

Ένας αριθμός συστήματος με βάση το b μετατρέπεται στο δεκαδικό από τον τύπο:

$$\alpha_{n-1} \times b^{n-1} + \alpha_{n-2} \times b^{n-2} + \dots + \alpha_1 \times b^1 + \alpha_0 \times b^0 + \alpha_{-1} \times b^{-1} + \alpha_{-2} \times b^{-2} + \dots + \alpha_{-m} \times b^{-m}$$

και συμβολίζεται ως: $(\alpha_{n-1}\alpha_{n-2}...\alpha_1\alpha_0.\alpha_{-1}\alpha_{-2}...\alpha_{-m})_b$ όπου b: είναι η βάση του συστήματος

Παραδείγματα:

Από Δυαδικό σε Δεκαδικό:

$$(1100.101)_2 = \mathbf{1} \times 2^3 + \mathbf{1} \times 2^2 + \mathbf{0} \times 2^1 + \mathbf{0} \times 2^0 + \mathbf{1} \times 2^{-1} + \mathbf{0} \times 2^{-2} + \mathbf{1} \times 2^{-3} = 8 + 4 + 0 + 0 + 0.5 + 0 + 0.125$$

$$= 12.625$$

Από Οκταδικό σε Δεκαδικό:

$$(23.1)_8 = 2 \times 8^1 + 3 \times 8^0 + 1 \times 8^{-1} = 16 + 3 + 0.125 = 19.125$$

Από Δεκαεξαδικό σε Δεκαδικό:

$$(AA. 8)_{16} = 10 \times 16^{1} + 10 \times 16^{0} + 8 \times 16^{-1} = 160 + 10 + 0.5 = 170.5$$

Από Τετραδικό σε Δεκαδικό:

$$(31)_4 = 3 \times 4^1 + 1 \times 4^0 = 12 + 1 = 13$$

16δικός	Δεκαδικός
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7

16δικός	Δεκαδικός
8	8
9	9
A	10
В	11
С	12
D	13
E	14
F	15

Εμπειρικά (για δυαδικούς ακέραιους)

Αριθμός προς μετατροπή $(1100101)_2$ Γράφουμε Ανάποδα τις δυνάμεις του 2

64 + 32 + 4 + 1 $=(101)_{10}$

Επιλέγουμε αυτά που έχουν άσσο

Αθροίζουμε

Για την **μετατροπή ενός δεκαδικού σε άλλο σύστημα αρίθμησης** (με βάση b):

- Ακέραιο Μέρος: Πραγματοποιούμε διαιρέσεις με το b μέχρι το πηλίκο να γίνει 0. Ο αριθμός είναι η αντίστροφη σειρά των υπολοίπων.
- **Κλασματικό Μέρος**: Πραγματοποιούμε διαδοχικούς **πολ/μους** μόνο του κλασματικού μέρους **με το b** (το ακέραιο μέρος του γινομένου είναι το επόμενο δεκαδικό ψηφίο). Σταματάμε όταν το κλασμ.μέρος γίνει 0.

Παράδειγμα: Μετατροπή του (13.67)₁₀ σε δυαδικό με ακρίβεια 3 δεκαδικών ψηφίων

Ακεραίο μερος			
Αριθμός /2	Πηλίκο	Υπόλοιπο	
13/2	6	1 1	
6/2	3	0	
3/2	1	1	
1/2	0	1	

 $(1101)_2$

τλιασματικό μ	ιερος		
Αριθμός*2	Γινόμενο	Ακέραιο Μέρος	
0.67 * 2	1.34	1	

0

0.68

Κλασματικό μέρος

0.68 * 2 1.32

0.34 * 2

 $(0.101)_2$

Άρα
$$(13.67)_{10} = (1101.101)_2$$

ΣΧΕΣΗ ΔΥΑΔΙΚΟΥ με ΟΚΤΑΔΙΚΟ και 16ΔΙΚΟ

ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ www.psounis.gr

•	Κάθε 8αδικό ψηφίο
	αντιστοιχεί σε
	τριάδα δυαδικών ψηφίων

Κάθε **16αδικό ψηφίο** αντιστοιχεί σε **τετράδα δυαδικών** ψηφίων

	Οκταδικό Ψηφίο	Τριάδα Δυαδικών Ψηφίων
	0	000
	1	001
	2	010
	3	011
	4	100
٧	5	101
	6	110
	7	111

16δικό Ψηφίο	Τετράδα Δυαδικών Ψηφίων	16δικό Ψηφίο	Τετράδα Δυαδικών Ψηφίων
0	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Παράδειγμα: (154.02)₈ σε δυαδικό

001101100.000010

Συνεπώς: $(154.02)_8$ = $(1101100.0001)_2$

Παράδειγμα: (74F.1B)₁₆ σε δυαδικό

= 011101001111.00011100

Συνεπώς: $(74F.1B)_{16}$ = $(11101001111.000111)_2$

Παράδειγμα: $(1101101110.0100111)_2$ σε οκταδικό

Συνεπώς: $(1101101110.0100111)_2 = (1556.234)_8$

Παράδειγμα: <u>(1101101110.0100111)</u> σε 16δικό

Συνεπώς:(1101101110.0100111)₂= $(36E.4E)_{16}$

ΠΡΟΣΘΕΣΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ

Πρόσθεση σε Σύστημα Αρίθμησης με βάση b:

- Γράφουμε τους αριθμούς τον ένα κάτω απ' τον άλλο με ευθυγράμμιση στην ίδια τάξη ψηφίων (υποδιαστολή).
- Κάνουμε την πρόσθεση από δεξιά προς τα αριστερά κατά την ίδια τάξη ψηφίων.
- Σε περίπτωση που το άθροισμα είναι μεγαλύτερο (ή ίσο) του b μεταφέρουμε κρατούμενο 1 μονάδα (συμβολίζει μια b-άδα) στην αμέσως αριστερή στήλη και καταγράφουμε το αποτέλεσμα.

16δικό:

 $\widetilde{\widetilde{AA}}$.81 1C.802 (+)C7.012

Άθροισμα			
Αποτέλεσμα			
0	←	<u> </u>	16
1	←		17
2	←		18
3	←		19
4	←	_	20
5	←	_	21
6	←	_	22
7	←		23
8	←	_	24
9	←	_	25
10 (A)	←	_	26
11 (B)	←	_	27
12(C)	←	_	28
13 (D)	←		29
14(E)	←	_	30
15(F)	←		31
			T.

Κρατούμενο 1

Κρατούμενο 0

Αφαίρεση σε Σύστημα Αρίθμησης με βάση b:

- Η αφαίρεση γίνεται όπως στο δεκαδικό από τα δεξιά προς τα αριστερά
- Αν το ψηφίο του μειωτέου είναι μικρότερο από το ψηφίο του αφαιρετέου:
 - Προσθέτουμε b μονάδες στο τρέχον ψηφίο του μειωτέου
 - Προσθέτουμε μία μονάδα στο αριστερό του τρέχοντος ψηφίο του αφαιρετέου

Δεκαδικό:

Δέκα Μονάδες στο Ψηφίο του Μειωτέου Μία Μονάδα στο Αριστερό ψηφίο του Αφαιρετέου

Δυαδικό:

Δύο Μονάδες στο Ψηφίο του Μειωτέου Μία Μονάδα στο Αριστερό ψηφίο του Αφαιρετέου

Οκτάδικο:

Οκτώ Μονάδες στο Ψηφίο του Μειωτέου Μία Μονάδα στο Αριστερό ψηφίο του Αφαιρετέου

16δικό:

Δεκαξι Μονάδες στο Ψηφίο του Μειωτέου Μία Μονάδα στο Αριστερό ψηφίο του Αφαιρετέου

Με το συμπλήρωμα ως προς 2 έχουμε την δυνατότητα να κάνουμε εύκολα πράξεις προσημασμένων ακεραίων στο δυαδικό:

- Προετοιμάζουμε τους αριθμούς με βάση το μήκος λέξης (συμπληρώνουμε αριστερά με 0, για να συμπληρωθεί το μήκος). Οι αρνητικοί απεικονίζονται με συμπλήρωμα ως προς 2 (Αντίστροφη bits και έπειτα συν μία μονάδα)
- Όλες οι πράξεις γίνονται προσθέσεις! Τυχόν κρατούμενο αγνοείται!

Άσκηση: Κάνετε τις πράξεις 15-17, -15+17, με την τεχνική του συμπληρώματος ως προς 2 σε υπολογιστή με

μήκος λέξης 8 δυαδικών ψηφίων.

Λύση: Προεργασία:

Ο αριθμός 15 είναι: 00001111

Ο αριθμός -15:

- Ο αριθμός +15 είναι :00001111
- Το συμπλήρωμα ως προς 1: 11110000
- Το συμπλήρωμα ως προς 2:11110001

Άρα ο αριθμός -15 είναι: 11110001

Ο αριθμός 17 είναι: 00010001

Ο αριθμός -17:

- Ο αριθμός +17 είναι : 00010001
- Το συμπλήρωμα ως προς 1: 11101110
- Το συμπλήρωμα ως προς 2:11101111

Άρα ο αριθμός -17 είναι: 11101111

```
Συνεπώς: (15)_{10} – (17)_{10} = (15)_{10} + (-17)_{10}
           (00001111)_2 + (11101111)_2
```

00001111

11101111

11111110

Το αποτέλεσμα είναι: 11111110 Το συμπλήρωμα ως προς 1 00000001

Το συμπλήρωμα ως προς 2 00000010

Άρα ο αριθμός στο 10δικό

Άρα: $(15)_{10} + (-17)_{10} = (110111110)_2 = (-2)_{10}$

Συνεπώς: $-(15)_{10}+(17)_{10}=(-15)_{10}+(17)_{10}$ $(11110001)_2 + (00010001)_2$

11110001

(+) 00010001

100000010

 $Aρα: (-15)_{10} + (17)_{10} = (00000010)_2 = (2)_{10}$

ΛΟΓΙΚΕΣ ΠΥΛΕΣ

www.psounis.gr

ΛΟΓΙΚΟ ΝΟΤ	ΛΟΓΙΚΟ NOR	ΛΟΓΙΚΟ NAND	ΛΟΓΙΚΟ XNOR	
$X \longrightarrow f(X)$	$X \longrightarrow f(X,Y)$	$X \longrightarrow f(X,Y)$	$X \longrightarrow f(X,Y)$	
X Έξοδος f(X)0 11 0	X Y f(X,Y) 0 0 1 0 1 0 1 0 0 1 1 0	$egin{array}{c cccc} X & Y & f(X,Y) & & & & & & & & & & & & & & & & & & &$	X Y f(X,Y) 0 0 1 0 1 0 1 0 0 1 1 1	
f(X) = X'	f(X,Y) = (X + Y)'	f(X,Y) = (XY)'	$f(X,Y) = (X \oplus Y)'$	
f(X) = NOT(X)	f(X,Y) = X NOR Y	f(X,Y) = X NAND Y	f(X,Y) = X XNOR Y	

ΛΟΓΙΚΑ ΚΥΚΛΟΜΑΤΑ

ΛΟΓΙΚΕΣ ΠΥΛΕΣ www.psounis.gr

Λογική Συνάρτηση σε Αληθοπίνακα

Άλγεβρα Boole και κατασκευή βοηθητικών στηλών.

Z = (X XOR Y)AND (X AND NOT Y)

X	Υ	K = X XOR Y	L = NOT Y	$M = X \ AND \ L$	Z = K AND M
0	0	0	1	0	0
0	1	1	0	0	0
1	0	1	1	1	1
1	1	0	0	0	0

Λογική Συνάρτηση σε Κύκλωμα

«Από Μέσα Προς τα Έξω» με βάση την προτεραιότητα των πράξεων της συνάρτησης

Αληθοπίνακας σε Κύκλωμα:

Πρώτα αληθοπίνακας σε λογική συνάρτηση και έπειτα λογική συνάρτηση σε κύκλωμα

Αληθοπίνακας σε Λογική Συνάρτηση:

Στις γραμμές που η συνάρτηση έχει τιμή 1 γράφουμε ένα γινόμενο (Αν η μεταβλητή είναι 1, τότε γράφουμε το όνομα της μεταβλητής, αλλιώς γράφουμε το συμπλήρωμα). Η συνάρτηση είναι το άθροισμα των γινομένων

X	Υ	Z	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Λύση:

Έχουμε F=1 όταν:

- X = 0, Y = 0, Z = 0
- X = 0, Y = 1, Z = 0
- X = 1, Y = 0, Z = 0• X = 1, Y = 1 Z = 0
- X = 1, Y = 1, Z = 1

Άρα η συνάρτηση είναι:

F = X'Y'Z' + X'YZ' + XY'Z' + XYZ' + XYZ

Κύκλωμα σε Αληθοπίνακα:

Προς τα εμπρός δίνοντας ονόματα στις ενδιάμεσες πύλες

Κύκλωμα σε Λογική Συνάρτηση:

Προς τα πίσω δίνοντας ονόματα στις ενδιάμεσες πύλες

ΔΙΑΓΡΑΜΜΑ ΡΟΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ (FLOW CHART)

FLOW CHART

Είσοδος - Έξοδος:

Π.χ. Τυπώνει 2 φορές αυτό που διαβάζει:

