受領書

平成16年 9月13日 特許庁長官

識別番号

100092820

氏名 (名称)

伊丹 勝

様

提出日

平成16年 9月13日

以下の書類を受領しました。

項番 書類名

整理番号

受付番号

出願番号通知(事件の表示)

1 国際出願

04F410

50401550486 PCT/JP2004/ 13318

以上

特許協力条約に基づく国際出願願書

紙面による写し(注意:電子データが原本となります)

0	受理官庁記入欄	,
0-1	国際出願番号	
0-2	国際出願日	
0-3	(受付印)	
0-4	様式-PCT/RO/101 この特許協力条約に基づく国際出願願書 は、	
0-4-1	右記によって作成された。	JP0-PAS 0321
0~5	申立て	
	出願人は、この国際出願が特許協力条約 に従って処理されることを請求する。	
0-6	出願人によって指定された受理官庁	日本国特許庁(RO/JP)
0-7	出願人又は代理人の書類記号	04F410
I	発明の名称	電動式射出成形機の圧力制御方法および装置
II	出願人	
11-1	この欄に記載した者は	出願人である(applicant only)
II-2	右の指定国についての出願人である。	米国を除く全ての指定国 (all designated States except US)
II-4ja	名称	宇部興産機械株式会社
II-4en	Name:	UBE MACHINERY CORPORATION, LTD.
II-5ja	あて名	7558633
		日本国
		山口県宇部市大字小串字沖の山1980番地
II-5en	Address:	1980, Aza Okinoyama, Oaza Kogushi, Ube-shi,
		Yamaguchi
		7558633 Japan
II-6	 国籍(国名)	
o II-7	住所(国名)	日本国 JP
		日本国 JP
II-8	電話番号	0836-22-0072
II-9	ファクシミリ番号	0836-22-6457
II-11	出願人登録番号	300041192

特許協力条約に基づく国際出願願書

紙面による写し(注意:電子データが原本となります)

III-1	その他の出願人又は発明者			
111-1-1	この欄に記載した者は	出願人及び発明者である (applicant and inventor)		
III-1-2	右の指定国についての出願人である。	米国のみ (US only)		
III-1-4ja	氏名(姓名)	岡崎 芳紀		
III-1-4er	Name (LAST, First):	OKAZAKI, Yoshinori		
III-1-5ja	あて名	7558633		
		日本国		
		山口県宇部市大字小串字沖の山1980番地		
III-1-5en	Address:	1980, Aza Okinoyama, Oaza Kogushi, Ube-shi,		
		Yamaguchi 7558633		
		Japan		
III-1-6	国籍(国名)	日本国 JP		
III-1-7	住所(国名)	日本国 JP		
IV-1	大理人又は共通の代表者、通知のあて名			
	下記の者は国際機関において右記のごとく	代理人 (agent)		
IV-1-1 ia	出願人のために行動する。 氏名(姓名)			
•	Name (LAST, First):	伊丹勝 ITAM! Massault		
IV-1-2ja		ITAMI, Masaru		
14 1 2 34		1020073 日本国		
		東京都千代田区九段北4丁目2番11号 第2星光ビ		
		ル301号		
IV-1-2er	Address:	301, Daini-Seikoh Bldg., 2-11, Kudan-kita		
		4-chome, Chiyoda-ku, Tokyo		
		1020073		
IV-1-3	電話番号	Japan		
IV-1-3 IV-1-4	では、アングラン・ファクシミリ番号	03-5216-2501		
		03-3263-5884		
IV-1-6	代理人登録番号	100092820		
V V-1	国の指定 この願書を用いてされた国際出願は、規則			
•	4.9(a)に基づき、国際出願の時点で拘束される全てのPCT締約国を指定し、取得しうる	·		
	あらゆる種類の保護を求め、及び該当する			
	場合には広域と国内特許の両方を求める 国際出願となる。			
VI-1	先の国内出願に基づく優先権主張			
VI-1-1	出願日	2003年 09月 17日 (17.09.2003)		
VI-1-2	出願番号	2003–324893		
		2000 024000		
VI-1-3	国名	日本国 JP		
VI-1-3 VI-2	国名 優先権証明 書 送付の請求	i i		
	優先権証明書送付の請求 上記の先の出願のうち、右記の番号のもの	日本国 JP		
	優先権証明書送付の請求 上記の先の出願のうち、右記の番号のもの については、出願番類の認証謄本を作成 し国際事務局へ送付することを、受理官庁	i i		
	優先権証明書送付の請求 上記の先の出願のうち、右記の番号のもの については、出願番類の認証謄本を作成	日本国 JP		

.

特許協力条約に基づく国際出願願書

紙面による写し(注意:電子データが原本となります)

VIII	申立て	申立て数	
VIII-1	発明者の特定に関する申立て	_	
VIII-2	出願し及び特許を与えられる国際出願日に おける出願人の資格に関する申立て	_	
VIII-3	先の出願の優先権を主張する国際出願日 における出願人の資格に関する申立て	_	
VIII-4	発明者である旨の申立て(米国を指定国と する場合)	_	
VIII-5	不利にならない開示又は新規性喪失の例 外に関する申立て	_	
IX	照合欄	用紙の枚数	添付された電子データ
IX-1	願書(申立てを含む)	3	✓
IX-2	明細書	14	1
IX-3	請求の範囲	6	1
IX-4	要約	1	1
IX-5	図面	6	1
IX-7	合計	30	
	添付書類	添付	添付された電子データ
IX-8	手数料計算用紙	_	1
IX-17	PCT-SAFE 電子出願	_	_
IX-19	要約費とともに提示する図の番号	1	
IX-20	国際出願の使用言語名	日本語	
X-1	出願人、代理人又は代表者の記名押印	/100092820/	
		·	
X-1-1	氏名(姓名)	伊丹勝	
X-1-2	署名者の氏名		
X-1-3	権限		

受理官庁記入欄

10-1	国際出願として提出された書類の実際の受理の日	
10-2	図面	
10-2-1	受理された	
10-2-2	不足図面がある	
10-3	国際出願として提出された書類を補完する 書類又は図面であってその後期間内に提 出されたものの実際の受理の日(訂正日)	
10-4	特許協力条約第11条(2)に基づく必要な補 完の期間内の受理の日	
10-5	出願人により特定された国際調査機関	ISA/JP
10-6	調査手数料未払いにつき、国際調査機関 に調査用写しを送付していない	

国際事務局記入欄

11-1	記録原本の受理の日		
11-1	記録原本の文件の日		
		j .	

