Rings of Arithmetical Functions under the Operations of Pointwise Addition and Dirichlet Composition

A Project Thesis for the Award of the Degree of B.Sc (Hon's) in Mathematics of Jagannath University

> Submitted by, Radita Hossain ID NO.: B150302034

Department of Mathematics
Jagannath University
Dhaka-1100
Bangladesh

March, 2022

Contents

1	Introduction to Groups 3					
	1.1	Group				
		1.1.1 Definition				
		1.1.2 Example of Groups				
	1.2	Abelian Group				
		1.2.1 Definition				
		1.2.2 Examples of Abelian Group 4				
	1.3	Order of a Group				
		1.3.1 Definition				
		1.3.2 Examples				
	1.4	Order of an element of a group				
		1.4.1 Definition				
	1.5	General Properties of Groups				
	1.6	Some Problems on Group				
		•				
2	Introduction to Rings 15					
	2.1	Ring				
		2.1.1 Definition				
		2.1.2 Example of Rings				
		2.1.3 Various Types of Ring				
		2.1.4 Properties of Rings				
		2.1.5 Characteristic of a Ring				
		2.1.6 Some Problems on Ring				
	2.2	Subring				
		2.2.1 Definition				
		2.2.2 Examples of Subring:				
		2.2.3 Properties of Subring				
		2.2.4 Some Problems on Subring				
	2.3	Ideal of a Ring				
		2.3.1 Definition				
		2.3.2 Examples of Ideal of a ring				
		2.3.3 Properties of Ideal of a ring				
		2.3.4 Some problems on Ideal of a ring 31				

3	Ari	${f thmeti}$	ical Function and it's Properties	34		
	3.1	Arithi	metical Function	34		
		3.1.1	Definition	34		
		3.1.2	Examples of Arithmetical Functions	34		
		3.1.3	Properties of Arithmetical Function	34		
	3.2	Pointy	wise Sum of Arithmetical Function	36		
		3.2.1	Definition	36		
		3.2.2	Properties of pointwise addition	37		
	3.3	<i>lö</i> bius Inversion Formula	38			
		3.3.1	Definition:	38		
		3.3.2	Properties of Möbius Inversion Formula	38		
4	Dirichlet Product and it's Properties					
	4.1	Dirich	llet Product	41		
		4.1.1	Definition	41		
		4.1.2	Examples of Dirichlet product	41		
		4.1.3	Properties of Dirichlet product	41		
		4.1.4	Some Problems on Dirichlet product	44		
		4.1.5	Dirichlet Inverse	45		
	4.2 Multiplicative Functions			46		
		4.2.1	Definition	46		
		4.2.2	Examples of Multiplicative Functions	46		
		4.2.3	Properties of Multiplicative Functions	46		
	4.3	Comp	lete Multiplicative Functions	49		
		4.3.1	Definition	49		
		4.3.2	Examples of complete multiplicative function:	49		
5	Gro	oups u	nder Dirichlet Composition	50		
6	Rin	Rings under Pointwise Addition and Dirichlet Composition 5				

Chapter 1

Introduction to Groups

1.1 Group

1.1.1 Definition

A group is a set G, together with a binary operation o, satisfying the following conditions:

- 1. Closure law: $aob \in G \ \forall \ a,b \in G$.
- 2. Associative law: $(aob)oc = ao(boc) \ \forall \ a,b,c \in G$
- 3. **Existence of identity:** There exists an $e \in G$ such that $aoe = eoa = a \ \forall \ a \in G$.
- 4. **Existence of inverse:** For each $a \in G$, there exists $aob \in G$ such that aob = boa = e.

We will refer to G as a group under o. The element e is called the identity element of the group. If $a \in G$, and aob = boa = e, then b is called the inverse of a, and we write $b = a^{-1}$.

1.1.2 Example of Groups

Example 1

Let G be a group under the binary operation addition. Then the following properties hold in G:

- $(i) \ \forall a, b \in G \Rightarrow a + b \in G$
- $(ii) \ \forall a, b, c \in G \Rightarrow (a+b) + c = a + (b+c)$
- (iii) $\exists 0 \in G$ such that $a + 0 = 0 + a = a, \forall a \in G$
- (iv) $a \in G \Rightarrow -a \in G \Rightarrow a + (-a) = (-a) + a = 0.$
- i.e. $(R_o, .)$ is a group.

Solution:

Since the usual multiplication is a binary operation in R_o , then clearly the following laws hold in R_o :

- $(i) \ \forall a, b \in R_o \Rightarrow ab \in R_o$
- $(ii) \ \forall a, b, c \in R_o \Rightarrow (ab)c = a(bc)$
- (iii) $\exists 1 \in R_o$ such that $a1 = 1a = a, \forall a \in R_o$, where 1 is called the unit element of R_o .
 - (iv) $a \in R_o \Rightarrow \exists a^{-1}$ such that $aa^{-1} = a^{-1}a = 1$.

Thus $(R_o, .)$ is a group under multiplication.

1.2 Abelian Group

1.2.1 Definition

A group (G, o) is called Abelian or commutative if: $\forall a, b \in G \Rightarrow aob = boa$.

1.2.2 Examples of Abelian Group

Example 1:

Let G be a group under the binary operation multiplication. If $\forall a, b \in G \Rightarrow ab = ba$, then G is called an Abelian Group under the binary operation multiplication.

Example 2:

Let G be a group under the binary operation addition. If $\forall a, b \in G \Rightarrow a + b = b + a$, then G is called an Abelian Group under the binary operation addition.

Example 3:

The group $(\mathbf{Z}, +)$ is an additive Abelian Group since $\forall a, b \in \mathbf{Z} \Rightarrow a + b = b + a$. Similarly the groups $(\mathbf{Q}, +), (\mathbf{R}, +), (\mathbf{C}, +)$ are all additive abelian Groups.

1.3 Order of a Group

1.3.1 Definition

Let (G, o) be a group. Then by the order of G is the number of elements in the set G. The order of G is denoted by o(G). A finite group is of finite order and an infinite group is of infinite order.

1.3.2 Examples

Example 1:

- (i) The multiplicative group G = (1, -1) is a finite group of order 2 i. e. o(G) = 2 since the number of elements in G are 2.
- (ii) The multiplicative group G = (1, -1, i, -i) is a group of order 4 i. e. o(G) = 4.

These two groups are finite group since the order of each is finite.

Example 2:

The algebraic system $(\mathbf{Z}, +), (\mathbf{Q}, +), (\mathbf{R}, +)$ are all groups of infinite order since the number of elements in each is infinite.

1.4 Order of an element of a group

1.4.1 Definition

Let (G, o) be a group and $a \in G$. Then the order of 'a' is the least positive integer n such that $a^n = e$ (the identity element of G). The order of 'a' is denoted by o(a).

Theorem 1

The order of the element of a group is 1.

Proof:

Let G be a group and e be the identity element of G. Then since $e^1 = e$ (identity) or 1e = e (identity), so o(e) = 1

Thus the order of the identity element of any group is always 1.

Theorem 2

For any two elements a, b of a group, the order of ab is the same as the ba.

Proof:

```
Let G be a group and e be the identity element in G.

Let a, b \in G

Then ab, ba \in G

Now we have (a^{-1})a = e

Thus ba = e(ba) = (a^{-1})a(ba)

= a^{-1}(ab)a

\Rightarrow o(ba) = o(a^{-1}(ab)a) = o(ab).

Hence o(ab) = o(ba).
```

1.5 General Properties of Groups

Theorem 1 (Uniqueness of identity in a group)

Let (G, o) be a group. Then the identity element e in G is unique.

Proof:

If possible, let e and e' be two identity elements in G. Then we have

```
e an identity \Rightarrow eoe' = e'oe = e'.....(1)

e' an identity \Rightarrow eoe' = e'oe = e.....(2)

Then (1) and (2) \Rightarrow e = e'.

Hence the identity element in a group is unique.
```

Theorem 2 (Uniqueness of inverse in a group)

The inverse of each element in a group is unique.

Proof:

Let (G, o) be a group. Let e be the identity of G, Let a be an arbitrary element in G. If possible let b and c be the inverses of a. Then we have

```
aob = boa = e....(i) and
```

```
aoc = coa = e......(ii)
But we have,
b = boe [e \text{ is the identity}]
= bo(aoc) [by (ii)]
= (boa)oc [o \text{ is associative}]
= eoc [by (i)]
= c [e \text{ is the identity}]
Thus the inverse of each element of a group is unique.
```

Theorem 3 (Cancellation law)

Let (G, o) be a group. Then show that: $\forall a, b, c \in G$,

- (i) $aob = aoc \Rightarrow b = c$ [Left cancellation law]
- (ii) $boa = coa \Rightarrow b = c$ [Right cancellation law]

Proof:

Let e be the identity of G. Since $a \in G \Rightarrow \exists a^{-1} \in G$ such that $a^{-1}oa = aoa^{-1} = e$(1)

(i)

$$aob = aoc \Rightarrow a^{-1}o(aob) = a^{-1}o(aoc)$$

 $\Rightarrow (a^{-1}oa)ob = (a^{-1}oa)oc$ [by associative law]
 $\Rightarrow eob = eoc$
 $\Rightarrow b = c$
Thus $\forall a, b, c \in G, aob = aoc \Rightarrow b = c$.

(ii)

$$boa = coa \Rightarrow (boa)oa^{-1} = (coa)oa^{-1}$$

 $\Rightarrow bo(aoa^{-1}) = co(aoa^{-1})$ [by associative law]
 $\Rightarrow boe = coe$ [by (1)]
 $\Rightarrow b = c$ [e is the identity]
Thus $\forall a, b, c \in G, boa = coa \Rightarrow b = c$.

Theorem 4 (Inverse identity)

Let (G, o) be a group. Then show that $(a^{-1})^{-1} = a, \forall a \in G$.

Proof:

We have,

$$aoa^{-1} = e$$

 $\Rightarrow aoa^{-1} = a^{-1}oa [((a^{-1})^{-1}oa^{-1} = e]$
 $\Rightarrow a = (a^{-1})^{-1}$ [by right cancellation law]
Thus $(a^{-1})^{-1} = a$

Theorem 5 (Reversal law for inverse)

Let (G, o) be a group. Then show that $(aob)^{-1} = b^{-1}oa^{-1}, \forall a, b \in G$.

Proof:

Let a and b be two arbitrary elements of G. Then a^{-1} and b^{-1} are inverses of a and b respectively. Now by definition we have $(aob)^{-1}$ is the inverse of aob. Let e be the identity of G. Then we have,

$$(aob)o(boa^{-1}) = [(aob)ob^{-1}]oa^{-1} \dots [o \text{ is positive}]$$

$$= [ao(bob^{-1})oa^{-1} \dots [o \text{ is associative}]$$

$$= [aoe]oa^{-1} \dots [bob^{-1} = e]$$

$$= [aoa^{-1}] \dots [aoa^{-1} = e]$$

$$= e \dots [aoa^{-1} = e]$$
Again we have,
$$(b^{-1}oa^{-1})o(aob) = [(b^{-1}oa^{-1})oa]ob \dots [o \text{ is associative}]$$

$$= [b^{-1}o(a^{-1}oa)]ob \dots [o \text{ is associative}]$$

$$= (b^{-1}oe)ob \dots [a^{-1}oa = e]$$

$$= b^{-1}ob \dots [e \text{ is the identity}]$$

$$= e \dots [b^{-1}ob = e]$$
Thus $(aob)^{-1} = b^{-1}oa^{-1}$.

Theorem 6

For any two elements a, b of a multiplicative group G, $(ab)^2 = a^2b^2$ if and only if G is abelian.

Proof:

Let
$$(ab)^2 = a^2b^2$$
. We shall show that G is abelian.
Now, $(ab)^2 = a^2b^2$
 $\Rightarrow (ab)(ab) = (aa)(bb)$
 $\Rightarrow a(ba)b = a(ab)b$

```
\Rightarrow (ba)b = (ab)b; by left cancellation law

\Rightarrow ba = ab; by right cancellation law

\Rightarrow G is abelian.

Conversely, let G is abelian. We shall show that for any a,b \in G, (ab)^2 = a^2b^2.

Now (ab)^2 = (ab)(ab)

= a(ba)b

= a(ab)b; [G is abelian ,so ab=ba]

= (aa)(bb)

= a^2b^2

Hence Proved.
```

Theorem 7

If for every element in a group G is its own inverse, then G is abelian.

Proof:

Let G be a multiplicative group.

For any $a, b \in G$, we have their inverses $a^{-1}, b^{-1} \in G$ and let e be the identity element of G.

```
a, b \in G \Rightarrow ab \in G, by closure law

\Rightarrow a = a^{-1}, b = b^{-1}

and ab = (ab)^{-1}

Now ab = (ab)^{-1}

= b^{-1}a^{-1}; [(aob)^{-1} = b^{-1}oa^{-1}]

= ba

\Rightarrow ab = ba

Hence the group G is abelian.
```

Theorem 8

If G is a group such that $(ab)^i = a^i b^i$ for three consecutive integers for all $a, b \in G$, then G is abelian.

Proof:

Let
$$m, m + 1, m + 2$$
 be three consequtive integers for which $(ab)^m = a^m b^m, (ab)^{m+1} = a^{m+1} b^{m+1}, (ab)^{m+2} = a^{m+2} b^{m+2}$
 $\Rightarrow (ab)^{m+1} (ab) = (a^{m+1} a) (b^{m+1} b)$
 $\Rightarrow a^{m+1} b^{m+1} (ab) = a^{m+1} (ab^{m+1}) b$

```
\Rightarrow b^{m+1}(ab) = (ab^{m+1})b; \text{ By left cancellation law}
\Rightarrow (b^{m+1}a)b = (ab^{m+1})b
\Rightarrow b^{m+1}a = ab^{m+1}; \text{ By right cancellation law}
\Rightarrow a^m(b^{m+1}a) = a^m(ab^{m+1}); \text{ By left multiplication with } a^m
\Rightarrow a^mb^m(ba) = a^{m+1}b^{m+1}
\Rightarrow (ab)^m(ba) = (ab)^{m+1}
\Rightarrow (ab)^m(ba) = (ab)^maab
\Rightarrow ba = ab; \text{ By left cancellation law.}
\Rightarrow ab = ba
Hence G is abelian.
```

Theorem 9

The left identity is also the right identity.

