Laboratorium Podstaw Fizyki

Nr ćwiczenia 57c

Temat ćwiczenia: Badanie Efektu Halla

Nazwisko i Imię prowadzącego kurs : Dr inż. Justyna Trzmiel

Wykonawca:	
Imię i Nazwisko nr indeksu, wydział	Paweł Koryciński 209826 W8
Termin zajęć: dzień tygodnia, godzina	Czwartek 7:30 – 9:00
Numer grupy ćwiczeniowej	Z00-00w
Data oddania sprawozdania:	
Ocena końcowa	

Zatwierdzam wyniki pomiarów.
Data i podpis prowadzącego zajęcia

Adnotacje dotyczące wymaganych poprawek oraz daty otrzymania poprawionego sprawozdania

Efekt Halla jest to zjawisko powstawania różnicy potencjałów (zwanej napięciem Halla Uh) w płytce przewodzącej, przez którą przepływa prąd elektryczny, jeśli jest ona umieszczona w zewnętrznym polu magnetycznym o indukcji B. Napięcie to wytworzy się pomiędzy przeciwległymi ściankami płytki w kierunku prostopadłym zarówno do kierunku przepływu prądu I, jak i do kierunku wektora zewnętrznego pola magnetycznego B. Nazwa tego efektu odkrytego w 1879r, pochodzi od nazwiska jesto odkrywcy, fizyka amerykańskiego E.H. Halla (1855- 1938). Przyczyną zjawiska jest oddziaływanie pola magnetycznego pod postacią siły Lorentza, działającej na cząstki naładowane elektrycznie, poruszające się w polu magnetycznym. Siła ta powoduje m.in. zakrzywianie toru cząstek elektrycznych. Również nośniki ładunku q, tworzące prąd elektryczny I w przewodzących płytkach(metalowych, półprzewodnikowych), doznają w polu magnetycznym B działania siły Lorentza, powodującej odchylenie toru ruchu od linii prostej.

Cel ćwiczenia:

- 1. Zmierzenie charakterystyk statycznych hallotronu:
 - a. $U_H = f(alfa)$ i $U_H = f(B_n)$ wersja podstawowa ćwiczenia.
 - b. $U_H = f(I_S)$ wersja dodatkowa ćwiczenia.
- 2. Wyznaczenie czułości polowej gamma $_B = \Delta U_H/\Delta B$ i czułości prądowej gamma $_I = \Delta U_H/\Delta I$ hallotronu.
- 3. Wyznaczenie koncentracji *n* swobodnych nośników ładunku.
- 4. Wyznaczenie maksymalnej czułości kątowej gamma $_{alfa}=\Delta U_{H}/\Delta alfa$ hallotronu.