

Unit 01.01.02 CS 5220: COMPUTER COMMUNICATIONS

Computer Network Evolution

XIAOBO ZHOU, Ph.D.

Professor, Department of Computer Science

Computer Network Evolution

- 1960s: Terminals access shared host computer
 - SAGE; SABRE airline reservation system
 - Tree-topology terminal-oriented networks
- 1970s: Computers connect directly to each other
 - ARPANET packet switching network
 - TCP/IP Internet protocols
 - Ethernet local area network
- 1980s 2000s: New applications and Internet growth
 - Commercialization of Internet
 - E-mail, file transfer, web, P2P, . . .
 - Internet traffic surpasses voice traffic

Terminal-Oriented Networks

- Early computer systems very expensive; Time-sharing methods allowed multiple terminals to share local computer
- Remote access via telephone modems

Medium Access Control

- Dedicated communication lines were expensive
- Terminals generated messages sporadically
- Frames carried messages to/from attached terminals
- Address in frame header identified terminal
- Medium Access Controls for sharing a line in arbitrated manner
- Example: Polling protocol on a multi-drop line

Multiplexing

- Multiplexer allows a line to carry frames to/from multiple terminals
- Frames are buffered at multiplexer until line becomes available, i.e. store-and-forward
- Header carries other control information for framing

Error Control Protocol

- Communication lines introduced errors
- Error checking codes used on frames
 - "Cyclic Redundancy Check" (CRC) calculated based on frame header and information payload, and appended
 - Header also carries ACK/NAK control information
- Retransmission requested when errors detected

Computer-to-Computer Networks

- As cost of computing dropped, terminal-oriented networks viewed as too inflexible and costly
- Need to develop flexible computer networks
 - Interconnect computers as required
 - Support many applications
- Application Examples
 - File transfer between arbitrary computers
 - Execution of a program on another computer

Packet Switching

- Network should support multiple applications
 - Transfer arbitrary message size
 - Low delay for interactive applications
 - Store-and-forward operation could induce high delay on interactive messages
- Packet switching introduced
 - Network transfers packets using store-and-forward
 - Packets have maximum length
 - Break long messages into multiple packets
 - By switching, packets delivered (and reassembled) at destination

The ARPANET

The vulnerability of the telephone system was a concern.

(a) Telephone system structure; (b) Distributed switching system structure

The ARPANET Design

- Connection-less packet transmission
- Packets are encapsulated in frames
- Error control uses check bits
- Destinations identified by unique addresses
- Routing tables at the packet switches
- Messages are segmented into packets
- End-to-end congestion control
- Flow control prevents buffer overflow

ARPANET Applications

- ARPANET (NSF-NET) introduced new applications
 - Email, remote login, file transfer, ...

Ethernet Local Area Network

- In 1980s, affordable workstations available
- Need for low-cost, low error rate, high-speed network, possible using coaxial cable
- Broadcasting, medium access control
- Network interface card with a unique address
- Ethernet is the standard for high-speed wired access to computer networks

Summary of the Lesson

Services and Applications drive network architecture design