

PMOD 전성현

목차

SPI I2C wiring Pi 함수 wiring Pi 함수 MCP3208 NAU7802 회로도 회로도 소스코드 소스코드

- 1대 다수의 통신을 지원하는 동기식 통신 방식
- 전이중 통신방식
- 4개의 핀으로 통신(SCLK, MOSI, MISO, SS)
- I2C, UART 등 비동기식 통신 방식보다 속도가 빠름
- 마스터와 슬레이브가 존재하며 1개의 마스터에 여러 개의 슬레이브가 개별적으로 연결
- 하드웨어가 단순하지만, 노이즈에 취약하고 짧은 거리에서 동작

- SCLK: Serial Clock (output from master) (Clock 전송 신호)
- MOSI: Master Output(출력), Slave Input.(입력)
- MISO: Master Input, Slave Output.
- SS : Slave Select. (active low, master에 연결할 slave를 select)


```
pi@raspberrypi:~ $ ls -1 /dev/spi*
/dev/spidev0.0
/dev/spidev0.1
```

- int wiringPiSPISetup (int channel, int speed)
- 1. SPI 초기화
- 2. Channel : 채널 선택(0 or 1)
- 3. Speed : 속도 지정 (50kHz ~ 32MHz)
- int wiringPiSPIDataRW (int channel, unsigned char *data, int len)
- 1. Read, Write 동시에 실행
- 2. Channel: 초기화된 채널 선택
- 3. *data: 3개의 byte(8비트) 버퍼에 있던 데이터가 자동으로 전송되며, 수신된 데이터는 버퍼에 덮어쓰기 된다.
- 4. Len: 버퍼의 크기

MCP3208-CI/P

- MCP3208은 8채널, 12비트 A/D Converter
- 라즈베리파이에는 내장된 ADC가 없어서 외부 ADC를 이용하여 센서 값을 얻을 수 있습니다.
- 라즈베리파이와 MCP3208은 SPI(serial peripheral interface) 환경에서 통신이 이루어집니다.

MCP3208-CI/P

Features

- 12-bit resolution
- ± 1 LSB max DNL
- ± 1 LSB max INL (MCP3204/3208-B)
- ± 2 LSB max INL (MCP3204/3208-C)
- 4 (MCP3204) or 8 (MCP3208) input channels
- Analog inputs programmable as single-ended or pseudo-differential pairs
- · On-chip sample and hold
- SPI serial interface (modes 0,0 and 1,1)
- Single supply operation: 2.7V 5.5V
- 100 ksps max. sampling rate at V_{DD} = 5V
- 50 ksps max. sampling rate at V_{DD} = 2.7V
- Low power CMOS technology:
 - 500 nA typical standby current, 2 μA max.
 - 400 μA max. active current at 5V
- Industrial temp range: -40°C to +85°C
- Available in PDIP, SOIC and TSSOP packages

- 12-bit 분해능
- 싱글 엔드 입력 또는 차동 입력 아 날로그 입력 가능
- SPI Interface
- 단일 공급 전원 : 2.7V 5.5V
- 샘플링 속도 : 50 ksps ~ 100 ksps
- 작동 온도: -40도~85도
- PDIP, SOIC, TSSOP 패키지 사용가 능

MCP3208-CI/P

PDIP, SOIC

CH0	Analog Input
CH1	Analog Input
CH2	Analog Input
CH3	Analog Input
CH4	Analog Input
CH5	Analog Input
CH6	Analog Input
CH7	Analog Input

DGND	Digital Ground
CS/SHDN	Chip Select/Shutdown Input
D _{IN}	Serial Data In
D _{OUT}	Serial Data Out
CLK	Serial Clock
AGND	Analog Ground
V _{REF}	Reference Voltage Input
V _{DD}	+2.7V to 5.5V Power Supply

