

Automata that accepts odd numbers of 1

The second of the

Intro to Parsing

Input: if(x==y) 1 else 2;

Parser Input (Lexical Input):

KEY(IF) '(' ID(x) OP('==') ')' INT(1) KEY(ELSE) INT(2) ';

Parser Output

IF-THEN-ELSE

Context Free Grammar

- · A CFG consists of
 - A set of terminal TA set of non-terminal N

 - \blacksquare A start symbol S (S ϵ N)
 - A set of production rules
 X -> Y1....ΥN
 X ε N
 Y_i ε {N, T, ε}
- Ex: S -> (S) | ε
 - N = {S}T = { (,) , ε}

Context Free Grammar

- 1. Begin with a string with only the start symbol ${\sf S}$
- 2. Replace a non-terminal X with in the string by the RHS of some production rule: X-Y1,...,Yn $\,$
- 3. Repeat 2 again and again until there are no non-terminals $% \left(1\right) =\left(1\right) \left(1\right)$

```
X_1, \dots, X_i \ \underline{X} \ X_{i+1} \ \dots, \ X_n \ {\overset{}{-}{>}} \ X_1, \dots, X_i \ \underline{Y_1, \dots, Y_k} \ X_{i+1} \ \dots, \ X_n
```

For the production rule $X \mbox{ -> } Y_1.....Y_k$

 $\propto_{~0}\rightarrow \propto_{~1}\rightarrow~...\rightarrow \propto_{n}$

 $\propto_0 \stackrel{*}{\rightarrow} \propto_n , n \geq 0$

Context Free Grammar

ullet Let G be a CFG with start symbol S. Then the language L(G) of G is:

$$\{a_1 \, \ldots \, \ldots \, an \, | \, \forall_i \, ai \, \in T \, \land S \, \stackrel{*}{\rightarrow} \, a_1 a_2 \, \ldots \, \ldots \, an \, \}$$

Context Free Grammar

- There are no rules to replace terminals.
- Once generated, terminals are permanent
- Terminals ought to be tokens of programming languages
- Context-free grammars are a natural notation for this recursive

CFG: Simple Arithmetic expression

 $E \rightarrow E + E$

| E * E

| (E)

| id

Languages can be generated: id, (id), (id + id) * id,

Derivation

- A derivation is a sequence of production S -> ... -> ... ->
- A derivation can be drawn as a tree
 Start symbol is tree's root
 For a production X -> Y₁...,Y_n, add children Y₁...,Y_n to node X

Parse Tree • Left-most derivation • At each step, replace the left-most non-term nell E > E + E > E * E + E > id * E + E > id * id + E > id * id + id Note that, right-most and left-most derivations have the same parse tree

Ambiguity A grammar is ambiguous if it has more than one parse tree for a string There are more than one right-most or left-most derivation for some string Ambiguity is bad Leaves meaning for some programs ill-defined

Error Handling

- Error Handler should
 - Recover errors accurately and quickly
 Recover from an error quickly

 - Not slow down compilation of valid code
- Types of Error Handling
 Panic mode
 Error productions
 Automatic local or global correction

Panic Mode Error Handling

- Panic mode is simplest and most popular method
- · When an error is detected
 - Discard tokens until one with a clear role is found
 Continue from there
- Typically looks for "synchronizing" tokens
 - Typically the statement of expression terminators

Panic Mode Error Handling

- Example:
- (1 + **+** 2) + 3
- Panic-mode recovery:
 Skip ahead to the next integer and then continue
- Bison: use the special terminal error to describe how much input to skip E -> int \mid E + E \mid (E) \mid error int \mid (error)

Error Productions

- Specify known common mistakes in the grammar
- Example:
 Wite 5x instead of 5 * x
 Add production rule E > .. | E E
- Disadvantagescomplicates the grammar

Error Corrections

- Idea: find a correct "nearby" program
 - Try token insertions and deletions (goal: minimize edit distance)
 - Exhaustive search
- Disadvantages
 - Hard to implement
 - Slows down parsing of correct programs
 - "Nearby" is not necessarily "the intended" program

