CH-231-A Algorithms and Data Structures ADS

Lecture 20

Dr. Kinga Lipskoch

Spring 2020

Linked Lists Rooted Trees

Queue (1)

Front pointer

Pointing to first element of Queue

Rear pointer
Pointing to Last element of Queue

Queue (2)

- Elementary dynamic data structure.
- Implements idea of dynamic set.
- Delete operation is called dequeue.
- Insert operation is called enqueue.
- ► FIFO principle (First In First Out): The element that is removed from the queue is the oldest one in the queue.

Queue Operations

Modify operations:

- Enqueue(Q, x): Add element x at the tail of queue Q.
- ▶ Dequeue(Q):
 If queue is non-empty, remove head element and return it.

Queue Example (Array Implementation) (1)

- ▶ head[Q] and tail[Q] mark the index of the first entry and the one following the last entry of the queue.
- Example: Queue with 5 elements between indices 6 (head) and 10 (tail).

We can also have under- and overflow.

Queue Example (Array Implementation) (2)

Apply operations Enqueue(Q, 17), Enqueue(Q, 3), and Enqueue(Q, 5):

► Apply operation *Dequeue(Q)* returning entry 15:

Queue: Modulo Operations

Circular structure of filling the array with queue entries:

- ► head[Q] = 1 and tail[Q] = 5: 4 entries
- ► head[Q] = n 1 and tail[Q] = 1: 2 entries
- ▶ head[Q] = n and tail[Q] = n 1: n - 1 entries (full queue)

ADS Spring 2020 7 / 24

Queue Operations (Array Implementation) (3)

```
Enqueue (0,x)
   if tail[Q] = head[Q] - 1 then
     error 'overflow'
3 \circ [tail[0]] \leftarrow x
   if tail[Q] = length[Q]
      then tail[Q] \leftarrow 1
     else tail[Q] \leftarrow tail[Q]+1
Dequeue (0)
    if tail[Q] = head[Q] then
2 error 'underflow'
3 \times \leftarrow 0[head[0]]
4 if head[Q] = length[Q]
  then head[0] ← 1
6 else head [0] \leftarrow \text{head}[0] + 1
   return x
```

<ロ > ← □

8/24

Linked Lists Rooted Trees

Queue Operations: Complexity

```
Enqueue (0, x)
   if tail[0] = head[0] - 1 then
     error 'overflow'
3 O[tail[O]] ← x
4 if tail[Q] = length[Q]
     then tail[0] \leftarrow 1
     else tail[Q] ← tail[Q]+1
Dequeue (Q)
1 if tail[0] = head[0] then
     error 'underflow'
3 \times \leftarrow 0[head[0]]
4 if head[0] = length[0]
  then head[0] ← 1
     else head[0] ← head[0]+1
  return x
```

Complexity:

when implemented as an array all operations are O(1).

Linked List (1)

- Another elementary dynamic data structure.
- ► Flexible implementation of idea of dynamic set.
- Implies a linear ordering of the elements.
- ► However, in contrast to an array, the order is not determined by indices but by links or pointers.
- ► The pointer supports the operations finding the succeeding (next) entry in the list.
- In contrast to arrays, lists do typically not support random access to entries.

Linked List (2)

► Example of a linked list:

- ► Linked lists are dynamic data structures that allocate the requested memory when required.
- Start of linked list L is referred to as head[L].
- next[x] calls the pointer of element x and reports back the element to which the pointer of x is linking.

Doubly-Linked List

- ➤ A doubly-linked list enhances the linked list data structure by also storing pointers to the preceding (previous) element in the list.
- Hence, one can iterate in forward and backward direction.
- Example:

Linked List Operations

Queries:

Searching:

```
List-Search(L,k)
1 \quad x \leftarrow head[L]
2 \quad while \quad x \neq nil \ and \ key[x] \neq k
3 \quad do \quad x \leftarrow next[x]
4 \quad return \quad x
```

▶ Time complexity: O(n)

Modify Operations: Examples

Example:

▶ Insert element x with key[x] = 5 (at beginning):

▶ Delete element x with key[x] = 4:

Insertion (at Beginning)

Time complexity: $\Theta(1)$

Insertion (Middle or End)

- \triangleright We can also insert after a given element x.
- ► Time complexity:
 - \triangleright O(1), if element x is given by its pointer.
 - \triangleright O(n), if element x is given by its key (because of searching).

Linked Lists Rooted Trees

Deletion

ADS

Time complexity:

O(1) if we use pointer and O(n) if we use key (because of searching).

Spring 2020

17/24

Sentinels (1)

- In order to ease the handling of boundary cases, one can use dummy elements, so-called sentinels.
- Sentinels are handled like normal elements.
- One sentinel suffices when using circular lists.

- while $x \neq nil[L]$ and $key[x] \neq k$
- do $x \leftarrow next[x]$
- return x

Linked Lists Rooted Trees

Sentinels (2)

```
List-Delete'(L,x)
List-Insert'(L,x)
                                                 next[prev[x]] \leftarrow next[x]
     next[x] \leftarrow next[nil[L]]
                                                 prev[next[x]] \leftarrow prev[x]
     prev[next[nil[L]]] \leftarrow x
3 \quad \text{next[nil[L]]} \leftarrow x
     prev[x] \leftarrow nil[L]
nil[L]
nil[L]
nil[L].
```

900

Representing Rooted Trees

- ► Traversing a rooted tree requires us to know about the hierarchical relationships of their nodes.
- Similar to linked list implementations, such relationships can be stored by using pointers.

Binary Tree

- ▶ Binary trees *T* have an attribute *T.root*.
- ► They consist of nodes x with attributes x.parent (short x.p), x.left, and x.right in addition to x.key.

d-ary Trees

- ▶ *d*-ary trees are rooted trees with at most *d* children per node.
- ▶ They can be handled analogously to binary trees.

```
struct node {
    int val;
    node* parent;
    node* child[d];
};

typedef node* tree;
```

Linked Lists Rooted Trees

Rooted Trees with Arbitrary Branching

Rooted trees T with arbitrary branching consist of nodes x with attributes x.p, x.leftmost-child, and x.right-sibling in addition to x.key.

Discussion

- ► Representing trees with pointers allows for a simple and intuitive representation.
- It also allows for a dynamic data management.
- Modifying operations can be implemented efficiently.
- ► However, extra memory requirements exist for storing the pointers.