7. hét, 2020. március 31.

Analízis I. Előadás

Tartalom

- a) Konvergencia kritériumok
 - i) A Cauchy-féle gyökkritérium
 - ii) A D'Alembert-féle hányados kritérium
- b) Leibniz-típusú sorok és konvergenciájuk

Tétel (Cauchy-féle gyökkritérium)

Legyen $a:\mathbb{N}\to\mathbb{R}$ olyan sorozat, amelyre $\exists \ \text{lim}\ \left(\sqrt[n]{|a_n|}\right)\in\overline{R}.$ Ha

- i) $\lim \left(\sqrt[n]{|a_n|} \right) < 1$, akkor a $\sum (a_n)$ sor abszolút konvergens,
- ii) $\lim \left(\sqrt[n]{|a_n|} \right) > 1$, akkor a $\sum (a_n)$ sor divergens.

Megjegyzés

- 1. A fenti tételből hiányzik a lim $(\sqrt[n]{|a_n|}) = 1$ eset. Nem véletlenül:
 - a) $a_n = \frac{1}{n}$ $(n \in \mathbb{N}, n \ge 1)$ esetén $\lim_{n \to \infty} (\sqrt[n]{n}) = 1$ (Id. Gyakorlat) \Longrightarrow

$$\lim \left(\sqrt[n]{|a_n|} \right) = 1$$
, és a $\sum \left(\frac{1}{n} \right)$ harmonikus sor divergens (ld. előző előadás);

b) $a_n = \frac{1}{n^2}$ $(n \in \mathbb{N}, n \ge 1)$ esetén szintén $\lim \left(\sqrt[n]{n^2}\right) = 1 \implies \lim \left(\sqrt[n]{|a_n|}\right) = 1$, de $a \sum \left(\frac{1}{n^2}\right)$ szuperharmonikus sor konvergens (ld. előző előadás).

Úgynevezett "határozatlan eset".

2. A tétel általánosabb formában is igaz a sorozatok vonatkozó limesz szuperior (Jel: limsup) fogalom bevezetésével.

Bizonyítás

i) Legyen $\lim_{n \to \infty} \left(\sqrt[n]{|a_n|} \right) = A < 1.$

A módszer: felső becslés konvergens geometriai sorral, majd az összehasonlító kritérium alkalmazása.

Mivel A < 1, ezért $A < \frac{A+1}{2} < 1$, tehát $\lim \left(\sqrt[n]{|a_n|} \right) = A < \frac{A+1}{2}$.

A konvergencia definícióját $\epsilon = \frac{A+1}{2} - A = \frac{1-A}{2} > 0$ választással alkalmazva van olyan $N \in \mathbb{N}$, hogy n > N esetén $0 \le \sqrt[n]{|a_n|} < \frac{A+1}{2}$.

Legyen $q := \frac{A+1}{2} < 1$.

Ekkor $|a_n| < q^n$ m.m. $n \in \mathbb{N}$ esetén, és a $\sum (q^n)$ geometriai sor konvergens. Innen a pozitív tagú sorokra vonatkozó összehasonlíto kritérium szerint következik. hogy a $\sum (|a_n|)$ sor konvergens, azaz a $\sum (a_n)$ sor abszolút konvergens.

ii) Legyen $\lim \left(\sqrt[n]{|a_n|} \right) > 1$. A határérték és a rendezés kapcsolatára vonatkozó tétel miatt ekkor $\exists N \in \mathbb{N}$, hogy $\forall n > N$ esetén $\sqrt[n]{|a_n|} > 1$, ami egyben azt is jelenti, hogy $|a_n| > 1$. Következésképpen (a_n) nem nullsorozat, és így $\sum (a_n)$ nem lehet

konvergens (ld. sorok konvergenciájára vonatkozó szükséges feltétel).

Példák

1) A
$$\sum \left(\left(\frac{n+3}{2n+7} \right)^n \right)$$
 sor konvergenciája: $a_n = |a_n| = \left(\frac{n+3}{2n+7} \right)^n$, $\sqrt[n]{|a_n|} = \frac{n+3}{2n+7}$, $\lim \left(\sqrt[n]{|a_n|} \right) = \lim_{n \to \infty} \frac{n+3}{2n+7} = \frac{1}{2} < 1 \implies a$ $\sum \left(\left(\frac{n+3}{2n+7} \right)^n \right)$ sor abszolút konvergens.

2) A
$$\sum \left(\frac{9^n}{n^2+3\cdot 3^n}\right)$$
 sor konvergenciája: $a_n=|a_n|=\frac{9^n}{n^2+3\cdot 3^n},$ $\lim_{n\to\infty}\sqrt[n]{|a_n|}=\lim_{n\to\infty}\frac{9}{\sqrt[n]{n^2+3\cdot 3^n}}\geq \lim_{n\to\infty}\frac{9}{\sqrt[n]{3^n+3\cdot 3^n}}=\lim_{n\to\infty}\frac{9}{\sqrt[n]{4\cdot 3^n}}=\lim_{n\to\infty}\frac{9}{\sqrt[n]{4\cdot 3^n}}=3>1 \implies a\sum\left(\frac{9^n}{n^2+3\cdot 3^n}\right)$ sor divergens. Mivel pozitív tagú sor, ezért $\sum_{n=0}^{\infty}\frac{9^n}{n^2+3\cdot 3^n}=\infty.$

A D'Alembert-féle hányados kritérium

Legyen $a: \mathbb{N} \to \mathbb{R}$ olyan sorozat, amelyre $a_n \neq 0 \ (n \in \mathbb{N})$, és $\exists \lim \left(\left| \frac{a_{n+1}}{a_n} \right| \right) \in \overline{R}$.

Ha

i)
$$\lim \left(\left| \frac{a_{n+1}}{2} \right| \right) < 1$$
, akkor a $\sum (a_n)$ sor abszolút konvergens,

ii)
$$\lim \left(\left| \frac{a_{n+1}}{a_n} \right| \right) > 1$$
, akkor a $\sum (a_n)$ sor divergens.

Megjegyzés

- 1. A fenti tételből most is hiányzik egy eset: $\lim_{z \to 0} \left(\left| \frac{a_{n+1}}{a_n} \right| \right) = 1$. Most sem véletlenül:
 - a) $a_n = \frac{1}{n} \ (n \in \mathbb{N}, \ n \ge 1)$ esetén

$$\lim\left(\left|\frac{a_{n+1}}{a_n}\right|\right)=\lim_{n\to\infty}\frac{\frac{1}{n+1}}{\frac{1}{n}}=\lim_{n\to\infty}\frac{n}{n+1}=1,$$
 és a $\sum\left(\frac{1}{n}\right)$ harmonikus sor divergens (ld. előző előadás);

b) $a_n = \frac{1}{n^2} \ (n \in \mathbb{N}, \ n \ge 1)$ esetén szintén $\lim_{n \to \infty} \left(\left| \frac{a_{n+1}}{a_n} \right| \right) = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1$, de a $\sum \left(\frac{1}{n^2} \right)$ szuperharmonikus sor konvergens (ld. előző előadás).

Úgynevezett "határozatlan eset".

- 2. Tanulság: van olyan sor, aminek a konvergenciáját egyik kritériummal sem lehet eldönteni.
- 3. A példák nem jelentik azt, hogy ha az egyik kritérium nem működik, akkor a másik sem. Melyik a hatékonyabb?
- 2. Ennek a tételnek is van általánosabb formája, limesz szuperior, inferior.

Bizonyítás

i) Legyen $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = A < 1$.

Most is egy alkalmas geometriai sorral való összehasonlításon alapul a bizonyítás. A Cauchy–féle gyökkritérium i) részének igazolásánál alkalmazott gondolatmenettel kapjuk, hogy mivel A < 1, ezért $A < \frac{A+1}{2} < 1$, tehát $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = A < \frac{A+1}{2}$.

A konvergencia definícióját $\epsilon = \frac{A+1}{2} - A = \frac{1-A}{2} > 0 \,$ választással alkalmazva van

olyan
$$N \in \mathbb{N}$$
, hogy $n > N$ esetén $0 \le \frac{|a_{n+1}|}{|a_n|} < \frac{A+1}{2}$.

Legyen $q := \frac{A+1}{2}$, ahol 0 < q < 1.

Ekkor n > N esetén

$$|a_{N+1}| < q \cdot |a_N| \implies |a_{N+2}| < q \cdot |a_{N+1}|, |a_{N+3}| < q \cdot |a_{N+2}| < q^2 \cdot |a_{N+1}|.$$

Indukcióval kapjuk, hogy

$$|a_{N+k}| < q^{k-1} \cdot |a_{N+1}| = \frac{|a_{N+1}|}{q^{N+1}} q^{N+k} \quad (k \in \mathbb{N}, k \ge 1),$$

azaz

$$|a_n| < \frac{|a_{N+1}|}{a^{N+1}}q^n \ (n \in \mathbb{N}, \ n \ge N+1).$$

Vegyük észre, hogy a $C:=\frac{|a_{N+1}|}{q^{N+1}}$ tényező konstans, nem függ n-től, tehát $|a_n|< C\cdot q^n$ m.m. $n\in\mathbb{N}$ esetén. A $\sum (C\cdot q^n)$ sor konvergens. Innen a $\sum (a_n)$ sor abszolút konvergenciája az összehasonlító kritérium alkalmazásával adódik.

Bizonyítás folytatás

ii) Legyen $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = A > 1$.

Ekkor van olyan $N \in \mathbb{N}$, hogy n > N esetén $\frac{|a_{n+1}|}{|a_n|} > 1$, azaz $|a_{n+1}| > |a_n|$.

Indukcióval adódik, hogy $|a_{N+k}| > |a_{N+k-1}| > |a_{N+k-2}| > \cdots > |a_{N+1}|$ $(k \in \mathbb{N}, k \ge 2).$

Következésképpen, $|a_n| > |a_{N+1}| \neq 0 \ (n \in \mathbb{N}, n \geq N+2)$, azaz (a_n) nem nullsorozat, tehát $\sum (a_n)$ divergens.

Példák

1) A
$$\sum \left(\frac{n^3}{n!}\right)$$
 sor konvergenciája: $a_n = |a_n| = \frac{n^3}{n!}$, $\frac{|a_{n+1}|}{|a_n|} = \frac{\frac{(n+1)!}{(n+1)!}}{\frac{n^3}{n!}}$, $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{(n+1)^3}{(n+1)!} \cdot \frac{n!}{n^3} = \lim_{n \to \infty} \left(\frac{n+1}{n}\right)^3 \cdot \frac{1}{n+1} = 0 < 1$ \implies a $\sum \left(\frac{n^3}{n!}\right)$ sor abszolút konvergens.

2) A
$$\sum \left(\frac{2^{n^2}}{n!}\right)$$
 sor konvergenciája: $|a_n| = \frac{2^{n^2}}{n!}$, $\frac{|a_{n+1}|}{|a_n|} = \frac{\frac{2^{(n+1)^2}}{(n+1)!}}{\frac{2^{n^2}}{n!}} = \frac{2^{(n+1)^2}}{(n+1)!} \cdot \frac{n!}{2^{n^2}}$, $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n\to\infty} \frac{2^{2n+1}}{n+1} = \lim_{n\to\infty} 2 \cdot \frac{4^n}{n+1} = +\infty > 1$

$$\Rightarrow$$
 a $\sum \left(\frac{2^{n^2}}{n!}\right)$ sor divergens. Mivel pozitív tagú sor, ezért $\sum_{n=0}^{\infty} \frac{2^{n^2}}{n!} = +\infty$.

Alternáló sorok

Definíció: Legyen $a: \mathbb{N} \to \mathbb{R}$, $a_n \ge 0$ $(n \in \mathbb{N})$. Ekkor a $\sum ((-1)^n a_n)$ sort váltakozó előjelű vagy alternáló sornak nevezzük.

Definíció: Legyen $a: \mathbb{N} \to \mathbb{R}$, $a_n \geq 0$ $(n \in \mathbb{N})$. Ha az (a_n) sorozat monoton csökkenő, akkor a $\sum ((-1)^n a_n)$ váltakozó előjelű sort Leibniz–sornak nevezzük.

Példa

- a) Legyen $a_n = 2 + (-1)^n$. Ekkor a $\sum ((-1)^n a_n)$ sor váltakozó előjelű sor, de nem Leibniz–sor.
- **b)** $a_n = \frac{1}{n+1}$, $\sum \left((-1)^n \cdot \frac{1}{n+1} \right)$ sor Leibniz-sor.

Tétel (Leibniz-kritérium)

Egy Leibniz–sor akkor és csak akkor konvergens, ha az azt generáló sorozat nullsorozat.

Megjegyzés

lgazoltuk, hogy egy sor konvergenciájának szükséges feltétele, hogy a generáló sorozat nullsorozat legyen. A tétel azt jelenti, hogy Leibniz–sorok esetén ez egyben elégséges feltétel is.

Bizonyítás

A fenti megjegyzés alapján csak azt kell igazolnunk, hogy $a : \mathbb{N} \to \mathbb{R}$, $a_n \ge 0$, $(a_n) \searrow$, $\lim_{n \to \infty} a_n = 0$ esetén a $\sum ((-1)^n a_n)$ sor konvergens.

Legyen $S_n = \sum_{k=0}^n (-1)^k a_k$. Mivel $a_n \ge 0$, és $(a_n) \searrow$, ezért $0 \le a_{n+1} \le a_n$ $(n \in \mathbb{N})$. Ezt felhasználva adódik, hogy

$$S_{2n+2} = a_0 - a_1 + \dots + a_{2n} - a_{2n+1} + a_{2n+2} = S_{2n} - (a_{2n+1} - a_{2n+2}) \leq S_{2n} \quad \Longrightarrow \quad (S_{2n+1}) \searrow \ .$$

Hasonlóan adódik, hogy

$$S_{2n+3} = a_0 - a_1 + \dots + a_{2n} - a_{2n+1} + a_{2n+2} - a_{2n+3}$$

= $S_{2n+1} + (a_{2n+2} - a_{2n+3}) \ge S_{2n+1} \implies (S_{2n}) \nearrow$.

Ezt felhasználva kapjuk, hogy

$$S_0 \geq S_{2n} = S_{2n} - a_{2n+1} + a_{2n+1} = S_{2n+1} + a_{2n+1} \geq S_{2n+1} \geq S_1 \ .$$

Következésképpen

- a) az $(S_{2n}) \searrow$ sorozatnak S_1 egy alsó korlátja,
- **b)** az $(S_{2n+1}) \nearrow$ sorozatnak S_0 egy felső korlátja.

Ezzel igazoltuk, hogy mindkét sorozat monoton és korlátos, tehát konvergens is.

Legyen $A:=\lim_{n\to\infty}S_{2n},\ B:=\lim_{n\to\infty}S_{2n+1}.$ Mivel (a_n) nullsorozat, ezért $A-B=\lim_{n\to\infty}(S_{2n}-S_{2n+1})=\lim_{n\to\infty}a_{2n+1}=0,$

azaz a páros indexű (S_{2n}) részletösszegek sorozatának, és a páratlan indexű (S_{2n+1}) részletösszegek sorozatának ugyanaz a határértéke.

A bizonyítás folytatása

Egy hibabecslés igazolásával egyben azt is megmutatjuk, hogy (S_n) is konvergens. A monotonitás miatt $S_{2n+1} \le A \le S_{2n}$.

Innen az alábbi hibabecslés adódik

$$|S_{2n+1}-A| \leq S_{2n} - S_{2n+1} = a_{2n+1} \ , \qquad |S_{2n}-A| \leq S_{2n} - S_{2n+1} = a_{2n+1} \leq a_{2n}.$$

Összefoglalva: $|S_n - A| \le a_n \ (n \in \mathbb{N}).$

A feltétel szerint (a_n) nullsorozat, ezért a nullsorozatokra vonatkozó majoráns kritérium miatt $(S_n - A)$ is nullsorozat. Így az (S_n) részletösszeg sorozat konvergens, vagyis a $\sum ((-1)^n a_n)$ Leibniz–sor konvergens.

Megjegyzés

Ha egy $\sum ((-1)^n a_n)$ alakú sor konvergenciáját a Leibniz–kritérium segítségével akarjuk eldönteni, akkor először ellenőrizni kell, hogy i) $a_n \geq 0$, ii) $a_{n+1} \leq a_n$. Ezek után a konvergenciát az dönti el, hogy $\lim_{n\to\infty} a_n = \text{vagy nem}$.

Példa

a)
$$\sum \left((-1)^n \frac{1}{n+1} \right) : a_n = \frac{1}{n+1} > 0, \ \left(\frac{1}{n+1} \right) \searrow \implies \sum \left((-1)^n \frac{1}{n+1} \right)$$

Leibniz-sor. Mivel $\lim_{n \to \infty} \frac{1}{n+1} = 0$, ezért a sor konvergens.

 $\sum \left((-1)^n \frac{1}{n+1} \right)$ nem abszolút konvergens (harmonikus sor).

Példa olyan sorra, ami konvergens, de nem abszolút konvergens.

b)
$$\sum \left((-1)^n \frac{2n+3}{n+1} \right) : a_n = \frac{2n+3}{n+1} = 2 + \frac{1}{n+1} > 0, \left(2 + \frac{1}{n+1} \right) \searrow \implies \sum \left((-1)^n \frac{2n+3}{n+1} \right)$$
 Leibniz-sor. Mivel $\lim_{n \to \infty} \frac{2n+3}{n+1} = 2 \neq 0$, ezért a sor divergens.

c)
$$\sum \left((-1)^n \frac{n}{n+1} \right) : a_n = \frac{n}{n+1} = 1 - \frac{1}{n+1} > 0, \left(1 - \frac{1}{n+1} \right) \uparrow \implies \sum \left((-1)^n \frac{n}{n+1} \right)$$
 nem Leibniz-sor.

Feltételesen konvergens sorok

Definíció: Ha a $\sum (a_n)$ konvergens, de nem abszolút konvergens, akkor feltételesen konvergens sornak nevezzük.