

[프로젝트 세부주제]

- → WEB을 이용한 LED 제어
- → WEB을 이용한 DHT11 온도,습도 모니터링

박매일

1. 사전준비사항

준비물

- Arduino(WeMos D1)
- DHT11 Sensor
- 브래드보드
- LED 1개
- 저항 1개(220 Ohm)
- 점퍼케이블
- 전원 케이블(USB)

디렉토리 만들기

C:₩MQTTProject

source

SW

설치 프로그램

- mosquitto
- Arduino IDE
- Node.js
- MongoDB

통신연결 주소

- WiFi AP 이름
- WiFi AP 비밀번호
- PC IP주소 (ipconfig)

2. 회로도 구성

- 1. Eclipse Mosquitto™ An open source MQTT broker Download
 - → https://mosquitto.org/

Eclipse Mosquitto is an open source (EPL/EDL licensed) message broker that implements the MQ devices from low power single board computers to full servers.

The MQTT protocol provides a lightweight method of carrying out messaging using a publish/su sensors or mobile devices such as phones, embedded computers or microcontrollers.

The Mosquitto project also provides a C library for implementing MQTT clients, and the very pop

Mosquitto is part of the Eclipse Foundation, is an iot.eclipse.org project and is sponsored by ceda-

Download

Mosquitto is highly portable and available or binaries for your platform.

Test

You can have your own instance of for a wide range of platforms. Go to the Mosquitto running in minutes, but to make dedicated download page to find the course testing even easier, the Mosquitte Project runs a test server at test.mosquitto.org where you can test your clients in a variety of

Source

- mosquitto-1.6.6.tar.gz (319kB) (GPG signature)
- Git source code repository (github.com)

Older downloads are available at https://mosquitto.org/files/

Binary Installation

The binary packages listed below are supported by the Mosquitto project. In ma

Windows

- mosquitto-1.6.6-install-windows-x64.exe (~1.4 MB) (64-bit build, Windows
- mosquitto-1.6.6-install-windows-x32.exe (~1.4 MB) (32-bit build, Windows

2. Mosquitto™ MQTT broker 설치 및 서버구동

mosquito server 구동 및 구독자, 발행자 실행

② subscriber(구독자) 실행→수신대기 창

C:₩MQTTProject₩mosquitto>**mosquitto_sub -t iot -p 1883** hello

{"tmp":25,"hum":70}

(외부에서 연결하는 방법)

C:₩MQTTProject₩mosquitto>mosquitto_sub -h MQTT서버ip주소 -t iot -p 1883

③ publisher(발행자) 실행→메시지(토픽) 발행 창

C:₩MQTTProject₩mosquitto>**mosquitto_pub –t iot –m "hello**"

C:₩MQTTProject₩mosquitto>mosquitto_pub -t iot -m "{\"tmp\":25,\"hum\":70}

① cmd(관리자 권한으로 실행)에서 서버 구동 > 서버 구동 창

C:₩MQTTProject₩mosquitto≯mosquitto –v

1569209814: mosquitto version 1.6.6 starting

1569209814: Using default config.

1569209814: Opening ipv6 listen socket on port 1883.

1569209814: Opening ipv4 listen socket on port 1883.

3. MQTT broker 메시지 중개 테스트

1. 구현내용(WeMos에서 DHT11 Sensor 데이터를 MQTT 서버로 발행하는 부분)

2. Download the Arduino IDE

→ http://arduino.cc

3. Arduino 설치

WeMos 보드의 장점

- 아두이노 UNO와 비슷
- 펌웨어 개발 없이 wifi를 다룰 수 있음
- 많은 사람들이 이용하는 ESP8266 모듈
- 가격이 저렴한 편

WeMos 핀맵(pin map)	D15	SCL	GPI05			
	D14	SDA	GPI04			
	GND					
	D13	SCK	GPIO14			
5V	D12	MISO	GPIO12			
RST	D11	MOSI	GPIO13	Rx0*		
3V3	D10	SS	GPIO15	Tx0*	10K Pull down	
5V	D9	TX1	GPI02		10K Pull up	Built in led
GND	D8		GPI00		10K Pull up	
GND						
VIN	D7	MOSI	GPI013			
	D6	MISO	GPIO12			
WEMOS D1 R1	D5	SCK	GPIO14			
	D4	SDA	GPI04			
	D3	SLC	GPI05			
	D2		GPIO16			
	D1	Tx	GPI01			
	D0	Rx	GPI03			0

