0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9% 5.9% 2.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	103 0.0 0.0 0.0 1.0% 1.0% 9.7% 37.9% 34.0% 9.78 5.8% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
<pre>5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)</pre>	0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9% 5.9% 2.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	103 0.0 0.0 0.0 1.0% 1.0% 9.7% 37.9% 34.0% 9.78 5.8% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
<pre>< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm) mean</pre>	0.0 0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9% 5.9% 2.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	103 0.0 0.0 0.0 1.0% 1.0% 9.7% 37.9% 34.0% 9.7% 5.8% 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
<pre>< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm) mean</pre>	0.0 0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9% 5.9% 2.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	103 0.0 0.0 0.0 1.0% 1.0% 9.7% 37.9% 34.0% 9.7% 5.8% 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
<pre>< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm) mean</pre>	0.0 0.0 0.0 7.8% 44.1% 30.4% 5.9% 3.9% 5.9% 2.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	103 0.0 0.0 0.0 1.0% 1.0% 9.7% 37.9% 34.0% 9.7% 5.8% 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1986 Tethya aurantia		1988 Tethya aurantia
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm) mean mode	15 0.0 0.0 6.7% 26.7% 26.7% 26.7% 6.7% 0.0 0.0 6.7% 0.0 25 91 48	(cases) N= 23 < 10 mm
LOCATION 9 SANTA C	RUZ ISLAND - SCORPION AN	CHORAGE mode 140
(cases) N= < 25 mm 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 110 - 114 115 - 119 120 - 124 125 - 129 130 - 134 135 - 139 140 - 144 145 - 149 150 - 154 155 - 159 160 - 164 165 - 169 170 - 174 175 - 179 180 - 184 185 - 189 190 - 194 195 - 199 > 199 mm min size (mm) max size (mm) max size (mm) mean	35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	

1985 Haliotis corrugata

(cases) N= < 25 mm 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 110 - 114 115 - 119 120 - 124	34 2.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.9% 2.9% 0.0 2.9% 0.0 2.9% 0.0
140 - 144 145 - 149 150 - 154 155 - 159 160 - 164 165 - 169 170 - 174 175 - 179 180 - 184 185 - 189 190 - 194 195 - 199 > 199 mm min size (mm) max size (mm) mean mode	5.9% 5.9% 14.7% 2.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19 161 122 138

1986 Haliotis corrugata		1987 Haliotis corrugata	
naliotis Collugata		naliotis collugata	
(cases) N=	30	(cases) N=	9
< 25 mm	0.0	< 25 mm	0.0
25 - 29	0.0	25 - 29	0.0
30 - 34	3.3%	30 - 34	0.0
35 - 39	0.0	35 - 39	0.0
40 - 44	0.0	40 - 44	0.0
45 - 49	10.0%	45 - 49	0.0
50 - 54	0.0	50 - 54	0.0
55 - 59	0.0	55 - 59	0.0
60 - 64	0.0	60 - 64	0.0
65 - 69	6.7%	65 - 69	0.0
70 - 74	3.3%	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	3.3%	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
100 - 104	10.0%	100 - 104	0.0
105 - 109	13.3%	105 - 109	0.0
110 - 114	13.3%	110 - 114	0.0
115 - 119	13.3%	115 - 119	11.1%
120 - 124	0.0	120 - 124	11.1%
125 - 129	0.0	125 - 129	22.2%
130 - 134	10.0%	130 - 134	11.1%
135 - 139	6.7%	135 - 139	22.2%
140 - 144	0.0	140 - 144	11.1%
145 - 149	6.7%	145 - 149	11.1%
150 - 154	0.0	150 - 154	0.0
155 - 159	0.0	155 - 159	0.0
160 - 164	0.0	160 - 164	0.0
165 - 169	0.0	165 - 169	0.0
170 - 174	0.0	170 - 174	0.0
175 - 179	0.0	175 - 179	0.0
180 - 184 185 - 189	0.0	180 - 184 185 - 189	0.0
190 - 194	0.0	190 - 194	0.0
195 - 194	0.0	190 - 194	
> 199 mm	0.0	> 199 mm	0.0
min size (mm)	30	min size (mm)	117
max size (mm)	149	max size (mm)	149
mean	103	mean	132
mode	49	mode	117
mode	ュノ	mode	11/

Cypraea spadicea Cypraea spadicea (cases) N= 31 (cases) N= 27 < 30 mm 3.2% < 30 mm 0.0 30 - 34 12.9% 35 - 39 18.5% 40 - 44 22.6% 40 - 44 33.3% 45 - 49 19.4% 45 - 49 29.6% 50 - 54 19.4% 50 - 54 11.1% 55 - 59 9.7% 55 - 59 3.7% >59 mm 0.0 >59 mm 0.0 min size (mm) 29 min size (mm) 32 max size (mm) 58 max size (mm) 55 mean 44 mean 44 mode 50 mode 43 1986 1989 Cypraea spadicea (cases) N= 40 (cases) N= 21 < 30 mm 12.5% < 30 mm 0.0 30 - 34 5.0% 35 - 39 28.6% 40 - 44 40.0% 40 - 44 14.3% 45 - 49 17.5% 45 - 49 42.9% 50 - 54 10.0% 50 - 54 9.5% 50 - 54 10.0% 55 - 59 0.0 >59 mm 0.0 >59 mm 0.0 min size
< 30 mm
35 - 39
40 - 44 22.6% 40 - 44 33.3% 45 - 49 19.4% 45 - 49 29.6% 50 - 54 19.4% 50 - 54 11.1% 55 - 59 9.7% 55 - 59 3.7% >59 mm 0.0 >59 mm 0.0 min size (mm) 32 max size (mm) 32 max size (mm) 58 max size (mm) 55 mean 44 mean 44 mode 50 mode 43 1986 1989 Cypraea spadicea (cases) N= 40 (cases) N= 21 < 30 mm
45 - 49 19.4% 45 - 49 29.6% 50 - 54 19.4% 50 - 54 11.1% 55 - 59 9.7% 55 - 59 3.7% >59 mm 0.0 >59 mm 0.0 min size (mm) 29 min size (mm) 32 max size (mm) 58 max size (mm) 55 mean 44 mean 44 mode 50 mode 43 1986 1989 Cypraea spadicea (cases) N= 40 (cases) N= 21 < 30 mm
50 - 54 19.4% 50 - 54 11.1% 55 - 59 9.7% 55 - 59 3.7% >59 mm 0.0 >59 mm 0.0 min size (mm) 29 min size (mm) 32 max size (mm) 58 max size (mm) 55 mean 44 mean 44 mode 50 mode 43 1986 1989 Cypraea spadicea (cases) N= 40 (cases) N= 21 < 30 mm
55 - 59 9.7% 55 - 59 3.7% >59 mm 0.0 >59 mm 0.0 min size (mm) 29 min size (mm) 32 max size (mm) 58 max size (mm) 55 mean 44 mean 44 mode 50 mode 43 1986 1989 Cypraea spadicea (cases) N= 40 (cases) N= 21 < 30 mm
>59 mm 0.0 >59 mm 0.0 min size (mm) 29 min size (mm) 32 max size (mm) 58 max size (mm) 55 mean 44 mean 44 mode 50 mode 43 1986 1989 Cypraea spadicea (cases) N= 40 (cases) N= 21 < 30 mm
min size (mm) 29 min size (mm) 32 max size (mm) 58 max size (mm) 55 mean 44 mean 44 mode 50 mode 43 1986 Cypraea spadicea (cases) N= 21 < 30 mm
max size (mm) 58 max size (mm) 55 mean 44 mean 44 mode 50 mode 43 1986 1989 Cypraea spadicea (cases) N= 21 < 30 mm
mean mode 44 mode mean mode 44 mode 1986 Cypraea spadicea 1989 Cypraea spadicea (cases) N= 40 (cases) N= 21 cases) N= < 30 mm
mode 50 mode 43 1986 Cypraea spadicea 1989 Cypraea spadicea Cypraea spadicea (cases) N= 40 (cases) N= 21 < 30 mm
1986 Cypraea spadicea (cases) N=
Cypraea spadicea Cypraea spadicea (cases) N= 40 (cases) N= 21 < 30 mm
Cypraea spadicea Cypraea spadicea (cases) N= 40 (cases) N= 21 < 30 mm
(cases) N= 40 (cases) N= 21 < 30 mm
< 30 mm
30 - 34 5.0% 30 - 34 4.8% 35 - 39 28.6% 40 - 44 40.0% 40 - 44 14.3% 45 - 49 17.5% 45 - 49 42.9% 50 - 54 10.0% 50 - 54 9.5% 55 - 59 5.0% 55 - 59 0.0 >59 mm 0.0
35 - 39
40 - 44 40.0% 40 - 44 14.3% 45 - 49 17.5% 45 - 49 42.9% 50 - 54 10.0% 50 - 54 9.5% 55 - 59 5.0% 55 - 59 0.0 >59 mm 0.0 >59 mm 0.0
45 - 49 17.5% 45 - 49 42.9% 50 - 54 10.0% 50 - 54 9.5% 55 - 59 5.0% 55 - 59 0.0 >59 mm 0.0 >59 mm 0.0
50 - 54 10.0% 50 - 54 9.5% 55 - 59 0.0 >59 mm 0.0 >59 mm 0.0
55 - 59 5.0% 55 - 59 0.0 >59 mm 0.0 >59 mm 0.0
>59 mm 0.0 >59 mm 0.0
min 9170 (mm) 6 min 9170 (mm) 3//
·
max size (mm) 55 max size (mm) 52
mean 41 mean 43
mode 43 mode 36
1987
Cypraea spadicea
(cases) N= 38
< 30 mm 0.0
30 - 34 15.8%
35 - 39 13.2%
40 - 44 34.2%
45 - 49 18.4%
50 - 54 18.4%
55 - 59 0.0
>59 mm 0.0
min size (mm) 31
max size (mm) 54
mean 43
mode 44

1984		1987	
Astraea undosa		Astraea undosa	
/\ N	E 7	() N-	2.0
(cases) N=	57	(cases) N=	30
< 20 mm	0.0	< 20 mm	0.0
20 - 29	5.3%	20 - 29	0.0
30 - 39	10.5%	30 - 39	3.3%
40 - 49	3.5%	40 - 49	33.3%
50 - 59	21.1%	50 - 59	23.3%
60 - 69	17.5%	60 - 69	26.7%
70 - 79	8.8%	70 - 79	6.7%
80 - 89	19.3%	80 - 89	3.3%
90 - 99	12.3%	90 - 99	3.3%
100 - 109	1.8%	100 - 109	0.0
110 - 119	0.0	110 - 119	0.0
>119 mm	0.0	>119 mm	0.0
min size (mm)	24	min size (mm)	39
max size (mm)	101	max size (mm)	94
mean	66	mean	57
mode	59	mode	53
1985		1988	
Astraea undosa		Astraea undosa	
(cases) N=	30	(cases) N=	30
< 10 mm	0.0	< 20 mm	0.0
10 - 19	3.3%	20 - 29	0.0
20 - 29	3.3%	30 - 39	0.0
30 - 39	10.0%	40 - 49	0.0
40 - 49	6.7%	50 - 59	16.7%
50 - 59	26.7%	60 - 69	60.0%
60 - 69	16.7%	70 - 79	23.3%
70 - 79	20.0%	80 - 89	0.0
80 - 89	3.3%	90 - 99	0.0
90 - 99	6.7%	100 - 109	0.0
100 - 109	3.3%	110 - 119	0.0
>109 mm	0.0	>119 mm	0.0
min size (mm)	17	min size (mm)	51
max size (mm)	102	max size (mm)	78
mean	59	mean	64
mode	51	mode	61
1986		1989	
Astraea undosa		Astraea undosa	
no craca anacca		noordod andood	
(cases) N=	30	(cases) N=	30
< 20 mm	0.0	< 20 mm	0.0
20 - 29	20.0%	20 - 29	0.0
30 - 39	16.7%	30 - 39	0.0
40 - 49	26.7%	40 - 49	0.0
50 - 59	10.0%	50 - 59	23.3%
60 - 69	13.3%	60 - 69	63.3%
70 - 79	6.7%	70 - 79	13.3%
80 - 89	6.7%	80 - 89	0.0
90 - 99	0.0	90 - 99	0.0
>99 mm	0.0	>99 mm	0.0
min size (mm)	20	min size (mm)	54
max size (mm)	89	max size (mm)	74
mean	47	mean	64
mode	49	mode	63

2001111011 9 01111111 01101		
1984		1987
Megathura crenulata		Megathura crenulata
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39	46 0.0 0.0 0.0 0.0	(cases) N= 29 < 10 mm
40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm) mean mode	2.2% 8.7% 15.2% 47.8% 23.9% 2.2% 0.0 49 90 73 76	40 - 49 0.0 50 - 59 0.0 60 - 69 6.9% 70 - 79 37.9% 80 - 89 44.8% 90 - 99 10.3% >99 mm 0.0 min size (mm) 66 max size (mm) 95 mean 80 mode 82
1985 Megathura crenulata		1988 Megathura crenulata
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm) mean mode 1986 Megathura crenulata	30 0.0 0.0 0.0 0.0 0.0 23.3% 20.0% 36.7% 16.7% 3.3% 0.0 51 93 70	(cases) N= 52 < 10 mm
(cases) N= < 30 mm 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	30 0.0 0.0 0.0 0.0 20.0% 16.7% 33.3% 20.0% 6.7% 3.3% 0.0 60 119 83	(cases) N= 34 < 10 mm

1984		1988
Hinnites giganteus		Hinnites giganteus
(cases) N=	16	(cases) N=
< 30 mm	0.0	< 10 mm 0.0
30 - 39	25.0%	10 - 19 0.0
40 - 49	25.0%	20 - 29 0.0
50 - 59	18.8%	30 - 39 12.5%
60 - 69	25.0%	40 - 49 6.3%
70 - 79	0.0	50 - 59 12.5%
80 - 89	0.0	60 - 69 6.3%
90 - 99	0.0	70 - 79 12.5%
100 - 109	6.3%	80 - 89 18.8%
>109 mm	0.0	90 - 99 18.8%
min size (mm)	30	100 - 109 12.5%
max size (mm)	101	110 - 119 0.0
mean	53	120 - 129 0.0
mode	46	130 - 139 0.0
		140 - 149 0.0
1985		>149 mm 0.0
Hinnites giganteus		min size (mm) 36
(cases) N=	17	max size (mm) 108
		, ,
< 20 mm	0.0	
20 - 29	11.8%	mode 36
30 - 39	0.0	
40 - 49	35.3%	1989
50 - 59	5.9%	Hinnites giganteus
60 - 69	11.8%	
70 - 79	17.6%	(cases) N= 32
80 - 89	5.9%	< 10 mm 0.0
90 - 99	5.9%	10 - 19 3.1%
100 - 109	0.0	20 - 29 12.5%
110 - 119	5.9%	30 - 39 34.4%
>119 mm	0.0	40 - 49 18.8%
min size (mm)	26	50 - 59
max size (mm)	111	60 - 69 6.3%
mean	59	70 - 79 6.3%
mode	42	80 - 89 3.1%
		90 - 99 3.1%
1986		100 - 109 0.0
Hinnites giganteus		110 - 119 0.0
(cases) N=	33	120 - 129 0.0
< 20 mm	0.0	130 - 139 0.0
20 - 29	9.1%	140 - 149 0.0
30 - 39	21.2%	>149 mm 0.0
40 - 49	9.1%	min size (mm) 16
50 - 59	27.3%	max size (mm) 95
60 - 69	6.1%	mean 45
70 - 79	12.1%	mode 38
		mode 38
80 - 89	0.0	
90 - 99	0.0	
100 - 109	12.1%	
110 - 119	0.0	
120 - 129	3.0%	
>129 mm	0.0	
min size (mm)	20	
max size (mm)	120	
mean	57	
mode	34	
	J 1	

1985 Patiria miniata		1988 Patiria miniata	
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 >80 mm min size (mm) max size (mm) mean	11 18.2% 18.2% 45.5% 9.1% 0.0 0.0 9.1% 0.0 5 66	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 >80 mm min size (mm) max size (mm) mean	21 0.0 0.0 0.0 28.6% 9.5% 23.8% 14.3% 23.8% 0.0 31 77 54
mode 1987	21	mode 1989	32
Patiria miniata		Patiria miniata	
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm min size (mm) max size (mm) mean mode	26 0.0 3.8% 46.2% 11.5% 11.5% 26.9% 0.0 0.0 0.0 0.0 16 55 36 26	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm min size (mm) max size (mm) mean mode	55 0.0 10.9% 3.6% 7.3% 9.1% 27.3% 23.6% 7.3% 3.6% 0.0 11 99

1986		1989	
Pisaster giganteus		Pisaster giganteus	
(cases) N=	12	(cases) N=	23
<20 mm	0.0	<20 mm	8.7%
20 - 39	0.0	20 - 39	21.7%
40 - 59	0.0	40 - 59	0.0
60 - 79	0.0	60 - 79	8.7%
80 - 99	8.3%	80 - 99	8.7%
100 - 119	41.7%	100 - 119	0.0
120 - 139	8.3%	120 - 139	8.7%
140 - 159	41.7%	140 - 159	26.1%
160 - 179	0.0	160 - 179	4.3%
180 - 199	0.0	180 - 199	0.0
200 - 219	0.0	200 - 219	4.3%
220 - 239	0.0	220 - 239	4.3%
240 - 259	0.0	240 - 259	0.0
260 - 279	0.0	260 - 279	0.0
280 - 299	0.0	280 - 299	0.0
>299 mm	0.0	>299 mm	4.3%
min size (mm)	95	min size (mm)	14
max size (mm)	157	max size (mm)	305
mean	128	mean	111
mode	109	mode	30
1988			
Pisaster giganteus			

(cases) N=	15
<20 mm	0.0
20 - 39	0.0
40 - 59	0.0
60 - 79	0.0
80 - 99	0.0
100 - 119	13.3%
120 - 139	46.7%
140 - 159	13.3%
160 - 179	6.7%
180 - 199	13.3%
200 - 219	6.7%
220 - 239	0.0
240 - 259	0.0
260 - 279	0.0
280 - 299	0.0
>299 mm	0.0
min size (mm)	113
max size (mm)	210
mean	147
mode	135

1984		1986	
Strongylocentrotu	s franciscanus	Strongylocentrotus fi	anciscanus
91		32	
(cases) N=	130	(cases) N=	101
< 14 mm	0.0	< 14 mm	0.0
15 - 19	2.3%	15 - 19	4.0%
20 - 24	0.8%	20 - 24	14.9%
25 - 29	2.3%	25 - 29	16.8%
30 - 34	0.8%	30 - 34	3.0%
35 - 39	6.2%	35 - 39	5.9%
40 - 44	3.8%	40 - 44	5.0%
45 - 49	4.6%	45 - 49	2.0%
50 - 54	6.2%	50 - 54	4.0%
55 - 59	10.8%	55 - 59	10.9%
60 - 64	10.0%	60 - 64	5.9%
65 - 69	8.5%	65 - 69	8.9%
70 - 74	9.2%	70 - 74	3.0%
75 - 79	7.7%	75 - 79	3.0%
80 - 84	10.8%	80 - 84	3.0%
85 - 89	3.8%	85 - 89	3.0%
90 - 94	6.9%	90 - 94	5.0%
95 - 99	1.5%	95 - 99	2.0%
100 - 104	2.3%	100 - 104	0.0
105 - 109	0.0	105 - 109	0.0
> 109 mm	0.8%	> 109 mm	0.0
min size (mm)	15	min size (mm)	16
max size (mm)	112	max size (mm)	97
mean	65	mean	48
mode	70	mode	22
1005		1007	
1985 Strongylocentrotu	s franciscanus	1987 Strongylocentrotus fr	ranciscanus
1985 Strongylocentrotu	s franciscanus	1987 Strongylocentrotus fi	canciscanus
Strongylocentrotu (cases) N=	127	$Strongylocentrotus\ fr$ $(cases)\ N=$	118
Strongylocentrotu (cases) N= < 14 mm	127 0.0	Strongylocentrotus fr (cases) N= < 14 mm	118 0.0
Strongylocentrotu (cases) N= < 14 mm 15 - 19	127 0.0 0.0	Strongylocentrotus fr (cases) N= < 14 mm 15 - 19	118 0.0 0.0
Strongylocentrotu (cases) N= < 14 mm 15 - 19 20 - 24	127 0.0 0.0 0.0	Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24	118 0.0 0.0 8.5%
(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29	127 0.0 0.0 0.0 0.0	Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29	118 0.0 0.0 8.5% 36.4%
(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34	127 0.0 0.0 0.0 0.0 0.0	Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34	118 0.0 0.0 8.5% 36.4% 26.3%
Strongylocentrotu (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	127 0.0 0.0 0.0 0.0 2.4% 3.9%	Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	118 0.0 0.0 8.5% 36.4% 26.3% 5.9%
Strongylocentrotu (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	127 0.0 0.0 0.0 0.0 2.4% 3.9% 5.5%	Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	118 0.0 0.0 8.5% 36.4% 26.3% 5.9% 1.7%
Strongylocentrotu (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	127 0.0 0.0 0.0 0.0 2.4% 3.9% 5.5% 11.0%	Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	118 0.0 0.0 8.5% 36.4% 26.3% 5.9% 1.7% 2.5%
(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	127 0.0 0.0 0.0 0.0 2.4% 3.9% 5.5% 11.0% 7.1%	Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	118 0.0 0.0 8.5% 36.4% 26.3% 5.9% 1.7% 2.5% 2.5%
Strongylocentrotu (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	127 0.0 0.0 0.0 0.0 2.4% 3.9% 5.5% 11.0% 7.1% 7.9%	Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	118 0.0 0.0 8.5% 36.4% 26.3% 5.9% 1.7% 2.5% 2.5% 0.8%
(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	127 0.0 0.0 0.0 0.0 2.4% 3.9% 5.5% 11.0% 7.1% 7.9%	Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	118 0.0 0.0 8.5% 36.4% 26.3% 5.9% 1.7% 2.5% 2.5% 0.8% 2.5%
(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	127 0.0 0.0 0.0 0.0 2.4% 3.9% 5.5% 11.0% 7.1% 7.9% 15.0% 5.5%	Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	118 0.0 0.0 8.5% 36.4% 26.3% 5.9% 1.7% 2.5% 2.5% 0.8% 2.5% 3.4%
(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	127 0.0 0.0 0.0 0.0 2.4% 3.9% 5.5% 11.0% 7.1% 7.9%	Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	118 0.0 0.0 8.5% 36.4% 26.3% 5.9% 1.7% 2.5% 2.5% 0.8% 2.5%
(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	127 0.0 0.0 0.0 0.0 2.4% 3.9% 5.5% 11.0% 7.1% 7.9% 15.0% 5.5%	Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	118 0.0 0.0 8.5% 36.4% 26.3% 5.9% 1.7% 2.5% 2.5% 0.8% 2.5% 3.4% 5.9% 0.8%
Strongylocentrotu (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	127 0.0 0.0 0.0 0.0 0.0 2.4% 3.9% 5.5% 11.0% 7.1% 7.9% 15.0% 5.5% 10.2%	(cases) N= (14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	118 0.0 0.0 8.5% 36.4% 26.3% 5.9% 1.7% 2.5% 2.5% 0.8% 2.5% 3.4% 5.9%
Strongylocentrotu (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	127 0.0 0.0 0.0 0.0 0.0 2.4% 3.9% 5.5% 11.0% 7.1% 7.9% 15.0% 5.5% 10.2% 7.9% 11.8% 2.4%	Strongylocentrotus from (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	118 0.0 0.0 8.5% 36.4% 26.3% 5.9% 1.7% 2.5% 2.5% 0.8% 2.5% 3.4% 5.9% 0.8% 0.8%
Strongylocentrotu (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	127 0.0 0.0 0.0 0.0 0.0 2.4% 3.9% 5.5% 11.0% 7.1% 7.9% 15.0% 5.5% 10.2% 7.9% 11.8% 2.4% 5.5%	Strongylocentrotus from (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	118 0.0 0.0 8.5% 36.4% 26.3% 5.9% 1.7% 2.5% 2.5% 0.8% 2.5% 3.4% 5.9% 0.8% 0.8% 0.8%
(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	127 0.0 0.0 0.0 0.0 0.0 2.4% 3.9% 5.5% 11.0% 7.1% 7.9% 15.0% 5.5% 10.2% 7.9% 11.8% 2.4%	Strongylocentrotus from (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	118 0.0 0.0 8.5% 36.4% 26.3% 5.9% 1.7% 2.5% 2.5% 0.8% 2.5% 3.4% 5.9% 0.8% 0.8%
(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	127 0.0 0.0 0.0 0.0 0.0 2.4% 3.9% 5.5% 11.0% 7.1% 7.9% 15.0% 5.5% 10.2% 7.9% 11.8% 2.4% 5.5%	Strongylocentrotus from (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	118 0.0 0.0 8.5% 36.4% 26.3% 5.9% 1.7% 2.5% 2.5% 0.8% 2.5% 3.4% 5.9% 0.8% 0.8% 0.8%
(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	127 0.0 0.0 0.0 0.0 0.0 2.4% 3.9% 5.5% 11.0% 7.1% 7.9% 15.0% 5.5% 10.2% 7.9% 11.8% 2.4% 5.5% 0.8%	Strongylocentrotus from (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	118 0.0 0.0 8.5% 36.4% 26.3% 5.9% 1.7% 2.5% 2.5% 3.4% 5.9% 0.8% 0.8% 0.8% 0.8%
(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	127 0.0 0.0 0.0 0.0 0.0 0.0 2.4% 3.9% 5.5% 11.0% 7.1% 7.9% 15.0% 5.5% 10.2% 7.9% 11.8% 2.4% 5.5% 0.8% 0.8% 0.8% 0.8%	(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	118 0.0 0.0 8.5% 36.4% 26.3% 5.9% 1.7% 2.5% 2.5% 0.8% 2.5% 3.4% 5.9% 0.8% 0.8% 0.00
(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 mm	127 0.0 0.0 0.0 0.0 0.0 2.4% 3.9% 5.5% 11.0% 7.1% 7.9% 15.0% 5.5% 10.2% 7.9% 11.8% 2.4% 5.5% 0.8% 0.8% 0.8% 1.6%	(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	118 0.0 0.0 8.5% 36.4% 26.3% 5.9% 1.7% 2.5% 2.5% 0.8% 2.5% 0.8% 0.8% 0.8% 0.0 0.0
(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 mm > 109 mm	127 0.0 0.0 0.0 0.0 0.0 0.0 2.4% 3.9% 5.5% 11.0% 7.1% 7.9% 15.0% 5.5% 10.2% 7.9% 11.8% 2.4% 5.5% 0.8% 0.8% 0.8% 1.6% 0.0. 30 117	(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	118 0.0 0.0 8.5% 36.4% 26.3% 5.9% 1.7% 2.5% 2.5% 0.8% 2.5% 0.8% 0.8% 0.8% 0.00 0.0 0.0 0.0 0.0 0.0 0.22 106
(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 mm min size (mm) max size (mm) mean	127 0.0 0.0 0.0 0.0 0.0 0.0 2.4% 3.9% 5.5% 11.0% 7.1% 7.9% 15.0% 5.5% 10.2% 7.9% 11.8% 2.4% 5.5% 0.8% 0.8% 0.8% 0.8% 0.8%	(cases) N= (14 mm) 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm) mean	118 0.0 0.0 8.5% 36.4% 26.3% 5.9% 1.7% 2.5% 2.5% 0.8% 2.5% 3.4% 5.9% 0.8% 0.8% 0.0 0.0 0.0 0.0 0.0 0.0 37
(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 mm min size (mm) max size (mm)	127 0.0 0.0 0.0 0.0 0.0 0.0 2.4% 3.9% 5.5% 11.0% 7.1% 7.9% 15.0% 5.5% 10.2% 7.9% 11.8% 2.4% 5.5% 0.8% 0.8% 0.8% 1.6% 0.0. 30 117	(cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	118 0.0 0.0 8.5% 36.4% 26.3% 5.9% 1.7% 2.5% 2.5% 0.8% 2.5% 0.8% 0.8% 0.8% 0.00 0.0 0.0 0.0 0.0 0.0 0.22 106

1988		1989	
Strongylocentrotus franciscanus		Strongylocentrotus franciscanus	
(cases) N=	110	(cases) N=	109
< 5 mm	0.0	< 5 mm	0.0
5 - 9	0.0	5 - 9	0.0
10 - 14	0.0	10 - 14	0.0
15 - 19	0.0	15 - 19	0.0
20 - 24	0.0	20 - 24	0.9%
25 - 29	9.1%	25 - 29	0.0
30 - 34	26.4%	30 - 34	22.0%
35 - 39	29.1%	35 - 39	39.4%
40 - 44	10.0%	40 - 44	11.9%
45 - 49	8.2%	45 - 49	5.5%
50 - 54	4.5%	50 - 54	5.5%
55 - 59	6.4%	55 - 59	1.8%
60 - 64	3.6%	60 - 64	0.9%
65 - 69	0.0	65 - 69	1.8%
70 - 74	1.8%	70 - 74	2.8%
75 - 79	0.0	75 - 79	2.8%
80 - 84	0.9%	80 - 84	1.8%
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	2.8%
95 - 99	0.0	95 - 99	0.0
100 - 104	0.0	100 - 104	0.0
105 - 109	0.0	105 - 109	0.0
> 109 mm	0.0	> 109 mm	0.0
min size (mm)	26	min size (mm)	22
max size (mm)	83	max size (mm)	93
mean	40	mean	43
mode	35	mode	36

1984 Srongylocentrotus purp	puratus	1986 Srongylocentrotus purp	puratus
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	144 0.0 0.0 0.7% 0.0 4.2%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	101 0.0 0.0 3.0% 12.9% 37.6%
25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	4.2% 4.2% 10.4% 11.1% 16.7% 26.4% 16.0%	25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	5.0% 3.0% 4.0% 12.9% 5.0% 8.9%
55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	7.6% 1.4% 0.7% 0.7% 0.0	55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	5.0% 2.0% 0.0 1.0% 0.0
85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm) mean	0.0 0.0 0.0 0.0 12 71 43	85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm) mean	0.0 0.0 0.0 0.0 10 70 32
mode 1985 Srongylocentrotus purp	47 ouratus	mode 1987 Srongylocentrotus purp	21 puratus
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	123 0.0 0.0 0.0 0.0 0.0 0.0 1.6% 4.9% 8.9% 23.6% 30.1%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	106 0.0 0.0 0.0 0.0 14.2% 58.5% 16.0% 7.5% 1.9% 1.9% 0.0
60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	21.1% 7.3% 2.4% 0.0 0.0 0.0 0.0	50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	0.0 0.0 0.0 0.0 0.0 0.0

1988		1989		
Srongylocentrotus p	urpuratus	Srongylocentrotus purpuratus		
(cases) N=	109	(cases) N=	108	
< 5 mm	0.0	< 5 mm	0.0	
5 - 9	0.0	5 - 9	0.0	
10 - 14	0.0	10 - 14	0.0	
15 - 19	0.0	15 - 19	0.0	
20 - 24	10.1%	20 - 24	0.9%	
25 - 29	72.5%	25 - 29	50.0%	
30 - 34	8.3%	30 - 34	43.5%	
35 - 39	4.6%	35 - 39	4.6%	
40 - 44	4.6%	40 - 44	0.9%	
45 - 49	0.0	45 - 49	0.0	
50 - 54	0.0	50 - 54	0.0	
55 - 59	0.0	55 - 59	0.0	
60 - 64	0.0	60 - 64	0.0	
65 - 69	0.0	65 - 69	0.0	
70 - 74	0.0	70 - 74	0.0	
75 - 79	0.0	75 - 79	0.0	
80 - 84	0.0	80 - 84	0.0	
85 - 89	0.0	85 - 89	0.0	
90 - 94	0.0	90 - 94	0.0	
95 - 99	0.0	95 - 99	0.0	
> 99 mm	0.0	> 99 mm	0.0	
min size (mm)	22	min size (mm)	24	
max size (mm)	42	max size (mm)	40	
mean	28	mean	29	
mode	27	mode	30	

1986		1989	
Tethya aurantia		Tethya aurantia	
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm)	33 0.0 0.0 0.0 21.2% 12.1% 24.2% 24.2% 9.1% 9.1% 0.0	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm)	26 0.0 3.8% 11.5% 3.8% 26.9% 23.1% 11.5% 15.4% 0.0 3.8% 0.0 15
mean mode	5 6 4 0	mean mode	53 47
1988 Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59	28 0.0 0.0 0.0 17.9% 14.3% 39.3%		
60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm) max size (mm) mean mode	25.0% 3.6% 0.0 0.0 0.0 35 71 53		

1986		1988	
Haliotis corrugata		Haliotis corrugata	
(cases) N=	32	(cases) N=	11
< 45 mm	0.0	< 90 mm	0.0
45 - 49	3.1%	90 - 94	9.1%
50 - 54	0.0	95 - 99	9.1%
55 - 59	0.0	100 - 104	0.0
60 - 64	0.0	105 - 109	9.1%
65 - 69	3.1%	110 - 114	9.1%
70 - 74 75 - 79	0.0 3.1%	115 - 119 120 - 124	0.0 18.2%
80 - 84	0.0	125 - 129	9.1%
85 - 89	0.0	130 - 134	9.1%
90 - 94	3.1%	135 - 139	9.1%
95 - 99	3.1%	140 - 144	9.1%
100 - 104	0.0	145 - 149	9.1%
105 - 109	9.4%	> 149 mm	0.0
110 - 114	15.6%	min size (mm)	94
115 - 119	3.1%	max size (mm)	145
120 - 124	12.5%	mean	122
125 - 129	3.1%	mode	94
130 - 134	12.5%	1000	
135 - 139	6.3% 3.1%	1989	
140 - 144 145 - 149	3.1%	Haliotis corrugata	
150 - 154	6.3%	(cases) N=	15
155 - 159	3.1%	< 100 mm	0.0
160 - 164	3.1%	100 - 104	0.0
165 - 169	0.0	105 - 109	0.0
170 - 174	3.1%	110 - 114	6.7%
> 174 mm	0.0	115 - 119	6.7%
min size (mm)	47	120 - 124	13.3%
max size (mm)	171	125 - 129	6.7%
mean	121	130 - 134	6.7%
mode	112	135 - 139	13.3%
1987		140 - 144	0.0 13.3%
Haliotis corrugata		145 - 149 150 - 154	20.0%
narrotis corragata		155 - 159	0.0
(cases) N=	20	160 - 164	6.7%
< 100 mm	0.0	165 - 169	0.0
100 - 104	0.0	170 - 174	0.0
105 - 109	25.0%	175 - 179	0.0
110 - 114	10.0%	180 - 184	6.7%
115 - 119	10.0%	185 - 189	0.0
120 - 124	5.0%	190 - 194	0.0
125 - 129	10.0%	195 - 199	0.0
130 - 134 135 - 139	10.0% 5.0%	> 199 mm min size (mm)	0.0 112
140 - 144	10.0%	max size (mm)	184
145 - 149	10.0%	mean	140
150 - 154	5.0%	mode	112
> 154 mm	0.0		
min size (mm)	106		
max size (mm)	150		
mean	125		
mode	109		

1986		1988	
Cypraea spadicea		Cypraea spadicea	
() N-	35	(2222) N-	21
(cases) N= < 30 mm	2.9%	(cases) N= < 30 mm	0.0
30 - 34	11.4%	30 - 34	14.3%
35 - 39	17.1%	35 - 39	23.8%
40 - 44	45.7%	40 - 44	42.9%
45 - 49	17.1%	40 - 44	19.0%
50 - 54	2.9%	50 - 54	0.0
55 - 59	0.0	55 - 59	0.0
>59 mm	2.9%	>59 mm	
min size (mm)	2.9%	min size (mm)	0.0
			47
max size (mm)	86	max size (mm)	
mean	42 41	mean	41 39
mode	41	mode	39
1987		1989	
1987 Cypraea spadicea		1989 Cypraea spadicea	
	11		16
Cypraea spadicea	11 18.2%	Cypraea spadicea	16 0.0
Cypraea spadicea (cases) N=		<i>Cypraea spadicea</i> (cases) N=	
Cypraea spadicea (cases) N= < 30 mm	18.2%	<i>Cypraea spadicea</i> (cases) N= < 30 mm	0.0
Cypraea spadicea (cases) N= < 30 mm 30 - 34	18.2% 0.0	Cypraea spadicea (cases) N= < 30 mm 30 - 34	0.0 6.3%
Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39	18.2% 0.0 27.3%	Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39	0.0 6.3% 25.0%
Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44	18.2% 0.0 27.3% 18.2%	Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44	0.0 6.3% 25.0% 25.0%
Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49	18.2% 0.0 27.3% 18.2% 18.2%	Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49	0.0 6.3% 25.0% 25.0% 18.8%
Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	18.2% 0.0 27.3% 18.2% 18.2%	Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	0.0 6.3% 25.0% 25.0% 18.8% 18.8%
Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	18.2% 0.0 27.3% 18.2% 18.2% 0.0	Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	0.0 6.3% 25.0% 25.0% 18.8% 18.8%
Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm	18.2% 0.0 27.3% 18.2% 18.2% 0.0 0.0	Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm	0.0 6.3% 25.0% 25.0% 18.8% 18.8% 0.0 6.3%
Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm)	18.2% 0.0 27.3% 18.2% 18.2% 0.0 0.0 24	Cypraea spadicea (cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm)	0.0 6.3% 25.0% 25.0% 18.8% 0.0 6.3% 34

		ize riequencies	
	CRUZ ISLAND - YELLOWBANKS	1000	
1986		1988	
Kelletia kelletii		Kelletia kelletii	
(cases) N=	24	(cases) N=	28
<40 mm	0.0	<40 mm	0.0
40 - 49	0.0	40 - 49	0.0
50 - 59	4.2%	50 - 59	0.0
60 - 69	8.3%	60 - 69	0.0
70 - 79	8.3%	70 - 79	3.6%
80 - 89	12.5%	80 - 89	7.1%
90 - 99	8.3%	90 - 99	21.4%
100 - 109	41.7%	100 - 109	21.4%
110 - 119	12.5%	110 - 119	42.9%
120 - 129	4.2%	120 - 129	0.0
130 - 139	0.0	130 - 139	3.6%
140 - 149	0.0	140 - 149	0.0
>149 mm	0.0	>149 mm	0.0
min size (mm)	51	min size (mm)	78
max size (mm)	120	max size (mm)	132
mean	94	mean	105
mode	95	mode	112
1005		1000	
1987		1989	
Kelletia kelletii		Kelletia kelletii	
(cases) N=	10	(cases) N=	11
<40 mm	0.0	<40 mm	0.0
40 - 49	0.0	40 - 49	0.0
50 - 59	0.0	50 - 59	0.0
60 - 69	0.0	60 - 69	0.0
70 - 79	0.0	70 - 79	9.1%
80 - 89	10.0%	80 - 89	18.2%
90 - 99	30.0%	90 - 99	0.0
100 - 109	40.0%	100 - 109	0.0
110 - 119	20.0%	110 - 119	27.3%
120 - 129	0.0	120 - 129	18.2%
130 - 139	0.0	130 - 139	18.2%
140 - 149	0.0	140 - 149	9.1%
>149 mm	0.0	>149 mm	9.1%
min size (mm)	86	min size (mm)	75
max size (mm)	115	max size (mm)	145
mean	101	mean	112
mode	102	mode	110

1986 Astraea undosa		1988 Astraea undosa	
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean	32 0.0 0.0 6.3% 28.1% 31.3% 3.1% 12.5% 0.0 3.1% 3.1% 6.3% 3.1% 6.3% 3.1% 12.5%	10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 110 - 109 110 - 119 25 >119 mm min size (mm)	36 0.0 0.0 0.0 0.0 0.0 0.6 2 1 2 1 3 1 8 1 8 1 8 9
mode	36	mode	64
1987 Astraea undosa		1989 Astraea undosa	
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	29 0.0 0.0 0.0 0.0 0.0 34.5% 20.7% 3.4% 0.0 0.0 6.9% 27.6% 10.3% 52 135 83 57	10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 23 >119 mm min size (mm)	30 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.3 0.3

1986 Megathura crenulata		1988 Megathura crenulata	
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	24 0.0 4.2% 4.2% 0.0 0.0 12.5% 29.2% 33.3% 16.7% 0.0 0.0 0.0 0.0 15.87 66 64	10 - 19 0 20 - 29 0 30 - 39 0 40 - 49 0 50 - 59 0 60 - 69 23 70 - 79 44 80 - 89 26 90 - 99 5 100 - 109 0 110 - 119 0	34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 5.5 9.0 0.0 0.0 0.0 0.0 62 91 75 71
1987 Megathura crenulata		1989 Megathura crenulata	
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	32 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.1% 50.0% 40.6% 3.1% 0.0 76 113 89 80	10 - 19 0 20 - 29 0 30 - 39 0 40 - 49 5 50 - 59 5 60 - 69 20 70 - 79 50 80 - 89 10 90 - 99 10 100 - 109 0 110 - 119 0	20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45 98 73

1986		1989	
Patiria miniata		Patiria miniata	
, , , , , , , , , , , , , , , , , , , ,	4.0		
(cases) N=	12	(cases) N=	54
< 10 mm	0.0	< 10 mm	0.0
10 - 19	8.3%	10 - 19	3.7%
20 - 29	16.7%	20 - 29	1.9%
30 - 39	33.3%	30 - 39	9.3%
40 - 49	0.0	40 - 49	11.1%
50 - 59	8.3%	50 - 59	18.5%
60 - 69	8.3%	60 - 69	29.6%
70 - 79	16.7%	70 - 79	18.5%
80 - 89	8.3%	80 - 89	5.6%
90 - 99	0.0	90 - 99	1.9%
>100 mm	0.0	>100 mm	0.0
min size (mm)	13	min size (mm)	18
max size (mm)	89	max size (mm)	97
mean	47	mean	59
mode	13	mode	68
1000			
1988			
Patiria miniata			
(cases) N=	24		
< 10 mm	0.0		
10 - 19	4.2%		
20 - 29	4.2%		
30 - 39	29.2%		
40 - 49	8.3%		
50 - 59	12.5%		
60 - 69	12.5%		
70 - 79	8.3%		
80 - 89	8.3%		
90 - 99	8.3%		
>100 mm	4.2%		
min size (mm)	18		
max size (mm)	104		
mean	56		
mode	35		
mode	33		

1986		1988	
Pisaster giganteus		Pisaster giganteus	
Tibabeel giganeeab		110abcel glganecab	
(cases) N=	36	(cases) N=	41
<20 mm	0.0	<20 mm	0.0
20 - 39	0.0	20 - 39	0.0
40 - 59	50.0%	40 - 59	19.5%
60 - 79	25.0%	60 - 79	48.8%
80 - 99	16.7%	80 - 99	24.4%
100 - 119	8.3%	100 - 119	4.9%
120 - 139	0.0	120 - 139	2.4%
140 - 159	0.0	140 - 159	0.0
160 - 179	0.0	160 - 179	0.0
180 - 199	0.0	180 - 199	0.0
200 - 219	0.0	200 - 219	0.0
220 - 239	0.0	220 - 239	0.0
240 - 259	0.0	240 - 259	0.0
260 - 279	0.0	260 - 279	0.0
280 - 299	0.0	280 - 299	0.0
>299 mm	0.0	>299 mm	0.0
min size (mm)	40	min size (mm)	48
max size (mm)	112	max size (mm)	128
mean	67	mean	76
mode	56	mode	62
1987		1989	
1987 Pisaster giganteus		1989 Pisaster giganteus	
	21		34
Pisaster giganteus	21 0.0	Pisaster giganteus	34 0.0
Pisaster giganteus (cases) N=		Pisaster giganteus (cases) N=	
Pisaster giganteus (cases) N= <20 mm	0.0	Pisaster giganteus (cases) N= <20 mm	0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39	0.0 9.5%	Pisaster giganteus (cases) N= <20 mm 20 - 39	0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59	0.0 9.5% 23.8%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59	0.0 0.0 23.5%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79	0.0 9.5% 23.8% 57.1%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79	0.0 0.0 23.5% 67.6%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99	0.0 9.5% 23.8% 57.1% 4.8%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99	0.0 0.0 23.5% 67.6% 5.9%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119	0.0 9.5% 23.8% 57.1% 4.8% 4.8%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119	0.0 0.0 23.5% 67.6% 5.9% 2.9%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139	0.0 9.5% 23.8% 57.1% 4.8% 4.8% 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139	0.0 0.0 23.5% 67.6% 5.9% 2.9%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159	0.0 9.5% 23.8% 57.1% 4.8% 4.8% 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159	0.0 0.0 23.5% 67.6% 5.9% 2.9% 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179	0.0 9.5% 23.8% 57.1% 4.8% 4.8% 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179	0.0 0.0 23.5% 67.6% 5.9% 2.9% 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199	0.0 9.5% 23.8% 57.1% 4.8% 4.8% 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199	0.0 0.0 23.5% 67.6% 5.9% 2.9% 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219	0.0 9.5% 23.8% 57.1% 4.8% 4.8% 0.0 0.0 0.0 0.0	(cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219	0.0 0.0 23.5% 67.6% 5.9% 2.9% 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239	0.0 9.5% 23.8% 57.1% 4.8% 4.8% 0.0 0.0 0.0 0.0 0.0	(cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239	0.0 0.0 23.5% 67.6% 5.9% 2.9% 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259	0.0 9.5% 23.8% 57.1% 4.8% 4.8% 0.0 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259	0.0 0.0 23.5% 67.6% 5.9% 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279	0.0 9.5% 23.8% 57.1% 4.8% 4.8% 0.0 0.0 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279	0.0 0.0 23.5% 67.6% 5.9% 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	0.0 9.5% 23.8% 57.1% 4.8% 4.8% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	0.0 0.0 23.5% 67.6% 5.9% 0.0 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm	0.0 9.5% 23.8% 57.1% 4.8% 4.8% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm	0.0 0.0 23.5% 67.6% 5.9% 0.0 0.0 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	0.0 9.5% 23.8% 57.1% 4.8% 4.8% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	0.0 0.0 23.5% 67.6% 5.9% 2.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm) max size (mm)	0.0 9.5% 23.8% 57.1% 4.8% 4.8% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm) max size (mm)	0.0 0.0 23.5% 67.6% 5.9% 2.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

