Homework 2 Programming Problem 6 (5 points)

When flow is directed across a pin fin heat sink, increasing fluid velocity can improve the heat transfer, making the heat sink more effective.

You have been given a dataset containing measurements for such a scenario, which contains the following:

- Input: Reynolds Number of air flowing past the heat sink
- Output: Heat transfer coefficient of the heat sink, in W/(m \$^2\$) K

Your job is to train a model on this data to predict the heat transfer coefficient, given Reynolds number as input. You will use a high-order polynomial

Start by loading the data in the following cell:

```
In [3]:
        import numpy as np
        import matplotlib.pyplot as plt
        def plot_data_with_regression(x_data, y_data, x_reg, y_reg, title=""):
             plt.figure()
             plt.scatter(x_data.flatten(), y_data.flatten(), label="Data", c="black")
             plt.plot(x_reg.flatten(), y_reg.flatten(), label="Fit")
             plt.legend(loc="upper left")
             plt.xlabel(r"$Re / 1000$")
             plt.ylabel(r"h, $W/m^2 K$")
             plt.xlim(0,6)
             plt.ylim(50,200)
             plt.title(title)
             plt.show()
        x = np.array([1.010, 2.000, 2.990, 4.100, 5.020])
        y = np.array([75.1, 104.0, 100.6, 138.8, 150.8])
        X = np.vander(x, deg+1)
        xreg = np.linspace(0,6)
        Xreg = np.vander(xreg,deg+1)
```

Least Squares Regression

As we have done for previous problems, we can do least squares regression by computing the pseudo-inverse of the design matrix. Notice how the model performs beyond the training data.

```
In [4]: w = np.linalg.inv(X.T @ X) @ X.T @ y.reshape(-1,1)
    yreg = Xreg @ w
```

plot_data_with_regression(x, y, xreg, yreg, "4th order polynomial regression")

L2 Regularization

Notice that the plot above reveals that our fourth-order model is overfitting to the data. Let's try applying L2 regularization to fix this. In the lecture, the closed-form solution to least squares with L2 regularization was: $\$ = $(X'X + \lambda - 1)^{-1} X' y$ \$

where \$I_m\$ is the identity matrix, but with zero in the bias row/column instead of 1; \$\lambda\$ is regularization strength; \$X'\$ is the design matrix and \$y\$ column vector output.

Complete the function below to compute this w for a given lambda:

```
In [5]: def get_regularized_w(L):
    I_m = np.eye(deg+1)
    I_m[-1,-1] = 0

# YOUR CODE GOES HERE
# return regularized w
    return np.linalg.inv(((X.T)@X)+(L * I_m)) @ (X.T) @ y.reshape(-1,1)
```

Testing different lambda values

With the above function written, we can compute w for some different values of lambda and decide which is qualitatively best.

Model Selection

Which value of lambda appears to yield the "best" model?

Lambda at 0.1 helps in yeilding the "best" model

In []: