import pandas as pd

cars = pd.read_csv(r'https://github.com/YBI-Foundation/Dataset/raw/main/MPG.csv')

cars.head(10)

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origi
0	18.0	8	307.0	130.0	3504	12.0	70	us
1	15.0	8	350.0	165.0	3693	11.5	70	us
2	18.0	8	318.0	150.0	3436	11.0	70	us
3	16.0	8	304.0	150.0	3433	12.0	70	us
4	17.0	8	302.0	140.0	3449	10.5	70	us
5	15.0	8	429.0	198.0	4341	10.0	70	us
4							_	>

cars.tail()

pd.options.display.max_rows = None

cars

import pandas as pd

import numpy as np

df = pd.read_csv(r'https://github.com/YBI-Foundation/Dataset/raw/main/Boston.csv')

df.head()

	CRIM	ZN	INDUS	CHAS	NX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	I
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	
-													•

df.shape

(506, 14)

df.columns

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	CRIM	506 non-null	float64
1	ZN	506 non-null	float64
2	INDUS	506 non-null	float64
3	CHAS	506 non-null	int64
4	NX	506 non-null	float64
5	RM	506 non-null	float64
6	AGE	506 non-null	float64
7	DIS	506 non-null	float64
8	RAD	506 non-null	int64
9	TAX	506 non-null	float64
10	PTRATIO	506 non-null	float64
11	В	506 non-null	float64
12	LSTAT	506 non-null	float64
13	MEDV	506 non-null	float64

```
dtypes: float64(12), int64(2)
df.describe()
```

```
y = df['MEDV']
   y.shape
         (506,)
   X = df[['CRIM', 'ZN', 'INDUS', 'CHAS', 'NX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO',
   X.shape
         (506, 13)
   from sklearn.model_selection import train_test_split
   X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state =
   X_train.shape, X_test.shape, y_train.shape, y_test.shape
         ((354, 13), (152, 13), (354,), (152,))
   from sklearn.preprocessing import StandardScaler
   ss = StandardScaler()
   X_train_ss = ss.fit_transform(X_train)
   X_test_ss = ss.fit_transform(X_test)
https://colab.research.google.com/drive/1Hw2ULDU-jlM6TuwIO0dbkq2QhQM87OBN#printMode=true
```

```
X train ss
     array([[-0.14113619, -0.48175769, -0.19860022, ..., 0.00438903,
            -0.05084503, -0.01555641],
           [-0.42121529, 3.02166196, -1.33410259, ..., -1.68641979,
             0.42969249, -1.33650784],
           [-0.41266839, -0.48175769, 0.22414717, ..., 0.14148164,
             0.19739169, -0.10842497],
           [-0.38944304, -0.48175769, -0.19860022, ..., 0.00438903,
             0.37963873, 0.77313338],
           [-0.41404001, 0.41002186, -0.81324318, \ldots, -0.72677154,
             0.43161763, 0.09671754],
           [-0.41578561, 2.06618387, -1.3831586, ..., -0.04130851,
             0.39707198, -0.68781395]])
X_test_ss
    array([[-0.36714008, -0.50235603, -0.6925381 , ..., -0.57641511,
             0.2366856 , -1.24860568],
           [-0.40880876, -0.50235603, -0.58591169, ..., -0.33768188,
             0.43031542, -0.31886558],
           [-0.41291768, -0.50235603, -0.12035979, ..., -0.38542852,
             0.36717526, 0.17122998],
           [-0.34428827, -0.50235603, 1.66375525, ..., 1.23795746,
             0.30005961, -0.18769294],
           [-0.05769974, -0.50235603, 1.31684399, ..., -1.86557456,
            -0.3514533 , -0.15886379],
           [-0.42293258, 1.25907688, -0.66100071, ..., -0.48092181,
             0.43031542, -0.75418575]])
X train ss.mean(axis = 0)
    array([ 7.52693576e-18, 2.50897859e-17, 5.01795717e-17, 1.12904036e-17,
           -4.74196953e-16, -1.03369918e-15, -1.85664415e-16, 7.27603790e-17,
           -3.51257002e-17, 1.15413015e-16, 7.32621747e-16, -4.01436574e-17,
           -3.51257002e-17])
X \text{ test ss.mean}(axis = 0)
     array([-1.75298372e-17, 3.35988547e-17, -1.16865582e-17, 1.75298372e-17,
           -1.27091320e-16, -4.26559373e-16, 2.62947558e-17, 2.07436407e-16,
           -5.25895117e-17, -1.16865582e-17, 3.15537070e-16, -7.24566606e-16,
           -1.31473779e-16])
X train ss.std(axis = 0)
```

https://colab.research.google.com/drive/1Hw2ULDU-jlM6TuwIO0dbkq2QhQM87OBN#printMode=true

X test ss.std(axis = 0)

```
import pandas as pd
```

import numpy as np

df = pd.read_csv(r'https://github.com/YBI-Foundation/Dataset/raw/main/Customer%20Purchase.

df.head()

	Customer ID	Age	Gender	Education	Review	Purchased
0	1021	30	Female	School	Average	No
1	1022	68	Female	UG	Poor	No
2	1023	70	Female	PG	Good	No
3	1024	72	Female	PG	Good	No
4	1025	16	Female	UG	Average	No

df.shape

(50, 6)

df.columns

df.columns

Index(['Customer ID', 'Age', 'Gender', 'Education', 'Review', 'Purchased'], dtype='ot

df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 50 entries, 0 to 49 Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Customer ID	50 non-null	int64
1	Age	50 non-null	int64
2	Gender	50 non-null	object
3	Education	50 non-null	object
4	Review	50 non-null	object
5	Purchased	50 non-null	object
4+,,,,	oc. in+64(2)	object(1)	

dtypes: int64(2), object(4)

memory usage: 2.5+ KB

X = df[['Gender', 'Education', 'Review']]

Χ

```
from sklearn.preprocessing import OrdinalEncoder
oe = OrdinalEncoder()
X = oe.fit_transform(X)
Χ
     array([[0., 1., 0.],
            [0., 2., 2.],
            [0., 0., 1.],
            [0., 0., 1.],
            [0., 2., 0.],
            [0., 1., 0.],
            [1., 1., 1.],
            [0., 1., 2.],
            [0., 2., 0.],
            [1., 2., 1.],
            [0., 2., 1.],
            [1., 2., 1.],
            [1., 1., 2.],
```

```
[0., 1., 0.],
             [1., 0., 2.],
             [1., 2., 2.],
             [1., 2., 2.],
             [0., 2., 2.],
             [1., 1., 1.],
             [1., 0., 2.],
             [0., 1., 0.],
             [1., 0., 0.],
             [0., 0., 2.],
             [0., 1., 1.],
             [0., 0., 0.],
             [0., 1., 1.],
             [0., 0., 2.],
             [0., 0., 2.],
             [1., 1., 2.],
             [0., 2., 0.],
             [1., 2., 0.],
             [0., 1., 2.],
             [1., 2., 0.],
             [0., 0., 1.],
             [1., 1., 0.],
             [1., 1., 2.],
             [0., 2., 1.],
             [1., 0., 0.],
             [0., 1., 1.],
             [1., 0., 2.],
             [1., 1., 1.],
             [1., 0., 1.],
             [0., 0., 1.],
             [1., 0., 2.],
             [0., 2., 0.],
             [1., 0., 2.],
             [0., 0., 2.],
             [0., 0., 1.],
             [0., 2., 1.],
             [0., 2., 1.]])
oe.categories_
     [array(['Female', 'Male'], dtype=object),
      array(['PG', 'School', 'UG'], dtype=object),
      array(['Average', 'Good', 'Poor'], dtype=object)]
oe.inverse_transform([[0, 0, 0]])
     array([['Female', 'PG', 'Average']], dtype=object)
oe.inverse_transform([[1, 1, 1]])
     array([['Male', 'School', 'Good']], dtype=object)
oe.inverse_transform([[1, 2, 2]])
     array([['Male', 'UG', 'Poor']], dtype=object)
```

• ×

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv(r'https://github.com/YBI-Foundation/Dataset/raw/main/Online%20Purchase.cs
df.head()
```

	Customer_ID	Gender	Age	Salary	Purchased
0	1	Male	35	500	0
1	2	Female	25	300000	1
2	3	Female	100	200000	0
3	15566689	Female	35	57000	0
4	15569641	Female	58	95000	1

df.shape

