Notes MAT346

Julien Houle

Automne 2025

Table des matières

1	Intégration	2
	1.1 Intégrales de Riemann	2
	Critère d'intégrabilité	
	Inégalité du triangle	7

Chapitre 1 Intégration

Section 1.1 Intégrales de Riemann

Notation.

 $\mathcal{B}[c,d] = \{f : [a,b] \to \mathbb{R} | f \text{ est born\'ee} \}.$

 $\mathcal{R}[a,b] = \{f : [a,b] \to \mathbb{R} | f \text{ est bornée et intégrable} \}.$

 $\mathcal{C}[a,b] = \{f : [a,b] \to \mathbb{R} | f \text{ est born\'ee et continue} \}.$

On suppose nos fonctions bornées.

Définition.

a) Une partition de [a, b] est un ensemble fini de points $\Delta = \{x_0, x_1, \dots, x_n\} \subseteq [a, b]$ t.q. $a = x_0 < x_1 < x_2 < x_1 < x_2 < x_2$ $\ldots < x_{n-1} < x_n = b.$

b) L'ensemble des partitions de [a, b] est $\Omega[a, b]$.

c) On dit Δ' est plus fine que Δ , noté $\Delta' \geq \Delta$, si $\Delta' \supseteq \Delta$.

d) Raffinement commun de Δ_1 et Δ_2 , noté $\Delta_1 \vee \Delta_2$, est la partition de [a,b] formée de $\Delta_1 \cup \Delta_2$ ordonnés.

e) La norme de Δ , notée $\|\Delta\|$, est $\|\Delta\| = \max_{i=1}^n |x_i - x_{i-1}|$.

f)

$$\overline{M}(f, [x_{i-1}, x_1]) = \sup_{x \in [x_{i-1}, x_1]} f(x)$$
$$\underline{M}(f, [x_{i-1}, x_1]) = \inf_{x \in [x_{i-1}, x_1]} f(x)$$

$$\underline{M}(f, [x_{i-1}, x_1]) = \inf_{x \in [x_{i-1}, x_1]} f(x)$$

Remarque.

$$||x|| \ge 0$$

 $||\lambda x|| = |\lambda| ||x||$
 $||x + y|| = ||x|| + ||y||$

Définition.

a) La somme de Riemann par excès (ou supérieure) de f pour la partition Δ est

$$\overline{S}(f,\Delta) = \sum_{i=1}^{n} \overline{M}(f, [x_{i-1}, x_i]) \cdot (x_i - x_{i-1})$$

b) La somme de Riemann par défaut (ou inférieure) de f pour la partition Δ est

$$\underline{S}(f,\Delta) = \sum_{i=1}^{n} \underline{M}(f, [x_{i-1}, x_i]) \cdot (x_i - x_{i-1})$$

Proposition.

$$\underline{M}(f, [a, b]) \cdot (b - a) \leq \underline{S}(f, \Delta), \forall \Delta \in \Omega [a, b]$$

$$\underline{S}(f, \Delta) \leq \overline{S}(f, \Delta)$$

$$\overline{S}(f,\Delta) \le \overline{M}(f,[a,b]) \cdot (b-a)$$

Proposition. Si $\Delta' \geq \Delta$, alors $\overline{S}(f, \Delta') \leq \overline{S}(f, \Delta)$.

