Exploring the Influence of Using Fingerprints to Determine Gender

Ailynne Hartsell, Aman Mehmood, Pravin Raja, and Taylor Payne ahartsel@gmu.edu, amehmoo@gmu.edu, praja2@gmu.edu, and tpayne24@gmu.edu

Introduction and Problem Formulation

Scope of Study: Background of Fingerprints

- Fingerprints were used by Ancient Civilizations
 - Purpose:
 - Business (Contracts)
 - Identification Purposes
- 1880: Intended to help solve crimes
- 1896: Establishment of a global standard
- Now it is used for:
 - Criminal Identification
 - Access Control

Scope of Study: Why Fingerprints?

- Reliable, convenient and accurate
- Is there a link???
 - Between fingerprints and gender
 - Ultimately productive to criminal investigations
- Intentions: create a machine learning model that can categorize fingerprints based on gender.

Scope of Study: The Focus of Fingerprints

- Fingerprint Patterns:
 - Ridge and Furrow structure
 - Arch, loop and whorl
- Minutiaes
- Core
- Delta
- Pores and Sweat Glands

Scope of Study: Our Motivation

- Investigate the interaction between biometrics and gender studies
- Enhance criminal investigation procedures
- Contribute to forensic science developments
- Relation to other things include:
 - Hereditary
 - Race
 - Health

Goals

- Develop a reliable fingerprint-based gender classification model
- Analyze the accuracy and reliability of gender prediction
- Investigate biases and limitations

Challenges: General Issues

- Data quality
- Variability of Fingerprints
- Technical issues
- Dataset issues
- Algorithmic challenges

Challenge: Good vs. Bad Models

Best Model: CNN

Other Models:

- SVM: Support Vector Machine
- Random Forests
- ResNet 50

Bad Models:

- Linear Models
- Naive Bayes
- Decision Trees
- K-Means
- PCA: Principal Component Analysis

Challenges: SVM – a Potential Model

Classification Report Summary:

- Precision: 63% predictions were correct Recall: 63-64% of all instances were correctly identified F1-Score: 63% overall performance
- Support: 400 samples total (200 for each)
- Accuracy: 63%

Confusion Matrix Summary:

- Dark blue: represent correct predictions Light blue: represent misclassifications

ROC Curve

AUC = 0.64

Takeaways:

- Some patterns may be related but here it is not distinct enough for a high accuracy Better luck with another model

Dataset Description

Dataset Description

Source: Kaggle's Sokoto Coventry Fingerprint

Dataset (SOCOFing)

Content:

- Real fingerprints
- Altered fingerprints
 - Image format: BMP files
 - Gender information: Embedded in filenames
 - Balanced dataset: Equal representation of male and female samples

Fig. 1. Sample illustration of five left hand fingerprints belonging to the same subject.

Data Collection and Processing

Image loading:

- From 'Real' and 'Altered' folders
- Using Keras' load_img function

Image preprocessing:

- Resizing to 128x128 pixels
- Conversion to grayscale
- Normalization of pixel values to [0, 1] range

Feature extraction:

Potential for ridge detection and minutiae extraction (not implemented)

Label encoding:

- Female: 0, Male: 1
- Conversion to categorical format for multi-class classification

Deal with Missing Data and Outliers

Error handling:

- Try-except blocks for file loading errors
- Skipping corrupted or unreadable images

Data limitation:

- Maximum number of images per gender to manage memory usage
- Helps balance the dataset and prevent class imbalance

Quality control

Outlier detection

Partitioning the Training and Testing Set

Split ratio: 80% training, 20% testing

Method: train_test_split from scikit-learn

Stratification:

Ensures balanced class distribution in both training and testing sets

Based on gender labels

Random state:

- Set for reproducibility (random_state=42)
- Validation strategy:
 - Additional 20% validation split from training data during model fitting

Data augmentation:

- Applied only to training data
- Includes rotation, width/height shift, zoom, and horizontal flip

Undersampling

Used to account for overrepresentation in original data

Developing the Model

Describe the Model: Framework

Convolutional Neural Network (CNN)

Model architecture:

- Input layer: 128x128x1 (grayscale images)
- Convolutional layers with ReLU activation
- Max pooling layers
- Flatten layer
- Dense layers with ReLU activation
- Dropout layer for regularization
- Output layer with softmax activation for binary classification

Describe the Model: Computation

 The model is built with the Adam optimizer and the categorical cross entropy loss function.

Dataset Description:

- The project makes advantage of Kaggle's Sokoto Coventry Fingerprint Dataset
- (SOCOFing). This collection contains both real and manipulated fingerprints.

