

Relatório 1 – Grupo G2

OBJETIVO:

• Realizar medições de tamanho, massa e de variação de volume, com os erros e algarismos significativos corretamente expressos, discussão e entendimento do assunto "Medidas e Erros".

RESULTADOS E RESPOSTAS DA PRÁTICA 1:

Figura 1: Marcações das medidas do Objeto 1.

Onde os perímetros 1, 2 e 3 correspondem à área 1, 2 e 3, respectivamente

Figura 2: Marcações das medidas do Objeto 2.

Onde os perímetros 1, 2 e 3 correspondem à área 1, 2 e 3, respectivamente.

Tabela 1: Medidas das dimensões do objeto 1 em cm.

Aluno	M1 _	M2	M3 _
Bianca	(9.80 ± 0.05) cm	(6.70 ± 0.05) cm	(4.50 ± 0.05) cm
João Luiz	(9.80 ± 0.05) cm	(6.90 ± 0.05) cm	(5.00 ± 0.05) cm
Maria Júlia	(9.70 ± 0.05) cm	(7.10 ± 0.05) cm	(5.00 ± 0.05) cm
Samuel	(9.80 ± 0.05) cm	(6.80 ± 0.05) cm	(5.00 ± 0.05) cm
Victor	(9.80 ± 0.05) cm	(6.90 ± 0.05) cm	(5.00 ± 0.05) cm
Vinícius	(9.80 ± 0.05) cm	(6.90 ± 0.05) cm	(5.00 ± 0.05) cm
Média	(9.78 ± 0.05) cm	(6.88 ± 0.05) cm	(4.92 ± 0.05) cm

Tabela 2: Medidas das dimensões do objeto 1 em polegadas.

Aluno	M1 _	M2	M3
Bianca	(3.86 ± 0.03) in	(2.64 ± 0.03) in	(1.77 ± 0.03) in
João Luiz	(3.86 ± 0.03) in	(2.72 ± 0.03) in	(1.97 ± 0.03) in
Maria Júlia	(3.82 ± 0.03) in	(2.80 ± 0.03) in	(1.97 ± 0.03) in
Samuel	(3.86 ± 0.03) in	(2.68 ± 0.03) in	(1.97 ± 0.03) in
Victor	(3.86 ± 0.03) in	(2.72 ± 0.03) in	(1.97 ± 0.03) in
Vinícius	(3.86 ± 0.03) in	(2.72 ± 0.03) in	(1.97 ± 0.03) in
Média	(3.85 ± 0.03) in	(2.71 ± 0.03) in	(1.93 ± 0.03) in

Tabela 3: Medidas das dimensões do objeto 2 em cm.

Aluno	M1	M2	M3
Bianca	(15.70 ± 0.05) cm	(7.40 ± 0.05) cm	(0.80 ± 0.05) cm
João Luiz	(15.90 ± 0.05) cm	(7.40 ± 0.05) cm	(0.70 ± 0.05) cm
Maria Júlia	(15.80 ± 0.05) cm	(7.10 ± 0.05) cm	(0.90 ± 0.05) cm
Samuel	(15.60 ± 0.05) cm	(6.90 ± 0.05) cm	(0.90 ± 0.05) cm
Victor	(15.80 ± 0.05) cm	(7.30 ± 0.05) cm	(0.90 ± 0.05) cm
Vinícius	(15.80 ± 0.05) cm	(7.30 ± 0.05) cm	(1.00 ± 0.05) cm
Média	(15.77 ± 0.05) cm	(7.23 ± 0.05) cm	(0.87 ± 0.05) cm

Tabela 4: Medidas das dimensões do objeto 2 em polegadas.

Aluno	M1	M2	M3
Bianca	(6.19 ± 0.03) in	(2.91 ± 0.03) in	(0.31 ± 0.03) in
João Luiz	(6.26 ± 0.03) in	(2.91 ± 0.03) in	(0.28 ± 0.03) in
Maria Júlia	(6.21 ± 0.03) in	(2.78 ± 0.03) in	(0.35 ± 0.03) in
Samuel	(6.14 ± 0.03) in	(2.72 ± 0.03) in	(0.35 ± 0.03) in
Victor	(6.22 ± 0.03) in	(2.88 ± 0.03) in	(0.36 ± 0.03) in
Vinícius	(6.22 ± 0.03) in	(2.87 ± 0.03) in	(0.40 ± 0.03) in
Média	(6.21 ± 0.03) in	(2.85 ± 0.03) in	(0.34 ± 0.03) in

Gráfico XY gerado a partir das medidas de dimensões dos objetos:

Nota-se que no gráfico as funções lineares de medida obtidas no gráfico de ambos os objetos são iguais apesar de terem medidas diferentes. Isso se deve pelo fato de o gráfico representar a conversão de centímetros para polegadas.