Proof:

Let e be the left identity of a group G. Then for any $a \in G$ we have eoa = a.....(1)

We shall prove that e is the right identity . For this it is enough to show that

```
aoe = a......(2)

If a^{-1} is the left inverse of a, then a^{-1}oa = e.....(3)

By associative law in G we have a^{-1}o(aoe) = (a^{-1}oa)oe

= eoe, by (3)

= e = a^{-1}oa, by (3)

\Rightarrow a^{-1}o(aoe) = a^{-1}oa

\Rightarrow aoe = a, by left cancellation law.

which is same as of (2).

Thus the left identity is also the right identity.
```

Theorem 10

A set G with a binary composition denoted multiplicatively is a group iff

- (i) the composition is associative
- (ii) the equations ax = b and ya = b has unique solutions in G.

Proof:

First suppose that G is a group. We shall prove that the conditions (i) and (ii) hold.

Since G is a group, so associative law hold in G and thus the condition (i) is satisfied.

For condition (ii) we have $a, b \in G \Rightarrow a^{-1} \in G$ and $a^{-1}b \in G$.

Now putting $a^{-1}b$ for x in the left side of ax = b we get

 $a(a^{-1}b) = (aa^{-1})b$, by associative law

= eb, where e is the identity element of G.

= b

Therefore $x = a^{-1}b$ satisfy the equation ax = b.

For uniqueness: If possible let $x = x_1$ and $x = x_2$ are two solutions of ax = b. Then

$$ax_1 = b = ax_2$$

$$\Rightarrow ax_1 = ax_2$$

 $\Rightarrow x_1 = x_2$, by left cancellation law

Therefore the equation ax = b has a unique solution.

Again, for the equation ya = b we have

$$a \in G \Rightarrow a^{-1} \in G$$

$$b, a^{-1} \in G \Rightarrow ba^{-1} \in G.$$

Now putting ba^{-1} for y in the left side of ya = b we get

 $(ba^{-1})a = b(a^{-1}a)$, by associative law

= be, where e is the identity element of G.

= h

Therefore $y = ba^{-1}$ satisfy the equation ya = b.

For Uniqueness: If possible, let y_1 and y_2 are two solutions of ya = b. Then

$$y_1 a = b = y_2 a$$

$$\Rightarrow y_1 a = y_2 a$$

 $\Rightarrow y_1 = y_2$, by right cancellation law

Therefore, The equation ya = b has a unique solution.

Conversely, suppose that conditions (i) and (ii) hold. We shall prove that G is a group. For this we only need to show that identity exists and every element of G has a inverse.

Existence of identity: Putting b = a in ax = b and ya = b we have

$$ax = a$$
 and $ya = a$

$$\Rightarrow ax = ae_1 \text{ and } ya = e_2a$$

where e_1 and e_2 are left and right identity of G.

```
\Rightarrow x = e_1 \text{ and } y = e_2
Therefore ae_1 = a.....(1) and e_2a = a.....(2)
Now be_1 = (ya)e_1 = y(ae_1) = ya = b......(3), by (1) and e_2b = e_2(ax) = (e_2a)x = ax = b......(4), by (2) (3) and (4) are true for all b \in G.
Taking b = e_2 in (3) and b = e_1 in (4) we get e_2e_1 = e_2 and e_2e_1 = e_1 \Rightarrow e_1 = e_2 = e, say
Thus unique identity exists in G.
```

Existence of inverse: The equations ax = b, ya = b have unique solution. Choosing b = e we get

$$ax = e$$
 and $ya = e$

These equations have unique solution. Let the solutions in G are x=c and y=d. Then

$$ac = e \text{ and } da = e......(5)$$

$$\Rightarrow d(ac) = de$$

$$\Rightarrow (da)c = d$$

$$\Rightarrow ec = d$$

$$\Rightarrow c = d$$
From (5), $ac = e = ca$

$$\Rightarrow c \text{ is the inverse of } a \Rightarrow c = a^{-1}.$$
Since $c \in G$, so $a^{-1} \in G$
Thus inverse exists in G .
This proves that G is a group.

1.6 Some Problems on Group

Problem 1

(R, +) is a group under the usual addition (+) in R.

Solution:

We have $R = x : x \in QUQ'$.

Since the usual addition is a binary operation in R, then clearly the following laws hold in R:

- (i) $\forall a, b \in R \Rightarrow a + b \in R$ since the sum of two real numbers is also a real number.
 - $(ii) \ \forall a, b, c \in R \Rightarrow (a+b) + c = a + (b+c)$
 - (iii) $\exists 0 \in R$ such that $a + 0 = 0 + a = a, \forall a \in R$

(iv) $a \in R \Rightarrow \exists -a \in R \text{ such that } a + (-a) = (-a) + a = 0.$

Thus (R, +) satisfies each of the axioms of a group and therefore it is a group.

Problem 2

The set $G = \{1, -1\}$ forms a finite multiplicative abelian group.

Solution:

Given that $G = \{1, -1\}$

- (i) Closure law: $1.(-1) = -1 \in G \Rightarrow$ closure law satisfied.
- (ii) Associative law: (-1.1).1 = -1.(1.1)
- (1.1).(-1) = 1.(1.(-1)) and so on.
- \Rightarrow Associative law satisfied.
- (iii) Existence of identity: There exists the unique element 1 in G such that

$$1.(-1) = (-1).1 = -1 \in G$$

- \Rightarrow 1 is the identity element of G.
- \Rightarrow Identity element exists.
- (iv)Existence of inverse: $1^{-1} = \frac{1}{1} = 1 \in G$

and
$$(-1)^{-1} = \frac{1}{-1} = -1 \in G$$

Also, $1.1^{-1} = 1^{-1}.1 = 1.1 = 1$

Also,
$$1.1^{-1} = 1^{-1}.1 = 1.1 = 1$$

and
$$(-1) \cdot (-1)^{-1} = (-1)^{-1} \cdot (-1) = (-1) \cdot (-1) = 1$$

- \Rightarrow Inverse exists and every element of G has an inverse in G.
- (v)Commutative law: 1.(-1) = (-1).1 = -1
- \Rightarrow commutative law hold in G.
- (vi) Number of elements of G = 2 =finite.

Hence $G = \{1, -1\}$ forms a finite multiplicative abelian group.

Problem 3

If a and x are two elements of a group G such that axa = b, then x = ?.

Solution:

Given that axa = b

$$\Rightarrow a^{-1}(axa) = a^{-1}b$$

$$\Rightarrow (a^{-1}a)(xa) = a^{-1}b$$

$$\Rightarrow e(xa) = a^{-1}b$$

$$\Rightarrow xa = a^{-1}b$$

$$\Rightarrow xaa^{-1} = a^{-1}ba^{-1}$$

$$\Rightarrow xe = a^{-1}ba^{-1}$$

$$\Rightarrow x = a^{-1}ba^{-1}.$$
 (Ans)

Chapter 2

Introduction to Rings

2.1 Ring

2.1.1 Definition

A ring is a nonempty set R equipped with two operations called addition (+) and multiplication (.) that satisfies the following properties:

- (1) (R,+) is an abelian group, i.e
- (i) Closure Property of Addition:

$$\forall a, b \in R \Rightarrow a + b \in R$$

(ii) Associative Property of Addition:

$$(a+b) + c = a + (b+c), \forall a, b, c \in R$$

(iii) Existence of Additive Identity:

$$\exists \ 0 \in R \text{ such that } a+0=0+a=a, \forall a \in R$$

(iv) Existence of Additive Inverse:

for each
$$a \in R \exists -a \in R$$
 such that $a + (-a) = (-a) + a = 0$

(v) Commutative Law of Addition:

$$a+b=b+a, \forall a,b\in R$$

(2) (R,*) is a semi group i.e,

(i)Closure property of multiplication:

$$\forall a, b \in R \Rightarrow ab \in R$$

(ii) Associative law of multiplication:

$$(ab)c = a(bc), \forall a, b, c \in R$$

(3) multiplication distributes addition, i.e.,

(i)Distributive Law:

Left Distributive : $a(b+c) = ab + ac, \forall a, b, c \in R$ Right Distributive : $(a+b)c = ac + bc, \forall a, b, c \in R$

2.1.2 Example of Rings

Some example of Rings are given below:

- 1. $(\mathbf{Z} +, .), (\mathbf{Q}, +, .), (\mathbf{C}, +, .)$ are ring.
- 2. The set of all 2×2 matrix with entries integers is a ring with respect to the operations matrix addition and matrix multiplication.
- 3. Set of all even integers is a ring with respect to addition and multiplication composition.

2.1.3 Various Types of Ring

Trivial Ring:

The singleton set $\{0\}$ is a ring with addition and multiplication given by 0 + 0 = 0 and 0.0 = 0.

This ring is called the trivial ring.

It is also called the zero ring or the null ring.

Non-trivial Ring:

A ring which is not a trivial ring is called a non-trivial ring. The non-trivial ring contains at least two elements, the additive identity 0 and a non zero element.

Commutative Ring:

A ring R is called a commutative ring if the multiplication composition in R is commutative, i.e, if

$$ab = ba \ \forall a, b \in R$$

Example: The ring (R, +, .) is a commutative ring of real numbers.

Ring with Zero Divisors:

A ring (R, +, .) is said to be a ring with zero divisors if it is possible to find at least two elements a and b of R such that, $a \neq 0, b \neq 0$ but ab = 0.

Example: The set of all 2×2 matrix with entries integers is a ring with zero divisors.

Integral Doamin:

A ring (R, +, .) is said to be an integral domain if it is a commutative ring with unity and without zero divisors.

Example: $(\mathbf{Z}, +, .), (\mathbf{R}, +, .), (\mathbf{C}, +, .)$ are integral domain.

Field:

A ring (R, +, .) is said to be a field if it is a commutative ring with unity in which every non-zero element has a multiplicative inverse.

Example: $(\mathbf{Z}, +, .), (\mathbf{Q}, +, .), (\mathbf{C}, +, .)$ are field.

2.1.4 Properties of Rings

Theorem 1

Let R be a ring whose compositions have been denoted by additively and multiplicatively. Let $a, b, c \in R$, then

- (i) a.0 = 0.a = 0 where 0 is the additive identity in R.
- (ii) $(-a).b = a.(-b) = -(ab), \forall a, b \in R.$
- (iii) $(-a)(-b) = ab, \forall a, b \in R$.
- (iv) $a(b-c) = ab ac, \forall a, b, c \in R$.
- (v) $(b-c)a = ba ca, \forall a, b, c \in R$.
- $(vi) (a+b) = (-a) + (-b), \forall a, b \in R.$

Proof (i):

Using the property of 0 in R, We may write a + 0 = 0 + a = a........................(1) If a = 0, then $(1) \Rightarrow 0 + 0 = 0$(2) Now, a.(0 + 0) = a.0 [by (2)] $\Rightarrow a.0 + 0.a = a.0$ [by LDL] $\Rightarrow a.0 = 0$(3) [by Cancellation Law] Again, (0 + 0).a = 0.a [by(2)] $\Rightarrow 0.a + a.0 = 0.a$ $\Rightarrow 0.a = 0$(4) [by Cancellation law] Thus (3) and (4) $\Rightarrow a.0 = 0.a = 0$, \forall $a \in \mathbb{R}$ Hence (i) is proved.

Proof (ii):

Proof (iii):

We have,
$$(-a)(-b) = -(a(-b))$$
 [by (2)]
 $= -(-(ab))$ [by(2)]
 $= ab$ [Because $-(-x) = x$, $\forall x \in \mathbb{R}$]
Thus $\forall a, b \in \mathbb{R} \to (-a)(-b) = ab$
Hence (iii) is proved.

Proof (iv):

We have,
$$b-c=b+(-c) \ \forall \ b,c \in R$$

Then, $a(b-c)=a(b+(-c))=ab+a(-c)$ [by LDL]
 $=ab-ac$ [by (ii)]
Thus $\forall \ a,b,c \in R \rightarrow a(b-c)=ab-ac$
Hence (iv) is proved.

Proof (v):

Again,
$$(b-c)a = (b+(-c))a$$
[Because $b-c = b+(-c)$]
= $ba+(-c)a$ [by RDL]
= $ba-ca$
Thus $\forall a, b, c \in \mathbb{R}$) $\Rightarrow (b-c)a = ba-ca$
Hence (v) is proved.

Proof (vi):

We have

$$(a+b)+[(-a)+(-b)]$$

= $(b+a)+[(-a)+(-b)]$; by commutative law of addiction in R .
= $b+[a+(-a)+(-b)]$, by associative law
= $b+[0+(-b)]$
= $b+(-b)$
= 0
 $\Rightarrow (-a)+(-b)=-(a+b)$; By inverse law
 $\Rightarrow -(a+b)=(-a)+(-b)$.
Hence (vi) is proved.

Theorem 2

If R is a commutative ring of characteristic p, a prime then for any $a, b \in R, (a+b)^p = a^p + b^p$.

