Übungsblatt 16 zur Homologischen Algebra II

Aufgabe 1. Universelle Eigenschaft der Garbifizierung

Seien \mathcal{F} und \mathcal{G} Prägarben auf einem topologischen Raum X (oder einer Örtlichkeit). Sei $\alpha: \mathcal{F} \to \mathcal{G}$ ein Morphismus von Prägarben. Sei \mathcal{G} sogar eine Garbe. Sei $\mathcal{F} \xrightarrow{\iota} s(\mathcal{F})$ die Garbifizierung von \mathcal{F} . Konstruiere einen Garbenmorphismus $\overline{\alpha}: s(\mathcal{F}) \to \mathcal{G}$ mit $\overline{\alpha} \circ \iota = \alpha$ und weise insbesondere seine Wohldefiniertheit nach.

Aufgabe 2. Halme des Pushforwards

a) Sei X ein topologischer Raum. Sei $f:Y\hookrightarrow X$ die Inklusion eines abgeschlossenen Teilraums. Sei $\mathcal E$ eine Garbe auf Y. Zeige:

$$(f_*\mathcal{E})_x \cong \begin{cases} \mathcal{E}_x, & \text{falls } x \in Y, \\ \{0\}, & \text{falls } x \notin Y. \end{cases}$$

- b) Mache dir anhand eines Beispiels klar, dass die analoge Aussage für Inklusionen offener Teilräume im Allgemeinen nicht gilt.
- c) Folgere, dass der Pushforward-Funktor $f_*: \mathrm{AbShv}(Y) \to \mathrm{AbShv}(X)$ in der Situation von Teilaufgabe a) exakt ist.
- d) Sei $f: Y \to X$ eine abgeschlossene stetige Abbildung. Sei \mathcal{E} eine Garbe auf Y. Sei $x \in X$. Zeige: $(f_*\mathcal{E})_x \cong \Gamma(f^{-1}[x], \mathcal{E})$.

Hinweis: Beachte, dass die Faser $f^{-1}[x]$ im Allgemeinen nicht offen sein wird. Die rechte Seite ist daher als Kolimes über die $\mathcal{E}(U)$, wobei $U \subseteq Y$ alle offenen Mengen mit $f^{-1}[x] \subseteq U$ durchläuft, definiert.

Tipp: Eine stetige Abbildung $f: Y \to X$ ist genau dann abgeschlossen, wenn für alle $x \in X$ und alle offenen Umgebungen U von $f^{-1}[x]$ in Y eine offene Umgebung V von x mit $f^{-1}[V] \subseteq U$ existiert. (Siehe XXX.)

Jordan-Hölder

Serresche Quotientenkategorien

AB5