Sentiment Analysis Model Documentation

Project Overview

OBJECTIVE:

The goal of this project is to develop a sentiment analysis model that categorizes review sentences into positive, neutral, and negative classes. Each sentence in a review inherits the review's star rating.

APPROACH:

The project uses a combination of machine learning techniques, including TF-IDF, Doc2Vec, and CatBoost, to train a classifier. The model is deployed locally with a focus on achieving a p99 latency of 300ms for predictions.

Model Description

MODEL CHOICE:

CatBoost Classifier: Chosen for its efficiency and ability to handle categorical data without extensive preprocessing.

TF-IDF Vectorizer: Used to convert text data into numerical form by capturing the importance of words.

Doc2Vec: Provides vector representations of sentences, capturing semantic meaning. Reference: https://medium.com/data-science-lab-spring-2021/amazon-review-rating-prediction-with-nlp-28a4acdd4352

My first choice was BERT, and I also designed the model. You can check the other branch (new_branch) on GitHub. However, due to Starlink's limitations, building a Docker image was challenging, especially when trying to install PyTorch (both full and CPU versions), as it frequently timed out. The trained BERT model is saved in https://storage.googleapis.com/my-sentiment-model.pt. I have to say, BERT outperforms CatBoost.

TRAINING:

Dataset: The model is trained on a dataset of book reviews, where each review is split into sentences.

Preprocessing: Includes tokenization, stopword removal, and sentiment analysis using TextBlob. **Performance Metrics:** Evaluated using accuracy, precision, recall, and F1-score.

Performance:

The model achieves a mean accuracy of approximately 0.85 across cross-validation folds. Confusion matrix and classification reports are generated to assess performance.

System Design

ARCHITECTURE:

The system consists of a Flask-based API server (model_server.py) that handles prediction requests.

The model is loaded into memory at startup, and predictions are served via HTTP endpoints.

DEPLOYMENT:

The model is containerized using Docker, allowing for easy deployment and scaling. A CI/CD pipeline is set up using GitHub Actions to automate testing and deployment.

CLOUD READINESS:

The system is designed to be easily deployable to cloud environments, such as Google Cloud Run, using Docker images.

Logging and Monitoring

LOGGING:

Logs are captured using Python's logging module, recording important events and errors.

MONITORING:

- 1. The /metrics endpoint provides real-time metrics, including request count and latency statistics.
- 2. Google cloud online monitoring, please to check below Figure GCP

Code Structure

FILE DESCRIPTIONS:

review_prediction.py: Contains the main logic for training the sentiment analysis model.
model_server.py: Implements the Flask server for serving predictions.
test_model_server.py: Contains tests for the model server, including latency measurements.
integration_test.py and test_sentiment_model.py: Unit and integration tests for the model and server.

load_test.py:

simulates multiple concurrent requests to evaluate how well the server handles high traffic and to measure the latency of responses under load.

README.md:

Dockerfile: Defines the Docker image for the server.

github/workflows/ci-cd.yml: CI/CD pipeline configuration.

Key Functions and Classes:

```
git clone https://github.com/Tofu0142/TP.git
2. Install dependencies:
pip install -r requirements.txt
nltk.download(['punkt', 'stopwords', 'wordnet'])
python review_prediction.py
python model_server.py
import requests
import json
# Single prediction
              requests.post(
     # Batch prediction
response = requests.post(
   "http://localhost:8080/predict_batch",
   json={"texts": [
          "This book was absolutely fantastic! I couldn't put it down.",
"The characters were poorly developed and the plot was predictable.",
"It was an okay read, nothing special but not terrible either."
print(response.json())
[https://sentiment-analysis-438649044905.us-central1.run.app](https://sentiment-analysis-438649044905.us-
central1.run.app)
curl https://sentiment-analysis-438649044905.us-central1.run.app/health
curl -X POST \
  -H "Content-Type: application/json" \
-d '{"text": "This book was absolutely fantastic! I could not put it down."}'
curl -X POST \
  https://sentiment-analysis-438649044905.us-central1.run.app/predict_batch \
-H "Content-Type: application/json" \
       "This book was absolutely fantastic! I could not put it down.",
"The characters were poorly developed and the plot was predictable.",
"It was an okay read, nothing special but not terrible either."
docker build -t sentiment-analysis .
docker run -p 8080:8080 sentiment-analysis
```

Figures and Diagrams

Data Analysis:

Confusion Matrix: Visualizes the model's performance on test data.

Latency Distribution Plot:

Shows the distribution of request latencies during load testing - 100 requests.

GCP:

Conclusion

The sentiment analysis model effectively categorizes review sentences with high accuracy and low latency. The system is robust, scalable, and ready for deployment in both local and cloud environments.