```
(403, 5)
```

df.columns

```
Index(['Customer_ID', 'Gender', 'Age', 'Salary', 'Purchased'], dtype='object')
```

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 403 entries, 0 to 402
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	Customer_ID	403 non-null	int64
1	Gender	403 non-null	object
2	Age	403 non-null	int64
3	Salary	403 non-null	int64
4	Purchased	403 non-null	int64
مري بالدام	:-+(1/1)	ob = oc + (1)	

dtypes: int64(4), object(1)
memory usage: 15.9+ KB

df.describe()

df[['Salary']].hist();

df[['Salary']].boxplot()

plt.scatter(df['Age'],df['Salary']);

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, stratify = y, r
X_train.shape, X_test.shape, y_train.shape, y_test.shape
     ((282, 2), (121, 2), (282,), (121,))
from sklearn.preprocessing import StandardScaler
ss = StandardScaler()
X_train_ss = ss.fit_transform(X_train)
X_test_ss = ss.fit_transform(X_test)
X_train_ss = pd.DataFrame(X_train_ss, columns=X_train.columns)
X_test_ss = pd.DataFrame(X_test_ss, columns=X_test.columns)
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12, 5))
ax1.scatter(X_train['Age'], X_train['Salary'])
ax1.set_title("Before Scaling")
ax2.scatter(X_train_ss['Age'], X_train_ss['Salary'],color='red')
ax2.set_title("After Scaling")
plt.show()
```

```
2fig, (ax1, ax) = plt.subplots(ncols=2, figsize=(12, 5))
ax1.set_title('Before Scaling')
sns.kdeplot(X_train['Age'], ax=ax1)
```

```
sns.kdeplot(X_train['Salary'], ax=ax1)

ax1.set_title('After Standard Scaling')
sns.kdeplot(X_train_ss['Age'], ax=ax2)
sns.kdeplot(X_train_ss['Salary'], ax=ax2)
plt.show()
```

```
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12, 5))
ax1.set_title('Age Distribution Before Scaling')
sns.kdeplot(X_train_ss['Age'], ax=ax1)

ax2.set_title('Age Distribution Before Scaling')
sns.kdeplot(X_train_ss['Age'], ax=ax2)
plt.show()
```

```
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12, 5))
ax1.set_title('Salary Distribution Before Scaling')
sns.kdeplot(X_train_ss['Salary'], ax=ax1)

ax2.set_title('Salary Distribution Before Scaling')
sns.kdeplot(X_train_ss['Salary'], ax=ax2)
plt.show()
```

```
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(X_train, y_train)
        LogisticRegression()

y_pred = lr.predict(X_test)

from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_pred)
        0.6446280991735537

lr.fit(X_train_ss, y_train)
        LogisticRegression()

y_pred = lr.predict(X_test_ss)
```

accuracy_score(y_test, y_pred)

0.8099173553719008

• ×

```
import pandas as pd

import numpy as np

df = pd.read_csv(r'https://github.com/YBI-Foundation/Dataset/raw/main/Customer%20Purchase.

df.head()
```

	Customer ID	Age	Gender	Education	Review	Purchased
0	1021	30	Female	School	Average	No
1	1022	68	Female	UG	Poor	No
2	1023	70	Female	PG	Good	No
3	1024	72	Female	PG	Good	No
4	1025	16	Female	UG	Average	No

df.shape

(50, 6)

df.columns

```
Index(['Customer ID', 'Age', 'Gender', 'Education', 'Review', 'Purchased'], dtype='ot
```

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Customer ID	50 non-null	int64
1	Age	50 non-null	int64
2	Gender	50 non-null	object
3	Education	50 non-null	object
4	Review	50 non-null	object
5	Purchased	50 non-null	object

dtypes: int64(2), object(4)
memory usage: 2.5+ KB

y=df['Purchased']

