*** *SECTION-2* ***

*** *ZOMATO DATA SET* ***

*** *Exploratory Data Analysis (EDA)*

Step 1: Import necessary libraries

- Pandas
- Matplotlib
- Seaborn

```
In [221... # Pandas is a powerful, open-source library in Python for data manipulation an
import pandas as pd
    # Matplotlib is a popular, open-source plotting library for Python, providing
import matplotlib.pyplot as plt
    # Seaborn is a Python data visualization library built on top of Matplotlib, p
import seaborn as sns
```

Step 2: Load Zomato data & Basic Information

```
In [224... zomato_data = pd.read_csv('zomato_data.csv') # Replace 'zomato_data.csv' with
print('\nLoading Zomato Data Set:\n')
zomato_data
```

Loading Zomato Data Set:

1	Locality	Address	City	Country Code	Restaurant Name	Restaurant ID	
Cen ¹ Pc Mal	Century City Mall, Poblacion, Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Makati City	162	Le Petit Souffle	6317637	0
Littl Mal	Little Tokyo, Legaspi Village, Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Makati City	162	Izakaya Kikufuji	6304287	1
Edsa ! La, Mand C	Edsa Shangri- La, Ortigas, Mandaluyong City	Edsa Mandaluyong City City Edsa Shangri-La, 1 Garden Way, Ortigas, Mandal		162	Heat - Edsa Shangri-La	6300002	2
Mand Mand	SM Megamall, Ortigas, Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	Mandaluyong City	162	Ooma	6318506	3
Mand	SM Megamall, Ortigas, Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	Mandaluyong City	162	Sambo Kojin	6314302	4
							•••
l ÛÆ	Karakí_y	Kemanke□ô Karamustafa Pa□ôa Mahallesi, RÛ±htÛ±	ÛÁstanbul	208	NamlÛ± Gurme	5915730	9546
Ko[Û/	Ko□ôuyolu	Ko□ôuyolu Mahallesi, ÛÁstanbul Muhittin îìstí_ndaÛô Cadd		208	Ceviz AÛôacÛ±	5908749	9547
Kuruí <u>.</u> Û <i>ļ</i>	Kuruí_e⊡ôme	Kuruí_e□ôme Mahallesi, Muallim Naci Caddesi, N	ÛÁstanbul	208	Huqqa	5915807	9548
Kuruí <u>.</u> Û <i>!</i>	Kuruí_e□ôme	Kuruí_e□ôme Mahallesi, Muallim Naci Caddesi, N	ÛÁstanbul	208	A□ô□ôk Kahve	5916112	9549

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	1
9550	5927402	Walter's Coffee Roastery	208	ÛÁstanbul	CafeaÛôa Mahallesi, BademaltÛ± Sokak, No 21/B	Moda	ÛÆ

9551 rows × 21 columns

```
In [226... print('\nBasic Information About Zomato Data Set:\n')
zomato_data.info()
# Provides information about dataset shape, column data types, and missing va
```

Basic Information About Zomato Data Set:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9551 entries, 0 to 9550
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	Restaurant ID	9551 non-null	int64
1	Restaurant Name	9551 non-null	object
2	Country Code	9551 non-null	int64
3	City	9551 non-null	object
4	Address	9551 non-null	object
5	Locality	9551 non-null	object
6	Locality Verbose	9551 non-null	object
7	Longitude	9551 non-null	float64
8	Latitude	9551 non-null	float64
9	Cuisines	9542 non-null	object
10	Average Cost for two	9551 non-null	int64
11	Currency	9551 non-null	object
12	Has Table booking	9551 non-null	object
13	Has Online delivery	9551 non-null	object
14	Is delivering now	9551 non-null	object
15	Switch to order menu	9551 non-null	object
16	Price range	9551 non-null	int64
17	Aggregate rating	9551 non-null	float64
18	Rating color	9551 non-null	object
19	Rating text	9551 non-null	object
20	Votes	9551 non-null	int64
dtyp	es: float64(3), int64(5), object(13)	

dcypes: 110aco+(5), 111co+(5), 00jecc(15)

memory usage: 1.5+ MB

Step 3: Identify & Counting of missing values

```
In [229... # Create a Boolean DataFrame with isnull()
    missing_bool = zomato_data.isnull()
    missing_bool
```

