(ACM801A) Reader Communication Protocol

file version: 02

Issuing date: 2008-05-20

Part code:

1. Communications frame format introduction

1.1. Command frame format definition

data flow direction: host ————» reader.

Order frame is the data frame of host machine operating reader, format as follows:

Ī	Packet	Length	Command	Command	 Command	Command	Checksum
	Type		Code	Data	Data	Data	
ĺ	0xA0	n+2	1 byte	Byte 1	Byte n-1	Byte n	СС

- Packet Type is package type domain, Command frame package type fixed for 0xA0.
- Length is package length domain, said bytes number in the frame behind Length domain.
- Command Code is Order code domain.
- Command Data is the parameters domain in frame command.
- Checksum is Checksum domain, regulates the checking scope is from the package type domain to parameters domain
 until the last byte the checksum of all the bytes. After reader receiving order frame, need to calculate the checksum to check
 error.

1.2. Reader order complete response frame format definition

1.3. Data flow direction: reader———» host machine.

Reader order complete the response frame is a kind of Data frame of fixed length, the format is shown as the following table:

Packet Type Lengt		Command Code	Status	Checksum	
0xE4	0x03	1 byte	1 Byte	СС	

Packet Type is package type domain, command frame package type fixed for 0xE4.

- Length is package length domain, said bytes number in the frame behind Length domain, fixed for 0x03.
- Command Code is Order code domain.
- Status is state domain.
- Checksum is checksum domain, regulates the checking scope is from the package type domain to parameters domain
 until the last byte the checksum of all the bytes. After reader receiving order frame, need to calculate the checksum to check
 error.

State domain showed that after reader completes the order of PC machine, the reader state or the results of after the implementation of the order, which provides as follows:

Serial	Value	name	description				
number							
1	0x00	ERR_NONE	order complete successfully				
2	0x02	CRC_ERROR	CRC Calibration error				
3	0x10	DRF_COMMAND_ERROR	Illegal orders				
4	0x01	OTHER_ERROR	other error				

1.4. The message frame format definition of reader sends

Data flow direction: reader——» host machine

Information frame is data frame returned to the host, for example, used to send label to the host, the frame format definition as follows:

Packet	Length	Response	Response	 Response	Response	Checksum
Type		Code	Data	Data	Data	
0xE0	n+2	1 byte	Byte 1	Byte n-1	Byte n	СС

- Packet Type is package type domain, response frame package type fixed for 0xE0.
- Length is package length domain, said the bytes number in the frame behind length domain.
- Response Code is the information key domains, the value said the type of information.
- Response Data is the parameters domain of information frame.
- Checksum is checksum domain, regulates the checking scope is from the package type domain to parameters domain
 until the last byte the checksum of all the bytes. After PC machine receives order frame, need to calculate the checksum to
 check error.

2. Communication frame introduction in details

1 ISO18000-6B tag identification

host machine sends:

response	data length	order	card type	checksum
Data0	Data1	Data2	Data3	Data4
A0	03	82	01	checksum

TEST Code: A0,03,82,01,DA;

return from machine: (E0 0B 82 01) head, (E0 04 00 00 C0 B1 CD 01) ID, checksum.

1.1 ACM tag identification

host machine sends:

response	data length	order	card type	checksum
Data0	Data1	Data2	Data3	Data4
A0	03	82	04	checksum

TEST Code: A0,03,82,04,D7;

return from machine: (E0 0F 82)head, (04) antenna number, (12 34 33 B2 DD D9 04 80 35 05 00 00) ID, checksum.

2 ISO18000-6B tag reading

host machine sends:

response	data length	order	card type	address	reading length	checksum
Data0	Data1	Data2	Data3	Data4	Data5	Data0
A0	05	80	01	addr	Length	checksum

TEST CODE: A0 05 80 01 00 08 D2; from 0x00 address begins, read 8 BYTE data.

return from machine: (E0 15 80 01 00 08) head, (E0 04 00 00 C0 B1 CD 01) ID, (E0 04 00 00 C0 B1 CD 01) data reading out, checksum.

