Weights & Biases

COLORADO APP to demo Linear Regression

atieal

Exponential Function

sigmoid function

Rut
$$x \to \infty$$

$$C(x) = \begin{pmatrix} 1 \\ 1 + e^{-x} \end{pmatrix}$$

Rut $x \to \infty$

$$C(x) = \frac{1}{1 + e^{-x}} = \frac{1}{1$$

0-255 > 256 combnations

5.437513e+196 $5.4 \times 10^{196} = 0$

(0.0) (0.2) (0.4) (0.6) (0.8) (1.0) dead alive

If the neuron in the first hidden layer is ON, a positive weight (ex: $\omega_{II} = 2.07$) suggests that the neuron in the second hidden layer should also be ON

Similarly a negative weight (ex. $w_{71} = -1.84$) suggests that the neuron in the second layer should be off.

9/1 × W12 + 92/2 W12 +---