MATH 371 - Nonlinear Optimization

Justin Overstreet, Austin Spurlin, and Jonas Smith Spring 2020

a) Calculus:

$$f(x,y) = 4x^{2} - 4xy + 2y^{2}$$

$$f_{x} = 8x - 4y$$

$$f_{y} = 4y - 4x$$

$$\hat{\nabla}f = \langle 8x - 4y, 4y - 4x \rangle$$

$$\begin{cases} 8x - 4y = 0 \\ 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 8x - 4y = 0 \\ 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 8x - 4y = 0 \\ 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 8x - 4y - 4x = 0 \\ 6x - 4y = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \\ 6x - 4y = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \\ 6x - 4y = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \\ 6x - 4y = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \\ 6x - 4y = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \\ 6x - 4y = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \\ 6x - 4y = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \\ 6x - 4y = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \\ 6x - 4y = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \\ 6x - 4y = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \\ 6x - 4y = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \\ 6x - 4y = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \\ 6x - 4y = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4y - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x - 4x - 4x = 0 \end{cases}$$

$$\begin{cases} 6x -$$

Steepest Descent:

$$f(x,y) = 4x^2 - 4xy + 2y^2$$
 $X_{k+1} = x_k + 3_k \nabla f_{x_k}$

$$X_{k+1} = x_k + \partial_k \nabla f / x_k$$

k	х	f(X)	grad(X)	lambda
0	<1, 1>	2	<4, 0>	1: -0.125
1	<0.5, 1>	1	<0, 2>	1: -0.25
2	<0.5, 0.5>	0.5	<2, 0>	1: -0.125
3	<0.25, 0.5>	0.25	<0, 1>	1: -0.25
4	<0.25, 0.25>	0.125	<1, 0>	1: -0.125
5	<0.125, 0.25>	0.0625	<0, 0.5>	1: -0.25
6	<0.125, 0.125>	0.03125	<0.5, 0>	1: -0.125
7	<0.0625, 0.125>	0.015625	<0, 0.25>	1: -0.25
8	<0.0625, 0.0625>	0.0078125	<0.25, 0>	1: -0.125
9	<0.03125, 0.0625>	0.00390625	<0, 0.125>	1: -0.25
10	<0.03125, 0.03125>	0.001953125	<0.125, 0>	1: -0.125

Newton - Raphson:

$$f(x,y) = 4x^{2} - 4xy + 2y^{2}$$

$$\vec{\nabla}f = \langle 8x - 4y, 4y - 4x \rangle$$

$$X_{k+1} = X_{k} - (H|_{X_{k}})^{-1} \vec{\nabla}f|_{X_{k}}$$

k	Х	f(X)	grad(X)	
0 1 2	<1, 1><0, 0><0, 0>	2 0 0	<4, 0><0, 0><0, 0>	

$$g(x,y) = -xy(x-2)(y+3)$$

$$\vec{\nabla}_{q} = (-y(y+3)(2x-2), -x(x-2)(2y+3))$$

$$f_{xx} = -2y(y+3)$$

 $f_{yy} = -2x(x-2)$
 $f_{xy} = -(2x-2)(2y+3)$

$$\begin{cases} -y(y+3)(2x-2) = 0 \\ -x(x-2)(2y+3) = 0 \end{cases}$$

Point	$f_{xx}f_{yy}-f_{xy}^2$	Classification
(0,0)	0.0-62 = -36	Saddle Point
(2,0)	0 0 - (-6)2 = -36	Saddle Point
(0,-3)	0.0 - (-6)2 = -36	Saddle Point
(2,-3)	0.0-62 = -36	Saddle Point
(1, -3/2)	9/2 · 2 - 0" = 9	Relative Minimum

Steepest Descent:

$$g(x,y) = -xy(x-2)(y+3)$$

$$\vec{\nabla}_{g} = (-y(y+3)(2x-2), -x(x-2)(2y+3))$$

k	х	f(X)	grad(X)	lambda
0 1 2 3 4 5	<pre><0.5, 0.5> <0.0625, -0.25> <1.1582, -0.50732> <0.95814, -1.47516> <1.00522, -1.48756> <0.99817, -1.49502></pre>	1.3125 -0.08325195 -1.23294423 -2.24544128 -2.24978385 -2.24996772	<1.75, 3> <-1.28906, 0.30273> <0.40013, 1.93566> <-0.18832, 0.0496> <0.02349, 0.02489> <-0.00822, 0.00996>	1: -0.25 1: -0.85 1: -0.5 1: -0.25 1: -0.3
6 7 8 9 10	<pre><1.00105, -1.49851> <0.99987, -1.49925> <1.00013, -1.49993> <0.99998, -1.49996> <1.00001, -1.49999></pre>	-2.24999529 -2.2499994 -2.24999995 -2.25 -2.25	<pre><0.00473, 0.00299> <-0.00059, 0.00149> <0.00061, 0.00015> <-8E-05, 7E-05> <3E-05, 3E-05></pre>	1: -0.25 1: -0.45 1: -0.25 1: -0.3 1: -0.3