1986		1988	
Lytechinus anam	nesus	Lytechinus anamesus	
	404		454
(cases) N=	124	(cases) N=	151
< 5 mm 5 - 9	0.0	< 5 mm 5 - 9	0.0 3.3%
10 - 14	0.0 4.8%	10 - 14	2.6%
15 - 19	35.5%	15 - 19	25.8%
20 - 24	46.0%	20 - 24	50.3%
25 - 29	13.7%	25 - 29	16.6%
>29 mm	0.0	30 - 34	1.3%
min size (mm)	12	>34 mm	0.0
max size (mm)	28	min size (mm)	5
mean	20	max size (mm)	32
mode	22	mean	21
		mode	20
1987			
Lytechinus anam	nesus	1989	
		Lytechinus anamesus	
(cases) N=	114		
< 5 mm	0.0	(cases) N=	145
5 - 9	5.3%	< 5 mm	0.0
10 - 14	21.9%	5 - 9	0.0
15 - 19	27.2%	10 - 14	13.1%
20 - 24	32.5%	15 - 19	34.5%
25 - 29	12.3%	20 - 24	39.3%
30 - 34	0.9%	25 - 29	13.1%
>34 mm	0.0	>29 mm	0.0
min size (mm)	6	min size (mm)	10
max size (mm)	30	max size (mm)	29
mean	18	mean	20
mode	20	mode	20
LOCATION 10 S	SANTA CRUZ ISLAND - YELLOWBAN	NKS	
	SANTA CRUZ ISLAND - YELLOWBAN		
1986		1987	
1986 Strongylocentro	otus franciscanus	1987 Strongylocentrotus fr	
1986 Strongylocentro (cases) N=	otus franciscanus 125	1987 Strongylocentrotus fr (cases) N=	109
1986 Strongylocentro (cases) N= < 9 mm	otus franciscanus 125 0.0	1987 Strongylocentrotus fr (cases) N= < 14 mm	109 0.0
1986 Strongylocentro (cases) N= < 9 mm 10 - 14	otus franciscanus 125 0.0 0.8%	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19	109 0.0 0.0
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19	otus franciscanus 125 0.0 0.8% 1.6%	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24	109 0.0 0.0 0.0
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24	otus franciscanus 125 0.0 0.8% 1.6% 3.2%	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29	109 0.0 0.0 0.0 0.9%
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19	otus franciscanus 125 0.0 0.8% 1.6%	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24	109 0.0 0.0 0.0 0.9% 2.8%
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29	otus franciscanus 125 0.0 0.8% 1.6% 3.2% 12.8%	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34	109 0.0 0.0 0.0 0.9%
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	otus franciscanus 125 0.0 0.8% 1.6% 3.2% 12.8% 12.8%	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	109 0.0 0.0 0.0 0.9% 2.8% 0.9% 1.8%
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	125 0.0 0.8% 1.6% 3.2% 12.8% 12.8% 14.4%	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	109 0.0 0.0 0.0 0.9% 2.8% 0.9%
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	125 0.0 0.8% 1.6% 3.2% 12.8% 12.8% 14.4% 15.2%	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	109 0.0 0.0 0.9% 2.8% 0.9% 1.8% 9.2% 15.6%
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	125 0.0 0.8% 1.6% 3.2% 12.8% 12.8% 14.4% 15.2%	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	109 0.0 0.0 0.9% 2.8% 0.9% 1.8% 9.2% 15.6% 19.3%
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	125 0.0 0.8% 1.6% 3.2% 12.8% 12.8% 14.4% 15.2% 14.4%	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	109 0.0 0.0 0.9% 2.8% 0.9% 1.8% 9.2% 15.6% 19.3% 16.5%
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	125 0.0 0.8% 1.6% 3.2% 12.8% 12.8% 14.4% 15.2% 14.4% 5.6% 4.8%	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	109 0.0 0.0 0.9% 2.8% 0.9% 1.8% 9.2% 15.6% 19.3% 16.5% 9.2%
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	125 0.0 0.8% 1.6% 3.2% 12.8% 12.8% 14.4% 15.2% 14.4% 5.6% 4.8%	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	109 0.0 0.0 0.0 0.9% 2.8% 0.9% 1.8% 9.2% 15.6% 19.3% 16.5% 9.2%
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	125 0.0 0.8% 1.6% 3.2% 12.8% 12.8% 14.4% 15.2% 14.4% 5.6% 4.8% 4.8% 3.2%	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	109 0.0 0.0 0.9 2.8% 0.9% 1.8% 9.2% 15.6% 19.3% 16.5% 9.2% 9.2%
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	125 0.0 0.8% 1.6% 3.2% 12.8% 12.8% 14.4% 15.2% 14.4% 5.6% 4.8% 3.2% 1.6% 2.4% 0.8%	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	109 0.0 0.0 0.9% 2.8% 0.9% 1.8% 9.2% 15.6% 19.3% 16.5% 9.2% 9.2% 4.6% 1.8%
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	125 0.0 0.8% 1.6% 3.2% 12.8% 12.8% 14.4% 15.2% 14.4% 5.6% 4.8% 3.2% 1.6% 2.4% 0.8%	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	109 0.0 0.0 0.9% 2.8% 0.9% 1.8% 9.2% 15.6% 19.3% 16.5% 9.2% 9.2% 4.6% 1.8% 0.0
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	125 0.0 0.8% 1.6% 3.2% 12.8% 12.8% 14.4% 15.2% 14.4% 5.6% 4.8% 4.8% 3.2% 1.6% 2.4% 0.8%	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	109 0.0 0.0 0.9% 2.8% 0.9% 1.8% 9.2% 15.6% 19.3% 16.5% 9.2% 4.6% 1.8% 0.0 0.0
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	125 0.0 0.8% 1.6% 3.2% 12.8% 12.8% 14.4% 15.2% 14.4% 5.6% 4.8% 4.8% 3.2% 1.6% 2.4% 0.0 0.0	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	109 0.0 0.0 0.0 0.9 2.8 0.9 1.8 9.2 15.6 19.3 16.5 9.2 9.2 4.6 1.8 0.0 0.9 3.7 1.8 8
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	125 0.0 0.8% 1.6% 3.2% 12.8% 12.8% 14.4% 15.2% 14.4% 5.6% 4.8% 4.8% 4.8% 3.2% 1.6% 2.4% 0.0% 0.0	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	109 0.0 0.0 0.0 0.9% 2.8% 0.9% 1.8% 9.2% 15.6% 19.3% 16.5% 9.2% 4.6% 1.8% 0.0 0.9% 3.7% 1.8%
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	125 0.0 0.8% 1.6% 3.2% 12.8% 12.8% 14.4% 15.2% 14.4% 5.6% 4.8% 4.8% 3.2% 1.6% 2.4% 0.8% 0.0 0.0 0.0 0.0	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	109 0.0 0.0 0.0 0.9 2.8% 0.9% 1.8% 9.2% 15.6% 19.3% 16.5% 9.2% 9.2% 9.2% 4.6% 1.8% 0.00 0.9% 3.7% 1.8% 0.00 1.8%
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	125 0.0 0.8% 1.6% 3.2% 12.8% 12.8% 14.4% 15.2% 14.4% 5.6% 4.8% 4.8% 4.8% 3.2% 1.6% 2.4% 0.8% 0.0 0.08% 0.0	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	109 0.0 0.0 0.0 0.9 2.8 0.9 1.8 9.2 15.6 19.3 16.5 9.2 9.2 4.6 1.8 0.0 0.9 3.7 1.8 0.0 1.8 29
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	125 0.0 0.8% 1.6% 3.2% 12.8% 12.8% 14.4% 15.2% 14.4% 5.6% 4.8% 3.2% 1.6% 2.4% 0.8% 0.0 0.0 0.0 0.8% 0.0 14	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	109 0.0 0.0 0.0 0.9% 2.8% 0.9% 1.8% 9.2% 15.6% 19.3% 16.5% 9.2% 4.6% 1.8% 0.0 0.9% 3.7% 1.8% 0.0 1.8% 29
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	125 0.0 0.8% 1.6% 3.2% 12.8% 12.8% 14.4% 15.2% 14.4% 5.6% 4.8% 4.8% 3.2% 1.6% 2.4% 0.8% 0.0 0.0 0.8% 0.0 0.0 0.08% 0.0	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm) mean	109 0.0 0.0 0.0 0.9% 2.8% 0.9% 1.8% 9.2% 15.6% 19.3% 16.5% 9.2% 9.2% 4.6% 1.8% 0.0 0.9% 3.7% 1.8% 0.0 1.8% 0.0
1986 Strongylocentro (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	125 0.0 0.8% 1.6% 3.2% 12.8% 12.8% 14.4% 15.2% 14.4% 5.6% 4.8% 3.2% 1.6% 2.4% 0.8% 0.0 0.0 0.0 0.8% 0.0 14	1987 Strongylocentrotus fr (cases) N= < 14 mm 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	109 0.0 0.0 0.0 0.9 2.8% 0.9% 1.8% 9.2% 15.6% 19.3% 16.5% 9.2% 9.2% 9.2% 4.6% 1.8% 0.00 0.9% 3.7% 1.8% 0.00 1.8%

LOCATION 10 SANTA CRUZ ISLAND - YELLOWBANKS

1988		1989	
Strongylocentrotus	franciscanus	Strongylocentrotus franci	scanus
(cases) N=	92	(cases) N=	118
< 5 mm	0.0	< 5 mm	1.7%
5 - 9	4.3%	5 - 9	9.3%
10 - 14	13.0%	10 - 14	15.3%
15 - 19	3.3%	15 - 19	14.4%
20 - 24	1.1%	20 - 24	11.9%
25 - 29	0.0	25 - 29	8.5%
30 - 34	1.1%	30 - 34	4.2%
35 - 39	0.0	35 - 39	0.8%
40 - 44	0.0	40 - 44	2.5%
45 - 49	0.0	45 - 49	0.0
50 - 54	2.2%	50 - 54	0.0
55 - 59	2.2%	55 - 59	0.0
60 - 64	4.3%	60 - 64	0.0
65 - 69	5.4%	65 - 69	1.7%
70 - 74	15.2%	70 - 74	1.7%
75 - 79	16.3%	75 - 79	0.0
80 - 84	14.1%	80 - 84	3.4%
85 - 89	5.4%	85 - 89	6.8%
90 - 94	3.3%	90 - 94	10.2%
95 - 99	3.3%	95 - 99	2.5%
100 - 104	1.1%	100 - 104	4.2%
105 - 109	2.2%	105 - 109	0.0
> 109 mm	2.2%	> 109 mm	0.8%
min size (mm)	7	min size (mm)	3
max size (mm)	117	max size (mm)	116
mean	64	mean	41
mode	77	mode	19

LOCATION 10 SANTA CRUZ ISLAND - YELLOWBANKS

1986	
Srongylocentrotus	purpuratus

(cases)	N=	107
< 5 mm		0.0
5 - 9		0.9%
10 - 14		4.7%
15 - 19		5.6%
20 - 24		14.0%
25 - 29		20.6%
30 - 34		30.8%
35 - 39		13.1%
40 - 44		5.6%
45 - 49		0.0
50 - 54		0.9%
55 - 59		1.9%
60 - 64		0.9%
65 - 69		0.0
70 - 74		0.9%
75 - 79		0.0
80 - 84		0.0
85 - 89		0.0
90 - 94		0.0
95 - 99		0.0
> 99 mm		0.0
min size	e (mm)	9
max size	e (mm)	74
mean		30

35

mean mode

1987 Srongylocentrotus purpuratus

N=	114 0.0
	0.0
	0.0
	1.8%
	11.4%
	32.5%
	22.8%
	14.9%
	7.9%
	5.3%
	0.9%
	1.8%
	0.9%
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0
(mm)	18
(mm)	61
	32
	25
	(mm)

LOCATION 10 SANTA CRUZ ISLAND - YELLOWBANKS

LOCATION TO SANTA	A CROZ ISLAND IELLOWDANKS	1989	
1988		Srongylocentrotus pur	ouratus
Srongylocentrotus ;	ourpuratus	5 5 52 5 5 5 5 5 5	
31		(cases) N=	105
(cases) N=	100	< 5 mm	0.0
< 5 mm	0.0	5 - 9	1.0%
5 - 9	1.0%	10 - 14	9.5%
10 - 14	1.0%	15 - 19	19.0%
15 - 19	2.0%	20 - 24	9.5%
20 - 24	11.0%	25 - 29	4.8%
25 - 29	19.0%	30 - 34	12.4%
30 - 34	31.0%	35 - 39	15.2%
35 - 39	18.0%	40 - 44	18.1%
40 - 44	10.0%	45 - 49	7.6%
45 - 49	7.0%	50 - 54	1.9%
50 - 54	0.0	55 - 59	1.0%
55 - 59	0.0	60 - 64	0.0
60 - 64	0.0	65 - 69	0.0
65 - 69	0.0	70 - 74	0.0
70 - 74	0.0	75 - 79	0.0
75 - 79	0.0	80 - 84	0.0
80 - 84	0.0	85 - 89	0.0
85 - 89	0.0	90 - 94	0.0
90 - 94	0.0	95 - 99	0.0
95 - 99	0.0	> 99 mm	0.0
> 99 mm	0.0	min size (mm)	8
min size (mm)	9	max size (mm)	56
max size (mm)	49	mean	30
mean	32	mode	17
mode	30		

LOCATION 11 ANACAPA ISLAND - ADMIRAL'S REEF

1984		1985	
Haliotis corrugata		Haliotis corrugata	
(cases) N=	31	(cases) N=	34
< 35 mm	0.0	< 85 mm	0.0
35 - 39	0.0	85 - 89	2.9%
40 - 44	3.2%	90 - 94	2.9%
45 - 49	0.0	95 - 99	0.0
50 - 54	0.0	100 - 104	5.9%
55 - 59	3.2%	105 - 109	8.8%
60 - 64	9.7%	110 - 114	5.9%
65 - 69	0.0	115 - 119	5.9%
70 - 74	0.0	120 - 124	20.6%
75 - 79	0.0	125 - 129	8.8%
80 - 84	3.2%	130 - 134	5.9%
85 - 89	0.0	135 - 139	11.8%
90 - 94	0.0	140 - 144	8.8%
95 - 99	0.0	145 - 149	8.8%
100 - 104	0.0	150 - 154	0.0
105 - 109	3.2%	155 - 159	0.0
110 - 114	12.9%	160 - 164	2.9%
115 - 119	3.2%	165 - 169	0.0
120 - 124	9.7%	170 - 174	0.0
125 - 129	9.7%	175 - 179	0.0
130 - 134	3.2%	180 - 184	0.0
135 - 139	12.9%	185 - 189	0.0
140 - 144	3.2%	190 - 194	0.0
145 - 149	16.1%	195 - 199	0.0
150 - 154	0.0	> 199 mm	0.0
155 - 159	6.5%	min size (mm)	88
> 159 mm	0.0	max size (mm)	161
min size (mm)	41	mean	124
max size (mm)	159	mode	120
mean	118		
mode	149		

LOCATION 11 ANACAPA ISLAND - ADMIRAL'S REEF

1986 Haliotis corrugata		1987 Haliotis corrugata	
(cases) N= < 45 mm 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 110 - 114 115 - 119 120 - 124 125 - 129 130 - 134 135 - 139 140 - 144 145 - 149 150 - 154 155 - 159 > 159 mm min size (mm) max size (mm) mean mode	20 0.0 5.0% 5.0% 0.0 0.0 5.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 55 mm 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 110 - 114 115 - 119 120 - 124 125 - 129 130 - 134 135 - 139 140 - 144 145 - 149 > 149 mm min size (mm) max size (mm) mean mode	32 0.0 6.3% 0.0 0.0 0.0 3.1% 3.1% 0.0 3.1% 6.3% 9.4% 6.3% 9.4% 6.3% 9.4% 15.6% 3.1% 6.3% 9.4% 15.6% 115.134
1988 Haliotis corrugata		1989 Haliotis corrugata	
(cases) N= < 55 mm 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 110 - 114 115 - 119 120 - 124 125 - 129 130 - 134 135 - 139 140 - 144 145 - 149 > 149 mm min size (mm) max size (mm) mean mode	23 0.0 4.3% 0.0 4.3% 0.0 8.7% 4.3% 8.7% 4.3% 4.3% 4.3% 8.7% 0.0 8.7% 8.7% 8.7% 8.7% 8.7% 8.7% 8.7% 8.7%	(cases) N= < 55 mm 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 110 - 114 115 - 119 120 - 124 125 - 129 130 - 134 135 - 139 140 - 144 145 - 149 150 - 154 155 - 159 160 - 164 165 - 169 > 169 mm min size (mm) max size (mm)	53 0.0 1.9% 0.0 0.0 1.9% 1.9% 0.0 7.5% 5.7% 7.5% 5.7% 1.9% 15.1% 7.5% 9.4% 1.9% 0.0 3.8% 1.9%

Appx. 5-133

mean 118 mode 91

1984 Cypraea spadicea		1987 Cypraea spadicea
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	38 0.0 2.6% 7.9% 23.7% 42.1% 21.1% 2.6% 0.0 34 56 46 45	(cases) N= 24 < 30 mm
1985 Cypraea spadicea		1989 Cypraea spadicea
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	21 0.0 0.0 4.8% 28.6% 33.3% 28.6% 4.8% 0.0 39 55 47	(cases) N= 36 < 30 mm
1986 Cypraea spadicea		
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	26 0.0 3.8% 11.5% 38.5% 11.5% 30.8% 3.8% 0.0 30 58 45 42	1986 Tethya aurantia (cases) N= 25 < 10 mm 0.0 10 - 19 0.0 20 - 29 0.0 30 - 39 0.0 40 - 49 28.0% 50 - 59 40.0% 60 - 69 20.0% 70 - 79 8.0% 80 - 89 0.0 90 - 99 4.0% 90 - 99 4.0% min size (mm) 40 max size (mm) 95 mean 56 mode 41

1984		1984	
Kelletia kelletii		Astraea undosa	
nerreera nerreerr		nocraca anacoa	
(cases) N=	1.0	(cases) N=	19
<40 mm	0.0	< 50 mm	0.0
40 - 49	0.0	50 - 59	10.5%
50 - 59	0.0	60 - 69	0.0
60 - 69	0.0	70 - 79	5.3%
70 - 79	20.0%	80 - 89	15.8%
80 - 89	0.0	90 - 99	26.3%
90 - 99	20.0%	100 - 109	36.8%
100 - 109	0.0	110 - 119	0.0
110 - 119	20.0%	>119 mm	5.3%
120 - 129	30.0%	min size (mm)	57
130 - 139	10.0%	max size (mm)	122
140 - 149	0.0	mean	94
>149 mm	0.0	mode	104
min size (mm)	73		
max size (mm)	135	1985	
mean	107	Astraea undosa	
mode	99	ASCIACA UNGOSA	
mode	33	(cases) N=	30
1985		,	
		< 30 mm	0.0
Kelletia kelletii		30 - 39	0.0
		40 - 49	16.7%
(cases) N=	24	50 - 59	16.7%
<40 mm	0.0	60 - 69	3.3%
40 - 49	0.0	70 - 79	0.0
50 - 59	0.0	80 - 89	3.3%
60 - 69	12.5%	90 - 99	16.7%
70 - 79	4.2%	100 - 109	23.3%
80 - 89	25.0%	110 - 119	13.3%
90 - 99	4.2%	>119 mm	13.3%
100 - 109	20.8%	min size (mm)	40
110 - 119	20.8%	max size (mm)	136
120 - 129	12.5%	mean	87
130 - 139	0.0	mode	44
140 - 149	0.0	mode	1.1
>149 mm	0.0	1989	
min size (mm)	63	Astraea undosa	
		ASCIACA UNGOSA	
max size (mm)	120 95	(gagget) N-	30
mean		(cases) N=	
mode	80	< 50 mm	0.0
		50 - 59	0.0
		60 - 69	16.7%
		70 - 79	0.0
		80 - 89	33.3%
		90 - 99	30.0%
		100 - 109	16.7%
		110 - 119	3.3%
		>119 mm	0.0
		min size (mm)	64
		max size (mm)	112
		mean	88
		mode	66
			30

LOCATION 11 ANACAPA ISLAND - ADMIRAL'S REEF

0.0

54 82

68 69

>119 mm

mean mode

min size (mm) max size (mm)

1984		1989	
Megathura crenulata		Megathura crenulata	
(cases) N=	50	(cases) N=	11
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	27.3%
20 - 29	0.0	20 - 29	0.0
30 - 39	0.0	30 - 39	0.0
40 - 49	0.0	40 - 49	0.0
50 - 59	2.0%	50 - 59	0.0
60 - 69	26.0%	60 - 69	36.4%
70 - 79	36.0%	70 - 79	9.1%
80 - 89	28.0%	80 - 89	18.2%
90 - 99	8.0%	90 - 99	0.0
100 - 109	0.0	100 - 109	0.0
110 - 119	0.0	110 - 119	9.1%
>119 mm	0.0	>119 mm	0.0
min size (mm)	58	min size (mm)	12
max size (mm)	94	max size (mm)	111
mean	76	mean	60
mode	82	mode	12
1985			
Megathura crenulata			
(cases) N=	32		
< 10 mm	0.0		
10 - 19	0.0		
20 - 29	0.0		
30 - 39	0.0		
40 - 49	0.0		
50 - 59	12.5%		
60 - 69	43.8%		
70 - 79	40.6%		
80 - 89	3.1%		
90 - 99	0.0		
100 - 109	0.0		
110 - 119	0.0		
>119 mm	0.0		

1984		1987
Hinnites giganteus		Hinnites giganteus
(cases) N=	34	9 9
< 30	0.0	(cases) N= 30
30 - 39	20.6%	< 10 mm 0.0
40 - 49	20.6%	10 - 19 0.0
50 - 59	26.5%	20 - 29 0.0
60 - 69	20.6%	30 - 39 6.7%
70 - 79	5.9%	40 - 49 23.3%
80 - 89	2.9%	50 - 59 30.0%
90 - 99	0.0	60 - 69 16.7%
100 - 109	2.9%	70 - 79 6.7%
>109 mm	0.0	80 - 89 3.3%
min size (mm)	34	90 - 99 3.3%
max size (mm)	104	100 - 109 3.3%
mean	54	110 - 119 6.7%
mode	34	120 - 129 0.0
		130 - 139 0.0
1985		140 - 149 0.0
Hinnites giganteus		>149 mm 0.0
(cases) N=	30	min size (mm) 37
< 19 mm	0.0	max size (mm) 111
20 - 29	3.3%	mean 62
30 - 39	6.7%	mode 48
40 - 49	20.0%	
50 - 59	26.7%	1989
60 - 69	16.7%	Hinnites giganteus
70 - 79	3.3%	
80 - 89	10.0%	(cases) N= 46
90 - 99	6.7%	< 10 mm 0.0
100 - 109	3.3%	10 - 19 0.0
110 - 119	0.0	20 - 29 0.0 30 - 39 8.7%
120 - 129 >129 mm	3.3% 0.0	30 - 39 8.7% 40 - 49 32.6%
min size (mm)	28	50 - 59 26.1%
max size (mm)	123	60 - 69 15.2%
mean	62	70 - 79 8.7%
mode	49	80 - 89 4.3%
mode	4.5	90 - 99 2.2%
1986		100 - 109 2.2%
Hinnites giganteus		110 - 119 0.0
(cases) N=	44	120 - 129 0.0
< 20 mm	0.0	130 - 139 0.0
20 - 29	2.3%	140 - 149 0.0
30 - 39	15.9%	>149 mm 0.0
40 - 49	18.2%	min size (mm) 35
50 - 59	6.8%	max size (mm) 109
60 - 69	18.2%	mean 56
70 - 79	20.5%	mode 48
80 - 89	9.1%	
90 - 99	4.5%	
100 - 109	2.3%	
110 - 119	0.0	
120 - 129	2.3%	
>129 mm	0.0	
min size (mm)	27	
max size (mm)	125	
mean	62	
mode	46	

1986		1988	
Patiria miniata		Patiria miniata	
(cases) N=	30	(cases) N=	41
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	0.0
20 - 29	0.0	20 - 29	2.4%
30 - 39	30.0%	30 - 39	17.1%
40 - 49	30.0%	40 - 49	39.0%
50 - 59	20.0%	50 - 59	22.0%
60 - 69	6.7%	60 - 69	19.5%
70 - 79	0.0	70 - 79	0.0
80 - 89	10.0%	80 - 89	0.0
90 - 99	0.0	90 - 99	0.0
>100 mm	3.3%	>100 mm	0.0
min size (mm)	32	min size (mm)	28
max size (mm)	101	max size (mm)	69
mean	51	mean	49
mode	33	mode	39
1987		1989	
1987 Patiria miniata		1989 Patiria miniata	
	11		51
Patiria miniata	11 0.0	Patiria miniata	51 2.0%
Patiria miniata (cases) N=		Patiria miniata (cases) N=	
Patiria miniata (cases) N= < 10 mm	0.0	Patiria miniata (cases) N= < 10 mm	2.0%
Patiria miniata (cases) N= < 10 mm 10 - 19	0.0	Patiria miniata (cases) N= < 10 mm 10 - 19	2.0% 7.8%
Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29	0.0 0.0 0.0	Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29	2.0% 7.8% 3.9%
Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39	0.0 0.0 0.0 0.0	Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39	2.0% 7.8% 3.9% 7.8%
Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49	0.0 0.0 0.0 0.0 0.0	Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49	2.0% 7.8% 3.9% 7.8% 15.7%
Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59	0.0 0.0 0.0 0.0 0.0 63.6%	Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59	2.0% 7.8% 3.9% 7.8% 15.7% 21.6%
Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69	0.0 0.0 0.0 0.0 0.0 63.6% 27.3%	Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69	2.0% 7.8% 3.9% 7.8% 15.7% 21.6% 21.6%
Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79	0.0 0.0 0.0 0.0 0.0 63.6% 27.3% 9.1%	Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79	2.0% 7.8% 3.9% 7.8% 15.7% 21.6% 21.6% 9.8%
Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89	0.0 0.0 0.0 0.0 0.0 63.6% 27.3% 9.1% 0.0	Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89	2.0% 7.8% 3.9% 7.8% 15.7% 21.6% 21.6% 9.8% 7.8%
Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99	0.0 0.0 0.0 0.0 63.6% 27.3% 9.1% 0.0	Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99	2.0% 7.8% 3.9% 7.8% 15.7% 21.6% 21.6% 9.8% 7.8% 2.0%
Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm	0.0 0.0 0.0 0.0 63.6% 27.3% 9.1% 0.0 0.0	Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm	2.0% 7.8% 3.9% 7.8% 15.7% 21.6% 21.6% 9.8% 7.8% 2.0% 0.0
Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm min size (mm)	0.0 0.0 0.0 0.0 63.6% 27.3% 9.1% 0.0 0.0	Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm min size (mm)	2.0% 7.8% 3.9% 7.8% 15.7% 21.6% 21.6% 9.8% 7.8% 2.0% 0.0
Patiria miniata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm min size (mm) max size (mm)	0.0 0.0 0.0 0.0 0.0 63.6% 27.3% 9.1% 0.0 0.0 0.0	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >100 mm min size (mm) max size (mm)	2.0% 7.8% 3.9% 7.8% 15.7% 21.6% 21.6% 9.8% 7.8% 2.0% 0.0

1986		1989	
Pisaster giganteus		Pisaster giganteus	
(cases) N=	23	(cases) N=	32
<20 mm	0.0	<20 mm	0.0
20 - 39	0.0	20 - 39	0.0
40 - 59	4.3%	40 - 59	0.0
60 - 79	0.0	60 - 79	0.0
80 - 99	0.0	80 - 99	12.5%
100 - 119	0.0	100 - 119	40.6%
120 - 139	8.7%	120 - 139	9.4%
140 - 159	13.0%	140 - 159	9.4%
160 - 179	21.7%	160 - 179	15.6%
180 - 199	30.4%	180 - 199	12.5%
200 - 219	8.7%	200 - 219	0.0
220 - 239	8.7%	220 - 239	0.0
240 - 259	4.3%	240 - 259	0.0
260 - 279	0.0	260 - 279	0.0
280 - 299	0.0	280 - 299	0.0
>299 mm	0.0	>299 mm	0.0
min size (mm)	50	min size (mm)	93
max size (mm)	255	max size (mm)	188
mean	176	mean	132
mode	168	mode	93
1988			
Pisaster giganteus			
(cases) N=	31		
<20 mm	0.0		
20 - 39	0.0		
10 - 50	0 0		

(cases) N= 31 <20 mm 0.0 20 - 39 0.0 40 - 59 0.0 60 - 79 6.5% 80 - 99 19.4% 100 - 119 25.8% 120 - 139 6.5% 140 - 159 16.1% 180 - 199 9.7% 200 - 219 0.0 220 - 239 0.0 240 - 259 0.0 280 - 299 0.0 >299 mm 0.0 min size (mm) 75 max size (mm) 192 mean 129 mode 92		
20 - 39	(cases) N=	31
40 - 59 0.0 60 - 79 6.5% 80 - 99 19.4% 100 - 119 25.8% 120 - 139 6.5% 140 - 159 16.1% 180 - 199 9.7% 200 - 219 0.0 220 - 239 0.0 240 - 259 0.0 280 - 299 0.0 >299 mm 0.0 min size (mm) 75 max size (mm) 192 mean 129	<20 mm	0.0
60 - 79 6.5% 80 - 99 19.4% 100 - 119 25.8% 120 - 139 6.5% 140 - 159 16.1% 160 - 179 16.1% 180 - 199 9.7% 200 - 219 0.0 220 - 239 0.0 240 - 259 0.0 260 - 279 0.0 280 - 299 0.0 min size (mm) 75 max size (mm) 192 mean 129	20 - 39	0.0
80 - 99 19.4% 100 - 119 25.8% 120 - 139 6.5% 140 - 159 16.1% 160 - 179 16.1% 180 - 199 9.7% 200 - 219 0.0 220 - 239 0.0 240 - 259 0.0 260 - 279 0.0 280 - 299 0.0 min size (mm) 75 max size (mm) 192 mean 129	40 - 59	0.0
100 - 119	60 - 79	6.5%
120 - 139 6.5% 140 - 159 16.1% 160 - 179 16.1% 180 - 199 9.7% 200 - 219 0.0 220 - 239 0.0 240 - 259 0.0 260 - 279 0.0 280 - 299 0.0 min size (mm) 75 max size (mm) 192 mean 129	80 - 99	19.4%
140 - 159	100 - 119	25.8%
160 - 179	120 - 139	6.5%
180 - 199 9.7% 200 - 219 0.0 220 - 239 0.0 240 - 259 0.0 260 - 279 0.0 280 - 299 0.0 min size (mm) 75 max size (mm) 192 mean 129	140 - 159	16.1%
200 - 219 0.0 220 - 239 0.0 240 - 259 0.0 260 - 279 0.0 280 - 299 0.0 >299 mm 0.0 min size (mm) 75 max size (mm) 192 mean 129	160 - 179	16.1%
220 - 239 0.0 240 - 259 0.0 260 - 279 0.0 280 - 299 0.0 >299 mm 0.0 min size (mm) 75 max size (mm) 192 mean 129	180 - 199	9.7%
240 - 259 0.0 260 - 279 0.0 280 - 299 0.0 >299 mm 0.0 min size (mm) 75 max size (mm) 192 mean 129	200 - 219	0.0
260 - 279 0.0 280 - 299 0.0 >299 mm 0.0 min size (mm) 75 max size (mm) 192 mean 129	220 - 239	0.0
280 - 299 0.0 >299 mm 0.0 min size (mm) 75 max size (mm) 192 mean 129	240 - 259	0.0
>299 mm 0.0 min size (mm) 75 max size (mm) 192 mean 129	260 - 279	0.0
min size (mm) 75 max size (mm) 192 mean 129	280 - 299	0.0
max size (mm) 192 mean 129	>299 mm	0.0
mean 129	min size (mm)	75
	max size (mm)	192
mode 92	mean	129
	mode	92

1986 Lytechinus anamesus		1988 Lytechinus anamesus	
Ly cccnimas anamesas		Ly cconfinab anamebab	
(cases) N=	111	(cases) N=	127
< 5 mm	0.0	< 5 mm	0.0
5 - 9	0.0	5 - 9	0.0
10 - 14	0.0	10 - 14	0.0
15 - 19	0.9%	15 - 19	0.0
20 - 24	10.8%	20 - 24	11.0%
25 - 29	73.9%	25 - 29	66.9%
30 - 34	13.5%	30 - 34	22.0%
35 - 39	0.9%	35 - 39	0.0
40 - 44	0.0	40 - 44	0.0
45 - 49	0.0	45 - 49	0.0
>49 mm	0.0	>49 mm	0.0
min size (mm)	19	min size (mm)	22
max size (mm)	36	max size (mm)	33
mean	27	mean	28
mode	28	mode	28
1987		1989	
1987 Lytechinus anamesus		1989 Lytechinus anamesus	
Lytechinus anamesus	151	Lytechinus anamesus	111
Lytechinus anamesus (cases) N=	151 0.0	Lytechinus anamesus (cases) N=	111
Lytechinus anamesus	0.0	Lytechinus anamesus	0.0
Lytechinus anamesus (cases) N= < 5 mm 5 - 9	0.0	Lytechinus anamesus (cases) N= < 5 mm 5 - 9	0.0
Lytechinus anamesus (cases) N= < 5 mm	0.0 0.0 1.3%	Lytechinus anamesus (cases) N= < 5 mm	0.0 0.0 0.0
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14	0.0	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14	0.0
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	0.0 0.0 1.3% 11.3% 33.8%	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	0.0 0.0 0.0 0.0 13.5%
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	0.0 0.0 1.3% 11.3%	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	0.0 0.0 0.0 0.0 13.5% 65.8%
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	0.0 0.0 1.3% 11.3% 33.8% 41.1%	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	0.0 0.0 0.0 0.0 13.5% 65.8% 19.8%
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	0.0 0.0 1.3% 11.3% 33.8% 41.1%	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	0.0 0.0 0.0 0.0 13.5% 65.8%
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	0.0 0.0 1.3% 11.3% 33.8% 41.1% 11.9% 0.7%	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	0.0 0.0 0.0 0.0 13.5% 65.8% 19.8% 0.9%
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	0.0 0.0 1.3% 11.3% 33.8% 41.1% 11.9% 0.7% 0.0	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	0.0 0.0 0.0 0.0 13.5% 65.8% 19.8% 0.9%
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 >49 mm	0.0 0.0 1.3% 11.3% 33.8% 41.1% 11.9% 0.7% 0.0	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 >49 mm	0.0 0.0 0.0 0.0 13.5% 65.8% 19.8% 0.9% 0.0
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm)	0.0 0.0 1.3% 11.3% 33.8% 41.1% 11.9% 0.7% 0.0	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm)	0.0 0.0 0.0 13.5% 65.8% 19.8% 0.9% 0.0 0.0
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 >49 mm	0.0 0.0 1.3% 11.3% 33.8% 41.1% 11.9% 0.7% 0.0	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 >49 mm	0.0 0.0 0.0 0.0 13.5% 65.8% 19.8% 0.9% 0.0

1004		1006	
1984	franciscanus	1986	franciccanus
Strongylocentrotus (cases) N=	114	Strongylocentrotus (cases) N=	11anciscanus 107
< 9 mm	0.0	< 9 mm	0.0
10 - 14	0.9%	10 - 14	0.0
15 - 19	1.8%	15 - 19	3.7%
20 - 24	2.6%	20 - 24	2.8%
25 - 29	1.8%	25 - 29	1.9%
30 - 34	2.6%	30 - 34	1.9%
35 - 39	5.3%	35 - 39	7.5%
40 - 44	2.6%	40 - 44	3.7%
45 - 49	4.4%	45 - 49	4.7%
50 - 54	1.8%	50 - 54	6.5%
55 - 59	7.0%	55 - 59	7.5%
60 - 64	5.3%	60 - 64	6.5%
65 - 69	1.8%	65 - 69	4.7%
70 - 74	9.6%	70 - 74	9.3%
75 - 79	1.8%	75 - 79	12.1%
80 - 84	5.3%	80 - 84	7.5%
85 - 89	6.1%	85 - 89	8.4%
90 - 94	4.4%	90 - 94	3.7%
95 - 99	2.6%	95 - 99	1.9%
100 - 104	7.9%	100 - 104	1.9%
105 - 109	4.4%	105 - 109	0.9%
> 109 mm	20.2%	> 109 mm	1.9%
min size (mm)	12	min size (mm)	17
max size (mm)	148	max size (mm)	140
mean	79	mean mean	65
mode	70	mode	36
	. 0		
1985		1987	
Strongylocentrotus		Strongylocentrotus	
Strongylocentrotus (cases) N=	106	Strongylocentrotus (cases) N=	100
Strongylocentrotus (cases) N= < 5 mm	106 0.9%	Strongylocentrotus (cases) N= < 5 mm	100 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9	106 0.9% 2.8%	Strongylocentrotus (cases) N= < 5 mm 5 - 9	100 0.0 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14	106 0.9% 2.8% 1.9%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14	100 0.0 0.0 1.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	106 0.9% 2.8% 1.9% 9.4%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	100 0.0 0.0 1.0% 1.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	106 0.9% 2.8% 1.9% 9.4% 9.4%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	100 0.0 0.0 1.0% 1.0% 9.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	106 0.9% 2.8% 1.9% 9.4% 9.4% 2.8%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	100 0.0 0.0 1.0% 1.0% 9.0% 8.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	106 0.9% 2.8% 1.9% 9.4% 9.4% 2.8% 5.7%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	106 0.9% 2.8% 1.9% 9.4% 2.8% 5.7% 3.8%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	106 0.9% 2.8% 1.9% 9.4% 2.8% 5.7% 3.8% 2.8%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0% 10.0% 5.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	106 0.9% 2.8% 1.9% 9.4% 2.8% 5.7% 3.8% 2.8% 0.9%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0% 10.0% 5.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	106 0.9% 2.8% 1.9% 9.4% 9.4% 2.8% 5.7% 3.8% 2.8% 0.9% 2.8%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0% 10.0% 5.0% 12.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	106 0.9% 2.8% 1.9% 9.4% 9.4% 2.8% 5.7% 3.8% 2.8% 0.9% 2.8% 3.8%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0% 10.0% 5.0% 12.0% 10.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	106 0.9% 2.8% 1.9% 9.4% 9.4% 2.8% 5.7% 3.8% 2.8% 0.9% 2.8% 3.8% 2.8%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0% 10.0% 5.0% 12.0% 10.0% 4.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	106 0.9% 2.8% 1.9% 9.4% 9.4% 2.8% 5.7% 3.8% 2.8% 0.9% 2.8% 3.8% 2.8% 5.7%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0% 10.0% 5.0% 12.0% 10.0% 4.0% 4.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	106 0.9% 2.8% 1.9% 9.4% 9.4% 2.8% 5.7% 3.8% 2.8% 0.9% 2.8% 3.8% 2.8%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0% 10.0% 5.0% 12.0% 10.0% 4.0% 4.0% 1.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	106 0.9% 2.8% 1.9% 9.4% 9.4% 2.8% 5.7% 3.8% 2.8% 0.9% 2.8% 3.8% 4.7% 4.7% 13.2%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0% 10.0% 5.0% 12.0% 10.0% 4.0% 4.0% 2.0% 4.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	106 0.9% 2.8% 1.9% 9.4% 9.4% 2.8% 5.7% 3.8% 2.8% 0.9% 2.8% 3.8% 2.8% 4.7% 4.7% 13.2% 8.5%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0% 10.0% 5.0% 12.0% 10.0% 4.0% 4.0% 4.0% 4.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	106 0.9% 2.8% 1.9% 9.4% 9.4% 2.8% 5.7% 3.8% 2.8% 0.9% 2.8% 3.8% 2.8% 3.8% 2.8% 3.8% 3.8% 3.8% 3.8% 5.7% 4.7% 13.2% 8.5%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0% 10.0% 5.0% 12.0% 10.0% 4.0% 4.0% 2.0% 4.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	106 0.9% 2.8% 1.9% 9.4% 9.4% 2.8% 5.7% 3.8% 2.8% 0.9% 2.8% 3.8% 2.8% 3.8% 2.8% 5.7% 4.7% 13.2% 8.5% 5.7% 2.8%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0% 10.0% 5.0% 12.0% 10.0% 4.0% 4.0% 4.0% 2.0% 3.0% 2.0% 2.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	106 0.9% 2.8% 1.9% 9.4% 9.4% 2.8% 5.7% 3.8% 2.8% 0.9% 2.8% 3.8% 2.8% 13.2% 4.7% 13.2% 8.5% 5.7% 2.8%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0% 10.0% 5.0% 12.0% 10.0% 4.0% 4.0% 4.0% 3.0% 2.0% 2.0% 2.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	106 0.9% 2.8% 1.9% 9.4% 9.4% 2.8% 5.7% 3.8% 2.8% 0.9% 2.8% 3.8% 2.8% 5.7% 4.7% 13.2% 8.5% 5.7% 2.8% 2.8% 3.8%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0% 10.0% 5.0% 12.0% 10.0% 4.0% 4.0% 4.0% 1.0% 2.0% 4.0% 3.0% 2.0% 2.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	106 0.9% 2.8% 1.9% 9.4% 9.4% 2.8% 5.7% 3.8% 2.8% 0.9% 2.8% 3.8% 2.8% 5.7% 4.7% 13.2% 8.5% 5.7% 2.8% 3.8% 2.8% 3.2% 8.5% 5.7% 4.7%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0% 10.0% 4.0% 4.0% 4.0% 4.0% 2.0% 4.0% 3.0% 2.0% 1.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	106 0.9% 2.8% 1.9% 9.4% 9.4% 9.4% 2.8% 5.7% 3.8% 2.8% 0.9% 2.8% 3.8% 2.8% 5.7% 4.7% 13.2% 8.5% 5.7% 2.8% 3.8% 1.9% 0.9%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0% 10.0% 5.0% 12.0% 10.0% 4.0% 4.0% 2.0% 4.0% 3.0% 2.0% 2.0% 1.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	106 0.9% 2.8% 1.9% 9.4% 9.4% 2.8% 2.8% 0.9% 2.8% 3.8% 2.8% 5.7% 4.7% 13.2% 8.5% 5.7% 2.8% 3.8% 2.8% 3.8% 3.9% 3.8%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0% 10.0% 4.0% 4.0% 4.0% 4.0% 3.0% 2.0% 2.0% 1.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	106 0.9% 2.8% 1.9% 9.4% 9.4% 9.4% 2.8% 5.7% 3.8% 2.8% 0.9% 2.8% 3.8% 2.8% 5.7% 4.7% 13.2% 8.5% 5.7% 2.8% 3.8% 1.9% 0.9%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0% 10.0% 12.0% 10.0% 4.0% 4.0% 4.0% 2.0% 2.0% 2.0% 1.0% 0.00 6.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm) mean	106 0.9% 2.8% 1.9% 9.4% 9.4% 2.8% 5.7% 3.8% 2.8% 0.9% 2.8% 5.7% 4.7% 13.2% 8.5% 5.7% 2.8% 3.8% 2.8% 3.9% 0.9%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm) max size (mm) mean	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0% 10.0% 10.0% 4.0% 4.0% 4.0% 4.0% 2.0% 2.0% 2.0% 1.0% 0.0 0.0 1.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	106 0.9% 2.8% 1.9% 9.4% 9.4% 9.4% 2.8% 5.7% 3.8% 2.8% 0.9% 2.8% 3.8% 2.8% 5.7% 4.7% 13.2% 8.5% 5.7% 2.8% 3.8% 1.9% 0.9%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	100 0.0 0.0 1.0% 1.0% 9.0% 8.0% 14.0% 10.0% 12.0% 10.0% 4.0% 4.0% 1.0% 2.0% 2.0% 2.0% 1.0%

