```
In[@]:= $PrePrint =
       оператор обработки перед выводом на экран
          Which[MatrixQ@#, Grid[#, Frame → All], VectorQ@#, Grid[{#}, Frame → All], True, #] &;
          усло… матрица? таблица рамка всё вектор? таблица рамка всё истина
 Задание 1.
 Полиномы.
 In[*]:= ClearAll[L];
       очистить всё
       L[t_{,0}] = 1;
       L[t_, 1] := t;
       L[t_{n}] /; n > 1 := \left(\frac{2n-1}{n} tL[t, n-1] - \frac{n-1}{n} L[t, n-2]\right) // Expand
 In[*]:= L[t, 5]
Out[0]=
 In[@]:= ClearAll[T];
       очистить всё
       T[t_{n}] := Cos[nArcCos[t]] // TrigExpand
                     коси… арккосинус
                                         разложить три
        t<sup>#</sup> & /@ Range [0, 5]
 In[@]:=
         L[t, #] & /@ Range[0, 5]
                      диапазон
         T[t, #] & /@ Range[0, 5]
Out[0]=
         1 |t| t^2 |t^3| t^4 |t^5|
Out[0]=
Out[0]=
                       -3t+4t^{3}|1-8t^{2}+8t^{4}|5t-20t^{3}+16t^{5}|
 In[*]:= $PrePrint =.
       оператор обработки перед выводом на экран
 In[*]:= RGBColor[#] & /@ { {1, 0.47, 0.5}, {0.51, 0.84, 0.5}, }
          \{0.5, 0.5, 0.94\}, \{0.5, 0.84, 0.95\}, \{0.96, 0.58, 0.24\}, \{0.79, 0.85, 0.35\}\}
Out[0]=
```

```
In[\bullet]:= \mathcal{L}_{\pm}[t] \& /@Range[0, 5]
                                     Тлиапазон
Out[0]=
               \{\mathcal{L}_0[t], \mathcal{L}_1[t], \mathcal{L}_2[t], \mathcal{L}_3[t], \mathcal{L}_4[t], \mathcal{L}_5[t]\}
   In[*]:= \mathcal{T}_{\#}[t] \& /@Range[0, 5]
Out[0]=
                \{\mathcal{T}_{0}[t], \mathcal{T}_{1}[t], \mathcal{T}_{2}[t], \mathcal{T}_{3}[t], \mathcal{T}_{4}[t], \mathcal{T}_{5}[t]\}
```

Мапірulate
$$[Plot[Полиномы, \{t, -1, 1\}, PlotLabel \rightarrow Last@Most@Полиномы, [рафик функции] [рафик функции] [рафик функции] [рафик функции] [рафик функции] [размер изображения] [р$$

In[*]:= \$PrePrint =

оператор обработки перед выводом на экран

```
Which[MatrixQ@#, Grid[#, Frame → All], VectorQ@#, Grid[{#}, Frame → All], True, #] &;
```

```
ClearAll[kmPower, kmLegendre, kmChebyshev];
 In[0]:=
          очистить всё
          kmPower[t_] := t<sup>#</sup> & /@ Range[0, 5];
          kmLegendre[t_] := L[t, #] & /@ Range[0, 5];
          kmChebyshev[t_] := T[t, #] & /@ Range[0, 5];
         kmPower[t]
 In[@]:=
          kmLegendre[t]
          kmChebyshev[t]
Out[0]=
         Out[0]=
                          -\frac{3\,t}{2}\,+\frac{5\,t^3}{2}\,\left|\,\frac{3}{8}\,-\frac{15\,t^2}{4}\,+\frac{35\,t^4}{8}\,\right|\,\frac{15\,t}{8}\,-\frac{35\,t^3}{4}\,+\frac{63\,t^5}{8}
Out[0]=
```

Задание 2.

Базисы векторного пространства полиномов.

In[*]:= Array[Subscript[x, #] &, 6, 0]

массив с нижним индексом

kmLegendre[t].%

Collect[%, t]

сгруппировать

CoefficientList[%, t]

список коэффициентов многочлена

Thread [% == 0]

нанизать

Solve[%, %%%%%]

решить уравнения

Out[0]=

x₀ x₁ x₂ x₃ x₄ x₅

Out[0]=

$$x_{0}+t\;x_{1}+\left(-\frac{1}{2}+\frac{3\,t^{2}}{2}\right)\;x_{2}+\left(-\frac{3\,t}{2}+\frac{5\,t^{3}}{2}\right)\;x_{3}+\left(\frac{3}{8}-\frac{15\,t^{2}}{4}+\frac{35\,t^{4}}{8}\right)\;x_{4}+\left(\frac{15\,t}{8}-\frac{35\,t^{3}}{4}+\frac{63\,t^{5}}{8}\right)\;x_{5}+\left(\frac{3}{8}-\frac{15\,t^{2}}{4}+\frac{35\,t^{4}}{8}\right)\;x_{5}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{15\,t^{2}}{8}\right)\;x_{5}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{15\,t^{2}}{8}\right)\;x_{5}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{15\,t^{2}}{8}\right)\;x_{5}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{15\,t^{2}}{8}\right)\;x_{5}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{15\,t^{2}}{8}\right)\;x_{5}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{15\,t^{2}}{8}\right)\;x_{5}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{15\,t^{2}}{8}\right)\;x_{5}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{15\,t^{2}}{8}\right)\;x_{5}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{15\,t^{2}}{8}\right)\;x_{7}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{15\,t^{2}}{8}\right)\;x_{7}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{15\,t^{2}}{8}\right)\;x_{7}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{15\,t^{2}}{8}\right)\;x_{7}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{15\,t^{2}}{8}\right)\;x_{7}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{15\,t^{2}}{8}\right)\;x_{7}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{15\,t^{2}}{8}\right)\;x_{7}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{15\,t^{2}}{8}\right)\;x_{7}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{15\,t^{2}}{8}\right)\;x_{7}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{15\,t^{2}}{8}\right)\;x_{7}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{15\,t^{2}}{8}\right)\;x_{7}+\left(\frac{15\,t^{2}}{8}-\frac{15\,t^{2}}{8}+\frac{1$$

