Санкт-Петербургский государственный университет Прикладная математика и информатика

Учебная практика 3 (научно-исследовательская работа)

«Tensor SSA для анализа временного ряда»

Выполнил:

Хромов Никита Андреевич 20.Б04-мм

Научный руководитель: к.ф.-м.н., доцент Голяндина Н.Э.

Оглавление

1.	Введе	ние	3
2.	Описание метода Tensor SSA		4
3.	Свойства HOSVD		6
4.	Свойства Tensor SSA		9
	4.1.	Разделимость рядов в терминах Tensor SSA	9
	4.2.	Примеры разделимости рядов в тензорном случае	10
	4.3.	Ранг ряда в терминах Tensor SSA	11
5.	Примеры использования Tensor SSA		12
6.	Альтернативные тензорные разложения		13
7.	Заключение		17
Списо	к литеі	ратуры	18

1. Введение

Здесь должно быть введение.

2. Описание метода Tensor SSA

Дан временной ряд F длины N

$$F=(f_1,f_2,\ldots,f_N).$$

На первом этапе выбираются два натуральных параметра $I,L:I+L-1\leqslant N,$ по ним высчитывается третий параметр J=N-I-L+2. С учётом этих параметров строится траекторный тензор $\mathcal X$ размерности $I\times L\times J$ следующим образом

$$\mathcal{X}_{i,l,j} = f_{i+l+j-2}$$
 $i \in \overline{1:I}, l \in \overline{1:L}, j \in \overline{1:J}.$

Слои тензора будут иметь следующий вид

$$\mathcal{X}_{,,j} = \begin{pmatrix} f_j & f_{j+1} & \dots & f_{j+L-1} \\ f_{j+1} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ f_{j+I-1} & \dots & \dots & f_{j+I+L-2} \end{pmatrix},
\mathcal{X}_{,l,} = \begin{pmatrix} f_l & f_{l+1} & \dots & f_{l+J-1} \\ f_{l+1} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ f_{l+I-1} & \dots & \dots & f_{l+I+J-2} \end{pmatrix},
\mathcal{X}_{i,,} = \begin{pmatrix} f_i & f_{i+1} & \dots & f_{i+J-1} \\ f_{i+1} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ f_{i+L-1} & \dots & \dots & f_{i+L+J-2} \end{pmatrix}.$$

На втором этапе к полученному тензору применяется HOSVD [1] — тензорное разложение, являющееся обобщением SVD на большие размерности. Результатом разложения является набор из одного тензора $\mathcal Z$ размерности $I \times L \times J$ и трёх ортогональных матриц $\mathbf U^{(1)}, \, \mathbf U^{(2)}, \, \mathbf U^{(3)}$ размерностей $I \times I, \, L \times L, \, J \times J$ соответственно.

Этот набор удовлетворяет равенству

$$\mathcal{X} = \mathcal{Z} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \mathbf{U}^{(3)}, \tag{1}$$

где \times_n — произведение тензора на матрицу по n-му измерению. Оно определяется следующим образом: пусть \mathcal{A} — тензор размерности $I_1 \times I_2 \times \ldots \times I_K$, \mathbf{U} — матрица размерности

 $J_n \times I_n$, тогда $\mathcal{A} \times_n \mathbf{U}$ — тензор размерности $I_1 \times I_2 \times \ldots \times I_{n-1} \times J_n \times I_{n+1} \times \ldots \times I_K$, который считается по формуле

$$(\mathcal{A} \times_n \mathbf{U})_{i_1 i_2 \dots i_{n-1} j_n i_{n+1} \dots i_K} = \sum_{i_n=1}^{I_n} a_{i_1 i_2 \dots i_{n-1} i_n i_{n+1} \dots i_K} u_{j_n i_n}.$$

Обозначим за $\mathcal{Z}_{i_n=\alpha}$ подтензор тензора \mathcal{Z} , полученный фиксированием индекса $i_n=\alpha$. Тензор \mathcal{Z} удовлетворяет следующим свойствам:

1. подтензоры $\mathcal{Z}_{i_n=\alpha}$ и $\mathcal{Z}_{i_n=\beta}$ ортогональны для всех возможных значений n, α, β : $\alpha \neq \beta$:

$$\langle \mathcal{Z}_{i_n=\alpha}, \mathcal{Z}_{i_n=\beta} \rangle = 0 \qquad \alpha \neq \beta,$$

2. подтензоры расположены в порядке убывания их нормы Фробениуса:

$$\|\mathcal{Z}_{i_n=1}\| \geqslant \|\mathcal{Z}_{i_n=2}\| \geqslant \ldots \geqslant \|\mathcal{Z}_{i_n=I_n}\|$$

для всех $n \in \{1, 2, 3\}$, где $I_1 = I$, $I_2 = L$, $I_3 = J$.

