Zero-shot Text Classification

Dan Yuhao 2021.5.19

Overview

- Application Scenarios
- Problem Definition
- Learning Settings
- Vector Spaces
- Methods
- Papers in Chronological Order

Application Scenarios?

Too many classes

比如,对于目标识别任务,人类能识别的类别有30000,而我们不可能为这每个类别都收集 样本。另一个例子是人类动作识别。人类能做的动作非常多,而我们能定义的动作是有限的,很多动 作在现有的数据集中都没有样例。

- Some classes are rare
 - 例如我们不可能为一种花的每种细分品种都收集足够的图片样例。
- Samples are changing over time
 - 例如识别特定品牌或者风格的产品。而随着时间的推进,会有新的品牌以及新的产品出现。
- High annotation cost
- 例如对于语义分割问题,需要对每个像素点的所属类别进行标记,带标签样本的数量是有限的。此外,现有数据集所覆盖的对象的类别的数量也是有限的。许多类别都没有带有标签的样例。

Problem Definition

Classification Model

Zero-shot Classification Model

Learning settings

- 类别和样例都靠推测 (CIII)
- 类别迁移,样例推测(CTII)
- 类别迁移,样例迁移(CTIT)

	带标签的训练样 例	Seen class prototypes	Unseen class prototypes	不带标签的测试 样例
CIII	√	√		
CTII	✓	✓	√	
CTIT	√	√	√	✓

Semantic Spaces(如何构建prototype?)

Engineered Semantic Spaces

Attribute Space

向量的每一个维度都是人工设定的某种性质,例如是否有尾巴。

有条纹 → 0 有尾巴 → 1 吃草 → 1 可爱 → 1

Engineered Semantic Spaces

Lexical Space

每一个维度都是一个和类别相关的词语,例如使用WordNet构建原型。

Engineered Semantic Spaces

Text-keyword Space

从公开知识库,例如wiki中搜索类别的描述,再从描述中抽取词语,例如选择名词,来构成原型的每个维度。

Educational institution is a place where people of different ages gain an education

Learned Semantic Spaces

Label-embedding spaces

利用Word2vec或者Glove这样的词嵌入来构建类别的原型。

Text-embedding spaces

将类别的文本描述整个放到一个编码器中,将输出的嵌入作为原型。

Image-representation spaces

将属于某个类别的图片输入预训练模型,将得到的嵌入结合起来作为原型。

Methods

如何为unseen classes建立分类器?

如何为无标签数据获得伪标签,并用这些数据训练模型?

Classifier-Based Methods

Correspondence methods

为每个类别建立一个one vs rest的分类器,并与对应的原型关联起

来。

A Survey of Zero-Shot Learning: Settings, Methods, and Applications [ACM Transactions on Intelligent Systems and Technology 2019]

Classifier-Based Methods

Relationship methods

根据类别间的关系来为没有见过的类别建立分类器。

A Survey of Zero-Shot Learning: Settings, Methods, and Applications [ACM Transactions on Intelligent Systems and Technology 2019]

Classifier-Based Methods

Combination methods

采用Attribute space作为原型,构建分类器预测原型上的每一个维度(属性)。

Instance-Based Methods

Projection methods

将feature space(样例)和semantic space(原型)投影到一个共同的向量空间projection space。

$$\mathcal{X} \to \mathcal{P} : \mathbf{z}_i = \theta(\mathbf{x}_i),$$

$$\mathcal{T} \to \mathcal{P} : \mathbf{b}_i = \xi(\mathbf{t}_i).$$

Instance-borrowing methods

对于某个unseen class, 我们从seen classes里头借用和它相似的样本,并打上这个unseen class的标签,对于此类方法来说,unseen classes需要被提前确定。

Synthesizing methods

首先为unseen class生成样例(例如使用GAN),然后将此样例打上标签,用于训练。此类方法的unseen classes也需要被提前确定。

Figure 2: Architecture 1

Figure 3: Architecture 2

Figure 4: Architecture 3

Data augmentation

c:w::c':?'

Animal (Original)	Mitra perdulca is a species of sea snail a marine gastropod mollusk in the family Mitridae the miters or miter snails.
Animal → Plant	Arecaceae perdulca is a flowering of port aster a naval mollusk gastropod in the fabaceae Clusiaceae the tiliaceae or rockery amaryllis.
Animal → Athlete	Mira perdulca is a swimmer of sailing sprinter an Olympian limpets gastropod in the basketball Middy the miters or miter skater.

Feature augmentation

为每个Label创建三类词语集合:

- ✓类别本身包含的词语
- ✓ConceptNet中的上位词
- ✓描述中的名词

Educational Institution

- ✓ educational institution, educational, institution
- ✓organization, agent
- ✓ place, people, ages, education.

