一、单选题

1、设事件 A 与 B 互斥,则下列()是正确的. A. $P(\overline{AB}) = 0$; B. $P(AB) = P(A)P(B)$;
C. $P(A) = 1 - P(B);$ D. $P(\bar{A} \cup \bar{B}) = 1.$
2. 设随机变量 X 与 Y 相互独立,且均服从区间 $(0,1)$ 上的均匀分布,则 $P\{X^2 + Y^2 \le 1\} = (\bigcirc)$.
A. 0.25; B. 0.5; C. $\pi/2$; D. $\pi/4$.
3. 设随机变量 X 与 Y 满足 $P\{X \le 1, Y \le 1\} = \frac{4}{9}$, $P\{X \le 1\} = P\{Y \le 1\} = \frac{5}{9}$, 则 $P\{\min(X,Y) \le 1\} = ($).
A. $1/3$; B. $2/3$; C. $4/9$; D. $20/81$.
4. 设随机变量的概率密度 $f(x) = \begin{cases} qx^{-2} & x > 1 \\ 0 & x \le 1 \end{cases}$ 则 q 为().
A1; B. 1/2; C. 1; D. 3/2.
5. 设 X 服从参数为 λ 的泊松分布,且 $P(X=1)=P(X=2)$,则 $E(X^2)=($
6. 设随机变量 X 服从正态分布 $N(0,1)$, Y 服从正态分布 $N(1,4)$,且 X 与 Y 的相
关系数等于 1,则下列()是正确的.
A. $P{Y = 2X - 1} = 1$; B. $P{Y = -2X - 1} = 1$; C. $P{Y = 2X + 1} = 1$; D. $P{Y = -2X + 1} = 1$.
7. 在正态总体方差的假设检验中,采用的检验方法是(). A. χ^2 检验法; B. U 检验法; C. t 检验法; D. t 或 U 检验法.
8. 设随机变量 X 与 Y 相互独立,且 $X \sim N(2,4)$, $Y \sim N(3,1)$,则随机变量
Z=2X-3Y+2服从[]
A. $N(-3, 5)$ B. $N(-3, 7)$ C. $N(3, 25)$ D. $N(-3, 25)$
二、多选题
1. 设 X 与 Y 是相互独立的随机变量,且二者期望存在。令 $M = \max\{X,Y\}$, $N = \min\{X,Y\}$,则下列()是正确的. A. $E(XY) = E(MN)$; B. $E(XY) = E(X)E(Y)$; C. $E(MN) = E(M)E(N)$; D. $M = N$ 不相关(线性无关).
 若随机变量 <i>X</i> 与 <i>Y</i> 不无关,则下列(

- 3. 设 X_1, X_2, \dots, X_n $(n \ge 2)$ 为正态总体 $N(\mu, \sigma^2)$ 的随机样本, 记 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ 为样本
 - A. $(\overline{X} \mu)/\sigma \sim N(0,1)$; B. $(n-1)S^2/\sigma^2 \sim \chi_n^2$; C. $\frac{X_1 \mu}{S} \sim t_{n-1}$; D. $\frac{\sqrt{n}(\overline{X} \mu)}{S} \sim t_{n-1}$.
- 4. (接上小题) 设总体 $X \sim N(\mu, \sigma^2)$, μ 和 σ^2 未知, 下列()是正确的.

 - A. μ 的置信系数 $1-\alpha$ 的置信区间为 $[\bar{X}-\frac{\sigma}{\sqrt{n}}t_{n-1}(\alpha/2),\bar{X}+\frac{\sigma}{\sqrt{n}}t_{n-1}(\alpha/2)];$ B. μ 的置信系数 $1-\alpha$ 的置信区间为 $[\bar{X}-\frac{S}{\sqrt{n}}t_{n-1}(\alpha/2),\bar{X}+\frac{S}{\sqrt{n}}t_{n-1}(\alpha/2)];$ C. σ^2 的置信系数 $1-\alpha$ 的置信区间为 $\left[\frac{(n-1)S^2}{\chi^2_{n-1}(1-\alpha/2)},\frac{(n-1)S^2}{\chi^2_{n-1}(\alpha/2)}\right];$ D. σ^2 的置信系数 $1-\alpha$ 的置信区间为 $\left[\frac{(n-1)S^2}{\chi^2_{n-1}(\alpha/2)},\frac{(n-1)S^2}{\chi^2_{n-1}(1-\alpha/2)}\right].$

三、填空题

- 1. 设 A 和 B 为事件, P(A) = 0.6, $P(A \cup B) = 0.8$. 当 A 与 B 互不相容时, P(B) =
- 2. 设随机变量 X 的分布函数为 $F(x) = \begin{cases} a + be^{-0.5x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$ 其中 a = b 为常数,
- 4. 设随机变量 X 可能取三个值: -2, 0 和 1,且 P(X=-2)=0.25,P(X=1)=0.3, 则 E(X) =_______, Var(X) =_____
- 5. 设随机变量 X_1, X_2 相互独立,且 $X_1 \sim N(-1, 5)$, $X_2 \sim N(4, 5)$.令 的分布函数,且已知 $\Phi(1)=0.8413$, $\Phi(2)=0.9772$,则 $P\{-4 < X < 1\}=$
- 6. 若每次试验时,事件A发生的概率均为0.2,用X表示50次独立试验中事件A
- 7. 设件 $A \times B \times C$ 为 3 个随机事件,则事件 $A \times B \times C$ 至少两个发生,可表示为_____
- 8. 设随机变量 X 服从参数为 λ 的泊松分布, 且 $p\{X=4\}=2p\{X=5\}$,则 $\lambda=$ _____

四、计算题

1. 设随机变量 X 与 Y 相互独立, X 在 (0, 0.2) 上服从均匀分布, Y 的概率密度为

$$f_{Y}(y) = \begin{cases} 5e^{-5y}, & y > 0 \\ 0, & 其它, \end{cases}$$

①求X和Y的联合概率密度. ②求 $p\{X \ge Y\}$.

- 2. 设随机变量 X 有概率密度函数 $f(x) = \begin{cases} 1-|x|, & x \in (-1, 1) \\ 0, & \text{其他.} \end{cases}$ 令 $Y = X^2$, 求:
 - (1). Y 的概率密度函数 $f_y(y)$; (2). $P\{0.25 < Y < 1.96\}$; (3). E(Y) 和 Var(Y)。
- 3. 已知某种零件的强度(单位: g/mm^2)服从正态分布。现随机抽取该种零件 9个,经测量其强度值,经计算得样本均值为 50. 60,样本标准差为 0. 9. 显著性水平 $\alpha=0.05$,从这些样本看:
- (1) 能否接受零件强度的均值为51.20的假设?
- (2) 能否接受零件强度的方差不超过 0.72 的假设?
- 4. 设总体 ₹有概率密度函数₩

$$f(x) = \begin{cases} \lambda^2 x e^{-\lambda x}, & x > 0 \\ 0, & x \le 0, \end{cases}$$

其中 $\lambda > 0$ 为未知参数, X_1, X_2, \cdots, X_n 为从总体 λ 中抽出的随机样本。求: λ (1). λ 的矩估计; (2). λ 的极大似然估计。 λ