## G- Test

Important teennique in statistics
Allows us to compare an observed categorical distribution to a
theoretical expected one.



Common / Muntjac ("Barking Deer")



|                                | woods | Cultivated<br>Grassplot | Deciduous<br>Forest | other | Total |
|--------------------------------|-------|-------------------------|---------------------|-------|-------|
| Percent<br>Area                | 4.87  | 14.7%                   | 39.6 <b>7.</b>      | 40.9% | 1007. |
| counts of<br>Foraging<br>Sites | 4     | 16                      | 61                  | 345   | 426   |

Does muntjac care where it forages?

the distribution of the

If it forages at random" around Haman Island, we'd expect that "426 foraging sites would match the distribution of area types.

| 4.8% · 426 | 14.7 % · 426 | 89.67. · 426 | 40.9% · 426                    | 426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|--------------|--------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| = 20.448   | = 62.622     | = 168. 696   | = 174.234.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |              | 10 (00       | 1.00 406 (4.7), 400 - 169 (96. | 4.8 16 476 (4.7), 426 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - 169 - |

we'll compute a number G that measures distance of observed counts from the expected counts.

· G=0 when O=E, ie, all observed & expected counts are all the same, and

- it gets bigger as counts get far from each other.
- · (continuing to assume that the expected distribution is "correct", and if expected counts are all "large") the values of G as I sample repeatedly follow a chi-square distribution with n-I degree of freedom, where n=# categories. Here n=4, so 3 degrees of freedom.



Let's ectually compose G

This is a very extreme value of G...!



If hypothesis that muntiple forages "at vandom" is correct, a sample like the

one that we saw would be very unlikely!

This suggests strongly that the hypothesis is not correct — munifac seems to prefer some types of environments on Hainan Island more than others.