PCT手数料計算用紙(願書付属書)

紙面による写し(注意:電子データが原本となります) [この用紙は、国際出願の一部を構成せず、国際出願の用紙の枚数に算入しない]

0	受理官庁記入欄				
0-1	 国際出願番号				
0-2	受理官庁の日付印				
	J		<u> </u>		
0-4	様式-PCT/RO/101(付属書) このPCT手数料計算用紙は、				
0-4-1	右記によって作成された。		JPO-PAS 0321		
0-9	出願人又は代理人の書類記号		04F410		
2	出願人		宇部興産機械株式	 会社	
12	所定の手数料の計算		金額/係数	小計 (JPY)	
12-1	送付手数料	T	₽	13000	
12-2	調査手数料	S	₽	97000	
12-3	国際出願手数料				
	(最初の30枚まで)	il	123200		•
12-4	30枚を越える用紙の枚数		0		
12-5	用紙1枚の手数料	(X)	0		
12-6	合計の手数料	i2	0		
12-7	i1 + i2 =	i	123200		
12-12	fully electronic filing fee reduction	R	-26400		
12-13	国際出願手数料の合計 (i-R)	I	□	96800	
12-17	納付するべき手数料の合計 (T+S+I+P)			206800	
12-19	支払方法		調査手数料:予納	口座引き落としの: 口座引き落としの: 銀行口座への振込	承認
12-20	予納口座				
	受理官庁		 日本国特許庁 (R0/JP)		
12-20-1	上記手数料合計額の請求に対する承認		1		
12-21	予納口座番号		026893		
12-22	日付		2004年 09月 13日 (13.09.2004)		
12-23	記名押印			-	

明細書

電動式射出成形機の圧力制御方法および装置 技術分野

- [0001] 本発明は、電動式射出成形機の圧力制御方法および装置に関する。 背景技術
- [0002] 従来から使用されている一般的な電動成形機は、制御対象(型開閉、押出、ノズルタッチ等)に圧力検出器を用いて圧力を検出し、圧力検出器からの信号をもとに閉ループ系の制御回路を構成して推力を制御している。

具体的には、例えば射出圧力を制御する場合には、スクリューの根元の部分等に ロードセルを配してこのロードセルによりスクリューを押す力(前進力)を圧力の形態 で検出し、この検出した圧力に基づいてロードセルで検出される圧力が所望の圧力 になるようにフィードバック制御を行うことにより、スクリューの推力を制御するようにし ている。

- [0003] しかし、ロードセル等の一般的な圧力検出器から出力される測定信号は、微弱なアナログ信号である。電動式の射出成形機は、ノイズ発生源となる電動機器を大量に使用しており、ロードセルから出力される微弱なアナログ信号に電動機器類から発生したノイズが乗って、推力をうまく制御することができないという現象が生じる場合があった。そのため、ロードセルラインからのアナログ信号ラインには、多段のノイズフィルタ等といった装置を設置して、ノイズによる制御不良を防止しているが、完全に無くすことは極めて困難である。
- [0004] また、ロードセルを調整する際には、アンプのゼロ点調整やスパン調整等といった 人手による作業が必要である。そのため、調整する人によって、調整状態が微妙に 異なり、その結果、制御状態が個々に異なるといった不具合がある。
- [0005] そこで、電動モータの角速度又は回転角度と、駆動電流又はトルクとから、状態方程式を用いて樹脂圧力制御に使用される現在の樹脂圧力値を推定するようにしたセンサレス型の樹脂圧力推定方法が開示されている(特許文献1:米国特許第6,695,994号)。この樹脂圧力推定方法においては、ピストンの前進運動が樹脂に及ぼす

力を示す状態方程式を例えば数1のように算出する(Fig. 9~13参照)。

[0006] [数1]

 $E1: P_{MELT} = F_{ini} / A_{BARREL}$

E2: $F_{ini} = (2 \pi e_s e_B N_{SP} / 1 N_{MP}) [(T_2 - J_{TOT} \alpha) - T_U] - F_{LOSS}$

E3: $\alpha = \omega$

- [0007] ここでE1は樹脂圧力方程式、E2は注入力方程式、E3はモータ加速度方程式である。また、 P_{MELT} : 樹脂圧力値、 F_{inj} : 注入力、 A_{BARREL} : 成形空間面積、 e_{S} : ボールスクリュー係数、 e_{B} : ベルト係数、 N_{SP}/N_{MP} : ボールスクリューとモータの伝達プーリの直径比、1: ボールスクリュー導入長、 T_{2} : トルク計測値、 J_{TOT} : 慣性モーメント、 α : モータの角加速度、 T_{L1} : 軸受の摩擦トルク、 F_{LOSS} : 損失力、 ω : 角速度である。
- [0008] しかし、上述した特許文献1に開示された樹脂圧力推定方法では、樹脂圧力推定のため、得られた電動モータのトルク指令値及び角速度から、数1に示した状態方程式を直接解いて樹脂圧力P を求めるようにしているので、式中にE3で示す微分項が含まれることになり、ノイズに対する耐性が低下し、結果として精度の良い樹脂圧力制御が困難であるという問題がある。
- [0009] 本発明は、このような問題点に鑑みなされたもので、ロードセル等の圧力検出器を 用いることなく、精度の高い推力制御を行うことができる電動式射出成形機の圧力制 御方法及び装置を提供することを目的とする。

発明の開示

- [0010] 本発明に係る電動射出成形機の圧力制御方法は、射出成形機のスクリューを前進させるモータの角速度 ω を検出し、この検出されたモータの角速度 ω と前記モータに与えられているトルク指令値 \mathbf{T}^{CMD} とからオブザーバに基づいて樹脂圧力推定値 δ を求め、この樹脂圧力推定値 δ が樹脂圧力設定値 δ REF に追従するように前記モータを制御することを特徴とする。
- [0011] 本発明で定義される「オブザーバ(状態観測値)」とは、状態変数を推定する(状態変数に収束する)ように表現した微分方程式を解いて制御対象の出力とモデルの出力が一致するように状態変数の推定値を得る方程式である。このように予め微分方

程式を解いて作った本発明の「オブザーバ」は、実際に樹脂圧力推定値 δ を得る際に微分する必要がない。

前記オブザーバは、例えば下記数2のように表される。

[0012] [数2]

$$\frac{\mathrm{d}}{\mathrm{d} t} \begin{pmatrix} \omega \, \hat{} \\ \delta \, \hat{} \end{pmatrix} = \begin{pmatrix} d_1 & 1 / J \\ d_2 & 0 \end{pmatrix} \begin{pmatrix} \omega \, \hat{} \\ \delta \, \hat{} \end{pmatrix} + \begin{pmatrix} 1 / J \\ 0 \end{pmatrix} T^{\text{CMD}} + \begin{pmatrix} 1 / J \\ 0 \end{pmatrix} F(\omega) - \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} \omega$$

