Recitation 1

Concept Review: Vector Spaces

Definition

A **vector space** is a set V endowed with two 'nice and compatible' operations + and \cdot that verify:

- For all $u, v \in V$, $u + v \in V$.
- For all $u \in V$ and all $\lambda \in \mathbb{R}$, $\lambda \cdot u \in V$.

Example: $V = \mathbb{R}^n$, with the usual vector addition + and scalar multiplication \cdot is a vector space.

Concept Review: Vector Spaces

In this class:

- We will always consider <u>real</u> scalars. Note that it is also possible to consider <u>complex</u> scalars.
- ightharpoonup V is (usually) ightharpoonup
 i

Concept Review: Subspaces

Definition (Subspace)

A non-empty subset S of a vector space V is called a *subspace* if it is closed under addition and scalar multiplication:

- 1. Closure under Addition: $x + y \in S$ for all $x, y \in S$.
- 2. Closure under Scalar Multiplication: $\alpha x \in S$, for all $x \in S$ and $\alpha \in \mathbb{R}$.
- A subspace is also a vector space!
- A subspace always contains the zero vector.

Questions 1: Subspaces, Span

Consider the two vectors v=(1,1) and w=(-1,2). Describe the following sets geometrically. Which are subspaces of \mathbb{R}^2 ?

- 1. $\operatorname{Span}(v)$
- 2. Span $(v, w) = \mathbb{R}^2$
- 3. $\overline{\operatorname{Span}(v) \cup \operatorname{Span}(w)}$ that is, the vectors in $\operatorname{Span}(v)$ or $\operatorname{Span}(w)$

Questions 1: Subspaces, Span

Consider the two vectors v=(1,1) and w=(-1,2). Describe the following sets geometrically. Which are subspaces of \mathbb{R}^2 ?

- 1. $\operatorname{Span}(v)$
- 2. $\operatorname{Span}(v, w)$
- 3. $\operatorname{Span}(v) \cup \operatorname{Span}(w)$, that is, the vectors in $\operatorname{Span}(v)$ or $\operatorname{Span}(w)$
- 4. $\operatorname{Span}(v) \cap \operatorname{Span}(w)$, that is, the vectors in both $\operatorname{Span}(v)$ and $\operatorname{Span}(w)$
- 5. $\{(1-t)v + tw | t \in [0,1]\} \times$
- 6. $\{(1-t)v + tw | t \in \mathbb{R}\}_{u} X$
- 7. $\{\alpha v + \beta w | \alpha, \beta \geq 0\} X$ the set of "elements a
- 8. Span(v, w, u) where u = (0, 5).
- 9. $\{(a,b) \in \mathbb{R}^2 | a^2 + b^2 \le 25\}$
- 10. $\{(a, a) \in \mathbb{R}^2 | a \in \mathbb{R}\}$

1. Let $v_1, v_2, v_3, v_4 \in \mathbb{R}^3$. Let $C_1 = \{v_1, v_2\}; C_2 = \{v_3, v_4\}$. If C_1 and C_2 are both linearly independent, what are the possible values for $\dim(\mathrm{Span}(v_1, v_2, v_3, v_4))$? (No formal proof necessary)

1. Let $v_1,v_2,v_3,v_4\in\mathbb{R}^3$. Let $C_1=\{v_1,v_2\};C_2=\{v_3,v_4\}$. If C_1 and C_2 are both linearly independent, what are the possible values for $\dim(\operatorname{Span}(v_1,v_2,v_3,v_4))$? (No formal proof necessary)

2. Let $v_1, ..., v_m \in \mathbb{R}^n$ be linearly dependent. Prove that for $x \in \operatorname{Span}(v_1, ..., v_m)$, there exist infinitely many $\alpha_1, ..., \alpha_m \in \mathbb{R}$ such that

$$\underline{x} = \sum_{i=1}^{m} \alpha_i v_i = \alpha_1 \nabla_1 + \dots + \alpha_n \nabla_n$$

. Since x ∈ Span(v₁...v_m), by definition

there exists dr... of 80ch that z= drunt...torg

· vi...vm are On dep. hence there exist

B1... Bm that are not all zero such that

2. Let $v_1,...,v_m\in\mathbb{R}^n$ be linearly dependent.

Let
$$v_1,...,v_m\in\mathbb{R}^n$$
 be linearly dependent. Prove that for $x\in \mathrm{Span}(v_1,\ldots,v_m)$, there exist infinitely many $\alpha_1,\ldots,\alpha_m\in\mathbb{R}$ such that
$$x=\sum_{i=1}^m\alpha_iv_i.$$

By suming , we get that for all $r \in \mathbb{R}$

I obtain infinitely many ways of de composing a. (since one of the Bi is not zero)

3. True or False If $B = (v_1, \dots, v_n)$ is a basis for \mathbb{R}^n , and W is a subspace of \mathbb{R}^n , then some subset of B is a basis for W.

Questions 3: Bases, Dimension

Let V be the set of functions

$$= a_0 + a_1 x + \dots + a_n x^n$$

Let
$$V$$
 be the set of functions
$$V \stackrel{\mathrm{def}}{=} \left\{ p: \mathbb{R} \to \mathbb{R} \,\middle|\, p(x) = \sum_{k=0}^n a_k x^k, \text{ for some } a_0, \dots, a_n \in \mathbb{R} \right\}$$

- 1. What kind of functions does this set contain?
- 2. Define an addition operation $+: V \times V \to V$, and a scalar multiplication operation $\cdot: \mathbb{R} \times V \to V$, such that the triple $(V,+,\cdot)$ is a vector space.
- 3. What is the zero vector of this vector space?
- 4. Find a basis for this vector space.
- 5. What is the dimension of this vector space?

$$\dim(V) = n+1$$

② Given two polynomials
$$p$$
 and q in V

$$p(x) = \sum_{i=0}^{n} a_i x^{i} \qquad q(x) = \sum_{i=0}^{n} b_i x^{i}$$

we define: $p+q$: $R \longrightarrow R$

$$2x \longmapsto p(x)+q(x)$$

$$= \sum_{i=0}^{n} (a_i+b_i) x^{i}$$

$$p(x) = \sum_{i=0}^{n} (a_i+b_i) x^{i}$$

$$p(x) = \sum_{i=0}^{n} (a_i+b_i) x^{i}$$

$$p(x) = \sum_{i=0}^{n} (a_i+b_i) x^{i}$$

$$\rightarrow$$
 this is the function: Po: $R \rightarrow R$ Indeed:

$$(p_0 + q)(x) = p_0(x) + q(x) = q(x) \quad \text{for any } x$$

hence $p_0 + q = q$ for any $q \in V$.

(a) Let's define, for
$$k \in \lambda_0, 1, ..., n_1$$
 $q_k : \mathbb{R} \to \mathbb{R}$
 $q_{e(n)} = 2^k$

Claim: $(q_0, q_1 - q_n)$ is a basis of V .

Span $(q_0, q_1 - q_n) = V$

Let $p \in V$ of the form $p(n) = \sum_{k=0}^{n} a_k 2^k$

thence $p = a_0 q_0 + a_1 q_1 + ... + a_n q_n$

thence $q_0 - q_n$ spans V .

1/11

· det's show that qo, -- qn are lin. indep. Let take do ... on ER such that ~ do 90 + - - + dn 9n = 0 we will show that this implies do = do = --= on This simplies that for all $z \in \mathbb{R}$, $P(x) = 20 + 2x + 2x^2 + ... + 2x^n = 0$ P(n) is always zero honce all of its coefficients are zero: do=d1=--= ~n=0