Un estudio sobre el efecto de la temperatura en el rendimiento de un proceso químico proporciona los siguientes resultados:

Temperatura (x)	-5	-4	-3	-2	-1	0	1	2	3	4	5
Rendimiento (y)	1	5	4	7	10	8	9	13	14	13	18

- (a) Representa el diagrama de dispersión de los datos anteriores y calcula el coeficiente de correlación entre las dos variables. ¿Se puede admitir que existe una relación lineal aproximada entre ambas, es decir, $y_i \sim a + bx_i$?
- (b) Calcula el término independiente y la pendiente de la recta de mínimos cuadrados.
- (c) ¿Qué rendimiento predecirías para un nuevo proceso realizado a temperatura x = 3.5?

```
# Temperatura:
x = -5:5
# Rendimiento:
y = c(1,5,4,7,10,8,9,13,14,13,18)

# Diagrama de dispersion
plot(x,y)

# Coeficiente de correlacion
cor(x,y)

# Recta de regresion:
zz = lm(y~x)
abline(zz)

# Prediccion para temperatura x=3.5:
new <- data.frame(x = 3.5)
Prediccion = predict.lm(zz,new)</pre>
```


$$\hat{y} = 9.27 + 1.44x$$
 $r = 0.956$ $\hat{y}(3.5) = 9.27 + 1.44 \cdot 3.5 = 14.30$