Proof:

Given R is a commutative ring. So for any $a, b \in R$, we have ab = ba. Again, $(a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2$ $= a^2 + 2ab + b^2$, $(a + b)^3 = (a + b)(a + b)^2$ $= (a + b)(a^2 + 2ab + b^2)$

$$= a^{3} + a(2ab) + ab^{2} + ba^{2} + b(2ab) + b^{3}$$

$$= a^{3} + 2a^{2}b + ab^{2} + a^{2}b + 2ab^{2} + b^{3}$$

$$= a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$= a^{3} + ^{3}c_{1}a^{3-1}b^{1} + ^{3}c_{2}a^{3-2}b^{2} + b^{3}$$
Thus, by binomial theorem we have
$$(a+b)^{p} = a^{p} + ^{p}c_{1}a^{p-1}b + ^{p}c_{2}a^{p-2}b^{2} + \dots + ^{p}c_{r}a^{p-r}b^{r} + \dots + b^{p}.....(1)$$
Now, $^{p}c_{r} = \frac{p!}{r!(p-r)!} = \frac{p(p-1)!}{r!(p-r)!}$

Here p is a prime, so p and r!(p-r)! have no common factor except 1. Therefore, r!(p-r)! must be a factor of (p-1)!.

Thus, ${}^{p}c_{r}$ = some integral multiple of p

= pn, for some integer n > 0.

Now for $1 \le r \le (p-1)$ we have

$$^{p}c_{r}a^{p-r}b^{r} = pna^{p-r}b^{r} = 0$$

 \Rightarrow All terms except the first and last terms in the right side of (1) vanish.

Thus from (1) we get
$$(a+b)^p = a^p + 0 + 0 + \dots + 0 + b^p$$

 $\Rightarrow (a+b)^p = a^p + b^p$.

Theorem 3

If
$$(R,+,.)$$
 is a Ring with unity 1, then $(i)a(-1) = (-1)a = -a \ \forall \ a \in R$ $(ii)(-1)(-1) = 1$

Proof (i):

Since 1 is the unity of R then, 1 + (-1) = (-1 + 1 = 0..........(1) $\Rightarrow a.1 = 1.a = a \ \forall \ a \in R........(2)$ Now we have, $a.0 = 0.a = 0 \ \forall \ a \in R$ $\Rightarrow a(1 + (-1)) = a((-1) + 1) = 0$ [By (1)] $\Rightarrow a.1 + a(-1) = a(-1) + a.1 = 0$ [by distributive law] $\Rightarrow a + a(-1) = a(-1) + a = 0$ [by (2)] $\Rightarrow a(-1) = -a......(3)$ Similarly, 0.a = 0 $\Rightarrow (1 + (-1))a = ((-1) + 1)a = 0$ $\Rightarrow 1.a + (-1)a = (-1)a + 1.a = 0$

$$\Rightarrow a + (-1)a = (-1)a + a = 0$$

 $\Rightarrow (-1)a = -a......(4)$
Thus (3) and (4) $\Rightarrow a(-1) = (-1)a = -a......(5)$
Hence $a(-1) = (-1)a = -a, \forall a \in R$.

Proof (ii):

We have,
$$\forall a, b \in R \Rightarrow (-a)(-b) = ab......(6)$$

If $a = b = -1$, then $(6) \Rightarrow (-1)(-1) = (1)(1) = 1.1 \Rightarrow (-1)(-1) = 1$.

2.1.5 Characteristic of a Ring

Definition:

The characteristic of a ring R is the smallest positive integer n, if it exists, such that $n.a = 0 \ \forall a \in R$ In case, such an n does not exist, we say that the ring R is of characteristic 0 or of infinite characteristic.

Example:

Some examples of characteristic of rings are given below:

1. In the ring Z of all integers there exist no positive integer for which

$$n.a = 0 \ \forall a \in Z$$

So, Z is of infinite characteristic.

2. In a ring $(Z_5 = \{0, 1, 2, 3, 4\}, +_5, \times_5)$ it is clear that 5 is the least positive integer such that

$$5 \times_5 a = 0 \ \forall a \in \mathbb{Z}_5.$$

So Z_5 is of characteristic 5.

2.1.6 Some Problems on Ring

Problem 1

Let R be a ring such that $a^2 = a$ for all $a \in R$. Then

- (i) 2a = 0 for all $a \in R$
- (ii) ab = ba for all $a, b \in R$.

Solution:

Given that R is a ring such that $a^2 = a, \forall a \in R$ (i) Now $a \in R \Rightarrow a + a \in R$ $\Rightarrow (a+a)^2 = a+a$, by given condition $\Rightarrow (a+a)(a+a) = a+a$ $\Rightarrow (a+a)a + (a+a)a = a+a$ $\Rightarrow (a^2 + a^2) + (a^2 + a^2) = a + a$ $\Rightarrow (a+a) + (a+a) = (a+a) + 0$ $\Rightarrow a + a = 0$, by left cancellation law. $\Rightarrow 2a = 0$ $(ii)a, b \in R \Rightarrow ab \in R \Rightarrow ab + ab \in R$ $\Rightarrow 2(ab) = 0$ $\Rightarrow ab + ab = 0....(1)$ Let $a, b \in R$. Then $a^2 = a, b^2 = b$ and $(a + b)^2 = a + b$ Now $(a+b)^2 = a+b$ $\Rightarrow (a+b)(a+b) = a+b$ \Rightarrow (a+b)a+(a+b)b=a+b, by distributive law $\Rightarrow (a^2 + ba) + (ab + b^2) = a + b$ \Rightarrow (a+ba)+(ab+b)=a+b \Rightarrow (a+b)+(ab+ba)=(a+b)+0 $\Rightarrow ba + ab = 0$, by left cancellation law $\Rightarrow ba + ab = ab + ab$, by (1) $\Rightarrow ba = ab$, by right cancellation law Therefore ab = ba.

Problem 2

A ring R with $x^2 = x, \forall x \in R$ must be commutative.

Solution:

Given
$$x^2 = x, \forall x \in R$$
 So, $(x+x)^2 = x+x$
 $\Rightarrow (x+x)(x+x) = x+x$
 $\Rightarrow (x+x)x + (x+x)x = x+x$; by distributive law.
 $\Rightarrow (x^2+x^2) + (x^2+x^2) = x+x$
 $\Rightarrow (x+x) + (x+x) = (x+x) + 0$,
 $\Rightarrow x+x = 0$(1); by left cancellation law of addition.
Let $a, b \in R$. Then $a^2 = a, b^2 = b$ and $(a+b)^2 = a+b$

```
Now (a + b)^2 = a + b

\Rightarrow (a + b)(a + b) = a + b

\Rightarrow (a + b)a + (a + b)b = a + b; by distributive law

\Rightarrow (a^2 + ba) + (ab + b^2) = a + b

\Rightarrow (a + ba) + (ab + b) = a + b;

\Rightarrow (a + b) + (ba + ab) = (a + b) + 0

\Rightarrow ba + ab = 0; by left cancellation law.

\Rightarrow ba + ab = ba; by (1)

\Rightarrow ab = ba; by left cancellation law.

Therefore R is commutative.
```

Problem 3

Let 'addition' and 'multiplication' be defined on the set Z of integers by aob = a + b - 1 and a * b = a + b - ab respectively. Then (Z, o, *) is a commutative ring with unity.

Solution:

We know that the addition of two or more integers is a integer and the product of two or more integers is also a integer.

For commutative group:

- (i) Closure property: For any $a, b \in \mathbf{Z}$ we have
- $a+b-1 \in \mathbf{Z}$ and $a+b-ab \in \mathbf{Z}$
- $\Rightarrow aob \in \mathbf{Z} \text{ and } a * b \in \mathbf{Z}$
- \Rightarrow **Z** is closed under o and *.
- (ii) Associative law: For any $a, b, c \in \mathbf{Z}$ we have

$$(aob)oc = (a+b-1)oc$$

$$= a + b - 1 + c - 1 = a + b + c - 2$$

$$ao(boc) = ao(b+c-1) = a+b+c-1-1 = a+b+c-2$$

Therefore (aob)oc = ao(boc).

- \Rightarrow Associative law satisfied.
- (iii) Existence of additive identity: Let e be the identity element. Then aoe = eoa = a

$$\Rightarrow a+e-1=e+a-1=a$$

$$\Rightarrow a + e - 1 = a$$

$$\Rightarrow a + e - 1 = a + 0$$

$$\Rightarrow e-1=0$$
, by left cancellation law

$$\Rightarrow e = 1$$

Therefore e = 1 is the identity of o.

Existence of additive inverse: Let a' be the additive inverse of $a \in \mathbb{Z}$. Then

$$aoa' = a'oa = e$$

 $\Rightarrow a + a' - 1 = 1$
 $\Rightarrow a' = 2 - a$

Thus every element of \mathbf{Z} has an inverse in \mathbf{Z} .

Commutative law: Let $a, b \in \mathbf{Z}$. Then

$$aob = a + b - 1 = b + a - 1 = boa$$

Thus (Z, o) is a commutative (abelian) group.

Multiplication * is associative: For $a, b, c \in \mathbf{R}$ we have

$$(a * b) * c = (a + b - ab) * c$$

= $a + b - ab + c - (a + b - ab)c$
= $a + b - ab + c - ac - bc + abc$
= $a + b + c - ab - ac - bc + abc$
 $(a * b) * c = a * (b * c)$
 \Rightarrow Multiplication * is associative.

(vii) Multiplication * is distributed in addition o:

$$a*(boc) = a*(b+c-a)$$

$$=a+b+c-1-a(b+c-1)$$

$$=2a+b+c-ab-ac-1.....(1)$$

$$a*b*a*c = (a+b-ab)o(a+c-ac)$$

$$= (a+b-ab)+(a+c-ac)-1$$

$$= 2a+b+c-ab-ac-1.....(2)$$

$$(aob)*c = (a+b-1)*c$$

$$= a+b-1+c-(a+b-1)c$$

$$= a+b+2c-ac-bc-1.....(3)$$

$$a*cob*c = (a+c-ac)o(b+c-bc)$$

$$(a+c-ac)+(b+c-bc)-1$$

$$= a+b+2c-ac-bc-1.....(4)$$
From (1) and (2), (3), and (4) we have
$$a*(b+c) = a*b+a*c$$
and $(aob)*c = a*cob*c$

Hence the multiplication is distributed in addition.

(viii) For unity: Let m be the identity for multiplication *.

Then for any $a \in \mathbf{Z}$ we have

$$a*m = m*a = a$$

$$\Rightarrow a+m-am = a+0$$

$$\Rightarrow m-am = 0$$

$$\Rightarrow m(1-a) = 0$$

```
\Rightarrow m = 0 \in \mathbf{Z}
 \Rightarrow 0 is the unity of the ring (Z, o, *).
Thus, (\mathbf{Z}, o, *) is a commutative ring with unity.
```

Problem 4

If R is a ring with unity satisfying $(ab)^2 = a^2b^2 \ \forall \ a,b \in R$ then R is commutative.

Proof:

```
Since R is a ring with unity, that is 1 \in R. Then a \in R, b \in R \Rightarrow a
\in R, b + 1 \in R.
   \Rightarrow [a(b+1)]^2 = a^2(b+1)^2  [(ab)^2 = a^2b^2, \forall a, b \in R]
   \Rightarrow a(b+1)a(b+1) = a^2(b+1)(b+1)
   \Rightarrow (ab+a)(ab+a) = a^2[(b+1)b+(b+1)1] [By distributive law]
   \Rightarrow ab(ab+a) + a(ab+a) = a^2(b^2+b+b+1)
                                                            By distributive
law
   \Rightarrow (ab)^2 + aba + a^2b + a^2 = a^2b^2 + a^2b + a^2b + a^2 [By distributive
law
   \Rightarrow a^2b^2 + aba + a^2b + a^2 = a^2b^2 + a^2b + a^2b + a^2
   \Rightarrow aba = a^2b...(1) [By cancelation of addition]
   Replacing a by a + 1 in (1)
   (a+1)b(a+1) = (a+1)^2b \Rightarrow (a+1)(ba+b) = (a+1)(a+1)b
   \Rightarrow a(ba + b) + 1(ba + b) = (a + 1)(ab + b)
   \Rightarrow aba + ab + ba + b = a(ab + b) + 1(ab + b)
                                                          [By(1)]
   \Rightarrow ab + ba = ab + ab [by cancellation law]
   \Rightarrow ba = ab [by cancellation law]
   Hence ab = ba, \forall a, b \in R and therefore R is commutative.
```

2.2 Subring

2.2.1 Definition

A non-empty subset S of R is a subring if $a, b \in S \Rightarrow a - b, ab \in S$. So S is closed under subtraction and multiplication.

2.2.2 Examples of Subring:

- 1. The subsets 0, 2, 4 and 0, 3 are subrings of \mathbb{Z}_6 .
 - 2. The set $a + bi \in \mathbf{C}$ where $a, b \in \mathbf{Z}$ forms a subring of \mathbf{C} .
- 3. The set $a + b * \sqrt{5}$ where $a, b \in Z$ is a subring of the ring **R**. The set $x + y * \sqrt{5}$ where $x, y \in Q$ is also a subring of **R**.

2.2.3 Properties of Subring

Theorem 1:

The necessary and sufficient conditions for a non-empty subset S of a ring R to be a subring of R are

- (i) $a, b \in S \Rightarrow a-b \in S$
- (ii) $a, b \in S \Rightarrow ab \in S$

Proof:

To prove that the conditions are necessary let us suppose that S is a subring of R. Obviously S is a group with respect to addition, therefore $b \in S \Rightarrow -b \in S$.

Since S is closed under addition,

 $a \in S, a \in S, -b \in S$

 $\Rightarrow a + (-b) \in S$

 $\Rightarrow a-b \in S$

Also S is closed with respect to multiplication,

 $a \in S, b \in S$

 $\Rightarrow ab \in S$

Now to prove that the conditions are sufficient, let S be a non-empty subset of R for which the conditions (i) and (ii) are satisfied.