Error Corrections

- - Slow recompilation cycle (even once a day)
 - Find as many errors in once cycle as possible
- Disadvantages
 - Quick recompilation cycle
 - Users tend to correct one error/cycle
 - Complex error recovery is less compelling

Abstract Syntax Trees

- · A parser traces the derivation of a sequence of tokens
- But the rest of the compiler needs a structural representation of the program
- Abstract Syntax Trees
 - Like parse trees but ignore some detailsAbbreviated as AST

Abstract Syntax Trees

- Grammar
 - E -> int | (E) | E + E
- String 5 + (2 + 3)
- After lexical analysis
 Int<5> '+' '(' Int<2> '+' Int<3> ')'

Abstract Syntax Trees: 5 + (2 + 3) Have too much information
 Parentheses
 Single-successor nodes

Abstract Syntax Trees: 5 + (2 + 3) Have too much information Parentheses Single-successor nodes ASTs capture the nesting structure But abstracts from the concrete syntax More compact and easier to use

Disadvantages of ASTs • AST has many similar forms E.g., for, while, repeat...until E.g., if, ?:, switch • Expressions in AST may be complex, nested • (x * y) + (z > 5 ? 12 * z : z + 20)Want simpler representation for analysis ...at least, for dataflow analysis

Parsing algorithm: Recursive Descent Parsing

- The parse tree is constructed

 - From the top
 From left to right
- ${\color{red} \bullet}$ Terminals are seen in order of appearance in the token stream

Parsing algorithm: Recursive Descent Parsing

- Grammar:
 - E -> T | T + E T -> int | int * T | (E)
- Token Stream: (int<5>)
- Start with top level non-terminal E
 - Try the rules for E in order

A Recursive Descent Parser. Preliminaries

- Let TOKEN be the type of tokens
 - Special tokens INT, OPEN, CLOSE, PLUS, TIMES -
- ullet Let the global $\begin{subarray}{c} \textbf{next} \end{subarray}$ point to the next token

A (Limited) Recursive Descent Parser

- \bullet Define boolean functions that check the token string for a match of
 - A given token terminal
 bool term (TOKEN tok) { return *next++ == tok; }
 - The nth production of S: bool S_n() { ... }
 - Try all productions of S: bool S() { ... }

A (Limited) Recursive Descent Parser

```
    For production E → T
    bool E<sub>1</sub>() { return T(); }
```

- For production E → T + E
- bool E2() { return T() && term(PLUS) && E(); }
 For all productions of E (with backtracking)
 - bool E() {
 TOKEN *save = next;
 return (next = save, E₁()) || (next = save, E₂());
 }

A (Limited) Recursive Descent Parser (4)

```
• Functions for non-terminal T

bool T<sub>1</sub>() { return term(INT); }

bool T<sub>2</sub>() { return term(INT) && term(TIMES) && T(); }

bool T<sub>3</sub>() { return term(OPEN) && E() && term(CLOSE); }

bool T() {

TOKEN *save = next;

return (next = save, T<sub>1</sub>())

|| (next = save, T<sub>2</sub>())

|| (next = save, T<sub>3</sub>());
}
```

Recursive Descent Parsing

- To start the parser
- Initialize next to point to first token
- \blacksquare Invoke E() \cdot Notice how this simulates the example parse \cdot

```
When Recursive Descent Does Not Work

Grammar

E → T | T + E

T → int | int * T | (E)

Input int * int

Code

bool E() { return T(); }

bool T() { return term(INT); }

bool T() { return term(ENE) & & E(); }

bool T() { return term(ENE) & & E(); }

bool T() { return term(ENE) & & E(); }

lool T() { return term(ENE) & & E(); }

lool T() { return term(ENE) & E(); }

lool T() { retu
```

Recursive Descent Parsing: Limitation

- If production for non-terminal X succeeds
 - Cannot backtrack to try different production for X later
- General recursive descent algorithms support such full backtracking
 - · Can implement any grammar
- Presented RDA is not general
- But easy to implement
- Sufficient for grammars where for any non-terminal at most one production can succeed
- The grammar can be rewritten to work with the presented algorithm
 - By left factoring

