ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №2

Синтез помехоустойчивого кода

Вариант №465722=52

Выполнил:

Девятых Павел

Леонидович

Группа №Р3110

Проверил:

Рыбаков Степан

Дмитриевич

Преподаватель практики

Оглавление

Задание	3
Основные этапы вычисления	
Задание 1: №37	
Задание 2: № 69	
Задание 3: №101	
Задание 4: №21	
Задание 5: №52	6
Задание 6: № (37 + 69 + 101 + 21 + 52) * 4 = 1120	6
Ответы	7
Задание 7:	8
Заключение	10
Список использованных источников	11

Задание

- 1. Определить свой вариант задания с помощью номера в ISU (он же номер студенческого билета). Вариантом является комбинация 3-й и 5-й цифр. Т.е. если номер в ISU = 123456, то вариант = 35.
- 2. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 3. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчете в виде изображения.
- 4. Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 5. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода.
- 6. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчете в виде изображения.
- 7. Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.

8. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4.

Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.

Дополнительное задание №1 (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные

биты) и указывает бит с ошибкой при его наличии.

Основные этапы вычисления

Задание 1: №37

\mathbf{r}_1	\mathbf{r}_2	i_1	r_3	\mathbf{i}_2	\mathbf{i}_3	i_4
1	0	0	1	0	1	0

 $S_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$

 $S_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$

 $S_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 1 \oplus 0 = 0$

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	$\mathbf{i_1}$	r_3	\mathbf{i}_2	\mathbf{i}_3	i_4	S
1	X		X		X		X	S_1
2		X	X			X	X	S_2
4				X	X	X	X	S_3

Синдром S (S₁, S₂, S₃) = $110 \Rightarrow$ Ошибка в символе i_1 Исправленное сообщение: 1010

Задание 2: № 69

\mathbf{r}_1	r ₂	i_1	r_3	\mathbf{i}_2	\mathbf{i}_3	i_4
1	1	1	0	1	0	0

 $S_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1$

 $S_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 0 \oplus 0 = 0$

 $S_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r_3	$\mathbf{i_2}$	\mathbf{i}_3	i_4	S
1	X		X		X		X	S_1
2		X	X			X	X	S_2

Синдром S (S₁, S₂, S₃) = $101 \Rightarrow$ Ошибка в символе i_2 Исправленное сообщение: 1000

Задание 3: №101

r_1	r ₂	i_1	r ₃	\mathbf{i}_2	\mathbf{i}_3	i ₄
0	0	1	1	1	1	1

 $S_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 1 \oplus 1 \oplus 1 = 1$

 $S_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 1 \oplus 1 = 1$

 $S_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 1 \oplus 1 = 0$

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	${f i_1}$	r_3	\mathbf{i}_2	\mathbf{i}_3	i_4	S
1	X		X		X		X	S_1
2		X	X			X	X	S_2
4				X	X	X	X	S_3

Синдром S (S₁, S₂, S₃) = $110 \Rightarrow$ Ошибка в символе i_1 Исправленное сообщение: 0111

Задание 4: №21

r_1	r_2	i_1	r_3	\mathbf{i}_2	\mathbf{i}_3	i_4
0	1	1	1	0	0	1

 $S_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 1 \oplus 0 \oplus 1 = 0$

 $S_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 0 \oplus 1 = 1$

 $S_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 0 \oplus 1 = 0$

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	r_2	\mathbf{i}_1	r_3	\mathbf{i}_2	\mathbf{i}_3	i_4	S
1	X		X		X		X	S_1

2	X	X			X	X	S_2
4			X	X	X	X	S_3

Синдром S (S₁, S₂, S₃) = $010 \Rightarrow$ Ошибка в символе r_2 Исправленное сообщение: 1001 (ошибок среди информационных битов нет)

Задание 5: №52

\mathbf{r}_1	r_2	\mathbf{i}_1	r_3	i_2	\mathbf{i}_3	i_4	r_4	\mathbf{i}_5	i_6	\mathbf{i}_7	i_8	\mathbf{i}_9	\mathbf{i}_{10}	i ₁₁
0	1	0	0	0	1	1	0	1	0	0	0	0	1	1

$$S_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 \oplus i_5 \oplus i_7 \oplus i_9 \oplus i_{11} = 0 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 1$$

$$S_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 \oplus i_6 \oplus i_7 \oplus i_{10} \oplus i_{11} = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 1 = 1$$

$$S_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 0$$

$$S_4 = r_4 \oplus i_5 \oplus i_6 \oplus i_7 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 1$$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2 ^x	r_1	r_2	i_1	r ₃	\mathbf{i}_2	i_3	i ₄	r ₄	\mathbf{i}_5	\mathbf{i}_6	<mark>i</mark> 7	i_8	i 9	\mathbf{i}_{10}	\mathbf{i}_{11}	S
1	X		X		X		X		X		X		X		X	S_1
2		X	X			X	X			X	X			X	X	S_2
4				X	X	X	X					X	X	X	X	S_3
8								X	X	X	X	X	X	X	X	S ₄

Синдром S (S₁, S₂, S₃, S₄) = 1101 \Rightarrow Ошибка в символе i_7 .

