Discrete Mathematics MATH1064, Lecture 8

Jonathan Spreer Bank Robbers Everybody on the floor DJs Put your hands up Give me Are you with your money Preachers

Extra exercises for Lecture 8

Section 2.1: Problems 1, 3-8, 13-16, 19, 20

Section 2.2: Problems 1, 3, 4, 11, 14, 18, 19, 20

AUTHOR KATHARINE GATES RECENTLY ATTEMPTED TO MAKE A CHART OF ALL SEXUAL FETISHES.

LITTLE DID SHE KNOW THAT RUSSELL AND WHITEHEAD HAD ALREADY FAILED AT THIS SAME TASK:

Cardinality

If S is a finite set, then the cardinality of S is the number of distinct elements that S contains.

We write this as |S|.

```
Example: S = \{1, 2, 3\} |S| = Example: S = \{2, 4, 2, 4\} |S| = Example: S = \{3, \{3\}, 3\} |S| =
```

If S is an infinite set, we often write $|S|=\infty$. However, cardinality is more interesting and more subtle: there are many different infinities, and two infinite sets might not have the same cardinality!

For example, $|\mathbb{R}| \neq |\mathbb{Z}|$, even though both are infinite! We will see this again later in the semester.

3/16

Difference

For sets S and T, their difference is written $S \setminus T$ (or sometimes written S - T).

It contains all elements that belong to S but not T:

$$S \setminus T = \{x \mid x \in S \land x \notin T\}$$

Example:

$$\{1,2,3\} \setminus \{2,5\} =$$

Example:

$$\{0,1,2,3,\ldots\}\setminus\{0,-1,-2,-3,\ldots\}=$$

Example:

$$\mathbb{N} \setminus \mathbb{Z} =$$

Complement

Let U be some universal set in which we are working.

For example, the universal set might be:

- ullet R if we are doing calculus;
- Z if we are doing number theory;
- the set of all points on the plane if we are doing geometry.

For any set $S \subseteq U$, the complement of S is written \overline{S} (or sometimes written S^c).

It contains all elements of U that do not belong to S:

$$\overline{S} = \{x \in U \mid x \notin S\} =$$

Example, for the universe $U = \mathbb{Z}$:

$$\frac{\{1,2,3\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\mathbb{Z}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text{ is even}\}} = \frac{\{x \in \mathbb{Z} \mid x \text{ is even}\}}{\{x \in \mathbb{Z} \mid x \text$$

Summary: Relationships and operations

$$S \subseteq T \quad \leftrightarrow \quad (x \in S \to x \in T)$$

$$S = T \quad \leftrightarrow \quad (x \in S \leftrightarrow x \in T)$$

$$S = T \quad \leftrightarrow \quad (S \subseteq T \land T \subseteq S)$$

$$S \cup T \qquad = \quad \{x \mid x \in S \lor x \in T\}$$

$$S \cap T \qquad = \quad \{x \mid x \in S \land x \in T\}$$

$$S \setminus T \qquad = \quad \{x \mid x \in S \land x \notin T\}$$

$$S \setminus T \qquad = \quad \{x \mid x \in S \land x \notin T\}$$

$$S \setminus T \qquad = \quad \{x \mid x \in S \land x \notin T\}$$

$$S \setminus T \qquad = \quad \{x \mid x \in S \land x \notin T\}$$

Venn diagrams

Venn diagrams are a convenient way of visualising the relationships between different sets.

Difference: $B \setminus A$

Venn diagrams

Venn diagrams are not formal proofs, but they can help visualise whether a statement is correct.

Is is always true that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$?

Is is always true that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$?

Building $(A \cap B) \cup (A \cap C)$

Is is always true that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$?

The Venn diagrams suggest: Yes!

Proposition

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof: To show LHS \subseteq RHS: Let $x \in A \cap (B \cup C)$.

Then $x \in A$.

Also, we have $x \in B \cup C$, which means either $x \in B$ or $x \in C$.

- If $x \in B$, then $x \in A \cap B$, and so $x \in (A \cap B) \cup (A \cap C)$.
- If $x \in C$, then $x \in A \cap C$, and so again $x \in (A \cap B) \cup (A \cap C)$.

Either way, $x \in (A \cap B) \cup (A \cap C)$.

(Continued over...)

Claim

For all sets $A, B, C, A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (ctd.): To show RHS \subseteq LHS: Let $x \in (A \cap B) \cup (A \cap C)$. Then either $x \in A \cap B$ or $x \in A \cap C$

- Suppose $x \in A \cap B$. Then $x \in A$, and also $x \in B$. Since $x \in B$ we have $x \in B \cup C$, and so $x \in A \cap (B \cup C)$.
- Suppose $x \in A \cap C$. Then $x \in A$, and also $x \in C$. Since $x \in C$ we have $x \in B \cup C$, and again $x \in A \cap (B \cup C)$.

Either way, $x \in A \cap (B \cup C)$.

So: LHS \subseteq RHS and RHS \subseteq LHS, which means LHS = RHS.

Claim

For all sets $A, B, C, A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

A different proof:

$$x \in A \cap (B \cup C) \quad \leftrightarrow \quad x \in A \wedge (x \in B \vee x \in C)$$

$$\leftrightarrow \quad (x \in A \wedge x \in B) \vee (x \in A \wedge x \in C)$$

$$\leftrightarrow \quad x \in (A \cap B) \cup (A \cap C),$$

using the distributive law for logical expressions!

Set identities

The textbook has may more identities like this! See Table 1 on page 130.

- $A \cup B = B \cup A$ and $A \cap B = B \cap A$
- $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $A \cup \emptyset = A$ and $A \cap U = A$, where $A \subseteq U$ for some universal set U
- ... and more

Do these look familiar?

These are just our logic identities in disguise!

Set identities and logic identities

Logic	Sets
\wedge (and)	\cap (intersection)
∨ (or)	\cup (union)
¬ (not)	\overline{A} (complement)
t (tautology)	U (universal set)
c (contradiction)	\emptyset (empty set)

Proving that two statements are logically equivalent corresponds to proving that two sets are equal

Proving that $X \to Y$ for statements corresponds to proving that $X \subseteq Y$ for sets

Exercise

Let A and B be subsets of some universal set U.

True or false?

$$\overline{(A \cup B)} = \overline{A} \cup \overline{B}$$