

FEATURES

- 2.5V to 5.5V Input Voltage Range
- . 600mV @600mA Dropout Voltage
- . Excellent Transient Response
- . Stable with 1µF Ceramic Output Capacitor
- 60dB PSRR at 1kHz
- . Low 75µA Quiescent Current
- . Low Shutdown Current: <1µA
- Output Accuracy: ±2%
- Adjustable Output Voltage: 0.8V~5V
- Current Limit Protection
- . Thermal Shutdown
- . Output Auto-Discharge in Shutdown
- RoHS Compliant and 100% Lead (Fb)-Free Halogen-Free

APPLICATIONS

- Cellular Phones
- . Bluetooth portable radios and Accessories
- Battery-Powered Equipment
- . Laptop, Palmtops, Notebook Computer
- . PDAs
- . Digital still Camera and Video Recorders

GENERAL DESCRIPTION

The TCS2196 is a 600mA, low-dropout (LDO) linear regulator with fast transient response and high PSRR. It offers high output accuracy, low dropout voltage and low quiescent current as well as fast start-up time. This regulator is based on a CMOS process.

The TCS2196 is designed to work with low-ESR ceramic capacitors, reducing the amount of the PCB area necessary for power applications. Only a $1\mu F$ ceramic output capacitor can make the device stable over the whole load range current (0mA to 600mA).

The output voltage of TCS2196 output adjustable version can be set by an external resistor divider. When the FB pin is connected to an external resistor divider, its output can be adjusted from 0.8V to 5V. Other key features include over-current protection and thermal shutdown. The TCS2196 is packaged in SOT23-5 packages.

TYPICAL APPILCATION

Figure 1.TCS2196 adjustable output Circuit

Figure 2. TCS2196 fixed output Circuit

BLOCK DIAGRAM

Figure 4.TCS2196 fixed function block

ABSOLUTE MAXIMUM RATINGS

Description	Value	Unit
VIN, EN Input Voltage Range	-0.3~6	V
All other pins Voltage Range	-0.3 to (V _{IN} +0.3)	V
Junction Temperature	160	°C
Storage Temperature Range	-65~150	°C
Junction-to-ambient Thermal Resistance	250	°C/W
Lead Temperature Soldering, 10Sec	260	°C

ESD RATINGS

Items	Description	Value	Unit
V_{ESD}	Human Body Model for all pins	±2000	V

JEDEC specification JS-001

RECOMMEND OPERATING CONDITIONS

Items	Description	Min	Max	Unit
Voltage Range	IN	2.5	5.5	V
Tı	Operation Junction Temperature	-40	125	°C

PIN CONFIGURATION

Package Type	Pin Configurations		
TCS2196 / SOT23-5	VOUT FB 5 4 1 2 3 VIN GND EN (Adjustable Output Version)	VOUT 5 4 VIN GND EN (Fixed Output Version)	

PIN FUNCTIONS

TCS2196	Name	Function
1	VIN	Input Supply of the LDO.
2	GND	Signal Ground.
3	EN	Enable Pin. Connect this pin to ground or less than 0.4V to disable the device, connect EN to 1.5V or above to enable the device. This pin should not be floated.
4	NC/FB	Feedback Pin for adjustable output version NC for fixed output version
5	VOUT	Output of the LDO

ELECTRICAL CHARACTERISTICS

 $T_A=25$ °C, $V_{IN}=V_{OUT}+1V$, or $V_{IN}=2.5V$ for $V_{OUT}<1.5V$ unless otherwise specified.

Symbol	Parameter	conditions	Min	Тур	Max	Unit
Input Voltage						
V _{IN}	Input Voltage Range		2.5		5.5	V
ΙQ	Quiescent Current	V _{EN} =2.5V, I _{OUT} =0mA	60		90	μΑ
I _{SHDN}	Shutdown Current	V _{EN} =0V		0.1	1	μΑ
PSRR	Power Supply Ripple Rejection	V _{IN} =Vnom+1V _{P-P} , f=1kHz, I _{LOAD} =10mA		60		dB
Enable						
V_{ENH}	Enable Input High Voltage	All temperature range	1.5			V
V _{ENL}	Enable Input Low Voltage	All temperature range			0.4	V
I _{EN}	EN Input Current	V _{IN} =3.5V, V _{EN} =3.5V or 0V	-1	0.2	1	μΑ
T _{ST}	Start-up Time	V _{IN} =3.5V, V _{OUT} =2.5V		40		μs
Output Vo	oltage					
	Output Voltage Accuracy	V _{IN} =V _{OUT} +1V, I _{OUT} =10mA	-2		+2	%
V _{OUT}		$V_{IN}=V_{OUT}+1V$, $I_{OUT}=10$ mA, $T_A=-40$ °C to +85°C	-3		+3	%
V_{FB}	FB Pin Voltage		0.786	0.8	0.816	V
V_{LNR}	Output Line Regulation	V _{OUT} +0.5V <v<sub>IN<5.5V, I_{OUT}=10mA</v<sub>		0.01	0.1	%/V
V_{LDR}	Output Load Regulation	1mA <i<sub>OUT<500mA, V_{IN}=V_{NOM}+1.0V</i<sub>		3	6	mV
V_{DROP}	Dropout Voltage (Note 1)	I _{OUT} =600mA (Applied for V _{OUT} ≥2.3V)		600	700	mV
I _{OUTMAX}	Maximum Output Current		600			mA
Protection	n					
I _{limit}	Current Limit		650	800		mA
R _{AD}	Resistance of Auto- Discharge			130		Ω
T_{SD}	Thermal Shutdown Temperature	No Load, V _{IN} =V _{EN} =5V		155		°C
T _{SDHYS}	Thermal Shutdown Hysteresis	No Load, V _{IN} =V _{EN} =5V		30		°C

