Page 2 Dkt: 1153.009US1

THE CLAIMS

The claims are as follows:

- 1. (Previously Presented) A refractive index detector comprising:
- a duct, said duct having an interior surface and a substantially parallel gap formed by a first wall and a second wall of said duct, said first wall and said second wall are transparent, said duct configured to receive a solution and configured to reflectively communicate light to an optical sensor as a function of said solution in said duct and as a function of light, having a wavelength, incident to said detector at an angle greater than a critical angle, and wherein a refractive index is calculated based on reflected light as measured by said optical sensor.
- 2. (Previously Presented) The detector of claim 1 wherein said gap is approximately equal to or less than the wavelength of said light.
- 3. (Original) The detector of claim 1 wherein said first wall and said second wall are translucent.
- 4. (Original) The detector of claim 1 wherein said duct comprises glass.
- 5. (Previously Presented) The detector of claim 7 wherein said duct has a refractive index greater than a refractive index of said binding partner.
- 6. (Original) The detector of claim 1 wherein said gap has a cross sectional dimension of between 50 and 1000 nanometers.
- 7. (Original) The detector of claim 1 wherein said duct includes a binding partner for an analyte immobilized on at least a portion of said interior surface of said duct, said binding partner capable of binding to said analyte.

Serial Number: 10/010,939

Filing Date: November 7, 2001

Title: NANOFABRICATED PHOTON TUNNELING BASED SENSOR

Page 3 Dkt: 1153.009US1

8. (Original) The detector of claim 7 wherein said analyte comprises a pathogen, a

microorganism, a bacteria, or a virus.

9. (Original) The detector of claim 7 wherein said binding partner for said analyte is an

antibody or antibody fragment that binds said analyte.

10. (Original) The detector of claim 7 wherein said analyte is a ligand specific for a cellular

receptor and said binding partner is a cellular receptor.

11. (Original) The detector of claim 7 wherein said binding partner is a ligand for a cellular

receptor and said analyte is a cellular receptor.

12. (Original) The detector of claim 7 wherein said analyte is a metallic ion and said binding

partner is a chelator that binds said metallic ion.

13. (Previously Presented) A refractive index sensor system comprising:

a first translucent plate;

a plurality of sidewalls, each of said plurality of sidewalls sealably coupled to said first

translucent plate;

a second translucent plate parallel with the first translucent plate and spaced apart from

said first translucent plate by a transverse distance, said second translucent plate sealably coupled

to each of said plurality of sidewalls, and forming a cavity therebetween, said cavity having an

interior and having a depth defined by said transverse distance between said first translucent plate

and said second translucent plate;

a light source configured to illuminate said first translucent plate at a predetermined angle

relative to said first translucent plate; and

a light receiver responsive to light reflected from said cavity.

Serial Number: 10/010,939 Filing Date: November 7, 2001

Title: NANOFABRICATED PHOTON TUNNELING BASED SENSOR

Page 4 Dkt: 1153.009US1

14. (Original) The system of claim 13 wherein said light receiver is sensitive to the

wavelength of light emanating from matter in the cavity.

15. (Original) The system of claim 13 wherein said light receiver is sensitive to the angle of

incidence of light emanating from said fluid solution in the cavity.

16. (Original) The system of claim 13 wherein said light receiver is sensitive to light

transmitted through matter in the cavity.

17. (Original) The system of claim 13 wherein said light receiver is sensitive to light

reflected by said fluid solution in said cavity.

18. (Original) The system of claim 13 further comprising a first prism in communication

with said first translucent plate.

19. (Original) The system of claim 13 further comprising a second prism in communication

with the second translucent plate.

20. (Original) The system of claim 13 further comprising a binding partner affixed to said

interior of said cavity, wherein said binding partner binds to a predetermined analyte in a fluid

solution introduced into said cavity.

21. (Original) The system of claim 20 wherein said binding partner is coupled to said first

translucent plate.

22. (Original) The system of claim 20 wherein a layer of said binding partner is coupled to

said first translucent plate.

23. (Original) The system of claim 13 wherein said light source comprises a laser.

Page 5 Dkt: 1153.009US1

- 24. (Original) The system of claim 13 wherein said light source comprises a polarized laser light source.
- 25. (Original) The system of claim 13 wherein said light receiver comprises a power meter.
- 26.- 34. (Cancel)
- 35. (Original) A method of using a sensor to detect an analyte comprising:

providing a translucent chamber having an interior and an exterior, wherein said interior includes an immobilized binding partner for said analyte, said translucent chamber having a first refractive index;

introducing a fluid into said camber, said fluid having a second refractive index, wherein said first refractive index differs quantitatively from said second refractive index;

projecting a light beam at said chamber;

sensing light emanating from said chamber; and

determining a refractive index for said chamber with fluid.

- 36. (Original) The method of claim 35 wherein projecting a light beam at said chamber comprises projecting a light beam at said chamber at a plurality of incidence angles.
- 37. (Original) The method of claim 35 wherein introducing a fluid into said chamber comprises introducing a fluid suspected of including said analyte into said chamber.
- 38. (Original) The method of claim 35 wherein introducing a fluid into said chamber comprises circulating said fluid into said chamber.
- 39. (Original) The method of claim 35 wherein sensing light emanating from said chamber comprises sensing light using a powermeter.

Serial Number: 10/010,939 Filing Date: November 7, 2001

Title: NANOFABRICATED PHOTON TUNNELING BASED SENSOR

Page 6 Dkt: 1153.009US1

40. (Original) The method of claim 35 wherein sensing light emanating from said chamber

comprises sensing transmitted light emanating from said chamber.

41. (Original) The method of claim 35 wherein sensing light emanating from said chamber

comprises sensing reflected light emanating from said chamber.

42. (Previously Presented) A detector system comprising:

chamber means for containing a sample fluid, said chamber means including a binding

means immobilized on an interior surface of said chamber means, wherein said binding means

binds to a predetermined analyte, said chamber means having a first refractive index based on

said chamber means and said binding means and wherein said chamber means has a second

refractive index at a time when said binding means have bound to a solution including said

predetermined analyte;

light means for projecting an incident light beam at said chamber means at a

predetermined angle, and wherein said chamber means has a gap approximately equal to or less

than the wavelength of said incident light beam;

sensor means for receiving reflected light emanating from said chamber means, said

reflected light is based on said first refractive index and said second refractive index; and

processing means for determining a refractive index of said sample fluid.

43. (Original) The system of claim 42 wherein said binding means is an antibody against a

particular analyte.

44. (Original) The system of claim 42 wherein said binding means is a chelator that binds to

a metallic ion.

45. (Original) The system of claim 42 wherein said chamber means comprises a first glass

plate and a second glass plate.

Serial Number: 10/010,939 Filing Date: November 7, 2001

Title: NANOFABRICATED PHOTON TUNNELING BASED SENSOR

Page 7 Dkt: 1153.009US1

46. (Original) The system of claim 42 wherein said chamber means comprises a first glass

plate and a second glass plate, and further wherein said first glass plate and said second glass

plate are separated by approximately 50 to 1000 nanometers.

47. (Original) The system of claim 42 wherein said light beam means comprises a laser light

source.

48. (Original) The system of claim 42 wherein said light beam means comprises a polarized

laser light source.

49. (Original) The system of claim 42 wherein said sensor means comprises a powermeter.

50. (Original) The system of claim 42 wherein said processing means comprises a computer.