DIAGNOSTIC FOR FINAL

COLTON GRAINGER (MATH 6210)

2018-10-10 Midterm.

Question 1A. Recall that the **upper-limit topology** is the topology $\mathscr U$ on $\mathbf R$ with basis

$$\{(a,b]: a,b \in \mathbf{R}, a \leqslant b\}.$$

- i. Determine whether the sets (a,b) and [a,b) are open and/or closed in (\mathbf{R},\mathscr{U}) . Explain.
- ii. Is $(\mathbf{R}, \mathcal{U})$ connected? Explain.

Question 1B. Let X be a nonempty set. Is X with the finite complement topology connected? Is the answer the same for all sets $X \neq \emptyset$, or do you need to distinguish cases that depend on certain properties of X? Give proof. Question 2A. Let $\mathcal{N} = \{1/n : n \in \mathbb{N}\} \subset \mathbb{R}$ denote the set of all reciprocals of natural numbers. Let

$$\mathscr{B} = \{(a,b) : a,b \in \mathbf{R}\} \cup \{(a,b) \setminus \mathscr{N} : a,b \in \mathbf{R}\} \cup \{\mathbf{R},\varnothing\}.$$

Now ${\mathscr B}$ generates a topology on ${\mathbf R}$, denote that topology ${\mathscr T}_{\mathscr B}$.

- i. What is the closure of $\mathscr N$ in $\mathscr T_{\mathscr B}$?
- ii. Is every closed set of the topological space $(\mathbf{R}, \mathscr{T}_\mathscr{B})$ closed in the standard topology on \mathbf{R} ? Question 2B. Is every closed set of the standard topology on \mathbf{R} also closed in the finite complement topology on

Question 3. For $n, m \in \mathbf{Z}_{\geqslant 0}$, prove that (Y_n, \mathscr{T}_n) is homeomorphic to (Y_m, \mathscr{T}_m) iff n = m. Let (Y_n, \mathscr{T}_n) is defined as follows.

 \bullet Start with the subspace $X_n \subset {I\!\!R}^3$ parametrized by

$$X_n := \{(x, y, z) : (x - (1 + 4j))^2 + y^2 + z^2 = 1 \text{ for some } j = 1, ..., n\}.$$

• Define the equivalence relation \sim_n on X_n where each point is equivalent to itself and

$$(0,0,0) \sim_n (4,0,0) \sim_n (8,0,0) \sim_n \ldots \sim_n (4n,0,0).$$

• Let (Y_n, \mathscr{T}_n) be the space of equivalence classes $Y_n := X_n / \sim_n$ endowed with the quotient topology. Question 4A. Prove or provide a counter-example: The path connected components of a topological space are always closed sets.

Question 4B. Prove or provide a counter-example: The path connected components of a topological space are always open if the space is locally path connected?

2018-11-07 Midterm.

Question 1A. Compute the homotopy classes of maps $S^0 \to S^0.$

Question 1B. Prove that if the space (X, \mathscr{T}) is path connected, then $\pi_1(X, x_0) \cong \pi_1(X, x_1)$ for arbitrary $x_0, x_1 \in X$.

Question 1C. Prove that the fundamental group of the real line based with the standard topology, based at the origin, is trivial.

Question 2A. Let (X, \mathcal{T}) and (Y, \mathcal{W}) be two spaces and let $f: X \to Y$ be a surjective map. Prove that if X is Lindelöff, or has a countable dense subset, then Y satisfies the same condition.

Question 2B. Prove that if a topological space (X, \mathcal{T}) is compact, then it is also limit point compact.

Date: 2018-10-19. Compiled: 2018-12-14.

1

Question 2C. For the real line \mathbf{R} with the standard topology, a subspace $C \subset \mathbf{R}$ is compact if and only if it's closed and bounded. Is the same true for the real line \mathbf{R}_{ℓ} with the lower limit topology?

Question 3A. Show that every metrizable topological space (X, \mathcal{T}) with a countable dense subset S has a countable basis.

