

Определение: Гомоморфное шифрование — форма шифрования, позволяющая производить определённые математические действия с зашифрованным текстом и получать зашифрованный результат, который соответствует результату операций, выполненных с открытым текстом.

Гомоморфизм

Гомоморфизм (от др.-греч. - равный, одинаковый и - вид, форма) — это морфизм в категории алгебраических систем, то есть отображение алгебраической системы **A**, сохраняющее основные операции и основные отношения.

Отображение $f: G_1 \to G_2$ называется гомоморфизмом групп $(G_1, *)(G_2, \times)$, если оно одну групповую операцию переводит в другую: $f(a*b) = f(a) \times f(b).$

Гомоморфизм

Понятие гомоморфизма как соотношение между парой алгебраических систем начало использоваться в работах немецкого математика Фробениуса, а обобщённое определение было сформулировано Эмми Нётер в 1929 году.

- *Частично гомоморфные криптосистемы* позволяют производить только одну из операций либо сложение, либо умножение.
- Полностью гомоморфная криптосистема поддерживает выполнение обеих операций, то есть, в ней выполняются свойства гомоморфизма как относительно умножения, так и относительно сложения.

История

Понятие «гомоморфное шифрование» сформировано в 1978 году Рональдом
Ривестом, Леонардом Адлеманом и Майклом Дертузосом в «On Data Banks And Privacy
Homomorphisms»

2. В 1982 году Шафи Гольдвассер и Сильвио Микали предложили систему шифрования, гомоморфную относительно умножения и способную зашифровать всего лишь один бит.

3. В 1999 году Паскалем Пэйе предложил криптосистему, гомоморфную относительно умножения.

История

Криптосистема Джентри — первая возможная конструкция для полностью гомоморфной криптосистемы, основанная на криптографии на решетках. Была предложена Крейгом Джентри в 2009 году и поддерживает операции сложения и умножения над шифротекстом.

Полностью гомоморфное шифрование (Fully Homomorphic Encryption)

Определение: Полностью гомоморфное шифрование — криптографический примитив, представляющий собой функцию шифрования, удовлетворяющую дополнительному требованию гомоморфности относительно каких-либо операций над открытыми текстами.

- k ключ;
- m открытый текст;
- Enc(k, m) шифрующая функция
- Dec(k, m) шифрующая функция

Определение: Функция Enc называется гомоморфной относительно операции сложения или умножения (*) над открытыми текстами m_1, m_2 , если существует алгоритм H: получив на входе пару $Enc(k, m_1)$ и $Enc(k, m_2)$ даст $C = H\big(Enc(k, m_1), Enc(k, m_2)\big)$,

который при дешифровании даст открытый текст $m_1 * m_2$.

Определение: Криптосистема гомоморфна относительно операции сложения, если $Decig(Enc(k,m_1)+Enc(k,m_2)ig)=m_1+m_2$.

Определение: Криптосистема гомоморфна относительно операции умножения, если $Dec(Enc(k, m_1) \cdot Enc(k, m_2)) = m_1 \cdot m_2$.

Определение: Криптосистема гомоморфна относительно операции умножения и сложения, если:

$$Dec(Enc(k, m_1) \cdot Enc(k, m_2)) = m_1 \cdot m_2.$$

$$Dec(Enc(k, m_1) + Enc(k, m_2)) = m_1 + m_2.$$

E: НОД (E, (p-1)*(q-1)) =1

RSA N = p*qE: НОД (E, (p-1)*(q-1)) =1 (N, E) d: $E*d = 1 \pmod{(p-1)*(q-1)}$ (d, p, q) Шифрование Дешифрование С из m<N: CBd: $m = Cd \pmod{N}$ $C = m^{E} \pmod{N}$

RSA гомоморфна по умножению:

(N, E) — открытый ключ m_1, m_2 - открытый текст (шифруемое сообщение) Enc— шифрующая функция

 $Enc(m_1) \cdot Enc(m_2) = m_1^E \mod N \cdot m_2^E \mod N = (m_1 \cdot m_2)^E \mod N = Enc(m_1 \cdot m_2)$

Тахир Эль-Гамаль

Параметры домена – параметры которые м.б. использованы многими пользователями.