У

0 No

```
2
             No
     3
             No
     4
             No
     5
            Yes
     6
             No
     7
            Yes
     8
             No
     9
            Yes
     10
            Yes
     11
           Yes
     12
             No
     13
             No
     14
            Yes
     15
             No
     16
            Yes
     17
           Yes
     18
             No
     19
            Yes
     20
            Yes
     21
             No
     22
            Yes
     23
             No
     24
            Yes
     25
             No
     26
             No
     27
             No
     28
             No
     29
            Yes
     30
             No
     31
           Yes
     32
            Yes
     33
           Yes
     34
             No
     35
            Yes
     36
           Yes
     37
            Yes
     38
             No
     39
             No
     40
             No
     41
            Yes
     42
           Yes
     43
             No
     44
             No
     45
            Yes
     46
             No
     47
            Yes
     48
            Yes
     49
             No
     Name: Purchased, dtype: object
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
y = le.fit_transform(y)
```

```
3/31/22, 11:34 PM
```

У

×

```
import pandas as pd
```

import numpy as np

df = pd.read_csv(r'https://github.com/YBI-Foundation/Dataset/raw/main/Customer%20Purchase.

df.head()

	Customer ID	Age	Gender	Education	Review	Purchased
0	1021	30	Female	School	Average	No
1	1022	68	Female	UG	Poor	No
2	1023	70	Female	PG	Good	No
3	1024	72	Female	PG	Good	No
4	1025	16	Female	UG	Average	No

df.shape

(50, 6)

df.columns

Index(['Customer ID', 'Age', 'Gender', 'Education', 'Review', 'Purchased'], dtype='ot

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49

Data columns (total 6 columns):

Column Non-Null Count

#	Column	Non-Null Count	Dtype
0	Customer ID	50 non-null	int64
1	Age	50 non-null	int64
2	Gender	50 non-null	object
3	Education	50 non-null	object
4	Review	50 non-null	object
5	Purchased	50 non-null	object

dtypes: int64(2), object(4)
memory usage: 2.5+ KB

X = df[['Gender', 'Education', 'Review']]

