化标准型

例1.将下述线性规划问题化为标准型

$$\min z = 3x_1 - x_2 + 2x_3$$

$$S.L \begin{cases} 2x_1 + x_2 - 4x_3 \le 1 \\ x_1 + 2x_2 + 2x_3 \ge 2 \\ x_1 + x_2 = -2 \\ x_2 \ge 0, \ x_3 \le 0 \end{cases}$$

① 特minα=a 支成maxβ=-a

$$\max \beta = -3x_1 + x_2 - 2x_3$$

$$s.t. \begin{cases} 2x_1 + x_2 - 4x_3 \le 1 \\ x_1 + 2x_2 + 2x_3 \ge 2 \\ x_1 + x_2 = -2 \\ x_2 \ge 0, x_3 \le 0 \end{cases}$$

② 特大括号中多变量的式子都变成等式 (给不等式加上或减去基个≥0的×n,就能变成等式)

$$\max \beta = -3x_1 + x_2 - 2x_3$$

$$x_1 + x_2 - 4x_3 + x_4 = 1, x_4 \ge 0$$

$$x_1 + 2x_2 + 2x_3 - x_5 = 2, x_5 \ge 0$$

$$x_1 + x_2 = -2$$

$$x_2 \ge 0, x_3 \le 0$$

⑧ 使所有式于最右边的最都≥0

$$\max \beta = -3x_1 + x_2 - 2x_3$$

$$S.\ell. \begin{cases}
2x_1 + x_2 - 4x_3 + x_4 = 1, & x_4 \ge 0 \\
x_1 + 2x_2 + 2x_3 - x_5 = 2, & x_5 \ge 0 \\
-x_1 - x_2 = 2 \\
x_2 \ge 0, & x_3 \le 0
\end{cases}$$

④ 养大新号中草交量的式子都交成告≥0的形式 若菜交量×m≤0,则最一个≥0的新变量×m′ 使×m′=-×m, 这种可以将×m≤0变成×m′≥0

$$\max \beta = -3x_1 + x_2 - 2x_3$$

$$S.L \begin{cases} 2x_1 + x_2 + 4x_3' + x_4 = 1, & x_4 \ge 0 \\ x_1 + 2x_2 - 2x_3' - x_5 = 2, & x_5 \ge 0 \\ -x_1 - x_2 = 2 \\ x_2 \ge 0, & x_3' \ge 0 \longrightarrow x_3' = -x_3, & x_3' \ge 0 \end{cases}$$

⑥若某交量x_p炎类到\是自由交量\是无约束交量

这说明 x_p 可正可负可0,则设两个 \geq 0新变量 x_p' 、 x_p''

$$\mathbf{/\!\!\!/} \mathbf{x_p'} - \mathbf{x_p''} = \mathbf{x_p}$$

(因为何≥0的最相减,结果就是可正可负可0)

(比如, 5-3結果为正, 3-5結果为负, 3-3結果为0)

$$x_1$$
没提到
$$x_1' - x_1'' = x_1, x_1' \ge 0, x_1'' \ge 0$$

$$\max \beta = -3x_1 + x_2 - 2x_3$$

$$\text{s.t.} \left\{ \begin{array}{l} 2x_1' - 2x_1'' + \, x_2 + 4x_3' + x_4 = 1, \ \, x_4 \geq 0, \ \, x_1' \geq 0, \ \, x_1'' \geq 0 \\ x_1' - x_1'' + 2x_2 - 2x_3' - x_5 = 2, \ \, x_5 \geq 0, \ \, x_1' \geq 0, \ \, x_1'' \geq 0 \\ -x_1' + x_1'' - x_2 = 2, \ \, x_1' \geq 0, \ \, x_1'' \geq 0 \\ x_2 \geq 0, \ \, x_3' \geq 0 \end{array} \right.$$

@ 把大桩号里所有单变量的式子,写到最下面一行

$$\max \beta = -3x_1 + x_2 - 2x_3$$

$$s.t. \left\{ \begin{array}{l} 2x_1{'} - 2x_1{''} + x_2 + 4x_3{'} + x_4 = 1 \\ x_1{'} - x_1{''} + 2x_2 - 2x_3{'} - x_5 = 2 \\ -x_1{'} + x_1{''} - x_2 = 2 \\ x_1{'}, x_1{''}, x_2{'}, x_3{'}, x_4, x_5 \ge 0 \end{array} \right.$$

单纯形法

用单纯形法解以下线性规划问题:

$$\max z = 2x_1 + 3x_2$$

$$s.t.\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

① 特題目给出的執住規划问题化为标准型

$$\Rightarrow \max \mathbf{z} = 2 \, \mathbf{x}_1 + 3 \mathbf{x}_2$$

$$x_1 + 2 \mathbf{x}_2 + \mathbf{x}_3 = 8, \ \, \mathbf{x}_3 \geq 0$$

$$4 \mathbf{x}_1 + \mathbf{x}_4 = 16, \ \, \mathbf{x}_4 \geq 0$$

$$4 \mathbf{x}_2 + \mathbf{x}_5 = 12, \ \, \mathbf{x}_5 \geq 0$$

$$\mathbf{x}_1, \mathbf{x}_2 \geq 0$$

⇒
$$\max z = 2x_1 + 3x_2$$
 化标准型者 《第二课 化标准型》

$$\begin{cases}
x_1 + 2x_2 + x_3 = 8 \\
4x_1 + x_4 = 16 \\
4x_2 + x_5 = 12 \\
x_1, x_2, x_3, x_4, x_5 \ge 0
\end{cases}$$

$$\Rightarrow \max z = 2 \cdot x_1 + 3 \cdot x_2 + 0 \cdot x_3 + 0 \cdot x_4 + 0 \cdot x_5$$

$$S. t. \begin{cases}
1 \cdot x_1 + 2 \cdot x_2 + 1 \cdot x_3 + 0 \cdot x_4 + 0 \cdot x_5 = 8 \\
4 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + 1 \cdot x_4 + 0 \cdot x_5 = 16 \\
0 \cdot x_1 + 4 \cdot x_2 + 0 \cdot x_3 + 0 \cdot x_4 + 1 \cdot x_5 = 12 \\
x_1, x_2, x_3, x_4, x_5 \ge 0
\end{cases}$$

目标函数和大括号中的每个多变量的式子中 都要包含所有变量

②根据标准型英写初始单纯形表

$$\begin{array}{l} \text{ (j)} \quad \max z = 2 \cdot x_1 + 3 \cdot x_2 + 0 \cdot x_3 + 0 \cdot x_4 + 0 \cdot x_5 \\ \\ \text{ $s.t.$} \begin{cases} 1 \cdot x_1 + 2 \cdot x_2 + 1 \cdot x_3 + 0 \cdot x_4 + 0 \cdot x_5 = 8 \\ 4 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + 1 \cdot x_4 + 0 \cdot x_5 = 16 \\ 0 \cdot x_1 + 4 \cdot x_2 + 0 \cdot x_3 + 0 \cdot x_4 + 1 \cdot x_5 = 12 \\ x_1, x_2, x_3, x_4, x_5 \geq 0 \end{cases}$$

2	(cj		3	0	0	0	ь	
	CB	XB	x ₁	x ₂	Х3.	X ₄	X ₅	0	θ_{i}
	0	X3	1	2	1	0	0	8	5.
	0	X4	4	0	0	1	0	16	
	0	X ₅	0	4	0	0	1	12	
		n -							-

0	ì		×	8		b	θ;
c _B	X_B	x ₁	X2		$\mathbf{x_n}$	D	O _i
	Ģ				ç		
S. P.				200			
ø	j						

- 1. 列 数等于变量的个数
- 2. 行数等于大括号中多变量的式子的个数
- 3. cq行的数字根据目标函数中各变量的系数找
- 每个变量所在列的数字根据大括号中多变量式子 中该变量的系数找
- 找出变量下方已填写数字构成的矩阵中的单位矩阵, 依次将该单位矩阵对应的变量写在X_B的下面
- 6. 将5中找到的变量上方的数字依次写在cB的下面
- 7. 将大括号中多变量式子右侧数字依次填到b下面

图 找出可行解

2	cj		2	3	0	0	0	b	
	CB	XB	x ₁	X2	х3	X ₄	X ₅		θi
	0	Х3	1	2	1	0	0	8	
	0	X ₄	4	0	0	1	0	16	-O-
	0	X ₅	0	4	0	0	1	12	
	0	ħ		y (A)			18	1	

③ 可行解 $x_1 = 0$, $x_2 = 0$, $x_3 = 8$, $x_4 = 16$, $x_5 = 12$ $\longleftrightarrow X^{(0)} = (0.0.8, 16, 12)$

令X_B所在列的变量与b所在列的数字对应相等。再 令其他变量等于0

④ 求出楼職業 $\sigma_j = c_j - (c_{B1} \cdot x_{j1} + c_{B2} \cdot x_{j2} + \cdots)$

c	j	2	3	0	0	0	.3	0
c _B	XB	X ₁	X ₂	X3	X ₄	X ₅	b	θ_i
0	x ₃	1	2	1	0	0	8	
0	X ₄	4	0	0	1	0	16	
0	X ₅	0	4	0	0	1	12	300
0	X ₅	0	4	0	0	1	12	

X₅ \mathbf{x}_2 x_3 x_4 2 0 1 1 0 8 0 0 1 0 16 Xs 0 4 0 0 1 12 3 0 0 0

③ 可行解 $x_1 = 0$, $x_2 = 0$, $x_3 = 8$, $x_4 = 16$, $x_5 = 12$ $\Rightarrow X^{(0)} = (0.0 \, \beta, 16, 12)$

$$\begin{array}{l} \textcircled{4} \ \ \sigma_1 = c_1 - (c_{B1} \cdot x_{11} + c_{B2} \cdot x_{12} + c_{B3} \cdot x_{13}) = 2 - (0 \cdot 1 + 0 \cdot 4 + 0 \cdot 0) = 2 \\ \sigma_2 = c_2 - (c_{B1} \cdot x_{21} + c_{B2} \cdot x_{22} + c_{B3} \cdot x_{23}) = 3 - (0 \cdot 2 + 0 \cdot 0 + 0 \cdot 4) = 3 \\ \sigma_3 = c_3 - (c_{B1} \cdot x_{31} + c_{B2} \cdot x_{32} + c_{B3} \cdot x_{33}) = 0 - (0 \cdot 1 + 0 \cdot 0 + 0 \cdot 0) = 0 \\ \sigma_4 = c_4 - (c_{B1} \cdot x_{41} + c_{B2} \cdot x_{42} + c_{B3} \cdot x_{43}) = 0 - (0 \cdot 0 + 0 \cdot 1 + 0 \cdot 0) = 0 \\ \sigma_5 = c_5 - (c_{B1} \cdot x_{51} + c_{B2} \cdot x_{52} + c_{B3} \cdot x_{53}) = 0 - (0 \cdot 0 + 0 \cdot 0 + 0 \cdot 1) = 0 \end{array}$$

⑤ 观察一下 a_j 这一行的数字看一下是否每≤0 若这些数字每≤0,则被可行解就是最优解 若这些数字有>0的,则该可行解不是最优解差 续进行⑥

4	cj		2	2 3 0		0	0	,	
	c _B	XB	X ₁	x ₂	х3	X4	Х5	b	θ_{i}
	0	X3	1	2	1	0	0	8	50
	0	X ₄	4	0 ,	0	1	0	16	
	0	X ₅	0	4	0	0	1	12	
	0	ij	2	3	0	0	0		

6	0	j '	2	3	0	0	0	,	
	c _B	XB	X ₁	x2	x ₃	x4	X ₅	b	θ_i
	0	х3	1	2	1	0	0	8	
9	0	X ₄	4	0	0	1	0	16	
	0	X ₅	0	4	0	0	1	12	200
	•	'j	2	3	0	0	0		

® 找到σ_i 行景大的豪字那一列对应的变量×_a(设基变量) 本出 $\theta_i = b_i + x_{a_i}$

-	-			_	_	_	_	_	_	1
3)	(j	2	3	0	0	0	ь	0.8	l
	c _B	XB	x ₁	x ₂	x ₃	Х4	X ₅	D	θ_i	l
	0	x3	1	2	1	0	0	8	4	l
	0	X ₄	4	0	0	1	0	16	×	l
Ž.	0	X ₅	0	4	0	0	1	12	3	l
		§ .	2	3	0	0	0		ŏ	1

