Data Poisoning in Learning Systems

Exploring the detection and prevention of label flipping attacks in credit card fraud detection systems to ensure data integrity and security.

Fraud Detection Vulnerabilities

Addressing vulnerabilities in fraud detection models

Data Poisoning Threat

Fraud detection models are exposed to data poisoning, leading to misclassification.

Misclassification Impact

Increased fraudulent transactions are incorrectly classified as legitimate, worsening fraud cases.

Label Flipping Attack

Implementing a label flipping attack on the fraud detection dataset to evaluate vulnerabilities.

Detection Mechanism Development

Developing mechanisms to detect and identify poisoned data within the dataset.

Correction Techniques Application

Applying various correction techniques to improve fraud detection accuracy after attacks.

Credit Card Fraud Dataset Insights

Analysis of fraudulent transactions in dataset

Credit Card Fraud Dataset

```
flip_percentage=0.5 #50% flipped
   fraud_indices=dataf[dataf['Class']==1].index
   #Selecting the fraud samples to filp
   flip count=int(len(fraud indices)*flip percentage)
   flip indices=np.random.choice(fraud indices,flip count,replace=False)
   #Flip fraud to non fraud
   dataf.loc[flip_indices, 'Class']=0
   print("flipped",flip_count)
   print(dataf['Class'].value_counts())
 ✓ 0.0s
flipped 246
Class
     284561
        246
Name: count, dtype: int64
```

Label Flipping Attack Implementation

Understanding the mechanics and impact of label flipping

Fraud Labels **Flipped**

30% of fraud labels (1) The label flipping are flipped to nonfraud (0), altering training data.

Impact on **Model Training**

leads to the model missing critical fraud cases during training.

Consequences of Attack

Increased likelihood of undetected fraudulent transactions due to misclassification.

Impact of Attack on Model Performance

Analysis of fraud detection before and after attack

Model Architecture: Defense Mechanism

Understanding the Fraud Detection Strategy

Step 1: Detection

Utilize Isolation Forest to identify and flag suspicious transactions effectively.

Step 2: Correction

Train a secondary model to relabel the samples that have been flagged as suspicious.

Step 3: Final Classification

Develop the fraud detection model using the cleaned data for accurate results.

Defense System Implementation Steps

A structured approach to enhancing data integrity

Step 1: Detect Poisoned Data

Utilized Isolation Forest to identify anomalies within data, ensuring integrity.

Step 2: Correct Poisoned Labels

Reclassified fraudulent transactions using a clean model for accuracy in detection.

Step 3: Train Final Model

Retrained the fraud detection model post correction of poisoned labels for improved performance.

Results After Defense Improvements

Significant advancements in detection metrics

Fraud Detection Rate

Source: Companies Market Cap

After Defense (AUC = 0.50) 0.2 0.4 0.6 0.8 1.0 0.0 False Positive Rate Fraud Detection Rate (%) After Defense

Conclusion and Future Directions

Insights from our findings and future initiatives

Mitigating Poisoning Attacks

Our innovative approach has demonstrated success in mitigating the effects of poisoning attacks on models.

Future Exploration of Adversarial Training

Future work will explore adversarial training methods to enhance defenses against model attacks.

Real-time Anomaly Detection

Implementing real-time anomaly detection systems in financial applications is an essential next step.

Source-code

Data-Poisoning link

https://colab.research.google.com/drive/1-eji3KqHQ9b7Z_7wiQ2z7GP-ZQAOelwl?usp=sharing

