题 1-1 至 1-4 计算图示平面机构的自由度,并指出其中的复合铰链、局部自由度和虚约 東。

题 1-1 电锯机构

题 1-2 发动机配器机构

题 1-3 测量仪表机构

题 1-4 挖掘机机构

题 2-1 设计一铰链四杆机构,已知其摇杆 CD 的长度 $l_{CD} = 75mm$,行程速度变化系数 K=1.5,机架 AD 的长度 $l_{AD} = 100mm$, 摇杆的一个极限位置与机架间的夹角 $\varphi_3^\circ = 45^\circ$,试用图解法求曲柄的长度 l_{AB} 和连杆的长度 l_{BC} 。(要求取 $\mu_l = 0.001m/mm$,不要求写作图步骤,但要求保留作图线条)

答 $l_{AB} = 49mm$, $l_{BC} = 120mm$;

或 $l_{AB} = 22.5mm$, $l_{BC} = 48.5mm$

题 2-2 设计一偏置曲柄滑块机构,已知滑块的行程速度变化系数 K=1.5,滑块的冲程 $l_{C1C2}=50mm$,导路的偏距 e=20mm,求曲柄长度 l_{AB} 和连杆长度 l_{BC} 。(要求取 $\mu_l=0.0005m/mm$,不要求写作图步骤,但要求保留作图线条)

答 $l_{AB}=21.5mm,\ l_{BC}=46.5mm$ 。

题 2-3 试在图上标出下列机构的所有速度瞬心。

题 2-4 已知机构的位置、构件尺寸及原动件 AB 的等角速度 α_i , 试:

- 1. 找出机构的全部瞬心,并标于图上;
- 2. 用相对运动图解法,以任意比例尺作出机构的速度图和加速度图,写出作图的矢量方程和求速度 V_E 、加速度 a_E 及角速度 ω_2 、角加速度 α_2 的表达式。

题 2-5 在图示摆动导杆机构中, \angle BAC = 90°, l_{AB} = 60mm, l_{AC} = 120mm,曲柄 AB 的等角速度 ω_l = 30rad/s,求构件 3 的角速度 和角加速度。(要求:取长度比例尺 μ_l = 0.002 $\frac{m}{mm}$,速度比例尺 μ_{ν} = 0.04 $\frac{m/s}{mm}$,加速度比例尺 μ_a = 0.8 $\frac{m/s^2}{mm}$)

答 $\omega_3 = 6.05 rad/s$,顺时针方向; $\alpha_3 = 212.7 rad/s^2$,逆时针方向。

题 2-6 在图示的曲柄滑块机构中,已知: 机构的尺寸、各轴颈处摩擦圆的大小、移动副处摩擦角的大小及驱动力 F(回行时力 F 的方向向右)。设从动件 1 上的阻力矩为 M。若不计各构件的质量,求 $\theta=135^{\circ}$ 和 315° 时,各运动副中总反力的

作用线。(提示: $\theta = 135^{\circ}$ 和 315° 时的机构运动简图已画出,图中的虚线圆为摩擦圆, ρ 为摩擦角,大家可直接在图上求解)

题 3-1 设计一偏置直动滚子从动件盘形凸轮机构,凸轮回转方向及从动件初始位置如图所示。已知偏距 e=10mm,基圆半径 $r_0=40mm$,滚子半径 $r_r=10mm$,从动件运动规律如下: $\phi=150^\circ$, $\phi_s=30^\circ$, $\phi=120^\circ$, $\phi_s=60^\circ$,从动件在推程以简谐运动规律上升,行程 h=20mm;回程以等加速等减速运动规律返回原处,试绘出从动件位移线图及凸轮轮廓曲线。(要求:取 $\mu_l=\mu_s=0.001m/mm$, $\mu_o=5$ 度/毫米,不要求写作图步骤,但要求保留作图线条)

学生班级:

题 3-2 设计一尖端摆动从动件盘形凸轮机构,凸轮 回转方向及从动件初始位置如图所示。已知 $l_{OA}=75mm$, $l_{AB}=58mm$, $r_0=30mm$,从动件运动规律如下: $\phi=180^{\circ}$, $\phi_s=0^{\circ}$, $\phi'=120^{\circ}$, $\phi'_s=60^{\circ}$,从动件在推程以简谐运动规律顺时针摆动,最大摆角 $\psi_{\max}=15^{\circ}$; 回程以等加速等减速运动规律返回原处,试绘出从动件位移线图及凸轮轮廓曲线。(要求: 取 $\mu_{\omega}=4$ 度/毫米 , $\mu_{\omega}=0.5$ 度/毫米 ,

