1.3) 국가별 음주 데이터 분석하기

```
In [8]: # 주피터 노트북을 실행한 브라우저 내부(inline)에서 matplotlib으로 바로 그림을 볼 수 있
#%matplotlib inline
# 라이브러리 임포트
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
file_path = 'drinks.csv'
drinks = pd.read_csv(file_path)
```

<Step1. 탐색> 데이터의 기초 정보 살펴보기

```
In [9]: print(drinks.info())
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 193 entries, 0 to 192
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	country	193 non-null	object
1	beer_servings	193 non-null	int64
2	spirit_servings	193 non-null	int64
3	wine_servings	193 non-null	int64
4	total_litres_of_pure_alcohol	193 non-null	float64
5	continent	170 non-null	object

dtypes: float64(1), int64(3), object(2)

memory usage: 9.2+ KB

None

In [10]: drinks

Out[10]:		country	beer_servings	spirit_servings	wine_servings	total_litres_of_pure_alcohol	continent
	0	Afghanistan	0	0	0	0.0	AS
	1	Albania	89	132	54	4.9	EU
	2	Algeria	25	0	14	0.7	AF
	3	Andorra	245	138	312	12.4	EU
	4	Angola	217	57	45	5.9	AF
	•••						
	188	Venezuela	333	100	3	7.7	SA
	189	Vietnam	111	2	1	2.0	AS
	190	Yemen	6	0	0	0.1	AS
	191	Zambia	32	19	4	2.5	AF
	192	Zimbabwe	64	18	4	4.7	AF

193 rows × 6 columns

In [11]: # 상위 10개 데이터 출력 drinks.head(10)

Out[11]:		country	beer_servings	spirit_servings	wine_servings	total_litres_of_pure_alcohol	continent
	0	Afghanistan	0	0	0	0.0	AS
	1	Albania	89	132	54	4.9	EU
	2	Algeria	25	0	14	0.7	AF
	3	Andorra	245	138	312	12.4	EU
	4	Angola	217	57	45	5.9	AF
	5	Antigua & Barbuda	102	128	45	4.9	NaN
	6	Argentina	193	25	221	8.3	SA
	7	Armenia	21	179	11	3.8	EU
	8	Australia	261	72	212	10.4	OC

75

In [12]:

9

Austria

수치형 피처의 각 컬럼별 요약 통계(갯수, 평균, 표준편차, 최솟값, 4분위수, 최댓값) 지표 drinks.describe()

191

Out[12]:		beer_servings	spirit_servings	wine_servings	total_litres_of_pure_alcohol
	count	193.000000	193.000000	193.000000	193.000000
	mean	106.160622	80.994819	49.450777	4.717098
	std	101.143103	88.284312	79.697598	3.773298
	min	0.000000	0.000000	0.000000	0.000000
	25%	20.000000	4.000000	1.000000	1.300000
	50%	76.000000	56.000000	8.000000	4.200000

128.000000

438.000000

279

<Step2. 인사이트 도출> 탐색과 시각화

188.000000

376.000000

[피처간의 상관관계 탐색]

75%

max

[두 피처간의 상관계수 구하기] 여러 개의 피처들의 서로간의 상관계수를 구하기 앞서, 두 피처간 의 상관계수를 구하는 실습

59.000000

370.000000

- 상관 분석 : 두 변수 간의 선형적 관계를 상관 계수로 표현하는 것
- 상관 계수 : 두 변수 사이의 통계적 관계를 표현하기 위해 특정한 상관 관계의 정도를 수치적 으로 나타낸 계수
- 상관 계수를 구하는 것은 공분산의 개념을 포함 여러 유형의 상관계수가 존재하지만 제각기 자신들만의 정의와 특징이 있음

EU

9.7

7.200000

14.400000

• 값의 범위는 -1에서 +1 사이에 속하며 여기서 ±1은 정도가 가장 센 잠재적 일치를 나타내고 0은 정도가 가장 센 불일치를 나타냄

- 1에 가까울 수록 서로 강한 양의 상관 관계가 있다는 것
- 피어슨 상관 계수(Pearson Correlation Coefficient ,PCC): 두 변수 X 와 Y 간의 선형 상관 관계를 계량화한 수치 스
- 스피어먼 상관 계수(Spearman Correlation Coefficient ,SCC):두 변수의 순위 사이의 통계적 의존성을 측정하는 비모수적인 척도

<피처간의 상관 관계를 통계적으로 탐색하는 방법>

- 단순 상관 분석 방법: 피처가 2 개일 때 상관 계수를 계산하는 방법
- 다중 상관 분석 방법: 피처가 여러 개일 때 상호간의 연관성을 분석하는 방법

[여러 피처의 상관관계 분석]

```
In [13]:
```

```
# 맥주와 와인 소비량의 상관 관계 알아보기
# 'beer_servings', 'wine_servings' 두 피처간의 상관계수를 계산합니다.
# 피어슨 상관 계수(Pearson Correlation Coefficient ,PCC): 두 변수 X 와 Y 간의 선형 상동
# corr() 함수로 피처 간의 상관 계수를 매트릭스(matrix, 행렬, 숫자·기호 등을 가로, 세호
# 단순 상관 분석 방법
# corr = drinks[['beer_servings', 'wine_servings']].corr(method = 'pearson')
# print(corr)
# 다중 상관 분석 방법
#corr = drinks.corr(method = 'pearson')
corr = drinks[['beer_servings', 'spirit_servings', 'wine_servings', 'total_litres_of_print(corr)
```

	beer_servings	spirit_servings	wine_servings	₩
beer_servings	1.000000	0.458819	0.527172	
spirit_servings	0.458819	1.000000	0.194797	
wine_servings	0.527172	0.194797	1.000000	
total_litres_of_pure_alcohol	0.835839	0.654968	0.667598	

[seaborn 시각화 라이브러리 활용]

- 히트맵(heatmap), 페어플롯(pairplot) 기법 사용하기
- 히트맵(heatmap) : 히트(heat)와 지도를 뜻하는 맵(map)을 결합시킨 단어로 색상으로 표현할수 있는 다양한 정보를 일정한 이미지 위에 열분포 형태의 그래픽으로 출력

In [14]:

```
!pip install seaborn
```

Requirement already satisfied: seaborn in c:\u00edusers\u00fcyj\u00fcanaconda3\u00fclib\u00fcsite-packages (0.1 1.2)

Requirement already satisfied: numpy>=1.15 in c:\u00fcusers\u00fcyj\u00fcanaconda3\u00fclib\u00fcsite-packages (from seaborn) (1.20.3)

Requirement already satisfied: matplotlib>=2.2 in c:\u00edusers\u00fcyj\u00fcanaconda3\u00fclib\u00fcsite-packa ges (from seaborn) (3.4.3)

Requirement already satisfied: scipy>=1.0 in c:\users\unders\users\users\users\users\users\users\users\users\users\und

Requirement already satisfied: pandas>=0.23 in c:\u00ccusers\u00fcyj\u00fcanaconda3\u00fclib\u00fcsite-packages (from seaborn) (1.3.4)

Requirement already satisfied: python-dateutil>=2.7 in c:\u00e4users\u00fcyj\u00fcanaconda3\u00fclib\u00fcsite-packages (from matplotlib>=2.2->seaborn) (2.8.2)

Requirement already satisfied: pillow>=6.2.0 in c:\users\unders\

Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\upsayj\upsaaconda3\upsatisfied: kiwisolver>=1.0.1 in c:\upsatusers\upsayj\upsaaconda3\upsatisfied: kiwisolver>=1.0.1 in c:\upsaaconda3\upsatisfied: kiwisolver>=1.0.1 in c:\upsaaconda3\upsaatisfied: kiwisolver>=1.0.1 in c:\upsaatisfied: kiwisolver>=1.0.1 in c:

Requirement already satisfied: pyparsing>=2.2.1 in c:\users\unders\unde

Requirement already satisfied: cycler>=0.10 in c:\users\unders\users\unders\users\users\users\users\users\users\users\users\users\unders\users\users\users\users\und

Requirement already satisfied: six in c:\users\unders\users\unders\users\unders\users\users\users\users\users\users\users\users\users\users\users\users\users\users\unde

Requirement already satisfied: pytz>=2017.3 in c:\users\underno\underz\users\users\users\users\users\underz\users\underz\users\underz\users\underz\users\underz\users\underz\users\underz\unde

```
In [15]:
```

```
import seaborn as sns
# corr 행렬 히트맵(heatmap)을 시각화합니다.
# 히트맵(heatmap)을 통해 corr.values 를 파라미터로 넣어줌
cols_view = ['beer', 'spirit', 'wine', 'alcohol'] # 그래프 출력을 위한 cols 이름을 축
sns.set(font_scale=1.1)
#cbar 히트맵 바 출력 여부, annot 상관 계수 출력 여부, square 사각형의 형태, fmt 소수점
# annot_kws 상관 계수 폰트 크기, yticklabels y 레이블명, xticklabels x 레이블명
hm = sns.heatmap(corr.values,
          cbar=True.
          annot=True.
          square=True.
          fmt='.2f',
          annot_kws={'size': 15},
          yticklabels=cols_view,
          xticklabels=cols_view,
          linewidths=.5,
          cmap="YIGnBu",
          cbar_kws={"orientation": "horizontal"})
plt.tight_layout()
plt.show()
```



```
In [16]: # 시각화 라이브러리를 이용한 피처간의 scatter plot을 출력합니다. # 페어플롯(pairplot)은 데이터 프레임을 파타미터로 넣어 줌
```

style : darkgrid, whitegrid, dark, white, ticks, 이미지의 전반적인 모양을 스타일링, # context : notebook, paper, talk, poster, 어떤 상황에서 보여줄 것인가에 따라 4종류의 sns.set(style='ticks', context='notebook')

0.9

1.0

In [17]: # 1. 인사이트 도출1 : 대륙별 평균 wine_servings 탐색 drinks.groupby('continent').mean()

beer_servings spirit_servings wine_servings total_litres_of_pure_alcohol

 continent

 AF
 61.471698
 16.339623
 16.264151
 3.007547

 AS
 37.045455
 60.840909
 9.068182
 2.170455

7.5	37.013133	00.010303	3.000102	2.170-133
EU	193.777778	132.555556	142.222222	8.617778
ОС	89.687500	58.437500	35.625000	3.381250
SA	175.083333	114.750000	62.416667	6.308333

Out[17]:

```
In [18]: # 대륙별 wine_servings 평균 1
          drinks.groupby('continent').wine_servings.mean()
         continent
Out[18]:
         AF
               16.264151
         AS
                9.068182
         EU
               142.222222
         00
               35.625000
               62.416667
         Name: wine_servings, dtype: float64
In [19]:
          # 대륙별 wine_servings 평균2
          drinks.groupby('continent')['wine_servings'].mean()
         continent
Out[19]:
               16.264151
         AF
         AS
                9.068182
         EU
               142.22222
         00
               35.625000
         SA
               62.416667
         Name: wine_servings, dtype: float64
In [20]:
          # 대륙별 wine_servings 평균3
          drinks.groupby('continent').mean()['wine_servings']
         continent
Out[20]:
               16.264151
         AF
         AS
                9.068182
               142.222222
         EU
         00
               35.625000
         SA
               62.416667
         Name: wine_servings, dtype: float64
In [21]:
          # 2. 인사이트 도출2 : 전체 평균보다 적은 알코올을 섭취하는 대륙
          total_mean = drinks.total_litres_of_pure_alcohol.mean()
          total_mean
         4.717098445595855
Out[21]:
In [22]:
          # 전체 평균보다 적은 알코올을 섭취하는 대륙의 인덱스와 값 추출
          continent_mean = drinks.groupby('continent').total_litres_of_pure_alcohol.mean()
          continent_under_mean = continent_mean[continent_mean <= total_mean]</pre>
          print(continent_under_mean)
         continent
         AF
              3.007547
              2.170455
         AS
         00
              3.381250
         Name: total_litres_of_pure_alcohol, dtype: float64
In [23]:
          # 전체 평균보다 적은 알코올을 섭취하는 대륙의 인덱스만 추출
          continent_under_mean = continent_mean[continent_mean <= total_mean].index.tolist()</pre>
          print(continent_under_mean)
         ['AF', 'AS', 'OC']
In [24]:
          # 전체 평균보다 적은 알코올을 섭취하는 대륙의 인덱스만 추출
          continent_under_mean = continent_mean[continent_mean <= total_mean].values.tolist()</pre>
          print(continent_under_mean)
```

```
[3.0075471698113208, 2.1704545454545454, 3.38125]
In [25]:
          # 대륙별 알코올 섭취 평균1
          drinks.groupby('continent').total_litres_of_pure_alcohol.mean()
         continent
Out[25]:
         AF
               3.007547
               2.170455
         AS
         EU
               8.617778
         00
               3.381250
         SA
               6.308333
         Name: total_litres_of_pure_alcohol, dtype: float64
In [26]:
          # 대륙별 알코올 섭취 평균2
          drinks.groupby('continent')['total_litres_of_pure_alcohol'].mean()
         continent
Out[26]:
         AF
               3.007547
               2.170455
         AS
         EU
               8.617778
         0C
               3.381250
         SA
               6.308333
         Name: total_litres_of_pure_alcohol, dtype: float64
In [27]:
          # 대륙별 알코올 섭취 평균3
          drinks.groupby('continent').mean()['total_litres_of_pure_alcohol']
         continent
Out[27]:
               3.007547
         AF
               2.170455
         AS
         EU
               8.617778
         0C
               3.381250
         SA
               6.308333
         Name: total_litres_of_pure_alcohol, dtype: float64
        <Step3. 탐색적 분석>
        [결측 데이터 전처리]
In [28]:
          print(drinks.info())
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 193 entries, 0 to 192
         Data columns (total 6 columns):
          #
              Column
                                           Non-Null Count Dtype
          0
              country
                                           193 non-null
                                                          object
          1
              beer_servings
                                           193 non-null
                                                          int64
          2
              spirit_servings
                                           193 non-null
                                                          int64
          3
              wine_servings
                                           193 non-null
                                                          int64
              total_litres_of_pure_alcohol
                                          193 non-null
                                                          float64
              continent
                                           170 non-null
                                                          object
         dtypes: float64(1), int64(3), object(2)
         memory usage: 9.2+ KB
         None
In [29]:
          # 결측데이터 처리: 기타 대륙으로 통합 -> 'OT' (Others)
          # fillna() 함수는 피처의 결측값을 특정 값으로 채워주는 함수
          drinks['continent'] = drinks['continent'].fillna('OT')
```

exam data 21. 12. 30. 오후 4:45

print(drinks.info())

In [30]:

```
<class 'pandas.core.frame.DataFrame'>
          RangeIndex: 193 entries, 0 to 192
          Data columns (total 6 columns):
           #
                Column
                                                Non-Null Count
                                                                 Dtype
           0
               country
                                                193 non-null
                                                                 object
           1
               beer_servings
                                                193 non-null
                                                                  int64
           2
               spirit_servings
                                                193 non-null
                                                                  int64
                                                                 int64
           3
                                                193 non-null
               wine_servings
                total_litres_of_pure_alcohol
                                                193 non-null
                                                                 float64
                continent
                                                193 non-null
                                                                 object
          dtypes: float64(1), int64(3), object(2)
          memory usage: 9.2+ KB
          None
In [31]:
           drinks.head(10)
Out[31]:
                         beer_servings spirit_servings wine_servings total_litres_of_pure_alcohol continent
                country
             Afghanistan
                                                                                         0.0
                                                                                                    AS
          1
                                                 132
                                   89
                                                                54
                                                                                         4.9
                                                                                                   EU
                 Albania
          2
                 Algeria
                                   25
                                                  0
                                                                14
                                                                                         0.7
                                                                                                    ΑF
          3
                                                                                                   EU
                 Andorra
                                  245
                                                 138
                                                               312
                                                                                        12.4
          4
                 Angola
                                  217
                                                 57
                                                                45
                                                                                         5.9
                                                                                                    ΑF
               Antigua &
          5
                                  102
                                                                45
                                                                                         4.9
                                                                                                   OT
                                                 128
                 Barbuda
                                                               221
          6
               Argentina
                                  193
                                                 25
                                                                                         8.3
                                                                                                    SA
          7
                Armenia
                                   21
                                                 179
                                                                                                   EU
                                                                11
                                                                                         3.8
          8
                Australia
                                  261
                                                 72
                                                               212
                                                                                        10.4
                                                                                                   OC
          9
                                  279
                                                 75
                                                               191
                                                                                         9.7
                                                                                                   EU
                 Austria
In [32]:
            drinks['continent'].value_counts()
                 53
Out[32]:
          EU
                 45
          AS
                 44
          0T
                 23
          00
                 16
          SA
                 12
          Name: continent, dtype: int64
In [33]:
            drinks['continent'].value_counts().index.tolist()
          ['AF', 'EU', 'AS', 'OT', 'OC', 'SA']
Out[33]:
In [34]:
           drinks['continent'].value_counts().values.tolist()
          [53, 45, 44, 23, 16, 12]
Out[34]:
          전체 대륙 중에서 OT 가 차지하는 비율을 파이차트로 확인
```

