Fonctions à valeurs vectorielles

Dans tout ce chapitre, les fonctions considérées sont des fonctions définies sur un intervalle I de R à valeurs dans un \mathbb{K} -espace vectoriel normé E de dimension finie ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$).

Dérivabilité 1

Définition

Définition 1.1 Dérivabilité en un point

Soit $f: I \to E$. On dit que f est **dérivable** en $a \in I$ si $x \mapsto \frac{f(x) - f(a)}{x - a}$ admet une limite en a. Dans ce cas, cette limite est notée f'(a).

Proposition 1.1 Dérivabilité et continuité

Soit $f: I \to E$. Si f est dérivable en $a \in I$, alors f est continue en a.

Définition 1.2 Négligeabilité

Soient f une fonction à valeurs dans E et g une fonction à valeurs dans K, toutes deux définies sur un voisinage de a(éventuellement non définies en a). On dit que f est **négligeable** devant g en a si $\lim_{a} \frac{f}{g} = 0$. On note alors f = o(g).

Proposition 1.2 Dérivabilité et développement limité

Une fonction $f: I \to E$ est dérivable en $a \in I$ si et seulement si f admet un développement limité d'ordre 1 en a. Dans ce cas, ce développement limité est

$$f(x) = f(a) + f'(a)(x - a) + o(x - a)$$

Proposition 1.3

Soit (e_1, \dots, e_n) une base de E. Alors $f: I \to E$ est dérivable en $a \in I$ si et seulement si les fonctions $f_i = e_i^* \circ f$ sont dérivables en a. Dans ce cas,

$$f'(a) = \sum_{i=1}^{n} f_i'(a)e_i$$

1

Définition 1.3 Dérivabilité à gauche, à droite

Soit $f: I \to E$.

Alors f est **dérivable à droite** en $a \in I$ si $x \mapsto \frac{f(x) - f(a)}{x - a}$ admet une limite à droite en a. De même, f est **dérivable à gauche** en $a \in I$ si $x \mapsto \frac{f(x) - f(a)}{x - a}$ admet une limite à gauche en a.

1.2 Opérations sur les fonctions dérivables

Proposition 1.4 Combinaison linéaire

Soient f et g deux fonctions de I dans \mathbb{R} dérivables en $a \in I$ (resp. sur I). Alors pour tout $(\lambda, \mu) \in \mathbb{K}^2$, $\lambda f + \mu g$ est dérivable en a (resp. sur I). De plus, $(\lambda f + \mu g)' = \lambda f' + \mu g'$.

Proposition 1.5 Composition par une application linéaire

Soit $f: I \to E$ dérivable en $a \in I$ (resp. sur I) et $f \in \mathcal{L}(E, F)$. Alors $L \circ f$ est dérivable en a (resp. sur I). De plus, $(L \circ f)' = L \circ f'$.

Proposition 1.6 Dérivabilité et application bilinéaire

Soient $f: I \to E$ et $g: I \to F$ dérivables en $a \in I$ (resp. sur I). Soit $B: E \times F \to G$ une application **bilinéaire**. Alors B(f,g) est dérivable en a (resp. sur I). De plus, B(f,g)' = B(f',g) + B(f,g').

Remarque. E et F sont deux K-espaces vectoriels normés de dimension finie.

Exercice 1.1

Soit A : I $\to \mathcal{M}_n(\mathbb{K})$ une application dérivable. Montrer que si A(t) et A'(t) commutent pour tout $t \in I$, alors pour tout $n \in \mathbb{N}$, Aⁿ est dérivable sur I et que (Aⁿ)' = nA'Aⁿ⁻¹ = nAⁿ⁻¹A'.

Corollaire 1.1

Soient E un espace euclidien, $f: I \to E$ et $g: I \to E$ deux fonctions dérivables en $a \in I$ (resp. sur I). Alors $\langle f, g \rangle$ est dérivable en a (resp. sur I) et $\langle f, g \rangle' = \langle f', g \rangle + \langle f, g' \rangle$.

Exemple 1.1

Si E est un espace euclien et $f: I \to E$ est une fonction dérivable sur I **ne s'annulant pas sur** I, alors ||f|| est dérivable sur I et $||f||' = \frac{\langle f', f \rangle}{||f||}$.

