Machine Learning Lab Assignment 3

Name - Subhojit Ghoshal
Roll - 001811001048
Semester - 7
Year - 4
Department - Information Technology

PART 1 1) Wine Dataset

1.1) GaussianHMM Without Tuning

1.2) GaussianHMM With Tuning

[[35 5] [13 53]]

Performance		ation cision	recall	f1-score	support
	b g	0.73 0.91	0.88 0.80	0.80 0.85	40 66
accurad macro av weighted av	/g	0.82 0.84	0.84 0.83	0.83 0.83 0.83	106 106 106

Accuracy:

0.8301886792452831

1.3) GMMHMM Without Tuning

Performand	ce E	valuation			
		precision	recall	f1-score	support
	1	0.91	1.00	0.95	20
	2	1.00	0.94	0.97	33
	3	1.00	1.00	1.00	19
accura	acy			0.97	72
macro a	avg	0.97	0.98	0.97	72
weighted a	avg	0.97	0.97	0.97	72

Accuracy:

0.97222222222222

1.4) GMMHMM With Tuning

[[35 5] [13 53]]

Performance	Evaluation precision	recall	f1-score	support
b	0.73	0.88	0.80	40
٤	0.91	0.80	0.85	66
accuracy	,		0.83	106
macro avg	0.82	0.84	0.83	106
weighted avg	0.84	0.83	0.83	106

Accuracy:

1.5) MultinomialHMM Without Tuning

[[35 5] [13 53]]

Performan	ce E	valuation			
		precision	recall	f1-score	support
	b	0.73	0.88	0.80	40
	g	0.91	0.80	0.85	66
accur	асу			0.83	106
macro	avg	0.82	0.84	0.83	106
weighted	avg	0.84	0.83	0.83	106

Accuracy:

0.8301886792452831

1.6) MultinomialHMM Without Tuning

[[35 5] [13 53]]

Performan	ce E	valuation			
		precision	recall	f1-score	support
	b	0.73	0.88	0.80	40
	g	0.91	0.80	0.85	66
accur	асу			0.83	106
macro	avg	0.82	0.84	0.83	106
weighted	avg	0.84	0.83	0.83	106

Accuracy:

The maximum accuracy was achieved when the Train-Test split ratio was 70:30, which was achieved by using the Gaussian Model. The maximum range of accuracies was achieved by the Gaussian Model, followed by the GMMHMM model, which is followed by the MultinomialHMM model.

2) Ionosphere Dataset

2.1) GaussianHMM Without Tuning

Confusion Matrix:

[[35 5] [13 53]]

Performan	ce E	valuation precision	recall	f1-score	support
	b g	0.73 0.91	0.88 0.80	0.80 0.85	40 66
accur macro weighted	avg	0.82 0.84	0.84 0.83	0.83 0.83 0.83	106 106 106

Accuracy:

0.8301886792452831

2.2) GaussianHMM With Tuning

Confusion Matrix:

[[35 5] [13 53]]

Performan	ce E	valuation			
		precision	recall	f1-score	support
	b	0.73	0.88	0.80	40
	g	0.91	0.80	0.85	66
accur	acy			0.83	106
macro	avg	0.82	0.84	0.83	106
weighted	avg	0.84	0.83	0.83	106

Accuracy:

0.8301886792452831

2.3) GMMHMM Without Tuning

[[35 5] [13 53]]

Performan	ce E	valuation			
		precision	recall	f1-score	support
	b	0.73	0.88	0.80	40
	g	0.91	0.80	0.85	66
accur	acy			0.83	106
macro	avg	0.82	0.84	0.83	106
weighted	avg	0.84	0.83	0.83	106

Accuracy:

0.8301886792452831

2.4) GMMHMM With Tuning

[[35 5] [13 53]]

Performance	e E1	/aluation precision	recall	f1-score	support
	b g	0.73 0.91	0.88 0.80	0.80 0.85	40 66
accurac macro av weighted av	/g	0.82 0.84	0.84 0.83	0.83 0.83 0.83	106 106 106

