

Two Points of Views

Seq-to-seq

Hidden Markov Model (HMM)

$$P_{\theta}(X|Y) = ?$$

The token here is small unit called state.

Training

$$\theta^* = \arg\max_{\theta} \log P_{\theta}(X|\hat{Y})$$

Testing

$$Y^* = \arg\max_{Y} \log P_{\theta}(X|Y)$$

HMM

A sentence corresponds to a sequence of states
 what do you think

t-d+uw1 t-d+uw2 t-d+uw3 d-uw+y1 d-uw+y2 d-uw+y3 *State:*

Hidden Markov Model (HMM)

HMM – Emission Probability

Each state has a stationary distribution for acoustic features

Gaussian Mixture Model (GMM)

HMM – Emission Probability

Each state has a stationary distribution for acoustic features

Problem (X|Y) =?
$$\sum_{h \in align(Y)} P(X|h) \quad h = abccbc \times h = abbbccc \times h = abbbcccc \times h = abbbbcccc \times h = abbbbccccc \times h = abbbbcccc \times h = abbbbcccc \times h = abbbbccccc \times h = abbbbccccc \times h = abbbbcccc \times h = abbbbccccc \times h = abbbccccc \times h = ab$$

Last hidden layer or bottleneck layer are also possible.

Before End-to-end — Hybrid

DNN output
$$P(x|a) = \frac{P(x,a)}{P(a)} = \frac{P(a|x)P(x)}{P(a)}$$
 Count from training data

Human Parity!

- 微軟語音辨識技術突破重大里程碑:對話辨識能力達人類水準!(2016.10)
 - https://www.bnext.com.tw/article/41414/bn-2016-10-19-020437-216

Machine 5.9% v.s. Human 5.9%

[Yu, et al., INTERSPEECH'16]

- IBM vs Microsoft: 'Human parity' speech recognition record changes hands again (2017.03)
 - http://www.zdnet.com/article/ibm-vs-microsoft-human-parityspeech-recognition-record-changes-hands-again/

Machine 5.5% v.s. Human 5.1%

[Saon, et al., INTERSPEECH'17]

Very Deep

	VGG Net (85M Parameters)	Residual-Net (38M Parameters)	LACE (65M Parameters)		
)	14 weight layers	49 weight layers	22 weight layers		
,	40x41 input	40x41 input	40x61 input		
	3 – conv 3x3, 96	3 – [conv 1x1, 64 conv 3x3, 64 conv 1x1, 256]	5 – conv 3x3, 128		
	Max pool	4 – [conv 1x1, 128 conv 3x3, 128 conv 1x1, 512]	5 – conv 3x3, 256		
	4 – conv 3x3, 192	6 – [conv 1x1, 256 conv 3x3, 256 conv 1x1, 1024]	5 – conv 3x3, 512		
	Max pool	3 – [conv 1x1, 512 conv 3x3, 512 conv 1x1, 2048]	5 – conv 3x3, 1024		
	4 – conv 3x3, 384	Average pool	1 – conv 3x4, 1		
	Max pool	Softmax (9000)	Softmax (9000)		
6]	2-FC-4096				
.1	Softmax (9000)				

[Yu, et al., INTERSPEECH'16]

LAS

• LAS directly computes P(Y|X)

$$P(Y|X) = p(a|X)p(b|a,X)...$$

$$\theta^* = \arg\max_{\theta} \log P_{\theta}(\hat{Y}|X)$$

$$Y^* = arg \max_{Y} log P_{\theta}(Y|X)$$

Beam Search

CTC, RNN-T

$$P(Y|X) = ?$$

$$x^{1} x^{2} x^{3} x^{4}$$

$$a b$$

• LAS directly computes P(Y|X)

$$P(Y|X) = p(a|X)p(b|a,X)...$$

 CTC and RNN-T need alignment

$$P_{\theta}(Y|X) = \sum_{h \in align(Y)} P(h|X)$$

HMM, CTC, RNN-T

HMM

CTC, RNN-T

$$P_{\theta}(X|Y) = \sum_{h \in align(Y)} P(X|h) \qquad P_{\theta}(Y|X) = \sum_{h \in align(Y)} P(h|X)$$

$$P_{\theta}(Y|X) = \sum_{h \in align(Y)} P(h|X)$$

- 1. Enumerate all the possible alignments
- 2. How to sum over all the alignments
- 3. Training:

$$\theta^* = \arg\max_{\theta} \log P_{\theta}(\widehat{Y}|X)$$

$$\frac{\partial P(\widehat{Y}|X)}{\partial \theta} = \widehat{X}$$

4. Testing (Inference, decoding):

$$Y^* = arg \max_{Y} log P_{\theta}(Y|X)$$

LAS

All the alignments

你們在忙什麼 ☺

duplicate to length T

For n = 1 to Noutput the n-th token t_n times

constraint:
$$t_1 + t_2 + \cdots + t_N = T$$
, $t_n > 0$

Trellis Graph

HMM cat

ccaaat caaaat ...

duplicate to length T

For n = 1 to Noutput the n-th token t_n times

constraint: $t_1 + t_2 + \cdots + t_N = T$, $t_n > 0$

Trellis Graph

CTC

cat
$$\begin{array}{c} \text{c}\,\phi\,\text{aatt}\quad\phi\,\text{c}\,\phi\,\text{w}\\ \text{duplicate}\\ \text{add}\,\phi \end{array}$$
 to length T

output " ϕ " c_0 times For n = 1 to *N* output the n-th token t_n times output " ϕ " c_n times constraint: $t_1 + t_2 + \cdots t_N +$ $c_0 + c_1 + \cdots c_N = T$ $t_n > 0$ $c_n \ge 0$

cat $\begin{array}{c|c} \text{c} & \text{c} & \text{c} & \text{d} & \text{$

	x^1	x^2	x^3	<i>x</i> ⁴	<i>x</i> ⁵	<i>x</i> ⁶
φ						
С		→ du	plicate			
φ		ins	sert ϕ			
а			xt toker			
φ		(φ	can be	skipped)	
t						
φ						

cat $\begin{array}{c|c} \text{c} & \text{c} & \text{c} & \text{d} & \text{$

	x^1	x^2	x^3	x^4	<i>x</i> ⁵	<i>x</i> ⁶
φ	• ~	→ dı	uplicate	φ		
С		ne	ext toke	n		
ϕ			annot sk			
а		aı	ny toker	1		
ϕ						
t						
φ						

cat $\begin{array}{c|c} \text{c} & \text{c} & \text{c} & \text{d} & \text{$

	x^1	x^2	x^3	x^4	x^5	<i>x</i> ⁶
φ						
С						
φ					→ dup	olicate
а			→ dup	licate	ins	ert ϕ
ϕ			inse	ert ϕ		
t			nex	t token		
φ						

cat $\begin{array}{c|c} \text{c} & \text{c} & \text{c} & \text{d} & \text{d} \\ & & \text{d} & \text{d} \\ & \text{add} & \phi \end{array}$

	x^1	x^2	x^3	<i>x</i> ⁴	<i>x</i> ⁵	<i>x</i> ⁶
φ	ϕ_{\bullet}	С				
С	C		-			
ϕ	a			a		
а		1			Þ	
ϕ		φ			t	
t			t			
ϕ				φ	φ	→ •

cat $\begin{array}{c|c} c & c & c & \phi &$

	x^1	x^2	x^3	x^4	<i>x</i> ⁵	x ⁶
φ	ϕ	С				
С	c					
φ		a			а	
а						
φ				t	t	
t				1	ϕ ,	
ϕ					φ	→

	x^1	x^2	x^3	<i>x</i> ⁴	<i>x</i> ⁵	<i>x</i> ⁶	
φ							
S			•			next to	oken
ϕ		IS	the sa	me tok	ken		
е			→ dup	olicate			
φ			ins	ert ϕ			
е			nex	t token			
φ			ee	→ e			

$$c \phi \phi \phi a \phi \phi t \phi$$
 $c \phi \phi a \phi \phi t \phi \phi$

output " ϕ " c_0 times

For n = 1 to Noutput the n-th token 1 times
output " ϕ " c_n times constraint: $c_0 + c_1 + \cdots c_N = T$ $c_N > 0$ $c_n \ge 0$ for n = 1 to N-1

	x^1	x^2	x^3	x^4	x^5	x ⁶			
	c	<i>b</i> →							
С								→	Insert ϕ
а								1	output token
t						$\overline{\phi}$	→ •		

HMM, CTC, RNN-T

HMM

CTC, RNN-T

$$P_{\theta}(X|Y) = \sum_{h \in align(Y)} P(X|h) \qquad P_{\theta}(Y|X) = \sum_{h \in align(Y)} P(h|X)$$

$$P_{\theta}(Y|X) = \sum_{h \in align(Y)} P(h|X)$$

- 1. Enumerate all the possible alignments
- 2. How to sum over all the alignments
- 3. Training:

$$\theta^* = \arg\max_{\theta} \log P_{\theta}(\widehat{Y}|X)$$

$$\frac{\partial P(\hat{Y}|X)}{\partial \theta} = ?$$

4. Testing (Inference, decoding):

$$Y^* = arg \max_{Y} log P_{\theta}(Y|X)$$

Score Computation

Score Computation

Score Computation

 $\alpha_{i,j}$: the summation of the scores of all the alignments that read i-th acoustic features and output j-th tokens

$$\alpha_{4,2} = \alpha_{4,1} p_{4,1}(a) + \alpha_{3,2} p_{3,2}(\phi)$$

	x^1	x^2	x^3	χ^4	<i>x</i> ⁵	<i>x</i> ⁶
	•			▶.		
С	*	••••	▶♥	α_{i}	4,1 enerat	o "a"
а	↓	,	$\alpha_{3,2}$		4,2	с а
t				ad x^4 nerate	"φ",	

 $\alpha_{i,j}$: the summation of the scores of all the alignments that read i-th acoustic features and output j-th tokens

$$\alpha_{4,2} = \alpha_{4,1}p_{4,1}(a) + \alpha_{3,2}p_{3,2}(\phi)$$

You can compute summation of the scores of all the alignments.

HMM, CTC, RNN-T

HMM

CTC, RNN-T

$$P_{\theta}(X|Y) = \sum_{h \in align(Y)} P(X|h) \qquad P_{\theta}(Y|X) = \sum_{h \in align(Y)} P(h|X)$$

$$P_{\theta}(Y|X) = \sum_{h \in align(Y)} P(h|X)$$

- 1. Enumerate all the possible alignments
- 2. How to sum over all the alignments
- 3. Training:

$$\theta^* = \arg\max_{\theta} \log P_{\theta}(\widehat{Y}|X)$$

$$\frac{\partial P(\widehat{Y}|X)}{\partial \theta} = \widehat{X}$$

4. Testing (Inference, decoding):

$$Y^* = arg \max_{Y} log P_{\theta}(Y|X)$$

Training

$$\theta^* = arg \max_{\theta} log P(\hat{Y}|X)$$

$$\theta \xrightarrow{p_{4,1}(a)} P(\hat{Y}|X)$$

$$P(\hat{Y}|X) = \sum_{h} P(h|X)$$

φ c φ φ a φ t φ φ

$$p_{1,0}(\phi)$$
 $p_{2,0}(c)$ $p_{2,1}(\phi)$ $p_{3,1}(\phi)$ $p_{4,1}(a)$ $p_{4,2}(\phi)$ $p_{5,2}(t)$ $p_{5,3}(\phi)$ $p_{6,3}(\phi)$

$$\frac{\partial P(\hat{Y}|X)}{\partial \theta} = ? \qquad \frac{\partial p_{4,1}(a)}{\partial \theta} \frac{\partial P(\hat{Y}|X)}{\partial p_{4,1}(a)} + \frac{\partial p_{3,2}(\phi)}{\partial \theta} \frac{\partial P(\hat{Y}|X)}{\partial p_{3,2}(\phi)} + \cdots$$

Each arrow is a component

$$\frac{\partial p_{4,1}(a)}{\partial \theta} = ?$$

Backpropagation (through time)

$$\frac{\partial P(\hat{Y}|X)}{\partial \theta} = ? \qquad \frac{\partial p_{4,1}(a)}{\partial \theta} \frac{\partial P(\hat{Y}|X)}{\partial p_{4,1}(a)} + \frac{\partial p_{3,2}(\phi)}{\partial \theta} \frac{\partial P(\hat{Y}|X)}{\partial p_{3,2}(\phi)} + \cdots$$

$$P(\hat{Y}|X) = \sum_{\substack{h \text{ with } p_{4,1}(a) \\ p_{4,1}(a) \times other}} P(h|X) + \sum_{\substack{h \text{ without } p_{4,1}(a) \\ }} P(h|X)$$

$$\frac{\partial P(\hat{Y}|X)}{\partial p_{4,1}(a)} = \sum_{h \text{ with } p_{4,1}(a)} other = \sum_{h \text{ with } p_{4,1}(a)} \frac{P(h|X)}{p_{4,1}(a)}$$

$$= \frac{1}{p_{4,1}(a)} \sum_{h \text{ with } p_{4,1}(a)} P(h|X)$$

 $\beta_{i,j}$: the summation of the score of all the alignments staring from i-th acoustic features and j-th tokens

$$\beta_{4,2} = \beta_{4,3} p_{4,2}(t) + \beta_{5,2} p_{4,2}(\phi)$$

	x^1	x^2	x^3	x^4	<i>x</i> ⁵	<i>x</i> ⁶	
				read	<i>x</i> ⁵		
С				gene	rate "	<i>þ"</i> ,	
			eta_4	0	$eta_{5,}$		
а			P_4	.,2	₽5, →- ·····	2 ···•. ····	
a	OT .	enerat	o "t"	Ť			
_	g	ciicial	.C (
t			eta_4	,3	· · · • • • · · · · · ·	••••	•••

$$\frac{\partial P(\hat{Y}|X)}{\partial p_{4,1}(a)} = \frac{1}{p_{4,1}(a)} \sum_{\substack{a \text{ with } p_{4,1}(a)}} P(a|X) \quad \alpha_{4,1} \ p_{4,1}(a) \beta_{4,2}$$

HMM, CTC, RNN-T

HMM

CTC, RNN-T

$$P_{\theta}(X|Y) = \sum_{h \in align(Y)} P(X|h) \qquad P_{\theta}(Y|X) = \sum_{h \in align(Y)} P(h|X)$$

$$P_{\theta}(Y|X) = \sum_{h \in align(Y)} P(h|X)$$

- 1. Enumerate all the possible alignments
- 2. How to sum over all the alignments
- 3. Training:

$$\theta^* = \arg\max_{\theta} \log P_{\theta}(\widehat{Y}|X)$$

$$\frac{\partial P(\widehat{Y}|X)}{\partial \theta} = ?$$

4. Testing (Inference, decoding):

$$Y^* = arg \max_{Y} log P_{\theta}(Y|X)$$

Summary

	LAS	СТС	RNN-T
Decoder	Not independent	independent	Not independent
Alignment	Not explicit (Soft alignment)	Yes	Yes
Training	Just train it	Sum over alignment	Sum over alignment
Streaming	No	Yes	Yes

Reference

- [Yu, et al., INTERSPEECH'16] Dong Yu, Wayne Xiong, Jasha Droppo, Andreas Stolcke, Guoli Ye, Jinyu Li, Geoffrey Zweig, Deep Convolutional Neural Networks with Layer-wise Context Expansion and Attention, INTERSPEECH, 2016
- [Saon, et al., INTERSPEECH'17] George Saon, Gakuto Kurata, Tom Sercu, Kartik Audhkhasi, Samuel Thomas, Dimitrios Dimitriadis, Xiaodong Cui, Bhuvana Ramabhadran, Michael Picheny, Lynn-Li Lim, Bergul Roomi, Phil Hall, English Conversational Telephone Speech Recognition by Humans and Machines, INTERSPEECH, 2017