Below is the **expanded and detailed explanation for all sections**, focusing on deeper insights, step-by-step processes, practical examples, and exam-ready clarifications for **Mathematical Foundations for Machine Learning**.

1. Linear Systems and Their Solutions

Key Insights

A linear system is a set of linear equations that represent relationships between variables. It can be represented as:

$$Ax = b$$

where:

- A: Coefficient matrix $(m \times n)$.
- x: Unknown vector ($n \times 1$).
- b: Output vector ($m \times 1$).

Detailed Case Analysis

Case 1: No Solution

- A system has no solution if b lies outside the column space of A.
- Example:

$$x_1 + x_2 = 3$$
, $x_1 - x_2 = 1$, $x_1 + x_2 = 5$.

Reducing the augmented matrix:

$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & -1 & 1 \\ 1 & 1 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 3 \\ 0 & -2 & -2 \\ 0 & 0 & 2 \end{bmatrix}.$$

The third row implies $0x_1 + 0x_2 = 2$, which is inconsistent.

Case 2: Unique Solution

- Occurs when A has full column rank (rank(A) = n).
- Example:

$$x_1 + x_2 = 4$$
, $2x_1 - x_2 = 1$.

Solving yields:

$$x_1 = 1, \quad x_2 = 3.$$

Case 3: Infinite Solutions

- ullet Occurs when A does not have full column rank, but b lies in the column space.
- Example:

$$x_1 + x_2 = 3$$
, $2x_1 + 2x_2 = 6$.

This system reduces to:

$$x_1 + x_2 = 3$$
, $0 = 0$.

Hence:

$$x_1 = 3 - x_2$$
, x_2 is free.

Geometric Interpretation

- 1. 2D Systems:
 - Each equation represents a line.
 - Solutions correspond to intersections of lines.
- 2. 3D Systems:
 - Each equation represents a plane.
 - Solutions can be points, lines, or planes.
- 3. Higher Dimensions:
 - Equations represent hyperplanes in \mathbb{R}^n .

2. Splitting a 10 × 5 System

Scenario

For Ax = b, where A is 10×5 , splitting into two subsystems ($A_1x = b_1$, $A_2x = b_2$) seems tempting. However, this is problematic because:

1. Constraints from $A_2x = b_2$ influence solutions to $A_1x = b_1$.

2. The combined system may lose consistency if solved separately.

Conclusion: Solve the entire system at once for consistency.

3. Row Operations and REF/RREF

Gaussian Elimination

Gaussian elimination reduces A to Row-Echelon Form (REF):

- 1. Eliminate lower triangular entries.
- 2. Use pivoting to simplify rows.

Example: Transform:

$$\begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ 1 & 2 & -1 \end{bmatrix}$$

to REF:

$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -0.5 \\ 0 & 0 & 1 \end{bmatrix}.$$

REF to RREF

To transition to Reduced Row-Echelon Form (RREF):

- 1. Make all pivots 1.
- 2. Eliminate entries above pivots.

Counting Operations

For an $n \times n$ matrix:

- Gaussian elimination: $O(n^3)$.
- RREF conversion: Additional $O(n^2)$.

4. Combined Systems

Key Idea

If $Ax_1 = b_1$ and $Ax_2 = b_2$, then $A(x_1 + x_2) = b_1 + b_2$.

5. Non-Zero Matrices with AB=0 and BA=0

Example:

1. Let:

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}.$$

2. Compute:

$$AB = 0$$
, $BA \equiv 0$.

6. Positive Definiteness

A matrix $S = A^T A$ is **positive definite** if:

$$x^T S x > 0, \quad \forall x = 0.$$

Proof:

$$x^T S x = ||Ax||^2 \ge 0.$$

Diagonal entries of S are sums of squares of A's columns, ensuring positivity.

7. Determinants

The determinant det(A) represents the **volume scaling factor** of the transformation A.

Recursive Formula:

$$\det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(A_{1j}).$$

8. Eigenvalues and Eigenvectors

Definition

For $A \in \mathbb{R}^{n \times n}$, λ is an eigenvalue if:

$$Av = \lambda v$$
,

where $v \equiv 0$ is the eigenvector.

Applications

- 1. PCA for dimensionality reduction.
- 2. Stability analysis in systems.

9. Singular Value Decomposition (SVD)

Definition

For $A \in \mathbb{R}^{m \times n}$, SVD decomposes A as:

$$A = U\Sigma V^T$$
,

where:

- ullet U: Left singular vectors.
- V: Right singular vectors.
- Σ : Diagonal matrix of singular values.

Applications:

1. Dimensionality reduction.

2. Image compression.

10. Regularization in Machine Learning

Key Idea

Regularization prevents overfitting by penalizing large model weights.

Techniques:

1. L2 Regularization (Ridge):

Loss =
$$||Ax - b||^2 + \lambda ||x||^2$$
.

2. L1 Regularization (Lasso):

Loss =
$$||Ax - b||^2 + \lambda ||x||_1$$
.