From condition (i) $a \in S \Rightarrow a - a \in S$

 $\Rightarrow 0 \in S$

Hence additive identity is in S. Now $0 \in S, a \in S$

 $\Rightarrow 0-a \in S$

 $\Rightarrow -a \in S$

i.e. each element of S possesses additive inverse.

Let $a, b \in S$ then $-b \in S$ and then from condition (i) $0 \in S, -b \in S$

 $\Rightarrow a - (-b) \in S$

 $\Rightarrow (a+b) \in S$

Thus S is closed under addition, and S being a subset of R, associative and commutative laws of multiplication over addition holds in S. Thus S is a subring of R.

Theorem 2

The necessary and sufficient conditions that a non-empty subset S of a ring R to be a subring of R to be a subring of R are

$$(i)S + (-S) = S$$
$$(ii)SS \subset S$$

Proof:

First suppose that S is a subring of a ring R.

(i) Let
$$a + (-b) \in S + (-S)$$
. Then $a \in S, -b \in S$

$$\Rightarrow a \in S, b \in S$$
,

$$\Rightarrow a - b \in S$$
, since S is a subring

$$\Rightarrow a + (-b) \in S$$

Therefore, $S + (-S) \subset S.....(1)$

Again, let $a \in S$. Then $a, 0 \in S$, since 0 is the zero element of S.

$$\Rightarrow a \in S, -0 \in S$$

$$\Rightarrow a + (-0) \in S + (-S)$$

$$\Rightarrow a \in S + (-S)$$

Therefore, $S \subset S + (-S)....(2)$

From (1) and (2) we have S + (-S) = S.

(ii) Let
$$ab \in SS$$
. Then $a \in S$ and $b \in S$

 $\Rightarrow ab \in S$, since S is closed under multiplication.

Therefore, $SS \subset S$.

Conversely, Suppose that the conditions (i) and (ii) hold. We shall prove that S is a subring of R.

Let $a, b \in S$. Then $ab \in SS \subset S$, by condition (i)

$$\Rightarrow ab \in S$$

By condition
$$(i), S + (-S) = S$$

$$\Rightarrow S + (-S) \in S$$

For any $a, b \in S \Rightarrow a \in S, -b \in S$

$$\Rightarrow a + (-b) \in S + (-S) \subset S$$

$$\Rightarrow a - b \in S$$

Thus, $a, b \in S$ we have shown that $a - b \in S$ and $ab \in S$.

Hence S is a subring of the ring R.

Theorem 3

The intersection of two subring is again a subring.

Proof:

```
Let R_1 and R_2 are two subring of a ring R. Let a, b \in R_1 \cap R_2. Then a, b \in R_1 \Rightarrow a - b \in R_1, ab \in R_1 a, b \in R_2 \Rightarrow a - b \in R_2, ab \in R_2 since, R_1 and R_2 are subrings. Thus \forall a, b \in R_1 \cap R_2 \Rightarrow a - b \in R_1 \cap R_2 ab \in R_1 \cap R_2 Therefore R_1 \cap R_2 is a subring of R.
```

Theorem 4

The union of two subrings of a ring is not always a subring.

Proof:

```
Let (R_1, +, .) and (R_2, +, .) be two subrings of a ring (R, +, .).
 Then R_1 is a subring \Rightarrow R_1 is a group.
 Then R_2 is a subring \Rightarrow R_2 is a group.
 But R_1 \cup R_2 is not necessarily a subgroup. We know that R_1 \cup R_2 is a subgroup when R_1 \cup R_2 \subset R_1 or R_1 \cup R_2 \subset R_2.
 Hence (R_1 \cup R_2, +, .) is not always a subring of R.
```

2.2.4 Some Problems on Subring

Problem 1

An example that the union of two subring is not necessarily a subring.

Solution:

Let
$$Z = \{... -3, -2, -1, 0, 1, 2, 3, ...\}$$

$$R_1 = \{... -6, -4, -2, 0, 2, 4, 6, ...\}$$

$$R_2 = \{... -9, -6, -3, 0, 3, 6, 9, ...\}$$

$$R_3 = \{... -12, -8, -4, 0, 4, 8, 12, ...\}$$

```
Then R_1, R_2, R_3 are all subrings of Z.

Now R_1 \cup R_2 = \{... - 9, -6, -4, -3, -2, 0, 2, 3, 4, 6, 9, ...\}

3, 4 \in R_1 \cup R_2 but 3 + 4 = 7 \notin R_1 \cup R_2

\Rightarrow R_1 \cup R_2 is not closed under addition and so R_1 \cup R_2 is not subring of Z.

Again, R_1 \cup R_3 = \{..., -6, -4, -2, 0, 2, 4, 6, ...\} = R_1

\Rightarrow R_3 \subset R_1 \Rightarrow R_1 \cup R_3 is a subring of Z.
```

Problem 2

If
$$(R, +, .)$$
 is a ring, then $Z(R) = \{x \in R : xy = yx, \forall y \in R\}$ is a subring of R .

Solution:

```
Given Z(R) = \{x \in R : xy = yx, \forall y \in R\}.
   Let a, b \in Z(R). Then a, b \in R
   \Rightarrow a - b \in R \text{ and } ab \in R....(1)
   Also ay = ya and by = yb, \forall y \in R
   \Rightarrow ay - by = ya - yb
   \Rightarrow (a-b)y = y(a-b)....(2)
   \Rightarrow a - b \in R....(3)
   By definition of Z(R) we have a - b \in R \Rightarrow a - b \in Z(R).
   Again, (ab)y = a(by)
   =a(yb), [by=yb]
   =(ay)b
   =(ya)b, [ay=ya]
   =y(ab)
   \Rightarrow ab \in Z(R)
   Thus, we have proved that
   a, b \in Z(R) \Rightarrow a - b \in Z(R) \text{ and } ab \in Z(R)
   Hence Z(R) is a subring of (R, +, .).
```

2.3 Ideal of a Ring

2.3.1 Definition

Left Ideal: Let R be a ring. Then a subring S of R is called a left ideal of R if

 $rs \in S$, $\forall r \in R$ and $s \in S$ **Right Ideal:** Let R be a ring. Then a subring S of R is called a right ideal of R if

$$sr \in S, \forall s \in S \text{ and } r \in R$$

Ideal (Two sided ideal): Let R be a ring. Then a subring S of R is called an ideal (or two sided ideal) of R if

 $rs \in S$ and $sr \in S$, $\forall r \in R$ and $s \in S$

2.3.2 Examples of Ideal of a ring

Example 1: Let
$$Z = \{... -3, -2, -1, 0, 1, 2, 3, ...\}$$
 and $E = \{... -4, -2, 0, 2, 4, ...\}$

Then the subring E is an ideal of the ring Z.

Example 2: $S = ma, a \in Z$ is a both sided ideal of Z where m is an arbitrary but fixed positive integers and Z is a ring of all integers.

2.3.3 Properties of Ideal of a ring

Theorem 1

The intersection of two ideals of a ring R is an ideal of R.

Proof:

Let S_1 and S_2 be two ideals of a ring R. We shall prove that $S_1 \cap S_2$ is an ideal of R.

Let $a, b \in S_1 \cup S_2$. Then $a, b \in S_1$ and $a, b \in S_2$.

Given S_1 and S_2 are ideals, so they are subring of R.

 $a, b \in S_1 \Rightarrow a - b \in S_1 \text{ and } ab \in S_1$

 $a, b \in S_2 \Rightarrow a - b \in S_2 \text{ and } ab \in S_2$

 $a-b \in S_1 \cap S_2$ and $ab \in S_1 \cap S_2$

 $\Rightarrow S_1 \cap S_2$, is a subring of R.

Also, let $a \in S_1 \cap S_2$ and $r \in R$, then $a \in S_1 \Rightarrow ar \in S_1$ and $ra \in S_1$ and $a \in S_2, r \in R$

 $\Rightarrow ar \in S_2$ and $ra \in S_2$, since S_1 and S_2 are ideals of R.

Thus $ar \in S_1 \cap S_2$ and $ra \in S_1 \cap S_2$

Hence $S_1 \cap S_2$ is an ideal of R.

Theorem 2

Let S_1, S_2 be ideal of a ring R and let $S_1 + S_2 = \{s_1 + s_2 : s_1 \in S_1, s_2 \in S_2\}$

Then $S_1 + S_2$ is an ideal of R generated by $S_1 \cup S_2$.

Proof:

Let $a_1 + a_2 \in S_1 + S_2$, $b_1 + b_2 \in S_1 + S_2$. Then

 $a_1, b_1 \in S_1 \text{ and } a_2, b_2 \in S_2.$

We have $(a_1 + a_2) - (b_1 + b_2) = (a_1 - b_1) + (a_2 - b_2)$. Since S_1 is an ideal,

therefore $a_1, b_1 \in S_1 \rightarrow a_1 - b_1 \in S_1$.

Similary $a_2 - b_2 \in S_2$.

 $(a_1 - b_1) + (a_2 - b_2) \in S_1 + S_2$

 $(a_1 + a_2) - (b_1 + b_2) \in S_1 + S_2$ is a subgroup of the additive group of R.

Let r be any element of R, then

 $r(a_1+a_2)=ra_1+ra_2\in S_1+S_2$ since $r\in R, a_1\in S_1\to ra_1\in S_1$ and similarly $ra_2\in S_2$

Similary $(a_1+a_2)r = a_1r + a_2r \in S_1 + S_2$ since $a_1r \in S_1, a_2r \in S_2$.

Hence $S_1 + S_2$ is an ideal of R. Since $0 \in S_1$ and also $0 \in S_2$, therefore obviously

 $S_1 \subseteq S_1 + S_2$ and $S_2 \subseteq S_1 + S_2$.

 $S_1 \cup S_2 \subseteq S_1 + S_2$

Thus S_1+S_2 is an ideal of R containing $S_1\cup S_2$, Also if S_1 is an ideal of R containing $S_1\cup S_2$ then S must contain $S_1\cup S_2$. Thus S_1+S_2 is the smallest ideal of R containing

 $S_1 + S_2 = S_1 \cup S_2$.

2.3.4 Some problems on Ideal of a ring

Problem 1

Every ideal S of a ring R is a subring of R.

Solution:

Let S be an ideal so $\forall a, b \in S \rightarrow a - b \in S$(1) Since S is an ideal so

 $sr \in S, rs \in S, s \in S, r \in R$

Also $S \subseteq R$, this can be written $as, sr \in S, rs \in S, s \in S, r \in S$ So closure property satisfied.

Hence S is a subring.

Problem 2

If S is an ideal of a ring R and T is an subring of R. Then S is an ideal of S + T.

Proof:

Since S is ideal of $R \to S$ is a subring of R.

Let $a+x, b+y \in S+T$ where $a,b \in S$ and $x,y \in T$. Now since S is a subring

 $\Rightarrow a - b, ab \in S.$

Again T is a subring

 $\Rightarrow x - y, xy \in S.$

Now we have $(a+x) - (b+y) = (a-b) + (x-y) \in S + T \dots (1)$.

Again We have (a+x)(b+y) = a(b+y) + x(b+y) = (ab+ay+xb) + xy.....(2)

Now since S is an ideal of R, then $a, b \in S$, thus

 $(2) \Rightarrow (a+x)(b+y) \in S + T....(3)$

Hence (1) and (2) \Rightarrow S+T is a subring of R. Now since T is a subring of R and therefore $0 \in T$. Then for any $a \in S$ we have $a = a + 0 \in S + T \Rightarrow S \subseteq S + T$.

Now since $S \subseteq S + T$ and S + T is a subring of S + T.

Again since S is an ideal of R and $S+T \subseteq S$ is an ideal of S+T.

Problem 3

If R is a finite commutative ring with unity element then every prime ideal of R is a maximal ideal of R.

Solution:

Let R be a finite commutative ring with unit element.

Let S be a prime ideal of R. Then we need to prove that S is a maximal ideal of R.

Since S is a prime ideal of R, therefore the residue class ring R/S is an integral domain. Now

$$R/S = \{S + a : a \in R\}$$

Since R is a finite ring therefore R/S is a finite integral domain. But every finite domain is a field, therefore R/S is a field. Since R is a commutative ring with unity and R/S is a field. Therefore S is a maximal ideal of R.

Chapter 3

Arithmetical Function and it's Properties

3.1 Arithmetical Function

3.1.1 Definition

An arithmetical function is a function defined on the positive integers which takes values in the real or complex numbers.

For every arithmetic functions f,g addition is defined in the classical way

$$(f+g)(n) = f(n) + g(n).$$

3.1.2 Examples of Arithmetical Functions

 $\tau(n)$: the number of divisors of n.

 $\sigma(n)$: the sum of the divisors of n.

 $\epsilon(n)$: the function defined by setting $\epsilon(n) = 1$ for every $n \in \mathbb{N}$.

 $\phi(n)$: the numbers of natural numbers not exceeding n and coprime to n.

 $\omega(n)$: the number of distinct prime factors of n.

3.1.3 Properties of Arithmetical Function

Theorem 1

The set of arithmetic functions with addition (A, +) is an integral domain.

Proof:

First let us show that A together with addition forms an abelian

(i) Commutativity: Let $f, g \in A$ and $n \in N$.

$$(f+g)(n) = f(n) + g(n) = g(n) + f(n) = (g+f)(n)$$

(ii) Associativity: Let $f, g, h \in A$ and $n \in N$

$$(f + (g + h))(n) = f(n) + (g + h)(n)$$

$$= f(n) + g(n) + h(n)$$

$$= (f+g)(n) + h(n)$$

$$= ((f+g)+h)(n)$$

(iii) Identity: 0(n) = 0 for every $n \in N$, if $f \in A$ and $n \in N$ then:

$$(f+0)(n) = f(n) + 0(n)$$

$$= f(n) + 0$$

$$=f(n)$$
, $\forall f(n) \in S$.

