QCD Scattering Amplitudes

Sean Ericson

UO

June 5, 2023

Introduction

Introduction

• Consider a lagrangian of N fields $\mathcal{L}(\phi_i)$ which is invariant under the global SU(N) transformation $\phi_i \to U_{ij}\phi_j$.

Introduction

- Consider a lagrangian of N fields $\mathcal{L}(\phi_i)$ which is invariant under the global SU(N) transformation $\phi_i \to U_{ij}\phi_j$.
- This necessitates the inclusion of an SU(N) gauge field $A_{\mu}(x)$ (an NxN traceless hermitian matrix field).

Introduction

- Consider a lagrangian of N fields $\mathcal{L}(\phi_i)$ which is invariant under the global SU(N) transformation $\phi_i \to U_{ij}\phi_j$.
- This necessitates the inclusion of an SU(N) gauge field $A_{\mu}(x)$ (an NxN traceless hermitian matrix field).
- Also, we must promote normal derivatives ∂_{μ} to covariant derivatives $D_{\mu} = \partial_{\mu} igA_{\mu}$.

SU(N) Generators

SU(N) Generators

Gauge transformations are built from the generator matrices
 T^a of the symmetry group.

SU(N) Generators

- Gauge transformations are built from the generator matrices
 T^a of the symmetry group.
- The T^a satisfy the commutation relation

$$\left[T^a, T^b\right] = if^{abc}T^c$$

and are normalized according to

$$\operatorname{Tr}\left[T^{a}T^{b}\right] = \frac{1}{2}\delta^{ab}$$

SU(N) Generators

- Gauge transformations are built from the generator matrices
 T^a of the symmetry group.
- The T^a satisfy the commutation relation

$$\left[T^a, T^b\right] = if^{abc}T^c$$

and are normalized according to

$$\operatorname{Tr}\left[T^{a}T^{b}\right] = \frac{1}{2}\delta^{ab}$$

• The gauge field can be expanded in the basis of the generators:

$$A_{\mu}(x) = A_{\mu}^{a}(x)T^{a}$$

where

$$A^a_\mu(x) = 2 \operatorname{Tr}[A_\mu(x) T^a]$$

Building the lagrangian

Building the lagrangian

• The field strength is given by

$$F_{\mu\nu} := \frac{i}{g} [D_{\mu}, D_{\nu}]$$

$$= \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} - ig[A_{\mu}, A_{\nu}]$$

$$= \partial_{\mu} A_{\nu}^{c} - \partial_{\nu} A_{\mu}^{c} + gf^{abc} A_{\mu}^{a} A_{\nu}^{b}$$

Building the lagrangian

• The field strength is given by

$$F_{\mu\nu} := \frac{i}{g} [D_{\mu}, D_{\nu}]$$

$$= \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} - ig[A_{\mu}, A_{\nu}]$$

$$= \partial_{\mu} A_{\nu}^{c} - \partial_{\nu} A_{\mu}^{c} + gf^{abc} A_{\mu}^{a} A_{\nu}^{b}$$

The kinetic term in the lagrangian is then

$$\mathcal{L}_{\mathsf{kin}} = -rac{1}{4} F^{\mathsf{a}\mu
u} F^{\mathsf{a}}_{\mu
u} = -rac{1}{2} \operatorname{Tr}[F^{\mu
u} F_{\mu
u}]$$

Building the lagrangian

• The field strength is given by

$$\begin{aligned} F_{\mu\nu} &:= \frac{i}{g} [D_{\mu}, D_{\nu}] \\ &= \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} - ig[A_{\mu}, A_{\nu}] \\ &= \partial_{\mu} A_{\nu}^{c} - \partial_{\nu} A_{\mu}^{c} + g f^{abc} A_{\mu}^{a} A_{\nu}^{b} \end{aligned}$$

The kinetic term in the lagrangian is then

$$\mathcal{L}_{\mathsf{kin}} = -rac{1}{4} {\mathsf{F}}^{\mathsf{a}\mu
u} {\mathsf{F}}^{\mathsf{a}}_{\mu
u} = -rac{1}{2} \operatorname{\mathsf{Tr}} [{\mathsf{F}}^{\mu
u} {\mathsf{F}}_{\mu
u}]$$

 Note that this term includes interactions among the gauge fields.

Building the lagrangian

The field strength is given by

$$\begin{aligned} F_{\mu\nu} &\coloneqq \frac{i}{g} [D_{\mu}, D_{\nu}] \\ &= \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} - ig[A_{\mu}, A_{\nu}] \\ &= \partial_{\mu} A_{\nu}^{c} - \partial_{\nu} A_{\mu}^{c} + g f^{abc} A_{\mu}^{a} A_{\nu}^{b} \end{aligned}$$

The kinetic term in the lagrangian is then

$$\mathcal{L}_{\mathsf{kin}} = -rac{1}{4} F^{\mathsf{a}\mu
u} F^{\mathsf{a}}_{\mu
u} = -rac{1}{2} \operatorname{Tr}[F^{\mu
u} F_{\mu
u}]$$

- Note that this term includes interactions among the gauge fields.
 - A theory of this type is called Yang-Mills theory.

Specific Example: SU(3)

Specific Example: SU(3)

• Quarks: Ψ_{il}

Specific Example: SU(3)

- Quarks: Ψ_{il}
 - Six flavors: up, down, strange, charm, top, bottom.

Specific Example: SU(3)

- Quarks: Ψ_{il}
 - Six flavors: up, down, strange, charm, top, bottom.
 - Three colors: red, blue, green (corresponding to the values of the SU(3) index).

