- 88. Examina les següents relacions:
 - (a) $R_1 = \{(1,2), (2,3), (3,5), (6,6), (4,8), (3,7)\}.$
 - **(b)** $R_2 = \{(x,y) \in \mathbb{R} \times \mathbb{R} : y = \sin(x + \frac{\pi}{2}) + \cos x\}.$
 - (c) $R_3 = \{(x,y) \in \mathbb{R} \times \mathbb{R} : x^2 + 2x + 1 = y^2\}.$
 - (d) $R_4 = \{(x,y) \in \mathbb{R} \times \mathbb{R} : x^3 + 3x^2 + 3x + 1 = y^3\}.$

Digues quines són funció. De les que ho siguin calcula el seu domini, la seva imatge, i digues si són injectives.

89. Siguin $f,g: \mathbb{R} \to \mathbb{R}$ les funcions definides per

$$f(x) = \begin{cases} 4x + 1 & \text{si } x \geqslant 0 \\ x & \text{si } x < 0 \end{cases} \qquad g(x) = \begin{cases} 3x & \text{si } x \geqslant 0 \\ x + 3 & \text{si } x < 0. \end{cases}$$

- (a) Calcula $f([-4,\frac{1}{3}])$, $g([-4,\frac{1}{3}])$, f([-1,3]) i $(f \circ g)([-4,\frac{1}{3}])$.
- **(b)** Calcula la funció $f \circ g$.
- (c) Digues si $f \circ g$ és injectiva i si és exhaustiva.

Indicació: Si vols, et pots ajudar amb les gràfiques de les funcions.

90. Sigui $h: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ la funció definida per $h(x,y) = \frac{x^2}{y}$. Troba i dibuixa en el pla $\mathbb{R} \times \mathbb{R}$ el seu domini i els següents conjunts: $h^{-1}(3)$, $h^{-1}(0)$, $h^{-1}([-1,1])$.

Nota: Recorda que si $a \in \mathbb{R}$, $h^{-1}(a)$ és el conjunt $\{(x,y) \in \mathbb{R} \times \mathbb{R} : h(x,y) = a\}$, i si $A \subseteq \mathbb{R}$, $h^{-1}(A)$ és el conjunt $\{(x,y) \in \mathbb{R} \times \mathbb{R} : h(x,y) \in A\}$.

- **91.** Dóna un exemple d'una funció injectiva de \mathbb{Z} en \mathbb{N} , i digues si la funció del teu exemple és exhaustiva.
- **92.** Siguin A, B conjunts no buits i $f: A \longrightarrow B$ una aplicació.
 - (a) Demostra que si f és injectiva aleshores $f(C \cap D) = f(C) \cap f(D)$ per tots $C, D \subseteq A$.
 - **(b)** Dóna un exemple d'una aplicació f no injectiva on la propietat anterior també es compleixi
 - (c) Dóna un exemple d'una aplicació f no injectiva on la propietat anterior no es compleixi.

93. Examina les següents relacions entre $\mathbb{N} \times \mathbb{N}$ i \mathbb{Q}^+ :

(a)
$$S_1 = \left\{ \left((1,2), \frac{1}{2} \right), \left((0,5), 0 \right), \left((10^9, 10^{10}), 0.1 \right), \left((2,4), \frac{2}{4} \right), \left((1,0), 1 \right), \left((2,20), \frac{1}{10} \right), \left((3,7), 3 \right), \left((7,3), 7 \right) \right\}.$$

(b)
$$S_2 = \{((n,m), \frac{n}{m}) : n, m \in \mathbb{N}, m \neq 0\}.$$

(c)
$$S_3 = \{((n,m), n+m) : n, m \in \mathbb{N}\}.$$

Digues quines són funció. De les que ho siguin calcula el seu domini, la seva imatge, i digues si són injectives i si són exhaustives.

94. Sigui $f: \mathbb{R} \setminus \{-2,2\} \longrightarrow \mathbb{R}$ l'aplicació definida amb l'expressió $f(x) = \frac{1}{4-x^2}$.

- (a) Calcula $f^{-1}([-1,1])$ i $f^{-1}([0,1])$.
- **(b)** Calcula $f \circ f$ allà on estigui definida.
- **(c)** Digues si *f* és injectiva i si és exhaustiva.

95. Demostra que si dues aplicacions f i g de A en A són bijectives, aleshores la seva composició $f \circ g$ també és bijectiva i la seva inversa és $g^{-1} \circ f^{-1}$.