Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

5 de agosto de 2021

Agenda Integrales complejas

- Integrales complejas
- 2 Teorema integral de Cauchy
- Fórmula integral de Cauchy
- Recapitulando

• Construimos el concepto de integral a partir de la suma de Riemann $S_n = \sum_{j=1}^n f(\zeta_j)(z_j - z_{j-1})$ si $n \to \infty \Rightarrow |z_j - z_{j-1}| \to 0 \Rightarrow |\text{lim}_{n \to \infty} \sum_{j=1}^n f(\zeta_j)(z_j - z_{j-1}) = \int_{z_1}^{z_2} \mathrm{d}z \ f(z)$.

- Construimos el concepto de integral a partir de la suma de Riemann $S_n = \sum_{j=1}^n f(\zeta_j)(z_j z_{j-1})$ si $n \to \infty \Rightarrow |z_j z_{j-1}| \to 0 \Rightarrow \lim_{n \to \infty} \sum_{j=1}^n f(\zeta_j)(z_j z_{j-1}) = \int_{z_1}^{z_2} \mathrm{d}z \ f(z)$.

- Construimos el concepto de integral a partir de la suma de Riemann $S_n = \sum_{j=1}^n f(\zeta_j)(z_j z_{j-1})$ si $n \to \infty \Rightarrow |z_j z_{j-1}| \to 0 \Rightarrow \lim_{n \to \infty} \sum_{j=1}^n f(\zeta_j)(z_j z_{j-1}) = \int_{z_j}^{z_2} \mathrm{d}z \ f(z)$.
- Con las siguientes propiedades
 - $\int_{\mathcal{C}} dz \ (f(z) + g(z)) = \int_{\mathcal{C}} dz \ f(z) + \int_{\mathcal{C}} dz g(z).$
 - $\int_{\mathcal{C}} dz \ Kf(z) = K \int_{\mathcal{C}} dz \ f(z)$ con K una constante real o compleja.

 - $\int_{\mathcal{C}} dz |f(z)| \leq ML$, donde $M = \max |f(z)|$ y L la longitud de \mathcal{C} .
 - Esta última propiedad permite establecer cotas a las integrales complejas sin evaluarlas. De la definición de integral es casi inmediata la demostración $\lim_{n\to\infty}\sum_{j=1}^n f(\zeta_j)\Delta z_j = \int_{z_1}^{z_2} \mathrm{d}z\ f(z) \Rightarrow$

$$\left|\sum_{j=1}^n f(\zeta_j) \Delta z_j\right| \leq \sum_{j=1}^n |f(\zeta_j)| |\Delta z_j| \leq M \sum_{j=1}^n |\Delta z_j| \leq ML.$$

El Teorema integral de Cauchy dice que si dos caminos de integración diferentes conectan dos puntos, y la función que se está integrando es holomorfa en todas partes entre las dos trayectorias, entonces las integrales de la función a lo largo de ambos caminos serán iguales.

• si f(z) es holomorfa en una región simplemente conexa, \mathcal{R} , en su contorno \mathcal{C} y su derivada f'(z) existe y es continua en esta región, entonces la circulación a lo largo de cualquier contorno cerrado \mathcal{C} se anula: $\oint_{\mathcal{C}} \mathrm{d}z \ f(z) = 0$.

El Teorema integral de Cauchy dice que si dos caminos de integración diferentes conectan dos puntos, y la función que se está integrando es holomorfa en todas partes entre las dos trayectorias, entonces las integrales de la función a lo largo de ambos caminos serán iguales.

- si f(z) es holomorfa en una región simplemente conexa, \mathcal{R} , en su contorno \mathcal{C} y su derivada f'(z) existe y es continua en esta región, entonces la circulación a lo largo de cualquier contorno cerrado \mathcal{C} se anula: $\oint_{\mathcal{C}} \mathrm{d}z \ f(z) = 0$.
- Si invocamos el Teorema de Stokes (o uno de los Teoremas de Green en el plano) entonces $\int_{z_1}^{z_2} \mathrm{d}z \ f(z) = \int_{x_1,y_1}^{x_2,y_2} \left[u(x,y) \mathrm{d}x v(x,y) \mathrm{d}y \right] + i \int_{x_1,y_1}^{x_2,y_2} \left[v(x,y) \mathrm{d}x + u(x,y) \mathrm{d}y \right].$

El Teorema integral de Cauchy dice que si dos caminos de integración diferentes conectan dos puntos, y la función que se está integrando es holomorfa en todas partes entre las dos trayectorias, entonces las integrales de la función a lo largo de ambos caminos serán iguales.

- si f(z) es holomorfa en una región simplemente conexa, \mathcal{R} , en su contorno \mathcal{C} y su derivada f'(z) existe y es continua en esta región, entonces la circulación a lo largo de cualquier contorno cerrado \mathcal{C} se anula: $\oint_{\mathcal{C}} \mathrm{d}z \ f(z) = 0$.
- Si invocamos el Teorema de Stokes (o uno de los Teoremas de Green en el plano) entonces $\int_{z_1}^{z_2} \mathrm{d}z \ f(z) = \int_{x_1, y_1}^{x_2, y_2} \left[u(x, y) \mathrm{d}x v(x, y) \mathrm{d}y \right] + i \int_{x_1, y_1}^{x_2, y_2} \left[v(x, y) \mathrm{d}x + u(x, y) \mathrm{d}y \right].$
- El Teorema de Stokes nos dice que $\int_{\mathcal{R}} \mathrm{d}x \mathrm{d}y \ \left(\frac{\partial p}{\partial x} + \frac{\partial q}{\partial y} \right) = \oint_{\mathcal{C}} (p \mathrm{d}y q \mathrm{d}x) \,,$

El Teorema integral de Cauchy dice que si dos caminos de integración diferentes conectan dos puntos, y la función que se está integrando es holomorfa en todas partes entre las dos trayectorias, entonces las integrales de la función a lo largo de ambos caminos serán iguales.

- si f(z) es holomorfa en una región simplemente conexa, \mathcal{R} , en su contorno \mathcal{C} y su derivada f'(z) existe y es continua en esta región, entonces la circulación a lo largo de cualquier contorno cerrado \mathcal{C} se anula: $\oint_{\mathcal{C}} \mathrm{d}z \ f(z) = 0$.
- Si invocamos el Teorema de Stokes (o uno de los Teoremas de Green en el plano) entonces $\int_{z_1}^{z_2} \mathrm{d}z \ f(z) = \int_{x_1,y_1}^{x_2,y_2} \left[u(x,y) \mathrm{d}x v(x,y) \mathrm{d}y \right] + i \int_{x_1,y_1}^{x_2,y_2} \left[v(x,y) \mathrm{d}x + u(x,y) \mathrm{d}y \right].$
- El Teorema de Stokes nos dice que $\int_{\mathcal{R}} \mathrm{d}x \mathrm{d}y \ \left(\frac{\partial p}{\partial x} + \frac{\partial q}{\partial y} \right) = \oint_{\mathcal{C}} (p \mathrm{d}y q \mathrm{d}x) \,,$
- Si suponemos f(z) = u(x,y) + iv(x,y) y dz = dx + idy, entonces tendremos que $\oint_{\mathcal{C}} (udx vdy) + i \oint_{\mathcal{C}} (vdx + udy) = \int_{\mathcal{R}} dxdy \left(\frac{\partial (-v)}{\partial x} + \frac{\partial (-u)}{\partial v} \right) + i \int_{\mathcal{R}} dxdy \left(\frac{\partial (u)}{\partial x} + \frac{\partial (-v)}{\partial v} \right) = 0$,

Simple y Multiplemente Conexa

• Una región simplemente conexa es aquella que no tiene "huecos"

Simple y Multiplemente Conexa

- Una región simplemente conexa es aquella que no tiene "huecos"
- Una región Multiplemente conexa es aquella que tiene "huecos"

• El Teorema de Cauchy, es válido también para regiones múltiplemente conexas. $\oint_{\mathcal{C}} \mathrm{d}z \ f(z) = \int_{ABDEAFGHFA} \mathrm{d}z \ f(z) \equiv \int_{ABDEA} \mathrm{d}z \ f(z) + \int_{AE} \mathrm{d}z \ f(z) + \int_{FGHE} \mathrm{d}z \ f(z) + \int_{FA} \mathrm{d}z \ f(z) = 0$,

- El Teorema de Cauchy, es válido también para regiones múltiplemente conexas. $\oint_{\mathcal{C}} \mathrm{d}z \ f(z) = \int_{ABDEAFGHFA} \mathrm{d}z \ f(z) \equiv \int_{ABDEA} \mathrm{d}z \ f(z) + \int_{AF} \mathrm{d}z \ f(z) + \int_{FGHF} \mathrm{d}z \ f(z) + \int_{FA} \mathrm{d}z \ f(z) = 0$,
- como $\int_{AF} \mathrm{d}z \ f(z) = -\int_{FA} \mathrm{d}z \ f(z)$ entonces $\int_{ABDEA} \mathrm{d}z \ f(z) + \int_{FGHF} \mathrm{d}z \ f(z) = 0 \Leftrightarrow \oint_{\mathcal{C}_1} \mathrm{d}z \ f(z) + \oint_{\mathcal{C}_2} \mathrm{d}z \ f(z) = 0$,

- El Teorema de Cauchy, es válido también para regiones múltiplemente conexas. $\oint_{\mathcal{C}} \mathrm{d}z \ f(z) = \int_{ABDEAFGHFA} \mathrm{d}z \ f(z) \equiv \int_{ABDEA} \mathrm{d}z \ f(z) + \int_{AF} \mathrm{d}z \ f(z) + \int_{FGHF} \mathrm{d}z \ f(z) + \int_{FA} \mathrm{d}z \ f(z) = 0$,
- como $\int_{AF} \mathrm{d}z \ f(z) = -\int_{FA} \mathrm{d}z \ f(z)$ entonces $\int_{ABDEA} \mathrm{d}z \ f(z) + \int_{FGHF} \mathrm{d}z \ f(z) = 0 \Leftrightarrow \oint_{\mathcal{C}_1} \mathrm{d}z \ f(z) + \oint_{\mathcal{C}_2} \mathrm{d}z \ f(z) = 0$,
- Si f(z) es analítica en una región \mathcal{R} , da igual cualquier recorrido por las fronteras de una región y el valor de la integral permanecerá inalterado.

$$\oint_{\mathcal{C}_1} \mathrm{d}z \ f(z) - \oint_{\mathcal{C}_2} \mathrm{d}z \ f(z) = 0 \Leftrightarrow \oint_{\mathcal{C}_1} \mathrm{d}z \ f(z) = \oint_{\mathcal{C}_2} \mathrm{d}z \ f(z).$$

- El Teorema de Cauchy, es válido también para regiones múltiplemente conexas. $\oint_{\mathcal{C}} \mathrm{d}z \ f(z) = \int_{ABDEAFGHFA} \mathrm{d}z \ f(z) \equiv \int_{ABDEA} \mathrm{d}z \ f(z) + \int_{AF} \mathrm{d}z \ f(z) + \int_{FGHF} \mathrm{d}z \ f(z) + \int_{FA} \mathrm{d}z \ f(z) = 0$,
- como $\int_{AF} \mathrm{d}z \ f(z) = -\int_{FA} \mathrm{d}z \ f(z)$ entonces $\int_{ABDEA} \mathrm{d}z \ f(z) + \int_{FGHF} \mathrm{d}z \ f(z) = 0 \Leftrightarrow \oint_{\mathcal{C}_1} \mathrm{d}z \ f(z) + \oint_{\mathcal{C}_2} \mathrm{d}z \ f(z) = 0$,
- Si f(z) es analítica en una región \mathcal{R} , da igual cualquier recorrido por las fronteras de una región y el valor de la integral permanecerá inalterado.

$$\oint_{\mathcal{C}_1} \mathrm{d}z \ f(z) - \oint_{\mathcal{C}_2} \mathrm{d}z \ f(z) = 0 \Leftrightarrow \oint_{\mathcal{C}_1} \mathrm{d}z \ f(z) = \oint_{\mathcal{C}_2} \mathrm{d}z \ f(z).$$

• Este resultado puede extenderse a regiones con n huecos $\oint_{\mathcal{C}_1} \mathrm{d}z \ f(z) = \sum_{j=1}^n \oint_{\mathcal{C}_j} \mathrm{d}z \ f(z)$.

- El Teorema de Cauchy, es válido también para regiones múltiplemente conexas. $\oint_{\mathcal{C}} \mathrm{d}z \ f(z) = \int_{ABDEAFGHFA} \mathrm{d}z \ f(z) \equiv \int_{ABDEA} \mathrm{d}z \ f(z) + \int_{AF} \mathrm{d}z \ f(z) + \int_{FGHF} \mathrm{d}z \ f(z) + \int_{FA} \mathrm{d}z \ f(z) = 0$,
- como $\int_{AF} \mathrm{d}z \ f(z) = -\int_{FA} \mathrm{d}z \ f(z)$ entonces $\int_{ABDEA} \mathrm{d}z \ f(z) + \int_{FGHF} \mathrm{d}z \ f(z) = 0 \Leftrightarrow \oint_{\mathcal{C}_1} \mathrm{d}z \ f(z) + \oint_{\mathcal{C}_2} \mathrm{d}z \ f(z) = 0$,
- Si f(z) es analítica en una región \mathcal{R} , da igual cualquier recorrido por las fronteras de una región y el valor de la integral permanecerá inalterado.

$$\oint_{\mathcal{C}_1} \mathrm{d}z \ f(z) - \oint_{\mathcal{C}_2} \mathrm{d}z \ f(z) = 0 \Leftrightarrow \oint_{\mathcal{C}_1} \mathrm{d}z \ f(z) = \oint_{\mathcal{C}_2} \mathrm{d}z \ f(z).$$

- Este resultado puede extenderse a regiones con n huecos $\oint_{\mathcal{C}_1} \mathrm{d}z \ f(z) = \sum_{j=1}^n \oint_{\mathcal{C}_j} \mathrm{d}z \ f(z)$.
- Teorema de Morera, o teorema inverso de Cauchy Si una función f(z) es continua en una región $\mathcal R$ encerrada por un contorno $\mathcal C$ y $\oint_{\mathcal C} \mathrm{d}z\ f(z) = 0$ entonces f(z) es analítica en $\mathcal R$.