 $d\'{e}monstration.$

Sans perte de généralité, supposons

$$\Delta : a = x_0 < x_1 < \ldots < x_{i-1} < x_i < \ldots < x_n = b$$

$$\Delta' : a = x_0 < x_1 < \ldots < x_{i-1} < \bar{x} < x_i < \ldots < x_n = b$$

On a

$$\overline{S}(f,\Delta) - \overline{S}(f,\Delta') = \left[\overline{M}(f, [x_{i-1}, x_i]) \cdot (x_1 - x_{i-1}) \right]$$

$$- \left[\overline{M}(f, [x_{i-1}, \bar{x}]) \cdot (\bar{x} - x_{i-1}) + \overline{M}(f, [\bar{x}, x_i]) \cdot (x_i - \bar{x}) \right]$$

$$= (x_i - \bar{x}) \left[\overline{M}(f, [x_{i-1}, x_i]) - \overline{M}(f, [\bar{x}, x_i]) \right]$$

$$+ (\bar{x} - x_{i-1}) \left[\overline{M}(f, [x_{i-1}, x_i]) - \overline{M}(f, [x_{i-1}, \bar{x}]) \right]$$

$$> 0$$

Proposition. Si $\Delta' \geq \Delta$, alors $\underline{S}(f, \Delta') \geq \underline{S}(f, \Delta)$

 $d\'{e}monstration.$

Remarque. $\underline{S}(f, \Delta) = -\overline{S}(-f, \Delta)$.

Corollaire. $\forall \Delta_1, \Delta_2 \in \Omega[a, b], \underline{S}(f, \Delta_1) \leq \overline{S}(f, \Delta_2)$

 $d\'{e}monstration.$

On a $\Delta_1 \vee \Delta_2 \geq \Delta_1$. Ainsi,

$$\underline{S}(f, \Delta_1) \leq \underline{S}(f, \Delta_1 \vee \Delta_2)$$

$$\leq \overline{S}(f, \Delta_1 \vee \Delta_2)$$

$$\leq \overline{S}(f, \Delta_2)$$

Définition.

- a) La somme par défaut de f est $\underline{S}(f) = \sup_{\Delta \in \Omega[a,b]} \underline{S}(f,\Delta)$.
- b) La somme par excès de f est $\overline{S}(f) = \inf_{\Delta \in \Omega[a,b]} \overline{S}(f,\Delta)$.

Théorème. $\underline{S}(f) \leq \overline{S}(f)$

 $d\'{e}monstration.$

Soit $\Delta_1 \in \Omega[a, b]$

 $\underline{S}(f) = \sup \underline{S}(f, \Delta)$ est le plus petit majorant des $\underline{S}(f, \Delta)$ avec $\Delta \in \Omega[a, b]$.

Du corollaire précédant, on a que $\underline{S}(f, \Delta) \leq \overline{S}(f, \Delta_1)$.

Donc, $\overline{S}(f, \Delta_1)$ est un majorant des $\underline{S}(f, \Delta)$.

Ainsi, $\underline{S}(f) \leq \overline{S}(f, \Delta_1)$.

De même, $\overline{S}(f) = \inf \overline{S}(f, \Delta)$ est le plus grand minorant des $\overline{S}(f, \Delta)$ avec $\Delta \in \Omega[a, b]$.

Comme $\underline{S}(f)$ est un minorant des $\overline{S}(f, \Delta)$, on a que $\underline{S}(f) \leq \overline{S}(f)$.

Définition.

Soit $f \in \mathcal{B}[a,b]$. On dit que f est intégrable au sens de Riemann sur [a,b] si $\underline{S}(f) = \overline{S}(f)$ et on note $f \in \mathcal{R}[a,b]$. La valeur commune de $\underline{S}(f)$ et $\overline{S}(f)$ est notée $\int_a^b f(x) \ dx$

Théorème (Critère d'intégrabilité).

 $Soit \ f \in \mathcal{B}\left[a,b\right]. \ Alors \ f \in \mathcal{R}\left[a,b\right] \ si, \ et \ seulement \ si, \ (\forall \varepsilon > 0) \ (\exists \Delta = \Delta(\varepsilon) \in \Omega\left[a,b\right]) \ t.q. \ \overline{S}(f,\Delta) - \underline{S}(f,\Delta) < \varepsilon.$

 $d\'{e}monstration.$

 (\Rightarrow) Supposons $f \in \mathcal{R}[a,b]$.

