Digital Electronics 1 EEI-02 Solutions

Question 1

1. a) (i)
$$\overline{\left(A + \overline{B}\right)\left(\overline{AC\overline{D}}\right)} \\
= \left(\overline{A + \overline{B}}\right) + A\overline{C}\overline{D} \\
= \left(\overline{A + \overline{B}}\right) + A\left(\overline{C} + D\right) \\
= \overline{A} + B + A\overline{C} + AD \\
= \overline{A} + \overline{C} + B + AD \\
= \overline{A} + \overline{C} + B + D$$

$$(\overline{\overline{A} \oplus \overline{BC}})(\overline{A+B+\overline{C}})$$

$$= (\overline{ABC} + ABC)(\overline{ABC})$$

$$= (\overline{A}(\overline{B} + \overline{C}) + ABC)(\overline{ABC})$$

$$= \overline{ABC}$$

b)

$$f(A,B,C,D) = \Sigma(0,2,4,5,6,7,8,10,15)$$

	CI					
AB		00 i	01	11	; 10	
	00	1	0	0	1	- <i>-</i> -
	01	1:	1	1:	1 1	
	11	0	0	1	0	
	10	1	0	0	1	[-
		I.			I I	

$$\Rightarrow f = \overline{B}\overline{D} + \overline{A}\overline{D} + \overline{A}B + BCD$$

[3]

[3]

Here, 1 mark for drawing the Karnaugh map, 1 for filling it out correctly, 1 for the correct grouping, and 1 for the final expression.

[4]

c)
$$f = A\overline{B}\overline{C} + B\overline{C}\overline{D} + \overline{A}\overline{B}C + \overline{B}C\overline{D} + \overline{A}\overline{B}\overline{C}D$$

	CL)			
AB		00	01	11	10
	00	0	1	1	1
	01	1	10	0	0
	11	1	0	0	0
	10	1	1	0	1

$$\Rightarrow f = \Big(A + B + C + D\Big)\Big(\overline{B} + \overline{D}\Big)\Big(\overline{B} + \overline{C}\Big)\Big(\overline{A} + \overline{C} + \overline{D}\Big)$$

Here, 1 mark for drawing the Karnaugh map, 1 for filling it out correctly, 1 for the correct grouping, and 1 for the final expression.

[4]

d)

Hexadecimal	Octal	Signed binary	Signed Decimal
97		1001 0111	-105
BD	275		-67

Give 2 marks per answer.

[8]

e)

Give 2 marks per waveform X, Y and Z.

[6]

f) (i) The truth table for the full-adder is as follows:

A	В	C_{in}	Σ	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Give 1 mark for correctly showing the possible values of A, B and C_{in} , and 1 mark each for Σ and C_{out} .

[3]

(ii) Using a Karnaugh map, simplified Boolean expressions for Σ and C_{out} are as follows:

$$\begin{split} \Sigma &= \overrightarrow{A.B.C_i} + \overrightarrow{A.B.C_i} + \overrightarrow{A.B.C_i} + A.B.C_i \\ &= A \oplus B \oplus C_i \\ C_{out} &= AB + AC_i + BC_i \end{split}$$

Give 1 mark for using Karnaugh maps or Boolean algebra for simplification, and 1 mark each for the correct final expressions for for Σ and C_{out} .

[3]

g) (i) Initially, write the truth table for f and g as follows:

X	Y	Z	f	g
0	0	0	0	0
0	0	1	I	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	Î	0	0	0
1	1	1	1	1

Comparison with the hexadecimal data given in Fig. 1.3(b) shows that if D3 = f, D2 = g, and D1 = D0 = 0 for the first eight data locations, then the correct sequence is obtained in Fig. 1.3(b). Furthermore, if address line A2 = X, A1 = Y and A0 = Z, then these data locations are accessed correctly. This gives the following complete table:

A[5:0]	D[3:0]
00	0
01	С
02	8
03	0
04	С
05	4
06	0
07	C

Give 1 mark for each correct entry.

(ii) The connections to address and data lines are shown below. Note that A5 = A4 = A3 = 0, to allow the first eight data locations to be addressed.

Give 1 mark for correct address line connections and 1 mark for correct data line connections.

[2]

Question 2

2. a) (i)

2 marks each for the waveforms for X, Y and Z. These should show the switching delay, and the glitch in \mathbb{Z} .

