Semi condutor

Doping

- semi conductor materials are very sensitive to impurite
- The controlled addition of these impurities is known as doping
- -) Allows the tuning of the electronic properties: technological applications.
- -) Pure semi conductor are called intrinsic!
- -> Introduction of dopants -> cextrinsic semiconductor'
- -) Introduction od dopunts
- 1) New intra-band, energy level
- (3) Generation of positive or negative charge carriers.
- > Band Gap values:

Conductors: VB&CBoverlap

Semisconductors: NI-3eV

Insulators: 75eV

Extrinsic Semiconductors-

- On-type: Rentavalent impurity electrons as majority charge curriers (Donor atom)
- ii) P-type: Trivalent impurity holes as may ority charge curriers (Acceptor atoms)

Concept of Holes

- -> A hole can be seen as the "opposite" od an electron.
- Holes have a positive charge
- -) they are the absence of an electron in an atom
- They are formed when electrons in atoms move out of the Valence pand (VB) to the conduction band (CB).
- Holes can move from atom to atom in semiconducting materials as electrons leave their positions.

MO6111ty

- the electrons in the direction of applied field.
- The moving electrons undergo repeated collision with the atoms and hence moves with a steady velocity known as drift velocity represented as Va
- -> Va « E -> Vd = ME where M is the mobility of electrons.
- > Mobility: Measure whow quickly an electron cun move through a metal or semiconductor in presence of eletrical field.
-) Dedect concentration
- i) Temperature
- -> He (metal) = 10-3 m2/Vs
- -> He (semiconductors)= 101 m2/Us

Carrier Concordination

- The density of electron in a semiconductor -> the density

 of available states and the Probability that each offese

 States is occupied.

 n(E)=9(E)f(E)
- > Holes corresponding to empty states in the valence bund > the probability od having a hole equal & the probability that a particular state is not filled.
 - P(E) = 9x(E)[1-d(E)] Where gr(E) is the density od states in VB
- The density of carriers is then obtained by integrating the density of carrier per unit energy overall possible energies within a band.

Conductivity =

JIn metal

- · Conductivity is attributed to free charge carriers in metals
- · Amte Ttemp > 7 Vibration of the metal ions
- · 1 vibrations > (auses frequent collisions between the electrons -> drains out energy of the free electrons -> restricts

 the movement of the delocalized electrons -> Value > resistive

 ty of the metal 1 -> current 1 -> Conductivity of the moderial 1

-) In semi conductor

I= IC+ TAIN

Ie=neAve , In = PPAVA

I = V/R

V = eA(nve+pvh) or VA = eA(nve+pvh)
R

7 Extrinsic SC

. Low Temp - frozen charge carrier - resistivity is em extremely high

· Moderate Tin Temp > Rapid & V in resistivity with Tax ionized charges

. At sufficiently high Temp > do pands are completely ionized

-> conductivity & resistivity 1 again

· At still higher temp > resistivety & sharply due to appreciable excitation of all carriers and crossing the energy gap.

1095

intrinsic range saturated range extrinsicrange Slope = - (Ea-EV) 2.3K

1/1

· In doped semiconductor, majority curriers greatly outpombers the minority carriers, so that the equation can be reduced to a single term involving the majority carrier.

· n-type

On= ne Me

· P-type

Op = Peth Peth

· Conductivity is determined by two Jactors:

i) (onc. od free carriers available to conduct current.

is) Their mobility.

In a semicorductor, both mobility of carrier concentration are temperature dependent

Drift current

- -> Absence of field: free electrons move in a conductor with random velocities and random directions.
- > Presence of field: the randomly moving electrons experience an electrical force in the direction of the field.
 - > Electrons shift towards higher potential with their random motion.
 - The electrons will drift towards higher potential along with their random motions.
 - end of the conductor known as the drift velocity of electrons.
 - The drift movement of electrons inside an electrically stressed Conductor, is known as dirift current
 - -> Flourists) electron = = ne Ve
 - > Jean 8+) hole = Pevh
 - -) Where n, p are electron & hole densities

 Vh, ve are drift velocity of holes & electrons
- -) -ve sign indicates that the electrons having -ve charge move in direction opposite to the applied field.
- -> Total drift corrent density:

Jedrich , Fotal = Jaristohole + Jedrich) electron = Pevn + peve - D

Diffusion current

- In semiconducting material > Dopants are introduced to some region > even distribution as carriers takes place to maintain the uniformity > known as diffusion process
- The movement of mobile charge carriers are responsible for the flow of diffusion current from one region to the other.
- > No source of energy is required for diffusion current.

terton

Fermi Dirac Distribution Function

- > The probability density functions describes the probability that particles occupy the available energy levels in a given system.
- -) Fermions: hald-integer spin particles- Electrons are Fermion - Obey's Pauli exclusion principle -) One Fermion occupies a Single quantum state -> fills the available states in an energy band:
- Fermi function: The probability that an energy level at energy E' in thermal equilibrium with a large system, is occupied by an electron
- -> Fermi Dirac distribution Junction is given as:

f(E) = M(C) | Man (a), Ep. p. Fermi Energy on the son It exp(E-E=)KT K-) Boltzman Constant

Fermi Level 10 1 10 15 165 165 165 165 165

1) In a conductor

All Levelsbelow Fris occupied

(ase3: T70K; E=E= 36 223	TO ST G
	0-1190
1+e(0/RT) 1+1	
The probability od, occupancy at any to	
The probability of occupancy are any	
1	
E O TRT A JEOK	-
TKT T	
EF OS	-nK
600	-
Distance DESER	_
	Lu eleitrons
> Fermi energy: Average energy possessed	return above OK
participating in conduction at tempet	a) the electrons
> Fermi velocity: (VF): It is the velocity	La at zerotem peratu
in the highest occupied states in meta	15 41 2010
VF = J2EF/m	THOSE WAS TO SERVER
	1 2 11 -11
What is fermi Level?	Conduction
-> The highest energy level that an	Band
electron occupies at the absolute Esap	At absolute zero Eque
zero (OK) Temperature is Known as Fermi Level	P(E) 2
Fermi Level	Valence .
of the fermi level lies between the VB&CB.	Bandalo
At T=0 K, the electrons are all in the	sidered as the sea
lowest energy state > Fermi level can be con	electrons exist.
of Fermions (or electrons) above which ho	electron are adole
-) The Fermi level changes as the TT or	
to or withdrawn from the solid	58 L

2)	In Intrinsc SC		
	At T=0 K, the valence band will be full of electrons > impossible		
4	to cross the energy bartler - acts as an insulator.		
->	ALTOK =) the electron movement from the VB to the CB increases		
	-> Croate holes in the VB in Place of electrons		
->	The electron concentration is equal to hole concentration's		
	Conduction Bund Conduction Bund standuction		
	Forbidden		
\$1, i 11	Energy > Thermal		
	Excitation		
2.18	Electrons Valence band Valence band Hole		
HC at 1	T=OK TOOK		
1	SCHOOL SC		
3			
	Let n'be no od electrons in the SE band. 'p' " " holes " Vatence"		
	At TYOK		
	At T70 K N=Nce (E=EF)/KT Where Nc = Effective density of states in the CB		
10.23	P=Nve-(E-EV)/KT where NV 1500 1500 1500 1500 1600 1600 1600 1600		
	electron occupies at the absolute		
7	For intrinsic SC NEENV[n=P] -D mat (m)		
9,41	NC e-EC-EFYKT = NV e-LEF-EV)/KT		
	NC = eEC+EV-2EF)/KT		
	Nyaman girantisan cambilla att an on the		
1972 761	NW TEL THE TELESTICATION OF THE FRANCE OF THE PART OF		
No.	NC CONTRACTOR OF THE PARTY OF T		
na in a	NY = e [ZEF - [ECTEV]/KT D		
	No de la		
	NC 2 (21 mm KT) 3/2 (m*n) 3/2 N1 -3) [00 me x mm] NC 2 (21 me KT) 3/2 (mè) mè]		
118	NC X (200 men 167) 3/2 (me)		

From (2 & (3)
From (D & (3) e[2 FF - (FC+EV)]/KT = @ 1
! Taking log on both side
2 FF - (EC+EV) = 0
KT
2 EF
$2E = -(E_C + E_V) = 0$
EF = EctEV
The fermi energy for intrinsia SC is halfway
between Valence & conduction band
Conduction
Band switzgestsones
Forbidden 1 E Fermi Level for Intrinsic Se
Valence

3) In Extrinsic SC

Band

-> N-type: Rentavalent impurity > electron as majority charge carriers + donor impurities

> P-type: Trimlent impurity -> holes as majority charge Curriers > acceptor impurities.

Estect of Temperature

) EFORN-type

> Region Is

	region I!	
	Impization regions Enz EctEp	-> Fermi level position in n-
	2	type Sc with respect to intrinsic
->	Region II;	Fermi Level is given as:
	Depletion region: En Fo	EFR-FFE KBTING
	Region II;	ne)
	Intrinsic region: Fra = Ege = Eg	
TE	A CONTRACTOR OF THE PARTY OF TH	

Jonization region & EFP = EV+EM -> Fermi level position in Ptype Semiconductor with respect to intrinsic Jermi level is givenas: Depletion region & EFP = EPP = -KBTIN(P) Region III Intrinsic region & EFP = EFP = Eg/2

Effect of Impurity concentration

nole Energy

