Intervalos de admisibilidad y marcos *KC*

MITAC, Agosto 2025 1 de agosto de 2025

Juan Carlos Monter Cortés

Universidad de Guadalajara

☑ juan.monter2902@alumnos.udg.mx

github.com/JCmonter

Información preliminar

Intervalos de admisibilidad

Marcos KC

Ejemplos

•0000

INFORMACIÓN PRELIMINAR

- A
- (A, \leqslant)

- $(A, \leq, \vee, \circ) \circ (A, \leq, \wedge, 1)$
- $(A, \leqslant, \bigvee, \bigwedge, 0, 1)$

• A

•
$$(A, \leqslant)$$

• $(A, \leqslant, \lor, \circ) \circ (A, \leqslant, \land, 1)$

•
$$(A, \leq, \bigvee, \bigwedge, o, 1)$$

Un marco es una retícula completa que cumple cierta ley distributiva (ley distributiva de marcos), es decir,

- A
- (A, \leqslant)

- $(A, \leqslant, \lor, \circ) \circ (A, \leqslant, \land, 1)$
- $(A, \leq, \bigvee, \bigwedge, 0, 1)$

Un marco es una retícula completa que cumple cierta ley distributiva (ley distributiva de marcos), es decir,

$$(A, \leqslant, \bigvee, \land, o, 1), \quad a \land \bigvee X = \bigvee \{a \land x \mid x \in X\}$$

INFORMACIÓN PRELIMINAR

- $(A, \leq, \vee, \circ) \circ (A, \leq, \wedge, 1)$
- $(A, \leqslant, \bigvee, \bigwedge, 0, 1)$

Un marco es una retícula completa que cumple cierta ley distributiva (ley distributiva de marcos), es decir,

$$(A, \leqslant, \bigvee, \land, o, 1), \quad a \land \bigvee X = \bigvee \{a \land x \mid x \in X\}$$

$$\mathbf{Frm} = \begin{cases} A, & \text{marcos} \\ f, & \text{morfismo de marcos} \end{cases}$$

• Estructuras simples.

00000

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.
- Buen comportamiento categórico.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.
- Buen comportamiento categórico.
- La topología de un espacio (OS) es un marco.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.
- Buen comportamiento categórico.
- La topología de un espacio (OS) es un marco.
- $A \in \text{Frm es espacial si y solo si } A \simeq \mathcal{O}S \text{ para } S \in \text{Top.}$

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.
- Buen comportamiento categórico.
- La topología de un espacio (OS) es un marco.
- $A \in \text{Frm es espacial si y solo si } A \simeq \mathbb{O}S \text{ para } S \in \text{Top.}$
- **Loc** = **Frm**^{op} está en relación con **Top**.

Frm proporciona correspondencias biyectivas interesantes

Frm proporciona correspondencias biyectivas interesantes Congruencias \leftrightarrow Conjuntos implicativos \leftrightarrow Núcleos

Frm proporciona correspondencias biyectivas interesantes Congruencias \leftrightarrow Conjuntos implicativos \leftrightarrow Núcleos

INFORMACIÓN PRELIMINAR

Frm proporciona correspondencias biyectivas interesantes Congruencias \leftrightarrow Conjuntos implicativos \leftrightarrow Núcleos

Definición:

Sea $A \in \mathbf{Frm}$ y $j: A \to A$, decimos que j es un núcleo si:

- 1. *j* infla.
- 2. j es monótona.
- 3. *j* es idempotente.
- 4. *j* respeta ínfimos finitos.

Un cociente de un marco A es un marco B equipado con un morfismo suprayectivo $f:A\to B$.

Un cociente de un marco A es un marco B equipado con un morfismo suprayectivo $f:A\to B$.

Si $A \in \mathbf{Frm} \ y \ j \in NA$, entonces $A_j \in \mathbf{Frm}$.

$$A_j = \{a \in A \mid j(a) = a\}.$$

Un cociente de un marco A es un marco B equipado con un morfismo suprayectivo $f:A\to B$.

Si $A \in \mathbf{Frm} \ y \ j \in NA$, entonces $A_j \in \mathbf{Frm}$.

$$A_j = \{a \in A \mid j(a) = a\}.$$

• A_j es un cociente de A.

