

Introdução

A Base de Dados que trabalhamos consiste em:

Observações de árvores de quatro áreas da Floresta Nacional Roosevelt, no Colorado. Em 1998;

Criada por:

Jock A. Blackard;

Dr. Denis J. Dean;

Dr. Charles W. Anderson.

Introdução

- A Base de Dados possui 581.012 amostras;
- Cada amostra apresentadas em 55 Colunas;
- Onde cada coluna apresenta informações sobre o tipo da árvore.
- Resumo das Colunas:

Elevação Aspecto Declive Distância horizontal para para hidrologia hidrologia Distância Distância horizontal para para	horizontal ,
--	----------------

Introdução

Quanto a distribuição dos Dados:

Observa-se que, de acordo com a Base, das 581.012 amostras, mais de 80% estão na Categoria 1 e 2.

Resultando em uma base desbalanceada.

Testando Redes Neurais Sem os atributos categóricos.

Para tratarnos a base, primeiramente removemos os atributos categóricos (Area Selvagem e Tipo de Solo;

```
1 categoricos = list(filter(lambda x: (x.startswith('Wilderness_Area') or x.startswith('Soil_Type')), data_all.columns.to_list()))
2
```

Em seguida, dividos a base para Treino (70%) e para Teste (30%) e realizamos o escalonamento dos Dados;

```
5 X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, shuffle=True)
6
7 X_train_std = (X_train - np.mean(X_train))/np.std(X_train)
8 X_test_std = (X_test - np.mean(X_train))/np.std(X_train)
```

E realizamos o treinamento;

Acurácia - Média: 0.7152962639985313 Acurácia - Desvio Padrão : 0.00238822397143433

F1-Score - Média: 0.5203633874934127

F1-Score - Desvio Padrão: 0.01141224018916451

Testando Redes Neurais Sem os atributos categóricos.

Continuando com o teste, utilizamos o otimizador SGD (demais parâmetros permaneceram iguais);

```
22 ▼ mlp = MLPClassifier(hidden_layer_sizes=(10,),

23

24

25

26

27

27

28

29

mlp.fit(X_train_std, y_train.values.ravel())
```

Acurácia - Média: 0.7160329080227649 Acurácia - Desvio Padrão : 0.0016266547641324695

F1-Score - Média: 0.46468009813821104

F1-Score - Desvio Padrão: 0.011731148839183107

OBSERVAÇÃO:

Com otimizador SGD o tempo de treinamento foi maior e o F-Score foi menor em relação ao otimizador ADAM. Em termos de Acurácia, os resultados são semelhantes com ambos os otimizadores.

Nos testes realizados, usamos:: Uma única camada oculta com 10 neurônios e função de ativação ReLU, além do escalonamento dos Dados.. E o otimizador utilizado, quer seja SGD ou ADAM, trata-se do algoritmo para aproximar o gradiente;

Ao realizar o treinamento 15 vezes, faz com que eliminemos algum viés introduzido por uma boa ou má "sorte" na escolha de pesos no caso de uma única execução.

Propondo Novas Arquiteturas

 Terminado os testes com os diferente otimizadores, passamos para a fase de propor arquiteturas. As arquiteturas de camadas ocultas que propomos nesta atividades são essas.

Propondo Novas Arquiteturas

 Efetuamos o teste com todas as combinações disponíveis entre os parâmetros camada oculta, função de ativação, e hiper parametros otimizadores; número de épocas propostos pela atividade.

```
solvers = ['adam', 'sqd']
max_iters = [100, 150, 200]
param_keys = ['hidden_layer_sizes', 'activation', 'solver', 'max_iter']
base_params = {'random_state': 1, 'verbose': False}
results = []
for hidden_layer_sizes in hidden_layer_sizes_list:
  params = base_params.copy()
  params['hidden_layer_sizes'] = hidden_layer_sizes
  params['activation'] = 'relu'
  for s in solvers:
   params['solver'] = s
   for i in max iters:
      params['max_iter'] = i
      print(params)
      mlp_params_all, acc_mean, acc_std, f1s_mean, f1s_std = evaluate_mlp(X, y, M=N, **params)
      summarized_mlp_params = { param_key: mlp_params_all[param_key] for param_key in param_keys }
      results.append((summarized_mlp_params.values(), acc_mean, acc_std, f1s_mean, f1s_std))
```