Out[0]=

$$x_{0}-\frac{x_{2}}{2}+t^{2}\left(\frac{3}{2}\frac{x_{2}}{2}-\frac{15}{4}\frac{x_{4}}{4}\right)+\frac{3}{8}\frac{x_{4}}{8}+\frac{35}{8}t^{4}\frac{x_{4}}{8}+t^{3}\left(\frac{5}{2}\frac{x_{3}}{2}-\frac{35}{4}\frac{x_{5}}{4}\right)+\frac{63}{8}t^{5}\frac{x_{5}}{8}+t\left(x_{1}-\frac{3}{2}\frac{x_{3}}{2}+\frac{15}{8}\frac{x_{5}}{8}\right)$$

Out[0]=

Out[•]=

$$\label{eq:controller} \boxed{ \left| \left. x_0 \rightarrow 0 \right| x_1 \rightarrow 0 \right| x_2 \rightarrow 0 \left| \left. x_3 \rightarrow 0 \right| x_4 \rightarrow 0 \left| \left. x_5 \rightarrow 0 \right| \right. \right. }$$

In[*]:= Array[Subscript[x, #] &, 6, 0]

массив с нижним индексом

kmChebyshev[t].%

Collect[%, t]

сгруппировать

CoefficientList[%, t]

список коэффициентов многочлена

Thread [% == 0]

нанизать

Solve[%, %%%%%]

решить уравнения

Out[0]= $x_0 x_1 x_2 x_3 x_4 x_5$

Out[0]= $x_0 + t x_1 + (-1 + 2 t^2) x_2 + (-3 t + 4 t^3) x_3 + (1 - 8 t^2 + 8 t^4) x_4 + (5 t - 20 t^3 + 16 t^5) x_5$

Out[0]= $x_0 - x_2 + t^2 (2x_2 - 8x_4) + x_4 + 8t^4 x_4 + t^3 (4x_3 - 20x_5) + 16t^5 x_5 + t (x_1 - 3x_3 + 5x_5)$

Out[0]= $x_0 - x_2 + x_4$ $x_1 - 3 x_3 + 5 x_5$ 2 $x_2 - 8 x_4$ 4 $x_3 - 20 x_5$ 8 x_4 16 x_5

Out[0]= $x_0 - x_2 + x_4 = 0$ $x_1 - 3x_3 + 5x_5 = 0$ $2x_2 - 8x_4 = 0$ $4x_3 - 20x_5 = 0$ $8x_4 = 0$ $16x_5 = 0$

Out[0]= $x_0 \rightarrow 0 \hspace{0.1cm} | \hspace{0.1cm} x_1 \rightarrow 0 \hspace{0.1cm} | \hspace{0.1cm} x_2 \rightarrow 0 \hspace{0.1cm} | \hspace{0.1cm} x_3 \rightarrow 0 \hspace{0.1cm} | \hspace{0.1cm} x_4 \rightarrow 0 \hspace{0.1cm} | \hspace{0.1cm} x_5 \rightarrow 0 \hspace{0.1cm} |$

In[@]:= Array[Subscript[x, #] &, 6, 0]

массив с нижним индексом

kmPower[t].%

Collect[%, t]

сгруппировать

CoefficientList[%, t]

список коэффициентов многочлена

Thread [% == 0]

нанизать

Solve[%, %%%%%]

решить уравнения

Out[0]= $x_0 | x_1 | x_2 | x_3 | x_4 | x_5$

Out[0]= $x_0 + t x_1 + t^2 x_2 + t^3 x_3 + t^4 x_4 + t^5 x_5$

Out[0]= $x_0 + t x_1 + t^2 x_2 + t^3 x_3 + t^4 x_4 + t^5 x_5$

Out[0]= | X₀ | X₁ | X₂ | X₃ | X₄ | X₅

Out[0]= $x_0 = 0 | x_1 = 0 | x_2 = 0 | x_3 = 0 | x_4 = 0 | x_5 = 0$

```
In[*]:= RandomReal[{-1, 1}, 6]
                         случайное действительное число
Out[0]=
                              -0.617881 -0.946274 -0.250341 0.667267 0.678264 0.310795
     ln[e]:= coord = {0.729934, 0.296269, -0.352563, -0.242914, -0.228383, -0.167264}
Out[0]=
                           0.729934 | 0.296269 | -0.352563 | -0.242914 | -0.228383 | -0.167264
     In[@]:= pow = coord.kmPower[t]
                          leg = coord.kmLegendre[t]
                          cheb = coord.kmChebyshev[t]
Out[0]=
                          0.729934 + 0.296269 t - 0.352563 t^2 - 0.242914 t^3 - 0.228383 t^4 - 0.167264 t^5
Out[0]=
                         0.729934 + 0.296269 t - 0.352563 \left( -\frac{1}{2} + \frac{3t^2}{2} \right) - 0.242914 \left( -\frac{3t}{2} + \frac{5t^3}{2} + \frac{5t^3}{2} \right) - 0.242914 \left( -\frac{3t}{2} + \frac{5t^3}{2} 
                             0.228383 \left( \frac{3}{8} - \frac{15 t^2}{4} + \frac{35 t^4}{8} \right) - 0.167264 \left( \frac{15 t}{8} - \frac{35 t^3}{4} + \frac{63 t^5}{8} \right)
Out[0]=
                          0.729934 + 0.296269 t - 0.352563 (-1 + 2 t^2) -
                              0.242914 \left(-3 t+4 t^3\right)-0.228383 \left(1-8 t^2+8 t^4\right)-0.167264 \left(5 t-20 t^3+16 t^5\right)
     In[0]:=
                               Plot[{pow, leg, cheb}, {t, -1, 1}, PlotLabel \rightarrow "Координаты :
                                  \{0.729934, 0.296269, -0.352563, -0.242914, -0.228383, -0.167264\}",
                                  PlotLegends → MapThread[Style,
                                            Out[0]=
                                                                                                           Координаты:
                                      \{0.729934, 0.296269, -0.352563, -0.242914, -0.228383, -0.167264\}
                                                                                                                    1.5
                                                                                                                    1.0
                                                                                                                                                                                                                                              - Степенные
                                                                                                                                                                                                                                               - Лежандра

    Чебышева
```

0.5

0.5

1.0

-1.0

-0.5

```
In[a]:= MapThread[Style, {{"Степенные", "Лежандра", "Чебышева"}, {<mark>■</mark>, ■, }}]
       нанизать · · стиль
Out[0]=
         Степенные Лежандра Чебышева
```

Задание 3.

Переход к другому базису.

```
In[@]:= kmPower[t]
        kmLegendre[t]
        kmChebyshev[t]
Out[\circ] =
        1 t t<sup>2</sup> t<sup>3</sup> t<sup>4</sup>
Out[0]=
                                                   8
                                                          4
                                                                8
Out[0]=
                       -3t+4t^{3} 1 - 8t<sup>2</sup> + 8t<sup>4</sup> 5t - 20t<sup>3</sup> + 16t<sup>5</sup>
             -1 + 2 t^2
 In[*]:= $PrePrint =
       оператор обработки перед выводом на экран
          Which[MatrixQ@#, Grid[#, Frame → All], VectorQ@#, Grid[{#}, Frame → All], True, #] &;
          усло… матрица?
                             таблица рамка всё вектор?
                                                                      таблица рамка всё истина
 In[@]:= Outer[Subscript[a, StringJoin[#1, #2]] &,
       вне… с нижним инд… соединить строки
         ToString /@ Range[0, 5], ToString /@ Range[0, 5]]
         _преобразов… _диапазон
                                    _преобразов… _диапазон
        kmPower[t].%
        Collect[% - kmLegendre[t], t]
       сгруппировать
        CoefficientList[%, t]
       список коэффициентов многочлена
        Solve[% == Table[Table[0, 6], 6], %%%% // Flatten]
       решить ур… табл… таблица значений
        %%%%% /. %
        MatrixForm@@%
       матричная форма
```

0	11	t	I a	1:

a ₀₀	a ₀₁	a ₀₂	a ₀₃	a ₀₄	a ₀₅
a ₁₀	a ₁₁	a ₁₂	a ₁₃	a ₁₄	a ₁₅
a ₂₀	a ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅
a ₃₀	a ₃₁	a ₃₂	a ₃₃	a ₃₄	a ₃₅
a ₄₀	a ₄₁	a ₄₂	a ₄₃	a ₄₄	a ₄₅
a ₅₀	a ₅₁	a ₅₂	a ₅₃	a ₅₄	a ₅₅

a ₀₀ + t a ₁₀ +	a ₀₁ + t a ₁₁ +	a ₀₂ + t a ₁₂ +	a ₀₃ + t a ₁₃ +	a ₀₄ + t a ₁₄ +	a ₀₅ + t a ₁₅ +
$t^2 a_{20} +$	t² a ₂₁ +	$t^2 a_{22} +$	$t^2 a_{23} +$	$t^2 a_{24} +$	$t^2 a_{25} +$
$t^3 a_{30} +$	t³ a ₃₁ +	t³ a ₃₂ +	t³ a ₃₃ +	t³ a ₃₄ +	$t^3 a_{35} +$
$t^4 a_{40} + t^5 a_{50}$	$t^4 a_{41} + t^5 a_{51}$	$t^4 a_{42} + t^5 a_{52}$	$t^4 a_{43} + t^5 a_{53}$	$t^4 a_{44} + t^5 a_{54}$	$t^4 a_{45} + t^5 a_{55}$

Out[0]=

-	-1 + a ₀₀ +	a ₀₁ +	$\frac{1}{2} + a_{02} +$	a ₀₃ +	$-\frac{3}{8} + a_{04} +$	$a_{05} + t \left(-\frac{15}{8} + \right)$
	$t a_{10} + t^2 a_{20} + t^3 a_{30} +$	$t (-1 + a_{11}) + t^2 a_{21} +$	$t a_{12} + t^2$	$t\left(\frac{3}{2}+a_{13}\right)+$	t a ₁₄ +	a ₁₅) +
	$t^4 a_{40} + t^5 a_{50}$	t³ a ₃₁ +	$\left(-\frac{3}{2} + a_{22}\right) + t^3 a_{32} + t^3 a$	$t^2 a_{23} + t^3$ $\left(-\frac{5}{2} + a_{33}\right) +$	$t^2 \left(\frac{15}{4} + a_{24}\right) + t^3 a_{34} +$	
		t ⁴ a ₄₁ + t ⁵ a ₅₁	$t^4 a_{42} + t^5 a_{52}$	$t^4 a_{43} + t^5 a_{53}$	$t^4 \left(-\frac{35}{8} + \frac{1}{8}\right)$	$t^3 \left(\frac{35}{4} + a_{35}\right) + t^4 a_{45} + t$
					a ₄₄) +	$t^5 \left(-\frac{63}{8} + a_{55} \right)$
					t ⁵ a ₅₄	·

