Assignment Project Exam Help

https://powcoder.com

Renewal process

A Scingular received that Proposition profess for which the lep independent and identically-distributed non-negative-real-valued random variables with an arbitrary common distribution function F.

- https://powcoder.com
- A Poisson process is a renewal process where the τ_i have an exponential distribution.
- Agreed provide the tis material Popular Section 1990 West of the Markovian.

A picture of N_t Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

 $T_n = \sum_{i=1}^n \tau_i$ is time of *n*th jump.

Counting vs waiting representations

When we looked at the Phison process we law that we could use 1 parties of the number W of points 1 p in the interval [0, t] or a waiting time description in terms of the

time T_n until the *n*th event. This carries over to the study of renewhere $S_n = \{T_n \leq t\}$

- $ightharpoonup \{N_t < n\} = \{T_n > t\}$
- * Add We Chat powcoder

Example

Assignment Project Exam Help

Light bulbs have a lifetime that has distribution function F. If a light pulp burns out, it is immediately replaced. Let N_t be the number that have a lifetime that has distributed. Let N_t be the number that have a lifetime that have a light pulp burns out, it is immediately replaced. Let N_t be the number that have a lifetime that has distribution function F. If a light pulp burns out, it is immediately replaced. Let N_t be the number of the light pulp burns out, it is immediately replaced. Let N_t be the number of the light pulp burns out, it is immediately replaced. Let N_t be the number of the light pulp burns out, it is immediately replaced. Let N_t be the number of the light pulp burns out, it is immediately replaced. Let N_t be the number of the light pulp burns out, it is immediately replaced. Let N_t be the number of the light pulp burns out, it is immediately replaced. Let N_t be the number of the light pulp burns out, it is immediately replaced. Let N_t be the number of the light pulp burns out, it is immediately replaced.

 N_t goes to ∞ as $t \to \infty$

Assignment Project Exam Help

 $https: \begin{picture}(0,0) \put(0,0) \put(0,0)$

This implies that with probability 1, $N_t \to \infty$ as $t \to \infty$. Add WeChat powcoder

Questions

Assignment Project Exam Help

- Can there be an explosion (that is an infinite number of renewals in a finite time)?
- https://poweoder.com
- ▶ What is the average renewal rate? That is, at which rate does $N_t \to \infty$?

Explosion?

For any fixed $t<\infty$, $\mathbb{P}(N_t=\infty)=0$. To see this, write

Assignment Project Exam Help $= \lim_{n \to \infty} \mathbb{P}(\sum_{i} \tau_{i} \leq t)$

 $\begin{array}{c} = \lim_{n \to \infty} \mathbb{P}(\sum_{i=1}^{n} \tau_i \leq t) \\ \text{https://powersedef} \\ \text{https://powersedef} \end{array}$

Using Markov's inequality $(\mathbb{P}(X \ge a) \le \mathbb{E}[X]/a$ for $X \ge 0$ and a > 0 Arctor WeChat powcoder

$$\mathbb{P}(e^{-\sum_{i=1}^n \tau_i} \geq e^{-t}) \leq e^t \mathbb{E}[e^{-\sum_{i=1}^n \tau_i}] = e^t \left(\mathbb{E}[e^{-\tau_1}]\right)^n,$$

which goes to 0 as $n \to \infty$ since $\mathbb{E}[e^{-\tau_1}] < 1$ (why?)

Distribution of N_t

Assignment Project Exam Help $\mathbb{P}(N_t = n) = \mathbb{P}(T_n \leq t < T_{n+1})$

where T_n is the distribution function of T_n . There are Charles which has a power one?)

Distribution of N_t

Assignment $N_{t+1} = T_{N_{t+1}}$. It follows that $N_{t+1} = T_{N_{t+1}}$. It follows that $N_{t+1} = T_{N_{t+1}} = T_{N_{t+1}} = T_{N_{t+1}} = T_{N_{t+1}} = T_{N_{t+1}}$.

Since With probability one, both the first and last terms approach μ^{-1} . Therefore, with probability one,

Add We@hat.powcoder

and we see that, for large t, N_t grows like t/μ .