Soit $\varepsilon > 0$.

On a
$$\int_a^b f = \overline{S}(f) = \inf \overline{S}(f, \Delta)$$
.

 $\text{Comme } \overline{S}(f) + \frac{\varepsilon}{2} \text{ ne peut minorer } \overline{S}(f,\Delta), \text{ alors } \exists \Delta_1 \in \Omega \left[a,b\right] \text{ t.q. } \overline{S}(f,\Delta_1) < \overline{S}(f) + \frac{\varepsilon}{2}.$

De même,
$$\int_a^b f = \underline{S}(f) = \sup \underline{S}(f, \Delta)$$
.

 $\text{Comme }\underline{S}(f)-\frac{\varepsilon}{2} \text{ ne peut majorer }\underline{S}(f,\Delta), \text{ alors } \exists \Delta_2 \in \Omega \left[a,b\right] \text{ t.q. }\underline{S}(f,\Delta_2) > \underline{S}(f)-\frac{\varepsilon}{2}.$

Posons $\Delta = \Delta(\varepsilon) = \Delta_1 \vee \Delta_2$.

On a

$$\overline{S}(f,\Delta) - \underline{S}(f,\Delta) \leq \overline{S}(f,\Delta_1) - \underline{S}(f,\Delta_2)$$

$$< \overline{S}(f) + \frac{\varepsilon}{2} - \left(\underline{S}(f) - \frac{\varepsilon}{2}\right)$$

$$= \left(\overline{S}(f) - \underline{S}(f)\right) + \varepsilon$$

$$= \varepsilon$$

 (\Leftarrow) Soit $\varepsilon > 0$.

Alors $\exists \Delta$ t.g. $\overline{S}(f, \Delta) - S(f, \Delta) < \varepsilon$.

Mais alors,

$$\varepsilon > \overline{S}(f, \Delta) - \underline{S}(f, \Delta)$$

 $\geq \overline{S}(f) - \underline{S}(f)$
 ≥ 0

Du théorème du sandwich, $\overline{S}(f) = \underline{S}(f)$, car $\varepsilon > 0$ est arbitraire.

Donc, $f \in \mathcal{R}[a, b]$.

Corollaire. S'il existe $\Delta \in \Omega[a, b]$ t.q. $\overline{S}(f, \Delta) = \underline{S}(f, \Delta)$, alors $f \in \mathcal{R}[a, b]$.

Théorème. Toute fonction continue sur [a,b] est intégrable sur [a,b].

 $d\'{e}monstration.$

Soit $f \in \mathcal{C}[a,b]$.

Soit $\varepsilon > 0$.

Par la proposition d'Archimède, $\exists n \in \mathbb{Z} \text{ t.g. } n\varepsilon > b - a$.

f est uniformément continue sur [a,b] si $(\forall \varepsilon > 0)$ $(\exists \delta > 0)$ t.q. pour $x,y \in [a,b], |x-y| < \delta \Rightarrow |f(x)-f(y)| < \varepsilon$. Rappel.

Si f est continue sur [a, b], alors f est uniformément continue sur [a, b].

Comme $f \in \mathcal{C}[a, b]$, elle est uniformément continue sur [a, b].

Alors, $\exists \delta > 0$ t.q. pour $x, y \in [a, b], |x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{1}{n}$.

Soit donc $\Delta \in \Omega[a,b]$: $a = x_0 < x_1, \ldots < x_n = b$ avec $\|\Delta\| < \delta$. Alors, $\overline{M}(f,[x_{i-1},x_i]) - \underline{M}(f,[x_{i-1},x_i]) < \frac{1}{n}$.

Remarque. $\overline{M}(f, [x_{i-1}, x_i]) - \underline{M}(f, [x_{i-1}, x_i])$ peut être noté $\operatorname{osc}_f([x_{i-1}, x_i])$.

