# Raport 3

#### Aleksandra Niedziela

2023-05-29

## Problem kolekcjonera kuponów

Aby wygrać w konkursie potrzebujemy n kuponów. Interesuje nas liczba pudełek  $X_n$ , po których zakupie otrzymamy nagrodę. Liczba  $X_n$  to zmienna losowa. Przyjmijmy, że mamy już k-1 kuponów, niech  $X_{n,k}$  będzie liczbą pudełek, które musimy kupić, aby posiadać k kuponów.

- $X_{n,k}$  to zmienna losowa, o rozkładzie geometrycznym z parametrem  $\frac{n-k+1}{n}$
- $X_n = X_{n,1} + X_{n,2} + \ldots + X_{n,n} = \sum_{k=1}^n X_{n,k}$

Policzmy teraz wartość oczekiwaną zmiennej  $X_n$ 

$$E[X_n] = \sum_{k=1}^n \frac{n}{n-k+1} = n \sum_{k=0}^{n-1} \frac{1}{n-k} = n \sum_{k=1}^n \frac{1}{k}$$

### Symulacja

Przeprowadźmy teraz symulację, za pomocą poniższej funckji

```
boxes <- function(n){
  coupons <- 1:n
  aquired_coupons <- numeric(n)
  prize <- sum(1:n)
  a <- 0

while (sum(aquired_coupons) != prize){
   coupon <- sample(1:n, 1)
   aquired_coupons[coupon] = coupon
   a <- a + 1
}
  return(a)
}</pre>
```

Wyniki możemy przedstawić w tabeli:

Table 1: Porównanie wartości eksperymentalnych i teoretycznych

| ilość kuponów | Wartość teoretyczna | Wartość eksperymentalna |
|---------------|---------------------|-------------------------|
| 10            | 29                  | 23                      |
| 25            | 95                  | 155                     |
| 100           | 519                 | 482                     |
| 500           | 3396                | 3050                    |
| 1000          | 7485                | 7236                    |

Spójrzmy teraz na wykres pokazujący średnią liczbę pudełek (10 prób), po których zakupieniu zbierzemy wszystkie kupony



Czerwona i niebieska linia oznaczają ograniczenia wynikające z faktu:

$$\ln(n) < \sum_{k=1}^{n} \frac{1}{k} < \ln(n) + 1$$
$$n \cdot \ln(n) < E[X_n] < n \cdot (\ln(n) + 1)$$

### Nierówność Markowa

Niech X będzie zmienną losową, która przyjmuje jedynie nieujemne wartości. Wtedy dla wszystkich a > 0,

$$P(X \ge a) \le \frac{E[X]}{a}$$

Korzystając z nierówności Markowa możemy oszacować prawdopodobieństwo uzyskania co najmniej  $\frac{3n}{4}$  orłów w n rzutach monetą. Przyjmijmy za zmienną losową  $X_n$  liczbę wyrzuconych orłów w n rzutach. Widzimy, iż jest to schemat Bernoulliego, gdzie prawdopodobieństwo sukcesu (wyrzucenia orła) wynosi  $\frac{1}{2}$ , stąd mamy:

$$E[X_n] = \frac{n}{2}$$

Teraz z nierówności Markowa otrzymujemy:

$$P(X_n \ge \frac{3n}{4}) \le \frac{\frac{n}{2}}{\frac{3n}{4}} = \frac{2}{3}$$

Możemy wyliczyć dokładne prawdopodobieństwa dla ustalonej ilości rzutów, a następnie zauważyć, że za każdym razem są one ograniczone przez  $\frac{2}{3}$ 

| n   | prawdopodobieństwo wyrzucenia 3n/4 orłów |
|-----|------------------------------------------|
| 4   | 0.31250000                               |
| 10  | 0.17187500                               |
| 20  | 0.02069473                               |
| 50  | 0.00046811                               |
| 100 | 0.00000028                               |

Zobaczmy teraz jak nierówność Markowa sprawdza się dla rozkładu normalnego, dla różnych wartości a. Wiemy, że dla rozkładu normalnego  $N(\mu, \sigma), E[X] = \mu$ . Weźmy  $\mu = 2$  oraz  $\sigma = 1$ .

