NAALAIYA THIRAN PROJECT - 2022 19ECI01-PROFESSIONAL READINESS FOR INNOVATION, EMPLOYABILITY AND ENTREPRENEURSHIP

VIRTUALEYE – LIFEGUARD FOR SWIMMING POOLS TO DETECT ACTIVE DROWNING A PROJECT REPORT Submitted by

SANTHOSH KUMAR M 411519104081 SHANMUGARAJ M 411519104083 THARANIDHARAN P 411519104095 VIGNESHWARAN V 411519104098

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PERI INSTITUTE OF TECHNOLOGY,

MANNIVAKKAM
CHENNAI– 600 048
(Affiliated to Anna University)
ANNA UNIVERSITY: CHENNAI 600025

NOVEMBER 2022

TABLE OF CONTENT

CHAPTER 1		CLE AGE NO	
1	INTRODUCTION		
	1.1 Project Overview		4
	1.2 Purpose		4
2	LITERATURE SURVEY		
	2.1 Existing Problem		5
	2.2 Survey Work		5
	2.3 Problem Statement Definition		10
3	IDEATION & PROPOSED SOLUTION		
	3.1 Empathy Map Canvas		12
	3.2 Brainstorming And Idea Prioritizatio	n	13
	3.3 Proposed Solution		16
	3.4 Problem Solution Fit		17
4	REQUIREMENTS ANALYSIS		
	4.1 Functional Requirements		18

	4.2 Non-Functional Requirements	19
5	PROJECT DESIGN	
	5.1 Data Flow Diagrams	20
	5.2 Solution & Technical Architecture	21
	5.3 User Stories	23
6	PROJECT PLANNING & SCHEDULING	
	6.1 Sprint Planning & Estimation	25
	6.2 Sprint Delivery Schedule	27
	6.3 Reports From Jira	28
7	CODING & SOLUTIONING	
	7.1 Feature 1	30
	7.2 Feature 2	30
8	TESTING	
	8.1 Test Cases	31
	8.2 User Acceptance Testing	35
9	RESULTS	
	9.1 Performance Metrics	37

10	ADVANTAGES & DISADVANTAGES	38
11	CONCLUSION	39
12	FUTURE SCOPE	40
13	APPENDIX	
	13.1Source Code	41
	13.2 Github & Project Demo Link	43
14	REFERENCE	44

4

CHAPTER 1 INTRODUCTION

1.1 PROJECT OVERVIEW

A naturalist is someone who studies the patterns of nature, identifies kind of flora and fauna in nature. Being able to identify the flora and fauna around us often leads to an interest in protecting wild species, and collecting and sharing information about the species we see on our travels is very useful for conservation groups like NCC. We use artificial neural network to train these image and build a deep learning model. When venturing into the woods, field naturalists usually rely on common approaches like always carrying a guidebook around everywhere or seeking help from experienced ornithologists. There should be a handy tool for them to capture ,identify and share the beauty to the outside world.

1.2 PURPOSE

The project aims to create an application for the hikers to identify rare species of birds, flowers, mammals by giving a picture taken by them. Field naturalists can only use this web app from anywhere to identify the birds, flowers, mammals and other species they see on their hikes, canoe trips and other excursions. We use artificial neural network to train these image and build a deep learning model. In this project, we are creating a web application which uses a deep learning model, trained on different species of birds, flowers andmammals and get the prediction of the bird when an image is been given.

CHAPTER - 2

LITERATURE SURVEY

2.1 EXISTING PROBLEM

The Problem is to classify the type of species. The key relationship in this work is between field biologist and technologists, thus many of our activities will involves hybrid artistic and scientific examinations of the wildness surrounding us. For instance we may develop biological tools for studying nearby creatures, and then adapt these into artistic devices for continued exploration and sharing of this phenomena.