Describe the Model: Formula

- Convolutional layers: Apply learned filters to extract features
 - Formula: conv(x, W) + b
 - x: input, W: filter weights, b: bias
- ReLU activation: Introduce non-linearity
 - Formula: max(0, x)
- Max pooling: Downsample feature maps
 - Formula: max(x) within each pooling window
- Flatten: Convert 2D feature maps to 1D vector
- Dense layers: Fully connected layers for classification
 - Formula: dot(x, W) + b
 - x: input, W: weights, b: bias
- Softmax activation: Convert output to probability distribution
 - Formula: exp(x_i) / sum(exp(x_j)) for each class i

Describe the Model: Loss Function

- Categorical cross entropy loss function
- Measures dissimilarity between predicted and true probability distributions
- Formula: -sum(y_true * log(y_pred))
 - y_true: true label distribution
 - y_pred: predicted probability distribution
- Suitable for multi-class classification problems

Describe the Model: Training Strategy

- Train-test split: 80% training, 20% testing
- Data augmentation using ImageDataGenerator
 - Rotation, width/height shift, zoom, horizontal flip

Callbacks:

- EarlyStopping: Monitor validation loss, stop training if no improvement
- ReduceLROnPlateau: Reduce learning rate if validation loss plateaus

Training parameters:

- Epochs: 50
- Batch size: 32
- Validation split: 0.2

Describe the Model: CNN Backpropagation

Forward Pass

 Input → Convolutional layers (feature extraction) → Pooling layers (dimension reduction) → Fully connected layers (predictions).

Loss Calculation

 Compare output to true labels using a loss function to quantify error.

Backward Pass (Backpropagation)

 Compute gradients using the chain rule and propagate errors backward.

Parameter Update

 Use gradients to update weights and biases with optimization algorithms (e.g., SGD, Adam).

Key Features of CNNs

- Update filter weights in convolutional layers.
- Backpropagate gradients in pooling layers.

Additional Techniques

- Apply regularization (e.g., L2) to prevent overfitting.
- Adjust learning rate dynamically during training.
- Train using mini-batches for efficiency.

Visualizing the Model

Confusion Matrix:

- Heatmap visualization of true vs. predicted labels
- Assess model's performance in each class

ROC Curve:

- Plot of True Positive Rate (TPR) vs. False Positive Rate (FPR)
- Evaluate model's discriminative power
- Area Under the Curve (AUC) as a performance metric

Training and Validation Accuracy/Loss Curves:

- Plot accuracy and loss over epochs
- Monitor model's learning progress and overfitting/underfitting

Alternative CNN Model Framework

- Binary Classification
- Two convolutional layers using 32 and 64 filters
- Max-pooling after each convolutional layer
- Flattened output of layers passed through fully connected layer
- Output layer: Sigmoid Activation
- Class weights
- Early Stopping
- Adam Optimizer and Binary Crossentropy Loss

Alternative CNN Model: Computation

- Adam Optimizer
 - Adjusts model weights using adaptive learning rates.
- Binary Cross Entropy Loss Function
 - Measures the difference between predicted probability and true binary labels.
 - More appropriate for binary data.

Alternative CNN Model: Training Strategy

- Train-test split: 80% training, 20% testing
- Females were undersampled, males were oversampled.

Callbacks:

EarlyStopping: Monitor validation loss, stop training if no improvement

Training parameters:

- Epochs: 50
- Batch size: 32
- Validation split: 0.2

Alternative Model: Transfer Deep Learning

- Transfer model with ResNet50
 - Leveraged deep learning architecture and ability to extract complex features
- Custom top layers added:
 - Global average pooling layer
 - Dropout layer (rate = 0.5)
- Dense output layer with sigmoid activation

Alternative Model: Preprocessing and Augmentation

- Image resizing to match ResNet50 requirements
- Data augmentation:
 - Rescaling
 - Rotation
 - Width and height shifts
 - Shear and zoom transformations
- Goal:
 - Increase data variability to enhance model generalization

Alternative Model: Training

- Parameters:
 - Optimizer: Adam (learning rate = 0.001)
 - Loss function: binary crossentropy
 - Evaluation metrics: accuracy, precision, recall, AUC
- Training strategy:
 - Initial training:
 - Base layers frozen
 - Trained custom top layers (10 epochs)
 - Fine-tuning:
 - Unfroze last 10 layers
 - Reduce learning rate (1e-5)
 - Train for additional 5 epochs

Evaluation Results

Final Results

Model Performance:

- Overall accuracy on test set
- Gender-specific accuracy (Male vs. Female)

Training History:

- Training and validation accuracy over epochs
- Training and validation loss over epochs

Key Findings:

- Effectiveness of CNN for fingerprint-based gender classification
- Potential biases or limitations identified
- Comparison with existing literature or benchmarks (if available)

CNN Model Results

Alternative CNN Model: Results

Model Performance:

• 91% accuracy on test set.

