ЛИНЕЙНЫЕ ОПЕРАТОРЫ

Любая задача моделирования в своей постановке содержит две базовые компоненты: множество объектов, на которых строится модель, и операции, которые осуществляют преобразования этих объектов.

Построение модели заключается в решении уравнений или неравенств, связывающих модели и операции. В функциональном анализе множеством объектов, как правило, являются банаховы пространства, а в качестве операций рассматриваются линейные операторы.

Определение 3.1. Оператор $A: X \to Y$, действующий из линейного пространства X в линейное пространство Y, называется линейным, если

 $A(k_1x_1 + k_2x_2) = k_1Ax_1 + k_2Ax_2 \ \forall k_1, k_2 \in \mathbb{C}, \ \forall x_1, x_2 \in X.$

Если оба пространства X и Y являются нормированными, то для оператора можно ввести определения ограниченности и непрерывности.

Определение . . . Оператор $A: X \to Y$ называется *ограниченным*, если ∃M: ∀x ∈ X, ||x|| < 1, выполнено неравенство ||Ax|| < M.

Определение . Оператор $A: X \to Y$ называется непрерывным, если $\forall x_n \in X, ||x_n - x_0|| \xrightarrow[n \to \infty]{} 0$, выполнено $||Ax_n - Ax_0|| \xrightarrow[n \to \infty]{} 0$.

Замечание. В предложении 3.1 будет показано, что эти определения эквивалентны друг другу. В силу линейности оператора определение непрерывности достаточно проверять для последовательностей, стремящихся к нулевому элементу.

Замечание. Очевидно, что множество линейных операторов, действующих из линейного пространства X в линейное пространство Y, само образует линейное пространство. Легко проверить, что введенная ранее норма удовлетворяет всем свойствам, предъявляемым к норме. Тем самым появляется линейное нормированное пространство линейных операторов, действующих из линейного пространства X в линейное пространство Y. Более того, это пространство операторов образует алгебру, т. е. такие операторы можно перемножать (ABx = A(Bx)). Легко проверить, что $||AB|| \leq ||A|| \cdot ||B||$.

Вычислить норму оператора в пространстве бесконечной размерности удается редко. Обычно ограничиваются оценкой нормы, этого зачастую бывает достаточно. В пространствах конечной размерности это сделать проще, но и здесь надо преодолевать технические трудности.

Пример 3.1. Пусть оператор A действует в конечномерном гильбертовом пространстве H и обладает ортогональным базисом собственных векторов $\{e_n\}$, $Ae_n = \lambda_n e_n$. Тогда $||A|| = \max_n |\lambda_n|$.

Доказательство. Заметим, что любой элемент x пространства Hможно разложить по базису $x=\sum\limits_{n}x_{n}e_{n}$ и при этом $Ax=\sum\limits_{n}Ax_{n}=$ $=\sum_{n}x_{n}\lambda_{n}e_{n}$. По условию базис ортогональный, не умоляя общности, можно считать его нормированным и тогда $||x||^2 = \sum_n |x_n|^2$. Обозначим $M = \max_{n} |\lambda_n|$. Ясно, что $||Ax||^2 = \sum_{n} |x_n|^2 |\lambda_n|^2 \leqslant M^2 \sum_{n} |x_n|^2 = M^2 ||x||^2$. Значит, $||A|| \leq M$. Покажем, что эта оценка точная, т. е. найдется xтакой, что ||Ax|| = M||x||. Положим для определенности $|\lambda_1| = M$. Возьмем в качестве $x = e_1$, тогда $||Ax|| = ||\lambda_1 e_1|| = M||x||$. Следовательно, $||A|| = \max_{n} |\lambda_n|$.

