

Formation Data Scientist OpenClassrooms

Projet 5 – Livrable 3 – Support de présentation

Segmentez des clients d'un site e-commerce

(Project commencé avant le 1^{er} Décembre 2012)

Etudiant: Monine Chan

Evaluateur: Alexandre Gazagnes

Vendredi 18 Mars 2022

PLAN

1. Présentation de la problématique, interprétation et pistes de recherche.

- 2. Nettoyage des données, feature engineering et exploration.
- 3. Présentation des segmentations effectuées.

4. Fréquence de mise à jour de la segmentation

PLAN

 Présentation de la problématique, interprétation et pistes de recherche.

- 2. Nettoyage des données, feature engineering et exploration.
- 3. Présentation des segmentations effectuées.

4. Fréquence de mise à jour de la segmentation

1. PRÉSENTATION DE LA PROBLEMATIQUE

CONTEXTE

- ➤ L'entreprise de commerce en ligne Olist nous demande de créer une segmentation de leur client afin d'identifier les différents type d'utilisateurs et d'adapter leur campagnes de communication.
- > Le but de ce projet est de:
 - Fournir à l'équipe marketing une description actionnable de la segmentation des clients,
 - Fournir une proposition de contrat maintenance de cette segmentation (i.e. étudier la stabilité de la segmentation au cours du temps).
- > On mettra en place une segmentation RFM (Récence, Fréquence et Montant) dans un premier temps.

1. PRÉSENTATION DE LA PROBLEMATIQUE

2

SYNOPTIQUE DES DIFFERENTS JEUX DE DONNEES

> Nous allons faire une analyse exploratoire de ces différents jeux de données.

PLAN

1. Présentation de la problématique, interprétation et pistes de recherche.

- 2. Nettoyage des données, feature engineering et exploration.
- 3. Présentation des segmentations effectuées.

4. Fréquence de mise à jour de la segmentation

2. NETTOYAGE DE DONNEES ET EXPLORATION

DOUBLONS, ANALYSE EXPLORATOIRE

➤ Chaque client est identifié par la valeur de la variable customer_unique_id : on supprime tous les doublons liés au même customer_unique_id.

Les états où se trouvent le plus de clients :

• SP: Sao Paulo

RJ : Rio de Janeiro

MG : Minas Gerai

RS: Rio Grande do Sul

• PR : Parana

2. EXPLORATION

)

PRIX DES COMMANDES EN LIGNE

2. EXPLORATION

)

FRAIS DE PORT

2. EXPLORATION

)

VALEURS DE PAYMENT

2. FEATURE ENGINEERING : CRÉATION DE NOUVELLES VARIABLES

RÉCENCE, FRÉQUENCE ET MONTANT

PLAN

1. Présentation de la problématique, interprétation et pistes de recherche.

- 2. Nettoyage des données, feature engineering et exploration.
- 3. Présentation des segmentations effectuées.
- 4. Fréquence de mise à jour de la segmentation

)

SEGMENTATION RFM AVEC K-MEANS

- Segmentation RFM : Récence, Fréquence et Montant des achats
- ➤ Réduction de dimensions par ACP.

Les axes principaux d'inertie sont la fréquence et la récence.

Les principaux axes d'inertie sont la fréquence d'achat et la récence.

)

SEGMENTATION RFM AVEC K-MEANS

➤ On va segmenter la clientèle en 4 clusters d'après la méthode du coude.

3. SEGMENTATIONS EFFECTUEES SEGMENTATION RFM = RÉCENCE, FRÉQUENCE, MONTANT (K-MEANS)

SEGMENTATION RFM + 3 VARIABLES QUANTITATIVES AVEC K_MEANS

> Réduction de dimensions par ACP.

Le 1er axe d'inertie peut être interprété dépendant du délai de livraison et de la distance client-vendeur.

Le 2nd axe d'inertie est lié à la fréquence d'achat principalement.

)

SEGMENTATION RFM + 3 VARIABLES QUANTITATIVES AVEC K-MEANS

On va segmenter la clientèle en 6 clusters d'après la méthode du coude.

