

Ring

Star

Ring

Star

► Graphs can be undirected or directed.

- Graphs can be undirected or directed.
- ▶ In a directed graph, or digraph, the edges have directions.

- Graphs can be undirected or directed.
- ▶ In a directed graph, or digraph, the edges have directions.

▶ It is possible to define a mixed graph with some edges undirected, others directed.

- Graphs can be undirected or directed.
- ▶ In a directed graph, or digraph, the edges have directions.

- ► It is possible to define a mixed graph with some edges undirected, others directed.
- ► For some purposes, we can replace an edge in an undirected graph by a pair of antiparallel directed edges

Visualizing binary relations.

- Visualizing binary relations.
 - ► Symmetric relations (e.g., "coauthored a paper with")

- Visualizing binary relations.
 - Symmetric relations (e.g., "coauthored a paper with")
 - ► Asymmetric relations (e.g., "inherits from")

- Visualizing binary relations.
 - Symmetric relations (e.g., "coauthored a paper with")
 - Asymmetric relations (e.g., "inherits from")
- City map

- Visualizing binary relations.
 - Symmetric relations (e.g., "coauthored a paper with")
 - Asymmetric relations (e.g., "inherits from")
- City map
- Wiring/plumbing networks in buildings

- Visualizing binary relations.
 - Symmetric relations (e.g., "coauthored a paper with")
 - Asymmetric relations (e.g., "inherits from")
- City map
- Wiring/plumbing networks in buildings
- Flight network

- Visualizing binary relations.
 - Symmetric relations (e.g., "coauthored a paper with")
 - Asymmetric relations (e.g., "inherits from")
- City map
- Wiring/plumbing networks in buildings
- Flight network
- The Internet

Loops and Multiedges

Loops and Multiedges

► A loop (sometimes called a self-loop) is an edge with both endpoints the same

Loops and Multiedges

► A loop (sometimes called a self-loop) is an edge with both endpoints the same

- ► Multiedges (also called multiple edges, or parallel edges)
 - ► A multiedge in an undirected graph is a pair of edges with the same endpoints.
 - ► A multiedge in a directed graph is a pair of edges with the same endpoints and the same direction.

Simple graphs

Simple graphs

► A simple graph is a graph that has no loops and no multiedges.

Simple graphs

- A simple graph is a graph that has no loops and no multiedges.
- ► Unless we state otherwise, we will assume that all graphs are simple.

We write

▶ G = (V, E) for the graph with vertex set V and edge collection E.

We write

- ▶ G = (V, E) for the graph with vertex set V and edge collection E.
- n for the number of vertices of a graph

We write

- ▶ G = (V, E) for the graph with vertex set V and edge collection E.
- n for the number of vertices of a graph
- ▶ *m* for the number of edges

Complete Graphs

Complete Graphs

► A complete graph is an undirected graph with an edge between every pair of vertices.

Complete Graph on 7 vertices

Complete Graphs

- ► A complete graph is an undirected graph with an edge between every pair of vertices.
- A complete graph on *n* vertices has $m = \binom{n}{2}$ edges

Complete Graph on 7 vertices (n = 7, m = 21)

If e = vw is an edge of a graph, we say:

If e = vw is an edge of a graph, we say:

▶ v (or w) is incident on e.

If e = vw is an edge of a graph, we say:

- v (or w) is incident on e.
- e is incident on v (or on w).

Some graph terminology

- ▶ v (or w) is incident on e.
- ightharpoonup e is incident on v (or on w).
- v (or w) an endpoint of e.

Some graph terminology

- ▶ v (or w) is incident on e.
- ightharpoonup e is incident on v (or on w).
- v (or w) an endpoint of e.
- v and w are adjacent (or neighbors)

Some graph terminology

If e = vw is an edge of a graph, we say:

- ▶ v (or w) is incident on e.
- \triangleright e is incident on v (or on w).
- v (or w) an endpoint of e.
- v and w are adjacent (or neighbors)

 \triangleright The degree of a vertex v is the number of edges incident on v.

If e = vw is an edge of a digraph, we say:

▶ *v* is the origin, or tail, of *e*.

- v is the origin, or tail, of e.
- w is the destination, or head, of e.

- v is the origin, or tail, of e.
- w is the destination, or head, of e.
- e is an outgoing edge of v.

- v is the origin, or tail, of e.
- w is the destination, or head, of e.
- e is an outgoing edge of v.
- e is an incoming edge of w.

If e = vw is an edge of a digraph, we say:

- v is the origin, or tail, of e.
- w is the destination, or head, of e.
- e is an outgoing edge of v.
- e is an incoming edge of w.

► The indegree of a vertex is the number of incoming edges.

- v is the origin, or tail, of e.
- w is the destination, or head, of e.
- e is an outgoing edge of v.
- e is an incoming edge of w.

- ▶ The indegree of a vertex is the number of incoming edges.
- ► The outdegree of a vertex is the number of outgoing edges.

1. In any graph

$$\sum_{v \in V(G)} \mathtt{degree}(v) = 2m$$

1. In any graph

$$\sum_{v \in V(G)} \mathsf{degree}(v) = 2m$$

2. In any directed graph

$$\sum_{v \in V(G)} \mathsf{indegree}(v) = m$$

1. In any graph

$$\sum_{v \in V(G)} \mathtt{degree}(v) = 2m$$

2. In any directed graph

$$\sum_{v \in V(G)} \mathsf{indegree}(v) = m$$

3. In any directed graph

$$\sum_{v \in V(G)} \mathtt{outdegree}(v) = m$$

Paths

ightharpoonup A path from vertex v to vertex w is a sequence of edges

$$v_0 v_1, v_1 v_2, \ldots, v_{k-1} v_k$$

- 1. $v_0 = v$
- 2. $v_k = w$

Paths

- A path from vertex v to vertex w is a sequence of edges $v_0v_1, v_1v_2, \ldots, v_{k-1}v_k$
 - 1. $v_0 = v$
 - 2. $v_k = w$
- ► The path is a simple path if
 - 3. The vertices v_0, v_1, \ldots, v_k are all distinct

Paths

- A path from vertex v to vertex w is a sequence of edges $v_0v_1, v_1v_2, \ldots, v_{k-1}v_k$
 - 1. $v_0 = v$
 - 2. $v_k = w$
- ► The path is a simple path if
 - 3. The vertices v_0, v_1, \ldots, v_k are all distinct

▶ In an undirected graph, a cycle is a set of edges

$$v_0v_1, v_1v_2, \dots, v_{k-2}v_{k-1}, v_{k-1}v_k$$

- 1. $v_0 = v_k$
- 2. $k \ge 3$

▶ In an undirected graph, a cycle is a set of edges

$$v_0v_1, v_1v_2, \dots, v_{k-2}v_{k-1}, v_{k-1}v_k$$

- 1. $v_0 = v_k$
- 2. $k \ge 3$
- The cycle is simple if
 - 3. v_0 , v_1 , ..., v_{k-1} are all distinct.
- ▶ k is called the length of the cycle.