但し、ω : モータの各速度の推定値

d1, d2: 所定の係数

J :射出機構全体の慣性モーメント

F (ω):射出機構全体の動摩擦抵抗及び静止摩擦抵抗

[0013] また、射出成形機のスクリューとモータとがそれぞれの回転軸に装着されたプーリを 介してベルトによって連結されているような場合には、オブザーバは、例えば下記数 3のように表すことができる。

[0014] [数3]

$$\frac{d}{dt} \begin{pmatrix} \hat{\omega}^{M} \\ \hat{\omega}^{L} \\ \hat{F} \\ \hat{\delta} \\ \hat{\sigma} \end{pmatrix} = \begin{pmatrix} d_{1} & 0 & -\frac{R^{M}}{J^{M}} & 0 & 0 \\ d_{2} & 0 & \frac{R^{L}}{J^{L}} & \frac{1}{J^{L}} & 0 \\ d_{3} + K_{b}R^{M} & -K_{b}R^{L} & 0 & 0 & 0 \\ d_{4} & K_{w} & \frac{K_{wd}R^{L}}{J^{L}} & \frac{K_{wd}}{J^{L}} & 1 \\ d_{5} & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \hat{\omega}^{M} \\ \hat{\omega}^{L} \\ \hat{F} \\ \hat{\delta} \\ \hat{\sigma} \end{pmatrix} + \begin{pmatrix} \frac{1}{J^{M}} \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} T^{CMD} + \begin{pmatrix} 0 \\ \frac{1}{J^{L}} \\ 0 \\ \frac{K_{wd}}{J^{L}} \end{pmatrix} F_{d}(\omega^{L}) - \begin{pmatrix} d_{1} \\ d_{2} \\ d_{3} \\ d_{4} \\ d_{5} \end{pmatrix} \omega^{M}$$

但し、d1~d5: 所定の係数

J™:モータ側の慣性モーメント

ω^M:モータの角速度

R^M:モータ側のプーリ半径

F:ペルトの張力

K_b: ベルトのバネ定数

J^L:スクリュー側の慣性モーメント

 $\omega^L:$ スクリュー側の角速度

R^L:スクリュー側のプーリ半径

 F_a (ω^L):スクリュー側の動摩擦抵抗

K_w:樹脂の弾性係数

Kwd:樹脂の粘性係数

σ:スクリューが樹脂を押す力

- [0015] また、本発明に係る他の電動射出成形機の圧力制御装置は、射出成形機のスクリューを前進させるモータの角速度ωと前記モータに与えられているトルク指令値T^{CM} したからオブザーバに基づいて値、樹脂圧力推定値δ を求めるオブザーバ演算器と、このオブザーバ演算器で求められた樹脂圧力推定値δ から上記数3に基づいて前記モータのトルク指令値T^{CMD}を算出し、前記モータにフィードバックするトルク演算器とを備えたことを特徴とする。
- [0016] なお、ここで、樹脂圧力推定値δ[^]及び樹脂圧力設定値δ^{REF}における「樹脂圧力」とは、射出成形機のスクリューが樹脂を押す力であり、従来のロードセルが検出しているスクリューを押す力とは異なる。すなわち、スクリューの推力制御のうちの制御対象が従来と本願発明とは異なっている。
- [0017] 本発明によれば、射出成形機のスクリューを前進させるモータの角速度ωを求め、 この求められた角速度ωからオブザーバ理論によって樹脂圧力推定値δ^{*}を求めると

共に、この樹脂圧力推定値 δ δ が樹脂圧力設定値 δ REF に追従するように前記モータ を制御するようにしているので、ロードセル等の圧力検出器を一切使用せずに、樹脂 圧力を精度良く制御することができる。

また、本発明では、予め樹脂圧力推定値 δ ˆの算出式に微分を含まないので、ノイズに対する耐性も高い。

図面の簡単な説明

[0018] [図1]本発明の一実施形態に係る電動式射出成形機の制御回路のブロック図である

[図2]同制御回路の詳細ブロック図である。

[図3]同制御回路のトルク指令値及び推力推定値の時間的変化を示すグラフである

[図4]本発明の他の実施形態に係る電動式射出成形機における伝達系を説明するための図である。

[図5]同実施形態に係る電動式射出成形機の制御回路のブロック図である。

[図6]同電動式射出成形機における動摩擦抵抗の速度依存成分の取得方法を説明するための図である。

[図7]同電動式射出成形機における動摩擦抵抗の荷重依存成分の取得方法を説明するための図である。

発明を実施するための最良の形態

[0019] 以下、図面に基づいて本発明の実施の形態について説明する。

図1は、本発明の一実施形態に係る電動式射出成形機の圧力制御装置の構成を示すブロック図である。

制御対象であるモータ1は、図示しない射出シリンダ内でスクリューを前後移動させるための射出用モータである。モータ1には、その位置情報(回転角) θ を検出し出力するエンコーダ2が備えられている。エンコーダ2からの位置情報 θ は、微分器6により角速度ωに変換されたのちオブザーバ演算器3に入力されている。オブザーバ演算器3は、微分器6の出力ωからスクリューの推力(樹脂圧力) δ を推定する。トルク演算器4は、樹脂圧力設定器5で設定された樹脂圧力設定値 δ REF と、オブザーバ

演算器3で求められた推力推定値 δ とに基づき、トルク指令値 T^{CMD} を求め、制御対象であるモータ1にフィードバックする。

[0020] 次に、この制御装置の動作について説明する。

一般に、射出機構の状態方程式として、下記数4に示す式が知られている。

[0021] [数4]

$$J \omega' = T^{CMD} + \delta + F(\omega)$$

[0022] 但し、」:射出機構全体の慣性モーメント

 ω , :モータの角加速度

ω:モータの角速度

T^{CMD}:トルク指令値

δ :樹脂圧力

F(ω):射出機構全体の動摩擦抵抗及び静止摩擦抵抗

[0023] 上記数4を勘案しながら、 δ '(δ の微分値)が0として数式をたてると、

[0024] [数5]

$$\frac{\mathrm{d}}{\mathrm{d} t} \begin{pmatrix} \omega \\ \delta \end{pmatrix} = \begin{pmatrix} 0 & 1 / J \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \omega \\ \delta \end{pmatrix} + \begin{pmatrix} 1 / J \\ 0 \end{pmatrix} T^{\text{CMD}} + \begin{pmatrix} 1 / J \\ 0 \end{pmatrix} F(\omega)$$