Si f(z) es analítica en una región $\mathcal R$ encerrada por un contorno $\mathcal C$ y consideramos un punto $z=z_0$ contenido en esa región, entonces $\frac{1}{2i\pi}\oint_{\mathcal C}\frac{f(z)\;\mathrm{d}z}{z-z_0}=f(z_0)$.

• $z - z_0 = re^{i\theta}$, entonces $\frac{1}{2i\pi} \oint_{\mathcal{C}} \frac{f(z) dz}{z - z_0} = \frac{1}{2i\pi} \int_0^{2\pi} \frac{f(z_0 + re^{i\theta})rie^{i\theta}d\theta}{re^{i\theta}} = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta})d\theta.$

Si f(z) es analítica en una región $\mathcal R$ encerrada por un contorno $\mathcal C$ y consideramos un punto $z=z_0$ contenido en esa región, entonces $\frac{1}{2i\pi}\oint_{\mathcal C}\frac{f(z)\;\mathrm{d}z}{z-z_0}=f(z_0)$.

- $z z_0 = re^{i\theta}$, entonces $\frac{1}{2i\pi} \oint_{\mathcal{C}} \frac{f(z) dz}{z - z_0} = \frac{1}{2i\pi} \int_0^{2\pi} \frac{f(z_0 + re^{i\theta})rie^{i\theta}d\theta}{re^{i\theta}} = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta})d\theta.$
- Si hacemos $|z-z_0| \equiv r \to 0$ tendremos que $\lim_{r\to 0} \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) \mathrm{d}\theta = \frac{1}{2\pi} \int_0^{2\pi} \lim_{r\to 0} f(z_0 + re^{i\theta}) \mathrm{d}\theta = f(z_0)$.

Si f(z) es analítica en una región $\mathcal R$ encerrada por un contorno $\mathcal C$ y consideramos un punto $z=z_0$ contenido en esa región, entonces $\frac{1}{2i\pi}\oint_{\mathcal C}\frac{f(z)}{z-z_0}\mathrm{d}z=f(z_0)$.

- $z z_0 = re^{i\theta}$, entonces $\frac{1}{2i\pi} \oint_{\mathcal{C}} \frac{f(z)}{z - z_0} dz = \frac{1}{2i\pi} \int_0^{2\pi} \frac{f(z_0 + re^{i\theta})rie^{i\theta}d\theta}{re^{i\theta}} = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta})d\theta.$
- Si hacemos $|z-z_0| \equiv r \to 0$ tendremos que $\lim_{r\to 0} \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta = \frac{1}{2\pi} \int_0^{2\pi} \lim_{r\to 0} f(z_0 + re^{i\theta}) d\theta = f(z_0)$.
- Es válida para todo z: $f(z) = \frac{1}{2i\pi} \oint_{\mathcal{C}} \frac{f(\zeta)}{\zeta z} d\zeta$.

Si f(z) es analítica en una región $\mathcal R$ encerrada por un contorno $\mathcal C$ y consideramos un punto $z=z_0$ contenido en esa región, entonces $\frac{1}{2i\pi}\oint_{\mathcal C}\frac{f(z)\;\mathrm{d}z}{z-z_0}=f(z_0)$.

- $z z_0 = re^{i\theta}$, entonces $\frac{1}{2i\pi} \oint_{\mathcal{C}} \frac{f(z)}{z - z_0} \frac{dz}{dz} = \frac{1}{2i\pi} \int_0^{2\pi} \frac{f(z_0 + re^{i\theta})rie^{i\theta}}{re^{i\theta}} d\theta = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta.$
- Si hacemos $|z z_0| \equiv r \to 0$ tendremos que $\lim_{r \to 0} \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta = \frac{1}{2\pi} \int_0^{2\pi} \lim_{r \to 0} f(z_0 + re^{i\theta}) d\theta = f(z_0)$.
- Es válida para todo z: $f(z) = \frac{1}{2i\pi} \oint_{\mathcal{C}} \frac{f(\zeta)}{\zeta z} d\zeta$.
- Se generaliza para las derivadas: $f^{(n)}(z_0) = \frac{n!}{2i\pi} \oint_{\mathcal{C}} \frac{f(z)}{(z-z_0)^{n+1}} dz$

Recapitulando

En presentación consideramos

