Hardness of Approximate Coloring

Girish Varma

Advisor: Prof. Prahladh Harsha

PhD Defence

Tata Institute of Fundamental Research, Mumbai

January 9, 2016

Goal: Color a graph

Goal: Color a graph using few colors,

Goal: Color a graph using few colors, efficiently.

► [Wigderson '83] ··· [Blum '91] ··· [Karger Motwani Sudan '94] ··· [Kawarabayashi Thorup '14]

Can color 3-colorable graphs with $\approx n^{0.199\cdots}$ colors.

- ► [Wigderson '83] ··· [Blum '91] ··· [Karger Motwani Sudan '94] ··· [Kawarabayashi Thorup '14]

 Can color 3-colorable graphs with $\approx n^{0.199 \cdot \cdot \cdot}$ colors.
- [Khanna Linial Safra '93], [Khanna Guruswami '00]
 Can't color 3-colorable graphs with 4 colors, assuming P ≠ NP.

- ► [Wigderson '83] ··· [Blum '91] ··· [Karger Motwani Sudan '94] ··· [Kawarabayashi Thorup '14]

 Can color 3-colorable graphs with $\approx n^{0.199 \cdots}$ colors.
- [Khanna Linial Safra '93], [Khanna Guruswami '00]
 Can't color 3-colorable graphs with 4 colors, assuming P ≠ NP.

Dream Goal

 $\exists \delta > 0$:

hard to efficiently color 3-colorable graphs with n^{δ} colors assuming P \neq NP.

For (almost) 3-colorable graph,

Assuming a variant of Unique Games Conjecture

For (almost) 3-colorable graph,

Assuming a variant of Unique Games Conjecture

Theorem (Dinur, Mossel, Regev '07 & Dinur, Shinkar '10)

hard to find a log log n-coloring.

For (almost) 3-colorable graph,

Assuming a variant of Unique Games Conjecture

Theorem (Dinur, Mossel, Regev '07 & Dinur, Shinkar '10)

hard to find a log log n-coloring.

Theorem (Our Result: Dinur Harsha Srinivasan V'15)

hard to find a 2^{poly(log log n)}-coloring.

For (almost) 3-colorable graph,

Assuming a variant of Unique Games Conjecture

Theorem (Dinur, Mossel, Regev '07 & Dinur, Shinkar '10)

hard to find a log log n-coloring.

Theorem (Our Result: Dinur Harsha Srinivasan V'15)

hard to find a 2^{poly(log log n)}-coloring.

Theorem (Dream Goal)

hard to find a n^{δ} -coloring.

Can we achieve dream goal for hypergraphs?

Can we achieve dream goal for hypergraphs?

Theorem (Dream Goal)

Given a 2-colorable k-uniform hypergraph,

hard to find a n^{δ} -coloring.

For 2-Colorable Hypergraphs

Assuming NP doesn't have $2^{\log^r n}$ -time algorithms for some r > 0:

For 2-Colorable Hypergraphs

Assuming NP doesn't have $2^{\log^r n}$ -time algorithms for some r > 0:

► [Guruswami Hastad Sudan '00] ··· [Khot '02] ··· [Dinur Guruswami '13] ··· [Saket '14]

Can't color 4-uniform hypergraphs with $\log^{\delta} n$ colors.

For 2-Colorable Hypergraphs

Assuming NP doesn't have $2^{\log^r n}$ -time algorithms for some r > 0:

► [Guruswami Hastad Sudan '00] ··· [Khot '02] ··· [Dinur Guruswami '13] ··· [Saket '14]

Can't color 4-uniform hypergraphs with $\log^{\delta} n$ colors.

▶ [Our Result : Guruswami Harsha Hastad Srinivasan V '14]
 Can't color 8-uniform hypergraphs with 2^{2√log log n} colors.

For 2-Colorable Hypergraphs

Assuming NP doesn't have $2^{\log^r n}$ -time algorithms for some r > 0:

► [Guruswami Hastad Sudan '00] ··· [Khot '02] ··· [Dinur Guruswami '13] ··· [Saket '14]

Can't color 4-uniform hypergraphs with $\log^{\delta} n$ colors.

- ▶ [Our Result : Guruswami Harsha Hastad Srinivasan V '14]
 Can't color 8-uniform hypergraphs with 2^{2√log log n} colors.
- [Khot Saket '14] Can't color 12-uniform hypergraphs with $2^{\Omega(\log^{\delta} n)}$ colors.

For 2-Colorable Hypergraphs

Assuming NP doesn't have $2^{\log^r n}$ -time algorithms for some r > 0:

- [Guruswami Hastad Sudan '00] ··· [Khot '02] ··· [Dinur Guruswami '13] ··· [Saket '14]
 Can't color 4-uniform hypergraphs with log^δ n colors.
- [Khot Saket '14] Can't color 12-uniform hypergraphs with $2^{\Omega(\log^{\delta} n)}$ colors.
- [Our Result : V '14]
 Can't color 8-uniform hypergraphs with 2^{Ω(logδ n)} colors.

Assuming NP doesn't have $2^{\log^r n}$ -time algorithms for some r > 0:

Assuming NP doesn't have $2^{\log^r n}$ -time algorithms for some r > 0:

• [Our Result: Guruswami Harsha Hastad Srinivasan V'14, V'14]

Can't color 4-uniform 4-colorable hypergraphs with $2^{\log^{\delta} n}$ colors.

Assuming NP doesn't have $2^{\log^r n}$ -time algorithms for some r > 0:

• [Our Result: Guruswami Harsha Hastad Srinivasan V'14, V'14]

Can't color 4-uniform 4-colorable hypergraphs with $2^{\log^{\delta} n}$ colors.

