

🧲 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE181005803

FCC REPORT

Applicant: Sun Cupid Technology (HK) Ltd.

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Kowloon, Hong Kong.

Equipment Under Test (EUT)

Product Name: LTE Smart phone

Model No.: A6L-G, A6LG

Trade mark: NUU

FCC ID: 2ADINA6LG

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 29 Oct., 2018

Date of Test: 29 Oct., to 23 Nov., 2018

Date of report issued: 26 Nov., 2018

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	26 Nov., 2018	Original

Tested by: Date: 26 Nov., 2018

Test Engineer

Reviewed by: Date: 26 Nov., 2018

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VERS	SION	2
3	CON.	TENTS	3
4	TEST	SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
		GENERAL DESCRIPTION OF E.U.T	
		TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	7
	5.7	LABORATORY LOCATION	8
	5.8	TEST INSTRUMENTS LIST	8
6	TEST	RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
		OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	21
	6.6	BAND EDGE	
	6.6.1	Conducted Emission Method	
	6.6.2	Radiated Emission Method	
	6.7	Spurious Emission	
	6.7.1	Conducted Emission Method	
	6.7.2	Radiated Emission Method	47
7	TEST	SETUP PHOTO	55
8	EUT	CONSTRUCTIONAL DETAILS	56

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Manufacturer	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Factory:	SUNCUPID (ShenZhen) Electronic Ltd
Address:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7, China.

5.2 General Description of E.U.T.

Product Name:	LTE Smart phone
Model No.:	A6L-G, A6LG
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	External Antenna
Antenna gain:	0.48 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2350mAh
AC adapter:	Model: RD0501000-USBA-18MG Input: AC100-240V, 50/60Hz, 0.25A Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remarks:	LTE Smart phone item No.:A6L-G, A6LG were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name and for different areas.

Operation Frequency each of channel for 802.11b/g/n(H20)							
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency						
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel, Channel; 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

5.3 Test environment and test mode

Operating Environment:		
Temperature:	24.0 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010 mbar	
Toot model		

Test mode:

Transmitting mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode Data rate				
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(H20)	6.5Mbps			
802.11n(H40) 13.5Mbps				

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE181005803

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2017	11-20-2018
Hom America	SCHWARZBECK	DDNA 9170	DDHA9170302	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		b
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
Speatrum analyzar	Rohde & Schwarz	FSP40	100363	11-21-2017	11-20-2018
Spectrum analyzer	Ronde & Schwarz	F3F40	100303	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cable	HP	10503A	N/A	03-07-2018	03-06-2019
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The WiFi antenna is an Inernal antenna which cannot replace by end-user, the best case gain of the antenna is 0.48 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207				
Test Method:	ANSI C63.10: 2013	ANSI C63.10: 2013			
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 k	 Н7			
Limit:	Frequency range	Limit (dRu\/)		
Liffiit.	(MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the loga	arithm of the frequency.			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test setup:	AUX Equipment Test table/Insula Remark: E.U.T. Equipment Under LISN: Line Impedence St. Test table height=0.8m	E.U.T EMI Receiver	ilter — AC power		
Test Instruments:	Refer to section 5.8 for d	etails			
Test mode:	Refer to section 5.3 for d	etails			
Test results:	Passed				

Measurement Data:

Product name:	LTE Smart phone	Product model:	A6L-G
Test by:	YT	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Remark								
		Read		Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	<u>dB</u>	d₿	dBu∛	dBu∜	<u>dB</u>	
1	0.154	34.59	0.18	10.78	45.55	65.78	-20.23	QP
1 2 3 4 5 6 7 8 9	0.154	20.29	0.18	10.78	31.25	55.78	-24.53	Average
3	0.449	27.29	0.12	10.74	38.15	56.89	-18.74	QP
4	0.471	18.18	0.12	10.75	29.05	46.49	-17.44	Average
5	0.697	15.61	0.13	10.77	26.51	46.00	-19.49	Average
6	1.043	25.70	0.13	10.88	36.71	56.00	-19.29	QP
7	2.736	16.45	0.16	10.93	27.54	46.00	-18.46	Average
8	3.491	29.81	0.17	10.90	40.88	56.00	-15.12	QP
9	5.805	15.56	0.23	10.83	26.62	50.00	-23.38	Average
10	6.523	31.28	0.24	10.81	42.33	60.00	-17.67	QP
11	11.745	27.38	0.32	10.92	38.62	60.00	-21.38	QP
12	15.066	13.65	0.32	10.90	24.87	50.00	-25.13	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	LTE Smart phone	Product model:	A6L-G
Test by:	YT	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Remark	:			WARRING TO STREET		120,400,000	14	
	<u></u>	Read	LISN	Cable	2	Limit	Over	1 <u>72</u> 6
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∜	<u>d</u> B	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.158	17.94	0.98	10.77	29.69	55.56	-25.87	Average
2	0.162	33.12	0.97	10.77	44.86	65.34	-20.48	QP
3	0.471	26.59	0.97	10.75	38.31	56.49	-18.18	QP
4	0.471	16.11	0.97	10.75	27.83	46.49	-18.66	Average
5	1.734	17.98	0.98	10.94	29.90	46.00	-16.10	Average
6	2.309	31.47	0.98	10.95	43.40	56.00	-12.60	QP
1 2 3 4 5 6 7 8	3.779	23.56	1.00	10.90	35.46	46.00	-10.54	Average
8	3.901	34.89	1.00	10.89	46.78	56.00	-9.22	QP
	5.447	20.80	1.01	10.84	32.65	50.00	-17.35	Average
10	5.535	32.58	1.01	10.83	44.42	60.00	-15.58	QP
11	14.672	19.12	0.91	10.90	30.93	50.00	-19.07	Average
12	16.140	31.71	0.85	10.91	43.47	60.00	-16.53	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)				Limit(dBm)	Result
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(ubin)	Resuit
Lowest	18.61	15.35	15.41	14.68		
Middle	19.34	17.36	17.32	14.52	30.00	Pass
Highest	19.16	17.88	17.38	14.77		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH		6dB Emission B	andwidth (MHz)		Limit(kHz) Result	Popult
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	9.28	15.36	15.44	35.68		
Middle	9.76	15.28	15.28	35.52	>500	Pass
Highest	10.24	15.28	15.28	35.52		
Test CH		99% Occupy Bandwidth (MHz)				Result
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	12.56	16.48	17.60	35.84		
Middle	12.80	16.48	17.60	35.84	N/A	N/A
Highest	12.72	16.48	17.60	35.84		

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)	
Test Method:	ANSI C63.10:2013 and KDB 558074	
Limit:	8dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data:

Toot CU	Power Spectral Density (dBm)				Limit(dDm)	Dogult
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	-0.01	-4.23	-5.14	-9.30		
Middle	0.14	-3.76	-2.67	-9.12	8.00	Pass
Highest	0.82	-3.97	-3.26	-6.19		

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

6.6.2 Radiated Emission Method

<u>6.6.2</u>	2 Radiated Emission Method								
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
	Test Method:	ANSI C63.10: 2013 and KDB 558074							
	Test Frequency Range:	2.3GHz to 2.5GHz							
	Test Distance:	3m							
	Receiver setup:	Frequ	iency	Detect		RBW		BW	Remark
		Above 1GHz Peak 1MHz 3MHz Peak Value RMS 1MHz 3MHz Average Value							
	Limit:	F	requenc			1MHz nit (dBuV/m @	1	VIIIZ	Average Value Remark
	Littiit.		ove 1GH			54.00	J,	A	verage Value
						74.00			Peak Value
	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 							
	Test setup:		150cm	AE E	, /	Hora 3m Ground Reference Plane	rn Antenna	Antenna Tor	wer
	Test Instruments:	Refer to	section	5.8 for d	etail	S			
	Test mode:	Refer to	section	5.3 for d	etail	S			
	Test results:	Passed							

802.11b mode:

Product Name:	LTE Smart phone	Product Model:	A6L-G
Test By:	YT	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

2422

30

10

0²³¹⁰ 2320

Product Name:	LTE Smart phone	Product Model:	A6L-G 802.11b Tx mode Horizontal Temp: 24°C Huni: 57%	
Test By:	YT	Test mode:		
Test Channel:	Lowest channel	Polarization:		
Test Voltage:	AC 120/60Hz	Environment:		
120 Level (dE 110	kuV/m)			