Исправленное сообщение: 001110<mark>1</mark>0011

Задание 6: №
$$(37 + 69 + 101 + 21 + 52) * 4 = 1120$$

Информационных разрядов в передаваемом сообщении: 1120

Значит минимальное число проверочных разрядов равно 11, т.к используя формулу для нахождения минимального числа проверочных разрядов: $2^r \ge r + i + 1$ получаем: $2^{11} \ge 11 + 1120 + 1$; $2048 \ge 1132$.

Коэффициент избыточности = r / (i + r) = 11 / (11 + 1120) ≈ 0.0097260

Ответ: минимальное число проверочных разрядов = 11; коэффициент избыточности = 0.0097260

Ответы

Задание	1	_	i1
Задание	2	_	i2
Задание	3	_	i1
Задание	4	_	R2
Задание	5	_	i7

Задание 7:

Исходный код программы на языке программирования Java:

```
import static java.lang.Math.pow;
import static java.lang.Math.abs;
import java.util.Scanner;
public class Main {
 public static void main(String[] args) {
    byte m = (byte)0;
    while (m==0) {
      Scanner sc = new Scanner(System.in);/* вводим число для проверки */
      System.out.print("Введите число из 7 0 или 1 для проверки сообщения на ошибку
по классическому коду Хэмминга:");
      String [] k1 = sc.nextLine().split(""); // разбиваем наше число на список из
      if (k1.length != 7 || (k1[0].equals("0")==false && k1[0].equals("1")==false) ||
(k1[1].equals("0")==false && k1[1].equals("1")==false) || (k1[2].equals("0")==false &&
k1[2].equals("1")==false)|| (k1[3].equals("0")==false && k1[3].equals("1")==false)||
(k1[4].equals("0")==false && k1[4].equals("1")==false) || (k1[5].equals("0")==false &&
k1[5].equals("1")==false) || (k1[6].equals("0")==false && k1[6].equals("1")==false)) {
        if (k1.length!=7){
           System.out.println("Длина неверна, попробуйте ещё раз");
        }else {
           System.out.println("Ошибочный ввод символов! Попробуйте ещё раз");
        continue;
      m+=1;
      int s1 = Integer.parseInt(k1[0]) \land Integer.parseInt(k1[2]) \land Integer.parseInt(k1[4]) \land
Integer.parseInt(k1[6]);// первая контрольная сумма
      int s2 = Integer.parseInt(k1[1]) ^ Integer.parseInt(k1[2]) ^ Integer.parseInt(k1[5]) ^
Integer.parseInt(k1[6]);// вторая контрольная сумма
      int s3 = Integer.parseInt(k1[3]) ^ Integer.parseInt(k1[4]) ^ Integer.parseInt(k1[5]) ^
Integer.parseInt(k1[6]);// третья контрольная сумма
```

```
String[] S = {String.valueOf(s1), String.valueOf(s2), String.valueOf(s3)};// собираем
синдром
      if (S[0].equals("0") && S[1].equals("0") && S[2].equals("0")) {// проверка на
безошибочный случай
        System.out.printf("Cooбщение без ошибок: %s\nБита с ошибкой нет", (k1[2] +
k1[4] + k1[5] + k1[6]));
     } else {
        String[] nameBit = {"r1", "r2", "i1", "r3", "i2", "i3", "r4"};
        byte I = (byte) 0;
        for (int i = 0; i < S.length; i++) {
          I += Integer.parseInt(S[i]) * pow(2, i);//перевод из 2 в десятичную систему, но в
обратном порядке (это будет наш ломаный бит по счёту)
        k1[l - 1] = String.valueOf(abs(Integer.parseInt(k1[l - 1]) - 1));// вычисляем название
нашего бита
        System.out.printf("Индекс бита с ошибкой %d\nБит отвечает за %s\
nПравильное сообщение: %s", l, nameBit[l - 1], (k1[2] + k1[4] + k1[5] + k1[6]));//выводим
```

```
1001010
Индекс бита с ошибкой: 3
Бит отвечает за i1
Правильное сообщение: 1010
```

Рисунок 1. Пример работы программы для задания №1

Заключение

Во время выполнения лабораторной работы я изучил технологию избыточного кодирования, которая позволяет исправлять ошибочные биты при передачи информации — Код Хэмминга. Написал собственную программу на языке java для проверки сообщения на наличие ошибок и их последующего исправления.

Список использованных источников

- 1. Казарин, Лев Сергеевич. Введение в теорию кодирования, сжатия и восстановления информации : учебно-методическое пособие: Яросл. гос. ун-т им. П. Г. Демидова. Ярославль : ЯрГУ, 2020. 112 с.
- 2. Основы цифровой радиосвязи. Помехоустойчивое кодирование: метод. указания / сост. Д. В. Пьянзин. – Саранск : Изд-во Мордов. ун-та, 2009. – 16 с