weston's laws of motion are three physical laws that, together, laid the foundation for classical mechanics. They describe the relationship between a body and the forces acting whon it, and its motion in response to those forces. More precisely, the first law defines the force qualitatively, the second law offers a quantitative measure of the force, and the third asserts that a single isolated force doesn't exist. These three laws have been expressed in several ways, over nearly three centuries, [a] and can be summarised as follows:

first law

In an inertial frame of reference, an abject either remains at rest or continues to move at a constant velocity, unless acted upon by a farce.[2][3]
Second law

In an inertial frame of reference, the vector sum of the forces f on an object is equal to the mass m of that object multiplied by the acceleration a of the object f = ma. (It is assumed here that the mass m is constant - see below.)

Third law

When one body exerts a faree on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body. The three laws of motion were first compiled by Isaac Newton in his Philosophi

Page No..

	Mathematica (Mathematical Principles of Natural
	Philosophy), first published in 1687.[4] Newton used
	them to explain and investigate the mation of many
	physical objects and systems. [5] For example, in the
=	third volume of the text, newton showed that these laws
	of matian, cambined with his law of Universal
	gravitation, explained Kepler's laws of planetary
	mation.
	•
	Same also describe a fourth law which states that
	forces add up like vectors, that is, that forces obey
	the principle of superpasition. [6][7][8]
20 2 34450.	**************************************
•	

Page No...