Géométrie différentielle Résumé de cours

I - Courbes planes

1 - Courbe paramétrée

a/ Définition

Une <u>courbe plane paramétrée</u> c'est une application γ d'un intervalle [a,b] de \mathbb{R} à valeur dans \mathbb{R}^2 . On peut la concevoir comme l'équation horaire d'un mobile dans le plan.

On peut aussi noter
$$M(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$
 l'image de t par γ .

Si
$$(O, \vec{i}, \vec{j})$$
 est un repère orthonormé du plan, $\overrightarrow{OM}(t) = x(t)\vec{i} + y(t)\vec{j}$

b/ Support

L'image de γ (ensemble des points \mathbb{R}^2 qui sont images par γ d'un point de [a,b]) est appelé le support de cette courbe paramétrée.

On dit aussi (improprement dans ce contexte) que c'est une courbe.

c/ Changement de paramètre

Si φ est une application bijective de $[\alpha, \beta]$ dans [a,b], l'application $\gamma \circ \varphi$ définit une courbe qui a le même support que γ . On dit que φ constitue un changement de paramètre admissible.

d/ Opérations

Soit
$$\gamma$$
 $[a,b] \to \mathbb{R}^2$. La courbe $-\gamma$ est la courbe $[a,b] \to \mathbb{R}^2$ telle que $(-\gamma)(t) = \gamma(b-(t-a))$.

Elle a le même support que γ , mais est parcourue "dans le sens inverse".

Soient
$$\gamma_1[a,b] \to \mathbb{R}^2$$
 et $\gamma_2[b,c] \to \mathbb{R}^2$ telles que $\gamma_1(b) = \gamma_2(b)$ (Deux courbes qui "se suivent")

La courbe
$$\gamma_1 + \gamma_2$$
 est la courbe $[a, c] \to \mathbb{R}^2$ telle que $(\gamma_1 + \gamma_2)(t) = \begin{cases} \gamma_1(t) & \text{si } t \in [a, b] \\ \gamma_2(t) & \text{si } t \in [b, c] \end{cases}$

2 - Vecteur vitesse - Tangente

a/ Vecteur vitesse

Soit
$$\gamma$$
 $[a,b] \to \mathbb{R}^2$ une courbe paramétrée de classe C^1 et $M(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ l'image de t par γ .

On note
$$\frac{dM}{dt}$$
 ou $\frac{dM}{dt}(t)$ le vecteur $\begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{pmatrix}$. On l'appelle le vecteur vitesse (au point t)

On écrit aussi
$$\frac{dM}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j}$$

b/ Définition:

On dit que la droite Δ est tangente en $M(t_0)$ à la courbe γ si $M(t_0) \in \Delta$ et si la direction de Δ est la limite des direction des "cordes" $(M(t_0)M(t_1))$ quand $t_1 \to t_0$

c/ Propriété:

Si
$$\frac{dM}{dt}(t_0) \neq 0$$
, la courbe γ possède une tangente au point $M(t_0)$

et cette tangente a le vecteur vitesse $\frac{dM}{dt}(t_0)$ comme vecteur directeur.

Si $\forall t \in [a,b] / \frac{dM}{dt}(t) \neq 0$, on dit que la courbe est régulière. En tout point elle a une tangente.

3 - Courbes polaires

Soit *I* un intervalle de \mathbb{R} . Pour tout réel $\theta \in I$, on pose $\vec{r} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$

La courbe polaire définie par la fonction ho(heta) est la courbe paramétrée qui, à heta , associe

$$M(\theta) = \rho(\theta) \vec{r} = \begin{pmatrix} \rho(\theta)\cos\theta\\ \rho(\theta)\sin\theta \end{pmatrix}$$

On note \vec{n} le vecteur $\frac{d\vec{r}}{d\theta} = \begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix}$.

