Ayudantía 5 Opciones Instrumentos Derivados

Profesor: Francisco Rantul

Ayudante: Mateo Canales

Universidad Diego Portales

09 De Junio, 2025

Pregunta 1

Calcule el precio de una opción put europea a 3 meses sobre una acción que no paga dividendos, con un precio de ejercicio de \$50, cuando el precio actual de la acción es \$50, la tasa de interés libre de riesgo es de 10% anual, y la volatilidad es de 30% anual.

- a) Calcule el valor de d1
- **b)** Calcule el valor de d2
- c) Calcule el valor de la opción put usando la fórmula de Black-Scholes.
- d) ¿Qué diferencia hay si se espera un dividendo de \$2 en 2 meses

Pregunta 1 Parte a)

Calcule el precio de una opción put europea a 3 meses sobre una acción que no paga dividendos, con un precio de ejercicio de \$50, cuando el precio actual de la acción es \$50, la tasa de interés libre de riesgo es de 10% anual, y la volatilidad es de 30% anual.

a) Calcule el valor de d1

Datos:
$$S_0 = $50$$
, $K = 50 , $r = 10\%$, $T = 0.25$, $\sigma = 30\%$

Fórmula:
$$d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$$

Datos:
$$S_0 = $50$$
, $K = 50 , $r = 10\%$, $T = 0.25$, $\sigma = 30\%$

Fórmula:
$$d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$$

$$d_1 = \frac{\ln(50/50) + \left(0.10 + \frac{0.30^2}{2}\right) \cdot 0.25}{0.30 \cdot \sqrt{0.25}}$$

Datos:
$$S_0 = $50$$
, $K = 50 , $r = 10\%$, $T = 0.25$, $\sigma = 30\%$

Fórmula:
$$d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$$

$$d_1 = \frac{\ln(50/50) + \left(0.10 + \frac{0.30^2}{2}\right) \cdot 0.25}{0.30 \cdot \sqrt{0.25}}$$

$$d_1 = \frac{0 + (0.10 + 0.045) \cdot 0.25}{0.15}$$

Datos:
$$S_0 = $50$$
, $K = 50 , $r = 10\%$, $T = 0.25$, $\sigma = 30\%$

Fórmula:
$$d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$$

$$d_1 = \frac{\ln(50/50) + \left(0.10 + \frac{0.30^2}{2}\right) \cdot 0.25}{0.30 \cdot \sqrt{0.25}}$$

$$d_1 = \frac{0 + (0.10 + 0.045) \cdot 0.25}{0.15}$$

$$d_1 = \frac{0.0362}{0.15}$$

Datos:
$$S_0 = $50$$
, $K = 50 , $r = 10\%$, $T = 0.25$, $\sigma = 30\%$

Fórmula:
$$d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$$

$$d_1 = \frac{\ln(50/50) + \left(0.10 + \frac{0.30^2}{2}\right) \cdot 0.25}{0.30 \cdot \sqrt{0.25}}$$

$$d_1 = \frac{0 + (0.10 + 0.045) \cdot 0.25}{0.15}$$

$$d_1 = \frac{0.0362}{0.15}$$

$$d_1 = 0.242$$

Pregunta 1 Parte b)

Calcule el precio de una opción put europea a 3 meses sobre una acción que no paga dividendos, con un precio de ejercicio de \$50, cuando el precio actual de la acción es \$50, la tasa de interés libre de riesgo es de 10% anual, y la volatilidad es de 30% anual.

b) Calcule el valor de d2

Datos: $S_0 = 50 , K = \$50, r = 10%, T = 0.25, $\sigma = 30\%$, $d_1 = 0.242$

Calculamos d2 usando la fórmula:

Fórmula: $d_2 = d_1 - \sigma \cdot \sqrt{T}$

Datos: $S_0 = 50 , K = \$50, r = 10%, T = 0.25, $\sigma = 30\%$, $d_1 = 0.242$

Fórmula: $d_2 = d_1 - \sigma \cdot \sqrt{T}$ $d_2 = 0.242 - 0.30 \cdot \sqrt{0.25}$

Datos: $S_0 = 50 , K = \$50, r = 10%, T = 0.25, $\sigma = 30\%$, $d_1 = 0.242$

Fórmula:
$$d_2 = d_1 - \sigma \cdot \sqrt{T}$$

 $d_2 = 0.242 - 0.30 \cdot \sqrt{0.25}$

$$d_2 = 0.242 - 0.15$$

Datos:
$$S_0 = $50$$
, $K = 50 , $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$
Calculamos d2 usando la fórmula:

Fórmula:
$$d_2 = d_1 - \sigma \cdot \sqrt{T}$$

 $d_2 = 0.242 - 0.30 \cdot \sqrt{0.25}$
 $d_2 = 0.242 - 0.15$
 $d_2 = 0.092$

Datos:
$$S_0 = $50$$
, $K = 50 , $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$
Calculamos d2 usando la fórmula:

Fórmula:
$$d_2 = d_1 - \sigma \cdot \sqrt{T}$$

 $d_2 = 0.242 - 0.30 \cdot \sqrt{0.25}$
 $d_2 = 0.242 - 0.15$
 $d_2 = 0.092$

Calcule el precio de una opción put europea a 3 meses sobre una acción que no paga dividendos, con un precio de ejercicio de \$50, cuando el precio actual de la acción es \$50, la tasa de interés libre de riesgo es de 10% anual, y la volatilidad es de 30% anual.

c) Calcule el valor de la opción put usando la fórmula de Black-Scholes.