ⓐ $x_a = x_2$

 $\theta_1 = b_1 + x_{21} = 8 + 2 = 4$

 $\theta_2 = b_2 + x_{22} = 16 \div 0$ 无意义

 $\theta_3 = b_3 + x_{23} = 12 + 4 = 3$

【若θ≥0,则把θ的值填到表中

若θ<0,则不用把θ的值填到表中

若θ无意义,则不用把θ填到表中】

【注意: 若求出来的θ都<0, 则该线性规划问题的

解为无界解】

⑦ 找到来中 θ_i 最小值对应 X_B 列的变量 x_b (出基变量) 我到xa的列和xb的行交叉的数字 m

		j	2	3	0	0	0	ь	۵
	c _B	XB	x ₁	x ₂	х3	X ₄	X ₅	1 0	θ
	0	Х3	1	2	1	0	0	8	4
	0	X ₄	4	0	0	1	0	16	×
	0	X ₅	0	4	0	0	1	12	3
4		ī _i	2	3	0	0	0		

7		Gj .	2	3	0	0	0		ο ×	
	c _B	XB	X1	x ₂	x ₃	X ₄	X ₅	b	θ_i	l
	0	X3	1	2	1	0	0	8	4	1
•	0	X4	4	0	0	1	0	16	×	1
	0	X ₅	0	4	0	0	1	12	3	1
W	V	4	2	3	0	0	0		ŏ	1

 $\textcircled{6} x_a = x_2$

 $\theta_1 = b_1 + x_{21} = 8 + 2 = 4$

 $\theta_2 = b_2 + x_{22} = 16 \div 0$ 无意义

 $\theta_3 = b_3 + x_{23} = 12 + 4 = 3$

 $(7) x_b = x_5$

®用x。上面的数字替代x。前面的数字。用x。替代x。,清 空内有与电别

(7)	c	cj		3	0	0	0	ь	θί
	c _B	XB	x ₁	x ₂	Х3	X ₄	X ₅	В	O _i
	0	X3	1	2	1	0	0	8	4
	0	X ₄	4	0	0	1	0	16	×
	0	X ₅	0	4	0	0	1	12	3
	0	ĥ.	2	3	0	0	0		

(6) $x_a = x_2$

7	cj		2	3	0	0	0		
	c _B	X _B	x ₁	x ₂	x ₃	x4	X ₅	b	θ_{i}
	0	x3	1	2	1	0	0	8	୍ର 4
	0	x ₄	4	0	0	1	0	16	×
	0	X ₅	0	4	0	0	1	12	3
	0	5 -	2	3	0	0	0		

(8)	G				
	c _B	XB			
	0	x ₃			

8	(ì	2	3	0	0	0	ь	0
	c _B	XB	X ₁	х2	x ₃	X ₄	X ₅	0	θ_{i}
	0	x3	1	2	1	0	0	8	
Š.	0	x4	4	0	0	1	0	16	
	3	X ₂	0	4	0	0	1	12	
	9	j			,			,	

② 对 x₁、 x₂····x_n 与 b 列組成的矩阵进行运算, 将 m 支 成1, 同列其他元素变成0, 形成一个新的矩阵, 将 该矩阵中的最早填入表格中对应的位置形成新的单纯 形表并进行步骤③

B)	() ,(2	3	0	0	0	ь	
	c _B	XB	X ₁	x ₂	X3	X ₄	X ₅	, o	θ_{i}
	0	x3	1	2	1	0	0	8	
	0	X ₄	4	0	0	1	0	16	
	3	X ₂	0	4	0	0	1	12	
	0				.6	۲			00

0	ر (j	2	3	0	0	0	ь	Δ.
	CB	XB	X ₁	X2	х3	x ₄	X ₅	"	θί
20	0	х3	1	0	1	0	-1/2	2	- 6
	0	X ₄	4	0	0	1	0	16	QX.
	3	x ₂	0	1	0	0	14	3	
	0	'n		.00			00		

图找出可行解

9	(6	2	3	0	0	0	L.	6
	C _B	XB	X ₁	x ₂	X3	X ₄	X ₅	b	θί
	0	x3	1	0	1	0	-1/2	2	
	0	X ₄	4	0	0	1	0	16	
	3	X2	0	1	0	0	14	3	,
	0	100			.0	1		- 45	9

③ 可行解 $x_1 = 0$, $x_2 = 3$, $x_3 = 2$, $x_4 = 16$, $x_5 = 0$ $X^{(4)} = (0.3.2, 16.0)$

④ 求出检验数 $\sigma_j = c_j - (c_{B1} \cdot x_{j1} + c_{B2} \cdot x_{j2} + \cdots)$

_			_	-	0			KA.	
9	(<u>) </u>	2	3	0	0	0	130	Sa.
	$c_{\rm B}$	XB	X ₁	x ₂	x3	x4	X ₅	, b	,oi
	0	X3	1	0	1_0	0	-1/2	2	o ^C
	0	X ₄	4	0	0	1	0	16	
	3	X ₂	0	1	0	0	1/4	3	
	0	ĥ		-					

③ 可行解 $x_1 = 0$, $x_2 = 3$, $x_3 = 2$, $x_4 = 16$, $x_5 = 0$

 $X^{(1)} = (0,3,2,16,0)$

 $\textcircled{4} \ \sigma_1 = c_1 - (c_{B1} \cdot x_{11} + c_{B2} \cdot x_{12} + c_{B3} \cdot x_{13}) = 2 - (0 \cdot 1 + 0 \cdot 4 + 3 \cdot 0) = 2$

 $\sigma_2 = c_2 - (c_{B1} \cdot x_{21} + c_{B2} \cdot x_{22} + c_{B3} \cdot x_{23}) = 3 - (0 \cdot 0 + 0 \cdot 0 + 3 \cdot 1) = 0$

 $\sigma_3 = c_3 - (c_{B1} \cdot x_{31} + c_{B2} \cdot x_{32} + c_{B3} \cdot x_{33}) = 0 - (0 \cdot 1 + 0 \cdot 0 + 3 \cdot 0) = 0$

 $\sigma_4 = c_4 - (c_{B1} \cdot x_{41} + c_{B2} \cdot x_{42} + c_{B3} \cdot x_{43}) = 0 - (0 \cdot 0 + 0 \cdot 1 + 3 \cdot 0) = 0$

 $\sigma_5 = c_5 - (c_{B1} \cdot x_{51} + c_{B2} \cdot x_{52} + c_{B3} \cdot x_{53}) = 0 - [0 \cdot (-\frac{1}{2}) + 0 \cdot 0 + 3 \cdot \frac{1}{4}] = -\frac{3}{4}$

⑤ 观察一下 σ_j 这一行的最字看一下是否每≤0 若这些数字每≤0。则被可行解就是最优解 若这些数字有>0的。则被可行解不是最优解继 使进行⑥

4	(i d	2	3	0	0	0	b	θ;
	c _B	XB	x1	x ₂	x ₃	X ₄	X ₅	U	o'i
	0	X3	1	0	1	0	-1/2	2	
	0	X ₄	4	0	0	1	0	16	
	3	x ₂	0	1	0	0	14	3	
		.0	2	0	0,0	0	-34		9

(B)		j	2	3	0	0	0	ń.	<u>_</u>
	c_B	XB	X ₁	X ₂	x ₃	X ₄	X ₅	ь	θί
ø.	0	x3	1	0	1	0	-1/2	2	
•	0	X4	4	0	0	1	0	16	
	3	x ₂	0	1	0	0	14	3	
		īj .	2	0	0	0	-34	O.	

⑥ 找到 σ_i 行景大的豪字那一列对应的变量x_a(进基变量) 求出 θ_i = b_i + x_a;

(5)		1	2	3	0	0	0	4	_
	CB	XB	x ₁	X ₂	x ₃	х4	X ₅	b	θί
	0	x3	1	0	1	0	-1/2	2	
	0	Х4	- 4	0	0	1	0	16	000
	3	X2	0	1	0	0	1/4	3	
		ħ	2	0	0	0	-34	7	

®
$$x_a = x_1$$

 $\theta_1 = b_1 + x_{11} = 2 + 1 = 2$
 $\theta_2 = b_2 + x_{12} = 16 + 4 = 4$
 $\theta_3 = b_3 + x_{13} = 3 + 0 = 无意义$

⑦ 找到来中 θ_i 最小值对应 X_B 列的变量 x_b (出基变量) 找到 x_a 的列和 x_b 的行交叉的最字m

- (6) $x_a = x_1$
- $\bigcirc x_b = x_3$

⊛		100	2	3	0	0	0	b	Α.
	c _B	XB	x ₁	x ₂	x ₃	X ₄	X ₅	٥	θ_{i}
	0	x ₃	1	0	1	0	-1/2	2	2
	0	х4	4	0	0	1	0	16	4
	3	X ₂	0	1	0,0	0	14	3	×
		1	2	0	0	0	-¾	8	

⑧ 用x_a上面的数字替代x_b前面的数字,用x_a替代x_b,清 空σ_i行与θ_i列

	9	2	3	0	0	0		_
c _B	XB	X ₁	x ₂	x3	X ₄	X ₅	b	θί
0	X3 [1	0	1	0	-1/2	2	2
0	X ₄	4	0	0	1	0	16	4
3	X ₂	0	1	0	0	34	3	×
0	ī _i	2	0	0	0	-34		

cj		2	3	0	0	0		
c _B	XB	x ₁	X ₂	x ₃	X ₄	X ₅	b	θί
2	X ₁	1	0	. 1	0	-1/2	2	
0	X ₄	4	0	0	1	0	16	
3	X2	0	1	0	0	34	3	
-	η	0			100			

②对 x₁、 x₂…x_n与 b 列組成的矩阵进行运算,将 m 支 成1, 同列其他元素变成0,形成一个新的矩阵,将 该矩阵中的数字填入表格中对应的位置形成新的单纯 形表并进行步骤③

8	(i d	2	3	0	0	0	b	
	c _B	XB	x ₁	х2	x ₃	x ₄	X ₅	D	θί
	2	X ₁	1	0	1	0	-1/2	2	
	0	X ₄	4	0	0	1	0	16	
	3	x ₂ (0	1	0	.0	14	3	_0
	0	1			-410			Sept.	~

)		j	2	3	0	0	0	i,	_
j	CB	XB	X ₁	X2	x ₃	X ₄	X ₅	ь	θi
T	2	X ₁	1	0	1	0	-1/2	2	
	0	x4	<u>0</u>	0	-4	1	2	8	
	3	X ₂	0	1	_0	0	14	3	
	0	5.	U.	Olyn.			Sty.		

图找出可行解

9	(j 6	2	3	0	0	0	b	0
	СВ	XB	х1	X ₂	X3	X4	X ₅	D	Oi.
	2	x ₁	1	0	1	0	-1/2	2	
	0	X ₄	0	0	-4	1	2	8	5
	3	x2	0	1	0	0.	34.	3	,
	-	100			10	7	W.		9

③ 可行解 $x_1 = 2$, $x_2 = 3$, $x_3 = 0$, $x_4 = 8$, $x_5 = 0$ $\Rightarrow X^{(2)} = (2,3,0,8,0)$

④ 求出检验素 $\sigma_j = c_j - (c_{B1} \cdot x_{j1} + c_{B2} \cdot x_{j2} + \cdots)$

9	(j	2	3	0	0	0]
	c _B	XB	х,	X ₂	х3	X ₄	X ₅	b	θί	
	2	X ₁	1	0	1	0	-1/2	2]
	0	X ₄	0	0	-4	1	2	8	9]
	3	X ₂	0	1 ,	0	0	14	3]
	0	n i		8			200			1

4	(Gj .	2	3	0	0	0		
	c _B	XB	х,	x ₂	х3	X ₄	X ₅	ь	θi
	2	X ₁	1	0	_1	0	-1/2	2	
	0	X ₄	0	0	-4	1	2,0	8	
	3	x ₂	0	1	0	0	1/4	3	
	-	īj .	0	0	-2	0	1/4		

 $3X^{(2)} = (2,3,0,8,0)$

$$\textcircled{4} \ \sigma_1 = c_1 - (c_{B1} \cdot x_{11} + c_{B2} \cdot x_{12} + c_{B3} \cdot x_{13}) = 2 - (2 \cdot 1 + 0 \cdot 0 + 3 \cdot 0) = 0$$

$$\sigma_2 = c_2 - (c_{B1} \cdot x_{21} + c_{B2} \cdot x_{22} + c_{B3} \cdot x_{23}) = 3 - (2 \cdot 0 + 0 \cdot 0 + 3 \cdot 1) = 0$$

$$\sigma_3 = c_3 - (c_{B1} \cdot x_{31} + c_{B2} \cdot x_{32} + c_{B3} \cdot x_{33}) = 0 - [2 \cdot 1 + 0 \cdot (-4) + 3 \cdot 0] = -2$$

$$\sigma_4 = c_4 - (c_{B1} \cdot x_{41} + c_{B2} \cdot x_{42} + c_{B3} \cdot x_{43}) = 0 - (2 \cdot 0 + 0 \cdot 1 + 3 \cdot 0) = 0$$

$$\sigma_5 = c_5 - (c_{B1} \cdot x_{51} + c_{B2} \cdot x_{52} + c_{B3} \cdot x_{53}) = 0 - [2 \cdot (-\frac{1}{2}) + 0 \cdot 2 + 3 \cdot \frac{1}{4}] = \frac{1}{4}$$

