UNIT III

Definition 1.1: Let F be a non empty set (we require F to have at least two elements) on which there are two binary operations '+' and '.' called addition and multiplication, respectively. Then the set F together with these operations is said to be a **field**, if the following axioms are satisfied:

- *Addition is closed*: For all $a, b \in F$, $a + b \in F$ i.
- Addition is commutative: For all $a, b \in F$, a + b = b + aii.
- Addition is associative: For all $a, b, c \in F$, a + (b + c) = (a + b) + ciii.
- Additive identity element: There exists an element $0 \in F$, such that a + 0 =iv. a for all $a \in F$.
- Additive inverse exists: For all $a \in F$, there exists an element $-a \in F$ such v. that a + (-a) = 0.
- *Multiplication is closed*: For all $a, b \in F$, $a.b \in F$ vi.
- *Multiplication is commutative*: For all $a, b \in F$, a, b = b. avii.
- *Multiplication is associative*: For all $a, b, c \in F$, a(b, c) = (a, b)cviii.
 - Multiplicative identity element: There exists an element of $1 \in F$, such that ix. 1. a = a for all $a \in F$.
 - Reciprocals exists: For all $a \neq 0 \in F$, there exists an element $a^{-1} \in F$ such X. that $a.(a^{-1}) = 1$.
 - Distributivity: For all $a, b, c \in F$, a(b+c) = a.b + a.c and (a+b)c =xi. a.c+b.c

Examples of Field: \mathbb{R} , \mathbb{C} , \mathbb{Q} , etc.

Definition 1.2: A vector space over a field F is a set V on which two operations '+' and '.' are defined, called vector addition and scalar multiplication. The operation + (vector addition) must satisfy the following conditions:

Closure: If u and v are any vectors in V, then the sum $u + v \in V$.

- i. Commutative law: For all $u, v \in V$, u + v = v + u
- Associative law: For all $u, v, w \in V$, u + (v + w) = (u + v) + wii.
- iii. Additive identity: There exists an additive identity element $\mathbf{0} \in V$, such that for any vector \mathbf{v} in V, $\mathbf{v} + \mathbf{0} = \mathbf{v}$

Additive inverse: For each vector $v \in V$, the equations v + x = 0 and iv. x + v = 0 have a solution x in V, called an additive inverse of v, and denoted by $-\boldsymbol{v}$.

The operation (scalar multiplication) is defined between real numbers and vectors, and must satisfy the following conditions:

Closure: If \boldsymbol{v} is any vector in V, and c is any real number, then the product $c.\boldsymbol{v}$ belongs to *V*.

- Distributive law (a): For all real numbers c and all vectors u, v in V, v. $c.(\mathbf{u}+\mathbf{v})=c.\mathbf{u}+c.\mathbf{v}$
- Distributive law (b): For all real numbers c, d and all vectors \boldsymbol{v} in V, vi. (c+d). $\mathbf{v} = c$. $\mathbf{v} + d$. \mathbf{v}
- Associative law: For all real numbers c, d and all vectors \boldsymbol{v} in V, c. $(d \cdot \boldsymbol{v}) =$ vii. (cd).v
- Unitary law: For all vectors v in V, 1. v = vviii.

Definition 1.3: Let V be a vector space, and let W be a subset of V. If W is a vector space with respect to the operations in V, then W is called a **subspace** of V.

Theorem 1.1: Let V be a vector space, with operations + and ., and let W be a subset of V. Then W is a subspace of V if and only if the following conditions hold.

- i. Wis nonempty: The zero vector belongs to W.
- ii. Closure under +: If u and v are any vectors in W, then $u + v \in W$.
- Closure under: If v is any vector in W, and c is any real number, then iii. $c, v \in W$
- **e.g.** (a) $W = \{ \begin{bmatrix} a \\ 0 \end{bmatrix}; a \in \mathbb{R} \}$ is a subspace of \mathbb{R}^2 , while the set $W = \{ \begin{bmatrix} a \\ 1 \end{bmatrix}; a \in \mathbb{R} \}$ is not.
- (b) For any vector space V the subset $W = \{0\}$, consisting of only the zero vector, is a subspace of V, called the trivial subspace.

Ex 1.1: Let $W = \left\{ \begin{bmatrix} a \\ a+1 \end{bmatrix}; a \in \mathbb{R} \right\}$ be subset of the vector space $V = \mathbb{R}^2$. Determine whether W is a subspace of V.

Ex 1.2: Let $W = \left\{ \begin{bmatrix} 3t \\ 0 \\ -2t \end{bmatrix}; t \in \mathbb{R} \right\}$ be subset of the vector space $V = \mathbb{R}^3$. Determine whether W is a subspace of V.

Ex 1.3: Given v_1 and v_2 in a vector space V, Let $H = span\{v_1, v_2\}$. Show that His a subspace of V. (Attempt this question after studying spanning sets).

Ex.1.4: Let V be a set in \mathbb{R}^2 with usual vector addition, but with scalar multiplication defined by $\alpha \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \alpha y \\ \alpha x \end{bmatrix}$.

Determine whether or not V is a vector space with these operations.

Ex. 1.5: Let W_1 and W_2 be the subspaces of \mathbb{R}^2 with the standard operations given by

$$W_1 = \left\{ \begin{bmatrix} x \\ 0 \end{bmatrix}; x \in \mathbb{R} \right\} \text{ and } W_2 = \left\{ \begin{bmatrix} 0 \\ y \end{bmatrix}; y \in \mathbb{R} \right\}$$

Show that $W_1 \cup W_2$ is not a subspace.

Definition 1.4: Let $S = \{v_1, v_2, \dots v_k\}$ be a set of vectors in \mathbb{R}^n , and let c_1, c_2, \cdots, c_k be scalars. An expression of the form

$$c_1 \boldsymbol{v_1} + c_2 \boldsymbol{v_2} + \dots + c_k \boldsymbol{v_k} = \sum_{i=1}^k c_i \boldsymbol{v_i}$$

is called a **linear combination** of the vectors of S. Any vector \boldsymbol{v} that can be written in this form is also called a **linear combination** of the vectors of S.

Every vector in \mathbb{R}^3 can be obtained from the three coordinate vectors $\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$,

$$e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
, and $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

for example, the vector
$$\mathbf{v} = \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

The vector v is obtained by adding scalar multiples of the coordinate vectors. The vectors $e_1, e_2, and e_3$ are not unique in this respect. For example, the vector v can also be written as the combination of the vectors

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ and $v_3 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$, that is $3v_1 - v_2 + v_3 = \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix} = v$.

Thus the vector v is the linear combination of the vectors v_1 , v_2 , and v_3 .

Ex. 1.6: Determine whether the vector $\mathbf{v} = \begin{bmatrix} -1 \\ 1 \\ 10 \end{bmatrix}$ is the linear combination of the

vectors
$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} -2 \\ 3 \\ -2 \end{bmatrix}$ and $\mathbf{v_3} = \begin{bmatrix} -6 \\ 7 \\ 5 \end{bmatrix}$.

Ex. 1.7: Determine whether the vector $\mathbf{v} = \begin{bmatrix} -5 \\ 11 \\ -7 \end{bmatrix}$ is the linear combination of the

vectors
$$\mathbf{v_1} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} 0 \\ 5 \\ 5 \end{bmatrix}$ and $\mathbf{v_3} = \begin{bmatrix} 2 \\ 0 \\ 8 \end{bmatrix}$.

Ex. 1.8: Show that the matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ is the linear combination of the matrices $M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $M_2 = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ and $M_3 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

(Attempt examples 1.6, 1.7 and 1.8 after studying solution of simultaneous linear equations)

Definition 1.5: The set of vectors $S = \{v_1, v_2, \dots v_m\}$ in \mathbb{R}^n is **linearly independent** provided that the only solution to the equation

$$c_1 v_1 + c_2 v_2 + \cdots + c_m v_m = 0$$

is the trivial solution $c_1 = c_2 = \cdots = c_m = 0$. If the above linear combination has a nontrivial solution, then the set S is called **linearly dependent.**

For example, the set of coordinate vectors $S = \{e_1, e_2, \dots, e_n\}$ in \mathbb{R}^n is linearly independent.

Ex. 1.9: Check whether the vectors $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$ are linearly dependent or independent.

Ex. 1.10: Check whether the vectors $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ are linearly dependent or independent.

Theorem 1.2: If a set of vectors S is linearly independent, then any subset of S is also a linearly independent set of vectors.

Proof: Let $S = \{v_1, v_2, \dots, v_k, v_{k+1}, \dots, v_m\}$ and $T = \{v_1, v_2, \dots, v_k\}$ be a subset of S. Consider the equation

$$c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \dots + c_k \boldsymbol{v}_k = \mathbf{0}$$

Next let $c_{k+1} = c_{k+2} = \cdots = c_m = 0$, and consider the linear combination

$$c_1 v_1 + c_2 v_2 + \dots + c_k v_k + 0 v_{k+1} + \dots + 0 v_m = 0$$

Since S is linearly independent, $c_1 = c_2 = \cdots = c_k = 0$, and hence T is linearly independent.

Theorem 1.3: If a set of vectors T is linearly dependent and S is a set of vectors that contains T, then S is also a linearly dependent set of vectors.

Proof: Let $T = \{v_1, v_2, \dots, v_k\}$ and suppose that $T \subset S$. Label the vectors of S that are not in T as v_{k+1}, \dots, v_m . Since T is linearly dependent, there are scalars c_1, c_2, \dots, c_k not all zero, such that

$$c_1 \boldsymbol{v_1} + c_2 \boldsymbol{v_2} + \dots + c_k \boldsymbol{v_k} = \mathbf{0}$$

Then $c_1, c_2, \dots, c_k, c_{k+1} = c_{k+2} = \dots = c_m = 0$ is a collection of m scalars, not all 0, with

$$c_1 v_1 + c_2 v_2 + \dots + c_k v_k + 0 v_{k+1} + \dots + 0 v_m = 0$$

Consequently, *S* is linearly dependent.

Theorem 1.4: A set of nonzero vectors is linearly dependent if and only if at least one of the vectors is a linear combination of other vectors in the set.

Proof: Let $S = \{v_1, v_2, \dots, v_n\}$ be a set of nonzero vectors that is linearly dependent. Then there are scalars c_1, c_2, \dots, c_n , not all zero, with

$$c_1 v_1 + c_2 v_2 + \cdots + c_n v_n = 0$$

Suppose that $c_k \neq 0$, for some index k. Then solving the previous equation for the vector v_k , we have

$$v_k = -\frac{c_1}{c_k}v_1 - \dots - \frac{c_{k-1}}{c_k}v_{k-1} - \frac{c_{k+1}}{c_k}v_{k+1} - \dots - \frac{c_n}{c_k}v_n$$

Conversely, let v_k be such that

$$v_k = c_1 v_1 + c_2 v_2 + \dots + c_{k-1} v_{k-1} + c_{k+1} v_{k+1} + \dots + c_n v_n$$

Then

$$c_1 v_1 + c_2 v_2 + \dots + c_{k-1} v_{k-1} + (-1) v_k + c_{k+1} v_{k+1} + \dots + c_n v_n = 0$$

Since the coefficient of v_k is -1, the linear system has a nontrivial solution. Hence, the set S is linearly dependent.

Theorem 1.5 $S = \{v_1, v_2, \dots, v_n\}$ be a linearly independent set. Suppose that there are scalars c_1, c_2, \dots, c_n such that

$$v = \sum_{k=1}^{n} c_k v_k$$

Then the scalars are unique.

Proof: Let \boldsymbol{v} be written as

$$\mathbf{v} = \sum_{k=1}^{n} c_k \mathbf{v_k}$$
 and as $\mathbf{v} = \sum_{k=1}^{n} d_k \mathbf{v_k}$

Given a set of vectors $S = \{v_1, v_2, \dots, v_n\}$ and an arbitrary vector v not in S, it may or may not be possible to write v as a linear combination of S. Also sometimes when the set S is LD, v can be written as a linear combination of the vectors of S in infinitely many ways [e.g. $S = \{(1,1), (3,3)\}$] and v = (2,2)]. This cannot happen for a linearly independent set as is shown in Theorem 1.5.

