Álgebra

Universidad Internacional de Valencia

Máster Universitario en Inteligencia Artificial

02MIAR | Matemáticas:

Matemáticas para la Inteligencia Artificial

Profesor:

Amílcar J. Pérez A.

De

Autovectores y autovalores

Definición

Sea $A \in \mathbb{R}^{n \times n}$ una matriz cuadrada. Un vector propio o autovector $v \in \mathbb{R}^{n \times 1}$, $v \neq \overrightarrow{\mathbf{0}}$, asociado a A es aquel que cumple que $\exists \lambda \in \mathbb{R}$ tal que $Av = \lambda v$. El valor λ recibe el nombre de valor propio o autovalor de A asociado al autovector v.

Ejemplo
Sea
$$A = \begin{pmatrix} 7 & -10 \\ 5 & -8 \end{pmatrix}$$
. $\lambda_1 = 2$ y $\lambda_2 = -3$ son valores propios de A asociados a los vectores

propios
$$v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 y $v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, resp.:

$$Av_{1} = \begin{pmatrix} 7 & -10 \\ 5 & -8 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 2v_{1},$$

$$Av_{2} = \begin{pmatrix} 7 & -10 \\ 5 & -8 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ -3 \end{pmatrix} = -3 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = -3v_{2}.$$

- > ¿Qué interés tiene conocer los autovalores y autovectores?
- Supongamos que, dada $A \in \mathbb{R}^{n \times n}$, conseguimos encontrar n autovectores linealmente independientes, $\{v_i\}_{i=1}^n$ (base de \mathbb{R}^n), asociados respectivamente a n autovalores, $\{\lambda_i\}_{i=1}^n$.
- Por definición, se tiene $Av_i = \lambda_i v_i$ para 1 < i < n.
- ▶ Denotamos $P \in \mathbb{R}^{n \times n}$ a la matriz formada por los vectores propios dispuestos en columna y D a la matriz diagonal formada por los valores propios:

$$P = \begin{pmatrix} \uparrow & \uparrow & & \uparrow \\ v_1 & v_2 & \cdots & v_n \\ \downarrow & \downarrow & & \downarrow \end{pmatrix}, \quad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

- ▶ Entonces se cumple AP = PD. Equivalentemente: $P^{-1}AP = D$.
- \triangleright $(AP)_{*i} = AP_{*i} = Av_i = \lambda_i v_i = PD_{*i} = (PD)_{*i}$

Ejemplo

Anteriormente vimos que los vectores propios de $A=\left(\begin{array}{cc} 7 & -10 \\ 5 & -8 \end{array}\right)$ son $v_1=\left(\begin{array}{cc} 2 \\ 1 \end{array}\right)$ y

$$v_2=\left(\begin{array}{c}1\\1\end{array}\right)$$
, asociados, respectivamente, a los autovalores $\lambda_1=2$ y $\lambda_2=-3$. Definimos $P=\left(\begin{array}{cc}2&1\\1&1\end{array}\right),\quad D=\left(\begin{array}{cc}2&0\\0&-3\end{array}\right)$

 $PD = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix} = \begin{pmatrix} \uparrow & \uparrow \\ \lambda_1 v_1 & \lambda_2 v_2 \\ \downarrow & \downarrow \end{pmatrix} = \begin{pmatrix} 4 & -3 \\ 2 & -3 \end{pmatrix}$

$$v_2=\left(egin{array}{c}1\\1\end{array}
ight)$$
, associados, respectivamente, a los autovalores $\lambda_1=2$ y $\lambda_2=-3$. Definimos $P=\left(egin{array}{c}2&1\\1&1\end{array}
ight),\quad D=\left(egin{array}{c}2&0\\0&-3\end{array}
ight)$ $AP=\left(egin{array}{c}7&-10\\5&-8\end{array}
ight)\left(egin{array}{c}2&1\\1&1\end{array}
ight)=\left(egin{array}{c}\uparrow&\uparrow\\Av_1&Av_2\\\downarrow&\downarrow\end{array}
ight)=\left(egin{array}{c}4&-3\\2&-3\end{array}
ight)$

$$v_2=\left(\begin{array}{c}1\\1\end{array}\right)$$
, asociados, respectivamente, a los autovalores $\lambda_1=2$ y $\lambda_2=-3$. Definimos $P=\left(\begin{array}{cc}2&1\\1&1\end{array}\right),\quad D=\left(\begin{array}{cc}2&0\\0&-3\end{array}\right)$

