Precise Sparse Abstract Execution via Cross-Domain Interaction ICSE 2024

Xiao Cheng, Jiawei Wang, Yulei Sui

xiao.cheng@unsw.edu.au

Computer Science and Engineering UNSW Sydney

April 24, 2024

Xiao Cheng (UNSW) ICSE 2024 April 24, 2024 1 / 21

Contribution

► A precise **cross-domain abstract execution/interpretation** over a combined domain through **correlation tracking**.

Contribution

- ► A precise **cross-domain abstract execution/interpretation** over a combined domain through **correlation tracking**.
- ► An implication-equivalent (virtual) memory address grouping approach.

Contribution

- ► A precise **cross-domain abstract execution/interpretation** over a combined domain through **correlation tracking**.
- ► An implication-equivalent (virtual) memory address grouping approach.
- ➤ Significantly boost the precision and efficiency of assertion-checking clients, e.g., buffer overflow and null dereference detection.

3 / 21

Xiao Cheng (UNSW) ICSE 2024 April 24, 2024

Combined Analysis

Combined Analysis with Concrete Domain

One concrete domain for both analyses?

Combined Analysis with Concrete Domain

5 / 21

One concrete domain for both analyses?

 $\{1, 2, 3, ..., infinit numbers\}$

Unscalable!

Combined Analysis with Abstract Domain

One abstract domain for both analyses?

Combined Analysis with Abstract Domain

6 / 21

Combined Analysis with Combined Domain

Combined Analysis with Combined Domain

Precision loss without cross-domain interaction

Cross-Domain Online Refinement

9 / 21

Cross-Domain Online Refinement

Cross-Domain Online Refinement

Program

10 / 21

LLVM-like Language


```
\begin{array}{llll} \textbf{c}, \textbf{fld} & \in \mathcal{C} & \textbf{Constants} \\ \textbf{p}, \textbf{q}, \textbf{r} & \in \mathcal{S} & \textbf{Stack virtual registers} \\ \textbf{g} & \in \mathcal{G} & \textbf{Global pointer variables} \\ \textbf{p}, \textbf{q}, \textbf{r}, \textbf{g} & \in \mathcal{P} = \mathcal{S} \cup \mathcal{G} & \textbf{Top-level variables} \\ \textbf{o}, \textbf{a}, \textbf{a}, \textbf{a.fld}, \textbf{a[c]} & \in \mathcal{O} & \textbf{Abstract objects} \\ \textbf{v} & \in \mathcal{V} = \mathcal{P} \cup \mathcal{O} & \textbf{Program variables} \end{array}
```

```
\ell ::=
                                 STMT
                                 ConsStmt
        p = c
        p = alloc_o
                                 AddrStmt
        p = \&(q \rightarrow fld)
                                 GEPSTMT (FIELD)
        p = &q[c] (constant)
                                 GepStmt (Array-C)
        p = &q[v] (variable)
                                 GEPSTMT (ARRAY-V)
                                 LOADSTMT
        p = *q
                                 STORESTMT
        *p = q
                                 CopyStmt
        p = q
        p = phi(p_1, p_2, ...p_n)
                             РніSтмт
                                 UnaryStmt
        p = \neg a
                                BinaryStmt
        \mathtt{r}=\mathtt{p}\odot\mathtt{q}
\odot \in \{+, -, *, /, \%, <<, >>, <, >, \&, \&\&, <=, >=, \equiv, \sim, |, \land\}
```


- ▶ Interval abstraction (Interval domain) for scalar variables.
- ▶ Discrete values (*MemAddress* domain) for memory addresses.

Abstract Trace for Interval and Memory Address Domain

Symbol to value mapping: $\sigma \in \mathcal{P} \to \mathit{Interval} \times \mathit{MemAddress}$ captures the memory addresses/interval value of top-level pointers/scalar variables.