Datos:
$$S_0 = $50$$
, $K = 50 , $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$
Fórmula: $p = K \cdot e^{-r \cdot (T)} \cdot N(-d_2) - S_0 \cdot N(-d_1)$

Datos:
$$S_0 = $50$$
, $K = 50 , $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$
Fórmula: $p = K \cdot e^{-r \cdot (T)} \cdot N(-d_2) - S_0 \cdot N(-d_1)$
 $p = 50 \cdot e^{-0.10 \cdot 0.25} \cdot N(-0.092) - 50 \cdot N(-0.242)$

Datos:
$$S_0 = \$50$$
, $K = \$50$, $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$
Fórmula: $p = K \cdot e^{-r \cdot (T)} \cdot N(-d_2) - S_0 \cdot N(-d_1)$
 $p = 50 \cdot e^{-0.10 \cdot 0.25} \cdot N(-0.092) - 50 \cdot N(-0.242)$
 $p = 50 \cdot 0.9755 \cdot 0.4633 - 50 \cdot 0.4040$

```
Datos: S_0 = \$50, K = \$50, r = 10\%, T = 0.25, \sigma = 30\%, d_1 = 0.242, d_2 = 0.092

Fórmula: p = K \cdot e^{-r \cdot (T)} \cdot N(-d_2) - S_0 \cdot N(-d_1)

p = 50 \cdot e^{-0.10 \cdot 0.25} \cdot N(-0.092) - 50 \cdot N(-0.242)

p = 50 \cdot 0.9755 \cdot 0.4633 - 50 \cdot 0.4040

p = 22.5982 - 20.2004
```

Datos:
$$S_0 = \$50$$
, $K = \$50$, $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$
Fórmula: $p = K \cdot e^{-r \cdot (T)} \cdot N(-d_2) - S_0 \cdot N(-d_1)$
 $p = 50 \cdot e^{-0.10 \cdot 0.25} \cdot N(-0.092) - 50 \cdot N(-0.242)$
 $p = 50 \cdot 0.9755 \cdot 0.4633 - 50 \cdot 0.4040$
 $p = 22.5982 - 20.2004$
 $p = 2.3978$

Pregunta 1 Parte d)

Calcule el precio de una opción put europea a 3 meses sobre una acción que no paga dividendos, con un precio de ejercicio de \$50, cuando el precio actual de la acción es \$50, la tasa de interés libre de riesgo es de 10% anual, y la volatilidad es de 30% anual.

d) ¿Qué diferencia hay si se espera un dividendo de \$2 en 2 meses

Datos:
$$S_0 = $50$$
, $K = 50 , $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$, $t = \frac{2}{12}$

Al precio actual de la acción debemos restarle el valor presente de los dividendos.

Fórmula: $vp = e^{-r \cdot t} \cdot valorfuturo$

Datos:
$$S_0 = $50$$
, $K = 50 , $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$, $t = \frac{2}{12}$

Al precio actual de la acción debemos restarle el valor presente de los dividendos.

Fórmula:
$$vp = e^{-r \cdot t} \cdot valorfuturo$$
 $vp = e^{-0.10 \cdot 0.167} \cdot 1.5$

Datos:
$$S_0 = $50$$
, $K = 50 , $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$, $t = \frac{2}{12}$

Al precio actual de la acción debemos restarle el valor presente de los dividendos.

Fórmula:
$$vp = e^{-r \cdot t} \cdot valorfuturo$$
 $vp = e^{-0.10 \cdot 0.167} \cdot 1.5$ $vp = 0.984 \cdot 1.5$

Datos:
$$S_0 = $50$$
, $K = 50 , $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$, $t = \frac{2}{12}$

Al precio actual de la acción debemos restarle el valor presente de los dividendos.

Fórmula:
$$vp = e^{-r \cdot t} \cdot valorfuturo$$
 $vp = e^{-0.10 \cdot 0.167} \cdot 1.5$ $vp = 0.984 \cdot 1.5$ $vp = 1.475$

Datos:
$$S_0 = $50$$
, $K = 50 , $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$, $t = \frac{2}{12}$

Al precio actual de la acción debemos restarle el valor presente de los dividendos.

