The Automated Modeling and Optimization of Part DNA Substructures Employing Evolutionary Computation

Daniel Tauritz, Bailey Eversmeyer

Missouri University of Science and Technology Department of Computer Science

tauritzd@mst.edu, rbe62d@mst.edu

May 9, 2019

Overview

- Part-DNA
- 2 Evolutionary Computation Strategies
 - Genetic Programming
 - Multi-Objective Evolutionary Algorithms
- 3 Application of EC Strategies
 - GP Modeling
 - MOEA Optimization
- 4 Future Work

Goals:

 Model and map the flow of goods and components through a system

Goals:

- Model and map the flow of goods and components through a system
- Track the changes to components over time

Goals:

- Model and map the flow of goods and components through a system
- Track the changes to components over time
- Help identify relationships between components

Goals:

- Model and map the flow of goods and components through a system
- Track the changes to components over time
- Help identify relationships between components
- Makes analyzing the system easier

How We Fit into the Part-DNA Model

Choose a substructure of the Part-DNA Model

How We Fit into the Part-DNA Model

- Choose a substructure of the Part-DNA Model
- Modeling the substructure (GP)

Modeling the Substructure

Map the layout into a well-defined ordering

Our Model Concept

Modeling the Substructure

- Map the layout into a well-defined ordering
- Gather data on input-output component transformations

Modeling the Substructure

- Map the layout into a well-defined ordering
- @ Gather data on input-output component transformations
- Model the transformations of components

How We Fit into the Part-DNA Model

- Choose a substructure of the Part-DNA Model
- Modeling the substructure (GP)

How We Fit into the Part-DNA Model

- Choose a substructure of the Part-DNA Model
- Modeling the substructure (GP)
- Optimize input combinations (MOEA)

Optimizing the Substructure

With the model in hand:

Gather data on possible input components

Optimizing the Substructure

With the model in hand:

- Gather data on possible input components
- Test new input combinations to map Pareto Trade-Off surface

• EAs are stochastic, population-based local search algorithms inspired by neo-Darwinian Evolution Theory

- EAs are stochastic, population-based local search algorithms inspired by neo-Darwinian Evolution Theory
- Work by generating solutions, and testing fitness

- EAs are stochastic, population-based local search algorithms inspired by neo-Darwinian Evolution Theory
- Work by generating solutions, and testing fitness
- Explore search space through recombination and mutation

- EAs are stochastic, population-based local search algorithms inspired by neo-Darwinian Evolution Theory
- Work by generating solutions, and testing fitness
- Explore search space through recombination and mutation
- Best population members chosen via Survival-of-the-fittest

- EAs are stochastic, population-based local search algorithms inspired by neo-Darwinian Evolution Theory
- Work by generating solutions, and testing fitness
- Explore search space through recombination and mutation
- Best population members chosen via Survival-of-the-fittest
- Individual A is better than individual B if A has a higher fitness than B

Genetic Programming (GP)

 Variable-size hierarchical representation vs fixed-size linear for EAs

Genetic Programming (GP)

- Variable-size hierarchical representation vs fixed-size linear for EAs
- Generally a tree-like structure that can model functions:

Genetic Programming (GP)

- Variable-size hierarchical representation vs fixed-size linear for EAs
- Generally a tree-like structure that can model functions:

$$Y = X^2 + \sin(X * \pi) \tag{1}$$

 Extension of regular EAs which maps multiple objective values to single fitness

- Extension of regular EAs which maps multiple objective values to single fitness
- Objectives usually conflict

- Extension of regular EAs which maps multiple objective values to single fitness
- Objectives usually conflict
- Uses Dominance in place of fitness

- Extension of regular EAs which maps multiple objective values to single fitness
- Objectives usually conflict
- Uses Dominance in place of fitness
- Individual A dominates individual B iff:

- Extension of regular EAs which maps multiple objective values to single fitness
- Objectives usually conflict
- Uses Dominance in place of fitness
- Individual A dominates individual B iff:
 - A is no worse than B in all objectives

- Extension of regular EAs which maps multiple objective values to single fitness
- Objectives usually conflict
- Uses Dominance in place of fitness
- Individual A dominates individual B iff:
 - A is no worse than B in all objectives
 - A is strictly better than B in at least one objective

MOEA Dominance

- A dominates B
 - A: Accuracy 60%, Affordability 2
 - B: Accuracy 50%, Affordability 2
- A does not dominate B
 - A: Accuracy 60%, Affordability 1
 - B: Accuracy 50%, Affordability 2

GP Section

GP Section

GP Process

Given a dataset of input-output combinations For each output attribute:

Generate population of randomized functions from the input domain

GP Process

Given a dataset of input-output combinations For each output attribute:

- Generate population of randomized functions from the input domain
- Assign fitness value based on error across the dataset

GP Process

Given a dataset of input-output combinations For each output attribute:

- Generate population of randomized functions from the input domain
- Assign fitness value based on error across the dataset
- Explore the function domain through recombination and mutation of functions

Repeat for each transformation object

MOEA Section

With the modeled functions in hand, we apply our MOEA to the whole process to optimize for the output parameters

Given a dataset of possible inputs and desired outputs:

Generate population of randomly chosen inputs

Given a dataset of possible inputs and desired outputs:

- Generate population of randomly chosen inputs
- Simulate the system with each input combination

Given a dataset of possible inputs and desired outputs:

- Generate population of randomly chosen inputs
- Simulate the system with each input combination
- Assign fitness values for Accuracy and Affordability

Given a dataset of possible inputs and desired outputs:

- Generate population of randomly chosen inputs
- Simulate the system with each input combination
- Assign fitness values for Accuracy and Affordability
- Rate solutions based on their Pareto score

Given a dataset of possible inputs and desired outputs:

- Generate population of randomly chosen inputs
- Simulate the system with each input combination
- Assign fitness values for Accuracy and Affordability
- Rate solutions based on their Pareto score
- Explore the input combination domain through recombination and mutation of solutions

End with a selection of Pareto Optimal solutions, and associated trade-off information.

Example Pareto Front over Time

Future of the Project

 Realistic datasets, both transformation machines and full substructure simulation

Future of the Project

- Realistic datasets, both transformation machines and full substructure simulation
- Possibility for optimizing full substructure layout/ordering

Questions?

References

- Dr. Tauritz's Intro to EA class slides
 - http://web.mst.edu/~tauritzd/courses/ec/