Tabela 5: Perímetro, Área e Volume dos objetos em cm.

Medidas	L1 e L2	L1 e L3	L2 e L3
Perimetro	(46.0 ± 0.2) cm	(33.3 ± 0.2) cm	(16.2 ± 0.2) cm
Area	(114 ± 1) cm ²	$(13.7 \pm 0.8) \text{ cm}^2$	$(6.3 \pm 0.4) \text{ cm}^2$
Volume	(99 ± 7) cm ³		

Tabela 6: Perímetro, Área e Volume dos objetos em polegadas.

Medidas	L1 e L2	L1 e L3	L2 e L3
Perimetro	(18.1 ± 0.1) in	(13.1 ± 0.1) in	(6.4 ± 0.1) in
Area	(17.7 ± 0.3) in ²	(2.1 ± 0.2) in ²	(0.9 ± 0.1) in ²
Volume	$(6.0 \pm 0.6) \text{ in}^3$		

RESULTADOS E RESPOSTAS DA PRÁTICA 2:

Tabela 1: Massa das esferas individuais

Peso	Esfera 1	Esfera 2	Esfera 3	Esfera 4	Esfera 5	Esfera 6	Esfera 7	Esfera 8	Esfera 9	Esfera 10	Média	Soma
Bianca	(0.41 ± 0.04) g	(0.98 ± 0.04) g	(0.41 ± 0.04) g	(0.41 ± 0.04) g	(0.40 ± 0.04) g	(0.98 ± 0.04) g	(0.40 ± 0.04) g	(0.41 ± 0.04) g	(0.98 ± 0.04) g	(0.98 ± 0.04) g	(3.25 ± 0.04) g	(3.25 ± 0.04) g
João luiz	(0.42 ± 0.04) g	(1.00 ± 0.04) g	(0.42 ± 0.04) g	(0.42 ± 0.04) g	(0.42 ± 0.04) g	(1.00 ± 0.04) g	(0.41 ± 0.04) g	(0.42 ± 0.04) g	(4.00 ± 0.04) g	(0.99 ± 0.04) g	(3.27 ± 0.04) g	(3.27 ± 0.04) g
Maju	(0.42 ± 0.04) g	(0.98 ± 0.04) g	(0.42 ± 0.04) g	(0.42 ± 0.04) g	(0.41 ± 0.04) g	(0.99 ± 0.04) g	(0.40 ± 0.04) g	(0.41 ± 0.04) g	(0.99 ± 0.04) g	(0.99 ± 0.04) g	(3.31 ± 0.04) g	(3.31 ± 0.04) g
Samuel	(0.41 ± 0.04) g	(0.96 ± 0.04) g	(0.37 ± 0.04) g	(0.37 ± 0.04) g	(0.37 ± 0.04) g	(0.96 ± 0.04) g	(0.38 ± 0.04) g	(0.37 ± 0.04) g	(0.95 ± 0.04) g	(0.96 ± 0.04) g	(3.27 ± 0.04) g	(3.27 ± 0.04) g
Victor	(0.40 ± 0.04) g	(0.99 ± 0.04) g	(0.41 ± 0.04) g	(0.42 ± 0.04) g	(0.39 ± 0.04) g	(0.98 ± 0.04) g	(0.40 ± 0.04) g	(0.41 ± 0.04) g	(0.99 ± 0.04) g	(0.98 ± 0.04) g	(3.29 ± 0.04) g	(3.29 ± 0.04) g
Vinicius	(0.38 ± 0.04) g	(0.99 ± 0.04) g	(0.41 ± 0.04) g	(0.40 ± 0.04) g	(0.41 ± 0.04) g	(0.99 ± 0.04) g	(0.39 ± 0.04) g	(0.39 ± 0.04) g	(0.97 ± 0.04) g	(0.97 ± 0.04) g	(3.27 ± 0.04) g	(3.27 ± 0.04) g

Massa do copo plástico.

Соро	Massa
Copo Vazio	(0.63 ± 0.04)

Tabela 2: Massa acumulada das esferas

Peso	Esfera 1	Esfera 2	Esfera 3	Esfera 4	Esfera 5	Esfera 6	Esfera 7	Esfera 8	Esfera 9	Esfera 10
Bianca	(1.08 ± 0.04) g	(1.50 ± 0.04) g	(1.93 ± 0.04) g	(2.34 ± 0.04) g	(3.31 ± 0.04) g	$(3.75 \pm 0.04) \text{ g}$	(4.16 ± 0.04) g	(5.12 ± 0.04) g	(6.12 ± 0.04) g	(7.10 ± 0.04) g
João luiz	(1.10 ± 0.04) g	(1.51 ± 0.04) g	(1.92 ± 0.04) g	$(2.33 \pm 0.04) g$	(3.31 ± 0.04) g	$(3.72 \pm 0.04) \text{ g}$	(4.20 ± 0.04) g	(5.12 ± 0.04) g	(6.13 ± 0.04) g	(7.12 ± 0.04) g
Maju	(1.09 ± 0.04) g	(1.52 ± 0.04) g	(1.93 ± 0.04) g	$(2.34 \pm 0.04) \text{ g}$	(3.34 ± 0.04) g	$(3.75 \pm 0.04) g$	(4.16 ± 0.04) g	(5.13 ± 0.04) g	(6.13 ± 0.04) g	(7.12 ± 0.04) g
Samuel	(1.05 ± 0.04) g	(1.46 ± 0.04) g	(1.91 ± 0.04) g	(2.34 ± 0.04) g	$(3.28 \pm 0.04) g$	$(3.74 \pm 0.04) g$	(4.18 ± 0.04) g	(5.11 ± 0.04) g	(6.13 ± 0.04) g	(7.07 ± 0.04) g
Victor							(4.15 ± 0.04) g			
Vinicius	(1.07 ± 0.04) g	(1.49 ± 0.04) g	(1.94 ± 0.04) g	$(2.32 \pm 0.04) \text{ g}$	$(3.33 \pm 0.04) g$	$(3.74 \pm 0.04) g$	(4.16 ± 0.04) g	$(5.13 \pm 0.04) g$	(6.11 ± 0.04) g	(7.09 ± 0.04) g
Médias	(1.08 ± 0.04) g	(1.50 ± 0.04) g	(1.92 ± 0.04) g	$(2.33 \pm 0.04) g$	$(3.32 \pm 0.04) g$	$(3.74 \pm 0.04) g$	(4.17 ± 0.04) g	(5.12 ± 0.04) g	(6.12 ± 0.04) g	(7.10 ± 0.04) g

Tabela 3: Massa dos grãos individuais

Peso	Grão 1	Grão 2	Grão 3	Grão 4	Grão 5	Grão 6	Grão 7	Graõ 8	Grão 9	Grão 10	Média	Soma
Bianca	(0.28 ± 0.04) g	(0.30 ± 0.04) g	(0.32 ± 0.04) g	(0.26 ± 0.04) g	(0.27 ± 0.04) g	(0.25 ± 0.04) g	(0.30 ± 0.04) g	(0.23 ± 0.04) g	(0.25 ± 0.04) g	(0.32 ± 0.04) g	(0.28 ± 0.04) g	(2.8 ± 0.4) g
João luiz	(0.24 ± 0.04) g	(0.22 ± 0.04) g	(0.28 ± 0.04) g	(0.28 ± 0.04) g	(0.20 ± 0.04) g	(0.28 ± 0.04) g	(0.23 ± 0.04) g	(0.25 ± 0.04) g	(0.31 ± 0.04) g	(0.20 ± 0.04) g	(0.25 ± 0.04) g	(2.5 ± 0.4) g
Maju	(0.30 ± 0.04) g	(0.33 ± 0.04) g	(0.27 ± 0.04) g	(0.26 ± 0.04) g	(0.25 ± 0.04) g	(0.29 ± 0.04) g	(0.28 ± 0.04) g	(0.24 ± 0.04) g	(0.34 ± 0.04) g	(0.23 ± 0.04) g	(0.28 ± 0.04) g	(2.8 ± 0.4) g
Samuel	(0.28 ± 0.04) g	(0.30 ± 0.04) g	(0.31 ± 0.04) g	(0.30 ± 0.04) g	(0.26 ± 0.04) g	(0.28 ± 0.04) g	(0.25 ± 0.04) g	(0.24 ± 0.04) g	(0.22 ± 0.04) g	(0.23 ± 0.04) g	(0.27 ± 0.04) g	(2.7 ± 0.4) g
Victor	(0.28 ± 0.04) g	(0.32 ± 0.04) g	(0.27 ± 0.04) g	(0.30 ± 0.04) g	(0.24 ± 0.04) g	(0.28 ± 0.04) g	(0.26 ± 0.04) g	(0.25 ± 0.04) g	(0.30 ± 0.04) g	(0.32 ± 0.04) g	(0.28 ± 0.04) g	(2.8 ± 0.4) g
Vinicius	(0.27 ± 0.04) g	(0.31 ± 0.04) g	(0.29 ± 0.04) g	(0.27 ± 0.04) g	(0.29 ± 0.04) g	(0.22 ± 0.04) g	(0.24 ± 0.04) g	(0.28 ± 0.04) g	(0.23 ± 0.04) g	(0.22 ± 0.04) g	(0.26 ± 0.04) g	(2.6 ± 0.4) g

