Binomial coefficients, valuations, and words

Eric Rowland

Hofstra University

Developments in Language Theory

Liège, 2017-08-11

Valuations of binomial coefficients

Pascal's triangle:

For this talk: *p* is a prime.

Let $\nu_p(n)$ denote the exponent of the highest power of p dividing n.

Example: $\nu_3(18) = 2$.

$$\nu_2(n): 0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,\dots$$

Theorem (Kummer 1852)

 $\nu_p(\binom{n}{m}) = number of carries involved in adding m to n-m in base p.$

Valuations of binomial coefficients

Kummer's theorem

Theorem (Kummer)

 $\nu_p(\binom{n}{m}) = number \ of \ carries \ involved \ in \ adding \ m \ to \ n-m \ in \ base \ p.$

Proof: Use Legendre's formula

$$\nu_{p}(m!) = \frac{m - \sigma_{p}(m)}{p - 1},$$

where $\sigma_p(m)$ is the sum of the base-p digits of m.

$$\begin{split} \nu_p\bigg(\binom{n}{m}\bigg) &= \nu_p\bigg(\frac{n!}{m!(n-m)!}\bigg) & (p \text{ is prime}) \\ &= \frac{n-\sigma_p(n)}{p-1} - \frac{m-\sigma_p(m)}{p-1} - \frac{n-m-\sigma_p(n-m)}{p-1} \\ &= \frac{-\sigma_p(n) + \sigma_p(m) + \sigma_p(n-m)}{p-1}. \end{split}$$

Odd binomial coefficients

Main theme: Arithmetic information about binomial coefficients reflects the base-*p* representations of integers.

Glaisher (1899) counted odd binomial coefficients:

1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, ...
$$\theta_{2,0}(n) = 2^{|n|_1}$$

Definition

$$\theta_{p,\alpha}(n) := \left| \{ m : 0 \le m \le n \text{ and } \nu_p(\binom{n}{m}) = \alpha \} \right|.$$

 $|n|_w :=$ number of occurrences of w in the base-p representation of n.

Derivation from Kummer's theorem

Glaisher's result $\theta_{2,0}(n) = 2^{|n|_1}$ follows from Kummer's theorem.

Theorem (Kummer)

 $\nu_p(\binom{n}{m}) = number \ of \ carries \ involved \ in \ adding \ m \ to \ n-m \ in \ base \ p.$

Example

$$n = 25, \ \nu_2(\binom{25}{m}) = 0.$$

$$n = 25 = 11001_2$$

 $m = **00*_2$

$$\theta_{2,0}(25) = 2^{|25|_1} = 8.$$

Binomial coefficients not divisible by p

Number of binomial coefficients with 3-adic valuation 0:

$$1,2,3,2,4,6,3,6,9,2,4,6,4,8,12,6,\ldots$$
 $\theta_{3,0}(n)=2^{\lfloor n\rfloor_1}3^{\lfloor n\rfloor_2}$

Theorem (Fine 1947)

Write
$$n = n_{\ell} \cdots n_1 n_0$$
 in base p . Then $\theta_{p,0}(n) = (n_0 + 1) \cdots (n_{\ell} + 1) = 1^{|n|_0} 2^{|n|_1} 3^{|n|_2} \cdots p^{|n|_{p-1}}$.

Prime powers?

Carlitz found a recurrence involving $\theta_{p,\alpha}(n)$ and a secondary quantity $\psi_{p,\alpha}(n) := \big| \{m: 0 \le m \le n \text{ and } \nu_p((m+1)\binom{n}{m}) = \alpha\} \big|.$

Theorem (Carlitz 1967)

$$\begin{split} \theta_{p,\alpha}(pn+d) &= (d+1)\theta_{p,\alpha}(n) + (p-d-1)\psi_{p,\alpha-1}(n-1) \\ \psi_{p,\alpha}(pn+d) &= \begin{cases} (d+1)\theta_{p,\alpha}(n) + (p-d-1)\psi_{p,\alpha-1}(n-1) & \text{if } 0 \leq d \leq p-2 \\ p\psi_{p,\alpha-1}(n) & \text{if } d = p-1. \end{cases} \end{split}$$

