Exercice 1. Soit $A \in \mathcal{M}_2(\mathbb{R})$ telle que $A^2 = A$, A non nulle.

- **1. a)** Soit λ une valeur propre de A. Quelles sont les valeurs possibles pour λ ?
 - **b)** Montrer que $\operatorname{Ker} A = \operatorname{Ker} A^2$.
- **2.** On suppose que dim Ker A = 1.
 - a) En prenant $x \in \mathbb{R}^2 \setminus \text{Ker } A$, construire un vecteur propre associé à la valeur propre 1.
 - b) En déduire que A est diagonalisable et exprimer A dans une base de diagonalisation.
- 3. On suppose que $\operatorname{Ker} A = \{0\}$. Montrer que $A = \operatorname{Id}$.
- **4.** Finalement, décrire toutes les matrices A de $\mathcal{M}_2(\mathbb{R})$ telles que $A^2 = A$.

Exercice 2. Soient les deux applications linéaires suivantes :

$$u: \mathbb{R}^3 \to \mathbb{R}^2: (z_1, z_2, z_3) \mapsto (2z_1 - z_3, 3z_1 + z_2 + 2z_3)$$

 $v: \mathbb{R}^2 \to \mathbb{R}^3: (z_1, z_2) \mapsto (z_1 + z_2, -z_2, 2z_1 - z_2).$

- 1. Déterminer H la matrice de u dans les bases canoniques de \mathbb{R}^3 et \mathbb{R}^2 .
- **2.** Déterminer K la matrice de v dans les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 .
- 3. Déterminer le noyau de u. u est-elle injective?
- **4.** Déterminer l'image de u. u est-elle surjective?
- **5.** Calculer HK.
- **6.** Montrer que $(HK)^2 = \lambda \times I_2$ où I_2 est la matrice identité de dimension 2 et λ est un scalaire (appartenant à \mathbb{R}) à déterminer.
- 7. En déduire sans (long) calcul que HK est inversible.
- **8.** Déterminez $(u \circ v)^2$.