

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
24 January 2002 (24.01.2002)

PCT

(10) International Publication Number
WO 02/06914 A1

(51) International Patent Classification⁷: G05D 23/19,
B60K 28/06, B60N 2/56

(21) International Application Number: PCT/SE01/01521

(22) International Filing Date: 2 July 2001 (02.07.2001)

(25) Filing Language: Swedish

(26) Publication Language: English

(30) Priority Data:
0002690-6 19 July 2000 (19.07.2000) SE

(71) Applicant (*for all designated States except US*): KONGSBERG AUTOMOTIVE AB [SE/SE]; Box 504, S-565 28 Mullsjö (SE).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): FRISTEDT, Tommy [SE/SE]; Stockeryd, S-560 25 Bottnaryd (SE). JOSEFSSON, Daniel [SE/SE]; S:t Sigfridsgatan 14, S-521 35 Falköping (SE).

(74) Agents: ANDERSSON, Per et al.; Albihns Göteborg AB, P.O. Box 142, S-401 22 Göteborg (SE).

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SEAT WITH TEMPERATURE CONTROL AND VENTILATION AND SAFETY SYSTEM FOR A VEHICLE

WO 02/06914 A1

(57) Abstract: The invention relates to a device for temperature control and ventilation of a seat comprising a cooling device. The invention is characterized in that the seat comprises an electrical heater and a detector unit in connection to the electrical heater for detection of a temperature at said electrical heater, where the cooling device and the electrical heater are activated in dependence of at least the detected temperature. The invention also relates to a method for such a temperature control and ventilation. The invention also relates to a security system at a vehicle. By means of the invention, a better adjustment of temperature and ventilation of a seat is provided, with the possibility to eliminate humidity without chilling the user.

Seat with temperature control and ventilation and safety system for a vehicle

TECHNICAL FIELD

- 5 The present invention relates to a device and a method, respectively, for cooling of a seat, according to the preamble of the appended claim 1 and 13, respectively. In particular, the invention's main application is in connection with cooling and/or ventilation of electrically heatable seats for travellers in a vehicle.

10

BACKGROUND ART

By reasons of comfort and security, ventilation and/or cooling of seats in for example vehicles, is used. The driver's seat as well as the other seats in the 15 vehicle may thus be arranged to be cooled by means of special cooling devices, for example in the form of electrical Peltier elements, or by means of a fan device that blows on the current surface, or a combination of these. Such a cooling element or fan may be placed in the seat or in the backrest of respective seat when it is manufactured. Further, the cooling element and the 20 fan, respectively, are connected to a current supply unit that supplies current. The control systems according to previously known technology is of the time control kind, i.e. pure timer functions, which during certain predetermined time periods control the cooling element to a suitable temperature and the fan to a suitable number of revolutions.

25

A problem for previously known cooling devices relates to the desire that respective seat has to have an accurately adjusted temperature and dryness on its surface, i.e. on the surface that the traveller in the vehicle senses. For this purpose, the temperature of the cooling element respective the intensity 30 of the fan may be controlled by means of a sensor unit, e.g. a temperature sensor that is arranged in the seat and that is connected to a control unit. By means of the detector unit and the control unit, the available temperature

may be detected. The control unit also comprises current feeding circuits, which e.g. may be based on transistor or relay technology, for feeding current to the cooling element and/or the fan.

- 5 Although this previously known system normally provides a reliable cooling and dryness on the surface of a vehicle seat, it is, however, afflicted with certain disadvantages. Such a disadvantage relates to the fact that previously known systems, timer controlled or manually controlled, with a cooling element and a fan, provides a rather uncontrolled cooling and drying
10 of the seat, due to the fact that the cooling via the cool airflow almost exclusively takes place by convection, which may lead to a local over-cooling of the user which in itself is a health hazard.

- A further disadvantage with previously known systems is that a warm and
15 damp user receives cold air directly on the body, which during the time of drying of the seat and the user may be sensed as cold and damp, and thus unpleasant, by the user. Even if the cooling not takes place by means of blowing of the air directly on the body, but via a conductive cooling of the seat, a cold and damp surface may be sensed as unpleasant.

- 20 A further disadvantage with previously known technology is that the quick cooling of the seat affects the material of the seat negatively in such a way that the material of the seat becomes less comfortable at low temperatures.

- 25 Further disadvantages with previous systems is that a control device with special sensors for a cooling device for a seat occupies space and is expensive.

DISCLOSURE OF INVENTION

- 30 A principal purpose with the present invention is thus to provide an enhanced cooling, drying, temperature control and ventilation of a vehicle seat

comprising a cooling device, where the disadvantages stated above are eliminated and which provides a surface temperature and surface dryness that during the adjustment becomes more comfortable for the traveller. This purpose is achieved by means of a device of a kind mentioned in the 5 preamble, which characteristics are disclosed in the appended claim 1, where the seat comprises an electrical heater and a detector unit in connection with the electrical heater for detection of a temperature at said electrical heater, where the cooling device and the electrical heater are activated in dependence of at least the detected temperature. This purpose is 10 also achieved with a procedure of a kind mentioned in the preamble where the seat comprises an electrical heater and a detector unit in connection with the electrical heater where the detector unit detects a temperature at said electrical heater, where the cooling device and the electrical heater are activated in dependence of at least the detected temperature.

