

Computer Programming

Department of Computer Science and Engineering IIT Bombay Dr. Supratik Chakraborty Dr. Deepak B Phatak

Session: Associative Arrays for Histogram Equalization

Quick Recap

IIT Bombay

We discussed

Histogram and Cumulative Distribution Function

Histogram equalization technique to improve contrast

Overview

- In the context of histogram calculations, we will look at different computations to be performed
- We will discuss the important concept of "Associative Array" for use in our program, to be written for contrast enhancement

Note: The histogram equalization technique described here, and the digital images used, are directly based on a wikipedia article:

http://en.wikipedia.org/wiki/Histogram_equalization]

Original picture, equalization, modified picture

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

Original and contrast-enhanced pictures

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

Pixel values for the image

55		61	99	20	61	64	73
	55		6	109	82	69	72
	89		113	144	104	99	73
	71		122	154	106	70	69
	89		104	126	88	89	70
	09		20	22	89	$\frac{28}{28}$	75
	64		59	55	61	65	83
	69		89	65	92	28	94

_

Histogram values (shown for non-zero pixels)

\vdash	_						
			7				
113	122	126	144	154			
7	\vdash	\vdash	\vdash	\vdash	7	\vdash	\vdash
\vdash	7	\vdash	\vdash	\vdash	\vdash	7	\vdash
72	73	75	9/	77	78	79	83
7	\mathfrak{C}	7	\vdash	2	3	4	7
64	9	99	6 4	89	69	70	71
\vdash	3	7	\mathfrak{C}	\vdash	4	\vdash	7
52	22	28	29	09	61	62	63
	1 64 2 72 1 85 2	1 64 2 72 1 85 2 3 65 3 73 2 87 1	1 64 2 72 1 85 2 3 65 3 73 2 87 1 2 66 2 75 1 88 1	1 64 2 72 1 85 2 3 65 3 73 2 87 1 2 66 2 75 1 88 1 3 67 1 76 1 90 1	1 64 2 72 1 85 2 3 65 3 73 2 87 1 2 66 2 75 1 88 1 3 67 1 76 1 90 1 1 68 5 77 1 94 1	1 64 2 72 1 85 2 3 65 3 73 2 87 1 2 66 2 75 1 88 1 3 67 1 76 1 90 1 4 69 3 78 1 104 2	52 1 64 2 72 1 85 2 113 55 3 65 3 73 2 87 1 122 58 2 66 2 75 1 88 1 126 59 3 67 1 76 1 90 1 144 60 1 68 5 77 1 94 1 154 61 4 69 3 78 1 104 2 62 1 70 4 79 2 106 1

- Histogram for a particular pixel value, is the total number of pixels in the image which have the same value
- Best way to represent the histogram, is to use a one dimensional array of 256 elements
- a pixel can only be between 0 to 255
- We need to accumulate the count of each pixel value found in the image, in the corresponding element of the histogram array

	73	72	73	69	70	75	83	94
Jage	64	69	99	20	89	58	65	28
_						89		
lues in	20	109	144	154	126	77 07	55	65
ixel va	99	90	113	122	104	20	59	89
Δ.						09		
	55	59	59	28	61	65	71	79
	52	63	62	63	29	79	85	87
Index Initial Value		0	0		0	0	. 0	
Index		0	\leftarrow	•	89	69	. 255	

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

	73	72	73	69	70	75	83	94
lage	64	69	99	70	89	58	65	28
the in	61	85	104	106	88	68 58	61	92
ues in	20	109	144	154	126	22	55	65
ixel val	99	90	113	122	104	77 07	59	89
Д						09		
	55	59	59	58	61	65	71	79
	52	63	65	63	29	79	85	87
Initial Value		0	0	.[2	0	. 0	
Index		0	\leftarrow	•	89	69	255	