Χ

```
[1., 0.],
             [1., 0.],
             [0., 1.],
             [1., 0.],
             [0., 1.],
             [0., 1.],
             [1., 0.],
             [0., 1.],
             [0., 1.],
             [0., 1.],
             [1., 0.],
             [0., 1.],
             [0., 1.],
             [1., 0.],
             [0., 1.],
             [1., 0.],
             [1., 0.],
             [1., 0.],
             [1., 0.],
             [1., 0.],
             [1., 0.],
             [0., 1.],
             [1., 0.],
             [0., 1.],
             [1., 0.],
             [0., 1.],
             [1., 0.],
             [0., 1.],
             [0., 1.],
             [1., 0.],
             [0., 1.],
             [1., 0.],
             [0., 1.],
             [0., 1.],
             [0., 1.],
             [1., 0.],
             [0., 1.],
             [1., 0.],
             [0., 1.],
             [1., 0.],
             [1., 0.],
             [1., 0.],
             [1., 0.]])
X_Education = ohe.fit_transform(X[['Education']])
ohe.categories_
     [array(['PG', 'School', 'UG'], dtype=object)]
X_Education.toarray().shape
     (50, 3)
X_Education.toarray()
```

```
array([[0., 1., 0.],
             [0., 0., 1.],
             [1., 0., 0.],
             [1., 0., 0.],
             [0., 0., 1.],
             [0., 1., 0.],
             [0., 1., 0.],
             [0., 1., 0.],
             [0., 0., 1.],
             [0., 0., 1.],
             [0., 0., 1.],
             [0., 0., 1.],
             [0., 1., 0.],
             [0., 1., 0.],
             [1., 0., 0.],
             [0., 0., 1.],
             [0., 0., 1.],
             [0., 0., 1.],
             [0., 1., 0.],
             [1., 0., 0.],
             [0., 1., 0.],
             [1., 0., 0.],
             [1., 0., 0.],
             [0., 1., 0.],
             [1., 0., 0.],
             [0., 1., 0.],
             [1., 0., 0.],
             [1., 0., 0.],
             [0., 1., 0.],
             [0., 0., 1.],
             [0., 0., 1.],
             [0., 1., 0.],
             [0., 0., 1.],
             [1., 0., 0.],
             [0., 1., 0.],
             [0., 1., 0.],
             [0., 0., 1.],
             [1., 0., 0.],
             [0., 1., 0.],
             [1., 0., 0.],
             [0., 1., 0.],
             [1., 0., 0.],
             [1., 0., 0.],
             [1., 0., 0.],
             [0., 0., 1.],
             [1., 0., 0.],
             [1., 0., 0.],
             [1., 0., 0.],
             [0., 0., 1.],
             [0., 0., 1.]])
X_Review = ohe.fit_transform(X[['Review']])
ohe.categories_
     [array(['Average', 'Good', 'Poor'], dtype=object)]
```

```
X_Review.toarray().shape
     (50, 3)
X_Review.toarray()
     array([[1., 0., 0.],
             [0., 0., 1.],
             [0., 1., 0.],
             [0., 1., 0.],
             [1., 0., 0.],
             [1., 0., 0.],
             [0., 1., 0.],
             [0., 0., 1.],
             [1., 0., 0.],
             [0., 1., 0.],
             [0., 1., 0.],
             [0., 1., 0.],
             [0., 0., 1.],
             [1., 0., 0.],
             [0., 0., 1.],
             [0., 0., 1.],
             [0., 0., 1.],
             [0., 0., 1.],
             [0., 1., 0.],
             [0., 0., 1.],
             [1., 0., 0.],
             [1., 0., 0.],
             [0., 0., 1.],
             [0., 1., 0.],
             [1., 0., 0.],
             [0., 1., 0.],
             [0., 0., 1.],
             [0., 0., 1.],
             [0., 0., 1.],
             [1., 0., 0.],
             [1., 0., 0.],
             [0., 0., 1.],
             [1., 0., 0.],
             [0., 1., 0.],
             [1., 0., 0.],
             [0., 0., 1.],
             [0., 1., 0.],
             [1., 0., 0.],
             [0., 1., 0.],
             [0., 0., 1.],
             [0., 1., 0.],
             [0., 1., 0.],
             [0., 1., 0.],
             [0., 0., 1.],
             [1., 0., 0.],
             [0., 0., 1.],
             [0., 0., 1.],
             [0., 1., 0.],
             [0., 1., 0.],
             [0., 1., 0.]])
```

```
X = df[['Gender', 'Education', 'Review']]
```

```
onehotcoding.ipynb - Colaboratory
ohe = OneHotEncoder(categories=[['Male', 'Female'],['School','UG','PG'],['Poor', 'Average'
X = ohe.fit transform(X)
ohe.categories_
     [array(['Male', 'Female'], dtype=object),
      array(['School', 'UG', 'PG'], dtype=object),
      array(['Poor', 'Average', 'Good'], dtype=object)]
X.toarray().shape
     (50, 8)
X.toarray()
     array([[1., 0., 0., 1., 0., 1., 0., 0.],
            [1., 0., 0., 0., 1., 0., 0., 1.],
            [1., 0., 1., 0., 0., 0., 1., 0.],
            [1., 0., 1., 0., 0., 0., 1., 0.],
            [1., 0., 0., 0., 1., 1., 0., 0.],
            [1., 0., 0., 1., 0., 1., 0., 0.]
            [0., 1., 0., 1., 0., 0., 1., 0.]
            [1., 0., 0., 1., 0., 0., 0., 1.],
            [1., 0., 0., 0., 1., 1., 0., 0.],
            [0., 1., 0., 0., 1., 0., 1., 0.],
            [1., 0., 0., 0., 1., 0., 1., 0.]
            [0., 1., 0., 0., 1., 0., 1., 0.]
            [0., 1., 0., 1., 0., 0., 0., 1.],
            [1., 0., 0., 1., 0., 1., 0., 0.]
            [0., 1., 1., 0., 0., 0., 0., 1.],
            [0., 1., 0., 0., 1., 0., 0., 1.],
            [0., 1., 0., 0., 1., 0., 0., 1.],
            [1., 0., 0., 0., 1., 0., 0., 1.],
            [0., 1., 0., 1., 0., 0., 1., 0.],
            [0., 1., 1., 0., 0., 0., 0., 1.],
            [1., 0., 0., 1., 0., 1., 0., 0.],
            [0., 1., 1., 0., 0., 1., 0., 0.]
            [1., 0., 1., 0., 0., 0., 0., 1.],
            [1., 0., 0., 1., 0., 0., 1., 0.],
            [1., 0., 1., 0., 0., 1., 0., 0.],
            [1., 0., 0., 1., 0., 0., 1., 0.],
            [1., 0., 1., 0., 0., 0., 0., 1.],
            [1., 0., 1., 0., 0., 0., 0., 1.],
            [0., 1., 0., 1., 0., 0., 0., 1.],
            [1., 0., 0., 0., 1., 1., 0., 0.],
            [0., 1., 0., 0., 1., 1., 0., 0.],
            [1., 0., 0., 1., 0., 0., 0., 1.],
            [0., 1., 0., 0., 1., 1., 0., 0.],
            [1., 0., 1., 0., 0., 0., 1., 0.],
            [0., 1., 0., 1., 0., 1., 0., 0.]
            [0., 1., 0., 1., 0., 0., 0., 1.],
            [1., 0., 0., 0., 1., 0., 1., 0.],
```

