Optical Nonlinear Spectroscopy of Gold and Silicon Nanoparticles

Sean M. Anderson
Centro de Investigaciones en Óptica, A.C
January 30, 2012

When you combine...

with these...

Introduction
Nanoparticles

Historic use of metallic nanoparticles.¹

¹Image: Raimond Spekking.

Introduction
Nanoparticles

Nanoparticles have large surface to volume ratios.

Our Samples²

- Created via ion implantation
- Implanted on Suprasil 300 substrate
- 8 × 8 and 8 × 4 mm transparent samples

²Provided by Dr. Alejandro Reyes and Dr. Alicia Oliver of the IF-UNAM.

Au Sample

Specifications

- Size: ~ 3 nm
- Density: $5.8 \times 10^{16} \text{ nps/cm}^3$
- Dose: 3.1×10^{16} atoms/cm²
- Implantation Energy: 2 MeV

TEM scan.

Au²⁺ Sample

Specifications

■ Size: ~ 3 nm

■ Density: $9.8 \times 10^{16} \text{ nps/cm}^3$

■ Dose: $5.0 \times 10^{16} \text{ atoms/cm}^2$

■ Implantation Energy: 2 MeV

TEM scan.

Si Sample

Specifications

- lacksquare Size: \sim 20 nm
- Dose: $2.5 \times 10^{17} \text{ atoms/cm}^2$
- Implantation Energy: 1.5 MeV

TEM scan.

Centrosymmetric Materials

A centrosymmetric material is a material that displays inversion symmetry, such that $p(x, y, z) \rightarrow p(-x, -y, -z)$.

- Many nonlinear materials are centrosymmetric
- Nanospheres are definitely centrosymmetric
- The material in these nanoparticles is centrosymmetric

Introduction

Second-order Nonlinear Effects

Second Harmonic Generation (SHG)

Characteristics³

- Two photons of the same frequency combine
- Create one photon of double the frequency

³Image: Jon Chui

Second-order Nonlinear Effects

Sum-frequency Generation (SFG)

Characteristics

- Two photons of different frequency combine
- Create one photon that is the sum of both frequencies

Introduction

Second-order Nonlinear Effects

Second-order Nonlinear Effects

Early work^{4 5} demonstrated that second-order processes

- Are dipole forbidden in the bulk of centrosymmetric materials
- Are related to $\chi^{(2)}$, the nonlinear susceptibility
- Have bigger dipolar (surface) than quadrupolar contributions

Second-order processes are well studied for flat surfaces, but what about round materials like nanospheres?

⁴J.A. Armstrong et al. *Physical Review*, 127(6):1918–1939, Sep 1962.

⁵N. Bloembergen et al. *Physical Review*, 128(2):606–622, Oct 1962.

└ Nonlinear Response of Nanoparticles

Nonlinear Response of Nanoparticles

- Early work⁶ ⁷ show that nanospheres have both dipolar and quadrupolar contributions
- A few years later, Mochán et al.⁸ determine the nonlinear polarization for an array of nanospheres.

⁶J.I. Dadap et al. *Physical Review Letters*, 83(20):4045–4048, 1999.

⁷V.L. Brudny et al. *Physical Review B*, 62(16):11152, 2000.

⁸W.L. Mochán et al. *Physical Review B*, 68(8):085318, 2003.

Nonlinear Response of Nanoparticles

Theory

The dipole moment for a single nanosphere is

$$\mathbf{p}^{(2)} = \gamma^e \mathbf{E}^{\text{ex}}(0) \cdot \nabla \mathbf{E}^{\text{ex}}(0) + \gamma^m \mathbf{E}^{\text{ex}}(0) \times [\nabla \times \mathbf{E}^{\text{ex}}(0)]. \tag{1}$$

The quadrupole moment for a single nanoshpere is

$$\mathbf{Q}^{(2)} = \gamma^q \left(\mathbf{E}^{\text{ex}}(0) \mathbf{E}^{\text{ex}}(0) - \frac{1}{3} [\mathbf{E}^{\text{ex}}(0)]^2 \mathbf{1} \right), \tag{2}$$

where the γ 's are unknown nonlinear response functions. $\mathbf{p}^{(2)}$ is nonlocal because of the field derivative, while $\mathbf{Q}^{(2)}$ is local.

The total nonlinear polarization for all the nanospheres is

$$\mathbf{P}^{nl} = n_{s} \mathbf{p}^{(2)} - \frac{1}{6} \nabla \cdot n_{s} \mathbf{Q}^{(2)}, \tag{3}$$

where n_s is the nanocrystal volume density. We substitute equations (1) and (2) to obtain

$$\mathbf{P}^{(2)} = \Delta' \left(\mathbf{E} \cdot \nabla \mathbf{E} \right), \tag{4}$$

where $\Delta' \equiv n_s (\gamma^e - \gamma^m - \gamma^q/6)$ and represents a kind of bulk response function.

