OCM 改 オペレーションガイド

目次

1. 準備

OCM 改は、Terasic DEOCV という FPGA 評価ボードをターゲットにした 1chipMSX 派生形 MSX 互換 FPGA デザインデータです。 そのため、 最低限 Terasic DEOCV と、 書き込みソフトウェアである QuartusPrime が必要になります。

(1) Terasic DE0CV

https://www.terasic.com.tw/cgi-bin/page/archive.pl? Language=English&CategoryNo=163&No=921&PartNo=1

(2) QuartusPrime Lite Edition

https://fpgasoftware.intel.com/?edition=lite

- (3) 640x480 を表示できる VGA モニター。 D-SUB15pin 入力が付いているものと、その接続ケーブル。
- (4) PS/2 キーボード

最低限、この4つがあれば動作します。

MSX のカートリッジ・音声出力・ジョイスティックポート・カセットテープポートを使うためには、DEOCM を装着する必要があります。

DEOCM

https://yone2.net/deocm/

DEOCM は、購入時の状態では ±12V は供給されていません。必要に応じて DCDC コンバータを追加して下さい(DEOCM のマニュアルに記載があります)。

さらに、MIDIポートを追加したい場合は、ポート増設の改造が必要です。追加方法に関しては、下記の同梱ドキュメントを参照下さい。

MSX-MIDI/MSX-MIDIonDE0CV.pdf

PC とのファイルのやりとりをするために、microSD カードがあると便利です。SD カード・SDHC カードを利用できます。SDXC 以降は利用できませんのでご注意下さい。また、FAT16 フォーマットしか認識できません。SDHC カードの場合は 4GB 以下のパーティションに分ける必要がありますのでご注意下さい。

※以降、Terasic DEOCV は DEOCV、Quartus Prime Lite は Quartus と表記します。

2. QuartusPrime のインストール

ダウンロードページを開くと下記のような画面になっています(※2021年12月6日現在)。

下の方にスクロールすると、下記のようになっています。

Quartus Prime (includes Nios II EDS) の右にある青い下向き矢印をクリックして下さい。

サインインを求められます。未登録の場合は登録(無料)してアカウントを作る必要があります。

サインインすると、また最初のページに戻されて、エディションが Pro に変わっていたりします。 Lite エディションを選んで、最新のバージョンに変更後、再度 Quartus Prime (includes Nios II EDS) の右にある青い下向き矢印をクリックしてダウンロードして下さい。

ダウンロード後、普通にインストールします。

3. 書き込み

OCM 改の FPGA デザインデータを、DEOCV 上のシリアル ROM (EPCS64)に書き込むことで利用できるようになります。 その書き込み方法について説明します。

(1) 下記のファイルをダブルクリックして Quartus を起動して下さい。

source\pld\projects\de0cv\emsx_top_de0cv.qpf

(2) Tools → Programmer をクリック

(3)接続を確認する

起動した Programmer の画面写真が上記のようになります。

赤線で囲った部分が「No Hardware」と表示されているはずです。

写真のスイッチを、下側へスライドさせ Programming モードにして、USB ケーブルで PC に接続して下さい。 USB バスパワーで動作しますので、AC アダプターは接続しなくてかまいません。

接続後、赤い電源ボタンを押して下さい。

すると、PC が接続を認識します。

Hardware Setup ボタンをクリックします。

Currently selected hardware のプルダウンメニューに「USB-Blaster [USB-0]」が出てきますので、これを選択して下さい。

Close で Hardware Setup を閉じます。

赤線で囲った部分が USB-Blaster に変わっていれば認識成功です。

このまま Start をクリックして書き込んで下さい。

右上の Progress のところに進捗表示が出てきます。

2分くらいで書き込みを終え、下記のように Successful になれば完了です。

DEOCV の赤ボタンを押して電源を切った後、スイッチを上へ戻して下さい。

VGA モニター、PS/2 キーボードを接続して電源(赤ボタン)を押すと起動します。

4. SD-BIOS

本体には、MSX2 相当の BIOS が書き込まれています。これを EP-BIOS と呼びます。

一方で、SD カード上に配置した BIOS イメージファイルを使うことも出来ます。これを SD-BIOS と呼びます。 OCM 改は SD-BIOS を見つけた場合はそちらを利用して起動し、見つからなかった場合は EP-BIOS で起動します。

OCM 改のハードウェアは MSX2+相当です。一部 MSXturboR の機能も搭載しています。これらを利用するためには、MSX2+や MSXturboR の BIOS で起動する必要があります。

MSX2+や MSXturboR の本体をお持ちの場合は、その本体から BIOS イメージを吸い出して、所定の加工を施した後に SD カード上に配置して DE0CV に挿入することで、その BIOS を利用することが出来るようになっています。

BIOS イメージの吸い出し方法は機種によって異なりますが、Panasonic 後期の機種であれば、エミュレーター BlueMSX のサイトにて吸い出しツールが公開されています。これを利用することが出来ます。

http://bluemsx.msxblue.com/resource.html

MSX1のBIOSを用意すれば、MSX1として利用することも出来ます。

VDP のパレットは、MSX1 の TMS9918 系に近い色合いになるように調整してあります。

SD-BIOS は、source\tool\bios_image_maker\roms にあるツールで作ることが出来ます。
SD-BIOS のファイルは、OCMKBIOS.DAT になります。ルートディレクトリに配置しなければなりません。
このツールの使い方については、source\documents\iplrom4.pdf を参照下さい。