Fórmula: $vp = e^{-r \cdot t} \cdot valorfuturo$

$$vp = e^{-0.10 \cdot 0.167} \cdot 1.5$$

$$vp = 0.984 \cdot 1.5$$

$$vp = 1.475$$

Luego, el nuevo valor de la acción está dado por:

$$S_1 = 50 - 1.475$$

Datos:
$$S_0 = $50$$
, $K = 50 , $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$, $t = \frac{2}{12}$

Al precio actual de la acción debemos restarle el valor presente de los dividendos.

Fórmula: $vp = e^{-r \cdot t} \cdot valorfuturo$

$$vp = e^{-0.10 \cdot 0.167} \cdot 1.5$$

$$vp = 0.984 \cdot 1.5$$

$$vp = 1.475$$

Luego, el nuevo valor de la acción está dado por:

$$S_1 = 50 - 1.475$$

$$S_1 = 48.525$$

Datos:
$$S_0 = $50$$
, $K = 50 , $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$, $t = \frac{2}{12}$

Al precio actual de la acción debemos restarle el valor presente de los dividendos.

Fórmula: $vp = e^{-r \cdot t} \cdot valorfuturo$

$$vp = e^{-0.10 \cdot 0.167} \cdot 1.5$$

$$vp = 0.984 \cdot 1.5$$

$$vp = 1.475$$

Luego, el nuevo valor de la acción está dado por:

$$S_1 = 50 - 1.475$$

$$S_1 = 48.525$$

Repetimos los cálculos anteriores con el nuevo valor de la acción:

Datos:
$$S_0 = \$48.52$$
, $K = \$50$, $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$, $t = \frac{2}{12}$
Fórmula: $d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$

Datos:
$$S_0 = \$48.52$$
, $K = \$50$, $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$, $t = \frac{2}{12}$
Fórmula: $d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$
 $d_1 = \frac{\ln(48.525/50) + \left(0.10 + \frac{0.30^2}{2}\right) \cdot 0.25}{0.30 \cdot \sqrt{0.25}}$

Datos:
$$S_0 = \$48.52$$
, $K = \$50$, $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$, $t = \frac{2}{12}$
Fórmula: $d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$
 $d_1 = \frac{\ln(48.525/50) + \left(0.10 + \frac{0.30^2}{2}\right) \cdot 0.25}{0.30 \cdot \sqrt{0.25}} = \frac{-0.03008 + 0.036}{0.15}$

Datos:
$$S_0 = \$48.52$$
, $K = \$50$, $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$, $t = \frac{2}{12}$
Fórmula: $d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$

$$d_1 = \frac{\ln(48.525/50) + \left(0.10 + \frac{0.30^2}{2}\right) \cdot 0.25}{0.30 \cdot \sqrt{0.25}} = \frac{-0.03008 + 0.036}{0.15} = \frac{0.006}{0.15}$$

Datos:
$$S_0 = \$48.52$$
, $K = \$50$, $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$, $t = \frac{2}{12}$
Fórmula: $d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$

$$d_1 = \frac{\ln(48.525/50) + \left(0.10 + \frac{0.30^2}{2}\right) \cdot 0.25}{0.30 \cdot \sqrt{0.25}} = \frac{-0.03008 + 0.036}{0.15} = \frac{0.006}{0.15}$$

$$d_1 = 0.041$$

Datos:
$$S_0 = \$48.52$$
, $K = \$50$, $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$, $t = \frac{2}{12}$
Fórmula: $d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$

$$d_1 = \frac{\ln(48.525/50) + \left(0.10 + \frac{0.30^2}{2}\right) \cdot 0.25}{0.30 \cdot \sqrt{0.25}} = \frac{-0.03008 + 0.036}{0.15} = \frac{0.006}{0.15}$$

$$d_1 = 0.041$$

$$d_2 = 0.041 - 0.30 \cdot \sqrt{0.25}$$

Datos:
$$S_0 = \$48.52$$
, $K = \$50$, $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$, $t = \frac{2}{12}$
Fórmula: $d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$
 $d_1 = \frac{\ln(48.525/50) + \left(0.10 + \frac{0.30^2}{2}\right) \cdot 0.25}{0.30 \cdot \sqrt{0.25}} = \frac{-0.03008 + 0.036}{0.15} = \frac{0.006}{0.15}$
 $d_1 = 0.041$
 $d_2 = 0.041 - 0.30 \cdot \sqrt{0.25} = 0.041 - 0.15$

Datos:
$$S_0 = \$48.52$$
, $K = \$50$, $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$, $t = \frac{2}{12}$
Fórmula: $d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$
 $d_1 = \frac{\ln(48.525/50) + \left(0.10 + \frac{0.30^2}{2}\right) \cdot 0.25}{0.30 \cdot \sqrt{0.25}} = \frac{-0.03008 + 0.036}{0.15} = \frac{0.006}{0.15}$
 $d_1 = 0.041$
 $d_2 = 0.041 - 0.30 \cdot \sqrt{0.25} = 0.041 - 0.15$
 $d_2 = -0.109$

