Advanced Lab 1

Transistors and Bitwise Operators
Andrew Wilder

Topics

- Transistors
 - Fundamentals
 - From Truth Tables to Circuits
- Bitwise Operators
 - How They Work
 - Mask Generation
 - Optimizing with Bitwise Operators

There are two types of transistors:

The base allows a signal through based on its value:

P-type:

Allow a signal through when base == 1

Allow a signal through when base == 0

My memorization mnemonic:

Looks like a 1

Allow a signal through when base == 1

P-type:

Looks like a 0

Allow a signal through when base == 0

My memorization mnemonic:

Forget any science you've learned about electrons traveling from power to ground; for the purpose of practicing with transistor logic, think of each as simply "sending" a logical signal to the output:

The easiest way to figure out how to wire a NAND or NOR gate is to construct a truth table. For example, here is the truth table for NAND:

Α	В	Out
0	0	1
0	1	1
1	0	1
1	1	0

Find the unique output for the truth table, and wire that first in series. The reason for this is that a series circuit requires that all the conditions be true:

Α	В	Out	
0	0	1	
0	1	1	
1	0	1	Only when all the conditions, that is, A == 1 and B == 1, will the output be zero, so use
1	1	0	a series of transistors

Next, wire all the other outputs in parallel. We use parallel because parallel transistors simply allow any of the conditions to be true:

Combine the two parts together for the completed NAND:

Let's design a circuit for A NOR B NOR C!

Α	В	С	Out
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Caveat: AND, OR - is this correct?

Caveat: AND, OR - is this correct?

Caveat: AND, OR

[AND, OR] should be implemented with [NAND, NOR] + NOT

Bitwise operators are fast, simple operations that can be performed on sets of bits.

- & bitwise AND
- l bitwise OR
- bitwise NOT
- << >> shift operator
- ^ bitwise XOR (can be made with AND, OR, NOT)

~ (Flip bits)

The ~ operator can be used to flip the bits in a number.

~ 0100 -----1011

(Set bits)

The | operator can be used with a mask to set bits.

& (Reset bits)

The & operator can be used with a mask to reset bits.

```
1011
& 1101
-----
1001
```

^ (Toggle bits)

The ^ operator can be used with a mask to toggle bits.

```
1010

^ 0110

----

1100
```

<< or >> (Shift bits)

The shift operators << or >> can move bits left or right.

Zeros are shifted in from the right

MSB is shifted in from the left

Need a single 1 at location *n* to set or toggle a bit? Shift a 1 over to the location:

```
00000001 << 3
-----
```

Need a single 0 at location *n* to reset a bit? Shift a 1 over to the location, and flip the bits:

```
00000001 << 3
-----
00001000 ~
-----
```

Case study: get_a_byte

Problem: We want to get a single byte from a 32-bit integer value, given an index 0 - 3 for which byte.

01001101	00111010	01010000	10110101
В3	B2	B1	В0

Case study: get_a_byte

Answer: Shift the byte over to the least significant 8 bits (which = 2):

But there's still some garbage above the desired byte...

Case study: get_a_byte

Mask using & to remove undesired bits:

Case study: get_a_byte

What this looks like in code:

...and mask the result.

Powers of 2 are very useful!

- Operating system uses them for page size and buddy allocators (more on that later).
- Cryptography uses them to bound key and cipher block sizes.
- You can use them to efficiently perform multiplication, division and modulus!

Multiplication:

When you multiply by a power of 2, you essentially shift the bits left:

Multiplication:

When you multiply by a power of 2, you essentially shift the bits left:

It's the same as left shifting by log₂(n)!

Division:

When you divide by a power of 2, you essentially shift the bits right:

Division:

When you divide by a power of 2, you essentially shift the bits right:

It's the same as right shifting by log₂(n)!

Modulus:

When you mod by a power of 2, you zero out all the bits above the first log₂(n) bits:

```
00110110 % 16 (54)

10110 % 16 (54)

10110 % 16 (54)

10110 % 16 (54)

10110 % 16 (54)

10110 % 16 (54)

10110 % 16 (54)

10110 % 16 (54)

10110 % 16 (54)
```

Modulus:

When you mod by a power of 2, you zero out all the bits above the first $log_2(n)$ bits:

$$00110110 & 15 (54)$$
 $100000110 = 6$

It's the same as bitwise AND with (n-1)!

Case study: get_a_byte

Let's return to our old code:

```
return (n \gg (which * 8)) \& 0xFF;
```

How can we improve this line?

Case study: get_a_byte

Let's return to our old code:

```
return (n \gg (which * 8)) \& 0xFF;
```

How can we improve this line? Use the shift operator!

```
return (n \rightarrow (which << 3)) & 0xFF;
```

```
Case study: power_of_2
```

Look at these powers of 2:

00100000 = 32

00001000 = 8

01000000 = 64

Notice a pattern?

```
Case study: power of 2
   Look at these powers of 2:
      00100000 = 32
      00001000 = 8
      01000000 = 64
   Notice a pattern?
      Only one bit set.
```

Case study: power_of_2

How can we determine if only one bit is set?

```
int set = 0;
for(int i = 0; i < 31; ++i)
  if(n & (1 << i) != 0)
    ++set;
return n > 0 && set == 1;
```

Can we do better than a loop?

Case study: power_of_2

Something else special about powers of 2:

For any power of 2 "n", the only bit activated in n is farther left than all the activated bits of values less than n. This property only applies to powers of 2!

These bits didn't change!

n : 0010000

n-1: 0001111

m : 00011010

m-1: 00011001

Case study: power of 2

n : 0010000

n-1: 0001111

Since these values do not share any activated bits, a bitwise AND operation will produce 0 for powers of 2!

$$16 \& 15 = 0$$

16 & 15 = 0 26 & 25 = 24

16 is a power of 2

26 is not a power of 2

Case study: power_of_2

What this looks like in code:

This is sometimes an interview question! Know how to do it!

Power of 2 property