Proposition 1.7 Dérivabilité et application multilinéaire

Soient $f_1: I \to E_1, ..., f_p: I \to E_p$ dérivables en $a \in I$ (resp. sur I). Soit M: $\prod_{i=1}^p E_i \times F \to G$ une application **multilinéaire**. Alors $M(f_1, ..., f_p)$ est dérivable en a (resp. sur I). De plus,

$$M(f_1, ..., f_p)' = M(f_1', f_2, ..., f_p) + M(f_1, f_2', ..., f_p) + \cdots + M(f_1, ..., f_{p-1}, f_p')$$

Remarque. E_1, \dots, E_p sont des K-espaces vectoriels normés de dimension finie.

Corollaire 1.2

Soient $\mathcal B$ une base de $\mathcal E$ et f_1,\ldots,f_p des applications de $\mathcal E$ dérivables en $a\in\mathcal E$ (resp. sur $\mathcal E$). Alors $\det_{\mathcal B}(f_1,\ldots,f_p)$ est dérivable en a (resp. sur $\mathcal E$) et

$$\det_{\mathcal{B}}(f_1, \dots, f_D)' = \det_{\mathcal{B}}(f_1', f_2, \dots, f_D) + \det_{\mathcal{B}}(f_1, f_2', \dots, f_D) + \dots + \det_{\mathcal{B}}(f_1, \dots, f_{D-1}, f_D')$$

Proposition 1.8 Composition

Soient I et J deux intervalles de \mathbb{R} , $\varphi: I \to J$ dérivable sur I et $f: J \to E$ dérivable sur J. Alors $f \circ \varphi$ est dérivable sur I et $(f \circ \varphi)' = \varphi' \times (f' \circ \varphi)$.

1.3 Fonctions de classe \mathcal{C}^k

Définition 1.4 Fonction de classe \mathcal{C}^k

Soient $f: I \to E$ et $k \in \mathbb{N}$. On dit que f est de classe \mathcal{C}^k sur I si f est dérivable k fois sur I et si $f^{(k)}$ est continue sur I. On dit que f est de classe \mathcal{C}^{∞} si f est indéfiniment dérivable sur I.

Notation 1.1

On note $\mathcal{C}^k(I, E)$ l'ensemble des fonctions de classe \mathcal{C}^k sur I à valeurs dans E.

Proposition 1.9 Combinaison linéaire

Soit $(f,g) \in \mathcal{C}^k(I,E)^2$, où $k \in \mathbb{N} \cup \{\infty\}$. Alors pour tout $(\lambda,\mu) \in \mathbb{K}^2$, $\lambda f + \mu g \in \mathcal{C}^k(I,E)^2$. De plus, si $k \in \mathbb{N}$, $(\lambda f + \mu g)^{(k)} = \lambda f^{(k)} + \mu g^{(k)}$.

Remarque. Ceci signifie que $\mathcal{C}^k(I, E)$ est un \mathbb{K} -espace vectoriel et, plus précisément, un sous-espace vectoriel de E^I .

Proposition 1.10 Composition par une application linéaire

Soit $f \in \mathcal{C}^k(I, E)$, où $k \in \mathbb{N} \cup \{\infty\}$, et $f \in \mathcal{L}(E, F)$. Alors $L \circ f \in \mathcal{C}^k(I, F)$. De plus, si $k \in \mathbb{N}$, $(L \circ f)^{(k)} = L \circ f^{(k)}$.

Proposition 1.11 Composition

Soient I et J deux intervalles de \mathbb{R} , $\varphi \in \mathcal{C}^k(I, J)$ et $f \in \mathcal{C}^k(J, E)$, où $k \in \mathbb{N} \cup \{\infty\}$. Alors $f \circ \varphi \in \mathcal{C}^k(I, E)$.

2 Intégration

2.1 Définition et propriétés générales

Définition 2.1 Fonctions continues par morceaux

Une fonction $f:[a,b] \to E$ est dite **continue par morceaux** si ses coordonnées dans une base de E le sont.

Une fonction $f: I \to E$ est dite **continue par morceaux** si elle est continue par morceaux sur **tout segment** de I.

REMARQUE. La continuité par morceaux ne dépend pas de la base choisie.

Notation 2.1

On notera $\mathcal{C}_m(I, E)$ l'ensemble des fonctions continues par morceaux sur un intervalle I à valeurs dans E

Définition 2.2 Intégrale d'une fonction vectorielle

Soient $f \in \mathcal{C}_m([a,b], E)$ et (e_1, \dots, e_n) une base de E. La quantité

$$\sum_{k=1}^{n} \left(\int_{a}^{b} e_{k}^{*} \circ f(t) \, dt \right) e_{k}$$

est indépendante de la base de E choisie. On la note $\int_a^b f(t) \ \mathrm{d}t, \int_{[a,b]} f \ \mathrm{ou} \ \int_a^b f.$

Les propriétés des intégrales des fonctions à valeurs **vectorielles** sont quasiment les mêmes que celles des intégrales à valeurs **numériques**.

Proposition 2.1 Linéarité de l'intégrale

Soit $(f,g) \in \mathcal{C}_m([a,b], E)^2$. Pour tout $(\lambda, \mu) \in \mathbb{K}^2$,

$$\int_{a}^{b} (\lambda f(t) + \mu g(t)) dt = \lambda \int_{a}^{b} f(t) dt + \mu \int_{a}^{b} g(t) dt$$

Remarque. Ceci signifie que l'application $f \mapsto \int_a^b f(t) dt$ est une **application linéaire** de $\mathcal{C}_m([a,b], E)$ dans E.

Exercice 2.1

Soit E un espace vectoriel de dimension finie, $L \in \mathcal{L}(E,F)$ et $f \in \mathcal{C}_m([a,b],E)$. Montrer que

$$L\left(\int_{a}^{b} f(t) dt\right) = \int_{a}^{b} L(f(t)) dt$$

Proposition 2.2 Relation de Chasles

Soient a, b, c trois réels tels que $a \le c \le b$ et f continue par morceaux sur [a, b] à valeurs dans E. Alors

$$\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt$$

Remarque. On en déduit notamment que $\int_{b}^{a} f(t) dt = -\int_{a}^{b} f(t) dt$.

Proposition 2.3 Inégalité triangulaire

Soit $f \in \mathcal{C}_m([a,b], E)$. Alors

$$\left\| \int_{a}^{b} f(t) \, dt \right\| \leq \int_{a}^{b} \|f(t)\| \, dt$$

ATTENTION! L'ordre des bornes importe. On doit avoir $a \le b$.

2.2 Sommes de Riemman

Définition 2.3 Somme de Riemann

Soit $f \in \mathcal{C}_m([a,b], \mathbb{E})$. On appelle somme de Riemann de f l'une des deux sommes suivantes :

$$R_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f(a_k)$$

$$R'_n(f) = \frac{b-a}{n} \sum_{k=1}^n f(a_k)$$

où $a_k = a + k \frac{b-a}{n}$ pour tout $k \in [0, n]$ et n est un entier non nul.

Proposition 2.4 Convergence des sommes de Riemann

Soit $f \in \mathcal{C}_m([a,b], E)$. Alors les suites $(R_n(f))$ et $(R'_n(f))$ convergent vers $\int_a^b f(t) dt$.

Remarque. L'ordre des bornes n'est pas important.

2.3 Théorème fondamental de l'analyse et conséquences

Définition 2.4 Primitive

Soit $f \in \mathcal{C}(I, E)$. On dit que $F: I \to E$ est une **primitive** de f sur I si F est dérivable sur I et F' = f.

Théorème 2.1 Théorème fondamental de l'analyse

Soient $f \in \mathcal{C}(I, E)$ et $a \in E$. Alors $F_a : x \mapsto \int_a^x f(t) dt$ est l'**unique primitive de** f **sur** I **s'annulant en** a.

Corollaire 2.1

Soit $f \in \mathcal{C}([a,b], E)$. Si F est une **primitive** de f sur [a,b], alors

$$\int_{a}^{b} f(t) dt = F(b) - F(a)$$

Corollaire 2.2 Inégalité des accroissements finis

Soit $f \in \mathcal{C}^1(I, E)$. Si $||f'|| \le K$ sur I, alors

$$\forall (a, b) \in I^2, ||f(b) - f(a)|| \le K|b - a|$$

REMARQUE. Il est essentiel que I soit un intervalle.

Remarque. Ceci signifie que f est K-lipschitzienne sur I.

Remarque. Si f est de classe \mathcal{C}^1 sur un **segment** [a,b], ||f'|| est continue sur [a,b] à valeurs dans \mathbb{R} : elle y admet donc un maximum M. f est alors M-lipschitzienne.

Techniques de calcul

Puisque l'intégrale d'une fonction vectorielle est définie à l'aide des intégrales de ses coordonnées dans une base (i.e. des intégrales de fonctions numériques), les techniques de calcul vues en première année s'appliquent encore :

- intégration par parties;
- changement de variable.

3 Formules de Taylor

Proposition 3.1 Formule de Taylor avec reste intégral

Soit $f \in \mathcal{C}^{n+1}([a,b], E)$. Alors

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt$$

Remarque. L'ordre de a et b n'importe pas.

Proposition 3.2 Inégalité de Taylor-Lagrange

Soit $f \in \mathcal{C}^{n+1}([a,b], E)$. Alors

$$\left\| f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} \right\| \le \frac{|b-a|^{n+1}}{(n+1)!} \cdot \max_{[a,b]} \left\| f^{(n+1)} \right\|$$

Remarque. L'ordre de a et b n'importe pas.

Remarque. $||f^{(n+1)}||$ admet bien un maximum sur le **segment** [a,b] puisqu'elle y est **continue**.

Proposition 3.3 Formule de Taylor-Young

Soient $f \in \mathcal{C}^n(I, E)$ et $a \in I$. Alors f admet un développement limité d'ordre n en a donné par

$$f(x) = \sum_{x \to a}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + o((x - a)^{n})$$

4 Arcs paramétrés

4.1 Définition

Définition 4.1 Arc paramétré

On appelle **arc paramétré** à valeurs dans E tout couple (I, γ) où I est un intervalle et γ une application de I dans E. L'ensemble $\gamma(I)$ est appelé le **support** de l'arc paramétré.

On dira que (I, γ) est un arc paramétré de classe C^k si γ l'est.

Remarque. Si $E = \mathbb{R}^2$, on parle d'arc plan.

Remarque. Si $E = \mathbb{R}^2$ ou $E = \mathbb{R}^3$, le support de l'arc paramétré est une **courbe**.

Exemple 4.1 Support de l'arc paramétré $t \in \mathbb{R} \mapsto (\sin(2t), \sin(3t))$

Définition 4.2 Paramètre régulier

Soit (I, γ) un arc paramétré de classe \mathcal{C}^1 à valeurs dans E. On dira que $t_0 \in I$ est un **paramètre régulier** si $\gamma'(t_0) \neq 0_E$.

4.2 Tangentes et normales

Proposition 4.1 Vecteur tangent

Soient (I, γ) un arc paramétré de classe \mathcal{C}^1 et $t_0 \in I$ un paramétre régulier. Alors $\gamma'(t_0)$ est un vecteur directeur de la tangente à la courbe représentative de (I, γ) .

Méthode Déterminer la tangente à un arc plan

Soient (I, γ) un arc paramétré à valeurs dans \mathbb{R}^2 et $t_0 \in I$ un paramètre régulier. La tangente \mathcal{T}_{t_0} à la courbe représentative de (I, γ) est $\gamma(t_0)$ + vect $(\gamma'(t_0))$.

On peut déterminer une équation cartésienne de cette tangente en remarquant que

$$M \in \mathcal{T}_0 \iff Det(M - \gamma(t_0), \gamma'(t_0)) = 0$$

Remarque. La notation Det désigne ici le déterminant dans la base canonique de \mathbb{R}^2 . Mais en fait, peu importe la base choisie puisque la colinéarité est indépendante de cette base.

Méthode Déterminer la normale à un arc plan

Soient (I, γ) un arc paramétré à valeurs dans \mathbb{R}^2 et $t_0 \in I$ un paramètre régulier. La normale \mathcal{N}_{t_0} à la courbe représentative de (I, γ) est $\gamma(t_0) + \text{vect}(\gamma'(t_0))^{\perp}$.

On peut déterminer une équation cartésienne de cette tangente en remarquant que

$$\mathbf{M} \in \mathcal{N}_{t_0} \iff \langle \mathbf{M} - \gamma(t_0), \gamma'(t_0) \rangle = 0$$

Remarque. On a muni ici \mathbb{R}^2 de sa structure euclidienne usuelle.

Exemple 4.4 Cercle trigonométrique

Posons $x(t) = \cos t$ et $y(t) = \sin(t)$ et étudions l'arc paramétré $t \mapsto (x(t), y(t))$.

Courbe Pour tout $t \in \mathbb{R}$, $x(t)^2 + y(t)^2 = 1$ donc la courbe représentative de cet arc paramétré est le cercle trigonométrique.

Tangente Soit $t_0 \in \mathbb{R}^2$. La tangente au point de paramètre t_0 a pour équation

$$\begin{vmatrix} x - x(t_0) & x'(t_0) \\ y - y(t_0) & y'(t_0) \end{vmatrix} = 0$$

autrement dit

$$x\cos(t_0) + y\sin(t_0) = 1$$

Normale Soit $t_0 \in \mathbb{R}^2$. La normale au point de paramètre t_0 a pour équation

$$\begin{pmatrix} x - x(t_0) \\ y - y(t_0) \end{pmatrix} \cdot \begin{pmatrix} x'(t_0) \\ y'(t_0) \end{pmatrix} = 0$$

autrement dit

$$x\sin(t_0) - y\cos(t_0) = 0$$

Tracé On représente le cercle trigonométrique ainsi que la tangente et la normale au point de paramètre $\pi/6$.

Remarque. On retrouve notamment de manière analytique le fait qu'une normale à un cercle passe par le centre de ce cercle. Voilà qui est rassurant!

4.3 Premier exemple

On pose $x(t) = \sin(t)$ et $y(t) = \sin(2t)$. On souhaite représenter le support de l'arc paramétré $\gamma = (x, y)$.

Domaine d'étude et symétrie

On cherche d'abord à restreindre le domaine d'étude en repérant des symétries.

- Puisque x et y sont 2π -périodiques, on peut restreindre l'étude à $[-\pi, \pi]$.
- Par ailleurs, x et y sont impaires donc on peut étudier sur $[0,\pi]$ et déduire $\gamma([-\pi,0])$ de $\gamma([0,\pi])$ par la symétrie de centre l'origine.
- Enfin, $x(\pi t) = x(t)$ et $y(\pi t) = -y(t)$ donc on peut étudier sur $[0, \pi/2]$ et déduire $\gamma([\pi/2, \pi])$ de $\gamma([0, \pi/2])$ par une symétrie par rapport à l'axe des abscisses.

Variations

On a $x'(t) = \cos(t)$ et $y'(t) = 2\cos(2t)$. On trace les variations conjointes de x et y.

t	0		$\pi/4$		$\pi/2$
Signe de $x'(t)$	1	+	$\frac{\sqrt{2}}{2}$	+	0
Variations de <i>x</i>	0 -		$-\frac{\sqrt{2}}{2}$, 1
Variations de <i>y</i>	0		1		0
Signe de $y'(t)$	2	+	0	-	-2

Tracé

On peut tracer $\gamma([0,\pi/2])$ et compléter avec les symétries observées précédemment. On peut de plus placer des tangentes remarquables :

- tangente de vecteur directeur (1, 2) en l'origine ;
- tangente horizontale au point de coordonnées $(0, \sqrt{2}/2)$;
- et tangente verticale au point de coordonnées (1,0);

ainsi que celles obtenues par symétries.

Python

```
import numpy as np
import matplotlib.pyplot as plt

T=np.linspace(0,2*np.pi,200)
X=np.sin(T)
Y=np.sin(2*T)
plt.plot(X,Y)
plt.show()
```

4.4 Second exemple

On pose $x(t) = t \ln(t)$ et $y(t) = \ln(t)/t$. On souhaite représenter le support de l'arc paramétré $\gamma = (x, y)$.

