Question 40

Let $O_n(\mathbf{R})$ be the set of all $n \times n$ real orthogonal matrices:

$$O_n(\mathbf{R}) = \{ A \in M_n(\mathbf{R}) : A^t A = I_n \}.$$

Show that O_n is a smooth manifold, and find its dimension.

Proof. First, we note that $O_n(\mathbb{R})$ is the zero set of the function $f:M_n(\mathbb{R})\to S^n$ defined by

$$f(A) = A^t A - I_n$$

where S^n is the set of symmetric $n \times n$ matrices. We will show that $Jf(X)(h) = X^t h + h^T X$. Indeed,

$$\lim_{h \to 0} \frac{f(X+h) - f(X) - X^t h - h^t X}{\|h\|} = \lim_{h \to 0} \frac{(X+h)^t (X+h) - X^t X - X^t h - h^t X}{\|h\|}$$

$$= \lim_{h \to 0} \frac{h^t h}{\|h\|}$$

$$= 0$$

Next, we want to show that $\operatorname{rank} Jf(X) = \frac{1}{2}n(n+1)$ for all $X \in O_n(\mathbb{R})$. It suffices to show that Jf(X) is surjective to S^n .

Let $Y \in S^n$. Let $h = \frac{1}{2}XY$. We see that

$$Jf(X)(h) = X^{t} \left(\frac{1}{2}XY\right) + \left(\frac{1}{2}XY\right)^{t} X = \frac{1}{2} \left(X^{t}XY + Y^{t}X^{t}X\right)$$

$$= \frac{1}{2}(Y + Y^{t}) \qquad (X \text{ is orthogonal})$$

$$= Y \qquad (Y \text{ is symmetric})$$

Thus $R(Jf(X)) = S^n$ so $\operatorname{rank} Jf(X) = \dim S^n = \frac{1}{2}n(n+1)$.