Algoritmi e Strutture Dati

Introduzione

Informazioni utili

• T.H. Cormen, C.E. Leiserson, R.L Rivest, C. Stein "Introduzione agli algoritmi e strutture dati". McGraw-Hill

 Sito web con le slides del corso: http://people.na.infn.it/~bene/ASD/

Orario di ricevimento: Mercoledì ore 11:00 – 13:00

Un **algoritmo** è una procedura ben definita per risolvere un problema: una sequenza di passi che, se eseguiti da un *esecutore*, portano alla *soluzione del problema*.

La sequenza di passi che definisce un algoritmo deve essere *descritta in modo finito*.

Alcune proprietà degli algoritmi

- Non ambiguità: tutti i passi che definiscono l'algoritmo devono essere non ambigui e chiaramente comprensibili all'esecutore;
- Generalità: la sequenza di passi da eseguire dipende esclusivamente dal problema generale da risolvere, non dai dati che ne definiscono un'istanza specifica;
- Correttezza: un algoritmo è corretto se produce il risultato corretto a fronte di qualsiasi istanza del problema ricevuta in ingresso. Può essere stabilita, ad esempio, tramite:
 - dimostrazione formale (matematica);
 - ispezione informale;
- Efficienza: misura delle risorse computazionali che esso impiega per risolvere un problema. Alcuni esempi sono:
 - tempo di esecuzione;
 - memoria impiegata;
 - altre risorse: banda di comunicazione.

Complessità degli algoritmi

- Analisi delle prestazioni degli algoritmi
- Utilizzeremo un *Modello Computazionale* astratto di riferimento.
- Tempo di esecuzione degli algoritmi
- Notazione asintotica
- Analisi del *Caso Migliore*, *Caso Peggiore* e del *Caso Medio*
- Applicazione delle tecniche di analisi del tempo di esecuzione ad *algoritmi di ordinamento*.

Analisi di un algoritmo

- Correttezza
 - Dimostrazione formale (matematica)
 - Ispezione informale
- Utilizzo delle risorse
 - Tempo di esecuzione
 - Utilizzo della memoria
 - Altre risorse: banda di comunicazione
- Semplicità
 - Facile da capire, modificare e manutenere

Tempo di esecuzione

- Il *tempo di esecuzione* di un *programma* può dipendere da vari fattori:
 - Hardware su cui viene eseguito
 - Compilatore/Interprete utilizzato
 - Tipo e dimensione dell'input
 - Altri fattori: casualità, ...
- Al fine di analizzare il *tempo intrinseco impiegato* da un algoritmo, procederemo a un'analisi più astratta, impiegando un *modello computazionale*.

Un noto modello computazionale

- Il modello della Macchina di Turing
 - Nastro di lunghezza infinita
 - o In ogni *cella* può essere contenuta una quantità di informazione finita (un simbolo)
 - Una testina + un processore + programma
 - In 1 unità di tempo
 - Legge o scrive la cella di nastro corrente e
 - Si muove di 1 cella a sinistra, oppure di 1 cella a destra, oppure resta ferma

Il modello computazionale RAM

Modello RAM (Random-Access Memory)

• Memoria principale infinita

- Ogni cella di memoria può contenere una quantità di dati finita.
- Impiega lo stesso tempo per accedere a ogni cella di memoria.

Singolo processore + programma

- In 1 unità di tempo: operazioni di lettura, passo di computazione elementare, scrittura;
- Passi di computazione: addizione, moltiplicazione, assegnamento, confronto, accesso a puntatore, ...

Il modello RAM è una semplificazione dei moderni computer.

