Introduction to Commutative Algebra

M. F. Atiyah & I. G. MacDonald

November 19, 2021

Contents

1	Rings and Ideals 1.1 Exercise	1 10
2	Modules 2.1 Exercises	26 46
3	TODO Problems	47
1	Rings and Ideals	

A **ring** *A* is a set with two binary operations s.t.

- 1. *A* is an abelian group w.r.t. addition
- 2. Multiplication is associative ((xy)z=x(yz)) and distributive over addition (x(y+z)=xy+xz,(y+z)x=yx+zx)

A **ring homomorphism** is a mapping f of a ring A into a ring B s.t.

- 1. f(x+y) = f(x) + f(y)
- 2. f(xy) = f(x)f(y)
- 3. f(1) = 1

An **ideal** $\mathfrak a$ of a ring A is a subset of A which is an additive subgroup and is s.t. $A\mathfrak a\subseteq \mathfrak a$. The quotient group $A/\mathfrak a$ inherits a uniquely defined multiplication from A which makes it into a ring, called the **quotient ring** $A/\mathfrak a$. The elements of $A/\mathfrak a$ are the cosets of $\mathfrak a$ in A, and the mapping $\phi:A\to A/\mathfrak a$ which maps each $x\in A$ to its coset $x+\mathfrak a$ is a surjective ring homomorphism

Proposition 1.1. There is a one-to-one order-preserving correspondence between the ideals \mathfrak{b} of A which contain \mathfrak{a} , and the ideals $\bar{\mathfrak{b}}$ of A/\mathfrak{a} , given by $\mathfrak{b} = \phi^{-1}(\bar{\mathfrak{b}})$.

Proof. Let $S_1=\{\mathfrak{b}:\mathfrak{b} \text{ an ideal of } A \text{ and } \mathfrak{a}\subseteq\mathfrak{b}\}$ and $S_2=\{\bar{\mathfrak{b}}:\bar{\mathfrak{b}} \text{ an ideal of } A/\mathfrak{a}\}$, π is the natural map $\pi(S)=S/\mathfrak{a}$, we prove that

$$\varphi:S_1\to S_2 \qquad \quad \mathfrak{b}\mapsto \pi(\mathfrak{b})$$

is an bijection.

First assume that $\mathfrak{a} \subseteq \mathfrak{b}$, we prove that $\pi^{-1}\pi(\mathfrak{b}) = \mathfrak{b}$. Apparently $\mathfrak{b} \subseteq \pi^{-1}\pi(\mathfrak{b})$. For any $b \in \pi^{-1}\pi(\mathfrak{b})$, there is a $s \in \mathfrak{b}$ s.t. $\pi(b) = \pi(s)$. Thus $b-s \in \ker \pi = \mathfrak{a}$. As $\mathfrak{a} \subseteq \mathfrak{b}$, we have $b \in \mathfrak{b}$. Hence $\pi^{-1}\pi(\mathfrak{b}) = \mathfrak{b}$.

Thus for any $\mathfrak{b}_1,\mathfrak{b}_2\in S_1$ and $\varphi(\mathfrak{b}_1)=\pi(\mathfrak{b}_1)=\pi(\mathfrak{b}_2)=\varphi(\mathfrak{b}_2)$, we have $\pi^{-1}\pi(\mathfrak{b}_1)=\pi^{-1}\pi(\mathfrak{b}_2)$. Thus φ is injective.

For any $\bar{\mathfrak{b}} \in S_2$, $\pi^{-1}(\bar{\mathfrak{b}})$ contains $\mathfrak{a} = \pi^{-1}(\{0\})$. Hence φ is surjective Order-preserving means $\mathfrak{a} \subseteq \mathfrak{b} \subseteq \mathfrak{c}$ iff $\bar{\mathfrak{b}} \subseteq \bar{\mathfrak{c}}$

If $f:A\to B$ is any ring homomorphism, the **kernel** of f is an ideal $\mathfrak a$ of A, and the image of f is a subring C of B; and f induces a ring isomorphism $A/\mathfrak a\cong C$

We shall sometimes use the notation $x \equiv y \mod \mathfrak{a}$; this means that $x - y \in \mathfrak{a}$

A **zero-divisor** in a ring A is an element x which divides 0, i.e., for which there exists $y \neq 0$ in A s.t. xy = 0. A ring with no zero-divisor $\neq 0$ (and in which $1 \neq 0$) is called an **integral domain**.

An element $x \in A$ is **nilpotent** if $x^n = 0$ for some n > 0. A nilpotent element is a zero-divisor (unless A = 0)

A unit in A is an element x which "divides 1", i.e., an element x s.t. xy = 1 for some $y \in A$. The element y is then uniquely determined by x, and is written x^{-1} . The units in A form a (multiplicative) abelian group

The multiples ax of an element $x \in A$ from a **principal** ideal, denoted by (x) or Ax. x is a unit iff (x) = A = (1). The **zero** ideal (0) is denoted by (0)

A **field** is a ring A in which $1 \neq 0$ and every non-zero element is a unit. Every field is an integral domain

Proposition 1.2. *Let* A *be a ring* $\neq 0$ *. Then the following are equivalent:*

- 1. A is a field
- 2. the only ideals in A are 0 and (1)
- 3. every homomorphism of A into a non-zero ring B is injective

Proof. $2 \to 3$. Let $\phi : A \to B$ be a ring homomorphism. Then $\ker \phi$ is an ideal $\neq (1)$ in A, hence $\ker \phi = 0$, hence ϕ is injective

 $3 \to 1$. Let x be an element of A which is not a unit. Then $(x) \ne (1)$, hence B = A/(x) is not the zero ring. Let $\phi: A \to B$ be the natural homomorphism of A onto B with kernel (x). By hypothesis, ϕ is injective, hence (x) = 0, hence x = 0

An ideal $\mathfrak p$ in A is **prime** if $\mathfrak p \neq (1)$ and if $xy \in \mathfrak p \Rightarrow x \in \mathfrak p$ or $y \in \mathfrak p$ An ideal $\mathfrak m$ in A is **maximal** if $\mathfrak m$ in A is **maximal** if $\mathfrak m \neq (1)$ and if no ideal $\mathfrak a$ s.t. $\mathfrak m \subset \mathfrak a \subset (1)$ (**strict** inclusions). Equivalently

 \mathfrak{p} is prime $\Leftrightarrow A/\mathfrak{p}$ is an integral domain \mathfrak{m} is maximal $\Leftrightarrow A/\mathfrak{m}$ is a field

Proof. If \mathfrak{m} is maximal and suppose $a \notin \mathfrak{m}$. Then $J = \{ra + i : i \in \mathfrak{m} \text{ and } r \in A\}$ is an ideal. Hence J = A. So there is $r \in A, \mathfrak{m} \in I \text{ s.t. } 1 = ra + i$. So we have $1 \equiv ra \mod \mathfrak{m}$. Hence we find the inverse of $a + \mathfrak{m}$

If A/\mathfrak{m} is a field and suppose $\mathfrak{m} \subset \mathfrak{n} \subset A$. Let $a \in \mathfrak{m} \setminus \mathfrak{n}$, then there exists a $b \in A$ s.t. $ab-1 \in \mathfrak{m}$. So ab+m=1 for some $m \in \mathfrak{m}$. But $ab \in \mathfrak{n}$ and $m \in \mathfrak{m} \subset \mathfrak{n}$, then we have $1 \in \mathfrak{n}$ and $\mathfrak{n} = A$.

Hence a maximal ideal is prime. The zero ideal is prime iff A is an integral domain

If $f:A\to B$ is a ring homomorphism and $\mathfrak q$ is a prime ideal in B, then $f^{-1}(\mathfrak q)$ is a prime ideal in A, for $A/f^{-1}(\mathfrak q)$ is isomorphic to a subring of $B/\mathfrak q$ and hence has no zero-divisor $\neq 0$. (Explanation. Since $\mathfrak q$ is prime, $B/\mathfrak q$ is an integral domain and a subring of an integral domain is still an integral domain. Define the map $\varphi(a+f^{-1}(\mathfrak q))=f(a)+\mathfrak q$ and we need to show its a homomorphism. Then we show its injective.)

But if $\mathfrak n$ is a maximal ideal of B it is not necessarily true that $f^{-1}(\mathfrak n)$ is maximal in A; all we can say for sure is that it is prime. (Example: $A=\mathbb Z$, $B=\mathbb Q$, $\mathfrak n=0$).

Theorem 1.3. Every ring $A \neq 0$ has at least one maximal ideal

Proof. This is the standard application of Zorn's lemma. Let Σ be the set of all ideals $\neq (1)$ in A. Order Σ by inclusion. Σ is not empty, since $0 \in \Sigma$. To apply Zorn's lemma we must show that every chain in Σ has an upper bound in Σ ; let then (\mathfrak{a}_{α}) be a chain of ideals in Σ , so that for each pair of indices α , β we have either $\mathfrak{a}_{\alpha} \subseteq \mathfrak{a}_{\beta}$ or $\mathfrak{a}_{\beta} \subseteq \mathfrak{a}_{\alpha}$. Let $\mathfrak{a} = \bigcup_{\alpha} \mathfrak{a}_{\alpha}$. Then \mathfrak{a} is an ideal and $1 \notin \mathfrak{a}$. Hence $\mathfrak{a} \in \Sigma$ and is an upper bound of the chain. Hence Σ has a maximal element

Corollary 1.4. If $\mathfrak{a} \neq (1)$ is an ideal of A, there exists a maximal ideal of A containing \mathfrak{a}

Proof. Apply 1.3 to A/\mathfrak{a} and 1.3

Corollary 1.5. Every non-unit of A is contained in a maximal ideal.

A ring A with exactly one maximal ideal $\mathfrak m$ is called a **local ring**. The field $k=A/\mathfrak m$ is called the **residue field** of A

Proposition 1.6. 1. Let A be a ring and $\mathfrak{m} \neq (1)$ an ideal of A s.t. every $x \in A - \mathfrak{m}$ is a unit in A. Then A is a local ring and \mathfrak{m} its maximal ideal.

- 2. Let A be a ring and $\mathfrak m$ a maximal ideal of A s.t. every element of $1+\mathfrak m$ is a unit in A. Then A is a local ring
- *Proof.* 2. Let $x \in A \mathfrak{m}$. Since \mathfrak{m} is maximal, the ideal generated by x and \mathfrak{m} is (1), hence there exist $y \in A$ and $t \in \mathfrak{m}$ s.t. xy + t = 1; hence xy = 1 t belongs to $1 + \mathfrak{m}$ and therefore is a unit. Now use 1

A ring with only a finite number of maximal ideals is called semi-local

Example 1.1. 1. $A=k[x_1,\ldots,x_n]$, k a field. Let $f\in A$ be an irreducible polynomial. By unique factorization, the ideal (f) is prime

- 2. $A=\mathbb{Z}$. Every ideal in \mathbb{Z} is of the form (m) for some $m\geq 0$. The ideal (m) is prime iff m=0 or a prime number. All the ideals (p), where p is a prime number, are maximal: $\mathbb{Z}/(p)$ is the field of p elements
- 3. A **principal ideal domain** is an integral domain in which every ideal is principal. In such a ring every non-zero prime ideal is maximal. For if $(x) \neq 0$ is a prime ideal and $(y) \supset (x)$, we have $x \in (y)$, say x = yz, so that $yz \in (x)$ and $y \notin (x)$, hence $z \in (x)$; say z = tx. Then x = yz = ytx, so that yt = 1 and therefore (y) = (1).

Proposition 1.7. The set \mathfrak{N} of all nilpotent elements in a ring A is an ideal, and A/\mathfrak{N} has no nilpotent $\neq 0$

Proof. If $x \in \mathfrak{N}$, clearly $ax \in \mathfrak{N}$ for all $a \in A$. Let $x, y \in \mathfrak{N}$: say $x^m = 0$, $y^n = 0$. By the binomial theorem, $(x+y)^{n+m-1}$ is a sum of integer multiples of products x^ry^s , where r+s=m+n-1;

Let $\bar{x} \in A/\mathfrak{N}$ be represented by $x \in A$. Then \bar{x}^n is represented by x^n , so that $\bar{x}^n = 0 \Rightarrow x^n \in \mathfrak{N} \Rightarrow (x^n)^k = 0$ for some $k > 0 \Rightarrow x \in \mathfrak{N} \Rightarrow \bar{x} = 0$

The ideal \mathfrak{N} is called the **nilradical** of A

Check When is nilradical not a prime ideal, which is related to Exercise 1.1.18.

Proposition 1.8. *The nilradical of A is the intersection of all the prime ideals of A*

Proof. Let \mathfrak{N}' denote the intersection of all the prime ideals of A. If $f \in A$ is nilpotent and if \mathfrak{p} is a prime ideal, then $f^n = 0 \in \mathfrak{p}$ for some n > 0, hence $f \in \mathfrak{p}$. Hence $f \in \mathfrak{N}'$

Conversely, suppose that f is not nilpotent. Let Σ be the set of ideals $\mathfrak a$ with the property

$$n > 0 \Rightarrow f^n \notin \mathfrak{a}$$

Then Σ is not empty because $0 \in \Sigma$. Zorn's lemma can be applied to the set Σ , ordered by inclusion, and therefore Σ has a maximal element. We shall show that $\mathfrak p$ is a prime ideal. Let $x,y \notin \mathfrak p$. Then the ideals $\mathfrak p + (x)$, $\mathfrak p + (y)$ strictly contain $\mathfrak p$ and therefore do not belong to Σ ; hence

$$f^m \in \mathfrak{p} + (x), \quad f^n \in \mathfrak{p} + (y)$$

for some m,n. It follows that $f^{m+n}\in\mathfrak{p}+(xy)$, hence the ideal $\mathfrak{p}+(xy)$ is not in Σ and therefore $xy\notin\mathfrak{p}$. Hence we have a prime ideal \mathfrak{p} s.t. $f\notin\mathfrak{p}$, so that $f\notin\mathfrak{N}'$

The **Jacobson radical** \mathfrak{R} of A is defined to be the intersection of all the maximal ideals of A. It can be characterized as follows:

Proposition 1.9. $x \in \Re$ iff 1 - xy is a unit in A for all $y \in A$

Proof. ⇒: Suppose 1-xy is not a unit. By 1.1.4 it belongs to some maximal ideal \mathfrak{m} ; but $x \in \mathfrak{R} \subseteq \mathfrak{m}$, hence $xy \in \mathfrak{m}$ and therefore $1 \in \mathfrak{m}$, which is absurd \Leftarrow : Suppose $x \notin \mathfrak{m}$ for some maximal ideal \mathfrak{m} . Then \mathfrak{m} and x generate the unit ideal (1), so that we have u+xy=1 for some $u \in \mathfrak{m}$ and some $y \in A$. Hence $1-xy \in \mathfrak{m}$ and is therefore not a unit.

If \mathfrak{a} , \mathfrak{b} are ideals in a ring A, their $\operatorname{sum} \mathfrak{a} + \mathfrak{b}$ is the set of all x + y where $x \in \mathfrak{a}$ and $y \in \mathfrak{b}$. It is the smallest ideal containing \mathfrak{a} and \mathfrak{b} . More generally, we may define the $\operatorname{sum} \sum_{i \in I} a_i$ of any family (possibly infinite) of ideals \mathfrak{a}_i of A; is elements are all $\operatorname{sums} \sum x_i$, where $x_i \in \mathfrak{a}_i$ for all $i \in I$ and almost all of the x_i (i.e., all but a finite set) are zero. It is the smallest ideal of A which contains all the ideals \mathfrak{a}_i

The **product** of two ideals \mathfrak{a} , \mathfrak{b} in A is the ideal $\mathfrak{a}\mathfrak{b}$ **generated** by all products xy, where $x \in \mathfrak{a}$ and $y \in \mathfrak{b}$. It is the set of all finite sums $\sum x_i y_i$ where each $x_i \in \mathfrak{a}$ and each $y_i \in \mathfrak{b}$

We have the distributive law

$$\mathfrak{a}(\mathfrak{b} + \mathfrak{c}) = \mathfrak{a}\mathfrak{b} + \mathfrak{a}\mathfrak{c}$$

In the ring \mathbb{Z} , \cap and + are distributive over each other. This is not the case in general. **modular law**

$$\mathfrak{a}\cap(\mathfrak{b}+\mathfrak{c})=\mathfrak{a}\cap\mathfrak{b}+\mathfrak{a}\cap\mathfrak{b}\text{ if }\mathfrak{a}\supseteq\mathfrak{b}\text{ or }\mathfrak{a}\supseteq\mathfrak{c}$$

$$\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a} \mathfrak{b}$$
 provided $\mathfrak{a} + \mathfrak{b} = (1)$

If $x \in \mathfrak{a} \cap \mathfrak{b}$, there is a + b = 1. Hence $xa + xb = x \in \mathfrak{ab}$

Two ideals $\mathfrak{a},\mathfrak{b}$ are said to be **coprime** if $\mathfrak{a} + \mathfrak{b} = (1)$. Thus for coprime ideals we have $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{ab}$.