• [Our Result: Guruswami Harsha Hastad Srinivasan V '14]

Can't color 3-uniform 3-colorable hypergraphs with $2^{(\log \log n)^{1-\varepsilon}}$ colors

Assuming NP doesn't have $2^{\log^r n}$ -time algorithms for some r > 0:

• [Our Result : Guruswami Harsha Hastad Srinivasan V '14, V '14]

Can't color 4-uniform 4-colorable hypergraphs with $2^{\log^{\delta} n}$ colors.

• [Our Result : Guruswami Harsha Hastad Srinivasan V '14]

Can't color 3-uniform 3-colorable hypergraphs with $2^{(\log \log n)^{1-\epsilon}}$ colors.

Theorem (Dream Goal)

Given a 2-colorable k-uniform hypergraph, hard to find a n^{δ} -coloring.

[Guruswami Hastad Sudan '00]

[Guruswami Hastad Sudan '00]

Definition (CSP for a Predicate $P \subseteq \{0, 1\}^k$)

Given a *k*-uniform hypergraph G = (V, E), find assignment to vertices $f: V \to \{0, 1\}$ such that $\forall e \in E, f|_e \in P$.

[Guruswami Hastad Sudan '00]

Definition (CSP for a Predicate $P \subseteq \{0, 1\}^k$ with literals)

Given a k-uniform hypergraph G = (V, E) and literal function $L : E \to \{0, 1\}^k$, find assignment to vertices $f : V \to \{0, 1\}$ such that $\forall e \in E, f|_e \oplus L(e) \in P$.

[Guruswami Hastad Sudan '00]

Definition (CSP for a Predicate $P \subseteq \{0, 1\}^k$ with literals)

Given a k-uniform hypergraph G = (V, E) and literal function $L : E \to \{0, 1\}^k$, find assignment to vertices $f : V \to \{0, 1\}$ such that $\forall e \in E, f|_e \oplus L(e) \in P$.

G is 2-colorable iff

the CSP instance with P = NOT ALL EQUAL is satisfiable.

[Guruswami Hastad Sudan '00]

Definition (CSP for a Predicate $P \subseteq \{0, 1\}^k$ with literals)

Given a k-uniform hypergraph G = (V, E) and literal function $L : E \to \{0, 1\}^k$, find assignment to vertices $f : V \to \{0, 1\}$ such that $\forall e \in E, f|_e \oplus L(e) \in P$.

Definition (Covering Number)

Smallest number *c* such that there exists *c* assignments that together satisfies all edges.

For NOT ALL EQUAL, 2-coloring \equiv covering number = 1.

For NOT ALL EQUAL, 2-coloring ≡ covering number = 1.

Theorem [Guruswami Håstad Sudan '00]

For NOT ALL EQUAL, k-coverable $\Leftrightarrow 2^k$ -colorable.

For NOT ALL EQUAL, 2-coloring ≡ covering number = 1.

Theorem [Guruswami Håstad Sudan '00]

For NOT ALL EQUAL, k-coverable $\Leftrightarrow 2^k$ -colorable.

Definition (Odd Predicate $P \subseteq \{0, 1\}^k$)

A predicate *P* is odd if for each $x \in \{0, 1\}^k$, $x \in P$ or $\overline{x} \in P$.

For NOT ALL EQUAL, 2-coloring \equiv covering number = 1.

Theorem [Guruswami Håstad Sudan '00]

For NOT ALL EQUAL, k-coverable $\Leftrightarrow 2^k$ -colorable.

Definition (Odd Predicate $P \subseteq \{0, 1\}^k$)

A predicate *P* is odd if for each $x \in \{0, 1\}^k$, $x \in P$ or $\overline{x} \in P$.

For odd predicates, covering number ≤ 2 .

Any assignment and its complement covers all the edges.

Result - III: Characterization of hard-to-cover CSPs

Assuming UGC*, and P is not odd

Result - III: Characterization of hard-to-cover CSPs

Assuming UGC*, and P is not odd

[Dinur Kol '09]

If there is a pairwise independent distribution supported on $P \subseteq \{0, 1\}^k$ then the covering number is

hard to approximate to any constant factor.

Result - III: Characterization of hard-to-cover CSPs

Assuming UGC*, and P is not odd

[Dinur Kol '09]

If there is a pairwise independent distribution supported on $P \subseteq \{0, 1\}^k$ then the covering number is

hard to approximate to any constant factor.

[Our Result: Bhangale Harsha V'15]

Covering number is hard to approximate to any constant factor.

Assuming NP does not have $2^{\text{poly}(\log n)}$ -time algorithms,

Assuming NP does not have 2^{poly(log n)}-time algorithms,

[Dinur Kol '09]

For the **4-LIN** predicate, given a 2-coverable instance, it is hard to find a log log log *n*-covering.

Assuming NP does not have 2^{poly(log n)}-time algorithms,

[Dinur Kol '09]

For the **4-LIN** predicate, given a **2-coverable** instance, it is hard to find a log log log *n*-covering.

[Our Result : Bhangale Harsha V '15]

Some sufficient conditions on predicate P such that given a
 2-coverable instance, it is hard to find a log log n-covering.

Assuming NP does not have 2^{poly(log n)}-time algorithms,

[Dinur Kol '09]

For the **4-LIN** predicate, given a **2-coverable** instance, it is hard to find a log log log *n*-covering.

