ESPACIO n-DIMENSIONAL

Se define a \mathbb{R}^n como el conjunto de todas las n-uplas ordenadas de números reales (x_1, \dots, x_n) .

Los elementos de \mathbb{R}^n que se simbolizan como:

$$\vec{x} = (x_1, \cdots, x_n)$$

0

$$\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

como n-upla horizontal

como matriz columna

se denominan vectores o *n*- vectores.

- * Si n=1, se obtiene la recta real \mathbb{R} .
- * Si n=2, se obtiene el plano \mathbb{R}^2 .
- * Si n=3, \mathbb{R}^3 es el espacio tridimensional.

En este caso se adopta un sistema de coordenadas

xyz denominado **dextrógiro** que sigue la regla de

la mano derecha: con los dedos de esta mano

apuntando en la dirección del eje x positivo se los

curva en sentido anti-horario hacia el eje y positivo,

entonces el dedo pulgar apunta en la dirección

positiva del eje z.

Se acostumbra utilizar(x, y, z) en lugar de (x_1, x_2, x_3)

ia

Existe una correspondencia

uno a uno entre los puntos (x, y, z) en \mathbb{R}^3 y sus vectores posición $\vec{x} = (x, y, z)$.

coordenadas de P

componentes escalares de \vec{x} = coordenadas de P

DEFINICIONES

 $\vec{x}, \vec{y} \in \mathbb{R}^n$ (vectores en \mathbb{R}^n)

es decir:

$$\vec{x}=(x_1,\cdots,x_n)$$
, $\vec{y}=(y_1,\cdots,y_n)$

* Producto interno (producto escalar)

Se define como la suma de los productos de las componentes homólogas de los vectores \vec{x} e \vec{y} :

$$\vec{x} \cdot \vec{y} = x_1 y_1 + \dots + x_n y_n = \sum_{i=1}^n x_i y_i$$

* Norma o longitud de un vector

$$\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}} = \sqrt{x_1^2 + \dots + x_n^2} = \sqrt{\sum_{i=1}^n x_i^2}$$

Por ejemplo, si n = 3

* Distancia entre dos puntos

$$d(\vec{x}, \vec{y}) = \|\vec{x} - \vec{y}\| = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2} = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Por ejemplo, en \mathbb{R}^2

$$\vec{x} = (x_1, y_1)$$

$$\vec{y} = (x_2, y_2)$$

$$d(\vec{x}, \vec{y}) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

TOPLOGÍA DE \mathbb{R}^n

DEFINICIONES

Sean

- $*\ A \subset \mathbb{R}^n$
- * $\vec{x}_0 \in \mathbb{R}^n$
- * $r \in \mathbb{R}$, r > 0

Entorno (o bola abierta) de un punto \vec{x}_0 :

Es el conjunto de todos los puntos $\vec{x} \in \mathbb{R}^n$ cuya distancia a \vec{x}_0 es menor que un cierto r, es decir:

$$B_r(\vec{x}_0) = \left\{ \vec{x} \in \mathbb{R}^n \middle| \underbrace{\|\vec{x} - \vec{x}_0\|}_{d(\vec{x}, \vec{x}_0)} < r \right\}$$
entorno de \vec{x}_0
de radio r

Interpretación geométrica

Para n=1,

$$|x - x_0| < r \iff x_0 - r < x < x_0 + r$$

 $B_r(x_0)$ es el intervalo $(x_0 - r, x_0 + r)$

Para n = 2

 $B_r(\vec{x}_0)$ es el disco abierto de radio r centrado en \vec{x}_0 \mathbb{R}^2

 \mathbb{R}

 $\vec{x}_0 = (x_0, y_0)$

Para n = 3

 $B_r(\vec{x}_0)$ es la bola abierta de radio r centrada en \vec{x}_0

 $\vec{x}_0 = (x_0, y_0, z_0)$

 \mathbb{R}

Entorno reducido (o bola reducida) de un punto \vec{x}_0 :

$$B_r'(\vec{x}_0) = \{ \vec{x} \in \mathbb{R}^n \mid 0 < ||\vec{x} - \vec{x}_0|| < r \}$$

Interpretación geométrica

Para n = 1

- Para n = 2

 $B_r(\vec{x}_0)$ es el disco abierto de radio r perforado en su centro \vec{x}_0

 $B_r(\vec{x}_0)$ es la bola abierta de radio r perforada en su centro \vec{x}_0

Punto de acumulación:

 \vec{x}_0 es punto de acumulación de $A \iff \forall B_r'(\vec{x}_0) \mid B_r'(\vec{x}_0) \cap A \neq \emptyset$

Es decir, \vec{x}_0 es punto de acumulación de A si todo entorno reducido de \vec{x}_0 tiene puntos que pertenecen a A.