Un cociente de un marco A es un marco B equipado con un morfismo suprayectivo $f:A\to B$.

Si $A \in \mathbf{Frm} \ y \ j \in NA$, entonces $A_j \in \mathbf{Frm}$.

$$A_j = \{a \in A \mid j(a) = a\}.$$

- A_i es un cociente de A.
- Existen cocientes interesantes que estudiar

 $a \in A \in \mathbf{Frm}$ definimos

00000

$a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \lor x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

$$x \in A$$

00000

$a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \lor x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

$$x \in A$$

INFORMACIÓN PRELIMINAR

00000

• *A_{ua}* "cociente cerrado"

 $a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \vee x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

 $x \in A$

00000

- A_u "cociente cerrado"
- A_{va} "cociente abierto"

 $a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \lor x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

 $x \in A$

- *A_{ua}* "cociente cerrado"
- A_{ν_a} "cociente abierto"
- A_{wa} "cociente regular"

 $a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \vee x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

 $x \in A$

- *A_{ua}* "cociente cerrado"
- A_{ν_a} "cociente abierto"
- A_{wa} "cociente regular"

Núcleos \leftrightarrow Sublocales \leftrightarrow Subespacios

 $a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \vee x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

 $x \in A$

- A_{u_a} "cociente cerrado" \leftrightarrow sublocal cerrado.
- A_{ν_a} "cociente abierto" \leftrightarrow sublocal abierto.
- A_{w_a} "cociente regular" \leftrightarrow sublocal regular.

Núcleos ↔ Sublocales ↔ Subespacios

Filtros en Frm

Sea $A \in \mathbf{Frm}$. Para $F \subseteq A$, decimos que F es un filtro si:

- 1. $1 \in F$.
- 2. $a \leq b$, $a \in F \Rightarrow b \in F$.
- 3. $a, b \in F \Rightarrow a \land b \in F$.

Filtros en Frm

Sea $A \in \mathbf{Frm}$. Para $F \subseteq A$, decimos que F es un filtro si:

- 1. $1 \in F$.
- 2. $a \leq b$, $a \in F \Rightarrow b \in F$.
- 3. $a, b \in F \Rightarrow a \land b \in F$.

Existen diferentes tipos de filtros:

- Propio
 - (Scott) abierto (*A*^)
- Primo

- Admisible $(\nabla(i))$
- Completamente primo

Filtros en Frm

Sea $A \in \mathbf{Frm}$. Para $F \subseteq A$, decimos que F es un filtro si:

- 1. $1 \in F$.
- 2. $a \leq b$, $a \in F \Rightarrow b \in F$.
- 3. $a, b \in F \Rightarrow a \land b \in F$.

Existen diferentes tipos de filtros:

- Propio
- Primo

- (Scott) abierto (A^{\wedge})
- Admisible ($\nabla(j)$)

• Completamente primo

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

Observaciones:

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

Observaciones:

• $j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$.

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

Observaciones:

- $j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$.
- $j \in NA$ es *ajustado* si es el menor elemento de su bloque.

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

Observaciones:

- $j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$.
- $j \in NA$ es *ajustado* si es el menor elemento de su bloque.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$ para algún $j \in NA$.

Filtros de admisiblidad

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

Observaciones:

- $j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$.
- $j \in NA$ es *ajustado* si es el menor elemento de su bloque.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$ para algún $j \in NA$.
- $F \in A^{\wedge} \Rightarrow [v_F, w_F]$.

Filtros de admisiblidad

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

Observaciones:

- $j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$.
- $j \in NA$ es *ajustado* si es el menor elemento de su bloque.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$ para algún $j \in NA$.
- $F \in A^{\wedge} \Rightarrow [v_F, w_F]$.

$$f = \bigvee \{v_a \mid a \in F\}, \quad v_F(a) = f^{\infty}(a), \quad w_F(a) = \bigwedge \{p \in M \mid a \leqslant p\}.$$

Si $F \in A^{\wedge}$, entonces

$$u_d \leqslant v_F \leqslant w_F$$

para
$$d = v_F(o)$$
, $v_F = f^{\infty}$.

