

TECAPEEK NATURAL

Denominação Química: Poli-éter-éter-cetona

Abreviação DIN: PEEK

Cores, aditivos: Bege sem cargas (natural)

Medidas de Estoque

Tarugos Chapas Tubos

Diâmetro: 05 – 200mm

Comprimento: 3,0 m e cortes

Espessura: 5mm – 100mm

Largura: 500mm, 610mm e 1000mm

Comprimento: 3,0 m e cortes

Diâmetro Externo: 40mm – 150mm

Diâmetro Interno: 25mm – 70mm

Comprimento: 3,0 m e cortes

PRINCIPAIS CARACTERÍSTICAS:

Elevada resistência termo-mecânica

Baixa impureza iônica

Material tenaz

Resistente á abrasão

 Boa estabilidade dimensional sob alta pressão Elevada resistência à radiação

Isolante elétrico

Baixa inflamabilidade (UL 94 V0)

Boas propriedades de deslize

 Elevada resistência química, à hidrólise e ao vapor superaquecido

ÁREAS DE APLICAÇÃO:

Indústria Mecânica de Precisão

Indústria Automotiva

Indústria Alimentícia

Indústria Médica

Indústria Química

Tecnologia de Transportes e movimentação

Tecnologia de semicondutores

Indústria aeroespacial

Indústria Têxtil

Indústria de Embalagens

Indústria Eletrônica

Tecnologia nuclear

Tecnologia de Vácuo

EXEMPLOS DE APLICAÇÕES:

Engrenagens

Rolamentos de atrito

Mancais

Sapatas de deslize

Sedes/vedações de válvulas

Buchas

Corpo de bombas

Pistões dosadores

Suporte de molduras para peças

Soquete de lâmpada

Peças eletrônicas de altíssima precisão

Conectores

TECAPEEK NATURAL

Os dados abaixo são apenas para referência de consulta. Para cada aplicação específica são necessários testes individuais, para determinação das suas efetivas características e propriedades.

Propriedades	Valor (Seco/úmido)		Unidade	Norma de Referência			
MECÂNICAS							
Resistência Tração (escoamento)	95		MPa	DIN EN ISO 527			
Alongamento (escoamento)	5		%	DIN EN ISO 527			
Alongamento (ruptura)	25		%	DIN EN ISO 527			
Módulo de Elasticidade (tração)	3000		MPa	DIN EN ISO 527			
Módulo de Elasticidade (flexão)	4100		MPa	DIN EN ISO 178			
Dureza	M99			ASTM D 785			
Resistência à deformação após 1000h com carga estática			MPa				
Tensão de deformação para 1% de alongamento depois de 1000 h			MPa				
Resistência ao impacto (Charpy – 23°C)	n.b		KJ/m ²	DIN EN ISO 179			
Coeficiente de fricção (em aço retificado - p = 0,05 N/mm², v = 0,6 m/s)	0,30- 0,38						
TÉRMICAS							
Temperatura de transição vítrea	143		C	DIN 53 765			
Temperatura de distorção por calor (HDT) – método A	140		С	ISO R 75 / DIN 53 461			
Temperatura de distorção por calor (HDT) – método B	182		С	ISO R 75 / DIN 53 461			
Máxima temperatura de serviço – curta duração	300		C				
Máxima temperatura de serviço – longa duração	260		£				
Coeficiente de condutividade térmica (23℃)	0,25		W/(K.m)				
Calor específico (23℃)	0,32		J/g.K				
Coeficiente de expansão térmica (23℃-55℃)	5		10 ⁻⁵ 1/K	DIN 53 752			

Propriedades	Valor (Seco/úmido)		Unidade	Norma de Referência			
ELÉTRICAS							
Constante Dielétrica (10 ⁶ Hz)	3,2 3,3			DIN 53 483/ IEC 250			
Fator de perda dielétrica (10 ⁶ Hz)	0,001 0,004			DIN 53 483/ IEC 250			
Volume específico de resistência	10^16		Ω^{\star} cm	DIN IEC 60093			
Resistência superficial	10^15		Ω	DIN IEC 60093			
Rigidez Dielétrica	20		K V/mm	DIN 53 481, IEC 243, VDE 0303			
Resistência às correntes de fuga				DIN 53 481, VDE 0303			
DADOS DIVERSOS							
Densidade	1,30		g/cm ³	DIN 53 479			
Teor de absorção de água (23℃/50%)	0,1		%	DIN EN ISO 62			
Teor de absorção de água até saturação	0,5		%	DIN EN ISO 62			
Inflamabilidade	V0						
Resistência à água quente, bicarbonato de sódio	+						
Resistência ao intemperismo	-						
Ponto de Fusão dos Cristais	343		С	DIN 53 765			

Nota 1:

Valores obtidos de produtos semi-acabados.

Nota 2:

As informações acima descritas correspondem ao atual conhecimento dos materiais indicados. A menos que especificado, os valores acima apresentados representam a média dos resultados de testes realizados em corpos de prova injetados, secos e ensaiados conforme norma de referência. A ENSINGER se reserva o direito de alterações técnicas nos dados de fichas técnicas sem aviso prévio. Os nossos produtos não são destinados para uso em implantes. Referências de patentes existentes devem ser respeitadas.

No grupo ENSINGER são disponibilizados:

- Semi-acabados, peças usinadas, injetadas e perfis em mais de 100 materiais e modificações
- Plásticos de engenharia: PA extrudado ou fundido, POM, PC, PET, PBT, PPE, PP, PE
- Plásticos de Alta Performance: PI, PEEK, PPS, PES, PPSU, PEI, PSU, PVDF, PCTFE, PTFE
- Comprimento padrão: 3 metros
- Semi-acabados prensados/sinterizados: PI, PEEK, PPS, PTFE/PI e modificações, assim como PCTFE em medidas especiais em forma de discos com diâmetros extremos, tubos e anéis com diâmetro de 1500 mm
- Aditivos: entre outros vidro, fibra de carbono e fibra de aramida, talco, MoS₂, grafite, PTFE, PE, óleo de silicone, agentes lubrificantes
- Semi-acabados pultrudados: resinas de poliéster, vinilester ou epóxi com fibras contínuas de vidro ou carbono