Evolution and Selection of Quantitative Traits I: Foundations

B. Walsh and M. Lynch

Draft version 30 December 2014

CO	NTENTS	i
PR	EFACE	xiii
RO	ADMAP: DIFFERENT PATHS THROUGH THE BOOK	xiii
I.	INTRODUCTION	1
1.	CHANGES IN QUANTITATIVE TRAITS OVER TIME	1
II.	EVOLUTION AT ONE AND TWO LOCI	1
2.	NEUTRAL EVOLUTION IN ONE- AND TWO-LOCUS SYSTEMS	1
	The Wright-Fisher Model	2
	Loss of Heterozygosity by Random Genetic Drift	
	Probabilities and Times to Fixation or Loss	
	Age of a Neutral Allele	10
	Allele-frequency Divergence Among Populations	12
	Buri's Experiment	13
	Higher-order Allele-frequency Moments	15
	Linkage Disequilibrium	17
	Mutation-Drift Equilibrium	19
	The Detailed Structure of Neutral Variation	23
	The infinite-alleles model and the associated allele-frequency spectrum	23
	The infinite-sites model and the associated site-frequency spectrum	25
	The Genealogical Structure of a Population	27
	Drift-Mutation-Migration Equilibrium	30
	Quantifying population structure: F_{ST}	30
	Mutation-migration-drift equilibrium values of F_{ST}	31
3.	THE GENETIC EFFECTIVE SIZE OF A POPULATION	
	General Considerations	2
	Monoecy	3
	Dioecy	
	Age Structure	
	Variable Population Size	11
	Partial Inbreeding	12
	Special Systems of Mating	13
	Population Subdivsion	16
	Selection, Recombination, and Hitchhiking Effects	18

ii *CONTENTS*

	Effects from selection at unlinked Loci Selective sweeps and genetic draft	20
	Background selection	22
4.	THE NONADAPTIVE FORCES OF EVOLUTION	
7.	Relative Power of Mutation and Genetic Drift	. 2
	Nucleotide diversity	
	Number of segregating sites	
	Alternative approaches	
	Empirical observations	
	Relative Power of Recombination and Genetic Drift	
	Number of recombinational events in a sample	
	Other approaches for narrow intervals	
	Large-scale analysis	
	Empirical observations	
	Effective Population Size	
	Temporal change in allele frequencies	
	Single-sample estimators	
	Empirical observations	
	Mutation Rate	19
	Divergence analysis	20
	Short-term enrichment	
	Empirical observations	
	Evolution of the mutation rate	
	Recombination Rate	
	Evolution of the recombination rate	
	General Implications	32
5.	THE POPULATION GENETICS OF SELECTION	201
	Single-locus Selection: Two Alleles	202
	Viability selection	202
	Expected time for allele frequency change	203
	Differential viability selection on the sexes	205
	Frequency-dependent selection	206
	Fertililty/fecundity selection	206
	Sexual selection	207
	Wright's Formula	207
	Adapative topographies and Wright's formula	210
	Single-locus Selection: Multiple Alleles	211
	Marginal fitnesses and average excesses	212
	Equilibrium frequencies with multiple alleles	212
	Internal, corner, and edge equilibrium; basins of attraction	214
	Wright's formula with multiple alleles	214
	Changes in genotypic fitnesses W_{ij} when additional loci are under selection	216
	· · · · · · · · · · · · · · · · · · ·	217
	Selection on Two Loci Dynamics of gamete frequency change	
	Gametic equilibrium values, linkage disequilibrium, and mean fitness	217 219
		219
	Results for particular fitness models Phonotypic stabilizing selection and the maintenance of genetic variation	221
	Phenotypic stabilizing selection and the maintenance of genetic variation	225
	Selection on a Quantitative Trait Locus	· / · / h

	CONTENTS	ii
	Monogenic traits	22
	Many loci of small effect underlying the character	22
	A population-genetics derivation of the breeders' equation	22
	Correct quadratic terms for s_i	23
6.	THEOREMS OF NATURAL SELECTION:	
	RESULTS OF PRICE, FISHER, AND ROBERTSON	23
	Price's General Theorem of Selection	23
	The life and times of George Price	23
	Derivation of Price's theorem	23
	The Robertson-Price identity, $S = \sigma(z, w)$	24
	Recovering the breeder's equation	24
	Fisher's Fundamental Theorem of Natural Selection	24
	The classical interpretation of Fisher's fundamental theorem	24
	What did Fisher really mean?	24
	Implications of Fisher's Theorem for Trait Variation	24
	Traits more highly correlated with fitness have lower heritabilties	25
	Traits correlated with fitness have higher levels of both	
	additive and residual variance	25
	Non-additive genetic variances for traits under selection	25
	Robertson's Secondary Theorem of Natural Selection	25
	1968 Version: $R_z = \sigma_A(z, w)$	
	1966 Version: $R_z = \sigma(A_z, w)$	25
	Accuracy of the secondary theorem	25
	Connecting Robertson's results with those of Price, Fisher, and Lush	25
	The Breeder's Equation Viewed from the Price Equation	25
	Beyond the breeder's equation: Heywood's decomposition	25
	The partial covariance and the spurious response to selection	26
	Parent-offspring regressions before and after selection	26
	Heywood's Decomposition of response	26
7.	INTERACTION OF SELECTION, MUTATION, AND DRIFT	
	Selection and Mutation at a Single Locus	
	Selection and Drift at a Single Locus	
	Probability of fixation under additive selection	
	Probability of fixation under arbitrary selection	1
	Fixation of overdominant and underdominant alleles	1
	Expected allele frequency in a particular generation	1
	Joint Interaction of Selection, Drift, and Mutation	1
	Haldane's Principle and the Mutational Load	2
	Fixation Issues Involving Two Loci	2
	The Hill-Robertson effect	2
	Mutations with contextual effects	2
8.	HITCHHIKING AND SELECTIVE SWEEPS	
	Sweeps: A Brief Overview	
	Hitchhiking, sweeps, and partial sweeps	
	Selection alters the coalescent structure at linked neutral sites	
	Hard versus soft sweeps	
	The Behavior of a Neutral Locus Linked to a Selected Site	