Left Factoring

- $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$
- The input begins with a nonempty string derived from α , we do not know whether to expand A to $\alpha\beta_1$ or $\alpha\beta_2$.
- We can defer the decision by expanding A to $\alpha A'$.
- Then, after seeing the input derived from $\alpha,$ we expand A' to $\beta_1\,$ or $\beta_2\,(left-factored)$
- The original productions become:
 - $A \rightarrow \alpha A', A' \rightarrow \beta_1 \mid \beta_2$

When Recursive Descent Does Not Work

- Consider a production S → S a bool S₁() { return S() && term(a); } bool S() { return S₁(); }
- S() goes into an infinite loop
- A left-recursive grammar has a non-terminal S
- $S \rightarrow^+ S\alpha$ for some α
- Recursive descent does not work for left recursive grammar

Elimination of Left Recursion

- Consider the left-recursive grammar
 - $S \rightarrow S \alpha \mid \beta$
- \bullet S generates all strings starting with a β and followed by a number of α
- Can rewrite using right-recursion
 - $S \rightarrow \beta S'$ $S' \rightarrow \alpha S' \mid \epsilon$

More Elimination of Left-Recursion

• In general

$$S \rightarrow S \ \alpha 1 \ | \ ... \ | \ S \ \alpha m \ | \ \beta 1 \ | \ ... \ | \ \beta m$$

 \bullet All strings derived from S start with one of $\beta_1,...\beta_m$ and continue with several instances of $\alpha_1,...,\alpha_n$

$$\begin{tabular}{ll} \blacksquare & Rewrite & as \\ S & \rightarrow \beta 1 & S' \mid ... \mid \beta m & S' \\ S' & \rightarrow \alpha 1 & S' \mid ... \mid \alpha n & S' \mid \epsilon \\ \end{tabular}$$

General Left Recursion

• The grammar

```
S \rightarrow A \alpha \mid \delta

A \rightarrow S \beta
```

is also left-recursive because

 $S \rightarrow^+ S \beta \alpha$

• This left-recursion can also be eliminated

Summary of Recursive Descent

• Simple and general parsing strategy

- · Left-recursion must be eliminated first
- ... but that can be done automatically

• Unpopular because of backtracking

- Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 L means "left-to-right" scan of input

 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
 - In practice, LL(1) is used

LL(1) vs. Recursive Descent

• In recursive-descent

- At each step, many choices of production to use
- Backtracking used to undo bad choices

• In LL(1)

- At each step, only one choice of production
 That is
- When a non-terminal A is leftmost in a derivation
- The next input symbol is t
- \bullet There is a unique production A \rightarrow α to use
 - Or no production to use (an error state)
- LL(1) is a recursive descent variant without backtracking

Predictive Parsing and Left Factoring

• Recall the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int \mid int * T \mid (E)$.

- Hard to predict because
 - For T two productions start with int
- For E it is not clear how to predict
- We need to left-factor the grammar

Left-Factoring Example

```
    Grammar
```

```
E \rightarrow T + E \mid T
T \rightarrow int \mid int * T \mid (E)
```

 ${\color{red} \bullet}$ Factor out common prefixes of productions E \rightarrow T X

```
X \rightarrow + E \mid \epsilon
T \rightarrow (E) \mid \text{int } Y

Y \rightarrow T \mid \epsilon
```

LL(1) Parsing Table Example

· Left-factored grammar

 $E \rightarrow T X$ $X \rightarrow + E \mid \epsilon$ $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \epsilon$

• The LL(1) parsing table:

				next inpu	t tokens	5	
Left-most		int	*	+	()	\$
Left most	Е	TX			TX		
non-	Χ			+E		ε	3
term inals	Т	int Y			(E)		
	Υ		*T	3		ε	ε

LL(1) Parsing Table Example (Cont.)

• Consider the [E, int] entry

- "When current non-terminal is E and next input is int, use production E \rightarrow T X"
- This can generate an int in the first position
- Consider the [Y,+] entry
 - \blacksquare "When current non-terminal is Y and current token is +, get rid of Y"
 - Y can be followed by + only if Y $\rightarrow \epsilon$

LL(1) Parsing Tables. Errors

- Blank entries indicate error situations
- Consider the [E,*] entry
 - "There is no way to derive a string starting with * from non-terminal E"

Using Parsing Tables

• Method similar to recursive descent, except

- For the leftmost non-terminal S
 We look at the next input token a
- And choose the production shown at [S,a]
- A stack records frontier of parse tree

 - Non-termin als that have yet to be expanded
 Terminals that have yet to match against the input
 Top of stack = leftmost pending terminal or non-terminal
- Reject on reaching error state
- Accept on end of input & empty stack

First & Follow

- During top down parsing, FIRST and FOLLOW allow us to choose which production to apply, based on the next input symbol.
- FIRST(α), α is any string of grammar symbols A set of terminals that begin strings derived from α If $\alpha \to \epsilon$, then ϵ is in FIRST(α). if $\alpha \to \epsilon t$, the ϵ is in FIRST(α).

• FOLLOW(A), A is a nonterminal

- the set of **terminals** that can appear immediately to the right of A A set of terminals "a" such that S $\stackrel{\rightarrow}{\to} \alpha A \alpha \beta$ for some α and β .

Constructing Parsing Tables: The Intuition

- Consider non-terminal A, production A $\rightarrow \alpha$, & token t
- $T[A,t] = \alpha$ in two cases:
- If $\alpha \rightarrow^* t \beta$
 - \bullet α can derive a t in the first position
 - \bullet We say that $t \in \mathsf{First}(\alpha)$
- \blacksquare If A \rightarrow α and α \rightarrow^* ϵ and S \rightarrow^* β A t δ
- Useful if stack has A, input is t, and A cannot derive t
- \blacksquare In this case only option is to get rid of A (by deriving $\epsilon)$
- We say $t \in Follow(A)$

Computing First Sets

```
    Definition
```

```
 \begin{array}{ll} First(X) = \{ \ t \ | \ X \rightarrow^* t \alpha \} \cup \{ \epsilon \ | \ X \rightarrow^* \ \epsilon \} \ , \ \text{$X$ can be single terminal,} \\ single \ non-terminal, \ or string \ including \ both \end{array}
```

• Algorithm sketch:

1. First(t) = $\{t\}$, t is terminal

2. $\epsilon \in First(X)$

 $\begin{tabular}{ll} $i \in X \to \epsilon \\ \hline & if \ X \to \epsilon \\ \hline & if \ X \to A_1 \ ... \ A_n \ and \ \ \epsilon \in First(A_i) \ for \ 1 \le i \le n \\ \hline \end{tabular}$

3. First(α) \subseteq First(X) if X \rightarrow A₁ ... A_n α

• $\epsilon \in First(A_i)$ for $1 \le i \le n$

First Sets. Example

```
• grammar
```

 $E \rightarrow T X$ $X \rightarrow + E \mid \epsilon$ $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \epsilon$

First sets

 $\mathsf{First}(\ \ \mathsf{E}\,) \supseteq = \mathsf{First}(\ \ \mathsf{T}\,\,) \ \ = \ \{\mathsf{int},\ \ (\ \}$ First()) = {)}
First(int) = { int }
First(+) = { + }
First(*) = { * } First(X) = $\{+, \epsilon\}$ First(Y) = $\{*, \epsilon\}$

Computing Follow Sets

• Definition:

 $Follow(X) = \{ t \mid S \rightarrow^* \beta X t \delta \}$

• Intuition:

• If $X \to A$ B then First(B) \subseteq Follow(A) and Follow(X) \subseteq Follow(B)

 $\blacksquare \text{ If } B \, \to^* \, \epsilon \, \text{ then } \, \text{Follow}(X) \, \subseteq \, \text{Follow}(A)$

ullet If S is the start symbol then \ullet \in Follow(S)

Computing Follow Sets (Cont.)