Out[0]=

$-1 + a_{00}$	a ₁₀	a ₂₀	a ₃₀	a ₄₀	a ₅₀
a ₀₁	- 1 + a ₁₁	a ₂₁	a ₃₁	a ₄₁	a ₅₁
$\frac{1}{2} + a_{02}$	a ₁₂	$-\frac{3}{2} + a_{22}$	a ₃₂	a ₄₂	a ₅₂
a ₀₃	$\frac{3}{2} + a_{13}$	a ₂₃	$-\frac{5}{2} + a_{33}$	a ₄₃	a ₅₃
$-\frac{3}{8} + a_{04}$	a ₁₄	$\frac{15}{4} + a_{24}$	a ₃₄	$-\frac{35}{8} + a_{44}$	a ₅₄
a ₀₅	$-\frac{15}{8} + a_{15}$	a ₂₅	$\frac{35}{4} + a_{35}$	a ₄₅	$-\frac{63}{8} + a_{55}$

Out[0]=

a	a ₀₁	a ₀₂	a ₀₃	a ₀₄	a ₀₅	a ₁₀	a ₁₁	a ₁₂	a ₁₃	a ₁₄	a ₁₅	a ₂₀	a ₂₁	a ₂₂	a ₂₃	$a_{24} \rightarrow$	a ₂₅	a ₃₀	а
-	\rightarrow	_ 15	\rightarrow	\rightarrow															
1	0	$-\frac{1}{2}$	0	3 8	0	0	1	0	$-\frac{3}{2}$	0	15 8	0	0	$\frac{3}{2}$	0	4	0	0	

Out[•]=

$$\left\{ \left\{ \left\{ 1, 0, -\frac{1}{2}, 0, \frac{3}{8}, 0 \right\}, \left\{ 0, 1, 0, -\frac{3}{2}, 0, \frac{15}{8} \right\}, \left\{ 0, 0, \frac{3}{2}, 0, -\frac{15}{4}, 0 \right\}, \left\{ 0, 0, 0, \frac{5}{2}, 0, -\frac{35}{4} \right\}, \left\{ 0, 0, 0, 0, 0, \frac{35}{8}, 0 \right\}, \left\{ 0, 0, 0, 0, 0, \frac{63}{8} \right\} \right\} \right\}$$

Out[o]//MatrixForm=

$$\begin{pmatrix} 1 & 0 & -\frac{1}{2} & 0 & \frac{3}{8} & 0 \\ 0 & 1 & 0 & -\frac{3}{2} & 0 & \frac{15}{8} \\ 0 & 0 & \frac{3}{2} & 0 & -\frac{15}{4} & 0 \\ 0 & 0 & 0 & \frac{5}{2} & 0 & -\frac{35}{4} \\ 0 & 0 & 0 & 0 & \frac{35}{8} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{63}{8} \\ \end{pmatrix}$$

PL = % In[0]:=

Out[0]=

In[@]:= Outer[Subscript[a, StringJoin[#1, #2]] &,

вне… с нижним инд… соединить строки

ToString /@ Range [0, 5], ToString /@ Range [0, 5]]

_преобразов⋯ _диапазон
_преобразов⋯ _диапазон

kmPower[t].%

Collect[% - kmChebyshev[t], t]

сгруппировать

CoefficientList[%, t]

список коэффициентов многочлена

Solve[% == Table[Table[0, 6], 6], %%%% // Flatten]

решить ур… табл… таблица значений уплостить

%%%%% /. %

MatrixForm@@%

матричная форма

Out[0]=

a ₀₀	a ₀₁	a ₀₂	a ₀₃	a ₀₄	a ₀₅
a ₁₀	a ₁₁	a ₁₂	a ₁₃	a ₁₄	a ₁₅
a ₂₀	a ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅
a ₃₀	a ₃₁	a ₃₂	a ₃₃	a ₃₄	a ₃₅
			a ₃₃		

Out[0]=

Ī	a ₀₀ + t a ₁₀ +	a ₀₁ + t a ₁₁ +	a ₀₂ + t a ₁₂ +	a ₀₃ + t a ₁₃ +	a ₀₄ + t a ₁₄ +	a ₀₅ + t a ₁₅ +
	$t^2 a_{20} +$	t² a ₂₁ +	t² a ₂₂ +	t² a ₂₃ +	$t^2 a_{24} +$	$t^2 a_{25} +$
	$t^3 a_{30} +$	t³ a ₃₁ +	$t^3 a_{32} +$	t³ a ₃₃ +	$t^3 a_{34} +$	$t^3 a_{35} +$
	$t^4 a_{40} + t^5 a_{50}$	$t^4 a_{41} + t^5 a_{51}$	$t^4 a_{42} + t^5 a_{52}$	$t^4 a_{43} + t^5 a_{53}$	$t^4 a_{44} + t^5 a_{54}$	$t^4 a_{45} + t^5 a_{55}$

$-1 + a_{00} +$	a ₀₁ +	1 + a ₀₂ +	a ₀₃ +	$-1 + a_{04} +$	a ₀₅ +
$t a_{10} + t^2 a_{20} +$	$t \ (-1 + a_{11}) \ +$	$t a_{12} + t^2$	$t (3 + a_{13}) +$	t a ₁₄ +	t (-5 + a ₁₅) +
t³ a ₃₀ +	$t^2 a_{21} +$	$(-2 + a_{22}) +$	$t^2 a_{23} + t^3$	$t^2 \ (8 + a_{24}) \ +$	$t^2 a_{25} +$
$t^4 a_{40} + t^5 a_{50}$	$t^3 a_{31} +$	$t^3 a_{32} +$	$(-4 + a_{33}) +$	$t^3 a_{34} + t^4$	$t^3 (20 + a_{35}) +$
	$t^4 a_{41} + t^5 a_{51}$	$t^4 a_{42} + t^5 a_{52}$	$t^4 a_{43} + t^5 a_{53}$		t ⁴ a ₄₅ +
				t ⁵ a ₅₄	$t^5 \ (-16 + a_{55})$

$-1+a_{\theta\theta}$	a ₁₀	a ₂₀	a ₃₀	a ₄₀	a ₅₀
a ₀₁	$-1 + a_{11}$	a ₂₁	a ₃₁	a ₄₁	a ₅₁
1 + a ₀₂	a ₁₂	$-2 + a_{22}$	a ₃₂	a ₄₂	a ₅₂
a ₀₃	3 + a ₁₃	a ₂₃	$-4 + a_{33}$	a ₄₃	a 53
$-1 + a_{04}$	a ₁₄	8 + a ₂₄	a ₃₄	$-8 + a_{44}$	a ₅₄
a ₀₅	- 5 + a ₁₅	a ₂₅	20 + a ₃₅	a ₄₅	$-16 + a_{55}$

Out[0]=

a ₀₀	a ₀₁	a ₀₂	a ₀₃	a ₀₄	a ₀₅	a ₁₀	a ₁₁	a ₁₂	a ₁₃	a ₁₄	a ₁₅	a ₂₀	a ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅	a ₃₀	a ₃
\rightarrow	-																		
1	0	- 1	0	1	0	0	1	0	- 3	0	5	0	0	2	0	- 8	0	0	6

Out[0]=

$$\{\{\{1, 0, -1, 0, 1, 0\}, \{0, 1, 0, -3, 0, 5\}, \{0, 0, 2, 0, -8, 0\}, \{0, 0, 0, 4, 0, -20\}, \{0, 0, 0, 0, 8, 0\}, \{0, 0, 0, 0, 0, 16\}\}\}$$

Out[•]//MatrixForm=

$$\begin{pmatrix} 1 & 0 & -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -3 & 0 & 5 \\ 0 & 0 & 2 & 0 & -8 & 0 \\ 0 & 0 & 0 & 4 & 0 & -20 \\ 0 & 0 & 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 0 & 0 & 16 \end{pmatrix}$$

In[*]:= **PT = %**

1	0	-1	0	1	0
0	1	0	- 3	0	5
0	0	2	0	- 8	0
0	0	0	4	0	- 20
0	0	0	0	8	0
0	0	0	0	0	16

Задание 4.

Матрица линейного отображения.

 a_0

```
In[@]:= Outer[Subscript[a, StringJoin[#1, #2]] &,
      ToString /@ Range[0, 5], ToString /@ Range[0, 5]];
                               _преобразов⋯ _диапазон
        _преобразов⋯ _диапазон
      kmPower[t].%;
      Collect[% - kmPower[3 t - 2], t];
      Сгруппировать
      CoefficientList[%, t];
      Список коэффициентов многочлена
      Solve[% == Table[Table[0, 6], 6], %%%% // Flatten];
      решить ур… табл… таблица значений
                                              уплостить
      %%%%% /. %;
      MatrixForm@@%
      матричная форма
Out[]//MatrixForm=
       (1 -2 4
                  - 8
                       16
                             - 32
        0 3 -12 36
                       - 96
                             240
        0 0
             9 - 54 216 - 720
               0
                   27 - 216 1080
        0 0 0 0
                        81 - 810
       0 0
                             243
 In[@]:= Pa<sub>0</sub> = %
Out[0]=
```

- 8

36

- 54

27

0

0

- 2 3 - 12

0 0

0 0 9

0

0 0 0

0 0 0 16

- 96

216

- 216

81

0

- 32

240

- 720

1080

-810

243

In[@]:= Outer[Subscript[a, StringJoin[#1, #2]] &, вне… с нижним инд… соединить строки ToString /@ Range[0, 5], ToString /@ Range[0, 5]]; преобразов… диапазон преобразов… диапазон kmLegendre[t].%; Collect[% - kmLegendre[3 t - 2], t]; сгруппировать CoefficientList[%, t]; список коэффициентов многочлена Solve[% == Table[Table[0, 6], 6], %%%% // Flatten]; решить ур… табл… таблица значений уплостить %%%%% /. %; MatrixForm@@% матричная форма

Out[•]//MatrixForm=

1	- 2	10	- 62	430	- 3194
0	3	- 18	126	- 942	7362
0	0	9	- 90	810	- 7110
0	0	0	27	- 378	4158
0	0	0	0	81	- 1458
0	0	0	0	0	243

In[@]:= Outer[Subscript[a, StringJoin[#1, #2]] &,

вне… с нижним инд… соединить строки

ToString /@ Range[0, 5], ToString /@ Range[0, 5]]; преобразов… диапазон

преобразов… диапазон

kmChebyshev[t].%;

Collect[% - kmChebyshev[3 t - 2], t];

сгруппировать

CoefficientList[%, t];

список коэффициентов многочлена

Solve[% == Table[Table[0, 6], 6], %%%% // Flatten];

решить ур… табл… таблица значений

уплостить

%%%%% /. %;