▶ In an undirected graph, a cycle is a set of edges

$$v_0v_1, v_1v_2, \dots, v_{k-2}v_{k-1}, v_{k-1}v_k$$

- 1. $v_0 = v_k$
- 2. $k \ge 3$
- The cycle is simple if
 - 3. v_0 , v_1 , ..., v_{k-1} are all distinct.
- k is called the length of the cycle.
- A graph is acyclic if it has no simple cycles.

▶ In an undirected graph, a cycle is a set of edges

$$v_0v_1, v_1v_2, \dots, v_{k-2}v_{k-1}, v_{k-1}v_k$$

- 1. $v_0 = v_k$
- 2. $k \ge 3$
- The cycle is simple if
 - 3. v_0 , v_1 , ..., v_{k-1} are all distinct.
- ▶ *k* is called the length of the cycle.
- A graph is acyclic if it has no simple cycles.
- ▶ In a directed graph, the definition is similar, but we can omit the requirement that $k \ge 3$, and we can omit the word "simple" in the definition of acyclic.

Usually when we write a cycle we just list the vertices, since the edges are implicit:

$$v_0, v_1, \ldots, v_{k-1}, v_k$$

Usually when we write a cycle we just list the vertices, since the edges are implicit:

$$v_0, v_1, \ldots, v_{k-1}, v_k$$

Sometimes we omit the last vertex:

$$v_0, v_1, \ldots, v_{k-1}$$

Usually when we write a cycle we just list the vertices, since the edges are implicit:

$$v_0, v_1, \ldots, v_{k-1}, v_k$$

Sometimes we omit the last vertex:

Usually when we write a cycle we just list the vertices, since the edges are implicit:

$$v_0, v_1, \ldots, v_{k-1}, v_k$$

Sometimes we omit the last vertex:

So we can write: AB, BC, CD, DA

Usually when we write a cycle we just list the vertices, since the edges are implicit:

$$v_0, v_1, \ldots, v_{k-1}, v_k$$

Sometimes we omit the last vertex:

So we can write: *AB,BC,CD,DA* or *ABCDA*

Usually when we write a cycle we just list the vertices, since the edges are implicit:

$$v_0, v_1, \ldots, v_{k-1}, v_k$$

Sometimes we omit the last vertex:

So we can write: AB,BC,CD,DA or ABCDA or just ABCD

▶ A subgraph of G = (V, E) is a graph H = (V', E') such that $V' \subseteq V$ and $E' \subseteq E$

▶ A subgraph of G = (V, E) is a graph H = (V', E') such that $V' \subset V$ and $E' \subset E$

▶ H must be a valid graph. So every endpoint of an edge in E' must belong to V'.

▶ A subgraph of G = (V, E) is a graph H = (V', E') such that $V' \subset V$ and $E' \subset E$

- ► H must be a valid graph. So every endpoint of an edge in E' must belong to V'.
- ► A spanning subgraph of *G* is a subgraph that contains all vertices of *G*.

Connected Graphs

► An undirected graph is connected if there is a path between any pair of vertices.

Not connected

Connected Components

▶ If a graph *G* is not connected, a connected component of *G* is a maximal connected subgraph of *G*.

- ▶ If a graph *G* is not connected, a connected component of *G* is a maximal connected subgraph of *G*.
- ► Connected components can also be defined in terms of an equivalence relation, reachability, on the vertices of *G*.

- ▶ If a graph *G* is not connected, a connected component of *G* is a maximal connected subgraph of *G*.
- ► Connected components can also be defined in terms of an equivalence relation, reachability, on the vertices of *G*.
 - ightharpoonup Vertex w is reachable from v if there is a path from v to w.

- ▶ If a graph *G* is not connected, a connected component of *G* is a maximal connected subgraph of *G*.
- ► Connected components can also be defined in terms of an equivalence relation, reachability, on the vertices of *G*.
 - ightharpoonup Vertex w is reachable from v if there is a path from v to w.
 - ► This relation is an equivalence relation (reflexive, symmetric, transitive)

- ▶ If a graph *G* is not connected, a connected component of *G* is a maximal connected subgraph of *G*.
- ► Connected components can also be defined in terms of an equivalence relation, reachability, on the vertices of *G*.
 - \triangleright Vertex w is reachable from v if there is a path from v to w.
 - ► This relation is an equivalence relation (reflexive, symmetric, transitive)
 - ► The connected components are the equivalence classes of vertices, together with the edges connecting vertices in the equivalence class.

► A graph is acyclic if it has no simple cycles.

- ► A graph is acyclic if it has no simple cycles.
- A tree is a connected, acyclic graph.

- ► A graph is acyclic if it has no simple cycles.
- A tree is a connected, acyclic graph.

A tree

- ► A graph is acyclic if it has no simple cycles.
- A tree is a connected, acyclic graph.

A tree

Acyclic, but not connected (a forest)

- ► A graph is acyclic if it has no simple cycles.
- ► A tree is a connected, acyclic graph.

A tree

Acyclic, but not connected (a forest)

Connected, but not acyclic

1. Graph drawing

- 1. Graph drawing
- 2. Edge List

- 1. Graph drawing
- 2. Edge List
- 3. Adjacency matrix

- 1. Graph drawing
- 2. Edge List
- 3. Adjacency matrix
- 4. Adjacency list

- 1. Graph drawing
- 2. Edge List
- 3. Adjacency matrix
- 4. Adjacency list

1. Graph drawing

▶ Good for reasoning on paper, or for a GUI.