(iv)Inverse: (-f)(n) = -f(n) for any $n \in N$ we have:

$$(f + (-f))(n) = f(n) + (-f)(n)$$

$$= f(n) + (-f(n))$$

$$=0$$

$$= 0(n), \forall f(n) \in S.$$

Also A has no zero divisors.

Thus (A, +) is an integral domain.

Theorem 2

If f and g are arithmetical functions we have:

(a)
$$(f+g)' = f' + g'$$
.

(b)
$$(f * g)' = f' * g + f * g'$$

(b)
$$(f * g)' = f' * g + f * g'$$

(c) $(f^{-1})' = -f^{-1} * (f * f)^{-1}$, provided that $f(1) \neq 0$.

Proof:

If f and g are arithmetical functions then the derivative of f and gis defined as

$$f'(n) = f(n)logn, n \ge 1$$

$$g'(n) = g(n)logn, n \ge 1$$

- (a) By the definition of derivative, we have (f+g)'(n) = (f+g)'(n)g)(n)logn
 - = (f(n) + g(n))logn
 - = f(n)logn + g(n)logn
 - = f'(n) + g'(n).
- (b) Note that (f * g)'(n) = (f * g)(n)logn $= \sum_{d|n} f(d)g(\frac{n}{d})logn$ $= \sum_{d|n} f(d)g(\frac{n}{d})log(d\frac{n}{d})$ $= \sum_{d|n} f(d)g(\frac{n}{d})logd + \sum_{d|n} f(d)g(\frac{n}{d})log(\frac{n}{d})$ $= \sum_{d|n} f(d)logdg(\frac{n}{d}) + \sum_{d|n} f(d)g(\frac{n}{d})log(\frac{n}{d})$ $= \sum_{n|d} f'(d)g(\frac{n}{d}) + \sum_{d|n} f(d)g'(\frac{n}{d})$
- (c) Note that I'=0. This implies that $(f*(f^{-1}))'=0$

Then by part (b) we have

= (f' * g)(n) + (f * g')(n)

$$0 = f' * f^{-1} + f' * (f^{-1})'$$

This implies that $f * (f^{-1})' = -(f' * f^{-1})$

$$\Rightarrow f^{-1} * (f * (f^{-1})') = -f^{-1} * (f' * f^{-1})$$

This implies that
$$f * (f') = -(f' * f')$$

 $\Rightarrow f^{-1} * (f * (f^{-1})') = -f^{-1} * (f' * f^{-1})$
 $\Rightarrow (f^{-1} * f) * (f^{-1})' = -f' * (f^{-1} * f^{-1})$
 $\Rightarrow I * (f^{-1})' = -f' * (f * f)^{-1}$

$$\Rightarrow I * (f^{-1})' = -f' * (f * f)$$

\Rightarrow (f^{-1})' = -f' * (f * f)^{-1}.

This completes the proof.

3.2 Pointwise Sum of Arithmetical Function

3.2.1 Definition

Let S be a non-empty set.

Let F be one of the standard number sets: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ or \mathbb{C} .

Let F^S be the set of all mappings $f: S \longrightarrow F$.

The (binary) operation of pointwise addition is defined on F^S as:

 $+: F^S * F^S \longrightarrow F^S : \forall f, g \in F^S : \forall s \in S : (f+g)(s) := f(s) + f(s)$

g(s) where the + on the right hand side is conventional arithmetic addition.

3.2.2Properties of pointwise addition

Theorem 1:

Let S be a non-empty set.

Let F be one of the standard number sets: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ or \mathbb{C} .

Let $f, g, h: S \to F$ be functions.

Let $f + q : S \to F$ denote the pointwise sum of f and g.

Then:

$$(f+g) + h = f + (g+h).$$

That is, pointwise addition is associative.

Proof:

From the definition of pointwise addition we get,

$$\forall x \in S : ((f+g)+h)(x) = (f(x)+g(x)) + h(x)$$

= $f(x) + (g(x)+h(x))$
= $(f+(g+h))(x)$
Hence proved.

Theorem 2:

Let S be a non-empty set.

Let F be one of the standard number sets: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ or \mathbb{C} .

Let $f, g, h : S \to F$ be functions.

Let $f + g : S \to F$ denote the pointwise sum of f and g.

Then:

$$f + g = g + f$$

That is, pointwise addition is commutative.

Proof:

From the definition of pointwise addition we get,

$$\forall x \in S : (f+g)(x) = f(x) + g(x)$$
$$= g(x) + f(x)$$

$$=g(x)+J(x)$$

$$= (g+f)(x)$$

Hence proved.

The Möbius Inversion Formula 3.3

3.3.1 Definition:

The Möbius function $\mu(n)$ (named after A.F. Möbius, 1790-1868) is the Dirichlet inverse of the function ϵ defined by

 $\epsilon(n) = 1$ for every $n \in N$.

 μ is multiplicative because ϵ is multiplicative. Moreover

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{when } n = 1\\ 0 & \text{when } n > 1 \end{cases}$$
 because , by definition $\mu * \epsilon = \iota$, and the L.H.S. is equal to

 $\sum_{d|n} \mu(d) \epsilon(\frac{n}{d}) = (\mu * \epsilon)(n).$

3.3.2 Properties of Möbius Inversion Formula

Theorem 1

 $\mu(n)$ is determined by the formula

$$\mu(n) = \begin{cases} 1 & \text{when } n = 1, \\ (-1)^r & \text{when n is the product of r distinct primes,} \\ 0 & \text{when } p^2/n \text{ for some prime p.} \end{cases}$$

Proof:

The fundamental theorem of arithmetic ensures that this formula indeed gives us a well-defined arithmetical function. Our task is to derive this formula from our definition μ as the Dirichlet inverse of

 ϵ . Being multiplicative, $\mu(1) = 1$. For any prime p, we have

$$0 = \iota(p) = \sum_{d|p} \mu(d) \epsilon(\frac{p}{d}) = \mu(1) + \mu(p)$$

$$\Rightarrow \mu(p) = -1.$$

Hence, if $n = p_1 p_2 ... p_r$ is the product of r distinct primes, then by the multiplicativity of μ , we have

$$\mu(n) = \mu(p_1)\mu(p_2)...\mu(p_r) = (-1)^r.$$

Now we show that $\mu(p^k) = 0$ for every prime p and $k \ge 2$.

We have

$$0 = \iota(p^2) = \mu(1) + \mu(p) + \mu(p^2) = \mu(p^2) \text{ because } \mu(p) = -1.$$

By induction on k, the claim follows.

Suppose now n is divisible by the square (or some higher power) of a prime number p. Then $n = p^k m$, where $k = v_p(n) \ge 2$ and $p \dagger m$. So $(p^k, m) = 1$; hence

$$\mu(n) = \mu(p^k)\mu(m) = 0.$$

Theorem 2

The Möbius function μ is multiplicative.

That is,
$$\mu(mn) = \mu(m)\mu(n)$$
 if $(m, n) = 1$.

Proof:

(i) Let m = n = 1. Then (m, n) = 1. $\mu(1.1) = \mu(1) = 1$ and $\mu(1)\mu(1) = 1.1 = 1$. Thus $\mu(mn) = \mu(m)\mu(n)$. (ii) Let $m, n \in \mathbb{N}$ with (m, n) = 1 and we are done. (iii) Let $m = p_1p_2...p_r$ and $n = q_1q_2...q_s$ where $p_1, p_2, ...p_r$ and $q_1, q_2, ..., q_s$ are distinct primes such that $m(\neq 1)$ and $n(\neq 1)$ are both square free with (m, n) = 1. Then $mn = p_1p_2...p_rq_1q_2...q_s$. By definition , $\mu(m) = (-1)^r, \mu(n) = (-1)^s, \mu(mn) = (-1)^{r+s}$. Now $\mu(mn) = (-1)^{r+s} = (-1)^r.(-1)^s = \mu(m)\mu(n)$. Thus $\mu(mn) = \mu(m)\mu(n)$ if (m, n) = 1. Hence the Möbius function μ is multiplicative.

Theorem 3

Let f and g be two arithmetical function such that f is the summatory function of g. Then

$$f(n) = \sum_{d|n} g(d) \Leftrightarrow g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d}) = \sum_{d|n} \mu(\frac{n}{d}) f(d).$$

Proof:

By definition, μ is the Dirichlet inverse of ϵ and $\iota(iota)$ is the identity function. Then

```
\epsilon * \mu = \mu * \epsilon = \iota(iota) [inverse property] ...(1)
and f * \iota = \iota * f = f. [identity property] ...(2)
Also \epsilon(n) = 1 \ \forall n \in \mathbf{N}. [definition of unit function] ...(3)
First we suppose that f(n) = \sum_{d|n} g(d).
Then f(n) = \sum_{d|n} g(d)\epsilon(\frac{n}{d})
= (g * \epsilon)(n)
\Rightarrow f = g * \epsilon
\Rightarrow f * \mu = (g * \epsilon) * \mu
\Rightarrow g * (\epsilon * \mu)
= g * \iota = g.
\Rightarrow (f * \mu)(n) = g(n) \ \forall n \in \mathbf{N}
```

```
\Rightarrow \sum_{d|n} f(d)\mu(\frac{n}{d})\mu(d) = g(n).
Thus g(n) = \sum_{d|n} \mu(d)f(\frac{n}{d}) = \sum_{d|n} \mu(\frac{n}{d})f(d).
Conversely, we suppose
g(n) = \sum_{d|n} \mu(d)f(\frac{n}{d}) = \sum_{d|n} \mu(\frac{n}{d})f(d).
\Rightarrow g(n) = (\mu * f)(n) \text{ [definition of Dirichlet product]}
\Rightarrow g = \mu * f
\Rightarrow \epsilon * g = \epsilon * (\mu * f) = (\epsilon * \mu) * f
\Rightarrow \epsilon * g = f
\Rightarrow (\epsilon * g)(n) = f(n) \ \forall n \in \mathbb{N}
\Rightarrow \sum_{d|n} \epsilon(d)g(\frac{n}{d}) = \sum_{d|n} \epsilon(\frac{n}{d})g(d) = f(n)
\Rightarrow \sum_{d|n} g(\frac{n}{d}) = \sum_{d|n} g(d) = f(n)
Therefore f(n) = \sum_{d|n} g(d) \Leftrightarrow g(n) = \sum_{d|n} \mu(d)f(\frac{n}{d}) = \sum_{d|n} \mu(\frac{n}{d})f(d).
Hence f(n) = \sum_{d|n} g(d) \Leftrightarrow g(n) = \sum_{d|n} \mu(d)f(\frac{n}{d}) = \sum_{d|n} \mu(\frac{n}{d})f(d).
```

Theorem 4

 $\sum_{d|n} |\mu(d)| = 2^{\omega(n)}$, where $\omega(n)$ denotes the number of distinct prime factors of n.

Proof:

We have, $\omega(1) = 0$ and $\omega(mn) = \omega(m) + \omega(n)$, whenever (m, n) = 1. Therefore $2^{\omega(n)}$ is a multiplicative function. Also, $\sum_{d|n} \mu(d)$ is a multiplicative function,

because $\mu(n)$ is multiplicative. Both sides of the claimed identity being multiplicative it is enough to prove it for $n = p^k$.

For $n = p^k$ the L.H.S. is $|\mu(1)| + |\mu(p)| = 1 + 1 = 2$, because $\mu(p^l) = 0$ for every $l \geq 2$; and the R.H.S. is $2^1 = 2$, because $\omega(p^k) = 1$. Therefore the claim is proved.

Chapter 4

Dirichlet Product and it's Properties

4.1 Dirichlet Product

4.1.1 Definition

If $f, g : \mathbf{N} \to \mathbf{C}$ are two arithmetic functions from the positive integers to the complex numbers, the Dirichlet product f * g is a new arithmetic function defined by:

$$(f * g)(n) = \sum_{d|n} f(d)g(\frac{n}{d})$$

where the sum extends over all positive divisors d of n, or equivalently over all distinct pairs (a, b) of positive integers whose product is n.

4.1.2 Examples of Dirichlet product

- (i) Let g(n) = n for all $n \in \mathbb{N}$. Then h(n)=sum of divisors of n.
 - (ii) Let $I(n) = [\frac{1}{n}]$ then h(n) = (f * I)(n) = f(n)
- (iii) Let u(n) = 1 for all $n \in \mathbb{N}$. Then $h(n) = (\mu * u)(n) = \sum_{d|n} \mu(d) u(\frac{n}{d}) = \sum_{d|n} \mu(d) = I(n)$.

4.1.3 Properties of Dirichlet product

Theorem 1:

Dirichlet product is commutative and associative. That is, for any arithmetical functions f, g, k

$$f * g = g * f$$

$$(f * g) * k = f * (g * k)$$

Proof:

$$(f*g)(n) = \sum_{d|n} g(d) f(\frac{n}{d})$$

$$= \sum_{d|n} f(d)g(n/d)$$

$$= \sum_{dd'=n} f(d)g(d')$$

$$= \sum_{g(d')} f(d)$$

$$= (g*f)(n).$$
Similarly,
$$((f*g)*k)(n)$$

$$= \sum_{abc=n} f(a)g(b)k(c)$$

$$= (f*(g*k))(n).$$
Hence proved.

Theorem 2

If f is an arithmetical function with $f(1) \neq 0$, then \exists arithmetical function h such that $f * h = h * f = \iota$, the identity function.

Proof:

The identity function $\iota(iota)$ is defined by

$$\iota(\mathbf{n}) = \begin{cases} 1 & \text{when } n = 1\\ 0 & \text{when } n > 1 \end{cases}$$

Let f be an arithmetical function such that $f(1) \neq 0$.

For n=1, we have

$$(f * h)(1) = (h * f)(1) = \iota(1)$$

$$\Rightarrow \sum_{d|l} f(d)h(\frac{l}{d}) = 1$$

$$\Rightarrow f(1)h(1) = 1$$

$$\Rightarrow h(1) = \frac{1}{f(1)} = f^{-1}(1)$$

 $\Rightarrow h(1)$ is the unique inverse of f(1).

