MITSCHRIEB

Lineare Algebra II

Sommersemester 2025

Emma Bach

Vorlesung gehalten von Prof. Dr. Stefan KEBEKUS

Inhalt

1	Wiederholung			2
	1.1	Notati	ion	2
	1.2	Determinanten		2
		1.2.1	Axiomatische Beschreibung	2
			Weitere Eigenschaften	
		1.2.3	Berechnung	3
1.3 Basiswechsel		Basisv	vechsel	3
A Ausblicke in die Zukunft			in die Zukunft	7

Chapter 1

Wiederholung

1.1 Notation

- Die Menge aller $n \times m$ Matrizen mit Einträgen aus dem Körper k schreiben wir $Mat(n \times m, k)$
- Die Gruppe der Invertierbaren $n \times n$ -Matrizen mit Einträgen aus k schreiben wir $Gl_n(k)$
- Den Eigenraum einer Abbildung f zum Eigenwert λ schreiben wir $Eig_f(\lambda)$
- Die $n \times n$ -Einheitsmatrix schreiben wir I_n oder E_n , die Identitätsabbildung des Vektorraums V schreiben wir id_V . Vermutlich werden wir die Unterscheidung zwischen den beiden Begriffen jedoch öfters ignorieren.
- \bullet Das characteristische Polynom eines Endomorphismus f ist

$$\chi_f := \det(f - t \cdot id_V). \tag{1.1}$$

Analog ist das characteristische Polynom einer $n \times n$ -Matrix A

$$\chi_A := \det(A - t \cdot I_n). \tag{1.2}$$

1.2 Determinanten

1.2.1 Axiomatische Beschreibung

- 1. Die Determinante ist multilinear, also:
 - (a) $det(v_1 + w, v_2, ..., v_n) = det(v_1, ..., v_n) + det(w, v_2, ..., v_n)$, ebenso in den anderen Spalten und für Zeilenvektoren.
 - (b) $det(cv_1+w,v_2,\ldots,v_n)=c\cdot det(v_1,\ldots,v_n)$, ebenso in anderen Spalten und für Zeilenvektoren
- 2. Die Determinante ist alternierend: Sind zwei Spalten oder Zeilen gleich, ist die Determinante 0.
- 3. Sie ist **normiert** durch $det(I_n) := 1$

1.2.2 Weitere Eigenschaften

- 1. $det(A^{\top}) = det(A)$
- 2. $det(A^{-1}) = \frac{1}{det(A)}$
- 3. Für quadratische A, B gleicher Größe gilt det(AB) = det(A)det(B)
- 4. Für Konstante c und $n \times n$ -Matrix A gilt $det(cA) = c^n det(A)$
- 5. Für Dreiecksmatrizen A gilt $det(A) = a_{11}a_{22} \dots a_{nn}$
- 6. Besteht eine Spalte oder Zeile aus Nullen, ist die Determinante 0.

7. Vertauscht man zwei Spalten oder Zeilen, ändert die Determinante ihr Vorzeichen. Dies ist äquivalent zu "alternierend" für Körper ohne selbstinverse Elemente $x = -x \neq 0$.

8. Addition eines Vielfachen einer Zeile/Spalte zu einer anderen ändert die Determinante nicht.

1.2.3 Berechnung

Die Determinante einer 2×2 -Matrix ist:

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

Die Determinante einer 3×3 -Matrix ist:

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh - ceg - bdi - afh$$

1.3 Basiswechsel

Zu Beginn will ich einige relevante Sätze, Definitionen und Notationsstandards aus der Vorlesung "Lineare Algebra I" wiederholen.

Definition 1.1. Sei $f: V \to W$ eine lineare Abbildung. Sei $A = \{a_1, \ldots, a_n\}$ eine Basis von V und $B = \{b_1, \ldots, b_m\}$ eine Basis von W. So lässt sich jeder Vektor $w \in W$ darstellen als **endliche** Linearkombination der Basisvektoren:

$$w = \sum_{i=1}^{m} \alpha_i b_i \tag{1.3}$$

Insbesondere lassen sich die Bilder der Basisvektoren $a_i \in A$ in dieser Form darstellen:

$$f(a_j) = \sum_{i=1}^{m} \alpha_{ij} b_i \tag{1.4}$$

Die **Darstellungsmatrix** $\operatorname{Mat}_{B}^{A} f$ ist genau durch diese Koeffizienten α_{ij} gegeben.

$$\operatorname{Mat}_{B}^{A} f = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & & \vdots \\ \alpha_{m1} & \dots & \alpha_{mn} \end{pmatrix}$$
 (1.5)

In der Regel arbeiten wir mit der Standardbasis $E = \{e_1, \dots, e_n\}$ und interpretieren jede Matrix M als Darstellungsmatrix $M_E^E f$ einer Linearen Abbildung f.

Definition 1.2. Die **Basiswechselmatrix** T_B^A ist die Abbildungsmatrix der Identitätsabbildung.

$$T_B^A = \operatorname{Mat}_B^A(\operatorname{id}_V) \tag{1.6}$$

Theorem 1.3. Für jede Basis B eines beliebigen Vektorraums V gilt

$$T_B^B = I_n = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}$$
 (1.7)

Proof. Da die Darstellung jedes Vektors durch die Basisvektoren eindeutig gegeben ist, ist die Darstellung $id_V(b_j) = b_j = \sum_{i=1}^m \alpha_{ij} b_i$ eines Basisvektors als Linearkombination genau gegeben durch die Linearkombination mit $\alpha_{ij} = 1$ und $\alpha_{ik} = 0$ für $k \neq j$. Dies entspricht genau dem Standardbasisvektor e_j . Also gilt $T_B^B = (e_1 \dots e_n) = I_n$.

Proposition 1.4. Gegeben $Mat_B^A f$ lässt sich die Abbildungsmatrix $Mat_D^C f$ von f bezüglich zweier neuen Basen C und D durch Nutzung von Basiswechselmatrizen folgendermaßen berechnen:

$$Mat_D^C(f) = T_D^B \cdot Mat_B^A f \cdot T_C^B \tag{1.8}$$

Ein besonders relevanter Spezialfall ist:

$$Mat_B^B(f) = T_B^A \cdot Mat_A^A f \cdot T_A^B \tag{1.9}$$

Theorem 1.5. Es gilt $T_B^A = (T_A^B)^{-1}$

Proof.

$$\begin{split} T_A^B \cdot T_B^A &= T_A^B \cdot id_V \cdot T_B^A \\ &= \operatorname{Mat}_A^B (\operatorname{id}_V) \cdot \operatorname{Mat}_B^B (id_V) \cdot \operatorname{Mat}_B^A (\operatorname{id}_V) \\ &= \operatorname{Mat}_A^A (\operatorname{id}_V) \\ &= \operatorname{id}_V \end{split}$$

Anmerkung 1.6. Betrachten wir eine beliebige Basis $B = \{b_1, \ldots, b_n\}$. Die Matrix T_B^E kann man trivial finden, da jeder Vektor $b_i = (b_{i1} \ldots b_{in})^T$ bezüglich der Standardbasis trivial geschrieben ist als $b_i = \sum_{i=1}^n b_{ij} \cdot e_i$. Nach 1.5 lässt sich die Matrix T_E^B ebenfalls ohne größere Probleme durch invertierung von T_B^E finden.

Definition 1.7. Wir nennen zwei Matrizen A und B **ähnlich**, falls eine Matrix S existiert, sodass

$$A = S^{-1}BS$$

Ein zentrales Ziel der Vorlesung "Lineare Algebra II" ist es, zu einer Matrix A eine besonders simple Matrix B zu finden, welche A ähnlich ist. Hierbei sollte man immer 1.4 im Kopf behalten - zwei Matrizen A und B sind genau dann ähnlich, wenn sie die Darstellungsmatrizen der gleichen Funktion zu verschiedenen Basen sind, also wenn Basen B_1 und B_2 und ein Endomorphismus f existieren, sodass

$$A = Mat_{B_1}^{B_1}(f)$$
 und $B = Mat_{B_2}^{B_2}(f)$

Let V be a vector space. Let $f: V \to V$ be a nilpotent endomorphism.

Define $V^p = \ker(f^p)$ Where f^p denotes composition.

Lemma 1.8.

$$V^1 \subset V^2 \subset \ldots \subset V$$

Lemma 1.9.

$$\forall p: \forall v \in V: v \in V^p \Leftrightarrow f(v) \in V^{p-1}$$

Theorem 1.10. The "natural mapping"

$$\overline{f}: V^p/V^{p-1} \to V^{p-1}/V^{p-2}$$

is injective.

Proof. We know that the restriction $f|_{V^p}$ is a map $V^p \to V^{p-1}$.

Let q_p denote the quotient map $V^p \to V^p/V^{p-1}$.

Let q_{p-1} denote the quotient map $V^{p-1} \to V^{p-1}/V^{p-2}$.

We have the following diagram:

By "the universal property" we have that a unique \overline{f} exists iff. $V^{p-1} \subseteq \ker(q_{p-1} \circ f|_{V^p})$. This inclusion holds, since for $v \in V^{p-1}$ we have $f(v) \in V^{p-2}$, which is exactly the kernel of $q_{p-1}V^{p-1} \to V^{p-1}/V^{p-2}$. Therefore the diagram commutes.

We will show injectivity of \overline{f} by showing $\ker(f) = \{0\}$. Let $k \in V^p/V^{p-1}$. Pick an arbitrary representative $v \in k$. Because the diagram commutes, we have

$$k \in \ker f \Leftrightarrow f|V_p(v) \in \ker(q_{p-1}) \Leftrightarrow f(v) \in V^{p-2} \Leftrightarrow v \in V^{p-1}$$

Since $k \in V^p/V^{p-1}$, we have that $v \in V^{p-1}$ must be in the same equivalence class as 0. Therefore the kernel of \overline{f} consists only of the equivalence class of the zero vector (which *is* the zero vector of the quotient space).

We have the following diagram:

$$V \qquad F(V) = V^p \xrightarrow{\eta_V = f|_{V^p}} G(V) = V^{p-1}$$

$$\downarrow^{q} \qquad \downarrow^{F(q) = q_p} \qquad \downarrow^{G(q) = q_{p-1}}$$

$$V/ker(f) \qquad F(V/ker(f)) = V^p/V^{p-1} \xrightarrow{\eta_{V/ker(f)} = \overline{f}} G(V/ker(f)) = V^{p-1}/V^{p-2}$$

Appendix A

Ausblicke in die Zukunft

In der Funktionalanalysis werden unendlichdimensionale Vektorräume betrachtet.

Theorem A.1. Der Vektorraum aller Funktionen $f : \mathbb{R} \to \mathbb{R}$ hat eine Basis.

Wie sieht diese Basis aus? Es stellt sich heraus, dass der Beweis nur dank Auswahlaxiom funktioniert, und dass sich diese Basis nicht explizit konstruieren lässt. Die Menge der sog. Kroneckerdeltas δ_{ij} sieht auf den ersten Blick wie ein vielversprechender Kandidat aus:

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Aber es muss bedacht werden, dass zwingende Bedingung für eine Basis ist, dass sich jeder Vektor nicht nur als Linearkombination der Basisvektoren darstellen lässt, sondern sogar als **endliche Linearkombination**. Diese Definition der Basis ist auch bekannt als Hamelbasis.

Es stellt sich heraus, dass die Hamel-Basis aus A.1 nur dank Auswahlaxiom existiert und nicht explizit dargestellt werden kann. Lockern wir den traditionellen Basisbegriff, um zählbar unendliche Linearkombinationen zu erlauben, erhalten wir den Begriff der Schauder-Basis. Die Funktionen δ_{ij} reichen jedoch immer noch nicht als Schauder-Basis des Raums $f: \mathbb{R} \to \mathbb{R}$, sondern nur für den Folgenraum $f: \mathbb{N} \to \mathbb{R}$.

Da sich der Begriff der Linearkombination auf keine sinnvolle Weise auf überabzählbare Mengen erweitern lässt bleibt man an diesem Punkt leider stecken, es existiert leider keine explizit angebbare Basis des Raums $f: \mathbb{R} \to \mathbb{R}$. :(