Course Name: HW

 $\begin{array}{c} {\rm Name} \\ {\rm Student\ ID} \\ {\rm Date} \end{array}$

Contents

Questic	n 1	-																				1
$\mathbf{Question}$	on 2	2																				1
$\mathbf{Question}$	on 3	3																				2
$\mathbf{Questic}$	on 4	Į																				3
Questic																						4
(a) .																						
(b) .																						4
	(i)																					4
	(ii)																					4

Question 1

Let $a_n = \frac{18n^5 + 2n - 5}{6n^5 - n^3 - 3}$. We want to show that $(\forall \epsilon > 0)(\exists K \in \mathbb{N})[n \ge K \Rightarrow |a_n - 3| < \epsilon]$.

We have:

$$\left| \frac{18n^5 + 2n - 5}{6n^5 - n^3 - 3} - 3 \right| = \left| \frac{18n^5 + 2n - 5 - 3(6n^5 - n^3 - 3)}{6n^5 - n^3 - 3} \right|$$

$$= \left| \frac{3n^3 + 2n + 4}{6n^5 - n^3 - 3} \right|$$

$$< \left| \frac{3n^3 + 3n^3 + 4n^3}{6n^5 - n^3 - 3} \right| \qquad \text{(as for } n \in \mathbb{N}, 2n < 3n \le 3n^3 \text{ and } 4 \le 4n \le 4n^3)}$$

$$\le \left| \frac{10n^3}{6n^5 - n^5 - 3n^5} \right| \qquad \text{(as for } n \in \mathbb{N}, n^5 \ge n^3 \text{ and } 3n^5 \ge 3)}$$

$$= \left| \frac{10n^3}{2n^5} \right|$$

$$= \left| \frac{5}{n^2} \right|$$

$$= \frac{5}{n^2}$$

$$= \frac{5}{n^2}$$

$$(*)$$

Note that for $\epsilon > 0$ and n > 0, $\frac{5}{n^2} < \epsilon \iff n > \sqrt{\frac{5}{\epsilon}}$.

Proof. Let $\epsilon > 0$ be given. By the Archimedean property of \mathbb{R} , $\exists K \in \mathbb{N}$ such that $K > \sqrt{\frac{5}{\epsilon}}$. Then for all $n \geq K$, we have:

$$\left| \frac{18n^5 + 2n - 5}{6n^5 - n^3 - 3} - 3 \right| < \frac{5}{n^2}$$
 (by (*))
$$\leq \frac{5}{K^2}$$
 (since $n \geq K$)
$$< \frac{5}{\left(\frac{5}{\epsilon}\right)}$$
 (since $K > \sqrt{\frac{5}{\epsilon}}$)
$$= \epsilon$$

Hence, we have
$$\lim_{n\to\infty} \frac{18n^5 + 2n - 5}{6n^5 - n^3 - 3} = 3$$
, as required.

Question 2

Let a be the common limit of the subsequences. We want to show that $(\forall \epsilon > 0)(\exists K \in \mathbb{N})[n \ge K \Rightarrow |a_n - a| < \epsilon]$.

We know that:

$$(\forall \epsilon > 0)(\exists K_1 \in \mathbb{N})[k \ge K_1 \Rightarrow |a_{2k} - a| < \epsilon]$$
$$(\forall \epsilon > 0)(\exists K_2 \in \mathbb{N})[k \ge K_2 \Rightarrow |a_{4k-1} - a| < \epsilon]$$

$$(\forall \epsilon > 0)(\exists K_3 \in \mathbb{N})[k \geq K_3 \Rightarrow |a_{4k-3} - a| < \epsilon]$$

We also note that these 3 subsequences partition (a_n) . This is because the integers can be partitioned into the equivalences classes of \mathbb{Z}_4 . When n is even, we have the union of equivalence classes $[0] \cup [2]$. In other words, if we only look at the positive, even values of n, we get the sequence (a_{2k}) . If n is odd, we have the union of equivalence classes $[1] \cup [3]$. In other words, if we only look at the positive, odd values of n, we get either the sequence (a_{4k-1}) or (a_{4k-3}) .