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

2350

Product Name:	LTE Smart phone	Product Model:	A6L-G
Test By:	YT	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMARK	:	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
-	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2	2483.500 2483.500		27.57 27.57				74.00 54.00		Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE Smart phone	Product Model:	A6L-G
Test By:	YT	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

REMARI	:	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor				Line	Limit	Remark
-	MHz	dBu∜	$\overline{dB}/\overline{m}$	<u>dB</u>	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500		27.57 27.57	4.81 4.81			74.00 54.00		Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

Product Name:	LTE Smart phone	Product Model:	A6L-G
Test By:	YT	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE Smart phone Product Model:		A6L-G	3					
est By:	YT			Te	Test mode:		802.1	802.11g Tx mode	
Test Channel:	Lowest c	hannel	nnel Polarization:		Horizo	Horizontal			
Test Voltage:	AC 120/6	60Hz		Eı	nvironme	ent:	Temp	: 24℃	Huni: 57%
	·								
120 Level (d	BuV/m)								_
110									
							~~	m	4
90									1
70							FCC F	PART 15 (P	PK)
, ,							A NECCE	PART 15 (A	W
50~~~	mm	man	~~~~	~~	my	my	V · reer	ANT TO LA	
						1			
30									
10									
0 2310 2	320	235	0						2422
2310 2	320	23:		ncy (MHz	2)				2422
REMARK									
TC.MITCH	Re	adAntenna el Factor				Limit Line	Over Limit	Remark	
Harrison Course	MHz dE	uV —dB/m	<u>dB</u>	₫B	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>		
1 239		92 27.37 36 27.37					-23.02	Peak Averag	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE Smart phone	Product Model:	A6L-G
Test By:	YT	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMAR	к :								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500	25.54	27.57	4.81	0.00	57.92	74.00	-16.08	Peak
1 2	2483.500	12.51	27.57	4.81	0.00	44.89	54.00	-9.11	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE Smart phone	Product Model:	A6L-G
Test By:	YT	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

REMARK ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark dBuV dB/m ďΒ dB dBuV/m dBuV/m MHz 2483.500 21.74 27.57 4.81 0.00 54.12 74.00 -19.88 Peak

4.81

0.00 42.77 54.00 -11.23 Average

Remark:

2483.500

10.39

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

27.57

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

Product Name:	LTE	LTE Smart phone				Product M	lodel:	A6L-	A6L-G		
est By: YT					1	Test mode:			802.11n(HT20) Tx mode		
Test Channel:	Low	Lowest channel AC 120/60Hz				Polarization: Environment:			Vertical Temp: 24°C Huni: 57°		
Test Voltage:	AC										
								·			
120 Level	(dBuV/m)										
110											
									- 00	_	
90								1	moon	7	
								FCC	PART 15 (P	PK)	
70							***				
								FCC	PART 15 (A	(V)	
50V~~	m	mon	~~~~~	m	m~~~	man	my				
							1				
30											
10											
0 2310	2320		23	350						2422	
				Fre	quency (Mi	łz)					
REMARK	:	Readú	ntanna	Cable	Preamp		Limit	Over			
	Freq				Factor				Remark		
	MHz	dBu∜	<u>dB</u> /m	d <u>B</u>	dB	dBuV/m	dBu√/m	dB			

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE Smart phone	Product Model:	A6L-G		
Test By:	YT	Test mode: 802.11n(HT20) Tx mode			
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		
120 Level (c	dBuV/m)				
110					
90			formany 1		
70	70		FCC PART 15 (PK)		
50	manuman market	mympt	PCC PART 15 (AV)		
30					
10					
⁰ 23 1 0	2320 2350 Frequency (MHz)	2422		
REMARK	: ReadAntenna Cable Pream Freq Level Factor Loss Factor	p Limit (r Level Line L:	Over imit Remark		
	MHz dBuV dB/m dB d	B dBuV/m dBuV/m			

0.00 52.54 74.00 -21.46 Peak 0.00 40.72 54.00 -13.28 Average

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2390.000 20.48 27.37 2390.000 8.66 27.37