Xiao Cheng (UNSW) April 24, 2024 13 / 21

Abstract Trace for Interval and Memory Address Domain

- **Symbol to value mapping**: $\sigma \in \mathcal{P} \to \mathit{Interval} \times \mathit{MemAddress}$ captures the memory addresses/interval value of top-level pointers/scalar variables.
- ▶ Value to value mapping: $\delta \in \mathbb{L} \times MemAddress \rightarrow Interval \times MemAddress$ captures the correlation between memory objects and memory addresses/interval values at different program locations.

Abstract Trace for Interval and Memory Address Domain

- **Symbol to value mapping**: $\sigma \in \mathcal{P} \to \mathit{Interval} \times \mathit{MemAddress}$ captures the memory addresses/interval value of top-level pointers/scalar variables.
- ▶ Value to value mapping: $\delta \in \mathbb{L} \times MemAddress \rightarrow Interval \times MemAddress$ captures the correlation between memory objects and memory addresses/interval values at different program locations.

Xiao Cheng (UNSW) ICSE 2024 April 24, 2024 13 / 21

Analysis Rules

SVFStmt	C-Like form	Abstract Execution Rule
ConsStmt	$\ell: \mathtt{p} = \mathtt{c}$	$\mid \ \sigma(\mathtt{p}) := \langle [\mathtt{c},\mathtt{c}], op angle$
CopyStmt	$\ell: \mathtt{p} = \mathtt{q}$	$\mid \ \sigma(\mathtt{p}) := \sigma(\mathtt{q})$
BINARYSTMT	$\ell: \mathtt{r} = \mathtt{p} \otimes \mathtt{q}$	$\mid \sigma(r) := \sigma(p) \hat{\otimes} \sigma(q)$
РніЅтмт	$\ell: \mathtt{r} = \mathtt{phi}(\mathtt{p}_1, \mathtt{p}_2, \ldots, \mathtt{p}_n)$	$\mid \sigma(r) := \bigsqcup_{i=1}^n \sigma(p_i)$
ValueFlow	$\ell' \stackrel{o}{\hookrightarrow} \ell$	$\mid \delta_{\overline{\ell}}(o) \sqsupseteq \delta_{\underline{\ell'}}(o)$
AddrStmt	$\ell: p = \mathtt{alloc}_{\mathtt{o_i}}$	$\mid \ \sigma(\mathtt{p}) := \langle op, \{o_i\} angle$
GEPSTMT	$\ell: p = \&(q \to \mathtt{i}) \ \text{ or } p = \&q[\mathtt{i}]$	$\big \ \sigma(\mathtt{p}) := \textstyle \bigsqcup_{\mathtt{o} \in \gamma(\sigma(\mathtt{q}))} \textstyle \bigsqcup_{j \in \gamma(\sigma(\mathtt{i}))} \langle \top, \{\mathtt{o.fld}_j\} \rangle$
LOADSTMT	$\ell: \mathtt{p} = *\mathtt{q}$	$\mid \ \sigma(\mathtt{p}) := \bigsqcup_{o \in \{o \ \mid \ (o \mapsto \mathtt{-}) \in \delta_{\overline{\ell}}\}} \delta_{\overline{\ell}}(o)$
STORESTMT	$\ell:*p=q$	$\big \hspace{0.1in} \delta_{\underline{\ell}} \sqsupseteq (\{o \mapsto \sigma(\mathtt{q}) o \in \gamma(\sigma(\mathtt{p}))\} \sqcup \delta_{\overline{\ell}} \setminus kill(\ell))$

$$\label{eq:kill} \begin{aligned} \text{kill}(\ell:*p = q) &:= \begin{cases} \{ o \mapsto {}_{-} \mid o \in \gamma(\sigma(p)) \} & \text{if } \sigma(p) \equiv \langle \top, \{ o \} \rangle \land o \text{ is singleton} \\ \{ o \mapsto {}_{-} \mid o \in \mathcal{O} \} & \text{if } \sigma(p) \equiv \langle \top, \varnothing \rangle \\ \varnothing & \text{otherwise} \end{cases}$$