15 A further purpose with the invention is to provide a security system at vehicles, by means of which a driver's attention may be drawn to the fact that a hazardous situation is at hand. This purpose is achieved with a security system that is characterised in that the cooling device is controlled via an 20 external detector which is arranged to detect deviations from a determined standard of a driver or deviations from a determined standard of the running conditions of the vehicle. Thus a cooling device may be activated to draw the driver's attention to the hazardous situation. It may for example be detected whether the driver is falling asleep, where the cooling device may be 25 activated for stimulating purposes.

In light of previously known technology for the existing problems, the invention is directed towards a procedure and a device for cooling or ventilation of a seat where one obtains a quick cooling and drying of a seat 30 and a user, without the user experiencing the disadvantages existing for previously known technology. By maintaining a high degree of convective cooling, a short drying time is acquired. In order to remove the disadvantages

which are afflicted with a known procedure, the invention is based on the supply of local conductive heat supply to the user's exposed areas in order to reduce the negative local chilling, that also would lead to a shorter drying time for the seat and the user. Furthermore, in order to achieve a quick, good
5 and cheap adjustment that does not occupy too much space, the invention is based on the use of already available equipment as far as possible.

- With a vehicle seat, all seat parts such as sitting surface and back parts are concerned, i.e. the invention may in all its parts be exercised freely on all the
10 seat parts of the seat, such as sitting surface and back parts. The invention may also be used only for ventilation of the seat, i.e. when cooling is lacking. Ventilation is often more important for the back part of the seat than for the sitting surface of the seat.
- 15 Advantageous embodiments are evident from the appended dependent claims.

BRIEF DESCRIPTION OF DRAWINGS

- 20 The invention will be described below in connection with an example of a preferred embodiment and the enclosed drawings, where

- Fig. 1 is a principal circuit diagram showing a device according to a first embodiment of the present invention,
25 Fig. 2 is a principal circuit diagram showing a device according to a second embodiment of the present invention,
Fig. 3 is a principal circuit diagram showing a device according to a third embodiment of the present invention,
30

- Fig. 4 is a principal circuit diagram showing a device according to a fourth embodiment of the present invention,
- 5 Fig. 5 is a principal circuit diagram showing a device according to a fifth embodiment of the present invention,
- 10 Fig. 6 is a principal circuit diagram that in an above view shows a detector unit in accordance with known technology, when two temperature sensors in the seat are used at the adjustment,
- 15 Fig. 7 is a principal circuit diagram showing a security device according to the invention, and
- Fig. 8 is a principal outline of a control algorithm according to the invention.

MODES FOR CARRYING OUT THE INVENTION

The embodiments which are described in connection with the explaining text
20 are not to be regarded as examples of the invention solely, but also as a detailed description of the invention. The figures and the embodiments show principally the sitting surface of a seat, but the invention may in all its parts be exercised freely on all the seat parts of the seat, such as sitting surface and back parts. The invention may also be used only for ventilation of the
25 seat, i.e. when cooling is lacking. Ventilation is often more important for the back part of the seat than for the sitting surface of the seat.

Figure 1 shows a principal circuit diagram for a device according to a first embodiment of the invention. According to the first embodiment, the invention
30 is intended to be used in connection with a cooling device 1 (shown as a dashed square) for a seat 2 in a vehicle and an electrical heater 3 for heating of the seat 2. The figure shows a control unit 4 on principle, which internal

components and connections are not shown. In the figure, electrical connections with the control unit 4 are indicated with dashed lines.

- The cooling device 1 is placed in or in connection with the seat 2 and
- 5 consists of a cooling element 5, e.g. a Peltier element, and a fan 6 for blowing air, here called blowing fan 6, via the cooling element 5 through the seat 2 in the direction towards the bottom side of the sitting surface 7, which the sitting passenger is in contact with. Both the cooling element and the blowing fan are controlled by the control unit 4 via electrical connections, but
- 10 may also be switched to manual control. The control unit 4 controls the cooling power of the cooling element 5, for a Peltier element this is performed via control of the current intensity, and the air flow from the blowing fan 6, e.g. by changing the number of revolutions for the blowing fan 6.
- 15 According to previously known technology, electrically heatable seats are used in the vehicles of today by reasons of comfort and security. The driver's seat as well as the other seats of the vehicle may thus be arranged to be heated by means of special electrical heaters in the form of electrically conductive wires placed in the form of a heating coil in respective seat. Such
- 20 an electrical heater is normally placed in the seat and the backrest of respective seat when it is manufactured. Further, the electrical heater is connected to a current supply unit that supplies current. Thus the electrical heater may be heated to a suitable temperature.
- 25 The temperature of such a known electrical heater is controlled by means of a detector unit, e.g. comprising a temperature sensor connected to the control unit. By means of the detector unit and the control unit, the available temperature may be detected. The control unit also comprises current supply circuits (not shown), that e.g. may be based on transistor or relay technology,
- 30 for supplying current to the electrical heater. Thus the control unit is arranged to supply a certain current through the electrical heater until a certain desired value for the temperature in the seat is obtained, when heating is needed.

The adjustment of this desired value may e.g. be performed by means of fixed resistors or by means of an adjustable potentiometer that is operated by the traveller in the vehicle, or by a control algorithm in the control unit or in an external microprocessor or computer.

5

According to the first embodiment, see Fig. 1, of the invention a detector unit 8 at the electrical heater 3 is used to detect the temperature in the seat 2 and to supply information about the temperature to the control unit 4, which is described in detail below. A suitable detector unit preferably consists of a 10 thermistor, e.g. of the NTC (Negative Temperature Coefficient) type. The control unit also comprises further current supply circuits (not shown), that e.g. may be based on transistor or relay technology, for supplying current to the cooling element 5 and the fan 6. Thus, when cooling is needed, the control unit 6 is arranged to supply a certain current through the cooling 15 element 5 and the fan 6 until a certain desired value for the temperature in the seat is obtained. The adjustment of this desired value may e.g. be performed by means of fixed resistors or by means of an adjustable potentiometer that is operated by the traveller in the vehicle, or by a control algorithm in the control unit 4 or in a separate control unit. The control unit 4 20 uses the measured values from the detector unit 8 for the temperature control of the seat, both for heating and cooling of the seat depending on how the control algorithm in the control unit is made. Then the control unit 4 controls the cooling procedure for the seat 2 by determining the amount of current that is supplied to the cooling element 5, blowing fan 6 respective 25 electric heater 3, which provides desired cooling power, air flow respective heating power. If the seat 2 is very warm, e.g. when the sun has been shining on it, a fast cooling of the seat is required in order to quickly let the user obtain maximum comfort. When the user also is damp, e.g. after having perspired or due to the high temperature of the seat, it is also a main concern 30 to get the user dry quickly. If only the cooling device 1 is used, the result is a powerful convective cooling of the user, which leads to that the user may experience a cold and damp feeling at the contact surface between the body

and the seat. In order to avoid the cold and damp feeling at the contact surface, the electrical heater 3 is used according to the invention, which electrical heater 3 may be controlled as stated above, and is here used to increase the temperature in the seat, which leads to a local conductive
5 heating in the contact surface between the seat surface 7 and the user, which in turn leads to that a quick drying of the user and the seat surface takes place, at the same time as a quick cooling of the whole seat takes place without the user being submitted to a too fast and too large convective cooling in the contact surface. To sum up, the arrangement above provides a
10 quick cooling of a strongly over-heated seat without risk or discomfort for the user. A quick drying of the seat is also acquired, which provides an enhanced comfort. The arrangement according to the invention also admits a continuous control to maintain a dry seat surface 7 with a suitable temperature during a long time, e.g. during driving at longer journeys. The
15 use of the electrical heater 3 also provides a better temperature on the seat material which may become firm and uncomfortable at too low temperatures.

The detector unit 8 detects the temperature before the adjustment starts to provide a starting value to the control unit 4, which determines if cooling or
20 heating is required. Manual control means may also be connected to the control unit to let the user determine if cooling or heating is to be initiated, or both at the same time. The detector unit 8 also detects the temperature both during cooling and during heating of the seat 2. During cooling, the detector unit is subject to both conductive and convective cooling, which may result in
25 a measured temperature value representing the cooling, depending on which type of detector unit that is used. The control unit 4 may start the electrical heater 3 in connection with the starting of the cooling device 1 or at an occasion chosen in dependence of the control algorithm and/or the measured temperature value of the detector unit.

30

The system according to the first embodiment of the invention may be supplemented with an additional fan 9 which advantageously may be placed

in or in connection with an air conditioning equipment 10 already available in the vehicle. The fan 9 at the air conditioning equipment may also replace the fan 6 at the seat 2. The two fans 6, 9 may be used separately or in combination. An advantage with such an arrangement is that the fans 6, 9

- 5 may be used simultaneously in order to increase the amount of air to the seat 2. An other advantage is that they may be used separately in order to control the air flow to different locations in the seat 6.

In Fig. 2, a second embodiment of the invention is shown, where the detector unit 8 of the electrical heater 3 is used to detect the temperature in the seat 2 and to provide the control unit 4 with information concerning the temperature, where the cooling element 5 either is a separate part connected to the air conditioning equipment 10, or is a part of the air conditioning equipment 10, e.g. "Automatic Climate Control" (ACC), which normally not is placed in the 15 seat 2, but at a suitable place in the car, e.g. the engine house (not shown). After the cooling element 5, the cooled air is further led in the air conditioning equipment 10 via a conduit (not shown) to the seat 2 where requisite cooling of the seat takes place. The control of the air flow may be executed either by means of a blowing fan 6 placed in or in connection with the air conditioning 20 equipment 10 or in connection with the seat 2. For blowing fans 6 working at a fixed number of revolutions, the air flow may be controlled with suitable choking devices (not shown) which are controlled by the control unit 2. The same advantages that have been mentioned for the first embodiment are acquired in combination with the electrical heater 3.

25

For a third embodiment, shown in figure 3, where the detector unit 8 of the electrical heater 3 is used to detect the temperature in the seat 2 and to provide the control unit 4 with information concerning the temperature, the air in the passenger compartment that has been cooled by the air conditioning 30 equipment 10 is used for cooling the seat 4. A cooling fan 6 is then arranged to blow the air in the compartment in such a manner that a partial amount of the air in the compartment may be directed and controlled towards the seat.

The blowing fan 6 may be placed in connection with the seat 2, e.g. under the seat 2 or in connection with the air conditioning equipment 10 or in any other suitable place. The same advantages that have been mentioned for the first embodiment are acquired in combination with the electrical heater 3.

5

For a fourth embodiment, shown in figure 4, where the detector unit 8 of the electrical heater 3 is used to detect the temperature in the seat 2 and to provide the control unit 4 with information concerning the temperature, the air in the compartment that has been cooled by the air conditioning equipment

- 10 10 is used for cooling the seat. A fan 26, 29, here called induced draft fan 26, 29, is then arranged to suck the air in the compartment in such a manner that a partial amount of the air in the compartment may be directed and controlled towards the seat and from the surface of the seat towards the floor. The induced draft fan 26, 29 may be placed in connection to the seat, e.g. under
15 the seat 2, in figure 4 marked with 26, or in connection with the air conditioning equipment 10, in figure 4 marked with 29, or in some other suitable place. Alternatively, these two induced draft fans 26, 29 may be used in the same arrangement. An advantage that is achieved with the arrangement according to figure 4 is that the sensor 8 detects a temperature
20 that for instance depends on the air that just has passed the seat surface 7, i.e. the air closest to the user's body, which leads to that the control will depend on a measured value that is more based on the temperature that corresponds to the target temperature/desired value, i.e. the temperature on the seat surface 7. The same advantages that have been mentioned for the
25 first embodiment are acquired in combination with the electrical heater 3.

- For a fifth embodiment, shown in figure 5, where the detector unit 8 of the electrical heater 3 is used to detect the temperature in the seat 2 and to provide the control unit 4 with information concerning the temperature, the air
30 in the compartment that has been cooled by the air conditioning equipment 10 is used for cooling the seat. The induced draft fan 26, 29 is then arranged to suck the air in the compartment in such a manner that a partial amount of

the air in the compartment may be directed and controlled towards the seat and from the surface of the seat towards the floor. The induced draft fan 26, 29 may be placed in connection to the seat, e.g. under the seat 2, in figure 5 marked with 26, or in connection with the air conditioning equipment 10, in 5 figure 4 marked with 29, or in some other suitable place. In connection with the air flow that has been sucked in after the seat surface 7, downstream the air flow that just has the seat surface 7, i.e. the air closest to the user's body, a humidity sensor 28 is placed, detecting the degree of humidity in the air flow, which degree of humidity thus depends on the user's humidity and the 10 seat surface's 7 humidity. The humidity sensor 28 provides information for the control unit 4, which can control the air flow depending on both temperature and humidity. An advantage that is achieved from this arrangement is that an optimal adjustment of the fan 26, the air conditioning equipment 10 and the electrical heater 3 takes place, which optimizes the 15 use of these units and provides an optimum drying and cooling of the user for optimum comfort. The same advantages that have been mentioned for the first embodiment are acquired in combination with the electrical heater 3.

In order to control the arrangements mentioned above, according to all 20 embodiments (with reference to Fig. 1-5), a control unit 4 is used, comprising a communication unit 13 that can communicate with other units, both external and internal. According to PCT/SE99/00261, there is a device and a procedure intended for heating of a vehicle seat comprising an electrical heater connected to a control unit. The control unit comprises current supply 25 means for supplying a current through the electrical heater allowing it to be heated. There is also a temperature sensor connected to said control unit for detection of the temperature at the electrical heater, where the control unit is arranged for supplying said current if a measured temperature falls below a predetermined desired value. The control unit further comprises a 30 communication unit for reception of information from a separate manoeuvring unit via a transmission channel for transfer of the information. According to what is disclosed in PCT/SE99/00261, at least one function unit for

manoeuvring the control unit via the transferred information is connected to the manoeuvring unit. The manoeuvring unit thus comprises programmed logic functions for generation of the information, at least in dependence of the condition of the function unit, and programmed functions for sending the 5 information to the communication unit.

The manoeuvring unit used in PCT/SE99/00261 enables a simplified device and a simplified procedure for heating of a vehicle seat to be provided. An economically advantageous solution is provided according to what is 10 disclosed in PCT/SE99/00261, as the manoeuvring unit may be manufactured from proportionately cheap standard electronic components in a very compact fashion, and then programmed to provide necessary functions for, by way of example, the current vehicle model or type of vehicle seat.

15

The device according to PCT/SE99/00261 preferably works completely separately from a central computer unit or similar at a motor vehicle and thus no special adaptations of such a central computer unit is required. The device and the procedure according to what is disclosed in PCT/SE99/00261 20 is based on a modular concept where a great flexibility is acquired with a few uncomplicated electronic components that are possible to standardize.

According to what is disclosed in PCT/SE99/00261, the information comprises information concerning the desired temperature, where the 25 manoeuvring device is arranged to generate the information starting from information concerning the design of the vehicle seat, stored in the manoeuvring device. PCT/SE99/00261 thus discloses a device and a procedure that may be used for e.g. control of heat and ventilation according to the present invention.

30

An arrangement for transfer of information is previously known from PCT/SE97/01171. The transfer is controlled by information between the

control unit 4 and the central computer unit 11 following a periodic lapse with a certain predetermined period time t_1 . The information transfer is based on the basic concept that information that corresponds to a certain desired value of the desired temperature value T_B is transferred from the central computer unit 11 to the control unit 4. Preferably, an information transfer also takes place in the opposite direction, i.e. from the control unit 4 to the central computer unit 11. This further piece of information from the control unit 4 may suitably comprise status information. During the complete period t_1 , a transfer from the control unit 4 to the central computer unit 11 takes place during a certain period of time t_2 , while the transfer from the central computer unit 11 to the control unit 4 takes place during another period of time t_3 . The transfer that is disclosed in PCT/SE97/01171 may be used combined with the present invention in such a way that that same equipment may be used at different seats, only the control algorithm that controls the control procedure has to be changed.

According to PCT/SE97/01172 there is a procedure for heating of a seat comprising an electrical heater connected to a control unit arranged for supplying current through the electrical heater. According to what is disclosed in PCT/SE97/01172, the procedure comprises a detection of current temperature in connection with the electrical heater, and also an adjustment of the temperature by supplying said current through the electrical heater if said current temperature falls below a predetermined desired temperature. According to what is disclosed in PCT/SE97/01172, the invention is based on the basic concept that it comprises a determination of an additional value, ΔT , to said desired temperature T_B . This additional value is added to said predetermined desired temperature in connection with said adjustment. The additional value may be positive or negative. The invention admits a compensation where a slightly "too high" (or "too low") value of the desired temperature is used. Thus an adjustment with individual adaptation to a certain seat design is supplied, i.e. that the same equipment may be used for different seats, and the only thing that has to be changed is the control

algorithm that controls the control procedure, which thus admits use in combination with the present invention.

To sum up, according to previously known technology, the purpose with the
5 communication unit 13 is principally to see to that information concerning the desired value T_B for the temperature control of the electrical heater 3 is transferred to the control unit 4 from an external unit in the form of a central computer unit 11. Preferably the central computer unit 11 is constituted by a computer already available in the vehicle that e.g. may be used for the
10 vehicle's climate control equipment, the vehicle's ignition system or similar purposes. The transfer of information takes place via a transmission channel 12, preferably being constituted by an electrical wire.

One of the advantages with the present invention is that already available
15 data wires, so-called buses, are used in the car and the current seat. This reduces the costs for the cooling device that is furnished the chair, and it saves space. When using a computer as control unit, a great flexibility is achieved for handling changed conditions, i.e. the computer is fed with a suitable algorithm to use for the adjustment. Since the software, the
20 algorithm, is crucial for the adjustment, the same hardware, fans, electrical heaters, cooling element and sensors may be mounted in seats of different types, which is cost effective. In order to acquire a correct adjustment, it is sufficient if the computer is informed of which kind of seat that the hardware has been installed in, after which the computer that is equipped with different
25 parameters for different seats makes adjustments to these conditions. The computer also provides the user with a possibility of changing the comfort by himself as there may be pre-programmed alternatives in the computer which may be chosen by the user, e.g. extra air flow, temperature control depending on the user's clothing, long trip driving or extra fast drying.

30

In connection with the electrical heater 3, the detector unit 8 is arranged, which in turn comprises a first temperature sensor 8a and a second

temperature sensor 8b, which are electrically connected to the control unit 4, as shown in Fig. 6. The temperature sensors preferably consist of thermistors of the NTC (Negative Temperature Coefficient) type, that shows a temperature dependent resistance R_1 and R_2 that corresponds to the 5 temperature T_1 and T_2 respectively, that by placement of the sensors 8a, 8b is detected in connection with the electrical heater 3 and at a predetermined distance from the electrical heater 3 respectively. The first temperature sensor 8a may be placed directly on the electrical heater 3 or in the close vicinity of the electrical heater 3. The second temperature sensor 8b is 10 placed at a predetermined distance from the electrical heater 3, e.g. between two of the lines defined by the pattern that covers maximum surface in which the electrical heater 3 is laid, or, depending on the seat's design, at another position at a distance from the electrical heater 3, e.g. in the vicinity of the sitting surface.

As the detector unit comprises two temperature sensors 8a, 8b, a superposed detected value is acquired, consisting of the sum of the current resistances of the two temperature sensors. This added value then corresponds to a superposed temperature value that during the heating of 20 the seat 2 is compared with a desired value T_B , which in turn corresponds to the desired temperature T_s on the surface of the seat. If the detected temperature exceeds the desired value T_B , the current supply through the electrical heater will cease, analogous to what has been stated above. The superposed resistance value of the temperature sensors 8a, 8b will consist of 25 two components, partly a first component that is affected by the relatively fast temperature variations of the temperature sensor 8a that is placed in the close vicinity of the electrical heater 3, and partly a second component that is affected by the relatively slow temperature variations of the temperature sensor 8b that is placed relatively far from the electrical heater 3. All together, 30 this provides a temperature control that corresponds to a balance between a temperature control based on each one of the placements. By a suitable tuning of the placements of the temperature sensors 8a, 8b, an optimum

adapted heating of the seat is obtained, where the desired temperature of the seat's surface is obtained relatively quickly, but without being accompanied by too large temperature variations, which would be the case when a single temperature sensor is placed relatively far from the electrical heater. Neither
5 is the too slow warm-up of the seat obtained, which would be the consequence of a placement of a single temperature sensor placed relatively close to the electrical heater.

