

INTRODUCTION

What is the difference between traditional retailing and E-commerce?

Traditional Retail

Customers located nearby

Customers in the same season

E-commerce

Customers located worldwide

Customers at different seasons

Geolocation & Seasonality

Orders Cancellation

Inventory Failure

- Fail to account for seasonal product
- Fail to account for high demand area

Delivery Failure

- Fail to account for bad weather
- Fail to account for certain area's transportation condition

LITERATURE REVIEW (Seasonality)

Demand seasonality in retail inventory management

Ehrenthal, J. C. F., Honhon, D., & Van Woensel, T. (2014).

Not accounting for demand seasonality can lead to substantial optimality gaps, yet incorporating only some form of demand seasonality does not always lead to cost savings

Seasonal relevance in e-commerce search

Yang, H., Gupta, P., Fernández Galán, R., Bu, D., & Jia, D. (2021).

The treatment with seasonal relevance features results in 2.20% higher purchases and better customer experience overall

LITERATURE REVIEW (Geolocation)

E-Commerce, Transportation, and Economic Geography

Anderson, W. P., Chatterjee, L., & Lakshmanan, T. R. (2003).

• A fast penetration of online shopping can be expected in more remote areas where e-commerce improves retail accessibility / Early e-shopping to be limited to urban areas

Identifying the geography of online shopping adoption in Belgium Beckers, J., Cárdenas, I., & Verhetsel, A. (2018).

The demand for e-commerce deliveries is not evenly distributed over the population

PROJECT HYPOTHESIS

The combination of season and geolocation has **no significant effect** on cancellation

The combination of season and geolocation has significant effect on cancellation

DESCRIPTIVE STATISTICS

"Seasons" added to the dataset

 Values were populated in the dataset by building a function to determine the season for a given month and region based on which hemisphere the area falls in

Calculated average cancellation rates per order region and season

- Preliminary results show that seasons have less effect on the cancellation rates.

ANOVA

- how 'Season' and 'Order Region' affect 'Cancellation Rate'

Multiple Linear Regression

- H0: the combination of seasonality and geographic location has no significant influence on cancellation rates
- Ha: the combination of seasonality and geographic location has **significant influence** on cancellation rates

Logistic Regression

- H0: the combination of seasonality and geographic location has **no significant influence** on order cancellations
- Ha: the combination of seasonality and geographic location has **significant influence** on order cancellations

Clustering

 Categorical variables are divided into clusters based on the cancellation rate for division.

O1. ANOVA

Used two-tail ANOVA to check how 'Season' and 'Order Region' affect 'Cancellation Rate'

- Capturing any type of change, whether increase or decrease, including combined effects of these factors
- Alpha = 0.15
- Seasons variable appeared to be not significant
- Order Region appeared to be significant

	sum_sq	df	F	PR(>F)
C(Season)	0.000544	3.0	0.295909	0.828121
C(Q("Order Region"))	0.020710	22.0	1.535969	0.115590
Residual	0.025128	41.0	NaN	NaN

02. Multi-linear Regression 🚆

	coef	std err	t	P> t	[0.025	0.975]
const	0.0899	0.015	5.878	0.000	0.059	0.121
Spring	-0.0035	0.010	-0.337	0.738	-0.024	0.017
Summer	-0.0030	0.009	-0.325	0.747	-0.022	0.016
Winter	0.0045	0.009	0.481	0.633	-0.014	0.023
Caribbean	-0.0453	0.020	-2.211	0.033	-0.087	-0.004
Central Africa	-0.0438	0.023	-1.891	0.066	-0.091	0.003
Central America	-0.0513	0.020	-2.505	0.016	-0.093	-0.010
Central Asia	-0.0798	0.020	-3.947	0.000	-0.121	-0.039
East Africa	-0.0521	0.023	-2.246	0.030	-0.099	-0.005
East of USA	-0.0444	0.023	-1.915	0.063	-0.091	0.002
Eastern Asia	-0.0531	0.020	-2.601	0.013	-0.094	-0.012
						====

- IVs: dummies of Order Region, dummies of Season
- Approximately 45.6% of the variance in the 'Cancellation Rate' is explained by this model
- Some regions show p-values < 0.05, indicating significant differences in cancellation rates from the baseline region
- However, none of the seasons show statistically significant differences

03. Logistic Regression 🐺

===========						
	coef	std err	Z	P> z	[0.025	0.975]
const	-2.8662	0.143	-19.984	0.000	-3.147	-2.585
Spring	0.0475	0.046	1.033	0.302	-0.043	0.138
Summer	-0.0312	0.035	-0.904	0.366	-0.099	0.036
Winter	0.0256	0.043	0.599	0.549	-0.058	0.109
Caribbean	-0.2463	0.155	-1.591	0.112	-0.550	0.057
Central Africa	-0.4344	0.196	-2.217	0.027	-0.818	-0.050
Central America	-0.3187	0.148	-2.147	0.032	-0.610	-0.028
Central Asia	-1.0380	0.336	-3.086	0.002	-1.697	-0.379
East Africa	-0.3739	0.190	-1.973	0.049	-0.745	-0.002
East of USA	-0.2370	0.157	-1.510	0.131	-0.545	0.071
West Asia	-0.2252	0.156	-1.444	0.149	-0.531	0.080
West of USA	-0.0840	0.154	-0.545	0.586	-0.386	0.218
Western Europe	-0.1510	0.147	-1.028	0.304	-0.439	0.137
=============						

- DV: binary value (1 = order canceled, 0 = not canceled); Same IVs
- Central Africa, Central America, Central Asia, East Africa, Eastern Europe, Northern Europe, South Asia, West Africa, and the US Center have significant effect (p < 0.05)
- Same as linear regression result, none of the seasons show statistically significant differences

04. Clustering

K-Means Clustering was performed to divide order regions into clusters based on the cancellation ratios

Cluster	average_total_orders	average_cancellation_rate	min_Cancellation_Rate	max_Cancellation_Rate	Count
2	3238.166667	0.033094	0.019892	0.038337	6
1	27725	0.043496	0.041177	0.045815	2
0	7042.666667	0.044899	0.039216	0.054223	15

04. Clustering

Analysis Conclusion

- We failed to reject the null and conclude that the combination of seasonality and geolocation has no significant effect on the cancellation
- Order regions on the other hand have much more significance
 - This might be due to other external factors such as population density, availability of shipment modes to certain regions might be limited

Next Steps

Find Other Significant Variables

01

Find product categories most prone to cancellations

Thanks!

Do you have any questions?

