目 录

1	集合理论 关系 函数 ;······················· 1
	逻辑运算 是非表 集合理论的基本概念 笛卡尔栗积 关系
	不同形式的有序 Zorn 引理 函数 反函数 有限及可数集合
2	方程式 一元函数 复数 7
	二次和三次方程的根 Cardano 公式 多項式 Descartes 符号法则
	二次曲线的分类 二次曲线的图形 函数的性质 渐近线 牛顿近
	似公式 切线和垂线 幂 指数和对数 三角函数和双曲函数 复
	数 De Moivre 公式 欧拉公式 n 次根
3	极限 连续 微分(一元)
	极限 连续 单调连续 中值定理 可微函数 微分的一般和特殊
	法则 均值定理 洛必达法则 微分
4	偏导数 ~~~~~~ 25
	偏导数 杨氏定理 C 函数 链法则 微分 阶层曲线的斜率
	隐函数定理 齐次函数 欧拉定理 位似函数 梯度 方向导数
	切(超)平面
5	弹性 替代弹性
	定义 马歇尔法则 一般和特殊法则 方向弹性 Passus 方程 边
	际替代率 替代弹性
6	方程组
	一般方程组 雅各比矩阵 广义隐函数定理 自由度 "计数法则"
	函数相关 雅各比行列式 反函数定理 局部和广义反函数存在性

	Gale-Nikaido 定理 收缩映射定理 Brouwer 和 Kakutani 不动点定理 在R ⁿ 中的子格 Tarski 不动点定理 线性方程组的一般结论
7	不等式
8	级数 泰勒公式
9	积分
10	差分方程 ····································
11	微分方程 可分离方程 射影和 logistic 方程 线性一阶方程 Bernoulli 和Riccati 方程 恰当方程 一般线性方程 参数变化 常系数二阶线性方程 欧拉方程 常系数一般线性方程 线性方程的稳定性Routh-Hurwitz稳定条件 正规方程组 线性方程组 矩阵形式分解 局部和整体的存在性和唯一性定理 自控系统 均衡点 积分曲线 局部和整体(渐近)稳定性 周期性解 Poincaré-Bendixson定理 Liapunov定理 双曲型均衡点 Olech定理 Liapunov函数 Lotka-Volterra模型 局部鞍点定理 一阶偏微分方程 拟线性方程 Frobenius定理
12	欧氏空间拓扑学 ····································

	点集拓扑学的基本概念 序列的收敛 柯西序列 连续函数 相对
	拓扑学 一致连续性 函数序列的点式和一致收敛 对应 下半连
	续性和上半连续性 下确界和上确界
13	凸性
	凸集 凸包 Carathéodory 定理 极点 Krein-Milman 定理 分离
	定理 凹函数和凸函数 Hessian 矩阵 拟凹和拟凸函数 有界
	Hessian 矩阵 伪凹和伪凸函数
14	经典最优化理论 93
	基本定义 极值定理 驻点 一阶条件 鞍点 一元结论 拐点
	二阶条件 等式约束下的最优化 拉格朗日方法 值函数和敏感性
	拉格朗日乘数的性质 包络条件
15	线性与非线性规划 · · · · · · · 102
	基本定义和结论 对偶 影子价格 互补的宽松性 Farkas 引理
	Kuhn-Tucker 定理 鞍点结论 拟凹规划 值函数的性质 包络结
	论 非负条件
16	变分学和最优控制理论 109
	最简单的变分问题 歐拉方程 Legendre 条件 充分条件 横截条
	件 附加值函数 更一般的变分问题 控制问题 最大化原则
	Mangasarian 和 Arrow 充分条件 值函数的性质 自由终端时间问
	題 一般终端条件 附加值函数 现值公式 线性二次型问题 无
	限时域 混合约束 纯状态约束 混合和纯状态约束
	12-1-1-1 10-1-14 10-14-15-15-14-15-15-15-15-15-15-15-15-15-15-15-15-15-
17	离散动态最优化······· 124
.,	动态规划 值函数 基础方程 "自由控制参数"的公式 欧拉向量
	差分方程 无限时城 离散最优控制理论
	本 / / / / / / / / / /
18	D7由的向导 抽象交回
10	
	线性相关和线性无关 子空间 基 数量积 向量的范数 向量之间的角度 向量空间 度量空间 賦范向量空间 Ranach 空间
	四时形成。四世全周 及曹安周 甄派员曹安国 Kanaah发制

	Ascoli 定理 Schauder 不动点定理 收缩映射的不动点 收缩映射	
	的 Blackwell 充分条件 内积空间 Hilbert 空间 柯西-施瓦兹和 Bessel 不等式 Parseval 公式	
19	矩阵····································	137
20	行列式····································	146
21	特征值 二次型····································	_
22	特殊矩阵 Leontief 方程组 ···································	157
23	Kronecker 乘积和 vec 运算 向量和矩阵的微分 Kronecker 乘积的定义和性质 vec 运算及其性质 向量和矩阵对元素,向量和矩阵的微分	161
24	比较静态	165
25	成本和利润函数的性质····································	

	Allen-Uzawa's 和 Morishima 替代弹性 Cobb-Douglas 和 CES 函数最小法则, Diewert, 和对数变换成本函数
26	消费者理论 编好关系 效用函数 效用最大化 间接效用函数 消费者需求函数 Roy 恒等式 支出函数 Hicksian 需求函数 Cournot 弹性 Engel 弹性 Slutsky 弹性 Slutsky 方程 等价和补偿变量 LES (Stone-Geary)函数 AIDS 和对数转换间接效用函数 Laspeyre, Paasche,和一般价格指数 Fisher 理想指数
27	金融和经济增长理论中的问题····································
28	风险和风险规避理论····································
29	金融和随机微积分····································
30	非合作博弈论····································
31	概率和统计

式 矩生成和特征函数 二维随机变量和分布 协方差 柯西-施
瓦兹不等式 相关系数 边际和条件密度函数 随机独立 条件期
望和方差 重期望 随机变量的变换 估计 偏差 均方误差 概
率极限 一致性 检验 检验力度 第一类和第二类错误 显著水
平 显著概率(P值) 弱和强大数法则 中心极限定理
概率分布 最小二乘法 20
贝塔分布 二项分布 二重正态分布 chi 平方分布 指数分布
极值(Gumbel)分布 F分布 伽马分布 几何分布 超几何分布
拉普拉斯分布 逻辑斯蒂分布 对数正态分布 多项分布 多重正
态分布 负二项分布 正态分布 Pareto 分布 Poisson 分布 学
生 t 分布 标准分布 Weibull 分布 最小二乘法 多元回归

关系 函数

1.1 $x \in A, x \notin B$

1.2 A = | 典型元素:定义特征|

- 1.3 以下几种逻辑运算符号通常在表明 P 和 Q 关系时使用:
 - ●P ∧ Q 指"P和Q"
 - ●P V Q指"P或Q"
 - $P \Rightarrow Q$ 指"如果 $P \neq Q$ "(或者" $P \neq Q$ ",或 " $P \neq Q$ "。)
 - $P \leftarrow Q$ 指"如果 Q 则P"(或"P 如果Q")
 - P⇔Q 指"P 当且仅当Q"
 - ●¬P指"非.P"

1.4

P	Q	¬ P	$P \wedge Q$	$P \lor Q$	$P\Rightarrow Q$	P⇔Q
T	T	F	Т	T	T	T
T	F	F	F	Т	F	F
$\mid F \mid$	T	T	F	T	T	F
F	F	T	F	F	T	T

逻辑运算的是非表.在此 T 指"是", F 指"非"

- 1.5 $P \neq Q$ 的一个充分条件: $P \Rightarrow Q$
 - Q 是 P 的一个必要条件: P⇒Q
 - P是Q的一个充分必要条件: P⇔Q

1.6 $A \subset B \Leftrightarrow A$ 的每一个元素也是B 的元素.

元素 x 属于集合 A,但 x 不属于集 A

集合定义的一般形式.

逻辑运算符号.

(注意"P 或 Q"是 指"或者 P 或者 Q, 或 者 两 者 都 成 立".)

经常用到的术语。

A 是 B 的一个子 集. 1.7 $A \cup B = \{x : x \in A \lor x \in B\} (A \in B)$ 的并集) $A \cap B = \{x: x \in A \land x \in B\} (A \vdash B)$ 的交集) $A \setminus B = \{x: x \in A \land x \in B\} (A \in B)$ 的差集) $A^c = \{x: x \in A\} (A \text{ 的补集})$ $A \triangle B = (A \setminus B) \cup (B \setminus A)$ (A 与B 的对称差)

集合理论的基本定 义. 如果 Ω 是一个全 集,则 $A^c = \Omega \setminus A$. A 的另一种符号是 \mathbb{C}_A .

 $A \cup B$

 $A \cap B$

 $A \setminus B$

 $A\Delta B$

1.8 $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \triangle B = (A \cup B) \setminus (A \cap B)$ $(A\triangle B)\triangle C = A\triangle (B\triangle C)$

集合理论的重要运 算法则.

1.9 $A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n); a_i \mid \text{ \mathfrak{A} a_i } A_1, A_2, \dots, a_n\}$ $\in A_i, i = 1, 2, \dots, n$

A, 的笛卡尔桑积.

1.10 $R \subset A \times B$

任何 A×B 的子集 R 称为从集合 A 到集合B的关系.

1.11 $xRy \Leftrightarrow (x, y) \in R$ $xRy \Leftrightarrow (x, y) \notin R$

另一种关系和无关 系的记法. 我们称 x 满足对y的R 关 系,如果 $(x, y) \in$ R.

• range(R) = $\{b \in B: (a, b) \in R \text{ 对于 } A \text{ 中某} - a\}$ = $\{b \in B: aRb \text{ 对于 } A \text{ 中某} - a\}$ 关系的区域及范围.

(1.13)定义的关系 R 的区域及范围, 阴影部分集合是关 系的图形.

1.14 $R^{-1} = \{(b, a) \in B \times A: (a, b) \in R\}$

从 A 到 B 的关系 R 的逆关系. R⁻¹ 是从 B 到 A 的关 系.

1.15 让 R 为从 A 到 B 的关系, S 为从 B 到 C 的关系, 我们则可定义 R 和 S 的复合 S \circ R 为属于 $A \times C$ 的 (a,c) 的集合, 满足属于 B 的元素 b 具有 aRb 及 bSc. S \circ R 是一个从 A 到 C 的关系.

S·R 是两个关系 R 及 S 的复合.

- 1.16 从 A 到 A 自己的关系 R 称为 A 的二元关系. R 的二元关系具有
 - 自反性如果 aRa 对于每一在A 中的a 成立;
 - 非自反性如果 a Ra 对于每一在 A 中的 a 成立;
 - 完整性如果 aRb 或 bRa 对于每一在A 中的 a 和 b 成立,且 $a \neq b$;
 - 传递性如果 aRb 及bRc 则有aRc;
 - ◆ 対称性如果 aRb 则有 bRa;
 - 反对称性如果 aRb 及 bRa 则有 a = b;
 - 非对称性如果 aRb 则有bRa.

特殊的关系.

- 1.17 A 的二元关系 R 被称为
 - 先有序的(或拟有序的)关系,如果它是自反性的和传递性的;
 - 弱有序的关系,如果它是传递性的和完整的;
 - 部分有序的关系,如果它是自反性的,传递性的及反对称性的:
 - 线性(或完全)有序的,如果它是自反性的,传 递性的,反对称性的及完整的;
 - ◆等价关系,如果它是自反性的,传递性的及对 称的.
 - 关系 = 在实数中是一个相应关系.
 - 关系 ≥ 在实数中是一个线性有序关系.
 - 关系 < 在实数中是一个弱有序及非自反性, 非对称性关系.
 - ◆ 关系 ⊂ 在给定集合的子集中是一个部分有 序关系。

- 特殊的关系.(这些 术语并不是通用 的.)注意线性有序 与完整的部分有序 是一样的.
- 序列关系通常用符 号≤,≤,≪等标 示.逆关系用≥, ≥,≫等标示.

- 1.18 关系 x ≤ y ("y 至少与x 一样好")在一个商品向量集合里通常假定为完整的先有序关系.
 - ◆ 关系 x < y ("y(严格好于)x")在一个商品 向量集合里通常假定为非自反的,传递的(因 此是非对称性).
 - ◆ 关系 x~y("x 与 y 无差别")在一个商品向量集合里通常假定为等价关系.

关系的例子. 对于 关系 $x \leq y$, x < y, 及 $x \sim y$, 见第 26 章.

1.19 令《为在集合 A 中的一个先有序关系.在 A 中的一个元素 g 称为在 A 中对于关系《的最大元素,如果 $x \leq g$ 对于每一在 A 中的 x 成立.在 A 中的一个元素 m 称为在 A 中对于关系《的极大元素,如果 $x \in A$ 且 $m \leq x$ 意味着 $x \leq m$. 对《的最小和极小元素分别是对于《的逆关系》的极大和最大元素.

有序集合中最大元素,极大元素,最小 元素和极小元素的 定义. 1.20 如果《是一在 A 中的先有序关系, M 是 A 的一个子集, 在 A 中的元素 b 称为 M 的一个上限(对于《), 如果 $x \le b$ 对于每一在 M 中的 x 成立. 一个 M 的下限是一在 A 中的元素 a 使 a 《 x 对于所有在 M 中的 x.

上限和下限的定 义.

1.21 如果≪是在非空集合 A 中的一个先有序关系, 且如果 A 的每一线性有序子集 M 都在 A 中有 上限,则对于关系 ≪ 在 A 中存在一个极大 元素.

Zom 引理.(通常适用于部分有序,但对于先有序同样适用.)

1.22 一个从 A 到 B 的关系 R 称为函数或映射,如果对于每一在 A 中的 a,在 B 中都存在一个唯一的 b,使 aRb.如果用 f 作为函数符号,则 afb 可写成 f(a) = b. f 的图形则定义为 $graph(f) = \{(a,b) \in A \times B; f(a) = b\}$.

从集合 A 到集合B 的函数及其图形的 定义.

- 1.23 一个从 A 到 B 的函数 $f(f:A \rightarrow B)$ 称为
 - 单射的(或一一对应的)如果 f(x) = f(y) 意味着 x = y;
 - 満射的(或自身映射)如果范围 dom(f) = B;
 - 双射的如果它既是单射的又是满射的.

函数的一些重要概念.

1.24 如果 $f: A \rightarrow B$ 双射的(即既是——对应的又是自身映射的),则它有反函数 $g: B \rightarrow A$,定义为 g(f(u)) = u 对于所有 $u \in A$.

ig| 反函数的特点 f 的反函数通常记为 f^{-1}

1.25

反函数概念的图 示.

- 1.26 如果 f 是一个从 A 到 B 的函数,且 $C \subset A$, $D \subset B$,我们则可使用记法
 - $\bullet f(C) = \{f(x) : x \in C\}$
 - $\bullet \ f^{-1}(D) = \{x \in A : f(x) \in D\}$

f(C)称为 A 在关系 f 下 的 像, $f^{-1}(D)$ 称为 D 的 逆像.

1.27 如果 f 是从 A 到 B 的一个函数,而且 $S \subset A$, $T \subset A$, $U \subset B$, $V \subset B$,则 $f(S \cup T) = f(S) \cup f(T)$ $f(S \cap T) \subset f(S) \cap f(T)$ $f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$ $f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$ $f^{-1}(U \setminus V) = f^{-1}(U) \setminus f^{-1}(V)$

重要的事实.(包含符号 ⊂ 不能由 = 替代)

- 1.28 如果 N = $\{1, 2, 3, \dots\}$ 为自然数的集合,而 $N_n = \{1, 2, 3, \dots, n\}$,则
 - •集合 A 是有限的如果它是空的,或对于某一自然数 n,存在一从 A 到 N_n 的——对应函数.
 - 集合 A 是可数性无限的如果存在一从 A 到 N的→一对应函数.

一个有限的或可数 性无限的集合通常 称为可数的. 有要 数集合是可数性无 限的, 而数数集合 是不可数的.

参考文献

参照 Halmos (1974), Ellickson (1993)及 Hildenbrand (1974).

2.1
$$ax^2 + bx + c = 0 \Leftrightarrow x_{1, 2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 2.2 如果 x_1 及 x_2 是方程 $x^2 + px + q = 0$ 的根,则 $x_1 + x_2 = -p$, $x_1x_2 = q$
- $2.3 \quad ax^3 + bx^2 + cx + d = 0$
- $2.4 \quad x^3 + px + q = 0$
- 2.5 $x^3 + px + q = 0$ $\triangle \Delta = 4p^3 + 27q^2$, $\triangle A = 4p^3 + 27q^2$
 - ◆ 三个不同的根,如果 Δ < 0;
 - 三个实根,其中至少两个相等,如果 $\Delta = 0$;
 - 一个实根,两个复根,如果 △ > 0.
- 2.6 方程 $x^3 + px + q = 0$ 的解为 $x_1 = u + v, x_2 = \omega u + \omega^2 v, 以及 x_3 = \omega^2 u$ $+ \omega v, 其中 \omega = -\frac{1}{2} + \frac{i}{2}\sqrt{3}, x_3 = -\frac{u + v}{2} \frac{u v}{2}\sqrt{-3}, 且有$ $u = \sqrt{-\frac{q}{2} + \frac{1}{2}\sqrt{\frac{4p^3 + 27q^2}{27}}}$

 $v = \sqrt{-\frac{q}{2} - \frac{1}{2}\sqrt{\frac{4p^3 + 27q^2}{27}}}$

一般一元二次方程 的根. $(a \neq 0)$ 如果 $b^2 \ge 4ac$ 则是实数 根. (假设 a, b, 和 c 是实数)

Viète 定理.

一般一元三次方程. 如果在(2.3)中的 x写为 $x \sim b/3a$,(2.3)可简写为(2.4).

(2.4)中根的分类. (假设 p 和 q 是 实数)

对于一元三次方程 的根的 Cardano 公 式. i 是虚数单位 (参照(2.72)),而 ω 是1的第三个复位 (参见(2.85)).(除 非必要时,尽量、 事使用这一公式!) 2.7 如果 x_1 , x_2 和 x_3 是方程 $x^3 + px^2 + qx + r = 0$ 的根,则 $x_1 + x_2 + x_3 = -p$ $x_1x_2 + x_1x_3 + x_2x_3 = q$ $x_1x_2x_3 = -r$

2.8
$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

- 2.9 对于(2.8)中的多项式 P(x), 存在常数 x_1 , x_2 , ..., x_n (实数或复数), 使 $P(x) = a_n(x x_1) \cdots (x x_n)$
- 2.10 $x_1 + x_2 + \dots + x_n = -\frac{a_{n-1}}{a_n}$ $x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n = \sum_{i < j} x_i x_j = \frac{a_{n-2}}{a_n}$ $x_1 x_2 \dots x_n = (-1)^n \frac{a_0}{a_n}$
- 2.11 如果(2.8)的系数 a_n , a_{n-1} , …, a_1 , a_0 均为整数, p 和 q 是没有共同因子的整数, 且 P(p/q) = 0, 则 p 可整除 a_0 , q 可整除 a_n .
- 2.12 设 k 为(2.8)中系数数列 a_n , a_{n-1} , …, a_1 , a_0 改变符号的次数. P(x) = 0 的实正根的个数,包括根的乘积,是 k 或 k 减去一个正偶数. 如果 k = 1,则方程仅有一个正实根.
- 2.13 方程

 $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ 的图形为

- 一个椭圆,一点,或空巢,如果 4AC > B²;
- 一条抛物线,一条直线,两条平行线,或空集,如果 $4AC = B^2$;
- 一个双曲线或两条相交线,若 4AC < B2.

有用的关系.

n 阶多项式. (a_n ≠0)

代数基本定理. x_1 , …, x_n 称为 P(x) 的零点和 P(x) = 0 的根.

P(x) = 0 的根与 系数的关系,其中 P(x)定义在(2.8). ((2.2)与(2.7)的一 般化)

多项式的有理零点.

Descartes 符号法则.

二次曲线的分类. A,B,C 不全为 0.

2.15
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

2.16
$$(x-x_0)^2 + (y-y_0)^2 = r^2$$

2.17
$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

2.19
$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = \pm 1$$

2.20 (2.19)的渐近线: $y - y_0 = \pm \frac{b}{a}(x - x_0)$

2.22
$$y-y_0=a(x-x_0)^2$$
, $a\neq 0$

将方程(2.13)转换 成对于 x', y'的二 次方程, 其中 x'y'的系数为 0.

两点 (x_1, y_1) 和 (x_2, y_2) 之间的(欧几里德)距离.以 (x_0, y_0) 为圆心,r为半径的阗.

以 (x_0, y_0) 为中心,轴与坐标轴平行的椭圆。

(2.16)与(2.17)的 图形.

以 (x_0, y_0) 为中心,轴与坐标轴平行的双曲线.

(2.19)中双曲线的 新近线的公式.

(2.19)与(2.20)中 的双曲线和其新近 线的图形,对应于 各自的正负号.

以 (x_0, y_0) 为顶点,主轴平行于 y轴的抛物线.

2.23
$$x - x_0 = a(y - y_0)^2$$
, $a \neq 0$

以 (x_0, y_0) 为顶 点,主轴平行于 x轴的抛物线、

2.24

(2.22)与(2.23)中 的抛物线的图形, 其中 a > 0.

- 2.25 函数 f 是
 - 递增的,如果

$$x_1 < x_2 \Rightarrow f(x_1) \leqslant f(x_2)$$

● 严格递增的,如果

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

● 递减的,如果

$$x_1 < x_2 \Rightarrow f(x_1) \geqslant f(x_2)$$

● 严格递减的,如果

$$x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$

- ●偶函数,如果 f(x) = f(-x) 对于所有 x成立.
- 奇函数,如果 f(x) = -f(-x) 对于所有 x成立.
- 关于直线 x = a 对称的,如果 f(a+x) = f(a-x) 对于所有 x 成立.
- ◆ 关于点(a,0)对称的,如果 f(a-x) = -f(a+x) 对于所有 x 成立.
- 周期性的,其周期为 k,如果存在一个 k > 0使

f(x+k) = f(x) 对于所有 x 成立.

2.26

递增及严格递增函 数的图形.

函数的性质.

2.27

2.28

y 1

2.29

2.30 y = ax + b 是一条曲线 y = f(x) 的非竖直渐近线,如果

$$\lim_{x\to\infty}(f(x)-(ax+b))=0$$

或

$$\lim_{x \to -\infty} (f(x) - (ax + b)) = 0$$

2.31

- y = ax + b 是曲线 y = f(x) 的一条 渐近线
- 2.32 怎样寻找曲线 y = f(x) 当 $x \rightarrow \infty$ 时的渐近线:
 - 检查 lim_{x→∞} (f(x)/x). 如果当 x→∞时极限不存在,则没有渐近线.
 - 如果 $\lim_{x\to\infty} (f(x)/x) = a$, 检查极限 $\lim_{x\to\infty} (f(x)-ax).$ 如果当 $x\to\infty$ 时极限不存 在,则没有渐近线.
 - 如果 $\lim_{x \to \infty} (f(x) ax) = b$, 则 y = ax + b 是 曲线 y = f(x) 当 $x \to \infty$ 时的一条渐近线.

递减及严格递减函数的图形.

偶函数,奇函数以 及对称于x = a的 函数的图形.

对称于点(a,0)的函数,及以 k 为周期的函数的图形.

非竖直渐近线的定义.

2.33 要求 f(x) = 0 的近似根,定义 x_n 对于n = 1,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

如果 x_n 接近一个真实根 x^* ,则数列 $\{x_n\}$ 将迅 速收敛至真实根.

2.34

牛顿近似法的图 示.

2.35 $y - f(x_1) = f'(x_1)(x - x_1)$

2.36 $y - f(x_1) = -\frac{1}{f'(x_1)}(x - x_1)$

与y = f(x)相切 于点 $(x_1, f(x_1))$ 的切线方程.

与 y = f(x) 垂直 于 $(x_1, f(x_1))$ 点 的垂线方程,

2.37

y = f(x) 在点 $(x_1, f(x_1))$ 的切

2.38 (i) $a^r \cdot a^s = a^{r+s}$ (ii) $(a^r)^s = a^{rs}$

(iii) $(ab)^r = a^r b^r$ (iv) $a^r / a^s = a^{r-s}$

(v) $\left(\frac{a}{h}\right)^r = \frac{a^r}{h^r}$ (vi) $a^{-r} = \frac{1}{a^r}$

2.39 $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 2.718281828459\cdots$

 $2.40 e^{\ln x} = x$

幂法则.(r 与 s 是 任意实数,a 与 b 是正实数)

e 的 定 义. (参 见 $(8.20) \oplus x = 1$

| 自然对数的定义.

 $y = e^x \, \mathcal{H} \, y = \ln x$

2.42
$$\ln(xy) = \ln x + \ln y$$
, $\ln \frac{x}{y} = \ln x - \ln y$
 $\ln x^p = p \ln x$, $\ln \frac{1}{x} = -\ln x$

自然对数函数的法 **则.(**x 与y 为正)

2.43
$$a^{\log_a x} = x \ (a > 0, \ a \neq 1)$$

底数为 a 的对数的 定义.

2.44
$$\log_a x = \frac{\ln x}{\ln a}$$
, $\log_a b \cdot \log_b a = 1$
 $\log_e x = \ln x$ $\log_{10} x = \log_{10} e \cdot \ln x$

不同底数的对数.

2.45
$$\log_a(xy) = \log_a x + \log_a y$$

 $\log_a \frac{x}{y} = \log_a x - \log_a y$
 $\log_a x^p = p \log_a x, \log_a \frac{1}{x} = -\log_a x$

为正)

2.46
$$1^{\circ} = \frac{\pi}{180} \text{rad}, 1 \text{ rad} = \left(\frac{180}{\pi}\right)^{\circ}$$

角度与弧度(rad) 的关系.

角度与弧度的关 豖.

2.48

基本三角函数的定义.x是弧的长度,也是角的弧度.

2.49

 $y = \sin x$ 与 $y = \cos x$ 的图形. 函数 $\sin \pi$ \cos 是周期性的, 周 期为 2π :

$$\sin(x+2\pi) = \sin x,$$

$$\cos(x+2\pi) = \cos x.$$

2.50 $\tan x = \frac{\sin x}{\cos x}$, $\cot x = \frac{\cos x}{\sin x} = \frac{1}{\tan x}$

正切函数与余切函 数的定义.

2.51

y = tan x 与 y = cot x 的图形.函数 tan 和 cot 是周期 性的,周期为π:

$$\tan(x + \pi) = \tan x,$$

$$\cot(x + \pi) = \cot x.$$

	x	0	$\frac{\pi}{6} = 30^{\circ}$	$\frac{\pi}{4} = 45^{\circ}$	$\frac{\pi}{3} = 60^{\circ}$	$\frac{\pi}{2} = 90^{\circ}$
	$\sin x$	0	1/2	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1
2.52	cos x	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	1 2	0
2.02	tan x	0	$\frac{1}{3}\sqrt{3}$	1	√3	*
	∞t x	*	√3	1	$\frac{1}{3}\sqrt{3}$	0

三角函数的特殊值.

* 无定义

	x	$\frac{3\pi}{4}=135^{\circ}$	$\pi = 180^{\circ}$	$\frac{3\pi}{2}=270^{\circ}$	$2\pi = 360^{\circ}$
	$\sin x$	$\frac{1}{2}\sqrt{2}$	0	-1	0
2.53	00s x	$-\frac{1}{2}\sqrt{2}$	- 1	0	1
	tan x	- 1	0	*	0
	∞t x	-1	*	0	*

* 无定义

$$2.54 \sin^2 x + \cos^2 x = 1$$

三角函数公式.(关于三角函数的级数展开,参见第8章)

2.55
$$\tan^2 x = \frac{1}{\cos^2 x} - 1$$
, $\cot^2 x = \frac{1}{\sin^2 x} - 1$

2.56
$$cos(x + y) = cos x cos y + sin x sin y$$

 $cos(x - y) = cos x cos y + sin x sin y$

2.57
$$\sin(x + y) = \sin x \cos y + \cos x \sin y$$

 $\sin(x - y) = \sin x \cos y - \cos x \sin y$

2.58
$$\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$
$$\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

三角函数公式

2.59
$$\cos 2x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$$

 $\sin 2x = 2\sin x \cos x$

2.60
$$\sin^2 \frac{x}{2} = \frac{1 - \cos x}{2}$$
, $\cos^2 \frac{x}{2} = \frac{1 + \cos x}{2}$

2.61
$$\cos x + \cos y = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

 $\cos x - \cos y = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$

2.62
$$\sin x + \sin y = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

 $\sin x - \sin y = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$

2.63
$$y = \arcsin x \Leftrightarrow x = \sin y, \ x \in [-1, 1], \ y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

 $y = \arccos x \Leftrightarrow x = \cos y, \ x \in [-1, 1], \ y \in [0, \pi]$
 $y = \arctan x \Leftrightarrow x = \tan y, \ x \in \mathbb{R}, \ y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
 $y = \operatorname{arccot} x \Leftrightarrow x = \cot y, \ x \in \mathbb{R}, \ y \in (0, \pi)$

反三角函数的定 义.

反三角函数 y = arcsin x 和 y = arccos x 的图形.

反三角函数 y = arctan x 和 y = arccot x 的图形.

2.66 $\arcsin x = \sin^{-1} x$, $\arccos x = \cos^{-1} x$ $\arctan x = \tan^{-1} x$, $\operatorname{arccot} x = \cot^{-1} x$ 反三角函数的另一 种记法:

2.67
$$\arcsin(-x) = -\arcsin x$$

 $\arccos(-x) = \pi - \arccos x$
 $\arctan(-x) = -\arctan x$
 $\arctan(-x) = \pi - \operatorname{arccot} x$
 $\arctan x + \arccos x = \frac{\pi}{2}$
 $\arctan x + \operatorname{arccot} x = \frac{\pi}{2}$
 $\arctan \frac{1}{x} = \frac{\pi}{2} - \arctan x, x > 0$
 $\arctan \frac{1}{x} = -\frac{\pi}{2} - \arctan x, x < 0$

反三角函数的性质.

2.68 $\sinh x = \frac{e^x - e^{-x}}{2}$, $\cosh x = \frac{e^x + e^{-x}}{2}$

双曲正弦函数和双 曲余弦函数.

2.69

双曲函数 $y = \sinh x$ 与 $y = \cosh x$ 的图 形、

2.70 $\cosh^2 x - \sinh^2 x = 1$ $\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y$ $\cosh 2x = \cosh^2 x + \sinh^2 x$ $\sinh(x + y) = \sinh x \cosh y + \cosh x \sinh y$ $\sinh 2x = 2\sinh x \cosh x$

双曲函数 $y = \sinh x$ 与 $y = \cosh x$ 的性 质.

2.71 $y = \operatorname{arcsinh} x \Leftrightarrow x = \sinh y$ $y = \operatorname{arccosh} x, \ x \geqslant 1 \Leftrightarrow x = \cosh y, \ y \geqslant 0$ $\operatorname{arcsinh} x = \ln(x + \sqrt{x^2 + 1})$ $\operatorname{arccosh} x = \ln(x + \sqrt{x^2 - 1}), \ x \geqslant 1$

反双曲函数的定 义.

复数

2.72
$$z = a + ib$$
, $\bar{z} = a - ib$

2.73
$$|z| = \sqrt{a^2 + b^2}$$
, $Re(z) = a$, $Im(z) = b$

- 2.75 (a + ib) + (c + id) = (a + c) + i(b + d)• (a + ib) - (c + id) = (a - c) + i(b - d)• (a + ib)(c + id) = (ac - bd) + i(ad + bc)• $\frac{a + ib}{c + id} = \frac{1}{c^2 + d^2}((ac + bd) + i(bc - ad))$
- 2.76 $|\bar{z}_1| = |z_1|, z_1 \bar{z}_1 = |z_1|^2,$ $\overline{z_1 + z_2} = \bar{z}_1 + \bar{z}_2,$ $|z_1 z_2| = |z_1| |z_2|,$ $|z_1 + z_2| \leq |z_1| + |z_2|$

2.77
$$z = a + ib = r(\cos \theta + i\sin \theta) = re^{i\theta}$$
, 其中 $r = 1$
 $|z| = \sqrt{a^2 + b^2}$, $\cos \theta = \frac{a}{r}$, $\sin \theta = \frac{b}{r}$

复数及其共轭.a,b $\in \mathbb{R}$,且 $i^2 = -1$.i 称为虚数单位

|z|是 z = a + ib的 模 或 量 值. Re(z)和 Im(z)分 别为它的实部和虚 部.

复数及其共轭的几 何表达.

复数的加、减、乘和 除.

基本法则. z₁ 和 z₂ 为复数.

复数的三角函数形式或极坐标形式. 角 θ 称为z 的自变量. 对于 e^{iθ} 参见(2.81).

复数的三角函数形 式的几何表达。

2.79 如果
$$z_k = r_k(\cos \theta_k + i\sin \theta_k), k = 1, 2, 则$$

$$z_1 z_2 = r_1 r_2(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2}(\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2))$$

三角函数形式的乘 与除.

2.80
$$(\cos \theta + i\sin \theta)^n = \cos n\theta + i\sin n\theta$$

De Moivre 公式, $n = 0, 1, \dots$

2.81 如果
$$z = x + iy$$
, 则
$$e^{z} = e^{x+iy} = e^{x} \cdot e^{iy} = e^{x}(\cos y + i\sin y).$$

复指数函数.

 $2.82 e^{\pi i} = -1$

非常重要的关系.

2.83 $e^{z} = \overline{e^{z}}$, $e^{z+2\pi i} = e^{z}$, $e^{z_1+z_2} = e^{z_1}e^{z_2}$, $e^{z_1-z_2} = e^{z_1}/e^{z_2}$

复指数函数的法 则.

2.84 $\cos z = \frac{e^{iz} + e^{-iz}}{2}$, $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$

欧拉公式.

2.85 如果 $a = r(\cos \theta + i\sin \theta) \neq 0$, 则方程 $z^n = a$

第 n 个复根数, n = 1.2....

确切地有n个根,

$$z_k = \sqrt[n]{r} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right)$$

$$\nabla k = 0, 1, \dots, n - 1.$$

参考文献

绝大多数的公式可在任何微积分教材里找到,比如 Edwards & Penney (1998)或 Sydsaeter & Hammond (1995). 关于(2.3)—(2.12),参照 Turnbull(1952).

3.1 当 x 接近 a 时, f(x) 接近于极限 A, $\lim_{x \to a} f(x) = A \text{ 或 } f(x) \to A \text{ 当 } x \to a$ 如果对于每一个数 $\epsilon > 0$, 存在一个数 $\delta > 0$, 使 $|f(x) - A| < \epsilon, \text{当 } x \in D_f \text{ 且 } 0 < |x - a| < \delta$

一元函数的极限的 定义. D_f 是 f 的定义域.

- 3.2 如果 $\lim_{x\to a} f(x) = A$ 且 $\lim_{x\to a} g(x) = B$, 则
 - $\bullet \lim_{x \to a} (f(x) \pm g(x)) = A \pm B$
 - $\bullet \lim_{x \to a} (f(x) \cdot g(x)) = A \cdot B$
 - $\bullet \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B} \quad (\text{mpm} B \neq 0)$

极限的法则.

3.3 如果 limf(x) = f(a), 则 f 是在点x = a 连续的,即如果 a ∈ Df, 且对于每一数 ε > 0, 存在一个数 δ > 0, 满足 | f(x) - A | < ε, 若 x ∈ Df 且 | x - a | < δ, f 是在集合 S ⊂ Df 里连续的,如果 f 在 S 中的每一点上连续。

连续的定义.

- 3.4 如果 f 和 g 在 a 点连续,则
 - f ± g 和 f ⋅ g 在a 点连续;
 - f/g 在 a 点连续,如果 $g(a) \neq 0$.
- 3.5 如果 g 在 a 点连续, 且 f 在 g(a) 连续,则 f(g(x)) 在 a 点连续.

复合函数的连续性.

连续函数的性质。

3.6 连续函数通过加,减,乘,除,复合得到的任何函数都在其定义域里连续.

一个有用的结论.

一致连续的定义.

3.8 如果 f 在闭区间 I 里连续,则 f 在 I 上是一致连续的.

在闭区间里的连续 函数是一致连续 的.

3.9 如果 f 是在包含a 与b 的闭区间 I 里连续的,且 A 在 f(a)与 f(b)之间,则至少存在 a 与b 之间 的一点 ξ ,使 $A = f(\xi)$.

介值定理.

3.10

介值定理的图示.

3.11 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

导数的定义. 如果极限存在, f 称为在x 点可微.

3.12 y = f(x) 的导数的其他记法:

导数的其他记法.

$$f'(x) = y' = \frac{dy}{dx} = \frac{df(x)}{dx} = Df(x)$$

一般法则.

3.13
$$y = f(x) \pm g(x) \Rightarrow y' = f'(x) \pm g'(x)$$

3.14
$$y = f(x)g(x) \Rightarrow$$

 $y' = f'(x)g(x) + f(x)g'(x)$

3.15
$$y = \frac{f(x)}{g(x)} \Rightarrow y' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

3.16
$$y = f(g(x)) \Rightarrow y' = f'(g(x)) \cdot g'(x)$$

| 链法则.

3.17
$$y = (f(x))^{g(x)} \Rightarrow$$

 $y' = (f(x))^{g(x)} \left(g'(x) \ln f(x) + g(x) \frac{f'(x)}{f(x)} \right)$

3.18 如果 $g = f^{-1}$ 是一一对应函数 f 的反函数, f 在x 可微, 且 $f'(x) \neq 0$, 则 g 在 f(x) 可微, 且

$$g'(f(x)) = \frac{1}{f'(x)}$$

f⁻¹ 是 f 的 反 函数.

3.19

- $3.20 \quad y = c \Rightarrow y' = 0 \quad (c 为常数)$
- $3.21 \quad y = x^a \Rightarrow y' = ax^{a-1} \quad (a 为常数)$
- 3.22 $y = \frac{1}{x} \Rightarrow y' = -\frac{1}{x^2}$
- $3.23 \quad y = \sqrt{x} \Rightarrow y' = \frac{1}{2\sqrt{x}}$
- $3.24 \quad y = e^x \Rightarrow y' = e^x$
- $3.25 \quad y = a^x \Rightarrow y' = a^x \ln a \quad (a > 0)$
- $3.26 \quad y = \ln x \Rightarrow y' = \frac{1}{x}$
- 3.27 $y = \log_a x \Rightarrow y' = \frac{1}{r} \log_a e \quad (a > 0, a \neq 1)$
- 3.28 $y = \sin x \Rightarrow y' = \cos x$
- 3.29 $y = \cos x \Rightarrow y' = -\sin x$
- 3.30 $y = \tan x \Rightarrow y' = \frac{1}{\cos^2 x} = 1 + \tan^2 x$
- 3.31 $y = \cot x \Rightarrow y' = -\frac{1}{\sin^2 x} = -(1 + \cot^2 x)$

如果在 P 点的切线的斜率为 k = f'(x),则在 Q 点的 切线的 斜率 g'(f(x))等于1/k.

|特殊法则.

3.32
$$y = \sin^{-1} x = \arcsin x \Rightarrow y' = \frac{1}{\sqrt{1 - x^2}}$$

3.33
$$y = \cos^{-1} x = \arccos x \Rightarrow y' = -\frac{1}{\sqrt{1-x^2}}$$

3.34
$$y = \tan^{-1} x = \arctan x \Rightarrow y' = \frac{1}{1+x^2}$$

3.35
$$y = \cot^{-1} x = \operatorname{arccot} x \Rightarrow y' = -\frac{1}{1+x^2}$$

$$3.36 \quad y = \sinh x \Rightarrow y' = \cosh x$$

3.37
$$y = \cosh x \Rightarrow y' = \sinh x$$

3.39

3.38 如果 f 在 [a, b] 连续, 在 (a, b) 可微,则在 (a, b) 至少存在一点 ξ ,使

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

- 3.40 如果 f 和 g 在 [a, b] 连续, 在 (a, b) 可微,则 在 (a, b) 至少存在一点 ξ ,使 $[f(b) - f(a)]g'(\xi) = [g(b) - g(a)]f'(\xi)$
- 3.41 假设 f 和 g 在包含 a 的一个区间 (α, β) 里 (除了在点 a) 可微,并假设当 x 趋向于 a 时 f(x) 和 g(x) 趋向于 0. 如果 $g'(x) \neq 0$ 对于所有在 (α, β) 中的 $x \neq a$ 成立,且 $\lim_{x \to a} f'(x)/g'(x) = L$ $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = L$

特殊法则.

中值定理.

中值定理的图示.

柯西一般中值定理.

洛必达法則. 当 $x \to a^+$, $x \to a^-$, $x \to +\infty$, 或 $x \to -\infty$, $f(x) \to \pm\infty$, $g(x) \to \pm\infty$ ∞ 时同样成立. 3.42 如果 y = f(x)且 dx 是任一数, dy = f'(x)dx是 y的微分.

微分的定义.

3.43

微分的几何图示.

3.44 当 | dx | 很小时 $\Delta y = f(x + dx) - f(x) \approx f'(x) dx$

一个有用的近似, 精确表达在(3.45) 中.

3.45 $f(x + dx) - f(x) = f'(x)dx + \epsilon dx$ 其中 $\epsilon \to 0$ 当 $dx \to 0$ 可微函数的性质. (如果 dx 非常小, 则 ϵ 很小,且 ϵdx "非常非常小")

 $3.46 ext{ } d(af + bg) = adf + bdg(a 与 b 为常数)$ d(fg) = gdf + fdg $d(f/g) = (gdf - fdg)/g^2$ df(u) = f'(u)du

微分法则.f与g可微,u是任一可像函数.

参考文献

所有公式都是标准的,均可在几乎所有的微积分教材里找到,例如 Edwards & Penney (1998),或 Sydsaeter & Hammond (1995). 对于一致连续,参考 Rudin (1982).

4.1 如果 $z = f(x_1, \dots, x_n) = f(x)$, 则

$$\frac{\partial z}{\partial x_i} = \frac{\partial f}{\partial x_i} = f'_i(\mathbf{x}) = D_{x_i} f = D_i f = f'_i$$

都表示当其他变量固定时 $f(x_1, \dots, x_n)$ 对 x_i 的导数.

偏导数的定义.(还 有其他的记法)

4.2

4.3
$$\frac{\partial^2 z}{\partial x_j \partial x_i} = f''_{ij}(x_1, \dots, x_n)$$
$$= \frac{\partial}{\partial x_j} f'_i(x_1, \dots, x_n)$$

4.4
$$\frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$
, $i, j = 1, 2, \dots, n$

4.5 在集合 $S \subset R^n$ 中, $f(x_1, \dots, x_n)$ 称为 C^k 级函数, 或简称为 C^k , 如果 f 的所有 $\leq k$ 阶的偏导数都在 S 里连续.

4.6
$$z = F(x, y), x = f(t), y = g(t) \Rightarrow$$

$$\frac{dz}{dt} = F'_1(x, y) \frac{dx}{dt} + F'_2(x, y) \frac{dy}{dt}$$

二元函数 z = f(x, y) 的偏导数的几何图示: $f_1(x_0, y_0)$ 是切线 l_x 的斜率, $f_2(x_0, y_0)$ 是切线 l_y 的斜率.

 $z = f(x_1, \dots, x_n)$ 的二阶偏导数.

杨氏定理,当两个偏导数连续时成立.

C^k 函数的定义. (对于连续性的定义,参见(12.12))

链法则,

- 4.7 如果 $z = F(x_1, \dots, x_n)$ 且 $x_i = f_i(t_1, \dots, t_m)$, $i = 1, \dots, n$, 则对于所有 $j = 1, \dots, m$ $\frac{\partial z}{\partial t_j} = \sum_{i=1}^n \frac{\partial F(x_1, \dots, x_n)}{\partial x_i} \frac{\partial x_i}{\partial t_j}$
- 4.8 如果 $z = f(x_1, \dots, x_n)$ 且 dx_1, \dots, dx_n 是任意数,则

$$dz = \sum_{i=1}^{n} f_i'(x_1, \dots, x_n) dx_i$$

被称为 z 的微分.

4.9

z = f(x, y) Q = (x + dx, y + dy)

- 4.10 当 $|dx_1|$, …, $|dx_n|$ 很小时, $\Delta z \approx dz$, 其中 $\Delta z = f(x_1 + dx_1, \dots, x_n + dx_n)$ $f(x_1, \dots, x_n)$
- 4.11 如果 $f_i'(x)$ 存在,且存在函数 $\varepsilon_i = \varepsilon_i(\mathrm{d}x_1, \cdots, \mathrm{d}x_n)$, $i = 1, \cdots, n$,而且当 $\mathrm{d}x_i$ 接近 0 时都接近 0,并且 $\Delta z \mathrm{d}z = \varepsilon_1 \mathrm{d}x_1 + \cdots + \varepsilon_n \mathrm{d}x_n$,则 f 在 x 可做.
- 4.12 如果 f 是一个 C^1 函数,即具有一阶连续偏导数,则 f 可微.
- 4.13 d(af + bg) = adf + bdg(a 和 b 为常数) d(fg) = gdf + fdg $d(f/g) = (gdf fdg)/g^{2}$ dF(u) = F'(u)du

链法则.(一般情况)

微分的定义.

二元函数的微分的 几何图示. 这也是 (4.10)中,近似值 $\Delta z = dz$ 的图示.

有用的近似,对于可微函数的精确表达见(4.11).

可微性的定义.

重要的事实.

微分法则. f 和 g 是 x_1 , …, x_n 的可 微函数, F 是 一个 一元 可微函数, u 是 x_1 , …, x_n 的任 一可微函数.

4.14
$$F(x, y) = c \Rightarrow \frac{dy}{dx} = -\frac{F_1'(x, y)}{F_2'(x, y)}$$

z = F(x, y) 的阶 层曲线的斜率. 精确的假设参见 (4.17).

4.15

在
$$P$$
 点切线的斜率是
$$\frac{dy}{dx} = -\frac{F_1'(x,y)}{F_2'(x,y)}.$$

4.16 如果 y = f(x) 是一个 C^2 函数,满足 F(x, y)=c,则

$$f''(x) = -\frac{\left[F''_{11}(F'_2)^2 - 2F''_{12}F'_1F'_2 + F''_{22}(F'_1)^2\right]}{(F'_2)^3} - \wedge \uparrow \Pi \text{ in } f \text{$$

4.17 如果 F(x, y)是在集合 A 里的 C^{\flat} 函数, (x_0, y) y_0) 是 A 内的一点, $F(x_0, y_0) = c$, 且 $F_2(x_0, y_0) \neq 0$, 则方程 F(x, y) = c 定义 y 为在 (x_0, y_0) 点邻域内 x 的 C^k 函数, y = $\varphi(x)$, 且 y 的导数为

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_1'(x, y)}{F_2'(x, y)}$$

│ 隐函数定理(对于 一般结论,参见 (6.3)).

4.18 如果 $F(x_1, x_2, \dots, x_n, z) = c(c 为常数)$, 则

$$\frac{\partial_{z}}{\partial x_{i}} = -\frac{\partial F/\partial x_{i}}{\partial F/\partial z}, i = 1, 2, \dots, n\left(\frac{\partial F}{\partial z} \neq 0\right)$$

$$(4.14)的一般化$$

齐次函数和位似函数

4.19 $f(x) = f(x_1, x_2, \dots, x_n)$ 是 $D \subset \mathbb{R}^n$ 内的 k 次齐次函数,如果

 $f(tx_1, tx_2, \dots, tx_n) = t^k f(x_1, x_2, \dots, x_n)$ 对于所有 t > 0 和所有在 D 中的

 $x = (x_1, x_2, \dots, x_n)$ 都成立.

齐次函数的定义. D 是一个维体因为 $x \in D$ 和 t > 0 意 味着 $tx \in D$.

4.20

1次齐次函数的图 示。

4.21 $f(x) = f(x_1, \dots, x_n)$ 是在开锥体 D 内的 k 次齐次函数,当且仅当

 $\sum_{i=1}^{n} x_i f_i'(x) = k f(x)$ 对于所有 x 在 D 内成立.

欧拉定理,对于 C^1 函数成立.

- 4.22 如果 $f(x) = f(x_1, \dots, x_n)$ 在开锥体 D 内为 k 次齐次函数、则
 - み/æ; 在D 内齐次度为k-1;
 - $\bullet \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}x_{j}f''_{ij}(x) = k(k-1)f(x)$
- 4.23 $f(\mathbf{x}) = f(x_1, \dots, x_n)$ 是在锥体 D 内的位似 函数,如果对于所有 $\mathbf{x}, \mathbf{y} \in D$ 及所有 t > 0, $f(\mathbf{x}) = f(\mathbf{y}) \Rightarrow f(t\mathbf{x}) = f(t\mathbf{y})$

齐次函数的性质.

位似函数的定义.

4.24

位似函数的几何图示. 若 f(u)是位似的,如果 x 和 y 在同一阶层曲线上,则 tx 和 ty 也在同一阶层曲线上(当 t > 0).

4.25 设f(x)为定义在开锥体 D 内的连续位似函 数. 假设 f 沿 D 的每一射线是严格递增的(即 对于每一 $x_0 \in D$, $f(tx_0)$ 是 t 的严格递增函 数),则存在一齐次函数 g 和一严格递增函数 F,使

f(x) = F(g(x)) 对于所有在 D 内的 x 成立.

连续位似函数的性 质(有时作为位似函 数的定义). 可以假 设 g 的齐次度为 1.

梯度 方向导数 切平面

4.26
$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

4.27 $f'_{a}(x) = \lim_{h \to 0} \frac{f(x+ha) - f(x)}{h}$, ||a|| = 1 | f在x以a为方向的方向导数.