Xiao Cheng (UNSW) ICSE 2024 April 24, 2024 14 / 21

 ℓ_1 : slot = input()%4

 ℓ_2 : loc1 = &ids[slot]

 ℓ_3 : loc2 = &ids[4]

Abstract trace σ	

15 / 21

 ℓ_1 : slot = input()%4

 ℓ_2 : loc1 = &ids[slot]

 ℓ_3 : loc2 = &ids[4]

Abstract trace σ				
slot	$\langle [0,3], op angle$			

 ℓ_1 : slot = input()%4

 ℓ_2 : loc1 = &ids[slot]

 ℓ_3 : loc2 = &ids[4]

Abstract	trace	σ	
----------	-------	----------	--

_		
	slot	$\langle [0,3], op angle$
	loc1	$\langle \top, \{o_1, o_2, o_3, o_4\} \rangle$
ſ		

 ℓ_1 : slot = input()%4

 ℓ_2 : loc1 = &ids[slot]

 ℓ_3 : loc2 = &ids[4]

Abstract trace σ

, 15011 doi 11 doo 0					
slot	$\langle [0,3], op angle$				
loc1	$\langle \top, \{o_1, o_2, o_3, o_4\} \rangle$				
loc2	$\langle op, \{o_5\} angle$				

 ℓ_1 : slot = input()%4

 ℓ_2 : loc1 = &ids[slot]

 ℓ_3 : loc2 = &ids[4]

Abstrac	t trace	σ
---------	---------	----------

slot	$\langle [0,3], op angle$
loc1	$\langle \top, \{o_1, o_2, o_3, o_4\} angle$
loc2	$\langle op, \{o_5\} angle$

 ℓ_4 : *loc1 = INT_MAX

	A	Abstract trace σ		
ℓ_1 : slot = input()%4	slot	$\langle [0,3], op angle$		
ℓ_2 : loc1 = &ids[slot]	loc1	$\langle op, \{o_1, o_2, o_3, o_4\} angle$		
ℓ_3 : loc2 = &ids[4]	loc2	$\langle op, \{o_5\} angle$		
	Ab	stract power trace δ	$\delta_{\overline{\ell}}$	
^	o_1, o_2	$\langle [0,0], op angle$		

 ℓ_4 : *loc1 = INT_MAX

	Abstract trace σ			
ℓ_1 : slot = input()%4	slot	$\langle [0,3], op angle$		
ℓ_2 : loc1 = &ids[slot]	loc1	$\langle op, \{o_1, o_2, o_3, o_4\} angle$		
ℓ_3 : loc2 = &ids[4]	loc2	$\langle op, \{o_5\} angle$		
	Ab	stract power trace δ		
*	o_1, o_2	$\langle [0,0], op angle$		

Abstract trace σ				
ℓ_1 : slot = input()%4	slot	$\langle [0,3], op angle$		
ℓ_2 : loc1 = &ids[slot]	loc1	$\langle op, \{o_1, o_2, o_3, o_4\} angle$		
ℓ_3 : loc2 = &ids[4]	loc2	$\langle \top, \{o_5\} \rangle$		
	Ab	ostract power trace δ $\delta_{\overline{\ell_4}}$		
A	o_1, o_2	$\langle o_3, o_4 \mid \langle [0,0], op \rangle$		
ℓ_4 : *loc1 = \overline{INT}_{MAX}				
``	o_1, o_2	$\left \langle [0, INT_MAX \], op ight ^{o_{\ell_4}}$		
		$\delta_{\overline{\ell}_5}$		
,	o_1, o_2	$\langle [0, INT_MAX], op angle$		
ode na		$o_5 \hspace{1cm} \langle [0,0], op angle$		
ℓ_5 : buf[*loc2]				