iv **CONTENTS**

	Allele frequency change	. 5
	Reduction in genetic diversity	10
	The Messer-Neher estimator of s	12
	Recovery of variation following a sweep	13
	Effects of sweeps on the variance in microsatellite copy number	13
	The site frequency spectrum	14
	Recombination and genealogical structure	16
	The pattern of linkage disequilibrium	16
	Age of a sweep	18
	Geographic structure	18
	Summary: Signatures of a hard sweep	19
	Soft Sweeps and Polygenic Adaption	20
	Sweeps using standing variation	20
	How likely is a sweep using standing variation?	22
	Recurrent mutation of the favorable allele cannot be ignored	24
	Signatures of a soft sweep	28
	Polygenic sweeps	29
	Genome-Wide Impact of Repeated Selection at Linked Sites	31
	Effects of recurrent sweeps	31
	A few large or many small sweeps?	32
	Selective interference and the Hill-Robertson effect	36
	Background selection: Reduction in variation under low recombination or selfing .	37
	Background selection versus recurrent selective sweeps	40
	Sweeps, background selection, and substitution rates	40
	Sweeps, background selection, and codon usage bias	43
		10
	A paradigm shift away from the neutral theory?	47
9.		
9.	A paradigm shift away from the neutral theory? USING MOLECULAR DATA TO DETECT SELECTION:	
9.	A paradigm shift away from the neutral theory? USING MOLECULAR DATA TO DETECT SELECTION: SIGNATURES FROM RECENT SINGLE EVENTS	47 59
9.	A paradigm shift away from the neutral theory? USING MOLECULAR DATA TO DETECT SELECTION: SIGNATURES FROM RECENT SINGLE EVENTS An Overview of Strategies Based on Segregating Variation	59 60
9.	A paradigm shift away from the neutral theory? USING MOLECULAR DATA TO DETECT SELECTION: SIGNATURES FROM RECENT SINGLE EVENTS An Overview of Strategies Based on Segregating Variation Attempts to account for departures from the equilibrium model	59 60 62
9.	A paradigm shift away from the neutral theory? USING MOLECULAR DATA TO DETECT SELECTION: SIGNATURES FROM RECENT SINGLE EVENTS An Overview of Strategies Based on Segregating Variation Attempts to account for departures from the equilibrium model SNP ascertainment bias	47 59 60 62 62
9.	A paradigm shift away from the neutral theory? USING MOLECULAR DATA TO DETECT SELECTION: SIGNATURES FROM RECENT SINGLE EVENTS An Overview of Strategies Based on Segregating Variation Attempts to account for departures from the equilibrium model SNP ascertainment bias SNP polarity assignment errors	59 60 62 62 63
9.	A paradigm shift away from the neutral theory? USING MOLECULAR DATA TO DETECT SELECTION: SIGNATURES FROM RECENT SINGLE EVENTS An Overview of Strategies Based on Segregating Variation Attempts to account for departures from the equilibrium model SNP ascertainment bias SNP polarity assignment errors Structure of the remainder of this chapter	59 60 62 62 63 63
9.	A paradigm shift away from the neutral theory? USING MOLECULAR DATA TO DETECT SELECTION: SIGNATURES FROM RECENT SINGLE EVENTS An Overview of Strategies Based on Segregating Variation Attempts to account for departures from the equilibrium model SNP ascertainment bias SNP polarity assignment errors Structure of the remainder of this chapter Allele Frequency Change in a Single Population	59 60 62 62 63 63 63
9.	A paradigm shift away from the neutral theory? USING MOLECULAR DATA TO DETECT SELECTION: SIGNATURES FROM RECENT SINGLE EVENTS An Overview of Strategies Based on Segregating Variation Attempts to account for departures from the equilibrium model SNP ascertainment bias SNP polarity assignment errors Structure of the remainder of this chapter Allele Frequency Change in a Single Population Allele frequency change over two sample points: The Waples Adjusted test	59 60 62 62 63 63 63
9.	A paradigm shift away from the neutral theory? USING MOLECULAR DATA TO DETECT SELECTION: SIGNATURES FROM RECENT SINGLE EVENTS An Overview of Strategies Based on Segregating Variation Attempts to account for departures from the equilibrium model SNP ascertainment bias SNP polarity assignment errors Structure of the remainder of this chapter Allele Frequency Change in a Single Population Allele frequency change over two sample points: The Waples Adjusted test Allele frequency change over a time series: The Fisher-Ford test	59 60 62 62 63 63 63
9.	A paradigm shift away from the neutral theory? USING MOLECULAR DATA TO DETECT SELECTION: SIGNATURES FROM RECENT SINGLE EVENTS An Overview of Strategies Based on Segregating Variation Attempts to account for departures from the equilibrium model SNP ascertainment bias SNP polarity assignment errors Structure of the remainder of this chapter Allele Frequency Change in a Single Population Allele frequency change over two sample points: The Waples Adjusted test Allele frequency change over a time series: The Fisher-Ford test Schaffer's linear trend test	59 60 62 62 63 63 63 63 66
9.	A paradigm shift away from the neutral theory? USING MOLECULAR DATA TO DETECT SELECTION: SIGNATURES FROM RECENT SINGLE EVENTS An Overview of Strategies Based on Segregating Variation Attempts to account for departures from the equilibrium model SNP ascertainment bias SNP polarity assignment errors Structure of the remainder of this chapter Allele Frequency Change in a Single Population Allele frequency change over two sample points: The Waples Adjusted test Allele frequency change over a time series: The Fisher-Ford test Schaffer's linear trend test Scans and simulation-based approaches	59 60 62 62 63 63 63 66 68
9.	A paradigm shift away from the neutral theory? USING MOLECULAR DATA TO DETECT SELECTION: SIGNATURES FROM RECENT SINGLE EVENTS An Overview of Strategies Based on Segregating Variation Attempts to account for departures from the equilibrium model SNP ascertainment bias SNP polarity assignment errors Structure of the remainder of this chapter Allele Frequency Change in a Single Population Allele frequency change over two sample points: The Waples Adjusted test Allele frequency change over a time series: The Fisher-Ford test Schaffer's linear trend test Scans and simulation-based approaches Birth Data Selection Mapping, BDSM	59 60 62 62 63 63 63 63 66 68 69
9.	A paradigm shift away from the neutral theory? USING MOLECULAR DATA TO DETECT SELECTION: SIGNATURES FROM RECENT SINGLE EVENTS An Overview of Strategies Based on Segregating Variation Attempts to account for departures from the equilibrium model SNP ascertainment bias SNP polarity assignment errors Structure of the remainder of this chapter Allele Frequency Change in a Single Population Allele frequency change over two sample points: The Waples Adjusted test Allele frequency change over a time series: The Fisher-Ford test Schaffer's linear trend test Scans and simulation-based approaches	59 60 62 62 63 63 63 63 66 68 69 69
9.	A paradigm shift away from the neutral theory? USING MOLECULAR DATA TO DETECT SELECTION: SIGNATURES FROM RECENT SINGLE EVENTS An Overview of Strategies Based on Segregating Variation Attempts to account for departures from the equilibrium model SNP ascertainment bias SNP polarity assignment errors Structure of the remainder of this chapter Allele Frequency Change in a Single Population Allele frequency change over two sample points: The Waples Adjusted test Allele frequency change over a time series: The Fisher-Ford test Schaffer's linear trend test Scans and simulation-based approaches Birth Data Selection Mapping, BDSM Allelic Frequency Divergence Between Populations Modification of within-population divergence tests	59 60 62 62 63 63 63 63 66 68 69 69 70
9.	USING MOLECULAR DATA TO DETECT SELECTION: SIGNATURES FROM RECENT SINGLE EVENTS An Overview of Strategies Based on Segregating Variation Attempts to account for departures from the equilibrium model SNP ascertainment bias SNP polarity assignment errors Structure of the remainder of this chapter Allele Frequency Change in a Single Population Allele frequency change over two sample points: The Waples Adjusted test Allele frequency change over a time series: The Fisher-Ford test Schaffer's linear trend test Scans and simulation-based approaches Birth Data Selection Mapping, BDSM Allelic Frequency Divergence Between Populations Modification of within-population divergence tests	59 60 62 62 63 63 63 66 68 69 70 70
9.	A paradigm shift away from the neutral theory? USING MOLECULAR DATA TO DETECT SELECTION: SIGNATURES FROM RECENT SINGLE EVENTS An Overview of Strategies Based on Segregating Variation Attempts to account for departures from the equilibrium model SNP ascertainment bias SNP polarity assignment errors Structure of the remainder of this chapter Allele Frequency Change in a Single Population Allele frequency change over two sample points: The Waples Adjusted test Allele frequency change over a time series: The Fisher-Ford test Schaffer's linear trend test Scans and simulation-based approaches Birth Data Selection Mapping, BDSM Allelic Frequency Divergence Between Populations Modification of within-population divergence tests Grossman et al.'s \(\Delta DAF \) test	47 59 60 62 62 63 63 63 66 68 69 70 70 72
9.	A paradigm shift away from the neutral theory? USING MOLECULAR DATA TO DETECT SELECTION: SIGNATURES FROM RECENT SINGLE EVENTS An Overview of Strategies Based on Segregating Variation Attempts to account for departures from the equilibrium model SNP ascertainment bias SNP polarity assignment errors Structure of the remainder of this chapter Allele Frequency Change in a Single Population Allele frequency change over two sample points: The Waples Adjusted test Allele frequency change over a time series: The Fisher-Ford test Schaffer's linear trend test Scans and simulation-based approaches Birth Data Selection Mapping, BDSM Allelic Frequency Divergence Between Populations Modification of within-population divergence tests Grossman et al.'s Δ DAF test F_{st} -based divergence tests: Basic approaches	47 59 60 62 63 63 63 66 68 69 70 70 72 72
9.	USING MOLECULAR DATA TO DETECT SELECTION: SIGNATURES FROM RECENT SINGLE EVENTS An Overview of Strategies Based on Segregating Variation Attempts to account for departures from the equilibrium model SNP ascertainment bias SNP polarity assignment errors Structure of the remainder of this chapter Allele Frequency Change in a Single Population Allele frequency change over two sample points: The Waples Adjusted test Allele frequency change over a time series: The Fisher-Ford test Schaffer's linear trend test Scans and simulation-based approaches Birth Data Selection Mapping, BDSM Allelic Frequency Divergence Between Populations Modification of within-population divergence tests Grossman et al.'s Δ DAF test F_{st} -based divergence tests: Basic approaches The Lewontin-Krakauer test and its extensions	59 60 62 62 63 63 63 66 68 69 70 70 72 72 73
9.	USING MOLECULAR DATA TO DETECT SELECTION: SIGNATURES FROM RECENT SINGLE EVENTS An Overview of Strategies Based on Segregating Variation Attempts to account for departures from the equilibrium model SNP ascertainment bias SNP polarity assignment errors Structure of the remainder of this chapter Allele Frequency Change in a Single Population Allele frequency change over two sample points: The Waples Adjusted test Allele frequency change over a time series: The Fisher-Ford test Schaffer's linear trend test Scans and simulation-based approaches Birth Data Selection Mapping, BDSM Allelic Frequency Divergence Between Populations Modification of within-population divergence tests Grossman et al.'s Δ DAF test F_{st} -based divergence tests: Basic approaches The Lewontin-Krakauer test and its extensions Changes in the Chromosomal Spatial Pattern of Neutral Variation	47 59 60 62 63 63 63 66 68 69 70 70 72 72 73 75

_	_				-	
\sim	\sim	TA Tr	ΓEN		_	
		IN.	1 F P	N 1	•	7

	Tests of sweeps using genomic spatial information: CLRT-GOF	. 79
	Tests of sweeps using genomic spatial information: "SweepFinder"	81
	Tests of sweeps using genomic spatial information: XP-CLR	. 82
	Ascertaiment issues	84
	Model fragility: Demography, mutation, recombination, and gene conversion	84
	Tests Based on the Site-Frequency Spectrum	85
	Summary statistics based on infinite-sites models	85
	Tajima's D	
	Fu and Li's D^* and F^* tests	90
	Fay and Wu's H test	. 90
	Zeng et al's E test	92
	Adjusting the null to account for nonequilibrium populations	92
	Support via a peponderance of evidence	
	Recombination makes site-frequnecy tests conservative	95
	Haplotype-based Tests	
	Defining and inferring haplotypes	
	The Ewens-Watterson test	
	Other infinite-alleles tests: Conditioning in $\widehat{ heta}$	
	Other infinite-alleles tests: Conditioning in ${\cal S}$	100
	Pairwise disequilibrium tests: Kelly's Z_{nS} and Kim and Nielsen's ω_{max}	101
	Contrasting frequency and intra-allelic estimates of haplotype age	103
	Haplotype homozygosity and Garud et al's H_{12} , H_2 Tests	106
	Long haplotype tests	107
	Summary: Using haplotype/LD information	110
	Searches for selection in humans and domesticated organisms	111
	Recent/current selection in humans	112
	Domestication versus improvement genes	113
	Finding domestication and improvement genes in crops	114
	Domestication and improvement genes in rice	115
	Domestication and improvement genes in maize	11ϵ
	Silkmoths and flies	117
	Constraints on finding domestication/improvement genes through selective signals	118
	Relative strenghts of selection on domestication versus improvement genes	119
10.	USING MOLECULAR DATA TO DETECT SELECTION:	
10.	SIGNATURES FROM MULTIPLE HISTORICAL EVENTS	135
		136
	Quick Overview of the Key Concepts A history of solgetion alters the ratio of polymorphic to divergent sites	
	A history of selection alters the ratio of polymorphic to divergent sites	136 137
	Population-based Divergence Tests	138
	The Hudson-Kreitman-Aguadé (HKA) test	138
	The McDonald-Kreitman (MK) test: Basics	141
	The McDonald-Kreitman test: Caveats	146
	Dominance in fitness and the MK test	149
		149
	Fluctuating selection coefficients and MK tests Recombinational bias in extended MK tests	150
	Estimating Parameters of Adaptive Evolution	150
	Estimating the fraction α of substitutions that are adaptive	150
	How common are adaptive substitutions?	150
	110 W COMMICH AIC AMADII C DADBIILANDID;	100