2. Edge List

- List of vertices, edges.
- Simple description for input, output.

$$V = (v_1, v_2, v_3, v_4)$$

$$E = (v_1v_2, v_1v_3, v_2v_3, v_3v_4)$$

3. Adjacency matrix

▶ Represent *G* with a matrix (2D array):

$$a_{i,j} = \begin{cases} 1 & \text{if } v_i v_j \text{ is an edge of } G \\ 0 & \text{otherwise} \end{cases}$$

- Space requirement = $\Theta(n^2)$
- Can modify to handle:
 - Directed graphs
 - Weighted graphs

	1	2	3	4
1	0	1	1	0
2	1	0	1	0
3	1	1	0	1
4	0	0	1	0

4. Adjacency list

- Vertices are stored in an array
- For each vertex, there is a pointer to a linked list describing its neighbors
- Space requirement = $\Theta(n+m)$
- Can modify to handle:
 - Directed graphs
 - Weighted graphs

Two basic approaches:

Two basic approaches:

► Depth-first search

Two basic approaches:

- Depth-first search
- Breadth-first search

Two basic approaches:

- Depth-first search
- Breadth-first search

Two basic approaches:

- Depth-first search
- Breadth-first search

Examples of applications of depth-first-search:

Testing whether a graph is connected

Two basic approaches:

- Depth-first search
- Breadth-first search

- Testing whether a graph is connected
- ▶ Computing a spanning forest of a graph G (i.e., a subgraph that is a forest and contains every vertex of G)

Two basic approaches:

- Depth-first search
- Breadth-first search

- Testing whether a graph is connected
- ▶ Computing a spanning forest of a graph G (i.e., a subgraph that is a forest and contains every vertex of G)
- Computing the connected components of G

Two basic approaches:

- Depth-first search
- Breadth-first search

- Testing whether a graph is connected
- ▶ Computing a spanning forest of a graph G (i.e., a subgraph that is a forest and contains every vertex of G)
- Computing the connected components of G
- Computing a path between two vertices v and w in a graph G (or reporting that no such path exists)

Two basic approaches:

- Depth-first search
- Breadth-first search

- Testing whether a graph is connected
- ► Computing a spanning forest of a graph *G* (i.e., a subgraph that is a forest and contains every vertex of *G*)
- Computing the connected components of G
- Computing a path between two vertices v and w in a graph G (or reporting that no such path exists)
- ► Computing a cycle in an undirected graph *G* (or reporting that *G* is acyclic)

CompSci 161—Fall 2018—© M. B. Dillencourt—University of California, Irvine

String/paint analogy

- String/paint analogy
- ▶ Depth-first search: Follow path as far as possible, back up when dead end is reached.

- String/paint analogy
- ▶ Depth-first search: Follow path as far as possible, back up when dead end is reached.

e.g., ABFGCDE HI KJ

Depth-first search, Breadth-first search

- String/paint analogy
- ▶ Depth-first search: Follow path as far as possible, back up when dead end is reached.

e.g., ABFGCDE HI KJ

▶ Breadth-first search: Visit all neighbors of start vertex, then their neighbors, then neighbors of neighbors, etc.

Depth-first search, Breadth-first search

- String/paint analogy
- ▶ Depth-first search: Follow path as far as possible, back up when dead end is reached.

e.g., ABFGCDE HI KJ

▶ Breadth-first search: Visit all neighbors of start vertex, then their neighbors, then neighbors of neighbors, etc.

e.g., A BCDE FG JH KI

▶ Builds a DFS-forest (sometimes called a DFS-tree)

- ▶ Builds a DFS-forest (sometimes called a DFS-tree)
- ► Two kinds of edges:

- ▶ Builds a DFS-forest (sometimes called a DFS-tree)
- Two kinds of edges:
 - ► tree edge, or discovery edge

- ▶ Builds a DFS-forest (sometimes called a DFS-tree)
- Two kinds of edges:
 - tree edge, or discovery edge
 - back edge

- Builds a DFS-forest (sometimes called a DFS-tree)
- Two kinds of edges:
 - tree edge, or discovery edge
 - back edge
- ▶ DFS-forest depends on choices of vertex ordering, ordering of neighbors about each vertex.

- Builds a DFS-forest (sometimes called a DFS-tree)
- Two kinds of edges:
 - tree edge, or discovery edge
 - back edge
- ▶ DFS-forest depends on choices of vertex ordering, ordering of neighbors about each vertex.
- Algorithms based on DFS return correct result for every result of these choices

Pseudocode for DFS in an undirected graph

Pseudocode for DFS in an undirected graph

Initially, each edge and each vertex is unexplored

Pseudocode for DFS in an undirected graph

Initially, each edge and each vertex is unexplored

▶ DFS(G,v) is called once per vertex

- ▶ DFS(G,v) is called once per vertex
- ► Each edge is examined twice (once in each direction)

- ▶ DFS(G,v) is called once per vertex
- ► Each edge is examined twice (once in each direction)
- ▶ Hence, total running time is O(n + m).

- ▶ DFS(G,v) is called once per vertex
- ► Each edge is examined twice (once in each direction)
- ▶ Hence, total running time is O(n + m).
- ▶ We may have to restart DFS multiple times to visit the entire graph.

- ▶ DFS(G,v) is called once per vertex
- ► Each edge is examined twice (once in each direction)
- ▶ Hence, total running time is O(n + m).
- We may have to restart DFS multiple times to visit the entire graph.
- ▶ Running time will still be O(n + m).

Simple application of depth-first search in undirected graphs

Simple application of depth-first search in undirected graphs

Input: A graph G

Simple application of depth-first search in undirected graphs

Input: A graph G

Output: Each vertex $v \in V(G)$ is assigned a label, L(v), such that two vertices are in the same connected component if and only if they have the same label.

Simple application of depth-first search in undirected graphs

Input: A graph G

Output: Each vertex $v \in V(G)$ is assigned a label, L(v), such that two vertices are in the same connected component if and only if they have the same label.

Example:

Simple application of depth-first search in undirected graphs

Input: A graph G

Output: Each vertex $v \in V(G)$ is assigned a label, L(v), such that two vertices are in the same connected component if and only if they have the same label.

Example:

Simple application of depth-first search in undirected graphs

Input: A graph G

Output: Each vertex $v \in V(G)$ is assigned a label, L(v), such that two vertices are in the same connected component if and only if they have the same label.

Example:

▶ Initially, each vertex label is null, and each edge is unexplored.

▶ Initially, each vertex label is null, and each edge is unexplored.

