An Introduction to Linear Algebra: The Language of Chemometrics

Christian Damsgaard Jørgensen

Department of Mathematics and Computer Science University of Southern Denmark

Week 38

A linear equation in n unknowns is an equation of the form

$$a_1x_1+a_2x_2+\cdots+a_nx_n=b$$

where a_1, a_2, \ldots, a_n and b are in \mathbb{R} and x_1, x_2, \ldots, x_n are variables.

A *linear system* of m equations in n unknowns has the form

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = b_{m}$$
(1)

where the a_{ij} 's and the b_i 's are in \mathbb{R} .

We will refer to systems of the form (1) as $m \times n$ linear systems.

A solution of an $m \times n$ system is an n-tuple of numbers

$$(x_1,x_2,\ldots,x_n)$$

that satisfies all the equations of the system.

An n-tuple can be interpreted as a vector of length n.

The set of all solutions of a linear system is called the solution set.

Consistency

- ▶ If the solution set is empty, the system is *inconsistent*.
- ▶ If the solution set is nonempty, the system is *consistent*.

To solve a consistent system, we must find its solution set.

We will examine geometrically 2×2 systems of the form

$$a_{11}x_1 + a_{12}x_2 = b_1$$

$$a_{21}x_1 + a_{22}x_2 = b_2$$

Each equation can be represented graphically as a line in the plane.

An ordered pair (x_1, x_2) is a solution iff it lies on both lines.

In general, there are only three possible cases:

- 1. the lines are parallel,
- 2. the lines intersect at a point, or
- 3. both equations represent the same line

The solution set then contains either 0, 1, or infinitely many points.

Figure 1: Geometric interpretation of solution sets.

Remark: The situation is the same for $m \times n$ systems.

Rectangular arrays are used to *store* information on computers. We will define algebraic operations on such arrays in a meaningful way.

Goal: Use arrays to solve linear systems of equations on computers.

A rectangular array of numbers with m rows and n columns as

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

is called an $m \times n$ matrix. We will often shorten this to $\mathbf{A} = \{a_{ij}\}.$

The number a_{ij} is called the (i,j) entry of the matrix **A**.

We will use bold capital letters to refer to matrices.

Square Matrices

A matrix is *square* if it has the same number of rows and columns.

Triangular Matrices

A square matrix **A** is upper triangular if $a_{ij} = 0$ for i > j.

A square matrix **A** is *lower triangular* if $a_{ij} = 0$ for i < j.

Moreover, A is triangular if it is either upper or lower triangular.

Diagonal Matrices

A square matrix **A** is diagonal if $a_{ij} = 0$ for $i \neq j$.

Note: A diagonal matrix is both upper and lower triangular.

Diagonal Matrices (continued)

An entry a_{ij} of **A** is called a main diagonal entry if i = j.

The diagonal matrix with the main diagonal entries d_1, d_2, \ldots, d_n is denoted by diag $\{d_1, d_2, \ldots, d_n\}$. A row vector consisting of the main diagonal entries of a square matrix \mathbf{A} is denoted by diag $\{\mathbf{A}\}$.

Identity Matrices

An identity matrix is a square matrix $\mathbf{I} = \{\delta_{ij}\}$, where

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Thus, it is a diagonal matrix whose main diagonal entries are 1.

The identity matrix is denoted by I.

Zero Matrices

A zero matrix is a matrix whose entries are all 0. It is denoted by $\mathbf{0}$.

One Matrices

A one matrix is a matrix whose entries are all 1. It is denoted by 1.

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}, \mathbf{0} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}, \mathbf{1} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$

Figure 2: An identity matrix \mathbf{I} , a zero matrix $\mathbf{0}$, and a one matrix $\mathbf{1}$.

A vector turns out to be a special case of a matrix.

Vectors are one-dimensional arrays:

$$\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

These are matrices that consist of a single row or a single column.

Matrices that consist of a single row are called row vectors.

Matrices that consist of a single column are called column vectors.

We will denote the jth column vector of an $m \times n$ matrix **A** by \mathbf{a}_j .

Equality

Two $m \times n$ matrices **A** and **B** are equal if $a_{ij} = b_{ij}$ for each i and j.

Scalar Multiplication

If **A** is an $m \times n$ matrix and α is a single number, then

$$\alpha \mathbf{A} = \alpha \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} & \cdots & \alpha a_{1n} \\ \alpha a_{21} & \alpha a_{22} & \cdots & \alpha a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha a_{m1} & \alpha a_{m2} & \cdots & \alpha a_{mn} \end{bmatrix}$$

is formed by multiplying each of the entries of **A** by α .