Let A be a ring and $\mathfrak{a}_1, \dots, \mathfrak{a}_n$ ideals of A. Define a homomorphism

$$\phi:A\to \prod_{i=1}^n (A/\mathfrak{a}_i)$$

by the rule $\phi(x) = (x + \mathfrak{a}_1, \dots, x + \mathfrak{a}_n)$

Proposition 1.10. 1. If \mathfrak{a}_i , \mathfrak{a}_j are coprime whenever $i \neq j$, then $\prod \mathfrak{a}_i = \bigcap \mathfrak{a}_i$

- 2. ϕ is surjective iff \mathfrak{a}_i , \mathfrak{a}_j are coprime whenever $i \neq j$
- 3. ϕ is injective iff $\bigcap \mathfrak{a}_i = (0)$

Proof. 1. Induction on n. The case n=2 is dealt with above. Suppose n>2 and the result true for $\mathfrak{a}_1,\ldots,\mathfrak{a}_{n-1}$, and let $\mathfrak{b}=\prod_{i=1}^{n-1}\mathfrak{a}_i=\bigcap_{i=1}^{n-1}\mathfrak{a}_i$. As we have $x_i+y_i=1$ $(x_i\in\mathfrak{a}_i,y_i\in\mathfrak{a}_n)$ and therefore

$$\prod_{i=1}^{n-1} x_i = \prod_{i=1}^{n-1} (1-y_i) \equiv 1 \mod \mathfrak{a}_n$$

Hence $\mathfrak{a}_n + \mathfrak{b} = (1)$ and so

$$\prod_{i=1}^n \mathfrak{a}_i = \mathfrak{b}\mathfrak{a}_n = \mathfrak{b} \cap \mathfrak{a}_n = \bigcap_{i=1}^n \mathfrak{a}_i$$

2. \Rightarrow : Let's show for example that $\mathfrak{a}_1,\mathfrak{a}_2$ are coprime. There exists $x\in A$ s.t. $\phi(x)=(1,0,\dots,0)$; hence $x\equiv 1\mod \mathfrak{a}_1$ and $x\equiv 0\mod \mathfrak{a}_2$, so that

$$1=(1-x)+x\in \mathfrak{a}_1+\mathfrak{a}_2$$

 $\Leftarrow: \text{It is enough to show, for example, that there is an element } x \in A \\ \text{s.t. } \phi(x) = (1,0,\dots,0). \text{ Since } \mathfrak{a}_1 + \mathfrak{a}_i = (1) \ (i>1) \text{ we have } u_i + v_i = 1 \\ (u_i \in \mathfrak{a}_1, v_i \in \mathfrak{a}_i). \text{ Take } x = \prod_{i=2}^n v_i, \text{ then } x = \prod (1-u_i) \equiv 1 \mod \mathfrak{a}_1. \\ \text{Hence } \phi(x) = (1,0,\dots,0)$

3. $\bigcap \mathfrak{a}_i$ is the kernel of ϕ

Proposition 1.11. 1. Let $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ be prime ideals and let \mathfrak{a} be an ideal contained in $\bigcup_{i=1}^n \mathfrak{p}_i$. Then $\mathfrak{a} \subseteq \mathfrak{p}_i$ for some i.

2. Let $\mathfrak{a}_1, \dots, \mathfrak{a}_n$ be ideals and let \mathfrak{p} be a prime ideal containing $\bigcap_{i=1}^n \mathfrak{a}_i$. Then $\mathfrak{p} \supseteq \mathfrak{a}_i$ for some i. If $\mathfrak{p} = \bigcap \mathfrak{a}_i$, then $\mathfrak{p} = \mathfrak{a}_i$ for some i

Proof. 1. induction on n in the form

$$\mathfrak{a} \not\subseteq \mathfrak{p}_i (1 \leq i \leq n) \Rightarrow \mathfrak{a} \not\subseteq \bigcup_{i=1}^n \mathfrak{p}_i$$

It is true for n=1. If n>1 and the result is true for n-1, then for each i there exists $x_i\in \mathfrak{a}$ s.t. $x_i\notin \mathfrak{p}_j$ whenever $j\neq i$. If for some i we have $x_i\notin \mathfrak{p}_i$, we are through. If not, then $x_i\in \mathfrak{p}_i$ for all i. Consider the element

$$y = \sum_{i=1}^n x_1 x_2 \cdots x_{i-1} x_{i+1} \cdots x_n$$

we have $y \in \mathfrak{a}$ and $y \notin \mathfrak{p}_i \ (1 \le i \le n)$. Hence $\mathfrak{a} \nsubseteq \bigcup_{i=1}^n \mathfrak{p}_i$

2. Suppose $\mathfrak{p} \not\supseteq \mathfrak{a}_i$ for all i. Then there exist $x_i \in \mathfrak{a}_i$, $x_i \notin \mathfrak{p}$ $(1 \leq i \leq n)$ and therefore $\prod x_i \in \prod \mathfrak{a}_i \subseteq \bigcap \mathfrak{a}_i$; but $\prod x_i \notin \mathfrak{p}$ since \mathfrak{p} is prime. Hence $\mathfrak{p} \not\supseteq \bigcap \mathfrak{a}_i$

If $\mathfrak{p} = \bigcap \mathfrak{a}_i$, then $\mathfrak{p} \subseteq \mathfrak{a}_i$ and hence $\mathfrak{p} = \mathfrak{a}_i$ for some i.

For prime ideals $\mathfrak{p}_1,\ldots,\mathfrak{p}_n$, if $\bigcap_{i=1}^n\mathfrak{p}_i=\mathfrak{p}$ is a prime ideal, then $\mathfrak{p}=\mathfrak{p}_i$ for some i. If there are more than one minimal ideal, this could never happen

If \mathfrak{a} , \mathfrak{b} are ideals in a ring A, their **ideal quotient** is

$$(\mathfrak{a}:\mathfrak{b})=\{x\in A:x\mathfrak{b}\subseteq\mathfrak{a}\}$$

which is an ideal. In particular, $(0 : \mathfrak{b})$ is called the **annihilator** of \mathfrak{b} and is also denoted by Ann(\mathfrak{b}): it is the set of all $x \in A$ s.t. $x\mathfrak{b} = 0$. In this notation

the set of all zero-divisors in A is

$$D = \bigcup_{x \neq 0} \mathsf{Ann}(x)$$

If b is a principal ideal (x), we shall write (a : x) in place of (a : (x))

Example 1.2. If $A=\mathbb{Z}$, $\mathfrak{a}=(m)$, $\mathfrak{b}=(n)$, where say $m=\prod_p p^{\mu_p}$, $n=\prod_p p^{\nu_p}$, then $(\mathfrak{a}:\mathfrak{b})=(q)$ where $q=\prod_p p^{\gamma_p}$ and

$$\gamma_p = \max(\mu_p - \nu_p, 0) = \mu_p - \min(\mu_p, \nu_p)$$

Hence q = m/(m, n), where (m, n) is the h.c.f. of m and n

Exercise 1.0.1. 1. $\mathfrak{a} \subseteq (\mathfrak{a} : \mathfrak{b})$

- 2. $(\mathfrak{a} : \mathfrak{b})\mathfrak{b} \subseteq \mathfrak{a}$
- 3. $(\mathfrak{a} : \mathfrak{b}) : \mathfrak{c} = (\mathfrak{a} : \mathfrak{bc}) = ((\mathfrak{a} : \mathfrak{c}) : \mathfrak{b})$
- 4. $(\bigcap_i \mathfrak{a}_i : \mathfrak{b}) = \bigcap_i (\mathfrak{a}_i : \mathfrak{b})$
- 5. $(\mathfrak{a}: \sum_{i} \mathfrak{b}_{i}) = \bigcap (\mathfrak{a}: \mathfrak{b}_{i})$

Proof. 3. $(\mathfrak{a} : \mathfrak{b}) : \mathfrak{c} = \{x \in A : x\mathfrak{c} \subseteq \mathfrak{a} : \mathfrak{b}\}$. for any $c \in \mathfrak{c}$, $xc\mathfrak{b} \subseteq \mathfrak{a}$. Hence $xc\mathfrak{b} \subseteq \mathfrak{a}$.

5.
$$(\mathfrak{a}:\sum_{i}\mathfrak{b}_{i})=\{x\in A:x\sum_{i}\mathfrak{b}_{i}\subseteq\mathfrak{a}\}$$

If \mathfrak{a} is any ideal of A, the **radical** of \mathfrak{a} is

$$r(\mathfrak{a}) = \{x \in A : x^n \in \mathfrak{a} \text{ for some } n > 0\}$$

if $\phi:A\to A/\mathfrak{a}$ is the standard homomorphism, then $r(\mathfrak{a})=\phi^{-1}(\mathfrak{N}_{A/\mathfrak{a}})$ and hence $r(\mathfrak{a})$ is an ideal by 1.7

Exercise 1.0.2. 1. $r(\mathfrak{a}) \supseteq \mathfrak{a}$

- 2. $r(r(\mathfrak{a})) = r(\mathfrak{a})$
- 3. $r(\mathfrak{a}\mathfrak{b}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b})$
- 4. $r(\mathfrak{a}) = (1)$ iff $\mathfrak{a} = (1)$.
- 5. $r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b}))$

6. if \mathfrak{p} is prime, $r(\mathfrak{p}^n) = \mathfrak{p}$ for all n > 0

Proof. 5. $x \in r(\mathfrak{a} + \mathfrak{b})$ iff $x^n \in \mathfrak{a} + \mathfrak{b}$. $y \in r(r(\mathfrak{a}) + r(\mathfrak{b}))$ iff $y^m = a + b$, where $a^{n_a} \in \mathfrak{a}$ and $b^{n_b} \in \mathfrak{b}$. Then $(y^m)^{n_a + n_b} = (a + b)^{n_a + n_b} \in \mathfrak{a} + \mathfrak{b}$

6.
$$x \in r(\mathfrak{p}^n)$$
 iff $x^m \in \mathfrak{p}^n$, then $x^m = p_1 \cdots p_n \in \mathfrak{p}$

Proposition 1.12. The radical of an ideal $\mathfrak a$ is the intersection of the prime ideals which contain $\mathfrak a$

Proof. Apply 1.8 to A/\mathfrak{a} .

Nilradical of A/\mathfrak{a} is the radical of \mathfrak{a} .

More generally, we may define the radical r(E) of any **subset** E of A in the same way. It is **not** an ideal in general. We have $r(\bigcup_{\alpha} E_{\alpha}) = \bigcup r(E_{\alpha})$ for any family of subsets E_{α} of A

Proposition 1.13. $D = set \ of \ zero-divisors \ of \ A = \bigcup_{x \neq 0} r(\operatorname{Ann}(x))$

Proof.
$$D = r(D) = r(\bigcup_{x \neq 0} \operatorname{Ann}(x)) = \bigcup_{x \neq 0} r(\operatorname{Ann}(x))$$

Example 1.3. If $A=\mathbb{Z}$, $\mathfrak{a}=(m)$, let p_i $(1\leq i\leq r)$ be the distinct prime divisors of m. Then $r(\mathfrak{a})=(p_1\cdots p_r)=\bigcap_{i=1}^n(p_i)$

Proposition 1.14. Let \mathfrak{a} , \mathfrak{b} be ideals in a ring A s.t. $r(\mathfrak{a})$, $r(\mathfrak{b})$ are coprime. Then \mathfrak{a} and \mathfrak{b} are coprime.

Proof.
$$r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b})) = r(1) = (1)$$
, hence $\mathfrak{a} + \mathfrak{b} = (1)$

Let $f:A\to B$ be a ring homomorphism. If $\mathfrak a$ is an ideal in A, the set $f(\mathfrak a)$ is not necessarily an ideal in B (e.g. $\mathbb Z\to\mathbb Q$). We define the **extension** $\mathfrak a^e$ of $\mathfrak a$ to be the ideal $Bf(\mathfrak a)$ generated by $f(\mathfrak a)$ in B: explicitly, $\mathfrak a^e$ is the set of all sums $\sum y_i f(x_i)$ where $x_i\in\mathfrak a$, $y_i\in B$

If \mathfrak{b} is an ideal of B, then $f^{-1}(\mathfrak{b})$ is always an ideal of A, called the **contraction** \mathfrak{b}^c of \mathfrak{b} . If \mathfrak{b} is prime, then \mathfrak{b}^c is prime. If \mathfrak{a} is prime, \mathfrak{a}^e need not be prime $(f:\mathbb{Z}\to\mathbb{Q},\mathfrak{a}\neq 0$, then $\mathfrak{a}^e=\mathbb{Q}$, which is not a prime ideal)

We can factorize f as follows:

$$f \xrightarrow{p} f(A) \xrightarrow{j} B$$

where p is surjective and j is injective

Example 1.4. Consider $\mathbb{Z} \to \mathbb{Z}[i]$, where $i = \sqrt{-1}$. A prime ideal (p) of \mathbb{Z} may or may not stay prime when extended to $\mathbb{Z}[i]$. In fact $\mathbb{Z}[i]$ is a principal ideal domain (because it has a Euclidean algorithm, i.e., a Euclidean ring) and the situation is as follows:

- 1. $(2^e) = ((1+i)^2)$, the **square** of a prime ideal in $\mathbb{Z}[i]$
- 2. if $p \equiv 1 \mod 4$ then $(p)^e$ is the product of two distinct prime ideals (for example, $(5)^e = (2+i)(2-i)$)
- 3. if $p \equiv 3 \mod 4$ then $(p)^e$ is prime in $\mathbb{Z}[i]$

Let $f: A \to B$, \mathfrak{a} and \mathfrak{b} be as before. Then

Proposition 1.15. 1. $\mathfrak{a} \subseteq \mathfrak{a}^{ec}$, $\mathfrak{b} \supseteq \mathfrak{b}^{ce}$

- 2. $\mathfrak{b}^c = \mathfrak{b}^{cec}$, $\mathfrak{a}^e = \mathfrak{a}^{ece}$
- 3. If C is the set of contracted ideals in A and if E is the set of extended ideals in B, then $C = \{\mathfrak{a} \mid \mathfrak{a}^{ec} = \mathfrak{a}\}, E = \{\mathfrak{b} \mid \mathfrak{b}^{ce} = \mathfrak{b}\}, \text{ and } \mathfrak{a} \mapsto \mathfrak{a}^e \text{ is a bijective } \text{ map of } C \text{ onto } E, \text{ whose inverse is } \mathfrak{b} \mapsto \mathfrak{b}^c.$

Proof. 3. If $\mathfrak{a} \in C$, then $\mathfrak{a} = \mathfrak{b}^c = \mathfrak{b}^{cec} = \mathfrak{a}^{ec}$; conversely if $\mathfrak{a} = \mathfrak{a}^{ec}$ then \mathfrak{a} is the contraction of \mathfrak{a}^e .

Proof. 1.