Accuracy:

0.8301886792452831

2.5) MultinomialHMM Without Tuning

[[35 5] [13 53]]

Performar	nce E	valuation			
		precision	recall	f1-score	support
	b	0.73	0.88	0.80	40
	g	0.91	0.80	0.85	66
accur	racy			0.83	106
macro	avg	0.82	0.84	0.83	106
weighted	avg	0.84	0.83	0.83	106

Accuracy:

2.6) MultinomialHMM Without Tuning

[[35 5] [13 53]]

Performance E	valuation			
	precision	recall	f1-score	support
b	0.73	0.88	0.80	40
g	0.91	0.80	0.85	66
accuracy			0.83	106
macro avg	0.82	0.84	0.83	106
weighted avg	0.84	0.83	0.83	106

Accuracy:

The maximum accuracy was achieved when the Train-Test split ratio was 70:30, which was achieved by using the Gaussian Model. The maximum range of accuracies was achieved by the Gaussian Model, followed by the GMMHMM model, which is followed by the MultinomialHMM model.

- 10

3) Breast Cancer Dataset

3.1) GaussianHMM Without Tuning

[[106 6] [2 57]]

Performan	ce E	valuation			
		precision	recall	f1-score	support
	В	0.98	0.95	0.96	112
	Μ	0.90	0.97	0.93	59
accur	acy			0.95	171
macro	avg	0.94	0.96	0.95	171
weighted	avg	0.96	0.95	0.95	171

Accuracy:

0.9532163742690059

3.2) GaussianHMM With Tuning

[[105 7] [2 57]]

Performance	Evaluation
rei i oi illance	Lvaluacion

	precision	recall	f1-score	support
В	0.98	0.94	0.96	112
М	0.89	0.97	0.93	59
accuracy			0.95	171
macro avg	0.94	0.95	0.94	171
weighted avg	0.95	0.95	0.95	171

Accuracy:

0.9473684210526315

3.3) GMMHMM Without Tuning

[[105 7] [5 54]]

-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	
				_													_				_																																	

Performan	ce E	valuation			
		precision	recall	f1-score	support
	В	0.95	0.94	0.95	112
	Μ	0.89	0.92	0.90	59
accur	асу			0.93	171
macro	avg	0.92	0.93	0.92	171
weighted	avg	0.93	0.93	0.93	171

Accuracy:

0.9298245614035088

3.4) GMMHMM With Tuning

Confusion Matrix: [[105 7] [5 54]] Performance Evaluation precision recall f1-score support 0.95 0.94 0.95 В 112 0.89 0.92 0.90 Μ 59 accuracy 0.93 171 macro avg 0.93 0.92 0.92 171

0.93

0.93

171

0.93

Accuracy:

weighted avg

0.9298245614035088

3.5) MultinomialHMM Without Tuning

Performance	Evaluation			
	precision	recall	f1-score	support
В	0.68	0.70	0.69	149
M	0.41	0.38	0.39	79
rı.	0.41	0.30	0.33	73
accuracy			0.59	228
macro avg	0.54	0.54	0.54	228
weighted avg	0.59	0.59	0.59	228

Accuracy:

0.5921052631578947

3.6) MultinomialHMM Without Tuning

The maximum accuracy was achieved when the Train-Test split ratio was 70:30, which was achieved by using the Gaussian Model. The maximum range of accuracies was achieved by the Gaussian Model, followed by the GMMHMM model, which is followed by the MultinomialHMM model.