5. 아두이노 WeMos 환경 셋팅

환경설정 참고 SITE

http://www.makewith.co/page/project/1004/story/2478/

STEP 1. WeMos를 컴퓨터에 연결하기

- 1. WeMos-D1 R1 보드를 usb케이블로 컴퓨터와 연결합니다.
- 2. Windows OS가 반응합니다. 새 하드웨어의 부착을 알리고 USB 드라이버를 설치합니다.
- 3. 시스템에서 드라이버를 찾지 못할 경우 USB 드라이버를 다운로드 해야합니다. USB 인터페이스 칩은 CH340G입니다.

STEP 2. 연결 확인하기

장치관리자(Device Manager)에서 확인합니다.

STEP 3. 아두이노 IDE에 WeMos 보드 라이브러리 설치하기 →아래 URL을 클릭하지 말고 복사합니다.

http://arduino.esp8266.com/stable/package_esp8266com_index.json
① 파일->환경설정

STEP 4. Board Manager로 WeMos보드 설치하기

② 툴-> 보드 -> 보드 매니저...

- →"esp8266 of ESP8266 Community"를 검색해서 설치해 주세요.
- → 설치 후 아두이노 IDE를 껐다 켜주세요.

STEP 5. WeMos 보드 선택하기 & speed 설정하기

7. PubSubClient 라이브러리 설치

ESP8266 모듈에 MQTT 기능을 구현하기 위해서는 해당 라이브러리가 필요합니다. 아두이노 개발환경에서 사용할 수 있도록 개발된 라이 브러리가 여러 종류가 있는데 여기서는 **PubSubClient** 라이브러리를 사용하도록 하겠습니다. 일단 아두이노 개발환경을 실행하고 아래 순서대로 라이브러리를 설치하면 됩니다.

C:#MQTTProject#source#libraries

이름

DHTlibrary

PubSubClient

- ① 스케치 → 라이브러리 포함하기 --> 라이브러리 관리
- ② PubSubClient 검색
- ③ 클릭 후 최신 버전 설치

닫기

8. DHT11 라이브러리 설치

Temboo WiFi

9. 소스코딩(소스저장)


```
10. 소스코드(mqtt_project.ino)
            char ssid[]="WiFi AP이름";
            char password[]="비밀번호";
            byte server1[] = {ip주소};//MQTT 브로커IP
#include <ESP8266WiFi.h>
#include "PubSubClient.h"
#include <DHT11.h>
char ssid[]="";
char password[]="";
byte server1[] = {};//MQTT 브로커IP
int port=1883;
DHT11 dht11(4);
WiFiClient client:
void msgReceived(char *topic,byte *payload,unsigned int uLen){
  char pBuffer[uLen+1]://데이터가 문자열로 날라오는데 데이터를 담을 수 있는 배열선언
                       //c언어: "1"+₩0(문자열 끝) 문자열은 배열에 저장되어야 한다
  int i:
                                             亟 관리자: 명령 프롬프트 - mosquitto -v
  for(i=0; i<uLen; i++){}
   pBuffer[i]=payload[i];
                                            C:#MQTTProject#mosquitto>mosquitto -v
                                            1569420036: mosquitto version 1.6.6 starting
                                            1569420036: Using default config.
1569420036: Opening ipv6 listen socket on port 1883.
1569420036: Opening ipv4 listen socket on port 1883.
  pBuffer[i]='₩0';//끝을 의미
  Serial.println(pBuffer);
                                            1569420036: New connection from ::1 on port 1883.
  if(pBuffer[0]=='1'){
   digitalWrite(14,HIGH);
  }else if(pBuffer[0]=='2'){
    digitalWrite(14,LOW);
PubSubClient mattClient(server1,port,msqReceived,client);
```

```
void setup() {
 pinMode(14,OUTPUT);
 Serial.begin(115200);
 delay(10);
 Serial.println();
 Serial.println();
 Serial.println("Connecting to~");
 Serial.println(ssid);
 WiFi.begin(ssid,password);
                                                :#>cd MQTTProject#mosauitto
 while(WiFi.status()!=WL CONNECTED){
                                                #MQTTProject#mosquitto>mosquitto_sub -t led -p 1883
  delay(500);
   Serial.print(",");
 Serial.println("");
 Serial.println("Wi-Fi AP Connected!");
 Serial.println(WiFi.localIP());
 if(mqttClient.connect("Arduino")){ //MQTT브로커에 접속을 시도하는 것
     Serial.println("MQTT Broker Connected!");
     mqttClient.subscribe("led");
void loop() {
 mattClient.loop();
 float tmp, hum;
 int err = dht11.read(hum,tmp);
 if(err==0){
  char message[64] = "", pTmpBuf[50], pHumBuf[50];
   dtostrf(tmp,5,2,pTmpBuf);
   dtostrf(hum,5,2,pHumBuf);
   sprintf(message,"{\#"tmp\#":\%s,\#"hum\#":\%s}",pTmpBuf,pHumBuf);
   mgttClient.publish("dht11",message); -----
 delay(3000);
```