Domaine d'étude et symétrie

On cherche d'abord à restreindre le domaine d'étude en repérant des symétries. On remarque que x(1/t) = -y(t) et y(1/t) = -x(t). On peut donc étudier sur]0,1] et on obtient $\gamma([1,+\infty[)$ à partir de $\gamma(]0,1]$) par symétrie par rapport à la droite d'équation y = -x.

Variations

On a
$$x'(t) = \ln(t) + 1$$
 et $y'(t) = \frac{1 - \ln(t)}{t^2}$. On trace les variations conjointes de x et y .

t	$0 e^{-1} 1$	
Signe de $x'(t)$	- 0 + 1	
Variations de <i>x</i>	0 $-e^{-1}$	
Variations de y	e 0 e	
Signe de $y'(t)$	$+ 2e^2 + 1$	

Asymptotes

Puisque $\lim_{0^+} x = 0$ et $\lim_{0^+} y = -\infty$, le support de γ admet une asymptote d'équation x = 0. On obtient une seconde asymptote par symétrie, à savoir la droite d'équation y = 0.

Tracé

On peut tracer $\gamma(]0,1]$) et compléter avec la symétrie observée précédemment. On peut de plus placer des tangentes remarquables :

- tangente verticale au point de coordonnées $(-e^{-1}, -e)$;
- et tangente de vecteur directeur (1, 1) en l'origine ;

ainsi que celles obtenues par symétries.

Python

import numpy as np
import matplotlib.pyplot as plt

T=np.linspace(0.2,5,100)

X=T*np.log(T)
Y=np.log(T)/T
plt.plot(X,Y)
plt.show()

5 Suites et séries de fonctions

5.1 Suites de fonctions

Théorème 5.1 Interversion limite / primitive

Soient (g_n) une suite de fonctions continues sur un **intervalle** I à valeurs dans E at $a \in I$. On suppose que (g_n) converge uniformément sur tout segment de I vers une fonction g. On pose

$$\forall n \in \mathbb{N}, \ G_n : x \in I \mapsto \int_a^x g_n(t) \ dt$$
 et $G : x \in I \mapsto \int_a^x g(t) \ dt$

Alors (G_n) converge uniformément vers la fonction G sur tout segment de I.

Corollaire 5.1 Interversion limite / intégration

Soit (f_n) une suite de fonctions continues sur un **segment** [a,b] à valeurs dans E convergeant **uniformément** sur [a,b] vers une fonction f. Alors

$$\lim_{n \to +\infty} \int_{a}^{b} f_{n}(t) dt = \int_{a}^{b} f(t) dt$$

Théorème 5.2 Interversion limite / dérivation

Soit (f_n) une suite de fonctions **de classe** \mathcal{C}^1 sur un intervalle I à valeurs dans E. Si

- (f_n) converge **simplement** vers une fonction f sur I;
- (f'_n) converge **uniformément** vers une fonction g sur tout segment de I.

Alors

- (f_n) converge **uniformément** vers f sur tout segment de I;
- f est de **classe** \mathcal{C}^1 sur I;
- f' = g.

Corollaire 5.2

Soit (f_n) une suite de fonctions de classe \mathcal{C}^k sur un intervalle I à valeurs dans E. Si

- pour tout $j \in [0, k-1], (f_n^{(j)})$ converge simplement sur I;
- $(f_n^{(k)})$ converge uniformément sur tout segment de I.

Alors

- la limite simple f de (f_n) est de classe \mathcal{C}^k sur I;
- pour tout $j \in [0, k]$, la suite $(f_n^{(j)})$ converge uniformément vers $f^{(j)}$ sur tout segment de I.

Séries de fonctions 5.2

Théorème 5.3 Interversion série / primitive

Soient $\sum f_n$ une série de fonctions continues sur un **intervalle** I à valeurs dans E et $a \in I$. On suppose que $\sum_{n} f_n$ converge uniformément sur tout segment de I. On pose

$$\forall n \in \mathbb{N}, \ \mathbf{F}_n: \ x \in \mathbf{I} \mapsto \int_a^x f_n(t) \ \mathrm{d}t \qquad \text{et} \qquad \mathbf{F}: \ x \in \mathbf{I} \mapsto \int_a^x \sum_{n=0}^{t+\infty} f_n(t) \ \mathrm{d}t$$

Alors $\sum F_n$ converge uniformément vers la fonction F sur tout segment de I.