Specific Example: SU(3)

- Quarks: Ψ_{il}
 - Six flavors: up, down, strange, charm, top, bottom.
 - Three colors: red, blue, green (corresponding to the values of the SU(3) index).
- Gluons: A_{μ}^{a}

Eight gluons (corresponding to the generators of the group)

Specific Example: SU(3)

- Quarks: Ψ_{il}
 - Six flavors: up, down, strange, charm, top, bottom.
 - Three colors: red, blue, green (corresponding to the values of the SU(3) index).
- ullet Gluons: A_{μ}^{a} Eight gluons (corresponding to the generators of the group)
- The Lagrangian

Specific Example: SU(3)

- Quarks: Ψ_{iI}
 - Six flavors: up, down, strange, charm, top, bottom.
 - Three colors: red, blue, green (corresponding to the values of the SU(3) index).
- Gluons: A_{μ}^{a} Eight gluons (corresponding to the generators of the group)
- The Lagrangian

$$\mathcal{L} = i\bar{\Psi}_{il} \not \! D_{ij} \Psi_{jl} - m_l \bar{\Psi}_{il} \Psi_{il} - \frac{1}{2} \operatorname{Tr}[F^{\mu\nu} F_{\mu\nu}]$$

A Complication...

A Complication...

• The path integral is given by

$$Z(J) \propto \int \mathcal{D}A \; \mathrm{e}^{i S_{\mathsf{YM}}(A,J)}$$

where

$$S_{\mathsf{YM}} = \int \mathrm{d}^4 x \left[-\frac{1}{4} F^{a\mu\nu} F^a_{\mu\nu} + J^{a\mu} A^a_{\mu} \right]$$

A Complication...

• The path integral is given by

$$Z(J) \propto \int \mathcal{D}A \; e^{i\mathsf{S}_{\mathsf{YM}}(A,J)}$$

where

$$S_{\mathsf{YM}} = \int \mathrm{d}^4 x \left[-rac{1}{4} F^{\mathsf{a}\mu
u} F^{\mathsf{a}}_{\mu
u} + J^{\mathsf{a}\mu} A^{\mathsf{a}}_{\mu} \right]$$

• Due to the nonabelian nature of the symmetry, the strategy used in U(1) gauge theory of excluding components of A^{μ} parallel to k^{μ} no longer works.

A Complication...

• The path integral is given by

$$Z(J) \propto \int \mathcal{D}A \; e^{i\mathsf{S}_{\mathsf{YM}}(A,J)}$$

where

$$S_{\mathsf{YM}} = \int \mathrm{d}^4 x \left[-rac{1}{4} F^{a\mu
u} F^a_{\mu
u} + J^{a\mu} A^a_\mu
ight]$$

- Due to the nonabelian nature of the symmetry, the strategy used in U(1) gauge theory of excluding components of A^{μ} parallel to k^{μ} no longer works.
- Overcomming this difficulty will require...ghosts!!!

Fixing the Gauge

Fixing the Gauge

• The general form of the gauge-fixed path integral is

$$Z(J) \propto \int \mathcal{D}A \, \det\!\left(rac{\delta G^a(x)}{\delta heta^b(y)}
ight) \prod_{x,a} \delta(G) e^{i S_{\mathsf{YM}}}$$

where G(x) is the gauge-fixing function, and the θ are the parameters describing the transformation.

Fixing the Gauge

• The general form of the gauge-fixed path integral is

$$Z(J) \propto \int \mathcal{D}A \, \det\!\left(rac{\delta G^a(x)}{\delta heta^b(y)}
ight) \prod_{x,a} \delta(G) e^{i \mathsf{S}_{\mathsf{YM}}}$$

where G(x) is the gauge-fixing function, and the θ are the parameters describing the transformation.

 The functional determinant can be expressed as a path integral over complex Grassmann variables:

$$\det rac{\delta G^a(x)}{\delta heta^b(y)} \propto \int \mathcal{D}c \mathcal{D}ar{c} \mathrm{e}^{iS_{\mathsf{gh}}}$$

where the fields c fields are known as Faddeev-Popov ghosts, and $S_{\rm gh}=\int {\rm d}^4 x \bar c^a \partial^\mu D_\mu^{ab} c^b$ is the ghost action.

The Full Path Integral

The Full Path Integral

 The full, gauge-fixed, path integral for Yang-Mills theory is thus

$$Z(J) \propto \int \mathcal{D}A\mathcal{D}ar{c}\mathcal{D}c \; \exp[i(S_{\mathsf{YM}} + S_{\mathsf{gh}} + S_{\mathsf{gf}})]$$

where, in R_{ξ} gauge,

$$\begin{split} S_{\mathsf{YM}} &= \int \mathrm{d}^4 x \left[-\frac{1}{4} F^{a\mu\nu} F^a_{\mu\nu} + J^{a\mu} A^a_\mu \right] \\ S_{\mathsf{gh}} &= \int \mathrm{d}^4 x \; \bar{c}^a \partial^\mu D^{ab}_\mu c^b \\ &= \int \mathrm{d}^4 x \left[-\partial^\mu \bar{c}^a \partial_\mu c^a + g f^{abc} A^c_\mu \partial^\mu \bar{c}^a c^b \right] \\ S_{\mathsf{gf}} &= \int \mathrm{d}^4 x \left[-\frac{1}{2 \xi} \partial^\mu A^a_\mu \partial^\nu A^a_\nu \right] \end{split}$$

Expanding the Lagrangian

Expanding the Lagrangian

Consider just the Yang-Mills and gauge-fixing parts of the path integral:

$$\begin{split} \mathcal{L}_{\text{YM}} + \mathcal{L}_{\text{gf}} &= -\frac{1}{4} F^{e\mu\nu} F^e_{\mu\nu} - \frac{1}{2\xi} \partial^\mu A^e_\mu \partial^\nu A^e_\nu \\ &= \frac{1}{2} A^{e\mu} (g_{\mu\nu} \partial^2 - \partial_\mu \partial_\nu) A^{e\nu} + \frac{1}{2\xi} A^{e\mu} \partial_\mu \partial_\nu A^{e\nu} \\ &+ g f^{abc} A^{a\mu} A^{b\nu} \partial_\mu A^c_\nu \\ &- \frac{1}{4} g^2 f^{abe} f^{cde} A^{a\mu} A^{b\nu} A^c_\mu A^d_\nu \end{split}$$

Determining the Propagator and Vertices

Determining the Propagator and Vertices

• From the lagrangian in the previous slide, we can see that:

Determining the Propagator and Vertices

- From the lagrangian in the previous slide, we can see that:
- The gluon propagator is given by

$$ilde{\Delta}^{ab}_{\mu
u}(k) = rac{\delta^{ab}}{k^2 - i\epsilon} \left(g_{\mu
u} + (\xi - 1) rac{k_\mu k_
u}{k^2}
ight)$$

Determining the Propagator and Vertices

- From the lagrangian in the previous slide, we can see that:
- The gluon propagator is given by

$$ilde{\Delta}^{ab}_{\mu
u}(k) = rac{\delta^{ab}}{k^2 - i\epsilon} \left(g_{\mu
u} + (\xi - 1) rac{k_\mu k_
u}{k^2}
ight)$$

The three-gluon vertex factor is

$$iV_{\mu
u
ho}^{abc}(p,q,r)=gf^{abc}\left[(q-r)_{\mu}g_{
u
ho}+(r-p)_{
u}g_{
ho\mu}+(p-q)_{
ho}g_{\mu
u}
ight]$$

Feynman Rules for Nonabelian Gauge Theory (cont.)

Determining the Propagator and Vertices

- From the lagrangian in the previous slide, we can see that:
- The gluon propagator is given by

$$ilde{\Delta}^{ab}_{\mu
u}(k) = rac{\delta^{ab}}{k^2 - i\epsilon} \left(g_{\mu
u} + (\xi - 1) rac{k_\mu k_
u}{k^2}
ight)$$

The three-gluon vertex factor is

$$iV_{\mu
u
ho}^{abc}(p,q,r)=gf^{abc}\left[(q-r)_{\mu}g_{
u
ho}+(r-p)_{
u}g_{
ho\mu}+(p-q)_{
ho}g_{\mu
u}
ight]$$

The four-gluon vertex factor is

$$iV_{\mu\nu\rho\sigma}^{abcd} = -ig^2f^{abe}f^{cde}g_{\mu\rho}g_{\nu\sigma} + \mathsf{Perms}\{(b,\nu),(c,\rho),(d,\sigma)\}$$

Feynman Rules for Nonabelian Gauge Theory (cont.)

Determining the Propagator and Vertices

- From the lagrangian in the previous slide, we can see that:
- The gluon propagator is given by

$$ilde{\Delta}^{ab}_{\mu
u}(k) = rac{\delta^{ab}}{k^2 - i\epsilon} \left(g_{\mu
u} + (\xi - 1) rac{k_\mu k_
u}{k^2}
ight)$$

The three-gluon vertex factor is

$$iV_{\mu
u
ho}^{abc}(p,q,r)=gf^{abc}\left[(q-r)_{\mu}g_{
u
ho}+(r-p)_{
u}g_{
ho\mu}+(p-q)_{
ho}g_{\mu
u}
ight]$$

The four-gluon vertex factor is

$$iV_{\mu
u
ho\sigma}^{abcd} = -ig^2f^{abe}f^{cde}g_{\mu
ho}g_{
u\sigma} + \mathsf{Perms}\{(b,
u),(c,
ho),(d,\sigma)\}$$

 These vertex factors are crazy complicated! Tree-level spin/color summed/averaged gg → gg cross section has 12,996 terms!!

How Can We Simplify Things?

 The quantum action formalism allows the computation of scattering amplitudes from tree-level diagrams only.

- The quantum action formalism allows the computation of scattering amplitudes from tree-level diagrams only.
 - The ghost fields only appear in loops, thus need not be considered.

- The quantum action formalism allows the computation of scattering amplitudes from tree-level diagrams only.
 - The ghost fields only appear in loops, thus need not be considered.
- As we saw in the previous slide, even tree-level computations in Yang-Mills theory seem to be rather involved.

- The quantum action formalism allows the computation of scattering amplitudes from tree-level diagrams only.
 - The ghost fields only appear in loops, thus need not be considered.
- As we saw in the previous slide, even tree-level computations in Yang-Mills theory seem to be rather involved.
- A clever choice of gauge, the Gervais-Neveu gauge, can greatly simplify calculations.

Change Convention

Change Convention

• We begin with a *slight* redefinition of the generator norm and commutation relation:

$$\operatorname{Tr}\left[T^{a}T^{b}\right] = \delta^{ab} \implies \left[T^{a}, T^{b}\right] = i\sqrt{2}f^{abc}T^{c}$$

Change Convention

• We begin with a *slight* redefinition of the generator norm and commutation relation:

$$\operatorname{Tr}\left[T^{a}T^{b}\right] = \delta^{ab} \implies \left[T^{a}, T^{b}\right] = i\sqrt{2}f^{abc}T^{c}$$

Next, introduce the matrix-valued complex tensor

$$H_{\mu\nu} \coloneqq \partial_{\mu}A_{\nu} - rac{ig}{\sqrt{2}}A_{\mu}A_{
u}$$

Change Convention

• We begin with a *slight* redefinition of the generator norm and commutation relation:

$$\operatorname{Tr}\left[T^{a}T^{b}\right] = \delta^{ab} \implies \left[T^{a}, T^{b}\right] = i\sqrt{2}f^{abc}T^{c}$$

Next, introduce the matrix-valued complex tensor

$$H_{\mu\nu} \coloneqq \partial_{\mu}A_{\nu} - rac{i\mathsf{g}}{\sqrt{2}}A_{\mu}A_{
u}$$

• The field strength tensor and the Yang-Mills lagrangian can now be written in terms of $H_{\mu\nu}$:

$$F_{\mu\nu} = H_{\mu\nu} - H_{\nu\mu}; \quad \mathcal{L}_{YM} = -\frac{1}{2} \operatorname{Tr}[H^{\mu\nu}H_{\mu\nu} - H^{\mu\nu}H_{\nu\mu}]$$

The Gervais-Neveu Gauge-Fixed Lagrangian

The Gervais-Neveu Gauge-Fixed Lagrangian

• The gauge-fixing lagrangian is

$$\mathcal{L}_{\mathsf{gf}} = -\frac{1}{2}\,\mathsf{Tr}\{\mathit{GG}\}$$

where

$$G(x) = H^{\mu}_{\mu}$$

The Gervais-Neveu Gauge-Fixed Lagrangian

• The gauge-fixing lagrangian is

$$\mathcal{L}_{\mathsf{gf}} = -\frac{1}{2} \, \mathsf{Tr} \{ \mathit{GG} \}$$

where

$$G(x) = H^{\mu}_{\mu}$$

• Note that \mathcal{L}_{gf} is *not* hermitian, but this is acceptable as its role is merely to fix the gauge.

The Gervais-Neveu Gauge-Fixed Lagrangian

• The gauge-fixing lagrangian is

$$\mathcal{L}_{gf} = -\frac{1}{2}\,\text{Tr}\{\textit{GG}\}$$

where

$$G(x) = H^{\mu}_{\mu}$$

- Note that \mathcal{L}_{gf} is *not* hermitian, but this is acceptable as its role is merely to fix the gauge.
- Adding the gauge-fixing and Yang-Mills lagrangians gives

$$\mathcal{L}=-rac{1}{2}\, ext{Tr}ig[H^{\mu
u}H_{\mu
u}-H^{\mu
u}H_{
u\mu}+H^{\mu}_{\ \mu}H^{
u}_{\
u}ig]$$

Feynman rules for $N \times N$ Matrix Fields

A Slicker Formalism

Feynman rules for $N \times N$ Matrix Fields

A Slicker Formalism

 The (expanded) lagrangian for SU(N) Yang-Mills theory in Gervais-Neveu gauge is

$$\mathcal{L} = \text{Tr} \left[-\frac{1}{2} \partial^{\mu} A^{\nu} \partial_{\mu} A_{\nu} - i \sqrt{2} g \partial^{\mu} A^{\nu} A_{\nu} A_{\mu} + \frac{1}{4} g^2 A^{\mu} A^{\nu} A_{\mu} A_{\nu} \right]$$

Feynman rules for $N \times N$ Matrix Fields

A Slicker Formalism

• The (expanded) lagrangian for SU(N) Yang-Mills theory in Gervais-Neveu gauge is

$$\mathcal{L} = \mathsf{Tr}igg[-rac{1}{2}\partial^{\mu}A^{
u}\partial_{\mu}A_{
u} - i\sqrt{2}g\partial^{\mu}A^{
u}A_{
u}A_{\mu} + rac{1}{4}g^{2}A^{\mu}A^{
u}A_{\mu}A_{
u}igg]$$

• Consider the simpler example of a hermitian *non*-traceless $N \times N$ matrix B(x) with a lagrangian of the form

$$\begin{split} \mathcal{L} &= \mathrm{Tr} \bigg[-\frac{1}{2} \partial^{\mu} B \partial_{\mu} B + \frac{1}{3} g B^3 - \frac{1}{4} \lambda B^4 \bigg] \\ &= -\frac{1}{2} \partial^{\mu} B^a \partial_{\mu} B^a + \frac{1}{3} \mathrm{Tr} \Big[T^a T^b T^c \Big] B^a B^b B^c \\ &- \frac{1}{4} \lambda \, \mathrm{Tr} \Big[T^a T^b T^c T^d \Big] B^a B^b B^c B^d \end{split}$$

where we've expanded in the generators in the second equality.

Matrix Diagrams

Matrix Diagrams

 Clearly, using the generator-expanded form of the lagrangian will lead to the exact complexity that we're trying to avoid.

Matrix Diagrams

- Clearly, using the generator-expanded form of the lagrangian will lead to the exact complexity that we're trying to avoid.
- We therefore proceed by using the non-expanded form of the lagrangian, but with the matrix indices explicitly included (e.g. B(x)ⁱ_j)

Matrix Diagrams

- Clearly, using the generator-expanded form of the lagrangian will lead to the exact complexity that we're trying to avoid.
- We therefore proceed by using the non-expanded form of the lagrangian, but with the matrix indices explicitly included (e.g. B(x);
- The propagator for B_i^j then has the form

$$\tilde{\Delta}_{ik}^{jl}(k^2) = \frac{(T^a)_i^j (T^a)_k^l}{k^2 - i\epsilon} = \frac{\delta_i^l \delta_k^j}{k^2 - i\epsilon}$$

Matrix Diagrams

- Clearly, using the generator-expanded form of the lagrangian will lead to the exact complexity that we're trying to avoid.
- We therefore proceed by using the non-expanded form of the lagrangian, but with the matrix indices explicitly included (e.g. B(x);
- The propagator for B_i^j then has the form

$$\tilde{\Delta}_{ik}^{jl}(k^2) = \frac{(T^a)_i^j (T^a)_k^l}{k^2 - i\epsilon} = \frac{\delta_i^l \delta_k^j}{k^2 - i\epsilon}$$

• We also adopt a double-line convetion for Feynman diagrams:

 $2 \rightarrow 2$ Scattering

$2 \rightarrow 2$ Scattering

The contributing tree-level diagrams are given by

plus all permutations of 2, 3, and 4.

$2 \rightarrow 2$ Scattering

• The contributing tree-level diagrams are given by

plus all permutations of 2, 3, and 4.

The resulting ampluted is

$$i\mathcal{T} = \text{Tr}[T^{a_1}T^{a_2}T^{a_3}T^{a_4}]\left(\frac{(ig)^2(-i)}{(k_1+k_2)^2} + \frac{(ig)^2(-i)}{(k_1+k_4)^2} - i\lambda\right) + \text{Perms}$$

Evaluating $|\mathcal{T}|^2$

Evaluating $|\mathcal{T}|^2$

• When we square the scattering amplitude we get terms than include factors of

Evaluating $|\mathcal{T}|^2$

- When we square the scattering amplitude we get terms than include factors of
 - products of traces e.g.

$$\operatorname{\mathsf{Tr}}[T^{a_{i_1}}\dots T^{a_{i_n}}]\operatorname{\mathsf{Tr}}[T^{a_{i'_1}}\dots T^{a_{i'_n}}]^*$$

Evaluating $|\mathcal{T}|^2$

- When we square the scattering amplitude we get terms than include factors of
 - products of traces e.g.

$$\operatorname{\mathsf{Tr}}[T^{a_{i_1}}\dots T^{a_{i_n}}]\operatorname{\mathsf{Tr}}[T^{a_{i'_1}}\dots T^{a_{i'_n}}]^*$$

• products of momentum factors e.g.

$$\left(\frac{g^2}{(k_{i_1}+k_{i_2})^2}+\frac{g^2}{(k_{i_3}+k_{i_4})^2}-\lambda\right)\left(\frac{g^2}{(k_{i'_1}+k_{i'_2})^2}+\frac{g^2}{(k_{i'_3}+k_{i'_4})^2}-\right.$$

Evaluating $|\mathcal{T}|^2$ cont.

Evaluating $|\mathcal{T}|^2$ cont.

• After summing over repeated indices, the trace products yield factors of N^2 and N^4 .

Evaluating $|\mathcal{T}|^2$ cont.

- After summing over repeated indices, the trace products yield factors of N^2 and N^4 .
- Using momentum conservation, there are only three distinct momentum factors:

$$A_2 := \frac{g^2}{(k_1 + k_4)^2} + \frac{g^2}{(k_1 + k_3)^2} - \lambda$$

$$A_3 := \frac{g^2}{(k_1 + k_2)^2} + \frac{g^2}{(k_1 + k_4)^2} - \lambda$$

$$A_4 := \frac{g^2}{(k_1 + k_3)^2} + \frac{g^2}{(k_1 + k_2)^2} - \lambda$$

Evaluating $|\mathcal{T}|^2$ cont.

Evaluating $|\mathcal{T}|^2$ cont.

• The summed amplitude squared is then

$$\sum_{a_1,a_2,a_3,a_4} |\mathcal{T}|^2 = (2N^2 + 2N^2) \sum_j |A_j|^2 + 4N^2 \sum_{j \neq k} A *_j A_k$$
$$= (2N^2 - 2N^2) \sum_j |A_j|^2 + 4N^2 \left(\sum_j A *_j\right) \left(\sum_k A_k\right)$$

where j and k are summed over 2, 3, 4.

Color-Ordered Feynman Rules

Color-Ordered Feynman Rules

• To summarize, the Feynman rules for matrix fields are

- To summarize, the Feynman rules for matrix fields are
 - 1) Draw the diagram in a planar fashion and number the external momenta counter-clockwise.

- To summarize, the Feynman rules for matrix fields are
 - 1) Draw the diagram in a planar fashion and number the external momenta counter-clockwise.
 - 2) The order of the T^{a_i} in the trace is determined by the momenta numbering.

- To summarize, the Feynman rules for matrix fields are
 - 1) Draw the diagram in a planar fashion and number the external momenta counter-clockwise.
 - 2) The order of the T^{a_i} in the trace is determined by the momenta numbering.
 - 3) Internal lines give factors of i/k^2 .

- To summarize, the Feynman rules for matrix fields are
 - 1) Draw the diagram in a planar fashion and number the external momenta counter-clockwise.
 - 2) The order of the T^{a_i} in the trace is determined by the momenta numbering.
 - 3) Internal lines give factors of i/k^2 .
 - 4) 3-point vertices give factors of *ig*.

- To summarize, the Feynman rules for matrix fields are
 - 1) Draw the diagram in a planar fashion and number the external momenta counter-clockwise.
 - 2) The order of the T^{a_i} in the trace is determined by the momenta numbering.
 - 3) Internal lines give factors of i/k^2 .
 - 4) 3-point vertices give factors of ig.
 - 5) 4-point vertices give factors of $-i\lambda$.

A Complication: Tracelessness

A Complication: Tracelessness

• So far the *B* fields have been specifically *not* traceless.

A Complication: Tracelessness

- So far the *B* fields have been specifically *not* traceless.
- Imposing the traceless condition is equivalent to modifying our generator product identity to be

$$(T^a)_i^j (T^a)_k^l = \delta_i^l \delta_k^j - \frac{1}{N} \delta_i^j \delta_k^l$$

A Complication: Tracelessness

- So far the *B* fields have been specifically *not* traceless.
- Imposing the traceless condition is equivalent to modifying our generator product identity to be

$$(T^a)_i^j(T^a)_k^l = \delta_i^l \delta_k^j - \frac{1}{N} \delta_i^j \delta_k^l$$

• This would seem to again make computations more involved, but we will see that this winds up not being the case.

The Twister Formalism

Let's Do the Twist!

The Twister Formalism

Let's Do the Twist!

 Recall that calculations in spinor electrodynamics for massless fermions can be greatly simplified by introducing the notation of twistors:

$$|p] \coloneqq u_-(p) = v_+(p); \quad [p] \coloneqq \bar{u}_+(p) = \bar{v}_-(p)$$

$$\langle p| := u_+(p) = v_-(p); \quad \langle p| := \bar{u}_-(p) = \bar{v}_+(p)$$

The Twister Formalism

Let's Do the Twist!

 Recall that calculations in spinor electrodynamics for massless fermions can be greatly simplified by introducing the notation of twistors:

$$|p] := u_{-}(p) = v_{+}(p); \quad [p] := \bar{u}_{+}(p) = \bar{v}_{-}(p)$$

$$\langle p| := u_+(p) = v_-(p); \quad \langle p| := \bar{u}_-(p) = \bar{v}_+(p)$$

 We can also express boson polarization vectors (with respect to an arbitrary reference momentum q) in twistor notation:

$$\epsilon_{+}^{\mu}(k;q) = -rac{\langle q|\,\gamma^{\mu}|k]}{\sqrt{2}\,\langle qk
angle}; \quad \epsilon_{-}^{\mu}(k;q) = -rac{[q|\gamma^{\mu}\,\langle k|}{\sqrt{2}[qk]}$$

The Twister Formalism (cont.)

Polarization Twister Dot Products

The Twister Formalism (cont.)

Polarization Twister Dot Products

 We will need to express the dot products of polarization vectors in terms of their twister representations.

The Twister Formalism (cont.)

Polarization Twister Dot Products

- We will need to express the dot products of polarization vectors in terms of their twister representations.
- The necessare equations are

$$\begin{aligned} \epsilon_{+}(k;q) \cdot \epsilon_{+}(k';q') &= \frac{\langle qq' \rangle [kk']}{\langle qk \rangle \langle q'k' \rangle} \\ \epsilon_{-}(k;q) \cdot \epsilon_{-}(k';q') &= \frac{[qq'] \langle kk' \rangle}{[qk][q'k']} \\ \epsilon_{+}(k;q) \cdot \epsilon_{-}(k';q') &= \frac{\langle qk' \rangle [kq']}{\langle qk \rangle [q'k']} \end{aligned}$$

Simplifying the Twister/Helicty Connection

Simplifying the Twister/Helicty Connection

• Assign all external lines of a vertex outgoing momenta k_i .

Simplifying the Twister/Helicty Connection

- Assign all external lines of a vertex outgoing momenta k_i .
 - ullet A particle with assigned momentum p has physical momentum $\epsilon_p p$ where

$$\epsilon_p = \begin{cases} +1 & \text{for physically outgoing particles} \\ -1 & \text{for physically incomming particles} \end{cases}$$

Simplifying the Twister/Helicty Connection

- Assign all external lines of a vertex outgoing momenta k_i .
 - ullet A particle with assigned momentum p has physical momentum $\epsilon_p p$ where

$$\epsilon_{\it p} = \begin{cases} +1 & \text{for physically outgoing particles} \\ -1 & \text{for physically incomming particles} \end{cases}$$

With this convention,

Simplifying the Twister/Helicty Connection

- Assign all external lines of a vertex outgoing momenta k_i .
 - ullet A particle with assigned momentum p has physical momentum $\epsilon_p p$ where

$$\epsilon_{\it p} = \begin{cases} +1 & \text{for physically outgoing particles} \\ -1 & \text{for physically incomming particles} \end{cases}$$

- With this convention,
 - |p] and [p| twistors correspond to particles with positive helicity.

Simplifying the Twister/Helicty Connection

- Assign all external lines of a vertex outgoing momenta k_i .
 - ullet A particle with assigned momentum p has physical momentum $\epsilon_p p$ where

$$\epsilon_{p} = \begin{cases} +1 & \text{for physically outgoing particles} \\ -1 & \text{for physically incomming particles} \end{cases}$$

- With this convention,
 - |p] and [p| twistors correspond to particles with positive helicity.
 - |p> and ⟨p| twistors correspond to particles with negative helicity.

Tree-Level N-Gluon Scattering

Back to Amplitudes

Tree-Level N-Gluon Scattering

Back to Amplitudes

• We return now to the lagrangian for SU(N) Yang-Mills theory in Gervais-Neveu gauge:

$$\mathcal{L} = \mathsf{Tr}igg[-rac{1}{2}\partial^{\mu}A^{
u}\partial_{\mu}A_{
u} - i\sqrt{2}g\partial^{\mu}A^{
u}A_{
u}A_{\mu} + rac{1}{4}g^{2}A^{\mu}A^{
u}A_{\mu}A_{
u}igg]$$

Tree-Level N-Gluon Scattering

Back to Amplitudes

• We return now to the lagrangian for SU(N) Yang-Mills theory in Gervais-Neveu gauge:

$$\mathcal{L} = \mathsf{Tr}igg[-rac{1}{2}\partial^{\mu}A^{
u}\partial_{\mu}A_{
u} - i\sqrt{2}g\partial^{\mu}A^{
u}A_{
u}A_{\mu} + rac{1}{4}g^{2}A^{\mu}A^{
u}A_{\mu}A_{
u}igg]$$

The tree-level n-gluon scattering amplitude may be written as

$$\mathcal{T} = g^{n-2} \sum_{\pi \in \tilde{S}_n} \operatorname{Tr}[T^{a_{\pi_1}} \dots T^{a_{\pi_n}}] A(\pi_1, \dots, \pi_n)$$

where the sum is over all non-cyclic permutations of n elements, and the A() are partial amplitudes that are computed with the color-ordered Feynman rules.

The Partial Amplitudes

The Partial Amplitudes

• The partial amplitudes possess three useful symmetries:

The Partial Amplitudes

- The partial amplitudes possess three useful symmetries:
 - 1) Cyclic symmetry:

$$A(2,\ldots,n,1)=A(1,2,\ldots,n)$$

The Partial Amplitudes

- The partial amplitudes possess three useful symmetries:
 - 1) Cyclic symmetry:

$$A(2,\ldots,n,1)=A(1,2,\ldots,n)$$

2) Reflection symmetry:

$$A(n,...,2,1) = (-1)^n A(1,2,...,n)$$

The Partial Amplitudes

- The partial amplitudes possess three useful symmetries:
 - 1) Cyclic symmetry:

$$A(2,\ldots,n,1)=A(1,2,\ldots,n)$$

2) Reflection symmetry:

$$A(n,...,2,1) = (-1)^n A(1,2,...,n)$$

3) "The Third Symmetry":

$$A(1,2,3,4) = -A(1,2,4,3) - A(1,4,2,3)$$

Applying the Twistor Formalism

Applying the Twistor Formalism

Applying the Twistor Formalism

$$\tilde{\Delta}_{\mu
u} = rac{\mathcal{g}_{\mu
u}}{k^2 - i\epsilon}$$

Applying the Twistor Formalism

$$\tilde{\Delta}_{\mu\nu} = \frac{g_{\mu\nu}}{k^2 - i\epsilon}$$

$$iV_{\mu\nu\rho}(p,q,r) = -i\sqrt{2}g(p_{\rho}g_{\mu\nu} + q_{\mu}g_{\nu\rho} + r_{\nu}g_{\rho\mu})$$

Applying the Twistor Formalism

$$\tilde{\Delta}_{\mu\nu} = \frac{g_{\mu\nu}}{k^2 - i\epsilon}$$

$$iV_{\mu\nu\rho}(p,q,r) = -i\sqrt{2}g(p_{\rho}g_{\mu\nu} + q_{\mu}g_{\nu\rho} + r_{\nu}g_{\rho\mu})$$

$$iV_{\mu\nu\rho\sigma}=ig^2g_{\mu\rho}g_{\nu\sigma}$$

Applying the Twistor Formalism (cont.)

Applying the Twistor Formalism (cont.)

• To apply the twister formalism, we contract momenta with the corresponding polarization vector.

Applying the Twistor Formalism (cont.)

- To apply the twister formalism, we contract momenta with the corresponding polarization vector.
- The vertex factors then become

Applying the Twistor Formalism (cont.)

- To apply the twister formalism, we contract momenta with the corresponding polarization vector.
- The vertex factors then become

$$iV_{123} = -i\sqrt{2}g\left[(\epsilon_1\epsilon_3) + (\epsilon_2\epsilon_3)(k_2\epsilon_1) + (\epsilon_3\epsilon_1)(k_3\epsilon_2)\right]$$

Applying the Twistor Formalism (cont.)

- To apply the twister formalism, we contract momenta with the corresponding polarization vector.
- The vertex factors then become

$$iV_{123} = -i\sqrt{2}g\left[(\epsilon_1\epsilon_3) + (\epsilon_2\epsilon_3)(k_2\epsilon_1) + (\epsilon_3\epsilon_1)(k_3\epsilon_2)\right]$$
$$iV_{1234} = +ig^2(\epsilon_1\epsilon_3)(\epsilon_2\epsilon_4)$$

Applying the Twistor Formalism (cont.)

- To apply the twister formalism, we contract momenta with the corresponding polarization vector.
- The vertex factors then become

$$iV_{123} = -i\sqrt{2}g\left[(\epsilon_1\epsilon_3) + (\epsilon_2\epsilon_3)(k_2\epsilon_1) + (\epsilon_3\epsilon_1)(k_3\epsilon_2)\right]$$

$$iV_{1234} = +ig^2(\epsilon_1\epsilon_3)(\epsilon_2\epsilon_4)$$

 Clearly, our calculations will be vastly simplified if we can get the majority of these polarization dot products to vanish, and we will see that is in fact easily achievable.

A Condition on Helicities

A Condition on Helicities

 With some simple edge/vertex counting, we can see that every term in the final amplitude will contain at least one product betwen polarization vectors.

A Condition on Helicities

- With some simple edge/vertex counting, we can see that every term in the final amplitude will contain at least one product betwen polarization vectors.
- Becuase the polarization vectors are transverse, this restricts the possible combinations of helicities that can have non-zero partial amplitudes.

A Condition on Helicities

- With some simple edge/vertex counting, we can see that every term in the final amplitude will contain at least one product betwen polarization vectors.
- Becuase the polarization vectors are transverse, this restricts the possible combinations of helicities that can have non-zero partial amplitudes.
- Specifically, if all, or all but one, of the external gluons have the same helicity, the amplitude is zero, i.e.

$$A(1^{\pm}, 2^{+}, \dots, n^{+}) = A(1^{\pm}, 2^{-}, \dots, n^{-}) = 0$$

Calculating a Partial Amplitude

Calculating a Partial Amplitude

• Consider the partial amplitude $A(1^-,2^-,3^+,4^+)$, given by the diagrams

Calculating a Partial Amplitude

• Consider the partial amplitude $A(1^-, 2^-, 3^+, 4^+)$, given by the diagrams

• Choosing our reference momenta to be $q_1=q_2=k_3$ and $q_3=q_4=k_2$ causes all polarization products to vannish except for

$$\epsilon_1 \cdot \epsilon_4 = \frac{\langle 21 \rangle [43]}{\langle 24 \rangle [31]}$$

Calculating a Partial Amplitude (cont.)

• Our choice of reference momenta causes both the second and third diagrams in the previous slide to vanish.

- Our choice of reference momenta causes both the second and third diagrams in the previous slide to vanish.
- Evaluating the remaining diagram, we have

- Our choice of reference momenta causes both the second and third diagrams in the previous slide to vanish.
- Evaluating the remaining diagram, we have

$$iV_{125} = -i\sqrt{2}g\left[(\epsilon_1\epsilon_2)(k_1\epsilon_5) + (\epsilon_2\epsilon_5)(k_2\epsilon_1) + (\epsilon_5\epsilon_1)(k_5\epsilon_2)\right]$$

- Our choice of reference momenta causes both the second and third diagrams in the previous slide to vanish.
- Evaluating the remaining diagram, we have

$$iV_{125} = -i\sqrt{2}g\left[(\epsilon_1\epsilon_2)(k_1\epsilon_5) + (\epsilon_2\epsilon_5)(k_2\epsilon_1) + (\epsilon_5\epsilon_1)(k_5\epsilon_2)\right]$$

$$iV_{345'} = -i\sqrt{2}g\left[(\epsilon_3\epsilon_4)(k_3\epsilon_5) + (\epsilon_4\epsilon_5)(k_4\epsilon_3) + (\epsilon_5\epsilon_3)(k_5\epsilon_4)\right]$$

Calculating a Partial Amplitude (cont.)

- Our choice of reference momenta causes both the second and third diagrams in the previous slide to vanish.
- Evaluating the remaining diagram, we have

$$iV_{125} = -i\sqrt{2}g\left[(\epsilon_1\epsilon_2)(k_1\epsilon_5) + (\epsilon_2\epsilon_5)(k_2\epsilon_1) + (\epsilon_5\epsilon_1)(k_5\epsilon_2)\right]$$

$$iV_{345'} = -i\sqrt{2}g\left[(\epsilon_3\epsilon_4)(k_3\epsilon_5) + (\epsilon_4\epsilon_5)(k_4\epsilon_3) + (\epsilon_5\epsilon_3)(k_5\epsilon_4)\right]$$

• Note that ϵ_5 is just a placeholder for the internal propagator, and $k_{5'} = -k_5$.

- Our choice of reference momenta causes both the second and third diagrams in the previous slide to vanish.
- Evaluating the remaining diagram, we have

$$iV_{125} = -i\sqrt{2}g\left[(\epsilon_1\epsilon_2)(k_1\epsilon_5) + (\epsilon_2\epsilon_5)(k_2\epsilon_1) + (\epsilon_5\epsilon_1)(k_5\epsilon_2)\right]$$

$$iV_{345'} = -i\sqrt{2}g\left[(\epsilon_3\epsilon_4)(k_3\epsilon_5) + (\epsilon_4\epsilon_5)(k_4\epsilon_3) + (\epsilon_5\epsilon_3)(k_5\epsilon_4)\right]$$

- Note that ϵ_5 is just a placeholder for the internal propagator, and $k_{5'} = -k_5$.
- After substituting in the propagator and take the product of these vertex factors, only one term winds up being nonvanishing, giving

$$ig^2A(1^-,2^-,3^+,4^+) = (-i\sqrt{2}g)^2(i/s_{12})(\epsilon_1\epsilon_4)(k_5\epsilon_2)(k_4\epsilon_3)$$

where
$$s_{12} = -(k_1 + k_2)^2 = \langle 12 \rangle [21]$$
.

Plugging in the Twistors

Plugging in the Twistors

 Using the twistor expressions for the dot product of a momentum and a poloarization vector

$$p \cdot \epsilon_{+}(k;q) = \frac{\langle qp \rangle [pk]}{\sqrt{2}[qk]}; \quad p \cdot \epsilon_{-}(k;q) = \frac{[qp] \langle pk \rangle}{\sqrt{2}[qk]},$$

Plugging in the Twistors

 Using the twistor expressions for the dot product of a momentum and a poloarization vector

$$p \cdot \epsilon_{+}(k;q) = \frac{\langle qp \rangle [pk]}{\sqrt{2}[qk]}; \quad p \cdot \epsilon_{-}(k;q) = \frac{[qp] \langle pk \rangle}{\sqrt{2}[qk]},$$

we can now express our partial amplitude as

$$A(1^{-}, 2^{-}, 3^{+}, 4^{+}) = \frac{\langle 21 \rangle [43]^{2}}{[21][32] \langle 23 \rangle} = \frac{\langle 12 \rangle^{4}}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle}$$

Plugging in the Twistors

 Using the twistor expressions for the dot product of a momentum and a poloarization vector

$$p \cdot \epsilon_{+}(k;q) = \frac{\langle qp \rangle [pk]}{\sqrt{2}[qk]}; \quad p \cdot \epsilon_{-}(k;q) = \frac{[qp] \langle pk \rangle}{\sqrt{2}[qk]},$$

we can now express our partial amplitude as

$$A(1^{-}, 2^{-}, 3^{+}, 4^{+}) = \frac{\langle 21 \rangle [43]^{2}}{[21][32] \langle 23 \rangle} = \frac{\langle 12 \rangle^{4}}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle}$$

• Note that this is a specific case of the *Parke-Taylor Maximum Helicity Violoating* amplitudes:

$$A(1^{+} \dots i^{-} \dots j^{-} \dots n^{+}) \propto \frac{\langle ij \rangle^{4}}{\langle 12 \rangle \langle 23 \rangle \dots \langle (n-1)n \rangle \langle n1 \rangle}$$

The Other Partial Amplitudes

The Other Partial Amplitudes

• We can now use the cyclic symmetry of the partial amplitudes to get any other amplitude in which the helicities with the same sign sit next to each other (e.g. $A(1^-, 2^+, 3^+, 4^-)$).

The Other Partial Amplitudes

- We can now use the cyclic symmetry of the partial amplitudes to get any other amplitude in which the helicities with the same sign sit next to each other (e.g. $A(1^-, 2^+, 3^+, 4^-)$).
- Amplitudes with alternating helicities can be obtained using "the third symmetry" (e.g. $A(1^+, 2^-, 3^+, 4^-)$).

The Other Partial Amplitudes

- We can now use the cyclic symmetry of the partial amplitudes to get any other amplitude in which the helicities with the same sign sit next to each other (e.g. $A(1^-, 2^+, 3^+, 4^-)$).
- Amplitudes with alternating helicities can be obtained using "the third symmetry" (e.g. $A(1^+, 2^-, 3^+, 4^-)$).
- The only distinct amplitudes that must be calculated may be denoted

$$A_2 := A(1,4,2,3); A_3 := A(1,2,3,4); A_4 := A(1,4,3,2)$$

Color Summing

Color Summing

• We are now ready to apply our results for matrix fields to calcualte the color summed squared amplitude.

Color Summing

- We are now ready to apply our results for matrix fields to calcualte the color summed squared amplitude.
- The "third symmetry" implies that $\sum_j A_j$ vanishes, so our expression simplifies to

$$\sum_{\text{colors}} |\mathcal{T}|^2 = 2N^2(N^2 - 1)g^4 \left(|A_2|^2 + |A_3|^2 + |A_4|^2 \right)$$

Color Summing

- We are now ready to apply our results for matrix fields to calcualte the color summed squared amplitude.
- The "third symmetry" implies that $\sum_j A_j$ vanishes, so our expression simplifies to

$$\sum_{\text{colors}} |\mathcal{T}|^2 = 2N^2(N^2 - 1)g^4 \left(|A_2|^2 + |A_3|^2 + |A_4|^2 \right)$$

 If we take gluons 1 and 2 to be incoming, and 3 and 4 outgoing, we can express this in terms of the usual Mandelstam variables:

$$\sum_{\text{colors}} |\mathcal{T}|^2 = 2N^2(N^2 - 1)g^4s^4 \left(\frac{1}{s^2t^2} + \frac{1}{t^2u^2} + \frac{1}{u^2s^2}\right)$$

Full Spin/Color Sum/Average

Full Spin/Color Sum/Average

• Finally, we can sum over helicities as well.

Full Spin/Color Sum/Average

- Finally, we can sum over helicities as well.
- Of course, we want to average over initial colors/helicities, so we must divide by a factor of $4(N^2 1)^2$.

Full Spin/Color Sum/Average

- Finally, we can sum over helicities as well.
- Of course, we want to average over initial colors/helicities, so we must divide by a factor of $4(N^2 1)^2$.
- Our final result is then

$$\sum_{\substack{\text{colors} \\ \text{helicities}}} |\mathcal{T}|^2 = \frac{\mathcal{N}^2}{\mathcal{N}^2 - 1} g^4 (s^4 + t^4 + u^4) \left(\frac{1}{s^2 t^2} + \frac{1}{t^2 u^2} + \frac{1}{u^2 s^2} \right)$$