COMPLETE SET OF AMENDED CLAIMS

	1	1. (Currently Amended) A semiconductor laser, comprising:
1	2	an n-type cladding layer that has n-type conductivity;
, \	3	an active layer formed on top of the n-type cladding layer,
	4	a p-type cladding base layer that is formed on top of the active layer and has
7.	5	p-type conductivity;
٠ \	6	a current-blocking layer that is formed on specified parts of an upper surface of
	7	the p-type cladding base layer and substantially has n-type conductivity; and
	8	a p-type buried cladding layer that has p-type conductivity and is formed so as to
	9	cover the current-blocking layer and contact remaining parts of the upper surface of the p-type
	10	cladding base layer,
	11	wherein the current-blocking layer has at least two regions having different
	12	concentrations (hereafter "N1" and "N2" where N1 <n2) a="" adjacent="" carriers,="" n-type="" of="" region="" th="" to<=""></n2)>
	13	an interface between the p-type cladding base layer and the p-type buried cladding layer having
	14	the N1 concentration of n-type carriers and a part or all of a remaining region of the current-
	15	blocking layer region having the N2 concentration, and the current-blocking layer (13) having a
	16	lower refractive index than the cladding base layer (5) and the buried cladding layer (7).
	1	(Original) A semiconductor laser according to Claim 1,
	2	wherein the current-blocking layer includes a first layer that contacts the p-type
	3	cladding base layer and a second layer that is provided on top of the first layer, a concentration
	4	of n-type carriers in the first layer being N1 and a concentration of n-type carriers in the second
	5	layer being N2.

LOZAJ\(RV\312329.1

1	3.	(Original) A semiconductor laser according to Claim 2,
2		wherein the first layer has a different composition to the second layer.
1	4.	(Original) A semiconductor laser according to Claim 2,
2		wherein one of the first layer and the second layer is composed of a plurality of
3	sublayers th	at have at least two different compositions.
1	5.	(Original) A semiconductor laser according to Claim 2,
2		wherein the second layer is co-doped with a p2 concentration of p-type carriers
3	and an n2	(where n2>p2) concentration of n-type carriers, and n2 and p2 are set so that
4	n2-p2=N2.	
1	6.	(Original) A semiconductor laser according to Claim 5,
2		wherein 0cm-3≤N1≤1017cm-3 and N2>1017cm-3.
1	7.	(Original) A semiconductor laser according to Claim 4,
2		wherein 0cm-3≤N1≤1017cm-3 and N2>1017cm-3.
1	8.	(Original) A semiconductor laser according to Claim 3,
2		wherein $0 \text{cm}^{-3} \le \text{N} 1 \le 10^{17} \text{cm}^{-3}$ and $\text{N} 2 > 10^{17} \text{cm}^{-3}$.
l	9.	(Original) A semiconductor laser according to Claim 2,

wherein $0 \text{cm}^{-3} \le \text{N} 1 \le 10^{17} \text{cm}^{-3}$ and $\text{N} 2 > 10^{17} \text{cm}^{-3}$.

Ż

	1	10. (Original) A semiconductor laser according to Claim 1,
	2	wherein 0cm ⁻³ ≤N1≤10 ¹⁷ cm ⁻³ and N2>10 ¹⁷ cm ⁻³ .
	1 1	11. (Currently Amended) A semiconductor laser, comprising:
X	2	an n-type cladding layer that has n-type conductivity;
プ	3	an active layer formed on top of the n-type cladding layer;
A	4	a p-type cladding base layer that is formed on top of the active layer and has
1	5	p-type conductivity;
301	6	a current-blocking layer that is formed on specified parts of an upper surface of
5	7	the p-type cladding base layer and substantially has n-type conductivity; and
	8	a p-type buried cladding layer that has p-type conductivity and is formed so as to
	9	cover the current-blocking layer and contact remaining parts of the upper surface of the p-type
	10	cladding base layer,
	11	the current-blocking layer having a region with p-type conductivity adjacent to
	12	the interface between the p _z type cladding base layer and the p-type buried cladding layer and
	13	another region with n-type conductivity, and the current-blocking layer (13) having a lower
	14	refractive index than the p-type cladding base layer (5) and the p-type buried cladding layer (7).
		12 (Character Amondad) A comican ductor languagementicing
	1	12. (Currently Amended) A semiconductor laser, comprising:
	2	an n-type cladding layer that has n-type conductivity;
	3	an active layer formed on top of the n-type cladding layer;
	4	a p-type cladding base layer that is formed on top of the active layer and has

I.OZAJ\IRV\312329.1

10

11

12

13

14

15

16

1

an interjacent layer that has p-type conductivity and is formed on specified parts 6 of an upper surface of the p-type cladding base layer and contacts the p-type cladding base layer; 8

a current-blocking layer that is formed on the interjacent layer and has n-type

conductivity; and

a p-type buried cladding layer that has p-type conductivity and is formed so as to cover the current-blocking layer and contact remaining parts of the upper surface of the p-type cladding base layer,

the interjacent layer being positioned between the current-blocking layer and the p-type cladding base layer so that a lower surface of the current-blocking layer is separated from an upper surface of the p-type cladding base layer, and the current-blocking layer (13) having a lower refractive index than the p-type cladding base layer (5) and the p-type buried cladding

17 laver (<u>7)</u>.

- (Original) A semiconductor laser according to Claim 12, 13.
- wherein the p-type buried cladding layer has a higher refractive index of light 2 3 than the current-blocking layer.
- (Original) A semiconductor laser according to Claim 11, 14. 1
- wherein the p-type buried cladding layer has a higher refractive index of light 2 3 than the current-blocking layer.
- (Original) A semiconductor laser according to Claim 10, 1 15.
- wherein the p-type buried cladding layer has a higher refractive index of light 2
- 3 than the current-blocking layer.

LOZAJ\IRV\312329.1

(Original) A semiconductor laser according to Claim 9. 1 16. wherein the p-type buried cladding layer has a higher refractive index of laser 2 light than the current-blocking layer. 3 (Original) A semiconductor laser according to Claim 8, 17. 1 wherein the p-type buried cladding layer has a higher refractive index of light 2 3 than the current-blocking layer. (Original) A semiconductor laser according to Claim 7, 18. 1 wherein the p-type buried cladding layer has a higher refractive index of light 2 3 than the current-blocking layer. (Original) A semiconductor laser according to Claim 6, l 19. 2 wherein the p-type buried cladding layer has a higher refractive index of light 3 than the current-blocking layer. 1 20. (Original) A semiconductor laser according to Claim 5, wherein the p-type buried cladding layer has a higher refractive index of light 2 3 than the current-blocking layer. 1 21. (Original) A semiconductor laser according to Claim 4, wherein the p-type buried cladding layer has a higher refractive index of light 2 than the current-blocking layer. 3

			52478.910

- 1 22. (Original) A semiconductor laser according to Claim 3.
- wherein the p-type buried cladding layer has a higher refractive index of light
- 3 than the current-blocking layer.
- 1 23. (Original) A semiconductor laser according to Claim 2,
- wherein the p-type buried cladding layer has a higher refractive index of light
- 3 than the current-blocking layer.
- 1 24. (Original) A semiconductor laser according to Claim 1,
- wherein the p-type buried cladding layer has a higher refractive index of light
- 3 than the current-blocking layer.
 - 25. (Currently Amended) A semiconductor lager manufacturing method, comprising:
- a first process for successively forming an n-type cladding layer having n-type
- 3 conductivity, an active layer, and a p-type cladding base layer having p-type conductivity on top
- 4 of one another, before forming a current-blocking layer, which substantially has n-type
- 5 conductivity, on specified parts of an upper surface of the p-type cladding base layer;
- a second process/for performing thermal cleaning in a presence of a specified gas
- 7 after the first process has finished;
- a third process for forming, after the second process has finished, a p-type buried
- 9 cladding layer, which has p-type conductivity, so as to cover the current-blocking layer and
- contact remaining parts of the upper surface of the p-type cladding base layer,

المح المح

11

12

13

14

15

16

the first proce	ss including:
-----------------	---------------

- a first subprocess for forming a region of the current-blocking layer that is adjacent to the interface between the p-type cladding base layer and the p-type buried cladding layer with a concentration (hereafter, "N1") of n-type carriers; and a second subprocess for forming another region in at least part of the current-blocking layer with a concentration (hereafter, "N2") of n-type carriers, where N1<N2, and
- wherein the current-blocking layer (13) has a lower refractive index than the p-
- 18 type cladding base layer (5) and the p-type buried cladding layer (7).
- 1 26. (Original) A semiconductor laser manufacturing method according to Claim 25,
- wherein the first process produces the current-blocking layer by forming a first
- 3 layer that contacts the p-type cladding base layer and a second layer on top of the first layer, a
- 4 concentration of n-type carriers being N1 in the first layer and N2 in the second layer.
- 1 27. (Original) A semiconductor laser manufacturing method according to Claim 26,
- wherein the first process forms the first layer from a different composition of
- 3 materials to the second layer.
- 1 28. (Original) A semiconductor laser manufacturing method according to Claim 26,
- wherein the first process produces one of the first layer and the second layer by
- 3 forming sublayers from at least two different compositions of materials.
- 1 29. (Original) A semiconductor laser manufacturing method according to Claim 26,
- wherein the first process co-dopes the second layer with a p2 concentration of
- 3 p-type carriers and an n2 (where n2>p2) concentration of n-type carriers, and N2=(n2-p2).

LOZAJ\IRY\312329.1

1	30.	(Original) A semiconductor laser manufacturing method according to Claim 29,
2		wherein $0 \text{cm}^{-3} \le N1 \le 10^{17} \text{cm}^{-3}$ and $N2 > 10^{17} \text{cm}^{-3}$.
1	31.	(Original) A semiconductor laser manufacturing method according to Claim 28,
2		wherein $0 \text{cm}^{-3} \le N1 \le 10^{17} \text{cm}^{-3}$ and $N2 > 10^{17} \text{cm}^{-3}$.
1	32.	(Original) A semiconductor laser manufacturing method according to Claim 27,
2		wherein $0 \text{cm}^{-3} \le \text{N} 1 \le 10^{17} \text{cm}^{-3}$ and $\text{N} 2 > 10^{17} \text{cm}^{-3}$.
1	33.	(Original) A semiconductor laser manufacturing method according to Claim 26,
2		wherein $0 \text{cm}^{-3} \le \text{N} 1 \le 10^{17} \text{cm}^{-3}$ and $\text{N} 2 > 10^{17} \text{cm}^{-3}$.
l	34.	(Original) A semiconductor laser manufacturing method according to Claim 25,
2		wherein 0cm ⁻³ ≤N1≤10 ¹⁷ cm ⁻³ and N2>10 ¹⁷ cm ⁻³ .

انعی

3

4

5

6

7

35. (Currently Amended) A semiconductor laser manufacturing method, comprising:

a first process for successively forming an n-type cladding layer having n-type conductivity, an active layer, and a p-type cladding base layer having p-type conductivity on top of one another, before forming a current-blocking layer, which substantially has n-type conductivity, on specified parts of an upper surface of the p-type cladding base layer;

a second process for performing thermal cleaning in a presence of a specified gas after the first process has finished;

15°

<i></i>
a third process for forming, after the second process has finished, a p-type buried
cladding layer, which has p-type conductivity, so as to cover the current-blocking layer and
contact remaining parts of the upper surface of
the p-type cladding base layer,
the first process forming the current-blocking layer so as to include a region with
n-type conductivity and a region with p-type conductivity, the first process including:
a first subprocess for forming a region with p-type conductivity adjacent to an
interface between the p-type cladding base layer and the p-type buried cladding layer; and
a second subprocess for forming a region with n-type conductivity in at least part
of a remainder of the current-blocking layer,
wherein the current-blocking layer (13) has a lower refractive index than the p-
type cladding base layer (5) and the p-type buried cladding layer (7).
36. (Currently Amended) semiconductor laser manufacturing method, comprising:
a first process for successively forming an n-type cladding layer having n-type
conductivity, an active layer, a p-type cladding base layer having p-type conductivity, and an
interjacent layer that has p-type conductivity and contacts the first p-type cladding base layer on
top of one another, before forming a current-blocking layer, which substantially has n-type
conductivity, on an upper surface of the interjacent layer;
a second process for performing thermal cleaning in a presence of a specified gas

a second process for performing thermal cleaning in a presence of a specified gas after the first process has finished;

a third process for forming, after the second process has finished, a p-type buried cladding layer, which has p-type conductivity, so as to cover the current-blocking layer and contact r maining parts of the upper surface of the p-type cladding base layer,

LOZAJVIRVU12329.1

12

13

14

15

16

1

the interjacent layer being formed between the current blocking layer and the
p-type cladding base layer so that a lower surface of the current-blocking layer is separated from
an upper surface of the p-type cladding base layer,

wherein the current-blocking layer (13) has a lower refractive index than the ptype cladding base layer (5) and the p-type buried cladding layer (7).

- 37. (Previously Added) A semiconductor laser according to Claim 2,
- wherein the second layer is co-doped with p-type impurities and n-type impurities
- 3 and has substantially n-type conductivity, and such that the concentration of n-type carriers is
- 4 N2.
- 1 38. (Previously Added) A semiconductor laser manufacturing method according to
- 2 Claim 26,
- wherein the first process co-dopes the second layer with p-type impurities and
- 4 n-type impurities, such that the concentration of n-type carriers is N2.
- 1 39. (Previously Added) A semiconductor laser according to Claim 1,
- wherein the current-blocking layer is comprised of at least one of AlInP and
- 3 (Al_xGa_{1-x})yIn_{1-y}P, where 0.7<x<1 and y=0.5.
- 1 40. (Previously Added) A semiconductor laser according to Claim 12,
- wherein the current-blocking layer is comprised of at least one of AlInP and
- 3 (Al_xGa_{1-x})yIn_{1-y}P, where 0.7<x<1 and y=0.5.

LO2A/\\RV\312329.1

- 1 41. (Previously Added) A semiconductor laser according to Claim 25,
- wherein the current-blocking layer is comprised of at least one of AlInP and
- 3 (Al_xGa_{1-x})yIn_{1-y}P, where 0.7<x<1 and y=0.5.
- 1 42. (Previously Added) A semiconductor laser according to Claim 35,
- wherein the current-blocking layer is comprised of at least one of AlInP and
 - 3 (Al_xGa_{1.x})yIn_{1.y}P, where 0.7<x<1 and y=0.5.
 - 1 43. (Previously Added) A semiconductor laser according to Claim 36,
 - wherein the current-blocking layer is comprised of at least one of AlInP and (Al_xGa₁.
 - 3 $_x$)yIn_{1-y}P, where 0.7<x<1 and y=0.5.