Bijon Setyawan Raya

bijonsetyawan@gmail.com

GitHub · https://bsraya.com

EXPERIENCE

Intermediate Fullstack Developer

October 2022 – March 2024

Faria Education Group

Taipei, Taiwan

- Optimized file export processes, achieving a significant reduction in export time by 98.33%.
- Sped up user feed search processes using ElasticSearch and efficient SQL queries.
- Enhanced search precision and user navigation within user feeds by expanding options in the feed search navigation modal, significantly improving user experience and content discovery.
- Consistently managed and ensured data integrity across all tables within the MySQL database.
- Refactored the jQuery codebase and converted some into Stimulus.js and Vue.js.

Graduate Research Scientist

National Tsing Hua University

Teaching Assistant

National Tsing Hua University

February 2021 – January 2023 *Hsinchu, Taiwan*

Sep. 2020 – January 2023

Hsinchu, Taiwan

TECHNICAL SKILLS

Languages: C/C++, Python, JavaScript/TypeScript. **Web Development**: Django, FastAPI, Next.js.

Deep Learning & Machine Learning: Horovod, Keras, PySpark, PyTorch, TensorFlow, Numpy, Pandas, Scipy,

Scikit Learn.

Database: DuckDB, ElasticSearch, MySQL, SQLite, Weaviate.

Utilities: Docker, Kubernetes, Git, Linux/Unix.

EDUCATION

National Tsing Hua University

Master of Science in Computer Science

National Tsing Hua University

Bachelor of Science in Computer Science

Hsinchu, Taiwan January 2023

January 2023

Hsinchu, Taiwan January 2021

Projects

Retrieval-Augmented Generation System for Books | Gradio, Llama 3.1, Llama Index, Python, and Weaviate.

- Book Search Engine and Summarizer: Created a RAG system that assists readers in discovering new books, while also providing users with factual information about books, along with concise summaries.
- Improved Retrieval Efficiency: Optimized retrieval processes speed by leveraging Weaviate's vector embedding database, allowing for faster and more accurate search results.
- Enhanced Search Results: Improved search results with enhanced metadata-driven retrieval capabilities, enabling users to find relevant books based on specific criteria.
- User-Centric Interface: Crafted an intuitive UI that enables users to input custom prompts and manage their responses and document access with precision.

Image Search Engine | DuckDB, FastAPI, Jinja, Python, PyTorch, and SQLite.

- Visual Search Capabilities: Developed a robust image search engine that utilizes ResNet to identify and retrieve similar images based on their visual features, streamlining the image upload process.
- User-Centric Interface: Crafted an intuitive UI for uploading images and showcasing similar content in a visually appealing way, enhancing the user experience.
- Database Integration and Optimizations: Integrated DuckDB and reduced vector dimensions using Principal Component Analysis (PCA), resulting in improved search speed, reduced memory usage, and optimized performance.

• Personalized Recommendations: Leveraged Spotify's vast music library to extract and process audio features from over 2,000 songs across various genres. Applied Non-negative Matrix Factorization (NMF) to analyze user preferences and provide tailored song recommendations, enhancing the music discovery experience.

AI Coding Assistant | Llama 3, Ollama, and Python WASM.

• Collaborative Coding Experience: Developed an innovative coding assistant that enables users to write and run Python code directly in their browser. Integrated a Large Language Model (LLM) to provide real-time assistance with coding tasks, debugging, and more, enhancing productivity and accuracy.

Schedulearn | Docker, FastAPI, Horovod, Python, and SQLite.

- Scalable Deep Learning Scheduling: Designed a highly scalable deep learning scheduling system that utilizes microservices architecture to optimize resource allocation and dynamically scale compute resources in response to changing workload demands.
- Improved Efficiency: Leveraged the system to reduce overall makespan and turnaround time by 10%-50% across various frameworks (PyTorch, TensorFlow, MXNet), leading to improved efficiency and productivity.
- Optimized System Performance: Transformed the codebase by cutting its size by 50%, improving requirement utilization by 70%, and resulting in significant performance gains and simplified maintenance.