2.2 SURVEY WORK

2.2.1 UNGULATE DETECTION AND SPECIES CLASSIFICATION FROM CAMERA TRAP IMAGES USING RETINA NET AND FASTER R-CNN (2022)

[Gholamreza Anbarjafari, Ilja Pavlovs, Kadir Aktas, Egils Avots, Jevgenijs Filipovs, AgrisBrauns, Gundega Done, Dainis Jakovels, Gholamreza Anbarjafari]

This paper presents a new dataset of wild ungulates which was collected in Latvia. It demonstrate two methods, which use RetinaNet and Faster R-CNN as backbones respectively, to detect the animals in the images. Faster R-CNN–ResNet50 network and RetinaNet were trained for 34,850 iterations (10 epochs) on the training dataset with a batch size of 4, learning rate of 0.0001 and

6

Adam optimizer for the weight update. The general structureof the detector involves image embedding, object localization and classification. DNN consisting of convolutional layerswhich are used for the feature extraction from the input image. Usually, backbone networks which are pre- trained on a natural image dataset such as ImageNetare used. Common networks used as the backbone are ResNet50, VGG160, Inception-ResNetV2 and DarkNet-19. The neck network takes and processes inputs from the different layers of the backbone, harnessing advantages of data pattern distribution over different feature map scales by using FPN (Feature Pyramid Network). A feed-forward neuralnetwork which performs the classification or regression task.

2.2.2 CONVOLUTIONAL NETWORKBASED ANIMAL RECOGNITION USING YOLO AND DARKNET (2021) [B.Karthikeya Reddy,Shahana Bano, G.Greeshmanth Reddy, Rakesh Kommineni, P.Yaswanth Reddy]

This research work has developed a YOLOV3 model to identify the animal present in the image given by user. The algorithm used in YOLOV3 model is darknet, which has a pretrained dataset. Machine learning has been applied to image processing. The image of animal will be given as input, then it will display the name of the animal as output by using YOLOV3 model. The detection is done by using a pre-trained coco dataset from darknet. The image is broken into various lengths and widths based on the given input image. Here for the recognition of image, YOLOV3 model is using recognizer deep learning package. The overall performance of the model is based on the different training images and testing images of the dataset. The detection is done by using a pre-trained coco dataset from darknet.

2.2.3 RECOGNITION OF ENDEMIC BIRD SPECIES USING DEEP LEARNING MODELS (2021). [Yo-Ping Huang,Haobijam Basanta]

The objective of the paper is identifying the bird species from images. This study developed a transfer learning-based method using Inception- ResNet-v2 to detect and classifybird species. To validate the reliability of the model, it adopted a technique that involves swapping misclassified data between training and validation datasets. The swapped data are retrained until the most suitable result is obtained. Additionally, fivefold cross-validation was performed to verify the predictive performance of the model. The proposed model was tested using 760 images of birds belonging to 29 species that are endemicto Taiwan. The model has achieved an accuracy of 98.39% in the classification of 29 endemic bird species. The model achieved a precision, recall, and F1-score of 98.49%, 97.50%, and 97.90%, respectively, in classifying bird species endemicto Taiwan.

2.2.4 THE ANALYSIS OF PLANTS IMAGE RECOGNITION BASED ON DEEP LEARNING AND ARTIFICIAL NEURAL NETWORK(2020).[Jiang Huixian]

This paper aims to identify and classify the plant using the leaves of the plant. The approach is to extract plant leaf features and identify plant species based on image analysis. The plant leaf images are segmented and the feature extraction algorithm is used to extract leaf shape and texture features from leaf

sample images. An artificial neural network classification method based on backpropagation error algorithm (BP algorithm) is proposed to recognize plant leaves. This paper studies the existing plant image location and recognition technology, and introduces deep learning theory. After that, the high dimensional expression of image features by artificial neural network in deep learning theory is analyzed. The existing ANN model is improved and some new techniques and methods are introduced to construct a new ANN model. The model unifies the processes of image segmentation, target featureextraction and target classification

2.2.5 PLANT SPECIES RECOGNITION USING MORPHOLOGICAL FEATURES AND ADAPTIVE BOOSTING METHODOLOGY (2019).

[Munish Kumar, Surbhi Gupta, Xiao-Zhi Gao and Amitoj Singh]

The paper uses a novel plant species classifier that recognizes the plant species in the image. Out of many features, leaf shape is a conspicuous element that most algorithms rely on to perceive and describe a plant. The system extracts the morphological features of the plant leaf and classifies using Multilayer Perceptron and other classification algorithm along with AdaBoost methodology. Different classifiers, i.e., KNN, Decision Tree and Multilayer perceptron are employed to test the accuracy of the algorithm. The authors have observed that the maximum precision rate of 95.42% has been achieved for 32 kinds of plant leaves and the proposed system has performed better than the existingtechniques for plant leaf recognition.

2.2.6 BIRD IMAGE RETRIEVAL AND RECOGNITION USING A DEEP LEARNING PLATFORM (2019). [Yo-Ping Huang, HaobijamBasanta]

The authors have developed a deep learning platform that helps users recognize various species of birds endemicto Taiwan. A mobile application named the Internetof Birds (IoB) is developed that recognizes 27 species of birds. The deep learning model for bird image classification using the CNN framework is described. Bird images were learned by a convolutional neural network (CNN) to localize prominent features in the images. The model established and generated a bounded region of interest to refine the shapes and colors of the object granularities and subsequently balanced the distribution of birds. Then, a skip connection method was used to linearly combine the outputs of the previous and current layers to improve feature extraction. Then it applied the softmax function to obtain a probability distribution of bird features. The platform uses cloud based deep learning for image processing to identify bird species from digital images. The proposed system could detect and differentiate uploaded images with an overall accuracy of 98.70%.

2.2.7 AN EFFICIENT FRAMEWORK FOR ANIMAL BREEDS CLASSIFICATION USING SEMI-SUPERVISED LEARNINGAND MULTI- PART CONVOLUTIONAL NEURAL NETWORK (MP-CNN) (2019).[S. Divya Meena, L. Agilandeeswari]

The paper focus on classifying 27 classes of animals with 35,992 trainingimages. The proposed model classifies the animals on both generic and

fine- grained level. It has built a semi- supervised learning based Multi-part Convolutional Neural Network (MP-CNN) with a hybrid feature extraction framework of Fisher Vector based Stacked Autoencoder. With Semi-supervised learning based pseudo-labels, the modelclassifies new classes of unlabeled images too. Hellinger Kernel classifier method has been modified and used to re-train the misclassified classes of animals which further enhance the accuracy. Semi-supervised learning based pseudo-labels, the model classifies new classes of unlabeled images too. The testing accuracy increases as the models get trained. The experimental results shows that the overall accuracy is 99.6%.

2.3 PROBLEM STATEMENT DEFINITION

Problem Statement (PS)	I am (Customer)	I'm trying to	But	Because	Which make me feel
PS-1	Researchers	Scan the species to identify the behaviour	Unable to get the clear image	It contains low pixel value	Upset
PS-2	Student	Explore the species	Unable topredict	It is poisono us or danger	Panic

DIGITAL NATURALIST - AI ENABLED TOOL FOR BIODIVERSITY RESEARCHERS

PS-3	Tourist	Capture theimage	It shows data not found	More details to be updated	Anxious
PS-4	Public	Scan either flora or fauna in same time	It can't support	Both were separate and consume large amount oftime to scan	Frustrated

CHAPTER -3 IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

Fig 3.1 Empathy Map canvas

3.2 BRAINSTORMING AND IDEA PRIORITIZATION

Fig 3.2 (A) Brainstorming and Idea Prioritization

Fig 3.2 (B) Brainstorming and Idea Prioritization

Prioritize

Fig 3.2 (C) Brainstorming and Idea Prioritization

3.3 PROPOSED SOLUTION

S No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	To identify a species in a forestor in any other place, we need to carry a heavy book or seek a professional.
2.	Idea/ Solution description	A Web Application that is trained with CNN using deep learning model on different species can replace such big books.
3.	Novelty / Uniqueness	The model can identify different species of plants, birds and animals.
4.	Social Impact / Customer Satisfaction	Customer can identify the type of species faster and easier without searching in books page by page.
5.	Business Model(Revenue Model)	The model can differentiate the species at a faster rate with better accuracy.
6.	Scalability of the Solution	The web application apart from researchers can also be used by students and common people.