MatrixForm@@%

матричная форма

Out[]//MatrixForm=

$$\begin{pmatrix} 1 & -2 & 16 & -134 & 1168 & -10442 \\ 0 & 3 & -24 & 216 & -1968 & 18120 \\ 0 & 0 & 9 & -108 & 1152 & -11700 \\ 0 & 0 & 0 & 27 & -432 & 5400 \\ 0 & 0 & 0 & 0 & 81 & -1620 \\ 0 & 0 & 0 & 0 & 0 & 243 \\ \end{pmatrix}$$

$$In[@]:= Ta_0 = %$$

	1	- 2	16	- 134	1168	- 10 442
Ī	0	3	- 24	216	- 1968	18 120
Ī	0	0	9	- 108	1152	- 11 700
ĺ	0	0	0	27	-432	5400
ĺ	0	0	0	0	81	- 1620
ĺ	0	0	0	0	0	243

```
a_1
```

```
In[*]:= Outer[Subscript[a, StringJoin[#1, #2]] &,
       вне… с нижним инд… соединить строки
         ToString /@ Range[0, 5], ToString /@ Range[0, 5]];
         _преобразов⋯ _диапазон
                                  _преобразов· · · _диапазон
       kmChebyshev[t].%;
       Collect[% - D[kmChebyshev[t], t], t];
       [сгруппиров... ] дифференциировать
       CoefficientList[%, t];
       список коэффициентов многочлена
       Solve[% == Table[Table[0, 6], 6], %%%% // Flatten];
       _решить ур⋯ <u>_</u>табл⋯ <u>_</u>таблица значений
                                                 уплостить
       %%%%% /. %;
       MatrixForm@@%
       матричная форма
Out[•]//MatrixForm=
        0 1 0 3 0 5
         0 0 4 0 8 0
         0 0 0 6 0 10
         0 0 0 0 8 0
         0 0 0 0 0 10
        000000
 In[*]:= Ta<sub>1</sub> = %
```

```
In[@]:= Outer[Subscript[a, StringJoin[#1, #2]] &,
      вне… с нижним инд… соединить строки
         ToString /@ Range[0, 5], ToString /@ Range[0, 5]];
         преобразов… диапазон преобразов… диапазон
       kmLegendre[t].%;
       Collect[% - D[kmLegendre[t], t], t];
      сгруппиров ... дифференциировать
       CoefficientList[%, t];
      список коэффициентов многочлена
       Solve[% == Table[Table[0, 6], 6], %%%% // Flatten];
      решить ур… табл… таблица значений
                                                уплостить
       %%%%% /. %;
       MatrixForm@@%
      матричная форма
Out[•]//MatrixForm=
       010101
        0 0 3 0 3 0
        0 0 0 5 0 5
        0 0 0 0 7 0
        0 0 0 0 0 9
        0 0 0 0 0 0
 In[@]:= La_1 = %
Out[0]=
       0 1 0 1 0 1
```

```
In[@]:= Outer[Subscript[a, StringJoin[#1, #2]] &,
       вне… с нижним инд… соединить строки
         ToString /@ Range[0, 5], ToString /@ Range[0, 5]];
         преобразов… диапазон преобразов… диапазон
       kmPower[t].%;
       Collect[% - D[kmPower[t], t], t];
       сгруппиров ... дифференциировать
       CoefficientList[%, t];
       список коэффициентов многочлена
       Solve[% == Table[Table[0, 6], 6], %%%% // Flatten];
       решить ур… табл… таблица значений
                                                 уплостить
       %%%%% /. %;
       MatrixForm@@%
       матричная форма
Out[•]//MatrixForm=
       010000
        0 0 2 0 0 0
        0 0 0 3 0 0
        0 0 0 0 4 0
        0 0 0 0 0 5
        0 0 0 0 0 0
 In[*]:= Pa<sub>1</sub> = %
Out[0]=
       010000
```

 a_h

In[@]:= Outer[Subscript[a, StringJoin[#1, #2]] &,

ToString /@ Range[0, 5], ToString /@ Range[0, 5]];

_преобразов⋯ _диапазон

_преобразов· · · _диапазон

kmPower[t].%;

CoefficientList[%, t];

список коэффициентов многочлена

%%%%% /. %;

MatrixForm@@%

матричная форма

Out[]//MatrixForm=

$$\begin{pmatrix} 0 & 1 & h & h^2 & h^3 & h^4 \\ 0 & 0 & 2 & 3 h & 4 h^2 & 5 h^3 \\ 0 & 0 & 0 & 3 & 6 h & 10 h^2 \\ 0 & 0 & 0 & 0 & 4 & 10 h \\ 0 & 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

0	1	h	h ²	h ³	h ⁴
0	0	2	3 h	4 h ²	5 h ³
0	0	0	3	6 h	10 h ²
0	0	0	0	4	10 h
0	0	0	0	0	5
0	0	0	0	0	0

In[@]:= Outer[Subscript[a, StringJoin[#1, #2]] &,

вне… с нижним инд… соединить строки

ToString /@ Range[0, 5], ToString /@ Range[0, 5]]; преобразов… диапазон преобразов… диапазон

kmChebyshev[t].%;

CoefficientList[%, t];

список коэффициентов многочлена

решить ур… табл… таблица значений

уплостить

%%%%% /. %;

MatrixForm@@%

матричная форма

Out[•]//MatrixForm=

0	1	2 h	$3 + 4 h^2$	$8 \left(2 h + h^3 \right)$	$5 + 60 h^2 + 16 h^4$
0	0	4	12 h	$8 \left(1 + 4 h^2\right)$	$20 (3 h + 4 h^3)$
0	0	0	6	24 h	10 (1 + 8 h ²)
0	0	0	0	8	40 h
0	0	0	0	0	10
0	0	0	0	0	0

In[@]:= Outer[Subscript[a, StringJoin[#1, #2]] &,

вне… с нижним инд… соединить строки

ToString /@ Range[0, 5], ToString /@ Range[0, 5]]; преобразов... диапазон преобразов... диапазон

kmLegendre[t].%;

CoefficientList[%, t];

список коэффициентов многочлена

%%%%% /. %;

