НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Лабораторная работа 3.4.5 «Петля гистерезиса (динамический метод)»

Овсянников Михаил Александрович студент группы Б01-001 2 курс ФРКТ

г. Долгопрудный 2021 г.

Цель работы: изучение петель гистерезиса ферромагнитных материалов с помощью осциллографа.

Оборудование: автотрансформатор, понижающий трансформатор, амперметр и вольтметр (мультиметры), резистор, делитель напряжения, интегрирующая цепочка, электронный осциллогра, тороидальные образцы с двумя обмотками.

Теоретические сведения

Рис. 1. Петля гистерезиса ферромагнетика

Магнитная индукция \vec{B} и напряженность магнитного поля \vec{H} в ферромагнитном материале неоднозначно связаны между собой: индукция зависит не только от напряженности, но и от предыстории образца. Связь между индукцией и напряженностью поля типичного ферромагнетика иллюстрирует рис. 1. Если к размагниченному образцу начинают прикладывать

магнитное поле, то его намагничивание следует кривой OACD, выходящей из начала координат. Эту кривую называют основной кривой намагничивания.

Индукция \vec{B} в образце состоит из индукции, связанной с намагничивающим полем \vec{B} , и индукции, создаваемой самим намагниченным образцом. В системе СИ эта связь имеет вид

$$\vec{B} = \mu_0(\vec{H} + \vec{I}),$$

где \vec{I} - намагниченность - магнитный момент единичного объема образца, а μ_0 - магнитная постоянная.

Экспериментальная установка.

Схема экспериментальной установки показана на рис. 2.

Действующее значение переменного тока в обмотке N_0 измеряется амперметром A (мультиметром GDM). Последовательно с амперметром включено сопротивление R_0 , напряжение с которого подается на вход X электронного осциллографа (ЭО). Это напряжение пропорционально току в обмотке N_0 , а следовательно и напряженности H магнитного поля в образце.

Для измерения магнитной индукции B с измерительной обмотки N на вход интегрирующей RC-цепочки подается напряжение $U_{\rm H}$, пропорциональное производной \dot{B} , а с выхода снимается напряжение $U_{\rm C}(U_{\rm BMX})$, пропорциональное величине B, и подается на вход Y осциллограа. Замкнутая кривая, возникающая на экране, воспроизводит в некотором масштабе (различном для осей X и Y) петлю гистерезиса. Чтобы придать этой кривой количественный смысл, необходимо установить масштабы изображения, т.е. провести калибровку каналов X и Y ЭО. Для этого, во-первых, надо узнать, каким напряжениям (или токам) соответствуют амплитуды сигналов, видимых на экране, и во-вторых, каким значениям B и H соответствуют эти напряжения (или токи).

Рис. 2. Схема установки для исследования намагничивания образцов

Выпишем основные формулы, которые понадобятся в данной работе.

Поле
$$H$$
: $H = \frac{IN_0}{2\pi R}$, R - радиус тороидального соленоида (образца)

Поле
$$B$$
: $B=\frac{RCU}{SN_u},~R$ и C - параметры RC -цепи. $RC=0,4$ с.

Ход работы

Проведем серию из трех экспериментов - для трех образцов: феррита, пермаллоя и кремнистого железа.

Сначала зафиксируем параметры конкретного образца. Затем будем находить значения тока $I_{\rm np}$ и напряжения $U_{\rm np}$, при которых наблюдается предельная петля гистерезиса. Найдем остаточную индукцию B_s и коэрцитивную силу H_c . Далее - для первых двух образцов рассчитаем поле H и поле B по параметрам их параметрам. И, наконец, найдем магнитную проницаемость μ образца при данном токе и напряжении. В каждом эксперименте будем сводить все в таблицу.

Феррит (Fe)

Рис. 3. Феррит

Параметры образца:

 $N_0 = 35;$

 $N_u = 400;$ $S = 3,0 \text{ cm}^2;$

 $2\pi R = 25 \text{ cm}.$

Предельные значения тока и напряжения:

 $I_{\rm np}=132,37\,\,{\rm mA},\,U_{\rm np}=36,62\,\,{\rm mB}.$

Рис. 4. Петля гистерезиса. Феррит

Остаточная индукция: $B_s \approx 0,07$ Тл.

Коэрцитивная сила: $H_c \approx 7,01 \frac{\text{A}}{\text{M}}$.

Сведем все данные в таблицу.

