Teaching an old dog new tricks? Learning rates, aging, and language change

Ellis Cain

May 2, 2023

Background literature ●○○○○

Section 1

Collective patterns of language usage change over time

Results

- Google Books corpus (5.2 mill books) from 1800-2000¹
- Ran a "culturenomics" study through an n-gram corpus analysis
- Quantified trends in lexical usage, grammatical patterns, and social usage

¹(Michel et al. 2011)

Collective patterns of language usage change over time

Mechanisms of language acquisition

- Statistical learning²
- Propose but verify (hypothesis testing)³
- Structural inference⁴

Background literature

00000

⁴Something?

²Chen

³Trueswell

Learning rates

0000

- MacMurray study: parallel learning, constant learning rate
- Blachstein study? Changes over the lifetime?
- Bryersbart study?

Section 2

Formal model

Overview

- Language change as interaction between individual and collective level dynamics
- Aim to explore how individual learning rates, aging, and group membership impact overall population-level patterns of language change

Overview

- Language change as interaction between individual and collective level dynamics
- Aim to explore how individual learning rates, aging, and group membership impact overall population-level patterns of language change
- Model of the usage and spread of a grammatical variant throughout a population
 - Past tense ending can be "-t" or "-ed", such as in "burnt" or "burned"

Model assumptions⁵

- 1 Language learning is based on imitating others, though this may change over the lifespan
 - E.g., individuals may learn quickly early on, but slow down as they age

Model assumptions⁵

- 1 Language learning is based on imitating others, though this may change over the lifespan
 - E.g., individuals may learn quickly early on, but slow down as they age
- 2 There are variations in preference between individuals
 - E.g., some individuals learn more quickly than others

⁵Beeksma citation

- Language learning is based on imitating others, though this may change over the lifespan
 - E.g., individuals may learn quickly early on, but slow down as they age
- 2 There are variations in preference between individuals
 - E.g., some individuals learn more quickly than others
- Stanguage can be influenced by external factors
 - E.g., more willing to learn from in-group members

⁵Beeksma citation

Outcome patterns⁶

- S-shaped curve in usage patterns: Change happens slowly, then proceeds rapidly before slowing down again.
- **Intra-speaker variation**: Change is gradual and there is a period of intra-speaker variation.
- Categorical norms: With competition, speakers move toward categorically using just one of the competing variants.
- Multi-stability: Language change can have multiple stable outcomes. May result in dialect subgroups
- **Threshold problem**: Initially rare variants may manage to spread through entire speech communities.

⁶Troutman citation

Discussion

Initialization: network

- Generates preferential attachment network
- Distributes grammar according to specified percentage of grammar 1
 - Two grammar variants, 0 or 1 (burnt or burned)

Initialization: nodes

Represent language users

- State: node's current grammar preference, initialized as 0 or 1
- Age
 - Probablistic or deterministic
- Cohort: "Age group", either 1 or 2
- Gamma: learning rate of a given node
 - Probablistic, deterministic, or based on age

Initialization: cohorts

- Number of cohorts (max 2) based on specified percentage
- Cohort ages can be specified
- Option for cohort-based grammar, such that the cohorts start with different percentages of grammar 1
- Willingness to listen to out-group members

Dynamics

- Communication
 - Speaking (not synchronous)
 - Neighboring agents listen
- Aging

Dynamics: Speaking

- Nodes will generate an 'utterance', which is either 0 or 1 (burnt or burned)
- Nodes 'prefer' a discrete grammar
- Logistic curve is used when nodes produce an utterance

Dynamics: Listening

- Neighboring nodes will pick a grammar that will be used to interpret heard utterance
- If it matches the heard utterance
 - Update listener's state towards the heard state
 - Otherwise, it will update listener's state away from the heard state
 - Learning rate: Gamma parameter modifies the step size
- Chance to ignore out-group

Dynamics: Aging

- Nodes age with each tick
- Gamma changes with age: either constant or decreasing with age

Dynamics: Aging

- Nodes age with each tick
- Gamma changes with age: either constant or decreasing with age
- Perseverance: how slowly gamma decays
 - Basic power law: $y = -0.05(x^a) + 0.005$

Background literature

Section 3

Results

Impact of learning rate

Impact of learning rate

Variation of learning rate amongst individual

Faceted by Gamma SD; 50 runs per configuration, 1000 steps total per run

Checkpoint

• Increased gamma decrease time to equilibrium, but not (systematically) affect the final outcome

Decrease in learning rate with age

Decrease in learning rate with age

Variation of speed of decrease (perseverance)

Variation of speed of decrease (perseverance)

Checkpoint

- Gamma impacts time to equilibrium (TTE)
- No difference in TTE when perseverance is > 0.5

Two age cohorts

Two age cohorts

Two age cohorts: group equilibria

Two age cohorts: group equilibria

Checkpoint

- Gamma impacts time to equilibrium (TTE)
- No difference in TTE when perseverance is > 0.5
- As the difference between age groups increases, the impact of population composition on when the overall equilibrium is reached increases (takes longer)
- Little difference between group equilibrium; older cohort slows down the equilibrium

Cohort-based grammar: Only Cohort 2 has grammar 1

Gamma decreases at constant rate; Cohort 1 does not have grammar 1; 50% Cohort 2; 50 runs per configuration, 1000 steps total per run

Cohort-based grammar: Only Cohort 1 has grammar 1

Gamma decreases at constant rate; Cohort 2 does not have grammar 1; 50% Cohort 2; 50 runs per configuration, 1000 steps total per run

Checkpoint

- Increased gamma speeds up when equilibrium is reached, but not the final outcome; modulated by perseverance
- Older cohort delays equilibrium
- When cohort 1 does not use grammar 1, as cohort 2's starting percentage of having grammar 1 varies, they will drive the population towards using grammar 1
- However, when cohort 2 does not use grammar 1, cohort 1 starts with increasingly higher percentages of using grammar 1, they themselves may end up with using grammar 1 more, but it does not drive the overall group usage.

Cohort preference

Background literatureFormal modelResultsDiscussion○○○○○○○○○○○○○○○○○○○○○

Cohort preference

Checkpoint

- Increased gamma speeds up when equilibrium is reached, but not the final outcome; modulated by perseverance
- Older cohort delays equilibrium
- "Innovator" and "Reservoir" groups
- Group preference will delay the equilibrium, and slightly impact equilibrium value

Section 4

Discussion

Conclusions

Thank you.

References

Michel, Jean-Baptiste, Yuan Kui Shen, Aviva Presser Aiden, Adrian Veres, Matthew K. Gray, The Google Books Team, Joseph P. Pickett, et al. 2011. "Quantitative Analysis of Culture Using Millions of Digitized Books." *Science* 331 (6014): 176–82. https://doi.org/10.1126/science.1199644.