Tabela 4: Massa acumulada dos grãos

Peso	Grão 1	Grão 2	Grão 3	Grão 4	Grão 5	Grão 6	Grão 7	Graõ 8	Grão 9	Grão 10
Bianca	(0.90 ± 0.04) g	(1.11 ± 0.04) g	(1.48 ± 0.04) g	(1.66 ± 0.04) g	(1.93 ± 0.04) g	(2.21 ± 0.04) g	(2.53 ± 0.04) g	(2.78 ± 0.04) g	(3.01 ± 0.04) g	(3.25 ± 0.04) g
João luiz	(0.82 ± 0.04) g	(1.05 ± 0.04) g	(1.30 ± 0.04) g	(1.56 ± 0.04) g	(1.85 ± 0.04) g	(2.16 ± 0.04) g	(2.46 ± 0.04) g	(2.75 ± 0.04) g	(2.98 ± 0.04) g	(3.27 ± 0.04) g
Maju	(0.82 ± 0.04) g	(1.08 ± 0.04) g	(1.30 ± 0.04) g	(1.58 ± 0.04) g	(1.89 ± 0.04) g	(2.16 ± 0.04) g	(2.43 ± 0.04) g	(2.71 ± 0.04) g	(3.10 ± 0.04) g	(3.31 ± 0.04) g
Samuel	(0.87 ± 0.04) g	(1.11 ± 0.04) g	(1.35 ± 0.04) g	(1.66 ± 0.04) g	(1.92 ± 0.04) g	(2.25 ± 0.04) g	(2.48 ± 0.04) g	(2.77 ± 0.04) g	(3.01 ± 0.04) g	(3.27 ± 0.04) g
Victor	(0.81 ± 0.04) g	(1.17 ± 0.04) g	(1.40 ± 0.04) g	(1.65 ± 0.04) g	(1.95 ± 0.04) g	(2.23 ± 0.04) g	(2.54 ± 0.04) g	(2.78 ± 0.04) g	(3.03 ± 0.04) g	(3.29 ± 0.04) g
Vinicius	(0.79 ± 0.04) g	(1.04 ± 0.04) g	(1.31 ± 0.04) g	(1.62 ± 0.04) g	(1.88 ± 0.04) g	(2.14 ± 0.04) g	(2.44 ± 0.04) g	(2.76 ± 0.04) g	(3.00 ± 0.04) g	(3.27 ± 0.04) g
Médias	(0.84 ± 0.04) g	(1.09 ± 0.04) g	(1.36 ± 0.04) g	(1.62 ± 0.04) g	(1.90 ± 0.04) g	(2.19 ± 0.04) g	(2.48 ± 0.04) g	(2.76 ± 0.04) g	(3.02 ± 0.04) g	(3.28 ± 0.04) g

Gráfico XY gerado a partir da Massa acumulada das esferas:

^{*}Barras de erro aumentadas em 10x para melhor visualização.

A equação no gráfico de número de grãos representa, fisicamente, através de seus coeficientes a massa total da pesagem. Sendo que, o coeficiente angular representa o

valor médio da massa de um grão de feijão e o coeficiente linear a massa isolada do copo de plástico utilizado para pesar a massa de forma acumulada.

Gráfico XY gerado a partir da Massa acumulada dos grãos:

Percebe-se que diferentemente da pesagem das esferas, os grãos seguem um padrão de tamanho e massa, assim notamos que tal uniformidade é consideravelmente impactante na distribuição de pontos e na precisão de erros do gráfico.

Com relação a medição do volume, o valor da menor divisão da escala da seringa é de 0.50 ml. Logo, o erro que deve ser associado a esta medida é 0.25 ml.

Tabela 5: Medida do volume em função do número de grãos de cereal.

