## 74VHC32 Quad 2-Input OR Gate

#### **General Description**

The VHC32 is an advanced high speed CMOS 2-Input OR Gate fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

The internal circuit is composed of 4 stages including buffer output, which provide high noise immunity and stable output. An input protection circuit ensures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

#### **Features**

- Low Power Dissipation: I<sub>CC</sub> = 2 μA (Max) at T<sub>A</sub> = 25°C
- High Noise Immunity: V<sub>NIH</sub> = V<sub>NIL</sub> = 28% V<sub>CC</sub> (Min)
- All inputs are equipped with a Power Down Protection Function
- Balanced Propagation Delays: t<sub>PLH</sub> ≅ t<sub>PHL</sub>
- Low Noise: V<sub>OLP</sub> = 0.8V (Max)
- Pin and Function Compatible with 74HC32

#### Ordering Code: See Section 6

| Commercial | Package<br>Number | Package Description               |  |  |  |  |  |  |
|------------|-------------------|-----------------------------------|--|--|--|--|--|--|
| 74VHC32M   | M14A              | 14-Lead Molded JEDEC SOIC         |  |  |  |  |  |  |
| 74VHC32SJ  | M14D              | 14-Lead Molded EIAJ SOIC          |  |  |  |  |  |  |
| 74VHC32MSC | MSC14             | 14-Lead Molded EIAJ Type 1 SSOP   |  |  |  |  |  |  |
| 74VHC32MTC | MTC14             | 14-Lead Molded JEDEC Type 1 TSSOP |  |  |  |  |  |  |
| 74VHC32N   | N14A              | 14-Lead Molded DIP                |  |  |  |  |  |  |

Note: Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

EIAJ Type I SSOP available Tape and Reel only, order MSCX.

### **Logic Symbol**



TL/F/11518-1

### **Connection Diagram**



TL/F/11518-2

## \_\_\_\_\_Truth Table

| Pin Names                       | Description |  |  |  |  |
|---------------------------------|-------------|--|--|--|--|
| A <sub>n</sub> , B <sub>n</sub> | Inputs      |  |  |  |  |
| On                              | Outputs     |  |  |  |  |

| A | В | 0 |
|---|---|---|
| н | Н | Н |
| L | Н | н |
| Н | L | н |
| L | L | L |

■ 6501122 0083621 77T **■** 

### Absolute Maximum Ratings (Note 1)

Storage Temperature (T<sub>STG</sub>)

(Soldering, 10 seconds)

Lead Temperature (TL)

Note 1: Absolute Maximum Ratings are values beyond -0.5V to +7.0VSupply Voltage (V<sub>CC</sub>) which the device may be damaged or have its useful life -0.5V to +7.0VDC Input Voltage (V<sub>IN</sub>) impaired. The databook specifications should be met, with--0.5 V to  $V_{\hbox{\footnotesize CC}}\,+\,0.5 V$ out exception, to ensure that the system design is reliable DC Output Voltage (VOUT) over its power supply, temperature, and output/input load--20 mA Input Diode Current (I<sub>IK</sub>) ing variables. National does not recommend operation out- $\pm 20 \text{ mA}$ Output Diode Current (IOK) side databook specifications.  $\pm 25 \, \text{mA}$ DC Output Current (IOUT)  $\pm$  50 mA DC V<sub>CC</sub>/GND Current (I<sub>CC</sub>)

-65°C to +150°C

260°C

#### **Recommended Operating** Conditions

Supply Voltage (V<sub>CC</sub>) 0V to +5.5V Input Voltage (VIN) 0V to V<sub>CC</sub> Output Voltage (VOUT) -40°C to +85°C Operating Temperature (TOPR) Input Rise and Fall Time (tr, tr) 0 ~ 100 ns/V  $V_{CC} = 3.3V \pm 0.3V$ 0 ~ 20 ns/V  $V_{CC} = 5.0V \pm 0.5V$ 