 $4.28 \quad f'_{\mathbf{a}}(\mathbf{x}) = \sum_{i=1}^{n} f'_{i}(\mathbf{x}) a_{i} = \nabla f(\mathbf{x}) \cdot \mathbf{a}$

- 4.29 ◆ 以(x)垂直于截面 f(x) = C
 - ♥ (x)标示 f 的最大增量的方向。
 - \(\mathbf{G}(x)\) | 度量 f 在方向 \(\mathbf{G}(x)\) 上的变化 塞.

f在 $x = (x_1, \dots, x_n)$ 的梯度.

| 方向导数和梯度的

梯度的性质.

4.30

4.31 z = f(x, y) 在点 $P = (x_0, y_0, z_0)$ 的切平 面,且 $z_0 = f(x_0, y_0)$,其方程形式为 $z - z_0 = f_1(x_0, y_0)(x - x_0) +$ $f_2(x_0, y_0)(y - y_0)$

函数及其切平面的 图示.

4.33 在点
$$x^0 = (x_1^0, \dots, x_n^0)$$
 切于函数的截面
$$F(x) = F(x_1, \dots, x_n) = C$$
 的超切面方程为
$$\nabla F(x^0) \cdot (x - x^0) = 0$$

超切面的定义.向量 $\nabla F(x^0)$ 称为超切面的法线.

参考文献

所有这些公式都是标准的并可在几乎所有的微积分教材里找到,例如 Edwards & Penney (1998)或 Sydsaeter & Hammond (1995).关于位似函数的性质,参考 Simon & Blume (1994), Shephard (1970)和 Førsund (1975).

5.1
$$\operatorname{El}_{x}f(x) = \frac{x}{f(x)}f'(x) = \frac{\operatorname{d}(\ln f(x))}{\operatorname{d}(\ln x)}$$

 $El_x f(x)$ 表示 f(x) 对于 x 的弹性,是 当 x 增加百分之 一时 f(x) 的相应 百分比变化.

马歇尔法则的图示.

5.3 马歇尔法则:要找到图中 y = f(x) 对于 x 在 P 点的弹性,首先画一条切于曲线 P 点的切线.量出从 P 到切线与y 轴交点的距离 A_{y} ,和从 P 到切线与x 轴交点的距离 A_{x} .则 $El_{x}f(x) = \pm A_{y}/A_{x}$.

马歇尔法则. 距离取正值. 如果曲线在 P 点上升取正号,反之则负号.

5.4 $\operatorname{El}_{x}(f(x)g(x)) = \operatorname{El}_{x}f(x) + \operatorname{El}_{x}g(x)$

弹性计算的一般法 则。

- 5.5 $\operatorname{El}_{x}\left(\frac{f(x)}{g(x)}\right) = \operatorname{El}_{x}f(x) \operatorname{El}_{x}g(x)$
- 5.6 $\operatorname{El}_{x}(f(x) \pm g(x)) = \frac{f(x)\operatorname{El}_{x}f(x) \pm g(x)\operatorname{El}_{x}g(x)}{f(x) \pm g(x)}$
- 5.7 $\operatorname{El}_{x}f(g(x)) = \operatorname{El}_{u}f(u)\operatorname{El}_{x}u, u = g(x)$

5.8 $\text{El}_x A = 0$, $\text{El}_x x^a = a$, $\text{El}_x e^x = x$. (A 和 a 是常数, $A \neq 0$.)

弹性计算的特殊法则.

5.9 $\operatorname{El}_x \sin x = x \cot x$, $\operatorname{El}_x \cos x = -x \tan x$

弹性计算的特殊法则.

5. 10 El_xtan
$$x = \frac{x}{\sin x \cos x}$$
, El_xcot $x = \frac{-x}{\sin x \cos x}$

5.11 $\text{El}_x \ln x = 1/\ln x$, $\text{El}_x \log_a x = 1/\ln x$

5.12
$$\operatorname{El}_{i}f(\mathbf{x}) = \operatorname{El}_{x_{i}}f(\mathbf{x}) = \frac{x_{i}}{f(\mathbf{x})} \frac{\partial f(\mathbf{x})}{\partial x_{i}}$$

 $f(x) = f(x_1, \dots, x_n)$ 对于 x_i , $(i = 1, \dots, n)$ 的偏弹性.

5.13 如果 $z = F(x_1, \dots, x_n)$ 且 $x_i = f_i(t_1, \dots, t_m)$ 对于 $i = 1, \dots, n$ 成立,则对于所有 $j = 1, \dots, m$,有

 $\mathrm{El}_{t_j} z = \sum_{i=1}^n \mathrm{El}_i F(x_1, \dots, x_n) \mathrm{El}_{t_j} x_i$

弹性的链法则.

5.14 f 在x 的方向弹性,在方向 $x/\|x\|$ 上,是 $\operatorname{El}_{a}f(x) = \frac{\|x\|}{f(x)}f'_{a}(x) = \frac{1}{f(x)}\nabla f(x) \cdot x$

 $El_a f(x)$ 是对应于x每一元素增加百分之一时f(x)的近似百分比变化. $f'_a(x)$ 的定义见(4.27)—(4.28)

5.15 $\text{El}_{a}f(x) = \sum_{i=1}^{n} \text{El}_{i}f(x), \ a = \frac{x}{\|x\|}$

一个有用的事实 (Passus 方程).

5.16 $R_{yx} = \frac{f_1'(x, y)}{f_2'(x, y)}, f(x, y) = c$

y与x之间的边际 替代率(简称型) MRS), R_{yx} ,是的 每单位x减少时, 每单留在f的相同 水平曲线上,y的 近似增加值.

- 5.17 当 f 是一效用函数, x 和 y 是商品时, R_{yx} 称 为边际替代率(简称为 MRS).
 - 当 f 生产函数而x 和 y 是要素投入时, R_{xx} x x x x y (5.16) 的 x 同 x为边际技术替代率(简称为 MRTS).
 - ◆ 当 f(x, y) = 0 是隐含生产函数(对于给定 要素投入), 而 x 和 y 是两个产品时, R_{xx} 称为 边际产品转换率(简称为 MRPT)、

式. 参见第 25 章和 第 26 章.

v 与 x 之间的替代

5.19
$$\sigma_{yx} = \frac{\frac{1}{xf'_1} + \frac{1}{yf'_2}}{-\frac{f''_{11}}{(f'_1)^2} + 2\frac{f''_{12}}{f'_1f'_2} - \frac{f''_{22}}{(f'_2)^2}},$$

$$f(x, y) = c$$

替代弹性的另一种 公式.

5.20 如果 f(x, y)的齐次度为 1,则

$$\sigma_{yx} = \frac{f_1' f_2'}{f f_{12}''}$$

$$5.22 \quad \sigma_{ij} = \frac{\frac{1}{x_i f_i'} + \frac{1}{x_i f_i'}}{-\frac{f_{ii}''}{(f_i')^2} + \frac{2f_{ij}'}{f_i' f_i'} - \frac{f_{jj}''}{(f_i')^2}}, \ i \neq j$$

$$\cdots, \ x_n) = c.$$

参考文献

这些公式通常在微积分教材里找不到. 对于(5.4)—(5.20)参照如 Sydsaeter & Hammond (1995). 对于(5.21)—(5.22)参照 Blackorby & Russell (1989) 及 Fuss & McFadden (1978). 对于生产理论中的替代弹性,参照第 25 章.

方程组的一般形式,具有 n 个外生变量, x₁, …, x_n, 及 m 个内生变量, y₁, …, y_m.

$$6.2 \quad \frac{\partial f(x, y)}{\partial y} = \begin{pmatrix} \frac{\partial f_1}{\partial y_1} & \cdots & \frac{\partial f_1}{\partial y_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial y_1} & \cdots & \frac{\partial f_m}{\partial y_m} \end{pmatrix}$$

f₁, …, f_m 对于 y₁, …, y_m 的雅各 比矩阵.

6.3 假设 f_1 , …, f_m 是定义在 \mathbb{R}^{n+m} 里的集合 A 内的 C^k 函数, $(x^0, y^0) = (x_1^0, \dots, x_n^0, y_1^0, \dots, y_m^0)$ 为 (6.1) 的在 A 内的一个解. 同时假设 (6.2) 中的在 (x^0, y^0) 点的雅各比矩阵 $\partial f(x, y)/\partial y$ 的行列式不等于 0.则(6.1) 定义 y_1 , …, y_m 为在 (x^0, y^0) 的某一邻域内的 x_1 , …, x_n 的 C^k 函数,而且,对于 j=1, …, n

$$\begin{vmatrix} \frac{\partial y_1}{\partial x_j} \\ \vdots \\ \frac{\partial y_m}{\partial x_j} \end{vmatrix} = - \begin{vmatrix} \frac{\partial f_1}{\partial y_1} & \cdots & \frac{\partial f_1}{\partial y_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial y_1} & \cdots & \frac{\partial f_m}{\partial y_m} \end{vmatrix}^{-1} \begin{vmatrix} \frac{\partial f_1}{\partial x_j} \\ \vdots \\ \frac{\partial f_m}{\partial x_j} \end{vmatrix}$$

广义隐函数定理 (它是(6.1)中定义 内生变量 y₁, …, y_m 为外生变量 x₁, …, x_n 的可微函数 的充分条件.)

- 6.5 如果存在一组 k 个变量可自由选择,并且当 k 个变量给予特定值时,剩余的 n k 个具有单一解,则方程组(6.4)具有 k 个自由度.如果变量取值限定在 Rⁿ 中的集合 S 里,则方程组在 S 里有k 个自由度.
- 6.6 要寻找方程组的自由度,数一下变量的个数 n, 和方程的个数 m. 如果 n > m,则方程组有 n m 个自由度.如果 n < m,则在一般情况下方程组无解.
- 6.7 如果(6.3)中的条件得到满足,则方程组(6.1) 有 n 个自由度.

$$6.8 \quad f'(x) = \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1} & \cdots & \frac{\partial f_1(x)}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m(x)}{\partial x_1} & \cdots & \frac{\partial f_m(x)}{\partial x_n} \end{bmatrix}$$

6.10

6.9 如果 $x^0 = (x_1^0, \dots, x_n^0)$ 是(6.4)的一个解, $m \le n$, 雅各比矩阵的秩 f'(x)等于 m,则方程组(6.4)在 x^0 的某一邻域有 n - m 个自由度.

如果存在一个实 C^1 函数 F 定义在包含 S=

- $\{(f_1(x), \dots, f_m(x)); x \in A\}$ 的某一开集内,使 $F(f_1(x), \dots, f_m(x)) = 0$ 对于所有 $x \in A$ 成立,其中 $\nabla F \neq 0$ 在 S 内,则函数 $f_1(x)$, …, $f_m(x)$ 是在 \mathbb{R}^n 里的开集合 A 内函数相关的.
- 6.11 如果 $f_1(x)$, …, $f_m(x)$ 在开集 $A \subset \mathbb{R}^n$ 内是函数相关的,则雅各比矩阵 f'(x)的秩小于 m.

m 个方程, n 个变量的一般方程组.

方程组的自由度的 定义.

"计数法则",这是 一个粗略法则,并 不总是成立.

(局部)计数法则.

对于 x_1 , ..., x_n 的 f_1 , ..., f_m 的 f_m 见 f_m 见 f_m 的 f_m 是 f_m 的 f_m 是 f_m $f_$

函数相关的定义. (参见 Marsden & Hoffman (1993))

函数相关的必要条件.

6.12 如果方程组(6.4)有解,且如果 $f_1(x)$, …, $f_m(x)$ 是函数相关的,则(6.4)至少有一个多余方程.

$$6.13 \quad \det(f'(x)) = \begin{vmatrix} \frac{\partial f_1(x)}{\partial x_1} & \cdots & \frac{\partial f_1(x)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n(x)}{\partial x_1} & \cdots & \frac{\partial f_n(x)}{\partial x_n} \end{vmatrix}$$

- 6.14 如果 $f_1(x)$, …, $f_n(x)$ 是函数相关的,则行列式 $det(f(x)) \equiv 0$
- 6.15 $y_1 = f_1(x_1, \dots, x_n)$ $\cdots \qquad \Leftrightarrow \mathbf{y} = \mathbf{f}(\mathbf{x})$ $y_n = f_n(x_1, \dots, x_n)$
- 6.16 假设在(6.15)中的转换 f 是在 x^0 的邻域内的 C^1 转换,而且(6.13)中的雅各比行列式在 x^0 非零.则存在一个 C^1 转换 g,是 f 的局部逆转换,即 g(f(x)) = x 对于所有x 在 x^0 的某一邻域成立.
- 6.17 假设 f:R"→R" 是C¹,且存在正数 h 和 k 使 | det(f'(x))| ≥ h > 0 且 | ∂f_i(x)/∂x_i| ≤ k 对于所有 x 和所有i, j = 1, ···, n. 则 f 有一个定义在所有 R" 内的 C¹ 逆.
- 6.18 假设 $f: \mathbf{R}^n \to \mathbf{R}^n$ 是 C^1 转换而且对于所有 x 在 (6.13)中的行列式 $\neq 0$. 则 f(x)有一个逆是 C^1 函数且定义在所有 \mathbf{R}^n ,当且仅当 $\inf \| \| f(x) \| : \| x \| \geqslant n \} \to \infty$ 当 $n \to \infty$
- 6.19 假设 $f: \mathbb{R}^n \to \mathbb{R}^n$ 是 C^1 , 让 Ω 为长方形 $\Omega = \{x \in \mathbb{R}^n : a \leq x \leq b\}$, 其中 a 和 b 是在 \mathbb{R}^n 中的 给定向量. 则 f 在 Ω 中一一对应, 只要以下条件有一个对于所有 x 得到满足:
 - 雅各比矩阵 f'(x) 仅有严格为正的主子式.
 - 雅各比矩阵 f′(x)仅有严格为负的主子式.

计数法则无效的充 分条件.

 f_1, \dots, f_n 对于 x_1, \dots, x_n 的雅各 比行列式. (行列式 请参见第 20 章)

(6.11)的一个特例.逆定理一般并不成立.

从 Rⁿ→Rⁿ 的转换 f.

局部逆转换的存 在.

广义逆转换的存在.(Hadamard)

广义反函数定理.

Gale-Nikaido 定理. (对于主子式,参见 (20.15)) 6.20 一个 $n \times n$ 矩阵 $A(\mathbf{x} - \mathbf{z} \in \mathbf{z} \times \mathbf{x})$ 称为正准定性的,如果对于每一n 维向量 $\mathbf{x} \neq \mathbf{0}$, $\mathbf{x}'A\mathbf{x} > \mathbf{0}$.

正准定性的定义.

6.21 假设 $f: \mathbb{R}^n \to \mathbb{R}^n$ 是一个 C^1 函数,且假设雅各比矩阵 f'(x)是在一个凸集合 Ω 内正准定性的.则 f 是在 Ω 内的一一对应.

Gale-Nikaido 定理.

6.22 f:R"→R" 称为是一个收缩映射如果存在常数 k ∈ [0, 1) 使 || f(x) - f(y) || ≤ k || x - y || 对于所有 x ∈ R" 和y 在 R" 成立.

收缩映射的定义.

6.23 如果 $f: \mathbb{R}^n \to \mathbb{R}^n$ 是一个收缩映射,则 f 有一个唯一的不动点,即有一点 $x^* \in \mathbb{R}^n$ 使 $f(x^*) = x^*$.对于任一 $x_0 \in \mathbb{R}^n$ 我们有 $x^* = \lim_{n \to \infty} x_n$,其中 $x_n = f(x_{n-1})$ 对于 $n \ge 1$.

收缩映射中不动点的存在.(这一结论可一般化到完整的度量空间里.参见(18.26))

6.24 设 K 为一个在 R^n 中的非空紧凸集合, f 为一个从 K 到 K 映射的函数, 则 f 有一不动点 x^* $\in K$, 即有点 x^* 使 $f(x^*) = x^*$

Brouwer 不动点定理.

Brouwer 不动点定理当 n = 1 时的图示.

6.26 K 为一个在 R'' 中的紧凸集合, f 为一个对应, 使 K 中每一点 x 与一个K 的非空凸子集 f(x) 对应. 假设 f 是一个闭图形, 即集合

Kakutani 不 动 点 定 理. (参 见 (12.35) 关于 对 应 的 定义)

 $\{(x, y) \in \mathbb{R}^{2n} : x \in K \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \}$ 是在 \mathbb{R}^{2n} 内封闭的. 则 f 有一不动点,即一点 $x^* \in K$, 使 $x^* \in f(x^*)$. 6.27

Kakutani 不动点定理当 n = 1 时的图示.

6.28 如果 $x = (x_1, \dots, x_n)$ 和 $y = (y_1, \dots, y_n)$ 是在 R"中的两点,则 x 与y 的相交 $x \land y$ 和相并 $x \lor y$ 定义为:

 $x \land y = (\min\{x_1, y_1\}, \dots, \min\{x_n, y_n\})$

 $x \lor y = (\max\{x_1, y_1\}, \dots, \max\{x_n, y_n\})$

R" 中两个向量相 交与相并的定义.

6.29 在 R"内的集合 S 称为 R"的一个子格,如果 S 中的任何两点的相交和相并都在 S 内. 如果 S 同时也是一个紧集合,则 S 称为一个紧子格.

R"的(紧)子格的 定义.

6.30 设 S 为 R^n 的一个非空紧子格. 若 $f: S \rightarrow S$ 为一个递增函数, 例如 $x, y \in S$ 当 $x \leq y$ 时隐含 $f(x) \leq f(y)$. 则, f 在 S 上有一不动点, 即有点 $x^* \in S$ 使 $f(x^*) = x^*$

Tarski 不动点定理.(这一定理不适用于递减函数.参见(6.31))

x*是左图中递增函数的不动点.另一图中的递减函数 无不动点.

m 个方程,n 个未 知数的一般线性方 程组.

6.33
$$\mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

$$\mathbf{A_b} = \begin{bmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ a_{21} & \cdots & a_{2n} & b_2 \\ \vdots & & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{bmatrix}$$

A = (6.32)的系数 矩阵, $A_b = "扩展$ 系数矩阵".

- 6.34 当且仅当 $r(A) = r(A_b)$ 时,方程组(6.32) 至少有一个解.
 - 如果 $r(A) = r(A_b) = k < m$, 则方程组 (6.32)有 m k 个多余方程.
 - 如果 r(A) = r(A_b) = k < n,则方程组
 (6.32)有
 n k 个自由度.

线性方程组的主要结论, r(B)是矩阵 B 的 秩.(参见(19.23))

m 个方程, n 个未 知数的一般齐次线 性方程组.

6.36 ● 当且仅当 r(A) < n, 齐次方程组(6.35)有 一非零解.

齐次线性方程组的 重要结论、

◆ 如果 n = m,则当且仅当 |A| = 0 时,齐次方程组(6.35)有非零解.

参考文献

对于(6.1)—(6.16)和(6.22)—(6.23),参见 Rudin (1982),或 Marsden & Hoffman (1993).对于(6.17)—(6.21)参见 Parthasarathy (1983).对于 Brouwer 和 Kakutani 的不动点定理,参见 Nikaido (1970)或 Scarf (1973).对于 Tarski 的不动点定理以及相关材料,参见 Sundaram (1996).(6.34)—(6.36)是线性代数中的一般结论,参见 Fraleigh & Beauregard (1995)或 Lang (1987).

7.1
$$||a|-|b|| \leq |a \pm b| \leq |a|+|b|$$

7.3
$$\frac{2}{1/a_1 + 1/a_2} \le \sqrt{a_1 a_2} \le \frac{a_1 + a_2}{2}$$

7.4
$$a_1^{\lambda_1} \cdots a_n^{\lambda_n} \leqslant \lambda_1 a_1 + \cdots + \lambda_n a_n$$

7.5
$$a_1^{\lambda}a_2^{1-\lambda} \leqslant \lambda a_1 + (1-\lambda)a_2$$

7.6
$$\sum_{i=1}^{n} |a_{i}b_{i}| \leq \left[\sum_{i=1}^{n} |a_{i}|^{p} \right]^{1/p} \left[\sum_{i=1}^{n} |b_{i}|^{q} \right]^{1/q}$$

7.7
$$\left[\sum_{i=1}^{n} |a_{i}b_{i}|\right]^{2} \leq \left[\sum_{i=1}^{n} a_{i}^{2}\right] \left[\sum_{i=1}^{n} b_{i}^{2}\right]$$

三角不等式. a, b

$$(7.2)$$
当 $n=2$.

p, q > 1, 1/p +

7.8
$$\left[\sum_{i=1}^n a_i\right] \left[\sum_{i=1}^n b_i\right] \leqslant n \sum_{i=1}^n a_i b_i$$

7.9
$$\left[\sum_{i=1}^{n}|a_{i}+b_{i}|^{p}\right]^{1/p} \leqslant \left[\sum_{i=1}^{n}|a_{i}|^{p}\right]^{1/p} + \begin{vmatrix} Minkowski & 不 等 \\ \stackrel{\cdot}{\lesssim} . p \geqslant 1. 等号只 \\ \stackrel{\cdot}{\lesssim} |b_{i}|^{p} \end{vmatrix}^{1/p}$$

$$\left[\sum_{i=1}^{n}|b_{i}|^{p}\right]^{1/p}$$
 对于一个非负数 c

7.10 如果
$$f$$
 是凸的,则 $f\left[\sum_{i=1}^{n} a_{i}x_{i}\right] \leqslant \sum_{i=1}^{n} a_{i}f(x_{i})$
$$\sum_{i=1}^{n} a_{i} = 1, \ a_{i} \geqslant 0,$$

7.11
$$\left[\sum_{i=1}^{n} |a_{i}|^{q}\right]^{1/q} \leq \left[\sum_{i=1}^{n} |a_{i}|^{p}\right]^{1/p}$$

7.13
$$\left[\int_{a}^{b} f(x)g(x)dx\right]^{2} \leqslant \int_{a}^{b} (f(x))^{2}dx \int_{a}^{b} (g(x))^{2}dx$$

7.14
$$\left[\int_{a}^{b} |f(x) + g(x)|^{p} dx \right]^{1/p} \leq$$

$$\left[\int_{a}^{b} |f(x)|^{p} dx \right]^{1/p} + \left[\int_{a}^{b} |g(x)|^{p} dx \right]^{1/p}$$

$$\left[\int_{a}^{b} |f(x)|^{p} dx \right]^{1/p} + \left[\int_{a}^{b} |g(x)|^{p} dx \right]^{1/p}$$

$$\left[\int_{a}^{b} |f(x)|^{p} dx \right]^{1/p} + \left[\int_{a}^{b} |g(x)|^{p} dx \right]^{1/p}$$

$$\left[\int_{a}^{b} |f(x)|^{p} dx \right]^{1/p} + \left[\int_{a}^{b} |g(x)|^{p} dx \right]^{1/p}$$

$$\left[\int_{a}^{b} |f(x)|^{p} dx \right]^{1/p} + \left[\int_{a}^{b} |g(x)|^{p} dx \right]^{1/p}$$

$$\left[\int_{a}^{b} |f(x)|^{p} dx \right]^{1/p} + \left[\int_{a}^{b} |g(x)|^{p} dx \right]^{1/p}$$

$$\left[\int_{a}^{b} |f(x)|^{p} dx \right]^{1/p} + \left[\int_{a}^{b} |g(x)|^{p} dx \right]^{1/p}$$

$$\left[\int_{a}^{b} |f(x)|^{p} dx \right]^{1/p} + \left[\int_{a}^{b} |g(x)|^{p} dx \right]^{1/p}$$

7.15 如果 f 是凸的,则

$$f(\int a(x)g(x)dx) \le \int a(x)f(g(x))dx$$

Jensen 不等式. $a(x) \ge 0$, $f(u) \ge$ 0, $\int a(x) dx = 1$. f定义在 g 的值域 里.

7.16 如果 f 在 I 区间里是凸的, X 是一个有有限期 望值的随机变量,则

$$f(E[X]) \leqslant E[f(X)]$$

如果 f 是严格凸的,不等号严格成立,除非 X 是概率为 1 的常数.

Jensen 不等式的特殊情况. E 是期望值符号.

7.17 如果 U 在 I 区间里是凹的,X 是一个有有限期望值的随机变量,则

$$E[U(X)] \leqslant U(E[X])$$

效用理论的一个重要现象.(在(7.16)中代人 f = -U得到.)

参考文献

关于不等式的较好的参考文献仍为 Hardy, Littlewood, & Pólya (1952).

8.1
$$\sum_{i=0}^{n-1} (a + id) = na + \frac{n(n-1)d}{2}$$

8.2
$$a + ak + ak^2 + \cdots + ak^{n-1} = a \frac{1 - k^n}{1 - k}, k \neq 1$$

8.3
$$a + ak + \cdots + ak^{n-1} + \cdots = \frac{a}{1-k}$$

 $y \neq k < 1$

8.4
$$a_1 + a_2 + \dots + a_n + \dots = s$$
 指
$$\lim_{n \to \infty} (a_1 + a_2 + \dots + a_n) = s$$

8.5
$$a_1 + \cdots + a_n + \cdots$$
 收敛 $\Rightarrow \lim_{n \to \infty} a_n = 0$

$$8.6$$
 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ 收敛

8.7
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \Rightarrow \sum_{n=1}^{\infty} a_n$$
 发散

8.8 如果 $\sum a_n$ 是一个仅有正项的级数, f(x) 是一个定义在 $x \ge 1$ 的正值递减的连续函数,且如果 $f(n) = a_n$ 对于所有整数 $n \ge 1$ 成立,则无穷级数和广义积分

$$\sum_{n=1}^{\infty} a_n \, \, n \int_{1}^{\infty} f(x) \, \mathrm{d}x$$

或都收敛,或都发散.

算术级数的前 n 项之和.

| 几何级数的前 n | 项之和.

无穷几何级数之 和.

无穷级数收敛的定义,如果级数不收敛,则是发散的.

无穷级数收敛的一个必要(但不是充分)条件.

比率测试.

比率测试.

积分测试.

- 如果 $0 \le a_n \le b_n$ 对于所有 n 成立,则 8.9
 - Σa , 收敛,如果 Σb , 收敛.
 - $\sum b_n$ 发散,如果 $\sum a_n$ 发散.

8.10 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ 是收敛的 $\Leftrightarrow p > 1$

8.11 $f(x) \approx f(a) + f'(a)(x - a)$ (x 在a 附近)

8. 12 $f(x) \approx f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-b)$ 在 x = a 点的二阶 $(x \neq a)^2$ (二次)近似 (x 在a 附近)

8.13 $f(x) = f(0) + f'(0) \frac{x}{1!} + \dots + f^{(n)}(0) \frac{x^n}{n!}$ $+ f^{(n+1)}(\theta x) \frac{x^{n+1}}{(n+1)!}, 0 < \theta < 1$

8.14 $f(x) = f(0) + f'(0) \frac{x}{11} + f''(0) \frac{x^2}{2!} + \cdots$

8. 15 $f(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \cdots +$ $\frac{f^{(n)}(a)}{n!}(x-a)^n$ $+\frac{f^{(n+1)}(a+\theta(x-a))}{(n+1)!}(x-a)^{n+1},$ $0 < \theta < 1$

8.16 $f(x) = f(a) + \frac{f'(a)}{1!}(x-a) +$ $\frac{f''(a)}{2!}(x-a)^2 + \cdots$

 $\mathbf{E} x = a$ 点的一阶 (线性)近似.

Maclaurin 公式. 最后一项为拉格朗

f(x)的 Maclaurin 级数,对于当 n 接 近∞, (8.13)中的 误差项趋向于 0 的 x 成立.

差项.

f(x)的泰勒级数, 对于(8.15)中当 n

8.17
$$f(x, y) \approx f(a, b) + f'_1(a, b)(x - a) + f'_2(a, b)(y - b)((x, y)$$
接近于 (a, b))

f(x, y)在(a, b)附近的一阶(线性) 近似.

8.18
$$f(x, y) \approx f(a, b) + f'_1(a, b)(x - a) + f'_2(a, b)(y - b) + \frac{1}{2} [f''_{11}(a, b)(x - a)^2 + 2f''_{12}(a, b)(x - a)(y - b) + f''_{22}(a, b)(y - b)^2]$$

f(x, y)在(a, b) 附近的二阶(二次) 近似.

8.19
$$f(x) = f(a) + \sum_{i=1}^{n} f'_{i}(a)(x_{i} - a_{i})$$
$$+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} f''_{ij}(a + \theta(x - a))(x_{i} - a_{i})(x_{j} - a_{j})$$

有n个变量的函数的泰勒公式, θ $\in (0,1)$.

8.20
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

对于所有 x 成立.

8.21
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

对于 - 1 < x ≤ 1 成立.

8.22
$$(1+x)^m = {m \choose 0} + {m \choose 1} x + {m \choose 2} x^2 + \cdots$$

对于 -1 < x < 1成立. $\binom{m}{k}$ 的定义 参见(8.27).

8.23
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \cdots$$

对于所有 x 成立.

8.24
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \cdots$$

对于所有 x 成立.

8.25
$$\arcsin x = x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} + \cdots$$

対于 | x | ≤ 1 成 立.

8.26
$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

对于 |x| ≤ 1 成立.

8.27
$$\binom{m}{k} = \frac{m(m-1)\cdots(m-k+1)}{k!}, \binom{m}{0} = 1$$

二项式系数.(m 是一任意实数,k 是一自然数)

8.28
$$\sum_{i=0}^{n} {n \choose i} a^{n-i} b^{i} = (a+b)^{n}$$

Newton 二項式公式,

8.29
$$\sum_{i=0}^{n} {n \choose i} = (1+1)^n = 2^n$$

(8.28)的特殊情况.

$$8.30 \quad \sum_{i=r}^{n} {i \choose r} = {n+1 \choose r+1}$$

二项式系数的特性.

8.31
$$\sum_{i=0}^{j} {n \choose i} {m \choose j-i} = {n+m \choose j}$$

8.32
$$\sum_{i=0}^{n} i \binom{n}{i} = n2^{n-1}$$

8.33
$$\sum_{i=0}^{n} i^2 \binom{n}{i} = (n^2 + n)2^{n-2}$$

$$8.34 \quad \sum_{i=0}^{n} \binom{n}{i}^2 = \binom{2n}{n}$$

8.35
$$(a_1 + a_2 + \dots + a_m)^n =$$

$$\sum_{k_1 + \dots + k_m = n} \frac{n!}{k_1! \cdots k_m!} a_1^{k_1} \cdots a_m^{k_m}$$

多项式公式.

8.36
$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

求和公式.

8.37
$$1+3+5+\cdots+(2n-1)=n^2$$

8.38
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

8.39
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

8.40
$$1^4 + 2^4 + 3^4 + \dots + n^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30}$$

8.41 $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots = \frac{\pi^2}{6}$

8. 42
$$\lim_{n\to\infty} \left[\left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n} \right) - \ln n \right] = \gamma \approx$$

$$0.5772\dots$$

常数γ称为欧拉常 数,

参考文献

所有这些公式都是标准的,通常可在微积分教材里找到,例如 Edwards & Penney (1998).对于二项式系数,请参考概率理论教材.

不定积分

9.1
$$\int f(x) dx = F(x) + C \Leftrightarrow F'(x) = f(x)$$

9.2
$$\int (af(x) + bg(x))dx = a \int f(x)dx + b \int g(x)dx$$

9.3
$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

9.4
$$\int f(x)dx = \int f(g(t))g'(t)dt$$
, $x = g(t)$

9.5
$$\int x^n dx = \begin{cases} \frac{x^{n+1}}{n+1} + C, & n \neq -1 \\ \ln|x| + C, & n = -1 \end{cases}$$

9.6
$$\int a^x dx = \frac{1}{\ln a} a^x + C, \ a > 0, \ a \neq 1$$

$$9.7 \quad \int e^x dx = e^x + C$$

$$9.8 \quad \int x e^x dx = x e^x - e^x + C$$

9.9
$$\int x^n e^{ax} dx = \frac{x^n}{a} e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx$$
, $a \neq 0$

9.10
$$\int \log_a x dx = x \log_a x - x \log_a e + C, \ a > 0,$$
$$a \neq 1$$

$$9.11 \quad \int \ln x dx = x \ln x - x + C$$

不定积分的定义.

积分的线性性. a 和b 是常数.

分部积分法.

改变变量(变换积 分法).

特殊积分.

·. —- ·

9.12
$$\int x^n \ln x \, dx = \frac{x^{n+1}((n+1)\ln x - 1)}{(n+1)^2} + C$$

$$9.13 \quad \int \sin x \, \mathrm{d}x = -\cos x + C$$

$$9.14 \quad \int \cos x \, \mathrm{d}x = \sin x + C$$

$$9.15 \quad \int \tan x \, \mathrm{d}x = -\ln |\cos x| + C$$

$$9.16 \quad \int \cot x \, \mathrm{d}x = \ln|\sin x| + C$$

$$9.17 \int \frac{1}{\sin x} dx = \ln \left| \frac{1 - \cos x}{\sin x} \right| + C$$

$$9.18 \int \frac{1}{\cos x} dx = \ln \left| \frac{1 + \sin x}{\cos x} \right| + C$$

$$9.19 \quad \int \frac{1}{\sin^2 x} \mathrm{d}x = -\cot x + C$$

$$9.20 \quad \int \frac{1}{\cos^2 x} \mathrm{d}x = \tan x + C$$

9.21
$$\int \sin^2 x \, dx = \frac{1}{2}x - \frac{1}{2}\sin x \cos x + C$$

9.22
$$\int \cos^2 x \, dx = \frac{1}{2}x + \frac{1}{2}\sin x \cos x + C$$

$$9.23 \int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx$$

9.24
$$\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx$$
 $(n \neq 0)$

9.25
$$\int e^{\alpha x} \sin \beta x dx = \frac{e^{\alpha x}}{\alpha^2 + \beta^2} (\alpha \sin \beta x - \beta \cos \beta x) + C \qquad (\alpha^2 + \beta^2 \neq 0)$$

9.26
$$\int e^{\alpha x} \cos \beta x \, dx = \frac{e^{\alpha x}}{\alpha^2 + \beta^2} (\beta \sin \beta x + \alpha \cos \beta x) + C \qquad \left(\alpha^2 + \beta^2 \neq 0 \right)$$

$$(n \neq 0)$$

$$(n \neq 0)$$

$$(\alpha^2 + \beta^2 \neq 0)$$

$$(\alpha^2 + \beta^2 \neq 0)$$

9.27
$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

· 特殊积分.(a≠0)

$$9.28 \quad \int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C$$

 $(a \neq 0)$

$$9.29 \quad \int \frac{1}{\sqrt{a^2 - x^2}} \mathrm{d}x = \arcsin \frac{x}{a} + C$$

(a>0)

9.30
$$\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

9.31
$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$$

9.32
$$\int \sqrt{x^2 \pm a^2} dx = \frac{x}{2} \sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln |x + \sqrt{x^2 \pm a^2}| + C$$

9.33
$$\int \frac{dx}{ax^2 + 2bx + c} = \frac{1}{2\sqrt{b^2 - ac}} \ln \left| \frac{ax + b - \sqrt{b^2 - ac}}{ax + b + \sqrt{b^2 - ac}} \right| + C$$
 $(b^2 > ac, a \neq 0)$

9.34
$$\int \frac{dx}{ax^2 + 2bx + c} = \frac{1}{\sqrt{ac - b^2}} \arctan \frac{ax + b}{\sqrt{ac - b^2}} + C$$
 (b² < ac)

9.35
$$\int \frac{\mathrm{d}x}{ax^2 + 2bx + c} = \frac{-1}{ax + b} + C$$

定积分

9.36 $\int_a^b f(x) dx = \Big|_a^b F(x) = F(b) - F(a)$ 如果 F'(x) = f(x) 对于所有在[a, b]中的 x成立.

9.37
$$\bullet A(x) = \int_{a}^{x} f(t) dt \Rightarrow A'(x) = f(x)$$

 $\bullet A(x) = \int_{x}^{b} f(t) dt \Rightarrow A'(x) = -f(x)$

重要事实.

9.38

阴影面积为 A(x)= $\int_a^x f(t)dt$, 面积 函数 A(x)的导数 是 A'(x) = f(x).

9.39
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$
$$\int_{a}^{a} f(x) dx = 0$$
$$\int_{a}^{b} \alpha f(x) dx = \alpha \int_{a}^{b} f(x) dx$$
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

a, b, c 和 α 是任 意实数.

9.40
$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du,$$

 $u = g(x)$

改变变量(变换积分).

9.41 $\int_{a}^{b} f(x)g'(x)dx =$ $\begin{vmatrix} b \\ a \end{vmatrix} f(x)g(x) - \int_{a}^{b} f'(x)g(x)dx$

分部积分法。

9.42 $\int_{a}^{\infty} f(x) dx = \lim_{M \to \infty} \int_{a}^{M} f(x) dx$

如果极限存在,积 分是收敛的.(相反 的情况,积分是发 散的.)

9.43 $\int_{-\infty}^{b} f(x) dx = \lim_{N \to \infty} \int_{-N}^{b} f(x) dx$

如果极限存在,积分是收敛的.(相反的情况,积分是发 散的.)

9.45
$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{+\infty} f(x) dx$$
$$= \lim_{N \to \infty} \int_{-N}^{a} f(x) dx + \lim_{M \to \infty} \int_{a}^{M} f(x) dx$$

9.46
$$\int_{a}^{b} f(x) dx = \lim_{h \to 0^{+}} \int_{a+h}^{b} f(x) dx$$

9.47
$$\int_{a}^{b} f(x) dx = \lim_{h \to 0^{+}} \int_{a}^{b-h} f(x) dx$$

9.49
$$|f(x)| \le g(x)$$
 对于所有 $x \ge a \Rightarrow$

$$\left| \int_{a}^{\infty} f(x) dx \right| \le \int_{a}^{\infty} g(x) dx$$

9.50
$$\frac{\mathrm{d}}{\mathrm{d}x} \int_a^b f(x, t) \mathrm{d}t = \int_a^b f_x'(x, t) \mathrm{d}t$$

(9.42)和(9.43)的 图示. 左图中阴影 面积为 $\int_{a}^{M} f(x) dx$, 右图中阴影面积为 $\int_{-N}^{b} f(x) dx$.

如果等号右边的极限一定存在,且 a 是任一数,则称积分为收敛的.(如果有一个极限不存在,则积分为发散的)

在区间(a, b]内连 续函数 f 的积分的 定义.

在区间[a,b)内连 续函数 f 的积分的 定义.

(9.47)中定义的图示. 阴 影 面 积 为 $\int_a^{b-h} f(x) dx.$

积分的比较测试. f 和 g 在 $x \ge a$ 连续.

"在积分号内微分."a和b独立于x.

9.51
$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{c}^{\infty} f(x, t) \mathrm{d}t = \int_{c}^{\infty} f'_{x}(x, t) \mathrm{d}t$$

9.52
$$\frac{d}{dx} \int_{u(x)}^{v(x)} f(x, t) dt = f(x, v(x)) v'(x) - f(x, u(x)) u'(x) + \int_{u(x)}^{v(x)} f'_x(x, t) dt$$

9.53
$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt, \ x > 0$$

9.54

9.55
$$\Gamma(x+1) = x\Gamma(x)$$
 对于所有 $x > 0$

9.56
$$\Gamma(n) = (n-1)!$$
 当 n 是一个正整数时.

9.57
$$\int_{-\infty}^{+\infty} e^{-at^2} dt = \sqrt{\pi/a} \quad (a > 0)$$

对于(a, b)中的 x 成立,如果 f(x, t) 和 $f_x(x, t)$ 对于所 有 $t \ge c$ 和所有在 (a, b) 中的 x 连 续,且 $\int_c^\infty f(x, t) dt$ 以及 $\int_c^\infty f_x(x, t) dt$ 在(a, b)上单调收 数.

莱布尼兹公式.

伽马函数.

伽马函数的图形. 极小值 ≈ 0.8856 在 x ≈ 1.4616.

伽马函数的函数方程.

直接从函数方程得到.

一个重要的公式。

依据(9.57), 阴影 部分面积是 $\sqrt{\pi/a}$.

9.59
$$\int_0^\infty t^k e^{-at^2} dt = \frac{1}{2} a^{-(k+1)/2} \Gamma((k+1)/2)$$

9.60 $\Gamma(x) = \sqrt{2\pi} x^{x-\frac{1}{2}} e^{-x} e^{\theta/12x}, x > 0,$ $\theta \in (0, 1)$

9.61
$$B(p, q) = \int_0^1 u^{p-1} (1-u)^{q-1} du, p, q > 0$$

9.62
$$B(p, q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

9.63
$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2n} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right]$$

9.64 如果 f 是在[a, b]中的 C^2 ,且 $|f''(x)| \leq M$ 对于所有 $x \in [a, b]$ 成立,则 $M(b-a)^3/12n^2$ 是(9.63)中近似误差的上限.

9.65
$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{6n} D, 其中 D = f(x_{0}) + 4 \sum_{i=1}^{n} f(x_{2i-1}) + 2 \sum_{i=1}^{n-1} f(x_{2i}) + f(x_{2n})$$

9.66 如果 f 是在[a, b]内的 C^4 函数,且 $f^{(4)}(x)$ $| \leq M$ 对于所有 $x \in [a, b]$ 成立,则 $M(b - a)^5/180n^4$ 是(9.65)中近似误差的上限.

多重积分

9.67
$$\iint_{R} f(x, y) dxdy = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx$$
$$= \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy$$

对于 a > 0, k > - 1 成立.

Stirling 公式.

贝塔函数.

贝塔函数和伽马函数的关系. 梯形公式,

$$\begin{vmatrix} x_i = a + i \frac{b-a}{n}, i = \\ 0, \dots, n. \end{vmatrix}$$

梯形误差估计.

辛普森公式. 点 $x_j = a + j \frac{b-a}{2n}$, $j = 0, \dots, 2n$, 将 [a, b]分为 2n个 相等的子区间.

辛普森误差估计.

f(x, y)在长方形 $R = [a, b] \times$ [c, d]上的双重积 分的定义.(根据 Fubini 定理,后两 个积分对于连续函 数是相等的.)

9.68
$$V = \int_a^b \left(\int_{u(x)}^{v(x)} f(x, y) dy \right) dx$$

9.69
$$V = \int_{c}^{d} \left(\int_{p(y)}^{q(y)} f(x, y) dx \right) dy$$

图 A 中函数 f(x,y)在区域 Ω 上的双重积分.

图 B 中函数 f(x, y)在区域 Ω 上的双重积分.

9.70 $F'_{xy}(x, y) = f(x, y), (x, y) \in [a, b] \times [c, d] \Rightarrow \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy = F(b, d) - F(a, d) - F(b, c) + F(a, c)$

一个有趣的结论. f(x, y)是一个连续函数.

9.71
$$\iint_{A} f(x, y) dx dy$$
$$= \iint_{A} f(g(u, v), h(u, v)) + J + du dv$$

9.72
$$\iint \cdots \int_{\Omega} f(x) dx_1 \cdots dx_{n-1} dx_n =$$

$$\int_{a_n}^{b_n} \left(\int_{a_{n-1}}^{b_{n-1}} \cdots \left(\int_{a_1}^{b_1} f(x) dx_1 \right) \cdots dx_{n-1} \right) dx_n$$

f 在一个n 维长方体 Ω 上的 n 重积分. $x = (x_1, \dots, x_n)$.

9. 73
$$\int \cdots \int_{A} f(x dx_{1} \cdots dx_{n}) = \int \cdots \int_{A'} f(g_{1}(u), \cdots, u) \int_{A'} f(g_{1}(u), \cdots, u)$$

参考文献

大多数公式都可在一般微积分数材里找到,例如 Edwards & Penney (1998). 对于(9.67)—(9.73)参照 Marsden & Hoffman (1993),其中对于多重积分里有精确的描述.(不是所有必要的假设都在多重积分的章节里得到了详细解释.)

10.1
$$x_t = a_t x_{t-1} + b_t, t = 1, 2, \cdots$$

10.2
$$x_t = \left(\prod_{s=1}^t a_s\right) x_0 + \sum_{k=1}^t \left(\prod_{s=k+1}^t a_s\right) b_k$$

10.3
$$x_t = a^t x_0 + \sum_{k=1}^t a^{t-k} b_k, t = 1, 2, \cdots$$

10.4 •
$$x_t = Aa^t + \sum_{s=0}^{\infty} a^s b_{t-s}, |a| < 1$$

• $x_t = Aa^t - \sum_{s=1}^{\infty} \left(\frac{1}{a}\right)^s b_{t+s}, |a| > 1$

10.5
$$x_t = ax_{t-1} + b \Leftrightarrow$$

$$x_t = a^t \left(x_0 - \frac{b}{1-a} \right) + \frac{b}{1-a}$$

10.6 (*)
$$x_t + a_1(t)x_{t-1} + \dots + a_n(t)x_{t-n} = b_t$$

(**) $x_t + a_1(t)x_{t-1} + \dots + a_n(t)x_{t-n} = 0$

10.7 如果 $u_1(t), \dots, u_n(t)$ 是(10.6)(**)的线性无 关的解, u_t^* 是(10.6)(*)的某一特殊解,且 C_1 , …, C_n 是任意常数,则(**)的一般解是 $x_t = C_1 u_1(t) + \dots + C_n u_n(t)$ 而(*)的一般解是 $x_t = C_1 u_1(t) + \dots + C_n u_n(t) + u_t^*$ 一阶线性差分方程.

(10.1)的解,如果 定义乘积

 $\prod_{s=t+1}^{t} a_s$, 且其 0 项值为 1.

当 $a_i = a$ 为常数 时,(10.1)的解.

(10.1)的后向和前向解,其中 $a_r = a$,且 A 是一个任意常数.

当 $a_t = a \neq 1$, $b_t = b$ 时, 方程 (10.1) 及其解.

(*)是 n 阶一般 线性非齐次差分方 程,而(**)是相对 应的齐次方程.

(10.6)解的一般结构.(关于线性无关,参见(11.15))

10.8
$$\pm b \neq 0$$
, $x_t + ax_{t-1} + bx_{t-2} = 0$ $\uparrow R$:

• 对于
$$\frac{1}{4}a^2 - b > 0$$
: $x_t = C_1 m_1^t + C_2 m_2^t$,

其中
$$m_{1,2} = -\frac{1}{2}a \pm \sqrt{\frac{1}{4}a^2 - b}$$
.

$$\bullet 对于 \frac{1}{4}a^2 - b = 0:$$

$$x_t = (C_1 + C_2 t)(-a/2)^t$$
.

• 对于
$$\frac{1}{4}a^2 - b < 0$$
:

$$x_t = Ar^t \cos(\theta t + \omega),$$

其中
$$r = \sqrt{b}$$
 面 $\cos \theta = -\frac{a}{2\sqrt{b}}$, $\theta \in [0, \pi]$.

具有常数系数 a 和 b 的二阶线性齐次 差分方程的解. C_1 , C_2 和 ω 是任意常数.

10.9 若求

 $(*) x_t + ax_{t-1} + bx_{t-2} = c_t, b \neq 0$ 的一个特殊解,应用下列测试函数,及待定系数 法来决定常数:

- 如果 $c_t = c$, 測试 $u_t^* = A$.
- 如果 $c_t = ct + d$, 測试 $u_t^* = At + B$.
- 如果 $c_t = t^n$, 測试 $u_t^* = A_0 + A_1 t + \cdots + A_n t^n$.
- 如果 $c_t = c^t$, 測试 $u_t^* = Ac^t$.
- 如果 $c_t = a \sin ct + \beta \cos ct$,测试 $u_t^* = A \sin ct + B \cos ct$.

10.10 (*)
$$x_t + a_1 x_{t-1} + \dots + a_n x_{t-n} = b_t$$

(**) $x_t + a_1 x_{t-1} + \dots + a_n x_{t-n} = 0$

10.11
$$m^n + a_1 m^{n-1} + \cdots + a_{n-1} m + a_n = 0$$

| 具有常数系数的线 | 性差分方程。

(10.10)的特征方程,它的根称为特征值,

10.12 假设特征方程(10.11)有 n 个不同的根 λ₁, ..., λ_n, 定义

$$\theta_r = \frac{\lambda_r}{\prod\limits_{\substack{1 \leq s \leq n \\ s \neq r}} (\lambda_r - \lambda_s)}, \ r = 1, 2, \dots, n$$

(10.10)(*)的一个特殊解为

$$u_t^* = \sum_{r=1}^n \theta_r \sum_{i=0}^\infty \lambda_r^i b_{t-i}$$

- 10.13 要得到(10.10)(**)的 n 个线性无关的解: 先找到特征方程(10.11)的所有解,然后:
 - 任一实根 m_i 和重数 1 给出解 m_i.
 - ◆任一实根 m_j 和重数 p > 1 给出解 m_j^t , tm_j^t , ..., $t^{p-1}m_i^t$.
 - 任意一对复根 $m_k = \alpha + i\beta$, $m_k = \alpha i\beta$ 和 重数 1 给出解 $r^t \cos \theta t$, $r^t \sin \theta t$, 其中 $r = \sqrt{\alpha^2 + \beta^2}$, 且 $\theta \in [0, \pi]$ 满足 $\cos \theta = \frac{\alpha}{r}$, $\sin \theta = \frac{\beta}{r}$.
 - 任意一对复根 $m_e = \lambda + i\mu$, $\overline{m}_e = \lambda i\mu$ 和 因子 q > 1 给出解 u , v , tu , tv , \cdots , t^{q-1} u , $t^{q-1}v$, 其中 $u = s^t \cos \varphi t$, $v = s^t \sin \varphi t$, $s = \sqrt{\lambda^2 + \mu^2}$, 且 $\varphi \in [0, \pi]$ 满足 $\cos \varphi = \frac{\lambda}{s}$ 和 $\sin \varphi = \frac{\mu}{s}$.
- 10.14 如果齐次方程(10.10)(**)的任一解当 t→
 ∞时都趋向于 0,则方程(10.10)称为(整体渐近)稳定的。
- 10.15 方程(10.10)称为稳定的,当且仅当特征方程 (10.11)所有根的模数小于1.

(10.10)(*)的后 向解,当 $|\lambda_r| < 1$ 对 $r = 1, \dots, n$ 成 立时成立.

求(10.10)(**) 的 n 个线性无关 解的一般方法.

常系数的线性方程 的稳定性的定义.

(10.10)(*)(或(**))的稳定性的标准.

$$\begin{vmatrix} 1 & a_n \\ a_n & 1 \end{vmatrix} > 0, \begin{vmatrix} 1 & 0 & a_n & a_{n-1} \\ a_1 & 1 & 0 & a_n \\ a_n & 0 & 1 & a_1 \\ a_{n-1} & a_n & 0 & 1 \end{vmatrix} > 0, \dots$$

10.17
$$x_t + a_1 x_{t-1} = b_t$$
 是稳定的 $\iff |a_1| < 1$

(10.15)和(10.16)的特例。

10.18
$$x_t + a_1 x_{t-1} + a_2 x_{t-2} = b_t$$
 是稳定的

$$b_t$$
 是稳定的
$$\Leftrightarrow \begin{cases} 1-a_2>0 & (10.15) \text{和}(10.16) \\ 1-a_1+a_2>0 & \text{的特例}. \end{cases}$$

10.19
$$x_t + a_1 x_{t-1} + a_2 x_{t-2} + a_3 x_{t-3} = b_t$$
 是稳定的

$$\Leftrightarrow \begin{cases} 3 - a_2 > 0 \\ 1 - a_2 + a_1 a_3 - a_3^2 > 0 \\ 1 + a_2 - |a_1 + a_3| > 0 \end{cases}$$

(10.15)和(10.16) 的特例.

10.20
$$x_t + a_1 x_{t-1} + a_2 x_{t-2} + a_3 x_{t-3} + a_4 x_{t-4} = b_t$$
 是稳定的⇔

$$\begin{cases} 1 - a_4 > 0 \\ 3 + 3a_4 - a_2 > 0 \\ 1 + a_2 + a_4 - |a_1 + a_3| > 0 \\ (1 - a_4)^2 (1 + a_4 - a_2) > (a_1 - a_3)(a_1 a_4 - a_3) \end{cases}$$

(10.15)和(10.16)

10.21
$$x_1(t) = a_{11}(t)x_1(t-1) + \cdots + a_{1n}(t)x_n(t-1) + b_1(t)$$

$$x_n(t) = a_{n1}(t)x_1(t-1) + \cdots + a_{nn}(t)x_n(t-1) + b_n(t)$$

线性差分方程组.

10.22
$$x(t) = A(t-1)x(t) + b(t), t = 1, 2, \cdots$$

| (10.21)的矩阵形式.x(t)和b(t)是 $n \times 1$, $A(t) = (a_{ii}(t))$ 是 $n \times n$.

10.23
$$x(t) = A^{t}x(0) + (A^{t-1} + A^{t-2} + \cdots + A + I)b$$

当 A(t) = A, b(t)= b 时 (10.22)的解.

10.24
$$x(t) = \mathbf{A}x(t-1) \Leftrightarrow x(t) = \mathbf{A}^t x(0)$$

(10.23)的一个特例,其中 b = 0, 且 $A^0 = 1$.

如果 A 是一个 $n \times n$ 对角线矩阵,其特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n, M(10.24)$ 的解可写成

10.25
$$\mathbf{x}(t) = \mathbf{P} \begin{bmatrix} \lambda_1^t & 0 & \cdots & 0 \\ 0 & \lambda_2^t & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n^t \end{bmatrix} \mathbf{P}^{-1} \mathbf{x}(0)$$

一个重要的结论. (参见(21.16))

其中 P 是 A 的相应的线性无关特征向量组成的矩阵.

10.26 差分方程(10.22)当 A(t) = A 时称为稳定的,如果对于任意选择的向量 $x(0), A^{t}x(0)$ 都趋向于向量 0.

线性方程组的稳定 性的定义.

10.27 差分方程(10.22)当 A(t) = A 时称为稳定的,当且仅当 A 的所有特征值的模数都小于 1.

线性方程组稳定性 的特点。 10.28 如果 $A = (a_{ij})_{n \times n}$ 的所有特征值的模数都小于 1,则每一解 $\mathbf{x}(t)$ $\mathbf{x}(t) = \mathbf{A}\mathbf{x}(t-1) + \mathbf{b}, \ t = 1, 2, \cdots$ 收敛于向量 $(\mathbf{I} - \mathbf{A})^{-1}\mathbf{b}$.

参考文献

大多数公式和结论都可在 Goldberg (1961), Gandolfo (1996)和 Hildebrand (1968)中找到.对于(10.19)和(10.20),参见 Farebrother (1973).

一阶方程

11.1
$$\dot{x}(t) = f(t) \Leftrightarrow x(t) = x(t_0) + \int_{t_0}^{t} f(\tau) d\tau$$

11.2. $\frac{dx}{dt} = f(t)g(x) \Leftrightarrow \int \frac{dx}{g(x)} = \int f(t)dt$ 计算积分. 对由此产生的隐含方程求解 x = x(t).

11.3
$$\dot{x} = g(x/t) \approx z = x/t \Rightarrow t \frac{dz}{dt} = g(z) - z$$

11.4 方程
$$\dot{x} = B(x-a)(x-b)$$
 有解 $x = a$, $x = b$, $x = a + \frac{b-a}{1-Ce^{B(b-a)t}}$

11.5 •
$$\dot{x} + ax = b \iff x = Ce^{-at} + \frac{b}{a}$$

• $\dot{x} + ax = b(t) \iff x = e^{-at}(C + \int b(t)e^{at}dt)$

11.6
$$\dot{x} + a(t)x = b(t) \Leftrightarrow$$

$$x = e^{-\int a(t)dt} \left(C + \int e^{\int a(t)dt} b(t) dt \right)$$

一个简单的微分方程及其解. f(t)是一给定函数, x(t)是未知函数

可分离的微分方程. 如果 g(a) = 0, 则 $x(t) \equiv a$ 是一解.

射影(或)齐次微分 方程.通过变量变换z=x/t可得一 次的可分离方程. $a\neq b$, a=0 时给出 logistic 方程. C是一常数.

常系数 a ≠ 0 一阶 线性微分方程. C 是一常数.

一般线性一阶微分 方程.a(t)和 b(t)是给定的.C 是一 常数.

对于给定初始值

11.8
$$\dot{x} = Q(t)x + R(t)x^n$$
 有解 $x(t) =$

$$\frac{P(t)}{e^{1-n}} \left[C + (1-n) \int R(t) e^{-P(t)} dt \right]^{\frac{1}{1-n}}$$
其中 $P(t) = (1-n) \int Q(t) dt$

11.9 $\dot{x} = P(t) + Q(t)x + R(t)x^2$

Riccati 方程.一般 不能通过分析法解

微分方程

11.10 $P(t, x) + Q(t, x)\dot{x} = 0$ 称为恰当的,如果存在一 C^1 函数 $\varphi(t, x)$, 使 $P(t, x) = \varphi'_1(t, x)$ 及 Q(t, x) = $\varphi_2'(t,x)$. 对于某一常数 C 的解则为 $\varphi(t,x)$ x) = C.

11.11 如果 P(t,x)和 Q(t,x)是 C^1 函数.则 $P(t, x) + Q(t, x)\dot{x} = 0$ 在一开长方形 R 内是恰当的,当且仅当 $P_2'(t, x) = Q_1'(t, x) \times R +$

任一微分方程是恰 当方程的充分必要 条件.

高阶方程

11.12 $\frac{d^n x}{dt^n} + a_1(t) \frac{d^{n-1} x}{dt^{n-1}} + \dots + a_{n-1}(t) \frac{dx}{dt} +$ 一般线性 n 阶徵 $a_n(t)x = f(t)$

- 11. 13 $\frac{d^n x}{dt^n} + a_1(t) \frac{d^{n-1} x}{dt^{n-1}} + \dots + a_{n-1}(t) \frac{dx}{dt} + a_n(t)x = 0$
- 11.14 函数 $u_1(t), \dots, u_m(t)$ 是线性无关的,如果 $C_1u_1(t) + \dots + C_mu_m(t) = 0$ 仅当常数 C_1, \dots, C_m 都为 0 时对于所有 t 成立. 如果函数不是线性无关的则是线性相关的.
- 11.15 如果 $u_1(t), \dots, u_n(t)$ 是齐次方程(11.13)的 线性无关的解,而 $u^*(t)$ 是非齐次方程 (11.12)的某一特殊解,则(11.13)的一般解是 $x(t) = C_1 u_1(t) + \dots + C_n u_n(t)$ 而(11.12)的一般解是 $x(t) = C_1 u_1(t) + \dots + C_n u_n(t) + u^*(t)$ 其中 C_1, \dots, C_n 是任意常数.
- 11.16 如果 u_1, \dots, u_n 是(11.13)的 n 个线性无关的解,求(11.12)的一个特殊解的方法是:解对于 $\dot{C}_1(t), \dots, \dot{C}_n(t)$ 的方程组 $\dot{C}_1(t)u_1 + \dots + \dot{C}_n(t)u_n = 0$ $\dot{C}_1(t)\dot{u}_1 + \dots + \dot{C}_n(t)\dot{u}_n = 0$

 $\dot{C}_1(t)u_1^{(n-2)} + \cdots + \dot{C}_n(t)u_n^{(n-2)} = 0$ $\dot{C}_1(t)u_1^{(n-1)} + \cdots + \dot{C}_n(t)u_n^{(n-1)} = b(t)$ 积分以求得 $C_1(t), \cdots, C_n(t).(11.12)$ 的一个特殊 解为: $u^*(t) = C_1(t)u_1 + \cdots + C_n(t)u_n$.

11.17 $\ddot{x} + a\dot{x} + b\dot{x} = 0$ 有解

• 对于 $\frac{1}{4}a^2 - b > 0$; $\dot{x} = C_1e^{r_1t} + C_2e^{r_2t}$ 其中 $\dot{r}_{1,2} = -\frac{1}{2}a \pm \sqrt{\frac{1}{4}a^2 - b}$.

• 对于 $\frac{1}{4}a^2 - b = 0$; $\dot{x} = (C_1 + C_2t)e^{-at/2}$ • 对于 $\frac{1}{4}a^2 - b < 0$; $\dot{x} = Ae^{at}\cos(\beta t + \omega)$ 其中 $\dot{a} = -\frac{1}{2}a$, $\dot{\beta} = \sqrt{b - \frac{1}{4}a^2}$.

与(11.12)相应的 齐次方程。

线性相关及线性无 关的定义。

(11.13)和(11.12)解的结构.(注意一般来说不可能找到(11.13)的n个解 $u_1(t),\dots,u_n(t)$ 的分析性表达式)

参数变化法,如果 我们知道(11.13)的一般解,总可以 或出(11.12)的一 水出(t1.12)的一 个,统解。在 t1.20的一 t2.20 t3.20 t3.20 t4.30 t4.30 t5.30 t6.30 t7.30 t7.30 t8.30 t9.30 t9

有常系数 a 和 b 的二阶齐次微分方程的解, C_1 , C_2 ,A 和 ω 是常数.

11.18
$$\dot{x} + a\dot{x} + bx = f(t), b \neq 0, \bar{q} - \bar{q} + \bar{q} + \bar{q} = u^*(t)$$
:

$$\bullet \ f(t) = A \colon u^* = A/b$$

$$\bullet f(t) = At + B; \ u^* = \frac{A}{b}t + \frac{bB - aA}{b^2}$$

•
$$f(t) = At^2 + Bt + C$$
:
 $u^* = \frac{A}{b}t^2 + \frac{(bB - 2aA)}{b^2}t + Cb^2 - (2A + aB)b + 2a^2A$

•
$$f(t) = pe^{qt}$$
; $u^* = pe^{qt}/(q^2 + aq + b)$
($y = q^2 + aq + b \neq 0$).

 $\ddot{x} + a\dot{x} + b\dot{x} =$ f(t) 的特殊解. 如 果 $f(t) = pe^{qt}$, $|q^2 + aq + b| = 0.$ $u'' = pte^{qt}/(2q +$ a) 是一个解. 如果 $\frac{Cb^2 - (2A + aB)b + 2a^2A}{b^3}$ $| f(t) = pe^{qt}, q^2 + aq + b = 0, 且 2q$ $+a=0, \, \mathfrak{M}\,u^*=$ $\frac{1}{2}pt^2e^{qt}$ 是一个解.

11.19
$$t^2\ddot{x} + at\dot{x} + bx = 0, t > 0, \eta$$

$$\bullet \text{ $pricesize} 5 \text{ $pricesize} 5 \text{ $pricesize} 6 \text{ $pricesize} 5 \text{ $pricesize} 6 \text{ $price$$

其中 アュ ₂ =

$$-\frac{1}{2}[(a-1)\pm\sqrt{(a-1)^2-4b}]$$

• 对于
$$(a-1)^2 = 4b$$
:
 $x = (C_1 + C_2 \ln t) t^{(1-a)/2}$

• 对于
$$(a-1)^2 < 4b$$
: $x = At^{\lambda}\cos(\mu \ln t + \omega)$

其中
$$\lambda = \frac{1}{2}(1-a)$$
, $\mu = \frac{1}{2}\sqrt{4b-(a-1)^2}$.

2 阶欧拉方程的 解 $, C_1, C_2, A$ 和 ω 是任意常数.

11.20
$$\frac{d^n x}{dt^n} + a_1 \frac{d^{n-1} x}{dt^{n-1}} + \dots + a_{n-1} \frac{dx}{dt} + a_n x = f(t)$$
 常系数 n 阶一般 线性微分方程.

11.21
$$\frac{d^n x}{dt^n} + a_1 \frac{d^{n-1} x}{dt^{n-1}} + \dots + a_{n-1} \frac{dx}{dt} + a_n x = 0$$
 与(11.20)相应的 齐次方程.

11.22
$$r^n + a_1 r^{n-1} + \dots + a_{n-1} r + a_n = 0$$

11.23
$$x = x(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t} + \dots + C_n e^{r_n t}$$

(11.22)的根 r₁, ..., r_n 是实根且互不相同时(11.21)的解.

- 11.24 要求(11.21)的 n 个线性无关的解:找到 (11.22)的所有根.
 - 一个实根 r. 及重数 1 给出解 e^{r.t}.
 - 一个实根 r_j 及重数 p > 1 给出解
 e^{rf}, te^{rf}, ···, t^{p-1}e^{rf}.
 - 一对复根 $r_k = \alpha + i\beta$, $r_k = \alpha i\beta$ 及重数 1 给出解 $e^{at}\cos\beta$ t 和 $e^{at}\sin\beta$ t.
 - 一对复根 $r_e = \lambda + i\mu$, $r_e = \lambda i\mu$ 及重数 q > 1, 给出解: u, v, tu, tv, ..., $t^{q-1}u$, $t^{q-1}v$,其中 $u = e^{\lambda t}\cos \mu t$ 及 $v = e^{\lambda t}\sin \mu t$.
- 11.25 方程(11.21)(或(11.20))是稳定的(整体渐近稳定的),如果当 $t \rightarrow \infty$ 时(11.21)的任一解趋向于 0.
- 11.26 方程(11.21)是稳定的⇔特征方程(11.22)的 所有根有负的实部。
- 11.27 (11.21)是稳定的⇒对于所有 $i = 1, \dots, n$, $a_i > 0$

11.28
$$\mathbf{A} = \begin{bmatrix} a_1 & a_3 & a_5 & \cdots & 0 & 0 \\ a_0 & a_2 & a_4 & \cdots & 0 & 0 \\ 0 & a_1 & a_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} & 0 \\ 0 & 0 & 0 & \cdots & a_{n-2} & a_n \end{bmatrix}$$

求(11.21)的n个 线性无关解的一般 方法.

常系数方程的稳定 性的定义.

(11.21)的稳定条 件。

(11.21)的稳定性 的必要条件。

11.29
$$(a_1)$$
, $\begin{bmatrix} a_1 & 0 \\ 1 & a_2 \end{bmatrix}$, $\begin{bmatrix} a_1 & a_3 & 0 \\ 1 & a_2 & 0 \\ 0 & a_1 & a_3 \end{bmatrix}$

Routh-Hurwitz 稳

(11.30)的特例. 式为正):

微分方程组

11.33
$$\dot{x}_1 = a_{11}(t)x_1 + \dots + a_{1n}(t)x_n + b_1(t)$$

 $\dot{x}_n = a_{n1}(t)x_1 + \dots + a_{nn}(t)x_n + b_n(t)$

11.34
$$\dot{x} = A(t)x + b(t), x(t_0) = x^0$$

11.35
$$\dot{x} = Ax$$
, $x(t_0) = x^0 \Leftrightarrow x = e^{A(t-t_0)}x^0$

11.36 如果 $p_j(t) = (p_{1j}(t), \dots, p_{nj}(t))', j = 1,$ …, n 为齐次方程 $\dot{x} = A(t)x$ 的 n 个线性无关的解,且 $p_j(t_0) = e_j, j = 1, \dots, n$,其中 e_j 是 \mathbb{R}^n 中第 j 个标准单位向量.则方程的分解就是矩阵

$$\mathbf{P}(t, t_0) = \begin{cases} p_{11}(t) & \cdots & p_{1n}(t) \\ \vdots & \ddots & \vdots \\ p_{n1}(t) & \cdots & p_{nn}(t) \end{cases}$$

- 11.37 $x = \mathbf{P}(t, t_0)x^0 + \int_{t_0}^t \mathbf{P}(t, s)b(s)ds$
- 11.38 如果 P(t, s) 是 $\dot{x} = A(t)x$ 的分解,则 P(s, t)'(P(s, t)) 的转置)是 $\dot{z} = -(A(t))'z$ 的分解.
- 11.39 考虑 n 阶微分方程

$$(*)\frac{\mathrm{d}^n x}{\mathrm{d}t^n} = F\left(t, x, \frac{\mathrm{d}x}{\mathrm{d}t}, \dots, \frac{\mathrm{d}^{n-1}x}{\mathrm{d}t^{n-1}}\right)$$

通过设置新变量,

$$y_1 = x$$
, $y_2 = \frac{dx}{dt}$, ..., $y_n = \frac{d^{n-1}x}{dt^{n-1}}$

(*)可转换成一般方程组

$$\dot{y}_1 = y_2$$

$$\dot{y}_2 = y_3$$

.....

$$\dot{y}_{n-1} = y_n$$

 $\dot{y}_n = F(t, y_1, y_2, \dots, y_n)$

11.40 考虑初始值问题

$$(*)\dot{x} = F(t, x), x(t_0) = x^0$$

其中 $F = (f_1, \dots, f_n)$ 和其对于 x_1, \dots, x_n
的一阶偏导数在集合

 $\Gamma = \{(t, x); | t - t_0 | \leq a, ||x - x^0|| \leq b\}$ 内连续定义

$$M = \max_{(t,x) \in \Gamma} || F(t,x) ||, r = \min(a,b/M)$$

则(*)在开区间($t_0 - r$, $t_0 + r$)内有一唯一解 $x(t)$,且 $|| x(t) - x^0 || \le b$ 在这区间内.

齐次线性微分方程 的分解的定义. 注 意 $P(t_0, t_0) = I_n$.

(11.34)的解.

一个有用的事实。

(局部)存在及唯一 性定理.

11.41 考虑初始值问题

(1) $\dot{x} = F(t, x), x(t_0) = x^0$ 其中 $F = (f_1, \dots, f_n)$ 和其对 x_1, \dots, x_n 的 一阶偏导数对于所有(t, x)连续.进一步假设

存在连续函数 a(t)和 b(t),使

(2) $\| \mathbf{F}(t, \mathbf{x}) \| \le a(t) \| \mathbf{x} \| + b(t)$ 对于 所有 (t, \mathbf{x})

或

(3) $xF(t, x) \le a(t) \|x\|^2 + b(t)$ 对于所有(t, x),则给定任意点 (t_0, x^0) ,存在一个(1)的唯一解x(t)定义在 $(-\infty, \infty)$ 不等式(2)得以满足,特别如果对于所有(t, x)

(4) $\|F_x'(t, x)\| \le c(t)$ 对一连续 c(t)

整体存在及唯一性 定理. (4) 中可用 F_x(t, x)的任意矩 阵模数. (对于矩 阵的模数 参见 (19.26))

自控系统

11.42 $\dot{x}_1 = f_1(x_1, \dots, x_n)$ $\dot{x}_n = f_n(x_1, \dots, x_n)$

一阶微分方程自控 系统的定义.

- 11.43 如果 $f_i(a) = 0$, $i = 1, \dots, n$, $a = (a_1, \dots, a_n)$ 是系统(11.42)的均衡点.
- (11.42)的均衡点 的定义。
- 11.44 如果 $x(t) = (x_1(t), \dots, x_n(t))$ 是系统 (11.42)在一区间 I 上的一个解,则在 R^n 内的点 x(t)的集合描出的 R^n 内的曲线称为方程组的一条轨线(或一轨道).

轨线(或轨道)的定义,也称为积分曲线、

11.45 如果所有出发点接近 a 的解都停留在 a 点附近,(11.42)的均衡点 a 是(局部)稳定的:对于每一 $\epsilon > 0$ 存在一个 $\delta > 0$,如果 $\|x - a\| < \delta$,则存在(11.42)的一个解 $\varphi(t)$ 定义在 $t \ge 0$,且 $\varphi(0) = x$,并满足 $\|\varphi(t) - a\| < \epsilon$ 对于 t > 0 如果 a 是稳定的且存在 $\delta' > 0$,使 $\|x - a\| < \delta' \Rightarrow \lim_{t \to \infty} \|\varphi(t) - a\| = 0$ 则 a 是(局部)渐近稳定的. 如果 a 是不稳定的,则称为非稳定的.

(局部)稳定性和非 稳定性的定义.

稳定性概念的图示,带箭头的曲线 是可能的轨线,

11.47 如果(11.42)的每一解,无论其初始点是什么, 都收敛于唯一的均衡点 a,则 a 是整体渐近稳 定的.

整体新近稳定性.

稳定性概念的粗略 图示.

11.49 假设 x(t)是方程组(11.42)的一个解,其中 F = (f_1, \dots, f_n) 是一 C^1 函数,且 $x(t_0 + T)$ = $x(t_0)$ 对某一 t_0 和某一 T > 0 成立.则 x(t+T) = x(t) 对所有 t 成立.

如果(11.42)的解 经过一段时间 T 回到其初始点,则 它必然是周期性 的,其周期为 T. 11.50 假设(x(t), y(t))是方程组 $\dot{x} = f(x, y), \dot{y} = g(x, y)$ 的解,且驻留在方程组无均衡点的紧区域内. 它的轨线必然是一封闭螺旋线,也是方程组的 周期性解的轨线.

Poincaré-Bendixson 定理。

11.51 设 a 为(11.42)的一均衡点,定义

$$\mathbf{A} = \begin{bmatrix} \frac{\partial f_1(\mathbf{a})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{a})}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n(\mathbf{a})}{\partial x_1} & \cdots & \frac{\partial f_n(\mathbf{a})}{\partial x_n} \end{bmatrix}$$

如果 A 的所有特征值都有负的实部,则 a 是 (局部)新近稳定的.

如果至少一个特征值的实部是正的,则 a 不稳定.

Liapunov 定理. 稳 定点 a 称为收点当 所有 A 的特征值均 有负实部(称为发 点当 A 的所有特征 值均有正实部).

- $n \times n$ 实矩阵 $A = (a_{ij})$ 的所有特征值均有负 实部的充分必要条件是以下不等式成立
 - 对于 n = 2: tr(A) < 0 且 | A | > 0
 - 对于 n = 3:tr(A) < 0, |A| < 0, 且

$$\begin{vmatrix} a_{22} + a_{33} & -a_{12} & -a_{13} \\ -a_{21} & a_{11} + a_{33} & -a_{23} \\ -a_{31} & -a_{32} & a_{11} + a_{22} \end{vmatrix} < 0$$

2,3 阶稳定矩阵的特征.(n×n矩阵 经常称为稳定的, 如果所有特征值都 有负实部.)

11.53 设(a,b)为方程组

$$\dot{x} = f(x, y), \dot{y} = g(x, y)$$

的一个稳定点,定义

$$\mathbf{A} = \begin{bmatrix} \frac{\partial f(a, b)}{\partial x} & \frac{\partial f(a, b)}{\partial y} \\ \frac{\partial g(a, b)}{\partial x} & \frac{\partial g(a, b)}{\partial y} \end{bmatrix}$$

则如果 tr(A) < 0且 det(A) > 0, (a, b) 是局部渐近稳定的.

(11.51)的一个特例.稳定性通过迹和A的行列式的符号来表示,当 n = 2 时成立.

11.54 (11.42)的一个均衡点 a 称为双曲形的,如果 (11.51)中的矩阵 A 没有实部为 0 的特征值.

11.55 (11.42)的一个双曲形均衡点或是不稳定的,或是渐近稳定的.

一个重要结论.

11.56 设(a, b)为方程组 $\dot{x} = f(x, y), \dot{y} = g(x, y)$ 的一个均衡点,定义

$$\mathbf{A}(x, y) = \begin{cases} f'_1(x, y) & f'_2(x, y) \\ g'_1(x, y) & g'_2(x, y) \end{cases}$$

假设对于所有 $(x, y) \in \mathbb{R}^2$,以下三个条件均满足。

- (a) $tr(\mathbf{A}(x, y)) = f_1'(x, y) + g_2'(x, y)$ < 0
- (b) $\det(\mathbf{A}(x, y)) = |f_1(x, y) f_2(x, y)|$

$$\begin{vmatrix} f_1'(x, y) & f_2'(x, y) \\ g_1'(x, y) & g_2'(x, y) \end{vmatrix} > 0$$

- (c) f₁(x, y)g₂(x, y) 和 f₂(x, y)g₁(x, y)
 中至少有一个在整个平面非零
 则(a, b)是整体渐近稳定的。
- $V(x) = V(x_1, ..., x_n)$ 是(11.42)的一个定义在一个包含均衡点 a 的开集 Ω 里的 Liapunov 函数,如果
 - V(x) > 0 对于所有 Ω 内的 $x \neq a$ 成立, V(a) = 0, 且

对于所有 Ω内的 $x \neq a$ 成立.

Olech 定理.

Liapunov 函数的 定义. 11.58 设 a 为(11.42)的一个均衡点,假设方程组在包含 a 的开集 Ω 里存在一 Liapunov 函数 V(x).则 a 是一稳定的均衡点.又如果 V(x) < 0 对于所有在 Ω 内的 $x \neq a$ 成立.则 a 局部渐近稳定的.

Liabunov 定理.

11.59 修正的 Lotka-Volterra 模型

 $\dot{x} = kx - axy - \varepsilon x^2$, $\dot{y} = -hy + bxy - \delta y^2$ 有一新近稳定均衡点

$$(x_0, y_0) = \left(\frac{ah + k\delta}{ab + \delta\varepsilon}, \frac{bk - h\varepsilon}{ab + \delta\varepsilon}\right)$$

函数 $V(x, y) = H(x, y) - H(x_0, y_0)$,其中
 $H(x, y) = b(x - x_0 \ln x) + a(y - y_0 \ln y)$

是方程组的 Liapunov 函数,且在除均衡点外有 $\dot{V}(x,y) < 0$.

11.60 设(a,b)为方程组

 $\dot{x} = f(x, y), \ \dot{y} = g(x, y)$

的一个均衡点,定义 A 为(11.53)中的矩阵. 如果 |A| < 0,则存在(至多 t 的一个转换)确切的两个解($x_1(t)$, $y_1(t)$)和($x_2(t)$, $y_2(t)$),定义在区间[t_0 , ∞)上,且收敛于(a,b).这些解从相反方向收敛至(a,b),且都切于经过(a,b)点,平行于对应负特征值的直线.这样的均衡点称为较点.

局部鞍点定理.

(|A|<0当且仅 当A的特征值是实 的且有相反符号。 关于整体鞍点,参 见 Seierstad & Sydsæter (1987), 3.10,定理9)

偏微分方程

11.61 求下列方程解的方法

$$(*) P(x, y, z) \frac{\partial z}{\partial x} + Q(x, y, z) \frac{\partial z}{\partial y} =$$

R(x, y, z)

• 找到方程组的解

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{Q}{P}, \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{R}{P}$$

其中 x 是自由变量,如果解可表示为

 $y = \varphi_1(x, C_1, C_2) \not B z = \varphi_2(x, C_1, C_2),$

解出 C_1 和 C_2 得到 $C_1 = u(x, y, z)$ 及 $C_2 = v(x, y, z)$.

如果 Φ 是任意二元 C¹-函数,且函数 u 和 v
 至少有一个包含z,则由方程
 Φ(u(x, y, z), v(x, y, z)) = 0,

隐含定义的 z = z(x, y) 是(*)的一个解.

一般拟线性一阶偏微分方程及一种求解方法.这种方法。这种方法一般不能给出(*)的所有的解.(详细内容参见 Zachmanoglou & Thoe (1986),第 II 章)

11.62 下列偏微分方程组

$$\frac{\partial z(x)}{\partial x_1} = f_1(x, z(x))$$

$$\frac{\partial z(\mathbf{x})}{\partial x_2} = f_2(\mathbf{x}, z(\mathbf{x}))$$

 $\frac{\partial z(x)}{\partial x_n} = f_n(x, z(x))$

对于未知函数 $z(x) = z(x_1, \dots, x_n)$ 有一解,当且仅当 f_1, \dots, f_n 对 x_1, \dots, x_n 的 $n \times n$ 阶一阶偏导数矩阵是对称的.

Frobenius 定理.函数 f_1 , …, f_n 是 C^1 函数.

参考文献

Braun(1993)是一般微分方程的很好的参考资料. 也可参考 Pontryagin (1962). 关于(11.28)—(11.31)参考 Takayama (1985)或 Gandolfo (1996).

Beavis & Dobbs (1990)有大多数的数字结论及经济应用,对于(11.61)可参考 Sneddon (1957)或 Zachmanoglou & Thoe (1986),对于(11.62)可参考 Hartman (1982),对于(11.62)的经济应用,请参考 Mas-Colell et.al. (1995).

12.1 B(a:r) = |x:||x-a|| < r| (r > 0)

在 R" 内以 r 为半 径, a 为圆心的开 n 球的定义.(|| || 的定义见(18.14))

- 12.2 一点 $a \in S \subseteq \mathbb{R}^n$ 是 S 的内点,如果一个以 a为圆心的n-球中的所有点都属于S.
 - 一点 $b \in \mathbb{R}^n$ (不一定在 S 内)是 S 的边界点, 如果每一个以b为圆心的n球至少包括S内 的一点,同时至少包括S外的一点.

内点与边界点的定 义.

重要的定义.

 $\mathbf{R}^n \setminus S = \{x \in$

闭集的有用特征,

及集合的闭包的定

 $\mathbb{R}^n : x \in S$.

- 在 R^n 内的一个集合 S 称为 12.3
 - 升的 如果它的所有点均为内点。
 - 闭的 如果 $\mathbb{R}^n \setminus S$ 是开的.
 - 有界的 如果存在—个数 M 使 ||x|| ≤ M 对于所有S内的x都成立.
 - 繁的 如果它既是闭的又是有界的。
- 12.4 一个集合 S⊂R" 是闭的,当且仅当它包含所有 边界点.由S和其所有边界点组成的集合 \overline{S} 称 为S的闭包.

义.

12.5 集合 $S \subseteq \mathbb{R}^n$ 称为 \mathbb{R}^n 内一点 a 的邻域. 如果 a是S的一个内点.

邻域的定义,

R'' 中的一个序列 $\{x_n\}$ 收敛到 x,如果对于每 $-\epsilon > 0$ 存在一整数 N,使 $||x_s - x|| < \epsilon$ 对 12.6 于所有 $k \ge N$ 成立.

R"中序列的收敛. 如果序列不收敛, 则称为是发散的

12.7 \mathbb{R}^n 中的序列 $\{x_k\}$ 是一个柯西序列,如果对于 每一ε>0存在一整数 N,使 $||x_i-x_k||<\varepsilon$ 对于所有 $i, k \ge N$ 都成立.

柯西序列的定义.

12.8 \mathbb{R}^n 中的序列 $\{x_k\}$ 是收敛的,当且仅当它是一 个柯西序列.

12.9 \mathbb{R}^n 内的集合 S 是闭的, 当且仅当 S 内的点组 成的每一收敛序列 $\{x_k\}$ 的极限, $x = \lim_{k \to \infty} x_k$ 也 在 S 内.

闭集的特征,

12.10 设 $\{x_k\}$ 为 R"内的一序列,设 $k_1 < k_2 < k_3 <$ … 为一递增整数序列,则 $\{x_{k_i}\}_{i=1}^{\infty}$, 称为 $\{x_k\}$ 的子序列.

子序列的定义.

12.11 \mathbb{R}^n 内集合 S 是紧的, 当且仅当每一个 S 中点 的序列中都有一收敛到8 中一点的子序列。

紧集的特征.

12.12 $f:M \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ 是在 M 中的点 a 处连续的, 如 果对于每一 $\epsilon > 0$, 存在一 $\delta > 0$, 使 $| f(x) - f(a) | < \epsilon$ ·对于所有 M 内满足 $||x-a|| < \delta$ 的x 都成 文..

有 n 个变量的连 续函数的定义.

12.13 函数 $f = (f_1, \dots, f_m)$; $M \subset \mathbb{R}^n \to \mathbb{R}^m$ 是在 M 内的点 a 处连续的,如果对于每一 $\epsilon > 0$ 存 在一 $\delta > 0$, 使 $|| f(x) - f(a) || < \varepsilon$ 对于 M 内所有满足 $||x-a|| < \delta$ 的x 都成 立.

有n个变量的连 续向量函数的定 义.

- 12.14 设 $\mathbf{f} = (f_1, \dots, f_m)$ 为一个从 $\mathbf{M} \subset \mathbf{R}^n$ 到 \mathbf{R}^m 的函数,且设a 为M 内一点,则
 - f 是在 a 连续的, 当且仅当根据定义 (12.12)每一 f_i 在 a 都是连续的.
 - f 在 a 是连续的,当且仅当 $f(x_k) \rightarrow f(a)$ 对 于 M 内每一收敛至 a 的序列 $\{x_n\}$ 都成立.

有 n 个变量的连 续向量函数的特 征.

12.15 函数 $f: \mathbb{R}^n \to \mathbb{R}^m$ 是在 \mathbb{R}^n 内每一点 x 连续的,当且仅当 $f^{-1}(T)$ 对于 \mathbb{R}^m 内每一开(闭)的集合 T 是开(闭)的.

从 R" 至 R" 的向量函数的特征.

12.16 如果 f 是从 R'' 至 R''' 的连续函数,且 M 是 R'' 内一紧集,则 f(M) 是紧的.

连续函数从紧集映 射至紧集,

12.17 给定 \mathbb{R}^n 内集合 S. 一个围绕点 $a \in S$, r 为半 径的相对球 $B^S(a; r)$, 定义为 $B^S(a; r) = B(a; r) \cap S$.

相对球的定义.

12.18 相对内点,相对边界点,相对开集和闭集可通过这些概念的通常的方式定义,只要将 R"改为S,球改为相对球.

相对拓扑概念,

12.19 • $U \subseteq S$ 在 $S \subseteq \mathbb{R}^n$ 内是相对开的,当且仅当存在 \mathbb{R}^n 内的一个开集 V ,使 $U = V \cap S$.

集合 $S \subseteq \mathbb{R}^n$ 的相对开和相对闭的子集的特征.

- $F \subset S$ 在 $S \subset \mathbb{R}^n$ 内是相对闭的,当且仅当存在 \mathbb{R}^n 内的一个闭集 H. 使 $F = H \cap S$.
- 12.20 一个从 $S \subseteq \mathbb{R}^n$ 到 \mathbb{R}^m 的函数 f 是连续的,当 且仅当下列条件有一个得到满足:
 - 对于每一在 R^m 内的开集合 $U, f^{-1}(U)$ 是在 S 内相对开的.
 - 对于每一在 \mathbb{R}^m 内的闭集合 $T, f^{-1}(T)$ 是在 S 内相对闭的.
- 连续性的特征应用 于定义域不是整个 R"的函数。
- 12.21 函数 $f: M \subset \mathbb{R}^n \to \mathbb{R}^m$ 称为在集合 $S \subset M$ 上一致连续的. 如果对于每一 $\varepsilon > 0$,存在一 $\delta > 0$ (依赖于 ε 但不依赖于 x 和 y),使 $|| f(x) f(y) || < \varepsilon$ 对于所有在 S 内满足 $|| x y || < \delta$ 的x 和y 成立.

从 R* 至 R** 的函数的一致连续性的定义.

12.22 如果 $f: M \subset \mathbb{R}^n \to \mathbb{R}^m$ 是连续的,且集合 $S \subset M, S$ 是紧的,则 f 是在 $S \perp$ 一致连续的.

在紧集上的连续函数是一致连续的.

12.23 设 $\{f_n\}$ 为定义在 S⊂R"上的函数序列,且值 域为 R^m , 序列 $\{f_n\}$ 称为点式收敛至 S 内一函 数f,如果序列 $\{f_n(x)\}$ (在 \mathbb{R}^m 内),对于每一 $x \in S$ 收敛至f(x).

函数序列(点式)收 敛的定义.

12.24 定义在 $S \subset \mathbb{R}^n$ 上,且值域为 \mathbb{R}^n 的序列 $\{f_n\}$ 被称为一致收敛至S内的一个函数f,如果对 于每一 $\epsilon > 0$ 存在一自然数 $N(\epsilon)$ (依赖于 ϵ 但不依赖于x),使 $||f_n(x)-f(x)||<\varepsilon$ 对于所有 $n \ge N(\epsilon)$ 和所有在 S 内的 x 成立.

一致收敛函数序列 的定义.

12.25 一个从集合 A 到集合 B 的对应 F . 是一个映 射每一 $x \in A$ 到 B 的一个非空子集 F(x) 的 规则,F的图形是集合

对应和其图形的定 义.

 $Graph(F) = \{(a, b) \in A \times B : b \in A \times B :$ F(a)

12.26 对应 $F: X \subset \mathbb{R}^n \to \mathbb{R}^m$ 有一个封闭的图形,如 果每一对收敛序列, X 内的 $\{x_k\}$ 和 \mathbb{R}^m 内的 $\{y_k\}$,满足 $y_k \in F(x_k)$ 且 $\lim_k x = x \in X$, 极 限 $\lim y_k$ 属于F(x).

有封闭图形的对应 的定义.

因此 F 有一封闭的图形,当且仅当 Graph (F)是集合 $X \times R^m \subset R^n \times R^m$ 的一个相对闭 的子集.

12.27 对应 $F: X \subset \mathbb{R}^n \to \mathbb{R}^m$ 称为在 x^0 是下半连续 的,如果对于在 $F(x^0)$ 内的每一 v^0 和 v^0 的每 一领域 U,存在 x^0 的一个邻域 N.使 F(x) $\bigcap U \neq \emptyset$ 对于所有 $x \in N \cap X$ 成立.

对应的下半连续的 定义.

12.28 对应 $F: X \subset \mathbb{R}^n \to \mathbb{R}^m$ 称为在 x^0 上半连续的. 如果对每一包含 $F(x^0)$ 的开集 U, 存在一个 x^0 的邻域 N,使 $F(x) \subset U$ 对于所有 $x \in$ $N \cap X$.

对应的上半连续的 定义.

12.29 设 $F: X \subset \mathbb{R}^n \to K \subset \mathbb{R}^n$ 为一个对应,其中 K 紧的. 假设对每一 $x \in X$,集合 F(x)是 K 的一个闭子集. 则 F 有一封闭的图形当且仅当 F 是上半连续的.

一个有趣的结论.

下确界和上确界

- 12.30 ●任何有上限约束的非空实数集合 S 都有一个最小上限 b*,即 b*是 S 的一个上限,且 b* ≤ b 对 S 的每一上限 b 成立. b* 称为 S 的上确界,记作 b* = sup S.
 - ●任何有下限约束的非空实数集合 S 都有一个最大下限 a^* ,即 a^* 是 S 的一个下限,且 $a^* \ge a$ 对 S 的每一上限a 成立. a^* 称为 S 的下确界,记作 $a^* = \inf S$.
- 12.31 $\inf_{\mathbf{x} \in B} f(\mathbf{x}) = \inf \{ f(\mathbf{x}) : \mathbf{x} \in B \}$ $\sup_{\mathbf{x} \in B} f(\mathbf{x}) = \sup \{ f(\mathbf{x}) : \mathbf{x} \in B \}$
- 12.32 $\inf_{\mathbf{x} \in B} (f(\mathbf{x}) + g(\mathbf{x})) \ge \inf_{\mathbf{x} \in B} f(\mathbf{x}) + \inf_{\mathbf{x} \in B} g(\mathbf{x})$ $\sup_{\mathbf{x} \in B} (f(\mathbf{x}) + g(\mathbf{x})) \le \sup_{\mathbf{x} \in B} f(\mathbf{x}) + \sup_{\mathbf{x} \in B} g(\mathbf{x})$
- 12.33 $\inf_{x \in B} (\lambda f(x)) = \lambda \inf_{x \in B} f(x)$ 如果 $\lambda > 0$ $\sup_{x \in B} (\lambda f(x)) = \lambda \sup_{x \in B} f(x)$ 如果 $\lambda > 0$
- 12.34 $\sup_{\mathbf{x} \in B} (-f(\mathbf{x})) = -\inf_{\mathbf{x} \in B} f(\mathbf{x})$ $\inf_{\mathbf{x} \in B} (-f(\mathbf{x})) = -\sup_{\mathbf{x} \in B} f(\mathbf{x})$
- 12.35 $\sup_{(x, y) \in A \times B} f(x, y) = \sup_{x \in A} (\sup_{y \in B} f(x, y))$

定义在 R" 中集合 B上的实值函数的 下确界和上确界的 定义.

关于 sup 和 inf 的 一些结论。

λ是一实数.

 $A \times B = \{(x, y): x \in A \land y \in B\}$

12.36
$$\lim_{x \to x^{0}} f(x) = \lim_{r \to 0} (\inf\{f(x): 0 < \|x - x^{0}\| < r, x \in M\})$$

$$\lim_{r \to 0} f(x) = \lim_{x \to x^{0}} (\sup\{f(x): 0 < \|x - x^{0}\| < r, x \in M\})$$

lim = lim inf 和 lim = lim sup 的定义. f 定义在 $M \subset \mathbb{R}^n$, 而 x^0 在 $M \setminus \{x^0\}$ 的闭包中.

12.37
$$\underline{\lim}(f+g) \geqslant \underline{\lim} f + \underline{\lim} g$$

 $\overline{\lim}(f+g) \leqslant \overline{\lim} f + \overline{\lim} g$

如果右边部分有定 义,则不等式成立.

12.38
$$\underline{\lim} f \leqslant \overline{\lim} f$$

lim inf 和 lim sup 的结论.

12.39
$$\underline{\lim} f = -\overline{\lim} (-f), \overline{\lim} f = -\underline{\lim} (-f)$$

- 12.40 设 f 为一定义在区间[t_0 , ∞)上的实值函数. 则我们定义:
 - $\bullet \lim_{t\to\infty} f(t) = \lim_{t\to\infty} \inf \{f(s) : s \in [t_0, \infty)\}\$
 - $\bullet \overline{\lim}_{t \to \infty} f(t) = \lim_{s \to \infty} \sup \{ f(s) : s \in [t_0, \infty) \}$

lim和 lim 的定义. 公式 (12.37)-(12.39)仍然成立.

12.41 •
$$\lim_{t \to \infty} f(t) \ge a \Leftrightarrow \begin{cases}
\text{对于每-} \varepsilon > 0, 存在-\\
t', 使 f(t) \ge a - \varepsilon \\
\text{对于所有 } t \ge t' 成立. \end{cases}$$
• $\lim_{t \to \infty} f(t) \ge a \Leftrightarrow \begin{cases}
\text{对于每-} \varepsilon > 0, 和每-\\
\text{对于所有 } t \ge t' 成立. \end{cases}$
• $\lim_{t \to \infty} f(t) \ge a \Leftrightarrow \begin{cases}
\text{对于有-} \varepsilon > 0, 存在-\\
\text{对于所有 } t \ge t' 成立. \end{cases}$
• $\lim_{t \to \infty} f(t) \ge a \Leftrightarrow \begin{cases}
\text{对于所有 } t \ge t' 成立. \end{cases}$

基本事实.

参考文献

Bartle (1982), Marsden & Hoffman (1993), 及 Rudin (1982) 都是很好的普通 拓扑学的参考文献,关于对应及其性质,可参考 Hildenbrand & Kirman (1976) 或 Hildenbrand (1974).

13.1 一个集合 S 在 \mathbb{R}^n 内是凸的,如果 $x, y \in S$ 且 $\lambda \in [0, 1] \Rightarrow \lambda x + (1 - \lambda)y \in S$

凸集的定义, 空集 定义为凸的,

13.2

第一个集合是凸的,但第二个不是.

- 13.3 如果 S 和 T 是 R" 内的凸集,则
 - $\bullet S \cap T = \{x: x \in S \ \text{及} x \in T \}$ 是凸的
 - $aS + bT = \{as + bt : s \in S, t \in T\}$ 是凸的

凸集的性质 $(a \, nb)$ 是实数).

13.4 任何向量 $x = \lambda_1 x_1 + \dots + \lambda_m x_m$, 对 $\lambda_i \ge 0$ 对于 $i = 1, \dots, m$ 成立,且 $\sum_{i=1}^m \lambda_i = 1$, 称为一个在 \mathbb{R}^n 内的向量 \mathbf{x}_i , \dots , \mathbf{x}_m 的凸组合.

向量凸组合的定义.

 $13.5 \quad co(S) =$ $13.5 \quad co($ $\infty(S)$ 是在 \mathbb{R}^n 内 集合 S 的凸包.

13.6

如果 S 是非阴影 部分的集合,则 $\infty(S)$ 包括加上去 的阴影部分.

13.7 ∞(S)是包含 S 的最小凸集.

凸包的一个有用的 特征.

13.8 如果 $S \subset \mathbb{R}^n$ 且 $x \in \infty(S)$,则 x 是在S 内至S n+1 个点的凸组合.

Carathéodory 定 理. 13.9 z 是凸集S 的一个极点,如果 $z \in S$ 且不存在在S 内的x 和y,以及在(0,1)内的 λ ,能使 $x \neq y$ 且 $z = \lambda x + (1 - \lambda)y$.

极点的定义.

13.10 设 S 为一个在 R" 内紧的凸集. 则 S 是它的 极点的凸包.

Krein-Milman 定理.

13.11 设 S 和 T 为两个在 R"内的不相连非空凸集,则 S 和 T 可以被一个超平面分开,即存在一个非零向量 a,使
a・x ≤ a・y 对于所有在 S 内的 x 和所有在 T 内的 y 成立.

Minkowski 分离定理 超平面 $\{x:a\cdot x=A\}$, 对 $a\cdot x$ $\leqslant A \leqslant a\cdot y$ 对于所有 $x\in S$ 和所有 $y\in T$ 成立, 称为 分离.

13.12

第一个图中S和T是被H(严格)分离的、第二个图中,S和T不能被超平面分离。

13.13 设 S 为在 R^n 中有内点的凸集,T 为 R^n 中的一个凸集,且在 $S \cap T$ 内 (如果存在)的点都不是 S 的内点,则 S 和 T 可以被一个超平面分离,即存在一个向量 $a \neq 0$,使 $a \cdot x \leq a \cdot y$ 对于所有 $x \in S$ 和所有 $y \in T$ 成立.

在 R"内的一个一般分离定理.

凹函数和凸函数

13.14 定义在 \mathbb{R}^n 内一个凸集 S 上的 $f(x) = f(x_1, \dots, x_n)$ 在 S 上是凹的,如果 $f(\lambda x + (1 - \lambda)x^0) \ge \lambda f(x) + (1 - \lambda)f(x^0)$ 对于所有 $x, x^0 \in S$ 和所有 $\lambda \in (0, 1)$ 成立.

要定义一个凸函数,改变不等号方向.相应的,f是凸的当且仅当-f是凹的.

- 13.16 f(x)是严格凹的,如果 f(x)是凹的,且(13.14) 中的不等号 \geq 当 $x \neq x^0$ 时严格成立.
- 13.17 如果定义在 R^n 内的凸集 S 上的 f(x) 是凹的 (凸的),则 f(x)在 S 的每一内点上连续.
- 13.18 如果 f(x)和 g(x)是凹的(凸的),且 a 和 b 是非负数,则 af(x) + bg(x) 是凹的(凸的).
 - ◆ 如果 f(x)是凹的, F(u)是凹且递增的,则 U(x) = F(f(x)) 是凹的.
 - 如果 $f(x) = a \cdot x + b \, \exists \, F(u)$ 是凹的,则 U(x) = F(f(x)) 凹的.
 - 如果 f(x)是凸的, F(u)是凸且递增的,则 U(x) = F(f(x)) 是凸的.
 - 如果 $f(x) = a \cdot x + b \, \coprod F(u)$ 是凸的,则 U(x) = F(f(x)) 是凸的.
- 13.19 一个 C^1 函数 f(x) 是在 R^n 内的一个开凸集 S 上凹的,当且仅当

$$f(\mathbf{x}) - f(\mathbf{x}^0) \leqslant \sum_{i=1}^{n} \frac{\partial f(\mathbf{x}^0)}{\partial x_i} (x_i - x_i^0)$$

或相应的

$$f(x) - f(x^0) \leqslant \nabla f(x^0) \cdot (x - x^0)$$
对于所有 S 中的 x 和 x^0 成立.

函数 f(x)是(严格) 四的. $TR = f(\lambda x)$ $+(1-\lambda)x^0) \geqslant TS$ $= \lambda f(x) + (1 - \lambda)f(x^0)$. (TR 超的 TS 所如果的有点以 来的更是的, 不可点的。)

严格凹函数的定义.对于严格凸性,改变不等号方向.

凹函数和凸函数的 连续性.

凹函数和凸函数的 性质.

 C^1 函数的凹性.对于凸性,改变不等号方向.

