TABLE I: Parametric comparison of MAA-DN with other standard and state-of-the-art methods for ISLES 15-SISS data. (Best scores are shown in **bold** font).

SISS	FLAIR			DWI			T1-WI			T2-WI			Combined		
	DSC	Sen.	Spec.	DSC	Sen.	Spec.	DSC	Sen.	Spec.	DSC	Sen.	Spec.	DSC	Sen.	Spec.
U-Net [25]	0.788	0.831	0.995	0.578	0.639	0.992	0.462	0.548	0.98	0.636	0.709	0.99	0.759	0.819	0.994
U-Net [25]	± 0.15	± 0.15	± 0	± 0.22	± 0.23	± 0	± 0.24	± 0.3	± 0	± 0.23	± 0.24	± 0	± 0.17	± 0.16	± 0
Attention	0.694	0.766	0.993	0.547	0.663	0.986	0.572	0.733	0.978	0.555	0.706	0.977	0.699	0.77	0.99
gated	± 0.19	± 0.16	±0	± 0.2	± 0.18	± 0.01	± 0.2	± 0.18	± 0.978	± 0.22	± 0.2	± 0.01	±0.23	± 0.18	±0.01
network [39]	10.19			⊥0.2	⊥0.16	⊥0.01	10.2	⊥0.16	⊥0.01	10.22			⊥0.23	⊥0.16	±0.01
Proposed	0.807	0.912	0.993	0.668	0.84	0.985	0.732	0.776	0.994	0.715	0.837	0.988	0.794	0.907	0.993
Troposeu	± 0.15	± 0.09	±0	± 0.17	± 0.14	± 0	±0.19	± 0.18	± 0	±0.19	± 0.14	±0	± 0.16	± 0.1	±0

TABLE II: Parametric comparison of MAA-DN with other standard and state-of-the-art methods for ISLES 15-SPES data. (Best scores are shown in **bold** font).

SPES	PWI-CBF			PWI-CBV			PWI-TTP			PWI-Tmax			Combined		
	DSC	Sen.	Spec.	DSC	Sen.	Spec.	DSC	Sen.	Spec.	DSC	Sen.	Spec.	DSC	Sen.	Spec.
U-Net [25]	0.747	0.874	0.975	0.724	0.888	0.97	0.786	0.888	0.98	0.772	0.895	0.977	0.811	0.904	0.982
U-Net [25]	± 0.13	± 0.1	± 0.01	±0.13	± 0.09	± 0.01	± 0.11	± 0.09	± 0.01	±0.12	± 0.1	± 0.01	±0.1	± 0.08	± 0
Attention	0.711	0.913	0.966	0.763	0.912	0.976	0.708	0.918	0.964	0.679	0.907	0.96	0.721	0.923	0.966
gated network [39]	± 0.17	± 0.08	± 0.02	±0.13	± 0.06	± 0.01	±0.17	± 0.08	± 0.02	±0.18	± 0.11	± 0.02	± 0.16	± 0.06	± 0.02
Proposed	$0.759 \\ \pm 0.12$	0.872 ± 0.09	$0.977 \\ \pm 0.01$	0.707 ±0.13	$0.908 \\ \pm 0.07$	0.963 ± 0.01	0.813 ±0.09	0.902 ± 0.06	0.983 ±0	0.82 ±0.09	$0.914 \\ \pm 0.06$	0.983 ±0	0.85 ±0.07	0.917 ± 0.05	0.987 ±0

TABLE III: Parametric performance of MAA-DN with other standard and state-of-the-art methods for ISLES 17 data. (Best scores are shown in **bold** font)

ISLES-17		ADC]	PWI-CBF	`		PWI-CBV	7	PWI-TTP			
	DSC	Sen.	Spec.	DSC	Sen.	Spec.	DSC	Sen.	Spec.	DSC	Sen.	Spec.	
U-Net [25]	0.407 ±0.26	0.731 ± 0.26	$0.976 \\ \pm 0.02$	$0.33 \\ \pm 0.27$	0.73 ±0.3	$0.963 \\ \pm 0.03$	0.383 ±0.31	0.67 ±0.33	$0.976 \\ \pm 0.02$	0.402 ±0.31	0.676 ± 0.32	$0.975 \\ \pm 0.03$	
Attention gated network [39]	0.158 ±0.18	$\begin{array}{c} \textbf{0.815} \\ \pm \textbf{0.29} \end{array}$	$0.855 \\ \pm 0.07$	0.204 ±0.2	$0.759 \\ \pm 0.32$	0.91 ± 0.05	0.219 ±0.24	$0.771 \\ \pm 0.29$	$0.896 \\ \pm 0.08$	0.211 ±0.23	$\begin{array}{c} \textbf{0.776} \\ \pm \textbf{0.28} \end{array}$	0.894 ±0.07	
Proposed	0.383 ± 0.27	0.675 ± 0.27	0.97 ± 0.02	0.287 ± 0.27	0.49 ± 0.34	$0.975 \\ \pm 0.02$	0.271 ±0.25	0.353 ± 0.34	0.97 ± 0.03	0.227 ± 0.23	0.265 ± 0.32	0.972 ± 0.03	
				PWI-Tmax				PWI-MT		Combined			
				DSC	Sen.	Spec.	DSC	Sen.	Spec.	DSC	Sen.	Spec.	
U-Net [25]				0.42 ±0.31	0.679 ± 0.32	$0.977 \\ \pm 0.03$	0.43 ±0.31	0.681 ±0.31	0.979 ±0.03	0.218 ±0.18	0.441 ± 0.26	$0.955 \\ \pm 0.03$	
Attention gated network [39]				0.232 ±0.24	0.769 ±0.29	$0.908 \\ \pm 0.07$	0.229 ±0.24	$\begin{array}{c} \textbf{0.764} \\ \pm \textbf{0.3} \end{array}$	0.909 ± 0.07	0.265 ±0.25	0.494 ± 0.35	0.94 ±0.05	
Proposed				0.291 ±0.23	0.26 ± 0.32	0.976 ± 0.03	0.275 ± 0.23	0.316 ± 0.34	0.973 ± 0.03	0.47 ± 0.22	$0.867 \\ \pm 0.17$	$0.972 \\ \pm 0.01$	

TABLE IV: Parametric performance of MAA-DN with other standard and state-of-the-art methods for **core** injury estimation of **LLU** data. (Best scores are shown in **bold** font; For values which had a tie the maximum was decided by rounding to more than 3 digits)

LLU -Core	DWIp			DWIr			DWIs			ADC			Combined		
	DSC	Sen.	Spec.	DSC	Sen.	Spec.	DSC	Sen.	Spec.	DSC	Sen.	Spec.	DSC	Sen.	Spec.
U-Net [25]	0.759 ±0.16	$0.715 \\ \pm 0.21$	0.998 ±0	0.757 ±0.19	0.778 ± 0.16	0.986 ±0.01	$0.653 \\ \pm 0.22$	0.651 ± 0.23	0.995 ±0	0.597 ±0.26	$0.637 \\ \pm 0.27$	0.958 ±0	0.744 ±0.11	0.832 ±0.13	0.998 ±0
Attention gated network [39]	0.669 ±0.24	0.677 ± 0.25	0.996 ±0	0.735 ±0.2	0.751 ± 0.2	0.996 ±0	0.727 ±0.23	0.712 ± 0.23	0.997 ±0	0.552 ±0.32	0.584 ±0.3	$0.992 \\ \pm 0.01$	0.617 ±0.29	$0.633 \\ \pm 0.27$	$0.993 \\ \pm 0.01$
Proposed	$0.786 \\ \pm 0.17$	$0.755 \\ \pm 0.19$	0.998 ±0	$0.79 \\ \pm 0.17$	$0.786 \\ \pm 0.17$	$\begin{array}{c} \textbf{0.997} \\ \pm \textbf{0} \end{array}$	0.719 ±0.24	$0.655 \\ \pm 0.23$	0.994 ± 0	$0.615 \\ \pm 0.27$	0.618 ± 0.27	$\begin{array}{c} \textbf{0.995} \\ \pm \textbf{0} \end{array}$	$0.845 \\ \pm 0.12$	$0.832 \\ \pm 0.13$	$\begin{array}{c} \textbf{0.998} \\ \pm \textbf{0} \end{array}$

TABLE V: Parametric comparison of MAA-DN with other standard and state-of-the-art methods for **penumbra** injury estimation of **LLU** data. (Best scores are shown in **bold** font)

