MOSFET (I): Fundamentals

- I V Characteristics
 - Cutoff Region
 - Linear Region
 - Saturation Region (pinch-off region)
- Switch model of nMOSFETs Reading: Chapter 3.3

Gary Chun Zhao, PhD

Chun.Zhao@xjtlu.edu.cn

Apr 2024

MOS Capacitors

MOS: Metal-Oxide-Semiconductor

Ec(O) and electric field direction

Inversion: Minority carriers

Inversion

- Weak Inversion: $0 < \phi_n < \phi_F$ ($\phi_F < \phi_S < 2\phi_F$)
- Strong Inversion: $\phi_n \ge \phi_F$ ($\phi_S \ge 2\phi_F$), electron density at the interface \ge hole density in Si bulk.
- Vg for strong inversion: V_T 'threshold voltage'.

$$Vg = V_T \rightarrow \phi_s = 2\phi_F \rightarrow \phi_n = \phi_F \rightarrow n_s = p_b$$

$$n_{s} = n_{i} \exp\left[\frac{(E_{F} - E_{i,surf})}{kT}\right]$$

$$p_{b} = n_{i} \exp\left[\frac{-(E_{F} - E_{i,bulk})}{kT}\right]$$

$$= N_{A}$$

$$p_{s} \approx n_{i}^{2} / n_{s}$$

$$n_{b} = n_{i}^{2} / p_{b}$$

$$V_{g>0}$$

$$p_{g} = \phi_{F} + \phi_{n}$$

Voltage drops in a MOS system

$$V_{G} = V_{FB} + V_{ox} + \phi_{s}$$

$$V_{G} = V_{T} \rightarrow V_{T} = V_{FB} + V_{ox} + 2\phi_{F}$$

$$\phi_{s} = 2\phi_{F}$$

$$V_{ox} = +\frac{\sqrt{2qN_A \varepsilon_{Si}(2\phi_F)}}{C_{ox}}$$

for p-Si sub.

$$V_{ox} = -\frac{\sqrt{2qN_D \varepsilon_{Si} |2\phi_F|}}{C_{ox}}$$

for n-Si sub.

 A GATE electrode is placed above (electrically insulated from) the silicon surface, and is used to control the resistance between the SOURCE and DRAIN regions

Gate oxide

Consider the current I_G (flowing into **G**) versus V_{GS} :

The gate is insulated from the semiconductor, so there is **no** significant (steady) gate current.

<u>OUTLINE</u>

- I V Characteristics
 - Cutoff Region ←

- Linear Region
- Saturation Region (pinch-off region)
- Switch model of nMOSFETs

nMOSFET: V_{GS}<V_T

Under **zero** bias, two back-to-back *pn*-junctions create a very high resistive path between source and drain.

Appling a **positive bias** (V_{GS}) to the gate, creates a **depletion** region under the gate (repels mobile holes). The depletion region is **same** as the one occurring in a *MOS Capacitor*.

<u>OUTLINE</u>

- I V Characteristics
 - Cutoff Region
 - Linear Region

- Saturation Region (pinch-off region)
- Switch model of nMOSFETs

nMOSFET: V_{GS}>V_T

Inversion layer charge expressions are (the surface potential ϕ_s is $2\phi_F$):

Inversion layer charge

$$Q_{inv} = -C_{ox}(V_G - V_T)$$

 $V_G^{\uparrow} \longrightarrow Q_{inv}^{\uparrow}$

Threshold voltage

$$V_T = V_{FB} + 2\phi_F + \frac{\sqrt{2qN_A \varepsilon_{Si}(2\phi_F)}}{C_{ox}}$$

Inversion layer

$$Q_{inv} \times W \times L = q \times n \times t \times W \times L$$

$$\rightarrow Q_{inv} = q n t$$

- Without gate bias, MOSFET is off because two diodes are "back-to-back". One of them will be reversely biased. To switch on, the interfacial region is inverted by applying a gate bias.
- Above a certain gate-to-source voltage (threshold voltage V_T),
 a conducting layer of mobile electrons is formed at the Si
 surface beneath the oxide. These electrons can carry current
 between the source and drain.

