

PNP SMALL SIGNAL TRANSISTOR

Features

- Epitaxial Planar Die Construction
- Available in Both Through-Hole and Surface Mount Packages
- Suitable for Switching and Amplifier Applications
- Complementary NPN Types Available (2N3904)

Mechanical Data

Case: TO-92, Molded Plastic

 Leads: Solderable per MIL-STD-202, Method 208

Terminal Connections: See Diagram

Marking: Type NumberWeight: 0.18 grams (approx.)

TO-92					
Dim	Min Max				
Α	4.32	4.83			
В	4.32	4.78			
С	12.50	15.62			
D	0.36	0.56			
Е	3.15	3.94			
G	2.29	2.79			
Н	1.14	1.40			
All Dimensions in mm					

Maximum Ratings @ T_A = 25°C unless otherwise specified

Characteristic		Symbol	2N3906	Unit
Collector-Base Voltage		V _{CBO}	-40	V
Collector-Emitter Voltage		V _{CEO}	-40	V
Emitter-Base Voltage		V _{EBO}	-5.0	V
Collector Current - Continuous		I _C	-100	mA
Collector Current - Peak		I _{CM}	-200	mA
Power Dissipation (N	Note 1)	P _d	500	mW
Thermal Resistance, Junction to Ambient (N	Note 1)	$R_{ heta JA}$	250	K/W
Operating and Storage Temperature Range		T _j , T _{STG}	-55 to +150	°C

Notes

- 1. Leads maintained at a distance of 2.0mm from body at specified ambient temperature.
- 2. Pulse test: Pulse width $\leq 300 \mu s$, duty cycle $\leq 2\%$.

Electrical Characteristics @ T_A = 25°C unless otherwise specified

Characteristic	Symbol	Min	Max	Unit	Test Condition
DC Current Gain	h _{FE}	50 70 100 60 30	300 — —	_	-V _{CE} = 1.0V,- I _C = 0.1mA -V _{CE} = 1.0V,- I _C = 1.0mA -V _{CE} = 1.0V,- I _C = 10mA -V _{CE} = 1.0V,- I _C = 50mA -V _{CE} = 1.0V,- I _C = 100mA
Collector Saturation Voltage	V _{CE} (SAT)	_	0.25 0.40	V	(Note 2) -I _C = 10mA,- I _B = 1.0mA -I _C = 50mA,- I _B = 5.0mA
Base Saturation Voltage	V _{BE(SAT)}	_	0.85 0.95	V	(Note 2) -I _C = 10mA, -I _B = 1.0mA -I _C = 50mA, -I _B = 5.0mA
Collector Cutoff Current	I _{CEX}		50	nA	-V _{EB} = 3.0V, -V _{CE} = 30V
Emitter Cutoff Current	I _{BL}		50	nA	-V _{EB} = 3.0V, -V _{CE} = 30V
Collector-Base Breakdown Voltage	V _{(BR)CBO}	40	_	V	$-I_C = 10\mu A, -I_E = 0$
Collector-Emitter Breakdown Voltage	V _(BR) CEO	40	_	V	$-I_C = 1.0 \text{mA}, -I_B = 0 \text{ (Note 2)}$
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	5.0	_	V	$-I_E = 10\mu A, -I_C = 0$
Gain Bandwidth Product	fT	250	_	MHz	-V _{CE} = 20V, -I _C = 10mA, f = 100MHz
Collector-Base Capacitance	Ссво	_	4.5	pF	-V _{CB} = 5.0V, -I _E = 0, f = 100kHz
Emitter-Base Capacitance	C _{EBO}	_	10	pF	$-V_{EB} = 0.5V, -I_{C} = 0, f = 100kHz$
Noise Figure	NF	_	5.0	dB	-V _{CE} = 5.0V, -I _C = 100μA, R _G = 1.0kΩ, f = 10 to 15000Hz
Delay Time	t _d		35	ns	$-I_{B1} = 1.0$ mA, $-I_{C} = 10$ mA, $V_{CC} = 3.0$ V, $V_{BE(off)} = 0.5$ V
Rise Time	t _r	_	35	ns	$-I_{B1} = 1.0$ mA, $-I_{C} = 10$ mA, $-V_{CC} = 3.0$ V, $-V_{BE(off)} = 0.5$ V
Storage Time	ts	_	225	ns	$-I_{B1} = -I_{B2} = 1.0$ mA, $-I_{C} = 10$ mA, $-V_{CC} = 3.0$ V
Fall Time	t _f	_	75	ns	$-I_{B1} = -I_{B2} = 1.0$ mA, $-I_{C} = 10$ mA, $-V_{CC} = 3.0$ V

Notes:

^{1.} Leads maintained at a distance of 2.0mm from body at specified ambient temperature.

^{2.} Pulse test: Pulse width \leq 300 μ s, duty cycle \leq 2%.

T_A, AMBIENT TEMPERATURE (°C) Fig. 2, Max Power Dissipation vs Ambient Temperature Fig. 1, DC Current Gain vs Collector Current

 $\rm I_{\rm C},$ COLLECTOR CURRENT (mA) Fig. 3, Collector-Emitter Sat Voltage vs Collector Current

I_C, COLLECTOR CURRENT (mA) Fig. 4, Turn-On & Turn-Off Times vs Collector Current