Many uses for simple dynamical models

Ben Bolker

26 February 2016

outline

- many applications of the logistic equation (single species)
- multispecies models

the logistic equation

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

• solve by separating variables, partial fractions

$$N(t) = \frac{K}{1 + \left(\frac{K}{N(0)} - 1\right)e^{-rt}}$$

- widely used in statistics (with K = 1) to describe sigmoidal patterns, especially of probability
- non-dimensional form (with r = K = 1, N(0) = 1/2):

$$f(x) = \frac{1}{1 + \exp(-x)}$$

ecology

• usual interpretation: *r*=exponential growth rate when rare (*per capita* birth-death); *K*=carrying capacity

$$\frac{d \log(N)}{dt} = \frac{dN/dt}{N} = r(1 - N/K)$$

• or could write it as

$$\frac{dN/dt}{N} = b - (d + \alpha N)$$

i.e., death rate increases linearly; α is sensitivity to competition.

- what is *K* in this parameterization?
- what's wrong with assuming birth rate decreases linearly?

metapopulation ecology

- instead of tracking birth & death of individuals, think about **patches** (Hanski and Gilpin 1991)
- patches either occupied or unoccupied (separation of time scales)

- per capita extinction probability (e) is constant
- per capita colonization probability decreases linearly with occupancy: can't colonize an already-colonized patch

$$\frac{dp}{dt} = cp(1-p) - ep$$

• same as logistic with K = ?

epidemic models

- now consider an epidemic
- everyone's initially susceptible
- *per capita* probability of infection ∝ number of infected individuals
- no-one ever recovers

$$\frac{dI}{dt} = S(\beta I) = (N - I)(\beta I)$$

- same equation, K = ?
- can also consider individual hosts as patches (good for considering competition between diseases)

mathematical extensions

• we have the general form

$$\frac{dx}{dt} = bx + cx^2 = x \cdot (b + cx)$$

- what is *K* now?
- sign of *b* determines stability of x = 0 equilibrium
- *c* usually < 0 (why?)
- what does it mean if we add a constant term $(a + bx + cx^2)$?
- what else could we do?

ecological extensions

- theta-logistic $((dN/dt)/N = r(1 (N/K)^{\theta}))$
- most useful to think about per capita term
- Allee effects
- constant terms (unrealistic)
- harvesting? maximum sustainable yield
- graphical analysis

epidemiological extensions

- also consider recovery (SIS model)
 - what is the equivalent model?
- can also frame the model as being about zombies (Smith? 2014), rumors, memes, ...
- what does this change?

lazy person's math (single-population models)

- find equilibria
- assess stability of equilibria (maybe graphically)
- especially: when is o equilibrium stable/unstable?
- solve analytically???
- solve numerically (Excel, R, MATLAB, ...)

multi-species models (ecology: competition)

- one equation per species, still quadratic
- system of equations
- can still find equilibria, compute stability

$$\frac{dN_i/dt}{N_i} = r_i \left(1 - \left(\sum_j \alpha_{ij} N_j / K \right) \right)$$
$$= b_i - \left(d_i + \sum_j \gamma_{ij} N_j \right)$$

- can find equilibria, analyze stability, etc. for arbitrarily many
- · metapopulation equivalent

$$\frac{dp_i}{dt} = c_i p_i \left(1 - \sum_i p_j \right) - e_i p_i$$

often make assumptions about competitive dominance

multi-species models (epidemiology: I)

- between-strain interactions as competition for patches (hosts): May and Nowak (1994)
- need to think about superinfection and coinfection
- helps us think about vaccine-induced strain replacement (Martcheva, Bolker, and Holt 2008, Murall, McCann, and Bauch (2014))

multi-species models (epidemiology: II)

- single strain of disease
- divide people into "species" according to disease status
- Susceptible, Infected, Recovered
- now disease takes off but dies away again

natural enemies

- predators, parasites ...
- Lotka-Volterra predator-prey model

$$\frac{dV}{dt} = rV - aVP$$
$$\frac{dP}{dt} = acVP - dP$$

- cycles (neutral)
- can add self-limitation, functional response
- phase plane analysis

ecological communities

- put together as many pieces as you need
- many prey, many predators, diseases, many trophic levels ...
- maybe include nutrient dynamics
- seasonality
- evolution
- · hard to handle!

Estimating parameters

- · direct measurement
- allometric scaling
- estimation from time series

Further resources

- Case (1999)
- Ellner and Guckenheimer (2006)
- Kokko (2007)
- Otto and Day (2007)
- Keeling and Rohani (2008)

References

Case, Ted J. 1999. An Illustrated Guide to Theoretical Ecology. Oxford University Press.

Ellner, Stephen P., and John Guckenheimer. 2006. Dynamic Models in Biology. Princeton, NJ: Princeton University Press.

Hanski, Ilkka, and Michael Gilpin. 1991. "Metapopulation Dynamics: Brief History and Conceptual Domain." Biological Journal of the *Linnean Society* 42 (1-2): 3–16. doi:10.1111/j.1095-8312.1991.tb00548.x.

Keeling, Matthew James, and Pejman Rohani. 2008. Modeling Infectious Diseases in Humans and Animals. Princeton: Princeton University Press.

Kokko, Hanna. 2007. Modelling for Field Biologists and Other Interesting People. Cambridge: Cambridge University Press.

Martcheva, Maia, Benjamin M Bolker, and Robert D Holt. 2008. "Vaccine-Induced Pathogen Strain Replacement: What Are the Mechanisms?" Journal of the Royal Society Interface 5 (18): 3-13. doi:10.1098/rsif.2007.0236.

May, Robert M., and Martin A. Nowak. 1994. "Superinfection, Metapopulation Dynamics, and the Evolution of Diversity." Journal of Theoretical Biology 170 (1): 95-114. doi:10.1006/jtbi.1994.1171.

Murall, Carmen Lía, Kevin S. McCann, and Chris T. Bauch. 2014. "Revising Ecological Assumptions About Human Papillomavirus Interactions and Type Replacement." Journal of Theoretical Biology 350 (June): 98-109. doi:10.1016/j.jtbi.2013.12.028.

Otto, Sarah P, and Troy Day. 2007. A Biologist's Guide to Mathematical Modeling in Ecology and Evolution. Princeton, NJ: Princeton University Press.

Smith?, Robert, ed. 2014. Mathematical Modelling of Zombies. University of Ottawa Press.