Datos:
$$S_0 = \$48.52$$
, $K = \$50$, $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.242$, $d_2 = 0.092$, $t = \frac{2}{12}$
Fórmula: $d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$
 $d_1 = \frac{\ln(48.525/50) + \left(0.10 + \frac{0.30^2}{2}\right) \cdot 0.25}{0.30 \cdot \sqrt{0.25}} = \frac{-0.03008 + 0.036}{0.15} = \frac{0.006}{0.15}$
 $d_1 = 0.041$
 $d_2 = 0.041 - 0.30 \cdot \sqrt{0.25} = 0.041 - 0.15$
 $d_2 = -0.109$

Ahora, calculamos el valor de la opción put con los nuevos valores:

Datos: $S_0 = \$48.52$, K = \$50, r = 10%, T = 0.25, $\sigma = 30\%$, $d_1 = 0.041$, $d_2 = -0.109$ **Fórmula:** $p = K \cdot e^{-r \cdot (T)} \cdot N(-d_2) - S_0 \cdot N(-d_1)$

Datos:
$$S_0 = \$48.52$$
, $K = \$50$, $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.041$, $d_2 = -0.109$
Fórmula: $p = K \cdot e^{-r \cdot (T)} \cdot N(-d_2) - S_0 \cdot N(-d_1)$
 $P = 50 \cdot e^{-0.10 \cdot 0.25} \cdot N(0.109) - 48.52 \cdot N(-0.041)$

Datos:
$$S_0 = \$48.52$$
, $K = \$50$, $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.041$, $d_2 = -0.109$
Fórmula: $p = K \cdot e^{-r \cdot (T)} \cdot N(-d_2) - S_0 \cdot N(-d_1)$
 $P = 50 \cdot e^{-0.10 \cdot 0.25} \cdot N(0.109) - 48.52 \cdot N(-0.041)$
 $P = 50 \cdot e^{-0.10 \cdot 0.25} \cdot 0.544 - 48.52 \cdot 0.484$

Datos:
$$S_0 = \$48.52$$
, $K = \$50$, $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.041$, $d_2 = -0.109$
Fórmula: $p = K \cdot e^{-r \cdot (T)} \cdot N(-d_2) - S_0 \cdot N(-d_1)$
 $P = 50 \cdot e^{-0.10 \cdot 0.25} \cdot N(0.109) - 48.52 \cdot N(-0.041)$
 $P = 50 \cdot e^{-0.10 \cdot 0.25} \cdot 0.544 - 48.52 \cdot 0.484$
 $P = 26.524 - 23.486$

Datos:
$$S_0 = \$48.52$$
, $K = \$50$, $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.041$, $d_2 = -0.109$
Fórmula: $p = K \cdot e^{-r \cdot (T)} \cdot N(-d_2) - S_0 \cdot N(-d_1)$
 $P = 50 \cdot e^{-0.10 \cdot 0.25} \cdot N(0.109) - 48.52 \cdot N(-0.041)$
 $P = 50 \cdot e^{-0.10 \cdot 0.25} \cdot 0.544 - 48.52 \cdot 0.484$
 $P = 26.524 - 23.486$
 $p = 3.039$

Datos:
$$S_0 = \$48.52$$
, $K = \$50$, $r = 10\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.041$, $d_2 = -0.109$
Fórmula: $p = K \cdot e^{-r \cdot (T)} \cdot N(-d_2) - S_0 \cdot N(-d_1)$
 $P = 50 \cdot e^{-0.10 \cdot 0.25} \cdot N(0.109) - 48.52 \cdot N(-0.041)$
 $P = 50 \cdot e^{-0.10 \cdot 0.25} \cdot 0.544 - 48.52 \cdot 0.484$
 $P = 26.524 - 23.486$
 $p = 3.039$

Comparación:

Sin dividendo: 2.398 Con dividendo: 3.039

Conclusión: El precio de la opción put aumenta al considerar el dividendo, ya que reduce el valor actual del activo subyacente.

Pregunta 2

Se sabe que una acción que no paga dividendos, el precio de la acción es de \$52, el precio de ejercicio es de \$50, la tasa de interés libre de riesgo es de 12%, la volatilidad es de 30% anual, y el tiempo hasta el vencimiento es de 3 meses?

- a) Calcule el valor de d1
- **b)** Calcule el valor de d2
- c) Calcule el valor de la opción put usando la fórmula de Black-Scholes.