MCP3208-CI/P

Functional Block Diagram

• SAR A/D 변환기의 개념도

MCP3208-CI/P

• 입력신호에 따른 작동 방식

	ontrol election			Input	Channel
S <u>ingl</u> e /Diff	D2	D1	D0	Configuration	Selection
1	0	0	0	single-ended	CH0
1	0	0	1	single-ended	CH1
1	0	1	0	single-ended	CH2
1	0	1	-	single-ended	CH3
1	1	0	0	single-ended	CH4
1	1	0	1	single-ended	CH5
1	1	1	0	single-ended	CH6
1	1	1	1	single-ended	CH7

	ontrol			Input	Channel	
S <u>ingl</u> e /Diff	D2	D1	D0	Configuration	Selection	
0	0	0	0	differential	CH0 = IN+ CH1 = IN-	
0	0	0	1	differential	CH0 = IN- CH1 = IN+	
0	0	1	0	differential	CH2 = IN+ CH3 = IN-	
0	0	1	1	differential	CH2 = IN- CH3 = IN+	
0	1	0	0	differential	CH4 = IN+ CH5 = IN-	
0	1	0	1	differential	CH4 = IN- CH5 = IN+	
0	1	1	0	differential	CH6 = IN+ CH7 = IN-	
0	1	1	1	differential	CH6 = IN- CH7 = IN+	

MCP3208-CI/P

Serial communications

FIGURE 5-1: Communication with the MCP3204 or MCP3208.

- 1. CS핀에 LOW가 입력되면 통신시작
- 2. D_N핀으로 시작비트, 싱글입력채널/차동 입력채널 선택, 채널번호(멀티플렉서 조 절) 선택
- 3. DOUT핀으로 데이터 출력

MCP3208-CI/P

Serial communications

FIGURE 6-1: SPI Communication using 8-bit segments (Mode 0,0: SCLK idles low).

```
unsigned char buff[3];
buff[0] = 0x06 \mid ((adcChannel & 0x07) >> 2);
buff[1] = ((adcChannel & 0x07) << 6);
buff[2] = 0x00;
                          ▼ 싱글 엔드 1
               0000 0<mark>11</mark>ch(2)
buff[0] =
               ch(1)ch(0)00 0000
buff[1] =
buff[2] =
               0000 0000
digitalWrite(CS MCP3208, 0);
wiringPiSPIDataRW(SPI CHANNEL, buff, 3);
buff[1] = 0x0f & buff[1];
adcValue = (buff[1] << 8) | buff[2];
digitalWrite(CS MCP3208, 1);
                                12BIT ADC값 저장
```

MCP3208-CI/P

• 변환 공식

$$Digital\ Output\ Code\ =\ \frac{4096\times V_{IN}}{V_{REF}}$$

Where:

 V_{IN} = analog input voltage

 V_{REF} = reference voltage

• 동작속도

- 1. MCP3208은 인가되는 전압에 따라서 동작속도가 달라진다.
- 2. 2.7V~5.5V를 입력 받을 수 있다.
- 3. 2.7V에서는 50ksps로 초당 50k의 샘플링이 이루어진다.
- 4. 5V에서는 100ksps로 초당 100k의 샘플링이 이루어진다.
- 5. 하나의 데이터를 수신할 때 20개의 SCLK을 사용한다.
- 6. 100ksps로 샘플링 할 때 인가해 주어야 하는 SPI CLK주파수는 2MHz이다.

회로도

- n:n 통신을 지원하는 동기식 통신 방식
- 반이중 통신방식
- 2개의 신호선으로 통신(SCL, SDA)
- 속도가 제한적
- 마스터와 슬레이브가 존재하며 1개의 마스터에 여러 개의 슬레이브가 개별적으로 연결
- 통신방식에 의해 HIGH상태를 만들어주기 위하여 풀업 회로를 구성해 주어야 함

