

Grandezas, unidades, conversões de unidades

- 1) Sabendo que uma milha tem 5 280 pés, que um pé tem 12 polegadas e que uma polegada é igual a 2.54 cm, calcule o número de quilómetros de uma milha. (1.6 km)
- 2) A intensidade da força de atrito do ar sobre um avião a jato varia de acordo com $F_a = -Cv^2$. De que factor deve ser alterada a velocidade do avião para que a força de atrito duplique? $(\sqrt{2})$
- 3) A massa volúmica da água é de ~ 1 g cm⁻³. Qual o valor em unidades SI? (10^3 kg/m^3)
- **4)** Numa habitação consumiram-se 200 kWh de energia elétrica. Qual o consumo em unidades SI? (7.2 ×10⁸ J)
- 5) a) Um disco efetuou 30 revoluções. Qual o ângulo descrito por cada um dos seus pontos expressos em graus e radianos? $(1.08 \times 10^{4})^{\circ} = 60\pi \, \text{rad}$
 - **b)** Um reprodutor de discos de vinil (vulgo gira-discos) pode trabalhar a 45 rpm ou a 33 rpm. Converta estes valores em radianos por segundo. $(1.5\pi \, \text{rad/s}, 1.1\pi \, \text{rad/s})$
- **6)** Determine as unidades SI da constante de estrutura fina, α , definida por: $\alpha = \frac{e^2}{2\varepsilon_0 hc}$, sabendo que a intensidade da força elétrica entre dois eletrões (carga e) à distância r é:

$$F_e = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2}$$

Nota : h é a constante de Planck e c é a velocidade da luz. (adim.)

- 7) Nas seguintes equações, a distância x está expressa em metros, o tempo t em segundos e o valor da velocidade v, em metros por segundo. Quais são as unidades das constantes C_1 a C_4 no SI?
 - a) $x = C_1 + C_2 t (C_1(m), C_2(m s^{-1}))$
 - b) $v^2 = 2 C_1 x$ (C₁(ms⁻²))
 - c) $x = C_1 + C_2t + C_3t^2 + C_4 \ln(C_5)$ (C₁(m), C₂(m/s), C₃(m/s²), C₄(m))
- 8) Quando uma esfera de raio r se desloca num fluido de coeficiente de viscosidade η fica submetida à ação de uma força de atrito de intensidade: $F = 6\pi\eta rv$ em que v é o valor da velocidade da esfera. Determine as unidades SI de η . (kg m⁻¹ s⁻¹)

Estimativas

- 9) Um prego de Fe (Z = 26, M(Fe) = 55.847 g/mol) tem uma massa de 3 g. Qual é a carga elétrica correspondente a todos os eletrões do prego? (\sim 135 kC)
- 10) Se pudesse comprimir todo o ar da sala de aula e metê-lo numa mochila acha que era capaz de transportar a mochila? Nota: Ao nível do mar e a 15 °C a massa volúmica do ar é $\rho \approx 1.225 \text{ kg/m}^3$.
- **11)** Estimar a massa volúmica média da Terra. Comparar com a da massa volúmica da água a 20 °C.
- **12)** Estimar a massa da atmosfera terrestre. (considere o valor da aceleração da gravidade constante $g = 9.8 \text{ m/s}^2$) (4×10¹⁸ kg)
- 13)Se a superfície sólida da Terra fosse dividida igualmente por cada habitante, qual a área com que cada um ficaria? Compare com as dimensões de um campo de futebol:105 m × 65 m. (~2.8 campos de futebol/pessoa)
- **14)**A probabilidade de ganhar a sorte grande na Lotaria Nacional é 1/10⁶. Se empilhássemos todos os bilhetes de lotaria, qual a altura atingida? (~100 m)
- **15)** Estimar o nº de bolas de golfe que são necessárias para circular a Terra no equador. Comparar com a população da China. (~10°)
- **16)** Qual o volume ocupado pelo lixo produzido pelos portugueses durante um ano? Qual a altura que atingiria esse lixo se fosse armazenado sobre a superfície de Portugal?
- 17) Calcular a energia cinética da Terra relativamente ao Sol, no seu movimento de translação em torno do Sol. (3×10³³ J)
- 18) Um estudante do planeta Arret, num sistema solar que não o nosso, deixou cair um objeto, de alturas diferentes, medindo o tempo de queda, com o objetivo de medir o valor da aceleração devida à gravidade nesse lugar do planeta. Foram registados os resultados da tabela, expressos em unidades locais:
 - a) Calcule a aceleração da gravidade do planeta em welf/surg². (4.3)

Altura (em welfs)	Tempo (em surgs)	
0.0	0.0	
2.15	1.0	
8.60	2.0	
19.33	3.0	

b) Um visitante da Terra em Arret verificou que 1 welf = 6.33 cm e que 1 surg = 0.167s. Compare o valor da aceleração da gravidade de Arret com o valor da aceleração da gravidade da Terra, perto da superfície dos planetas.