On obtient

$$\overline{S}(f,\Delta) - \underline{S}(f,\Delta) = \sum_{i=1}^{n} \left[\overline{M}(f, [x_{i-1}, x_i]) - \underline{M}(f, [x_{i-1}, x_i]) \right] (x_i - x_{i-1})$$

$$< \frac{1}{n} \sum_{i=1}^{n} (x_i - x_{i-1})$$

$$= \frac{b-a}{n}$$

$$< \varepsilon$$

Donc $f \in \mathcal{R}[a, b]$.

Théorème. Toute $f:[a,b] \to \mathbb{R}$ monotone est intégrable.

démonstration.

- (1) Si f est constante, alors $\overline{S}(f, \Delta) \underline{S}(f, \Delta) = 0 < \varepsilon$.
- (2) Si f est croissante,

Soit $\varepsilon > 0$

Soit $n \in \mathbb{N}$ t.q. $n\varepsilon > (b-a)(f(b)-f(a))$

Soit $\Delta : a = x_0 < x_1 < \ldots < x_n = b \text{ avec } x_i = a + i \frac{b-a}{n}, i \in [0..n]$

On a

$$\overline{S}(f,\Delta) - \underline{S}(f,\Delta) = \sum_{i=1}^{n} \left[\overline{M}(f, [x_{i-1}, x_i]) - \underline{M}(f, [x_{i-1}, x_i]) \right] (x_i - x_{i-1})$$

$$= \sum_{i=1}^{n} \left[f(x_i) - f(x_{i-1}) \right] \left(\frac{b-a}{n} \right)$$

$$= \frac{b-a}{n} \left[f(b) - f(a) \right]$$

$$< \varepsilon$$

Donc, $f \in \mathcal{R}[a, b]$.

(3) Si f est décroissante, alors -f est croissante et $-f \in \mathcal{R}[a,b]$. Donc, $f \in \mathcal{R}[a, b]$.

Théorème.

Si
$$f_1, f_2 \in \mathcal{R}[a, b]$$
, alors $f_1 + f_2 \in \mathcal{R}[a, b]$ et $\int (f_1 + f_2) = \int f_1 + \int f_2$.

 $d\'{e}monstration.$

Soit $\varepsilon > 0$.

Comme
$$f_i \in \mathcal{R}[a, b], \exists \Delta_i \in \Omega[a, b] \text{ t.q. } \overline{S}(f_i, \Delta_i) - \underline{S}(f_i, \Delta_i) < \frac{\varepsilon}{2}.$$

Soit
$$\Delta = \Delta_1 \vee \Delta_2$$
.

Alors,
$$\overline{S}(f_i, \Delta) - \underline{S}(f_i, \Delta) < \frac{\varepsilon}{2}$$
.

Supposons
$$\Delta : a = x_0 < x_1 < \ldots < x_n = b$$
.

On a

$$\overline{S}(f_1 + f_2, \Delta) \leq \overline{S}(f_1, \Delta) + \overline{S}(f_2, \Delta)$$
$$\underline{S}(f_1 + f_2, \Delta) \geq \underline{S}(f_1, \Delta) + \underline{S}(f_2, \Delta)$$

Car $\sup(f_1 + f_2) \le \sup f_1 + \sup f_2$ et $\inf(f_1 + f_2) \ge \inf f_1 + \inf f_2$. Alors,

$$\overline{S}(f_1 + f_2, \Delta) - \underline{S}(f_1 + f_2, \Delta) \leq \overline{S}(f_1, \Delta) + \overline{S}(f_2, \Delta) - \underline{S}(f_1, \Delta) - \underline{S}(f_2, \Delta)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Donc, $f_1 + f_2 \in \mathcal{R}[a, b]$.