Abstract trace σ					
ℓ_1 : slot = input()%4	slot	$\langle [0,3], ceil$	Γ〉		
ℓ_2 : loc1 = &ids[slot]	loc1	$\subset 1 \mid \langle op, \{o_1, o_2, o_3, o_4\} angle$			
ℓ_3 : loc2 = &ids[4]	loc2	$\langle \top, \{o_5\}$	}〉		
	Ab	stract pov	wer tr	vace δ $\delta_{\overline{\ell_4}}$	
A	o_1, o_2	$_2,o_3,o_4$	$\langle [0,0]$	$], op \rangle$	
ℓ_4 : *loc1 = INT_MAX					
`` >	o_1, o_2	$_2,o_3,o_4$	$\langle [0, { extbf{I}}$	$NT_MAX \], op angle$	
				δ-	
	o_1, o_2	$2,o_3,o_4$	$\langle [0, \mathbf{I}$	NT_MAX $], op angle$	
6 de maria		o_5	$\langle [0,0]$], op angle	
ℓ_5 : buf[* $loc2$]	$\delta_{\overline{\ell_5}}(o_5)$	$)=\langle [0,0]$	$], \top \rangle$	Safe buffer access	

- 1. A benchmark comprising 7774 programs from NIST Juliet test cases ¹, which includes its null dereferences and buffer overflow vulnerabilities.
- 2. 10 popular open-source C/C++ projects across various application domains: paste (file merger), md5sum (file verifier), YAJL (JSON parsing library), MP4v2 (MP4 file library), RIOT (loT operating system), darknet (neural network framework), tmux (terminal multiplexer), Teeworlds (online multiplayer game), NanoMQ (MQTT broker for loT edge platform) and redis (in-memory database).

Table 1: The statistics of the open-source projects. #LOI denotes the number of lines of LLVM instructions. #Method, #Call and #Obj are the numbers of functions, method calls and memory objects, respectively. |V| and |E| are the numbers of ICFG nodes and ICFG edges.

Project	#LOI	#Method	#Call	#Obj	V	E
paste	8,416	53	758	510	9,395	9,922
md5sum	11,483	63	881	606	12,494	13,064
YAJL	20,592	151	561	208	9,253	9,922
MP4v2	39,178	601	610	1,991	15,595	16,733
RIOT	54,597	579	1,614	951	20,176	20,843
darknet	159,205	985	9,776	2,550	136,094	147,852
tmux	446,626	1,967	22,369	3,879	162,879	178,924
Teeworlds	529,737	2,306	28,267	5,754	251,356	246,029
NanoMQ	788,967	3,235	47,646	30,838	358,312	443,670
redis	1,363,507	6,314	68,664	13,958	589,019	704,356
Total	3,422,308	16,254	181,146	61,245	1,564,573	1,791,315

- RQ1 Is CSA effective in detecting existing bugs? We aim to investigate whether CSA can achieve a better performance than the state-of-the-art on detecting existing bugs.
- RQ2 Can CSA find bugs with a low false positive rate in real-world projects? We would like to examine the effectiveness and efficiency of CSA using real-world popular applications.
- RQ3 What is the influence of different components in our framework? We aim to understand RQ3.1: the precision improvement of cross-domain refinement; and RQ3.2: efficiency improvement in terms of time and memory using equivalent correlation tracking.

Table 2: Comparing with five tools and CSA-CP (a variant of CSA without cross-domain interaction) using the NIST benchmark, with true positive rate (#TPR) and precision rate (#PCR) in percentage (%).

Tool	Buffer o	overflow	Null der	eference	Total			
	#TPR (%)	#PCR (%)	#TPR (%)	#PCR (%)	#TPR (%)	#PCR (%)		
Infer	19.23	70.57	53.17	50.19	20.20	68.48		
Сррснеск	2.72	100.00	42.86	85.71	3.87	95.00		
KLEE	67.78	98.81	91.27	93.12	68.45	98.58		
IKOS	49.76	45.83	92.86	92.86	50.99	47.07		
Sparrow	44.64	32.49	90.48	52.78	45.95	33.21		
CSA-CP	73.84	42.62	100.00	42.64	74.58	42.65		
CSA	73.84	84.11	100.00	100.00	74.58	84.63		
BugNum	8589		252		8841			

Table 3: Comparing CSA with five open-source tools and CSA-CP using ten popular applications. #TP and #FP are true positive and false positive, respectively. Time (secs), Mem (MB) are running time and memory costs. The - in the Time columns indicates a running time of more than 4h. The - in the Mem columns indicates a cost of more than 100 Gigabytes.

