Logic Attention Based Neighborhood Aggregation for Inductive Knowledge Graph Embedding

Peifeng Wang^{1*}, Jialong Han², Chenliang Li³, Rong Pan¹

¹Sun Yat-sen University, ²Tencent AI Lab, ³Wuhan University

 $^1\{wangpf3@mail2.,\ panr@\}sysu.edu.cn,\ ^2jialonghan@gmail.com,\ ^3cllee@whu.edu.cn$

Motivation and Contributions

The paper aims at embedding new entities from the knowledge graph (KG) inductively by aggregating the neighbors with respect to their unordered and unequal nature.

- We propose three desired properties that decent neighborhood aggregators for KGs should possess.
- We propose a novel aggregator called Logic Attention Network (LAN), to facilitate inductive KG embedding.
- We conduct extensive experiments to validate the superiority of LAN.

Background and Problem Setting

- **KG** consists of numerous triplet facts like (s, r, o).
- KG embedding represents entities and relations in low-dimension space.
- Challenge All the entities are required to be seen during training.

Given a knowledge graph \mathcal{K} , we would like to learn a neighborhood aggregator A which uses an entity e_i 's neighborhood in \mathcal{K} to embed e_i as a low-dimensional vector \mathbf{e}_i .

Framework

• Encoder

A relation-specific transforming function $T_r(.)$ applied on a neighbor \mathbf{e}_i^I :

$$T_r(\mathbf{e}_j^I) = \mathbf{e}_j^I - \mathbf{w}_r^\top \mathbf{e}_j^I \mathbf{w}_r.$$

2. An entity e_i 's neighbors are aggregated as:

$$\mathbf{e}_{i}^{O} = \sum_{(r,e_{j})\in N_{\mathcal{K}}(i)} (\alpha_{j|i,q}^{\text{Logic}} + \alpha_{j|i,q}^{\text{NN}}) T_{r}(\mathbf{e}_{j}^{I}).$$

• Decoder

Scoring function on the output embedding:

$$\phi^O(s,q,o) = -|\mathbf{s}^O + \mathbf{q} - \mathbf{o}^O|_{L1}.$$

Desired Properties of Neighborhood Aggregator for KG

- **Permutation Invariant** Neighbors of an entity are naturally unordered. The aggregator should be irrelevant to potential permutations of the neighbors.
- Redundancy Aware Facts in KGs tend to depend on each other. It is beneficial to exploit the redundancy in an entity's neighborhood.
- Query Relation Aware An aggregator may take advantage the query relation in concern to concentrate on relevant facts in the neighborhood.

Logic Rule Mechanism

1. The confidence of the implication $r_1 \Rightarrow r_2$:

$$\mathcal{P}(r_1 \Rightarrow r_2) = \frac{\sum_{e \in \mathcal{E}} \mathbb{1}(r_1 \in N_{\mathcal{R}}(e) \land r_2 \in N_{\mathcal{R}}(e))}{\sum_{e \in \mathcal{E}} \mathbb{1}(r_1 \in N_{\mathcal{R}}(e))}$$

2. The logic rule mechanism of measuring neighbors' importance:

$$\alpha_{j|i,q}^{\text{Logic}} = \frac{\mathcal{P}(r \Rightarrow q)}{\max(\{\mathcal{P}(r' \Rightarrow r) | r' \in N_{\mathcal{R}}(e_i) \land r' \neq r\})}.$$

- The numerator promotes relations r strongly implying q.
- The denominator demotes those implied by some other relation in the same neighborhood.

Neural Network Mechanism

The importance of an entity e_i 's neighbor e_i is measured by:

$$\alpha_{j|i,q}^{\text{NN}} = \operatorname{softmax}(\alpha_{j|i,q}') = \frac{\exp(\alpha_{j|i,q}')}{\sum_{j' \in N_{\mathcal{E}}(i)} \exp(\alpha_{j'|i,q}')}$$

The unnormalized attention weight $\alpha'_{j|i,q}$ is given by an attention neural network as

$$\alpha'_{j|i,q} = \mathbf{u}_a^{\top} \cdot \tanh(\mathbf{W}_a \cdot [\mathbf{z}_q; T_r(\mathbf{e}_j^I)]),$$

where \mathbf{u}_a and $\mathbf{W}_a \in \mathbb{R}^{d \times 2d}$ are global attention parameters, while \mathbf{z}_q is a relation-specific attention parameter for the query relation q.

Training and Experiments

Task 1: Link Prediction								Task 2: Triplet Classification											
			Subject-10					Object-10				Subject			Object			Both	
Model	MR	MRR	Hits@10	@3	@1	MR	MRR	Hits@10	@3	@1	1K	3K	5K	1K	3K	5K	1K	3K	5K
MEAN	293	0.310	48.0	34.8	22.2	353	0.251	41.0	28.0	17.1	87.3	84.3	83.3	84.0	75.2	69.2	83.0	73.3	68.2
LSTM	353	0.254	42.9	29.6	16.2	504	0.219	37.3	24.6	14.3	87.0	83.5	81.8	82.9	71.4	63.1	78.5	71.6	65.8
LAN	263	0.394	56.6	44.6	30.2	461	0.314	48.2	35.7	22.7	88.8	85.2	84.2	84.7	78.8	74.3	83.3	76.9	70.6

• Training

We apply a margin-based ranking loss on each triplet (s, q, o) as

$$l^{O}(s,q,o) = [\gamma - \phi^{O}(s,q,o) + \phi^{O}(s',q,o')]_{+}.$$

• Subtask:

Scoring function on the input embedding:

$$\phi^I(s,q,o) = -|\mathbf{s}^I + \mathbf{q} - \mathbf{o}^I|_{L1}.$$

Then a similar margin-based ranking loss $l^{I}(s,q,o)$ is defined for the subtask.

• Training objective:

$$\min \sum_{(s,q,o)\in\Delta} \sum_{(s',q,o')\in\Delta'_{(s,q,o)}} [l^{O}(s,q,o)+l^{I}(s,q,o)].$$

• Dataset

Based on WordNet and Freebase, we construct datasets whose test sets contain new entities unseen during training.

Model	MRR	Hits@10	Hit@3	Hits@1
MEAN	0.310	48.0	34.8	22.2
Global-Attention	0.331	49.7	37.7	24.0
Query-Attention	0.355	51.9	39.5	27.0
Logic Rules Only	0.375	54.7	42.7	28.0
LAN	0.394	56.6	44.6	30.2

Jared_Drake_Bell query: origin	place_lived -> Orange_County breed_origin -> Santa_Ana website_owner -> Universal_Records perform_film -> High_Fidelity friend -> Corbin_Bleu_Reivers gender -> Male					
Georg_Hegel query: profession	influenced_by -> Aristotle interest -> Metaphysics interest -> Aesthetics interset -> Logic interest -> Epistenmology employment ⁻¹ -> Humboldt_University ethnicity -> Germans gender -> Male					
Stephen_Joseph_Harper	institution -> University_of_Calgary politician -> Conservative_Party_of_Canda appointed_by -> Senate_of_Canada position -> Prime_Minister_of_Canda					

Neighbors ranked by LAN

religion -> Evangelicalism

profession -> Economist

gender -> Male

Subject and Query

query: place_lived

LAN: **Orange_County**, Santa_Ana, Laguna_Beach, City_Orange, Fullerton, Huntington_Beach, Costa_Mesa, Greenwich_Village, Newport_Beach, Anaheim

Predicted Object from LAN and MEAN

MEAN: Costa_Mesa, Santa_Ana, Southern_California, Berkeley, Oslo, Stuttgart, Newport_Beach, Miami, Surrey, San_Jose

> LAN: Philosopher, Economist, Librarian, Psychiatrist, Psychologist, Priest, Scientist, Historian, Pediatrics, Designer

MEAN: Physicist, Aristotle, Karl_Marx, Gottfried_Leibniz, John_FRS, Immanuel_Kant,

Philosopher, Economist, Architect, Plato LAN: Nunavut, Yukon, Saskatchewan, Alberta,

Connecticut, British_Coulumbia, Nova_Scotia, Calgary, Oklahoma, Edmonton

MEAN: Yukon, Nunavut, Alberta, Prince_Edward_Island, Senate_Of_Canda, Nova_Scotia, British_Columbia, Montana, Quebec, Alaska