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longitude	L
0	False	False	False	False	False	False	False	False	_
1	False	False	False	False	False	False	False	False	
2	False	False	False	False	False	False	False	False	
3	False	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	False	
•••									
9546	False	False	False	False	False	False	False	False	
9547	False	False	False	False	False	False	False	False	
9548	False	False	False	False	False	False	False	False	
9549	False	False	False	False	False	False	False	False	
9550	False	False	False	False	False	False	False	False	

9551 rows × 21 columns

```
# Count missing values for each column using sum()
In [231...
          missing_counts = missing_bool.sum()
         missing_counts
Out[231...
          Restaurant ID
                                0
          Restaurant Name
          Country Code
                                0
          City
          Address
          Locality
          Locality Verbose
                               0
                                0
          Longitude
          Latitude
                                0
          Cuisines
                               9
          Average Cost for two 0
          Currency
          Has Table booking
                                0
          Has Online delivery 0
          Is delivering now
          Switch to order menu
          Price range
          Aggregate rating
                               0
                                0
          Rating color
                                0
          Rating text
                                 0
          Votes
          dtype: int64
```

Step 4: Summary Statistics For Numerical Columns

```
In [234...
          # Get summary statistics
          summary_stats = zomato_data.describe()
          summary_stats
```

Out[234...

	Restaurant ID	Country Code	Longitude	Latitude	Average Cost for two	Price range
coun	t 9.551000e+03	9551.000000	9551.000000	9551.000000	9551.000000	9551.000000
mea	n 9.051128e+06	18.365616	64.126574	25.854381	1199.210763	1.804837
ste	d 8.791521e+06	56.750546	41.467058	11.007935	16121.183073	0.905609
mi	n 5.300000e+01	1.000000	-157.948486	-41.330428	0.000000	1.000000
25%	6 3.019625e+05	1.000000	77.081343	28.478713	250.000000	1.000000
50%	6.004089e+06	1.000000	77.191964	28.570469	400.000000	2.000000
75 %	6 1.835229e+07	1.000000	77.282006	28.642758	700.000000	2.000000
ma	x 1.850065e+07	216.000000	174.832089	55.976980	800000.000000	4.000000

In []: # 1. Restaurant ID:

Range: IDs range from 53 to 18,500,650 (min to max), showing a wide vari # No insights can be directly drawn here other than confirming t

2. Country Code:

Mean: 18.37 indicates that the dataset predominantly consists of restaur # Min: 25%, 50%, and 75%: Country code is 1 (likely India) for at least # Max: 216 indicates the dataset includes global restaurants.

3. Longitude & Latitude:

Range: Longitude ranges from -157.95 to 174.83 and Latitude from -41.33 # Mean Latitude: ~25.85 and Longitude: ~64.13 suggest that most restaurant

4. Average Cost for Two:

Mean: ₹1,199 suggests that meals are moderately priced, but...

Standard Deviation (std): 16,121 shows high variability—some restaurants # Min: ₹0 indicates free meals (possibly promotional or missing data).

75% Quartile: 75% of the restaurants have prices below ₹700, sugg # Max: ₹800,000 indicates extreme outliers, probably representing luxury d

5. Price Range (1-4):

Mean: ~1.8 suggests that most restaurants fall between cheap to moderate # 75% Quartile: 75% of restaurants are within the price range of # Max of 4: Some high-end restaurants exist, but they are a minority.

6. Aggregate Rating:

Mean: 2.67 is on the lower side, suggesting that restaurants may general # Median (50%): 3.2 shows that half the restaurants score above this ratin # Max: 4.9 is near-perfect, meaning at least a few restaurants have excell

7. Votes:

Mean: ~157 votes suggest that most restaurants attract moderate engageme # Standard Deviation: 430 shows high variability—some restaurants are far more p # Quartile: 75% of restaurants have 131 votes or fewer, indicating that th # Max: One restaurant has 10,934 votes, suggesting it is extremely popular

Key Insights:

Geographic Concentration:

Most restaurants are likely located in India (Country Code = 1). However,

Pricing Distribution:

The majority of restaurants offer meals for less than ₹700, indicating a f

```
# Customer Engagement:
    # While the average number of votes is 157, some restaurants receive thousan

# Ratings:
    # The overall average rating of 2.67 is relatively low, possibly indicating

# Price Range and Ratings Correlation:

# With most restaurants having a price range of 1-2, it seems affordable a

# Outliers and Data Quality Issues:
    # Extreme values like a cost of ₹800,000 for two people or a restaurant wi
```

