

Surfaces

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Exercice 1

Soit \mathscr{S} la surface d'équation $x^4 - x^3 + xy - y^2 - z = 0$.

- 1. Déterminer les plans tangents à la surface $\mathscr S$ parallèle au plan $\left(O,\overrightarrow{i},\overrightarrow{j}\right)$.
- 2. Etudier localement la position relative de la surface $\mathscr S$ et de son plan tangent en chacun des points ainsi obtenu.
- 3. Etudier la position relative globale de la surface \mathscr{S} et du plan $(O, \overrightarrow{i}, \overrightarrow{j})$.

Correction ▼ [005915]

Exercice 2

Trouver toutes les droites tracées sur la surface d'équations $x^3 + y^3 + z^3 = 1$ puis vérifier que ces droites sont coplanaires.

Correction de l'exercice 1

1. Pour $(x,y) \in \mathbb{R}^2$, posons $f(x,y) = x^4 - x^3 + xy - y^2$ puis pour $(x,y,z) \in \mathbb{R}^3$, posons g(x,y,z) = z - f(x,y). \mathscr{S} est la surface d'équation z = f(x,y) ou encore g(x,y,z) = 0. La fonction g est de classe C^1 sur \mathbb{R}^3 et pour tout $(x,y,z) \in \mathbb{R}^3$,

$$\left(\overrightarrow{\operatorname{grad}} g\right)(x, y, z) = \begin{pmatrix} -\frac{\partial f}{\partial x}(x, y) \\ -\frac{\partial f}{\partial y}(x, y) \\ 1 \end{pmatrix} = \begin{pmatrix} -4x^3 + 3x^2 - y \\ -x + 2y \\ 1 \end{pmatrix} \neq \overrightarrow{0}.$$

Donc, la surface \mathscr{S} est régulière et en tout point (x_0, y_0, z_0) de la surface \mathscr{S} , le vecteur gradient est un vecteur normal au plan tangent \mathscr{P}_0 à la surface \mathscr{S} en (x_0, y_0, z_0) . Le plan

On obtient ainsi les trois points O(0,0,0), $A\left(\frac{1}{2},\frac{1}{4},0\right)$ et $B\left(\frac{1}{4},\frac{1}{8},\frac{1}{256}\right)$.

2. La fonction f est de classe C^2 sur \mathbb{R}^2 et

$$rt - s^2 = \frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2} - \left(\frac{\partial^2}{\partial x \partial y}\right)^2 = (12x^2 - 6x)(-2) - 1^2 = -24x^2 + 12x - 1$$

- En O, le plan tangent est le plan $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$. De plus, $(rt s^2)(0, 0) = -1 < 0$. Donc le point O est un point selle.
- En A, le plan tangent est aussi le plan $(O, \overrightarrow{i}, \overrightarrow{j})$. De plus, $(rt s^2)(\frac{1}{2}, \frac{1}{4}) = -1 < 0$. Donc le point A est un point selle.
- En B, le plan tangent est le plan d'équation $z = \frac{1}{256}$. De plus, $(rt s^2) \left(\frac{1}{4}, \frac{1}{8}\right) = \frac{1}{2} > 0$. Donc la surface $\mathscr S$ a une disposition en ballon au point B.
- 3. Il s'agit maintenant d'étudier le signe de $z = f(x, y) = x^4 x^3 + xy y^2$ sur \mathbb{R}^2 .

$$f(x,y) = x^4 - x^3 + xy - y^2 = (x^4 - y^2) - x(x^2 - y) = (x^2 - y)(x^2 + y - x).$$

L'intersection de la surface $\mathscr S$ avec le plan $\left(O,\overrightarrow{i},\overrightarrow{j}\right)$ est donc la réunion des deux paraboles d'équations respectives $y=x^2$ et $y=-x^2+x$ dans le plan $\left(O,\overrightarrow{i},\overrightarrow{j}\right)$. Représentons cette intersection ainsi que le signe de $f(x,y)\oplus \ominus$.