LOCATION 11 ANACAPA ISLAND - ADMIRAL'S REEF

1988		1989	
Strongylocentrotus	franciscanus	Strongylocentrotus fr	anciscanus
(cases) N=	66	(cases) N=	125
< 5 mm 5 - 9	0.0	< 5 mm 5 - 9	0.0 8.0%
10 - 14	0.0	10 - 14	12.8%
15 - 19	0.0	15 - 19	5.6%
20 - 24	4.5%	20 - 24	4.0%
25 - 29	4.5%	25 - 29	1.6%
30 - 34	4.5%	30 - 34	1.6%
35 - 39	6.1%	35 - 39	0.0
40 - 44	3.0%	40 - 44	0.8%
45 - 49	4.5%	45 - 49	0.8%
50 - 54	7.6%	50 - 54	4.0%
55 - 59	4.5%	55 - 59	5.6%
60 - 64	3.0%	60 - 64	7.2%
65 - 69	3.0%	65 - 69	14.4%
70 - 74	6.1%	70 - 74	7.2%
75 - 79	6.1%	75 - 79	11.2% 3.2%
80 - 84 85 - 89	6.1% 9.1%	80 - 84 85 - 89	4.0%
90 - 94	9.1৬ 7.6%	90 - 94	5.6%
95 - 99	6.1%	95 - 99	1.6%
100 - 104	6.1%	100 - 104	0.0
105 - 109	4.5%	105 - 109	0.0
> 109 mm	3.0%	> 109 mm	0.8%
min size (mm)	23	min size (mm)	7
max size (mm)	128	max size (mm)	115
mean	69	mean	52
mode	25	mode	7
1984	PA ISLAND - ADMIRAL'S REEF	1985	
		1985 Srongylocentrotus pur	puratus
1984 Srongylocentrotus p	urpuratus	Srongylocentrotus purp	-
1984			puratus 102 0.0
1984 Srongylocentrotus p (cases) N=	urpuratus 101	Srongylocentrotus pur (cases) N=	102
1984 Srongylocentrotus p (cases) N= < 5 mm	urpuratus 101 0.0	Srongylocentrotus pur (cases) N= < 5 mm	102 0.0
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9	urpuratus 101 0.0 1.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9	102 0.0 4.9%
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	101 0.0 1.0% 1.0% 1.0% 5.0%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	102 0.0 4.9% 6.9% 9.8% 14.7%
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	101 0.0 1.0% 1.0% 1.0% 5.0% 2.0%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	102 0.0 4.9% 6.9% 9.8% 14.7% 6.9%
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	101 0.0 1.0% 1.0% 1.0% 5.0% 2.0% 9.9%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	102 0.0 4.9% 6.9% 9.8% 14.7% 6.9% 2.0%
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	101 0.0 1.0% 1.0% 1.0% 5.0% 2.0% 9.9%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	102 0.0 4.9% 6.9% 9.8% 14.7% 6.9% 2.0% 10.8%
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	101 0.0 1.0% 1.0% 5.0% 2.0% 9.9% 15.8% 17.8%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	102 0.0 4.9% 6.9% 9.8% 14.7% 6.9% 2.0% 10.8% 12.7%
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	101 0.0 1.0% 1.0% 1.0% 5.0% 2.0% 9.9% 15.8% 17.8% 12.9%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	102 0.0 4.9% 6.9% 9.8% 14.7% 6.9% 2.0% 10.8% 12.7% 8.8%
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	101 0.0 1.0% 1.0% 1.0% 5.0% 2.0% 9.9% 15.8% 17.8% 12.9% 13.9%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	102 0.0 4.9% 6.9% 9.8% 14.7% 6.9% 2.0% 10.8% 12.7% 8.8% 9.8%
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	101 0.0 1.0% 1.0% 1.0% 5.0% 2.0% 9.9% 15.8% 17.8% 12.9% 13.9% 6.9%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	102 0.0 4.9% 6.9% 9.8% 14.7% 6.9% 2.0% 10.8% 12.7% 8.8% 9.8%
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	101 0.0 1.0% 1.0% 1.0% 5.0% 2.0% 9.9% 15.8% 17.8% 12.9% 13.9% 6.9% 5.9%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	102 0.0 4.9% 6.9% 9.8% 14.7% 6.9% 2.0% 10.8% 12.7% 8.8% 9.8%
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	101 0.0 1.0% 1.0% 1.0% 5.0% 2.0% 9.9% 15.8% 17.8% 12.9% 13.9% 6.9%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	102 0.0 4.9% 6.9% 9.8% 14.7% 6.9% 2.0% 10.8% 12.7% 8.8% 9.8%
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	101 0.0 1.0% 1.0% 1.0% 5.0% 2.0% 9.9% 15.8% 17.8% 12.9% 13.9% 6.9% 5.9%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	102 0.0 4.9% 6.9% 9.8% 14.7% 6.9% 2.0% 10.8% 12.7% 8.8% 9.8% 9.8%
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	101 0.0 1.0% 1.0% 1.0% 5.0% 2.0% 9.9% 15.8% 17.8% 12.9% 13.9% 6.9% 5.9% 4.0% 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	102 0.0 4.9% 6.9% 9.8% 14.7% 6.9% 2.0% 10.8% 12.7% 8.8% 9.8% 9.8% 2.0% 1.0% 0.0
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	101 0.0 1.0% 1.0% 1.0% 5.0% 2.0% 9.9% 15.8% 17.8% 12.9% 13.9% 6.9% 5.9% 4.0% 0.0 1.0% 1.0%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	102 0.0 4.9% 6.9% 9.8% 14.7% 6.9% 2.0% 10.8% 12.7% 8.8% 9.8% 2.0% 1.0% 0.0
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	101 0.0 1.0% 1.0% 1.0% 5.0% 2.0% 9.9% 15.8% 17.8% 12.9% 13.9% 6.9% 5.9% 4.0% 0.0 1.0% 1.0%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	102 0.0 4.9% 6.9% 9.8% 14.7% 6.9% 2.0% 10.8% 12.7% 8.8% 9.8% 2.0% 1.0% 0.0
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	101 0.0 1.0% 1.0% 1.0% 5.0% 2.0% 9.9% 15.8% 17.8% 12.9% 13.9% 6.9% 5.9% 4.0% 0.0 1.0% 1.0%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	102 0.0 4.9% 6.9% 9.8% 14.7% 6.9% 2.0% 10.8% 12.7% 8.8% 9.8% 2.0% 1.0% 0.0 0.0 0.0 0.0
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	101 0.0 1.0% 1.0% 1.0% 5.0% 2.0% 9.9% 15.8% 17.8% 12.9% 13.9% 6.9% 5.9% 4.0% 0.0 1.0% 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	102 0.0 4.9% 6.9% 9.8% 14.7% 6.9% 2.0% 10.8% 12.7% 8.8% 9.8% 9.8% 0.0% 1.0% 0.0 0.0 0.0 0.0 0.0
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	101 0.0 1.0% 1.0% 1.0% 5.0% 2.0% 9.9% 15.8% 17.8% 12.9% 13.9% 6.9% 5.9% 4.0% 0.0 1.0% 1.0% 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	102 0.0 4.98 6.98 9.88 14.78 6.98 2.08 10.88 12.78 8.88 9.88 9.88 9.88 1.08 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	101 0.0 1.0% 1.0% 1.0% 5.0% 2.0% 9.9% 15.8% 17.8% 12.9% 13.9% 6.9% 5.9% 4.0% 0.0 1.0% 0.0 1.0% 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	102 0.0 4.98 6.98 9.88 14.78 6.98 2.08 10.88 12.78 8.88 9.88 9.88 2.08 1.08 0.0 0.0 0.0 0.0 0.0 0.0 0.0 665
1984 Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	101 0.0 1.0% 1.0% 1.0% 5.0% 2.0% 9.9% 15.8% 17.8% 12.9% 13.9% 6.9% 5.9% 4.0% 0.0 1.0% 1.0% 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	102 0.0 4.98 6.98 9.88 14.78 6.98 2.08 10.88 12.78 8.88 9.88 9.88 9.88 1.08 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1986		1988	
Srongylocentrotu	ıs purpuratus	Srongylocentrotus pur	puratus
(cases) N=	110	(cases) N=	95
< 5 mm	4.5%	< 5 mm	0.0
5 - 9	0.0	5 - 9	0.0
10 - 14	2.7%	10 - 14	0.0
15 - 19	15.5%	15 - 19	3.2%
20 - 24	10.9%	20 - 24	3.2%
25 - 29	15.5%	25 - 29	10.5%
30 - 34	13.6%	30 - 34	14.7%
35 - 39	5.5%	35 - 39	16.8%
40 - 44	4.5%	40 - 44	12.6%
45 - 49 50 - 54	4.5%	45 - 49 50 - 54	9.5%
55 - 59	10.0% 5.5%	55 - 59	11.6% 6.3%
60 - 64	5.5%	60 - 64	6.3%
65 - 69	1.8%	65 - 69	2.1%
70 - 74	0.0	70 - 74	1.1%
75 - 79	0.0	75 - 79	2.1%
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
> 99 mm	0.0	100 - 104	0.0
min size (mm)	2	105 - 109	0.0
max size (mm)	69	> 109 mm	0.0
mean	33	min size (mm)	18
mode	19	max size (mm)	79
1007		mean	42
1987		mode	32
Srongylocentrotu	is purpuratus	1989	
(cases) N=	120	Srongylocentrotus pur	puratus
< 5 mm	0.0		<u> </u>
5 - 9	0.0	(cases) N=	82
10 - 14	0.0	< 5 mm	0.0
15 - 19			0 10
10 10	0.0	5 - 9	2.4%
20 - 24	0.0 7.5%		2.4% 4.9%
20 - 24 25 - 29	7.5% 15.0%	5 - 9 10 - 14 15 - 19	4.9% 0.0
20 - 24 25 - 29 30 - 34	7.5% 15.0% 18.3%	5 - 9 10 - 14 15 - 19 20 - 24	4.9% 0.0 1.2%
20 - 24 25 - 29 30 - 34 35 - 39	7.5% 15.0% 18.3% 16.7%	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	4.9% 0.0 1.2% 2.4%
20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	7.5% 15.0% 18.3% 16.7% 10.0%	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	4.9% 0.0 1.2% 2.4% 4.9%
20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	7.5% 15.0% 18.3% 16.7% 10.0% 6.7%	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	4.9% 0.0 1.2% 2.4% 4.9% 11.0%
20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	7.5% 15.0% 18.3% 16.7% 10.0% 6.7% 12.5%	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	4.9% 0.0 1.2% 2.4% 4.9% 11.0% 23.2%
20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	7.5% 15.0% 18.3% 16.7% 10.0% 6.7% 12.5% 5.8%	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	4.9% 0.0 1.2% 2.4% 4.9% 11.0% 23.2% 22.0%
20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	7.5% 15.0% 18.3% 16.7% 10.0% 6.7% 12.5% 5.8% 5.8%	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	4.9% 0.0 1.2% 2.4% 4.9% 11.0% 23.2% 22.0% 19.5%
20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	7.5% 15.0% 18.3% 16.7% 10.0% 6.7% 12.5% 5.8% 5.8%	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	4.9% 0.0 1.2% 2.4% 4.9% 11.0% 23.2% 22.0% 19.5% 7.3%
20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	7.5% 15.0% 18.3% 16.7% 10.0% 6.7% 12.5% 5.8% 5.8% 1.7% 0.0	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	4.9% 0.0 1.2% 2.4% 4.9% 11.0% 23.2% 22.0% 19.5% 7.3% 1.2%
20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	7.5% 15.0% 18.3% 16.7% 10.0% 6.7% 12.5% 5.8% 5.8% 1.7% 0.0	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	4.9% 0.0 1.2% 2.4% 4.9% 11.0% 23.2% 22.0% 19.5% 7.3%
20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	7.5% 15.0% 18.3% 16.7% 10.0% 6.7% 12.5% 5.8% 5.8% 1.7% 0.0	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	4.9% 0.0 1.2% 2.4% 4.9% 11.0% 23.2% 22.0% 19.5% 7.3% 1.2% 0.0
20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	7.5% 15.0% 18.3% 16.7% 10.0% 6.7% 12.5% 5.8% 5.8% 0.0 0.0	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	4.9% 0.0 1.2% 2.4% 4.9% 11.0% 23.2% 22.0% 19.5% 7.3% 1.2% 0.0 0.0
20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	7.5% 15.0% 18.3% 16.7% 10.0% 6.7% 12.5% 5.8% 5.8% 0.0 0.0 0.0 0.0	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	4.9% 0.0 1.2% 2.4% 4.9% 11.0% 23.2% 22.0% 19.5% 7.3% 1.2% 0.0 0.0
20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	7.5% 15.0% 18.3% 16.7% 10.0% 6.7% 12.5% 5.8% 5.8% 1.7% 0.0 0.0 0.0 0.0 0.0 0.0	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	4.9% 0.0 1.2% 2.4% 4.9% 11.0% 23.2% 22.0% 19.5% 7.3% 1.2% 0.0 0.0 0.0 0.0 0.0
20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	7.5% 15.0% 18.3% 16.7% 10.0% 6.7% 12.5% 5.8% 5.8% 1.7% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	4.9% 0.0 1.2% 2.4% 4.9% 11.0% 23.2% 22.0% 19.5% 7.3% 1.2% 0.0 0.0 0.0 0.0 0.0
20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	7.5% 15.0% 18.3% 16.7% 10.0% 6.7% 12.5% 5.8% 5.8% 1.7% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	4.9% 0.0 1.2% 2.4% 4.9% 11.0% 23.2% 22.0% 19.5% 7.3% 1.2% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm) mean	7.5% 15.0% 18.3% 16.7% 10.0% 6.7% 12.5% 5.8% 5.8% 1.7% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	4.9% 0.0 1.2% 2.4% 4.9% 11.0% 23.2% 22.0% 19.5% 7.3% 1.2% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	7.5% 15.0% 18.3% 16.7% 10.0% 6.7% 12.5% 5.8% 5.8% 1.7% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	4.9% 0.0 1.2% 2.4% 4.9% 11.0% 23.2% 22.0% 19.5% 7.3% 1.2% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm) mean	7.5% 15.0% 18.3% 16.7% 10.0% 6.7% 12.5% 5.8% 5.8% 1.7% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	4.9% 0.0 1.2% 2.4% 4.98 11.0% 23.2% 22.0% 19.5% 7.3% 1.2% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm) mean	7.5% 15.0% 18.3% 16.7% 10.0% 6.7% 12.5% 5.8% 5.8% 1.7% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	4.9% 0.0 1.2% 2.4% 4.98 11.0% 23.2% 22.0% 19.5% 7.3% 1.2% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm) mean	7.5% 15.0% 18.3% 16.7% 10.0% 6.7% 12.5% 5.8% 5.8% 1.7% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	4.9% 0.0 1.2% 2.4% 4.98 11.0% 23.2% 22.0% 19.5% 7.3% 1.2% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

		ze Frequencies		
LOCATION 12 ANACAPA ISLAND	- CATHEDRAL COVE			
1984		max size	• •	155
Haliotis corrugata		mean		107
		mode		108
(cases) N=	12			
< 25 mm	0.0			
25 - 29	8.3%			
30 - 34	8.3%			
35 - 39	0.0			
40 - 44	8.3%			
45 - 49	16.7%			
50 - 54	8.3%			
55 - 59	0.0			
60 - 64	0.0			
65 - 69	0.0			
70 - 74	8.3%			
75 - 79	0.0			
80 - 84	0.0			
85 - 89	0.0			
90 - 94	0.0			
95 - 99	0.0			
100 - 104	8.3%			
105 - 109	0.0			
110 - 114	8.3%			
115 - 119	8.3%			
120 - 124	16.7%			
125 - 129	0.0			
> 129 mm	0.0			
min size (mm)	29			
max size (mm)	122			
mean	74			
mode	29			
mode	23			
1985 Haliotis corrugata				
	2.1			
(cases) N=	31			
< 25 mm	3.2%			
25 - 29	0.0			
30 - 34	3.2%			
35 - 39	3.2%			
40 - 44	3.2%			
45 - 49	0.0			
50 - 54	3.2%			
55 - 59	3.2%			
60 - 64	0.0			
65 - 69	0.0			
70 - 74	3.2%			
75 - 79	0.0			
80 - 84	3.2%			
85 - 89	0.0			
90 - 94	0.0			
95 - 99	0.0			
100 - 104	0.0			
105 - 109	12.9%			
110 - 114	3.2%			
115 - 119	6.5%			
120 - 124	16.1%			
125 - 129	3.2%			
130 - 134	9.7%			
135 - 139	6.5%			
140 - 144	6.5%			
145 - 149	3.2%			
150 - 154	3.2%			
155 - 159	3.2%			
> 159 mm	0.0			
min size (mm)	17			
	•	Anny 5-145		

		Size Frequencies	
1986		mean	114
Haliotis corrugata		mode	15
(cases) N=	28		
< 25 mm	32.1%		
25 - 29	0.0		
30 - 34	0.0		
35 - 39	0.0		
40 - 44	3.6%		
45 - 49	0.0		
50 - 54	0.0		
55 - 59	0.0		
60 - 64	0.0		
65 - 69	0.0		
70 - 74	0.0		
75 - 79	0.0		
80 - 84	0.0		
85 - 89	0.0		
90 - 94	0.0		
95 - 99	3.6%		
100 - 104	0.0		
105 - 109	0.0		
110 - 114	0.0		
115 - 119	0.0		
120 - 124	10.7%		
125 - 129	14.3%		
130 - 134	7.1%		
135 - 139	17.9%		
140 - 144	3.6%		
145 - 149	3.6%		
150 - 154	0.0		
155 - 159	3.6%		
> 159 mm	0.0		
min size (mm)	14		
max size (mm)	157		
mean	92		
mode	136		
1000			
1989			
Haliotis corrugata			
(cacca) N-	22		
(cases) N=			
< 25 mm	13.6%		
25 - 59	0.0		
60 - 64	0.0		
65 - 69	0.0		
70 - 74	0.0		
75 - 79	0.0		
80 - 84	4.5%		
85 - 89	4.5%		
90 - 94	4.5%		
95 - 99	4.5%		
100 - 104	0.0		
105 - 109	4.5%		
110 - 114	0.0		
115 - 119	0.0		
120 - 124	4.5%		
125 - 129	0.0		
130 - 134	13.6%		
135 - 139	0.0		
140 - 144	9.1%		
145 - 149	18.2%		
150 - 154	13.6%		
155 - 159	4.5%		
> 159 mm	0.0		
min size (mm)	15		
max size (mm)	155	5 146	

LOCATION 12 ANACAPA ISLAND - CATHEDRAL COVE

1984 Cypraea spadicea		1987 Cypraea spadicea	
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	22 0.0 13.6% 18.2% 45.5% 18.2% 4.5% 0.0 0.0 30 51 41	30 - 34 30 35 - 39 38 40 - 44 15 45 - 49 15 50 - 54 55 - 59	13 0.0 0.8% 3.5% 5.4% 0.0 0.0 0.0 30 47 37
1985 Cypraea spadicea		1988 Cypraea spadicea	
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	42 0.0 7.1% 23.8% 26.2% 21.4% 19.0% 2.4% 0.0 31 56 43 42	30 - 34 7 35 - 39 34 40 - 44 31 45 - 49 15 50 - 54 5 55 - 59 2	38 2.6% 1.9% 1.2% 5.8% 5.3% 2.6% 0.0 29 56 41 42
1986 Cypraea spadicea		1989 Cypraea spadicea	
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 > 59 mm min size (mm) max size (mm) mean mode	42 9.5% 14.3% 23.8% 33.3% 16.7% 2.4% 0.0 0.0 13 53 38 42	30 - 34 16 35 - 39 30 40 - 44 32 45 - 49 11 50 - 54 7	43 2.3% 5.3% 2.6% 2.6% 7.0% 0.0 0.0 17 51 39 42

LOCATION 12 ANACAPA ISLAND - CATHEDRAL COVE

1001111011 11 111	THORITI TOWNS OF THE STATE OF THE		
1984		1987	
Astraea undosa		Astraea undosa	
nscraca unacsa		notiata andosa	
(cases) N=	63	(cases) N=	68
< 19 mm	0.0	< 19 mm	0.0
20 - 29	1.6%	20 - 29	2.9%
30 - 39	1.6%	30 - 39	20.6%
40 - 49	11.1%	40 - 49	41.2%
50 - 59	46.0%	50 - 59	17.6%
60 - 69	25.4%	60 - 69	8.8%
70 - 79	3.2%	70 - 79	2.9%
80 - 89	3.2%	80 - 89	2.9%
90 - 99	1.6%	90 - 99	1.5%
100 - 109	4.8%	100 - 109	0.0
110 - 119	4.8%	110 - 119	1.5%
>119 mm	0.0	>119 mm	0.0
min size (mm)	26	min size (mm)	22
max size (mm)	110	max size (mm)	118
mean	61	mean	49
mode	56	mode	38
1985		1988	
Astraea undosa		Astraea undosa	
(cases) N=	30	(cases) N=	31
< 29 mm	0.0	< 19 mm	0.0
30 - 39	6.7%	20 - 29	3.2%
40 - 49	23.3%	30 - 39	0.0
50 - 59	10.0%	40 - 49	16.1%
60 - 69	13.3%	50 - 59	12.9%
70 - 79	6.7%	60 - 69	25.8%
80 - 89	13.3%	70 - 79	12.9%
90 - 99	10.0%	80 - 89	12.9%
100 - 109	10.0%	90 - 99	12.9%
110 - 119	6.7%	100 - 109	3.2%
>110 115	0.0	>100 103	0.0
min size (mm)	37	min size (mm)	29
max size (mm)	115	max size (mm)	102
, ,	71	, ,	68
mean	48	mean	46
mode	48	mode	40
1986		1989	
Astraea undosa		Astraea undosa	
() N-	2.5	(22222) N-	2.1
(cases) N=	35	(cases) N=	31
< 29 mm	0.0	< 19 mm	0.0
30 - 39	20.0%	20 - 29	3.2%
40 - 49	17.1%	30 - 39	6.5%
50 - 59	8.6%	40 - 49	19.4%
60 - 69	8.6%	50 - 59	9.7%
70 - 79	5.7%	60 - 69	19.4%
80 - 89	28.6%	70 - 79	25.8%
90 - 99	2.9%	80 - 89	9.7%
100 - 109	2.9%	90 - 99	6.5%
110 - 119	5.7%	100 - 109	0.0
>119 mm	0.0	>109 mm	0.0
min size (mm)	33	min size (mm)	23
max size (mm)	112	max size (mm)	95
mean	65	mean	63
mode	34	mode	72

LOCATION 12 ANACAPA ISLAND - CATHEDRAL COVE

1984 Megathura crenulata		1986 Megathura crenulata	
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) mean	28 0.0 7.1% 3.6% 0.0 10.7% 0.0 10.7% 7.1% 50.0% 7.1% 3.6% 0.0 0.0 15 103 71 83	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) mean mode	34 0.0 5.9% 2.9% 0.0 2.9% 0.0 23.5% 320.6% 5.9% 0.0 2.9% 0.0 12 110
mode 1985 Megathura crenulata	83	node 1989 Megathura crenulata	60
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	24 0.0 0.0 0.0 0.0 0.0 4.2% 8.3% 12.5% 20.8% 25.0% 4.2% 0.0 58 113 89 97	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	16 0.0 31.3% 18.8% 0.0 0.0 0.0 6.3% 12.5% 12.5% 0.0 6.3% 0.0 15 118 53 17

LOCATION 12 ANACAPA	A ISLAND - CATHEDRAL COVE	_	
		mode	75
1984			
Hinnites giganteus			
, , , , , , , , , , , , , , , , , , , ,	0.5	87	
(cases) N=	35	Hinnites giganteus	
< 20 mm	0.0	() N-	2.0
20 - 29	2.9%	(cases) N=	29
30 - 39	8.6%	< 20 mm	0.0
40 - 49 50 - 59	31.4% 14.3%	20 - 29 30 - 39	0.0 3.4%
60 - 69	5.7%	40 - 49	10.3%
70 - 79	22.9%	50 - 59	20.7%
80 - 89	5.7%	60 - 69	20.7%
90 - 99	8.6%	70 - 79	6.9%
>99 mm	0.0	80 - 89	6.9%
min size (mm)	25	90 - 99	10.3%
max size (mm)	97	100 - 109	6.9%
mean	59	110 - 119	13.8%
mode	45	120 - 129	0.0
mode	10	130 - 139	0.0
1985		140 - 149	0.0
Hinnites giganteus		>149 mm	0.0
niinii ees giganeeas		min size (mm)	39
(cases) N=	31	max size (mm)	118
< 20 mm	0.0	mean	74
20 - 29	6.5%	mode	51
30 - 39	6.5%		01
40 - 49	19.4%	1988	
50 - 59	19.4%	Hinnites giganteus	
60 - 69	19.4%	nimitees giganeeas	
70 - 79	6.5%	(cases) N=	36
80 - 89	6.5%	< 20 mm	0.0
90 - 99	6.5%	20 - 29	0.0
100 - 109	6.5%	30 - 39	2.8%
110 - 119	0.0	40 - 49	36.1%
120 - 129	3.2%	50 - 59	22.2%
130 - 139	0.0	60 - 69	19.4%
140 - 149	0.0	70 - 79	8.3%
>149 mm	0.0	80 - 89	0.0
min size (mm)	20	90 - 99	5.6%
max size (mm)	128	100 - 109	2.8%
mean	62	110 - 119	0.0
mode	45	120 - 129	0.0
		130 - 139	2.8%
		>139 mm	0.0
1986		min size (mm)	38
Hinnites giganteus		max size (mm)	130
		mean	59
(cases) N=	38	mode	45
< 20 mm	0.0		
20 - 29	0.0	1989	
30 - 39	2.6%	Hinnites giganteus	
40 - 49	7.9%		
50 - 59	7.9%	(cases) N=	43
60 - 69	13.2%	< 10 mm	0.0
70 - 79	36.8%	10 - 19	2.3%
80 - 89	15.8%	20 - 29	0.0
90 - 99	13.2%	30 - 39	4.7%
100 - 109	0.0	40 - 49	2.3%
110 - 119	2.6%	50 - 59	4.7%
120 - 129	0.0	60 - 69	14.0%
130 - 139	0.0	70 - 79	18.6%
140 - 149	0.0	80 - 89	11.6%
>149 mm	0.0	90 - 99	14.0%
min size (mm)	34	100 - 109	16.3%
max size (mm)	115	110 - 119	2.3%
mean	73	120 - 129	7.0%
		Appx. 5-150	

		Size Frequencies	
130 - 139	2.3%		
>139 mm	0.0		
min size (mm)	12		
max size (mm)	138		
mean	83		
mode	66		
LOCATION 12 ANACA	APA ISLAND - CATHEDRAL C	OVE	
1986		1989	
Patiria miniata		Patiria miniata	
(cases) N=	14	(cases) N=	54
< 10 mm	0.0	< 10 mm	1.9%
10 - 19	71.4%	10 - 19	1.9%
20 - 29	21.4%	20 - 29	5.6%
30 - 39	0.0	30 - 39	16.7%
40 - 49	0.0	40 - 49	13.0%
50 - 59	7.1%	50 - 59	37.0%
60 - 69	0.0	60 - 69	11.1%
70 - 79	0.0	70 - 79	13.0%
80 - 89	0.0	80 - 89	0.0
90 - 99	0.0	90 - 99	0.0
>100 mm	0.0	>100 mm	0.0
min size (mm)	11	min size (mm)	8
max size (mm)	57	max size (mm)	79
mean	20	mean	51
mode	14	mode	54
mode	1.4	mode	34
1988			
Patiria miniata			
(cases) N=	61		
< 10 mm	9.8%		
10 - 19	9.8%	1987	
20 - 29	9.8%	Kelletia kelletii	
30 - 39	31.1%		
40 - 49	19.7%	(cases) N=	30
50 - 59	11.5%	<40 mm	40.0%
60 - 69		40 - 49	53.3%
	6.6%		
70 - 79	1.6%	50 - 59	0.0
80 - 89	0.0	60 - 69	0.0
90 - 99	0.0	70 - 79	0.0
>100 mm	0.0	80 - 89	0.0
min size (mm)	5	90 - 99	3.3%
max size (mm)	75	100 - 109	0.0
mean	36	110 - 119	3.3%
mode	35	120 - 129	0.0
	33	130 - 139	0.0
		140 - 149	0.0
		>149 mm	0.0
		min size (mm)	12
		max size (mm)	117
		mean	43
		mode	43

LOCATION 12 ANACAPA ISLAND - CATHEDRAL COVE

1004		1006	
1984	francicanna	1986	francicanna
Strongylocentrotus		Strongylocentrotus	
(cases) N=	102	(cases) N=	100
< 9 mm	0.0	< 9 mm	0.0
10 - 14	1.0%	10 - 14	3.0%
15 - 19	1.0%	15 - 19	14.0%
20 - 24	1.0%	20 - 24	19.0%
25 - 29	1.0%	25 - 29	3.0%
30 - 34	0.0	30 - 34	4.0%
35 - 39	1.0%	35 - 39	2.0%
40 - 44	0.0	40 - 44	1.0%
45 - 49	2.0%	45 - 49	1.0%
50 - 54	1.0%	50 - 54	2.0%
55 - 59	0.0	55 - 59	0.0
60 - 64	2.0%	60 - 64	2.0%
65 - 69	10.8%	65 - 69	0.0
70 - 74	10.8%	70 - 74	1.0%
75 - 79	9.8%	75 - 79	7.0%
80 - 84	9.8%	80 - 84	3.0%
85 - 89	11.8%	85 - 89	4.0%
90 - 94	9.8%	90 - 94	6.0%
95 - 99	9.8%	95 - 99	7.0%
100 - 104	3.9%	100 - 104	9.0%
105 - 109	8.8%	105 - 109	7.0%
> 109 mm	4.9%	> 109 mm	5.0%
min size (mm)	13	min size (mm)	11
max size (mm)	122	max size (mm)	119
	82		
mean		mean	60
mode	73	mode	22
1985		1987	
1985 Strongylocentrotus	s franciscanus	1987 Strongylocentrotus	franciscanus
	s franciscanus 108		franciscanus
Strongylocentrotus		Strongylocentrotus	
Strongylocentrotus (cases) N=	108	Strongylocentrotus (cases) N=	101
Strongylocentrotus (cases) N= < 9 mm	108 0.0	Strongylocentrotus (cases) N= < 9 mm	101 0.0
Strongylocentrotus (cases) N= < 9 mm 10 - 14	108 0.0 0.0	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19	101 0.0 1.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24	108 0.0 0.0 0.9% 1.9%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24	101 0.0 1.0% 2.0% 1.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29	108 0.0 0.0 0.9% 1.9% 0.9%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29	101 0.0 1.0% 2.0% 1.0% 4.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	108 0.0 0.0 0.9% 1.9% 0.9%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	101 0.0 1.0% 2.0% 1.0% 4.0% 5.9%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	108 0.0 0.0 0.9% 1.9% 0.9% 1.9%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	101 0.0 1.0% 2.0% 1.0% 4.0% 5.9% 4.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	108 0.0 0.0 0.9% 1.9% 0.9% 0.9%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	101 0.0 1.0% 2.0% 1.0% 4.0% 5.9% 4.0% 1.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	108 0.0 0.0 0.9% 1.9% 0.9% 0.9%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	101 0.0 1.0% 2.0% 1.0% 4.0% 5.9% 4.0% 1.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	108 0.0 0.0 0.9% 1.9% 0.9% 1.9% 0.0 1.9%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	101 0.0 1.0% 2.0% 1.0% 4.0% 5.9% 4.0% 1.0% 0.0
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	108 0.0 0.0 0.9% 1.9% 0.9% 1.9% 0.0 1.9% 1.9% 3.7%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	101 0.0 1.0% 2.0% 1.0% 4.0% 4.0% 4.0% 0.0 4.0% 6.9%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	108 0.0 0.0 0.9% 1.9% 0.9% 1.9% 0.0 1.9% 1.9% 3.7%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	101 0.0 1.0% 2.0% 1.0% 4.0% 5.9% 4.0% 0.0 4.0% 6.9% 5.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	108 0.0 0.0 0.9% 1.9% 0.9% 0.9% 1.9% 0.0 1.9% 1.9% 3.7% 3.7%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	101 0.0 1.0% 2.0% 1.0% 4.0% 5.9% 4.0% 0.0 4.0% 6.9% 5.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	108 0.0 0.0 0.9% 1.9% 0.9% 0.9% 1.9% 0.0 1.9% 1.9% 3.7% 3.7% 2.8% 2.8%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	101 0.0 1.0% 2.0% 1.0% 4.0% 5.9% 4.0% 1.0% 0.0 4.0% 6.9% 5.0% 6.9%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	108 0.0 0.0 0.9% 1.9% 0.9% 1.9% 0.0 1.9% 1.9% 3.7% 2.8% 2.8% 3.7%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	101 0.0 1.0% 2.0% 1.0% 4.0% 5.9% 4.0% 0.0 4.0% 6.9% 5.0% 6.9% 5.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	108 0.0 0.0 0.9% 1.9% 0.9% 0.9% 0.9% 1.9% 3.7% 2.8% 2.8% 3.7% 7.4%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	101 0.0 1.0% 2.0% 1.0% 4.0% 5.9% 4.0% 0.0 4.0% 6.9% 5.0% 6.9% 5.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	108 0.0 0.0 0.9% 1.9% 0.9% 0.9% 1.9% 0.0 1.9% 3.7% 2.8% 2.8% 3.7% 7.4% 13.0%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	101 0.0 1.0% 2.0% 1.0% 4.0% 4.0% 1.0% 0.0 4.0% 6.9% 5.0% 6.9% 5.0%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	108 0.0 0.0 0.98 1.98 0.98 0.98 1.98 0.0 1.98 3.78 2.88 2.88 3.78 7.48 13.08	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	101 0.0 1.0% 2.0% 1.0% 4.0% 4.0% 1.0% 0.0 4.0% 6.9% 6.9% 6.9% 7.9%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	108 0.0 0.0 0.9% 1.9% 0.9% 0.9% 1.9% 0.0 1.9% 3.7% 3.7% 3.7% 2.8% 2.8% 3.7% 7.4% 13.0% 12.0% 17.6%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	101 0.0 1.0% 2.0% 1.0% 4.0% 4.0% 4.0% 6.9% 6.9% 6.9% 6.9% 7.9% 10.9% 7.9%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	108 0.0 0.0 0.9% 1.9% 0.9% 0.9% 0.0 1.9% 0.0 1.9% 3.7% 3.7% 3.7% 2.8% 2.8% 3.7% 7.4% 13.0% 12.0% 17.6% 11.1%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	101 0.0 1.0% 2.0% 1.0% 4.0% 5.9% 4.0% 1.0% 0.0 4.0% 6.9% 6.9% 6.9% 7.9% 10.9% 7.9%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	108 0.0 0.0 0.98 1.98 0.98 0.98 0.98 1.98 0.0 1.98 3.78 3.78 3.78 2.88 2.88 3.78 7.48 13.08 12.08 17.68 11.18 4.68	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	101 0.0 1.0% 2.0% 1.0% 4.0% 5.9% 4.0% 6.9% 6.9% 6.9% 6.9% 7.9% 10.9% 6.9% 6.9%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	108 0.0 0.0 0.9% 1.9% 0.9% 0.9% 0.0 1.9% 0.0 1.9% 3.7% 3.7% 3.7% 2.8% 2.8% 3.7% 7.4% 13.0% 12.0% 17.6% 11.1%	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	101 0.0 1.0% 2.0% 1.0% 4.0% 5.9% 4.0% 1.0% 0.0 4.0% 6.9% 6.9% 6.9% 7.9% 10.9% 7.9%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	108 0.0 0.0 0.98 1.98 0.98 0.98 0.98 1.98 0.0 1.98 3.78 3.78 3.78 2.88 2.88 3.78 7.48 13.08 12.08 17.68 11.18 4.68	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	101 0.0 1.0% 2.0% 1.0% 4.0% 5.9% 4.0% 6.9% 6.9% 6.9% 6.9% 7.9% 10.9% 6.9% 6.9%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	108 0.0 0.0 0.98 1.98 0.98 0.98 0.98 0.00 1.98 3.78 3.78 3.78 2.88 2.88 3.78 7.48 13.08 12.08 17.68 11.18 4.68 6.58	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	101 0.0 1.0% 2.0% 1.0% 4.0% 5.9% 4.0% 6.9% 5.0% 6.9% 5.9% 7.9% 10.9% 6.9% 6.9% 6.9%
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	108 0.0 0.0 0.9% 1.9% 0.9% 0.9% 1.9% 0.0 1.9% 3.7% 2.8% 3.7% 2.8% 3.7% 7.4% 13.0% 11.1% 4.6% 6.5% 19	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	101 0.0 1.0% 2.0% 1.0% 4.0% 5.9% 4.0% 1.0% 0.0 4.0% 6.9% 5.0% 6.9% 5.9% 6.9% 7.9% 10.9% 6.9% 5.9% 6.
Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	108 0.0 0.0 0.9 0.9 1.9 0.9 1.9 0.0 1.9 0.0 1.9 1.9 3.7 3.7 2.8 3.7 2.8 3.7 7.4 13.0 11.1 4.6 6.5 11.1 4.6 6.5 19 121	Strongylocentrotus (cases) N= < 9 mm 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	101 0.0 1.0% 2.0% 1.0% 4.0% 5.9% 4.0% 1.0% 0.0 4.0% 6.9% 5.0% 6.9% 5.9% 7.9% 10.9% 5.9% 6.9% 6.9% 6.9% 6.9% 6.9% 6.9% 7.9% 10.9% 1