[0025] ここで、オブザーバ(状態観測値)を下記数6のように定義する。

[0026] [数6]

$$\frac{d}{dt}\binom{\omega^{\wedge}}{\delta^{\wedge}} = \begin{pmatrix} d_1 & 1 / J \\ d_2 & 0 \end{pmatrix} \binom{\omega^{\wedge}}{\delta^{\wedge}} + \begin{pmatrix} 1 / J \\ 0 \end{pmatrix} T^{CMD} + \begin{pmatrix} 1 / J \\ 0 \end{pmatrix} F(\omega) - \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} \omega$$

[0027] 但し、ω :モータ1の角速度の推定値

δ :樹脂圧(推力)の推定値

[0028] 上記数6より、下記数7が求められる。

[0029] [数7]

$$d \omega'/d t = d_1 \omega' + (1/J) \delta' + (1/J) T^{CMD} - d_1 \omega + (1/J) F(\omega)$$

 $d \delta'/d t = d_2 \omega' - d_2 \omega$

[0030] ここで、サンプル (又は処理) 周期をdt、前サンプル (又は前処理) 時のデータ \mathbf{x} を \mathbf{x} とすると、

[0031] [数8]

$$d \omega'/d t = (\omega' - \omega'_{-1}) / d t$$
$$d \delta'/d t = (\delta' - \delta'_{-1}) / d t$$

- [0032] と表わされるので、角速度推定値 ω 及び樹脂圧推定値 δ は、次の数9のように表せる。
- [0033] [数9]

$$\omega' = \omega'_{-1} + (d\omega'/dt) dt$$

$$\delta' = \delta'_{-1} + (d\delta'/dt) dt$$

- [0034] 数9に数7を代入することにより、下記数10が求められる。
- [0035] [数10]

$$\omega^{\hat{}} = \omega^{\hat{}}_{-1} + \{d_1(\omega^{\hat{}}_{-1} - \omega) + (1 / J) (T^{CMD}_{-1} + \delta^{\hat{}}_{-1} + F(\omega))\} d t$$

$$\delta^{\hat{}} = \delta^{\hat{}}_{-1} + \{d_2(\omega^{\hat{}}_{-1} - \omega)\} d t$$

[0036] [数11]

$$\begin{pmatrix} \omega - \omega^{\wedge} \\ \delta - \delta^{\wedge} \end{pmatrix} = \mathbf{x}$$
$$\begin{pmatrix} \mathbf{d}_{1} & 1 / \mathbf{J} \\ \mathbf{d}_{2} & 0 \end{pmatrix} = \mathbf{A}$$

- [0037] と置くと、
- [0038] [数12]

d x / d t = A x $x = e^{A t}$

[0039] Aの固有値の実数部が負であれば、 $t\to\infty$ のとき、 $x\to0$ 、すなわち、

[0040] [数13]

 $\omega = \omega$

 $\delta = \delta$

- [0041] となり、 ω 、 δ の実測値と推測値とが一致する。よって、Aの固有値の実数部が負となるように、d, d を決定すれば良い。
- [0042] 図2は、オブザーバ演算器3の詳細を示すブロック図である。

エンコーダ2から出力される位置情報 θ は、微分器6において微分されて角速度 ω となり、加算器31,32において1つの前の処理で得られている角速度の推定値 ω_{-1}^{-1} からそれぞれ減算され、 $(\omega_{-1}^{-1}-\omega)$ が求められる。この値は、調節器33,34をそれぞれ通って係数 d_1 , d_2 に応じた振幅に調節される。

[0043] 一方、1つ前に求められたトルク指令値T^{CMD} と樹脂圧力推定値δ~とが加算器 35によって加算され、更に、この加算値に、射出機構の動摩擦抵抗及び静止摩擦 抵抗F(ω)が加算器36によって加算される。この加算値は、調節器37によって係数1 /Jに応じた振幅に調整される。そして、この調整された値が、加算器38において調 節器33の出力と加算される。これにより、上記数10の上の式の右辺第2項の{}の中が求められる。同様に、調節器35の出力からは、上記数10の下の式の右辺第2項の {}の中が求められる。

これらの値は、積分器39,40でそれぞれ積分されることにより、数10に基づく推定値 ω^2 , δ^2 が求められるようになっている。

[0044] そして、このようにして求められた樹脂圧力の推定値δ は加算器7において目標とする圧力設定値δから減算され、その減算結果がトルク演算器4に入力されている。トルク演算器4は、最もシンプルには、下記数14に基づいて、トルク指令値T^{CMD}を演算し、モータ1にフィードバックする。

[0045] [数14]

$$T^{CMD} = k p (\delta^{REF} - \delta^{\hat{}})$$

[0046] 但し、δ REF : 樹脂圧力設定値

kp :所定の定数

[0047] また、好ましくは、下記15式に基づいてトルク指令値T^{CMD}を演算し、モータ1にフィードバックするようにしても良い。

[0048] [数15]

$$T^{CMD} = k p (\delta^{REF} - \delta^{\hat{}}) + k i (\delta^{REF} - \delta^{\hat{}}) d t$$

- [0049] 但し、ki:所定の定数
- [0050] 以上のように、本願発明では、数11の運動方程式をオブザーバ理論を用いて解くことにより、樹脂圧力δを算出している。このため、ロードセル等の圧力検出手段が不要であり、また、ここで用いられている慣性モーメントJ並びに動摩擦抵抗及び静止摩擦抵抗F(ω)は、射出機構独自のパラメータであるから、成形する樹脂によらない制御が可能である。
- [0051] 上記動摩擦抵抗は、モータのトルクとスクリューの前進速度との関係により求めることができる。即ち、無負荷(樹脂無し)の状態でスクリューを前進させ、その時のトルク指令と射出速度の実測値(エンコーダの出力から算出)から動摩擦抵抗を算出する。電動射出成形機のモータとプーリを繋いでいるベルトの張り具合等により動摩擦抵抗が変わる可能性がある。従って、定期的に再計算して更新することが望ましい。
- [0052] 図3は、本実施形態による制御装置を用いて実際に射出成形を行ったときのトルク 指令値Τ^{CMD}と樹脂圧力推定値δ を示すグラフである。前半は、金型に樹脂を充填 し始めてから、ほぼ充填完了するまでの射出工程で、スクリューは速度制御されている。後半が、金型内に樹脂がほぼ充填された後の保圧工程で、スクリューは、推力制 御される。図示の例では、速度制御期間では、樹脂圧力推定値が600N・mまで上 昇し、保圧工程で樹脂圧力推定値を100N・mに保持している。

