Brandeis

COSI 104a Introduction to machine learning

Chapter 6 – Logistic Regression

Instructor: Dr. Hongfu Liu

Email: hongfuliu@brandeis.edu

An Example

A binary variable

	▶
Age	Y disease
22	0
23	0
24	0
27	0
28	0
29	0
30	0
32	0
33	0
35	0
40	1

Age	Y disease
41	0
41	0
46	1
47	0
48	0
49	0
49	1
50	0
51	1
51	1
51	0

Age	Y disease
52	1
54	1
56	1
57	1
58	1
59	0
63	1
67	1
71	1
77	1
81	1

Build a model: disease = f(age, w)

Age	Y disease	Age	Y disease	1	
22	0	41	0	'	
23	0	41	0		
24	0	46	1	0.8	
27	0	47	0	0.0	Approximate by logistic regression
28	0	48	0		Approximate by logistic regression
29	0	49	0	0.0	
30	0	49	1	disease disease	$y = \frac{1}{1 + e^{-a \times Age + b}}$
32	0	50	0	8 9	/ 1 1
33	0	51	1	÷	
35	0	51	1	≻ 0.4	$-\frac{1}{1+e^{-0.24\times Age+11.59}}$
40	1	51	0		
				0.2	$y = f(\vec{x}, \vec{w}) = \frac{1}{1 + e^{-(\vec{w}^T \vec{x})}} \vec{x} = \begin{bmatrix} Age \\ 1 \end{bmatrix}$
				0	$\vec{w} = \begin{bmatrix} a \\ -b \end{bmatrix}$
				2	0 30 40 50 60 70 80 90

Age

Logistic Regression & Classification

$$f(\vec{x}, \vec{w}) = \frac{1}{1 + e^{-(\vec{w}^T \vec{x})}}$$

Let
$$P(1|\vec{x}; \vec{w}) = f(\vec{x}, \vec{w})$$

 $P(0|\vec{x}; \vec{w}) = 1 - P(1|\vec{x}; \vec{w})$

Classification rule

Assign \vec{x} to class 0 otherwise

$$P(1|\vec{x}; \vec{w}) = \frac{1}{1 + e^{-(\vec{w}^T \vec{x})}}$$

$$P(0|\vec{x}; \vec{w}) = 1 - P(1|\vec{x}; \vec{w}) = \frac{e^{-(\vec{w}^T \vec{x})}}{1 + e^{-(\vec{w}^T \vec{x})}}$$

$$\log it(\vec{x}; \vec{w}) = \log \frac{P(1|\vec{x}; \vec{w})}{P(0|\vec{x}; \vec{w})}$$
$$= \log \frac{1}{e^{-(\vec{w}^T \vec{x})}}$$

 $= \vec{w}^T \vec{x}$ Linear classification

Cross-Entropy Loss for Classification

A binary classification has two potential outcomes: 0 or 1. Treat binary classification as an experiment governed by a Bernoulli distribution

$$P(y_n|\vec{x}_n; \vec{w}) = \hat{y}_n^{y_n} (1 - \hat{y}_n)^{1-y_n}$$

where y_n is the ground-truth and $\hat{y}_n = P(1|\vec{x}_n; \vec{w})$

• If
$$y_n = 1$$
, $P(y_n | \vec{x}_n; \vec{w}) = \hat{y}_n = P(1 | \vec{x}_n; \vec{w})$

• If
$$y_n = 0$$
, $P(y_n | \vec{x}_n; \vec{w}) = 1 - \hat{y}_n = P(0 | \vec{x}_n; \vec{w})$

Cross-entropy loss:
$$-\log P(y_n|\vec{x};\vec{w}) = -[y_n\log\hat{y}_n + (1-y_n)\log(1-\hat{y}_n)]$$

Negative log likelihood loss

The loss of a dataset $\{\vec{x}_n, y_n\}_{n=1...N}$ is

$$-\sum_{n=1}^{N} [y_n \log \hat{y}_n + (1 - y_n) \log(1 - \hat{y}_n)]$$