vi *CONTENTS*

	Estimating the rate λ of adaptive substitutions	157
	The Sawyer-Hartl Poisson Random Field Model: Basics	158
	The Sawyer-Hartl Poisson Random Field Model: Bayesian extensions	163
	Phylogeny-based Divergence Tests	166
	The K_a to K_s ratio ω	167
	Parsimony-Based ancestral reconstruction tests	168
	Maximum-Likelihood-Based codon tests	168
	Bayesian estimators of sites under positive selection	172
	Connecting the Parameters of Adaptive Evolution	174
	The Search For Selection: Closing Comments	175
	Caution is in order when declaring positive selection!	176
	Curbing Enthusiasm	177
III.	DRIFT AND QUANTITATIVE TRAITS	100
11.	CHANGES IN GENETIC VARIANCE INDUCED	
	BY RANDOM GENETIC DRIFT	1
	Response of Within-population Genetic variance to Drift	. 2
	The effects of dominance	
	The effects of epistasis	
	Sampling error	
	Empirical data	
	Covariance Between Inbred Relatives	
	Empirical observations	
	Drift-Mutation Equilibrium	
	Subdivided populations	
12.	THE NEUTRAL DIVERGENCE OF QUANTITATIVE TRAITS	1
	Short-term divergence	. 1
	Sampling error	. 3
	Empirical observations	. 5
	Long-term Divergence	. 6
	Effectively neutral divergence and the estimation of rates of mutational variance	. 8
	Testing the Null Hypothesis of Neutral Phenotypic Divergence	10
	Long-term drift of mean phenotypes among isolated species	10
	Population subdivision for quantitative traits	
	QTL analysis of divergence lines	15
IV.	SHORT-TERM RESPONSE ON A SINGLE CHARACTER	100
13.	SHORT-TERM CHANGES IN THE MEAN:	
	1. THE BREEDER'S EQUATION	101
	Single-generation Response: The Breeder's Equation	102
	The breeder's equation, a general approximation for reponse	102
	The importance of linearity	102
	Response is the change in mean breeding value	103
	Response under sex dependent parent-offspring regressions	104
	The selection intensity, $\bar{\imath}$	105
	The Robertson-Price Identity, $S = \sigma(w, z)$	106

	CONTENTS	vii
	Correcting for reproductive differences: Effective selection differentials	107
	Expanding the Basic Breeder's Equation	108
	Accuracy	108
	Reducing environmental noise: Stratified mass selection	111
	Reducing environmental noise: Repeated-measures selection	112
	Adjustments for non-overlapping generations	115
	Maximizing response under the breeder's equation	116
	Maximizing the economic rate of response	117
	BLUP selection	117
	Mean- versus variance-standarized response	118
	The Multivariate Breeder's Equation	118
	Response with two traits	119
	Accounting for phenotypic correlations: The selection gradient	119
	Accounting for genetic correlations: The Lande Equation	120
	Selection gradients and mean population fitness	121
	Limitations of the Breeder's Equation	121
14.	SHORT-TERM CHANGES IN THE MEAN:	105
	2. TRUNCATION AND THRESHOLD SELECTION	127
	Truncation Selection	127
	Selection intensities and differentials under truncation selection	128
	Correcting the Selection Intensity for Finite Sample Sizes	129
	Response in Discrete Traits: Binary Traits	132
	The Threshold/Liability model	132
	Direct selection on the threshold T	136
	The logistic regression model for binary traits	136
	Response in Discrete Traits: Poission-distributed Characters	141
15.	SHORT-TERM CHANGES IN THE MEAN:	145
	3. PERMANENT VERSUS TRANSIENT RESPONSE	145
	Why All the Focus on h^2 ?	145
	Genetic Sources of Transient Response	146
	Additive epistasis	146
	Dominance in autotetraploids	147
	Ancestrial Regressions	151
	Response due to Environmental Correlations Selection in the Presence of Heritable Maternal Effects	154
		156 157
	Response under Falconer's dilution model Separate direct and maternal effects	162
	Maternal selection vs. maternal inheritance	165
16	SHORT-TERM CHANGES IN THE VARIANCE:	
16.	1. CHANGES IN THE ADDITIVE VARIANCE	171
		171 171
	Changes in Variance Due to Linkage Disequilibrium Changes in Variance Under the Infinitesimal Model	171
	Changes in Variance Under the Infinitesimal Model Within and between family variance under the infinitesimal model	173 176
	Within- and between-family variance under the infinitesimal model	176
	Accounting for inbreeding and drift	177
	Changes in correlated traits	181
	Changes in Correlated traits	101

viii *CONTENTS*

	Directional truncation selection: Theory	181
	Directional truncation selection: Experimental results	183
	Effects of epistasis: Does the Griffing effect overpower the Bulmer effect?	184
	Double truncation selection: Theory	184
	Double truncation selection: Experimental Results	187
	Response under Normalizing Selection	188
	Selection with Assortative Mating	189
	Results using the infinitesimal model	189
	Assortative mating and enhanced response	190
	Disruptive selection, assortative mating, and reproductive isolation	192
17.	SHORT-TERM CHANGES IN THE VARIANCE:	
	2. CHANGES IN ENVIRONMENTAL VARIANCE	197
	Background: Heritable Variation in σ_E^2	197
	Scales of environmental sensitivity	197
	Environmental vs. genetic canalization	198
	Evidence for heritable variation in the environmental variance	199
	Modeling Genetic Variation in σ_E^2	200
	The multiplicative model	201
	The exponential model	202
	The additive model	203
	h_{v}^{2} , the heritability of the environmental variance	205
	Selection on σ_E^2	205
	Translating the response in A_v into response in σ_E^2	206
	Response from stabilizing selection on phenotypic value $z \ \dots \ \dots$	206
	Response from directional selection on z	208
	Direct selection on σ_E^2 using repeated records	210
18.	ANALYSIS OF SHORT-TERM SELECTION EXPERIMENTS:	
	1. LEAST-SQUARES APPROACHES	215
	Variance in Short-term Response	215
	Expected variance in response generated by drift	216
	Variance in predicted response vs. variance in response	219
	Realized Heritabilities	219
	Estimators for several generations of selection	220
	Weighted least-squares estimates of realized heritabilities	222
	Standard errors of realized heritability estimates	224
	Power: Estimation of h^2 from relatives or selection response?	225
	Empirical vs. predicited standard errors	227
	Realized heritability with rank data	228
	Infinitesimal-model corrections for disequilibrium	229
	Experimental Evaluation of the Breeder's Equation	230
	Most traits respond to selection	230
	Sheridan's analysis	231
	Realized heritabilities and selection intensity	232
	Inbreeding and short-term response	233
	Asymmetric selection response	233
	Reversed response	238
	Control Populations and Experimental Designs	239

	CONTENTS	ix
	Basic theory of control populations	239
	Divergent selection designs	241
	Variance in response	
	Control populations and variance in response	242
	Optimal Experimental Designs	243
	Nicholas' criterion	244
	Replicate lines	244
	Line Cross Analysis of Selection Experiments	245
	The simple additive model	245
	The Hammond-Gardner model	246
	Accounting for inbreeding depression and drift	251
19.	ANALYSIS OF SHORT-TERM SELECTION EXPERIMENTS:	
	2. MIXED-MODEL AND BAYESIAN APPROACHES	259
	Mixed model vs. Least Squares Analysis	259
	BLUP selection	261
	Basics of Mixed-Model Analysis	261
	REML estimation of unknown variance components	264
	REML can (often) return variance estimates unbiased by selection	265
	Animal-model Analysis of Selection Experiments	266
	The basic animal model	266
	Response is measured by change in mean breeding values	267
	Fixed effects alter heritabilities	270
	Model validation	270
	Seperating genetic and environmental trends	271
	Validation that a trend is indeed genetic	274
	Replicate lines	275
	Estimating the additive variance at generation $t \dots \dots$	275
	The Relationship Matrix A Accounts for Drift and Disequilibrium	276
	Modifications of the Basic Animal Model	279
	Models with additional random effects	280
	Common family and material effects	282
	Treating certain breeding values as fixed effects	283
	Dominance	284
	Bayesian Mixed Model Analysis	286
	Introduction to Bayesian statistics	287
	Computiting posteriors and marginals: MCMC and the Gibbs sampler	290
	Bayesian analysis of the animal model	293
	Application: Estimating response in pig litter sSize components	294
	LS, MM, or Bayes?	296
20.	ENVIRONMENTAL EFFECTS AND	
	THE RESPONSE IN NATURAL POPULATIONS	303
	Response in Natural Populations: What is the Target of Selection?	304
	Direct and correlated responses	304
	Environmental correlations between fitness and traits	306
	The Fisher-Price-Kirkpatrick-Arnold Model For Evolution Of Breeding Date In Birds	307
	Modifying the Breeder's Equation for Natural Populations	311
	Complications in the absence of environmental change	311