$I_{\Theta\Phi}, MA$	$I_{\Theta\Phi} \cdot \sqrt{2}$, MA	$H, \frac{A}{M}$	$U_{ m эф}$, мВ	$U_{ m s} \cdot \sqrt{2}, { m MB}$	В, Тл	$\mu = \frac{B}{\mu_0 H}$
24,1	34,01	4,76	3,0	4,24	0,014	2363,46
27,3	38,65	5,41	4,6	6,51	0,022	3189,04
29,9	42,31	5,92	6,1	8,63	0,029	3862,86
32,1	45,34	6,35	7,6	10,75	0,036	4491,50
34,3	48,55	6,80	9,1	12,87	0,043	5022,37
36,4	51,42	7,20	10,6	14,99	0,050	5523,61
38,6	54,59	7,64	12,0	16,97	0,057	5890,27
41,3	58,44	8,18	13,7	19,37	0,065	6282,05
44,2	62,54	8,76	15,0	21,21	0,071	6427,08
50,9	71,94	10,07	17,5	24,75	0,082	6518,05
57,8	81,74	11,44	19,0	26,87	0,090	6228,26
63,9	90,30	12,64	20,5	28,99	0,097	6083,23
70,1	99,14	13,88	22,0	31,11	0,104	5946,29
78,4	110,87	15,52	23,5	33,23	0,111	5679,28
88,2	124,69	17,46	25,0	35,36	0,118	5372,30
99,1	140,15	19,62	26,5	37,48	0,125	5066,56
111,7	157,97	22,12	28,0	39,60	0,132	4749,48
126,3	178,62	25,01	29,5	41,72	0,139	4425,47
144,2	203,86	28,54	31,0	43,84	0,146	4074,63
164,3	232,36	32,53	32,5	45,96	0,153	3747,89

Таблица 1. Феррит

Теперь построим графики.

Рис. 5. Феррит. B(H)

Рис. 6. Феррит. $\mu(H)$

Пермаллой (Fe-Ni)

Рис. 7. Пермаллой

Параметры образца:

 $N_0 = 40;$ $N_u = 200;$ $S = 3,8 \text{ cm}^2;$

 $2\pi R = 24 \text{ cm}.$

Предельные значения тока и напряжения: $I_{\rm np}=233,54$ мA, $U_{\rm np}=169,28$ мВ.

Рис. 8. Петля гистерезиса. Пермаллой

Остаточная индукция: $B_s \approx 0,82$ Тл.

Коэрцитивная сила: $H_c \approx 25, 30 \frac{\text{A}}{\text{M}}$.

Сведем все данные в таблицу.

$I_{ m эф}$, мА	$I_{9\Phi} \cdot \sqrt{2}$, MA	$H, \frac{A}{M}$	<i>U</i> эф, мВ	$U_{ m эф} \cdot \sqrt{2}$, мВ	В, Тл	$\mu = \frac{B}{\mu_0 H}$
64,5	91,217	15,20	5,2	7,35	0,039	2025,96
78,3	110,70	18,45	10,5	14,85	0,078	3370,75
87,2	123,26	20,54	16,1	22,77	0,120	4641,91
92,9	131,38	21,90	21,4	30,26	0,159	5788,77
97,6	138,03	23,00	27,0	38,18	0,201	6951,88
101,5	143,53	23,92	32,5	45,96	0,242	8047,26
105,1	148,63	24,77	38,0	53,74	0,283	9085,92
108,2	153,02	25,50	43,5	61,52	0,324	10103,00
111,2	157,26	26,21	48,1	68,02	0,358	10870,00
113,8	160,90	26,82	54,5	77,07	0,406	12038,10
116,2	164,36	27,39	60,2	85,14	0,448	13016,80
118,4	167,44	27,91	65,5	92,63	0,488	13902,00
120,5	170,41	28,40	71,0	100,40	0,528	14806,70
122,8	173,67	28,94	76,5	108,20	0,569	15654,90
125,3	177,17	29,53	82,1	116,10	0,611	16468,30
127,7	180,54	30,09	87,4	123,60	0,651	17204,60
130,8	184,98	30,83	93,0	131,50	0,692	17867,50
133,8	189,26	31,54	98,5	139,30	0,733	18495,70
138,4	195,73	32,62	103,9	146,90	0,773	18865,50
144,7	204,64	34,11	109,5	154,90	0,815	19016,60
154,3	218,27	36,38	115,2	162,90	0,857	18756,90
169,1	239,14	39,86	120,6	170,60	0,898	17922,20
192,3	271,95	45,33	126,4	178,80	0,941	16517,90
216,2	305,81	50,97	130,6	184,70	0,972	15177,30

Таблица 2. Пермаллой

А теперь графики.