- Un punto de acumulación puede pertenecer o no al conjunto.
- La idea intuitiva de punto de acumulación es la siguiente: me acerco al punto tanto como quiero usando (pasando por) puntos del conjunto pero sin llegar al punto mismo.

Por ejemplo:

 $\vec{x}_0 \in A$ es punto interior y de acumulación de A.

 $\vec{x}_1 \notin A$ es punto exterior de A. No es punto de acumulación de A.

 $\vec{x}_2 \in A$ es punto frontera y de acumulación de A.

 $\vec{x}_3 \notin A$ es punto frontera y de acumulación de A.

 $\vec{x}_4 \notin A$ es punto frontera y de acumulación de A.

EJERCICIOS

1. Determine el interior, el exterior, la frontera y la clausura de cada uno de los siguientes conjuntos. Diga si son abiertos, cerrados o ni abiertos ni cerrados.

i-
$$A = \{(x, y) \in \mathbb{R}^2 \mid |x - a| < r, |y - b| < r \}$$

ii-
$$A = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 + 9y^2 \le 36\}$$

iii-
$$A = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 - 9y^2 \le 36 \}$$

iv-
$$A = \{(x, y, z) \in \mathbb{R}^3 \mid z < x + y \}$$

v-
$$A = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 4\}$$

vi-
$$A = \{(x, y, z) \in \mathbb{R}^3 \mid |x - a| \le r, |y - b| < r, |z - c| < r\}$$

vii-
$$A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1, y \ge 0\}$$

viii-
$$A = \{(x, y) \in \mathbb{R}^2 \mid 1 < x^2 + y^2 < 4\}$$

ix-
$$A = \{(x, y) \in \mathbb{R}^2 \mid 2 < x + 2y < 4\}$$

x-
$$A = \{(x, y) \in \mathbb{R}^2 \mid |x| + |y - 1| < 2\}$$

SOLUCIONES DE ALGUNOS EJERCICIOS

i-
$$A = \{(x, y) \in \mathbb{R}^2 \mid |x - a| < r, |y - b| < r\}$$

La interpretación geométrica de $A = \{(x,y) \in \mathbb{R}^2 \mid |x-a| < r, |y-b| < r\}$ es:

$$Int(A) = A$$

$$Ext(A) = \mathbb{R}^2 - \{(x, y) \in \mathbb{R}^2 \mid |x - a| \le r, |y - b| \le r \}$$

$$Fr(A) = \{(x, y) \in \mathbb{R}^2 \mid |x - a| = r, |y - b| \le r \}$$

$$\cup \{(x, y) \in \mathbb{R}^2 \mid |x - a| \le r, |y - b| = r \}$$

$$\underline{\bar{A}}_{clausura} = Int(A) \cup Fr(A) = \{(x, y) \in \mathbb{R}^2 \mid |x - a| \le r, |y - b| \le r\}$$

A es un conjunto abierto.

Repaso

de A

Elipse:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
; $a > 0, b > 0$

 $|x - a| \le r \iff a - r \le x \le a + r$

 $|y - b| \le r \iff b - r \le y \le b + r$

ii-
$$A = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 + 9y^2 \le 36\}$$

$$4x^2 + 9y^2 = 36 \implies \frac{x^2}{9} + \frac{y^2}{4} = 1$$

$$\frac{x^2}{3^2} + \frac{y^2}{2^2} = 1$$
; $a = 3$, $b = 2$

La interpretación geométrica de $A = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 + 9y^2 \le 36\}$ es:

$$Int(A) = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 + 9y^2 < 36\}$$

$$Ext(A) = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 + 9y^2 > 36\}$$

$$Fr(A) = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 + 9y^2 = 36\}$$

$$\bar{A} = Int(A) \cup Fr(A) = A$$

A es un conjunto cerrado.

