YIDAN PAN

33 Avenue Louis Pasteur, 8-135 Boston, MA, 02115 USA yidanpan.bio@gmail.com

LinkedIn Github

Updated: Oct. 2022

EDUCATION

Rice University

Houston, TX

Doctor of Philosophy, Systems, Synthetic, and Physical Biology (SSPB)

May 2020

Thesis: Profiling Genome Editing Outcomes for Biological Studies and Disease Treatment

Southern University of Science and Technology

Shenzhen, China

Bachelor of Science, Biology

Jan. 2015

WORK EXPERIENCE

Assoc. Scientist, Post Doc Fellow

Boston, MA

Merck Sharp & Dohme Corp.

Nov. 2020 - Present

· Interpret high-throughput single-cell RNA-seq (scRNA-seq) data and perform deconvolution analysis in bulk tumor profiles for better understanding of complex tumor-immune interactions and novel hypotheses for resistance mechanisms to oncology treatment.

Research Associate, Postdoctoral Fellow

Houston, TX

Rice University

Jun. 2020 - Nov. 2020

· Develop pipelines for the rational design of genome editing tools, minimizing potential off-target effects, and performing safety assessments based on the altered DNA sequences.

Graduate Research Assistant

Houston, TX

Rice University

Jan. 2016 - May 2020

- · Perform analysis for personalized CRISPR-Cas9 off-target effect and mutagenesis pattern profiling.
- · Utilize multiplexed CRISPR-Cas9 system to introduce mutation and measure perturbation level for moderate-throughput fine-mapping casual genome variants.

Undergraduate Research Assistant

Houston, TX

Rice University

Jul. 2014 - Aug. 2015

· Perform analysis on influenza B evolution and predict influenza B vaccine effectiveness.

RESEARCH EXPERIENCE

Biomarker discovery for novel targets in tumor stroma

Boston, MA

Supervisor: Dr. Andrey Loboda

Nov. 2020 - Present

- · Created analytical framework for integrating bulk RNA-seq and scRNA-seq data of tumor microenvironment
- · Analyzed stroma subsets for biomarker identification; Performed tumor-specific association and survival analysis for prioritizing biomarkers

Off-Target Analysis for Personalized CRISPR-Cas9 gRNA Designs

Houston, TX

Supervisor: Dr. Gang Bao

May 2017 - Nov. 2020

· Performed experimental genome-wide off-target screening in 5 individual lymphoblastoid cell lines, which proved that individual variants could alter CRISPR-Cas9 targeting profiles

- · Developed bioinformatics tool for variant aware off-target screening and annotation-based ranking
- · Compared the performance of existing CRISPR-Cas9 off-target scoring algorithms and proposed a novel deep-learning algorithm for CRISPR/Cas9 off-target risk assessment

Consequences Profiling of CRISPR-Cas9 Mediated Genome Editing Houston, TX Supervisor: Dr. Gang Bao May 2019 – Nov. 2020

- · Developed Illumina short read platform based assay (LongAmp-seq) to profile on-target CRISPR-Cas9 mutagenesis patterns, which revealed up to 31% large deletions that were previously missing from the gold standard amplicon short-range Next-Generation Sequencing(NGS)
- · Established pipeline for high-throughput profiling of editing consequences, including symmetric and asymmetric large deletions, insertions and chromosomal rearrangements
- · Explored bioinformatics options to overcome the potential bias and errors from PCR and sequencing to achieve quantification

Genome Editing based Fine-Mapping within eQTL Credible Intervals Houston, TX Supervisor: Dr. Gang Bao. In collaboration with Dr. Gregory Gibson Dec. 2016 – May 2020

- · Combined multiplex CRISPR-Cas9 genome editing with single cell RNAseq to measure perturbation in transcript abundance for fine-mapping causal genomic variants with moderate throughput, which successfully identified two causal SNPs by screening 67 targets in parallel
- · Performed genome editing and cell line preparation in low throughput (single-cell clone) and moderate throughput (lenti-virus library), with experimental and computational validation in editing efficiencies and transcript abundance variations

Unbiased Genome-Wide Off-Target Site Detection Assay

Houston, TX

Supervisor: Dr. Gang Bao

Jan. 2016 - Jun. 2018

- · Established assays for unbiased in-cellular genome-wide CRISPR off-target site detection, which had over 30-fold signal enrichment for on-target sites
- Explored the potential of using chromatin immunoprecipitation(ChIP) and click-chemistry for the labeling of CIRSPR/Cas9 off-target sites and examined options for signal enrichment and background removal