LOCATION 12 ANACAPA ISLAND - CATHEDRAL COVE

1988 Strongylocentrotus f	ranciscanus	1989 Strongylocentrotus fi	ranciscanus
(cases) N=	100	(cases) N=	118
< 5 mm	0.0	< 5 mm	0.0
5 - 9	16.0%	5 - 9	0.8%
10 - 14	13.0%	10 - 14	0.8%
15 - 19	1.0%	15 - 19	5.9%
20 - 24	2.0%	20 - 24	7.6%
25 - 29		25 - 29	
	1.0%		2.5%
30 - 34	4.0%	30 - 34	0.0
35 - 39	0.0	35 - 39	0.0
40 - 44	0.0	40 - 44	0.8%
45 - 49	0.0	45 - 49	0.8%
50 - 54	0.0	50 - 54	2.5%
55 - 59	0.0	55 - 59	1.7%
60 - 64	0.0	60 - 64	3.4%
65 - 69	0.0	65 - 69	6.8%
70 - 74	0.0	70 - 74	7.6%
75 - 79	1.0%	75 – 79	5.9%
80 - 84	2.0%	80 - 84	6.8%
85 - 89	4.0%	85 - 89	5.9%
90 - 94	12.0%	90 - 94	10.2%
95 - 99	7.0%	95 - 99	5.9%
100 - 104	13.0%	100 - 104	8.5%
105 - 109	9.0%	105 - 109	3.4%
> 109 mm	14.0%	> 109 mm	8.5%
min size (mm)	5	min size (mm)	9
max size (mm)	124	max size (mm)	121
mean	69	mean	75
mode	8	mode	100
LOCATION 12 ANACAPA	A ISLAND - CATHEDRAL COVE	1985	
Srongylocentrotus pu	rpuratus	Srongylocentrotus pur	puratus
(cases) N=	135	(cases) N=	122
< 5 mm	0.7%	< 5 mm	
5 - 9			
10 - 14	0.0	5 - 9	0.0
	0.0 0.0	5 - 9 10 - 14	0.0 0.8% 2.5%
15 - 19			0.0 0.8% 2.5%
	0.0	10 - 14	0.0 0.8% 2.5% 1.6%
15 - 19	0.0 1.5%	10 - 14 15 - 19	0.0 0.8% 2.5% 1.6% 2.5%
15 - 19 20 - 24	0.0 1.5% 5.9%	10 - 14 15 - 19 20 - 24	0.0 0.8% 2.5% 1.6% 2.5% 0.8%
15 - 19 20 - 24 25 - 29	0.0 1.5% 5.9% 8.1%	10 - 14 15 - 19 20 - 24 25 - 29	0.0 0.8% 2.5% 1.6% 2.5% 0.8% 3.3%
15 - 19 20 - 24 25 - 29 30 - 34	0.0 1.5% 5.9% 8.1% 11.1%	10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	0.0 0.8% 2.5% 1.6% 2.5% 0.8% 3.3% 4.9%
15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	0.0 1.5% 5.9% 8.1% 11.1% 18.5% 16.3%	10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	0.0 0.8% 2.5% 1.6% 2.5% 0.8% 3.3% 4.9% 14.8%
15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	0.0 1.5% 5.9% 8.1% 11.1% 18.5% 16.3% 25.2%	10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	0.0 0.8% 2.5% 1.6% 2.5% 0.8% 3.3% 4.9% 14.8%
15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	0.0 1.5% 5.9% 8.1% 11.1% 18.5% 16.3% 25.2% 6.7%	10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	0.0 0.8% 2.5% 1.6% 2.5% 0.8% 3.3% 4.9% 14.8% 18.9% 27.9%
15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	0.0 1.5% 5.9% 8.1% 11.1% 18.5% 16.3% 25.2% 6.7% 3.7%	10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	0.0 0.8% 2.5% 1.6% 2.5% 0.8% 3.3% 4.9% 14.8% 18.9% 27.9%
15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	0.0 1.5% 5.9% 8.1% 11.1% 18.5% 16.3% 25.2% 6.7% 3.7% 0.7%	10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	0.0 0.8% 2.5% 1.6% 2.5% 0.8% 3.3% 4.9% 14.8% 18.9% 27.9% 13.1% 3.3%
15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	0.0 1.5% 5.9% 8.1% 11.1% 18.5% 16.3% 25.2% 6.7% 3.7% 0.7% 1.5%	10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	0.0 0.8% 2.5% 1.6% 2.5% 0.8% 3.3% 4.9% 14.8% 18.9% 27.9% 13.1% 3.3% 3.3%
15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	0.0 1.5% 5.9% 8.1% 11.1% 18.5% 16.3% 25.2% 6.7% 3.7% 0.7% 1.5% 0.0	10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	0.0 0.8% 2.5% 1.6% 2.5% 0.8% 3.3% 4.9% 14.8% 18.9% 27.9% 13.1% 3.3% 3.3%
15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	0.0 1.5% 5.9% 8.1% 11.1% 18.5% 16.3% 25.2% 6.7% 3.7% 0.7% 1.5% 0.0 0.0	10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	0.0 0.8% 2.5% 1.6% 2.5% 0.8% 3.3% 4.9% 14.8% 18.9% 27.9% 13.1% 3.3% 3.3% 2.5%
15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	0.0 1.5% 5.9% 8.1% 11.1% 18.5% 16.3% 25.2% 6.7% 3.7% 0.7% 1.5% 0.0 0.0 0.0	10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	0.0 0.8% 2.5% 1.6% 2.5% 0.8% 3.3% 4.9% 14.8% 18.9% 27.9% 13.1% 3.3% 2.5% 0.0
15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	0.0 1.5% 5.9% 8.1% 11.1% 18.5% 16.3% 25.2% 6.7% 3.7% 0.7% 1.5% 0.0 0.0 0.0 0.0	10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	0.0 0.8% 2.5% 1.6% 2.5% 0.8% 3.3% 4.9% 14.8% 18.9% 27.9% 13.1% 3.3% 2.5% 0.0
15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	0.0 1.5% 5.9% 8.1% 11.1% 18.5% 16.3% 25.2% 6.7% 3.7% 0.7% 1.5% 0.0 0.0 0.0 0.0	10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	0.0 0.8% 2.5% 1.6% 2.5% 0.8% 3.3% 4.9% 27.9% 13.1% 3.3% 2.5% 0.00 0.0
15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	0.0 1.5% 5.9% 8.1% 11.1% 18.5% 16.3% 25.2% 6.7% 3.7% 0.7% 1.5% 0.0 0.0 0.0 0.0 0.0	10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	0.0 0.8% 2.5% 1.6% 2.5% 0.8% 3.3% 4.9% 14.8% 18.9% 27.9% 13.1% 3.3% 3.3% 0.0 0.0
15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	0.0 1.5% 5.9% 8.1% 11.1% 18.5% 16.3% 25.2% 6.7% 3.7% 0.7% 1.5% 0.0 0.0 0.0 0.0 0.0 0.0	10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	0.0 0.8% 2.5% 1.6% 2.5% 0.8% 3.3% 4.9% 14.8% 18.9% 27.9% 13.1% 3.3% 2.5% 0.0 0.0 0.0 0.0 0.0
15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	0.0 1.5% 5.9% 8.1% 11.1% 18.5% 16.3% 25.2% 6.7% 3.7% 0.7% 1.5% 0.0 0.0 0.0 0.0 0.0 0.0	10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	0.0 0.8% 2.5% 1.6% 2.5% 0.8% 3.3% 4.9% 14.8% 18.9% 27.9% 13.1% 3.3% 2.5% 0.0 0.0 0.0
15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	0.0 1.5% 5.9% 8.1% 11.1% 18.5% 16.3% 25.2% 6.7% 3.7% 0.7% 1.5% 0.0 0.0 0.0 0.0 0.0 0.0	10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	0.0 0.8% 2.5% 1.6% 2.5% 0.8% 3.3% 4.9% 14.8% 18.9% 27.9% 13.1% 3.3% 2.5% 0.0

mode

52

47

mode

LOCATION 12 ANACAPA ISLAND - CATHEDRAL COVE

1986		1988	
Srongylocentrotus	purpuratus	Srongylocentrotus pur	rpuratus
(cases) N=	106	(cases) N=	112
< 5 mm	0.9%	< 5 mm	0.0
5 - 9	0.0	5 - 9	5.4%
10 - 14	7.5%	10 - 14	3.6%
15 - 19	16.0%	15 - 19	2.7%
20 - 24	8.5%	20 - 24	0.0
25 - 29 30 - 34	3.8% 4.7%	25 - 29 30 - 34	2.7% 5.4%
35 - 39	7.5%	35 - 39	17.9%
40 - 44	11.3%	40 - 44	27.7%
45 - 49	15.1%	45 - 49	17.9%
50 - 54	11.3%	50 - 54	9.8%
55 - 59	9.4%	55 - 59	6.3%
60 - 64	3.8%	60 - 64	0.9%
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
> 99 mm min size (mm)	0.0	> 99 mm min size (mm)	0.0
max size (mm)	64	max size (mm)	62
mean	36	mean	39
mode	18	mode	40
1987		1989	
1987 Srongylocentrotus	purpuratus	1989 Srongylocentrotus pur	rpuratus
Srongylocentrotus (cases) N=	105	Srongylocentrotus pur (cases) N=	122
Srongylocentrotus (cases) N= < 5 mm	105 11.4%	Srongylocentrotus pur (cases) N= < 5 mm	122
<pre>Srongylocentrotus (cases) N= < 5 mm 5 - 9</pre>	105 11.4% 17.1%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9	122 0.0 18.0%
<pre>Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14</pre>	105 11.4% 17.1% 7.6%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14	122 0.0 18.0% 8.2%
<pre>(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19</pre>	105 11.4% 17.1% 7.6% 1.9%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	122 0.0 18.0% 8.2% 15.6%
<pre>(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24</pre>	105 11.4% 17.1% 7.6% 1.9% 6.7%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	122 0.0 18.0% 8.2% 15.6% 1.6%
<pre>(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19</pre>	105 11.4% 17.1% 7.6% 1.9%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	122 0.0 18.0% 8.2% 15.6%
<pre>(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29</pre>	105 11.4% 17.1% 7.6% 1.9% 6.7%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	122 0.0 18.0% 8.2% 15.6% 1.6% 0.8%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	105 11.4% 17.1% 7.6% 1.9% 6.7% 13.3% 12.4%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	122 0.0 18.0% 8.2% 15.6% 1.6% 0.8%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	105 11.4% 17.1% 7.6% 1.9% 6.7% 13.3% 12.4% 11.4%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	122 0.0 18.0% 8.2% 15.6% 1.6% 0.8% 0.8% 3.3%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	105 11.4% 17.1% 7.6% 1.9% 6.7% 13.3% 12.4% 11.4% 9.5% 3.8% 2.9%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	122 0.0 18.0% 8.2% 15.6% 1.6% 0.8% 0.8% 9.0% 22.1% 11.5%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	105 11.4% 17.1% 7.6% 1.9% 6.7% 13.3% 12.4% 11.4% 9.5% 3.8% 2.9% 1.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	122 0.0 18.0% 8.2% 15.6% 1.6% 0.8% 0.8% 3.3% 9.0% 22.1% 11.5% 6.6%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	105 11.4% 17.1% 7.6% 1.9% 6.7% 13.3% 12.4% 11.4% 9.5% 3.8% 2.9% 1.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	122 0.0 18.0% 8.2% 15.6% 1.6% 0.8% 0.8% 3.3% 9.0% 22.1% 11.5% 6.6% 2.5%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	105 11.4% 17.1% 7.6% 1.9% 6.7% 13.3% 12.4% 11.4% 9.5% 3.8% 2.9% 1.0% 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	122 0.0 18.0% 8.2% 15.6% 1.6% 0.8% 0.8% 3.3% 9.0% 22.1% 11.5% 6.6% 2.5%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	105 11.4% 17.1% 7.6% 1.9% 6.7% 13.3% 12.4% 11.4% 9.5% 3.8% 2.9% 1.0% 1.0% 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	122 0.0 18.0% 8.2% 15.6% 1.6% 0.8% 0.8% 3.3% 9.0% 22.1% 11.5% 6.6% 2.5% 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	105 11.4% 17.1% 7.6% 1.9% 6.7% 13.3% 12.4% 11.4% 9.5% 3.8% 2.9% 1.0% 1.0% 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	122 0.0 18.0% 8.2% 15.6% 1.6% 0.8% 0.8% 3.3% 9.0% 22.1% 11.5% 6.6% 2.5% 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	105 11.4% 17.1% 7.6% 1.9% 6.7% 13.3% 12.4% 11.4% 9.5% 3.8% 2.9% 1.0% 1.0% 0.0 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	122 0.0 18.0% 8.2% 15.6% 1.6% 0.8% 0.8% 3.3% 9.0% 22.1% 11.5% 6.6% 2.5% 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	105 11.4% 17.1% 7.6% 1.9% 6.7% 13.3% 12.4% 11.4% 9.5% 3.8% 2.9% 1.0% 1.0% 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	122 0.0 18.0% 8.2% 15.6% 1.6% 0.8% 0.8% 3.3% 9.0% 22.1% 11.5% 6.6% 2.5% 0.0 0.0 0.0 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	105 11.4% 17.1% 7.6% 1.9% 6.7% 13.3% 12.4% 11.4% 9.5% 3.8% 2.9% 1.0% 1.0% 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	122 0.0 18.0% 8.2% 15.6% 1.6% 0.8% 0.8% 3.3% 9.0% 22.1% 11.5% 6.6% 2.5% 0.0 0.0 0.0 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	105 11.4% 17.1% 7.6% 1.9% 6.7% 13.3% 12.4% 11.4% 9.5% 3.8% 2.9% 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	122 0.0 18.0% 8.2% 15.6% 1.6% 0.8% 3.3% 9.0% 22.1% 11.5% 6.6% 2.5% 0.0 0.0 0.0 0.0 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	105 11.4% 17.1% 7.6% 1.9% 6.7% 13.3% 12.4% 11.4% 9.5% 3.8% 2.9% 1.0% 1.0% 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	122 0.0 18.0% 8.2% 15.6% 1.6% 0.8% 0.8% 3.3% 9.0% 22.1% 11.5% 6.6% 2.5% 0.0 0.0 0.0 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	105 11.4% 17.1% 7.6% 1.9% 6.7% 13.3% 12.4% 11.4% 9.5% 3.8% 2.9% 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	122 0.0 18.0% 8.2% 15.6% 1.6% 0.8% 0.8% 3.3% 9.0% 22.1% 11.5% 6.6% 2.5% 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	105 11.4% 17.1% 7.6% 1.9% 6.7% 13.3% 12.4% 11.4% 9.5% 3.8% 2.9% 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	122 0.0 18.0% 8.2% 15.6% 1.6% 0.8% 0.8% 3.3% 9.0% 22.1% 11.5% 6.6% 2.5% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1986 Haliotis rufescens		1988 Haliotis rufescens	
(cases) N=	34	(cases) N=	17
< 25 mm	0.0	< 25 mm	0.0
25 - 29	0.0	25 - 29	0.0
30 - 34	0.0	30 - 34	0.0
35 - 39	0.0	35 - 39	0.0
40 - 44	0.0	40 - 44	0.0
45 - 49	0.0	45 - 49	0.0
50 - 54	0.0	50 - 54	0.0
55 - 59	0.0	55 - 59	0.0
60 - 64	0.0	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	0.0
75 - 79	2.9%	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	2.9%	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	2.9%	95 - 99	0.0
100 - 104	2.9%	100 - 104	0.0
105 - 109	0.0	105 - 109	0.0
110 - 114	5.9%	110 - 114	5.9%
115 - 119	0.0	115 - 119	0.0
120 - 124	0.0	120 - 124	5.9%
125 - 129	2.9%	125 - 129	0.0
130 - 134	11.8%	130 - 134	11.8%
135 - 139	14.7%	135 - 139	11.8%
140 - 144	2.9%	140 - 144	5.9%
145 - 149	14.7%	145 - 149	11.8%
150 - 154	5.9%	150 - 154	5.9%
155 - 159	2.9%	155 - 159	11.8%
160 - 164	11.8%	160 - 164	17.6%
165 - 169	0.0	165 - 169	0.0
170 - 174	2.9%	170 - 174	11.8%
175 - 179	0.0	175 - 179	0.0
180 - 184	5.9%	180 - 184	0.0
185 - 189	2.9%	185 - 189	0.0
190 - 194	0.0	190 - 194	0.0
195 - 199	0.0	195 - 199	0.0
> 199 mm	2.9%	> 199 mm	0.0
min size (mm)	77	min size (mm)	113
max size (mm)	202	max size (mm)	173
mean	143	mean	147
mode	132	mode	130

1984		1986	
Haliotis corrugata		Haliotis corrugata	
(cases) N=	24	(cases) N=	31
< 95 mm	0.0	< 30 mm	0.0
95 - 99	0.0	30 - 34	3.2%
100 - 104	0.0	35 - 99	0.0
105 - 109	4.2%	100 - 104	0.0
110 - 114	0.0	105 - 109	6.5%
115 - 119	0.0	110 - 114	0.0
120 - 124	0.0	115 - 119	0.0
125 - 129	0.0	120 - 124	3.2%
130 - 134	12.5%	125 - 129	6.5%
135 - 139	8.3%	130 - 134	3.2%
140 - 144	4.2%	135 - 139	12.9%
145 - 149	20.8%	140 - 144	6.5%
150 - 154	25.0%	145 - 149	6.5%
155 - 159	12.5%	150 - 154	12.9%
160 - 164	4.2%	155 - 159	19.4%
165 - 169	4.2%	160 - 164	6.5%
170 - 174	0.0	165 - 169	6.5%
175 - 179	0.0	170 - 174	6.5%
180 - 184	0.0	> 174 mm	0.0
185 - 189	4.2%	min size (mm)	31
> 189 mm	0.0	max size (mm)	171
min size (mm)	105	mean	143
max size (mm)	185	mode	139
mean	147		
mode	145		
		1987	
1985		Haliotis corrugata	
Haliotis corrugata			
		(cases) N=	41
(cases) N=	31	< 25 mm	4.9%
< 70 mm	0.0	25 - 29	7.3%
70 - 74	3.2%	30 - 34	12.2%
75 - 79	0.0	35 - 39	7.3%
80 - 84	0.0	40 - 44	12.2%
85 - 89	0.0	45 - 49	9.8%
90 - 94	0.0	50 - 54	7.3%
95 - 99	0.0	55 - 59	7.3%
100 - 104	0.0	60 - 64	4.9%
105 - 109	0.0	65 - 69	4.9%
110 - 114	9.7%	70 - 74	0.0
115 - 119	6.5%	75 - 79	0.0
120 - 124	6.5%	80 - 84	4.9%
125 - 129	9.7%	85 - 89	2.4%
130 - 134	6.5%	90 - 94	2.4%
135 - 139	6.5%	95 - 99	0.0
140 - 144	12.9%	100 - 104	0.0
145 - 149	6.5%	105 - 109	0.0
150 - 154	9.7%	110 - 114	0.0
155 - 159	12.9%	115 - 119	0.0
160 - 164	3.2%	120 - 124	0.0
165 - 169	3.2%	125 - 129	0.0
170 - 174	0.0	130 - 134	0.0
175 - 179	3.2%	135 - 139	2.4%
> 179 mm	0.0	140 - 144	0.0
min size (mm)	70	145 - 149	0.0
max size (mm)	175	150 - 154	2.4%
mean	137	155 - 159	2.4%
mode	114	160 - 164	0.0
		165 - 169	2.4%
		170 - 174	2.4%
		> 174 mm	0.0
		min size (mm)	8
		Appx. 5-157	

Appx. 5-157

 max size (mm)
 170

 mean
 61

 mode
 30

LOCATION 13 ANACAPA ISLAND - LANDING COVE

LOCATION 13 ANACA	PA ISLAND - LANDING COVE		
1988		1989	
Haliotis corrugata		Haliotis corrugata	
(cases) N=	3	(cases) N=	32
< 25 mm	0.0	< 25 mm	0.0
25 - 29	0.0	25 - 29	0.0
30 - 34	0.0	30 - 34	0.0
35 - 39	0.0	35 - 39	0.0
40 - 44	0.0	40 - 44	0.0
45 - 49	0.0	45 - 49	0.0
50 - 54	0.0	50 - 54	0.0
55 - 59	0.0	55 - 59	0.0
60 - 64	0.0	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	0.0
75 - 79	0.0	75 - 79	3.1%
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	3.1%
95 - 99	0.0	95 - 99	0.0
100 - 104	0.0	100 - 104	0.0
105 - 109	0.0	105 - 109	0.0
110 - 114	0.0	110 - 114	0.0
115 - 119	0.0	115 - 119	6.3%
120 - 124	0.0	120 - 124	3.1%
125 - 129	0.0	125 - 129	12.5%
130 - 134	0.0	130 - 134	9.4%
135 - 139	33.3%	135 - 139	6.3%
140 - 144	0.0	140 - 144	9.4%
145 - 149	0.0	145 - 149	6.3%
150 - 154	33.3%	150 - 154	9.4%
155 - 159	0.0	155 - 159	15.6%
160 - 164	0.0	160 - 164	6.3%
165 - 169	0.0	165 - 169	6.3%
170 - 174	33.3%	170 - 174	0.0
175 - 179	0.0	175 - 179	0.0
180 - 184	0.0	180 - 184	3.1%
185 - 189	0.0	185 - 189	0.0
190 - 194	0.0	190 - 194	0.0
195 - 199	0.0	195 - 199	0.0
> 199 mm	0.0	> 199 mm	0.0
min size (mm)	138	min size (mm)	78
max size (mm)	172	max size (mm)	181
mean	154	mean	141
mode	138	mode	129

1984		1987
Cypraea spadicea		Cypraea spadicea
(cases) N=	23	(cases) N= 44
< 30 mm	0.0	< 30 mm 0.0
30 - 34	0.0	30 - 34 4.5%
35 - 39	4.3%	35 - 39 27.3%
40 - 44	26.1%	40 - 44 34.1%
45 - 49	34.8%	45 - 49 29.5%
50 - 54	21.7%	50 - 54 4.5%
55 - 59	13.0%	55 - 59 0.0
>59 mm	0.0	>59 mm 0.0
min size (mm)	36	min size (mm) 32
max size (mm)	58	max size (mm) 52
mean	48	mean 42
mode	48	mode 40
1985		
Cypraea spadicea		
(cases) N=	24	
< 30 mm	0.0	
30 - 34	4.2%	
35 - 39	4.2%	
40 - 44	33.3%	
45 - 49	20.8%	
50 - 54	33.3%	
55 - 59	4.2%	
>59 mm	0.0	
min size (mm)	33	
max size (mm)	57	
mean	46	
mode	40	

1986 Kelletia kelletii		1988 Kelletia kelletii	
(cases) N=	11	(cases) N=	12
<40 mm	0.0	<40 mm	0.0
40 - 49	0.0	40 - 49	0.0
50 - 59	0.0	50 - 59	0.0
60 - 69	0.0	60 - 69	8.3%
70 - 79	9.1%	70 - 79	0.0
80 - 89	18.2%	80 - 89	16.7%
90 - 99	18.2%	90 - 99	25.0%
100 - 109	36.4%	100 - 109	25.0%
110 - 119	18.2%	110 - 119	25.0%
120 - 129	0.0	120 - 129	0.0
130 - 139	0.0	130 - 139	0.0
140 - 149	0.0	140 - 149	0.0
>149 mm	0.0	>149 mm	0.0
min size (mm)	75	min size (mm)	68
max size (mm)	113	max size (mm)	112
mean	98	mean	99
mode	82	mode	68
1987		1989	
1987 Kelletia kelletii		1989 Kelletia kelletii	
	19		11
Kelletia kelletii	19 52.6%	Kelletia kelletii	11 0.0
Kelletia kelletii (cases) N=		Kelletia kelletii (cases) N=	
Kelletia kelletii (cases) N= <40 mm	52.6%	Kelletia kelletii (cases) N= <40 mm	0.0
Kelletia kelletii (cases) N= <40 mm 40 - 49	52.6% 26.3%	Kelletia kelletii (cases) N= <40 mm 40 - 49	0.0
Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59	52.6% 26.3% 0.0	Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59	0.0 0.0 0.0
Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59 60 - 69	52.6% 26.3% 0.0 0.0	Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59 60 - 69	0.0 0.0 0.0 0.0
Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79	52.6% 26.3% 0.0 0.0 5.3%	Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79	0.0 0.0 0.0 0.0
Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89	52.6% 26.3% 0.0 0.0 5.3% 10.5%	Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89	0.0 0.0 0.0 0.0 0.0 18.2%
Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99	52.6% 26.3% 0.0 0.0 5.3% 10.5% 5.3%	Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99	0.0 0.0 0.0 0.0 0.0 18.2% 18.2%
Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109	52.6% 26.3% 0.0 0.0 5.3% 10.5% 5.3% 0.0	Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109	0.0 0.0 0.0 0.0 0.0 18.2% 18.2% 27.3%
Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119	52.6% 26.3% 0.0 0.0 5.3% 10.5% 5.3% 0.0	Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119	0.0 0.0 0.0 0.0 0.0 18.2% 18.2% 27.3% 27.3%
Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129	52.6% 26.3% 0.0 0.0 5.3% 10.5% 5.3% 0.0 0.0	Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129	0.0 0.0 0.0 0.0 0.0 18.2% 18.2% 27.3% 27.3% 9.1%
Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139	52.6% 26.3% 0.0 0.0 5.3% 10.5% 5.3% 0.0 0.0 0.0	Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139	0.0 0.0 0.0 0.0 0.0 18.2% 18.2% 27.3% 27.3% 9.1% 0.0
Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149	52.6% 26.3% 0.0 0.0 5.3% 10.5% 5.3% 0.0 0.0 0.0	(cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149	0.0 0.0 0.0 0.0 0.0 18.2% 18.2% 27.3% 27.3% 9.1% 0.0
Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm	52.6% 26.3% 0.0 0.0 5.3% 10.5% 5.3% 0.0 0.0 0.0 0.0 0.0	(cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm	0.0 0.0 0.0 0.0 0.0 18.2% 18.2% 27.3% 27.3% 9.1% 0.0
<pre>Kelletia kelletii (cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm min size (mm)</pre>	52.6% 26.3% 0.0 0.0 5.3% 10.5% 5.3% 0.0 0.0 0.0 0.0 0.0 27	(cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm min size (mm)	0.0 0.0 0.0 0.0 0.0 18.2% 18.2% 27.3% 27.3% 9.1% 0.0 0.0

1001		1005
1984 Astraea undosa		1987 Astraea undosa
ASTIAEA UNGOSA		ASLIAEA UNGOSA
(cases) N=	46	(cases) N= 29
< 30 mm	0.0	< 10 mm 0.0
30 - 39	0.0	10 - 19 0.0
40 - 49	10.9%	20 - 29 3.4%
50 - 59	43.5%	30 - 39 0.0
60 - 69	19.6%	40 - 49 27.6%
70 - 79	8.7%	50 - 59 37.9%
80 - 89	10.9%	60 - 69 20.7%
90 - 99	6.5%	70 - 79 6.9%
100 - 109	0.0	80 - 89 3.4%
110 - 119	0.0	90 - 99 0.0
>119 mm	0.0	>99 mm 0.0
min size (mm)	40	min size (mm) 27
max size (mm)	99	max size (mm) 84
mean	63	mean 56
mode	60	mode 57
1985		1988
Astraea undosa		Astraea undosa
(cases) N=	30	(cases) N= 30
< 30 mm	0.0	< 30 mm 0.0
30 - 39	6.7%	30 - 39 6.7%
40 - 49	6.7%	40 - 49 13.3%
50 - 59	40.0%	50 - 59 3.3%
60 - 69	20.0%	60 - 69 33.3%
70 - 79	26.7%	70 - 79 30.0%
80 - 89	0.0	80 - 89 10.0%
90 - 99	0.0	90 - 99 3.3%
100 - 109	0.0	100 - 109 0.0
110 - 119	0.0	110 - 119 0.0
>119 mm	0.0	>119 mm 0.0
min size (mm) max size (mm)	39 77	min size (mm) 38 max size (mm) 93
mean	60	mean 66
mode	52	mode 48
mode	32	10
1986		1989
Astraea undosa		Astraea undosa
(anged) N-	61	(cases) N= 32
(cases) N= < 10 mm	0.0	(cases) N= 32 < 30 mm 0.0
10 - 19	0.0	30 - 39 3.1%
20 - 29	4.9%	40 - 49 25.0%
30 - 39	0.0	50 - 59 18.8%
40 - 49	6.6%	60 - 69 12.5%
50 - 59	13.1%	70 - 79 37.5%
60 - 69	34.4%	80 - 89 3.1%
70 - 79	23.0%	90 - 99 0.0
80 - 89	14.8%	100 - 109 0.0
90 - 99	3.3%	110 - 119 0.0
100 - 109	0.0	>119 mm 0.0
>109 mm	0.0	min size (mm) 35
min size (mm)	22	max size (mm) 82
max size (mm)	94	mean 61
mean	66	mode 40
mode	66	

1984		1987	
Megathura crenulata		Megathura crenulata	
(cases) N=	39	(cases) N=	31
< 40 mm	0.0	< 10 mm	0.0
40 - 49	0.0	10 - 19	3.2%
50 - 59	0.0	20 - 29	3.2%
60 - 69	10.3%	30 - 39	0.0
70 - 79	12.8%	40 - 49	0.0
80 - 89	51.3%	50 - 59	3.2%
90 - 99	17.9%	60 - 69	3.2%
100 - 109	7.7%	70 - 79	12.9%
110 - 119	0.0	80 - 89	45.2%
>119 mm	0.0	90 - 99	25.8%
min size (mm)	64	100 - 109	3.2%
max size (mm)	102	110 - 119	0.0
mean	85	>119 mm	0.0
mode	88	min size (mm)	13
1005		max size (mm)	102
1985		mean	80
Megathura crenulata		mode	86
(cases) N=	30	1988	
< 40 mm	0.0	Megathura crenulata	
40 - 49	0.0		
50 - 59	3.3%	(cases) N=	30
60 - 69	0.0	< 10 mm	0.0
70 - 79	16.7%	10 - 19	0.0
80 - 89	46.7%	20 - 29	0.0
90 - 99	13.3%	30 - 39	0.0
100 - 109	6.7%	40 - 49	0.0
110 - 119	10.0%	50 - 59	0.0
>119 mm	0.0	60 - 69	0.0
min size (mm)	59	70 - 79	16.7%
max size (mm)	120	80 - 89	33.3%
mean	89	90 - 99	40.0%
mode	86	100 - 109	10.0%
1986		110 - 119 >119 mm	0.0
Megathura crenulata		min size (mm)	75
negathura crenurata		max size (mm)	103
(cases) N=	38	mean	89
< 40 mm	0.0	mode	96
40 - 49	0.0		30
50 - 59	2.6%		
60 - 69	5.3%		
70 - 79	5.3%		
80 - 89	10.5%	1987	
90 - 99	15.8%	Patiria miniata	
100 - 109	31.6%		
110 - 119	21.1%	(cases) N=	19
>119 mm	7.9%	< 10 mm	15.8%
min size (mm)	50	10 - 19	42.1%
max size (mm)	128	20 - 29	31.6%
mean	99	30 - 39	5.3%
mode	101	40 - 49	5.3%
		>49 mm	0.0
		min size (mm)	8
		max size (mm)	42
		mean	20
		mode	18

1984 Hinnites giganteus		1987 Hinnites giganteus	
miniteeb giganeeab		nimiteeb giganeeub	
(cases) N= < 30 mm	50 0.0	(cases) N= < 30 mm	62 0.0
30 - 39	0.0	30 - 39	4.8%
40 - 49	22.0%	40 - 49	8.1%
50 - 59	30.0%	50 - 59	14.5%
60 - 69	14.0%	60 - 69	27.4%
70 - 79	16.0%	70 - 79	21.0%
80 - 89	8.0%	80 - 89	6.5%
90 - 99 100 - 109	4.0% 2.0%	90 - 99 100 - 109	9.7% 3.2%
110 - 119	2.0%	110 - 119	3.2%
120 - 129	0.0	120 - 129	1.6%
130 - 139	2.0%	>129 mm	0.0
>139 mm	0.0	min size (mm)	33
min size (mm)	42 132	max size (mm)	127 71
max size (mm) mean	64	mean mode	67
mode	50	mode	0 /
		1988	
1985 Hinnites giganteus		Hinnites giganteus	
gryanceas		(cases) N=	51
(cases) N=	46	< 10 mm	0.0
< 10 mm	0.0	10 - 19	2.0%
10 - 19	2.2%	20 - 29	0.0
20 - 29 30 - 39	0.0 4.3%	30 - 39 40 - 49	7.8% 7.8%
40 - 49	4.3%	50 - 59	17.6%
50 - 59	21.7%	60 - 69	15.7%
60 - 69	13.0%	70 - 79	31.4%
70 - 79	19.6%	80 - 89	3.9%
80 - 89	17.4%	90 - 99	3.9%
90 - 99 100 - 109	6.5% 6.5%	100 - 109 110 - 119	3.9% 3.9%
110 - 119	4.3%	120 - 129	2.0%
>119 mm	0.0	130 - 139	0.0
min size (mm)	18	>139 mm	0.0
max size (mm)	114	min size (mm)	15
mean mode	71 50	max size (mm) mean	121 67
mode	50	mode	72
1986		4000	
Hinnites giganteus		1989 Hinnites giganteus	
(cases) N=	35	ninites giganteus	
< 30 mm	0.0	(cases) N=	30
30 - 39	0.0	< 20 mm	0.0
40 - 49	14.3%	20 - 29	0.0
50 - 59	14.3%	30 - 39	3.3%
60 - 69 70 - 79	28.6% 20.0%	40 - 49 50 - 59	6.7% 10.0%
80 - 89	14.3%	60 - 69	13.3%
90 - 99	2.9%	70 - 79	10.0%
100 - 109	2.9%	80 - 89	13.3%
110 - 119	2.9%	90 - 99	13.3%
>129 mm	0.0	100 - 109	6.7%
min size (mm) max size (mm)	42 110	110 - 119 120 - 129	3.3% 6.7%
mean	68	130 - 139	3.3%
mode	65	140 - 149	6.7%
		>149 mm	3.3%
		min size (mm)	37
		max size (mm) Anny 5-163	153
		400x 1=103	

Appx. 5-163

mean 87 mode 37

LOCATION 13 ANAC	APA ISLAND - LANDING COVE	e riequencies	
1984		1986	
Strongylocentrotus	franciscanus	Strongylocentrotus	franciscanus
(cases) N=	104	(cases) N=	95
< 5 mm	0.0	< 5 mm	0.0
5 - 9	4.8%	5 - 9	0.0
10 - 14	1.9%	10 - 14	1.1%
15 - 19	4.8%	15 - 19	2.1%
20 - 24	3.8%	20 - 24	0.0
25 - 29	4.8%	25 - 29	0.0
30 - 34	0.0	30 - 34	0.0
35 - 39	1.0%	35 - 39	0.0
40 - 44 45 - 49		40 - 44 45 - 49	1.1%
50 - 54	1.9% 1.0%	50 - 54	3.2% 1.1%
55 - 59	1.0%	55 - 59	1.1%
60 - 64	1.9%	60 - 64	3.2%
65 - 69	1.0%	65 - 69	0.0
70 - 74	1.0%	70 - 74	1.1%
75 - 79	4.8%	75 - 79	5.3%
80 - 84	4.8%	80 - 84	8.4%
85 - 89	7.7%	85 - 89	7.4%
90 - 94	7.7%	90 - 94	15.8%
95 - 99	16.3%	95 - 99	9.5%
100 - 104	6.7%	100 - 104	13.7%
105 - 109	8.7%	105 - 109	12.6%
> 109 mm	12.5%	> 109 mm	12.6%
min size (mm)	6	min size (mm)	12
max size (mm)	127	max size (mm)	134
mean	78	mean	92
mode	96	mode	84
1985		1987	
1985 Strongylocentrotus	franciscanus	1987 Strongylocentrotus	franciscanus
	franciscanus 106		franciscanus 99
Strongylocentrotus		Strongylocentrotus	
Strongylocentrotus (cases) N=	106	Strongylocentrotus (cases) N=	99
Strongylocentrotus (cases) N= < 5 mm	106 0.0	Strongylocentrotus (cases) N= < 5 mm	99 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9	106 0.0 4.7%	Strongylocentrotus (cases) N= < 5 mm 5 - 9	99 0.0 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	106 0.0 4.7% 17.9%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	99 0.0 0.0 1.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	99 0.0 0.0 1.0% 0.0 1.0% 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 1.9%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	99 0.0 0.0 1.0% 0.0 1.0% 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 1.9% 0.9%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	99 0.0 0.0 1.0% 0.0 1.0% 0.0 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 1.9% 0.9%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	99 0.0 0.0 1.0% 0.0 1.0% 0.0 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 1.9% 0.9% 0.0	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	99 0.0 0.0 1.0% 0.0 1.0% 0.0 0.0 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 1.9% 0.9% 0.0	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	99 0.0 0.0 1.0% 0.0 1.0% 0.0 0.0 0.0 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 1.9% 0.9% 0.0 0.0 0.0	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	99 0.0 0.0 1.0% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 2.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 1.9% 0.9% 0.0 0.0 0.0 0.9% 0.0	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	99 0.0 0.0 1.0% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 2.0% 3.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 1.9% 0.9% 0.0 0.0 0.0 0.9% 0.0	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	99 0.0 0.0 1.0% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 2.0% 3.0% 1.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 1.9% 0.9% 0.0 0.0 0.9% 0.0 0.9% 0.0	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	99 0.0 0.0 1.0% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 2.0% 3.0% 1.0%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 1.9% 0.9% 0.0 0.0 0.0 0.9% 0.0 0.9% 0.0 2.8%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	99 0.0 0.0 1.0% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 2.0% 3.0% 1.0% 4.0% 5.1%
Strongylocentrotus (cases) $N=$ < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 1.9% 0.9% 0.0 0.0 0.0 0.9% 0.0 0.9% 0.0 0.9% 0.0	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	99 0.0 0.0 1.0% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 2.0% 3.0% 1.0% 4.0% 5.1% 7.1%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 1.9% 0.9% 0.0 0.0 0.0 0.9% 0.0 0.9% 0.0 0.2.8% 5.7% 6.6%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	99 0.0 0.0 1.0% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 2.0% 3.0% 1.0% 4.0% 5.1% 7.1% 6.1%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 2.8% 1.9% 0.9% 0.0 0.0 0.0 0.9% 0.0 0.9% 0.0 0.9% 6.6% 5.7%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	99 0.0 0.0 1.0% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 2.0% 3.0% 1.0% 4.0% 5.1% 7.1% 6.1% 5.1%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 2.8% 1.9% 0.9% 0.0 0.0 0.0 0.9% 0.0 0.9% 0.0 2.8% 5.7% 6.6% 5.7% 12.3%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	99 0.0 0.0 1.0% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 2.0% 3.0% 4.0% 5.1% 7.1% 6.1% 5.1%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 2.8% 1.9% 0.9% 0.0 0.0 0.0 0.9% 0.0 0.9% 0.0 2.8% 5.7% 6.6% 5.7% 12.3% 10.4%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	99 0.0 0.0 1.0% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 2.0% 3.0% 1.0% 4.0% 5.1% 7.1% 6.1% 5.1% 13.1% 14.1%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 2.88% 1.9% 0.9% 0.0 0.0 0.0 0.9% 0.0 0.9% 0.0 2.8% 5.7% 6.6% 5.7% 12.3% 10.4% 9.4%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	99 0.0 0.0 1.0% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 2.0% 3.0% 1.0% 4.0% 5.1% 7.1% 6.1% 5.1% 13.1% 14.1% 10.1%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 2.8% 1.9% 0.9% 0.0 0.0 0.0 0.9% 0.0 0.9% 0.0 0.2.8% 5.7% 6.6% 5.7% 12.3% 10.4% 9.4%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	99 0.0 0.0 1.0% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 2.0% 3.0% 1.0% 4.0% 5.1% 7.1% 6.1% 5.1% 13.1% 14.1% 10.1% 24.2%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 2.8% 1.9% 0.9% 0.0 0.0 0.0 0.9% 0.0 0.9% 0.0 0.0 2.8% 5.7% 6.6% 5.7% 12.3% 10.4% 9.4% 10.4%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	99 0.0 0.0 1.0% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 2.0% 3.0% 1.0% 4.0% 5.1% 7.1% 6.1% 5.1% 13.1% 14.1% 10.1% 24.2% 13
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 2.8% 1.9% 0.9% 0.0 0.0 0.0 0.9% 0.0 0.9% 0.0 0.2.8% 5.7% 6.6% 5.7% 12.3% 10.4% 9.4%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	99 0.0 0.0 1.0% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 2.0% 3.0% 1.0% 4.0% 5.1% 7.1% 6.1% 5.1% 13.1% 14.1% 10.1% 24.2%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	106 0.0 4.7% 17.9% 2.8% 2.8% 2.8% 1.9% 0.9% 0.0 0.0 0.0 0.9% 0.0 0.9% 0.0 0.0 2.8% 5.7% 6.6% 5.7% 12.3% 10.4% 9.4% 10.4%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	99 0.0 0.0 1.0% 0.0 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 2.0% 3.0% 1.0% 4.0% 5.1% 7.1% 6.1% 5.1% 13.1% 14.1% 10.1% 24.2% 13 143

1988		1989	
Strongylocentrotu	s franciscanus	Strongylocentrotu:	s franciscanus
(cases) N=	71	(cases) N=	121
< 5 mm	0.0	< 5 mm	0.0
5 - 9	0.0	5 - 9	5.8%
10 - 14	9.9%	10 - 14	4.1%
15 - 19	1.4%	15 - 19	4.1%
20 - 24	4.2%	20 - 24	9.1%
25 - 29	1.4%	25 - 29	2.5%
30 - 34	2.8%	30 - 34	1.7%
35 - 39	1.4%	35 - 39	0.0
40 - 44	4.2%	40 - 44	0.8%
45 - 49	0.0	45 - 49	3.3%
50 - 54	1.4%	50 - 54	0.8%
55 - 59	5.6%	55 - 59	4.1%
60 - 64	4.2%	60 - 64	1.7%
65 - 69	2.8%	65 - 69	1.7%
70 - 74	8.5%	70 - 74	1.7%
75 - 79	4.2%	75 - 79	4.1%
80 - 84	7.0%	80 - 84	3.3%
85 - 89	5.6%	85 - 89	5.8%
90 - 94	5.6%	90 - 94	6.6%
95 - 99	5.6%	95 - 99	6.6%
100 - 104	2.8%	100 - 104	7.4%
105 - 109	7.0%	105 - 109	6.6%
> 109 mm	9.9%	> 109 mm	18.2%
min size (mm)	11	min size (mm)	5
max size (mm)	126	max size (mm)	129
mean	72	mean	72
mode	13	mode	100

1984		1986	
Srongylocentroti	is purpuratus	Srongylocentrotus pur	puratus
5101197 10001101000	parparada	stong, too one to cae par	paradao
(cases) N=	63	(cases) N=	98
< 5 mm	0.0	< 5 mm	0.0
5 - 9	0.0	5 - 9	4.1%
10 - 14	0.0	10 - 14	6.1%
15 - 19	3.2%	15 - 19	15.3%
20 - 24	4.8%	20 - 24	22.4%
25 - 29	6.3%	25 - 29	13.3%
30 - 34	4.8%	30 - 34	2.0%
35 - 39	4.8%	35 - 39	1.0%
40 - 44	15.9%	40 - 44	7.1%
45 - 49	14.3%	45 - 49	4.1%
50 - 54	20.6%	50 - 54	12.2%
55 - 59	14.3%	55 - 59	7.1%
60 - 64	6.3%	60 - 64	3.1%
65 - 69	4.8%	65 - 69	2.0%
70 - 74	0.0	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 – 99	0.0
> 99 mm	0.0	> 99 mm	0.0
min size (mm)	16	min size (mm)	9
max size (mm)	66	max size (mm)	67
mean	46	mean	32
mode	47	mode	22
1985		1987	
1985 Srongylocentrotu	us purpuratus	1987 Srongylocentrotus pur	puratus
	us purpuratus 99		puratus 103
Srongylocentrotu		Srongylocentrotus pur	-
Srongylocentrotu (cases) N=	99	Srongylocentrotus pur (cases) N=	103
Srongylocentrotu (cases) N= < 5 mm	99 2.0%	Srongylocentrotus pur (cases) N= < 5 mm	103
Srongylocentrotu (cases) N= < 5 mm 5 - 9	99 2.0% 19.2%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9	103 0.0 6.8%
Srongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14	99 2.0% 19.2% 20.2%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14	103 0.0 6.8% 1.0%
Srongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	99 2.0% 19.2% 20.2% 3.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	103 0.0 6.8% 1.0% 9.7%
Srongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	99 2.0% 19.2% 20.2% 3.0% 2.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	103 0.0 6.8% 1.0% 9.7% 7.8%
Srongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	99 2.0% 19.2% 20.2% 3.0% 2.0% 3.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	103 0.0 6.8% 1.0% 9.7% 7.8% 15.5%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	99 2.0% 19.2% 20.2% 3.0% 2.0% 3.0% 3.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	103 0.0 6.8% 1.0% 9.7% 7.8% 15.5% 4.9%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	99 2.0% 19.2% 20.2% 3.0% 2.0% 3.0% 3.0% 3.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	103 0.0 6.8% 1.0% 9.7% 7.8% 15.5% 4.9%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	99 2.0% 19.2% 20.2% 3.0% 2.0% 3.0% 3.0% 11.1%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	103 0.0 6.8% 1.0% 9.7% 7.8% 15.5% 4.9% 15.5% 9.7%
Srongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	99 2.0% 19.2% 20.2% 3.0% 2.0% 3.0% 3.0% 11.1% 15.2%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	103 0.0 6.8% 1.0% 9.7% 7.8% 15.5% 4.9% 15.5% 9.7%
Srongylocentrotu (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	99 2.0% 19.2% 20.2% 3.0% 2.0% 3.0% 3.0% 3.1% 11.1% 15.2% 8.1%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	103 0.0 6.8% 1.0% 9.7% 7.8% 15.5% 4.9% 15.5% 9.7% 9.7%
Srongylocentrota (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	99 2.0% 19.2% 20.2% 3.0% 2.0% 3.0% 3.0% 3.1% 4.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	103 0.0 6.8% 1.0% 9.7% 7.8% 15.5% 4.9% 9.7% 9.7% 9.7% 3.9% 8.7%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	99 2.0% 19.2% 20.2% 3.0% 2.0% 3.0% 3.0% 3.1% 4.0% 2.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	103 0.0 6.8% 1.0% 9.7% 7.8% 15.5% 4.9% 15.5% 9.7% 9.7% 3.9%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	99 2.0% 19.2% 20.2% 3.0% 2.0% 3.0% 3.0% 3.1% 4.0% 2.0% 3.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	103 0.0 6.8% 1.0% 9.7% 7.8% 15.5% 4.9% 15.5% 9.7% 9.7% 3.9% 8.7% 3.9%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	99 2.0% 19.2% 20.2% 3.0% 3.0% 3.0% 3.0% 3.11.1% 15.2% 8.1% 4.0% 2.0% 3.0% 1.0% 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	103 0.0 6.8% 1.0% 9.7% 7.8% 15.5% 4.9% 15.5% 9.7% 9.7% 3.9% 8.7% 3.9% 1.0% 1.0%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	99 2.0% 19.2% 20.2% 3.0% 2.0% 3.0% 3.0% 3.0% 11.1% 15.2% 8.1% 4.0% 2.0% 3.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	103 0.0 6.8% 1.0% 9.7% 7.8% 15.5% 4.9% 15.5% 9.7% 9.7% 3.9% 8.7% 3.9% 1.0%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	99 2.0% 19.2% 20.2% 3.0% 3.0% 3.0% 3.0% 3.0% 11.1% 15.2% 8.1% 4.0% 2.0% 3.0% 1.0% 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	103 0.0 6.8% 1.0% 9.7% 7.8% 15.5% 4.9% 15.5% 9.7% 9.7% 3.9% 8.7% 3.9% 1.0% 1.0% 1.0%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	99 2.0% 19.2% 20.2% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 11.1% 15.2% 8.1% 4.0% 2.0% 3.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	103 0.0 6.8% 1.0% 9.7% 7.8% 15.5% 4.9% 15.5% 9.7% 9.7% 3.9% 8.7% 3.9% 1.0% 1.0% 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	99 2.0% 19.2% 20.2% 3.0% 3.0% 3.0% 3.0% 3.0% 11.1% 15.2% 8.1% 4.0% 2.0% 3.0% 1.0% 0.0 0.0 0.0 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	103 0.0 6.8% 1.0% 9.7% 7.8% 15.5% 4.9% 15.5% 9.7% 9.7% 3.9% 8.7% 3.9% 1.0% 1.0% 1.0%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	99 2.0% 19.2% 20.2% 3.0% 2.0% 3.0% 3.0% 3.0% 3.0% 11.1% 15.2% 8.1% 4.0% 2.0% 3.0% 1.0% 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	103 0.0 6.8% 1.0% 9.7% 7.8% 15.5% 4.9% 15.5% 9.7% 9.7% 3.9% 1.0% 1.0% 1.0% 1.0%
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	99 2.0% 19.2% 20.2% 3.0% 2.0% 3.0% 3.0% 3.0% 11.1% 15.2% 8.1% 4.0% 2.0% 3.0% 1.0% 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	103 0.0 6.8% 1.0% 9.7% 7.8% 15.5% 4.9% 15.5% 9.7% 9.7% 3.9% 8.7% 3.9% 1.0% 1.0% 1.0% 0.0 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm) mean	99 2.0% 19.2% 20.2% 3.0% 2.0% 3.0% 3.0% 3.0% 3.0% 11.1% 15.2% 8.1% 4.0% 2.0% 3.0% 1.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm) max size (mm)	103 0.0 6.8% 1.0% 9.7% 7.8% 15.5% 4.9% 15.5% 9.7% 3.9% 8.7% 3.9% 1.0% 1.0% 1.0% 0.0 0.0 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	99 2.0% 19.2% 20.2% 3.0% 2.0% 3.0% 3.0% 3.0% 11.1% 15.2% 8.1% 4.0% 2.0% 3.0% 1.0% 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	103 0.0 6.8% 1.0% 9.7% 7.8% 15.5% 4.9% 15.5% 9.7% 9.7% 3.9% 8.7% 3.9% 1.0% 1.0% 1.0% 0.0 0.0

