$$G(s) = \frac{K_0 K_1 K_2 n}{s [R_a (J_0 s + b_0) + K_2 K_3]}$$

$$= \frac{K_0 K_1 K_2 n / R_a}{J_0 s^2 + \left(b_0 + \frac{K_2 K_3}{R_a}\right) s}$$
(3.51)

O termo $[b_0 + (K_2K_3/R_a)]$ s indica que a fcem do motor aumenta efetivamente o atrito viscoso do sistema. A inércia J_0 e o coeficiente de atrito viscoso $b_0 + (K_2K_3/R_a)$ referem-se ao eixo do motor. Quando J_0 e $b_0 + (K_2K_3/R_a)$ são multiplicados por $1/n^2$, a inércia e o coeficiente de atrito viscoso são expressos em termos do eixo de saída. Introduzindo novos parâmetros definidos por:

 $J = J_0/n^2$ = momento de inércia referente ao eixo de saída

 $B = [b_0 + (K_2K_3/R_a)]/n^2 =$ coeficiente de atrito viscoso referente ao eixo de saída

$$K = K_0 K_1 K_2 / n R_a$$

a função de transferência G(s) dada pela Equação 3.51 pode ser simplificada, resultando em:

$$G(s) = \frac{K}{Js^2 + Bs}$$

ou

$$G(s) = \frac{K_m}{s(T_m s + 1)}$$

onde

$$K_m = \frac{K}{B}, \quad T_m = \frac{J}{B} = \frac{R_a J_0}{R_a b_0 + K_2 K_3}$$

O diagrama de blocos do sistema indicado na Figura 3.29(b) pode, assim, ser simplificado como mostra a Figura 3.29(c).

Problemas

B.3.1 Obtenha o coeficiente de atrito viscoso b_{eq} equivalente do sistema mostrado na Figura 3.30.

FIGURA 3.30

Sistema de amortecedores.

B.3.2 Obtenha os modelos matemáticos dos sistemas mecânicos mostrados nas figuras 3.31(a) e (b).

FIGURA 3.31

Sistemas mecânicos.

- **B.3.3** Obtenha uma representação no espaço de estados do sistema mecânico indicado na Figura 3.32, onde u_1 e u_2 são as entradas e y_1 e y_2 são as saídas.
- **B.3.4** Considere o sistema de pêndulo de mola com carga indicado na Figura 3.33. Suponha que a ação da força da mola sobre o pêndulo seja zero quando este está na posição vertical ou $\theta = 0$. Suponha também que o atrito envolvido seja desprezível e o ângulo de oscilação θ seja pequeno. Obtenha o modelo matemático do sistema.
- **B.3.5** Referindo-se aos exemplos 3.5 e 3.6, considere o sistema de pêndulo invertido indicado na Figura 3.34. Suponha que a massa do pêndulo invertido seja *m* e seja uniformemente distribuída ao longo da haste. (O centro de gravidade do pêndulo está localizado no centro da haste.) Supondo que θ seja pequeno, deduza os modelos matemáticos para o sistema na forma de equações diferenciais, funções de transferência e equações no espaço de estados.

FIGURA 3.32

Sistema mecânico.

FIGURA 3.33

Sistema de pêndulo de mola com carga.

FIGURA 3.34

Sistema de pêndulo invertido.

B.3.6 Obtenha as funções de transferência $X_1(s)/U(s)$ e $X_2(s)/U(s)$ do sistema mecânico indicado na Figura 3.35.

FIGURA 3.35

Sistema mecânico.

B.3.7 Obtenha a função de transferência $E_o(s)/E_i(s)$ do circuito elétrico indicado na Figura 3.36.

FIGURA 3.36

Circuito elétrico.

B.3.8 Considere o circuito elétrico mostrado na Figura 3.37. Obtenha a função de transferência $E_o(s)/E_i(s)$ pelo método do diagrama de blocos.

FIGURA 3.37

Circuito elétrico.

B.3.9 Deduza a função de transferência do circuito elétrico indicado na Figura 3.38. Desenhe um diagrama esquemático de um sistema mecânico análogo.

FIGURA 3.38

Circuito elétrico.

B.3.10 Obtenha a função de transferência $E_o(s)/E_i(s)$ do circuito com amplificador operacional indicado na Figura 3.39.

FIGURA 3.39

Circuito com amplificador operacional.

B.3.11 Obtenha a função de transferência $E_o(s)/E_i(s)$ do circuito com amplificador operacional indicado na Figura 3.40.