Name: Kalyan Kumar Paladugula ID: 679025059 Database Systems
Fall 2019

Homework #2

Complete By: Wednesday, September 11th @ 5:00pm

Submission: collected at beginning of class on paper or

submitted digitally through Gradescope

Reading Tables

On the following two pages is a set of data that was stored in a database. There are three tables extracted from the database which store between them some information the company keeping the database finds useful. Read through this data in order to answer the questions that follow.

Employee Table

Employee_ID	Employee_Fname	Employee_Lname	Employee_HireDate	Employee_Title
–		<u> </u>	- 0	- ·
2345	Brian	Oates	2/14/99	DBA
3373	Franklin	Johnson	3/15/06	Purchasing Agent
4893	Patricia	Richards	6/11/08	DBA
6234	Jasmine	Patel	8/10/09	Programmer
8273	Marco	Bienz	7/28/10	Analyst
9002	Wade	Gather	5/20/14	Clerk
9283	Juan	Chavez	7/4/14	Clerk
9382	Susan	Mathis	8/2/14	Database Programmer
13383	Raymond	Matthews	3/12/16	Programmer

Certified Table

Certified Table			
Employee_ID	Skill_ID	Certified_Date	
2345	100	2/14/04	
2345	110	8/9/05	
2345	180	2/14/07	
3373	120	6/20/13	
4893	180	6/11/08	
4893	220	9/20/14	
6234	110	8/10/09	
6234	200	8/10/09	
6234	210	1/29/14	
8273	110	3/8/11	
8273	190	8/19/14	
9002	110	5/16/15	
9002	120	5/16/15	
9382	140	8/2/14	
9382	210	8/2/14	
9382	220	5/1/15	
13383	170	3/12/16	

Skill Table

Skill_ID	Skill_Name	Skill_Description
100	Basic Database Management	Create and manage database user accounts
110	Basic Web Design	Create and maintain HTML and CSS documents
120	Advanced Spreadsheets	Use of advanced functions, user-defined functions, and macroing
130	Basic Process Modeling	Create core business process models using standard libraries
140	Basic Database Design	Create simple data models
150	Master Database Programming	Create integrated trigger and procedure packages for a distributed environment
160	Basic Spreadsheets	Create single tab worksheets with basic formulas
170	Basic C# Programming	Create single-tier data aware modules
180	Advanced Database Management	Manage Database Server Clusters
190	Advanced Process Modeling	Evaluate and Redesign cross-functional and external business processes
200	Advanced C# Programming	Create multi-tier applications using multi-threading
210	Basic Database Manipulation	Create simple data retrieval and manipulation statements in SQL
220	Advanced Database Manipulation	Use of advanced data manipulations methods for multi-table inserts, sets operations and correlated subqueries.

Position Requirements

Employee_Title	Skill_ID
Clerk	100
Programmer	110
Programmer	130
Programmer	170
Analyst	120
Analyst	130
Analyst	160
Analyst	140
Purchasing Agent	160
Database Programmer	140
Database Programmer	210
Database Programmer	100
Database Programmer	220
DBA	180
DBA	150

Produce the tables generated by executing the following Relational Algebra Queries on the data set provided on the previous pages.

1. $\Pi_{Employee_FName,Employee_LName}(Employee)$

Employee_Fname	Employee_Lname
Brian	Oates
Franklin	Johnson
Patricia	Richards
Jasmine	Patel
Marco	Bienz
Wade	Gather
Juan	Chavez
Susan	Mathis
Raymond	Matthews

1. $\Pi_{Employee_ID} \sigma_{Employee_HireDate} = 1/1/2010 (Employee)$

Employee_ID
8273
9002
9283
9382
13383

2. $\Pi_{Employee_ID, Skill_Name}$ (Certified \bowtie Skill)

Employee_ID	Skill_Name	
2345	Basic Database Management	
2345	Basic Web Design	
2345	Advanced Database Management	
3373	Advanced Spreadsheets	
4893	Advanced Database Management	
4893	Advanced Database Manipulation	
6234	Basic Web Design	
6234	Advanced C# Programming	
6234	Basic Database Manipulation	
8273	Basic Web Design	
8273	Advanced Process Modeling	
9002	Basic Web Design	
9002	Advanced Spreadsheets	
9382	Basic Database Design	
9382	Basic Database Manipulation	
9382	Advanced Database Manipulation	
13383	Basic C# Programming	

For each of the questions in this section, you will write a relational algebra query that generates the table or answer to the query.