- P «большое простое число»- 1024 битов, P-1 делится на «среднее простое число» Q, лежащее от 2^{160} .
- G элемент мультипликативной группы поля Z_p^* и $G^{(P-1)/Q}$ (mod P) $\neq 1$
- Секретный ключ: $\forall x$ Открытый ключ: $H = G^{x} \pmod{P}$
- Сообщение: не нулевой элемент $m \in Z_{p}^{*}$

Шифрование:

- Генерируют случайный эфемерный ключ к
- Вычисляют $C_1 = G^k \pmod{P}$
- Hаходят $C_2 = m \cdot H^k \pmod{P}$
- Шифротекст $C = (C_1, C_2)$

Дешифрование:

 $(C_2/C_1^{x}) \pmod{P} = (m \cdot H^k / G^{x \cdot k}) \pmod{P} = (m \cdot G^{x \cdot k} / G^{x \cdot k}) \pmod{P} = m.$

Применимость:

Подпись GNU Privacy Guard (GnuPG or GPG)

Вероятностное шифрование - это использование случайности в алгоритме шифрования, так что при шифровании одного и того же сообщения несколько раз оно, как правило, дает разные шифротексты.

Термин *"вероятностное шифрование"* обычно используется в отношении алгоритмов асимметричного шифрования; однако различные алгоритмы симметричного шифрования достигают аналогичного свойства (например, блочные шифры при использовании в режиме цепочки, таком как CBC).

Чтобы быть *семантически безопасным*, то есть скрывать даже частичную информацию о открытом тексте, алгоритм шифрования должен быть вероятностным.

Криптосистема Эль-Гамаль гомоморфна по умножению:

 m_1, m_2 - открытый текст (шифруемое сообщение) **Случайный эфемерный ключ для** m_1 - k_1 **для** m_2 - k_2 Enc— шифрующая функция

 $Enc(m_1) \cdot Enc(m_2) = (G^{k_1} \pmod{P}), m_1 H^{k_1} \pmod{P}) \cdot (G^{k_2} \pmod{P}), m_2 H^{k_2} \pmod{P}) =$ $= (G^{k_1 \cdot k_2} \pmod{P}), (m_1 \cdot m_2) H^{k_1 \cdot k_2} \pmod{P}) = Enc(m_1 \cdot m_2)$

Криптосистема Пэйе

Криптосистема Пэйе

• Секретный ключ: (α, μ, p, q)

$$ho$$
, q , $lpha$ = НаименьшееОбщееКратное $(p-1,q-1)$, $\mu = L(g^{lpha} \ mod \ N^2)^{-1} mod \ N$, $L(u) = div rac{u-1}{N} \ (div -$ целочисленное деление)

• Открытый ключ: (g, N)

$$N = p \cdot q, g -$$
случайное число: $g \in Z^*_{N^2}$

 $Z^*_{N^2}$ - множество целых чисел взаимнопростых с N^2 - это множество состоит из $N \cdot \varphi(N)$ чисел.

• Сообщение: не нулевой элемент $m \in Z_N : m < N$

Криптосистема Пэйе (комментарии)

- $\alpha =$ НаименьшееОбщееКратное(p-1,q-1),
 НОД (p-1,q-1)
- НОД (p-1, q-1) $\alpha = \frac{(p-1) \cdot (q-1)}{\text{НОД } (p-1, q-1)}$
- g случайное число: $g \in Z^*_{N^2}$

$$HOД\left(\frac{g^{\alpha} \bmod N^2 - 1}{N}, N\right) = 1 (1)$$

Случайно выбрать α и β из множества $Z^*_{N^2}$, затем вычислить $g = (\alpha \cdot N + 1) \cdot \beta^N mod N^2$

В этом случае выбранное g всегда удовлетворяет условию (1).

Криптосистема Пэйе

Шифрование:

- Генерируют случайное число $r \in Z_N^*$
- $C = g^m \cdot r^N \pmod{N}$

Дешифрование:

- $m = L(C^{\alpha} \mod N^2) \cdot \mu \mod N$

Пример

1. Генерация ключей

$$p=7$$
 и $q=5$, $N=7\cdot 5=35$, $N^2=1225$ и $\alpha=\text{HOK}(6,4)=12.$

Выбираем случайное целое число g, такое что $g \in Z_{N^2}^*$, g=3. Находим $\mu = \left(L(g^{\alpha} mod\ N^2)\right)^{-1} mod\ N=29$.

