《数值计算方法》课程

数值积分与微分

数值微分

胡建芳

(研究方向: 计算机视觉)

http://sdcs.sysu.edu.cn/content/5143

计算机学院

课程回顾

即

$$I = \int_a^b f(x) dx \approx \sum_{k=0}^n A_k f(x_k) = I_n$$

$$(A_k = \int_a^b l_k(x) dx \quad k = 0,1,\dots,n)$$

由上式确定系数的公式称为插值型求积公式。

则
$$A_k = (b-a)C_k^{(n)}$$
, 于是得求积公式
$$I_n = (b-a)\sum_{k=0}^n C_k^{(n)}f(x_k)$$
 节点等距的时候

称为n 阶牛顿-柯特斯 (Newton-Cotes)公式, $C_k^{(n)}$ 称为柯特斯系数。

课程回顾

常用的柯特斯系数表

n			C	n(n) K			
1	1/2	1/2					
2	1/6	4/6	1/6				
3	1/8	3/8	3/8	1/8			
4	7/90	32/90	12/90	32/90	7/90		
5	19/288	75/288	50/288	50/288	75/288	19/288	
6	41/840	216/840	27/840	272/840	27/840	216/840	41/840

微分(导数)定义:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(c)$$

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{h}{2}f''(c)$$
 两点前向差分公式

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$
 —阶近似,正比于h

例 5.1 取 h = 0.1, 用两点前向差分公式近似 f(x) = 1/x 在 x = 2 处的导数. 对两点前向差分公式 (5.4) 求值得到

$$f'(x) \approx \frac{f(x+h) - f(x)}{h} = \frac{\frac{1}{2.1} - \frac{1}{2}}{0.1} \approx -0.238 \text{ 1}.$$

这个近似值与导数 $f'(x) = -x^{-2}$ 在 x = 2 处的正确值的差就是误差

$$-0.238\ 1 - (-0.250\ 0) = 0.011\ 9.$$

把这个结果与由公式 hf''(c)/2(c 在 2 和 2.1 之间) 预测的误差进行比较. 由于 $f''(x) = 2x^{-3}$, 误差一定在下面两个数之间:

$$(0.1)2^{-3} \approx 0.012 \ 5 \quad \text{$\overline{\mathcal{R}}$} \quad (0.1)(2.1)^{-3} \approx 0.010 \ 8.$$

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(c_1),$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(c_2).$$

$$f'(x)=rac{f(x+h)-f(x-h)}{2h}-rac{h^2}{12}f'''(c_1)-rac{h^2}{12}f'''(c_2)$$
. 高于一阶近似

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + \frac{f'''(c_h)}{6}h^2$$
, 三点中心差分公式

定理 5.1 (一般中值定理) 设 f 是区间 [a,b] 上的连续函数, x_1, \dots, x_n 是 [a,b] 中的点, 而且 $a_1, \dots, a_n > 0$, 那么在 a,b 之间存在数 c 使得

$$(a_1 + \dots + a_n)f(c) = a_1f(x_1) + \dots + a_nf(x_n). \tag{5.6}$$

证 设这 n 个函数值中最小的一个是 $f(x_i)$, 最大值的一个是 $f(x_j)$, 那么

$$a_1f(x_i)+\cdots+a_nf(x_i)\leqslant a_1f(x_1)+\cdots+a_nf(x_n)\leqslant a_1f(x_j)+\cdots+a_nf(x_j).$$

即

$$f(x_i) \leqslant \frac{a_1 f(x_1) + \dots + a_n f(x_n)}{a_1 + \dots + a_n} \leqslant f(x_j).$$

根据中值定理, 在 x_i 和 x_j 之间存在常数 c, 使得

$$f(c) = \frac{a_1 f(x_1) + \dots + a_n f(x_n)}{a_1 + \dots + a_n}.$$

因此,(5.6) 式成立.

例 5.2 取 h = 0.1, 用三点中心差分公式近似 $f(x) = \frac{1}{x}$ 在 x = 2 处的导数. 用三点中心差分公式求值得到

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h} = \frac{\frac{1}{2.1} - \frac{1}{1.9}}{0.2} \approx -0.250 \text{ 6}.$$

误差是 0.000 6, 比例 5.1 中的两点前向差分公式的误差有了改进.

