Задача 1

Постановка

Задан неорентированный граф. Задача состоит в нахождении степени всех вершин.

Входные данные

В первой строке число t ($1 \le t \le 105$) - количество наборов входных данных. Далее следуют t наборов входных данных.

В первой строке каждого набора содержатся два целых числа n и m ($1 \le n \le 105$, $0 \le m \le 105$), где n — количество вершин в графе, m — количество рёбер в графе.

В следующих m строках записаны рёбра, по одному ребру в строке. Каждое ребро - два числама u и v ($1 \le u, v \le n$), начало ребра и конец ребра соответственно.

Граф без петель и кратных рёбер.

Выходные данные

Для каждого набора в отдельной строке выведите n целых чисел, где i-е число является степенью i-й вершины графа.

Пример

Входные данные	Выходные данные
4	
5 6	
1 2	23322
2 3	121
3 1	11
43	0000
5 4	
5 2	
3 2	
1 2	
23	
2 1	
12	
4 0	

Задача 2

Постановка

Постройте k-регулярный неориентированный граф из n вершин. Если это невозможно, то укажите это.

Входные данные

В первой строке находится число t ($1 \le t \le 1000$) — количество наборов тестовых данных в тесте. Далее следуют t наборов тестовых данных.

Каждый набор состоит из одной строки, в которой записаны два числа n и k ($1 \le n, k \le 200$).

Выходные данные

Для каждого набора необходимо вывести:

- если существуте, то вывести количество рёбер в графе и ребра в следующих строках.
- если не существует, то выведите None.

Пример

Входные данные	Выходные данные
	3
	12
	23
3	3 1
3 2	None
5 3	10
5 4	12
	13
	23
	2 4
	3 4
	35
	45
	4 1
	5 1
	5 2

Задача 3

Постановка

Постройте наименьший по количеству дуг непустой ориентированный граф, такой что степень исхода каждой вершины равна d_1 , а степень входа равна d_2 .

Входные данные

В первой строке находится целое число t ($1 \le t \le 30$) — количество наборов входных данных в тесте. Далее следуют t наборов.

В строке каждого набора содержатся два целых числа d_1 и d_2 ($1 \le d1, d2 \le 100$) - степень исхода и степень входа каждой вершины соответственно.

Выходные данные

Для каждого набора необходимо вывести:

- если существуте, то вывести в первой строке Yes, потом количество вершин и дуг искомого графа. А в остальных строках пары дуг.
- если не существует, то выведите None.

Пример

Входные данные	Выходные данные
	Yes
2	2 4
2 2	11
1 2	1 2
	2 1
	2 2
	None