x CONTENTS

	Additional complications from environmental change	315
	Is a Focal Trait the Direct Target of Selection?	315
	Robertson's theorem: Response prediction without regard to the target of selection	316
	Robertson consistency tests	317
	Rausher's consistency criteria	317
	Morrissey et al.'s consistency criteria	319
	The breeder's equation vs. the secondary theorem	320
	Applying Animal Models to Natural Populations: Basics	321
	Animal model analysis in natural populations: Overview	321
	Obtaining the relationship matrix: Direct observation of the social pedigree	323
	Obtaining the relationship matrix: Marker data	323
	Consequences of pedigree errors	326
	Model selection	328
	Applying Animal Models to Natural Populations: Best Practices	328
	Consisteny tests: Accuracy, reliability, and caveats with using PBVs	329
	Bivariate animal models: REML estimates of $\sigma(A_z, A_w)$, S_A , and S_z	332
	Detecting genetic trends	334
	Causes of Apparent Failures of Response in Natural Populations	337
	Cryptic evolution: Genetic change masked by environmental change	338
	Antler size in Red Deer: The focal trait is not the target of selection	340
	Lower heritabilities in environments with stronger selection?	341
	Fitness tradeoffs and multivariate constraints	342
V.	SELECTION IN STRUCTURED POPULATIONS	
V. 21.	FAMILY-BASED SELECTION	101
	FAMILY-BASED SELECTION Introduction to Family-Based Selection Schemes	101 102
	FAMILY-BASED SELECTION Introduction to Family-Based Selection Schemes Overview of the different types of family-based selection	102 102
	FAMILY-BASED SELECTION Introduction to Family-Based Selection Schemes Overview of the different types of family-based selection Plant vs. animal breeding	102 102 103
	FAMILY-BASED SELECTION Introduction to Family-Based Selection Schemes Overview of the different types of family-based selection Plant vs. animal breeding Between- vs. within-family selection	102 102 103 104
	FAMILY-BASED SELECTION Introduction to Family-Based Selection Schemes Overview of the different types of family-based selection Plant vs. animal breeding Between- vs. within-family selection Details of Family-Based Selection Schemes	102 102 103 104 104
	FAMILY-BASED SELECTION Introduction to Family-Based Selection Schemes Overview of the different types of family-based selection Plant vs. animal breeding Between- vs. within-family selection Details of Family-Based Selection Schemes Selection and recombination units	102 103 104 104 104
	FAMILY-BASED SELECTION Introduction to Family-Based Selection Schemes Overview of the different types of family-based selection Plant vs. animal breeding Between- vs. within-family selection Details of Family-Based Selection Schemes Selection and recombination units Variations of the selection unit	102 103 104 104 104 106
	FAMILY-BASED SELECTION Introduction to Family-Based Selection Schemes Overview of the different types of family-based selection Plant vs. animal breeding Between- vs. within-family selection Details of Family-Based Selection Schemes Selection and recombination units Variations of the selection unit Variations on the recombination unit	102 103 104 104 104 106 107
	FAMILY-BASED SELECTION Introduction to Family-Based Selection Schemes Overview of the different types of family-based selection Plant vs. animal breeding Between- vs. within-family selection Details of Family-Based Selection Schemes Selection and recombination units Variations of the selection unit Variations on the recombination unit Theory of Expected Single-Cycle Response	102 103 104 104 104 106 107 109
	FAMILY-BASED SELECTION Introduction to Family-Based Selection Schemes Overview of the different types of family-based selection Plant vs. animal breeding Between- vs. within-family selection Details of Family-Based Selection Schemes Selection and recombination units Variations of the selection unit Variations on the recombination unit Theory of Expected Single-Cycle Response Modifications of the breeder's equation for predicting family-based response	102 103 104 104 104 106 107 109 110
	FAMILY-BASED SELECTION Introduction to Family-Based Selection Schemes Overview of the different types of family-based selection Plant vs. animal breeding Between- vs. within-family selection Details of Family-Based Selection Schemes Selection and recombination units Variations of the selection unit Variations on the recombination unit Theory of Expected Single-Cycle Response Modifications of the breeder's equation for predicting family-based response The selection unit-offspring covariance $\sigma(x,y)$	102 103 104 104 104 106 107 109 110
		102 103 104 104 106 107 109 110 112 115
		102 103 104 104 106 107 109 110 112 115 119
		102 103 104 104 106 107 109 110 112 115 119
	FAMILY-BASED SELECTION Introduction to Family-Based Selection Schemes Overview of the different types of family-based selection Plant vs. animal breeding Between- vs. within-family selection Details of Family-Based Selection Schemes Selection and recombination units Variations of the selection unit Variations on the recombination unit Theory of Expected Single-Cycle Response Modifications of the breeder's equation for predicting family-based response The selection unit-offspring covariance $\sigma(x,y)$ Variance of the selection unit $\sigma^2(x)$ Response for Particular Designs Overview of between- and within-family selection Between-family selection	102 103 104 104 106 107 109 110 112 115 119 120
		102 103 104 104 106 107 109 110 112 115 119 120 123
		102 103 104 104 106 107 109 110 112 115 119 120 123 124
		102 103 104 104 106 107 109 110 112 115 119 120 123 124 125
		102 103 104 104 106 107 109 110 112 115 119 120 123 124 125 126
		102 103 104 104 106 107 109 110 112 115 119 120 123 124 125 126 128
		102 103 104 104 106 107 109 110 112 115 119 120 123 124 125 126
		102 102 103 104 104 106 107 109 110 112 115 119 120 123 124 125 126 128 132

CONTE	NTS
Response when Families are Replicated over Environments	
Between-family variance under replication	
Ear-to-row selection	
Modified ear-to-Row selection	
Selection on a Family Index	
Response to selection on a family index	
Lush's optimal index	
Correcting the selection intensity for correlated variables	
. ASSOCIATIVE EFFECTS: COMPETITION, SOCIAL INTERACTION	S,
GROUP AND KIN SELECTION	
Direct Versus Associative Effects	
Early models of comptetition	
Direct and associative effects	
Animal well-being and the improvement of the heritable social environment	
What do we mean by group?	
Trait- versus variance component-based models	
The total breeding value (TBV) and T^2	
A_s as a function of group size \dots	
Selection Under the Presence of Associative Effects	
Individual selection: Theory	
Individual selection: Direct vs. social response	
Individual selection: Maternal effects	
Group selection: Theory	
Group selection: Direct vs. social response	
Group selection: Experimental evidence	
Incorporating Both Individual and Group Information	
Response on a weighted index	
Optimal response	
BLUP Estimation of Direct and Associate Effects	
Mixed-model estimation of direct and assocative effects	
Muir's experiment: BLUP selection for Quail weight	
Details: Environmental group effects and the covariance structure of e Details: Ignoring additive social values introduces bias	
Details: Identifiability of variance components	
Associative Effects, Inclusive Fitness, and Fisher's Theorem	
Change in mean fitness when associative effects are present	
Inclusive fitness	
Bijma's theorem: inclusive fitness and Fisher's fundamentaltheorem	
Hamilton's rule	
How general is Hamilton's rule?	
Queller's generalization	
Group Selection, Kin Selection, and Assocative Effects	
Kin, group, and multilevel selection	
Much ado about nothing?	
Group and kin selection: Models without associative effects	
Group and kin selection in the associative effects framework	
-	

