系统建模与动力学分析

学 时 数: 48学时

学 分: 3

任课教师: 闫涛

工作单位:电信学部自动化学院综合所

办公地点: 兴庆校区东二楼344B

创新港4-6168

邮 箱: yantao@xjtu.edu.cn

第二章 机械系统 (上:静力学建模)

$$\boldsymbol{F} = F_{x}\boldsymbol{i} + F_{y}\boldsymbol{j} + F_{z}\boldsymbol{k}$$

$$M = r \times F$$

$$M_O(F) = r \times F$$

$$F \Leftrightarrow (F',M)$$

$$r_{O'} = \frac{F' \times M}{(F')^2} = \frac{F \times M}{F^2}$$

$$r = \frac{F' \times M}{(F')^2}$$

$$\sum_{i=1}^{n} \boldsymbol{M}_{O}(\boldsymbol{F}_{i}) = \sum_{i=1}^{n} \boldsymbol{r} \times \boldsymbol{F}_{i} = \boldsymbol{r} \times \sum_{i=1}^{n} \boldsymbol{F}_{i} = \boldsymbol{r} \times \boldsymbol{F} = \boldsymbol{M}_{O}(\boldsymbol{F})$$

第二章 机械系统 (上:静力学建模)

$$(\boldsymbol{F}_1, \boldsymbol{F}_2, ..., \boldsymbol{F}_n) \iff (\boldsymbol{F}, \boldsymbol{M})$$

$$(F,M') \Leftrightarrow (F,M+r\times F)$$

$$\boldsymbol{M}_{z}(\boldsymbol{F}) = (\boldsymbol{r}_{xy} \times \boldsymbol{F}_{xy}) \cdot \boldsymbol{k}$$

$$\boldsymbol{M'} = \frac{(\boldsymbol{M} \cdot \boldsymbol{F})\boldsymbol{F}}{F^2}$$

力系向任一点0简化的结果			力系简化的最	 			
主矢	主矩		后结果	96-27			
$F_R'=0$	$M_0 = 0$		平衡	平衡力系			
	M ₀ ≠ 0		合力偶	此时主矩与简化中心的位 置无关			
$F_R' \neq 0$	$M_0 = 0$		合力	合力作用线通过简化中心			
	$M_0 \neq 0$	F_R ' $\perp M_O$	合力	合力作用线离简化中心 0 的距离为 $d=\frac{M_o}{F_g}$			
		$F_R M_O$	力螺旋	力螺旋的中心轴通过简化 中心			
		F _R '与M _O ' 成α角	力螺旋	力螺旋的中心轴离简化中 心0的距离为 $d=\frac{M_0\sin\alpha}{F_x'}$			

各种力系的平衡方程汇总表

力系的类型	方程形式	方程个数
空间任意力系	$\sum F_x = 0 \qquad \sum F_p = 0 \qquad \sum F_x = 0$ $\sum M_x(F) = 0 \qquad \sum M_y(F) = 0 \qquad \sum M_z(F) = 0$	6
空间汇交力系	$\sum F_x = 0 \sum F_y = 0 \sum F_z = 0$	3
空间平行力系	$\sum F_x = 0 \sum M_x(F) = 0 \sum M_y(F) = 0$	3
空间力偶系	$\sum M_x = 0 \sum M_y = 0 \sum M_z = 0$	3
平面任意力系	$\sum F_x = 0$ $\sum F_y = 0$ $\sum M_O(F) = 0$	3
平面汇交力系	$\sum F_x = 0 \sum F_y = 0$	2
平面平行力系	$\sum F_y = 0$ $\sum M_o(F) = 0$	2
平面力偶系	$\sum M = 0$	1

