L02 p. 2

LECTURE 2

• Readings: Sections 1.3 and 1.4

Lecture outline

- Review of probabilistic models
- Conditional probability
- Three important tools:
- Multiplication rule
- Total probability theorem
- Bayes' rule

Axioms:

1. Nonnegativity: $P(A) \ge 0$

Sample space Ω of outcomes
 Events are subsets of Ω

 \bullet $\mbox{\bf Probabilities}$ assigned to events by $P(\,\cdot\,)$

2. Additivity: If $A\cap B=\emptyset$, then $\mathbf{P}(A\cup B)=\mathbf{P}(A)+\mathbf{P}(B)$ More generally, if $A_1,A_2\dots$ are disjoint then

Review of probabilistic models

$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$$

3. Normalization: $P(\Omega) = 1$

L02 p. 4

Conditional probability

- $\bullet \ \ \mathbf{P}(A \mid B) = \text{probability of } A \text{, given that } B \text{ occurred}$
- B is our new universe
- **Definition:** Assuming $P(B) \neq 0$,

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

 $(P(A \mid B) \text{ is not defined when } P(B) = 0)$

Die roll example

- Let B be the event: min(X,Y)=2
- Let $M = \max(X, Y)$
- $P(\{M=1\} \mid B) =$
- $P(\{M=2\} \mid B) =$

L02 p. 5

L02 p. 3

Models based on conditional probabilities

Event A: Airplane is flying above
 Event B: Something registers on radar screen

L02 p. 6

Multiplication rule

L02 p. 8

Total probability theorem

 Partition of Ω into A_1,A_2,A_3 with $\mathbf{P}(B\mid A_i)$ easy for each i

• One way of computing P(B):

$$P(B) = P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2) + P(A_3)P(B \mid A_3)$$

Bayes' rule

- ullet Have "prior" probabilities $\mathbf{P}(A_i)$ and $\mathbf{P}(B \mid A_i)$ for each i
- ullet Want to "update beliefs" based on B:

compute $\mathbf{P}(A_i \mid B)$ for each i

L02 p. 9

Bayes' rule

$$P(A_i \mid B) = \frac{P(A_i \cap B)}{P(B)}$$

$$= \frac{P(A_i)P(B \mid A_i)}{P(B)}$$

$$= \frac{P(A_i)P(B \mid A_i)}{\sum_j P(A_j)P(B \mid A_j)}$$