xii **CONTENTS**

23.	SELECTION UNDER INBREEDING	29 3
	Basic Issues in Response Under Inbreeding	293
	Accounting for inbreeding depression	294
	Response under small amounts of inbreeding	294
	Using ancestral regressions to predict response	295
	The covariance between inbred relatives	296
	Limitations	299
	Family Selection with Inbreeding and Random Mating	299
	Family selection using inbred parents	300
	Progeny testing using inbred offspring	302
	S_1 , S_2 , and $S_{i,j}$ family selection	303
	Cycles of inbreeding and outcrossing	309
	Individual Selection Under Pure Selfing	311
	Response under pure selfing	312
	Response when inbreeding pure lines	315
	The Bulmer effect under selfing	316
	Family Selection Under Pure Selfing	318
	Covariance between relatives in a structured selfing population	319
	Response to family selection	324
	Within-family selection under selfing	326
	Combined Selection	327
	Partial Selfing	330
	An approximate treatment using covariances	330
	All approximate treatment using covariances	330
VI	A more careful treatment: Kelly's Structured Linear Models	
VI 24	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE	333
VI 24.	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE THE INFINITESIMAL MODEL AND ITS EXTENSIONS	333 100
	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE THE INFINITESIMAL MODEL AND ITS EXTENSIONS The Infinitesimal Model: Data	333 100 101
	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE THE INFINITESIMAL MODEL AND ITS EXTENSIONS The Infinitesimal Model: Data The Infinitesimal Model: Theory	100 101 102
	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE THE INFINITESIMAL MODEL AND ITS EXTENSIONS The Infinitesimal Model: Data The Infinitesimal Model: Theory Allele frequencies do not change under the infinitesimal model	3333 100 101 102 102
	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE THE INFINITESIMAL MODEL AND ITS EXTENSIONS The Infinitesimal Model: Data The Infinitesimal Model: Theory Allele frequencies do not change under the infinitesimal model Disequilibrium under the infinitesimal model	100 101 102 102 103
	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE THE INFINITESIMAL MODEL AND ITS EXTENSIONS The Infinitesimal Model: Data The Infinitesimal Model: Theory Allele frequencies do not change under the infinitesimal model Disequilibrium under the infinitesimal model Dominance	100 101 102 103 103
	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE THE INFINITESIMAL MODEL AND ITS EXTENSIONS The Infinitesimal Model: Data The Infinitesimal Model: Theory Allele frequencies do not change under the infinitesimal model Disequilibrium under the infinitesimal model Dominance Gaussian features of the infinitesimal	100 101 102 103 103 104
	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE THE INFINITESIMAL MODEL AND ITS EXTENSIONS The Infinitesimal Model: Data The Infinitesimal Model: Theory Allele frequencies do not change under the infinitesimal model Disequilibrium under the infinitesimal model Dominance Gaussian features of the infinitesimal Not all limits are Gaussian	100 101 102 103 103 104 105
	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE THE INFINITESIMAL MODEL AND ITS EXTENSIONS The Infinitesimal Model: Data The Infinitesimal Model: Theory Allele frequencies do not change under the infinitesimal model Disequilibrium under the infinitesimal model Dominance Gaussian features of the infinitesimal Not all limits are Gaussian Modifications of the infinitesimal model	100 101 102 102 103 103 104 105 105
	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE THE INFINITESIMAL MODEL AND ITS EXTENSIONS The Infinitesimal Model: Data The Infinitesimal Model: Theory Allele frequencies do not change under the infinitesimal model Disequilibrium under the infinitesimal model Dominance Gaussian features of the infinitesimal Not all limits are Gaussian Modifications of the infinitesimal model Gaussian Continuum-Of-Alleles Models	100 101 102 103 103 104 105 105
	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE THE INFINITESIMAL MODEL AND ITS EXTENSIONS The Infinitesimal Model: Data The Infinitesimal Model: Theory Allele frequencies do not change under the infinitesimal model Disequilibrium under the infinitesimal model Dominance Gaussian features of the infinitesimal Not all limits are Gaussian Modifications of the infinitesimal model Gaussian Continuum-Of-Alleles Models Infinite alleles and continuum-of-alleles models	1000 1011 1022 103 103 104 105 105 106
	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE THE INFINITESIMAL MODEL AND ITS EXTENSIONS The Infinitesimal Model: Data The Infinitesimal Model: Theory Allele frequencies do not change under the infinitesimal model Disequilibrium under the infinitesimal model Dominance Gaussian features of the infinitesimal Not all limits are Gaussian Modifications of the infinitesimal model Gaussian Continuum-Of-Alleles Models Infinite alleles and continuum-of-alleles models Drift	1000 1011 1022 1033 1044 1055 1051 1060 1060
	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE THE INFINITESIMAL MODEL AND ITS EXTENSIONS The Infinitesimal Model: Data The Infinitesimal Model: Theory Allele frequencies do not change under the infinitesimal model Disequilibrium under the infinitesimal model Dominance Gaussian features of the infinitesimal Not all limits are Gaussian Modifications of the infinitesimal model Gaussian Continuum-Of-Alleles Models Infinite alleles and continuum-of-alleles models Drift Drift and a finite number of loci	1000 1011 1022 1033 1044 1055 1056 1066 108
	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE THE INFINITESIMAL MODEL AND ITS EXTENSIONS The Infinitesimal Model: Data The Infinitesimal Model: Theory Allele frequencies do not change under the infinitesimal model Disequilibrium under the infinitesimal model Dominance Gaussian features of the infinitesimal Not all limits are Gaussian Modifications of the infinitesimal model Gaussian Continuum-Of-Alleles Models Infinite alleles and continuum-of-alleles models Drift Drift and a finite number of loci Effective number of loci, n_e	1000 1011 1022 1033 1034 1055 1055 1066 1086 1099
	A more careful treatment: Kelly's Structured Linear Models $ \begin{array}{c} \textbf{POPULATION-GENETIC MODELS OF TRAIT RESPONSE} \\ \hline \textbf{THE INFINITESIMAL MODEL AND ITS EXTENSIONS} \\ \hline \textbf{The Infinitesimal Model: Data} \\ \hline \textbf{The Infinitesimal Model: Theory} \\ \hline \textbf{Allele frequencies do not change under the infinitesimal model} \\ \hline \textbf{Disequilibrium under the infinitesimal model} \\ \hline \textbf{Dominance} \\ \hline \textbf{Gaussian features of the infinitesimal} \\ \hline \textbf{Not all limits are Gaussian} \\ \hline \textbf{Modifications of the infinitesimal model} \\ \hline \textbf{Gaussian Continuum-Of-Alleles Models} \\ \hline \textbf{Infinite alleles and continuum-of-alleles models} \\ \hline \textbf{Drift} \\ \hline \textbf{Drift and a finite number of loci} \\ \hline \textbf{Effective number of loci, } n_e \\ \hline \hline \textbf{Dynamics: } \sigma_a^2 \text{ and } d \text{ change on different time scales} \\ \hline \end{array}$	100 101 102 103 103 104 105 105 106 106 108 109 111
	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE THE INFINITESIMAL MODEL AND ITS EXTENSIONS The Infinitesimal Model: Data The Infinitesimal Model: Theory Allele frequencies do not change under the infinitesimal model Disequilibrium under the infinitesimal model Dominance Gaussian features of the infinitesimal Not all limits are Gaussian Modifications of the infinitesimal model Gaussian Continuum-Of-Alleles Models Infinite alleles and continuum-of-alleles models Drift Drift and a finite number of loci Effective number of loci, n_e Dynamics: σ_a^2 and d change on different time scales Response in stabilizing selection experiments: Selection or drift?	100 101 102 103 103 104 105 105 106 106 108 109 111 111
	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE THE INFINITESIMAL MODEL AND ITS EXTENSIONS The Infinitesimal Model: Data The Infinitesimal Model: Theory Allele frequencies do not change under the infinitesimal model Disequilibrium under the infinitesimal model Dominance Gaussian features of the infinitesimal Not all limits are Gaussian Modifications of the infinitesimal model Gaussian Continuum-Of-Alleles Models Infinite alleles and continuum-of-alleles models Drift Drift and a finite number of loci Effective number of loci, n_e Dynamics: σ_a^2 and d change on different time scales Response in stabilizing selection experiments: Selection or drift? How robust is the continuum-of-alleles model?	1000 1011 1022 1033 1044 1055 1066 1066 1088 1099 1111 1111
	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE THE INFINITESIMAL MODEL AND ITS EXTENSIONS The Infinitesimal Model: Data The Infinitesimal Model: Theory Allele frequencies do not change under the infinitesimal model Disequilibrium under the infinitesimal model Dominance Gaussian features of the infinitesimal Not all limits are Gaussian Modifications of the infinitesimal model Gaussian Continuum-Of-Alleles Models Infinite alleles and continuum-of-alleles models Drift Drift and a finite number of loci Effective number of loci, n_e . Dynamics: σ_a^2 and d change on different time scales Response in stabilizing selection experiments: Selection or drift? How robust is the continuum-of-alleles model?	100 101 102 103 103 104 105 105 106 106 108 109 111 111 111 112
	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE THE INFINITESIMAL MODEL AND ITS EXTENSIONS The Infinitesimal Model: Data The Infinitesimal Model: Theory Allele frequencies do not change under the infinitesimal model Disequilibrium under the infinitesimal model Dominance Gaussian features of the infinitesimal Not all limits are Gaussian Modifications of the infinitesimal model Gaussian Continuum-Of-Alleles Models Infinite alleles and continuum-of-alleles models Drift Drift and a finite number of loci Effective number of loci, n_e Dynamics: σ_a^2 and d change on different time scales Response in stabilizing selection experiments: Selection or drift? How robust is the continuum-of-alleles model? The Bulmer Effect Under LInkage An approximate treatment	1000 1011 1022 1033 1044 1055 1066 1088 1099 1111 1111 1112 1122 1122
	A more careful treatment: Kelly's Structured Linear Models POPULATION-GENETIC MODELS OF TRAIT RESPONSE THE INFINITESIMAL MODEL AND ITS EXTENSIONS The Infinitesimal Model: Data The Infinitesimal Model: Theory Allele frequencies do not change under the infinitesimal model Disequilibrium under the infinitesimal model Dominance Gaussian features of the infinitesimal Not all limits are Gaussian Modifications of the infinitesimal model Gaussian Continuum-Of-Alleles Models Infinite alleles and continuum-of-alleles models Drift Drift and a finite number of loci Effective number of loci, n_e . Dynamics: σ_a^2 and d change on different time scales Response in stabilizing selection experiments: Selection or drift? How robust is the continuum-of-alleles model?	100 101 102 102 103 103 104 105 105