Top level:

▶ Initially, each vertex label is null, and each edge is unexplored.

Top level:

```
k = 0
for all vertices v in V(G):
   if v.label = null:
     k = k + 1
     DFSLabel(G,v,k)
```

▶ Initially, each vertex label is null, and each edge is unexplored.

Top level:

```
k = 0
for all vertices v in V(G):
   if v.label = null:
     k = k + 1
     DFSLabel(G,v,k)
```

Recursive Function to traverse and label the component:

▶ Initially, each vertex label is null, and each edge is unexplored.

Top level:

```
k = 0
for all vertices v in V(G):
   if v.label = null:
     k = k + 1
     DFSLabel(G,v,k)
```

Recursive Function to traverse and label the component:

▶ Initially, each vertex label is null, and each edge is unexplored.

Top level:

```
k = 0
for all vertices v in V(G):
   if v.label = null:
     k = k + 1
     DFSLabel(G,v,k)
```

Recursive Function to traverse and label the component:

Analysis: Runs in O(m+n) time.

One application of connected-component labeling: Image processing

One application of connected-component labeling: Image processing

Binary image (black pixels are "on", white pixels are "off")

One application of connected-component labeling: Image processing

Binary image (black pixels are "on", white pixels are "off")

Connected components of pixels in image that are "on"

Biconnected components, separation edges, separation vertices

Biconnected components, separation edges, separation vertices

(Material from [GT] Section 13.5. Read it!)

(Material from [GT] Section 13.5. Read it!) Let G be a connected graph.

(Material from [GT] Section 13.5. Read it!)

Let G be a connected graph.

► A separation edge is an edge whose removal causes *G* to become disconnected.

(Material from [GT] Section 13.5. Read it!)

Let G be a connected graph.

- ▶ A separation edge is an edge whose removal causes *G* to become disconnected.
- ► A separation vertex is a vertex whose removal causes *G* to become disconnected.

(Material from [GT] Section 13.5. Read it!)

Let G be a connected graph.

- ► A separation edge is an edge whose removal causes *G* to become disconnected.
- ▶ A separation vertex is a vertex whose removal causes *G* to become disconnected.
- ▶ G is biconnected (or 2-connected) if for any two vertices $u, v \in V(G)$, there are at least two disjoint paths between u and v (i.e., two different paths that have no edges or vertices in common except for u and v).

▶ Let *G* be a connected graph.

► Let *G* be a connected graph. A biconnected component (or bicomponent of *G* is a subgraph *G'* such that either:

- ▶ Let *G* be a connected graph. A biconnected component (or bicomponent of *G* is a subgraph *G'* such that either:
 - ► *G'* is biconnected, and adding any additional edges or vertices of *G* would force it to stop being biconnected; or

- ▶ Let *G* be a connected graph. A biconnected component (or bicomponent of *G* is a subgraph *G'* such that either:
 - ▶ G' is biconnected, and adding any additional edges or vertices of G would force it to stop being biconnected; or
 - ightharpoonup G' consists of a single separation edge and its two endpoints

Characterization of Biconnectivity

Lemma: Let G be a connected graph. The following are equivalent:

- 1. *G* is biconnected.
- 2. For any two vertices of G, there is a simple cycle containing them.
- 3. G does not have any separating vertices or separating edges.

Let R(x, y) be a binary relation on a set of objects C. R is an equivalence relation if it satisfies the following three properties:

Let R(x, y) be a binary relation on a set of objects C. R is an equivalence relation if it satisfies the following three properties:

1. Reflexive Property: R(x,x) is true for each x in C.

Let R(x, y) be a binary relation on a set of objects C. R is an equivalence relation if it satisfies the following three properties:

- 1. Reflexive Property: R(x,x) is true for each x in C.
- 2. Symmetric Property: R(x, y) = R(y, x) for each pair x and y in C.

Let R(x, y) be a binary relation on a set of objects C. R is an equivalence relation if it satisfies the following three properties:

- 1. Reflexive Property: R(x,x) is true for each x in C.
- 2. Symmetric Property: R(x,y) = R(y,x) for each pair x and y in C.
- 3. Transitive Property: If R(x, y) is true and R(y, z) is true, then R(x, z) is true, for every x, y, and z in C.

Let R(x, y) be a binary relation on a set of objects C. R is an equivalence relation if it satisfies the following three properties:

- 1. Reflexive Property: R(x,x) is true for each x in C.
- 2. Symmetric Property: R(x,y) = R(y,x) for each pair x and y in C.
- 3. Transitive Property: If R(x, y) is true and R(y, z) is true, then R(x, z) is true, for every x, y, and z in C.

The equivalence class of an object x is the set of all objects y such that R(x, y) is true.

Let R(x, y) be a binary relation on a set of objects C. R is an equivalence relation if it satisfies the following three properties:

- 1. Reflexive Property: R(x,x) is true for each x in C.
- 2. Symmetric Property: R(x,y) = R(y,x) for each pair x and y in C.
- 3. Transitive Property: If R(x, y) is true and R(y, z) is true, then R(x, z) is true, for every x, y, and z in C.

The equivalence class of an object x is the set of all objects y such that R(x, y) is true.

Every element of C is in exactly one equivalence class.

Define a link relation on the edges of a graph G

Define a link relation on the edges of a graph G

Two edges e and f in E(G) are linked if e = f or if G has a simple cycle containing e and f.

Define a link relation on the edges of a graph G

Two edges e and f in E(G) are linked if e = f or if G has a simple cycle containing e and f.

Lemma: Let G be a connected graph. Then

- 1. The link relation forms an equivalence relation on the edges of G.
- 2. A bicomponent is the subgraph induced by the edges of an equivalence class of linked edges.
- 3. Edge e is a separation edge if and only if it is in a single-element equivalence class
- 4. Vertex *v* is a separation vertex if and only if it has incident edges in two different equivalence classes.

CompSci 161—Fall 2018—© M.-B. Dillencourt—University of California, Irvine

Run DFS on G.

Run DFS on G. Define an auxiliary graph F as follows:

Run DFS on G. Define an auxiliary graph F as follows:

▶ The vertices of *F* are the edges of *G*

Run DFS on G. Define an auxiliary graph F as follows:

- ▶ The vertices of *F* are the edges of *G*
- For every back edge e in G, let f_1, \ldots, f_k be the discovery edges of G that form a cycle with e. F contains the edges $(e, f_1), \ldots, (e, f_k)$.