Рассмотрим вычисление нормы в пространствах l_n^p , $p=1,2,\infty$. Все эти пространства получаются за счет введения различных норм в линейном пространстве \mathbb{R}^n . Фиксируем какой-нибудь базис $\{e_n\}$ в \mathbb{R}^n , тогда любой линейный оператор A из \mathbb{R}^n в \mathbb{R}^n описывается матрицей $A=(a_{m,k})$, здесь $Ae_m=(a_{m,1},\ldots,a_{m,n})^T$.

 $\mathbf{\Pi} p \mathbf{u} \mathbf{m} e \mathbf{p}$ 3.2. Пусть $p = \infty$, тогда

$$||x|| = \sup_{m} |x_m|, \quad Ax = \left(\sum_{k} a_{m,k} x_k\right)_{m=1,...,n}. \quad ||A.|| = \sup_{m} \sum_{k} |am,k|$$

Доказательство. $||Ax||=\sup_{m}|\sum_{k}a_{m,k}x_{k}|\leqslant \sup_{m}||x||\sum_{k}|a_{m,k}|.$ Обозначим $M=\sup_{m}\sum_{k}|a_{m,k}|$ и заметим, что $||Ax||\leqslant M||x||.$

Чтобы показать точность оценки, предположим, что супремум достигается на первой строчке, т. е. $M=\sum\limits_{k}|a_{1,k}|$, и построим подходящий элемент x по следующему правилу: $x_k=\mathrm{sign}\,a_{1,k}$. Тогда $||Ax||=\mathrm{sup}\,|\sum\limits_{k}a_{m,k}x_k|=M=M||x||$. Следовательно, ||A||=M.

 $||Ax|| = \sup_{k} \sum_{m} |am,k|$

Пример 3.3. Пусть p = 1, тогда $||x|| = \sum_{m} |x_m|$.

 \mathcal{A} оказательство. $||Ax|| = \sum_{m} \left| \sum_{k} a_{m,k} x_{k} \right| \leqslant \sum_{k} |x_{k}| \sum_{m} |a_{m,k}|$. Обозначим $M = \sup_{k} \sum_{m} |a_{m,k}|$, тогда $||Ax|| \leqslant M \sum_{k} |x_{k}| = M||x||$. Докажем, что

оценка точная. Будем считать, что $M = \sum\limits_{m} |a_{m,1}|$ (супремум достигается

на первом столбце). Построим подходящий элемент x. Положим $x_1=1$, $x_m=0$, если m>1. Тогда $||Ax||=\sum_m |a_{m,1}|=M||x||$.

Пример 3.4. Пусть p = 2, в этом случае речь идет о гильбертовом пространстве и, если у оператора имеется базис ортогональных векторов, то вопрос решен в примере 3.1. Это условие, в частности, выполняется, если матрица оператора симметрична.

Чтобы вычислить норму оператора с несимметричной матрицей, нужно использовать определение сопряженного оператора.

Определение 3.5. Пусть A — линейный непрерывный оператор в гильбертовом пространстве H. Сопряженным к нему называется оператор A^* , определенный соотношением

$$(Ax,y)=(x,A^*y)$$
 для любых $x,y\in H$.

Отметим простые свойства сопряженного оператора:

$$(A^*)^* = A, \quad (AB)^* = B^*A^*.$$

Из этих свойств следует, что оператор A^*A совпадает со своим сопряженным (т. е. имеет симметричную матрицу) и его собственные векторы $(A^*Ae_k = \Lambda_k e_k)$ образуют ортонормированный базис. Легко видеть, что собственные числа Λ_k неотрицательны:

$$\Lambda_k = (A^*Ae_k, e_k) = (Ae_k, Ae_k) \geqslant 0.$$

Будем считать, что нумерация проведена так, что $\Lambda_1 \geqslant \Lambda_2 \geqslant \ldots \geqslant \Lambda_n \geqslant 0$.