	CONTENTS	xiii
	Describing the genotypic distribution: Moments	117
	Describing the genotypic distribution: Cumulants and Gram-Charlier series	120
	Application: Departure from normality under truncation selection	
	Short-term response ignoring linkage disequilibrium	
	Short-term response ignoring allele frequency change	129
	Effects of linkage	130
	Summary: Where Does All This Modeling Leave Us?	131
25.	LONG-TERM RESPONSE: 1. DETERMINISTIC ASPECTS	137
	Idealized Long-term Response in a Large Population	137
	Deterministic Single-locus Theory	
	Expected contribution from a single locus	
	Dudley's estimators of a , n , and p	
	Dynamics of allele-frequency change	
	Majors Genes Versus Polygenic Response: Theory	
	Lande's model: a major gene in an infinitesmal background	
	Majors Genes Versus Polygenic Response: Data	
	Major genes appear to be important in response to antropogenic-Induced selection	151
	What is the genetic architecture of response in long-term selection experiments?	152
	An Overview of Long-term Selection Experiments	
	Estimating selection limits and half-lives	
	General features of long-term selection experiments	
	Increases in Variances and Accelarated Responses	158
	Rare alleles	160
	Major mutations	160
	Scale effects	161
	Linkage effects	161
	Epistasis	163
	Conflicts Between Natural and Artificial Selection	164
	Accumulation of lethals in selected lines	166
		167
	Expected equilibrium frequency of recessive lethals	
	Lerner's model of genetic homoestasis	169
	Characterizing the Nature of Selection Limits	170
26.	LONG-TERM RESPONSE:	101
	2. FINITE POPULATION SIZE AND MUTATION	181
	Population Genetics of Selection and Drift	182
	Fixation probabilities for alleles at QTL	183
	The Cohan effect: increased divergence under uniform selection	184
	Increased recombination rates following selection	184
	The Effect of Selection on Effective Population Size	185
	The expected reduction in N_e from directional selection	185
	Drift and Long-term Selection Response	189
	Basic theory	189
	Robertson's theory of selection limits	191
	Tests of Robertson's Theory of Selection Limits	193
	Weber's selection experiments on <i>Drosophila</i> flight speed	196
	The Effects of Linkage on the Selection Limit	197
	Optimal Selection Intensities for Maximizing Long-term Response	200
	Effects of Population Structure on Long-Term Response	202

xiv **CONTENTS**

Founder effects and population bottlenecks	202
Population subdivision	206
Within-family selection	207
Asymptotic Response due to Mutational Input	209
Results for the infinitesimal model	210
Expected asymptotic response under more general conditions	213
Models of mutational effects	215
Optimizing asymptotic selection response	216
Adaptive Walks	218
Fisher's model: The adaptive geometry of new mutations	219
Fisher-Kimura-Orr adaptive walks	221
The cost of pleiotropy	224
Walks in sequence space: Maynard-Smith-Gillespie-Orr adaptive walks	225
The fitness distribution of benefical alleles	230
Fisher's geometry or EVT?	231

27.	MAINTENANCE OF QUANTITATIVE GENETIC VARIABILITY	24 3
	Overview: The Maintenance of Variation	243
	Maintaining variation at quantitative traits	244
	Mutation-Drift Equilibrium	246
	Mutational models and quantitative variation	247
	Maintenace of Variation by Direct Selection	249
	Fitness models of stabilizing selection	249
	Stabilizing selection on a single trait	251
	Stabilizing selection on multiple traits	252
	Stabilizing selection countered by pleiotopic overdominance	254
	Fluctuating and frequency-dependent stabilizing selection	255
	Summary of direct selection models	256
	Neutral Traits With Pleiotropic Overdominance	257
	Robertson's model	257
	Mutation-Stabilizing Selection Balance: Basic Models	259
	Latter-Bulmer diallelic models	259
	Kimura-Lande-Fleming continuum-of-alleles models	261
	Gaussian vs. house-of-cards approximations for continuum-of-alleles models	263
	Epistasis	267
	Effects of linkage and mating system	267
	Spatial and temporal variation in the optimum	268
	Summary: Implications of Gaussian vs. HCA approximations	269
	Mutation-Stabilizing Selection Balance: Drift	276
	Impact on equilibrium variance	276
	Impact on underlying loci	278
	Mutation-Stabilizing Selection Balance: Pleiotropy	279
	Gaussian results	279
	HCA results	281
	Maintenace of Variation by Pleiotropic Deleterious Alleles	284
	The Hill-Keightley pleiotropic side-effects model	284
	Deleterious pleiotropy-stabilizing selection (joint-effects) models	289
	How Well Do The Models Fit The Data?	293
	Strength of selection: Direct on a trait	294
	Strength of selection: Persistence times of new mutants	296
	Number of loci and mutation rates	296
	What Does Genetic Architecture Tell Us?	297
	Accelerated responses in artificial selection experiments	298
	Kelly's test for rare recessives	299
	GWAS results	299
	Summary: What Forces Maintain Quantitative-genetic Variation?	299
	Summary. What Porces maintain Quantimare generic variation.	
VI	I. MEASURING SELECTION ON TRAITS	
28.	INDIVIDUAL FITNESS AND THE MEASUREMENT OF	
	UNIVARIATE SELECTON	301
	Episodes of Selection and the Assignment of Fitness	301
	Fitness components	302
	Assigning fitness components	303
	Potential issues with assigning discrete fitness values	305