Exercise 1.0.3. If $\mathfrak{a}_1, \mathfrak{a}_2$ are ideals of A and if $\mathfrak{b}_1, \mathfrak{b}_2$ are ideals of B, then

$$(\mathfrak{a}_1 + \mathfrak{a}_2)^e = \mathfrak{a}_1^e + \mathfrak{a}_2^e \quad (\mathfrak{b}_1 + \mathfrak{b}_2)^c \supseteq \mathfrak{b}_1^c + \mathfrak{b}_2^c$$

1.1 Exercise

Proposition 1.16. For $f: X \to Y$, given any $B \subseteq Y$, $f(f^{-1}(B)) \subseteq B$. If f is surjective, $f(f^{-1}(B)) = B$

Proof. For any $x \in f(f^{-1}(B))$, there is $y \in f^{-1}(B)$ s.t. f(y) = x. Thus $x \in B$. For any $y \in B$, as f is surjective, there is $x \in X$ s.t. f(x) = y. So $x \in f^{-1}(B)$ and hence $y \in f(f^{-1}(B))$

Exercise 1.1.1. Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit

Proof. x is a element of a nilradical, which is the intersection all prime ideals. Since every maximal ideal is a prime ideal, then nilradical is a subset of Jacobson radical. Then $1-(-u^{-1})x$ is a unit for some unit u, hence u+x is a unit

Exercise 1.1.2. Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x, with coefficients in A. Let $f=a_0+a_1x+\cdots+a_nx^n\in A[x]$. Prove that

- 1. f is a unit in A[x] iff a_0 is a unit in A and a_1,\ldots,a_n are nilpotent [if $b_0+b_1x+\cdots+b_mx^m$ is the inverse of f, prove by induction on r that $a_n^{r+1}b_{m-r}=0$. Hence show that a_n is nilpotent and then use Exercise 1.1.1]
- 2. f is nilpotent iff a_0, \dots, a_n is nilpotent
- 3. f is a zero-divisor iff there exists $a \neq 0$ in A s.t. af = 0
- 4. f is said to be **primitive** if $(a_0, \dots, a_n) = (1)$. Prove that if $f, g \in A[x]$, then fg is primitive iff f and g are primitive

Proof. 1. Suppose $g = \sum_{i=0}^m b_i x^i$ s.t. fg = 1. For r = 0, $a_n b_m = 0$ obviously.

Now suppose this is true for all p < r. Now we prove $a_n^{r+1}b_{m-r}=0$. The m+n-rth term's coefficient is $\sum_{i=0}^r a_{n-i}b_{m-r+i}=0$. Then

$$a_n^{r+1} \sum_{i=0}^r a_{n-i} b_{m-r+i} = a_n^{r+1} b_{m-r} = 0$$

Thus $a_n^{m+1}b_0=0$ and hence $a_n^{m+1}=0$ as b_0 is a unit. So $f-a_nx^n$ is a unit and we can continue.

- 2. \Rightarrow . Goal: for any prime ideal $\mathfrak p$ in A, f is 0 in $(A/\mathfrak p)[x]$. This is because f^n is 0 in $(A/\mathfrak p)[x]$ and $A/\mathfrak p$ is an integral domain. Then for a_0,\dots,a_n is contained in every prime ideal and hence are nilpotent
 - If f is nilpotent and a_k is nilpotent, then $f-a_kx^k$ is still nilpotent since nilradical is an ideal
 - \Leftrightarrow . Nilradical \Re is an ideal. As a_0,\dots,a_n is nilpotent in A[x], their A[x]-combination is still nilpotent

- 3. Choose a polynomial $g=b_0+b_1x+\cdots+b_mx^m$ of least degree m s.t. fg=0. Then $a_nb_m=0$ and $a_ngf=0$. As g is of least degree, we have $a_ng=0$. Then $fg=a_0g+\cdots+a_{n-1}x^{n-1}g+a_ng=a_0g+\cdots+a_{n-1}x^{n-1}g=0$. Hence for all $0\leq i\leq n$, $a_ig=0$. Arbitrary coefficient of g is what we want
- 4. If fg is primitive, then $(\sum_{\max\{0,k-m\}}^{\min\{n,k\}}a_ib_{k-i})_{k\in[0,n+m]}=(1)$. Change the coefficient one by one

By extract, we can get $(a_0^k b_k)_{k \in [0, n+m]} = (1)$. Then $(b_k) = (1)$.

Exercise 1.1.3. In the ring A[x], the Jacobson radical is equal to the nilradical

Proof. Suppose $\mathfrak R$ is the Jacobson radical and $f \in \mathfrak R$, then 1 - fx is a unit by Proposition 1.9. By Exercise 1.1.2 (1) all coefficients of f are nilpotent, then f is nilpotent by Exercise 1.1.2 (2)

Exercise 1.1.4. Let A be the ring and let A[[x]] be the ring of formal power series $f = \sum_{n=0}^{\infty} a_n x^n$ with coefficients in A. Show that

- 1. f is a unit in A[[x]] iff a_0 is a unit in A
- 2. If f is nilpotent, then a_n is nilpotent for all $n \ge 0$.
- 3. f belongs to the Jacobson radical of A[[x]] iff a_0 belongs to the Jacobson radical of A
- 4. The contraction of a maximal ideal \mathfrak{m} of A[[x]] is a maximal ideal of A, and \mathfrak{m} is generated by \mathfrak{m}^c and x.
- 5. Every prime ideal of A is the contraction of a prime ideal of A[[x]].

Proof. 1. \Leftarrow . We compute b_n from $a_0, \dots, a_n, b_0, \dots, b_{n-1}$ and $\sum_{i=0}^n a_i b_{n-i} = 0$. Multiply it with a_0 , we get $b_n + a_0 \sum_{i=1}^n a_i b_{n-i} = 0$

- 2. Note that nilradical is an ideal. If a_k is nilpotent in A, then $a_k x$ is nilpotent in A[[x]], and $f a_k x^k$ is nilpotent. And we continue
- 3. For any $b \in A$, 1 bf is a unit, and by (1), $1 ba_0$ is a unit.
- 4. From (3), a maximal ideal $\mathfrak m$ at least contains xA[[x]]. Let $\mathfrak m=\mathfrak m^c+xA[[x]]$. Now

$$A[[x]]/\mathfrak{m} \cong (A[[x]]/xA[[x]])/(\mathfrak{m}/xA[[x]]) \cong A/\mathfrak{m}^c$$

Thus m is maximal

5. Given a prime ideal \mathfrak{p} of A, consider

$$\phi: A[[x]] \to A \to A/\mathfrak{p}$$

Then $\ker \phi = \mathfrak{p} + xA[[x]]$ and $A[[x]]/\ker \phi \cong A/\mathfrak{p}$ and hence $\ker \phi$ is a prime ideal.

Exercise 1.1.5. A ring A is s.t. every ideal not contained in the nilradical contains a nonzero idempotent (that is, an element e s.t. $e^2 = e \neq 0$). Prove that the nilradical and Jacobson radical of A are equal

Proof. If there is a $x \in A$ s.t. $x \in \mathfrak{R}$ and $x \notin \mathfrak{N}$. Then $(x) \nsubseteq \mathfrak{N}$ and there is $y \in A$ s.t. $y^2x^2 = x^2$ and hence $(y^2 - 1)x^2 = 0$. As $x^2 \neq 0$, $y^2 = 1$. Hence $\mathfrak{R} = (1)$, which is not possible

Exercise 1.1.6. Let A be a ring where every element x satisfies $x^n = x$ for some n > 1 (depending on x). Show that every prime ideal in A is maximal

Proof. $\mathfrak p$ the prime ideal and $x \notin \mathfrak p$, as $x(x^{n-1}-1)=0 \in \mathfrak p$, $x^{n-1}-1 \in \mathfrak p$. Then $x^{n-1} \equiv 1 \mod \mathfrak p$ and $(x+\mathfrak p)(x^{n-2}+\mathfrak p)=1+\mathfrak p$.

Exercise 1.1.7. Let A be a ring $\neq 0$. Show that the set of prime ideals of A has minimal elements w.r.t. inclusion

Proof. Equivalently to say that nilradical is prime.

Exercise 1.1.8. Let \mathfrak{a} be an ideal \neq (1) in a ring A. Show that $\mathfrak{a} = r(\mathfrak{a})$ iff \mathfrak{a} is an intersection of prime ideals

Proof. ⇒. From Proposition 1.12

$$\Leftarrow$$
. If $x^n \in \mathfrak{a}$, then $x \in \mathfrak{a}$.

Exercise 1.1.9. Let A be a ring, $\mathfrak N$ its nilradical. Show that the following are equivalent

- 1. *A* has exactly one prime ideal
- 2. every element of *A* is either a unit or nilpotent
- 3. A/\mathfrak{N} is a field

Proof. $2 \rightarrow 3$. \mathfrak{N} is maximal

 $1 \rightarrow 2$. Obvious:D

 $3 \to 1$. Then \mathfrak{N} is maximal

Exercise 1.1.10. A ring is **Boolean** if $x^2 = x$ for all $x \in A$. In a Boolean ring A, show that

- 1. 2x = 0 for all $x \in A$
- 2. every prime ideal \mathfrak{p} is maximal, and A/\mathfrak{p} is a field with two elements
- 3. every finitely generated ideal in A is principal

Proof. 1. $2x = x + x^2 = 0$

- 2. Maximality by Exercise 1.1.6. For any $x \notin \mathfrak{p}$, $(x+\mathfrak{p})(1+\mathfrak{p}) = 1+\mathfrak{p}$ and so $x \equiv 1 \mod \mathfrak{p}$. For any $x \in \mathfrak{p}$, $x \equiv 0 \mod \mathfrak{p}$.
- 3. Let x, y be elements of an ideal \mathfrak{a} . Define z := x + y + xy, note that xz = x + y + y = x. Hence (x, y) = (z)

Exercise 1.1.11. A local ring contains no idempotent $\neq 0, 1$

Proof. If \mathfrak{m} is the unique maximal ring. Then $x \in \mathfrak{m}$ iff for all $y \in A$, 1 - xy is a unit.

If
$$x^2 = x$$
, then $x(1-x) = 0$. As $1-x$ is not a unit, $x \notin \mathfrak{m}$.

Construction of an algebraic closure of a field

Exercise 1.1.12. Let K be a field and let Σ be the set of all irreducible monic polynomials f in one indeterminate with coefficients in K. Let A be the polynomial ring over K generated by indeterminate x_f , one for each $f \in \Sigma$. Let $\mathfrak a$ be the ideal of A generated by the polynomials $f(x_f)$ for all $f \in \Sigma$. Show that $\mathfrak a \neq (1)$

Let \mathfrak{m} be a maximal ideal of A containing \mathfrak{a} , and let $K_1=A/\mathfrak{m}$. Then K_1 is an extension field of K in which each $f\in \Sigma$ has a root. Repeat the construction with K_1 in place of K, obtaining a field K_2 , and so on. Let $L=\bigcup_{n=1}^\infty K_n$. Then L is a field in which each $f\in \Sigma$ splits completely into linear factors. Let \overline{K} be the set of all elements of L which are algebraic over K. Then \overline{K} is an algebraic closure of K.

Proof. Irreducible polynomials have degree greater than 1. There is no linear combination that the degree of the sum is 0

Let $K_0=K$ be a field. Given a non-negative integer n for which the field, K_n , is defined, let Σ_n be the set of monic irreducible elements of $K_n[x]$ and let A_n be the polynomial ring over K_n generated by the set of indeterminates $\{x_f\mid f\in\Sigma\}$. Define \mathfrak{a}_n be the ideal of A_n generated by the set $\{f(x_f)\in A\mid$

 $f(\Sigma_n)$ }. Since K_n is a field, A_n is a domain. Thus every element of \mathfrak{a}_n has positive degree and \mathfrak{a}_n doesn't contain 1. Let \mathfrak{m}_n be a maximal ideal of A_n containing \mathfrak{a}_n and define $K_{n+1} = A_n/\mathfrak{m}_n$. The map

$$K_n \to A_n \to A_n/\mathfrak{m}_n = K_{n+1}$$

given by the inclusion and quotient maps, is a field homomorphism. Thus it is injective and we may identify K_n with a subfield of K_{n+1} . Note that for any $0 \neq k \in K_n$, $k \notin \mathfrak{m}$. Thus the kernel of the map is only $\{0\}$.

Let $\overline{K}=\bigcup_{n\geq 0}K_n$. If $x,y\in \overline{K}$, then they are contained in some subfields K_n,K_m . Letting $k=\max\{m,n\},\,x,y\in K_k$. Therefore the sum, difference, and product of x,y are in K_k . Any field arithmetic of \overline{K} can be performed in a subfield, \overline{K} is a field.

Let f be an irreducible monic polynomial in $\overline{K}[x]$. Since f has only finitely many coefficients, there is some n s.t. f is an irreducible monic polynomial in $K_n[x]$. By construction, f has a root in K_{n+1} , hence in \overline{K} . By the Euclidean division, f must have degree 1. Therefore, \overline{K} is algebraic closed.

By construction, the field extension K_{n+1}/K_n is algebraic for every n.

Exercise 1.1.13. In a ring A, let Σ be the set of all ideals in which every element is a zero-divisor. Show that the set Σ has minimal elements and that every maximal element of Σ is a prime ideal. Hence the set of zero-divisors in A is a union of prime ideals

Proof. If x is a zero-divisor, then Ax is a set of zero-divisors. Thus Σ is not empty and has a minimal element w.r.t. inclusion.

For a maximal ideal $\mathfrak p$ in Σ , suppose $x,y\notin \mathfrak p$, then $\mathfrak p+(x)+(y)\notin \Sigma$. Then there is an element p+x'x+y'y that is not a zero-divisor. If xy is zero-divisor, then (p'xy)(p+x'x+y'y)=0, a contradiction

The prime spectrum of a ring

Exercise 1.1.14. Let A be a ring and let X be the set of all prime ideals of A. For each subset E of A, let V(E) denote the set of all prime ideals of A which contain E. Prove that

- 1. if \mathfrak{a} is the ideal generated by E, then $V(E) = V(\mathfrak{a}) = V(r(\mathfrak{a}))$
- 2. $V(0) = X, V(1) = \emptyset$

3. if $(E_i)_{i \in I}$ is any family of subsets of A, then

$$V\left(\bigcup_{i\in I}E_i\right)=\bigcap_{i\in I}V(E_i)$$

4. $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{ab}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$ for any ideals $\mathfrak{a}, \mathfrak{b}$ of A

These results show that the sets V(E) satisfy the axioms for closed sets in a topological space. The resulting topology is called the **Zariski topology**. The topological space X is called the **prime spectrum** of A, and is written as $\operatorname{Spec}(A)$

- *Proof.* 1. If $\mathfrak{a}=(E)$, then \mathfrak{a} is the minimal ideal containing E. Hence $V(E)=V(\mathfrak{a})$. For any prime ideal \mathfrak{p} containing \mathfrak{a} and any $a\in r(\mathfrak{a})$. Then $a^n\in\mathfrak{a}$ for some n. Then $a^n\in\mathfrak{p}$, implying $a\in\mathfrak{p}$. Hence $V(\mathfrak{a})\subseteq V(r(\mathfrak{a}))$.
 - 2. Obvious
 - 3. trivial
 - 4. As $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$, if $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{p}$ then $\mathfrak{ab} \subseteq \mathfrak{p}$. On the other hand, if $\mathfrak{ab} \subseteq \mathfrak{p}$, then we have shown either $\mathfrak{a} \subseteq \mathfrak{p}$ or $\mathfrak{b} \subseteq \mathfrak{p}$ (Proposition 1.11). Thus $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{p}$

Exercise 1.1.15. Draw pictures of $\operatorname{Spec}(\mathbb{Z})$, $\operatorname{Spec}(\mathbb{R})$, $\operatorname{Spec}(\mathbb{R}[x])$, $\operatorname{Spec}(\mathbb{R}[x])$

 $\begin{array}{l} \textit{Proof.} \ \ \mathbb{Z} \ \text{is PID, for any} \ E \subseteq \mathbb{Z}, \text{let} \ n = \min\{m \in E \mid m > 1\}. \ \text{Let} \ \mathfrak{a} = (n). \\ \text{Then} \ (E) = \mathfrak{a}. \ \text{Suppose} \ n = p_1^{n_1} \dots p_r^{n_r}, \text{ then } V(E) = \{p_1\mathbb{Z}, \dots, p_r\mathbb{Z}\}. \end{array}$

 \mathbb{R} is a field and so there is only trivial ideals.

 $\mathbb{C}[x]$ is a PID. Prime ideals are of the form (f), where f is a monic irreducible or f=0. As irreducible elements of $\mathbb{C}[x]$ is of the form x-a. Thus $\mathrm{Spec}\,\mathbb{C}[x]$ is actually the complex plane.