Si $F \in A^{\wedge}$, entonces

$$u_d \leqslant v_F \leqslant w_F$$

para
$$d = v_F(o)$$
, $v_F = f^{\infty}$.

Información con los intervalos

• $[v_F, w_F] \subseteq NA$ es el intervalo de admisibilidad.

Si $F \in A^{\wedge}$, entonces

$$u_d \leqslant v_F \leqslant w_F$$

para
$$d = v_F(o)$$
, $v_F = f^{\infty}$.

- $[v_F, w_F] \subset NA$ es el intervalo de admisibilidad.
- Bajo ciertas condiciones, los intervalos se comportan de manera particular:

Si $F \in A^{\wedge}$, entonces

$$u_d \leqslant v_F \leqslant w_F$$

para $d = v_F(0)$, $v_F = f^{\infty}$.

- $[v_F, w_F] \subset NA$ es el intervalo de admisibilidad.
- Bajo ciertas condiciones, los intervalos se comportan de manera particular:
 - Se puede colapsar el intervalo ([v_F , w_F] = {*}).

Si $F \in A^{\wedge}$, entonces

$$u_d \leqslant v_F \leqslant w_F$$

para $d = v_F(0)$, $v_F = f^{\infty}$.

- $[v_F, w_F] \subset NA$ es el intervalo de admisibilidad.
- Bajo ciertas condiciones, los intervalos se comportan de manera particular:
 - Se puede colapsar el intervalo ([v_F , w_F] = {*}).
 - ∘ Si $j \in [v_F, w_F]$, j tiene una forma peculiar ($j = u_{\bullet}$, $\bullet \in A$).

Si $F \in A^{\wedge}$, entonces

$$u_d \leqslant v_F \leqslant w_F$$

para $d = v_F(0)$, $v_F = f^{\infty}$.

- $[v_F, w_F] \subseteq NA$ es el intervalo de admisibilidad.
- Bajo ciertas condiciones, los intervalos se comportan de manera particular:
 - Se puede colapsar el intervalo ([v_F , w_F] = {*}).
 - ∘ Si $j \in [v_F, w_F]$, j tiene una forma peculiar ($j = u_{\bullet}$, $\bullet \in A$).
- ¿Qué significa que ocurra alguno de los casos anteriores?

Relación con otras propiedades

Sean $A \in \operatorname{Frm} y F \in A^{\wedge}$.

Relación con otras propiedades

Sean $A \in \operatorname{Frm} y F \in A^{\wedge}$.

• Si A es arreglado, $v_F = u_d$, para $d = v_F(o)$.

Sean $A \in \operatorname{Frm} y F \in A^{\wedge}$.

- Si A es arreglado, $v_F = u_d$, para $d = v_F(o)$.
- Si A es ajustado, $v_F = w_F = u_{\bullet}$ para algún $\in A$.

Sean $A \in \operatorname{Frm} y F \in A^{\wedge}$.

- Si A es arreglado, $v_F = u_d$, para $d = v_F(o)$.
- Si A es ajustado, $v_F = w_F = u_\bullet$ para algún $\in A$.
- Si A es fuertemente Hausdorff, $u_{\bullet} = j \in [v_F, w_F]$ para algún
 - $\bullet \in A$.

Relación con otras propiedades

Sean $A \in \operatorname{Frm} y F \in A^{\wedge}$.

- Si A es arreglado, $v_F = u_d$, para $d = v_F(o)$.
- Si A es ajustado, $v_F = w_F = u_\bullet$ para algún $\in A$.
- Si A es fuertemente Hausdorff, u_• = j ∈ [v_F, w_F] para algún
 ∈ A.

¿Existen otras propiedades que se relacionen con los intervalos?