xvi **CONTENTS**

Assigning components of offspring fitness to their mothers Concurrent episodes, reproductive timing and individual fitness λ_{ind} Variance in Individual Fitness Partitioning I across episodes of selection Correcting lifetime reproductive success for random offspring mortality Variance in mating success: Bateman's principles Some caveats in using opportunity of selection Descriptions of Phenotypic Selection: Introductory Remarks Fitness surfaces Descriptions of Phenotypic Selection: Changes in Phenotypic Moments Directional selection Quadratic selection Gradients describe the local geometry of the fitness surface Gradients appear n selection response equations Partitioning changes in means and variances into episodes of selection Choice of the reference population: "independent partitioning" Standard errors for estimates of differentials and gradients Descriptions of Phenotypic Selection: Individual Fitness Surfaces Linear and quadratic approximations of $W(z)$ Hypothesis testing and approximate confidence intervals Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation S Phenotypes: Differentials and Gradients Changes in the mean vector: the directional selection differential S The directional selection gradient S Directional gradients, fitness surface geometry and selection response Changes in the covariance matrix: the quadratic selection response Changes in the covariance matrix: the quadratic selection response S Changes in the covariance matrix: the quadratic selection response S Changes in the covariance matrix: the quadratic selection response S Changes in the covariance matrix: the quadratic selection response S Changes in the covariance matrix: the quadratic selection response S Changes in the covariance matrix: the quadratic selection response S Changes in the covariance matrix: the quadratic selection response S Changes in the covarian	305 307 310 312 313 314 314 316 317 319 321 321 322 323 324 325 326 329 331 331 332 333 333
Concurrent episodes, reproductive timing and individual fitness λ_{ind} Variance in Individual Fitness Partitioning I across episodes of selection Correcting lifetime reproductive success for random offspring mortality Variance in mating success: Bateman's principles Some caveats in using opportunity of selection Descriptions of Phenotypic Selection: Introductory Remarks Fitness surfaces Descriptions of Phenotypic Selection: Changes in Phenotypic Moments Directional selection Quadratic selection Gradients describe the local geometry of the fitness surface Gradients appear n selection response equations Partitioning changes in means and variances into episodes of selection Choice of the reference population: "independent partitioning" Standard errors for estimates of differentials and gradients Descriptions of Phenotypic Selection: Individual Fitness Surfaces Linear and quadratic approximations of $W(z)$ Hypothesis testing and approximate confidence intervals Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation 29. MEASURING MULTIVARIATE SELECTION Selection on Multivariate Phenotypes: Differentials and Gradients Changes in the mean vector: the directional selection differential S The directional gradients, fitness surface geometry and selection response Changes in the covariance matrix: the quadratic selection differential C The quadratic selection gradient γ	310 312 313 314 314 316 317 319 321 321 322 323 324 325 326 329 331 331 332 333
Variance in Individual Fitness Partitioning I across episodes of selection Correcting lifetime reproductive success for random offspring mortality Variance in mating success: Bateman's principles Some caveats in using opportunity of selection Descriptions of Phenotypic Selection: Introductory Remarks Fitness surfaces Descriptions of Phenotypic Selection: Changes in Phenotypic Moments Directional selection Quadratic selection Gradients describe the local geometry of the fitness surface Gradients appear n selection response equations Partitioning changes in means and variances into episodes of selection Choice of the reference population: "independent partitioning" Standard errors for estimates of differentials and gradients Descriptions of Phenotypic Selection: Individual Fitness Surfaces Linear and quadratic approximations of $W(z)$ Hypothesis testing and approximate confidence intervals Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation 29. MEASURING MULTIVARIATE SELECTION Selection on Multivariate Phenotypes: Differentials and Gradients Changes in the mean vector: the directional selection differential S The directional selection gradient β Directional gradients, fitness surface geometry and selection response Changes in the covariance matrix: the quadratic selection differential C The quadratic selection gradient:	312 313 314 316 317 319 319 321 321 322 323 324 325 326 329 331 332 333 333
Partitioning I across episodes of selection Correcting lifetime reproductive success for random offspring mortality Variance in mating success: Bateman's principles Some caveats in using opportunity of selection Descriptions of Phenotypic Selection: Introductory Remarks Fitness surfaces Descriptions of Phenotypic Selection: Changes in Phenotypic Moments Directional selection Quadratic selection Gradients describe the local geometry of the fitness surface Gradients appear n selection response equations Partitioning changes in means and variances into episodes of selection Choice of the reference population: "independent partitioning" Standard errors for estimates of differentials and gradients Descriptions of Phenotypic Selection: Individual Fitness Surfaces Linear and quadratic approximations of $W(z)$ Hypothesis testing and approximate confidence intervals Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation 29. MEASURING MULTIVARIATE SELECTION Selection on Multivariate Phenotypes: Differentials and Gradients Changes in the mean vector: the directional selection differential S The directional selection gradient β Directional gradients, fitness surface geometry and selection response Changes in the covariance matrix: the quadratic selection differential C The quadratic selection gradient γ	312 313 314 316 317 319 319 321 321 322 323 324 325 326 329 331 332 333 333
Correcting lifetime reproductive success for random offspring mortality Variance in mating success: Bateman's principles Some caveats in using opportunity of selection Descriptions of Phenotypic Selection: Introductory Remarks Fitness surfaces Descriptions of Phenotypic Selection: Changes in Phenotypic Moments Directional selection Quadratic selection Gradients describe the local geometry of the fitness surface Gradients appear n selection response equations Partitioning changes in means and variances into episodes of selection Choice of the reference population: "independent partitioning" Standard errors for estimates of differentials and gradients Descriptions of Phenotypic Selection: Individual Fitness Surfaces Linear and quadratic approximations of $W(z)$ Hypothesis testing and approximate confidence intervals Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation $W(z)$ MEASURING MULTIVARIATE SELECTION Selection on Multivariate Phenotypes: Differentials and Gradients Changes in the mean vector: the directional selection differential S The directional selection gradient β Directional gradients, fitness surface geometry and selection response Changes in the covariance matrix: the quadratic selection differential S The quadratic selection gradient γ	313 314 314 316 317 319 319 321 321 322 323 324 325 326 329 331 331 332 333
Variance in mating success: Bateman's principles Some caveats in using opportunity of selection Descriptions of Phenotypic Selection: Introductory Remarks Fitness surfaces Descriptions of Phenotypic Selection: Changes in Phenotypic Moments Directional selection Quadratic selection Gradients describe the local geometry of the fitness surface Gradients appear n selection response equations Partitioning changes in means and variances into episodes of selection Choice of the reference population: "independent partitioning" Standard errors for estimates of differentials and gradients Descriptions of Phenotypic Selection: Individual Fitness Surfaces Linear and quadratic approximations of $W(z)$ Hypothesis testing and approximate confidence intervals Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation 29. MEASURING MULTIVARIATE SELECTION Selection on Multivariate Phenotypes: Differentials and Gradients Changes in the mean vector: the directional selection differential S The directional selection gradient β Directional gradients, fitness surface geometry and selection response Changes in the covariance matrix: the quadratic selection differential C The quadratic selection gradient γ	314 314 316 317 319 319 321 321 322 323 324 325 326 329 331 331 332 333
Some caveats in using opportunity of selection Descriptions of Phenotypic Selection: Introductory Remarks Fitness surfaces Descriptions of Phenotypic Selection: Changes in Phenotypic Moments Directional selection Quadratic selection Gradients describe the local geometry of the fitness surface Gradients appear n selection response equations Partitioning changes in means and variances into episodes of selection Choice of the reference population: "independent partitioning" Standard errors for estimates of differentials and gradients Descriptions of Phenotypic Selection: Individual Fitness Surfaces Linear and quadratic approximations of $W(z)$ Hypothesis testing and approximate confidence intervals Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation 29. MEASURING MULTIVARIATE SELECTION Selection on Multivariate Phenotypes: Differentials and Gradients Changes in the mean vector: the directional selection differential S The directional selection gradient β Directional gradients, fitness surface geometry and selection response Changes in the covariance matrix: the quadratic selection differential C The quadratic selection gradient γ	314 316 317 319 319 321 321 322 323 324 325 326 329 331 331 332 333
Descriptions of Phenotypic Selection: Introductory Remarks Fitness surfaces Descriptions of Phenotypic Selection: Changes in Phenotypic Moments Directional selection Quadratic selection Gradients describe the local geometry of the fitness surface Gradients appear n selection response equations Partitioning changes in means and variances into episodes of selection Choice of the reference population: "independent partitioning" Standard errors for estimates of differentials and gradients Descriptions of Phenotypic Selection: Individual Fitness Surfaces Linear and quadratic approximations of $W(z)$ Hypothesis testing and approximate confidence intervals Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation 29. MEASURING MULTIVARIATE SELECTION Selection on Multivariate Phenotypes: Differentials and Gradients Changes in the mean vector: the directional selection differential S The directional selection gradient β Directional gradients, fitness surface geometry and selection response Changes in the covariance matrix: the quadratic selection differential C The quadratic selection gradient γ	316 317 319 319 321 321 322 323 324 325 326 329 331 332 333
Fitness surfaces Descriptions of Phenotypic Selection: Changes in Phenotypic Moments Directional selection Quadratic selection Gradients describe the local geometry of the fitness surface Gradients appear n selection response equations Partitioning changes in means and variances into episodes of selection Choice of the reference population: "independent partitioning" Standard errors for estimates of differentials and gradients Descriptions of Phenotypic Selection: Individual Fitness Surfaces Linear and quadratic approximations of $W(z)$ Hypothesis testing and approximate confidence intervals Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation 29. MEASURING MULTIVARIATE SELECTION Selection on Multivariate Phenotypes: Differentials and Gradients Changes in the mean vector: the directional selection differential S The directional selection gradient β Directional gradients, fitness surface geometry and selection response Changes in the covariance matrix: the quadratic selection differential C The quadratic selection gradient γ	317 319 319 321 321 322 323 324 325 326 329 331 331 332 333
Descriptions of Phenotypic Selection: Changes in Phenotypic Moments Directional selection Quadratic selection Gradients describe the local geometry of the fitness surface Gradients appear n selection response equations Partitioning changes in means and variances into episodes of selection Choice of the reference population: "independent partitioning" Standard errors for estimates of differentials and gradients Descriptions of Phenotypic Selection: Individual Fitness Surfaces Linear and quadratic approximations of $W(z)$ Hypothesis testing and approximate confidence intervals Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation	319 319 321 321 322 323 324 325 326 329 331 331 332 333
Directional selection Quadratic selection Gradients describe the local geometry of the fitness surface Gradients appear n selection response equations Partitioning changes in means and variances into episodes of selection Choice of the reference population: "independent partitioning" Standard errors for estimates of differentials and gradients Descriptions of Phenotypic Selection: Individual Fitness Surfaces Linear and quadratic approximations of $W(z)$ Hypothesis testing and approximate confidence intervals Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation	319 319 321 321 322 323 324 325 326 329 331 331 332 333
Quadratic selection Gradients describe the local geometry of the fitness surface Gradients appear n selection response equations Partitioning changes in means and variances into episodes of selection Choice of the reference population: "independent partitioning" Standard errors for estimates of differentials and gradients Descriptions of Phenotypic Selection: Individual Fitness Surfaces Linear and quadratic approximations of $W(z)$ Hypothesis testing and approximate confidence intervals Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation 29. MEASURING MULTIVARIATE SELECTION Selection on Multivariate Phenotypes: Differentials and Gradients Changes in the mean vector: the directional selection differential S The directional selection gradient β Directional gradients, fitness surface geometry and selection response Changes in the covariance matrix: the quadratic selection differential C The quadratic selection gradient γ	319 321 321 323 324 325 326 329 331 331 332 333
Gradients describe the local geometry of the fitness surface Gradients appear n selection response equations Partitioning changes in means and variances into episodes of selection Choice of the reference population: "independent partitioning" Standard errors for estimates of differentials and gradients Descriptions of Phenotypic Selection: Individual Fitness Surfaces Linear and quadratic approximations of $W(z)$ Hypothesis testing and approximate confidence intervals Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation	321 321 322 323 324 325 326 329 331 331 332 333
Gradients appear n selection response equations Partitioning changes in means and variances into episodes of selection Choice of the reference population: "independent partitioning" Standard errors for estimates of differentials and gradients Descriptions of Phenotypic Selection: Individual Fitness Surfaces Linear and quadratic approximations of $W(z)$ Hypothesis testing and approximate confidence intervals Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation 29. MEASURING MULTIVARIATE SELECTION Selection on Multivariate Phenotypes: Differentials and Gradients Changes in the mean vector: the directional selection differential S The directional selection gradient β Directional gradients, fitness surface geometry and selection response Changes in the covariance matrix: the quadratic selection differential C The quadratic selection gradient γ	321 322 323 324 325 326 329 331 331 332 333
Partitioning changes in means and variances into episodes of selection Choice of the reference population: "independent partitioning" Standard errors for estimates of differentials and gradients Descriptions of Phenotypic Selection: Individual Fitness Surfaces Linear and quadratic approximations of $W(z)$ Hypothesis testing and approximate confidence intervals Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation	322 323 324 325 326 329 331 331 332 333
Choice of the reference population: "independent partitioning" Standard errors for estimates of differentials and gradients Descriptions of Phenotypic Selection: Individual Fitness Surfaces Linear and quadratic approximations of $W(z)$ Hypothesis testing and approximate confidence intervals Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation	323 324 325 326 329 331 331 332 333
Standard errors for estimates of differentials and gradients Descriptions of Phenotypic Selection: Individual Fitness Surfaces Linear and quadratic approximations of $W(z)$ Hypothesis testing and approximate confidence intervals Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation 29. MEASURING MULTIVARIATE SELECTION Selection on Multivariate Phenotypes: Differentials and Gradients Changes in the mean vector: the directional selection differential S The directional selection gradient β Directional gradients, fitness surface geometry and selection response Changes in the covariance matrix: the quadratic selection differential C The quadratic selection gradient γ	 324 325 326 329 331 331 332 333
Descriptions of Phenotypic Selection: Individual Fitness Surfaces Linear and quadratic approximations of $W(z)$	 325 326 329 331 331 332 333
Linear and quadratic approximations of $W(z)$ Hypothesis testing and approximate confidence intervals Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation 29. MEASURING MULTIVARIATE SELECTION Selection on Multivariate Phenotypes: Differentials and Gradients Changes in the mean vector: the directional selection differential $\mathbf S$ The directional selection gradient $\boldsymbol \beta$ Directional gradients, fitness surface geometry and selection response Changes in the covariance matrix: the quadratic selection differential $\mathbf C$ The quadratic selection gradient $\boldsymbol \gamma$	 326 329 331 331 332 333
Hypothesis testing and approximate confidence intervals Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation	 329 331 331 332 333
Power Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation 29. MEASURING MULTIVARIATE SELECTION Selection on Multivariate Phenotypes: Differentials and Gradients Changes in the mean vector: the directional selection differential \mathbf{S} The directional selection gradient $\boldsymbol{\beta}$ Directional gradients, fitness surface geometry and selection response Changes in the covariance matrix: the quadratic selection differential \mathbf{C} The quadratic selection gradient $\boldsymbol{\gamma}$	 331 331 332 333
Quadratic surfaces can be very misleading Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation 29. MEASURING MULTIVARIATE SELECTION Selection on Multivariate Phenotypes: Differentials and Gradients Changes in the mean vector: the directional selection differential \mathbf{S} The directional selection gradient $\boldsymbol{\beta}$ Directional gradients, fitness surface geometry and selection response Changes in the covariance matrix: the quadratic selection differential \mathbf{C} The quadratic selection gradient $\boldsymbol{\gamma}$	 331 332 333
Fitting other parameteric fitness functions Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation 29. MEASURING MULTIVARIATE SELECTION Selection on Multivariate Phenotypes: Differentials and Gradients Changes in the mean vector: the directional selection differential \mathbf{S} The directional selection gradient $\boldsymbol{\beta}$ Directional gradients, fitness surface geometry and selection response Changes in the covariance matrix: the quadratic selection differential \mathbf{C} The quadratic selection gradient $\boldsymbol{\gamma}$	 332 333
Nonparametric approachers: Schluter's cublic-spline estimate The importance of experimental manipulation	 333
The importance of experimental manipulation	
29. MEASURING MULTIVARIATE SELECTION Selection on Multivariate Phenotypes: Differentials and Gradients Changes in the mean vector: the directional selection differential \mathbf{S} The directional selection gradient $\boldsymbol{\beta}$ Directional gradients, fitness surface geometry and selection response Changes in the covariance matrix: the quadratic selection differential \mathbf{C} . The quadratic selection gradient $\boldsymbol{\gamma}$	 334
Selection on Multivariate Phenotypes: Differentials and Gradients	-
Changes in the mean vector: the directional selection differential ${\bf S}$	370
The directional selection gradient $oldsymbol{eta}$	 370
The directional selection gradient $oldsymbol{eta}$	 371
Changes in the covariance matrix: the quadratic selection differential ${f C}$. The quadratic selection gradient ${f \gamma}$	372
Changes in the covariance matrix: the quadratic selection differential ${f C}$. The quadratic selection gradient ${f \gamma}$	 374
The quadratic selection gradient γ	375
	 376
	378
Fitness surface curvature and within-generation changes in variances and cov	379
Multivariate Quadratic Fitness Regressions	380
Estimation, hypothesis testing and confidence intervals	
Regression packages and coefficients of γ	 380
Geometric aspects	
A brief digression: orthonormal and diagonalized matrices	 380
Canonical transformation of γ	 380 382 382
	 380 382
Are traits based on canonical axes "real"?	 380 382 382 383 384
Are traits based on canonical axes "real"? Strength of selection: γ_{ii} versus λ	 380 382 382 383
Strength of selection: γ_{ii} versus λ	 380 382 382 383 384 387
Strength of selection: γ_{ii} versus λ	 380 382 382 383 384 387 388
Strength of selection: γ_{ii} versus λ	 380 382 382 383 384 387 388 388
Strength of selection: γ_{ii} versus λ Significance and confidence regions for a stationary point Multivariate Nonparametric Fitness Surface Estimation Projection pursuit regression	380 382 382 383 384 387 388 388 389
Strength of selection: γ_{ii} versus λ Significance and confidence regions for a stationary point Multivariate Nonparametric Fitness Surface Estimation Projection pursuit regression Thin-plate splines	380 382 382 383 384 387 388 388 389
Strength of selection: γ_{ii} versus λ Significance and confidence regions for a stationary point Multivariate Nonparametric Fitness Surface Estimation Projection pursuit regression	380 382 382 383 384 387 388 388 389 390

