Data Provided: None

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Autumn Semester 2007-2008 (2 hours)

Principles of Communication and Electrical Engineering 6

Answer **THREE** questions. **No marks will be awarded for solutions to a fourth question.** Solutions will be considered in the order that they are presented in the answer book. Trial answers will be ignored if they are clearly crossed out. **The numbers given after each section of a question indicate the relative weighting of that section.**

1.

a. Three point charges are placed at coordinates (2,0,0), (4,0,0), and (6,0,0) as shown in figure 1.1, where the unit of length is metres. Calculate the force exerted on charge B due to charges A and C. $(\varepsilon_0 = 8.854 \times 10^{-12} \ F/m)$

(4)

(4)

b. A parallel plate capacitor consists of two rectangular plates of area $a \times b$ separated by a distance d and contains three materials with different dielectric constants, ε_{r1} , ε_{r2} , ε_{r3} , as shown in figure 1.2.

- (i) Ignoring fringing fields, derive an expression for the total capacitance of this arrangement.
- (ii) If the capacitor is charged to 15V, calculate the energy stored in the capacitor when a = 0.015m, b = 0.007m, d = 0.002m, $\varepsilon_{r1} = 3$, $\varepsilon_{r2} = 6.5$, and $\varepsilon_{r3} = 4$. (2)

continued on next page

continued from previous page

c. The magnetic flux density at a point a perpendicular distance x from the centre of a thin straight conductor of length L, which is carrying a current I, is given by:

$$B = \frac{\mu_0 I}{2\pi x} \left[\frac{1}{1 + (2x/L)^2} \right]^{\frac{1}{2}}$$

- (i) Use this expression to deduce an expression for the B field at the centre of a square circuit where the length of each side is L. (4)
- (ii) Figure 1.3 shows part of a circuit in the form of a regular polygon having n sides and carries a current I. The distance from the centre of the polygon to the vertices is b.

Show that the B field at the centre of the polygon is:

$$B_{POLY} = \frac{n\mu_0 I \tan(\pi/n)}{2\pi b}$$
You may require the expression: $1 + \tan^2(\theta) = \frac{1}{\cos^2(\theta)}$
(4)

(iii) Use the equation given in part c(ii) for the field at the centre of a regular polygon to derive an expression for the B field at the centre of a circular loop of wire. (2)

(3)

(4)

2.

- a. A 20kVA, 50Hz transformer which steps down from $1000V_{rms}$ to $100V_{rms}$ and has a primary winding resistance of 4Ω and a secondary winding resistance of 0.02Ω . The transformer draws a no-load current of $3A_{rms}$ at a 0.3 lagging power-factor when supplied at rated voltage. Calculate:
 - (i) the total resistance referred to the primary side (1)
 - (ii) the copper loss when operating on full load (2)
 - (iii) the cross-sectional area of the iron core if the maximum flux in the core must not exceed 1.5T and the primary winding has 2000 turns
 - (iv) the losses in the core of the transformer (1)
- **b.** A robot arm is actuated by a permanent magnet servo motor via a gearbox with a 5:1 transfer ratio. The parameters of the motor are as follows:

Torque constant = 0.3 Nm/A

Emf constant = 0.3 V/rads s

Armature resistance = 0.25Ω

It is a requirement that the robot arm moves through 150° in 3 seconds with the velocity-time profile shown in Figure 2.1. The total inertia of the system as seen by the motor is 0.5 kgm².

- (i) Find the maximum speed of the servo motor.
- (ii) Find the peak torque required from the motor and hence sketch the current-time profile required from the servo amplifier. (4)
- (iii) Utilising the equivalent motor circuit, sketch the applied voltage and back emf with respect to time. (5)

3.

a. Figure 3.1 shows the circuit symbol and truth table for a clocked D-Type flip-flop.

Figure 3.1

- (i) Show the circuit symbols and truth tables for clocked SR and JK type flip-flops. (4)
- (ii) Using D-Type flip-flops similar to the one above and standard logic gates, draw the circuit of a 3-bit binary ripple counter which counts up. (4)
- (iii) With the aid of a waveform diagram explain the disadvantage of ripple counters. (2)
- **b.** A synchronous state machine is required to detect the sequence 0101 in an incoming bit stream. The system should output a '1' when the sequence is detected and a '0' at other times. Once the full sequence 0101 has been detected the system must be able to detect the full 4-bit sequence 0101 again, starting with the next input bit.
 - (i) Draw a state diagram for the system. (4)
 - (ii) Write down the state transition table. (3)
 - (iii) Derive Boolean expressions for the inputs to each of the flip-flops and for the output of the circuit. (3)

4.

a. (i) Describe, without stating the equation, what is meant by entropy and therefore explain why entropy for a binary system becomes very small when the probability of sending a 0, p(0) approaches 1 or 0.

(4)

(ii) A set of messages, {A,B,C,D,E,F,G,H} are transmitted over a communications channel and analysis of their probabilities yields the following data.

Message	A	В	С	D	Е	F	G	Н
P(message)	0.01	0.33	0.14	0.07	0.13	0.1	0.18	0.04

Derive the Huffman code for this message set. Show how the derived codes for the messages improve the average information per bit when compared to fixed length encoding.

(8)

(8)

b. What is meant by a multi access (MA) communication system? Name and give a brief description of 4 types of multi access.

KM-JW / JW-KM