In this setting, the single number α is called a *scalar*.

The Transpose of a Matrix

The transpose of an $m \times n$ matrix $\mathbf{A} = \{a_{ij}\}$ is the $n \times m$ matrix \mathbf{A}^{\top} whose (j, i) entry is a_{ij} for j = 1, 2, ..., n and i = 1, 2, ..., m:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \mathbf{A}^{\top} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

The *j*th row of \mathbf{A}^{\top} has the same entries as the *j*th column of \mathbf{A} .

The *i*th column of \mathbf{A}^{\top} has the same entries as the *i*th row of \mathbf{A} .

Symmetric Matrices

A square matrix **A** is *symmetric* if $\mathbf{A}^{\top} = \mathbf{A}$.

Matrix Addition

If **A** and **B** are $m \times n$ matrices, then

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

is formed by adding their corresponding entries.

Matrix Subtraction

If **A** and **B** are $m \times n$ matrices, then

$$\mathbf{A} - \mathbf{B} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} - \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} & \cdots & a_{1n} - b_{1n} \\ a_{21} - b_{21} & a_{22} - b_{22} & \cdots & a_{2n} - b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} - b_{m1} & a_{m2} - b_{m2} & \cdots & a_{mn} - b_{mn} \end{bmatrix}$$

is formed by subtracting the corresponding entry of $\bf B$ from each entry of $\bf A$. Equivalently, we can define $\bf A-\bf B$ to be $\bf A+(-1)\bf B$.

Matrix Multiplication

If **A** is an $m \times n$ matrix and **B** is an $n \times r$ matrix, then

$$\mathbf{AB} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1r} \\ b_{21} & b_{22} & \cdots & b_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nr} \end{bmatrix}$$

$$= \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1r} \\ c_{21} & c_{22} & \cdots & c_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mr} \end{bmatrix} = \mathbf{C}$$

is an $m \times r$ matrix whose entries are defined by $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$. In general, matrix multiplication is not commutative: $AB \neq BA$.

Linear Systems

We can represent an $m \times n$ system by a matrix equation of the form

$$Ax = b$$

A is an $m \times n$ matrix whose entries are variable coefficients, **x** is an $n \times 1$ vector of unknowns, and **b** is an $m \times 1$ right-hand side vector:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

The rule for determining the ith entry of the matrix product $\mathbf{A}\mathbf{x}$ is

$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n$$

Linear Systems (continued)

The product **Ax** is defined by

$$\mathbf{Ax} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix}$$

We can also express the product $\mathbf{A}\mathbf{x}$ as a sum of column vectors:

$$\mathbf{A}\mathbf{x} = x_1 \underbrace{\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}}_{\mathbf{a}_1} + x_2 \underbrace{\begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}}_{\mathbf{a}_2} + \dots + x_n \underbrace{\begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}}_{\mathbf{a}_n}$$

Consistency Theorem for Linear Systems

An $m \times n$ system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent iff \mathbf{b} can be written as

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n$$

which is called a linear combination of the column vectors of A.

The Span of a Set of Vectors

The set of all linear combinations of the vectors is called their span.

Linear Independence

The vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ are linearly independent if

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{0}$$

implies that all the scalars x_1, x_2, \dots, x_n must equal 0.

Rank

The number of linearly independent rows or columns of an $m \times n$ matrix **A** is called the *rank* of **A** and is often denoted by rank(**A**).

In general, $rank(\mathbf{A}) \leq min(m, n)$.

The matrix **A** has full rank, if rank(**A**) = min(m, n).

Singularity

A square matrix $\bf A$ is *nonsingular* or *invertible* if there exists a matrix $\bf A^{-1}$ (called the *multiplicative inverse* of $\bf A$), such that

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$

If no such matrix exists, then **A** is singular.

We will often refer to \mathbf{A}^{-1} as simply the *inverse* of \mathbf{A} .