Question 3B. Give an example of a topological space with a compact subset that is not closed.

Quotienting.

- i. Prove that D^n/S^{n-1} is homeomorphic to S^n .[1, No. 22.D]
- ii. Prove that $S^1 \times S^1/[(z,w) \sim (-z,\bar{w})]$ is homeomorphic to the Klein bottle $I^2/[(t,0\sim (t,1),(0,t)\sim (1,1-t)]$. [1, No. 22.14]

Gluing. Recall: if X and Y are topological spaces, $A \subset Y$, and $f: A \to X$ is a continuous map, then the *gluing* (or *attaching*) of Y to X via f is the quotient space

$$X \cup_f Y = X \sqcup Y/[\alpha \sim f(\alpha) : \alpha \in A].$$

i. Prove that, by attaching the n-disk D^n to its copy via the identity map of the boundary sphere S^{n-1} , we obtain a space homeomorphic to S^n . [1, No. 22.M]

Real projective space. Recall \mathbf{RP}^n is the quotient space of S^n by the partition into pairs of antipodal points.

- i. Show that \mathbf{RP}^n is canonically homeomorphic to the metric space whose points are lines of \mathbf{R}^{n+1} through the origin, where the angle measure between two lines serves as a metric. Check that angle measure *does* give a metric. (Hint: use homogeneous coordinates $(x_0 : x_1 : \cdots : x_n)$ in \mathbf{RP}^n .) [1, No. 23]
- ii. Prove that the natural projection $S^n \to \mathbf{RP}^n$ is a covering.

Deformation retractions. Recall: If X is a space and $A \subset X$, then $\rho \colon X \to A$ is a *retraction* if ρ is continuous and $\rho \mid_A = \operatorname{id}_A$. A retraction $\rho \colon X \to A$ is a *deformation retraction* if its composition $\iota \circ \rho$ with $\iota \colon A \hookrightarrow X$ is homotopic to the identity map id_X on X. Lastly, a continuous map $f \colon X \to Y$ is said to be a *homotopy equivalence* between X and Y if there's a continuous map $g \colon Y \to X$ such that $g \circ f \cong \operatorname{id}_X$ and $f \circ g \cong \operatorname{id}_Y$. Two spaces X and Y are said to be *homotopy equivalent* if there exists a homotopy equivalence between them.

- i. Prove that if A is a deformation retraction of X, then A and X are homotopy equivalent. [1, No. 39.D]
- ii. Prove that any two deformation retractions of one and the same space are homotopy equivalent. [1, No. 39]
- iii. Prove that S^n is a deformation retraction of $\mathbb{R}^{n+1} \setminus \{0\}$. [1, No. 39]

Bouquet of circles. Recall: Given a family of topological space $\{X_{\alpha}\}$, we may mark a point x_{α} in each, take the disjoint sum and identify all marked points. The resulting topological space $\bigvee_{\alpha} X_{\alpha}$ is the *bouquet* of $\{X_{\alpha}\}$. Let B_q denote the *bouquet* of q *circles*. Let u_1, \ldots, u_q be loops in B_q starting at c and parametrizing the q copies of S^1 . Denote by α_i the homotopy class of u_i .

i. Prove that a plane with q punctures is homotopy equivalent to the bouquet of q circles. [1, No. 39.4].

Covering maps.

- i. Prove that $\mathbf{R} \to S^1$: $\chi \mapsto \exp(2\pi i \chi)$ is a covering. [1, No. 34.C]
- ii. Prove that ${f C} o {f C}$: $z \mapsto {\sf exp}(z)$ is a covering. [1, No. 34]
- iii. In what sense are the above coverings the same? Define an appropriate equivalence relation. [1, No. 34.2]

REFERENCES

[1] Y. Viro, O. Ivanov, Y. Netsvetaev, and V. Kharlamov, *Elementary topology*. American Mathematical Soc., 2008 [Online]. Available: http://www.pdmi.ras.ru/~olegviro/topoman/