MA 572: Homework 5

Carlos Salinas

March 3, 2016

PROBLEM 5.1 (HATCHER §2.2, Ex. 3)

- Let $f: S^n \to S^n$ be a map of degree zero. Show that there exists points $x, y \in S^n$ with f(x) = x
- and f(y) = -y. Use this to show that if F is a continuous vector field defined on the unit ball D^n in
- **R**ⁿ such that $F(x) \neq 0$ for all x, then there exists a point on ∂D where F points radially outward
- 4 and another point on ∂D^n where F points radially inward.
- 5 Proof. Since deg $f = 0 \neq (-1)^n = \deg a$, then $f \not\simeq a$ and so must have a fixed point $x \in S^n$. Now,
- consider the map $g := a \circ f$. Since $\deg g = \deg a \circ f = (\deg a)(\deg f) = 0$, g must have a fixed point
- $y \in S^n$. Since $g(y) = a \circ f(y) = y$, then f(y) = -y.
- Suppose F is a continuous nonzero vector field on S^n , i.e., a map $S^n \to \mathbf{R}^n$ which assigns
- 9 to each point $x \in S^n$ a tangent vector $\mathbf{v}(x)$ at x. Then, the map $f : \partial D^n \to \mathbf{R}^n$ given by
- 10 $f(\mathbf{v}(x)) = \mathbf{v}(x)/\|\mathbf{v}(x)\|$ is well defined and nowhere zero.

PROBLEM 5.2 (HATCHER §2.2, Ex. 7)

For an invertible linear transformation $f: \mathbf{R}^n \to \mathbf{R}^n$ show that the induced map $H_n(\mathbf{R}^n, \mathbf{R}^n \setminus \{\mathbf{0}\}) \cong \widetilde{H}_{n-1}(\mathbf{R}^n \setminus \{\mathbf{0}\}) \cong \mathbf{Z}$ is id or – id according to whether the determinant of f is positive or negative. [Use Gaußian elimination to show that the matrix of f can be joined by a path of invertible matrices to a diagonal matrix with ± 1 's on the diagonal.]

Proof. We show that $O_n(\mathbf{R})$ is a deformation retraction of $GL_n(\mathbf{R})$ and prove the result there. This procedure is adapted from a hint in Элементарная топология by Виро, Нецветаев и Харламов, стр. 338, номер 39.11. Suppose $f: \mathbf{R}^n \to \mathbf{R}^n$ is an invertible linear transformation. Let $\{\mathbf{f}_1, ..., \mathbf{f}_n\}$ be the set of columns vectors of the matrix representation F of f. By Gram-Schmidt orthogonalization construct the vectors

$$\mathbf{e}_{1} \coloneqq \lambda_{11}\mathbf{f}_{1}$$

$$\mathbf{e}_{2} \coloneqq \lambda_{21}\mathbf{f}_{1} + \lambda_{22}\mathbf{f}_{2}$$

$$\vdots$$

$$\mathbf{e}_{n} \coloneqq \lambda_{n1}\mathbf{f}_{1} + \dots + \lambda_{nn}\mathbf{f}_{n}$$

$$(5.1)$$

where the $\lambda_{kk} > 0$ for k = 1, ..., n. Now set

22

24

25

26

27

$$\mathbf{g}_k(t) := t(\lambda_{n1}\mathbf{f}_1 + \lambda_{n2}\mathbf{f}_2 + \dots + \lambda_{kk-1}\mathbf{f}_{k-1}) + (t\lambda_{kk} + 1 - t)\mathbf{f}_k. \tag{5.2}$$

Let g(t, A) be the matrix whose columns are the vectors $\mathbf{g}_k(t)$ and define a homotopy $f_t : I \times \operatorname{GL}_n(\mathbf{R}) \to \operatorname{GL}_n(\mathbf{R})$ by mapping the pair $(t, A) \mapsto g(t, A)$. Continuity of H follows from the fact that H it is multiplication in \mathbf{R}^n followed by a linear mapping. It's not hard to see that f_t stays in $\operatorname{GL}_n(\mathbf{R})$ for all t and $f_1(A)$ is in $O_n(\mathbf{R})$.

Last but not least, we show that $O_n(\mathbf{R})$ consists of two connected components and that membership of f to one of these components is determined by $\det f$. First note that $\det(O_n(\mathbf{R})) = \{-1,1\}$ which is disconnected in \mathbf{R} . Hence, $O_n(\mathbf{R})$ is disconnected. If $f \in O_n(\mathbf{R})$, either $\det f = 1$ or -1. Suppose it is the former. Then we construct a homotopy from f to the identity map id. Consider the homotopy

$$k(t,A) := \left\{ At \tag{5.3} \right.$$

30

PROBLEM 5.3 (HATCHER §2.2, Ex. 13)

- Let X be the 2-complex obtained from S^1 with its usual cell structure by attaching two 2-cells by maps of degrees 2 and 3, respectively.
- (a) Compute the homology groups of all the subcomplexes $A \subset X$ and the corresponding quotient complexes X/A.
- 35 (b) Show that $X \simeq S^2$ and that the only subcomplex $A \subset X$ for which the quotient map $X \to X/A$ is a homotopy equivalence is the trivial subcomplex, the 0-cell.

 \blacksquare Proof.

CARLOS SALINAS PROBLEM 5.4

Problem 5.4

38 Proof.