1988 1989		1989	
Srongylocentrotus purpuratus Srongylocentrotus purpura		puratus	
(cases) N=	75	(cases) N=	111
< 5 mm	0.0	< 5 mm	0.0
5 - 9	0.0	5 - 9	11.7%
10 - 14	0.0	10 - 14	5.4%
15 - 19	4.0%	15 - 19	8.1%
20 - 24	2.7%	20 - 24	7.2%
25 - 29	8.0%	25 - 29	4.5%
30 - 34	5.3%	30 - 34	4.5%
35 - 39	12.0%	35 - 39	8.1%
40 - 44	13.3%	40 - 44	11.7%
45 - 49	16.0%	45 - 49	9.0%
50 - 54	20.0%	50 - 54	17.1%
55 - 59	13.3%	55 - 59	5.4%
60 - 64	4.0%	60 - 64	5.4%
65 - 69	1.3%	65 - 69	1.8%
70 - 74	0.0	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
100 - 104	0.0	100 - 104	0.0
105 - 109	0.0	105 - 109	0.0
> 109 mm	0.0	> 109 mm	0.0
min size (mm)	15	min size (mm)	5
max size (mm)	65	max size (mm)	68
mean	44	mean	35
mode	52	mode	50

LOCATION 14 SANTA BARBARA ISLAND - SOUTH EAST SEALION ROOKERY

1986 Tethya aurantia		1988 Tethya aurantia	
reenja aaranera		roomya aaramera	
(cases) N=	33	(cases) N=	32
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	0.0
20 - 29	0.0	20 - 29	6.3%
30 - 39	6.1%	30 - 39	21.9%
40 - 49	27.3%	40 - 49	9.4%
50 - 59	24.2%	50 - 59	25.0%
60 - 69	18.2%	60 - 69	21.9%
70 - 79	18.2%	70 - 79	9.4%
80 - 89	6.1%	80 - 89	6.3%
90 - 99	0.0	90 - 99	0.0
>99 mm	0.0	>99 mm	0.0
min size (mm)	36	min size (mm)	21
max size (mm)	8.5	max size (mm)	84
mean	58	mean	54
mode	48	mode	35
1987		1989	
1987 Tethya aurantia		1989 Tethya aurantia	
Tethya aurantia	20	Tethya aurantia	21
Tethya aurantia (cases) N=	39	Tethya aurantia (cases) N=	31
Tethya aurantia (cases) N= < 10 mm	0.0	Tethya aurantia (cases) N= < 10 mm	0.0
Tethya aurantia (cases) N= < 10 mm 10 - 19	0.0	Tethya aurantia (cases) N= < 10 mm 10 - 19	0.0 0.0
Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29	0.0 0.0 5.1%	Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29	0.0 0.0 12.9%
Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39	0.0 0.0 5.1% 10.3%	Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39	0.0 0.0 12.9% 6.5%
Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49	0.0 0.0 5.1% 10.3% 15.4%	Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49	0.0 0.0 12.9% 6.5% 9.7%
Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59	0.0 0.0 5.1% 10.3% 15.4% 15.4%	Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59	0.0 0.0 12.9% 6.5% 9.7% 16.1%
Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49	0.0 0.0 5.1% 10.3% 15.4% 15.4% 28.2%	Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49	0.0 0.0 12.9% 6.5% 9.7% 16.1%
Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69	0.0 0.0 5.1% 10.3% 15.4% 15.4% 28.2% 17.9%	Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69	0.0 0.0 12.9% 6.5% 9.7% 16.1% 16.1% 25.8%
Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79	0.0 0.0 5.1% 10.3% 15.4% 15.4% 28.2%	Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79	0.0 0.0 12.9% 6.5% 9.7% 16.1%
Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89	0.0 0.0 5.1% 10.3% 15.4% 15.4% 28.2% 17.9% 7.7%	Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89	0.0 0.0 12.9% 6.5% 9.7% 16.1% 16.1% 25.8% 12.9%
Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99	0.0 0.0 5.1% 10.3% 15.4% 15.4% 28.2% 17.9% 7.7% 0.0	Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99	0.0 0.0 12.9% 6.5% 9.7% 16.1% 25.8% 12.9% 0.0
Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm	0.0 0.0 5.1% 10.3% 15.4% 15.4% 28.2% 17.9% 7.7% 0.0	Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm	0.0 0.0 12.9% 6.5% 9.7% 16.1% 25.8% 12.9% 0.0
Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm)	0.0 0.0 5.1% 10.3% 15.4% 15.4% 28.2% 17.9% 7.7% 0.0 0.0	Tethya aurantia (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >99 mm min size (mm)	0.0 0.0 12.9% 6.5% 9.7% 16.1% 25.8% 12.9% 0.0 0.0 20

1984		1985	
Haliotis corrugata		Haliotis corrugata	
		_	
(cases) N=	8	(cases) N=	10
< 70 mm	0.0	< 35 mm	0.0
70 - 74	12.5%	35 - 39	10.0%
75 - 79	0.0	40 - 44	0.0
80 - 84	0.0	45 - 49	0.0
85 - 89	0.0	50 - 54	0.0
90 - 94	0.0	55 - 59	0.0
95 - 99	0.0	60 - 64	0.0
100 - 104	0.0	65 - 69	0.0
105 - 109	0.0	70 - 74	0.0
110 - 114	12.5%	75 - 79	10.0%
115 - 119	0.0	80 - 84	0.0
120 - 124	12.5%	85 - 89	10.0%
125 - 129	0.0	90 - 94	0.0
130 - 134	0.0	95 - 99	0.0
135 - 139	0.0	100 - 104	0.0
140 - 144	0.0	105 - 109	0.0
145 - 149	12.5%	110 - 114	0.0
150 - 154	0.0	115 - 119	0.0
155 - 159	0.0	120 - 124	0.0
160 - 164	12.5%	125 - 129	0.0
165 - 169	12.5%	130 - 134	0.0
170 - 174	12.5%	135 - 139	10.0%
175 - 179	0.0	140 - 144	0.0
180 - 184	0.0	145 - 149	40.0%
185 - 189	0.0	150 - 154	0.0
190 - 194	0.0	155 - 159	0.0
195 - 199	12.5%	160 - 164	10.0%
> 199 mm	0.0	165 - 169	0.0
min size (mm)	70	170 - 174	0.0
max size (mm)	195	175 - 179	0.0
mean	142	180 - 184	0.0
mode	70	185 - 189	0.0
		190 - 194	0.0
		195 - 199	10.0%
		> 199 mm	0.0
		min size (mm)	37
		max size (mm)	199
		mean	129
		mode	145
			0

1986 Haliotis corrugata

(cases) N=	9
< 115 mm	0.0
115 - 119	0.0
120 - 124	11.1%
125 - 129	11.1%
130 - 134	22.2%
135 - 139	22.2%
140 - 144	22.2%
145 - 149	0.0
150 - 154	11.1%
> 155 mm	0.0
min size (mm)	124
max size (mm)	153
mean	136
mode	124

1985 Cypraea spadicea		1988 Cypraea spadicea
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	14 0.0 7.1% 14.3% 42.9% 28.6% 7.1% 0.0 0.0 34 51 43	(cases) N= 14 < 30 mm
1986 Cypraea spadicea		1989 Cypraea spadicea
(cases) N= < 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	14 0.0 0.0 50.0% 35.7% 7.1% 7.1% 0.0 0.0 35 50 41	(cases) N= 30 < 30 mm
1987 Cypraea spadicea (cases) N=	41	
< 30 mm 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 >59 mm min size (mm) max size (mm) mean mode	2.4% 7.3% 22.0% 46.3% 19.5% 2.4% 0.0 0.0 16 50 41	

1984 Astraea undosa		1987 Astraea undosa	
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	38 0.0 2.6% 7.9% 0.0 7.9% 2.6% 2.6% 18.4% 21.1% 34.2% 2.6% 0.0 0.0 17 100 76 79	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	54 0.0 0.0 0.0 13.0% 35.2% 29.6% 13.0% 5.6% 1.9% 0.0 0.0 0.0 30 96 52 44
1985 Astraea undosa		1988 Astraea undosa	
(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 > 79 mm min size (mm) max size (mm) mean mode 1986 Astraea undosa (cases) N=	30 0.0 0.0 43.3% 30.0% 20.0% 3.3% 0.0 21 65 34 40	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	33 0.0 0.0 0.0 9.1% 39.4% 45.5% 6.1% 0.0 0.0 0.0 0.0 78 59
< 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	0.0 0.0 34.4% 62.5% 0.0 3.1% 0.0 0.0 0.0 0.0 0.0 0.0 3.3 63 40 40	1989 Astraea undosa (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	30 0.0 0.0 0.0 0.0 3.3% 36.7% 53.3% 6.7% 0.0 0.0 0.0 0.0 49 72 61 64

LOCATION 14 SANTA BARBARA ISLAND - SOUTH EAST SEALION ROOKERY

1985 Kelletia kelletii		1984 Megathura crenulata	
(cases) N= <40 mm 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 120 - 129 130 - 139 140 - 149 >149 mm min size (mm) max size (mm) mean	13 46.2% 0.0 0.0 0.0 0.0 0.0 0.0 7.7% 15.4% 15.4% 7.7% 0.0 7.7% 15.4% 15.4%	(cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean	42 0.0 0.0 0.0 0.0 2.4% 16.7% 4.8% 31.0% 26.2% 16.7% 2.4% 0.0 0.0 47 104 76
mode	15	mode 1985 Megathura crenulata (cases) N= < 10 mm 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 100 - 109 110 - 119 >119 mm min size (mm) max size (mm) mean mode	76 13 0.0 0.0 7.7% 0.0 0.0 30.8% 7.7% 7.7% 38.5% 7.7% 0.0 0.0 27 97 69 55

1985		1987	
Hinnites giganteus		Patiria miniata	
(cases) N=	21	(cases) N=	34
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	11.8%
20 - 29	9.5%	20 - 29	20.6%
30 - 39	19.0%	30 - 39	47.1%
40 - 49	19.0%	40 - 49	17.6%
50 - 59	4.8%	50 - 59	0.0
60 - 69	4.8%	60 - 69	2.9%
70 - 79	9.5%	70 - 79	0.0
80 - 89	9.5%	80 - 89	0.0
90 - 99	14.3%	90 - 99	0.0
100 - 109	4.8%	>100 mm	0.0
110 - 119	0.0	min size (mm)	11
120 - 129	0.0	max size (mm)	67
130 - 139	4.8%	mean	33
140 - 149	0.0	mode	31
>149 mm	0.0		
min size (mm)	23	1988	
max size (mm)	133	Patiria miniata	
mean	62		
mode	37	(cases) N=	34
		< 10 mm	0.0
1986		10 - 19	0.0
Hinnites giganteus		20 - 29	8.8%
		30 - 39	32.4%
(cases) N=	12	40 - 49	14.7%
< 10 mm	0.0	50 - 59	38.2%
10 - 19	0.0	60 - 69	5.9%
20 - 29	0.0	70 - 79	0.0
30 - 39	0.0	80 - 89	0.0
40 - 49	25.0%	90 - 99	0.0
50 - 59	0.0	>100 mm	0.0
60 - 69	0.0	min size (mm)	23
70 - 79	8.3%	max size (mm)	67
80 - 89	8.3%	mean	45
90 - 99	0.0	mode	56
100 - 109	8.3%		
110 - 119	33.3%	1989	
120 - 129	16.7%	Patiria miniata	
130 - 139	0.0		
140 - 149	0.0	(cases) N=	55
>149 mm	0.0	< 10 mm	0.0
min size (mm)	42	10 - 19	0.0
max size (mm)	125	20 - 29	3.6%
mean	91	30 - 39	21.8%
mode	45	40 - 49	21.8%
		50 - 59	34.5%
		60 - 69	12.7%
		70 - 79	3.6%
		80 - 89	1.8%
		90 - 99	0.0
		>100 mm	0.0
		min size (mm)	21
		max size (mm)	80
		mean	49
		mode	45

1986 Pisaster giganteus		1988 Pisaster giganteus	
(cases) N=	23	(cases) N=	32
<20 mm	0.0	<20 mm	0.0
20 - 39	4.3%	20 - 39	0.0
40 - 59	4.3%	40 - 59	6.3%
60 - 79	8.7%	60 - 79	28.1%
80 - 99	21.7%	80 - 99	31.3%
100 - 119	30.4%	100 - 119	21.9%
120 - 139	17.4%	120 - 139	12.5%
140 - 159	13.0%	140 - 159	0.0
160 - 179	0.0	160 - 179	0.0
180 - 199	0.0	180 - 199	0.0
200 - 219	0.0	200 - 219	0.0
220 - 239	0.0	220 - 239	0.0
240 - 259	0.0	240 - 259	0.0
260 - 279	0.0	260 - 279	0.0
280 - 299	0.0	280 - 299	0.0
>299 mm	0.0	>299 mm	0.0
min size (mm)	24	min size (mm)	45
max size (mm)	145	max size (mm)	135
mean	104	mean	92
mode	115	mode	89
1987		1989	
1987 Pisaster giganteus		1989 Pisaster giganteus	
Pisaster giganteus	26	Pisaster giganteus	31
Pisaster giganteus (cases) N=	26 0.0	Pisaster giganteus (cases) N=	31 0.0
Pisaster giganteus (cases) N= <20 mm	0.0	Pisaster giganteus (cases) N= <20 mm	0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39	0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39	0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59	0.0 0.0 3.8%	Pisaster giganteus (cases) $N=$ <20 mm 20 - 39 40 - 59	0.0 0.0 3.2%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79	0.0 0.0 3.8% 30.8%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79	0.0 0.0 3.2% 12.9%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99	0.0 0.0 3.8% 30.8% 26.9%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99	0.0 0.0 3.2% 12.9% 67.7%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119	0.0 0.0 3.8% 30.8% 26.9% 19.2%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119	0.0 0.0 3.2% 12.9% 67.7% 9.7%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139	0.0 0.0 3.8% 30.8% 26.9% 19.2% 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139	0.0 0.0 3.2% 12.9% 67.7% 9.7% 6.5%
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159	0.0 0.0 3.8% 30.8% 26.9% 19.2% 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159	0.0 0.0 3.2% 12.9% 67.7% 9.7% 6.5% 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179	0.0 0.0 3.8% 30.8% 26.9% 19.2% 0.0 11.5% 3.8%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179	0.0 0.0 3.2% 12.9% 67.7% 9.7% 6.5% 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199	0.0 0.0 3.8% 30.8% 26.9% 19.2% 0.0 11.5% 3.8% 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199	0.0 0.0 3.2% 12.9% 67.7% 9.7% 6.5% 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219	0.0 0.0 3.8% 30.8% 26.9% 19.2% 0.0 11.5% 3.8% 0.0 3.8%	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219	0.0 0.0 3.2% 12.9% 67.7% 9.7% 6.5% 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199	0.0 0.0 3.8% 30.8% 26.9% 19.2% 0.0 11.5% 3.8% 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239	0.0 0.0 3.2% 12.9% 67.7% 9.7% 6.5% 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239	0.0 0.0 3.8% 30.8% 26.9% 19.2% 0.0 11.5% 3.8% 0.0 3.8% 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259	0.0 0.0 3.2% 12.9% 67.7% 9.7% 6.5% 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279	0.0 0.0 3.8% 30.8% 26.9% 19.2% 0.0 11.5% 3.8% 0.0 3.8% 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279	0.0 0.0 3.2% 12.9% 67.7% 9.7% 6.5% 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	0.0 0.0 3.8% 30.8% 26.9% 19.2% 0.0 11.5% 3.8% 0.0 3.8% 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299	0.0 0.0 3.2% 12.9% 67.7% 9.7% 6.5% 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm	0.0 0.0 3.8% 30.8% 26.9% 19.2% 0.0 11.5% 3.8% 0.0 3.8% 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm	0.0 0.0 3.2% 12.9% 67.7% 9.7% 6.5% 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	0.0 0.0 3.8% 30.8% 26.9% 19.2% 0.0 11.5% 3.8% 0.0 3.8% 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	0.0 0.0 3.2% 12.9% 67.7% 9.7% 6.5% 0.0 0.0 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm) max size (mm)	0.0 0.0 3.8% 30.8% 26.9% 19.2% 0.0 11.5% 3.8% 0.0 3.8% 0.0 0.0 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm) max size (mm)	0.0 0.0 3.2% 12.9% 67.7% 9.7% 6.5% 0.0 0.0 0.0 0.0 0.0 0.0
Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	0.0 0.0 3.8% 30.8% 26.9% 19.2% 0.0 11.5% 3.8% 0.0 3.8% 0.0 0.0 0.0	Pisaster giganteus (cases) N= <20 mm 20 - 39 40 - 59 60 - 79 80 - 99 100 - 119 120 - 139 140 - 159 160 - 179 180 - 199 200 - 219 220 - 239 240 - 259 260 - 279 280 - 299 >299 mm min size (mm)	0.0 0.0 3.2% 12.9% 67.7% 9.7% 6.5% 0.0 0.0 0.0 0.0 0.0 0.0

1986 Lytechinus anamesus		1988 Lytechinus anamesus	
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	103 0.0 2.9% 10.7% 57.3% 29.1% 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	102 0.0 5.9% 37.3% 48.0% 8.8% 0.0 0.0 0.0 0.0
>49 mm min size (mm) max size (mm) mean mode	0.0 8 24 18 20	>49 mm min size (mm) max size (mm) mean mode 1989 Lytechinus anamesus	0.0 7 23 15 15
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm) max size (mm) mean mode	104 0.0 3.8% 44.2% 33.7% 18.3% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm) max size (mm) mean mode	117 0.0 0.0 4.3% 63.2% 29.9% 2.6% 0.0 0.0 0.0 0.0 10 26 18 18

Strongy		A BARBARA ISLAND - SOUTH EAST		
Ccases N	1984	6 '	1986	ć ,
<pre></pre>				
5 - 9				
10 - 14				
15 - 19				
20 - 24				
25 - 29				
30 - 34				
35 - 39				
40 - 44				
45 - 49 0.0 45 - 49 3.1% 50 - 54 4.0% 50 - 54 0.0 55 - 59 2.0% 55 - 59 1.0% 60 - 64 8.0% 60 - 64 1.0% 65 - 69 13.0% 65 - 69 1.0% 70 - 74 18.0% 70 - 74 3.1% 80 - 84 6.0% 80 - 84 5.2% 85 - 89 7.0% 85 - 89 2.1% 90 - 94 4.0% 90 - 94 0.0 105 - 109 1.0% 105 - 109 0.0 105 - 109 1.0% 105 - 109 0.0 105 - 109 1.0% 105 - 109 0.0 105 - 109 1.0% 105 - 109 0.0 105 - 109 1.0% 100 - 104 2.1% max size (mm) 1.12 max size (mm) 1.0 mean 6 min size (mm) 1.0 strongylocentrotus franciscanus Strongylocentrotus franciscanus (cases) N= 115 5 - 9 9				
50 - 54				
55 - 59				
60 - 64				
65 - 69 1.3.08 65 - 69 1.08 70 - 74 18.08 70 - 74 71 - 74 18.08 70 - 74 85 - 89 7.08 85 - 89 2.18 90 - 94 4.08 90 - 94 0.0 95 - 99 2.08 95 - 99 3.18 105 - 109 1.08 105 - 109 0.0 > 109 mm 1.08 105 - 109 0.0 > 109 mm 1.08 100 min size (mm) 104 mean 60 mean 37 mode 70 mode 26 1985 Strongylocentrotus franciscanus (cases) N= 115 5 - 99 9.98 5 - 9 10 - 14 6.18 10 - 14 0.98 15 - 19 7.68 15 - 19 15.78 15 - 19 7.68 15 - 19 15.78 25 - 29 5.38 25 - 29 14.88 25 - 29 5.38 25 - 29 14.88 25 - 29 5.38 25 - 29 14.88 25 - 39 1.58 35 - 39 0.98 40 - 44 4.68 40 - 44 0.40 85 - 84 4.68 40 - 44 0.98 85 - 89 3.18 55 - 59 0.98 85 - 99 0.98 85 - 99 0.00 86 - 64 0.00 60 - 64 0.00 86 - 64 0.00 60 - 64 0.00 86 - 64 0.00 60 - 64 0.00 86 - 74 0.88 70 - 74 0.98 85 - 89 3.18 85 - 89 0.98 85 - 90 85 - 90 85 - 90 85 - 90 85 - 90				
70 - 74 18.0% 70 - 74 3.1% 75 - 79 7.0% 75 - 79 0.0 80 - 84 6.0% 80 - 84 5.2% 85 - 89 7.0% 85 - 89 2.1% 90 - 94 4.0% 90 - 94 0.0 95 - 99 2.0% 95 - 99 3.1% 100 - 104 0.1 100 - 109 0.0 > 109 mm 1.0% 105 - 109 0.0 > 109 mm 1.0% > 109 mm 0.0 nin size (mm) 11 max size (mm) 104 mean 60 min size (mm) 104 mean 60 mean 37 strongylocentrotus franciscanus Strongylocentrotus franciscanus Strongylocentrotus franciscanus (cases) N= 131 (cases) N= 115 < 5 mm				
75 - 79				
80 - 84 6.0% 80 - 84 5.2% 85 - 89 7.0% 85 - 89 2.1% 90 - 94 4.0% 90 - 94 0.0 95 - 99 2.0% 95 - 99 3.1% 100 - 104 0.0 100 - 109 0.0 > 109 mm 1.0% 105 - 109 0.0 > 109 mm 0.0 min size (mm) 14 max size (mm) 112 max size (mm) 104 mean 37 mode 26 1985 Strongylocentrotus franciscanus Strongylocentrotus franciscanus (cases) N= 115 < 5 mm				
85 - 89 7.0% 85 - 89 2.1% 90 - 94 0.00 95 - 99 2.0% 95 - 99 3.1% 100 - 104 0.0 1100 - 104 2.1% 105 - 109 1.0% 105 - 109 0.0 > 109 mm 0.0 105 - 109 mm 0.0 min size (mm) 6 min size (mm) 112 max size (mm) 114 max size (mm) 112 max size (mm) 114 max size (mm) 115 mean 60 mean 37 mode 26 1985				
90 - 94 4.0% 95 - 99 3.1% 95 - 99 2.0% 95 - 99 3.1% 100 - 104 0.0 100 - 104 2.1% 105 - 109 1.0% > 109 mm 0.0 min size (mm) 6 min size (mm) 14 max size (mm) 112 max size (mm) 104 mean 60 mean 37 mode 70 mode 26 1985 Strongylocentrotus franciscanus Strongylocentrotus franciscanus Strongylocentrotus franciscanus Cases) N= 115 < 5 mm				
95 - 99 2.0% 95 - 99 3.1% 100 - 104 0.0 100 - 109 0.0 105 - 109 1.0% 105 - 109 0.0 > 109 mm 1.0% > 109 mm 0.0 nin size (mm) 1.14 max size (mm) 1.04 mean 60 mean 37 mode 26 1985 1987 Strongylocentrotus franciscanus (cases) N= 115 (cases) N= 131 (cases) N= 115 5 m 2.3% 5 mm 0.0 5 - 9 9.9% 5 - 9 0.0 10 - 14 6.1% 10 - 14 0.9% 15 - 19 7.6% 15 - 19 15.7% 20 - 24 22.1% 20 - 24 47.8% 25 - 29 5.3% 25 - 29 14.8% 35 - 39 1.5% 30 - 34 2.6% 35 - 39 1.5% 35 - 39 0.9% 40 - 44 4.6% 40 - 44 0.0				
100 - 104 0.0 100 - 104 2.1% 105 - 109 1.0% 105 - 109 0.0 > 109 mm 1.0% > 109 mm 0.0 min size (mm) 6 min size (mm) 104 max size (mm) 112 max size (mm) 104 mean 60 mean 37 mode 70 mode 26 1985 1987 Strongylocentrotus franciscanus Strongylocentrotus franciscanus Strongylocentrotus franciscanus (cases) N= 115 < 5 mm				
105 - 109 1.0% >109 mm 0.0 > 109 mm 1.0% > 109 mm 0.0 min size (mm) 6 min size (mm) 14 max size (mm) 112 max size (mm) 104 mean 60 mean 37 mode 26 26 1985 1987 Strongylocentrotus franciscanus Strongylocentrotus franciscanus (cases) N= 115 (5 mm 2.3% < 5 mm				
No min size (mm)				
min size (mm) 6 min size (mm) 14 max size (mm) 112 max size (mm) 104 mean 60 mean 37 mode 70 mode 26 1985 1987 Strongylocentrotus franciscanus (cases) N= 115 5 m 2.3% < 5 mm 0.0 5 - 9 9.9% 5 - 9 0.0 10 - 14 6.1% 10 - 14 0.9% 15 - 19 7.6% 15 - 19 15.7% 25 - 29 9.3% 25 - 29 14.8% 30 - 34 6.1% 30 - 34 2.6% 35 - 39 1.5% 35 - 39 0.9% 40 - 44 4.6% 40 - 44 0.0 45 - 49 1.5% 45 - 49 0.0 55 - 59 3.1% 55 - 59 0.9% 40 - 44 0.0 60 - 64 0.0 65 - 69 3.1% 55 - 59 0.9% <				
max size (mm) 112 mean max size (mm) 104 mean mode 60 mean 37 mode 26 strongylocentrotus franciscanus (cases) N= 131 (cases) N= 115 15 c 5 mm 0.0 5 - 9 9.9% 5 - 9 0.0 10 - 14 6.1% 10 - 14 0.9% 15 - 19 7.6% 15 - 19 15.7% 20 - 24 22.1% 20 - 24 47.8% 25 - 29 5.3% 25 - 29 14.8% 30 - 34 6.1% 30 - 34 2.6% 35 - 39 1.5% 35 - 39 0.9% 40 - 44 4.6% 40 - 44 0.0 45 - 49 1.5% 35 - 39 0.9% 60 - 54 3.8% 50 - 54 0.0 55 - 59 3.1% 55 - 59 0.9% 60 - 64 0.0 60 - 64 0.0 65 - 69 3.1% 65 - 69 2.6% 75 - 79 3.8% 70 - 74 0.9%				
mean mode 60 mean mode 37 mode 1985 1987 Strongylocentrotus franciscanus (cases) N= 131 (cases) N= 115 (cases) N= 115 < 5 mm				
mode 70 mode 26 1985 1987 15 10 - 14 0.0 0.0 15 - 19 0.0 0.0 15 - 19 1.5 18 10 - 14 0.0 0.9 40 40 40 14 1.0 0.9 40 41 48 20 - 24 47 1.8% 25 - 29 14 1.8% 25 - 29 14 1.9% 40 40 40 40 <t< td=""><td>, ,</td><td></td><td></td><td></td></t<>	, ,			
1985 1987 131 (cases) N= 131 (cases) N= 115 (cases) N=				
Strongylocentrotus franciscanus (cases) N= 131 (cases) N= 115 < 5 mm				
(cases) N= 131 (cases) N= 115 < 5 mm		, 0	mode	20
< 5 mm	1985		1987	
5 - 9 9.9% 5 - 9 0.0 10 - 14 6.1% 10 - 14 0.9% 15 - 19 7.6% 15 - 19 15.7% 20 - 24 22.1% 20 - 24 47.8% 25 - 29 5.3% 25 - 29 14.8% 30 - 34 6.1% 30 - 34 2.6% 35 - 39 1.5% 35 - 39 0.9% 40 - 44 4.6% 40 - 44 0.0 45 - 49 1.5% 45 - 49 0.0 50 - 54 3.8% 50 - 54 0.0 55 - 59 3.1% 55 - 59 0.9% 60 - 64 0.0 60 - 64 0.0 65 - 69 3.1% 65 - 69 2.6% 70 - 74 0.8% 70 - 74 0.9% 85 - 89 3.1% 85 - 89 2.6% 90 - 94 4.6% 90 - 94 3.5% 95 - 99 0.9% 105 - 109 0.9% 105 - 109 0.8% > 109 mm 0.0	1985 Strongylocentrotus	franciscanus	1987 Strongylocentrotus	franciscanus
10 - 14 6.1% 10 - 14 0.9% 15 - 19 7.6% 15 - 19 15.7% 20 - 24 22.1% 20 - 24 47.8% 25 - 29 5.3% 25 - 29 14.8% 30 - 34 6.1% 30 - 34 2.6% 35 - 39 1.5% 35 - 39 0.9% 40 - 44 4.6% 40 - 44 0.0 45 - 49 1.5% 45 - 49 0.0 50 - 54 3.8% 50 - 54 0.0 55 - 59 3.1% 55 - 59 0.9% 60 - 64 0.0 60 - 64 0.0 65 - 69 3.1% 65 - 69 2.6% 70 - 74 0.8% 70 - 74 0.9% 80 - 84 4.6% 80 - 84 1.7% 85 - 89 3.1% 85 - 89 2.6% 90 - 94 4.6% 90 - 94 3.5% 95 - 99 2.3% 95 - 99 0.9% 100 - 104 1.5% 100 - 104 0.9% 105 - 109 0.8% > 109 mm 0.0 min size (mm) 2 min size (mm) 13 max size (mm) 114 max size (mm) 13 max size (mm) 117 max size (m	1985 Strongylocentrotus (cases) N=	franciscanus 131	1987 Strongylocentrotus (cases) N=	franciscanus 115
15 - 19 7.6% 15 - 19 15.7% 20 - 24 22.1% 20 - 24 47.8% 25 - 29 5.3% 25 - 29 14.8% 30 - 34 6.1% 30 - 34 2.6% 35 - 39 1.5% 35 - 39 0.9% 40 - 44 4.6% 40 - 44 0.0 45 - 49 1.5% 45 - 49 0.0 50 - 54 3.8% 50 - 54 0.0 55 - 59 3.1% 55 - 59 0.9% 60 - 64 0.0 60 - 64 0.0 65 - 69 2.6% 70 - 74 0.8% 70 - 74 0.9% 80 - 84 4.6% 80 - 84 1.7% 85 - 89 3.1% 85 - 89 2.6% 90 - 94 4.6% 90 - 94 3.5% 95 - 99 2.3% 95 - 99 0.9% 105 - 109 0.8% > 109 mm 0.0 min size (mm) 0.8% > 109 mm 0.0 min size (mm) 114 max size (mm) 107 mean 41 mean 33	1985 Strongylocentrotus (cases) N= < 5 mm	franciscanus 131 2.3%	1987 Strongylocentrotus (cases) N= < 5 mm	franciscanus 115 0.0
20 - 24 22.1% 20 - 24 47.8% 25 - 29 5.3% 25 - 29 14.8% 30 - 34 6.1% 30 - 34 2.6% 40 - 44 4.6% 40 - 44 0.0 45 - 49 1.5% 45 - 49 0.0 50 - 54 3.8% 50 - 54 0.0 55 - 59 3.1% 55 - 59 0.9% 60 - 64 0.0 60 - 64 0.0 65 - 69 3.1% 65 - 69 2.6% 70 - 74 0.8% 70 - 74 0.9% 80 - 84 4.6% 80 - 84 1.7% 85 - 89 3.1% 85 - 89 2.6% 90 - 94 4.6% 90 - 94 3.5% 95 - 99 2.3% 95 - 99 0.9% 100 - 104 1.5% 100 - 104 0.9% 105 - 109 0.8% 105 - 109 0.9% > 109 mm 0.8% > 109 mm 0.0 min size (mm) 13 max size (mm) 107 mean 41 max size (mm) 107	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9	franciscanus 131 2.3% 9.9%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9	franciscanus 115 0.0 0.0
25 - 29 5.3% 25 - 29 14.8% 30 - 34 6.1% 30 - 34 2.6% 35 - 39 1.5% 35 - 39 0.9% 40 - 44 4.6% 40 - 44 0.0 45 - 49 1.5% 45 - 49 0.0 50 - 54 3.8% 50 - 54 0.0 55 - 59 3.1% 55 - 59 0.9% 60 - 64 0.0 60 - 64 0.0 65 - 69 3.1% 65 - 69 2.6% 70 - 74 0.8% 70 - 74 0.9% 75 - 79 3.8% 75 - 79 2.6% 80 - 84 4.6% 80 - 84 1.7% 85 - 89 3.1% 85 - 89 2.6% 90 - 94 4.6% 90 - 94 3.5% 95 - 99 2.3% 95 - 99 0.9% 100 - 104 1.5% 100 - 104 0.9% 105 - 109 0.8% > 105 - 109 0.9% 109 mm 0.8% > 105 - 109 0.9% 100 min size (mm) 113 0.0 0.0 0.0 <tr< td=""><td>1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14</td><td>franciscanus 131 2.3% 9.9% 6.1%</td><td>1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14</td><td>franciscanus 115 0.0 0.0 0.9%</td></tr<>	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14	franciscanus 131 2.3% 9.9% 6.1%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14	franciscanus 115 0.0 0.0 0.9%
30 - 34 6.1% 30 - 34 2.6% 35 - 39 0.9% 40 - 44 4.6% 40 - 44 0.0 45 - 49 1.5% 45 - 49 0.0 55 - 59 0.9% 60 - 64 0.0 65 - 69 3.1% 65 - 69 2.6% 70 - 74 0.8% 75 - 79 3.8% 75 - 79 2.6% 80 - 84 4.6% 80 - 84 1.7% 85 - 89 90 - 94 4.6% 90 - 94 3.5% 95 - 99 100 - 104 1.5% 100 - 104 1.5% 109 mm nsize (mm) 13 max size (mm) 114 max size (mm) 107 mean 41 max size (mm) 107 mean 33 3	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	franciscanus 131 2.3% 9.9% 6.1% 7.6%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	franciscanus 115 0.0 0.0 0.9% 15.7%
35 - 39 1.5% 35 - 39 0.9% 40 - 44 4.6% 40 - 44 0.0 45 - 49 1.5% 45 - 49 0.0 50 - 54 3.8% 50 - 54 0.0 55 - 59 3.1% 55 - 59 0.9% 60 - 64 0.0 60 - 64 0.0 65 - 69 3.1% 65 - 69 2.6% 70 - 74 0.8% 70 - 74 0.9% 80 - 84 4.6% 80 - 84 1.7% 85 - 89 3.1% 85 - 89 2.6% 90 - 94 4.6% 90 - 94 3.5% 95 - 99 2.3% 95 - 99 0.9% 100 - 104 1.5% 100 - 104 0.9% 105 - 109 0.8% > 109 mm 0.0 min size (mm) 0.0 min size (mm) 13 max size (mm) 41 max size (mm) 107 mean 41 mean 33	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8%
40 - 44 4.6% 40 - 44 0.0 45 - 49 1.5% 45 - 49 0.0 50 - 54 3.8% 50 - 54 0.0 55 - 59 3.1% 55 - 59 0.9% 60 - 64 0.0 60 - 64 0.0 65 - 69 3.1% 65 - 69 2.6% 70 - 74 0.8% 70 - 74 0.9% 75 - 79 3.8% 75 - 79 2.6% 80 - 84 4.6% 80 - 84 1.7% 85 - 89 3.1% 85 - 89 2.6% 90 - 94 4.6% 90 - 94 3.5% 95 - 99 2.3% 95 - 99 0.9% 100 - 104 1.5% 100 - 104 0.9% 105 - 109 0.8% > 109 mm 0.0 min size (mm) 0.0 min size (mm) 13 max size (mm) 41 max size (mm) 107 mean 41 mean 33	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8% 14.8%
45 - 49 1.5% 45 - 49 0.0 50 - 54 3.8% 50 - 54 0.0 55 - 59 3.1% 55 - 59 0.9% 60 - 64 0.0 60 - 64 0.0 65 - 69 3.1% 65 - 69 2.6% 70 - 74 0.8% 70 - 74 0.9% 75 - 79 3.8% 75 - 79 2.6% 80 - 84 4.6% 80 - 84 1.7% 85 - 89 3.1% 85 - 89 2.6% 90 - 94 4.6% 90 - 94 3.5% 95 - 99 2.3% 95 - 99 0.9% 100 - 104 1.5% 100 - 104 0.9% 105 - 109 0.8% > 109 mm 0.9% min size (mm) 0.8 > 109 mm 0.0 min size (mm) 13 max size (mm) 107 mean 41 mean 33	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8% 14.8% 2.6%
50 - 54 3.8% 50 - 54 0.0 55 - 59 3.1% 55 - 59 0.9% 60 - 64 0.0 60 - 64 0.0 65 - 69 3.1% 65 - 69 2.6% 70 - 74 0.8% 70 - 74 0.9% 75 - 79 3.8% 75 - 79 2.6% 80 - 84 4.6% 80 - 84 1.7% 85 - 89 3.1% 85 - 89 2.6% 90 - 94 4.6% 90 - 94 3.5% 95 - 99 2.3% 95 - 99 0.9% 100 - 104 1.5% 100 - 104 0.9% 105 - 109 0.8% 105 - 109 0.9% > 109 mm 0.8% > 109 mm 0.0 min size (mm) 13 max size (mm) 107 mean 41 max size (mm) 107	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1% 1.5%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8% 14.8% 2.6% 0.9%
55 - 59 3.1% 55 - 59 0.9% 60 - 64 0.0 60 - 64 0.0 65 - 69 3.1% 65 - 69 2.6% 70 - 74 0.8% 70 - 74 0.9% 75 - 79 3.8% 75 - 79 2.6% 80 - 84 4.6% 80 - 84 1.7% 85 - 89 3.1% 85 - 89 2.6% 90 - 94 4.6% 90 - 94 3.5% 95 - 99 2.3% 95 - 99 0.9% 100 - 104 1.5% 100 - 104 0.9% 105 - 109 0.8% 105 - 109 0.9% > 109 mm 0.8% > 109 mm 0.0 min size (mm) 13 max size (mm) 107 mean 41 max size (mm) 107	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1% 1.5% 4.6%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8% 14.8% 2.6% 0.9% 0.0
60 - 64 0.0 60 - 64 0.0 65 - 69 3.1% 65 - 69 2.6% 70 - 74 0.8% 70 - 74 0.9% 75 - 79 3.8% 75 - 79 2.6% 80 - 84 4.6% 80 - 84 1.7% 85 - 89 3.1% 85 - 89 2.6% 90 - 94 4.6% 90 - 94 3.5% 95 - 99 2.3% 95 - 99 0.9% 100 - 104 1.5% 100 - 104 0.9% 105 - 109 0.8% 105 - 109 0.9% > 109 mm 0.8% > 109 mm 0.0 min size (mm) 13 max size (mm) 114 max size (mm) 107 mean 41 mean 33	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1% 1.5% 4.6% 1.5%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8% 14.8% 2.6% 0.9% 0.0
65 - 69 3.1% 65 - 69 2.6% 70 - 74 0.9% 75 - 79 3.8% 75 - 79 2.6% 80 - 84 4.6% 80 - 84 1.7% 85 - 89 3.1% 85 - 89 2.6% 90 - 94 3.5% 95 - 99 2.3% 95 - 99 0.9% 100 - 104 1.5% 100 - 104 0.9% 105 - 109 0.8% 105 - 109 0.9% > 109 mm 0.8% > 109 mm 0.8% > 109 mm 0.0 min size (mm) 2 min size (mm) 13 max size (mm) 114 max size (mm) 33	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1% 1.5% 4.6% 1.5% 3.8%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8% 14.8% 2.6% 0.9% 0.0 0.0
70 - 74 0.8% 70 - 74 0.9% 75 - 79 3.8% 75 - 79 2.6% 80 - 84 4.6% 80 - 84 1.7% 85 - 89 3.1% 85 - 89 2.6% 90 - 94 4.6% 90 - 94 3.5% 95 - 99 2.3% 95 - 99 0.9% 100 - 104 1.5% 100 - 104 0.9% 105 - 109 0.8% 105 - 109 0.9% > 109 mm 0.8% > 109 mm 0.0 min size (mm) 2 min size (mm) 13 max size (mm) 114 max size (mm) 107 mean 41 mean 33	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1% 1.5% 4.6% 1.5% 3.8% 3.1%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8% 14.8% 2.6% 0.9% 0.0 0.0 0.0 0.0
75 - 79 3.8% 75 - 79 2.6% 80 - 84 1.7% 85 - 89 3.1% 85 - 89 2.6% 90 - 94 4.6% 90 - 94 3.5% 95 - 99 2.3% 95 - 99 0.9% 100 - 104 1.5% 100 - 104 0.9% 105 - 109 0.8% 105 - 109 0.9% > 109 mm 0.8% > 109 mm 0.8% > 109 mm 0.0 min size (mm) 2 min size (mm) 13 max size (mm) 114 max size (mm) 107 mean 33	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1% 1.5% 4.6% 1.5% 3.8% 3.1% 0.0	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8% 14.8% 2.6% 0.9% 0.0 0.0 0.0 0.0 0.9%
80 - 84 4.6% 80 - 84 1.7% 85 - 89 3.1% 85 - 89 2.6% 90 - 94 4.6% 90 - 94 3.5% 95 - 99 2.3% 95 - 99 0.9% 100 - 104 1.5% 100 - 104 0.9% 105 - 109 0.8% 105 - 109 0.9% > 109 mm 0.8% > 109 mm 0.0 min size (mm) 2 min size (mm) 13 max size (mm) 114 max size (mm) 107 mean 41 mean 33	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1% 1.5% 4.6% 1.5% 3.8% 3.1% 0.0 3.1%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8% 14.8% 2.6% 0.9% 0.0 0.0 0.0 0.0 0.9% 0.0 2.6%
85 - 89 3.1% 85 - 89 2.6% 90 - 94 4.6% 90 - 94 3.5% 95 - 99 2.3% 95 - 99 0.9% 100 - 104 1.5% 100 - 104 0.9% 105 - 109 0.8% 105 - 109 0.9% > 109 mm 0.8% > 109 mm 0.0 min size (mm) 2 min size (mm) 13 max size (mm) 114 max size (mm) 107 mean 41 mean 33	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1% 1.5% 4.6% 1.5% 3.8% 3.1% 0.0 3.1% 0.8%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8% 14.8% 2.6% 0.9% 0.0 0.0 0.0 0.0 0.0 0.9% 0.0 0.9%
90 - 94 4.6% 90 - 94 3.5% 95 - 99 2.3% 95 - 99 0.9% 100 - 104 1.5% 100 - 104 0.9% 105 - 109 0.8% 105 - 109 0.9% > 109 mm 0.8% > 109 mm 0.0 min size (mm) 2 min size (mm) 13 max size (mm) 114 max size (mm) 107 mean 41 mean 33	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1% 1.5% 4.6% 1.5% 3.8% 3.1% 0.0 3.1% 0.8% 3.8%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8% 14.8% 2.6% 0.9% 0.0 0.0 0.0 0.0 0.0 0.0 2.6% 0.9% 2.6%
95 - 99 2.3% 95 - 99 0.9% 100 - 104 1.5% 100 - 104 0.9% 105 - 109 0.8% 105 - 109 0.9% > 109 mm 0.8% > 109 mm 0.0 min size (mm) 2 min size (mm) 13 max size (mm) 114 max size (mm) 107 mean 41 mean 33	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1% 1.5% 4.6% 1.5% 3.8% 3.1% 0.0 3.1% 0.8% 3.8% 4.6%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8% 14.8% 2.6% 0.9% 0.0 0.0 0.0 0.0 0.9% 0.0 2.6% 0.9% 2.6%
100 - 104 1.5% 100 - 104 0.9% 105 - 109 0.8% 105 - 109 0.9% > 109 mm 0.8% > 109 mm 0.0 min size (mm) 2 min size (mm) 13 max size (mm) 114 max size (mm) 107 mean 41 mean 33	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1% 1.5% 4.6% 1.5% 3.8% 3.1% 0.0 3.1% 0.8% 3.8% 4.6% 3.8%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8% 14.8% 2.6% 0.9% 0.0 0.0 0.0 0.0 0.9% 0.0 2.6% 0.9% 2.6% 1.7% 2.6%
105 - 109 0.8% 105 - 109 0.9% > 109 mm 0.8% > 109 mm 0.0 min size (mm) 2 min size (mm) 13 max size (mm) 114 max size (mm) 107 mean 41 mean 33	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1% 1.5% 4.6% 1.5% 3.8% 3.1% 0.0 3.1% 0.8% 3.8% 4.6% 3.1% 4.6%	1987 Strongylocentrotus (cases) $N=$ < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8% 14.8% 2.6% 0.9% 0.0 0.0 0.0 0.0 0.0 0.9% 0.0 2.6% 0.9% 2.6% 1.7% 2.6% 3.5%
> 109 mm	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1% 1.5% 4.6% 1.5% 3.8% 3.1% 0.0 3.1% 0.8% 3.8% 4.6% 3.1% 0.8% 3.1% 0.8% 3.1% 0.8% 3.1% 0.8% 3.1% 0.8% 3.1% 0.8% 3.1% 0.8% 3.1% 0.8% 3.1% 0.3%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8% 14.8% 2.6% 0.9% 0.0 0.0 0.0 0.0 0.9% 0.0 2.6% 0.9% 2.6% 1.7% 2.6% 3.5% 0.9%
min size (mm) 2 min size (mm) 13 max size (mm) 114 max size (mm) 107 mean 41 mean 33	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1% 1.5% 4.6% 1.5% 3.8% 3.1% 0.0 3.1% 0.8% 3.8% 4.6% 3.1% 4.6% 2.3% 1.5%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8% 14.8% 2.6% 0.9% 0.0 0.0 0.0 0.0 0.9% 0.0 2.6% 0.9% 2.6% 1.7% 2.6% 3.5% 0.9%
max size (mm) 114 max size (mm) 107 mean 41 mean 33	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1% 1.5% 4.6% 1.5% 3.8% 3.1% 0.0 3.1% 0.8% 3.8% 4.6% 3.1% 4.6% 2.3% 4.6% 2.3% 1.5% 0.8%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8% 14.8% 2.6% 0.9% 0.0 0.0 0.0 0.0 0.9% 0.0 2.6% 0.9% 2.6% 1.7% 2.6% 3.5% 0.9% 0.9%
mean 41 mean 33	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1% 1.5% 4.6% 1.5% 3.8% 3.1% 0.0 3.1% 0.8% 3.8% 4.6% 3.1%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8% 14.8% 2.6% 0.9% 0.0 0.0 0.0 0.0 0.0 2.6% 0.9% 2.6% 1.7% 2.6% 3.5% 0.9% 0.9% 0.0 0.9%
	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1% 1.5% 4.6% 1.5% 3.8% 3.1% 0.0 3.1% 0.8% 3.8% 4.6% 3.1% 4.6% 2.3% 1.5% 0.8% 2.3% 1.5% 0.8% 0.8%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	franciscanus 115 0.0 0.0 0.9% 15.7% 47.8% 14.8% 2.6% 0.9% 0.0 0.0 0.0 0.0 0.0 2.6% 0.9% 2.6% 1.7% 2.6% 3.5% 0.9% 0.9% 0.0 13
mode 22 mode 21	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1% 1.5% 4.6% 1.5% 3.8% 3.1% 0.0 3.1% 0.8% 3.8% 4.6% 3.1% 4.6% 2.3% 1.5% 0.8% 0.8% 0.8%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	franciscanus 115 0.0 0.9% 15.7% 47.8% 14.8% 2.6% 0.9% 0.0 0.0 0.0 0.0 0.0 2.6% 0.9% 2.6% 1.7% 2.6% 3.5% 0.9% 0.9% 0.9% 0.0 13
	1985 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm) mean	franciscanus 131 2.3% 9.9% 6.1% 7.6% 22.1% 5.3% 6.1% 1.5% 4.6% 1.5% 3.8% 3.1% 0.0 3.1% 0.0 3.1% 0.8% 3.8% 4.6% 2.3% 1.5% 0.8% 0.8% 0.8% 0.8%	1987 Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm) max size (mm) mean	franciscanus 115 0.0 0.9% 15.7% 47.8% 14.8% 2.6% 0.9% 0.0 0.0 0.0 0.0 0.0 2.6% 0.9% 2.6% 1.7% 2.6% 3.5% 0.9% 0.9% 0.0 13 107

1988		1989	
Strongylocentrotu	s franciscanus	Strongylocentrotus f	ranciscanus
(cases) N=	102	(cases) N=	128
< 5 mm	0.0	< 5 mm	0.0
5 - 9	2.9%	5 - 9	1.6%
10 - 14	1.0%	10 - 14	1.6%
15 - 19	0.0	15 - 19	7.0%
20 - 24	11.8%	20 - 24	3.1%
25 - 29	36.3%	25 - 29	12.5%
30 - 34	34.3%	30 - 34	34.4%
35 - 39	3.9%	35 - 39	15.6%
40 - 44	1.0%	40 - 44	4.7%
45 - 49	0.0	45 - 49	1.6%
50 - 54	0.0	50 - 54	2.3%
55 - 59	0.0	55 - 59	0.0
60 - 64	0.0	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	1.0%	70 - 74	0.8%
75 - 79	0.0	75 - 79	2.3%
80 - 84	2.0%	80 - 84	3.1%
85 - 89	2.9%	85 - 89	1.6%
90 - 94	2.0%	90 - 94	2.3%
95 - 99	1.0%	95 - 99	2.3%
100 - 104	0.0	100 - 104	1.6%
105 - 109	0.0	105 - 109	1.6%
> 109 mm	0.0	> 109 mm	0.0
min size (mm)	6	min size (mm)	5
max size (mm)	97	max size (mm)	108
mean	33	mean	40
mode	30	mode	31

1984		1986	
Srongylocentrotus	purpuratus	Srongylocentrotus purp	puratus
(cases) N=	107	(cases) N=	106
< 5 mm 5 - 9	0.0 0.9%	< 5 mm 5 - 9	0.9% 10.4%
10 - 14	3.7%	10 - 14	56.6%
15 - 19	5.6%	15 - 19	20.8%
20 - 24	29.9%	20 - 24	4.7%
25 - 29	29.9%	25 - 29	0.0
30 - 34	19.6%	30 - 34	4.7%
35 - 39	6.5%	35 - 39	0.9%
40 - 44	1.9%	40 - 44	0.9%
45 - 49	0.9%	45 - 49	0.0
50 - 54	0.9%	50 - 54	0.0
55 - 59	0.0	55 - 59	0.0
60 - 64	0.0	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	0.0
75 - 79 80 - 84	0.0	75 - 79 80 - 84	0.0
85 - 89	0.0	80 - 84	0.0
> 89 mm	0.0	> 89 mm	0.0
min size (mm)	7	min size (mm)	3
max size (mm)	52	max size (mm)	43
mean	26	mean	14
mode	22	mode	14
1985		1007	
		1987	
Srongylocentrotus	purpuratus	Srongylocentrotus purp	puratus
	purpuratus		puratus 109
Srongylocentrotus		Srongylocentrotus pur	
Srongylocentrotus (cases) N= < 5 mm 5 - 9	138 5.1% 39.1%	Srongylocentrotus pur (cases) N=	109 0.0 1.8%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14	138 5.1% 39.1% 5.8%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14	109 0.0 1.8% 14.7%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	138 5.1% 39.1% 5.8% 14.5%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	109 0.0 1.8% 14.7% 33.9%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	138 5.1% 39.1% 5.8% 14.5% 5.1%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	109 0.0 1.8% 14.7% 33.9% 31.2%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	138 5.1% 39.1% 5.8% 14.5% 5.1% 1.4%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	109 0.0 1.8% 14.7% 33.9% 31.2% 14.7%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	138 5.1% 39.1% 5.8% 14.5% 5.1% 1.4% 15.9%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	109 0.0 1.8% 14.7% 33.9% 31.2% 14.7% 2.8%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	138 5.1% 39.1% 5.8% 14.5% 5.1% 1.4% 15.9% 10.9%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	109 0.0 1.8% 14.7% 33.9% 31.2% 14.7% 2.8% 0.9%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	138 5.1% 39.1% 5.8% 14.5% 5.1% 1.4% 15.9% 10.9% 2.2%	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	109 0.0 1.8% 14.7% 33.9% 31.2% 14.7% 2.8% 0.9%
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	138 5.1% 39.1% 5.8% 14.5% 5.1% 1.4% 15.9% 10.9% 2.2% 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	109 0.0 1.8% 14.7% 33.9% 31.2% 14.7% 2.8% 0.9% 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	138 5.1% 39.1% 5.8% 14.5% 5.1% 1.4% 15.9% 10.9% 2.2% 0.0 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	109 0.0 1.8% 14.7% 33.9% 31.2% 14.7% 2.8% 0.9% 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	138 5.1% 39.1% 5.8% 14.5% 5.1% 1.4% 15.9% 10.9% 2.2% 0.0 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	109 0.0 1.8% 14.7% 33.9% 31.2% 14.7% 2.8% 0.9% 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	138 5.1% 39.1% 5.8% 14.5% 5.1% 1.4% 15.9% 10.9% 2.2% 0.0 0.0	Srongylocentrotus purp (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	109 0.0 1.8% 14.7% 33.9% 31.2% 14.7% 2.8% 0.9% 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	138 5.1% 39.1% 5.8% 14.5% 5.1% 1.4% 15.9% 10.9% 2.2% 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	109 0.0 1.8% 14.7% 33.9% 31.2% 14.7% 2.8% 0.9% 0.0 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	138 5.1% 39.1% 5.8% 14.5% 5.1% 1.4% 15.9% 10.9% 2.2% 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	109 0.0 1.8% 14.7% 33.9% 31.2% 14.7% 2.8% 0.9% 0.0 0.0 0.0 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	138 5.1% 39.18 5.88 14.58 5.18 1.48 15.98 10.98 2.28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	109 0.0 1.8% 14.7% 33.9% 31.2% 14.7% 2.8% 0.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Srongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	138 5.1% 39.18 5.8% 14.5% 5.1% 1.4% 15.9% 10.9% 2.2% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	109 0.0 1.8% 14.7% 33.9% 31.2% 14.7% 2.8% 0.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	138 5.1% 39.1% 5.8% 14.5% 5.1% 1.4% 15.9% 10.9% 2.2% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	109 0.0 1.8% 14.7% 33.9% 31.2% 14.7% 2.8% 0.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	138 5.1% 39.1% 5.8% 14.5% 5.1% 1.4% 15.9% 10.9% 2.2% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	109 0.0 1.8% 14.7% 33.9% 31.2% 14.7% 2.8% 0.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	138 5.1% 39.1% 5.8% 14.5% 5.1% 1.4% 15.9% 10.9% 2.2% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	109 0.0 1.8% 14.7% 33.9% 31.2% 14.7% 2.8% 0.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	138 5.1% 39.1% 5.8% 14.5% 5.1% 1.4% 15.9% 10.9% 2.2% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	109 0.0 1.8% 14.7% 33.9% 31.2% 14.7% 2.8% 0.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	138 5.1% 39.1% 5.8% 14.5% 5.1% 1.4% 15.9% 10.9% 2.2% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	109 0.0 1.8% 14.7% 33.9% 31.2% 14.7% 2.8% 0.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	138 5.1% 39.1% 5.8% 14.5% 5.1% 1.4% 15.9% 10.9% 2.2% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	109 0.0 1.8% 14.7% 33.9% 31.2% 14.7% 2.8% 0.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

1988		1989	
Srongylocentrotus	purpuratus	Srongylocentrotus pur	puratus
(cases) N=	118	(cases) N=	165
< 5 mm	0.0	< 5 mm	0.0
5 - 9	5.1%	5 - 9	0.6%
10 - 14	16.9%	10 - 14	17.0%
15 - 19	56.8%	15 - 19	44.2%
20 - 24	17.8%	20 - 24	35.2%
25 - 29	2.5%	25 - 29	3.0%
30 - 34	0.8%	30 - 34	0.0
35 - 39	0.0	35 - 39	0.0
40 - 44	0.0	40 - 44	0.0
45 - 49	0.0	45 - 49	0.0
50 - 54	0.0	50 - 54	0.0
55 - 59	0.0	55 - 59	0.0
60 - 64	0.0	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
100 - 104	0.0	100 - 104	0.0
105 - 109	0.0	105 - 109	0.0
> 109 mm	0.0	> 109 mm	0.0
min size (mm)	7	min size (mm)	7
max size (mm)	31	max size (mm)	27
mean	17	mean	18
mode	18	mode	20

1984		1987	
Astraea undosa		Astraea undosa	
(cases) N=	53	(cases) N=	30
< 10 mm	0.0	< 10 mm	0.0
10 - 19	1.9%	10 - 19	0.0
20 - 29	13.2%	20 - 29	0.0
30 - 39	5.7%	30 - 39	6.7%
40 - 49	17.0%	40 - 49	33.3%
50 - 59	28.3%	50 - 59	26.7%
60 - 69	13.2%	60 - 69	26.7%
70 - 79	9.4%	70 - 79	0.0
80 - 89	9.4%	80 - 89	0.0
90 - 99	1.9%	90 - 99	3.3%
100 - 109	0.0	100 - 109	3.3%
110 - 119	0.0	110 - 119	0.0
>119 mm	0.0	>119 mm	0.0
min size (mm)	18	min size (mm)	33
max size (mm)	92	max size (mm)	102
mean	54	mean	54
mode	49	mode	43
1985		1988	
Astraea undosa		Astraea undosa	
(cases) N=	35	(cases) N=	30
< 10 mm	0.0	< 10 mm	0.0
10 - 19	0.0	10 - 19	0.0
20 - 29	31.4%	20 - 29	3.3%
30 - 39	22.9%	30 - 39	13.3%
40 - 49	22.9%	40 - 49	46.7%
50 - 59	0.0	50 - 59	20.0%
60 - 69	8.6%	60 - 69	10.0%
70 - 79	8.6%	70 - 79	6.7%
80 - 89	0.0	80 - 89	0.0
90 - 99	2.9%	90 - 99	0.0
100 - 109	2.9%	>99 mm	0.0
110 - 119	0.0	min size (mm)	29
>119 mm	0.0	max size (mm)	73
min size (mm)	22	mean	48
max size (mm)	101	mode	41
mean	44		
mode	28	1989	
1986		Astraea undosa	
Astraea undosa		(cases) N=	39
		< 10 mm	0.0
(cases) N=	31	10 - 19	17.9%
< 10 mm	0.0	20 - 29	7.7%
10 - 19	3.2%	30 - 39	2.6%
20 - 29	32.3%	40 - 49	0.0
30 - 39	16.1%	50 - 59	30.8%
40 - 49	22.6%	60 - 69	28.2%
50 - 59	25.8%	70 - 79	7.7%
60 - 69	0.0	80 - 89	5.1%
> 69 mm	0.0	> 89 mm	0.0
min size (mm)	19	min size (mm)	14
max size (mm)	57	max size (mm)	85
mean	38	mean	51
mode	29	mode	56

1984		1986	
Hinnites giganteus		Hinnites giganteus	
		y-y	
(cases) N=	23	(cases) N=	21
< 10 mm	0.0	< 29 mm	0.0
10 - 19	0.0	30 - 39	14.3%
20 - 29	0.0	40 - 49	14.3%
30 - 39	21.7%	50 - 59	9.5%
40 - 49	39.1%	60 - 69	23.8%
50 - 59	8.7%	70 - 79	23.8%
60 - 69	4.3%	80 - 89	0.0
70 - 79	8.7%	90 - 99	0.0
80 - 89	0.0	100 - 109	9.5%
90 - 99	8.7%	110 - 119	0.0
100 - 109	4.3%	120 - 129	0.0
110 - 119	0.0	130 - 139	4.8%
120 - 129	0.0	140 - 149	0.0
130 - 139	4.3%	>149 mm	0.0
140 - 149	0.0	min size (mm)	34
>149 mm	0.0	max size (mm)	134
min size (mm)	35	mean	66
max size (mm)	130	mode	49
mean	58		
mode	35	1986	
		Cypraea spadicea	
1985		21	
Hinnites giganteus		(cases) N=	20
minimized grganedad		< 30 mm	0.0
(cases) N=	12	30 - 34	5.0%
< 10 mm	0.0	35 - 39	25.0%
10 - 19	0.0	40 - 44	40.0%
20 - 29	0.0	45 - 49	20.0%
30 - 39	0.0	50 - 54	10.0%
40 - 49	16.7%	55 - 59	0.0
50 - 59	41.7%	>59 mm	0.0
60 - 69	16.7%	min size (mm)	34
70 - 79	8.3%	max size (mm)	54
80 - 89	0.0	mean	43
90 - 99	8.3%	mode	44
100 - 109	0.0		
110 - 119	8.3%	1989	
120 - 129	0.0	Cypraea spadicea	
130 - 139	0.0		
140 - 149	0.0	(cases) N=	28
>149 mm	0.0	< 30 mm	3.6%
min size (mm)	4 4	30 - 34	10.7%
max size (mm)	111	35 - 39	32.1%
mean	64	40 - 44	17.9%
mode	57	45 - 49	28.6%
		50 - 54	7.1%
		55 - 59	0.0
		>59 mm	0.0
		min size (mm)	24
		max size (mm)	54
		mean	41
		mode	35
			55

1988 Patiria miniata		1988 Pisaster giganteus	
(cases) N=	50	(cases) N=	29
< 10 mm	12.0%	<20 mm	0.0
10 - 19	88.0%	20 - 39	0.0
20 - 29	0.0	40 - 59	0.0
30 - 39	0.0	60 - 79	13.8%
40 - 49	0.0	80 - 99	31.0%
50 - 59	0.0	100 - 119	24.1%
60 - 69	0.0	120 - 139	20.7%
70 - 79	0.0	140 - 159	3.4%
80 - 89	0.0	160 - 179	3.4%
90 - 99	0.0	180 - 199	0.0
>100 mm	0.0	200 - 219	3.4%
min size (mm)	8	220 - 239	0.0
max size (mm)	16	240 - 259	0.0
mean	11	260 - 279	0.0
mode	10	280 - 299	0.0
		>299 mm	0.0
89		min size (mm)	61
Patiria miniata		max size (mm)	212
		mean	110
(cases) N=	34	mode	96
< 10 mm	8.8%		
10 - 19	41.2%	1989	
20 - 29	26.5%	Pisaster giganteus	
30 - 39	17.6%		
40 - 49	2.9%	(cases) N=	33
50 - 59	0.0	<20 mm	3.0%
60 - 69	2.9%	20 - 39	0.0
70 - 79	0.0	40 - 59	0.0
80 - 89	0.0	60 - 79	0.0
90 - 99	0.0	80 - 99	30.3%
>100 mm	0.0	100 - 119	39.4%
min size (mm)	8	120 - 139	9.1%
max size (mm)	62	140 - 159	15.2%
mean	22	160 - 179	0.0
mode	13	180 - 199	0.0
		200 - 219	3.0%
		220 - 239	0.0
		240 - 259	0.0
		260 - 279	0.0
		280 - 299	0.0
		>299 mm	0.0
		min size (mm)	17
		max size (mm)	200
		mean	109
		mode	100

1986 Lytechinus anamesus		1988 Lytechinus anamesus	
(cases) N=	62	(cases) N=	104
< 5 mm	0.0	< 5 mm	0.0
5 - 9	3.2%	5 - 9	6.7%
10 - 14	21.0%	10 - 14	51.0%
15 - 19	46.8%	15 - 19	39.4%
20 - 24	27.4%	20 - 24	2.9%
25 - 29	1.6%	25 - 29	0.0
30 - 34	0.0	30 - 34	0.0
35 - 39	0.0	35 - 39	0.0
40 - 44	0.0	40 - 44	0.0
45 - 49	0.0	45 - 49	0.0
>49 mm	0.0	>49 mm	0.0
min size (mm)	8	min size (mm)	7
max size (mm)	25	max size (mm)	23
mean	17	mean	14
mode	15	mode	13
1987		1989	
1987 Lytechinus anamesus		1989 Lytechinus anamesus	
Lytechinus anamesus	149	Lytechinus anamesus	90
	149 0.0		90 0.0
Lytechinus anamesus (cases) N=		Lytechinus anamesus (cases) N=	
Lytechinus anamesus (cases) N= < 5 mm	0.0	Lytechinus anamesus (cases) N= < 5 mm	0.0
Lytechinus anamesus (cases) N= < 5 mm 5 - 9	0.0 0.7%	Lytechinus anamesus (cases) N= < 5 mm 5 - 9	0.0 4.4%
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14	0.0 0.7% 86.6%	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14	0.0 4.4% 73.3%
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	0.0 0.7% 86.6% 10.7%	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	0.0 4.4% 73.3% 20.0%
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	0.0 0.7% 86.6% 10.7% 1.3%	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	0.0 4.4% 73.3% 20.0% 2.2%
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	0.0 0.7% 86.6% 10.7% 1.3% 0.7%	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	0.0 4.4% 73.3% 20.0% 2.2% 0.0
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	0.0 0.7% 86.6% 10.7% 1.3% 0.7%	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	0.0 4.4% 73.3% 20.0% 2.2% 0.0
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	0.0 0.7% 86.6% 10.7% 1.3% 0.7% 0.0 0.0	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	0.0 4.4% 73.3% 20.0% 2.2% 0.0 0.0 0.0 0.0
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm	0.0 0.7% 86.6% 10.7% 1.3% 0.7% 0.0 0.0 0.0 0.0	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 >49 mm	0.0 4.4% 73.3% 20.0% 2.2% 0.0 0.0 0.0 0.0
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm)	0.0 0.7% 86.6% 10.7% 1.3% 0.7% 0.0 0.0 0.0 0.0 0.0	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 >49 mm min size (mm)	0.0 4.4% 73.3% 20.0% 2.2% 0.0 0.0 0.0 0.0
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm) max size (mm)	0.0 0.7% 86.6% 10.7% 1.3% 0.7% 0.0 0.0 0.0 0.0 0.0 0.0 9	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 >49 mm min size (mm) max size (mm)	0.0 4.4% 73.3% 20.0% 2.2% 0.0 0.0 0.0 0.0 0.0 7
Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 > 49 mm min size (mm)	0.0 0.7% 86.6% 10.7% 1.3% 0.7% 0.0 0.0 0.0 0.0 0.0	Lytechinus anamesus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 >49 mm min size (mm)	0.0 4.4% 73.3% 20.0% 2.2% 0.0 0.0 0.0 0.0

LOCATION 15 SANTA	BARBARA ISLAND - ARCH POINT	e riequencies	
1984		1986	
Strongylocentrotus	franciscanus	Strongylocentrotus	franciscanus
(cases) N=	127	(cases) N=	103
< 5 mm	35.4%	< 5 mm	0.0
5 - 9	17.3%	5 - 9	0.0
10 - 14	2.4%	10 - 14	0.0
15 - 19	9.4%	15 - 19	2.9%
20 - 24	1.6%	20 - 24	6.8%
25 - 29	0.8%	25 - 29	16.5%
30 - 34	0.0	30 - 34	15.5%
35 - 39	0.0	35 - 39	12.6%
40 - 44	0.0	40 - 44	9.7%
45 - 49	0.0	45 - 49	3.9%
50 - 54	1.6%	50 - 54	4.9%
55 - 59	0.0	55 - 59	1.9%
60 - 64	4.7%	60 - 64	0.0
65 - 69	1.6%	65 - 69	3.9%
70 - 74	1.6%	70 - 74	2.9%
75 - 79	1.6%	75 - 79	4.9%
80 - 84	7.1%	80 - 84	3.9%
85 - 89	5.5%	85 - 89	1.9%
90 - 94	2.4%	90 - 94	4.9%
95 - 99	2.4%	95 - 99	2.9%
100 - 104	2.4%	100 - 104	0.0
105 - 109	2.4%	105 - 109	0.0
> 109 mm	0.0	> 109 mm	0.0
min size (mm)	2	min size (mm)	17
max size (mm)	107 32	max size (mm)	99
mean	32	mean mode	46 29
mode	3	mode	29
1985		1987	
	franciscanus		franciscanus
1985 Strongylocentrotus (cases) N=	franciscanus 184	1987 Strongylocentrotus (cases) N=	franciscanus 129
Strongylocentrotus		Strongylocentrotus	
Strongylocentrotus (cases) N=	184	Strongylocentrotus (cases) N=	129
Strongylocentrotus (cases) N= < 5 mm	184 1.1%	Strongylocentrotus (cases) N= < 5 mm	129 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9	184 1.1% 17.9%	Strongylocentrotus (cases) N= < 5 mm 5 - 9	129 0.0 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14	184 1.1% 17.9% 15.2%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14	129 0.0 0.0 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	184 1.1% 17.9% 15.2% 10.3%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	129 0.0 0.0 0.0 0.0
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	184 1.1% 17.9% 15.2% 10.3% 16.3% 10.3% 5.4%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	129 0.0 0.0 0.0 0.0 1.6%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	184 1.1% 17.9% 15.2% 10.3% 16.3% 5.4% 3.8%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	184 1.1% 17.9% 15.2% 10.3% 16.3% 5.4% 3.8% 2.2%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6% 9.3%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	184 1.1% 17.9% 15.2% 10.3% 16.3% 10.3% 5.4% 3.8% 2.2% 0.5%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6% 9.3%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	184 1.1% 17.9% 15.2% 10.3% 16.3% 10.3% 5.4% 3.8% 2.2% 0.5% 0.5%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6% 9.3% 13.2% 6.2%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	184 1.1% 17.9% 15.2% 10.3% 16.3% 10.3% 5.4% 3.8% 2.2% 0.5% 0.5% 1.1%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6% 9.3% 13.2% 6.2% 3.9%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	184 1.1% 17.9% 15.2% 10.3% 16.3% 10.3% 5.4% 3.8% 2.2% 0.5% 0.5% 1.1% 0.0	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6% 9.3% 13.2% 6.2% 3.9% 1.6%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	184 1.1% 17.9% 15.2% 10.3% 16.3% 10.3% 5.4% 3.8% 2.2% 0.5% 0.5% 1.1% 0.0 2.2%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6% 9.3% 13.2% 6.2% 3.9% 1.6% 5.4%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	184 1.1% 17.9% 15.2% 10.3% 16.3% 10.3% 5.4% 3.8% 2.2% 0.5% 0.5% 1.1% 0.0 2.2% 1.6%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6% 9.3% 13.2% 6.2% 3.9% 1.6% 5.4% 3.1%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	184 1.1% 17.9% 15.2% 10.3% 16.3% 10.3% 5.4% 3.8% 2.2% 0.5% 0.5% 1.1% 0.0 2.2% 1.6% 1.1%	$\begin{array}{c} \textit{Strongylocentrotus} \\ \textit{(cases)} \ N= \\ < 5 \ \text{mm} \\ 5 - 9 \\ 10 - 14 \\ 15 - 19 \\ 20 - 24 \\ 25 - 29 \\ 30 - 34 \\ 35 - 39 \\ 40 - 44 \\ 45 - 49 \\ 50 - 54 \\ 55 - 59 \\ 60 - 64 \\ 65 - 69 \\ 70 - 74 \\ 75 - 79 \\ \end{array}$	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6% 9.3% 13.2% 6.2% 3.9% 1.6% 5.4% 3.1% 0.8%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	184 1.1% 17.9% 15.2% 10.3% 16.3% 10.3% 5.4% 3.8% 2.2% 0.5% 0.5% 0.5% 1.1% 0.0 2.2% 1.6% 1.1% 1.1%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6% 9.3% 13.2% 6.2% 3.9% 1.6% 5.4% 3.1% 0.8% 2.3%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	184 1.1% 17.9% 15.2% 10.3% 16.3% 10.3% 5.4% 3.8% 2.2% 0.5% 0.5% 0.5% 1.1% 0.0 2.2% 1.6% 1.1% 1.1% 1.1%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6% 9.3% 13.2% 6.2% 3.9% 1.6% 5.4% 3.1% 0.8% 2.3% 5.4%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	184 1.1% 17.9% 15.2% 10.3% 16.3% 10.3% 5.4% 3.8% 2.2% 0.5% 0.5% 0.5% 1.1% 0.0 2.2% 1.6% 1.1% 1.1% 1.6% 2.2%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6% 9.3% 13.2% 6.2% 3.9% 1.6% 5.4% 3.1% 0.8% 2.3% 5.4% 2.3%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	184 1.1% 17.9% 15.2% 10.3% 16.3% 10.3% 5.4% 3.8% 2.2% 0.5% 0.5% 1.1% 0.0 2.2% 1.6% 1.1% 1.1% 1.1% 1.6% 2.2% 0.5%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6% 9.3% 13.2% 6.2% 3.9% 1.6% 5.4% 3.1% 0.8% 2.3% 5.4% 2.3% 1.6%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	184 1.1% 17.9% 15.2% 10.3% 16.3% 10.3% 5.4% 3.8% 2.2% 0.5% 0.5% 1.1% 0.0 2.2% 1.6% 1.1% 1.1% 1.6% 2.2% 0.5% 2.2%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6% 9.3% 13.2% 6.2% 3.9% 1.6% 5.4% 3.1% 0.8% 2.3% 5.4% 2.3% 1.6% 0.8%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	184 1.1% 17.9% 15.2% 10.3% 16.3% 10.3% 5.4% 3.8% 2.2% 0.5% 0.5% 1.1% 0.0 2.2% 1.6% 1.1% 1.6% 2.2% 0.5% 2.2% 0.5% 2.2% 1.6% 2.2% 1.6% 2.2% 1.6% 2.2% 1.6% 2.2% 1.6% 2.2% 1.1%	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6% 9.3% 13.2% 6.2% 3.9% 1.6% 5.4% 3.1% 0.8% 2.3% 5.4% 2.3% 1.6% 0.8% 0.8%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	184 1.1% 17.9% 15.2% 10.3% 16.3% 10.3% 5.4% 3.8% 2.2% 0.5% 0.5% 0.5% 1.1% 0.0 2.2% 1.6% 1.1% 1.1% 1.1% 2.2% 0.5% 2.2% 1.6% 2.2% 1.1% 1.1% 1.1% 1.1% 1.1% 1.1% 1.1	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6% 9.3% 13.2% 6.2% 3.9% 1.6% 5.4% 3.1% 0.8% 2.3% 5.4% 2.3% 5.4% 0.8% 0.8%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	184 1.1% 17.9% 15.2% 10.3% 16.3% 10.3% 5.4% 3.8% 2.2% 0.5% 0.5% 1.1% 0.0 2.2% 1.6% 1.1% 1.1% 1.6% 2.2% 0.5% 2.2% 1.6% 1.1% 1.1% 1.1% 1.1% 1.1% 1.1% 1.1	$\begin{array}{c} \textit{Strongylocentrotus} \\ \textit{(cases)} \ N= \\ < 5 \ \text{mm} \\ 5 - 9 \\ 10 - 14 \\ 15 - 19 \\ 20 - 24 \\ 25 - 29 \\ 30 - 34 \\ 35 - 39 \\ 40 - 44 \\ 45 - 49 \\ 50 - 54 \\ 55 - 59 \\ 60 - 64 \\ 65 - 69 \\ 70 - 74 \\ 75 - 79 \\ 80 - 84 \\ 85 - 89 \\ 90 - 94 \\ 95 - 99 \\ 100 - 104 \\ 105 - 109 \\ > 109 \ \text{mm} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6% 9.3% 13.2% 6.2% 3.9% 1.6% 5.4% 3.1% 0.8% 2.3% 5.4% 2.3% 5.4% 2.3% 0.8% 0.8% 0.00 24
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	184 1.1% 17.9% 15.2% 10.3% 16.3% 10.3% 5.4% 3.8% 2.2% 0.5% 0.5% 1.1% 0.0 2.2% 1.6% 1.1% 1.1% 1.1% 1.1% 1.1% 1.1% 1.1	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6% 9.3% 13.2% 6.2% 3.9% 1.6% 5.4% 3.1% 0.8% 2.3% 5.4% 2.3% 5.4% 2.3% 6.2% 3.9% 1.6% 5.4% 3.1% 0.8% 0.8% 0.8% 0.8%
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm) max size (mm) mean	184 1.1% 17.9% 15.2% 10.3% 16.3% 10.3% 5.4% 3.8% 2.2% 0.5% 0.5% 0.5% 1.1% 0.0 2.2% 1.6% 1.1% 1.1% 1.1% 1.1% 1.1% 1.1% 1.1	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm) max size (mm) mean	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6% 9.3% 13.2% 6.2% 3.9% 1.6% 5.4% 3.1% 0.8% 2.3% 5.4% 2.3% 1.6% 0.8% 0.8% 0.8% 0.00 24 105 49
Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	184 1.1% 17.9% 15.2% 10.3% 16.3% 10.3% 5.4% 3.8% 2.2% 0.5% 0.5% 1.1% 0.0 2.2% 1.6% 1.1% 1.1% 1.1% 1.1% 1.1% 1.1% 1.1	Strongylocentrotus (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	129 0.0 0.0 0.0 0.0 1.6% 7.0% 16.3% 18.6% 9.3% 13.2% 6.2% 3.9% 1.6% 5.4% 3.1% 0.8% 2.3% 5.4% 2.3% 5.4% 2.3% 6.2% 3.9% 1.6% 5.4% 3.1% 0.8% 0.8% 0.8% 0.8%

LOCATION 15 SANTA BARBARA ISLAND - ARCH POINT

1000		1000	
1988	otus franciscanus	1989 Strongylogentr	otus franciscanus
belongylocener	ocus iranciscanus	Strongyrocentr	otus irancistanus
(cases) N=	102	(cases) N=	119
< 5 mm	0.0	< 5 mm	0.0
5 - 9	1.0%	5 - 9	9.2%
10 - 14	1.0%	10 - 14	15.1%
15 - 19	0.0	15 - 19	3.4%
20 - 24	0.0	20 - 24	0.0
25 - 29	0.0	25 - 29	0.8%
30 - 34	1.0%	30 - 34	1.7%
35 - 39	2.0%	35 - 39	2.5%
40 - 44	5.9%	40 - 44	5.0%
45 - 49	8.8%	45 - 49	7.6%
50 - 54	10.8%	50 - 54	8.4%
55 - 59	11.8%	55 - 59	5.9%
60 - 64	9.8%	60 - 64	7.6%
65 - 69	11.8%	65 - 69	4.2%
70 - 74	6.9%	70 - 74	6.7%
75 - 79	3.9%	75 - 79	4.2%
80 - 84	4.9%	80 - 84	5.9%
85 - 89	4.9%	85 - 89	3.4%
90 - 94	5.9%	90 - 94	4.2%
95 - 99	2.9%	95 - 99	0.8%
100 - 104	3.9%	100 - 104	2.5%
105 - 109	1.0%	105 - 109	0.8%
> 109 mm	2.0%	> 109 mm	0.0
min size (mm)	9	min size (mm)	5
max size (mm)	128	max size (mm)	108
mean	66	mean	50
mode	53	mode	9
LOCATION 15 S	SANTA BARBARA ISLAND -	- ARCH POINT	
1984		1985	
Srongylocentro	tus purpuratus	Srongylocentro	tus purpuratus
(cases) N=	143	(cases) N=	129
< 5 mm	2.1%	< 5 mm	6.2%
5 - 9	24.5%	5 - 9	34.1%
10 - 14	4.2%	10 - 14	19.4%
15 - 19	7.0%	15 - 19	14.7%
20 - 24	2.8%	20 - 24	17.1%
25 - 29	1.4%	25 - 29	1.6%
30 - 34	4.9%	30 - 34	0.8%
35 - 39	14.0%	35 - 39	0.8%
40 - 44	15.4%	40 - 44	2.3%
45 - 49	14.0%	45 - 49	2.3%
50 - 54	7.0%	50 - 54	0.8%
55 - 59	2.1%	55 - 59	0.0
60 - 64	0.7%	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
> 89 mm	0.0	> 89 mm	0.0
min size (mm)	4	min size (mm)	3
max size (mm)	61	max size (mm)	53
mean	29	mean	14
mode	6	mode	6

LOCATION 15 SANTA BARBARA ISLAND - ARCH POINT:

1986		1988	
Srongylocentrotus	purpuratus	Srongylocentrotus pur	nuratus
orong, rocentrocas ;	parparacae	stong/toomstoom put	paracao
(cases) N=	105	(cases) N=	123
< 5 mm	0.0	< 5 mm	0.0
5 - 9	51.4%	5 - 9	3.3%
10 - 14	33.3%	10 - 14	7.3%
15 - 19	1.9%	15 - 19	3.3%
20 - 24	3.8%	20 - 24	9.8%
25 - 29	3.8%	25 - 29	22.8%
30 - 34	2.9%	30 - 34	30.9%
35 - 39	1.0%	35 - 39	17.9%
40 - 44 45 - 49	0.0	40 - 44	4.1%
50 - 54	1.0%	45 - 49 50 - 54	0.0 0.8%
55 - 59	0.0	55 - 59	0.0
60 - 64	1.0%	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
> 89 mm	0.0	> 89 mm	0.0
min size (mm)	5	min size (mm)	6
max size (mm)	63	max size (mm)	50
mean	12	mean	28
mode	11	mode	31
1007			
1987 Srongylocentrotus	nurnuratus	1989	
brongy rocenterotas ,	parparacas	Srongylocentrotus pur	nuratue
(cases) N=	138	Siongylocentiotus pui	puracus
(cases) N= < 5 mm	138 0.0	2-	213
	0.0	(cases) N=	213
< 5 mm		2-	-
< 5 mm 5 - 9	0.0 3.6%	(cases) N= < 5 mm	213 4.2%
< 5 mm 5 - 9 10 - 14	0.0 3.6% 26.8%	(cases) N= < 5 mm 5 - 9	213 4.2% 11.3%
< 5 mm 5 - 9 10 - 14 15 - 19	0.0 3.6% 26.8% 25.4%	(cases) N= < 5 mm 5 - 9 10 - 14	213 4.2% 11.3% 13.6%
< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5%
<pre>< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39</pre>	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6%
<pre>5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44</pre>	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0 1.4%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6% 16.4%
< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0 1.4%	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6% 16.4% 4.2%
< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0 1.4% 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6% 16.4% 4.2% 0.9%
<pre>< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59</pre>	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0 1.4% 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6% 16.4% 4.2% 0.9% 0.5%
< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0 1.4% 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6% 16.4% 4.2% 0.9% 0.5% 0.0
<pre>< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69</pre>	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0 1.4% 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6% 16.4% 4.2% 0.9% 0.5% 0.0
<pre>< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74</pre>	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0 1.4% 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6% 16.4% 4.2% 0.9% 0.5% 0.0
<pre>< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79</pre>	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0 1.4% 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6% 16.4% 4.2% 0.9% 0.5% 0.0 0.0
<pre>5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84</pre>	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0 1.4% 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6% 16.4% 4.2% 0.9% 0.5% 0.0 0.0 0.0
<pre>< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89</pre>	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0 1.4% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6% 16.4% 4.2% 0.9% 0.5% 0.0 0.0 0.0
<pre> < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 > 89 mm </pre>	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0 1.4% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6% 16.4% 4.2% 0.9% 0.5% 0.0 0.0 0.0
<pre>< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 > 89 mm min size (mm)</pre>	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0 1.4% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6% 16.4% 4.2% 0.9% 0.5% 0.0 0.0 0.0 0.0
<pre> < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 > 89 mm min size (mm) max size (mm)</pre>	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0 1.4% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6% 16.4% 4.2% 0.9% 0.5% 0.0 0.0 0.0 0.0
<pre>< 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 > 89 mm min size (mm)</pre>	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0 1.4% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6% 16.4% 4.2% 0.9% 0.5% 0.0 0.0 0.0 0.0
<pre>5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 > 89 mm min size (mm) max size (mm) mean</pre>	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0 1.4% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6% 16.4% 4.2% 0.9% 0.5% 0.0 0.0 0.0 0.0
<pre>5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 > 89 mm min size (mm) max size (mm) mean</pre>	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0 1.4% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6% 16.4% 4.2% 0.9% 0.5% 0.0 0.0 0.0 0.0 0.0 0.0
<pre>5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 > 89 mm min size (mm) max size (mm) mean</pre>	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0 1.4% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6% 16.4% 4.2% 0.9% 0.5% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
<pre>5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 > 89 mm min size (mm) max size (mm) mean</pre>	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0 1.4% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm)	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6% 16.4% 4.2% 0.9% 0.5% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
<pre>5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 > 89 mm min size (mm) max size (mm) mean</pre>	0.0 3.6% 26.8% 25.4% 18.1% 15.9% 8.7% 0.0 1.4% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 > 109 mm min size (mm) max size (mm)	213 4.2% 11.3% 13.6% 19.2% 8.5% 7.5% 13.6% 16.4% 4.2% 0.9% 0.5% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

1986 Haliotis corrugata		1987 Haliotis corrugata	
(cases) N=	6	(cases) N=	26
< 25 mm	16.7%	< 25 mm	0.0
25 - 29	0.0	25 - 29	0.0
30 - 34	0.0	30 - 34	0.0
35 - 39	16.7%	35 - 39	0.0
40 - 44	0.0	40 - 44	0.0
45 - 49	0.0	45 - 49	0.0
50 - 54	0.0	50 - 54	0.0
55 - 59	16.7%	55 - 59	0.0
60 - 64	0.0	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	3.8%
100 - 104	16.7%	100 - 104	3.8%
105 - 109	0.0	105 - 109	0.0
110 - 114	0.0	110 - 114	0.0
115 - 119	0.0	115 - 119	3.8%
120 - 124	0.0	120 - 124	0.0
125 - 129	16.7%	125 - 129	3.8%
130 - 134	0.0	130 - 134	23.1%
135 - 139	16.7%	135 - 139	15.4%
140 - 144	0.0	140 - 144	3.8%
145 - 149	0.0	145 - 149	19.2%
150 - 154	0.0	150 - 154	7.7%
155 - 159	0.0	155 - 159	7.7%
160 - 164	0.0	160 - 164	3.8%
165 - 169	0.0	165 - 169	0.0
170 - 174	0.0	170 - 174	0.0
175 - 179	0.0	175 - 179	0.0
180 - 184	0.0	180 - 184	3.8%
185 - 189	0.0	185 - 189	0.0
190 - 194	0.0	190 - 194	0.0
195 - 199	0.0	195 - 199	0.0
> 199 mm	0.0	> 199 mm	0.0
min size (mm)	19	min size (mm)	98
max size (mm)	136	max size (mm)	180
mean	80	mean	139
mode	19	mode	132
node	1.7	mode	132

1988		1989	
Haliotis corrugata		Haliotis corrugata	
(cases) N=	16	(cases) N=	2
< 25 mm	0.0	< 25 mm	100.0%
25 - 29	0.0	25 - 29	0.0
30 - 34	0.0	30 - 34	0.0
35 - 39	0.0	35 - 39	0.0
40 - 44	0.0	40 - 44	0.0
45 - 49	0.0	45 - 49	0.0
50 - 54	0.0	50 - 54	0.0
55 - 59	0.0	55 - 59	0.0
60 - 64	0.0	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
100 - 104	6.3%	100 - 104	0.0
105 - 109	0.0	105 - 109	0.0
110 - 114	0.0	110 - 114	0.0
115 - 119	6.3%	115 - 119	0.0
120 - 124	6.3%	120 - 124	0.0
125 - 129	6.3%	125 - 129	0.0
130 - 134	12.5%	130 - 134	0.0
135 - 139	6.3%	135 - 139	0.0
140 - 144	6.3%	140 - 144	0.0
145 - 149	25.0%	145 - 149	0.0
150 - 154	6.3%	150 - 154	0.0
155 - 159	6.3%	155 - 159	0.0
160 - 164	12.5%	160 - 164	0.0
165 - 169	0.0	165 - 169	0.0
170 - 174	0.0	170 - 174	0.0
175 - 179	0.0	175 - 179	0.0
180 - 184	0.0	180 - 184	0.0
185 - 189	0.0	185 - 189	0.0
190 - 194	0.0	190 - 194	0.0
195 - 199	0.0	195 - 199	0.0
> 199 mm	0.0	> 199 mm	0.0
min size (mm)	103	min size (mm)	21
max size (mm)	162	max size (mm)	24
mean	139	mean	23
mode	147	mode	21

1986		1987	
Haliotis fulgens		Haliotis fulgens	
(cases) N=	44	(cases) N=	3
< 25 mm	2.3%	< 25 mm	0.0
25 - 29	2.3%	25 - 29	0.0
30 - 34	4.5%	30 - 34	0.0
35 - 39	2.3%	35 - 39	0.0
40 - 44	4.5%	40 - 44	0.0
45 - 49	4.5%	45 - 49	0.0
50 - 54	6.8%	50 - 54	0.0
55 - 59	0.0	55 - 59	0.0
60 - 64	4.5%	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	2.3%	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	6.8%	80 - 84	0.0
85 - 89	2.3%	85 - 89	33.3%
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
100 - 104	4.5%	100 - 104	0.0
105 - 109	11.4%	105 - 109	0.0
110 - 114	2.3%	110 - 114	0.0
115 - 119	2.3%	115 - 119	0.0
120 - 124	4.5%	120 - 124	0.0
125 - 129	6.8%	125 - 129	0.0
130 - 134	0.0	130 - 134	33.3%
135 - 139	6.8%	135 - 139	0.0
140 - 144	4.5%	140 - 144	0.0
145 - 149	4.5%	145 - 149	0.0
150 - 154	4.5%	150 - 154	0.0
155 - 159	2.3%	155 - 159	33.3%
160 - 164	2.3%	160 - 164	0.0
165 - 169	0.0	165 - 169	0.0
170 - 174	0.0	170 - 174	0.0
175 - 179	0.0	175 - 179	0.0
180 - 184	0.0	180 - 184	0.0
185 - 189	0.0	185 - 189	0.0
190 - 194	0.0	190 - 194	0.0
195 - 199	0.0	195 - 199	0.0
> 199 mm	0.0	> 199 mm	0.0
min size (mm)	23	min size (mm)	86
max size (mm)	160	max size (mm)	155
mean	96	mean	124
mode	83	mode	86

1988 Haliotis fulgens		1989 Haliotis fulgens	
, and the second		-	
(cases) N=	2	(cases) N=	4
< 25 mm	0.0	< 25 mm	0.0
25 - 29	0.0	25 - 29	0.0
30 - 34	0.0	30 - 34	0.0
35 - 39	0.0	35 - 39	0.0
40 - 44	0.0	40 - 44	0.0
45 - 49	0.0	45 - 49	0.0
50 - 54	0.0	50 - 54	0.0
55 - 59	0.0	55 - 59	0.0
60 - 64	0.0	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74	0.0	70 - 74	0.0
75 - 79	0.0	75 - 79	0.0
80 - 84	0.0	80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
100 - 104	0.0	100 - 104	0.0
105 - 109	0.0	105 - 109	0.0
110 - 114	0.0	110 - 114	0.0
115 - 119	50.0%	115 - 119	0.0
120 - 124	0.0	120 - 124	0.0
125 - 129	0.0	125 - 129	0.0
130 - 134	0.0	130 - 134	25.0%
135 - 139	0.0	135 - 139	0.0
140 - 144	0.0	140 - 144	0.0
145 - 149	0.0	145 - 149	25.0%
150 - 154	0.0	150 - 154	25.0%
155 - 159	0.0	155 - 159	0.0
160 - 164	50.0%	160 - 164	0.0
165 - 169	0.0	165 - 169	25.0%
170 - 174	0.0	170 - 174	0.0
175 - 179	0.0	175 - 179	0.0
180 - 184	0.0	180 - 184	0.0
185 - 189	0.0	185 - 189	0.0
190 - 194	0.0	190 - 194	0.0
195 - 199	0.0	195 - 199	0.0
> 199 mm	0.0	> 199 mm	0.0
min size (mm)	119	min size (mm)	134
max size (mm)	160	max size (mm)	168
mean	140	mean	151
mode	119	mode	134

1988		1987	
Cypraea spadicea		Astraea undosa	
(cases) N=	10	(cases) N=	46
< 30 mm	0.0	< 10 mm	2.2%
30 - 34	0.0	10 - 19	0.0
35 - 39	0.0	20 - 29	8.7%
40 - 44	70.0%	30 - 39	15.2%
45 - 49	10.0%	40 - 49	21.7%
50 - 54	10.0%	50 - 59	23.9%
55 - 59	0.0	60 - 69	19.6%
>59 mm	10.0%	70 - 79	8.7%
min size (mm)	40	80 - 89	0.0
max size (mm)	70	90 - 99	0.0
mean	47	>99 mm	0.0
mode	43	min size (mm)	9
		max size (mm)	75
1989		mean	49
Cypraea spadicea		mode	42
11 1			
(cases) N=	19	1988	
< 30 mm	0.0	Astraea undosa	
30 - 34	0.0		
35 - 39	21.1%	(cases) N=	30
40 - 44	31.6%	< 10 mm	0.0
45 - 49	36.8%	10 - 19	0.0
50 - 54	10.5%	20 - 29	0.0
55 - 59	0.0	30 - 39	6.7%
>59 mm	0.0	40 - 49	23.3%
min size (mm)	35	50 - 59	23.3%
max size (mm)	52	60 - 69	36.7%
mean	44	70 - 79	6.7%
mode	42	80 - 89	3.3%
		90 - 99	0.0
1986		>99 mm	0.0
Astraea undosa		min size (mm)	30
		max size (mm)	87
(cases) N=	39	mean	57
< 10 mm	0.0	mode	53
10 - 19	0.0		
20 - 29	2.6%	1989	
30 - 39	5.1%	Astraea undosa	
40 - 49	25.6%		
50 - 59	38.5%	(cases) N=	71
60 - 69	15.4%	< 10 mm	0.0
70 - 79	0.0	10 - 19	1.4%
80 - 89	10.3%	20 - 29	0.0
90 - 99	2.6%	30 - 39	4.2%
100 - 109	0.0	40 - 49	16.9%
110 - 119	0.0	50 - 59	39.4%
>119 mm	0.0	60 - 69	28.2%
min size (mm)	24	70 - 79	8.5%
max size (mm)	90	80 - 89	1.4%
mean	56	90 - 99	0.0
mode	52	>99 mm	0.0
	52	min size (mm)	14
		max size (mm)	86
		mean	56
		mode	56
			20

2001111011 10 01111111 2			
1987		1987	
Megathura crenulata		Pisaster giganteus	
(cases) N=	10	(cases) N=	48
< 10 mm	0.0	<20 mm	0.0
10 - 19	0.0	20 - 39	0.0
20 - 29	0.0	40 - 59	0.0
30 - 39	0.0	60 - 79	10.4%
40 - 49	0.0	80 - 99	41.7%
50 - 59	0.0	100 - 119	31.3%
60 - 69	10.0%	120 - 139	12.5%
70 - 79	10.0%	140 - 159	4.2%
80 - 89	20.0%	160 - 179	0.0
90 - 99	40.0%	180 - 199	0.0
100 - 109	10.0%	200 - 219	0.0
110 - 119	10.0%	220 - 239	0.0
>119 mm	0.0	240 - 259	0.0
min size (mm)	66	260 - 279	0.0
max size (mm)	115	280 - 299	0.0
mean	91	>299 mm	0.0
mode	98	min size (mm)	72
		max size (mm)	151
1989		mean	100
Megathura crenulata		mode	100
(cases) N=	14	1988	
< 10 mm	0.0		
		Pisaster giganteus	
10 - 19	0.0		2.0
20 - 29	0.0	(cases) N=	32
30 - 39	0.0	<20 mm	0.0
40 - 49	0.0	20 - 39	0.0
50 - 59	7.1%	40 - 59	0.0
60 - 69	28.6%	60 - 79	0.0
70 - 79	21.4%	80 - 99	34.4%
80 - 89	35.7%	100 - 119	43.8%
90 - 99	7.1%	120 - 139	15.6%
100 - 109	0.0	140 - 159	6.3%
110 - 119	0.0	>159 mm	0.0
>119 mm	0.0	min size (mm)	81
min size (mm)	55	max size (mm)	157
max size (mm)	92	mean	109
mean	75	mode	120
mode	80		
1.000		1989	
1989 Patiria miniata		Pisaster giganteus	
raciira milliaca		(cases) N=	47
(cases) N=	11	<20 mm	0.0
< 10 mm	36.4%	20 - 39	0.0
10 - 19	36.4%	40 - 59	0.0
20 - 29	0.0	60 - 79	0.0
30 - 39	18.2%	80 - 99	34.0%
40 - 49	9.1%	100 - 119	51.1%
50 - 59			
	0.0	120 - 139	8.5%
>59 mm	0.0	140 - 159	6.4%
min size (mm)	6	>159 mm	0.0
max size (mm)	49	min size (mm)	85
mean	18	max size (mm)	148
mode	6	mean	106
		mode	100

1987		1989	
Strongylocentrotus	s franciscanus	Strongylocentrotus fr	anciscanus
(cases) N=	108	(cases) N=	130
< 5 mm	0.0	< 5 mm	0.0
5 - 9	0.0	5 - 9	0.8%
10 - 14	3.7%	10 - 14	0.0
15 - 19	11.1%	15 - 19	0.0
20 - 24	6.5%	20 - 24	1.5%
25 - 29	8.3%	25 - 29	6.2%
30 - 34	7.4%	30 - 34	14.6%
35 - 39	5.6%	35 - 39	11.5%
40 - 44	4.6%	40 - 44	8.5%
45 - 49	6.5%	45 - 49	10.8%
50 - 54	5.6%	50 - 54	7.7%
55 - 59	9.3%	55 - 59	6.9%
60 - 64	5.6%	60 - 64	4.6%
65 - 69	2.8%	65 - 69	8.5%
70 - 74	4.6%	70 - 74	5.4%
75 - 79	6.5%	75 - 79	5.4%
80 - 84	6.5%	80 - 84	3.1%
85 - 89	2.8%	85 - 89	2.3%
90 - 94	0.9%	90 - 94	2.3%
95 - 99	0.9%	95 - 99	0.0
100 - 109	0.0	100 - 104	0.0
> 109 mm	0.9%	105 - 109	0.0
min size (mm)	11	> 109 mm	0.0
max size (mm)	111	min size (mm)	9
mean	48	max size (mm)	93
mode	80	mean	51
		mode	38
1988			
Strongylocentrotus	s franciscanus		
(cases) N=	105		
< 5 mm	0.0		

(aaaaa) N	V=	105
,	N-	
< 5 mm		0.0
5 - 9		0.0
10 - 14		1.0%
15 - 19		2.9%
20 - 24		2.9%
25 - 29		6.7%
30 - 34		10.5%
35 - 39		8.6%
40 - 44		10.5%
45 - 49		5.7%
50 - 54		6.7%
55 - 59		7.6%
60 - 64		6.7%
65 - 69		3.8%
70 - 74		11.4%
75 - 79		4.8%
80 - 84		5.7%
85 - 89		3.8%
90 - 94		0.0
95 - 99		1.0%
> 99 mm		0.0
min size	(mm)	14
max size	(mm)	98
mean	(111111)	52
mode		29
mode		23

1986		1988	
Srongylocentrotus p	ourpuratus	Srongylocentrotus pur	puratus
promgy recommended p	sarparadas	stong, too metocae par,	paracas
(cases) N=	107	(cases) N=	131
< 5 mm	2.8%	< 5 mm	0.8%
5 - 9	3.7%	5 - 9	3.1%
10 - 14	16.8%	10 - 14	0.8%
15 - 19	26.2%	15 - 19	0.0
20 - 24	18.7%	20 - 24	6.1%
25 - 29	7.5%	25 - 29	14.5%
30 - 34	1.9%	30 - 34	30.5%
35 - 39	5.6%	35 - 39	24.4%
40 - 44	3.7%	40 - 44	14.5%
45 - 49	4.7%	45 - 49	3.1%
50 - 54	4.7%	50 - 54	2.3%
55 - 59	2.8%	55 - 59	0.0
60 - 64	0.9%	60 - 64	0.0
65 - 69	0.0	65 - 69	0.0
70 - 74 75 - 79	0.0	70 - 74 75 - 79	0.0
80 - 84	0.0	75 - 79 80 - 84	0.0
85 - 89	0.0	85 - 89	0.0
90 - 94	0.0	90 - 94	0.0
95 - 99	0.0	95 - 99	0.0
> 99 mm	0.0	> 99 mm	0.0
min size (mm)	2	min size (mm)	4
max size (mm)	61	max size (mm)	52
mean	24	mean	33
mode	16	mode	33
mode	10		00
1987		1989	
1987 Srongylocentrotus p	ourpuratus	1989 Srongylocentrotus pur	puratus
Srongylocentrotus p		Srongylocentrotus pur	-
Srongylocentrotus p	105	Srongylocentrotus pur $({\sf cases})$ N=	213
Srongylocentrotus p (cases) N= < 5 mm	105 0.0	Srongylocentrotus pur (cases) N= < 5 mm	213
<pre>Srongylocentrotus p (cases) N= < 5 mm 5 - 9</pre>	105 0.0 1.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9	213 0.0 0.5%
<pre>(cases) N= < 5 mm 5 - 9 10 - 14</pre>	105 0.0 1.0% 1.9%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14	213 0.0 0.5% 0.0
<pre>Srongylocentrotus p (cases) N= < 5 mm 5 - 9</pre>	105 0.0 1.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9	213 0.0 0.5%
<pre>Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19</pre>	105 0.0 1.0% 1.9% 9.5%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19	213 0.0 0.5% 0.0
Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	105 0.0 1.0% 1.9% 9.5% 18.1%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24	213 0.0 0.5% 0.0 0.0 6.1%
Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	105 0.0 1.0% 1.9% 9.5% 18.1% 20.0%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	213 0.0 0.5% 0.0 0.0 6.1% 29.1%
Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	105 0.0 1.0% 1.9% 9.5% 18.1% 20.0% 22.9%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	213 0.0 0.5% 0.0 0.0 6.1% 29.1% 30.0%
Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	105 0.0 1.0% 1.9% 9.5% 18.1% 20.0% 22.9% 15.2%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	213 0.0 0.5% 0.0 0.0 6.1% 29.1% 30.0% 21.1%
Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	105 0.0 1.0% 1.9% 9.5% 18.1% 20.0% 22.9% 15.2% 6.7%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	213 0.0 0.5% 0.0 0.0 6.1% 29.1% 30.0% 21.1% 8.5%
Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	105 0.0 1.0% 1.9% 9.5% 18.1% 20.0% 22.9% 15.2% 6.7% 2.9%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	213 0.0 0.5% 0.0 0.0 6.1% 29.1% 30.0% 21.1% 8.5% 2.8%
Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	105 0.0 1.0% 1.9% 9.5% 18.1% 20.0% 22.9% 15.2% 6.7% 2.9% 1.9%	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64	213 0.0 0.5% 0.0 0.0 6.1% 29.1% 30.0% 21.1% 8.5% 2.8% 0.9%
Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	105 0.0 1.0% 1.9% 9.5% 18.1% 20.0% 22.9% 15.2% 6.7% 2.9% 1.9% 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69	213 0.0 0.5% 0.0 0.0 6.1% 29.1% 30.0% 21.1% 8.5% 2.8% 0.9% 0.5% 0.0
Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	105 0.0 1.0% 1.9% 9.5% 18.1% 20.0% 22.9% 15.2% 6.7% 2.9% 1.9% 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74	213 0.0 0.5% 0.0 0.0 6.1% 29.1% 30.0% 21.1% 8.5% 2.8% 0.9% 0.5% 0.0
Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	105 0.0 1.0% 1.9% 9.5% 18.1% 20.0% 22.9% 15.2% 6.7% 2.9% 1.9% 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79	213 0.0 0.5% 0.0 0.0 6.1% 29.1% 30.0% 21.1% 8.5% 2.8% 0.9% 0.5% 0.0 0.0
Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	105 0.0 1.0% 1.9% 9.5% 18.1% 20.0% 22.9% 15.2% 6.7% 2.9% 1.9% 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84	213 0.0 0.5% 0.0 0.0 6.1% 29.1% 30.0% 21.1% 8.5% 2.8% 0.9% 0.5% 0.0 0.0
Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	105 0.0 1.0% 1.9% 9.5% 18.1% 20.0% 22.9% 15.2% 6.7% 2.9% 1.9% 0.0 0.0 0.0 0.0 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89	213 0.0 0.5% 0.0 0.0 6.1% 29.1% 30.0% 21.1% 8.5% 2.8% 0.9% 0.5% 0.0 0.0
Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	105 0.0 1.0% 1.9% 9.5% 18.1% 20.0% 22.9% 15.2% 6.7% 2.9% 1.9% 0.0 0.0 0.0 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94	213 0.0 0.5% 0.0 0.0 6.1% 29.1% 30.0% 21.1% 8.5% 2.8% 0.9% 0.5% 0.0 0.0 0.0 0.0
Srongylocentrotus p (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	105 0.0 1.0% 1.9% 9.5% 18.1% 20.0% 22.9% 15.2% 6.7% 2.9% 1.9% 0.0 0.0 0.0 0.0 0.0	Srongylocentrotus pur (cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99	213 0.0 0.5% 0.0 0.0 6.1% 29.1% 30.0% 21.1% 8.5% 2.8% 0.9% 0.5% 0.0 0.0 0.0 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	105 0.0 1.0% 1.9% 9.5% 18.1% 20.0% 22.9% 15.2% 6.7% 2.9% 1.9% 0.0 0.0 0.0 0.0 0.0 0.0	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm	213 0.0 0.5% 0.0 0.0 6.1% 29.1% 30.0% 21.1% 8.5% 2.8% 0.9% 0.5% 0.0 0.0 0.0 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	105 0.0 1.0% 1.9% 9.5% 18.1% 20.0% 22.9% 15.2% 6.7% 2.9% 1.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	213 0.0 0.5% 0.0 0.0 6.1% 29.1% 30.0% 21.1% 8.5% 2.8% 0.9% 0.5% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	105 0.0 1.0% 1.9% 9.5% 18.1% 20.0% 22.9% 15.2% 6.7% 2.9% 1.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm) max size (mm)	213 0.0 0.5% 0.0 0.0 6.1% 29.1% 30.0% 21.1% 8.5% 2.8% 0.9% 0.5% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	105 0.0 1.0% 1.9% 9.5% 18.1% 20.0% 22.9% 15.2% 6.7% 2.9% 1.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(cases) N= < 5 mm 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 > 99 mm min size (mm)	213 0.0 0.5% 0.0 0.0 6.1% 29.1% 30.0% 21.1% 8.5% 2.8% 0.9% 0.5% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Appendix 6. 1982-1989 Kelp Forest Monitoring Data - Species Lists

Introduction

The species list contains presence/absence data for all species that could be found during the site visits between June and October. Generally at least one dive is made by an experienced biologist strictly for species list observations. The overall effort varies from station to station with the water conditions and available time. Some species assemblages are more difficult to identify than others and may be lumped into general categories. Organisms were generally not collected for additional taxonomic work. Voucher specimens generally do not exist except for a few algae. When identification is tentative we either do not mark it or place a question mark on the list. Some of the more questionable notes have been removed from this list. Some categories, (e.g. sponges or tunicates) may be much more diverse than it would appear from the list. Subjective abundance ratings (rare-abundant) for most sites and years are available in the raw data but are not presented here. Station names are listed in Table 3 of the text.

SPECIES LIST SURVEYS 1982-1989

	_					L	CA.	LION								
year	1	2	3	4	5*	6	7	8	9	10	11	12	13	14	15	16
1982	X	X	X	X	X	X	X	X	X	-	0	0	X	X	X	-
1983	X	X	X	X	X	X	X	X	X	-	X	X	X	X	X	-
1984	0	X	X	X	X	0	X	X	0	-	X	X	0	0	0	-
1985	X	X	X	X	X	X	0	X	X	-	0	X	0	0	0	-
1986	X	X	X	X	X	X	X	X	0	X	X	X	X	X	X	X
1987	X	X	X	X	0	X	0	X	0	X	X	0	0	0	0	0
1988	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
1989	х	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X

^{*} SRIRR transect was re-established in 1984

NOTES:

J = Juvenile

D = Drift

I = Intertidal near site

M = molt

S = shell

O = noticeably absent

E = eggs

⁻ SCIYB (#10) and SBICC (#16) were not established until 1986

⁰ RECONNAISSANCE SURVEYS UNATTEMPTED OR MISSING

LOC	ATION: SMIW	SMIHE	SRIJLN	SRIJLS	SRIRR	SCIGI	SCIFH	SCIPB	SCISA	SCIYB	ANIAR	ANICC	ANILO	SBISESL	SBIAP	SBICC
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																
Chlorophyta																
BRYOPSIS CORTICULANS		X	X	Х			X	X	X			X		X	Х	Х
CHAETOMORPHA SP.			X					1 ~	X				Х			
CHAETOMORPHA SPIRALIS														Х		Х
CLADOPHORA GRAMINEA		X	Х	Х		Х	X	X	X	X	Х	X	Х			X
CLADOPHORA MICROCLADIOIDES								_ ^				X				
CLADOPHORA SP.	X				X				X	X	Х	X				Х
CODIUM CUNEATUM		X	Х	Х	<u> </u>	Х	Х	X	X	<u> </u>	X	X	Х	Х	Х	X
CODIUM FRAGILE		X	X	X	X	X	X	X	X		X	X	X		X	X
CODIUM HUBBSII/SETCHELLII	X		X	X	X	X	X	X	_ ^ _	X	X	X	X	Х	X	X
CODIUM JOHNSTONEI					<u> </u>		_ ^	<u> </u>		X	X					
DERBESIA MARINA	X	X	Х	Х	X	Х	Х	X	Х	X	X	Х	X	Х	Х	
ENTEROMORPHA SP.			X		<u> </u>		X	X	X	 	_ ~				X	
GREEN MAT ON SAND			,,				,,	,,,				X			,,	
HALICYSTIS OVALIS			Х		X	Х	X	X	X	X	Х	X	X	Х	Х	Х
ULVA LOBATA												X				
ULVA TAENIATA			Х									,,				
ULVA SP.	Х	X	Х	Х			Х	Х							Х	
Phaeophyta																
ACINETOSPORA NICHOLSONIAE								X								Х
AGARUM FIMBRIATUM				Х				~			Х					
COILODESME CORRUGATA														Х		Х
COILODESME SP.	X								X	X				X		
COLPOMENIA SINUOSA			Х			X	X	X	X	 	X	X		X	Х	Х
COLPOMENIA SP.		X	X	Х		X	X	X	X		X	X	Х	X	X	X
COSTARIA COSTATA			,,	X		,,	,,		,,			,,	,,	,,	,,	,,
CYSTOSEIRA OSMUNDACEA	X	Х	Х	X	X	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х
CYSTOSEIRA SETCHELLII								1	1	X	X					
CYSTOSEIRA SP.			Х				Х	Х	Х		Х	Х	Х	Х	Х	
DESMARESTIA LATIFRONS	Х	X	Х				Х	X						Х		
DESMARESTIA LIGULATA	Х	Х	Х	Х	Х		Х	Х		Х				Х		Х
DESMARESTIA LIGULATA VAR. FIRMA			Х											Х		
DESMARESTIA SP.	X	Х	Х	Х	Х				Х	Х	Х	Х		Х		Х
DESMARESTIA VIRIDIS			Х													
DICTYONEUROPSIS RETICULATA				Х	Х											
DICTYOPTERIS NEW SP.										Х	Х		Х			
DICTYOPTERIS UNDULATA							Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
DICTYOTA BINGHAMIAE			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
DICTYOTA FLABELLATA						Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х
DICTYOTA/PACHYDICTYON			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
ECTOCARPOID FUZZ									Х							

L	OCATION: SMIW	/LSMIH	R SRIJLN	SRIJLS	SRIRR	SCIGI	SCIFF	SCIPE	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																
EGREGIA MENZIESII	X	X	X	Х	X	D		X	D	X	Х	Х			Х	Х
EISENIA ARBOREA	X	X	X	X	X	X	Х	X	X	X	X	X	X	X	X	X
GIFFORDIA/ECTOCARPUS		X		,,		X	X	X	1	1	,,	X		,,	,,	
GIFFORDIA MITCHELLIAE		X		X			_ ^	- ^								
GIFFORDIA SP.		+ ~	+	X					1							
HALIDRYS DIOICA		X	D	D	X		Х			?					X	
HESPEROPHYCUS HARVEYANUS										 ' -		INT				
HYDROCLATHRUS CLATHRATUS							Х					X			X	
LAMINARIA FARLOWII	X		X	X	X	Х	X	X	X	X	X	X	Х	X	X	X
MACROCYSTIS PYRIFERA	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
PACHYDICTYON CORIACEUM	^		X	X	X	X	?	X	X	X	X	X	X	X	X	X
			_ X		_ X	Χ		Α	_ X		Χ	Α	Α	D	Χ	
PELAGOPHYCUS PORRA				D						Х				D		
PELVETIA FASTIGIATA					ļ.,.							X			X	
PTERYGOPHORA CALIFORNICA	X		X	X	X	X		X	X	X	X	X	X	X		
SARGASSUM MUTICUM				X				Х	X	X		X	X	X	Х	Х
SARGASSUM SP.													X			
SPHACELARIA CALIFORNICA												Х				
SPOROCHNUS PEDUNCULATUS														Х		i .
TINOCLADIA CRASSA															X	
TAONIA LENNEBACKERIAE	X		Х	X						X		Х		X	Х	Х
ZONARIA FARLOWII							Х	Х	Х	X	Х	Х	Х	Х	Х	Х
Rhodophyta																
ACROCHAETIUM DESMARESTIAE				Х		Х	Х									
ACROSORIUM UNCINATUM	X		Х	Х	Х	Х	Х			Х	Х	Х				Х
AMPHIROA ZONATA							Х	Х				Х				Х
AMPLISIPHONIA PACIFICA										X						
ANISOCLADELLA PACIFICA										Х						
ANTITHAMNION DENDROIDEUM			1	X						1						
BONNEMAISONIA HAMIFERA				,,											Х	Х
BOSSIELLA CALIFORNICA			X				X	X	X							
BOSSIELLA CALIFORNICA VAR. SCHMIT	TII						X									
BOSSIELLA ORBIGNIANA	X				X			X	X	X		X	X			Х
BOSSIELLA PLUMOSA	Λ							_ ^	_ ^				X			
BOSSIELLA/CALLIARTHRON	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
BOTRYOCLADIA PSEUDODICHOTOMA				X	X	X	X	X	X	X	X		X	X	^	
BOTRYOCLADIA PSEUDODICHOTOMA BOTRYOGLOSSUM FARLOWIANUM	X	X	X	^		^	^		^	_ ^	_ ^	Х	_ ^	_ ^		Х
BRANCHIOGLOSSUM WOODII	X	X				V		1	1	V	V	V	-			
		—				X			V	X	X	X				
CALLIARTHRON CHEILOSPORIOIDES	X	X	X	Х	X	Х	X	X	X	X	X	X	X			
CALLIARTHRON SP.	X		1						Х				Х		X	<u> </u>
CALLIARTHRON TUBERCULOSUM		\perp		X					1							<u> </u>
CALLITHAMNION BISERIATUM				X												

	LOCATION: S	MIWL	SMIHR	SRIJLN	SRIJLS	SRIRR	SCIGI	SCIFH	SCIPB	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																	
CALLITHAMNION SP.		Χ								Х				Х		Х	
CALLOCOLAX FUNGIFORMIS					Х												
CALLOPHYLLIS FIRMA		Х		Х	Х	Х	Х				Х	Х					
CALLOPHYLLIS FLABELLULATA		Χ			Х	Х	Х				X		Х			Х	
CALLOPHYLLIS PINNATA		Х			Х												
CALLOPHYLLIS SP.		Х	Х	Х	Х	Х	Х	Х			X						
CALLOPHYLLIS VIOLACEA		Х		Х	Х	Х											
CARPOPELTIS BUSHIAE											X		Х	Х			Х
CARPOPELTIS SP.										Х			X				
CERAMIACEAE											Х						
CERAMIUM CALIFORNICUM					Х												
CERAMIUM CAUDATUM					X												
CERAMIUM CLARIONENSE					X												
CERAMIUM CODICOLA			Х		,,		Х										
CERAMIUM SINICOLA					Х												
CHONDRIA CALIFORNICA									Х				Х				
CHONDRIA DECIPIENS					Х												
CHONDRIA SP.								Х									
COELOSEIRA COMPRESSA			X									X	X				
CORALLINA OFFICINALIS				Х	Х		Х	Х	Х	X	X	X	X	Х	Х	Х	Х
CORALLINA VANCOUVERIENSIS				,,	X			,,	,,		1	X	X	,,	X	X	X
CORALLINES - ENCRUSTING		Х	Х	Х	X	Х	Х	Х	Х	X	X	X	X	Х	X	X	X
CORALLINES - ERECT		X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
CRYPTONEMIA OBOVATA											X						
CRYPTONEMIA SP.					Х												
CRYPTOPLEURA CORALLINARA							Х										
CRYPTOPLEURA CRISPA				Х	Х		,,										
CRYPTOPLEURA SP.		Х												Х			
CRYPTOPLEURA VIOLACEA					Х									,,			
CUMAGLOIA ANDERSONII																Х	
DASYA SINICOLA												Х					
ERYTHROCYSTIS SACCATA		Х						X	X								Х
ERYTHROTRICHIA CARNEA					Х												
ERYTHROTRICHIA TETRASERIATA					X												
FARLOWIA CONFERTA		Х			X								Х				
FARLOWIA PINK/WHITE ROSETTE											X						
FAUCHEA LACINIATA		Х	Х	Х	Х	Х	Х	Х			X	X	Х				
FAUCHEA SP.					X	X	<u> </u>				 ^	X			Х		
FILAMENTOUS RED ALGAE							Х		Х		1	<u> </u>			<u> </u>		
FRYEELLA GARDNERI		Х	X	X	Х	Х	X		_ ^`		X	X	X				
GASTROCLONIUM COULTERI		X			X						 ^						

SPECIES SELDIM COULTERI GELDIM FURDIFFONS X X SELDIM FURDIFFONS X X SELDIM FURDIFFONS X X X SELDIM FURDIFFONS X SELDIM FURDIFFONS X X X X X X X X X X X X X		LOCATION: SMIWI	SMIHF	SRIJLN	SRIJLS	SRIRR	SCIGI	SCIFH	SCIPB	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
GELIDIM COULTER GELIDIM PURPURASCENS X GELIDIM PURPURASCENS X GELIDIM PURPURASCENS X GELIDIM PURPURASCENS X X X X X X X X X X X X X		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SELDIUM NUDIFRONS	SPECIES																
SELDIUM NUDIFRONS	GELIDIUM COULTERI												Х				
GELDIUM PURPURASCENS X X X X X X X X X X X X X								Х	X	Х	X	Х			?	Х	X
GELDIUM ROBUSTUM X		X											Х				
GELIDIM/PTEROCLADIA GIGARTINA CANALICULATA X X X X X X X X X X X X X X X X X X X	GELIDIUM ROBUSTUM			X			Х	Х	X	X	X	Х	Х	Х		Х	
GIGARTINA CONTAINIFERA							Х								Х	Х	
GIGARTINA PARVEYANA																	
GIGARTINA PARVEYANA	GIGARTINA CORYMBIFERA	X	X	X	Х	Х					X	Х	Х	X			
GIGARTINA HARVEYANA									X								-
GIGARTINA SP.									1								
GIGARTINA SPINOSA				X		X		X		X	X		Х	X	Х	X	-
GONIOTRICHUPIS SUBLITTORALIS						<u> </u>			X			X		1			X
GONOTRICHUN ALSIDII GRACILARIA SJOESTEDTII X X X X X X X X X X X X X X X X X X			- ^	_ ^					+ ~	- ^-		_ ^					
SRACILARIA SJOESTEDTI																	
CRACILARIA SP.													X				
STATELOUPIA FILICINA		X		X													
SRIFFITHSIA PACIFICA																	
SYMNOGONGRUS PLATYPHYLLUS			X		X	X	X				X						
SYMNOGONGRUS PLATYPHYLLUS													X				
SYMNOGONGRUS SP.					X		X										
HALIPTYLON GRACILE									X					X			
HALYMENIA CALIFORNICA				X													X
HALYMENIA/SCHIZYMENIA				_ ^	X												
HALYMENIA SP.		X		X		X	X	X	X		X	X	X	X			
HELMINTHOCLADIA AUSTRALIS																	
HERPOSIPHONIA PLUMULA											_ ^					Y	
HERPOSIPHONIA VERTICILLATA					X												
HETEROSIPHONIA JAPONICA																	
JANIA SP.											Y						
LAURENCIA PACIFICA X								Y	×						Y	Y	Y
LAURENCIA SINICOLA X			Y	Y	Y	X	X			X			X		ļ		
LAURENCIA SP. X <																	
LAURENCIA SPECTABILIS X			Y	Y			Y	Y	Y				Y		Y	Y	Y
LEPTOCLADIA BINGHAMIAE X																	
LITHOTHRIX ASPERGILLUM X				Y							Y		Y				
MARIPELTA ROTATA X X X X X X X MELOBESIA MEDIOCRIS X										V				V			
MELOBESIA MEDIOCRIS X		^		Y		-		Y	+	 ^		 			-		^
MICROCLADIA COULTERI X				 ^					+		Y						
NEMALION HELMINTHOIDES NIENBURGIA ANDERSONIANA X X X X X X X X X X X X X X X X X X X			Y	Y	Y	Y			+			-		-		¥	
NIENBURGIA ANDERSONIANA X X X X X X X X X X X X X X X X X X		^	^		^				INIT		^	-		-	-	^	
				- v		V			IINI		- V		V				
	OPUNTIELLA CALIFORNICA	X	X	X	X	X	^		+		^	-	^	-			

LOCATION	SMIWI	SMIHR	SRIJLN	SRIJLS	SRIRR	SCIGI	SCIFH	SCIPB	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																
OZOPHORA CLEVELANDII																
OZOPHORA LATIFOLIA	?									X						
PHYCODRYS SP.	•		Х							1						
PHYCODRYS SETCHELLII	X		?	Х	X						Х					
PIKEA SP.	,,		•	,,	X						,,,					
PIKEA ROBUSTA	X		Х	Х	X											
PLEONOSPORIUM SQUARRULOSUM	,,			X												
PLEONOSPORIUM VANCOUVERIANUM				X												
PLOCAMIUM CARTILAGINEUM							X	X	X	X	Х	Х	Х	Х	Х	Х
PLOCAMIUM SP.								X	~	~	_ ^			X	X	
POLYNEURA LATISSIMA	X			Х	X										,	
POLYSIPHONIA SP.	X	X	Х	X	X	Х	Х	Х	X		Х	Х	Х	Х	Х	
PORPHYRA PERFORATA	X		D						<u> </u>						,	
PORPHYRA SP.				Х												
PRIONITIS ANGUSTA												X				
PRIONITIS CORNEA				Х								X				
PRIONITIS LYALLII				X												
PRIONITIS SP.	X	X		,,	Х		Х	X	X	X		Х	Х		Х	Х
PRIOPELTIS (?CARPOPELTIS DI.)	,,				X		X	X			X	X	X		,,	X
PSEUDOLITHOPHYLLUM MURICATUM			Х										,,			
PSEUDOGLOIOPHLOEA CONFUSA			?	Х												
PSEUDOSCINAIA SNYDERIAE		Х	-													
PTEROCHONDRIA WOODII	Х										Х					
PTEROCLADIA CAPILLACEA						Х	Х	Х		X		Х	Х			Х
PTEROSIPHONIA BAILEYI				Х												
PTEROSIPHONIA DENDROIDEA					Х	Х				Х	Х					
PTILOTHAMNIOPSIS LEJOLISEA					Х					Х	Х	Х				
PUGETIA FRAGILISSIMA						Х					X					
RHODOGLOSSUM AFFINE												Х				
RHODOPTILUM PLUMOSUM	Х			Х												
RHODYMENIA ARBORESCENS						Х				Х		Х				
RHODYMENIA CALIFORNICA	Х	Х	Х	Х	Х	Х	Х	Х		X	Х	Х	Х	Х	Х	Х
RHODYMENIA CALLOPHYLLIDOIDES				Х	Х	Х				Х	Х					
RHODYMENIA PACIFICA	Х		Х	X		X	Х	X		X	X	Х	Х			Х
RHODYMENIA SP.	X	Х	X	X	Х	X	X	X	Х	X	X	X	X		Х	
SARCODIOTHECA GAUDICHAUDII	X	1														
SCHIZYMENIA/HALIMENIA			Х	Х	Х							Х				
SCHIZYMENIA PACIFICA	Х	Х	X	X	X								Х			
SCIADOPHYCUS STELLATUS						Х	Х	Х		X	Х	Х	X			
SCINAIA ARTICULATA			Х	Х	Х										Х	
SCINAIA JOHNSTONIAE	Х	Х	X	X						X			Х			

LOCA	TION: SMIWI	SMIHR	SRIJLN	SRIJLS	SRIRR	SCIGI	SCIFF	SCIPE	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																
SCINAIA SP.	X	Х	Х	Х	X		Х	X	X			Х			Х	Х
SMITHORA NAIADUM	X	,,	,,	,,			,,			X		,,				
SORELLA DELICATULA					X					X	Х	Х				
TIFFANIELLA SNYDERIAE				Х												
Misc. Plants																
PHYLLOSPADIX TORREYI									X	X						
PHYLLOSPADIX SPP.	X	X	X	Х	D			X	X	^	Х	Х			Х	Х
ZOSTERA MARINA			X	X				X	X			X				
CYANOBACTERIAL FILM						X			<u> </u>							
CYANOBACTERIAL FILAMENTS			Х		X											
DIATOM FILM					- A	Х	X	X	X	X	X	X				
SCHIZYMENIA COLONIAL DIATOMS			X	X	X	X	X	X	X	X		X	Х		Х	
Protozoa					1											
DENDRITIS JELLY				X												
HYPSYPOPS TURF NEST			X			Х	X	X	X			Х	Х	X	Х	Х
HOMOTREMA RUBRUM								X	 ^		X	X		X	X	X
GROMIA OVIFORMIS	X															
Porifera	X								+							
CLATHRINA BLANCA						Х	X	X	X			X	Х	?	Х	X
CLATHRINA BLANCA CLATHRINA CORIACEA						^	^					^	^	f	^	X
CLATHRINA SP.													Х			
LEUCANDRA HEALTHI	X	X	X			Х	X	X	X	X	Х		^			
LEUCANDRA/SCYPHA	X	X	X	X	-	X	X	X	X	X	^	X	Х	Х	X	Х
LEUCETTA LOSANGELENSIS	X	X	X	X	X	X	X	X	X		X	X	X	X	X	X
LEUCILLA NUTTINGI	X			X	X		X		X	Х	X	X	X			X
LEUCOSOLENIA ELEANOR	X	X		X		X	X	X	X		_ ^	X	X		X	X
SCYPHA CILIATA (SPICULE CROWN)		X	X	X	X	X	X	X	X	X	Х	X	_ ^		^	X
ACARNUS ERITHACUS	X	X	X	X	X	X		<u> </u>	 ^	X	X	X	Х	X	X	
ACARNUS SP.					 ^			X	X							
AXINELLA MEXICANA		?														
CLIONA CELATA	X	X	X	Х	X	Х	X	X	X		X	Х	X			
HALICLONA PERMOLLIS						X	X	X		X	X	X	X	Х	Х	Х
HALICLONA ORANGE OR GRN/WHT FORM	X							X		X						
HEMECTYON HYALE		X						 ``	1	<u> </u>						
HYMENAMPHIASTRA CYANOCRYPTA	X	X	X	Х	X	X	X	X	X	X	X	X	Х	Х	X	Х
LISSODENDORYX TOPSENTI		X	X		 ^	?	X	X	 ^	X	X	?	X	X	1	X
PENARES CORTIUS			X	X		X		X			X	X	X	,	X	
POLYMASTIA PACHYMASTIA	X		X	X	X	1		1			1	1	1		X	
RED SPONGES - ENCRUSTING	X	X	X	X	X	Х	X	X	X	X	X	X	Х	Х	X	Х
SPHECIOSPONGIA CONFOEDERATA		1	X	X	X	X	1	1	<u> </u>	<u> </u>	X	X	X	1	1	
STELETTA ESTRELLA					1		X					1	,,			

	LOCATION: SN	/IWL	SMIHR	SRIJLN	SRIJLS	SRIRR	SCIGI	SCIFH	SCIPB	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																	
TETHYA AURANTIA		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
TETILLA ARB				X	X	X	X					X					
TOXODOCIA ZUMI		Х															
VERONGIA AUREA		-					Х	Х				Х	Х	X	Х	Х	Х
XESTOSPONGIA TRINDINAEA		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	
XESTOSPONGIA VANILLA				Х	Х		Х								Х		Х
Cnidaria																	
ABIETINARIA SP.			Х	Х	X	Х	Х	X	Х			Х					
AGLAOPHENIA SP.		X	X	X	X	X	X	X	X	X	X	X	Х	X	Х	Х	X
ALLOPORA CALIFORNICA							X										
ANTENELLA AVALONIA							X										
APOLEMIA SIPHONOPHORE		Х	Х	Х	Х	Х	X	Х	Х	X	X	Х	Х	Х		Х	Х
CAMPANULARIA SP.		X															
EUDENDRIUM CALIFORNICUM			Х	Х			X	Х	Х	X	X	Х	X	Х		Х	Х
GARVEIA ANNULATA		Х					X										
HYDRACTINIA SP.		X	Х	Х	Х	Х	X	Х	Х	X	X	Х	Х	X	Х	Х	Х
LYTOCARPUS NUTTINGI					X				X	_ ^		X				X	X
OBELIA SP.		Х	Х	Х	X			Х	X	X	X	X	Х	X	Х	X	X
PLUMULARIA SP.		X	X	X	X	Х	Х	X	X	X	X	X	X	X	X	X	X
SERTULARELLA SP.		X		X	X		X	X	X		X	X		X		X	X
SERTULARIA SP.		X		X	,,		X	X	,,		,,	X		X		X	X
TUBULARIA SP.		X	Х	X			X	X					Х		Х	X	X
PELAGIA COLORATA		X	,,	,,			,,	D					,,		,,	X	
STAUROMEDUSAE		X		Х		Х										7.	
THAUMATOSCYPHUS ATLANTICUS		X															
PACHYCERIANTHUS FIMBRIATUS		X	Х	Х	Х	Х	Х	Х	Х	X	X	Х	Х	Х	Х	Х	Х
CLAVULARIA SP.		Χ	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
EUGORGIA RUBENS		-									1	X					
LOPHOGORGIA CHILENSIS		Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
MURICEA CALIFORNICA				Х	Х				Х		Х	Х	Х		Х	Х	Х
MURICEA FRUTICOSA				Х			Х		Х	Х	Х	Х			Х	Х	
RENILLA KOLLIKERI				Х	Х								Х				
STYLATULA ELONGATA						Х			Х				Х			Х	
EPIZOANTHUS SP.					Х	Х											Х
CORYNACTIS CALIFORNICA		Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
ANTHOPLEURA ARTEMISIA		Χ	Х	Х	Х	Х	Х	Х			Х	Х			Х	Х	Х
ANTHOPLEURA ELEGANTISSIMA		Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
ANTHOPLEURA XANTHOGRAMMICA			Х		Х												
CACTOSOMA ARENARIA				Х		Х	Х	Х			Х		Х		Х		
DIADUMENE SP.								Х									
EPIACTIS PROLIFERA		Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

	LOCATION: S	MIWL	SMIHR	SRIJLN	SRIJLS	SRIRR	SCIGI	SCIFH	SCIPB	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																	
HALCAMPA DECEMTENTACULATA		Χ	X	X	Х	X	Х	Х	X	X			Х				
HARENACTIS ATTENUATA			,,	X	,,		,,	7.					X		Х	Х	
METRIDIUM EXILIS	-		Х	X	Х	X	Х	Х			X		,,		,,	, ,	
METRIDIUM SENILE			X	X	X		, ,	, ,			,,						
PHYLACTIS SP.	-		,,	, ,	, ,								Х			Х	
SAGARTIA CATALINENSIS										X	X	X	X	X	X	,,	Х
TEALIA COLUMBIANA		Х		Х		X											
TEALIA CORIACEA				X	Х	X	Х		X	X	X	X	Х		Х		
TEALIA N.SP.		Х	Х	X	X	X	X	Х	X	X	X	X	X	Х	X	Х	Х
TEALIA CRASSICORNIS			, ,	X	X	X	, ,	, ,	1	,	,,	,,	X	,,	,,	,,	,,
TEALIA LOFOTENSIS		Х	X	X	X	X	Х	Х			X	X		Х	Х		
TEALIA PISCIVORA			, ,	,,	, ,	X	, ,	, ,			,,	,,		, ,	,,		
TEALIA SP.				X	Х			Х									
ZAOLUTUS ACTIUS		Х	X	X	X	X	Х	X	X	X	X	X	Х		Х	Х	Х
ASTRANGIA LAJOLLENSIS		X	X	X	X	X	X	X	X	X	X	X	X	Х	X	X	X
BALANOPHYLLIA ELEGANS		X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
COENOCYATHUS BOWERSI				_ ^			X	X	X		~			X		X	
PARACYATHUS STEARNSI	-	Х	X	X	Х	X	X	X	X	X	X	X	Х	X	X	X	Х
Ctoenophores			,,	,,	,,		,,	7.				,,	,,	,,	,	,,	,,
BEROE SP.				X											X		Х
LEUCOTHEA SP.			X												_ ^		
VENUS' GIRDLE																Х	
PLATYHELMINTHES (FLATWORMS)			X								X	X				X	
ENCHIRIDIUM PUNCTATUM										X						^	
LEPTOPLANA/NOTOPLANA																Х	
PROSTHECERAEUS BELLOSTRIATUS		X	X		X	X									X		
PSUEDOCEROS LUTEUS					X												
PSEUDOCEROS MONTEREYENSIS									X								
PSEUDOCEROS PERVIOLACEUS			X	X	Х	X			X	X		Х	Х		Х		Х
THYSANOZOON CALIFORNICUM													X				
NEMERTEA (RIBBONS WORMS)			X	X	X											Х	
BASEODISCUS PUNNETTI			X														
CEREBRATULUS SP.		Х	X			X											
PARANEMERTES PEREGRINA						X											
TUBULANUS FRENATUS						?											
TUBULANUS SEXLINEATUS		Х	X		X	X X	Х										
SIPUNCULA (PEANUT WORMS)	+	X		X	X	X	X			X	X		Х				
PHASCOLOSOMA SP.	-	X								X					Х		Х
THEMISTE PYROIDES		X	X	X	?	X	Х			 ^	X				X		X
Annelida (polychaetes)	-				•												
			- V	- V		1			- V	<u> </u>			V			V	
ANAITIDES SP.		Χ	X	X					X				X		X	X	