• $A \in \text{Frm}, F \in A^{\wedge}$, entonces $[v_F, w_F] \subseteq NA$

- $A \in \text{Frm}, F \in A^{\wedge}$, entonces $[v_F, w_F] \subseteq NA$
- $OS \in Frm$, $F \in OS^{\wedge}$, entonces $[v_F, w_F] \subseteq NOS$

- $A \in \text{Frm}$, $F \in A^{\wedge}$, entonces $[v_F, w_F] \subseteq NA$
- $OS \in Frm$, $F \in OS^{\land}$, entonces $[v_F, w_F] \subseteq NOS$

$$F = \nabla(Q)$$
, donde $Q \in \Omega S$

- $A \in \text{Frm}$, $F \in A^{\wedge}$, entonces $[v_F, w_F] \subseteq NA$
- $OS \in Frm$, $F \in OS^{\wedge}$, entonces $[v_F, w_F] \subseteq NOS$

$$F = \nabla(Q)$$
, donde $Q \in \Omega S$

 $\bullet \ \varphi \colon [v_{\nabla(Q)}, w_{\nabla(Q)}] \to [v_F, w_F]$

- $A \in \text{Frm}, F \in A^{\wedge}$, entonces $[v_F, w_F] \subseteq NA$
- $OS \in Frm$, $F \in OS^{\wedge}$, entonces $[v_F, w_F] \subseteq NOS$

$$F = \nabla(Q)$$
, donde $Q \in \Omega S$

• $\phi \colon [v_{\nabla(Q)}, w_{\nabla(Q)}] \to [v_F, w_F]$

¿Qué propiedades cumple φ?

Definición:

Sea $A \in \mathbf{Frm}$. Una *cubierta* A es un subconjunto $X \subseteq A$ tal que $\bigvee X = 1$. Una *subcubierta* de X es un subconjunto $Y \subseteq X$ tal que $\bigvee Y = 1$

Definición:

Sea $A \in \mathbf{Frm}$. Una *cubierta* A es un subconjunto $X \subseteq A$ tal que $\bigvee X = 1$. Una *subcubierta* de X es un subconjunto $Y \subseteq X$ tal que $\bigvee Y = 1$

A es compacto si 1 es compacto.

Definición:

Sea $A \in$ Frm. Una *cubierta* A es un subconjunto $X \subseteq A$ tal que $\bigvee X = 1$. Una *subcubierta* de X es un subconjunto $Y \subseteq X$ tal que $\bigvee Y = 1$

A es compacto si 1 es compacto.

• A_j es un cociente de A.

Definición:

Sea $A \in$ Frm. Una *cubierta* A es un subconjunto $X \subseteq A$ tal que $\bigvee X = 1$. Una *subcubierta* de X es un subconjunto $Y \subseteq X$ tal que $\bigvee Y = 1$

A es compacto si 1 es compacto.

- A_i es un cociente de A.
- A_j es compacto $\Leftrightarrow \nabla(j) \in A^{\wedge}$.

Marcos KC

 $S \in \mathsf{Top}$ es KC si todo conjunto compacto es cerrado. S es US si cada sucesión convergente tiene exactamente un límite al cual converge.

$$T_2 \Rightarrow KC \Rightarrow US \Rightarrow T_1$$

Marcos KC

 $S \in \mathsf{Top}$ es KC si todo conjunto compacto es cerrado. S es US si cada sucesión convergente tiene exactamente un límite al cual converge.

$$T_2 \Rightarrow KC \Rightarrow US \Rightarrow T_1$$

Definición

 $A \in Frm\ es\ KC\ si\ todo\ cociente\ compacto\ de\ A\ es\ cerrado.$

Marcos KC

 $S \in \text{Top es } KC$ si todo conjunto compacto es cerrado. S es US si cada sucesión convergente tiene exactamente un límite al cual converge.

$$T_2 \Rightarrow KC \Rightarrow US \Rightarrow T_1$$

Definición

 $A \in Frm$ es KC si todo cociente compacto de A es cerrado.

Equivalentemente

$$A_i = u_{\bullet}$$

para algún $\bullet \in A$, $F \in A^{\wedge}$ y $j \in [v_F, w_F]$.

• $KC \Rightarrow Arreglado$

- $KC \Rightarrow Arreglado$
- Si A es KC entonces A_i es KC para todo $j \in NA$.

- $KC \Rightarrow Arreglado$
- Si A es KC entonces A_j es KC para todo $j \in NA$.
- Si A es KC, entonces A es T_1 .

- $KC \Rightarrow Arreglado$
- Si A es KC entonces A_j es KC para todo $j \in NA$.
- Si A es KC, entonces A es T_1 .

De hecho

- $KC \Rightarrow Arreglado$
- Si A es KC entonces A_j es KC para todo $j \in NA$.
- Si A es KC, entonces A es T_1 .

De hecho

- $KC \Rightarrow Arreglado$
- Si A es KC entonces A_j es KC para todo $j \in NA$.
- Si A es KC, entonces A es T_1 .

De hecho

¿Como se relaciona KC con otras propiedades en Frm?

KC y su relación con los intervalos

- $A \in \text{Frm}$, $F \in A^{\wedge}$, entonces $[v_F, w_F] \subseteq NA$.
- $F \in A^{\wedge}$, entonces para todo $j \in [v_F, w_F]$, A_j es compacto.

KC y su relación con los intervalos

- $A \in \text{Frm}$, $F \in A^{\wedge}$, entonces $[v_F, w_F] \subseteq NA$.
- $F \in A^{\wedge}$, entonces para todo $j \in [v_F, w_F]$, A_j es compacto.
- Si A es KC, entonces A_i es compacto y cerrado

- $A \in \text{Frm}$, $F \in A^{\wedge}$, entonces $[v_F, w_F] \subseteq NA$.
- $F \in A^{\wedge}$, entonces para todo $j \in [v_F, w_F]$, A_j es compacto.
- Si A es KC, entonces A_j es compacto y cerrado
- Si A es KC, entonces para todo $j \in [v_F, w_F]$, A_j es compacto y cerrado.

KC y su relación con los intervalos

- $A \in \text{Frm}$, $F \in A^{\wedge}$, entonces $[v_F, w_F] \subseteq NA$.
- $F \in A^{\wedge}$, entonces para todo $j \in [v_F, w_F]$, A_j es compacto.
- Si A es KC, entonces A_j es compacto y cerrado
- Si A es KC, entonces para todo $j \in [v_F, w_F]$, A_j es compacto y cerrado.

Bajo KC los intervalos de admisibilidad están conformados por u_{ullet}

¿Para qué usamos los marcos KC

Si $S \in \text{Top y es } T_2$, entonces todo conjunto compacto (saturado) es cerrado.

Si $S \in \text{Top y es } T_2$, entonces todo conjunto compacto (saturado) es cerrado.

$$T_2 \Rightarrow \text{Empaquetado} \Rightarrow T_1$$

Si $S \in \text{Top y es } T_2$, entonces todo conjunto compacto (saturado) es cerrado.

$$T_2 \Rightarrow \text{Empaquetado} \Rightarrow T_1$$

• En Top : $KC \Leftrightarrow$ Empaquetado

Si $S \in \text{Top y es } T_2$, entonces todo conjunto compacto (saturado) es cerrado.

$$T_2 \Rightarrow \text{Empaquetado} \Rightarrow T_1$$

• En Top : $KC \Leftrightarrow$ Empaquetado

• En Frm : $KC \Rightarrow$ Arreglado

Si $S \in \text{Top y es } T_2$, entonces todo conjunto compacto (saturado) es cerrado.

$$T_2 \Rightarrow \text{Empaquetado} \Rightarrow T_1$$

• En Top : $KC \Leftrightarrow$ Empaquetado

• En Frm : $KC \Rightarrow$ Arreglado

OS es $KC \Leftrightarrow S$ es empaquetado

Si $S \in \text{Top y es } T_2$, entonces todo conjunto compacto (saturado) es cerrado.

$$T_2 \Rightarrow \text{Empaquetado} \Rightarrow T_1$$

• En Top : $KC \Leftrightarrow$ Empaquetado

• En Frm : $KC \Rightarrow$ Arreglado

OS es $KC \Leftrightarrow S$ es empaquetado

¿Qué pasa en el caso no espacial?