Definición

Sea $A \in \mathbb{R}^{n \times n}$ una matriz cuadrada. Diremos que A es diagonalizable si $\exists P \in \mathbb{R}^{n \times n}$ regular y $D \in \mathbb{R}^{n \times n}$ diagonal tales que

$$P^{-1}AP = D$$

 $rank(A) = |\{\lambda_i \mid \lambda_i \neq 0, 1 < i < n\}|.$

- ¿Qué utilidad tiene diagonalizar una matriz?
- Cálculo del determinante:

$$\det(A) = \det\left(PDP^{-1}\right) = \det(P)\det(D)\det\left(P^{-1}\right)$$

$$= \det(P)\det(D)\frac{1}{\det(P)} = \det(D) = \prod^{n} \lambda_{i}.$$

- Cálculo del rango:

Cálculo de potencias matriciales.

Si $P^{-1}AP = D$, entonces multiplicando por P a la izquierda y P^{-1} a la derecha podemos obtener

$$A = PDP^{-1}$$

- $A^2 = A \cdot A = (PDP^{-1})(PDP^{-1}) = PD(P^{-1}P)DP^{-1} = PDI_nDP^{-1} = P(D \cdot D)P^{-1} = PD^2P^{-1}.$
- $A^3 = A^2 \cdot A = (PD^2P^{-1})(PDP^{-1}) = PD^2(P^{-1}P)DP^{-1} = PD^2I_nDP^{-1} = P(D^2D)P^{-1} = PD^3P^{-1}.$
- ► En general, se tiene

$$A^k = PD^kP^{-1}, ext{ donde } D^k = \left(egin{array}{cccc} \lambda_1^k & 0 & \cdots & 0 \ 0 & \lambda_2^k & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \lambda_n^k \end{array}
ight).$$

Si $A \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{R}$ es un valor propio de A y $v \in \mathbb{R}^{n \times 1}$ es un vector propio asociado a λ , entonces:

$$Av = \lambda v \leftrightarrow Av - \lambda v = \overrightarrow{\mathbf{0}} \leftrightarrow Av - \lambda I_n v = \overrightarrow{\mathbf{0}} \leftrightarrow (A - \lambda I_n)v = \overrightarrow{\mathbf{0}}.$$

- $(A \lambda I_n)v = \overrightarrow{0}$ es un sistema de ecuaciones lineal **homogéneo** (términos
- independientes nulos). Por tanto, siempre es compatible:
- Si det(A λI_n) ≠ 0, entonces es compatible determinado y su única solución es v = 0
 Si det(A λI_n) = 0, entonces es compatible indeterminado y tiene infinitas
- soluciones. • Queremos encontrar vectores propios $v \neq \overrightarrow{\mathbf{0}}$, luego imponemos $\det(A - \lambda I_n) = 0$ (**ecuación característica**). Las raíces de esta ecuación con incógnita λ son los
- valores propios.

 Para cada valor propio obtenido $\{\lambda_i\}_{i=1}^k$ se obtiene el máximo número de vectores linealmente independientes como que verifican $(A \lambda_i I_n)v = \overrightarrow{\mathbf{0}}$. 1 < i < k.

Ejemplo

Sea
$$A = \begin{pmatrix} 7 & -10 \\ 5 & -8 \end{pmatrix}$$
.

