Лекция 8 Предел последовательности

12.1 Понятие последовательности

М12.1.1 Определение: функция $a_n: N \to R$ из множества натуральных чисел в множество действительных чисел называется *последовательностью*. Значения функции $a_n: N \to R$ называются элементами последовательности.

Замечание: символом a_1 обозначается значение функции $a_n: N \to R$ при n=1, символом a_2 - значение этой функции при n=2 и т. д.

М12.1.2.Примеры. 1)
$$a_n = \frac{1}{n}$$
: $a_1 = 1$; $a_2 = \frac{1}{2}$; $a_3 = \frac{1}{3}$; $a_4 = \frac{1}{4}$; $a_5 = \frac{1}{5}$;......

2)
$$a_n = \{-1\}^n$$
: $a_1 = -1$; $a_2 = 1$; $a_3 = -1$; $a_4 = 1$;...

3)
$$a_n = \frac{n^2}{n^3 + 1}$$
; $a_1 = \frac{1}{2}$; $a_2 = \frac{4}{9}$; $a_3 = \frac{9}{28}$; $a_4 = \frac{16}{65}$;...

- 4) $a_n = a_1 q^{n-1}$ геометрическая прогрессия со знаменателем q и первым элементом a_1 .
- 5) $a_n = a_1 + (1)$ арифметическая прогрессия с разностью d и первым элементом a_1 .
- 6) $a_1 = 1.4$; $a_2 = 1.41$; $a_3 = 1.414$; $a_4 = 1.4142$ -

последовательность десятичных приближений числа $\sqrt{2}$.

7)
$$a_1 = 1$$
; $a_2 = 2$; $a_3 = 6$; $a_4 = 24$; $a_n = 1 \cdot 2 \cdot ... \cdot n$

 $a_{_{_{\! n}}}$ называется «п факториал» и обозначается n!

M12.1.3 Последовательность можно задать также посредством *рекуррентного соотношения*, когда общий элемент последовательности a_n выражается через m предшествующих элементов и при этом известны m первых элементов последовательности.

М12.1.4 Примеры. 1)
$$a_1 = \sqrt{2}$$
, $a_n = \sqrt{2 + a_{n-1}}$;

- 2) $a_1 = a_2 = 1$, $a_n = a_{n-1} + a_{n-2}$ (числа Фибоначчи);
- 3) $T_0 = 1$, $T_n = T_0 T_{n-1} + T_1 T_{n-2} + ... + T_{n-1} T_0$ (числа Каталана).
- **М12.1.5 Определение.** Произведением последовательности a_n на число α называется последовательность, элементами которой являются числа $\alpha \cdot a_n$.
- **М12.1.6 Определение.** *Суммой последовательностей* a_n и b_n называется последовательность, элементами которой являются числа $a_n + b_n$.

Аналогично определяются разность, произведение и частное последовательностей.

12.2 Определение предела

M12.2.1 Определение. Число A называется *пределом последовательности* a_n , если для любого, как угодно малого положительного числа ε найдется номер n_0 такой, что для любого числа $n>n_0$ выполняется неравенство $|a_n-A|<\varepsilon$. Записывается это так: $\lim a_n=A$.

M12.2.2 Замечание 1. Геометрически определение предела можно истолковать так: отметим на числовой прямой число A. Тогда, как бы ни мало было число ε , вне интервала $(A - \varepsilon; A + \varepsilon)$ окажется лишь конечное количество элементов последовательности. Иными словами, элементы последовательности как бы концентрируются возле числа A, причем, чем ближе к A, тем выше концентрация.

M12.2.3. Замечание 2. Далеко не каждая последовательность имеет предел. Простейшим примером последовательности, не имеющей предела, является последовательность $a_n = -1$.

M12.2.4 Пример 1. Покажем, что последовательность $a_n = \frac{1}{n}$ имеет предел, равный нулю.

Выберем произвольное положительное число ε и попытаемся найти номер n_0 (естественно, зависящий от числа ε) такой, что для всех $n>n_0$ выполнится неравенство $\left|a_n-A\right|=\left|\frac{1}{n}-0\right|<\varepsilon$.

Поскольку $n\in N$, то n>0 и неравенство $\left|\frac{1}{n}-0\right|<\varepsilon$ равносильно более простому: $\frac{1}{n}<\varepsilon$. Отсюда получаем $n>\frac{1}{\varepsilon}$. Достаточно взять $n_0=\left\lceil\frac{1}{\varepsilon}\right\rceil+1$, где $\left\lceil\frac{1}{\varepsilon}\right\rceil$ - целая часть числа $\frac{1}{\varepsilon}$.

3амечание. Конечно же, в качестве числа n_0 можно брать и любое число, большее, чем $\left\lceil \frac{1}{\varepsilon} \right\rceil + 1$.

M12.2.5 Пример 2 (Постоянная последовательность) Рассмотрим последовательность $a_n = a$, все элементы которой одинаковы и покажем, что ее предел равен числу a.

Выберем произвольное положительное число ε и попытаемся найти номер n_0 (вообще говоря, зависящий от числа ε) такой, что для всех $n>n_0$ выполнится неравенство $|a_n-a|=|a-a|<\varepsilon$. Поскольку $\varepsilon>0$, то неравенство $|a-a|<\varepsilon$ верно всегда, то есть независимо от номера n. Это значит, что в качестве n_0 можно взять любое натуральное число, например, $n_0=1$.

M12.2.6 Определение. Предел последовательности a_n равен бесконечности (плюс бесконечности), если для любого, как угодно большого положительного числа ε найдется номер n_0 такой, что для любого числа $n>n_0$ выполняется неравенство $a_n>\varepsilon$.

