Recent Advances in Charge Density Prediction

Jiaxi Zhao (NUS)

June 6, 2025 Multiscale Modelling and Machine Learning Seminar

Outline

Charge density prediction and equivariant neural networks

E3NN

SCDP: Spherical Channel Density Prediction

ChargE3Net

What is Charge Density?

 \triangleright Charge density $\rho(\mathbf{r})$ represents the probability distribution of electrons in a system

$$\rho(\mathbf{r}) = N \int |\Psi(\mathbf{r}, \mathbf{r}_2, \cdots, \mathbf{r}_N)|^2 d\mathbf{r}_2 \cdots d\mathbf{r}_N, \quad \rho(\mathbf{r}) = \sum_{i=1}^N |\phi_i(\mathbf{r})|^2,$$

for Hartree-Fock and density functional theory (DFT) where orbitals are defined.

- Key properties:
 - Non-negative: $\rho(\mathbf{r}) \geq 0$.
 - Normalized: $\int \rho(\mathbf{r})d\mathbf{r} = N$ (number of electrons).

Why is Charge Density Important?

- Fundamental quantity of the DFT, required for most downstream calculations:
 - ► Band structure, phonon properties, etc.
 - High-throughput screening
 - Property optimization & Structure prediction
- ► Contains more information than the energy and force prediction. For a system with *N* atoms.
 - ▶ Total energy + Forces: dimension = 3N + 1.
 - ▶ Charge density: dimension = n^3 (n is the plane-wave grid size) or the number of basis functions.
 - ► An analog: Text2Text v.s. Text2Image.

Challenges in Charge Density Prediction

Physical constraints:

▶ E(3) = O(3) $\oplus \mathbb{R}^3$ equivariance: given two systems $\{(\mathbf{r}_a, Z_a)\}$ and $\{(\mathbf{r}'_a, Z'_a)\}$ related by $\mathbf{r}'_a = \mathbb{R} \, \mathbf{r}_a + \mathbf{t}, Z'_a = Z_a$, the charge density should satisfy:

$$\rho(\mathbf{r}) = \rho'(\mathsf{R}\,\mathbf{r} + \mathbf{t}), \quad \mathsf{R} \in \mathsf{O}(3), \mathbf{t} \in \mathbb{R}^3.$$

Much more difficult than the energy and force prediction, especially for the rotational equivariance. Equivariance on the level of operator.

▶ If $E = E(\{(\mathbf{r}_a, Z_a)\})$ is G-invariant, then the gradient of it $F = \nabla_{\mathbf{r}_a} E(\{(\mathbf{r}_a, Z_a)\})$ is G-equivariant.

Two network parametrization for equivariance

▶ (Basis-based) For molecular systems with basis functions, we require:

$$\rho(\mathbf{r}) = \sum_{a} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{alm} R_{al}(|\mathbf{r} - \mathbf{r}_{a}|) Y_{lm}(\widehat{\mathbf{r} - \mathbf{r}_{a}}), \quad r = |\mathbf{r}|, \quad \widehat{\mathbf{r}} = \frac{\mathbf{r}}{r}.$$

The equivariance of the density can be expressed as the equivariance of the vector of coefficients c_{alm} .

$$\{(\mathbf{r}_a, Z_a)\} \rightarrow \{c_{alm}\}$$

Probe-based) For general systems, motivated by implicit neural representation, we require the following map to be invariant:

$$\{(\mathbf{r}_{a}, Z_{a}), \mathbf{r}'_{1}, ..., \mathbf{r}'_{n}\} \rightarrow \{\rho(\mathbf{r}'_{1}), \rho(\mathbf{r}'_{2}), ..., \rho(\mathbf{r}'_{n})\}.$$

► (Mesh-based) Mesh representation of density can model the translational equivariance but not the rotational equivariance.