Определение 2.1. Обозначим $\sigma_i^{(n)} = \|\mathcal{Z}_{i_n=i}\|$ и будем называть $\sigma_i^{(n)}$ *i*-м сингулярным числом тензора \mathcal{X} по измерению n.

Определение 2.2. Векторы $\mathbf{U}_i^{(n)}$ будем называть i-м сингулярным вектором тензора $\mathcal X$ по измерению n.

Разложение (1) можно представить в виде суммы

$$\mathcal{X} = \sum_{i=1}^{I} \sum_{l=1}^{L} \sum_{i=1}^{J} \mathcal{Z}_{i,l,j} \mathbf{U}_i^{(1)} \circ \mathbf{U}_l^{(2)} \circ \mathbf{U}_j^{(3)}.$$

Такой вид позволяет провести третий этап — группировку. Множество индексов $\mathfrak{S} = \{1, 2 \dots, \min(I, L, J)\}$ разбивается по смыслу на непересекающиеся множества

$$\mathfrak{S} = \bigcup_{k=1}^{m} \mathfrak{S}_{k} \qquad \mathfrak{S}_{k} \cap \mathfrak{S}_{l} = \emptyset, \ k \neq l.$$

По каждой из групп строятся тензоры

$$\mathcal{X}^{(\mathfrak{S}_k)} = \sum_{i \in \mathfrak{S}_k} \sum_{l \in \mathfrak{S}_k} \sum_{j \in \mathfrak{S}_k} \mathcal{Z}_{i,l,j} \mathbf{U}_i^{(1)} \circ \mathbf{U}_l^{(2)} \circ \mathbf{U}_j^{(3)}. \tag{2}$$

На четвёртом этапе, по каждому тензору вида (2), полученному после этапа группировки, восстанавливается ряд. По соображениям построения траекторного тензора,

компоненты ряда восстанавливаются усреднением вдоль плоскостей $i+l+j={\rm const.}$ Другими словами, компоненты восстановленного ряда $F^{(k)}=F^{(\mathfrak{S}_k)}$ высчитываются по формуле

$$f_n^{(k)} = \frac{1}{\#\mathfrak{M}_n} \sum_{(i,l,j)\in\mathfrak{M}_n} \mathcal{X}_{i,l,j}^{(\mathfrak{S}_k)}, \qquad n \in \overline{1:N},$$

где $\mathfrak{M}_n = \{(i, l, j) | 1 \leqslant i \leqslant I, 1 \leqslant l \leqslant L, 1 \leqslant j \leqslant J, i + l + j - 2 = n \}.$

Результатом метода является набор временных рядов $F^{(1)},\dots,F^{(m)}$ такой, что $F=\sum_{k=1}^m F^{(k)}.$

3. Свойства HOSVD

Многие свойства метода SSA являются следствиями свойств SVD. В свою очередь, многие свойства HOSVD являются аналогами свойств SVD. Таким образом, аналогичность свойств SSA и Tensor SSA может быть выведена из аналогичности некоторых свойств SVD и HOSVD.

Утверждение 3.1. Вычисление HOSVD тензора A с N размерностями сводится κ вычислению SVD на N матрицах $\mathbf{A}_{(n)}$, которые вычисляются развёрткой тензора по n-му измерению.

