

Introduction to biomedical data

MERJA HEINÄNIEMI

ASSOCIATE PROFESSOR IN BIOINFORMATICS

INSTITUTE OF BIOMEDICINE, SCHOOL OF MEDICINE

New challenges that bring us together

Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, et al. (2015) Big Data: Astronomical or Genomical?. PLoS Biol 13(7): e1002195. doi:10.1371/journal.pbio.1002195

Genomics from genotyping and gene expression to deep- sequencing data

Imaging digital pathology, video recordings, integrating across imaging modalities

Health electronic medical records, pharmacy prescription information, insurance records

Personal recordings

Sage

Mole Mapper uses the phone's camera to track moles based on measurement, location and monitoring over time - **melanoma**

Collaborating with the UEF summer school to arrange the challenge for 2nd week

The Parkinson's app takes advantage of the phone's microphone, gyroscope and accelerometer to collect and track health and symptoms

Other patient-driven communities include https://www.patientslikeme.com

- Genomics data matrices: *long & thin* $10^4 \text{ to } 10^6 \text{ variables } ; 10 \text{ to } 10^2 \text{ patients}$
- Health record data matrices: short & broad
 10 to 10² variables; 10⁴ to 10⁶ patients
- Biomedical images:
 high-resolution digital images and movies

Future challenges
Modeling these
together

Bioinfo track lectures: molecular data

Wednesday Introduction to biomedical data - Merja Heinäniemi

Cell type deconvolution problem, Petri Pölönen

Lunch

Unsupervised dimensionality reduction, Juha Mehtonen

Multiview dimensionality reduction, Robert Ciszek + Break

Deep neural network applications, overview, Merja Heinäniemi

Deep neural network configurations for DNA motif analysis, Juha Mehtonen

Learning objectives

Domain knowledge Basic molecular biology

Data types RNA-sequencing and other omics data

ML applications Unsupervised: dimensionality reduction

Supervised: deep neural networks

In preparation of 2nd week Cell type deconvolution problem

Bioinfo track lectures: imaging data

http://www.jussitohka.net

Learning objectives

Domain knowledge Imaging modalities

Data types MRI, tissue sections

ML applications Mainly supervised methods

+ Integrating molecular and imaging data in multiscale models

http://www.cs.tut.fi/~ruusuvuo/

Bioinfo track independent assignment

You will analyze and model data generated by AMPAD-AD, the Accelerating Medicines Partnership-Alzheimer's Disease

Scientific hypothesis: neuro-degenerative diseases such as Alzheimer's disease affect the different brain cell types, resulting e.g. in neuronal loss in certain brain regions

Question: Which cell types are up-, down-regulated or unchanged in AD?

Human Tissue

Data: RNA-sequencing from postmortem tissue samples collected across 7 different brain regions

+ Associated metadata (clinical and technical)

Bioinfo track independent assignment

We can distinguish different cell types from measuring RNA levels or from tissue images

The problem: tissue samples represent the average RNA level profile across all cells (and cell types) – these are called bulk measurements

Bioinfo track independent assignment (1)

Molecular data New type of data is now available: single cell RNA-sequencing (scRNAseq)

The aim is to predict the proportion of different cell types from bulk RNASeq using clever approach utilizing data from single cell RNASeq -> cell type deconvolution problem

Challenge: Can you come up with a clever way to utilize scRNAseq to deconvolve the signal in the Alzheimer brain tissue samples?

Bioinfo track independent assignment (2)

Imaging data Brain imaging data is available: Allen Brain Atlas in situ hybridization

The aim is to perform automated image annotation to find out which cell types / tissue substructures express the genes that change their level in Alzheimer's disease patients (RNA-seq profiles)

Challenge: Can you come up with a clever way to utilize
Allen Brain Atlas data to link the gene expression
changes in the Alzheimer brain to specific brain regions?

Bioinfo track independent assignments

Choose one of the proposed tasks (molecular data / imaging data)

Evaluation will be based on:

- clever choice of methodology
- clever use of data

Demonstrating preliminary success will not be a requirement to pass the course but used to set up a leader board. You can expect that your approach should be able to detect neuronal loss in Alzheimer's disease in the cortex.