Esercitazione 06 Reticoli e Algebre di Boole

Matteo Palmonari / Ugo Moscato / Rafael Penaloza

Esercizio Principale

- Determinare, se i seguenti POSET sono:
 - Reticoli; se si, determinare se sono:
 - Complementati (COMPL.)
 - Distributivi (DISTR.)
 - Limitati (LIM.)
 - Algebre di Boole (A. BOOLE)

Reticoli #WarmUp

Reticoli #1

Reticoli #2

Reticoli #3

RETICOLO? COMPLEM.? DISTR.? LIM.? A. BOOLE?

Altri Esercizi #1

- Fare lo stesso esercizio per poset in Fig. 3.2 Pag.87
 - Numerati di seguito come 1,2,3,4,5

Altri Esercizi #2

- Fare un esempio di reticolo infinito e limitato
- Fare un esempio di reticolo infinito e non limitato
- Fare un esempio di reticolo limitato ma non completo (facoltativa)

Esercitazione 06 Reticoli e Algebre di Boole

Matteo Palmonari / Ugo Moscato / Rafael Penaloza

Soluzioni e raccomandazioni

Metodo per verificare se un POSET è un reticolo

- Controllare esistenza di MEET e JOIN per coppie di elementi non confrontabili
 - Per tutti gli elementi confrontabili il MEET è l'elemento minore e il JOIN è l'elemento maggiore
 - Per tutte le coppie <x,x> x è ovviamente sia il MEET che il JOIN

Metodo per verificare se un reticolo limitato (finito) è **non** distributivo:

- Cercare i complementi
 - se un elemento ha due complementi, il reticolo non puà essere distributivo
 - In base alla proprietà per cui in un reticolo limitato distributivo se un elemento ha un complemento questo è unico
- Verificare che contenga uno dei più piccoli reticoli NON distributivi

Finitezza, Limitatezza e Completezza

- Un reticolo finito è sempre limitato e completo
- Un reticolo infinito può essere limitato o non limitato
- Un reticolo infinito può essere completo o non completo
- Un reticolo infinito completo è anche limitato, ma esistono reticoli infiniti limitati e non completi (alcuni loro sottoinsiemi non hanno massimo minimo)

Altri Esercizi #1 - Soluzioni

- Fare lo stesso esercizio per poset in Fig. 3.2 Pag.
 87
 - Numerati di seguito come 1,2,3,4,5
 - 1. Reticolo, limitato, non complementato, distributivo
 - 2. Reticolo, limitato, non complementato, distributivo
 - 3. Reticolo, limitato, non complementato, **non** distributivo
 - 4. No reticolo
 - 5. Reticolo, limitato, non complementato, distributivo

Altri Esercizi #2 – Soluzioni - Limitatezza

- Fare un esempio di reticolo infinito e limitato
 - Insieme potenza di un insieme infinito con relazione di sottoinsieme (il massimo esiste ed è l'insieme stesso)
- Fare un esempio di reticolo infinito e non limitato
 - N ordinato secondo la relazione di divisibilità (non ha un massimo)
 - N ordinato secondo la relazione di minore o uguale (non ha un massimo)

Altri Esercizi #2 – Soluzioni - Completezza

- Fare un esempio di reticolo limitato ma non completo (difficile)
 - Intervallo di numeri reali [0,1]. Questo insieme è limitato, ma non è completo perché il sottoinsieme di tutti i numeri >0 (cioè l'intervallo (0,1]) non ha un minimo.
 - Vale lo stesso prendendo l'insieme numerabile dei razionali in quell'intervallo
 - Z, rispetto alla relazione minore o uguale, non è completo.
 Per esempio, il sottoinsieme di tutti i numeri interi pari (che è un sottoinsieme proprio di Z) non ha minimo ne massimo.
- Osservazione: sono tutti sottoinsiemi infiniti di insiemi infiniti.