```
In [35]: # 그래프를 표시하기 위한 인덱스와 값을 추출해서 리스트로 생성 labels = drinks['continent'].value_counts().index.tolist() fracs1 = drinks['continent'].value_counts().values.tolist() explode = (0, 0, 0, 0.5, 0, 0)

plt.pie(fracs1, labels=labels, autopct='%.1f%%', shadow=True, explode=explode, radius plt.title('null data to W'OTW'') plt.show()
```

null data to 'OT'

[그룹 단위의 데이터 분석 : 대륙별 분석] apply, agg 함수를 이용한 대륙별 분석

1. 대륙별 spirit_servings의 평균, 최소, 최대, 합계를 계산

In [36]: drinks.groupby('continent').spirit_servings.describe()

Out[36]:		count	mean	std	min	25%	50%	75%	max
	continent								
	AF	53.0	16.339623	28.102794	0.0	1.00	3.0	19.00	152.0
	AS	44.0	60.840909	84.362160	0.0	1.00	16.0	98.00	326.0
	EU	45.0	132.555556	77.589115	0.0	81.00	122.0	173.00	373.0
	ос	16.0	58.437500	70.504817	0.0	18.00	37.0	65.25	254.0
	ОТ	23.0	165.739130	94.993884	68.0	101.00	137.0	190.50	438.0
	SA	12.0	114.750000	77.077440	25.0	65.75	108.5	148.75	302.0

- agg() 함수는 apply() 함수와 거의 동일하게 함수 파라미터를 받음
- agg() 함수는 함수 파라미터를 병렬로 설정하여 그룹에 대한 여러가지 연산 결과를 동시에 얻을 수 있는 함수
- agg() 함수를 이용해 'mean', 'min', 'max', 'sum' 함수 파라미터를 간단히 탐색

```
In [37]: drinks.groupby('continent').spirit_servings.agg(['mean', 'min', 'max', 'sum'])
```

Out[37]: mean min max sum

continent	mean	min	max	sum
continent				
AF	16.339623	0	152	866
AS	60.840909	0	326	2677
EU	132.555556	0	373	5965
ос	58.437500	0	254	935
ОТ	165.739130	68	438	3812
SA	114.750000	25	302	1377

1. 전체 평균보다 많은 알코올을 섭취하는 대륙

2-1: 전체 알코올 섭취 평균 2-2: 대륙별 알코올 섭취 평균 2-3: 대륙별 알코올 섭취 평균이 전체 알 코올 섭취 평균보다 낮은 대륙을 구하기

```
In [38]:
          # 2-1: 전체 알코올 섭취 평균
         total_mean = drinks.total_litres_of_pure_alcohol.mean()
          # 2-2: 대륙별 알코올 섭취 평균
         #drinks.groupby('continent')['total_litres_of_pure_alcohol'].mean()
         continent_mean = drinks.groupby('continent').total_litres_of_pure_alcohol.mean()
          # 데이터프레임[조건]
         continent_mean[continent_mean < total_mean]</pre>
         continent
```

Out[38]:

AF 3.007547 2.170455 AS 0C3.381250

Name: total_litres_of_pure_alcohol, dtype: float64

- 1. 평균 beer servings이 가장 높은 대륙
- idxmin, idxmax 는 전체 인덱스 중 최소값, 최대값을 반환
- 3-1: 대륙별 평균 beer servings 계산
- 3-2: 결과 중 값이 가장 높은 인덱스만 추출

```
In [39]:
          # 평균 beer_servings이 가장 높은 대륙의 인덱스와 값
          drinks.groupby('continent').beer_servings.mean()
         continent
Out[39]:
         AF
               61.471698
               37.045455
         AS
         EU
               193.777778
         00
               89.687500
         0T
               145.434783
               175.083333
         Name: beer_servings, dtype: float64
In [40]:
          # 평균 beer_servings이 가장 높은 대륙의 인덱스
          drinks.groupby('continent').beer_servings.mean().idxmax()
         'EU'
Out[40]:
```

```
# 평균 beer_servings이 가장 높은 대륙의 값
In [41]:
         drinks.groupby('continent').beer_servings.mean().max()
         193.777777777777
Out[41]:
In [42]:
          # 평균 beer_servings이 가장 낮은 대륙의 인덱스
         drinks.groupby('continent').beer_servings.mean().idxmin()
         'AS'
Out[42]:
In [43]:
          # 평균 beer_servings이 가장 낮은 대륙의 값
         drinks.groupby('continent').beer_servings.mean().min()
         37.04545454545455
Out[43]:
          1. 대륙별 spirit servings의 평균, 최소, 최대, 합계를 시각화합니다.
In [44]:
          result = drinks.groupby('continent').spirit_servings.agg(['mean', 'min', 'max', 'sum'
          result
Out[44]:
                      mean min max sum
         continent
                   16.339623
                                 152
                                      866
              AF
                              0
                   60.840909
                                 326 2677
              AS
              EU 132.555556
                                 373 5965
                              0
              OC
                   58.437500
                              0
                                 254
                                      935
              OT 165.739130
                                 438 3812
                             68
              SA 114.750000
                             25
                                 302 1377
In [45]:
          # 그래프에 한글 표시
         plt.rc('font', family='NanumGothic')
         n_groups = len(result.index)
          means = result['mean'].tolist()
          mins = result['min'].tolist()
          maxs = result['max'].tolist()
          sums = result['sum'].tolist()
          index = np.arange(n_groups) # n_groups의 크기 6만큼 배열 생성하여 index에 저장
         bar_width = 0.2
          # 평균 값에 대한 그래프 생성
          rects1 = plt.bar(index, means, bar_width, color='r', label='평균')
          rects2 = plt.bar(index + bar_width, mins, bar_width, color='g',label='최소값')
          rects3 = plt.bar(index + bar_width * 2, maxs, bar_width, color='b', label='최대값')
          rects4 = plt.bar(index + bar_width * 3, sums, bar_width, color='y',label='합계')
          plt.title('대륙별 spirit_servings의 평균, 최소, 최대, 합계')
          plt.xticks(index, result.index.tolist())
          plt.legend() # 그래프에 범례를 달고 싶을 때 쓰는 함수
          plt.show()
```