		IN	FER			Срре	CHECK			11	KOS			K	LEE		Sp/	RROW			CS.	A-CP			С	SA	
Project	Rep	ort	Time	Mem	Rep	ort	Time	Mem	Repo	ort	Time	Mem	Repo	ort	Time	Mem	Report	Time	Mem	Rep	ort	Time	Mem	Repo	rt	Time	Mem
	#TP :	#FP	(secs)	(MB)	#TP	#FP	(secs)	(MB)	#TP ₹	#FP	(secs)	(MB)	#TP ₹	#FP	(secs)	(MB)	#TP #FP	(secs)	(MB)	#TP	#FP	(secs)	(MB)	#TP #	έFΡ.	(secs)	(MB)
paste	1	15	7	61	0	17	1	9	3	21	512	1126	4	0	2911	1711	4 35	3	51	3	19	5	92	3	0	9	106
md5sum	2	21	8	80	0	18	1	11	2	35	986	1684	3	0	2824	1642	2 22	2	48	4	26	15	121	4	1	8	110
YAJL	0	17	9	110	0	14	1	12	1 1	625	2895	4822	4	16	14400	17333	3 86	6	59	3	35	7	172	3	0	5	102
MP4v2	1	28	313	335	1	26	38	38	1	956	3684	6215	2	3	14400	21358	1 236	214	231	1	25	58	269	1	0	13	384
RIOT	3	29	111	155	2	19	2	22	2 1	1325	5216	8622	5	2	14400	23654	2 651	315	421	8	38	102	366	8	6	27	346
darknet	25	134	837	282	16	214	10	55	14 1	265	9531	23954	25	8	14400	40015	10 842	826	984	21	199	3483	1982	21	10	3507	1875
tmux	5	142	522	909	3	156	30	39	4 1	632	11325	38366	2	1	14400	70826	3 1256	1036	1894	12	360	1182	6343	12	10	824	5052
Teeworlds	10	169	684	934	4	187	2	54	2	529	13569	40368	2	1	14400	71865	10 1512	1593	2984	15	244	2754	3485	15	8	2886	2598
NanoMQ	23	154	654	305	10	147	94	38	_	_	_	_	5	2	14400	91465	6 1241	1642	3125	30	292	1801	7063	30	8	1143	6551
redis	6	137	1292	10484	8	136	516	123	_	_	_	_	3	2	14400	101475	5 1152	2654	9211	14	275	8629	4421	14	8	6553	3870
Total	76	846	4437	13655	44	934	695	401	29 7	388	47718	125157	55	35	120935	441344	46 7033	8291	19008	111	1513	18036	24314	111	51	14975	20994

Ablation Analysis (RQ3)

Table 4: Comparison between CSA and CSA-NI (a version of CSA without implication-equivalent memory addresses).

Project	CSA	A-NI	CSA				
· · ojoot	Time (secs)	Mem (MB)	Time (secs)	Mem (MB)			
tmux	1540 (1.87×)	21016 (4.16×)	824	5052			
Teeworlds	6176 (2.14 $ imes$)	$14237 \ (5.48 \times)$	2886	2598			
${ t NanoMQ}$	3292 (2.88×)	48805 (7.45×)	1143	6551			
redis	$21232 (3.24 \times)$	$32314 \ (8.35 \times)$	6553	3870			
Geo. Mean	(2.47×)	(6.14×)					

Thank You!

Xiao Cheng (UNSW) ICSE 2024 April 24, 2024 21 / 21