MatrixForm@@%

матричная форма

Out[•]//MatrixForm=

6	1	3 h 2	$\frac{1}{2} \left(2+5 \ h^2\right)$	$\frac{5}{8} \ \left(8 \ h + 7 \ h^3 \right)$	
6	0	3	15 h 2	$\frac{1}{2} \left(6+35 \; h^2\right)$	$\frac{21}{8}$ (8 h + 15 h ³)
6	0	0	5	35 h 2	$\frac{5}{2} \left(2 + 21 h^2 \right)$
6	0	0	0	7	63 h 2
6	0	0	0	0	9
6	0	0	0	0	0

```
a_2
```

1 -1 3 9

2 0 24

0 4 10

0 0 8

0 0 0

0 0 0

0

0

0

0

0

45 195

100 490

42 336

16 126

98 474

0 32

```
In[@]:= Outer[Subscript[a, StringJoin[#1, #2]] &,
      ToString /@ Range[0, 5], ToString /@ Range[0, 5]];
         _преобразов⋯ _диапазон
                                _преобразов⋯ _диапазон
       kmLegendre[t].%;
       Collect[% - (kmLegendre[2 t + 1] - 2 D[kmLegendre[t], t]), t];
      _сгруппировать
                                         _дифференциировать
       CoefficientList[%, t];
      список коэффициентов многочлена
       Solve[% == Table[Table[0, 6], 6], %%%% // Flatten];
      _решить ур⋯ <u>_</u>табл⋯ <u>_</u>таблица значений
                                                уплостить
       %%%%% /. %;
      MatrixForm@@%
      матричная форма
Out[•]//MatrixForm=
       (1 - 1 \ 3 \ 9 \ 45 \ 195)
        0 2 0 24 98 474
        0 0 4 10 100 490
        0 0 0 8 42 336
        0 0 0 0 16 126
        0 0 0 0
                         32
 In[*]:= La<sub>2</sub> = %
```

```
In[@]:= Outer[Subscript[a, StringJoin[#1, #2]] &,
      вне… с нижним инд… соединить строки
         ToString /@ Range[0, 5], ToString /@ Range[0, 5]];
         преобразов… диапазон преобразов… диапазон
       kmPower[t].%;
       Collect[% - (kmPower[2 t + 1] - 2 D[kmPower[t], t]), t];
                                      дифференциировать
      сгруппировать
       CoefficientList[%, t];
      список коэффициентов многочлена
       Solve[% == Table[Table[0, 6], 6], %%%% // Flatten];
      решить ур… табл… таблица значений
                                                уплостить
       %%%%% /. %;
       MatrixForm@@%
      матричная форма
Out[•]//MatrixForm=
       (1 -1 1 1 1 1
        0 2 0 6 8 10
        0 0 4 6 24 40
        0 0 0 8 24 80
        0 0 0 0 16 70
        0 0 0 0 0 32
 In[*]:= Pa<sub>2</sub> = %
```

Out[@]=

1	-1	1	1	1	1
0	2	0	6	8	10
0	0	4	6	24	40
0	0	0	8	24	80
0	0	0	0	16	70
0	0	0	0	0	32

```
In[@]:= Outer[Subscript[a, StringJoin[#1, #2]] &,
      вне… с нижним инд… соединить строки
         ToString /@ Range[0, 5], ToString /@ Range[0, 5]];
        преобразов… диапазон преобразов… диапазон
       kmChebyshev[t].%;
       Collect[\% - (kmChebyshev[2t+1] - 2D[kmChebyshev[t], t]), t];
                                         дифференциировать
      сгруппировать
      CoefficientList[%, t];
      список коэффициентов многочлена
       Solve[% == Table[Table[0, 6], 6], %%%% // Flatten];
      решить ур… табл… таблица значений
                                               уплостить
      %%%%% /. %;
       MatrixForm@@%
      матричная форма
Out[•]//MatrixForm=
       (1 -1 5 19 129 671
        0 2 0 42 208 1210
        0 0 4 12 144 820
                        440
        0 0 0 8
                    48
        0
          0 0 0
                    16
                         140
        0 0 0 0
                     0
                         32
```

In[*]:= Ta₂ = %

1	-1	5	19	129	671
0	2	0	42	208	1210
0	0	4	12	144	820
0	0	0	8	48	440
0	0	0	0	16	140
0	0	0	0	0	32

In[•]:=

Pa₀

Τa₀

La₀

Out[0]=

1	- 2	4	- 8	16	- 32
0	3	- 12	36	- 96	240
0	0	9	- 54	216	- 720
0	0	0	27	- 216	1080
0	0	0	0	81	- 810
0	0	0	0	0	243

Out[@]=

1	- 2	16	- 134	1168	- 10 442
0	3	- 24	216	- 1968	18 120
0	0	9	- 108	1152	- 11 700
0	0	0	27	-432	5400
0	0	0	0	81	- 1620
0	0	0	0	0	243

Out[@]=

1	- 2	10	- 62	430	- 3194
0	3	- 18	126	- 942	7362
0	0	9	- 90	810	- 7110
0	0	0	27	- 378	4158
0	0	0	0	81	- 1458
0	0	0	0	0	243

In[@]:=	Pa ₁
	Ta ₁ La ₁
O u t [•] =	
	0 1 0 0 0 0 0 0 2 0
Out[0]=	
	0 1 0 3 0 5 0 0 4 0 8 0 0 0 0 6 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Out[@]=	
	0 1 0 1 0 1 0 0 3 0 3 0 0 0 0 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In[0]:=

Pa_h Ta_h

La_h

Out[0]=

•	0	1	h	h ²	h ³	h ⁴
	0	0	2	3 h	4 h ²	5 h ³
	0	0	0	3	6 h	10 h ²
	0	0	0	0	4	10 h
	0	0	0	0	0	5
	0	0	0	0	0	0