For any ideal \mathfrak{a} of $\mathbb{C}[x]$, $\mathfrak{a}=(f)$. By the Fundamental Theorem of Algebra, $f=\prod_{i=1}^k(x-a_i)^{\alpha_i}$ for some complex numbers a_1,\dots,a_k and positive integers α_1,\dots,α_k . Define \sqrt{f} as $\prod_{i=1}^k(x-a_i)$. Since non-zero prime ideals of $\mathbb{C}[x]$ are maximal, we have

$$V(\mathfrak{a})=V(f)=V(\sqrt{f})=\bigcup_{i=1}^k V(x-a_i)=\{(x-a_1),\dots,(x-a_k)\}$$

Therefore non-empty open subsets of $\operatorname{Spec} \mathbb{C}[x]$ are cofinite sets containing $\{0\}$

Exercise 1.1.16. For each $f \in A$, let X_f denote the complement of V(f) in $X = \operatorname{Spec}(A)$. The sets X_f are open. Show that they form a basis of open sets for the Zariski topology, and that

- 1. $X_f \cap X_q = X_{fq}$
- 2. $X_f = \emptyset$ iff f is nilpotent
- 3. $X_f = X$ iff f is a unit
- $4. \ X_f = X_g \ \mathrm{iff} \ r((f)) = r((g))$
- 5. X is quasi-compact (that is, every open covering of X has a finite subcovering)
- 6. More generally, each X_f is quasi-compact
- 7. An open subset of X is quasi-compact iff it is a finite union of sets X_f The sets X_f are called **basic open sets** of $X=\operatorname{Spec}(A)$

Proof. For any $\mathfrak{p}\in X$, let $x\in A\setminus \mathfrak{p}$. Then $\mathfrak{p}\notin V(x)$. Hence $\mathfrak{p}\in X_x$ If $\mathfrak{p}\in X_f\cap X_g$, then as $V(f)\cup V(g)=V(fg)$, then $\mathfrak{p}\in X_{fg}$. Hence this form a basis of open sets for the Zariski topology

- 1. $X_f \cap X_g = V(f)^c \cap V(g)^c = (V(f) \cup V(g))^c = (V(fg))^c = X_{fg}$
- 2. $X_f=\emptyset$ iff V(f)=X iff $f\in\mathfrak{N}$
- 3. $X_f=X$ iff $V(f)=\emptyset$. Note that any ideal can be extended to a maximal ideal which is prime, thus f is not contained in any ideal, which means f is a unit
- 4. $r((f)) \subseteq r((g))$ iff every ideal containing (g) contains (f) iff $V(f) \subseteq V(g)$.
- 5. A collection $\mathcal C$ of closed sets has finite intersection property iff for any finite $V(E_1),\dots,V(E_n)\in\mathcal C, \bigcap V(E_i)=V(\bigcup E_i)\neq\emptyset$ iff for any finite $V(E_1),\dots,V(E_n)\in\mathcal C, \bigcup E_i$ doesn't contain a unit. Thus $\bigcup_{\mathcal C}V(E_i)$ doesn't contain a unit and hence $\bigcap_{\mathcal C}V(E_i)\neq\emptyset$

Let $\{X_f\}_{f\in E}$ be an open cover of X. Taking complements shows that V(E) is empty. Therefore (E)=(1). This in turn implies that there are $f_1,\dots,f_n\in E$ and $a_1,\dots,a_n\in A$ s.t. $1=\sum_{i=1}^n a_if_i$. Thus $V(f_1,\dots,f_n)$ is empty

- 6. Suppose an open covering $\{X_g\}_{g\in E}$ of X_f , then $\bigcap_{g\in E}V(g)=V(\bigcup_{g\in E}g)=V(E)\subseteq V(f)$, which means that every prime containing E contains f, then $f\in r((E))$ (Proposition 1.12). So there are $g_1,\dots,g_n\in E$, $a_1,\dots,a_n\in A$ and a positive integer m s.t. $f^m=\sum_{i=1}^n a_ig_i$. Thus $V(f)\supseteq V(g_1,\dots,g_n)$. Hence $X_f\subseteq\bigcup_{i=1}^n X_{g_i}$
- 7. For any quasi-compact open sets U of X, $U=\bigcup_{f\in E}X_f$. And as it's quasi-compact, there is $E_0\subseteq_f E$ s.t. $U=\bigcup_{f\in E_0}X_f$

Exercise 1.1.17. It is sometimes convenient to denote a prime ideal of A by a letter such as x or y when thinking of it as a point of $X = \operatorname{Spec}(A)$. When thinking of x as a prime ideal of A, we denote it by \mathfrak{p}_x . Show that

1. the set $\{x\}$ is closed (we say that x is a "closed point") in $\operatorname{Spec}(A)$ iff \mathfrak{p}_x is maximal

$$2. \ \overline{\{x\}} = V(\mathfrak{p}_x)$$

3. $y \in \overline{\{x\}}$ iff $\mathfrak{p}_x \subseteq \mathfrak{p}_y$

4. X is a T_0 -space (this means that if x,y are disjoint points of X, then either there is a neighborhood of x which does not contain y, or else there is a neighborhood of y which does not contain x)

Proof. 1. $\{x\}$ is closed iff there is $E\subseteq A$ s.t. $\{x\}=V(E)$ which means \mathfrak{p}_x cannot be expanded anymore

- 2. $y \in \overline{\{x\}}$ iff \forall open $U \ni y, x \in U$ iff $\forall E \ y \notin V(E), x \notin V(E)$ iff $\forall E \ x \in V(E) \Rightarrow y \in V(E)$. As $x \in V(x), y \in V(x)$. If $y \in V(x)$, for any $x \in V(E)$, we have $y \in V(x) \subseteq V(E)$
- 3. $y \in \overline{\{x\}}$ iff $y \in V(x)$ iff $x \subseteq y$

4. If $x \subseteq y$, then $x \notin V(y)$ and $y \in V(y)$. If $x \nsubseteq y$, then $(x) \nsubseteq y$ and so $y \notin V(x)$.

If every neighborhood of x contains y and vice versa. Then $y \in \overline{\{x\}}$ and $x \in \overline{\{y\}}$. So x = y

Exercise 1.1.18. A topological space X is said to be **irreducible** if $X \neq \emptyset$ and if every pair of non-empty open sets in X intersect, or equivalently if every non-empty open set is dense in X. Show that $\operatorname{Spec}(A)$ is irreducible iff the nilradical of A is a prime ideal

Proof. Spec(A) is irreducible iff for any $V(E)^c, V(F)^c \neq \emptyset, V(E)^c \cap V(F)^c = (V(E) \cup V(F))^c = V(EF)^c \neq \emptyset$ iff $V(E), V(F) \neq X \Rightarrow V(EF) \neq X$ iff $V(EF) = X \Rightarrow V(E) = X \lor V(F) = X$.

For any $xy\in\mathfrak{N}$, $x^ny^n=0$. Thus V(xy)=X and hence either V(x)=X or V(y)=X. Thus either $x\in\mathfrak{N}$ or $y\in\mathfrak{N}$.

If $\mathfrak N$ is prime and if V(EF)=X, then $EF\subseteq \mathfrak N$ and either $E\subseteq \mathfrak N$ or $F\subseteq \mathfrak N$. Note that $V(\mathfrak N)=X$

Exercise 1.1.19. Let *X* be a topological space

- 1. If *Y* is an irreducible subspace of *X*, then the closure \overline{Y} of *Y* in *X* is irreducible
- 2. Every irreducible subspace of *X* is contained in a maximal irreducible subspace
- 3. The maximal irreducible subspaces of *X* are closed and cover *X*. They are called the **irreducible components** of *X*. What are the irreducible components of a Hausdorff space?
- 4. If *A* is a ring and $X = \operatorname{Spec}(A)$, then the irreducible components of *X* are the closed sets $V(\mathfrak{p})$, where \mathfrak{p} is a minimal prime ideal of *A*
- *Proof.* 1. For any open $U, V \subseteq X$, then $U \cap Y \neq \emptyset \land V \cap Y \neq \emptyset \Rightarrow U \cap V \cap Y \neq \emptyset$.
 - Let U,V be open subsets of X s.t. $U\cap \overline{Y}$ and $V\cap \overline{Y}$ are nonempty. By the definition of closure, $U\cap Y$ and $V\cap Y$ are nonempty and hence $U\cap V\cap Y$ is nonempty, which is a subset of $U\cap V\cap \overline{Y}$
 - 2. If Y is an irreducible subspace of X, let Σ be the set of irreducible subspaces of X containing Y, ordered by inclusion. Let $\{Z_n\}_{n\geq 1}$ be a chain in Σ and let $Z=\bigcup_{i=1}^n Z_n$. Suppose $U\cap Z\neq\emptyset$ and $V\cap Z\neq\emptyset$. Then there is i,j s.t. $U\cap Z_i\neq\emptyset$ and $V\cap Z_j\neq\emptyset$. So $U\cap V\cap Z_{\max\{i,j\}}\neq\emptyset$. Then by Zorn's Lemma
 - 3. Note that $\{x\}$ is irreducible subspace.

In Hausdorff space, any subspace with more than one point has disjoint non-empty open sets, and is thus not irreducible

4. Show $V(\mathfrak{p})$ is irreducible and maximal

For any $E, F \subseteq A$, suppose $V(E)^c \cap V(\mathfrak{p})$ and $V(F)^c \cap V(\mathfrak{p})$ are nonempty, then there is $\mathfrak{p} \subseteq \mathfrak{m} \in V(E)^c \cap V(\mathfrak{p})$ and $\mathfrak{p} \subseteq \mathfrak{n} \in V(F)^c \cap V(\mathfrak{p})$. As \mathfrak{p} is minimal, $\mathfrak{p} \subseteq \mathfrak{m} \cap \mathfrak{n} \in V(E)^c \cap V(F)^c \cap V(\mathfrak{p})$

If $V(\mathfrak{p})$ is not maximal, then there is E s.t. $V(\mathfrak{p}) \subsetneq V(E)$, which implies that $(E) \subsetneq \mathfrak{p}$, a contradiction

Given any irreducible components $V(E)=V((E))=V(\mathfrak{a})$ of X. If \mathfrak{a} is not minimal, then there is $\mathfrak{b} \subsetneq \mathfrak{a}$ and $V(\mathfrak{b}) \supseteq V(\mathfrak{a})$. Then $V(\mathfrak{b})$ is an irreducible component

Remark. Let $X=\operatorname{Spec}(A)$ and $Y\subseteq X.$ Note that $Y\subseteq V(\mathfrak{a})\Leftrightarrow \mathfrak{a}\subseteq \bigcap_{y\in Y}y.$ Thus

$$\begin{split} \overline{Y} &= \bigcap \left\{ V(\mathfrak{a}) : Y \subseteq V(\mathfrak{a}) \right\} = \bigcap \left\{ V(\mathfrak{a}) : \mathfrak{a} \subseteq \bigcap_{y \in Y} y \right\} \\ &= V\left(\bigcup \{\mathfrak{a} : \mathfrak{a} \subseteq \bigcap_{y \in Y} y \}\right) = V\left(\bigcap_{y \in Y} y\right) \end{split}$$

Exercise 1.1.20. Let $\phi:A\to B$ be a ring homomorphism. Let $X=\operatorname{Spec}(A)$ and $Y=\operatorname{Spec}(B)$. If $\mathfrak{q}\in Y$, then $\phi^{-1}(\mathfrak{q})$ is a prime ideal, i.e., a point of X. Hence ϕ induces a mapping $\phi^*:Y\to X$. Show that

- 1. If $f \in A$ then $\phi^{*-1}(X_f) = X_{\phi(f)}$ and hence that ϕ^* is continuous
- 2. If ${\mathfrak a}$ is an ideal of A, then $\phi^{*-1}(V({\mathfrak a}))=V({\mathfrak a}^e)$
- 3. If $\mathfrak b$ is an ideal of B, then $\overline{\phi^*(V(\mathfrak b))} = V(\mathfrak b^c)$
- 4. If ϕ is surjective, then ϕ^* is a homeomorphism of Y onto the closed subset $V(\ker(\phi))$ of X (In particular, $\operatorname{Spec}(A)$ and $\operatorname{Spec}(A/\mathfrak{N})$ where \mathfrak{N} is the nilradical of A are naturally homeomorphic)
- 5. If ϕ is injective, then $\phi^*(Y)$ is dense in X. More precisely, $\phi^*(Y)$ is dense in X iff $\ker(\phi) \subseteq \mathfrak{N}$
- 6. Let $\psi: B \to C$ be another ring homomorphism. Then $(\psi \circ \phi)^* = \phi^* \circ \psi^*$
- 7. Let A be an integral domain with just one non-zero prime ideal \mathfrak{p} , and let K be the field of fractions of A. Let $B=(A/\mathfrak{p})\times K$. Define $\phi:A\to B$ by $\phi(x)=(\bar x,x)$ where $\bar x$ is the image of x in A/\mathfrak{p} . Show that ϕ^* is bijection but not a homeomorphism

Proof. 1. $\mathfrak{q} \in X_{\phi(f)}$ iff $\mathfrak{q} \notin V(\phi(f))$. $\phi^*(\mathfrak{q}) \in X_f$ iff $\phi^*(\mathfrak{q}) \notin V(f)$ iff $\phi^{-1}(\mathfrak{q}) \notin V(f)$.

If $\phi^{-1}(\mathfrak{q}) \in V(f)$, then $(f) \subseteq \phi^{-1}(\mathfrak{q})$, then $\phi((f)) \subseteq \mathfrak{q}$. Now we show $\phi((f)) = (\phi(f))$. $x \in \phi((f))$ iff $x = \phi(af)$ iff $x = \phi(a)\phi(f)$ iff $x \in (\phi(f))$. Thus $(\phi(f)) \subseteq \mathfrak{q}$ and so $\mathfrak{q} \in V(\phi(f))$.

If $\mathfrak{q} \in V(\phi(f))$, then $(\phi(f)) \subseteq \mathfrak{q}$, $\phi(f) \in \mathfrak{q}$ and so $\phi^{-1}(\phi(f)) \in \phi^{-1}(\mathfrak{q})$.

$$\mathfrak{q} \in \phi^{*-1}(X_f) \Leftrightarrow \phi^*(\mathfrak{q}) \in X_f \Leftrightarrow f \notin \phi^*(\mathfrak{q}) = \phi^{-1}(\mathfrak{q}) \Leftrightarrow \mathfrak{q} \in Y_{\phi(f)}$$

2. $x \in \phi^{*-1}(V(\mathfrak{a}))$ iff $\phi^*(x) \in V(\mathfrak{a})$ iff $\phi^{-1}(x) \in V(\mathfrak{a})$ iff $\mathfrak{a} \subseteq \phi^{-1}(x)$ iff $\phi(\mathfrak{a}) \subseteq x$ iff $\mathfrak{a}^e \subseteq x$ iff $x \in V(\mathfrak{a}^e)$

$$\mathfrak{q} \in \phi^{*-1}(V(\mathfrak{a})) \Leftrightarrow \phi^*(\mathfrak{q}) \in V(\mathfrak{a}) \Leftrightarrow \mathfrak{a} \subseteq \phi^*(\mathfrak{q}) \Leftrightarrow \mathfrak{a}^e \subseteq \mathfrak{q} \Leftrightarrow \mathfrak{q} \in V(\mathfrak{a}^e)$$

3. By remark, $\overline{\phi^*(V(\mathfrak{b}))}$ is the set of prime ideals containing $\bigcap \phi^*(V(\mathfrak{b}))$, which equals

$$\bigcap\{\mathfrak{q}^c:\mathfrak{q}\in V(\mathfrak{b})\} = \bigcap\{\mathfrak{q}^c:\mathfrak{b}\subseteq\mathfrak{q}\} = \left(\bigcap_{\mathfrak{b}\subseteq\mathfrak{q}\in Y}\mathfrak{q}\right)^c = r(\mathfrak{b})^c = r(\mathfrak{b}^c)$$

$$x\in\bigcap_{\mathfrak{q}\in X}\mathfrak{q}^c\Leftrightarrow\forall\mathfrak{q}\in X(x\in\mathfrak{q}^c)\Leftrightarrow\forall\mathfrak{q}\in X(f(x)\in\mathfrak{q})$$

$$\Leftrightarrow f(x)\in\bigcap_{\mathfrak{q}\in X}\mathfrak{q}\Leftrightarrow x\in(\bigcap\mathfrak{q})^c$$

$$x\in r(\mathfrak{b})^c\Leftrightarrow f(x)^n\in\mathfrak{b}\Leftrightarrow f(x^n)\in\mathfrak{b}\Leftrightarrow x^n\in\mathfrak{b}^c\Leftrightarrow x\in r(\mathfrak{b}^c)$$

4. If $\phi:A\to B$ is surjective, then the image of ideal of A is an ideal of B. Image of prime ideal. For any $x\in V(\ker(\phi))$, $\phi(x)$ is prime and is its preimage. If $\phi^*(y_1)=\phi^*(y_2)$, then $\phi^{-1}(y_1)=\phi^{-1}(y_2)$. Hence $y_1=y_2$ as ϕ is surjective. Thus ϕ is a bijection