2.1 ACM tag reading

host machine sends:

response	data length	order	card	memory	address	reading length(word)	checksum
			type	place			
Data0	Data1	Data2	Data3	Data4	Data5	Data6	Data7
A0	06	80	04	MemBank	addr	Length	checksum

TEST Code: A0 06 80 04 01 02 01 D2; from 0x02 address begins, read 1 word data.

Remarks: 1 word= 2 BYTE:

MemBank:

00₂ Reserved reservation area

01₂ ACM ACM 10₂ TID TID

11₂ User user area

return from machine: E0 09 80 04 01 02 01, (12 34) ID 49 , (49) checksum.

3 ISO18000-6B tag writes

host machine sends:

response	data	order	card	card address		writing data	checksum
length			type		length		
Data0	Data1	Data2	Data3	Data4	Data5	Data6	Data
A0	05+	81	01	addr	Length	D1	checksum
	Length						

TEST CODE: A0 06 81 01 16 01 00 C1; to 0x16 write 0x00;

return from machine: (E0 0E 81 01 16 01 E0 04 00 00 C0 B1 CD 01) head, Status, checksum.

Status = 00: write in successfully; Status = other value: write in failed

Addr illustration: from 19 – 255 is effective;

3.1 ACM tag single word write in

host machine sends:

respons	data	order	card	writing in	memor		writing in	writing	writing	checksum
е	length		type	mode	y place	addres	length(w	in data	in data	
						s	ord)			
Data0	Data1	Data2	Data3	Data4	Data5	Data6	Data7	Data8	Data9	Datan
A0	09	81	04	WriteMode	MemB	addr	01	D1	D2	checksu
					ank					m

TEST Code1: A0,09,81,04,00,01,02,01,12,34,88; TEST Code1: A0,09,81,04,00,01,02,01,88,88,BE;

return from machine: (E0 0E 81 02 02 01 08 55 60 20 00 12 34 45) head, Status , checksum.

Remarks: 1 word=2 BYTE:

MemBank:

00₂ Reserved reservation area

01₂ EPC EPC area
 10₂ TID TID area
 11₂ User user area

WriteMode:

00 single word write

Status = 00: write successfully;

Status = other value: write failed;

Addr illustration: ACM area from 0x02-0x07 is effective;

3.2 ACM tag multiple words write(block Writing)

host machine sends:

respons	data	order	card	writing	memory	addre	writing	write	write data	checksum
е	length		type	mode	place	ss	length	data		
							(word)			
Data0	Data1	Data2	Data3	Data4	Data5	Data6	Data7	Data8	Datan-1	Datan

Shenzhen Goldbridge Industrial Co., Ltd

A0	07+	81	04	WriteM	MemBank	addr	Length	D1	D (Length)	checksum
	(Lengt			ode						
	h*2)									

TEST Code1: A0,0B,81,04,01,01,02,02,55,55,AA,AA,CC;

return from machine: (E0 0E 81 03 02 02 08 55 60 20 00 12 34 45) head, Status , checksum.

Remarks: 1 word=2 BYTE;

MemBank:

00₂ Reserved Reservation area

01₂ ACM ACM 10₂ TID TID

11₂ User user area

WriteMode:

01 block writing

Status = 00: write in successfully; Status = other value: write failed; Remarks: Most labels do not support.

4 ISO18000-6B tag LOCK

response	data length	order	card type	address	checksum
Data0	Data1	Data2	Data3	Data4	Data5
A0	04	87	01	addr	checksum

Addr illustration: 0x13 and aboved.

return from machine: E4, 03, 87, status, checksum

Status = 00: write in successfully; Status = other value: write failed;

4.1 ACM tag LOCK

response	data length	order	card type	LOCK type	checksum
Data0	Data1	Data2	Data3	Data4	Data5
A0	04	87	04	LOCK type value	checksum

LOCK type value illustration:

00: LOCK USER

01: LOCK TID

02: LOCK ACM

03: LOCK ACCESS

04: LOCK KILL

05: LOCK ALL

other value: not lock

return from machine: E4, 03, 87, status, checksum

Status = 00: write in successfully; Status = other value: write failed;