LLU -Penumbra	PWI-CBF			PWI-CBV			PWI-TTP			PWI-MTT			Combined		
	DSC	Sen.	Spec.	DSC	Sen.	Spec.	DSC	Sen.	Spec.	DSC	Sen.	Spec.	DSC	Sen.	Spec.
U-Net [25]	0.666 ±0.2	0.785 ±0.17	0.949 ±0.03	0.609 ±0.24	$0.755 \\ \pm 0.23$	0.946 ±0.04	0.514 ±0.25	0.689 ±0.25	0.952 ±0.04	0.466 ±0.27	0.757 ± 0.23	0.926 ± 0.03	0.719 ±0.22	0.821 ±0.15	0.971 ± 0.03
Attention gated network [39]	0.624 ±0.2	0.757 ± 0.26	$0.948 \\ \pm 0.04$	0.61 ±0.24	$\begin{array}{c} \textbf{0.778} \\ \pm \textbf{0.22} \end{array}$	0.974 ± 0.01	0.564 ±0.25	0.689 ±0.25	$0.952 \\ \pm 0.03$	0.475 ±0.27	$0.723 \\ \pm 0.22$	0.916 ± 0.03	0.717 ±0.22	0.791 ± 0.14	0.971 ± 0.1
Proposed	$0.705 \\ \pm 0.2$	$0.82 \\ \pm 0.18$	$0.978 \\ \pm 0.01$	$0.641 \\ \pm 0.24$	0.777 ± 0.22	$0.974 \\ \pm 0.01$	0.554 ± 0.26	$0.731 \\ \pm 0.26$	$0.961 \\ \pm 0.02$	0.47 ±0.24	$0.762 \\ \pm 0.23$	$0.926 \\ \pm 0.03$	$0.773 \\ \pm 0.18$	$0.828 \\ \pm 0.16$	$0.988 \\ \pm 0.01$

Fig. 1: A-B) Example input and groundtruth; C-D) Comparison of attention maps of decoding part in few intermediate layers of the MAA-DN with those of the decoding part in AGN.

Fig. 2: MAA-DN based ischemic core-penumbra delineation in LLU dataset are compared across injury severity (mild, moderate, severe) with MAA-DN detected core in (orange + red) and MAA-DN detected penumbra in (blue + green).

Fig. 3: MAA-DN based acute ischemic lesion delineation in SISS ISLES-15 dataset are compared across injury severity (mild, moderate, severe) with MAA-DN detected lesion in (orange + red).

Fig. 4: MAA-DN based ischemic core-penumbra delineation in SPES ISLES-15 dataset are compared across injury severity (mild, moderate, severe) with MAA-DN detected core in (orange + red) and MAA-DN detected penumbra in (blue + green).

Fig. 5: MAA-DN based acute ischemic lesion delineation in ISLES-17 dataset are compared across injury severity (mild, moderate, severe) with MAA-DN detected lesion in (orange + red).

Fig. 6: Ischemic lesion delineation from ISLES'17 dataset are shown and performance is compared across injury classes for each fold for **moderate** injury with MAA-DN detected lesion in (orange + red).

Fig. 7: Ischemic lesion delineation from ISLES'17 dataset are shown and performance is compared across injury classes for each fold for mild injury with MAA-DN detected lesion in (orange + red).

Fig. 8: Acute lesion delineation from SISS- ISLES'15 dataset are shown and performance is compared across injury classes for each fold for **severe** injury.

Fig. 9: Acute lesion delineation from SISS- ISLES'15 dataset are shown and performance is compared across injury classes for each fold for **moderate** injury.

Fig. 10: Acute lesion delineation from SISS- ISLES'15 dataset are shown and performance is compared across injury classes for each fold for mild injury.

Fig. 11: Ischemic penumbra delineation from SPES- ISLES'15 dataset are shown and performance is compared across injury classes for each fold for severe injury.

Fig. 12: Ischemic penumbra delineation from SPES- ISLES'15 dataset are shown and performance is compared across injury classes for each fold for **moderate** injury.

Fig. 13: Ischemic penumbra delineation from SPES- ISLES'15 dataset are shown and performance is compared across injury classes for each fold for **mild** injury.

Fig. 14: Ischemic lesion delineation from **LLU** dataset are shown and performance is compared across injury classes for each fold for **severe** injury.

Fig. 15: Ischemic lesion delineation from LLU dataset are shown and performance is compared across injury classes for each fold for moderate injury.

Fig. 16: Ischemic lesion from LLU dataset are shown and performance is compared across injury classes for each fold for mild injury.

Fig. 17: Ischemic penumbra delineation from **LLU** dataset are shown and performance is compared across injury classes for each fold for **severe** injury.

Fig. 18: Ischemic penumbra delineation from LLU dataset are shown and performance is compared across injury classes for each fold for **moderate** injury.

Fig. 19: Ischemic penumbra delineation from **LLU** dataset are shown and performance is compared across injury classes for each fold for **mild** injury.