Matematica del discreto M3 - Vettori e geometria 15 marzo 2014 - Laurea on line

- 1. Dati i vettori nello spazio u = (1, 1, 0), v = (2, 1, -2) e w = (2, -1, 2), calcolare
 - (a) $(u-v)\cdot w$;
 - (b) l'angolo formato da $u \in v$;
 - (c) ||w||;
 - (d) $u \times v \in v \times u$.

(a)
$$(u-v) \cdot w = (-1,0,2) \cdot (2,-1,2) = 2;$$

(b) $sia \theta$ l'angolo formato da u e w, si ha

$$\cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|} = \frac{(1, 1, 0) \cdot (2, -1, 2)}{\|(1, 1, 0)\| \|(2, -1, 2)\|} = \frac{3}{\sqrt{2} \cdot \sqrt{9}} = \frac{\sqrt{2}}{2}$$

allora
$$\theta = \arccos\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$$

allora
$$\theta = \arccos\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4};$$

(c) $||w|| = \sqrt{2^2 + (-1)^2 + 2^2} = 3;$

(d)

$$u \times v = \begin{vmatrix} i & j & k \\ 1 & 1 & 0 \\ 2 & 1 & -2 \end{vmatrix} = (-2, 2, -1)$$

mentre $v \times u = -(u \times v) = (2, -2, 1)$.

2. Scrivere l'equazione della retta del piano passante per il punto P = (3, -5) perpendicolare al vettore v = (4, 2).

Per ogni valore di $c \in \mathbb{R}$ la retta

$$4x + 2y = c$$

 \grave{e} perpendicolare al vettore v, imponendo il passaggio per P si ottiene la retta

$$4x + 2y = 2$$

ovvero

$$2x + y = 1.$$

3. La retta r di equazioni

$$\begin{cases} x + 2y = 2 \\ x + y - z = 2 \end{cases}$$

è perpendicolare al piano

$$\square \ x + y + z = 2;$$

$$\Box \ x - 2y - 2z = 2;$$

$$\square \ 2x - y - 2z = 2;$$

$$\square \ 2x - y + z = 2.$$

Indicare la risposta corretta fornendo una giustificazione.

La risposta corretta è la quarta, infatti la retta data si scrive in forma parametrica come

$$\begin{cases} x = 2t \\ y = -t + 1 \\ z = t - 1 \end{cases}$$

 $e\ perciò\ ha\ direzione\ parallela\ al\ vettore\ (2,-1,1),\ che\ \grave{e}\ appunto\ il\ vettore\ normale\ al\ piano\ 2x-y+z=2.$

4. Sia r la retta che passa per i punti A=(3,0,4) e B=(-1,2,-2) ed s quella passante per C=(2,2,5) e D=(0,0,-3). Dimostrare che r ed s si incontrano e trovare le coordinate del loro punto comune.

La retta r_{AB} per A e B ha equazione parametrica $P = t \cdot (B - A) + A$, ovvero

$$r_{AB}: \left\{ \begin{array}{l} x = 3 - 4t \\ y = 2t \\ z = 4 - 6t \end{array} \right.$$

mentre la retta r_{CD} per C e D ha equazione parametrica $P = t \cdot (C - D) + D$, ovvero

$$r_{AB}: \begin{cases} x = 2t' \\ y = 2t' \\ z = -3 + 8t' \end{cases}$$

osserviamo anche immediatamente che le due rette non sono parallele. Cerco l'eventuale punto di intersezione mettendo a sistema l'equazioni delle due rette, si ha

$$\begin{cases} 3 - 4t = 2t' \\ 2t = 2t' \\ 4 - 6t = -3 + 8t \end{cases}$$

Dalla seconda equazione si ha t = t', sostituendo nella prima si trova t = 1/2 che verifica anche la terza. Allora le due rette si intersecano nel punto che si ottiene sostituendo a t nell'equazione di r_{AB} o a t' nell'equazione di r_{CD} il valore 1/2, si ottiene il punto di coordinate (1,1,1).