 $\alpha=1 \rightarrow v_2=\begin{pmatrix} 2\\1 \end{pmatrix}$.

Ec. caract.:
$$det(A - \lambda I_2) = 0 \rightarrow det\begin{pmatrix} 7 - \lambda & -10 \\ 5 & -8 - \lambda \end{pmatrix} = 0 \rightarrow \lambda^2 + \lambda - 6 = 0 \rightarrow 0$$

$$\lambda_1 = -3$$
, $\lambda_2 = -3$

$$\lambda_1 = -3, \ \lambda_2 = 2.$$
Vectores propios:
$$(A - \lambda_1 h) x = \overrightarrow{0} \quad (10 - 10) (x) = (0) \quad (x) = (\alpha) \quad (\alpha) \quad (\alpha) \in \mathbb{R}$$

$$(A - \lambda_1 I_2) v = \overrightarrow{\mathbf{0}} \to \begin{pmatrix} 10 & -10 \\ 5 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \to \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha \\ \alpha \end{pmatrix}, \ \alpha \in \mathbb{R}.$$

$$\alpha = 1 \to v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

$$(A - \lambda_1 I_2) \mathbf{v} = \mathbf{0} \to \begin{pmatrix} 5 & -5 \end{pmatrix} \begin{pmatrix} y \end{pmatrix} = \begin{pmatrix} 0 \end{pmatrix} \to \begin{pmatrix} y \end{pmatrix} = \begin{pmatrix} \alpha \end{pmatrix}, \alpha \in \mathbb{R}.$$

$$\alpha = 1 \to \mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

$$(A - \lambda_2 I_2) \mathbf{v} = \overrightarrow{\mathbf{0}} \to \begin{pmatrix} 5 & -10 \\ 5 & -10 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \to \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2\alpha \\ \alpha \end{pmatrix}, \alpha \in \mathbb{R}.$$

$$(A - \lambda_1 I_2)v = \overrightarrow{\mathbf{0}} \to \begin{pmatrix} 10 & -10 \\ 5 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \to \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha \\ \alpha \end{pmatrix}$$

$$\alpha = 1 \to v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Otras descomposiciones matriciales

- \triangleright No todas las matrices son diagonalizables en \mathbb{R} .
- ightharpoonup Si A es cuadrada y no diagonalizable ightharpoonup Forma canónica de Jordan.
- ightharpoonup Si A es rectangular o Factorización SVD (singular value decomposition) o PCA.
- Otras factorizaciones útiles:
 - Factorización *LU* (método de eliminación de Gauss).
 - Factorización de Cholesky (mínimos cuadrados, Montecarlo...).
 - Factorización *QR* (mínimos cuadrados).

Definición

Una matriz $A \in \mathbb{R}^{n \times n}$ es simétrica si $A^{\top} = A$

Teorema

Si $A \in \mathbb{R}^{n \times n}$ es simétrica, entonces A es diagonalizable. Además, $\exists P \in \mathbb{R}^{n \times n}$ ortogonal $(P^{\top} = P^{-1})$ tal que $P^{\top}AP = D$.

Matrices simétricas

Definición

Una matriz simétrica $A \in \mathbb{R}^{n \times n}$ es definida positiva (respectivamente semidefinida positiva) si $\forall v \in \mathbb{R}^{n \times 1}$, $v \neq \overrightarrow{\mathbf{0}}$, $v^{\top}Av > 0$ (respectivamente $v^{\top}Av \geq 0$). Por otra parte, A es (semi)definida negativa si -A es (semi)definida positiva.

