CRAC

D. Zack Garza

Zeta Functions

CRAG

The Weil Conjectures

D. Zack Garza

April 2020

CRAC

D. Zack Garza

Zeta Functions

Zeta Functions

Definition of Zeta Function

CRAG

D. Zack Garza

Zeta Functions

Fix q a prime and $\mathbb{F} := \mathbb{F}_q$ the (unique) finite field with q elements, along with its (unique) degree n extensions

$$\mathbb{F}_{q^n} = \left\{ x \in \overline{\mathbb{F}}_q \mid x^{q^n} - x = 0 \right\} \quad \forall \ n \in \mathbb{Z}^{\geq 2}$$

Definition (Zeta Function)

Let $J=\langle f_1,\cdots,f_M\rangle \le k[x_0,\cdots,x_n]$ be an ideal, then a *projective algebraic* variety $X\subset \mathbb{P}^N_{\mathbb{F}}$ can be described as

$$X = V(J) = \left\{ x \in \mathbb{P}_{\mathbb{F}}^{\infty} \mid f_1(x) = \dots = f_M(x) = 0 \right\}$$

where J is generated by homogeneous polynomials in n+1 variables, i.e. there is some fixed $d\in\mathbb{Z}^{\geq 1}$ such that

$$f(\mathsf{x}) = \sum_{\substack{\mathsf{l} = (i_1, \cdots, i_n) \\ \sum_i i_i = d}} \alpha_\mathsf{l} \cdot \mathsf{x}_0^{i_1} \cdots \mathsf{x}_n^{i_n} \quad \text{ and } \quad f(\lambda \cdot \mathsf{x}) = \lambda^d f(\mathsf{x}).$$