3.4 PROBLEM SOLUTION FIT

CHAPTER-4

REQUIREMENTS ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

Following are the functional requirements of the proposed solution.

FR	Functional Requirement	Sub Requirement (Story/ Sub-Task)
No.	(Epic)	
FR-1	User Registration	Registration through Gmail
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP
FR-3	Login	Enter the valid username and password
FR-4	capturing	Capturing the species image
FR-5	Uploading	Captured image can be upload in the application
FR-6	Processing and displaying	It process and shows the result about the species details

4.2 NON-FUNCTIONAL REQUIREMENTS

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	It helps user to get information about
		the species and also user can access
		our site without any prior knowledge.
NFR-2	Security	It generate the OTP whether theuser
		given phone number or email are valid
NFR-3	Reliability	Different and rare species information
		are availability in our sites.
NFR-4	Performance	Speed Response
		Bandwidth
		constraints
NFR-5	Availability	Focuses on the user's expectation and
		experience.
NFR-6	Scalability	Handle current and futureloads
		It works more efficiently.

CHAPTER-5

PROJECT DESIGN

5.1 DATA FLOW DIAGRAM

Fig 5.5 Data Flow Diagram

5.2 SOLUTION ARCHITECTURE

Fig 5.2 Solution Architecture

TECHNICAL ARCHITECTURE

Fig 5.2 Technology Architecture

5.4 USER STORIES

User type	Functional Requirement (Epic)	User Story Number	UserStory/ Task	Acceptance criteria	Priori ty	Release
	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account/ dashboard	High	Sprint-1
User	Confirmation	USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email&click confirm	High	Sprint-1
	Login	USN-3	As a user, I can log into the application by entering Gmail and password.	I can access the dashboard with Gmail account.	Low	Sprint-2
	Capturing	USN-4	As a user,I can capture the imageof the species.	I can storethe photo in the devices.	High	Sprint-1

DIGITAL NATURALIST - AI ENABLED TOOL FOR BIODIVERSITY RESEARCHERS

Upload	USN-5	As a	The image	High	Sprint-1
		user,	fed into the		
		I can	web		
		upload of the	application		
		imageof the			
		species.			

DIGITAL NATURALIST - AI ENABLED TOOL FOR BIODIVERSITY RESEARCHERS

Admin	Processing	USN-6	As a Admin, I	I can view	High	Sprint-2
	and		can display	the details		
	Display		thedetails of	ofthe		
			the species.	species.		

CHAPTER-6

PROJECT PLANNING & SCHEDULING

6.1 SPRINT PLANNING & ESTIMATION

Sprint	Functional	User	UserStory /	Story	Priority	Team
	Requireme	Story	Task	Points		Members
	nt	Numb				
	(Epic)	er				
Sprint-1	Registration	USN-1	As a User, I	2	High	Abinaya M
			can register			
			for the			
			application by			
			entering my			
			email,passwo			
			rd and			
			confirming by			
			password.			
Sprint-1		USN-2	As a user,I	2	Low	Mouniga C
			will receive			
			confirmation			
			email onceI			
			have			
			registered for			
			the			
			application.			
Sprint-1	Login	USN-3	As a user,I		Medium	Kowsalya
			can log into			S
			the			
			application by			
			entering			

27

			email& password.			
Sprint-1		USN-4	As a user,I can uploadthe image to identify thespecies.	3	High	Mary Benita I
Sprint-1	Dataset collection	USN-5	Datasets are collected to train the model.	2	High	Abinaya M
Sprint-2	Data Pre- processing	USN-6	The data is loaded andPreprocessed to trainthe model.	4	High	Mouniga C
Sprint-2	Build and Train the model	USN-7	The modelis trained using Training dataset.	8	High	Kowsalya S
Sprint-2	Evaluate the model	USN-8	The model is evaluated.	6	High	Mary Benita I
Sprint-3	Create Applicati on	USN-9	Application is builtusing Python Flask.	8	Medium	Abinaya M
Sprint-3	Load the model	USN-10	The model is loaded into Python Flask.	6	High	Mouniga C

DIGITAL NATURALIST - AI ENABLED TOOL FOR BIODIVERSITY RESEARCHERS

Sprint-4	Species	USN-11	As a user, I	6	Medium	Kowsalya
	identification		can view			S
			the			
			species details.			
Sprint-4	Logout	USN-12	As a user,I	2	Low	Mary
			can logout of			Benita
			the			I
			application.			