[Our Result : Bhangale Harsha V '15]

- Some sufficient conditions on predicate P such that given a
 2-coverable instance, it is hard to find a log log n-covering.
- ► For the 4-LIN predicate, given a 2-coverable instance, it is hard to find an independent set of relative size 1/log n.

Techniques

Result - II : Hardness of Hypergraph Coloring

For hardness of coloring **q**-colorable **k**-uniform hypergraph with **Q** colors.

For hardness of coloring **q**-colorable **k**-uniform hypergraph with **Q** colors.

For hardness of coloring **q**-colorable **k**-uniform hypergraph with **Q** colors.

$$3SAT \xrightarrow[Parallel \ Repetition]{PCP Theorem} Label Cover \xrightarrow{Long Code} PCP Verifier \longrightarrow Hypergraph$$

$$LC = (U, V, E, \Pi)$$

For hardness of coloring **q**-colorable **k**-uniform hypergraph with **Q** colors.

$$3SAT \xrightarrow[Parallel \ Repetition]{PCP Theorem} \textbf{Label Cover} \xrightarrow{Long \ Code} PCP \ Verifier \longrightarrow Hypergraph$$

$$LC = (U, V, E, \Pi)$$

Choose i_1, \dots, i_k . Check {Proof_i} are Not-All-Equal.

For hardness of coloring **q**-colorable **k**-uniform hypergraph with **Q** colors.

$$3SAT \xrightarrow[Parallel \ Repetition]{PCP Theorem} Label Cover \xrightarrow{Long Code} PCP Verifier \longrightarrow Hypergraph$$

$$LC = (U, V, E, \Pi)$$

Choose i_1, \dots, i_k . Check {Proof_i} are Not-All-Equal.

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}).$$

 \mathcal{V} : set of all i 's.
 $\mathcal{E} = \{(i_1, \dots, i_k)\}.$

For hardness of coloring **q**-colorable **k**-uniform hypergraph with **Q** colors.

$$3SAT \xrightarrow[Parallel \ Repetition]{PCP Theorem} Label Cover \xrightarrow{Long Code} PCP Verifier \longrightarrow Hypergraph$$

$$LC = (U, V, E, \Pi)$$

Choose i_1, \dots, i_k . Check {Proof_i} are Not-All-Equal.

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}).$$

 \mathcal{V} : set of all i's.

$$\mathcal{E} = \{(i_1, \dots, i_k)\}.$$

$$OPT(LC) = 1$$

 \exists a proof over q with Pr[accept] = 1.

 \mathcal{G} is q-colorable.

For hardness of coloring **q**-colorable **k**-uniform hypergraph with **Q** colors.

3SAT
$$\xrightarrow{\text{PCP Theorem}}$$
 Label Cover $\xrightarrow{\text{Long Code}}$ PCP Verifier \longrightarrow Hypergraph

$$\mathsf{LC} = (U, V, E, \Pi)$$

Choose i_1, \dots, i_k . Check {Proof_i} are Not-All-Equal.

$$G = (V, E).$$

 $\mathcal{V}:$ set of all \emph{i} 's.

$$\mathcal{E} = \{(i_1, \cdots, i_k)\}.$$

$$OPT(LC) = 1$$

 \exists a proof over q with Pr[accept] = 1.

 \mathcal{G} is q-colorable.

 $OPT(LC) \leq \delta$

 \forall proofs over Q, $Pr[accept] < 1 - \delta^{c_Q}$. \mathcal{G} has no independent set of size $|\mathcal{V}|/Q$.

Long Code [Bellare Goldreich Sudan '95]

The long code of $a \in [L]$ is $A : \{0, 1\}^L \to \{0, 1\}$ such that $A(f) = f_a$.

Long Code [Bellare Goldreich Sudan '95]

The long code of $a \in [L]$ is $A : \{0, 1\}^L \to \{0, 1\}$ such that $A(f) = f_a$.

Long Code Test with Not-All-Equal Predicate

Choose $f_1, \dots, f_k \in \{0, 1\}^L$. Accept if $\{A(f_i)\}$ are Not-All-Equal.

Long Code [Bellare Goldreich Sudan '95]

The long code of $a \in [L]$ is $A : \{0, 1\}^L \to \{0, 1\}$ such that $A(f) = f_a$.

Long Code Test with Not-All-Equal Predicate

Choose $f_1, \dots, f_k \in \{0, 1\}^L$. Accept if $\{A(f_i)\}$ are Not-All-Equal.

► Completeness : If A is a long code of a, then

$$Pr[Not-All-Equal(\{f_i(a)\})] = 1.$$

Long Code [Bellare Goldreich Sudan '95]

The long code of $a \in [L]$ is $A : \{0, 1\}^L \to \{0, 1\}$ such that $A(f) = f_a$.

Long Code Test with Not-All-Equal Predicate

Choose $f_1, \dots, f_k \in \{0, 1\}^L$. Accept if $\{A(f_i)\}$ are Not-All-Equal.

- ► Completeness : If A is a long code of a, then $\Pr[\text{Not-All-Equal}\left(\{f_i(a)\}\right)] = 1.$
- Soundness: If test passes with high probability then A can be explained by a short list of long codes.

Long Code Bottleneck

- Length of long code is 2^{L} .
- PCP proof consists of long code encoding of labels of vertices in Label Cover instance.

Long Code Bottleneck

- ▶ Length of long code is 2^L.
- PCP proof consists of long code encoding of labels of vertices in Label Cover instance
- ▶ Due to parallel repetition $L = \text{poly}(1/\delta)$ and $|V| = n^{\log(1/\delta)}$.