Artist

Company

Athlete

Educational

Feature augmentation

- v[0] = 1 if w_j is a node in that set; otherwise, \longrightarrow 词语在set中? v[0] = 0.
- for k = 0, ..., K 1:
 - v[3k+1]=1 if there is a node in the \longrightarrow 如果set中有词语到当前词语的距离是k跳,则为1 set whose shortest path to w_j is k+1.

 Otherwise, v[3k+1]=0.
 - v[3k+2] is the number of nodes in the \longrightarrow set中的词语到当前word的距离为k跳的数量。 set whose shortest path to w_i is k+1.

Examples

Premise	Label	Hypothesis
Fiction		
The Old One always comforted Ca'daan, except today.	neutral	Ca'daan knew the Old One very well.
Letters		
Your gift is appreciated by each and every student who will benefit from your generosity.	neutral	Hundreds of students will benefit from your generosity.
Telephone Speech		
yes now you know if if everybody like in August when everybody's on vacation or something we can dress a little more casual or	contradiction	August is a black out month for vacations in the company.
9/11 Report		
At the other end of Pennsylvania Avenue, people began to line up for a White House tour.	entailment	People formed a line at the end of Pennsylvania Avenue.

情感分类(joy):

输入: [CLS] Text [SEP] the person feels joyful [SEP]

输出:二分类

情感分类(fear):

输入: [CLS] Text [SEP] the person is afraid of something [SEP]

输出:二分类

Dataset	Question	Text	Answer
Title Prediction Pretraining Which of these choices best scribes the following docume: "A pool For All Bodies' Lawmakers say they'd take cut, but they can't", "Raid Gareon Conley faces civil ", "Prolific cybercriminal pected of spreading ransomw arrested by Polish Police [ropol]"		Story highlights Members of Congress also preparing for potential sharp cuts in federal spending\n\nBut lawmakers will not see any change to their annual salary of \$174,000	Lawmakers say they'd take pay cut, but they can't
AGNews Zero- shot Classifica- tion	How is the text best described?: " Science & Technology", "Business", "Sports", or "World News"	An Entertaining Holiday Pick \n Hastings, a multimedia retailer, trims losses and raises full-year guidance.	Business

State:

[CLS] of input: p_{x,y^*}

Prediction c_{x,y^*} Confidence:

Action:

$$z_t = ReLU(W_1^T c_{x,y^*} + W_2^T p_{x,y^*} + b_1),$$

$$P(a|s_t) = softmax(W_3^T z_t + b_2).$$

Reward:

$$r_k = \frac{(F_k^s - \mu^s)}{\sigma^s} + \lambda \cdot \frac{(F_k^u - \mu^u)}{\sigma^u}$$

$$\begin{split} s_l &= \operatorname{softmax}(\operatorname{tanh}(H \cdot W_a^\top + b_a) \cdot v_l), \ a_l = s_l^\top \cdot H, \ h_l^t = \frac{1}{|\mathcal{V}(l)|} \Sigma_{j \in \mathcal{V}(l)} g_j^{t-1}, \ g_l^t = \operatorname{GRU}(h_l^t, g_l^{t-1}) \\ f_l &= \operatorname{rectifier}(W_o \cdot a_l + b_o), \quad \hat{y}_l = \sigma(g_l^\top \cdot f_l), \quad \mathcal{L}_{\text{BCE}}(y, \hat{y}) = -\sum_{l=1}^L [y_l \log(\hat{y}_l) + (1 - y_l) \log(1 - \hat{y}_l)] \end{split}$$

Generator Discriminator

$$\mathcal{L}_{ ext{KEY}} = -\log P(K_l| ilde{f_l}) pprox - \sum_{w_k \in K_l} \pi(w_k, v_l) \cdot \log P(w_k| ilde{f_l})$$

Keyword Reconstruction

$$= -\sum_{w_k \in K_l} \pi(w_k, v_l) \cdot \log \frac{\exp(w_k^\top \cdot Q\tilde{f}_l)}{\sum_{w \in \mathcal{K}} \exp(w^\top \cdot Q\tilde{f}_l)}$$
(7)

情感分类:

_____满意。这趟北京之旅我感觉很不错。

 $\{\mathcal{A}, \mathcal{L}, \mathcal{L}\} \rightarrow \mathbb{L}$ 正面 $\{\mathcal{L}, \mathcal{L}, \mathcal{L}\} \rightarrow \mathcal{L}$ 负面

新闻主题分类:

下面报导一则_____新闻。八个月了,终于又能在赛场上看到女排姑娘们了。

情感分类:

输入:识别该句子的情感倾向:这趟北京之旅我感觉很不错。

输出:正面

主题分类:

输入:下面是一则什么新闻?八个月了,终于又能在赛场上看到女排姑娘们了。

输出:体育

Exploiting cloze questions for few shot text classification and natural language inference [EACL 2021]