For any $Y_f \in Y$

$$\mathfrak{q} \in \phi^*(Y_f) \Leftrightarrow \mathfrak{q} = \phi^*(\mathfrak{p}) \not\in \phi^*(f) \Leftrightarrow \phi^{-1}(f) \not\in \mathfrak{q} \Leftrightarrow \mathfrak{q} \in X_{\phi^{-1}(x)}$$

So
$$\phi^*(Y_f) = X_{\phi^{-1}(f)}$$

Consider the canonical map $\phi:A\to A/\mathfrak{N}$. Then we have $\mathrm{Spec}(A/\mathfrak{N})\cong V(\mathfrak{N})=\mathrm{Spec}(A)$

5. Note that $\phi^*(Y) = V(\ker(\phi))$. Thus

$$\overline{\phi^*(Y)} = V(\bigcap \phi^*(Y)) = V(\bigcap V(\ker(\phi)) = V(r(\ker(\phi))) = V(\ker(\phi))$$

6. For any $\mathfrak{p} \in Z = \operatorname{Spec}(C)$

$$(\psi \circ \phi)^*(\mathfrak{p}) = (\psi \circ \phi)^{-1}(\mathfrak{p}) = \phi^{-1}(\psi^{-1}(\mathfrak{p})) = \phi^* \circ \psi^*(\mathfrak{p})$$

7. \mathfrak{p} is maximal and A/\mathfrak{p} is a field. Thus B has ideal 0×0 , $0 \times K$, $(A/\mathfrak{p}) \times 0$ and $(A/\mathfrak{p}) \times K$

A has prime ideals (0) and $\mathfrak p.$ B has prime ideals $0\times K$ and $(A/\mathfrak p)\times 0$. In $\operatorname{Spec}(B)=\{\mathfrak q_1,\mathfrak q_2\}$, we have $\{\mathfrak q_1\}=V(\mathfrak q_1)$ is closed as $\mathfrak q_1\nsubseteq\mathfrak q_2$, but $\phi^*(\mathfrak q_1)$ is not closed in $\operatorname{Spec}(A)$ as 0 is not a maximal ideal of A

Exercise 1.1.21. Let $A = \prod_{i=1}^n A_i$ be the direct product of rings A_i . Show that $\operatorname{Spec}(A)$ is the disjoint union of open (and closed) subspaces X_i , where X_i is canonically homeomorphic with $\operatorname{Spec}(A_i)$

Conversely let *A* be any ring. Show that TFAE

- 1. $X = \operatorname{Spec}(A)$ is disconnected
- 2. $A \cong A_1 \times A_2$ where neither of the rings A_1, A_2 is the zero ring
- 3. A contains an idempotent $\neq 0, 1$

In particular, the spectrum of a local ring is always connected (Exercise 1.1.11)

Proof. Let $\pi_i:A\to A_i$ be the canonical projection, and $\mathfrak{b}_i=\prod_{j\neq i}A_j$ its kernel; then by 1.1.20 (4) π_i^* is a homeomorphism $\operatorname{Spec}(A_i)\cong V(\mathfrak{b}_i)$. Since $\bigcap_{i=1}^n\mathfrak{b}_i=0$, it follows that $\bigcup V(\mathfrak{b}_i)=V(\bigcap\mathfrak{b}_i)=V(0)=\operatorname{Spec}(A)$, so that $V(\mathfrak{b}_i)$ cover $\operatorname{Spec}(A)$. Since $\mathfrak{b}_i+\mathfrak{b}_j=A$ for $i\neq j$ and hence $V(\mathfrak{b}_i)\cap V(\mathfrak{b}_j)=V(\mathfrak{b}_i+\mathfrak{b}_j)=V(1)=\emptyset$, it follows that $V(\mathfrak{b}_j)$ are disjoint. Since the complement $\bigcup_{j\neq i}V(\mathfrak{b}_j)$ of each $V(\mathfrak{b}_i)$ is a finite union of closed sets, the $V(\mathfrak{b}_i)$ are also open. (VERY NICE PROOF)

 $2 \rightarrow 1$ follows as above

X is disconnected iff there is non-zero $\mathfrak a$ and $\mathfrak b$ s.t. $X=V(\mathfrak a)\cup V(\mathfrak b)=V(\mathfrak a\mathfrak b)$ and $\emptyset=V(\mathfrak a)\cap V(\mathfrak b)=V(\mathfrak a\cup \mathfrak b)=V(\mathfrak a+\mathfrak b).$ Thus $\mathfrak a+\mathfrak b=(1)$ and $r(\mathfrak a\mathfrak b)=\mathfrak N.$ There are $f\in \mathfrak a,g\in \mathfrak b,n\in \mathbb N_+$ s.t. f+g=1 and $(fg)^n=0.$ Since $(f,g)\subseteq r((f^n,g^n))$ and V(f,g) is not empty, $V(f^n,g^n)$ is not empty. Thus $(f^n)+(g^n)=(1).$

- $1 \to 3$. the Chinese Remainder Theorem implies that $A \to (A/(f^n)) \times (A/(g^n))$ is an isomorphism. Neither of f,g is a unit, because they are elements of the proper ideals $\mathfrak{a},\mathfrak{b}$
- $1 \to 2$. We can find $e \in (f^n)$ s.t. $1 e \in (g^n)$. We then have $e e^2 = e(1 e) \in (ab)^n = 0$, so $e = e^2$
- $3 \to 2$. Suppose $e \neq 0,1$ is an idempotent. Then 1-e is also an idempotent $\neq 0,1$, and neither is a unit. This means (e) and (1-e) are proper, nonzero ideals, and they are coprime since e+(1-e)=1. Since $(e)(1-e)=(e-e^2)=0$, then $(e)\cap(1-e)=(0)$. Hence we have an isomorphism $\phi:A\to (A/(e))\times (A/(1-e))$.

Exercise 1.1.22. Let *A* be a Boolean ring and let $X = \operatorname{Spec}(A)$

- 1. For each $f \in A$ the set X_f is both open and closed in X
- 2. Let $f_1,\ldots,f_n\in A$. Show that $X_{f_1}\cup\cdots\cup X_{f_n}=X_f$ for some $f\in A$
- 3. The sets X_f are the only subsets of X which are both open and closed
- 4. *X* is a compact Hausdorff space

Proof. 1. For any $\mathfrak{p}\in X$, $f(1-f)=0\in\mathfrak{p}$ and hence either $f\in\mathfrak{p}$ or $1-f\in\mathfrak{p}$. Thus $X=X_f\cup X_{1-f}$

- 2. $x\in X_{f_1}\cup\cdots\cup X_{f_n}$ iff $x\in V(f_1)^c\cup\cdots\cup V(f_n)^c$ iff $x\in (V(f_1)\cap\cdots\cap V(f_n))^c$ iff $x\in (V((f_1,\ldots,f_n)))^c$. By Exercise 1.1.10, $(f_1,\ldots,f_n)=(g)$ for some g. Hence $X_{f_1}\cup\cdots\cup X_{f_n}=X_g$
- 3. Let $Y \subseteq X$ be both open and closed. Since Y is open, it is a union of basic open sets X_f . Since Y is closed and X is quasi-compact (Exercise 1.1.16), Y is quasi-compact. Hence Y is a finite union of basic open sets and hence equals a basic open sets.
- 4. For any $\mathfrak{p} \neq \mathfrak{q} \in X$, \mathfrak{p} and \mathfrak{q} are maximal according to Exercise 1.1.10. Hence $\mathfrak{p} \in V(\mathfrak{p})$ and $\mathfrak{q} \notin V(\mathfrak{q})$

Exercise 1.1.23. Let L be a lattice, where the sup and inf of two elements a, b are denoted by $a \lor b$ and $a \land b$ respectively. L is a **Boolean lattice** (or **Boolean algebra**) if

1. L has a least element and a greatest element (denoted by 0,1 respectively)

23

- 2. Each of \vee , \wedge is distributive over the other
- 3. Each $a \in L$ has a unique "complement" $a' \in L$ s.t. $a \vee a' = 1$ and $a \wedge a' = 0$

Let L be a Boolean lattice. Define addition and multiplication in L by rules

$$a + b = (a \wedge b') \vee (a' \wedge b), \quad ab = a \wedge b$$

Verify that in this way L becomes a Boolean ring, say A(L)

Conversely, starting from a Boolean ring A, define an ordering on A as follows: $a \leq b$ means a = ab. Show that, w.r.t. this ordering, A is a Boolean lattice. In this way we obtain a one-to-one correspondence between (isomorphism classes of) Boolean rings and (isomorphism classes of) Boolean lattices

Proof. De Morgan's laws: $(x \lor y)' = x' \land y'$ and $(x \land y)' = x' \lor y'$

$$(x' \wedge y') \wedge (x \vee y) = (x' \wedge y' \wedge x) \vee (x' \wedge y' \wedge y) = 0 \vee 0 = 0$$
$$(x' \wedge y') \vee (x \vee y) = (x \vee y \vee x') \wedge (x \vee y \vee y') = 1 \wedge 1 = 1$$

As complement is unique, $x' \wedge y' = (x \vee y)'$

$$a+a=(a\wedge a')\vee (a'\wedge a)=a\wedge a'=0.$$
 Thus $a+a=0.$ $a+b=b+a.$ $a+a'=(a\wedge a'')\vee (a'\wedge a')=a\vee a'=1.$

$$(ab)c = a(bc)$$
. $x^2 = x \land x = x$

 $a \lor b = a+b+ab$, $a \land b = ab$. 0 and 1 are minimum and maximum respectively. $a \land (b \lor c) = a(b+c+bc) = ab+ac+abc = ab+ac+a^2bc = (ab) \lor (ac)$. As a+a=0, $a \lor a = a+a+a^2 = a$.

$$a \vee a' = a + a' + aa' = 1, a \wedge a' = aa' = 0.$$
 Hence $a' = 1 - a$.

Exercise 1.1.24. From the last two exercises deduce Stone's theorem, that every Boolean lattice is isomorphic to the lattice of open-and-closed subsets of some compact Hausdorff topological space

Proof. Given a Boolean lattice *L*, define

$$\phi:L\to \mathcal{P}(\operatorname{Spec}(A(L))):f\mapsto X_f$$

 $\begin{array}{l} \text{if } f \leq g \text{, then } f = fg \text{ and so } X_f \cap X_g = X_{fg} = X_f \text{, which yields } X_f \subseteq X_g. \\ \text{If } X_f = X_g \text{, then as } 1 + g = g' \text{, then } g \in \mathfrak{p} \text{ iff } g' \notin \mathfrak{p} \end{array}$

$$X_f = X_g = X_{(1+q)}^c$$

So $X_f\cap X_{(1+g)}=X_{f(1+g)}$ is empty. Therefore f(1+g) is nilpotent. Then $f^n(1+g)^n=f^{n-1}(1+g)^{n-1}=\cdots=f(1+g)=0$. In particular f=-fg=fg. So $f\leq g$.

On the other hand, the image of ϕ is precisely the class of open-and-closed subspaces of the compact Hausdorff space

Exercise 1.1.25. Let A be a ring. The subspace of $\operatorname{Spec}(A)$ consisting of the *maximal* ideals of A, with the induced topology, is called the **maximal spectrum** of A is denoted by $\operatorname{Max}(A)$. For arbitrary commutative rings it does not have the nice functorial properties of $\operatorname{Spec}(A)$ (Exercise 1.1.20), because the inverse image of a maximal ideal under a ring homomorphism need not be maximal (consider $i: \mathbb{Z} \to \mathbb{Q}$, as \mathbb{Q} is a field, its maximal ideal is (0), which is not a maximal ideal in \mathbb{Z})

Let X be a compact Hausdorff space and let C(X) denote the ring of all real-valued continuous functions on X (add and multiply functions by adding and multiplying their values). For each $x \in X$, let \mathfrak{m}_x be the set of all $f \in C(X)$ s.t. f(x). The ideal \mathfrak{m}_x is maximal, because it is the kernel of the (surjective) homomorphism $C(X) \to \mathbb{R}$ which takes f to f(x). If \tilde{X} denotes $\mathrm{Max}(C(X))$, we have therefore defined a mapping $\mu: X \to \tilde{X}$, namely $x \mapsto \mathfrak{m}_x$

We shall show that μ is a homeomorphism of X onto \tilde{X}

1. Let \mathfrak{m} be any maximal ideal of C(X), and let $V = V(\mathfrak{m})$ be the set of common zeros of the functions in \mathfrak{m} : that is,

$$V = \{x \in X : f(x) = 0 \text{ for all } f \in \mathfrak{m}\}\$$

Suppose that V is empty. Then for each $x \in X$ there exists $f_x \in \mathfrak{m}$ s.t. $f_x(x) \neq 0$. Since f_x is continuous, there is an open neighborhood U_x of x in X on which f_x does not vanish. By compactness a finite number of the neighborhoods, say U_{x_1}, \ldots, U_{x_n} , cover X. Let

$$f = f_{x_1}^2 + \dots + f_{x_n}^2$$

Then f does not vanish at any point of X, hence is a unit in C(X). But this contradicts $f \in \mathfrak{m}$, hence V is not empty

Let $x\in V$. Then $\mathfrak{m}\subseteq\mathfrak{m}_x$, hence $\mathfrak{m}=\mathfrak{m}_x$ because \mathfrak{m} is maximal. Hence μ is surjective

2. By Urysohn's lemma, the continuous functions separate the points of X. Hence $x \neq y \Rightarrow \mathfrak{m}_x \neq \mathfrak{m}_{y'}$ and therefore μ is injective

3. Let $f \in C(X)$; let

$$U_f = \{x \in X : f(x) \neq 0\}$$

and let

$$\tilde{U}_f = \{\mathfrak{m} \in \tilde{X} : f \notin \mathfrak{m}\}$$

Show that $\mu(U_f)=\tilde{U}_f$. The open set U_f (resp. \tilde{U}_f) form a basis of the topology of X (resp. \tilde{X}) and therefore μ is a homeomorphism

Thus X can be reconstructed from the ring of functions C(X)

Affine algebraic variesties

Exercise 1.1.26. Let k be an algebraic closed field and let

$$f_{\alpha}(t_1, \dots, t_n) = 0$$

be a set of polynomial equations in n variables with coefficients in k. The set X of all points $x=(x_1,\dots,x_n)\in k^n$ which satisfy these equations is an **affine algebraic variety**

Consider the set of all polynomials $g \in k[t_1, \dots, t_n]$ with the property that g(x) = 0 for all $x \in X$. This set is an ideal I(X) in the polynomial ring, and is called the **ideal of the variety** X. The quotient ring

$$P(X) = k[t_1, \dots, t_n]/I(X)$$

is the ring of polynomial functions on X, because two polynomials g,h define the same polynomial function on X iff g-h vanishes at every point of X iff $g-h \in I(X)$

Let ξ_i be the image of t_i in P(X). The ξ_i $(1 \le i \le n)$ are the **coordinate functions** on X: if $x \in X$, then $\xi_i(x)$ is the ith coordinate of x. P(X) is generated as a k-algebra by the coordinate functions, and is called the **coordinate ring** (or affine algebra) of X

As

2 Modules

Modules and Module Homomorphisms

Let A be a ring (commutative, as always). An A-module is an abelian group M (written additively) on which A acts linearly: more precisely, it is a pair (M, μ) , where M is an abelian group and μ is a mapping of $A \times M$ into M,

s.t., if we write ax for $\mu(a,x)$, the following axioms are satisfied for $a,b\in A$ and $x,y\in M$

$$a(x + y) = ax + ay$$
$$(a + b)x = ax + bx$$
$$(ab)x = a(bx)$$
$$1x = x$$

Equivalently, M is an abelian group together with a ring homomorphism $A \to E(M)$, where E(M) is a ring of endomorphisms of the abelian group M

Example 2.1. 1. An ideal $\mathfrak a$ of A is an A-module. In particular A itself is an A-module

- 2. If A is a field k, then A-module = k-vector space
- 3. $A = \mathbb{Z}$, then \mathbb{Z} -module = abelian group (define nx to $x + \cdots + x$)
- 4. A = k[x] where k is a field; an A-module is a k-vector space with a linear transformation.
- 5. G=finite group, A = k[G]=group-algebra of G over the field k (thus A is not commutative, unless G is). Then A-module=k-representation of G

Let M,N be A-modules. A mapping $f:M\to N$ is an A-module homomorphism (or is A-linear) if

$$f(x+y) = f(x) + f(y)$$
$$f(ax) = a \cdot f(x)$$

for all $a \in A$ and all $x, y \in M$. Thus f is a homomorphism of abelian groups which commutes with the action of each $a \in A$. If A is a field, an A-module homomorphism is the same thing as a linear transformation of vector space

The composition of A-module homomorphism is again an A-homomorphism The set of all A-module homomorphism from M to N can be turned into an A-module as follows: we define f+g and af by the rules

$$(f+g)(x) = f(x) + g(x)$$
$$(af)(x) = a \cdot f(x)$$

for all $x \in M$. This *A*-module is denoted by $\operatorname{Hom}_A(M, N)$

Homomorphisms $u: M' \to M$ and $v: N \to N''$ induces mappings

$$\bar{u}: \operatorname{Hom}(M,N) \to \operatorname{Hom}(M,N)$$
 and $\bar{v}: \operatorname{Hom}(M,N) \to \operatorname{Hom}(M,N'')$

defined as follows

$$\bar{u}(f) = f \circ u, \quad \bar{v}(f) = v \circ f$$

For any module M there is a natural isomorphism $\mathrm{Hom}(A,M)\cong M$: any A-module homomorphism $f:A\to M$ is uniquely determined by f(1), which can be any element of M

Submodules and Quotient Modules

A **submodule** M' of M is a subgroup of M which is closed under multiplication by elements of A. Then abelian group M/M' then inherits an A-module structure from M, defined by a(x+M')=ax+M'. The A-module M/M' is the **quotient** of M by M'. There is a one-to-one order-preserving correspondence between submodules of M which contain M', and submodules M''=M/M'

If $f: M \to N$ is an A-module homomorphism, the **kernel** of f is the set

$$\ker(f) = \{x \in M : f(x) = 0\}$$

and is a submodule of M. The **image** of f is the set

$$im(f) = f(M)$$

and is a submodule of N. The **cokernel** of f is

$$coker(f) = N/im(f)$$

which is a quotient module of N.