- SCL신호가 HIGH일 때 SDA신호가 LOW로 떨어질 때 통신 시작
- 클럭 신호에 맞춰서 슬레이브 주소 확인
- Write Bit로 쓰기모드(LOW)
- Ack Bit로 준비 완료(LOW)
- 클럭 신호에 맞춰서 데이터 쓰기
- Ack Bit로 데이터 끝 알림(LOW)
- SCL신호가 HIGH일 때 SDA신호가 HIGH로 상승할 때 통신 종료
- SCL신호가 HIGH일 때 SDA신호가 LOW로 떨어질 때 통신 시작
- 클럭 신호에 맞춰서 슬레이브 주소 확인
- Read Bit로 읽기모드(HIGH)
- Ack Bit로 준비 완료(LOW)
- 클럭 신호에 맞춰서 데이터 읽기
- Ack Bit로 데이터 끝 알림(HIGH)
- SCL신호가 HIGH일 때 SDA신호가 HIGH로 상승할 때 통신 종료

wiringPiI2C.h

- int wiringPiI2CSetup(int devld);
- int wiringPiI2CRead(int fd);
- int wiringPiI2CWrite(int fd, int data);
- int wiringPiI2CWriteReg8(int fd, int reg, int data);
- int wiringPiI2CReadReg8(int fd, int reg);

NAU7802

- NAU7802는 24비트 A/D Converter 입니다. (유효한 비트는 23비트)
- 라즈베리파이에는 내장된 ADC가 없어서 외부 ADC를 이용하여 센서 값을 얻을 수 있습니다.
- 라즈베리파이와 NAU7802은 I2C(Inter-Integrated Circuit) 인터페이스입니다.

NAU7802

- ✓ Supply Power: 2.7V ~ 5.5V
- ✓ 저전력 24-Bit ADC
- ✓ I2C Interface
- ✓ Sigma-Delta ADC
- ✓ 외부 기준 차동 입력 :0.1V ~ 5V
- ✓ System Clock : 외부 수정 발진자(4.9152Mhz) or 내부 수정 발진자(4.9152Mhz)
- 작동 온도: -40° ~ 85°
- ✓ PGA(Programmable Gain Amplifier): 1 ~ 128
- ✓ Slave로만 동작, 표준모드(0~100Khz), 고속모드(0~400Khz)

NAU7802

2 SYSTEM BLOCK DIAGRAM

- Control Signal 신호에 의해서 제어
- VIN1P VIN1N = 차동 입력 신호
- PGA에서 신호 증폭
- 24비트 ADC는 기준전압(REFP-REFN)에 의해 구동
- 내부, 외부 클럭신호 사용
- 적분형(델타시그마변조방식)변환
- 데이터 입/출력

NAU7802

1	REFP	Al	Positive reference input
2	VIN1N	Al	Inverting Input #1
3	VIN1P	Al	Non-Inverting Input #1
4	VIN2N	Al	Inverting Input #2
5	VIN2P	Al	Non-Inverting Input #2
6	VBG	Α	High impedance Reference Voltage Output and Bypass
7	REFN	Al	Negative Reference Input
8	AVSS	Р	Analog Ground

9	DVSS	Р	Digital ground		
10	XIN	I	External crystal oscillator input. Typically 4.9152 MHz		
11	XOUT	0	External crystal oscillator output.		
12	DRDY	0	Data Ready Output indicating a conversion is complete and new data are available for readout. (CMOS Driver high / low)		
13	SCLK	I	Serial Data Clock Input (CMOS open drain output)		
14	SDIO	I/O	Data Input / Output for serial communication with host (CMOS open drain output)		
15	DVDD	Р	Digital power supply: 2.7V ~ 5.5V		
16	AVDD/LDO	P	Analog power supply: 1. From programmable LDO output, low ESR 1 ohm or less capacitor recommended 2. LDO off: external power supply: 2.7V ~ 5.5V		

Note: TYPE P: Power, AI: Analog input, AO: Analog output, I: input, O: output, I/O: bi-directional