Pregunta 2 Parte a)

Parte a)

Se sabe que una acción que no paga dividendos, el precio de la acción es de \$52, el precio de ejercicio es de \$50, la tasa de interés libre de riesgo es de 12%, la volatilidad es de 30% anual, y el tiempo hasta el vencimiento es de 3 meses?

a) Calcule el valor de d1

Datos:
$$S_0 = $52$$
, $K = 50 , $r = 12\%$, $T = 0.25$, $\sigma = 30\%$

Fórmula:
$$d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$$

Datos:
$$S_0 = $52$$
, $K = 50 , $r = 12\%$, $T = 0.25$, $\sigma = 30\%$

Fórmula:
$$d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$$

$$d_1 = \frac{\ln(52/50) + \left(0.12 + \frac{0.30^2}{2}\right) \cdot 0.25}{0.30 \cdot \sqrt{0.25}}$$

Datos:
$$S_0 = $52$$
, $K = 50 , $r = 12\%$, $T = 0.25$, $\sigma = 30\%$

Fórmula:
$$d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$$

$$d_1 = \frac{\ln(52/50) + \left(0.12 + \frac{0.30^2}{2}\right) \cdot 0.25}{0.30 \cdot \sqrt{0.25}}$$

$$d_1 = \frac{0.0392 + (0.12 + 0.045) \cdot 0.25}{0.15}$$

Datos:
$$S_0 = $52$$
, $K = 50 , $r = 12\%$, $T = 0.25$, $\sigma = 30\%$

Fórmula:
$$d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$$

$$d_1 = \frac{\ln(52/50) + \left(0.12 + \frac{0.30^2}{2}\right) \cdot 0.25}{0.30 \cdot \sqrt{0.25}}$$

$$d_1 = \frac{0.0392 + (0.12 + 0.045) \cdot 0.25}{0.15}$$

$$d_1 = \frac{0.0412}{0.15}$$

Datos:
$$S_0 = $52$$
, $K = 50 , $r = 12\%$, $T = 0.25$, $\sigma = 30\%$

Fórmula:
$$d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$$

$$d_1 = \frac{\ln(52/50) + \left(0.12 + \frac{0.30^2}{2}\right) \cdot 0.25}{0.30 \cdot \sqrt{0.25}}$$

$$d_1 = \frac{0.0392 + (0.12 + 0.045) \cdot 0.25}{0.15}$$

$$d_1 = \frac{0.0412}{0.15}$$

$$d_1 = \frac{0.0804}{0.15}$$

Datos:
$$S_0 = $52$$
, $K = 50 , $r = 12\%$, $T = 0.25$, $\sigma = 30\%$

Fórmula:
$$d_1 = \frac{\ln(S_0/K) + \left(r + \frac{\sigma^2}{2}\right) \cdot T}{\sigma \cdot \sqrt{T}}$$

$$d_1 = \frac{\ln(52/50) + \left(0.12 + \frac{0.30^2}{2}\right) \cdot 0.25}{0.30 \cdot \sqrt{0.25}}$$

$$d_1 = \frac{0.0392 + (0.12 + 0.045) \cdot 0.25}{0.15}$$

$$d_1 = \frac{0.0412}{0.15}$$

$$d_1 = \frac{0.0804}{0.15}$$

$$d_1 = 0.536$$

Pregunta 2 Parte b)

Parte b)

Se sabe que una acción que no paga dividendos, el precio de la acción es de \$52, el precio de ejercicio es de \$50, la tasa de interés libre de riesgo es de 12%, la volatilidad es de 30% anual, y el tiempo hasta el vencimiento es de 3 meses?

b) Calcule el valor de d2

Datos: $S_0 = 52 , K = \$50, r = 12%, T = 0.25, $\sigma = 30\%$, $d_1 = 0.536$

Calculamos d2 usando la fórmula:

Fórmula: $d_2 = d_1 - \sigma \cdot \sqrt{T}$

Datos:
$$S_0 = $52$$
, $K = 50 , $r = 12\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.536$

Fórmula:
$$d_2 = d_1 - \sigma \cdot \sqrt{T}$$

 $d_2 = 0.536 - 0.30 \cdot \sqrt{0.25}$

Datos: $S_0 = 52 , K = \$50, r = 12%, T = 0.25, $\sigma = 30\%$, $d_1 = 0.536$ Calculamos d2 usando la fórmula:

Fórmula:
$$d_2 = d_1 - \sigma \cdot \sqrt{T}$$

 $d_2 = 0.536 - 0.30 \cdot \sqrt{0.25}$
 $d_2 = 0.536 - 0.15$

Datos: $S_0 = 52 , K = \$50, r = 12%, T = 0.25, $\sigma = 30\%$, $d_1 = 0.536$ Calculamos d2 usando la fórmula:

Fórmula:
$$d_2 = d_1 - \sigma \cdot \sqrt{T}$$

 $d_2 = 0.536 - 0.30 \cdot \sqrt{0.25}$
 $d_2 = 0.536 - 0.15$
 $d_2 = 0.386$

Datos: $S_0 = 52 , K = \$50, r = 12%, T = 0.25, $\sigma = 30\%$, $d_1 = 0.536$ Calculamos d2 usando la fórmula:

Fórmula:
$$d_2 = d_1 - \sigma \cdot \sqrt{T}$$

 $d_2 = 0.536 - 0.30 \cdot \sqrt{0.25}$
 $d_2 = 0.536 - 0.15$
 $d_2 = 0.386$

Se sabe que una acción que no paga dividendos, el precio de la acción es de \$52, el precio de ejercicio es de \$50, la tasa de interés libre de riesgo es de 12%, la volatilidad es de 30% anual, y el tiempo hasta el vencimiento es de 3 meses?

c) Calcule el valor de la opción put usando la fórmula de Black-Scholes.