Algorithm sketch:

- \$ ∈ Follow(S)
- 2. $First(\beta) \{\epsilon\} \subseteq Follow(X)$
 - \blacksquare For each production A \rightarrow α X β
- 3. $Follow(A) \subseteq Follow(X)$
 - For each production A $\rightarrow \alpha$ X β where $\epsilon \in First(\beta)$

Follow Sets. Example

```
• Recall the grammar
```

```
\begin{array}{c} X \rightarrow + E \mid \epsilon \\ Y \rightarrow * T \mid \epsilon \end{array}
E \rightarrow T X
T \rightarrow (E) \mid int Y
```

 Follow sets Follow(+) = { int, (}

Follow(+) = { int, (} Follow(() = { int, (} Follow(*) = { int, (} Follow()) = {+,), \$} Follow(int) = {*, +,), \$}. Follow(E) = {), \$} Follow(T) = {+, }, \$} Follow(Y) = {+, }, \$} Follow(X) = {\$, }}

Constructing LL(1) Parsing Tables

- · Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in First(\alpha)$ do • T[A, t] = α
 - If $\epsilon \in \mathsf{First}(\alpha)$, for each $t \in \mathsf{Follow}(A)$ do
 - $T[A, t] = \alpha$
 - If $\epsilon \in First(\alpha)$ and $\$ \in Follow(A)$ do
 - $T[A,] = \alpha$

LL(1) Parsing Table Example

· Left-factored grammar $E \rightarrow T X$ $X \rightarrow + E \mid \epsilon$ $T \rightarrow (E) \mid int Y$ Y → * T | ε

Rules: For each production $A \rightarrow \alpha$ in G d α For each terminal $t \in First(\alpha)$ do TIA, $t = \alpha$ If $t \in First(\alpha)$, for each $t \in Follow(A)$ do TIA, $t = \alpha$ and $t \in Follow(A)$ do TIA, $t = \alpha$ If $t \in First(\alpha)$ and $t \in Follow(A)$ do TIA, $t \in G$ Follow(A) do

• The LL(1) parsing table:

next input tokens int * + () \$
E TX TX Left-most non-terminals Χ +Ε ε ε (E) Y *Τ ε ε ε

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1) [Eg: S->Sa|b]

 - If G is ambiguous
 If G is left recursive
 If G is not left-factore d
 other: e.g., LL(2)
- Most programming language CFGs are not LL(1)
- However they build on these basic ideas

Bottom-Up Parsing

- \bullet Bottom-up parsing is more general than (deterministic) top-down parsing

 - just as efficientBuilds on ideas in top-down parsing
- Bottom-up parsers don't need left-factored grammars
- Revert to the "natural" grammar for our example:
 - $E \rightarrow T + E \mid T$ $T \rightarrow int * T \mid int \mid (E)$
- \bullet Consider the string: int * int + int

Bottom-Up Parsing

- Revert to the "natural" grammar for our example:
- $E \rightarrow T + E \mid T$ $T \rightarrow int * T \mid int \mid (E)$
- Consider the string: int * int + int
- Bottom-up parsing reduces a string to the start symbol by inverting productions:

```
T \rightarrow int
int * int + int
int * T + int
                           T \rightarrow int * T
T + int
                        {\tt T} \rightarrow int
T + T
                         E \rightarrow T
T + E
                           E \rightarrow T + E
```

Observation

- Read the productions in reverse (from bottom to top)
- This is a rightmost derivation!

```
int * int + int
                                      T \rightarrow int
int * T + int
                                      T \rightarrow int * T
T + int
                                       \mathtt{T}\,\rightarrow\,\mathtt{int}
T + T
                                       E \rightarrow T
T + E
                                        E \rightarrow T + E
```

Bottom-Up Parsing

A bottom-up parser traces a rightmost derivation in reverse

```
int * int + int
int * T + int
T + int
T + T
                                                                               T \rightarrow int
T \rightarrow int * T
T \rightarrow int
E \rightarrow T
T + E
E
                                                                                  E \rightarrow T + E
```

A trivial Bottom-Up Parsing Algorithm

```
Let I = input string
     repeat
         pick a non-empty substring β of I
         where X \rightarrow \beta is a production if no such \beta, backtrack
     replace one \beta by X in I until I = "S" (the start symbol) or all possibilities are exhausted
```

Bottom-Up Parsing Split string into two substrings Right substring is not examined yet by parsing (a string of terminals) • Left substring has terminals and non-terminals The dividing point is marked by a | The | is not part of the string • Initially, all input is unexamined | x1x2. T + int int * T + int int * int + int Expand Here

Where Do Reductions Happen?

