META

Estudar funções de uma variável real a valores em \mathbb{R}^3

OBJETIVOS

Estudar movimentos de partículas no espaço.

PRÉ-REQUISITOS

Ter compreendido os conceitos de funções reais e de curvas no plano.

8.1 Introdução

Nesta aula, vamos estudar funções que a cada número real de um intervalo da reta (domínio) associa um único vetor no espaço. Tais funções serão úteis no estudo de curvas espaciais, que faremos na próxima aula.

8.2 Definições e Propriedades

Uma função de uma variável real a valores em \mathbb{R}^3 ou função vetorial é uma função $\vec{F}:I\longrightarrow\mathbb{R}^3$ onde I é um subconjunto de \mathbb{R} . Uma tal função associa a cada $t\in I$, um único vetor $\vec{F}(t)\in\mathbb{R}^3$. O conjunto I é o domínio de \vec{F} e será indicado por $D_{\vec{F}}$. A imagem ou trajetória de \vec{F} é o lugar geométrico, em \mathbb{R}^3 , descrito por $\vec{F}(t)$, quando t varia em I.

Como uma função vetorial associa a cada $t \in I$, um único vetor $\vec{F}(t) \in \mathbb{R}^3$, então existem, e são únicas, 3 (três) funções a valores reais $F_i: I \longrightarrow \mathbb{R}, \ i=1,2,3$, tais que, qualquer que seja $t \in I$,

$$\vec{F}(t) = (F_1(t), F_2(t), F_3(t))$$
 ou $\vec{F}(t) = F_1(t)\vec{i} + F_2(t)\vec{j} + F_3(t)\vec{k}$.

Tais funções são denominadas funções componentes de F.

Exemplo 8.2.1. $\vec{F}(t) = (t^2, sen t, 2)$ é uma função vetorial e suas funções componentes são:

$$F_1(t) = t^2$$
, $F_2(t) = sen t$ e $F_3(t) = 2$.

Exemplo 8.2.2. Seja $\vec{F}(t) = t\vec{i} + \sqrt{t}\vec{j} + sen \ 3t\vec{k}$. As funções componentes de \vec{F} são as funções:

$$F_1(t) = t$$
, $F_2(t) = \sqrt{t}$ e $F_3(t) = sen 3t$.

Sejam \vec{F} , $\vec{G}:I\longrightarrow\mathbb{R}^3$ duas funções de uma variável real a valores em \mathbb{R}^3 , $f:I\longrightarrow\mathbb{R}$ uma função a valores reais e k uma constante. Definimos:

(a)a função $\vec{F} + \vec{G} : I \longrightarrow \mathbb{R}^3$ dada por

$$(\vec{F} + \vec{G})(t) = F(t) + \vec{G}(t)$$

denomina-se soma de \vec{F} e \vec{G} .

(b)a função $k\vec{F}:I\longrightarrow\mathbb{R}^3$ dada por

$$(k\vec{F})(t) = k\vec{F}(t) + \vec{G}(t)$$

é o produto de \vec{F} pela constante k.

(c) a função $f \cdot \vec{F} : I \longrightarrow \mathbb{R}^3$ dada por

$$(f \cdot \vec{F})(t) = f(t)\vec{F}(t)$$

é o produto de \vec{F} pela função escalar f.

(d)a função $\vec{F}\cdot\vec{G}:I\longrightarrow\mathbb{R}$ dada por

$$(F\cdot G)(t)=F(t)\cdot G(t)$$

onde $\vec{F}(t) \cdot \vec{G}(t) = F_1(t) \cdot G_1(t) + F_2(t) \cdot G_2(t) + F_3(t) \cdot G_3(t)$, é o produto escalar de F e G.

(e)a função $\vec{F}\times\vec{G}:I\longrightarrow\mathbb{R}^3$ dada por

$$(\vec{F} \times \vec{G})(t) = \vec{F}(t) \times \vec{G}(t) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ F_1(t) & F_2(t) & F_3(t) \\ G_1(t) & G_2(t) & G_3(t) \end{vmatrix}$$

$$= [F_2(t)G_3(t) - F_3(t)G_2(t)]\vec{i} + [F_3(t)G_1(t) - F_1(t)G_3(t)]\vec{j}$$

$$+ [F_1(t)G_2(t) - F_2(t)G_1(t)]\vec{k}$$

denomina-se produto vetorial de \vec{F} e \vec{G} .

