Probability

- **Sample Space**: The set of all possible outcomes of a random experiment. It is denoted by the symbol S.
- **Sample points**: Elements of the sample space.
- **Event**: A subset of the sample space.
- Impossible Event: The empty set.
- **Sure Event**: The whole sample space.
- Complementary event or "not event": The set "S" or S A.
- The event A or B: The set $A \cup B$.
- The event A and B: The set $A \cap B$.
- The event A but not B: A -B.
- Mutually exclusive events: A and B are mutually exclusive if A \cap B = ϕ .
- Exhaustive and Mutually exclusive events: Events E_1 , E_2 ,....., E_n are mutually exclusive and exhaustive if $E_1 \cup E_2 \cup \cup E_n = S$ and $E_i \cap E_j = \phi$ for all $i \neq j$.
- **Exiomatic approach to probability**: To assign probabilities to various events, some axioms or rules have been described.

Let S be the sample space of a random experiment. The probability P is a real values function whose domain is the power set of S and range is the interval [0, 1] satisfying the following axioms:

- (a) For any event E, $P(E) \ge 0$
- (b) P(S) = 1
- (c) If E and F are mutually exclusive event, then $P(E \cup F) = P(E) + P(F)$

If E_1, E_2, E_3 are n mutually exclusive events, then $P\left(\bigcup_{i=1}^n E_i\right) = \sum_{i=1}^n P\left(E_i\right)$

Probability of an event in terms of the probabilities of the same points

(outcomes): Let S be the sample space containing n exhaustive outcomes

$$W_1, W_2, W_3, \dots, W_n$$
 i.e., $S = (W_1, W_2, W_3, \dots, W_n)$

Now from the axiomatic definition of the probability:

(a)
$$0 \le P(W_i) \le 1$$
, for each $W_i \in S$.

(b)
$$P(W_1) + P(W_2) + \dots + P(W_3) = P(S) = 1$$

- (c) For any event A, P(A) = $\sum \mathrm{P}\left(\mathrm{W}_{i}
 ight)$, $\mathrm{W}_{i}\in\mathrm{A}$
 - Equally likely outcomes: All outcomes with equal probability.
 - Classical definition of the probability of an event: For a finite sample space with equally likely outcome, probability of an event A.

$$P(A) = \frac{n(A)}{n(S)}$$

where n(A) = Number of elements in the set A. and n(S) = Number of elements in set S.

- If A is any event, then P(not A) = 1 P(A) \Rightarrow $P\left(\overline{A}\right) = 1 P(A) \Rightarrow$ P(A') = 1 P(A)
- The conditional probability of an event E, given the occurrence of the event F is given by $P(E|F) = \frac{P(E \cap F)}{P(F)}$, $P(F) \neq 0$ $0 \leq P(E|F) \leq I$,
- P(E'|F) = I P(E|F)• $P((E \cup F)|G) = P(E|G) + P(F|G) - P((E \cap F)|G)$ • $P(E \cap F) = P(E)P(E|F), P(E) \neq 0$ • $P(E \cap F) = P(F)P(E|F), P(F) \neq 0$
- $P(E \cap F) = P(F)P(E|F), P(F) \neq 0$ $P(E \cap F) = P(E)P(F)$ $P(E|F) = P(E), P(F) \neq 0$ $P(F|E) = P(F), P(E) \neq 0$

Theorem of total probability:

Let $\{E_1, E_2, ..., E_n\}$ be a partition of a sample space and suppose that each of $E_1, E_2, ..., E_n$ has nonzero probability. Let A be any event associated with S, then

$$P(A) = P(E_1)P(A | E_1) + P(E_2) + P(A | E_2) + \dots + P(E_n)P(A | E_n)$$

- Bayes' theorem: If $E_1, E_2, ..., E_n$ are events which constitute a partition of sample space S, i.e. $E_1, E_2, ..., E_n$ are pairwise disjoint and $E_14, E_24, ..., 4E_n = S$ and A be any event with non-zero probability, then, $P\left(E_i \mid A\right) = \frac{P(E_i) P(A \mid E_i)}{\sum\limits_{i=1}^n P(E_i) P(A \mid E_i)}$
- **Random variable**: A random variable is a real valued function whose domain is the sample space of a random experiment.
- **Probability distribution**: The probability distribution of a random variable X is the system of numbers

$$X : x_1 x_2 \dots x_n$$

$$P(X)$$
: p_1 p_2 p_n

Where,
$$p_i > o$$
, $\sum_{i=1}^{n} p_i = 1$, $i = 1, 2, ..., n$

- **Mean of a probability distribution**: Let X be a random variable whose possible values $x_1, x_2, x_3, \ldots, x_n$ occur with probabilities $p_1, p_2, p_3, \ldots, p_n$ respectively. The mean of X, denoted by μ is the number $\sum_{i=1}^n x_i p_i$. The mean of a random variable X is also called the expectation of X, denoted by E (X).
- Variance: Let X be a random variable whose possible values $x_1, x_2, x_3, \dots, x_n$ occur with probabilities $p(x_1), p(x_2), \dots, p(x_n)$ respectively. Let $\mu = E(X)$ be the mean of X. The variance of X, denoted by Var (X) or σ_x^2 is defined as x^2

$$Var(X) = \sum_{i=1}^{n} (x_i \mu)^2 p(x_i)$$
 or equivalently $\sigma_x^2 = E(X - \mu)^2$. The non-

$$Var\left(X\right) = \sum_{i=1}^{n} (\mathbf{x}_{i} \ \boldsymbol{\mu})^{2} \quad p(\mathbf{x}_{i}) \text{ or equivalently } \quad \sigma_{\mathbf{x}}^{2} = E\left(X - \boldsymbol{\mu}\right)^{2}. \text{ The non-negative number, } \sum_{i=1}^{n} (\mathbf{x}_{i} \ \boldsymbol{\mu})^{2} \ p(\mathbf{x}_{i}) \text{ is called the standard}$$

deviation of the random variable X.

$$Var(X) = E(X^2) - [E(X)]^2$$

- Bernoulli Trials: Trials of a random experiment are called Bernoulli trials, if they satisfy the following conditions:
- There should be a finite number of trials.
- The trials should be independent.
- Each trial has exactly two outcomes: success or failure.
- The probability of success remains the same in each trial.

For Binomial distribution
$$B(n, p)$$
, $P(X=x) = {}^{n} C_{x} q^{n-x} P^{x}$, $x = 0, 1, \dots, n(q = 1 - p)$