 $(\alpha, \mu, p, q) = (12, 29, 7, 9) -$ закрытый ключ.

Пример

2. Шифрование

- m=8
- Выбираем произвольное $r \in Z_N^*$, r = 9,
- Вычисляем:

 $C = g^m \cdot r^N \mod N^2 = 3^8 \cdot 9^{35} \mod 1225 = 436 \cdot 949 \mod 1225 = 939.$

Пример

3. Дешифрование

• C = 939, $C \in Z_{1225}$

• Вычисляем $m = L(C^{\alpha} \mod N^2) \cdot \mu \mod N = L(939^{12} \mod 1225) \cdot 29 \mod 35 = 22 \cdot 29 \mod 35 = 8.$

Криптосистема Пэйе

Криптосистема Пэйе гомоморфна по сложению:

- 1. При дешифровании произведения двух шифротекстов будет получена сумма соответствующих им открытым текстам:
 - $Dec(Enc(m_1) \cdot Enc(m_2) mod\ N^2) = (m_1 + m_2) mod\ N;$ Частный случай $Dec(Enc(m_1) \cdot g^{m_2} mod\ N^2) = (m_1 + m_2) mod\ N;$
- 2. При дешифровании криптограммы, возведенной в степень $d \in \mathbb{Z}_n^*$, будет получено произведение открытого текста и показателя степени d:
 - $Dec(Enc(m))^d) mod N^2 = d \cdot m \mod N$.

Частный случай $Dec(Enc(m_1))^{m_2}) mod N^2 = m_1 \cdot m_2 mod N$.

1. Облачные вычисления:

Важна производительность, следует применять различные алгоритмы, в зависимости от поставленной задачи.

2. Электронное голосование:

Система сможет зашифровать голоса избирателей и провести расчёты над зашифрованными данными, сохраняя анонимность избирателей.

3. Защищённый поиск информации:

Можно предоставить пользователям возможность извлечения информации из поисковых систем с сохранением конфиденциальности: сервисы смогут получать и обрабатывать запросы, а также выдавать результаты обработки, не зная содержание.

4. Защита беспроводных децентрализованных сетей связи

Беспроводные децентрализованные самоорганизующиеся сети (MANET) - сети, состоящие из мобильных устройств.

Для решения проблемы обеспечения безопасности может применяться гомоморфное шифрование, которое встраивается в протоколы маршрутизации для повышения безопасности.

5. Аутсорсинговые услуги для смарт-карт

6. Системы с обратной связью

Системы помогают осуществлять анонимный сбор данных (например опросы)

7. Обфускация для защиты программных продуктов

Электронное голосование:

- 1. Участник схемы разделяет свой голос (секрет) на составляющие (частичные секреты) по соответствующей схеме разделения секрета со свойством гомоморфности по сложению и посылает частичные секреты выборным представителям;
- 2. Представители складывают полученные голоса; схема гомоморфна по сложению, следовательно, суммы голосов являются частичными секретами соответствующего итога выборов;
- 3. Доверительное лицо вычисляет конечный итог голосования, используя набор частичных сумм голосов, переданный ему выборными представителями.

Электронное голосование:

```
n - кандидатов;
```

$$K=(k_{enc}, k_{dec});$$

Бюллетень: $(p_1, p_2, ..., p_i, ..., p_n)$ - p_i - i-ый кандидат.

Голосование:

Избиратель: $(v_1, v_2, ... v_i, ... v_n) - v \in \{0,1\}$

Шифрует ключом k_{enc}

Инициатор: Складывает все результаты и дешифрует ключом $k_{
m dec}$

Схема разделения секрета Шамира

Для интерполяции многочлена степени k-1 требуется k точек.