Exemplo 8.2.3. Sejam $\vec{F}(t)=(t,\ sen\ t,\ 2),\ \vec{G}(t)=(3,\ t,\ t^2)$ e $f(t)=e^t.$ Temos:

(a)o produto escalar de \vec{F} e \vec{G} é a função \vec{H} dada por

$$\vec{H}(t) = \vec{F}(t) \cdot \vec{G}(t) = 3t + t \ sen \ t + 2e^t.$$

(b)o produto de \vec{F} pela função escalar f é a função com valores em \mathbb{R}^3 dada por

$$f(t)\vec{F}(t) = e^t(t, sen t, 2) = (te^t, e^t sen t, 2e^t).$$

(c)o produto vetorial de \vec{F} e \vec{G} é a função a valores em \mathbb{R}^3 dada por

$$(\vec{F} \times \vec{G})(t) = \vec{F}(t) \times \vec{G}(t) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ t & sen \ t & 2 \\ 3 & t & t^2 \end{vmatrix}$$

$$= [t^2 sen \ t - 2t] \vec{i} + [6 - t^3] \vec{j} + [t^2 - 3sen \ t] \vec{k}$$

8.3 Limite e Continuidade

O limite de uma função vetorial \vec{F} é definido tomando-se os limites de suas funções componentes como se segue:

Definição 8.9. Se $\vec{F}(t) = (F_1(t), F_2(t), F_3(t))$, então

$$\lim_{t \longrightarrow a} \vec{F}(t) = (\lim_{t \longrightarrow a} F_1(t), \lim_{t \longrightarrow a} F_2(t), \lim_{t \longrightarrow a} F_3(t))$$

desde que os limites das funções componentes existam.

Exemplo 8.3.1. Determine $\lim_{t\longrightarrow 0} \vec{F}(t)$ onde $\vec{F}(t)=(t^2,\,\sqrt{t+1},\,\sqrt{5-t})$. Solução:

$$\lim_{t \to 0} \vec{F}(t) = (\lim_{t \to 0} t^2, \lim_{t \to 0} \sqrt{t+1}, \lim_{t \to 0} \sqrt{5-t} = (0, 1, \sqrt{5}).$$

Se $\lim_{t\longrightarrow a} \vec{F}(t) = L$, essa definição equivale a dizer que o comprimento, a direção e o sentido do vetor $\vec{F}(t)$ se aproximam do comprimento, da direção e do sentido do vetor L.

Uma função vetorial \vec{F} é contínua em t_0 se

$$\lim_{t \longrightarrow t_0} \vec{F}(t) = \vec{F}(t_0).$$

Dizemos que \vec{F} é contínua em $J\subset I$ de \vec{F} for contínua em todo $t\in J$; dizemos, simplesmente, que \vec{F} é contínua se for contínua em cada t do seu domínio.

8.4 Derivada

A derivada $\frac{d\vec{F}}{dt}$ de uma função vetorial \vec{F} é definida do mesmo modo como foi feito para as funções reais:

Definição 8.10. Uma função vetorial \vec{F} tem derivada $\frac{d\vec{F}}{dt}$ se

$$\frac{d\vec{F}}{dt} = \lim_{h \to 0} \frac{\vec{F}(t+h) - \vec{F}(t)}{h}.$$

Notação 1. $\frac{d\vec{F}}{dt}(t) = \vec{F}'(t)$

Observação 8.4. Observe que

$$\lim_{h \to 0} \frac{\vec{F}(t+h) - \vec{F}(t)}{h}$$

$$= \left(\lim_{h \to 0} \frac{F_1(t+h) - F_1(t)}{h}, \lim_{h \to 0} \frac{F_2(t+h) - F_2(t)}{h}, \lim_{h \to 0} \frac{F_3(t+h) - F_3(t)}{h} \right)$$

$$= (F_1'(t), F_2'(t), F_3'(t)).$$

O próximo teorema mostra que as fórmulas de diferenciação para funções reais têm suas equivalentes para as funções vetoriais.

Teorema 8.20. Sejam \vec{F} , $\vec{G}: I \longrightarrow \mathbb{R}^3$, $f: I \longrightarrow \mathbb{R}$ deriváveis em A. Então, $f \cdot \vec{F}$ e $\vec{F} \cdot \vec{G}$ serão, também, diferenciáveis em I e 1. $\frac{d}{dt}[f \cdot \vec{F}] = \frac{df}{dt} \cdot \vec{F} + f \cdot \frac{d\vec{F}}{dt}$;

$$\begin{aligned} 2. \ \ \frac{d}{dt}[\vec{F}\cdot\vec{G}] &= \frac{d\vec{F}}{dt}\cdot\vec{G} + \vec{F}\cdot\frac{d\vec{G}}{dt}; \\ 3. \ \ \frac{d}{dt}[\vec{F}\times\vec{G}] &= \frac{d\vec{F}}{dt}\times\vec{G} + \vec{F}\times\frac{d\vec{G}}{dt}; \\ 4. \ \ \frac{d}{dt}[\vec{F}(f(t))] &= \frac{df}{dt}\cdot\frac{d\vec{F}}{dt}(f(t)). \end{aligned}$$

A demonstração desse teorema segue diretamente da Observação 8.4 e das fórmulas de diferenciação correspondentes para a função real. Deste modo, tal demonstração ficará para exercício.