Un problema di conteggio

- Input
 - Un intero *N* dove $N \ge 1$.
- Output
 - Il numero di coppie ordinate (i,j) tali che $i \in j$ siano interi e $1 \le i \le j \le N$.
- Esempio:
 - Input: N=4
 - (1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)
 - Output:10

Algoritmo 4: analisi asintotica

Ma notate che:

$$\sum_{i=1}^{N} (N+1-i) = \sum_{i=1}^{N} i = N(N+1)/2$$

Algoritmo 4: analisi asintotica

```
int Count 0 ( int N)
     sum = 0
    for i = 1 to N -
                                  2(N+1)
                                  2\sum_{i=1}^{N}(N+1)
        for j =1 to N
          if i <= j then-
                                  N(N+1)
5
             sum = sum + 1
     return sum
```

Il tempo di esecuzione è $T(N) = 9/2 N^2 + 9/2 N + 4$

```
int Count 1(int N)
      sum = 0
    for i = 1 to N
                                   -2N+2
        for j = i to N -\frac{1}{N} = 2\sum_{i=1}^{N} (N-i+2)
            sum = sum + 1 - 2\sum_{i=1}^{N} (N+1-i)
      return sum
```

Il tempo di esecuzione è
$$2+2N+2+2\sum_{i=1}^{N}(N+2-i)+2\sum_{i=1}^{N}(N+1-i)=2N^2+6N+4$$

Il tempo di esecuzione è 6N+4

$$\sum_{i=1}^{N} (N+1-i) = \sum_{i=1}^{N} i = N(N+1)/2$$

Il tempo di esecuzione è 5 unità di tempo

Riassunto dei tempi di esecuzione

Algoritmo	Tempo di	
	Esecuzione	
Algoritmo 0	$\frac{9}{2}N^2 + \frac{9}{2}N + 4$	
Algoritmo1	$2N^2 + 6N + 4$	
Algoritmo 2	6N+4	
Algoritmo 3	5	

Ordine dei tempi di esecuzione

Supponiamo che 1 operazone atomica impieghi 1 $\eta s = 10^{-9} s$

	1.000	10.000	100.000	1.000.000	10.000.000
N	1 μs	10 μs	100 μs	1 ms	10 ms
20N	20 μs	200 μs	2 ms	20 ms	200 ms
N Log N	9.96 μs	132 μs	1.66 ms	19.9 ms	232 ms
20N Log N	199 μs	2.7 ms	33 ms	398 ms	4.6 sec
N^2	1 ms	100 ms	10 sec	17 min	1.2 giorni
20N ²	20 ms	2 sec	3.3 min	5.6 ore	23 giorni
N^3	1 sec	17 min	12 gior.	32 anni	32 millenni

Riassunto dei tempi di esecuzione

Algoritmo	Tempo di Esecuzione	Ordine del Tempo di Esecuzione	
Algoritmo 0	$\frac{9}{2}N^2 + \frac{9}{2}N + 4$	N^2	
Algoritmo 1	$2N^2 + 6N + 4$	N^2	
Algoritmo 2	6N+4	$oldsymbol{N}$	
Algoritmo 3	5	Costante	

Limite superiore asintotico

Esempio di limite superiore asintotico

Esercizio sulla notazione O

• Mostrare che $3n^2+2n+5 = O(n^2)$

$$10n^{2} = 3n^{2} + 2n^{2} + 5n^{2}$$

$$\geq 3n^{2} + 2n + 5 \text{ per } n \geq 1$$

$$c = 10, n_0 = 1$$

Utilizzo della notazione O

- In genere quando impieghiamo la notazione O, utilizziamo la formula più "semplice".
 - Scriviamo:
 - $3n^2+2n+5=O(n^2)$
 - Le seguenti sono tutte corrette ma in genere non le si userà:
 - $3n^2+2n+5=O(3n^2+2n+5)$
 - $3n^2+2n+5=O(n^2+n)$
 - $3n^2+2n+5=O(3n^2)$

Esercizi sulla notazione O

•
$$f_1(n) = 10 n + 25 n^2$$

•
$$O(n^2)$$

•
$$f_2(n) = 20 n \log n + 5 n$$

•
$$O(n \log n)$$

•
$$f_3(n) = 12 n \log n + 0.05 n^2$$
 • $O(n^2)$

•
$$f_4(n) = n^{1/2} + 3 n \log n$$

•
$$O(n \log n)$$

Limite inferiore asintotico

Esempio di limite inferiore asintotico

Limite asintotico stretto

Limite asintotico stretto

Riassunto della notazione asintotica

- *O*: *O-grande*: limite superiore asintotico
- Ω : *Omega-grande*: limite inferiore asintotico
- **\Omega:** Imite asintotico stretto
- Usiamo la *notazione asintotica* per dare un limite ad una funzione (f(n)), a meno di un fattore costante (c).