If M' is a submodule of M s.t. $M' \subseteq \ker(f)$, then f give rise to a homomorphism $\overline{f}: M/M' \to N$ defined as follows: if $\overline{x} \in M/M'$ is the image of $x \in M$, then $\overline{f}(\overline{x}) = f(x)$. The kernel of \overline{f} is $\ker(f)/M'$

Operations on Submodules

Let M be an A-module and let $(M_i)_{i\in I}$ be a family of submodules of M. Their $\mathbf{sum} \sum M_i$ is the set of all (finite) sums $\sum x_i$, where $x_i \in M_i$ for all $i \in I$, and almost all the x_i are zero. $\sum M_i$ is the smallest submodule of M which contains all the M_i

The intersection $\bigcap M_i$ is again a submodule of M. Thus the submodules of M form a complete lattice w.r.t. inclusion

Proposition 2.1. *1. If* $L \supseteq M \supseteq N$ *are* A-modules, then

$$(L/N)/(M/N) \cong L/M$$

2. If M_1, M_2 are submodules of M, then

$$(M_1 + M_2)/M_1 \cong M_2/(M_1 \cap M_2)$$

- *Proof.* 1. Define $\theta: L/N \to L/M$ by $\theta(x+N) = x+M$. Then θ is a well-defined A-module homomorphism of L/N onto L/M, and its kernel is M/N;
 - 2. The composite homomorphism $M_2\to M_1+M_2\to (M_1+M_2)/M_1$ is surjective, and its kernel is $M_1\cap M_2$

We cannot in general define the **product** of two submodules, but we can define the product $\mathfrak{a}M$ where \mathfrak{a} is an ideal and M an A-module; it is the set of all finite sums $\sum a_i x_i$ with $a_i \in \mathfrak{a}$, $x_i \in M$ and is a submodule of M

If N,P are submodule of M, we define (N:P) to be the set of all $a \in A$ s.t. $aP \subseteq N$; it is an **ideal** of A. In particular, (0:M) is the set of all $a \in A$ s.t. aM = 0; this ideal is called the **annihilator** of M and is also denoted by $\mathrm{Ann}(M)$. If $\mathfrak{a} \subseteq \mathrm{Ann}(M)$, we may regard M as an A/\mathfrak{a} -module as follows: if $\overline{x} \in A/\mathfrak{a}$ is represented by $x \in A$, define $\overline{x}m$ to be xm

An A-module is **faithful** if Ann(M) = 0. If $Ann(M) = \mathfrak{a}$, then M is faithful as an A/\mathfrak{a} -module

Exercise 2.0.1. 1.
$$Ann(M + N) = Ann(M) \cap Ann(N)$$

2.
$$(N:P) = Ann((N+P)/N)$$

Proof. 2.
$$a((N+P)/N) = 0$$
 iff $a(N+P) \subseteq N$ iff $aP \subseteq N$

If $x \in M$, the set of all multiples ax $(a \in A)$ is a submodule of M, denoted by Ax or x. If $M = \sum_{i \in I} Ax_i$, the x_i are said to be a **set of generators** of M. An A-module is said to be **finitely generated** if it has a finite set of generators

Direct Sum and Product

If M,N are A-modules, their **direct sum** $M \oplus N$ is the set of all pairs (x,y) with $x \in M$, $y \in N$. This is an A-module if we define addition and scalar multiplication in the obvious way:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $a(x, y) = (ax, ay)$

More generally, if $(M_i)_{i\in I}$ is any family of A-modules, we can define their **direct sum** $\bigoplus_{i\in I} M_i$; its elements are families $(x_i)_{i\in I}$ s.t. $x_i\in M_i$ for each $i\in I$ and almost all x_i are 0. If we drop the restriction on the number of non-zero x's we have the **direct product** $\prod_{i\in IM_i}$.

Suppose that the ring A is a direct product $\prod_{i=1}^{n} A_i$. Then the set of all elements of A of the form

$$(0, \ldots, 0, a_i, 0, \ldots, 0)$$

with $a_i \in A_i$ is an **ideal** \mathfrak{a}_i of A. The ring A, considered as an A-module, is the direct sum of the ideals $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$. Conversely, given a module decomposition

$$A = \mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_n$$

of A as a direct sum of ideals, we have

$$A\cong\prod_{i=1}^n(A/\mathfrak{b}_i)$$

where $\mathfrak{b}_i=\oplus_{j\neq i}\mathfrak{a}_j$. Each ideal \mathfrak{a}_i is a ring (isomorphic to A/\mathfrak{b}_i). The identity element e_i of \mathfrak{a}_i is an idempotent in A, and $\mathfrak{a}_i=(e_i)$

Finitely Generated Modules

A free A-module is one which is isomorphic to an A-module of the form $\bigoplus_{i\in I} M_i$, where each $M_i\cong A$ (as an A-module). The notation $A^{(I)}$ is sometimes used. A finite generated free A-module is therefore isomorphic to $A\oplus\cdots\oplus A$ (n summands), which is denoted by A^n . (Conventionally, A^0 is the zero module, denoted by 0)

Proposition 2.2. M is a finitely generated A-module iff M is isomorphic a quotient of A^n for some integer n > 0

Proof. \Rightarrow . Let x_1, \ldots, x_n generate M. Define $\phi: A^n \to M$ by $\phi(a_1, \ldots, a_n) = a_1x_1 + \cdots + a_nx_n$. Then ϕ is an A-module homomorphism onto M, and therefore $M \cong A^n/\ker(\phi)$

 \Leftarrow . We have an A-module homomorphism ϕ of A^n onto M. If $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$ (the 1 being in the ith place), then the e_i generate A^n , hence the $\phi(e_i)$ generate M

Proposition 2.3. Let M be a finitely generated A-module, let $\mathfrak a$ be an ideal of A, and let ϕ be an A-module endomorphism of M s.t. $\phi(M) \subseteq \mathfrak a M$ and let $\psi: A \to \operatorname{End}_A(M)$ be the natural morphism. Then ϕ satisfies an equation of the form

$$\phi^{n} + \psi(a_{1})\phi^{n-1} + \dots + \psi(a_{n}) = 0$$

where the $a_i \in \mathfrak{a}$.

Proof. Let x_1,\dots,x_n be a set of generators of M. Then each $\phi(x_i)\in\mathfrak{a}M$, so that we have to say $\phi(x_i)=\sum_{j=1}^n a_{ij}x_j$ $(1\leq i\leq n;a_{ij}\in\mathfrak{a})$, i.e.,

$$\sum_{j=1}^{n} (\delta_{ij}\phi - a_{ij})x_j = 0$$

where δ_{ij} is the Kronecker delta. By multiplying on the left by the adjoint of the matrix $(\delta_{ij}\phi-a_{ij})$ it follows that $\det(\delta_{ij}\phi-a_{ij})$ annihilates each x_i , hence is the zero endomorphism of M. Expanding out the determinant, we have an equation of the required form

Explanation Consider the commutative ring $R = A[\phi] \subset \operatorname{End}_A(M)$ generated by ϕ ; then R acts on M, and thus $M_n(R)$ acts M^n . The equations

$$\phi(x_j) = \sum_{i=1}^n a_{ij} x_i$$

for $j=1,\ldots,n$ can be reinterpreted with the action of $M_n(R)$ on M^n : write

$$B = \begin{pmatrix} a_{11} - \phi & a_{12} & a_{13} & \dots \\ a_{21} & a_{22} - \phi & a_{23} & \dots \\ a_{31} & a_{32} & a_{33} - \phi & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \in M_n(R) \quad \text{ and } \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in M^n$$

Then the n equations we wrote are equivalent to

$$BX = 0$$

Since R is commutative, we have

$$Adj(B) \times B = det(B)I_n = B \times Adj(B)$$

which is an equation which holds in $M_n(R)$ (NEED TO VERIFY). If we multiply the previous equation on the left by $\mathrm{Adj}(B)$, we get

$$0 = \operatorname{Adj}(B)BX = \begin{pmatrix} \operatorname{det}(B) & & & \\ & \operatorname{det}(B) & & \\ & & \ddots & \\ & & \operatorname{det}(B) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \operatorname{det}(B)x_1 \\ \operatorname{det}(B)x_2 \\ \vdots \\ \operatorname{det}(B)x_n \end{pmatrix}$$

Since the x_i generate M, this is equivalent to say that det(B), which is an element of R, hence an endomorphism of M, is the zero endomorphism of M.

The determinant $\det(B) \in R \subset \operatorname{End}_A(M)$ can be calculated by the standard formula

$$\det(B) = \sum_{\sigma \in \mathfrak{S}_n} (-1)^{\sigma} \prod_{j=1}^n B_{\sigma(j),j}$$

which is polynomial in ϕ of degree n with coefficients in the ideal \mathfrak{a} . The coefficient in front of ϕ^n is $(-1)^n$ and since $\det(B)=0$, we get

$$\phi^n+a_1\phi^{n-1}+\cdots+a_{n-1}\phi+a_nid_M=0$$

Corollary 2.4. Let M be a finitely generated A-module and let $\mathfrak a$ be an ideal of A s.t. $\mathfrak a M = M$. Then there exists $x \equiv 1 \mod \mathfrak a$ s.t. xM = 0

Proof. Take
$$\phi=\operatorname{id}$$
, then $1+a_1+\cdots+a_n=0\in\operatorname{End}_A(M)$. Let $x=1+a_1+\cdots+a_n\in\mathfrak{a}$ by 2.3

Proposition 2.5 (Nakayama's lemma). Let M be a finitely generated A-module and $\mathfrak a$ an ideal of A contained in the Jacobson radical $\mathfrak R$ of A. Then $\mathfrak a M = M$ implies M=0

First Proof. By 2.4 we have xM=0 for some $x\equiv 1 \mod \Re$. By 1.9 x is a unit in A, hence $M=x^{-1}xM=0$

Second Proof. Suppose $M \neq 0$, and let u_1, \ldots, u_n be a minimal set of generators of M. Then $u_n \in \mathfrak{a} M$ hence we have an equation of the form $u_n = a_1 u_1 + \cdots + a_n u_n$ with the $a_i \in \mathfrak{a}$. Hence

$$(1-a_n)u_n = a_1u_1 + \dots + a_{n-1}u_{n-1}$$

Since $a_n \in \mathfrak{R}$, it follows from 1.9 that $1-a_n$ is a unit in A. Hence u_n belongs to the submodule of M generated by u_1, \dots, u_{n-1} , a contradiction \square

Corollary 2.6. Let M be a finitely generated A-module, N is a submodule of M, $\mathfrak{a} \subseteq \mathfrak{R}$ an ideal. Then $M = \mathfrak{a}M + N \Rightarrow M = N$

Proof. Apply 2.5 to
$$M/N$$
, observing that $\mathfrak{a}(M/N) = \mathfrak{a}M/N = (\mathfrak{a}M + N)/N$. Thus $M/N = \mathfrak{a}(M/N)$ and thus $M/N = 0$.

Let A be a local ring, $\mathfrak m$ its maximal ideal, $k=A/\mathfrak m$ its residue field. Let M be a finitely generated A-module. $M/\mathfrak m M$ is annihilated by $\mathfrak m$, hence is naturally an $A/\mathfrak m$ -module, i.e., a k-vector space, and as such is finite-dimensional

Proposition 2.7. Let x_i $(1 \le i \le n)$ be elements of M whose images in $M/\mathfrak{m}M$ form a basis of this vector space. Then the x_i generate M

Proof. Let N be the submodule of M generated by the x_i . Then the composite map $N \to M \to M/\mathfrak{m}M$ maps N onto $M/\mathfrak{m}M$, hence $N + \mathfrak{m}M = M$, hence N = M by 2.6

If
$$A = C/B$$
, then $A + B = C$

Exact Sequences

A sequence of A-modules and A-homomorphisms

$$\cdots \longrightarrow M_{i-1} \stackrel{f_i}{\longrightarrow} M_i \stackrel{f_{i+1}}{\longrightarrow} M_{i+1} \longrightarrow \cdots$$

is said to be **exact at** M_i if $im(f_i) = ker(f_{i+1})$. The sequence is **exact** if it is exact at each M_i . In particular

- 1. $0 \to M' \xrightarrow{f} M$ is exact $\Leftrightarrow f$ is injective
- 2. $M \xrightarrow{g} M'' \to 0$ is exact $\Leftrightarrow g$ is surjective
- 3. $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ is exact $\Leftrightarrow f$ is injective, g is surjective and g induces an isomorphism of $\operatorname{coker}(f) = M/f(M')$ onto M''. $M'' \cong M/\ker(g) = M/\operatorname{im}(f)$

A sequence of type 3 is called a **short exact sequence**. Any long exact sequence can be split up into short exact sequences: if $N_i = \operatorname{im}(f_i) = \ker(f_{i+1})$, we have short exact sequences $0 \to N_i \to M_i \to N_{i+1} \to 0$ for each i

Proposition 2.8. 1. Let

$$M' \xrightarrow{u} M \xrightarrow{v} M'' \longrightarrow 0$$

be a sequence of A-modules and homomorphisms. Then the sequence is exact \Leftrightarrow for all A-modules N, the sequence

$$0 \longrightarrow \operatorname{Hom}(M'',N) \stackrel{\overline{v}}{\longrightarrow} \operatorname{Hom}(M,N) \stackrel{\overline{u}}{\longrightarrow} \operatorname{Hom}(M',N)$$

is exact

2. Let

$$0 \, \longrightarrow \, N' \, \stackrel{u}{\longrightarrow} \, N \, \stackrel{v}{\longrightarrow} \, N''$$

be a sequence of A-modules and homomorphisms. Then the sequence is exact \Leftrightarrow for all A-modules M, the sequence

$$0 \longrightarrow \operatorname{Hom}(M,N') \stackrel{\overline{u}}{\longrightarrow} \operatorname{Hom}(M,N) \stackrel{\overline{v}}{\longrightarrow} \operatorname{Hom}(M,N'')$$

$$Proof. \qquad \qquad M' \stackrel{u}{\longrightarrow} M \stackrel{v}{\longrightarrow} M'' \longrightarrow 0$$

Need to modify a bit

Proposition 2.9. *Let*

$$0 \longrightarrow M' \xrightarrow{u} M \xrightarrow{v} M'' \longrightarrow 0$$

$$f' \downarrow \qquad f \downarrow \qquad \downarrow f''$$

$$0 \longrightarrow N' \xrightarrow{u'} N \xrightarrow{v'} N'' \longrightarrow 0$$

be a commutative diagram of A-modules and homomorphisms, with the rows exact. Then there exists an exact sequence

$$0 \longrightarrow \ker(f') \xrightarrow{\bar{u}} \ker(f) \xrightarrow{\bar{v}} \ker(f'') \xrightarrow{d}$$
$$\operatorname{coker}(f') \xrightarrow{\bar{u}'} \operatorname{coker}(f) \xrightarrow{\bar{v}'} \operatorname{coker}(f'') \longrightarrow 0$$

Proof. $\bar{u} = u \upharpoonright \ker(f')$. For any $m \in \ker(f')$, $f(\bar{u}(m)) = fu(m) = u'f'(m) = 0$. Thus $\bar{u}(m) \in \ker(f)$. \bar{u} is injective as u is.