Cálculo Vetorial

- **19)** Relativamente aos vetores $\vec{a} = (3\hat{i} + 4\hat{j} 5\hat{k})$ m e $\vec{b} = (-\hat{i} + 2\hat{j} + 6\hat{k})$ m, calcule:
 - a) o comprimento de cada vetor; b) $\vec{a} + \vec{b}$ c) $\vec{a} \vec{b}$ d) $\vec{a} \cdot \vec{b}$
 - e) o ângulo formado pelo dois vetores; f) $\vec{a} \times \vec{b}$ g) $\vec{b} \times \vec{a}$
 - (a) 7.1 m; 6.4 m; b) $2\hat{i} + 6\hat{j} + \hat{k}$; c) $4\hat{i} + 2\hat{j} 11\hat{k}$; d) -25 m^2 ; e) 123° ;
 - f) $(34\hat{i} 13\hat{j} + 10\hat{k})$ m²; g) $(-34\hat{i} + 13\hat{j} 10\hat{k})$ m²)
- **20)** No plano xy, um vetor \vec{a} tem módulo igual a 5 e faz com o semieixo positivo dos xx um ângulo de 60° e 30° com o semieixo positivo dos yy.
 - a) Determine as componentes do vetor \vec{a} . ($\vec{a} = 2.5\hat{i} + 4.3\hat{j}$)
 - b) Determine as componentes e o módulo do vetor $\vec{a} \vec{b}$, sabendo que $\vec{b} = 2.0\hat{\imath} 5.0\hat{\jmath}$. $(\vec{a} \vec{b} = 0.5\hat{\imath} + 9.3\hat{\jmath}); |\vec{a} \vec{b}| = 9.3$)
- **21)**Calcular o módulo, a direção e o sentido dos vetores que cada um dos pares de componentes representa:
- a) $A_x = 3$ cm $A_y = -4$ cm; b) $A_x = -5$ m $A_y = -12$ m c) $A_x = -2$ km $A_y = 3$ km
- (a) 5 cm; 53° com o sentido positivo do eixo x, 4° quadrante.) b) 13 m; 67° com o sentido negativo do eixo x, 3° quadrante.) c) 4 km; 56° com o sentido negativo do eixo x, 2° quadrante.)
- **22)** Relativamente aos vetores $\vec{A} = 3\hat{\imath} 2\hat{\jmath} \hat{k}$ e $\vec{B} = \hat{\imath} + 2\hat{\jmath} 3\hat{k}$, calcular:
 - a) Os vetores $\vec{A} \vec{B}$, $\vec{A} + \vec{B}$, e os seus módulos. Comparar com $|\vec{A}| |\vec{B}|$ e $|\vec{A}| + |\vec{B}|$. Comentar os resultados. $(\vec{A} \vec{B}) = 2\hat{\imath} 4\hat{\jmath} + 2\hat{k}$; $|\vec{A} \vec{B}| = \sqrt{24}$; $(\vec{A} + \vec{B}) = 4\hat{\imath} 4\hat{k}$; $|\vec{A} + \vec{B}| = \sqrt{32}$; $|\vec{A}| |\vec{B}| = 0$; $|\vec{A}| + |\vec{B}| = 2\sqrt{14}$)
 - b) Os versores \hat{A} e \hat{B} . $(\hat{A} = 0.8\hat{\imath} 0.5\hat{\jmath} 0.3\hat{k}; \hat{B} = 0.3\hat{\imath} + 0.5\hat{\jmath} 0.8\hat{k})$
 - c) O produto escalar $\vec{A} \cdot \vec{B}$ e o ângulo entre os vetores \vec{A} e \vec{B} . (2; 81.7°)
- **23)** Um caçador sai do seu acampamento e anda 6.0 km para o norte. A seguir anda 3.0 km para leste e 2.0 km para o sul, onde encontra um rio que vai em linha reta até ao seu acampamento.
 - a) Qual a direção do rio? (53º N-E)
 - b) A que distância se encontra do acampamento no momento em que encontrou o rio?
- **24)** Determine a intensidade, direção e sentido da resultante das duas forças ilustradas.
 - a) $F_R = 59 \text{ N}$; 23° com o direção vertical; 2° quadrante.
 - b) $F_R = 324 \text{ N}$; 49° com o direção horizontal;

- **25)** Calcule:
- a) as componentes da força de 250 N. $(F_x = -52.8 \text{ N}; F_y = 113.3 \text{ N}; F_z = 216.5 \text{ N}).$
- b) as componentes da força de 300 N. ($F_x = 181.2$ N; $F_x = 66.0$ N; $F_z = 229.8$ N)
- **26)** Na figura é ilustrada a estrutura cristalina do cloreto de sódio (sal de cozinha). Determine o valor do ângulo θ e a distância, em nanómetros, entre o ião sódio localizado num dos vértices do cubo e o ião cloreto localizado no vértice diagonalmente oposto. (35.3°; 0.487 nm)

- 27) Na figura estão representados dois prédios de alturas diferentes. Imagine que mora no prédio A e que, um familiar seu, mora no prédio B. Durante uma conversa o seu familiar afirma que o prédio B é 1.5 vezes mais alto que o seu prédio. Para verificarem esta afirmação resolve fazer a seguinte observação:
 - Estando localizado no topo do edifício A, estima que a sua linha de visão, que passa pelo bordo superior do edifício B, tem uma direção que forma um ângulo de 21º com a direção horizontal;

• Estando localizado na base do edifício B, estima que a sua linha de visão, que passa pelo topo do edifício A, tem uma direção que forma um ângulo de 52º com a direção horizontal.

Verifique se o seu familiar tem razão, determinando qual a razão entre as alturas dos edifícios (1.3)

28) Um trapezista, em cima de uma plataforma, segura a corda de um trapézio de comprimento L=8.0 m. Na situação inicial, a direção da corda do trapézio forma um ângulo de 41° com a direção vertical. Depois de baloiçar, larga a corda do trapézio na posição localizada 0.75 m abaixo da posição inicial do salto (ver figura). Determine qual o valor do ângulo θ , entre a direção da corda do trapézio e a direção vertical, no mento em que o trapezista larga a corda. (32°)

29) A sonda *Mars Polar Lander* foi lançada pelo veículo de lançamento Delta II 7425 em 3 de janeiro de 1999. No dia 3 de dezembro de 1999, 10 minutos antes de pousar em Marte, perdeu-se o contacto com a sonda e não houve mais nenhuma comunicação. Considerando o Sol como origem, as coordenadas da Terra e de Marte, em unidades astronómicas (1 AU = 1.496×10⁸ km) no dia 3 de dezembro de 1999 eram as seguintes:

	<i>x</i> (AU)	y (AU)	z (AU)
Terra	0.3182	0.9329	-0.0000
Marte	1.3087	-0.4423	-0.0414

Saiba que a órbita da Terra se dá no plano xy e que a Terra passa pelo eixo x uma vez por ano, por volta do dia 22 de setembro, dia do equinócio de outono no hemisfério norte.

- a) Faça uma representação gráfica das posições do Sol, Terra e Marte no dia 3 de dezembro de 1999.
- b) Determine, para o dia 3 de dezembro, a distância, em unidades astronómicas:
 - i) do Sol à Terra (0.9857)
 - ii) do Sol a Marte (1.3820)
 - iii) da Terra a Marte (1.695)
- c) Tendo como referência a Terra, qual o ângulo entre a direção Terra-Sol e Terra-Marte? (54.6º)

Alguns dados

Aceleração da gravidade terrestre: 9.8 m s-2

Raio equatorial da Terra: 6378.1 km

Raio polar da Terra: 6356.8 km

Raio médio da Terra = 6371.0 km.

Massa da Terra: $m_{\text{Terra}} = 5.97 \times 10^{24} \text{ kg}$

Diâmetro mínimo de uma bola de golf: 42.67 mm

Massa volúmica da água a 20 °C: 998.2 kg m-3

População da China (estimativa de fevereiro 2022): 1.452× 109

Percentagem de área da Terra submersa ≈ 70%;

População da Terra (estimativa de fevereiro 2022): 7.927 × 109

Pressão atmosférica à superfície da Terra ≈ 1.01 × 10⁵ Pa.

Carga fundamental : $e = 1.6 \times 10^{-19}$ C