Corollaire 5.3 Interversion série / intégration

Soit $\sum_{n\in\mathbb{N}} f_n$ une série de fonctions continues sur un **segment** [a,b] à valeurs dans E convergeant **uniformément** sur [a,b]. Alors

$$\sum_{n=0}^{+\infty} \int_{a}^{b} f_n(t) dt = \int_{a}^{b} \sum_{n=0}^{+\infty} f_n(t) dt$$

Théorème 5.4 Interversion série / dérivation

Soit $\sum_{n\in\mathbb{N}} f_n$ une série de fonctions **de classe** \mathcal{C}^1 sur un intervalle I à valeurs dans E. Si

- $\sum_{n\in\mathbb{N}} f_n$ converge **simplement** sur I;
- $\sum_{n \in \mathbb{N}} f'_n$ converge **uniformément** sur tout segment de I.

Alors

- $\sum_{n\in\mathbb{N}} f_n$ converge **uniformément** sur tout segment de I;
- $\sum_{n=0}^{+\infty} f_n$ est de **classe** \mathcal{C}^1 sur I;
- $\bullet \left(\sum_{n=0}^{+\infty} f_n\right)' = \sum_{n=0}^{+\infty} f_n'.$

Proposition 5.1

- Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors l'application $\varphi : t \in \mathbb{R} \mapsto \exp(tA)$ est de classe \mathcal{C}^1 sur \mathbb{R} et $\forall t \in \mathbb{R}$, $\varphi'(t) = A \exp(tA) = \exp(tA)A$.
- Soit $u \in \mathcal{L}(E)$ où E est un \mathbb{K} -espace vectoriel de **dimension finie**. Alors l'application $\varphi : t \in \mathbb{R} \mapsto \exp(tu)$ est de classe \mathcal{C}^1 sur \mathbb{R} et $\forall t \in \mathbb{R}$, $\varphi'(t) = u \circ \exp(tu) = \exp(tu) \circ u$.

Corollaire 5.4

Soit $\sum_{n\in\mathbb{N}} f_n$ une série de fonctions de classe \mathcal{C}^k sur un intervalle I à valeurs dans E. Si

- pour tout $j \in [0, k-1]$, $\sum_{n \in \mathbb{N}} f_n^{(j)}$ converge simplement sur I;
- $\sum_{n\in\mathbb{N}} f_n^{(k)}$ converge uniformément sur tout segment de I.

Alors

- $\sum_{n=0}^{+\infty} f_n$ est de classe \mathcal{C}^k sur I;
- pour tout $j \in [0, k]$, la série $\sum_{n \in \mathbb{N}} f_n^{(j)}$ converge uniformément vers $\left(\sum_{n=0}^{+\infty} f_n\right)^{(j)}$ sur tout segment de I.

Exercice 5.1

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Montrer que $t \in \mathbb{R} \mapsto \exp(tA)$ est de classe \mathcal{C}^{∞} sur \mathbb{R} et calculer ses dérivées successives.

5.3 Approximation uniforme

Théorème 5.5 Approximation uniforme d'une fonction continue par morceaux par des fonctions en escalier

Soit f une fonction **continue par morceaux** sur un **segment** [a,b] à valeurs dans F. Alors il existe une suite (φ_n) de fonctions **en escalier** sur [a,b] à valeurs dans F **convergeant uniformément** vers f.

Remarque. Si on note $\mathcal{C}_m([a,b],F)$ l'ensemble des fonctions continues par morceaux sur [a,b] à valeurs dans F et $\mathcal{E}([a,b],F)$ l'ensemble des fonctions en escalier sur [a,b] à valeurs dans F, ceci signifie que $\mathcal{E}([a,b],F)$ est **dense** dans $\mathcal{C}_m([a,b],F)$ pour la norme uniforme.