JENEsys® EdgeTM 534 – N4 WIRING INSTALLATION GUIDE

Estimated wiring time = 15-30 minutes

Wiring Details

JENEsys® EdgeTM 534 – N4 Wiring Installation Guide

Power Wiring

The JENEsys Edge 534 – N4 can be powered by wiring to a dedicated Class 2, 24 Vac transformer, or to a 24 Vdc power source. As shown in Figure 1, the JENEsys Edge 534 – N4's 3-position power connector (black) is located at the top corner of the unit. Unplug the connector from the device and make connections to it as shown.

Note: Do not apply 24 Vac power (reinsert connector plug into the JENEsys Edge 534 – N4) until all other wiring is completed, including JENEsys Edge 534 – N4 inputs and outputs. Do not power other equipment with it.

Inputs

Each of the 16 universal inputs can support any one of the following:

- ✓ Type-3 10 k ohm Thermistor
- ✓ Resistive 0-100 k ohms
- ✓ 0-10 Vdc
- √ 4-20 mA
- ✓ Binary Input

Thermistor

The inputs support 10 k Thermistor temperature sensors using a ThermistorInputPoint. Input accuracy is in the range of $\pm 1\%$ of span. By default, conversion is for a standard Type-3 thermistor sensor, with a sensor range of $\pm 1\%$ to $\pm 1\%$ ($\pm 23.3^{\circ}$ to $\pm 57.2^{\circ}$ C). Using a conversion type of Tabular Thermistor, you can specify a different thermistor response curve, by importing a thermistor curve $\pm 1\%$ importing a thermistor curve $\pm 1\%$ in the range of $\pm 1\%$ in the

Resistive 0-100 k ohms

The inputs can read a resistive signal within a range from 0 to 100 k ohms. Wiring is the same as shown for a Thermistor temperature sensor (Figure 2). Resistive signals require a ResistiveInputPoint.

Note: The universal input option is optimized to provide the best resolution around the 10 k ohm range. For a sensor with a range far from 10 k ohms (such as a 100 ohm or 1,000 ohm type), resolution will be poor. To use such a sensor, it is recommended you install a transmitter that produces a Vdc or mA signal, and then wire the transmitter to the UI according to the 0–10 Vdc or 4–20 mA instructions.

JENEsys® EdgeTM 534 – N4 WIRING INSTALLATION GUIDE

0-10 Vdc

The inputs support self-powered 0–10 Vdc sensors. Input impedance is greater than 5 k ohms. 0–10 volt accuracy is \pm 2% of span, without user calibration. Figure 3 shows the wiring diagram. 0–10 Vdc sensors require a **VoltageInputPoint**.

4-20 mA

The inputs support self-powered 4–20 mA sensors. Input accuracy is \pm 2% of span, without user calibration. **Figure 4** shows the wiring diagram, which requires a 499 ohm resistor wired across the input terminals. 4–20 mA sensors also require the **CurrentInputPoint**.

Binary Input

Pulse

Pulse contacts may have a change-of-state (COS) frequency of up to 500 Hz with a 50% duty cycle.

Note: Minimum dwell time must be > 2 ms. For a pulse contact, use the CounterInputPoint in the station database.

Outputs

There are ten (10) N.O. digital relay outputs and eight (8) 0–10 volt analog outputs.

Relay Outputs

Each relay output is rated at 24 Vac or Vdc at 0.5 A.

Use a BooleanOutputWritable in the station for each output. Figure 5 (page 4) shows an example wiring diagram.

Note: The 15-position DO connector has common terminals marked "C" that are isolated from each other. This is useful if controlled loads are powered from different circuits.

LED Indicators

LED indicators are provided to display status and activity. Become familiar with these indicators for a quick visual device reference.

The **Power LED** should be lit when 24 V power is applied to the device.

For the **Heartbeat LED**, there are three modes of operation:

- ✓ A fast beat with a 50% duty cycle when the device is booting.
- ✓ A **slow beat** with a 50% duty cycle when the platform is started
- ✓ A double beat when the station has started

The Lightning Bolt LED shows the Onyxx network is actively communicating to and from the device.

An LED status indicator for each relay (D1–D10) is located on the cover (Figure 6). Under normal operation, each digital status LED indicates activity as follows:

- ✓ Off-relay high-impedance/no current flow
- ✓ On-relay low-impedance/load current flow; relay is closed and the load is powered

Figure 6

Analog Outputs

Analog outputs (AO) are referenced by the terminals labeled "A(n)" and "C" (ground). Each AO can supply a maximum of 20 mA over the entire 0 to 10 Vdc range. The minimum input impedance of a device controlled by an AO must be greater than 2,500 ohms. Typical wiring for an AO is shown in Figure 7.

For each AO, use a VoltageOutputWritable in the station database.

Onyxx® IO (Software) Representation

In the Niagara 4 station interface, the JENEsys Edge 534 – N4 appears as one Onyxx IO Device, where the "DevicePath" property is appended with a six-digit number. See Figure 8. Upon discovery, if the JENEsys Edge 534 – N4 has 1-7 Onyxx XM 34IOs daisy-chained, the devices will show up as onyxx_######. The device number will match the number listed on the device itself, unless different devices were programmed in the station previously. Refer to the physical devices to verify the device ID number and match it to the discovered device. They may not appear in the wired order so verification must be completed for proper device and point allocation to the physical Onyxx device. See Figure 8. Each type of input or output used requires a special Lynxspring Input/Output (Onyxx IO) point to be added in the station database. These components act as the station interface to the physical I/O points. The Onyxx IO points you need for each input or output type are noted in previous wiring sections in boldface.