Teoremi sulla notazione asintotica

Teoremi:

- 1. f(n) = O(g(n)) se e solo se $g(n) = \Omega(f(n))$.
- 2. Se $f_1(n) = O(f_2(n))$ e $f_2(n) = O(f_3(n))$, allora $f_1(n) = O(f_3(n))$
- 3. Se $f_1(n) = \Omega(f_2(n))$ e $f_2(n) = \Omega(f_3(n))$, allora $f_1(n) = \Omega(f_3(n))$
- 4. Se $f_1(n) = \Theta(f_2(n))$ e $f_2(n) = \Theta(f_3(n))$, allora $f_1(n) = \Theta(f_3(n))$
- 5. Se $f_1(n) = O(g_1(n))$ e $f_2(n) = O(g_2(n))$, allora

$$O(f_1(n) + f_2(n)) = O(\max\{g_1(n), g_2(n)\})$$

6. Se f(n) è un polinomio di grado d, allora $f(n) = \Theta(n^d)$

Teoremi sulla notazione asintotica

Proprietà:

Se
$$\lim_{n\to\infty} f(n)/g(n) = 0$$
 allora $f(n) = O(g(n))$
Se $\lim_{n\to\infty} f(n)/g(n) = k > 0$ allora $f(n) = O(g(n))$
 e $f(n) = \Omega(g(n))$
 $quindif(n) = \Theta(g(n))$
Se $\lim_{n\to\infty} f(n)/g(n) \to \infty$ allora $f(n) = \Omega(g(n))$

Tempi di esecuzione asintotici

Algoritmo	Tempo di Esecuzione	Limite asintotico
Algoritmo 1	$2N^2 + 6N + 4$	$O(N^2)$
Algoritmo 2	6N+4	O(N)
Algoritmo 3	5	O (1)
Algoritmo 4	$4N^2 + 5N + 4$	$O(N^2)$

Somma Massima di una sottosequenza contigua

• Input

- Un intero N dove $N \ge 1$.
- Una sequenza $(a_1, a_2, ..., a_N)$ di N interi.

Output

- Un intero S tale che $S = \sum_{k=i}^{j} a_k$ dove $1 \le i, j \le N$ e S è il più grande possibile.
- (tutti gli elementi nella sommatoria devono essere contigui nella sequenza in input).
 - Esempio:
 - N=9, (2,-4,8,3,-5,4,6,-7,2)
 - Output = 8+3-5+4+6=16

```
int Max seq sum 1(int N, array a[])
 maxsum = 0
  for i=1 to N
    for j=i to N
      sum = 0
      for k=i to j
         sum = sum + a[k]
      maxsum = max(maxsum,sum)
 return maxsum
```

Tempo di esecuzione $O(N^3)$

- È facile osservare che l'algoritmo precedente effettua spesso le stesse operazioni ripetutamente.
- Poichè

$$\sum_{k=i}^{j+1} a_k = a_{j+1} + \sum_{k=i}^{j} a_k$$

è possibile ottenere il valore di **sum** per la sequenza da **i** a **j**+1 in tempo costante, sommando **A[j+1]** al valore di **sum** già calcolato all'itarazione precedente per la sequenza da **i** a **j**.

• A tal fine, è sufficiente mantenere inalterato il valore di sum tra le iterazioni che individuano sottosequenze che partono dallo stesso valore i e riazzerare sum solo quando i viene incrementato.

```
int Max seq sum 2(int N, array a[])
  maxsum = 0
                                      O(1)
  for i=1 to N
    sum = 0
    for j=i to N
                             O(N^2)
       sum = sum + a[j]
       maxsum = max(maxsum, sum)
 return maxsum
```

Tempo di esecuzione $O(N^2)$

Esiste un algoritmo che risolve il problema in tempo O(N)

Algoritmo 3: intuizione

1. Se $a_p+...+a_r \ge 0$ allora

$$a_p + ... + a_{r+k} \ge a_{r+1} + ... + a_{r+k} \quad \forall \ k \ge 1$$

2. Se $a_p + ... + a_{r-1} > 0$ ma $a_p + ... + a_r < 0$ allora $a_p + ... + a_{r+k} \le a_{r+1} + ... + a_{r+k} \quad \forall \ k \ge 1$

Algoritmo 3: intuizione

1. Se $a_p + ... + a_r \ge 0$ allora

$$a_p + ... + a_{r+k} \ge a_{r+1} + ... + a_{r+k} \quad \forall \ k \ge 1$$

2. Se
$$a_p+...+a_{r-1}>0$$
 ma $a_p+...+a_r<0$ allora
$$a_p+...+a_{r+k}\leq a_{r+1}+...+a_{r+k} \quad \forall \ k\geq 1$$

- Nel caso 2, ogni sottosequenza di A che inizia tra p e r e che termina oltre r avrà una somma inferiore alla sua sottosequenza che parte da r+1.
- È dunque possibile *ignorare tutte queste sottosequenze* e considerare solo quelle che iniziano dall'indice **r+1**.

Algoritmo 3

```
int Max seq sum 3(int N, array a[])
  maxsum = 0
                                      O(1)
  sum = 0
                                 O(N)
  for j=1 to N
    if (sum + a[j] > 0) then
         sum = sum + a[j]
    else
         sum = 0
    maxsum = max(maxsum, sum)
 return maxsum
```

Tempo di esecuzione O(N)

Ordinamento di una sequenza

- Input : una sequenza di numeri.
- Output: una permutazione (riordinamento) tale che tra ogni 2 elementi adiacenti nella sequenza valga "qualche" relazione di ordinamento (ad es. ≤).

Insert Sort

- È efficiente solo per piccole sequenze di numeri;
- Algoritmo di ordinamento sul posto.
- 1) La sequenza viene scandita dal dal primo elemento; l'indice *i, inizial-mente* assegnato al primo elemento, indica l'elemento corrente;
- 2) Si considera la parte a sinistra di *i* (compreso) già ordinata;
- 3) Si seleziona il primo elemento successivo ad i nella sottosequenza non-ordinata assegnando j = i+1;
- 4) Si cerca il posto giusto per l'elemento j nella sottosequenza ordinata.
- 5) Si incrementa *i*, si torna al passo 3) se la sequenza non è terminata;

Insert Sort

Algoritmo:

- A[1..n]: sequenza numeri di input
- **Key**: valore corrente da inserire nell'ordinamento

```
for j = 2 to Lenght(A)
     do Key = A[j]
     /* Scelta del j-esimo elemento da ordinare */
     i = j-1 /* A[1...i] è la porzione ordinata */
     while i > 0 and A[i] > Key do
5
        A[i+1] = A[i]
        i=i-1
    A[i+1] = Key
```

Analisi di Insert Sort

```
for j = 2 to Lenght(A)
    do Key = A[j]
    /* Commento */
    i = j-1
    while i>0 and A[i] > Key
5
         do A[i+1] = A[i]
            i=i-1
     A[i+1] = Key
```

Numero Esecuzioni	esecuzione singola
n	$\mathtt{c}_{\scriptscriptstyle{1}}$
n-1	$\mathtt{c}_{\scriptscriptstyle 2}$
n-1	0
n-1	c ₃
	C ₄
	C ₅
	C ₆

n-1

Costo

Analisi di Insert Sort

Esecuzioni singola

1 for j = 2 to Lenght(A)

2 do Key = A[j]

/* Commento */

3 i = j-1

4 while i>0 and A[i] > Key

5 do A[i+1] = A[i]

6
$$\sum_{j=2}^{n} (t_j - 1)$$
 $\sum_{j=2}^{n} (t_j - 1)$
 $\sum_{j=2}^{n} (t_j - 1)$

Costo

esecuzione

Numero

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n-1)$$

Analisi di Insert Sort: Caso migliore

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n-1)$$

Il caso migliore si ha quando l'array è già ordinato:

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_7 (n-1)$$

Inoltre, in questo caso t_j è 1, quindi:

$$T(n) = (c_1 + c_2 + c_3 + c_4 + c_7)n - (c_2 + c_3 + c_4 + c_7)$$

$$T(n) = an+b$$

Analisi di Insert Sort: Caso migliore

$$T(n) = (c_1 + c_2 + c_3 + c_4 + c_7)n - (c_2 + c_3 + c_4 + c_7)$$

$$T(n) = an+b$$

Analisi di Insert Sort: Caso peggiore

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n-1)$$

Il caso peggiore si ha quando l'array è in ordine inverso. In questo caso t_i è j (perché?)

$$\sum_{j=2}^{n} t_j = \sum_{j=1}^{n} t_j - 1 = \frac{n(n+1)}{2} - 1$$

$$\sum_{j=2}^{n} t_j = \sum_{j=1}^{n} t_j - 1 = \frac{n(n+1)}{2} - 1$$

$$\sum_{j=2}^{n} (t_j - 1) = \sum_{j=2}^{n} t_j - \sum_{j=2}^{n} 1 = \frac{n(n+1)}{2} - 1 - (n-1) = \frac{n(n-1)}{2}$$

Quindi:
$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \left(\frac{n(n+1)}{2} - 1\right) + c_5 \left(\frac{n(n-1)}{2}\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7 (n-1)$$

Analisi di Insert Sort: Caso peggiore

$$T(n) = c_1 n + c_2(n-1) + c_3(n-1) + c_4 \left(\frac{n(n+1)}{2} - 1\right) + c_5 \left(\frac{n(n-1)}{2}\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7(n-1)$$

$$T(n) = \left(\frac{c_4 + c_5 + c_6}{2}\right)n^2 + \left(c_1 + c_2 + c_3 + \frac{c_4 - c_5 - c_6}{2} + c_7\right)n - (c_2 + c_3 + c_4 + c_7)$$

$$T(n) = an^2 + bn + c$$

Analisi di Insert Sort: Caso peggiore

$$T(n) = \left(\frac{c_4 + c_5 + c_6}{2}\right)n^2 + \left(c_1 + c_2 + c_3 + \frac{c_4 - c_5 - c_6}{2} + c_7\right)n - (c_2 + c_3 + c_4 + c_7)$$

$$T(n) = an^2 + bn + c$$

Analisi di Insert Sort: Caso medio

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_5 \sum_{j=2}^{n} (t_j - 1) + c_7 (n-1)$$

Il *caso medio* è il valore medio del tempo di esecuzione.

Supponiamo di scegliere una sequenza casuale e che tutte le sequenze abbiano uguale probabilità di essere scelte.

In media, *metà degli elementi* ordinati saranno *maggiori* dell'elemento che dobbiamo sistemare.

In media controlliamo metà del sottoarray ad ogni ciclo while.

Quindi t_i è circa j/2

$$\sum_{j=2}^{n} t_{j} = \sum_{j=2}^{n} \frac{j}{2} = \frac{1}{2} \left[\left(\sum_{j=1}^{n} j \right) - 1 \right] = \frac{n^{2} + n - 2}{4} \quad \sum_{j=2}^{n} (t_{j} - 1) = \sum_{j=2}^{n} \left(\frac{j}{2} - 1 \right) = \frac{n^{2} - 3n + 2}{4}$$

$$\sum_{j=2}^{n} (t_j - 1) = \sum_{j=2}^{n} \left(\frac{j}{2} - 1 \right) = \frac{n^2 - 3n + 2}{4}$$

Analisi di Insert Sort: Caso medio

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n-1)$$

$$\sum_{j=2}^{n} t_j = \sum_{j=2}^{n} \frac{j}{2} = \frac{1}{2} \left(\sum_{j=1}^{n} j - 1 \right) = \frac{n^2 + n - 2}{4}$$

$$\sum_{j=2}^{n} (t_j - 1) = \sum_{j=2}^{n} \left(\frac{j}{2} - 1 \right) = \frac{n^2 - 3n + 2}{4}$$

$$\sum_{j=2}^{n} (t_j - 1) = \sum_{j=2}^{n} \left(\frac{j}{2} - 1 \right) = \frac{n^2 - 3n + 2}{4}$$

Analisi del Caso Migliore e Caso Peggiore

- Analisi del Caso Migliore
 - Ω -grande, limite inferiore, del tempo di esecuzione per un qualunque *input di dimensione* N.
- Analisi del Caso Peggiore
 - *O*-grande, limite superiore, del tempo di esecuzione per un qualunque *input di dimensione N*.

Analisi del Caso Medio

Analisi del Caso Medio

- Alcuni algoritmi sono efficienti in pratica.
- L'analisi è in genere molto più difficile.
- Bisogna generalmente assumere che tutti gli input siano ugualmente probabili.
- A volte non è ovvio quale sia la media.

Stima del limite asintotico superiore

- Nei prossimi lucidi vedremo un semplice metodo per *stimare il limite asintotico superiore O(.)* del tempo di esecuzione di *algoritmo iterativi*.
 - Stabilire il limite superiore per le operazioni elementari
 - Stabilire il limite superiore per le strutture di controllo
- Ci da un limite superiore che funge da stima, ma non garantisce di trovare la funzione esatta del tempo di esecuzione. La stima può essere a volte grossolana.

Tempo di esecuzione: operazioni semplici

Operazioni Semplici

- operazioni aritmetiche (+, *,...)
- operazioni logiche(&&, ||,....)
- confronti (\leq , \geq , = ,...)
- assegnamenti (a = b) senza chiamate di funzione
- operazioni di lettura (read)
- operaioni di controllo (break, continue, return)

$$T(n) = \Theta(1) \Rightarrow T(n) = O(1)$$

Tempo di esecuzione: ciclo for

$$T(n) = O(g(n) \times f(n))$$

Tempo di esecuzione: ciclo while

Bisogna stabilire un limite per il numero di iterazioni del ciclo, g(n).

Può essere necessaria una prova induttiva per g(n).

$$T(n) = O(g(n) \times f(n))$$

Ciclo while: esempio

Ricerca dell'elemento x all'interno di un array A[1...n]:

$$i = 1$$
 (1)
while $(x \neq A[i] \&\& i \leq n)$ (2)
 $i = i+1$ (3)

```
(1) O(1) test in (2) O(1) (3) O(1) iterazioni massimo g(n) = n
```

$$O(ciclo-while) = O(1) + n O(1) = O(n)$$

Tempo di esecuzione: cicli innestati

Cicli annidati: esempio

for
$$i = 1$$
 to n

for $j = 1$ to n

$$k = i + j$$

$$= O(n)$$

$$T(n) = O(n \times n) = O(n^2)$$

Cicli annidati: esempio

for
$$i = 1$$
 to n

for $j = i$ to n

$$k = i + j$$

$$= O(n - i)$$

$$= O(n^{2})$$

$$T(n) = O(n \times n) = O(n^2)$$

Tempo di esecuzione: If-Then-Else

If-Then-Else: esempio

```
if A[1][i] = 0 then for i = 1 to n

for j = 1 to n

a[i][j] = 0

else

for i = 1 to n

A[i][i] = 1

A[i][i] = 1

A[i][i] = 0
```

if:
$$T(n) = O(n^2)$$

else: $T(n) = O(n)$

$$T(n) = max(O(n^2), O(n)) = O(n^2)$$

Tempo di esecuzione: blocchi sequenziali

Blocchi sequenziali: esempio

```
for i = 1 to n
A[1] = 0
for i = 1 to n
for j = 1 to n
A[i] = A[i] + A[i]
= O(n)
```

$$T(n) = O(max(f(ciclo-1), f(ciclo-2)))$$

$$= O(max(n, n^2))$$

$$= O(n^2)$$

Esempio: Insert Sort

```
InsertSort(array A[1...n])
O(n^{2}) = \begin{cases} for \ j = 2 \ to \ n \\ key = A[j] \\ i = j - 1 \end{cases} = O(1)
while \ i > 0 \ and \ A[i] > key
A[i+1] = A[i]
i = i - 1
A[i+1] = key = O(1)
```

$$T(n) = O(g(n) \times max(1, 1, n, 1))$$

= $O(n \times n)$
= $O(n^2)$

Tecniche di sviluppo di algoritmi

- Agli esempi visti fino ad ora seguono l'approccio incrementale: la soluzione viene costruita passo dopo passo.
- Insert sort avendo ordinato una sottoparte dell'array, inserisce al posto giusto un altro elemento ottenendo un sotto-array ordinato più grande.
- Esistono altre tecniche di sviluppo di algoritmi con filosofie differenti:
 - Divide-et-Impera

Divide-et-Impera

• Il problema viene suddiviso in sottoproblemi analoghi, che vengono risolti separatamente. Le soluzioni dei sottoproblemi vengono infine fuse insieme per ottenere la soluzione dei problemi più complessi.

Consiste di 3 passi:

- *Divide* il problema in vari sottoproblemi, tutti *simili* (tra loro e) al *problema originario* ma più semplici.
- *Impera* (conquista) i sottoproblemi risolvendoli ricorsivamente. Quando un sottoproblema diviene banale, risolverlo direttamente.
- Fondi le soluzioni dei sottoproblemi per ottenere la soluzione del (sotto)problema che li ha originati.

Divide-et-Impera e ordinamento

- Input: una sequenza di numeri.
- Output: una permutazione (riordinamento) tale che tra ogni 2 elementi adiacenti nella sequenza valga "qualche" relazione di ordinamento (ad es. ≤).
- *Merge Sort* (divide-et-impera)
 - *Divide*: scompone la sequenza di n elementi in 2 sottosequenze di n/2 elementi ciascuna.
 - *Impera:* conquista i sottoproblemi ordinando ricorsivamente le sottosequenze con *Merge Sort* stesso. Quando una sottosequenza è unitaria, il sottoproblema è banale.
 - Fondi: compone insieme le soluzioni dei sottoproblemi per ottenere la sequenza ordinata del (sotto-)problema.

Merge Sort

Algoritmo:

- A[1..n]: sequenza dei numeri in input
- p,r: indici degli estremi della sottosequenza da ordinare

Merge Sort: analisi

```
Merge Sort(array A, int p,r)
       if p < r then
               q = \lfloor (p+r)/2 \rfloor
                Merge Sort (A,p,q)
                Merge Sort (A, q+1, r)
                Merge(A,p,q,r)
                                          Equazione di Ricorrenza
T(n) = \Theta(1)/\text{ se } n=1
T(n) = (2 T(n/2)) + T_{merge}(n) + \Theta(1)
                                                               sen =
```

Merge Sort: analisi

```
Merge_Sort(array A, int p,r)

1  if p < r then

2    q = L(p+r)/2 \( \)

3    Merge_Sort(A,p,q)

4    Merge_Sort(A,q+1,r)

5    Merge(A,p,q,r)</pre>
```

$$T(n) = \begin{cases} \Theta(1) & se \ n = 1 \\ 2T(n/2) + \Theta(n) + \Theta(1) & se \ n > 1 \end{cases}$$

Soluzione: $T(n) = \Theta(n \log n)$

Divide-et-Impera: Equazioni di ricorrenza

- Divide: D(n) tempo per dividere il problema
- Impera: se si divide il problema in a sottoproblemi, ciascuno di dimensione n/b, il tempo per conquistare i sottoproblemi sarà aT(n/b).
 - Quando un sottoproblema diviene banale (*l'input è minore o uguale ad una costante c*), in tempo è $\Theta(1)$.
- Fondi: C(n) tempo per comporre le soluzioni dei sottoproblemi nella soluzione più complessa.

$$T(n) = \begin{cases} \Theta(1) & \text{se } n \le c \\ aT(n/b) + D(n) + C(n) & \text{se } n > c \end{cases}$$

Gli argomenti trattati

- Analisi della bontà di un algoritmo
 - Correttezza, utilizzo delle risorse, semplicità
- Modello computazionali: modello RAM
- Tempo di esecuzione degli algoritmi
- Notazione asintotica: O-grande, Ω -grande, Θ
- Analisi del Caso Migliore, Caso Peggiore e del Caso Migliore