Записывается это так: $\lim_{n \to \infty} a_n = \infty$.

М12.2.7 Определение. Предел последовательности a_n равен минус бесконечности, если для любого, как угодно большого по модулю отрицательного числа ε найдется номер n_0 такой, что для любого числа $n>n_0$ выполняется неравенство $a_n<\varepsilon$.

Записывается это так: $\lim_{n\to\infty} a_n = -\infty$.

M12.2.8 Пример 3. Покажем, что $\lim_{n\to\infty} \sqrt{n} = \infty$.

Выберем произвольное положительное число ε . и попытаемся найти номер n_0 (вообще говоря, зависящий от числа ε) такой, что для всех $n>n_0$ выполнится неравенство $\sqrt{n}>\varepsilon$. Поскольку обе части неравенства $\sqrt{n}>\varepsilon$ не отрицательны, его можно возвести в квадрат: $n>\varepsilon^2$. Значит, в качестве номера n_0 можно взять число $n_0=|\!|^2+1$.

Приведем некоторые несложные, но важные свойства предела последовательности.

M12.2.9 Отбросив первые k элементов последовательности a_n , получим, вообще говоря, другую последовательность $b_1=a_{k+1}, b_2=a_{k+2}, \ldots$ Очевидно, что если $\lim_{n\to\infty}a_n=A$, то и $\lim_{n\to\infty}b_n=A$. Аналогично, если $\lim_{n\to\infty}a_n=\infty$ ($\lim_{n\to\infty}a_n=-\infty$), то и $\lim_{n\to\infty}b_n=\infty$ ($\lim_{n\to\infty}b_n=-\infty$). Кроме того, если последовательность a_n не имела предела, то и последовательность b_n также не будет иметь предела.

М12.2.10 (**Единственность предела**) Последовательность не может иметь двух или более различных пределов. Пусть $\lim_{n\to\infty} a_n = A$ и $\lim_{n\to\infty} a_n = B > A$. Рассмотрим непересекающиеся окрестности $(A - \delta; A + \delta)$ и $(B - \delta; B + \delta)$ точек A и B. В качестве значения δ можно взять любое число, не превосходящее $\frac{B - A}{2}$. Для заданного числа ε по определению предела найдутся номера n_1 и n_2 такие, что для $\forall n > n_1$ $a_n \in (A - \delta; A + \delta)$ и $\forall n > n_2$ $a_n \in (B - \delta; B + \delta)$. Тогда при $n_0 = \max(a_1, n_2)$ получим, что $n_0 = \max(a_1, n_2)$ получим. Что $n_0 = \max(a_1, n_2)$ получим, что $n_0 = \max(a_1, n_2)$ получим. Что $n_0 = \max(a_1, n_2)$ получим. Что $n_0 = \max(a_1, n_2)$ получим. Противоречие.

M12.2.11 Последовательность, имеющая конечный предел, ограничена. Пусть $\lim_{n\to\infty} a_n = A$. Положим в определении предела $\varepsilon=1$ (можно было взять и любое другое положительное число). Тогда, найдется номер n_0 такой что при $n>n_0$ будет иметь место равенство $|a_n-A|<1$. Это равенство можно переписать в виде $a_n<|A|+1$. Если взять $M=\max\left(a_1|,|a_2|,...,|a_{n_0}|,|A|+1\right)$, то для любого номера n получим $a_n< M$.

12.3 Теоремы о пределах

M12.3.1 Теорема (Предел и арифметические операции) Если $\lim_{n\to\infty}a_n=A,\ \lim_{n\to\infty}b_n=B$, то:

1)
$$\lim_{n\to\infty} \Phi_n + b_n = A + B$$
; 2) $\lim_{n\to\infty} \Phi_n \cdot b_n = A \cdot B$; 3) $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{A}{B}$ (при условии $\lim_{n\to\infty} b_n \neq 0$).

Доказательство. 1) Обозначим $c_n = a_n + b_n$, C = A + B. Выберем некоторое число $\varepsilon > 0$. Надо показать, что для него найдется номер n_0 , начиная с которого (при $n > n_0$) выполнится неравенство $|c_n - C| < \varepsilon$.

Поскольку $\lim_{n\to\infty} a_n = A$, то для любого положительного числа, значит и для числа $\frac{\mathcal{E}}{2} > 0$ найдется номер n_1 такой, что для всех номеров $n > n_1$ выполнится неравенство $\left| a_n - A \right| < \frac{\mathcal{E}}{2}$.

Аналогично, поскольку $\lim_{n\to\infty}b_n=B$, то для числа $\frac{\varepsilon}{2}>0$ найдется номер n_2 такой, что для всех номеров $n>n_2$ выполнится неравенство $|b_n-B|<\frac{\varepsilon}{2}$.

Обозначим $n_0=\max$ \P_1,n_2 , тогда при $n>n_0$ будет выполнено и $\left|a_n-A\right|<\frac{\varepsilon}{2}$ и $\left|b_n-B\right|<\frac{\varepsilon}{2}$.

Тогда $|c_n-C|=|a_n+b_n-\P+B|=|\P_n-A|+\P_n-B|\leq |a_n-A|+|b_n-B|< \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$, что и требовалось.

2) Обозначим $d_n=a_n\cdot b_n$, D=AB. Выберем некоторое число $\varepsilon>0$. Надо показать, что для него найдется номер n_0 , начиная с которого (при $n>n_0$) выполнится неравенство $|d_n-D|<\varepsilon$.