- Right-most derivation has an interesting consequence:

 - Let αβω be a step of a bottom-up parse Assume the next reduction is by $X \rightarrow β$ Then ω is a string of terminals
- Why? Because $\alpha X\omega \rightarrow \alpha\beta\omega$ is a step in a rightmost derivation

Shift-Reduce Parsing

- Bottom-up parsing uses only two kinds of actions:
- ShiftReduce

- Reduce: Apply an inverse production at the right end of the left string
 - $\begin{tabular}{ll} \blacksquare & \begin{tabular}{ll} If $A \to xy$ is a production, & then $Cbxy|ijk$ &$\to CbA|ijk$ \\ \end{tabular}$

The Example with Reductions Only

```
int * int | + int
                                         reduce T → int
int * T | + int
                                        reduce T \rightarrow int * T
                                        reduce T \rightarrow int
T + int |
T + T |
                                        \texttt{reduce} \ \texttt{E} \ \Rightarrow \ \texttt{T}
T + E |
                                         \texttt{reduce} \ \texttt{E} \ \rightarrow \ \texttt{T} \ + \ \texttt{E}
E |
```

The Example with Shift-Reduce Parsing

An Example with Shift-Reduce Parsing

The Stack

- Left string can be implemented by a stack
 - Top of the stack is the |
- Shift pushes a terminal on the stack
- Reduce
- pops 0 or more symbols off of the stack (production rhs)
- pushes a nonterminal on the stack (production lhs)

Conflicts

- In a given state, more than one action (shift or reduce) may lead to a valid parse
- \bullet If it is legal to shift or reduce, there is a shift-reduce conflict
- If it is legal to reduce by two different productions, there is a reduce-reduce conflict.

Key Issue

- How do we decide when to shift or reduce?
- Example grammar:

 $E \rightarrow T + E \mid T$ $T \rightarrow int * T \mid int \mid (E)$

- Consider step int | * int + int
 - \blacksquare We could reduce by T \Rightarrow int giving T \mid * int + int
 - A fatal mistake!
 - No way to reduce to the start symbol E

Handles

- Intuition: Want to reduce only if the result can still be reduced to the start symbol.
- $\begin{array}{ccccc} \bullet & Assume & a & rightmost & derivation \\ & S & \rightarrow^* & \alpha X \omega & \rightarrow & \alpha \beta \omega \end{array}$
- \bullet Then $X \to \beta$ in the position after α is a handle of $\alpha\beta\omega$

Handles

- A handle is a string that can be reduced and also allows further reductions back to the start symbol (using a particular production at a specific spot).
- We only want to reduce at handles
- In shift-reduce parsing, handles appear only at the top of the stack, never
- Informal induction on # of reduce moves:
- True initially, stack is empty
- Immediately after reducing a handle
- ingithmost nonterminal on top of the stack
 next handle must be to right of rightmost nonterminal, because this is a rightmost derivation
 Sequence of shift moves reaches next handle

Summary of Handles

- In shift-reduce parsing, handles always appear at the top of the stack
- Handles are never to the left of the rightmost non-terminal
 - Therefore, shift-reduce moves are sufficient; the | need never move left
- Bottom-up parsing algorithms are based on recognizing handles

Recognizing Handles

- There are no known efficient algorithms to recognize handles
- Solution: use heuristics to guess which stacks are handles
- On some CFGs, the heuristics always guess correctly
 - For the heuristics we use here, these are the SLR grammars
 Other heuristics work for other grammars

Viable Prefixes

- α is a viable prefix if there is an ω such that $\alpha \mid \omega$ is a state of a shift-reduce parser
 α is stack
 ω is rest of the inputs

- A viable prefix does not extend past the right end of the handle
- It's a viable prefix because it is a prefix of the handle
- As long as a parser has viable prefixes on the stack no parsing error has been detected
- For any grammar, the set of variable prefixes is a regular language
 - we can compute an automata that accepts variable prefixes