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

								94
nage	64	69	99	20	89	$\frac{5}{2}$	65	28
the in	61	85	104	106	88	89	61 65	92
lues in	20	109	144	154	126	22	59 55	65
ixel va	99	90	113	122	104	20	59	89
Д							64	
	55	59	59	28	61	65	71	79
	52	63	65	63	29	79	85	87
Initial Value		0	0	•	ഹ	77	. 0	
Index		0	Т	•	89 0	69	255	

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

Cost of Computing Histogram Values

- If this logic is used to compute histogram entries, what is the number of operations the computer has to perform?
- Assume array name IM[8][8] for image, and H[256] for histogram
- For each pixel value p, we scan all 8x8 (= 64) pixel values in IM, and compare each with p.
- We assign the total count of those pixel values which match, to the appropriate element of H
- We repeat this for each of the 256 possible values (256 x 64 comparisons)
- In a large image of size 500 by 300, there will be 1,50,000 pixels!

A list of students

• A list is available containing roll numbers of students attending a MOOC, 0+ paolod vod+ poi+in od+ bac

and the cities they belong to	elong to			
10001 Mumbai	10009 Tokyo	Tokyo	10017 Paris	aris
10002 Delhi	10010	10010 Kathmandu	10018 Delhi	elhi
10003 Tokyo	10011 Delhi	Delhi	10019 Mumbai	lumbai
10004 Karachi	10012 Dhaka	Dhaka	10020 Dhaka	haka
10005 Delhi	10013	10013 Mumbai	10021 Tokyo	okyo
10006 Kathmandu 10014 Delhi	10014	Delhi	10022 Delhi	elhi
10007 Dhaka	10015	10015 Karachi		
10008 Mumabi	10016	10016 Washington	;	

City Statistics

We can count the number of students from each city, and store these counts in an array (table) which looks like

Count	4024	1729	572	984	431	5102	301	629	850
City	Delhi	Dhaka	Dubai	Karachi	Kathmandu	Mumbai	Paris	Tokyo	Washington

Cost of Calculating City Statistics

- If we use our approach to do such counting
- belong to that city, and put the count value against that city in our count Take a city, say Mumbai; scan the complete list to count students who
- Repeat this for each city
- If there are 50,000 students taking a MOOC, and they belong to 200 different cities
- We need to look at each of 50,000 entries, 200 times
- We need to perform a total of 1,00,00,000 comparisons
- A very time consuming exercise

This is not how statisticians do their counting!

Associative Array

- It will be useful, if name of a city (which is a value in our list), can be used as a $\underline{\text{key}}$ (as an index) to directly access the associated count, which is a value in our table
- An associative array is a set of key-value pairs.
- The organization is such that the 'key' is the index of the array
- Assume that we have such an associative array for our example of city names and corresponding student population
- If the key "Mumbai" is given, using that as an index of the array, we should directly get 5102
- If the key "Kathmandu" is given, we should directly get 431
- We will like to use the value (name of the city) in our list of students, directly as a key for the table, to access the count for the city

Associative Array

- In C++, the arrays we know are indexed by 'keys' which are only integer numbers, in the range of 0 to N-1 (and not stings like city names)
- For the Histogram array, the key range is 0 to 255
- Pixel values in the image array are also integer numbers, and are precisely in this range
- Thus, the pixel value itself can be used as a 'key' or index of the Histogram array
- This array can be treated as an associative array

Associative Array 'H'

- Suppose the histogram count for the image array IM, is stored in array H[256], counting process will require a single scan of the image matrix
- For each pixel value 'p' we look at, we know which element of the array H needs to be updated. It is the pth element!
 - "Association" between the pixel value p, and the index of array H
- The count for a pixel in the image array element IM[i][j], which has value p, can simply be incremented by the assignment:

$$p = IM[i][j]; H[p] = H[p] + 1;$$

or more simply H[IM[i][j]] = H[IM[i][j]) + 1

• Multiple scans of the image array, are not required.

Summary

IT Bombay

 We discussed the concept of an "associative array", and found it to be a useful way to do efficient calculations