# Porównanie oszacowania, z wartością dokładną



## Nierówność Czebyszewa

Dla dowolnego a > 0 mamy:

$$P(|X - E[X]| \ge a) \le \frac{Var[X]}{a^2}$$

Korzystając z powyższej nierówności możemy ponownie oszacować prawdopodobieństwo wyrzucenia  $\frac{3n}{4}$  orłów w n rzutach symetryczną monetą. Wiemy, że Var[X] = np(1-p). Mamy:

$$P(|X - E[X]| \ge a) = P(X \ge a + E[X]) + P(X \le -a + E[X])$$

Chcemy, aby  $a+E[X]=\frac{3n}{4}$ , więc  $a=\frac{n}{4}$ . Ponieważ patrzymy tutaj na rozkład Bernoulliego, to mamy:

$$P(X \ge a + E[X]) + P(X \le -a + E[X]) = 2P(X \ge \frac{3n}{4}) \le \frac{Var[X]}{(\frac{n}{4})^2} = \frac{n \cdot 0.5 \cdot 0.5}{\frac{n^2}{16}} = \frac{4n}{n}$$

Stąd prawdopodobieństwo wyrzucenia  $\frac{3n}{4}$ orłów możemy oszacować przez  $\frac{2}{n}$ 

W przeciwieństwie do ograniczenia wynikającego z nierówności Markowa wynik jest zależny od ilości powtórzeń eksperymentu.

Spójrzmy teraz na wykres, gdzie dla rozkładu normalnego porównamy oszacowanie z wartością dokładną ogona dystrybuanty. Dla rozkładu normalnego mamy  $Var[X] = \sigma^2$ .

### Porównanie oszacowania, z wartością dokładną



Korzystatjąc z nierówności Markowa, możemy oszacować wartość  $P(X \ge 2nH_n)$ , gdzie X to zmienna losowa oznaczająca ilość pudełek, które musimy kupić by wygrać nagrodę (problem kolekcjonera kuponów), natomiast  $H_n = \sum_{i=1}^n \frac{1}{i}$ . Mamy  $E[X] = n \sum_{i=1}^n \frac{1}{i}$ 

$$P(X \ge 2nH_n) \le \frac{E[X]}{a} = \frac{n\sum_{i=1}^n \frac{1}{i}}{2n\sum_{i=1}^n \frac{1}{i}} = \frac{1}{2}$$

Teraz korzystając z nierówności Czebyszewa oszacujmy  $P(|X-nH_n|\geq nH_n)$  Aby policzyć Var[X] skorzystamy z faktu, iż  $Var[X]=\sum_{i=1}^n Var[X_i]$ . Wiemy, iż zmienne  $X_i$  mają rozkład geometryczny, stąd  $Var[X_i]=\frac{(1-p)}{p^2}$ 

$$P(|X - nH_n| \ge nH_n) \le \frac{Var[X]}{a^2} = \frac{\sum_{i=1}^n Var[X_i]}{(nH_n)^2} \le \frac{\pi^2 n^2}{6n^2 H_n^2} \le \frac{\pi^2}{6(\ln n)^2}$$

Porównajmy otrzymane oszacowania

## Porównanie oszacowania nierównością Markowa i Czebyszewa



Widzimy, że dla małych wartości n lepsze oszacowanie daje nam nierówność Markowa, natomiast wraz ze wzrostem n nierówność Czebyszewa daje dokładniejsze przybliżenia.

# Średnia, dyspersja, mediana

Jeśli X jest zmienną losową o średniej  $\mu$  odchyleniu standardowym  $\sigma$  i medianie m wtedy:

$$|\mu - m| \le \sigma$$

Aby sprawdzić, czy nierówność ta jest prawdziwa dla estymatorów mediany, średniej i odchylenia przeprowadźmy prostą symulację. Wybierzmy próbę 200 mężczyzn z populacji i przyjrzyjmy się estymatorom. Losujemy wartości z rozkładu normalnegoz parametrami  $\mu=178,\ \sigma=5$ , jako że tak możemy modelować zmienna losowa opisująca wzrost w populacji.

Otrzymujemy:

- $\mu = 177.830$
- m = 178.000
- $\sigma = 5.018$

$$|\mu - m| = 0.17 \le 5.02 = \sigma$$