Другими словами, если \mathcal{A} — тензор размерности $I_1 \times I_2 \times \ldots \times I_N$, то его развёртка по n-му измерению — это матрица $\mathbf{A}_{(n)}$ размерности $I_n \times I_{n+1}I_{n+2}\ldots I_NI_1I_2\ldots I_{n-1}$, в которой элемент $a_{i_1i_2...i_N}$ тензора содержится в строке i_n и столбце с номером равным

$$(i_{n+1}-1)I_{n+2}I_{n+3}\dots I_NI_1I_2\dots I_{n-1} + (i_{n+2}-1)I_{n+3}I_{n+4}\dots I_NI_1I_2\dots I_{n-1} + \dots + (i_N-1)I_1I_2\dots I_{n-1} + (i_1-1)I_2I_3\dots I_{n-1} + (i_2-1)I_3I_4\dots I_{n-1} + \dots + i_{n-1}.$$

K каждой из полученных матриц применяется SVD, в результате чего получаются N матриц $\mathbf{U}^{(n)}$, составленных из левых сингулярных векторов соответствующих развёрток. Затем находится тензор сингулярных чисел

$$\mathcal{Z} = \mathcal{A} \times_1 \mathbf{U}^{(1)^{\mathrm{H}}} \times_2 \mathbf{U}^{(2)^{\mathrm{H}}} \dots \times_N \mathbf{U}^{(N)^{\mathrm{H}}}.$$

В результате получается искомое разложение

$$\mathcal{A} = \mathcal{Z} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \dots \times_N \mathbf{U}^{(N)}.$$

Из-за этой связи HOSVD с обычным матричным SVD для многих свойств SVD существуют аналогичные свойства HOSVD.

Рис. 1. Развёртка тензора \mathcal{A} размерности $I_1 \times I_2 \times I_3$ в матрицы $\mathbf{A}_{(1)}, \, \mathbf{A}_{(2)}, \, \mathbf{A}_{(3)}$ размерностей $I_1 \times (I_2I_3), \, I_2 \times (I_3I_1), \, I_3 \times (I_1I_2)$ соответственно

Свойство 3.1 (Единственность).

- 1. Все сингулярные числа по каждому измерению определяются однозначно.
- 2. Если сингулярные числа по измерению n различны, то сингулярные векторы по измерению n определены в точности до умножения на коэффициент единичной нормы. Если $U_{\alpha}^{(n)}$ умножается на $e^{j\theta}$, то $\mathcal{Z}_{i_n=\alpha}$ должен быть умножен на обратный коэффициент $e^{-j\theta}$.

Сингулярные векторы по измерению n, соответствующие одному и тому же сингулярному числу по измерению n, могут быть заменены любой унитарной линейной комбинацией. Соответствующие подтензоры $\{\mathcal{Z}_{i_n=\alpha}\}$ должны быть пересчитаны обратным образом. Формально $\mathbf{U}^{(n)}$ можно заменить на $\mathbf{U}^{(n)}\mathbf{Q}$, где \mathbf{Q} — блочно-диагональная матрица,

состоящая из унитарных блоков, в которой блочное разбиение соответствует разбиению $\mathbf{U}^{(n)}$ на наборы сингулярных векторов по измерению n соответствующих одинаковым сингулярным значениям по измерению n. При этом тензор \mathcal{Z} должен быть заменён на $\mathcal{Z} \times_n \mathbf{Q}^{\mathrm{H}}$.

В случае вещественно-значных тензоров единственность имеется в точности до знака, что соответствует умножению на унитарную матрицу.

Свойство 3.2 (Обобщение). HOSVD тензора второго порядка сводится к его матричному SVD.

Перед формулировкой следующих свойств необходимо ввести определение.

Определение 3.1 (n-ранг). n-рангом тензора \mathcal{A} называется размерность векторного пространства, порождённого векторами измерения n этого тензора. Обозначается $R_n = \operatorname{rank}_n(\mathcal{A})$.

Замечание. В отличие от матричного случая, *n*-ранги тензора порядка выше 2 могут в общем случае отличаться.

Определение 3.2 (Тензорный ранг).

1. Говорят, что тензор \mathcal{A} размерности $I_1 \times I_2 \times \ldots \times I_N$ имеет тензорный ранг равный 1, если он представим в виде

$$\mathcal{A} = a_1 \circ a_2 \circ \ldots \circ a_N,$$

где $a_k \in \mathbb{C}^{I_k}$.

2. Говорят, что тензор \mathcal{A} имеет ранг R, если он представим в виде линейной комбинации R тензоров ранга 1, и такое R минимальное. Обозначение: $R = \operatorname{rank}(\mathcal{A})$.

Замечание. В общем случае ранг тензора \mathcal{A} не равен его n-рангам, даже если они все равны между собой. Более того, всегда справедливо неравенство $\operatorname{rank}_n(\mathcal{A}) \leqslant \operatorname{rank}(\mathcal{A})$.