De plus,

$$\int_{a}^{b} f_{1} + f_{2} \leq \overline{S}(f_{1} + f_{2}, \Delta)$$

$$\leq \overline{S}(f_{1}, \Delta) + \overline{S}(f_{2}, \Delta)$$

$$\leq \underline{S}(f_{1}, \Delta) + \frac{\varepsilon}{2} + \underline{S}(f_{2}, \Delta) + \frac{\varepsilon}{2}$$

$$\leq \int_{a}^{b} f_{1} + \frac{\varepsilon}{2} + \int_{a}^{b} f_{2} + \frac{\varepsilon}{2}$$

Donc,
$$\int_a^b f_1 + f_2 \le \int_a^b f_1 + \int_a^b f_2$$
.

Ainsi, $\int_a^b f_1 + f_2 < \int_a^b f_1 + \int_a^b f_2 + \varepsilon$, $\forall \varepsilon > 0$. Donc, $\int_a^b f_1 + f_2 \le \int_a^b f_1 + \int_a^b f_2$. De même, on peut montrer que $\int_a^b f_1 + f_2 \ge \int_a^b f_1 + \int_a^b f_2$. Donc, $\int_a^b f_1 + f_2 = \int_a^b f_1 + \int_a^b f_2$.

Donc,
$$\int_a^b f_1 + f_2 = \int_a^b f_1 + \int_a^b f_2$$
.

Théorème.

Si $f \in \mathcal{R}[a, b]$ et $\lambda \in \mathbb{R}$, alors $\lambda f \in \mathcal{R}[a, b]$ et $\int \lambda f = \lambda \int f$.

 $d\'{e}monstration.$

Laissé en exercice.

Utiliser $\frac{\varepsilon}{\lambda}$ et $\overline{S}(\lambda f, \Delta) = \lambda \overline{S}(f, \Delta)$.

Corollaire.

Si $f, g \in \mathcal{R} [a, b]$, alors $f \leq g \Rightarrow \int f \leq \int g$.

 $d\'{e}monstration.$

$$g - f \ge 0 \Rightarrow \int g - f \ge 0 \Rightarrow \int g - \int f \ge 0.$$

Théorème (Inégalité du triangle).

Si $f \in \mathcal{R}[a, b]$, alors $|f| \in \mathcal{R}[a, b]$ et $|\int f| \le \int |f|$.

 $d\'{e}monstration.$

Soit $\varepsilon > 0$

Alors, $\exists \Delta \in \Omega [a, b]$ t.q. $\overline{S}(f, \Delta) - \underline{S}(f, \Delta) < \varepsilon$.

On a

$$\overline{S}(|f|, \Delta) - \underline{S}(|f|, \Delta) = \sum_{i=1}^{n} \left[\overline{M}(|f|, [x_{i-1}, x_i]) - \underline{M}(|f|, [x_{i-1}, x_i]) \right] (x_i - x_{i-1})$$

$$\leq \sum_{i=1}^{n} \left[\overline{M}(f, [x_{i-1}, x_i]) - \underline{M}(f, [x_{i-1}, x_i]) \right] (x_i - x_{i-1})$$

$$= \overline{S}(f, \Delta) - \underline{S}(f, \Delta)$$

$$< \varepsilon$$

Donc, $|f| \in \mathcal{R}[a, b]$. Enfin,

$$\begin{split} -\left|f\right| \leq f \leq \left|f\right| \Rightarrow -\int \left|f\right| \leq \int f \leq \int \left|f\right| \\ \Rightarrow \int f \leq \int \left|f\right| \end{split}$$

Théorème.

Si $f \in \mathcal{R}[a, b]$ et $a \leq c < d \leq b$, alors $f|_{[c,d]} \in \mathcal{R}[a, b]$.

 $d\'{e}monstration.$

Soit $\varepsilon > 0$

Comme $f \in \mathcal{R}[a, b], \exists \Delta_1 \in \Omega[a, b] \text{ t.q. } \overline{S}(f, \Delta_1) - \underline{S}(f, \Delta_1) < \varepsilon.$

Soit Δ_2 le raffinement de Δ_1 en ajoutant les points c et d.