学号:

 $\mu_l = 0.001 m/mm$, 不要求写作图步骤, 但要求保留作图线条)

题 4-1 当 $\alpha=20^{\circ}$ 的渐开线标准齿轮的齿根圆和基圆相重合时,其齿数为若干?又若齿数大于求出的数值,则基圆和根圆哪一个大一些? 答 $z\approx42$

题 4-2 有一对渐开线标准直齿圆柱齿轮啮合,已知 z_1 = 19, z_2 = 42, m = 5m m 。 1) 试计算出当 α = 20 0 时,这对齿轮的实际啮合线 B_1B_2 的长、作用弧 \overline{CD} 、作用角 φ_α 及重合度 ε_α ; 2) 取长度比例尺 μ_l = 0.001m/m m 仿教材图 4-13 作图,在图上标出极限啮合点 N_1 和 N_2 ,开始啮合点 B_2 和终止啮合点 B_1 (不用画出啮合齿廓); 3) 另取长度比例尺 μ_l = 0.0005m/m m ,以本题 1)计算出的 ε_α ,绘出一对齿和两对齿的啮合区图; 4)按本题 2)的图上尺寸计算重合度 ε_α (即:量出 B_1B_2 的长,按该长度计算 ε_α)。

答 1) $\overline{B_1B_2} = 24.11mm$, $\overline{CD} = 25.66mm$, $\varphi_{\alpha 1} = 32^{\circ}25^{'}$, $\varphi_{\alpha 2} = 14^{\circ}40^{'}$, $\varepsilon_{\alpha} = 1.63$

题 4-3 图示回归轮系中,已知 $z_1=20$, $z_2=48$, $m_{1,2}=2mm$, $z_3=18$, $z_4=36$, $m_{3,4}=2mm$;各轮的压力角 $\alpha=20^0$, $h_a^*=1$ 及 $c^*=0.25$ 。 1)若采用齿轮 1、2 为标准直齿圆柱齿轮而齿轮 3、4 为标准斜齿圆柱齿轮的方法来凑中心距,则后者的螺旋角 β 应为多少?这时 $m_{3,4}=2mm$ 为法面模数。2)若已知该对斜齿圆柱齿轮的参数为 $\alpha_n=20^0$, $h_{an}^*=1$ 及 $c_n^*=0.25$,齿宽

b=20mm,要求计算该对齿轮的法面齿距 p_n 、端面齿距 p_t 、分度圆半径 r_1 、齿顶圆半径 r_n 、齿根圆半径 r_n 、当量齿数 z_n 及总重合度 ε_r 。

$$(\varepsilon_r = \varepsilon_{\alpha} + \varepsilon_{\beta}, \quad \sharp \div : \quad \varepsilon_{\alpha} = \frac{1}{2\pi} [z_1(tg\alpha_{at1} - tg\alpha_t') + z_2(tg\alpha_{at2} - tg\alpha_t')]), \quad \varepsilon_{\beta} = \frac{b\sin\beta}{p_n})$$

题 5–1 在图示双螺旋桨飞机的减速器中,已知 z_1 = 26, z_2 = 20, z_4 = 30, z_5 = 18及 n_1 = 15000r/min,试求 n_P 和 n_Q 的大小和方向。

答 $n_P = 4239 r / \text{min}$, $n_O = 1325 r / \text{min}$, 均与 n_1 同向。

题 5-2 在图示输送带的行星减速器中,已知 $z_1=10$, $z_2=32$, $z_3=74$, $z_4=72$, $z_2=30$ 及 电动机的转速为 $n_1=1450r/\min$, 试求输出轴转速 n_4 的大小和方向。

答 $n_4 = 6.29r/\min$, 与 n_1 同向。

题 5-3 在图示复合轮系中,已知各齿轮的齿数如括弧内所示,求传动比 i_{1H} 。 答 $i_{1H}=1.977$ 。

