Aula 11 Sistemas Operacionais I

Deadlocks

Prof. Julio Cezar Estrella jcezar@icmc.usp.br

Material adaptado de

Sarita Mazzini Bruschi

baseados no livro Sistemas Operacionais Modernos de A. Tanenbaum

- Dispositivos e recursos são compartilhados a todo momento: impressora, disco, arquivos, etc...;
- Deadlock: processos ficam parados sem possibilidade de poderem continuar seu processamento;

Uma situação de *deadlock*

Recursos

- Recursos: objetos acessados, os quais podem ser tanto hardware quanto uma informação
 - Preemptivos: podem ser retirados do processo sem prejuízos;
 - Memória;
 - CPU;
 - Não-preemptivos: não podem ser retirados do processo, pois causam prejuízos;
 - CD-ROM;
 - Unidades de fita;
 - Deadlocks ocorrem com recursos não-preemptivos;

Recursos

- Operações sobre recursos/dispositivos:
 - Requisição do recurso;
 - Utilização do recurso;
 - Liberação do recurso;
- Se o recurso requerido não está disponível, duas situações podem ocorrer:
 - Processo que requisitou o recurso fica bloqueado até que o recurso seja liberado, ou;
 - Processo que requisitou o recurso falha, e depois de um certo tempo tenta novamente requisitar o recurso;

Recursos

- Aquisição do recurso
 - Para alguns tipos de recursos, os processos dos usuários gerenciam o uso dos recursos, através, por exemplo, de semáforos
 - Exemplo: acesso a registros em um sistema de banco de dados
- Se vários processos tentam acessar os mesmos recursos, podem ocorrer situações onde a ordem de solicitação dos recursos pode conduzir a um deadlock ou não

Potencial deadlock

```
semaphore resource_1;
semaphore resource_2;
void Process_A (void){
   down(&resource_1);
   down(&resource_2);
   use_both_resources();
   up(&resource_2);
   up(&resource_1);
void Process_B (void){
   down(&resource_2);
   down(&resource_1);
   use_both_resources();
   up(&resource_1);
   up(&resource_2);}
```

Livre de *deadlock*

```
semaphore resource_1;
semaphore resource_2;
void Process_A (void){
   down(&resource_1);
  down(&resource_2);
  use_both_resources();
  up(&resource_2);
  up(&resource_1);
void Process_B (void){
   down(&resource_1);
   down(&resource_2);
  use_both_resources();
  up(&resource_1);
  up(&resource_2);}
```

- Definição formal:
 - "Um conjunto de processos estará em situação de deadlock se todo processo pertencente ao conjunto estiver esperando por um evento que somente um outro processo desse mesmo conjunto poderá fazer acontecer."

- Quatro condições para que ocorra um *deadlock*:
 - Exclusão mútua: cada recurso pode estar somente em uma de duas situações: ou associado a um único processo ou disponível;
 - <u>Posse</u> e <u>espera</u> (*hold and wait*): processos que já possuem algum recurso podem requer outros recursos;
 - Não-preempção: recursos já alocados não podem ser retirados do processo que os alocou; somente o processo que alocou os recursos pode liberá-los;
 - <u>Espera Circular</u>: um processo pode esperar por recursos alocados a outro processo;
- Todas as condições devem ocorrer para que ocorra um *deadlock*

- Geralmente, deadlocks são representados por grafos a fim de facilitar sua detecção, prevenção e recuperação
 - Ocorrência de ciclos pode levar a um *deadlock*;

Deadlocks Grafos de alocação de recursos

- a) Recurso R alocado ao Processo A
- b) Processo B requisita Recurso S
- c) Deadlock

- Quatro estratégias para tratar deadlocks:
 - 1. Ignorar o problema;
 - 2. Detectar e recuperar o problema;
 - 3. Evitar dinamicamente o problema alocação cuidadosa de recursos;
 - 4. Prevenir o problema por meio da não satisfação de uma das quatro condições citadas anteriormente;

• (1) Ignorar o problema:

