Operator Automata Theory

1 Introduction

Descriptive text

2 Preliminaries

Monoid

Semiring

Semimodule

Linear transform

Norm

Automata

3 Operators

Text goes here

3.1 M-Semimodules and Operator Norms

Let Σ be a finite set and M to be the monoid finitely generated by Σ :

$$M = (\Sigma, \cdot, \mathbf{1})$$

Definition 1 (Normed Monoid). A normed monoid is a monoid M equipped with a norm $\|\cdot\|: M \to \mathbb{R}_{\geq 0}$.

Because monoids lack addition, such norms only concern multiplication.

We may extend monoids in general to define the notion of a M-semiring. In particular, M-semirings are defined with respect to a particular monoid M, and are generated from its power set $\mathcal{P}(M)$.

Definition 2 (M-Semiring). Let M be a finitely generated monoid. A M-semiring R is a semiring such that:

$$R = (\mathcal{P}(M), \cup, \cdot, \mathbf{0}, \mathbf{1})$$

Where semiring addition is set union \cup with identity $\mathbf{0}$, and semiring multiplication \cdot and identity $\mathbf{1}$ are carried over from M.

As with the case of normed monoids, we may extend this to normed M-semirings. In particular, we pay special attention to p-norms.

Definition 3 (M-Semiring p-Norm). Let M be a finitely generated and normed monoid. For $1 \le p \le \infty$, a p-normed M-semiring is R is equipped with a norm $\|\cdot\|_p : R \to \mathbb{R}_{\ge 0}$:

$$||x||_p = \left(\sum_{a \in x} ||a||^p\right)^{1/p}$$

The sum here utilizes the monoid norm. Observe that because M is finitely generated, each $x \in R_M$ is therefore countable, and hence so is the sum. When $p = \infty$, this is just a sup norm. Similar definitions can be found in literature [1].

Extending M-semirings, we define (M, n)-semimodules:

Definition 4 ((M, n)-Semimodule). A(M, n)-semimodule R^n is a free semimodule generated by n isomorphic copies of the M-semiring R.

If $x \in \mathbb{R}^n$, write x_i to denote the *i*th element from \mathbb{R} in some canonical representation of \mathbb{R}^n . Often this is just a row (horizontal) or column (vertical) vector of length n.

Again, we extend norms to (M, n)-semimodules:

Definition 5 ((M,n)-Semimodule (p,q)-Norm). Let R be a p-normed M-semiring. Let R^n be a (M,n)-semimodule and take $1 \leq p,q \leq \infty$. A (p,q)-normed (M,n)-semimodule is a semimodule with norm $\|\cdot\|_{p,q}: R^n \to \mathbb{R}_{\geq 0}$:

$$||x||_{p,q} = \left(\sum_{i=1}^{n} ||x_i||_p^q\right)^{1/q}$$

When $p=q=\infty$, these are just the sup-norm. Often we may only care about the case of $p=\infty$ and q=1, which is the sup-norm over each R, and the 1-norm over the n copies of R in R^n .

With the notion of norms, we again extend such notions to linear operators mapping from \mathbb{R}^n to \mathbb{R}^m .

Definition 6 (Linear Operator Norm). Let \mathcal{L} be the space of linear operators mapping a (M,n)-semimodule R^n with norm $\|\cdot\|_{R^n}$ to a (M,m)-semimodule R^m with norm $\|\cdot\|_{R^m}$. Then define the operator norm $\|\cdot\|_{\mathcal{L}}: \mathcal{L} \to \mathbb{R}_{\geq 0}$ as:

$$||T||_{\mathcal{L}} = \inf \{ c \in \mathbb{R}_{>0} : ||Tx||_{R^m} \le c ||x||_{R^n}, \forall x \in R^n \}$$

With the notion of a norm, we may perhaps begin to discuss weaker versions Banach spaces.

3.2 Examples

Example 1. Consider $\Sigma = \{a, b\}$.

4 On Automata

References

[1] Manfred Kudlek. "Iteration Lemmata for Normed Semirings (Algebraic Systems, Formal Languages and Computations)". In: (2000).