⑤ 观察一下の; 这一行的数字看一下是否都≤0 若这些数字每≤0, 则该可行解就是最优解 若这些数字有>0的,则该可行解不是最优解缝 续进行⑥

	c _j	2	3	0	0	0	ь	
c _B	XB	X ₁	x ₂	X3	X ₄	X ₅	D	0 _i
2	X ₁	1	0	1	0	-1/2	2	
0	X4	0	0	-4	1	2	8	
3	X ₂	0	1	0	0	14	3	
	σ	0	0	-2	0	34		o ^L

(5)	(<u>ا</u>	2	3	0	0	0	h	0
	c _B	XB	X ₁	x ₂	x ₃	x ₄	X ₅	b	θί
	2	X ₁	1	0	1	0	-1/2	2	
	0	X4	0	0	-4	1	2	8	
	3	x2	0	1	0	. 0	14	3	_
	0	100	0	0	-2	0	14	- 13	9

①
$$x_a = x_5$$

$$\theta_1 = b_1 + x_{51} = 2 + (-1/2) = -4$$

$$\theta_2 = b_2 \div x_{52} = 8 \div 2 = 4$$

$$\theta_3 = b_3 + x_{53} = 3 + \frac{1}{4} = 12$$

⑦ 找到表中 θ_i 最小值对应 X_B 列的变量 x_b (出基变量) 找到 x_a 的列和 x_b 的行交叉的数字m

⊛		9	2	3	0	0	0	b	Δ.
	СВ	XB	х1	X ₂	Х3	X4	Xs	U	θί
	2	x ₁	1	0	1	0	-1/2	2	×
	0	X4 [0	0	-4	_1	2	8	4
	3	X2	0	1	0	0	14	3	12
	0	'n	0	0	-2	0	14	200	
	_		_	_		_	_		_

(3) 用 x_a 上面的最早替代 x_b 前面的数字,用 x_a 替代 x_b ,输 空 σ_i 行与 θ_i 列

7	(ે. તે	2	3	0	0	0	,	0.
	c _B	XB	X ₁	x ₂	X3	x ₄	X ₅	Ь	Ui
	2	X ₁	1	0	1	0	-1/2	2	×
	0	x ₄	0	0	-4	1	2	8	4
	3	x2	0	1	0	. 0	14	3	12
	0	100	0	0	-2	0	34	9	9

								_	
8	0	ì	2	3	0	0	0	ွ	۵.
- 4	CB	XB	x ₁	X ₂	x ₃	X ₄	X ₅	ь	θi
-07°	2	x ₁	1	0	1	0	-1/2	2	
⇒	0	X ₅	0	0	-4	1	2	8	_
	3	X ₂	0	1	. 0	0	14	_3	
	200			~				5	

⁽⁶⁾ $x_a = x_5$

 $⁽⁷⁾ x_b = x_4$

② 对 x₁、 x₂····x_n 与 b 列组成的矩阵进行运算, 将 m 变成 1。 同列其他元素变成 0。形成一个新的矩阵, 将 该矩阵中的最早填入表格中对应的位置形成新的单纯 形表并进行步骤③

8	(ì	2	3	0	0	0	ь	θί
	СВ	XB	Х1	X2	Х3	X4	X5	L.	ိ်
	2	x ₁	1	0	1	0	-1/2	2	
	0	X ₅	0	0	-4	1	2	8	
	3	X ₂	0	1	0	0	14	3	
	o	5 4				0			,C

9	(ì	2	3	0	0	0	b.	θ_{i}
	CB	XB	Х1	X ₂	X3	X4	X ₅	្វ័	U _i
	2	x ₁	1	0	0	34	0	4	
⇒	0	X ₅	0	0	-2	1/2	1	4	
	3	X ₂	0	1	1/2	-1/8	0	2	
	0	j			.0			40	

③找出可行解

9	(ì	2	3	0	0	0	b	
	СВ	XB	x ₁	x ₂	X3	X4	X ₅	D	θ_i
	2	X1	1	0	0	34	0	4	
	0	X ₅	0	0	-2	₩.	1	4	
	3	X ₂	0	1	₩	-½ _a	0	2	
	0	i c				0			.0.

③ 可行解 $x_1 = 4$, $x_2 = 2$, $x_3 = 0$, $x_4 = 0$, $x_5 = 4$ $\Rightarrow X^{(3)} = (4,2,0,0,4)$

④ 求出检验数 $\sigma_j = c_j - (c_{B1} \cdot x_{j1} + c_{B2} \cdot x_{j2} + \cdots)$

9	٠,	ì	2	3	0	0	0	G.	ζ, ΄
	c _B	XB	X ₁	$\mathbf{x_2}$	x ₃	x4 /	X ₅	V.	.ui
	2	X ₁	1	0	0	34	0	4	Or I
	0	X ₅	0	0	-2	1/2	1	4	
	3	X ₂	0	1	₩.	-¥a	0	2	
	σj								

③ 可行解 $x_1 = 4$, $x_2 = 2$, $x_3 = 0$, $x_4 = 0$, $x_5 = 4$ $\Rightarrow X^{(3)} = (4,2,0,0,4)$

$$\begin{aligned} & \underbrace{\sigma_1 = c_1 - (c_{B1} \cdot x_{11} + c_{B2} \cdot x_{12} + c_{B3} \cdot x_{13})}_{\sigma_2 = c_2 - (c_{B1} \cdot x_{21} + c_{B2} \cdot x_{22} + c_{B3} \cdot x_{23})} = 3 - (2 \cdot 0 + 0 \cdot 0 + 3 \cdot 1) = 0 \\ & \underbrace{\sigma_3 = c_3 - (c_{B1} \cdot x_{21} + c_{B2} \cdot x_{22} + c_{B3} \cdot x_{23})}_{\sigma_3 = c_3 - (c_{B1} \cdot x_{31} + c_{B2} \cdot x_{32} + c_{B3} \cdot x_{33})} = 0 - [2 \cdot 0 + 0 \cdot (-2) + 3 \cdot \frac{1}{2}] = -\frac{3}{2} \\ & \underbrace{\sigma_4 = c_4 - (c_{B1} \cdot x_{41} + c_{B2} \cdot x_{42} + c_{B3} \cdot x_{43})}_{\sigma_3 = c_3 - (c_{B1} \cdot x_{51} + c_{B2} \cdot x_{52} + c_{B3} \cdot x_{53})} = 0 - [2 \cdot \frac{1}{4} + 0 \cdot \frac{1}{2} + 3 \cdot (-\frac{1}{8})] = -\frac{1}{8} \\ & \underbrace{\sigma_5 = c_5 - (c_{B1} \cdot x_{51} + c_{B2} \cdot x_{52} + c_{B3} \cdot x_{53})}_{\sigma_3 = \sigma_3 = \sigma_$$

⑤ 观察一下の, 这一行的数字看一下是否每50 若这些数字每50, 则该可行解就是最优解 若这些数字有>0的, 则该可行解不是最优解缝 接近行⑥

4	c	j	2	3	0	0	0		6
	c _B	XB	x ₁	x ₂	х3	X ₄	X ₅	b	θί
	2	X ₁	1	0	0	34	0	4	
	0	X ₅	0	0	-2	₩	1	4	
	3	x ₂	0	1	₩	-y _a	0	2	
	0	i o	0	0	- 3 / ₂	-y _a	0		of a

③ 可行解 $x_1 = 4$, $x_2 = 2$, $x_3 = 0$, $x_4 = 0$, $x_5 = 4$ $\Rightarrow \mathcal{X}^{(3)} = (4,2,0,0,4)$

$$\textcircled{5} X^* = (4,2,0,0,4)$$

对偶问题

例1.写出以下线性规划问题的对偶问题

$$\max z = 3x_1 - x_2 + 2x_3$$

$$s.t. \begin{cases} 2x_1 + x_2 - 4x_3 \leq 1 \\ x_1 + 2x_2 + 2x_3 \geq 2 \\ x_1 + x_2 = -2 \\ x_2 \geq 0, \ x_3 \leq 0 \end{cases}$$

① 确定对侧问题中变量的个最四

① m = 3

对偶问题中的变量为y1, y2, y3. 原大括号中约束条件的个数m等于对偶问题中的变量个数

②确定对偏问规的目标函数

① m = 3

对偶问题中的变量为y1, y2, y3

② min $\alpha = y_1 + 2y_2 - 2y_3 \leftarrow$

若原目标函数是求 max, 则对偶问题的目标函数为 $\min \alpha = b_1 \cdot y_1 + b_2 \cdot y_2 + \dots + b_m \cdot y_m$

若原目标函数是求 min,则对偶问题的目标函数为

 $\max \alpha = b_1 \cdot y_1 + b_2 \cdot y_2 + \dots + b_m \cdot y_m$

b₁、b₂ ··· b_m 依次对应原大括号中约束条件右端的常数

③ 确定对保问题中约束条件的个数1

① m = 3

对偶问题中的变量为y1, y2, y3

- ② min $\alpha = y_1 + 2y_2 2y_3$
- ③ n = 3 ←

n = 原线性规划问题中变量的个数

确定对偏阿羅中的京条件左边部分

① m = 3

对偶问题中的变量为y1, y2, y3

② min $\alpha = y_1 + 2y_2 - 2y_3$

3 n = 3

- $2 \cdot y_1 + 1 \cdot y_2 + 1 \cdot y_3$
- (1)+ (2) + $1 \cdot y_1 + 2 \cdot y_2 + 1 \cdot y_3$
- $-4 \cdot y_1 + 2 \cdot y_2 + 0 \cdot y_3$

在每一个式子的左边写上?·y1+?·y2+…+?·ym

第1个式子中的?从左到右依次对应原来大括号里约束条件中 从上到下x₁的系数

第2个式子中的?从左到右依次对应原来大括号里约束条件中 从上到下x2的系数

- 第n个式子中的?从左到右依次对应原来大括号里约束条件中 从上到下xn的系数
- $2y_1 + y_2 + y_3$
- (1)

 $(3) \leftarrow$

- $y_1 + 2y_2 + y_3$
- (2)
- $-4y_1 + 2y_2$
- (3)

⑤ 确定对偏阿旋中约束条件右边的常数

① m = 3

对偶问题中的变量为y1, y2, y3

② $\min \alpha = y_1 + 2y_2 - 2y_3$

3 n = 3

$$2y_1 + y_2 + y_3$$
 3 (1) \leftarrow
 $y_1 + 2y_2 + y_3$ -1 (2) \leftarrow
 $-4y_1 + 2y_2$ 2 (3) \leftarrow

第1行式子右边的常数是原问题目标函数中x₁的系数 第2行式子右边的常数是原问题目标函数中x2的系数

第n行式子右边的常数是原问题目标函数 中xa 的系数

@ 确定对何问题里的京条件中的符号

① m = 3

对偶问题中的变量为y1, y2, y3

② min $\alpha = y_1 + 2y_2 - 2y_3$

3 n = 3

$$2y_1 + y_2 + y_3 = 3$$
 (1) \leftarrow
 $y_1 + 2y_2 + y_3 \ge -1$ (2) \leftarrow

$$-4y_1 + 2y_2 \le 2$$

(3)← $-4y_1 + 2y_2 \le 2$

第1行式子的符号由原问题中x₁的范围决定

第2行式子的符号由原问题中x2的范围决定

第n行式子的符号由原问题中xn的范围决定

tel des Ne Ale	原目标函数max	原目标函数min	
原问题的 x _i /	对偶问题式子符号	对偶问题式子符号	
≤0	≤	_ ≥	
≥0	≥	≤	
无约束	(P) = (= 00	

⑦确定对偶问题中变量的范围

对偶问题中的变量为y1, y2, y3

② min $\alpha = y_1 + 2y_2 - 2y_3$

3 n = 3

y1 的范围由原大括号中第1行约束条件的符号决定 y2 的范围由原大括号中第2行约束条件的符号决定

ym的范围由原大括号中第 m 行约束条件的符号决定

tol day the James	原目标函数max	原目标函数min		
原问题式子	对偶问题变量范围	对偶问题变量范围		
_ ≤	≥ 0	≤ 0		
≥ _	≤ 0	≥ 0		
.€~	无约束	无约束		

求对偶问题的最优解

例1. 求以下线性规划问题对偶问题的最优解

$$\max z = 2x_1 + 3x_2$$

$$s. t.\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

用单纯形法而出原数性规划问题的最终单纯形表

$$\max z = 2 \cdot x_1 + 3 \cdot x_2 + 0 \cdot x_3 + 0 \cdot x_4 + 0 \cdot x_5$$

$$\Rightarrow s.t. \begin{cases} 1 \cdot x_1 + 2 \cdot x_2 + 1 \cdot x_3 + 0 \cdot x_4 + 0 \cdot x_5 = 8 \\ 4 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + 1 \cdot x_4 + 0 \cdot x_5 = 16 \\ 0 \cdot x_1 + 4 \cdot x_2 + 0 \cdot x_3 + 0 \cdot x_4 + 1 \cdot x_5 = 12 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

c	cj		3	0	0	0	ь	
c _B	XB	x ₁	X ₂	x3	X ₄	X ₅	l b	θi
2	X ₁	1	0	0	34	0	4	ď
0	X ₅	0	0	-2	1/2	1	4	N. Carlot
3	X ₂	0	1	1/2	-ÿ _a	0	2	
o	$\sigma_{\rm j}$		0	- - y ₂	-y _e	0		

详细过程看《第四课单纯形法》

常规方法:

②若最終单纯形象中的b列的值有n个。則从后往 前象n个变量并标记出他们对应的检验象。将 这些检验数按从左到右的顺序写到一个新导中

$$(1)(-\frac{3}{2},-\frac{1}{8},0)$$

②写出对黄何夏的最优解》:

若原问题目标函数是 max, 则

Y*=-①中的新号

着原问题目标函数是min. 则

Y'=①中的基号

$$(1)(-\frac{3}{2},-\frac{1}{8},0)$$

②
$$Y^* = -\left(-\frac{3}{2}, -\frac{1}{8}, 0\right) = \left(-\left(-\frac{3}{2}\right), -\left(-\frac{1}{8}\right), -0\right) = \left(\frac{3}{2}, \frac{1}{8}, 0\right)$$

求原问题的最优解

例1.已知以下线性规划问题的对偶问题最优解 $y_1^* = 1$, $y_2^* = 2$, 则 求原问题的最优解

$$\max z = 3x_1 + 2x_2 + 8x_3 + 6x_4$$

$$\begin{cases} x_1 + 2x_3 + 2x_4 \le 8 \\ 3x_1 + x_2 + 4x_3 + 2x_4 \le 16 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

① 写出对偶问题

① min $\alpha = 8y_1 + 16y_2$

$$\begin{cases} 1.y_1 + 3y_2 \ge 3 \\ 0.y_1 + 1.y_2 \ge 2 \\ 2.y_1 + 4.y_2 \ge 8 \end{cases}$$
 详细过程看《第六课对偶问题》 $2.y_1 + 2.y_2 \ge 6$ $y_1, y_2 \ge 0$

②在对偏问题 "{" 中的京条件的后方依次写上原问 规的变量

① min $\alpha = 8y_1 + 16y_2$ ②

$$\begin{cases} 1 \cdot y_1 + 3 \cdot y_2 \ge 3 & x_1 \\ 0 \cdot y_1 + 1 \cdot y_2 \ge 2 & x_2 \\ 2 \cdot y_1 + 4 \cdot y_2 \ge 8 & x_3 \\ 2 \cdot y_1 + 2 \cdot y_2 \ge 6 & x_4 \\ y_1, y_2 \ge 0 \end{cases}$$

® 改变对偶问题约束条件的符号 "≥" 变成 ">": "≤" 变成 "<"

① min $\alpha = 8y_1 + 16y_2$ ② $\begin{cases}
1 \cdot y_1 + 3 \cdot y_2 > 3 & x_1 \\
0 \cdot y_1 + 1 \cdot y_2 > 2 & x_2 \\
3 \cdot 2 \cdot y_1 + 4 \cdot y_2 > 8 & x_3
\end{cases}$

$$\begin{cases}
0 \cdot y_1 + 1 \cdot y_2 > 2 & x_2 \\
2 \cdot y_1 + 4 \cdot y_2 > 8 & x_3 \\
2 \cdot y_1 + 2 \cdot y_2 > 6 & x_4 \\
y_1, y_2 \ge 0
\end{cases}$$

②把对偏问题的最优解代入第②步新得到的不等式中 若不等式成立,则该不等式后方的原问题变量=0

① $\min \alpha = 8y_1 + 16y_2$ ②

①
$$\min \alpha = 8y_1 + 16y_2$$
 ②

 $\begin{cases} 1 \cdot 1 + 3 \cdot 2 > 3 & x_1 \\ 0 \cdot 1 + 1 \cdot 2 > 2 & x_2 \end{cases}$

$$7>3$$
 x_1 $2>2$ x_2

 X_4

 $4 x_1 = 0, x_3 = 0$

 $\begin{cases}
2 \cdot 1 + 4 \cdot 2 > 8 & x_3 \\
2 \cdot 1 + 2 \cdot 2 > 6 & x_4 \\
y_1, y_2 \ge 0
\end{cases}$

3 $\begin{cases} 10 > 8 \\ 6 > 6 \\ y_1, y_2 \ge 0 \end{cases}$

⑤若对偏阿短录优解中y; ≠0, 则原阿短 "{" 中第 1行的京条件的特号完成等号,得到一个式子

① min
$$\alpha = 8y_1 + 16y_2$$
 ②

$$\begin{cases} 7 > 3 & x_1 \\ 2 > 2 & x_2 \\ 10 > 8 & x_3 \\ 6 > 6 & x_4 \\ y_1, y_2 \ge 0 \end{cases}$$

①
$$x_1 = 0, x_3 = 0$$

$$\textcircled{5} x_1 + 2x_3 + 2x_4 = 8$$

$$3x_1 + x_2 + 4x_3 + 2x_4 = 16$$

⑥ 联立⑥⑤步的结果求册

①
$$\min \alpha = 8y_1 + 16y_2$$
 ②

$$\begin{cases} 7 > 3 & x_1 \\ 2 > 2 & x_2 \\ 10 > 8 & x_3 \\ 6 > 6 & x_4 \\ y_1, y_2 \ge 0 \end{cases}$$

$$\textcircled{4}$$
 $x_1 = 0, x_3 = 0$

(5)
$$x_1 + 2x_3 + 2x_4 = 8$$

$$3x_1 + x_2 + 4x_3 + 2x_4 = 16$$

将A代入B中可以得到

$$0+2\times0+2x_4=8$$

$$\Rightarrow 2x_4=8$$

$$\Rightarrow x_4=4$$

将A和D代入C中可以得到

$$3\times0+x_2+4\times0+2\times4=16$$

$$\Rightarrow x_2 + 8 = 16$$

$x_2 = 8$

⑦特所有求得的原问题变量的值按从左到右的顺序等 到一个括号中得到原问题的最优新

$$\textcircled{4}$$
 $x_1 = 0$, $x_3 = 0$

$$\textcircled{6}$$
 $x_4 = 4 \ x_2 = 8$

最优解为(0,8,0,4)

影子价格

例1.以下是某厂生产计划的线性规划模型,请同学们

- (1) 求出各资源的影子价格并指出其经济意义
- (2) 判断哪种资源在达到最优生产计划时还有剩余

 $\max z = 2x_1 + 3x_2$ $(x_1 + 2x_2 \le 8)$ $4x_1 \le 16$ s.t. $\begin{cases} x_1 - x_2 \le 12 \end{cases}$ $x_1, x_2 \ge 0$

(1) 求出各资源的影子价格并指出其经济意义

① 求出对何问题的最优好

	c _j		3	0	0	0	b
c _B	XB	x ₁	x ₂	X3	X ₄	X ₅	D
2	X ₁	1	0	0	34	0	4
0	Xs	0	0	-2	1/2	1 0	4
3	X ₂	0	1	1/2	-¹/⁄a	0	2
	9 .		0	-3/2	-1/8	0	

Y* = (3/2, 1/8, 0) ◆
 詳細过程看《第七课求对偶问题的最优解》

② 对偶问题最优解中的最字依次对应的就是原问题 中各黄粱的形子价格

② 第1种资源的影子价格=3 每增加1单位的第1种资源,最终收益增加3单位

第2种资源的影子价格= 1 每增加1单位的第2种资源,最终收益增加 1 单位 第3种资源的影子价格=0 每增加1单位的第3种资源,最终收益增加0单位

影子价格的经济意义:

每增加1单位的某种资源,最终收益增加多少单位

(2) 判断哪种资源在达到最优生产计划时还有剩余

第1种资源的影子价格=3

第2种资源的影子价格=1

第3种资源的影子价格=0

(2) 第3种资源在达到最优生产计划时还有剩余

判断资源是否有剩余:

影子价格=0: 该影子价格对应的资源有剩余

影子价格>0: 该影子价格对应的资源无剩余

灵敏度分析

例1.以下是某线性规划问题及其最终单纯形表,分析目标函数中x₁ 系数由2变成3, x₂系数由3变成1时,最优解是否变化

 $\max z = 2x_1 + 3x_2$

 $s.t \begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$

(cj		3	0	0	0	
c _B	XB	X1	x ₂	X3	X ₄	X ₅	b
2	X ₁	1	0	0	34	0	4
0	X ₅	0	0	-2	1/2	1	4
3	x ₂	0	1	1/2	-1/a	0	2
	9		0	-3/ ₂	-1/8	0	

① 模据目标函数变量系数的变化函新的单纯形象

② 重新计算性验数 $\sigma_j = c_j - (c_{B1} \cdot x_{j1} + c_{B2} \cdot x_{j2} + \cdots)$

着σ, 行数字每≤0, 则最优解不变

若σ, 行数字有>0的,则最优解发生了变化

1	(j	3	1	0	0	0	Š.
	c _B	XB	x ₁	x ₂	X3.	X ₄	X ₅	ь
	3 x ₁		1	0	0	34	0	4
	0 x ₅		0	0	-2	₩.	1	4
	1	X ₂	0	1	1/2	-½	0	2
	a	j c	0	0	-⅓ ₂	-ÿ _a	0	

:: 变化后的最优解不变

例2.以下是某线性规划问题及其最终单纯形表。现同时把目标函数 中 x₁、 x₂ 系数减少相同值, 试分析在什么范围内减少时最优解不变

 $\max z = 2x_1 + 3x_2$

 $(x_1 + 2x_2 \le 8$ $4x_1 \le 16$ s.t. $\begin{cases} 4x_1 - 4x_2 \le 12 \end{cases}$ $x_1, x_2 \ge 0$

	cj		3	0	0	0	N.
C _B	XB	x ₁	x ₂	X3	х4	X ₅	b
2	X ₁	1	0	0	34	0	4
0	X ₅	0	0	-2	1/2	1	4
3	X ₂	0	1	1/2	-1/a	0	2
	§ ·	0	0	-3/2	-1/8	0	200

①根据目标函数变量系数的变化函新的单纯形象

设目标函数 x₁、x₂系数都减少λ (λ≥0)

C	j	2- λ	3- λ	0	0	0	ь
c _B	XB	X ₁	X ₂	X3	X ₄	X ₅	
2-x	X ₁	1	0	0	- 14	0	4
0	X ₅	0	0	-2	1/2	1	4
3-x	X ₂	0	1	1/2	-y _a	0	2
0	9						

