

## Loudspeaker DIY

2019-07-25

Alvis Chan

#### CONTENT

- 1. About the author
- 2. Introduction
- 3. Essential loudspeaker components
- 4. Software required
- 5. Design steps
- 6. Box Design
- 7. Crossover Design and Tuning

## Something about Alvis

- Uncountable acoustic projects done since 1997. Days and nights involved in loudspeaker tuning: >2000 days.
- Skills acquired:
  - Loudspeaker system design
  - Acoustic test hardware design
  - Acoustic software design
  - Enclosure ME design
  - Filter and DSP architecture and tuning
  - Concert system planning and tuning
  - Etc...



## Alvis' Loudspeaker Projects Gallery



## Conventional HiFi System



## What constitute a loudspeaker?

# **Drivers** Box 30.00







## Essential components

- Woofer
- Tweeter
- Crossover
- Enclosure/Box



## Test equipment

- Mic (U-mik)
- Impedance analyzer
  - Simply an amplifier, soundcard, and resistor network.
  - Or a PCBA design by Alvis



- Room EQ Wizard
- Box Simulation Software:
  - WinISD
- Crossover Simulation Software:
  - VituixCAD





### Watch a DIY video

## Design steps

- 1. Speaker size determination
- 2. Driver selection
- Impedance measurements
- 4. Box design
- 5. Installation
- 6. SPL measurements
- 7. Crossover design
- 8. Build the crossover
- 9. SPL measurements
- 10. Listening test and fine tuning
- 11. Fine tune the crossover
- 12. Finish the DIY

#### **Transducer Specification Sheet**



Model No: TPY05W04O0089 Product Line: Tymphany Gold

PY05W04O0089 Rev 1 ymphany Gold Last Update: 2017-04-26 05:32:09

#### **Product Description**

This 5.25 inch 4 ohm driver is a member of the Heritage family.



#### **Mechanical Drawing**



#### Specifications

| .0%            |     |
|----------------|-----|
| .5%            |     |
|                |     |
| 5%             | )   |
|                |     |
|                |     |
| )              |     |
|                |     |
| and the same   |     |
| 1.0db          |     |
| 1.0db<br>1.0db |     |
|                |     |
|                |     |
|                |     |
|                | 15% |

| nergy Bandwidth Product    | EBP       | (1/Qes)*fs   | 120.08 |  |
|----------------------------|-----------|--------------|--------|--|
| Moving Mass                | Mms       | g            | 8.58   |  |
| Suspension Compliance      | Cms       | um/N         | 386.43 |  |
| Effective Cone diameter    | D         | am           | 10.7   |  |
| Effective Piston Area      | Sd        | cm*2         | 89.92  |  |
| Effective Volume           | Vas       | L            | 4.39   |  |
| Motor Force Factor         | BL        | .Im          | 4.92   |  |
| Motor Efficiency Factor    | В         | (T*M*2)/Ohms | 6.48   |  |
| Voice coil former Material | VCfm      |              | ASV    |  |
| Voice coil inner diameter  | VCd       | mm           | 25.73  |  |
| Rated Noise Power          | P         | w            | 25     |  |
| Test Spectrum Bandwidth    | 20Hz-4KHz |              |        |  |
| Transducer Size            | Inch      | 5.25         |        |  |
|                            |           |              |        |  |

## Measuring impedance

- Use REW to get:
  - Impedance
  - TS parameters:
    - fs
    - Qts
    - Vas





## **Box Type**

**♦** Common Box Types



#### **Vented VS Closed Box**

#### **♦** Low frequency efficiency



Box internal volume = 9 Liter

#### **Vented VS Closed Box**

#### **♦** Speaker Excursion



#### **Vented VS Closed Box**

#### **♦** Finding resonance by observing impedance



#### **Vented Box**

#### **♦** Port Air Velocity

- Port Velocity Allowed ≤ 10m/s (Flared Port allows higher velocity)
- Port Noise Reduction (Turbulence/Compression)
  - •Effective Port Area ↑, Port Length ↑, Flared Port.



## Design by given woofer

- Woofer parameters
- WinISD design demo





#### WinISD box simulation



#### **Enclosure Simulation**



## WinISD live demo

## Box ME Design





## Box ME Design





## When the box is finish





## Box ME Design, 2<sup>nd</sup> example





## Box ME Design, 2<sup>nd</sup> example



## Construction



## Before you install the woofer... ...stuff the box

## Box filling/stuffing







#### Measure near-field SPL for verification

Woofer Nearfield SPL



Port Nearfield SPL



#### Woofer+box SPL measurement



Low frequency/box design is basically finish. Now, we move to crossover design.

## Crossover design video

## Why Crossover is Needed?

Example: Two-way stereo speaker SPL and



#### The Crossover

- Frequency dividing network
- Butterworth, max flat amplitude, Q=0.7
- LR, max flat phase, Q=0.5







## Some crossover circuit examples



#### The Crossover

- Why the formula does not work?
  - Single resistor as the electrical model of loudspeaker
  - Acoustic response of loudspeaker is not flat
- What would happen with the formula from books and internet?





## Measuring SPL for crossover tuning

- As studies have shown, listeners are not always listening on-axis with the speaker, they are on average 10° to 20° off-axis of the speaker. Therefore a spatial average of some responses in 10°/15° increments, +/-10° vertically, and +/-30° horizontally make up the "Listening Window" or the "Direct Sound".
- Suggested listening window for averaging:
  - V10: H-30, H-15, 0, H15, H30
  - V0: H-30, H-15, 0, H15, H30
  - V-10: H-30, H-15, 0, H15, H30



# Measuring SPL



#### SPL measurements without crossover



# Impedance measurements without crossover



# Crossover simulation, 1st Design



## Crossover simulation, 2<sup>nd</sup> Design



#### Crossover construction

Construct the crossover and then install it.







#### Measure final SPL



## Listening Test





Fine tune the crossover by listening test and measurements...hundreds hours of work skipped.

# After so many tuning and measurements...



It's actually much more than this...

### Completed example









Fig. 4 - Response/frequency characteristics at 1.5 m for various angles in the horizontal plane. 1V input.

\_\_\_\_\_ 0° ····· 30° -·-· 45°

Crossover design live demo

### Suggested components

- Peerless 5.25寸中低音喇叭
  - https://item.taobao.com/item.htm?spm=a1z10.5-c-s.w4002-14974603413.22.41a514fdKaGJC9&id=553186797103
- Peerless 1英寸高音喇叭
  - https://item.taobao.com/item.htm?spm=a1z10.5-c-s.w4002-14974603413.28.27ee146c6SCNqv&id=13490255397
- USB mic for SPL measurement
  - https://www.minidsp.com/products/acoustic-measurement/umik-1
- WinISD for Box Design
  - http://www.linearteam.org/
- REW for measurements
  - https://www.roomegwizard.com/
- Crossover simulation
  - https://kimmosaunisto.net/Software/Software.html
- Impedance analyzer
  - See REW user manual

#### References

- 1. Loudspeaker Design Brief Instruction\_V0\_2017-03-10, Rihanna Xu
- 2. Undergraduate FYP report 2006, Alvis Chan.
- 3. <a href="https://en.wikipedia.org/wiki/Audio\_crossover">https://en.wikipedia.org/wiki/Audio\_crossover</a>
- 4. "Introduction to loudspeaker system", Alvis Chan

## QR code