```
eWarning: Glyph 45824 missing from current font.
  font.set_text(s, 0.0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim
eWarning: Glyph 47449 missing from current font.
  font.set_text(s, 0.0, flags=flags)
C:\Users\YJ\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim
eWarning: Glyph 48324 missing from current font.
  font.set_text(s, 0.0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim
eWarning: Glyph 51032 missing from current font.
  font.set_text(s, 0.0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim
eWarning: Glyph 54217 missing from current font.
  font.set_text(s, 0.0, flags=flags)
C:\Users\YJ\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim
eWarning: Glyph 44512 missing from current font.
  font.set_text(s, 0.0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim
eWarning: Glyph 52572 missing from current font.
  font.set_text(s, 0.0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim
eWarning: Glyph 49548 missing from current font.
  font.set_text(s, 0.0, flags=flags)
C:\Users\YJ\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim
eWarning: Glyph 54633 missing from current font.
  font.set text(s. 0.0. flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim
eWarning: Glyph 44228 missing from current font.
  font.set_text(s, 0.0, flags=flags)
findfont: Font family ['NanumGothic'] not found. Falling back to DejaVu Sans.
C:\Users\YJ\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim
eWarning: Glyph 44050 missing from current font.
  font.set_text(s, 0.0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim
eWarning: Glyph 45824 missing from current font.
  font.set_text(s, 0, flags=flags)
C:\Users\YJ\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim
eWarning: Glyph 47449 missing from current font.
  font.set_text(s, 0, flags=flags)
C:\Users\YJ\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim
eWarning: Glyph 48324 missing from current font.
  font.set_text(s, 0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim
eWarning: Glyph 51032 missing from current font.
  font.set_text(s, 0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim
eWarning: Glyph 54217 missing from current font.
  font.set_text(s, 0, flags=flags)
C:\Users\YJ\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim
eWarning: Glyph 44512 missing from current font.
  font.set_text(s, 0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim
eWarning: Glyph 52572 missing from current font.
  font.set_text(s, 0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim
eWarning: Glyph 49548 missing from current font.
  font.set_text(s, 0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim
eWarning: Glyph 54633 missing from current font.
  font.set_text(s, 0, flags=flags)
```

C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim

findfont: Font family ['NanumGothic'] not found. Falling back to DejaVu Sans.

C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim

eWarning: Glyph 44228 missing from current font.

font.set_text(s, 0, flags=flags)

C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim e\text{Warning: Glyph 44050 missing from current font.}

font.set_text(s, 0, flags=flags)

In [46]: drinks

Out[46]:		country	beer_servings	spirit_servings	wine_servings	total_litres_of_pure_alcohol	continent
	0	Afghanistan	0	0	0	0.0	AS
	1	Albania	89	132	54	4.9	EU
	2	Algeria	25	0	14	0.7	AF
	3	Andorra	245	138	312	12.4	EU
	4	Angola	217	57	45	5.9	AF
	•••						
	188	Venezuela	333	100	3	7.7	SA
	189	Vietnam	111	2	1	2.0	AS
	190	Yemen	6	0	0	0.1	AS
	191	Zambia	32	19	4	2.5	AF
	192	Zimbabwe	64	18	4	4.7	AF

193 rows × 6 columns

```
In [47]: drinks.to_csv("drinks_bigdata.csv")
```

1. 대륙별 total_litres_of_pure_alcohol을 시각화

```
In [48]: # 대륙별 total_litres_of_pure_alcohol의 평균 continent_mean = drinks.groupby('continent').total_litres_of_pure_alcohol.mean()

In [49]: continent_mean
```

continent

```
3.007547
Out[49]: AF
               2.170455
         AS
         EU
               8.617778
         00
               3.381250
         0T
               5.995652
         SA
               6.308333
         Name: total_litres_of_pure_alcohol, dtype: float64
In [50]:
          continent_mean.index
         Index(['AF', 'AS', 'EU', 'OC', 'OT', 'SA'], dtype='object', name='continent')
Out[50]:
In [51]:
          continent_mean.values
         array([3.00754717, 2.17045455, 8.61777778, 3.38125 , 5.99565217,
Out[51]:
                6.30833333])
In [52]:
          continents = continent_mean.index.tolist()
In [53]:
          continents.append('mean')
In [54]:
          continents
         ['AF', 'AS', 'EU', 'OC', 'OT', 'SA', 'mean']
Out[54]:
In [55]:
          total_mean= drinks.total_litres_of_pure_alcohol.mean()
          total_mean
         4.717098445595855
Out[55]:
In [56]:
          #continent_mean.tolist()
          alcohol=continent_mean.values.tolist()
In [57]:
          # 대륙별 알코올 평균 리스트 마지막에 전체 평균을 추가
          alcohol.append(total_mean)
          alcohol
         [3.0075471698113208,
Out[57]:
          2.1704545454545454,
          8.61777777777778,
          3.38125,
          5.995652173913044,
          6.308333333333334,
          4.717098445595855]
In [58]:
          len(continents)
Out[58]:
In [59]:
          # 대륙별 평균의 인덱스만 추출해서 continents 리스트 생성
          continent_mean = drinks.groupby('continent').total_litres_of_pure_alcohol.mean()
          continents = continent_mean.index.tolist()
```