- 13.20 一个 C^1 函数 f(x) 是在 R^n 内的一个开凸集 S上严格凹的,当且仅当(13.19)里的不等号对 于 $x \neq x^0$ 严格成立、
- 13.21 一个 C^1 函数 f(x)在一个开区间 I 上是凹 的,当且仅当

$$f(x) - f(x^0) \leqslant f'(x^0)(x - x^0)$$

对于所有 I 中的 x 和 x^0 成 立.

13.23 一个 C^{I} 函数 f(x, y)在 xy 平面上的开凸集 S 里是凹的, 当且仅当

$$f(x, y) - f(x^{0}, y^{0})$$

$$\leq f'_{1}(x^{0}, y^{0})(x - x^{0}) +$$

$$f'_{2}(x^{0}, y^{0})(y - y^{0})$$

对于所有 $(x, y), (x^0, y^0) \in S$ 成立.

13.24
$$\mathbf{f}''(\mathbf{x}) = \begin{cases} f''_{11}(\mathbf{x}) & f''_{12}(\mathbf{x}) & \cdots & f''_{1n}(\mathbf{x}) \\ f''_{21}(\mathbf{x}) & f''_{22}(\mathbf{x}) & \cdots & f''_{2n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f''_{n1}(\mathbf{x}) & f''_{n2}(\mathbf{x}) & \cdots & f''_{nn}(\mathbf{x}) \end{cases}$$

- 13.25 Hessian 矩阵 f'(x)的 r 阶主子式 $\Delta_r(x)$ 是通 过先删除矩阵的任意 n-r行,再删除相同数 目的列所得到的子矩阵的行列式.
- 13.26 一个 C^2 函数 f(x) 在 R^n 中开凸集 S 上是凹 的,当且仅当对于所有在 S 内的x 和所有 Δ_x , $(-1)^r \Delta_r(x) \ge 0$ 对 $r = 1, \dots, n$ 成立.

 C^{L} 函数的严格凹 性.对于严格凸性, 改变不等号方向,

(13.19)的一元形 九.

(13.21)的几何诠 释. C^{l} 函数 f 是凹 的,当且仅当f的 图形的所有点在切 线下.(图中的f实 际上是严格凹的.)

(13.19)的二元形 式.

f 在x 点的Hessian | 矩阵. 如果 f 是 C2 函数,则 Hessian 矩 阵是对称的.

Hessian 矩阵的主子 式.(参见(20.15))

 C^2 函数的凹性.

13.27 一个 C^2 函数 f(x)在 R^n 中开凸集 S 上是凸 的,当且仅当对于所有在 S 内的x 和所有 Δ_r , $\Delta_{r}(x) \geqslant 0$ 对 $r = 1, \dots, n$ 成立.

 C^2 函数的凸性.

$$13.28 \quad D_{r}(x) = \begin{vmatrix} f''_{11}(x) & f''_{12}(x) & \cdots & f''_{1r}(x) \\ f''_{21}(x) & f''_{22}(x) & \cdots & f''_{2r}(x) \\ \vdots & \vdots & \ddots & \vdots \\ f''_{r1}(x) & f''_{r2}(x) & \cdots & f''_{rr}(x) \end{vmatrix} \qquad \begin{array}{c} f \, \text{在} x \, \text{点} \, \text{的 Hessian} \\ \text{矩阵 的 前 主 子式}, \\ \text{对 } r = 1, \, 2, \, \cdots, \\ n. \\ \end{array}$$

f 在x 点的 Hessian

13.29 一个 C^2 函数 f(x)在 R^n 中的开凸集 S 上是 严格凹的,如果对于所有 $x \in S$,

 $(-1)^r D_r(x) > 0$ 对 $r = 1, \dots, n$ 成立.

 C^2 函数凹性的充 分(但不是必要)条 | 件.

13.30 一个 C^2 函数 f(x)在 R^n 中的开凸集 S 上是 严格凸的,如果对于所有 $x \in S$, $D_r(x) > 0$ 对 $r = 1, \dots, n$ 成立.

 C^2 函数凸性的充 |分(但不是必要)条 | 件.

- 13.31 假设 f(x)是在开区间 I 上的 C^2 函数,则
 - f(x)在 I 上是凹的⇔ $f'(x) \leq 0$ 对于所有 I中的x成立.
 - f(x)在 I 上是凸的⇔ $f'(x) \ge 0$ 对于所有 I中的x成立.
 - f''(x) < 0 对于所有 x ∈ I 成立 ⇒ f(x) 在 I上严格凹的.
 - f''(x) > 0 对于所有 $x \in I$ 成立⇒ f(x) 在 I上严格凸的.
- (13.26), (13.27), (13.29)和(13.30) 的一元形式. 隐含 | 箭头不能改为等价 箭头 $.(f(x) = -x^4)$ | 是 严 格 凹 的、但 f''(0) = 0. f(x) =x4 是严格凸的,但 f''(0) = 0
- 13.32 一个 C^2 函数 f(x, y)在 xy 平面里的开凸集 S上是凹的,当且仅当

 $f'_{11}(x, y) \leq 0, f'_{22}(x, y) \leq 0$ H $f''_{11}(x, y)f''_{22}(x, y) - (f''_{12}(x, y))^2 \ge 0$ 对于所有 $(x, y) \in S$ 成立.

(13.26)的二元形 式.对于 C^2 函数的 凸性,改变头两个 不等号的方向.

13.33 一个 C^2 函数 f(x, y)在 xy 平面里的开凸集 S 上是严格凹的,当(但不是仅当)

 $f'_{11}(x, y) < 0$ 且 $f'_{11}(x, y)f'_{22}(x, y) - (f'_{12}(x, y))^2 > 0$ 对于所有 $(x, y) \in S$ 成立. (13.29)的二元形式.(注意两个不等号蕴涵 $f_{22}(x, y)$ < 0) 对于严格凸性,改变第一个不等号方向.

拟凹和拟凸函数

13.34 f(x)在凸集 $S \subseteq \mathbb{R}^n$ 上是拟凹的,如果(上)水平集合

 $P_a = \{x \in S; f(x) \geqslant a\}$ 对于每一实数 a 是凸的. 拟凹函数的定义. (上水平集合也称 为上等高线集合.)

13.35

一个典型的二元拟 凹函数, $z = f(x_1, x_2)$.

13.36

(13.35)中的上水平 集合, $P_a = \{(x_1, x_2) \in S: f(x_1, x_2) \ge a\}$

拟凹函数的特征。

13.37 f(x)是在 \mathbb{R}^n 中开凸集 S 上的拟凹函数, 当且 仅当

$$f(\mathbf{x}) \geqslant f(\mathbf{x}^0) \Rightarrow f(\lambda \mathbf{x} + (1 - \lambda) \mathbf{x}^0) \geqslant f(\mathbf{x}^0)$$

对于所有 $x, x^0 \in S$ 和所有 $\lambda \in [0, 1]$ 成立.

13.38 f(x)是在 \mathbb{R}^n 中开凸集 S 上的严格拟四函数, 如果

$$f(x) \geqslant f(x^0) \Rightarrow f(\lambda x + (1 - \lambda)x^0) > f(x^0)$$

对于所有 $x \neq x^0 \in S$ 和所有 $\lambda \in [0, 1]$ 成立.

严格 拟凹 函数的(最普通的)定义.

13.39 f(x)是在 $S \subset \mathbb{R}^n$ 上(严格)拟凸的,如果 -f(x) 是(严格)拟凹的.

(严格)拟凸函数的 定义。

13.40 如果 f_1 , …, f_m 是定义在 \mathbb{R}^n 中的凸集 S 上的 凹函数, g 对于每一 $x \in S$ 定义为 $g(x) = F(f_1(x), …, f_m(x))$ 且 $F(u_1, …, u_m)$ 对每一变量是拟凹和递增的,则 g 是拟凹的.

一个有用的结论,

- 13.41 (1) f(x)是凹的 $\Rightarrow f(x)$ 是拟凹的.
 - (2) f(x)是凸的 $\Rightarrow f(x)$ 是拟凸的.
 - (3) 任意递增或递减的一元函数是拟凹和拟凸的.
 - (4) 一组拟凹函数的和不一定是拟凹的.
 - (5) 一组拟凸函数的和不一定是拟凸的.
 - (6) 如果 f(x)是拟凹的(拟凸的)且 F 是递增的,则 F(f(x))是拟凹的(拟凸的).
 - (7) 如果 f(x)是拟凹的(拟凸的)且 F 是递减的,则 F(f(x))是拟凸的(拟凹的).
 - (8) 如果 f(x)是定义在 \mathbb{R}^n 中的凸锥 C 上的正函数,f 是在 C 上的齐次度为 1 的拟凹函数,则 f 在 C 上是凹的.
- 拟凹拟凸函数的基本事实((4)的例子: $f(x) = x^3$ 和g(x) = -x都是拟凹的, 但 $f(x) + g(x) = x^3 x$ 不是).

13.42 一个 C^1 函数 f(x)在 \mathbb{R}^n 中的开凸集 S 上是拟凹的,当且仅当

$$f(x) \geqslant f(x^0) \Rightarrow \nabla f(x^0) \cdot (x - x^0) \geqslant 0$$

对于所有 x 和 $x^0 \in S$ 成立.

 $C^{!}$ 函数的拟凹性.

(13.42)的几何诠释.这儿 $\nabla f(x^0)$ · $(x-x^0) \ge 0$ 是指角 α 是锐角,即角度小于 90° .

13.44
$$B_r(x) = \begin{vmatrix} 0 & f'_1(x) & \cdots & f'_r(x) \\ f'_1(x) & f''_{11}(x) & \cdots & f''_{1r}(x) \\ \vdots & \vdots & \ddots & \vdots \\ f'_r(x) & f''_{r1}(x) & \cdots & f''_{rr}(x) \end{vmatrix}$$

对应于 f 在 x 点的 有界 Hessian 矩阵.

13.45 如果 f(x)是在 R^n 中的开凸集 S 上的拟凹函数,则

 $(-1)^r B_r(\mathbf{x}) \geqslant 0$ 对于 $r = 1, \dots, n$ 对于所有 $\mathbf{x} \in S$ 成立.

 C^2 函数拟凹性的必要条件.

13.46 如果 $(-1)'B_r(x) > 0$ 且 $r = 1, \dots, n$ 对于所有在 \mathbb{R}^n 中的开凸集S上的x成立,则f(x)在S上是拟凹的.

 C^2 函数拟凹性的充分条件.

13.47 如果 f(x)是在 R'' 中的开凸集 S 上的拟凸函数,则

$$B_r(\mathbf{x}) \leq 0, r = 1, \dots, n$$

对于所有 $\mathbf{x} \in S$ 成立.

 C^2 函数拟凸性的必要条件、

13.48 如果 $B_r(x) < 0$ 且 $r = 1, \dots, n$, 对于所有在 R^n 中的开凸集 S 上的 x 成立,则 f(x) 在 S 上 是拟凸的.

 C^2 函数拟凸性的充分条件.

伪凹函数和伪凸函数

13.49 一个定义在 \mathbb{R}^n 中的凸集 S 上的 C^1 函数 f(x) 在 S 上的点 x^0 是伪凹的,如果 $(*) f(x) > f(x^0) \Rightarrow \nabla f(x^0) \cdot (x - x^0) > 0$ 对于所有 $x \in S$ 成立. f(x) 是在集合 S 上伪凹的,如果(*)对于所有 x 和 $x^0 \in S$ 成立.

要定义伪凸函数, 将(*)中第一个不 等号逆转.(比较 (13.42)中拟凹性的 特征.)

- 13.50 设 f(x)为一个定义在 \mathbb{R}^n 中凸集 S 上的 C^1 函数,则
 - 如果 f 在 S 是伪凹的,则 f 在 S 上是拟凹的.
 - 如果 S 是开的且如果 $\nabla f(x) \neq 0$ 对于所有在 S 上的 x 成立,则 f 在 S 上是伪凹的,当 且仅当 f 在 S 上是拟凹的.

伪凹函数和拟凹函数的重要关系。

 $\nabla f(x^0) \cdot (x - x^0) \leq 0$ 对于所有 $x \in S$ 成立 (当 $\nabla f(x^0) = 0$ 时确实成立),则 x^0 是 f 在 S 中的整体最大值点.

为什么引进伪凹性 的一个原因。

参考文献

对于(拟)凹和(拟)凸函数,参见 Simone & Blume (1994)或 Sydsaeter & Hammond(1995),关于伪凹和伪凸函数,参考 Simone & Blume (1994)和他们的参考文献,关于凸集的特殊结论,参见 Nikaido (1968)和 Takayama (1985),关于凸性的标准参考文献是 Rockafellar (1970).

- 14.1 $f(x) = f(x_1, \dots, x_n)$ 在 $x^0 = (x_1^0, \dots, x_n^0)$ $\in S$ 有一最大(最小)值,如果 $f(x^0) - f(x) \ge 0 (\le 0)$ 对于所有 $x \in S$ 成 立 x^0 称为一个最大(最小)值点, $f(x^0)$ 称为一个 最大(最小)值.
- 14.2 x^0 在 S 上将 f(x) 最大化, 当且仅当 x^0 在 S 上将 -f(x) 最小化.

y = f(x) y = f(x) y = -f(x)

- 14.4 假设 f(x)定义在 S⊂Rⁿ 且 F(u)在 f 的值域 上严格递增. 则 x⁰ 在 S 上最大化(最小化) f(x),当且仅当 x⁰ 在 S 上最大化(最小化) F(f(x)).
- 14.5 如果 $f: S \to \mathbf{R}$ 在 \mathbf{R}^n 内一个封闭有界集合 S 上是连续的,则在 S 上存在 f 的最大值点和最小值点.
- 14.6 $x^0 = (x_1^0, \dots, x_n^0) \not = f(x)$ 的一个驻点,如果 $f_1'(x^0) = 0, f_2'(x^0) = 0, \dots, f_n'(x^0) = 0$

n 元函数的(整体) 最大(最小)的定 义.我们统称其为 最优值点和最优 值,或极值点和极 值.

用来将最小化问题 转变为最大化问题.

(14.2)的图示. x^0 将 f(x) 最大化, 当且 仅当 x^0 将 -f(x) 最小化.

一个重要的现象.

极值定理(或 Weierstrass 定理).

n 元函数的驻点的 定义. 14.7 设定义在 R'' 中一个凸集 S 上的 f(x) 为凹的 (凸的),并设 x^0 为 S 的一个内点.则 x^0 在 S 上最大化(最小化) f(x),当且仅当 x^0 是一个驻点.

凹(凸)函数的最大 (最小)化.

14.8

(14.7)的一元函数 图 示. f 是 凹 的, $f'(x^0) = 0$, x^0 是 一个最大值点.

何处寻找(整体)最

大值点或最小值点.

- 14.9 如果 f(x)在 $S \subseteq \mathbb{R}^n$ 上有一最大或最小值,则最大值点/最小值点可在下列点找到:
 - S 中是驻点的内点,
 - 在 S 边界上的极值点,
 - 在 S 内的 f 不可微的点。

 $(*) f(\mathbf{x}^0) - f(\mathbf{x}) \geqslant 0 (\leqslant 0)$

14.10 f(x)在 x^0 有一局部最大(最小)值,如果

对于所有在 S 内充分接近 x^0 的 x 成立. 更精确地说,存在一 n 球 $B(x^0; r)$ 使(*)对于所有在 $B(x^0; r)$ 内的 x 成立.

n 元函数的局部 (或相对)最大(最 小)值点的定义.统 称为局部极值点.

14.11 如果 $f(x) = f(x_1, \dots, x_n)$ 在 S 的内点 x^0 有 一局部最大(最小)值,则 x^0 是 f 的一个驻点.

可微函数的一阶条件.

14.12 $f(x) = f(x_1, \dots, x_n)$ 的一个驻点 x^0 称为鞍点,如果它既不是局部最大值点也不是局部最小值点,即如果每一 n 球 $B(x^0; r)$ 包含使 $f(x) < f(x^0)$ 的点 x 和使 $f(z) > f(x^0)$ 的其他点 z.

鞍点的定义.

14.13

点 P,Q 和 R 都是驻点. P 是最大值点,Q 是局部最大值点,而 R 是鞍点.

一元函数的特殊结论

- 14.14 如果 f(x)在区间 I 上可微,则
 - $f'(x) > 0 \Longrightarrow f(x)$ 是单调递增的
 - $f'(x) \ge 0 \iff f(x)$ 是递增的
 - $f'(x) = 0 \Longrightarrow f(x)$ 是不变的
 - $\bullet f'(x) ≤ 0 ⇔ f(x)$ 是递减的
- 14.15 如果 $f'(x) \ge 0$ 对于 $x \le c$ 成立,且 f'(x) ≤ 0 对于 $x \geq c$ 成立,则 x = c 是 f 的一个 最大值点.
 - 如果 $f'(x) \leq 0$ 对于 $x \leq c$ 成立,且 f'(x) ≥ 0 对于 $x \geq c$ 成立,则 x = c 是 f 的一个 最小值点.

重要的事实. 隐含 箭头不能逆转. $(f(x) = x^3$ 是单 调递增的,但f'(0) $= 0. g(x) = -x^3$ 是单调递减的,但 g'(0)=0)

(整体)最大/最小 的一阶导数测试 (通常在基本经济 数学教材里被忽 视).

c 是 f(x)的一个拐点如果 f''(x)在 c 改变符 북.

(14.15)的一元函 数图示. c 是最大 点.d 是最小点.

一元函数拐点的定 义.

14.18

14.19 设 f 为一个在区间 I 上有连续二阶导数的函 数,假设 c 是I的一个内点,则

- c 是 f 的一个拐点⇒ f''(c) = 0
- f'(c) = 0 且 f'在c 改变符号 $\Rightarrow c$ 是 f 的一个拐点

拐点的非正统图 式. 斜率最陡的点 P 是一拐点.

拐点测试.

二阶条件

14.20 如果 $f(x) = f(x_1, \dots, x_n)$ 在 x^0 有一局部 最大(最小)值,则

$$\sum_{i=1}^{n} \sum_{j=1}^{n} f''_{ij}(x^{0}) h_{i} h_{j} \leq 0 \ (\geq 0)$$

对于所有 h₁, ···, h_n 成立.

14.21 如果 $x^0 = (x_1^0, \dots, x_n^0)$ 是 $f(x_1, \dots, x_n)$ 的 一个驻点,如果 $D_k(x^0)$ 是以下行列式,

$$D_{k}(\mathbf{x}^{0}) = \begin{vmatrix} f_{11}''(\mathbf{x}^{0}) & f_{12}''(\mathbf{x}^{0}) & \cdots & f_{1k}''(\mathbf{x}^{0}) \\ f_{21}''(\mathbf{x}^{0}) & f_{22}'(\mathbf{x}^{0}) & \cdots & f_{2k}''(\mathbf{x}^{0}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{k1}''(\mathbf{x}^{0}) & f_{k2}''(\mathbf{x}^{0}) & \cdots & f_{kk}''(\mathbf{x}^{0}) \end{vmatrix}$$

则

- 如果 $(-1)^k D_k(x^0) > 0$ 对于 $k = 1, \dots, n$ 成立,则 x^0 是一局部最大值点.
- 如果 D_k(x⁰) > 0 对于 k = 1, …, n 成立,
 则 x⁰ 是一局部最小值点.
- 如果 $D_n(x^0) \neq 0$ 且以上两个条件均不满足,则 x^0 是一鞍点.
- $14.22 \quad f'(x^0) = 0 \ \text{且} \ f''(x^0) < 0 \Rightarrow$ $x^0 \ \text{是} \ f \ \text{的} \text{个局部最大值点}.$ $f'(x^0) = 0 \ \text{II} \ f''(x^0) > 0 \Rightarrow$ $x^0 \ \text{E} \ f \ \text{oh} \text{个局部最小值点}.$

一元函数局部最大/ 最小的二阶条件。

- 14.23 如果 (x_0, y_0) 是 f(x, y)的一个驻点且 $D = f'_{11}(x_0, y_0)f'_{22}(x_0, y_0) (f'_{12}(x_0, y_0))^2$,则
 $f'_{11}(x_0, y_0) > 0$ 且 D > 0 ⇒ (x_0, y_0) 是 f 的一局部最小值点.
 - $f'_{11}(x_0, y_0) < 0$ 且 D > 0 ⇒ (x_0, y_0) 是 f 的一局部最大值点.
 - D < 0⇒ (x_0, y_0) 是 f 的一鞍点.

局部最大(最小)的 一个必要(二阶)条 件.

n 元 C² 函数的驻 点的分类. 局部最 大/最小的二阶条 件.

二元函数局部最大/最小的二阶条件. (二元 C² 函数驻点的分类.)

等式约束下的最优化

14.24 $\max(\min) f(x, y)$ 约束条件为 g(x, y) = b

拉格朗日问题. 两 个变量,一个约束。

- 14.25 拉格朗日方法,解(14.24)的方法:
 - (1) 引进拉格朗日函数 $L(x, y) = f(x, y) - \lambda(g(x, y) - c)$ 其中 λ 是一常数.
 - (2) 将 L 对 x 和 v 微分,令偏导数为 0.
 - (3)(2)中的两个方程与约束条件一起,产生 下列三个方程

$$f'_1(x, y) = \lambda g'_1(x, y)$$

$$f'_2(x, y) = \lambda g'_2(x, y)$$

$$g(x, y) = c$$

(4) 解对三个未知变量 x, y 和 λ 的三个方 程,这样求出解决问题的所有可能的 (x, y)组合.

(14, 24)的必要条 件.假设 g'(x, y) 和 $g_2'(x, y)$ 并不 都消没,对于更精 确的表达,参见 (14.27), λ 称为拉 格朗日乘数.

- 14.26 假设 (x_0, y_0) 满足(14.25)中的条件.则
 - (1) 如果 L(x, y) 是凹的,则 (x_0, y_0) 解决了 (14.24)中的最大化问题.
 - (2) 如果 L(x, y) 是凸的,则 (x_0, y_0) 解决了 (14.24)中的最小化问题、

解(14,24)中问题 的充分条件.

14.27 假设 f(x, y)和 g(x, y)在 xy 平面内的区 域S上都是 C^1 函数,且 (x_0, y_0) 既是S的一 个内点, 也是 f(x, y) 受 g(x, y) = c 约束下 的一个局部极值点, 进一步假设 $g_1'(x_0, y_0)$ 和 $g_2'(x_0, y_0)$ 不同时 为 0,则存在一个唯一的数 λ 使拉格朗日函数 $L(x, y) = f(x, y) - \lambda(g(x, y) - c)$ 在 (x_0, y_0) 有一驻点.

拉格朗日乘数方法 的精确描述(拉格 朗日定理).

14.28 考虑问题

局部 $\max(\min) f(x, y)$ s. t. g(x, y) = c其中 (x_0, y_0) 满足(14.25)中的一阶条件. 定义有界 Hessian 行列式 D(x, y)为

$$D(x, y) = \begin{vmatrix} 0 & g'_{1} & g'_{2} \\ g'_{1} & f''_{11} - \lambda g''_{11} & f''_{12} - \lambda g''_{12} \\ g'_{2} & f''_{21} - \lambda g''_{21} & f''_{22} - \lambda g''_{22} \end{vmatrix}$$

- (1) 如果 $D(x_0, y_0) > 0$,则 (x_0, y_0) 解决了局部最大化问题.
- (2) 如果 $D(x_0, y_0) < 0$,则 (x_0, y_0) 解决了局部最小化问题.
- 14.29 $\max(\min) f(x_1, \dots, x_n)$ s. t.

$$\begin{cases} g_1(x_1, \dots, x_n) = b_1 \\ \dots \\ g_m(x_1, \dots, x_n) = b_m \end{cases}$$

14.30 拉格朗日方法,解(14.29)的方法(1)引进拉格朗日函数

$$L(x) = f(x) - \sum_{i=1}^{m} \lambda_{i}(g_{i}(x) - b_{i})$$

其中 $\lambda_1, \dots, \lambda_m$ 是常数.

(2) 令 L 的偏导为 0,

$$\frac{\partial L(\mathbf{x})}{\partial x_k} = \frac{\partial f(\mathbf{x})}{\partial x_k} - \sum_{j=1}^m \lambda_j \frac{\partial g_j(\mathbf{x})}{\partial x_k} = 0$$

- (3) 对 n 个方程和 m 个约束求解 x_1 , …, x_n 和 λ_1 , …, λ_m .
- 14.31 如果 x^0 是问题 (14.29)的一个解,且梯度 $\nabla g_1(x^0), \dots, \nabla g_m(x^0)$ 是线性无关的,则存在唯一的数 $\lambda_1, \dots, \lambda_m$,使 $\nabla f(x^0) = \lambda_1 \nabla g_1(x^0) + \dots + \lambda_m \nabla g_m(x^0)$

拉格朗日问题的局 部充分条件.

一般 拉格朗日问题. 假设 m < n.

(14.30)的另一种 形式, 14.32 假设(14.29)中的 f(x)和 $g_1(x), \dots, g_m(x)$ 定义在 R" 中的开凸集 S 上, 设 $x^0 \in S$ 为拉 格朗日函数的一个驻点,且假设 $g_i(\mathbf{x}^0) = b_i$, $j=1,\,\cdots,\,m$, \emptyset L(x)凹的 $\Rightarrow x^0$ 解决了问题(14.29).

| (14, 29)解的充分 条件(对于最小化 | 问題,将"L(x)凹 的"改为"L(x)凸 的".)

14.33

$$B_{r} = \begin{vmatrix} 0 & \cdots & 0 & \frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{1}}{\partial x_{r}} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \frac{\partial g_{m}}{\partial x_{1}} & \cdots & \frac{\partial g_{m}}{\partial x_{r}} \\ \frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{m}}{\partial x_{1}} & F_{11}'' & \cdots & F_{1r}'' \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_{1}}{\partial x_{r}} & \cdots & \frac{\partial g_{m}}{\partial x_{r}} & F_{r1}'' & \cdots & F_{rr}'' \end{vmatrix}$$

|问題(14,29)的有 界 Hessian 行列 式, r = 1, ..., n. L 是 定 义 在 (14.30)中的拉格 |朗日函数、

- 14.34 设 f(x)和 $g_1(x)$, …, $g_m(x)$ 为 \mathbb{R}^n 中开集 S上的 C^2 函数, $x^0 \in S$ 满足问题(14.29)中由 (14.30)给出的必要条件,再设 $B_r(x^0)$ 为 (14.33)中在 x^0 点的行列式,则
 - 如果 $(-1)^m B_r(x^0) > 0$ 对于 r = m + 1, ..., n 成立,则 x^0 是(14,29)中的局部最小 值点.
 - 如果 $(-1)^r B_r(x^0) > 0$ 对于 $r = m+1, \dots, n$ 成立,则 x^0 是(14.29)中的局部最大值点,

拉格朗日问题的局 部充分条件.

值函数及敏感性

14.35
$$f^*(b) = \max_{x} |f(x); g_j(x) = b_j, j = 1, \dots,$$
 其中 $b = (b_1, \dots, b_m)$,假设最大值存在.

14.36 拉格朗日乘数是"影子价格"

$$\frac{\partial f^*(\boldsymbol{b})}{\partial b_i} = \lambda_i(\boldsymbol{b}), \ i = 1, \dots, m$$

 $\lambda_1(b), \dots, \lambda_m(b)$ 是(14.30)的唯一 的拉格朗日乘数. 可微性的充分条件 可从(14.42)中推 出.

14.37 $V(a) = \max_{x \in X} f(x, a)$

最大化问题的值函

14.38 如果 f(x, a)在 $X \times A$ 上是连续的且 X 是紧 的,则定义在(14.37)的 V(a)在 A 上是连续 的.如果问题(14.37)对于每一 $a \in A$ 有唯一 解x = x(a), 则x(a)是a的一个连续函数.

值函数及其最大化 解的连续性.

14.39 假设对 $x \in X$ 求 f(x, a)的最大值问题,在 a $= a^0$ 有唯一解 $x^0(a^0)$,且 $\partial f/\partial a_i$, (i = 1, \dots , k) 存在并在(x^0 , a^0)的一个邻域内连续, 则对于 $i=1,\dots,k$,

$$\frac{\partial V(\boldsymbol{a}^0)}{\partial a_i} = \frac{\partial f(\boldsymbol{x}^0, \, \boldsymbol{a}^0)}{\partial a_i}$$

14.40 $\max_{x} f(x, a)$ s.t. $g_{j}(x, a) = 0, j = 1, \dots,$ 有参数 $a = (a_{1}, \dots, a_{k})$ 的拉格朗

14.41 $V(a) = \sup \{ f(x, a) : g_j(x, a) = 0, j = 1, \}$ \dots, m

14.42 考虑问题(14.40),假设

- 对于 $a = a^0$ 问题有唯一解 $x^0 = x(a^0)$;
- 存在一个球 $B(a^0; \alpha)$ 和一个常数 K,使对 于每一 $a \in B(a^0; \alpha)$ 存在(14.40)的解 x', $\notin x' \in B(x^0; K)$;
- f 和 g_1 , …, g_m 在 $(x(a^0), a^0)$ 的某一邻域 内是 C^1 函数:
- 矩阵 $(\partial g_j(x^0)/\partial x_i)_{m \times n}$ 的秩为m.

则 V(a)在 a^0 有偏导数,且

$$\frac{\partial V(\boldsymbol{a}^0)}{\partial a_i} = \frac{\partial L(\boldsymbol{x}(\boldsymbol{a}^0), \boldsymbol{a}^0)}{\partial a_i}, \ i = 1, \dots, k$$

问题(14.40)的一 个包络定理. $L = f - \sum \lambda_i g_i$ 是 拉格朗日函数.

参考文献

参考 Simon & Blume (1994), Sydsaeter & Hammond (1995), Intriligator (1971), Luenberger (1973)及 Dixit (1990).

线性规划

15.3 $\max c'x$ 受约束 $Ax \leq b$, $x \geq 0$ $\min b'\lambda$ 受约束 $A'\lambda \geq c$, $\lambda \geq 0$

线性規划问題(原型问题). $\sum_{j=1}^{n} c_{j}x_{j}$ 称为准则函数.

 (x_1, \dots, x_n) 称可接受的,如果它满足所有m+n个约束.

(15.1)的对偶.

 $\sum_{i=1}^{m} b_i \lambda_i$ 称为准则函数.

 $(\lambda_1, \dots, \lambda_m)$ 称可接受的,如果它满足所有m+n个约束.

(15.1)和(15.2)的 矩阵形式.

$$\mathbf{A}=(a_{ij})_{m\times n},$$

$$x = (x_j)_{n \times 1},$$

$$\lambda = (\lambda_i)_{m \times 1},$$

$$c = (c_i)_{n \times 1},$$

$$\boldsymbol{b} = (b_i)_{i \in YL}.$$

- 如果在(15.1)和(15.2)中 (x_1, \dots, x_n) 和 15.4 $(\lambda_1, \dots, \lambda_m)$ 分别是可接受的,则 $b_1\lambda_1 + \cdots + b_m\lambda_m \geqslant c_1x_1 + \cdots + c_nx_n$
- 假设 (x_1^*, \dots, x_n^*) 和 $(\lambda_1^*, \dots, \lambda_n^*)$ 分别是 15.5 在(15.1)和(15.2)可接受的,且 $c_1 x_1^* + \cdots + c_n x_n^* = b_1 \lambda_1^* + \cdots + b_n \lambda_n^*$ 则 (x_1^*, \dots, x_n^*) 和 $(\lambda_1^*, \dots, \lambda_m^*)$ 分别是各 自问题的最优解,
- 如果问题(15.1)和(15.2)中的一个有有限个 15.6 数的最优解,则另一个也有有限个数的最优 解,且对应的准则函数值相等,如果一个问题 有"非限制最优解",则另一问题无可接受解。
- 考虑问题(15.1). 如果我们将 b_i 改为 b_i + 15.7 Δb_i , $i=1,\dots,m$, 且如果对应的对偶问题 有相同的最优解 $(\lambda_1^*, \dots, \lambda_n^*)$,则原型问题 的准则函数值的改变为

 $\Delta z^* = \lambda_1^* \Delta b_1 + \dots + \lambda_m^* \Delta b_m$

- 第 i 个对偶变量λ * 等于当 b; 增加一个单位 15.8 时,原型问题(15.1)的准则函数值的变化.
- 假设原型问题(15.1)有最优解(x_1^*, \dots, x_n^*), 15.9 而对偶问题(15.2)有最优解($\lambda_{1}^{*}, \dots, \lambda_{m}^{*}$),则 对于 $i = 1, \dots, n, j = 1, \dots, m$: $(1) x_i^* > 0 \Rightarrow a_{1i} \lambda_1^* + \dots + a_{mi} \lambda_m^* = c_i$ (2) $\lambda_i^* > 0 \Rightarrow a_{i1} x_1^* + \dots + a_{in} x_n^* = b_i$
- 15.10 设A为 $-m \times n$ 矩阵且b为-n阶向量,则 当且仅当不存在 $x \ge 0$ 使 A'x = b 时,存在一 向量 y 满足 Ay ≥ 0 和 δ' y < 0.

对偶中的准则函数 的函数值总大于或 等于原型中的准则 函数的函数值.

一个有趣的结论,

线性规划的对偶性 定理.

一个重要的敏感性 结论、对偶问题通 常会有相同的解, 如果 $\mid \Delta b_1 \mid$, …, $|\Delta b_m|$ 足够小.)

λ* 可诠释为"影子 价格".(相同条件 下的(15.7)的一个 特例、)

互补宽松性((1)如 果最优变量;在原 型中是正的,则对偶 中对;的约束在最 优时是等式,(2)有 类似的解释)

Farkas 引理.

非线性规划

格朗日乘数.

- 15.11 $\max f(x, y)$ 受约束 $g(x, y) \leq b$
- 15.12 解决问题(15.11)的办法:
 (1) 定义拉格朗日函数 L 为
 L(x, y, λ) = f(x, y) λ(g(x, y) b)
 其中 λ 是一与约束g(x, y) ≤ b 相联系的拉
 - (2) 令 $L(x, y, \lambda)$ 对 x 和 y 的偏导数为零: $L'_1(x, y, \lambda) = f'_1(x, y) - \lambda g'_1(x, y) = 0$ $L'_2(x, y, \lambda) = f'_2(x, y) - \lambda g'_2(x, y) = 0$
 - (3) 引入互补宽松性条件
 λ ≥ 0(= 0 如果 g(x, y) < b)
 (4) 寻找满足 g(x, y) ≤ b 的(x, y).
- 15.13 $\max_{x} f(x) \text{ s. t.} \begin{cases} g_1(x) \leq b_1 \\ \dots \\ g_m(x) \leq b_m \end{cases}$
- 15.14 $L(x, \lambda) = f(x) \sum_{j=1}^{m} \lambda_j (g_j(x) b_j)$
- 15.15 考虑问题(15.13),假设f和 g_1, \dots, g_m 是 C^1 函数.假设存在一向量 $\lambda = (\lambda_1, \dots, \lambda_m)$ 和一可接受向量 $x^0 = (x_1^0, \dots, x_n^0)$,使

(a)
$$\frac{\partial L(x^0, \lambda)}{\partial x_i} = 0$$
, $i = 1, \dots, n$

- (b) 对于所有 $j = 1, \dots, m$, $\lambda_i \ge 0 \ (=0 \text{ 如果 } g_i(x^0) < b_i)$
- (c) 拉格朗日函数 $L(x, \lambda)$ 是 x 的一个凹函数,则 x^0 是问题(15.13)的解.

非线性规(15.11)的原(15.11)的的,更为是 (15.20),我问题 (15.20)的的,更是 (15.20),我问题 (15.20)的的,我们是 (15.20)的的,我们是 (15.20)的的,我们是 (15.20)的的,我们是 (15.20)的的,我们是 (15.20)的的,我们是 (15.20)的的,我们是 (15.20)的的,我们是 (15.20)的的,我们是 (15.20)的,我们是 (15.20)的,是 (15.20)的,

非线性规划问题.向 量 $x = (x_1, ..., x_n)$ 是可接受的,如 果它满足所有约束. 对应 (15.13)的束. 对应 (15.13)的点。 从 ($\lambda_1, ..., \lambda_m$)是拉 格朗日承数.

Kuhn-Tucker 充分 条件. 15.16 (b') $\lambda_j \geqslant 0 \coprod \lambda_j (g_j(\mathbf{x}^0) - b_j) = 0, j = 1, \dots, m$

(15.15)中(b)的另一种表达.

15.17 如果我们将(c)改为 (c') f(x)是凹的且 $\lambda_{iS_{j}}(x)$ 是拟凸的, j=1, ..., m (15.15)也将成立.

另一种 Kuhn-Tucker 充分条件.

15.18 约束 j 在(15.13)中称为在 x^0 有效的,如果 $g_j(x^0) = b_j$.

有效(或有约束力的)约束的定义.

15.19 以下条件经常附加在问题(15.13)里:函数 g_j ($j = 1, \dots, m$)在 x^0 点的梯度,当约束条件在 x^0 是有效的时候,是线性无关的.

问题(15.13)的约束限制。

15.20 假设 $x^0 = (x_1^0, \dots, x_n^0)$ 是(15.13)的解,且 f 和 g_1, \dots, g_m 是 C^1 函数.进一步假设约束限制(15.19)在 x^0 点满足,则存在唯一的 λ_1 , …, λ_m , 使

问题(15.13)的 Kuhn-Tucker 必要 条件.

(a) $\frac{\partial L(x^0, \lambda)}{\partial x_i} = 0$, $i = 1, \dots, n$

(注意所有约束限 制不满足的可接受 点都是最优解的候 选者)

 $(b)\lambda_j \geqslant 0 (= 0$ 如果 $g_j(\mathbf{x}^0) < b_j)$,对于所有 $j = 1, \dots, m$ 成立.

 $L(x, \lambda^0) \leq L(x^0, \lambda^0) \leq L(x^0, \lambda)$

问题(15.13)的鞍 点的定义。

15.21 (x^0, λ^0) 是拉格朗日函数 $L(x, \lambda)$ 的一个鞍点,如果

对于所有 $\lambda ≥ 0$ 和所有 x 成立.

0) | 问题(15.13)的充 分条件(不要求可

15.22 如果 $L(x,\lambda)$ 有一鞍点 (x^0,λ^0) ,则 (x^0,λ^0)

Slater 条件(限制).

微性和凹性条件)

- 是(15.13)的解.
- 15.23 以下条件经常附加在问题(15.13)上:对某一向量 $x' = (x'_1, \dots, x'_n), g_i(x') < b_i$ 对 $i = 1, \dots,$

m.

15.24 考虑问题(15.13),假设 f 是凹的而 g_1 , …, g,,, 是凸的. 假设 Slater 条件(15.23)得以满 足,则使 x^0 为问题的解的一个充分必要条件 是存在非负数 $\lambda_1^0, \dots, \lambda_m^0$,使 (x^0, λ^0) 成为拉 格朗日函数 $L(x, \lambda)$ 的一个鞍点.

凹性规划中的鞍点 结论.

- 15.25 考虑问题(15.13),假设f和 g_1, \dots, g_m 是 C^1 函数. 假设存在数 $\lambda_1, \dots, \lambda_m$ 和一个向量 x^0 , 使
 - x⁰ 满足(15.15)中的(a)和(b),
 - $\bullet \nabla f(x^0) \neq 0,$
 - f(x)是拟凹的且 $\lambda_{iS_i}(x)$ 是拟凸的,对于 j $= 1, \dots, m,$

则 x^0 是问题(15.13)的解.

拟凹规划的充分条 件.

15.26 $V(b) = \max\{f(x): g_j(x) \leq b_j, j = 1, \dots, m\}$ 假设最大值存在, 且 $b = (b_1, \dots, b_m) \in \mathbb{R}^m$.

(15.13)的值函数,

- 15.27 (1) V(b) 对每一变量是非递减的.
 - (2) $\partial V(\mathbf{b})/\partial b_i = \lambda_i(\mathbf{b}), j = 1, \dots, m$
 - (3) 如果 f(x)是凹的且 $g_1(x)$, …, $g_m(x)$ 是凸的,则 V(b)是凹的.

「值函数的性质、 │((2)的一个精确形 | 式可从(15.30)得

15.28 $\max_{\mathbf{x}} f(\mathbf{x}, \mathbf{a})$ s.t. $g_j(\mathbf{x}, \mathbf{a}) \leq 0, j = 1, \dots,$

15.29 $V(a) = \sup \{ f(x, a) : g_j(x, a) \leq 0, j = 1, \dots \}$ \dots , m

- 15.30 考虑问题(15.28)且假设
 - 对于 $a = a^0$, 问题有一唯一解 x^0 ,
 - ◆ 存在一球 $B(a^0; \alpha)$ 和一常数 K,使对于每一在 $B(a^0; \alpha)$ 内的 α 存在(15.28)的解 x', 且 x' ∈ $B(x^0; K)$,
 - f 和 g_1 , …, g_m 是在(x^0 , a^0)附近的某一球内的 C^1 函数,
 - 对应于在 x^0 点有效的约束 j 的函数 g_j 的在 x^0 的梯度是线性无关的,

则 V(a)在 a^0 有偏导数,且

$$\frac{\partial V(a^0)}{\partial a_i} = \frac{\partial \mathcal{L}(x^0, a^0, \lambda)}{\partial a_i}, i = 1, \dots, k$$

问题(15.28)的包络 定 理. $L = f - \sum \lambda_{i}g_{i}$ 是拉格朗日 函 数,约 束 j 在 (x^{0}, a^{0}) 是有效的, 如果 $g_{j}(x^{0}, a^{0}) = 0$.

非负条件下的非线性规划

15.31
$$\max_{\mathbf{x}} f(\mathbf{x})$$
,受约束 $\begin{cases} g_1(\mathbf{x}) \leqslant b_1 \\ \dots \\ g_m(\mathbf{x}) \leqslant b_m \end{cases}$

- 15.32 假设在问题(15.31)中,f 和 g_1 , …, g_m 是 C^1 函数,且存在数 λ_1 , …, λ_m 和一个可接受的 向量 x^0 ,使
 - (a) 对于所有 $i = 1, \dots, n, x_i^0 \geqslant 0$ 且 $\frac{\partial L(x^0, \lambda)}{\partial x_i} \leqslant 0, x_i^0 \frac{L(x^0, \lambda)}{\partial x_i} = 0$
 - (b) 对于所有 $j = 1, \dots, m$, $\lambda_j \ge 0 (=0 \text{ 如果 } g_j(x^0) < b_j)$
 - (c) 拉格朗日函数 $L(x, \lambda)$ 是 x 的一个凹函数,

则 x⁰ 是问题的解(15.31).

如果将非负条件写为 $g_{m+i}(x) = -x_i$ ≤ 0 . $i = 1, \dots, n$, (15.31)将简化为(15.13).

问题(15.31)的 Kuhn-Tucker 充分 条件.

 $\lambda = (\lambda_i)_{m \times 1}.$ $L(x^0, \lambda)$ 的 定 义 在(15.14).

- 在(15.32)中,(c)可改为 (c')f(x)是凹的且 $\lambda_j g_j(x)$ 对于 $j=1,\cdots,m$ 另一种 Kuhn-Tucker 充分条件. 15.33 在(15.32)中、(c)可改为 是拟凸的,
- 15.34 假设 $x^0 = (x_1^0, \dots, x_n^0)$ 是(15.31)的解,其 中 f 和 g_1, \dots, g_m 是 C^1 函数. 再假设对应于 在 x^0 有效约束的 g_i (包括定义在(15.31)的 注解内的函数 g_{m+1} , ..., g_{m+n}) 在 x^0 的梯度 是线性无关的,则存在唯一的数 $\lambda_1, \dots, \lambda_m$, 使
- 问题(15.31)的 Kuhn-Tucker 必要 条件.
- (a) 对于所有 $i = 1, \dots, n, x_i^0 \ge 0, 且$ $\frac{\partial L(\mathbf{x}^0, \lambda)}{\partial x_i} \leqslant 0, \ x_i^0 \frac{L(\mathbf{x}^0, \lambda)}{\partial x_i} = 0$
- (注意所有约束限 制不满足的可接受 点都是最优解的候 选者)
- (b) $\lambda_j \geqslant 0 \ (=0 \text{ mpp } g_j(x^0) < b_j), \ j = 1,$

参考文献

Gass (1994), Luenberger (1973), Intriligator (1971), Sydsaeter & Hammond (1995), Simon & Blume (1994), Beavis & Dobbs (1990), Dixit (1990). (后 三本不包括线性规划.)

变分

16.1 变分中最简单的问题 $(t_0, t_1, x^0, \pi x^1)$ 是固定的数):

$$\max_{t_0}^{t_1} F(t, x, \dot{x}) dt, x(t_0) = x^0, x(t_1) = x^1$$

$$16.2 \quad \frac{\partial F}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial F}{\partial \dot{x}} \right) = 0$$

16.3
$$\frac{\partial^2 F}{\partial \dot{x} \partial \dot{x}} \ddot{x} + \frac{\partial^2 F}{\partial x \partial \dot{x}} \dot{x} + \frac{\partial^2 F}{\partial t \partial \dot{x}} - \frac{\partial F}{\partial x} = 0$$

- 16.4 $F_{xx}''(t, x(t), \dot{x}(t)) \leq 0$ 对于所有 t 在 $[t_0, t_1]$ 内.
- 16.5 如果 $F(t, x, \dot{x})$ 在 (x, \dot{x}) 是凹的,一个满足欧拉方程的可接受的函数 x = x(t),是问题 (16.1)的解.

16.6 (16.1)中
$$x(t_1)$$
不受限制 $\Rightarrow \left[\frac{\partial F}{\partial \dot{x}}\right]_{t=t_1} = 0$

欧拉方程.(16.1) 有解的一个必要条件.

欧拉方程的另一种 形式.

Legendre 条 件. (16.1)有解的一个 必要条件.

(16.1)有解的充分 条件、

横 截 条 件. 加 上 (16.5)给出充分条 件.

16.7 (16.1)中
$$x(t_1) \geqslant x^1 \Rightarrow$$
 横截条件,加上
$$\left[\frac{\partial F}{\partial \dot{x}}\right]_{t=t_1} \leqslant 0 (=0 \text{ 如果 } x(t_1) > x^1)$$
 件.

16.8 (16.1)中
$$t_1$$
 不受限制⇒ $\left[F - \dot{x} \frac{\partial F}{\partial \dot{x}}\right]_{t=t_1} = 0$ 横截条件.

16.9 在(16.1)中
$$x(t_1) = g(t_1)$$

$$\Rightarrow \left[F + (\dot{g} - \dot{x}) \frac{\partial F}{\partial \dot{x}} \right]_{t=t_1} = 0$$
 横截条件. g 是一 给定的 C^1 函数.

16.10
$$\max \left[\int_{t_0}^{t_1} F(t, x, \dot{x}) dt + S(x(t_1)) \right],$$

 $x(t_0) = x^0$

有附加值函数 S 的变分问题, S是

16.11
$$\left[\frac{\partial F}{\partial \dot{x}}\right]_{t=t_1} + S'(x(t_1)) = 0$$

(16.10)的解必须 满足(16.2)和这一 横截条件.

如果 $F(t, x, \dot{x})$ 在 (x, \dot{x}) 是凹的且 S(x)是 凹的,则一个满足(16.11)中欧拉方程的可接 受函数是问题(16.10)的解.

(16.10)解的充分 条件.

16.13
$$\max_{t_0} \int_{t_0}^{t_1} F\left(t, x, \frac{\mathrm{d}x}{\mathrm{d}t}, \frac{\mathrm{d}^2x}{\mathrm{d}t^2}, \dots, \frac{\mathrm{d}^nx}{\mathrm{d}t^n}\right) \mathrm{d}t$$

有高阶偏导数的变 分问题(边界条件 未设定).

16.14
$$\frac{\partial F}{\partial x} - \frac{d}{dt} \left(\frac{\partial F}{\partial \dot{x}} \right) + \dots + (-1)^n \frac{d^n}{dt^n} \left(\frac{\partial F}{\partial x^{(n)}} \right) = 0$$

(16.13)的(一般 化)欧拉方程.

16.15
$$\max \iint_{R} F(t, s, x, \frac{\partial x}{\partial t}, \frac{\partial x}{\partial s}) dt ds$$

未知的 x(t, s)是 两个变量函数的变 未设定).

16.16
$$\frac{\partial F}{\partial x} - \frac{\partial}{\partial t} \left(\frac{\partial F}{\partial x'_t} \right) - \frac{\partial}{\partial s} \left(\frac{\partial F}{\partial x'_s} \right) = 0$$

(16.15)的(一般 化)欧拉方程,

最优控制理论 一种状态和一个变量

16.17 最简单的情况,固定的时间区间[t₀, t₁]和自由的上限:

$$\max_{t_0}^{t_1} f(t, x(t), u(t)) dt, u(t) \in \mathbb{R}$$

$$\dot{x}(t) = g(t, x(t), u(t)), x(t_0) = x^0,$$

$$x(t_1)$$
 不受限制.

- 16.18 H(t, x, u, p) = f(t, x, u) + pg(t, x, u)
- 16.19 假设 $(x^*(t), u^*(t))$ 是问题(16.17)的解,则存在一连续函数 p(t),使对于所有 $t \in [t_0, t_1]$ 的解:
 - (1) $H(t, x^*(t), u, p(t)) \leq H(t, x^*(t), u^*(t), p(t))$ 对于所有 $u \in \mathbb{R}$ 成立.特别地,

$$H'_{u}(t, x^{*}(t), u^{*}(t), p(t)) = 0$$

(2) 函数 p(t)满足 $\dot{p}(t) = -H'_x(t, x^*(t), u^*(t), p(t)),$ $p(t_t) = 0$

- 16.20 如果 $(x^*(t), u^*(t))$ 满足(16.19)中的条件,且 H(t, x, u, p(t))在(x, u)是凹的,则 $(x^*(t), u^*(t))$ 是问题(16.17)的解.
- 16.21 $\max_{t_0}^{t_1} f(t, x(t), u(t)) dt, u(t) \in U \subset \mathbb{R}$ $\dot{x}(t) = g(t, x(t), u(t)), x(t_0) = x^0$ (a) $x(t_1) = x^1 \cdot \mathbf{g}(b) \cdot x(t_1) \geqslant x^1$
- 16.22 $H(t, x, u, p) = p_0 f(t, x, u) + pg(t, x, u)$

(x(t), u(t))是可 接受的,如果它满 足微分方程 $x(t_0)$ = x^0 ,且u(t)是分 段连续的.要解决 最小化问题,将 改为-f.