On remarque que $\frac{d\vec{n}}{d\theta} = -\vec{r}$ et que , pour tout θ , (O, \vec{r}, \vec{n}) est un repère orthonormé direct (repère tournant)

Le vecteur vitesse est alors $\frac{dM}{d\theta} = \rho'(\theta)\vec{r} + \rho(\theta)\vec{n}$

4 - Longueur d'une courbe plane de classe C^1

Soit Γ un arc paramétré $\begin{bmatrix} a,b \end{bmatrix} \to \mathbb{R}^2$ $t \to \Gamma(t) = M(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ de classe C^1

a/ Définition

Soit $\sigma = (t_0, t_1, ..., t_n)$ une subdivision de [a,b] $(t_0 = a < t_1 < t_2 < ... < t_n = b)$

La ligne polygonale $P_{\sigma}(\Gamma)$ est la ligne formée des segments $\left[M\left(t_{k}\right)M\left(t_{k+1}\right)\right]$, k=0..n-1

Sa longueur est $mes(P_{\sigma}(\Gamma)) = \sum_{k=0}^{n-1} \left\| \frac{1}{M(t_k)M(t_{k+1})} \right\|$

La longueur de Γ est, si elle existe, la borne sup des $mes(P_{\sigma}(\Gamma))$:

$$mes(\Gamma) = \sup_{\sigma \text{ subdivision de } [a,b]} \left(mes(P_{\sigma}(\Gamma)) \right)$$

Remarque: le flocon de Von Koch n'est pas mesurable

C'est une courbe continue, mais pas de classe C^1

Si on considère une subdivision en n parties égales,

n=3	n = 12	n = 48	n = 192	$n = 3.4^k$
$mes\left(P_{\sigma}\left(\Gamma\right)\right)=3$	$mes\left(P_{\sigma}\left(\Gamma\right)\right)=4$	$mes\left(P_{\sigma}\left(\Gamma\right)\right) = \frac{16}{3}$	$mes\left(P_{\sigma}\left(\Gamma\right)\right) = \frac{64}{9}$	$mes(P_{\sigma}(\Gamma)) = 3.\left(\frac{4}{3}\right)^k \xrightarrow[k \to \infty]{} \infty$

b/ Théorème : si Γ est une courbe de classe C^1 alors elle est mesurable et $\left| mes(\Gamma) = \int_a^b \left\| \Gamma'(t) \right\| dt$

$$mes(\Gamma) = \int_{a}^{b} \|\Gamma'(t)\| dt$$

Corollaire : la mesure ne change pas si on fait un changement de paramètre admissible de classe C¹.

Remarque
$$\|\Gamma'(t)\| = \left\|\frac{dM}{dt}\right\| = \sqrt{(x'(t))^2 + (y'(t))^2}$$
 et en polaires $\|\Gamma'(\theta)\| = \sqrt{(\rho'(\theta))^2 + (\rho(\theta))^2}$

Idée de la démonstration (on admet que Γ est mesurable)

Soit s(t) la mesure de la restriction de l'arc à [a,t]

Alors si h > 0 s(t+h) - s(t) est la mesure de la restriction de l'arc à [t, t+h]

On démontre alors que
$$\frac{s(t+h)-s(t)}{h} \xrightarrow{h\to 0^+} \|\Gamma'(t)\|$$

et donc s(t) est dérivable à droite et sa dérivée à droite est $\|\Gamma'(t)\|$

On démontre de même que s(t) est dérivable à gauche et sa dérivée à gauche est $\|\Gamma'(t)\|$

Ainsi s(t) est une primitive de $\|\Gamma'(t)\|$. Comme elle s'annule en a, $s(t) = \int_{t=0}^{t} \|\Gamma'(u)\| du$.

En particulier, la mesure de l'arc entier est $mes(\Gamma) = \int_a^b \|\Gamma'(t)\| dt$

c/ relation de Chasles :

Pour $t_1 \in [a,b]$, $t_2 \in [a,b]$, $t_1 < t_2$ on note Γ_{t_1,t_2} la restriction de Γ à l'intervalle $[t_1,t_2]$

Alors pour tout $c \in [a,b]$, $\Gamma_{a,b} = \Gamma_{a,c} + \Gamma_{c,b}$ et $mes(\Gamma_{a,b}) = mes(\Gamma_{a,c}) + mes(\Gamma_{c,b})$ On peut ainsi définir la mesure d'une courbe de classe C^1 par morceaux

d/ Exemples:

Longueur d'une arche de cycloïde $\begin{cases} x(t) = R(t - \sin t) & 1.5 \\ y(t) = R(1 - \cos t) & 1 \\ t \in [0, 2\pi] & 0 \end{cases}$

Longueur de la chaînette, graphe de la fonction ch : y = ch(x), ou $\{y(t) = ch(t)\}$

5 - Abscisse curviligne

Soit Γ un arc paramétré $\begin{bmatrix} a,b \end{bmatrix} \to \mathbb{R}^2$ $t \to \Gamma(t) = M(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ de classe C^1

En prenant M(a) comme origine, pour tout $t \in [a,b]$ l'abscisse curviligne de M(t), notée s(t), est la longueur de la restriction de l'arc à [a,t] $s(t) = mes(\Gamma_{a,t}) = \int_a^t ||\Gamma'(u)|| du$.

En prenant $M(t_0)$ comme origine, pour tout $t \in [a,b]$ l'abscisse curviligne de M(t) est

- * la longueur de la restriction de l'arc à $[t_0, t]$ si $t_0 \le t$
- * l'opposé de longueur de la restriction de l'arc à $[t,t_0]$ si $t\leqslant t_0$

Dans les 2 cas, $s(t) = \int_{t}^{t} ||\Gamma'(u)|| du$.

L'abscisse curviligne est invariante par changement de paramètre admissible <u>croissant</u>.

Soit L la longueur de la courbe.

Si la courbe est régulière, $\forall t \in [a,b]$, $s'(t) = \left\| \frac{dM}{dt} \right\| > 0$. La fonction s(t) est alors une bijection

croissante de [a,b] dans [0,L] et constitue donc un changement de paramètre admissible.

Si on prend comme nouveau paramètre l'abscisse curviligne s, on a :

$$\frac{dM}{dt} = s'(t)\frac{dM}{ds}$$
 noté $\frac{ds}{dt}\frac{dM}{ds}$. Mais comme $s'(t) = \frac{ds}{dt} = \left\|\frac{dM}{dt}\right\|$, on obtient $\left\|\frac{dM}{ds}\right\| = 1$.

s est donc un paramétrage intrinsèque : la courbe est parcourue à la "vitesse" constante 1.

6 - Courbure.

Soit φ l'angle entre l'axe Ox et le vecteur $\frac{dM}{dt}$, donc aussi le vecteur $\frac{dM}{ds}$. Ainsi $\frac{dM}{ds} = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} = \overrightarrow{T}$

On appelle courbure la dérivée de φ par rapport à s: $c = \frac{d\varphi}{ds}$

c'est la vitesse de rotation de la tangente, quand la courbe est parcourue à la "vitesse" constante On appelle rayon de courbure l'inverse de la courbure : $R = \frac{1}{c}$

Calcul de c:

•
$$\frac{d^2M}{ds^2} = \frac{d\overrightarrow{T}}{ds} = \frac{d\varphi}{ds} \cdot \begin{pmatrix} -\sin\varphi \\ \cos\varphi \end{pmatrix} = c \overrightarrow{N} \text{ donc } |c| = \left\| \frac{d^2M}{ds^2} \right\|$$

• On peut montrer que
$$c = \frac{x'y''-x''y'}{\left(x'^2+y'^2\right)^{3/2}} = \frac{\det\left(\frac{dM}{dt}, \frac{d^2M}{dt^2}\right)}{\left\|\frac{dM}{dt}\right\|^3}$$

Exemple: cercle de rayon R $\begin{cases} x = R \cos t \\ y = R \sin t \end{cases}$ $t \in [0, 2\pi]$: courbure $= \frac{1}{R}$, rayon de courbure = R

7 - Intégrale d'un champ scalaire.

Soient $f: \mathbb{R}^2 \to \mathbb{R}$ et $\gamma: [a,b] \to \mathbb{R}^2$ un courbe paramétrée.

L'intégrale de f le long de γ est $\int_a^b f(x(t), y(t)) \left\| \frac{dM}{dt} \right\| dt$. On la note $\int_{\gamma} f \ ds$.

Exemple : l'abscisse du centre de gravité de la ligne (supposée homogène) est $x_G = \frac{\int_{\gamma} x \ ds}{\int_{\gamma} ds} = \frac{\int_{a}^{b} x(t) \left\| \frac{dM}{dt} \right\| dt}{L}$