Homework 5

MATH 166 - Fall 2024

Tufts University, Department of Mathematics Instructor: James M. Murphy

Due: October 10, 2024

1. Book Questions

Wasserman: Chapter 9: #3 (in part (c), ignore the part about the parametric bootstrap. Hint: look at example 9.29), #5 (ignore the part about Fischer information)

SUPPLEMENTAL QUESTION 1 (ASYMPTOTIC UNBIASEDNESS)

We say an estimator $\hat{\theta}_n$ is asymptotically unbiased for θ if $\lim_{n\to\infty} \mathbb{E}(\hat{\theta}_n) = \theta$, where as usual the expectation is taken over the random sample. Let $x_1, \dots x_n$ be an i.i.d. sample from $\mathrm{Unif}(0,\theta)$. Recall that the MLE estimator for θ is $\hat{\theta}_n = \max_{1 \le i \le n} x_i$.

- (a) Show $\hat{\theta}_n$ is biased for every n.
- (b) Show $\hat{\theta}_n$ is asymptotically unbiased.

SUPPLEMENTAL QUESTION 2 (PROPERTIES OF KL DIVERGENCES)

The Kullback-Leibler distance is not a metric in the traditional sense. We will investigate some of its properties below. Let f, g be any probability density functions.

- (a) Show $D_{KL}(f, f) = 0$.
- (b) Show $D_{KL}(f,g) \ge 0$ (Hint: $\log \left(\frac{1}{y}\right) \ge 1 y$ for all y).