Items

- An item is a production with a "." somewhere on the rhs
- The items for $T \rightarrow$ (E) are
 - $\begin{array}{ccc} T & \rightarrow & .(E) \\ T & \rightarrow & (.E) \\ T & \rightarrow & (E.) \end{array}$
 - $T \rightarrow (E)$.
- \bullet The only item for X \rightarrow ϵ is X \rightarrow .
- Items are often called "LR(0) items"

Intuition

- The problem in recognizing viable prefixes is that the stack has only bits and pieces of the rhs of productions
- If it had a complete rhs, we could reduce
- These bits and pieces are always prefixes of rhs of productions

Example

- Consider the input (int)
 - Then (E|) is a state of a shift-reduce parse

 - (E is a prefix of the rhs of T \rightarrow (E) \cdot • Will be reduced after the next shift
 - Item T \Rightarrow (E.) says that so far we have seen (E of this production and hope to see)

Generalization

- \bullet The stack may have many prefixes of rhs's
 - Prefix1 Prefix2 . . . Prefixn-1 Prefixn
- \bullet Let Prefix be a prefix of rhs of $X_i\,\to\,\alpha_i$

- \bullet Recursively, Prefix+1...Prefixn eventually reduces to the missing part of αk

An Example

- Consider the string (int * int):
 int * | int) is a state of a shift-reduce parse

 - $\begin{tabular}{lll} \bullet & ``C'$ is a prefix of the rhs of $T\to (E)$ \\ \bullet & ``\epsilon''$ is a prefix of the rhs of $E\to T$ \\ \bullet & ``int *''$ is a prefix of the rhs of $T\to int *T$ \\ \end{tabular}$
- The "stack of items" T → (E) E → .T T → int * .T

Recognizing Viable Prefixes

- Idea: To recognize viable prefixes, we must
- Recognize a sequence of partial rhs's of productions, where
 Each sequence can eventually reduce to part of the missing suffix of its predecessor

An NFA Recognizing Viable Prefixes

- 1. Add a dummy production $S' \to S$ to $\,G\,$
- 2. The NFA states are the items of G
 - Including the extra production
 NFA(stack) -> accept|reje ct
- 3. For item E \rightarrow $\alpha.X\beta$ add transition E \rightarrow $\alpha.X\beta$ \rightarrow^{X} E \rightarrow $\alpha X\beta$
- 4. For item $E\to\alpha.X\beta$ and production $X\to\gamma$ add $E\to\alpha.X\beta\to^cX\to.\gamma$
- 5. Every state is an accepting state
- 6. Start state is $S' \rightarrow .S$

DFA of Viable Prefixes

• The states of the DFA are

"canonical collections of items"

"canonical collections of LR(0) items"

Valid Items

• Item X \rightarrow $\beta.\gamma$ is valid for a viable prefix $\alpha\beta$ if

 $S' \to^* \alpha X \omega \to \alpha \beta \gamma \omega$ by a right-most derivation

- After parsing $\alpha\beta$, the valid items are the possible tops of the stack of items
- An item I is valid for a viable prefix α if the DFA recognizing viable prefixes terminates on input α in a state s containing I
- The items in s describe what the top of the item stack might be after reading input $\boldsymbol{\alpha}$

LR(o) Parsing

Assume

- \blacksquare stack contains α
- next input is t
 DFA on input α terminates in state s
- $\begin{array}{ccc} \blacksquare \mbox{ Reduce by } X \rightarrow \beta \mbox{ if } \\ \blacksquare \mbox{ s contains item } X \rightarrow \beta. \end{array}$

■ Shift if

- s contains item $X \to \beta.t\omega$ equivalent to saying s has a transition labeled t

LR(o) Conflicts

• LR(0) has a reduce/reduce conflict if:

- Any state has two reduce items: $X \to \beta$, and $Y \to \omega$.