Further advantages with a detector unit of this kind is that the first
10 temperature sensor 8a that is placed on or in the vicinity of the electrical heater 3 detects the electrical heater's temperature even during a convective cooling of the seat, i.e. with the cooling device 1. The other sensor 8b that is placed at a distance from the electrical heater, on the other hand, senses the convective cooling, which means that the convective cooling of the seat 2
15 affects the other temperature sensor 8b. It is the most cold of the two temperature sensors 8a, 8b that controls the electrical heater's 3 control cycle, which means that the second temperature sensor 8b controls the electrical heater's 3 control cycle during cooling of the seat. A central connection 14 may be placed between the two temperature sensors for
20 diagnostics or as measuring sensors to an algorithm for an enhanced adjustment. When the central connection 14 is used, information about both the electrical heater's 3 temperature, which is detected by the first temperature sensor 8a and a temperature at a distance from the electrical heater 3 which is detected by 8b and that depends on the convective cooling
25 may be provided to the control unit 4.

Further advantages with a detector unit of this kind is that it may be used even when the electrical heater 3 not is turned on, or when an electrical heater is missing to determine temperature differences depending on the
30 user's condition. The first temperature sensor 8a may be placed in the seat on or in the vicinity of the user's body, e.g. under one of the thighs, under the buttocks or behind the back, where the first temperature sensor 8a detects a

temperature that depends on the user's temperature and where the air flow is low. The other sensor 8b may be placed where the air flow is higher, i.e. at a distance from the user's body, e.g. between the user's legs. The central connection 14 may also here be used to provide information of the two
5 temperature sensors 8a, 8b to the control unit, e.g. determine if one of the temperature sensors detects a temperature that is too cold or too warm in relation to the temperature that the other temperature sensor detects, or if any of the temperature sensors detects a temperature that lies at or over predetermined temperature limits, i.e. too hot or too cold. The information
10 concerning the two temperature sensors provides the control algorithm and thus the control unit the possibility to control e.g. different fans and cooling element, in order to more precisely control air flow and cooling to local spots in the seat, e.g. to a locally warm spot without lowering the temperature further at an already locally cold spot.

15

To sum up, it must be mentioned that the present invention uses equipment already available in the seat such as an electrical heater 3, detector unit 8 and equipment necessary for these units, such as cable pullings, "data buses", control unit 4 and central computer unit 11, which is both
20 economically advantageous and space saving. Further, the method to use electrical heaters 3 for cooling the seat 2 together with a cooling device 1, provides a fast-cooling and fast-drying device with optimum comfort for the user without any convective cooling problems for the user. Further advantages is the increased possibility to more quickly, more accurately and
25 more individually adapted adjust the seat temperature and the dampness of the sitting surface.

Fig. 7 shows that the arrangement according to fig. 1-6 also may be connected to an external system where an external detector 15 measures the
30 driver's health condition, e.g. via an eye detector which measures the eye's activity, a pulse meter, breathing or similar. When the external detector 15 detects that the driver is falling asleep, a signal is provided to the control unit

- 4 to start an algorithm, a health algorithm, where all climate systems available in the vehicle via the health algorithm are adjusted to provide a stimulating effect to the driver, e.g. cooling of the seat and thus a cooling of the driver via the cooling device 1, or by an increase of the fan velocity and 5 cooling power, or by alternating use of cold, heat and fan, or in any other way that provides a stimulating effect to the driver. The external system may be any system that detects deviations in the behaviour of the driver or the car in relation to a predetermined standard.
- 10 An algorithm is shown schematically in Fig. 8, a humidity algorithm, that preferably may be a part of a larger control algorithm for control of a device via a control unit described according to any of the embodiments of the invention mentioned above. The humidity algorithm is based on that the material of the seat is known, and on that the humidity content of the air is 15 coupled to the air temperature via the heat capacity of the air according to known scientific methods, after which a certain predetermined air temperature coupled to a first humidity content of the air and a further air temperature, which air temperature may be measured with e.g. the detector unit 8, coupled to a second humidity content of the air, provides a 20 temperature difference ΔT and a humidity content difference, which provides a necessary time period Δ_{Time} calculated in e.g. the central computer unit 11, in order to get rid of the humidity content of the air by ventilation, which consists of the humidity content difference, by the control unit 4 controlling the electrical heater 3 to emit a certain power Ph by current supply, i, and 25 that the fan 6, 9 according to fig. 1-3 is controlled to emit a certain flow, a certain power Pf by current supply, i, and possibly also the cooling element 5 is controlled to absorb a certain power Pc by current supply. In figure 8, the temperature is shown with a dashed line, and the powers Ph , Pf , Pc and the current intensity with a common solid line, which, however, shall not be 30 interpreted as that they supply an equal amount of power or current, but solely as a schematic view of the algorithm as time lapses.

