高维数据推断第一次作业

邵李翔 祖劭康 赵张弛 李子昊

目录

1	利用	OLS 求解广义线性模型参数	3
	1.1	模型表示	3
	1.2	模型计算	3
2	рHd		4
	2.1	原理	4
	2.2	样本计算流程	4
	2.3	度量两空间间的距离	4
	2.4	线性回归	5
	2.5	泊松回归	6
	2.6	Logistic 回归	7
	2.7	生成 cos 函数关系	7
	2.8	总结	8

1 利用 OLS 求解广义线性模型参数

1.1 模型表示

利用改进的计算方法得到的改进模型为

$$Y|X \sim G(\beta^T X) = G(E(XY)^T Xc)$$

利用最小线性二乘作为目标函数,牛顿迭代法计算此模型参数,即用牛顿迭代法计算 $\min_c (Y - G(E(XY)^T X c))^2$ 。得到参数 c,从而得到参数 β 的估计。

1.2 模型计算

接下来通过广义线性模型具体计算估计参数的 MSE 来判断高维数据下的计算效率. 由于在泊松回归与 logistics 回归中需要计算回归平方和对参数 c 的一阶导与二阶导, 这会导致计算时间大大增加. 因此只罗列出其在 10 维,15 维,20 维数据中的降维效果.

将样本量设置为 1000,X 的每一维度均从 [-1,1] 上的均匀分布取样。设定参数 β 是每一维均为 1 的列向量. 在参数维度为 10 时, 三种模型其所估计的参数的各个分量如下表1所示

线性回归	泊松回归	logistics 回归
0.9975943	1.0448115	1.3493012
0.9994737	1.1038849	1.0676927
0.9972221	0.8499783	0.7865872
1.0039932	0.7242002	0.8772376
0.9909994	0.7985460	1.3469553
0.9998097	1.0124794	0.9293493
0.9988749	1.2205892	1.1112117
0.9948789	0.9288008	1.3919609
0.9938299	0.9899140	1.4916090
0.9933786	0.8456531	1.1946454

表 1: 三种回归模型在样本量 1000, 维度 10 时估计的参数

而三种模型在 10,15,20 维时的估计 MSE 如下表2所示 (由于泊松回归与 logistics 回归在样本量为 1000 时参数估计的效果不是很好, 所以在这两个模型所用的样本量均为 2000)

可以看出在维度增加的同时,对于线性回归模型的参数估计精度并未太大影响(估计的参数在每个维度上的与原本真实 β 的差距并未明显改变,每一维度的差距均不超过 0.01). 而在泊松回归与 logistics 回归模型中不仅会增加计算时间,而且对精度也会产生很大的影响。因为随着维度增加,

模型 泊松回归(样本量 2000) 线性回归(样本量 1000) logistics 回归 (样本量 2000) 10维 0.0176 0.3403 0.3325 15维 0.0209 1.2782 1.2826 20维 0.0250 1.5676 1.6912

表 2: 三种回归模型在三种维度下的估计参数 MSE(重复 100 次)

logistics 回归和泊松回归的 MSE 的变化幅度要大于线性回归的变化幅度。这里估计的参数在每个维度上的与原本真实 β 的差距会逐渐增加。

2 pHd

2.1 原理

在课上的假设 2 (线性条件) 和假设 3 (X的条件方差是常矩阵)条件成立下,有:

$$H_1 = \Sigma_{XXY}$$

$$span(H_1) \subseteq S_{Y|X}$$

$$H_2 = E[(Y - E(XY)^T X)XX^T]$$

$$span(H_2) \subseteq S_{Y|X}$$

2.2 样本计算流程

- 1. 将 $X_1, ..., X_n$ 标准化为 $Z_1, ..., Z_n$
- 2. 计算 $\hat{\Sigma}_{ZZY}E_n(ZZ^TY)$, $\hat{\Sigma}_{XX}Var_n(X)$
- 3. 计算 $\hat{\Sigma}_{ZZY}$ 的前 q 个特征向量 u_1,\ldots,u_n ,则对 $S_{Y|X}$ 中向量的估计为 $v_k=\hat{\Sigma}_{XX}^{-1/2}u_k, k=1,\ldots,q$