Proof. Let $\epsilon > 0$ be given. Let $K = \max\{2K_1, 4K_2 - 1, 4K_3 - 1\}$. Then for all $n \geq K$, we have:

$$\begin{cases} |a_n - a| = |a_{2k} - a| < \epsilon & \text{if } n = 2k \text{ (since } k = \frac{n}{2} \ge \frac{K}{2} \ge K_1) \\ |a_n - a| = |a_{4k-1} - a| < \epsilon & \text{if } n = 4k - 1 \text{ (since } k = \frac{n+1}{4} \ge \frac{K+1}{4} \ge K_2) \\ |a_n - a| = |a_{4k-3} - a| < \epsilon & \text{if } n = 4k - 3 \text{ (since } k = \frac{n+3}{4} \ge \frac{K+3}{4} \ge K_3) \end{cases}$$

Question 3

Note that

$$x_1 = 6, x_2 = 5.33, x_3 = 5.12, x_4 = 5.05, x_5 = 5.02, x_6 = 5.01, \dots$$

Proof. We first show that $x_n \geq 5$ for all $n \in \mathbb{N}$. Let P(n) be the statement that $x_n \geq 5$. Clearly, P(1) holds, as $x_1 = 6 \geq 5$. Assume P(k) holds, i.e. $x_k \geq 5$. Then $x_{k+1} = \frac{8x_k}{3+x_k} = 8 - \frac{24}{3+x_k} \geq 8 - \frac{24}{3+5}$, which gives $x_{k+1} \geq 5$. So, P(k+1) holds. Thus, by the principle of mathematical induction, $x_n \geq 5$ for all $n \in \mathbb{N}$, i.e., (x_n) is bounded below by 5.

Now we show that x_n is decreasing for all $n \in \mathbb{N}$. Let D(n) be the statement $x_{n+1} \leq x_n$. Then, since $x_2 = \frac{48}{9} \leq 6$, D(1) holds. Assume D(k) holds, i.e. $x_{k+1} \leq x_k$. Then $x_{k+2} - x_{k+1} = \frac{8x_{k+1}}{3 + x_{k+1}} - \frac{8x_k}{3 + x_k} = \frac{24(x_{k+1} - x_k)}{(3 + x_{k+1})(3 + x_k)}$. Note that $(3 + x_{k+1})(3 + x_k) \geq 0$, since $x_k \geq 5$ for all $k \in \mathbb{N}$, and by our induction hypothesis, $x_{k+1} - x_k \leq 0$. Thus, $\frac{24(x_{k+1} - x_k)}{(3 + x_{k+1})(3 + x_k)} \leq 0$. So, D(k+1) holds. Thus, by the principle of mathematical induction, $x_{n+1} \leq x_n$ for all $n \in \mathbb{N}$, i.e., x_n is decreasing.

Since (x_n) is decreasing and bounded below, by Corollary 3.3.2(ii), it follows from the Monotone Convergence Theorem that (x_n) converges. Let $\lim_{n\to\infty} x_n = x \in \mathbb{R}$. By Theorem 3.4.1, as

 (x_{n+1}) is a subsequence of (x_n) , we know that $\lim_{n\to\infty} x_{n+1} = \lim_{n\to\infty} x_n = x$. Hence,

$$x = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \frac{8x_n}{3 + x_n}$$

$$= \frac{\lim_{n \to \infty} 8x_n}{\lim_{n \to \infty} 3 + x_n}$$
(as x_n is bounded below by 5, so $3 + x_n \neq 0$ for any n)
$$= \frac{8 \cdot \lim_{n \to \infty} x_n}{3 + \lim_{n \to \infty} x_n}$$

$$= \frac{8x}{3 + x}$$

Thus, $x = \frac{8x}{3+x}$, which gives $x^2 - 5x = 0$. So either x = 5 or x = 0. Let $y_n = 5$ be a constant sequence. So, by Theorem 3.2.9(b), as $x_n \ge 5$ (from above), $x = \lim_{n \to \infty} x_n \ge \lim_{n \to \infty} y_n = 5$. Hence, x = 5.

