 iewed as a "single neuron" network)	
17	2) support vector machines: funny
Mar. 31st (Midterm) HW4, due Apr. 2nd	name (and not intuitive). as we discussed the reason for "support vectors" comes by examining the dual. in some sense, the optimal model (w) is
10,1,0	"supported" on a subset of the data
Lecap:	points
1 KWN	
The classification Algo	withm
suppore voctor machines (SVMs)	
kernel methods	<u>-</u>
benef benenz	
Suppose Vector Ma	uchines (SVMs)
ER XXX	x there could be
X X X	t t multiple lines (somethors)
XXXX	1 m [mile]
Q: What is the	"bere" separator b/w the clauses?
Perisiting the Ponception	
Duranser [(x1, y1), (y2, y2), (x3, y3))	
Find W set sign < W, xi> = yi	
suchthat	

 $\int_{i}^{1} \{w\} = \begin{cases} 0, & \text{if } sign< w, \times x > = y_i \implies y_i \cdot sign< w, \times x > > 1 > 0 \\ & \Rightarrow y_i \cdot sign< w, \times x > > 1 > 0 \end{cases}$ Induition: 1) if Yi & < V, X; > are of same sign AND
AND <p 3) Quenthing else in between 0&1 Low) = \(\frac{1}{i} \land \land \text{lich)} = [Mwx (0, 1-4; <w.xi>) 1 (3) = Max (0) (-3) fi(W)= 10, yew,x;>≥1 \ Lyi<ViXi> otherwise ∂ (i(w) = { 0 , yev, x; > ≥ 1 -y; x; , othowise (Sub) gradient descent: WKH = WK-N DL (WK)
= WK - N DL (WK)

Low (w)= Lhinge(W) + > 11 w1/2 support vector = = | max (0, Ly; cwix;>) + > | | | | | | | | " Prima SYM" min Lova (w) (Phal) Max $-\sum_{i=1}^{\infty} \alpha_i$ Maye loss - [yiy; diaj < X i,xj> legularizer such that 0 = di = > N SM TW = Z ai y; Xi Intuition: SVM model is a linear combination of data points wherever & =0, solution w* doesn't depend on x; -. The data points Xi for Ove coulled suppore vectors"

性能: 面对形式这种变成非 Soparability 1 Separable > (could be small (could be ho - 100% /) this is not linear separable. EX]: (XIXZ) -> (XIX, [X) XX) blue is outer and higher When third dimension Ex : down need 3rd dimension? No! look or graph. red in 1. III phase blue in I IV phase Embed the data into a different feature space in which

kernel mpthods: $\chi \rightarrow \phi(x)$ Q(.): a transition of the duta called the kernel Mapping Typical feature transformations: * original feature Quadratic features $(\mathsf{x}^{\mathsf{I}},\mathsf{x}^{\mathsf{r}}) \to (\mathsf{x}^{\mathsf{I}_{\mathsf{x}}},\mathsf{X}^{\mathsf{r}},\mathsf{X}^{\mathsf{r}},\mathsf{X}^{\mathsf{r}},\mathsf{X}^{\mathsf{r}})$ x fligher order polynomials $(x_1x_2) \rightarrow (x_1^2, x_2^2, x_1x_2, x_1^3, x_2^3,$ x, Kr, K, X, X, X, X, X), (x1, x2, ..., xd) Kuadratic (xi, xi, ..., xd, x1x2, x,x3, ..., x1xd, approximately d2 seems unpractical Going back to circle oxample $(x_1, x_2, x_1^2, x_2^2, x_1x_2)$ $(x_1, x_2, x_1^2, x_2^2, x_1x_2)$

 $f(x) = Sign(cv, \phi(x)s - radius)$ XOP WE 0,0,0,0,1) $f(x) = sgn(\langle w, \phi(x) \rangle)$ What is important is not the fewere mapping, but the ability to take dot products with the feature Mayping -> "kemol trick" implicitly define fouture mapping via me dot product > kernel our product Or formel inner groduct trample of femal dot products A Regular due product (x1,x1) -> (1,75x; 17x, + KINITKIND A Cubic dot browne (1+xxx1 +xxx1) = (1+< (x1,x), (x1,x)) * (*1)1->CH< *1) Equinential

E(X) = exp (-||X-Y||²) "Ganssian kernel"

[RBF