Electrical Resistance

Resistance
$$R = \frac{V}{I} = \rho \frac{L}{A} = \frac{\rho L}{tW} = \left(\frac{\rho}{t}\right) \left(\frac{L}{W}\right)$$
 (Unit: ohms)

where ρ is the resistivity (Ω •cm)

Electrical Conductivity o

Negatively charged electron
Direction of electron drift

When an electric field is applied, current flows due to drift of mobile electrons and holes:

electron current density:

$$J_n = (-q)nv_e = qn\mu_n E$$

hole current density:

$$J_p = (+q)pv_h = qp\mu_p E$$

total current density:

$$J = J_n + J_p = (qn\mu_n + qp\mu_p)E$$

$$J = \sigma E$$

$$\sigma \equiv qn\mu_n + qp\mu_p$$

Units: $(\Omega \cdot \text{cm})^{-1}$

Electrical Resistivity ρ

$$\rho \equiv \frac{1}{\sigma} = \frac{1}{qn\mu_n + qp\mu_p}$$

$$\rho \cong \frac{1}{qn\mu_n}$$
 for n-type material

$$\rho \cong \frac{1}{qp\mu_p}$$
 for p-type material (Units: ohm•cm)

Inversion layer as a resistor

Consider an n-channel:

$$R_{s} = \frac{\rho}{t} = \frac{1}{\sigma t} = \frac{1}{q\mu_{n}n_{s}t} = \frac{1}{\mu_{n}Q_{inv}}$$

where Q_{inv} is the charge per unit area.

$$Q_{inv} = q n_s t$$

$$\rho \equiv \frac{1}{\sigma} = \frac{1}{qn\mu_n + qp\mu_p}$$

nMOSFET I_D vs. V_{DS} Characteristics

Next consider I_D (flowing into **D**) versus V_{DS} , as V_{GS} is varied:

"Cutoff" region: $V_{GS} < V_T$

Above "threshold" (V_{GS} > V_{T}): "inversion layer" of electrons appears, so conduction between **S** and **D** is possible

Below "threshold" ($V_{GS} < V_T$): no charge \rightarrow no conduction

The MOSFET as a Controlled Resistor

- The MOSFET behaves as a resistor when V_{DS} is low:
 - \triangleright Drain current I_D increases linearly with V_{DS}
 - \triangleright Resistance R_{DS} between SOURCE & DRAIN depends on V_{GS}
 - R_{DS} is lowered as V_{GS} increases above V_T

NMOSFET Example:

Linear or Resistive or ohmic or "Triode" Region: 0 < V_{DS} < V_{GS} - V_T

MOSFET as a Controlled Resistor (cont'd)

Let's deduce I_D from R_{DS}

$$I_D = \frac{V_{DS}}{R_{DS}}$$

$$I_{D} = \frac{V_{DS}}{R_{DS}}$$
 & $R_{DS} = R_{s}(L/W) = \frac{L/W}{\mu_{n}Q_{inv}} = \frac{L/W}{\mu_{n}C_{ox}(V_{GS} - V_{T} - \frac{V_{DS}}{2})}$

$$I_{D} = \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{T} - \frac{V_{DS}}{2}) V_{DS}$$

average value of V(x)

We can make R_{DS} low by

- applying a large "gate drive" $(V_{GS} V_T)$
- making Wlarge and/or L small

$$R_s = \frac{1}{\mu_n Q_{inv}}$$

<u>OUTLINE</u>

- I V Characteristics
 - Cutoff Region
 - Linear Region
 - Saturation Region (pinch-off region)

Switch model of nMOSFETs

MOSFET as a Controlled Resistor (cont'd)

$$I_D = \mu C_{ox}(W/L)[(V_{GS} - V_T)V_{DS} - V_{DS}^2/2]$$
 (1) for a given V_{GS}

it applies only for the condition $V_{DS} < (V_{GS} - V_T)$ (This is called the 'below pinch-off condition.')

MOSFET as a Controlled Resistor (cont'd)

$$I_{D} = \frac{\mu_{n} C_{Ox}}{2} \frac{W}{L} \left(2(V_{G} - V_{T}) V_{DS} - V_{DS}^{2} \right). \tag{1}$$

for a given V_{GS}

Note for $V_{DS} \ge V_G - V_T = V_{DS,sat}$, result is non-physical.

At
$$V_{DS,sat}$$
, $n_{s,x=L} = 0$

assume that channel curr.

is const for $V_{DS} \ge V_{DS,sat}$

$$I_{D,sat} = \frac{\mu_n C_{Ox}}{2} \frac{W}{L} (V_{GS} - V_T)^2 \qquad (2)$$

which is called the 'above pinch-off equation'.

- For a given V_{GS}, you have a maximum amount of current you can flow through the channel (regardless of V_{DS}).
- When V_{DS} = V_{GS} V_T the channel is flowing as much current as it can so we call it pinched off (even though current continues to flow).

- For a given V_{GS}, you have a maximum amount of current you can flow through the channel (regardless of V_{DS}).
- When V_{DS} = V_{GS} V_T the channel is flowing as much current as it can so we call it pinched off (even though current continues to flow).

- For a given V_{GS}, you have a maximum amount of current you can flow through the channel (regardless of V_{DS}).
- When V_{DS} = V_{GS} V_T the channel is flowing as much current as it can so we call it pinched off (even though current continues to flow).

- For a given V_{GS}, you have a maximum amount of current you can flow through the channel (regardless of V_{DS}).
- When V_{DS} = V_{GS} V_T the channel is flowing as much current as it can so we call it pinched off (even though current continues to flow).