Перейдем к вычислению нормы оператора. Фиксируем $x = \sum_k x_k e_k$ и оценим $||Ax||^2$:

$$||Ax||^{2} = (Ax, Ax) = (A^{*}Ax, x) = (\sum_{k} x_{k} \Lambda_{k} e_{k}, \sum_{m} x_{m} e_{m}) =$$
$$= \sum_{k} \Lambda_{k} x_{k}^{2} \leqslant \Lambda_{1} ||x||^{2}.$$

Значит, $||A|| \leq \Lambda_1$. Проверим точность оценки. Положим $x=e_1$, тогда $||Ax||=||\Lambda_1e_1||=\Lambda_1$ и, следовательно, $||A||=\Lambda_1$.

Рассмотрим далее несколько простых, но важных свойств линейных операторов.

 $\mathbf{\Pi} ped$ ложение 3.1. Линейный оператор $A:X \to Y$ ограничен тогда и только тогда, когда он непрерывен.

Доказательство. (1) Пусть оператор A непрерывен. Предположим, что он не ограничен. В этом случае найдется последовательность $\{x_n\}$, $||x_n|| = 1$, $\alpha_n = ||Ax_n|| \to \infty$. Положим $y_n = \frac{x_n}{\alpha_n}$, тогда $||y_n|| = \frac{1}{\alpha_n} \to 0$ и по условию непрерывности $||Ay_n||$ должна стремиться к 0, но по построе-

нию $||Ay_n|| = 1$. Следовательно, непрерывный оператор обязательно ограничен.

(2) Пусть оператор A ограничен, но не является непрерывным. Тогда найдется последовательность $\{x_n\}$, стремящаяся к 0, для которой $\alpha_n = ||Ax_n||$ не стремится к 0. Это означает, что существует $\delta > 0$ такое, что для любого N найдется число n > N, для которого $||Ax_n|| > \delta$. Рассмотрим ограниченную последовательность $y_n = \frac{x_n}{||x_n||}$, тогда по определению последовательность $||Ay_n||$ тоже должна быть ограничена, но по построению

$$||Ay_n|| = \frac{||Ax_n||}{||x_n||} > \frac{\delta}{||x_n||} \to \infty.$$

Полученное противоречие показывает, что любой линейный ограниченный оператор непрерывен. ■

Самая типичная и распространенная задача, связанная с линейными операторами, — решение уравнений Ax = b. Исчерпывающим решением такой задачи является построение оператора B такого, что Bb = x.

Определение 3.6. Линейный оператор A, отображающий пространство X на себя, называется обратимым, если существует $B: X \to X$ такой, что AB = BA = I, где I – единичный (тождественный) оператор.

Предложение 3.2 (условие обратимости линейного операторра). Линейный непрерывный оператор A, заданный на линейном нормированном пространстве X, обратим тогда и только тогда, когда существует положительное число m такое, что для любого элемента пространства выполнено неравенство ||Ax|| > m||x||.

Доказательство. (1) Предположим, что неравенство выполнено. Покажем, что в этом случае оператор является взаимно однозначным, т. е. переводит различные элементы в различные и, следовательно, имеет обратный. Фиксируем два различных элемента $x_1, x_2 \in X$. Заметим, что $||x_1-x_2|| = \delta > 0$, откуда $||Ax_1-Ax_2|| = ||A(x_1-x_2)|| > m||x_1-x_2|| = m\delta$, следовательно, образы элементов x_1 и x_2 тоже различны.

(2) Предположим, что оператор A имеет обратный оператор B, но неравенство из предложения не выполнено. Тогда найдется последовательность $\{x_n\}$ такая, что $||x_n|| = 1$, $\alpha_n = ||Ax_n|| \to 0$. Как было отмечено, оператор B линейный и непрерывный. Ясно, что $y_n = Ax_n \to 0$, но последовательность $By_n = x_n$ не стремится к 0, что противоречит непрерывности оператора B.

Замечание. Доказанное утверждение дает полезный критерий отсутствия у оператора обратного, но доказательство неравенства, как правило, очень трудная задача.