Note 1: Dropout is defined as V_{IN} - V_{OUT} when V_{OUT} is 2% below the value of V_{OUT} for V_{IN} = V_{OUT} +0.5V.

TYPICAL PERFORMANCE CHARACTERISTICS

Detailed Function Description

The TCS2196 is a high output current, low dropout linear regulator with fast transient response and high PSRR. It offers high output accuracy, low quiescent current and fast start-up time. It is designed to work with low-ESR ceramic capacitor, reducing the amount of the PCB area. Only a $1\mu F$ ceramic output capacitor can make the device stable over the whole load range.

As shown in the function block diagram, the TCS2196 is composed of the bandgap reference voltage, the error amplifier, P-channel MOSFET pass transistor, external resistor divider and some additional protection circuits. The reference voltage, connected to the cathode terminal of the error amplifier, compares with the feedback voltage to regulate the output voltage to make it constant over the whole load current range. If the feedback voltage is lower than the reference voltage, the pass transistor gate is pulled lower to increase its conductivity. This allows more current to flow to the output and increase the output voltage. If the feedback voltage is higher than the reference voltage, the pass transistor gate is pulled higher to decrease

its conductivity. This allows less current to flow to the output and decrease the output voltage. The feedback point is the output of the external resistor divider connected to the V_{OUT} pin.

Enable/Shutdown

The TCS2196 is disabled when the EN pin is connected to ground or the voltage less than 0.4V, and the quiescent current is less than 1μ A. Connect EN pin to 1.5V or higher voltage to enable the device. This pin cannot be floated.

Output Auto Discharge

When the regulator is disabled, an internal 130Ω resister is connected between VOUT and GND to discharge output capacitor C_{OUT} .

Current Limit

The TCS2196 includes a current limit circuit to monitor the gate voltage of the pass transistor to limit the output current. When the output current is higher than the over-current limit, the circuit will clamp the gate voltage of the pass transistor to limit the output current. The typical output current limit is 800mA.

Adjustable Output Voltage

TCS2196 has a wide output voltage range. The output voltage is programmed by an external resistor divider as shown in Figure 1. The output can be calculated be by the following equation:

$$V_{OUT} = (1 + \frac{R_1}{R_2}) \times V_{REF}$$
 (Equation.1)

Where V_{REF} is the internal reference voltage, which is 0.8V in TCS2196.

Short Circuit Protection

When V_{OUT} pin is short-circuit to GND, short circuit protection will be triggered and clamp the output current to approximately 150mA. This feature protects the regulator from over current condition and damage due to overheating.

Thermal Shutdown

The TCS2196 monitors internal temperature. When the junction temperature exceeds 155°C, the over temperature protection (OTP) circuit turn off the pass transistor until the device is cooled down by 30°C. Then the pass transistor resumes. For continue operation, do not exceed absolute maximum junction temperature.

Application Information

External capacitor

The TCS2196 requires external capacitor for stability. It is specifically designed to work with low-ESR capacitors requiring minimum PCB area. Place the external capacitors as close as possible to the device.

TOPCH-CHiP

Input capacitor

A $1\mu F$ or higher capacitance value ceramic capacitor is required between the VIN pin and the GND pin. Place it as close as possible to the device. There are no requirements for the ESR on the input capacitor, but the tolerance and temperature coefficient must be capacitance is 1µF over the whole operating temperature range.

Output capacitor

An output capacitor (C_{OUT}) is needed to improve transient response and maintain stability. The TCS2196 is stable with very small ceramic output capacitors. A $1\mu F$ to $10\mu F$ capacitor is suitable for the most TCS2196 applications.

PACKAGE INFORMATION

SOT23-5

Unit: mm

Cump bool	Dimensions In Millimeters		Cruss la al	Dimensions In Millimeters		
Symbol	Symbol Min Max Symbol	Min	Max			
L	2.82	3.02	E1	0.85	1.05	
В	1.50	1.70	a	0.35	0.50	
С	0.90	1.30	С	0.10	0.20	
L1	2.60	3.00	b	0.35	0.55	
E	1.80	2.00	F	0	0.15	

Note:

- 1) All dimensions are in millimeters.
- 2) Package length does not include mold flash, protrusion or gate burr.
- 3) Package width does not include inter lead flash or protrusion.
- 4) Lead popularity (bottom of leads after forming) shall be 0.10 millimeters max.
- 5) Pin 1 is lower left pin when reading top mark from left to right.