```
continents.append('평균') # 전체 평균을 표시하기 위한 'mean' 인덱스 추가
# 대륙별 평균의 값만 추출해서 alcohol 리스트 생성
total_mean= drinks.total_litres_of_pure_alcohol.mean()
alcohol = continent_mean.tolist()
alcohol.append(total_mean) # 전체 평균을 표시하기 위한 total_mean의 값 추가
# 막대 그래프 출력
x_pos = np.arange(len(continents))
bar_list = plt.bar(x_pos, alcohol, align='center', alpha=0.5)
bar_list[len(continents) - 1].set_color('r') # 마지막 바의 색상을 red로 지정
plt.plot([0, 5], [total_mean, total_mean], "k--") # 평균 수치에 선 생성
plt.xticks(x_pos, continents)
plt.ylabel('total_litres_of_pure_alcohol')
plt.title('대륙별 알코올 평균')
plt.show()
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim
eWarning: Glyph 45824 missing from current font.
  font.set_text(s, 0.0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim
eWarning: Glyph 47449 missing from current font.
  font.set_text(s, 0.0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim
eWarning: Glyph 48324 missing from current font.
  font.set_text(s, 0.0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim
eWarning: Glyph 50508 missing from current font.
  font.set_text(s, 0.0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim
eWarning: Glyph 53076 missing from current font.
  font.set_text(s, 0.0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim
eWarning: Glyph 50732 missing from current font.
  font.set_text(s, 0.0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim
eWarning: Glyph 54217 missing from current font.
  font.set_text(s, 0.0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim
eWarning: Glyph 44512 missing from current font.
  font.set_text(s, 0.0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim
eWarning: Glyph 54217 missing from current font.
  font.set_text(s, 0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim
eWarning: Glyph 44512 missing from current font.
  font.set_text(s, 0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim
eWarning: Glyph 45824 missing from current font.
  font.set_text(s, 0, flags=flags)
C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim
eWarning: Glyph 47449 missing from current font.
  font.set_text(s, 0, flags=flags)
C:\Users\YJ\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim
eWarning: Glyph 48324 missing from current font.
  font.set_text(s, 0, flags=flags)
C:\Users\YJ\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim
eWarning: Glyph 50508 missing from current font.
```

font.set_text(s, 0, flags=flags)

C:\Users\YJ\Wanaconda3\Ulib\Usite-packages\matplotlib\Ubackends\Ubackend_agg.py:203: Runtim e\Uparning: Glyph 53076 missing from current font.

font.set_text(s, 0, flags=flags)

C:\Users\YJ\Wanaconda3\Ulib\Usite-packages\matplotlib\Ubackends\Ubackend_agg.py:203: Runtim e\Uparning: Glyph 50732 missing from current font.

font.set_text(s, 0, flags=flags)


```
In [60]:
         # 대륙별 total_litres_of_pure_alcohol 시각화 - 점선을 변경합니다.
         # 점선의 위치도 변경해 봅니다.
         # 전체 표준편차 대비 대륙별 표준편차 그래프 구하기
         total_std = drinks.total_litres_of_pure_alcohol.std()
         continent_std = drinks.groupby('continent')['total_litres_of_pure_alcohol'].std()
         continents = continent_std.index.tolist()
         continents.append('Total 표준편차')
         x_pos = np.arange(len(continents))
         alcohol = continent_std.tolist()
         alcohol.append(total_std)
         bar_list = plt.bar(x_pos, alcohol, align='center', alpha=1)
         bar_list[len(continents) - 1].set_color('orange')
         #plt.plot([3, 5], [total_max, total_max], "k--") # 점선 표기 부분
         plt.plot([0, 5], [total_std, total_std], "k-") # 실선 표기
         plt.xticks(x_pos, continents)
         plt.ylabel('total_litres_of_pure_alcohol')
         plt.title('전체 표준편차 대비 대륙별 표준편차')
         plt.show()
```

C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim e\text{Warning: Glyph 51204 missing from current font.}

font.set_text(s, 0.0, flags=flags)

C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim e\text{Warning: Glyph 52404 missing from current font.}

font.set_text(s, 0.0, flags=flags)

C:\Users\YJ\Wanaconda3\Ulib\Usite-packages\matplotlib\Ubackends\Ubackend_agg.py:240: Runtim e\Uparning: Glyph 54364 missing from current font.

font.set_text(s, 0.0, flags=flags)

C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim e\text{Warning: Glyph 51456 missing from current font.}

font.set_text(s, 0.0, flags=flags)

C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim e\text{Warning: Glyph 54200 missing from current font.}

font.set_text(s, 0.0, flags=flags)

C:₩Users₩YJ\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim

eWarning: Glyph 52264 missing from current font.

font.set_text(s, 0.0, flags=flags)

C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:240: Runtim e\text{Warning: Glyph 48708 missing from current font.}

font.set_text(s, 0.0, flags=flags)

C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim e\text{Warning: Glyph 54364 missing from current font.}

font.set_text(s, 0, flags=flags)

C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim e\text{Warning: Glyph 51456 missing from current font.}

font.set_text(s, 0, flags=flags)

C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim e\text{Warning: Glyph 54200 missing from current font.}

font.set_text(s, 0, flags=flags)

C:\Users\YJ\Wanaconda3\Ulib\Usite-packages\matplotlib\Ubackends\Ubackend_agg.py:203: Runtim e\Uparning: Glyph 52264 missing from current font.

font.set_text(s, 0, flags=flags)

C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim e\text{Warning: Glyph 51204 missing from current font.}

font.set_text(s, 0, flags=flags)

C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim e\text{Warning: Glyph 52404 missing from current font.}

font.set_text(s, 0, flags=flags)

C:\Users\YJ\anaconda3\Iib\site-packages\matplotlib\backends\backend_agg.py:203: Runtim e\text{Warning: Glyph 48708 missing from current font.}

font.set_text(s, 0, flags=flags)

In [65]:

!pip install scipy

Requirement already satisfied: scipy in c:\users\unders\users\unders

Requirement already satisfied: numpy<1.23.0,>=1.16.5 in c:\users\unders\users\under

통계적 분석 분석 대상간의 통계적 차이 검정하기