Поскольку $\lim_{n \to \infty} a_n = A$, то для любого положительного числа, значит и для числа $\min \left(1, \frac{\varepsilon}{3 \left|B\right| + 1}\right) > 0 \quad \text{найдется номер} \quad n_1 \quad \text{такой, что для всех номеров} \quad n > n_1 \quad \text{выполнится}$ неравенство $|a_n - A| < \min \left(1, \frac{\varepsilon}{3 \left|B\right| + 1}\right)$.

Аналогично, поскольку $\lim_{n\to\infty}b_n=B$, то для числа $\min\left(1,\frac{\varepsilon}{3|A|+1}\right)>0$ найдется номер n_2 такой, что для всех номеров $n>n_2$ выполнится неравенство $|b_n-B|<\min\left(1,\frac{\varepsilon}{3|A|+1}\right)$.

Тогда
$$|d_n - D| = |a_n b_n - AB| = |\mathbf{q}_n - A\mathbf{p}_n - B\mathbf{p} + A\mathbf{p}_n - B\mathbf{p} + B\mathbf{p}_n - A\mathbf{p} = |\mathbf{q}_n - A\mathbf{p}_n - B\mathbf{p} + B\mathbf{p}_n - A\mathbf{p} = |\mathbf{q}_n - A\mathbf{p}_n - B\mathbf{p} + B\mathbf{p}_n - A\mathbf{p} = |\mathbf{q}_n - A\mathbf{p}_n - B\mathbf{p} + B\mathbf{p}_n - A\mathbf{p} = |\mathbf{q}_n - A\mathbf{p}_n - B\mathbf{p} + B\mathbf{p}_n - A\mathbf{p} = |\mathbf{q}_n - A\mathbf{p}_n - B\mathbf{p} + B\mathbf{p}_n - A\mathbf{p} = |\mathbf{q}_n - A\mathbf{p}_n - B\mathbf{p} + B\mathbf{p}_n - A\mathbf{p} = |\mathbf{q}_n - A\mathbf{p}_n - B\mathbf{p} + B\mathbf{p}_n - A\mathbf{p} = |\mathbf{q}_n - A\mathbf{p}_n - B\mathbf{p} + B\mathbf{q}_n - A\mathbf{p} = |\mathbf{q}_n - A\mathbf{p}|$$

$$\leq \left|a_n - A\right| \cdot \left|b_n - B\right| + \left|A\right| \cdot \left|b_n - B\right| + \left|B\right| \cdot \left|a_n - A\right| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

3) Без доказательства.

M12.3.2 Следствие 1. Если $\lim_{n\to\infty}a_n=A$, то $\lim_{n\to\infty}C\cdot a_n=CA$ для любого числа C .

Доказательство.
$$\lim_{n\to\infty} C\cdot a_n = \lim_{n\to\infty} C\cdot \lim_{n\to\infty} a_n = CA$$
 .

M12.3.3 Следствие 2. Если
$$\lim_{n\to\infty}a_n=A$$
, $\lim_{n\to\infty}b_n=B$, то: $\lim_{n\to\infty}\P_n-b_n=A-B$;

Доказательство.
$$\lim_{n\to\infty} \P_n - b_n = \lim_{n\to\infty} \P_n + \P - 1 = \lim_{n\to\infty} a_n - \lim_{n\to\infty} b_n = A - B$$

М12.3.4 Теорема (предел и неравенства) 1) Если $\lim_{n\to\infty}a_n=A$, $\lim_{n\to\infty}b_n=B$ и A< B, то $\exists n_0 \mid \forall n>n_0 \ a_n< b_n$; 2) Если $\forall n$ $a_n\leq b_n\leq c_n$ и $\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=A$, то $\lim_{n\to\infty}b_n=A$; 3) Если $a_n\leq b_n$ или $a_n< b_n$ и при этом $\lim_{n\to\infty}a_n=A$, $\lim_{n\to\infty}b_n=B$, то $A\leq B$.

Доказательство. 1) Выберем какое-либо число c такое, что A < c < B. Тогда, по определению предела, для числа $\varepsilon_1 = c - A$ найдется номер n_1 такой, что для $\forall n > n_1$ выполняется неравенство $|a_n - A| < c - A$. Аналогично, для числа $\varepsilon_2 = B - c$ найдется номер n_2 такой, что для $\forall n > n_2$ выполняется неравенство $|b_n - B| < B - c$. Тогда для $\forall n > \max(n_1, n_2)$ выполнятся оба неравенства $|a_n - A| < c - A$ и $|b_n - B| < B - c$.

Из неравенства $|a_n-A| < c-A$ следует $a_n-A < c-A$, то есть $a_n < c$. Аналогично, из неравенства $|b_n-B| < B-c$ следует $b_n-B > c-B$, то есть $b_n > c$. значит, $a_n < c < b_n$, что и требовалось

2) По выбранному числу $\varepsilon>0$ найдется номер n_1 такой, что для $\forall n>n_1$ выполняется неравенство $|a_n-A|<\varepsilon$, откуда следует $a_n>A-\varepsilon$. Для того же значения $\varepsilon>0$ найдется номер n_2 такой, что для $\forall n>n_1$ выполняется неравенство $|c_n-A|<\varepsilon$, откуда следует $c_n< A+\varepsilon$. Тогда при $n_0>\max(n_1,n_2)$ выполнятся оба неравенства $a_n>A-\varepsilon$ и $c_n< A+\varepsilon$. Получаем:

$$A-arepsilon < a_n < b_n < c_n < A+arepsilon$$
 , то есть $\left|b_n - A\right| < arepsilon$, что и требовалось.