このように、本願発明によれば、高精度な圧力制御が可能になる。

[0053] なお、以上はモータからスクリューまでの伝達系の遅れが無視できるような場合、例 えば、モータとスクリューを直結した場合、また、モータとスクリューを歯車等の剛性の 高い系で連結した場合等に用いるのに好適である。

しかし、実際の電動射出成形機では、モータからスクリューまでの伝達系の遅れが無視できないことがある。例えば、図4に示すように、モータ1の回転軸11にはプーリ12が結合され、このプーリ12がベルト13を介してロード側のプーリ14と連結され、このプーリ14の回転軸15の回転でスクリューを回転させる。この場合、モータ1側の慣性モーメント J^{M} 、角速度 ω^{M} 及びプーリ半径 R^{M} 、ベルト13の張力F、バネ定数 K_{b} 、ロード側の慣性モーメント J^{L} 、角速度 ω^{L} 、プーリ半径 R^{L} 及び動摩擦抵抗 F_{d} (ω^{L})を考慮する必要がある。

伝達系を考慮した状態方程式は、下記数16のように表される。

[0054] [数16]

$$J^{M}\omega^{M'} = T^{CMD} - FR^{M}$$

$$J^{L}\omega^{L'} = FR^{L} + \delta + F_{d}(\omega^{L})$$

$$F' = K_{b}(R^{M}\omega^{M} - R^{L}\omega^{L})$$

[0055] ここで、樹脂の弾性係数をK、粘性係数をK、スクリューが樹脂を押す力を σ として、樹脂圧 δ の微分値 δ を数17のように定義する。

[0056] [数17]

$$\delta' = K_w \omega^L + K_{wd} \omega^L' + \sigma$$

[0057] 上記数16, 17を変形すると、数18のようになる。

[0058] [数18]

$$\frac{d}{dt} \begin{pmatrix} \omega^{M} \\ \omega^{L} \\ F \\ \delta \\ \sigma \end{pmatrix} = \begin{pmatrix} 0 & 0 & -\frac{R^{M}}{J^{M}} & 0 & 0 \\ 0 & 0 & \frac{R^{L}}{J^{L}} & \frac{1}{J^{L}} & 0 \\ K_{b}R^{M} & -K_{b}R^{L} & 0 & 0 & 0 \\ 0 & K_{w} & \frac{K_{wd}R^{L}}{J^{L}} & \frac{K_{wd}}{J^{L}} & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \omega^{M} \\ \omega^{L} \\ F \\ \delta \\ \sigma \end{pmatrix} + \begin{pmatrix} \frac{1}{J^{M}} \\ 0 \\ 0 \\ 0 \end{pmatrix} T^{CMD} + \begin{pmatrix} 0 \\ \frac{1}{J^{L}} \\ 0 \\ \frac{K_{wd}}{J^{L}} \end{pmatrix} F_{d}(\omega^{L})$$

[0059] ここで、オブザーバ(状態観測値)を下記19のように定義する。

[0060] [数19]

$$\frac{d}{dt} \begin{pmatrix} \hat{\omega}^{M} \\ \hat{\omega}^{L} \\ \hat{F} \\ \hat{\delta} \\ \hat{\sigma} \end{pmatrix} = \begin{pmatrix} d_{1} & 0 & -\frac{R^{M}}{J^{N}} & 0 & 0 \\ d_{2} & 0 & \frac{R^{L}}{J^{L}} & \frac{1}{J^{L}} & 0 \\ d_{3} + K_{b}R^{M} & -K_{b}R^{L} & 0 & 0 & 0 \\ d_{4} & K_{w} & \frac{K_{wd}R^{L}}{J^{L}} & \frac{K_{wd}}{J^{L}} & 1 \\ d_{5} & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \hat{\omega}^{M} \\ \hat{\omega}^{L} \\ \hat{F} \\ \hat{\delta} \\ \hat{\sigma} \end{pmatrix} + \begin{pmatrix} \frac{1}{J^{M}} \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} T^{CMD} + \begin{pmatrix} 0 \\ \frac{1}{J^{L}} \\ 0 \\ \frac{K_{wd}}{J^{L}} \end{pmatrix} F_{d}(\omega^{L}) - \begin{pmatrix} d_{1} \\ d_{2} \\ d_{3} \\ d_{4} \\ d_{5} \end{pmatrix} \omega^{M}$$

[0061] この場合にも、前述した数7~数9を用いて数10を導いたのと同様の手順で下 記数20が導かれる。

[0062] [数20]

$$\begin{split} \hat{\omega}^{M} &= \hat{\omega}^{M}_{-1} + \left\{ d_{1} \left(\hat{\omega}^{M}_{-1} - \omega^{M} \right) + \frac{1}{J^{M}} \left(T^{CMD}_{-1} - R^{M} \hat{F}_{-1} \right) \right\} dt \\ \hat{\omega}^{L} &= \hat{\omega}^{L}_{-1} + \left\{ d_{2} \left(\hat{\omega}^{M}_{-1} - \omega^{M} \right) + \frac{1}{J^{L}} \left(R^{L} \hat{F}_{-1} + \hat{\delta}_{-1} + F_{d} \left(\omega^{L} \right) \right) \right\} dt \\ \hat{F} &= \hat{F}_{-1} + \left\{ d_{3} \left(\hat{\omega}^{M}_{-1} - \omega^{M} \right) + K_{b} \left(R^{M} \hat{\omega}^{M}_{-1} - R^{L} \hat{\omega}^{L}_{-1} \right) \right\} dt \\ \hat{\delta} &= \hat{\delta}_{-1} + \left\{ d_{4} \left(\hat{\omega}^{M}_{-1} - \omega^{M} \right) + K_{w} \hat{\omega}^{L}_{-1} + \frac{K_{wd}}{J^{L}} \left(R^{L} \hat{F}_{-1} + \hat{\delta}_{-1} + F_{d} \left(\omega^{L} \right) \right) + \hat{\sigma}_{-1} \right\} dt \\ \hat{\sigma} &= \hat{\sigma}_{-1} + d_{5} \left(\hat{\omega}^{M}_{-1} - \omega^{M} \right) dt \end{split}$$