Representation of SO(3): spherical harmonics

- ▶ Spherical harmonics $Y_{lm}(\hat{\mathbf{r}})$ are eigenfunctions of angular momentum operators.
- Y_{lm} $I_{m=-l}$ forms an irreducible representation of SO(3) of dimension 2l+1.

$$Y_{lm}(\mathsf{R}\,\hat{\mathbf{r}}) = \sum_{m'=-l}^{l} D_{m'm}^{l}(\mathsf{R}) Y_{lm'}(\hat{\mathbf{r}}) \Longrightarrow (\mathsf{R}\,c)_{lm} = \sum_{m'=-l}^{l} D_{m'm}^{l}(\mathsf{R}) c_{lm'}.$$

$$n = 0$$

$$n = 1$$

$$n = 2$$

$$n = 3$$

$$n = 4$$

$$m = 0 \quad m = 1 \quad m = 2 \quad m = 3 \quad m = 4$$

Add equivariance into graph neural networks (GNN)

- lacktriangle A GNN is defined on a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is permutation equivariant.
- ▶ A series of functions $f: \mathbb{R}^{|\mathcal{V}| \times F_i} \to \mathbb{R}^{|\mathcal{V}| \times F_{i+1}}$, locally aggregates all the features belonging to the neighborhood. For example, a GCN layer:

$$f(X) = \sigma(D^{-1/2}\widetilde{A}D^{-1/2}XW), \quad A, D \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}, X \in \mathbb{R}^{|\mathcal{V}| \times F_i}, W \in \mathbb{R}^{F_i \times F_{i+1}}, \widetilde{A} = A + I,$$

where W is the learnable weight matrix.

To enforce the equivariance $NN(gX) = gNN(X), g \in G$:

- ► The set of features X should have a SO(3)-action: construct X via spherical harmonics.
- ► The function *f* should be equivariant for each layer: special attention on the architecture design.

Build an equivariant GNN: irreps as features

- ► For each graph node, the feature vector is the direct sum of all the irreps of dimension less than or equal to *L*.
- Invariant scalar corresponds to l = 0; vector corresponds to l = 1; below is the transformation matrix of a rotation on reps $10 \times 00 + 5 \times 010 + 5 \times 020$.

Fully Connected Tensor Product Operation

▶ Mathematical definition: reps = reps1 \otimes reps2.

$$(U^{(l_1)} \otimes V^{(l_2)})_{cm}^{(l)} = \sum_{m_1=-l_1}^{l_1} \sum_{m_2=-l_2}^{l_2} C_{(l_1,m_1)(l_2,m_2)}^{(l,m)} U_{cm_1}^{(l_1)} V_{cm_2}^{(l_2)},$$

where $|I_1 - I_2| \le I \le |I_1 + I_2|$, $C_{(I_1, m_1)(I_2, m_2)}^{(I, m)}$ are Clebsch-Gordan coefficients

Equivariant convolution combines features of different angular momenta:

$$\mathsf{Conv}(\mathbf{r}_{\mathsf{a}}, V_{\mathsf{a}lm}^{\mathsf{c}}) = \sum_{m_1, m_2} C_{(l_1, m_1)(l_2, m_2)}^{(l, m)} \sum_{b \in \partial_{\mathsf{a}}} V_{b l_1 m_1}^{\mathsf{c}} R(r_{\mathsf{a}b}) Y_{l_2 m_2}(\hat{\mathbf{r}}_{\mathsf{a}b}),$$

$$R(r_{ab}) = W_n \sigma(\cdots \sigma(W_2 \sigma(W_1 B(r_{ij})))), \quad B(r_{ab}) = \frac{2}{r_c} \frac{\sin(\frac{n\pi}{r_c} r_{ij})}{r_{ij}} f(r_{ij}, r_c).$$

► Equivariance follows from the definition of the tensor product of the reps and the second reps depends both on the parameters and **r**.