[6]

(ii) To prevent a static 1 hazard, i.e. a glitch which transitions from 1 - 0 - 1, we require covering '1's in the Karnaugh map which are adjacent but in different groups. For the function in the circuit:

$$Z = AB + \overline{A}C$$

The Karnaugh map is as follows:

Here the grouping BC will eliminate the hazard, giving the Boolean expression and circuit as follows:

$$Z = AB + \overline{A}C + BC$$

2 marks for Karnaugh map, 1 mark for the introduction of the correct extra term or Boolean expression, and 1 for the redesigned circuit diagram.

[4]

(b) (i) The state diagram for the SR flip-flop is as follows:

1 mark for states, 1 mark for interconnections, and 2 for labelling.

[4]

(ii) To find the characteristic Boolean equations for the flip-flop, we first draw the assigned state table from the state diagram:

Present Output			output	
		inpu	ts: SR	
	00	01	11	10
0	0	0	Х	1
1	1	0	Х	1

Re-drawing this as a Karnaugh map for next state output Q⁺, with inputs Q (the present state), S and R:

Q\SR	00	01	11	10
0	0	0	ŢĀ	1
1	1	0	X	11-1-
				10000 -

The Karnaugh map gives the following Boolean equations:

$$Q^+ = Q\overline{R} + S \qquad \qquad \overline{Q^+} = \overline{Q}\overline{S} + R$$

1 mark each for the assigned state table and Karnaugh map, and 1 mark each for the Boolean equation.

[4]

(iii) Rewrite the Boolean equations using NAND gates only, and draw the circuit diagram:

By replacing the NAND gates by their alternative symbols (NOR with inverted inputs), and cancelling inversion bubbles where required, we obtain the NOR version of the circuit:

1 mark for NAND implementation, 1 mark for the NAND circuit, and 2 for the NOR circuit.

(c) (i) The MUXs may be used to directly write give the following Boolean equations. This requires understanding the MUX 1EEE symbol and operation.

$$X = A\overline{B}\overline{C} + A\overline{B}C = A\overline{B}$$
$$Y = \overline{A}B + A\overline{B}$$

2 marks each for the Boolean equation.

[4]

(ii) Initially, draw the state transition table for the FSM:

Present state	Next state
Q2Q1Q0	Q2 ⁺ Q1 ⁺ Q0 ⁺
ABC	
0 0 0	0 1 0
0 0 1	0 1 0
0 1 0	1 0 0
0 1 1	1 0 0
1 0 0	1 1 1
1 0 1	1 1 1
1 1 0	0 0 0
1 1 1	0 0 0

If the initial state for the FSM is 000, then the Moore diagram is the following. Note that not all states in the table above are used here:

2 marks for the state transition table and 2 marks for the Moore diagram.

Question 3

(a) Mealy diagram for the FSM:

Give 2 marks for correct number of states, 4 marks for correct interconnections, and 2 marks correct labelling of the interconnections.

[8]

b) State transition table for the FSM:

Curren	t state	Input	Next	state	Output
S1	S0	X	S1+	S0+	Y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	0	1

Give 1 mark for each correct row of the table.

[8]

c)
The transition table for the J-K flip-flop is the following:

Transition	J	K
0 -> 0	0	X
0 → 1	1	X
1 → 0	X	1
1 → 1	X	0

Give 1 mark for the table.

Using this table, it is possible to draw Karnaugh maps for J1, K1 and J0, K0, as a function of S1, S0 and X, to give the next states S1+ and S0+. Y may be obtained directly from S1, S0 and X.

For S1+:

K-map for J1:

	<i>S0</i>			
$X \setminus$	00	01	11	10
0	0		X	х
1	0	0	X	X

$$J1 = \overline{X}S0$$

$$K1 = X + S0$$

K-map for K1:

For S0+:

K-map for J0:

K-map for K0:

$$J0 = X + S1$$
$$K0 = \overline{X} + S0$$

Give 2 marks for each K-map with its associated equation.

For Y:

Y can be found directly from the state transition table:

$$Y = S1S0X$$

Give I mark for this.

[10]

d)

Give 1 mark for correct number of flip-flops, 2 marks for correct gates and 1 for correct interconnections.