2	241	10	3/	20	2	Ω																		
	E7		7	at	7	, ,	<	17		NIL		TI												
					•			2	-			2												
					1	<u> </u>	2	+	. 7	B -	-2	\mathcal{O}^{S}	Ва	asta ch	ıe una eqi	uazione ı	non sia li	ineare	e il sistem	a dive	enta non li	neare.		
)	n	2 =	_	24	~	Z														
					y	\(\)	8	7/	+ '	nz	1	2ر												
	^)	V	_		_							,	2	Deterr	minare	i vari stati	e le u	ıscite di e	quilibrio	per un	
	1		12	e		9	P		U	(+)				=	71	ζ,	detern	ninato	u(t) =	u}= 1				
	2	7	5	ST	> }	or li	N	e	Ple	rh	ton		Discute	ere la s	tabilità de	egli equili	bri even	tualme	nte trovati					
	3		<u> </u>	کارج	4	. 1	しい	ese	اک	esti) (Determinar	e i siste	emi line	earizzati n	nell'intorn	o degli e	quilibri	i eventualı	mente	trovati			
•											•													
1		1	1	1					1	I I	1	ı l	1									1	1	

Stools stati epinhans 7 (ricavato dalla seconda equazione) sostituisco nella prima equazione

(come convenzione i vari stati di equilibrio li distinguiamo con delle lettere ai pedici (_a e_b), così non facciamo confusione fra i pedici che denotano la variabile di stato (numeri) e i pedici che denotano gli stati di equilibrio (lettere))

W Com 500 WOLLZ-2 I'uscita agli stati di equilibrio valgono: rice A del generico sist. line suzzets derivata di x 2 (derivata di x 1^2)

Piccolo ricordo sulla teoria (meglio comunque controllare nella parte di teoria): Il sistema linearizzato è fatto sviluppando l'equazione di stato in serie fermandosi al primo ordine, e al primo ordine il termine noto è 0 (per definizione di equilibrio) e poi abbiamo la matrice delle deriivate parziali delle funzioni f rispetto alle variabili x

		. , ,																
E	Q lu	ub	א`ס	2	•													
			a dentro la			rovata i va	lori di equili	brio c	he sono:									
		n	= - 2		21	= ~ ′	2. (<u>,</u>	<u> </u>									
		Λ			2	•												
		\cap 1				7			, 7									
	-	Lal				-	~ 4		4	—	() ,	natrice	e A nello sta	ato di equili	brio a			
	(] ')			Ĭ		1	~	- 1		' '3			'				
			epuil	huo e	a				7									
		non riesco	a trarre cor	clusioni a	priori s	u questa m	natrice, quir	ndi gu	ardiamo il p	olinomio ca	aratteristico)						
		det	(5	I -	_ A	$\left(\begin{array}{c} a \end{array}\right)$:	=0											
			ر ب				_											
		det	-	5+	4		1				2	7	c 15					
				/	1	2.	+1	_			5 +	5	5 +3	=0				
					•		1											
		CO(255	C O			1.				•	\	c · L	/ \		7	_ /	\ _
			eff,			1	=	$ \geqslant $	2 12	edic	e =	>)	255	Mu	· =)	t	ρ , t	15
		e	20	& V	90	20			2 K	Re x	(0		A	5			,	
				U														

1	- PU	il t	√ 10	6:	(stessa	cosa che a	abbiamo fat	tto per l'equ	uilibrio a)							
		$\tilde{\gamma}$	\bar{i} , $=$	1	nz	= 1	ĺ) <u>_</u>	1							
			1	1			(
		0 (7	, 7								
					2		_	1		+1.						
		12	4	·, ·			1 -	- 1		5						
		,	epuh	ips of	D D											
	In q	uesto caso	senza fare	conti aggiu	ıntivi notiam	o che la tra	accia è neg	ativa, quin	di:							
	+	BCC	1,2	\setminus \cap	=	Sl	were	2 (1)		toyal		=) {	\geq_{ρ} .			
	l l					C ^			~ (stord	٣-५		l	P		
							er K	16 %	\mathcal{O}							

Ricordiamo il meccanismo di studio della stabilità degli equilibri:

Se il sistema linearizzato nell'intorno di un equilibrio è asintoticamente stabile, l'equilibrio è asintoticamente stabile.

