Real-time Volumetric Fog Simulation

Milestone Presentation

Lucia Tódová

Original steps and goals:

- Modeling (noise generation)
- Visualization (ray marching)
- Lighting (emission, absorption, scattering)
- Optimization

Done so far

- Implementation of Worley and Perlin noise
- Ray marching
- Part of light marching
- Unity GUI Inspector

Noise Generation

- Worley and Perlin noise functions
- Possibility of multiple octaves (Fractal Brownian noise)
- Setbacks:
 - Compute shader implementation and dispatching
 - Unity's RenderTexture and Texture3D classes and their conversion
 - Complicated testing in 3D
 - Tiling of the noises

Perlin Noise

Inverted Worley Noise

Noise Textures for Cloud Rendering

Shape Texture

- 128 x 128 x 128 resolution
- Red channel Perlin noise
- Other channels Worley noise
- Density: R * (B + G + A)

Detail Texture

- 32 x 32 x 32 resolution
- Alpha channel 1 (max value)
- Other channels Worley noise
- Density: (B + G + R)/4

Noise Generator Script

- Custom editor
- Shape and Detail noise independent of each other
- Saves the textures to the Resources folder
- Advice for creating textures:
 - Use varying octaves of Worley noise
 - Ideal cell size for Worley is 8/16

Ray marching

- March along a ray from A to B
- At each point, compute the density
- Sum densities up to get the density of point A
- Density computation:
 - Shape Texture Density Detail Texture Density
 - Weight of the point along a ray determined by Beer's Law

$$T=rac{I}{I_0}=e^{-\sigma_a t}$$

Transmittance at point dependent on absorption coefficient and current distance

delta Z = step size; z_1 , z_2 , z_3 – points of evaluation

Light marching

- In progress
- Compute incident light at each point during ray march
- Ray march towards the light source
- Multiply the current density with total light

Cloud Generator Script

- In progress
- Option for choosing which light is used for light march
- Only one light to avoid performance problems

Tile Size: 10

Color: Red

Note: Color is not attenuated

Future work:

- Complete the incident light calculations
- Optimizations for Oculus Quest
 - Find optimal ray marching step size
- Scene light color and intensity dependent illumination

Nice to have:

- Weather map
 - Cloud density dependent on height
- Random number generation in Compute Shader
- Directional Light support
- User adjustable wind direction
- Better density calculations
 - Remap function

Thank you for your attention!

Lucia Tódová