Then

$$\mathbf{0} = \mathbf{v} - \mathbf{v} = \sum_{k=1}^{n} c_k \mathbf{v}_k - \sum_{k=1}^{n} d_k \mathbf{v}_k$$
$$= \sum_{k=1}^{n} (c_k - d_k) \mathbf{v}_k$$

Since the set of vectors S is linearly independent, the only solution to this last equation is the trivial one. that is,

$$c_1 - d_1 = 0, c_2 - d_2 = 0, \dots, c_n - d_n = 0$$

or
$$c_1 = d_1, c_2 = d_2, \dots, c_n = d_n$$

Theorem 1.6: If a set of vectors $S = \{v_1, v_2, \dots, v_n\}$ contains the zero vector, then S is linearly dependent.

Proof: Do it yourself....

Theorem 1.7: A set of mutually orthogonal vectors is linearly independent.

Proof: Let $S = \{v_1, v_2, \dots, v_n\}$ is a set of mutually orthogonal vectors.

Suppose $\sum_{i=1}^k c_i \boldsymbol{v_i} = \mathbf{0}$, with $c_k \neq 0$ (i.e. assume that S is a set of linearly dependent vectors)

Taking the scalar product of the above equation with v_k we obtain

$$\boldsymbol{v_k} \sum_{i=1}^k c_i \boldsymbol{v_i} = \boldsymbol{v_k}.\,\mathbf{0}$$

Using the orthogonal property v_1 , $v_2 = 0$, the above equation reduces to

$$c_k \boldsymbol{v_k} \cdot \boldsymbol{v_k} = 0$$

Thus $c_k = 0$, as $\boldsymbol{v_k}$ is not a null vector (because set of linearly independent vectors cannot have a null vector).

This contradicts our initial assumption of linear dependence of S.

Hence S is a set of linearly independent vectors.

Theorem 1.8 ²: Let $S = \{v_1, v_2, \dots, v_n\}$ be a set of n nonzero vectors in \mathbb{R}^m . If n > m, then the set S is linearly dependent.

Proof: Let A be the $m \times n$ matrix with column vectors the vectors of S so that

$$A_i = v_i$$
 for $i = 1, 2, \dots, n$

In this way

$$c_1 v_1 + c_2 v_2 + \cdots + c_n v_n = 0$$

in matrix form, is the homogeneous linear system

$$A\mathbf{c} = \mathbf{0}$$
 where $\mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$

As A is not square with n > m, there is at least one free variable. Thus, the solution is not unique and $S = \{v_1, v_2, \dots, v_n\}$ is linearly dependent.

Definition 1.6: A set of vectors $S = \{v_1, v_2, \dots, v_r\}$ from \mathbb{R}^n is said to be a spanning set for \mathbb{R}^n if every vector in \mathbb{R}^n can be written as a linear combination of the vectors in S.

Definition 1.7 ³: Let V be a vector space and let $S = \{v_1, v_2, \dots, v_n\}$ be a (finite) set of vectors in V. The span of S, denoted by span(S), is the set

$$span(S) = \{c_1v_1 + c_2v_2 + \cdots + c_nv_n : c_1, c_2, \cdots c_n \in \mathbb{R}\}\$$

Proposition 1.1 notes: If $S = \{v_1, v_2, \dots, v_n\}$ is a set of vectors in a vector space V, then span(S), is a subspace.

From theorem 1.8, any set of three or more vectors in \mathbb{R}^2 , four or more vectors in \mathbb{R}^3 , five or more vectors in \mathbb{R}^4 , and so on, is linearly dependent, this theorem does not address the case for which $n \leq m$. In this case, a set of n vectors in \mathbb{R}^m may be either linearly independent or linearly dependent.

