Monday Group Presentation on Missing Data

Sam Shi

Ryerson University

November 11, 2016

Overview

- Missing data
 - Types of Missing Data
 - Why it is important
 - Common ways to deal with missing data

Methods

2/8

Types of Missing Data

supposed you want to model weight Y as a function of gender X and you do a survey asking for Y and X, in the end there are some missing values(data point missing or data attribute missing), below are possible scenarios,

- Missing completely at random(MCAR)
 No particular reasons why the data is missing, such as, it can be someone dropped the survey paper, hard recognizable hand-writing, etc. (data are rarely MCAR)
- Missing at random(MAR)
 It can happen that one gender X would less likely to disclose their weight information than the other.
- Missing not at random(MNAR)
 Missing value itself is related to why it is missing, e.g. a person with higher weight Y would more likely not fill out the weight blank on survey.

why it is important

Easy to occur very common

Nearly all standard statistical methods presume complete information for all the variables included in the analysis;
 Machine learning models need to have complete input.[Wiki, C4.5]

Improvements from ID.3 algorithm (es):
C45 make a number of represents ID.0.5 form of these are:
residing blood contracts and decrease and decrease analysis—is object to bandle continuous ambians. C4.5 reviews a threshold and then sight the list into those whose ambians value in allow the fresh investigation of the interpretation of the fresh interpretation of the interpr

Create bias [Missing Data Analysis]

Informative missing

- 1. Loss of statistical power
- 2. Regression slope is biased

Common ways to deal with missing data

A quick summary before we introduce dealing methods, [Computerphile]

- Listwise deletion (or complete case analysis)
- Imputation methods
- Multiple Imputation
- Maximum Likelihood
- Bayesian simulation methods
- Hot deck imputation methods

Listwise deletion

Subject	Age	Gender	Income
1	29	M	\$40,000
2	45	M	\$36,000
3	81	M	missing
4	22	missing	\$16,000
5	41	M	\$98,000
6	33	F	\$60,000
7	22	F	\$24,000
8	missing	F	\$81,000
9	33	F	\$55,000
10	45	F	\$80,000

Advantage:

- Easy to implement, no special computation method requires
- It is valid if the missing data is MCAR
- If the proportion of deleted data is small, e.g. < 5%

Disadvantage:

- Can exclude a large portion of data
- Missing data are MCAR rarely happens in reality
- Introduce bias

picture from Wiki

Imputation

Mean imputation: Use mean value of available data to represent missing data.

dasdas

References

C4.5: https://en.wikipedia.org/wiki/C4.5_algorithm

Missing Data Analysis: https://www.youtube.com/watch?v=QAvSj2TWZy0

The Trouble with Missing Data https://www.youtube.com/watch?v=oCQbC818KKU