PART 2

1) CIFAR-10

Model: "sequential 2"

Layer (type)	Output Shape	Param #
conv2d_6 (Conv2D)	(None, 30, 30, 32)	896
max_pooling2d_4 (MaxPooling2	(None, 15, 15, 32)	0
conv2d_7 (Conv2D)	(None, 13, 13, 64)	18496
max_pooling2d_5 (MaxPooling2	(None, 6, 6, 64)	0
conv2d_8 (Conv2D)	(None, 4, 4, 64)	36928
flatten (Flatten)	(None, 1024)	0
dense (Dense)	(None, 64)	65600
dense_1 (Dense)	(None, 10)	650

Total params: 122,570 Trainable params: 122,570 Non-trainable params: 0

```
Epoch 11/20
      ==========] - 69s 44ms/step - loss: 0.1561 - accuracy: 0.9437 - val_loss: 1.8716 - val_accuracy: 0.6910
1563/1563 [=
Epoch 12/20
Epoch 13/20
1563/1563 [==
      Epoch 14/20
1563/1563 [==
       Epoch 15/20
Epoch 16/20
1563/1563 [==
      ===========] - 69s 44ms/step - loss: 0.1356 - accuracy: 0.9520 - val_loss: 2.2363 - val_accuracy: 0.6877
Epoch 17/20
Epoch 18/20
Epoch 19/20
      ==========] - 69s 44ms/step - loss: 0.1250 - accuracy: 0.9571 - val_loss: 2.3900 - val_accuracy: 0.6802
1563/1563 [=
Epoch 20/20
```


2) MNIST

Model: "sequential_8"		
Layer (type)	Output Shape	Param #
conv2d_18 (Conv2D)	(None, 26, 26, 32)	320
max_pooling2d_10 (MaxPooling	(None, 13, 13, 32)	0
conv2d_19 (Conv2D)	(None, 11, 11, 64)	18496
max_pooling2d_11 (MaxPooling	(None, 5, 5, 64)	0
conv2d_20 (Conv2D)	(None, 3, 3, 64)	36928
flatten_3 (Flatten)	(None, 576)	0
dense_6 (Dense)	(None, 64)	36928
dense_7 (Dense)	(None, 10)	650

Total params: 93,322 Trainable params: 93,322 Non-trainable params: 0

```
Epoch 12/20
              =========] - 57s 31ms/step - loss: 0.0084 - accuracy: 0.9973 - val_loss: 0.0329 - val_accuracy: 0.9921
1875/1875 [=
Epoch 13/20
1875/1875 [=
                       :===] - 57s 31ms/step - loss: 0.0067 - accuracy: 0.9980 - val_loss: 0.0343 - val_accuracy: 0.9918
Epoch 14/20
1875/1875 [=
                 ========] - 58s 31ms/step - loss: 0.0078 - accuracy: 0.9973 - val_loss: 0.0390 - val_accuracy: 0.9908
Epoch 15/20
1875/1875 [==
            Epoch 16/20
Epoch 17/20
Epoch 18/20
1875/1875 [=
             ================ ] - 57s 31ms/step - loss: 0.0053 - accuracy: 0.9982 - val_loss: 0.0397 - val_accuracy: 0.9915
Epoch 19/20
1875/1875 [=
               =========] - 58s 31ms/step - loss: 0.0048 - accuracy: 0.9986 - val loss: 0.0540 - val accuracy: 0.9903
Epoch 20/20
1875/1875 [=====
              ==========] - 58s 31ms/step - loss: 0.0043 - accuracy: 0.9987 - val_loss: 0.0419 - val_accuracy: 0.9919
```


3) SAVEE

Model: "sequential_3"

Layer (type)	Output	Shape	Param #
conv2d_9 (Conv2D)	(None,	155, 318, 32)	320
max_pooling2d_6 (MaxPooling2	(None,	77, 159, 32)	0
conv2d_10 (Conv2D)	(None,	75, 157, 64)	18496
max_pooling2d_7 (MaxPooling2	(None,	37, 78, 64)	0
conv2d_11 (Conv2D)	(None,	35, 76, 64)	36928
flatten_3 (Flatten)	(None,	170240)	0
dense_6 (Dense)	(None,	64)	10895424
dense_7 (Dense)	(None,	10)	650

Total params: 10,951,818 Trainable params: 10,951,818

Non-trainable params: 0

4) EmoDB

Model: sequential_4	Model:	"sequential_4	"
---------------------	--------	---------------	---

Layer (type)	Output	Shape	Param #
conv2d_12 (Conv2D)	(None,	155, 318, 32)	320
max_pooling2d_8 (MaxPooling2	(None,	77, 159, 32)	0
conv2d_13 (Conv2D)	(None,	75, 157, 64)	18496
max_pooling2d_9 (MaxPooling2	(None,	37, 78, 64)	0
conv2d_14 (Conv2D)	(None,	35, 76, 64)	36928
flatten_4 (Flatten)	(None,	170240)	0
dense_8 (Dense)	(None,	64)	10895424
dense_9 (Dense)	(None,	10)	650

Total params: 10,951,818 Trainable params: 10,951,818 Non-trainable params: 0

```
Epoch 14/20
12/12 [==
                                        30s 2s/step - loss: 0.0012 - accuracy: 1.0000 - val_loss: 3.9037 - val_accuracy: 0.5155
Epoch 15/20
12/12 [==
                                        30s 2s/step - loss: 7.0827e-04 - accuracy: 1.0000 - val_loss: 4.0446 - val_accuracy: 0.4969
Epoch 16/20
12/12 [====
                                        30s 2s/step - loss: 4.9740e-04 - accuracy: 1.0000 - val_loss: 4.1150 - val_accuracy: 0.5093
Epoch 17/20
12/12 [=====
                                      - 30s 3s/step - loss: 3.8747e-04 - accuracy: 1.0000 - val_loss: 4.1542 - val_accuracy: 0.5031
Epoch 18/20
                                      - 30s 2s/step - loss: 3.0542e-04 - accuracy: 1.0000 - val_loss: 4.2023 - val_accuracy: 0.5031
12/12 [======
Epoch 19/20
12/12 [=====
                                      - 31s 3s/step - loss: 2.5256e-04 - accuracy: 1.0000 - val_loss: 4.2239 - val_accuracy: 0.5031
Epoch 20/20
12/12 [==========] - 30s 2s/step - loss: 2.1154e-04 - accuracy: 1.0000 - val_loss: 4.2753 - val_accuracy: 0.5093
```


It was observed that the more layers we add the higher accuracy we can achieve. At the same time, if we keep on adding more layers, the final accuracy will saturate. Also, the number of convolution and the pooling layers play an important role in training the model.

PART 3 1) VGG-16

1.1) CIFAR-10

1.2) MNIST

1.3) SAVEE

```
8/8 [========== - - 6s 708ms/step - loss: nan - accuracy: 0.1208
Epoch 45/50
8/8 [================= ] - 6s 706ms/step - loss: nan - accuracy: 0.1208
Epoch 46/50
Epoch 47/50
8/8 [================= ] - 6s 706ms/step - loss: nan - accuracy: 0.1208
Epoch 48/50
8/8 [======================= ] - 6s 709ms/step - loss: nan - accuracy: 0.1208
Epoch 49/50
8/8 [================= ] - 6s 706ms/step - loss: nan - accuracy: 0.1208
Epoch 50/50
8/8 [================= ] - 6s 706ms/step - loss: nan - accuracy: 0.1208
model.evaluate(X test resized, y test)
8/8 [============ ] - 2s 215ms/step - loss: nan - accuracy: 0.1292
[nan, 0.12916666269302368]
```

1.4) **EmoDB**

```
Epoch 14/20
Epoch 15/20
Epoch 16/20
Epoch 17/20
Epoch 18/20
Epoch 19/20
Epoch 20/20
model.evaluate(X test resized, y test)
[nan, 0.25]
```

The entire model can be broken down into 5 blocks, where each block contains 3 convolution and 1 max-pooling layers.

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model,i.e., i have taken 2000 training data points and 2000 testing data points.