Consider the set $S = \{(1,0,0), (0,1,0), (0,0,1)\}$. This is the **spanning set** for \mathbb{R}^3 . On the other hand, span of this set S, i.e. $span(s) = span\{(1,0,0), (0,1,0), (0,0,1)\} = \mathbb{R}^3$

Proof: Do it yourself... (hint: let \mathbf{u} and \mathbf{w} be vectors in $\mathbf{span}(S)$ and \mathbf{c} a scalar)

Ex. 1.11: Let S be the subset of the vector space \mathbb{R}^3 defined by

$$S = \left\{ \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix} \right\}$$

Show that

$$v = \begin{bmatrix} -4 \\ 4 \\ -6 \end{bmatrix}$$

is in span(S).

Definition 1.8: A subset B of a vector space V is a **basis for V** provided that

- 1. B is a linearly independent set of vectors in V.
- 2. span(B) = V (i.e each vector in V can be written as the linear combination of vectors in B).

Definition 1.9: The dimension of the vector space V, denoted by dim (V), is the number of vectors in any basis of V.

For example, since the standard basis for \mathbb{R}^n is $\{e_1, e_2, \dots e_n\}$, we have $\dim(\mathbb{R}^n) = n$

We call a vector space V finite dimensional if there exists a basis for V with a finite number of vectors. If such a basis does not exist, then V is called **infinite** dimensional.

Note⁴: To determine whether a set of n vectors from a vector space of dimension n is or not a basis, it is sufficient to verify either that the set spans the vector space or that the set is linearly independent.

 $^{^4}$ This also comes from The Basis Theorem' which states "Let V be a n-dimensional vector space. Any linearly independent set of exactly **n** vectors in V is automatically a basis for V."

Ex. 1.12: Determine whether

$$B = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

is a basis for \mathbb{R}^3 .

Solution: Since $(dim\mathbb{R}^3) = 3$, the set B is a basis if it is linearly independent.

Now show that the given set is linearly independent......(complete it yourself)

Theorem 1.9: The Representation of any vector in terms of the given basis is unique.

Proof: Same as theorem 1.5

Theorem 1.10: Given a set of basis vectors $S = \{a_1, a_2, \dots, a_r\}$ for \mathbb{R}^n and any other vector $\mathbf{b} \neq \mathbf{0}$ from \mathbb{R}^n . Then, if in the expression of **b** as a linear combination of the vectors in S,

$$\boldsymbol{b} = \sum_{i=1}^{r} \alpha_i \boldsymbol{a_i}$$

any vector \mathbf{a}_i for which $\alpha_i \neq 0$ is removed from the set $S = \{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_r\}$ and \mathbf{b} is added to the set, the new collection of r vectors is also a basis for \mathbb{R}^n .

Proof: Given

$$\boldsymbol{b} = \sum_{i=1}^{r} \alpha_i \boldsymbol{a_i} = \alpha_1 \boldsymbol{a_1} + \alpha_2 \boldsymbol{a_2} + \dots + \alpha_r \boldsymbol{a_r} \qquad \dots \dots (1)$$

Without loss of generality we can assume that $\alpha_r \neq 0$.

Replacing a_r by b we get the new set as

$$S_1 = \{a_1, a_2, \cdots a_{r-1}, b\} \qquad \cdots \cdots (2)$$

To show that (2) is also a basis of \mathbb{R}^n we have to show that the set of vectors (2) is linearly independent.

Let (2) is linearly dependent, that is

$$\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_{r-1} a_{r-1} + \beta_r b = 0 \quad \dots (3)$$

where all $\beta_i^{\prime s}$ are not zero.