第二章 机械系统 (上:运动学建模)

$$\omega = \frac{2\pi n}{60} = \frac{\pi n}{30}$$

$$a_{t} = \frac{dv}{dt} = \rho \frac{d\omega}{dt} = \rho \dot{\omega} = \rho \alpha$$

$$v = \omega \times r$$

$$v_a = v_e + v_r$$

$$a_n = \frac{v^2}{\rho} = \frac{(\rho\omega)^2}{\rho} = \rho\omega^2$$

$$\mathbf{a}_{a} = \mathbf{a}_{e} + \mathbf{a}_{r} + 2\mathbf{\omega}_{e} \times \mathbf{v}_{r}$$
$$= \mathbf{a}_{e} + \mathbf{a}_{r} + \mathbf{a}_{C}$$

$$a = \dot{v} = \frac{d}{dt}(\omega \times r) = \dot{\omega} \times r + \omega \times \dot{r}$$

$$= \alpha \times r + \omega \times v =$$
 $\overline{a_t}$
 $+ \overline{a_n}$

第二章 机械系统(下:动力学建模)

$$x = R\theta$$
 $v = R\omega$ $a = R\alpha$

$$F < \mu_k N$$

$$F + F_{N} + F^{*} = 0$$
 $Q_{j} = 0$ $j = 1, 2, ..., k$

$$Q_j = 0$$

$$j=1,2,\ldots,k$$

$$\delta W = \sum_{i=1}^{n} \boldsymbol{F}_{i} \cdot \delta \boldsymbol{r}_{i} = 0$$

$$\delta W = \sum_{i=1}^{n} \left(F_{xi} \delta x_i + F_{yi} \delta y_i + F_{zi} \delta z_i \right) = 0$$

$$\delta W_{j} = Q_{j} \delta q_{j}$$

$$Q_{j} = \frac{\delta W_{j}}{\delta q_{j}}$$

第二章 机械系统(下:动力学建模)

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} - Q_j = 0 \qquad j = 1, 2, \dots, k$$

$$L = T - V$$

$$\left| \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) - \frac{\partial L}{\partial q_j} \right| = 0 \qquad j = 1, 2, \dots, k$$

第四章 电系统

机械系统	电系统
力F(力矩T)	电压e
质量 m (惯性矩 J)	电感 L
粘性摩擦系数 b	电阻R
弹簧常数 k	电容的倒数 1/C
位移 x (角位移 θ)	电荷 q
速度ν(角速度ω)	电流 <i>i</i>

机械系统	电系统
力F (力矩 T)	电流 <i>i</i>
质量 m (惯性矩 J)	电容 <i>C</i>
粘性摩擦系数 b	电阻的倒数 1/R
弹簧常数k	电感的倒数 1/L
位移 x (角位移 θ)	磁通量 Φ
速度ν (角速度ω)	电压 e

第五章 电机系统

$$F = \sum_{i} R_{\mathrm{m}i} \Phi$$

$$C_T = \frac{n_p N}{2a\pi} = \frac{60}{2\pi} C_E = 9.55 C_E$$

$$\Phi = BS$$
 $Ni = Hl$

$$Ni = Hl$$

$$B = \mu H$$

$$P_{\rm N} \neq U_{\rm N} I_{\rm N}$$

$$E_a = C_E \Phi n$$

$$T_e = C_T \Phi I_a$$

$$\eta = P_2/P_1$$

$$\eta_{\mathrm{N}} = P_{\mathrm{N}}/P_{\mathrm{1}}$$

第六、七章 液压系统、气动系统

$$\frac{v^2}{2g} + \frac{p}{\gamma} + z = 常数 \qquad \gamma = \rho g$$

$$A_1V_1 = A_2V_2$$

气阻 =
$$\frac{E力差的变化}{质量流量的变化}$$
 $\frac{N/m^2}{kg/s}$ 或 $\frac{N \cdot s}{kg \cdot m^2}$

$$R = \frac{d\Delta p}{dq}$$

$$C = \frac{V}{nR_{\Xi} T} \qquad \frac{\text{kg}}{\text{N/m}^2}$$

气感
$$I = \frac{\text{压力变化}}{\text{质量流量每秒的变化}} \frac{N/m^2}{kg/s^2}$$