Рис. 9. Пермаллой. B(H)

Рис. 10. Пермаллой. $\mu(H)$

Кремнистое железо (Fe-Si)

Рис. 11. Кремнистое железо

Параметры образца:

 $N_0 = 35;$

 $N_u = 350;$ $S = 1, 2 \text{ cm}^2;$

 $2\pi R = 10 \text{ cm}.$

Предельные значения тока и напряжения:

 $I_{\rm np} = 877, 38$ мА, $U_{\rm np} = 167, 44$ мВ.

Рис. 12. Петля гистерезиса. Кремнистое железо

Остаточная индукция: $B_s \approx 0,85$ Тл.

Коэрцитивная сила: $H_c \approx 83,75 \frac{\text{A}}{\text{M}}$.

Вывод: в данной работе были изучены петли гистерезиса ферромагнитных материалов. Были построены графики зависимостей B(H) и $\mu(H)$ для феррита и пермаллоя. Также в работе были найдены значения B_s остаточной индукции и H_c коэрцитивной силы для каждого образца. В пределах погрешности они сходятся с табличными значениями. Ошибки связаны с неточностью измерений и несовершенством их техники.

Дополнительные вопросы к работе

1. Индуктивность тороидальной катушки

Рис. 13. Катушка

Если R - это внутренний радиус, a - толщина, а b - высота катушки, то по теореме о циркуляции:

$$\frac{B(r)}{\mu} \cdot 2\pi r = \frac{4\pi}{c}NI \quad \Rightarrow \quad B(r) = \frac{2\mu NI}{cr}$$

Тогда:

$$\frac{LI}{c} = \Phi = \int_{R}^{R+a} B(r)Nb \cdot dr = \int_{R}^{R+a} \frac{2\mu N^2 Ib}{cr} \cdot dr = \frac{2\mu N^2 Ib}{c} \ln\left(1 + \frac{a}{R}\right)$$

При условии, что катушка тонкая, то есть $a \ll R$, получаем:

$$\frac{LI}{c} = \frac{2\mu N^2 Iab}{cR}$$

Откуда:

$$L = \frac{2\mu N^2 ab}{R} = \frac{2\mu N^2 S}{R}.$$

Феррит:

Первичная намотка: L=12034406,076 см (СГС) ≈ 12 мГн. Вторичная намотка: L=1571840793,6 см (СГС) $\approx 1,57$ Гн.

Пермаллой:

Первичная намотка: L=60508285,7 см (СГС) $\approx 60,51$ мГн. Вторичная намотка: L=1512707141,3 см (СГС) $\approx 1,51$ Гн.

2. Резонансная частота и добротность

На схеме изображен параллельный колебательный контур, поэтому $\omega = \frac{1}{\sqrt{LC}}.$

Добротность же
$$Q = R\sqrt{\frac{C}{L}}$$

Феррит: $\omega \approx 178, 5$ Гц; $Q \approx 71, 4$

Пермаллой: $\omega \approx 182, 0 \; \Gamma_{\rm H}; \; Q \approx 72, 8$

3. Реактивные сопротивления

$$X_L = \omega L X_C = \frac{1}{\omega C}$$

Феррит: $X_L \approx 280, 2 \text{ Ом}; X_C \approx 280, 1 \text{ Ом}.$

Пермаллой: $X_L \approx 274, 8 \text{ Om}; X_C \approx 274, 7 \text{ Om}.$

 $R_{\text{активное}} = R_{\text{M}} = 20000 \text{ Om.}$

Видно, что: $X_L \ll R_{\text{активное}}$ и $X_C \ll R_{\text{активное}}$ как для феррита, так и для пермаллоя.

4. Зависимость резонансной частоты от тока через первичную катушку

При небольших токах вклад в общий поток, а с ним собственно и в индуктивность, дает как магнитное поле, создаваемое током, так и намагниченность сердечника.

При достаточно больших токах последнее слагаемое перестает вносить вклад, так как существует состояние насыщения. Следовательно, при достаточно больших токах при его увеличении общая индуктивность падает, а так как $\omega = \frac{1}{\sqrt{LC}}$, то резонансная частота возрастает.