Вариационные автокодировщики

Обучение без учителя

Представления изображений

выход предпоследнего полносвязного слоя — хорошее представления картинки

Представления изображений

- Выход предпоследнего полносвязного слоя хорошее представления картинки
- Но для его обучения нужны изображения с разметкой
- Может, получится строить такие представления и без разметки?

Supervised embeddings

Supervised embeddings

Supervised embeddings

обойдёмся без полносвязных слоёв

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L\left(x_i, g(f(x_i))\right) \to \min$$

 x_i — изображение f(x) — кодировщик (encoder) g(z) — декодировщик (decoder) $L(x,\hat{x})$ — расстояние между изображениями (например, евклидово)

- Восстанавливают изображения с потерями (но это логично)
- Но при этом переобучаются
- Нужно как-то регуляризовать

Как ещё измерять сходство картинок?

• Нам важно, чтобы сохранялся смысл, а не в точности восстанавливались пиксели

Perceptual loss (как регуляризация)

Denoising autoencoder

Зачем это всё?

- Сжатие данных (нелинейных аналог РСА)
- Поиск похожих изображений
- Трансформация изображений
- Генерация изображений

Morphing faces

Morphing faces

Morphing faces

Генерация изображений

Представления изображений

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

Цель

- Научиться генерировать изображения
- Поискать вдохновение в вероятностных методах

Вероятностный подход

- Описываем, как генерируются ответы
- Подбираем параметры распределений так, чтобы обучающая выборка имела высокую вероятность
- Иногда полезно думать о задаче именно в терминах распределений

• Можно получать оценки неопределенности модели, а не только прогноз

Вариационные автокодировщики

Источники

- https://www.jeremyjordan.me/variational-autoencoders/
- https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
- https://arxiv.org/abs/1312.6114

• Весь материал взят из этих статей

Распределения вместо точечных оценок

- Хотим построить пространство представлений (\mathbb{R}^d)
- Картинка соответствует распределению в этом пространстве
- Пусть это будет нормальное распределение

$$\operatorname{encoder}(x) = (\mu(x), \sigma(x))$$

- $\mu(x)$, $\sigma(x)$ векторы размера d
- Среднее и дисперсия по каждому измерению

$$\operatorname{encoder}(x) = (\mu(x), \sigma(x))$$

- Семплируем вектор z из такого распределения
- Вектор раскодируется: decoder(z)
- Раскодированная картинка должна быть похожа на исходную x (для любого вектора, семплированного из распределения)

Вариационный автокодировщик

$$\sum_{i=1}^{\ell} \left(\mathbb{E}_{q(z|x_i)} \log p(x_i|z) - \text{KL}(q(z|x) \parallel \mathcal{N}(0,1)) \right) \to \max$$

- q(z|x) кодировщик (полносвязная или свёрточная нейросеть, z возможный эмбеддинг для x)
- $p(x|z) = \operatorname{decoder}(z) + \varepsilon$ декодировщик (полносвязная или свёрточная нейросеть)
- $\mathrm{E}_{q(z|x_i)} \log p\left(x_i|z\right)$ как бы закодировали x_i , сгенерировали все возможные представления и посчитали среднюю ошибку реконструкции

Вариационный автокодировщик

$$\sum_{i=1}^{\ell} \left(\mathbb{E}_{q(z|x_i)} \log p(x_i|z) - \text{KL}(q(z|x) \parallel \mathcal{N}(0,1)) \right) \to \max$$

- $\mathrm{KL}ig(q(z) \parallel p(z)ig) = \int_{-\infty}^{+\infty} q(z) \log \frac{q(z)}{p(z)} dz$ дивергенция Кульбака-Лейблера (расстояние между распределениями)
- $\mathrm{KL}ig(q(z|x) \parallel \mathcal{N}(0,1)ig)$ требуем, чтобы q(z|x) было как можно более похоже на стандартное нормальное
- Если q(z|x) вырожденное, то это переобучение

Не хотим так

Непрерывность пространства представлений

Вариационный автокодировщик

$$\sum_{i=1}^{\ell} \left(\mathbb{E}_{q(z|x_i)} \log p(x_i|z) - \mathrm{KL}(q(z|x) \parallel \mathcal{N}(0,1)) \right) \to \max$$

«функция потерь» reconstruction likelihood

«регуляризатор»

Вариационный автокодировщик

Penalizing reconstruction loss encourages the distribution to describe the input

Without regularization, our network can "cheat" by learning narrow distributions

Penalizing KL divergence acts as a regularizing force

Attract distribution to have zero mean

Our distribution deviates from the prior to describe some characteristic of the data

With a small enough variance, this distribution is effectively only representing a single value

Ensure sufficient variance to yield a smooth latent space

Только reconstruction likelihood

Только KL-дивергенция

Всё вместе

Какая-то вероятностная штука, как считать градиенты?

Никаких случайностей, можем считать градиенты


```
3330000000009999
33000000000099
```

• Можем найти средний вектор разности между лицами с улыбкой и без

Credit: Антон Семёнкин

Резюме

- Вариационный автокодировщик пытается построить такое пространство представлений, что каждая точка соответствует какому-то разумному изображению
- Выводится из вероятностных соображений
- Позволяет генерировать изображения (и не только)

Практика

https://colab.research.google.com/drive/16YdTvcicP1BUJAUdgBnfZNGcssqm3jhZ?usp=sharing