Now let n > 1 and we suppose that $h(m) = f^{-1}(m)$ has been uniquely determined for every m < n. Then

$$(f*h)(n) = (h*f)(n) = \iota(n)$$

$$\Rightarrow \sum_{d|n,1 \le d \le n} h(d) f(\frac{n}{d}) = 0$$

$$\Rightarrow h(n) f(\frac{n}{n}) + \sum_{d|n,1 \le d \le n} h(d) f(\frac{n}{d}) = 0$$

$$\Rightarrow h(n) f(1) = -\sum_{d|n,1 \le d \le n} h(d) f(\frac{n}{d})$$

$$\Rightarrow h(n) = -\frac{1}{f(1)} \sum_{d|n,1 \le d \le n} h(d) f(\frac{n}{d})$$

Hence h is an arithmetical function if $f(1) \neq 0$, where

 $f * h = h * f = \iota(iota)$, the identity function.

Also if the values of $h(d) = f^{-1}(d)$ are known for all divisors d with $1 \le d < n$, there is a uniquely determined value for $h(n) = f^{-1}(n)$ as $f(1) \ne 0$.

Thus by induction on n, the arithmetical function f has a unique Dirichlet inverse $h(=f^{-1})$, where $f(1) \neq 0$.

Conversely, let the Dirichlet inverse $h(n) = f^{-1}$ of f(n) exist.

Then for $n = 1, h(1) = f^{-1}(1) = \frac{1}{f(1)} \Rightarrow f(1) \neq 0$.

and for
$$n > 1, h(n) = f^{-1}(n) = -\frac{1}{f(1)} \sum_{d|n,1 \le d \le n} h(d) f(\frac{n}{d}) \Rightarrow f(1) \ne 0.$$

Thus there exists arithmetical function h such that $f*h = h*f = \iota$.

Theorem 3

The Dirichlet inverse of a multiplicative function is multiplicative.

Proof:

We know that every multiplicative function f with $f(1) \neq 0$ has unique Dirichlet inverse h. Then

 $(f*h)(n) = (h*f)(n) = \iota(n)$ where the identity function ι is defined by

$$\iota(\mathbf{n}) = \begin{cases} 1 & \text{when } n = 1\\ 0 & \text{when } n > 1 \end{cases}$$

Thus for n = 1 we have

$$f(1)h(1) = \iota(1) = 1$$

 $\Rightarrow h(1) = \frac{1}{f(1)} = f^{-1}(1).$

By induction on mn, we shall prove

h(mn) = h(m)h(n) whenever (m, n) = 1.

$$h(mn) = h(1) = \frac{1}{f(1)} = \frac{1}{1} = 1$$

and
$$h(m)h(n) = h(1)h(1) = \frac{1}{1} \cdot \frac{1}{1} = 1$$

Thus h(mn)h(m)h(n) is true for mn = 1.

Next let mn > 1 with (m, n) = 1. Then either m > 1 or n > 1.

We assume that

$$h(lk) = h(l)h(k)$$

holds where lk < mn with (l, k) = 1 such that lk|mn.

Then we have

$$(f * h)(mn) = (h * f)(mn) = \iota(mn)$$

```
\Rightarrow \sum_{lk|n,1 \leq lk \leq mn} h(lk) f(\frac{mn}{lk}) = 0
\Rightarrow h(mn) f(\frac{mn}{mn}) + \sum_{lk|n,1 \leq lk \leq mn} h(lk) f(\frac{mn}{lk}) = 0
\Rightarrow h(mn) f(1) = -\sum_{lk|n,1 \leq lk \leq mn} h(lk) f(\frac{n}{l}) f(\frac{n}{k})
\Rightarrow h(mn) = -\sum_{l|m,k|n} \sum_{lk|n,1 \leq lk \leq mn} h(l) h(k) f(\frac{m}{l}) f(\frac{n}{k}) + (h(m)f(\frac{m}{m})(h(n)f(\frac{n}{n}))
\Rightarrow h(mn) = -\sum_{l|m,k|n} \sum_{lk|n,1 \leq lk \leq mn} h(l) h(k) f(\frac{m}{l}) f(\frac{n}{k}) + (h(m)f(\frac{m}{m})(h(n)f(\frac{n}{n}))
\Rightarrow h(mn) = -\sum_{l|m} h(l) f(\frac{m}{l}) \sum_{k|n} f(\frac{n}{k}) + (h(m)f(1))(h(n)f(1))
\Rightarrow h(mn) = -((h * f)(m))((h * f)(n)) + h(m)h(n)
\Rightarrow h(mn) = -\iota(m)\iota(n) + h(m)h(n)
\Rightarrow h(mn) = 0 + h(m)h(n)
Thus if h(lk) = h(l)h(k), where lk < mn with (l,k) = 1 such that lk|mn, then
h(mn) = h(m)h(n).
```

Hence by induction , the Dirichlet inverse of h of a multiplicative function is multiplicative.

4.1.4 Some Problems on Dirichlet product

Problem 1:

The Dirichlet inverse of λ is $|\mu|$.

Solution:

Both λ and $|\mu|$ are multiplicative, so their Dirichlet convolution $\lambda * |\mu|$ is multiplicative. Therefore, e is also multiplicative, so it suffices to show that the two functions agree on prime powers.

Now, $(\lambda |\mu|)(pk) = \sum_{d|p^k} \lambda(\frac{p^k}{d}|\mu(d)|$ $=\lambda(p^k) + \lambda(p^k - 1)$ $= (-1)^k + (-1)^k - 1$ = 0

Since $e(p^k) = 0$, the functions agree on prime powers and hence are the same.

Problem 2:

$$d * \Phi = \sigma$$
.

Solution:

Staring with $1 * \phi = I$ and convolve both sides with 1:

$$1 * (1 * \phi) = 1 * I$$
$$(1 * 1) * \phi = \sigma$$
$$d * \phi = \sigma$$

Hence showed.

Problem 3:

$$\sum_{a|n} \sigma(\frac{n}{a}\Phi(a)) = nd(n).$$

Solution:

The left side is

$$\sigma * \phi = (1 * I) * (\mu * I),$$

where $\phi = \mu * I$ comes from Mobius inversion of $\phi * 1 = I$.

Rearranging and moving parentheses around gives

$$\sigma * \phi = (1 * I) * (\mu * I) = (I * I) * e = I$$
 and $(I * I)(n) = \sum_{a|n} a \frac{n}{a}$ $= \sum_{a|n} n$ $= nd(n)$.

Hence Showed.

4.1.5 Dirichlet Inverse

Definition:

Let f be an arithmetical function with $f(1) \neq 0$. If there exists a unique arithmetical h such that

$$f * h = h * f = \iota$$

where $\iota(iota)$ is the identity function defined by

$$\iota(\mathbf{n}) = \begin{cases} 1 & \text{when } n = 1\\ 0 & \text{when } n > 1 \end{cases}$$

then h is called the Dirichlet inverse of f and is denoted by f^{-1} .

4.2 Multiplicative Functions

4.2.1 Definition

An arithmetical function f is called multiplicative if and only if f(mn) = f(m)f(n) holds whenever (m, n) = 1.

4.2.2 Examples of Multiplicative Functions

- $\tau(n)$: the number of divisors of n.
 - $\sigma(n)$: the sum of the divisors of n.
 - $\epsilon(n)$: the function defined by setting $\epsilon(n)=1$ for every $n\in \mathbb{N}$.
- $\phi(n)$: the numbers of natural numbers not exceeding n and coprime to n.

4.2.3 Properties of Multiplicative Functions

Theorem 1

The Dirichlet product of two multiplicative functions is multiplicative.

Proof:

We need an observation which follows from the fundamental theorems of arithmetic. Suppose (m, n) = 1, d runs through the divisors of m and k runs through the divisors of n. Then l = dk runs through the divisors of mn just once. Therefore

```
\sum_{d|m} \cdot \sum_{k|n} = \sum_{l|mn}
Suppose f, g are multiplicative functions and (m, n) = 1. Then
(f * g)(m)(f * g)(n) = (\sum_{d|m} f(d)g(\frac{m}{d}))(\sum_{k|n} f(k)g(\frac{n}{k}))
= \sum_{d|m} \sum_{k|n} f(d)f(k)g(\frac{m}{d})(\frac{n}{k})
= \sum_{d|m} \sum_{k|n} f(dk)g(\frac{mn}{dk})
= \sum_{l|mn} f(l)g(\frac{mn}{l})
= (f * g)(mn).
```

Theorem 2

(a) If f is multiplicative, then (1) $f(n) = \prod_{p|n} f(p^{\alpha_p})$, where $n = \prod_{p|n} p^{\alpha_p}$ ($\sum_{p|n}$ denotes a product taken over all distinct prime factors of n)

- (b) Two multiplicative arithmetical functions f,g are equal if and only if
 - $(3) f(p^k) = (p^k)$ holds for every prime p and $k \in \mathbf{N}$.

Proof:

(a) Suppose n > 1 has the prime factorization $n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_r^{\alpha_r} \ (r \ge 1, \alpha_i \ge 1)$

where $p_1, p_2, ..., p_r$ are the distinct prime factors of n. Then the numbers $p_1^{\alpha_1} p_2^{\alpha_2} ... p_r^{\alpha_r}$ are coprime in pairs; because f is multiplicative, we have

$$f(n) = f(p_1^{\alpha_1}) f(p_2^{\alpha_2}) ... f(p_r^{\alpha_r}) = \prod_{p/n} f(p_p^{\alpha_r})$$

(b)f(n) = g(n) for all $n \in \mathbb{N}$ implies

 $f(p^k) = g(p^k)$ for every prime p and $k \in \mathbf{N}$.

Conversely, if $f(p^k) = g(p^k)$ holds for every prime p and every $k \in \mathbb{N}$ and if $n = \prod_{p|n} p^{\alpha_p}$, then

 $f(n) = \prod_{p|n} f(p^{\alpha_p})$ [because f is multiplicative]

 $=\prod_{p|n} g(p^{\alpha_p})$ [by hypothesis]

=g(n). [because g is multiplicative]

If we know that f is multiplicative and if we know $f(p^k)$, then the theorem at once yields an explicit formula for f(n).

Theorem 3

If f is a multiplicative function and g is defined by $g(n) = \sum_{d|n} f(d)$, then g is also multiplicative.

Proof:

Given $g(n) = \sum_{d|n} f(d)$.

Let $(n_1, n_2) = 1$. If $d_1|n_1$ and $d_2|n_2$, then $(d_1, d_2) = 1$ and $c = d_1d_2$ runs over all divisors of n_1n_2 . It implies that $c|n_1n_2$.

$$g(n_1 n_2) = \sum_{c|n_1 n_2} f(c)$$

= $\sum_{d_1|n_1, d_2|n_2, (d_1, d_2) = 1} f(d_1 d_2)$

$$= \sum_{d_1|n_1,d_2|n_2,(d_1,d_2)=1}^{2d_1|n_1,d_2|n_2,(d_1,d_2)=1} f(d_1)f(d_2) \text{ [f is multiplicative]}$$

 $= \sum_{d_1|n_1} f(d_1) \sum_{d_2|n_2} f(d_2)$

 $=g(n_1)g(n_2).$

Hence g is multiplicative.

Problem 1

$$\sum_{d|n} (\tau(d))^3 = (\sum_{d|n} \tau(d))^2.$$

Proof:

 $\tau(n)$ is multiplicative; so $\sum_{d|n} \tau(d), (\tau(d))^3, \sum_{d|n} (\tau(d))^3, (\sum_{d|n} \tau(d))^2$ are all multiplicative. Each side of the claimed identity $\sum_{d|n} \tau(d), (\tau(d))^3, \sum_{d|n} (\tau(d))^3, (\sum_{d|n} \tau(d))^3$ being multiplicative, it suffices to prove it for $n = p^k$.

For
$$n = p^k$$
, the L.H.S is
$$= (\tau(1))^3 + (\tau(p))^3 + (\tau(p^2))^3 + \dots + (\tau(p^k))^3$$

$$= 1^3 + 2^3 + 3^3 + \dots + (k+1)^3$$

$$= (\frac{(k+1)(k+2)}{2})^2;$$
and the R.H.S is
$$= (\tau(1)) + (\tau(p)) + (\tau(p^2)) + \dots + (\tau(p^k))^2$$

$$= (1 + 2 + 3 + \dots + (k+1))^2$$

$$= (\frac{(k+1)(k+2)}{2})^2$$

Hence the claimed identity is established.

Problem 2

$$\sum_{d|n} \frac{\mu^2(d)}{\phi(d)} = \frac{n}{\phi(n)}.$$

Proof:

 $\sum_{d|n} \frac{\mu^2(n)}{\phi(n)}$ is multiplicative, because $\mu^2(n) = (\mu(n))^2$ and $\phi(n)$ are multiplicative.

Therefore $\sum_{d|n} \frac{\mu^2(d)}{\phi(d)}$ is multiplicative. Also, $\frac{n}{\phi(n)}$ is multiplicative. Both sides of the claimed identity being multiplicative, it is enough to prove it when $n = p^k$.

For
$$n=p^k$$
, the L.H.S is equal to
$$\frac{\mu^2(1)}{\phi(1)}+\frac{\mu^2(p)}{\phi(p)}=1+\frac{1}{p-1}=\frac{p}{p-1}$$
 because $\mu(p^l)=0$ for $l\geq 2$; and the R.H.S is equal to
$$\frac{p^k}{p^{k-1}(p-1)}=\frac{p}{p-1}$$
 Hence the claim is proved.

4.3 Complete Multiplicative Functions

4.3.1 Definition

An arithmetical function f is called completely multiplicative if

- (i) f is not identically zero.
- (ii) f(mn) = f(m)(n), for all $m, n \in \mathbb{N}$.