Graos 🗖 Bianca	Joao	Maju	Samuel -	Victor	Vinicius 🔻	Média 🗖
1 (4.40 ± 0.25) r	ml (4.30 ± 0.25) ml	(4.40 ± 0.25) ml	(4.30 ± 0.25) ml	(4.40 ± 0.25) ml	(4.50 ± 0.25) ml	(4.40 ± 0.25) ml
2 (4.60 ± 0.25) r	ml (4.50 ± 0.25) ml	(4.50 ± 0.25) ml				
3 (4.90 ± 0.25) r	ml (4.80 ± 0.25) ml	(4.80 ± 0.25) ml	(4.80 ± 0.25) ml	(5.00 ± 0.25) ml	(4.80 ± 0.25) ml	(4.90 ± 0.25) ml
4 (5.10 ± 0.25) n	nl (5.00 ± 0.25) ml	(5.00 ± 0.25) ml				
5 (5.30 ± 0.25) r	ml (5.30 ± 0.25) ml	(5.20 ± 0.25) ml	(5.30 ± 0.25) ml	(5.10 ± 0.25) ml	(5.30 ± 0.25) ml	(5.30 ± 0.25) ml
6 (5.50 ± 0.25) r	ml (5.40 ± 0.25) ml	(5.50 ± 0.25) ml	(5.40 ± 0.25) ml	(5.40 ± 0.25) ml	(5.50 ± 0.25) ml	(5.50 ± 0.25) ml
7 (5.70 ± 0.25) r	ml (5.60 ± 0.25) ml	(5.70 ± 0.25) ml	(5.60 ± 0.25) ml	(5.50 ± 0.25) ml	(5.60 ± 0.25) ml	(5.60 ± 0.25) ml
8 (6.00 ± 0.25) r	ml (6.00 ± 0.25) ml	(6.00 ± 0.25) ml	(6.00 ± 0.25) ml	(5.80 ± 0.25) ml	(5.90 ± 0.25) ml	(6.00 ± 0.25) ml
9 (6.20 ± 0.25) r	ml (6.10 ± 0.25) ml	(6.10 ± 0.25) ml	(6.10 ± 0.25) ml	(6.00 ± 0.25) ml	(6.20 ± 0.25) ml	(6.10 ± 0.25) ml
10 (6.40 ± 0.25) r	ml (6.40 ± 0.25) ml	(6.40 ± 0.25) ml	(6.40 ± 0.25) ml	(6.10 ± 0.25) ml	(6.30 ± 0.25) ml	(6.30 ± 0.25) ml

Gráfico XY gerado a partir do Volume acumulado dos grãos:

^{*}Barras de erro aumentadas em 5x para melhor visualização.

Nesta equação (y = 0.22x + 4.14) temos seu coeficiente linear representando o valor inicial de volume de água na seringa e o coeficiente linear o valor médio do volume de um grão de feijão. Podemos comprovar este valor através da média de variação entre os volumes cada vez que um grão de feijão é adicionado na seringa e seu volume é alterado.

Com relação à comparação entre os valores de mesmo significado físico, percebe-se que diferentemente da pesagem das esferas, os grãos seguem um padrão de tamanho e massa, assim notamos que tal uniformidade é consideravelmente impactante na distribuição de pontos e na precisão de erros do gráfico.

Conclusão:

Com estes experimentos conclui-se que a evidenciação dos erros de medida é muito importante para que não haja problemas com a utilização de medidas, ao observar-se que os integrantes do grupo mostraram diversas vezes, medidas diferentes para o mesmo objeto, é notável que é impossível evitar totalmente os erros, então, devemos calcula-los e apresenta-los junto a nossas medidas para termos uma ideia precisa do que está realmente acontecendo.

É de conhecimento comum que, empresas e indústrias, têm seu foco principal em gerar lucros, sempre tomando ações para que gastem o menos possível e que retornem o máximo de lucro. Por isso, elas utilizam métodos de propagação de erros em seus processos industriais. O método de propagação de erro é uma técnica utilizada para estimar a incerteza de uma medida pois nada pode ser medido com uma certeza absoluta, por isso deve ser associado sempre um valor de erro a qualquer medida. Essa técnica

serve para que no processo de fabricação tenha o menor número de erros possíveis. Todavia, esse processo altera a qualidade do produto, pois caso o produto seja fabricado com base em medições que apresentam incertezas significativas, pode haver uma variação na qualidade final. Portanto, é importante que as empresas que produzem bens industriais levem em consideração a propagação de erro e busquem minimizá-la, por meio da calibração regular dos equipamentos de medição e do treinamento de profissionais qualificados.