Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Instytut Mikroelektroniki i Optoelektroniki

Instrukcja do przedmiotu

Projektowanie układów analogowych dla systemów VLSI

WZMACNIACZ OPERACYJNY

mgr inż. Jakub Kopański

Spis treści

Spis rysunków			
1.	Wst	ęp	
2.	Proj	jektowa	anie wzmacniacza operacyjnego
	2.1.		at elektryczny projektowanego układu
		2.1.1.	Punkt pracy
		2.1.2.	Wejściowe napięcie wspólne
		2.1.3.	Wejściowe napięcie różnicowe
	2.2.	Charal	kterystyka częstotliwościowa wzmacniacza
		2.2.1.	Zero w prawej płaszczyźnie
		2.2.2.	Rozdzielanie biegunów
		2.2.3.	Usuwanie zera
3.	Proj	jekt wz	macniacza operacyjnego

Spis rysunków

1.1	Schemat poglądowy wzmacniacza operacyjnego.
2.1	Schemat elektryczny wzmacniacza operacyjnego
2.2	Model małosygnałowy wzmacniacza operacyjnego
2.3	Model małosygnałowy po zastosowaniu efektu Millera
2.4	Typowe przebiegi wzmocnienia.
2.5	Sposoby usuwania zera

1. Wstęp

Wzmacniacze operacyjne są jednymi z podstawowych bloków wykorzystywanych do budowania bardziej złożonych układów. Ponieważ są tak powszechnymi elementami większych systemów, omówimy dokładnie ich działanie oraz zagadnienia związane z ich projektowaniem.

Wzmacniacz operacyjny przeznaczony jest do pracy w układzie sprzężenia zwrotnego. Dzięki temu, o parametrach układu decydują wartości elementów, z których wykonano sprzężenie zwrotne, a nie bezwzględne parametry wzmacniacza operacyjnego. Takie rozwiązanie jest bardzo korzystne w realizacji scalonej, ponieważ parametry układu można ustalać poprzez zmianę stosunku wartości elementów sprzężenia.

Rysunek 1.1: Schemat poglądowy wzmacniacza operacyjnego.

Ideowy schemat wzmacniacza operacyjnego zaprezentowano na rys. 1.1. Składa się on ze wzmacniacza różnicowego, stopnia wzmacniającego, kondensatora oraz buforu wyjściowego. Dzięki wzmacniaczowi różnicowemu mamy 2 wejścia. Do jednego będziemy podawać sygnał wejściowy, a do drugiego sygnał sprzężenia zwrotnego. Stopień wzmacniający zapewnia odpowiednio wysokie wzmacnienie całego toru. Kondensator C_c natomiast kształtuje charakterystykę częstotliwościową wzmacniacza, co będzie szerzej opisane w dalszej części instrukcji. Ostatnim elementem jest bufor wyjściowy. Zapewnia on małą rezystancje wyjściową wzmacniacza operacyjnego, dzięki czemu możliwe jest obciążanie wzmacniacza małymi rezystancjami.

W układach scalonych obciążenie rezystancyjne występuje bardzo rzadko. Typowo wzmacniacze operacyjne muszą wysterować obciążenie o charakterze pojemnościowym - bramkę tranzystora. W takim przypadku można zrezygnować z bufora wyjściowego. Tego typu wzmacniacz często nazywa się wzmacniaczem transkonduktancyjnym OTA (ang. Operational Transconductance Amplifier). Rezygnując z bufora wyjściowego, należy zwrócić uwagę na ewentualne problemy ze slew rate, w szczególności gdy wartość pojemności obciążająca wzmacniacz jest duża. Ze względu na powszechność, z jaką używa się wzmacniaczy OTA, w układach scalonych często nazywa się je w skrócie wzmacniaczami operacyjnymi.

2. Projektowanie wzmacniacza operacyjnego

2.1. Schemat elektryczny projektowanego układu

Rysunek 2.1: Schemat elektryczny wzmacniacza operacyjnego.