Training History:

- Training accuracy increased from 50.74% to 99.83%
- Test accuracy increased from 59.99% to 91.23%.
- Training loss decreased from 1.16 to 0.0083.
- Test loss decreased from 0.6867 to 0.6094.

Key Findings:

Model performed better than original CNN model.

Alternative CNN Model Results

	precision	recall	f1-score	support
Male	0.98	0.84	0.91	701
Female	0.86	0.99	0.92	701
accuracy			0.91	1402
macro avg	0.92	0.91	0.91	1402
weighted avg	0.92	0.91	0.91	1492

Alternative Model ResNet50: Evaluation Metrics

Alternative Model ResNet50: Imbalanced Classes

	precision	recall	f1-score	support
Male Female	0.00 0.80	0.00 1.00	0.00 0.89	242 942
accuracy macro avg weighted avg	0.40 0.63	0.50 0.80	0.80 0.44 0.71	1184 1184 1184

Run the Model on a Test Set

Test Set Preparation:

- 20% of data reserved for testing (stratified split)
- Preprocessing applied consistently with training data

Model Prediction:

- Use trained model to predict gender on test set
- Generate probability scores for each class

Output Format:

- Binary classification (Male/Female)
- Probability scores for each class

Using Evaluation Metrics to Measure the Correctness of the Classifier

Classification Report:

- Precision: Accuracy of positive predictions
- Recall: Fraction of positives correctly identified
- F1-score: Harmonic mean of precision and recall
- Support: Number of occurrences of each class

Confusion Matrix:

- True Positives, False Positives, True Negatives, False Negatives
- Visualization using heatmap for easy interpretation
- ROC Curve and AUC:
- Plot of True Positive Rate vs. False Positive Rate
- Area Under the Curve (AUC) as a measure of model performance

Summary

Classification Report:

- Precision: Accuracy of positive predictions
- Recall: Fraction of positives correctly identified
- F1-score: Harmonic mean of precision and recall
- Support: Number of occurrences of each class

Confusion Matrix:

- True Positives, False Positives, True Negatives, False Negatives
- Visualization using heatmap for easy interpretation

ROC Curve and AUC:

- Plot of True Positive Rate vs. False Positive Rate
- Area Under the Curve (AUC) as a measure of model performance

Data Handling:

- Preprocessed and normalized fingerprint images
- Implemented data augmentation techniques
- Stratified train-test split for balanced representation

Evaluation Metrics:

- Accuracy, precision, recall, and F1-score
- Confusion matrix and ROC curve analysis

Ethical Considerations:

- Addressed potential biases in the dataset and model
- Discussed privacy concerns and implications of gender classification

Future Directions:

- Explore advanced CNN architectures (e.g., ResNet, VGG)
- Investigate the impact of fingerprint traits on classification accuracy
- Consider expanding to additional demographic factors

Final Thoughts

Key Takeaways

- Gender can be determined from a fingerprint with reasonable accuracy. This has implications in many areas including:
 - Forensic Science and Law Enforcement
 - Biometric Security
 - Medical and Research Application

Further Exploration

- Exploring specific fingers and if there are fingers that are better at indicating gender.
- Opening research to different races.
- Exploring if fingerprints can indicate other characteristics, such as age.