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

4.69

Product Name:	LTE Smart phone	Product Model:	A6L-G		
Test By:	YT	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		
120 Level (dBi	ıV/m)				

REMARI	· :								
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
,	MHz	dBu₹	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500	25.43	27.57	4.81	0.00	57.81	74.00	-16.19	Peak
2	2483, 500	12.47	27. 57	4.81	0.00	44.85	54, 00	-9.15	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE Smart phone	Product Model:	A6L-G		
Test By:	YT Test mode: 802.11n(HT20				
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

REMARK :

1 2

-	Freq		Antenna Factor						
	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
	2483.500 2483.500								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40):

Product Name:	LTE Smart phone	Product Model:	A6L-G		
Test By:	YT	Test mode:	802.11n(HT40) Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test By: YT Te		Product Model:	A6L-G			
		Test mode: 802.11n(HT40) Tx mod				
		Polarization:	Horizontal			
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%			
120 Level (dBt			mymm			

REMARI	. Transition		Antenna Factor		Preamp Factor		Limit Line	Over Limit	Remark
-	MHz	dBu∀	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2 3 4	2386.859 2386.859 2390.000 2390.000	28. 28 12. 05 23. 90 13. 57	27.36 27.36 27.37 27.37	4.69 4.69 4.69 4.69	0.00 0.00 0.00 0.00	60.33 44.10 55.96 45.63	54.00	-18.04	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE Smart phone	Product Model:	A6L-G
Test By:	YT	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

EMARK			Intenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∀	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2490.023	21.56	27.59	4.82	0.00	53.97	74.00	-20.03	Peak
2	2490.023	10.38	27.59	4.82	0.00	42.79	54.00	-11.21	Average
2	2490.504	22.49	27.59	4.82	0.00	54.90	74.00	-19.10	Peak
4	2490.504	9.85	27.59	4.82	0.00	42.26			Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTI	LTE Smart phone		Product	Model:	A6	A6L-G			
Test By:	YT					Test mode: 802.11n(HT40) T		Tx mode		
Test Channel:	Hig	Highest channel				Polarizat	ion:	Но	rizontal	
Гest Voltage:	AC	AC 120/60Hz				Environn	nent:	Ter	mp: 24 ℃	Huni: 57%
120 Le	vel (dBuV/m)								- 100	
110										
90		~~~	1	~~		~	-			
/						1		F	CC PART 15	PK)
70										
						\~	man	1	CC PART 15	(AV)
50								2	+	
30										
30										
10										_
0 24	32	2	450							2500
				Fre	equency (M	1Hz)				
REMAR	к :	D 14					• • • • •	•		
	Freq	Level	ntenna Factor	Loss	Factor	Level	Limit Line	Over Limit	Remark	
,	MHz	dBu∜			<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B		<u></u> -
1	2483.500		27.57	4.81	0.00			-19.54		
2	2483.500 2489.749	10.16 23.88	27.57 27.59	4.81 4.82	0.00			-11.46 -17.71	Average Peak	
4	2489.749	10.88	27.59	4.82	0.00				Average	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

O.7.1 Conducted Emission					
Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plot as follows:

6.7.2 Radiated Emission Method

6.7.2 Radiated Emission M	Elilou							
Test Requirement:	FCC Part 15 C S	ection 15.209	and 15.205					
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m Frequency Detector RBW VBW Remark							
Receiver setup:	Frequency	Remark						
	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3M		Peak Value		
		RMS	1MHz	3M	Hz	Average Value		
Limit:	Frequency		nit (dBuV/m @3	m)		Remark		
	30MHz-88MH		40.0			uasi-peak Value		
	88MHz-216MH 216MHz-960M		43.5 46.0			uasi-peak Value uasi-peak Value		
	960MHz-1GH		54.0			Jasi-peak Value		
			54.0			Average Value		
	Above 1GHz		74.0			Peak Value		
Test Procedure:	1. The EUT wa	s placed on t	he top of a rot	ating ta	able 0			
	1GHz)/1.5m The table was highest radia value. 2. The EUT was antenna, who tower. 3. The antenna the ground to Both horizon make the means and the meters and the meters and to find the most of find the meters. Specified Base of the EUT whave 10dB meters and the limit specified base of the EUT whave 10dB meters and the limit specified Base of the EUT whave 10dB meters and 10d	(above 1GHz as rotated 36 ation. as set 3 meterich was mount to determine to tall and vertice asurement. Spected emisen the antennament aximum reactiver system andwidth with the protate of the cified, then the would be reponargin would	above the group of the degrees to degrees to degrees to degrees to degrees to degree the degree of t	round a letermi he interport of a voneter to value of a voneter to value of a voneter to value of the value o	at a 3 ine the efference of the free entering en	meter chamber. e position of the ce-receiving e-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees enction and OdB lower than d the peak values ions that did not sing peak, quasi-		
Test setup:	Below 1GHz EUT Turn Table Ground P	umiy			_			