11. TEST 서버 구동(MQTT Server)

9. 컴파일, 업로드, 구동 TEST

```
◎ mqtt_project | 아두이노 1.8.10
                                파일 편집 스케치 툴 도움말
        mqttcllent.subscribe( lec.
void loop() {
  mqttClient.loop();
  float tmp, hum;
  int err = dht11.read(hum, tmp)
  if(err==0){
    char maggaga[6/1] = "" nTmnI
                            WeMos D1 R1 on COM5
```

```
    ○ COM5

                                                {$1??|?d?|<sup>L</sup>\^\\^1?\\#|??\'??\s?b?\c??no?$qn???\c\'
Connecting to~
olleh WiFi FB93
Wi-Fi AP Connected!
172.30.1.40
MQTT Broker Connected
☑ 자동 스크롤 □ 타임스탬프 표시
                            새 줄
                                    ∨ 115200 보드레이트
                                                  출력 지우기
```

1. 구현내용

2. Node.js 다운로드 및 설치 → https://nodes.org/ko/download

3. Node.js 개발 Eclipse IDE 설치 : Java TPC 1강 참고

: Eclipse 구동 -> Help -> Eclipse Marketplace -> Find : Enide.p2f 검색 -> Install

4. Node.js 개발 Eclipse IDE 설치 : Java TPC 1강 참고

5. Node.js 개발 Eclipse IDE 설치

5. Node.js IOT Server 프로그래밍

→ Node.js Express Project 만들기(WEB)

IOTServer

5. Node.js IOT Server 프로그래밍

→ package 설치하기

5. Node.js IOT Server 프로그래밍

5. Node.js IOT Server 프로그래밍

→ Express Project 구동 절차

app.use(express.static(path.join(dirname, 'public'));

app.use('/', indexRouter);

app.use('/users', usersRouter);

5. Node.js IOT Server 프로그래밍

});

→ MQTT Server에 연결 하여 DHT11 센서 데이터 읽어 오기 구현(www 파일 수정)

```
🔤 관리자: 명령 프롬프트 - mosquitto -v
//mqtt 연결
var mqtt=require("mqtt");
                                                                                C:\mathsquare C:\mathsquare MQTTProject\mathsquare mosquitto \to \to v
                                                                                1569420036: mosquitto version 1.6.6 starting
var client=mqtt.connect("mqtt://172.30.1.15");
                                                                                1569420036: Using default config
                                                                                1569420036: Opening ipv6 listen socket on port 1883.
                                                connect event 발생
                                                                                1569420036: Opening ipv4 listen socket on port 1883.
client.on("connett", function(){
                                                                                1569420036: New connection from ::1 on port 1883.
      client.subscribe("dht11"); <-</pre>
                                                 dht11 구독자 등록
});
                                                                                 📠 관리자: 명령 프롬프트 - mosquitto_sub -t dht11 -p 1883
                                                                                 "tmp":25.00,"hum":68.00]
                        message event 발생
                                                                                 'tmp":25.00,"hum":68.00
                                                                                 'tmp":25.00,"hum":68.00
                                                                                 'tmp":25.00,"hum":73.00
client.on("message", function(topic, message){
                                                                                  tmp":25.00, "hum":68.00
                                                                                     :25.00, "hum":68.00
      //console.log(topic+":"+message.toString()
                                                                                     :25.00."hum":68.00
      var obj=JSON.parse(message);
      obj.created at=new Date();
      console.log(obj);
      var dht11=db0bj.collection("dht11");
      dht11.save(obj, function(err,result){
            if(err) console.log(err);
                                                                                ■ Console 🛭 🌣 Debug 🗏 Markdown View 🗒 GFM View 🥷 Problems 🥙
            else
                                                                                IOTServer-bin-www [Node Application] Node.js Process
            console.log(JSON.stringify(result));
                                                                                { tmp: 25, hum: 68, created_at: 2019-09-25T09:09:16.663Z }
                          mongodb에 저장하는 부분
```

1. MongoDB 설치 : https://mongodb.com

2. MongoDB 구동하기

- 1. var 폴더 만들기
- 2. MongoDB Server 구동하기

C:₩MQTTProject₩mongodb₩bin>mongod --dbpath C:₩MQTTProject₩mongodb₩var

2019-09-25T16:35:13.670+0900 | NETWORK [initandlisten] waiting for connections on port 27017

3. MongoDB 접속하기

C:₩MQTTProject₩mongodb₩bin>**mongo**

MongoDB shell version v4.0.12 connecting to: mongodb://127.0.0.1:27017/?gssapiServiceName=mongodb Implicit session: session { "id" : UUID("b54feb1a-fa86-4d55-bf09-70403af6f8e9") } MongoDB server version: 4.0.12

>

4. MongoDB 종료하기

- > use admin switched to db admin
- > db.shutdownServer()

3. Robomongo 설치하기(Robo 3T) https://robomongo.org

< 뒤로

다음 >

취소

Create Database

MongoDB Version

Host Info

Show Log

Disconnect

Server Status

Attributes Auth, Database / User

IoT Project

4. Robo 3T 구동 및 DataBase 만들기

먼저 서버를 구동

C:₩MQTTProject₩mongodb₩bin>mongod --dbpath C:₩MQTTProject₩mongodb₩var

2019-09-25T17:35:13.616+0900 | NETWORK [initandlisten] waiting for connections on port 27017

SSL

System

Collections (1)

Functions

Users

> 🗟 config

🗸 🖯 iot

Iocalhost:27017

iot database

Create

Cancel

Database Name:

iot
 iot

Users

Address

5. Node.js IOT Server 프로그래밍

→ DHT11 센서 데이터를 mongodb에 저장하기(www 파일 수정)

```
// MongoDB 연결
var mongoDB=require("mongodb").MongoClient;
var url="mongodb://127.0.0.1:27017/iot";
var dbObj=null;
mongoDB.connect(url, function(err, db){
     db0bi=db;
     console.log("DB Connect .....");
});
//matt 연결
var mqtt=require("mqtt");
var client=mqtt.connect("mqtt://172.30.1.15");
client.on("connect", function(){
     client.subscribe("dht11");
});
client.on("message", function(topic, message){
     //console.log(topic+":"+message.toString());
     var obj=JSON.parse(message);
     obj.created at=new Date();
     console.log(obj);
     var dht11=db0bj.collection("dht11");
     dht11.save(obj, function(err,result){
           if(err) console.log(err);
           else console.log(JSON.stringify(result));
     });
```

WeMos 보드에 전원이 켜져 있어야 됨

```
17 var server | http.createServer(app);
JavaScript Resources
v 🗁 bin
                           19 //MongoDB연결
     20 var mongoDB=require("mongodb").MongoClient;
> > node modules
                               var url="morlgodb://127.0.0.1:27017/iot";

→ Dublic

                            22 var db0bj=nd11;
   > > stylesheets
                            23 mongoDB.connect(url, function(err, db){
                                    dbObj=db;
     MQTT.html
                                    console.llog("DB Connect .....");

√ № routes

                           26 });
   > 🔠 devices.js
   index.js
                            28 var mqtt=reduire("mqtt");
   > de users.js
                            29 var client=mqtt.connect("mqtt://172.30.1.15");
                               client.on("connect", function(){
                                    client.subscribe("dht11");
 > 🚇 app.js
                           32 });
> III package.json
                            33
   README.md
35 client.on("message", function(topic, message){
                         ■ Console 

☆ Debug 
Node.is 구동
                         IOTServer-bin-www [Node Application] Node.js Process
                         { tmp: 25, hum: 68, created_at: 2019-09-25T09:09:16.663Z }
                         {"n":1,"ok":1}
                          { tmp: 25, hum: 68, created at: 2019-09-25T09:09:19.688Z }
                          "n":1, "ok":1}
IOTDataBase (4)
                    象 Welcome 🗶 🌗 db.getCollection('dh🕻
                                                    Mongodb 구동
> System
                     IOTDataBase 🗏 localhost:27017
> 🗟 config
                    db.getCollection('dht11').find({})

✓ 
☐ iot

 ✓ ■ Collections (1)
                   dht11 0,008 sec.
  > dht11
                   Key
                                                           Value
                                                                                        Type
     Functions

    (1) ObjectId("5d8b2d2a0e1408459850a567")

                                                          { 4 fields }
   Users
                        id
                                                          ObjectId("5d8b2d2a0e1408459850a567")
                                                                                       Objectlo
                        tmp
                        hum
                                                                                        Int32
                        created_at
                                                          2019-09-25 09:02:34.551Z
                                                                                        Date
                      🚾 (2) Objectid("5d8b2e9bd3a4ba59143c73c1") —
                                                          { 4 fields }
                     (3) ObjectId("5d8b2e9ed3a4ba59143c73c2")
                                                          { 4 fields }
                                                                                        Object
                    (4) ObjectId("5d8b2ea1d3a4ba59143c73c3")
                                                          { 4 fields }
                                                                                        Object
                    (5) ObjectId("5d8b2ea4d3a4ba59143c73c4")
                                                          { 4 fields }
                                                                                        Object
                                                                                        3b2ect
                    (6) ObjectId("5d8b2ea7d3a4ba59143c73c5")
                                                          { 4 fields }
```

33

IoT Project

5. Node.is IOT Server 프로그래밍

→ 소켓(socket)을 이용하여 JavaScript와 통신하기(www 파일 수정)

```
//web과 socket 통신
vai(io) require('socket.io')(server);
                                                                    DHT11
io.on("connection", function(socket){
   socket.on("socket_evt_mqtt", function(data){
             var dht11=dbObj.collection("dht11");
             dht11.find({}).sort({ id:-1}).limit(1).toArray(function(err, results){
                 if(!err){
                   socket.emit("socket_evt_mqtt", JSON.stringify(results[0]));
                              데이터(온도,습도)를 보냅니다.
            });
   socket.on("socket evt led",function(data){
                                                                      LED
        var obj=JSON.parse(data);
        client.publish("led", obj.led+");
      });
});
                                       IOTServer
                                         IavaScript Resource
                                       🗸 🗁 bin
                                         node modules
           socket evt matt
                                                                  socket evt matt
                             3000port
                                         public
                                                      3000port
                                          stylesheets
                                          MQTT.html
                                       routes
                                         > 👪 devices.js
                                         > 🚇 index.js
                                         > 🚇 users.js
```

```
IOTServer
                            MQTT.html
                                                  > MayaScript Resources
<!DOCTYPE html>
                                                  > 🗁 bin
<html>
                                                  > > node modules
<head>
                                                  public
<meta charset="utf-8">
                                                    > 📂 stylesheets
<title>Insert title here</title>
                                                     MQTT.html
<script src="/socket.io/socket.io.js"></script>
<script src="http://code.jquery.com/jquery-3.3.1.min.js"></script>
<script type="text/javascript">
  var socket=null;
  var timer=null;
  $(document).readv(function(){
             socket io.connect(); // 3000port
                // Node.js보낸 데이터를 수신하는 부분
                socket.on("socket_evt_mqtt", function(data){
                  data=JSON.parse(data);
                  $(".mqttlist").html(''+data.tmp+'('+data.hum+'%)'+'');
                if(timer==null){
                     timer=window.setInterval("timer1()", 1000);
 function timer1(){
                socket.emit("socket_evt_mqtt", JSON.stringify({}));
                console.log("----");
                        데이터(온도,습도)를 주세요
</script>
</head>
<body>
MQTT 모니터링 서비스
                                                ① 127.0.0.1:3000/MQTT.html
<div id="msg">
  <div id="matt logs">
                                   MQTT 모니터링 서비스
    ul class="mqttlist">
  </div>
                                     26(88%)
</div>
</body>
</html>
```