2.0V to +5.5V

## **DC Characteristics for 'VHC Family Devices**

| Symbol          | Parameter                    |                        | 74VHC<br>T <sub>A</sub> = 25°C |                   |                             | 74VHC<br>T <sub>A</sub> = -40°C<br>to +85°C |                             | Units | Conditions                                           |                                                      |  |
|-----------------|------------------------------|------------------------|--------------------------------|-------------------|-----------------------------|---------------------------------------------|-----------------------------|-------|------------------------------------------------------|------------------------------------------------------|--|
|                 |                              | V <sub>CC</sub><br>(V) |                                |                   |                             |                                             |                             |       |                                                      |                                                      |  |
|                 |                              |                        | Min                            | Тур               | Max                         | Min                                         | Max                         |       |                                                      |                                                      |  |
| V <sub>IH</sub> | High Level Input<br>Voltage  | 2.0<br>3.0-5.5         | 1.50<br>0.7 V <sub>CC</sub>    |                   |                             | 1.50<br>0.7 V <sub>CC</sub>                 |                             | ٧     |                                                      |                                                      |  |
| V <sub>IL</sub> | Low Level Input<br>Voltage   | 2.0<br>3.0-5.5         |                                |                   | 0.50<br>0.3 V <sub>CC</sub> |                                             | 0.50<br>0.3 V <sub>CC</sub> | v     |                                                      |                                                      |  |
| V <sub>OH</sub> | High Level Output<br>Voltage | 2.0<br>3.0<br>4.5      | 1.9<br>2.9<br>4.4              | 2.0<br>3.0<br>4.5 |                             | 1.9<br>2.9<br>4.4                           |                             | V     | $V_{IN} = V_{IH}$ or $V_{IL}$                        | I <sub>OH</sub> = -50 μA                             |  |
|                 |                              | 3.0<br>4.5             | 2.58<br>3.94                   | ·                 |                             | 2.48<br>3.80                                |                             | ٧     |                                                      | $I_{OH} = -4 \text{ mA}$<br>$I_{OH} = -8 \text{ mA}$ |  |
| V <sub>OL</sub> | Low Level Output<br>Voltage  | 2.0<br>3.0<br>4.5      |                                | 0.0<br>0.0<br>0.0 | 0.1<br>0.1<br>0.1           |                                             | 0.1<br>0.1<br>0.1           | V     | V <sub>IN</sub> = V <sub>IH</sub> or V <sub>IL</sub> | I <sub>OL</sub> = 50 μA                              |  |
|                 |                              | 3.0<br>4.5             |                                |                   | 0.36<br>0.36                |                                             | 0.44<br>0.44                | ٧     |                                                      | l <sub>OL</sub> = 4 mA<br>l <sub>OL</sub> = 8 mA     |  |
| IN              | Input Leakage<br>Current     | 0-5.5                  |                                |                   | ±0.1                        |                                             | ±1.0                        | μА    | V <sub>IN</sub> = 5.5V or GND                        |                                                      |  |
| lcc             | Quiescent Supply<br>Current  | 5.5                    |                                |                   | 2.0                         |                                             | 20.0                        | μΑ    | $V_{IN} = V_{CC}$ or GND                             |                                                      |  |

# DC Characteristics for 'VHC Family Devices: See Section 2 for Waveforms (Continued)

| Symbol             |                                                 | \ \v                   | 741              | /HC   |       |                        | Fig.<br>Nọ. |
|--------------------|-------------------------------------------------|------------------------|------------------|-------|-------|------------------------|-------------|
|                    | Parameter                                       | V <sub>CC</sub><br>(V) | T <sub>A</sub> = | 25°C  | Units | Conditions             |             |
|                    |                                                 |                        | Тур              | Limit | ]     |                        |             |
| **V <sub>OLP</sub> | Quiet Output Maximum<br>Dynamic V <sub>OL</sub> | 5.0                    | 0.3              | 0.8   | V     | C <sub>L</sub> = 50 pF | 2-11, 12    |
| **V <sub>OLV</sub> | Quiet Output Minimum<br>Dynamic V <sub>OL</sub> | 5.0                    | 0.3              | -0.8  | ٧     | C <sub>L</sub> = 50 pF | 2-11, 12    |
| **V <sub>IHD</sub> | Minimum High Level<br>Dynamic Input Voltage     | 5.0                    |                  | 3.5   | V     | C <sub>L</sub> = 50 pF | 2-11, 12    |
| **V <sub>ILD</sub> | Maximum Low Level Dynamic Input Voltage         | 5.0                    |                  | 1.5   | · · v | C <sub>L</sub> = 50 pF | 2-11, 12    |

<sup>\*\*</sup>Parameter guaranteed by design.

## AC Electrical Characteristics: See Section 2 for Waveforms

| Symbol Parameter                    |                                  | ļ.                         | 74VHC<br>T <sub>A</sub> = 25°C |     |      | 74VHC<br>T <sub>A</sub> = -40°C<br>to +85°C |      |       | Test<br>Condition      | Fig. |
|-------------------------------------|----------------------------------|----------------------------|--------------------------------|-----|------|---------------------------------------------|------|-------|------------------------|------|
|                                     | Parameter                        | V <sub>CC</sub><br>(V)     |                                |     |      |                                             |      | Units |                        |      |
|                                     |                                  |                            | Min                            | Тур | Max  | Min                                         | Max  |       |                        |      |
| t <sub>PHL</sub> , Propagation Dela | Propagation Delay                | 3.3<br>±0.3<br>5.0<br>±0.5 |                                | 5.5 | 7.9  | 1.0                                         | 9.5  | ns ns | C <sub>L</sub> = 15 pF | 2-5  |
|                                     |                                  |                            |                                | 8.0 | 11.4 | 1.0                                         | 13.0 |       | C <sub>L</sub> = 50 pF |      |
|                                     |                                  |                            |                                | 3.8 | 5.5  | 1.0                                         | 6.5  | ns    | C <sub>L</sub> = 15 pF | 2-5  |
|                                     |                                  |                            |                                | 5.3 | 7.5  | 1.0                                         | 8.5  |       | C <sub>L</sub> = 50 pF |      |
| C <sub>IN</sub>                     | Input Capacitance                |                            |                                | 4   | 10   |                                             | 10   | рF    | V <sub>CC</sub> = Open |      |
| C <sub>PD</sub>                     | Power Dissipation<br>Capacitance |                            |                                | 14  |      |                                             |      | pF    | (Note 1)               | **   |

Note 1:  $C_{PD}$  is defined as the value of the Internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation:  $I_{CC}$  (opr.) =  $C_{PD}$  \*  $V_{CC}$  \*  $f_{IN}$  +  $I_{CC}$ /4 (per gate).