Equivariant graph convolution

Other equivariant operations

Gated nonlinearity:

$$\sigma_{\mathsf{Gated}}(X) = \sigma(X_{l=0}) \oplus (\sigma(X_{l=0}) \cdot X_{l \neq 0}).$$

▶ Self-interaction (similar to 1×1 convolution)

$$X_{c_1 l}^{ ext{out}} = \sum_{c_2} W_{c_1 c_2} X_{j l}^{ ext{in}}, \quad c_1 \in [F_{ ext{out}}], c_2 \in [F_{ ext{in}}], l \in [(L+1)^2].$$

- Point-wise spherical non-linearity.
- Selfmix layers (similar to self-attention), tensor product with itself.
- Pairmix layers.

Literature

- ► Thomas, Nathaniel, et al. "Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds." arXiv preprint arXiv:1802.08219 (2018).
- ▶ Batzner, Simon, et al. "E (3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials." Nature communications 13.1 (2022): 2453.
- Passaro, Saro, and C. Lawrence Zitnick. "Reducing SO (3) convolutions to SO (2) for efficient equivariant GNNs." International conference on machine learning. PMLR, 2023.

Dataset

- ▶ QM9: 134k small organic molecules, on average 18 atoms and 666K grid points for charge density voxels¹.
- ▶ MP: 123K crystal structures with charge density².

⁴Ramakrishnan, Raghunathan, et al. "Quantum chemistry structures and properties of 134 kilo molecules." Scientific data 1.1 (2014): 1-7.

^{**}Shen, Jimmy-Xuan, et al. "A representation-independent electronic charge density database for crystalline materials." Scientific data 9.1 (2022): 661.

E3NN: Density fitting

- A consistent basis for all the charge density, not the case for DFT.
- ▶ Density fitting: fit the density to a predefined basis set, def2-universal-JFIT³.

$$\rho(\mathbf{r}) = \sum_b C_b \phi_b^{\mathsf{basis}}(\mathbf{r}),$$

The objective function is to minimize: $\mathcal{L} = \frac{1}{N} \sum_{i} \left(C_b - \widehat{C}_b \right)^2$.

- 3 hidden layers.
- ▶ Input reps = $2\times0e$ (2 channels l=0) with hydrogen ([1, 0]) and oxygen ([0, 1]).
- ► Hidden reps = $125 \times 00 + 125 \times 0e + 40 \times 1e + 25 \times 2e + 25 \times 2e + 15 \times 3e + 15 \times 3e$.
- Output reps = 7x0e + 4x1e + 2x2e + 1x3e.

⁶Rackers, Joshua A., et al. "Cracking the quantum scaling limit with machine learned electron densities." arXiv preprint arXiv:2201.03726 (2022).

The effect of cluster size on density prediction

This is one of the first lines of work:

- ▶ Does not train on large dataset for density prediction.
- ► Training on specific systems to push the frontier of quantum chemistry calculations.

The y-axis is the relative L^1 -error.

SCDP Architecture Overview

- Basis-based approach with following ingredients:
 - Virtual nodes for non-local electronic structures
 - Even-tempered Gaussian basis sets
 - ► High-capacity equivariant spherical channel network (eSCN).
- Charge density representation with trainable scale parameters:

$$\rho(\mathbf{r}) = \sum_{a} \sum_{l}^{N_{a}} \sum_{m=-l}^{l} c_{alm} \Phi_{\alpha,l,m,\mathbf{r}_{a}}(\mathbf{r}, s_{al})$$

$$\Phi_{\alpha,l,m,\mathbf{r}_{i}}(\mathbf{r}, s) = z_{\alpha,l,s} \exp(-s \cdot \alpha |\mathbf{r} - \mathbf{r}_{a}|^{2}) |\mathbf{r} - \mathbf{r}_{a}|^{l} Y_{lm}(\widehat{\mathbf{r} - \mathbf{r}_{a}})$$

▶ Model prediction, scaling factors $s_{al} \in (0.5, 2.0)$:

$${c_{alm}, s_{al}} = F({(\mathbf{r}_a, Z_a)}).$$

Virtual Nodes and Basis Sets

- Virtual nodes:
 - Placed at bond midpoints.
 - Use oxygen basis functions
 - ► SE(3)-equivariant placement
- Even-tempered Gaussian basis for better accuracy:

$$\alpha_k = \alpha \cdot \beta^k$$
 for $k = 0, 1, 2, ..., N_I$

- ▶ Reducing SO(3) convolution to SO(2): $O(L^6) \rightarrow O(L^3)$.
- ▶ The basis set is not orthonormal, the coefficients depend on the cutoff radius.
- Two-stage training for stability caused by the scale factors on the exponent:
 - pre-train the model with fixed basis set exponents
 - fine-tune the prediction model with a small learning rate with the learning for scaling factors enabled.

Model Architecture

- Backbone: eSCN (equivariant spherical channel network)
 - $| \{x_a\} = eSCN(\{(\mathbf{r}_a, Z_a)\})$
 - ► Complexity: $O(L^3)$ vs $O(L^6)$ for tensor products
 - ► Features: Multi-channel spherical harmonics
 - **Example:** $128 \times 0e + 128 \times 1o + 128 \times 2e + 128 \times 3o$
- Prediction layers:

$$\{c_{alm},h_i\} = \mathsf{FullyConnectedTensorProduct}(x_i,x_l)$$

$$s_{al} = \frac{C_1}{1+\mathsf{exp}(-\mathsf{Linear}(h_i)+\mathsf{In}\;C_2)} + C_3 \in [C_1,C_3].$$

Training objective:

$$\mathcal{L} = \mathbb{E}_{\mathbf{r} \in \mathsf{Data}}[|
ho(\mathbf{r}) - \hat{
ho}(\mathbf{r})|]$$

Performance Analysis

- ► NMAE: 0.178% on QM9 test set
- ▶ 31.7x faster than ChargE3Net
- ► Flexible accuracy-efficiency trade-off

	NMAE [%] ↓	NMAE, Split 2 [%] \	Mol. per min. [min ⁻¹] ↑
i-DeepDFT [7]	0.357 ± 0.001		
e-DeepDFT [7]	0.284 ± 0.001		
ChargE3Net [15]	0.196 ± 0.001	0.203 ± 0.003	3.95
InfGCN [12]	0.869 ± 0.002	0.93	72.00
InfGCN, GTO only [12]		3.72	-
GPWNO [22]		0.73	
SCDP models (Ours)			
eSCN, $K = 4, L = 3, \beta = 2.0$	0.504 ± 0.001	0.514 ± 0.003	675.47
$SCN, K = 8, L = 6, \beta = 2.0$	0.434 ± 0.006	0.452 ± 0.017	567.19
k SCN, $K = 8, L = 6, \beta = 1.5$	0.381 ± 0.001	0.391 ± 0.002	442.25
$8SCN + VO, K = 8, L = 6, \beta = 2.0$	0.237 ± 0.001	0.250 ± 0.002	231.21
$SCN + VO, K = 8, L = 6, \beta = 1.5$	0.206 ± 0.001	0.220 ± 0.002	177.14
$sSCN + VO, K = 8, L = 6, \beta = 1.3$	0.196 ± 0.001	0.209 ± 0.002	136.92
SCDP models fine-tuned with scaling factors	(Ours)		
2 SCN, $K = 4, L = 3, \beta = 2.0$	0.432 ± 0.001	0.438 ± 0.003	644.00
$SCN, K = 8, L = 6, \beta = 2.0$	0.369 ± 0.007	0.386 ± 0.018	544.56
SCN, $K = 8$, $L = 6$, $\beta = 1.5$	0.346 ± 0.001	0.354 ± 0.002	419.57
$SCN + VO, K = 8, L = 6, \beta = 2.0$	0.207 ± 0.001	0.220 ± 0.002	221.19
$SCN + VO, K = 8, L = 6, \beta = 1.5$	0.187 ± 0.001	0.200 ± 0.002	164.94
$eSCN + VO, K = 8, L = 6, \beta = 1.3$	0.178 ± 0.001	0.191 ± 0.002	125.29

ChargE3Net Architecture Overview

- Based on the E3NN backbone.
- ► Construct two k-d trees to partition the atoms and probes.
- ► Two types of convolutions:
 - Conv_{atom}: Bidirectional between atoms

$$\mathsf{Conv}^n_{\mathsf{atom}}(\mathbf{r}_i, X_i^n) = W_1^n(\sum_{j \in \partial(i)} W_2^n X_j^n \otimes R(r_{ij}) Y(\mathbf{r}_{ij})) + W_3^n X_i^n.$$

- Conv_{probe}: From atoms to probes, only contains neighboring atoms, no probe-probe interactions.
- Training objective:

$$\mathcal{L} = \frac{\sum_{\mathbf{r} \in G} |\rho(\mathbf{r}) - \hat{\rho}(\mathbf{r})|}{\sum_{\mathbf{r} \in G} |\rho(\mathbf{r})|}$$

Model performance

- Vertices:
 - ► Atoms: One-hot encoding of atomic number; reps = Nx0o.
 - ▶ Probe points: Initialized as zero scalar; reps = 1x0o.
- Edges:
 - ► Atom-atom: Unidirectional, cutoff 4Å
 - Atom-probe: Directed from atoms to probes
- Periodic boundary conditions supported

Dataset	invDeepDFT	${\it equiDeepDFT}$	OrbNet-Equi	${\it ChargE3Net}$
NMC	0.089 ± 0.001	0.061 ± 0.001	-	0.060 ± 0.001
QM9	0.357 ± 0.001	0.284 ± 0.001	0.206 ± 0.001	0.196 ± 0.001
MP	0.859 ± 0.011	0.799 ± 0.010	-	0.523 ± 0.010

All values are presented as an average ϵ_{mae} (%) and \pm one standard error. Bold values represent the best ϵ_{mae} (%) scores. ϵ_{mae} reported for MP include both magnetic and non-magnetic materials.

Performance

- ► Accelerate DFT calculations: MP materials: 26.7% reduction; GNoME materials: 28.6% reduction.
- ▶ Non-self-consistent property prediction:
 - ▶ 40% of materials: energy errors < 1 meV/atom
 - ▶ 70% of materials: forces < 0.03 eV/Å
 - ▶ 76% of materials: band gaps within chemical accuracy
- ► Linear scaling O(N) with system size.

Effect of higher-order features

- ▶ The total dimension of features is N.
- ▶ With highest order *L*, The dimension of each order is N/(L+1).
- ▶ The channel of order *I* is N/(L+1)/(2I+1).

Angular Variance Analysis

- Performance improvement:
 - ▶ 44.6% median improvement for materials with non-metals/metalloids
 - ▶ 23.0% median improvement for materials with only metals
- Metric ζ for angular variance:

$$\zeta(\textit{G}) = 1 - rac{\sum_{ec{g}_k \in \textit{G}} |
abla
ho(ec{g}_k) \cdot \hat{r}_{ki}|}{\sum_{ec{g}_k \in \textit{G}} ||
abla
ho(ec{g}_k)||}$$

- ► High angular variance materials, e.g. Cs(H2PO4)
 - Strong covalent bonding
 - ► Significant L=4 improvement
- Low angular variance materials, e.g. Rb2Sn6:
 - Primarily ionic interactions
 - ► Similar L=0 and L=4 performance

Discussions

- Incorperate more symmetries: space-group symmetry, point-group symmetry of crystal.
- Comparison with approaches of canonical transformations. This type of method is is restricted to be probe-based.
- ▶ Different approaches to equivariance in robot community: equivariant vision.
- Sobolev training for downstream tasks where the gradient information of the density is required.
- ▶ Does it worth to pursue the equivariance for the model? Seems not necessary as the AlphaFold evolves.