Long Code Bottleneck

- ▶ Length of long code is 2^L.
- PCP proof consists of long code encoding of labels of vertices in Label Cover instance.
- ▶ Due to parallel repetition $L = \text{poly}(1/\delta)$ and $|V| = n^{\log(1/\delta)}$.

Proof size is $2^{\text{poly}(1/\delta)}$. Cannot go beyond $\delta = O(1/\text{poly}\log n)$.

Suppose
$$L = \{0, 1\}^{\ell} = \mathbb{F}_2^{\ell}$$
, and $A : \{0, 1\}^{\ell} \to \{0, 1\}$.

Suppose
$$L = \{0, 1\}^{\ell} = \mathbb{F}_2^{\ell}$$
, and $A : \{0, 1\}^{L} \to \{0, 1\}$.

$$A: \mathbb{F}_2^{\mathbb{F}_2^\ell} \to \mathbb{F}_2$$

length =
$$2^{L}$$

Long Code for $a \in \mathbb{F}_2^{\ell}$.

For every $f: \mathbb{F}_2^{\ell} \to \mathbb{F}_2$

Suppose
$$L = \{0, 1\}^{\ell} = \mathbb{F}_2^{\ell}$$
, and $A : \{0, 1\}^{L} \to \{0, 1\}$.

$$A: \mathbb{F}_2^{\mathbb{F}_2^\ell} \to \mathbb{F}_2$$

length = 2^{L}

Long Code for $a \in \mathbb{F}_2^{\ell}$.

For every $f: \mathbb{F}_2^{\ell} \to \mathbb{F}_2$

[Barak Gopalan Hastad Meka Raghavendra Steurer '12]

Low Degree Long Code for $a \in \mathbb{F}_2^{\ell}$.

$$f_1(a)$$

$$f_2(a)$$

(a)
$$f_3(a)$$

For every f of degree $\leq d$.

Suppose
$$L = \{0, 1\}^{\ell} = \mathbb{F}_2^{\ell}$$
, and $A : \{0, 1\}^{L} \to \{0, 1\}$.

$$A: \mathbb{F}_2^{\mathbb{F}_2^\ell} \to \mathbb{F}_2$$

length = 2^{L}

Long Code for $a \in \mathbb{F}_2^{\ell}$.

$$f_3(a)$$

For every
$$f: \mathbb{F}_2^{\ell} \to \mathbb{F}_2$$

[Barak Gopalan Hastad Meka Raghavendra Steurer '12]

$$A: P_d \to \mathbb{F}_2$$

length = 2^{ℓ^d}

Low Degree Long Code for
$$a \in \mathbb{F}_2^{\ell}$$
.

$$f_2(a)$$
 $f_3(a)$

For every f of degree $\leq d$.

Suppose
$$L = \{0, 1\}^{\ell} = \mathbb{F}_2^{\ell}$$
, and $A : \{0, 1\}^{L} \to \{0, 1\}$.

$$A: \mathbb{F}_2^{\mathbb{F}_2^\ell} \to \mathbb{F}_2$$

length = 2^{L}

Long Code for $a \in \mathbb{F}_2^{\ell}$.

$$f_3(a)$$

For every
$$f: \mathbb{F}_2^{\ell} \to \mathbb{F}_2$$

[Barak Gopalan Hastad Meka Raghavendra Steurer '12]

$$A: P_d \to \mathbb{F}_2$$

length = 2^{ℓ^d}

Low Degree Long Code for $a \in \mathbb{F}_2^{\ell}$.

$$f_1(a)$$

For every f of degree $\leq d$.

Test for Low Degree Long Codes

Choose f_1, \dots, f_k of degree $\leq d$. Accept if $\{A(f_i)\}$ are Not-All-Equal.

 $3SAT \xrightarrow[Parallel Repetition]{PCP Theorem} Label Cover \xrightarrow[Low Degree Long Code]{} PCP Verifier$

$$3SAT \xrightarrow[Parallel \ Repetition]{PCP Theorem} Label Cover \xrightarrow[Low \ Degree \ Long \ Code]{Low Degree Long Code}} PCP Verifier$$

[Dinur Guruswami '13]

Gave low degree long code test that makes 6 queries, over alphabet \mathbb{F}_2 , using predicate $x_1 \neq x_2 \vee x_3 \neq x_4 \vee x_5 \neq x_6$.

[Dinur Guruswami '13]

Gave low degree long code test that makes 6 queries, over alphabet \mathbb{F}_2 , using predicate $x_1 \neq x_2 \vee x_3 \neq x_4 \vee x_5 \neq x_6$.

[Our Result]

Test on Not-All-Equal predicate can be obtained either by

[Dinur Guruswami '13]

Gave low degree long code test that makes 6 queries, over alphabet \mathbb{F}_2 , using predicate $x_1 \neq x_2 \vee x_3 \neq x_4 \vee x_5 \neq x_6$.

[Our Result]

Test on Not-All-Equal predicate can be obtained either by

▶ increasing the number of queries to 8, or

$$3SAT \xrightarrow{PCP \text{ Theorem}} \text{Label Cover} \xrightarrow{\text{Long Code}} PCP \text{ Verifier}$$

[Dinur Guruswami '13]

Gave low degree long code test that makes 6 queries, over alphabet \mathbb{F}_2 , using predicate $x_1 \neq x_2 \vee x_3 \neq x_4 \vee x_5 \neq x_6$.

[Our Result]

Test on Not-All-Equal predicate can be obtained either by

- increasing the number of queries to 8, or
- increasing the alphabet to $\mathbb{F}_2 \times \mathbb{F}_2$.

Subsequently

▶ [Khot Saket '14]

Can't color 2-colorable 12-uniform hypergraphs with $2^{\Omega(\log^{\delta} n)}$ colors. Uses stronger label cover with quadratic code.

Subsequently

- [Khot Saket '14]
 Can't color 2-colorable 12-uniform hypergraphs with 2^{Ω(logδ n)}
 colors. Uses stronger label cover with quadratic code.
- ► Combining [Khot Saket '14] label cover with our tests yields:
 - Can't color 2-colorable 8-uniform hypergraphs with 2^{Ω(log^δ n)} colors.

Subsequently

- [Khot Saket '14]
 Can't color 2-colorable 12-uniform hypergraphs with 2^{Ω(logδ n)}
 colors. Uses stronger label cover with quadratic code.
- ► Combining [Khot Saket '14] label cover with our tests yields:
 - Can't color 2-colorable 8-uniform hypergraphs with $2^{\Omega(\log^{\delta} n)}$ colors.
 - Can't color 4-colorable 4-uniform hypergraphs with 2^{Ω(log^δ n)} colors.

3-colorable 3-uniform Hypergraphs

3-colorable 3-uniform Hypergraphs

Long Code Test of [Khot '02]

Long Code Test of [Khot '02]

• Choose uniformly random $f, g : \mathbb{F}_3^{\ell} \to \mathbb{F}_3$ and $\eta : \mathbb{F}_3^{\ell} \to \{1, 2\}$.

Long Code Test of [Khot '02]

- Choose uniformly random $f, g : \mathbb{F}_3^{\ell} \to \mathbb{F}_3$ and $\eta : \mathbb{F}_3^{\ell} \to \{1, 2\}$.
- ► Accept if the following are Not-All-Equal: A(f), A(g), $A(\eta f g)$.

Long Code Test of [Khot '02]

- ► Choose uniformly random $f, g : \mathbb{F}_3^{\ell} \to \mathbb{F}_3$ and $\eta : \mathbb{F}_3^{\ell} \to \{1, 2\}$.
- Accept if the following are Not-All-Equal: A(f), A(g), $A(\eta f g)$.

Note: For $h: \mathbb{F}_3^{\ell} \to \mathbb{F}_3$, $h^2 + 1$ only takes values in $\{1, 2\}$.

Long Code Test of [Khot '02]

- ► Choose uniformly random $f, g : \mathbb{F}_3^{\ell} \to \mathbb{F}_3$ and $\eta : \mathbb{F}_3^{\ell} \to \{1, 2\}$.
- ► Accept if the following are Not-All-Equal: A(f), A(g), $A(\eta f g)$.

Note: For $h: \mathbb{F}_3^{\ell} \to \mathbb{F}_3$, $h^2 + 1$ only takes values in $\{1, 2\}$.

Low Degree Long Code Test [Our Result: GHHSV '14]

Long Code Test of [Khot '02]

- ▶ Choose uniformly random $f, g : \mathbb{F}_3^{\ell} \to \mathbb{F}_3$ and $\eta : \mathbb{F}_3^{\ell} \to \{1, 2\}$.
- ► Accept if the following are Not-All-Equal: A(f), A(g), $A(\eta f g)$.

Note: For $h: \mathbb{F}_3^{\ell} \to \mathbb{F}_3$, $h^2 + 1$ only takes values in $\{1, 2\}$.

Low Degree Long Code Test [Our Result : GHHSV '14]

► Choose random $f, g : \mathbb{F}_3^{\ell} \to \mathbb{F}_3$ of degree $\leq 2d$ and $h : \mathbb{F}_3^{\ell} \to \mathbb{F}_3$ of degree $\leq d$.

Long Code Test of [Khot '02]

- ► Choose uniformly random $f, g : \mathbb{F}_3^{\ell} \to \mathbb{F}_3$ and $\eta : \mathbb{F}_3^{\ell} \to \{1, 2\}$.
- ► Accept if the following are Not-All-Equal: A(f), A(g), $A(\eta f g)$.

Note: For $h: \mathbb{F}_3^{\ell} \to \mathbb{F}_3$, $h^2 + 1$ only takes values in $\{1, 2\}$.

Low Degree Long Code Test [Our Result : GHHSV '14]

- ► Choose random $f, g : \mathbb{F}_3^{\ell} \to \mathbb{F}_3$ of degree $\leq 2d$ and $h : \mathbb{F}_3^{\ell} \to \mathbb{F}_3$ of degree $\leq d$.
- Accept if the following are Not-All-Equal:

$$A(f)$$
, $A(g)$, $A(h^2 + 1 - f - g)$.

Main Lemma

in Soundness Analysis of Low Degree Long Code Test

[Dinur Guruswami '13]

If
$$\alpha : \mathbb{F}_2^{\ell} \to \mathbb{F}_2$$
 such that $\operatorname{dist}(\alpha, P_{\ell-d-1}) > 2^d$ then

$$\Pr_{h \in \mathsf{P}_d} \left[\alpha \cdot h \in \mathsf{P}_{\ell-1} \right] \le \frac{1}{2^{2^{\Omega(d)}}}.$$

Main Lemma

in Soundness Analysis of Low Degree Long Code Test

[Dinur Guruswami '13]

If $\alpha : \mathbb{F}_2^{\ell} \to \mathbb{F}_2$ such that $\operatorname{dist}(\alpha, P_{\ell-d-1}) > 2^d$ then

$$\Pr_{h \in \mathsf{P}_d} \left[\alpha \cdot h \in \mathsf{P}_{\ell-1} \right] \leq \tfrac{1}{2^{2^{\Omega(d)}}}.$$

[Our Result : GHHSV '14]

If $\alpha : \mathbb{F}_3^{\ell} \to \mathbb{F}_3$ such that $\operatorname{dist}(\alpha, \mathsf{P}_{2\ell-2d-1}) > 3^d$ then

$$\Pr_{h \in \mathbb{P}_d} \left[\alpha \cdot h^2 \in \mathbb{P}_{2\ell-1} \right] \le \frac{1}{3^{3^{\Omega(d)}}}.$$

Techniques

Result - I: Hardness of Graph Coloring

Definition

Given a graph G = (V, E), the *n*-wise product graph $G^n := (V^n, E^n)$ where

$$\mathsf{E}^n \coloneqq \left\{ \left(\left(u_1, \ , u_n \right), \left(v_1, \ , v_n \right) \right) : \bigwedge_{i \in [n]} \left(u_i, v_i \right) \in \mathsf{E} \right\}.$$

Definition

Given a graph G = (V, E), the *n*-wise product graph $G^n := (V^n, E^n)$ where

$$\mathsf{E}^n \coloneqq \left\{ \left(\left(u_1, \ , u_n \right), \left(v_1, \ , v_n \right) \right) : \bigwedge_{i \in [n]} \left(u_i, v_i \right) \in \mathsf{E} \right\}.$$

Example

Consider the triangle as base graph: $K_3 = (\{0, 1, 2\}, \{(x, y) : x \neq y\})$.

Definition

Given a graph G = (V, E), the *n*-wise product graph $G^n := (V^n, E^n)$ where

$$E^n := \left\{ \left(\left(u_1, \ , u_n \right), \left(v_1, \ , v_n \right) \right) : \bigwedge_{i \in [n]} \left(u_i, v_i \right) \in E \right\}.$$

Example

Consider the triangle as base graph: $K_3 = (\{0, 1, 2\}, \{(x, y) : x \neq y\})$.

$$V(K_3^n) = \{0, 1, 2\}^n$$

Definition

Given a graph G = (V, E), the *n*-wise product graph $G^n := (V^n, E^n)$ where

$$E^n := \left\{ \left(\left(u_1, \ , u_n \right), \left(v_1, \ , v_n \right) \right) : \bigwedge_{i \in [n]} \left(u_i, v_i \right) \in E \right\}.$$

Example

Consider the triangle as base graph: $K_3 = (\{0, 1, 2\}, \{(x, y) : x \neq y\})$.

$$V(K_3^n) = \left\{0, 1, 2\right\}^n \qquad \qquad E(K_3^n) = \left\{\left(\overline{x}, \overline{y}\right) : \forall i \in [n], x_i \neq y_i\right\}$$

Alon, Dinur, Friedgut, Sudakov 2004, Dinur, Mossel, Regev '07 & Dinur Shinkar '10

Alon, Dinur, Friedgut, Sudakov 2004, Dinur, Mossel, Regev '07 & Dinur Shinkar '10 Definition (Dictator)

A subset of $\{0, 1, 2\}^n$ which fixes some coordinate x_i to $a \in \{0, 1, 2\}$.

Alon, Dinur, Friedgut, Sudakov 2004, Dinur, Mossel, Regev '07 & Dinur Shinkar '10

Definition (Dictator)

A subset of $\{0, 1, 2\}^n$ which fixes some coordinate x_i to $a \in \{0, 1, 2\}$.

Theorem (ADFS '04 & DMR '07 & DS '10)

Alon, Dinur, Friedgut, Sudakov 2004, Dinur, Mossel, Regev '07 & Dinur Shinkar '10

Definition (Dictator)

A subset of $\{0, 1, 2\}^n$ which fixes some coordinate x_i to $a \in \{0, 1, 2\}$.

Theorem (ADFS '04 & DMR '07 & DS '10)

Let A be an independent set in $K_3^{\otimes R}$ of size $\delta 3^R$. Then,

1. $\delta \le 1/3$.

Alon, Dinur, Friedgut, Sudakov 2004, Dinur, Mossel, Regev '07 & Dinur Shinkar '10

Definition (Dictator)

A subset of $\{0, 1, 2\}^n$ which fixes some coordinate x_i to $a \in \{0, 1, 2\}$.

Theorem (ADFS '04 & DMR '07 & DS '10)

- 1. $\delta \le 1/3$.
- 2. $\delta = 1/3$ iff A is a dictator.

Alon, Dinur, Friedgut, Sudakov 2004, Dinur, Mossel, Regev '07 & Dinur Shinkar '10

Definition (Dictator)

A subset of $\{0, 1, 2\}^n$ which fixes some coordinate x_i to $a \in \{0, 1, 2\}$.

Theorem (ADFS '04 & DMR '07 & DS '10)

- 1. $\delta \le 1/3$.
- 2. $\delta = 1/3$ iff A is a dictator.
- 3. If $\delta \ge 1/3 \varepsilon$, then A is $(100 \cdot \varepsilon)$ -close to a dictator.

Alon, Dinur, Friedgut, Sudakov 2004, Dinur, Mossel, Regev '07 & Dinur Shinkar '10 Definition (Dictator)

A subset of $\{0, 1, 2\}^n$ which fixes some coordinate x_i to $a \in \{0, 1, 2\}$.

Theorem (ADFS '04 & DMR '07 & DS '10)

- 1. $\delta \le 1/3$.
- 2. $\delta = 1/3$ iff A is a dictator.
- 3. If $\delta \ge 1/3 \varepsilon$, then A is $(100 \cdot \varepsilon)$ -close to a dictator.
- 4. A is explained by a set of dictators of size $1/poly(\delta)$.

Our Result

There exists a subgraph G' = (V', E') of $V(K_3^n)$ of size $3^{poly(log n)}$ such that Definition (Dictator)

A subset of V' which fixes some coordinate x_i to $a \in \{0, 1, 2\}$.

Theorem (Our Result)

Let A be an independent set in G' of relative size δ . Then,

- 1. $\delta \le 1/3$.
- 2. $\delta = 1/3$ iff A is a dictator.
- 3. If $\delta \ge 1/3 \varepsilon$, then A is $(100 \cdot \varepsilon)$ -close to a dictator.
- 4. A is explained by a set of dictators of size $1/\operatorname{poly}(\delta)$.

[BGHMRS, DG, GHHSV]

Suppose $N = 3^n$. Then $\{0, 1, 2\}^N$

[BGHMRS, DG, GHHSV]

Suppose $N = 3^n$. Then $\{0, 1, 2\}^N \equiv \mathbb{F}_3^N$

Suppose
$$N = 3^n$$
. Then $\{0, 1, 2\}^N \equiv \mathbb{F}_3^N \equiv \mathbb{F}_3^{\mathbb{F}_3^n}$

[BGHMRS, DG, GHHSV]

Suppose
$$N = 3^n$$
. Then $\{0, 1, 2\}^N \equiv \mathbb{F}_3^N \equiv \mathbb{F}_3^N$

$$\mathbb{F}_3^{\mathbb{F}_3^n}$$
 is the truth tables of all functions $f: \mathbb{F}_3^n \to \mathbb{F}_3$.

 $V' := \mathbf{P_d} \subset \{0, 1, 2\}^N$ the truth tables \mathbb{F}_3 . of degree d polynomials.

Suppose
$$N = 3^n$$
. Then $\{0, 1, 2\}^N \equiv \mathbb{F}_3^N \equiv \mathbb{F}_3^{\mathbb{F}_3^n}$

$\mathbb{F}_3^{\mathbb{F}_3^n}$ is the truth tables of all functions $f: \mathbb{F}_3^n \to \mathbb{F}_3$.	$V' := \mathbf{P_d} \subset \{0, 1, 2\}^N$ the truth tables of degree d polynomials.
size = $3^{3^n} = 3^N$	$size = 3^{n^d} = 3^{(\log N)^d}$

Suppose
$$N = 3^n$$
. Then $\{0, 1, 2\}^N \equiv \mathbb{F}_3^N \equiv \mathbb{F}_3^N$

$\mathbb{F}_3^{\mathbb{F}_3^n}$ is the truth tables of all functions $f: \mathbb{F}_3^n \to \mathbb{F}_3$.	$V' := \mathbf{P_d} \subset \{0, 1, 2\}^N$ the truth tables of degree d polynomials.
size = $3^{3^n} = 3^N$	$size = 3^{n^d} = 3^{(\log N)^d}$
$E = \{(f, g) : f - g \in \{1, 2\}^N\}$	$E' := \{ (f, g) : \exists h \in \mathbf{P_{d/2}}, f - g = h^2 + 1 \}$

Suppose
$$N = 3^n$$
. Then $\{0, 1, 2\}^N \equiv \mathbb{F}_3^N \equiv \mathbb{F}_3^N$

$\mathbb{F}_3^{\mathbb{F}_3^n}$ is the truth tables of all functions $f: \mathbb{F}_3^n \to \mathbb{F}_3$.	$V' := \mathbf{P_d} \subset \{0, 1, 2\}^N$ the truth tables of degree d polynomials.
size = $3^{3^n} = 3^N$	$size = 3^{n^d} = 3^{(\log N)^d}$
$E = \{(f, g) : f - g \in \{1, 2\}^N\}$	$E' := \{ (f, g) : \exists h \in P_{d/2}, f - g = h^2 + 1 \}$

For any
$$i$$
, $f(i) - g(i) = h(i)^2 + 1 \in \{1, 2\}$.

Independent Sets of size $\delta = 1/3 - \varepsilon$ in Subgraph is $O(\varepsilon)$ -close to a Dictator

▶ Let $A : P_d \to \{0, 1\}$ be indicator function of set of size $1/3 - \varepsilon$.

- ▶ Let $A : P_d \to \{0, 1\}$ be indicator function of set of size $1/3 \varepsilon$.
- For an independent set

$$0 = \mathbb{E}_{x,h} A(x) A(x+h^2+1)$$

- ▶ Let $A : P_d \to \{0, 1\}$ be indicator function of set of size $1/3 \varepsilon$.
- For an independent set

$$0 = \mathbb{E}_{x,h} A(x) A(x + h^2 + 1) = \widehat{A}(0)|^2 + \frac{1}{2} = \delta^2$$

- ▶ Let $A : P_d \to \{0, 1\}$ be indicator function of set of size $1/3 \varepsilon$.
- For an independent set

$$0 = \mathbb{E}_{x,h} A(x) A(x + h^2 + 1) = \widehat{A}(0)|^2 + \frac{1}{2} = \delta^2$$

- ▶ Let $A : P_d \to \{0, 1\}$ be indicator function of set of size $1/3 \varepsilon$.
- For an independent set

$$0 = \mathbb{E}_{x,h} A(x) A(x+h^2+1) = \widehat{|A(0)|^2} + \sum_{\alpha} \widehat{|A(\alpha)|^2} \mathbb{E}_{h} \chi_{\alpha}(h^2+1)$$

$$= \delta^2 \qquad \text{small due to [GHHSV '14]}$$

Independent Sets of size $\delta = 1/3 - \varepsilon$ in Subgraph is $O(\varepsilon)$ -close to a Dictator

- ▶ Let $A : P_d \to \{0, 1\}$ be indicator function of set of size $1/3 \varepsilon$.
- For an independent set

$$0 = \mathbb{E}_{x,h} A(x) A(x+h^2+1) = \widehat{|A(0)|^2} + \sum_{\alpha} \widehat{|A(\alpha)|^2} \mathbb{E}_{h} \chi_{\alpha}(h^2+1)$$

$$= \delta^2 \qquad \text{small due to [GHHSV '14]}$$

Independent Sets of size $\delta = 1/3 - \varepsilon$ in Subgraph is $O(\varepsilon)$ -close to a Dictator

- ▶ Let $A : P_d \to \{0, 1\}$ be indicator function of set of size $1/3 \varepsilon$.
- For an independent set

$$0 = \mathbb{E}_{x,h} A(x) A(x+h^2+1) = \widehat{|A(0)|^2} + \sum_{\alpha} \widehat{|A(\alpha)|^2} \mathbb{E}_{h} \chi_{\alpha}(h^2+1)$$

$$= \delta^2 \qquad \text{small due to [GHHSV '14]}$$

• Since $\sum_{\alpha} \widehat{A}(\alpha)^2 = 1/3 - \varepsilon$,

$$\sum_{|\alpha|\geq 2} \widehat{A}(\alpha)^2 \leq \varepsilon$$

Independent Sets of size $\delta = 1/3 - \varepsilon$ in Subgraph is $O(\varepsilon)$ -close to a Dictator

- ▶ Let $A : P_d \to \{0, 1\}$ be indicator function of set of size $1/3 \varepsilon$.
- For an independent set

$$0 = \mathbb{E}_{x,h} A(x) A(x+h^2+1) = \widehat{|A(0)|^2} + \sum_{\alpha} \widehat{|A(\alpha)|^2} \mathbb{E}_{h} \chi_{\alpha}(h^2+1)$$

$$= \delta^2 \qquad \text{small due to [GHHSV '14]}$$

• Since $\sum_{\alpha} \widehat{A}(\alpha)^2 = 1/3 - \varepsilon$,

$$\sum_{|\alpha|\geq 2} \widehat{A}(\alpha)^2 \leq \varepsilon$$

That is A is close to a function with only degree 1 Fourier terms.

Theorem (FKN '04 & ADFS '04)

If $A: \{0, 1, 2\}^N \to \{0, 1\}$ is close to a function having only degree 1 Fourier terms then A is close to a dictator.

Theorem (FKN '04 & ADFS '04)

If $A: \{0, 1, 2\}^N \to \{0, 1\}$ is close to a function having only degree 1 Fourier terms then A is close to a dictator.

Theorem (Our Result)

If $A : P_d \to \{0, 1\}$ is close to a function having only degree 1 Fourier terms then A is close to a dictator.

Theorem (FKN '04 & ADFS '04)

If $A: \{0, 1, 2\}^N \to \{0, 1\}$ is close to a function having only degree 1 Fourier terms then A is close to a dictator.

Theorem (Our Result)

If $A : P_d \to \{0, 1\}$ is close to a function having only degree 1 Fourier terms then A is close to a dictator.

We prove hypercontractivity for functions on the subspace

Independent Sets of size δ is explained by a set of dictators of size $1/\operatorname{poly}(\delta)$

Independent Sets of size δ is explained by a set of dictators of size $1/\operatorname{poly}(\delta)$

[Dinur Mossel Regev '07 & Dinur Shinkar '10]

We reduce to the product setting.

Independent Sets of size δ is explained by a set of dictators of size $1/\operatorname{poly}(\delta)$

[Dinur Mossel Regev '07 & Dinur Shinkar '10]

We reduce to the product setting.

[Kane, Meka '14]

Pseudorandom generator for Polynomial Threshold Funtions.

Independent Sets of size δ is explained by a set of dictators of size $1/\operatorname{poly}(\delta)$

[Dinur Mossel Regev '07 & Dinur Shinkar '10]

We reduce to the product setting.

[Kane, Meka '14]

Pseudorandom generator for Polynomial Threshold Funtions.

[Guruswami, Harsha, Håstad, Srinivasan, V '14]

If $|\alpha| > 3^d$ and $h \in_U P_{d/2}$ then

$$\left|\mathbb{E}_h\,\chi_\alpha(h^2)\right|\leq 3^{-3^{\Omega(d)}}.$$

Publications: Conference

- Venkat Guruswami, Prahladh Harsha, Johan Håstad, Srikanth Srinivasan, & Girish Varma. Super-polylogarithmic hypergraph coloring hardness via low-degree long codes. Symp. on Theory of Computing (STOC), 2014.
- ▶ Irit Dinur, Prahladh Harsha, Srikanth Srinivasan, & Girish Varma.
 Derandomized graph product results using the low degree long code. Symp. on Theoretical Aspects of Computer Science (STACS), 2015.
- Amey Bhangale, Prahladh Harsha, & Girish Varma.
 A characterization of hard-to-cover CSPs. Computational Complexity Conference (CCC), 2015.

Publications: Manuscript

 Girish Varma. Reducing uniformity in Khot-Saket hypergraph coloring hardness reductions. CoRR. That's all Folks!

Thank You