②重新计算检验数 $\sigma_j = c_j - (c_{B1} \cdot x_{j1} + c_{B2} \cdot x_{j2} + \cdots)$

着σ, 行数字带≤0, 则最优解不变

若 σ_i 行数字有>0的,则最优解发生了变化

C	G		3- λ	0	0	0	N
C _B	XB	X ₁	X ₂	х3	X ₄	X5	ا" [
2-x	X ₁	1	0	0	14	0	4
0	X ₅	0	0	-2	1/2	, 1	4
3- λ	X ₂	0	1	1/2	-y _a	0	2
0	9		0	y ₂ λ- y ₂	y_1-y_	0	

$$\sigma_1 = c_1 - (c_{B1} \cdot x_{11} + c_{B2} \cdot x_{12} + c_{B3} \cdot x_{13}) = 2 - \lambda - [(2 - \lambda) \cdot 1 + 0 \cdot 0 + (3 - \lambda) \cdot 0] = 0$$

$$\sigma_2 = c_2 - (c_{B1} \cdot x_{21} + c_{B2} \cdot x_{22} + c_{B3} \cdot x_{23}) = 3 - \lambda - [(2 - \lambda) \cdot 0 + 0 \cdot 0 + (3 - \lambda) \cdot 1] = 0$$

$$\sigma_3 = c_3 - (c_{B1} \cdot x_{31} + c_{B2} \cdot x_{32} + c_{B3} \cdot x_{33}) = 0 - \left[(2 - \lambda) \cdot 0 + 0 \cdot (-2) + (3 - \lambda) \cdot \frac{1}{2} \right] = \frac{1}{2}\lambda - \frac{3}{2}$$

$$\sigma_4 = c_4 - (c_{B1} \cdot x_{41} + c_{B2} \cdot x_{42} + c_{B3} \cdot x_{43}) = 0 - \left[(2 - \lambda) \cdot \frac{1}{4} + 0 \cdot \frac{1}{2} + (3 - \lambda) \cdot \left(-\frac{1}{8} \right) \right] = \frac{1}{8} \lambda - \frac{1}{8} \lambda$$

$$\sigma_{5} = c_{5} - (c_{B1} \cdot x_{51} + c_{B2} \cdot x_{52} + c_{B3} \cdot x_{53}) = 0 - [(2 - \lambda) \cdot 0 + 0 \cdot 1 + (3 - \lambda) \cdot 0] = 0$$

$$\begin{cases} \frac{1}{2}\lambda - \frac{3}{2} \le 0 \\ \frac{1}{8}\lambda - \frac{1}{8} \le 0 \end{cases} \Rightarrow \begin{cases} \lambda \le 3 \\ \lambda \le 1 \end{cases} \Rightarrow \lambda \le 1 \Rightarrow 0 \le \lambda \le 1$$

例3.以下是某线性规划问题及其最终单纯形表,试求第一个约束 条件中不等式右边的常数由8变成10后的最优解

 $\max z = 2x_1 + 3x_2$ $s.t \begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$

	c _j	2	3	0	0	0				
c _B	XB	x ₁	x ₂	x3	X ₄	X ₅	b			
2	X ₁	1	0	0	34	0	4			
0	X ₅	0	0	-2	1/2	1	4			
3	X ₂	0	1	1/2	-1/0	0	2			
8	9		0	-3/2	-1/8	0	200			

① 写出变化后的的束条件

$$\max z = 2x_1 + 3x_2$$

$$(1)$$

$$S. t.\begin{cases} x_1 + 2x_2 \le 10 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

② 求出矩阵 b=B-1b1

B=1:若最终单纯形表中b列的值有n个,则从后 往前数n个变量,每个变量下方的n个数字 构成的矩阵就是B=1

$$b_1 = \begin{pmatrix} 10 \\ 16 \\ 12 \end{pmatrix}$$

b₁:新的大括号中约束条件右边的常数自上而下 排列形成的矩阵

$$b = B^{-1}b_1 = \begin{pmatrix} 0 & \frac{1}{4} & 0 \\ -2 & \frac{1}{2} & 1 \\ \frac{1}{2} & -\frac{1}{8} & 0 \\ \end{pmatrix} \begin{pmatrix} 10 \\ 16 \\ 12 \end{pmatrix} = \begin{pmatrix} 0 \times 10 + \frac{1}{4} \times 16 + 0 \times 12 \\ -2 \times 10 + \frac{1}{2} \times 16 + 1 \times 12 \\ \frac{1}{2} \times 10 + \begin{pmatrix} -\frac{1}{8} \end{pmatrix} \times 16 + 0 \times 12 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}$$

矩阵相乘:

着A是n行矩阵,B是m列矩阵,则C=AB是 n行m列矩阵。cij=A的第i行每个元素与B的 第j列每个元素对应相乘再相加

③ 若求录优解,则把矩阵b中的值填入最终单纯形录 替换 b列的值,求出录优解 若矩阵 b ≥ 0 则最优基不变

•	cj		3	0	0	0	b
c _B	XB	x ₁	x ₂	x3	X ₄	X ₅	D
2	X ₁	1	0	0	34	0	4
0	X ₅	. 0	0	-2	3/2	1	0
3	X ₂	0	1	1/2	-1/9	0	3
0	1	0	0	-3/2	-1//8	0	18

最优解 $x_1 = 4$, $x_2 = 3$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$ 把这些数字都写到一个括号中可以知道最优解为(4,3,0,0,0)

◆X_B所在列的变量与b所在列的数字对应相等,再 ◆其他变量等于0 ← 例4.以下是某线性规划问题及其最终单纯形表,分析如何减少第 三个约束条件右边的常数可使最优基不变

$$\max z = 2x_1 + 3x_2$$

$$s.t \begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

	1	2	3	0	0	0	
CB	XB	x ₁	x ₂	x3	X ₄	X ₅	b
2	X ₁	1	0	0	34	0	4
0	X ₅	0	0	-2	1/2	1	4
3	X ₂	0	1	1/2	-1/8	0	2
0	5	0	0	-3/2	-1/8	0	

① 写出变化后的的束条件

设第三个约束条件右边常数减少λ(λ≥0)

$$\max z = 2x_1 + 3x_2$$

$$x_1 + 2x_2 \le 8$$

$$4x_1 \le 16$$

$$4x_2 \le 12 - \lambda$$

$$x_1, x_2 \ge 0$$

② 求出矩阵 b=B-1b1

$$B^{-1} = \begin{pmatrix} 0 & \frac{1}{4} & 0 \\ -2 & \frac{1}{2} & 1 \\ \frac{1}{2} & -\frac{1}{8} & 0 \end{pmatrix} \longleftarrow$$

B⁻¹: 若最终单纯形表中b列的值有n个,则从后 往前数n个变量,每个变量下方的n个数字 构成的矩阵就是B⁻¹

$$b_i = \begin{pmatrix} 10 \\ 16 \\ 12 - \lambda \end{pmatrix}$$

b₁:新的大括号中约束条件右边的常数自上而下 排列形成的矩阵

$$b = B^{-1}b_1 = \begin{pmatrix} 0 & \frac{1}{4} & 0 \\ -2 & \frac{1}{2} & 1 \\ \frac{1}{2} & -\frac{1}{8} & 0 \end{pmatrix} \begin{pmatrix} 8 \\ 16 \\ 12 - \lambda \end{pmatrix} = \begin{pmatrix} 0 \times 8 + \frac{1}{4} \times 16 + 0 \times (12 - \lambda) \\ -2 \times 8 + \frac{1}{2} \times 16 + 1 \times (12 - \lambda) \\ \frac{1}{2} \times 8 + \left(-\frac{1}{8}\right) \times 16 + 0 \times (12 - \lambda) \end{pmatrix} = \begin{pmatrix} 4 \\ 4 - \lambda \\ 2 \end{pmatrix}$$

矩阵相乘:

着A是n行矩阵,B是m列矩阵,则C=AB是 n行m列矩阵,c_{ij}=A的第i行每个元素与B的 第j列每个元素对应相乘再相加

② 若求最优好,则把矩阵b中的位填入最终单纯形录 替换b列的位,求出最优解 若矩阵 b ≥ 0 则最优基不变

$$\begin{cases} 4 \ge 0 \\ 4 - \lambda \ge 0 \Rightarrow \lambda \le 4 \Rightarrow 0 \le \lambda \le 4 \\ 2 \ge 0 \end{cases}$$

例4.以下是某线性规划问题及其最终单纯形表,分析如何减少第

三个约束条件右边的常数可使最优基不变

$$\max z = 2x_1 + 3x_2$$

$$s.t \begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

cj		2	3	0	0	0	b
c _B	XB	x1	x ₂	x3	X ₄	X ₅	о
2	X ₁	1	0	0	34	0	4
0	X ₅	0	0	-2	1/2	1	4
3	X ₂	0	1	1/2	-1/a	0	2
0	5	0	0	-3/2	-1/8	0	

① 写出变化后的的束条件

设第三个约束条件右边常数减少λ(λ≥0)

$$\max z = 2x_1 + 3x_2$$

$$s.t.\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 - \lambda \\ x_1, x_2 \ge 0 \end{cases}$$

② 求出矩阵 b=B-1b1

$$B^{-1} = \begin{pmatrix} 0 & \frac{1}{4} & 0 \\ -2 & \frac{1}{2} & 1 \\ \frac{1}{2} & -\frac{1}{8} & 0 \end{pmatrix} + \cdots$$

B⁻¹: 若最终单纯形表中b列的值有n个,则从后 往前数n个变量,每个变量下方的n个数字 构成的矩阵就是B⁻¹

$$b_1 = \begin{pmatrix} 10 \\ 16 \\ 12 - \lambda \end{pmatrix}$$

b₂:新的大括号中约束条件右边的常数自上而下 推列形成的矩阵

$$b = B^{-1}b_1 = \begin{pmatrix} 0 & \frac{1}{4} & 0 \\ -2 & \frac{1}{2} & 1 \\ \frac{1}{2} & -\frac{1}{8} & 0 \end{pmatrix} \begin{pmatrix} 8 \\ 16 \\ 12 - \lambda \end{pmatrix} = \begin{pmatrix} 0 \times 8 + \frac{1}{4} \times 16 + 0 \times (12 - \lambda) \\ -2 \times 8 + \frac{1}{2} \times 16 + 1 \times (12 - \lambda) \\ \frac{1}{2} \times 8 + \left(-\frac{1}{8}\right) \times 16 + 0 \times (12 - \lambda) \end{pmatrix} = \begin{pmatrix} 4 \\ 4 - \lambda \end{pmatrix}$$

矩阵相乘:

着A是n行矩阵,B是m列矩阵,则C=AB是 n行m列矩阵,C_{ij}=A的第i行每个元素与B的 第j列每个元素对应相乘再相加

② 若求最优新,则把矩阵b中的位填入最终单纯形录 替换b列的位,求出最优新 若矩阵b≥0 则最优基不变

$$\begin{cases} 4 \ge 0 \\ 4 - \lambda \ge 0 \Rightarrow \lambda \le 4 \Rightarrow 0 \le \lambda \le 4 \\ 2 \ge 0 \end{cases}$$

② 在最下方写上x₁x₂ ···≥0, d₁⁺, d₁⁻, d₂⁺, d₂⁻ ···≥0并 在所有式子前面加一个大量号

- ① 设A的产量是x₁, B的产量是x₂ ⇒原材料共用了设5x₁ + 6x₂
 设备工时共用了4x₁ + 4x₂, 共产生利润6x₁ + 8x₂
- ② $5x_1 + 6x_2 \le 60$

③
$$2x_1 - x_2 + d_1^* - d_1^* = 0$$
 P_1

$$\stackrel{\text{\tiny 4}}{=} 4x_1 + 4x_2 + d_2^- - d_2^+ = 36$$
 P_2
 $x_1 + d_3^- - d_3^+ = 1$ P_3
 $x_2 + d_4^- - d_4^+ = 3$ P_3

(5)
$$\begin{cases} 5x_1 + 6x_2 \le 60 \\ 2x_1 - x_2 + d_1^* - d_1^* = 0 \end{cases}$$
 P_1
 $4x_1 + 4x_2 + d_2^* - d_2^* = 36$ P_2
 $x_1 + d_3^* - d_3^* = 1$ P_3

$$x_2 + d_4^- - d_4^+ = 3$$

$$|x_1, x_2| \ge 0$$
, d_1^+ , d_1^- , d_2^+ , d_2^- , d_3^+ , d_3^- , d_4^+ , $d_4^- \ge 0$

 P_3

⑤写出目标函数min z=P₁?+P₂?+P₃?+···

- ① 设A的产量是x1, B的产量是x2
- (i) $\min z = P_1d_1^+ + P_2d_2^+ + P_3(d_3^+ + d_3^- + d_4^-)$

$$\begin{array}{ll} \textcircled{5} & \left\{ 5x_1 + 6x_2 \leq 60 \\ 2x_1 - x_2 + d_1^{-} - d_1^{+} = 0 \\ 4x_1 + 4x_2 + d_2^{-} - d_2^{+} = 36 \\ x_1 + d_3^{-} - d_3^{+} = 1 \\ x_2 + d_4^{-} - d_4^{+} = 3 \\ x_3, x_2 \geq 0, d_1^{+}, d_1^{-}, d_2^{+}, d_3^{-}, d_3^{+}, d_4^{+}, d_4^{-} \geq 0 \end{array} \right.$$

【如何确定"?"】

- a. 找到?前面的P对应的式子中的d 🛬
- b. 看一下这一个 $\mathbf{d}_{\frac{1}{2}}$ 所在的式子对应的限制条件是暗 若限制条件为正好达到某位,则在这个P后面写上 $\mathbf{d}_{\frac{1}{2}}^*+\mathbf{d}_{\frac{1}{2}}^*$

若限制条件为规址基值,则在这个P后面写上d。 若限制条件为不规址基值,则在这个P后面写上d。 c. 特这个P后面的各项加到一起就是我们要找的?