Repaso

<u>Hipérbola</u>

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

iii-
$$A = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 - 9y^2 \le 36 \}$$

$$4x^2 - 9y^2 = 36 \iff \frac{x^2}{3^2} - \frac{y^2}{2^2} = 1 ; a = 3, b = 2$$

$$Int(A) = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 - 9y^2 < 36\}$$

$$Ext(A) = \mathbb{R}^2 - A$$

$$Fr(A) = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 - 9y^2 = 36\}$$

$$\bar{A} = Int(A) \cup Fr(A) = A$$

A es un conjunto cerrado.

<u>Repaso</u>

Ecuación de una circunferencia con centro en (x_0, y_0) y radio r:

$$(x-x_0)^2 + (y-y_0)^2 = r^2$$

Ecuación de una esfera con centro en (x_0, y_0, z_0) y radio r:

$$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2$$

v-
$$A = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 4\}$$

$$x^2 + y^2 + z^2 = 2^2$$
 Esfera centrada en el origen de radio $r = 2$

$$Int(A) = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 < 4\}$$

$$Ext(A) = \mathbb{R}^3 - A$$

$$Fr(A) = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 4\}$$

$$\bar{A} = Int(A) \cup Fr(A) = A$$

A es un conjunto cerrado.

A

vii- $A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1, y \ge 0\}$

$$Int(A) = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1, y > 0\}$$

$$Ext(A) = \mathbb{R}^2 - \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1, y \ge 0\}$$

$$Fr(A) = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, y \ge 0\} \cup \{(x, y) \in \mathbb{R}^2 \mid -1 < x < 1, y = 0\}$$

$$\bar{A} = Int(A) \cup Fr(A) = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1, y \ge 0\}$$

A es un conjunto ni abierto ni cerrado.

FUNCIONES DE \mathbb{R}^n EN \mathbb{R}^m

A continuación se consideran funciones

$$\vec{f} \colon D_{\vec{f}} \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m \qquad \qquad ; \quad n,m \in \mathbb{Z}^+$$

donde el **dominio** de $\vec{f}: D_{\vec{f}}$ es un sub-conjunto de \mathbb{R}^n y el **rango** de $\vec{f}: R_{\vec{f}}$ un sub-conjunto de \mathbb{R}^m . O sea que a cada vector o punto $\vec{x} = (x_1, \dots, x_n) \in D_{\vec{f}} \subset \mathbb{R}^n$, la función \vec{f} le hace corresponder un **único** vector o punto $\vec{f}(\vec{x}) = \vec{y} = (y_1, \dots, y_m) \in \mathbb{R}^m$

A \mathbb{R}^n se lo llama **espacio de dominio o de partida** de \vec{f} y a \mathbb{R}^m se lo llama **espacio de rango, de imagen o de llegada** de \vec{f} .

El $D_{\vec{f}}$ es el conjunto de todos los puntos $\vec{x} \in \mathbb{R}^n$ para los cuales \vec{f} está definida:

$$D_{\vec{f}} = \left\{ \vec{x} \in \mathbb{R}^n \mid \exists \ \vec{f}(\vec{x}) \right\}$$

El $R_{\vec{f}}$ es el conjunto de todos los puntos $\vec{y} \in \mathbb{R}^m$ que provienen a través de \vec{f} de al menos un punto $\vec{x} \in D_{\vec{f}}$:

$$R_{\vec{f}} = \left\{ \vec{y} \in \mathbb{R}^m \mid \exists \ \vec{x} \in D_{\vec{f}} : \ \vec{y} = \vec{f}(\vec{x}) \right\}$$

Toda función $\vec{f}: D_{\vec{f}} \subset \mathbb{R}^n \to \mathbb{R}^m$ define un conjunto de **funciones escalares**: f_1, \dots, f_m llamadas **funciones coordenadas** de \vec{f} .