[0063] また、樹脂圧 δ の微分値 δ '=0とおける場合には、前述した数16は、数21のように表すことができる。

[0064] [数21]

$$\frac{d}{dt} \begin{pmatrix} \omega^{M} \\ \omega^{L} \\ F \\ \delta \end{pmatrix} = \begin{pmatrix} 0 & 0 & -\frac{R^{M}}{J^{M}} & 0 \\ 0 & 0 & \frac{R^{L}}{J^{L}} & \frac{1}{J^{L}} \\ K_{b}R^{M} & -K_{b}R^{L} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \omega^{M} \\ \omega^{L} \\ F \\ \delta \end{pmatrix} + \begin{pmatrix} \frac{1}{J^{M}} \\ 0 \\ 0 \\ 0 \end{pmatrix} T^{CMD} + \begin{pmatrix} 0 \\ \frac{1}{J^{L}} \\ 0 \\ 0 \end{pmatrix} F_{d}(\omega^{L})$$

[0065] ここで、オブザーバ(状態観測値)を下記22のように定義する。

[0066] [数22]

$$\frac{d}{dt} \begin{pmatrix} \hat{\omega}^{M} \\ \hat{F} \\ \hat{\delta} \end{pmatrix} = \begin{pmatrix} d_{1} & 0 & -\frac{R^{M}}{J^{M}} & 0 \\ d_{2} & 0 & \frac{R^{L}}{J^{L}} & \frac{1}{J^{L}} \\ d_{3} + K_{b}R^{M} & -K_{b}R^{L} & 0 & 0 \\ d_{4} & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \hat{\omega}^{M} \\ \hat{\sigma}^{L} \\ \hat{F} \\ \hat{\delta} \end{pmatrix} + \begin{pmatrix} \frac{1}{J^{M}} \\ 0 \\ 0 \\ 0 \end{pmatrix} T^{CMD} + \begin{pmatrix} 0 \\ \frac{1}{J^{L}} \\ 0 \\ 0 \\ 0 \end{pmatrix} F_{d}(\omega^{L}) - \begin{pmatrix} d_{1} \\ d_{2} \\ d_{3} \\ d_{4} \end{pmatrix} \omega^{M}$$

[0067] この場合にも、前述した数7~数9を用いて数10を導いたのと同様の手順で下 記数23が導かれる。

[0068] [数23]

$$\hat{\omega}^{M} = \hat{\omega}^{M}_{-1} + \left\{ d_{1} \left(\hat{\omega}^{M}_{-1} - \omega^{M} \right) + \frac{1}{J^{M}} \left(T^{CMD}_{-1} - R^{M} \hat{F}_{-1} \right) \right\} dt$$

$$\hat{\omega}^{L} = \hat{\omega}^{L}_{-1} + \left\{ d_{2} \left(\hat{\omega}^{M}_{-1} - \omega^{M} \right) + \frac{1}{J^{L}} \left(R^{L} \hat{F}_{-1} + \hat{\delta}_{-1} + F_{d} \left(\omega^{L} \right) \right) \right\} dt$$

$$\hat{F} = \hat{F}_{-1} + \left\{ d_{3} \left(\hat{\omega}^{M}_{-1} - \omega^{M} \right) + K_{b} \left(R^{M} \hat{\omega}^{M}_{-1} - R^{L} \hat{\omega}^{L}_{-1} \right) \right\} dt$$

$$\hat{\delta} = \hat{\delta}_{-1} + d_{4} \left(\hat{\omega}^{M}_{-1} - \omega^{M} \right) dt$$

[0069] この場合にも、微分項を含むことなく、樹脂圧力推定値 δ を求めることができる。このため、ノイズ耐性に優れた制御系が実現できる。

ここで、数22を下記数24のように置き換える。

[0070] [数24]

$$\hat{X}' = D\hat{X} + Bu + Cv - Ey$$

[0071] 図5は、数24の演算を実行するオブザーバ演算器8の詳細を示すブロック図である

エンコーダ2から出力される位置情報 θ は、微分器6において微分されて角速度 ω ^Mとなり、これがyとして調節器81を通って係数 $E=(d_1,d_2,d_3,d_4)$ に応じた振幅に 調節される。

[0072] 一方、1つ前に求められたトルク指令値 T^{CMD}_{-1} がuとして調節器82によって係数B $=(1/J^M,\,0,\,0,\,0)$ に応じた振幅に調整される。一方、予め求めておいたv(=動摩擦抵抗 $F_{_d}(\omega^L)$)を調節器83によって係数 $C=(0,\,1/J^L,\,0,\,0)$ に応じた振幅に調

整し、この値を加算器84で調節器82の出力に加算する。また、1つ前に求められた推定値 X^{-1} が調節器85によって係数Dに応じた振幅に調整される。そして、加算器86において、加算器84の出力と調節器85の出力とを加算すると共に調節器81の出力を減算することにより、数24で示すXの推定値 X^{-1} の微分値が得られる。この値は、積分器87で積分されることにより、数23に基づく推定値 δ が求められるようになっている。

- [0073] そして、このようにして求められた樹脂圧力の推定値 δ んは加算器7において目標とする圧力設定値 δ から減算され、その減算結果がトルク演算器4に入力されてトルク指令値T^{CMD}が求められ、モータ1にフィードバックされる。
- [0074] 次に、図6及び図7を参照して動摩擦抵抗 $F_d(\omega^L)$ の求め方(較正方法)について説明する。

ここでは、動摩擦抵抗モデルを速度依存成分と荷重依存成分の和と定義する。速度依存成分は、エアーショット(空打ち)時のモータ速度(又は位置)とトルク値(又は電流値)の関係から求めることができる。また、荷重依存成分は、ノズルをプラグした状態で射出した際のトルク値(又は電流値)と圧力値との関係から求めることができる

[0075] 速度依存成分。

いま、定常状態においては、 $\omega^{M'}=0$, $\omega^{L'}=0$ であるから、数16の1式及び2式の 左辺はそれぞれ0となる。従って、動摩擦抵抗 $F_{,}(\omega^{L})$ は、

[0076] 「数25]

$$F_d$$
 (ω^L) = - (R^L/R^M) T^{CMD} - δ

[0077] となり、空打ち時(δ=0とみなす)ではトルクのみに依存する。従って、図6の左側に示すように、空打ちで速度を1,2のように変化させ、射出前進させた際のそれぞれのトルク値1,2を計測することで動摩擦抵抗1,2を求める。これを図6の右側のグラフのようにプロットすることで速度依存成分の特性曲線が求められる。射出後退時の速度依存成分も同様にして求めることができる。

