МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н. Э. БАУМАНА

Факультет информатики и систем управления Кафедра теоретической информатики и компьютерных технологий

Лабораторная работа №3	
по курсу «Теория игр и исследование о	пераций»

«Целочисленное линейное программирование. Метод ветвей и границ»

Выполнил: студент ИУ9-111

Выборнов А.И.

Руководитель:

Басараб М.А.

1. Цель работы

Постановка задачи целочисленного линейного программирования (ЦЛП). Решение задачи ЦЛП методом ветвей и границ (МВГ).

2. Постановка задачи

Найти целочисленный вектор $x = [x_1, x_2, x_3]^T$ как решение следующей задачи ЦЛП:

$$F = cx \rightarrow max,$$

$$Ax \leq b,$$

$$x = [x_1, x_2, x_3]^T,$$

$$x_1, x_2, x_3 \geq 0.$$

$$c = [2, 5, 3], A = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & 0 \\ 0 & 0.5 & 1 \end{pmatrix}, b^T = [6, 6, 2]$$

$$F = 2x_1 + 5x_2 + 3x_3 \to max,$$

$$\begin{cases} 2x_1 + x_2 + 2x_3 \le 6, \\ x_1 + 2x_2 \le 6, \\ 0.5x_2 + x_3 \le 2. \end{cases}$$

$$x_1, x_2, x_3 \in \mathbb{Z}^0_+.$$

3. Решение задачи ЦЛП методом полного перебора

Находим решение задачи ЛП симплекс-методом (приведено в главе 5):

$$\begin{cases} x_1 = 1, \\ x_2 = 2.5, \\ x_3 = 0.75. \end{cases}$$

$$max(F(x)) = 16.75$$

Все допустимые целочисленные решения: (0,1,0), (0,2,0), (0,3,0), (0,1,1), (0,2,1), (1,1,0), (1,2,0), (1,1,1), (1,2,1)

Полный перебор всех вариантов даёт два решения:

$$x = (1, 2, 1), x = (0, 3, 0),$$

 $F(x) = 15.$

4. Решение задачи ЦЛП методом ветвей и границ

Решим исходную задачу ЛП. Сменим знак ЦФ, введем фиктивные переменные x_4, x_5, x_6 :

$$F = -2x_1 - 5x_2 - 2x_3 \to min,$$

$$\begin{cases} x_4 = 6 - (2x_1 + x_2 + 2x_3), \\ x_5 = 6 - (x_1 + 2x_2), \\ x_6 = 2 - (0.5x_2 + x_3). \end{cases}$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \in \mathbb{Z}^0_+.$$

Исходная симплекс-таблица имеет вид:

	s_{i0}	x_1	x_2	x_3
x_4	6	2	1	2
x_5	6	1	2	0
x_6	2	0	0.5	1
F	0	-2	-5	-3

Конечная симплекс таблица:

	s_{i0}	x_4	x_5	x_6
x_1	1	0.5	0	0.5
x_2	2.5	-0.25	0.5	0
x_3	0.75	0.125	-0.25	0.75
F	16.75	0.125	1.75	2.75

Решение задачи ЛП симплекс-методом:

$$\begin{cases} x_1 = 1, \\ x_2 = 2.5, \\ x_3 = 0.75. \end{cases}$$

$$F = 16.75$$

Осуществим ветвление по переменной x_2 :

$$\begin{cases} x_2 >= 3 \\ x_2 <= 2 \end{cases}$$

4.1. Ветвь $x_2 \ge 3$

$$F = -2x_1 - 5x_2 - 2x_3 \to min,$$

$$\begin{cases} x_4 = 6 - (2x_1 + x_2 + 2x_3), \\ x_5 = 6 - (x_1 + 2x_2), \\ x_6 = 2 - (0.5x_2 + x_3), \\ x_7 = -3 - (-x2). \end{cases}$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \in Z_+^0$$

	s_{i0}	x_1	x_2	x_3
x_4	6	2	1	2
x_5	6	1	2	0
x_6	2	0	0.5	1
x_7	-3	0	-1	0
F	0	-2	-5	-3

Получили решение: $X_1 = 0, X_2 = 3, X_3 = 0.5, F = 16.5.$

Осуществим ветвление по переменной x_3 :

$$\begin{cases} x_3 = 0 \\ x_3 >= 1 \end{cases}$$

4.1.1. Ветвь $x_3 = 0$

$$F = -2x_1 - 5x_2 - 2x_3 \to min,$$

$$\begin{cases} x_4 = 6 - (2x_1 + x_2 + 2x_3), \\ x_5 = 6 - (x_1 + 2x_2), \\ x_6 = 2 - (0.5x_2 + x_3), \\ x_3 = 0. \end{cases}$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \in \mathbb{Z}_+^0.$$

Так как x_3 равно 0, то заменим эту переменную на 0, получим:

$$F = -2x_1 - 5x_2 \to min,$$

$$\begin{cases} x_4 = 6 - (2x_1 + x_2), \\ x_5 = 6 - (x_1 + 2x_2), \\ x_6 = 2 - (0.5x_2), \\ x_3 = 0. \end{cases}$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \in Z_+^0$$
.

	s_{i0}	x_1	x_2
x_4	6	2	1
x_5	6	1	2
x_6	2	0	0.5
F	0	-2	-5

Получили решение: $X_1 = 0, X_2 = 3, X_3 = 0, F = 15.$

4.1.2. Ветвь $x_3 >= 1$

$$F = -2x_1 - 5x_2 - 2x_3 \to min,$$

$$\begin{cases} x_4 = 6 - (2x_1 + x_2 + 2x_3), \\ x_5 = 6 - (x_1 + 2x_2), \\ x_6 = 2 - (0.5x_2 + x_3), \\ x_7 = -1 - (-x_3). \end{cases}$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \in \mathbb{Z}^0_+.$$

	s_{i0}	x_1	x_2	x_3
x_4	6	2	1	2
x_5	6	1	2	0
x_6	2	0	0.5	1
x_7	-1	0	0	-1
F	0	-2	-5	-3

Получили решение: $X_1 = 1, X_2 = 2, X_3 = 1, F = 15.$

4.2. Ветвь $x_2 \leq 2$

$$F = -2x_1 - 5x_2 - 2x_3 \rightarrow min$$

$$\begin{cases} x_4 = 6 - (2x_1 + x_2 + 2x_3), \\ x_5 = 6 - (x_1 + 2x_2), \\ x_6 = 2 - (0.5x_2 + x_3), \\ x_7 = 2 - x2. \end{cases}$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \in \mathbb{Z}^0_+.$$

	s_{i0}	x_1	x_2	x_3
x_4	6	2	1	2
x_5	6	1	2	0
x_6	2	0	0.5	1
x_7	2	0	1	0
\overline{F}	0	-2	-5	-3

Получили решение: $X_1 = 1, X_2 = 2, X_3 = 1, F = 15.$

Методов ветвей и границ получили два оптимальных решения:

$$x = (1, 2, 1), x = (0, 3, 0),$$

 $F(x) = 15.$

5. Решение исходной задачи ЛП

$$F = 2x_1 + 5x_2 + 3x_3 \to max,$$

$$\begin{cases} 2x_1 + x_2 + 2x_3 \le 6, \\ x_1 + 2x_2 \le 6, \\ 0.5x_2 + x_3 \le 2. \end{cases}$$

$$x_1, x_2, x_3 \ge 0.$$

Избавимся от неравенства - получим задачу в канонической форме:

$$F = 2x_1 + 5x_2 + 3x_3 \to max,$$

$$\begin{cases} 2x_1 + x_2 + 2x_3 + x_4 = 6, \\ x_1 + 2x_2 + x_5 = 6, \\ 0.5x_2 + x_3 + x_6 = 2. \end{cases}$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0.$$
(1)

Пусть x_4, x_5, x_6 — базисные переменные, x_1, x_2, x_3 — свободные переменные. Тогда имеем:

$$F = 2x_1 + 5x_2 + 3x_3 \to max,$$

$$\begin{cases} x_4 = 6 - (2x_1 + x_2 + 2x_3), \\ x_5 = 6 - (x_1 + 2x_2), \\ x_6 = 2 - (0.5x_2 + x_3). \end{cases}$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0.$$
(2)

Исходная симплекс-таблица записывается в виде:

	s_{i0}	x_1	x_2	x_3
x_4	6	2	1	2
x_5	6	1	2	0
x_6	2	0	0.5	1
F	0	-2	-5	-3

Так как в столбце свободных членов нет отрицательных элементов, то найдено

опорное решение: x = [0, 0, 0, 6, 6, 2], F(x) = 0. В строке F имеются отрицательные элементы, это означает что полученое решение не оптимально.

 x_2 — разрешающий столбец, так как значение в строке таблицы, соответствующей целевой функции по модулю максимально.

Найдем минимальное положительное отношение элемента свободных членов s_{i0} к соответствующем элементу в разрешающем столбце. Минимальное положительное отношение в строке x_5 , выберем её в качестве разрешающей.

Пересчитываем симплекс таблицу:

	s_{i0}	x_1	x_5	x_3
x_4	3	1.5	-0.5	2
x_2	3	0.5	0.5	0
x_6	0.5	-0.25	-0.25	1
F	15	0.5	2.5	-3

В строке F имеются отрицательные элементы, это означает что полученое решение не оптимально. В качестве разрешающего столбца выбираем x_3 и в качестве разрешающей строки выбираем x_6 (причины выбора аналогичны описанным выше).

Пересчитываем симплекс таблицу:

	s_{i0}	x_1	x_5	x_6
x_4	2	2	0	-2
x_2	3	0.5	0.5	0
x_3	0.5	-0.25	-0.25	1
F	16.5	-0.25	1.75	3

В строке F имеются отрицательные элементы, это означает что полученое решение не оптимально. В качестве разрешающего столбца выбираем x_1 и в качестве разрешающей строки выбираем x_4 (причины выбора аналогичны описанным выше).

Пересчитываем симплекс таблицу:

	s_{i0}	x_1	x_5	x_6
x_4	1	0.5	0	0.5
x_2	2.5	-0.25	0.5	0
x_3	0.75	0.125	-0.25	0.75
F	16.75	0.125	1.75	2.75

Среди значений индексной строки нет отрицательных. Поэтому таблица опре-

деляет оптимальное решение:

$$\begin{cases} x_1 = 1, \\ x_2 = 2.5, \\ x_3 = 0.75. \end{cases}$$

$$max(F(x)) = 16.75$$

Проверим полученное решение на допустимость:

$$\begin{cases} x_1 = 1, \\ x_2 = 2.5, \\ x_3 = 0.75. \\ x_4 = 6 - (2x_1 + x_2 + 2x_3) = 6 - (4.5 + 1.5) = 0, \\ x_5 = 6 - (x_1 + 2x_2) = 6 - (1 + 5) = 0, \\ x_6 = 2 - (0.5x_2 + x_3) = 2 - (1.25 + 0.75) = 0. \end{cases}$$

$$(3)$$

Решение допустимое, так как все переменные неотрицательны.