

COLLEGE CODE: 1133

COLLEGE NAME: VELAMMAL INSTITUTE OF TECHNOLOGY

DEPARTMENT: ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

STUDENT NM-ID: aut113323aia47

ROLL NO: 113323243096

DATE: 03.05.2025

TECHNOLOGY-PROJECT NAME: BUILDING PERFORMANCE

ANALYSIS

SUBMITTED BY:

NAME: SANAJAI S

MOBILE NO: 9344631649

Phase 4: Performance Optimization and Finalization

Title:

AI-Driven Building Performance Analysis Objective

Objective:

Phase 4 focuses on refining the system developed in previous phases, ensuring its scalability, robustness, and real-world applicability. This phase enhances AI accuracy, dashboard responsiveness, IoT integration performance, and data security. It also includes performance testing and final optimizations before full deployment.

1. AI Model Performance Enhancement

Overview:

The AI recommendation engine developed in Phase 3 is refined to increase prediction accuracy for energy inefficiencies and comfort metrics.

Key Enhancements:

- Model Retraining: Incorporating pilot feedback and real-time data from test environments to improve model precision.
- Algorithm Optimization: Fine-tuning predictive analytics and improving recommendation logic for HVAC, lighting, and space usage.

Outcome:

Enhanced model offers more reliable, context-specific suggestions with reduced false alerts and better energy-saving opportunities.

2. Dashboard and System Responsiveness

Overview :

The interactive dashboard is optimized for faster performance, user-friendly navigation, and real-time data updates.

Key Enhancements:

- Response Time: Reduced latency for visualizations and scenario simulations under load.
- User Experience: Simplified interface layouts for facility managers and architects.

Outcome:

A highly responsive dashboard supporting smooth interactions, even with multiple data streams and simulation comparisons.

3. IoT Integration and Real-Time Monitoring

Overview:

Further improvements are made to ensure smooth sensor data flow and integration with cloud systems.

Key Enhancements:

- Latency Reduction: Faster transmission and processing of sensor data (e.g., temperature, humidity, CO₂).
- Device Compatibility: Ensured seamless operation with third-party systems like Siemens
 Desigo and Johnson Controls.

Outcome:

Real-time building performance is reliably reflected in the dashboard and digital twin, improving operational decision-making.

4. Data Security and System Stability

Overview:

System scalability and user data security are prioritized to ensure integrity as the platform expands.

Key Enhancements:

- Encryption Protocols: Applied industry-standard encryption to secure live and historical data.
- Security Testing: Conducted stress tests to validate system resilience under high load.

Outcome:

User data remains secure under varying usage conditions; platform meets industry compliance standards.

5. Performance Testing and User Feedback

Overview:

Extensive performance testing and real-world feedback ensure the system meets expectations in diverse use cases.

Implementation:

- Load Testing: Simulated deployment across multiple buildings.
- Feedback Collection: From architects, facility managers, and sustainability consultants.
- Error Handling: Debugging issues identified in high-usage simulations.

Outcome:

The system achieves consistent performance across buildings and users. Feedback confirms ease of use and effectiveness of insights.

Key Challenges and Solutions

Challenge Solution

Scalability Modular cloud architecture for multi-building support

Data Noise Applied filtering and validation protocols

User Adoption Simplified UI with onboarding tutorials

Outcomes of Phase 4

- Refined AI Engine: Highly accurate insights and predictive recommendations
- Robust Dashboard: Fast, user-friendly platform for diverse users
- Reliable IoT Data Flow: Seamless real-time monitoring
- Secure and Scalable Platform : Fully ready for commercial use

Next Steps - Final Deployment

- Full-scale deployment across varied buildings
- Monitor performance and gather extended feedback
- Initiate collaboration with smart city programs and commercial partners

Expanded Sample Code for Phase 4

```
import numpy as np
import matplotlib.pyplot as plt
from \ \ sklearn.ensemble \ \ import \ \ Random ForestRegressor
from sklearn.model selection import train_test_split
from sklearn.metrics import mean squared error
from math import sqrt
np.random.seed(42)
data = pd.DataFrame({
    'temperature': np.random.normal(24, 2, 200),
    'humidity': np.random.normal(50, 10, 200),
    'co2': np.random.normal(600, 100, 200),
    'occupancy': np.random.randint(0, 2, 200),
'daylight': np.random.normal(200, 50, 200),
    'energy_consumption': np.random.normal(150, 30, 200) # Target 1
data['comfort_index'] = 100 - (abs(data['temperature'] - 23) + abs(data['humidity'] - 45))
features = ['temperature', 'humidity', 'co2', 'occupancy', 'daylight']
X = data[features]
y_energy = data['energy_consumption']
y_comfort = data['comfort_index']
X_train, X_test, y_train_energy, y_test_energy = train_test_split(X, y_energy, test_size=0.2, random_state=0)
_, _, y_train_comfort, y_test_comfort = train_test_split(X, y_comfort, test_size=0.2, random_state=0)
```

```
model_energy = RandomForestRegressor(n_estimators=100, random_state=0)
model_comfort = RandomForestRegressor(n_estimators=100, random_state=0)
model_energy.fit(X_train, y_train_energy)
model_comfort.fit(X_train, y_train_comfort)
pred_energy = model_energy.predict(X_test)
pred_comfort = model_comfort.predict(X_test)
rmse_energy = sqrt(mean_squared_error(y_test_energy, pred_energy))
rmse_comfort = sqrt(mean_squared_error(y_test_comfort, pred_comfort))
print(f"Energy Prediction RMSE: {rmse_energy:.2f}")
print(f"Comfort Prediction RMSE: {rmse_comfort:.2f}")
feat_imp_energy = pd.Series(model_energy.feature_importances_, index=features).sort_values(ascending=False)
feat_imp_comfort = pd.Series(model_comfort.feature_importances_, index=features).sort_values(ascending=False)
print("\nEnergy Model Feature Importances:")
print(feat_imp_energy)
print("\nComfort Model Feature Importances:")
print(feat_imp_comfort)
plt.figure(figsize=(14, 6))
```

```
plt.subplot(2, 2, 1)
plt.plot(y_test_energy.values, label="Actual Energy")
plt.plot(pred_energy, label="Predicted Energy")
plt.title("Energy Consumption Prediction")
plt.xlabel("Test Sample")
plt.ylabel("Energy (kWh)")
plt.legend()
plt.subplot(2, 2, 2)
plt.bar(feat_imp_energy.index, feat_imp_energy.values)
plt.title("Energy Model Feature Importance")
plt.xticks(rotation=45)
plt.subplot(2, 2, 3)
plt.plot(y_test_comfort.values, label="Actual Comfort Index", color='green')
plt.plot(pred_comfort, label="Predicted Comfort Index", color='orange')
plt.title("Comfort Index Prediction")
plt.xlabel("Test Sample")
plt.ylabel("Comfort Index")
plt.legend()
plt.subplot(2, 2, 4)
plt.bar(feat_imp_comfort.index, feat_imp_comfort.values, color='orange')
plt.title("Comfort Model Feature Importance")
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```

OUTPUT:

Energy Prediction RMSE: 33.51

Comfort Prediction RMSE: 1.48

Energy Model Feature Importances:

daylight 0.267834

co2 0.248517

humidity 0.237299

temperature 0.210491

occupancy 0.035858

dtype: float64

Comfort Model Feature Importances:

humidity 0.967033

daylight 0.014810

temperature 0.010960

co2 0.006391

occupancy 0.000805

dtype: float64