3) Сразу следует из части 1) данной теоремы.

Замечание. В части 3) теоремы утверждается, что если даже элементы одной последовательности строго меньше элементов другой последовательности, пределы этих последовательностей могут совпасть. Примером таких последовательностей являются $a_n = \frac{1}{n^2}$, $b_n = \frac{1}{n}$. Действительно, при n > 1 верно неравенство $\frac{1}{n^2} < \frac{1}{n}$, но $\lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n^2} = 0$.

M12.3.5 Определение. Последовательность a_n называется фундаментальной последовательностью, если для любого числа $\varepsilon > 0$ найдется номер n_0 такой, что для любых $n > n_0$ и $m > n_0$ выполняется неравенство $|a_m - a_n| < \varepsilon$.

М12.3.6 Теорема (Критерий Коши для последовательностей) Числовая последовательность сходится тогда и только тогда, когда она фундаментальна.

Доказательство. 1) Пусть $\lim_{n\to\infty}a_n=A$. Покажем, что последовательность a_n фундаментальна.

Пусть выбрано число $\varepsilon > 0$, тогда найдется номер n_0 такой, что для $\forall n > n_0 \ \left| a_n - A \right| < \frac{\varepsilon}{2}$.

Пусть $n>n_0$ и $m>n_0$, тогда $\left|a_m-a_n\right|=\left|a_m-A-\P_n-A\right|\leq \left|a_m-A\right|+\left|a_n-A\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$, что и требовалось. 2) Без доказательства.

12.4. Монотонные последовательности

М12.4.1 Определение. Последовательность a_n называется:

- возрастающей, если $a_n > a_{n-1}$;
- неубывающей, если $a_n \ge a_{n-1}$,
- невозрастающей, если $a_n \le a_{n-1}$
- убывающей, если $a_n < a_{n-1}$;

последовательности перечисленных четырех типов называются *монотонными* последовательностями.

М12.4.2 Определение. Последовательность a_n называется:

- *ограниченной сверху*, если существует число M такое, что $a_n < M$;
- *ограниченной снизу*, если существует число m такое, что $a_n > m$;
- ограниченной, если она ограничена и сверху и снизу.

М12.4.3 Теорема Вейерштрасса (Предел монотонной ограниченной последовательности)

- 1) Ограниченная сверху неубывающая последовательность имеет предел
- 2) Ограниченная снизу невозрастающая последовательность имеет предел.

Доказательство: 1) Поскольку множество значений последовательности ограничено сверху, оно имеет точную верхнюю грань $s=\sup a_n^{\varepsilon}$. По определению точной верхней грани для любого числа $\varepsilon>0$ найдется элемент a_{n_0} такой, что $s-\varepsilon< a_{n_0} \le s$. Поскольку последовательность не убывает, то для $\forall n>n_0$ $s-\varepsilon< a_{n_0} \le a_n \le s$, то есть $s-a_n=|s-a_n|<\varepsilon$. Таким образом, точная верхняя грань и есть предел последовательности.

2) доказывается аналогично (рассмотрением точной нижней грани).

12.5 Число е (основание натуральных логарифмов)

М12.5.1 Теорема (неравенство Бернулли)

Для любого действительного числа $\alpha > 0$ и любого натурального числа n имеет место неравенство $\P + \alpha > 1 + \alpha n$

Доказательство: По формуле бинома Ньютона

М12.5.2 Покажем, что последовательность $a_n = \left(1 + \frac{1}{n}\right)^n$ имеет предел. Для этого рассмотрим сначала последовательность $b_n = \left(1 + \frac{1}{n}\right)^{n+1}$ и покажем, что она является монотонной и ограниченной. Очевидно, что $\left(1 + \frac{1}{n}\right)^{n+1} > 1$ при любом значении n, т.к. в скобках находится выражение, большее, чем 1, и оно возводится в положительную степень. Значит, последовательность b_n ограничена снизу числом 1. Поскольку все элементы последовательности положительны, то для доказательства факта убывания последовательности достаточно показать, что $\frac{b_{n-1}}{b} > 1$ (каждый последующий элемент меньше предыдущего).

$$\frac{b_{n-1}}{b_n} = \frac{\left(1 + \frac{1}{n-1}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}} = \left(\frac{n}{n-1}\right)^n \cdot \left(\frac{n}{n+1}\right)^{n+1} = \frac{n^{2n}}{\left(2 - 1\right)^n} \cdot \frac{n}{n+1} =$$

$$= \left(\frac{n^2 - 1 + 1}{n^2 - 1}\right)^n \cdot \frac{n}{n+1} = \left(1 + \frac{1}{n^2 - 1}\right)^n \cdot \frac{n}{n+1} \ge \left(1 + \frac{n}{n^2 - 1}\right) \cdot \frac{n}{n+1} =$$

$$= \left(1 + \frac{1}{n - \frac{1}{n}}\right) \cdot \frac{n}{n+1} > \left(1 + \frac{1}{n}\right) \cdot \frac{n}{n+1} = \frac{n+1}{n} \cdot \frac{n}{n+1} = 1$$

При первом переходе к неравенству воспользовались неравенством Бернулли:

$$\left(1 + \frac{1}{n^2 - 1}\right)^n \ge 1 + \frac{1}{n^2 - 1} \cdot n$$

При втором переходе неравенству воспользовались тем, что поскольку

$$n-\frac{1}{n} < n$$
, to

$$\frac{1}{n-\frac{1}{n}} > \frac{1}{n}$$
 (увеличивая знаменатель, уменьшаем дробь).