As any subset of linearly independent set is linearly independent, thus subset of S, i.e. $\{a_1, a_2, \cdots a_{r-1}, \}$ is linearly independent. Substituting the value of **b** from (1) in (3), we get

$$\beta_{1}a_{1} + \beta_{2}a_{2} + \dots + \beta_{r-1}a_{r-1} + \beta_{r}(\alpha_{1}a_{1} + \alpha_{2}a_{2} + \dots + \alpha_{r}a_{r}) = \mathbf{0}$$

$$(\beta_{1} + \beta_{r}\alpha_{1})a_{1} + (\beta_{2} + \beta_{r}\alpha_{2})a_{2} + \dots + (\beta_{r-1} + \beta_{r}\alpha_{r-1})a_{r-1} + \beta_{r}\alpha_{r}a_{r} = \mathbf{0}$$
or $\delta_{1}a_{1} + \delta_{2}a_{2} + \dots + \delta_{r-1}a_{r-1} + \delta_{r}a_{r} = \mathbf{0}$
where $\delta_{i} = (\beta_{i} + \beta_{r}\alpha_{i}), i = 1, 2, \dots (r-1)$

$$\delta_{r} = \beta_{r}\alpha_{r}$$

 $S = \{a_1, a_2, \dots a_r\}$ is linearly independent, therefore

$$\delta_i = 0$$
, $i = 1, 2, \dots (r - 1)$ and $\delta_r = 0$.

As
$$\delta_r = \beta_r \alpha_r = 0$$
,

but $\alpha_r \neq 0$ (assumed initially)

$$\Rightarrow \beta_r = 0$$

Therefore, (3) $\Rightarrow S_1 = \{a_1, a_2, \dots a_{r-1}, b\}$ is linearly independent.

Now to show that $S_1 = \{a_1, a_2, \dots a_{r-1}, b\}$ forms a basis of \mathbb{R}^n , we have to show that any vector $\mathbf{x} \in \mathbb{R}^n$ can be expressed as a linear combination of these vectors.

Vector $\mathbf{x} \in \mathbb{R}^n$ can be expressed as a linear combination of the given basis $S = \{a_1, a_2, \dots, a_r\}$ as

$$x = \gamma_1 a_1 + \gamma_2 a_2 + \dots + \gamma_r a_r \qquad \dots (4)$$

In (1) $\alpha_r \neq 0$, we can write

$$\frac{\boldsymbol{b}}{\alpha_r} = \frac{\alpha_1}{\alpha_r} \boldsymbol{a}_1 + \frac{\alpha_2}{\alpha_r} \boldsymbol{a}_2 + \dots + \boldsymbol{a}_r$$

or

$$a_r = \frac{b}{\alpha_r} - \sum_{i=1}^{r-1} \frac{\alpha_i}{\alpha_r} a_i \qquad \cdots \qquad (5)$$

Substituting this value of a_r in (4) we get

$$x = \gamma_{1}a_{1} + \gamma_{2}a_{2} + \dots + \gamma_{r-1}a_{r-1} + \gamma_{r}\left(\frac{\mathbf{b}}{\alpha_{r}} - \sum_{i=1}^{r-1} \frac{\alpha_{i}}{\alpha_{r}} \mathbf{a}_{i}\right)$$

$$x = \gamma_{1}a_{1} + \gamma_{2}a_{2} + \dots + \gamma_{r-1}a_{r-1} + \frac{\gamma_{r}}{\alpha_{r}} \mathbf{b} - \sum_{i=1}^{r-1} \frac{\alpha_{i}}{\alpha_{r}} \gamma_{r} \mathbf{a}_{i}$$

$$x = \sum_{i=1}^{r-1} \left(\gamma_{i} - \frac{\alpha_{i}}{\alpha_{r}} \gamma_{r}\right) \mathbf{a}_{i} + \frac{\gamma_{r}}{\alpha_{r}} \mathbf{b} \qquad \dots \dots (6)$$

$$= \lambda_{1}a_{1} + \lambda_{2}a_{2} + \dots + \lambda_{r-1}a_{r-1} + \lambda_{r}a_{r} \qquad \dots (7)$$

where
$$\lambda_i = \gamma_i - \frac{\alpha_i}{\alpha_r} \gamma_r$$
, $i = 1, 2, \dots, r - 1$

and
$$\lambda_r = \frac{\gamma_r}{\alpha_r}$$

Equation (7) is a linear combination of any $x \in \mathbb{R}^n$ in terms of the new set

$$S_1 = \{a_1, a_2, \cdots a_{r-1}, b\}$$

$$\Rightarrow S_1 = \{a_1, a_2, \cdots a_{r-1}, b\} \text{ forms a basis of } \mathbb{R}^n.$$

Theorem 1.11: Every basis of \mathbb{R}^n has exactly n vectors.

