

Skin Cancer Detection with 3D-TBP

ATTILA NEMES (B6RYIK), CSABA POTYOK (OZNVQ4) PETER ARANY (U4VQHM)

ISICTEAM2024

About the challenge

- Stored in ZIP (Dropbox)
- •Images + metadata (hdf5 format + csv)
- Classification task + computer vision
 - Benign vs. Malignant
 - Unbalanced dataset

Preprocessing the dataset

- PytorchLightningDatamodule for dataloading
- Data augmentation with transforms
- Resampling and balancing dataset
 - 75-75 positive and negative samples in test
 - 75-75 positive and negative samples in validation
 - resampled and balanced samples in train

Squeeze algorithm (Shinde R. etal.)

Free-form deformation

Related works

- **Review about solutions** (Naqvi, M., etal. (2023). Skin Cancer Detection Using Deep Learning-A Review.)
 - AlexNet, MobileNet, ResNet, etc.
- **Hair removing (**Shinde, R. K., etal. (2023). Squeeze-MNet: Precise Skin Cancer Detection Model for Low Computing IoT Devices Using Transfer Learning.)
 - Squeeze algorithm + MobileNet
- **Data preprocessing** (Thomas W. Sederberg and Scott R. Parry. 1986. Free-form deformation of solid geometric models)
- **Balancing dataset** (Yun-Chun Wang, Ching-Hsue Cheng, A multiple combined method for rebalancing medical data with class imbalances, Computers in Biology and Medicine)
- etc.

Architecture I.

MobileNetv3-based

combined models

Architecture II.

model for images and tabular data

Architecture III.

MobileNet-based complex

combined model with tabular data

Train and hyperopt

- PytorchLightning for making pipeline
- Wandb for hyperopt (Bayesian and random)
- EarlyStopping + ModelCheckpoint
- Running on Colab

Results

Model	pAUC	recall	precision	f1-score	loss
Baseline	0.077	0.573	0.860	0.688	0.574
AlexNet based	0.116	0.800	0.822	0.811	0.434
MobileNetv3 based	0.159	0.760	0.950	0.844	0.445
Combined (AlexNet + MobileNet v3)	0.134	0.840	0.900	0.869	0.455
Complex (images + tabular data)	0.125	0.840	0.851	0.846	0.446
Complex (images + tabular data MobilNetv3)	0.151	0.600	0.918	0.725	0.503
Combined + tabular data	0.086	0.773	0.734	0.753	0.537

Conclusion

- Tried several methods
- Learnt a lot about computer vision
- Got correct results (we can improve them)
- •Made a working AI service (with Gradio)

Al service on <u>Huggingface</u>