Parte I (6 valores)

Cada uma das questões de escolha múltipla que se seguem pode ter mais do que uma resposta correcta. As respostas têm que ser <u>sucintamente justificadas</u>.

- 1. [1,5 val.] A figura representa as linhas de campo eléctrico de duas partículas carregadas. Podemos concluir que:
 - A. Ambas as cargas são positivas.
 - B. Ambas as cargas são negativas.
 - C. As cargas têm sinal oposto.
 - D. A carga da direita é maior (em valor absoluto) que a carga da esquerda.
 - E. A carga da direita é menor (em valor absoluto) que a carga da esquerda.

- 2. [1,5 val.] Considere uma superfície cilíndrica e aberta nas extremidades (tubo oco), colocada numa região do espaço onde não existem cargas eléctricas. Esta superfície:
 - A. pode ser utilizada como uma superfície gaussiana
 - B. não pode ser utilizada como superfície gaussiana porque não existem cargas no interior do cilindro
 - C. não pode ser utilizada como superfície gaussiana porque nesta situação só poderá ser utilizada uma superfície esférica
 - D. não pode ser utilizada como superfície gaussiana porque não é uma superfície fechada
 - E. nenhuma das respostas anteriores está correcta

- 3. [1,5 val.] A força magnética que actua sobre uma partícula carregada tem a mesma direcção e sentido que a velocidade da partícula nas seguintes circunstâncias:
 - A. quando a partícula se move na direcção e sentido do campo de indução magnética
 - B. quando a partícula se move na mesma direcção que o campo de indução magnética, mas no sentido oposto
 - C. quando a partícula se move perpendicularmente ao campo de indução magnética
 - D. quando a partícula se move numa direcção que não seja a mesma que o campo de indução magnética
 - E. nunca
- 4. [1,5 val.] O rápido decaimento exponencial (em apenas alguns ciclos) da carga nas armaduras de um condensador num circuito oscilador RLC deve-se:
 - A. à elevada indutância da bobina
 - B. à elevada capacidade do condensador
 - C. à pequena capacidade do condensador
 - D. à elevada resistência do circuito
 - E. à pequena resistência do circuito

Parte II (14 valores)

Identifique todos os símbolos que utilizar e justifique cuidadosamente as suas respostas.

- **5.** [2 *val.*] O potencial eléctrico numa região do espaço é dado por $V = 2x^2 + yz$, onde V está expresso em V/m e x, y, z estão expressos em metro.
- a) Qual é o trabalho realizado pela força eléctrica no transporte de uma carga $q = 1.0 \times 10^{-12}$ C entre a origem (x = 0, y = 0, z = 0) e o ponto x = 2 m, y = 1 m, z = 2 m?
- b) Determine o vector campo eléctrico no ponto x = 2 m, y = 1 m, z = 2 m.

- **6.** [3 val.] Considere uma esfera sólida, com uma distribuição uniforme de carga de densidade volúmica ρ , de raio a (ver figura), onde existem duas cavidades esféricas (sem carga), com o mesmo raio c. Este sistema está coberto por uma camada esférica, não carregada, de raio externo b, feita de um material isolante com constante dieléctrica relativa $\varepsilon_r = 2$.
- a) Determine o vector campo eléctrico nos pontos A e B, situados às distâncias $r_A = 4c$ e $r_B = 6c$, respectivamente, da origem. Exprima o resultado em função da constante dieléctrica do vazio (ε_0) e dos parâmetros fornecidos que caracterizam a distribuição de carga e as dimensões do sistema.

b) Suponha agora que a cobertura esférica dieléctrica é substituída por outra feita de um material condutor (mas isolado da carga da esfera interior). Isso altera o campo nos pontos A e B? Justifique.

7. [4,5 *val*.]

- a) Demonstre o Teorema de Ampère na sua forma diferencial recorrendo às duas seguintes importantes propriedades do potencial vector: $\vec{\nabla}.\vec{A}=0$; $\nabla^2\vec{A}=-\mu_0\vec{J}$, onde μ_0 é a permeabilidade magnética do vazio e \vec{J} é a densidade de corrente.
- b) Manipulando a equação que traduz o teorema de Ampère na forma diferencial, obtenha a expressão do mesmo teorema na forma integral.
- c) Uma corrente de intensidade i percorre um fio rectilíneo muito comprido cuja secção recta tem raio R; sabe-se que a corrente é estacionária e está distribuída uniformemente ao longo da secção recta. Utilize o teorema de Ampère para

- determinar o campo magnético \vec{B} em função da distância r ao eixo do fio fora e dentro do fio, isto é, para r > R e r < R, respectivamente.
- d) Suponha agora que introduz um condensador no circuito da alínea anterior. Explique como deve modificar o teorema de Ampère para poder descrever o campo magnético na situação em que o condensador está a ser carregado.
- 8. [4,5 val.] Um solenóide muito comprido com 20 cm de diâmetro e com 1000 espiras por metro é percorrido por uma corrente de intensidade I=10 A. Em torno do eixo do solenóide e a uma distância de 10 cm deste existe um anel de um material condutor, com 40 cm de diâmetro (ver figura). Suponha que o comprimento do solenóide é muito grande face ao diâmetro.
- a) Calcule o coeficiente de indução mútua entre o solenóide e o anel.
- b) Se a intensidade da corrente que percorre o solenóide variar a uma taxa constante desde 10 A até 1 A num décimo de segundo, qual é a força electromotriz induzida no anel? Qual é o sentido da corrente que o vai percorrer? Faça um esquema para ilustrar a sua resposta.

- c) Se o anel tiver 1 cm^2 de secção e for de cobre, cuja condutividade é igual a $\sigma = 0.6 \times 10^8 \ \Omega^{-1} \text{m}^{-1}$, qual é a intensidade da corrente que o percorre?
- d) Qual é a resposta à alínea anterior se o anel tiver 1 m de diâmetro?