与(16.17)相伴的 Hamilton函数.

最大化原理. p(t) 的微分方程在 u^* (t)的不连续点不一定 成立. 方程 $p(t_1) = 0$ 称为横 截条件.

问题(16, 17)的 Mangasarian 充分 条件.

有终端条件和固定时间区间的控制问题. U 是 控制区域.u(t)是分段连续的.

与(16.21)相伴的 Hamilton函数,

- 16.23 假设 $(x^*(t), u^*(t))$ 是问题(16.21)的解,则存在一连续函数 p(t)和一个数 p_0 ,使对于所有 $t \in [t_0, t_1]$:
 - (1) $p_0 = 0$ 或 1 且(p_0 , p(t))不为(0, 0)
 - (2) $H(t, x^*(t), u, p(t)) \leq H(t, x^*(t), u^*(t), p(t))$ 对所有 $u \in U$ 成立.
 - (3) $\dot{p}(t) = -H_x'(t, x^*(t), u^*(t), p(t))$
 - (4) (a') 对 p(t1)没有限制.
 - (b') $p(t_1) \ge 0$ (=0 如果 $x^*(t_1) > x^1$)

最大化原理. p(t) 的 微 分 方 程 统 (t)的不连续 (b') 称为横截 化 说 不力模 化 的 设 下,我们可 设 下,我们可 路 (1).)

多种状态和多个变量

- 16.24 $\max_{t_0}^{t_1} f(t, x(t), u(t)) dt$ $\dot{x}(t) = g(t, x(t), u(t)), x(t_0) = x^0$ $u(t) = (u_1(t), \dots, u_r(t)) \in U \subset \mathbb{R}^r$ $(a) x_i(t_1) = x_i^1, \qquad i = 1, \dots, l$ $(b) x_i(t_1) \geqslant x_i^1, \qquad i = l+1, \dots, q$ $(c) x_i(t_1) \land \nabla \in \mathbb{R}$ 积 $i = q+1, \dots, n$
- 16.25 $H(t, x, u, p) = p_0 f(t, x, u) + \sum_{i=1}^{n} p_i g_i(t, x, u)$
- 16.26 如果 $(x^*(t), u^*(t))$ 是问题(16.24)的解,则存在一常数 p_0 和一连续函数 $p(t) = (p_1(t), \dots, p_n(t))$,使对于所有 $t \in [t_0, t_1]$; $(1) p_0 = 0$ 或 1 且 $(p_0, p(t))$ 不为(0, 0)
 - (2) $H(t, x^*(t), u, p(t)) \leq H(t, x^*(t), u^*(t), p(t))$ 对所有 $u \in U$ 成立.
 - (3) $\dot{p}_i(t) = -\partial H^*/\partial x_i$, $i = 1, \dots, n$
 - (4) (a') $p_i(t_1)$ 不受限制, $i = 1, \dots, l$ (b') $p_i(t_1) \ge 0 (= 0$ 如果 $x_i^*(t_1) > x_i^1)$ $i = l + 1, \dots, q$ (c') $p_i(t_1) = 0$, $i = q + 1, \dots, n$

有固定时间区间的 标准控制问题. U是控制区域, x(t)= $(x_1(t), \dots, x_n(t))$, $g = (g_1, \dots, g_n)$, u(t) 是 分段连续的.

Hamilton 函数.

- 16.27 如果对于 $p_0 = 1$, $(x^*(t), u^*(t))$ 满足 (16.26) 中的所有条件,且 H(t, x, u, p(t))在(x, u)是凹的,则 $(x^*(t), u^*(t))$ 是问题(16.24)的解.
- 问题(16.24)的 Mangasarian 充分 条件.
- 16.28 (16.27)中的条件 H(t, x, u, p(t))在(x, u)是凹的,可改为较弱的条件;最大化的 Hamilton 函数

 $\hat{H}(t, x, p(t)) = \max_{u \in U} H(t, x, u, p(t))$

在x是凹的.

- 16.29 $V(x^0, x^1, t_0, t_1) = \int_{t_0}^{t_1} f(t, x^*(t), u^*(t)) dt$
- 16.30 $\frac{\partial V}{\partial x_i^0} = p_i(t_0), \qquad i = 1, \dots, n$ $\frac{\partial V}{\partial x_i^1} = -p_i(t_1), \qquad i = 1, \dots, q$ $\frac{\partial V}{\partial t_0} = -H^*(t_0), \quad \frac{\partial V}{\partial t_1} = H^*(t_1)$
- 16.31 如果在问题(16.24)中 t_1 是自由的,且 $(x^*(t), u^*(t))$ 是在 $[t_0, t_1^*]$ 对应的问题的解,则所有(16.26)内的条件在 $[t_0, t_1^*]$ 上得到满足,而且 $H(t_1^*, x^*(t_1^*), u^*(t_1^*), p(t_1^*)) = 0$

Arrow 充分条件.

问题(16.24)的值 函数, 假设解是 $(x^*(t), u^*(t))$ 且 $x^1 = (x_1^1, \dots, x_n^1)$.

值函数的性质. 假设 V 是可微的, $H^*(t) = H(t, x^*(t), u^*(t), p(t)). (精确的假设可参考 Seierstad & Sydsaeter (1987), 3.5节)$

自由终端时间问题 的必要条件.(当 t₁ 自由时 Hamilton 函 数在(x, u)的凹性不 是是优解的充分条 件.参见 Seierstad & Sydsaeter (1987), 2.9节) 16.32 考虑将问题(16.24)中的终端条件(a),(b)和(c)改为

$$R_k(x(t_1)) = 0$$
, $k = 1, 2, \dots, r_1'$
 $R_k(x(t_1)) \ge 0$, $k = r_1'+1, r_1'+2, \dots, r_1$
其中 R_1, \dots, R_{r_1} 是 C^1 函数. 如果($x^*(t)$, $u^*(t)$)是最优解,则(16.26)中的条件将成立,除了将(4)改为:存在数 a_1, \dots, a_{r_1} ,使

更一般的终端条件、 \hat{H} (t, x, p(t)) 的定义在(16.28).

16.33
$$\max \left[\int_{t_0}^{t_1} f(t, x(t), u(t)) e^{-rt} dt + S(t_1, x(t)) e^{-rt} dt + S(t_1, x(t))$$

有附加值函数 S 的控制问题. t_0 和 t_1 是固定的.

16.34 $H^{\epsilon}(t, x, u, q) = q_0 f(t, x, u) + q \cdot g(t, x, u)$

问题(16.33)的现值 Hamilton 函数,

- 16.35 如果 $(x^*(t), u^*(t))$ 是问题(16.33)的解,则存在一常数 q_0 和一连续函数 $q(t) = (q_1(t), \dots, q_n(t))$,使对于所有 t 在 $[t_0, t_1]$ 内:
 - (1) $q_0 = 0$ 或 1,且 $(q_0, q(t))$ 不为(0, 0)
 - (2) $H(t, x^*(t), u, q(t)) \leq H^c(t, x^*(t), u^*(t), q(t))$ 对于所有 $u \in U$ 成立.

(3)
$$\dot{q}_i - rq_i = -\frac{\partial H^c(t, x^*, u^*, q)}{\partial x_i}$$
,

 $i = 1, \dots, n$ $(4) (a') q_i(t_1)$ 不受限制 $i = 1, \dots, l$ $(b') q_i(t_1) \geqslant q_0 \frac{\partial S^*(t_1, \mathbf{x}^*(t_1))}{\partial x_i}$ $(= 如果 x_i^*(t_1) > x_i^1), i = l + 1, \dots, m$ $(c') q_i(t_1) = q_0 \frac{\partial S^*(t_1, \mathbf{x}^*(t_1))}{\partial x_i},$ $i = m + 1, \dots, n$

- 16.36 如果 $(x^*(t), u^*(t))$ 对于 $q_0 = 1$ 满足(16.35)中的条件,如果 H(t, x, u, q(t))在(x, u)是凹的,且如果 S(t, x)在 x 是凹的,则 $(x^*(t), u^*(t))$ 是问题的解.
- (16.33)解的充分 条件.(Mangasarian)
- 16.37 (16.36) 中的条件 $H^{\epsilon}(t, x, u, q(t))$ 在 (x, u) 是凹的可改为较弱的条件: 最大化的现值 Hamilton 函数 $\hat{H}^{\epsilon}(t, x, q(t)) = \max_{u \in U} H^{\epsilon}(t, x, u, q(t))$ 在 x 是凹的.

Arrow 充分条件.

16.38 如果 t_1 在(16.33)中是自由的,且如果(x^* , u^*) 在[t_0 , t_1^*]上是对应的问题的解,则(16.35) 中的所有条件在[t_0 , t_1^*]上得到满足,而且 $H^*(t_1^*, x^*(t_1^*), u^*(t_1^*), q(t_1^*)) = q_0 rS(t_1^*, x^*(t_1^*)) - q_0 \frac{\partial S(t_1^*, x^*(t_1^*))}{\partial t_1}$

当 t_1 不受限制时 (16.33) 的必要条件(除了在退化的情况下,我们可以设定 $q_0 = 1$).

线性二次型问题

16.39 $\min \left[\int_{t_0}^{t_1} (x' \mathbf{A} x + u' \mathbf{B} u) dt + (x(t_1))' \mathbf{S} x(t_1) \right]$ $\dot{x} = \mathbf{F}x + \mathbf{G}u$, $x(t_0) = x^0$, $u \in \mathbf{R}^r$ 矩阵 $A = A(t)_{n \times n}$ 和 $S_{n \times n}$ 是对称的和半正定 性的, $\mathbf{B} = \mathbf{B}(t)_{r \times r}$ 是对称的和正定性的. $\mathbf{F} = \mathbf{F}(t)_{n \times n} \mathbf{H} \mathbf{G} = \mathbf{G}(t)_{n \times r}.$

线性二次型问题. A(t), B(t), $| \mathbf{F}(t), \mathbf{n} \mathbf{G}(t)$ 的元 素是 t 的连续函 数. x = x(t) 是 n $\times 1$, u = u(t) 是

16.40 $\dot{R} = -RF - F'R + RGB^{-1}G'R - A$

与(16.39)相伴的 Riccati 方程.

16.41 假设 $(x^*(t), u^*(t))$ 是问题(16.39)的可接 受解,令 $u^* = -(\mathbf{B}(t))^{-1}(\mathbf{G}(t))'\mathbf{R}(t)x^*$, 其中 R = R(t) 是对称的 $n \times n$ 矩阵,其元素 是满足(16.40)的 C^{I} 函数,且 $R(t_{1}) = S$,则 $(x^*(t), u^*(t))$ 是问题(16.39)的解.

(16.39)的解.

无限时域

 $16.42 \quad \max_{t_0}^{\infty} f(t, x(t), u(t)) e^{-rt} dt$ 简单的一元无限时 $\dot{x}(t) = g(t, x(t), u(t)), x(t_0) = x^0$, 域问题,假设积分 对于所有可接受解 $\lim_{t\to\infty} x(t) \geqslant x^1(x^1$ 是一固定数)

16.43 $H^c(t, x, u, q) = q_0 f(t, x, u) + qg(t, x, u)$

| 问题(16.42)的现

- 16.44 假设问题(16.42)的一对可接受解($x^*(t)$, $u^*(t)$),当 $q_0 = 1$ 时对所有 $t \ge t_0$ 满足以下条件:
 - (1) $H^c(t, x^*(t), u, q(t)) \leq H^c(t, x^*(t), u^*(t), q(t))$ 对于所有 $u \in U$ 成立.
 - (2) $\dot{q}(t) rq = -\partial H^{\epsilon}(t, x^{*}(t), u^{*}(t), q(t))/\partial x$
 - (3) H(t, x, u, q(t))在(x, u)是凹的.
 - (4) $\lim_{t\to\infty} [q(t)e^{-n}(x(t)-x^*(t))] \ge 0$ 对于 所有可接受的 x(t)成立.

则 $(x^*(t), u^*(t))$ 是最优解.

Mangasarian 充分条件.(条件(1)和(2)对问题(16.42)是(本质上)必须的,但(4)不是)对必要条件的讨论,参见如 Seierstad & Sydsaeter (1987), 3.7节)

$$16.45 \max_{t_0}^{\infty} f(t, x(t), u(t)) e^{-rt} dt$$

$$\dot{x}(t) = g(t, x(t), u(t)), x(t_0) = x^0,$$

$$u(t) \in U \subset \mathbb{R}^r$$

$$(a) \lim_{t \to \infty} x_i(t) = x_i^1, \quad i = 1, \dots, l$$

$$(b) \lim_{t \to \infty} x_i(t) \geqslant x_i^1, \quad i = l+1, \dots, m$$

$$(c) t \to \infty \text{ for } x_i(t) \text{ height } x_i(t) \text{ for } x_i(t)$$

 $i = m + 1, \dots, n$

多种状态多个控制 变量的无限时域问 題.对于 <u>lim</u>参见 (12.40)和(12.41).

16.46
$$D(t) = \int_{t_0}^{t} (f^* - f) e^{-r\tau} d\tau$$
, 其中
$$f^* = f(\tau, x^*(\tau), u^*(\tau)),$$

$$f = f(\tau, x(\tau), u(\tau))$$

(16. 47)的注解. (x*(t), u*(t)) 是最优解的候选 者,(x(t), u(t)) 是任意可接受的 对.

- 16.47 $(x^*(t), u^*(t))$ 是
 - 间断赶上最优(SCU-最优),如果对每一可接受对 (x(t), u(t)), $\overline{\lim}_{t\to\infty} D(t) \ge 0$ 即对于每一 $\epsilon > 0$ 和每一 T,存在某一 $t \ge T$,使 $D(t) \ge -\epsilon$.
 - 赶上最优(CU-最优),如果对每一可接受对 $(x(t), u(t)), \lim_{t\to \infty} D(t) \ge 0$ 即对于每一 $\epsilon > 0$,存在某一 T,使 $D(t) \ge -\epsilon$ 对于所有 $t \ge T$ 成立.
 - ●超越最优(OT-最优),如果对一可接受对 (x(t), u(t)),存在一个数 T,使 $D(t) \ge 0$ 对于所有 $t \ge T$ 成立.
- 16.48 OT-最优性⇒CU-最优性 ⇒SCU-最优性
- 16.49 假设($x^*(t)$, $u^*(t)$)在问题(16.45)中是SCU-, CU-,或OT-最优,则存在一常数 q_0 和一连续函数 $q(t) = (q_1(t), \dots, q_n(t))$,使对于所有 $t \ge t_0$:
 - (1) $q_0 = 0$ 或 1 且 $(q_0, q(t))$ 不为(0, 0)
 - (2) $H^{\epsilon}(t, x^{*}(t), u, q(t)) \leq H^{\epsilon}(t, x^{*}(t), u^{*}(t), q(t))$ 对于所有 $u \in U$
 - (3) $\dot{q}_i rq_i = -\frac{\partial H^{\epsilon}(t, x^*, u^*, q)}{\partial x_i}$,

 $i = 1, \dots, n$

无限时域问题的不同最优解标准.对于 lim 和 lim,参见(12.40)和(12.41).(SCU-最优性又称为弱最优性,而OT-最优性则称为超越最优性)

最优性标准之间的 关系.

最大化原理. 无限时域.(没有横截条件.) $q_i(t)$ 的微分方程在 $u^*(t)$ 的不连续点不一定成立.

- 16.50 在 CU-最优情况下, (16.49) 中条件(2) 和 $(3)(q_0 = 1)$ 对最优解是充分的, 如果
 - (1) H(t, x, u, q(t))在(x, u)点是凹的
 - (2) $\lim_{t\to\infty} r^n q(t) \cdot (x(t) x^*(t)) \ge 0$ 对于 所有可接受的 x(t)成立.

无限时域问题的充 分条件。

- 16.51 条件(16.50)(2)得以满足,如果对于所有可接受的 x(t),以下条件得以满足:
 - (1) $\lim_{t\to\infty} e^{-rt} q_i(t) (x_i^1 x_i^*(t)) \ge 0$,

$$i=1, \dots, m$$

- (2) 存在一常数 M,使 $|e^{-n}q_i(t)| \leq M$ 对于所有 $t \geq t_0$, $i = 1, \dots, m$
- (3) 或者存在一个数 $t' \ge t_0$,使 $q_i(t) \ge 0$ 对于所有 $t \ge t'$ 成立,或存在一个数 P,使 $|x_i(t)| \le P$ 对于所有 $t \ge t_0$ 成立,且 $\lim_{t \to 0} q_i(t) \ge 0$, $i = l + 1, \dots, m$
- (4) 存在一个数 Q, 使对于所有 $t \ge t_0$, $|x_i(t)| < Q$ 且 $\lim_{t\to\infty} q_i(t) = 0$, i = m + 1, \dots , n

(16.50)(2)成立的 充分条件.参见 Seierstad & Sydsæter (1987), 3.7节,注 解 16.

混合约束

16.52
$$\max_{t_0}^{t_1} f(t, x(t), u(t)) dt$$

$$\dot{x}(t) = g(t, x(t), u(t)),$$

$$x(t_0) = x^0, u(t) \in \mathbb{R}^r$$

$$h_k(t, x(t), u(t)) \ge 0, k = 1, \dots, s$$

$$(a) x_i(t_1) = x_i^1, \qquad i = 1, \dots, l$$

$$(b) x_i(t_1) \ge x_i^1, \qquad i = l+1, \dots, q$$

16.53
$$\mathfrak{L}(t, x, u, p, q) = H(t, x, u, p)$$

 $+ \sum_{k=1}^{s} q_k h_k(t, x, u)$

(c) $x_i(t_1)$ 不受限制, $i = q + 1, \dots, n$

与(16.52)相伴的 拉格朗日函数 H(t,x,u,p)是 通常的 Hamilton 函数 16.54 假设 $(x^*(t), u^*(t))$ 是问题(16.52)的可接受的对,进一步假设存在函数 $p(t) = (p_1(t), \dots, p_n(t))$ 和 $q(t) = (q_1(t), \dots, q_s(t))$,其中 p(t)是连续的,而 $\dot{p}(t)$ 和 q(t)是分段连续的,使以下条件在 $p_0 = 1$ 成立:

$$(1)\frac{\partial \mathfrak{Q}^*}{\partial u_j}=0, j=1, \dots, r$$

(2)
$$q_k(t) \ge 0 (= 0 \text{ mlg } h_k(t, x^*(t), u^*(t)) > 0),$$
 $k = 1, \dots, s$

(3)
$$\dot{p}_i(t) = -\frac{\partial \mathfrak{L}^*}{\partial x_i}, \qquad i = 1, \dots, n$$

(4) (a')
$$p_i(t_1)$$
 不受约束 $i = 1, \dots, l$
(b') $p_i(t_1) \ge 0 (= 0 \text{ 如果 } x_i^*(t_1) > x_i^1)$, $i = l+1, \dots, m$
(c') $p_i(t_1) = 0$, $i = m+1, \dots, n$

(5)
$$H(t, x, u, p(t))$$
在 (x, u) 是凹的

(6)
$$h_k(t, x, u)$$
在 (x, u) 是拟凹的,

 $k = 1, \dots, s$

则 $(x^*(t), u^*(t))$ 是问题的解.

问题(16.52)的 Mangasarian 充分 条件. 2* 取值在 $(t, x^*(t), u^*(t),$ p(t), q(t))(标准 的最优解的必要条 件包括一个约束限 制,严格地限制了 能够出现在加约 東内的函数的形 式.特别地.在最优 点每一有效约束必 须包含至少一个控 制变量作为自变 量,详情参见参考 文献).

纯状态约束

16.55 $\max \int_{t_0}^{t_1} f(t, x(t), u(t)) dt$ $\dot{x}(t) = g(t, x(t), u(t)), x(t_0) = x^0$ $u(t) = (u_1(t), \dots, u_r(t)) \in U \subset \mathbb{R}^r$ $h_k(t, x(t)) \ge 0, k = 1, \dots, s$ (a) $x_i(t_1) = x_i^1, i = 1, \dots, l$ (b) $x_i(t_1) \ge x_i^1, i = l + 1, \dots, q$ (c) $x_i(t_1) \land \mathcal{R}$ 限制, $i = q + 1, \dots, n$

纯状态约束问题. U 是 控制 区域. h_1, \dots, h_s 是给定函数.

16.56
$$\mathfrak{L}(t, x, u, p, q) = H(t, x, u, p)$$

+ $\sum_{k=1}^{s} q_k h_k(t, x)$

与(16.55)相伴的 拉格朗日函数. H(t, x, u, p)是通 常的 Hamilton 函数.

- 16.57 假设 $(x^*(t), u^*(t))$ 在问题(16.55)中是可接受的,且存在向量函数 p(t)和 q(t),其中p(t)是连续的,而 $\dot{p}(t)$ 和 q(t)在 $[t_0, t_1]$ 内是分段连续的,还有数 β_i , $j=1, \dots$,s,使以下条件在 $p_0=1$ 成立:
 - (1) $u = u^*(t)$ 对于 u 在 U 内将 $H(t, x^*(t), u, p(t))$ 最大化
 - (2) $q_k(t) \ge 0 (= 0 \text{ dag } h_k(t, x^*(t)) > 0),$ $k = 1, \dots, s$
 - (3) $\dot{p}_i(t) = -\frac{\partial \mathfrak{L}^*}{\partial x_i}, \qquad i = 1, \dots, n$
 - (4) $p_i(t)$ 在 t_1 跳跃性不连续,即

$$p_i(t_1^-) - p_i(t_1) = \sum_{j=1}^s \beta_j \frac{\partial h_j(t_1, x^*(t_1))}{\partial x_i},$$

 $i = 1, \dots, n$

(5) $\beta_k \geqslant 0 (= 0 \text{ m} \Re h_k(t_1, x^*(t_1)) > 0),$

$$k = 1, \dots, s$$

- (6) (a') $p_i(t_1)$ 不受限制, $i = 1, \dots, l$
 - (b') $p_i(t_1) \ge 0 (= 0 \text{ mm } x_i^*(t_1) > x_i^1),$ $i = l+1, \dots, m$

(c')
$$p_i(t_1) = 0$$
, $i = m + 1, \dots, n$

- $(7) \hat{H}(t, x, p(t)) = \max_{u \in U} H(t, x, u, p(t)) 在 x 是凹的.$
- $(8) h_k(t, x)$ 在 x 是拟凹的, $k=1, \dots, s$ 则 $(x^*(t), u^*(t))$ 是问题的解。

混合与纯状态约束

- 16.58 $\max \int_{t_0}^{t_1} f(t, x(t), u(t)) dt$ $\dot{x}(t) = g(t, x(t), u(t)), x(t_0) = x^0$ $u(t) = (u_1(t), \dots, u_r(t)) \in U \subset \mathbb{R}^r$ $h_k(t, x(t), u(t)) \ge 0,$ $k = 1, \dots, s'$ $h_k(t, x(t), u(t)) = \overline{h_k(t, x(t))} \ge 0,$ $k = s' + 1, \dots, s$ (a) $x_i(t_1) = x_i^1, \quad i = 1, \dots, l$ (b) $x_i(t_1) \ge x_i^1, \quad i = l + 1, \dots, q$ (c) $x_i(t_1) \land \mathcal{R}$ 限制, $i = q + 1, \dots, n$
- 16.59 设($x^*(t)$, $u^*(t)$)为在问题(16.58)中可接受的. 假设存在向量函数 p(t)和 q(t), 其中p(t)是连续的而 $\dot{p}(t)$ 和 q(t)是分段连续的,还有数 β_j , $j=1,\cdots,s$, 使以下条件在 $p_0=1$ 时得以满足:

 - (2) $\dot{p}_i(t) = -\frac{\partial \mathfrak{L}^*}{\partial x_i}, \qquad i = 1, \dots, n$
 - (3) $p_i(t_1) \sum_{k=1}^{s} \beta_k \frac{\partial h_k(t_1, x^*(t_1), u^*(t_1))}{\partial x_i}$ 满足

(a) 不受限制,

 $i = 1, \dots, l$

 $(b') \ge 0 (= 0 \text{ supp} x_i^*(t_1) > x_i^1),$

 $i = l + 1, \dots, m$

(c') = 0, $i = m + 1, \dots, n$ $(4) \beta_k = 0,$ $k = 1, \dots, s'$

(5) $\beta_k \geqslant 0 (= 0 \text{ m} + \overline{h}_k(t_1, x^*(t_1)) > 0),$

 $k = s' + 1, \dots, s$

- (6) $q_k(t) \ge 0 (= 0 \text{ dn} \oplus h_k(t, x^*(t), u^*(t)) > 0), \qquad k = 1, \dots, s$
- (7) $h_k(t, x, u)$ 在(x, u)是拟凹的,

 $k = 1, \dots, s$.

(8) H(t, x, u, p(t))在(x, u)是凹的、则 $(x^*(t), u^*(t))$ 是问题的解。

一个混合与纯状态 约束问题.

混合与纯状态约束 问题的 Mangasarian 充分条件(p(t) 是连续的). ♀定义 在(16.53),且 2* 取 值 在 (t, $x^*(t), u^*(t),$ p(t), q(t), $p(t) = (p_1(t),$ \cdots , $p_n(t)$, q(t) $= (q_1(t), \dots,$ a.(t)). 约束认证 是不需要的.但通 常这些条件不会满 足,因为p(t)不连 续,特别在 t_1 . 对于 允许 p(t) 在 [to, t1]的内点上 有不连续点的充分 性结论,参见如 Seierstad & Svdsaeter (1987) 定 理 6.2.

参考文献

Kamien & Schwartz (1991), Léonard & Long (1992), Beavis & Dobbs (1990),以及 Intrilligator (1971). 对于更详细的内容,参考如 Seierstad & Sydsaeter (1987)或 Feichtinger & Hartl (1986)(德语).

动态规划

动态规划问题. 此 处 $g = (g_1, \dots,$ 是控制区域.

17.2
$$J_s(x) = \max_{u_t, \dots, u_T \in U} \sum_{t=s}^{T} f(t, x_t, u_t), \sharp \Phi$$

 $x_{t+1} = g(t, x_t, u_t), t = s, \dots, T-1, x_s = x$

| 问题(17.1)的值函 数 $J_s(x)$ 的定义.

17.3
$$J_{T}(x) = \max_{u \in U} f(T, x, u),$$
$$J_{s}(x) = \max_{u \in U} [f(s, x, u) + J_{s+1}(g(s, x, u))]$$
$$\forall \exists s = 0, 1, \dots, T-1.$$

动态规划中的基础 方程(Bellman 方

17.4 动态规划问题中的"自由控制参数"形式。 $\max \sum_{t=0}^{t} F(t, x_t, x_{t+1}),$ $x_{t+1} \in \Gamma_t(x_t), t = 0, \dots, T, x_0$ 是给定的

集合 $\Gamma_i(x_i)$ 通常定 义为,对于给定的 向量函数 G 和 H 的向量不等式形 | 式, $G(t, x_t) \leqslant$ $x_{t+1} \leqslant H(t, x_t)$

17.5 $J_s(x) = \max \sum_{t=0}^{T} F(t, x_t, x_{t+1}),$ 其中最大化是 对所有 $x_{t+1} \in \Gamma_t(x_t)$, t = s, ..., T,且 $x_t = x$.

问题(17.4)的值函 数, $J_s(x)$.

17.6
$$J_T(x) = \max_{y \in \Gamma_T(x)} F(T, x, y)$$

$$J_s(x) = \max_{y \in \Gamma_s(x)} [F(s, x, y) + J_{s+1}(y)]$$
对于 $s = 0, 1, \dots, T$

17.7 如果 $\{x_0^*, \dots, x_{T+1}^*\}$ 是(17.4)的最优解,其 中 x_{t+1}^* 对于所有t是 $\Gamma_t(x_t^*)$ 的一个内点,且 对应 $x \mapsto \mathbb{C} \Gamma_{r}(x)$ 是半连续的,则 $\{x_0^*, \dots, n \text{ 维偏导数向量,}$ x7+1 满足欧拉向量差分方程 $F'_2(t+1, x_{t+1}, x_{t+2}) + F'_3(t, x_t, x_{t+1}) = 0$ $\begin{vmatrix} +2, n+3, \cdots, \\ 2n+1 & \text{ } \end{pmatrix}$

问题(17.4)的基础

F是1+n+n个 变量的函数, F_0 记 为 F 对第 2, 3, ···, n+1个变量的 | 而 氏 是 F 对第 n

无限时域

- 17.8 $\max_{t=0}^{\infty} a^t f(\mathbf{x}_t, \mathbf{u}_t)$ $\max_{t=0}^{\infty} a^{t} f(x_{t}, u_{t})$ $x_{t+1} = g(x_{t}, u_{t}), t = 0, 1, 2, \dots$ $x_{0} = x^{0}, x_{t} \in \mathbb{R}^{n}, u_{t} \in U \subset \mathbb{R}^{r}, t = 0, 1,$ 2. ...
- 17.9 序列 $\{(x_i, u_i)\}$ 称为可接受的,如果 $u_i \in U$, $x_0 = x^0$, 且差分方程(17.8)对所有 t = 0, 1, 2. … 都满足.
- 17.10 (B) $M \le f(x, u) \le N$ (BB) $f(x, u) \geqslant M$ (BA) $f(x, u) \leq N$
- 17.11 $V(x, \pi, s, \infty) = \sum_{t=s}^{\infty} a^{t} f(x_{t}, u_{t})$ 其中 $\pi = (u_s, u_{s+1}, \dots)$, 且 $u_{s+k} \in U$ 对 $k = 0, 1, \dots, \overline{m} \coprod x_{t+1} = g(x_t, u_t) \ \forall t = 0$ $s, s+1, \dots, x_s = x$ 成立.

可接受序列的定.

 $\frac{1}{2}$ 给定在 t = s 时的 丨状态向量x,从s时 期至以后所能获得 的总效用.

17.12 $J_s(x) = \sup_{\pi} V(x, \pi, s, \infty)$ 其中上确界是对所有向量 $\pi = (u_s, u_{s+1}, \cdots)$ 的,且 $u_{s+k} \in U, (x_t, u_t)$ 对于 $t \ge s$ 是可接 受的,且 $x_s = x$.

问题(17.8)的值函数.

17.13 $J_s(x) = \alpha^s J_0(x), s = 1, 2, \dots$ $J_0(x) = \max_{u \in U} \{ f(x, u) + \alpha J_0(g(x, u)) \}$ 值函数的性质,假设(17.10)中至少一个有界性条件是满足的。

离散最优控制理论

17.14 $H = f(t, x, u) + pg(t, x, u), t = 0, \dots, T$

与(17.1)相伴的 Hamilton 函数 $H = H(t, x, u, p), 其中 p = (p^1, \dots, p^n).$

- 17.15 假设 $\{(x_t^*, u_t^*)\}$ 是问题(17.1)的一个最优可接受序列,则在 \mathbb{R}^n 内存在向量 p_t ,使对于 $t=0, \dots, T$:
 - (1) $H'_{u}(t, x_{t}^{*}, u_{t}^{*}, p_{t}) \cdot (u u_{t}^{*}) \leq 0$ 对于所有 $u \in U$ 成立
 - (2) 向量 $p_t = (p_t^1, \dots, p_t^n)$ 是 $p_{t-1} = H'_x(t, x_t^*, u_t^*, p_t),$ $t = 1, \dots, T$ $h \uparrow M, \perp p_T = 0$

(17.1)的最大化原理,最优解的必要条件, *U* 是凸的(Hamilton 函数不一定由 *u*; 最大化).

- 17.16 (a) $x_T^i = \bar{x}^i$ $\forall T i = 1, \dots, l$
 - (b) $x_T^i \geqslant \bar{x}^i$ 对于 $i = l+1, \dots, m$
 - (c) x_T^i 不受限制 对于 $i = m + 1, \dots, n$

问题(17.1)的终端 条件.

17.17
$$H = \begin{cases} q_0 f(t, x, u) + pg(t, x, u), t = 0, \\ \dots, T - 1 \\ f(T, x, u), t = T \end{cases}$$

与(17.1)相伴有终端条件(17.16)的Hamilton函数H=H(t,x,u,p).

- 17.18 假设 $\{(x_t^*, u_t^*)\}$ 是问题(17.1)的一个最优序列,且有终端条件(17.16),则在 \mathbb{R}^n 内存在向量 p_t 和一个数 q_0 ,且 $(q_0, p_T) \neq (0, 0)$, $q_0 = 0$ 或 1, 使对于 $t = 0, \dots, T$:
 - (1) $H'_u(t, x_t^*, u_t^*, p_t) \cdot (u u_t^*) \leq 0$ 对于所有 $u \in U$ 成立
 - (2) $p_t = (p_t^1, \dots, p_t^n) \not = p_{t-1}^i = H_x^{i}(t, x_t^*, u_t^*, p_t), t = 1, \dots, T-1$ 的一个解
 - (3) $p_{T-1}^i = q_0 \frac{\partial f(T, \mathbf{x}_T^*, \mathbf{u}_T^*)}{\partial x_T^i} + p_T^i,$ 其中 p_T^i 满足
 - (a') 於 不受限制, $i=1, \dots, l$
 - (b') $p_T^i \ge 0$ (= 0 如果 $x_T^{*i} > \hat{x}^i$),

$$i = l + 1, \dots, m$$

(c') $p_T^i = 0,$ $i = m + 1, \dots, n$

17.19 假设当 $q_0 = 1$ 时 $\{(x_t^*, u_t^*, p_t)\}$ 满足 (17.18)中的所有条件,并进一步假设 $H(t, x, u, p_t)$ 在(x, u)对每一 $t \ge 0$ 是凹的.则 序列 $\{(x_t^*, u_t^*, p_t)\}$ 是最优的.

有終端条件(17.16)的原要件(17.16)的原理,最上的(17.1)的原理,是一个(17.16)的解决。 (a'),(b'),成立((a'),((a')),以成或((a')),以成或((a')),以是化可以是化可以。 (a'),((a')),以是化可以。 (a'),((a')),以是化可以。 (a') 。 (a

最优解的充分条 件.

无限时域

17.20 $\max_{t=0}^{\infty} f(t, x_t, u_t)$ $x_{t+1} = g(t, x_t, u_t), t = 0, 1, 2, \cdots$ $x_0 = x^0, x_t \in \mathbb{R}^n, u_t \in U \subset \mathbb{R}^r, t = 0, 1, 2, \cdots$ 2, ...

这里假设每一可接 受对无限求和是收 敛的. 17.21 序列 $\{(x_t^*, u_t^*)\}$ 是赶上最优的(CU-最优), 如果对每一可接受的序列 $\{(x_t, u_t)\}$,

$$\underline{\lim} D(t) \geqslant 0$$

其中
$$D(t) = \sum_{\tau=0}^{t} (f(\tau, x_{\tau}^*, u_{\tau}^*) - f(\tau, x_{\tau}, u_{\tau}))$$

"赶上最优"的定义. 关于 <u>lim</u> 参见 (12.40)和(12.41).

17.22 假设序列 $\{(x_t^*, u_t^*, p_t)\}$ 满足(17.18)中的条件(1)和(2)且 $q_0 = 1$,进一步假设 Hamilton 函数 $H(t, x, u, p_t)$ 在(x, u)对于每一 t 是凹的,则 $\{(x_t^*, u_t^*)\}$ 是 CU-最优的,如果以下极限条件是满足的;对于所有可接受的序列 $\{(x_t, u_t)\}$,

无终端条件的无限 时域问题的最优解 的充分条件.

 $\lim_{t\to\infty} p_t\cdot (x_t-x_t^*)\geqslant 0$

参考文献

参考 Bellman(1957)以及 Stokey, Lucas, & Prescott (1989).

18.1
$$a_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix}$$
, $a_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix}$, ..., $a_m = \begin{pmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{pmatrix}$ \mathbf{R}^n 中的 m (列) 向量.

18.2 如果 x_1, x_2, \dots, x_m 是实数,则

$$x_1 a_1 + x_2 a_2 + \cdots + x_m a_m$$

是 a_1 , a_2 , …, a_m 的一个线性组合.

- 18.3 在 \mathbb{R}^n 中的向量 a_1, a_2, \dots, a_m 是
 - 线性相关的,如果存在不都为零的数 c_1 , c_2 , ···, c_m,使

$$c_1 a_1 + c_2 a_2 + \cdots + c_m a_m = 0$$

- 线性无关的,如果它们不是线性相关的.
- 线性相关和线性无 关的定义.
- 18.4 在(18.1)中的向量 a_1, a_2, \dots, a_m 是线性无 关的,当且仅当矩阵 $(a_{ij})_{n\times m}$ 的秩是 m.
- R"中的 m 个向量 |线性无关的特征. (关于矩阵秩的定 义参见(19.23))
- 18.5 向量 a_1, a_2, \dots, a_n 在 \mathbb{R}^n 中是线性无关的, 当且仅当

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \neq 0$$

 \mathbb{R}^n 中的 n 个向量 线性无关的特征. ((18.4)的一个特 例)

- 18.6 在 \mathbb{R}^n 中一个向量的非空子集 V 是 \mathbb{R}^n 的一个子空间,如果 $c_1a_1+c_2a_2\in V$ 对于所有 a_1 , $a_2\in V$ 中和所有数 c_1 , c_2 成立.
- 18.7 如果 $V \neq \mathbb{R}^n$ 的一个子空间,则 $S[V] \neq V$ 中所有向量线性组合的集合.
- 18.8 \mathbb{R}^n 的一个子空间 V 中的一组向量 a_1, \dots, a_m 称为 V 的基,如果以下两个条件得以满足:
 - a₁, …, a_m 是线性无关的
 - $\bullet S[a_1, \cdots, a_m] = V$
- 18.9 R"的子空间 V 的维数 dim V,是 V 的一个基中向量的个数.(V 的两个基的向量个数总是相同的)
- 18.10 设 V 为 R"的一个 m 维子空间.
 - V 中任意 m 个线性无关向量的组合是 V 的 一个基。
 - V 中任意 m 个能张成 V 的向量组合是 V 的一个基。
- 18.11 $a = (a_1, \dots, a_m)$ 和 $b = (b_1, \dots, b_m)$ 的内积是数

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + \dots + a_m b_m$$

- 18.12 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$ $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$ $(a\mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (a\mathbf{b}) = \alpha(\mathbf{a} \cdot \mathbf{b})$ $\mathbf{a} \cdot \mathbf{a} > 0 \Leftrightarrow \mathbf{a} \neq \mathbf{0}$
- 18.13 $\|\mathbf{a}\| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2} = \sqrt{\mathbf{a} \cdot \mathbf{a}}$
- 18.14 (a) $\|a\| > 0$ 对于 $a \neq 0$,且 $\|0\| = 0$ (b) $\|\alpha a\| = |\alpha| \|a\|$
 - (c) $||a+b|| \leq ||a|| + ||b||$
 - (d) $| \boldsymbol{a} \cdot \boldsymbol{b} | \leq || \boldsymbol{a} || \cdot || \boldsymbol{b} ||$

子空间的定义.

S[V]称为 V 的张 成.

子空间的基的定义.

子空间维数的定 义.特别的, dim**R**" = n.

关于子空间的重要 事实。

内积的定义,也称 为数量积或点积.

内积的性质. α 是 一数 量 (即 — 实 数).

向量的(Euclid)范 数(或称模长度). 范数的性质. a, $b \in \mathbb{R}^n$, α 是一数 量.(d)是柯西-施 瓦女不等式. $\|a$ 一 b || 是 a 和 b 之 间的距离. 18.15 两个非零向量 a 和 b 之间的角 φ 定义为 $\cos \varphi = \frac{a \cdot b}{\|a\| \cdot \|b\|}, 0 \leqslant \varphi < \pi$

在 R" 中两个向量 之间的角的定义. 向量 a 和 b 称为正 交的,如果 a · b = 0.

向量空间

- 18.16 一个向量空间(或线性空间)(R上的)是一元 索为向量的集合 V,其中有两种运算:"加 法"(V×V→V)和"数量乘法"(R×V→ V),其对于所有在 V中的x,y,z和所有实 数α和β,满足以下公理:
 - (a) (x + y) + z = x + (y + z),x + y = y + x
 - (b) 有一元素 0 ∈ V 满足 x + 0 = x.
 - Y(c) 对每一在 V 中的x, V 中有元素 (-1)x, 使 x + (-1)x = 0.
 - (d) $(\alpha + \beta)x = \alpha x + \beta x$; $\alpha(\beta x) = (\alpha \beta)x$; $\alpha(x + y) = \alpha x + \alpha y$; 1x = x
- 18.17 在向量空间 V 中的向量集合 B 是 V 的一个基,如果 B 中的向量是线性无关的,且张成 V, S[B] = V.

向量空明 到过于性的间义 的改会, 发生相向以 以 的 的 的 的 的 的 的 的 , 以 (18. 2) (18. 2) (18. 3) , (18. 6) , (18. 7) , 全 定 的 。 (18. 7) , (18. 7) (18. 7 (18. 7) (18. 18. 7) (18. 7) (18. 7) (18. 7) (18. 7) (18. 7) (18. 18. 7) (18. 7) (18. 7) (18. 7) (18. 7) (18. 7) (18. 18. 7) (18. 7) (18. 7) (18. 7) (18. 7) (18. 7) (18. 18. 7) (18. 7) (18. 7) (18. 7) (18. 7 (18. 7) (18. 7 (18. 7 (18. 7 (18. 7) (18. 7) (18. 7) (18. 7 (18. 7) (

向量空间的基的定 义.

度量空间

- 18.18 度量空间是一集合 M,具有距离函数 $d: M \times M \rightarrow \mathbb{R}$,对于所有在 M 中的 x, y, z 得以满足以下公理:
 - (a) $d(x, y) \ge 0$ $\coprod d(x, y) = 0 \Leftrightarrow x = y$
 - (b) d(x, y) = d(y, x)
 - (c) $d(x, y) \leq d(x, z) + d(z, y)$

度量空间的定义. 距离函数 d 称为 M上的一个度量, (c)称为三角形不 等式.

- 18.19 在一度量空间中的序列 $\{x_n\}$ 是
 - ◆ 收敛于极限 x 的,可记为 $\lim_{n\to\infty} x_n = x(或 x_n \to x \exists n \to \infty), 如果当 n \to \infty$ 时 $d(x_n, x) \to 0$;
 - 柯西序列,如果对每一 ε > 0,存在一整数 N,使 $d(x_n, x_m) < ε$ 对所有 m, n ≥ N 成立.

重要的定义.一个 不收敛的序列称为 发散的.

18.20 一个在度量空间 M 内的子集合 S 在 M 中是 稠密的,如果 M 中的每一点都是由 S 中的点 所构成的序列的极限.

稠密子集的定义.

- 18.21 一个度量空间 M 是
 - 完整的,如果在 M 中的每一柯西序列是收敛的:
 - 可分的,如果存在一个可数的 M 的子集 S 在M 中是稠密的.

完整的和可分的度量空间的定义.

赋范向量空间 Banach 空间

- 18.22 一个赋范向量空间(在 R 上)是一向量空间 V,且有一函数 $\|\cdot\|:V\to R$,使对于所有 在 V上的x,y和所有实数 α :
 - (a) $\|x\| > 0$ 对于 $x \neq 0$ 成立,且 $\|0\|$
 - (b) $\| \alpha x \| = | \alpha + \| x \|$
 - (c) $||x + y|| \le ||x|| + ||y||$

当 距 离 函 数 为 $d(x, y) = \|x - y\|$ 时, V 称 为一 个度量空间、如果 这一度量空间是完整的,则 V 称为一 Banach 空间.

- 18.23 $l^p(n)$; \mathbb{R}^n , 且 $\|x\| = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$ $(p \ge 1)(当 p = 2 \text{ 时, 是 Euclid 范数})$
 - $t^{\infty}(n)$; \mathbb{R}^n , $\mathbb{H} \| \mathbf{x} \| = \max(|x_1|, \dots, |x_n|)$

 - l^{∞} : 所有有约束的实数的无限序列 $x = (x_0, x_1, \cdots)$ 的集合,且 $||x|| = \sup_i |x_i|$. (对 l^{p} 定义的向量运算.)
 - C(X):所有受约束的连续函数 $f: X \to \mathbb{R}$ 的 集合,其中 $X \subset \mathbb{R}^n$ 是一度量空间,且 $\|f\|$ = $\sup_{x \in X} |f(t)|$ 如果 f 和 g 是在 C(X) 中且 $\alpha \in \mathbb{R}$,则 f+g 和 αf 定义为 (f+g)(x) = f(x)+g(x) 及 $(\alpha f)(x)=\alpha f(x)$.

一些标准的赋范向量空间,同时也是Banach空间的实例.

- 18.24 设 X 为一紧的度量空间,并设 F 为 Banach 空间 C(X)的一个子集(参见(18.23)),且是
 - 一致有界的,即存在一个数 M,使 | f(x) | $\leq M$ 对于所有 $f \in F$ 和所有 $x \in X$ 成立.
 - 同等连续的,即对于每一 $\epsilon > 0$,存在一 $\delta > 0$,使当 $\|x x'\| < \delta$ 时, $\|f(x)\| f(x')\| < \epsilon$ 对于所有 $f \in F$ 成立,则 F 的闭包是紧的.

Ascoli 定理.(与 Schauder 定理 (18.25)一起,这一 结论在经济动态分 析中是很有用的.参 见 Stokey, Lucas, & Prescott (1989)) 18.25 如果 K 是一在 Banach 空间 X 中的紧凸集合,则 K 的任意映射人自身的连续函数 f 有一不动点,即在 K 中存在一点 x^* ,使 $f(x^*)$ = x^* .

Schauder 不动点 定理.

- 18.26 设 $T: X \to X$ 为一完整的度量空间 X 到自己的映射,假设在 [0,1) 中存在一个数 k,使 $(*)d(T_x,T_y) \leq kd(x,y)$ 对于所有 X 中的 x,y 成立,则
- 的存在. k 称为收缩映射的模(参见 (6.23) 对于某一 $k \in [0,1)$,满足

(*)的映射称为收

缩映射、

收缩映射中不动点

- (a) T 有一不动点 x^* ,即 $T(x^*) = x^*$.
- (b) $d(T_x^{n_0}, x^*) \leq k^n d(x^0, x^*)$ 对于所有 $x^0 \in X$ 和所有 $n = 0, 1, 2, \cdots$ 成立.
- 18.27 设 C(X)为(18.23)定义的 Banach 空间,而 T为一C(X)到 C(X)的映射,且满足:
 - (a) (单调性)如果 $f, g \in C(X)$ 且 $f(x) \le g(x)$ 对于所有 $x \in X$ 成立,则 $(Tf)(x) \le (Tg)(x)$ 对于所有 $x \in X$ 成立.
 - (b) (贴现性)存在某个 $\alpha \in (0, 1)$, 使对于所有 $f \in C(X)$ 和所有 $a \ge 0$, 及所有 $x \in X$, $[T(f+a)](x) \le (Tf)(x) + \alpha a$ 则 T 是一模为 α 的收缩映射.

收缩映射的 Black-well 充分条件. 在此 (f + a)(x) 定义为 f(x) + a.

内积空间 Hilbert 空间

- 18.28 內积空间(在 R 上)是一向量空间 V,且对于在 V 内的每一有序向量对(x,y)有一相伴的实数,记为(x,y),对于所有在 V 中的 x,y,z 和所有实数 α ;
 - (a) $\langle x, y \rangle = \langle y, x \rangle$
 - (b) $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$
 - (c) $\alpha \langle x, y \rangle = \langle \alpha x, y \rangle + \langle x, \alpha y \rangle$
 - (d) $\langle x, x \rangle \geqslant 0 \, \mathbb{H} \langle x, x \rangle = 0 \Leftrightarrow x = 0$

内积空间的定义.如果我们定义 $\|x\|$ = $\sqrt{\langle x, x \rangle}$,则 V 成为一赋范向量空间.如果这一空间. 如果这一空间. 上完整的, V 称为一Hilbert 空间.

18.29 •
$$l^2(n)$$
, $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$
• l^2 , $\langle x, y \rangle = \sum_{i=1}^\infty x_i y_i$

18.30 (a) $|\langle x, y \rangle| \leq \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle}$ 对于所有 $x, y \in V$ 成立

(b)
$$\langle x, y \rangle = \frac{1}{4} [\| x + y \|^2 - \| x - y \|^2]$$

- 18.31 ◆ 在一内积空间 V 中的两个向量 x 和 v 是正 交的,如果 $\langle x, y \rangle = 0$.
 - 在 V 中的向量集合S 称为是正交的.如果 $\langle x, y \rangle = 0$ 对于所有 $x \neq y \in S$ 成立.
 - 在 V 中的向量集合 S 称为是单位正交的、 如果它是正交的且 ||x|| = 1 对于所有 $x \in S$ 成立.
 - ◆ 在 V 中的标准正交向量集合S 称为是完整 的.如果在 V 中不存在与所有 S 中的向量 正交的 x.
- 18.32 设 U 为一在内积空间 V 中标准正交的向量 集合.
 - (a) 如果 u₁, ···, u_n 是 U 的任意有限个相异 元素的组合、则

$$(*) \sum_{i=1}^{n} |(x, u_i)|^2 \le ||x||^2$$
 对于所有 V 中的 x 成立.

(b) 如果 V 完整的(一个 Hilbert 空间),且 U 是 V 的一完整的标准正交子集,则 $(**)\sum_{x}|(x,u)|^2 = ||x||^2$ 对于所 有在 V 中的x 成立.

Hilbert 空间的例 子.

(a)是柯西-施瓦兹 不等式(等号当且 仅当 x 和 v 是线性 相关时成立). 在 (b)中的等式表明 内积可用范数来 表示.

重要的定义.

(*)是 Bessel 不等 式、(**)是 Parseval 公式.

参考文献

所有关于在 R"中的向量的结论都是标准的,均可在任意线性代数教材中找到,如 Fraleigh & Beauregard (1995)或 Lang(1987).对于抽象空间,参考 Kolmogorov & Fomin (1970),或 Royden (1968).对于收缩映射及其在动态经济分析中的应用,参考 Stokey, Lucas, & Prescott (1989).

19.1
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = (a_{ij})_{m \times n}$$
 中 a_{ij} 是在第 i 行第 j 列的元素,矩阵 有阶数 $m \times n$,如果 $m = n$,该矩阵是 n 阶方阵。

19.2
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

$$19.3 \ \operatorname{diag}(a_1, a_2, \cdots, a_n) = \begin{cases} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{cases} -$$
 一个对角矩阵.

19.4
$$\begin{pmatrix} a & 0 & \cdots & 0 \\ 0 & a & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix}_{n \times n}$$

19.5
$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}_{n \times n}$$

矩阵的表示法,其

一个上三角矩阵 (所有对角线下的 元素都为 0). A.的 转置称为下三角

19.6 如果 $\mathbf{A} = (a_{ij})_{m \times n}$, $\mathbf{B} = (b_{ij})_{m \times n}$, 且 α 是一数量, 我们定义

$$\mathbf{A} + \mathbf{B} = (a_{ij} + b_{ij})_{m \times n}$$

$$a\mathbf{A} = (aa_{ij})_{m \times n}$$

$$\mathbf{A} - \mathbf{B} = \mathbf{A} + (-1)\mathbf{B} = (a_{ij} - b_{ij})_{m \times n}$$

19.7
$$(A + B) + C = A + (B + C)$$

 $A + B = B + A$
 $A + 0 = A$
 $A + (-A) = 0$
 $(a + b)A = aA + bA$

$$a(\mathbf{A} + \mathbf{B}) = a\mathbf{A} + a\mathbf{B}$$

19.8 如果 $\mathbf{A} = (a_{ij})_{m \times n}$ 且 $\mathbf{B} = (b_{ij})_{n \times p}$,我们定义 乘积 $\mathbf{C} = \mathbf{AB}$ 为 $m \times p$ 矩阵, $\mathbf{C} = (c_{ij})_{m \times p}$, 其中

$$c_{ij} = a_{i1}b_{1j} + \cdots + a_{ik}b_{kj} + \cdots + a_{in}b_{nj}$$

矩阵运算(数量是 实数或复数).

矩阵运算的性质.0 是零矩阵,其所有 元素均为零.a 和b 是数量.

| | 矩阵乘法的定义.

$$\begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & \cdots & b_{1k} \\ \vdots & & \vdots \\ b_{jk} & \cdots & b_{jp} \\ \vdots & & \ddots & \vdots \\ b_{nk} & \cdots & b_{np} \end{bmatrix} = \begin{bmatrix} c_{11} & \cdots & c_{1k} & \cdots & c_{1p} \\ \vdots & \vdots & \vdots & & & & \\ c_{i1} & \cdots & c_{ik} & \cdots & c_{ip} \\ \vdots & \vdots & \vdots & \ddots & & \\ c_{m1} & \cdots & c_{mk} & \cdots & c_{mp} \end{bmatrix}$$

19.9
$$(AB)C = A(BC)$$

 $A(B+C) = AB + AC$
 $(A+B)C = AC + BC$

19.10 $AB \neq BA$ $AB = 0 \Rightarrow A = 0$ 或 B = 0AB = AC 和 $A \neq 0 \Rightarrow B = C$

19.11
$$\mathbf{A}' = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

矩阵乘法的性质.

矩阵乘法中的重要 现象.0 是零矩阵. →应读作:"不一定 隐含".

 $A', A = (a_{ij})_{m \times n}$ 的 特置,是一 $n \times m$ 矩 阵,通过对换 A的行 和列而得到的。

转置法则.

19.13 $\mathbf{B} = \mathbf{A}^{-1} \iff \mathbf{A}\mathbf{B} = \mathbf{I}_n \iff \mathbf{B}\mathbf{A} = \mathbf{I}_n$

一个 n×n矩阵 A 的 逆. l, 是 单位

19.14 A^{-1} 存在 $\iff |A| \neq 0$

可逆的一个充分必要条件. |A|表示方阵 A 的行列式(参

19.15
$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow \mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
 | 当 $\mathbf{A} = \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} = ad - bc$

如果 $A = (a_{ij})_{n \times n}$ 是一方阵且 $|A| \neq 0$, A的 19. 16 唯一的逆矩阵为

$$A^{-1} = \frac{1}{|A|} adj(A)$$
, 其中

$$adj(\mathbf{A}) = \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{bmatrix}$$

元素 a_{ij} 的代数余子式 A_{ij} 定义为

$$A_{ij} = (-1)^{i+j} \begin{vmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{nj} & \cdots & a_{nj} & \cdots & a_{nn} \end{vmatrix}$$

方阵的逆矩阵的一 般公式,注意伴随 矩阵 adj(A)元素标 号的顺序! 矩阵 (A_{ij})_{n×n} 称为代数 余子式矩阵,而伴 随矩阵是它的转 置.在代数余子式 A_{ij} 的公式中,行列 式是通过删除 A 的第 i 行和第 j 列 |得到的.

19.17
$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$

 $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}(\mathbf{注意顺序!})$
 $(\mathbf{A}')^{-1} = (\mathbf{A}^{-1})'$
 $(c\mathbf{A})^{-1} = c^{-1}\mathbf{A}^{-1}$

19.18
$$(I_m + AB)^{-1} = I_m - A(I_n + BA)^{-1}B$$

19.19
$$\mathbf{R}^{-1}\mathbf{A}'(\mathbf{A}\mathbf{R}^{-1}\mathbf{A}'+\mathbf{Q}^{-1})^{-1}=(\mathbf{A}'\mathbf{Q}\mathbf{A}+\mathbf{R})^{-1}\mathbf{A}'\mathbf{Q}$$

- 19.20 一个 n 阶的方阵 A 称为
 - 对称的、如果 A = A'
 - 反对称的,如果 A = A′
 - 事業的、如果 A² = A
 - 对合的,如果 A² = I_n
 - 正交的,如果 A'A = I_n
 - 奇异的,如果 |A| = 0, 非奇异的如果 $|A| \neq 0$

19.21
$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

$$19.22$$
 $tr(A + B) = tr(A) + tr(B)$
 $tr(cA) = ctr(A) (c 是一数量)$
 $tr(AB) = tr(BA) (如果 AB 是一方阵)$
 $tr(A') = tr(A)$

19.23 r(A) = A 中线性无关的行的最大个数 = A 中线性无关的列的最大个数 = A 的最大的非零子式的阶数.

逆矩阵的性质.(A 和 B 是可逆的 $n \times n$ 矩阵, $c \neq 0$ 是一数量)

A是 $m \times n$ 矩阵, B是 $n \times m$ 矩阵, $|I_m + AB| \neq 0$.

矩阵的逆阵对. 当 逆矩阵存在时成 立.

一些重要的定义、 |A|记为方阵 A 的 行列式(参见第 20 章).对于幂等矩阵 和正交矩阵的性 质,参见第 22 章.

方阵 $A = (a_{ij})_{n \times n}$ 的述, 是对角线元素的和.

迹的性质.

矩阵的秩的等价定义.关于子式,参见(20.15).

19.24 (1)
$$r(A) = r(A') = r(A'A) = r(AA')$$

- (2) $r(AB) \leq \min(r(A), r(B))$
- (3) r(AB) = r(B), 如果 $|A| \neq 0$
- (4) r(CA) = r(C),如果 $|A| \neq 0$
- (5) r(PAQ) = r(A), 如果 $|P| \neq 0$, $|Q| \neq 0$
- $(6) |r(\mathbf{A}) r(\mathbf{B})| \leqslant r(\mathbf{A} + \mathbf{B}) \leqslant r(\mathbf{A}) +$ $r(\mathbf{B})$
- (7) $r(\mathbf{AB}) \geqslant r(\mathbf{A}) + r(\mathbf{B}) n$
- (8) $r(AB) + r(BC) \le r(B) + r(ABC)$

秩的性质 矩阵的 阶数满足所需运算 的定义,在结论(7) (Sylvester 不等式) 中,A和B是 n×n. (8) 称为 Frobenius 不等式.

关于齐次方程的有

- 19.25 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 对于某一 $\mathbf{x} \neq \mathbf{0} \Leftrightarrow r(\mathbf{A}) \leqslant n-1$
 - 用的结论.A是 m $\times n$, x 是 $n \times 1$.
- 矩阵的范数是一函数 ∥・∥β使对于每一有 19.26 一相伴实数 $\|A\|_{\theta}$ 的方阵 A, f:
 - ||A||_β > 0 对于 A ≠ 0 成立和 ||0||_β = 0
 - || cA ||_β = | c | || A ||_β (c 是一数量)
 - $\bullet \| \mathbf{A} + \mathbf{B} \|_{\beta} \leqslant \| \mathbf{A} \|_{\beta} + \| \mathbf{B} \|_{\beta}$
 - $\|\mathbf{A}\mathbf{B}\|_{\beta} \leqslant \|\mathbf{A}\|_{\beta} \|\mathbf{B}\|_{\beta}$

矩阵范数的定义. (存在无限个这样 的范数,其中一部 分在(19.27)给出)

- 19.27 $\| \mathbf{A} \|_1 = \max_{i=1, \dots, n} \sum_{j=1}^{n} |a_{ij}|$
 - $\bullet \| \mathbf{A} \|_{\infty} = \max_{i=1,\dots,n} \sum_{j=1}^{n} |a_{ij}|$
 - ||A||₂ = √λ, 其中λ 是 A'A 的最大的特征 值.
 - $\bullet \| \mathbf{A} \|_{M} = n \max_{i = 1, \dots, n} \| a_{ij} \|$
 - $\|\mathbf{A}\|_{T} = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^{2}\right)^{1/2}$

 $\mathbf{A} = (a_{ii})_{n \times n}$ 的一 些矩阵范数.(对于 特征值,参见第 21 章)

19.28 λ 是 **A** = $(a_{ij})_{n \times n}$ 的特征值⇒ $|\lambda| \le ||A||_{\beta}$

A的任意特征值的 模数小于或等于 A 的任意矩阵范数。

19.29 $\|\mathbf{A}\|_{\beta} < 1 \Rightarrow \exists t \rightarrow \infty \mathbf{A}^t \rightarrow \mathbf{0}$

19.30 $e^{A} = \sum_{n=0}^{\infty} \frac{1}{n!} A^{n}$

19.31 $e^{A+B} = e^A e^B$ 如果 AB = BA $(e^A)^{-1} = e^{-A}, \frac{d}{dx}(e^{xA}) = Ae^{xA}$ 当 $t \rightarrow \infty$ 时, $A' \rightarrow 0$ 的充分条件。 $||A||_{\beta}$ 是 A 的任意矩阵范数.

方阵 A 的指数矩阵.

指数矩阵的性质.

线性变换

- 19.32 一函数 T; R"→R" 称为是一线性变换(或函数),如果
 - (1) T(x + y) = T(x) + T(y)
 - (2) $T(c\mathbf{x}) = cT(\mathbf{x})$

对于所有 R^n 中的x 和y 和所有数量c 成立.

- 19.33 如果 $A \not = -m \times n$ 矩阵,由 $T_A(x) = Ax$ 定义的函数 $T_A: \mathbb{R}^n \to \mathbb{R}^m$ 是一线性变换.
- 19.34 设 $T: \mathbb{R}^n \to \mathbb{R}^m$ 为一线性变换,且 A 为第 j 列是 $T(e_i)$ 的 $m \times n$ 矩阵,其中 e_i 是在 \mathbb{R}^n 中的

第j个标准单位向量.则 T(x) = Ax 对于所

有 R"中的x 成立.

- 19.35 设 $T: \mathbb{R}^n \to \mathbb{R}^m$ 和 $S: \mathbb{R}^m \to \mathbb{R}^k$ 为两个线性变换,且标准矩阵表示分别为 A 和 B,则两个线性变换的结合 $S \circ T$ 是有标准矩阵表示 BA 的线性变换.
- 19.36 设 A 为一可逆 $n \times n$ 矩阵且有相伴的线性变换 T ,与 A^{-1} 相对应的变换 T^{-1} 是 T 逆变换 (函数).

线性变换的定义.

一个重要的事实.

矩阵 A 称为 T 的标准矩阵表示.

基本事实.

基本事实、

广义逆矩阵

19.37 一个 $n \times m$ 矩阵 A^{-} 称为 $m \times n$ 矩阵 A 的广 义逆矩阵,如果它满足 $AA^-A=A$

19.38 矩阵方程 Ax = b 有解的一个充分必要条件是 $AA^{-}b = b$, - $BMB + A^{-}b + (I - A^{-})$ A)q,其中 q 是一有相应阶数的任意向量.

- 19.39 如果 A^{-} 是 A 的一个广义逆矩阵,则
 - AA⁻和A⁻A是幂等的
 - $\bullet \ r(\mathbf{A}) = r(\mathbf{A}^{-} \mathbf{A}) = \operatorname{tr}(\mathbf{A}^{-} \mathbf{A})$
 - (A⁻)′ 是 A′ 的广义逆矩阵
 - A 是非奇异方阵 ⇒A⁻= A⁻¹

19.40 $n \times m$ 矩阵 A^{+} 称为 $m \times n$ 实矩阵 A 的 Moore-Penrose 逆矩阵,如果它满足以下四个 条件:

- (i) $\mathbf{A}\mathbf{A}^{\dagger}\mathbf{A} = \mathbf{A}$ (ii) $\mathbf{A}^{\dagger}\mathbf{A}\mathbf{A}^{\dagger} = \mathbf{A}^{\dagger}$
- (iii) $(AA^+)' = AA^+$ (iv) $(A^+A)' = A^+A$

19.41 矩阵方程 Ax = b 有解的一个充分必要条件是 $AA^+b=b$. 相应的一般解为 $x=A^+b+(I A^{+}A)q$, 其中 q 是一有相应阶数的任意向量.

- 19.42 A 是非奇异的方阵 ⇒ $A^+ = A^{-1}$
 - $\bullet (A^+)^+ = A. (A')^+ = (A^+)'$
 - A⁺ = A, 如果 A 是对称和幂等的。
 - A⁺ A 和 AA⁺ 是幂等的。
 - A、A⁺, AA⁺, 和 A⁺ A 有相同的秩。
 - $\bullet A'AA^+ = A' = A^+AA'$
 - $\bullet (AA^+)^+ = AA^+$
 - $\bullet (A'A)^+ = A^+(A^+)', (AA')^+ = (A^+)'A^+$
 - $\bullet (\mathbf{A} \bigotimes \mathbf{B})^{+} = \mathbf{A}^{+} \bigotimes \mathbf{B}^{+}$

矩阵的广义逆矩阵 的定义.(A-一般 并不是唯一的)

广义逆矩阵的重要 应用.

广义逆矩阵的性 质.

Moore-Penrose 逆矩 阵的定义.(A*存 在且是唯一的)

Moore-Penrose 逆矩 阵的一个重要应 |用.

Moore-Penrose 逆矩 阵的性质.(②是 Kronecker 乘积、参 见第 23 章)

分块矩阵

$$19.43 \quad \mathbf{P} = \begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_{22} \end{bmatrix}$$

19.44
$$\mathbf{P} = \begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_{22} \end{bmatrix}, \mathbf{Q} = \begin{bmatrix} \mathbf{Q}_{11} & \mathbf{Q}_{12} \\ \mathbf{Q}_{21} & \mathbf{Q}_{22} \end{bmatrix} \Rightarrow$$

$$\mathbf{PQ} = \begin{bmatrix} \mathbf{P}_{11}\mathbf{Q}_{11} + \mathbf{P}_{12}\mathbf{Q}_{21} & \mathbf{P}_{11}\mathbf{Q}_{12} + \mathbf{P}_{12}\mathbf{Q}_{22} \\ \mathbf{P}_{21}\mathbf{Q}_{11} + \mathbf{P}_{22}\mathbf{Q}_{21} & \mathbf{P}_{21}\mathbf{Q}_{12} + \mathbf{P}_{22}\mathbf{Q}_{22} \end{bmatrix}$$

19.45
$$\begin{vmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_{22} \end{vmatrix} = ||\mathbf{P}_{11}|| \cdot ||\mathbf{P}_{22} - \mathbf{P}_{21}\mathbf{P}_{11}^{-1}\mathbf{P}_{12}||$$

19.46
$$\begin{vmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_{22} \end{vmatrix} = ||\mathbf{P}_{22}|| \cdot ||\mathbf{P}_{11} - \mathbf{P}_{12}\mathbf{P}_{22}^{-1}\mathbf{P}_{21}||$$

19.47
$$\begin{vmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{0} & \mathbf{P}_{22} \end{vmatrix} = ||\mathbf{P}_{11}|| \cdot ||\mathbf{P}_{22}||$$

其中 $\Delta = P_{22} - P_{21}P_{11}^{-1}P_{12}$.

19.49
$$\begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_{22} \end{bmatrix}^{-1} =$$

$$\begin{bmatrix} \mathbf{\Delta}_{1}^{-1} & -\mathbf{\Delta}_{1}^{-1} \mathbf{P}_{12} \mathbf{P}_{22}^{-1} \\ -\mathbf{P}_{22}^{-1} \mathbf{P}_{21} \mathbf{\Delta}_{1}^{-1} & \mathbf{P}_{22}^{-1} + \mathbf{P}_{22}^{-1} \mathbf{P}_{21} \mathbf{\Delta}_{1}^{-1} \mathbf{P}_{12} \mathbf{P}_{22}^{-1} \end{bmatrix}$$
其中 $\mathbf{\Delta}_{1} = \mathbf{P}_{11} - \mathbf{P}_{12} \mathbf{P}_{22}^{-1} \mathbf{P}_{21}$.

一个分块的 *n* × *n* 矩阵的行列式,假 设 P₁-1存在.

一个分块的 $n \times n$ 矩阵的行列式,假设 P_{22}^{-1} 存在.

一个特例.

分块矩阵的逆矩阵,假设Pil存在。

分块矩阵的逆矩阵,假设 P_{22}^{-1} 存在.

复元素矩阵

- 19.50 设 $A = (a_{ij})$ 为一 $m \times n$ 复矩阵(即 A 的元素 为复数). 则
 - $\overline{A} = (\overline{a}_{ij})$ 称为 A 的共轭. $(\overline{a}_{ij}$ 表示 a_{ij} 的复共轭.)
 - ◆A* = \overline{A}' = (\bar{a}_{ii}) 称为 A 的共轭转置.
 - A 称为 Hermitian 矩阵,如果 A = A*.
 - A 称为面矩阵如果 A* = A^{-1} .
- 19.51 ◆ A 是实的 ⇔ A = Ā.
 - 如果 A 是实的,则

A 是 Hermitian 矩阵⇔A 是对称的.

- 19.52 设 A 和 B 为复矩阵, c 为一复数.则
 - $(1) (\mathbf{A}^*)^* = \mathbf{A}$
 - (2) $(A + B)^* = A^* + B^*$
 - (3) $(cA)^* = \bar{c} A^*$
 - $(4) (AB)^* = B^*A^*$

关于复矩阵的一些 有用的定义.

根据定义得到的简单推论。

共轭转置的性质. (2)和(4)当矩阵的和与积有定义时成立.

参考文献

大多数公式都是标准的,并能在任何线性代数的教材里找到,如 Fraleigh & Beauregard (1995)和 Lang (1987). 对于(19.26)—(19.29)参见 Faddeeva (1959). 对于广义逆矩阵,参见 Magnus & Neudecker (1988). 一种标准的参考文献是 Gantmacher (1959).

$$20.1 \quad \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

2×2行列式的定 义.

2×2行列式的几何解释.面积 A 就是行列式的绝对值

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{cases} a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} \\ + a_{12}a_{23}a_{31} - a_{12}a_{21}a_{33} \\ + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} \end{cases}$$

3 × 3 行列式的定义.

3×3行列式的几何解释.由三个向量张成的"盒子"的体积是行列式

$$a_{11}$$
 a_{12}
 a_{13}
 a_{21}
 a_{22}
 a_{23}
 a_{31}
 a_{32}
 a_{33}

 的绝对值。

20.5 如果 $A = (a_{ij})_{n \times n}$ 是一 $n \times n$ 矩阵, A 的行列式 为

$$||\mathbf{A}|| = a_{i1}A_{i1} + \cdots + a_{in}A_{in}| = \sum_{j=1}^{n} a_{ij}A_{ij}$$

元素 a_{ij} 的代数余子式 A_{ij} 是

$$A_{ij} = (-1)^{i+j} \begin{vmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & & \vdots \\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{vmatrix}$$

通过沿第 i 行余子 式展开而定义的 n 阶行列式. 行列式 的值与 i 的选择 无关.

20.6
$$a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in} = |A|$$

 $a_{i1}A_{k1} + a_{i2}A_{k2} + \cdots + a_{in}A_{kn} = 0$ 如果 $k \neq i$
 $a_{1j}A_{1j} + a_{2j}A_{2j} + \cdots + a_{nj}A_{nj} = |A|$
 $a_{1j}A_{1k} + a_{2j}A_{2k} + \cdots + a_{nj}A_{nk} = 0$ 如果 $k \neq j$

余子式沿同一行或 同一列展开产生行 列式,余子式沿不 同的行或列展开产 生的行列式为 0.

- 20.7 如果 A 的一行(或列)的所有元素都为 0,则 |A|=0.
 - 如果交換 A 的两行(或两列),行列式改变符号但绝对值不变。
 - 如果 A 一行(或一列)中的所有元素乘以一个数 c,则行列式乘以 c.
 - 如果 A 的两行(或两列)成比例,则|A|=0.
 - 如果|A|的一行(或一列)的倍数加到另一行 (或一列)上,行列式的值不变。
 - | A' | = | A |, 其中 A'是 A 的转置.

行列式的重要性质.A是方阵.

20.8
$$|\mathbf{A}\mathbf{B}| = |\mathbf{A}| \cdot |\mathbf{B}|$$

 $|\mathbf{A} + \mathbf{B}| \neq |\mathbf{A}| + |\mathbf{B}| (一般)$

行列式的性质. A 和 B 是 n × n 矩 阵.

20.9
$$\begin{vmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{vmatrix} = (x_2 - x_1)(x_3 - x_1)(x_3 - x_2) \qquad \begin{vmatrix} n = 3 & \text{iff in } Vander & \text{iff } Van$$

$$20.10 \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le j < i \le n} (x_i - x_j)$$
 — 般的 Vandermonde 行列式.

$$\begin{vmatrix} a_1 & 1 & \cdots & 1 \\ 1 & a_2 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & a_n \end{vmatrix} -$$

$$-$$

$$-$$

$$a_i \neq 1, i = 1, \cdots,$$

$$n$$

$$= (a_1 - 1)(a_2 - 1) \cdots (a_n - 1) \left[1 + \sum_{i=1}^n \frac{1}{a_i - 1} \right]$$

$$20.12 \begin{vmatrix} 0 & p_1 & \cdots & p_n \\ q_1 & a_{i1} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ q_n & a_{n1} & \cdots & a_{nn} \end{vmatrix} = -\sum_{i=1}^n \sum_{j=1}^n p_i A_{ji} q_j$$
 (n ≥ 2). A_{ji} 参见 (20.5).

$$20.13 \begin{vmatrix} a & p_1 & \cdots & p_n \\ q_1 & a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ q_n & a_{n1} & \cdots & a_{nn} \end{vmatrix} = (\alpha - P'A^{-1}Q) |A|$$

$$\begin{vmatrix} \exists & A^{-1} & \bar{q} & \bar{\alpha} & \bar{\beta} \\ (20.12) & \bar{m} & - \underline{m} & \underline{m} \\ P' & = (p_1, \dots, p_n), \\ Q' & = (q_1, \dots, q_n). \end{vmatrix}$$

$$-$$
个有用的结论.A
20.14 | AB + I_m | = | BA + I_n | 是 $m \times n$, B 是 $n \times m$.

- 20.15 ◆一个A的k阶子式是一通过删去A的除 k 行和 k 列外所有行和列所得到的 k×k 矩阵 的行列式.
 - 一个A的 k 阶主子式是一通过删去除 k 行 外所有行以及除相同序号的及列外所有列 所得到的子式.
 - A的 k 阶前主子式是通过删去除前 k 行和 前 k 列外的所有行和列所得到的主子式,

矩阵的子式,主子 式,和前主子式的 定义.

20.16
$$D_k = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{vmatrix}, k = 1, 2, \dots, n$$

$$\begin{vmatrix} A = (a_{ij})_{n \times n} & \text{in } \hat{n} \\ \hat{x} + \hat{x} & \hat{x} & \hat{x} \end{vmatrix}$$

|20.17| 如果 $|A| = |(a_{ii})_{n \times n}| \neq 0$, 则 n 个方程 n 个 未知数的方程组

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$

$$a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$$
有唯一解

$$x_j = \frac{|\mathbf{A}_j|}{|\mathbf{A}|}, j = 1, 2, \dots, n$$

其中

$$|\mathbf{A}_{j}| = \begin{vmatrix} a_{11} & \cdots & a_{1j-1} & b_{1} & a_{1j+1} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2j-1} & b_{2} & a_{2j+1} & \cdots & a_{2n} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{n1} & \cdots & a_{nj-1} & b_{n} & a_{nj+1} & \cdots & a_{nn} \end{vmatrix}$$

| Cramer 法则,注意 ||A;||是通过将|A| 中的第一列替换为 以 b_1 , b_2 , …, b_n 为元素的向量得 到的.

参考文献

绝大多数的公式都是标准的,且均可在几乎所有线性代数的教材里找到,如 Fraleigh & Beauregard (1995)或 Lang (1987), 一种标准的参考文献是 Gantmacher (1959).

21.1 数量 λ 称为 $n \times n$ 矩阵 A 的一个特征值,如果存在一个 n 阶向量 $c \neq 0$ 使

$$\mathbf{A}\mathbf{c} = \lambda \mathbf{c}$$

向量 c 称为 A 的特征向量.

$$21.2 \quad |\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$

- 21.3 λ 是 A 的一个特征值 $\Leftrightarrow p(\lambda) = |A \lambda I| = 0$
- 21.4 $|\mathbf{A}| = \lambda_1 \cdot \lambda_2 \cdots \lambda_{n-1} \cdot \lambda_n$ $\operatorname{tr}(\mathbf{A}) = a_{11} + \cdots + a_{nn} = \lambda_1 + \cdots + \lambda_n$
- 21.5 设 f()为一多项式. 如果 λ 是 A 的一个特征值,则 $f(\lambda)$ 是 f(A)的一个特征值.
- 21.6 一个方阵 A 有一逆矩阵,当且仅当 0 不是 A 的一个特征值.如果 A 有逆矩阵且 λ 是 A 的一个特征值,则 λ^{-1} 是 A^{-1} 的一个特征值.
- 21.7 A的所有特征值的模数(严格)小于 1,当且仅 当 $t \rightarrow \infty$ 时 $A' \rightarrow 0$.
- 21.8 AB与BA有相同的特征值.

特征值和特征向量 也称为本征根和本 征向量. λ 和c可 为复数,即使 A 是 实的.

A = (a_{ij})_{n×n} 的特 征多项式(本征多 项式). I 是 n 阶单 位矩阵.

> │ λ 为 A 的特征值的 │ 一个 充 分 必 要 条 │ 件.

 $\lambda_1, \dots, \lambda_n$ 是 A 的 特征值.

│ 矩阵多项式的特征 │ 值.

怎样找到方阵的逆 矩阵的特征值.

一个重要的结论.

A和B是n×n矩阵.

- 21.9 如果 A 是对称的且仅有实元素,则 A 的所有 特征值均为实的.
- 21.10 如果 $p(\lambda) = (-\lambda)^n + b_{n-1}(-\lambda)^{n-1} + \cdots$ 征多项式系数的 $+b_1(-\lambda)+b_0$ 是A的特征多项式,则 b_k 是 特点(对于主子A的所有n-k阶主子式的和(共有 $\binom{n}{k}$)个这 样的主子式).

n×n矩阵 A的特

21.11
$$\begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = (-\lambda)^2 + b_1(-\lambda) + b_0$$
 \(\text{\tilde{\text{\te\text{\text{\text{\text{\text{\text{\texi{\text{\text{\text{\tex{\texi{\text{\texi{\text{\text{\text{\text{\text{\texi{\texi{\tex

其中 $b_1 = a_{11} + a_{22} = tr(A)$, $b_0 = |A|$

$$\begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{vmatrix} = (-\lambda)^3 + b_2(-\lambda)^2 + b_1(-\lambda) + b_0$$

其中

$$b_{1} = \begin{vmatrix} a_{11} + a_{22} + a_{33} = \text{tr}(\mathbf{A}) \\ b_{1} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

$$b_{0} = |\mathbf{A}|$$

(21.10).

21.13 A 是可对角化的⇔ {P⁻¹AP = D 对某一 矩阵 P 和某一

- 21.14 A和P AP 有相同的特征值.
- 21.15 如果 $A = (a_{ij})_{n \times n}$ 有 n 个不同的特征值,则 A是可对角化的.

│A 为可对角化的充 分(但不是必要)条 21.16 $\mathbf{A} = (a_{ij})_{n \times n}$ 有 n 个不同的特征值,则 \mathbf{A} 是可 对角化的.

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

其中 $P = (x_1, \dots, x_n)_{n \times n}$

21.17 如果 $\mathbf{A} = (a_{ij})_{n \times n}$ 是对称的且有特征值 λ_1 , $\lambda_2, \dots, \lambda_n$,则存在一正交矩阵 U,使

$$\mathbf{U}^{-1}\mathbf{A}\mathbf{U} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

21.18 如果 A 是一 $n \times n$ 矩阵且有特征值 $\lambda_1, \dots,$ λ_n (不一定各不相同),则存在一可逆 $n \times n$ 矩

阵 T,使
$$\mathbf{T}^{-1}\mathbf{A}\mathbf{T} = \begin{bmatrix} \mathbf{J}_{k_1}(\lambda_1) & 0 & \cdots & 0 \\ 0 & \mathbf{J}_{k_2}(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{J}_{k_r}(\lambda_r) \end{bmatrix}$$
其中 $k_1 + k_2 + \cdots + k_r = n$ 且 \mathbf{J}_k 是 $k \times k$ 矩阵

$$\mathbf{J}_{k}(\lambda) = \begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & \lambda \end{bmatrix}, \ \mathbf{J}_{1}(\lambda) = \lambda$$

- 21.19 设A为一复 $n \times n$ 矩阵,则存在酉矩阵 U,使 U-1AU 为上三角形矩阵.
- 设A = (a_{ii}) 为一 Hermitian 矩阵. 则存在酉矩 21.20 阵 U, 使 $U^{-1}AU$ 为一对角矩阵. 所有 A 的特 征值则为实的.

对称矩阵的谱定 理.对于正交矩阵 的性质,参见第 22

| Schur 引理. (对于酉 | 矩阵,参见(19.50))

|Hernitian 矩阵的谱定 理. (对于 Hermitian |矩阵,参见(19.50).)

21.21 给定任意矩阵 $\mathbf{A} = (a_{ii})_{n \times n}$, 对于每一 $\epsilon > 0$, 存在一矩阵 $\mathbf{B}_{\epsilon} = (b_{ii})_{n \times n}$, 有 n 个不同的特 征值,使

$$\sum_{i,\,i=1}^n |a_{ij} - b_{ij}| < \epsilon$$

21.22 一个方阵 A 满足其自身的特征方程: $p(\mathbf{A}) = (-\mathbf{A})^n + b_{n-1}(-\mathbf{A})^{n-1}$ $+ \cdots + b_1(-A) + b_0I = 0$

21.23
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \Rightarrow \mathbf{A}^2 - \operatorname{tr}(\mathbf{A})\mathbf{A} + |\mathbf{A}| \mathbf{I} = \mathbf{0}$$

21.25
$$Q = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j = x' A x, 其中$$

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, 且 A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

21.26 x'Ax 是 $PD \Leftrightarrow x'Ax > 0$ 对于所有 $x \neq 0$ 成立 x'Ax 是 PSD $\Rightarrow x'Ax \ge 0$ 对于所有 x 成立 x'Ax 是 ND\\x'Ax < 0 对于所有 $x \neq 0$ 成立 x'Ax 是 NSD $\Rightarrow x'Ax \leq 0$ 对于所有 x 成立 x´Ax 是 ID⇔x´Ax 既非 PSD,也非 NSD

将矩阵的元素作微 小的改变,可得到 具有不同特征值的 矩阵.

Cayley-Hamilton 定 理. 多项式 ρ()的 定义见(21.10).

n=2 时的 Cayley-| Hamilton 定理.(参 见(21.11)) 一个 n 个变量 x_1 , ..., x, 的二次型.

性的条件下假设 а;; $|=a_{ii}$ 对于所有 i, j=1, …, n 成立.

| 我们可在不失一般

矩阵形式的二次 型.我们可在不失 |一般性的条件下, 假设 A 是对称的.

二次型(x'Ax)和 对称矩阵(A)的定 性,共有五种类型, 正定性(PD),半正 定性(PSD), 负定 性(ND),半负定性 (NSD), 以及不定 性(ID).

21.27 x'Ax 是 $PD\Rightarrow a_{ii}>0$ 对于 $i=1, \dots, n$ x'Ax 是 $PSD\Rightarrow a_{ii}\geq 0$ 对于 $i=1, \dots, n$ x'Ax 是 $ND\Rightarrow a_{ii}<0$ 对于 $i=1, \dots, n$ x'Ax 是 $NSD\Rightarrow a_{ii}\leq 0$ 对于 $i=1, \dots, n$

令(21.24)中 $x_i = 1$ 及 $x_j = 0$ 而得到 $j \neq i$.

21.28 x´Ax 是 PD⇔A 的所有特征值 > 0 x´Ax 是 PSD⇔A 的所有特征值 ≥ 0 x´Ax 是 ND⇔A 的所有特征值 < 0 x´Ax 是 NSD⇔A 的所有特征值 < 0

由特征值的符号表述的定性二次型(矩阵)的特点.

21.29 x'Ax 是不定性的(ID),当且仅当 A 至少有一个正的和一个负的特征值.

不定性二次型的一个特点。

21.30 x´Ax 是 PD \Leftrightarrow D $_k > 0$ 对 $k = 1, \dots, n$ 成立 x´Ax 是 ND \Leftrightarrow $(-1)^kD_k > 0$ 对 $k = 1, \dots, n$ 成立

由前主子式表述的 定性二次型(矩阵) 的特点.注意将> 改为≥将不会得到 关于半定性的类似 结论.例如 Q =

其中 A 的前主子式 D, 是

$$D_k = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{vmatrix}, k = 1, 2, \dots, n$$

$$\begin{cases}
\text{\nota} \\
\text{\nota}$$

- 21.31 x'Ax是 $PSD \Leftrightarrow \Delta r \ge 0$ 对 $r = 1, \dots, n$ 成立,x'Ax是 $PSD \Leftrightarrow (-1)^r \Delta r \ge 0$ 对 $r = 1, \dots, n$ 成立,对每个 r, Δr 取遍 A 的所有 r 阶主子式。
- 由主子式表述的半 正定性和半负定性 二次型(矩阵)的特 点.(主子式参见 (20.15).)
- 21.32 如果 $A = (a_{ij})_{n \times n}$ 是正定性的,且 $P \neq n \times m$ 矩阵并有 r(P) = m,则 P'AP 是正定性的.
- |正定性矩阵的结 | 论.
- 21.33 如果 P 是 $n \times m$ 矩阵且r(P) = m,则 PP'是正定性的且秩为 m.
- 21.34 如果 A 是正定性的,则存在一非奇异矩阵 P, 使 PAP' = I 且 P'P = A^{-1} .

$$A = USV^*, \not \sqsubseteq \psi S = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$$

如果 k = m = n,则S = D. 如果 A 是实的,U和 V 可选作正交实矩阵.

奇异值分解定理.D 的对角元素称为矩 阵 A 的奇异值, 酉矩 阵定义见(19.50), 正交矩阵定义见 (22.8).

21.36 设A和B为对称 $n \times n$ 矩阵,则存在一正交 矩阵 Q,使 $Q'AQ = D_1$ 及 $Q'BQ = D_2$, 其中 D_1 和 D₂ 是对角矩阵,当且仅当 AB = BA.

二次型

21.37 (*)
$$Q = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_{i}x_{j}$$
, $(a_{ij} = a_{ji})$

是在线性约束

$$b_{11}x_1 + \dots + b_{1n}x_n = 0$$

$$(**) \dots (m < n)$$

$$b_{m1}x_1 + \dots + b_{mn}x_n = 0$$

下正(负)定的,如果 Q > 0 (< 0) 对于所有满 足(**)的(x_1, \dots, x_n) \neq (0, ..., 0)成立.

线性约束下的正 (负)定性.

21.39 (21.37)中的二次型(*)为受线性约束(**) 的正定性的充分必要条件,假设矩阵(b_{ij})_{n×n} 的前 m 列是线性无关的,即

$$(-1)^m D_r > 0, r = m + 1, \dots, n$$

(*)为受线性约束(**)的负定性二次型的
对应条件是

$$(-1)^r D_r > 0, r = m + 1, \dots, n$$

21.40 二次型 $ax^2 + 2bxy + cy^2$ 对于所有 $(x, y) \neq$ (0, 0), 且满足约束 px + qy = 0 时是正的,当且仅当

$$\begin{vmatrix} 0 & p & q \\ p & a & b \\ q & b & c \end{vmatrix} < 0$$

约束下二次型的定性测试. (假设 $(b_{ij})_{m\times n}$ 的秩为 m 是不够的, 例如 $Q(x_1, x_2, x_3) = x_1^2 + x_2^2 - x_3^2$ 约束 $x_3 = 0$)

(21.39)的特例,假设 (p, q) ≠(0,0).

参考文献

绝大多数的公式均可在几乎所有线性代数数材里找到,如 Fraleigh & Beauregard (1995)或 Lang (1987),也可参考 Horn & Johnson (1985),一种标准的参考文献是 Gantmacher (1959).

幂等矩阵

22.1 $A = (a_{ij})_{n \times n}$ 是幂等的 $\Leftrightarrow A^2 = A$ 吊等矩阵的定义.

22.2 A是幂等的 ⇔I - A是幂等的.

22.3 A是幂等的⇒0和1是仅有的可能特征值、 且 A 是半正定性的.

22.4 A是幂等的且有 k 个等于 1 的特征值 ⇒ r(A) = tr(A) = k.

22.5 A 是幂等的且 C 是正交的 ⇒ C'AC 是幂等的.

22.6 A 是幂等的 ⇔ 与其相关的线性变换是一射 彲.

22.7 $I_n - X(X'X)^{-1}X'$ 是幂等的.

| 幂等矩阵的性质.

正交距阵定义见 (22.8).

一个从 R" 到 R" 的变换 P 是一射 影,如果 P(P(x))= P(x) 对于所有 | 在 \mathbf{R}^n 中的 \mathbf{x} 成立. | X 是 n × m 矩阵, $| | | | \mathbf{X}'\mathbf{X}| \neq 0$.

正交矩阵

· 22.8 $P = (p_{ij})_{n \times n}$ 是正交的 ⇔P'P = PP' = I_n | 正交矩阵的定义.

22.9 P是正交的 ⇔ P的列向量是互相正交的单位 向量.

22.10 P和Q都是正交的⇒PQ是正交的.

| 正交矩阵的性质.

- 22.11 P是正交的 ⇒ \ P \ = ± 1, 且 1 和 1 是唯一 可能的实特征值.
- 22.12 **P**是正交的 ⇔ $\|Px\| = \|x\|$ 对于所有 **R**" 中的 x 成立.

正交变换不改变向 量的长度.

22.13 如果 P 是正交的, Px 与 Py 之间的角度等于 x 和 y 之间的角度.

| 正交变换不改变角 | 度.

置换矩阵

22.14 $P = (p_{ij})_{n \times n}$ 是一置換矩阵,如果 P 的每一行和每一列中都有一个元素等于 1 而其他元素等于 0.

置换矩阵的定义.

22.15 P是一置换矩阵 ⇒P是非奇异且正交的.

| 置换矩阵的性质.

非负矩阵

22.16 $\mathbf{A} = (a_{ij})_{m \times n} \geqslant \mathbf{0} \Leftrightarrow a_{ij} \geqslant 0$ 对于所有 i, j 成立. $\mathbf{A} = (a_{ij})_{m \times n} > \mathbf{0} \Leftrightarrow a_{ij} > 0$ 对于所有 i, j 成立.

非负和正矩阵的定 义.

22.17 如果 $A = (a_{ij})_{n \times n} \ge 0$,A 有至少一个非负特征值,最大的非负特征值称为 A 的 Frobenius 根,记为 $\lambda(A)$. A 有一对应于 $\lambda(A)$ 的非负特征向量.

非负矩阵的 Frobenius 根(或主导根的定义)

- 22.18 μ 是 A 的一个特征值 ⇒ | μ | ≤ λ(A)
 - $0 \leqslant A_1 \leqslant A_2 \Rightarrow \lambda(A_1) \leqslant \lambda(A_2)$
 - $\rho > \lambda(A) \Leftrightarrow (\rho I A)^{-1}$ 存在且 ≥ 0
 - $\Phi \min_{1 \leqslant j \leqslant n} \sum_{i=1}^{n} a_{ij} \leqslant \lambda(\mathbf{A}) \leqslant \max_{1 \leqslant j \leqslant n} \sum_{i=1}^{n} a_{ij}$

非负矩阵的性质. $\lambda(A)$ 是 A 的 Frobenius 根

22.19 矩阵 $A = (a_{ij})_{n \times n}$ 是可分解的或可简约的,如 果通过对换某些相同号码的行和列可以将矩 阵 A 转化成

$$\begin{bmatrix} \mathbf{A_{11}} & \mathbf{A_{12}} \\ \mathbf{0} & \mathbf{A_{22}} \end{bmatrix}$$

其中 An和 An是子方阵.

可分解方阵的定 义. 不可分解(简 约)的矩阵称为非 分解(非简约)型矩

22.20 A = $(a_{ij})_{n\times n}$ 是可分解的,当且仅当存在一置 换矩阵 P,使

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{0} & \mathbf{A}_{22} \end{bmatrix}$$

其中 A11和 A22是子方阵。

- 如果 $A = (a_{ij})_{n \times n} \ge 0$ 是不可分解的,则 22.21
 - ◆ Frobenius 根 λ(A) > 0 是特征方程的一个单 根,并且存在一与之相伴的特征向量 x>0.
 - 如果 $\mathbf{A}\mathbf{x} = \mu\mathbf{x}$ 对于某 $-\mu \ge 0$ 和 $\mathbf{x} > 0$ 成 立,则 $\mu = \lambda(A)$.

可分解矩阵的性 质.

22.22 $A = (a_{ii})_{n \times n}$ 有一主导对角线(d.d.),如果存 在正数 d_1, \dots, d_n , 使 $d_j \mid a_{jj} \mid > \sum_{i \neq j} d_i \mid a_{ij} \mid$ 对 $j = 1, \dots, n$ 成立.

主导性对角矩阵的

- 22.23 假设 A 是一主导对角矩阵,则
 - $\bullet \mid \mathbf{A} \mid \neq 0$.
 - 如果对角线元素均为正,则 A 的所有特征值 均有正的实部.

主导对角矩阵的性 质.

Leontief 方程组

如果 $\mathbf{A} = (a_{ij})_{n \times n} \geqslant 0$ 且 $c \geqslant 0$, 则 22.24 $\mathbf{A}\mathbf{x} + \mathbf{c} = \mathbf{x}$ 称为一 Leontief 方程组.

- 22.25 如果 $\sum_{i=1}^{n} a_{ij} < 1$ 对于 $j = 1, \dots, n$ 成立,则 Leontief 方程组有一解 $x \ge 0$.
- Leontiel 方程组有 一非负解的充分条 件.
- 22.26 对于每一 $c \ge 0$, Leontief 方程组 Ax + c = x 有一解 $x \ge 0$, 当且仅当以下条件有一个(从而全部)得以满足:
 - 矩阵 (I-A)⁻¹ 存在,是非负的,且等于 I+A
 + A² + ···
 - 当 m → ∞ 时 A^m → 0
 - ▲ 的每一个特征值的模

$$\bullet \begin{vmatrix}
1 - a_{11} & - a_{12} & \cdots & - a_{1k} \\
- a_{21} & 1 - a_{22} & \cdots & - a_{2k} \\
\vdots & \vdots & \ddots & \vdots \\
- a_{k1} & - a_{k2} & \cdots & 1 - a_{kk}
\end{vmatrix} > 0$$
对 $k = 1, \dots, n$ 成立.

Leontief 方程组有 一非负解的充分必 要条件. 最后的条 件是 Hawkins-Simon 条件.

22.27 如果 $0 \le a_{ii} < 1$ 对于 $i = 1, \dots, n$ 成立,且 $a_{ij} \ge 0$ 对于所有 $i \ne j$ 成立,则方程组 Ax + c = x 对于每一 $c \ge 0$ 有一解 $x \ge 0$,当且仅当 I - A 有一主导对角线.

Leontief 方程组有 非负解的充分必要 条件。

参考文献

关于矩阵的结论,参考 Gantmacher (1959)或 Horn & Johnson (1985). 关于 Leontief 方程组,参考 Nikaido (1970)和 Takayama (1985).

Kronecker 乘积和 vec 运算 向量

23.1
$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & \cdots & a_{2n}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}\mathbf{B} & a_{m2}\mathbf{B} & \cdots & a_{mn}\mathbf{B} \end{bmatrix}$$

$$23.2 \quad \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \otimes \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{12} \\ a_{11}b_{21} & a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{22} \\ a_{21}b_{11} & a_{21}b_{12} & a_{22}b_{11} & a_{22}b_{12} \\ a_{21}b_{21} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \end{bmatrix}$$

23.3
$$\mathbf{A} \otimes \mathbf{B} \otimes \mathbf{C} = (\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C} = \mathbf{A} \otimes (\mathbf{B} \otimes \mathbf{C})$$
 | 一般都成立.

23.5
$$(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) = \mathbf{AC} \otimes \mathbf{BD}$$

23.6
$$(\mathbf{A} \otimes \mathbf{B})' = \mathbf{A}' \otimes \mathbf{B}'$$

23.7
$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$$

23.8
$$tr(\mathbf{A} \otimes \mathbf{B}) = tr(\mathbf{A})tr(\mathbf{B})$$

 $\mathbf{A} = (a_{ii})_{m \times n} \mathbf{A}$ $\mathbf{B} = (b_{ij})_{p \times q}$ 的 Kronecker 秉积. A igotimes B 是 mp×nq 矩阵. Kronecker 乘积一 般不能改变顺序, $\mathbf{A} \otimes \mathbf{B} \neq \mathbf{B} \otimes \mathbf{A}$.

(23.1)的一个特

当 AC 和 BD 有定 义时成立.

Kronecker 乘积的 | 转置法则.

当 A-1和 B-1存在 时成立.

A和B是方阵,不一

- 23.9 $\alpha \otimes \mathbf{A} = \alpha \mathbf{A} = \mathbf{A} \alpha = \mathbf{A} \otimes \alpha$
- 23.10 如果 λ_1 , …, λ_n 是 A 的特征值, 且如果 μ_1 , …, μ_p 是 B 的特征值, 则 A \otimes B 的 np 个特征值是 λ_{inj} , i=1, ..., n, j=1, ..., p.
- 23.11 如果 x 是 A 的一个特征向量,而 y 是 B 的一个特征向量,则 x ⊗ y 是 A ⊗ B 的一个特征向量.
- 23.12 如果 A 和 B 是(半)正定的,则 A ⊗ B 是(半) 正定的.
- 23.13 $| A \otimes B | = | A |^p \cdot | B |^n$
- 23.14 $r(\mathbf{A} \otimes \mathbf{B}) = r(\mathbf{A})r(\mathbf{B})$
- 23.15 如果 $\mathbf{A} = (a_1, a_2, \dots, a_n)_{m \times n},$ 则

$$\operatorname{vec}(\mathbf{A}) = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}_{m \in \mathbb{N}}$$

- 23.16 $\operatorname{vec} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{12} \\ a_{22} \end{bmatrix}$
- 23.17 $\operatorname{vec}(\mathbf{A} + \mathbf{B}) = \operatorname{vec}(\mathbf{A}) + \operatorname{vec}(\mathbf{B})$
- 23.18 $\operatorname{vec}(\mathbf{ABC}) = [\mathbf{C}' \otimes \mathbf{A}] \operatorname{vec}(\mathbf{B})$
- 23.19 $\operatorname{tr}(\mathbf{A}\mathbf{B}) = (\operatorname{vec}(\mathbf{A}'))'\operatorname{vec}(\mathbf{B}) = (\operatorname{vec}(\mathbf{B}'))'\operatorname{vec}(\mathbf{A})$

α 是 — 1 × 1 数量 矩阵.

A ⊗ B 的特征值, 其中 A 是 n × n 矩 阵而 B 是 p × p 矩 阵.

注意: A ⊗ B 的特征向量不一定是 A 和 B 的特征向量的 Kronecker 乘积.

由(23.10)得出.

A 是 n×n矩阵, B 是 p×p矩阵.

Kronecker 乘积的 秩.

vec(A)是 A 的列竖 叠在一起.

(23.15)的特例.

当 A + B 有定义时成立.

当乘积 ABC 有定义时成立.

当运算有定义时成立.