The LLN for N_t

Example

Jenny uses her smart phone a lot, so she carries a powerful pertable S_{1} Singly M_{1} Model of her M_{2} decreases her phone for 30 minutes and that charge lasts for a U(30,60) (minutes, independent of previous charges) (amount of time before she receives a warning. On average how many times per hour does Jenny charge her phone:

• $\mu = \mathbb{E}[au_1] = (45 + 30)/60$, so the rate is

M/G/1/1 queue

Assignment Project Exam Help There is no "queue": when an arriving customer finds the server

busy, s/he does not enter. Service times are independent and identically distributed with distribution function G (with mean μ_G). https://powcoder.com

► What is the rate at which customers actually enter the system?

Made ort Worder that stopes will ordie reservice?

M/G/1/1 queue

Let N_t be the number of customers who have been admitted by t. Then the times between successive entries of customers are made up of:

Assigning time from the end of service until the next arrival.

M/G/1/1 queue

The mean time between renewals is $\mu = \frac{1}{\lambda} + \mu_G$. So the rate at which customers actually present be system in Exam Help $\frac{1}{\mu} = \frac{1}{\frac{1}{\lambda} + \mu_G} = \frac{1}{1 + \lambda \mu_G}.$

Customers and a particular continually enter the system is

Add Welchat powcoder

If $\lambda=10$ per hour and $\mu_{\rm G}=0.2$ hours, then on average only 1 out of 3 customers will actually get served!

G/G/n/m queue

Assignment Project Exam Help

In the very general setting of the G/G/n/m queue, the beginnings of busy periods (i.e. times at which a customer arrives to find the system constitute coneval times C

The time of the first "renewal" will typically have a different distribution though

The Renewal Central Limit Theorem

Assignment Project Exam Help $\frac{N_t - \frac{t}{\mu}}{\sqrt{t\sigma^2/\mu^3}} \xrightarrow{d} \mathcal{N}(0,1) \text{ as } t \to \infty.$ So folkthes://powcoder.com

Add
$$t = \frac{N_t - \frac{t}{\mu}}{\sqrt{t} - \frac{t}{\mu}} \le x$$
 = $\Phi(x)$, oder

where Φ is the standard normal cdf.

Residual lifetime

Astroiment Project Examithelp

Since $T_{N_t} \le t < T_{N_t+1}$, the residual lifetime at time t is $R_t = T_{N_t+1} b_{N_t+1} b_{N_t+1$

Let F be the c.d.f. of τ_1 . We will study the large t behaviour of R_t assuming that F in conductive (that is, it prespection to the its mass at multiples of a fixed amount), and has finite mean μ .

Residual lifetime for large t

Assignment Project Exam Help $\lim_{t\to\infty} \mathbb{P}(R_t \leq x) = \lim_{\mu \to \infty} (1 - F(y)) dy.$

 $\underset{\mathsf{Recall\ that\ for\ }Z}{\underbrace{https://powcoder.com}}$

Add WeChat powcoder

so $\frac{1-F(y)}{\mu}$, $y \ge 0$, is a probability density function.

Example

A computer receives packets of information whose sizes are uniformly distributed between 1 and 5 GB. It saves them on hard a size of the saves of th

For the first file for which there is not enough space on a hard drive, find the approximate distribution and the mean of the length price residual hard the head drive does not have space for.

Add WeChat powcoder

▶ Give a (symmetric) interval to which, the total number of saved files belongs with probability ≈ 0.95 .

Example solution

Here, "time" is measured in GB! We are looking for the residual lifetime at time t = 700, where t is considered to be large Spread 17 Project Exam Help the limiting distribution of the residual part has density

https://powder.equiv for the state of the s

- ▶ The mean of the residual part is 31/18, which is greater than half of the mean interval length, which is 3/2.
- $^{\text{hadd}}$ We Chat $_{\sqrt{\frac{t}{\mu}} \times \frac{\sigma^2}{\mu^2}}$ powcoder

With t = 700, $\mu = 3$, $\sigma^2 = 4/3$, the desired (symmetric) interval is $233.33 \pm 5.88 \times 1.96 = (221.81, 244.85)$.

Assignment Project Exam Help The age of the renewal process at time t is the time since the most recent renewal, i.e. $A_t = t - T_{N_t}$.