Итак, последовательность b_n убывает и ограничена снизу. По теореме о пределе ограниченной монотонной последовательности, существует $\lim_{n\to\infty}b_n$. Обозначим этот предел буквой e.

Очевидно, что
$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{-1} = 1$$
. Значит, $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n+1} \cdot \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{-1} = e \cdot 1 = e$.

Предел $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$ принято называть вторым «замечательным» пределом. Число $e\approx 2{,}718281828\dots$ называется *основанием натуральных логарифмов*.

M12.5.3 Покажем еще, что
$$\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n = \frac{1}{e}$$
:

$$\lim_{n\to\infty} \left(1 - \frac{1}{n}\right)^n = \lim_{n\to\infty} \left(\frac{n-1}{n}\right)^n = \frac{1}{\lim_{n\to\infty} \left(\frac{n}{n-1}\right)^n} = \frac{1}{\lim_{n\to\infty} \left(\frac{n-1+1}{n-1}\right)^n} = \frac{1}{\lim_{n\to\infty} \left$$

$$=\frac{1}{\lim\limits_{n\to\infty}\left(1+\frac{1}{n-1}\right)^n}=\frac{1}{\lim\limits_{n\to\infty}\left(1+\frac{1}{n-1}\right)^{n-1}}\cdot\lim_{n\to\infty}\left(1+\frac{1}{n-1}\right)=\frac{1}{e\cdot 1}=\frac{1}{e}$$

В предпоследнем равенстве воспользовались очевидным фактом: если $n \to \infty$, то и $(n-1) \to \infty$.

12.6 Операции с символом ∞. Неопределенности

M12.6.1 Пусть $\lim_{n\to\infty}a_n=A$ и $\lim_{n\to\infty}b_n=\infty$. Очевидно, что $\lim_{n\to\infty}\P_n+b_n=\infty$. Кратко это можно записать так: $A+\infty=\infty$. Аналогично, если $\lim_{n\to\infty}a_n=\infty$ и $\lim_{n\to\infty}b_n=\infty$, тогда $\lim_{n\to\infty}\P_n+b_n=\infty$, т.е. $\infty+\infty=\infty$.

Можно показать также, что $\infty \cdot \infty = \infty$, $A \cdot \infty = \begin{cases} \infty, \ ecnu \ A > 0 \\ -\infty, \ ecnu \ A < 0 \end{cases}$, $A^{\infty} = \begin{cases} 0, \ ecnu \ A \in \P; 1 \\ \infty, \ ecnu \ A > 1 \end{cases}$, $\frac{A}{+\infty} = 0$. Из последнего равенства следует, что $\frac{A}{0} = \pm \infty$.

M12.6.2. Невозможно однозначно сказать, чему равны выражения $\infty - \infty$, $\frac{\infty}{\infty}$, $\frac{0}{0}$ и $0 \cdot \infty$.

Рассмотрим последовательности $a_n = \alpha n + \beta$ и $b_n = \alpha n + \gamma$ при $\alpha > 0$. Очевидно, что $\lim_{n \to \infty} a_n = \infty$ и $\lim_{n \to \infty} b_n = \infty$. Но $\lim_{n \to \infty} \Phi_n - b_n = \beta - \gamma$ при различных значениях чисел β и γ может принимать различные числовые значения. Поэтому выражение $\infty - \infty$ однозначно не определено и называется *неопределенностью*.

Рассмотрим последовательности $a_n = \alpha n$ и $b_n = \beta n$ при $\alpha > 0, \beta > 0$. Снова очевидно, что $\lim_{n \to \infty} a_n = \infty$ и $\lim_{n \to \infty} b_n = \infty$. Но $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\alpha}{\beta}$ при различных значениях чисел α и β может принимать различные числовые значения. Значит, выражение $\frac{\infty}{\infty}$ также является неопределенностью.

Рассматривая последовательности $a_n = \frac{\alpha}{n}$ и $b_n = \frac{\beta}{n}$ убеждаемся, что $\frac{0}{0}$ - тоже неопределенность, а рассматривая последовательности $a_n = \alpha n$ и $b_n = \frac{\beta}{n}$ убеждаемся в том, что неопределенностью является и выражение $0 \cdot \infty$.

Выражения 0° , ∞° и 1^{∞} также являются неопределенностями, в чем можно убедиться формальным логарифмированием этих выражений. Например, $\ln \left(\stackrel{\circ}{} \right) = \infty \cdot \ln 1 = \infty \cdot 0$.

Выражения $\infty-\infty$, $\frac{\infty}{\infty}$, $\frac{0}{0}$, $0\cdot\infty$, 0^{0} , ∞^{0} и 1^{∞} будем называть основными неопределенностями.

12.7 Примеры раскрытия неопределенностей при вычислении пределов

Пример 1. Вычислить пределы последовательностей: a) $a_n = \frac{2n+3n^2+4}{12n^2-4n-5}$; б) $b_n = \frac{3n+1}{2n^3+n-1}$; в) $c_n = \frac{2n-3n^3+4}{12n-4n^2-5}$; г) $d_n = \frac{\sqrt{n}-2\cdot\sqrt[3]{n}+1}{3\cdot\sqrt[5]{n}+\sqrt[3]{n^2}}$; д) $f_n = \frac{4\cdot2^{\frac{n}{n}}+3^n}{4\cdot2^{\frac{n}{n}+1}+3^{n+1}}$