IOTServer

IoT Project

</body>

5. Node.js IOT Server 프로그래밍

→ 소켓(socket)을 이용하여 LED 제어하기(www 파일 수정)

```
//web과 socket 통신
vai(io) require('socket.io')(server);
                                                                DHT11
io.on("connection", function(socket){
      socket.on("socket evt mqtt", function(data){
            var dht11=dbObj.collection("dht11");
             dht11.find({}).sort({ id:-1}).limit(1).toArray(function(err, results){
                if(!err){
                  socket.emit("socket evt mqtt", JSON.stringify(results[0]));
                            데이터(온도,습도)를 보냅니다.
           });
    });
   socket.on("socket evt led",function(data){
                                                                  LED
        var obj=JSON.parse(data);
        client.publish("led", obj.led+");
                                            MQTT led topic 으로 발행
});
```



```
■ 관리자: 명령 프롬프트 - mosquitto_sub -tled -p... — □ × Microsoft Windows [Version 10.0.18362.356]
(c) 2019 Microsoft Corporation. All rights reserved.

C:₩WINDOWS₩system32>cd..

C:₩Windows>cd..

C:₩>cd MQTTProject₩mosquitto

C:₩MQTTProject₩mosquitto_sub -t led -p 1883
1
2
1
2
1
```

```
MQTT.html
                                                  JavaScript Resources
<!DOCTYPE html>
                                                  > 🗁 bin
<html>
                                                  > > node modules
<head>
                                                  public
<meta charset="utf-8">
                                                    > b stylesheets
<title>Insert title here</title>
                                                      MQTT.html
<script src="/socket.io/socket.io.js"></script>
<script src="http://code.jquery.com/jquery-3.3.1.min.js"></script>
<script type="text/javascript">
  var socket=null;
  var timer=null;
  $(document).readv(function(){
              socket io.connect(); // 3000port
                // Node.is보낸 데이터를 수신하는 부분
  function ledOnOff(value){
    // {"led":1}, {"led":2}
    socket.emit("socket_evt_led", JSON.stringify({led:Number(value)}));
</script>
</head>
<body>
MOTT 모니터링 서비스
<div id="msg">
  <div id="mqtt_logs">
    ul class="mqttlist">
  </div>
  <h1>socket 방식통신</h1>
  <button onclick="ledOnOff(1)">LED ON</button>
  <button onclick="ledOnOff(2)">LED OFF</button>
                                     ← → C ① 127.0.0.1:3000/MQTT.html
</div>
```

MQTT 모니터링 서비스

LED ON LED OFF

socket 통신 방식(LED제어)

27(70%)

