Koszul Complexes

Let *R* be a ring and let $r = r_1, ..., r_m$ be a sequence of elements in *R*.

1. The Koszul algebra $\mathbb{K} = \mathcal{K}(r)$ is defined to be the *R*-complex whose underlying graded *R*-module is given by

$$\mathbb{K} = \bigoplus_{\sigma \subseteq \{1...,m\}} e_{\sigma} R,$$

where we use the notation $e_{\sigma} = \prod_{i \in \sigma} e_i$ and where e_{σ} is homogeneous with $|e_{\sigma}| = \#\sigma$. The differential d of E is defined on the homogeneous basis by $de_i = r_i$ and extended everywhere else using the Leibniz law. In particular, we have

$$\mathrm{d} e_\sigma = \sum_{i \in \sigma} (-1)^{\mathrm{pos}(i,\sigma)} r_i e_{\sigma \setminus i}.$$

For example, we have For example, if m = 3 then we have

An alternative description of **K** is the the iterated tensor product of complexes:

$$\mathbb{K}(\mathbf{r}) \simeq \mathbb{K}(r_1) \otimes_R \mathbb{K}(r_2) \otimes_R \cdots \otimes_R \mathbb{K}(r_m).$$

If M is an R-module, then we set $\mathbb{K}(r, M) := \mathbb{K} \otimes_R M$ and we denote its homology by H(x, M).

2. Another Koszul complex we are interested in is called the **dual Koszul complex**: it is given by $\mathbb{K}^* := \operatorname{Hom}_R^*(\mathbb{K}, R)$. The underlying graded R-module is given by

$$\mathbb{K}^{\star} = \bigoplus_{\sigma \subseteq \{1,\dots,m\}} Re_{\sigma}^{\star}.$$

Here $e_{\sigma}^{\star} \colon E \to R$ is an *R*-linear map, graded of degree $-(\#\sigma)$, which is defined by

$$e_{\sigma}^{\star}(e_{\tau}) = \begin{cases} 1 & \text{if } \sigma = \tau \\ 0 & \text{else} \end{cases}$$

The differential d^* of E^* is defined by $d^*e^*_{\sigma} = e^*_{\sigma}d$. In particular, we have

$$\mathbf{d}^{\star}e_{\sigma}^{\star} = (-1)^{\#\sigma+1} \sum_{i \in \sigma^{\star}} (-1)^{\operatorname{pos}(i,\sigma^{\star})} r_{i} e_{\sigma \cup i}^{\star},$$

where $\sigma^* := \{1, \dots, m\} \setminus \sigma$. For example, if m = 3 then we have

$$d^{\star}e_{1}^{\star} = r_{3}e_{13}^{\star} + r_{2}e_{12}^{\star} \qquad d^{\star}e_{23}^{\star} = r_{1}e_{123}^{\star}$$

$$d^{\star}e_{1}^{\star} = r_{3}e_{13}^{\star} + r_{2}e_{12}^{\star} \qquad d^{\star}e_{23}^{\star} = r_{1}e_{123}^{\star}$$

$$d^{\star}e_{2}^{\star} = r_{3}e_{23}^{\star} - r_{1}e_{12}^{\star} \qquad d^{\star}e_{13}^{\star} = -r_{2}e_{123}^{\star} \qquad d^{\star}e_{123}^{\star} = 0$$

$$d^{\star}e_{3}^{\star} = -r_{2}e_{23}^{\star} - r_{1}e_{13}^{\star} \qquad d^{\star}e_{12}^{\star} = r_{3}e_{123}^{\star}$$

Note that the nonzero components of E^* live in negative homological degree, that is, if 0 < k < m, then $E_k^* = 0$ and $E_{-k}^* \neq 0$. We often think of E^* as a cochain complex using the upper sign convention $E_{-k}^* = E^{*,k}$ and $d_{-k}^* = d^{*,k}$. Note that the map $\varphi \colon \Sigma^n \mathbb{K}^* \to \mathbb{K}$ defined by

$$\varphi(e_{\sigma}^{\star}) = \operatorname{sign}(\sigma^{\star}, \sigma) e_{\sigma^{\star}}$$

is an isomorphism of *R*-complexes. In particular we obtain $H_i(\mathbb{K}) \simeq H_{i-m}(\mathbb{K}^*)$.

3. The **stable Koszul complex** $\widetilde{\mathbb{K}}$ is complex whose underlying graded *R*-module is given by

$$\widetilde{\mathbb{K}} = \bigoplus_{\sigma \subseteq \{1,\dots,m\}} \widetilde{e}_{\sigma} R_{r_{\sigma}}$$

For example, if m = 3 then we have

$$\widetilde{d}\widetilde{e}_{1} = \widetilde{e}_{13} - \widetilde{e}_{12} \qquad \qquad \widetilde{d}\widetilde{e}_{23} = \widetilde{e}_{123}$$

$$\widetilde{d}\widetilde{e}_{1} = \widetilde{e}_{13} - \widetilde{e}_{12} \qquad \qquad \widetilde{d}\widetilde{e}_{23} = \widetilde{e}_{123}$$

$$\widetilde{d}\widetilde{e}_{2} = \widetilde{e}_{23} - \widetilde{e}_{12} \qquad \qquad \widetilde{d}e_{13} = -\widetilde{e}_{123}$$

$$\widetilde{d}\widetilde{e}_{3} = \widetilde{e}_{23} - \widetilde{e}_{13} \qquad \qquad \widetilde{d}\widetilde{e}_{12} = \widetilde{e}_{123}$$

Observe that

$$\widetilde{\mathbb{K}} = \lim_{\longrightarrow} \mathbb{K}^{\star}(\mathbf{r}^n),$$

where $r^n = r_1^n, \dots, r_m^n$. In particular, it follows that

$$H(\mathbf{r}^{\infty}, M) = \bigcup_{n \geq 0} H(\mathbf{r}^n, M) = \lim_{n \to \infty} H(\mathbf{r}^n, M).$$