Свойство 3.3 (Связь n-ранга тензора и ранга его развёртки по измерению n). Векторы размерности n тензора $\mathcal A$ являются столбцами его развёртки по измерению n и выполняется равенство

$$rank_n(\mathcal{A}) = rank(\mathbf{A}_{(n)}).$$

Свойство 3.4 (Связь n-ранга тензора и его HOSVD). Пусть имеется HOSVD тензора \mathcal{A} размерности $I_1 \times I_2 \times \ldots \times I_N$

$$\mathcal{A} = \mathcal{Z} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \ldots \times_N \mathbf{U}^{(N)},$$

тогда, по определению, тензор ${\mathcal Z}$ удовлетворяет свойству упорядоченности сингулярных чисел

$$\|\mathcal{Z}_{i_n=1}\| \geqslant \|\mathcal{Z}_{i_n=2}\| \geqslant \ldots \geqslant \|\mathcal{Z}_{i_n=I_n}\|$$

для всех $n \in \overline{1:N}$. Обозначим r_n — наибольший индекс такой, что $\|\mathcal{Z}_{i_n=r_n}\|>0$. Тогда

$$\operatorname{rank}_n(\mathcal{A}) = r_n. \tag{3}$$

Все утверждения выше и их доказательства приведены в статье [1].

4. Свойства Tensor SSA

В силу аналогичности свойств SVD и HOSVD, многие определения и свойства из теории SSA [2] можно перенести на тензорный случай.

4.1. Разделимость рядов в терминах Tensor SSA

Утверждение 4.1. $\tilde{F}=(\tilde{f}_1,\ldots,\tilde{f}_N),\ \hat{F}=(\hat{f}_1,\ldots,\hat{f}_N)$ – временные ряды длины N. Пусть ряд F является суммой этих рядов. Траекторные тензоры рядов равны соответственно: $\tilde{\mathcal{X}},\ \hat{\mathcal{X}},\ \mathcal{X}$. Тогда существует сингулярное разложение тензора \mathcal{X} с параметрами I,L, которое можно представить в виде суммы сингулярных разложений тензоров $\tilde{\mathcal{X}}$ и $\hat{\mathcal{X}}$ с теми же параметрами в том и только том случае, когда взаимно ортогональны все подряды рядов \tilde{F} и \hat{F} длины I,L,J=N-I-L+2, то есть

1.
$$\tilde{f}_k \hat{f}_m + \ldots + \tilde{f}_{k+I-1} \hat{f}_{m+I-1} = 0$$
 $\forall k, m \in \overline{1:N-I+1},$

2.
$$\tilde{f}_k \hat{f}_m + \ldots + \tilde{f}_{k+L-1} \hat{f}_{m+L-1} = 0$$
 $\forall k, m \in \overline{1:N-L+1},$

3.
$$\tilde{f}_k \hat{f}_m + \ldots + \tilde{f}_{k+J-1} \hat{f}_{m+J-1} = 0$$
 $\forall k, m \in \overline{1:N-J+1}.$

Доказательство. Сингулярные разложения тензоров $\mathcal{X}, \tilde{\mathcal{X}}, \hat{\mathcal{X}}$ могут быть представле-

ны в виде следующих сумм:

$$\mathcal{X} = \sum_{i=1}^{I} \sum_{l=1}^{L} \sum_{j=1}^{J} \mathcal{Z}_{i,l,j} \mathbf{U}_{i}^{(1)} \circ \mathbf{U}_{l}^{(2)} \circ \mathbf{U}_{j}^{(3)},$$

$$\tilde{\mathcal{X}} = \sum_{i=1}^{I} \sum_{l=1}^{L} \sum_{j=1}^{J} \tilde{\mathcal{Z}}_{i,l,j} \tilde{\mathbf{U}}_{i}^{(1)} \circ \tilde{\mathbf{U}}_{l}^{(2)} \circ \tilde{\mathbf{U}}_{j}^{(3)},$$

$$\hat{\mathcal{X}} = \sum_{i=1}^{I} \sum_{l=1}^{L} \sum_{j=1}^{J} \hat{\mathcal{Z}}_{i,l,j} \hat{\mathbf{U}}_{i}^{(1)} \circ \hat{\mathbf{U}}_{l}^{(2)} \circ \hat{\mathbf{U}}_{j}^{(3)}.$$