Ejemplos

- 1. $I_n \in \mathbb{R}^{n \times n}$ es definida positiva $\forall n \in \mathbb{N}$. En efecto, dado $v \in \mathbb{R}^{n \times 1}$, $v \neq \overrightarrow{\mathbf{0}}$, $v^{\top}I_nv = v^{\top}v = ||v||_2^2 > 0$.
- $v^{\top}I_nv = v^{\top}v = ||v||_2^2 > 0.$ 2. $0_n \in \mathbb{R}^{n \times n}$ es semidefinida positiva $\forall n \in \mathbb{N}$. En efecto, dado $v \in \mathbb{R}^{n \times 1}$, $v \neq \overrightarrow{\mathbf{0}}$,
- $v^{\top}0_nv=0.$ 3. $A=\begin{pmatrix}1&2\\2&-1\end{pmatrix}\in\mathbb{R}^{2\times 2}$ no es (semi)definida positiva, pues, por ejemplo, tomando $v^{\top}=(0,1)$, se tiene $v^{\top}Av=-1<0$. (Tampoco es (semi)definida negativa).

Matrices simétricas

Definición

Sea $A \in \mathbb{R}^{n \times n}$ y $k \in \{1, 2, ..., n\}$. El menor principal dominante de orden k asociado a A, al que denotaremos por A_k , es $A_k = \det(A(1:k,1:k))$; es decir, el determinante de la submatriz formada por las primeras k filas y columnas.

Teorema

Sea $A \in \mathbb{R}^{n \times n}$ una matriz simétrica. Los enunciados siguientes son equivalentes:

- ► A es definida positiva (respectivamente, semidefinida positiva).
- $ightharpoonup A_k > 0$, $\forall k \in \{1, 2, ..., n\}$ (respectivamente, $A_k \geq 0$).
- $ightharpoonup orall \lambda \in \mathbb{R}$ valor propio de A, $\lambda > 0$ (respectivamente, $\lambda \geq 0$).

Álgebra tensorial

Definición

Un tensor es un objeto invariante con respecto a un cambio de coordenadas.

Ejemplos

- 1. Los **escalares** en \mathbb{R} son tensores.
- 2. Los **vectores** v de un espacio vectorial V son tensores.
- 3. Los elementos del conjunto V^* , formado por las aplicaciones lineales de la forma $V \to \mathbb{R}$, llamados **covectores**, son tensores.
- 4. Las aplicaciones lineales entre dos espacios vectoriales V y W, de la forma $V \to W$, tienen representación como tensores.
- 5. En consecuencia, las matrices de $\mathbb{R}^{m \times n}$ tienen representación como tensores.
- 6. Tensores métricos (ecuaciones de campo de Einstein).

$$Vector: v = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

▶ Base
$$\mathcal{B} = \{e_1, e_2\}$$
, donde:

$$e_1=\left(egin{array}{c}1\\0\end{array}
ight),\;e_2=\left(egin{array}{c}0\\1\end{array}
ight)$$

$$v = 5e_1 + 4e_2$$

ightharpoonup Coordenadas de v en la base \mathcal{B} :

$$\blacktriangleright \text{ Vector: } v = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

 $\widetilde{\mathcal{B}} = \{\widetilde{e}_1, \widetilde{e}_2\}, \text{ donde:}$

$$\widetilde{e}_1 = \left(\begin{array}{c} 1 \\ -1 \end{array} \right), \ \widetilde{e}_2 = \left(\begin{array}{c} 1 \\ 2 \end{array} \right)$$

Coordenadas de
$$v$$
 en la base $\widetilde{\mathcal{B}}$:

$$\begin{bmatrix} 2 \\ 3 \end{bmatrix}_{\widetilde{\mathcal{B}}}$$

$$\blacktriangleright \text{ Vector: } v = \left(\begin{array}{c} 5 \\ 4 \end{array}\right)$$

Base $\widetilde{\mathcal{B}} = \{\widetilde{e}_1 = 2e_1, \widetilde{e}_2 = 2e_1\},\$ donde:

$$\widetilde{\mathbf{e}}_1 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \ \widetilde{\mathbf{e}}_2 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

$$ightharpoonup v = 2.5\widetilde{e}_1 + 2\widetilde{e}_2$$

$$ightharpoonup$$
 Coordenadas de v en la base $\widetilde{\mathcal{B}}$:

$$\begin{bmatrix} 2.5 \\ 2 \end{bmatrix}_{\widetilde{R}} = \frac{1}{2} \begin{bmatrix} 5 \\ 4 \end{bmatrix}_{R}$$

$$\blacktriangleright \text{ Vector: } v = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