还可以更高阶导数吗? 比如二阶导。

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(x) + \frac{h^4}{24}f^{(4)}(c_1),$$

$$f(x-h)=f(x)-hf'(x)+\frac{h^2}{2}f''(x)-\frac{h^3}{6}f'''(x)+\frac{h^4}{24}f^{(4)}(c_2).$$

这里 $x-h < c_2 < x < c_1 < x+h$, 把它们相加消去一阶导数项得到

$$f(x+h)+f(x-h)-2f(x)=h^2f''(x)+\frac{h^4}{24}f^{(4)}(c_1)+\frac{h^4}{24}f^{(4)}(c_2).$$

$$f''(x) = \frac{f(x-h) - 2f(x) + f(x+h)}{h^2} + \frac{h^2}{12}f^{(4)}(c)$$

■ 舍入误差:

例 5.3 求 $f(x) = e^x$ 在 x = 0 处的导数的近似. 两点公式 (5.4) 给出

$$f'(x) \approx \frac{e^{x+h} - e^x}{h},\tag{5.9}$$

三点公式 (5.7) 给出

$$f'(x) \approx \frac{e^{x+h} - e^{x-h}}{2h}. (5.10)$$

																_		
误			公式 (5.10)				-		误		\Box		•	公式		h		
1 66	-0.001	-	44	198	500	667	1.001	48	756	180	709	-0.051	48	756	180	709	1.051	10-1
00 01	-0.000	-	99	749	666	016	1.000	79	416	708	016	-0.005	79	416	708	016	1.005	l0 ⁻²
00 00	-0.000	-	68	666	166	000	1.000	38	708	166	500	-0.000	38	708	166	500	1.000	0-3
00 00	-0.000	-	89	666	001	000	1.000	14	667	001	050	-0.000	14	667	001	050	1.000	l0 ⁻⁴
00 00	-0.000	-	10	012	000	000	1.000	96	006	000	005	-0.000	96	006	000	005	1.000	0-5
00 00	0.000		24	973	999	999	0.999	18	962	499	000	-0.000	18	962	499	000	1.000	0-6
00 00	0.000		64	473	999	999	0.999	68	433	049	000	-0.000	68	433	049	000	1.000	.0-7
000	0.000		53	922	993	999	0.999	47	077	006	000	0.000	53	922	993	999	0.999	0^{-8}
000	-0.000	_	22	229	027	000	1.000	37	740	082	000	-0.000	37	740	082	000	1.000	0-9

■ 已有的n阶,能否升为n+1阶:

 $F_n(h)$ 写成

$$Q = F_n(h) + Kh^n + O(h^{n+1}).$$

然后把 h 减半得到

$$Q=F_n\left(rac{h}{2}
ight)+Krac{h^n}{2^n}+O(h^{n+1}),$$

而且, 外推形式 $F_{n+1}(h)$ 将满足

$$\begin{split} F_{n+1}(h) &= \frac{2^n F_n(\frac{h}{2}) - F_n(h)}{2^n - 1} \\ &= \frac{2^n (Q - K \frac{h^n}{2^n} - O(h^{n+1})) - (Q - K h^n - O(h^{n+1}))}{2^n - 1} \\ &= Q + \frac{-K h^n + K h^n + O(h^{n+1})}{2^n - 1} = Q + O(h^{n+1}). \end{split}$$

因此, $F_{n+1}(h)$ 至少是近似量 Q 的 n+1 阶公式.

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + \frac{f'''(c_h)}{6}h^2, \tag{5.13}$$

例 5.4 对公式 (5.13) 用外推.

我们从对导数 f'(x) 的二阶中心差分公式 $F_2(h)$ 开始. 外推公式 (5.15) 给出 f'(x) 的一个新的公式:

$$F_4(x) = \frac{2^2 F_2(\frac{h}{2}) - F_2(h)}{2^2 - 1}$$

$$= \left[4 \frac{f(x + \frac{h}{2}) - f(x - \frac{h}{2})}{h} - \frac{f(x + h) - f(x - h)}{2h} \right] / 3 \qquad (5.16)$$

$$= \frac{f(x - h) - 8f(x - \frac{h}{2}) + 8f(x + \frac{h}{2}) - f(x + h)}{6h}.$$

二元函数数值微分怎么定义?

偏导数:两个方向的一元数值微分,x-偏导,y-偏导

或其它方向

应用: 图像分析, 取图像方块算偏导数

数值微分的应用: 图像梯度

数值微分的应用: 图像梯度

图像特征表示:方向梯度直方图HOG

Gradient Direction

三元函数数值微分怎么定义?

应用: 视频分析, x, y, t 方向

HOG 3D, 感兴趣的同学去了解下

■ 作业:

- 15. 建立仅用数据 f(x-2h)、f(x) 及 f(x+3h) 的二阶方法来近似 f'(x), 求出误差项.
- 18. 证明 3 阶导数的二阶公式:

$$f'''(x) = \frac{f(x-3h) - 6f(x-2h) + 12f(x-h) - 10f(x) + 3f(x+h)}{2h^3} + O(h^2).$$

19. 证明 4 阶导数的二阶公式:

$$f^{(4)}(x) = \frac{f(x-2h) - 4f(x-h) + 6f(x) - 4f(x+h) + f(x+2h)}{h^4} + O(h^2).$$

THE END