[0078] 荷重依存成分

次に、圧力計測用センサ(圧力センサや歪みゲージ等)を取り付けた較正治具を用意し、ノズル先端をプラグした状態で射出した際のトルク値と圧力値とを計測することで、図7の左側で示すように、動摩擦抵抗1,2を求める。これを図7の右側のグラフのようにプロットすることで荷重依存成分の特性曲線が求められる。

これら速度依存成分と荷重依存成分とを併せたものを射出機構の動摩擦抵抗モデルとして圧力推定の際に使用することができる。

請求の範囲

- [1] 射出成形機のスクリューを前進させるモータの角速度ωを検出し、この検出された モータの角速度ωと前記モータに与えられているトルク指令値T^{CMD}とからオブザー バに基づいて樹脂圧力推定値δ^{*}を求め、この樹脂圧力推定値δ^{*}が樹脂圧力設定 値δ^{REF}に追従するように前記モータを制御することを特徴とする電動式射出成形機 の圧力制御方法。
- [2] 前記オブザーバが、下記数1で表されることを特徴とする請求項1記載の電動式射 出成形機の圧力制御方法。

[数1]

$$\frac{\mathrm{d}}{\mathrm{d} t} \begin{pmatrix} \omega \\ \delta \end{pmatrix} = \begin{pmatrix} d_1 & 1 / J \\ d_2 & 0 \end{pmatrix} \begin{pmatrix} \omega \\ \delta \end{pmatrix} + \begin{pmatrix} 1 / J \\ 0 \end{pmatrix} T^{\text{CMD}} + \begin{pmatrix} 1 / J \\ 0 \end{pmatrix} F(\omega) - \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} \omega$$

但し、ω・: モータの各速度の推定値

d1, d2: 所定の係数

J :射出機構全体の慣性モーメント

F (ω):射出機構全体の動摩擦抵抗及び静止摩擦抵抗

[3] 前記オブザーバが、下記数2で表されることを特徴とする請求項1記載の電動式射 出成形機の圧力制御方法。

[数2]

$$\omega^{2} = \omega^{2}_{-1} + \{d_{1}(\omega^{2}_{-1} - \omega) + (1/J) (T^{CMD}_{-1} + \delta^{2}_{-1} + F(\omega))\} d t$$

$$\delta^{2} = \delta^{2}_{-1} + \{d_{2}(\omega^{2}_{-1} - \omega)\} d t$$

但し、ω:モータの各速度の推定値

d,, d₂: 所定の係数

J :射出機構全体の慣性モーメント

F (ω):射出機構全体の動摩擦抵抗及び静止摩擦抵抗

x_, : xの処理周期の一つ手前の値

[4] 前記射出成形機のスクリューと前記モータとはそれぞれの回転軸に装着されたプーリを介してベルトによって連結されており、

前記オブザーバが、下記数3で表されることを特徴とする請求項1記載の電動式射 出成形機の圧力制御方法。

[数3]

$$\frac{d}{dt} \begin{pmatrix} \hat{\omega}^{M} \\ \hat{\omega}^{L} \\ \hat{F} \\ \hat{\delta} \\ \hat{\sigma} \end{pmatrix} = \begin{pmatrix} d_{1} & 0 & -\frac{R^{M}}{J^{M}} & 0 & 0 \\ d_{2} & 0 & \frac{R^{L}}{J^{L}} & \frac{1}{J^{L}} & 0 \\ d_{3} + K_{b}R^{M} & -K_{b}R^{L} & 0 & 0 & 0 \\ d_{4} & K_{w} & \frac{K_{wd}R^{L}}{J^{L}} & \frac{K_{wd}}{J^{L}} & 1 \\ d_{5} & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \hat{\omega}^{M} \\ \hat{\omega}^{L} \\ \hat{F} \\ \hat{\delta} \\ \hat{\sigma} \end{pmatrix} + \begin{pmatrix} \frac{1}{J^{M}} \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} T^{CMD} + \begin{pmatrix} 0 \\ \frac{1}{J^{L}} \\ 0 \\ \frac{K_{wd}}{J^{L}} \end{pmatrix} F_{d}(\omega^{L}) - \begin{pmatrix} d_{1} \\ d_{2} \\ d_{3} \\ d_{4} \\ d_{5} \end{pmatrix} \omega^{M}$$

但し、d₁~d₅: 所定の係数

J™:モータ側の慣性モーメント

ω^M:モータの角速度

R^M:モータ側のプーリ半径

F:ベルトの張力

Кь: ベルトのパネ定数

J^L:スクリュー側の慣性モーメント

 ω^{L} :スクリュー側の角速度

R^L:スクリュー側のプーリ半径

 $F_a(\omega^L)$:スクリュー側の動摩擦抵抗

K_w:樹脂の弾性係数 K_{wd}:樹脂の粘性係数

σ:スクリューが樹脂を押す力

[5] 前記射出成形機のスクリューと前記モータとはそれぞれの回転軸に装着されたプーリを介してベルトによって連結されており、

前記オブザーバが、下記数4で表されることを特徴とする請求項1記載の電動式射 出成形機の圧力制御方法。

[数4]

$$\hat{\omega}^{M} = \hat{\omega}^{M}_{-1} + \left\{ d_{1} \left(\hat{\omega}^{M}_{-1} - \omega^{M} \right) + \frac{1}{J^{M}} \left(T^{CMD}_{-1} - R^{M} \hat{F}_{-1} \right) \right\} dt$$

$$\hat{\omega}^{L} = \hat{\omega}^{L}_{-1} + \left\{ d_{2} \left(\hat{\omega}^{M}_{-1} - \omega^{M} \right) + \frac{1}{J^{L}} \left(R^{L} \hat{F}_{-1} + \hat{\delta}_{-1} + F_{d} \left(\omega^{L} \right) \right) \right\} dt$$

$$\hat{F} = \hat{F}_{-1} + \left\{ d_{3} \left(\hat{\omega}^{M}_{-1} - \omega^{M} \right) + K_{b} \left(R^{M} \hat{\omega}^{M}_{-1} - R^{L} \hat{\omega}^{L}_{-1} \right) \right\} dt$$

$$\hat{\delta} = \hat{\delta}_{-1} + \left\{ d_{4} \left(\hat{\omega}^{M}_{-1} - \omega^{M} \right) + K_{w} \hat{\omega}^{L}_{-1} + \frac{K_{wd}}{J^{L}} \left(R^{L} \hat{F}_{-1} + \hat{\delta}_{-1} + F_{d} \left(\omega^{L} \right) \right) + \hat{\sigma}_{-1} \right\} dt$$

$$\hat{\sigma} = \hat{\sigma}_{-1} + d_{5} \left(\hat{\omega}^{M}_{-1} - \omega^{M} \right) dt$$

