Technical Answers for Real World Problems

CSE1901

Topic Name: Detection of Indian Sign Language using Convolutional Neural Network with Attention layer

Domain: Deep Learning

Team Details:

Aditya Kalra 19BCE0390 Parth Mahadik 19BCE0443 Sarthak Bharadwaj 19BCE0859 Ayush Bansal 19BCE0862

Abstract:

Communication is one of the major areas where differently abled (deaf and dumb) people face problems on everyday basis. Recent advances in technology have helped in development of Sign Language Recognition systems and models which has helped in solving this problem to a great extent. Machine Learning based Sign Language Recognition models have shown to have high accuracy. However due to the large volume of data required to train the model, the training can be considerably long. To counter this problem, we propose an accelerated Indian Sign Language Recognition Model using Distributed Learning. The model uses Convolutional Neural Network (CNN) for recognizing signs and converting them to English language. Graphical Processing Units (GPUs) have been utilized to make the model training process more efficient.

Literature Survey:

S No.	Paper Title	Methodology	Needed Improvement	Future Work
-------	-------------	-------------	-----------------------	-------------

1.	Real Time Sign	The model	The algorithm	Current
1.	Real Time Sign Language Recognition Using Image Classification, H. Lakhotiya, H. S. Pandita and R. Shankarmani	The model proposed in this paper is implemented for the American sign language, it also proposes a real time image detection and processing application, which proves that real-time hand signal detection and classification is a viable endeavour.	The algorithm fails with a noisy background which can be improved.	implementation only processes input from plain background, and the authors declare in their future scope that they aim to augment the pre-processing algorithm to detect gestures in noisy backgrounds as well.

2. Convolutional This paper The accuracy We can improve of the model the model and proposes a Neural CNN model to can be increase the Network detect and improved and range of identify the range of (CNN) for characters various hand characters Image signals part of recognised by recognised by it, Classification the algorithm the we can improve of can also be on the gesture Indonesian increased. detection and Indonesia Sign hand sign identification language. It Language elaborates aspect Using upon the TensorFlow. process of development of the model, along with robust experimental results. The proposed model achieved an accuracy of 96.67% on the training dataset, proving that such a classification model is indeed viable

		and can be implemented in the context of Indian hand sign language		
3	Achieving Real-Time Sign Language Translation Using a Smartphone's True Depth Images	This paper proposes a system that can detect and classify sign language symbols in real-time from smartphone processed images, thus providing us with the confidence that today's smartphones have sufficient computational power in order to translate sign language to plain text and back in real-time from	The algorithms can be improved to work on different situations like change in lighting etc efficiently.	Since most of the experiments in the proposed work was only done for one type of depth sensor, the authors plan to work on RGB-based depth sensors, and to analyse the changes in performance in different situations such as change in lighting, etc.

smartphone	
quality images.	

The future work 4 **Towards** This paper We can address focuses on resource Multilingual will build upon multilingual constraint issues in sign sign Sign Language these finding to language language. The Recognition. processing such address hand resource-constra as, developing movement int issues in sign modelling was language systems with done with processing such usage of target reduced sign language number of as, developing independent signers and dataset by systems with examples to derivation of improve the reduced number subunits of of signers and algorithm. hand movement. examples. The proposed approach was validated against different types of Sign Language. It demonstrates that sign language recognition models could be developed by

utilizing multilingual sign language data.	
Although considerable performance difference has been observed when hand modelling is done	
in a language independent manner rather than in language dependent manner.	

	Γ		
Lan Ges Rec usir Pro	guage sture cognition ng Image cessing and ep Learning	This paper proposes a realtime model for ISL gesture recognition, based on the incoming image data from the Kinect. Effective real time background subtraction was done using depth perception techniques. Computer vision techniques were used to achieve one-to-one mapping between the depth and the RGB pixels	For future work the research can be focused on real-time prediction of more words related to ISL and also on sentence formation.

7 Benchmarking In this paper, The models For future work deep neural an extensive mentioned in a system that is only deal with capable of network comparative approaches for analysis of images and generating Indian Sign various gesture need to be sentences for recognition modified to better practical Language recognition techniques capture frames. usages can be involving developed and convolutional more emphasis can be given on neural optimization of networks and machine current learning algorithms to algorithms has further improve been discussed the model to and tested for learn the real-time essential features and accuracy. Three models: backgrounds. a pre-trained VGG16 with finetuning, VGG16 with transfer learning and a hierarchical neural network were analysed based on a number of trainable parameters. These models

were trained	
on a	
self-developed	
dataset	
consisting	
images of	
Indian Sign	
Language	
(ISL)	
representation	
of all 26	
English	
alphabets	

8	Motionlets	This paper	Three feature	No future Scope
	Matching With	proposes	kernels based	was suggested
	Adaptive	characterizatio	on trajectories,	by the authors
	Kernels for	n of sign	finger shape	other than
	3-D Indian	language	and their	increasing its
	Sign Language	gestures	orientations are	accuracy and
	Recognition	articulated at	constructed,	precision
		different body	which measure	compared to the
		parts as 3D	the similarity	proposed work.
		motionlets,	between the	
		which describe	query signs and	
		the signs with	the database	
		a subset of	signs	
		joint motions.		
		The proposed		
		method is sign		
		invariant to		
		temporal		
		misalignment		
		and can		
		characterize		
		sign language		
		based on a 3D		
l		spatio-tempora		
		1 framework.		

