GTU Department of Computer Engineering

CSE 222/505 - Spring 2020 #Question 1

Mert Can BEŞİRLİ 1801042663

For each graph above, what are the IVI=n, the IEI=m, and the density? Which representation is better for each graph? Explain your answers.

First Graph --> |V| = 7, |E| = 32, density = (32/49) = 0.65

The density more than 0.25. Based on storage efficiency we can conclude that an adjacency matrix representation would be more efficient.

Second Graph ->
$$|V|$$
 = 7, $|E|$ = 12, density = (12/49) = 0.25

The density is 0.25, either representation may be appropriate representation. When not rounded, density less than 0.25, suggesting an adjacency list representation may be more appropriate.

#Represent the graphs above using adjacency lists. Draw the corresponding data structure.

#Represent the graphs above using an adjacency matrix. Draw the corresponding data structure.

	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[0]		1.0		1.0	1.0	1.0	
[1]	1.0		1.0	1.0	1.0		1.0
[2]		1.0		1.0		1.0	1.0
[3]	1.0	1.0	1.0		1.0	1.0	1.0
[4]	1.0	1.0		1.0		1.0	
[5]	1.0		1.0	1.0	1.0		1.0
[6]		1.0	1.0	1.0		1.0	

	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[0]		1.0			1.0		
[1]	1.0		1.0	1.0			
[2]		1.0					1.0
[3]		1.0				1.0	
[4]	1.0						
[5]				1.0			
[6]			1.0				

#Draw BFS tree starting from vertex 2 and traversing the vertices adjacent to a vertex in descending order (largest to smallest).

Identity the start node

Queue: 6,5,3,1

Visit sequence:

Queue:

5,3,1

Visit sequence:

2,6

Queue:

5,3,1

Visit sequence: 2,6

Queue: 3,1

Visit sequence: 2,6,5

Queue:

3,1,4

Visit sequence:

2,6,5

Queue:

3,1,4

Visit sequence:

2,6,5

Queue: 1,4,0

Visit sequence:

2,6,5,3

Queue: 4,0

Visit sequence:

2,6,5,3,1

Queue:

0

Visit sequence:

2,6,5,3,1,4

The queue is empty; all vertices have been visited

Queue: empty

Visit sequence:

2,6,5,3,1,4,0

Visit sequence:

2

Queue: 6,1

Visit sequence:

2

Queue: 6,1

Visit sequence:

2

Queue:

1

Visit sequence:

2,6

Queue:

3,0

Visit sequence:

2,6,1

Queue: 3,0

Visit sequence: 2,6,1

unvisited

visited

identified

Queue:

0

Visit sequence:

2,6,1,3

unvisited

visited

identified

Queue:

0,5

Visit sequence:

2,6,1,3

unvisited

visited

identified

Queue:

0,5

Visit sequence:

2,6,1,3

unvisited

visited

identified

Queue: 5

Visit sequence: 2,6,1,3,0

unvisited visited identified

Queue: 5,4

Visit sequence: 2,6,1,3,0

unvisited visited identified

Queue:

5,4

Visit sequence: 2,6,1,3,0

Queue:

4

Visit sequence: 2,6,1,3,0,5

Queue:

4

Visit sequence: 2,6,1,3,0,5

unvisited
visited
identified

Queue: empty

Visit sequence: 2,6,1,3,0,5,4

The queue is empty; all vertices have been visited

#Draw DFS tree starting from vertex 2 and traversing the vertices adjacent to a vertex in descending order (largest to smallest).

Discovery(visit) order:

2

Finish order:

Discovery(visit) order:

2, 6

Discovery(visit) order:

2, 6, 5

Finish order:

Discovery(visit) order:

2, 6, 5, 4

Discovery(visit) order: 2, 6, 5, 4, 0

Finish order:

Discovery(visit) order: 2, 6, 5, 4, 0, 3

Discovery(visit) order: 2, 6, 5, 4, 0, 3, 1

Finish order:

Finish order:

1

1, 3,

Finish order:

1, 3, 0

Finish order:

1, 3, 0, 4

Finish order: 1, 3, 0, 4, 5

Finish order: 1, 3, 0, 4, 5, 6

Finish order:

1, 3, 0, 4, 5, 6, 2

unvisited

visited

being visited

Discovery(visit) order: 2

Finish order:

Discovery(visit) order: 2

Finish order: 6

Discovery(visit) order:

2, 1

6

unvisited

being visited

Discovery(visit) order:

2, 1,0

Finish order:

6

unvisited

visited

being visited

Discovery(visit) order:

2, 1,0,4

Finish order: 6,4

Finish order:

Discovery(visit) order: 2, 1, 3

Finish order: 6,4,0

Discovery(visit) order:

2, 1, 3, 5

6,4,0

Discovery(visit) order: 2, 1, 3, 5

Finish order:

6,4,0,5

Finish order: 6,4,0,5,3

Finish order: 6,4,0,5,3,1

Finish order: 6,4,0,5,3,1,2