Measurement Data (worst case):

Below 1GHz:

Product Name:	LTE Smart phone	Product Model:	A6L-G
Test By:	YT	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMARK		2250.0000					0200000000	. Walter	
	Freq		Antenna Factor			Level	Limit Line	Over Limit	
-	MHz	dBu∀	dB/m	₫B	<u>dB</u>	dBu√/m	dBu√/m	<u>dB</u>	
1	39.854	34.73	12.77	1.21	29.90	18.81	40.00	-21.19	QP
2	52.208	34.99	13.70	1.29	29.81	20.17	40.00	-19.83	QP
3	104.536	41.54	11.98	1.99	29.50	26.01	43.50	-17.49	QP
4	203.523	32.31	11.64	2.87	28.81	18.01	43.50	-25.49	QP
1 2 3 4 5 6	375.939	30.43	15.08	3.09	28.68	19.92	46.00	-26.08	QP
6	942.131	30.69	22.38	4.13	27.75	29.45	46.00	-16.55	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE Smart phone	Product Model:	A6L-G
Test By:	YT	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMARK	: Freq		Antenna Factor		Preamp Factor		Limit Line	Over Limit	Remark
 -	MHz	dBu∜			<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	68.872 104.536	39.25 42.26	9.45 11.98	1.49 1.99	29.73 29.50	20.46 26.73		-19.54 -16.77	
2 3 4	213. 763 343. 180	38. 32 35. 86	12.04 14.47	2.85		24.47	43.50	-19.03 -21.14	QP
5 6	766.057 938.833	28.63 30.78	21.00 22.38	4.36 4.10	28.39 27.76	25.60 29.50		-20.40 -16.50	10 P 2 P 2 P 2 P 2 P 2 P 2 P 2 P 2 P 2 P

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

				802.11b							
			Test ch	annel: Lowe							
				tector: Peak							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	48.62	30.94	6.81	41.82	44.55	74.00	-29.45	Vertical			
4824.00	47.13	30.94	6.81	41.82	43.06	74.00	-30.94	Horizontal			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	38.15	30.94	6.81	41.82	34.08	54.00	-19.92	Vertical			
4824.00	37.29	30.94	6.81	41.82	33.22	54.00	-20.78	Horizontal			
				annel: Mido							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	47.15	31.20	6.85	41.84	43.36	74.00	-30.64	Vertical			
4874.00	48.56	31.20	6.85	41.84	44.77	74.00	-29.23	Horizontal			
			Dete	ctor: Averaç	je Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	39.62	31.20	6.85	41.84	35.83	54.00	-18.17	Vertical			
4874.00	38.12	31.20	6.85	41.84	34.33	54.00	-19.67	Horizontal			
				annel: Highe							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	tector: Peak Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	48.15	31.46	6.89	41.86	44.64	74.00	-29.36	Vertical			
4924.00	47.49	31.46	6.89	41.86	43.98	74.00	-30.02	Horizontal			
			Dete	ctor: Averaç	je Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	39.35	31.46	6.89	41.86	35.84	54.00	-18.16	Vertical			

Remark:

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11g										
Test channel: Lowest channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	47.56	30.94	6.81	41.82	43.49	74.00	-30.51	Vertical			
4824.00	47.51	30.94	6.81	41.82	43.44	74.00	-30.56	Horizontal			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	37.39	30.94	6.81	41.82	33.32	54.00	-20.68	Vertical			
4824.00	37.46	30.94	6.81	41.82	33.39	54.00	-20.61	Horizontal			
			Test ch	annel: Midd	lle channel						
				tector: Peak							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	46.84	31.20	6.85	41.84	43.05	74.00	-30.95	Vertical			
4874.00	48.46	31.20	6.85	41.84	44.67	74.00	-29.33	Horizontal			
			Dete	ctor: Averag	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	36.89	31.20	6.85	41.84	33.10	54.00	-20.90	Vertical			
4874.00	38.42	31.20	6.85	41.84	34.63	54.00	-19.37	Horizontal			
			Toot ob	annal: High	oot obonnol						
				annel: Highe tector: Peak							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	46.72	31.46	6.89	41.86	43.21	74.00	-30.79	Vertical			
4924.00	47.09	31.46	6.89	41.86	43.58	74.00	-30.42	Horizontal			
				ctor: Averag							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	36.78	31.46	6.89	41.86	33.27	54.00	-20.73	Vertical			
4924.00	37.34	31.46	6.89	41.86	33.83	54.00	-20.17	Horizontal			
Remark: 1. Final Lev	vel = Receive	r Read level +	- Antenna Fa	nctor + Cable	Loss – Pream	nplifier Factor.					

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20)											
Test channel: Lowest channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	47.82	36.06	6.81	41.82	48.87	74.00	-25.13	Vertical			
4824.00	47.48	36.06	6.81	41.82	48.53	74.00	-25.47	Horizontal			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	37.64	36.06	6.81	41.82	38.69	54.00	-15.31	Vertical			
4824.00	37.38	36.06	6.81	41.82	38.43	54.00	-15.57	Horizontal			
			Test ch	annel: Midd	le channel						
			Det	ector: Peak	Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	46.92	36.32	6.85	41.84	48.25	74.00	-25.75	Vertical			
4874.00	48.46	36.32	6.85	41.84	49.79	74.00	-24.21	Horizontal			
			Dete	ctor: Averaç	je Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	37.06	36.32	6.85	41.84	38.39	54.00	-15.61	Vertical			
4874.00	38.23	36.32	6.85	41.84	39.56	54.00	-14.44	Horizontal			
				annel: Highe							
				ector: Peak	Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	46.73	36.58	6.89	41.86	48.34	74.00	-25.66	Vertical			
4924.00	47.11	36.58	6.89	41.86	48.72	74.00	-25.28	Horizontal			
			Dete	ctor: Averag	je Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	36.84	36.58	6.89	41.86	38.45	54.00	-15.55	Vertical			
4924.00	37.56	36.58	6.89	41.86	39.17	54.00	-14.83	Horizontal			
Remark:						anlifior Footor					

· Ciliain.

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n(HT40)										
Test channel: Lowest channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4844.00	47.89	36.06	6.81	41.82	48.94	74.00	-25.06	Vertical			
4844.00	47.52	36.06	6.81	41.82	48.57	74.00	-25.43	Horizontal			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4844.00	37.58	36.06	6.81	41.82	38.63	54.00	-15.37	Vertical			
4844.00	37.89	36.06	6.81	41.82	38.94	54.00	-15.06	Horizontal			
				1.04:11							
				annel: Midd							
	Dand	A 4		tector: Peak	value T						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	46.98	36.32	6.85	41.84	48.31	74.00	-25.69	Vertical			
4874.00	48.52	36.32	6.85	41.84	49.85	74.00	-24.15	Horizontal			
			Dete	ctor: Averag	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	37.12	36.32	6.85	41.84	38.45	54.00	-15.55	Vertical			
4874.00	38.27	36.32	6.85	41.84	39.60	54.00	-14.40	Horizontal			
				annel: Highe							
				tector: Peak	Value		I				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4904.00	46.79	36.45	6.87	41.85	48.26	74.00	-25.74	Vertical			
4904.00	47.13	36.45	6.87	41.85	48.60	74.00	-25.40	Horizontal			
			Dete	ctor: Averaç	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4904.00	36.89	36.45	6.87	41.85	38.36	54.00	-15.64	Vertical			
4904.00	37.54	36.45	6.87	41.85	39.01	54.00	-14.99	Horizontal			
Remark:		_									
1 Final Lev	rel = Receive	r Read level +	- Antenna Fa	ctor + Cable	Loss - Pream	nnlifier Factor					

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.