Question 4

Proof. Let $m_1 = \liminf x_n$, $m_2 = \liminf y_n$ and $m = \min\{m_1, m_2\}$. Note that as $(x_n), (y_n)$ are bounded, $\exists a, b, c, d \in \mathbb{R}$ such that $a \leq x_n \leq b$ and $c \leq y_n \leq d$ for all $n \in \mathbb{N}$. As $z_n = \min\{x_n, y_n\}$, each term in (z_n) is either in (x_n) or (y_n) . So, $\min\{a, c\} \leq z_n \leq \max\{b, d\}$, i.e., z_n is bounded. We know that $(\forall n \in \mathbb{N})[(z_n \leq x_n) \land (z_n \leq y_n)]$, so by Theorem 3.5.4, $\liminf z_n \leq \liminf x_n = m_1$ and $\liminf z_n \leq \liminf y_n = m_2$. Hence, $\liminf z_n \leq \min\{m_1, m_2\} = m$.

(Note that since x_n, y_n, z_n are bounded, by the Bolzano-Weierstrass Theorem, each of the sequences have at least one convergent subsequence, which means $S(x_n), S(y_n)$, and $S(z_n)$ are non-empty and thus $\lim \inf x_n$, $\lim \inf y_n$, and $\lim \inf z_n$ exist.)

Now let $z \in S(z_n)$. Then, there exists a subsequence (z_{n_k}) of (z_n) (with each $n_k \ge k$) such that $\lim_{n \to \infty} z_n = z$. Now as $(x_n), (y_n)$ are bounded sequences, by Theorem 3.5.2:

$$(\forall \epsilon > 0)(\exists K_1 \in \mathbb{N})[n \ge K_1 \Rightarrow x_n > m_1 - \epsilon]$$

and

$$(\forall \epsilon > 0)(\exists K_2 \in \mathbb{N})[n \ge K_2 \Rightarrow y_n > m_2 - \epsilon]$$

So, let $\epsilon > 0$ be given and $K = \max\{K_1, K_2\}$. Then $(\forall n \geq K)[(x_n > m_1 - \epsilon) \land (y_n > m_2 - \epsilon)]$. So, $(x_n > \min\{m_1 - \epsilon, m_2 - \epsilon\}) \land (y_n > \min\{m_1 - \epsilon, m_2 - \epsilon\})$. Hence, $z_n > \min\{m_1 - \epsilon, m_2 - \epsilon\}$. As ϵ is a constant, we get $z_n > \min\{m_1, m_2\} - \epsilon$, which is equivalent to $z_n > m - \epsilon$. Now, as (z_{n_k}) is a subsequence of (z_n) , $n_k \ge k$, so:

$$k \ge K \Rightarrow n_k \ge k \ge K$$

 $\Rightarrow z_{n_k} > m - \epsilon$
 $\Rightarrow z_{n_k} \ge m - \epsilon$

Thus, we have shown that $(\forall \epsilon > 0)(\exists K \in \mathbb{N})[k \geq K \Rightarrow z_{n_k} \geq m - \epsilon]$. Now, if we let $k \to \infty$, by Theorem 3.2.9, $z = \lim_{n \to \infty} z_{n_k} \geq m - \epsilon$. As $\epsilon > 0$ is arbitrary, $z \geq m$.

Hence, as z is arbitrary, we have shown that $(\forall z \in S(z_n))[z \ge m]$. So, m is a lower bound of $S(z_n)$. By definition, inf $S(z_n)$ is greatest lower bound of $S(z_n)$, so $\liminf z_n \ge m$.

Consequently, as $(\liminf z_n \ge m) \land (\liminf z_n \le m)$, $\liminf z_n = m = \min \{\liminf x_n, \liminf y_n\}$, as required.

Question 5

(a)

False

(b)

False

(i)

False

(ii)

False