Beginner

Conservation of Momentum

Inspiration: 19-35 Hibbeler

Consider the a mechanism in the horizontal plane which consists of a $5 \, kg$ rod and two disks. Disk A has a mass of m, $A = 6 \, kg$ and has a radius r, $A = 0.2 \, m$, while disk B has a mass of m, $B = 5 \, kg$ and a radius r, $B = 0.15 \, m$. Both are located at an equal distance $d = 0.5 \, m$ away from the pin O. If disk A is given a clockwise angular velocity omega, $A = 6 \, rad/s$ and disk B is given a counter clockwise angular velocity omega, $B = 4 \, rad/s$, determine the angular velocity of the rod after both disks have stopped spinning relative to the rod. The pins at A and B have friction, but pin O is frictionless. Motion is in the horizontal plane.

$$-0.495 = \frac{(6)(0.2)^2(-1)}{2}(5)(0.15)^2(4) + 0 = (\frac{1}{2}(6)(0.2)^2 + (6)(0.5)^2)\omega_2 + (\frac{1}{2}(5)(0.15)^2 + (5)(0.5)^2)\omega_2 + \frac{1}{12}(5)(6.5+0.5)^2\omega_2$$