EXAMEN FINAL

Pablo Verdes Valeria Perez Mogetta Natalia Colussi Alejandro Hernández

- 1. ¿Cuáles de los siguientes conjuntos son finitos, cuáles son infinitos pero numerables y cuáles son no numerables? Justifique.
 - a) $\{f : \mathbb{N} \to \{0,1\} \mid \forall n \in \mathbb{N} \ f(n) \le f(n+1)\}$
 - b) $\{f: \mathbb{N} \to \{0, 1\} \mid \forall n \in \mathbb{N} \ f(n) \neq f(n+1)\}$
 - c) $\{f: \mathbb{N} \to \mathbb{N} \mid \forall n \in \mathbb{N} \ f(n) \le f(n+1)\}$
- 2. Sea $\Sigma = \{a, b\}$. Considere el lenguaje $L \subseteq \Sigma^*$ definido inductivamente como el menor conjunto tal que:
 - i. $\lambda \in L$
 - ii. Si $a \in \Sigma$ y $x \in L$ entonces $ax \in L$
 - iii. Si $a, b \in \Sigma$ y $x \in L$ entonces $axb \in L$

Se pide:

- a) Enuncie el Principio de Inducción Primitiva para L.
- b) Demuestre que toda cadena $x \in L$ también pertenece a $L_0 = \{a^i b^j \mid i \geq j\}$. (Nótese que de hecho $L = L_0$, pero en este ítem sólo se pide probar $L \subseteq L_0$.)
- 3. Defina f como función recursiva, donde:

$$f(x,y) = \sqrt[3]{\frac{x+1}{y}}$$

Nota: Puede asumir definidas las funciones sum(x,y) = x + y y $prod(x,y) = x \cdot y$ como FRP.

4. Defina la siguiente función de lista:

$$g[x,y,Z] = \left\{ \begin{array}{ll} [x,y,Z] & \text{si } \exists t \in \mathbb{N}_0 \text{ tal que } x+2t=y \\ \text{indefinida} & \text{en caso contrario} \end{array} \right.$$

<u>Notas:</u> (1) Puede asumir definidas las funciones \triangleright , \triangleleft , D_i , D_d , \leftrightarrow y las básicas.

(2) Justifique su respuesta mostrando la traza de F al ser aplicada a [x, y, Z].

- 5. Sea $L = \{awa \mid w \in \{a, b\}^*\}$. Construya un AEF (determinista) que acepte el lenguaje L^2 .
- 6. a) Construya un AEFND que acepte exactamente el lenguaje de las cadenas no nulas sobre el alfabeto $\Sigma = \{a, b\}$ que terminan en bbb o bba.
 - b) Dé una expresión regular para dicho lenguaje.
- 7. a) Dé una expresión regular para el lenguaje $L = \{a^n b^m \mid n \ge 4, m \le 3\}$.
 - b) Dé una expresión regular para el complemento de dicho lenguaje.
- 8. Sea el lenguaje $L = \{a^n b^m c^k \mid n = m \lor m \le k\}.$
 - a) Construya un autómata de pila que acepte el lenguaje L.
 - b) Dé una gramática independiente de contexto que genere el lenguaje L.
- 9. Construya una Máquina de Turing sobre el alfabeto $\Sigma = \{a, b, c\}$ que acepte el lenguaje:

$$L = \{ w_1 w_2 \mid w_1 \neq w_2, |w_1| = |w_2| \}.$$

Tener en cuenta que:

• Suponemos que se dará a esta máquina una cinta donde sólo aparece una cadena (sucesión de símbolos contiguos), que tendrá que aceptar o rechazar. La máquina deberá comenzar su cálculo desde el primer blanco ubicado a la izquierda de la palabra:

$$\dots \Box \Box \Box ccaababcaaa \dots abbcaaaccb \Box \Box \Box \dots$$

- Si la máquina acepta la cadena deberá terminar el cálculo en la misma posición donde comenzó el cálculo. Si la rechaza, terminará sobre el primer símbolo de la misma.
- Debe proveer una descripción, lo más clara y detallada posible, del funcionamiento de la Máquina de Turing propuesta y de todas las máquinas auxiliares que defina. Esta descripción debe indicar dónde comienza y termina el cálculo cada una de las máquinas propuestas y cuál es su función específica. Brinde una descripción paso a paso del funcionamiento de cada una de ellas.