4.3.2 Examples of complete multiplicative function:

- (1) The arithmetical function $N^{\alpha}(n)=n^{\alpha} \ \forall n\in \mathbf{N}$ is completely multiplicative.
- (2) The unit function u(n) = 1 for all $n \in \mathbb{N}$ is completely multiplicative.
 - (3) The identity function is completely multiplicative.

Chapter 5

Groups under Dirichlet Composition

Problem 1

```
For a multiplicative function f
    \sum_{d|n} \mu(d) f(d) = \prod_{p|n} (1 - f(p))
    Also
    (i) \sum_{d|n} \mu(d)\tau(d) = (-1)^{\omega(n)}
    (ii) \sum_{d|n} \mu(d)\phi(d) = \prod_{p|n} (2-p)
    (iii) \sum_{d|n} \mu(d)\sigma(d) = (-1)^{\omega(n)} \prod_{p|n} p.
```

Proof:

Let f(n) be a multiplicative function and $n=p_1^{\alpha_1}p_2^{\alpha_2}...p_r^{\alpha_r}$, where $p_1, p_2, ..., p_r$ are distinct primes and $\alpha_i \in \mathbf{N}$ for i = 1, 2, ..., r.

Then we have

$$\begin{split} &= \sum_{d|n} \{F(p_1^{\delta_1}) F(p_2^{\delta_2}) \dots F(p_r^{\delta_r}) \} \\ &= \{F(1) + F(p_1) + F(p_1^2) + \dots + F(p_1^{\alpha_1}) \} \times \{F(1) + F(p_2) + F(p_2^2) + \dots + F(p_2^{\alpha_2}) \} \times \dots \times \{F(1) + F(p_r) + F(p_r^2) + \dots + F(p_r^{\alpha_r}) \} \\ &= \{1 - f(p_1) \} \{1 - f(p_2) \} \dots \{1 - f(p_r) \} \\ &= \prod_{i=1}^r (1 - f(p_i)) = \prod_{p|n} (1 - f(p)) \dots \dots \dots \dots (5) \\ &\text{Hence } \sum_{d|n} \mu(d) f(d) = \prod_{i=1}^r (1 - f(p_i)) = \prod_{p|n} (1 - f(p)). \end{split}$$

(i)

Since
$$\tau(n)$$
 is multiplicative, so putting $f(d) = \tau(d)$ in (5), we get
$$\sum_{d|n} \mu(d)\tau(d) = \prod_i^r = 1(1-\tau(p_1)) = \{1-\tau(p_i)\}\{1-\tau(p_2)\}...\{1-\tau(p_r)\}$$
$$= (1-2)(1-2)...(1-2)$$
$$= (-1)(-1)...(-1) = (-1)^r = (-1)^{\omega(n)}.$$

(ii)

Since
$$\phi(n)$$
 is multiplicative, so putting $f(d) = \phi(d)$ in (5), we get,
$$\sum_{d|n} \mu(d)\phi(d) = \prod_{i=1}^{r} (1 - \phi(p_i)) = \{1 - \phi(p_1)\}\{1 - \phi(p_2)\}...\{1 - \phi(p_r)\}$$
$$= \{1 - (p_1 - 1)\}\{1 - (p_2 - 1)\}...\{1 - (p_r - 1)\}$$
$$= (2 - p_1)(2 - p_2)...(2 - p_r) = \prod_{i=1}^{r} (2 - p_i) = \prod_{p|n} (2 - p)$$
Hence
$$\sum_{d|n} \mu(d)\phi(d) = \prod_{i=1}^{r} (2 - p_i) = \prod_{p|n} (2 - p).$$

(iii)

Since
$$\sigma(n)$$
 is multiplicative, so putting $f(d) = \sigma(d)$ in (5), we get
$$\sum_{d|n} \mu(d)\sigma(d) = \prod_{i=1}^r (1-\sigma(p_i)) = \{1-\sigma(p_1)\}\{1-\sigma(p_2)\}...\{1-\sigma(p_r)\}$$
$$= \{1-(1+p_1)\}\{1-(1+p_2)\}...\{1-(1+p_r)\}$$
$$= (-p_1)(-p_2)...(-p_r) = (-1)^r p_1 p_2...p_r = (-1)^r \prod_{p|n} p.$$
Hence
$$\sum_{d|n} \mu(d)\sigma(d) = (-1)^{\omega(n)} \prod_{p|n} p.$$

Problem 2

If f is multiplicative and f(n) is never zero, then $\sum_{d|n} \frac{\mu(d)}{f(d)} = \prod_{p|n} (1 - \frac{1}{f(p)}).$ Also expressions for $\sum_{d|n} \frac{\mu(d)}{\tau(d)}, \sum_{d|n} \frac{\mu(d)}{\phi(d)}, \sum_{d|n} \frac{\mu(d)}{\sigma(d)}$

Proof:

Here f(n) is given to be multiplicative and $\mu(n)$ is multiplicative, so $\sum_{d|n} \frac{\mu(d)}{f(d)}$ is also multiplicative.

Let $n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_r^{\alpha_r}$ where $p_1, p_2, ..., p_r$ are distinct primes and $\alpha_i \in \mathbf{N}$ for i = 1, 2, ...r. Then we have

$$f(n) = f(n.1) = f(n)f(1) \Rightarrow f(1) = 1.$$

Let
$$F(n) = \frac{\mu(n)}{f(n)}$$
.

Let $F(n) = \frac{\mu(n)}{f(n)}$. Now for any prime p and $k \ge 2$, we have $F(1) = \frac{\mu(1)}{f(1)} = \frac{1}{1} = 1$

$$F(1) = \frac{\mu(1)}{f(1)} = \frac{1}{1} = 1$$

$$F(p) = \frac{\mu(p)}{f(p)} = \frac{-1}{f(p)}$$

$$F(p) = \frac{\mu(p)}{f(p)} = \frac{-1}{f(p)}$$

and $F(p^k) = \frac{\mu(p^k)}{f(p^k)} = 0$.

Using (1), (2), (3) and (4), we get

$$\sum_{d|n} \frac{\mu(d)}{f(d)} = \sum_{d|n} F(d) = \{F(1) + F(p_1) + F(p_1^2) + \dots + F(p_1^{\alpha_1})\} \times \{F(1) + F(p_2) + F(p_2^2) + \dots + F(p_2^{\alpha_2})\} \times \{F(1) + F(p_r) + F(p_r^2) + \dots + F(p_r^{\alpha_r})\}$$

$$= \{1 - \frac{1}{f(p_1)}\}\{1 - \frac{1}{f(p_2)}\} \dots \{1 - \frac{1}{f(p_r)}\} = \prod_{i=1}^r \{1 - \frac{1}{f(p_i)}\}$$

$$\Rightarrow \sum_{d|n} \frac{\mu(d)}{f(d)} = \prod_{i=1}^r \{1 - \frac{1}{f(p_i)}\} = \prod_{p|n} (1 - \frac{1}{f(p)}).$$
Hence $\sum_{d|n} \frac{\mu(d)}{f(d)} = \prod_{p|n} (1 - \frac{1}{f(p)}).$

(i)

Since $\tau(n)$ is multiplicative and $\tau(n) \neq 0 \ \forall n \in \mathbb{N}$, so putting f(d) = $\tau(d)$ in (5) and using $\tau(p) = 1 + 1 = 2$, we get

$$\sum_{d|n} \frac{\mu(d)}{\tau(d)} = \prod_{i=1}^{r} \left\{ 1 - \frac{1}{\tau(p_i)} \right\} = \left\{ 1 - \frac{1}{\tau(p_1)} \right\} \left\{ 1 - \frac{1}{\tau(p_2)} \right\} \dots \left\{ 1 - \frac{1}{\tau(p_r)} \right\}$$

$$= \left(1 - \frac{1}{2} \right) \left(1 - \frac{1}{2} \right) \dots \left(1 - \frac{1}{2} \right) = \frac{1}{2} \cdot \frac{1}{2} \dots \frac{1}{2}$$

$$= \frac{1}{2^r} = 2^{-r} = 2^{-\omega(n)}$$

where $\omega(n)$ is the number of distinct prime factors of n.

(ii)

Since $\phi(n)$ is multiplicative and $\phi(n) \neq 0 \ \forall n \in \mathbb{N}$, so putting f(d) = $\phi(d)$ in (5) and using $\phi(p) = p - 1$, we get

a) In (3) and using
$$\phi(p) = p - 1$$
, we get
$$\sum_{d|n} \frac{\mu(d)}{\phi(d)} = \prod_{i=1}^{r} \left\{ 1 - \frac{1}{\phi(p_i)} \right\} = \left\{ 1 - \frac{1}{\phi(p_1)} \right\} \left\{ 1 - \frac{1}{\phi(p_2)} \right\} ... \left\{ 1 - \frac{1}{\phi(p_r)} \right\}$$

$$= \left(1 - \frac{1}{p_1 - 1} \right) \left(1 - \frac{1}{p_2 - 1} \right) ... \left(1 - \frac{1}{p_r - 1} \right)$$

$$= \left(\frac{p_1 - 2}{p_1 - 1} \right) ... \left(\frac{p_1 - 2}{p_1 - 1} \right) ... \left(\frac{p_1 - 2}{p_1 - 1} \right)$$

$$\text{Hence } \sum_{d|n} \frac{\mu(d)}{\phi(d)} = \prod_{p|n} \left(\frac{p - 2}{p_1 - 1} \right).$$

(iii)

Since $\sigma(n)$ is multiplicative and $\sigma(n) \neq 0 \ \forall n \in \mathbb{N}$, so putting $f(d) = \sigma(d)$ in (5) and using $\sigma(p) = p + 1$, we get

$$\begin{split} &\sum_{d\mid n} \frac{\mu(d)}{\sigma(d)} = \prod_{i=1}^r \{1 - \frac{1}{\sigma(p_i)}\} = \{1 - \frac{1}{\sigma(p_1)}\} \{1 - \frac{1}{\sigma(p_2)}\} ... \{1 - \frac{1}{\sigma(p_r)}\} \} \\ &= (1 - \frac{1}{p_1 + 1})(1 - \frac{1}{p_2 + 1}) ... (1 - \frac{1}{p_r + 1}) \\ &= (\frac{p_1}{p_1 + 1}).(\frac{p_1}{p_1 + 1}) ... (\frac{p_r}{p_r + 1}) \\ &= \prod_{i=1}^r (\frac{p_i}{p_i + 1}) = \prod_{p\mid n} (\frac{p}{p+1}). \end{split}$$

$$&\text{Hence } \sum_{d\mid n} \frac{\mu(d)}{\sigma(d)} = \prod_{p\mid n} (\frac{p}{p+1}). \end{split}$$

Problem 3

f is called completely multiplicative if f(mn) = f(m)(n) holds for all $m, n \in \mathbb{N}$. For a completely multiplicative function f

- (i) f(g * h) = (fg) * (fh)
- (ii) μf is the Dirichlet inverse of f.

Proof:

(i) If f is completely multiplicative, we will show that f distributes multiplication over Dirichlet composition. Let n be a positive integer, then

$$f(g*h)(n) = f(n)(g*h)(n)$$

$$= f(n) \sum_{d|n} g(d)h(\frac{n}{d})$$

$$= \sum_{d|n} f(d)g(d)f(\frac{n}{d})g(\frac{n}{d})$$

$$= (fg*fh)(n)$$
So we have,
$$f(g*h) = (fg)*(fh)$$
Then (i) is proved.

(ii) If f is completely multiplicative and let n be a positive integer then

$$(\mu f * f)(n) = \sum_{d|n} (\mu f)(d) f(\frac{n}{d}) = \sum_{d|n} \mu(d) f(d) f(\frac{n}{d}) f(n) \sum_{d|n} \mu(d) = f(n)\iota(n) = \begin{cases} f(1) = 1 & \text{when } n = 1 \\ 0 & \text{when } n > 1 \end{cases} = \iota(n)$$

therefore $\mu f * f = \iota$ which implies that $f^{-1} = \mu f$. So, μf is the Dirichlet inverse of f. Then (ii) is proved.

Problem 4

The set of all arithmetical functions which satisfy the condition $f(1) \neq 0$ forms an(infinite) abelian group under Dirichlet composition, whose identity element is the function ι .

Proof:

Let $S = \{f(n) : \forall n \in \mathbb{N} \text{ and } f(1) \neq 0\}$. Then $\forall f, g \in S$, the Dirichlet product(composition) is defined by $(f * g)(n) = \sum_{d|n} f(d)g(\frac{n}{d})$.

1. Closure Property: Let $f, g \in S$. Then $f(1) \neq 0$ and $g(1) \neq 0$. Also f * g is an arithmetical function.

Now $(f * g)(1) = f(1)g(1) \neq 0$. Hence $f * g \in S$. Also $\forall f, g \in S$, $(f * g)(n) = \sum_{d|n} f(d)g(\frac{n}{d}) \in S$. So, $f * g \in S$ is also an arithmetical function.

2. Commutative Property: Let $f, g \in S$ and $n \in \mathbb{N}$ $(f * g)(n) = \sum_{d_1 d_2 = n} f(d_1)g(d_2)$

$$= \sum_{d_1 d_2 = n} g(d_2) f(d_1)$$

= $(g * f)(n)$

3. Associative Property: Let $f, g, h \in S$ and $n \in \mathbb{N}$

 $((f * g) * h)(n) = \sum_{dd_3=n} (f * g)(d)h(d_3)$ $= \sum_{dd_3=n} (\sum_{d_1d_2=d} f(d_1)g(d_2))h(d_3))$ $= \sum_{d_1d_2d_3=n} f(d_1)g(d_2)h(d_3)$ $= \sum_{d_1d=n} f(d_1)(\sum_{d_2d_3=d} g(d_2)h(d_3))$ $= \sum_{d_1d=n} f(d_1)(g * h)(d)$ = (f * (g * h))(n)

4. Identity element: Let $n \in \mathbb{N}$ and

$$\iota(\mathbf{n}) = \begin{cases} 1 & \text{when } n = 1\\ 0 & \text{when } n > 1 \end{cases}$$

$$(\iota * f)(n) = \sum_{d|n} (\iota(d) f(\frac{n}{d}))$$

$$= \iota(1) f(n) + \sum_{d|n,d>1} \iota(d) f(\frac{n}{d})$$

$$= 1. f(n) + 0$$

$$= f(n)$$
Similarly, $(f * i)(n) = f(n)$, $\forall f(n) \in S$.

5. Existence of inverse element: Let $f, h \in S$ and $n \in \mathbb{N}$

$$(f*h)(1) = (h*f)(1) = \iota(1)$$

$$\Rightarrow \sum_{d|l} f(d)h(\frac{l}{d}) = 1$$

$$\Rightarrow f(1)h(1) = 1$$

$$\Rightarrow h(1) = \frac{1}{f(1)} = f^{-1}(1)$$

$$\Rightarrow h(1) \text{ is the unique inverse of } f(1).$$

Now let n > 1 and we suppose that $h(m) = f^{-1}(m)$ has been uniquely determined for every m < n. Then

$$(f*h)(n) = (h*f)(n) = \iota(n)$$

$$\Rightarrow \sum_{d|n,1 \leq d \leq n} h(d) f(\frac{n}{d}) = 0$$

$$\Rightarrow h(n) f(\frac{n}{n}) + \sum_{d|n,1 \leq d \leq n} h(d) f(\frac{n}{d}) = 0$$

$$\Rightarrow h(n) f(1) = -\sum_{d|n,1 \leq d \leq n} h(d) f(\frac{n}{d})$$

$$\Rightarrow h(n) = -\frac{1}{f(1)} \sum_{d|n,1 \leq d \leq n} h(d) f(\frac{n}{d})$$
Hence h is an arithmetical function if $f(1) \neq 0$, where

 $f * h = h * f = \iota$, the identity function.

Hence S is an infinite abelian group under Dirichlet composition for arithmetical functions.

Chapter 6

Rings under Pointwise Addition and Dirichlet Composition

Problem 1

The set of all arithmetical functions forms a commutative ring (with zero divisors) under the operations of pointwise addition and Dirichlet composition.

Proof:

Let $S = \{f(n) : \forall n \in \mathbb{N} \text{ and } f(1) = 0\}$. Then $\forall f, g \in S$, the pointwise addition and Dirichlet composition (product) is defined by,

$$(f+g)(n) = f(n) + g(n)$$

$$(f*g)(n) = \sum_{d|n} f(d)g(\frac{n}{d}).$$

First let us show that, \tilde{f} together with Dirichlet product forms an abelian monoid.

• Closure property of addition: Let $f, g \in S$. Then f(1) = 0 and g(1) = 0. Also f + g is an arithmetical function.

Now $(f+g)(n) = f(n) + g(n) \in S$ since f(n) and g(n) both $\in S$. Hence closure property for addition satisfies.

• Associative property of addition: Let $f, g, h \in S$ and $n \in \mathbb{N}$ ((f+g)+h)(n)=(f+g)(n)+h(n)

$$= (f(n) + g(n)) + h(n)$$

$$= f(n) + g(n) + h(n) \dots (1)$$
Again, $(f + (g + h))(n) = f(n) + (g + h)(n)$

$$= f(n) + (g(n) + h(n))$$

$$= f(n) + g(n) + h(n) \dots (2)$$
From (1) and (2) we can write, $((f + g) + h)(n) = (f + (g + h))(n)$

• Existence of additive identity : 0(n) = 0 for every $n \in \mathbb{N}$ if $f \in S$ and $n \in \mathbb{N}$ then

$$(f+0)(n) = f(n) + 0(n)$$

= $f(n) + 0$
= $f(n), \forall f(n) \in S$.

• Existence of additive inverse: (-f)(n) = -f(n) for any $n \in \mathbb{N}$ we have

$$(f + (-f))(n) = f(n) + (-f)(n)$$

= $f(n) + (-f(n))$
= 0
= $0(n)$

• Commutative law of addition: Let $f, g \in S$ and $n \in \mathbb{N}$

$$(f+g)(n) = f(n) + g(n)$$

= $g(n) + f(n)$
= $(g+f)(n)$

• Closure property of multiplication: Let $f, g \in S$. Then f(1) = 0 and g(1) = 0. Also f * g is an arithmetical function.

Now
$$(f * g)(1) = f(1).g(1) = 0.0 = 0$$
.
Hence $f * g \in S$.

• Associative law of multiplication: Let $f, g, h \in S$ and $n \in \mathbb{N}$

$$\begin{aligned} &((f*g)*h)(n) = \sum_{dd_3=n} (f*g)(d)h(d_3) \ [d_3 = \frac{n}{d}] \\ &= \sum_{dd_3=n} (\sum_{d_1d_2=d} f(d_1)g(d_2))h(d_3)) \\ &= \sum_{d_1d_2d_3=n} f(d_1)g(d_2)h(d_3) \\ &= \sum_{d_1d=n} f(d_1)(\sum_{d_2d_3=d} g(d_2)h(d_3)) \\ &= \sum_{d_1d=n} f(d_1)(g*h)(d) \\ &= (f*(g*h))(n) \end{aligned}$$

- Distributive law of multiplication: Now let us show that Dirichlet convolution distributes over addition in S. Let f, g, h be arithmetic functions and $n \in \mathbb{N}$
 - (i) Left Distributive: $(f * (g + h))(n) = \sum_{d|n} f(d)(g + h)(\frac{n}{d})$ $= \sum_{d|n} f(d)(g(\frac{n}{d}) + h(\frac{n}{d}))$ $= \sum_{d|n} (f(d)g(\frac{n}{d}) + f(d)h(\frac{n}{d}))$ $= \sum_{d|n} f(d)g(\frac{n}{d}) + \sum_{d|n} f(d)h(\frac{n}{d})$ = (f * g)(n) + (f * h)(n)(ii) Right Distributive: $((f + g) * h)(n) = \sum_{d|n} (f + g)(d)h(\frac{n}{d})$ $= \sum_{d|n} (f(d) + g(d))h(\frac{n}{d})$ $= \sum_{d|n} (f(d)h(\frac{n}{d}) + \sum_{d|n} g(d)h(\frac{n}{d})$ $= \sum_{d|n} f(d)h(\frac{n}{d}) + \sum_{d|n} g(d)h(\frac{n}{d})$ = (f * h)(n) + (g * h)(n)

Hence the set of all arithmetical functions forms a commutative ring.

Problem 2

The set of all arithmetical functions with f(1) = 0 is not an integral domain under the operations of pointwise addition and Dirichlet composition.

Proof:

Let $S = \{f(n) : \forall n \in \mathbb{N} \text{ and } f(1) = 0\}$. Then $\forall f, g \in S$, the pointwise addition and Dirichlet composition (product) is defined by,

$$(f+g)(n) = f(n) + g(n)$$

$$(f*g)(n) = \sum_{d|n} f(d)g(\frac{n}{d}).$$

For a function to be an integral domain it has to satisfy the three following properties:

- (i) S has to be a commutative ring.
- (ii) S has to be a ring with unity.
- (iii) S has to be a ring without zero divisors.
- Closure property of addition: Let $f, g \in S$. Then f(1) = 0 and g(1) = 0. Also f + g is an arithmetical function.

Now $(f+g)(n) = f(n) + g(n) \in S$ since f(n) and g(n) both $\in S$. Hence closure property for addition satisfies.

• Associative property of addition: Let $f,g,h\in S$ and $n\in {\bf N}$

$$((f+g)+h)(n) = (f+g)(n)+h(n)$$

$$= (f(n)+g(n))+h(n)$$

$$= f(n)+g(n)+h(n)......(1)$$
Again, $(f+(g+h))(n) = f(n)+(g+h)(n)$

$$= f(n)+(g(n)+h(n))$$

$$= f(n)+g(n)+h(n).....(2)$$
From (1) and (2) we can write,
$$((f+g)+h)(n) = (f+(g+h))(n)$$

• Existence of additive identity : 0(n) = 0 for every $n \in \mathbb{N}$ if $f \in S$ and $n \in \mathbb{N}$ then

$$(f+0)(n) = f(n) + 0(n)$$

= $f(n) + 0$
= $f(n), \forall f(n) \in S$.

• Existence of additive inverse: (-f)(n) = -f(n) for any $n \in \mathbb{N}$ we have

$$(f + (-f))(n) = f(n) + (-f)(n)$$

= $f(n) + (-f(n))$
= 0
= $0(n)$

• Commutative law of addition: Let $f, g \in S$ and $n \in \mathbb{N}$

$$(f+g)(n) = f(n) + g(n)$$

= $g(n) + f(n)$
= $(g+f)(n)$

• Closure property of multiplication: Let $f, g \in S$. Then f(1) = 0 and g(1) = 0. Also f * g is an arithmetical function.

Now $(f * g)(n) = f(d)g(\frac{n}{d})$ is also $\in S$ since f(d) and $g(\frac{n}{d})$ both are arithmetical functions.

Hence closure property for multiplication satisfies.

• Associative law of multiplication: Let $f, g, h \in S$ and $n \in \mathbb{N}$

$$\begin{aligned} &((f*g)*h)(n) = \sum_{dd_3=n} (f*g)(d)h(d_3) \left[d_3 = \frac{n}{d}\right] \\ &= \sum_{dd_3=n} (\sum_{d_1d_2=d} f(d_1)g(d_2))h(d_3)) \\ &= \sum_{d_1d_2d_3=n} f(d_1)g(d_2)h(d_3) \\ &= \sum_{d_1d=n} f(d_1)(\sum_{d_2d_3=d} g(d_2)h(d_3)) \\ &= \sum_{d_1d=n} f(d_1)(g*h)(d) \\ &= (f*(g*h))(n) \end{aligned}$$

• Distributive law of multiplication: Now let us show that Dirichlet convolution distributes over addition in S. Let f, g, h be arithmetic functions and $n \in \mathbb{N}$

Left Distributive:

$$\begin{split} &(f*(g+h))(n) = \sum_{d|n} f(d)(g+h)(\frac{n}{d}) \\ &= \sum_{d|n} f(d)(g(\frac{n}{d}) + h(\frac{n}{d})) \\ &= \sum_{d|n} (f(d)g(\frac{n}{d}) + f(d)h(\frac{n}{d})) \\ &= \sum_{d|n} f(d)g(\frac{n}{d}) + \sum_{d|n} f(d)h(\frac{n}{d}) \\ &= (f*g)(n) + (f*h)(n) \\ &\text{Right Distributive: } ((f+g)*h)(n) = \sum_{d|n} (f+g)(d)h(\frac{n}{d}) \\ &= \sum_{d|n} (f(d) + g(d))h(\frac{n}{d}) \\ &= \sum_{d|n} (f(d)h(\frac{n}{d}) + g(d)h(\frac{n}{d})) \\ &= \sum_{d|n} f(d)h(\frac{n}{d}) + \sum_{d|n} g(d)h(\frac{n}{d}) \\ &= (f*h)(n) + (g*h)(n) \end{split}$$

Hence the set of all arithmetical functions with f(1) = 0 forms a commutative ring.

(ii) Now we will check if S is ring with unity. Let $n \in \mathbb{N}$ and

$$\iota(\mathbf{n}) = \begin{cases} 1 & \text{when } n = 1\\ 0 & \text{when } n > 1 \end{cases}$$

$$(\iota * f)(n) = \sum_{d|n} (\iota(d) f(\frac{n}{d}))$$

$$= \iota(1) f(n) + \sum_{d|n,d>1} \iota(d) f(\frac{n}{d})$$

$$= 1. f(n) + 0$$

$$= f(n)$$
Similarly, $(f * \iota)(n) = f(n)$, $\forall f(n) \in S$.

(iii) At last we will check if S is a ring without zero divisors.

Let $f, g \in S$ such that f = 0 and g = 0. Then there exists $m, n \in \mathbf{N}$ such that f(n) = 0 and f(m) = 0. Now,

$$m, n \in \mathbf{N}$$
 such that $f(n) = 0$ and $f(m) = 0$. Now, $(f * g)(mn) = \sum_{d|nm} f(d)g(\frac{nm}{d}) = \sum_{d|nm,d < n} f(d)g(\frac{nm}{d}) + f(n)g(m) + \sum_{d|nm,d > n} f(d)g(\frac{nm}{d}) = f(n)g(m) = 0.0 = 0.$

Since d < n implies that f(d) = 0 and d > n implies that $\frac{nm}{d} < m$ which indicates $g(\frac{nm}{d}) = 0$.

Therefore it follows that f * g = 0 and S has zero divisors.

Which doesn't satisfy the property of integral domain.

Hence S is not an integral domain.

Index

Abelian group, 4 Right Ideal, 30 Arithmetical functions, 34 Ring, 15 Ring with Zero Divisors, 17 Associative law, 3 Cancellation law, 7 Subring, 25 Closure law, 3 Trivial Ring, 16 Commutative Ring, 17 Complete Multiplicative Functions, Uniqueness of identity in a group, Uniqueness of inverse in a group, Dirichlet Inverse, 45 6 Dirichlet Product, 41 Field, 17

Group, 3

Ideal of a ring, 29 Integral Doamin, 17 Inverse identity, 7

Left Ideal, 30

Möbius Inversion Formula, 38 Multiplicative Functions, 46

Non-trivial Ring, 16

Order of a element of a group, 5 Order of a group, 5

Pointwise Sum of Arithmetical Function, 36

Reversal law for inverse, 8