HMM Application in Convolutional Code Decoding

Gaurav Sharma

Objectives

- Illustrate a real-world application of HMMs
- Error correction coding using convolutional codes
- Communications context
- Will provide context (excluding design considerations, beyond scope)

Channel Coding in the Communications System Chain

Trellis Codes

- Alternate form of encoding: stream-in stream out
- Output n symbols for every k input symbols
 - Encoding of symbols depends on past blocks of k symbols too
 - Typical k and n quite small as compared to block codes (for low complexity)
 - Typically k is 1 or 2, n values are 2, 3, 4

Trellis Codes

Encoder = finite-state (causal) machine

Rate =
$$k/n$$

Trellis Codes

- Encoder: A Finite State Machine
 - Time I, State $S^{(l)}$
 - Input: Message Word: $\mathbf{m}^{(l)} = [m_0^{(l)}, m_1^{(l)}, \dots, m_{(k-1)}^{(l)}]$
 - Outputs:
 - Codeword: $\mathbf{c}^{(l)} = \mathscr{A}^{(l)} \left(\mathbf{m}^{(l)}, S^{(l)} \right)$
 - Next State: $S^{(l+1)} = \mathscr{B}^{(l)}\left(\mathbf{m}^{(l)}, S^{(l)}\right)$
 - Encoder Functions: $\mathscr{A}^{(l)}(\cdot)$ and $\mathscr{B}^{(l)}(\cdot)$ could be time varying in general
 - Finite state: finite set of possibilities for $S^{(l)}$
 - Complexity is dependent on size of state space
 - Causality is implicit in definition

Convolutional Codes

- Trellis code whose encoder is a linear and time invariant system
 - k-input, n-output: Multiple-input and multiple output LTI system
 - Necessary (though not sufficient) condition:

$$\alpha m_{t-ku}^1 + \beta m_{t-ku}^2 \longrightarrow \alpha c_{t-nu}^1 + \beta c_{t-nu}^2$$

- Most widely studied class of trellis codes
 - Because of analysis, design, and decoding considerations (just like linear block codes)

Convolutional Codes Characterization

- Encoder: Finite State, Linear, Time Invariant, Causal System
 - The contribution of each input to each output can be represented as convolution with a rational impulse response
 - Rational = ratio or two polynomials
 - Recall FIR and IIR Filters and Rational trfr functions
 - Hence the name "Convolutional Code"

Feedforward Convolutional Encoder: An Obvious Realization

Feedback free structure

"Constraint length" K = total number of inputs available to encoder

Feedback Free Convolutional Encoders

Rate 1/2 Encoder

Rate 2/3 Encoder

A Feedback Free Convolutional Encoder

A (1,2) Convolutional encoder

$$\mathbf{G} = [D^2 + D + 1 \quad D^2 + 1]$$

A Recursive Convolutional Encoder

A (2,3) Convolutional Encoder

Decoding of Convolutional Codes

- Most naturally discussed in terms of state space realization of the encoder
- Presentation: Example driven to convey intuition
- Readily generalizes to other Convolutional codes and also Trellis codes
 - Nonlinearity and time variation is not a problem
 - Size of state space main issue: Decoding Complexity

Decoding of Convolutional Codes: Example

Shift register encoder representation

- State = value of stored elements $m_{i-1}m_{i-2}$
 - 4 possible states 00, 01, 10, 11
 - Linearity mandates: initial state=00

Tree Diagram of Encoder

Input Bit 0: --- 1: —

Time Invariance:
A given state
shows the same
bifurcations,
irrespective of
time
Can collapse
into State
Diagram

State Diagram of Encoder

Trellis Diagram of Encoder

Communications Model

Broader Model

- Channel introduces uncertainty
 - Several channel models
- Consider only simplest "hard detection" scenario with Binary Symmetric Channel
 - Memoryless channel (Bit errors IID with probability p)

Communications Model

- Received stream corresponds to a hidden Markov model
 - Why? What is hidden?
- What do our three questions of interest map to here and why are they of practical interest?

