Part I:

- 2. Resetn is a synchronous active low signal. To reset the FSM, force resetn to be 0.
- 3. Code submitted on Quercus.

4.

Simulation for 1111 and 1101 inputs, we can see that the output LED goes high for both.

Part II:

2.

F_n	out	a	b	c	x	r	sa	sb	op	go	F_{n+1}
S_LOAD_A	0	1	0	0	0	0	00	00	0	0	S_LOAD_A
S_LOAD_A	0	1	0	0	0	0	00	00	0	1	S_LOAD_A_WAIT
S_LOAD_A_WAIT	0	1	0	0	0	0	00	00	0	0	S_LOAD_B
$S_LOAD_A_WAIT$	0	1	0	0	0	0	00	00	0	1	S_LOAD_A_WAIT
S_LOAD_B	0	0	1	0	0	0	00	00	0	0	S_LOAD_B
S_LOAD_B	0	0	1	0	0	0	00	00	0	1	S_LOAD_B_WAIT
S_LOAD_B_WAIT	0	0	1	0	0	0	00	00	0	0	S_LOAD_C
S_LOAD_B_WAIT	0	0	1	0	0	0	00	00	0	1	S_LOAD_B_WAIT
S_LOAD_C	0	0	0	1	0	0	00	00	0	0	S_LOAD_C
S_LOAD_C	0	0	0	1	0	0	00	00	0	1	S_LOAD_C_WAIT
$S_LOAD_C_WAIT$	0	0	0	1	0	0	00	00	0	0	S_LOAD_X
$S_LOAD_C_WAIT$	0	0	0	1	0	0	00	00	0	1	S_LOAD_C_WAIT
S_LOAD_X	0	0	0	0	1	0	00	00	0	0	S_LOAD_X
S_LOAD_X	0	0	0	0	1	0	00	00	0	1	S_LOAD_X_WAIT
$S_LOAD_X_WAIT$	0	0	0	0	1	0	00	00	0	0	S_CYCLE_0
S_LOAD_X_WAIT	0	0	0	0	1	0	00	00	0	1	S_LOAD_X_WAIT
S_CYCLE_0	1	1	0	0	0	0	00	11	1	0	S_CYCLE_1
S_CYCLE_0	1	1	0	0	0	0	00	11	1	1	S_CYCLE_1
S_CYCLE_1	1	1	0	0	0	0	00	11	1	0	S_CYCLE_2
S_CYCLE_1	1	1	0	0	0	0	00	11	1	1	S_CYCLE_2
S_CYCLE_2	1	1	0	0	0	0	01	11	1	0	S_CYCLE_3
S_CYCLE_2	1	1	0	0	0	0	01	11	1	1	S_CYCLE_3
S_CYCLE_3	1	1	0	0	0	0	00	10	0	0	S_CYCLE_4
S_CYCLE_3	1	1	0	0	0	0	00	10	0	1	S_CYCLE_4
S_CYCLE_4	0	0	0	0	0	1	00	01	0	0	S_LOAD_A
S_CYCLE_4	0	0	0	0	0	1	00	01	0	1	S_LOAD_A

State table for new computation.

3.

State diagram.

4. Verilog code submitted on Quercus.

5.

Generated FSM.

Modelsim tests, with A = 2, B = 3, C = 4, x = 5, output 117

Modelsim tests, with A = 3, B = 3, C = 4, x = 5, output 118