Esto es, para cada $\vec{x} \in D_{\vec{f}}$, $f_i(\vec{x})$ es la *i*-ésima coordenada de $\vec{f}(\vec{x})$:

$$\vec{f}(\vec{x}) = (f_1(\vec{x}), \dots, f_i(\vec{x}), \dots, f_m(\vec{x}))$$
funciones coordenadas de \vec{f}

Cada función coordenada $f_i: D_{f_i} \subset \mathbb{R}^n \to \mathbb{R}$, $i=1,\cdots,m$ depende de las n variables: x_1,\cdots,x_n que se simbolizan en forma compacta utilizando la notación vectorial, como \vec{x} . El dominio de \vec{f} es:

Dada una función

Si

$$\vec{f} \colon D_{\vec{f}} \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m \longrightarrow n^o \, de \, funciones \, coordenadas$$

m>1 a \vec{f} se la llama **función vectorial** (es una función con valores vectoriales).

m=1 a f se la llama **función escalar** (es una función con valores escalares).

- * <u>Cuando n > 1 y m > 1</u>, a la función vectorial \vec{f} se la denomina **CAMPO VECTORIAL** (es una función vectorial de un vector).
- * <u>Cuando n > 1 y m = 1</u>, a la función escalar f se la denomina **CAMPO ESCALAR** (es una función real de un vector).
- * <u>Cuando n = 1 y m > 1</u>, a \vec{f} se la denomina **función vectorial de una variable real**.
- * <u>Cuando n=m=1</u>, se tiene que $f:D_f \subset \mathbb{R} \to \mathbb{R}$ representa a una función real de una variable real, es decir, corresponde al tipo de funciones que se estudian en AMI.

GRÁFICA (GRAFO) DE FUNCIONES

Definición

Sea $\vec{f}: D_{\vec{f}} \subset \mathbb{R}^n \to \mathbb{R}^m$. El grafo de \vec{f} es el conjunto de todos los pares ordenados $\left(\vec{x}, \vec{f}(\vec{x})\right) \in \mathbb{R}^{n+m}$ tales que $\vec{x} \in D_{\vec{f}}$:

grafo de
$$\vec{f} = \{ (\vec{x}, \vec{f}(\vec{x})) \in \mathbb{R}^{n+m} \mid \vec{x} \in D_{\vec{f}} \}$$

$$\vec{x} = (x_1, \cdots, x_n) \in \mathbb{R}^n$$

$$\vec{f}(\vec{x}) = (f_1(\vec{x}), \cdots, f_m(\vec{x})) \in \mathbb{R}^m$$

* Si n=m=1, se tiene $f:D_f\subset\mathbb{R}\to\mathbb{R}$ una función real de una variable real (de las que se estudian en AMI).

Y el grafo de f es una **curva** en \mathbb{R}^2 .

grafo de
$$f = \{(x, f(x)) \in \mathbb{R}^2 \mid x \in D_f\}$$

* Si n=2 y m=1, se tiene $f:D_f\subset\mathbb{R}^2\to\mathbb{R}$ un campo escalar. La gráfica (o grafo) de f es una superficie en \mathbb{R}^3 .

grafo de
$$f = \{(x, y, f(x, y)) \in \mathbb{R}^3 \mid (x, y) \in D_f\}$$

Por ejemplo, sea $f: D_f \subset \mathbb{R}^2 \to \mathbb{R}$ la función de 2 variables definida por la ecuación:

$$z = f(x, y) = x^2 + y^2$$

Su dominio y rango respectivamente son: $D_f=\mathbb{R}^2; \ R_f=\{z\in\mathbb{R}\ |\ z\geq 0\}.$

La gráfica de f obtenida por computadora es la siguiente superficie en \mathbb{R}^3 :

Se trata de un **paraboloide de revolución**, es decir que la superficie correspondiente a su gráfica puede obtenerse por ejemplo haciendo girar la parábola (sobre el plano y = 0) de ecuación $z = x^2$ alrededor del eje z:

Se puede obtener una gráfica aproximada del paraboloide del siguiente modo:

* Haciendo $y = 0 \Rightarrow z = x^2 + \underbrace{0}_y^2 = x^2$.

O sea que la curva de intersección del grafo de f con el plano y=0 es una parábola de ecuación $z=x^2$.

* Haciendo $x = 0 \Rightarrow z = \underbrace{0}_{x}^{2} + y^{2} = y^{2}$

La curva de intersección del grafo de f con el plano x=0 es una parábola de ecuación $z=y^2$.

