Aflevering \mathbf{K}_p og \mathbf{K}_o

3.7 A

I en beholder på 120 L findes 5.0 mol $\rm H_2(g)$ og 10.2 mol $\rm I_2(g)$ og intet andet. Temperaturn er $20^{\circ}C$

a. Beregn de to gassers partialtryk.

Stofmængdekoncentrationen har enheden mol/L, så jeg tager bare stofmængden af hvert stof og dividerer med de 120 liter.

$$\begin{split} I_2(g): & \frac{10.2 \ mol}{120 \ L} = 0.085 \ \frac{mol}{L} \\ H_2(g): & \frac{5.0 \ mol}{120 \ L} = 0.041\overline{6} \ \frac{mol}{L} \end{split}$$

Beholderen opvarmes til $560^{\circ}C$, hvorved følgende ligevægt indstiller sig:

$$H_2(g) + I_2(g) \Longrightarrow 2 HI(g)$$

Ved ligevægt bestemmens stofmængden af HI i beholderen til 9.2 mol.

b. Beregn stofmængderne $n(H_2)$ og $n(I_2)$ ved ligevægt

	$H_2(g) +$	$I_2(g) \rightleftharpoons$	2 HI(g)
$m_{ m for}$	5.0 mol	10.2 mol	0 mol
$m_{brugt/dannet}$	$\frac{9.2 \ mol}{2}$	$\frac{9.2 \ mol}{2}$	9.2 mol
m_{efter}	$5.0\ mol-4.6\ mol$	$10.2 \ mol - 4.6 \ mol$	9.2 mol
	=0.4~mol	$=5.6 \ mol$	9.2 mol

Så stofmængden af $H_2(g)$ efter ligevægt er 0.4 mol og stofmængden af $I_2(g)$ efter ligevægt er 5.6 mol.

c. Beregn totaltrykket i beholderen før og efter ligevægt. Hvorfor er de to tryk ens?

Før ligevægt har vi 5.0 mol $H_2(g)$ og 10.2 mol $I_2(g)$. Jeg bruger formlen

$$P = \frac{n \cdot R \cdot T}{V}$$

Til at udregne partialtrykket for hvert stof

$$I_2(g): P = \frac{n \cdot R \cdot T}{V} \Leftrightarrow P = \frac{10.2 \ mol \cdot 0.08314472 \ \frac{L \cdot bar}{K \cdot mol} \cdot 833.15 \ K}{120 \ L}$$

$$= 5.88812 \ bar$$

$$H_2(g): P = \frac{n \cdot R \cdot T}{V} \Leftrightarrow P = \frac{5.0 \ mol \cdot 0.08314472 \ \frac{L \cdot bar}{K \cdot mol} \cdot 833.15 \ K}{120 \ L}$$

$$= 2.88633 \ bar$$

Så lægger jeg dem bare sammen

$$5.88812 \ bar + 2.88633 \ bar = 8.8 \ bar$$

Så for at beregne trykket efter gør jeg det samme men nu har jeg 3 stoffer jeg skal regne på

$$I_2(g): P = \frac{n \cdot R \cdot T}{V} \Leftrightarrow P = \frac{5.6 \ mol \cdot 0.08314472 \ \frac{L \cdot bar}{K \cdot mol} \cdot 833.15 \ K}{120 \ L}$$

$$= 3.23269 \ bar$$

$$H_2(g): P = \frac{n \cdot R \cdot T}{V} \Leftrightarrow P = \frac{0.4 \ mol \cdot 0.08314472 \ \frac{L \cdot bar}{K \cdot mol} \cdot 833.15 \ K}{120 \ L}$$

$$= 0.23090 \ bar$$

$$HI(g): P = \frac{n \cdot R \cdot T}{V} \Leftrightarrow P = \frac{9.2 \ mol \cdot 0.08314472 \ \frac{L \cdot bar}{K \cdot mol} \cdot 833.15 \ K}{120 \ L}$$

$$= 5.31085 \ bar$$

Og så lægger jeg dem sammen

$$3.23269 \ bar + 0.23090 \ bar + 5.31085 \ bar = 8.8 \ bar$$

Trykkene er en
s fordi ligevægtsbrøken er enhedsløs
($\frac{[HI(g)]^2}{[H_2(g)]\cdot[I_2(g)]})$

d. Beregn en værdi for ligevægtskonstanten ved $560^{\circ}C$.

$$K_c = \frac{[\text{HI}(g)]^2}{[\text{H}_2(g)] \cdot [\text{I}_2(g)]} \Leftrightarrow K_c = \frac{(9.2 \ mol)^2}{0.4 \ mol \cdot 5.6 \ mol} = 38$$

Opgave 3.10 A

Følgende eksperimenter foregår alle ved $25^{\circ}C$

- i. 150 ml $3.0\cdot 10^{-5}~\mathrm{M~BaCl_2}$ blandes med 250 ml $3.5\cdot 10^{-5}~\mathrm{M~Na_2SO_4}$
- ii. Et bægerglas indeholder en 0.0010 M vandig opløsning af PbCl₂. Bægerglasset hensættes, indtil opløsningens volumen er halveret ved fordampning af vand.
- iii. 5.00 ml 0.0100 M NaCl blandes med 75.0 ml 0.0010 M AgNO₃. Herved dannes et bundfald af sølvchlorid

a. Opskriv et reaktionsskema for den fældningsreaktion, der finder sted i eksperiment I, og angiv tilskuerionerne

$$Ba^+ + SO_4^{2-} \longrightarrow BaSO_4^{-1}$$

Tilskuerionerne er: Cl⁻ og Na⁺

b. Vis ved beregning, at der vil udfældes BaSO₄ i eksperiment I.

Kun 0.00031/100g BaSO₄ kan blive opløst i vand ved 20 grader(Kunne ikke finde for 25 grader) mens for NaCl er det 36g/100g ved 25 grader. Så derfor vil BaSO₄ udfældes i eksperimentet

c. Vis ved beregning, at ${\rm PbCl_2}$ -opløsningen stadig er umættet efter fordampningen i eksperiment II.

Volumnet halveres, dvs. at koncentrationen af PbCl₂ fordobler of derfor bliver 0.0020 M. PbCl₂'s opløslighed i vand er 1.08^{25} g/L. Hvis vi tager 100 ml fra opløsningen så er der 0.0020 mol PbCl₂ i opløsningen. PbCl₂ vejer 278.1 g/mol dvs at der er

$$0.0020 \ mol \cdot 278.1 \ g/mol = 0.5562 \ g$$

i opløsningen. Hvis det var i 1 liter i stedet ville det være

$$0.5562 \ g \cdot 10 = 5.562 \ g/L$$

 $5.562\ g/L$ er betydeligt mindre end $1.08^{25}\ g/L,$ så derfor er opløsningen ikke mættet