Run DFS on G. Define an auxiliary graph F as follows:

- ▶ The vertices of *F* are the edges of *G*
- For every back edge e in G, let f_1, \ldots, f_k be the discovery edges of G that form a cycle with e. F contains the edges $(e, f_1), \ldots, (e, f_k)$.

Output the connected components of F. Each of these is a equivalence class of the link relation, and hence corresponds to a bicomponent of G.

► The previous algorithm can require $\Omega(m \cdot n)$ time. We can improve this to O(m+n).

- ► The previous algorithm can require $\Omega(m \cdot n)$ time. We can improve this to O(m+n).
- ▶ Idea behind improved algorithm: We don't need to compute *F*. We only need the connected components of *F*. So we build a spanning tree for each connected component of *F* (a spanning forest of *F*).

2(3)

QC

4(10) QL

CompSci 161—Fall 2018—© M. B. Dillencourt—University of California, Irvine

1. Run DFS on G. Rank nodes of G according to order visited.

- 1. Run DFS on G. Rank nodes of G according to order visited.
- 2. Add discovery edges of G to F. Mark discovery edges unlinked

- 1. Run DFS on G. Rank nodes of G according to order visited.
- 2. Add discovery edges of G to F. Mark discovery edges unlinked
- 3. Process back edges e = (u, v) in order of rank of v. For each such e, let f_1, \ldots, f_k be the discovery edges of G that form a cycle with e. Add edges (e, f_k) , $(e, f_{k-1}), \ldots$, (e, f_j) to F, stopping at first linked edge. Mark edges f_k , f_{k-1}, \ldots, f_{j+1} linked

Pseudocode for Biconnected Component Algorithm

Pseudocode for Biconnected Component Algorithm

```
F \leftarrow an initially empty auxiliary graph
perform DFS traversal of G, starting at some vertex s
add each discovery edge f as a vertex in F, mark f "unlinked"
for each vertex v, in increasing rank order as visited in the
      DFS traversal
  for each back edge e=(u,v) with destination v
    add e as a vertex of the graph
    while u != v do
      Let f be the vertex in F corresponding to the
          discovery edge (parent(u),u)
      add the edge (e,f) to F
      if f is marked "unlinked" then
        mark f as "linked"
        u \leftarrow parent(u)
      else
        u \leftarrow v //exit while loop
compute the connected components of F
```


Note the sequencing:

1. Build DFS tree

Note the sequencing:

- Build DFS tree
- 2. Add discovery edges to F

Note the sequencing:

- 1. Build DFS tree
- 2. Add discovery edges to F
- 3. Add back edges to F.

Note the sequencing:

- 1. Build DFS tree
- 2. Add discovery edges to F
- 3. Add back edges to F. Back edges are processed in the order in which their destination nodes were visited in DFS traversal.

▶ DFS: O(m+n) time.

- ▶ DFS: O(m+n) time.
- ▶ Building the auxiliary graph F: O(m) time. Because...

- ▶ DFS: O(m+n) time.
- ▶ Building the auxiliary graph F: O(m) time. Because...
 - ► Each iteration of the while loop causes an edge to be added to *F*.
 - ▶ When edge (e, f) is added to F:

- ▶ DFS: O(m+n) time.
- ▶ Building the auxiliary graph F: O(m) time. Because...
 - ► Each iteration of the while loop causes an edge to be added to *F*.
 - When edge (e, f) is added to F:
 - ► Charge *f* if *f* is marked unlinked

- ▶ DFS: O(m+n) time.
- ▶ Building the auxiliary graph F: O(m) time. Because...
 - ► Each iteration of the while loop causes an edge to be added to *F*.
 - When edge (e, f) is added to F:
 - ► Charge *f* if *f* is marked unlinked
 - ► Charge *e* if *f* otherwise

- ▶ DFS: O(m+n) time.
- ▶ Building the auxiliary graph F: O(m) time. Because...
 - ▶ Each iteration of the while loop causes an edge to be added to *F*.
 - When edge (e, f) is added to F:
 - Charge f if f is marked unlinked
 - ► Charge *e* if *f* otherwise
 - Each edge of G gets charged at most once

- ▶ DFS: O(m+n) time.
- ▶ Building the auxiliary graph F: O(m) time. Because...
 - ► Each iteration of the while loop causes an edge to be added to F.
 - When edge (e, f) is added to F:
 - Charge f if f is marked unlinked
 - ► Charge *e* if *f* otherwise
 - ► Each edge of G gets charged at most once
- ▶ Connected component analysis of F: O(m) time.

- ▶ DFS: O(m+n) time.
- ▶ Building the auxiliary graph F: O(m) time. Because...
 - ▶ Each iteration of the while loop causes an edge to be added to *F*.
 - ▶ When edge (e, f) is added to F:
 - ► Charge f if f is marked unlinked
 - ► Charge *e* if *f* otherwise
 - Each edge of G gets charged at most once
- ▶ Connected component analysis of F: O(m) time.

So biconnected component analysis can be done in the same asymptotic time as connected component analysis.

As we have just seen, bicomponent analysis tells us:

As we have just seen, bicomponent analysis tells us:

▶ Whether *G* is 2-connected (i.e., whether any two vertices are joined by 2 disjoint paths).

As we have just seen, bicomponent analysis tells us:

- ▶ Whether *G* is 2-connected (i.e., whether any two vertices are joined by 2 disjoint paths).
- ▶ Whether *G* has a separating edge.

As we have just seen, bicomponent analysis tells us:

- ▶ Whether *G* is 2-connected (i.e., whether any two vertices are joined by 2 disjoint paths).
- Whether G has a separating edge.
- ▶ Whether *G* has a separating vertex.

As we have just seen, bicomponent analysis tells us:

- ▶ Whether *G* is 2-connected (i.e., whether any two vertices are joined by 2 disjoint paths).
- Whether G has a separating edge.
- ▶ Whether *G* has a separating vertex.

These questions can be generalized to any integer k:

As we have just seen, bicomponent analysis tells us:

- ▶ Whether *G* is 2-connected (i.e., whether any two vertices are joined by 2 disjoint paths).
- ▶ Whether *G* has a separating edge.
- ▶ Whether *G* has a separating vertex.

