

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^2 + b + u + 1, \ -u^2 + a + u, \ u^4 - u^3 + u + 1 \rangle \\ I_2^u &= \langle b - 1, \ u^3 + a + 1, \ u^4 - u^3 + 2u - 1 \rangle \\ I_3^u &= \langle b - 1, \ a, \ u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 9 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^2 + b + u + 1, -u^2 + a + u, u^4 - u^3 + u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ -u^{3} + u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} - u \\ u^{2} - u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + u \\ -u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-2u^3 + 6u^2 2u 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_8	$u^4 - u^3 + u + 1$
c_{2}, c_{7}	$u^4 + 3u^3 + 3u^2 + 2u + 2$
c_3, c_5	$u^4 + u^3 + 4u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_8	$y^4 - y^3 + 4y^2 - y + 1$
c_{2}, c_{7}	$y^4 - 3y^3 + y^2 + 8y + 4$
c_3, c_5	$y^4 + 7y^3 + 16y^2 + 7y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.566121 + 0.458821I		
a = 0.676097 - 0.978318I	-0.66070 + 1.45022I	-4.56010 - 4.72374I
b = -0.323903 - 0.978318I		
u = -0.566121 - 0.458821I		
a = 0.676097 + 0.978318I	-0.66070 - 1.45022I	-4.56010 + 4.72374I
b = -0.323903 + 0.978318I		
u = 1.066120 + 0.864054I		
a = -0.676097 + 0.978318I	4.77303 - 6.78371I	-3.43990 + 4.72374I
b = -1.67610 + 0.97832I		
u = 1.066120 - 0.864054I		
a = -0.676097 - 0.978318I	4.77303 + 6.78371I	-3.43990 - 4.72374I
b = -1.67610 - 0.97832I		

II.
$$I_2^u = \langle b-1, u^3+a+1, u^4-u^3+2u-1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ -u^{3} + 2u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} - 1 \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u^{3} - u + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} + 1 \\ -u^{3} + u^{2} + u - 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -2

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_4,c_6 c_8	$u^4 - u^3 + 2u - 1$
c_2, c_7	$(u^2 - u - 1)^2$
c_3, c_5	$u^4 + u^3 + 2u^2 + 4u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_8	$y^4 - y^3 + 2y^2 - 4y + 1$
c_{2}, c_{7}	$(y^2 - 3y + 1)^2$
c_3, c_5	$y^4 + 3y^3 - 2y^2 - 12y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.15372		
a = 0.535687	-2.30291	-2.00000
b = 1.00000		
u = 0.809017 + 0.981593I		
a = 0.809017 - 0.981593I	5.59278	-2.00000
b = 1.00000		
u = 0.809017 - 0.981593I		
a = 0.809017 + 0.981593I	5.59278	-2.00000
b = 1.00000		
u = 0.535687		
a = -1.15372	-2.30291	-2.00000
b = 1.00000		

III.
$$I_3^u = \langle b-1,\ a,\ u+1
angle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5 c_6	u-1
c_2, c_7	u
c_4, c_8	u+1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_5, c_6, c_8	y-1
c_{2}, c_{7}	y

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0	-3.28987	-12.0000
b = 1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	(u-1)(u4 - u3 + u + 1)(u4 - u3 + 2u - 1)
c_2, c_7	$u(u^2 - u - 1)^2(u^4 + 3u^3 + 3u^2 + 2u + 2)$
c_3,c_5	(u-1)(u4 + u3 + 2u2 + 4u + 1)(u4 + u3 + 4u2 + u + 1)
c_4, c_8	$(u+1)(u^4 - u^3 + u + 1)(u^4 - u^3 + 2u - 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing	
c_1, c_4, c_6 c_8	$(y-1)(y^4 - y^3 + 2y^2 - 4y + 1)(y^4 - y^3 + 4y^2 - y + 1)$	
c_2, c_7	$y(y^2 - 3y + 1)^2(y^4 - 3y^3 + y^2 + 8y + 4)$	
c_3, c_5	$(y-1)(y^4+3y^3-2y^2-12y+1)(y^4+7y^3+16y^2+7y+1)$	