```
print("%.3f and %.3f." % tTestResult)
print("%.3f and %.3f" % tTestResultDiffVar)
```

-7.268 and 0.000. -7.144 and 0.000

대한민국은 술을 얼마나 독하게 마시는 나라 인가 분석

```
In [77]:
           drinks['total_servings'] = drinks['beer_servings'] + drinks['wine_servings'] + drinks['sp
           drinks['total_servings']
                   0
Out[77]:
                 275
          2
                  39
          3
                 695
          4
                 319
          188
                 436
                 114
          189
          190
                   6
                  55
          191
          192
                  86
          Name: total_servings, Length: 193, dtype: int64
In [78]:
           drinks['alcohol_rate'] = drinks['total_litres_of_pure_alcohol']/drinks['total_serving
           drinks['alcohol_rate'] = drinks['alcohol_rate'].fillna(0)
           drinks['alcohol_rate']
                 0.000000
Out[78]:
                 0.017818
          2
                 0.017949
                 0.017842
          3
                 0.018495
          188
                 0.017661
          189
                 0.017544
                 0.016667
          190
          191
                 0.045455
          192
                 0.054651
          Name: alcohol_rate, Length: 193, dtype: float64
In [79]:
           country_with_rank = drinks[['country', 'alcohol_rate']]
           country_with_rank = country_with_rank.sort_values(by=['alcohol_rate'], ascending =0)
           country_with_rank.head(5)
Out[79]:
                  country
                           alcohol_rate
           63
                   Gambia
                              0.266667
          153 Sierra Leone
                              0.223333
          124
                   Nigeria
                              0.185714
          179
                   Uganda
                              0.153704
          142
                   Rwanda
                              0.151111
```

```
# 순위 정보 country_with_rank 중 country 피처로 리스트 생성
In [116...
         country_list = country_with_rank.country.tolist()
         x_pos = np.arange(len(country_list)) # x축의 값 나라별 이름이 길어 숫자로 대처함
         # 그래프 값, 순위 정보 중 alcohol_rate 피처로 리스트 생성
         rank = country_with_rank.alcohol_rate.tolist()
        bar_list =plt.bar(x_pos,rank) # x축 값, 그래프 값으로 막대 그래프 생성
        bar_list[country_list.index("South Korea")].set_color("r") #한국 그래프 red 색상 적용
         plt.ylabel('alcohol rate')
         plt.xlabel('country_list')
         plt.title('alcohol_rate of Korea')
         plt.axis([0,200,0,0.3]) # x,y 축에 대한 옵션을 다루는 메소드 x축 0~200 y축 0~3 까지
         korea_rank = country_list.index("South Korea")
         # 한국의 알콜 소비량 추출, 나라별 순위 데이터 프레임에서 나라가 한국인 것을 알콜 레이탈
         # 시리즈에서 값을 추출 하면 시리즈가 되기 때문에 값 하나만 추출 values[0]
         # 화살표와 화살표 텍스트 스타일 지정
         korea_alc_rate = country_with_rank[country_with_rank['country'] == 'South Korea']['all
         plt.annotate('South Korea:' +str(korea_rank +1 ), # 텍스트 값
                   xy=(korea_rank,korea_alc_rate), # 화살표 머리 표시할 x,y 위치
                   xytext = (korea_rank + 10, korea_alc_rate + 0.05), # 화살표 텍스트를 표시
                   arrowprops = dict(facecolor='red', shrink = 0.05)) # 화살표 색상
        plt.show()
```


연습문제 1

```
In [94]:
          result = drinks.groupby('continent').wine_servings.agg('mean')
           result.head()
          continent
Out[94]:
          AF
                 16.264151
          AS
                  9.068182
          EU
                142.222222
          0C
                 35.625000
          0T
                 24.521739
          Name: wine_servings, dtype: float64
```

연습문제 2

```
In [99]: total_servings = drinks[beer_servings.sum()+drinks.spirit_servings.sum()+drinks.wine_total_servings
```