Сумма $\mathcal{X} = \sum_{i} \sum_{l} \sum_{j} \tilde{\mathcal{Z}}_{i,l,j} \tilde{\mathbf{U}}_{i}^{(1)} \circ \tilde{\mathbf{U}}_{l}^{(2)} \circ \tilde{\mathbf{U}}_{j}^{(3)} + \sum_{i} \sum_{l} \sum_{j} \hat{\mathcal{Z}}_{i,l,j} \hat{\mathbf{U}}_{i}^{(1)} \circ \hat{\mathbf{U}}_{l}^{(2)} \circ \hat{\mathbf{U}}_{j}^{(3)}$ является сингулярным разложением \mathcal{X} в том и только том случае, когда пары векторов $\tilde{\mathbf{U}}_{k}^{(\sigma)}$, $\hat{\mathbf{U}}_{m}^{(\sigma)}$ взаимно ортогональны при всех возможных значениях σ, k, m . Это равносильно ортогональности линейных пространств $\mathcal{L}_{1}^{(\sigma)}$, $\mathcal{L}_{2}^{(\sigma)}$, построенных на векторах $\tilde{\mathbf{U}}_{k}^{(\sigma)}$ и $\hat{\mathbf{U}}_{m}^{(\sigma)}$ соответственно.

Рассмотрим пространства $\mathcal{L}_{1}^{(1)}$, $\mathcal{L}_{2}^{(1)}$: это пространства первых измерений тензоров $\tilde{\mathcal{X}}$ и $\hat{\mathcal{X}}$, то есть пространства построенные на векторах вида $\tilde{\mathcal{X}}_{,l,j}$ и $\hat{\mathcal{X}}_{,l,j}$ соответственно. Вспоминая вид тензоров $\tilde{\mathcal{X}}$ и $\hat{\mathcal{X}}$ получаем, что условие ортогональности этих линейных пространств равносильно первому условию из формулировки утверждения.

Оставшиеся два условия получаются аналогично из условий ортогональности оставшихся двух пар линейных пространств. \Box

Из утверждения 4.1 следует, что понятие слабой разделимости ряда из теории SSA применимо и к тензорному случаю.

Следствие 4.1.1. Если временные ряды \tilde{F} и \hat{F} длины N слабо I- и L-разделимы в смысле теории SSA, то существует такое HOSVD траекторного тензора \mathcal{X} ряда $F = \tilde{F} + \hat{F}$, что его можно разбить на две части, являющиеся HOSVD траекторных тензоров, составленных по рядам \tilde{F} и \hat{F} .

Замечание. Понятие сильной разделимости можно перенести со стандартного случая на тензорный непосредственно, с поправкой на определение 2.1 сингулярных чисел для тензора.

4.2. Примеры разделимости рядов в тензорном случае

Рассмотрим условия разделимости рядов $\tilde{F} = (\tilde{f}_1, \, \tilde{f}_2, \dots, \, \tilde{f}_N), \, \hat{F} = (\hat{f}_1, \, \hat{f}_2, \dots, \, \hat{f}_N)$ в некоторых частных случаях.

• Отделимость от константного ряда

Пусть $\tilde{f}_n = c \neq 0$ для $n \in \overline{1:N}$. Тогда необходимые и достаточные условия отделимости от него ряда \hat{F} в смысле Tensor SSA следующие:

- 1. Ряд \hat{F} имеет целый период T, и I/T, L/T, J/T целые;
- $2. \ \hat{f}_1 + \hat{f}_2 + \ldots + \hat{f}_T = 0.$

Пример 4.1. Ряд с элементами вида $\tilde{f}_n = \cos(2\pi n/T + \varphi)$ длины N такой, что N+2 делится нацело на T, будет слабо отделим от константного ряда при выборе параметров I, L: I+L < N+1, делящихся нацело на T.

• Отделимость от экспоненциального ряда

Пусть $\tilde{f}_n = e^{\alpha n}$ для $n \in \overline{1:N}$. Тогда необходимые и достаточные условия отделимости от него ряда \hat{F} в смысле Tensor SSA следующие:

- 1. Ряд $(\tilde{f}_1\hat{f}_1, \, \tilde{f}_2\hat{f}_2, \dots, \, \tilde{f}_N\hat{f}_N)$ имеет целый период T, и I/T, L/T, J/T целые;
- 2. $\tilde{f}_1 \hat{f}_1 + \tilde{f}_2 \hat{f}_2 + \ldots + \tilde{f}_N \hat{f}_T = 0.$

Пример 4.2. Ряд с элементами вида $\tilde{f}_n = e^{-\alpha n}\cos(2\pi n/T + \varphi)$ длины N такой, что N+2 делится нацело на T, будет слабо отделим от ряда с элементами вида $\hat{f}_n = e^{\alpha n}$ при выборе параметров I, L: I+L < N+1, делящихся нацело на T.