[0., 1., 1., 0., 0., 1., 0., 0.][1., 0., 0., 1., 0., 0., 1., 0.],[0., 1., 1., 0., 0., 0., 0., 1.],[0., 1., 0., 1., 0., 0., 1., 0.][0., 1., 1., 0., 0., 0., 1., 0.],

```
[1., 0., 1., 0., 0., 0., 1., 0.],
            [0., 1., 1., 0., 0., 0., 0., 1.],
            [1., 0., 0., 0., 1., 1., 0., 0.],
            [0., 1., 1., 0., 0., 0., 0., 1.],
            [1., 0., 1., 0., 0., 0., 0., 1.],
            [1., 0., 1., 0., 0., 0., 1., 0.],
            [1., 0., 0., 0., 1., 0., 1., 0.],
            [1., 0., 0., 0., 1., 0., 1., 0.]])
ohe.inverse_transform([[0., 1., 1., 0., 0., 0., 1., 0.]])
     array([['Female', 'School', 'Average']], dtype=object)
X = df[['Gender', 'Education', 'Review']]
ohe = OneHotEncoder(drop='first')
X = ohe.fit_transform(X)
ohe.categories_
     [array(['Female', 'Male'], dtype=object),
      array(['PG', 'School', 'UG'], dtype=object),
      array(['Average', 'Good', 'Poor'], dtype=object)]
X.toarray().shape
     (50, 5)
X.toarray()
     array([[0., 1., 0., 0., 0.],
            [0., 0., 1., 0., 1.],
            [0., 0., 0., 1., 0.],
            [0., 0., 0., 1., 0.],
            [0., 0., 1., 0., 0.],
            [0., 1., 0., 0., 0.]
            [1., 1., 0., 1., 0.],
            [0., 1., 0., 0., 1.],
            [0., 0., 1., 0., 0.],
            [1., 0., 1., 1., 0.],
            [0., 0., 1., 1., 0.],
            [1., 0., 1., 1., 0.],
            [1., 1., 0., 0., 1.],
            [0., 1., 0., 0., 0.]
            [1., 0., 0., 0., 1.],
            [1., 0., 1., 0., 1.],
            [1., 0., 1., 0., 1.],
            [0., 0., 1., 0., 1.],
            [1., 1., 0., 1., 0.],
            [1., 0., 0., 0., 1.],
            [0., 1., 0., 0., 0.]
            [1., 0., 0., 0., 0.],
            [0., 0., 0., 0., 1.],
```

```
[0., 1., 0., 1., 0.],
[0., 0., 0., 0., 0.]
[0., 1., 0., 1., 0.],
[0., 0., 0., 0., 1.],
[0., 0., 0., 0., 1.],
[1., 1., 0., 0., 1.],
[0., 0., 1., 0., 0.],
[1., 0., 1., 0., 0.],
[0., 1., 0., 0., 1.],
[1., 0., 1., 0., 0.],
[0., 0., 0., 1., 0.],
[1., 1., 0., 0., 0.],
[1., 1., 0., 0., 1.],
[0., 0., 1., 1., 0.],
[1., 0., 0., 0., 0.],
[0., 1., 0., 1., 0.],
[1., 0., 0., 0., 1.],
[1., 1., 0., 1., 0.],
[1., 0., 0., 1., 0.],
[0., 0., 0., 1., 0.],
[1., 0., 0., 0., 1.],
[0., 0., 1., 0., 0.],
[1., 0., 0., 0., 1.],
[0., 0., 0., 0., 1.],
[0., 0., 0., 1., 0.],
[0., 0., 1., 1., 0.],
[0., 0., 1., 1., 0.]
```