ANÁLISIS MATEMÁTICO II — Examen Final

22 de Diciembre de 2017

			Apellido y Nombre				Condición			
1	2	3	4	5	6	-	7	8	TOTAL	NOTA

LOS EJERCICIOS 7 Y 8 SON SOLO PARA ALUMNOS LIBRES

1. $(1.5\,pts.)$ Determine si la siguiente integral impropia converge y en tal caso calcularla:

$$\int_0^e x \ln(x) \, dx$$

- 2. (2 pts.) Determine el radio de convergencia y el intervalo de convergencia de las siguientes series de potencias:
 - a) $\sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{3x+1}{2} \right)^n$
 - b) $\sum_{n=1}^{\infty} \frac{(-1)^n (4x-1)^n}{n 2^{2n}}$
- 3. (1.5 pts.) Sea D la región comprendida entre las funciones $g(x) = x^2 1$ y $h(x) = 1 x^2$.
 - a) Dibuje la región D.
 - b) Calcule la siguinte integral doble $\int \int_D x^2 y \, dx \, dy$.
- 4. (1 pto.) Sea S el gráfico de la función $f(x,y) = x^4 + 2y^2$. Dé la ecuación del plano tangente a S en el punto (1,0,1).
- 5. (2 pts.) Sea $f(x) = e^{-2x}$.
 - (a) Determine el orden del polinomio de Taylor de f, centrado en a=0, que se necesita para aproximar $e^{-0.2}$ con un error menor que 10^{-3} .
 - (b) Dé el valor de la aproximación de ${\rm e}^{-0.2}$ que se obtiene con este método (puede dejarlo expresado como una suma).
- 6. (2 pts.) Sea $f(x,y) = 2x^4 + y^2 x^2 2y$. Determinar los puntos críticos de f y decir si son máximos, mínimos o puntos de silla.
- 7. (1 pto.) Calcular el área encerrada entre las curvas: $f(x) = x^2 6x + 4$, $g(x) = -x^2 + 2x 2$, x = 2 y x = 4.
- 8. (1 pto.) Determine si cada una de las siguientes sucesiones es convergente o divergente.
 - (a) $a_n = \frac{(-1)^n n}{n^2 + n}$
 - (b) $a_n = \frac{\cos(\pi n)n}{n+3}$