5 ACM tag KILL

Shenzhen Goldbridge Industrial Co., Ltd

response	data	order	card	RFU	password	password	password	password	checksum
	length		type		1	2	3	4	
Data0	Data1	Data2	Data3	Data4	Data5	Data6	Data7	Data8	Data9
A0	08	86	04	00	MM1	MM2	MM3	MM4	checksum

return from machine: E4 03 86 status checksum

Status = 00: write in successfully; Status = other value: write failed;

6 Initialize ACM tag CODE

response	data length	order	card type	checksum
Data0	Data1	Data2	Data3	Data4
A0	03	99	04	checksum

return from machine: E4 03 99 status checksum

Status = 00: write in successfully; Status = other value: write failed;

7 Read reader software version number CODE

response	data length	order	checksum
Data0	Data1	Data2	Data4
A0	02	6A	checksum

return from machine: (E0 04 6A) head, (01 29) version number, (88) checksum

8 reposition reader order frame CODE

Packet Type	Length	Command Code	Checksum
0xA0	2	0x65	Checksum

After the reader receives this order frame, return order and complete the frame at first, then reader reposition.

return from machine: (E4 03 65) head, (00) state bits, (B4) Checksum

state bits 00: success; other value: failed;

9 Stop reading tag CODE

response	data	order	checksum
	length		
Data0	Data1	Data2	Data4
A0	02	FE	checksum

Host machine sends: A0, 02, FE, 60.

return from machine: E0, 04, 88, 88, 88, 84

Note: ACM tags operation is with a "word" as a unit; ISO18000-6B label with a "byte" as a unit.

10. Re-identify tags CODE (multi-label mode is effective)

response	data length	order	checksum
Data0	Data1	Data2	Data4
A0	02	FC	checksum

Return successfully: E0, 04, 88, 88, 88, CheckSum;

11.Re-get data CODE (multi-label mode is effective)

response	data length	order	checksum
Data0	Data1	Data2	Data4
A0	02	FF	checksum

Return successfully: E0, 04, N (ID frame numbers), 88, 88, CheckSum; then back N pieces ID data frames.

12. Set time CODE (Note: which have clock function device is effective)

respons	data	order	operatio	year	year	mont	day	week	hour	minute	secon	checksum
е	lengt		n	high	low	h					d	
	h		function	byte	byte							
Data0	Data	Data	Data3	Data4	Data5	Data	Data	Data	Data	Data1	Data1	Data12
	1	2				6		8	9	0	1	
A0	0B	FB	FU	Year-	Year-	Mon	Day	Mow	Hour	Min	Sec	checksu
				Н	L							m

FU: 00 Initialize the date and clock

Return successfully: E0, 03, FB, Status, CheckSum;

Status = 00: write successfully; Status = other value: write failed;

FU: 01 Read date and clock;

host machine sends: A0, 03, FB, 01, CheckSum;

return successfully: E0, 0A, FB, Year-H, Year-L, Mon, Day, Mow, Hour, Min, Sec, checksum

return error: E0, 03, FB, 01, CheckSum;

Reader Parameters setting communication protocols

1. Communication baud rate settings

g							
response	data length	order	baud rate		checksum		
			parameters				
Data0	Data1	Data2	Data3		Data4		
A0	03	64	baud rate		checksum		
			parameters				

Baud rate parameters illumination:

other parameters: 9600

host machine sends: A0 03 64 01 F8

return from machine: (E4 03 64) head, (00) state bit, (B5) Checksum

state bit 00: success; other value: failure

Note: Electric on reader default for 9600

2. Stop working setting

response	data	order	checksum
	length		
Data0	Data1	Data2	Data3
0xA0	0x02	0x50	Checksum(0x0E)

return from machine: (E4 03 50) head, (00) state bit, (C9) Checksum

state bit 00: success; other value: failure

3. Enquiry multiple setting parameters of readers at the same time

response	data length	order	enquiry		enquiry	the	enquiry	the	checksum
			numbers o	of	high	bit	low	bit	
			parameters		address	of	address	of	
					parameter	s	parameter	s	
					specified		specified		
Data0	Data1	Data2	Data3		Data4		Data5		Data6
0xA0	0x05	0x63	Length		Parameter		Parameter		Checksum
					address(M	ISB)	address(L	SB)	

For example: host machine sends: A0 05 63 05 00 20 D3 (product logo enquiry)

return from machine: (E0 0A 63 05 00 20) head, (FF FF 5E FF FF) parameters value, (34) Checksum

4. Enquiry single setting parameters of readers

response	data length	order	enquiry the high bit	enquiry the low	checksum
			address of parameters	bit address of	
			specified	parameters	
				specified	
Data0	Data1	Data2	Data3	Data4	Data5
0xA0	0x04	0x61	Parameter	Parameter	Checksum
			address(MSB)	address(LSB)	

For example: host machine sends: A0 04 61 00 65 96 (enquiry power)

return from machine: (E0 05 61 00 65) head, (00) parameters value, (55) Checksum.

5. Set multiple reader parameters at the same time

		inpio i oddi		iotoro at tiro						
resp	data	order	Set	enquiry the	enquiry the	Comma	Comma	Comma	Comma	checksu
onse	length		numb	high bit	low bit	nd Data	nd Data	nd Data	nd Data	m
			ers of	address of	address of					
			para	parameters	parameter					
			meter	specified	s specified					
			s							
Data	Data1	Data2	Data	Data4	Data5	Data5	Data5	Data5	Data	Data N
0			3						(N-1)	
0xA	0x05+	0x62	Lengt	Parameter	Parameter	Paramet	Paramet	Paramet	Paramet	Checks
0	Length		h	address(M	address(L	er value	er value	er value	er value	um
				SB)	SB)					

For example: host machine sends: A0 0C 62 07 00 92 01 04 10 40 00 01 02 01 (frequency setting)

return from machine: (E4 03 62) head, (00) state bit, (B7) Checksum.

state bit 00: success; other value: failure

6. Set single reader parameter

Packet	l a a atla	Comman	Command	Command	Command	Ch a alsayura
Type	Length	d Code	Data	Data	Data	Checksum
			Parameter	Parameter	Doromotor	
0xA0	5	0x60	address(MS	address(LSB	Parameter	Checksum
			B))	value	

Parameter address(MSB) is high byte of address of parameter in EEPROM.

Parameter address(LSB) is low byte of address of parameter in EEPROM.

Parameter value is parameter value need to set.

After the reader receives this command frame, write the parameters need to set into EEPROM, and return order to complete the frame.

For example: host machine sends: A0 05 60 00 65 96 00 (set power)

return from machine: (E4 03 60) head, (00) state bit, (B9)

state bit 00: set successfully; other value: set failed

Attached table 1:

			,
the address of	The meaning of the project	Set the RMS of	interpretation of numerical other
the		operation	meaning
parameters in		(decimal)	
EEPROM			
(hexadecimal)			
0x64	user set peugeot code	0 - 255	user set peugeot value
0x65	transmitting power	0 - 150	Power Analog
0x70	reader reading operation	1, 2, 3	1: master-minor operating Note: when operate
	happening mode		mode in mode 2,3,
			2: timing operating mode master-minor mode
			3: triggering operating is still effective.
			mode

Attached 2:

address of the	project meaning	Set the RMS of	Numerical meaning	other
parameters in		operation (decimal)	interpretation	
EEPROM				
(hexadecimal)				
0x71	reading time interval	N	value unit is: (N*10)ms	When reading
			illativis io ioo,	operation happening
0x72	the link choosing of that after	1, 2, 3	1: K3403 IIIK	mode of reader is 2,
	the reader reads the data,		2: wiegand link	3, it is effective
	it sends data initiatively		3: RS232 link	

Attached table 3:

Shenzhen Goldbridge Industrial Co., Ltd

address of the	project meaning	Set the RMS of	Numerical	meaning	other		
parameters in		operation (decimal)	interpretation				
EEPROM							
(hexadecimal)							
0x73	Wiegand protocol choice	1, 2, 3	1: wiegand26		Effective	to	wiegand
			2: wiegand34		mode		
			3: wiegand32				
0x74	Wiegand outputting data	1 - 255	the inside of	reader			
	pulse width		transfers to time, t	ime=this			
			value*10(microsec	ond)。			
0x75	Wiegand outputting data	1 - 255	the inside of	reader			
	pulse cycle		transfers to time, t	ime=this			
			value*100(microse	cond)。			
0x76	Wiegand output repeating	1, 2, 3	not support tempor	arily			
	times						
0x77	interval time of Wiegand	1, 2, 3, 4, 5, 6,	the inside of	reader			
	repeat outputting	7, 8, 9, 10	transfers to time, t	ime=this			
			value*10microseco	nd) 。			
			(not support temp	orarily)			

Attached table 5:

address of the	Project meaning	Set	the	RMS	of	of the numerical meaning other
parameters in		opera	ation	(decimal)	interpretation
EEPROM						
(hexadecimal)						
0x7C	485 links sending data	0, 1				0: no confirmation (not effective to 485 way
	confirmation					support temporarily)
						1: with confirmation (not
						support temporarily)
0x7D	485 links sending way	0, 1				0: passive sending (not
						support temporarily)
						1: active sending

Attached table 6:

address of the	Project meaning	Set the RMS of	the numeric	al meaning	other
parameters in		operation (decimal)	interpretation		
EEPROM					
(hexadecimal)					
0x80	Trigger pin use	if numerical value	Bit0 :	Corresponding	effective when reader
	triggering working	is less than 4 bits,	triggering pin 0		reading operatio
	mode to set	then set as 0 or 1,	Bit1 :	Corresponding	happening mode is 3
		says work without	triggering pin 1	(not support	
		triggering or	temporarily)		

ShenzhenGo	ldbrid	geIndus	trialCo.	.Ltd

Buchzuenoc	hubriugemuusmarco.,Ltu		
		triggering	Bit2 : Corresponding
			triggering pin 2 (not support
			temporarily)
			Bit3 : Corresponding
			triggering pin 3 (not support
			temporarily)
0x81	triggering pin triggerir	gif numerical value	Bit0 : Corresponding
	mode	is less than 4 bits	triggering pin 0(support high
		then set as 0 or 1	,electrical level triggering)
		says low electrica	Bit1 : Corresponding
		level triggering o	rtriggering pin 1 (not support
		high electrical leve	temporarily)
		triggering	Bit2 : Corresponding
			triggering pin 2 (not support
			temporarily)
			Bit3 : Corresponding
			triggering pin 3 (not support
			temporarily)
0x84	put off close time	0 - 240	the inside of reader
			transfers to time ,
			time=this
			value*100(microsecond)。

Attached table 7:

	<u> </u>			
address of the	Project meaning	Set the RMS of	the numerical meaning	other
parameters in		operation (decimal)	interpretation	
EEPROM				
(hexadecimal)				
0x90	Hopping-frequency	0 - 50	0 : Frequency-hopping	
	setting		working mode	
			150 : fixed frequency	
			working mode, frequency	
			value is decided by this	
			numerical value	
0x92~0x98	hopping	bit is set as 0 or 1,	From BIT0 of 0x92 (the	
	frequency-frequency	says not selecting	first frequency) - BIT7	
	parameter	this frequency or	(the seventh frequency),	
		selecting this	and so on, can set 50	
		frequency	frequency to work cycle	

Attached table 8:

address of the Project meaning	Set the RMS of the numerical meaning other
parameters in	operation (decimal) interpretation
EEPROM	

ShenzhenGoldbridgeIndustrialCo.,Ltd

(hexadecimal)				
0xA0	Forward Link Rate	0, 1, 2	At present, fixed, out of	
			control	
0xA1	Reverse link rate	0, 1, 2	At present, fixed, out of	
			control	

Attached table 9:

address of the	Project meaning	Set t	he	RMS	of	the	numerical	meaning	other
parameters in		opera	tion (decim	al)	inter	pretation		
EEPROM									
(hexadecimal)									
0x87	single tag and	0, 1	, 2	, 3		0:	ACM single	tag	
	multiple tags					ide	ntification		
	identification					1:	ACM multip	le tags	
						ide	ntification		
						2:	18000_6B s	ingle tag	
						ide	ntification		
						3:	18000_6B		
							not support	multiple	
						tag	s identification	on	
						tem	nporarily		

Attached table 10:

	I	ı	
address of the	Project meaning	Set the RMS of	the numerical meaning other
parameters in		operation (decimal)	interpretation
EEPROM			
(hexadecimal)			
0x89	antenna working mode	1 , 4	1: single antenna works
			4: multiple antennas cycle
			work
0x8A	select working	If the numerical	0: not select any antenna
	antenna	value is lower	to work
		than 4 bits, set as	1: antenna 1 works
		0 or 1,says that	2: antenna 2 works
		not select or	4: antenna 3 works
		select	8: antenna 4 works
		corresponding	15: all antennas work
		antenna to work	

Attached table 11:

ShenzhenGoldbridgeIndustrialCo.,Ltd

Silclizifcifoldoric	igeniuusinaieo.,Liu								
address of the	Project meaning	Set the	RMS c	ofthe	numerio	al	meaning	other	
parameters in		operation	(decimal) inter	pretation				
EEPROM									
(hexadecimal)									
0x7B	ID adjacent	1 , 2		1 :	start	ID	adjacent		
	discrimination			disc	rimination				
				2: 1	Do not star	t (send	ding data		
				real-	time is effe	ective)			
0x7A	ID adjacent	1 - 255		the	inside o	f the	reader	Note: when	start ID
	discrimination time			tran	sfers to tir	ne, ti	me=this	adjacent discrim	nination,
				valu	e*1 (sec	ond)		time value ca	n not be
								0,otherwise	
								automatically	transfe
								to not starting.	
					•				
				1					

the above address in command use two bytes, as the above byte is only one byte range, when use in practical, write high bit bytes in command as 0.

For example: reader reading operation happening mode is timing working mode, fill in practically:

Parameter address(MSB)	Parameter address(LSB)
0x00	0x70

illumination:

- 1. After the above command is completed, need to make the reader to use new parameters to work, can use one of the below two ways:
 - (1) Manually reset reader, so that operators need to close to the reader (repower-on);
 - (2) PC remote operation, in the PC software, through the use of Reset Reader orders to control reader

3. Testing and calculation method (c language)

```
unsigned char CheckSum(unsigned char *uBuff, unsigned char uBuffLen)
{
    unsigned char i,uSum=0;
    for(i=0;i<uBuffLen;i++)
    {
        uSum = uSum + uBuff[i];
    }
    uSum = (~uSum) + 1;
    return uSum;
}</pre>
```

4. Reader setting examples

On-line data combination frame is as follows:

【Write Data:】A0 03 64 01 F8
【Read Data:】E4 03 64 00 B5
【Write Data:】A0 02 50 0E
【Read Data:】E4 03 50 00 C9
【Write Data:】A0 02 6A F4
【Read Data:】E0 04 6A 01 29 88

Fundamental operating parameters set the combination frame as follows:

[Write Data:] A0 05 60 00 65 87 0F

【Read Data: 】 E4 03 60 00 B9

[Write Data:] A0 05 60 00 7E 00 7D

【Read Data:】E4 03 60 00 B9

[Write Data:] A0 05 60 00 91 1E 4C

【Read Data: 】 E4 03 60 00 B9

[Write Data:] A0 0C 62 07 00 92 01 04 10 40 00 01 02 01

【Read Data:】E4 03 62 00 B7

[Write Data:] A0 05 60 00 90 00 6B

【Read Data:】E4 03 60 00 B9

[Write Data:] A0 05 60 00 8A 01 70

【Read Data: 】 E4 03 60 00 B9

[Write Data:] A0 05 60 00 89 01 71

【Read Data:】E4 03 60 00 B9

[Write Data:] A0 05 60 00 87 00 74

【Read Data:】E4 03 60 00 B9

Master-minor working mode set combination frame as follows:

[Write Data:] A0 05 60 00 70 00 8B

【Read Data:】E4 03 60 00 B9

[Write Data:] A0 05 60 00 72 00 89

【Read Data:】E4 03 60 00 B9

[Write Data:] A0 04 61 00 24 D7

【Read Data:】E0 05 61 00 24 FF 97

[Write Data:] A0 04 61 00 25 D6

【Read Data:】E0 05 61 00 25 FF 96

Timing working mode set combination frames as follows:

[Write Data:] A0 05 60 00 70 02 89

【Read Data:】E4 03 60 00 B9

[Write Data:] A0 05 60 00 71 0A 80

【Read Data:】E4 03 60 00 B9

[Write Data:] A0 05 60 00 72 01 88

【Read Data:】E4 03 60 00 B9

[Write Data:] A0 05 60 00 7B 00 80

【Read Data:】E4 03 60 00 B9

[Write Data:] A0 05 60 00 79 FF 83

[Read Data:] E4 03 60 00 B9

[Write Data:] A0 05 60 00 64 00 97

【Read Data:】E4 03 60 00 B9

[Write Data:] A0 05 60 00 7A 00 81

【Read Data:】E4 03 60 00 B9

[Write Data:] A0 05 60 00 7D 00 7E

【Read Data:】E4 03 60 00 B9

[Write Data:] A0 05 60 00 7C 00 7F

【Read Data:】E4 03 60 00 B9

[Write Data:] A0 04 61 00 24 D7

【Read Data:】E0 05 61 00 24 FF 97

[Write Data:] A0 04 61 00 25 D6

【Read Data:】E0 05 61 00 25 FF 96

Trigger working mode set combination frame as follows:

[Write Data:] A0 05 60 00 70 03 88

【Read Data:】E4 03 60 00 B9

[Write Data:] A0 05 60 00 71 0A 80

【Read Data: 】 E4 03 60 00 B9

[Write Data:] A0 05 60 00 72 01 88

【Read Data: 】 E4 03 60 00 B9

[Write Data:] A0 05 60 00 7B 00 80

【Read Data: 】 E4 03 60 00 B9

[Write Data:] A0 05 60 00 79 FF 83

【Read Data:】E4 03 60 00 B9

[Write Data:] A0 05 60 00 64 00 97

【Read Data: 】 E4 03 60 00 B9

[Write Data:] A0 05 60 00 7A 00 81

【Read Data:】E4 03 60 00 B9

[Write Data:] A0 05 60 00 7D 01 7D

【Read Data: 】 E4 03 60 00 B9

[Write Data:] A0 05 60 00 7C 00 7F

[Read Data:] E4 03 60 00 B9

[Write Data:] A0 05 60 00 81 01 79

【Read Data: 】 E4 03 60 00 B9

[Write Data:] A0 05 60 00 80 01 7A

【Read Data:】E4 03 60 00 B9

[Write Data:] A0 05 60 00 84 0A 6D

【Read Data:】E4 03 60 00 B9 【Write Data:】A0 04 61 00 24 D7

【Read Data:】E0 05 61 00 24 FF 97 【Write Data:】A0 04 61 00 25 D6 【Read Data:】E0 05 61 00 25 FF 96

Enquiry working mode combination frame work as follows:

[Write Data:] A0 04 61 00 70 8B 【Read Data:】E0 05 61 00 70 03 47 [Write Data:] A0 04 61 00 71 8A 【Read Data:】E0 05 61 00 71 0A 3F [Write Data:] A0 04 61 00 72 89 [Read Data:] E0 05 61 00 72 01 47 Write Data: A0 04 61 00 7B 80 【Read Data:】E0 05 61 00 7B 00 3F [Write Data:] A0 04 61 00 72 89 [Read Data:] E0 05 61 00 72 01 47 [Write Data:] A0 04 61 00 79 82 [Read Data:] E0 05 61 00 79 FF 42 [Write Data:] A0 04 61 00 64 97 [Read Data:] E0 05 61 00 64 00 56 [Write Data:] A0 04 61 00 7A 81 【Read Data:】E0 05 61 00 7A 00 40 [Write Data:] A0 04 61 00 7D 7E 【Read Data:】E0 05 61 00 7D 01 3C [Write Data:] A0 04 61 00 7C 7F 【Read Data:】E0 05 61 00 7C 00 3E [Write Data:] A0 04 61 00 81 7A 【Read Data:】E0 05 61 00 81 01 38 [Write Data:] A0 04 61 00 80 7B [Read Data:] E0 05 61 00 80 01 39 Write Data: A0 04 61 00 84 77