Se il sistema linearizzato nell'intorno di un equilibrio ha almeno un autovalore con parte reale positiva (che non significa dire che il sistema linearizzato è instabile), allora l'equilibrio è instabile. In tutti gli altri casi non si può dire nulla (dipendono da termini di sviluppo in serie maggiori del primo, quindi non si può dire nulla guardando il sistema linearizzato), non ci sarà mai richiesto.

$$\begin{cases} 8x = \begin{bmatrix} -4 & 1 \\ 1 & -1 \end{bmatrix} \\ 8y = \begin{bmatrix} -32 & 1 \end{bmatrix} \\ 8$$

$$\frac{\partial v}{\partial x} = \frac{1}{2}$$

fare la stessa cosa per l'equilibrio b ...

Quindi

$$O(5) = \frac{2}{5} - \frac{1}{5^2} e^{-45}$$

 $S(5) = \frac{2}{5} - \frac{1}{5^2} e^{-45}$
 $S(6) = \frac{2}{5} - \frac{1}{5} e^{-45}$
 $S(6) = \frac{2}{5} - \frac{1}{5} e^{-45}$
 $S(7) = \frac{1}{5} e^{-45}$
 $S(8) = \frac{1}{5} e$

· Esprim (6) (c'esattanto (5) =(S+1)(S+2) m sever 5²(St1)(S+2) 5(5+1)(5+2) 72 Horriside W Brok au au Sprenow le gi(t)

$$y_{1}(t) = (2+2e^{2t}-4e^{-t})sco(t)$$

$$y_{2}(t) = (-\frac{3}{2}+t-\frac{1}{2}e^{-2t}+2e^{-t})satt)$$

$$y_{3}(t) = y_{1}(t) - y_{2}(t-2)+y_{2}(t-4)$$

$$y_{3}(t) = y_{1}(t) - y_{2}(t-2)+y_{2}(t-4)$$

$$\int_{0}^{1} \frac{N(5)}{N(5)} e^{-5r} = y_{1}(t-r)$$

$$y(t) = y_{1}(t) - y_{2}(t-2) + y_{2}(t-4)$$

$$= (2+2e^{-2t} - 4e^{-t}) s\omega(t)$$

$$-(-\frac{3}{2} + (6-2) - \frac{1}{2}e^{-2(6-2)} + 2e^{-(t-2)}) s\omega(t-2)$$

$$+(-\frac{3}{2} + (6-4) - \frac{1}{2}e^{-2(6-4)} + 2e^{-(t-4)}) sco(6-4)$$

$$+ (-\frac{3}{2} + (6-4) - \frac{1}{2}e^{-2(6-4)} + 2e^{-(t-4)}) sco(6-4)$$

Consider on our Folt (5(5) gra scomposts lu somue di Fratti seent lici $G(s) = \frac{1}{5+1} + \frac{2}{5} + \frac{3}{(s+2)^2}$ 2 + 5 + 2 5 + 2 Sour du problette de F. seen plici cen slev. In

Auticip Disne $S = G_1 \cdot O$ $T = G_2 S = G_2 G_1 O$ 9 5 6₁ 7=5,0+520 -D[62]+ = (6₁+6₂)scritture "operatorista" 4(t) = 5(s) v (t) = 5 cutture oper Lopesi & [y (t)] = 5(s) & [v(t)]

$$G(S) = \frac{1}{S+1} + \frac{2}{S} + \frac{3}{S+2} \cdot \frac{1}{S+2} - \frac{Y(S)}{V(S)}$$

$$V(E) \longrightarrow \frac{1}{S} \longrightarrow \frac{1}{S+2} \longrightarrow \frac{$$

mtermezzo: sodice 1 (200) 50stor 5x = 2x + b0 4 = cx $G(5) = ((5-a)^{-1}b =$ Quinoh Sn = p2+ ru

Quille 3 actousbin Entrolor nultibli = > blocco suls obspousle

11 + piccolo miniblocco di Jarden/ali din. >1) Stohowah

distible solo als in 205. (1,2) rue Blo Co Counton U = MU

Ossewo de N è nilpotente .
$$N^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow e^{Nt} = I + N + EBHSTA = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
Allow
$$\begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & \lambda \end{bmatrix}$$

Quindr detti di gli entordari di A a Re (li) <0 ti = Sisteeurs AS e Fil Re(li)>0 Pe (1) ≤0 +i $\exists i \mid Re(\lambda i) = 0$ sistem S me in tol ceso 4 t spende minblaco di Lordon la din. 1 @ Altmueut