

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Status of Higher Order QCD Calculations

Aude Gehrmann-De Ridder

QCD at High Energy Colliders

- ▶ QCD: successful theory of strong interactions
- ▶ QCD is omnipresent in high energy collisions

OCD effects

- initial state: parton distributions
- final state: jets
- hard scattering matrix elements with multiple radiation

- Detailed understanding of QCD mandatory for
 - Interpretation of collider data
 - Precision studies
 - Searches for new physics

Expectations at LHC

- ▶ LHC brings new frontiers in energy and luminosity
- ▶ Production of short-lived heavy states (Higgs, SUSY,...)
 - detected through their decay products
 - ightharpoonup yield multi-particle final states involving jets, leptons, γ , \not
- ▶ Search for new effects in multi-particle final states
 - typically involving jets
 - need to understand signal and background processes
- Require precise predictions: NLO

Example: SUSY signature:

Expectations at LHC

- Large production rates for Standard Model processes
 - jets
 - top quark pairs
 - vector bosons
- Allow precision measurements
 - masses
 - couplings
 - parton distributions
- Require precise theory: NNLO

Outline

- Multiparticle production at NLO
- Precision observables at NNLO

NLO Multiparticle Production

▶ Why NLO?

- reduce uncertainty of theory prediction
 - reliable normalization and shape
- accounts for effects of extra radiation
- jet algorithm dependence
- ▶ Require two principal ingredients (here: $pp \rightarrow 3j$)
 - one-loop matrix elements
 - explicit infrared poles from loop integral
 - \square known for all 2 \rightarrow 2 processes
 - \square known for many 2 \rightarrow 3 processes
 - \square current frontier 2 \rightarrow 4: major challenge
 - tree-level matrix elements
 - implicit poles from soft/collinear emission

NLO Multiparticle Production

Combining virtual and real emission

- extract process-independent implicit poles from real emission
 - residue subtraction (S. Frixione, Z. Kunszt, A. Signer)
 - ▶ dipole subtraction (S. Catani, S. Dittmaier, M. Seymour, Z. Trocsanyi)
 - antenna subtraction
 (D. Kosower; J. Campbell, M. Cullen, E.W.N. Glover; A. Daleo, T. Gehrmann, D. Maitre, M. Ritzmann, AG)

Automated subtraction tools

- b dipole method: SHERPA (T. Gleisberg, F. Krauss), MadDipole (R. Frederix, T. Gehrmann, N. Greiner), TeVJet (M. Seymour, C. Tevlin), Helac/Phegas (M. Czakon, C. Papadopoulos, M. Worek)
- residue method: MadFKS (R. Frederix, S. Frixione, F. Maltoni, T. Stelzer)

Bottleneck up to now: one-loop multileg matrix elements

NLO: One-loop multi-leg amplitudes

General structure

$$\mathcal{A} = \sum_{i} d_i \operatorname{Box}_i + \sum_{i} c_i \operatorname{Triangle}_i + \sum_{i} b_i \operatorname{Bubble}_i + \sum_{i} a_i \operatorname{Tadpole}_i + R$$

- ▶ One-loop scalar integrals known analytically (K. Ellis, G. Zanderighi; A. Denner, S. Dittmaier)
- ▶ Task: compute integral coefficients
- Challenges
 - complexity: number of diagrams, number of scales
 - > stability: linear dependence among external momenta
- Enormous progress using two approaches
 - traditional: Feynman diagram based
 - unitarity based: reconstruct integral coefficients from cuts

NLO multi-leg: traditional approach

- Based on one-loop Feynman diagrams
 - contain high-rank tensor integrals
 - reduced to basis integrals: with analytical (A. Denner, S. Dittmaier) or semi-numerical (GOLEM:T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon, C. Schubert) approach
- Successfully applied in first complete 2 \rightarrow 4 calculation: $pp \rightarrow t \bar{t} b \bar{b}$

(A. Bredenstein, A. Denner, S. Dittmaier, S. Pozzorini) see talk by S. Dittmaier

▶ and in many 2 → 3 processes

NLO multi-leg: unitarity-based method

- Generalized unitarity
 - apply multi-particle cuts: one or more loop propagators onshell (Z. Bern, L. Dixon, D. Dunbar, D. Kosower, R. Britto, F. Cachazo, B. Feng; P. Mastrolia; D. Forde)
 - result: integral coefficients are products of tree-level amplitudes evaluated at complex momenta
- ▶ Reduction at integrand level (OPP: G. Ossola, C. Papadopoulos, R. Pittau)
- Rational terms not determined by unitarity
 - ▶ Special recursion relations (C. Berger et al.)
 - Feynman diagram approach (OPP)
 - D-dimensional unitarity (R. Ellis, W. Giele, Z. Kunszt, K. Melnikov)
- ▶ Algorithmic procedure: can be automated