Enquiry working parameters combination frame are as follows:

[Write Data:] A0 04 61 00 65 96
[Read Data:] E0 05 61 00 65 87 CE
[Write Data:] A0 04 61 00 7E 7D
[Read Data:] E0 05 61 00 7E 00 3C
[Write Data:] A0 04 61 00 91 6A
[Read Data:] E0 05 61 00 91 1E 0B
[Write Data:] A0 04 61 00 90 6B
[Read Data:] E0 05 61 00 90 00 2A
[Write Data:] A0 05 63 07 00 92 5F

【Read Data:】E0 05 61 00 84 0A 2C

【Read Data:】E0 0C 63 07 00 92 01 04 10 40 00 01 02 C0

【Write Data:】A0 04 61 00 87 74 【Read Data:】E0 05 61 00 87 00 33 【Write Data:】A0 04 61 00 8A 71 【Read Data:】E0 05 61 00 8A 01 2F

Updating working parameters combination frame are as follows:

[Write Data:] A0 03 64 00 F9
[Read Data:] E4 03 64 00 B5
[Write Data:] A0 02 65 F9
[Read Data:] E4 03 65 00 B4

5. Automatically identifying data outputting format examples

5.1. ISO18000-6B tag outputting format is as follows:

Data frame uses information frame format to send, thereinto Response Code region is 0x58, Response Data region is totally 10 bytes.

The following is an example:

A tag data is totally 14 bytes: (the below numerical value are all hexadecimal)

E0 0C 58 00 01 E0 04 00 00 41 C2 30 01 A3

thereinto:

E0: head sign, this one is fixed 0C: length, this one is also fixed

58: news sign, this one is also fixed

00: users code sign

01: antenna number, this identification comes from which antenna note: (integrated antenna is fixed)

E0 04 00 00 41 C2 30 01: ID number

A3: checksum, calculation: From the first byte to reciprocal the second byte, totally 13 bytes.

Every time the reader returns a label data.

5.2. ACM G2 tag outputting format is as follows:

The below is a example:

A label data is totally 17 bytes: (the following numerical value are all hexadecimal)

00 FF E3 00 60 19 D2 6D 1C E9 AA BB CC DD 01 52 FF

Thereinto:

00: head sign, this one is fixed

FF: users code sign

E3 00 60 19 D2 6D 1C E9 AA BB CC DD: ID number

01: antenna number, this identification comes from which antenna note: (integrated antenna is fixed)

52: checksum, calculation: from the first byte to reciprocal the third byte, totally 15 bytes.

FF: sign, this one is fixed

Every time the reader returns a label data.

5.3. ACM G2 tag with clock function outputting format is as follows:

The below is a example:

A tag data is totally 20 bytes: (the below numerical value are all hexadecimal)

beginning: E4 03 00 00 19 E4 04 05 00 01 12

ID

FF FF 12 34 56 78 9A BC DE F0 11 22 33 44 06 03 0C 00 0A 01

Thereinto:

FF FF: head sign, this one is fixed

FF: users code sign

12 34 56 78 9A BC DE F0 11 22 33 44: ID number

06 03 0C 00 0A: date (month, date), time (hour, minute, second)

01: checksum, calculation: from the first byte to reciprocal the second byte, totally 19 bytes.

5.4. ACM G2 tag reading TID outputting format is as follows:

The below is a example:

A tag data is totally 25 bytes: (the below numerical value are all hexadecimal)

00 FF E3 00 60 19 D2 6D 1C E9 AA BB CC DD 01 E3 00 60 19 D2 6D 1C E9 ** FF

Thereinto:

00: head sign, this one is fixed

FF: users code sign

E3 00 60 19 D2 6D 1C E9 AA BB CC DD: EPC-ID number

E3 00 60 19 D2 6D 1C E9: TID-ID number

01: antenna number, this identification comes from which antenna note: (integrated antenna is fixed)

**: checksum, calculation: from the first byte to reciprocal the third byte, totally 23 bytes.

FF: sign, this one is fixed

Every time the reader returns a label data.