NAU7802

Figure 3: Slave Address Byte, Control Address Byte, and Data Byte

NAU7802

NAU7802 Register Setting

Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default
0x00	PU CTRL	AVDDS	oscs	CR	CS	PUR	PUA	PUD	RR	0x00
0x01	CTRL1	CRP		VLDO	0[2:0]	1	GAINS	2:0]		0x00
0x02	CTRL2	CHS	CRS[1	:0]			CALS	CALM	OD[1:0]	0x00
0x03	OCAL1_B2	CH1 OF	FSET (Calibra	ation[2	23:16]	10	277	1	0x00
0x04	OCAL1_B1	CH1 OF	FSET (Calibra	ation[15:8]		(6)	~ (1)	0x00
0x05	OCAL1 B0	CH1 OF	FSET (Calibra	ation[7	7:0]		5	0	0x00
0x06	GCAL1 B3	CH1 GA	IN Cali	bratio	n[31:2	24]			00	0x00
0x07	GCAL1 B2	CH1 GA	IN Cali	bratio	n[23:1	16]			7	0x80
80x0	GCAL1_B1	CH1 GA	IN Cali	bratio	n[15:8	3]			(0x00
0x09	GCAL1_B0	CH1 GA	IN Cali	bratio	n[7:0]					0x00
0x0A	OCAL2_B2	CH2 OF	CH2 OFFSET Calibration[23:16]					0x00		
0x0B	OCAL2 B1	CH2 OF	CH2 OFFSET Calibration[15:8]						0x00	
0x0C	OCAL2 B0	CH2 OF	CH2 OFFSET Calibration[7:0]					0x00		
0x0D	GCAL2 B3	CH2 GA	CH2 GAIN Calibration[31:24]					0x00		
0x0E	GCAL2 B2	CH2 GA	CH2 GAIN Calibration[23:16]					0x80		
0x0F	GCAL2_B1	CH2 GA	IN Cali	bratio	n[15:8	3]				0x00
0x10	GCAL2_B0	CH2 GA	IN Cali	bratio	n[7:0]					0x00
0x11	I2C Control	CRSD	FDR	SPE	WPD	SI	BOPGA	TS/B	GPCP	0x00
0x12	ADCO B2	ADC_O	JT[23:1	[6]						RO
0x13	ADCO B1	ADC_O	ADC_OUT[15:8]					RO		
0x14	ADCO B0	ADC_OUT[7:0]					RO			
0x15	OTP B1	OTP[15:	OTP[15:8]						RO	
0x16	OTP_B0	OTP[7:0]							RO
0x1F		Device F	Revisio	n Cod	е					RO

REG0x00:PU_CTRL

Bit	Name	Description			
7	AVDDS	AVDD source select 1 = Internal LDO 0 = AVDD pin input (default)			
6	oscs	System clock source select 1 = External Crystal 0 = Internal RC oscillator (default)			
5	CR	Cycle ready (Read only Status) 1 = ADC DATA is ready			
4	cs	Cycle start Synchronize conversion to the rising edge of this register			
3	PUR	Power up ready (Read Only Status) 1 = Power Up ready 0 = Power down, not ready			
2	PUA	Power up analog circuit 1 = Power up the chip analog circuits (PUD must be 1) 0 = Power down (default)			
1	PUD	Power up digital circuit 1 = Power up the chip digital logic 0 = power down (default)			
0	RR	Register reset 1 = Register Reset, reset all register except RR 0 = Normal Operation (default) RR is a level trigger reset control. RR=1, enter reset state, RR=0, leave reset state back to normal state.			

wiringPiI2CWriteReg8(fd, device 주소, bit data) wiringPiI2CWriteReg8 (fd, 0x00, 0x01);

// RR(1)모든 레지스터 초기화

wiringPiI2CWriteReg8 (fd, 0x00, 0x96);

// RR(0) 표준동작, PUD(1) 디지털회로 전원 ON ,PUA(1) 아날로그회로 전원 ON,CS(1) ADC 변환시작, AVDDS(1) 내부AVDD사용