Base $\widetilde{\mathcal{B}}=\{\widetilde{e}_1=\frac{1}{2}e_1,\widetilde{e}_2=\frac{1}{2}e_1\}$, donde:

$$\widetilde{e}_1 = \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix}, \ \widetilde{e}_2 = \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix}$$

ightharpoonup Coordenadas de v en la base $\widehat{\mathcal{B}}$:

$$\left[\begin{array}{c} 10 \\ 8 \end{array}\right]_{\widetilde{\mathcal{B}}} = 2 \left[\begin{array}{c} 5 \\ 4 \end{array}\right]_{\mathcal{B}}$$

- Diremos que una componente de un tensor es **contravariante** si ésta varía en proporción inversa con respecto a un cambio de coordenadas.
- **Ejemplo:** coordenadas de un vector con respecto a una base.
- Diremos que una componente de un tensor es covariante si ésta varía en proporción directa con respecto a un cambio de coordenadas.
- **Ejemplo:** coordenadas de un vector v formadas a partir de su producto escalar con los elementos de la base $\mathcal{B} = \{b_i\}_{i=1}^n$:

$$\left[\begin{array}{c} v \cdot b_1 \\ \vdots \\ v \cdot b_n \end{array}\right]$$

Arrays multidimensionales

- Los arrays multidimensionales son casos particulares de objetos que tienen representación de tensor.
- ► El **rango** de un tensor en forma de array representa las dimensiones espaciales en términos de la disposición de sus entradas.
 - Un escalar $x \in \mathbb{R}$ tiene rango 0.
 - ▶ Un vector $v \in \mathbb{R}^n$ tiene rango 1 (y dimensión n).
 - ▶ Una matriz $A \in \mathbb{R}^{n \times n}$ tiene rango 2 (y dimensión n).
 - ▶ Un array del tipo $A \in \mathbb{R}^{n \times n \times n}$ tiene rango 3 (y dimensión n).

▶ En general, $T_{j_1,...,j_q}^{i_1,...,i_p}$ es un tensor de tipo (p,q) (p componentes contravariantes y q componentes covariantes), con rango p+q.

Arrays multidimensionales

Ejemplos

- 1. Audio PCM Mono de 2 segundos, con frecuencia de muestreo de 48 kHz (48000 muestras por segundo).
 - Rango: 1.
 - Dimensión: 96000.
- 2. Audio PCM Stereo de 3 segundos, con frecuencia de muestreo 44.1 kHz (44100 muestras por segundo).
 - Rango: 2.
 - ▶ Dimensión: 2 × 132300.
- 3. Imagen monocroma, con 600 píxeles de anchura y 800 píxeles de altura.
 - Rango: 2.
 - **▶** *Dimensión:* 600 × 800.

Arrays multidimensionales

Ejemplos

- 4. Imagen RGB, con 2000 píxeles de anchura y 1200 píxeles de altura.
 - ► *Rango:* 3.
 - ightharpoonup Dimensión: $3 \times 2000 \times 1200$.
- 5. Vídeo monocromo de 1 minuto, a 30 fps (frames por segundo), con resolución 720p:
 - Rango: 3.
 - **▶** *Dimensión:* 1800 × 1280 × 720.
- 6. Vídeo RGB de 40 segundos, a 60 fps (frames por segundo), con resolución 1080p:
 - Rango: 4.
 - *▶ Dimensión:* 2400 × 3 × 1920 × 1080.

¡Muchas gracias!

Contacto:

amilcar.perez@professor.universidadviu.com