

ECE 68000: MODERN AUTOMATIC CONTROL

Professor Stan Żak

Application of the discrete-time (DT) Lyapunov matrix equation to evaluate performance indices

Application of the discrete-time (DT) Lyapunov matrix equation to evaluate performance indices

- Discrete-time (DT) Lyapunov matrix equation
- Discrete-time (DT) performance indices
- Evaluating Discrete-time (DT) performance indices

Discrete-time (DT) Lyapunov matrix equation

• Discrete-time (DT) system

$$\boldsymbol{x}[k+1] = \boldsymbol{A}\boldsymbol{x}[k], \quad \boldsymbol{x}[k_0] = \boldsymbol{x}_0$$

• By analogy with the continuous-time (CT) case, consider a quadratic positive definite form,

$$V(\boldsymbol{x}[k]) = \boldsymbol{x}[k]^{\top} \boldsymbol{P} \boldsymbol{x}[k]$$

• Evaluate the first difference of $V(\mathbf{x}[k])$ defined as $\Delta V(\mathbf{x}[k]) = V(\mathbf{x}[k+1]) - V(\mathbf{x}[k])$, on the trajectories of the system to obtain

$$\Delta V(\boldsymbol{x}[k]) = V(\boldsymbol{x}[k+1]) - V(\boldsymbol{x}[k])$$

$$= \boldsymbol{x}[k+1]^{\mathsf{T}} \boldsymbol{P} \boldsymbol{x}[k+1] - \boldsymbol{x}[k]^{\mathsf{T}} \boldsymbol{P} \boldsymbol{x}[k]$$

$$= \boldsymbol{x}[k]^{\mathsf{T}} \boldsymbol{A}^{\mathsf{T}} \boldsymbol{P} \boldsymbol{A} \boldsymbol{x}[k] - \boldsymbol{x}[k]^{\mathsf{T}} \boldsymbol{P} \boldsymbol{x}[k]$$

Discrete-time (DT) Lyapunov's equation—contd

We have

$$\begin{array}{rcl} \Delta V(\boldsymbol{x}[k]) & = & \boldsymbol{x}[k]^{\top} \boldsymbol{A}^{\top} \boldsymbol{P} \boldsymbol{A} \boldsymbol{x}[k] - \boldsymbol{x}[k]^{\top} \boldsymbol{P} \boldsymbol{x}[k] \\ & = & \boldsymbol{x}[k]^{\top} \left(\boldsymbol{A}^{\top} \boldsymbol{P} \boldsymbol{A} - \boldsymbol{P} \right) \boldsymbol{x}[k], \end{array}$$

where we replaced x[k+1] in the above with Ax[k]

• For the solutions to decrease the "energy function" V, at each $k > k_0$, it is necessary and sufficient that $\Delta V(\boldsymbol{x}[k]) < 0$, or equivalently, that for some positive definite \boldsymbol{Q}

$$\Delta V(\boldsymbol{x}[k]) = -\boldsymbol{x}[k]^{\top} \boldsymbol{Q} \boldsymbol{x}[k]$$

• We obtain the so called *discrete-time Lyapunov matrix equation*

$$|A^{\top}PA - P = -Q|$$

Discrete-time (DT) Lyapunov's theorem

Theorem

The matrix \boldsymbol{A} has its eigenvalues in the open unit disk if and only if for any positive definite \boldsymbol{Q} the solution \boldsymbol{P} to

$$\boldsymbol{A}^{\top}\boldsymbol{P}\boldsymbol{A}-\boldsymbol{P}=-\boldsymbol{Q}$$

is positive definite.

Proof of the necessity condition (\Rightarrow)

• The solution **P** can be expressed as

$$oldsymbol{P} = \sum_{k=0}^{\infty} \left(oldsymbol{A}^{ op}
ight)^k oldsymbol{Q} oldsymbol{A}^k$$

- The above expression is well defined because all eigenvalues of *A* have magnitude (strictly) less than unity
- Substituting gives

$$\mathbf{A}^{\top} \mathbf{P} \mathbf{A} - \mathbf{P} = \mathbf{A}^{\top} \left(\sum_{k=0}^{\infty} (\mathbf{A}^{\top})^{k} \mathbf{Q} \mathbf{A}^{k} \right) \mathbf{A} - \sum_{k=0}^{\infty} (\mathbf{A}^{\top})^{k} \mathbf{Q} \mathbf{A}^{k}$$
$$= \sum_{k=1}^{\infty} (\mathbf{A}^{\top})^{k} \mathbf{Q} \mathbf{A}^{k} - \sum_{k=1}^{\infty} (\mathbf{A}^{\top})^{k} \mathbf{Q} \mathbf{A}^{k} - \mathbf{Q}$$
$$= -\mathbf{Q}$$

- Note that if **Q** is symmetric so is **P**
- If **Q** is positive definite, so is **P**

Proof of the sufficiency condition (\Leftarrow)

- Let λ_i be an eigenvalue of \boldsymbol{A} and \boldsymbol{v}_i be a corresponding eigenvector, that is, $\boldsymbol{A}\boldsymbol{v}_i = \lambda_i \boldsymbol{v}_i$
- Observe that λ_i and \boldsymbol{v}_i may be complex
- Denote by v_i^* the complex conjugate transpose of v_i
- Note that $v_i^* P v_i$ is a scalar
- We will show that its complex conjugate equals itself, which means that $v_i^* P v_i$ is real

Proof of sufficiency (\Leftarrow) —contd.

Indeed,

$$\overline{\boldsymbol{v}_i^*\boldsymbol{P}\boldsymbol{v}_i} = \boldsymbol{v}_i^*\boldsymbol{P}^*\boldsymbol{v}_i = \boldsymbol{v}_i^*\boldsymbol{P}^\top\boldsymbol{v}_i = \boldsymbol{v}_i^*\boldsymbol{P}\boldsymbol{v}_i$$

where we used the fact that the complex conjugate transpose of a real matrix reduces to its transpose

- Thus, $v_i^* P v_i$ is real for any complex v_i .
- ullet Premultiplying by $oldsymbol{v}_i^*$ and postmultiplying by $oldsymbol{v}_i$ gives

$$oldsymbol{v}_i^* \left(oldsymbol{A}^ op oldsymbol{P} oldsymbol{A} - oldsymbol{P}
ight) oldsymbol{v}_i = -oldsymbol{v}_i^* oldsymbol{Q} oldsymbol{v}_i$$

• The left-hand side of the above equality evaluates to

$$\boldsymbol{v}_{i}^{*}\boldsymbol{A}^{\top}\boldsymbol{P}\boldsymbol{A}\boldsymbol{v}_{i} - \boldsymbol{v}_{i}^{*}\boldsymbol{P}\boldsymbol{v}_{i} = \bar{\lambda}_{i}\boldsymbol{v}_{i}^{*}\boldsymbol{P}\boldsymbol{v}_{i}\lambda_{i} - \boldsymbol{v}_{i}^{*}\boldsymbol{P}\boldsymbol{v}_{i}$$
$$= (|\lambda_{i}|^{2} - 1)\boldsymbol{v}_{i}^{*}\boldsymbol{P}\boldsymbol{v}_{i}$$

End of proof of sufficiency (\Leftarrow)

• Comparing the above with the right-hand side yields

$$\left(1-|\lambda_i|^2\right) \boldsymbol{v}_i^* \boldsymbol{P} \boldsymbol{v}_i = \boldsymbol{v}_i^* \boldsymbol{Q} \boldsymbol{v}_i > 0$$

because Q is positive definite

- Since **P** is positive definite, we have to have $|\lambda_i| < 1$
- The proof is complete.

Example

Determine the stability of the system

$$egin{array}{lll} m{x}[k+1] & = & \left[egin{array}{cccc} -0.8 & 0 & 0 \\ 0.4 & 0 & 0.4 \\ 0 & -0.8 & -0.8 \end{array}
ight] m{x}[k] \\ & = & m{A}m{x}[k] \end{array}$$

in the sense of Lyapunov by solving the Lyapunov matrix equation using the MATLAB function dlyap

• Use P=dlyap(A',eye(3))

Evaluating Discrete-time (DT) performance indices

$$K_r = \sum_{k=0}^{\infty} k^r \boldsymbol{x}[k]^{\top} \boldsymbol{Q} \boldsymbol{x}[k], \quad r = 0, 1, \dots$$

where $\boldsymbol{O} = \boldsymbol{O}^{\top} \succ 0$ subject to

Evaluate

$$\boldsymbol{x}[k+1] = \boldsymbol{A}\boldsymbol{x}[k], \quad \boldsymbol{x}[k_0] = \boldsymbol{x}_0$$

- A has its eigenvalues in the open unit disk, that is, the matrix A is convergent
- First consider the case when r=0

$$K_0 = \sum_{k=0}^{\infty} \boldsymbol{x}[k]^{\top} \boldsymbol{Q} \boldsymbol{x}[k]$$

Evaluating K_0

- Since *A* is convergent, *P* is positive definite
- We write

$$\mathbf{x}[k]^{\top} \mathbf{Q} \mathbf{x}[k] = -\mathbf{x}[k]^{\top} (\mathbf{A}^{\top} \mathbf{P} \mathbf{A} - \mathbf{P}) \mathbf{x}[k]$$
$$= \mathbf{x}[k]^{\top} \mathbf{P} \mathbf{x}[k] - \mathbf{x}[k+1]^{\top} \mathbf{P} \mathbf{x}[k+1]$$

• Summing both sides form k = 0 to $k = \infty$ and using the fact that $x[\infty] = 0$ because the matrix A is convergent, we obtain

$$K_0 = \boldsymbol{x}[0]^{\top} \boldsymbol{P} \boldsymbol{x}[0]$$

Evaluating K_1

Evaluate

$$K_1 = \sum_{k=0}^{\infty} k \boldsymbol{x}[k]^{\top} \boldsymbol{Q} \boldsymbol{x}[k]$$

subject to

$$\boldsymbol{x}[k+1] = \boldsymbol{A}\boldsymbol{x}[k], \quad \boldsymbol{x}[k_0] = \boldsymbol{x}_0$$

• Multiply both sides by *k* to get

$$k\mathbf{x}[k]^{\mathsf{T}}\mathbf{Q}\mathbf{x}[k] = k\mathbf{x}[k]^{\mathsf{T}}\mathbf{P}\mathbf{x}[k] - k\mathbf{x}[k+1]^{\mathsf{T}}\mathbf{P}\mathbf{x}[k+1]$$

• Summing the above from k = 0 to $k = \infty$ gives

$$K_1 = \boldsymbol{x}[1]^{\top} \boldsymbol{P} \boldsymbol{x}[1] - \boldsymbol{x}[2]^{\top} \boldsymbol{P} \boldsymbol{x}[2] + 2\boldsymbol{x}[2]^{\top} \boldsymbol{P} \boldsymbol{x}[2] - 2\boldsymbol{x}[3]^{\top} \boldsymbol{P} \boldsymbol{x}[3] + \sum_{k=1}^{\infty} \boldsymbol{x}[k]^{\top} \boldsymbol{P} \boldsymbol{x}[k] - \boldsymbol{x}[0]^{\top} \boldsymbol{P} \boldsymbol{x}[0]$$

$$K_1 = x[0]^{\top} (P_1 - P) x[0]$$

Evaluate the first term on the right-hand side to obtain

$$\sum_{k=0}^{\infty} \boldsymbol{x}[k]^{\top} \boldsymbol{P} \boldsymbol{x}[k] = \boldsymbol{x}[0]^{\top} \boldsymbol{P}_1 \boldsymbol{x}[0]$$

where P_1 satisfies

$$\boldsymbol{A}^{\top}\boldsymbol{P}_{1}\boldsymbol{A}-\boldsymbol{P}_{1}=-\boldsymbol{P}_{1}$$

Hence

$$K_1 = \boldsymbol{x}[0]^{\top} (\boldsymbol{P}_1 - \boldsymbol{P}) \, \boldsymbol{x}[0]$$

• Proceeding in a similar manner, we can find expressions for K_r , where r > 1