```
45665
Out[99]:
In [117...
            total_servings=drinks.groupby('continent')['beer_servings'].sum() +drinks.groupby('co
            total_servings
           continent
Out[117...
           AF
                   4986
           AS
                   4706
           EU
                  21085
           00
                   2940
           0T
                   7721
           SA
                   4227
           dtype: int64
          연습문제 3
In [128...
            total_mean = total_servings.mean()
            total_mean
           7610.833333333333
Out[128...
In [149...
            drinks.groupby('country')['spirit_servings'].sum().idxmax()
            'Grenada'
Out[149...
 In [ ]:
In [202...
            continent_mean = total_servings
            continent_down_mean = continent_mean[continent_mean<= total_men]</pre>
            continent_list = continent_down_mean.index
            continent_list
           Index(['AF', 'AS', 'OC', 'SA'], dtype='object', name='continent')
Out[202...
In [217...
            drinks['continent'].values
           array(['AS', 'EU',
                                 'AF',
                                        'EU',
                                               'AF',
                                                      'OT',
                                                             'SA',
                                                                    'EU',
                                                                            ' 0C '
                                                                                   'EU',
                                                                                         'EU',
Out[217...
                    0T',
                           'AS',
                                                       'EU',
                                                              ' 0T '
                                  'AS'
                                         '0T'
                                                'EU'
                                                                     'AF
                                                                            'AS'
                                                                                   'SA'
                                                                                          'EU'
                           'SA',
                                                'AF
                                                       'AF
                                                              'AF
                                                                     'AF
                                  'AS'
                                         'EU'
                                                                            'AS
                                                                                   'AF'
                                                                                          ' OT '
                    'AF',
                                                       'AF'
                                                              'AF'
                          'AF
                                  'SA'
                                         'AS'
                                                'SA'
                                                                     ' OC '
                                                                            '0T'
                                                                                   'EU'
                                                                                          'OT'
                                 'AS'
                                         'AF
                                                'EU'
                                                      'AF'
                                                              'OT'
                                                                     ' 0T
                                                                            'SA'
                                                                                   'AF'
                           'AF
                                  'EU'
                                         'AF
                                                '0C
                                                      'EU
                                                              'EU
                                                                     'AF
                                                                            'AF
                                                                                   'EU'
                                                                                          'EU'
                    'AF'
                           'EU
                                  '0T
                                         '0T
                                                'AF
                                                       'AF
                                                              SA
                                                                     ' 0T
                                                                            0T
                                                                                   'EU
                                                                                          'EU'
                    'AS',
                                  'AS
                                                              'EU
                                                                     '0T
                                                                            'AS
                           'AS
                                         'AS
                                                'EU
                                                       'AS
                                                                                   'AS
                                                                                          'AS'
                    'AF'
                           '0C
                                  'AS
                                         'AS
                                                'AS
                                                       'EU
                                                              'AS
                                                                     'AF
                                                                            'AF
                                                                                   'AF
                                                                                          'EU'
                    'EU',
                                                       'AF
                                                              'EU
                                                                     ' 0C
                                                                            'AF
                           'AF
                                  'AF
                                         'AS
                                                'AS
                                                                                   'AF
                                                                                          '0T'
                    'OC',
                           'EU',
                                  'AS'
                                         'EU'
                                                'AF
                                                       'AF
                                                              'AS
                                                                     'AF
                                                                            '0C'
                                                                                   'AS'
                                                                                          'EU'
                    'OC',
                           'OT'.
                                  'AF
                                         'AF
                                                ' OC '
                                                       'EU'
                                                              'AS
                                                                     'AS'
                                                                            '0C'
                                                                                   '0T'
                                                                                          '0C'
                    'SA'
                           'SA'
                                  'AS
                                         'EU
                                                'EU
                                                       'AS
                                                              'AS
                                                                     'EU'
                                                                            'EU'
                                                                                   'AS
                                                                                          'AF
                    'OT',
                           '0T'
                                  '0T'
                                         '0C
                                                'EU'
                                                       'AF
                                                              'AS'
                                                                     'AF
                                                                            'EU'
                                                                                   'AF'
                           'EU',
                                                       'AF'
                    'AS',
                                  'EU'
                                         '0C
                                                'AF
                                                              'EU'
                                                                     'AS'
                                                                            'AF'
                                                                                   'SA'
                                 'AS'
                                                'AS'
                                                      'EU',
                                                             'AS',
                                                                    'AF',
                                                                                  'OT',
                    'EU',
                          'EU',
                                         'AS'
                                                                           'OC',
                    'AS',
                          'AS',
                                 'OC'.
                                        'AF'
                                               'EU',
                                                      'AS', 'EU', 'AF', 'OT', 'SA', 'AS',
                                 'AS',
                                        'AS',
                                               'AF',
                                                      'AF'], dtype=object)
```

In []:

exam_data

21. 12. 30. 오후 4:45

```
KeyError
                                                  Traceback (most recent call last)
         ~\pipData\Local\Temp/ipykernel_13096/3107428466.py in <module>
         ---> 1 continent_down_mean.groupby('country')['spirit_servings'].sum().idxmax()
         ~Wanaconda3WlibWsite-packagesWpandasWcoreWseries.py in groupby(self, by, axi
         s, level, as_index, sort, group_keys, squeeze, observed, dropna)
                        # error: Argument "squeeze" to "SeriesGroupBy" has incompatib
            1882
         le type
                        # "Union[bool, NoDefault]"; expected "bool"
            1883
         -> 1884
                          return SeriesGroupBy(
            1885
                           obj=self,
            1886
                           keys=by,
         ~Wanaconda3WlibWsite-packagesWpandasWcoreWgroupbyWgroupby.py in __init__(sel
         f, obj, keys, axis, level, grouper, exclusions, selection, as_index, sort,
          group_keys, squeeze, observed, mutated, dropna)
                            from pandas.core.groupby.grouper import get_grouper
            888
         --> 889
                              grouper, exclusions, obj = get_grouper(
            890
                               obj,
            891
                               keys,
         ~Wanaconda3WlibWsite-packagesWpandasWcoreWgroupbyWgrouper.py in get_grouper(o
         bj, key, axis, level, sort, observed, mutated, validate, dropna)
            860
                               in_axis, level, gpr = False, gpr, None
            861
                           else:
         --> 862
                                  raise KeyError(gpr)
            863
                        elif isinstance(gpr, Grouper) and gpr.key is not None:
            864
                            # Add key to exclusions
         KeyError: 'country'
In [ ]:
In [ ]:
        연습문제 4
In [118...
         drinks['alcohol_rate'] = drinks['total_litres_of_pure_alcohol']/drinks['total_servings
         drinks['alcohol_rate'] = drinks['alcohol_rate'].fillna(0)
         drinks['alcohol_rate']
               0.000000
Out[118...
               0.017818
         2
               0.017949
         3
               0.017842
         4
               0.018495
               0.017661
         188
         189
               0.017544
         190
               0.016667
         191
               0.045455
         192
               0.054651
         Name: alcohol_rate, Length: 193, dtype: float64
        연습문제 5
```

continent_down_mean.groupby('country')['spirit_servings'].sum().idxmax()

In []: