Practice Supervised Modelling

Red & White Consulting Partners LLP

Table of Content

Supervised Learning: Logistic Regression

Supervised Learning: Random Forest

Technical Details

Exercise

Supervised Learning: Logistic Regression

What is Logistic Regression

Logistic Regression models the probability of the response variable belonging to a specific class

What is Sigmoid Function

- Sigmoid or Logistic function is an Sshaped curve that is bounded by the interval [0,1]
- The sigmoid function gives the probability that Y belongs to a particular class

$$p(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

- Whenever p(x) >= 0.5; resulting y = 1
- Whenever p(x) < 0.5; resulting y = 0

Why not using Linear Regression?

- It seems like we can also use Linear Regression to solve classification problems by assigning a threshold value
- But it gets a problem when the linear regression value is greater than 1 or less than 0 will have no meaning value for the classification
- Also, the model tends to make a misclassification when it gets new data, especially outliers

How Logistic Regression Works using ML?

Machine Learning uses iteration to find the best model for the sigmoid function to suit with the data

Parameter Vs. Hyperparameter

Parameter Definition

- A parameter is a variable estimated from the given data
- They are required to make predictions
- Not set manually by the practitioner, meaning it will become the output
- Example: coefficients of Logistic Regression

$$p(x) = \frac{1}{1 + e^{-\beta_0 + \beta_1 x}}$$

Parameter Vs. Hyperparameter

Hyperparameter Definition

- Hyperparameter is used for estimating the model parameter
- They are specified by the user
- Tuned for achieving a specific evaluation metric such as regularization (decrease probability of overfitting), model adjustment, making the calculation simpler, etc.
- You can learn more about hyperparameter for logistic regression here

Examples:

 fit_intercept is a Boolean input that decides whether to include the intercept or not

fit_intercept	¥	Function	¥
TRUE		$A = \beta_0 + \beta_1 x$	
FALSE		$A = \beta_1 x$	

- multi_class is a string that decides the approach to use for handling multiple classes ('ovr' by default, 'multinomial', 'auto')
- max_iter is an integer (100 by default) that defines the maximum number of iterations by the solver during model fitting

Supervised Learning: Random Forest

Why Decision Tree Rarely Used for Classification

- Decision Trees are easy to build, easy to use, and easy to interpret, but it has a bad inaccuracy
- This is due to Decision Trees is inflexible when it comes to classifying new samples

Why Decision Tree Rarely Used for Classification

Thus, we are using **Random Forest** by combining simple decision trees with flexibility resulting in a vast improvement in accuracy

Original Dataset

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	No	Yes	167	Yes

Bootstrapped Dataset

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No
Yes	No	Yes	167	Yes
Yes	No	Yes	167	Yes

- Imagine that you have the dataset on the left
- Create a "bootstrapped" dataset by randomly select samples from original (it can be picked more than once)

Bootstrapped Dataset

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No
Yes	No	Yes	167	Yes
Yes	No	Yes	167	Yes

- Then, create a decision tree using the bootstrapped dataset, but only use a random subset of variables at each step
- The number of step is also limited in order to make a simpler decision tree

 Now, repeat the step from the beginning to make multiple decision trees (in default 100 times)

 Now back to the original data to make the predictions by running based on the first decision tree

 Now back to the original data to make the predictions by running based on the first decision tree

• Then, create another prediction from the second tree and so on

 It will predict as "YES" when it received the most "YES" votes from all decision trees

Coffee Break

10:00 - 10:15

Technical Details

Import Package

Import Package Required for Creating Logistic Regression

Import Package

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
```

Read Train Data

Import Data Required for Creating Predictive Model.

Data For Prediction

In [3]:		= pd.read .head()	d_csv('		Data	a All.csv',]	low_memo	ry = False)						
Out[3]:		Customer ID	Branch Code	City	Age	Avg. Annual Income/Month	Balance Q1	NumOfProducts Q1	HasCrCard Q1	ActiveMember Q1	Balance Q2	NumOfProducts Q2	HasCrCard Q2	ActiveMember Q2
	0	15565701	1001	Jakarta	29	33000000	0.0	1	1	1	0.0	1	1	0
	1	15565878	1005	Jakarta	68	17000000	0.0	2	1	1	0.0	2	1	0
	2	15566091	1009	Jakarta	25	12000000	0.0	2	1	0	0.0	2	1	0
	3	15566292	1008	Jakarta	42	19000000	0.0	2	1	1	0.0	2	1	0
	4	15566312	1009	Jakarta	43	29000000	0.0	2	1	0	0.0	2	1	0 €
	4													+

Data Separation

- Separate which data will be considered inside the model
- Separate between text data and numerical data as well

```
In [4]: predictors=df.columns[1:-1]
    predictors_onehot = df.columns[1:3]
    predictors_num = df.columns[3:-1]
    X = df[predictors]
    X_onehot = df[predictors_onehot]
    X_num = df[predictors_num]
```

Standard Scaler

Use Standard Scaler for Numerical Data

One-Hot Encoder

Use One-Hot Encoder for Categorical Data

```
In [13]: X_onehot = pd.get_dummies(X_onehot, columns = predictors_onehot)
X_onehot.head()
```

Out[13]:

Branch Code_1001		Branch Code_1003	Branch Code_1004	Branch Code_1005				Branch Code_1009	Branch Code_1011	Branch Code_1012	Branch Code_1013	Branch Code_1014
0 1	0	0	0	0	0	0	0	0	0	0	0	(
1 (0	0	0	1	0	0	0	0	0	0	0	(
2 (0	0	0	0	0	0	0	1	0	0	0	(
3 (0	0	0	0	0	0	1	0	0	0	0	(
4 (0	0	0	0	0	0	0	1	0	0	0	(
												>

Combine Numerical & Categorical Data

Combine both Numerical & Categorical Data

	<pre>X = pd.concat([X_onehot, X_num], axis = 1) X.head()</pre>													
Out[16]:		Branch Code_1001	Branch Code_1002	Branch Code_1003	Branch Code_1004	Branch Code_1005	Branch Code_1006	Branch Code_1007	Branch Code_1008	Branch Code_1009	Branch Code_1011	Branch Code_1012	Branch Code_1013	Branch Code_1014
	0	1	0	0	0	0	0	0	0	0	0	0	0	(
	1	0	0	0	0	1	0	0	0	0	0	0	0	(
	2	0	0	0	0	0	0	0	0	1	0	0	0	C
	3	0	0	0	0	0	0	0	1	0	0	0	0	C
	4	0	0	0	0	0	0	0	0	1	0	0	0	(
	4													>

Data Test

Do with the Test Data As Well

Data for Test

In [17]:	df_val = pd.read_csv("					Data All Tes	st.csv",	low_memory= F	alse)					
In [18]:	df_val.head()													
Out[18]:	Customer Branch City Age		Avg. Annual Income/Month	Balance Q2	NumOfProducts Q2	HasCrCard Q2	ActiveMember Q2	Balance Q3	NumOfProducts Q3	HasCrCard Q3	ActiveMember Q3			
	0	15565701	1001	Jakarta	29	33000000	0.0	1	1	0	0.00	1	1	0
	1	15565878	1005	Jakarta	68	17000000	0.0	2	1	0	0.00	2	1	0
	2	15566091	1009	Jakarta	25	12000000	0.0	2	1	0	0.00	2	1	0
	3	15566292	1008	Jakarta	42	19000000	0.0	2	1	0	0.00	2	1	0
	4 15566312 1009 Jakarta 43		29000000	0.0	2	1	0	678905.68	2	1	1			
	4													+

Import Package for Logistic Regression

Import package for Logistic Regression

Logistic Regression

Building Logistic Regression Model

Calculate the data in Machine Learning using Logistic Regression

```
In [41]: #Don't Change This
         penalty = ['12']
         tol = [0.001, 0.0001, 0.00001]
         C = [100.0, 10.0, 1.00, 0.1, 0.01, 0.001]
         fit intercept = [True, False]
         intercept scaling = [1.0, 0.75, 0.5, 0.25]
         class weight = ['balanced', None]
         solver = ['newton-cg', 'sag', 'lbfgs', 'saga']
         max iter=[14000]
         param_distributions = dict(penalty=penalty, tol=tol, C=C, fit_intercept=fit_intercept, intercept_scaling=intercept_scaling,
                           class weight=class weight, solver=solver, max iter=max iter)
In [42]: import time
         logreg = LogisticRegression()
         grid = RandomizedSearchCV(estimator=logreg, param distributions = param distributions , scoring = 'recall', cv = 3, n jobs=-1)
         start time = time.time()
         grid result = grid.fit(X train, y train)
         # Summarize results
         print("Best: %f using %s" % (grid result.best score , grid result.best params ))
         print("Execution time: " + str((time.time() - start time)) + ' s')
         Best: 0.579699 using {'tol': 0.0001, 'solver': 'saga', 'penalty': 'l2', 'max_iter': 14000, 'intercept_scaling': 1.0, 'fit_inter
         cept': True, 'class weight': 'balanced', 'C': 100.0}
         Execution time: 16.35408329963684 s
```

Calculate the Evaluation Model

Accuration Test

```
In [43]: y pred =grid.predict(X test)
In [44]: from sklearn import metrics
         print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
         print("Precision:",metrics.precision_score(y_test, y_pred))
         print("Recall:", metrics.recall score(y test, y pred))
         metrics.completeness score
         Accuracy: 0.72
         Precision: 0.4799588900308325
         Recall: 0.5779702970297029
Out[44]: <function sklearn.metrics.cluster. supervised.completeness score(labels true, labels pred)>
In [45]: y pred val =grid.predict(X val)
In [46]: from sklearn import metrics
         print("Accuracy:",metrics.accuracy_score(y_val, y_pred_val))
         print("Precision:",metrics.precision score(y val, y pred val))
         print("Recall:", metrics.recall score(y val, y pred val))
         metrics.completeness score
         Accuracy: 0.5435788916809946
         Precision: 0.3930835734870317
         Recall: 0.5035068290882244
```

Calculate our results for accuracy, precision, and recall.

Which one we want to consider? Why?

Ishoma

12:00 - 13:00