These questions can be generalized to any integer k:

Are any two vertices joined by k mutually disjoint paths?

As we have just seen, bicomponent analysis tells us:

- ▶ Whether *G* is 2-connected (i.e., whether any two vertices are joined by 2 disjoint paths).
- Whether G has a separating edge.
- ▶ Whether *G* has a separating vertex.

These questions can be generalized to any integer k:

- ▶ Are any two vertices joined by *k* mutually disjoint paths?
- ▶ Does G have a set of k − 1 edges whose removal makes G disconneted?

As we have just seen, bicomponent analysis tells us:

- ▶ Whether *G* is 2-connected (i.e., whether any two vertices are joined by 2 disjoint paths).
- Whether G has a separating edge.
- ▶ Whether *G* has a separating vertex.

These questions can be generalized to any integer k:

- Are any two vertices joined by k mutually disjoint paths?
- ▶ Does G have a set of k-1 edges whose removal makes G disconneted?
- ▶ Does G have a set of k − 1 vertices whose removal makes G disconneted?

These questions can be answered using network flow techniques.

Start vertex is "level 0"

- Start vertex is "level 0"
- "level i + 1" nodes are unexplored nodes that are neighbors of "level i" nodeS

- Start vertex is "level 0"
- "level i + 1" nodes are unexplored nodes that are neighbors of "level i" nodeS
- Process all nodes at one level before moving on to next level (special case: FIFO order)

Pseudocode for BFS in an undirected graph

Pseudocode for BFS in an undirected graph

```
def BFS(G.s):
  Set all vertices and edges to unexplored
  create an empty Queue Q[0]
  insert s into Q[0]
  i \leftarrow 0
  while Q[i] is not empty:
    create an empty Queue Q[i+1]
    for each vertex v in Q[i]:
      for all edges e incident on v:
        if edge e is unexplored:
           w \leftarrow opposite(v,e)
           if vertex w is unexplored:
             label e as a discovery edge
             insert w into Q[i+1]
           else:
             label e as a cross edge
    i \leftarrow i+1
```

A useful property of BFS

A useful property of BFS

A useful property of BFS

► The level number of vertex *v* in BFS-tree rooted at *s* is the smallest number of edges in a path from *s* to *v*.

▶ Body of the outer **for** is performed *n* times

- ▶ Body of the outer **for** is performed *n* times
- ▶ Body of the inner **for** is performed 2*m* times

- ▶ Body of the outer **for** is performed *n* times
- ▶ Body of the inner **for** is performed 2*m* times
- ▶ Hence, total running time is O(n + m).

- ▶ Body of the outer **for** is performed *n* times
- ▶ Body of the inner **for** is performed 2*m* times
- ▶ Hence, total running time is O(n + m).

As with DFS, we may have to restart BFS multiple times to visit the entire graph. Running time will still be O(n + m).

 Traversing a digraph (Brief mention of why DFS is more complicated in a directed graph than an undirected graph)

- Traversing a digraph (Brief mention of why DFS is more complicated in a directed graph than an undirected graph)
- Strong connectivity

- Traversing a digraph (Brief mention of why DFS is more complicated in a directed graph than an undirected graph)
- Strong connectivity
- Directed acyclic graphs/topological orderings

- Traversing a digraph (Brief mention of why DFS is more complicated in a directed graph than an undirected graph)
- Strong connectivity
- Directed acyclic graphs/topological orderings

► There are four kinds of edges (as opposed to only two in an undirected graph)

► There are four kinds of edges (as opposed to only two in an undirected graph)

► There are four kinds of edges (as opposed to only two in an undirected graph)

- ► There are four kinds of edges (as opposed to only two in an undirected graph)
 - ► tree edge, or discovery edge

- ► There are four kinds of edges (as opposed to only two in an undirected graph)
 - ► tree edge, or discovery edge
 - back edge: connects a vertex to an ancestor in the DFS tree

- There are four kinds of edges (as opposed to only two in an undirected graph)
 - ► tree edge, or discovery edge
 - back edge: connects a vertex to an ancestor in the DFS tree
 - forward edge: connects a vertex to a descendant in the DFS tree

- There are four kinds of edges (as opposed to only two in an undirected graph)
 - ► tree edge, or discovery edge
 - back edge: connects a vertex to an ancestor in the DFS tree
 - forward edge: connects a vertex to a descendant in the DFS tree
 - cross edge: connects a vertex to another vertex that is neither an ancestor nor a descendant in the DFS tree

Reachability

Reachability

► Vertex *v* is reachable from vertex *w* in *G* if there is a path from *w* to *v* in *G*.

Reachability

- ► Vertex *v* is reachable from vertex *w* in *G* if there is a path from *w* to *v* in *G*.
- ▶ In a digraph, the reachability relation is reflexive and transitive but not necessarily symmetric

▶ A directed graph *G* is strongly connected if there is a path from every vertex in *G* to every other vertex in *G*.

▶ A directed graph *G* is strongly connected if there is a path from every vertex in *G* to every other vertex in *G*.

Strongly Connected

▶ A directed graph *G* is strongly connected if there is a path from every vertex in *G* to every other vertex in *G*.

Strongly Connected

Not Strongly Connected

1. Pick a start vertex s in G.

- 1. Pick a start vertex s in G.
- 2. Run DFS in *G*, starting from *s*. If some vertex is not reachable from *s*, report NO and stop.

- 1. Pick a start vertex s in G.
- 2. Run DFS in *G*, starting from *s*. If some vertex is not reachable from *s*, report NO and stop.
- 3. Let G^R be G with the direction of all edges reversed.

- 1. Pick a start vertex s in G.
- 2. Run DFS in *G*, starting from *s*. If some vertex is not reachable from *s*, report NO and stop.
- 3. Let G^R be G with the direction of all edges reversed.
- 4. Run DFS in G^R , starting from s. If all vertices are reachable from s in G^R , report YES. Otherwise, report NO.

- 1. Pick a start vertex s in G.
- 2. Run DFS in *G*, starting from *s*. If some vertex is not reachable from *s*, report NO and stop.
- 3. Let G^R be G with the direction of all edges reversed.
- 4. Run DFS in G^R , starting from s. If all vertices are reachable from s in G^R , report YES. Otherwise, report NO.

Analysis: Runs in O(m+n) time.