Рассмотрим далее устойчивость обратимости — еще одно важное свойство линейных операторов, утверждающее, что если оператор обратим, то обратимы и «близкие» к нему операторы. Сначала докажем это для тождественного оператора.

Теорема 3.1. Если B — линейный непрерывный оператор, причем ||B||=q<1, то оператор A=I-B имеет обратный, при этом норма обратного оператора A не превосходит $\frac{1}{1-q}$.

Доказательство. Рассмотрим вспомогательные операторы

$$D_n = I + B + B^2 + \ldots + B^n$$

и вычислим произведение

$$AD_n = (I - B)(I + B + B^2 + ... + B^n) =$$

$$= I + B + B^{2} + \ldots + B^{n} - B - B^{2} - \ldots - B^{n} - B^{n+1} = I - B^{n+1}.$$

Заметим, что $||B^k|| \le ||B||^k = q^k$ (супремум произведения не больше произведения супремумов). Следовательно, существует сумма ряда

$$D = I + B + B^2 + \dots + B^n + \dots,$$

так как последовательность частичных сумм D_n фундаментальная, т. е.

$$||D_n - D_m|| \le q^{n+1} + \ldots + q^m \le \frac{q^{n+1}}{1-q},$$

значит, AD = I. Аналогично проверяется, что DA = I. Таким образом, оператор D является обратным для оператора A.

Доказанное утверждение говорит о том, что всякий оператор, «мало отличающийся» от тождественного, обратим. Это утверждение справедливо для любого обратимого оператора.

Теорема 3.2 (достаточное условие обратимости). Пусть X – банахово пространство. Если линейный, непрерывный оператор $A: X \to X$ имеет обратный A^{-1} и для оператора $B: X \to X$ справедлива оценка $||B|| < \frac{1}{||A^{-1}||}$, то оператор C = A + B тоже обратим.

Доказательство. Рассмотрим вспомогательный оператор $D=A^{-1}C=I+A^{-1}B$. По условию $||A^{-1}B||\leqslant ||A^{-1}||\cdot ||B||<1$, следовательно, по теореме Банаха оператор D имеет обратный оператор D^{-1} . Обозначим $F=D^{-1}A^{-1}$, тогда

$$FC=F(A+B)=D^{-1}A^{-1}(A+B)=D^{-1}D=I,$$
 $CF=(A+B)F=AA^{-1}(A+B)D^{-1}A^{-1}=ADD^{-1}A^{-1}=I.$ Следовательно, $F=(A+B)^{-1}$.

Замечание. Эта внешне простое и формальное утверждение имеет огромный круг приложений. Оно лежит в основе процедуры итераций при решении уравнений методом последовательных приближений.

Следствие. Пусть линейный, непрерывный оператор A отображает банахово пространство X в себя. Если уравнение Ax = b после перезаписи (I - B)x = b допускает оценку ||B|| = q < 1, то последовательность $x_{n+1} = b + Bx_n$ ($n = 0, 1, 2, \ldots; x_0$ — произвольный элемент пространства X) сходится к решению уравнения.

Доказательство. Заметим, что $x_1 = b + Bx_0, x_2 = b + Bb + B^2x_0, \dots,$ $x_n = b + Bb + \dots + B^nx_0$, следовательно, для n > k

$$||x_n - x_k|| = ||B^k b + \dots + B^{n-1} b + B^n x_0 - B^k x_0|| \le$$

$$\le ||B^k b|| + \dots + ||B^{n-1} b|| + ||B^k x_0|| + ||B^n x_0|| \le$$

$$\le q^k \frac{1 - q^{n-k}}{1 - q} ||b|| + (q^k + q^n)||x_0||.$$

По условию q < 1 и, значит, последовательность фундаментальная, следовательно, существует предел $x_* = \lim_{n \to \infty} x_n$. Переходя к пределу в рекуррентном уравнении, определяющем последовательность, получим $x_* = b + Bx_*$ или $Ax_* = b$.