Alors, $\overline{S}(f, \Delta_2) - \underline{S}(f, \Delta_2) \leq \overline{S}(f, \Delta_1) - \underline{S}(f, \Delta_1) < \varepsilon$

Donc, $f \in \mathcal{R}[c,d]$.

Théorème.

Si $f \in \mathcal{R}[a,b]$ et a < c < b, alors $\int_a^b f = \int_a^c f + \int_c^b f$.

 $d\'{e}monstration.$

Soit $\varepsilon > 0$

 $f \in \mathcal{R}[a,b] \Rightarrow f \in \mathcal{R}[a,c] \Rightarrow \exists \Delta_1 \in \Omega[a,c] \text{ t.q. } \overline{S}(f,\Delta_1) - \underline{S}(f,\Delta_1) < \frac{\varepsilon}{2}.$ De même, $\exists \Delta_2 \in \Omega[c,b] \text{ t.q. } \overline{S}(f,\Delta_2) - \underline{S}(f,\Delta_2) < \frac{\varepsilon}{2}.$ Posons $\Delta = \Delta_1 \vee \Delta_2$. Alors, $\Delta \in \Omega[a, b]$ et

$$\int_{a}^{b} f \leq \overline{S}(f, \Delta)$$

$$= \overline{S}(f, \Delta_{1}) + \overline{S}(f, \Delta_{2})$$

$$< \underline{S}(f, \Delta_{1}) + \frac{\varepsilon}{2} + \underline{S}(f, \Delta_{2}) + \frac{\varepsilon}{2}$$

$$= \underline{S}(f, \Delta_{1}) + \underline{S}(f, \Delta_{2}) + \varepsilon$$

$$\leq \int_{a}^{c} f + \int_{c}^{b} f + \varepsilon$$

Comme $\varepsilon > 0$ est arbitraire, on a $\int_a^b f \leq \int_a^c f + \int_c^b f$. De même, $\int_a^b f \geq \int_a^c f + \int_c^b f$.

Théorème.

Soit $f \in \mathcal{B}[a,b]$. Soit $n \in \mathbb{N}$.

Si f possède n discontinuités dans [a,b], alors $f \in \mathcal{R}[a,b]$.

 $d\'{e}monstration.$

Pour n = 0, $f \in \mathcal{C}[a, b]$, donc $f \in \mathcal{R}[a, b]$ est un résultat connu.

Supposons l'énoncé vrai pour n.

Supposons que $f \in \mathcal{B}[a,b]$ admet n+1 discontinuités.

Soit $\varepsilon > 0$.

Soit
$$M = \sup_{x \in [a,b]} |f(x)|$$

Il y a deux cas à considérer

1. a ou b est une discontinuité

SPDG, supposons que a est la discontinuité.

Soit $\eta \in \mathbb{R}^+$ t.q. a est l'unique discontinuité de $[a, a + \eta]$ et $\eta < \frac{\varepsilon}{4M}$.

Alors, $[a + \eta, b]$ contient n discontinuités.

De l'hypothèse de récurrence, $f \in \mathcal{R} [a + \eta, b]$.

Il existe donc $\Delta \in \Omega[a + \eta, b]$ t.q. $\overline{S}(f, \Delta) - \underline{S}(f, \Delta) < \frac{\varepsilon}{2}$.

Posons $\Delta_{\varepsilon} = \Delta \vee \{a\}.$

On a donc

$$\overline{S}(f, \Delta_{\varepsilon}) - \underline{S}(f, \Delta_{\varepsilon}) = \left(\overline{S}(f, \Delta) - \underline{S}(f, \Delta)\right) + \left(\overline{M}(f, [a, a + \eta]) - \underline{M}(f, [a, a + \eta])\right) \eta$$

$$< \frac{\varepsilon}{2} + 2M\eta$$

$$< \varepsilon$$

2.