Step 5: Identify & Iterating of Categorical Columns

```
Restaurant Name: 7446 unique values
['Le Petit Souffle' 'Izakaya Kikufuji' 'Heat - Edsa Shangri-La']
City: 141 unique values
['Makati City' 'Mandaluyong City' 'Pasay City']
Address: 8918 unique values
['Third Floor, Century City Mall, Kalayaan Avenue, Poblacion, Makati City'
 'Little Tokyo, 2277 Chino Roces Avenue, Legaspi Village, Makati City'
 'Edsa Shangri-La, 1 Garden Way, Ortigas, Mandaluyong City']
Locality: 1208 unique values
['Century City Mall, Poblacion, Makati City'
 'Little Tokyo, Legaspi Village, Makati City'
 'Edsa Shangri-La, Ortigas, Mandaluyong City']
Locality Verbose: 1265 unique values
['Century City Mall, Poblacion, Makati City, Makati City'
 'Little Tokyo, Legaspi Village, Makati City, Makati City'
 'Edsa Shangri-La, Ortigas, Mandaluyong City, Mandaluyong City']
Cuisines: 1825 unique values
['French, Japanese, Desserts' 'Japanese'
 'Seafood, Asian, Filipino, Indian']
Currency: 12 unique values
['Botswana Pula(P)' 'Brazilian Real(R$)' 'Dollar($)']
Has Table booking: 2 unique values
['Yes' 'No']
Has Online delivery: 2 unique values
['No' 'Yes']
Is delivering now: 2 unique values
['No' 'Yes']
Switch to order menu: 1 unique values
['No']
Rating color: 6 unique values
['Dark Green' 'Green' 'Yellow']
Rating text: 6 unique values
['Excellent' 'Very Good' 'Good']
```

Step 6: Seaborn Plot to Visualizing the Distribution of Cuisine Types.

```
In [242... # Assuming 'zomato_data' is our DataFrame with a column named 'Cuisines'
    cuisine_counts = zomato_data['Cuisines'].value_counts()

# Visualize the top 10 most frequent and popular cuisines
    plt.figure(figsize=(10, 6))
    sns.barplot(x=cuisine_counts.index[:10], y=cuisine_counts.values[:10])
    plt.xlabel('Cuisines')
    plt.ylabel('Count')
```

```
plt.title('Top 10 Most Popular Cuisines')
plt.xticks(rotation=45)
plt.show()
# Observations
# Most Popular Cuisines: The cuisines with the tallest bars are the most freq
# Comparative Popularity: This bar plot also allows a quick comparison, showi
# Trends: The types of cuisines in the top ranks can suggest culinary trends
# This plot helps you quickly identify which cuisines are most popular and in
```


Step 7: Distribution of Restaurant Ratings using a Seaborn plot.

```
# Assuming 'zomato_data' is your DataFrame with a column named 'Aggregate rating rating= zomato_data['Aggregate rating']
sns.histplot(rating , bins=100 ,kde=True) # Adjust the number of bins as needed plt.title('Distribution of Restaurant Ratings')
plt.xlabel('Aggregate rating')
plt.ylabel('Count')
plt.show()
# Observations
# Spread of Ratings: The histogram reveals how ratings are spread across diffe # Frequency Peaks: Peaks indicate where ratings are most frequent. For instanc # Skewness: If the plot skews toward higher or lower ratings, this suggests a # The KDE curve in this plot adds a smooth line, showing the underlying distri
```

Distribution of Restaurant Ratings

Step 8: Relationship Between Two Numerical Columns

```
In [247...

df = pd.DataFrame(zomato_data)
    # Plotting the scatter plot
    plt.figure(figsize=(10, 6))
    sns.scatterplot(x='Votes', y='Aggregate rating', data=df, color='g', s=10, edgec
    plt.xlabel("Number of Votes")
    plt.ylabel("Aggregate Rating")
    plt.title("Relationship between Number of Votes and Aggregate Rating")
    plt.show()

# Observations
    # Positive or Negative Correlation: If data points form an upward trend from L
    # Cluster Patterns: Clusters of points around certain values may reveal segmen
    # Outliers: Points far from the main cluster may indicate unique cases, such a

# Interpretation
    # A scatter plot like this provides a visual representation of any relationshi
```