Схема разделения секрета Шамира

1. Подготовка:

M - секрет, k –участников, (n, k) – пороговая схема.

p - простое число p > M.

$$F(x) = (a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \dots + a_1x + M) \mod p$$

2. Создание «долей» секрета:

$$k_1 = F(1) = (a_{k-1} \cdot 1^{k-1} + a_{k-2} \cdot 1^{k-2} + \dots + a_1 \cdot 1 + M) \mod p$$
 $k_2 = F(2) = (a_{k-1} \cdot 2^{k-1} + a_{k-2} \cdot 2^{k-2} + \dots + a_1 \cdot 2 + M) \mod p$
 \dots
 $k_i = F(i) = (a_{k-1} \cdot i^{k-1} + a_{k-2} \cdot i^{k-2} + \dots + a_1 \cdot i + M) \mod p$
 \dots
 $k_n = F(n) = (a_{k-1} \cdot n^{k-1} + a_{k-2} \cdot n^{k-2} + \dots + a_1 \cdot n + M) \mod p$

Схема разделения секрета Шамира

3. Восстановление секрета:

$$egin{aligned} F\left(x
ight) &= & \sum_{i} l_i\left(x
ight) y_i \mod p \ & \ l_i\left(x
ight) &= & \prod_{i
eq j} rac{x-x_j}{x_i-x_j} \mod p \end{aligned}$$

8. Анонимные вычисления

Постановка задачи: А и В имеют числа x_1 и x_2 и хотят выяснить у кого число больше, не раскрывая самих значений этих чисел.

1. Пользователь А шифрует число x_1 по схеме Пэйе:

$$C_1 = g^{x_1} \cdot r^N \pmod{N}$$

2. Пользователь В шифрует число x_2 по схеме Пэйе:

$$C_2 = g^{x_2} \cdot r^N \pmod{N}$$

3. Сервер выполняет преобразование зашифрованных данных

$$C = C_1 \cdot C_2^{N-1} \cdot g^l$$

где $l>0\,$ - случайное число и отправляет C пользователям.

4. Пользователи А и В дешифруют С и по свойству гомоморфности получают:

$$Dec(C) = L(C^{\alpha} \mod N^2) \cdot \mu \mod N$$

По свойству гомоморфности: $(x_1 + (N-1) \cdot x_2 + l) mod \ N = (x_1 - x_2 + l) mod \ N$ Если $Dec(C) > \frac{N}{2}$, то $x_1 > x_2$, $else \ x_1 < x_2$

Решетка — дискретная аддитивная подгруппа, заданная на множестве R^n , решетку L можно представить как множество векторов заданных целочисленными линейно независимыми базисными векторами $B = \{b_1, ... b_n\} \in R^n$, определенными по модулю некоторого целого числа $x \in Z^n$, $L = \sum_{i=1}^n b_i Z = \{bx : x \in Z^n\}$. У решетки может быть множество базисов, $L = \sum_{i=1}^n a_i Z$

вектором.

- Задача нахождения кратчайшего вектора (*Shortest Vector Problem*) найти в заданном базисе решётки ненулевой вектор по отношению к определённой нормали.
- Задача нахождения ближайшего вектора (*Closest Vector Problem*) нахождение вектора в решётке по заданному базису и некоторому вектору, не принадлежащему решётке, при этом максимально схожего по длине с заданным

• Генерация ключа:

- 1. Выбирается *N*;
- 2. Выбирается секретный ключ $k_{sec} \ll N$, НОД $(k_{sec}, N) = 1$;
- 3. Выбирается открытый ключ k_{open} набор числел a_i : $a_i = r \cdot k_{sec} + e \cdot N$, где e и r случайные числа.

• Шифрование:

Шифротекст будет являться суммой произвольного количества элементов открытого ключа и открытого текста.

Гомомрфность по сложению:

$$Dec(Enc(m_1) + Enc(m_2)) = Dec(\sum_{i=0}^{N} m_{1,i} \cdot a_i + \sum_{i=0}^{N} m_{2,i} \cdot a_i) = Dec(Enc(m_1 + m_2))$$

NTRU

NTRUEncrypt, изначально называвшийся NTRU, был изобретён в 1996 году математиками Jeffrey Hoffstein, Jill Pipher и Joseph H. Silverman, разработавшие систему вместе с основателем компании NTRU Cryptosystems, Inc. Daniel Lieman.

