

Usability Engineering & Testing

Introduction

Procedure

Details of Course

- Close to research
 - Discussion of research papers
 - Project: Application to example
- Discussion, questions, feedback: Any time!
- There will be group work, sometimes also on Laptops
- You can give a presentation on a topic that is especially interesting/relevant for you
- You can make suggestions on content of the course

Formal Things

- Oral exam
- Admission:
 - Homework assignments
 - Presentation of exercise results
 - Conducting an experiment and writing a report
 - Participate in other experiments
- Presentation for special topics
- On request, the project will be graded and can be used to improve the grade of the oral
- Deadline: 2 weeks before exam if you want it graded, 1 week otherwise

Project

- Evaluate a self-selected research question and write a report on it
 - Do comments support comprehensibilty of source code?
 - Does my new prototype improve a workflow?
- Working hours per person:
 - 40 hours of research +
 - 20 hours of writing
- 2 to 3 persons per project

Grading Criteria

- 1. Relevant research question
- 2. Clear research hypothesis
- 3. Justified and suitable methods
- 4. Justified and suitable selection of participants
- Quality of applying method (e.g., well-design interview question, plausible measures)
- 6. Quality of analysis (e.g., statistics, qualitative analysis)
- 7. Suitable discussion of validity
- Clear and suitable structure of report (e.g., separation of data and interpretation)
- 9. Writing quality of report and adherence to template

Project Report -Points

- 0 to 2 points per criterion (3 for excellent realization)
- Grading can be used to improve grade in oral exam
 - In that case, the report needs to be handed in at least two weeks before exam
 - If grade should not be used, one week is sufficient

Points	Grade
> 17	1,0
16	1,3
15	1,7
14	2,0
•••	•••
8	4,0

Questions on the organizational part?

Who are You?

- Name
- Course of study
- Semester
- Existing experience
- Request for special topics

Goals of the Course

- Overview of available empirical methods
- Application to questions in computer science (e.g., for Master's thesis, Ph.D. thesis)
- To come from oppinions/plausibility to neutrality/objectivity
- Fun

Literature

- Jutta Markgraf, Hans-Peter Musahl, Friedrich Wilkening, Karin Wilkening, and Viktor Sarris. Studieneinheit Versuchsplanung, 2001. FIM-Psychologie Modellversuch, Universität Erlangen-Nürnberg.
- Jürgen Bortz. *Statistik für Human- und Sozialwissenschaftler*. Springer, 2004. http://www.springer.com/psychology/book/978-3-642-12769-4?changeHeader
- Anderson and Finn. The New Statistical Analysis of Data. Springer Texts in Statistics. 2000.
- Robert A. Donnelly Jr. The Complete Idiot's Guide to Statistics. Alpha, 2007
- In addition, different research literature.

What Do We Need Empirical Methods for?

Learning Goals

- Understand necessity for empirical research
- Differentiate empirical methods from other methods
- Understand problems of empirical research

Task

How would you evaluate the following statement:

The programming language Python makes developers more productive?

What solid insights do we have?

- What do you know about the following topics?
- What statement/theory is linked to this topic?
 What have you learned in other courses?
- Which evidence do you know (e.g., from other courses)?
- Does that match with your experience?
- What kinf of evidence would convince you?

UML

What solid insights do we have?

- What do you know about the following topics?
- What statement/theory is linked to this topic?
 What have you learned in other courses?
- Which evidence do you know (e.g., from other courses)?
- Does that match with your experience?
- What kinf of evidence would convince you?

Development Processes

What solid insights do we have?

- What do you know about the following topics?
- What statement/theory is linked to this topic?
 What have you learned in other courses?
- Which evidence do you know (e.g., from other courses)?
- Does that match with your experience?
- What kinf of evidence would convince you?

Pair Programming

What solid insights do we have?

- What do you know about the following topics?
- What statement/theory is linked to this topic?
 What have you learned in other courses?
- Which evidence do you know (e.g., from other courses)?
- Does that match with your experience?
- What kinf of evidence would convince you?

Empirical Research

Empirical Research

- Greek (empeiría): Experience, Observation
- German dictionary:
 - a) Method based on scientific experience to gain insights
 - b) Knowledge gained from scientific experience

Empirical Research Does not Mean:

- Theoretical thoughts
- Intuition
- Random selection
- Authority
- Persistence
- Empiricism

The Scientific Method

Goals of the Scientific Method

- Theory
- Prediction
- Explanation

Scientist

The scientist builds in order to study; the engineer studies in order to build.

F. Brooks. The Computer Scientist as Toolsmith II. Communications of the ACM, 39:3, 1996.

Scientist

- Understanding as goal (facts, relationships)
- Construction as far as necessary to fulfill goal

Engineer

- Construction of something useful as goal
- Understanding as a way to better construction

Computer Science

- Rooted in mathematics (theory)
- Electrical Engineering
- Today: huge engineering part in many areas (e.g., when constructing UIs)
- Used by people (psychology, politics)
- Empirical research is growing more and more important

Mathematical Proof vs. Empirical Research

- Proof of a closed system
- Formalization of statement and research topc
- E.g., mathematical induction

Unchallengeable

- Cannot always be formalized
- E.g., interaction with people
- Result is observable, but not provable

- No final result
- Collect evidence
- Falsification

Statements that cannot be proven, but observed

- Example
 - Copy & Paste causes errors
- Behavior of users (errors) cannot be proven, because there is no formal model of a user
- But behavior of users can be observed (e.g., during or after development, we can examine whether errors are related to copy & paste)

Problem of the Human Factor

- Humans use a software tool or develop software
 - Human behavior is typically non-deterministic (mood, daily state of mind)
 - Intra-individual differences are difficult to determine
- Most likely large difference between indivuduals
 - Skills, education, personal preferences
- Many (possibly causal) relationships are currently unknown
 - When does a user/programmer make an error?
 - When is a UI/source code less usable/comprehensible?

– ...

Empirical Research – First Steps (1)

- Single observations?
 - Can one single observation be used as evidence for a statement?
 - Example 1:
 - Write a program "Hello World" in Java. Let your colleague write "Hello World" Python. Who needs more time?
 - Would this support Java or Python?
 - Example 2:
 - Write "Hello World" in Java. The next day, write "Hello World in Python. The day after that, write "Hello World" in Java.
 - Development time on Day 3 will be different than on Day 1 and 2.
 Can you draw conclusions based on that?
 - ... not really ...

Empirical Research – First Steps (2)

- Subjective perception?
 - Can the personal opinion be used to confirm a statement?
 - Example 3
 - Assume that you just love the new UI. Assume that your neighbour also loves the new UI. Does that mean that the new UI is good?
 - Example 4
 - Assume that the results of a survey show that most users love the new UI. Does that mean that the new UI is good?
- ...not really...

Empirical Research – Apparent Questions

- How can be use observations as scientific method?
- Empirical methods:
 - Data collection: What kind of data can we observe where?
 - Qualitative vs. quantitative Observations: Which kind of information can we collect?
 - Logic of empirical research: How can we conclude statements or contradictions from data?
 - Experiment, field studies, case study, etc.: Under which conditions can we conclude what kind of statements/contradictions?

Overview

Learning Goals

- Understand necessity for empirical research
- Differentiate empirical methods from other methods
- Understand problems of empirical research

 1. Question in exam: Do we need empirical research?

