Úvod do distribuovaných algoritmov

Zimný semester 2003/04 4. cvičenie – 9.10.2003 $R.~Kr\'{a}lovi\'{c}$ M261 kralovic@dcs.fmph.uniba.sk www.dcs.fmph.uniba.sk/ \sim kralovic/UdA

Voľba šéfa na synchrónnom kruhu

Na prednáške bol uvedený nasledovný algoritmus voľby šéfa na synchrónnom kruhu za predpokladu, že identifikátory sú prirodzené čísla: algoritmus pozostáva z fáz, každá fáza trvá n tikov, kde n je veľkosť kruhu. Vo fáze i sa testuje, či je v kruhu práve jeden vrchol v s $id_v \leq f(i)$ – tento vrchol je potom šéf. Jeden test trvá n tikov, pričom vrcholy spĺňajúce $id_v \leq f(i)$ pošlú v prvom tiku (jednobitovú) správu. Táto obieha po kruhu a zastaví sa na prvom vrchole u, v ktorom $id_u \leq f(i)$. Ak nejaký vrchol dostane správu v n-tom tiku, znamená to, že táto správa obehla celý kruh a teda vysielal iba jeden vrchol – šéf. Komunikačná zložitosť jedného testu je n bitov, ak $f(i) \geq \min_{id}$, v opačnom prípade 0 bitov.

Algoritmus na prednáške používal f(i) = i a teda mal komunikačnú zložitosť n bitov s použitím \min_{id} testov. Navrhnite funkciu $f_k(i)$, ktorá pre dané k minimalizuje počet testov pri použití kn bitov.

Voľba šéfa na úplnom grafe

Na prednáške bol uvedený algoritmus voľby šéfa v úplných grafoch, ktorý používal $O(n \log n)$ správ. Ukážte, že ak sa namiesto dvojice [level, ID] používa na porovnávanie iba ID, existuje výpočet, ktorý vykomunikuje $\Omega(n^2)$ správ.

Ako sa zmení situácia, ak zajaté procesy môžu prechádzať od jedného rodiča k druhému (podľa lokálneho výsledku súboja)? A čo ak o tom najprv upovedomia rodiča?