Why "Pinch off"?

- As V_{DS} increases, the inversion-layer charge density at the drain end of the channel is reduced; therefore, I_D does not increase linearly with V_{DS} .
- When V_{DS} reaches $V_{GS} V_T$, the channel is "pinched off" at the drain end, and I_D saturates (*i.e.* it does not increase with further increases in V_{DS}).
- In the pinched-off region: $Q_{inv}(x) = -C_{ox}[V_{GS} V_T V_{DS,sat}] = 0$

I_D vs. V_{DS} or V_{GS} Characteristics

$$I_{D} = \frac{\mu_{n} C_{Ox}}{2} \frac{W}{L} \left(2 \left(V_{GS} - V_{T} \right) V_{DS} - V_{DS}^{2} \right). \tag{1}$$

For $V_{DS} \ge V_{DS,sat}$

$$I_{D,sat} = \frac{\mu_n C_{Ox}}{2} \frac{W}{L} (V_{GS} - V_T)^2$$
 (2)

The graphs shows ideal characteristics. The top graph is the **output characteristic**, the lower one is the **transfer characteristic**. Equations (1) and (2) are the simple form of the design equations.

The quantity μC_{ox} (W/L) = β is the device constant. The designer can only vary W/L so as to change β . Other values are fixed during the process development.

OUTLINE

- I V Characteristics
 - Cutoff Region
 - Linear Region
 - Saturation Region (pinch-off region)
- Switch model of nMOSFETs

Switch Model of nMOS Transistor

Transistor in Linear Mode Assuming $V_{GS} > V_{T}$ V_{GS} I_D n+ $V_{GS}-V_{T}$

When
$$V_{DS} \le V_{GS} - V_T$$
: $I_D = \beta_0 W/L [(V_{GS} - V_T)V_{DS} - V_{DS}^2/2]$

$$\beta_0 = \mu_n C_{ox}$$

$$R = V_{DS} / I_D$$

Transistor in **Saturation** Mode

Assuming $V_{GS} > V_{T}$

When
$$V_{DS} \ge V_{GS} - V_{T}$$
: $I_{D} = (\beta_{0}/2) \text{ W/L } [(V_{GS} - V_{T})^{2}]$

The current remains constant (saturates).

$$R = V_{DS} / I_D = ?$$

nMOSIC - MOST as a Linear R_{DS}

When $V_{DS} \leq V_{GS} - V_{T}$

$$I_{D} = \beta_{0} W/L [(V_{GS} - V_{T})V_{DS} - V_{DS}^{2}/2]$$

For small V_{DS} , there is a linear dependence between V_{DS} and I_{D} , hence

nMOSIC - MOST as a Load

When $V_{DS} \ge V_{GS} - V_{T}$: $I_D = (\beta_0/2) W/L [(V_{GS} - V_T)^2]$

In this case the gate and the drain are connected together so that V_{GS}=V_{DS}. The pinch off point coincides with V_{GS} - V_T = V_{DS} - V_T .

The characteristic of the load is shown. It extends along the drain axis by an amount V_T .

nMOSIC - The MOST as a Load

Problem

Calculate the resistance of a load MOST with an aspect ratio of 1 when the mobility of the electrons is $1000 \text{cm}^2 \text{V}^{-1} \text{sec}^{-1}$ and the gate capacitance per unit area is 10^{-2}Fm^{-2} . The drain voltage is $V_D = 5 \text{V}$ and the threshold voltage $V_T = 0.5 \text{V}$.

Solution

The drain current is

$$I_D = \mu_n^{\nu} (W/L) C_{ox} (V_G - V_T^{\nu})^2/2.$$

but $V_G = V_D$ so that

$$R=V_D/I_D=...$$

•
$$R=100\Omega$$

nMOSIC - The MOST as a Load

Problem

Calculate the resistance of a load MOST with an aspect ratio of 1 when the mobility of the electrons is $1000 \text{cm}^2 \text{V}^{-1} \text{sec}^{-1}$ and the gate capacitance per unit area is 10^{-2}Fm^{-2} . The drain voltage is $V_D = 5 \text{V}$ and the threshold voltage $V_T = 0.5 \text{V}$.

Solution

The drain current is the same as at the pinch-off point where

$$I_{D} = \mu(W/2L) C_{ox} (V_{G} - V_{T})^{2}.$$
but $V_{G} = V_{D}$ so that
$$I_{D} = \mu(W/2L) C_{ox} (V_{D} - V_{T})^{2}$$

$$I_{D}/V_{D} = 1/R = \mu (W/2L) C_{ox} (V_{D} - V_{T})^{2}/V_{D}$$

$$= 0.1*0.5*10^{-2}*4.5^{2}/5 = 0.2025*10^{-2},$$

• $R=500\Omega$