Package 'stat.extend'

March 25, 2020

Type Package							
Title Add function	s for distributions in the stats package						
Version 0.1.0							
Date 9 January 2020 Author Ben O'Neill [aut], Neal Fultz [ctb, cre] Maintainer Neal Fultz <nfultz@gmail.com> Description This package adds a HDR function for dealing with probability distributions in the stats package License MIT + file LICENSE</nfultz@gmail.com>							
						Encoding UTF-8	LICENSE
						LazyData true	45
Imports matrixSta							
RoxygenNote 7.0.	<u> </u>						
R topics doci	imented:						
HDR							
Index	6						
HDR	Highest density region (HDR)						
Description							
HDR.xxxx ret	urns the highest density region (HDR) for a chosen distribution.						
Usage							
HDR.norm(cover.pr	ob,						

mean = 0, sd = 1,

gradtol = 1e-10,
steptol = 1e-10,

```
iterlim = 100
)
HDR.lnorm(
 cover.prob,
 meanlog = 0,
 sdlog = 1,
 gradtol = 1e-10,
  steptol = 1e-10,
  iterlim = 100
)
HDR.t(cover.prob, df, ncp = 0, gradtol = 1e-10, steptol = 1e-10, iterlim = 100)
HDR.cauchy(
  cover.prob,
  location = 0,
 scale = 1,
 gradtol = 1e-10,
 steptol = 1e-10,
 iterlim = 100
)
HDR.f(
  cover.prob,
  df1,
  df2,
  ncp = 0,
 gradtol = 1e-10,
 steptol = 1e-10,
  iterlim = 100
)
HDR.beta(
 cover.prob,
  shape1,
  shape2,
  ncp = 0,
  gradtol = 1e-10,
  steptol = 1e-10,
  iterlim = 100
)
HDR.chisq(
  cover.prob,
  df,
 ncp = 0,
 gradtol = 1e-10,
  steptol = 1e-10,
  iterlim = 100
```

```
HDR.gamma(
 cover.prob,
 shape,
 rate = 1,
 scale = 1/rate,
 gradtol = 1e-10,
 steptol = 1e-10,
 iterlim = 100
HDR.weibull(
 cover.prob,
 shape,
 scale = 1,
 gradtol = 1e-10,
 steptol = 1e-10,
 iterlim = 100
HDR.exp(cover.prob, rate, gradtol = 1e-10, steptol = 1e-10, iterlim = 100)
HDR.unif(
 cover.prob,
 min = 0,
 max = 1,
 gradtol = 1e-10,
 steptol = 1e-10,
 iterlim = 100
HDR.hyper(cover.prob, m, n, k, gradtol = 1e-10, steptol = 1e-10, iterlim = 100)
HDR.geom(cover.prob, prob, gradtol = 1e-10, steptol = 1e-10, iterlim = 100)
HDR.binom(
 cover.prob,
 size,
 prob,
 gradtol = 1e-10,
 steptol = 1e-10,
 iterlim = 100
HDR.pois(cover.prob, lambda, gradtol = 1e-10, steptol = 1e-10, iterlim = 100)
HDR.nbinom(
 cover.prob,
 size,
 prob,
 mu,
 gradtol = 1e-10,
  steptol = 1e-10,
```

```
iterlim = 100
)
```

Arguments

cover.prob	The probability coverage for the HDR (scalar between zero and one). The significance level for the HDR i is 1-cover.prob.
gradtol	Parameter for the nlm optimisation - a positive scalar giving the tolerance at which the scaled gradient is considered close enough to zero to terminate the algorithm (see [nlm doccumentation](https://stat.ethz.ch/R-manual/R-patched/library/stats/html/nlm.h
steptol	Parameter for the nlm optimisation - a positive scalar providing the minimum allowable relative step length (see [nlm doccumentation](https://stat.ethz.ch/R-manual/R-patched/library/stats/html/nlm.html)).
iterlim	Parameter for the nlm optimisation - a positive integer specifying the maximum number of iterations to be performed before the program is terminated (see [nlm doccumentation](https://stat.ethz.ch/R-manual/R-patched/library/stats/html/nlm.html)).
shape1, shape	e2, ncp, location, scale, df, rate, df1, df2, meanlog, sdlog, mean, sd, min Distribution parameters.

Details

This function computes the highest density region (HDR) for a univariate distribution in the stats package. The functions for the HDR for different distributions are named in the form HDR.xxxx where the xxxx refers to the distribution (e.g., HDR.chisq, HDR.gamma, HDR.norm, etc.). The user can use any univariate distribution in the stats package, and the function accepts parameters from the specified distribution (see table below). The output of the function is an interval of classes hdr and interval giving the highest density region and some related information pertaining to the distribution and the computation of the HDR (for information on intervals, see the sets package). If the input distribution is continuous then the HDR is a real interval, and if the input distribution discrete then the HDR is a discrete interval. For non-trivial cases the computation is done by optimisation using the nlm function.

HDR.beta	shape1	shape2	ncp
HDR.cauchy	location	scale	
HDR.chisq	df	ncp	
HDR.exp	rate		
HDR.f	df1	df2	ncp
HDR.gamma	shape	rate	scale
HDR.lnorm	meanlog	sdlog	
HDR.norm	mean	sd	
HDR.t	df	ncp	
HDR.unif	min	max	
HDR.weibull	shape	scale	
HDR.binom	size	prob	
HDR.geom	prob		
HDR.hyper	m	n	k
HDR.nbinom	size	prob	mu
HDR.pois	lambda		

The table above shows the parameters in each of the distributions. Some have default values, but most need to be specified. (For the gamma distribution you should specify either the rate or

scale but not both.)

Value

An interval object with classes $\verb|hdr|$ and $\verb|interval|$ containing the highest density region and related information.

Examples

HDR.norm(.05)

Index

HDR, 1