NAU7802 Register Setting

REG0x01:CTRL1

Bit	Name	Description					
7	CRP	Conversion Ready Pin Polarity (16 Pin Package Only) 1=CRDY pin is LOW Active (Ready when 0) 0=CRDY pin is High Active(Ready when 1) (default)					
6	DRDY_SEL	Select the function of DRDY pin					
5:3	VLDO	LDO Voltage 111 = 2.4 110 = 2.7 101 = 3.0 100 = 3.3 011 = 3.6 010 = 3.9 001 = 4.2 000 = 4.5 (default)					
2:0	GAINS	Gain select 111 = x128 110 = x64 101 = x32 100 = x16 011 = x8 010 = x4 001 = x2 000 = x1 (default)					

REG0x02:CTRL2

Bit	Name	Description
7	CHS	Analog input channel select 1 = Ch2 0 = Ch1 (default)
6:4	CRS	Conversion rate select 111 = 320SPS 011 = 80SPS 010 = 40SPS 001 = 20SPS 000 = 10SPS (default)
3	CAL_ERR	Read Only calibration result 1: there is error in this calibration 0: there is no error
2	CALS	Write 1 to this bit will trigger calibration based on the selection in CALMOD[1:0] This is an "Action" register bit. When calibration is finished, it will reset to 0 While this bit is still 1, the chip is still calibrating. An I2C write to this bit will be ignored and no additional calibration will be triggered
1:0	CALMOD	11 = Gain Calibration System 10 = Offset Calibration System 01 = Reserved 00 = Offset Calibration Internal (default)

wiringPiI2CWriteReg8 (fd, 0x01, 0x11);
//VLDO 011(3.6V), 실제로 측정되는 값이 3.3V임
wiringPiI2CWriteReg8(fd, 0x02, (Channel<< 7));
//CHS(0)(default)>> CH1,CHS(1)>>CH2
wiringPiI2CWriteReg8 (fd, 0x15, 0x30);
//ADC 레지스터 부분, 클럭을 꺼짐('1')상태 설정

NAU7802 Register Setting

Bit	Name	Description
7	AVDDS	AVDD source select 1 = Internal LDO 0 = AVDD pin input (default)
6	oscs	System clock source select 1 = External Crystal 0 = Internal RC oscillator (default)
5	CR	Cycle ready (Read only Status) 1 = ADC DATA is ready
4	cs	Cycle start Synchronize conversion to the rising edge of this register
3	PUR	Power up ready (Read Only Status) 1 = Power Up ready 0 = Power down, not ready
2	PUA	Power up analog circuit 1 = Power up the chip analog circuits (PUD must be 1) 0 = Power down (default)
1	PUD	Power up digital circuit 1 = Power up the chip digital logic 0 = power down (default)
0	RR	Register reset 1 = Register Reset, reset all register except RR 0 = Normal Operation (default) RR is a level trigger reset control. RR=1, enter reset state, RR=0, leave reset state back to normal state.

```
do
        st = wiringPiI2CReadReg8(fd,0x00);
while( st & 0x28 == 0x00 );
 // CR(1) ADC DATA ready, PUR(1) Power Up
   ready
data_H = wiringPiI2CReadReg8(fd, 0x12);
 //23:16 상위 비트 읽는 순서 중요!
data_M = wiringPiI2CReadReg8(fd, 0x13);
 //15:8 중간 비트
data_L = wiringPiI2CReadReg8(fd, 0x14);
 //7:0 하위 비트
```

Y / /3 / 53/2/

11.9 REG0x12-REG0x14: ADC Conversion Result

REG0x12 (Read Only)	ADCO_B2	ADC Conversion Result bit 23 to bit 16
REG0x13 (Read Only)	ADCO_B1	ADC Conversion Result bit 15 to bit 8
REG0x14 (Read Only)	ADCO_B0	ADC Conversion Result bit 7 to bit 0

회로도