References

References

- Alabama State Department of Education. (n.d.). Fingerprints and forensic science. ACCESS Virtual Learning. Retrieved from https://accessdl.state.al.us/AventaCourses/access_courses/forensic_sci_ua_v22/03_unit/03-05/03-05_learn_text.htm
- Alamy. (n.d.). Vintage fingerprints stock photos. Retrieved from https://www.alamy.com/stock-photo/vintage-fingerprints.html?sortBy=relevant
- Geggel, L. (2016). Why do humans have fingerprints? Live Science. Retrieved from https://www.livescience.com/why-do-humans-have-fingerprints.html
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. [ISBN: 978-0-262-03561-3]
- Gnanasivam, P., & Muttan, S. (2013). Gender classification using fingerprint through frequency domain analysis. European Journal of Scientific Research, 59(2), 191-199. https://doi.org/10.1109/ICICIP.2012.6391490
- Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., ... & Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357-362. Retrieved from https://numpy.org/
- Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Retrieved from https://matplotlib.org/
- Kindt, E. J. (2013). Privacy and data protection issues of biometric applications. Springer. https://doi.org/10.1007/978-94-007-7522-0
- Keras. (n.d.). Keras. Retrieved from https://keras.io/
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097-1105. https://doi.org/10.1145/3065386
- Maltoni, D., Maio, D., Jain, A. K., & Prabhakar, S. (2009). Handbook of fingerprint recognition. Springer Science & Business Media. [ISBN: 978-1-84882-254-2]
- Marasco, E., & Lugini, L. (2014). Exploiting quality and texture features to estimate age and gender from fingerprints. SPIE Defense+ Security, 9075, 90750F. https://doi.org/10.1117/12.2054201
- McKinney, W. (2010). Data structures for statistical computing in Python. Retrieved from https://pandas.pydata.org/
- Mordini, E., & Tzovaras, D. (2012). Second generation biometrics: The ethical, legal and social context. Springer Science & Business Media. [ISBN: 978-94-007-3892-1]
- Mysterious 3000-year-old fingerprints found at ancient site. (2019). Retrieved from https://nypost.com/2019/06/04/mysterious-3000-year-old-fingerprints-found-at-ancient-site/
- OpenCV. (2021). Fingerprint recognition OpenCV Python tutorial. Retrieved from https://www.phddirection.com/fingerprint-recognition-opency-python/
- PackIOT. (n.d.). Data hub: Unified Namespace (UNS). Retrieved from https://packiot.com/data-hub-uns-unified-namespace/
- Prabhakar, S., Pankanti, S., & Jain, A. K. (2003). Biometric recognition: Security and privacy concerns. IEEE Security & Privacy, 1(2), 33-42. https://doi.org/10.1109/MSECP.2003.1193209
- Ruiz Gara, A. (n.d.). Sokoto Coventry Fingerprint Dataset (SOCOFing). Kaggle. Retrieved from https://www.kaggle.com/ruizgara/socofing
- Scikit-learn Developers. (n.d.). Scikit-learn: Machine Learning in Python. Retrieved from https://scikit-learn.org/stable/
- Shehu, Y.I., Ruiz-Garcia, A., Palade, V., James, A. (2018) "Detection of Fingerprint Alterations Using Deep Convolutional Neural Networks" in Proceedings of the International Conference on Artificial Neural Networks (ICANN 2018), Rhodes Greece, 5th 7th October 2018. Springer-Verlag Lecture Notes in Computer Science.
- Sokoto Coventry Fingerprint Dataset (SOCOFing). (2018). Semantic Scholar. Retrieved November 25, 2024, from
 - https://www.semanticscholar.org/paper/Sokoto-Coventry-Fingerprint-Dataset-Shehu-Ruiz-Garcia/88f13170c952860878b2be2767578f7fee0d2261.
- TensorFlow. (2021). Convolutional neural network (CNN). Retrieved from https://www.tensorflow.org/tutorials/images/cnn
- Towards Data Science. (2019). A comprehensive guide to convolutional neural networks. Retrieved from https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
- Waskom, M. L. (2021). Seaborn: Statistical Data Visualization. Retrieved from https://seaborn.pvdata.org/
- Shehu, Y.I., Ruiz-Garcia, A., Palade, V., James, A. (2018) "Detection of Fingerprint Alterations Using Deep Convolutional Neural Networks" in Proceedings of the International Conference on Artificial Neural Networks (ICANN 2018), Rhodes Greece, 5th 7th October 2018. Springer-Verlag Lecture Notes in Computer Science.
- "Backward Pass in Convolutional Neural Network (CNN) Explained." PyCodeMates, 13 July 2023, www.pycodemates.com/2023/07/backward-pass-in-convolutional-neural-network-explained.html. Accessed 1 Dec. 2024.

Appendix

Finger Print Model

FingerPrint.py — Refer the GitHub link - AIT736 Fingerprint Analysis MachineLearning/fingerprint classify.ipyn b at main · Pravinraja/AIT736 Fingerprint Analysis MachineLearning

conv2d_14 (Conv2D)	(None, 25, 25, 128)	147,584
batch_normalization_5 (BatchNormalization)	(None, 25, 25, 128)	512
max_pooling2d_8 (MaxPooling2D)	(None, 12, 12, 128)	0
dropout_5 (Dropout)	(None, 12, 12, 128)	0
flatten_3 (Flatten)	(None, 18432)	0
dense_6 (Dense)	(None, 512)	9,437,696
batch_normalization_6 (BatchNormalization)	(None, 512)	2,048
dropout_6 (Dropout)	(None, 512)	0
dense_7 (Dense) (None, 256)		131,328
batch_normalization_7 (BatchNormalization)		
dropout_7 (Dropout)	(None, 256)	0
dense_8 (Dense) (None, 2)		514