* Haciendo $z = c \, \text{con } c \ge 0$ se tiene $z = c = x^2 + y^2$ o bien

$$x^2 + y^2 = (\sqrt{c})^2$$
; $z = c$

Por lo tanto las curvas de intersección del grafo de f con planos horizontales de ecuaciones z=c son circunferencias de radios \sqrt{c} crecientes a medida que el valor de c aumenta.

Si z = c = 0 se tiene la ecuación $x^2 + y^2 = (\sqrt{0})^2 = 0$, cuya única solución es (x,y) = (0,0), es decir que la intersección del grafo de f con el plano z = 0 es el punto correspondiente al origen del sistema de coordenadas.

Si z = c < 0 la ecuación $x^2 + y^2 = c$ no tiene solución por lo que no existe gráfica de f para z < 0.

Luego la gráfica aproximada de f es el siguiente **paraboloide circular**:

La visualización del grafo de una función $\vec{f}\colon D_{\vec{f}}\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ sólo es posible si $n+m\leq 3.$

Si bien el grafo de la función es el que da la información más completa de la misma, cuando n+m>3 el grafo de \vec{f} no puede visualizarse, entonces con el fin de superar esta dificultad y poder obtener información del comportamiento de una función se introduce la idea de conjuntos de nivel.

CONJUNTOS DE NIVEL

Son subconjuntos del dominio de \vec{f} que resultan de dar la contra-imagen de un punto fijo del rango de \vec{f} .

Definición

Sean

$$\begin{aligned} & * \vec{f} \colon D_{\vec{f}} \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m \\ & * \vec{y}_0 \in \mathbb{R}^m \end{aligned}$$

El conjunto de nivel de valor \vec{y}_0 de \vec{f} es: $\left\{ \vec{x} \in D_{\vec{f}} \mid \vec{f}(\vec{x}) = \vec{y}_0 \right\} \subset \mathbb{R}^n$.

Por ejemplo, sea el campo vectorial $\vec{f}: \mathbb{R}^3 \to \mathbb{R}^2$ definido por:

$$\vec{f}(x, y, z) = \left(\underbrace{x^2 + y^2 + z^2}_{f_1}, \underbrace{x + y + z}_{f_2} \right)$$

para el cual se quiere obtener el conjunto de nivel de valor $\vec{y}_0 = (u_0, v_0) = (1,0)$.

Entonces, el conjunto de nivel requerido es el conjunto de todas las ternas ordenadas $(x, y, z) \in \mathbb{R}^3$ que satisfacen el siguiente sistema de ecuaciones:

$$\begin{cases} x^{2} + y^{2} + z^{2} = 1 \\ x + y + z = 0 \\ v_{0} \end{cases}$$

Es decir: $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1, x + y + z = 0\}.$

2. Determine el dominio de las siguientes funciones y haga un gráfico aproximado del mismo.

i-
$$f(x,y) = \frac{1}{\sqrt{x^2 - y^2 - 4}}$$

ii-
$$f(x,y) = ln(xy)$$

iii-
$$f(x,y) = \frac{1}{\sqrt{4-(x^2+y^2)}}$$

iv-
$$f(x,y) = \frac{1}{x^2 + y^2}$$

$$\mathbf{v} - f(x, y) = \ln(1 + xy)$$

vi-
$$f(x,y) = arccos(x^2 + y^2)$$

SOLUCIONES DE ALGUNOS EJERCICIOS

i-
$$f(x,y) = \frac{1}{\sqrt{x^2 - y^2 - 4}}$$

$$D_f = \{(x, y) \in \mathbb{R}^2 \mid x^2 - y^2 - 4 > 0\}$$

$$x^2 - y^2 - 4 > 0$$
,

$$x^2 - y^2 > 4$$

$$x^{2} - y^{2} - 4 > 0$$
, $x^{2} - y^{2} > 4$, $\frac{x^{2}}{2^{2}} - \frac{y^{2}}{2^{2}} > 1$

La gráfica del dominio de *f* es:

$$\mathbf{v} - f(x, y) = \ln(1 + xy)$$

$$D_f = \{(x, y) \in \mathbb{R}^2 \mid 1 + xy > 0\}$$
$$1 + xy > 0$$

$$xy > -1$$

$$y = -\frac{1}{x}$$
 hipérbola equilátera

3. Grafique (aproximadamente) los conjuntos de nivel de las siguientes funciones para los valores indicados.

i-
$$f(x,y) = x + y$$
 , $c \in \{-1,0,1\}$

$$, c \in \{-1,0,1\}$$

ii-
$$f(x,y) = x^2 + y^2 - 4$$
 , $c \in \{-4,0,12\}$

$$c \in \{-4,0,12\}$$

iii-
$$f(x,y) = e^{xy}$$

$$c \in \{0,1,4\}$$

iv-
$$f(x, y) = y^2 - x$$

$$, \quad c \in \{-2,0,2\}$$

v-
$$f(x,y) = \frac{x^2}{4} + \frac{y^2}{9}$$

$$, c \in \{0,1\}$$

vi-
$$f(x, y, z) = x + y + z$$
 , $c \in \{-1,0,1\}$

$$c \in \{-1,0,1\}$$

vii-
$$f(x, y, z) = x^2 + y^2 + z^2$$
, $c \in \{0,1\}$

$$c \in \{0,1\}$$

viii-
$$f(x, y, z) = x^2 + y^2$$

$$c \in \{4,9\}$$

SOLUCIONES DE ALGUNOS EJERCICIOS

$$\mathbf{i} - f(x,y) = x + y$$

$$c \in \{-1, 0, 1\}$$

$$z = x + y$$

$$\overrightarrow{c} = x + y$$

Si
$$c = -1$$
, $-1 = x + y \Rightarrow y = -1 - x$

$$c = -1, \quad y = -1 - x$$

Si
$$c = 0$$
, $0 = x + y \Rightarrow y = -x$

$$c=0, \quad y=-x$$

Si
$$c = 1$$
, $1 = x + y \Rightarrow y = 1 - x$

$$c = 1, y = 1 - x$$

ii-
$$f(x,y) = x^2 + y^2 - 4$$
 , $c \in \{-4,0,12\}$

$$c \in \{-4, 0, 12\}$$

$$z = x^2 + y^2 - 4$$

$$\dot{\vec{c}} = x^2 + y^2 - 4$$

Si
$$c = -4$$
, $-4 = x^2 + y^2 - 4 \Rightarrow x^2 + y^2 = 0$

$$c = -4, \quad x^2 + y^2 = 0 \implies$$

$$\Rightarrow$$
 (0,0) única solución

- Si
$$c = 0$$
, $0 = x^2 + y^2 - 4 \Rightarrow$
 $\Rightarrow x^2 + y^2 = 4$

$$c = 0, x^2 + y^2 = 2^2$$

- Si
$$c = 12$$
, $12 = x^2 + y^2 - 4 \Rightarrow$

$$\Rightarrow x^2 + y^2 = 16$$

$$c = 12$$
, $x^2 + y^2 = 4^2$

v-
$$f(x,y) = \frac{x^2}{4} + \frac{y^2}{9}$$

,
$$c \in \{0,1\}$$

x

$$z = \frac{x^2}{4} + \frac{y^2}{9}$$

$$c = \frac{x^2}{4} + \frac{y^2}{9}$$

- Si
$$c = 0$$
, $0 = \frac{x^2}{4} + \frac{y^2}{9}$

$$c = 0, (0,0)$$

Si
$$c = 1$$
, $1 = \frac{x^2}{4} + \frac{y^2}{9}$

$$c = 1$$
, $\frac{x^2}{2^2} + \frac{y^2}{3^2} = 1$

vii-
$$f(x, y, z) = x^2 + y^2 + z^2$$
, $c \in \{0, 1\}$

$$w = \underbrace{f(x, y, z)}$$

$$w = \underbrace{f(x, y, z)}_{w = x^2 + y^2 + z^2}$$

$$\ddot{c} = x^2 + y^2 + z^2$$

$$\ddot{c} = x^2 + y^2 + z^2$$

- Si
$$c = 0$$
, $0 = x^2 + y^2 + z^2$

$$c = 0$$
, $(0,0,0)$

- Si
$$c = 1$$
, $1 = x^2 + y^2 + z^2$

$$c = 1$$
, $x^2 + y^2 + z^2 = 1^2$

esfera de radio 1 centrada en el origen