• Отделимость от гармонического ряда

Пусть $\tilde{f}_n=\cos(2\pi\omega n+\varphi)$, где $0<\omega<1/2$, и I,L,J>2. Положим $\hat{f}_n=\cos(2\pi\omega' n+\varphi')$, тогда ряд \tilde{F} отделим от ряда \hat{F} в смысле Tensor SSA тогда и только тогда, когда $\omega\neq\omega'$ и $I\omega$, $I\omega'$, $L\omega$, $L\omega'$, $J\omega$, $J\omega'$ —целые числа.

4.3. Ранг ряда в терминах Tensor SSA

Утверждение 4.2. Пусть временной ряд F имеет конечный ранг d в терминах SSA. Тогда для любых значений параметров I и L таких, что

$$d \leqslant \min(I, L, N - I - L + 2),$$

количество ненулевых собственных чисел по каждому измерению в HOSVD траекторного тензора \mathcal{X} , построенного по этому ряду с параметрами I и L, будет равно d. Это утверждение является прямым следствием определения ранга ряда и свойства 3.4 HOSVD.

Следствие 4.2.1. Понятие ранга ряда имеет тот же смысл в терминах Tensor SSA, что и в стандартной теории SSA, причём ряды конечного ранга имеют одинаковые ранги в тензорном и стандартном случаях.

5. Примеры использования Tensor SSA

Рассмотрим несколько примеров использования Tensor SSA для анализа временных рядов.

Пример 5.1 (Разделимость синуса и константы). Рассмотрим ряд с элементами $f_n = 3 + \sin(2\pi n/3 + \pi/3)$, где $n \in \overline{0:15}$. После построения траекторного тензора $\mathcal X$ с параметрами I = L = 6 и его разложения получаем тензор сингулярных чисел $\mathcal Z$ и матрицы сингулярных векторов $\mathbf U^{(1)}$, $\mathbf U^{(2)}$, $\mathbf U^{(3)}$. Так как все размерности траекторного тензора $\mathcal X$ равны, его развёртки по всем измерениям совпадают, а значит совпадают и матрицы сингулярных векторов $\mathbf U^{(1)} = \mathbf U^{(2)} = \mathbf U^{(3)} = \mathbf U$.

$$\mathbf{U} = \begin{pmatrix} -0.41 & 0.00 & 0.58 & 0.70 & -0.10 & 0.01 \\ -0.41 & 0.50 & -0.29 & 0.08 & 0.62 & 0.33 \\ -0.41 & -0.50 & -0.29 & 0.06 & 0.33 & -0.63 \\ -0.41 & -0.00 & 0.58 & -0.70 & 0.10 & -0.01 \\ -0.41 & 0.50 & -0.29 & -0.08 & -0.62 & -0.33 \\ -0.41 & -0.50 & -0.29 & -0.06 & -0.33 & 0.63 \end{pmatrix},$$

$$\mathcal{Z}_{1,1,1} = -44.09,$$

$$\mathcal{Z}_{2,2,2} = \mathcal{Z}_{3,3,2} = \mathcal{Z}_{2,3,3} = \mathcal{Z}_{3,2,3} = 2.60,$$

$$\mathcal{Z}_{2,3,2} = \mathcal{Z}_{3,2,2} = \mathcal{Z}_{2,2,3} = -\mathcal{Z}_{3,3,3} = -4.50,$$

$$\mathcal{Z}_{i,l,j} = 0$$
 для всех остальных значений i,l,j .

Видно, что первый сингулярный вектор постоянен, а второй и третий — периодические с периодом 3. Кроме того, по каждому из трёх измерений количество ненулевых сингулярных чисел равно 3 (например $\|\mathcal{Z}_{,1}\| > \|\mathcal{Z}_{,2}\| = \|\mathcal{Z}_{,3}\| > 0$, $\|\mathcal{Z}_{,j}\| = 0$ для всех остальных j). Исходя из этого, имеет смысл отнести индекс $\{1\}$ к константной компоненте ряда, индексы $\{2,3\}$ — к гармонической (синус), а остальные проигнорировать.

