Roll No.: FWC22052

19pa1a04e9@vishnu.edu.in

Oct 2022

MATRIX: CONIC ASSIGNMENT

0.1 Problem:

Find the area bounded by the curve $x^2 = 4y$ and the line x = 4y - 2.

0.2 Solution:

Input Parameters:

Curve Equation : $x^2 = 4y$. Line Equation : x = 4y - 2.

To Find:

- 1. Comparing the given curve equation with the standard equation of the conics and finding it's parameters.
- 2. Finding the required parameters for the line equation.
- 3. Finding the Point of Intersection of the to the curve.
- 4. Finding the area bounded by the curve and the line.

Step - 1:

Curve Equation : $x^2 = 4y$.

The standard equation of the conics is given as:

$$\mathbf{x}^{\top}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{x} + f = 0 \tag{1}$$

The given curve can be expressed as conics with parameters

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \mathbf{u} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}, f = 0 \tag{2}$$

Step - 2:

Line Equation : x = 4y - 2.

with the conic section,

From the above line equation below vectors are taken

$$\mathbf{q} = \begin{pmatrix} -2\\0 \end{pmatrix}, \mathbf{m} = \begin{pmatrix} 4\\1 \end{pmatrix} \tag{3}$$

Step - 3:

The points of intersection of the line,

$$L: \quad \mathbf{x} = \mathbf{q} + \mu \mathbf{m} \quad \mu \in \mathbb{R}$$

 \mathbb{R} (4)

 $\mathbf{x}^{\top}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{x} + f = 0 \tag{5}$

are given by

$$\mathbf{x}_i = \mathbf{q} + \mu_i \mathbf{m} \tag{6}$$

where,

$$\mu_{i} = \frac{1}{\mathbf{m}^{T} \mathbf{V} \mathbf{m}} \left(-\mathbf{m}^{T} \left(\mathbf{V} \mathbf{q} + \mathbf{u} \right) \right.$$

$$\pm \sqrt{\left[\mathbf{m}^{T} \left(\mathbf{V} \mathbf{q} + \mathbf{u} \right) \right]^{2} - \left(\mathbf{q}^{T} \mathbf{V} \mathbf{q} + 2 \mathbf{u}^{T} \mathbf{q} + f \right) \left(\mathbf{m}^{T} \mathbf{V} \mathbf{m} \right)} \right)$$
(7)

On substituting $\mathbf{V}, \mathbf{q}, \mathbf{m}$ in the above equation, we get the values of μ . By substituting the values of μ in eq(6), we get the points of intersection of line with the given curve.

$$i.e., \mathbf{x}_1, \mathbf{x}_2$$

$$\therefore \mathbf{x}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} -1 \\ \frac{1}{4} \end{pmatrix} \tag{8}$$

Step - 4:

The area bounded by the curve $x^2 = 4y$ and line x = 4y - 2 is given by

$$\implies A = \int_{x_2}^{x_1} [f(x) - g(x)] dx \tag{9}$$

$$\implies A = \int_{-1}^{2} \left(\frac{x+2}{4} - \frac{x^2}{4} \right) dx \tag{10}$$

By solving we get the required area $\therefore A = \frac{9}{8}$

Code Link:

The below link realises the code of the above construction.

https://github.com/19pa1a04e9/FWC-IITH/tree/main/Assignment-1/MATRICES/Conic/codes/conic.py

0.3 Termux Commands:

bash rncom.sh Using Shell commands.

0.4 Plot:

Figure 1