Automating NLO calculations

- Virtual corrections: implementations
 - semi-numerical form factor decomposition: GOLEM (T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon, T. Reiter)

- unitarity and multi-particle cuts: BlackHat (C.F. Berger, Z. Bern, L.J. Dixon, F. Febres Cordero, D. Forde, H. Ita, D.A. Kosower, D. Maitre)
- reduction at integrand level: CutTools (G. Ossola, C. Papadopoulos, R. Pittau)
- generalized D-dimensional unitarity: Rocket (W. Giele, G. Zanderighi)
- generalized D-dimensional unitarity: Samurai (P. Mastrolia, G. Ossola, T. Reiter, F. Tranmontano)
- several more packages in progress (A. Lazopoulos; W. Giele, Z. Kunszt, J. Winter; K. Melnikov, M. Schulze)

The Les Houches Wish List (2010)

	2010
process wanted at NLO	background to
1. $pp o VV + jet$	$tar{t}H$, new physics
	Dittmaier, Kallweit, Uwer; Campbell, Ellis, Zanderighi
2. $pp o H + 2$ jets	H in VBF
	Campbell, Ellis, Zanderighi; Ciccolini, Denner Dittmaier
$iggl {f 3.}\; pp ightarrow tar t bar b$	$tar{t}H$ Bredenstein, Denner Dittmaier, Pozzorini; Bevilacqua, Czakon, Papadopoulos, Pittau, Worek
4. $pp ightarrow tar{t} + 2$ jets	$tar{t}H$ Bevilacqua, Czakon, Papadopoulos, Worek
$igg $ 5. $pp o VVbar{b}$	$VBF o H o VV, tar{t}H$, new physics
6. $pp o VV + 2$ jets	VBF o H o VV
	VBF: Bozzi, Jäger, Oleari, Zeppenfeld
7. $pp o V + 3$ jets	new physics
	Berger Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita,
	Kosower, Maitre; Ellis, Melnikov, Zanderighi
8. $pp o VVV$	SUSY trilepton
	Lazopoulos, Melnikov, Petriello; Hankele, Zeppenfeld;
	Binoth, Ossola, Papadopoulos, Pittau
9. $pp o bar{b}bar{b}$	Higgs, new physics GOLEM

Feynman diagram methods

now joined by

unitarity based methods

L. Dixon CERN HO10

NLO multileg: $W^{\pm} + 3j$, $Z^{0} + 3j$

- ► Calculations of W[±] + 3j
 - Blackhat + Sherpa (C.F. Berger, Z. Bern, L. Dixon, F. Febres Cordero, D. Forde, T. Gleisberg, H. Ita, D.A. Kosower, D. Maitre)
 - Rocket (R.K. Ellis, K. Melnikov, G. Zanderighi)
- excellent description of Tevatron data
 - moderate corrections
 - precise predictions
 - rich phenomenology
- ► Calculation of Z⁰ + 3j (Blackhat + Sherpa)
- Ongoing: W[±] + 4j (Blackhat + Sherpa)
 (see talk by D. Kosower)

Where are NNLO corrections needed?

- Processes measured to few per cent accuracy
 - ▶ $e^+e^- \rightarrow 3$ jets
 - > 2+1 jet production in deep inelastic scattering
 - hadron collider processes:
 - jet production
 - vector boson (+jet) production
 - top quark pair production
- Processes with potentially large perturbative corrections
 - Higgs or vector boson pair production
- ▶ Require NNLO corrections for
 - meaningful interpretation of experimental data
 - precise determination of fundamental parameters

What is known to NNLO?

fully inclusive observables

- total cross sections: R-ratio, Drell-Yan and Higgs production
- structure functions in deep inelastic scattering
- evolution of parton distributions
- Higgs production in vector boson fusion (P. Bolzoni, F. Maltoni, S. Moch, M. Zaro)