Newton-Raphson:

$$g(x,y) = -xy(x-2)(y+3)$$

$$\vec{\nabla}_{g} = (-y(y+3)(2x-2), -x(x-2)(2y+3))$$

$$H = \begin{bmatrix} -2y(y+3) & -(2x-2)(2y+3) \\ -(2x-2)(2y+3) & -2x(x-2) \end{bmatrix}$$

$$X_{k+1} = X_k - (H|_{X_k})^{-1} \overline{\mathcal{V}}_g|_{X_k}$$

k	Х	f(X)	grad(X)
0	<1, 1>	4	<0, 5>
1	<1, -1.5>	-2.25	<0, 0>
2	<1, -1.5>	-2.25	<0, 0>

$$h(x,y) = (1-y)^{2} + 100(x-y^{2})^{2}$$

$$\nabla h = \langle 2\omega(x-y^{2})_{y} - 2(1-y) - 400y(x-y^{2}) \rangle$$

$$f_{xx} = 200$$

 $f_{yy} = 2 - 400 (x - 3y^2)$
 $f_{xy} = -400y$

$$\begin{cases} 2\infty(x-y^2) = 0 \\ -2(1-y) - 400y(x-y^2) = 0 \end{cases}$$

Point
$$f_{xx}f_{yy} - f_{xy}^2$$
 Classification
(1,1) $200 \cdot 802 - (-400)^2 = 400$ Relative Minimum

$$\begin{bmatrix}
0.9 \\
0.9
\end{bmatrix} + 3 \begin{bmatrix}
18 \\
-32.6
\end{bmatrix}$$

$$0.9 + 183, 0.9 - 32.63$$

Steepest Descent:

$$h(x,y) = (1-y)^2 + 100(x-y^2)^2$$

$$X_{k+1} = x_k + \partial_k \nabla h \Big|_{X_k}$$

$$\vec{\nabla} h = \langle 2\omega(x-y^2) / - 2(1-y) - 400y(x-y^2) \rangle$$

k	х	f(X)	grad(X)	lambda
0 1 2 3 4 5	<1.1, 1.1> <1.11914, 1.05772> <1.11994, 1.05778> <1.11896, 1.05763> <1.11886, 1.05769> <1.11877, 1.05755>	1.22 0.00334525 0.00334024 0.00333527 0.0033303 0.00332532	<-22, 48.6> <0.07453, -0.04222> <0.02963, 0.05286> <0.07418, -0.04164> <0.02972, 0.05252> <0.07431, -0.04207>	1: -0.00087 1: -0.00137 1: -0.00271 1: -0.00137 1: -0.00274 1: -0.00137
6	<1.11867, 1.0576>	0.00332034	<0.02956, 0.05267>	1: -0.00271
7	<1.11859, 1.05746>	0.00331539	<0.07392, -0.04142>	1: -0.00138
8	<1.11849, 1.05752>	0.00331045	<0.02934, 0.05298>	1: -0.00267
9	<1.11841, 1.05738>	0.00330555	<0.0735, -0.04069>	1: -0.00139
10	<1.11831, 1.05743>	0.00330066	<0.02915, 0.05322>	1: -0.00264

Newton-Raphson: $h(x, y) = (1-y)^2 + 100(x-y^2)^2$

$$\vec{\nabla} h = \langle 200(x-y^2) / - 2(1-y) - 400y(x-y^2) \rangle$$

$$X_{k+1} = X_k - (H|_{X_k})^{-1} \overline{\mathcal{D}}_h|_{X_k}$$

k	х	f(X)	grad(X)	
0 1 2 3	<0, 0> <0, 1> <1, 1> <1, 1>	1 100 0	<0, -2> <-200, 400> <0, 0> <0, 0>	

For problem three we used this script to find the critical points and maximum and minimum values of g(x,y) = sin(x) + cos(x) + sin(y) - cos(y) on the region $[0,2\pi] \times [0,2\pi]$ of the (x,y)-plane.

$g(x,y) = \sin(x) + \cos(x) + \sin(y) - \cos(y)$			
Points	Values	Classification	
$\frac{5\pi}{4}, \frac{3\pi}{4}$	0	saddle point	
$\left[\begin{array}{c} \frac{5\pi}{4}, \frac{7\pi}{4} \end{array}\right]$	$-2\sqrt{2}$	rel. min.	
$\frac{\pi}{4}, \frac{3\pi}{4}$	$2\sqrt{2}$	rel. max.	
$\left[\frac{\pi}{4}, \frac{7\pi}{4}\right]$	0	saddle point	

For problem three we used this script to find the critical points and maximum and minimum values of g(x,y) = sin(x) + cos(x) + sin(y) - cos(y) on the region $[0,2\pi] \times [0,2\pi]$ of the (x,y)-plane.

For problem five we used this script, considering the functions...

$$\begin{array}{rcl} f(x,y,z) & = & xyz \\ g(x,y,z) & = & x^2 + y^2 + z^2 - 12 \\ h(x,y,z) & = & x + y + z - 4 \end{array}$$

(A) we found the Lagrange multipliers after six iterations giving...

Lagrange Multipliers				
Variable	Approximate	Exact		
x	2.38742588672	$\frac{\sqrt{10}}{3} + \frac{4}{3}$		
y	2.38742588672	$\frac{\sqrt{10}}{3} + \frac{4}{3}$		
z	-0.7748517734	$\frac{4}{3} - \frac{2\sqrt{10}}{3}$		
λ	1.1937129433	$\frac{\sqrt{10}}{6} + \frac{2}{3}$		
$\mid \mu \mid$	-3.8499011822	$\frac{-22}{9} - \frac{4\sqrt{10}}{9}$		

(B) using the Newton-Rhapson we got...

Newton-Raphson values		
Type	Value	
Min. Value	0.268353822346948	
Max. Value	-4.41650197049510	