3. Build a Relational Algebra expression that will produce the following table. Keep in mind the properties of relations. (5 points)

Employee_Title
Analyst
Clerk
Programmer
DBA
Purchasing Agent
Database Programmer

 Π Employee_Title (Employee)

1. What is each Employee's title and first name? (5 points)

 $\Pi_{Employee_FName, Employee_Title}$ (Employee)

4.	When were certifications given for training in Basic Web Design?
	Π Certified_Date(σ Skill_Name = "Basic Web Design"(Certified \bowtie Skill))
	or
	Π Certified_Date (σ Skill_ID = 110 (Certified \bowtie Skill))
2.	What skill(s) is Jasmine Patel certified in? List the names of the skills.
	$ \Pi \text{ Skill_Name} (\sigma \text{ Employee_Fname} = \text{``Jasmine''} (\sigma \text{ Employee_Lname} = \text{``Patel''} ((Employee \bowtie Certified)))) $
	Or
	$\Pi_{\text{Skill_Name}}(\sigma_{\text{Employee}} \bowtie \text{Certified}) \bowtie \text{Skill}))$

3.	Who are the employee(s) who are certified in Advanced Database Management? List the first and last names.
	$ \begin{split} &\Pi_{\text{Employee_FName, Employee_LName}}(\sigma_{\text{Skill_Name}} = \text{``Advanced Database Management''}(\\ &((\text{Employee} \bowtie \text{Certified}) \bowtie \text{Skill}))) \end{split} $
	Or
	$\Pi_{\text{Employee_FName}, \text{Employee_LName}}(\sigma_{\text{Skill_ID} = 180}((\text{Employee} \bowtie \text{Certified}) \bowtie \text{Skill})))$
4.	List the Titles of the employees alongside the Names of the skills for certifications given before $06/01/2009$.
	$ \Pi \; \text{Employee_Title} \; , \; \text{Skill_Name} \big(\sigma \; \text{Certified_Date} \; < \; 06/01/2009 \big(\big(Employee \bowtie \; Certified \big) \bowtie \; Skill \big) \big) $
5.	List the skills the employee with Employee_ID stored in the variable E does not possess certification for that they should according to their title and the Position Requirements table. For example, Brian Oates has the title of DBA, but the DBA position requires training in both Advanced Database Management and Master Database Programming, and Brian only has training in Advanced Database Management.
	The output table if E stored 2345 would be this
	Skill_Name
	Master Database Programming

```
Let \mathbf{t} = \text{Employee} \bowtie (\text{Skill} \bowtie (\text{Position Requirements} - \Pi_{\text{Employee\_Title}}, \text{Skill\_ID}(\text{Employee} \bowtie \text{Skill})))

And

\mathbf{S} = \Pi_{\text{Employee\_ID}}, \text{Skill\_Name}(\mathbf{t})

And

\rho_{x} (\text{E, Skill\_Name}) (S)

So, the required relational algebra query is:

\rho_{x} (\text{E, Skill\_Name}) (\Pi_{\text{Employee\_ID}}, \text{Skill\_Name}(\text{Employee} \bowtie (\text{Skill} \bowtie (\text{Position}))))
```

Requirements - Π Employee_Title, Skill_ID(Employee \bowtie Skill)))))

6. Write a relational algebra expression which constructs a table recording which employees are senior to each other, specifically for employees who are Clerks. For example, Wade Gather is senior to Juan Chavez because Wade was hired before Juan. If a Sam Smith was hired today, with ID 11111, Juan would be senior to Sam and Wade would be senior to both Sam and Juan.

The table should contain two columns, the ID of the senior employee, and the ID of the Junior employee, for every pair of employees who are related by seniority.

For example, the table for this data set with the addition of Sam would be this

Senior_ID	Junior_ID
9002	9823
9002	11111
9283	11111

 ρ c (Senior ID, Junior ID) (Π a.Employee_ID, b.Employee_ID (σ a.Employee_HireDate < b.Employee_HireDate ^ a.Employee_Title = "Clerk" ^ b.Employee_Title = "Clerk" (ρ a (Employee) X ρ b (Employee))))