 $ar v=v\upharpoonright \ker(f).$ For any $m\in \operatorname{im}(ar u)=u(\ker(f'))$, $\operatorname{im}(u)=\ker(v).$ $\ker(ar v)=\ker(f)\cap\ker(v).$ $\operatorname{im}(ar u)=u(\ker(f')).$ $x\in\ker(ar v)\Leftrightarrow x\in\ker(v)\cap\ker(f)\Leftrightarrow x\in\operatorname{im}(u)\cap\ker(f)\Leftrightarrow x\in\operatorname{im}(ar u)$

The **boundary homomorphism** d is defined as follows: if $x'' \in \ker(f'')$, we have x'' = v(x) for some $x \in M$ and v'(f(x)) = f''(v(x)), hence $f(x) \in \ker(v') = \operatorname{im}(u')$, so that f(x) = u'(y') for some $y' \in N'$. Then d(x'') is defined to be the image of y' in $\operatorname{coker}(f')$.

Suppose there is x_1,x_2 s.t. $x''=v(x_1)=v(x_2).$ Then $f(x_1)=u'(y_1')$ and $f(x_2)=u'(y_2').$

$$\begin{split} y_1' + \mathrm{im}(f') &= y_2' + \mathrm{im}(f') \Leftrightarrow \exists x_0' \in M' \ y_1' - y_2' = f(x_0') \\ &\Leftrightarrow \exists x_0' \in M' \ u'^{-1}(f(x_1)) - u'^{-1}f(x_2) = f'(x_0') \\ &\Leftrightarrow \exists x_0' \in M' \ f(x_1 - x_2) = u'f'(x_0') = fu(x_0') \\ &\Leftrightarrow \exists x_0' \in M' \ f(x_1 - x_2 - u(x_0')) = 0 \\ &\Leftrightarrow \exists y \in \mathrm{im}(u) = \ker(v) \ x_1 - x_2 - y \in \ker(f) \end{split}$$

But as $x_1-x_2\in \ker(v)$, we can simply take $y=x_1-x_2$

Define \bar{u}' as $x'+\operatorname{im}(f')\mapsto u'(x')+\operatorname{im}(f)$. For any $x''\in M''$, then x''=v(x). Suppose f(x)=u'(y'). Then $\bar{u}'(y'+\operatorname{im}(f'))=u'(y')+\operatorname{im}(f)=f(x)+\operatorname{im}(f)=\operatorname{im}(f)$. Hence $\operatorname{im}(d)=\ker(\bar{u}')$.

Let C be a class of A-modules and let λ be a function on C with values in $\mathbb Z$ (or, more generally, with values in an abelian group G). The function λ is **additive** if, for each short exact sequence in which all the terms belongs to C, we have $\lambda(M') - \lambda(M) + \lambda(M'') = 0$

Example 2.2. Let A be a field k, and let C be the class of all finite-dimensional k-vector spaces V. Then $V \mapsto \dim V$ is an additive function on V

Proposition 2.10. Let $0 \to M_0 \to M_1 \to \cdots \to M_n \to 0$ be an exact sequence of A-modules where all the modules M_i and the kernels of all the homomorphisms belong to C. Then for any additive function λ on C we have

$$\sum_{i=0}^{n} (-1)^i \lambda(M_i) = 0$$

Proof. Split up the sequence into short exact sequences

$$0 \to N_i \to M_i \to N_{i+1} \to 0$$

$$(N_0=N_{n+1}=0 \text{ and } \lambda(M_0)=\lambda(M_n)=2\lambda(0)).$$
 Then we have $\lambda(M_i)=\lambda(N_i)+\lambda(N_{i+1}).$

Tensor Product of Modules

Let M, N, P be three A-modules. A mapping $f: M \times N \to P$ is said to be A-bilinear if for each $x \in M$ the mapping $y \mapsto f(x,y)$ of N into P is A-linear, and for each $y \in N$ the mapping $x \mapsto f(x,y)$ of M into P is A-linear

We shall construct an A-module T, called the **tensor product** of M and N, with the property that the A-bilinear mappings $M \times N \to P$ are in a natural one-to-one correspondence with the A-linear mappings $T \to P$, for all A-modules P. More precisely:

Proposition 2.11. Let M, N be A-modules. Then there exists a pair (T, g) consisting of an A-module T and an A-bilinear mapping $g: M \times N \to T$, with the following property:

Given any A-module P and any A-bilinear mapping $f: M \times N \to P$, there exists a unique A-linear mapping $f': T \to P$ s.t. $f = f' \circ g$

Moreover, if (T, g) and (T', g') are two pairs with this property, then there is a unique isomorphism $j: T \to T'$ s.t. $j \circ g = g'$

- *Proof.* 1. Uniqueness. Replacing (P, f) by (T', g') we get a unique $j: T \to T'$ s.t. $g' = j \circ g$.
 - 2. Existence. Let C denote the free A-module $A^{(M\times N)}$. The elements of C are formal linear combinations of elements of $M\times N$ with coefficients in A, i.e., they are expressions of the form $\sum_{i=1}^n a_i\cdot(x_i,y_i)$ ($a_i\in A,x_i\in M,y_i\in N$) here $(x_i,y_i)=(0,\dots,0,1,0,\dots,0)$ where (x_i,y_i) th position is not 0 i think. And direct sum only admits finite sum

Let D be the submodule of C generated by all elements of C of the following types:

$$(x + x', y) - (x, y) - (x', y)$$

$$(x, y + y') - (x, y) - (x, y')$$

$$(ax, y) - a \cdot (x, y)$$

$$(x, ay) - a \cdot (x, y)$$

Let T=C/D. For each basis element (x,y) of C, let $x\otimes y$ denote its image in T. Then T is generated by the elements of the form $x\otimes y$ and from our definition we have

$$(x+x') \otimes y = x \otimes y + x' \otimes y, \quad x \otimes (y+y') = x \otimes y + x \otimes y'$$

 $(ax) \otimes y = x \otimes (ay) = a(x \otimes y)$

Equivalently, the mapping $g:M\times N\to T$ defined by $g(x,y)=x\otimes y$ is A-bilinear

Any map f of $M \times N$ into an A-module P extends by linearity to an A-module homomorphism $\bar{f}: C \to P$ $\bar{f}(\sum_{i=1}^n a_i \cdot (x_i, y_i)) = \sum_{i=1}^n a_i \cdot f(x_i, y_i)$ Suppose in particular that f is A-bilinear. Then, from the definitions, \bar{f} vanishes on all the generators of D, hence on the whole of D, and therefore induces a well-defined A-homomorphism f' of T = C/D into P s.t. $f'(x \otimes y) = f(x, y)$

- *Remark.* 1. The module T constructed above is called the **tensor product** of M and N, and is denoted by $M \otimes_A N$. It is generated as an A-module by the "products" $x \otimes y$. If $(x_i)_{i \in I}, (y_i)_{j \in J}$ are families of generators of M, N respectively, then the elements $x_i \otimes y_j$ generated $M \otimes N$
 - 2. The notation $x \otimes y$ is inherently ambiguous unless we specify the tensor product to which it belongs. Let M', N' be submodules of M, N respectively, and let $x \in M'$ and $y \in N'$. Then it can happen that $x \otimes y$ as an element of $M \otimes N$ is zero whilst $x \otimes y$ as an element of $M' \otimes N'$ is non-zero. For example, take $A = \mathbb{Z}, M = \mathbb{Z}, N = \mathbb{Z}/2\mathbb{Z}$, and let M' be the submodule $2\mathbb{Z}$ of \mathbb{Z} , whilst N' = N. Let x be the non-zero element of N and consider $2 \otimes x$. As an element of $M \otimes N$, it is zero because $2 \otimes x = 1 \otimes 2x = 1 \otimes 0 = 0$. But as an element of $M' \otimes N'$ it is not zero

Corollary 2.12. Let $x_i \in M$, $y_i \in N$ be s.t. $\sum x_i \otimes y_i = 0$ in $M \otimes N$. Then there exist finitely generated submodules M_0 of M and N_0 of N s.t. $\sum x_i \otimes y_i = 0$ in $M_0 \otimes N_0$

Proof. If $\sum x_i \otimes y_i = 0$, then $\sum (x_i, y_i) \in D$ and therefore $\sum (x_i, y_i)$ is a finite sum of generators of D. Let M_0 be the submodule of M generated by the x_i and all the elements of M which occur as first coordinates in these generators of D, and define N_0 similarly. Then $\sum x_i \otimes y_i = 0$ as an element of $M_0 \otimes N_0$

- *Remark.* 3. We shall never again need to use the construction of the tensor product given in 2.11. What is essential to keep in mind is the defining property of the tensor product
 - 4. Instead of starting with bilinear mappings we could have started with multilinear mappings $f: M_1 \times \cdots \times M_r \to P$ defined in the same way.

Proposition 2.13. Let M_1, \ldots, M_r be A-modules. Then there is a pair (T,g) consisting of an A-module T and an A-multilinear mapping $g: M_1 \times \cdots \times M_r \to T$ with the following property:

Given any A-module P and any A-multilinear mapping $f: M_1 \times \cdots \times M_r \to T$, there exists a unique A-homomorphism $f': T \to P$ s.t. $f' \circ g = f$

Moreover, if (T,g) and (T',g') are two pairs with this property, then there exists a unique isomorphism $j:T\to T'$ s.t. $j\circ g=g'$

Proposition 2.14. Let M, N, P be A-modules. Then there exist unique isomorphisms

- 1. $M \otimes N \to N \otimes M$
- 2. $(M \otimes N) \otimes P \to M \otimes (N \otimes P) \to M \otimes N \otimes P$
- 3. $(M \oplus N) \otimes P \to (M \otimes P) \oplus (N \otimes P)$
- 4. $A \otimes M \rightarrow M$
- s.t., respectively
- 1. $x \otimes y \mapsto y \otimes x$
- 2. $(x \otimes y) \otimes z \mapsto x \otimes (y \otimes z) \to x \otimes y \otimes z$
- 3. $(x,y) \otimes z \mapsto (x \otimes z, y \otimes z)$
- 4. $a \otimes x \mapsto ax$

Proof. 1. commute

2. We shall construct homomorphisms

$$(M\otimes N)\otimes P\xrightarrow{f} M\otimes N\otimes P\xrightarrow{g} (M\otimes N)\otimes P$$

s.t. $f((x\otimes y)\otimes z)=x\otimes y\otimes z$ and $g(x\otimes y\otimes z)=(x\otimes y)\otimes z$ for all $x\in M,y\in N,z\in P$

To construct f, fix the element $z \in P$. The mapping $(x,y) \mapsto x \otimes y \otimes z$ is bilinear and therefore induces a homomorphism $f_z: M \otimes N \to M \otimes N \otimes P$. Next consider the mapping $(t,z) \mapsto f_z(t)$ of $(M \otimes N) \times P$ into $M \otimes N \otimes P$. This is bilinear in t and z and therefore induces a homomorphism

$$f: (M \otimes N) \otimes P \to M \otimes N \otimes P$$

s.t.
$$f((x \otimes y) \otimes z) = x \otimes y \otimes z$$

To construct g, consider the mapping $(x,y,z)\mapsto (x\otimes y)\otimes z$ of $M\times N\times P$ into $(M\otimes N)\otimes P$. This is linear in each variable and therefore induces a homomorphism

$$q: M \otimes N \otimes P \to (M \otimes N) \otimes P$$

s.t.
$$g(x \otimes y \otimes z) = (x \otimes y) \otimes z$$

Clearly $f \circ g$ and $g \circ f$ are identity, hence f and g are isomorphisms

3. Show For any $p \in P$, f(m,n,ap) = af(m,n,p). For any $(m,n) \in M \times N$, f(am,an,p) = af(m,n,p).

Define

$$g_1: M \otimes P \to (M \oplus N) \otimes P$$

as
$$g_1(m \otimes p) = (m, 0) \otimes p$$

4. Let $f:a\otimes m\mapsto am$ and $g:m\mapsto 1\otimes m$. Then $gf(a\otimes m)=g(am)=1\otimes am=a\otimes m$ and $fg(m)=f(1\otimes m)=m$. Hence we get an isomorphism

Exercise 2.0.2. Let A,B be rings, let M be an A-module, P a B-module and N an (A,B)-bimodule (that is, N is simultaneously an A-module and a B-module and the two structures are compatible in the sense that a(xb)=(ax)b for all $a\in A,b\in B,x\in N$). Then $M\otimes_A N$ is naturally a B-module, $N\otimes_B P$ an A-module and we have

$$(M \otimes_A N) \otimes_B P \cong M \otimes_A (N \otimes_B P)$$

Proof. Define $b: M \times N \to M \otimes_A N$ by $(m,n) \mapsto m \otimes (nb)$. Fix m, we have $b_m(n) = m \otimes_A (nb)$. Then we have

$$\begin{split} b_m(an) &= m \otimes_A ((an)b) = m \otimes_A (a(nb)) = a(m \otimes_A (nb)) = ab_m(n) \\ b_m(n+n') &= m \otimes_A ((n+n')b) = m \otimes_A (nb+n'b) \\ &= m \otimes_A (nb) + m \times_A (n'b) = b_m(n) + b_m(n') \end{split}$$

Hence b is bilinear and we have a unique linear injection $\bar{b}: M \otimes_A N \to M \otimes_A N$ with $\bar{b}(m \otimes_A n) = m \otimes_A (nb)$. $(\bar{b} + \bar{b}')(m \otimes_A n) = m \otimes_A (n(b+b')) = m \otimes_A (nb) + m \otimes_A (nb') = \bar{b}(m \otimes_A n) + \bar{b}'(m \otimes_A n)$

Similarly, $N \otimes_B P$ is an A-module

First we construct homomorphism $f:(M\otimes_A N\otimes_B P\to M\otimes_A (N\otimes_B P)$ which contains two phases

First, we fix an element $z \in P$ and therefore $g_z: (x,y) \mapsto x \otimes_A (y \otimes_B z)$ is bilinear.

$$\begin{split} g_z(x+x',y) &= (x+x') \otimes_A (y \otimes_B z) = x \otimes_A (y \otimes_B z) + x' \otimes_A (y \otimes_B z) \\ &= g_1(x,y) + g_1(x',y) \\ g_z(x,y+y') &= x \otimes_A ((y+y') \otimes_B z) = x \otimes_A (y \otimes_B z + y' \otimes_B z) \\ &= x \otimes_A (y \otimes_B z) + x \otimes_A (y' \otimes_B z) = g_1(x,y) + g_1(x,y') \end{split}$$

Thus we have a unique linear map $\bar{g}_z: M \otimes_A N \to M \otimes_A (N \otimes_B P)$. Let $g(x \otimes_A y, z) = g_z(x \otimes_A y)$. g is bilinear as

$$\begin{split} g(x \otimes_A y, z + z') &= g_{z+z'}(x \otimes_A y) = x \otimes_A (y \otimes_B (z + z')) \\ &= x \otimes_A (y \otimes_B z + y \otimes_B z') \\ &= g(x \otimes_A y, z) + g(x \otimes_A y, z') \\ g(x \otimes_A y + x' \otimes_A y', z) &= g_z(x \otimes_A y + x' \otimes_A y') \\ &= g_z(x \otimes_A y) + g_z(x' \otimes_A y') \\ &= g(x \otimes_A y) + g(x' \otimes_A y') \end{split}$$

To construct $h:M\otimes_A(N\otimes_BP)\to (M\otimes_AN)\otimes_BP$, fix M and do similar things