Propondo Novas Arquiteturas

 Após a execução as 3 arquiteturas com maior valor de acurácia e f1-score são apresentadas abaixo:

	Configuração MLP ['hidden_layer_sizes', 'activation', 'so	Acurácia Média	Desvio Padrão	F1-Score Média	Desvio Padrão
Θ	[(15, 15), relu, adam, 200]	0.753691	0.00254848	0.613159	0.0133949
1	[(15, 15), relu, adam, 150]	0.752129	0.00423977	0.607575	0.0143259
2	[(15, 15), relu, adam, 100]	0.751287	0.00230428	0.606962	0.00931045

 Após teste e análise das arquiteturas propostas, foi realizado o cálculo de novas arquiteturas a partir da regra da pirâmide geometrica, com os valores de alfa propostos pela atividade. Seguindo a seguinte fórmula:

No qual:

- NH é o número de neurônios ocultos a serem distribuídos em uma ou duas camadas ocultas
- Ni é o número de neurônio na camada de entrada
- No é o número de neurônios na camada de saída


```
hidden_layer_sizes_list = []
a=.5

for h in range (0,30):
   nh = a*((10*7)**(1/2))
   hidden_layer_sizes_list.append((mt.ceil(nh),))
   a+=.12

#print(a)
hidden_layer_sizes_list
```

 Depois de realizados os cálculos chegamos a lista de seguintes arquiteturas a terem seu desempenho medido. [(5,), (6,), (7,), (8,), (9,), (10,), (11,), (12,), (13,), (14,), (15,), (16,), (17,), (18,), (19,), (20,), (21,), (22,), (23,), (24,), (25,), (26,), (27,), (28,), (29,), (30,), (31,), (32,), (33,), (34,)]

 Por restrições de hardware testamos as arquiteturas somente com a quantidade de épocas 200 e somente com o otimizador adam e função de ativação relu.

```
solvers = ['adam']
max_iters = [200]
param_keys = ['hidden_layer_sizes', 'activation', 'solver', 'max_iter'
base_params = {'verbose': False}
for hidden_layer_sizes in hidden_layer_sizes_list:
  params = base_params.copy()
  params['hidden_layer_sizes'] = hidden_layer_sizes
  params['activation'] = 'relu'
  for s in solvers:
    params['solver'] = s
    for i in max_iters:
      params['max_iter'] = i
     print(params)
```

 Tanto na ordenação pela acurácia quanto na ordenação pelo f1-score seguiu-se o mesmo top 3. Para as 3 arquiteturas ao lado

 Terminados os testes para propor novas arquiteturas e estimar o número de neurônios, passou a ser utilizado um dataframe que contivesse todos os atributos presentes no dataset, incluso os categóricos que haviam sido deixados de fora anteriormente.

```
data = data_all
data.shape
 (581012, 55)
data.dtypes
 Horizontal_Distance_To_Fire_Points
                                        1nt64
 Wilderness_Area1
                                        int64
 Wilderness_Area2
                                        int64
 Wilderness_Area3
                                        int64
 Wilderness_Area4
                                        int64
 Soil_Type1
                                        int64
 Soil_Type2
                                        int64
 Soil_Type3
                                        int64
                                        int64
 Soil_Type4
 Soil_Type5
                                        int64
 Soil_Type6
                                        int64
 Soil_Type7
                                        int64
 Soil_Type8
                                        int64
 Soil_Type9
                                        int64
 Snil Tyne1A
                                        int 6/
```

• Após isso é feito o treinamento com a arquitetura que obteve melhor desempenho dentre as arquiteturas propostas ((15,15) com solver adam, ativação relu e máximo de épocas em 200).

```
1 X = data.iloc[:, :(data.shape[1] - 1)]
2 y = data.iloc[:, -1:]
1 #arquitetura própria
1 ptop1_custom = {'verbose': False, 'hidden_layer_sizes': (15,15), 'activation': 'relu', 'solver': 'adam', 'max_iter': 200}
1 mlp_params_all, acc_mean, acc_std, f1s_mean, f1s_std = evaluate_mlp(X, y, N=2, **ptop1_custom)
```

• Comparando os resultados obtivemos uma melhora com relação ao treinamento sem os atributos categóricos, tanto na acurácia quanto com relação ao f1 score.

Sem os atributos categóricos

```
Configuração MLP
['hidden_layer_sizes', 'activation', 'so' Média Desvio Padrão Média Desvio Padrão

[(15, 15), relu, adam, 200] 0.753691 0.00254848 0.613159 0.0133949
```

Com os atributos categóricos

Acurácia - Média: 0.7973769965118414 Acurácia - Desvio Padrão : 0.0025702221406278536

F1-Score - Média: 0.6795517374981748

F1-Score - Desvio Padrão: 0.0008670632605654593

• O mesmo treinamento foi repetido com a arquitetura que foi estimada utilizando a regra da pirâmide geométrica que obteve melhor desempenho((34,0) com solver adam, ativação relu e máximo de épocas em 200).

```
#regra da pirâmide geométricaX

ptop1_geo = {'verbose': False, 'hidden_layer_sizes': (34,), 'activation': 'relu', 'solver': 'adam', 'max_iter': 200}

mlp_params_all, acc_mean, acc_std, f1s_mean, f1s_std = evaluate_mlp(X, y, N=2, **ptop1_geo)
```

• Comparando os resultados obtivemos uma melhora igualmente com relação à acurácia e ao f1 score.

Sem os atributos categóricos

	Configuração MLP ['hidden_layer_sizes', 'activation', 'so	Acurácia Média	Desvio Padrão	F1-Score Média	Desvio Padrão
Θ	((34,), relu, adam, 200)	0.754082	0.00148878	0.615082	0.00646535

Com os atributos categóricos

Acurácia - Média: 0.8157156462272811

Acurácia - Desvio Padrão : 0.001414195887644576

F1-Score - Média: 0.7186963825624235

F1-Score - Desvio Padrão: 0.007296691637514063

• Chegamos à conclusão preliminar de que neste dataset a inserção de atributos categóricos no treinamento melhora a performance do modelo, por conta das informações contidas nestes atributos ajudarem a descrever melhor cada instância do problema, contribuindo para uma melhor classificação. E também que a melhor arquitetura presente nesta parte 2 da atividade 2.2 foi a de (34,0).

BUSCA EM GRADE

TOP 6 ARQUITETURAS

	Configuração MLP		Acurácia		F1-Score
	['hidden_layer_sizes', 'activation', 'solver', 'max_iter']	Média	Desvio Padrão	Média	Desvio Padrão
0	((34,), relu, adam, 200)	0.754082	0.00148878	0.615082	0.00646535
1	((28,), relu, adam, 200)	0.746168	0.00441757	0.587385	0.00622565
2	((23,), relu, adam, 200)	0.742398	0.00279397	0.581322	0.00180623
	Configuração MLP ['hidden_layer_sizes', 'activation', 'solver', 'max_iter']	Média	Acurácia Desvio Padrão	Média	F1-Score Desvio Padrão
0	[(15, 15), relu, adam, 200]	0.753691	0.00254848	0.613159	0.0133949
	[(15, 15), relu, adam, 150]	0.752129	0.00423977	0.607575	0.0143259
1		0.751287	0.00230428	0.606962	0.00931045

Incluindo dados sem atributos categoricos

Configuração

```
hiperparams = {'solver': ['adam'],
                     'batch_size': [1000],
                     'learning_rate_init': [0.001, 0.01],
                     'max_iter': [350],
                     'n_iter_no_change': [10]}
  scores = {'F-Score': make_scorer(f1_score , average='weighted'),
            'Accuracy': make_scorer(accuracy_score)}
✓ 0.7s
  def gridsearch(architecture):
      #Escalonamento dos atributos
      X_train_std = (X_train - np.mean(X_train))/np.std(X_train)
      model_gs = MLPClassifier(hidden_layer_sizes=architecture[0], activation=architecture[1])
      clf = GridSearchCV(model_gs, hiperparams, scoring=scores, n_jobs=-1, refit='F-Score', cv=5, verbose=160)
      clf.fit(X_train_std, y_train)
      return clf

√ 0.4s
```

Busca em Grade

```
clf1 = gridsearch([(15,15), 'relu'])
 ✓ 15m 15.7s
GridSearch...
Fitting 5 folds for each of 2 candidates, totalling 10 fits
   print("----")
   print("([(15,15), 'relu'])\n")
   print("Melhor Optmização de Hiperparâmetros")
   print(clf1.best_params_)
   print("\nMedia F1-Score")
   print(clf1.best_score_)
 ✓ 0.2s
-----Arquitetura 1-----
([(15,15), 'relu'])
Melhor Optmização de Hiperparâmetros
{'batch_size': 1024, 'learning_rate_init': 0.001, 'max_iter': 350, 'n_iter_no_change': 10, 'solver': 'adam'}
Media F1-Score
0.7230186134140594
```

Busca em Grade

```
... ----Arquitetura 2-----
([(34,), 'relu'])

Melhor Optmização de Hiperparâmetros
{'batch_size': 1024, 'learning_rate_init': 0.01, 'max_iter': 350, 'n_iter_no_change': 10, 'solver': 'adam'}

Media F1-Score
0.7279188737056288
```

```
-----Arquitetura 1-------
([(15,15), 'relu'])

Melhor Optmização de Hiperparâmetros
{'batch_size': 1024, 'learning_rate_init': 0.001, 'max_iter': 350, 'n_iter_no_change': 10, 'solver': 'adam'}

Media F1-Score
0.7230186134140594
```

Busca em Grade

```
... ----Arquitetura 4-----
    ([(28,), 'relu'])

Melhor Optmização de Hiperparâmetros
    {'batch_size': 1024, 'learning_rate_init': 0.01, 'max_iter': 350, 'n_iter_no_change': 10, 'solver': 'adam'}

Media F1-Score
    0.7180377665344146
```

```
... ----Arquitetura 3-----
    ([(23,), 'relu'])

Melhor Optmização de Hiperparâmetros
    {'batch_size': 1024, 'learning_rate_init': 0.01, 'max_iter': 350, 'n_iter_no_change': 10, 'solver': 'adam'}

Media F1-Score
    0.7153785748743549
```

Incluindo dados com atributos categoricos

Busca em Grade (com atributos en egoricos)

```
----Arquitetura 2-----
([(34,), 'relu'])
Melhor Optmização de Hiperparâmetros
{'batch_size': 1024, 'learning_rate_init': 0.001, 'max_iter': 350, 'n_iter_no_change': 10, 'solver': 'adam'}
Media F1-Score
0.7253857928393421
```

```
-----Arquitetura 4-----
([(28,), 'relu'])
Melhor Optmização de Hiperparâmetros
{'batch_size': 1024, 'learning_rate_init': 0.001, 'max_iter': 350, 'n_iter_no_change': 10, 'solver': 'adam'}
Media F1-Score
0.7222001020330407
```

Busca em Grade (com atributos en egoricos)

```
-----Arquitetura 1------
([(15,15), 'relu'])
Melhor Optmização de Hiperparâmetros
{'batch_size': 1024, 'learning_rate_init': 0.01, 'max_iter': 350, 'n_iter_no_change': 10, 'solver': 'adam'}
Media F1-Score
0.7199636256690877
```

```
-----Arquitetura 3-----
([(23,), 'relu'])
Melhor Optmização de Hiperparâmetros
{'batch_size': 1024, 'learning_rate_init': 0.001, 'max_iter': 350, 'n_iter_no_change': 10, 'solver': 'adam'}
Media F1-Score
0.7147586620721607
```

Força Bruta (sem atributos categori


```
y_pred = brute_force.predict(X_test_std)
   matrix = ConfusionMatrixDisplay.from_predictions(y_test, y_pred)
   plt.title('Matriz de confusão para o conjunto de teste')
   plt.show(matrix)
   plt.show()
 ✓ 3.8s
  Matriz de confusão para o conjunto de teste
       908 9965 6 0 100 9 820
                                   60000
   2 10519 73085 481 5 412 234 108
                                   50000
   3 - 20 1082 9040 72 7 514 0
                                   40000
      0 0 161 616 0 48 0
                                   - 30000
      59 1271 24 0 1448 9 0
                                   20000
      9 752 937 35 3 3462 0
                                   10000
   7 - 780 51 0 0 0 0 5252
         2 3 4 5 6 7
              Predicted label
  喧 ▷ ▷ □ □
   print('Acurácia:', accuracy_score(y_pred, y_test))
   print('F1-Score:', f1_score(y_pred,y_test, average='weighted'))
   print('Precisão:', precision_score(y_pred, y_test, average='weighted'))
   print('Revocação:', recall_score(y_pred, y_test, average='weighted'))
 ✓ 0.2s
Acurácia: 0.8365327244354691
F1-Score: 0.8374401369328
Precisão: 0.8392214267085112
Revocação: 0.8365327244354691
```

Identificando Melhor Arquitatura

```
... ----Arquitetura 2------
([(34,), 'relu'])

Melhor Optmização de Hiperparâmetros
{'batch_size': 1024, 'learning_rate_init': 0.01, 'max_iter': 350, 'n_iter_no_change': 10, 'solver': 'adam'}

Media F1-Score
0.7279188737056288
```

```
Description Descr
                          print("F-Score = "+str(clf4.cv_results_[fs][0]))
                          print("Acurácia = "+str(clf4.cv_results_['split0_test_Accuracy'][0])+"\n")
 Fold 1
 Acurácia = 0.7375648496471687
 Fold 2
F-Score = 0.7189156187488602
 Acurácia = 0.7375648496471687
Fold 3
 F-Score = 0.728388611264044
 Acurácia = 0.7375648496471687
Fold 4
 F-Score = 0.7221260052790185
 Acurácia = 0.7375648496471687
Fold 5
 Acurácia = 0.7375648496471687
```

EMPACOTANDO A SOLUÇ

```
🛨 Código 🕂 Markdown 📗 Executar Tudo 🗮 Limpar as Saídas de Todas as Células 🛭 Restart 🔲 Interrupt 🛮 🗟 Variables 🗏 Outline ⋯
              KICALIT. MOUCE_SCIECCION IMPORT CRAIN_CCSC_SPIIC
       import pickle
       data_all = pd.read_csv('data/covtype.csv')
       # Elimine todas as colunas relativas aos atributos categóricos
       categoricos = list(filter(lambda x: (x.startswith('Wilderness_Area') or x.startswith('Soil_Type')), data_all.columns.to_list()))
       data = data_all.drop(categoricos, axis=1)
       X = data.iloc[:, :(data.shape[1] - 1)]
       y = data.iloc[:, -1:]
       X = np.array(X)
       y = np.array(y)
       X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, shuffle = True)
       X_train_std = (X_train - np.mean(X_train))/np.std(X_train)
       X_test_std = (X_test - np.mean(X_train))/np.std(X_train)
       hiperparams = {'solver': ['adam'],
                           'batch_size': [1024],
                           'learning_rate_init': [0.01],
                           'max_iter': [500],
                           'n_iter_no_change': [10]}
       scores = {'F-Score': make_scorer(f1_score , average='weighted'),
                  'Accuracy': make_scorer(accuracy_score)}
```

EMPACOTANDO A SOLUÇ

```
best_network = gridsearch([(34,), 'relu'])

√ 8m 7.5s

Fitting 5 folds for each of 1 candidates, totalling 5 fits
   filename = 'bestnetwork.sav'
   pickle.dump(best_network, open(filename, 'wb'))
   def load_cfl():
       pickled_best_network = pickle.load(open('bestnetwork.sav', 'rb'))
       return pickled_best_network
```

Recuperando o Modelo

```
load_best_cfl = load_cfl()
✓ 0.3s
 y_pred = load_best_cfl.predict(X_test_std)

√ 0.2s

 matrix = ConfusionMatrixDisplay.from_predictions(y_test, y_pred)
 plt.title('Matriz de confusão para o conjunto de teste')
 plt.show(matrix)
 plt.show()

√ 1.2s

Matriz de confusão para o conjunto de teste
 1 -3581024762 2 0 6 10 2682
                                   70000
 2 - 8501 75639 738 1 67 217 290
                                   60000
                                   - 50000
     0 2176 7918 53 0 468 0
                                   40000
     0 8 368 354 0 65 0
                                   - 30000
                                   20000
    0 1767 2429 7 0 956 0
                                   10000
            Predicted label
```

