Basic Sorting Algorithms (2)

Instructor: Krishna Venkatasubramanian

CSC 212

Announcement

- Don't forget the office hours poll on Piazza.
 - Last day to do it today.
 - We will make our decision (to change or not to change) tomorrow.

Who is Ming?

Grade for Quiz 1 will be out soon.

Clarification: Asymptotic Growth Rates

Sorting: Problem Definition

 Sorting takes an unordered collection and makes it an ordered one.

Sorting Algorithms

- Insertion Sort --- covered already
- Bubble Sort --- covered already
- Selection Sort
- Heap Sort
- Merge Sort
- Quick Sort
- •

Selection Sort

- Simple Algorithm --- has similarities to both Insertion-Sort and Bubble-Sort
 - Array divided into two parts sorted and unsorted (like Insertion-Sort)
 - Stack the array from smallest to the largest (inverse of Bubble-Sort)

Invariants

- Elements in the sorted array are fixed
- No element in the sorted array is greater than element in the unsorted array

Example (of basic steps)

i = denotes positionwhich is to be broughtinto the sorted array(initially the firstelement, as the entirearray is unsorted)

Smallest element in the first position

Next Step

The first two element is in it's correct spot

Continuing On...

Green = already sorted (numbers in correct position)

Blue = ith position

Red = smallest element, which swaps with the ith position element

The Selection Sort Algorithm

A[i], A[min id] = A[min id], A[i]

Selection Sort Time Complexity

- Best-Case Time Complexity
 - The scenario under which the algorithm will do the least amount of work (finish the fastest)

- Worst-Case Time Complexity
 - The scenario under which the algorithm will do the largest amount of work (finish the slowest)

Selection Sort Time Complexity

Best-Case Time Complexity

- Array is already sorted
- Need N-1 iterations
- (N-1) + (N-2) + + 1 = (N-1)* N / 2

comparisons

Called Quadratic Time O(N²)

Order-of-N-square

Called Quadratic Time
O(N²)
Order-of-N-square

Worst-Case Time Complexity

- Array reverse sorted
- Still need N-1 iterations
- (N-1) + (N-2) + + 1 = (N-1)*N/2

Sorting Algorithm Additional Properties

- Memory Requirement:
 - Denotes the amount of auxiliary storage needed beyond that used by the list itself, under the same assumption.
 - No extra storage required. Sorting in place.
- Stability:
 - Stable sorting algorithms sort repeated elements in the same order that they appear in the input.
 - When sorting some kinds of data, only part of the data is examined when determining the sort order.
 - If two items compare as equal if one came before the other in the input, it will also come before the other in the output.

Stability Example

Insertion Sort

Selection Sort

Bubble Sort

Memory Use and Stability of Basic Sorting Algorithms

Insertion Sort

- Memory = O(1) # in place sorting (small amount of auxiliary space allowed, like to temp swap a variable)
- Stability = Yes
- Best-case Running Time = O(n)
- Worst-case Running Time = O(n²)

Bubble Sort

- Memory = O(1) # in place sorting
- Stability = Yes
- Best-case Running Time = O(n²)
- Worst-case Running Time = O(n²)

Selection Sort

- Memory = O(1) # in place sorting
- Stability = Yes
- Best-case Running Time = O(n²)
- Worst-case Running Time = O(n²)

Exchange Sorts

- All three sorting algorithms seen thus far are examples of Exchange sorting algorithms
 - They swap (exchange) elements to sort

 Other algorithms exist that are faster that these for typical conditions

So why are these algorithms slow?

General Slowness of Exchange Sort

- The crucial bottleneck is that only *adjacent* records are compared.
 - Thus, comparisons and moves (for Insertion and Bubble Sort) are by single steps.
- The cost of any exchange sort can be at best the total number of inversions
 - The number of elements with key value greater than the current record's key value appears before it that need to be moved.

Quiz

How many inversions are in the following array?

Worst Case

$$X_n$$
 X_{n-1} X_{n-2} 1

$$X_n > X_{n-1} > X_{n-2} > 1$$

1+2+3...+n-1 = n(n-1)/2= O(n²) inversions

5 inversions

2 inversions

8 inversions

Basic Sorting algorithms

- Insertion, selection and bubble sort have quadratic worst-case performance
 - That is O(n²)
- The faster comparison based algorithm ?
 - O(n*log₂n) or O(nlgn) complexity
 - REMEMBER: O(nlgn) more efficient than O(n²)
- Examples Mergesort and Quicksort

Divide and Conquer Algorithms

 Before going to the details it is useful to under the concept of Divide and Conquer Algorithms and Recursion

- Divide and Conquer Algorithms
 - Divide: Break the larger problem into sub-problems that are smaller instances of the same problem
 - Conquer: the sub-problems are solved recursively
 - If the sub-problem is really small, then solve in a straightforward manner
 - Combine: combine the solutions of the sub-problems to find the solution of the original problem!

Visually Speaking!

Expand Further

Recursive Problem Solving

- What is Recursion?
 - a method of solving a problem where the solution depends on solutions to smaller instances of the same problem
- In effect
 - it is **basically a function calling itself** with a slightly smaller set of parameters
 - Can you see why Divide and Conquer Algorithms use it?
- Recursive Algorithms MAY NOT be intuitive and need a lot of practice to work with!

Example: Factorial

- Factorial of a positive number p (written as n!) is
 - p! = p*p-1*p-2*...*1
 - p! = 1, if p = 0
- Non-recursive Algorithm

```
def fact(n):
    for i in range(1,n+1):
        fact = fact * i
    return fact
```

Recursive Algorithm

```
def fact(n):
    if n == 1:
        return 1
    else:
        return n*fact(n-1)
```

Example: Summing an Array

- Given an array A, sum of an array is a number which is a sum of all its values.
- Non-recursive Algorithm

```
def sum(A, size):
    sum = 0
    for i in range(size):
        sum = sum A[i]
    return sum
```

Recursive Algorithm

```
def sum(A,size):
   if size == 1:
      return A[0]
   else:
      return size + sum(A,size-1)
```

Example: Power of a Number

- Power of a number bⁿ (where n >=0) is defined as
 - bⁿ = b*b*b*b...*b (multiplied n times with itself)
 - $b^n = 1$, if n = 0
- Non-recursive Algorithm

```
def power(b,n):
    power = ??
    for i in range(n):
        power = power * b
    return power
```

Recursive Algorithm

```
def power(b,n):
    if n == 0:
        return 1
    else:
        return b*power(b,n-1)
```

The Selection Sort Algorithm

i is the index of the array at which we want to "correctly" populate. Initially ZERO

Recursive Algorithm

```
Non-recursive Algorithm
```

find_min_index is a function to find the min element in an Array A, starting at I and ending at n. It needs to be written separately

```
Selection_Sort_Rec( A, n, i ):
    if i == n:
        return
    else:
        k = find_min_index(A, n, i)
        if k != i:
        A[i], A[k] = A[k], A[i]

        Selection_Sort_Rec(A,n,i+1)
```

