MA 515-001, Fall 2017, Practice Problems, Test 2

Problem 1. Recalling that

$$l^{\infty} \left\{ x = \{x_i\}_{i \ge 1} \mid \{x_i\}_{i \ge 1} \text{ is bounded} \right\}$$

and

$$||x||_{l^{\infty}} \doteq \sup_{i>1} |x_i|.$$

Define the operator $\Lambda: l^{\infty} \to l^{\infty}$ such that for any $x \in l^{\infty}$,

$$\Lambda(x) = y = \{y_n\}_{n \ge 1}$$
 with $y_n = \frac{x_1 + 2x_2 + \dots + nx_n}{n^2}$.

Show that Λ is bounded and compute $\|\Lambda\|_{\infty}$.

Problem 2. Recalling that

$$l^{1} = \left\{ x = \{x_{i}\}_{i \ge 1} \mid \sum_{i=1}^{\infty} |x_{i}| < + \infty \right\}$$

and

$$||x||_{l^1} \doteq \sum_{i=1}^{\infty} |x_i| \quad \forall x \in l^1.$$

Define the operator $\Lambda: l^1 \to l^1$ such that for any $x \in l^1$,

$$\Lambda(x) = y = \{y_n\}_{n \ge 1}$$
 with $y_n = \frac{x_n + x_{n+1}}{2}$.

Show that Λ is bounded and compute $\|\Lambda\|_{\infty}$.

Problem 3. Given $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ two normed spaces, let $T_n : X \to Y$ be bounded linear operators with

$$||T_n||_{\infty} < M \qquad \forall n \in \mathbb{N}$$

for some constant M > 0. Assume that

$$\lim_{n \to \infty} \frac{T_1(x) + \dots + T_n(x)}{n} = T(x) \in Y \qquad \forall x \in X.$$

Show that $T: X \to Y$ is a bounded linear operator and

$$||T||_{\infty} < M$$
.

Problem 4. Given $(X, \|\cdot\|_X)$ a normed space, let $\{T_n\}_{n\geq 1} \subset B(X, X)$ converge T in B(X, X). Denote by

$$\Lambda_n(x) \doteq (T_n \circ T_n)(x)$$
 and $\Lambda(x) \doteq (T \circ T)(x)$ $\forall x \in X$.

Show that

- (i) The sequence $\{\Lambda_n\}_{n\geq 1}$ converges to Λ in B(X,X).
- (ii) If $\{x_n\}_{n\geq 1}\subset X$ converges to x in X then the sequence $\{\Lambda_n(x_n)\}_{n\geq 1}$ converges to $\Lambda(x)$ in X.

Problem 5. Let $T: X \to X$ be a bounded linear operators such that

- T is surjective, i.e., T(X) = X;
- \bullet There is a positive constant M such that

$$||T(x)|| \ge M \cdot ||x|| \quad \forall x \in X.$$

Denote by

$$T_2(x) = (T \circ T)(x) = T(T(x)).$$

Show that $(T_2)^{-1}: X \to X$ exists and is a linear bounded operator.

Problem 6. Let $(X, \|\cdot\|)$ be a Banach space and $T: X \to X$ be a bounded linear operator such that $\|T\|_{\infty} < 1$. Denote by

$$\Lambda(x) \ = \ \frac{x+T(x)}{2} \qquad \forall x \in X \, .$$

Show that the linear operator bounded $\Lambda: X \to X$ is one-to-one and onto.

Problem 7. Let $(X, \|\cdot\|)$ be a Banach space and $T: X \to X$ be a bounded linear operator such that $\|T\|_{\infty} < 3$. Denote by

$$\Lambda(x) \ = \ \frac{3x + T(x)}{4} \qquad \forall x \in X \, .$$

Show that the linear operator bounded $\Lambda: X \to X$ is one-to-one and onto.

Problem 8. Let $(X, \|\cdot\|)$ be a Banach space and $T: X \to X$ be a bounded linear operator with $\|T\|_{\infty} < M$. Denote by

$$T^0 = \mathbb{I}$$
 and $T^n = T^{n-1} \circ T$.

Show that the series

$$\sum_{n=0}^{+\infty} \frac{1}{2^n} \cdot \left(\mathbb{I} + \frac{T}{M} \right)^n \text{ converges in } B(X, X) \,.$$

Moreover,

$$\sum_{n=0}^{+\infty} \frac{1}{2^n} \cdot \left(\mathbb{I} + \frac{T}{M} \right)^n = \left(\frac{M \cdot \mathbb{I} - T}{2M} \right)^{-1}.$$

Problem 9. Let X be a Banach space, and let $T: X \to X$ be a linear continuous bijection. Show that there exists a constant $\beta > 1$ such that

$$\frac{1}{\beta} \cdot ||x|| \le ||(T \circ T)(x)|| \le \beta \cdot ||x|| \qquad \forall x \in X.$$