1 Predicate Logic & Correctness

- Propositional operators
 - not (\neg) , and (\land) , or (\lor)
 - implication (\Rightarrow) $P \Rightarrow Q \equiv \neg P \lor Q$
 - equivalence (\Leftrightarrow) $P \Leftrightarrow Q \equiv (P \Rightarrow Q) \land (Q \Rightarrow P)$
- Operator precedence (tightest-binding first): \neg , \wedge , \vee , \Rightarrow
- Quantifiers
 - for all (\forall)
 - there exists (\exists)
 - Example: $\forall x \in \mathbb{N} \cdot x \geq 0$
 - The type of the bound variable may be implicit, e.g. $\forall x \cdot x \geq 0$
- Entailment
 - If $P \Rightarrow Q$ is a tautology (always true) then P is stronger than Q
 - Equivalently: P entails Q ($P \Rightarrow Q$)
- Substitution
 - $-P[x \mid a]$ Substitute all occurrences of x by a in P
 - $-P[x,y\backslash a,b]$ Substitute a and b for x and y simultaneously
- Hoare triples $-\{P\} S\{Q\}$
 - -P is the precondition, S is the program and Q is the postcondition
 - If P is true before S executes, then S will terminate and Q will be true when it does
 - The program must terminate if started in States, (total correctness)
- ullet Weakest preconditions
 - For a program S and postcondition Q, wp(S,Q) is the unique weakest possible precondition such that the triple $\{P\}$ S $\{Q\}$ will be true
 - $\forall P \cdot (\{P\} S \{Q\}) \Rightarrow (P \Rightarrow wp(S, Q))$

2 Guarded Command Language

- skip Empty Command
 - $wp(\mathbf{skip}, Q) \equiv Q$
 - Hence $\{Q\}$ skip $\{Q\} \equiv$ true for any Q
 - $\{P\}$ skip $\{Q\}$ is false if and only if P is strictly weaker than Q
- abort Chaotic Command
 - $wp(\mathbf{abort}, Q) \equiv \text{false}$
 - No precondition can guarantee a postcondition
 - Represents 'chaotic/undefined behaviour'
- $\bullet := Assignment$
 - $wp(x := E, Q) \equiv Q[x \backslash E]$
 - So $\{Q[x \setminus E]\} x := E\{Q\}$ is true
 - Generalises to multiple assignment: $wp((x, y := E, F), Q) \equiv Q[x, y \setminus E, F]$
- ; Composition/Concatenation
 - $wp(S_1; S_2, Q) \equiv wp(S_1, wp(S_2, Q))$
 - There exists some 'middle' predicate true after S_1 and before S_2
 - If $\{P\} S_1 \{M\} \land \{M\} S_2 \{Q\} \text{ then } \{P\} S_1; S_2 \{Q\}$
- if Selection
 - $\begin{array}{ccc} & \mathbf{if} & G_1 \to S_1 \\ \parallel & G_2 \to S_2 \\ & \ddots \\ \parallel & G_n \to S_n \end{array}$
 - Evaluate all guards $G_1 \dots G_n$, choose a true guard G_i nondeterministically, and execute S_i
 - if all guards evaluate to false then **abort** is executed
 - $wp(\mathbf{if}, Q) \equiv \bigvee_{i=1}^{n} G_i \wedge \bigwedge_{i=1}^{n} (G_i \Rightarrow wp(S_i), Q)$
 - The disjunction of the guards must be true
- do Repetition
 - $\begin{array}{ccc} \ \mathbf{do} \ G_1 \to S_1 \\ \llbracket \ G_2 \to S_2 \\ \dots \\ \llbracket \ G_n \to S_n \\ \mathbf{od} \end{array}$
 - Evaluate all guards, choose a true guard nondeterministically, execute S_i and repeat
 - If all G_i are false, the loop ends and the program continues
 - Weakest precondition rule is complex, so *loop invariants* are used instead
 - Predicate I is a loop invariant if $\{I \wedge G_i\} S_i \{I\}$ for all $1 \leq i \leq n$
 - There are usually many possible invariants for a loop

3 Refinement & Verification

4 Derivation

5 Procedures

6 Recursion

7 Modules