The humidity content and thus the time period Δ_{Time} may also be acquired as a measured change of the air temperature and the air flow, which provides control of the electrical heater 3 and/or the fan 6 and/or the cooling element

5 5.

For certain air flows in combination with a certain temperature change, the air is always dry, i.e. mainly free of humidity, which may be used at control of the electrical heater 3 and/or the fan 6 and/or the cooling element 5 in order to 10 obtain the desired effect, e.g. during drying.

A change of the electrical heater's power in combination with the time t for reaching a certain temperature $T + \Delta T$ starting from a first temperature T, also provides an idea of the humidity content in the air, which in turn provides 15 the necessary period of time Δ_{Time} that is used in a humidity control algorithm in the control unit 4 during control of the electrical heater 3 and/or the fan 6 and/or the cooling element 5, and that may be used to provide e.g. a sufficient time period to a timer function at e.g. drying or pre-cooling of the seat.

20

The invention is not limited to what has been disclosed above, but different embodiments are possible within the scope of the claims. The fan may for example be controlled by a button manoeuvred by the user, or by a chair computer, or by another electronic unit.

25

The air conditioning equipment 10 described above, may consist of a simple compartment ventilation consisting of a sole fan or by another device appropriate for the purpose.

30 The invention may advantageously be used solely for ventilation, i.e. not for cooling, of different seat parts, e.g. the back of a user is often humid and

warm why a device or a procedure according to the invention may be used for the ventilation and/or heating/cooling of the back part of the seat, i.e. for ventilation solely, a fan may be placed in the back part of the seat and for cooling according to the invention, an electrical heater and a cooling device
5 may be placed in the back part of the seat. According to previously known technology, an electrical heater and a sensor are often placed in the back part of the seat when it is manufactured.

The cooling device 1 is not tied to what has been mentioned above, but may
10 comprise any kind of cooling element respective fan that provides the desired result. The cooling element 1 may e.g. be a part of the air conditioning equipment that is already available, where a cooling agent is led from the air conditioning equipment to a cooling coil (not shown) placed in or in the vicinity of the seat. The fan 6, 9, 26, 29 may also be replaced by any kind of
15 blowing/sucking device that provides the desired result. Several fans may be placed in the seat in order to provide a more local influence at certain spots in the seat. There may also be an air distribution system where a multitude of channels leads the air to desired locations in the seat and where the air flow may be determined and conducted by means of special control devices, e.g.
20 flaps, throttling devices etc.

The cooling device may also be used in seats that lack electrical heaters, with a placement of the sensor at a suitable location, e.g. at the seat's surface, for control of the control cycle.

25 The invention is not limited to the usage of a detector unit with two temperature sensors. In principle, conventional NTC or PTC elements with only one sensor may be used.

30 The temperature sensor and the humidity sensor respectively, may be of any kind that provides the desired result and may be placed at a suitable place free of choice to provide satisfactory information to the control unit. An

- advantageous placement of the two sensors should however be in the vicinity of the user, i.e. in the vicinity of the seat's surface and/or in the surface of the back part of the seat. The number of sensors is not limited, however, but a number of sensors may advantageously be used, e.g. one sensor for the
- 5 electrical heater and one for detection of the temperature at a distance from the electrical heater, e.g. in the seat's surface. Except different placements of the sensors in the seat, other sensors may also be placed at different locations in the car in order to provide the control unit with information.
- 10 The arrangement according to the invention may also be used for pre-cooling of the seat when the user indicates his presence with e.g. a transmitter, e.g. by unlocking the vehicle and turning the alarm off. The temperature adjustment of the seat then already starts before the user has been seated in the car.

CLAIMS

1. Device for temperature control and ventilation of a seat (2) comprising a cooling device (1), characterized in that the seat (2) comprises an electrical heater (3) and a detector unit (8) in connection with the electrical heater (3) for detection of a temperature (T) at said electrical heater (3), where the cooling device (1) and the electrical heater (3) are activated in dependence of at least the detected temperature (t).
5
- 10 2. Device according to claim 1, characterized in that the electrical heater (3) is arranged for being activated in dependence of a temperature detected by the detector unit (8), which temperature represents both conductive and convective cooling from the cooling device (1) and conductive heat from the electrical heater (3).
15
- 15 3. Device according to claim 1 or 2, characterized in that the cooling device (1) comprises a cooling element (5) and a fan (6, 9).
- 20 4. Device according to any of the preceding claims, characterized in that the cooling device (1) of the seat (2) is arranged in connection with the seat (2).
25
- 25 5. Device according to any of the claims 1-3, where an air conditioning device (10) is arranged in connection with said seat (2) characterized in that the cooling device (1) of the seat (2) is arranged in connection with the air conditioning equipment (10).
30
- 30 6. Device according to claim 5, characterized in that the fan (9) is arranged in connection with the air conditioning equipment (10).

7. Device according to claim 1 or 2, characterized in that the seat's (2) cooling device (1) consists of an air conditioning equipment (10) arranged in connection with the seat (2).
- 5 8. Device according to claim 7, characterized in that the cooling device (1) comprises a fan (9) that is arranged in connection with the air conditioning equipment (10).
- 10 9. Device according to any of the claims 3-8, characterized in that the fan (6, 9) is directed in such a way that air is blown in the direction from the lower side of the seat (2) towards the seat's sitting surface (7).
- 15 10. Device according to claim 7 or 8, characterized in that the fan (26, 29) is directed in such a way that air is sucked in the direction from the sitting surface (7) of the seat towards the seat's lower side.
- 20 11. Device according to any of the preceding claims, characterized in that a humidity sensor (28) is arranged in connection with the sitting surface (7) of the seat (2) for detection of humidity.
- 25 12. Security system at a vehicle, characterized in that it comprises a detector (15) which is arranged to detect deviations from a determined standard of a driver or deviations from a determined standard of the running conditions of the vehicle, where the detector (15) is arranged to activate at least one cooling device (1) after having detected said deviation.
- 30 13. Method for temperature control and ventilation of a seat (2) comprising a cooling device (1), characterized in that the seat (2) comprises an electrical heater (3) and a detector unit (8) in connection with the electrical heater (3) where the detector unit (8) detects a temperature (T) at said electrical heater (3), where the cooling device (1) and the electrical heater (3) are activated in dependence of at least the detected temperature (t).

14. Method according to claim 13, characterized in that the electrical heater (3) is activated in dependence of a temperature detected by the detector unit (8), which temperature represents both conductive and
5 convective cooling from the cooling device (1) and conductive heat from the electrical heater (3).
15. Method according to claim 13 or 14, characterized in that it comprises;
- 10 detection of a first temperature,
 supply of a certain power (P) to the electrical heater (13),
 detection of a second temperature a certain time (t) after the detection of said first temperature,
 determination of a temperature difference (ΔT) starting from said
15 first and second temperature,
 determination of the humidity content of the air starting from said first and second temperature and said power (P),
 determination of a time period (Δ_{Time}) starting from the humidity content of the air and said first and second temperature and said power (P),
20 control of the electrical heater (3) and the cooling device (1) in dependence of said time period (Δ_{Time}) to eliminate the humidity content of the air.
16. Method according to claim 15, characterized in that the fact that
25 certain air flows in combination with a certain temperature change corresponds to air mainly free of humidity, is used via the humidity control algorithm in order to provide information to the control unit (4) concerning control of the electrical heater (3) and/or the fan (6) and/or the cooling element (5) during drying of the seat (2).

17. Method for a security system at a vehicle, characterized in that a detector (15) detects deviations from a determined standard of a driver or deviations from a determined standard of the running conditions of the vehicle, where the detector (15) activates at least the cooling device (1) after
5. having detected said deviation.

1/8

FIG. 1

2/8

FIG. 2

3/8

FIG. 3

4/8

FIG.4

5/8

FIG. 5

6/8

FIG. 6

7/8

FIG. 7

8/8

FIG. 8

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 01/01521

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: G05D 23/19, B60K 28/06, B60N 2/56
 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: G05D, B60K, B60N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5921314 A (SCHULLER ET AL), 13 July 1999 (13.07.99), column 3, line 32 - column 6, line 63, figures 1-3	1-10,13-15
Y	--	11
Y	US 5934748 A (FAUST ET AL), 10 August 1999 (10.08.99), column 2, line 18 - line 20; column 3, line 64, figure 1, abstract	11
X	EP 0227610 A1 (IVECO FIAT S.P.A.), 1 July 1987 (01.07.87), column 1, line 40 - column 3, line 8, figures 1-2, claim 1, abstract	12,17
	--	

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "B" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
13 July 2001	16 -07- 2001
Name and mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Facsimile No. + 46 8 666 02 86	Authorized officer Roland Landström/JÄn Telephone No. + 46 8 782 25 00

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 01/01521

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0929055 A1 (RIPPBAUER, G), 14 July 1999 (14.07.99), column 2, line 27 - column 6, line 46, figures 1-7, abstract -- -----	12,17

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/SE 01/01521**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos. 16 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
PCT Article 6

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

- I. Claims 1-11, 13-16
Seat with temperature control and ventilation

- II. Claims 12, 17
Safety system for vehicle

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

02/07/01

International application No.

PCT/SE 01/01521

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 5921314 A	13/07/99	CA 2211943 A DE 59601826 D EP 0809576 A,B SE 0809576 T3 ES 2133942 T JP 3064016 B JP 10503733 T WO 9625301 A		22/08/96 00/00/00 03/12/97 16/09/99 12/07/00 07/04/98 22/08/96
US 5934748 A	10/08/99	DE 19703516 C FR 2759038 A,B GB 2321722 A,B GB 9801730 D IT 1298875 B IT RM980051 A JP 3108673 B JP 10215979 A		07/05/98 07/08/98 05/08/98 00/00/00 07/02/00 26/07/99 13/11/00 18/08/98
EP 0227610 A1	01/07/87	IT 1208838 B IT 8568033 D		10/07/89 00/00/00
EP 0929055 A1	14/07/99	AU 1431399 A WO 9935626 A		26/07/99 15/07/99