Out[@]=

0	1	2 h	$3 + 4 h^2$	$8 \left(2 h + h^3 \right)$	$5 + 60 h^2 + 16 h^4$
0	0	4	12 h	$8 \left(1 + 4 h^2\right)$	$20 (3 h + 4 h^3)$
0	0	0	6	24 h	10 $(1 + 8 h^2)$
0	0	0	0	8	40 h
0	0	0	0	0	10
0	0	0	0	0	0

Out[•]=

0	1	3 h 2	$\frac{1}{2} \left(2+5 \ h^2\right)$	$\frac{5}{8} \ \left(8 \ h + 7 \ h^3 \right)$	$\frac{1}{8} \ \left(8 + 140 \ h^2 + 63 \ h^4 \right)$
0	0	3	15 h 2	$\frac{1}{2} \left(6 + 35 \text{ h}^2\right)$	$\frac{21}{8}$ (8 h + 15 h ³)
0	0	0	5	35 h 2	$\frac{5}{2}$ (2 + 21 h ²)
0	0	0	0	7	63 h 2
0	0	0	0	0	9
0	0	0	0	0	0

In[@]:=	Pa ₂		
	Ta ₂		
	La ₂		

-	1	- 1	1	1	1	1
6	9	2	0	6	8	10
(9	0	4	6	24	40
6	9	0	0	8	24	80
6	9	0	0	0	16	70
6	9	0	0	0	0	32

Out[0]=

1	- 1	5	19	129	671
0	2	0	42	208	1210
0	0	4	12	144	820
0	0	0	8	48	440
0	0	0	0	16	140
0	0	0	0	0	32

Out[0]=

1	- 1	3	9	45	195
0	2	0	24	98	474
0	0	4	10	100	490
0	0	0	8	42	336
0	0	0	0	16	126
0	0	0	0	0	32

$$In[\ \circ\]:= \left(\begin{array}{c} 0\ 1\ 0\ 0\ 0\\ 0\ 0\ 2\ 0\ 0\\ 0\ 0\ 0\ 3\ 0\ 0\\ 0\ 0\ 0\ 0\ 4\ 0\\ 0\ 0\ 0\ 0\ 0\ 0 \end{array} \right) \cdot \left(\begin{array}{c} 1\\ -1\\ 5\\ 4\\ 3\\ 2 \end{array} \right)$$

$$2x^5 + 3x^4 + 4x^3 + 5x^2 - x + 1 \rightarrow (D) \rightarrow 0x^5 + 10x^4 + 12x^3 + 12x^2 + 10x - 1$$

$$In[*]:= \begin{pmatrix} 0 & 1 & 2 & h & 3 & + & 4 & h^2 & 8 & (2 & h & + & h^3) & 5 & + & 60 & h^2 & + & 16 & h^4 \\ 0 & 0 & 4 & 12 & h & 8 & (1 & + & 4 & h^2) & 20 & (3 & h & + & 4 & h^3) \\ 0 & 0 & 0 & 6 & 24 & h & 10 & (1 & + & 8 & h^2) \\ 0 & 0 & 0 & 0 & 8 & 40 & h \\ 0 & 0 & 0 & 0 & 0 & 10 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} . \begin{pmatrix} 1 \\ -1 \\ 5 \\ 4 \\ 3 \\ 2 \end{pmatrix}$$

% / . h → 0

Out[•]=

$\left[-1 + 10 \; h + 4 \; \left(3 + 4 \; h^2 \right) \; + 24 \; \left(2 \; h + h^3 \right) \; + 2 \; \left(5 + 60 \; h^2 + 16 \; h^4 \right) \right]$
$20 + 48 \ h + 24 \ \left(1 + 4 \ h^2\right) \ + 40 \ \left(3 \ h + 4 \ h^3\right)$
$24 + 72 \ h + 20 \ \left(1 + 8 \ h^2\right)$
24 + 80 h
20
0

Out[•]=

(01030 5 V 00408 0 100000 0

Out[0]=

 \mathcal{A}_{h} /. $h \rightarrow 0 = \mathcal{A}_{1}$

Задание 5.

Векторное пространство линейных функционалов.

 a_0

 $kmPower\left[\frac{1}{2}\right]$ In[@]:= kmLegendre $\left[\frac{1}{2}\right]$ $kmChebyshev \left[\frac{1}{2} \right]$

Out[0]=

Out[0]=

Out[0]=

 a_1

ReplaceAll[D[#, t] & /@ In[•]:= заменить всё Дифференциировать {kmPower[t], kmLegendre[t], kmChebyshev[t]}, $t \rightarrow 1$]

0	1	2	3	4	5
0	1	3	6	10	15
0	1	4	9	16	25

 a_2

Out[0]=

0	1	0	1	0	1
0	1	0	1	0	1
0	1	0	1	0	1

Проверим правила преобразования координат линейного функционала.

$$In\{*\}:=\left\{1,\frac{1}{2},\frac{-1}{8},\frac{-7}{16},\frac{-37}{128},\frac{23}{256}\right\}=\left\{1,\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{16},\frac{1}{32}\right\}.PL$$

Out[0]= True

$$In[*]:= \left\{1, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right\} = \left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}\right\}.PT$$

Out[0]=

True

$$In[v]:= \{0, 1, 3, 6, 10, 15\} = \{0, 1, 2, 3, 4, 5\}.PL$$

Out[0]=

True

Out[0]=

True

Out[0]=

True

Out[0]=

True

Задание 6.

Ковариантные и контравариантные объекты.

Любой вектор, так же как и линейный функционал, задается набором координат. Координаты вектора принято записывать в столбец, а координаты линейного функционала в строку. Отличие линейного функционала от вектора также заключается в правиле преобразования координат: при смене базиса координаты ковектора преобразуются как базис, в отличие от координат векторов, преобразующихся противоположно базису.