Total params: 9,860,834 (37.62 MB)

Trainable params: 9,858,402 (37.61 MB)

Non-trainable params: 2,432 (9.50 KB)

\\2\C:\Users\raja\AppData\Roaming\jupyterlab-desktop\jlab_server\Lib\site-packages\keras\src\trainers\data_adapters\py_dataset_adapter.py:121: U **kwargs' can include 'workers', 'use multiprocessing', 'max_queue_size'. Do not pass these arguments to 'fit()', as they will be ignored. self. warn if super not called() Epoch 1/50 50/50 -95s 2s/step - accuracy: 0.5874 - loss: 1.2644 - val accuracy: 0.5000 - val loss: 0.7602 - learning rate: 0.0010 Epoch 2/50 50/50 -- 127s 3s/step - accuracy: 0.6534 - loss: 0.8480 - val_accuracy: 0.5000 - val_loss: 2.3165 - learning_rate: 0.0010 Epoch 3/50 - 79s 2s/step - accuracy: 0.6215 - loss: 0.8000 - val_accuracy: 0.5000 - val_loss: 1.1506 - learning_rate: 0.0010 50/50 -Epoch 4/50 50/50 -- 74s 1s/step - accuracy: 0.6494 - loss: 0.7957 - val_accuracy: 0.5000 - val_loss: 1.5451 - learning_rate: 0.0010 Epoch 5/50 50/50 -- 77s 2s/step - accuracy: 0.6227 - loss: 0.7749 - val accuracy: 0.4900 - val loss: 0.8197 - learning rate: 0.0010 Epoch 6/50 - 71s 1s/step - accuracy: 0.6663 - loss: 0.6950 - val_accuracy: 0.5000 - val_loss: 0.9620 - learning_rate: 0.0010 50/50 -Epoch 7/50 70s 1s/step - accuracy: 0.6582 - loss: 0.6899 - val_accuracy: 0.4550 - val_loss: 0.9066 - learning rate: 1.0000e-04 50/50 -


```
- 70s 1s/step - accuracy: 0.6582 - loss: 0.6899 - val_accuracy: 0.4550 - val_loss: 0.9066 - learning_rate: 1.0000e-04
59/59 —
Epoch 9/50
                          - 75s 2s/step - accuracy: 0.6721 - loss: 0.6428 - val_accuracy: 0.4650 - val_loss: 0.9676 - learning_rate: 1.0000e-04
50/50
Epoch 10/50
                           72s 1s/step - accuracy: 0.0985 - loss: 0.6340 - val_accuracy: 0.4925 - val_loss: 1.0975 - learning_rate: 1.0000e-04
                           74s 1s/step - accuracy: 0.6811 - loss: 0.6330 - val_accuracy: 0.5850 - val_loss: 1.2704 - learning_rate: 1.0000e-04
Epoch 11/50
                         = 77s 2s/step - accuracy: 8.6737 - loss: 8.6427 - val accuracy: 8.5858 - val loss: 1.1778 - learning rate: 1.8888-94
             precision recall f1-score support
                                    0.50
   macro ave
```

With the "inpulgibilit Making they be the destroy to the second to the s


```
Epoch 1/50
239/239
                            62s 247ms/step - accuracy: 0.5074 - loss: 1.1624 - val accuracy: 0.5999 - val loss: 0.6867
Epoch 2/50
                            56s 233ms/step - accuracy: 0.5549 - loss: 0.7050 - val accuracy: 0.5792 - val loss: 0.7330
239/239
Epoch 3/50
                            56s 233ms/step - accuracy: 0.6011 - loss: 0.6373 - val accuracy: 0.6505 - val loss: 0.6389
239/239
Epoch 4/50
                            56s 235ms/step - accuracy: 0.6960 - loss: 0.5251 - val accuracy: 0.8181 - val loss: 0.4306
239/239
Epoch 5/50
                            56s 234ms/step - accuracy: 0.8399 - loss: 0.3384 - val accuracy: 0.8017 - val loss: 0.4949
239/239
Epoch 6/50
                            55s 231ms/step - accuracy: 0.9153 - loss: 0.1976 - val_accuracy: 0.8388 - val_loss: 0.4300
239/239
Epoch 7/50
                            56s 233ms/step - accuracy: 0.9429 - loss: 0.1277 - val accuracy: 0.8859 - val loss: 0.3569
239/239
Epoch 8/50
                            56s 232ms/step - accuracy: 0.9787 - loss: 0.0574 - val_accuracy: 0.9030 - val loss: 0.3548
239/239
Epoch 9/50
                            55s 231ms/step - accuracy: 0.9862 - loss: 0.0375 - val accuracy: 0.9330 - val loss: 0.4012
239/239
Epoch 10/50
                            82s 230ms/step - accuracy: 0.9942 - loss: 0.0173 - val_accuracy: 0.9394 - val_loss: 0.4316
239/239
Epoch 11/50
                            54s 227ms/step - accuracy: 0.9983 - loss: 0.0165 - val accuracy: 0.9394 - val loss: 0.5043
239/239
Epoch 12/50
                            57s 238ms/step - accuracy: 0.9994 - loss: 0.0046 - val accuracy: 0.9365 - val loss: 0.4611
239/239
Epoch 13/50
239/239
                            55s 231ms/step - accuracy: 0.9983 - loss: 0.0083 - val accuracy: 0.9123 - val loss: 0.6094
```

