A Comprehensive Sentiment Analysis for Amazon's Appliance Product Reviews

Team Members

Sentiment analysis

Determining the general emotions in the context of a review

Models for sentiment Analysis:

- Lexicon-based models
- Machine learning models

Research Objectives:

- To find and recommend the most appropriate model for sentiment analysis of Amazon Appliance products' reviews
- Find the correlation between price and sentiment score/ price and rating in each product type
- Recognizing the product type that needs improvement and give recommendation on that

Our focus:

- ✓ VADER(Valence Aware Dictionary and sEntiment Reasoner)
- Specifically Designed for Social Media Text
- Fast Processing
- P Dependency on Lexicon
- Limited Context Understanding
- ✓ RoBERTa(Robustly Optimized BERT Pretraining Approach)
 - Contextual Understanding
 - **?** Computational Resource
 - Limited text Coverage
- ✓ Google API(Application Programming Interface)
- Multiple Language Support
- Cloud Infrastructure offers reliability, scalability
- Potential Data Privacy Concerns
- Credit Needed

Data Cleaning Approach

This dataset consists of 90,739 reviews of various product types within the Appliances Category on Amazon gathered by UCSD

Evaluation Criteria of the Models

1. Relationship with True Sentiment Score:

- Distribution Similarity
- Correlation to True Score

Decision: The most appropriate model

2. Relationship with the Ratings:

- Score vs Rating Bar Plot Analysis
- Correlation to Ratings

3. Precision, Recall and F1 Scores:

- True Positive, False Negative, True Negative, False Positive
- Deciding based on F1 Score

Sample Dataset for Human Interpretation and Model Comparison

Compound Sentiment Scores

Google API

RoBERTa

$$\tanh\left(\frac{\text{Sentiment_Score}}{\text{Sentiment_Magnitude}}\right)$$

Criteria 1: Relationship to the True Sentiment Score

RoBERTa Senitment Score:

- More similar to True Sentiment
 Score distribution
- Maximum and Strong Positive Correlation to True Sentiment Score

Criteria 2: Relationship to the Ratings (Review Stars)

RoBERTa Sentiment Score:

- More similar to True Sentiment vs Rating Bar Chart
- Maximum and Strong Positive Correlation to Ratings

Criteria 3 : Precision, Recall and F-1 Score

Actually Positive

Review Type (Positive)

Actually Negative

Review Type (Negative)

Positive in Model

Model Score > 0.25

Negative in Model

Model Score < - 0.25

$$\frac{True\ Positive}{True\ Positive + False\ Positive}$$

Objective: Minimizing False Positive

Recall =
$$\frac{True\ Positive}{True\ Positive + False\ Negative}$$

Objective: Minimizing False Negative

F-1 Score =
$$2 * \frac{Precision * Recall}{Precision + Recall}$$

Objective:

A Harmonic Mean of Precision and Recall Finding a Balance between these two metrics.

Criteria 3 : Precision, Recall and F-1 Score

Key Insights:

RoBERTa and Google API:

- Exhibited Same capacity to Minimize the False Positive
- Google API performed slighty better in minimizing False Negative than RoBERTa

- VADER Model has the Least Precision, Recall and F-1 Score
- Despite having the same Precision, Google API has
 1% higher Recall than RoBERTa
- Which is why F-1 Score in Google API is 1% higher than RoBERTa as well.
- Google API is slightly a better model in terms of Recall and F-1 Score than RoBERTa

Decision on the Most Appropriate Model

RoBERTA Model!!

Reasons:

- Roberta: Strong Positive Correlation to True Sentiment Score
- RoBERTa: Strong Positive Correlation to Ratings
- Google API and RoBERTa exhibited comparable performance in minimizing False Negative and False Positive, with marginal 1% difference considered negligible.
- Google API: Inconsistent Distribution, Google Credit needed

RoBERTa Sentiment Score on 10,610 rows

Out of these Reviews:

- 77% are Positive
- 23% are Negative

Correlation of RoBERTa Scores of our dataset to Ratings is 0.76 (which was 0.78 on Sample)

Product Type Specific Analysis Price vs Sentiment Score & Price vs Ratings

- Correlation between Prices and Ratings for each of 42 Product Types
- Given the threshold of 0.3 in positive and –0.3 in negative (just above weak range)
- Only Single Wall Oven showed moderate correlation
- 0.46 in Price vs Sentiment Scores and 0.50 in Price vs Ratings.
- But Single Wall Oven only had 13 reviews, which is insignificant!
- So, we concluded that for almost all the Product types, **Price is not significantly related to Sentiment Scores or Ratings.**

Product Type Specific Analysis High Negative Comments

- Percentage of Negative Reviews for each of the 42 product types
- Fixing 34% (above 1/3) as our threshold, we got..
- Build in Dishwasher- 39% negative reviews, but has only 23 reviews (negligible)
- Dryer Vents- 35% negative reviews out of its 69 reviews (prominent negative neutrals)
- Range Knobs- 39% negative reviews out of its 530 reviews

Range Knobs having the maximum negative sentiment from public needs improvement!!

Libraries

Pandas

Numpy

Matplotlib.pyplot

Seaborn

Tabulate

Language

Service_account

Sentiment Intensity Analyzer

tdqm

softmax

AutoTokenizer

Auto Model For Sequence Classifi

cation

WordCloud

ENGLISH_STOP_WORDS

Model used for RoBERTa

f"cardiffnlp/twitter-roberta-basesentiment"

Thank You Q&A