После восстановления тензоров, полученных такой группировкой, получаем два ряда

$$\hat{F} = (3, 3, \dots, 3),$$

$$\tilde{F} = (0.86, 0, -0.86, 0.86, \dots, 0, -0.86, 0.86).$$

Таким образом, константный ряд отделился от синуса.

Пример 5.2 (Смешение двух косинусов). Рассмотрим ряд с элементами $f_n = \cos(2\pi n/3) + \cos(2\pi n/4)$, $n \in \overline{0}:3\overline{3}$. Выбрав параметры I=L=12, после разложения получаем тензор сингулярных значений $\mathcal Z$ и, в силу равенства размерностей траекторного тензора, равные между собой матрицы сингулярных векторов $\mathbf U^{(1)} = \mathbf U^{(2)} = \mathbf U^{(3)} = \mathbf U$. Тензор $\mathcal Z$ имеет вид тензорного блока $\mathcal Z'$ размерности $4\times 4\times 4$, окаймлённого нулями, в котором уже нельзя выделить блочно-диагональную структуру. Если рассмотреть матрицы сингулярных векторов, можно увидеть, что никакой сингулярный вектор не имеет периода равного 3 или 4:

$$\mathbf{U} = \begin{pmatrix} 0 & 0 & -0.58 & 0 & \dots \\ -0.18 & 0.36 & 0.14 & -0.39 & \dots \\ -0.17 & -0.16 & 0.43 & 0.30 & \dots \\ 0.38 & -0.04 & -0.29 & 0.32 & \dots \\ 0.14 & 0.002 & -0.14 & -0.54 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Таким образом, произошло смешение двух косинусов одинаковой амплитуды.

6. Альтернативные тензорные разложения

Помимо HOSVD, существует ещё один тип тензорных разложений: ранговое разложение тензора. Идея заключается в представлении тензора \mathcal{A} в виде линейной комбинации R тензоров ранга 1, где $R=\mathrm{rank}(\mathcal{A})$. Однако нахождение этого ранга в общем случае является NP-трудной задачей [3]. CANDECOMP-PARAFAC — итерационный метод рангового разложения тензора, который по параметру K считает наилучшее приближение входного тензора суммой K тензоров ранга 1. Заметим, что из-за отсутствия каких-либо требований к ортогональности в определении рангового разложения тензора, многие свойства, верные в теории SSA, потеряют справедливость при использовании этого разложения.

Рассмотрим ряды $\tilde{f}_n=3,\,\hat{f}_n=\sin(2\pi n/3),\,n\in\overline{0:15}.$ Построим по этим рядам траекторные тензоры с параметрами I=L=6. Тогда ранг траекторного тензора $\tilde{\mathcal{X}},$ соответствующего константному ряду, равен 1, так как его можно представить в виде

$$\tilde{\mathcal{X}} = 3X \circ X \circ X,$$

где $X=(1,\,1,\,1,\,1,\,1)$. Ранг траекторного тензора $\hat{\mathcal{X}}$, соответствующего синусу, равен 3, так как его можно представить в виде

$$\hat{\mathcal{X}} = \sum_{k=1}^{3} \lambda_i X_i \circ Y_i \circ Z_i,$$

где

$$\mathbf{X} = [X_1, X_2, X_3] = \begin{pmatrix} -0.16 & 0.25 & 0.06 \\ 0.25 & -0.06 & -0.25 \\ -0.09 & -0.19 & 0.19 \\ -0.16 & 0.25 & 0.06 \\ 0.25 & -0.06 & -0.25 \\ -0.09 & -0.19 & 0.19 \end{pmatrix},$$

$$\mathbf{Y} = [Y_1, Y_2, Y_3] = \begin{pmatrix} -0.25 & -0.15 & 0.21 \\ 0.18 & -0.10 & -0.25 \\ 0.07 & 0.25 & 0.04 \\ -0.25 & -0.15 & 0.21 \\ 0.18 & -0.10 & -0.25 \\ 0.07 & 0.25 & 0.04 \end{pmatrix},$$

$$\mathbf{Z} = [Z_1, Z_2, Z_3] = \begin{pmatrix} -0.10 & -0.25 & -0.01 \\ 0.25 & 0.12 & -0.24 \\ -0.15 & 0.13 & 0.25 \\ -0.10 & -0.25 & -0.01 \\ 0.25 & 0.12 & -0.24 \\ -0.15 & 0.13 & 0.25 \end{pmatrix},$$

притом точных приближений двумя тензорами ранга 1 нет.