Datos:
$$S_0 = $52$$
, $K = 50 , $r = 12\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.536$, $d_2 = 0.386$
Fórmula: $c = S_0 \cdot N(d_1) - K \cdot e^{-r \cdot (T)} \cdot N(d_2)$

Datos:
$$S_0 = $52$$
, $K = 50 , $r = 12\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.536$, $d_2 = 0.386$
Fórmula: $c = S_0 \cdot N(d_1) - K \cdot e^{-r \cdot (T)} \cdot N(d_2)$
 $c = 52 \cdot N(0.536) - 50 \cdot e^{-0.12 \cdot 0.25} \cdot N(0.386)$

Datos:
$$S_0 = \$52$$
, $K = \$50$, $r = 12\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.536$, $d_2 = 0.386$
Fórmula: $c = S_0 \cdot N(d_1) - K \cdot e^{-r \cdot (T)} \cdot N(d_2)$
 $c = 52 \cdot N(0.536) - 50 \cdot e^{-0.12 \cdot 0.25} \cdot N(0.386)$
 $c = 52 \cdot 0.7032 - 50 \cdot e^{-0.12 \cdot 0.25} \cdot 0.6509$

Datos:
$$S_0 = \$52$$
, $K = \$50$, $r = 12\%$, $T = 0.25$, $\sigma = 30\%$, $d_1 = 0.536$, $d_2 = 0.386$
Fórmula: $c = S_0 \cdot N(d_1) - K \cdot e^{-r \cdot (T)} \cdot N(d_2)$
 $c = 52 \cdot N(0.536) - 50 \cdot e^{-0.12 \cdot 0.25} \cdot N(0.386)$
 $c = 52 \cdot 0.7032 - 50 \cdot e^{-0.12 \cdot 0.25} \cdot 0.6509$
 $c = 36.5665 - 31.5888$

```
Datos: S_0 = \$52, K = \$50, r = 12\%, T = 0.25, \sigma = 30\%, d_1 = 0.536, d_2 = 0.386

Fórmula: c = S_0 \cdot N(d_1) - K \cdot e^{-r \cdot (T)} \cdot N(d_2)

c = 52 \cdot N(0.536) - 50 \cdot e^{-0.12 \cdot 0.25} \cdot N(0.386)

c = 52 \cdot 0.7032 - 50 \cdot e^{-0.12 \cdot 0.25} \cdot 0.6509

c = 36.5665 - 31.5888

c = 4.9777
```

Pregunta 3

El precio de una acción sigue un movimiento browniano geométrico con un rendimiento esperado de 16% y una volatilidad de 35%. El precio actual es de \$38 .

- a) ¿Cuál es la probabilidad de que una opción call europea sobre la acción con un precio de ejercicio de \$40 y vencimiento en 6 meses sea ejercida?
- b) ¿Cuál es la probabilidad de que una opción put europea sobre la acción conun precio de ejercicio de \$40 y vencimiento en 6 meses sea ejercida?

Parte a)

Pregunta 3 Parte a)

El precio de una acción sigue un movimiento browniano geométrico con un rendimiento esperado de 16% y una volatilidad de 35%. El precio actual es de $\$\,38$.

a) ¿Cuál es la probabilidad de que una opción call europea sobre la acción con un precio de ejercicio de \$40 y vencimiento en 6 meses sea ejercida?

Datos:
$$S_0 = $38$$
, $K = 40 , $\mu = 0.16$, $T = 0.5$, $\sigma = 35\%$

Queremos calcular la probabilidad de que la opción call se ejerza, es decir:

$$\mathbb{P}(S_T > K)$$

Aplicamos la fórmula de movimiento browniano geométrico: $\ln(S_T) \sim \mathcal{N}\left(\ln(S_0) + (\mu - \sigma^2/2) \cdot T, \ \sigma^2 \cdot T\right)$

Datos:
$$S_0 = $38$$
, $K = 40 , $\mu = 0.16$, $T = 0.5$, $\sigma = 35\%$

Queremos calcular la probabilidad de que la opción call se ejerza, es decir:

$$\mathbb{P}(S_T > K)$$

Aplicamos la fórmula de movimiento browniano geométrico: $\ln(S_T) \sim \mathcal{N}\left(\ln(S_0) + (\mu - \sigma^2/2) \cdot T, \ \sigma^2 \cdot T\right)$ Reemplazamos:

Datos:
$$S_0 = $38$$
, $K = 40 , $\mu = 0.16$, $T = 0.5$, $\sigma = 35\%$

Queremos calcular la probabilidad de que la opción call se ejerza, es decir:

$$\mathbb{P}(S_T > K)$$

Aplicamos la fórmula de movimiento browniano geométrico: $\ln(S_T) \sim \mathcal{N} \left(\ln(S_0) + (\mu - \sigma^2/2) \cdot T, \ \sigma^2 \cdot T \right)$

$$ln(S_T) \sim \mathcal{N}\left(ln(38) + (0.16 - 0.35^2/2) \cdot 0.5, \ 0.35^2 \cdot 0.5\right)$$

Datos:
$$S_0 = $38$$
, $K = 40 , $\mu = 0.16$, $T = 0.5$, $\sigma = 35\%$

Queremos calcular la probabilidad de que la opción call se ejerza, es decir:

$$\mathbb{P}(S_T > K)$$

Aplicamos la fórmula de movimiento browniano geométrico: $\ln(S_T) \sim \mathcal{N} \left(\ln(S_0) + (\mu - \sigma^2/2) \cdot T, \ \sigma^2 \cdot T \right)$

$$\ln(S_T) \sim \mathcal{N} \left(\ln(38) + (0.16 - 0.35^2/2) \cdot 0.5, \ 0.35^2 \cdot 0.5 \right) \\ \ln(S_T) \sim \mathcal{N} \left(3.638 + 0.099 \cdot 0.5, 0.061 \right)$$

Datos:
$$S_0 = $38$$
, $K = 40 , $\mu = 0.16$, $T = 0.5$, $\sigma = 35\%$

Queremos calcular la probabilidad de que la opción call se ejerza, es decir:

$$\mathbb{P}(S_T > K)$$

Aplicamos la fórmula de movimiento browniano geométrico: $\ln(S_T) \sim \mathcal{N} \left(\ln(S_0) + (\mu - \sigma^2/2) \cdot T, \ \sigma^2 \cdot T \right)$

$$\begin{aligned} & \ln(S_T) \sim \mathcal{N} \left(\ln(38) + (0.16 - 0.35^2/2) \cdot 0.5, \ 0.35^2 \cdot 0.5 \right) \\ & \ln(S_T) \sim \mathcal{N} \left(3.638 + 0.099 \cdot 0.5, 0.061 \right) \\ & \ln(S_T) \sim \mathcal{N} \left(3.638 + 0.049, 0.061 \right) \end{aligned}$$

Datos:
$$S_0 = $38$$
, $K = 40 , $\mu = 0.16$, $T = 0.5$, $\sigma = 35\%$

Queremos calcular la probabilidad de que la opción call se ejerza, es decir:

$$\mathbb{P}(S_T > K)$$

Aplicamos la fórmula de movimiento browniano geométrico: $\ln(S_T) \sim \mathcal{N}\left(\ln(S_0) + (\mu - \sigma^2/2) \cdot T, \ \sigma^2 \cdot T\right)$

$$\begin{split} & \ln(S_T) \sim \mathcal{N} \left(\ln(38) + (0.16 - 0.35^2/2) \cdot 0.5, \ 0.35^2 \cdot 0.5 \right) \\ & \ln(S_T) \sim \mathcal{N} \left(3.638 + 0.099 \cdot 0.5, 0.061 \right) \\ & \ln(S_T) \sim \mathcal{N} \left(3.638 + 0.049, 0.061 \right) \\ & \ln(S_T) \sim \mathcal{N} \left(3.687, 0.061 \right) \end{split}$$

Datos:
$$S_0 = $38$$
, $K = 40 , $\mu = 0.16$, $T = 0.5$, $\sigma = 35\%$

Queremos calcular la probabilidad de que la opción call se ejerza, es decir:

$$\mathbb{P}(S_T > K)$$

Aplicamos la fórmula de movimiento browniano geométrico: $\ln(S_T) \sim \mathcal{N}\left(\ln(S_0) + (\mu - \sigma^2/2) \cdot T, \ \sigma^2 \cdot T\right)$

$$\begin{split} & \ln(S_T) \sim \mathcal{N} \left(\ln(38) + (0.16 - 0.35^2/2) \cdot 0.5, \ 0.35^2 \cdot 0.5 \right) \\ & \ln(S_T) \sim \mathcal{N} \left(3.638 + 0.099 \cdot 0.5, 0.061 \right) \\ & \ln(S_T) \sim \mathcal{N} \left(3.638 + 0.049, 0.061 \right) \\ & \ln(S_T) \sim \mathcal{N} \left(3.687, 0.061 \right) \end{split}$$

Dado que $\ln 40=3.689$, estandarizamos segun fórmula: $Z=\frac{\ln K - \mathbb{E}[\ln S_T]}{\text{desv. estándar}}$

Dado que ln 40 = 3.689, estandarizamos segun fórmula: $Z = \frac{\ln K - \mathbb{E}[\ln S_T]}{\text{desv. estándar}}$ $\mathbb{P}(\ln S_T > \ln(K_0)) = 1 - N(Z)$