目标规划建模图解法

目标规划图解法

例1.用图解法解以下目标规划问题

$$\min z = P_1d_1^+ + P_2d_2^+ + P_3(d_3^+ + d_3^- + 2d_4^-)$$

$$5x_1 + 6x_2 \le 60$$

$$2x_1 - x_2 - d_1^+ + d_1^- = 0$$

$$4x_1 + 4x_2 - d_2^+ + d_2^- = 36$$

$$x_1 - d_3^+ + d_3^- = 1$$

$$x_2 - d_4^+ + d_4^- = 3$$

 $x_1 \ge 0, x_2 \ge 0, d_i^*, d_i^* \ge 0 (i=1,2,3,4)$

① 特目希面敷中不同的d ** 每分开,并面出x10x2 鱼种系

min z =
$$P_1d_1^+ + P_2d_2^+ + P_3(d_3^+ + d_3^-) + 2P_3d_4^-$$

$$\begin{array}{l} 5x_1 + 6x_2 \leq 60 \\ 2x_1 - x_2 - d_1^+ + d_1^- = 0 \\ 4x_1 + 4x_2 - d_2^+ + d_2^- = 36 \\ x_1 - d_3^+ + d_3^- = 1 \\ x_2 - d_4^+ + d_4^- = 3 \\ x_1 \geq 0, x_2 \geq 0, d_1^+, d_1^- \geq 0 \ (i=1,2,3,4) \end{array}$$

min z = $P_1d_1^+ + P_2d_2^+ + P_3(d_3^+ + d_3^-) + 2P_3d_4^-$

$$\begin{array}{c} 5x_1+6x_2\leq 60 \\ 2x_1-x_2-d_1^*+d_1^*=0 \\ 4x_1+4x_2-d_2^*+d_2^*=36 \\ x_1-d_3^*+d_3^*=1 \\ x_2-d_4^*+d_4^*=3 \\ x_1\geq 0, x_2\geq 0, d_1^*, d_1^*\geq 0 \ (i=1,2,3,4) \end{array} \qquad \begin{array}{c} x_2\leq 10-\frac{6}{6} \ x_1 \\ x_2=2x_1 \\ x_2=9-x_1 \\ x_1=1 \\ x_2=3 \\ x_1\geq 0, x_2\geq 0, d_1^*, d_1^*\geq 0 \ (i=1,2,3,4) \end{array}$$

③ 西出②中不等式图成的区域M

min z = $P_1 d_1^+ + P_2 d_2^+ + P_3 (d_3^+ + d_3^-) + 2P_3 d_4^-$

$$\begin{cases} 5x_1 + 6x_2 \le 60 \\ 2x_1 - x_2 - d_1^* + d_1^* = 0 \\ 4x_1 + 4x_2 - d_2^* + d_2^* = 36 \\ x_1 - d_3^* + d_3^* = 1 \\ x_2 - d_4^* + d_4^* = 3 \end{cases}$$

$$\begin{cases} x_2 \le 10 - \frac{5}{6}x_1 \\ x_2 = 2x_1 \\ x_2 = 9 - x_1 \\ x_1 = 1 \\ x_2 = 3 \end{cases}$$

③ 函出②中华丈夫示的直教,并在直教阿伽标上d: 与d:

min z = $P_1d_1^+ + P_2d_2^+ + P_3(d_3^+ + d_3^-) + 2P_3d_4^-$

$$\min z = P_1 d_1^* + P_2 d_2^* + P_3 (d_3^* + d_3^*) + 2P_3 d_4^*$$

$$5x_1 + 6x_2 \le 60$$

$$2x_1 - x_2 - d_1^* + d_1^* = 0$$

$$4x_1 + 4x_2 - d_2^* + d_2^* = 36$$

$$x_1 - d_3^* + d_3^* = 1$$

$$x_2 - d_4^* + d_4^* = 3$$

$$x_1 \ge 0, x_2 \ge 0, d_1^*, d_1^* \ge 0 (i=1,2,3,4)$$

$$\begin{cases} x_2 \le 10 - \frac{5}{6} x_1 \\ x_2 = 2x_1 \\ x_2 = 9 - x_1 \\ x_1 = 1 \\ x_2 = 3 \\ x_1 \ge 0, x_2 \ge 0, d_1^*, d_1^* \ge 0 (i=1,2,3,4) \end{cases}$$

【如何标d*与d**】 若直线为竖直线或者经过1、3象限,则 在直线右侧标注上直线对应的原式子中的disk, 在直线左侧标注上直线对应的原式子中的dia 若直线为水平线或者经过2、4象限,则 在直线上侧标注上直线对应的原式子中的dia。 在直线下侧标注上直线对应的原式子中的dis

⑤ 按照 P 从小到大的顺序依次面出 P 后面的d · 对应的区域 (若P 相同,则优先面出P的系数大的d · 对应的区域) 校一下这个区域与前面存在的区域相交的区域 若相交区域存在,则只保留相交区域 若相交区域不存在,则在前面存在的区域中找到最接近 新区域的部分

$$\min z = P_1 d_1^+ + P_2 d_2^+ + P_3 (d_3^+ + d_3^-) + 2P_3 d_4^-$$

$$S.t. \begin{cases} 5x_1 + 6x_2 \le 60 \\ 2x_1 - x_2 - d_1^+ + d_1^- = 0 \\ 4x_1 + 4x_2 - d_2^+ + d_2^- = 36 \\ x_1 - d_3^+ + d_3^- = 1 \\ x_2 - d_4^+ + d_4^- = 3 \\ x_1 \ge 0, x_2 \ge 0, d_1^+, d_1^- \ge 0 (i=1,2,3,4) \end{cases} \begin{cases} x_2 \le 10 - \frac{5}{6} x_1 \\ x_2 = 2x_1 \\ x_2 = 9 - x_1 \\ x_1 = 1 \\ x_2 = 3 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

【如何画d to 对应的区域】
若目标函数中d to 为:

《d to ,则保留它对应的直线d to 的一侧
d to ,则保留它对应的直线d to 的一侧
d to ,则保留它对应的直线d to 的一侧

min z = $P_1 d_1^+ + P_2 d_2^+ + P_3 (d_3^+ + d_3^-) + 2P_3 d_4^-$

min z = $P_1d_1^+ + P_2d_2^+ + P_3(d_3^+ + d_3^-) + 2P_3d_4^-$

min z = $P_1 d_1^+ + P_2 d_2^+ + P_3 (d_3^+ + d_3^-) + 2P_3 d_4^-$

min z = $P_1 d_1^+ + P_2 d_2^+ + P_3 (d_3^+ + d_3^-) + 2P_3 d_4^-$

⑤ 游龙新为⑤中得到的区域

min z = $P_1d_1^+ + P_2d_2^+ + P_3(d_3^+ + d_3^-) + 2P_3d_4^-$

$$\begin{array}{c} 5\,x_1 + 6x_2 \leq 60 \\ 2x_1 - x_2 - d_1^* + d_1^* = 0 \\ 4x_1 + 4\,x_2 - d_2^* + d_2^* = 36 \\ x_1 - d_3^* + d_3^* = 1 \\ x_2 - d_4^* + d_4^* = 3 \\ x_1 \geq 0, x_2 \geq 0, d_1^*, d_1^* \geq 0 \\ \end{array} \qquad \begin{array}{c} x_2 \leq 10 - \frac{5}{6}\,x_1 \\ x_2 = 2x_1 \\ x_2 = 9 - x_1 \\ x_1 = 1 \\ x_2 = 3 \\ x_1 \geq 0, x_2 \geq 0, d_1^*, d_1^* \geq 0 \\ \text{(i=1,2,3,4)} \end{array}$$

⑥ 满意解为点(1,3)到点(1,8)之间的线段

例2.用图解法解以下目标规划问题

min z =
$$P_1d_1^+ + P_2d_2^+ + P_3(d_3^+ + d_3^- + 2d_4^-)$$

$$5x_1 + 6x_2 \le 60$$

$$2x_1 - x_2 - d_1^* + d_1^* = 0$$

$$4x_1 + 4x_2 - d_2^* + d_2^* = 36$$

$$x_1 - d_3^* + d_3^* = 9$$

$$x_1 - d_3 + d_3 = 9$$

 $x_2 - d_4^* + d_4^* = 3$

 $x_1 \ge 0, x_2 \ge 0, d_i^+, d_i^- \ge 0 (i=1,2,3,4)$

⑥ 函出②中等式表示的直线,并在直线两侧标上dia 与dia

 $x_2 = 2x_1$

 $x_1 = 9$

 $x_2 = 3$

 $x_2 = 9 - x_1$

$$\min z = P_1 d_1^+ + P_2 d_2^+ + P_3 (d_3^+ + d_3^-) + 2P_3 d_4^-$$

 $\int 5x_1 + 6x_2 \le 60$ $\int x_2 \le 10 - \frac{5}{4}x_1$

$$2x_1 - x_2 - d_1^+ + d_1^- = 0$$

 $4x_1 + 4x_2 - d_2^+ + d_2^- = 36$
 $x_1 - d_3^+ + d_3^- = 9$

$$x_2 - d_4^+ + d_4^- = 3$$

$$x_1 \ge 0, x_2 \ge 0, d_i^+, d_i^- \ge 0 (i=1,2,3,4) \quad x_1 \ge 0, x_2 \ge 0$$

第①至④步与例1相同

⑤ 按照 P 从小到大的顺序依次高出 P 后面的d ss 对应的区域 (若 P 每 同,则优先高出 P 的系统大的d ss 对应的区域) 找一下这个区域与前面存在的区域相交的区域 若相交区域存在,则只保育相交区域 若相交区域不存在,则在前面存在的区域中找到量接近 新区域的部分

min z =
$$P_1d_1^+ + P_2d_2^+ + P_3(d_3^+ + d_3^-) + 2P_3d_4^-$$

$$\begin{array}{c} Sx_1 + 6x_2 \leq 60 \\ 2x_1 - x_2 - d_1^* + d_1^* = 0 \\ 4x_1 + 4x_2 - d_2^* + d_2^* = 36 \\ x_1 - d_3^* + d_3^* = 1 \\ x_2 - d_4^* + d_4^* = 3 \end{array} \qquad \qquad \textcircled{2} \begin{array}{c} x_2 \leq 10 - \frac{5}{6} x_1 \\ x_2 = 2x_1 \\ x_2 = 9 - x_1 \\ x_1 = 1 \\ x_2 = 3 \end{array}$$

 $x_1 \ge 0, x_2 \ge 0, d_i^+, d_i^- \ge 0 (i=1,2,3,4) \quad x_1 \ge 0, x_2 \ge 0$

【如何面dwx对应的区域】

若目标函数中d 34 为:

【d** ,则保留它对应的直线d****。 的一侧 d** ,则保留它对应的直线d***。 的一侧 d** + d***。则保留它对应的直线

min z = $P_1 d_1^4 + P_2 d_2^4 + P_3 (d_3^4 + d_3^4) + 2P_3 d_4^4$

min z = $P_1d_1^+ + P_2d_2^+ + P_3(d_3^+ + d_3^-) + 2P_3d_4^-$

min z = $P_1 d_1^+ + P_2 d_2^+ + P_3 (d_3^+ + d_3^-) + 2P_3 d_4^-$

min z = $P_1d_1^+ + P_2d_2^+ + P_3(d_3^+ + d_3^-) + 2P_3d_4^-$

⑤ 满意解为⑤中得到的区域

$$\begin{aligned} & \min z = P_1 d_1^* + P_2 d_2^* + P_3 \left(d_3^* + d_3^* \right) + 2 P_3 d_4^* \\ & \left\{ \begin{array}{l} 5 x_1 + 6 x_2 \leq 60 \\ 2 x_1 - x_2 - d_1^* + d_1^* = 0 \\ 4 x_1 + 4 x_2 - d_2^* + d_2^* = 36 \\ x_1 - d_3^* + d_3^* = 1 \\ x_2 - d_4^* + d_4^* = 3 \\ x_1 \geq 0, x_2 \geq 0, d_1^*, d_1^* \geq 0 (i = 1, 2, 3, 4) \end{array} \right. \\ & \left\{ \begin{array}{l} x_2 \leq 10 - \frac{5}{6} x_1 \\ x_2 = 2 x_1 \\ x_2 = 9 - x_1 \\ x_1 = 1 \\ x_2 = 3 \\ x_1 \geq 0, x_2 \geq 0, d_1^*, d_1^* \geq 0 (i = 1, 2, 3, 4) \end{array} \right. \\ & \left\{ \begin{array}{l} x_2 \leq 10 - \frac{5}{6} x_2 \\ x_2 = 2 x_1 \\ x_2 = 3 \\ x_1 \geq 0, x_2 \geq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \geq 0 \\ x_2 \leq 0, x_2 \geq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_2 \leq 10 - \frac{5}{6} x_1 \\ x_2 = 2 x_1 \\ x_2 = 3 \\ x_1 \geq 0, x_2 \geq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \geq 0 \\ x_1 \leq 0, x_2 \geq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_2 \leq 0, x_2 \geq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \geq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \geq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_2 \leq 0, x_2 \geq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \geq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \leq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \leq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_2 \leq 0, x_2 \leq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \leq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \leq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \leq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \leq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \leq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \leq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \leq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \leq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \leq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \leq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \leq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \leq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \leq 0 \end{array} \right. \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \leq 0 \end{array} \right. \\ \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \leq 0 \end{array} \right. \\ \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0, x_2 \leq 0 \\ x_1 \leq 0, x_2 \leq 0 \end{array} \right. \\ \\ & \left\{ \begin{array}{l} x_1 \leq 0, x_2 \leq 0, x_2 \leq 0$$

⑥ 满意解为点(3,6)

整数规划建模

例1. 某厂生产A、B、C三种机器,都需要用到甲、乙、丙三种零件 每台机器的单位利润、零件消耗以及现有零件数量如下:

単純 零件 机器	甲(个)	乙(个)	丙(个)	利润 (千元/台)
A(件)	6	80	50	8
B(件)	8	50	10	5
C(件)	7	60	30	7
现有零件	540	4000	2000	

何如何制定生产计划可使该厂利润最大,请建立数学模型。

事情问题看像我性规划建模问题并建立一个我性 规划数学模型

① 设A机器的产量是 x_1 件,B机器的产量是 x_2 件,C机器的产量是 x_3 件 ⇒ 甲零件共用了 $6x_1 + 8x_2 + 7x_3$,乙零件共用了 $80x_1 + 50x_2 + 60x_3$, 丙零件共用了 $50x_1 + 10x_2 + 30x_3$,共赚了利润 $8x_1 + 5x_2 + 7x_3$ $max z = 8x_1 + 5x_2 + 7x_3$

$$s.t \begin{cases} 6x_1 + 8x_2 + 7x_3 \le 540 \\ 80x_1 + 50x_2 + 60x_3 \le 4000 \\ 50x_1 + 10x_2 + 30x_3 \le 2000 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

②在大部号中各变量的取值范围后方加上限制条件 "各变量都是整数"

① 设A机器的产量是 x_1 件,B机器的产量是 x_2 件,C机器的产量是 x_3 件 \Rightarrow 甲零件共用了 $6x_1 + 8x_2 + 7x_3$,乙零件共用了 $80x_1 + 50x_2 + 60x_3$, 丙零件共用了 $50x_1 + 10x_2 + 30x_3$,共赚了利润 $8x_1 + 5x_2 + 7x_3$

$$\max z = 8x_1 + 5x_2 + 7x_3$$

$$S.L$$

$$\begin{cases} 6x_1 + 8x_2 + 7x_3 \le 540 \\ 80x_1 + 50x_2 + 60x_3 \le 4000 \\ 50x_1 + 10x_2 + 30x_3 \le 2000 \\ x_1x_2x_3 \ge 0, x_1x_2x_3 \text{ 都是整数} \end{cases}$$

例2.某厂拟从 A、B、C 三个城市选建几个经销联营点,现各城市设点 所需的资金、人力、设备和利润如下,为使利润最大,问厂方应选 择哪几个城市设点,建立数学模型

城市	应投资金 (百万元)	应投人力 (人)	应投设备 (套)	获利 (10万元)
A	. 4	5	1 ,0	4.5
В	6	4	1,000	3.8
C	12	12	1	9.5
资源限制	15	10	° 2	900

① 设第1个东西有
$$x_1 = \begin{cases} 1 & u_0 + v_0 + v_0 \\ 0 & r_0 - v_0 + v_0 + v_0 \end{cases}$$
 第2个东西有 $x_2 = \begin{cases} 1 & u_0 + v_0 + v_0 \\ 0 & r_0 - v_0 + v_0 + v_0 \end{cases}$: : : : :

① 设 A 城 市有
$$x_1 = \begin{cases} 1 & 选择A 城 市 \\ 0 & 不选择A 城 市 \end{cases}$$
 B 城 市 有 $x_2 = \begin{cases} 1 & 选择B 城 市 \\ 0 & 不选择B 城 市 \end{cases}$

$$C$$
 城市有 $x_3 = \begin{cases} 1 &$ 选择 C 城市 $0 &$ 不选择 C 城市

⇒資金共用了
$$4x_1 + 6x_2 + 12x_3$$
, 人力共用了 $5x_1 + 4x_2 + 12x_3$
设备共用了 $x_1 + x_2 + x_3$, 共赚了利润 $4.5x_1 + 3.8x_2 + 9.5x_3$

① 设 A 城市有
$$x_1 = \begin{cases} 1 & 选择A 城市 \\ 0 & 不选择A 城市 \end{cases}$$
 B 城市有 $x_2 = \begin{cases} 1 & 选择B 城市 \\ 0 & 不选择B 城市 \end{cases}$

$$C$$
 城市有 $x_3 = \begin{cases} 1 & 选择C城市 \\ 0 & 不选择C城市 \end{cases}$

⇒ 資金共用了
$$4x_1 + 6x_2 + 12x_3$$
, 人力共用了 $5x_1 + 4x_2 + 12x_3$
设备共用了 $x_1 + x_2 + x_3$, 共赚了利润 $4.5x_1 + 3.8x_2 + 9.5x_3$

②
$$\max z = 4.5x_1 + 3.8x_2 + 9.5x_3$$

图列个"st{"把各个约束条件列上去

① 设 A 城 市有
$$x_1 = \begin{cases} 1 & 选择A 城 市 \\ 0 & 不选择A 城 市 \end{cases}$$
 B 城 市有 $x_2 = \begin{cases} 1 & 选择B 城 市 \\ 0 & 不选择B 城 市 \end{cases}$

$$C$$
城市有 $x_3 = \begin{cases} 1 & 选择C城市 \\ 0 & 不选择C城市 \end{cases}$

⇒ 資金共用了
$$4x_1 + 6x_2 + 12x_3$$
, 人力共用了 $5x_1 + 4x_2 + 12x_3$
设备共用了 $x_1 + x_2 + x_3$, 共赚了利润 $4.5x_1 + 3.8x_2 + 9.5x_3$

$$2 \max z = 4.5x_1 + 3.8x_2 + 9.5x_3$$

$$\begin{array}{c} \text{33} \\ \text{S.t.} \begin{cases} 4x_1 + 6x_2 + 12x_3 \leq 15 \\ 5x_1 + 4x_2 + 12x_3 \leq 10 \\ x_1 + x_2 + x_3 \leq 2 \\ \end{array}$$

④ 在"{"最后写上x₁=0.1, x₂=0.1…

① 设 A 城 市有
$$x_1 = \begin{cases} 1$$
 选择A城市 B城市有 $x_2 = \begin{cases} 1$ 选择B城市 O 不选择B城市

$$C$$
 城市有 $x_3 = \begin{cases} 1 &$ 选择 C 城市 $&$ 不选择 C 城市

⇒ 資金共用了
$$4x_1 + 6x_2 + 12x_3$$
, 人力共用了 $5x_1 + 4x_2 + 12x_3$
设备共用了 $x_1 + x_2 + x_3$, 共赚了利润 $4.5x_1 + 3.8x_2 + 9.5x_3$

②
$$\max z = 4.5x_1 + 3.8x_2 + 9.5x_3$$

$$\textcircled{3}$$
 $\textcircled{4}$ $\underbrace{\begin{cases} 4x_1 + 6x_2 + 12x_3 \leq 15 \\ 5x_1 + 4x_2 + 12x_3 \leq 10 \\ x_1 + x_2 + x_3 \leq 2 \\ x_1 = 0, 1, x_2 = 0, 1, x_3 = 0, 1 \end{cases}}_{}$

指派问题

例1.求下表所示效率矩阵的指派问题的最小解

	任务								
人员	A	В	C	D	E				
甲	13	7	8	7	10				
Z	7	8	6	6	6				
丙	7	18	10	13	9				
1	14	15	6	6	9				
戊	²⁶ 4	9	8	10	9				

①写出系数矩阵

②将系数矩阵的每一行的各元素都减去本行的最小元素

$$\begin{pmatrix} 13 & 7 & 8 & 7 & 10 \\ 7 & 8 & 6 & 6 & 6 \\ 7 & 18 & 10 & 13 & 9 \\ 14 & 15 & 6 & 6 & 9 \\ 4 & 9 & 8 & 10 & 9 \end{pmatrix} \longrightarrow \begin{pmatrix} 13-7 & 7-7 & 8-7 & 7-7 & 10-7 \\ 7-6 & 8-6 & 6-6 & 6-6 & 6-6 \\ 7-7 & 18-7 & 10-7 & 13-7 & 9-7 \\ 14-6 & 15-6 & 6-6 & 6-6 & 9-6 \\ 4-4 & 9-4 & 8-4 & 10-4 & 9-4 \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 0 & 1 & 0 & 3 \\ 1 & 2 & 0 & 0 & 0 \\ 0 & 11 & 3 & 6 & 2 \\ 8 & 9 & 0 & 0 & 3 \\ 0 & 5 & 4 & 6 & 5 \end{pmatrix}$$

图 并②始果的每一列的各元素都减去水列的最小元素

$$\begin{pmatrix} 6 & 0 & 1 & 0 & 3 \\ 1 & 2 & 0 & 0 & 0 \\ 0 & 11 & 3 & 6 & 2 \\ 8 & 9 & 0 & 0 & 3 \\ 0 & 5 & 4 & 6 & 5 \end{pmatrix} \longrightarrow \begin{pmatrix} 6-0 & 0-0 & 1-0 & 0-0 & 3-0 \\ 1-0 & 2-0 & 0-0 & 0-0 & 0-0 \\ 0-0 & 11-0 & 3-0 & 6-0 & 2-0 \\ 8-0 & 9-0 & 0-0 & 0-0 & 3-0 \\ 0-0 & 5-0 & 4-0 & 6-0 & 5-0 \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 0 & 1 & 0 & 3 \\ 1 & 2 & 0 & 0 & 0 \\ 0 & 11 & 3 & 6 & 2 \\ 8 & 9 & 0 & 0 & 3 \\ 0 & 5 & 4 & 6 & 5 \end{pmatrix}$$

② 标记所有的0元素(图出或者划算)

$$\begin{pmatrix} 6 & 0 & 1 & 0 & 3 \\ 1 & 2 & 0 & 0 & 0 \\ 0 & 11 & 3 & 6 & 2 \\ 8 & 9 & 0 & 0 & 3 \\ 0 & 5 & 4 & 6 & 5 \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & \textcircled{0} & 1 & & 3 \\ 1 & 2 & & & & & & \\ \textcircled{0} & 11 & 3 & 6 & 2 \\ 8 & 9 & \textcircled{0} & & & & 3 \\ & & 5 & 4 & 6 & 5 \end{pmatrix}$$

a 找到只有一个0元素的行,取其中的一行,圈出该行0元素,划掉这个0元素同列的其他0元素,重复进行该步骤,直到找不到只有一个0元素的行则进行步骤b.找到只有一个0元素的列,取其中的一列,圈出该列0元素,划掉这个0元素同行的其他0元素,重复进行该步骤,直到找不到只有一个0元素的列则进行步骤。c.看一下是否还有包含两个或两个以上0元素的行,若有则进行步骤。d.选择0元素最少的一行(若有不止一行的0元素都最少那么随便选择一行就行),看一下本行哪个0元素所在列的0元素个数最少,那么随便选择一个放行),圈出这个0元素,并划掉这个0元素同行以及同列的其他0元素,继续进行步骤。

⑤若国出的0元素条等于矩阵的行列录。则继续步骤⑤ 若国出的0元素最小于矩阵的行列录。则继续步骤⑥

圈出0元素数: 4 < 矩阵行列数: 5

圆打 "√"

a. 在没有**②**的行右边打"√"

