Introduction to Machine Learning

Odysseas Pentakalos and Alex Gilgur

Overview

- Define Al and Machine Learning
- See a few examples of Machine Learning
- Talk about some key concepts
- Review the Machine Learning Process
- Take a peek at a few algorithms
- Look at an example in detail

What is Artificial Intelligence

John McCarty coined the term in 1956

Merriam-Webster defines artificial intelligence this way:

- A branch of computer science dealing with the simulation of intelligent behavior in computers.
- The capability of a machine to imitate intelligent human behavior.

Bernard Marr,

https://www.forbes.com/sites/bernardmarr/2018/02/14/the-key-definitions-of-artificial-intelligence-ai-that-explain-its-importance

What is Machine Learning

"Machine learning is the science of getting computers to act without being explicitly programmed, but instead letting them learn a few tricks on their own." by Danko Nikolic

Applications

Machine Learning is everywhere!

- Financial
- Healthcare
- Retail
- ...

Algorithms - Regression

- Regression Analysis: estimate the relationships between variables

Algorithms - Classification

- Classification: identify category an observation belongs to

Algorithms - Clustering

- Clustering: group together objects that are similar

Algorithms - Recommender

- Recommender System: produce recommendations for a given selection

k-Nearest Neighbors

- A sample is most likely similar to its neighbors

k-Nearest Neighbors

The parameter k defines the decision boundary

From: "Introduction to Statistical Learning" by Gareth James, et al

Decision Trees

- Classify samples based on a sequence of decisions on attribute values
- Many different ways to build a tree

Ensembles

- Use multiple models to improve performance

From: "Hands-on Machine Learning with Python, Keras, and Tensor Flow" by Aurélien Géron.

Decision Trees (Next Generation)

- Random Forests, Bagging and Boosting

sysnet

Support Vector Machines

- Goal is to achieve maximum separation

- Add dimensions to achieve separation

From: "Hands-on Machine Learning with Python, Keras, and Tensor Flow" by Aurélien Géron.

SVM Kernel Trick

Move data into higher dimensions to make linear separability possible

Neural Networks Why not simulate the human brain? Dendrite weights Axon Erminal inputs Node of Wij activation function Ranvier Cell body net input net activation transfer function Schwann cell Myelin sheath threshold Nucleus

Hardware support for Deep Learning

- Custom made TPUs with Quantization and CISC architecture

Source: "https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu"

History of Machine Learning

Source: "http://www.erogol.com/brief-history-machine-learning/

Feature Engineering

- Select features
- Transform features: feature scaling
- Example: Gradient Descent and the need for Feature Scaling

From: "Hands-on Machine Learning with Python, Keras, and Tensor Flow" by Aurélien Géron.

Datasets for Learning ML

Plenty of open datasets to work with:

- UC Irvine Machine Learning Repository
- Kaggle datasets
- Amazon AWS datasets
- US Government open data

Importance of Data

Quantity is more important than algorithm tuning

- Deep Learning needs data
- Some problem domains benefit from more data

... but

- The quality of the data is important
- Look out for bias in the data

ImageNet Competition

https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/

...and we are generating a lot of it

Metrics for Evaluation

Evaluating classification algorithms

- Accuracy: $Accuracy = \frac{Number of correct predictions}{Total number of predictions}$

$$\label{eq:accuracy} \text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

Where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False Negatives.

Let's try calculating accuracy for the following model that classified 100 tumors as malignant (the positive class) or benign (the negative class):

True Positive (TP): Reality: Malignant ML model predicted: Malignant Number of TP results: 1 False Negative (FN): Reality: Malignant ML model predicted: Malignant Rue Number of FP results: 1 False Negative (FN): Reality: Malignant ML model predicted: Benign ML model predicted: Benign Number of FN results: 8 Number of TN results: 90

Regression: Mean Squared Error

$$\sum_{i=1}^{n} \frac{\left(w^{T} x(i) - y(i)\right)^{2}}{n}$$

Source: https://developers.google.com/machine-learning/crash-course/classification/accuracy

Overfitting/Underfitting

KNN: K=1

KNN: K=100

From: "Introduction to Statistical Learning" by Gareth James, et al

Underfitting vs Overfitting

High bias (underfit)

"Just right"

Size $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$

High variance (overfit)

Algorithms Evaluated

NOWCASTING RESULTS ACHIEVED BY DIFFERENT MACHINE LEARNING MODELS AND CORRESPONDING INPUT FEATURES

Model	Feature Extraction	Number of Features	MAE (10-fold CV)	MAE (test)	R ² (test)	Pearson's Correlation (test)
2 - XGBoost	date	3	28.28	29.33	0.552	0.763
3 - XGBoost	count	7	23.55	26.64	0.710	0.910
4 - SVM	date + count	10	18.72	24.30	0.657	0.826
5 - AdaBoost	date + count	10	18.11	18.35	0.781	0.915
6 - Random Forest	date + count	10	17.04	17.61	0.861	0.938
7 - LASSO	date + count	10	21.94	16.20	0.877	0.949
8 - Ridge Regression	date + count	10	22.12	14.75	0.892	0.942
9 - Linear Regression	date + count	10	22.55	14.66	0.886	0.943
10 - kNN Regression	date + count	10	18.11	14.00	0.895	0.948
11 - XGBoost	date + count	10	15.67	13.83	0.897	0.954
12 - Deep ConvNet + XGBoost	date + count + image	14	13.14	11.33	0.925	0.963

From: "Predicting the Flu from Instagram" by Gencoglu and Ermes

Algorithm Predictions

From: "Predicting the Flu from Instagram" by Gencoglu and Ermes

Summary and Q&A

- Talked about what Machine Learning is
- Reviewed some of the key problems machine learning solves
- Reviewed some of the key algorithms
- Looked at an example
- Any Questions?