Dado que $\ln 40 = 3.689$, estandarizamos segun fórmula: $Z = \frac{\ln K - \mathbb{E}[\ln S_T]}{\text{desv. estándar}}$ $\mathbb{P}(\ln S_T > \ln(K_0)) = 1 - N(Z)$ $\mathbb{P}(\ln S_T > 3.689)$

Dado que $\ln 40 = 3.689$, estandarizamos segun fórmula: $Z = \frac{\ln K - \mathbb{E}[\ln S_T]}{\text{desv. estándar}}$ $\mathbb{P}(\ln S_T > \ln(K_0)) = 1 - N(Z)$ $\mathbb{P}(\ln S_T > 3.689) = 1 - N\left(\frac{3.689 - 3.687}{0.061}\right)$

Dado que $\ln 40 = 3.689$, estandarizamos segun fórmula: $Z = \frac{\ln \mathcal{K} - \mathbb{E}[\ln S_T]}{\text{desv. estándar}}$ $\mathbb{P}(\ln S_T > \ln(\mathcal{K}_0)) = 1 - \mathcal{N}(Z)$ $\mathbb{P}(\ln S_T > 3.689) = 1 - \mathcal{N}\left(\frac{3.689 - 3.687}{0.061}\right)$ $\mathbb{P}(\ln S_T > 3.689) = 1 - \mathcal{N}\left(\frac{0.002}{0.061}\right)$

Dado que $\ln 40 = 3.689$, estandarizamos segun fórmula: $Z = \frac{\ln K - \mathbb{E}[\ln S_T]}{\text{desv. estándar}}$ $\mathbb{P}(\ln S_T > \ln(K_0)) = 1 - N(Z)$ $\mathbb{P}(\ln S_T > 3.689) = 1 - N\left(\frac{3.689 - 3.687}{0.061}\right)$ $\mathbb{P}(\ln S_T > 3.689) = 1 - N\left(\frac{0.002}{0.061}\right)$ $\mathbb{P}(\ln S_T > 3.689) = 1 - N(0.031)$

Dado que $\ln 40 = 3.689$, estandarizamos segun fórmula: $Z = \frac{\ln K - \mathbb{E}[\ln S_T]}{\text{desv. estándar}}$ $\mathbb{P}(\ln S_T > \ln(K_0)) = 1 - N(Z)$ $\mathbb{P}(\ln S_T > 3.689) = 1 - N\left(\frac{3.689 - 3.687}{0.061}\right)$ $\mathbb{P}(\ln S_T > 3.689) = 1 - N\left(\frac{0.002}{0.061}\right)$ $\mathbb{P}(\ln S_T > 3.689) = 1 - N\left(0.031\right)$ $\mathbb{P}(\ln S_T > 3.689) = 1 - 0.5247$

Dado que $\ln 40 = 3.689$, estandarizamos segun fórmula: $Z = \frac{\ln K - \mathbb{E}[\ln S_T]}{\text{desv. estándar}}$ $\mathbb{P}(\ln S_T > \ln(K_0)) = 1 - N(Z)$ $\mathbb{P}(\ln S_T > 3.689) = 1 - N\left(\frac{3.689 - 3.687}{0.061}\right)$ $\mathbb{P}(\ln S_T > 3.689) = 1 - N\left(\frac{0.002}{0.061}\right)$ $\mathbb{P}(\ln S_T > 3.689) = 1 - N(0.031)$ $\mathbb{P}(\ln S_T > 3.689) = 1 - 0.5247$

 $\mathbb{P}(\ln S_T > 3.689) = 0.4753$

Queremos calcular la probabilidad de que la opción put se ejerza, es decir: $\mathbb{P}(S_T < K)$

Queremos calcular la probabilidad de que la opción put se ejerza, es decir: $\mathbb{P}(S_T < K)$

Esto equivale a:

$$\mathbb{P}(\ln S_T < \ln K)$$

Queremos calcular la probabilidad de que la opción put se ejerza, es

decir: $\mathbb{P}(S_T < K)$

Esto equivale a:

 $\mathbb{P}(\ln S_T < \ln K)$

Buscamos:

$$\mathbb{P}(\ln S_{\mathcal{T}} < \ln K) = N(Z)$$

Queremos calcular la probabilidad de que la opción put se ejerza, es

decir: $\mathbb{P}(S_T < K)$

Esto equivale a:

$$\mathbb{P}(\ln S_T < \ln K)$$

Buscamos:

$$\mathbb{P}(\ln S_{\mathcal{T}} < \ln K) = N(Z)$$

$$\mathbb{P}(\ln S_T < 3.689) = N(0.031)$$

Queremos calcular la probabilidad de que la opción put se ejerza, es

decir: $\mathbb{P}(S_T < K)$

Esto equivale a:

$$\mathbb{P}(\ln S_T < \ln K)$$

Buscamos:

$$\mathbb{P}(\ln S_T < \ln K) = N(Z)$$

$$\mathbb{P}(\ln S_T < 3.689) = N(0.031)$$

$$\mathbb{P}(\ln S_T < 3.689) = 0.5247$$