- b. 在已打"√"的行中所有含δ的列下面打"√",若 无法进行,则进行步骤d
- c.在打"√"的列中⑩所在的行右边打"√",继续进行步骤b,若无法进行,则进行步骤d
- d.在没有打 "√"的行画横线,在打"√"的列画竖线

⑦我出来面直染的区域中的最小元素

图 特打 "√" 行的各元素每减去被最小元素

②等打"√"列的各元素等加上被最小元素、維续进行 步骤④

$$\begin{pmatrix} 6 & 0 & 1 & 0 & 3 \\ 1 & 2 & 0 & 0 & 0 \\ -2 & 9 & 1 & 4 & 0 \\ 8 & 9 & 0 & 0 & 3 \\ -2 & 3 & 2 & 4 & 3 \end{pmatrix} \checkmark \longrightarrow \begin{pmatrix} 6+2 & 0 & 1 & 0 & 3 \\ 1+2 & 2 & 0 & 0 & 0 \\ 0-2+2 & 9 & 1 & 4 & 0 \\ 8+2 & 9 & 0 & 0 & 3 \\ -2+2 & 3 & 2 & 4 & 3 \end{pmatrix} \checkmark \longrightarrow \begin{pmatrix} 8 & 0 & 1 & 0 & 3 \\ 3 & 2 & 0 & 0 & 0 \\ 0 & 9 & 1 & 4 & 0 \\ 10 & 9 & 0 & 0 & 3 \\ 0 & 3 & 2 & 4 & 3 \end{pmatrix} \checkmark$$

④ 标记所有的0元素(图出或者划样)

$$\begin{pmatrix} 8 & 0 & 1 & 0 & 3 \\ 3 & 2 & 0 & 0 & 0 \\ 0 & 9 & 1 & 4 & 0 \\ 10 & 9 & 0 & 0 & 3 \\ 0 & 3 & 2 & 4 & 3 \end{pmatrix} \checkmark \longrightarrow \begin{pmatrix} 8 & \textcircled{1} & 1 & 3 & 3 \\ 3 & 2 & 1 & \textcircled{1} & 3 & 3 \\ 3 & 2 & 1 & \textcircled{1} & 3 & 3 \\ 3 & 2 & 1 & 3 & 3 & 3 \\ 3 & 2 & 1 & 3 & 3 & 3 \\ 3 & 2 & 1 & 3 & 3 & 3 \\ 3 & 3 & 2 & 4 & 3 & 3 \end{pmatrix}$$

⑤ 若同出的0元未录等于矩阵的行列表。 別組織步骤⑩ 若同出的0元未录小于矩阵的行列表。 別組織步骤⑪

⑩ 現事 0 元素的位置。在原表格中标记出对应的位置 即可每到检查方案

/	8	0	1	B.	3\
-/	3	2	8,	0	18
П	X.	9	1	4	0
١	10	9	0	18.	3
١	0	3	2	4	3/

,			任务		
人员	A	В	C	D (E
甲	13	7	8	7	10
Z	7	8	6	6	6
丙	7	18	10	13	9
1	14	15	6	6	9
○戊	4	. 9	8	10	9

⑩ : 最小解是甲做B任务,乙做D任务,丙做E任务,丁做C任务,戊做A任务

最速下降法

例 求 S = f(x) = $x_1^2 + x_2^2 - x_1x_2 - 10x_1 - 4x_2 + 60$ 的极小值点, ϵ =0.1 解:①从起点 $\mathbf{x}^{(0)} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}$ 出发:

a.计算该点梯度:
$$G^{(0)} = \nabla f(X^{(0)}) = \begin{bmatrix} g_1^{(0)} \\ g_2^{(0)} \end{bmatrix} = \begin{bmatrix} 2x_1 - x_2 - 10 \\ 2x_2 - x_1 - 4 \end{bmatrix}_{X^{(0)}} = \begin{bmatrix} -10 \\ -4 \end{bmatrix}$$

b.计算该梯度的单位方向:
$$\mathbf{E}^{(0)} = \begin{bmatrix} \mathbf{e}_{1}^{(0)} \\ \mathbf{e}_{2}^{(0)} \end{bmatrix} = \frac{\mathbf{G}^{(0)}}{\|\mathbf{G}^{(0)}\|} = \begin{bmatrix} \frac{\mathbf{g}_{1}^{(0)}}{\|\mathbf{G}^{(0)}\|} \\ \frac{\mathbf{g}_{2}^{(0)}}{\|\mathbf{G}^{(0)}\|} \end{bmatrix} = \begin{bmatrix} -0.93 \\ -0.37 \end{bmatrix}$$

c.以
$$\mathbf{E}^{(0)}$$
的反方向 $\mathbf{P}^{(0)} = -\mathbf{E}^{(0)} = \begin{bmatrix} \mathbf{0.93} \\ \mathbf{0.37} \end{bmatrix}$ 为一维搜索方向

在此方向上寻找最优步长h⁽⁰⁾使得:

$$\begin{split} J(h^{(0)}) &= f(X^{(0)} + h^{(0)} \cdot P^{(0)}) = \underset{h}{Min} \, f(X^{(0)} + h \cdot P^{(0)}) = \underset{h}{Min} \, f(0.93h, 0.37h) \\ &= 0.6577h^2 - 10.78h + 60 \qquad \Leftrightarrow \frac{dJ(h)}{dh} = 0, \\ d.求得新点X^{(1)} &= X^{(0)} + h^{(0)} \cdot P^{(0)} = \begin{bmatrix} 7.63 \\ 3.05 \end{bmatrix} \end{split}$$

②从点 $X^{(1)}$ 出发,照此进行下去,直至满足给定的精度 ϵ =0.1 为止 $|f(X^{(k+1)})| - f(X^{(k)})| < 0.1$ 或 $||G^{(k)}|| < 0.1$

最后得极小值点为:X^{*}≈(8,6)^T,f(X^{*})≈8

计算结果见下表:

k	$\mathbf{X}_{1}^{(k)}$	$\mathbf{X}_{2}^{(k)}$	$ g_1^{(k)} \\ = 2x_1 - x_2 - 10 $	$ \mathbf{g}_{2}^{(k)} \\ = 2\mathbf{x}_{2} - \mathbf{x}_{1} - 4 $	$ \mathbf{G}^{(k)} $	$\mathbf{e}_1 = \frac{\mathbf{g}_1^{(k)}}{ \mathbf{G}^{(k)} }$	$\mathbf{e_2} = \frac{\mathbf{g_2^{(k)}}}{ \mathbf{G}^{(k)} }$	h ^(k)	f(X ^(k))	$\frac{ f(X^{(k+1)})}{-f(X^{(k)}) }$
0	0	0	-10	-4	10.77	-0.93	-0.37	8.22	60	
1	7.63	3.05	2.21	-5.53	5.59	0.37	-0.93	2.21	15.74	44.26
2	6.81	5.11	-1.49	-0.60	1.60	-0.93	-0.37	1.22	9.15	6.59
3	7.95	5.56	0.33	-0.82	0.89	0.37	-0.93	0.33	8.17	0.98
4	7.82	5.87	-0.22	-0.09	0.24	-0.93	-0.37	0.18	8.03	0.14
5	7.99	5.93	0.05	-0.12	0.13	0.37	-0.928	0.05	8.0037	0.026

$$\therefore \mathbf{x}^{\star} \approx (8,6)^{\mathrm{T}}, \mathbf{f}_{\mathrm{max}}^{\star} \approx 8$$

共轭梯度法

$$\mathbf{m}$$
: ① 从起点 $\mathbf{x}^{(0)} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}$ 出发,

搜索方向为:
$$\mathbf{P}^{(0)} = -\mathbf{G}^{(0)} = -\nabla \mathbf{f}(\mathbf{X}^{(0)}) = -\begin{bmatrix} \mathbf{g}_1^{(0)} \\ \mathbf{g}_2^{(0)} \end{bmatrix} = -\begin{bmatrix} 2\mathbf{x}_1 - \mathbf{x}_2 - 10 \\ 2\mathbf{x}_2 - \mathbf{x}_1 - 4 \end{bmatrix}_{\mathbf{x}^{(0)}} = \begin{bmatrix} 10 \\ 4 \end{bmatrix}$$

$$J(h) = f(X^{(0)} + h \cdot P^{(0)}) = f(10h,4h) = 76h^2 - 116h + 60$$

令
$$\frac{dJ(h)}{dh} = 152h - 116 = 0$$
,得最优步长 $h^{(0)} = 0.763157894$

② 从起点
$$\mathbf{x}^{(1)} = \begin{bmatrix} 7.63 \\ 3.05 \end{bmatrix}$$
出发,

搜索方向为:
$$P^{(1)} = -G^{(1)} + \beta^{(0)} \cdot P^{(0)} = -G^{(1)} + \frac{[G^{(1)}]^T \cdot G^{(1)}}{[G^{(0)}]^T \cdot G^{(0)}} \cdot P^{(0)}$$

$$= -\begin{bmatrix} g_1^{(1)} \\ g_2^{(1)} \end{bmatrix} + \frac{g_1^{(1)^2} + g_2^{(1)^2}}{g_1^{(0)^2} + g_2^{(0)^2}} \cdot \mathbf{P}^{(0)} = \begin{bmatrix} -2.2105 \\ 5.526 \end{bmatrix} + \frac{35.4226}{116} \cdot \begin{bmatrix} 10 \\ 4 \end{bmatrix} = \begin{bmatrix} 0.8435 \\ 6.7479 \end{bmatrix}$$

$$J(h) = f(X^{(1)} + h \cdot P^{(1)}) = f(7.63 + 0.8435h, 3.05 + 6.7479h)$$

求得新点
$$\mathbf{X}^{(2)} = \mathbf{X}^{(1)} + \mathbf{h}^{(1)} \cdot \mathbf{P}^{(1)} = \begin{bmatrix} 7.9993 \\ 5.9997 \end{bmatrix} \approx \begin{bmatrix} 8 \\ 6 \end{bmatrix}, \mathbf{S}^{(2)} = 8, 为所求的极小点。$$

动态规划最短路径

当k=6时

S_6	\mathbf{u}_6	$v_6(s_6, u_6) + f_7(s_7)$	$f_6(s_6)$
\mathbf{F}_{1}	F_1G	4+0=4*	4
F_2	F_2G	3+0=3*	3

当k=5时	S_5	\mathbf{u}_{5}	$v_5(s_5, u_5) + f_6(s_6)$	$f_5(s_5)$
	E_1	E_1F_1	3+4=7 *	7
		E_1F_2	5+3=8	
	E_2	E_2F_1	5+4=9	5
		E_2F_2	2+3=5*	
	E_3	E_3F_1	6+4=10	9
		E_3F_2	6+3=9*	

	S ₄	u ₄	$v_4(s_4, u_4) + f_5(s_5)$	$f_4(s_4)$
当k=4时	Dı	$\begin{array}{c} D_1E_1 \\ D_1E_2 \end{array}$	2+7=9 2+5=7*	7
	D_2	D_2E_2 D_2E_3	1+5=6 * 2+9=11	6
	D_3	$\begin{array}{c} D_3E_2 \\ D_3E_3 \end{array}$	3+5=8 * 3+9=12	8

当k=3时	S ₃	u_3	$v_3(s_3, u_3) + f_4(s_4)$	$f_3(s_3)$
	C1	C_1D_1 C_1D_2	6+7=13 * 8+6=14	13
	C2	C_2D_1 C_2D_2	3+7=10 * 5+6=11	10
	C_3	C_3D_2 C_3D_3	3+6=9* 3+8=11	9
	C ₄	C_4D_2 C_4D_3	8+6=14 4+8=12 *	12

当k=2时	S ₂	\mathbf{u}_{2}	$v_2(s_2, u_2) + f_3(s_3)$	$f_2(s_2)$
, κ−∠ μη	B ₁	B_1C_1 B_1C_2 B_1C_3	1+13=14 3+10=13 * 6+9=15	13
	B ₂	B ₂ C ₂ B ₂ C ₃ B ₂ C ₄	8+9=17 7+9=16* 6+12=18	16

当k=1时	S_1	$\mathbf{u_1}$	$v_1(s_1, u_1) + f_2(s_2)$	$f_1(s_1)$
	A	$\begin{array}{c} AB_1 \\ AB_2 \end{array}$	5+13=18 * 3+16=19	18

由此可以看出,A到G的最短路长为18, 路径为: $A \rightarrow B_1 \rightarrow C_2 \rightarrow D_1 \rightarrow E_2 \rightarrow F_2 \rightarrow G$