- 1. Pick a start vertex s in G.
- 2. Run DFS in *G*, starting from *s*. If some vertex is not reachable from *s*, report NO and stop.
- 3. Let G^R be G with the direction of all edges reversed.
- 4. Run DFS in G^R , starting from s. If all vertices are reachable from s in G^R , report YES. Otherwise, report NO.

Analysis: Runs in O(m+n) time.

Correctness:

▶ If either step 2 or step 4 says NO, G is not strongly connected.

- 1. Pick a start vertex s in G.
- 2. Run DFS in *G*, starting from *s*. If some vertex is not reachable from *s*, report NO and stop.
- 3. Let G^R be G with the direction of all edges reversed.
- 4. Run DFS in G^R , starting from s. If all vertices are reachable from s in G^R , report YES. Otherwise, report NO.

Analysis: Runs in O(m+n) time.

- ▶ If either step 2 or step 4 says NO, *G* is not strongly connected.
- ▶ If both step 2 and step 4 say YES, G is strongly connected.

- 1. Pick a start vertex s in G.
- 2. Run DFS in *G*, starting from *s*. If some vertex is not reachable from *s*, report NO and stop.
- 3. Let G^R be G with the direction of all edges reversed.
- 4. Run DFS in G^R , starting from s. If all vertices are reachable from s in G^R , report YES. Otherwise, report NO.

Analysis: Runs in O(m+n) time.

- ▶ If either step 2 or step 4 says NO, *G* is not strongly connected.
- ▶ If both step 2 and step 4 say YES, *G* is strongly connected. **Proof:**

- 1. Pick a start vertex s in G.
- 2. Run DFS in *G*, starting from *s*. If some vertex is not reachable from *s*, report NO and stop.
- 3. Let G^R be G with the direction of all edges reversed.
- 4. Run DFS in G^R , starting from s. If all vertices are reachable from s in G^R , report YES. Otherwise, report NO.

Analysis: Runs in O(m+n) time.

- ▶ If either step 2 or step 4 says NO, *G* is not strongly connected.
- ▶ If both step 2 and step 4 say YES, G is strongly connected.
 Proof: Pick any two vertices x and y in G.

- 1. Pick a start vertex s in G.
- 2. Run DFS in *G*, starting from *s*. If some vertex is not reachable from *s*, report NO and stop.
- 3. Let G^R be G with the direction of all edges reversed.
- 4. Run DFS in G^R , starting from s. If all vertices are reachable from s in G^R , report YES. Otherwise, report NO.

Analysis: Runs in O(m+n) time.

- ▶ If either step 2 or step 4 says NO, *G* is not strongly connected.
- ▶ If both step 2 and step 4 say YES, G is strongly connected.
 Proof: Pick any two vertices x and y in G. There is a path from x to y because . . .

Algorithm for testing strong connectivity in a digraph

- 1. Pick a start vertex s in G.
- 2. Run DFS in *G*, starting from *s*. If some vertex is not reachable from *s*, report NO and stop.
- 3. Let G^R be G with the direction of all edges reversed.
- 4. Run DFS in G^R , starting from s. If all vertices are reachable from s in G^R , report YES. Otherwise, report NO.

Analysis: Runs in O(m+n) time.

Correctness:

- ▶ If either step 2 or step 4 says NO, *G* is not strongly connected.
- ▶ If both step 2 and step 4 say YES, G is strongly connected.
 Proof: Pick any two vertices x and y in G. There is a path from x to y because . . .
 - ▶ Since step 4 said YES, there is a path from x to s

Algorithm for testing strong connectivity in a digraph

- 1. Pick a start vertex s in G.
- 2. Run DFS in *G*, starting from *s*. If some vertex is not reachable from *s*, report NO and stop.
- 3. Let G^R be G with the direction of all edges reversed.
- 4. Run DFS in G^R , starting from s. If all vertices are reachable from s in G^R , report YES. Otherwise, report NO.

Analysis: Runs in O(m+n) time.

Correctness:

- ▶ If either step 2 or step 4 says NO, *G* is not strongly connected.
- ▶ If both step 2 and step 4 say YES, G is strongly connected.
 Proof: Pick any two vertices x and y in G. There is a path from x to y because . . .
 - ▶ Since step 4 said YES, there is a path from *x* to *s*
 - ▶ Since step 2 said YES, there is a path from s to y

Algorithm for testing strong connectivity in a digraph

- 1. Pick a start vertex s in G.
- 2. Run DFS in *G*, starting from *s*. If some vertex is not reachable from *s*, report NO and stop.
- 3. Let G^R be G with the direction of all edges reversed.
- 4. Run DFS in G^R , starting from s. If all vertices are reachable from s in G^R , report YES. Otherwise, report NO.

Analysis: Runs in O(m+n) time.

Correctness:

- ▶ If either step 2 or step 4 says NO, *G* is not strongly connected.
- ▶ If both step 2 and step 4 say YES, G is strongly connected.
 Proof: Pick any two vertices x and y in G. There is a path from x to y because . . .
 - ▶ Since step 4 said YES, there is a path from x to s
 - ▶ Since step 2 said YES, there is a path from s to y
 - ► Since reachability is transitive, there is a path from s to y

► A Directed Acylic Graph, or DAG, is a directed graph with no cycles.

- ► A Directed Acylic Graph, or DAG, is a directed graph with no cycles.
- ► Examples:

- ► A Directed Acylic Graph, or DAG, is a directed graph with no cycles.
- ► Examples:
 - Courses in a degree program, with edges representing prerequisites.

- A Directed Acylic Graph, or DAG, is a directed graph with no cycles.
- ► Examples:
 - Courses in a degree program, with edges representing prerequisites.
 - ▶ Classes in C++ or Java, with edges representing inheritance

- A Directed Acylic Graph, or DAG, is a directed graph with no cycles.
- ► Examples:
 - Courses in a degree program, with edges representing prerequisites.
 - ► Classes in C++ or Java, with edges representing inheritance
 - ► Tasks, with edges representing scheduling constraints

▶ A topological ordering of a digraph *G* is a numbering of the vertices such that every edge is directed from a lower-numbered vertex to a higher-numbered vertex.

▶ A topological ordering of a digraph *G* is a numbering of the vertices such that every edge is directed from a lower-numbered vertex to a higher-numbered vertex.

▶ A topological ordering of a digraph *G* is a numbering of the vertices such that every edge is directed from a lower-numbered vertex to a higher-numbered vertex.