- single differential observables
 - rapidity distribution in Drell-Yan process (C.Anastasiou, L. Dixon, K. Melnikov, F. Petriello)
- fully differential observables
 - colourless high mass system including decays
 - jet production

NNLO calculations

- ▶ Require three principal ingredients (here: pp \rightarrow 2j)
 - two-loop matrix elements
 - explicit infrared poles from loop integral
 - \square known for all massless 2 \rightarrow 2 processes
 - one-loop matrix elements
 - explicit infrared poles from loop integral
 - ▶ and implicit poles from soft/collinear emission
 - □ usually known from NLO calculations
 - tree-level matrix elements
 - implicit poles from two partons unresolved
 - □ known from LO calculations

- Challenge: combine contributions into parton-level generator
- need method to extract implicit infrared poles

NNLO calculations

Solutions

- sector decomposition: expansion in distributions, numerical
 integration (T. Binoth, G. Heinrich; C. Anastasiou, K. Melnikov, F. Petriello; M. Czakon)
- subtraction: add and subtract counter-terms: processindependent approximations in all unresolved limits, analytical integration
 - several well-established methods at NLO
 - NNLO for specific hadron collider processes: q_T subtraction

(S. Catani, M. Grazzini)

NNLO for e⁺e⁻ processes: antenna subtraction (T. Gehrman, E.W.N. Glover, AG)

Higgs boson production at NNLO

Dominant production process: gluon fusion

- exclusive calculations to NNLO, including H decay
 - using sector decompostion (C. Anastasiou, K. Melnikov, F. Petriello)
 - using q_T-subtraction (S. Catani, M. Grazzini)
- ▶ Application: Higgs at Tevatron $H \rightarrow WW \rightarrow |\nu| |\nu|$
 - all distributions to NNLO (C.Anastasiou,
 G. Dissertori, M. Grazzini, F. Stöckli, B. Webber)
 - cuts on jet activity
 - neural-network output to NNLO

Vector boson production at NNLO

- ▶ Fully exclusive calculations
 - parton-level event generator
 - using sector decomposition (K. Melnikov, F. Pertriello)
 - ▶ using q_T subtraction (S. Catani, L. Cieri, G. Ferrera, D. de Florian, M. Grazzini)
 - including vector boson decay
- allowing arbitrary final-state cuts
- Application: lepton charge
 asymmetry (S. Catani, G. Ferrera, M. Grazzini)
 - small NNLO corrections
 - determine quark distributions

Jet production at NNLO: e⁺e⁻ collisions

- ▶ Two calculations of NNLO corrections to e⁺e⁻ → 3 jets
 - using antenna subtraction (T. Gehrmann, E.W.N. Glover, G. Heinrich, AG; S. Weinzierl)
 - as parton-level event generator
 - allow evaluation of event shapes and jet rates
- improved description of data with reduced scale uncertainty
 - one per cent for three-jet rate
- use to extract α_s from LEP data:

 $\alpha_s (M_Z) = 0.1175 \pm 0.0020 (exp) \pm 0.0015 (th)$

NNLO jet cross sections at hadron colliders

- two-loop matrix elements known for
- two-jet production (C.Anastasiou, E.W.N. Glover, C. Oleari, M.E. Tejeda-Yeomans; Z. Bern, A. De Freitas, L. Dixon)
- vector-boson-plus-jet production (T. Gehrmann, E. Remiddi)
- ▶ (2+1) jet production in DIS (T. Gehrmann, E.W.N. Glover)
- antenna subtraction formalism at NNLO: with radiators in initial state

NNLO jet cross sections at hadron colliders

- ▶ First implementation of antenna subtraction
 - ▶ gg \rightarrow 4g subtraction constructed and tested (E.W.N. Glover, J. Pires)
- Integration of antenna functions
- final-final antennae known
- initial-final antennae derived recently: sufficient for (2+1) jets in DIS (A. Daleo, T. Gehrmann, G. Luisoni, AG)
- initial-initial in progress (R. Boughezal, M. Ritzmann, AG)
- ▶ Top pair production at NNLO
 - In progress (see talk of R. Bonciani)

Conclusions and Outlook

- QCD is crucial for the success of LHC physics
 - interpretation of collider data
 - searches for new physics
 - precision studies
- Particle theory is getting ready
 - impressive progress in automated multiparticle NLO cross sections
 - high precision NNLO calculations for fully differential observables in benchmark processes are in progress