Schemat układu, jaki będziemy projektować na zajęciach, zaprezentowano na rys. 2.1. Składa się on ze wzmacniacza różnicowego, który steruje wzmacniaczem o wspólnym źródle. Wzmocnienie układu w otwartej pętli dla niskich częstotliwości jest iloczynem wzmocnień poszczególnych stopni i wynosi:

$$A_{OLDC} = A_1 \times A_2 = \overbrace{g_{mn} \cdot (r_{dsn} || r_{dsp})}^{A_1} \times \overbrace{g_{mp} \cdot r_{dsp}}^{A_2}$$

$$(2.1)$$

2.1.1. Punkt pracy

Węzły bias<3> i bias<4> pochodzą z bloku projektowanego na poprzednich zajęciach. Pary tranzystorów M_6 i M_8 tworzą źródła prądowe, które wymuszają przepływ prądu w poszczególnych gałęziach układu. Prąd płynący przez tranzystory M_1 i M_2 jest taki sam, równy połowie prądu lustra złożonego z tranzystorów M_6 . Bramki tranzystorów M_3 i M_4 są zwarte, więc ich napięcia V_{GS} są takie same. Ponieważ prąd płynący przez oba tranzystory jest taki sam, napięcia V_{DS} obu tranzystorów muszą być takie same. Dlatego napięcie V_{GS} tranzystora M_7 , tworzącego wzmacniacz drugiego stopnia, jest równe

napięciu V_{GS} tranzystorów M3 i M4. Takie połączenie zapewni dobrze ustalony punkt pracy wzmacniacza. Dzięki temu tranzystory będą posiadały znane parametry i możliwe będzie przewidzenie osiągów projektowanego wzmacniacza operacyjnego.

2.1.2. Wejściowe napięcie wspólne

Gdy wzmacniacz operacyjny pracuje przy zamkniętej pętli sprzężenia zwrotnego, napięcia na wejściach pary różnicowej są utrzymywane na tych samych (lub prawie tych samych) poziomach. Wartość średnia z napięć na obu wejściach wzmacniacza nazywana jest napięciem wspólnym (ang. common-mode voltage). Należy zastanowić się nad maksymalnym $V_{CM_{max}}$ i minimalnym $V_{CM_{min}}$ napięciem wspólnym, które zapewni, że tranzystory wzmacniacza różnicowego pozostaną w nasyceniu.

Aby tranzystory źródła prądowego pozostały w nasyceniu wartość niezbędnego napięcia wynosi $2V_{DSsat}$. Stąd minimalne napięcie wspólne wynosi:

$$V_{CM_{min}} = 2V_{DSsatn} + V_{GSn} \tag{2.2}$$

Górny limit napięcia wspólnego można obliczyć zauważając, że napięcia na drenach tranzystorów M_2 i M_1 są równe i wynoszą $V_{DD}-V_{SG_D}$, dlatego możemy zapisać:

$$V_{DS} \geqslant V_{GS} - V_{THn} \rightarrow V_D \geqslant V_G - V_{THN} \rightarrow V_{CM_{max}} = V_{DD} - V_{SGp} + V_{THn}$$
 (2.3)

2.1.3. Wejściowe napięcie różnicowe

Ponieważ prąd drenu tranzystora w zakresie nasycenia opisuję się równaniem:

$$i_D = \frac{\beta_n}{2} (v_{GS} - V_{THN}), \tag{2.4}$$

wejściowe napięcie różnicowe można przedstawić w postaci:

$$v_{DI} = \sqrt{\frac{2}{\beta_{\rm p}}} (\sqrt{i_{D1}} - \sqrt{i_{D2}}). \tag{2.5}$$

Maksymalne wejściowe napięcie różnicowe otrzymamy podstawiając prąd źródła prądowego I_{SS} płynącego w ogonie pary różnicowej pod prąd i_{D1} do (2.5) oraz zerując prąd i_{D2} . Otrzymamy wtedy:

$$v_{DI_{max}} = v_{I1} - v_{I2} = \sqrt{\frac{2 \cdot L \cdot I_{SS}}{KP_n \cdot W}}$$
 (2.6)

Minimalne różnicowe napięcie wejściowe otrzymujemy poprzez podstawienie prądu I_{SS} pod i_{D2} i wyzerowanie i_{D1} .

$$v_{DI_{min}} = -v_{DI_{max}} = -\sqrt{\frac{2 \cdot L \cdot I_{SS}}{KP_n \cdot W}}$$

$$\tag{2.7}$$

2.2. Charakterystyka częstotliwościowa wzmacniacza

Rysunek 2.2: Model małosygnałowy wzmacniacza operacyjnego.