Exemplo 8.4.1. Mostre que, se $\|\vec{F}(t)\| = c$ (uma constante), então $\vec{F}'(t)$ é ortogonal a $\vec{F}(t)$ para todo t.

Demonstração: Como

$$\vec{F}(t) \cdot \vec{F}(t) = ||\vec{F}(t)||^2 = c^2$$

e c^2 é uma constante, segue da Fórmula 4 do Teorema 8.20 que

$$0 = \frac{d}{dt}[\vec{F}(t) \cdot \vec{F}(t)] = \vec{F}'(t) \cdot \vec{F}(t) + \vec{F}(t) \cdot \vec{F}'(t) = 2\vec{F}'(t) \cdot \vec{F}(t).$$

Então, $\vec{F}'(t) \cdot \vec{F}(t) = 0,$ o que implica que $\vec{F}'(t)$ é ortogonal a $\vec{F}(t).$

8.5 Integral

Seja $\vec{F}=(F_1,\ F_2,\ F_3)$ definida em [a,b]. Dizemos que \vec{F} é integrável em [a,b] se cada componente de \vec{F} o for. Além disso, se \vec{F} for integrável em [a,b], então

$$\int_{a}^{b} \vec{F}(t)dt = \left(\int_{a}^{b} F_{1}(t)dt, \int_{a}^{b} F_{2}(t)dt, \int_{a}^{b} F_{3}(t)dt \right)
= \int_{a}^{b} F_{1}(t)dt \cdot \vec{i} + \int_{a}^{b} F_{2}(t)dt \cdot \vec{j} + \int_{a}^{b} F_{3}(t)dt \cdot \vec{k}.$$

Se \vec{F} for integrável em [a,b] e \vec{G} for uma primitiva de \vec{F} em [a,b] teremos

$$\int_a^b \vec{F}(t)dt = \vec{G}(t)\Big]_a^b = \vec{G}(b) - \vec{G}(a).$$

Geometricamente, esse resultado indica que, se a curva está em uma esfera com o centro na origem, então o vetor tangente é sempre perpendicular ao vetor posição $\vec{F}(t)$.

De fato,

$$\frac{d\vec{G}}{dt} = \vec{F} \Leftrightarrow \frac{dG_i}{dt} = F_i, \ i = 1, 2, 3.$$

então

$$\int_{a}^{b} \vec{F}(t)dt = \left(\int_{a}^{b} F_{1}(t)dt, \int_{a}^{b} F_{2}(t)dt, \int_{a}^{b} F_{3}(t)dt \right)
= (G_{1}(b) - G_{1}(a), G_{2}(b) - G_{2}(a), G_{3}(b) - G_{3}(a))
= \vec{G}(b) - \vec{G}(a).$$

Exemplo 8.5.1. Se $\vec{F}(t) = e^t \vec{i} + 2 \vec{j} + t \vec{k}$, então

$$\int \vec{F}(t)dt = \left(\int e^t dt\right) \vec{i} + \left(\int 2dt\right) \vec{j} + \left(\int tdt\right) \vec{k}$$
$$= e^t \vec{i} + 2t \vec{j} + \frac{t^2}{2} \vec{k} + C$$

onde C é um vetor constante de integração, e

$$\int_0^1 \vec{F}(t)dt = \left[e^t \vec{i} + 2t \vec{j} + \frac{t^2}{2} \vec{k} \right]_0^1 = e^1 \vec{i} + 2\vec{j} + \frac{1}{2} \vec{k} - e^0 \vec{i}$$
$$= (e - 1)\vec{i} + 2\vec{j} + \frac{1}{2} \vec{k}.$$

8.6 Resumo

Uma função de uma variável real a valores em \mathbb{R}^3 é uma função do tipo $\vec{F}:I\subset\mathbb{R}\longrightarrow\mathbb{R}^3$ dada por

$$\vec{F}(t) = (F_1(t), F_2(t), F_3(t))$$
 ou $\vec{F}(t) = F_1(t)\vec{i} + F_2(t)\vec{j} + F_3(t)\vec{k}$.

Se
$$\vec{F}(t) = (F_1(t), F_2(t), F_3(t))$$
, então

$$\lim_{t \longrightarrow a} \vec{F}(t) = (\lim_{t \longrightarrow a} F_1(t), \lim_{t \longrightarrow a} F_2(t), \lim_{t \longrightarrow a} F_3(t))$$

desde que os limites das funções componentes existam.

