(19)日本国特許庁 (JP) (12) 公 開 特 許 公 報 (A)

(11)特許出願公開番号

特開平7-219243

(43)公開日 平成7年(1995)8月18日

(51) Int.Cl.6		識別記号	庁内整理番号	FΙ		技術表示箇所
G03F	9/00	Н				
G01B	11/00	С				
G01M	11/00	Т	9309-2G			
G03F	1/08	N				
			7352-4M	H01L	21/ 30 5 0 2 V	
			審査請求	未請求 請求項	『の数3 OL (全 11 頁)	最終頁に続く
(21)出願番号		特願平6-12447		(71)出願人	000004112	
					株式会社ニコン	
(22)出願日		平成6年(1994)2月	₹4日		東京都千代田区丸の内3丁目	2番3号
				(72)発明者	舛行 祟	
					東京都千代田区丸の内3丁目	2番3号 株
					式会社ニコン内	
				(74)代理人	弁理士 大森 聡	

(54) 【発明の名称】 露光装置の評価方法

(57)【要約】

【目的】 ウエハステージを駆動して露光装置の各種特 性の評価を行う評価方法において、ウエハステージのス テッピング誤差を軽減すると共に、評価に要する時間を 短縮し、且つ評価用のウエハの枚数を削減する。

【樽成】 適正館光量をEAとして、ウエハ上のX方向 に配列されたショット領域17A~17F上にそれぞれ 露光量EA/nで評価用マーク像15A, 16A~15 F, 16Fを露光するという動作をn回繰り返す。評価 用マーク像15B~15Fと評価用マーク像16A~1 6 EとのY方向への横ずれ量を計測すると、これがステ ッピング誤差の低減されたY軸用の移動鏡の曲がり量を 表す。

1

【特許請求の筑囲】

2次元平面内で移動自在なステージ上に 【請求項1】 哉間された感光基板上に、マスク上の転写用のパターン を録光する録光装置の前配ステージの位置決め精度を評 価する方法において、

前記マスクとして評価用マークが形成されたマスクを用 い、前記ステージ上に評価用感光基板を载置し、

前記ステージを駆動して前記評価用感光基板上の複数の 計測領域上にそれぞれ前記評価用マークを多重露光し、 前記評価用感光基板上の前記複数の計測領域上に多重露 10 光により形成されたマークの位置を計測し、

該計測結果に基づいて前記ステージの位置決め精度を評 価することを特徴とする露光装置の評価方法。

【 間 求 項 2 】 2 次 元 平 面 内 で 移 動 自 在 な ステージ 上 に **戟置された感光基板上に、投影光学系を介してマスク上** の転写用のパターンの像を露光する露光装置の前記投影 光学系のディストーションを評価する方法において、 前記マスクとして複数の評価用マークが形成されたマス クを用い、前記ステージ上に評価用感光基板を執置し、 前記複数の評価用マークの像を前記投影光学系を介して 20 前記評価用感光基板上の複数の計測領域上に露光する第 1工程と:前記ステージを駆動して、前記複数の評価用 マークの内の1個の評価用マークの像を前記評価用感光 基板上の複数の計測領域に対して所定の位置関係を有す る領域にそれぞれ多重露光する第2工程と;前記第1工 程で露光された前配評価用マークの像の位置と前配第2 工程で解光された前記評価用マークの像の位置との差か ら前記投影光学系のディストーションを求める第3工程 と;を有することを特徴とする露光装置の評価方法。

【請求項3】 前記第1工程では、前記評価用感光基板 30 上に前記複数の評価用マークの像を多重露光することを 特徴とする請求項2に記载の露光装置の評価方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、マスクパターンを感光 基板上に露光する露光装置の評価方法に関し、例えば露 光装置の威光基板側のステージの位置決め精度の計測、 又は鰯光装置に装着された投影光学系のディストーショ ン計測等に適用して好適なものである。

[0002]

【従来の技術】例えば半導体素子、又は液晶表示素子等 をフォトリソグラフィ工程で製造する際に、フォトマス ク又はレチクル(以下、一例として「レチクル」を使用 する)のパターンをウエハ(又はガラスプレート等)上 に露光する露光装置が使用されている。斯かる露光装置 では、ウエハステージを駆動してウエハの各ショット領 域をそれぞれ正確にレチクルのパターンの露光位置に位 置決めするため、ウエハステージの位置決め精度を高く 維持する必要がある。ウエハステージの位置決め精度に 寄与する要因には種々の要因があるが、ウエハステージ 50 は以下のような計測方法が使用されていた。

の移動座標を計測するためのレーザ干渉計の移動鏡の曲 がりもその一つの要因である。以下では、ウエハステー ジが移動する2次元平面の直交座標系をX軸及びY軸と する。

2

【0003】この場合、ウエハステージの座標計測用の レーザ干渉計は、ウエハステージ上に固定された互いに 直交する2つの平面鐐よりなるX軸用及びY軸用の移動 鐐と、X軸用の移動鐐に対向して配置されたX軸用の干 渉計本体部と、Y妯用の移動鏡に対向して配置されたY 軸用の干渉計本体部、及び θ 軸用の干渉計本体部とより 樽成されている。 X軸用の干渉計本体部、及びY軸用の 干渉計本体部によりそれぞれウエハステージのX座標及 びY座標が計測され、後者のY軸用の干渉計本体部での 計測値とθ軸用の干渉計本体部での計測値との差分か ら、ウエハステージの回転角が計測される。