44/44 - 3s - 57ms/step - accuracy: 0.9123 - loss: 0.6094 Test accuracy: 91.23%

False Positive Rate

IYIASON

ResNet50: Accuracy, Loss, Precision, Recall

ResNet50: Imbalanced Classes

Backpropagation Code Link

- Refer the GitHub link -

<u>AIT736_Fingerprint_Analysis_MachineLearning/fingerprint_backpropagation.ipynb at main ·</u>

Pravinraja/AIT736 Fingerprint Analysis MachineLearning

Backpropagation Results & Output

Model Architecture: Model: "sequential_5"

Layer (type)	Output Shape	Perem #
conv2d_21 (Conv2D)	(None, 126, 126, 32)	326
batch_normalization_16 (BatchNormalization)	(None, 126, 126, 32)	128
conv2d_22 (Conv2D)	(None, 124, 124, 32)	9,248
batch_normalization_17 (BatchNormalization)	(None, 124, 124, 32)	128
max_pooling2d_12 (MaxPooling2D)	(None, 62, 62, 32)	е
dropout_13 (Dropout)	(None, 62, 62, 32)	е
conv2d_23 (Conv2D)	(None, 60, 60, 64)	18,496
batch_normalization_18 (BatchNormalization)	(None, 60, 60, 64)	256
conv2d_24 (Conv2D)	(None, 58, 58, 64)	36,929
batch_normalization_19 (BatchNormalization)	(None, 58, 58, 64)	256
max_pooling2d_13 (MaxPooling2D)	(None, 29, 29, 64)	6
dropout_14 (Dropout)	(None, 29, 29, 64)	6
conv2d_25 (Conv2D)	(None, 27, 27, 128)	73,856
batch_normalization_20 (BatchNormalization)	(None, 27, 27, 128)	512
conv2d_26 (Conv2D)	(None, 25, 25, 128)	147,584
batch_normalization_21 (BatchNormalization)	(None, 25, 25, 128)	512
max_pooling2d_14 (MaxPooling2D)	(None, 12, 12, 128)	6
dropout_15 (Dropout)	(None, 12, 12, 128)	6
flatten_5 (Flatten)	(None, 18432)	6
dense_12 (Dense)	(None, 512)	9,437,696
batch_normalization_22 (BatchNormalization)	(None, 512)	2,048
dropout_16 (Dropout)	(None, 512)	
dense_13 (Dense)	(None, 256)	131,328
batch_normalization_23 (BatchNormalization)	(None, 256)	1,024
dropout_17 (Dropout)	(None, 256)	
dense_14 (Dense)	(None, 2)	514

Total params: 9,860,834 (37.62 MB)
Trainable params: 9,858,482 (37.61 MB)
Non-trainable params: 2,432 (9.50 KB)

