Aritmetica modulara (in Zn) $Z_{n} = \{0, 1, 2, ..., h-1\}$ (Zn,t,.) inel comutativ → (Zn,+) grup comutativ >(Zn, ·) monoid countritiv U(Zn)={xEZn | xete inv. fata de."} $U(Z_n) \neq Z_n$ Ex. Z= 30,1,2,...,6} -3 = opmond hui 3 = x pt care x+3 =0 3 = inversel lui 3 = y pt care 3. y = 1 3=5 pt ve 3.5=15=1. Teorema: U(Zn)= }x EZn | Cmmdc(x,n)=1} Obs: (U(Zn),.) grupul unitatilor

$$Z_{10}$$
 $U(Z_{10}) = \{2, 3, 7, 9\}$
 $4^{\frac{1}{2}}$ m exists

 $3^{\frac{1}{2}} = 7$ pt $(x^{\frac{1}{2}}) = 1$ mod 10

 Z_{26}
 Z_{29}
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad Z_{20}$
 $A \quad B \quad C \quad D \quad$

$$X_{1/2} = (-1 \pm \sqrt{\Delta}) \cdot 6^{-1}$$
 $\sqrt{3} = 5 = 1 \times 1 = (-1 + 5) \cdot 6^{-1} = 4 \cdot 2 = 8$
 $\times_2 = (-1 - 5) \cdot 6^{-1} = -6 \cdot 2 = 12$
 $= -1/1 - 1 = -1 = 10$
 $= 1 \times 6 \times 10^{3}$

Logarithmel discret

 $\log_2 3 \text{ in } Z_5 = x_{(2)} 2^x = 3 \text{ in } Z_5$
 $2^0 = 1', 2^1 = 2 \cdot 2^2 = 4', 2^3 = 9 = 3$
 $= 1 \log_2 3 = 3 \text{ in } Z_5$
 $1 - H$: $\log_2 3 = 3 \text{ in } Z_5$
 $1 - H$: $\log_2 7 + 3 = 3 = 3$
 $= 1 \log_2 3 = 3 \text{ in } Z_5$
 $= 1 \log_2 3 = 3 \text{ in } Z_5$
 $= 1 \log_2 3 = 3 \text{ in } Z_5$
 $= 1 \log_2 3 = 3 \text{ in } Z_5$
 $= 1 \log_2 3 = 3 \text{ in } Z_5$
 $= 1 \log_2 3 = 3 \text{ in } Z_5$
 $= 1 \log_2 3 = 3 \text{ in } Z_5$
 $= 1 \log_2 3 = 3 \text{ in } Z_5$
 $= 1 \log_2 3 = 3 \text{ in } Z_5$

Tevrema hui Lægnange
(G, ·) grup, #6= n

$$tge6, g=e$$

$$9^{52} = (9^{2})^{26} = (81)^{26} = 4^{26} = (4^{2})^{13}$$

$$= 5^{13} = (5^{2})^{6} \cdot 5 = 3^{6} \cdot 5 = (3^{3})^{2} \cdot 5$$

$$= 5^{2} \cdot 5 = 3 \cdot 5 = 4$$

AE Mu (Z_t) $A' = (det A)' \cdot A' = exista$ E(det A)' = exista = cunde(dut A, t) = 1.