向量和矩阵的微分

23.20 如果
$$y = f(x_1, \dots, x_n) = f(x)$$
,则
$$\frac{\partial y}{\partial x} = \left(\frac{\partial y}{\partial x_1}, \dots, \frac{\partial y}{\partial x_n}\right)$$

23.21
$$y_1 = f_1(x_1, \dots, x_n)$$

 $\cdots \qquad \Leftrightarrow \mathbf{y} = f(\mathbf{x})$
 $y_m = f_m(x_1, \dots, x_n)$

$$23.22 \quad \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial y_1(\mathbf{x})}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial y_m(\mathbf{x})}{\partial x_n} \end{bmatrix}$$

23.23
$$\frac{\partial^2 \mathbf{y}}{\partial \mathbf{x} \partial \mathbf{x}'} = \frac{\partial}{\partial \mathbf{x}} \text{vec} \left[\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \right)' \right]$$

23.24
$$\frac{\partial \mathbf{A}(\mathbf{r})}{\partial \mathbf{r}} = \frac{\partial}{\partial \mathbf{r}} \operatorname{vec}(\mathbf{A}(\mathbf{r}))$$

23.25
$$\frac{\partial^{2} y}{\partial x \partial x'} = \begin{bmatrix} \frac{\partial^{2} y}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} y}{\partial x_{n} \partial x_{1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} y}{\partial x_{1} \partial x_{n}} & \cdots & \frac{\partial^{2} y}{\partial x_{n}^{2}} \end{bmatrix}$$

$$23.26 \quad \frac{\partial}{\partial x}(a' \cdot x) = a'$$

23.27
$$\frac{\partial}{\partial x}(x'Ax) = x'(A + A')$$

 $\frac{\partial^2}{\partial x \partial x'}(x'Ax) = A + A'$

$$23.28 \quad \frac{\partial}{\partial x}(\mathbf{A}x) = \mathbf{A}$$

y = f(x) 的梯度是 一行向量(以向量为 变量的数量函数的 导数). 梯度的另一 种表示是∇ f(x), 参见(4.26).

从 R^n 到 R^m 的变换 f, 我们设 x 和 y 为列向量.

变换(23.21)的雅 各比矩阵(向量函 数对于向量变量的 导数).

对于 vec 运算,参 见(23.15).

矩阵对向量的导数 的一般定义.

(23.23)的特例. (*dy/dxdx*'是(13.24) 定义的 Hessian 矩 阵.)

a 和 x 是 n × 1 向量.

二次型的微分.A是 n×n矩阵,x是n ×1矩阵

A是 $m \times n$ 矩阵, $x \neq n \times 1$ 矩阵.

23.29 如果
$$\mathbf{y} = \mathbf{A}(\mathbf{r})\mathbf{x}(\mathbf{r})$$
,则
$$\frac{\partial \mathbf{y}}{\partial \mathbf{r}} = (\mathbf{x}' \otimes \mathbf{I}_m) \frac{\partial \mathbf{A}}{\partial \mathbf{r}} + \mathbf{A} \frac{\partial \mathbf{x}}{\partial \mathbf{r}}$$

23.30 如果 y = f(A), 则

$$\frac{\partial y}{\partial \mathbf{A}} = \begin{bmatrix} \frac{\partial y}{\partial a_{11}} & \cdots & \frac{\partial y}{\partial a_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial a_{m1}} & \cdots & \frac{\partial y}{\partial a_{mn}} \end{bmatrix}$$

23.31
$$\frac{\partial |\mathbf{A}|}{\partial \mathbf{A}} = (\mathbf{A}_{ij}) = |\mathbf{A}| (\mathbf{A}')^{-1}$$

23.32
$$\frac{\partial tr(\mathbf{A})}{\partial \mathbf{A}} = \mathbf{I}_n, \frac{\partial tr(\mathbf{A}'\mathbf{A})}{\partial \mathbf{A}} = 2\mathbf{A}$$

23.33
$$\frac{\partial a^{ij}}{\partial a_{hk}} = -a^{ih}a^{kj}$$
; $i, j, h, k = 1, \dots, n$

A(r)是 $m \times n$ 矩 阵, x(r)是 $n \times 1$ 矩阵 而 r 是 $k \times 1$ 矩阵.

以 $m \times n$ 矩阵A= (a_{ij}) 为变量的数量函数的导数的定义.

A 是 n × n 矩阵. (A_{ij})是矩阵 A 的代数余子式.(参见(19.16))最后一个等号当 A 可逆时成立.

| A 是 n × n 矩阵. tr | (A)是 A 的迹.

 a^{ij} 是 A^{-1} 的 第 (i,j)个元素.

参考文献

以上这些定义在许多经济学教材中都能找到,参考 Dhrymes (1978). Magnus & Neudecker (1988)和 Lütkepohl (1996)发展了一些更一致的记法,且有更多的公式和结论.

24.2 $E_1(p, a) = 0, E_2(p, a) = 0, \dots, E_n(p, a) = 0$

24.3
$$E_1(p_1, p_2, a_1, \dots, a_k) = 0$$

 $E_2(p_1, p_2, a_1, \dots, a_k) = 0$

24.4
$$\frac{\partial p_{1}}{\partial a_{j}} = \frac{\frac{\partial E_{1}}{\partial p_{2}} \frac{\partial E_{2}}{\partial a_{j}} - \frac{\partial E_{2}}{\partial p_{2}} \frac{\partial E_{1}}{\partial a_{j}}}{\frac{\partial E_{1}}{\partial p_{1}} \frac{\partial E_{2}}{\partial p_{2}} - \frac{\partial E_{1}}{\partial p_{2}} \frac{\partial E_{2}}{\partial p_{1}}}$$
$$\frac{\partial p_{2}}{\partial a_{j}} = \frac{\frac{\partial E_{2}}{\partial p_{1}} \frac{\partial E_{1}}{\partial a_{j}} - \frac{\partial E_{1}}{\partial p_{1}} \frac{\partial E_{2}}{\partial a_{j}}}{\frac{\partial E_{1}}{\partial p_{1}} \frac{\partial E_{2}}{\partial p_{2}} - \frac{\partial E_{1}}{\partial p_{2}} \frac{\partial E_{2}}{\partial p_{2}}} - \frac{\partial E_{1}}{\partial p_{2}} \frac{\partial E_{2}}{\partial p_{1}}$$

$$24.5 \quad \begin{bmatrix} \frac{\partial p_1}{\partial a_j} \\ \vdots \\ \frac{\partial p_n}{\partial a_j} \end{bmatrix} = - \begin{bmatrix} \frac{\partial E_1}{\partial p_1} & \cdots & \frac{\partial E_1}{\partial p_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial E_n}{\partial p_1} & \cdots & \frac{\partial E_n}{\partial p_n} \end{bmatrix}^{-1} \begin{bmatrix} \frac{\partial E_1}{\partial a_j} \\ \vdots \\ \frac{\partial E_n}{\partial a_j} \end{bmatrix}$$

 $S_i(p, a)$ 是对商品 i 的供给, $D_i(p, a)$ 是对商品 i 的供给, $D_i(p, a)$ 是对商品 i 的是 对商品 i 的是 求, $E_i(p, a)$ 是例 i 的是 i

均衡的条件.

两种商品时的均衡 条件.

两种商品情况下的 比较静态结论, $j=1,\dots,k$.

n 种商品情况下的 比较静态结论, j = 1, ···, k. 关 于方阵的逆矩阵, 参见(19.16).

24.6 考虑问题

 $\max f(x, a)$ s.t. g(x, a) = 0其中 f 和 g 是 C^1 函数,且设 Q 为相关的拉格朗 日函数,及拉格朗日乘数 λ . 如果 $x_i^* = x_i^*(a)$, $i = 1, \dots, n$ 是问题的解,则对于 i, $j = 1, \dots, m$

$$\sum_{k=1}^{n} \mathfrak{L}'_{a_{i}x_{k}} \frac{\partial x_{k}^{*}}{\partial a_{j}} + g'_{a_{i}} \frac{\partial \lambda}{\partial a_{j}} = \sum_{k=1}^{n} \mathfrak{L}''_{a_{j}x_{k}} \frac{\partial x_{k}^{*}}{\partial a_{i}} + g'_{a_{j}} \frac{\partial \lambda}{\partial a_{i}}$$

互反关系.

 $x = (x_1, \dots, x_n)$ 是 决策变量, $a = (a_1, \dots, a_m)$ 是参数. 对 于这些关系的系统 化应用, 参见 Silberberg (1990).

单调比较静态

24.7 定义在 R" 的一个子格 Z 上的函数 F: Z → R 称 为是上模,如果

 $F(z) + F(z') \leq F(z \wedge z') + F(z \vee z')$ 对于所有 z 和 $z' \in Z$ 成立. 如果 z 和 z' 在预次 序关系《下不可比时,不等号严格成立,则 F称为严格上模.

24.8 设 S 和 P 分别为 R^n 和 R^l 的子格. 函数 $f: S \times P \to R$ 称为在(x, p)满足递增差别,如果 $x \ge x'$ 和 $p \ge p' \Rightarrow$ $f(x, p) - f(x', p) \ge f(x, p') - f(x', p')$ 对于所有对(x, p)和 $(x', p') \in S \times P$ 成立. 如果当 x > x' 及 p > p' 时不等号严格成立,则 f 称为在(x, p)满足严格递增差别.

- 24.9 设 S 和 P 分别为 R^n 和 R^l 的子格. 如果 $f: S \times P \rightarrow R$ 是在(x, p)的上模,则
 - f 对于给定的 p 是在 x 的上模,即对任意给定的 $p' \in P$,和任意 x 及 $x' \in S$,我们有 $f(x,p)+f(x',p) \leq f(x \land x',p)+f(x \lor x',p)$
 - f 满足在(x, p)的递增差别

(严格)上模的定义.对于子格和格运算 Λ 和 V 的定义,参见(6.28)和(6.29).

(严格)递增差别的 定义(f 在较大的选择 x 和较小的选择 x'之间的取值差别 f(x,p)-f(x',p) 是参数 p 的一个 (严格)递增函数).

重要的现象. 注意 $S \times P \neq \mathbb{R}^n \times \mathbb{R}^l$ = \mathbb{R}^{n+l} 的一个子格.

- 24.10 设 X 为 \mathbb{R}^m 的一个开子格.某一 C^2 函数 F: X $\rightarrow \mathbb{R}$ 在 X 是上模,当且仅当对于所有 $x \in X$, $\frac{\partial^2 F}{\partial x_i \partial x_j}(\mathbf{x}) \geqslant 0, \ i,j=1,\cdots,m,\ i \neq j$
- 24.11 假设问题

 $\max F(x, p)$ 受约束 $x \in S \subseteq \mathbb{R}$ 对每一 $p \in P \subseteq \mathbb{R}$ 有至少一个解. 进一步假设 F 在(x, p)满足严格递增差别,则最优选择 $x^*(p)$ 是随参数 p 递增的.

24.12 假设在(24.11)中

F(x, p) = pf(x) - C(x)

其中 S 是紧的且 f 和 C 是连续的,则 $\partial^2 F/\partial x \partial p = f'(x)$,根据(24.10),F是上模 当且仅当 f(x)是递增的.因此 f(x)递增充 分保证最优选择 $x^*(p)$ 是随 p 递增的.

24.13 假设 S 是 R"的一个紧子格,而 P 是 R¹的一个子格,且 f: S×P→R 对每一给定的 p 是 S 的连续函数. 假设 f 在(x, p)满足递增差别,且对每一给定 p 在x 是上模. 设对应由 P 至S 的 Γ 定义为

 $\Gamma(p) = \operatorname{argmax} | f(x, p) : x \in S |$

- 对每一 $p \in \Omega$, $\Gamma(p)$ 是 \mathbb{R}^n 的非空紧子格,且有一最大的元素,记为 $x^*(p)$
- $p_1 > p_2 \Rightarrow x^*(p_1) \geqslant x^*(p_2)$
- 如果 f 在(x, p)满足严格递增差别,则 x₁≥
 x₂ 对任意 x₁∈Γ(p₁)和 x₂∈Γ(p₂)成立(当 p₁>p₂).

一个特殊的结论, 不能扩展到 $S \subset \mathbb{R}^n$, $n \ge 2$.

(24.10)一个重要 的推论.

一个主要结论.对 于给定p, argmax $\{f(x, p):$ $x \in S\}$ 是 是 使 f(x, p) 取 得 最 中 的 点x 的集合.

参考文献

关于比较静态参考 Varian (1996)或 Silberberg (1990),关于单调比较静态,参考 Sundaram (1996)及 Topkis (1998).

25.1
$$C(w, y) = \min_{x} \sum_{i=1}^{n} w_{i}x_{i} \quad \text{if} \quad f(x) = y$$

25.2 $C(w, y) = \begin{cases}$ 当要素价格是 $w = (w_1, \dots, w_n) \\$ 时生产 y 单位商品时的最小成本.

- 25.3 C(w, y)随 w_i 而增加.
 - C(w, y)对 w 是 1 次齐次的。
 - C(w, ν)对 w 是凹的.
 - ◆ C(w, v)当 w > 0 时,对 w 是连续的.
- $25.4 \quad x_i^*(w, y) = \begin{cases} 使成本最小的第 i 个要素的选择 \\ 是要素价格 w 和生产水平 v 的函数. \end{cases}$
- 25.5 x;*(w, y)随 w; 递减.

是对称和半负定的.

● x * (w, y)对 w 的齐次度为 0.

$$25.6 \quad \frac{\partial C(w, y)}{\partial w_i} = x_i^*(w, y), \quad i = 1, \dots, n$$

$$25.7 \left(\frac{\partial^2 C(w, y)}{\partial w_i \partial w_j}\right)_{(n \times n)} = \left(\frac{\partial x_i^*(w, y)}{\partial w_j}\right)_{(n \times n)}$$
 替代矩阵的性质.

成本最小化,单一产出. f 是生产函数, $w = (w_1, \dots, w_n)$ 是要素价格, y 是产出,而 $x = (x_1, \dots, x_n)$ 是要 素投入,C(w, y)是成本函数,

条件要素需求函 数.x*是解出问题 (25.1)的向量 x*. 条件要素需求函数 的性质.

Shephard 引理.

25.8
$$\pi(p, w) = \max_{\mathbf{x}} (pf(\mathbf{x}) - \sum_{i=1}^{n} w_{i}x_{i})$$

25.9 $\pi(p, w) = \begin{cases}$ 最大利润是要素价格 w 和产出价格 p 的函数.

$$25.10 \quad \pi(p, w) = \max_{y} (py - C(w, y))$$

- 25.11 π(p, w)随 p 而递增.
 - π(p, w)对(p, w)的齐次度为1.
 - • $\pi(p, w)$ 在(p, w)是凸的.
 - $\pi(p, w)$ 当 w > 0, p > 0 时对(p, w)是连续的.
- $25.12 \quad x_i(p, w) = \begin{cases} 使利润最大的第 i 个要素的选择 \\ 是产出价格 p 和要素价格 w 的 函数. \end{cases}$
- 25.13 $x_i(p, w)$ 随 w_i 递减.
 - x_i(p, w)对(p, w)的齐次度为 0.
 交叉价格效应是对称的

$$\frac{\partial x_i(p, w)}{\partial w_j} = \frac{\partial x_j(p, w)}{\partial w_i}, i, j = 1, \dots, n$$

- 25.14 $y(p, w) = \begin{cases}$ 最大利润的产出是产出价格 p 和 要素价格 w 的函数.
- 25.15 y(p, w)随 p 递增.
 y(p, w)对(p, w)的齐次度为 0.

25.16
$$\frac{\partial \pi(p, w)}{\partial p} = y(p, w)$$
$$\frac{\partial \pi(p, w)}{\partial w_i} = -x_i(p, w), i = 1, \dots, n$$

厂商的利润最大化.p是产出的价格, $\pi(p, w)$ 是利润函数.

利润函数.

由成本和收益表述的利润函数.

利润函数的性质.

要素需求函数. x(p, w)是解出问题(25.8)的向量x.

要素需求函数的性 质.

供给函数

y(p, w)=f(x(p, w)) 是解出问题 (25,10)的 v.

供给函数的性质.

Hotelling 引理.

Puu 方程,i,k=

生产理论中的替代弹性

25.19
$$\sigma_{ij} = -\frac{\partial \ln\left(\frac{C_i'(w, y)}{C_j'(w, y)}\right)}{\partial \ln\left(\frac{w_i}{w_j}\right)}, i \neq j$$

间的影子弹性.

 $y, C 和 w_k(对于 k \neq i, j)$ 是连续的.

$$25.20 \quad \sigma_{ij} = \frac{-\frac{C''_{ii}}{(C'_{i})^{2}} + \frac{2C'_{ij}}{C'_{i}C'_{j}} - \frac{C''_{jj}}{(C'_{j})^{2}}}{\frac{1}{w_{i}C'_{i}} + \frac{1}{w_{j}C'_{j}}}, \ i \neq j$$

(25.19)的另一种

25.21
$$A_{ij}(w, y) = \frac{C(w, y)C''_{ij}(w, y)}{C'_{i}(w, y)C'_{j}(w, y)}, i \neq j$$

Allen-Uzawa 替代 弹性。

25.22
$$A_{ij}(w, y) = \frac{\epsilon_{ij}(w, y)}{S_{i}(w, y)}, i \neq j$$

在此 $\epsilon_{ii}(w, y)$ 是 需求的(固定产出) 交叉价格弹性,而 $S_j(w, y) = p_j$ $C_i(w, y)/C(w, y)$ 是第 j 个投入在总 成本中的份额.

25.23
$$M_{ij}(w, y) = \frac{w_i C''_{ij}(w, y)}{C'_{j}(w, y)} - \frac{w_i C''_{ii}(w, y)}{C'_{i}(w, y)}$$
$$= \varepsilon_{ij}(w, y) - \varepsilon_{ii}(w, y), i \neq j$$

Morishima 替代弹 性.

25.24 如果 n > 2, 则 $M_{ii}(w, y) = M_{ii}(w, y)$ 对于 所有 $i \neq j$ 成立,当且仅当所有 $M_{ij}(w, y)$ 等 于相同的常数.

Morishima 替代弹 性的对称性.

特殊的函数形式及其性质

柯柏-道格拉斯函数

- 25.25 $y = Ax_1^a x_2^a \cdots x_n^a$
- 25.26 在(25.25)中的柯柏-道格拉斯函数是:
 - (a) 齐次度为 a₁ + ··· + a_n,
 - (b) 对于所有 a_1, \dots, a_n 是拟凹的,
 - (c) 当 $a_1 + \cdots + a_n \leq 1$ 时是凹的,
 - (d) 当 $a_1 + \cdots + a_n < 1$ 时是严格凹的.
- 25.28 $C(w, y) = sA^{-\frac{1}{s}} \left(\frac{w_1}{a_1}\right)^{\frac{a_1}{s}} \cdots \left(\frac{w_n}{a_n}\right)^{\frac{a_n}{s}} y^{\frac{1}{s}}$ $\left| \begin{array}{c} \text{ KABW}, s = a_1 \\ + \cdots + a_n. \end{array} \right|$
- 25.29 $\frac{w_k x_k}{C(w_k, v)} = \frac{a_k}{a_1 + \cdots + a_n}$
- 利润函数, $s = a_1$ + \cdots + $a_n < 1$ (如果 $s = a_1 + \cdots + a_n < 1$ (如果 $s = a_1 + \cdots + a_n$ | ショル 引見遂増規模放应,利润最大

和 A 是正的常数.

柯柏-道格拉斯函 数的性质.

 $(a_1, \dots, a_n, \pi A)$ 是正的常数)

CES(常数替代弹性)函数

25.32
$$y = ((a_1x_1)^e + (a_2x_2)^e + \dots + (a_nx_n)^e)^{s/e}$$

CES 函数, 定义在 $x_i > 0$, $i = 1, \dots, n$, a_1, \dots, a_n 是 正的, $e \neq 0$, e < 1, s > 0.

- 25.33 在(25.32)中的 CES 函数是:
 - (a) 齐次度为 s,
 - (b) 对 $e \leq 1$, $s \in (0, 1]$ 是凹的,
 - (c) 对 $e \leq 1$, s > 1 是拟凹的,
 - (d) 对 $e \ge 1$, $s \in (0, 1]$ 是拟凸的,
 - (e) 对 $e \ge 1$, s > 1 是凸的.

CES 函数的性质.

- 25.34 $x_k^*(w, y) = y\omega_k^{-1}a_k^{-r} \left[\left(\frac{w_1}{a_1} \right)^r + \dots + \left(\frac{w_n}{a_n} \right)^r \right]^{-\frac{1}{e}}$ $\mathbf{w}, r = e/(e-1).$

条件要素需求函

25.36 $\frac{w_k x_k^*}{C(w, y)} = \frac{\left(\frac{w_k}{a_k}\right)^r}{\left(\frac{w_1}{a_1}\right)^r + \dots + \left(\frac{w_n}{a_n}\right)^r}$

总成本中的要素份 额.

最小法则

25.37
$$y = \min(a_1 + b_1 x_1, \dots, a_n + b_n x_n)$$

最小法则. 当 $a_1 =$ ··· = $a_n = 0$ 时,这是 Leontief 或固定系数函数.

25.38 $x_k^*(w, y) = \frac{y - a_k}{b_k}, k = 1, \dots, n$

条件要素需求函数.

25.39 $C(\mathbf{w}, \mathbf{y}) = \left(\frac{y-a_1}{b_1}\right)w_1 + \dots + \left(\frac{y-a_n}{b_n}\right)w_n$

成本函数.

Diewert(广义 Leontief)成本函数

Diewert 成本函数.

25.40 $C(w, y) = y \sum_{i, j=1}^{n} b_{ij} \sqrt{w_i w_j}$ $\Re b_{ij} = b_{ji}$

25.41 $x_k^*(w, y) = y \sum_{j=1}^n b_{kj} \sqrt{w_k/w_j}$

对数变换成本函数

25.42
$$\ln C(w, y) = a_0 + c_1 \ln y + \sum_{i=1}^{n} a_i \ln w_i$$

 $+ \frac{1}{2} \sum_{i,j=1}^{n} a_{ij} \ln w_i \ln w_j$
 $+ \sum_{i=1}^{n} b_i \ln w_i \ln y$

约束:
$$\sum_{i=1}^{n} a_i = 1$$
, $\sum_{i=1}^{n} b_i = 0$,

$$\sum_{j=1}^{n} a_{ij} = \sum_{i=1}^{n} a_{ij} = 0, i = 1, \dots, n, j = 1, \dots, n$$

25.43
$$\frac{w_k x_k^*}{C(w, y)} = a_k + \sum_{i=1}^n a_{ki} \ln w_i + b_i \ln y$$

条件要素需求函数.

对数变换成本函数. $a_{ij} = a_{ji}$ 对于所有i.和j成立.对系数的约束保证C(w, y)的齐次度是1.

总成本中的要素份额.

参考文献

一种基本的参考文献是 Varian(1996),对于存在性和可微性的详细讨论,参考 Fuss & McFadden (1978),对于 Puu 方程 (25.17)的讨论,参考 Johansen (1972),对于(25.18)—(25.24),参考 Blackorby and Russell(1989).对于特殊 函数形式,参考 Fuss & McFadden(1978).

26.1 一个在商品向量 $x = (x_1, \dots, x_n)$ 的集合 X 上的偏好关系>是一在 X 上的二元关系,其意义为:

 $x \ge y$ 意指: x 至 少 与 y 一 样 好.

偏好关系的定义. 对于二元关系,参 见(1.16).

26.2 • $x \sim y \Leftrightarrow x \geqslant y \perp y \geqslant x$ • $x > y \Leftrightarrow x \geqslant y \perp y \geqslant x$ 不成立 由>得出的在 X中的关系. $x \sim y$ 读作"x与y 无差别",而 x > y读作"x(严格)好于y".

 $x \geqslant y \Leftrightarrow u(x) \geqslant u(y)$

● 对于任意单调递增函数 $f: \mathbf{R} \rightarrow \mathbf{R}, u^*(x) = f(u(x))$, 是代表与 $u(\cdot)$ 相同的偏好关系.

26.4 设 \geqslant 为一完整的,反射的,和可递的偏好关系, 且又是连续的,意指对于所有 $x^0 \in X$,集合 $\{x:x \geqslant x^0\}$ 和 $\{x:x^0 \geqslant x\}$ 都是闭的,则存在一连续的效用函数代表 \geqslant .

连续效用函数的存在性,对于关系的性质,参见(1.16)。

26.5
$$\max_{x} u(x)$$
 受约束 $\sum_{i=1}^{n} p_{i}x_{i} = m$

$$26.6 \quad v(p, m) = \max_{x} \{u(x): p \cdot x = m\}$$

26.8
$$\omega = \frac{u_1'(x)}{p_1} = \cdots = \frac{u_n'(x)}{p_n}$$

26.9
$$\omega = \frac{\partial v(\mathbf{p}, m)}{\partial m}$$

$$26.11 \quad x(tp, tm) = x(p, m), t$$
 是一正数量

$$26.12 \quad x_i(\mathbf{p}, m) = -\frac{\frac{\partial v(\mathbf{p}, m)}{\partial p_i}}{\frac{\partial v(\mathbf{p}, m)}{\partial m}}, i = 1, \dots, n$$
 Roy 恒等式.

及大化. x = (x₁, ..., x_n)是一商品 (数量的)向量, p = (p₁, ..., p_n)是价格向量, m 是收入,

间接效用函数. v(p, m)作为价格 向量 p 和收入 m 的函数的最大效

间接效用函数的性 质.

问题(26.5)的一阶 条件,ω 是相应的 拉格朗日乘数.

ω称为货币的边际

消费者需求函数, 或马歇尔需求函 数,由问题(26.5)

需求函数的齐次度

26.13
$$e(p, u) = \min_{x} |p \cdot x; u(x) \ge u$$

$$26.14 \begin{cases} e(p, u) 随 p 递增. \\ e(p, u) 对 p 的齐次度为 1. \\ e(p, u) 对 p 是凹的. \\ e(p, u) 对 p 当 p > 0 是连续的. \end{cases}$$

$$26.15 \quad h(p, u) = \begin{cases} 在价格 p 时 \\ 获取效用水平 u 所 \\ 必须的最小支出组合. \end{cases}$$

26.16
$$\frac{\partial e(\mathbf{p}, u)}{\partial p_i} = h_i(\mathbf{p}, u), i = 1, \dots, n$$

$$26.17 \quad \frac{\partial h_i(\mathbf{p}, u)}{\partial p_j} = \frac{\partial h_j(\mathbf{p}, u)}{\partial p_i}, \ i, j = 1, \cdots, n \qquad \begin{array}{c} \text{的对称性(马歇尔交叉偏导数不一定} \end{array}$$

26.18 矩阵
$$\left(\frac{\partial h_i(p,u)}{\partial p_j}\right)_{n \times n}$$
 是半负定性的.

26.19
$$e(p, v(p, m)) = m$$
: | 达到效用 $v(p, m)$ 的
最小支出是 m .

26.20
$$v(p, e(p, u)) = u: \begin{cases} \text{由收入 } e(p, u) \text{而定的} \\ \text{最大效用是 } u. \end{cases}$$

$$26.21 \quad x_i(p, m) = h_i(p, v(p, m))$$
:
$$x_i(p, m) = h_i(p, v(p, m))$$
:
$$v(p, m)t$$
时的希克斯

支出 函数. e(p,u)是在价格为 p时至少获得效用水平u 的最小支出.

支出函数的性质.

情况下都成立的有

用恒等式,

26.23 •
$$e_{ij} = \text{El}_{pj} x_i = \frac{p_j}{x_i} \frac{\partial x_i}{\partial p_j} (Cournot 弹性)$$

•
$$E_i = \text{El}_m x_i = \frac{m}{x_i} \frac{\partial x_i}{\partial m}$$
 (Engel 弹性)

•
$$S_{ij} = \text{El}_{pj} h_i = \frac{p_j}{x_i} \frac{\partial h_i}{\partial p_j} (Slutsky 弹性)$$

26.24 •
$$\frac{\partial x_i(\mathbf{p}, m)}{\partial p_j} = \frac{\partial h_i(\mathbf{p}, u)}{\partial p_j} - x_j(\mathbf{p}, m) \frac{\partial x_i(\mathbf{p}, m)}{\partial m}$$

• $S_{ii} = e_{ii} + a_i E_i, \ a_i = p_i x_i / m$

26.25 以下 $\frac{1}{2}n(n+1)+1$ 个对需求函数的偏导数的领束是线性独立的:

(a)
$$\sum_{i=1}^{n} p_{i} \frac{\partial x_{i}(\mathbf{p}, m)}{\partial m} = 1$$

(b)
$$\sum_{j=1}^{n} p_{j} \frac{\partial x_{i}}{\partial p_{j}} + m \frac{\partial x_{i}}{\partial m} = 0, i = 1, \dots, n$$

(c)
$$\frac{\partial x_i}{\partial p_j} + x_j \frac{\partial x_i}{\partial m} = \frac{\partial x_j}{\partial p_i} + x_i \frac{\partial x_j}{\partial m}$$
,
 $i = 1, \dots, n-1, j = i+1, \dots, n$

 $EV = e(p^0, v(p^1, m^1)) - e(p^0, v(p^0, m^0))$ EV 是在老(时期 0)价格下取得新(时期 1)效 用所需的货币,与在老价格下取得老效用所需的货币之间的差额. e_{ij} 是需求对价格的 弹性, E_i 是需求对 收入的弹性,而 S_{ij} 是 Hicks 需求对价 格的弹性.

两种等价的 Slutsky 方程形式.

(a)是预算约束对 m 的微分,(b)是 应用在消费者需求 函数上(对齐次函数)的欧拉方程,(c)是 Slutsky 方程

和(26.15)的推论.

等价变量, p⁰, m⁰ 和 p¹, m¹ 分别是 时期 0 和时期 1 的 价格和收入,

$$e(p^0, v(p^0, m^0))$$

= m_0^0 .

26.27 $CV = e(p^1, v(p^1, m^1)) - e(p^1, v(p^0, m^0))$ CV 是在新(时期1)价格下取得新效用所需的货币,与在新价格下取得老(时期0)效用水平所需的货币之间的差额.

补偿变量, p^0 , m^0 和 p^1 , m^1 分别是时期 0 和时期 1 的价格和收入, $e(p^1, v(p^1, m^1)) = m_0^1$.

特殊函数形式及其性质

线性支出系统(LES)

26.28
$$u(x) = \prod_{i=1}^{n} (x_i - c_i)^{\beta_i}, \quad \beta_i > 0$$

26.29
$$x_i(p, m) = c_i + \frac{1}{p_i} \frac{\beta_i}{\beta} (m - \sum_{i=1}^{n} p_i c_i)$$

26.30
$$v(p, m) = \beta^{-\beta} (m - \sum_{i=1}^{n} p_i c_i)^{\beta} \prod_{i=1}^{n} (\frac{\beta_i}{p_i})^{\beta_i}$$

26.31
$$e(p, u) = \sum_{i=1}^{n} p_{i}c_{i} + \frac{\beta u^{1/\beta}}{\left[\prod_{i=1}^{n} \left(\frac{\beta_{i}}{p_{i}}\right)^{\beta_{i}}\right]^{1/\beta}}$$

接近理想的需求系统(AIDS)

26.32
$$\ln(e(p, u)) = a(p) + ub(p)$$

 $a(p) = a_0 + \sum_{i=1}^n a_i \ln p_i + \frac{1}{2} \sum_{i,j=1}^n \gamma_{ij}^* \ln p_i \ln p_j$
 $b(p) = \beta_0 \prod_{i=1}^n p_i^{\beta_i}$
约束: $\sum_{i=1}^n a_i = 1$, $\sum_{i=1}^n \beta_i = 0$, 以及
 $\sum_{i=1}^n \gamma_{ij}^* = \sum_{i=1}^n \gamma_{ji}^* = 0$.

Stone-Geary 效用 函数. 如果 $c_i = 0$ 对于所有 i 成立, u(x)是柯柏-道格 拉斯函数.

需求函数. $\beta = \sum_{i=1}^{n} \beta_{i}.$

间接效用函数.

支出函数.

接近理想的需求系统,由支出函数的对数而定义.约束条件使 e(p,u)对p的齐次度为1.

26.33
$$x_i(p, m) = \frac{m}{p_i} \left(\alpha_i + \sum_{j=1}^n \gamma_{ij} \ln p_j + \beta_i \ln \left(\frac{m}{P} \right) \right),$$
其中价格指数 P 由

$$\ln P = \alpha_0 + \sum_{i=1}^n \alpha_i \ln p_i + \frac{1}{2} \sum_{i,j=1}^n \gamma_{ij} \ln p_i \ln p_j$$

给出,且有 $\gamma_{ij} = \frac{1}{2} (\gamma_{ij}^* + \gamma_{ji}^*) = \gamma_{ji}$

对数变换间接需求函数

26.34
$$\ln v(\mathbf{p}, m) = \alpha_0 + \sum_{i=1}^n \alpha_i \ln\left(\frac{p_i}{m}\right) + \frac{1}{2} \sum_{i,j=1}^n \beta_{ij}^* \ln\left(\frac{p_i}{m}\right) \ln\left(\frac{p_j}{m}\right)$$

26.35
$$x_i(p, m) = \frac{m}{p_i} \left[\frac{\alpha_i + \sum_{j=1}^n \beta_{ij} \ln(p_j/m)}{\sum_{i=1}^n \alpha_i + \sum_{i, j=1}^n \beta_{ij}^* \ln(p_i/m)} \right]$$
 需求函数.
其中 $\beta_{ij} = \frac{1}{2} (\beta_{ij}^* + \beta_{ji}^*)$

价格指数

26.36 考虑一个有 n 种商品的"篮子".对 $i = 1, \dots$ n. 定义

 $a^{(i)} =$ 商品 i 在篮子里的个数

p(i) = 商品 i 在 0 年的单位价格

 $p_i^{(i)} =$ 商品 i 在 t 年的单位价格

以 0 年为基期年, t 年的价格指数 P 定义为

$$P = \frac{\sum_{i=1}^{n} p_i^{(i)} q^{(i)}}{\sum_{i=1}^{n} p_0^{(i)} q^{(i)}} \cdot 100$$

价格指数最普通的 定义. P 是 100 乘 以在t年商品篮子 的成本除以在0年 的商品篮子的成 本.(更一般的,一 种(消费)价格指数 可定义为所有价格 的函数 $P(p_1, \dots,$ p,,), 齐次度为 1, 且对每一变量都不 递减.)

- 26.37 如果数量 q⁽ⁱ⁾在 P 的公式中是在基期年 0 的消费水平, P 是 Laspeyres 价格指数.
 - 如果数量 q⁽ⁱ⁾是在 t 年的消费水平, P 称为
 Paasche 价格指数。

两种重要的价格指数.

26.38 F = √(Laspeyres 指数) · (Paasche 指数)

Fischer 理想指数.

参考文献

一本基本的参考是 Varian(1996),对于更深的讨论,参见 Mas-Colell et. al. (1995),对于 AIDS,参见 Deaton & Muellbauer(1980),对于对数变换,参见 Christensen, Jorgenson & Lau(1975),也可参见 Phlips(1983).

27.1
$$S_t = S_{t-1} + rS_{t-1} = (1+r)S_{t-1}, t = 1, 2, \cdots$$

当利率为r时,在第t期末的本金 S_0 的复利金 额 S. 为

$$S_r = S_0(1+r)^t$$

27.3 当利率为 r,在每期期末计利时,要得到经过 t期后复利金额为S,的初始投资额为

$$S_0 = S_t (1+r)^{-t}$$

当利息是每年在固定的时间间隔里计复利 n 27.4 次,每期利率为r/n 时,有效年利率为

$$\left(1+\frac{r}{n}\right)^n-1$$

27.5
$$A_t = \frac{R}{(1+r)^1} + \frac{R}{(1+r)^2} + \dots + \frac{R}{(1+r)^t}$$
 年金为 R , 每期利 率为 r 时 t 期的现 A_t .

27.6 每期年金 R 的无限期年金,每期利率为 r 时的 现值A:

$$A = \frac{R}{(1+r)^1} + \frac{R}{(1+r)^2} + \cdots = \frac{R}{r}$$

$$27.7 \quad T = \frac{\ln\left(\frac{R}{R - rA}\right)}{\ln(1 + r)}$$

27.1 $S_t = S_{t-1} + rS_{t-1} = (1+r)S_{t-1}, t = 1, 2, \cdots$

复利((27.1)中差

S₀ 称为 S_i 的现

无限年金的现值.

当每期还本为R, 的时期数7.

27.8
$$S_t = (1+r)S_{t-1} + (y_t - x_t), t=1, 2, \cdots$$

27.9
$$S_t = (1+r)^t S_0 + \sum_{k=1}^t (1+r)^{t-k} (y_k - x_k)$$

27.10
$$S_t = (1 + r_t)S_{t-1} + (y_t - x_t), t = 1, 2, \dots$$
 | (27.8)当利率是变量 r_t 时的推广.

$$27.11 D_k = \frac{1}{\prod_{s=1}^{k} (1+r_s)}$$

27.12
$$R_k = \frac{D_k}{D_t} = \prod_{s=k+1}^t (1 + r_s)$$

27.13
$$S_t = R_0 S_0 + \sum_{k=1}^{t} R_k (y_k - x_k)$$

27.14
$$a_0 + \frac{a_1}{1+r} + \frac{a_2}{(1+r)^2} + \cdots + \frac{a_n}{(1+r)^n} = 0$$

27.15 如果 $a_0 < 0$ 且 a_1 , …, a_n 都 ≥ 0 ,则(27.14) 有唯一的解1+r*>0,即唯一的内部报酬率 $r^* > -1$. 当 $\sum_{i=0}^{n} a_i > 0$ 时内部报酬率是 正的.

27. 16
$$A_0 = a_0$$
, $A_1 = a_0 + a_1$, $A_2 = a_0 + a_1 + a_2$, ..., $A_n = a_0 + a_1 + \dots + a_n$

在一利率为了的账 27.8 $S_t = (1+r)S_{t-1} + (y_t - x_t), t = 1, 2, \cdots$ 期的存款, x_t 是职款, 金额 S_{t-1} 经过一个时期递增至

与(27.10)相伴的 贴现因子(从第 k 期贴现至 ()期).

与(27.10)相伴的 利息因子.

(27.10)的解. R. 的定义在(27.12). ((27.9)的推广)

r 是一投资项目的 内部报酬率,负的 a_t 代表在时间 t 的 支出,正的 a, 代表 收入.

Descartes 符号法则 (2.12)的应用.

27.17 如果 $A_n \neq 0$, 且数列 A_0 , A_1 , …, A_n 只改变 一次符号,则(27.14)有一唯一的正的内部报 酬率.

Norstr\$m 法则.

27.18 在连续计利且复利利率为 r 的账户里, K 元 经过t年的利息为: Ke^{r}

27.19 利息为 r 时连续复利的有效年利率为 e'-1

连续复利的有效利

27.20 Ke^{-n} , r = p/100

在 t 年后到期的金 额 K, 当(连续复 利)年利率为 ρ% 时的现值.

27.21 一个在时间区间[0, T]内每年 K(t)元的连 续收入,当连续复利利率为 r 时,在时间 0 的 贴现现值是

贴现现值,连续复 利.

 $\int_{0}^{T} K(t) \mathrm{e}^{-rt} \mathrm{d}t$

 $\int_{-T}^{T} K(t) e^{-r(t-s)} dt$

贴现现值,连续复 利.

27.22 一个在时间区间[s, T]内每年 K(t)元的连 续收入,当连续复利利率为r时,在时间s的 贴现现值是

索洛增长模型

27.23 • X(t) = F(K(t), L(t))

$$\bullet K(t) = sX(t)$$

$$\bullet L(t) = L_0 e^{\lambda t}$$

27.24 如果 F 的齐次度为 1, k(t) = K(t)/L(t) 为 人均资本量,而 f(k) = F(k,1),则(27.23) 简化为

$$k = sf(k) - \lambda k, k(0)$$
 是给定的.

X(t)是国民收入, K(t)是在时间 t 的 资本,L(t)是劳动 力,F 是生产方程. s(储蓄率), λ和 Lo 都是正的常数.

(27.23)的一个简 化形式.

27.25 如果 $\lambda/s < f'(0) < \infty$, 当 $k \to \infty$ 时 f'(k) $\to 0$, 且 $f'(k) \le 0$ 对于所有 $k \ge 0$ 成立,则(27.24)中的方程在 $[0, \infty)$ 上有一唯一的解.解 k^* 定义为

$$sf(k^*) = \lambda k^*$$

是一稳定的均衡状态.

在 $[0, \infty)$ 上的解 的存在性和唯一性 由(11.41)得出.

Ramsey 增长模型

27.26
$$\max_{0}^{T} C(t) e^{-rt} dt$$

$$C(t) = U(f(K(t)) - \dot{K}(t))$$

$$K(0) = K_{0}, K(T) \geqslant K_{1}$$

27.27
$$\ddot{K} - f'(K)\dot{K} + \frac{U'(C)}{U''(C)}(r - f'(K)) = 0$$

27.28
$$\frac{\dot{C}}{C} = \frac{r - f'(K)}{\dot{W}}$$
, 其中 $\dot{W} = \text{El}_C U'(C) = C U''(C) / U'(C)$

问题(27.26)的欧 拉方程.

(27.26)的解的必要条件.

参考资料

对于复利的公式参考 Goldberg(1961)或 Sydsaeter & Hammond(1995),对于 (27.17)参考 Norstr∲m(1972),对于增长理论,参考 Burmeister & Dobell (1970), Blanchard & Fischer(1989),或 Barro & Sala-I-Martin(1995).

28.1
$$R_A = -\frac{u''(y)}{u'(y)}$$
, $R_R = yR_A = -\frac{yu''(y)}{u'(y)}$ 规避 (R_A) 和相对风险 规避 (R_R) . $u(y)$ 是一效用函数, y

色对风险规避

$$28.2 \quad \bullet R_A = \lambda \Leftrightarrow u(y) = A_1 + A_2 e^{-\lambda y}$$
 和相对风险规避效
$$\bullet R_R = k \Leftrightarrow u(y) = \begin{cases} A_1 + A_2 \ln y & \text{如果 } k = 1 \\ A_1 + A_2 y^{1-k} & \text{如果 } k \neq 1 \end{cases}$$
 用函数各自的特征. A_1 和 A_2 是常

固定绝对风险规避 数, $A_2 \neq 0$.

$$28.3 \quad \bullet u(y) = y - \frac{1}{2}by^2 \Rightarrow R_A = \frac{b}{1 - by}$$
 两种特殊效用函数
$$\bullet u(y) = \frac{1}{b - 1}(a + by)^{1 - \frac{1}{b}} \Rightarrow R_A = \frac{1}{a + by}$$
 的风险规避.

28.4
$$E(u(y+z+\pi)) = E(u(y))$$
$$\pi \approx -\frac{u''(y)}{u'(y)} \frac{\sigma^2}{2} = R_A \frac{\sigma^2}{2}$$

 Arrow-Pratt
 风险

 奖励.π:
 风险

 励.z:
 均值为零的

 风险项目.σ² =
 var[]:
 z 的方

 差.E[]
 是期望.

 (期望和方差定义

28.5 如果 F 和 G 是随机收入的累积分布函数 (CDF),则

F 一級随机优于G $\Leftrightarrow G(Z) \geqslant F(Z)$ 对于所有 $Z \in I$ 成立.

一级随机优于的定义、I 是一闭区间 $[Z_1, Z_2]$,当 $Z \le Z_1$ 时,F(Z) = G(Z) = 0,而当 $Z \ge Z_2$ 时,F(Z) = G(Z) = 1.

28.6 $F \text{ FSD } G \Leftrightarrow egin{cases} E_F[u(Z)] \geqslant E_G[u(Z)] \ \text{对于所有递增的 } u(Z)$ 成立。

重要的结论. FSD 意为"一级随机优于". $E_F[u(Z)]$ 是 当收入 Z 的累积 分布函数是 F(Z) 时的期望效用. E_G [u(Z)] 可类似地定义.

28.7 $T(Z) = \int_{Z_1}^{Z} (G(z) - F(z)) dz$

| (28.8)中使用的定 | 义.

28.8 F 二级随机优于G ⇔T(Z) ≥ 0 对于所有 $Z \in I$ 成立.

二級 随机 优于 (SSD)的定义, $I = [Z_1, Z_2]$, 注意 $FSD \Rightarrow SSD$.

Hadar-Russell 定 理.每一风险规避 者偏好 F 超过 G, 当且仅当 F SSD G.

- 28.10 设 F 和 G 分别为 X 和 Y 的分布函数, $I = [Z_1, Z_2]$, 且 T(Z)的定义如(28.7),则以下陈述是等价的:
 - ◆ $T(Z_2) = 0$ 且 $T(Z) \ge 0$ 对于所有 $Z \in I$ 成立.
 - 存在一随机变量 ε,且
 E[ε | X] = 0 对于所有 X 成立,使 Y 分布 为 X + ε.
 - F 和 G 有相同的均值,每一风险规避者偏好 F 超过 G.

Rothschild-Stiglitz 定理。

参考文献

参考 Huang & Litzenberger(1988), Hadar & Russell(1969),和 Rothschild & Stiglitz(1970).

資本資产定价模型
$$29.1 \qquad E[r_i] = r + \beta_i (E[r_m] - r)$$
其中 $\beta_i = \frac{\text{corr}(r_i, r_m)\sigma_i}{\sigma_m} = \frac{\text{cov}(r_i, r_m)}{\sigma_m^2}$

单一消费β资产定价方程

29.3 Black-Scholes 期权定价模型(欧洲或美洲无股 息的买人股票期权)

$$c = c(S, K, t, r, \sigma)$$

$$= SN(x) - KN(x - \sigma \sqrt{t})e^{-rt},$$
其中
$$x = \frac{\ln(S/K) + (r + \frac{1}{2}\sigma^2)t}{\sigma \sqrt{t}},$$
且
$$N(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-z^2/2} dz \, 是累积正态分布 函数.$$

r; 为资产 i 的收益 率, E[r_k]为 r_k 的 期望值. r 为无风 险资产的收益率, r_m 为市场收益率, σ, 为r_i 的标准差.

C 为消费.

 r_m 为任意有价证 券的收益.

d ln C 是随机对数 微 分. (参 见 (29.13))

29.4
$$\bullet \partial c / \partial S = N(x) > 0$$

•
$$\partial c / \partial K = -N(x - \sigma \sqrt{t})e^{-rt} < 0$$

•
$$\partial c/\partial t = \frac{\sigma}{2\sqrt{t}}SN'(x) + re^{-rt}KN(x - \sigma t) > 0$$

•
$$\partial c/\partial r = tKN(x - \sigma \sqrt{t})e^{-n} > 0$$

•
$$\partial c / \partial \sigma = SN'(x) \sqrt{t} > 0$$

29.5 广义 Black-Scholes 模型,包括持仓成本项 b(用 来对欧洲支付连续股息收益资产的,期货期权 和货币期权,包括买入期权(c)和卖出期权(p)定价)

$$c = SN(x)e^{(b-r)t} - KN(x - o\sqrt{t})e^{-rt}$$

$$p = KN(o\sqrt{t} - x)e^{-rt} - SN(-x)e^{(b-r)t}$$
其中
$$x = \frac{\ln(S/K) + (b + \frac{1}{2}\sigma^2)t}{o\sqrt{t}}.$$

29.6
$$p = c - Se^{(b-r)t} + Ke^{-rt}$$

- 29.7 $P(S, K, t, r, b, \sigma) = C(K, S, t, r b, \sigma)$ $-b, \sigma$
- 当优先资产不支付股息时,美国永久性卖出期 29.8 权的市场价值:

$$h(x) = \begin{cases} \frac{K}{1+\gamma} \left(\frac{x}{c}\right)^{-\gamma}, & \text{如果 } x \ge c \\ K-x, & \text{如果 } x < c \end{cases}$$

$$\downarrow r \Rightarrow c$$

$$\downarrow r \Rightarrow$$

Black-Scholes 模型 中有用的敏感性结 论.(对(29.5)中的 广义 Black-Scholes 模型的相应结论见 Haug(1997), 附录 B 中给出)

」ゟ为持有优先证券 的持仓成本率. 6 = r 给出 Black-Scholes 模型, b = r│- q 给出连续股息 收益为q 的 Merton 股票期权模型, b = 0 给出 Black 期 货期权模型,

广义 Black-Scholes 模型的买入卖出平

给出美国卖出期权 | P,根据相应的买 人期权 C 的公式

x 为现价.

σ为波动性.

29.9 $X_t = X_0 + \int_0^t u(s, \omega) ds + \int_0^t v(s, \omega) dB_s$, 其中 $P\left[\int_{0}^{t} v(s, \omega)^{2} ds < \infty \text{ 对所有 } t \ge 0\right] =$ 1成立,且 $P[\int_{0}^{t} | u(s, \omega) | ds < \infty$ 对所有 t ≥0 = 1成立. u 和 v 通过滤波 (S.) 进行调 整,其中 B, 是一张, 布朗运动.

 $29.10 \quad dX_t = u \, dt + v \, dB_t$

29.11 如果 $dX_t = u dt + v dB_t$, 且 $Y_t = g(X_t)$, 其 中 $g \in C^2$ 函数,则

$$dY_t = (g'(X_t)u + \frac{1}{2}g''(X_t)v^2)dt + g'(X_t)v dB_t$$

29.12 $dt \cdot dt = dt \cdot dB_t = dB_t \cdot dt = 0$, $dB_t \cdot dB_t = dt$

29.13
$$\operatorname{d} \ln X_{t} = \left(\frac{u}{X_{t}} - \frac{v^{2}}{2X_{t}^{2}}\right) \operatorname{d} t + \frac{v}{X_{t}} \operatorname{d} B_{t}$$
$$\operatorname{d} e^{X_{t}} = \left(e^{X_{t}}u + \frac{1}{2}e^{X_{t}}v^{2}\right) \operatorname{d} t + e^{X_{t}}v \operatorname{d} B_{t}$$

$$29.14 \quad \begin{bmatrix} dX_1 \\ \vdots \\ dX_n \end{bmatrix} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} dt + \begin{bmatrix} v_{11} & \cdots & v_{1}m \\ \vdots & \ddots & \vdots \\ v_{n1} & \cdots & v_{nm} \end{bmatrix} \begin{bmatrix} dB_1 \\ \vdots \\ dB_m \end{bmatrix} \quad \begin{bmatrix} 29.10713191 & 10 \\ 3. & 10713191 & 10 \end{bmatrix}$$

29.15 如果 $Y = (Y_1, \dots, Y_k) = g(t, X)$, 其中 g = (g_1, \dots, g_k) 是 C^2 函数,则对于 $r = 1, \dots, k$ $dY_r = \frac{\partial g_r(t, X)}{\partial t} dt + \sum_{i=1}^n \frac{\partial g_r(t, X)}{\partial x_i} dX_i$ $+\frac{1}{2}\sum_{i=1}^{n}\frac{\partial^{2}g_{r}(t, X)}{\partial x_{i}\partial x_{i}}dX_{i}dX_{j}$ 其中 $dt \cdot dt = dt \cdot dB_i = 0$ 且 $dB_i \cdot dB_i = dt$, 如果 i = j; $dB_i \cdot dB_i = 0$, 如果 $i \neq j$.

X. 定义为一维随

| (29.9)的微分形式.

Ito 公式(一维).

有用的关系.

(29.11)的两个特 例.

(29. 10)的向量形 -维布朗运动.

n 维 1to 公式.

29.16
$$J(t, x) = \max_{u} E^{t, x} \int_{t}^{T} e^{-rs} W(s, X_{s}, u_{s}) ds$$
 其中 T 是固定的, $u_{s} \in U$, U 是一固定区间,且
$$dX_{t} = b(t, X_{t}, u_{s}) dt + \sigma(t, X_{t}, u_{s}) dB_{t}$$

随机控制问题. J 是值函数, u_t 是控制, $E^{t,x}$ 是当初始条件为 $X_t = x$ 的期望.

29.17
$$-J'_{t}(t, x) = \max_{u \in U} [W(t, x, u) + J'_{x}(t, x)b(t, x, u) + \frac{1}{2}J''_{xx}(t, x)(\sigma(t, x, u))^{2}]$$

Hamilton-Jacobi-Bellman 方程. (29.16)的最优解的 一个必要条件.

参考文献

对于(29.1)和(29.2)参考 Sharpe(1964),对于(29.3)参考 Black & Scholes (1973),对于(29.5)和许多期权定价公式,参考 Haug(1997),他也提供了详细的参考文献和期权标价公式的计算机码,对于(29.8)参考 Merton(1973),对于随机积分和随机控制理论,参考 Φksendal(1998), Fleming & Rishel(1975)和 Karatzas & Shreve(1988).

- 30.1 在一有 n 个博弈方的博弈中,我们给每一博弈方 i(i=1, ..., n) 一个策略集合 S_i 和一纯策略得益函数 u_i ,使对于每一策略组合 $s=(s_i, ..., s_n) \in S = S_1 \times ... \times S_n$,每一博弈方 i 有效用 $u_i(s) = u_i(s_1, ..., s_n)$.
- 30.2 -n 人博弈的一个策略组合 (s_1^*, \dots, s_n^*) 是 一纯策略纳什均衡,如果对于所有 $i = 1, \dots, n$ 和所有 $s_i \in S_i$,

$$u_i(s_1^*, \dots, s_n^*)$$

 $\geq u_i(s_1^*, \dots, s_{i-1}^*, s_i, s_{i+1}^*, \dots, s_n^*)$

- 30.3 如果对于所有 $i=1, \dots, n$,策略集合 S_i 是一非空,紧的,且凸的 \mathbb{R}^n 的子集,而 $u_i(s_1, \dots, s_n)$ 对其第 i 个变量在 $S=S_1 \times \dots \times S_n$ 是连续且拟凹的,则该博弈有一纯策略纳什均衡.
- 30.4 考虑一有限 n 人博弈,其中 S_i 是博弈中i 的纯策略集合,且记 $S = S_1 \times \cdots \times S_n$. Ω_i 为 S_i 的概率分布集合. 一元素 $\sigma_i \in \Omega_i$ (σ_i 则成为一函数 $\sigma_i: S_i \rightarrow [0,1]$) 称为博弈方 i 的一个混合策略,意为如果 i 采用 σ_i ,则 i 以概率 σ_i (s_i) 选择纯策略 s_i . 如果博弈方选择混合策略组合 $\sigma = (\sigma_1, \cdots, \sigma_n) \in \Omega_1 \times \cdots \times \Omega_n$,纯策略组合 $s = (s_1, \cdots, s_n)$ 出现的概率是 $\sigma_1(s_1)$ … $\sigma_n(s_n)$. 博弈方 i 如果选择混合策略组合 σ 的期望得益.则是

$$u_i(\boldsymbol{\sigma}) = \sum_{s \in S} \sigma_1(s_1) \cdots \sigma_n(s_n) u_i(s)$$

策略(或正规)形式的 n 人博弈,如果所有策略集合 S_i 有限个数的元素,则称博弈是有限的.

n 人博弈的纯策略 纳什均衡的定义.

| 纯策略纳什均衡存 | 在的充分条件(典 | 型地,存在几个纳 | 什均衡).

一个有 n 个博弈 方的博弈中混合策 略的定义. 30.5 一个混合策略组合 $\sigma^* = (\sigma_1^*, \dots, \sigma_n^*)$ 是一 纳什均衡,如果对于所有 i 和每一 σ_i ,

 $u_i(\boldsymbol{\sigma}^*) \geqslant u_i(\sigma_1^*, \dots, \sigma_{i-1}^*, \sigma_i, \sigma_{i+1}^*, \dots, \sigma_n^*)$

 $30.6 \quad \sigma^*$ 是纳什均衡, 当且仅当以下两个条件对于所 有 $i = 1, 2, \dots, n$ 成立:

> $\sigma_i^*(s_i) > 0 \Rightarrow u_i(\sigma^*) = u_i(s_i, \sigma_{-i}^*)$ 对所 有 s. 成立、

> $\sigma_i^*(s_i') = 0 \Rightarrow u_i(\sigma^*) \geqslant u_i(s_i', \sigma_{-i}^*)$ 对所 有 s_i 成立,

> 其中 $\sigma_{-i}^* = (\sigma_1^*, \dots, \sigma_{i-1}^*, \sigma_{i+1}^*, \dots, \sigma_n^*), 且$ 我们认为 s, 和 s', 是退化的混合策略.

- 30.7 每一有限 n 博弈方的博弈有一混合策略纳什 均衡.
- 30.8 博弈方 i 的纯策略 $s_i \in S_i$ 是被严格主导的,如 果存在博弈方 i 的一个混合策略 σ_i ,使对于所 有其他博弈方的可能的策略组合, i 采用策略 s. 的得益严格小于采用策略 σ . 的得益:

$$u_i(s_1, \dots, s_{i-1}, s_i, s_{i+1}, \dots, s_n) < u_i(s_1, \dots, s_{i-1}, \sigma_i, s_{i+1}, \dots, s_n)$$

对于每一能从其他博弈方的策略集合 $S_1, \dots, S_{i-1}, S_{i+1}, \dots, S_n$ 中所得的策略组合 $(s_1, \dots, s_{i-1}, s_{i+1}, \dots, s_n)$ 都成立.

- 30.9 在-n人博弈中,以下结论成立。
 - 如果反复消去严格下策的过程仅保留了策略 (s_1^*, \dots, s_n^*) ,则这些策略是该博弈唯一的 纳什均衡.
 - 如果混合策略组合 σ* = (σ₁*, ···, σ_n*) 是一 纳什均衡,且对某一博弈方 i, $\sigma_i^*(s_i) > 0$, 则 s; 在反复消去严格下策的过程中会幸存 下来.

丨一个有 n 个博弈方 的博弈中混合策略 纳什均衡的定义.

(混合策略)纳什均 衡的另一种定义.

严格下策的定义.

有用的结论, 反复 消去严格下策的过 程并不一定消去任 何策略.(对反复消 去严格下策的过程 感兴趣的,可参见 有关的文献)

١

30.10 在有两个博弈方的博弈中,博弈方1和2分别 有 m 和 n 个(纯)策略,可以用两个得益矩阵 来表述

$$\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ b_{21} & \cdots & b_{2n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{pmatrix}$$

- 30.11 (30.10)中的两人博弈存在一纳什均衡 (p*, q*)使
 - p·Aq* ≤ p* ·Aq* 对于所有 p 在 △_m 中 成立,
 - p*・Bq≤p*・Bq* 对于所有 q 在 △, 中 成立,

两人博弈中纳什均 衡的存在性.·表示 数量乘积, Δ_k 表表示 在 \mathbb{R}^k 中包含的 有元素总和为 $\mathbb{1}$ 的 非负向量的单纯 形.

30.12 在一两人零和博弈 (A = -B) 中,纳什均衡的存在条件相当于条件 $p \cdot Aq$ 有一 鞍点 (p^*, q^*) ,即对于所有 $p \in \Delta_m$ 中和所有 q 在 Δ_n 中,

$$p \cdot Aq^* \leqslant p^* \cdot Aq^* \leqslant p^* \cdot Aq$$

两人零和博弈中纳 什均衡的鞍点特 征.

30.13 均衡的得益 $v = p^* \cdot Aq^*$ 称为博弈的价值, 且

$$v = \min_{\mathbf{q} \in \Delta_n} \max_{\mathbf{p} \in \Delta_m} \mathbf{p} \cdot \mathbf{A} \mathbf{q} = \max_{\mathbf{p} \in \Delta_m} \min_{\mathbf{q} \in \Delta_n} \mathbf{p} \cdot \mathbf{A} \mathbf{q}$$

两人零和博弈中的 经典 极 小 极 大 定 理.

30.14 假设(p*, q*)和(p**, q**)是博弈(30.10) 的纳什均衡.则(p*, q**)和(p**, q*)也是均 衡策略组合.

长方形或互换性特性,

进化博弈论

Ì

- 在(30.10)中的两人对称博弈中,有 A = B', 30.15 一个策略 p* 称为是进化稳定策略(ESS),如 果对于所有 $q \neq p^*$ 存在 $-\frac{1}{\epsilon} > 0$, 使 $q \cdot A(\epsilon q + (1 - \epsilon)p^*) < p^* \cdot A(\epsilon q +$ $(1-\epsilon)p^*$ 对于所有正的 ε $< \varepsilon$ 成立.
- 在(30.15)中设定的策略 p*是进化稳定的当 30.16 且仅当 $q \cdot Ap^* \leq p^* \cdot Ap^*$ 对于所有 q 成立 如果 $q \neq p^*$ 和 $q \cdot Ap^* = p^* \cdot Ap^*$ 成立,则 $q \cdot Aq < p^* \cdot Aq$.

ε的值可能依赖于 q.生物学角度的诠 释:所有动物都被 设定采用 p*,任何 尝试入侵的变异 q,都有严格最低的 适应度.

第一个条件,(均衡 条件),等价于纳什 均衡条件,第二个 条件称为稳定性条 件.

参考文献

一个标准的参考文献是 Friedman(1986),也可参考 Gibbons(1992)(最简单的 论述), Kreps (1990), 和 Fudenberg & Tirole (1991), 对于进化博弈论, 参考 Weibull (1995).

- 31.1 事件 A 的概率 P(A),满足以下公理:
 - (a) $0 \leqslant P(A) \leqslant 1$
 - (b) $P(\Omega) = 1$
 - (c) 如果对于 $i \neq j$, $A_i \cap A_j = \emptyset$, 则 $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

概率公理. Ω 是包含所有可能结果的样本空间,一个事件是 Ω 的一个子集.

A∪B A 或 B 发生 A∩B A和B都发生 A\B A发生,但 B 不发生

A^c A 不发生 A △ B A 或 B 发生, 但不同时

- 31.2 $\bullet P(A^c) = 1 P(A)$
 - $\bullet P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - $P(A \cup B \cup C) = P(A) + P(B) + P(C)$ $-P(A \cap B) - P(A \cap C) - P(B \cap C)$ $+ P(A \cap B \cap C)$
 - $\bullet P(A \setminus B) = P(A) P(A \cap B)$
 - $P(A\Delta B) = P(A) + P(B) 2P(A \cap B)$
- 31.3 $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$ 是事件 B 已发生时, 事件 A 发生的条件概率.
- 31.4 A和B是(随机)独立的,如果 $P(A \cap B) = P(A)P(B)$ 或等价地,如果 P(B) > 0且 $P(A \mid B) = P(A)$

概率计算的法则.

条件概率的定义, P(B) > 0.

(随机)独立的定义.

31.5
$$P(A_1 \cap A_2 \cap \cdots \cap A_n) =$$

 $P(A_1)P(A_2|A_1)\cdots P(A_n|A_1 \cap A_2 \cap \cdots \cap A_{n-1})$

一般概率乘法法则.

31.6
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

= $\frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}$

Bayes 法则. (P(B) ≠ 0.)

31.7
$$P(A_i | B) = \frac{P(B | A_i)P(A_i)}{\sum_{j=1}^{n} P(B | A_j) \cdot P(A_j)}$$

广义 Bayes 法则. A_1, \dots, A_n 是分离的, $\sum_{i=1}^{n} P(A_i) = P(\Omega) = 1$,其中 $\Omega = \bigcup_{i=1}^{n} A_i$ 是样本空间,B 是一个任意事件。

随机变量(一维)

31.8 •
$$P(X \in A) = \sum_{x \in A} f(x)$$

• $P(X \in A) = \int_{A} f(x) dx$

f(x)是一离散/连续概率密度函数, X是一随机变量.

31.9
$$\bullet F(x) = P(X \leqslant x) = \sum_{t \leqslant x} f(t)$$

 $\bullet F(x) = P(X \leqslant x) = \int_{-\infty}^{x} f(t) dt$

F 是累积离散/连 续分布函数,在连 续的情况下, P(X = x) = 0.

31.10
$$\bullet E[X] = \sum_{x} x f(x)$$

 $\bullet E[X] = \int_{-\infty}^{\infty} x f(x) dx$

一个离散/连续概 率密度函数 f 的期 望.

31.11
$$\bullet E[g(X)] = \sum_{x} g(x) f(x)$$

 $\bullet E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) dx$

对于离散/连续概率密度函数f的函数g的期望.

31.12
$$var[X] = E[(X - E[X])^2]$$

31.13
$$var[X] = E[X^2] - (E[X])^2$$

31.14
$$\sigma = \sqrt{\operatorname{var}[X]}$$

31.15
$$var[aX + b] = a^2 var[X]$$

31.16
$$\mu_k = E[(X - \mu)^k]$$

31.17
$$\eta_3 = \frac{\mu_3}{\sigma^3}$$
, $\eta_4 = \frac{\mu_4}{\sigma^4} - 3$

- 31.18 $P(\mid X \mid \geqslant \lambda) \leqslant E[X^2]/\lambda^2$ • $P(\mid X - \mu \mid \geqslant \lambda) \leqslant \sigma^2/\lambda^2, \ \lambda > 0$ • $P(\mid X - \mu \mid \geqslant k\sigma) \leqslant 1/k^2, \ k > 0$
- 31.19 如果 f 在区间 I 上是凸的,且 X 是具有有限期望值的随机变量,则 $f(E[X]) \leqslant E[f(X)]$

如果 f 是严格凸的,不等号严格成立,除非 X 是一概率为 1 的常数.

31.20 •
$$M(t) = E[e^{tX}] = \sum_{x} e^{tx} f(x)$$

• $M(t) = E[e^{tX}] = \int_{-\infty}^{+\infty} e^{tx} f(x) dx$

一个随机变量的方差,定义为对均值 的偏差平方的期望 值.

方差的另一种表达.

X 的标准差.

| a 和 b 是实数.

| 对均值的 k 阶中心 | 矩, $\mu = E[X]$.

偏斜系数 η_3 和峰 态系数 η_4 , σ 是标 准差,对于正态分 布, $\eta_3 = \eta_4 = 0$.

不同形式的切比雪 夫不等式, σ 是 X的标准差, μ = E[X] 是平均值.

Jensen 不等式的特例.

矩生成函数. M(t)并不总是存在, 但 如果存在, 则 $M(t) = \sum_{k=0}^{\infty} E[X^{k}]_{t,k}$

31.21 •
$$C(t) = E[e^{itX}] = \sum_{x} e^{itx} f(x)$$

• $C(t) = E[e^{itX}] = \int_{-\infty}^{+\infty} e^{itx} f(x) dx$

特征函数, C(t)总 是存在,且如果 E[X^k]对于所有 k 存在,则 C(t) = $\sum^{\infty} \frac{i^k E[X^k]}{k!} t^k.$

随机变量(二维)

31.22
$$\bullet P((X, Y) \in A) = \sum_{(x, y) \in A} f(x, y)$$

 $\bullet P((X, Y) \in A) = \iint_A f(x, y) dx dy$

31.23 •
$$F(x, y) = P(X \le x, Y \le y)$$

$$= \sum_{u \le x} \sum_{v \le y} f(u, v) ($$
 商散情况)
$$= \int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) du dv (连续情况)$$

31.24 •
$$E[g(X, Y)] = \sum_{x} \sum_{y} g(x, y) f(x, y)$$

• $E[g(X, Y)] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) f(x, y) dx dy$

- $31.25 \quad \text{cov}[X, Y] = E[(X E[X])(Y E[Y])]$ | 协方差的定义、
- 31.26 cov[X, Y] = E[XY] E[X]E[Y]
- 31.27 如果 $\cos[X, Y] = 0.X$ 和 Y 是不相关的、
- 31.28 E[XY] = E[X]E[Y], 如果 X 和 Y 是无关 的.
- $(E[XY])^2 \le E[X^2]E[Y^2]$ 31.29
- 如果 X 和 Y 是随机独立的,则 $\infty [X, Y] = 0$. 31.30
- $var[X \pm Y] = var[X] + var[Y] \pm 2 cov[X, Y]$

离散/连续联合概 率密度函数, X 和

F 是联合累积离散 /连续分布函数、

g(X, Y)的期望, 其中 X 和 Y 有联 合离散/连续概率

一有用的事实.

|定义.

(31.26)和 (31.27)得出.

柯西-施瓦兹不等

|逆推论不成立.

两个随机变量的和 /差的方差.

31.33
$$\operatorname{var}\left[\sum_{i=1}^{n} a_{i} X_{i}\right] = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \operatorname{cov}\left[X_{i}, X_{j}\right]$$

$$= \sum_{i=1}^{n} a_{i}^{2} \operatorname{var}\left[X_{i}\right] + 2 \sum_{j=1}^{n} \sum_{i>j}^{n} a_{i} a_{j} \operatorname{cov}\left[X_{i}, X_{j}\right]$$

随机变量线性组合 的方差,

31.34
$$\operatorname{var}\left[\sum_{i=1}^{n} a_{i} X_{i}\right] = \sum_{i=1}^{n} a_{i}^{2} \operatorname{var}\left[X_{i}\right]$$

31.35
$$\operatorname{corr}[X, Y] = \frac{\operatorname{cov}[X, Y]}{\sqrt{\operatorname{var}[X] \operatorname{var}[Y]}} \in [-1, 1]$$

| 相关系数定义为标 | 准化的协方差.

31.36 如果 f(x, y)是 X 和 Y 的联合概率密度函

•
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$
,
 $f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$

分别是 X 和 Y 的边际密度.

边际密度的定义.

31.37
$$f(x+y) = \frac{f(x,y)}{f_Y(y)}, f(y+x) = \frac{f(x,y)}{f_X(x)}$$
 条件密度的定义.

31.38 随机变量 X 和 Y 是随机独立的,如果 $f(x, y) = f_X(x)f_Y(y)$. $\text{ upp } f_Y(y) > 0$, 这相当于 $f(x+y)=f_X(x).$

31.39 •
$$E[X \mid y] = \sum_{x} x f(x \mid y)$$

• $E[X \mid y] = \int_{-\infty}^{+\infty} x f(x \mid y) dx$
• $var[X \mid y] = \sum_{x} (x - E[X \mid y])^{2} f(x \mid y)$
• $var[X \mid y] = \int_{-\infty}^{+\infty} (x - E[X \mid y])^{2} f(x \mid y) dx$

31.40
$$E[Y] = E_X[E[Y \mid X]]$$

31.41
$$E[XY] = E_X[XE[Y \mid X]] = E[X_{\mu_{Y \mid X}}]$$

31.42
$$\sigma_Y^2 = \text{var}[Y] = E_X[\text{var}[Y \mid X]]$$

 $+ \text{var}_X[E[Y \mid X]]$
 $= E[\sigma_{Y \mid X}^2] + \text{var}[\mu_{Y \mid X}]$

31.43 设 f(x, y)为一对随机函数(X, Y)的密度函数、假设

$$U = \phi_1(X, Y), V = \phi_2(X, Y)$$

定义一个随机变量 X 和 Y 的一一对应 C^1 变换,且逆变换由下式给出

$$X = \psi_1(U, V), Y = \psi_2(U, V)$$

则(U, V)的密度函数 g(u, v)由下式给出 $g(u, v) = f(\psi_1(u, v),$

$$\psi_2(u, v)) \cdot |J(u, v)|$$

给定 Jacobi 行列式

$$J(u, v) = \begin{vmatrix} \frac{\partial \psi_1(u, v)}{\partial u} & \frac{\partial \psi_1(u, v)}{\partial v} \\ \frac{\partial \psi_2(u, v)}{\partial u} & \frac{\partial \psi_2(u, v)}{\partial v} \end{vmatrix}$$

不等于 ().

离散和连续分布的 条件期望和方差的 定义.注意 E[X|y]表示 E[X|Y=y], 而 var[X|y]表示 var[X|Y=y].

重期望法则. E_X 表示对 X 的期望.

对乘积 XY 的期望, 等于对 X 和给定 X时 Y 的条件期望的 乘积的期望。

Y的边际方差等于对条件方差的期望,加上条件期望的方差.

统计推断

31.44 如果 $E[\hat{\theta}] = \theta$ 对于所有 $\theta \in \Theta$, 则 $\hat{\theta}$ 称为 θ 的无偏估计.

31.45 如果 $\hat{\theta}$ 不是无偏的,则 $b = E[\hat{\theta}] - \theta$ 称为是 $\hat{\theta}$ 的偏差.

- 31.46 MSE($\hat{\theta}$) = E[$\hat{\theta} \theta$]² = var[$\hat{\theta}$] + b^2
- 31.47 $p \lim \hat{\theta}_T = \theta$ 意指对每一 $\epsilon > 0$, $\lim_{T \to 0} P(|\hat{\theta}_T \theta| < \epsilon) = 1$
- 31.48 $\hat{\theta}$ 是 θ 的一个一致估计,如果对于所有 $\theta \in \Theta$, $p \lim \hat{\theta}_T = \theta$
- 31.50 H₀: 零假设(如 θ ≤ 0)
 H₁: 备择假设(如 θ > 0)

T: 检验统计量

C: 临界区域

 θ : 未知参数

- 31.51 检验: 如果 $T \in C$ 拒绝 H_0 而接受 H_1 .
- 31.52 检验的力度函数是 $\pi(\theta) = P(拒绝 H_0 \mid \theta), \theta \in \Theta.$
- 31.53 当 H₀ 正确时拒绝 H₀ 称为第一类错误. 当 H₁ 正确时不拒绝 H₀ 称为第二类错误.
- 31.54 α显著水平:最小的 α 使
 P(第一类错误)≤α 对于所有 θ 满足 H₀.
- 31.55 对于给定的数据和检验,显著性概率(或 P 值)是拒绝 H₀ 的最小显著水平.

偏差的定义.

平均平方误差的定义,MSE.

概率极限的定义. 估计 $\hat{\theta}_T$ 是 T 个观察值的函数.

一致性的定义.

渐近无偏估计的定 义.

统计检验的一些定 义.

检验.

检验力度的定义.

第一类和第二类错误.

检验的 α 显著水平.

一个重要的概念.

渐近结论

- 31.56 设 $\{X_i\}$ 为由独立同分布的随机变量组成的数列,每一变量有有限的均值 $E[X_i] = \mu$. 设 $S_n = X_1 + \dots + X_n$,则
 - (1) 对每一 $\varepsilon > 0$, $P\left\{\left|\frac{S_n}{n} \mu\right| \ge \varepsilon \right| \to 0, \, \text{if } n \to \infty$
- 31.57 设 $|X_i|$ 为由独立同分布的随机变量组成的数列,每一变量有有限的均值 $E[X_i] = \mu$,方差 $var[X] = \sigma^2$. 令 $S_n = X_1 + \cdots + X_n$,则 $\frac{S_n n\mu}{\sigma\sqrt{n}}$ 的分布当 $n \to \infty$ 时接近标准正态分布.即 $P\left\{\frac{S_n n\mu}{\sigma\sqrt{n}} \leqslant a\right\} \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-x^2/2} dx$ 当 $n \to \infty$

(1)是弱大数法则, S_n/n 是 μ 的一个一致估计.(2)是强大数法则.

中心极限定理,

参考文献

参考 Johnson & Bhattacharyya(1996), Larsen & Marx(1986), Griffiths et al. (1993)和 Hogg & Craig(1995).

32.1
$$f(x) = \begin{cases} \frac{x^{p-1}(1-x)^{q-1}}{B(p,q)}, & x \in (0,1) \\ 0, & \text{其他} \end{cases}$$
$$p > 0, q > 0.$$
$$\text{均值} : E[X] = \frac{p}{p+q}$$
$$\text{方差} : var[X] = \frac{pq}{(p+q)^2(p+q+1)}$$
$$k 阶矩 : E[X^k] = \frac{B(p+k,q)}{B(p,q)}$$

32.2
$$f(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

 $x = 0, 1, \dots, n; n = 1, 2, \dots p \in (0, 1)$
均值: $E[X] = np$
方差: $var[X] = np(1-p)$
矩生成函数: $[pe^t + (1-p)]^n$
特征函数: $[pe^u + (1-p)]^n$

32.3
$$f(x, y) = \frac{e^{-Q}}{2\pi\sigma r\sqrt{1-\rho^2}},$$
 其中
$$Q = \frac{\left(\frac{x-\mu}{\sigma}\right)^2 - 2\rho \frac{(x-\mu)(y-\eta)}{\sigma r} + \left(\frac{y-\eta}{\tau}\right)^2}{2(1-\rho^2)}$$

$$x, y, \mu, \eta \in (-\infty, +\infty),$$

$$\sigma > 0, \tau > 0, |\rho| < 1$$
均值: $E[X] = \mu, E[Y] = \eta$
方差: $var[X] = \sigma^2, var[Y] = \tau^2$
协方差: $cov[X, Y] = \rho\sigma\tau$

贝塔 分 布. B 是 (9.61)定义的贝塔 函数.

二项分布. f(x)是 当事件对每一观察 值发生的概率为 p 时,事件在独立的 n 个观察值中正好发生 x 次的概率. 关于 $\binom{n}{x}$,参见(8.27).

二重正态分布.(关于 矩生成函数和特征 函数,参见(32.15) 中一般多重正态分 布)

$$32.4 \quad f(x) = \begin{cases} \frac{x^{\frac{1}{2}\nu - 1}e^{-\frac{1}{2}x}}{2^{\frac{1}{2}\nu}\Gamma(\frac{1}{2}\nu)}, & x > 0, \\ 0, & x \leq 0, \end{cases}$$
均值: $E[X] = \nu$

方差: $var[X] = 2\nu$

矩生成函数: $(1-2t)^{-\frac{1}{2}\nu}$, $t<\frac{1}{2}$

特征函数: $(1-2it)^{-\frac{1}{2}}$

$$f(x) = \begin{cases} \lambda e^{-\lambda t}, & x > 0, \\ 0, & x \leq 0, \end{cases}$$
 为值: $E[X] = 1/\lambda$ 为差: $var[X] = 1/\lambda^2$ 矩生成函数: $\lambda/(\lambda - t)$, $t < \lambda$ 特征函数: $\lambda/(\lambda - it)$

32.6 $f(x) = \frac{1}{\beta} e^{-x} e^{-e^{-x}}, \ x = \frac{x-\alpha}{\beta}, \ x \in \mathbb{R}, \ \beta > 0$ 均值, $E[X] = \alpha - \beta \Gamma'(1)$ 方差: $var[X] = \beta^2 \pi^2 / 6$ 矩生成函数: $e^{\alpha t}\Gamma(1-\beta t)$, $t<1/\beta$ 特征函数: $e^{i\alpha t}\Gamma(1-i\beta t)$

$$32.7 \quad f(x) = \begin{cases} \frac{\nu_1^{\frac{1}{2}\nu_1}\nu_2^{\frac{1}{2}\nu_2}x^{\frac{1}{2}\nu_1 - 1}}{B(\frac{1}{2}\nu_1, \frac{1}{2}\nu_2)(\nu_2 + \nu_1 x)^{\frac{1}{2}(\nu_1 + \nu_2)}}, x > 0\\ 0, & x \le 0 \end{cases}$$

$$\nu_1, \ \nu_2 = 1, 2, \cdots$$
均值: $E[X] = \nu_2/(\nu_2 - 2)$ 对于 $\nu_2 > 2$

(对于 $\nu_2 = 1, 2$ 不存在).

方差: $var[X] = \frac{2\nu_2^2(\nu_1 + \nu_2 - 2)}{\nu_1(\nu_2 - 2)^2(\nu_2 - 4)}$ 对于 $\nu_2 > 4$ (对于 ν₂ ≤ 4 不存在)

▶ 阶矩:

$$E[X^{k}] = \frac{\Gamma\left(\frac{1}{2}\nu_{1} + k\right)\Gamma\left(\frac{1}{2}\nu_{2} - k\right)}{\Gamma\left(\frac{1}{2}\nu_{1}\right)\Gamma\left(\frac{1}{2}\nu_{2}\right)} \left(\frac{\nu_{2}}{\nu_{1}}\right)^{k}$$

$$2k < \nu_{2}$$

有 v 自由度的 chi 平方分布, 厂是定 义在(9.53)中的伽 马函数.

指数分布。

极值(Gumbel)分布。 Г(1)是伽马函数在 1处的导数(参见 (9.53)), Γ(1) = -γ, 其中γ≈ 0.5772 是欧拉常 数,参见(8,42).

F 分布,B 是定义 在(9.61)中的贝塔 函数. 以, 以 分别 是分子和分母的自 由度.

$$32.8 \quad f(x) = \begin{cases} \frac{\lambda^n x^{n-1} e^{-\lambda x}}{\Gamma(n)}, & x > 0, \\ 0 & x \leq 0, \end{cases}$$
均值; $E[X] = n/\lambda$

方差: $var[X] = n/\lambda^2$.

矩生成函数: $[\lambda/(\lambda-t)]^n$, $t < \lambda$

特征函数: $[\lambda/(\lambda-it)]$ "

32.9 $f(x) = p(1-p)^x$, $x = 0, 1, 2, \dots$; $p \in (0, 1)$

均值: E[X] = 1/p

方差: $var[X] = (1 - p)/p^2$

矩生成函数: $p/[1-(1-p)e^t]$, $t<-\ln(1-p)$

特征函数: peⁱ/[1 - (1 - p)eⁱ]

32.10
$$f(x) = \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}}$$

$$x = 0, 1, \dots, n; n = 1, 2, \dots, N$$
均值: $E[X] = nM/N$
方差: $var[X] = np(1-p)(N-n)/(N-1)$,
其中 $p = M/N$

超几何分布.给定 - M 个物体不具 有. 从组合中随机 挑出 n 个物体, f(x)则是 x 个物 体有该特征,而 n 该特征的概率.

32.11 $f(x) = \frac{1}{2\beta} e^{-|x-\alpha|/\beta}, x \in \mathbb{R}, \beta > 0$ 均值: $E[X] = \alpha$ 方差: $var[X] = 2\beta^2$ 矩生成函数: $\frac{e^{at}}{1-\beta^2t^2}$, $|t| < 1/\beta$ 特征函数: $\frac{e^{i\alpha t}}{1+R^2r^2}$

32.12
$$f(x) = \frac{e^{-z}}{\beta(1 + e^{-z})^2}, \ z = \frac{x - \alpha}{\beta},$$
$$x \in \mathbb{R}, \ \beta > 0$$
均值: $E[X] = \alpha$ 方差: $var[X] = \pi^2 \beta^2 / 3$ 矩生成函数:
$$e^{\alpha t} \Gamma(1 - \beta t) \Gamma(1 + \beta t) = \pi \beta t e^{\alpha t} / \sin(\pi \beta t)$$
特征函数: $i\pi \beta t e^{i\alpha t} / \sin(i\pi \beta t)$

逻辑斯蒂分布.

32.13
$$f(x) = \begin{cases} \frac{e^{-(\ln x - \mu)^2 / 2\sigma^2}}{\sigma x \sqrt{2\pi}}, & x > 0, \\ 0, & x \le 0, \end{cases}$$
均值: $E[X] = e^{\mu + (\sigma^2 / 2)}$
方差: $var[X] = e^{2\mu} (e^{2\sigma^2} - e^{\sigma^2})$
 k 阶矩: $E[X^k] = e^{k\mu + \frac{1}{2}k^2\sigma^2}$

对数正态分布.

32.14 $f(x) = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}$ $x_1 + \cdots + x_k = n, p_1 + \cdots + p_k = 1,$ $x_j \in [0, 1, \cdots, n], p_j \in (0, 1), j = 1, \cdots, k$ X_j 的均值: $E[X_j] = np_j$ X_j 的方差: $var[X_j] = np_j(1 - p_j)$ 协方差: $cov[X_j, X_r] = -np_jp_r,$ $j, r = 1, \cdots, n, j \neq r$ 矩生成函数: $\left[\sum_{j=1}^k p_j e^{t_j}\right]^n$ 特征函数: $\left[\sum_{j=1}^k p_j e^{t_j}\right]^n$

多项分布. f(x)是 k 个事件 A_1 , …, A_k 在 n 个独立观察值中, 正 好 发 生 x_1 , …, x_k 次的概率, 当这些事件发生的概率是 p_1 , …, p_k 时.

32.15 $f(x) = \frac{1}{(2\pi)^{k/2}\sqrt{|\sum|}} e^{-\frac{1}{2}(x-\mu)'\sum^{-1}(x-\mu)}$ $\sum = (\sigma_{ij}) \, \text{是对称和正定的},$ $x = (x_1, \, \cdots, \, x_k)', \, \mu = (\mu_1, \, \cdots, \, \mu_k)'$ 均值: $E[X_i] = \mu_i$ 方差: $var[X_i] = \sigma_{ii}$ 协方差: $cov[X_i, X_j] = \sigma_{ij}$ 矩生成函数: $e^{\mu't + \frac{1}{2}t'\sum t}$ 特征函数: $e^{-\frac{1}{2}t'\sum t}e^{it'\mu}$

多重正态分布. $|\Sigma|$ 是方差-协方差矩阵 Σ 的行列式, $x = (x_1, \dots, x_k)'$, $\mu = (\mu_1, \dots, \mu_k)'$.

32.16
$$f(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}$$
,

 $x = r, r + 1, \dots; r = 1, 2, \dots; p \in (0, 1)$

均值: E[X] = r/p

方差: $var[X] = r(1-p)/p^2$

矩生成函数: $p'(1-(1-p)e^t)^{-r}$

特征函数: p'eⁱⁱ(1 - (1 - p)eⁱⁱ)-r

特征函数: $e^{i\mu t - \frac{1}{2}\sigma^2t^2}$

32.18
$$f(x) = \begin{cases} \frac{ca^c}{x^{c+1}}, & x > a, \\ 0, & x \le a, \end{cases}$$
 均值: $E[X] = ac/(c-1), c > 1$ 方差: $var[X] = a^2c/(c-1)^2(c-2), c > 2$

k 阶矩: $E[X^k] = a^k c/c - k \cdot c > k$

$$k$$
 附矩: $E[X^{n}] = a^{n}c/c - k, c > k$

32.19 $f(x) = e^{-\lambda} \frac{\lambda^{x}}{x!}, x = 0, 1, 2, \dots, \lambda > 0.$
均值: $E[X] = \lambda$
方差: $var[X] = \lambda$
矩生成函数: $e^{\lambda(e^{t}-1)}$

特征函数: e^{λ(e"-1)}

32.20
$$f(x) = \frac{\Gamma(\frac{1}{2}(\nu+1))}{\sqrt{\nu\pi}\Gamma(\frac{1}{2}\nu)} (1 + \frac{x^2}{\nu})^{-\frac{1}{2}(\nu+1)},$$

 $x \in \mathbb{R}, \ \nu = 1, 2, \cdots$

均值: E[X] = 0 对于 $\nu > 1$

(对于 $\nu = 1$ 不存在).

方差: $var[X] = \frac{v}{v-2}$ 对于 v > 2

(对于 $\nu = 1, 2$ 不存在).

k阶矩(仅当k<v时存在);

$$E[X^{k}] = \begin{cases} \frac{\Gamma\left(\frac{1}{2}(k+1)\right)\Gamma\left(\frac{1}{2}(\nu-k)\right)}{\sqrt{\pi}\Gamma\left(\frac{1}{2}\nu\right)} \nu^{\frac{1}{2}k}, k \text{ 偶数,} \\ 0, k \text{ 奇数.} \end{cases}$$

32.21
$$f(x) = \begin{cases} \frac{1}{\beta - \alpha}, & \alpha \leqslant x \leqslant \beta, \\ 0, & \text{其他,} \end{cases}$$
 均值: $E[X] = (\alpha + \beta)/2$ 方差: $var[X] = (\beta - \alpha)^2/12$

方差: $var[X] = (\beta - \alpha)^2 / 12$

矩生成函数: $[e^{\beta t} - e^{\alpha t}]/t(\beta - \alpha)$

特征函数、 $[e^{i\beta t} - e^{i\alpha t}]/it(\beta - a)$

32.23 拟合 n 个数据点 (x_1, y_1) , (x_2, y_2) , …, (x_n, y_n) 最好的直线 y = ax + b, 在使偏差平方和

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} [y_i - (ax_i + b)]^2$$

最小的意义由下式给出

$$y-\overline{y}=\hat{a}(x-\overline{x}), \ \hat{a}=\frac{\sum\limits_{i=1}^{n}(x_i-\overline{x})(y_i-\overline{y})}{\sum\limits_{i=1}^{n}(x_i-\overline{x})^2}$$

最小二乘法的图 示.

32.25 给定 k 个数量 x_1 , …, x_k 的 n 个观察值 $(x_{i1}, …, x_{ik})$, i = 1, …, n, 和另一数量 y 的 n 个观察值 y_1 , …, y_n 定义

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{pmatrix}$$

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \; \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{pmatrix}$$

最小二乘法,多元 回归.

能最好拟合给定观察值的超平面 $y = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k$ 的系数向量 $\beta = (\beta_0, \cdots, \beta_k)'$,在使偏差平方和,

$$(y - X\beta)'(y - X\beta)$$

最小的意义上由下式给出

$$\boldsymbol{\beta} = (X'X)^{-1}X'y$$

参考文献

参考 Evans, Hasting & Peacock (1993), Johnson, Kotz, & Kemp (1993), Johnson, Kotz, & Balakrishnan (1995), (1997)和 Hogg & Craig (1995).

参考文献

- Barro, R. J. and X. Sala-i-Martin; *Economic Growth*, New York; McGraw-Hill(1995).
- Bartle, R. G.: Introduction to Real Analysis, New York: John Wiley & Sons (1982).
- Beavis, B. and I. M. Dobbs: Optimization and Stability Theory for Economic Analysis, Cambridge: Cambridge University Press(1990).
- Bellman, R.: Dynamic Programming, Princeton: Princeton University Press (1957).
- Black, F. and M. Scholes: "The pricing of options and corporate liabilities", *Journal of Political Economy*, Vol. 81, 637-654(1973).
- Blackorby, C. and R. R. Russell: "Will the real elasticity of substitution please stand up? (A comparison of the Allen/Uzawa and Morishima elasticities)", *American Economic Review*, Vol. 79, 882-888(1989).
- Blanchard, O. and S. Fischer: Lectures on Macroeconomics, Cambridge: MIT Press(1989).
- Braun, M.: Differential Equations and their Applications, 4th ed., New York: Springer (1993).
- Burmeister, E. and A. R. Dobell; Mathematical Theories of Economic Growth, London; Macmillan (1970).
- Christensen, L. R., D. Jorgenson and L. J. Lau: "Transcendental logarithmic utility functions", *American Economic Review*, Vol. 65, 367-383(1975).
- Deaton, A. and J. Muellbauer: Economics and Consumer Behaviour, Cambridge: Cambridge University Press(1980).
- Dhrymes, P. J.: Mathematics for Econometrics, New York: Springer (1978).
- Dixit, A. K.: Optimization in Economic Theory, 2nd ed., Oxford: Oxford University Press(1990).

- Edwards, C. H. and D. E. Penney; Calculus with Analytic Geometry, 5th ed., Englewood Cliffs, N. J.: Prentice-Hall(1998).
- Ellickson, B.: Competitive Equilibrium. Theory and Applications, Cambridge: Cambridge University Press (1993).
- Evans, M., N. Hastings, and B. Peacock: Statistical Distributions, 2nd ed., New York: John Wiley & Sons(1993).
- Faddeeva, V. N.; Computational Methods of Linear Algebra, New York: Dover Publications, Inc. (1959).
- Farebrother, R. W.: "Simplified Samuelson conditions for cubic and quartic equations", The Manchester School of Economic and Social Studies, Vol. 41, 396-400(1973).
- Feichtinger, G. and R. F. Hartl: Optimale Kontrolle Okonomischer Prozesse, Berlin: Walter de Gruyter (1986).
- Fleming, W. H. and R. W. Rishel: Deterministic and Stochastic Optimal Control, Berlin: Springer (1975).
- Forsund, F.: "The homothetic production function", The Swedish Journal of Economics, Vol. 77, 234-244(1975).
- Fraleigh, J. B. and R. A. Beauregard: *Linear Algebra*, 3rd ed., Reading, Mass.: Addison-Wesley(1995).
- Friedman, J. W.: Game Theory with Applications to Economics, Oxford: Oxford University Press(1986).
- Fudenberg, D. and J. Tirole: Game Theory, Cambridge: MIT Press(1991).
- Fuss, M. and D. McFadden (eds.): Production Economics: A Dual Approach to Theory and Applications, Vol. I, Amsterdam: North-Holland (1978).
- Gandolfo, G.: Economic Dynamics, 3rd ed., Berlin: Springer(1996).
- Gantmacher, F. R.: The Theory of Matrices, New York: Chelsea Publishing Co. (1959). Reprinted by the American Mathematical Society, Providence, R. I.: AMS Chelsea Publishing (1998).
- Gass, S. I.: Linear Programming. Methods and Applications, 5th ed., New York: McGraw-Hill(1994).
- Gibbons, R.: A Primer in Game Theory, New York: Harvester and Wheat-sheaf (1992).
- Goldberg, S.: Introduction to Difference Equations, New York: John Wiley

- & Sons(1961).
- Griffiths, W. E., R. Carter Hill and G. G. Judge: Learning and Practicing Econometrics, New York: John Wiley & Sons (1993).
- Hadar, J. and W. R. Russell: "Rules for ordering uncertain prospects", American Economic Review, Vol. 59, 25-34(1969).
- Halmos, P. R.: Naive Set Theory, New York: Springer(1974).
- Hardy, G. H., J. E. Littlewood, and G. Pólya: *Inequalities*, Cambridge: Cambridge University Press (1952).
- Hartman, P.: Ordinary Differential Equations, Boston: Birkhäuser (1982).
- Haug, E. G.: The Complete Guide to Option Pricing Formulas, New York: McGraw-Hill (1997).
- Hildebrand, F. B.: Finite-Difference Equations and Simulations, Englewood Cliffs, N.J.: Prentice-Hall(1968).
- Hildenbrand, W.: Core and Equilibria of a Large Economy, Princeton: Princeton University Press(1974).
- Hildenbrand, W. and A. P. Kirman: Introduction to Equilibrium Analysis, Amsterdam: North-Holland (1976).
- Hogg, R. V. and A. T. Craig: Introduction to Mathematical Statistics, 5th ed., Englewood Cliffs, N. J.; Prentice-Hall(1995).
- Horn, R. A. and C. R. Johnson: *Matrix Analysis*, Cambridge: Cambridge University Press(1985).
- Huang, Chi-fu and R. H. Litzenberger: Foundations for Financial Economics, Amsterdam: North-Holland (1988).
- Intriligator, M. D.: Mathematical Optimization and Economic Theory, Englewood Cliffs, N.J.: Prentice-Hall(1971).
- Johansen, L.: Production Functions, Amsterdam: North-Holland (1972).
- Johnson, N. L., S. Kotz, and S. Kemp: Univariate Discrete Distributions, 2nd ed., New York: John Wiley & Sons (1993).
- Johnson, N. L., S. Kotz, and N. Balakrishnan: Continuous Univariate Discrete Distributions, New York: John Wiley & Sons(1995).
- Johnson, N. L., S. Kotz, and N. Balakrishnan; Discrete Multivariate Distributions, New York; John Wiley & Sons(1997).
- Johnson, R. A. and G. K. Bhattacharyya: Statistics: Principles and Meth-

- ods, 3rd ed., New York: John Wiley & Sons(1996).
- Kamien, M. I. and N. I. Schwartz: Dynamic Optimization: the Calculus of Variations and Optimal Control in Economics and Management, 2nd ed., Amsterdam: North-Holland (1991).
- Karatzas, I. and S. E. Shreve; Brownian Motion and Stochastic Calculus, 2nd ed., New York; Springer(1991).
- Kolmogorov, A. N. and S. V. Fomin: Introductory Real Analysis, New York: Dover Publications (1975).
- Kreps, D. M.: A Course in Microeconomic Theory, Princeton; Princeton University Press (1990).
- Lang, S.: Linear Algebra, 3rd ed., New York: Springer (1987).
- Larsen, R. J. and M. L. Marx: An Introduction to Mathematical Statistics and its Applications, Englewood Cliffs, N.J.: Prentice-Hall(1986).
- Léonard, D. and N. Van Long: Optimal Control Theory and Static Optimization in Economics, Cambridge: Cambridge University Press (1992).
- Luenberger, D. G.: Introduction to Linear and Nonlinear Programming, 2nd ed., Reading, Mass.: Addison-Wesley(1984).
- Lütkepohl, H.: Handbook of Matrices, New York: John Wiley & Sons (1996).
- Magnus, J. R. and H. Neudecker: Matrix Differential Calculus with Applications in Statistics and Econometrics, New York: John Wiley & Sons (1988).
- Marsden, J. E. and M. J. Hoffman; *Elementary Classical Analysis*, 2nd ed., San Francisco; W. H. Freeman and Company (1993).
- Mas-Colell, A., M. D. Whinston, and J. R. Green; *Microeconomic Theory*, Oxford; Oxford University Press(1995).
- Merton, R. C.: "Theory of rational option pricing", Bell Journal of Economics and Management Science, Vol. 4, 141-183(1973).
- Nikaido, H.: Convex Structures and Economic Theory, London: Academic Press(1968).
- Nikaido, H.: Introduction to Sets and Mappings in Modern Economics, Amsterdam: North-Holland (1970).
- Norstrom, C. J.: "A sufficient condition for a unique nonnegative internal rate

- of return", Journal of Financial and Quantitative Analysis, Vol. 7, 1835-1839(1972).
- Φksendal, B.: Stochastic Differential Equations, an Introduction with Applications, 5th ed., Berlin: Springer(1998).
- Parthasarathy, T.: On Global Univalence Theorems. Lecture Notes in Mathematics. No. 977, Berlin: Springer (1983).
- Phlips, L.: Applied Consumption Analysis, Amsterdam: North-Holland (1983).
- Pontryagin, L.S.; Ordinary Differential Equations, Reading, Mass.; Addison-Wesley (1962).
- Rockafellar, T.: Convex Analysis, Princeton: Princeton University Press (1970).
- Rothschild, M. and J. Stiglitz: "Increasing risk: (1) A definition", Journal of Economic Theory, Vol. 2, 225-243(1970).
- Royden, H. L.: Real Analysis, 3rd ed., New York: Macmillan (1968).
- Rudin, W.: Principles of Mathematical Analysis, 2nd ed., New York: Mc-Graw-Hill(1982).
- Scarf, H. (with the collaboration of T. Hansen): The Computation of Economic Equilibria. Cowles Foundation Monograph, 24, New Haven: Yale University Press(1973).
- Seierstad, A. and K. Sydsæter: Optimal Control Theory with Economic Applications, Amsterdam: North-Holland (1987).
- Sharpe, W. F.: "Capital asset prices: A theory of market equilibrium under conditions of risk", *Journal of Finance*, Vol. 19, 425-442(1964).
- Shephard, R. W.: Cost and Production Functions, Princeton: Princeton University Press (1970).
- Silberberg, E.: The Structure of Economics. A Mathematical Analysis, 2nd ed., New York: McGraw-Hill(1990).
- Simon, C.P. and L. Blume: Mathematics for Economists, New York: Norton (1994).
- Sneddon, I. N.; Elements of Partial Differential Equations, New York; Mc-Graw-Hill(1957).
- Stokey, N. L. and R. E. Lucas, with E. C. Prescott: Recursive Methods in

- Economic Dynamics, Cambridge, Mass.: Harvard University Press(1989).
- Sundaram, R. K.: A First Course in Optimization Theory, Cambridge: Cambridge University Press(1996).
- Sydsæter, K. and P. J. Hammond: *Mathematics for Economic Analysis*, Englewood Cliffs, N. J.: Prentice-Hall(1995).
- Takayama, A.: *Mathematical Economics*, 2nd ed., Cambridge: Cambridge University Press(1985).
- Topkis, Donald M.: Supermodularity and Complementarity, Princeton; Princeton University Press(1998).
- Turnbull, H. W.: Theory of Equations, 5th ed., Edinburgh: Oliver & Boyd (1952).
- Varian, H.: Microeconomic Analysis, 3rd ed., New York: Norton(1992).
- Weibull, J. W.: Evolutionary Game Theory, Cambridge: MIT Press (1995).
- Zachmanoglou, E. C. and D. W. Thoe: Introduction to Partial Differential Equations with Applications, New York: Dover Publications (1986).