Proof: We will first show that every basis of \mathbb{R}^n has same number of vectors.

Let $S_1=\{\pmb{a_1},\pmb{a_2},\cdots \pmb{a_k}\}$ and $S_2=\{\pmb{b_1},\pmb{b_2},\cdots ,\pmb{b_l}\}$ be two bases of \mathbb{R}^n having different number of vectors.

Expressing b_l in terms of the vectors of basis S_1 , we get

$$\boldsymbol{b_l} = \sum_{i=1}^k \alpha_i \boldsymbol{a_i} = \alpha_1 \boldsymbol{a_1} + \alpha_2 \boldsymbol{a_2} + \dots + \alpha_k \boldsymbol{a_k}$$

with at least one $\alpha_i \neq 0$ (since b_l is one of the vectors in the basis S_2 , and being linearly independent set S_2 cannot have a null vector 5).

Let $\alpha_k \neq 0$, then $S_3 = \{a_1, a_2, \dots a_{k-1}, b_l\}$ will form a new basis ⁶ of \mathbb{R}^n .

Now we can express b_{l-1} as a linear combination of the vectors in new basis S_3 as

$$b_{l-1} = \beta_1 a_1 + \beta_2 a_2 + \dots + \beta_{k-1} a_{k-1} + \beta_k b_l$$

with at least one $\beta_i \neq 0$, because $b_l \neq 0$.

Let $\beta_{k-1} \neq 0$

then $S_4 = \{a_1, a_2, \dots, a_{k-2}, b_{l-1}, b_l\}$ will form a new basis of \mathbb{R}^n .

This process will continue until either we have $\{a_1, a_2, \cdots, a_{k-l}, b_1, b_2, \cdots, b_l\}$ as a new basis (if k > l) or $\{\boldsymbol{b_1}, \boldsymbol{b_2}, \cdots, \boldsymbol{b_l}\}$ as a new basis (if k = l).

There must be at least as many $a_i^{\prime s}$ as there are $b_i^{\prime s}$, otherwise we get a basis of the form $\{b_{l-k+1}, \dots, b_l\}$ and the remaining $b_i^{\prime s}$ can be expressed as a linear combination of this basis which contradicts that $S_2 = \{b_1, b_2, \cdots, b_l\}$ is a basis of \mathbb{R}^n .

Thus,

$$k \ge l \quad \cdots \cdots (1)$$

Similarly if we start with $S_2 = \{ \boldsymbol{b_1}, \boldsymbol{b_2}, \cdots, \boldsymbol{b_l} \}$ and insert $a_i'^s$ one by one to form new bases, we will conclude that

$$l \ge k \quad \cdots \cdots (2)$$

Therefore, (1) and (2) $\Rightarrow l = k$

⁵ See theorem 1.6

⁶ See theorem 1.10

Thus, every basis of \mathbb{R}^n has same number of vectors.

Now, as the set of unit vectors $\{e_1, e_2, \dots, e_n\}$ forms a basis of \mathbb{R}^n , it immediately follows that every basis of \mathbb{R}^n has exactly n vectors.

Theorem 1.12: If a set of nonzero vectors $\{v_1, v_2, \dots, v_n\}$ from \mathbb{R}^n are mutually orthogonal then this set of vectors forms a basis for \mathbb{R}^n .

Proof: The proof follows immediately if we can show that the set $\{v_1, v_2, \dots, v_n\}$ is linearly independent (since any set of n linearly independent vectors from \mathbb{R}^n forms a basis for \mathbb{R}^n)⁷.

Now, the set $\{v_1, v_2, \dots, v_n\}$ can be proved to be a set of linearly independent vectors in a same way as done in theorem 1.7. (now proceed yourself....)

Definition 1.10: A set of n mutually orthogonal vectors of unit length from \mathbb{R}^n forms, what is called an **orthonormal basis** for \mathbb{R}^n .

-

⁷ See footnote 4