Data mining assignments 4: Spectral clustering

Benedith Mulongo

October 2019

1 Spectral clustering: the algorithm

Spectral clustering is clustering methods applied to graph data. It is done by computing properties of graphs such as the degree matrix, the number of outgoing edges from a node. The Laplacian matrix the difference between the degree matrix and adjacency matrix.

The article On Spectral Clustering: Analysis and an algorithm [1], proposes a new method for clustering graph by firstly computing the similarity matrix A using Gaussian kernel, then calculating the Laplacian matrix L of the similarity matrix, then the eigenvectors of the Laplacian L are used as the data for K-means algorithms.

The general algorithm is presented below:

Given a set of points $S = \{s_1, \dots, s_n\}$ in \mathbb{R}^l that we want to cluster into k subsets:

- Form the affinity matrix A ∈ R^{n×n} defined by A_{ij} = exp(-||s_i − s_j ||²/2σ²) if i ≠ j, and A_{ii} = 0.
- Define D to be the diagonal matrix whose (i, i)-element is the sum of A's i-th row, and construct the matrix L = D^{-1/2}AD^{-1/2}.
- Find x₁, x₂,..., x_k, the k largest eigenvectors of L (chosen to be orthogonal to each other in the case of repeated eigenvalues), and form the matrix X = [x₁x₂...x_k] ∈ R^{n×k} by stacking the eigenvectors in columns.
- Form the matrix Y from X by renormalizing each of X's rows to have unit length (i.e. Y_{ij} = X_{ij}/(∑_j X²_{ij})^{1/2}).
- Treating each row of Y as a point in R^k, cluster them into k clusters via K-means or any other algorithm (that attempts to minimize distortion).
- Finally, assign the original point s_i to cluster j if and only if row i of the matrix Y was assigned to cluster j.

Figure 1: Algorithm

2 Data

For testing and analyzing the behavior of the algorithm, we have used two different datasets. The first dataset is real and shows the realtionship between different researchers ¹, the second dataset is synthetic.

• Relationship among researchers: The figure below shows the graph of the real data, we can observe that the best number of clusters is either 4 or 5. 4 is the most obvious.

Figure 2: Real Data

• Fictive data: The figure below shows the graph of the synthetic data, we can observe that the best number of clusters 2.

Figure 3: Fictive Data

 $[\]overline{\ ^1 \text{The dataset can be find at the website } \textit{http://moreno.ss.uci.edu/data.htmlckm} }$

3 Observations

What we observe is that the result obtained from the similarity matrix using Gaussian kernel as described in the paper [1] is very poor. Using the adjacency matrix as the similarity matrix A, we obtain a more reliable result, that can be due to choose of the Sigma parameter.

Furthermore, it is noteworthy to observe that the K-means algorithms as implemented in Matlab are probabilistic such that the result obtained for one run may be different from a next run. Therefore is better to have a fixed center initialization by different methods, which is not done here.

4 Results

4.1 Real data

The number of K for K-means is 4. The graphs below show the result obtained.

Figure 4: Real data graph

Figure 6: Sparsity Pattern

Figure 5: Graph of the clusters

Figure 7: Sorted Fiedler Vector

4.2 Fictive data

For the fictive data, we have use K = 2. The result obtained is shown below.

Figure 8: Result for TriestBase

Figure 9: Result for TriestImpr

Figure 10: Sparsity Pattern

Figure 11: Sorted Fiedler Vector

References

[1] Y. Ng Andrew, I. Jordan Michael, and Weiss Yair. On Spectral Clustering: Analysis and an algorithm. *Encyclopedia of Machine Learning and Data Mining*, pages 1167–1167, 2017.