Траекторный тензор ряда $f_n = \tilde{f}_n + \hat{f}_n$, построенный с параметрами I = L = 6 представим в виде суммы

$$\mathcal{X} = \sum_{k=1}^{4} \lambda_i X_i \circ Y_i \circ Z_i,$$

где

$$\mathbf{X} = [X_1, X_2, X_3, X_4] = \begin{cases} -0.25 & -0.25 & 0.25 & -0.17 \\ 0.11 & 0.25 & -0.04 & -0.17 \\ 0.14 & 0.00 & -0.21 & -0.17 \\ -0.25 & -0.25 & 0.25 & -0.17 \\ 0.11 & 0.25 & -0.04 & -0.17 \\ 0.11 & 0.25 & -0.04 & -0.17 \\ 0.14 & 0.00 & -0.21 & -0.17 \\ 0.14 & 0.00 & -0.21 & -0.17 \\ 0.14 & 0.00 & -0.21 & -0.17 \\ 0.08 & 0.21 & -0.00 & -0.17 \\ -0.08 & 0.21 & -0.00 & -0.17 \\ -0.08 & 0.21 & -0.00 & -0.17 \\ -0.08 & 0.21 & -0.00 & -0.17 \\ -0.17 & 0.04 & 0.25 & -0.17 \\ 0.25 & -0.25 & -0.25 & -0.17 \\ 0.25 & -0.11 & 0.25 & 0.17 \\ 0.25 & -0.11 & 0.25 & 0.17 \\ -0.25 & -0.11 & 0.25 & 0.17 \\ 0.25 & 0.25 & -0.17 & 0.17 \\ 0.25 & 0.25 & -0.17 & 0.17 \\ 0.25 & 0.25 & -0.17 & 0.17 \\ 0.25 & 0.25 & -0.17 & 0.17 \\ 0.25 & 0.25 & -0.17 & 0.17 \\ 0.25 & 0.25 & -0.17 & 0.17 \\ 0.25 & 0.25 & -0.17 & 0.17 \\ 0.25 & 0.25 & -0.17 & 0.17 \\ 0.25 & 0.25 & -0.17 & 0.17 \\ 0.25 & 0.25 & -0.17 & 0.17 \end{cases}$$

притом точных приближений тремя тензорами ранга 1 нет.

По виду векторов видно, что четвёртая компонента разложения соответствует константному ряду, а остальные три имеют период равный 3. Таким образом, несмотря на отсутствие ограничений на ортогональность в определении ранговых разложений тензора, наблюдается отделимость константного ряда от периодического ряда при наличии условий слабой разделимости в терминах SSA. Однако понятия ранга в терминах SSA и в терминах CP различаются, так как в терминах SSA синус с периодом 3 имеет ранг 2, а в терминах рангового разложения, как показано выше, такой синус имеет ранг 3.

Другим недостатком CP разложения является то, что это итерационный метод, причём процесс итерации начинается с генерации случайной матрицы, в связи с чем на одних и тех же данных он может выдавать разные результаты, в том числе может как сойтись, так и нет.

Возможно можно добиться лучших результатов, используя СР или его модификации, если строить тензор по ряду другим образом и подбирать другие параметры разложения. Этот вопрос предлагается изучить в будущих работах.

7. Заключение

Здесь должно быть заключение.

Список литературы

- 1. De Lathauwer Lieven, De Moor Bart, Vandewalle Joos. A Multilinear Singular Value Decomposition // SIAM Journal on Matrix Analysis and Applications. 2000. Vol. 21, no. 4. P. 1253–1278. Access mode: https://doi.org/10.1137/S0895479896305696.
- 2. Golyandina Nina, Nekrutkin Vladimir, Zhigljavsky Anatoly. Analysis of time series structure: SSA and related techiques. Chapman & Hall/CRC, 2001.
- 3. Hillar Christopher J., Lim Lek-Heng. Most Tensor Problems Are NP-Hard // J. ACM.— 2013.—Vol. 60, no. 6.—Access mode: https://doi.org/10.1145/2512329.