f	f'	A deriválhatósági tartomány
$x^n, n \in \mathbb{N}$	nx^{n-1}	\mathbb{R}
$x^m, n \in \mathbb{Z}_{-}^*$	mx^{m-1}	$\mathbb{R}\setminus\{0\}$
x^a , $a\in\mathbb{R}\setminus\mathbb{Z}$	$a \cdot x^{a-1}$	$(0, \infty)$
e^x	e^x	\mathbb{R}
a^x , $a > 0$, $a \neq 1$	$a^x \cdot \ln a$	\mathbb{R}
$\ln x$	$\frac{1}{x}$	$(0,\infty)$
$\log_a x, \ a > 0, \ a \neq 1$	$\frac{1}{x \ln a}$	$(0,\infty)$
$\sin x$	$\cos x$	\mathbb{R}
$\cos x$	$-\sin x$	\mathbb{R}
$\operatorname{tg} x$	$\frac{1}{\cos^2 x} = 1 + tg^2 x$	$\mathbb{R} \setminus \left\{ (2k+1)\frac{\pi}{2} \middle \ k \in \mathbb{Z} \right\}$
$\operatorname{ctg} x$	$\frac{-1}{\sin^2 x} = -1 - \operatorname{ctg}^2 x$	$\mathbb{R}\setminus\left\{k\pi \ k\in\mathbb{Z}\right\}$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$	(-1, 1)
$\arccos x$	$ \frac{1}{\sqrt{1-x^2}} $ $ \frac{-1}{\sqrt{1-x^2}} $ $ \frac{1}{\sqrt{1-x^2}} $	(-1, 1)
$\operatorname{arctg} x$	$ \begin{array}{r} \frac{1}{1+x^2} \\ -1 \end{array} $	\mathbb{R}
$\operatorname{arcctg} x$	$\frac{-1}{1+x^2}$	\mathbb{R}

(f+g)' = f' + g'		
$(f \cdot g)' = f' \cdot g + f \cdot g'$		
$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2} \qquad \left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$		
$(f(g(x)))' = f'(g(x)) \cdot g'(x)$		
$(f\cdot g)^{(n)} = \sum_{k=1}^n C_n^k \cdot f^{(n-k)} \cdot g^{(k)}$		
$\left(f(x)^{g(x)}\right)' = g(x) \cdot f(x)^{g(x)-1} \cdot f'(x) + f(x)^{g(x)} \cdot \ln f(x) \cdot g'(x)$		