self.	. warm if super not	called() - 996 22/step - accuracy: 0.5635 - loss: 2.9640 - val accuracy: 0.5000 - val loss: 3.2761 - learning rate: 0.0010
Epoch 2 58/58 -	2/50	
Epoch :	3/50	1146 2s/step - accuracy; 0.5940 - loss: 2.8738 - val_accuracy: 0.5000 - val_loss: 3.1802 - learning_rate: 0.0018
Epoch 4		82s 2s/step - accuracy: 0.6365 - loss: 2.7011 - val_accuracy: 0.4050 - val_loss: 3.0020 - learning_rate: 0.0010
se/se - Epoch 1	5/58	69s is/step - accuracy: 0.6111 - loss: 2.7285 - val_accuracy: 0.5880 - val_loss: 4.2332 - learning_rate: 0.0010
58/58 - Epoch 6	6/58	69s is/step - accuracy: 8.5674 - loss: 2.5664 - val_accuracy: 8.5888 - val_loss: 3.3888 - learning_rate: 8.8018
58/58 - Epoch		75s 2s/step - accuracy: 0.65e0 - less: 2.4482 - val_accuracy: 0.5000 - val_less: 2.5000 - learning_rate: 0.0010
58/58 - Epoch I	11.2%	Bis 2s/step - accuracy: 0.6548 - loss: 2.3217 - val_accuracy: 0.5000 - val_loss: 2.4240 - learning rate: 0.0010
58/58 - Epoch 1	2000	72s 1s/step - accuracy: 0.6834 - loss: 2.1741 - val_accuracy: 0.4850 - val_loss: 2.2755 - learning_rate: 0.0010
58/58 - Epoch 1		74s is/step - accuracy: 8.7000 - loss: 2.0636 - val_accuracy: 8.5025 - val_loss: 2.2073 - learning_rate: 8.0010
58/58 - tpoch :		74s 1s/step - accuracy: 0.6621 - loss: 2.0021 - val_accuracy: 0.4775 - val_loss: 2.2467 - learning_rate: 0.0010
58/58 -		-68% 14s/step - accuracy: 0.6864 - loss: 1.8879 - val accuracy: 0.4980 - val loss: 2.2926 - learning rate: 0.8818
tpoch 1 58/58 -		64s is/step - accuracy: 0.7302 - loss: 1.7577 - val accuracy: 0.4550 - val loss: 2.0775 - learning rate: 0.0010
Epoch 1 58/58 -		98s 2s/step - accuracy: 0.7328 - loss: 1.6830 - val accuracy: 0.5675 - val loss: 1.8628 - learning rate: 0.0010
Epoch 1	14/58	875 25/stee - accuracy: 8,7182 - less: 1,6855 - val accuracy: 8,5925 - val less: 1,7446 - learning rate: 8,8818
Epoch 1 58/58	15/58	113s 2s/step - accuracy: 0.7011 - loss: 1.5622 - val accuracy: 0.6500 - val loss: 1.5797 - learning rate: 0.0010
Epoch : 59/50 -	16/58	88s 2s/step - accuracy; 0.6937 - loss; 1.982 - val accuracy; 0.7250 - val loss; 1.4274 - loarning rate; 0.0010
Epoch 1 59/59 -	17/58	786 15/step - accuracy: 0.7280 - loss: 1.5012 - val_accuracy: 0.7290 - val_boss: 1.4254 - loarning_rate: 0.0010
Epoch 1	18/50	
Epoch 1	19/58	875 2s/step - accuracy: 0.7401 - loss: 1.3904 - val_accuracy: 0.7200 - val_loss: 1.3700 - learning_rate: 0.0010
59/59 - Epoch 2	28/58	876 2s/step - accuracy: 0.7413 - loss: 1.3428 - val_accuracy: 0.6850 - val_loss: 1.4188 - learning_rate: 0.8010
se/se - Epoch 2	21/58	89s 2s/step - accuracy: 0.7478 - loss: 1,2932 - val_accuracy: 0.7175 - val_loss: 1,3094 - learning_rate: 0.0010
50/50 - Epoch 2	22/58	86s 2s/stap - accuracy: 0.7850 - loss: 1.305% - val_accuracy: 0.6850 - val_loss: 1.3595 - learning_rate: 0.8010
50/50 -	23/58	88s 2s/step - accuracy: 0.7666 - loss: 1.2127 - val_accuracy: 0.6675 - val_loss: 1.3860 - learning_rate: 0.8010
50/50 - Epoch	14/69	MPs 2s/step - accuracy: 0.7465 - loss: 1.2243 - val_accuracy: 0.7890 - val_loss: 1.2881 - learning_rate: 0.0010
50/50 - Epoch	0.0000	83s 2s/step - accuracy: 0.7408 - loss: 1.1683 - val_accuracy: 0.6475 - val_loss: 1.205 - learning_rate: 0.0010
50/50 - Epoch 2		#8s 2s/step - accuracy: 0.7895 - loss: 1.1572 - val_accuracy: 0.7050 - val_loss: 1.2406 - learning_rate: 0.0010