Aby wyznaczyć charakterystykę częstotliwościową wzmacniacza posłużymy się modelem małosygnałowym widocznym na rys. 2.2. Wartości elementów schematu zastępczego wynoszą:

$$R_s = r_{dsn}||r_{dsp}$$

$$R_o = r_{dsp}||R_{ocasn}$$

$$g_{m1} = g_{mn}$$

$$g_{m2} = g_{mp}$$

$$C_s = C_{ds4} + C_{gd2}$$

$$C_o = C_L + C_{gd8} \approx C_L$$

Korzystając z twierdzenia Millera można przenieść pojemność C_{gd7} na węzeł 1 i 2. Wartości nowych pojemności wynoszą:

$$C_{MI} = C_{qd7}(1 + |A_2|)), (2.8)$$

$$C_{MO} = C_{gd7}(1 + \frac{1}{|A_2|}). (2.9)$$

(2.10)

Taki zabieg spowoduję, że w układzie będą 2 stałe czasowe związane z węzłami 1 i 2. Schemat elektryczny odpowiadającego modelu małosygnałowego pokazany jest na rys. 2.3. Częstotliwości graniczne związane z tymi stałymi czasowymi będą wynosić:

$$f_1 = \frac{1}{2\pi (C_{gs} + C_{gd7}(1 + |A_2|)) \cdot r_{ds2} ||r_{ds4}}$$
(2.11)

$$f_2 = \frac{1}{2\pi (C_{gd8} + C_L + (1 + \frac{1}{|A_2|})C_{gd7}) \cdot r_{ds7}||R_{ocascn}}$$
(2.12)

Rysunek 2.3: Model małosygnałowy po zastosowaniu efektu Millera.

Charakterystyka częstotliwościowa układu z rys. 2.3. ma postać:

$$A_v(f) = \underbrace{\frac{G_{mn} \cdot (r_{dsn}||r_{dsp})}{G_{mp} \cdot r_{dsp}} \times \underbrace{G_{mp} \cdot r_{dsp}}_{A_2}}_{(2.13)}$$

2.2.1. Zero w prawej płaszczyźnie

Niestety model zaproponowany w rozdziale 2.2 nie jest całkowicie poprawny. Stosując twierdzenie Millera do wyznaczenia częstotliwości granicznych pomijane jest zero w charakterystyce częstotliwościowej. Obserwując rys. 2.2. można zauważyć, że w przypadku granicznym (dla bardzo wysokich częstotliwości) pojemność C_{gd7} zwiera wejście z wyjściem drugiego stopnia wzmacniacza. Aby wyznaczyć dokładniejszą charakterystykę częstotliwościową nie możemy korzystać z twierdzenia Millera oraz schematu zastępczego z rys. 2.3.

W celu uproszczenia obliczeń potraktujemy węzeł 1 jako wejście rozważanego układu do wyznaczenia częstotliwości zera. Schemat zaprezentowano na rys. 2.2. Suma prądów w węźle wyjściowym wynosi:

$$\frac{v_{out} - v_s}{1/j\omega C_{gd7}} + \frac{v_{out}}{R_o||1/j\omega C_o|} + g_{m2} \cdot v_s = 0$$
(2.14)

Wyznaczając wzmocnienie układu otrzymujemy równanie:

$$\frac{v_{out}}{v_s} = -g_{m2}R_o \cdot \frac{1 - j\omega \frac{C_{gd7}}{g_{m2}}}{1 + j\omega(C_{gd7} + C_o)R_o},$$
(2.15)

skąd widzimy, że biegun jest taki sam jak w równaniu (2.12). Natomiast w liczniku transmitancji pojawiło się zero w prawej płaszczyźnie:

 $f_z = \frac{g_{m2}}{2\pi C_{qd7}} \tag{2.16}$

Zero po prawej stronie układu współrzędnych ma taki sam wpływ na odpowiedź amplitudową jak jak zero po lewej stronie, ale inny wpływ na odpowiedź fazową. Zero w prawej płaszczyźnie wpływa na odpowiedź fazową tak samo jak biegun w lewej płaszczyźnie. Ta właściwość rodzi ważne konsekwencje przy projektowaniu wzmacniaczy, pracujących przy sprzężeniu zwrotnym. Wyjście wzmacniacza, przy dodatkowym przesunięciu fazy, podane jako sprzężenie zwrotne może zmienić jego charakter i zsumować się z sygnałem wejściowym (dodanie sprzężenie zwrotne), powodując niestabilność wzmacniacza.

2.2.2. Rozdzielanie biegunów

Użycie (2.12) do określenia położenia wyjściowego bieguna jest obarczone błędem. Wzmocnienie A_2 maleje powyżej częstotliwości f_1 , więc pojemność Millerowska C_{gd7} będzie mniejsza niż w równaniu 2.12, co spowoduję, że biegun wyjściowy będzie znajdował się na znacznie wyższej częstotliwości niż f_2 .

