

Blekinge Tekniska Högskola Institutionen för matematik och naturvetenskap

Revision: 2

Dnr: BTH-4-1-14-0038-2025

KURSPLAN

Introduktion till kodningsteori och kryptering Introduction to Coding Theory and Cryptography 7,5 högskolepoäng (7.5 credits)

Kurskod: MA1508Undervisningsspråk: SvenskaHuvudområde: MatematikGäller från: 2025-03-04Utbildningsområde: Naturvetenskapliga områdetFastställd: 2025-03-04

Utbildningsnivå: Grundnivå

Fördjupning: G1F - Grundnivå, har mindre än 60 hp kurs/er på

grundnivå som förkunskapskrav

1. Beslut

Denna kurs är inrättad av dekan 2023-08-18. Kursplanen är fastställd av prefekten vid institutionen för matematik och naturvetenskap 2025-03-04 och gäller från 2025-03-04.

2. Förkunskapskrav

För tillträde till kursen krävs avklarad kurs i Diskret matematik och algoritmer 7,5 hp.

3. Syfte och innehåll

3.1 Syfte

Syftet med kursen är att studenten ska förvärva grundläggande kunskaper inom sannolikhetsteori, kodningsteori och kryptologi, främst för användning inom kommunikation och säkerhet.

3.2 Innehåll

- 1. Sannolikhetsteori och matematisk statistik
 - o Diskreta stokastiska variabler
 - Väntevärde, varians och standardavvikelse
 - Stora talens lag
 - Introduktion till centrala gränsvärdessatsen
- 2. Kodningsteori (felrättande koder och komprimering)
 - Blockkoder
 - Matrismetoder för felrättande koder
 - Faltningskoder
 - Kanalmodeller
 - Hammings gräns och liknande övre gränser på kodstorlek
 - o Gilbert-Varshamovs sats och liknande resultat
 - Koder för komprimering
 - o Definition av entropi
 - Shannons sats för källkodning

3. Kryptologi

- Blankettchiffer
- Kort orientering om symmetriska krypton
- Definition av asymmetriska krypton
- RSA-metoden för kryptering
- Praktisk användning av RSA-metoder (paddning)
- Elliptic Curve Cryptography
- Digitala signaturer
- 4. Matematisk programvara/programmering
 - Implementering av kursens algoritmer i Python eller liknande

4. Lärandemål

Följande lärandemål examineras i kursen:

4.1. Kunskap och förståelse

Efter genomförd kurs ska studenten kunna:

• visa förståelse för begrepp och satser inom det som ingår i kursinnehållet.

4.2. Färdighet och förmåga

Efter genomförd kurs ska studenten kunna:

• lösa beräkningsuppgifter och problem inom det som ingår i kursinnehållet.

4.3. Värderingsförmåga och förhållningssätt

Efter genomförd kurs ska studenten kunna:

• beskriva behandlade metoders användbarhet och begränsningar i ingenjörsvetenskap.

5. Läraktivitete

Kursen undervisas genom föreläsningar och övningar.

6. Bedömning och examination

Examinationsmoment för kursen

Kod	Benämning	Omf.	Betyg
2510	Salstentamen [1]	5,5 hp	AF
2520	Inlämningsuppgift 1	1 hp	GU
2530	Inlämningsuppgift 2	1 hp	GU

[1] Bestämmer kursens slutbetyg vilket utfärdas först när samtliga moment godkänts.

Kursen bedöms med betygen A Utmärkt, B Mycket bra, C Bra, D Tillfredställande, E Tillräckligt, FX Underkänd, något mer arbete krävs, F Underkänd.

Examinator har möjlighet att muntligen följa upp skriftliga examinationer.

I kurstillfällets information inför kursstart framgår i vilka examinationsmoment som kursens lärandemål examineras samt gällande bedömningsgrunder.

Examinator kan, efter samråd med högskolans FUNKA-samordnare, fatta beslut om anpassad examinationsform för att en student med varaktig funktionsvariation ska ges en likvärdig examination jämfört med en student utan funktionsvariation.

7. Kursvärdering

Kursvärdering ska göras i enlighet med BTH:s beslut om frågeställning i kursvärderingar och beslut om process för hantering och uppföljning av kursvärderingar.

8. Begränsningar i examen

Kursen kan ingå i examen men inte tillsammans med annan kurs vars innehåll, helt eller delvis, överensstämmer med innehållet i denna kurs

9. Kurslitteratur och övriga lärresurser

Moser, Stefan M. and Chen, Po-Ning (2012), A Student's Guide to Coding and Information Theory, Cambridge University Press. ISBN 978-1-107-60196-3.

Material på lärplattformen.

Övriga lärresurser

Läraren är en central lärresurs i kursen. Under schemalagda undervisningstillfällen förmedlas en mängd information om exempelvis lösningsstrategier, matematiska konventioner och kursnivå som inte kan förväntas erhållas på annat sätt än genom deltagande i