2) ResNet-50

2.1) CIFAR-10

2.2) MNIST

2.3) SAVEE

```
EPOCH T/IO
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
model.evaluate(X_test_resized, y_test)
[8.759380340576172, 0.0]
```

2.4) **EmoDB**

```
Epoch 3/10
9/9 [========== ] - 6s 663ms/step - loss: 1.1062 - accuracy: 0.6367
Epoch 4/10
9/9 [======= 0.3835 - accuracy: 0.8914
Epoch 7/10
Epoch 8/10
9/9 [======== 0.1096 - accuracy: 0.9775
Epoch 9/10
9/9 [========== - - 6s 664ms/step - loss: 0.1170 - accuracy: 0.9850
model.evaluate(X_test_resized, y_test)
) 9/9 [============== ] - 4s 304ms/step - loss: 7.2902 - accuracy: 0.0000e+00
[7.290168285369873, 0.0]
```

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model,i.e., I have taken 2000 training data points and 2000 testing data points.

3) Recurrent Neural Networks (RNN) 3.1) CIFAR-10

```
Epoch 3/10
200/200 [============== ] - 111s 557ms/step - loss: 2.0085 - accuracy: 0.2645
Epoch 4/10
200/200 [=========== ] - 112s 558ms/step - loss: 1.9649 - accuracy: 0.2771
Epoch 5/10
200/200 [=========== ] - 111s 557ms/step - loss: 1.9583 - accuracy: 0.2816
Epoch 6/10
200/200 [============] - 111s 557ms/step - loss: 1.9388 - accuracy: 0.2896
Epoch 7/10
200/200 [===========] - 111s 557ms/step - loss: 1.9371 - accuracy: 0.2899
Epoch 8/10
200/200 [=============== ] - 111s 556ms/step - loss: 1.9254 - accuracy: 0.2989
Epoch 9/10
200/200 [===========] - 111s 557ms/step - loss: 1.9188 - accuracy: 0.2966
Epoch 10/10
200/200 [============ ] - 111s 556ms/step - loss: 1.9341 - accuracy: 0.2930
model.evaluate(test_images, test_labels)
157/157 [============= ] - 38s 225ms/step - loss: 1.9601 - accuracy: 0.2912
[1.9600898027420044, 0.29120001196861267]
```

3.2) MNIST

```
print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
Test Accuracy of the model on the 10000 test images: 97.77 %
```

3.3) SAVEE

3.4) **EmoDB**

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model,i.e., I have taken 2000 training data points and 2000 testing data points.

4) AlexNet

4.1) CIFAR-10

4.2) MNIST

4.3) SAVEE

```
LPUCII 4/ IU
8/8 [============== - - 56s 7s/step - loss: 2.2042 - accuracy: 0.2333
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
model.evaluate(X test resized, y test)
[2.275780200958252, 0.23749999701976776]
```

4.4) **EmoDB**

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model,i.e., I have taken 2000 training data points and 2000 testing data points.

5) GoogLeNet

5.1) CIFAR-10

```
output_2_loss: 2.0650 - val_output_accuracy: 0.2305 - val_auxilliary_output_1_accuracy: 0.2400 - val_auxilliary_output_2_accuracy: 0.2240

output_2_loss: 2.0244 - val_output_accuracy: 0.2470 - val_auxilliary_output_1_accuracy: 0.2630 - val_auxilliary_output_2_accuracy: 0.2585

output_2_loss: 2.0076 - val_output_accuracy: 0.2355 - val_auxilliary_output_1_accuracy: 0.2735 - val_auxilliary_output_2_accuracy: 0.2660
```

5.2) MNIST

C <matplotlib.legend.Legend at 0x7feaad89cf50>

5.3) SAVEE

5.4) **EmoDB**

Epochs

```
model.evaluate(X_test, y_test)

7/7 [===========================]
[2.8008506298065186,
    1.7843737602233887,
    1.6508854627609253,
    1.7373706102371216,
    0.30841121077537537,
    0.38785046339035034,
    0.3644859790802002]
```

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model,i.e., I have taken 2000 training data points and 2000 testing data points.