Algebraic Rules

Each of the statements is valid for any scalars α and β and for any matrices **A**, **B**, and **C** for which the operations are defined:

- 1. A + B = B + A
- 2. (A + B) + C = A + (B + C)
- 3. (AB)C = A(BC)
- 4. A(B + C) = AB + AC
- 5. (A + B)C = AC + BC
- 6. $(\alpha\beta)\mathbf{A} = \alpha(\beta\mathbf{A})$
- 7. $\alpha(AB) = (\alpha A)B = A(\alpha B)$
- 8. $(\alpha + \beta)\mathbf{A} = \alpha\mathbf{A} + \beta\mathbf{A}$
- 9. $\alpha(\mathbf{A} + \mathbf{B}) = \alpha \mathbf{A} + \alpha \mathbf{B}$

Algebraic Rules for Transposes

There are four basic algebraic rules involving transposes:

- 1. $({\bf A}^{\top})^{\top} = {\bf A}$
- 2. $(\alpha \mathbf{A})^{\top} = \alpha \mathbf{A}^{\top}$
- 3. $(A + B)^{T} = A^{T} + B^{T}$
- 4. $(AB)^{\top} = B^{\top}A^{\top}$

The Usual Norm on \mathbb{R}^n

The Euclidean norm of an $n \times 1$ vector **x** is defined by

$$\|\mathbf{x}\| = \sqrt{\mathbf{x}^{\top}\mathbf{x}} = \sqrt{\sum_{i=1}^{n} x_i^2} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

The Usual Norm on \mathbb{R}^n (continued)

Similarly, for an $1 \times n$ vector \mathbf{x} , it is defined by

$$\|\mathbf{x}\| = \sqrt{\mathbf{x}\mathbf{x}^{\top}} = \sqrt{\sum_{i=1}^{n} x_i^2} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

A vector \mathbf{x} is a *unit vector* if its Euclidean norm $\|\mathbf{x}\|$ is 1.

A natural extension of the notion of a vector norm to matrices is

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2} = \sqrt{a_{11}^2 + a_{12}^2 + \dots + a_{21}^2 + a_{22}^2 + \dots}$$

where **A** is an $m \times n$ matrix. This is called the *Frobenius norm*.

Trace

The *trace* of an $n \times n$ matrix **A** is the sum of its diagonal entries:

$$tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii} = a_{11} + a_{22} + \cdots + a_{nn}$$

A matrix and its transpose have the same trace: $tr(\mathbf{A}) = tr(\mathbf{A}^{\top})$.

Three useful properties of the trace are

- $\mathsf{tr}(\mathbf{A} + \mathbf{B}) = \mathsf{tr}(\mathbf{A}) + \mathsf{tr}(\mathbf{B})$
- $\operatorname{tr}(\alpha \mathbf{A}) = \alpha \operatorname{tr}(\mathbf{A})$
- $\blacktriangleright \ \mathsf{tr}(\mathbf{AB}) = \mathsf{tr}(\mathbf{BA})$

where **A** and **B** are $n \times n$ matrices and α is a scalar.

Orthogonality in \mathbb{R}^n

Two $n \times 1$ vectors **x** and **y** are *orthogonal* if $\mathbf{x}^{\top}\mathbf{y} = 0$.

We will denote this relationship by $\mathbf{x} \perp \mathbf{y}$.

Orthogonal Sets

A set of vectors is orthogonal if the vectors are pairwise orthogonal.

Orthonormal Sets

An orthonormal set of vectors is an orthogonal set of unit vectors.

Orthogonal Matrices

An $n \times n$ matrix **A** whose column vectors form an orthonormal set is called *orthogonal*. Thus, the matrix **A** is orthogonal iff $\mathbf{A}^{\top}\mathbf{A} = \mathbf{I}$.

Properties of Orthogonal Matrices

The vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ form a basis for \mathbb{R}^n iff

- 1. $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly independent
- 2. every vector in \mathbb{R}^n is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$

If **A** is an $n \times n$ orthogonal matrix, then

- 1. the column vectors of **A** form an orthonormal basis for \mathbb{R}^n
- 2. $\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{I}$
- $\mathbf{A}^{\top} = \mathbf{A}^{-1}$
- 4. $(\mathbf{A}\mathbf{y})^{\top}(\mathbf{A}\mathbf{x}) = \mathbf{y}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x} = \mathbf{y}^{\top}\mathbf{x}$
- 5. $\|\mathbf{A}\mathbf{x}\| = \|\mathbf{x}\|$

Literature

Steven J. Leon. Linear Algebra with Applications (9th Edition). Pearson, 2015.

Bent Jørgensen, Yuri Goegebeur. Lecture Notes for Module 2: Matrix Algebra. statmaster.sdu.dk, 2007.