Prediction of Influenza B Vaccine Effectiveness from Sequence Data Houston, TX Supervisor: Dr. Michael W. Deem Jul. 2014 - Aug. 2015

- · Refined the antigenic determinant model of the influenza B virus based on its evolution from 1960 to 2014 for better annual flu vaccine design
- · Established an estimate of flu B vaccine effectiveness against a range of viral strains based on antigenic distance, which outperformed the gold standard HI assay based on 1979-2014 epidemiology data

PUBLICATIONS

Journal Articles

Pan, Y., Tian, R., Lee, C., Bao, G., and Gibson, G. (2020). Fine-mapping within eQTL Credible Intervals by Expression CROP-seq. *Biology Methods and Protocols*.

Bao, X. R., Pan, Y., Lee, C. M., Davis, T. H., and Bao, G. (2021). Tools for experimental and computational analyses of off-target editing by programmable nucleases. *Nature protocols* 16, 10–26.

Pavan, K., Pan, Y., Vu, H.-A., Cao, M., Baraniuk, R. G., and Bao, G. (2021). The Need for Transfer Learning in CRISPR-Cas Off-Target Scoring. bioRxiv.

Tian, R., Pan, Y., Etheridge, T. H., Deshmukh, H., Gulick, D., Gibson, G., Bao, G., and Lee, C. M. (2020). Pitfalls in Single Clone CRISPR-Cas9 Mutagenesis to Fine-map Regulatory Intervals. *Genes* 11, 504.

Park, S. H., Cao, M., **Pan, Y.**, Davis, T., Saxena, L., Deshmukh, H., Fu, Y., Todd, T., Sheehan, V., and Bao, G. (2022). Comprehensive analysis and accurate quantification of unintended large gene modifications induced by CRISPR/Cas9 gene editing. *Science Advance - In press*.

Sharma, R., Dever, D. P., Lee, C. M., Azizi, A., **Pan, Y.**, Camarena, J., Köhnke, T., Bao, G., Porteus, M. H., and Majeti, R. (2021). The TRACE-Seq method tracks recombination alleles and identifies clonal reconstitution dynamics of gene targeted human hematopoietic stem cells. *Nature Communications* 12, 1–12.

Pan, Y., and Deem, M. W. (2016). Prediction of influenza B vaccine effectiveness from sequence data. *Vaccine* 34, 4610–4617.

Conference Proceedings

Pan, Y., Lee, C., Deshmukh, H., and Bao, G. In *MOLECULAR THERAPY*, 2020; Vol. 28, pp 456–457. Park, S. H., **Pan, Y.**, Davis, T., Deshmukh, H., and Bao, G. In *MOLECULAR THERAPY*, 2020; Vol. 28, pp 228–228.

Dever, D. P., Sharma, R., Lee, C. M., Aziz, A., Koehnke, T., Camarena, J., **Pan, Y.**, Zhao, F., Bao, G., Majeti, R., et al. In *MOLECULAR THERAPY*, 2019; Vol. 27, pp 5–5.

SELECTED PRESENTATIONS

Pan Y., Zhang C., Nebozhyn M., Loboda A, et al. "Integration of bulk and single cell RNA-seq data to characterize reproducible subtypes of fibroblasts across tumor types" Mechanisms and Models of Cancer – Aug. 2022, Poster presentation

Pan Y., Lee C. and Bao G. "Personalized off-target analysis of CRISPR-Cas9 gRNA designs using *insilico* and experimental approaches." BIOE Innovation Symposium – Houston, TX, Oct. 2019, Podium presentation

Pan Y., Lee C. and Bao G. "in-silico design of CRISPR/Cas9 guide RNA for personalized medicine." BMES Annual Meeting - Phoenix, AZ, Oct. 2017, Podium Presentation

AWARD AND HONOR

Technical reviewer of book Essential Statistics for Non – Stem Data Analysis, 2020

Scholarship from the Summer Institute in Statistical Genetics of University of Washington, Jul. 2017

Best poster award in Precision Genome Editing Symposium, Houston, TX, Nov. 2016

RELEVANT SKILLS

Computation: Proficiency in MATLAB, R, Python and shell scripting. Experience in machine learning, deep learning and multi-omics data mining; NGS data processing including bulk RNA-seq and scRNA-seq, Nanopore and PacBio data; statistical modeling, data integration and biomarker discovery in Linux high performance computing environments.

Experiment: Oncology, Immunology, Cell and Molecular Biology techniques. Applications of CRISPR-Cas9 system, NGS library preparation and lenti-virus library production.