

Código: ST245

Estructura de Datos 1

Laboratorio Nro. 2: Notación O grande

Juan Diego Gutiérrez Montoya

Universidad Eafit Medellín, Colombia jdgutierrm@eafit.edu.co

Juanita Vanegas Elorza

Universidad Eafit Medellín, Colombia jvanegase@eafit.edu.co

3) Simulacro de preguntas de sustentación de Proyectos

3.1

	100.000	1.000.000	10.000.000	100.000.000
Array Sum	160 ms	2000 ms	Más de un minuto	Más de un minuto
ArrayMax	134ms	1548ms	Más de un minuto	Más de un minuto
Fibonacci	10 = 0ms	20 = 0ms	25 = 0ms	30 = 0ms

3.3 Que esto ejercicios son de orden exponencial ya que al aumentar sus datos el tiempo aumenta más rápidamente.

3.4

	N =100.000	N =1'000.000	N = 10'000.000	N = 100'000.000
Array Sum	0	1	6	13
Array maximum	0	1	10	21
Insertion sort	17246	Más de 5 minutos	Más de 5 minutos	Más de 5 minutos
Merge sort	16	174	1930	5442

Código: ST245

Estructura de Datos 1

3.5

Insertion sort		
Entrada	Tiempo	
1000	3	
10000	156	
100000	17246	

Array Sum	
Entrada	Tiempo
100000	0
1000000	1
10000000	6
100000000	13

Código: ST245
Estructura de
Datos 1

Array maximum		
Entrada	Tiempo	
100000	0	
1000000	1	
10000000	10	
100000000	21	

Código: ST245

Marge sort		
Entrada	Tiempo	
100000	16	
1000000	174	
10000000	1930	
100000000	4742	

- **3.6** Los tiempos obtenidos con el laboratorio se relacionan con la teoría obtenida de la notación O, con Array Sum, Array máximum y Marge sort no hay problema porque es de orden lineal en cambio la complejidad de Insertion sort es de orden cuadrático y por eso con valores mayores el tiempo de ejecución es mucho más grande.
- 3.7 Siendo n el número de elementos en el arreglo y estos generados de forma aleatoria con un valor máximo de cinco mil, el problema con Insertion sort para valores grandes de n es que recorre y compara cual elemento es mayor devolviéndose en el arreglo y comparándolo con el elemento a insertar hasta llegar a la posición correcta corriendo todos los elementos hacia la derecha y esto hace que la complejidad del problema con valores grandes sea mayor.
- 3.8 Los tiempos no crecen tan rápido con Array sum porque su complejidad es de orden lineal y solo se recorre el arreglo una vez y se va sumando todos los elementos hasta que se acabe el arreglo, en cambio Insertion sort recorre el arreglo y va moviendo todos sus elementos hacia la derecha hasta que el arreglo este ordenado lo que aumenta la complejidad y hace que los tiempos crezcan mucho más.
- 3.9 Teniendo en cuenta los tiempos obtenidos es más eficiente Marge sort con respecto a Insertion sort para arreglos grandes y es más eficiente Insertion sort para arreglos pequeños con respecto a Marge sort.
- **3.10** El ejercicio maxSpan evalúa el primer y el último elemento y se va devolviendo hasta encontrar un número que sea diferente al primero del arreglo y ahí calcula el span que es el número de elementos entre el más a la izquierda y más a la derecha anteriormente en el arreglo.

Código: ST245

```
3.11
Array 2:
         public boolean only14(int[] nums) {
          int cont=0;
                                                        //c1
          for(int i=0;i<nums.length;i++){
                                                        // c.n
           if(nums[i]==1|| nums[i]==4) cont++;
                                                        // c2
          if(cont==nums.length) return true;
                                                       // c3
          return false;
                                                      // c4
         public boolean isEverywhere(int[] nums, int val) {
          for(int i=0;i<nums.length-1;i++){
                                                                 // c.n
           if(nums[i]!=val\&\&nums[i+1]!=val) return false;
                                                                 // c1
          return true;
                                                                // c2
         public int matchUp(int[] nums1, int[] nums2) {
          int cont=0;
                                                                // c1
           for(int i=0;i<nums1.length;i++){
                                                               // c.n
            int a=nums1[i]-nums2[i];
                                                               // c2
              if(Math.abs(a) \le 2\&Math.abs(a) > 0) cont++;
                                                               // c3
           }
                                                               // c4
           return cont;
         public boolean has12(int[] nums) {
          boolean comprobar=false;
                                                              // c1
           for(int i=0;i<nums.length;i++){
                                                              // c.n
            if(nums[i]==1)
                                                              // c2
              comprobar=true;
                                                             // c3
            if(comprobar&&nums[i]==2)
                                                             // c4
              return true;
                                                            // c5
                                                            // c6
           return false;
         public boolean haveThree(int[] nums) {
          int cont=0;
                                                            // c1
           if(nums.length<5)
                                                           // c2
            return false;
                                                           // c3
           for(int i=0;i<nums.length-1;i++){
                                                          // c.n
            if(nums[i]==3\&\&nums[i+1]!=3)
                                                          // c4
              cont++;
                                                         // c5
           if(nums[nums.length-1]==3&&nums[nums.length-2]!=3) // c6
```