	CONTENTS xvii
Quadratic selection: strong or weak?	396
Directional selection on body size and Cope's law	
Unmeasured Characters and Other Biological Caveats	
Path Analysis and Fitness Estimation	
Levels of Selection	
Contextual analysis	
Selection can be anatagonistic across levels	
Group selection is likely density-dependent	
Selection differentials can be misleading in levels of selection	
Hard, soft, and group selection: A contextual analysis viewpoint	406
PPENDICES	xxx
1. DIFFUSION THEORY	1
Foundations of Diffusion Theory	
The infinitesimal mean $m(x)$ and variance $v(x)$	
The Kolmogorov forward equation	
Boundary behavior of a diffusion	
Derivation of the Kolmogorov eorward equation	
Stationary distributions	
The Kolmogorov backward equation	
Diffusion Applications in Population Genetic	
Probability of fixation	
Time to fixation	
Expectations of more general functions	
Multivariate Diffusions: Multiple Alleles and Two Loci	
Applications in Quantitative Genetics	
Brownian motion models	
Ornstein-Uhlenbeck models	
Stationary distributions for mean phenotype	
2. INTRODUCTION TO BAYESIAN STATISTICS	21
What are Bayesina Methods Becoming More Popular?	
Bayes' Theorem	
From Likelihood to Bayesian Analysis	
Marginal posterior distributions	
Summarizing the posterior distribution	
Highest density regions (HDRs)	
Bayes factors and hypothesis testing	
The Choice of a Prior	
Diffuse priors	
The Jeffreys' prior	
Posterior Distributions Under Normality Assumptions	
	31
Gaussian likelihood with known variance and unknown mean .	
Gamma, Inverse-Gamma, χ^2 and χ^{-2} distributions	ors 35
Gamma, Inverse-Gamma, χ^2 and χ^{-2} distributions Guassian likelihood with unknown variance: Scaled inverse- χ^2 pri	ors 35

xviii *CONTENTS*

A3. MCMC METHODS AND BAYESIAN ANALYSIS Monte Carlo Integration Importance Sampling Introduction to Markov Chains The Metropolis-Hastings Algorithm Burning-in the sampler Simulated annealing
Importance Sampling 4 Introduction to Markov Chains 4 The Metropolis-Hastings Algorithm 4 Burning-in the sampler 5
Introduction to Markov Chains 4 The Metropolis-Hastings Algorithm 4 Burning-in the sampler 5
Introduction to Markov Chains 4 The Metropolis-Hastings Algorithm 4 Burning-in the sampler 5
Burning-in the sampler 5
Burning-in the sampler 5
Jiiitulatea ailitealiity
Choosing a jumping (proposal) distribution 5
Autocorrelation and sample size Inflation 5
The Monte Carlo variance of an MCMC based estimate
Convergence Diagnostics
Visual analysis 5
More formal approaches 5
One long chain or many smaller ones?
The Gibbs Sampler 5
Using the Gibbs sampler to approximate marginal distributions
Rejection Sampling and Appoximate Bayesian Computation (ABC)
Rejection Sampling and Appoximate Dayesian Computation (ADC)
A4. MULTIPLE COMPARISONS: BONFERRONI CORRECTIONS
AND FALSE DISCOVERY RATES 6
Combining p Values over Independent Tests
Fisher's χ^2
Stouffer's Z score
Bonferroni Corrections and Their Extensions 6
Standard Bonferroni corrections 6
Sequential Bonferroni corrections
Holm's method 6
Simes-Hochberg method
Hommel's method 6
Dealing with dependence: The Leek-Storey surrogate variable approach 6
Detecting an Excess of Significant Tests
How many false positives?6
Schweder-Spjøtvoll plots6
Estimating n_0 : Subsampling from a uniform distribution 6
Estimating n_0 : Mixture models 7
FDR: The False Discovery Rate 7
Morton's Posterior Error Rate (PER) and the FDR
A technical aside: different definitions of false discovery rate
The Benjamini-Hochberg FDR estimator
A (slightly more) formal derviation of the estimated FDR
Storey's q value
Closing cavears in using the FDR
A5. THE GEOMETRY OF VECTORS AND MATRICES:
EIGENVALUES AND EIGENVECTORS
The Geometry of Vectors and Matrices

CONTENTS	s xix
Comparing vectors: lengths and angles	84
Matrices describe vector transformations	86
Orthonormal matrices: Rigid rotations	87
Eigenvalues and eigenvectors	88
Properties of symmetric matrices	90
Correlations can be removed by a matrix transformation	92
Canonical axes of quadratic forms	93
Implications for the multivariate normal distribution	95
Principal components of the variance-covariance matrix	
Testing for Multivariate Normality	98
Graphical tests: Chi-square plots	98
Mardina's test: Multivariate skewness and kurtosis	100
LITERATURE CITED	xxx
AUTHOR INDEX	xxx
ORGANISM AND TRAIT INDEX	xxx
SUBJECT INDEX	xxx