Quiz Section for Program Design (I)

Exercise #7

The well-known **Fibonacci** sequence is obtained by starting with 0 and 1 and then adding the two last numbers to get the next one. For example, the third number in the sequence is 1 (1=1+0), the fourth is 2 (2=1+1), the fifth is 3 (3=2+1), and so on.

i	0	1	2	3	4	5	6	7	8	9
Fib(i)	0	1	1	2	3	5	8	13	21	34

Figure 1-The numbers in the Fibonacci sequence

The well-known **Tribonacci** sequence is similar to the Fibonacci sequence but is defined by adding the last three numbers to obtain the next one. It starts with 0, 1, and 1 as the first three terms. For example, the fourth number in the sequence is 2(2 = 1 + 1 + 0), the fifth is 4(4 = 2 + 1 + 1), and the sixth is 7(7 = 4 + 2 + 1), and so on.

i	0	1	2	3	4	5	6	7	8	9
Tri(i)	0	1	1	2	4	7	13	24	44	81

Figure2-The numbers in the Tribonacci sequence

The **Fibonacci** sequence appears widely in nature and has deep significance. Interestingly, every positive integer can be uniquely represented as a sum of non-consecutive Fibonacci numbers. For instance, 13 can be represented by $\{13\}$ or $\{5, 8\}$, while 17 can be $\{1, 3, 13\}$. Using this rule, any number can be expressed in binary form, with "1" for included Fibonacci numbers and "0" for others. For example, 17 = 1 + 3 + 13, written as 100101, which we call the "Fibonaccimal base," noted as 17 = 100101 (fib).

17 =	1	0	0	1	0	1
13+3+1 =	13	8	5	3	2	1

A similar concept applies to the **Tribonacci** sequence. The Tribonacci sequence starts with three initial numbers, and each subsequent number is the sum of the previous three. I Just as with the Fibonaccimal base, a positive integer can have a unique representation as the sum of non-consecutive Tribonacci numbers. For example, 17 can be represented as 13 + 4, written as 10100 (Tri).

17 =	1	0	1	0	0
13+4=	13	7	4	2	1

• Input Format

A single integer n represents the number in decimal base that you want to convert to Fibonacci and Tribonacci bases.

.

• Output Format

- Print the result of the input number, with the format FIB_BASE (fib) and TRI_BASE (tri).
- DEC_BASE is the original number in decimal base, and FIB_BASE is its representation in Fibonacci base.
- DEC_BASE is the original number in decimal base, and TRI_BASE is its representation in Tribonacci base.

• Technical Specifications

 $1 \leq n \leq 10^8$

The table below shows the example input and output.

Input	Output
<u>6</u>	1001(fib) 110(tri)
<u>17</u>	100101(fib) 10100(tri)
<u>526</u>	1010000001000(fib) 10000011010(tri)
1230	100100000010010(fib) 101000100101(tri)