Uma função vetorial \vec{F} é contínua em t_0 se

$$\lim_{t \longrightarrow t_0} \vec{F}(t) = \vec{F}(t_0).$$

Uma função vetorial $\vec{F}=(F_1(t),F_2(t),F_3(t))$ tem derivada $\frac{d\vec{F}}{dt}$

se

$$\frac{d\vec{F}}{dt} = \lim_{h \to 0} \frac{\vec{F}(t+h) - \vec{F}(t)}{h}.$$

Vimos, também, que

$$\vec{F}'(t) = (F_1'(t), F_2'(t), F_3'(t)).$$

Seja $\vec{F}=(F_1,\ F_2,\ F_3)$ definida em [a,b]. Dizemos que \vec{F} é integrável em [a,b] se cada componente de \vec{F} o for. Além disso, se \vec{F} for integrável em [a,b], então

$$\int_{a}^{b} \vec{F}(t)dt = \left(\int_{a}^{b} F_{1}(t)dt, \int_{a}^{b} F_{2}(t)dt, \int_{a}^{b} F_{3}(t)dt \right)
= \int_{a}^{b} F_{1}(t)dt \cdot \vec{i} + \int_{a}^{b} F_{2}(t)dt \cdot \vec{j} + \int_{a}^{b} F_{3}(t)dt \cdot \vec{k}.$$

Na próxima aula, usaremos essas funções vetoriais para estudar os movimentos de partículas no espaço.

8.7 Atividades

01. Sejam $\vec{F}(t) = (t, 2, t^2)$ e $\vec{G}(t) = (t, -1, 1)$. Calcule:

(a)
$$\vec{F}(t) \cdot \vec{G}(t)$$

(b)
$$e^{-t}\vec{F}(t)$$

(c)
$$\vec{F}(t) - 2\vec{G}(t)$$

(d)
$$\vec{F}(t) \times \vec{G}(t)$$

02. Calcule:

(a)
$$\lim_{t \to 1} \vec{F}(t)$$
, onde $\vec{F}(t) = \left(\frac{\sqrt{t-1}}{t-1}, t^2, \frac{t-1}{t}\right)$

(b)
$$\lim_{t \to 0} \vec{F}(t)$$
, onde $\vec{F}(t) = (t, \cos t, \sin t)$

- 03. Determine o conjunto dos pontos de continuidade. Justifique sua resposta.
- (a) $\vec{F}(t) = t\vec{i} + \sqrt{t}\vec{j} + 3\vec{k}$.
- $(b) \ \vec{F}(t) = \sqrt{t-1}\vec{i} + \sqrt{t+1}\vec{j} + e^t\vec{k}.$
- **04.** Sejam \vec{F} , $\vec{G}: I \longrightarrow \mathbb{R}^3$ e $f: I \longrightarrow \mathbb{R}$ contínuas em $t_0 \in I$. Prove que $\vec{F} + \vec{G}$, $f\vec{F}$, $\vec{F} \cdot \vec{G}$ e $\vec{F} \times \vec{G}$ são contínuas em t_0 .
- **05.** Determine $\vec{r} = \vec{r}(t)$ sabendo que

$$\frac{d\vec{r}}{dt} = sen \ t\vec{i} + cos \ 2t\vec{j} + \frac{1}{1+t}\vec{k}, \ t \ge 0, \ \ e \ \ \vec{r}(0) = \vec{i} - \vec{j} + 2\vec{k}.$$

- 06. Calcule
- (a) $\int_{0}^{1} (t\vec{i} + e^{t}\vec{j})dt;$
- (b) $\int_{-1}^{1} \left(sen \ 3t, \ \frac{1}{1+t^2}, \ 1 \right) dt.$
- 07. Sejam $\vec{F}(t)=t\vec{i}+\vec{j}+e^t\vec{k}$ e $\vec{G}(t)=\vec{i}+\vec{j}+\vec{k}$. Calcule
- (a) $\int_0^1 (\vec{F}(t) \times \vec{G}(t)) dt$;
- (b) $\int_{0}^{1} \left(\vec{F}(t) \cdot \vec{G}(t) \right) dt.$

8.8 Comentário das Atividades

Essas atividades, são referentes aos assuntos discutidos no decorrer desta aula e têm o objetivo de você (aluno) exercitar os conceitos aprendidos.

Lembre-se, sempre, que existem tutores para ajuda-los na resolução dessas atividades.

8.9 Referências

- GUIDORIZZI, H. L., **Um Curso de Cálculo** (Vol. 1 e 2). Rio de Janeiro: LTC Editora, 2006.
- STEWART, J., **Cálculo** (vol. 1 e 2). São Paulo: Pioneira Thomson Learning, 2006.
- THOMAS, G. B., **Cálculo** (vol. 1 e 2). São Paulo: Addison Wesley, 2002.