

planetmath.org

Math for the people, by the people.

analytic space

Canonical name AnalyticSpace

Date of creation 2013-03-22 17:41:43 Last modified on 2013-03-22 17:41:43

Owner jirka (4157) Last modified by jirka (4157)

Numerical id 4

Author jirka (4157) Entry type Definition Classification msc 32C15

Synonym complex analytic space Related topic LocallyCompactGroupoids A Hausdorff topological space X is said to be an analytic space if:

- 1. There exists a countable number of open sets V_j covering X.
- 2. For each V_j there exists a homeomorphism $\varphi_j \colon Y_j \to V_j$, where Y_j is a local complex analytic subvariety in some \mathbb{C}^n .
- 3. If V_j and V_k overlap, then $\varphi_j^{-1} \circ \varphi_k$ is a biholomorphism.

Usually one attaches to X a set of coordinate systems \mathcal{G} , which is a set (now uncountable) of triples $(V_{\iota}, \varphi_{\iota}, Y_{\iota})$ as above, such that whenever V is an open set, Y a local complex analytic subvariety, and a homeomorphism $\varphi \colon Y \to V$, such that $\varphi_{\iota}^{-1} \circ \varphi$ is a biholomorphism for some $(V_{\iota}, \varphi_{\iota}, Y_{\iota}) \in \mathcal{G}$ then $(V, \varphi, Y) \in \mathcal{G}$. Basically \mathcal{G} is the set of all possible coordinate systems for X.

We can also define the singular set of an analytic space. A point p is if there exists (at least one) a coordinate system $(V_{\iota}, \varphi_{\iota}, Y_{\iota}) \in \mathcal{G}$ with $p \in V_{\iota}$ and Y_{ι} a complex manifold. All other points are the singular points.

Any local complex analytic subvariety is an analytic space, so this is a natural generalization of the concept of a subvariety.

References

[1] Hassler Whitney. . Addison-Wesley, Philippines, 1972.