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	10	6 Days	24 Oct 2022	29 Oct 2022	10	30 Oct 2022
Sprint-2	18	6 Days	31 Oct 2022	05 Nov 2022	18	06 NOV 2022
Sprint-3	14	6 Days	07 Nov 2022	12 Nov 2022	14	13 NOV 2022
Sprint-4	8	6 Days	14 Nov 2022	19 Nov 2022	8	19 NOV 2022

6.3 REPORT FROM JIRA

SPRINT 1:

SPRINT 2

SPRINT 3

SPRINT 4

CHAPTER - 7

CODING & SOLUTIONING

7.1 FEATURE 1

The web application accepts an image as input and passes it to the CNN model . This model is built locally and deployed into python flask.

```
pred = np.argmax(loaded model.predict(x), axis=-1)
```

7.2 FEATURE 2

The image passed by the app is classified by the CNN model. The name of the species is passed from the model to the application.

DIGITAL NATURALIST - AI ENABLED TOOL FOR BIODIVERSITY RESEARCHERS [TYPE HERE]

CHAPTER-8 TESTING

8.1 TEST CASES

Test	Compo	Test Scenario	Steps To Execute	Test Data	Expected	Actual	Status
case ID	nent				Result	Result	
LoginP	Home	Verify user is	1.Enter URL		Login/Sign	Working as	Pass
a	page	able to see the	2.Click on Explore		in page	expected	
ge_TC_		Login/Sign in	now/login button		should		
01		page when user	3. Verify login/Sign in		display		
		clicked on	page displayed or not				
		login					
		button					

LoginP	Login	Verify the login	1.Enter URL		Application	Working as	Pass
a ge_TC_ 02	page	elements Login/Sign in appear	2. Click on Login button 3. Verify login/Sign in elements: a. email text box b. password text box c. Login button d. Sign up link for new user		should show below UI elements: a. email text box b. passw ord text box c. Login button d. Sign up link for new user account.	expected	
LoginP a ge_TC_ 03	Login Page	Verify user is able to log into application with Valid credentials	account. 1.Enter URL 2. Click on Login button 3. Enter Valid username/email in Email text box 4.Enter valid password in password text box	Username: abinaya@gm ail.com password: abi@123	User should navigate to upload page	Working as expected	Pass

DIGITAL NATURALIST - AI ENABLED TOOL FOR BIODIVERSITY RESEARCHERS

DIGITAL NATURALIST - AI ENABLED TOOL FOR BIODIVERSITY RESEARCHERS

LoginP	Login	Verify user is	5.Click on login button 1.Enter URL	Username:	Application	Working as	Pass
a ge_TC_ 04	Page	able to log into application with Invalid credentials	2. Click on Login button 3. Enter valid username/email in Email text box 4.Enter Invalid password in password text box 5.Click on login button	abinaya@gm ail.com password: abi@321	should show 'Invalid details' validation message	expected	газз
LoginP	Upload	Verify user is	1.Click choose file	Flower.png	The	Working as	Pass
a	Page	able to upload	2.Select image from		image	expected	
ge_TC_		image file	local directory		should be		
05					uploaded		

DIGITAL NATURALIST - AI ENABLED TOOL FOR BIODIVERSITY RESEARCHERS

LoginP	Upload	Verify user is	1.Click predict button	Flower.png	Flower name	Working as	Pass
a	Page	able to view the			should be	expected	
ge_TC_		species name			shown		
06							
T . D	TT 1 1	T	1 01: 1 1 1 1		TT 1 11	XX7 1 '	
LoginP	Upload	Verify user is	1.Click logout button		User should	Working as	pass
LoginP a	Upload page	Verify user is able to logout	1.Click logout button		navigate to	expected	pass
	*		1.Click logout button				pass

8.2 USER ACCEPTANCE TESTING

8.2.1. PURPOSE OF DOCUMENT

The purpose of this document is to briefly explain the test coverage and open issues of the Digital naturalist AI tool based on biodiversity resarchers project at the time of the release to User Acceptance Testing (UAT).