- LR(0) has a shift/reduce conflict if:
 Any state has a reduce item and a shift item:
 $X \to \beta$, and $Y \to \omega t \delta$

SLR

- LR = "Left-to-right scan"
- SLR = "Simple LR"
- SLR improves on LR(0) shift/reduce heuristics

SLR Parsing

- Assume
 - ullet stack contains α
 - next input is t
 - ullet DFA on input α terminates in state s
- Reduce by $X \to \beta$ if
 - s contains item $X \rightarrow \beta$.
 - t ∈ Follow(X)
- Shift if
 - s contains item $X \rightarrow \beta.t\omega$
- If there are conflicts under these rules, the grammar is not SLR

- The rules amount to a heuristic for detecting handles

 The SLR grammars are those where the heuristics detect exactly the handles

Precedence Declarations

- Lots of grammars aren't SLR
 - · including all ambiguous grammars
- We can parse more grammars by using precedence declarations Instructions for resolving conflicts

Naïve SLR Parsing Algorithm

- 1. Let M be DFA for viable prefixes of G
- 2. Let $\mid x_1...x_n \$$ be initial configuration
- 3. Repeat until configuration is S|\$
 - Let $\alpha \mid \omega$ be current configuration
 - Run M on current stack α
 If M rejects α, report parsing error
 - If M rejects α, report parsing error
 Stack α is not a viable prefix
 If M accepts α with items I, let a be next input
 Shift if X → β. a γ ∈ I
 Reduce if X → β. ∈ I and a ∈ Follow(X)
 Report parsing error if neither applies

int * int\$	
int * int\$ 11 shift	
int * int \$ 3 (\$ ε Follow (T)) reduce T->int	
int * T \$ 4 (\$ ε Follow (T)) reduce T-> int * T	
T \$ 5 (\$ ϵ Follow (E)) reduce E-> T	
E \$ accept	

	automaton at each step is wasteful work is repeated
	to contain pairs \langle Symbol, DFA State \rangle the state of the automaton on each prefix of the stack
	sym1, state1 \rangle \langle symn, staten \rangle final state of the DFA on sym1 symn
 any is any 	the stack is 〈any, start〉 where dummy symbol start state of the DFA

Goto Table • Define goto[i,A] = j if state; → state; • goto is the transition function of the DFA

Refined Parser Moves Shift x Push (a, x) on the stack a is current input x is a DFA state Reduce X → α As before Accept Error

Action Table

- For each state s and terminal a
 - If so has item $X \to \alpha.a\beta$ and goto[i,a] = j then action[i,a] = shift j
 - $* \ \, \text{If s is has item} \ \ \, X \, \Rightarrow \, \alpha \ \, \text{and} \ \ \, a \, \in \, Follow(X) \quad \text{and} \quad X \, \neq \, S' \ \, \text{then action[i,a]} \quad \text{$=$ reduce} \quad X \, \Rightarrow \, S' \ \, \text{then action[i,a]}$
 - $\bullet \ \ \text{If si has item} \ \ S \ \Rightarrow \ S \ \text{then} \ \ \text{action[i,$s]} \quad = \ \text{accept}$
 - Otherwise, action[i,a] = error

SLR Parsing Algorithm

```
Let I = w$ be initial input
Let j = 0
Let DFA state 1 have item S' \rightarrow .S
Let stack = \langle dummy, 1 \rangle
          repeat
                    case action[top_state(stack),|[j]] of
                               shift k: push \langle ||j|++||, k \rangle reduce X \rightarrow A:
                               pop |A| pairs,
push ≪, goto[top_state(stack),X▷
accept: halt normally
                               error: halt and report error
```

Notes on SLR Parsing Algorithm

- \bullet Note that the algorithm uses only the DFA states and the input

 - The stack symbols are never used!
 However, we still need the symbols for semantic actions.

L, R, and all that

- LR parser: "Bottom-up parser"
- L = Left-to-right scan, R = Rightmost derivation
- RR parser: R = Right-to-left scan (from end)
 nobody uses these
- LL parser: "Top-down parser":
- L = Left-to-right scan: L = Leftmost derivation
- \bullet LR(1): LR parser that considers next token (lookahead of 1)
- LR(0): Only considers stack to decide shift/reduce
- SLR(1): Simple LR: lookahead from first/follow rules Derived from LR(0) automaton
- LALR(1): Lookahead LR(1): fancier lookahead analysis Uses same LR(0) automaton as SLR(1)