Theorem: If F is now lattice with finite mean μ and $\chi > 0$ then $\lim_{t \to \infty} \mathbb{P}(A_t \le x) = \frac{1}{\mu} \int_0^x (1 - F(y)) dy.$

Age - some intuition

Consider the process after it has been in operation for a long

Assignment Project Exam Help successive renewals are still independent and identically-distributed with distribution F.

► lotingskya/cph William le loting the age at t of the original process.

Example

A Suppose $(N_t)_{t>0}$ is a Poisson process with rate λ , find the Surginal Graphics of θ , θ and θ is taken to what is the expected duration of the inter-event time $T_{N_{t}+1} - T_{N_{t}}$?

https://powcoder.com

Renewal CLT - sketch proof

Recall that $T_n = \sum_{i=1}^n \tau_i$.

Assignment Project Exam Help $\mathbb{P}(N_t \geq n) = \mathbb{P}(T_n \leq t)$

https://powcod
$$\mathbb{P} \left(Z \leq \frac{t - n\mu}{\sqrt{p\sigma^2}} \right)$$
.

Renewal CLT - sketch proof

Now, we choose n=n(x,t) such that $\frac{n\mu-t}{\sqrt{n\sigma^2}}\approx x$. That is, we put

$Assign ^{n(x,t)} \underbrace{\text{ent}^{\frac{t}{n}} + x}_{\text{Then}} \underbrace{\text{the above argument, we have}}^{\frac{t}{n} + x} \underbrace{\text{Project Exam Help}}_{\text{and the above argument, we have}}$

Residual lifetime for large t - sketch of proof

A Sesider a period of received than Js, by the strong daw of Large elp Numbers,

$$\begin{array}{c} h \overline{trps./powcoder} \\ h \overline{trps./powcoder} \\ h \overline{trps./powcoder} \\ h \overline{trpowcoder} \\ h \overline{trpowco$$

as n approaches infinity.

Residual lifetime for large *t* - sketch of proof

Under the stated conditions, it can also be shown that

$$\underset{t \to \infty}{\text{https://powcoder}} \underset{t \to \infty}{\text{Hence}} = \underset{t \to \infty}{\underbrace{\text{https://powcoder}}} = \underset{\mathbb{E}[\tau_1]}{\underbrace{\text{https://powcoder}}} = \underset{\mathbb{E}[\tau_1]}{\underbrace{\text{https://powcoder}}} = \underset{\mathbb{E}[\tau_1]}{\underbrace{\text{https://powcoder}}} = \underset{t \to \infty}{\underbrace{\text{https://powcoder}}} = \underset{\mathbb{E}[\tau_1]}{\underbrace{\text{https://powcoder}}} = \underset{\mathbb{E}[\tau_1]}$$

Add We
$$\lim_{\mu \to \infty} \int_{\infty}^{\infty} \mathbb{P}(\tau_1 > u) du$$
.

Age proof

For $x,y \geq 0$ the events $\{R_t > x, A_t > y\}$ and $\{R_{t-y} > x+y\}$ are

$Assign{subarrange}{c} \underset{t \rightarrow \infty}{\text{ment}} \underset{\mathbb{P}(R_t > x, A_t > y)}{\text{Project}} \underset{t \rightarrow \infty}{\text{Exam}} \underset{\mathbb{P}(R_{t-y} > x + y)}{\text{Help}}$

https://powcoder.com

Setting x = 0 we get

$$Add_{t\to\infty} W_t e Chat \int_{\mu} D W coder$$

$$= \lim_{t\to\infty} \mathbb{P}(R_t \leq y).$$

Example

For large t, find the joint probability density function of (R_t, A_t) in Asserberg Texas Project Exam Help

$$\mathbf{P}(A_t \leq x, R_t \leq y) = \mathbb{P}(A_t \leq x) - \mathbb{P}(R_t > y) + \mathbb{P}(A_t > x, R_t > y), \\
\mathbf{POWCOder.com}$$

$$\frac{\partial^2 \mathbb{P}(A_t \leq x, R_t \leq y)}{\partial x \partial y} = \frac{\partial^2 \mathbb{P}(A_t > x, R_t > y)}{\partial x \partial y}.$$

- Add We Chat powicoder
- ▶ Hence, the joint pdf is 1/12 if 1 < x + y < 5 and 0 otherwise.