8.2.2. DEFECT ANALYSIS

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Sub total
By Design	9	5	3	2	19
Duplicate	0	1	2	1	4
External	3	4	1	2	10
Fixed	10	3	5	21	39
Not Reproduce d	0	0	0	1	1
Skipped	1	1	0	0	2
Won't Fix	0	3	3	2	8
Totals	23	17	14	29	83

8.2.3. TEST CASE ANALYSIS

Section	Total Cases	Not Teste d	Fa il	Pass
Print Engine	7	0	0	7
Client Application	50	0	1	50
Security	3	0	0	3
Outsource Shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

CHAPTER - 9 RESULT

9.1 PERFORMANCE METRICS

Model Performance Testing:

S.No.	Parameter	Values	Screenshot
1.	Model Summary	Total params:22,704,9 66 Trainable params:22,704,9 66 Non-Trainable:0	© 10 Compare (speed bettern 1
2.	Accuracy	Training Accuracy - 92.55 Validation Accuracy - 78.69	mmary() //30 - 38s - loss: 0.3923 - accuracy: 0.8628 - val_loss: 0.6718 - val_accur //30 - 34s - loss: 0.3251 - accuracy: 0.8920 - val_loss: 0.5334 - val_accur //30 - 31s - loss: 0.2748 - accuracy: 0.9095 - val_loss: 0.6757 - val_accur //30 - 38s - loss: 0.3206 - accuracy: 0.8993 - val_loss: 0.5967 - val_accur //30 - 32s - loss: 0.2370 - accuracy: 0.9328 - val_loss: 0.9432 - val_accur //30 - 29s - loss: 0.2524 - accuracy: 0.9182 - val_loss: 0.5927 - val_accur //30 - 29s - loss: 0.2306 - accuracy: 0.9080 - val_loss: 0.5708 - val_accur //30 - 28s - loss: 0.1621 - accuracy: 0.9489 - val_loss: 0.8260 - val_accur //30 - 34s - loss: 0.2478 - accuracy: 0.9255 - val_loss: 0.5331 - val_accur sequential"

CHAPTER - 10 ADVANTAGES & DISADVANTAGES

ADVANTAGES

Main advantage in our application is to provides three different species in one web application using the deep learning concepts. It does not require any special hardware because it can be implemented with low-cost devices such as cameras. An understanding of what species are and how to identify them is critical, both for biologists and for the general public. Biological diversity is

..,.____.........

being lost as species go extinct, and it is only by understanding species.

DISADVANTAGES

The main disadvantage of our model is that the accuracy rate is low when the input image is not clear. Another disadvantage of this system is that it consumes time to and the system may not be able to recognize some numbers, such as possible.

CHAPTER - 11

CONCLUSION

Field naturalists can only use this web app from anywhare to identify the birds, flowers, mammals and other species they see on their hikes, canoe trips and other excursions. In this project, we are creating a web application which uses a deep learning model, trained on different species of birds, flowers and

mammals. There is great diversity among naturalists, but some common ground too. All naturalism begin with an admiring attitude towards science and its achievements. In many cases this admiring attitude is combined with a contempt or distrust for the way that philosophy has been or is conducted. This combination of views has a long history. Many of the advocates of first philosophy, Descartes, kant and Carnap, shared the same admiration of science or nascent science and distrust of philosophy. Descartes, for example. uses scepticism as a device to sweep away the old Aristotelian foundations of knowledge, so that he can build an entirely new philisophy that makes room for the new mathematical science.

CHAPTER - 12 FUTURE SCOPE

Essentially, the proposed guidelines treat statistical comparison of ML based quality estimators as a multi-dimentional problem. Accordingly, we seek to assess the predictors more holistically in terms of thier local performance on specific test conditions, their learning ability and the magnitude of treatment affect (to quantify the practical significance of the observed differences). In

constract, the current approach tends to reduce this task to binary and global statistical decision making and does not reveal systematic weakness of the predicators. In order to provide a tool for pratical use, software implementing the proposed guidelines is made publicly available.

CHAPTER - 13 APPENDIX

13.1 SOURCE CODE

import

os

import numpy as np

from keras.models import load model

```
from keras.preprocessing import image
import tensorflow as tf
from flask import Flask, render template,
request from werkzeug.utils import
secure filename from keras.models import
model_from_json from PIL import Image
app = Flask(\underline{\quad name}\underline{\quad})
json file = open('final model.json', 'r')
loaded model json = json file.read()
json file.close()
loaded model = model from json(loaded model json)
loaded model.load weights("final model.h5")
# loaded model=load model('uploads/final model.h5')
@app.route('/')
def index():
  return render template("home.html")
@app.route('/login')
def index1():
  return render template("login.html")
@app.route('/register')
def index2():
```

return render template("register.html")

```
@app.route('/upload')
              def index3():
                return render template("upload.html")
              @app.route('/predict', methods=['GET',
              'POST']) def Upload():
                if request.method == 'POST':
                  f = request.files['image']
                  basepath = os.path.dirname(__file__)
                   file_path = os.path.join(basepath, ", secure filename(f.filename))
                  f.save(file path)
                   img = image.load img(file path, target size=(224, 224))
                   x = image.img to array(img)
                   x = np.expand dims(x, axis=0)
                  pred = np.argmax(loaded_model.predict(x), axis=-1)
              op = ['Great Indian Bustard Bird', 'Spoon Billed Sandpiper Bird', 'Corpse
              Flower', 'Lady Slipper Orchid Flower',
                      'Pangolin Mammal', 'Senenca White Deer Mammal']
                   text = op[pred[0]]
                   return render template('upload.html',value=text)
              if__name__== '__main__':
                app.run(host='0.0.0.0',port=8000,debug=True
                )
43
```

13.2 GITHUB & PROJECT DEMO LINK

Github link: IBM-Project-8974-1658939906

Project Demo: https://youtu.be/uJuMK997SFo

CHAPTER - 14

REFERENCES

1. UNGULATE DETECTION AND SPECIES CLASSIFICATION FROM CAMERA TRAP IMAGES USING RETINA NET AND FASTER R-CNN (2022)

[Gholamreza Anbarjafari, Ilja Pavlovs, Kadir Aktas, Egils Avots, Jevgenijs Filipovs, AgrisBrauns, Gundega Done, Dainis Jakovels, Gholamreza Anbarjafari]

- 2. CONVOLUTIONAL NETWORKBASED ANIMAL RECOGNITION USING YOLO AND DARKNET (2021) [B.Karthikeya Reddy,Shahana Bano, G.Greeshmanth Reddy, Rakesh Kommineni, P.Yaswanth Reddy]
- 3.RECOGNITION OF ENDEMIC BIRD SPECIES USING DEEP LEARNING MODELS (2021).[Yo-Ping Huang, Haobijam Basanta]
- 4. THE ANALYSIS OF PLANTS IMAGE RECOGNITION BASED ON DEEP LEARNING AND ARTIFICIAL NEURAL NETWORK
 (2020).[Jiang Huixian]
- 5. PLANT SPECIES RECOGNITION USING MORPHOLOGICAL FEATURES AND ADAPTIVE BOOSTING METHODOLOGY (2019).
 [Munish Kumar, Surbhi Gupta,Xiao-Zhi Gao and Amitoj Singh]
 Bird Image Retrieval and Recognition Using a Deep Learning Platform (2019).[Yo-Ping Huang, HaobijamBasanta]
- 6. AN EFFICIENTFRAMEWORK FOR ANIMAL BREEDS CLASSIFICATION USING SEMI-SUPERVISED LEARNINGAND MULTI- PART CONVOLUTIONAL NEURAL NETWORK (mp-cnn) (2019).[S. Divya Meena, L. Agilandeeswari]