Let $f:M\to M'$, $g:N\to N'$ be homomorphisms of A-modules. Define $h:M\times N\to M'\otimes N'$ by $h(x,y)=f(x)\otimes f(y)$. It is easily checked that h is A-bilinear and therefore induces an A-module homomorphism

$$f \otimes g : M \otimes N \to M' \otimes N'$$

s.t.

$$(f \otimes g)(x \otimes y) = f(x) \otimes g(y) \quad (x \in M, y \in N)$$

Let $f':M'\to M''$ and $g':N'\to N''$ be homomorphisms of A-modules. Then clearly the homomorphism $(f'\circ f)\otimes (g'\circ g)$ and $(f'\otimes g')\circ (f\otimes g)$ agree on all elements of the form $x\otimes y\in M\otimes N$. Since these elements generates $M\otimes N$, it follows that

$$(f' \circ f) \otimes (g' \circ g) = (f' \otimes g') \circ (f \otimes g)$$

Restriction and Extensions of Scalars

Let $f:A\to B$ be a homomorphism of rings and let N be a B-module. Then N has an A-module structure defined as follows: if $a\in A$ and $x\in N$, then ax is defined be to f(a)x. This A-module is said to be obtained from N by **restriction of scalars**. In particular, f defines in this way an A-module structure on B

Proposition 2.15. Suppose N is finitely generated as a B-module and that B is finitely generated as an A-module. Then N is finitely generated as an A-module

Proof. Let y_1, \ldots, y_n generate N over B and let x_1, \ldots, x_m generated B as an A-module. Then the mn products x_iy_i generate N over A

Now let M be an A-module. Since, as we have just seen, B can be regarded as an A-module, we can form the A-module $M_B = B \otimes_A M$. In fact, M_B carries a B-module structure s.t. $b(b' \otimes x) = bb' \otimes x$ for all $b, b' \in B$ and all $x \in M$. The B-module M_B is said to be obtained from M by **extension of scalars**

Proposition 2.16. If M is finitely generated as an A-module, then M_B is finitely generated as a B-module

Proof. If x_1, \dots, x_m generate M over A, then the $1 \otimes x_i$ generated M_B over B

Exactness Properties of the Tensor Product

Let $f: M \times N \to P$ be an A-bilinear mapping. For each $x \in M$ the mapping $y \mapsto f(x,y)$ of N into P is A-linear, hence f gives rise to a mapping $M \to \operatorname{Hom}(N,P)$ which is A-linear because f is linear in the variable x. Conversely any A-homomorphism $\phi: M \to \operatorname{Hom}_A(N,P)$ defines a bilinear map, namely $(x,y) \mapsto \phi(x)(y)$. Define $f(x,y) = \phi(x)(y)$. Then $f(x+x',y) = \phi(x+x')(y)$. As ϕ is A-linear, $\phi(x+x') = \phi(x) + \phi(x')$. Then as $\operatorname{Hom}_A(N,P)$ is an A-module, $(\phi(x) + \phi(x'))(y) = \phi(x)(y) + \phi(x')(y)$. $f(x,y+y') = \phi(x)(y+y') = \phi(x)(y) + \phi(x')(y)$ since $\phi(x)$ is A-linear

Hence the set S of A-bilinear mappings $M \times N \to P$ is in natural one-to-one correspondence with $\operatorname{Hom}(M \otimes N, P)$, by the defining property of the tensor product. Hence we have a canonical isomorphism

$$\operatorname{Hom}(M \otimes N, P) \cong \operatorname{Hom}(M, \operatorname{Hom}(N, P)) \tag{1}$$

Proposition 2.17. *Let*

$$M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0 \tag{*}$$

be an exact sequence of A-modules and homomorphisms, and let N be any A-module. Then the sequence

$$M' \otimes N \xrightarrow{f \otimes 1} M \otimes N \xrightarrow{g \otimes 1} M'' \otimes N \to 0$$
 $(\star \star)$

(where 1 denotes the identity mapping on N) is exact

Proof. Let E denote the sequence (\star) and let $E \otimes N$ denote the sequences $(\star\star)$. Let P be any A-module. Since (\star) is exact, the sequence $\operatorname{Hom}(E,\operatorname{Hom}(N,P))$

$$0 \longrightarrow \operatorname{Hom}(M'',\operatorname{Hom}(N,P)) \stackrel{\bar{g}}{\longrightarrow} \operatorname{Hom}(M,\operatorname{Hom}(N,P)) \stackrel{\bar{f}}{\longrightarrow} \operatorname{Hom}(M',\operatorname{Hom}(N,P))$$

is exact by 2.8. Hence by (1) the sequence ${\rm Hom}(E\otimes N,P)$ is exact. By 2.8 again, it follows that $E\otimes N$ exact

- Remark. 1. Let $T(M)=M\otimes N$ and let $U(P)=\operatorname{Hom}(N,P)$. Then (1) takes the form $\operatorname{Hom}(T(M),P)=\operatorname{Hom}(M,U(P))$ for all A-modules M and P.
 - 2. It is **not** in general true that, if $M' \to M \to M''$ is an exact sequence of *A*-modules and homomorphisms, the sequence $M' \otimes N \to M \otimes N \to M'' \otimes N$ is exact

Example 2.3. Take $A=\mathbb{Z}$ and consider the exact sequence $0\to\mathbb{Z}\stackrel{f}{\to}\mathbb{Z}$, where f(2)=2x for all $x\in\mathbb{Z}$. If we tensor with $N=\mathbb{Z}/2\mathbb{Z}$, the sequence $0\to\mathbb{Z}\otimes N\stackrel{f\otimes 1}{\longrightarrow}\mathbb{Z}\otimes N$ is **not** exact, because for any $x\otimes y\in\mathbb{Z}\otimes N$, we have

$$(f \otimes 1)(x \otimes y) = 2x \otimes y = x \otimes 2y = x \otimes 0 = 0$$

so that $f \otimes 1$ is the zero mapping, whereas $\mathbb{Z} \otimes N \neq 0$

The functor $T_N: M\mapsto M\otimes_A N$ on the category of A-modules and homomorphisms is therefore not in general exact. If T_N is exact, that is to say if tensoring with N transforms all exact sequences into exact sequences, then N is said to be a **flat** A-module

Proposition 2.18. *For an A-module N, T.F.A.E.:*

- 1. N is flat
- 2. If $0 \to M' \to M \to M'' \to 0$ is any exact sequence of A-modules, the tensored sequence $0 \to M' \otimes N \to M \otimes N \to M'' \otimes N \to 0$ is exact
- 3. If $f: M' \to M$ is injective, then $f \otimes 1: M' \otimes N \to M \otimes N$ is injective
- 4. If $f:M'\to M$ is injective and M,M' are finitely generated, then $f\otimes 1:M'\otimes N\to M\otimes N$ is injective

Proof. $1 \rightarrow 2$ by definition.

 $2 \rightarrow 1$. Given a exact sequence

$$\cdots \longrightarrow M_{i-1} \stackrel{f_i}{\longrightarrow} M_i \stackrel{f_{i+1}}{\longrightarrow} M_{i+1} \longrightarrow \cdots$$

Consider the exact sequence

$$0 \longrightarrow \operatorname{im}(f_i) \stackrel{\operatorname{in}}{\longleftarrow} M_i \stackrel{f_{i+1}}{\longrightarrow} \operatorname{im}(f_{i+1}) \longrightarrow 0$$

Then

$$0 \longrightarrow \operatorname{im}(f_i) \otimes N \xrightarrow{\operatorname{in} \otimes 1} M_i \otimes N \xrightarrow{f_{i+1} \otimes 1} \operatorname{im}(f_{i+1}) \otimes N \longrightarrow 0$$

Then $\operatorname{im}(\operatorname{in}\otimes 1)=\ker(f_{i+1}\otimes 1)$. But $\operatorname{im}(\operatorname{in}\otimes 1)=\operatorname{im}(f_i)\otimes N=\operatorname{im}(f_i\otimes 1)$. Thus $\operatorname{im}(f_i\otimes 1)=\ker(f_{i+1}\otimes 1)$.

- $2 \rightarrow 3$. Consider $0 \rightarrow M' \stackrel{f}{\rightarrow} M$
- $3 \to 2$. 3 says that if $0 \to M' \to M$ is exact, then $0 \to M' \otimes N \to M \otimes N$ is exact. Combine this and 2.17
 - $3 \rightarrow 4$. Obvious

 $4 \to 3$. Let $f: M' \to M$ be injective and let $u = \sum x_i' \otimes y_i \in \ker(f \otimes 1)$, so that $\sum f(x_i') \otimes y_i = 0$ in $M \otimes N$. Let M_0' be the submodule of M' generated by the x_i' and let u_0 denote $\sum x_i' \otimes y_i$ as an element of $M_0' \otimes N$. By 2.12 there exists a finitely generated submodule M_0 of M containing $f(M_0')$ and s.t. $\sum f(x_i') \otimes y_i = 0$ as an element of $M_0 \otimes N$. If $f_0: M_0' \to M_0$ is the restriction of f, this means that $(f_0 \otimes 1)(u_0) = 0$. Since M_0 and M_0' are finitely generated, $f_0 \otimes 1$ is injective and therefore $u_0 = 0$, hence u = 0. \square

Exercise 2.0.3. If $f:A\to B$ is a ring homomorphism and M is a flat A-module, then $M_B=B\otimes_A M$ is a flat B-module

Proof. Note that B is a (A, B)-bimodule

Given B-modules N,N' and suppose $f:N'\to N$ is injective. $N'\otimes_B(B\otimes_A M)\to N\otimes_B(B\otimes_A M)$ is injective iff $(N'\otimes_B B)\otimes_A M\to (N\otimes_B B)\otimes_A M$ is injective (2.0.2) which is implied by $N'\otimes_B B\to N\otimes_B B$ is injective, but $N\otimes_B B\cong N$ by 2.14

Algebras

Let $f:A\to B$ be a ring homomorphism. If $a\in A$ and $b\in B$, define a product

$$ab = f(a)b$$

This definition of scalar multiplication makes the ring B into an A-module. Thus B has an A-module structure as well as a ring structure, and these two structures are compatible in a sense which the reader will be able to formulate for himself. The ring B, equipped with this A-module structure, is said to be A-algebra. Thus an A-algebra is, by definition, a ring B together with a ring homomorphism $f:A\to B$

- *Remark.* 1. If A is a field K (and $B \neq 0$) then f is injective by 1.2 and therefore K can be canonically identified with its image in B. Thus a K-algebra (K a field) is effectively a ring containing K as a subring
 - 2. Let A be any ring. Since A has an identify element there is a unique homomorphism of the ring of integers $\mathbb Z$ into A, namely $n\mapsto n\cdot 1$. Thus every ring is automatically a $\mathbb Z$ -algebra

Let $f:A\to B, g:A\to C$ be two ring homomorphisms. An A-algebra homomorphism $h:B\to C$ is a ring homomorphism which is also an A-module homomorphism. h is an A-algebra homomorphism iff $h\circ f=g$

A ring homomorphism $f:A\to B$ is **finite**, and B is a **finite** A-algebra, if B is finitely generated as an A-module. The homomorphism f is **of finite type**, and B is a **finitely-generated** A-algebra, if there exists a finite set of elements x_1,\ldots,x_n in B s.t. every element of B can be written as a polynomial in x_1,\ldots,x_n with coefficients in f(A); or equivalently if there is an A-algebra homomorphism from a polynomial ring $A[t_1,\ldots,t_n]$ onto B

A ring A is said to be **finitely generated** if it is finitely generated as a \mathbb{Z} -algebra. This means that there exist finitely many elements x_1,\dots,x_n in A s.t. every element of A can be written as a polynomial in the x_i with rational integer coefficients

Tensor Product of Algebras

Let B,C be two A-algebras, $f:A\to B$, $g:A\to C$ the corresponding homomorphisms. Since B and C are A-modules we may form their tensor product $D=B\otimes_A C$, which is an A-module. We shall now define a multiplication on D

Consider the mapping $B \times C \times B \times C \rightarrow D$ defined by

$$(b, c, b', c') \mapsto bb' \otimes cc'$$

This is *A*-linear in each factor and therefore, by 2.13, induces an *A*-module homomorphism

$$B \otimes C \otimes B \otimes C \to D$$

hence by 2.14 an A-module homomorphism

$$D\otimes D\to D$$

and this in turn by 2.11 corresponds to an A-bilinear mapping

$$\mu: D \times D \to D$$

which is s.t.

$$\mu(b \otimes c, b' \otimes c) = bb' \otimes cc$$

We have therefore defined a multiplication on the tensor product $D = B \otimes_A C$: for elements of the form $b \otimes c$ it is given by

$$(b \otimes c)(b' \otimes c') = bb' \otimes cc'$$

and in general by

$$\left(\sum_i (b_i \otimes c_i)\right) \left(\sum_j (b_j' \otimes c_j')\right) = \sum_{i,j} (b_i b_j' \otimes c_i c_j')$$

Check this multiplication D is a commutative ring, with identity element $1\otimes 1$

2.1 Exercises

Exercise 2.1.1. Show that $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = 0$ if m, n are coprime

Proof. As m and n are coprime, there is $u,s\in\mathbb{Z}$ s.t. um+sn=1, which means $u(m+n\mathbb{Z})=um+n\mathbb{Z}=1+n\mathbb{Z}$ and $s(n+m\mathbb{Z})=sn+m\mathbb{Z}=1+m\mathbb{Z}$. Hence Let $a=(1+m\mathbb{Z})\otimes_{\mathbb{Z}}(1+n\mathbb{Z})$, then $a=s(n+m\mathbb{Z})\otimes u(m+n\mathbb{Z})=usmna$ and hence (1-usmn)a=0. But $usmn\neq 0$, hence a=0 which is $(1+m\mathbb{Z})\otimes_{\mathbb{Z}}(1+n\mathbb{Z})=0$.

Thus for any
$$i, j \in \mathbb{Z}$$
, $(i+m\mathbb{Z}) \otimes (j+n\mathbb{Z}) = ij((1+m\mathbb{Z}) \otimes (1+n\mathbb{Z})) = 0$

Exercise 2.1.2. Let A be a ring, $\mathfrak a$ an ideal, M an A-module. Show that $(A/\mathfrak a) \otimes_A M$ is isomorphic to $M/\mathfrak a M$

Proof. As

$$0 \to \mathfrak{a} \to A \to A/\mathfrak{a} \to 0$$

is exact, we have exact sequence

$$\mathfrak{a} \otimes M \xrightarrow{j} A \otimes M \to (A/\mathfrak{a}) \otimes M \to 0$$

Hence

$$(A/\mathfrak{a}) \otimes M \cong (A \otimes M)/\operatorname{im} j \cong M/\operatorname{im} j \cong M/\mathfrak{a}M$$

Alternative way:

Define $f : \mathfrak{a} \times M \to \mathfrak{a}M$ by f(a,m) = am and $g : (A/\mathfrak{a}) \times M \to M/\mathfrak{a}M$ by $g(a + \mathfrak{a}, m) = am + \mathfrak{a}M$. Then f, g are both A-bilinear

Applying the Snake Lemma we get

$$0 \to \ker \bar{g} \to \operatorname{coker} \bar{f} = 0$$

Therefore $\ker \bar{g} = \{0\}$ and \bar{g} is injective. Given \bar{g} is surjective as well, then \bar{g} is an isomorphism

Exercise 2.1.3. Let A be a local ring, M and N finitely generated A-modules. Prove that if $M \otimes N = 0$, then M = 0 or N = 0

Proof. Let m be the maximal ideal, $k=A/\mathfrak{m}$ the residue field. Let $M_k=k\otimes_A M\cong M/\mathfrak{m}M$ by Exercise 2.1.2. By Nakayama's lemma 2.5, $M_k=0\Rightarrow M=0$. But $M\otimes_A N=0\Rightarrow (M\otimes_A N)_k=0\Rightarrow M_k\otimes_k N_k=0\Rightarrow M_k=0$ or $N_k=0$, since M_k and N_k are vector spaces over a field

Suppose
$$(M \otimes_A N)_k = 0 = k \otimes_A (M \otimes_A N)$$
, we now prove $M_k \otimes_k N_k = 0 = (k \otimes_A M) \otimes_k (k \otimes_A N)$

3 TODO Problems

1.1: need more field knowledge to deal with $\mathbb{R}[x]$ and $\mathbb{Z}[x]$

2: need more matrix

1: need to check this after knowing the adjoint functor

Errata

Acknowledge: solution1 solution2 solution3