【0004】この状態で、ウエハステージ上に固定され た例えばX軸用の移動鏡の反射面に、Y軸に沿った曲が りが生じていると、仮にウエハステージを正確にY軸に 平行に移動させたとしても、X轴用の干渉計本体部での 計測値が変動してしまう。言い換えると、X軸用の干渉 計本体部での計測値が変勁しないようにウエハステージ をY軸に沿って移動させても、実際のウエハステージの 移動軌跡は曲がってしまう。従って、何等かの手法でX 軸用の移動鏡の曲がりを計測して計測値を補正しない と、レーザ干渉計で計測された座標値と実際のウエハス テージの座標とがずれて、位置決め精度が低下してしま う。

【0005】従来の移動鏡の曲がりの計測方法の一例 は、ウエハステージを例えばY軸に平行にステッピング 移動させて、ウエハ上のY軸に沿った配列されると共 に、Y軸方向の端部が重なった一列のショット領域にそ れぞれ計測用パターンを露光し、隣接するショット領域 に露光されたパターンのX方向への位置ずれ量を順次計 測するという方法である。この場合、ウエハステージの 駆動機構の位置決め誤差、及びレーザ干渉計における空 気揺らぎ等に起因する計測値のばらつき等からなるウエ ハステージのステッピング誤差を軽減するために、ウエ ハ上でY軸に沿って配列された複数列のショット領域に それぞれ計測用パターンを露光すると共に、更に複数枚 のウエハにも同様な解光を行い、それぞれの計測結果を 40 平均化していた。

【0006】一方、露光装置の中で投影光学系を備えた 投影露光装置においては、その投影光学系に要求される 結像特性の許容範囲は極めて厳しいものである。その結 像特性の中で、特に投影光学系のディストーション特性 (倍率誤差及び投影像の歪曲収差を含む結像特性) につ いては、その投影光学系を投影露光装置に組み込んだ状 態で最も良好になるように調整が行われる。この際、そ のディストーション特性を計測する必要があるが、従来

【0007】即ち、先ず1回の露光により、投影光学系 の露光フィールド内の複数の計測点に計測用パターンを **図光し、次に、ウエハステージをステッピング移動させ** てそれら各計測点の近傍にそれぞれ1個の計測用パター ンを露光する。そして、各計測点において、1回目に露 光された計測用パターンと、次のステッピング駆動によ り國光された計測用パターンとの位置ずれ量を計測し、 これら位置ずれ量から投影光学系のディストーションを 計測する。この場合、ウエハステージの移動量を基準と して投影光学系のディストーションを計測する方式であ 10 るため、ウエハテージのステッピング誤差を軽減するた めに、ウエハ上の複数のショット領域、更には複数枚の ウエハに対して露光を繰り返して、計測結果を平均化し ていた。

[0008]

【発明が解決しようとする課題】上記のような従来の技 術においては、ウエハステージのステッピング誤差を軽 減するため、ウエハ上の多くのショット領域、更には多 数のウエハ上のショット領域への露光を繰り返すことに より、計測結果を平均化していた。そのため、計測に長 20 い時間がかかると共に、テストプリント用のウエハが多 く使用されて不経済であるという不都合があった。

【0009】また、最近は、ウエハステージの位置決め に対する要求精度が高くなり、且つ投影光学系のディス トーションに対する許容誤差が小さくなりつつあるた め、計測精度を高めることが求められている。しかしな がら、計測精度を高めるためには、更にステッピング誤 差を軽減する必要があるため、計測パターンの露光回数 を多くしなければならなくなる。そのため、全体の計測 時間が更に長くなると共に、使用するウエハの枚数も多 30 くなってしまうという不都合がある。

【0010】本発明は斯かる点に鑑み、ウエハステージ を駆動して露光装置の各種特性の評価を行う評価方法に おいて、ウエハステージのステッピング誤差を軽減する と共に、評価に要する時間を短縮し、且つ使用するウエ ハの枚数を低減することを目的とする。

[0011]

【課題を解決するための手段】本発明による第1の解光 装置の評価方法は、2次元平面内で移動自在なステージ (5)上に裁置された感光基板上に、マスク上の転写用 40 のパターンを露光する露光装置のステージ(5)の位置 決め精度を評価する方法において、そのマスクとして評 価用マーク(15, 16)が形成されたマスク(1A) を用い、ステージ(5)上に評価用感光基板(W)を载 置し、ステージ(5)を駆動してその評価用感光基板 (W) 上の複数の計測領域(17A~17F)上にそれ ぞれ評価用マーク(15, 16)を多重露光し、その評 価用感光基板上のそれら複数の計測領域上に多重露光に より形成されたマークの位置を計測し、この計測結果に 基づいてこのステージの位置決め精度を評価するもので 50 用マーク($15A\sim15F$, $16A\sim16F$)の位置ず

ある。

【0012】また、本発明による第2の露光装置の評価 方法は、2次元平面内で移動自在なステージ(5)上に **韓置された感光基板上に、投影光学系(PL)を介して** マスク上の転写用のパターンの像を露光する露光装置の 投影光学系(PL)のディストーションを評価する方法 において、そのマスクとして複数の評価用マーク(22 ~26) が形成されたマスク(1B) を用い、ステージ (5) 上に評価用感光基板 (W) を環置し、それら複数 の評価用マークの像を投影光学系(PL)を介して評価 用感光基板 (W) 上の複数の計測領域 (22A~26 A)上に露光する第1工程と;ステージ(5)を駆動し て、それら複数の評価用マークの内の1個の評価用マー ク(22)の像をそれぞれ評価用感光基板(W)上の複 数の計測領域 (22A~26A) に対して所定の位置関 係の領域(22B~22F)にそれぞれ多重録光する第 2工程と;その第1工程で露光されたそれら評価用マー ク(22~26)の像の位置とその第2工程で露光され たその評価用マーク(22)の像の位置との差から投影 光学系(PL)のディストーションを求める第3工程 と;を有するものである。この場合、その第1工程で、 評価用感光基板 (W) 上に複数の評価用マーク (22~ 26) の像を多重図光してもよい。

[0013]

【作用】斯かる本発明の第1の露光装置の評価方法によ れば、ステージ(5)の位置決め精度を計測するため に、例えば図3 (a) に示すように、ステージ(5) を 駆動して感光基板上の複数の計測領域(17A~17 F) にそれぞれ評価用マーク(15, 16)の像を多重 露光する。この多重露光の際には、感光基板 (W) 上で の適正積算露光量をEAとして、n回(nは2以上の整 致) の多重露光を行うものとすると、1回の露光ではE A/nだけの露光量を与える。また、多重露光の方法と しては、図3(a)に示すように、ステージ(5)を駆 動して最初の計測領域(17A)から最後の計測領域 (17F) まで順次露光を行うシーケンスをn回繰り返 してもよい。又は、例えば各計測領域(17A)におい て、所定の時間間隔をおいてn回の露光を連続して行っ てもよい。

【0014】その結果、図5に示すように、感光基板 (W)上にはn回の露光が行われるが、ステージ(5) のステッピング誤差により各回の露光位置(A1~A n)がずれるようになる。そして、n回の露光が重ねて 行われた位置(20)のみに適正積算鰯光量が与えられ るため、評価用マークの露光位置(20)はステッピン グ誤差を平均化した位置とみなされる。従って、本発明 によれば、多重露光によりステッピング誤差を平均化し て小さくした状態で各計測領域に評価用マークが露光さ れる。そして、各計測領域(17A~17F)での評価・ 5

れ昼から、ステッピング誤差を小さくした状態でのステージ (5) の位置決め精度が評価される。

【0015】この場合、多重解光の各回での解光時間は 通常の解光時間の1/nで済み、多重解光に要する時間 はそれ程長くならないと共に、感光基板(W)上の1つ の計測領域に重ねて解光が行われるため、評価用感光基 板(W)の使用枚数を削減できる。また、計測対象のマ ークの個数が大幅に減少するため、計測時間が大幅に短 縮される。

【0016】次に、本発明の第2の録光装置の評価方法 10 においては、投影光学系(PL)のディストーションが 計測される。即ち、先ずマスク(1B)上の複数の評価 用マーク(22~26)の像を投影光学系(PL)を介して評価用感光基板(W)上の複数の計測領域(22A~26A)上に一括録光する。次に、ステージ(5)をステッピング駆動して、マスク(1B)上の1個の評価 用マーク(22)の像をそれぞれ評価用感光基板(W)上の複数の計測領域(22A~26A)の例えば近傍の 領域(22B~22F)にそれぞれ多重露光する。この 多重露光でも、感光基板(W)上での適正積算露光量を 20 EAとして、n回の多重露光を行うものとすると、1回 の露光ではEA/nだけの露光量を与える。従って、多重露光によりステッピング誤差が平均化効果により低減される。

【0017】次に、最初の一括解光で解光されたそれら評価用マーク(22~26)の像の位置と、多重解光により露光されたその評価用マーク(22)の像の位置との差から、ステージ(5)のステッピング誤差を低減させた状態で投影光学系(PL)のディストーションが評価される。この場合も、解光時間は短く済み、マークの位置計測の時間が大幅に短縮され、且つ使用する評価用感光基板の枚数も少なくできる。また、第1工程でも多重解光することにより、ステージ(5)のステッピング誤差の影響がより軽減される。

[0018]

【実施例】以下、本発明による露光装置の評価方法の第 1 実施例につき図1~図4及び図8を参照して説明す る。本実施例は、ステップ・アンド・リピート方式でレ チクルのパターンを投影光学系を介してウエハ上に転写 する投影扇光装置(ステッパ)において、ウエハステー ジの位置決め精度に影響を与える移動鏡の曲がり計測に 本発明を適用したものである。

【0019】先ず、図8を参照して、本実施例の評価方法を実施するためのステッパの一例を説明する。図8において、テストレチクル1Aのパターン領域2内には評価用マークが形成され、テストレチクル1Aのパターン領域2の投影像が投影光学系PLを介してウエハW上に投影される。また、テストレチクル1Aのパターン領域2の周囲には、テストレチクル1Aの位置決めを行うための3個のアライメントマーク3A~3Cが形成され、

. .

これらアライメントマーク3A~3Cの位置をそれぞれ レチクルアライメント系4A~4Cで検出することにより、投影光学系PLの光軸AXに対してテストレチクル 1Aのアライメントが行われる。

【0020】また、ウエハWはウエハステージ5上に吸着保持され、ウエハステージ5上のウエハWの近傍には種々のアライメントマークが形成された基準マーク集合体6が固定されている。ここで、投影光学系PLの光軸に平行に Z 軸を取り、 Z 軸に垂直な 2 次元平面の直交座概系をX 軸及びY 軸とする。ウエハステージ5は、 X 方向及びY 方向にステッピング移動してウエハWの位置決めを行うと共に、 Z 方向に対するウエハWの位置決め(フォーカシング等)をも行う。ウエハステージ5上には、 X 軸にほぼ垂直な反射面を有する X 軸用の移動鏡7 X、 及びY 軸にほぼ垂直な反射面を有する Y 軸用の移動鏡7 Yが固定されている。

【0021】そのX軸用の移動鏡7Xには図示省略したレーザ干渉計本体部からのレーザピームLBxが照射され、Y軸用の移動鏡7Yには図示省略したレーザ干渉計本体部からのレーザピームLBy及びLBが照射されている。レーザピームLBx及びLByによるX座標及びY座標の計測結果に基づいて、ウエハステージ5のXY平面内でのステッピング動作の制御が行われ、レーザピームLBy及びLBθによる座標計測結果の差分から、ウエハステージ5の回転角の補正が行われる。

【0022】また、投影光学系PLの側面部には、オフ・アクシス方式のアライメント系8、このアライメント系8用の対物レンズ9、及び光路偏向用のミラー10が配置され、アライメント系8内の指標マークに対してウエハW上のパターンの像を位置決めした状態で、ウエハステージ5の座標を検出することにより、そのパターンの位置検出を行うことができる。また、投影光学系PLとテストレチクル1Aとの間から、レーザ・ステップ・アライメント方式(以下、「LSA」方式という)のX方向用のアライメント系11X及びY方向用のアライメント系11X及びY方向用のアライメント系11Yからのアライメント光が、それぞれミラー12X等及びミラー12Y等を介して投影光学系PLに入射する。

【0023】そして、テストレチクル1Aのパターン領域2A内のパターン像が、投影光学系PLを介してウエハW上の所定のショット領域13上に投影解光されるものとすると、アライメント系11Xからのアライメント光は、投影光学系PLを介してショット領域13の近傍にY方向に長いスリット状スポット光14Xとして集光され、アライメント系11Yからのアライメント光は、投影光学系PLを介してショット領域13の近傍にX方向に長いスリット状スポット光14Yとして集光される

【0024】この状態でウエハステージ5をX方向に走 50 査すると、そのスリット状スポット光14Xと被検パタ ーンとが合致したときに所定の方向への反射光又は回折 光が大きくなる。この反射光又は回折光を投影光学系P Lを介してアライメント系11Xで受光することによ り、そのスリット状スポット光14Xとその被検パター ンとが合致するときのウエハステージ5のX座標が求め られる 同様に、ウエハステージ5をY方向に走査する ことにより、スリット状スポット光14Yと被検パター ンとが合致するときのウエハステージ5のY座標が求め られる。これらLSA方式のアライメント系11X及び 11Yにより、テストレチクル1AからウエハW上に解 10 光される評価用マークの像の現像後の位置が計測され る。但し、例えばオフ・アクシス方式のアライメント系 9を用いても、その評価用マークの像の位置を計測でき る。

【0025】次に、本実施例でウエハステージ5上のY 軸用の移動鏡7Yの曲がりの計測を行う場合の動作の一 例につき図1~図5を参照して説明する。先ず、本実施 例では図2に示すように、テストレチクル1Aのパター ン領域2Aには、X方向に対向するように2つのそれぞ れX方向に所定ピッチで形成されたドットパターンより 20 なる評価用マーク15及び16を形成しておく。但し、 評価用マーク15及び16はY方向に所定間隔だけ離れ ている。一例として評価用マーク15及び16の部分が 開口パターンであり、周囲は遮光パターンであるとす る。また、図8の投影光学系PLは実際には倒立像を形 成するが、以下では説明の便宜上、投影光学系PLによ る投影像を正立像であるとして説明する。

【0026】そして、図1のステップ101において、 図2のテストレチクル1Aを図8のステッパにロード 上に評価用のフォトレジストが塗布され且つ未露光のウ エハを貸置する。次に、ウエハW上のフォトレジストに 対する適正酵光量をEA、2以上の所定の整数をnとし て、ステップ103において、図3(a)に示すよう に、ウエハW上の或るショット領域17Aにテストレチ クル1Aのパターン領域2A内のパターン像をEA/n の露光量分だけ露光する。これにより、ショット領域1 7Aには、それぞれ図2の評価用マーク15及び16の 投影像である評価用マーク像15A及び15Bが露光さ れる。

【0027】その後、図8のウエハステージ5をY座標 (Y軸用のレーザ干渉計により計測される座標値) を固 定したままX方向にステッピング移動させる。そして、 図3(a)に示すように、ショット領域17AとX方向 の端部が重なったショット領域17Bに、テストレチク ル1Aのパターン像をEA/nの蘇光量分だけ感光す る。これにより、ショット領域17Bにも、評価用マー ク像15B及び16Bが露光される。そして、以下同様 に、X方向に端部が重なるように配列されたショット領 域17C~17Fに対して、それぞれEA/nの露光量 50 クル1A上の2つの評価用マーク15及び16のY方向

分だけテストレチクル1Aのパターン像を露光する。こ れにより、ショット領域17C~17Fにも、それぞれ 評価用マーク15C, 16C~15F, 16Fが解光さ れる。

8

【0028】次に、図1のステップ104において、図 3 (a) の一連のショット領域17A~17Fへの解光 をn回繰り返したかどうかをチェックする。ここではま だ1回の露光が終了しただけであるため、動作はステッ プ103に戻り、再びウエハステージ5をステッピング 駆動しながら、ウエハW上のショット領域17A~17 Fに対して、それぞれEA/nの解光量でテストレチク ル1Aのパターン像を露光する。本実施例ではそのステ ップ103の動作をn回繰り返して、ウエハW上のフォ トレジストに対して適正露光量EAだけの露光量を与え る。繰り返しの回数nは例えば10回である。

【0029】その後、ステップ105において、ウエハ Wを別のプロセス装置内で現像し、再び図8のウエハス テージ5上に裁置する。その後、ステップ106におい て、図3(a)の一連のショット領域17A~17E上 に形成された評価用マーク像16A~16Eのレジスト パターンと、それに隣接するショット領域17B~17 F上に形成された評価用マーク像15B~15Fのレジ ストパターンとののY方向への位置ずれ量を計測する。 この位置ずれ量の計測を行うには、図8のY軸用のLS A方式のアライメント系11Yを用いる。例えば図3 (b) に示すように、評価用マーク像15Bと16Aと のY方向への位置ずれ量を計測するものとすると、評価 用マーク像15Bは実際の露光パターン15Bbの一部 がレジストパターン15日aとなり、評価用マーク像1 し、ステップ102において、図8のウエハステージ5 30 6 A も実際の露光パターン16Abの一部がレジストパ ターン16 A a となっている。そこで、アライメント系 11Yからのスリット状スポット光14Yに対して、ウ エハステージ5をY方向に駆動して、レジストパターン 15日a及び16Aaをスリット状スポット光14Yに 対して走査する。

> 【0030】この場合、スリット状スポット光14Yか らの所定の方向への回折光をアライメント系11Yで受 光して光電変換すると、図3 (c)の曲線21に示すよ うな光電信号 I が得られ、この光電信号 I が 2 つのピー 40 クを取るときのウエハステージ5のY座標を評価用マー ク像15B及び16AのY座標として検出する。これら 2つのY座標より、2つのマーク像の位置ずれ量△Y1 が算出される。同様に、図3(a)において、隣接する ショット領域間のY方向への位置ずれ量 Δ Y 2 ~ Δ Y 5 が計測される。

【0031】その後、ステップ107において、図3 (a) のY方向への位置ずれ $\Delta Y 1 \sim \Delta Y 5$ より図8 のY軸用の移動鏡7YのX方向への曲がり量を求める。 具体的に、位置ずれ量ΔΥ1~ΔΥ5から、テストレチ ٠.

への間隔で定まるオフセットを差し引いて得られる値 が、対応するX座標での移動鏡7YのY方向への曲がり **母となる。また、この曲がり量の内の線形成分から移動** 鐐7YのX軸に対する傾斜角も求められる。

【0032】次に、本実施例において図1のステップ1 03及び104で多重属光を行っていることの意味につ き説明する。先ず、図4は、ウエハW上の例えばショッ ト領域17Aでの積算函光旦Eの変化を示す。図4で は、レチクルのパターンを図光する図光光として、水銀 ランプの輝線 (g線、i 線等) のような連続光を使用す 10 る場合の積算函光量の変化を示している。通常の函光時 でフォトレジスト上に適正露光量を与えるための露光時 間をTとすると、本実施例では、図4に示すように最初 の期間T1 (=T/n) において、ショット領域17A にEA/nだけの露光量を与える。その後、それぞれ露 光時間Tの1/nである期間T2~Tnにショット領域 17Aに対して、EA/nだけの露光量を与えることに より、最終的にショット領域17Aに対して適正露光量 EAだけの露光量を与える。

【0033】なお、ここでは露光光が連続光(例えば水 20 銀ランプからのi線)であることを前提として、露光量 を母光時間(シャッターの開時間)で制御しているが、 **極光用の光源の照射パワーの制御、又は照明光学系の光** 路に配置した適当なフィルタ等の透過率を制御する方法 でも可能である。また、露光光がエキシマレーザ光等の パルス光である場合、EA/nの函光量を与えるために は、パルス数と1パルス当たりのエネルギー量との少な くとも一方を制御するようにすればよい。

【0034】図5は多重露光の平均化効果に関する模式 図であり、図5において、露光パターンA1~Anは、 それぞれn回の多重露光中の1回目~n回目の露光によ りウエハW上に投影される露光パターンを表している。 図5は、各露光毎のウエハステージのY座標を共通化し た場合の図であり、露光パターンA1~Anを投影する 露光光19は、常に一定の位置にあるが、ウエハWの位 **置はウエハステージ5のステッピング誤差(駆動機构の** 位置決め誤差、及びレーザ干渉計における空気揺らぎ等 に起因する計測値のばらつき等からなる誤差)により各 **露光毎にY方向にばらついている。**

【0035】しかしながら、 解光パターンA1~Anが 40 全て重なる領域20では、適正積算露光量EAが与えら れるため、通常の露光時と同様なパターンが露光され る。一方、領域20以外の領域では、露光パターンの重 なりが少なくフォトレジスト18は殆ど感光されない。 従って、フォトレジスト18がポジタイプであるとする と、現像後には領域20のフォトレジストだけが除去さ れ、レジストパターンが形成される。即ち、本実施例の 多重酸光により、ウエハステージ5のステッピング誤差 が平均化により低減され、得られるレジストパターンの

10 り、計測再現性も向上している。

【0036】但し、ステッピング誤差の平均化による低 滅のためには、多重屈光の各分割屈光間には適当な時間 間隔が必要である。このような多重風光を用いた場合に 最終的にウエハ上に得られる母光パターン(適正母光量 が得られる部分)の、ウエハステージのステッピング誤 差に依存する位置決め誤差を、標準偏差の3倍で3σs とする。そして、ウエハステージのステッピング誤差 (標準偏差の3倍)を3σ1として、多重扇光の回数を n回とすると、位置決め誤差3σsは次のようになる。 [0037]

【数1】 $3\sigma s = 3\sigma i / n^{1/2}$

即ち、本実施例のn回の多重露光を用いることにより、 通常の露光をn回行って、得られた計測値を平均化する 場合と同程度にウエハステージのステッピング誤差の影 唇が経滅される。しかも、本実施例では、n回の多重録 光の全体の露光量は通常の1回の露光量と同じであり、 且つ、計測対象とするマーク像の個数は図3(a)のよ うな露光を n 回繰り返す場合の 1 / n であるため、計測 時間は大幅に短縮される。しかも、ウエハWの各ショッ ト領域に対して多重露光が行われるため、仮に複数枚の ウエハ上にそれぞれ多重露光して位置決め誤差の評価を 行う場合でも、評価用に使用するウエハの枚数は少なく て済む。

【0038】なお、上述実施例では、各露光毎に適正録 光量の1/nの露光量を与えているが、使用するフォト レジストにより露光量は適正解光量の1/n以外となる 場合もある。また、上記実施例では、ウエハステージを ステッピング駆動しながら、ウエハ上の異なるショット 領域に順次EA/nの鰯光量で鰯光し、それをn回繰り 返している。しかしながら、露光工程のスループットを 問題としない場合には、ウエハ上の各ショット領域毎に それぞれEA/nの露光量で、n回の合計露光量が適正 露光量EAになるまでウエハステージを駆動せずに露光 を行い、適正露光量になったら次のショット領域を露光 位置に移動させて露光する方法でも良い。この場合に は、ウエハステージのステッピング誤差の平均化による 軽減のために、それぞれEA/nの露光量を与える露光 間の時間間隔を適当な時間にする必要がある。これは、 主にウエハステージの座標計測用干渉計の揺らぎの周期 によって決定される。

【0039】次に、本発明の第2実施例につき図6及び 図7を参照して説明する。本実施例でも図8のステッパ を使用するが、本実施例では図8の投影光学系PLのデ ィストーション特性の計測を行う。図6 (a) は本実施 例で使用するテストレチクル1Bのパターンを示し、こ の図6(a)において、パターン領域2B内の中央に計 測用マーク22が形成され、4隅に評価用マーク23~ 26が形成されている。計測用マーク22~26は同一 位置はステッピング誤差が低減された正確な位置とな 50 パターンであり、計測用マーク22は、図6(b)に示

すように、Y方向に所定ピッチで配列されたドットパタ ーンをX方向に3列配列してなるX軸用マーク27X、 及びX方向に所定ピッチで配列されたドットパターンを Y方向に3列配列してなるX軸用マーク27Xより模成 されている。従って、本実施例の計測用マーク22~2 6は、図2の評価用マーク15を複数列形成したマーク と、このマークを90°回転して得られるマークとを組 合せたマークと等価であり、計測用マーク22~26の 投影像のX方向及びY方向の位置は、それぞれ図8のL SA方式のアライメント系11X及び11Yにより検出 10 できる。なお、パターン領域2B内は5個の計測用マー ク22~26を除いて遮光層が形成されているものとす

【0040】次に、本実施例で投影光学系PLのディス トーション計測を行う場合の動作の一例につき説明す る。投影光学系PLの投影像は実際には倒立像である が、本実施例でも、分かり易くするため投影光学系PL は正立像を形成するものとして説明する。 先ず、図8の テストレチクル1Aの代わりに、図6(a)に示すテス トレチクル1Bをロードし、ウエハステージ5上にフォ 20 トレジストが塗布された未解光のウエハWをロードす る。その後、図8の照明光学系(不図示)の照明領域 (照明視野) をテストレチクル1Bのパターン領域2B の全体に設定し、ウエハステージ5を固定した状態で鰯 光を開始して、そのパターン領域2B全体のパターン像 を投影光学系PLを介して、ウエハW上に露光する。こ の場合、1回の露光でフォトレジストに対して適正露光 量EAを与える。

【0041】その露光により、図7(a)に示すよう に、ウエハW上の所定のショット領域29上に、図6 (a) の計測用マーク22~26の投影像である計測用 マーク像22A~26Aが露光される。次に、図8の照 明光学系(不図示)の照明領域を、図6(a)のテスト レチクル1Bの中央の計測用マーク22を囲む限定領域 28に設定し、1回目の露光位置からウエハステージ5 をX方向及びY方向にそれぞれ所定のオフセット分だけ ずらした状態で、限定領域28内のパターン像を投影光 学系PLを介して、EA/n (nは2以上の整数)の瞬 光量分だけウエハW上に露光する。これにより、図7 (b) に示すように、最初に露光された計測用マーク像 40 22Aを囲む領域30A内に重ねて、計測用マーク22 の像22Bが露光される。このとき、計測用マーク22 の周囲に形成された遮光層によって、最初に露光された マーク像22Aに対して露光光が照射されることはな .41

【0042】その後、ウエハステージ5をステッピング 駆動して、ウエハWのショット領域29上の計測用マー ク像23A~26Aの設計上の位置(投影光学系PLに ディストーションが無い場合の位置)に上述のオフセッ 12

22の像の露光位置に設定し、それぞれEA/nの露光 量で図6(a)の限定領域28内の計測用マーク22の 像をウエハW上に露光する。これにより、図7(b)に 示すように、最初に函光された計測用マーク像23A~ 26Aの近傍にそれぞれ計測用マーク像23B~26B が露光される。

【0043】次に、再びウエハステージ5をステッピン グ駆動して、図7 (a) の計測用マーク像22A~26 Aの設計上の位置に上述のオフセット補正を行った位置 を、順次図6(a)の計測用マーク22の像の露光位置 に設定し、それぞれEA/nの露光量で図6(a)の限 定領域28内の計測用マーク22の像をウエハW上に蘇 光する。このようにして、図7(b)の計測用マーク像 22B~26B上にn回の多重露光を行う。

【0044】その後、ウエハWを現像した後、再び図8 のウエハステージ5上にロードし、LSA方式のアライ メント系11X及び11Yを用いて、図7(b)の計測 用マーク像22A~26Aのレジストパターンと、計測 用マーク像22B~26BのレジストパターンとのX方 向及びY方向への位置ずれ量を検出する。例えば、計測 用マーク像24Aのレジストパターンと、計測用マーク 像24Bのレジストパターンとに関して、Y方向への位 置ずれ量ΔYCがアライメント系11Yにより計測さ れ、X方向への位置ずれ量AXCがアライメント系11 Xにより計測される。そして、図7(b)の計測用マー ク像22A~26Aのレジストパターンと、計測用マー ク像22B~26BのレジストパターンとのX方向及び Y方向への位置ずれ量から、それぞれ上述のオフセット 分を差し引くことにより、投影光学系PLのディストー 30 ションが求められる。

【0045】この場合、本実施例では、図7(b)の計 測用マーク像22B~26Bはn回の多重露光により形 成されるため、適正露光量が得られる像の部分ではウエ ハステージ5のステッピング誤差が平均化により低減さ れている。従って、ウエハステージ5のステッピング誤 差を低減させた状態で投影光学系PLのディストーショ ンを髙精度に計測できる利点がある。しかも、適正解光 量の1/nの露光量でn回の露光(多重露光)を行う方 式であるため、全体(n回)の実際に露光している時間 は、適正解光量で1回の解光を行う際の解光時間程度で 済み、且つ、計測すべきマークの個数が少ないため、投 影光学系PLのディストーションの計測(評価)に要す る時間は大幅に短縮される。また、ウエハW上の1つの ショット領域29上に多重露光を行う方式であるため、 評価用に使用するウエハの枚数を削減できる。

【0046】なお、本実施例で図7(a)に示すよう に、テストレチクル1Bのパターン領域2B全体のパタ ーン像をウエハW上に露光する際に、図? (b) の場合 のように多重露光を行ってもよい。この場合、例えばm ト補正を行った位置を、順次図6(a)の計測用マーク 50 回(mは2以上の整数)の露光で適正露光量を与えるも 1.3

のとすると、(数1) よりウエハステージのステッピン グ誤差の影響が1/m1/2 に低減される。また、本実施 例において、図7(a)の全体のパターンの図光では多 重昼光を行い、図7 (b) の部分的なパターンの各位置 への露光を通常の1回のみの露光で行ってもよい。

【0047】なお、上述実施例は、本発明をウエハステ ージの位置決め精度(厳密にはこの中の移動鏡の曲がり □)、及び投影光学系のディストーションの計測に適用 したものであるが、本発明はそのような露光装置の特性 の計測のみならず、実際のプロセスウエハへの超光にも 適用できる。通常、実際のウエハへの縁光の際には、先 工程において露光により形成されたショット領域の内、 予め選択された所定個数のサンプルショットの座標値を 用いる所聞エンハスト・グローバル・アライメント方式 (EGA方式) のアライメントが行われる (例えば特開 昭61-44429号公報参照)。より詳しく説明する と、そのEGA方式では、サンプルショットに付設され たアライメントマーク(ウエハマーク)の位置を計測 し、その結果を統計処理して重ね合せ露光を行うための ウエハステージの移動座標を決定し、その移動座標に基 20 づいてウエハステージを移動して露光が行われる。

【0048】従って、そのEGA方式では予め計算され た座標にウエハステージを移動させて露光する際のウエ ハステージのステッピング誤差が、重ね合せ誤差の主な 要因となる。そこで、重ね合せ露光を行う2層目のショ ット領域に対して、本発明の分割多重露光を適用するこ とにより、ウエハステージ (図8のウエハステージ5に 対応する) のステッピング誤差が平均化により低減され て、重ね合せ誤差が低減される。

程において、ウエハステージのステッピング誤差を低減 することが望まれる殆ど全ての用途に適用できるもので ある。また、レチクルをウエハ上に露光するための露光 光としては、水銀タンプの輝線のような連続光、又はエ キシマレーザ光源からの光のようなパルス光の何れでも 使用できる。連続光を使用する場合の國光量は、國光光 の照射エネルギ及び露光時間により決定され、パルス光 を使用する場合の露光量は、パルス発光毎の照射エネル ギ及び照射パルス数により決定される。更に、本発明は レチクルとウエハとを同期的に移動することによりレチ クルパターンの像をウエハに露光する走査式露光装置に も全く同様に適用することができる。この走査式醪光装 置では、多重露光時の1回当たりの露光量(EA/n) はウエハの移動速度、レチクル(又はウエハ)上の照明 領域の走査方向に関する幅、及びレチクル(又はウエ ハ) に入射する照明光の強度のうちの少なくとも1つを 制御して調整すればよい。

【0050】このように、本発明は上述実施例に限定さ れず、本発明の要旨を逸脱しない箆囲で種々の樽成を取 り得る。

[0051]

【発明の効果】本発明の第1の母光装置の評価方法によ れば、ステージ(ウエハステージ)を駆動して威光基板 (ウエハ) 上の複数の計測領域上にそれぞれ評価用マー クを多重露光し、この多重露光により形成されたマーク の位置を計測している。従って、ステージのステッピン グ誤差を平均化により低減した状態でそのマークの位置 を計測できるため、ステージの位置決め精度を高精度に 評価できる。しかも、通常のそれぞれ適正録光量を与え る露光を繰り返す方法と比較して、多重露光により適正 **鰯光量を得る場合には、全体として実際に鰯光を行う時** 間が短縮されると共に、計測対象のマーク像の個数が大 幅に減少するため、評価に要する時間が大幅に短縮され る。また、従来のようにウエハ上の異なるショット領域 上に露光を繰り返す方法と比較して、本発明では感光基 板上の所定のショット領域に多重録光を行うため、評価 用に使用する感光基板の枚数を低減できる利点がある。

14

【0052】次に、第2の露光装置の評価方法によれ ば、第2工程において、ステージを駆動して感光基板上 の複数の領域上にそれぞれ評価用マークを多重戯光し、 この多重露光により形成されたマークの位置を計測して いる。従って、ステージのステッピング誤差を平均化に より低減した状態でそのマークの位置を計測できるた め、投影光学系のディストーションを高精度に評価でき る。しかも、通常のそれぞれ適正露光量を与える露光を 繰り返す方法と比較して、多重爆光により適正爆光量を 得る場合には、全体として実際に露光を行う時間が短縮 されると共に、計測対象のマーク像の個数が大幅に減少 するため、評価に要する時間が大幅に短縮される。ま 【0049】このように本発明は、ウエハを露光するエ 30 た、従来のようにウエハ上の異なるショット領域上に露 光を繰り返す方法と比較して、本発明では感光基板上の 所定のショット領域に多重露光を行うため、評価用に使 用する感光基板の枚数を低減できる利点がある。更に、 第1工程でも多重露光を行うことにより、ステッピング

【図面の簡単な説明】

誤差の影響をより少なくできる。

【図1】本発明の第1実施例のウエハステージ上の移動 鏡の曲がり量の計測動作を示すフローチャートである。

【図2】第1実施例で使用するテストレチクル1Aのパ ターンを示す平面図である。

【図3】第1実施例でウエハ上の一連のショット領域に 多重露光方式で露光する手順、及びその多重露光で形成 された像の位置を計測する方法の説明に供する図であ る。

【凶4】第1実施例でウエハ上の所定のショット領域に 対する積算磁光量の変化を示す図である。

【図 5】第1実施例において多重露光により、ウエハス テージのステッピング誤差が平均化されて低減される様 子を示す拡大断面図である。

【図6】(a)は本発明に第2実施例で使用されるテス

15

トレチクル1Bを示す平面図、(b)は図6(a)中の 計測用マーク22を示す拡大平面図である。

【図7】(a)はその第2実施例で最初にウエハ上のシ ョット領域29に一括露光されるマーク像を示す拡大平 面図、(b)はそのショット領域29上に一括露光、及 び多重露光により露光されるマーク像を示す拡大平面図 である。

【図8】本発明の実施例で使用されるステッパの要部を 示す斜視図である。

【符号の説明】

1A, 1B テストレチクル

PL 投影光学系

W ウエハ

5 ウエハステージ

7X, 7Y 移動鏡

8 オフ・アクシス方式のアライメント系

11X, 11Y LSA方式のアライメント系

15, 16 評価用マーク

14Y スリット状スポット光

15A~15F, 16A~16F 多重母光された評価 用マーク像

16

10 22~26 計測用マーク

22A~26A 一括露光された計測用マーク像

22日~26日 多重盛光された計測用マーク像

[図2]

【図3】

【図8】

フロントページの続き

(51) Int. Cl. 6 H 0 1 L 21/027

識別記号 庁内整理番号

FΙ

技術表示箇所