9. American Sign This paper Lower mean Future works Language presents an should also accuracy rate Recognition American Sign due to the large consider expanding the Using Leap Language similarity recognition sign language Motion between certain system which Controller with letters and recognition digits. Machine involves 26 system to word-Learning letters and 10 and Approach digits using the sentence-based Leap Motion recognition, as Controller. well as to other This paper languages, indicates that instead of the distance limiting between one recognition to fingertip and only ASL the adjacent fingertips is a significant feature for sign language recognition.

10	Recent	By reviewing a	Scalable,
	advances in	large body of	Proposal
	deep learning	recent related	Generation and
	for object	work in	Encoding of
	detection.	literature, this	Contextual
		paper	Information
		systematically	
		analyses the	
		existing object	
		detection	
		frameworks	
		and organize	
		the survey into	
		three major	
		parts: (i)	
		detection	
		components,	
		(ii) learning	
		strategies, and	
		(iii)	
		applications &	
		benchmarks.	

For future work, 11 Deep This paper learning-based deals with there is a need sign language to collect more robust modelling of recognition datasets to system for static signs in refine the recognition static the context of method. In sign language recognition addition, the using deep system will be learning-based extended to convolutional recognize dynamic signs neural networks which require the collection (CNN).The efficiency of and development of the proposed system is a videobased evaluated on dataset and the system is tested approximately 50 CNN using CNN models. The architecture by results are also dividing the evaluated on videos into the basis of frames different optimizers, and it has been observed that the proposed approach has achieved the highest training

		accuracy of 99.72% and 99.90% on coloured and grayscale images, respectively.		
12	Static Hand Gesture Recognition using Convolutional Neural Network with Data Augmentation.	This paper has used CNN model to classify the images as recent research has proved the supremacy of Convolutional Neural Network (CNN) for image representation and classification. Since, CNN can learn complex and nonlinear relationships among images, in this paper, a static hand gesture recognition	The project emphasizes to recognize only static gestures.	It was assumed that the background should be less complex. Therefore, recognition of gestures in complex background can be another future work. Recognition of gestures made with both hands is not possible by the system. Therefore, another future work can be the recognition of gestures made with both hands.

		method deploying CNN was proposed. It also analyses the effect of data augmentation in deep learning.	
13	Development of an Infrared-Based Sensor for Finger Movement Detection	Movement Detection using infrared cameras, hand movement s detected using Haar like features and CNN	Development of a suitable hybrid model for CNN type accuracy and Haar feature like speed for optimal results.

14	Object detection with deep learning: A review	The review begins with a brief introduction on the history of deep learning and its representative tool, namely, the convolutional neural network. Then, it focuses on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further.	Different techniques must be implemented depending on the need, i.e. classification, feature extraction etc, and application, such as face detection, generic object detection,

15	Application of deep learning for object detection.	This paper demystifies the role of deep learning techniques based on convolutional neural network for object detection. Deep learning frameworks and services available for object detection are also enunciated.	Developing mechanisms to provide Object Detection as a Service
		also	

16	Sign Language	Convolutional	Capacity of
	Recognition	neural	CNNs in
	Using	networks can	spatiotemporal
	Convolutional	be used to	data can
	Neural	accurately	contribute to the
	Networks	recognize	broader research
		different signs	field on
		of sign	automatic sign
		language, with	language
		users and	recognition.
		surroundings	
		not included in	
		the training set.	
		This	
		generalization	
		capacity of	
		CNNs in	
		spatiotemporal	
		data can	
		contribute to	
		the broader	
		research field	
		on automatic	
		sign language	
		recognition.	
		CNNs are	
		inspired by the	
		visual cortex	
		of the human	
		brain.	

17	Static Sign	Translate static	Future works
	Language	sign language	should focus on
	Recognition	into its	improving
	Using Deep	corresponding	accuracy
	Learning	word	
		equivalent that	
		includes	
		letters,	
		numbers, and	
		basic static	
		signs to	
		familiarize the	
		users with the	
		fundamentals	
		of sign	
		language. This	
		system is	
		well-matched	
		with the	
		existing	
		systems, given	
		that it can	
		perform	
		recognition at	
		the given	
		accuracy with	
		larger	
		vocabularies	
		and without an	
		aid such as	
		gloves or hand	
		markings.	
	I .	l	

18 Comparing ANN-based The research presented in this ANN, SVM, machine learning and HMM paper can based Machine methods further be Learning outperforms expanded by the SVM and increasing the Methods for American Sign the HMM dictionary size of gestures Language methods based Recognition on the overall while also using Wearable recognition incorporating Motion non-manual accuracy markers such as Sensors results. ANN method gives head tilts, facial the overall best gestures as well accuracy in as shoulder recognizing the movements in ASL words, the gesture but HMM recognition framework. method can be used to support Furthermore, the recognition future research in this field can of complete sentences in combine ASL. existing techniques with vision-based systems to improve the classification of the data. Future research directions include

	continuous ASL
	recognition of
	full sentences
	using HMM.

Proposed System Architecture:

Modules:

- 1. Data Collection and Preparation
- 2. Data Preprocessing
- 3. Model Creation
 - 3.1 Model Parallelization using GPU
 - 3.2 Model Parallelization using TPU
- 4. Testing and Comparison

Programming Languages/ Tools Used:

- 1. Python
- 2. OpenCV
- 3. TensorFlow
- 4. Keras
- 5. Sklear
- 6. Numpy

Implementation Results:

Collection and Preparation of Dataset:

In the dataset we have 1200 images of each letter divided into the test and training portion. The size of the data set is enough for proper training and testing of the model that we are trying to create. After this we have compressed our data set into a zip file for use in the Colab notebook.