Titanic Survival Data

Data dictionary

- survival Survival (0 = No, 1 = Yes)
- pclass Ticket class (1 = 1st, 2 = 2nd, 3 = 3rd)
- sex Sex
- Age Age in years
- sibsp No of siblings / spouses aboard the Titanic
- parch No of parents / children aboard the Titanic
- ticket Ticket number
- fare Passenger fare
- cabin Cabin number
- embarked Port of Embarkation (C = Cherbourg, Q = Queenstown, S = Southampton)

Importing Library

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")

%matplotlib inline
```

Data Preprocessing

```
In [2]: ds = pd.read_csv('train.csv')
    ds.head()
```

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

```
In [3]: # Remove possible unrelated column and bad data column
ds = ds.drop(['PassengerId', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis = 1)
```

In [4]: ds.head()

Out[4]:

	Survived	Pclass	Sex	Age	SibSp	Parch
0	0	3	male	22.0	1	0
1	1	1	female	38.0	1	0
2	1	3	female	26.0	0	0
3	1	1	female	35.0	1	0
4	0	3	male	35.0	0	0

```
In [5]: #Combine column that are related
ds['Family Onboard'] = ds.SibSp.astype(int) + ds.Parch.astype(int)
ds = ds.drop(['SibSp','Parch'],axis=1)
```

```
In [6]: ds.head()
Out[6]:
            Survived Pclass
                             Sex Age Family Onboard
                             male 22.0
         0
                  0
                         1 female 38.0
                         3 female 26.0
                                                   0
                         1 female 35.0
                                                   1
                            male 35.0
                                                   0
In [7]: #Find null column
        ds.isnull().sum()
Out[7]: Survived
                              0
```

Out[7]: Survived 0 Pclass 0 Sex 0 Age 177 Family Onboard 0 dtype: int64

In [8]: ds.info()

```
RangeIndex: 891 entries, 0 to 890
Data columns (total 5 columns):
   Column
                    Non-Null Count Dtype
    Survived
                    891 non-null
                                    int64
    Pclass
                    891 non-null
                                    int64
 2
     Sex
                    891 non-null
                                    object
                                    float64
    Age
                    714 non-null
    Family Onboard 891 non-null
                                    int32
dtypes: float64(1), int32(1), int64(2), object(1)
memory usage: 31.4+ KB
```

<class 'pandas.core.frame.DataFrame'>

```
In [9]: #Replace missing value using simpler imputer with mean strategy
ds['Age'].fillna(ds['Age'].mean(),inplace=True)

In [10]: ds.isnull().sum()

Out[10]: Survived 0
Pclass 0
Sex 0
Age 0
Family Onboard 0
dtype: int64

EDA

In [11]: #Seperate numerical and categorical values
```

ds_num = ds[['Age', 'Family Onboard']]
ds_cat = ds[['Survived', 'Pclass', 'Sex']]

```
In [12]: for i in ds_num.columns:
    plt.hist(ds_num[i], color = 'green', bins = 20)
    plt.title(i)
    plt.ylabel('No of People')
    plt.show()
```



```
In [13]: print('Oldest Passenger: ', ds.Age.max())
print(f'Youngest Passenger: {ds.Age.min() * 12} months')
print('Most Passenger Age: ', ds.Age.mode())
```

Oldest Passenger: 80.0

Youngest Passenger: 5.04 months Most Passenger Age: 0 29.699118

dtype: float64

- Most of the passenger age is 29 years old. The most oldest passenger is 80 years old while the youngest passenger is 5 month old.
- Most of the passenger does not have and family member or spouse onboard. Maximum no of family member or spouse on bord is 9 people.

Survival Percentage

- From the pie chart, only 38% of the passenger survive the tragedy.
- Most of the passenger is 3rd Class passenger.
- Male passenger is the most passenger for Titanic.

Visualizing numerical data with output

```
In [16]: sns.catplot(x='Survived', y ='Age', data = ds, kind = 'box')
plt.title('Most age That Survived')
sns.catplot(x='Survived', y ='Family Onboard', data = ds, kind = 'box')
plt.title('Person with No. of Family Members That Survived')
```

Out[16]: Text(0.5, 1.0, 'Person with No. of Family Members That Survived')

- Most passenger that survived the tragedy has age range from 20 years old until 35 years old.
- Most passenger that have 0 until 2 family member onboard survived the tragedy while most passenger that have more than 2 family member onboard did not survived the tragedy

Visualizing categorical data with output