但し、d,~ds:所定の係数

J^M:モータ側の慣性モーメント

ω^м:モータの角速度

R^M:モータ側のプーリ半径

F:ベルトの張力

K、: ベルトのバネ定数

J^L:スクリュー側の慣性モーメント

ω1:スクリュー側の角速度

R^L:スクリュー側のプーリ半径

Fα(ω^L):スクリュー側の動摩擦抵抗

K...: 樹脂の弾性係数

Kwd:樹脂の粘性係数

σ:スクリューが樹脂を押す力

x_1 : xの処理周期の一つ手前の値

[6] 前記射出成形機のスクリューと前記モータとはそれぞれの回転軸に装着されたプーリを介してベルトによって連結されており、

前記オブザーバが、下記数5で表されることを特徴とする請求項1記載の電動式射 出成形機の圧力制御方法。

[数5]

$$\frac{d}{dt} \begin{pmatrix} \hat{\omega}^{M} \\ \hat{\omega}^{L} \\ \hat{F} \\ \hat{\delta} \end{pmatrix} = \begin{pmatrix} d_{1} & 0 & -\frac{R^{M}}{J^{M}} & 0 \\ d_{2} & 0 & \frac{R^{L}}{J^{L}} & \frac{1}{J^{L}} \\ d_{3} + K_{b}R^{M} & -K_{b}R^{L} & 0 & 0 \\ d_{4} & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \hat{\omega}^{M} \\ \hat{\omega}^{L} \\ \hat{F} \\ \hat{\delta} \end{pmatrix} + \begin{pmatrix} \frac{1}{J^{M}} \\ 0 \\ 0 \\ 0 \end{pmatrix} T^{CMD} + \begin{pmatrix} 0 \\ \frac{1}{J^{L}} \\ 0 \\ 0 \\ 0 \end{pmatrix} F_{d}(\omega^{L}) \cdot \begin{pmatrix} d_{1} \\ d_{2} \\ d_{3} \\ d_{4} \end{pmatrix} \omega^{M}$$

但し、d₁~d₄: 所定の係数

J^M:モータ側の慣性モーメント

ω^M:モータの角速度

R^M:モータ側のプーリ半径

F:ベルトの張力

K_h: ベルトのバネ定数

J¹:スクリュー側の慣性モーメント

 ω^L :スクリュー側の角速度

R^L:スクリュー側のプーリ半径

 $F_a(\omega^L)$:スクリュー側の動摩擦抵抗

[7] 前記射出成形機のスクリューと前記モータとはそれぞれの回転軸に装着されたプーリを介してベルトによって連結されており、

前記オブザーバが、下記数6で表されることを特徴とする請求項1記載の電動式射 出成形機の圧力制御方法。

[数6]

$$\hat{\omega}^{M} = \hat{\omega}^{M}_{-1} + \left\{ d_{1} \left(\hat{\omega}^{M}_{-1} - \hat{\omega}^{M} \right) + \frac{1}{J^{M}} \left(T^{CMD}_{-1} - R^{M} \hat{F}_{-1} \right) \right\} dt$$

$$\hat{\omega}^{L} = \hat{\omega}^{L}_{-1} + \left\{ d_{2} \left(\hat{\omega}^{M}_{-1} - \hat{\omega}^{M} \right) + \frac{1}{J^{L}} \left(R^{L} \hat{F}_{-1} + \hat{\delta}_{-1} + F_{d} \left(\hat{\omega}^{L} \right) \right) \right\} dt$$

$$\hat{F} = \hat{F}_{-1} + \left\{ d_{3} \left(\hat{\omega}^{M}_{-1} - \hat{\omega}^{M} \right) + K_{b} \left(R^{M} \hat{\omega}^{M}_{-1} - R^{L} \hat{\omega}^{L}_{-1} \right) \right\} dt$$

$$\hat{\delta} = \hat{\delta}_{-1} + d_{4} \left(\hat{\omega}^{M}_{-1} - \hat{\omega}^{M} \right) dt$$

但し、d1~d4: 所定の係数

J™:モータ側の慣性モーメント

ω^M:モータの角速度

R^M:モータ側のプーリ半径

F:ペルトの張力

K_b: ベルトのバネ定数

J^L:スクリュー側の慣性モーメント

ω^L:スクリュー側の角速度

R^L:スクリュー側のプーリ半径

 F_d (ω^L):スクリュー側の動摩擦抵抗

x_, : xの処理周期の一つ手前の値

[8] 下記数7に基づいて前記モータのトルク指令値T^{CMD}を算出し、前記モータにフィードバックすることを特徴とする請求項3,5又は7記載の電動式射出成形機の圧力制御方法。

[数7]

$$T^{CMD} = k p (\delta^{REF} - \delta^{\hat{}}) + \alpha$$

但し、kp:所定の定数

α: 所定の関数又は定数

[9] 射出成形機のスクリューを前進させるモータの角速度ωと前記モータに与えられているトルク指令値T^{CMD}とからオブザーバに基づいて樹脂圧力推定値δ²を求めるオブザーバ演算器と、

このオブザーバ演算器で求められた樹脂圧力推定値 δ から前記モータのトルク指令値 T^{CMD} を算出し、前記モータにフィードバックするトルク演算器と

を備えたことを特徴とする電動式射出成形機の圧力制御装置。

- [10] 動摩擦抵抗F(ω)をエアーショット(空打ち)時のモータの速度又は位置とトルク値 又は電流値との関係から求めるようにした請求項1記載の電動式射出成形機の圧力 制御方法。
- [11] 動摩擦抵抗F(ω)を速度依存成分と荷重依存成分の和として、前記動摩擦抵抗の速度依存成分をエアーショット(空打ち)時のモータの速度又は位置とトルク値又は電流値との関係から求めると共に、前記動摩擦抵抗の荷重依存成分をノズルをプラグした状態で射出した際のトルク値又は電流値と圧力値との関係から求めるようにしたことを特徴とする請求項1記載の電動式射出成形機の圧力制御方法。

要約書

射出成形機のスクリューを前進させるモータの回転角度を検出するエンコーダの出力から前記モータの角速度 ω を求める。求めた角速度 ω から所定のオブザーバ理論を用いて微分項を含まない形態で樹脂圧力推定値 δ を求め、この樹脂圧力推定値 δ からモータのトルク指令値 T^{CMD} を算出し、モータにフィードバックする。これにより、ロードセル等の圧力検出器を用いることなく、ノイズに影響されない精度の高い推力制御を行う。

[図1]

[図3]

[図4]

[図7]