Convolutional Decoding as an HMM Estimation Algo

What are the transition probabilities?

What are the emission probabilities?

What are the probabilities of the initial states?

ML Decoding of Convolutional (Trellis) Codes

- Hard Detection Scenario Considered
- Key Idea: Conditioned on state, past is independent of future
 - Trellis allows efficient search for the Min Hamming Distance Codeword
 - Traceback to determine corresponding message

ML Decoding of Convolutional Code on the Trellis

 Retain most likely path to current time for each state: recurse

ML Decoding of Convolutional Code on the Trellis

Traceback for ML decoded message

ML Decoding of Trellis Codes: Mathematcal Formulation

ML Decoding Rule

$$\tilde{\mathbf{m}}^* = \arg\max_{\mathbf{m}} p\left(\tilde{\mathbf{r}} \mid \tilde{\mathbf{m}}\right)$$

- Consider likelihood upto time I $p\left(\tilde{\mathbf{r}}^{(l)} \mid \tilde{\mathbf{m}}^{(l)}\right)$
- Sequential encoding proc.+Memoryless Chl=>

$$p\left(\tilde{\mathbf{r}}^{(l)} \mid \tilde{\mathbf{m}}^{(l)}\right) = p\left(\tilde{\mathbf{r}}^{(l-1)} \mid \tilde{\mathbf{m}}^{(l-1)}\right) p\left(\mathbf{r}^{(l)} \mid S^{(l)}, \mathbf{m}^{(l)}\right)$$

Allows ML Decoding by dynamic programming

$$\max_{\tilde{\mathbf{m}}^{(l)}} \log \left(p \left(\tilde{\mathbf{r}}^{(l)} \mid \tilde{\mathbf{m}}^{(l)} \right) \right) = \max_{S^{(l)}, \mathbf{m}^{(l)}} \left(\max_{\{\tilde{\mathbf{m}}^{(l-1)}: S^{(l)}\}} \log \left(p \left(\tilde{\mathbf{r}}^{(l)} \mid \tilde{\mathbf{m}}^{(l-1)} \right) \right) + \log \left(p \left(\mathbf{r}^{(l)} \mid S^{(l)}, \mathbf{m}^{(l)} \right) \right) \right)$$

Describes Trellis Based Decoding Procedure

ML Decoding of Trellis Codes: Mathematcal Formulation

- Start with initial state 00
- L successive messageword frames

$$\tilde{\mathbf{m}}^{(l)} = \mathbf{m}^{(0)}, \mathbf{m}^{(1)}, \dots, \mathbf{m}^{(L-1)}$$

Corresponding codeword frames

$$=\mathbf{c}^{(0)},\mathbf{c}^{(1)},\ldots,\mathbf{c}^{(L-1)}$$

and receivedword frames

$$\tilde{\mathbf{r}}_{(0)}^{(L-1)} = \mathbf{r}^{(0)}, \mathbf{r}^{(1)}, \dots, \mathbf{r}^{(L-1)}$$

$$\tilde{\mathbf{m}}^* = \arg\max_{\mathbf{m}} p\left(\tilde{\mathbf{r}} \mid \tilde{\mathbf{m}}\right)$$

ML Decoding of Trellis Codes: AWGN and Hard Decision Chl

- Binary (q-ary) symmetric Channel
 - ML Decoding ≡ Min Hamming Distance
 - Process outlined in example
 - Find path* through Trellis with min Hamming distance to the received sequence
- AWGN Channel
 - - Minor modification of process outlined in example
 - Find path* through Trellis with min Euclidean distance to the received sequence

^{*}Assumes typical case where path defines message

ML Decoding: Complexity

- Brute Force Search for $\tilde{\mathbf{m}}^* = \arg \max_{\mathbf{m}} p\left(\tilde{\mathbf{r}} \mid \tilde{\mathbf{m}}\right)$
 - Upto time I=T: 2^{T} options for $\tilde{\mathbf{m}}^{(l)}$
 - Grows very rapidly with I: 2^{64} ≈ 10^{19}
- Viterbi algorithm (VA):dynamic programming
 - Reduces complexity to linear in T:
 - Number of states x 2^k x T
 - State = binary vector with K entries: 2^K x 2^k x T
 - Still exponential in k and K
 - Need small k and small state size

