

# Chapter 1

### **Exercise 1A**

- **1 a** 20.1
  - **b** 0.0498
  - **c** 3.30
  - **d** 0.0000249
- **2 a** (i) 114 (ii) 193
  - **b** 7
- **3 a** 20.88g
  - **b** 17.44g
  - **c** 10.16g
- **4 a** £1648.72
  - **b** year 13 = £1915.54; year 14 = £2013.75; so twice £1000 between these years.
  - **c** £1173.51
- **5 a** *B8* = 1532
  - **b** 10 hours
- **6 a (i)** 863 **(ii)** 244
- **7 a** 25mg
  - **b** 19.7mg

#### **Exercise 1B**

- 1 **a**  $3 = \log_5 y$ 
  - **b**  $t = \log_4 p$
  - $\mathbf{c}$   $h = \log_g f$
  - **d**  $7 = \log_2 128$
  - $\mathbf{e} \quad x = \log_e y$
- **2 a**  $2^3 = 8$ 
  - **b**  $3^5 = 243$
  - **c**  $5^y = 4$
  - **d**  $m^x = t$
  - **e**  $4^3 = y$
- **3 a** 16
  - **b** 729
  - **c** 100 000
  - **d** 2

#### Exercise 1c

- **1 a**  $3\log_7 3$ 
  - **b** 2
  - **c** 1
  - **d** 2
  - **e** 2
  - **f** 0
  - **g** 2
  - . .
  - **h** 0
- **2 a** 1
  - **b** -2
    - **c** 3
  - **d** 0
  - **e** 1
- **3 a** 5
  - **b** 3
  - **c** −1
  - **d** 3
  - **e** 1
  - **f** 2
  - g -5
  - h -1
  - **i** 3
  - i 3
  - **k**  $11\frac{1}{2}$
- **5** 160

### **Exercise 1D**

- **1 a**  $e^y = 3$ 
  - **b**  $x = e^4$
  - $q = e^p$
  - **d**  $5 = 10^y$
  - **e**  $x = 10^3$
- **2 a**  $5 = \log_e y$ 
  - **b**  $x = \log_e 2$
  - $\mathbf{c} \quad g = \log_e f$
  - **d**  $x = \log_{10} y$
  - .
  - **e**  $y = \log_{10} x$

# ANSWERS

- **3 a** 2.08
  - **b** 1.40
  - **c** 2.23
  - **d** 0.631
- **4 a** 2
  - **b** −1
  - 2 C
  - **d**  $\frac{5}{3}$
- **5 a** 2
  - **b** 3
  - **c**  $\frac{3}{2}$

## **Exercise 1E**

- **1 a** 243
  - 10000
  - **c** 125
  - $e^2$ d
  - $e e^4$
  - 4096
- **2 a** 4
  - $\frac{16}{3}$ b
  - **c** 972
  - $3e^4$ d
  - **e** 648
  - $\frac{1}{3}e^{\frac{3}{5}}$
  - 65 g
  - 11 h
- **3 a** 0.4771
  - **b** 2.07944
  - C 9
  - **d** 4
- 1.38629 4 a
  - 4 b
  - **c** 4
  - **d** 0.75
  - e 3

- f 12
- 10 g
- h 0.462098
- 5 a 5

**(** 

- 2 b
- 9 C
- 2 d
- **e** 8

# **Exercise 1F**

- 1 a 28
  - b 3
  - C
  - d 3
  - e
  - 8
  - 2 g
- 2 a 1 b
  - 6
  - C 4
  - d 23
  - 9 e
  - f 4 2
  - g
  - **h** {1,-1}
- 3  $\log_2 a = \frac{2}{3} \log_2 b$ 
  - a = 4

## **Exercise 1G**

- **1 a** 2
  - 288 b
  - C 3
  - **d** 2
  - $5\sqrt{5}$ e
  - $\frac{31}{2}$ f
- 2 a 4
  - $\frac{4}{3}$ b





- **c**  $\frac{3}{2}$
- **d** 2.884
- **e** 1

#### **Exercise 1H**

- **1 a** 142
  - **b** 11 days [10.93 days]
- **2 a** £22518
  - **b** 10 years [9.4 rounded up]
- **3 a** 200
  - **b** 1 hour and 23 mins [rounded up]
- **4 a** 0.132
  - **b** 9.12 years
  - **c** 20.5%
- **5 a** 0.00502
  - **b** 138.1 days
- **6 a**  $P_0 = 80, k = 0.1$ 
  - **b**  $P(t) = 80e^{0.1(t-20)}$ 
    - $P(t) = 80e^{0.1(t-40)}$
- **7 a** 1.2 kg
  - **b** 13.86 hours



### **Exercise 11**

- **1 a** 2.523
  - **b**  $-\log_{10} H = -\frac{1}{2} log_{10} Ka + \frac{1}{2} log_{10} c$  $\log_{10} Ka - 2\log_{10} H = \log_{10} c$

$$\log_{10} Ka - \log_{10} H^2 = \log_{10} c$$

$$\log_{10} c = \log \left( \frac{Ka}{H^2} \right)$$

- **2** 50
- 3 a Square in power of V becomes multiple of 2 since  $\log(x^2) = 2\log x$

$$10\log_{10}\left(\frac{v_1^2}{v_0^2}\right) = 20\log_{10}\left(\frac{v_1}{v_0}\right)$$

- **b** 19.95 V
- **4** 0
- **5** 1.5229

### **Exercise 1**J

- **1 a**  $k = 10^{0.7} n = 6$ 
  - **b**  $k = e^{0.69} n = 6$
  - **c**  $k = 10 \ n = 3$
- **2 a** a = 7.943 b = 2
  - **b**  $a = 9.025 \ b = 3$
  - **c** a = 6.05 b = 4.953
- 3 (a)  $y = e.e^{-2x}$ 
  - **(b)**  $y = 1000x^{-2}$
- 4 Log plot gives ~ straight line =  $y = kx^n$ 
  - k = 5
  - n = -3



