

Mathématiques

Classe: BAC

Chapitre: Fonctions logarithmes

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Définition

On appelle fonction logarithme népérien notée \ln , la fonction primitive sur $]0,+\infty[$ qui s'annule en 1 de la fonction : $t \to \frac{1}{t}$

Limites remarquables

$$\oint \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0, \qquad \lim_{x \to 0^+} x \ln(x) = 0.$$

Propriétés algébrique

1. Pour tous réels a et b strictement positifs on a :

•
$$\ln(ab) = \ln(a) + \ln(b)$$

•
$$\ln\left(\frac{1}{a}\right) = -\ln a$$

•
$$\ln\left(\frac{b}{a}\right) = \ln b - \ln a$$

2. Soit *a* un réel strictement positif.

• Pour tout entier n, $\ln(a^n) = n \ln a$

• Pour tout entier
$$n \ge 2$$
 , $\ln(\sqrt[n]{a}) = \frac{1}{n} \ln a$

3. Pour tous réels strictement positifs a_1,a_2,\ldots,a_n on a : $\ln\left(\prod_{k=1}^n a_k\right) = \sum_{k=1}^n \ln(a_k)$.

Conséquences

4. La fonction ln est définie, continue et dérivable sur $]0,+\infty[$, $\ln 1=0$ et $\ln' x=\frac{1}{x}$.

A Pour tout réel x > 0, $\ln x = \int_{1}^{x} \frac{1}{t} dt$.

♣ La fonction ln est strictement croissante sur $]0,+\infty[$.

♣ Soit a et b deux réels strictement positifs.

• $\ln a = \ln b \Leftrightarrow a = b$

• $\ln a > \ln b \Leftrightarrow a > b$

• $\ln a < \ln b \Leftrightarrow a < b$

• $\ln a > 0 \Leftrightarrow a > 1$

• $\ln a < 0 \Leftrightarrow 0 < a < 1$

♣ La fonction In est une application bijective de]0,+∞[sur ℝ.

... Il existe un unique réel strictement positif noté e tel que ln(e) = 1.

 $\bullet \forall n \in \mathbb{N}, \ln(e^n) = n.$

• $\forall p \in \mathbb{N}^*, \forall n \in \mathbb{N} \setminus \{0,1\}, \ln \left(\sqrt[n]{e^p}\right) = \frac{p}{n}$

• $\ln x = a \Leftrightarrow x = e^a$.

Théorème

Soit u une fonction dérivable sur un intervalle I et telle que u(x) > 0, pour tout x dans I. Alors la fonction

 $F: x \longmapsto \ln(u(x))$ est dérivable sur I et $f'(x) = \frac{u'(x)}{u(x)}$

Théorème

Soit u une fonction dérivable sur un intervalle I et telle que $u(x) \neq 0$, pour tout x dans I. Alors la fonction

 $F: x \longmapsto \ln|u(x)|$ est dérivable sur I et $f'(x) = \frac{u'(x)}{u(x)}$

Corollaire

Soit u une fonction dérivable sur un intervalle I et telle que $u(x) \neq 0$, pour tout x dans I. Alors la fonction

 $f: x \mapsto \frac{u'(x)}{u(x)}$ admet pour primitive sur I la fonction

Théorème

La fonction $F: x \mapsto x \ln x - x$ est une primitive de la fonction $\ln x \mapsto \ln x$ sur $]0, +\infty[$.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000