MAP Decoding of Trellis Codes: Mathematcal Formulation

- Start with initial state 00
- L successive messageword frames

$$= \mathbf{m}^{(0)}, \mathbf{m}^{(1)}, \dots, \mathbf{m}^{(L-1)}$$

Corresponding codeword frames

$$=\mathbf{c}^{(0)},\mathbf{c}^{(1)},\ldots,\mathbf{c}^{(L-1)}$$

and receivedword frames

$$\tilde{\mathbf{r}}_{(0)}^{(L-1)} = \mathbf{r}^{(0)}, \mathbf{r}^{(1)}, \dots, \mathbf{r}^{(L-1)}$$

$$\hat{\mathbf{m}}^{(l)} = \arg \max_{\mathbf{m}} p\left(\mathbf{m}^{(l)} = \mathbf{m} \mid \tilde{\mathbf{r}}_{(0)}^{(L-1)}\right)$$

MAP Decoding

 Dynamic programming analogous to ML decoding: forward-backward/BCJR Algo

$$S^{(l)} = \mathbf{a}$$

$$\mathbf{m}^{(l)} = \mathbf{m}_{1}, \mathbf{c}^{(l)} = \mathbf{c}_{1}$$

$$\mathbf{m}^{(l)} = \mathbf{m}_{2}, \mathbf{c}^{(l)} = \mathbf{c}_{2}$$

$$\mathbf{r}^{(l)}$$

$$\mathbf{r}^{(l)}$$

$$\mathbf{r}^{(l)}$$

$$\mathbf{r}^{(l)}$$

$$\mathbf{r}^{(l)}$$

$$\mathbf{r}^{(l-1)}$$

$$\mathbf{r}^{(l)}$$

$$\mathbf{r}^{(l-1)}$$

$$\mathbf{r}^{(l-1)}$$

$$\mathbf{r}^{(l-1)}$$

$$\mathbf{r}^{(l)}$$

$$\mathbf{r}^{(l-1)}$$

$$\mathbf{r}^{(l-1)}$$

$$\mathbf{r}^{(l-1)}$$

$$\mathbf{r}^{(l-1)}$$

$$\mathbf{r}^{(l-1)}$$

$$\mathbf{r}^{(l-1)}$$

$$\mathbf{r}^{(l-1)}$$

$$\mathbf{r}^{(l)}$$

MAP Decoding of Trellis Codes

 Propagate probabilities on trellis to obtain symbol MAP probabilities

State BCJR, forward backward algo (sum-prod)

MAP Decoding

 Forward-backward/BCJR Algo Recursions

$$\alpha_{l}(i) = p\left(\tilde{\mathbf{r}}_{(0)}^{(l-1)}, S^{(l)} = i\right)$$

$$= \sum_{j \in \mathcal{S}} \alpha_{l-1}(j) p\left(\mathbf{r}^{(l-1)}, S^{(l)} = i \mid S^{(l-1)} = j\right)$$

$$= \sum_{j \in \mathcal{S}} \alpha_{l-1}(j) \gamma_{l-1}(i, j)$$

$$\beta_{l}(i) = p\left(\tilde{\mathbf{r}}_{(l)}^{(L-1)} \mid S^{(l)} = i\right)$$

$$= \sum_{j \in \mathcal{S}} p\left(\mathbf{r}^{(l)}, S^{(l+1)} = j \mid S^{(l)} = i\right) p\left(\tilde{\mathbf{r}}_{(l+1)}^{(L-1)} \mid S^{(l+1)} = j\right)$$

$$= \sum_{j \in \mathcal{S}} \gamma_{l}(j, i) \beta_{l+1}(j).$$

- Channel: BSC(p)
- Forward Recursion

$$\alpha_l(\mathbf{a}) \stackrel{\text{def}}{=} p\left(\tilde{\mathbf{r}}_{(0)}^{(l-1)}, S^{(l)} = \mathbf{a}\right)$$

$$\beta_l(\mathbf{a}) \stackrel{\text{def}}{=} p\left(\tilde{\mathbf{r}}_{(l)}^{(L-1)} \mid S^{(l)} = \mathbf{a}\right)$$