Решение. а) при $n \to \infty$ пределы и числителя и знаменателя равны ∞, значит, имеем дело с неопределенностью вида $\frac{\infty}{\infty}$. для раскрытия неопределенности поделим числитель и знаменатель дроби на старшую степень n (в нашем случае — на n^2) и воспользуемся теоремой о пределе и арифметических операциях:

$$\lim_{n \to \infty} \frac{2n + 3n^2 + 4}{12n^2 - 4n - 5} = \lim_{n \to \infty} \frac{\frac{2}{n} + 3 + \frac{4}{n^2}}{12 - \frac{4}{n} - \frac{5}{n^2}} = \frac{\lim_{n \to \infty} \frac{2}{n} + \lim_{n \to \infty} 3 + \lim_{n \to \infty} \frac{4}{n^2}}{\lim_{n \to \infty} 12 - \lim_{n \to \infty} \frac{4}{n} - \lim_{n \to \infty} \frac{5}{n^2}} = \frac{0 + 3 + 0}{12 - 0 - 0} = \frac{1}{4}$$

б) применим аналогичный прием: поделим числитель и знаменатель на n^3 :

$$\lim_{n\to\infty} \frac{3n+1}{2n^3+n-1} = \frac{\lim_{n\to\infty} \frac{3}{n^2} + \lim_{n\to\infty} \frac{1}{n^3}}{\lim_{n\to\infty} 2 + \lim_{n\to\infty} \frac{1}{n^2} - \lim_{n\to\infty} \frac{1}{n^3}} = \frac{0+0}{2+0-0} = 0;$$

в) аналогично: поделим числитель и знаменатель на n^3 :

 $\lim_{n\to\infty}\frac{2n-3n^3+4}{12n-4n^2-5}=\frac{0-3+0}{0-0+0}.$ при делении ненулевого числа на 0 получится либо ∞ , либо $-\infty$ (см. М3.1.1). Для определения знака бесконечности в ответе установим к какого рода бесконечностям стремятся числитель и знаменатель. Коэффициент при старшей степени числителя отрицателен, значит, $\lim_{n\to\infty} (n-3n^3+4) = -\infty$. По той же причине $\lim_{n\to\infty} (2n-4n^2-5) = -\infty$. Таким образом, найдется номер n_0 , начиная с которого и числитель и знаменатель будут отрицательны, а значение дроби — положительно. Следовательно $\lim_{n\to\infty}\frac{2n-3n^3+4}{12n-4n^2-5} = \infty$.

На основе примеров a)-в) можно сделать вывод: предел отношения многочленов при $n \to \infty$ равен:

- нулю, если степень числителя меньше степени знаменателя;
- плюс или минус бесконечности, если степень числителя больше степени знаменателя;
- отношению коэффициентов при старших степенях числителя и знаменателя, если эти старшие степени равны.
- г) применим только что выведенное правило. Степень числителя равна $\frac{1}{2}$, а степень знаменателя равна $\frac{2}{3} > \frac{1}{2}$. Значит, $\lim_{n \to \infty} \frac{\sqrt{n} 2 \cdot \sqrt[3]{n} + 1}{3 \cdot \sqrt[5]{n} + \sqrt[3]{n^2}} = 0$;

д) поделим числитель и знаменатель на степень с большим по модулю основанием (в нашем

случае – на
$$3^n$$
: $\lim_{n\to\infty} \frac{4^n 2^{\frac{n}{n}} + 3^n}{4^n 2^{\frac{n}{n+1}} + 3^{n+1}} = \lim_{n\to\infty} \frac{\left(-\frac{2}{3}\right)^n + 1}{-2\cdot\left(-\frac{2}{3}\right)^n + 3} = \frac{0+1}{0+3} = \frac{1}{3}$.

Пример 2. Вычислить пределы: a) $\lim_{n\to\infty} \frac{\sqrt{2n+1}-\sqrt{n+3}}{\sqrt{9n+5}-\sqrt{4n+7}}$; б) $\lim_{n\to\infty} \sqrt{n} \sqrt{n-1} + \sqrt{n}$;

Pешение. a) поделим числитель и знаменатель на \sqrt{n} :

$$\lim_{n \to \infty} \frac{\sqrt{\frac{2n+1}{n}} - \sqrt{\frac{n+3}{n}}}{\sqrt{\frac{9n+5}{n}} - \sqrt{\frac{4n+7}{n}}} = \lim_{n \to \infty} \frac{\sqrt{2+\frac{1}{n}} - \sqrt{1+\frac{3}{n}}}{\sqrt{9+\frac{5}{n}} - \sqrt{4+\frac{7}{n}}} = \frac{\sqrt{2} - \sqrt{1}}{\sqrt{9} - \sqrt{4}} = \frac{\sqrt{2} - 1}{5};$$

$$\lim_{n \to \infty} \sqrt{n} \sqrt{n+1} - \sqrt{n} = \lim_{n \to \infty} \frac{\sqrt{n} \sqrt{n+1} - \sqrt{n} \sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n} + 1}} = \frac{1}{2}$$

Пример 3. Вычислить пределы a)
$$\lim_{n\to\infty} \left(\frac{2n+3}{5n+2}\right)^n$$
; б) $\lim_{n\to\infty} \left(\frac{7n+3}{4n+2}\right)^n$; в) $\lim_{n\to\infty} \left(\frac{n+3}{n-2}\right)^{2n-1}$;

Решение. a) Поскольку
$$\lim_{n \to \infty} \frac{2n+3}{5n+2} = \lim_{n \to \infty} \frac{2+\frac{3}{n}}{5+\frac{2}{n}} = \frac{2}{5}$$
, то $\lim_{n \to \infty} \left(\frac{2n+3}{5n+2}\right)^n = \left(\frac{2}{5}\right)^\infty = 0$ (см. M3.1.1.).