Nonlinear Response of Nanoparticles

Summary

Nonlinear response depends on

- Nonlocal excitation of the electric dipole moment
- Local excitation of the electric quadrupole moment
- The strength of the incident beam and
- The form (plane wave, Gaussian beam, polarization, etc.)
- The quadrupolar $(\mathbf{E} \cdot \nabla)\mathbf{E}$ term

What's the best way to enhance this signal?

☐ Theory
☐ The XP2SHG/SFG Technique

The XP2SHG/SFG Technique

- Early work shows that using two cross-polarized beams reduces the number of unknown $\chi^{(2)}$ components
- Wang et al. manage to discern surface and bulk contributions using two beams¹⁰
- Using two beams greatly increases the SHG/SFG signal usually enough to not need photon counters¹¹

⁹S. Cattaneo et al. *Optics Letters*, 28(16):144–1447, 2003.

¹⁰F.X. Wang et al. *Physical Review B*, 80(23):233402, 2009.

¹¹P Figliozzi et al. *Physical Review Letters*, 94(4):47401, 2005.

Theory

The nonlinear polarization can be separated into two contributions¹²,

$$\mathbf{P}_{nc}^{(2)} \equiv n_s \left(\gamma^e - \gamma^m - \frac{\gamma^q}{6} \right) (\mathbf{E} \cdot \nabla) \mathbf{E} \equiv |\Gamma_{nc}| e^{i\Phi} (\mathbf{E} \cdot \nabla) \mathbf{E}, \quad (5)$$

$$\mathbf{P}_{g}^{(2)} \equiv (\delta - \beta - 2\gamma) \left(\mathbf{E} \cdot \nabla \right) \mathbf{E} \equiv \Gamma_{g} \left(\mathbf{E} \cdot \nabla \right) \mathbf{E}. \tag{6}$$

The phase Φ causes interference between the glass and nanocrystal signals – this will cause the double peak shape we will see later on.

¹²A. Wirth et al. *Physica Status Solidi C*, 5(8):2662–2666, 2008.

Signal Enhancement

Single beam SHG scales as 13

$$N_{SHG} \sim \frac{f_{\rm rep} \mathcal{E}^2}{\tau A^2},$$
 (7)

where A is the beam spot size $(A = \pi w_0^2)$, τ is the pulse duration, $\mathcal E$ is the pulse energy, and $f_{\rm rep}$ is the repetition rate of the pulses.

¹³P. Figliozzi et al. *Physical Review Letters*, 94(4):47401, 2005.

But for two incoming plane wave fields that are cross polarized, SHG counts scale as

$$N_{SHG} \sim \frac{f_{\text{rep}} \mathcal{E}_1 \mathcal{E}_2 \sin^2 \alpha}{\lambda^2 \tau A^2},$$
 (8)

where α is the angle between the beams, and λ is the wavelength.

Enhancements

- The $\frac{1}{\lambda}^2$ factor greatly increases signal intensity
- The $\sin^2 \alpha$ term allows us to optimize the beam angle

The $(\mathbf{E} \cdot \nabla)$ **E** dependence is directly observable¹⁴:

Experiment (left) and predicted (right).

¹⁴P. Figliozzi et al. *Physical Review Letters*, 94(4):47401, 2005.

- └─ Theory └─ The XP2SHG/SFG Technique
 - Three Z-scans needed
 - Interference between contributions causes double peak shape¹⁵

¹⁵A. Wirth et al. *Physica Status Solidi C*, 5(8):2662–2666, 2008.

Theory

The XP2SHG/SFG Technique

Three huge benefits over single beam

- Intensities are much higher
- **2** Enhanced signal allows better determination of $\chi^{(2)}$
- 3 Dipolar and quadrupolar contributions from nanoparticles can be discerned from substrate bulk contributions

The Experiment

Laser System, Optics, and Detectors

Laser system output

■ Wavelength: 800 nm

■ Average power: 1.1 Watts

■ Energy: 1 mJ per pulse

■ Duration: 100 fs

■ Repitition rate: 1 kHz

The Experiment

Laser System, Optics, and Detectors

Noncollinear Optical Parametric Amplifier

■ 760 - 515 nm (1.6 - 2.4 eV)

■ Energy: 3 - 12 μJ

■ Duration: 250 fs

■ Repitition rate: 1 kHz

└─The Experiment

Laser System, Optics, and Detectors

The NOPA in action.

The Experiment

Using the XP2SHG/SFG Technique

The XP2SHG/SFG Setup

Diagram of the XP2SHG setup.

└─The Experiment └─Using the XP2SHG/SFG Technique

XP2SHG using a BBO crystal.

Two beams in...

three beams out!

Linear Measurements

Ellipsometry¹⁶

- Complement nonlinear studies and allow full characterization of nanoparticles
- Ellipsometry can determine material dielectric function and complex index of refraction

¹⁶Image: Stannered

Linear Transmission

Gold samples have plasmon resonance around 530 nm¹⁷ 18

¹⁷D.M. Schaadt et al. *Applied Physics Letters*, 86:063106, 2005.

¹⁸S. Lin et al. *Advanced Materials*, 17(21):2553–2559, 2005.

Linear Measurements

Ellipsometry – Substrate

Graphs for Ψ (left) and Δ (right).

Results

Linear Measurements

Ellipsometry - Gold

Graphs for Ψ (left) and Δ (right). Very noisy, nothing like references¹⁹

¹⁹H.L. Zhang et al. *Advanced Materials*, 15(6):531–534, 2003.

Linear Measurements

Ellipsometry - Silicon

Graphs for Ψ (left) and Δ (right). Flat transmission curve for Silicon and poor ellipsometry data nothing like previous work.²⁰

²⁰ J. Wei et al. *Physical Review B*, 84:165316, Oct 2011.

XP2SHG/SFG - Substrate

Substrate XP2SFG data at 550 + 800 nm.

Confirms results from previous studies 21 22

²¹ J. Wei et al. *Physical Review B*, 84:165316, Oct 2011.

²²A. Wirth et al. *Physica Status Solidi C*, 5(8):2662–2666, 2008.

Nonlinear Measurements

XP2SHG - Gold

Gold XP2SHG data, entry side.

Nonlinear Measurements

Gold XP2SHG data, exit side.

Results

└ Nonlinear Measurements

Characteristics

- Almost identical to substrate data!
- Low input intensity produces no SHG/SFG output
- High input intensity generates white light
- Need to analyze entry and exit positions
- Detector can't distinguish between single and two-beam SHG
- Both dipolar and quadrupolar contribution

Results
Nonlinear Measurements

XP2SFG - Gold

0.18 0.16 0.14 Normalized counts 0.12 0.1 0.08 0.06 0.04 0.02 0 500 1000 1500 2000 2500 3000 Distance (micrometers)

Noisy signal with no discernible peaks at 520 + 800 nm

White light generation at 560 + 800 nm

Nonlinear Measurements

Best XP2SFG data at 520 + 800 nm.

- Three different frequencies: NOPA in, 800 nm in, SFG out
- Strong output with NOPA frequency near plasmon resonance
- Wider angle between beams should alleviate scattering

Nonlinear Measurements

XP2SHG/SFG - Silicon

XP2SFG at 500 + 800 nm.

- Weaker signal compared to Au
- Signal not enhanced at all^{a b c}

^aJ. Wei et al. *Phys. Rev. B*, 84, 2011. ^bA. Wirth et al. *Phys. Stat. Sol. C*, 5(8), 2008.

^cP. Figliozzi et al. *Phys. Rev. Lett.*, 94, 2005.

Summary

- Samples of poor optical quality with massive scattering
- Scattering and transparency to blame for erratic linear data
- XP2SHG/SFG technique did not enhance nonlinear signal
- Exciting near resonance may have actually been a hinderance
- Separate Z-scans did not allow for separation of glass and nanoparticle contributions

"So what?"

Conclusions

Summary

Conclusions

Accomplished

- Applied the XP2SHG/SFG technique
- Applied complementary linear measurements
- Gained considerable experience

Future Work

- Samples need to be in better shape and better characterized
- Samples mounted on different substrates for linear measurements
- 3 XP2SHG/SFG technique still relatively new with metallic nanoparticles
- 4 Implement this setup here at the CIO

Acknowledgements

- Group leaders, Dr. Ramón Carriles and Dr. Enrique Castro
- Future advisor, Dr. Bernardo Mendoza
- Dr. Mike Downer and Junwei Wei of UT Austin
- Dr. Alejandro Reyes and Dr. Alicia Oliver of the IF-UNAM
- DFA and all CIO staff
- The CONACyT
- Everyone that came to listen to this talk
- Front page image: Travis Jennings
- Second page images: Amanda Barnard, Vulcan 10 Petawatt
- Dr. Cabellos drawn by Luis Adán Martínez

Conclusions

¡Gracias!

¡Feliz cumpleaños a Alberto, Marcelo &
Edith
y feliz aniversario también!