Lecture 23

Kerberos

• scenario: users at workstations wish to access services on servers distributed throughout the network – many to many authentication

Kerberos

- a centralized authentication server provides mutual authentication between users and servers
 - a key distribution and user authentication service developed at MIT
 - works in an open distributed environment
- client-service model
- Kerberos protocol messages are protected against eavesdropping and replay attacks
- Kerberos v4 and v5 [RFC 4120]

A Simple Authentication Dialogue

- 1. C —> AS: ID_c | |P_c | |ID_v
- 2. AS -> C : Ticket = $E(K_V, [ID_C | AD_C | ID_V])$
- 3. C —> V: ID_c | | Ticket

- ID_{*} identifier
- P_c password of user
- AD_c network address of C
- K_v secret encryption key shared by AS and V

Advantage

- Client and malicious attacker cannot alter ID_c (impersonate), AD_c (change of address) ID_v
- ullet server V can verify the user is authenticated through ID $_{\rm c}$, and grants service to C
- guarantee the ticket is valid only if it is transmitted from the same client that initially requested the ticket

```
1. C —>AS: ID<sub>C</sub> ||P<sub>C</sub> ||ID<sub>V</sub>
```

- 2. AS \rightarrow C : Ticket = E(K_V, [ID_C | |AD_C | |ID_V])
- 3. C —> V: ID_C || Ticket

Secure?

- Insecure: password is transmitted openly and frequently
- Solution: no password transmitted by involving ticket-granting server (TGS)

^{1.} C —>AS: $ID_C ||P_C||ID_V$ 2. AS —> C : Ticket = $E(K_V, [ID_C ||AD_C ||ID_V])$ 3. C —> V: $ID_C || Ticket$

A More Secure Authentication Dialogue

- Once per user logon session
 - (1) C \rightarrow AS: $ID_{c} | ID_{tgs}$
 - (2) AS —> C: E(K_C, Ticket_{tgs})
- Once per type of service:
 - (3) C \rightarrow TGS: $ID_c | |ID_v| | Ticket_{tgs}$
 - (4) TGS —> C: Ticket_v
- Once per service session:
 - (5) C —> V: $ID_r | I \text{ Ticket}_{v}$, $Ticket_{tgs} = E(K_{tgs}, [ID_C || AD_C || ID_{tgs} || TS_1 || Lifetime_1])$ $Ticket_v = E(K_v, [ID_C || AD_C || ID_v || TS_2 || Lifetime_2])$

- 1. C —> AS: $ID_c ||P_c||ID_v$
- 2. AS -> C : Ticket = $E(K_{V}, [ID_{C} | AD_{C} | ID_{V}])$
- 3. C —> V: ID_C || Ticket