W celu opisania tego efektu posłużymy się schematem z rys. 2.2. Wzmocnienie drugiego stopnia wzmacniacza jest opisane przez (2.15). Natomiast suma prądów wpływających do węzła 2 wynosi:

$$\frac{v_s}{R_s} + \frac{v_s}{1/j\omega C_s} + \frac{v_s - v_{out}}{1/1j\omega C_{gd7}} - g_{m1}v_{in} = 0,$$
(2.17)

co pozwala wyznaczyć:

$$v_s = \frac{v_{out} \cdot j\omega C_{gd7} - g_{m1}v_{in}}{\frac{1}{R_s} + j\omega C_s + j\omega C_{gd7}}.$$
(2.18)

Podstawiając (2.18) do (2.18) możemy wyznaczyć wzmocnienie układu:

$$\frac{c_{out}}{v_{in}} = \frac{g_{m1}g_{m2}R_{o}R_{s}(1 - s\frac{C_{gd7}}{g_{m2}})}{s^{2}R_{o}R_{s}(C_{gd7}C_{o} + C_{gd7}C_{s} + C_{o}C_{s}) + s[R_{o}(C_{gd7} + C_{o}) + R_{s}(C_{gd7} + C_{s}) + g_{m2}R_{o}R_{s}C_{gd7}] + 1}.$$
(2.19)

Zero transmitancji układu położone jest na częstotliwości określonej przez (2.16). Ponieważ s^2 jest małe, to dla niskich częstotliwości mianownik transmitancji (2.19) jest w przybliżeniu równy:

$$1 + j\omega[(C_{qd7} + C_o)R_o + (C_{qd7} + C_s)R_s + C_{qd7}g_{m2}R_oR_s],$$
(2.20)

więc biegun na niskich częstotliwościach jest położony na częstotliwości:

$$f_1 \approx \frac{1}{2\pi[(C_{gd7} + C_o)R_o + (C_s + C_{gd7}(1 + |A_v|))R_s]},$$
 (2.21)

gdzie: $A_v = g_{m2}R_o$. Jeżeli pojemność millerowska $C_{gd7}(1 + |A_v|)$ jest znacznie większa od pozostałych, to możemy przyjąć, że:

$$f_1 \approx \frac{1}{2\pi C_{qd7}(1+|A_v|)R_s}$$
 (2.22)

Żeby wyznaczyć położenie drugiego bieguna musimy wyciągnąć czynnik (2.20) z mianownika (2.19):

$$(1 + s[(C_{gd7} + C_o)R_o + (C_{gd7} + C_s)R_s + C_{gd7}g_{m2}R_oR_s]) \times$$

$$\left(1 + \frac{s^2R_oR_s(C_{gd7}C_o + C_{gd7}C_s + C_oC_s)}{1 + s[(C_{gd7} + C_o)R_o + (C_{gd7} + C_s)R_s + C_{gd7}g_{m2}R_oR_s]}\right)$$
(2.23)

Otrzymujemy równanie w postaci:

$$(1+j\cdot\frac{f}{f_1})(1+j\cdot\frac{f}{f_2})$$
 (2.24)

Dzieląc licznik i mianownik przez sR_oR_s otrzymujemy:

$$1 + j \cdot \frac{s(C_{gd7}C_o + C_{gd7}C_s + C_oC_s)}{1/sR_oR_s + [(C_{qd7} + C_o)/R_s + (C_{qd7} + C_s)/R_o + C_{qd7}g_{m2}]}$$
(2.25)

W praktycznych realizacjach wzmacniaczy możemy założyć: $g_m >> \frac{1}{r_o}$ (jeżeli tak nie jest, to wzmocnienie własne tranzystora $g_m r_o$ jest zbyt małe, aby było możliwe zbudowanie na nim użytecznego wzmacniacza). Dlatego możemy zapisać:

$$f_2 \approx \frac{g_{m2}C_{gd7}}{2\pi(C_{gd7}C_o + C_{gd7}C_s + C_oC_s)}$$
 (2.26)

Warto zauważyć, że jeżeli umieścimy dodatkową pojemność: C_c równolegle z pojemnością tranzystora C_{gd7} tak, że efektywna pojemność wyniesie $C_c + C_{gd7}$, to zgodnie z (2.20) biegun na niższej częstotliwości f_1 przesunie się na jeszcze mniejszą częstotliwość. Natomiast biegun f_2 znajdzie się na jeszcze wyższej częstotliwości. Stąd nazwa rozdzielanie biegunów.

Rysunek 2.4: Typowe przebiegi wzmocnienia.