	LOCATION: SM	IWL	SMIHR	SRIJLN	SRIJLS	SRIRR	SCIGI	SCIFH	SCIPB	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																	
ARCTONOE PULCHRA		X	Х				Х	Х	Х	Х	Х		Х	Х	Х	Х	Х
BISPIRA TURNERI									X								
CHAETOPTERUS VARIOPEDATUS		X	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Χ
CIRRIFORMIA LUXURIOSA			,,	,,		,,	7.	X	X	,,			,,		,,	,,	- / .
DIOPATRA ORNATA		X	Х	Х	Х	Х	Х	X	X	Х	Х	Х	Х	X	Х	Х	Х
DODECACERIA FEWKESI		X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
EUDISTYLIA POLYMORPHA		X	X	X	X	X	X	X	X	X	X	X	X	X	,,	,,	
EUPHROSINE SP.			X	X					X	^	X						
HARMOTHOE LUNULATA									X		_ ^						
FLABELLIGERA COMMENSALIS											X						
FLABELLIGERA ESSENBERGE			Х						X		_ ^						
MYXICOLA INFUNDIBULUM		X	X	Х	Х	Х	Х	Х	X	X	X	Х	Х		X		X
OPHIODROMUS PUGETTENSIS		<u>^</u>	X	X	X	X	X	X	X	X	X		X	X		Х	
PHRAGMATOPOMA CALIFORNICA		<u>х</u>	X	X	X	X			X	X	X	X	X	X	X	X	Х
PHYLLOCHAETOPTERUS PROLIFICA	-	^					X		X	<u> </u>						^	
PHYLLODOCID																	
PISTA ELONGATA		X	X	X	X	X	X	Х	X	X	X	Х	X	X	X	Х	
POLYDORIS ALLOPORIS		^	^	^	^	^	X	^	^			^	^	^	^	^	
POLYNOID		X	X	X	X		X	Х	X	X			X	X		Х	
BISPIRA CRASSICORNIS		^	^	?	^		^	^	^	X			?	_ ^		^	
SABELLARIA CEMENTUM				X						^	X		?				
SABELLID		X		^	X	X		Х	X	X	_ ^		Y X				
SABELLID WITH EYESTALK		Λ	X	X	X	X		X	_ X	X	X		?		X		X
		· ·				V	V		V	V		V		V		V	
SALMACINA TRIBRANCHIATA		X	X	X	X	Х	X	Х	Х	Х	Х	Х	X	Х	Х	Х	X
SERPULA VERMICULARIS		X	X	X	X					V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		X				Х
SERPULID		X	X		X	X	X	X	X	X	X	Х	X				
SPIOCHAETOPTERUS COSTARUM		X	X	X	X	X	X	X	X	X	X		X	X	X	X	X
SPIROBRANCHUS SPINOSUS		X	X	X	X	X	X	X	Х	X	X	X	X	X	X	X	X
SPIRORBID		X	X	X	X	X	X	X	X	X	X	X	X	Х	X	X	X
TEREBELLID		X	Х	Х	X	Х	Х	X	Х	Х	X	Х	Х		X	Х	Х
THELEPUS CRISPUS											Х				Х		
Arthropoda																	
ARMATOBALANUS NEFRENS							Х										
BALANUS AQUILA			Х														
BALANUS AQUILA/NUBILUS		Χ	Х	Х	Х	X		Х	Х	Х			Х				
BALANUS GLANDULA									INT								
BALANUS NUBILUS		Χ	Х	Х		Х	Х	Х	Х	Х							
BALANUS TRIGONUS				Х		Х	Х		Х	Х			Х		Х	Х	Х
BALANUS SP.			Х	Х	Х	Х		Х	Х		Х	Х			Х	Х	
CONOPEA GALEATA				Х	Х		Х	Х	Х		Х	Х			Х		
MEGABALANUS CALIFORNICUS		X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		

	LOCATION: SMIWL	SMIHF	SRIJLN	SRIJLS	SRIRR	SCIGI	SCIFH	SCIPB	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																
MEMBRANOBALANUS ORCUTTI			Х													
POLLICIPES POLYMERUS								Х								
TETRACLITA ELEGANS	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
TETRACLITA RUBESCENS	X		Х				Х	Х			Х			Х		Х
MYSIDS	Х	Х	Х	Х	Х		Х	Х	Х			Х		Х	Х	
ACANTHOMYSIS SCULPTA	X															
ISOPODA (ORDER)								Х								
CIROLANA HARFORDI	X															
IDOTEA SP.	X	Х	Х	Х	Х	Х	Х			Х						
AMPHIPOD TUBE MASSES	X	Х	Х	Х	Х	Х	Х			Х	?	Х	Х	Х	Х	Х
AMPITHOE HUMERALIS									Х							
BROWN AND YELLOW PLEUSTID	Х															
CAPRELLID (SUBORDER)	X	Х	X	Х		Х	Х	Х	Х				Х	Х	Х	Х
GAMMARID (SUBORDER)	X			Х		Х	Х	Х	Х	Х		Х	Х	Х		
ALPHEUS SP.	X		X			X	X	X				X				
BETAEUS HARFORDI		Х	Х					Х								
BETAEUS LONGIDACTYLUS			1									Х	Х		Х	
BETAEUS MACGINITIEAE	X	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х
BETAEUS SP.														Х	Х	
HEPTACARPUS PICTUS	X	Х														
HEPTACARPUS SP.		Х										Х				
HIPPOLYTE CALIFORNIENSIS								Х								
HIPPOLYTE CLARKI	Х															
LYSMATA CALIFORNICA			Х	Х		Х	Х	Х	X		Х	Х	Х	Х	Х	
PANDALUS SP.	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х				-
SPIRONTOCARIS PRIONATA		Х	Х		Х											
PANULIRUS INTERRUPTUS					Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х
BLEPHARIPODA OCCIDENTALIS												Х				
CRYPTOLITHODES SITCHENSIS	X															
FABIA SP.	X															
HAPALOGASTER CAVICAUDA	X	Х	Х	Х	Х							Х		Х	Х	
ISOCHELES PILOSUS				Х												
PACHYCHELES SP.	X	Х														
PAGURISTES SP.	X	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
PAGURUS SP.	X	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
PETROLISTHES SP.		Х	Х		Х	Х		Х								
PLEURONCODES PLANIPES							Х	Х								
PYLOPAGURUS SP.	X								Х	Х			Х			-
CANCER ANTENNARIUS	X	Х					Х								Х	-
CANCER PRODUCTUS	X															
CANCER SP.			S												J/X	

	LOCATION:	SMIWL	SMIHR	SRIJLN	SRIJLS	SRIRR	SCIGI	SCIFH	SCIPB	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																	
CYCLOXANTHOPS NOVEMDENTATUS	3	Х					S						Х			Х	
EPIALTOIDES HILTONI			Х										,,			,,	
ERILEPTUS SPINOSUS					Х												
HERBSTIA PARVIFRONS		Х	Х	Х	X	X	Х	X	X	X	X	X	Х	Х	X	Х	Х
LOPHOPANOPEUS SP.				X	,,	, ,	,,					, ,	,,	,,		,,	X
LOXORHYNCHUS CRISPATUS		Х	X	X		X					X	X				Х	
LOXORHYNCHUS GRANDIS		X							Х	Х	X			?		X	
MIMULUS FOLIATUS			Х	Х					7.	,						,,	
OREGONIA GRACILIS								Х									
PARAXANTHIAS TAYLORI		Х	Х	Х	Х		Х	X	Х	Х	Х	Х	Х	Х	Х	Х	X
PELIA TUMIDA			X	X	X				X	X	X						
PINNOTHERID SP.		Х	X	,,	,,				,	,							
PODOCHELA HEMPHILLI		?		?													
PORTUNUS XANTUSII		•							X				М				
PUGETTIA DALLI					Х								171				
PUGETTIA PRODUCTA		Х	Х	Х	X	X			Х							Х	
PUGETTIA RICHII			X														
PUGETTIA SP.				Х	Х	X											Х
RANDALLIA ORNATA				_ ^_					X							Х	
SCYRA ACUTIFRONS		Х	Х			X	S			X			Х			X	
TALIEPUS NUTTALLI		X				X			X	X			X			X	
Mollusca						, ,			,,				,,			, ,	
ACMAEA MITRA		Х	Х	X	Х	Х											
ALIA CARINATA		X	^	^	X	X				X	Х						
AMPHISSA VERSICOLOR		X	X	X	X	X	Х	Х	Х		X	Х				Х	
ASTRAEA GIBBEROSA		X	X	X	^	X	X	^	_ ^		^	^				^	
ASTRAEA GIBBEROSA ASTRAEA UNDOSA		0	X	X	Х	X	X	Х	Х	Х	Х	Х	Х	Х	X	Χ	X
BALCIS RUTILA		X	^	^	^	^	^	X	_ ^		^	^	^	^	^	^	^
BURSA CALIFORNICA		X		X	Х			X									
CALLIOSTOMA ANNULATUM		X	X	X	X	X	Х	^	X								
CALLIOSTOMA CANALICULATUM		X	X	^	^	^	^		^								
CALLIOSTOMA CANALICOLATOM CALLIOSTOMA GEMMULATUM			^	X													
CALLIOSTOMA GENINOLATONI CALLIOSTOMA LIGATUM		Х	Х	^	X											Χ	
CALLIOSTOMA EIGATOM CALLIOSTOMA SUPRAGRANOSUM		X	X	X	X	X	X	X	X	X			Х			^	
CALLIOSTOMA SUPRAGRANOSUM CALLIOSTOMA GLORIOSUM			^	^	X	^	^	^	X				^				
CALLIOSTOMA GLORIOSUM CALLIOSTOMA SP.				X	_ ^		Х	X	X	X		Х			X		
CANCELLARIA COOPERI		Х	X	_ ^			٨	_ ^	\ \ \	^	-	Α			, X		
CERATOSTOMA FOLIATUM		X	X		X		Х			X		Х					
CERATOSTOMA FOLIATUM CERATOSTOMA NUTTALLI		^		X	X	Х	X	X	X	X	X	X	Х	X	X	X	X
COLLISELLA CONUS				^	^		^	^	_ ^	X	_ ^	^	^	^	^	^	^
COLLISELLA CONUS COLLISELLA OCHRACEA			X	X				-		^	-						X
COLLISELLA OCHRACEA			X	ΙĀ											1		Λ

	LOCATION: S	MIWL	SMIHR	SRIJLN	SRIJLS	SRIRR	SCIGI	SCIFH	SCIPB	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																	
COLLISELLA SP.	-															Х	
CONUS CALIFORNICUS		Х	X	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	X	Х
CRASSISPIRA SEMIINFLATA	-		,,	X	,,	,,	,,	, ,	, ,		1	,,,	,,	, ,	,,	,,	
CREPIDULA ADUNCA		Х		,,													
CREPIDULA DORSATA (=CREPIPAT.)		X	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х
CREPIDULA NORRISARUM									_ ^_	<u> </u>	X	_ ^			,		
CREPIDULA SP.		Х		Х	Х	Х					X		Х				
CYPRAEA SPADICEA		X	X	X	X	X	Х	Х	Х	X	X	X	X	Х	X	Х	Х
DENDROPOMA SP.		X							X	X							
DIODORA ASPERA			X	Х			Х		X	X							
DIODORA SP.			X	X	Х	Х			X								
EPITONIUM SP.				X	X		S			Х						S	
ERATO VITELLINA							X				X				Х	-	
FISSURELLA VOLCANO		Х	Х		Х		X									Х	
FUSINUS KOBELTI			X	Х	X	X					X					^	
F.K. GOBLET EGG CAPSULES	-		X	X	X	X											
FUSINUS LUTEOPICTUS				X		X	Х	Х	X	X			X	Х	Х	Х	Х
FISINUS SP.		Х															
HALIOTIS CORRUGATA			X	X	X		J/X	Х	X	X	X	X	Х	X	Х	Х	Х
HALIOTIS CRACHERODII		S	X		X		3/7	X	X				X			X	X
HALIOTIS FULGENS										S		S	X			X	X
HALIOTIS RUFESCENS		Х	Х	Х	Х	Х	Х	Х	X	X	X	X	X				
HALIOTIS SORENSENI							X					X					
HIPPONIX SP.										S	X				S		S
HOMALOPOMA LURIDUM		Х	X	Х	Х	Х	X	Х	X	X	X	Х	X	X	3		- 3
KELLETIA KELLETII	-	X	X	X	X	X	X	X	X	X	X	X	X	X	Х	Х	
LACUNA SP.				X	X			X									
LATIAXIS OLDROYDI	-								Х					Х			
MAXWELLIA GEMMA		Х	Х	Х	Х		Х	Х	X	Х		Х	Х	X	Х	Х	Х
MAXWELLIA SENINA MAXWELLIA SANTAROSANA		X	X	X	X	Х	X	X	X	X	X	X			X	^	X
MEGASURCULA STEARNSIANA		X					^	^				_ ^			_ ^		
MEGATHURA CRENULATA		X	X	X	X	X	Х	X	X	X	X	Х	X	X	X	Х	X
MEGATTIONA CICENOLATA MEGATEBENNUS BIMACULATUS		X					^	^				_ ^			_ ^	^	
MITRA IDAE		X	X	X	X	X	Х	X	X	X	X	Х	X	X	X	Х	X
NASSARIUS MENDICUS		^	^	^	^	^	^	^	^	X		^	^	^	^	^	
NASSARIUS SP.										X							
NORRISIA NORRISI		Х	Х	X	X	X	Х	X	X	X	X	Х	X	X	X	Х	Х
NOTOACMAEA INSESSA		^		X	^	^	^	^		<u> </u>	 ^		^			^	^
OCENEBRA LURIDUM			-	_ ^						Х		-					
OCENEBRA SP.		Х	X								X	-					
OLIVELLA BIPLICATA		X	X	X							 ^	-	X				
OLIVELLA BIPLICATA		λ	λ	X									Å				

ı	OCATION: SMIWI	SMIHR	SRIJLN	SRIJLS	SRIRR	SCIGI	SCIFH	SCIPB	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																
OLIVELLA SP.	X			Х								S				
PEDICULARIA CALIFORNICA				,,		Х										
PETALOCONCHUS MONTEREYENSIS	X					, ,	Х	X	X							
POLINICES SP.	, , , , , , , , , , , , , , , , , , ,	X	Х					E	_ ^						Х	
PSEUDOMELATOMA TOROSA			,,					_							,,	
PTEROPURPURA FESTIVA										X						
PTEROPURPURA SP.	X	Х	Х													
SEILA MONTEREYENSIS												X				
SERPULORBIS SQUAMIGERUS	X	X	Х	Х	X	Х	X	X	X	X	Х	X	Х	Х	Х	Х
SIMNIA VIDLERI				X	_ ^	X	X	X	^	X	X					
TEGULA AUREOTINCTA			Х			X		X	X	X		Х		Х	Х	Х
TEGULA BRUNNEA	S							<u> </u>	_ ^	 						
TEGULA EISENI								X				Х	Х	Х	Х	Х
TEGULA FUNEBRALIS								X							X	
TEGULA PULLIGO	X	X						<u> </u>								
TEGULA REGINA	Α		Х			Х	Х	X		X			Х	Х	Х	Х
TRIVIA CALIFORNIANA	X	X		Х		X	X		X	X	X			X	X	
TRIVIA SOLANDRI		,		,,		X	, ,	X		X	,,	Х		,,	,,	
TRIVIA SP.			Х			X				 		X		X	Х	Х
VOLVARINA TAENIOLATA	X	Х	X	Х	X	, ,	X	X	X	X		X		,,	X	
APLYSIA CALIFORNICA	X	X	X	X	X	Х	X	X	X	X	Х	X	Х	Х	X	Х
APLYSIA VACCARIA		X	X	X	X	, ,	X	X	X	X		X	, ,	X	, ,	
APLYSIOPSIS SMITHI		7.	X	,,			7.		,,			,,		,,		
BERTHELLA CALIFORNICA	X	Х				Х		Х		Х						
BERTHELLINA ENGELI		7.				,,		X		X	Х	Х	Х		Х	Х
BULLA GOULDIANA		Х	Х			Х		X				S			,,	X
BULLA/HAMINOEA		7.	,,			,,			E	Е						
NAVANAX INERMIS	X	Х	Х	Х	X	Х	Х	XE	X	XE	X	Х	Х	Х	XE	Х
ELYSIA HEDGEPETHII		X														
HAMINOEA VIRESCENS																
HAMINOEA VIRESCENS EGGS			Х	Х										Х		
PLEUROBRANCHUS SP.														X		
RICTAXIS PUNCTOCAELATUS	X		Х	Х						Х						
RICTAXIS "DNA" EGG SPIRALS										X						
TYLODINA FUNGINA												Х	Х			Х
ACANTHODORIS LUTEA					Х											
ACANTHODORIS RHODOCERAS												Х				
AEGIRES ALBOPUNCTATUS	X		Х	Х			Х	X								
AEOLIDIA PAPILLOSA		Х										Х				
ALDISA SANGUINEA														Х		
ANISODORIS NOBILIS	X	Х	Х	Х	Х	Х	Х		Х			Х		X		

LOCATIO	N: SMIWI	SMIHR	SRIJLN	SRIJLS	SRIRR	SCIGI	SCIFH	SCIPB	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																
ANTIOPELLA BARBARENSIS			Х				Х									
ARCHIDORIS MONTEREYENSIS	X	X	X		X									Х		
ARCHIDORIS ODHNERI		X	X		X											
ARMINA CALIFORNICA																
ATAGEMA QUADRIMACULATA			Х		X											
CADLINA FLAVOMACULATA	X							X		X						
CADLINA LIMBAUGHI			Х			Х	Х			X				Х		
CADLINA LITEOMARGINATA	X		X	Х	X	X	X			X		Х				
CADLINA SP.	^		X	^		^						^				
CHROMODORIS MACFARLANDI		X	X	Х	X	Х	Х	Х				X	Х	X	X	
CHROMODORIS PORTERAE		^	^	^	^	^	^	X			Х	^	^	X	^	
CONUALEVIA ALBA		X									^			^		
CORAMBE PACIFICA							X									
CORYPHELLA TRILINEATA			X			Х	X	X								
CUTHONA LAGUNAE			^			^	_ ^	^								
			V						V					V		
DENDRODORIS N.SP. DENDRONOTUS ALBUS/DIVERSICOLOR		X	X	V				Х	Х					Х		
		Α	Α	X												
DENDRONOTUS FRONDOSUS			V				Х									
DENDRONOTUS IRIS			X	V		V				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
DIAULULA SANDIEGENSIS	X	Х	X	Х	X	Х	Х	X	Х	Х	Х	Х	X	Х		
DIRONA PICTA								X					X			
DORIOPSILLA ALBOPUNCTATA	X	X	Х	X	X	Х	Х	X	X	X	Х	X	Х	X	X D	Х
FIONA PINNATA																
CORYPHELLA IODINEA	X	X	X	X	X	X	X	X	X	X	Х	Х	X	X	X	X
HERMISSENDA CRASSICORNIS	X	X	X	Х	X	Х	Х		Х	Х			X	Х	Х	Х
HOPKINSIA ROSACEA			Х		Х		.,	.,					X	.,		
JORUNNA PARDUS				X			X	X			Х		Х	X		
LAILA COCKERELLI	X	Х	X	Х	X	Χ	X	Х	X			Х		Х	Х	
MELIBE LEONINA	X		Х		X		Х									
MEXICHROMIS PORTERAE						Х	Х	X	X		Х	Х	Х	Х	Х	Х
PELTODORIS N.SP.													Х			
PHIDIANA PUGNAX	X	X	Х	Х	Х	X				X	X	X		Х	X	X
POLYCERA ATRA		X	Х	Х			X	X		X						
POLYCERA TRICOLOR										X				Х	X	Х
PRECUTHONA DIVAE						Х	X	X	X							
ROSTANGA PULCHRA				Х				X							X	
SPURILLA OLIVAE																X
TRIOPHA CATALINAE	X	X	Х	X	X	X	X	X	X	X	Х	X				
TRIOPHA MACULATA		X	Х	Х	X											
TRITONIA FESTIVA			X				Х	Х				X		Х		
POLYPLACOPHORA (CLASS)			X							Х						

L	OCATION: SMIV	VLSMIH	RSRIJLN	SRIJLS	SRIRR	SCIGI	SCIFH	SCIPB	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																
CALLISTOCHITON CRASSICOSTATUS								X								
CALLISTOCHITON SP.	Х				X											
CRYPTOCHITON STELLERI	X	Х		Х											Х	
CYANOPLAX DENTIENS CRYPTICA													X			
LEPIDOZONA MERTENSII	?	?														
LEPIDOZONA PECTINULATA								X		X						
PLACIPHORELLA VELATA			Х													
STENOPLAX CONSPICUA	Х															Х
STENOPLAX SP.	X															
TONICELLA LINEATA	X	Х	X											Х		
ADULA FALCATA								S								
AMERICARDIA BIANGULATA							Х	X								
CHACEIA OVOIDEA	Х		X	X	X	Х		<u> </u>								
CHAMA ARCANA		X	X	X		X	Х	X			Х	Х	X		Х	Х
CHLAMYDOCONCHA ORCUTTI	X		X					X	X	X		X		X		
GARI CALIFORNICA		X	X			S	S	S	S	S						
HIATELLA ARTICA	X	X	X	X	X	X		X	X							
HINNITES GIGANTEUS	X	X	X	X	X	X	Х	X	X	X	Х	Х	Х	Х	Х	Х
IRUSELLA LAMELLIFERA	X					S		_ ^	^	S						
LEPTOPECTEN LATIAURATUS							Х									
LIMA HEMPHILLI	X	X	X	X	X	Х	X	X	X	X	S	X			Х	Х
LITHOPHAGA PLUMULA	X						S	_ ^								
MODIOLUS CAPAX								S								
MYTILIMERIA NUTTALLI	X							+ -								
MYTILUS CALIFORNIANUS		X					X	X				Х	X		S	
PANOPEA GENEROSA		X	X												0	
PARAPHOLUS CALIFORNICUS	X	X	X	X												
PECTEN DIEGENSIS										XS						
PENITELLA PENITA			?	X		X		X		X			Х			
PHOLAD (UNIDENTIFIED)	X	X	X	X	X		X	X			Х		X			
PODODESMUS CEPIO	X	X	X	X	X	X	X	X	X	X	X	Х	X	X	Х	Х
SEMELE DECISA	X							S							^	
SEMELE RUPICOLA		X						-							S	
THRACIA SP.															S	
TRACHYCARDIUM QUADRAGENARIUM			X		X			S		S					0	
TRESUS NUTTALLII			+ ^	1						- 3			 			
VENTRICOLARIA FORDII		X	X	S	X	Х	Х	X	S	S	 	X	 		X	
OCTOPUS BIMACULATUS/BIMACULOIDI	ES X	X	X	X	X	X	X	X	X	- 3	Х	X	X	X	X	X
OCTOPUS MICROPYRSUS	^	X	+ ^					 ^	<u> </u>	1	_ ^				^	
OCTOPUS RUBESCENS	X	X	X	1	X			+			-		-			
OCTOPUS SP.	X	X	X	X	X	Х	Х	X	X	X	-		-	X	XJUV	
00100000.	Χ	^	^	^			٨	^	_ ^					_ ^	VJUV	

LO	CATION: SMIWL	SMIHE	SRIJLN	SRIJLS	SRIRR	SCIGI	SCIFH	SCIPB	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																
Ectoprocta (Bryozoans)																
AETEA SP. (ON HERBSTIA)	X	Х	X		X	Х	X	X	X	Х	Х	Х	Х	X	Х	Х
ANTROPORA TINCTA				X		X	X	X		X		Α	Λ			
BUGULA NERITINA	X	Х	X	X	X	X	X	X	X	X	Х	Х	Х	Х	Х	Х
BUGULA SP.	X	X	X	X		X	X	X		X		Α	X	X	X	X
CELLEPORARIA BRUNNEA	X	X	X	X	X	X	X	X	X	X		Х	X			
COSTAZIA ROBERTSONIAE	X	X	X	X	X	X	X	X	X	X	Х	X		Х		
CRISIA SP.	X		X	X		X	X	X	X							Х
CRISULIPORA SP.			_ ^	X	X											
DENDROBEANIA TYPE (FLEXIBLE)	?			,,												
DIAPEROECIA CALIFORNICA	X	Х	X	X	X	Х	X	X	X	X	Х	Х	Х	Х	Х	Х
EURYSTOMELLA BILABIATA		1		,		X		X			, ,		, ,		,	
EURYSTOMELLA SP.	X	Х		Х	X	,		?		Х	Х			X		Х
FENESTRULINA MALUSI						Х		Х								
HETEROPORA MAGNA		Х		?		X	Х	X							Х	
HIPPODIPLOSIA INSCULPTA	X	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х		Х	Х
LICHENOPORA NOVAE-ZELANDIAE			X	X		X			X		Х	X	X	Х	X	Х
MEMBRANIPORA MEMBRANACEA	X	Х	Х	Х	Х	Х		Х		Х	Х	Х	Х	Х	Х	Х
MEMBRANIPORA TUBERCULATA						Х	Х	Х				Х	Х			
MEMBRANIPORA SP.	X		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
PARASMITTINA/RHYNCHOZOON	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
PHIDOLOPORA LABIATA	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
PHIDOLOPORA PACIFICA			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
RHYNCHOZOON SP.				Х												
SCHIZOPORELLA SP.	X	Х	Х	Х		Х	Х	Х	Х	Х		Х	Х			
SCRUPOCELLARIA SP.	X	Х	Х				?	?			Х			Х		Х
THALAMOPORELLA CALIFORNICA	X		Х	Х		Х	Х	Х	Х	Х	Х	Х			Х	Χ
Entoprocta																
BARENTSIA SP.						Х	Х	Х	Х			Х	Х		Х	Х
Phoronida																
PHORONIS VANCOUVERENSIS		Х	X			Х	X	Х	X	Х		Х				
PHORONOPSIS CALIFORNICA		X	X			X	X	X	,	X		, ,				
Echinodermata								7.								
ASTROMETIS SERTULIFERA			X	Х				Х		Х				Х		Х
ASTROPECTEN ARMATUS	X	Х	<u> </u>	X			Х	X		_^		Х				
DERMASTERIAS IMBRICATA	, , , , , , , , , , , , , , , , , , ,		X	X	Х					Х						
HENRICIA LEVIUSCULA	X	Х	X	X	X	Х	X			X	Х			X		
HENRICIA N.SP.	X		X	X	X	X					X					
LEPTASTERIAS SP.		Х	X		X			X								
LINCKIA COLUMBIAE	Х		X	Х		Х	X	X	X		Х	Х	Х			Х

LOCATION:	SMIWL	SMIHR	SRIJLN	SRIJLS	SRIRR	SCIGI	SCIFH	SCIPB	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																
LUIDIA FOLIOLATA			Х	Х												
MEDIASTER AEQUALIS	X		X	X	Х	X				X	X			Х		
ORTHASTERIAS KOEHLERI	X	Х	X	X	X	X	Х	X		X	_ ^			,		
ASTERINA MINIATA	X	X	X	X	X	X	X	X	X	X	Х	X	X	Х	Х	Х
PISASTER BREVISPINUS	X	X			X				<u> </u>	X	_ ^			,		
PISASTER GIGANTEUS	X	X	Х	Х	X	Х	X	X	X	X	Х	X	Х	Х	Х	Х
PISASTER OCHRACEUS	X	X					X	X	<u> </u>	<u> </u>	_ ^			,		
PYCNOPODIA HELIANTHOIDES	X	X	Х	Х	Х	Х				X						
CENTROSTEPHANUS CORONATUS						X	Х	X	X	_ ^	Х	Х	Х	Х	Х	Х
DENDRASTER EXCENTRICUS	Х											S				
LOVENIA CORDIFORMIS		X		Х				X				X				
LYTECHINUS ANAMESUS	Х	X	Х	X	Х	Х	Х	X	X	X	Х			Х	Х	Х
LYTECHINUS ANAMESUS JUVENILES										X	X	Х				
STRONGYLOCENTROTUS FRANCISCANUS	Х	X	Х	Х	Х	Х	Х	X	X	X	X	X	X	Х	Х	Х
STRONGLYOCENTROTUS FRANCISCANUS JUVENI			X	X	X					X				X	X	X
STRONGYLOCENTROTUS PURPURATUS	X	X	X	X	X	Х	X	Х	X	X	X	Х	X	X	X	X
STRONG LOCENTRO TOS FORFORATOS			_ ^	^	^	^				X	^		^	X	X	X
OPHIUROIDEA (CLASS)	.5													_ ^	X	
AMPHIPHOLIS SQUAMATA											Х					
OPHIACTIS SIMPLEX							X	Х	X		^					
OPHIODERMA PANAMENSE	X		Х	X	X	Х	X	X	X	X	X	Х	Х	Х	Х	Х
OPHIOPLOCUS ESMARKI	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
OPHIOPSILA CALIFORNICA		^	X	X	X	X	^	X	X	X	X	X	^	X	X	
OPHIOPTERIS PAPILLOSA	Х	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Х
OPHIOTHRIX SPICULATA	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
CHIRIDOTA ALBATROSSI		^	X	^	^	^	^	^	_ ^	X	^	^	^	^	^	^
CUCUMARIA CURATA/PSEUDOCURATA	 		X													
CUCUMARIA LUBRICA			X	X												
CUCUMARIA MINIATA	 		X	X	X			Х				X	X		Х	
CUCUMARIA PIPERATA	Х	Х	X	X	X		Х	^	X	X		^	X		^	
CUCUMARIA SP.		X	X	X	X	Х	^		_ ^		Х		^			
CUCUMARIA SALMA	X	X	^	X	X	X	X	X	X	X	X	X	X	X	Х	X
					X				X		^	^	X	^	^	
EUPENTACTA QUINQUESEMITA LEPTOSYNAPTA ALBICANS	Х	Х	X	Х	X	X	X	X		Х			Α			
			X	V		^	^	1	V	1		V				
LISSOTHURIA NUTRIENS MOLPADIA	X		_ <u>^</u>	Х		-		Х	X		-	X				
PACHYTHYONE RUBRA					Х	V		X	X							
PARASTICHOPUS CALIFORNICUS		V	X	X	Λ	X	X	Α	_ ^	Х	-					
	X	X						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V	V		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V	
PARASTICHOPUS PARVIMENSIS	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х
Urochordata (tunicates)	<u> </u>															
APLIDIUM SOLIDUM			X													

LOCATIO	N: SMIWI	SMIHR	SRIJLN	SRIJLS	SRIRR	SCIGI	SCIFH	SCIPB	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																
APLIDIUM SP.			?		X		Х	X								Х
ARCHIDISTOMA DIAPHANES		X	X	?		?	X	?	X		Х					X
ARCHIDISTOMA MOLLE			,,				,	<u> </u>			,,,	?				
ARCHIDISTOMA PSAMMION	X	X	X	Х	X				X	X	Х	X				Х
ARCHIDISTOMA SP.				X	-	Х	Х	X				,,			Х	
ASCIDIA CERATODES	X	X		,,		,,	7.	,,			Х	Х		X	,,	
ASCIDIA VERMIFORMIS		X						X			X					
BOLTENIA VILLOSA	Х	X	Х	Х	X	Х		X		Х						
BOTRYLLUS/BOTRYLLOIDES				,		X	Х	X		X		Х		Х	Х	Х
BOTRYLLUS SP.						X	X	X		X		,,		X	X	X
BOTRYLLUS TUBERATUS							X	X		 						
CLAVELINA HUNTSMANI	Х	X	Х	Х	X	Х	X	X		Х		Х	Х	Х	Х	Х
CNEMIDOCARPA FINMARKIENSIS	X	X	X		X					 		X		X		
CYSTODYTES LOBATUS	X	X	X	Х	X	Х	Х	X	Х			X		,,		
DIDEMNID	X	X	X	X	X	X	X	X	X	X	Х	X	Х	X	Х	Х
DIDEMNUM CARNULENTUM	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
DISTAPLIA OCCIDENTALIS			,	,,	-	X	7.		,,			,,		,	- , ,	
EUHERDMANIA CLAVIFORMIS	Х	X	Х	Х		X	Х	X	Х	Х	Х	Х				Х
HALOCYNTHIA HILGENDORFI IGABOJA	7.		X	,,		X	7.		,,			,,				
METANDROCARPA DURA			X	Х						Х						
METANDROCARPA TAYLORI							Х	X	Х		Х	Х		Х	Х	Х
PEROPHORA ANNECTENS				Х					Х							
POLYCLINUM PLANUM	Х			Х												
PYCNOCLAVELLA STANLEYI	Х	Х	Х	Х	Х	Х		Х	Х			Х		Х	Х	Х
PYURA HAUSTOR	Х	Х	Х	Х	Х	Х	Х	X	X		Х	Х	Х	Х	Х	Х
PYURA MIRABILIS								X		Х						
RITTERELLA SP.								Х								
SALPS	D	D							D			D				
STYELA CLAVA								Х								
STYELA GIBBSII/TRUNCATA	Х	Х	Х	Х			Х	Х		Х						
STYELA MONTEREYENSIS	Х	Х	Х	Х	Х	Х	Х	Х		Х						
STYELA SP.							Х	Х							Х	Х
SYNOICUM PARFUSTIS	Х		Х													
THETIS VAGINA														Х	Х	
TRIDIDEMNUM OPACUM	Х		Х	Х			Х	Х	Х	Х	Х	Х	Х	Х	Х	
Chordata (vertebrates)		1														
CEPHALOSCYLLIUM VENTRIOSUM		X	X	Х	X	Х	X	X				XE				
HETERODONTUS FRANCISCI		1					X	X	Х			XE	Х		Х	Х
MYLIOBATIS CALIFORNICA	X	X	X	Х		Х		X	X	X	Х	X	X	X		X
SQUATINA CALIFORNICA	X	X	X	X	X	X	Х		X		X	X	X		Х	
TORPEDO CALIFORNICA		<u> </u>	X			1		X			X		,,			

L	OCATION: SMIWI	LSMIHR	SRIJLN	SRIJLS	SRIRR	SCIGI	SCIFH	SCIPB	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																
TRIAKIS SEMIFASCIATA												Х				
GYMNOTHORAX MORDAX							Х	Х			Х	Х	Х	Х	Х	Х
PORICHTHYS NOTATUS			Х					Х								
GOBIESOCIFORMES			Х													
GOBIESOX SP.														Х		
GOBIESOX EUGRAMMUS												?				
GOBIESOX MAEANDRICUS	Х	Х														
GOBIESOX RHESSODON									Х					Х	Х	Х
RIMICOLA MUSCARUM										X						
CHILARA TAYLORI								Х								
ENGRAULIS MORDAX							Х	Х								
ATHERINOPS AFFINIS	X		Х	Х							Х		Х			Х
ATHERINOPS/LEURESTHES			X	X	Х	Х	Х	Х	Х	X	X	Х			Х	X
CYPSELURUS CALIFORNICUS			Х					Х			Х					
AULORHYNCHUS FLAVIDUS	X	X	X		Х											
SYNGNATHUS SP.								Х								
SYNGNATHUS CALIFORNIENSIS				Х												
SYNGNATHUS LEPTORHYNCHUS			Х													
RATHBUNELLA HYPOPLECTA		X	Х		Х	Х	Х									
RATHBONELLA SP.		Х														
HYPSOBLENNIUS JENKINSI								Х				Х				
SERIOLA LALANDEI			Х	Х												
TRACHURUS SYMMETRICUS	X	Х	Х	Х	Х		Х	Х		X	Х	Х	Х		Х	Х
ALLOCLINUS HOLDERI		Х				Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х
GIBBONSIA SP.	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х
GIBBONSIA ELEGANS			Х								Х				Х	
GIBBONSIA METZI			Х													
HETEROSTICHUS ROSTRATUS		Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х
HETEROSTICHUS ROSTRATUS JUVENI	LES										Х		Х			
NEOCLINUS SP.	X	Х														
NEOCLINUS STEPHANSAE	X	Х	Х	Х	Х	Х	Х	Х	Х	Х		JUV	Х			
PARACLINUS INTEGRIPINNIS									X							
COTTIDAE (SCULPINS)	Х	Х														
ARTEDIUS SP.					Х											
ARTEDIUS CORALLINUS	X	Х	Х	Х	Х	Х		Х		Х		Х		Х	Х	Х
ARTEDIUS CREASERI				Х		Х	Х	Х	X		Х	Х			Х	
HEMILEPIDOTUS SPINOSUS															Х	
LEIOCOTTUS HIRUNDO	X		Х	Х	Х					X		Х		Х	Х	
ORTHONOPIAS TRIACIS	X	Х	Х	Х	Х	Х		Х	Х	Х		Х	Х	Х	Х	Х
SCORPAENICHTHYS MARMORATUS	X	Х	Х	Х	Х	Х		Х	Х	Х		Х		Х		
BRACHYISTIUS FRENATUS	X	Х	Х	Х	Х	Х		Х	Х		Х	Х	Х		Х	Х

	LOCATION: SN	ΛIWL	SMIHR	SRIJLN	SRIJLS	SRIRR	SCIGI	SCIFH	SCIPB	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																	
CYMATOGASTER AGGREGATA		Х		X	Х	X				Х	X		Х				Х
RHACOCHILUS VACCA		X	X	X	X	X	X	X	X	X	X	Х	X	X		Х	X
EMBIOTOCA JACKSONI		X	X	X	X	X	X	X	X	X	X	X	X	X	Х	X	X
EMBIOTOCA LATERALIS		X	X	X	X	X	X	X	X	X	- ^	X	X		,		
HYPERPROSOPON ARGENTEUM				,,	X		,,	,,			X	,,,	,,				
HYPERPROSOPON ELLIPTICUM				X	X						- ^-						
HYPSURUS CARYI		Х		X	X	Х				X	X	Х	Х		Х		Х
MICROMETRUS MINIMUS					X					^	_ ^						
PHANERODON SP.			X	Х					X	X							
PHANERODON FURCATUS			X	X	X					_ ^							
RHACOCHILUS TOXOTES		Χ	X	X	X	Х	Х	Х	X	X	<u> </u>	Х	X				
CORYPHOPTERUS NICHOLSI		X	X	X	X	X	X	X	X	X	X	X	X	X	X	Х	X
LYTHRYPNUS DALLI		^	X	X	X		X	X	X	X	X	X	X	X	_ ^	X	^
LYTHRYPNUS ZEBRA			X	X	^		X	X	X	X	X	X	X	X	Х	X	Х
ANISOTREMUS DAVIDSONII									X	<u> </u>			X			^	
XENISTIUS CALIFORNIENSIS									X								i
HEXAGRAMMOS DECAGRAMMUS														Х		Х	
OPHIODON ELONGATUS		Х		X			Х									^	
OXYLEBIUS PICTUS		X	X	X	X	X	X	X	X	X	X	Х	X	X	X	Х	Х
GIRELLA NIGRICANS		^		X	X	X	X	X	X	X	X	X	X	X	X	X	X
MEDIALUNA CALIFORNIENSIS			X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
MEDIALUNA JUVENILES				X	^										_ ^	^	
HALICHOERES SEMICINCTUS				X	X	Х	Х	X	X	X	X	Х	X	X	X	Х	X
H. SEMICINCTUS FEMALES					^		X	X	X			X	X	X	_ ^	^	X
H. SEMICINCTUS MALES							^	X	X		X	X	X	X			
H. SEMICINCTUS JUVENILES									_ ^			^	^	X			
OXYJULIS CALIFORNICA		Χ	Х	X	Х	Х	Х	Х	Х	X	X	Х	Х	X	X	Χ	X
O. CALIFORNICA JUVENILES		$\frac{\wedge}{X}$	^	^	X	^	^	^	^	^	^	^	^	X	^	^	X
SEMICOSSYPHUS PULCHER		X	Х	X	X	Х	Х	Х	Х	X	X	Х	X	X	X	Х	X
S. PULCHER FEMALES		$\frac{\wedge}{X}$	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
S. PULCHER MALES		^	^	X	X	X	X	X	X		X	X	X	X	X	X	X
S. PULCHER JUVENILES				^	^	^	^	X	X		^	^	X	X	^	^	
CAULOLATILUS PRINCEPS			Х	X	X	Х	Х	X	X				^	^	X	Х	
CHROMIS PUNCTIPINNIS		X	X	X	X	X	X	X	X	X	X	Х	X	X	X	X	X
C. PUNCTIPINNIS JUVENILES		^			^		X	X	X	X		X	X	X	X	X	X
HYPSYPOPS RUBICUNDUS				X	X	-	X	X	X	X	-	X	X	X	X	X	X
H. RUBICUNDUS JUVENILES				_ ^	^	-	^		X	X		^	^	^	_ ^	X	
ATRACTOSCION NOBILIS					X				_ ^	^						^	
SCOMBER JAPONICUS		Χ			X	X		X	X			X					
		X			X	^		X	X	v		X				_	
SCORPAENA GUTTATA			V	X		V	X			X	X		X	X	Х	X	X
SEBASTES ATROVIRENS		Χ	X	Х	X	X	X	X	X	X	X	X	X	X		X	X

	LOCATION: SMIW	LSMIH	RSRIJLN	SRIJLS	SRIRR	SCIGI	SCIFH	SCIPB	SCISA	SCIYB	ANIAR	ANICC	ANILC	SBISESL	SBIAP	SBICC
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SPECIES																
S. ATROVIRENS JUVENILES	X	Х	Х													
SEBASTES CARNATUS	X	X	X	Х	Х	Х	Х	X	Х	X	Х		Х	Х		
SEBASTES CAURINUS	X	X	X	Х	Х	Х	Х		Х							
S. CARNATUS/CAURINUS	X	X					Х					Х				
SEBASTES CHRYSOMELAS	X	X	X	Х	Х	Х	Х	X	Х	Х	Х	Х	Х		Х	
SEBASTES MINIATUS		X	X		Х	Х	Х		Х							
S. MINIATUS JUVENILES	X	Х				Х										
SEBASTES MYSTINUS	X	Х	Х	Х	Х	Х	Х		Х			Х				-
S. MYSTINUS JUVENILES	X	Х	Х	Х	Х	Х	Х					Х				
SEBASTES PAUCISPINIS	J/X		Х		J/X				Х						Х	-
S. PAUCISPINIS JUVENILES	X				Х											
SEBASTES PINNIGER			Х													
SEBASTES RASTRELLIGER	X		Х	Х			Х	Х	Х			Х			Х	Х
SEBASTES SERRANOIDES	X	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х				
S. SERRAN./S. FLAVIDUS JUVS	X	Х	Х	Х	Х							Х				
SEBASTES SERRICEPS	X	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х
S. SERRICEPS JUVENILES			X	Х			Х				Х				Х	
PARALABRAX CLATHRATUS		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
P. CLATHRATUS JUVENILES					Х			X						Х		
PARALABRAX NEBULIFER											Х	Х				
SPHYRAENA ARGENTEA					Х											
CEBIDICHTHYS SP.	X															
CITHARICHTHYS SP.		X	X									Х			Х	
CITHARICHTHYS STIGMAEUS			X													
CITHARICHTHYS JUVENILES	X	X	Х	Х												
PARALICHTHYS CALIFORNICUS					Х							Х				
PLEURONICHTHYS COENOSUS	X	X	Х	Х		Х		Х	Х	Х		Х		Х	Х	Х
MOLA MOLA					Х		Х									
CEPPHUS COLUMBA (Pigeon Guillemo	t)								X						X	
PHALACROCORAX SP.		Х		Х	Х										Х	
MIROUNGA ANGUSTIROSTRIS	X															
PHOCA VITULINA	X	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х
ZALOPHUS CALIFORNIANUS	X	Х	Х	Х	Х	Х	Х	Х			Х	Х		Х	Х	Х
GREAT BLUE HERON (ON KELP)										Х						

Appendix 7. Oceanographic Data

Introduction

This appendix includes tables from Fausak (1989) that list the deployment dates for Bathythermographs (temperature/depth loggers), and sample graphs from the data set.