```
In [17]: sns.catplot(x = 'Sex', data = ds, kind = 'count', hue = 'Survived')
    plt.title('Gender That Survived')
    sns.catplot(x = 'Pclass', data = ds, kind = 'count', hue = 'Survived')
    plt.title('Ticket Class That Survived')
```

Out[17]: Text(0.5, 1.0, 'Ticket Class That Survived')

- Most female passenger survived the tragedy
- First class passenger have the highest percentage of survival rather than second and third class passenger.

Machine Learning

Seperate input and ouput variable

Change gender into numeric value using Label Encoder

Seperate data into train and test

```
In [115]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
```

Feature scaling

```
In [128]: from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    X_train = sc.fit_transform(X_train)
    X_test = sc.fit_transform(X_test)
```

Naive Bayes

```
In [22]: from sklearn.naive_bayes import GaussianNB
    classifierNB = GaussianNB()
    classifierNB = classifierNB.fit(X_train,y_train)

In [23]: y_pred = classifierNB.predict(X_test)

In [24]: from sklearn.metrics import confusion_matrix
    cmNB = confusion_matrix(y_test, y_pred)
    print(cmNB)

[[96 14]
    [20 49]]

In [25]: from sklearn.metrics import accuracy_score
    ACC_NB = accuracy_score(y_test, y_pred)*100
    print('The accurancy score is ', ACC_NB)
    model_acc={}
    model_acc={}
    model_acc={Naive Bayes'} = ACC_NB
```

The accurancy score is 81.00558659217877

Logistic regression

```
In [26]: from sklearn.linear_model import LogisticRegression
    classifierLR = LogisticRegression(random_state=0)
    classifierLR.fit(X_train,y_train)

Out[26]: LogisticRegression(random_state=0)

In [27]: y_pred = classifierLR.predict(X_test)

In [28]: cmLR = confusion_matrix(y_test, y_pred)
    print(cmLR)

    [[97 13]
    [23 46]]

In [29]: from sklearn.metrics import accuracy_score
    ACC_LR = accuracy_score(y_test, y_pred)*100
    print('The accurancy score is ', ACC_LR)
    model_acc['Logistic Regression'] = ACC_LR
```

The accurancy score is 79.88826815642457

K Nearest Neighbours

```
In [31]: from sklearn.metrics import accuracy_score
    ACC_KNN = accuracy_score(y_test, y_pred)*100
    print('The accurancy score is ', ACC_KNN)
    model_acc['K Nearest Neighbour'] = ACC_KNN
```

The accurancy score is 82.68156424581005

Support Vector Machine

In [32]: from sklearn.svm import SVC

```
classifierSVC = SVC(kernel='rbf', random_state=0) #kernel can be changed to increase accurancy
classifierSVC.fit(X_train,y_train)
y_pred = classifierSVC.predict(X_test)
cmSVC = confusion_matrix(y_test,y_pred)
print(cmSVC)

[[99 11]
        [23 46]]

In [33]: from sklearn.metrics import accuracy_score
        ACC_SVC = accuracy_score(y_test, y_pred)*100
        print('The accuracy score is ', ACC_SVC)
        model acc['Support Vector Machine'] = ACC_SVC
```

The accuracy score is 81.00558659217877

Random Forest

The accurancy score is 82.12290502793296

Desicion Tree

```
In [36]: from sklearn.tree import DecisionTreeClassifier
    classifierDT = DecisionTreeClassifier(criterion='entropy', random_state=0)
    classifierDT.fit(X_train, y_train)
    y_pred = classifierDT.predict(X_test)
    cmDT = confusion_matrix(y_test, y_pred)
    print(cmDT)
    ACC_DT = accuracy_score(y_test, y_pred)*100
    print('The accurancy score is ', ACC_DT)
    model_acc['Decision Tree'] = ACC_DT

[[99 11]
    [22 47]]
    The accurancy score is 81.56424581005587
```

XGBOOST

```
In [129]: import xgboost as xgb

    clf= xgb.XGBClassifier(max_depth=3, n_estimators=100, colsample_bytree=1.0, subsample=1.0, learning_rate=0.12)
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    [13:32:47] WARNING: ..\src\learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

In [130]: cmXG = confusion_matrix(y_test,y_pred)
    print(cmXG)

    [[102 8]
    [22 47]]

In [131]: ACC_XG = accuracy_score(y_test, y_pred)*100
    print('The accurancy score is ', ACC_XG)
    model_acc['XGBoost'] = ACC_XG
```

The accurancy score is 83.24022346368714

Artificial Neural Network

```
In [67]: import tensorflow as tf

ann = tf.keras.models.Sequential()
ann.add(tf.keras.layers.Dense(units=10, activation='relu')) #input layer and first hidden layer
ann.add(tf.keras.layers.Dense(units=10, activation='relu')) #second hidden layer
ann.add(tf.keras.layers.Dense(units=1, activation='sigmoid')) #output layer
```

```
In [68]: | ann.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
       ann.fit(X_train, y_train, batch_size = 32, epochs = 100)
       Epoch 9/100
       23/23 [============= ] - 0s 6ms/step - loss: 0.4999 - accuracy: 0.7907
       Epoch 10/100
       23/23 [============== ] - 0s 4ms/step - loss: 0.4893 - accuracy: 0.7963
       Epoch 11/100
       Epoch 12/100
       23/23 [============= ] - 0s 6ms/step - loss: 0.4742 - accuracy: 0.8048
       Epoch 13/100
       23/23 [============== ] - 0s 6ms/step - loss: 0.4686 - accuracy: 0.8090
       Epoch 14/100
       23/23 [============= ] - 0s 4ms/step - loss: 0.4635 - accuracy: 0.8132
       Epoch 15/100
       23/23 [============== ] - 0s 4ms/step - loss: 0.4592 - accuracy: 0.8132
       Epoch 16/100
       23/23 [============= ] - 0s 4ms/step - loss: 0.4559 - accuracy: 0.8118
       Epoch 17/100
       23/23 [=================== ] - 0s 5ms/step - loss: 0.4520 - accuracy: 0.8132
       Epoch 18/100
```

```
In [69]: y_pred = ann.predict(X_test)
         y_pred = (y_pred > 0.5)
         np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1)
                [0, 0],
                [0, 1],
                [0, 0],
                [0, 0],
                [1, 1],
                [0, 0],
                [0, 1],
                [0, 0],
                [1, 1],
                [0, 0],
                [1, 1],
                [1, 1],
                [1, 1],
                [0, 1],
                [0, 0],
                [0, 0],
                [0, 0],
                [1, 1],
                [0, 0],
                [0. 0].
In [70]: cmAnn = confusion_matrix(y_test, y_pred)
         print(cmAnn)
         [[100 10]
          [ 23 46]]
In [71]: ACC_Ann = accuracy_score(y_test, y_pred)*100
         print('The accurancy score is ', ACC_Ann)
         model acc['Artificial Neural Network'] = ACC Ann
         The accurancy score is 81.56424581005587
```

Accuracy score of all model

```
In [109]: model_ds = pd.DataFrame.from_dict(model_acc,orient = 'index',columns = ['Accuracy Score'])
    model_ds = model_ds.sort_values(by ='Accuracy Score',ascending = False)
    model_ds
```

Out[109]:

	Accuracy Score
XGBoost	83.240223
K Nearest Neighbour	82.681564
Random Forest Classification	82.122905
Decision Tree	81.564246
Artificial Neural Network	81.564246
Naive Bayes	81.005587
Support Vector Machine	81.005587
Logistic Regression	79.888268

```
In [110]: gig,ax = plt.subplots(figsize = (12,6))
sns.barplot(x="Accuracy Score", y=model_ds.index, data=model_ds,color = 'red')
plt.title('Titanic Model Accuracy Score', fontsize=15, color="blue")
```

Out[110]: Text(0.5, 1.0, 'Titanic Model Accuracy Score')

Titanic Model Accuracy Score

In []:		
L 3 .		