

Credit Risk Prediction

Antonius Andi Syah Putra Halawa

Outline

- Business Understanding
- Analytic Approach
- Data Requirements
- Data Collection
- Data Understanding
- Data Preparation
- Exploratory Data Analysis
- Model Building
- Model Evaluation
- Model Deployment

Business Understanding

Credit risk is the risk of loss due to a borrower's failure to make payments on a loan or meet other financial obligations. In other words, credit risk is the possibility that a borrower will default on their debt obligations, causing the lender or investor to lose some or all of their investment. Credit risk is a significant concern for lenders, as it can have a significant impact on their financial performance. To manage credit risk, lenders use a variety of tools and techniques, including credit scoring, risk assessment, and loan monitoring. They may also require collateral or other forms of security to reduce their risk exposure.

Analytic Approach

Predictive Model; Supervised Learning

Classification, namely the type of supervised learning where the data type of the variable label/target is discrete.

Regression, which is a type of supervised learning where the data type of the variable label/target is continuous numeric.

Data Understanding

1. Libraries

2. Importing Data

 $df = pd.read_csv('loan_data_2007_2014.csv')$

3. Exploring Data

- df.head()
- df.tail()
- df.shape
- df.id.nunique()
- df.member_id.nunique()
- df.info()
- df.describe().T

Data Preparation

- 1. Remove unnecessary columns
- 2. Missing values (NaNs)
- 3. Define Target Variable/Labeling
 - Target Variable = loan_status'
 - Define of target variabel 'bad loan' & 'good loan'
- 4. CLEANING, PREPROCESSING, FEATURE ENGINEERING

Cleaning/modification

Column : emp_length, term, earliest_cr_line, issue_d, last_pymnt_d, next_pymnt_d, last_credit_pull_d

Exploratory Data Analysis

Check Categorical Features

Disposal of features that have a very high unique value (high cardinality) and features that have only one unique value.

Missing Values

Feature Scaling And Transformation

- One Hot Encoding
- Standardization
- Transformed DataFrame

Model Building

1. Algoritma Supervised Learning

- Decision Tree
- K-Nearest Neighbors (KNN)
- Logistic Regression (For Classification)
- Linear Regression (For Regression)
- Random Forest
- Support Vector Machine (SVM)
- XGBoost

2. Train-Test Split

X_train.shape, X_test.shape

((373028, 99), (93257, 99))

3. Training

Random Forest

```
rfc = RandomForestClassifier(max_depth=4)
rfc.fit(X_train,y_train)
```


Feature Importance

Feature Importance is a measure used to evaluate the importance of each feature in a machine learning model to the results of prediction of target variables.

Validation

To measure model performance, AUC (Area Under the Curve) and KS (Kolmogorov-Smirnov) are evaluation metrics commonly used in risk prediction modeling and credit scoring.

AUC

• KS

Model Evaluation

The built model produces AUC = 0.857 and KS = 0.56 performance. In the world of credit risk modeling, generally AUC above 0.7 and KS above 0.3 is considered good performance.