- Freqüência do problema;
- Alto custo estabelecimento de condições para o uso de recursos;
- UNIX e WINDOWS;
- Algoritmo do <u>AVESTRUZ</u>;

• (2) Detectar e Recuperar o problema:

- Processos estão com todos os recursos alocados;
- Procedimento: Permite que os deadlocks ocorram, tenta detectar as causas e solucionar a situação;
- Algoritmos:
 - Detecção com um recurso de cada tipo;
 - Detecção com vários recursos de cada tipo;
 - Recuperação por meio de preempção;
 - Recuperação por meio de rollback (volta ao passado);
 - Recuperação por meio de eliminação de processos;

- Detecção com um recurso de cada tipo:
 - Construção de um grafo;
 - Se houver ciclos, existem potenciais deadlocks;

- Detecção com vários recursos de cada tipo:
 - Classes diferentes de recursos vetor de recursos existentes
 (E):
 - Se classe1=unidade de fita e E_1 =2, então existem duas unidades de fita;
 - Vetor de recursos disponíveis (A):
 - Se ambas as unidades de fita estiverem alocadas, $A_1=0$;
 - Duas matrizes:
 - C: matriz de alocação corrente;
 - C_{ii}: número de instâncias do recurso j entregues ao processo i;
 - R: matriz de requisições;
 - R_{ii}: número de instâncias do recurso j que o processo i precisa;

4 unidades de fita;

2 plotters;

3 scanner;

1 unidade de CD-ROM

Três processos já usam:

P₁ usa um *scanner*;

P₂ usa duas unidades de fita e uma de CD-ROM;

P₃ usa um *plotter* e dois *scanners*;

Requisições:

P₁ requisita duas unidades de fita e um CD-ROM;

P₂ requisita uma unidade de fita e um *scanner*;

P₃ requisita duas unidades de fita e um *plotter*;

Recursos existentes

$$E = (4 \ 2 \ 3 \ 1)$$
UF P S UCD

Matriz de alocação

$$C = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \end{bmatrix} \longleftarrow P_{1}$$

Recursos disponíveis

$$A = (2 \ 1 \ 0 \ 0)$$
UF P S UCD

$$R = \begin{bmatrix} 0 & F & S & UCD \\ 2 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix} \leftarrow P_{1}$$

4 unidades de fita; Requisições:

2 *plotters*; P_1 requisita duas unidades de fita e um CD-ROM;

3 scanners; P_2 requisita uma unidade de fita e um scanner;

1 unidade de CD-ROM P_3 requisita duas unidades de fita e um *plotter*;

Recursos existentesRecursos disponíveis

$$E = (4 \ 2 \ 3 \ 1)$$
 $A = (2 \ 1 \ 0 \ 0) P_3$ pode executar

$$A = (0 \ 0 \ 0) P_3$$
 alocou recursos

Matriz de alocação

$$C = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ \mathbf{2} & \mathbf{2} & \mathbf{2} & \mathbf{0} \end{bmatrix} \stackrel{P_1}{\longleftarrow} P_2$$

4 unidades de fita; Requisições:

2 *plotter*; P_1 requisita duas unidades de fita e um CD-ROM;

3 scanners; P_2 requisita uma unidade de fita e um scanner;

1 unidade de CD-ROM P_3 requisita duas unidades de fita e um *plotter*;

Recursos existente Recursos disponíveis

$$E = (4 \ 2 \ 3 \ 1)$$
 $A = (2 \ 1 \ 0 \ 0)$

$$A = (2 \ 2 \ 2 \ 0) P_3$$
 liberou recursos

Matriz de alocação

$$C = \begin{bmatrix} 0 & 0 & 1 & \overline{0} \\ 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & \underline{0} \end{bmatrix} \xrightarrow{P_1} P_2$$

4 unidades de fita;

Requisições:

2 plotter;

P₁ requisita duas unidades de fita e um CD-ROM;

3 scanners;

P₂ requisita uma unidade de fita e um *scanner*;

1 unidade de CD-ROM

P₃ requisita duas unidades de fita e um *plotter*;

Recursos existentes Recursos disponíveis

$$E = (4 \ 2 \ 3 \ 1)$$

$$E = (4 \ 2 \ 3 \ 1)$$
 $A = (2 \ 1 \ 0 \ 0)$

$$A = (2 \ 2 \ 2 \ 0) P_2$$
 pode executar

$$A = (1 \ 2 \ 1 \ 0) P_2$$
 alocou recursos

Matriz de alocação

$$C = \begin{bmatrix} 0 & 0 & 1 & 0 \\ \mathbf{3} & \mathbf{0} & \mathbf{1} & \mathbf{1} \\ 0 & 0 & 0 & 0 \end{bmatrix} \leftarrow \begin{matrix} P_1 \\ \leftarrow P_2 \\ \leftarrow P_3 \end{matrix}$$

$$R = \begin{bmatrix} 2 & 0 & 0 & 1 & & & P_1 \\ 0 & 0 & 0 & 0 & & & & P_2 \\ 0 & 0 & 0 & 0 & & & & P_3 \end{bmatrix}$$

4 unidades de fita; Requisições:

2 *plotter*; P_1 requisita duas unidades de fita e um CD-ROM;

3 scanners; P_2 requisita uma unidade de fita e um scanner;

1 unidade de CD-ROM P_3 requisita duas unidades de fita e um *plotter*;

Recursos existentes Recursos disponíveis

$$E = (4 \ 2 \ 3 \ 1)$$
 $A = (2 \ 1 \ 0 \ 0)$

$$A = (2 \ 2 \ 2 \ 0)$$

$$A = (4 \ 2 \ 2 \ 1) P_2$$
 liberou recursos

Matriz de alocação

$$C = \begin{bmatrix} 0 & 0 & 1 & \overline{0} & \longleftarrow & P_1 \\ 0 & 0 & 0 & 0 & \longleftarrow & P_2 \\ 0 & 0 & 0 & 0 & \longleftarrow & P_3 \end{bmatrix}$$

$$R = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \leftarrow \begin{matrix} P_1 \\ \leftarrow P_2 \\ \leftarrow P_3 \end{matrix}$$

4 unidades de fita;

2 plotter;

3 scanners;

1 unidade de CD-ROM

Recursos existentes

$$E = (4 \ 2 \ 3 \ 1)$$

Requisições:

P₁ requisita duas unidades de fita e um CD-ROM;

P₂ requisita uma unidade de fita e um *scanner*;

P₃ requisita duas unidades de fita e um *plotter*;

Recursos disponíveis

$$A = (2 \ 1 \ 0 \ 0)$$

$$A = (2 \ 2 \ 2 \ 0)$$

$$A = (4 \ 2 \ 2 \ 1) P_1 pode executar$$

$$A = (2 \ 2 \ 2 \ 0) P_1$$
 alocou recursos

Matriz de alocação

$$C = \begin{bmatrix} \mathbf{2} & \mathbf{0} & \mathbf{1} & \mathbf{1} & ---- & P_1 \\ 0 & 0 & 0 & 0 & ---- & P_2 \\ 0 & 0 & 0 & 0 & ---- & P_3 \end{bmatrix}$$

Ao final da execução, temos: 2 plotters;

4 unidades de fita;

3 scanners;

1 unidade de CD-ROM

Recursos existentes

$$E = (4 \ 2 \ 3 \ 1)$$

Recursos disponíveis

$$A = (4 \ 2 \ 3 \ 1)$$

Matriz de alocação

Deadlocks – Situação 1

- 4 unidades de fita;
- Requisições:

2 plotters;

P₂ requisita duas unidade de fita, um *scanner*

3 scanners;

- e uma unidade de CD-ROM;
- 1 unidade de CD-ROM

$$E = (4 \ 2 \ 3 \ 1)$$

Recursos disponíveis

Recursos existentes
$$A = (2 \ 1 \ 0 \ 0) P_3$$
 pode executar

$$A = (2 \ 2 \ 2 \ 0)$$

Matriz de alocação

$$C = \begin{bmatrix} 0 & 0 & 1 & \overline{0} & -P_1 \\ 2 & 0 & 0 & 1 & -P_2 \\ 0 & 0 & 0 & 0 & -P_3 \end{bmatrix}$$

Matriz de requisições

Nessa situação, nenhum processo pode ser atendido!

- Detecção com vários recursos de cada tipo:
 - Para esse algoritmo, o sistema, geralmente, procura periodicamente por deadlocks;
 - CUIDADO:
 - Evitar ociosidade da CPU → quando se tem muitos processos em situação de deadlock, poucos processos estão em execução;

- Recuperação de *Deadlocks*:
 - Por meio de preempção: possibilidade de retirar temporariamente um recurso de seu atual dono (processo) e entregá-lo a outro processo;
 - Por meio de rollback: recursos alocados a um processo são armazenados em arquivos de verificação; quando ocorre um deadlock, os processos voltam ao estado no qual estavam antes do deadlock → solução cara;

- Recuperação de *Deadlocks*:
 - Por meio de eliminação de processos: processos que estão no ciclo com deadlock são retirados do ciclo;
 - Melhor solução para processos que não causam algum efeito negativo ao sistema;
 - Ex1.: compilação sem problemas;
 - Ex2.: atualização de um base de dados problemas;

• (3) Evitar dinamicamente o problema:

- Alocação individual de recursos → à medida que o processo necessita;
- Soluções também utilizam matrizes;
- Escalonamento cuidadoso → alto custo;
 - Conhecimento prévio dos recursos que serão utilizados;
- Algoritmos:
 - Banqueiro para um único tipo de recurso;
 - Banqueiro para vários tipos de recursos;
- Definição de <u>Estados Seguros</u> e <u>Inseguros</u>;

- <u>Estados seguros</u>: não provocam *deadlocks* e há uma maneira de atender a todas as requisições pendentes finalizando normalmente todos os processos;
 - A partir de um estado seguro, existe a garantia de que os processos terminarão;
- <u>Estados inseguros</u>: podem provocar *deadlocks*, mas não necessariamente provocam;
 - A partir de um estudo inseguro, não é possível garantir que os processos terminarão corretamente;

- Algoritmos do Banqueiro:
 - Idealizado por Dijkstra (1965);
 - Considera cada requisição no momento em que ela ocorre, verificando se essa requisição leva a um estado seguro; Se sim, a requisição é atendida, se não o atendimento é adiado para um outro momento;
 - Premissas adotadas por um banqueiro (SO) para garantir ou não crédito (recursos) para seus clientes (processos);
 - Nem todos os clientes (processos) precisam de toda a linha de crédito (recursos) disponível para eles;

• Algoritmo do Banqueiro para um único tipo de recurso:

Po	ssu	i	N	Máximo de	linh	na d	e cr	édito =	= 27	2			
	Α	0	6		Α	1	6			Α	1	6	
	В	0	5		В	1	5			В	2	5	
	C	0	4		C *	2	4			С	2	4	
	D	0	7		D	4	7			D	4	7	
	Liv	re:	10		Liv	/re:	2		_	Liv	re:	1	
Seguro				Se	gu	ro			Ins	seg	ur	D	

- Solicitações de crédito são realizadas de tempo em tempo;
- * C é atendido e libera 4 créditos, que podem ser usados por B ou D;

Algoritmo do Banqueiro para um único tipo de recurso:

Po	ssu	i	N	Jáximo	de linh	na d	le cr	rédito	= 2	2	_		
	Α	0	6		Α	1	6			Α	1	6	
	В	0	5		В	1	5			B *	2	5	
	C	0	4		С	2	4			С	2	4	
	D	0	7		D	4	7			D	4	7	
	Liv	re:	10	•	Liv	re:	2	•		Liv	/re:	1	•
Seguro			Se	gu	ro			Ins	seg	ur	0		

- Solicitações de crédito são realizadas de tempo em tempo;
- * B é atendido. Em seguida os outros fazem solicitação, ninguém poderia ser atendido;

- Algoritmo do Banqueiro para vários tipos de recursos:
 - Mesma ideia mas duas matrizes são utilizadas;

A B C D E	$\begin{bmatrix} 1 & 0 & w \\ V_{ita} & d_{a}d_{e} \end{bmatrix}$			
À	′ო	, O	/1	1
В	0	1	0	0
С	1	1	1	0
D	1	1	0	1
E	0	0	0	0

C = Recursos Alocados

Recursos \rightarrow E = (6 3 4 2); Alocados \rightarrow P = (5 3 2 2); Disponíveis \rightarrow A = (1 0 2 0);

Α	1	1	0	0
В	0	1	1	2
С	3	1	0	0
D	0	0	1	0
Е	2	1	1	0

R = Recursos ainda necessários

Algoritmo do Banqueiro para vários tipos de recursos:

A B C D E	$\begin{array}{c c} & U_{ni}da_{0} \\ \hline 0 \\ & U_{ni}da_{0} \\ \hline \end{array}$			$\begin{bmatrix} S_{e_{j}} \\ S_$	P "VOX-
À	3	0	/1	1	
В	0	1	1	0	
С	1	1 1 0	1 0 0	0	
D	1	1	0	1	
E	0	0	0	0	

Alocados \rightarrow P = (5 3 3 2); Disponíveis \rightarrow A = (1 0 1 0);

Α	1	1	0	0
A B	0	1	0	2
С	3	1	0	0
D	0	0	1	0
Е	2	1	1	0

C = Recursos Alocados R = Recursos ainda

- Podem ser atendidos: D, A ou E, C;

• Algoritmo do Banqueiro para vários tipos de recursos:

A B C D	$\begin{array}{c c} & U_{ni}d_{a}d_{e} \\ \hline 1 & 0 & w \\ \hline F_{i}t_{a} & d_{e} \\ \end{array}$		1 0 1	
À	່ (0	/1	1
В	0	1	1	0
С	1	1	1	0
D	1	1	0	1
E	0	0	1	0

C = Recursos Alocados

Alocados \rightarrow P = (5 3 4 2); Disponíveis \rightarrow A = (1 0 0 0);

Α	1	1	0	0
В	0	1	0	2
С	3	1	0	0
D	0	0	1	0
E	2	1	0	0

R = Recursos ainda necessários

- Deadlock → atender o processo E;
- Solução: Adiar a requisição de E por alguns instantes;

- Algoritmo do Banqueiro:
 - Desvantagens
 - Pouco utilizado, pois é difícil saber quais recursos serão necessários;
 - Escalonamento cuidadoso é caro para o sistema;
 - O número de processos é dinâmico e pode variar constantemente, tornando o algoritmo custoso;
 - Vantagem
 - Na teoria o algoritmo é ótimo;

• (4) Prevenir Deadlocks:

Atacar uma das quatro condições:
 Condição Abordagem

Exclusão Mútua	Não é viável deixar de usar; Alocar todos os recursos usando um <i>spool</i> - possível para alguns recursos, por ex. impressora. Só alocar recurso quando for absolutamente necessário.
Uso e Espera	Requisitar todos os recursos inicialmente – processo não sabe o que será necessário (volta ao algoritmo do banqueiro) Uso inadequado dos recursos Quando processo quer mais um recurso deve liberar todos os que possui e requisitar todos novamente

Atacar uma das quatro condições:

Condição	Abordagem
Não-	Retirar recursos dos processos
preempção	Pode ocasionar problemas de desempenho – fita
	Pode ocasionar erros – CDROM
	Opção pouco aconselhável!
Espera	Ordenar numericamente os recursos
Circular	Requisitar recursos só em ordem crescente
	Pode ser ineficiente mas é a mais atrativa de ser praticada

- Problema potencial em qualquer SO
- Pode-se utilizar:
 - Algoritmos para prevenir deadlock
 - Algoritmos para detectar deadlock
- Algoritmos causam impacto negativo no desempenho e flexibilidade do sistema
- SOs de propósito geral utilizam Algoritmo do Avestruz