б) Аналогично:
$$\lim_{n\to\infty}\frac{7n+3}{4n+2}=\lim_{n\to\infty}\frac{7+\frac{3}{n}}{4+\frac{2}{n}}=\frac{7}{4}$$
; $\lim_{n\to\infty}\left(\frac{7n+3}{4n+2}\right)^n=\left(\frac{7}{4}\right)^\infty=\infty$ (см. МЗ.1.1)

в) Попытка поступить аналогично а) и б), приводит к неопределенности 1^{∞} (см. М3.1.2). Такая же неопределенность 1^{∞} имела место и во втором «замечательном» пределе $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$.

Преобразуем: $\lim_{n\to\infty} \left(\frac{n+3}{n-2}\right)^{2n-1} = \lim_{n\to\infty} \left(\frac{n-2+5}{n-2}\right)^{2n-1} = \lim_{n\to\infty} \left(1+\frac{5}{n-2}\right)^{2n-1}.$ Сделаем замену переменной $\frac{5}{n-2} = \frac{1}{m}$, тогда $m = \frac{n-2}{5}$ и если $n\to\infty$, то и $m = \frac{n-2}{5}\to\infty$. Поскольку n = 5m+2, то получим предел $\lim_{n\to\infty} \left(1+\frac{5}{n-2}\right)^{2n-1} = \lim_{m\to\infty} \left(1+\frac{1}{m}\right)^{10m-3}$.

$$\lim_{m \to \infty} \left(1 + \frac{1}{m}\right)^{10m - 3} = \lim_{n \to \infty} \left(1 + \frac{1}{m}\right)^{10m} \cdot \left(1 + \frac{1}{m}\right)^{-3} = \left(\lim_{n \to \infty} \left(1 + \frac{1}{m}\right)^m\right)^{10} \cdot \lim_{n \to \infty} \left(1 + \frac{1}{m}\right)^{-3} = e^{10} \cdot 1^{-3} = e^{10$$

Пример 4. Вычислить пределы: a) $\lim_{n\to\infty}\frac{n}{2^n}$; б) $\lim_{n\to\infty}\frac{n}{a^n}$ **4** > 1; в) $\lim_{n\to\infty}\sqrt[n]{n}$; г) $\lim_{n\to\infty}\sqrt[n]{a}$ **4** > 0; д) $\lim_{n\to\infty}\frac{a^n}{n!}$;

Решение. а) Обозначим $a_n = \frac{n}{2^n}$, тогда $a_{n+1} = \frac{n+1}{2^{n+1}}$. Поскольку $\frac{a_{n+1}}{a_n} = \frac{n+1}{2^{n+1}} \cdot \frac{2^n}{n} = \frac{n+1}{2n} < 1$ при любом n > 1, то последовательность a_n убывает, а поскольку $a_n > 0$, то эта последовательность ограничена снизу. По теореме M2.4.3. эта последовательность имеет предел, который для краткости записи обозначим A. Из равенства $a_{n+1} = \frac{n+1}{2^{n+1}} = \frac{1}{2} \cdot \frac{n+1}{n} \cdot a_n$ / получаем $\lim_{n \to \infty} a_{n+1} = \frac{1}{2} \cdot \lim_{n \to \infty} \frac{n+1}{n} \cdot \lim_{n \to \infty} a_n$; $A = \frac{1}{2} \cdot 1 \cdot A$; $A = \frac{1}{2} A$. Значит, либо A = 0, либо $A = \infty$, либо $A = -\infty$. Но, поскольку, $a_n > 0$, равенство $A = -\infty$ невозможно. Поскольку последовательность a_n убывает, то равенство $A = \infty$ тоже невозможно. Значит, $\lim_{n \to \infty} \frac{n}{2^n} = 0$;

М12.7.1 б) Если a>2, то $\lim_{n\to\infty}\frac{n}{a^n}\le\lim_{n\to\infty}\frac{n}{2^n}=0$. Остается рассмотреть случай 1< a<2. Обозначим $a_n=\frac{n}{a^n}$, тогда $a_{n+1}=\frac{n+1}{a^{n+1}}=\frac{n+1}{an}\cdot a_n$. Поскольку $\lim_{n\to\infty}\frac{n+1}{an}=\frac{1}{a}<1$, то найдется номер n_0 такой, что для всех $n>n_0$ верно равенство $\frac{n+1}{an}<1$. Из равенства $a_{n+1}=\frac{n+1}{an}\cdot a_n$ и неравенства $\frac{n+1}{an}<1$ получаем, что начиная с номера n_0 последовательность $a_n=\frac{n}{a^n}$ убывающая. А поскольку $a_n=\frac{n}{a^n}>0$, то есть последовательность ограничена снизу, то она имеет предел, который для краткости обозначим A. Из равенства $a_{n+1}=\frac{n+1}{an}\cdot a_n$ при $n\to\infty$ получим $A=\frac{1}{a}\cdot A$, откуда рассуждениями аналогичными n. а) получим $\lim_{n\to\infty}\frac{n}{a^n}=0$.