IOTServer

® www

> > node modules

> > stylesheets

devices.js

client

mqtt

router

> 🚇 index.js

> 🚇 users.js

express

v 🗁 bin

→ Dublic

√ № routes

5. Node.is IOT Server 프로그래밍

→ RESTfull 서비스를 이용한 LED 제어하기(app.js 파일 수정)

app.js

```
var indexRouter = require('./routes/index');
var usersRouter = require(' /routes/users'):
var devicesRouter = require('./routes/devices'); //devices.js
var app = express();
// view engine setup
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');
app.use(logger('dev'));
app.use(express.json());
app.use(express.urlencoded({ extended: false }));
app.use(cookieParser());
app.use(express.static(path.join(__dirname, 'public')));
app.use('/', indexRouter);
ann_use('/users'_usersRouter):
app.use('/devices', devicesRouter);
```

MQTT.html

```
<script type="text/javascript" src="/socket.io/socket.io.js"></script>
                 <script src="http://code.jquery.com/jquery-3.3.1.min.js"></script>
                 <scrint type="text/javascrint">
                    function ajaxledOnOff(value){
                        if(value=='1') var value="on";
                        else if(value=="2") var value="off";
                        $.ajax({
                           url:"http://172.30.1.15:3000/devices/led/"+value,
                           type:"post",

    ■ JavaScript Resources

                           success: ledStatus.
                           error : function(){ alert("error");}
                       });
                    function ledStatus(obj){
                     $("#led").html("<font color='red'>"+obi.led+"</font> 되었습니다.");
                 </script>
                 </head>
                 <body>
                 MOTT 모니터링 서비스
                 <div id="msq">
                    <div id="matt Logs">
    (reg, res, next)
                       _</div>_
                    <h1>REST full Service 통신 방식(LED제어)</h1>
                    <button onclick="ajaxledOnOff(1)">LED ON</button>
                    <button onclick="ajaxledOnOff(2)">LED OFF</button>
                    <div id="led">LED STATUS</div>
                 </div>
                 </body>
                 </html>
```

- 5. Node.js IOT Server 프로그래밍
 - → RESTfull 서비스를 이용한 LED 제어하기(devices.js 파일 만들기)

devices.js

```
http://172.30.1.15:3000/devices/led/on
var express = require('express');
var router = express.Router();
                                                                               http://172.30.1.15:3000/devices/led/off
var mqtt=require("mqtt");
var client=mqtt.connect("mqtt://172.30.1.15");
/* GET home_page__*/__
router.post('/led/:flag', function(req, res, next) {
                                                                                                             반드시 자신의 IP조 요청할 것
   res.set('Content-Type', 'text/json');
                                                         🔤 관리자: 명령 프롬프트 - mosquitto_sub -t led -p ... 🕒
                                                                                                           ① 주의 요함 | 172,30,1,15:3000/MOTT.html
   if(req.params.flag=="on"){
                                                        Microsoft Windows [Version 10.0.18362.356]
(c) 2019 Microsoft Corporation. All rights reserved.
       // MQTT->led : 1
                                                                                                   MQTT 모니터링 서비스
       client.publish("led", '1');
                                                        C:\WINDOWS\system32>cd..

    25(73%)

       res.send(JSON.stringify({led:'on'}));
                                                         C:₩Windows>cd..
   }else{
                                                                                                   socket 통신 방식(LED제어)
                                                         C:\>cd MQTTProject\mosquitto
       client.publish("led", '2');
       res.send(JSON.stringify({led:'off'}));
                                                         :\MQTTProject\mosquitto>mosquitto_sub -t led -p 1883
                                                                                                    LED_ON LED_OFF
});
                                                                                                   REST full Service 통신 방식(LED제어)
module.exports = router;
                                                                                                   LED_ON LED_OFF
                                                                                                   LED STATUS
                                                                                                     LED_ON LED_OFF
                                                                                                                       LED ON LED OFF
                                                                                                    on 되었습니다.
                                                                                                                      off 되었습니다.
```

9. 시연하기

7 WeMos 구동

http://127.0.0.1:3000/MQTT.html http://172.30.1.15:3000/MQTT.html

← → C ○ 주의 요함 | 172.301.153000/MQTT.html
 ★ MQTT 모니터링 서비스
 • 27(72%)
 socket 통신 방식(LED제어)

REST full Service 통신 방식(LED제어)

LED_ON LED_OFF
LED STATUS

target_arch: x80

initandlisten.

LED_ON LED_OFF

