Redes convolucionales

Aprendizaje automático

Docente: Juan David Martínez Vargas

jdmartinev@eafit.edu.co

2023

Agenda

- Redes Neuronales Convolucionales (CNNs)
- Por qué no utilizar feed forward NNs?
- Convolución
- Pooling
- Stride
- Ejemplos

Clasificación de imágenes

<u>Image</u>

•••

<u>Category</u>

mushroom

cherry

...

Feed-forward NNs

layer 1

Propiedades de señales naturales

- Main assumption :
 - Data (images, videos, speech) is compositional, it is formed of patterns that are:
 - Local (Hubel-Wiesel 1962)
 - Stationary (shared patterns)
 - Hierarchical (multi-scale)

- ConvNets leverage the compositionality structure :
 - They extract compositional features and feed them to classifier, recommender, etc (end-to-end systems).

Speech

Game of Go

P

ch G

https://www.youtube.com/watch?v=liv9R6BjxHM&list=PLLHTzKZzVU9eaEyErdV26ikyolxOsz6mq&index=24

Propiedades de señales naturales

A digital image is a 2D grid of pixels.

https://storage.googleapis.com/deepmind-media/UCLxDeepMind_2020/L3%20-%20UUCLxDeepMind%20DL2020.pdf

Localidad y estacionariedad

Locality: nearby pixels are more strongly correlated

Translation invariance: meaningful patterns can occur anywhere in the image

Estacionariedad: Translation invariance

Utilizando la estructura de las imágenes

Weight sharing: use the same network parameters to detect local patterns at many locations in the image

Utilizando la estructura de las imágenes

Hierarchy: local low-level features are composed into larger, more abstract features

Estructura de la red convolucional

Ejemplos

Ejemplos

De capas completamente a localmente conectadas a

fully-connected unit

$$y = \sum_{i \in \text{image}} \mathbf{w}_i \mathbf{x}_i + b$$

De capas completamente a localmente conectadas a

$$y = \sum_{i \in 3 \times 3} \mathbf{w}_i \mathbf{x}_i + b$$

locally-connected units 3 × 3 receptive field

De capas completamente a localmente conectadas a

$$y = \mathbf{w} * \mathbf{x} + b$$

convolutional units 3 X 3 receptive field

Receptive field

Convolución

$$H_{out} = H_{in} - K + 1$$

 $W_{out} = W_{in} - K + 1$

Input image

Output image

$$y = \mathbf{w} * \mathbf{x} + b$$

Detección de bordes

Convolución en CNNs

feature map

Convolución 2D

We convolve multiple kernels and obtain multiple feature maps or **channels**

Convolución 2D

Entradas, salidas y tensores

Padding

$$W_{out} = W_{in} + 2p - K + 1 \ H_{out} = H_{in} + 2p - K + 1$$

https://github.com/vdumoulin/conv_arithmetic

Pooling

Queremos saber si en un cuadro aparece una característica pero no exáctamente donde

Entrada

7	3	5	2
8	7	1	6
4	9	3	9
	8	4	5

$$H_{out} = H_{in} - K + 1$$

$$W_{out} = W_{in} - K + 1$$

Pooling

feature map

feature map after max pooling

Stride

$$H_{out} = rac{H_{in} + 2p - K}{s} + 1$$

$$W_{out} = rac{W_{in} + 2p - K}{s} + 1$$

s: Stride

p: Padding

K: Kernel size

Hin: Input Heigh Hout: Output Heigh Win: Input Width Wout: Output width

Grafo computacional

Convolutional Neural Network

- Non-Linearity: half-wave rectification, shrinkage function, sigmoid
- Pooling: average, L1, L2, max
- Training: Supervised (1988-2006), Unsupervised+Supervised (2006-now)

(LeCun 13')

AlexNet

AlexNet

Convolutional Neural Network

96 convolutional filters on the first layer (filters are of size 11x11x3, applied across input images of size 224x224x3)

(Krizhevsky et al., 12')

Batch normalization

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};

Parameters to be learned: \gamma, \beta

Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}
```

 $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i)$ // scale and shift

Figure from loffe et al. (2015)

Want to learn more?

Iotte, S.; szegedy, C.
Batch normalization: Accelerating deep
network training by reducing internal
covariate shift International conference on
machine learning (2015)

Reduces sensitivity to initialisation

Introduces stochasticity and acts as a regulariser

Segmentación semántica