Częstą praktyką jest dodawanie pojemności C_c na tyle dużej, aby biegun f_1 był położony na znacznie niższej częstotliwości niż zero, czy biegun f_2 . Mówimy wtedy, że biegun związany z częstotliwością f_1 jest biegunem dominującym. W takim przypadku wzmocnienie możemy przybliżyć równaniem:

$$A_v(f) = \frac{V_{out}(f)}{V_{in}(f)} \approx \frac{g_{m1}R_s g_{m2}R_o}{1 + j\frac{f}{f_1}} = \frac{g_{m1}R_s g_{m2}R_o}{1 + j2\pi f \cdot g_{m2}R_s R_o C_c}$$
(2.27)

Otrzymujemy równanie w postaci:

$$A_V(f) = \frac{A_{DC}}{1 + j\frac{f}{f_{3dB}}},\tag{2.28}$$

co pozwala nam zapisać:

$$A_{DC} = g_{m1} R_s g_{m2} R_o (2.29)$$

$$f_{3dB} = \frac{1}{2\pi g_{m2} R_s R_o C_c} \tag{2.30}$$

Dla częstotliwości znacznie większych niż częstotliwość 3 decybelowa, możemy przybliżyć transmitancję 2.27 poprzez:

$$A_v \approx \frac{g_{m1}}{2\pi f C_c}. (2.31)$$

Możemy stąd uzyskać zależność na częstotliwość, przy której wzmocnienie jest równe 1:

$$f_{un} = \frac{g_m 1}{2\pi C_c} \tag{2.32}$$

2.2.3. Usuwanie zera

Rysunek 2.5: Sposoby usuwania zera.

Z (2.16) i (2.32) widać, że jeżeli transkonduktancje obu tranzystorów są zbliżone, to częstotliwość zera oraz częstotliwość wzmocnienia jednostkowego wypadają na takiej samej lub zbliżonej wartości. Jak zostało wspomniane w rozdziale 2.2.3, poprzez pojemność C_c może przechodzić sygnał z wejścia bezpośrednio na wyjście wzmacniacza. Jednocześnie zero w charakterystyce częstotliwościowej może spowodować, że wzmocnienie będzie większe od 1 przy braku odwracania fazy sygnału. Taka sytuacja może doprowadzić do niestabilności wzmacniacza. Żeby uniknąć takiej sytuacji możemy dodać wtórnik w sprzężeniu zwrotnym, jak na rys. 2.5a. Dzięki takiemu zabiegowi nadal otrzymamy efekt rozdzielania biegunów, ale nie będzie drogi z wejścia na wyjście wzmacniacza. Innym rozwiązaniem jest dodanie rezystora szeregowo z pojemnością sprzężenia zwrotnego C_c , który stłumi sygnały wysokoczęstotliwościowe. Dodanie rezystora przesuwa zero na wyższą częstotliwość zgodnie z zależnością:

$$f_z = \frac{1}{2\pi C_c \frac{1}{g_m}} \xrightarrow{zrezystorem} f_z = \frac{1}{2\pi C_c (\frac{1}{g_m} - R_z)}$$
 (2.33)

3. Projekt wzmacniacza operacyjnego

Na zajęciach należy zmodyfikować blok opamp z biblioteki LIB3. Dla projektowanego bloku przygotowane zostało środowisko testowe $opamp_sim$. Najważniejsze mierzone parametry zebrane zostały w tabeli 3.1.

Przed rozpoczęciem projektowania wzmacniacza należy zamienić blok bias_hs_sim obecny w teście opamp_sim na układ polaryzacji zaprojektowany na poprzednim laboratorium. Wystarczy zmienić nazwę biblioteki we właściwościach obiektu.

Celem ćwiczenia jest zaprojektowanie wzmacniacza operacyjnego tak, aby jego wzmocnienie w otwartej pętli wynosiło co najmniej $80\ dB$. Należy zapewnić jego stabilność poprzez zapewnienie odpowiednio dużego marginesu fazy wynoszącego co najmniej 55° .

Całość należy zweryfikować poprzez analizę w narożnikach procesu oraz za pomocą analizy $Monte\ Carlo$, tak jak było to robione przy okazji ćwiczenia 2.

Tablica 3.1: Mierzone parametry wzmacniacza operacyjnego

Nazwa	Opis
$gain_dB$	Charakterystyka wzmocnienia
phase	Przebieg fazy wzmacniacza
$gain_dB_DC$	Wartość wzmocnienia dla niskich częstotliwości
f_un	Częstotliwość dla której wzmocnienie spada do 1
gain B and width Prod	Iloczyn wzmocnienia i pasma wzmacniacza
gain Margin	Margines wzmocnienia
phase Margin	Margines fazy
bandwidth	Pasmo (3 dB) wzmacniacza
slew $rate$	Szybkość narastania napięcia wyjściowego
$tset1\overline{\%}$	Czas po jakim napięcie wyjściowe ustawi się z dokładnością 1 %
tset0.1%	Czas po jakim napięcie wyjściowe ustawi się z dokładnością 0,1 $\%$