M12.7.2. в) При заданном $\varepsilon > 0$ найдется номер n_0 такой, что для всех $n > n_0$ верно неравенство $1 \le n < \P + \varepsilon$, откуда $1 \le \sqrt[n]{n} < 1 + \varepsilon$, откуда следует $\lim_{n \to \infty} \sqrt[n]{n} = 1$;

M12.7.3. г) Аналогично, по заданному $\varepsilon > 0$ найдется номер n_0 такой, что для всех $n > n_0$ верно неравенство $1 \le a < \P + \varepsilon$, откуда $1 \le \sqrt[n]{a} < 1 + \varepsilon$, откуда следует $\lim_{n \to \infty} \sqrt[n]{a} = 1$;

M12.7.4. д) Покажем, что $\lim_{n\to\infty}\frac{a^n}{n!}=0$. При a=0 это очевидно. Пусть a>0. Обозначим $a_n=\frac{a^n}{n!}$, тогда $a_{n+1}=\frac{a^{n+1}}{\sqrt[4]{n!}}=\frac{a}{n+1}\cdot a_n$ Очевидно, что найдется такой номер n_0 , начиная с которого будет выполняться неравенство $0<\frac{a}{n+1}<1$. Значит, начиная с этого номера, последовательность $a_n=\frac{a^n}{n!}$ убывает. А поскольку она ограничена снизу нулем, то у нее существует предел (обозначим его A). Тогда из равенства $a_{n+1}=\frac{a}{n+1}\cdot a_n$ получаем $A=0\cdot A=0$. Что и требовалось. Пусть теперь a<0. Рассмотрим выражение $\left|\frac{a^n}{n!}\right|=\frac{|a|^n}{n!}$. Поскольку |a|>0, то по доказанному $\lim_{n\to\infty}\frac{|a|^n}{n!}=0$. Но тогда и $\lim_{n\to\infty}\frac{|a^n|}{n!}=0$, откуда $\lim_{n\to\infty}\frac{a^n}{n!}=0$.

12.8 Примеры вычисления пределов рекуррентно заданных последовательностей

Основная идея этой части лекции уже применялась в М3.3.1 и М3.3.4, поэтому ограничимся двумя примерами.

Пример 1. Вычислить предел рекуррентно заданной последовательности $a_{n+2} = \frac{5a_{n+1} - a_n}{6}$ при $a_1 = a_2 = 1$.

Pешение. Согласно M1.2.5 имеем уравнение $x^2 = \frac{5x-1}{6}$, корнями которого являются $x_1 = \frac{1}{3}$ и

 $x_2=rac{1}{2}$. Значит, последовательности вида $a_n=lphaigg(rac{1}{3}igg)^n+etaigg(rac{1}{2}igg)^n$ при любых значениях lpha и eta

удовлетворяют формуле $a_{n+2}=\frac{5a_{n+1}-a_n}{6}$. Из условий $a_1=a_2=1$ получаем $\begin{cases} \frac{1}{3}\alpha+\frac{1}{2}\beta=1\\ \frac{1}{9}\alpha+\frac{1}{4}\beta=1 \end{cases}$;

$$\begin{cases} 2\alpha + 3\beta = 6 \\ 4\alpha + 9\beta = 36 \end{cases}$$
, откуда $\alpha = -9$, $\beta = 8$.

Значит,
$$a_n = 8 \left(\frac{1}{2}\right)^n - 9 \left(\frac{1}{3}\right)^n$$
, $\lim_{n \to \infty} a_n = 8 \lim_{n \to \infty} \left(\frac{1}{2}\right)^n - 9 \lim_{n \to \infty} \left(\frac{1}{3}\right)^n = 0$.

Пример 2. Вычислить предел последовательности $c_n = \underbrace{\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}}}_{n \text{ degets}}$

Решение. Очевидно, что $c_{n+1}=\sqrt{2+c_n}$. Последовательность возрастает и ограничена сверху числом $\sqrt{2+2}=2$ Значит, она имеет предел, который для краткости обозначим A. Поскольку $c_n>0$, то равенство $c_{n+1}=\sqrt{2+c_m}$ можно возводить в квадрат: $c_{n+1}^2=2+c_n$, откуда $A^2=2+A$. Решив квадратное уравнение $A^2-A-2=0$, получим корни $A_1=-1$ и $A_1=2$. У положительной последовательности не может быть отрицательного предела (следует из M2.3.4), значит, $\lim_{n\to\infty}c_n=2$.

Контрольные вопросы:

- 1. Что называется последовательностью? Что называется суммой последовательностей? Что называется произведением последовательности на число?
- 2. Что означает, что предел последовательности равен числу A? Что означает, что предел последовательности равен плюс бесконечности? Что означает, что предел последовательности равен минус бесконечности?
- 3. Что называется подпоследовательностью? Что называется частичным пределом последовательности? Что называется верхним и нижним пределами последовательности?
- 4. Сформулируйте теорему о пределе и арифметических операциях. Сформулируйте теорему о пределе и неравенствах.
- 5. Какая последовательность назвается фундаментальной? Сформулируйте критерий Коши для последовательностей.
- 6. Какая последовательность называется убывающей(невозрастающей, неубывающей, возрастающей, монотонной)? Какая последовательность назвается ограниченной (ограниченной сверху, ограниченной снизу)? Сформулируйте теорему Вейерштрасса о пределе монотонной ограниченной последовательности.
- 7. Запишите неравенство Бернулли. Что называется основанием натуральных логарифмов?

- 8. Запишите результаты основных операций с символом бесконечности. Что называется неопределенностью? Запишите семь простейших неопределенностей.
- 9. Что означает, что последовательность стремится к пределу сверху? Что означает, что последовательность стремится к пределу снизу?
- 10. Чему равны пределы а) $\lim_{n\to\infty}\frac{n}{2^n}$; б) $\lim_{n\to\infty}\frac{n}{a^n}$ **4** >1]; в) $\lim_{n\to\infty}\sqrt[n]{n}$; г) $\lim_{n\to\infty}\sqrt[n]{a}$ **4** >0];

$$\lim_{n\to\infty}\frac{a^n}{n!}$$