Yakeen NEET 2.0 (2026)

KPP-06

Physics by Saleem Sir Basic Maths and Calculus (Mathematical Tools)

Time limit 30 minutes

Solve without answer. When we will discus check your ansewer.

1 If temperature of a body changes wrt time as

 $T = \alpha t^2 + \beta t^3$ where $\alpha = 2$, $\beta = -\frac{1}{2}$

Find ratio of temperature to the rate of change of temp wrt time at t = 2 sec. (magnitude)

2. If charge flowing through an crossection is given

 $q = 3t^2 + 4t$

find value of current at $t = 2 \sec \left(\text{use } i = \frac{dq}{dt} \right)$

- 3. Tangential acceleration is rate of change of speed. By using this concept find the value of tangential acc. of a particle moving in a circular path of radius 10 m. Such that its spedd $v = 3t^4 + 2t^2$. Also find value of tangential acc., K.E. of particle at $t = 2 \operatorname{sec.} (m = 2 kg)$
- 4. Find rate of change of pressure with respect to volume for an ideal gas at constant temp T_0 (Use PV = nRT
- 5. If potential energy of the system is given by $U = -\frac{A}{r^6} - \frac{B}{r^5}$ (where A = 3, $B = \frac{1}{5}$)

Find magnitude of force acting on particle at x = 1Use $F = -\frac{dU}{dx}$ also find mean position where $F_{\text{net}} = 0$

- 6. For a particle moving in a straight line the position of the particle at time (t) is given by $x = \frac{t^3}{6} - t^2 - 9t + 18m$. What is the velocity of the particle when its acceleration is zero:
 - (1) 18 m/s
- (2) -9 m/s
- (3) -11 m/s
- (4) 6 m/s

- 7. A particle moves along a straight line such that at time t its displacement from a fixed point O on the line is $3t^2 - 2$. The velocity of the particle when t = 2 is:
 - (1) 8 ms⁻¹
- (2) 4 ms^{-1}
- $(3) 12 \text{ ms}^{-1}$
- (4) 0
- 8. Temperature of a body varies with time as $T = (T_0 + \alpha t^2 + \beta \sin t)K$, where T_0 is the temperature in Kelvin at t = 0 sec. and $\alpha = 2/\pi$. K/s² and $\beta = -4$ K, then rate of change of temperature at $t = \pi$ sec. is:
 - (1) 8K
- (3) 8K/sec
- (4) 8°K/sec
- 9. The velocity of a particle moving on the x-axis is given by $v = x^2 + x$ where v is in m/s and x is in m. Find its acceleration in m/s² when passing through

the point x = 2m. (Use $\alpha = v \frac{dv}{dx}$)

- (1) 0
- (3) 11
- (4) 30
- If $y = \sin^2 x 2 \tan^2 x$, then $\frac{dy}{dx}$ at $x = \frac{\pi}{4}$ is:
 - (1) -11
- (3) -13
- 11. If $y = x^3 + 2x + 1$ then $\frac{dy}{dx}$ at x = 1 is:
 - (1) 6
- (3) 8
- (4) 5
- 12. $y = \frac{1+x}{e^x}$ then $\frac{dy}{dx}$ is equal to:

 - $(1) \quad \frac{x}{e^x} \qquad \qquad (2) \quad -\frac{x}{e^x}$
- (4) None of these

- 13. If $y = x^2 + x 1$ then $\frac{dy}{dx}$ at x = 1 is equal to:
 - (1) 3
- (2) -3
- (3) 0
- (4) None
- **14.** Given $s = t^2 + 5t + 3$, find $\frac{ds}{dt}$.
 - (1) 2t + 5
 - (2) $\frac{t^3}{3} + 5t^2 + 3t$
 - (3) t+5
 - (4) None
- **15.** If $y = x^2 + 2x 3$, then y-x graph is:

- **16.** The sum of the series $1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots \infty$ is:
 - (1) $\frac{8}{7}$
- (2) $\frac{6}{5}$
- (3) $\frac{2}{3}$
- $(4) \frac{3}{2}$

- 17. The slope of straight line $\sqrt{3}y = 3x + 4$ is:
 - (1) 3
 - (2) $\sqrt{3}$
 - (3) $\frac{1}{\sqrt{3}}$
 - $(4) \frac{1}{3}$
- **18.** Find value of $\frac{dy}{dx}$.
 - (1) $y = \cos(2x + 3)$
 - (2) $y = \sin(x^2 + x^3)$
- **19.** Find derivative of y w.r.t. x if: $y = \ln(x^3 + 4)$
- 20. Find value of $\frac{dy}{dx}$.
- 21. If position of particle is given by $x = (3t^2 + 4t 1)$ m. Find its initial velocity and initial acceleration. Use $v = \frac{dx}{dt}$, $a = \frac{dv}{dt}$
- 22. If position of particle is given by $x = (t^3 36t^2 + 30t 1)$ m. Find its velocity when acceleration becomes zero. Use $v = \frac{dx}{dt}$, $a = \frac{dv}{dt}$
- 23. Find the slope of the tangent of a curve $y = x^2 + 2x + 4$ at x = 0 and x = -1. (hint slope = $\frac{dy}{dx}$)