)

SEGMENTATION RFM + 3 VARIABLES QUANTITATIVES

SEGMENTATION + 3 VARIABLES QUANTITATIVES AVEC DBSCAN

- > Hyper paramètres :
 - \geq eps = 0,1
 - ➤min_samples = 100

➤ Silhouette score = - 0,315

SEGMENTATION RFM + 3 VARIABLES QUANTITATIVES AVEC DBSCAN

Type de modèle de Clustering	DBSCAN eps = 0,5 min_samples = 100	DBSCAN eps = 0,5 min_samples = 50	DBSCAN eps = 0,1 min_samples = 100	DBSCAN eps = 0,2 min_samples = 100	DBSCAN eps = 0,35 min_samples = 100
Nombre de variables quantitatives	6	6	6	6	6
Nombre de clusters	2	2	7	3	2
Silhouette	0.565	0.605	-0.315	0.250	0.455
Davies- Bouldin Index (DBI)	2.42	2.62	1.68	1.61	2.48

> Il n'est pas possible de trouver une segmentation qui conviennent.

PLAN

1. Présentation de la problématique, interprétation et pistes de recherche.

- 2. Nettoyage des données, feature engineering et exploration.
- 3. Présentation des segmentations effectuées.

4. Fréquence de mise à jour de la segmentation

4. FRÉQUENCE DE MISE À JOUR

STABILITE DES CLUSTERS DANS LE TEMPS : ALGORITHME

- On part d'une base de référence B0 d'octobre 2016 à décembre 2017, on apprend dessus un clustering C0 (livré au client) → C0 cluster.fit (B0 data)
- 2. Maintenant, on créé les bases futures : B0 + un mois = B1, B0 + 2 mois = B2, etc.
- 3. Apprendre tous les clustering sur les bases artificielles B1, B2, etc \rightarrow C1, C2, C3 (les clustering futurs) \rightarrow C1_cluster.fit(B1_data), etc. pour tous les B de 1 à N
- 4. Segmenter B1, B2, B3 etc avec C0 → C0 cluster.predict(B1 data), etc pour tous les B de 1 à N
- 5. Segmenter B1, B2, B3 avec les clustering respectifs C1, C2 etc → B1_by_C1 = C1_Cluster.predict(B1_data) = B1_by_C1, C2_Cluster.predict(B2_data) = B2 by C2, etc pour tous les B et C de 1 à N
- 6. Comparer la segmentation de B1 B2 B3 etc entre C0 (livré au client) et les autres (C1 etc) avec l'indice de Rand Ajusté adjusted_rand_score (B1_by_C0, B1_by_C1), adjusted_rand_score (B2_by_C0, B2 by C2), etc pour tous les B de 1 à N
- 7. Représenter l'évolution de l'indice de rand ajusté.

4. FRÉQUENCE DE MISE À JOUR

)

STABILITE DES CLUSTERS DANS LE TEMPS : CALCUL DE L'ARI

ARI – prédiction Janvier 2018 à Juin 2018						
Janvier	Février	Mars	Avril	Mai	Juin	
0.914	0.920	0.954	0.673	-1.376	-9.11	

- ➤ On calcule l'ARI en comparant les clusters modélisés (« true labels ») sur 6 mois de janvier 2018 à juin 2018 par rapport à la prédiction d'un modèle de clustering basé uniquement sur les données de 2016-2017 (« predicted labels »)
- ➤ On observe que l'ARI se dégrade rapidement après 3 mois donc propose donc de faire une mise à jour trimestrielle du clustering sur la base du modèle KMEANS avec segmentation RFM + 3 variables quantitatives

CONCLUSION

CONCLUSION RECAPITULATIF

Type de modèle de Clustering	K-Means Segmentation RFM	K-Means Segmentation RFM + ajout de 3 var. quantitatives	
Nombre de variables quantitatives	3	6	
Nombre de clusters	4	6	
Silhouette	0.456	0.315	
Davies-Bouldin Index (DBI)	0.724	0.984	

[➤] On retient le modèle K-Means avec segmentation RFM + 3 variables quantitatives qui devra être mise à jour tous les 3 mois.

CONCLUSION

)

SEGMENTATION RFM + 3 VARIABLES QUANTITATIVES

Achète local & satisfait

- 1 achat
- 126 Real
- 300km
- 4.7/5

Achète compulsivement

- 6 achats
- 25 Real
- 547km
- 4.16/5

Client « typique »

- 1 achat
- 130 Real
- 623km
- 2.80/5

Client à relancer

Pas d'achat depuis plus d'1 an

Client dépensier

- 1 achat
- 423 Real
- 1600km
- 4.49/5

Client mécontent

- 1 achat
- 291 Real
- 1224km
- 1.6**/**5