Consideremos $S = \{x, y\} \cup \mathbb{N}^2 \operatorname{con} x, y \notin \mathbb{N}^2 \operatorname{y} \operatorname{sea}$

$$R_n = \{(m, n) \mid m \in \mathbb{N}\}$$

Consideremos $S = \{x, y\} \cup \mathbb{N}^2 \operatorname{con} x, y \notin \mathbb{N}^2 \operatorname{y} \operatorname{sea}$

$$R_n = \{(m, n) \mid m \in \mathbb{N}\}$$

Definimos

$$OS = P\mathbb{N}^2 \cup \mathcal{U} \cup \mathcal{V}$$

donde

$$\mathcal{U} = \{ U \subseteq S \mid x \in U \text{ y } \forall n \in \mathbb{N}, U \cap R_n \text{ es cofinito} \}$$

$$\mathcal{V} = \{ \mathbf{V} \subseteq \mathbf{S} \mid \mathbf{y} \in \mathbf{V} \, \mathbf{y} \, \exists \mathbf{F} \subseteq \mathbb{N} \text{ finito tal que } \forall \mathbf{n} \notin \mathbf{F}, \mathbf{R}_{\mathbf{n}} \subseteq \mathbf{V} \}$$

Consideremos $S = \{x, y\} \cup \mathbb{N}^2 \operatorname{con} x, y \notin \mathbb{N}^2 \operatorname{y} \operatorname{sea}$

$$R_n = \{(m, n) \mid m \in \mathbb{N}\}$$

Definimos

$$OS = P\mathbb{N}^2 \cup \mathcal{U} \cup \mathcal{V}$$

donde

$$\mathcal{U} = \{ U \subseteq S \mid x \in U \text{ y } \forall n \in \mathbb{N}, U \cap R_n \text{ es cofinito} \}$$

$$\mathcal{V} = \{ V \subseteq S \mid y \in V \text{ y } \exists F \subseteq \mathbb{N} \text{ finito tal que } \forall n \notin F, R_n \subseteq V \}$$

OS es una topología y es un marco KC que no es (\mathbf{H}) .

Consideremos $S = \{x, y\} \cup \mathbb{N}^2 \operatorname{con} x, y \notin \mathbb{N}^2 \operatorname{y} \operatorname{sea}$

$$R_n = \{(m, n) \mid m \in \mathbb{N}\}$$

Definimos

$$OS = P\mathbb{N}^2 \cup \mathcal{U} \cup \mathcal{V}$$

donde

$$\mathcal{U} = \{ U \subseteq S \mid x \in U \text{ y } \forall n \in \mathbb{N}, U \cap R_n \text{ es cofinito} \}$$

$$V = \{ V \subseteq S \mid y \in V \text{ y } \exists F \subseteq \mathbb{N} \text{ finito tal que } \forall n \notin F, R_n \subseteq V \}$$

OS es una topología y es un marco KC que no es (\mathbf{H}) .

$$\mathcal{E}(\mathbf{H}) \Rightarrow \mathit{KC}$$
?

Ejemplo sobre los intervalos

Bibliografía I

- P. T. Johnstone, *Stone spaces*, Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge University Press, Cambridge, 1982. MR 698074
- J. Picado and A. Pultr, *Frames and locales: Topology without points*, Frontiers in Mathematics, Springer Basel, 2012.
- J. Picado and A. Pultr, Separation in point-free topology, Springer, 2021.
- RA Sexton, A point free and point-sensitive analysis of the patch assembly, The University of Manchester (United Kingdom), 2003.

Bibliografía II

- RA Sexton, Frame theoretic assembly as a unifying construct, The University of Manchester (United Kingdom), 2000.
- RA Sexton and H. Simmons, *Point-sensitive and point-free* patch constructions, Journal of Pure and Applied Algebra **207** (2006), no. 2, 433-468.
- H. Simmons, An Introduction to Frame Theory, lecture notes, University of Manchester. Disponible en línea en https://web.archive.org/web/20190714073511/http://staff.cs.manchester.ac.uk/~hsimmons.
- H. Simmons, Regularity, fitness, and the block structure of frames. Applied Categorical Structures 14 (2006): 1-34.

Bibliografía III

A. Zaldívar, *Introducción a la teoría de marcos* [notas curso], 2025. Universidad de Guadalajara.