50/50 -		82s 2s/step - accuracy: 0.7279 - loss: 1.1481 - val_accuracy: 0.6875 - val_loss: 1.1847 - learning_rate: 0.6010
Epoch 2 58/58 -		12% 3s/step - accuracy: 0.7600 - loss: 1.0007 - val accuracy: 0.6460 - val loss: 1.3365 - learning_rate: 0.0018
Epoch 2 58/58 -		99s 2s/stap - accuracy: 0.7660 - loss: 1.0604 - val_accuracy: 0.6425 - val_loss: 1.3340 - learning_rate: 0.0010
Epoch 2 58/58 -		885 25/Step - accuracy: 8.7685 - loss: 1.8585 - wal accuracy: 8.6225 - wal loss: 1.3885 - learning rate: 8.8818
Epoch : 58/58 -	39/58	86s 2s/step - accuracy: 8.7468 - loss: 1.8754 - val accuracy: 8.6958 - val loss: 1.1172 - learning rate: 8.8818
Epoch 3	31/50	98s 2s/step - accuracy: 8.7586 - loss: 1.6289 - val accuracy: 8.6525 - val loss: 1.4480 - learning rate: 8.8018
Epoch 1 58/58 -	32/58	98s 2s/step - accuracy: 8.7855 - loss: 1.8742 - val accuracy: 8.7125 - val loss: 1.1994 - learning rate: 8.8818
Epoch 1	33/50	1885 25/5tee - accuracy: 8,7412 - loss: 1,8188 - val accuracy: 8,5898 - val loss: 1,6478 - learning rate: 0,8918
Epoch 58/58 -	34/50	628 18/step - accuracy: 0.742 - 205: 1.008 - val_accuracy: 0.5850 - val_105: 1.008 - 2200000000000000000000000000000000
freich 1	35/58	
58/58 - tpoch	36/58	68s is/step - accuracy: 0.7662 - loss: 0.9931 - val_accuracy: 0.7850 - val_loss: 1.1895 - learning_rate: 0.0010
58/58 - Epoch		676 1s/step - accuracy: 0.7575 - loss: 0.9893 - val_accuracy: 0.6750 - val_loss: 1.2539 - learning_rate: 0.8010
58/58 - Epoch	18/50	71s 1s/step - accuracy: 8.7486 - loss: 8.9858 - val_accuracy: 8.7588 - val_loss: 8.997 - learning_rate: 8.8818
59/59 - Epoch :	10/50	63s 1s/step - accuracy: 0.7453 - loss: 0.9856 - val_accuracy: 0.6375 - val_loss: 1.8154 - learning_rate: 0.0010
50/50 -		63s 1s/step - accuracy: 0.7326 - loss: 0.9701 - val_accuracy: 0.6400 - val_loss: 1.1093 - learning_rate: 0.0010
se/se -		62s is/step - accuracy: 0.7485 - loss: 0.9342 - val_accuracy: 0.7325 - val_loss: 0.9187 - learning_rate: 0.0010
50/50 -		61s 1s/step - accuracy: 0.7485 - loss: 0.9479 - val_accuracy: 0.7180 - val_loss: 1.0514 - learning_rate: 0.0010
50/50 - Epoch -		63s is/step - accuracy: 0.786i - loss: 0.9222 - val_accuracy: 0.7450 - val_loss: 0.948i - learning_rate: 0.0010
\$0.750 v		618 1s/step - accuracy: 0.7628 - loss: 0.9986 - val_accuracy: 0.6850 - val_loss: 1.1751 - learning_rate: 0.0050
Epoch 4 50/50 -	2010 0	687s 14s/step - accuracy: 0.7557 - loss: 0.9270 - val_accuracy: 0.7300 - val_loss: 1.0770 - learning_rate; 0.0010
Epoch 4 50/50 -		42s 848ss/step - accuracy: 0.7581 - loss: 0.0462 - val accuracy: 0.7400 - val loss: 0.0756 - learning rate: 0.0050
Epoch -	100-1111	41s 829ms/step - accuracy: 0.7834 - loss: 0.8896 - val accuracy: 0.7475 - val loss: 0.0248 - learning rate: 1.0000s-04
Epoch 4 50/50 -	47/58	41s R2ims/step - accuracy: 0.8088 - loss: 0.8438 - val accuracy: 0.7475 - val loss: 0.993 - learning rate: 1.0000-04
Epoch -	48/59	42s 886s/5top - accuracy: 0.7854 - loss: 0.8511 - val accuracy: 0.7550 - val loss: 0.5080 - learning rate: 1.0000e-04
Epoch 4	49/50	426 846ms/step - accuracy: 0.8042 - loss: 0.8016 - val_accuracy: 0.7475 - val_loss: 0.9027 - learning rate: 1.0000e-04
Epoch 5	58/58	426 838ms/step - accuracy: 0.8018 - loss: 0.8134 - val_accuracy: 0.7500 - val_loss: 0.8681 - learning rate: 1.0000e-04
MG120 a		Two names - washing - washing - 1000; 0.8100 - val accuracy; 0.7500 - val 1000; 0.8601 - 1007408g rate; 1.88000-00

