Design and development of a software architecture for seamless vertical handover in mobile communications

Matteo Martelli

December 2016

Supervisor: prof. Vittorio Ghini

Mobility

Scenario: Multihomed MNs and different wireless technologies

Vertical Handover

Worse if VHO is entirely controlled by the MN: WiFi and cellular network.

Issues

- Unavailability periods
- Service interruptions
- Unreachability due to NATs and firewalls
- Session reinitialization may be required

Solution

Always Best Packet Switching - Handover

The MN chooses which NIC should be used **per each packet**.

Simultaneous transmission on both NICs during vertical handover.

Relies on Transmission Error Detector (TED) infos for handover decision:

- frame delivery status (to the AP)
- frame retransmissions.

Always Best Packet Switching - Host Mobility

- One proxy for NICs managing (Client Proxy)
- One proxy relay for NAT and firewall traversal (Fixed Server)

Implementation

MN Implementation

MN Android smartphone

- Android, most popular OS on smartphones
- Some similarities on common GNU/Linux Distros
- Linux (modified) kernel.
- I adapted TED for the "Android kernel"
- I developed the client proxy

MN Implementation

MN Android smartphone


```
int recv ted info(ted info s *ted info) {
        /* ... */
        if (ted info->status != ACK ||
           (ted_info->retry_count > RETRY_TH))
                pkt risk++;
        else
                pkt ok++;
        risk_ratio = pkt_risk / CWIN;
        if (risk ratio > RISK RATIO TH) {
                enable cell nic();
                pkt risk = pkt ok = 0;
        if (pkt_risk + pkt_ok > CWIN) {
                if (risk ratio < TOLERANCE) {</pre>
                         disable_cell_dev()
                pkt risk = pkt ok = 0;
        /* ... */
```

Relay and CN tools

I also developed:

- simple relay application to let end-nodes overcome NATs and firewalls
- CN software tools to enable a remote receiving counterpart

Experiments and Evaluations

Experimental Environment

Results

Experiments conducted while walking from indoor with good WiFi link to outdoor (out of WiFi coverage but good LTE link)

- 10 experiments without TED and client proxy
 - In 5 of them the streamer app failed with session reinitialization
 - In 5 no reinitialization but long interruptions
- 10 experiments with TED and client proxy
 - shorter unavailability periods

Results - no TED, no client proxy, app failure

Results - no TED, no client proxy, no app failure

Loss: 338

Unavailability: 6455ms

Results - TED, client proxy

Conclusion

Conclusion

Similar results from other experiments.

Results are still inaccurate but promising.

Many possible future works.

Software and documentation currently hold on

github.com/matteomartelli/ABPS

Results in average

	tedproxy	no tedproxy	no tedproxy no TED
	& TED	no TED	with error app
average packet loss	36	364	450 ^{estimate}
average unavailability time	458 ms	7219 ms	10393 ms

 Table 1: Results of conducted experiments in average.

MN Implementation - Limitation

MN Android smartphone

• No support for FullMAC chips

MN Implementation - Limitation

• No support for FullMAC chips

Future Works

- Integrate TED with SO_WIFI_STATUS socket option
- More handover criteria in client proxy
- Datagram retransmission on support NIC
- Integration of the Oracle to enable power saving
- Enable support for signalling, videoconference and VoIP application
- Find a solution for FullMAC chips. See NexMon project for reverse engineering and code injection into firmwares.