基于用户的协同过滤 (UserCF)

王树森

ShusenWang@xiaohongshu.com

UserCF的原理

有很多跟我兴趣非常相似的网友

其中某个网友对某笔记点赞、转发

我没看过这篇笔记

给我推荐这篇笔记

UserCF的原理

有很多跟我兴趣非常相似的网友

其中某个网友对某笔记点赞、转发

我没看过这篇笔记

给我推荐这篇笔记

推荐系统如何找到跟我兴趣非常相似的网友呢?

- 方法一:点击、点赞、收藏、转发的笔记有很大的重合。
- 方法二:关注的作者有很大的重合。

UserCF 的实现

兴趣相似的用户

兴趣相似的用户

预估用户对候选物品的兴趣:

 $\underline{sim(user, user_j)} \times like(user_j, item)$

预估用户对候选物品的兴趣: $0.9\times0+0.7\times1+0.7\times3+0.4\times0=2.8$

用户的相似度

两个用户不相似

两个用户相似

计算用户相似度

- •用户 u_1 喜欢的物品记作集合 J_1 。
- •用户 u_2 喜欢的物品记作集合 J_2 。
- 定义交集 $I = \mathcal{J}_1 \cap \mathcal{J}_2$ 。

计算用户相似度

- •用户 u_1 喜欢的物品记作集合 J_1 。
- •用户 u_2 喜欢的物品记作集合 J_2 。
- 定义交集 $I = \mathcal{J}_1 \cap \mathcal{J}_2$ 。
- 两个用户的相似度:

$$sim(u_1, u_2) = \frac{|I|}{\sqrt{|\mathcal{J}_1| \cdot |\mathcal{J}_2|}}$$

降低热门物品权重

降低热门物品权重

- •用户 u_1 喜欢的物品记作集合 J_1 。
- •用户 u_2 喜欢的物品记作集合 J_2 。
- 定义交集 $I = \mathcal{J}_1 \cap \mathcal{J}_2$ 。
- 两个用户的相似度:

$$sim(u_1, u_2) = \frac{\sum_{l \in I} 1}{\sqrt{|\mathcal{J}_1| \cdot |\mathcal{J}_2|}} = |I|$$

不论冷门、热门,

物品权重都是1。

降低热门物品权重

- •用户 u_1 喜欢的物品记作集合 J_1 。
- •用户 u_2 喜欢的物品记作集合 J_2 。
- 定义交集 $I = \mathcal{J}_1 \cap \mathcal{J}_2$ 。
- 两个用户的相似度:

$$sim(u_1, u_2) = \frac{\sum_{l \in I} \frac{1}{\log(1 + n_l)}}{\sqrt{|\mathcal{J}_1| \cdot |\mathcal{J}_2|}}.$$

 n_l : 喜欢物品 l 的用户数量,反映物品的热门程度

小结

- UserCF 的基本思想:
 - 如果用户 $user_1$ 跟用户 $user_2$ 相似,而且 $user_2$ 喜欢某物品,
 - ·那么用户 user1 也很可能喜欢该物品。

小结

- UserCF 的基本思想:
 - •如果用户 $user_1$ 跟用户 $user_2$ 相似,而且 $user_2$ 喜欢某物品,
 - ·那么用户 user1 也很可能喜欢该物品。
- 预估用户 user 对候选物品 item 的兴趣:

 $\sum_{j} sim(user, user_{j}) \times like(user_{j}, item)$.

小结

- UserCF 的基本思想:
 - •如果用户 $user_1$ 跟用户 $user_2$ 相似,而且 $user_2$ 喜欢某物品,
 - ·那么用户user1也很可能喜欢该物品。
- 预估用户 user 对候选物品 item 的兴趣:

$$\sum_{j} sim(user, user_{j}) \times like(user_{j}, item)$$
.

- 计算两个用户的相似度:
 - 把每个用户表示为一个稀疏向量,向量每个元素对应一个物品。
 - ·相似度 sim 就是两个向量夹角的余弦。

UserCF 召回的完整流程

事先做离线计算

建立"用户→物品"的索引

- · 记录每个用户最近点击、交互过的物品ID。
- · 给定任意用户ID,可以找到他近期感兴趣的物品列表。

事先做离线计算

建立"用户>物品"的索引

- · 记录每个用户最近点击、交互过的物品ID。
- · 给定任意用户ID,可以找到他近期感兴趣的物品列表。

建立"用户>用户"的索引

- •对于每个用户,索引他最相似的 k 个用户。
- · 给定任意用户ID,可以快速找到他最相似的 k 个用户。

"用户→物品"的索引

用户: (物品ID, 兴趣分数)的列表:

"用户→用户"的索引

用户:

"用户→用户"的索引

用户: 最相似的 k 个用户的 (ID, 相似度):

- 1. 给定用户ID,通过"用户→用户"索引,找到 top-k 相似用户。
- 2. 对于每个 top-k 相似用户,通过"用户→物品"索引,找到用户近期感兴趣的物品列表 (last-n)。

- 1. 给定用户ID,通过"用户→用户"索引,找到 top-k 相似用户。
- 2. 对于每个 top-k 相似用户,通过"用户→物品"索引,找到用户近期感兴趣的物品列表 (last-n)。
- 3. 对于取回的 nk 个相似物品,用公式预估用户对每个物品的兴趣分数。
- 4. 返回分数最高的100个物品,作为召回结果。

总结

UserCF的原理

- •用户 u_1 跟用户 u_2 相似,而且 u_2 喜欢某物品,那么 u_1 也可能喜欢该物品。
- •用户相似度:
 - 如果用户 u_1 和 u_2 喜欢的物品有很大的重叠,那么 u_1 和 u_2 相似。
 - 公式: $sim(u_1, u_2) = \frac{|\mathcal{J}_1 \cap \mathcal{J}_2|}{\sqrt{|\mathcal{J}_1| \cdot |\mathcal{J}_2|}}$ 。

UserCF召回通道

- 维护两个索引:
 - 用户→物品列表:用户近期交互过的n个物品。
 - 用户→用户列表:相似度最高的 k 个用户。
- •线上做召回:
 - 利用两个索引,每次取回 nk 个物品。
 - 预估用户 user 对每个物品 item 的兴趣分数:

$$\sum_{j} sim(user, user_{j}) \times like(user_{j}, item)$$
.

• 返回分数最高的100个物品,作为召回结果。

长期招聘优秀的算法工程师

- •部门:小红书社区技术部。
- •方向:搜索、推荐。
- •职位:校招、社招、实习。
- •地点:上海、北京。
- 联系方式: ShusenWang@xiaohongshu.com

Thank You!