Machine Learning and Music Composition

Daniel Woeste

Introduction

Outline

- A. Background
 - a. Music
 - b. Machine Learning
- B. Methods
 - a. Markov Chains
 - b. Randoms Forests
 - c. Neural Nets
- C. Evaluation
- D. Conclusion

Background

- A. Background
 - a. Music
- B. Methods
- C. Evaluation
- D. Conclusion

Melodic Progression

A melodic progress is the interval between two notes

Melody

Combining several intervals together gives us a melody

Consonance Vs. Dissonance (add audio here)

Consonance

• Multiple notes played together harmoniously

Dissonance

Chords that clash

Texture

Homophony

- Single melodic line
- May be accompanied or alone

Polyphony

- Multiple melodic lines
- All share equal importance

Background

- A. Backgroundb. Machine Learning
- B. Methods
- C. Evaluation
- D. Conclusion

Decision Trees

- Branching structure that represent test and possible outcomes
- (explain decision trees more)

Quarter Note

Methods

- A. Background
- B. Methods
 - a. Markov chains
- C. Evaluation
- D. Conclusion

Markov Chains

Multi Chain method

One-point mutation

Post processing on the written melody is done to make the music more complex

One-point mutation is an operation that traverses over the melody with a small percentage chance to change a note value.

Before

After

Note Splitting

Similar to one-point mutation

• Duration instead of pitch

Methods

- A. Background
- B. Methodsb. Random Forests
- C. Evaluation
- D. Conclusion

Methods

- A. Background
- B. Methods
 - c. Neural Networks
- C. Evaluation
- D. Conclusion