Theorem: A directed graph has a topological ordering if and only if it is a DAG

Theorem: A directed graph has a topological ordering if and only if it is a DAG

Proof: see [GT], Section 13.4.4.

Theorem: A directed graph has a topological ordering if and only if it is a DAG

Proof: see [GT], Section 13.4.4.

Theorem: A directed graph has a topological ordering if and only if it is a DAG

Proof: see [GT], Section 13.4.4.

Proof Sketch:

▶ ⇒: easy

Theorem: A directed graph has a topological ordering if and only if it is a DAG

Proof: see [GT], Section 13.4.4.

Proof Sketch:

▶ ⇒: easy

 $\blacktriangleright \Leftarrow$: Assume *G* is a DAG.

Theorem: A directed graph has a topological ordering if and only if it is a DAG

Proof: see [GT], Section 13.4.4.

- ▶ ⇒: easy
- $\blacktriangleright \Leftarrow$: Assume *G* is a DAG.
 - G must have a vertex with indegree 0.

Theorem: A directed graph has a topological ordering if and only if it is a DAG

Proof: see [GT], Section 13.4.4.

- ▶ ⇒: easy
- $\blacktriangleright \Leftarrow$: Assume *G* is a DAG.
 - G must have a vertex with indegree 0.
 - ▶ Let vertex v₁ be such a vertex.

Theorem: A directed graph has a topological ordering if and only if it is a DAG

Proof: see [GT], Section 13.4.4.

- ▶ ⇒: easy
- $\blacktriangleright \Leftarrow$: Assume *G* is a DAG.
 - G must have a vertex with indegree 0.
 - ightharpoonup Let vertex v_1 be such a vertex.
 - ▶ Remove v_1 (and all incident edges) from G.

Theorem: A directed graph has a topological ordering if and only if it is a DAG

Proof: see [GT], Section 13.4.4.

- ▶ ⇒: easy
- $\blacktriangleright \Leftarrow$: Assume *G* is a DAG.
 - G must have a vertex with indegree 0.
 - ▶ Let vertex *v*₁ be such a vertex.
 - ▶ Remove v_1 (and all incident edges) from G.
 - Result is a smaller DAG.

► The processess of finding a topological ordering of a graph is called topological sorting

- ► The processess of finding a topological ordering of a graph is called topological sorting
- ► Algorithm either

- ► The processess of finding a topological ordering of a graph is called topological sorting
- Algorithm either
 - Finds a topological ordering, or

- ► The processess of finding a topological ordering of a graph is called topological sorting
- Algorithm either
 - Finds a topological ordering, or
 - Reports that graph is not a DAG

- ► The processess of finding a topological ordering of a graph is called topological sorting
- Algorithm either
 - Finds a topological ordering, or
 - Reports that graph is not a DAG
- Algorithm repeatedly applies the following steps:

- ► The processess of finding a topological ordering of a graph is called topological sorting
- Algorithm either
 - Finds a topological ordering, or
 - Reports that graph is not a DAG
- Algorithm repeatedly applies the following steps:
 - 1. Find a vertex v with indegree 0

- ► The processess of finding a topological ordering of a graph is called topological sorting
- Algorithm either
 - Finds a topological ordering, or
 - Reports that graph is not a DAG
- Algorithm repeatedly applies the following steps:
 - 1. Find a vertex v with indegree 0
 - 2. Assign v the next available label

- ► The processess of finding a topological ordering of a graph is called topological sorting
- Algorithm either
 - Finds a topological ordering, or
 - Reports that graph is not a DAG
- Algorithm repeatedly applies the following steps:
 - 1. Find a vertex v with indegree 0
 - 2. Assign v the next available label
 - 3. Delete v and all its outgoing edges

- ► The processess of finding a topological ordering of a graph is called topological sorting
- Algorithm either
 - Finds a topological ordering, or
 - Reports that graph is not a DAG
- Algorithm repeatedly applies the following steps:
 - 1. Find a vertex v with indegree 0
 - 2. Assign v the next available label
 - 3. Delete v and all its outgoing edges
- ▶ Runs in O(n + m) time using O(n) additional space

Topological Sorting Pseudocode

Topological Sorting Pseudocode

```
def TopologicalSort(G):
   L \leftarrow initially empty list of vertices
   for each vertex v of G:
      incounter(v) = indegree(v)
      if incounter(v) = 0: add v to L
   i \leftarrow 0
   while L is not empty:
      choose a vertex v in L and remove it from L.
      i \leftarrow i+1
      v.number \leftarrow i
      for each edge e in v.outEdges:
         w = opposite(v,e);
         incounter(w) = incounter(w)-1;
         if incounter(w) = 0: add w to L
   if i == n: print the vertices and their numbers
   else: print("G is not a DAG!!")
```

Topological Sorting Example

vertex	indegree
А	4
В	1
С	2
D	0
E	3
F	2
Н	0

$$L = [D, H]$$

vertex	indegree
А	3
В	1
С	1
D	0
Е	2
F	2
Н	0

$$L = [H]$$

vertex	indegree
А	2
В	0
С	1
D	0
E	2
F	1
Н	0

$$L = [B]$$

vertex	indegree
А	1
В	0
С	0
D	0
Е	2
F	1
Н	0

$$L = [C]$$

vertex	indegree
Α	0
В	0
С	0
D	0
Е	2
F	1
Н	0

$$L = [A]$$

vertex	indegree
А	0
В	0
С	0
D	0
Е	1
F	0
Н	0

$$L = [F]$$

vertex	indegree
А	0
В	0
С	0
D	0
E	0
F	0
Н	0

$$L = [E]$$

vertex	indegree
А	0
В	0
С	0
D	0
E	0
F	0
Н	0

$$L = []$$

vertex	indegree
А	0
В	0
С	0
D	0
E	0
F	0
Н	0

Topological sorting is non-deterministic.

Topological sorting is non-deterministic.

▶ At any step, there could be multiple vertices with indegree 0

Topological sorting is non-deterministic.

- ▶ At any step, there could be multiple vertices with indegree 0
- ► Any valid choice will lead to a valid topological ordering

Topological sorting is non-deterministic.

- ► At any step, there could be multiple vertices with indegree 0
- Any valid choice will lead to a valid topological ordering
- Note that this implies that a digraph may have many different topological orderings