Código: ST245

```
cont++;
                                                        // c7
            return cont==3;
                                                        // c8
         La complejidad en todos los casos es T(n) = O(n)
Array 3:
         public int maxSpan(int[] nums) {
          int max=0;
          int retador=0;
          for(int i=0;i<nums.length;i++){</pre>
                                                            // c.n
           int j=nums.length-1;
           while(nums[j]!=nums[i]){
                                                           // c.n.n
            j--;
           }
           retador=j-i+1;
           if(retador>max)max=retador;
          }
          return max;
         }
         T(n) = c+c.n+c.n.n
         T(n) = O(n^2)
          public int[] fix34(int[] nums) {
            int temp=0;
            boolean three=false;
           for(int i=0;i<nums.length-1;i++){
                                                            // c.n
            if(nums[i]==3)
             three=true;
            if(three==true){
             three=false;
            if(nums[i+1]!=4)
            for(int j=1;j<nums.length;j++){
                                                           // c.n.n
              if(nums[j]==4\&&nums[j-1]!=3){
                temp=nums[i+1];
               nums[i+1]=nums[j];
               nums[j]=temp;
         return nums;
         T(n) = c+c.n+c.n.n
         T(n) = O(n^2)
```


Código: ST245

```
public int[] fix45(int[] nums) {
 for(int i=0;i<nums.length;i++){
                                                 // c.n
  if(nums[i]==4){
   for(int j=0;j<nums.length;j++){
                                                 // c.n.n
     if(nums[j]==5){
      if(j>0&&nums[j-1]!=4){
       int t=nums[i+1];
       nums[i+1]=5;
       nums[j]=t;
      else if(j==0){
       int t=nums[i+1];
       nums[i+1]=5;
       nums[j]=t;
 return nums;
T(n) = c+c.n+c.n.n
T(n) = O(n^2)
public boolean linearIn(int[] outer, int[] inner) {
 int var=0;
                                                               // c.n
 for(int j=0;j<inner.length;j++){</pre>
  for(int i=0;i<outer.length;i++){</pre>
                                                              // c.n.m
   if(inner[i]==outer[i]){
      var++;
      break;
  }
 if(var==inner.length) return true;
 return false;
T(n) = c+c.n+c.n.m
T(n) = O(n.m)
public int[] seriesUp(int n) {
 int[]arr=new int[n*(n+1)/2];
 int 1=0;
 for(int i=1;i <= n;i++)
                                                 // c.n
  for(int j=1; j<=i; j++, l++){
                                                // c.n.n
```


Código: ST245

Estructura de Datos 1

```
arr[l]=j;
}
return arr;
}
T(n) = c+c.n+c.n.n
T(n) = O(n^2)
```

3.12

Array 2: N es nums.length

Array 3: N es nums.length, N es inner.length, M es outer.length

4) Simulacro de Parcial

- **1.** b
- **2.** d
- **3.** b
- **4.** b
- **5.** d
- **6.** a
- **7.1** $T(n) = cn + c_2$

5) Lectura recomendada (opcional)

- a) R.C.T Lee, Introducción al análisis y diseño de algoritmos, Capitulo 2, 2005
- b) Un algoritmo es bueno según su eficiencia, es decir, su complejidad, que se haya con un análisis matemático donde el tamaño N depende de su ejecución. Es importante si se puede encontrar un algoritmo con menor orden de complejidad, pero también es claro que la complejidad como n^2, n^3 pueden ser no deseados pero siguen siendo tolerados a comparación de 2^n.

La cota inferior de un problema es la complejidad temporal mínima requerida por cualquier algoritmo. Existen los algoritmos polinominales y los algoritmos exponenciales, para cualquier algoritmo se está interesado en su comportamiento en tres situaciones: mejor caso, caso promedio y peor caso.

- Algunos ejemplos de algoritmos son: el ordenamiento por inserción directa, búsqueda binaria, ordenamiento heap sort. Para medir la dificultad de un problema se dice que si este se puede resolver con un algoritmo de baja complejidad es sencillo.
- **c)** Mapa de Conceptos

Código: ST245