2.3 度量两空间间的距离

采用 L_2 – Hausdorff 子空间距离度量 m 维子空间 U 与 n 维子空间 V 之间的距离:

$$d(U,V) = max(\vec{d}(U,V), \vec{d}(V,U)) = \sqrt{max(m,n) - \sum_{i=1}^{m} \sum_{j=1}^{n} (u_i^T v_j)^2}$$

在 pHd 方法中,选取了 y 对 x 的线性回归模型、泊松回归模型、logistics 回归模型与 cos 函数 关系来观察 pHd 方法的降维效果。结果也可以看出,phd 方法在前三个模型中得到 β 的估计效果不 好,而在 cos 函数关系上得到的结果较好。

2.4 线性回归

设定样本量为 1000, 样本 X 维度为 5,X 每一维度上的值均从标准正态分布中取样。 β 作用 X 降 维后的维度为 2. 即 β 是 10*2 的矩阵。一次的计算结果 H_1, H_2 如下表所示。设定的真实的 β 如下

$$\beta = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \tag{1}$$

表 3: 线性回归结果

	H_1	H_2		
$\hat{eta_1}$	$\hat{eta_2}$	$\hat{eta_1}$	$\hat{eta_2}$	
-0.7193995	0.07794245	0.6920215	0.4112301	
-0.2187786	-0.24974545	-0.1080706	-0.7261988	
-0.5618548	0.28103448	0.6192357	-0.3741050	
-0.1909770	-0.92664516	-0.2790291	0.2171582	
-0.3313467	-0.03092594	-0.2530621	0.2974159	

表3可以看出,与真实的参数 β 相比,phd 用 H1 方法得到的结果,并不是很接近。而且在降维后的维度不变情况下,随着 X 本身维度增加,估计效果越不好。接下来判断维度的增大对降维效果的影响,设定 X 维度依次为 3 – 20,统一降维至二维,采用 H1 方法,估计 β ,重复实验 100 次,计算距离的均值。判断依据为两个空间的距离(L_2 – Hausdorff 子空间距离,越接近 0 表示两个空间越接近). 如下图所示

图 1: 线性回归下维度对降维效果的影响

三个回归模型数据生成均与之前相同。我们取了一次 β 估计的结果,如下:可见在 $\hat{\beta}_1$ 的估计

接近于原本的 β_2 。但之后的 $\hat{\beta_2}$ 结果不好。

$$\beta = \begin{pmatrix} 0.19658425 & -0.41901508 \\ 0.85103905 & -0.08816587 \\ -0.33307315 & -0.74230162 \\ 0.08836722 & 0.18096793 \\ -0.32003661 & 0.47946138 \end{pmatrix}$$
 (2)

2.5 泊松回归

图 2: 泊松回归下维度对降维效果的影响

2.6 Logistic 回归

图 3: logistics 回归下维度对降维效果的影响

2.7 生成 cos 函数关系

接 $y = \cos(2\beta_1^T x) + \cos(\beta_2^T x) + \varepsilon$, 生成样本 y。其中 β_1 是参数矩阵 β 的第一列向量,同理 β_2 ,而 ε 服从均值为 0,方差 0.1 的正态分布。我们取了一次 β 估计的结果,如下:可以看出相比之前线性 回归的结果更显著。

$$\beta = \begin{pmatrix} 0.42368175 & 0.88683780 \\ -0.85839717 & 0.41939820 \\ -0.18374181 & 0.12044820 \\ -0.02764839 & 0.07755837 \\ 0.08823271 & -0.02166378 \end{pmatrix}$$
 (3)

图 4: cos 函数生成的数据下维度对降维效果的影响

2.8 总结

样本量始终为 1000 的情况下,且降维后的维度不变条件下,增大 X 的维数,估计空间与实际空间的差距呈上升趋势。而且实际上 L_2 – Hausdorff 子空间距离最大值为子空间 U 和 V 的较大的维度的开根号,在实验中,由于将数据降到 2 维,即两个空间的距离上限为 $\sqrt{2}$,所以很明显这一方法在线性回归、Logistic 回归以及 Possion 回归上的表现都不好,因为计算的 β 张成的空间的距离与pHd 方法得到的估计张成的空间的距离是快达到上限 $\sqrt{2}$ 的,仅在 Y 是 X 的 cos 相关函数的情况下效果较为理想。到 20 维距离也才为 0.3,与 0 相近。