- Channel: BSC(p)

• Channel: BSC(p)
• Backward Recursion
$$\alpha_{l}(\mathbf{a}) \stackrel{\text{def}}{=} p\left(\tilde{\mathbf{r}}_{(0)}^{(l-1)}, S^{(l)} = \mathbf{a}\right)$$

$$\beta_{l}(\mathbf{a}) \stackrel{\text{def}}{=} p\left(\tilde{\mathbf{r}}_{(l)}^{(l-1)} \mid S^{(l)} = \mathbf{a}\right)$$

$$\beta_l(\mathbf{a}) \stackrel{\text{def}}{=} p\left(\tilde{\mathbf{r}}_{(l)}^{(L-1)} \mid S^{(l)} = \mathbf{a}\right)$$

33

Bit-wise Posterior Probability Computation

- Bit-wise Posterior Probability Computation
 - Sum over 0 (dashed) transitions

$$p\left(\mathbf{m}^{(3)} = 0, \tilde{\mathbf{r}}_{(0)}^{(L)} = 010111000001\right)$$

$$= \sum_{\mathbf{a}, \mathbf{b} \in \mathcal{S}} \alpha_3(\mathbf{a}) p\left(\mathbf{r}^{(l)} = 00, \mathbf{m}^{(l)} = 0, S^{(l+1)} = \mathbf{b} \mid S^{(l)} = \mathbf{a}\right) \beta_4(\mathbf{b})$$

$$= \alpha_3(00)(1 - p)^2 \beta_4(00) + \alpha_3(10)(1 - p)p\beta_4(01)$$

$$+ \alpha_3(01)p^2 \beta_4(00) + \alpha_3(11)p(1 - p)\beta_4(01)$$

- Bit-wise Posterior Probability Computation
 - Sum over 1 (solid) transitions

$$p\left(\mathbf{m}^{(3)} = 1, \tilde{\mathbf{r}}_{(0)}^{(L)} = 010111000001\right)$$

$$= \sum_{\mathbf{a}, \mathbf{b} \in \mathcal{S}} \alpha_3(\mathbf{a}) p\left(\mathbf{r}^{(l)} = 00, \mathbf{m}^{(l)} = 1, S^{(l+1)} = \mathbf{b} \mid S^{(l)} = \mathbf{a}\right) \beta_4(\mathbf{b})$$

$$= \alpha_3(00) p^2 \beta_4(10) \alpha_3(10) p(1-p) \beta_4(11)$$

$$+ \alpha_3(01)(1-p)^2 \beta_4(10) + \alpha_3(11)(1-p) p\beta_4(11)$$

MAP Decoding of Covolutional Code

- Simplification for binary convolutional codes
 - Only logs of posterior probability ratios tracked (1/2 as many computations)
 - Decision Rule

$$log\left(\frac{p\left(\mathbf{m}^{(l)}=0, \tilde{\mathbf{r}}_{(0)}^{(L)}\right)}{p\left(\mathbf{m}^{(l)}=1, \tilde{\mathbf{r}}_{(0)}^{(L)}\right)}\right) \overset{0}{\gtrless} 0$$

MAP Decoding of Convolutional Codes

- Notes
 - MAP Decoding approx. 3x as much computation as ML decoding
 - Error performance similar
 - Largely ignored for several decades, until ...
- Turbo decoding builds on MAP decoding of convolutional codes
 - Near capacity achieving performance
 - An instance of belief propagation

Concepts

- Received data from transmitting a convolutional encoded stream overa a memoryless channel is exactly described by an HMM
- Decoding for a convolutional code can be formulated in terms of HMM Viterbi and Forward-Backward Algorithms
- Symbol MAP decoding forms basis of Turbo-Decoding