UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

ESCUELA DE ESTUDIOS GENERALES ÁREA DE INGENIERÍA

Álgebra y Geometría Analítica

Tema: Ecuación de la Hipérbola

GUÍA DE PRÁCTICA N 15

- 1. En las siguientes hipérbolas, encontrar el centro, los vértices, los focos y las asíntotas:

 - a) $\frac{(x-2)^2}{25} \frac{(y+1)^2}{5} = 1$
b) $\frac{(x-1)^2}{16} \frac{(y+1)^2}{16} = 1$
 - c) $9x^2 16y^2 + 144x + 32y + 79 = 0$
 - d) $9x^2 4y^2 18x 4y + 44 = 0$
 - e) $4y^2 16x^2 48x 4y + 1 = 0$
 - f) $5v^2 4x^2 6x 15v + 10 = 0$
- 2. Hallar la ecuación de cada una de las hipérbolas siguientes, asi como el centro, los vértices, focos, extremos de los lados rectos y las ecuaciones de las asíntotas. Estas hipérbolas tienen:
 - a) a = 4, b = 3, eje conjugado paralelo al eje Y, centro (2,4).
 - b) a = 3, b = 4, eje focal paralelo al eje X, centro (4, -1).
 - c) a = 5, b = 12, eje conjugado perpendicular el eje Y, centro (1, -3)
 - d) Centro (-3,-1), vértice (1,-1) y foco (2,-1)
 - e) Centro (0,2), vértice (0,10) y foco (0,19)
 - f) Vértices $(1 \pm \sqrt{21}, -1)$ y foco en (6, -1)
 - g) Vértices $(6.3 \pm \sqrt{13})$ y un foco en (6.-4)
 - h) Focos (3,-13) y (3,5) y vértice en $(3, -4 + \sqrt{17})$
 - i) Extremos del eje conjugado en (0,-3) y (4,3) y un vértice en el punto $(2, -3 + \sqrt{21})$
 - j) Extremos del eje conjugado en $(-3 \pm \sqrt{24}, 1)$ y un vértice en el punto (-3,6)
 - k) Un extremo del eje conjugado en (4,6), un vértice en (8,3) y un foco en el punto (-1,3).
- 3. Hallar la ecuación del lugar geométrico de los puntos P(x, y) tales que
 - a) La diferencia, en valor absoluto de las distancias del punto P a (4,1) y (-2,1)es igual a 5.
 - b) La diferencia, en valor absoluto de las distancias del punto P a (3, -2) y (5, -5) es igual a 4.
 - c) La diferencia, en valor absoluto de las distancias del punto P a (4,3) y (-1,0)es igual a 6.

- 4. Hallar la ecuación de la hipérbola equilátera centrada en el origen, y que pasa por el punto (4, -2).
- 5. Hallar la ecuación de la hipérbola equilátera centrada en el origen, y que pasa por el punto $(-3, \sqrt{2})$.
- 6. Hallar la ecuación de la hipérbola con focos en (0,0) y (6,0) y excentricidad e=3/2.
- 7. Hallar la ecuación de la hipérbola que tiene sus focos comunes con la elipse $24x^2 + 49y^2 = 1176$, si la excentricidad de la hipérbola es 5/4.
- 8. Hallar la ecuación de la hipérbola con vértices en los puntos (1,2) y (1,12) y excentricidad e=2.
- 9. Hallar la ecuación de la hipérbola cuyas asíntotas tienen las ecuaciones $y=2\pm\frac{3}{2}(x-1)$ y pasa por el punto $(4\sqrt{3},6\sqrt{2})$.
- 10. Hallar la ecuación de la hipérbola cuyos vértices se encuentran en los focos de la elipse $\frac{(x-2)^2}{16} + \frac{(y+1)^2}{9} = 1$ y los vértices de esta elipse se encuentran en los focos de la hipérbola.
- 11. Hallar los puntos de intersección de la recta 20x + 21y + 2 = 0 con la hipérbola $\frac{x^2}{9} \frac{y^2}{16} = 1$.
- 12. Hallar la ecuación de la hipérbola centrada en (0,0) y con eje focal paralelo al eje X,
 - a) Cuyo semieje focal mide 6 unidades y la excentricidad es 3/2.
 - b) Cuya distancia focal es 26 y la excentricidad es 13/5.
 - c) Que pasa por los puntos (-4,3) y $(\sqrt{10}, -\frac{3}{2})$.
- 13. Hallar la ecuación de la hipérbola que pasa por (6,4), tiene su eje focal paralelo al eje Y y sus asíntotas son las rectas con ecuaciones $L_1: x + 2y 3 = 0$, $L_2: x 2y + 1 = 0$.
- 14. Hallar las asíntotas de la hipérbola $16x^2 9y^2 = 144$.
- 15. Hallar la ecuación de la hipérbola que pasa por (3,2), tiene centro en (0,0), eje focal contenido en el eje X y una asíntota es $2x \sqrt{7}y = 0$.
- 16. Demostrar que el producto de las distancias de cualquier punto de la hipérbola $b^2x^2 = a^2b^2 + a^2y^2$ a sus asíntotas es una constante igual a a^2b^2/c^2 .
- 17. Los focos de una hipérbola H se encuentran en la recta L: 2x 3y + 16 = 0. Si una de las asíntotas es la recta y = 4 y se sabe que la hipérbola pasa por (2,10), hallar la ecuación cartesiana de H en XY, así como los focos y la otra asíntota.

Sugerencia: use las fórmulas de transformación de coordenadas para pasar a un sistema X'Y'. Considere la figura.

18. Sea H la hipérbola cuyo centro es C(-45,15) y uno de sus vértices es (3,51). Si el punto Q(10,50) esta sobre la hipérbola, encontrar las ecuaciones vectoriales de la hipérbola H y de sus asíntotas.

Sugerencia: use las fórmulas de transformación de coordenadas para pasar a un sistema X'Y'. Considere la figura.

- 19. La hipérbola H tiene excentricidad $e = \sqrt{5}/2$ y los vértices (-7, -3) y (9,9). Hallar el centro, los focos las asíntotas y los extremos del eje conjugado.
- 20. Si un foco de la hipérbola H es (2,1) y un lado recto esta sobre la recta $L: 3x + 4y = 10(1 + 5\sqrt{2})$ y mide 10 unidades de longitud, determinar el centro, los vértices, las asíntotas y la excentricidad de la hipérbola.