Rong Zou

③ rong-zou.github.io | ☑ ronzou@ethz.ch | ☐ +41 765254836 | ♀ Zürich, Switzerland

EDUCATION

Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Switzerland

Master of Science in Robotics, Systems and Control

Sep. 2021 – Present

• Final grade: 5.94/6.0

University of Southampton (UoS)

United Kingdom

Visiting Student in Ship Science

Jan. 2019 – June 2019

• Final grade: 81/100 (First Class)

Huazhong University of Science and Technology (HUST)

China

Bachelor of Engineering in Naval Architecture and Ocean Engineering

Sep. 2015 – June 2019

o Final grade: 3.94/4.00, 92.3/100 (Ranking 1/112)

PUBLICATIONS

Retrieval Robust to Object Motion Blur

Rong Zou, Marc Pollefeys, Denys Rozumnyi. In European Conference on Computer Vision. 2024.

Seeing Behind Dynamic Occlusions with Event Cameras

Rong Zou, Manasi Muglikar, Nico Messikommer, Davide Scaramuzza. In arXiv. 2023.

Path Tracking Control of Skid-steered Mobile Robot on Slope Based on Fuzzy System and MPC X. Yue, J. Chen, Y. Li, R. Zou, Z. Sun, X. Cao, S. Zhang. In *Int. J. Control Autom. Syst.* 2022.

WORK EXPERIENCE

Computer Vision Lab, Zürich Research Center, Huawei Technologies

Switzerland

Computer Vision and Machine Learning Research Intern

Mar. 2024 - Present

 Conducted research on realistic image synthesis and deep learning-based image de-flickering to improve the quality of images captured by mobile phone cameras in dynamic scenes

Robotic Systems Lab (RSL), ETH Zürich

Switzerland

Robotics Research Assistant

June 2022 – Dec. 2022

 Contributed to the Autonomous River Cleanup project, responsible for data processing, front-end and back-end real-time communication, real machine testing and deployment

Corporate Research - Asia Pacific, Bosch (China) Investment Ltd.

China

Robotics Research Intern

May 2021 – Aug. 2021

- Improved the grasp planning algorithm for a robotic arm and verified the effectiveness by simulation
- Assembled and calibrated a robot gripper experimental platform and tested grasping stability on it

School of Mechanical Science & Engineering, HUST

China

Robotics Research Assistant

Sep. 2019 - Sep. 2020

- Developed improved particle swarm optimization algorithm for mobile robot global path planning
- Developed MPC-based algorithm for path tracking control of skid-steered wheeled mobile robots

PROJECTS

Monocular Depth Estimation with Virtual View Supervision

Feb. 2023 - June 2023

- Proposed leveraging Neural Implicit Surface Reconstruction methods to augment a limited-scale dataset via scene reconstruction and virtual view-depth pair generation for the training of supervised MDE networks
- Rendered images from Replica scenes as the base dataset, trained MonoSDFs for novel RGBD data generation
- Conducted extensive experiments, demonstrating significant improvements in DeepLabV3+ network MDE performance when using novel views as additional supervision signals

Computer Vision and Deep Learning for Autonomous Driving

Mar. 2022 – July 2022

- Fused multimodal driving data, identified laser ID from a given point cloud using K-means clustering, projected the LiDAR point cloud onto camera images and eliminated motion distortion with GPS/IMU data
- Constructed a multi-task learning architecture based on the DeepLabV3+ model for semantic segmentation and monocular depth estimation, ableted network architecture and improved the base network performance
- Created a 3D object detector to detect vehicles from LiDAR data, and studied the impact of canonical transformations and data augmentation on the box refinement stage of the detector

Vision-based Control for A Ball-balancing Robot

Feb. 2022 – *May* 2022

- Set up and calibrated the Pixy2 camera for object tracking; obtained the ball's pixel coordinates from the camera and transformed them into world coordinates for positional control
- Filtered the visual signal using Butterworth filter to effectively estimate ball velocities for PID control, implemented inverse kinematics of robotic arms to calculate servo angles from PID output
- Set up the ball balancing robot platform and tested algorithms in an Arduino microcontroller, successfully achieved perturbation-free self-balancing as well as specified trajectory tracking of the ball

Monocular Visual Odometry for Mobile Robots

Nov. 2021 – *Jan.* 2022

- Extracted and matched SURF features between keyframes and used the P3P algorithm for pose estimation
- Implemented sliding-window bundle adjustment to reduce reprojection errors and optimize estimated poses
- Performed loop detection based on a BoW model as well as global trajectory optimization for loop closure

HONOURS AND AWARDS

Excellent Graduation Thesis	Top 1/112
Huazhong University of Science and Technology	2019
National Encouragement Scholarship Ministry of Education of the People's Republic of China	Top 3% 2018
National Scholarship <i>Ministry of Education of the People's Republic of China</i>	Top 0.2% 2016, 2017
Model Student of Self-improvement Huazhong University of Science and Technology	Top 0.1% 2017
Exceptional Undergraduate Huazhong University of Science and Technology	Top 1% 2017
Merit Student Huazhong University of Science and Technology	Top 3% 2016, 2017, 2018

SKILLS

Programming: Python, C++, Matlab, C, JavaScript, bash **Software** / **Framework:** Pytorch, OpenCV, ROS, Blender

Languages: Chinese (native), English (C1 - proficient), German (basic)

Others: Git, Latex, Anaconda, Docker