Corollary (Carlitz)

Write $n = n_{\ell} \cdots n_1 n_0$ in base p. Then

$$\frac{\theta_{p,1}(n)}{\theta_{p,0}(n)} = \sum_{i=0}^{\ell-1} \frac{p-n_i-1}{n_i+1} \cdot \frac{n_{i+1}}{n_{i+1}+1}.$$

Expressions for $\frac{\theta_{p,\alpha}(n)}{\theta_{p,0}(n)}$ can be simpler than expressions for $\theta_{p,\alpha}(n)$.

Formulas for $\alpha = 1$

 $\frac{\theta_{p,1}(n)}{\theta_{p,0}(n)}$ is a weighted sum of $|n|_w$ over $w \in \{0,\ldots,p-1\}^*$ of length 2:

$$\theta_{2,1}(n) = 2^{|n|_1} \cdot \frac{1}{2} |n|_{10}$$

(Howard 1971; Davis-Webb 1989)

$$\theta_{3,1}(n) = 2^{|n|_1} 3^{|n|_2} \left(|n|_{10} + \frac{1}{4} |n|_{11} + \frac{4}{3} |n|_{20} + \frac{1}{3} |n|_{21} \right)$$

(Huard-Spearman-Williams 1997)

$$\begin{split} \theta_{5,1}(n) &= 2^{|n|_1} 3^{|n|_2} 4^{|n|_3} 5^{|n|_4} \bigg(2|n|_{10} + \frac{3}{4}|n|_{11} + \frac{1}{3}|n|_{12} + \frac{1}{8}|n|_{13} \\ &\quad + \frac{8}{3}|n|_{20} + |n|_{21} + \frac{4}{9}|n|_{22} + \frac{1}{6}|n|_{23} \\ &\quad + 3|n|_{30} + \frac{9}{8}|n|_{31} + \frac{1}{2}|n|_{32} + \frac{3}{16}|n|_{33} \\ &\quad + \frac{16}{5}|n|_{40} + \frac{6}{5}|n|_{41} + \frac{8}{15}|n|_{42} + \frac{1}{5}|n|_{43} \bigg) \end{split}$$

Formulas for $\alpha > 2$

Howard (1971) produced formulas for $\theta_{2,2}(n)$, $\theta_{2,3}(n)$, and $\theta_{2,4}(n)$.

$$\theta_{2,2}(n) = 2^{|n|_1} \left(-\frac{1}{8} |n|_{10} + |n|_{100} + \frac{1}{4} |n|_{110} + \frac{1}{8} |n|_{10}^2 \right)$$

(rediscovered by Huard-Spearman-Williams 1998)

$$\theta_{2,3}(n) = 2^{|n|_1} \left(\frac{1}{24} |n|_{10} - \frac{1}{2} |n|_{100} - \frac{1}{8} |n|_{110} + 2|n|_{1000} + \frac{1}{2} |n|_{1010} + \frac{1}{2} |n|_{1100} + \frac{1}{8} |n|_{1110} - \frac{1}{16} |n|_{10}^2 + \frac{1}{2} |n|_{10} |n|_{100} + \frac{1}{8} |n|_{10} |n|_{110} + \frac{1}{48} |n|_{10}^3 \right)$$

In studying the asymptotic behavior of $\sum_{n=0}^{N} \theta_{p,\alpha}(n)$, Barat and Grabner (2001) showed implicitly that $\frac{\theta_{p,\alpha}(n)}{\theta_{p,0}(n)}$ is a polynomial in $|n|_w$. I worked out an algorithm for computing a polynomial expression.

Theorem (Rowland 2011)

 $\frac{\theta_{p,\alpha}(n)}{\theta_{p,0}(n)}$ is equal to a polynomial of degree α in $|n|_w$ for words w satisfying $|w| \leq \alpha + 1$.

Coefficient of $|n|_{10}$

Spiegelhofer and Wallner produced a faster algorithm by developing a better understanding of the structure of this polynomial.

$$\begin{array}{ll} \theta_{2,1}(n) = 2^{|n|_1} \cdot \frac{1}{2} |n|_{10} & \theta_{2,4}(n) = 2^{|n|_1} \left(-\frac{1}{64} |n|_{10} + \cdots \right) \\ \theta_{2,2}(n) = 2^{|n|_1} \left(-\frac{1}{8} |n|_{10} + \cdots \right) & \theta_{2,5}(n) = 2^{|n|_1} \left(\frac{1}{160} |n|_{10} + \cdots \right) \\ \theta_{2,3}(n) = 2^{|n|_1} \left(\frac{1}{24} |n|_{10} + \cdots \right) & \theta_{2,6}(n) = 2^{|n|_1} \left(-\frac{1}{384} |n|_{10} + \cdots \right) \end{array}$$

These are the coefficients in $\log(1 + \frac{x}{2}) = \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{24}x^3 - \frac{1}{64}x^4 + \cdots$

Polynomials in $|n|_{w}$ aren't unique: $|n|_{10} = |n|_{010} + |n|_{110}$.

A word $w \in \{0, ..., p-1\}^*$ is admissible if $|w| \ge 2$ and w isn't of the form 0v or v(p-1).

Spiegelhofer-Wallner:

 $\frac{\theta_{p,\alpha}^{\prime}(n)}{\theta_{p,0}(n)}$ is a *unique* polynomial function of $\{|n|_w: w \text{ admissible}\}$.

The coefficient of a monomial can be read off from a power series.

Generating function

Define

$$T_p(n,x) := \sum_{m=0}^n x^{\nu_p(\binom{n}{m})} = \sum_{\alpha \geq 0} \theta_{p,\alpha}(n) x^{\alpha}.$$

In particular, $T_p(n, 0) = \theta_{p,0}(n)$.

n	$T_2(n,x)$	n	$T_2(n,x)$
0	1	8	$4x^3 + 2x^2 + x + 2$
1	2	9	$4x^2 + 2x + 4$
2	<i>x</i> + 2	10	$2x^3 + x^2 + 4x + 4$
3	4	11	4x + 8
4	$2x^2 + x + 2$	12	$2x^3 + 5x^2 + 2x + 4$
5	2x + 4	13	$2x^2 + 4x + 8$
6	$x^2 + 2x + 4$	14	$x^3 + 2x^2 + 4x + 8$
7	8	15	16

Coefficients

Theorem (Spiegelhofer–Wallner 2016)

Let w_1, \ldots, w_m be admissible words. The coefficient of $|n|_{w_1}^{k_1} \cdots |n|_{w_m}^{k_m}$ in $\frac{\theta_{p,\alpha}(n)}{\theta_{p,0}(n)}$ is the coefficient of x^{α} in the power series for

$$\frac{1}{k_1!}(\log r_{\rho}(w_1,x))^{k_1}\cdots \frac{1}{k_m!}(\log r_{\rho}(w_m,x))^{k_m}.$$

... where $r_p(w, x)$ is a rational function defined by

$$r_{\rho}(w,x) := \frac{\overline{T}_{\rho}(w,x)\overline{T}_{\rho}(w_{LR},x)}{\overline{T}_{\rho}(w_{R},x)\overline{T}_{\rho}(w_{L},x)}, \qquad \overline{T}_{\rho}(w,x) := \frac{T_{\rho}(val_{\rho}(w),x)}{\theta_{\rho,0}(val_{\rho}(w))},$$

 $\operatorname{val}_p(w)$ is the integer obtained by reading w in base p, and the left and right truncations of a word are defined by

$$\epsilon_L = \epsilon$$
 $(c0^{\ell})_L = \epsilon$ $(c0^{\ell}w)_L = w$
 $\epsilon_R = \epsilon$ $(c0^{\ell}w)_R = w$

for $\ell \ge 0$, $c \in \{1, \dots, p-1\}$, and $d \in \{0, \dots, p-1\}$.

Sketch of proof

$$\begin{aligned} \frac{\theta_{p,\alpha}(n)}{\theta_{p,0}(n)} &= [x^{\alpha}] \frac{T_p(n,x)}{\theta_{p,0}(n)} & \text{(by definition of } T) \\ &= [x^{\alpha}] \prod_{\substack{w \text{ admissible} \\ |w| \leq \alpha + 1}} r_p(w,x)^{|n|_w} & \text{(main lemma)} \\ &= [x^{\alpha}] \prod_{\substack{w \text{ admissible} \\ |w| \leq \alpha + 1}} \exp(|n|_w \log r_p(w,x)) \\ &= [x^{\alpha}] \prod_{\substack{w \text{ admissible} \\ |w| < \alpha + 1}} \sum_{k \geq 0} |n|_w^k \frac{(\log r_p(w,x))^k}{k!} \end{aligned}$$

Formula size

p=2: Number of nonzero monomials in $\frac{\theta_{2,\alpha}(n)}{2^{|n|}}$ for $\alpha=0,1,2,\ldots$:

$$\Theta\left(\alpha^{-3/4}p^{\alpha}e^{2(p-1)\sqrt{\alpha/p}}\right)$$

So we can compute a formula for $\theta_{p,\alpha}(n)$ for fixed p,α . But is there a (product?) formula for $\theta_{p,\alpha}(n)$ for symbolic p,α ?

There is a product formula for $T_p(n,x) := \sum_{m=0}^n x^{\nu_p(\binom{n}{m})}!$

Matrix product

Let

$$M_p(d) := \begin{bmatrix} d+1 & p-d-1 \\ dx & (p-d)x \end{bmatrix}.$$

Theorem (Rowland 2017)

Write $n = n_{\ell} \cdots n_1 n_0$ in base p. Then

$$T_p(n,x) := \sum_{m=0}^n x^{\nu_p(\binom{n}{m})} = \begin{bmatrix} 1 & 0 \end{bmatrix} M_p(n_0) M_p(n_1) \cdots M_p(n_\ell) \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Setting x = 0 gives $\theta_{p,0}(n) = (n_0 + 1) \cdots (n_\ell + 1)$ as a special case:

$$\begin{bmatrix} \theta_{p,0}(pn+d) \\ 0 \end{bmatrix} = \begin{bmatrix} d+1 & p-d-1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \theta_{p,0}(n) \\ 0 \end{bmatrix},$$

or simply

$$\theta_{p,0}(pn+d) = (d+1)\,\theta_{p,0}(n).$$

Comparing recurrences

Carlitz recurrence:

$$\begin{split} \theta_{p,\alpha}(pn+d) &= (d+1)\theta_{p,\alpha}(n) + (p-d-1)\psi_{p,\alpha-1}(n-1) \\ \psi_{p,\alpha}(pn+d) &= \begin{cases} (d+1)\theta_{p,\alpha}(n) + (p-d-1)\psi_{p,\alpha-1}(n-1) & \text{if } 0 \leq d \leq p-2 \\ p\psi_{p,\alpha-1}(n) & \text{if } d = p-1. \end{cases} \end{split}$$

We have $\psi_{p,\alpha-1}(n-1)$ on the right but $\psi_{p,\alpha}(pn+d)$ on the left.

Recurrence leading to matrix product:

$$\theta_{p,\alpha}(pn+d) = (d+1)\theta_{p,\alpha}(n) + (p-d-1)\psi_{p,\alpha-1}(n-1)$$

$$\psi_{p,\alpha}(pn+d-1) = d\theta_{p,\alpha}(n) + (p-d)\psi_{p,\alpha-1}(n-1).$$

$$M_p(d) = \begin{bmatrix} d+1 & p-d-1 \\ dx & (p-d)x \end{bmatrix}$$

Multinomial coefficients

For a k-tuple $\mathbf{m} = (m_1, m_2, \dots, m_k)$ of non-negative integers, define

total
$$\mathbf{m} := m_1 + m_2 + \cdots + m_k$$

and

$$\operatorname{mult} \mathbf{m} := \frac{(\operatorname{total} \mathbf{m})!}{m_1! \ m_2! \ \cdots \ m_k!}.$$

Theorem (Rowland 2017)

Let $k \ge 1$, and let $e = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \end{bmatrix} \in \mathbb{Z}^k$. Write $n = n_\ell \cdots n_1 n_0$ in base p. Then

$$\sum_{\substack{\mathbf{m} \in \mathbb{N}^k \\ \text{total } \mathbf{m} = n}} x^{\nu_{\rho}(\text{mult } \mathbf{m})} = e \, M_{\rho,k}(n_0) \, M_{\rho,k}(n_1) \, \cdots \, M_{\rho,k}(n_\ell) \, e^{\top}.$$

 $M_{p,k}(d)$ is a $k \times k$ matrix . . .

Multinomial coefficients

Let $c_{p,k}(n)$ be the coefficient of x^n in $(1 + x + x^2 + \cdots + x^{p-1})^k$. p = 5:

For each $d \in \{0, \dots, p-1\}$, let $M_{p,k}(d)$ be the $k \times k$ matrix whose (i,j) entry is $c_{p,k}(p(j-1)+d-(i-1))x^{i-1}$.

Example

Let p = 5 and k = 3; the matrices $M_{5,3}(0), \dots, M_{5,3}(4)$ are

$$\begin{bmatrix} 1 & 18 & 6 \\ 0 & 15x & 10x \\ 0 & 10x^2 & 15x^2 \end{bmatrix}, \begin{bmatrix} 3 & 19 & 3 \\ x & 18x & 6x \\ 0 & 15x^2 & 10x^2 \end{bmatrix}, \begin{bmatrix} 6 & 18 & 1 \\ 3x & 19x & 3x \\ x^2 & 18x^2 & 6x^2 \end{bmatrix}, \begin{bmatrix} 10 & 15 & 0 \\ 6x & 18x & x \\ 3x^2 & 19x^2 & 3x^2 \end{bmatrix}, \begin{bmatrix} 15 & 10 & 0 \\ 10x & 15x & 0 \\ 6x^2 & 18x^2 & x^2 \end{bmatrix}.$$

p-regularity

One can guess Fine's theorem by factoring integers.

$$\theta_{p,0}(n) = (n_0+1)\cdots(n_\ell+1) = 1^{|n|_0}2^{|n|_1}3^{|n|_2}\cdots p^{|n|_{p-1}}.$$

How to guess a matrix product?

Definition

A sequence $s(n)_{n\geq 0}$ is p-regular if the vector space generated by

$$\{s(p^en+i)_{n\geq 0}: e\geq 0 \text{ and } 0\leq i\leq p^e-1\}$$

is finite-dimensional.

Examples of p-regular sequences:

- $\nu_p(n)$
- |n|_w
- p-automatic sequences
- polynomial and quasi-polynomial sequences
- sums and products of p-regular sequences

Characterizations of p-regularity

Allouche & Shallit 1992:

- $\langle \{s(p^en+i)_{n\geq 0}: e\geq 0 \text{ and } 0\leq i\leq p^e-1\} \rangle$ is finite-dimensional
- s(n) is determined by finitely many linear recurrences in $s(p^e n + i)$ (along with finitely many initial conditions)
- matrix product $s(n) = \lambda M(n_0) M(n_1) \cdots M(n_\ell) \kappa$
- generating function in p non-commuting variables is rational

Analogous characterizations of constant-recursive sequences:

- $\langle \{s(n+i)_{n\geq 0}: i\geq 0\} \rangle$ is finite-dimensional
- s(n) is determined by a linear recurrence in s(n+i) (along with finitely many initial conditions)
- matrix product $s(n) = \lambda M^n \kappa$
- generating function (in one variable) is rational

Guessing a 2-regular sequence

$$s(n)= heta_{2,1}(n)=$$
 number of binomial coefficients $\binom{n}{m}$ with $\nu_2(\binom{n}{m})=1$: $s(n): 0,0,1,0,1,2,2,0,\dots$ basis element! $s(2n+0): 0,1,1,2,1,4,2,4,\dots$ basis element! $s(2n+1): 0,0,2,0,2,4,4,0,\dots = 2s(n)$ $s(4n+0): 0,1,1,2,1,4,2,4,\dots = s(2n)$ basis element! $s(4n+2): 1,2,4,4,4,8,8,8,\dots$ basis element! $s(8n+2): 1,4,4,8,4,12,8,16,\dots = 2s(2n)+s(4n+2)-2s(n)$ $s(8n+6): 2,4,8,8,8,16,16,16,\dots = 2s(4n+2)$

Convert the recurrence to matrices:

$$\begin{bmatrix} s(2n) \\ s(4n) \\ s(8n+2) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ -2 & 2 & 1 \end{bmatrix} \begin{bmatrix} s(n) \\ s(2n) \\ s(4n+2) \end{bmatrix}$$
$$\begin{bmatrix} s(2n+1) \\ s(4n+2) \\ s(8n+6) \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} s(n) \\ s(2n) \\ s(4n+2) \end{bmatrix}$$

An implementation in Mathematica

IntegerSequences is available from

https://people.hofstra.edu/Eric_Rowland/packages.html

```
 \begin{split} & \text{Import["https://people.hofstra.edu/Eric_Rowland/packages/IntegerSequences.m"]} \\ & \text{Import["https://people.hofstra.edu/Eric_Rowland/packages/IntegerSequences.m"]} \\ & \text{Import["https://people.hofstra.edu/Eric_Rowland/packages/IntegerSequences.m"]} \\ & \text{Import["https://people.hofstra.edu/Eric_Rowland/packages/IntegerSequences.m"]} \\ & \text{Out[2]= Table $\left[\sum_{n=0}^{n} x^{\text{IntegerExponent[Binomial[n,m],2]}, \{n,0,10\}\right]} \\ & \text{Out[2]= } & \left\{1,2,2+x,4,2+x+2x^2,4+2x,4+2x+x^2,8,2+x+2x^2+4x^3,4+2x+4x^2,4+4x+x^2+2x^3\right\} & \left[\frac{1}{2}x^2\right] \\ & \text{Import["https://people.hofstra.edu/Eric_Rowland/packages/IntegerSequences.m"]} \\ & \text{Out[2]= FindRegularSequenceFunction[%,2] // RegularSequenceMatrixForm} \\ & \text{Out[3]= RegularSequence} & \left[\frac{0}{2}x^2\right], \left(\frac{2}{2}x^2\right), \left(\frac{2}{2}x^2\right), \left(\frac{1}{2}x^2\right), \left(\frac{1}{2}x^2\right
```

Guessing matrices for $T_p(n, x)$

$$p = 2$$
:

$$M_2(0) = \begin{bmatrix} 0 & 1 \\ -2x & 2x+1 \end{bmatrix}$$
 $M_2(1) = \begin{bmatrix} 2 & 0 \\ 2 & x \end{bmatrix}$

p = 3:

$$M_3(0) = \begin{bmatrix} 0 & 1 \\ -3x & 3x + 1 \end{bmatrix}$$
 $M_3(1) = \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{3}{2} & 2x + \frac{1}{2} \end{bmatrix}$ $M_3(2) = \begin{bmatrix} 3 & 0 \\ 3x + 3 & x \end{bmatrix}$

p = 5:

$$M_5(0) = \begin{bmatrix} 0 & 1 \\ -5x & 5x + 1 \end{bmatrix}$$
 $M_5(1) = \begin{bmatrix} \frac{5}{4} & \frac{3}{4} \\ \frac{5}{4} & 4x + \frac{3}{4} \end{bmatrix}$ \cdots $M_5(4) = \begin{bmatrix} 5 & 0 \\ 15x + 5 & x \end{bmatrix}$

General p:

$$M_{p}(d) = \begin{bmatrix} \frac{dp}{p-1} & \frac{p-1-d}{p-1} \\ (d-1)px + \frac{dp}{p-1} & (p-d)x + \frac{p-1-d}{p-1} \end{bmatrix}.$$

But this choice of matrices isn't unique... There are many bases.

Which basis is best?

Can we get integer coefficients?

Can we get non-negative integer coefficients? (allows a bijective proof)

For each 2 \times 2 invertible matrix S with integer entries $\leq j$, compute

$$S^{-1}M_p(d)S$$
.

$$T_{\rho}(n,x) = \begin{bmatrix} 1 & 0 \end{bmatrix} M_{\rho}(n_0) M_{\rho}(n_1) \cdots M_{\rho}(n_{\ell}) \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Matrix with fewest monomials:

$$M_{p}(d) = \begin{bmatrix} d+1 & p-d-1 \\ dx & (p-d)x \end{bmatrix}$$

Sketch of proof

Lemma

```
Let n \ge 0.

Let k \ge 1.

Let 0 \le i \le k-1.

Let d \in \{0, \dots, p-1\}.

Let \mathbf{m} \in \mathbb{N}^k with total \mathbf{m} = pn + d - i.

Define j = n - \text{total}\lfloor \mathbf{m}/p \rfloor.

Then total(\mathbf{m} \mod p) = pj + d - i, 0 \le j \le k-1, and
```

$$\nu_{\rho}\bigg(\frac{(\rho n+d)!}{(\rho n+d-i)!}\bigg) + \nu_{\rho}(\mathsf{mult}\,\mathbf{m}) = \nu_{\rho}\bigg(\frac{n!}{(n-j)!}\bigg) + \nu_{\rho}(\mathsf{mult}\lfloor\mathbf{m}/\rho\rfloor) + j.$$

Sketch of proof

For $d \in \{0, ..., p-1\}$, $0 \le i \le k-1$, and $\alpha \ge 0$, show that

$$\beta(\mathbf{m}) := (\lfloor \mathbf{m}/p \rfloor, \mathbf{m} \bmod p)$$

is a bijection from the set

$$A = \left\{ \mathbf{m} \in \mathbb{N}^k : \text{total } \mathbf{m} = pn + d - i \text{ and } \nu_p(\text{mult } \mathbf{m}) = \alpha - \nu_p\left(\frac{(pn + d)!}{(pn + d - i)!}\right) \right\}$$

to the set

$$B = \bigcup_{j=0}^{k-1} \left(\left\{ \mathbf{c} \in \mathbb{N}^k : \mathsf{total} \, \mathbf{c} = n-j \, \mathsf{and} \, \nu_p(\mathsf{mult} \, \mathbf{c}) = \alpha - \nu_p \left(\frac{n!}{(n-j)!} \right) - j \right\} \\ \times \left\{ \mathbf{d} \in \{0, \dots, p-1\}^k : \mathsf{total} \, \mathbf{d} = pj + d - i \right\} \right).$$

The previous lemma implies that if $\mathbf{m} \in A$ then $\beta(\mathbf{m}) \in B$.

Unexplored territory

Do generalizations of binomial coefficients have analogous products?

- Fibonomial coefficients
- q-binomial coefficients
- Carlitz binomial coefficients
- ullet word binomial coefficients $\binom{u}{v}$
- other hypergeometric terms $\binom{n}{m} = \frac{n!}{m!(n-m)!}$
- coefficients in other rational series $\binom{n+m}{m} = [x^n y^m] \frac{1}{1-x-y}$
- coefficients in $(1 + x + x^2 + \cdots + x^{p-1})^k$: