ЗАДАЧИ К ЭКЗАМЕНУ ПО КВАНТОВОЙ МЕХАНИКЕ 1

3-й курс, 5-й семестр.

Задача 1.

Частица движется в поле $U(x) = \alpha x^4$. Оценить энергию основного состояния.

Задача 2.

Частица движется в поле $U(x) = -G\delta(x+a) - G\delta(x-a)$. Считая $mGa/\hbar^2 \gg 1$, найти приближённые значения энергий связанных стационарных состояний и нарисовать качественно соответствующие волновые функции.

Задача 3.

Частица движется в поле $U(x) = G\delta(x+a) - 2G\delta(x)$. Получить уравнение для определения энергии связанного состояния и показать качественно (графически) существование решения.

Задача 4.

Найти условие, при котором в потенциале $U(x) = -G\delta(x) - 2G\delta(x-a)$ появляется второе связанное стационарное состояние.

Задача 5.

Найти условие, при котором в потенциале $U(x) = \infty$ при x < 0, $U(x) = -G\delta(x-a)$ при x > 0 существует связанное стационарное состояние.

Задача 6.

6. Чему равняется произведение неопределённостей $\Delta x \Delta p$ для связанного стационарного состояния частицы, движущейся в потенциале $U(x) = -G\delta(x)$?

Задача 7.

Оценить на каком по счёту квантовом уровне находится абсолютно упругий шарик с массой 1 г, подпрыгивающий на высоту 10 см над идеально отражающей плоскостью в однородном поле тяжести g?

Задача 8.

Для n-го состояния линейного осциллятора вычислить, используя операторный метод, среднее значение $< n|x\hat{p}|n>$.

Задача 9.

Найти волновые функции стационарных состояний и уровни энергии линейного осциллятора, находящегося в однородном электрическом поле. "Электрическая" часть потенциальной энергии осциллятора равна $-|e|\mathcal{E}x$.

Задача 10.

Показать, что среднее значение производной по времени физической величины, не зависящей от времени явно, в стационарном состоянии дискретного спектра равно нулю, в частности, что $< n|\vec{p}|n>=0$.

Задача 11.

Чему равны средние значения координаты и импульса частицы, находящейся в основном состоянии в поле $U(x)=\infty$ при x<0, $U(x)=m\omega^2x^2/2$ при x>0.

Задача 12.

Для частицы в однородном поле $U(x) = -F_0 x$ найти гейзенберговские операторы координаты и импульса.

Задача 13.

Используя правило квантования Бора-Зоммерфельда, найти квазиклассический спектр энергии в поле $U(x)=m\omega^2x^2/2-F_0x$.

Задача 14.

Вычислить в квазиклассическом приближении коэффициент прохождения электрона через потенциальный барьер: U(x) = 0 при x < 0, $U(x) = U_0 - |e|\mathcal{E}x$ при x > 0 ("холодная эмиссия"). Указать условие применимости расчёта.

Задача 15.

Найти число уровней энергии в потенциальной яме $U(x) = -U_0(1-|x|/a)$ при |x| < a, U(x) = 0 при |x| > a, для которой $\sqrt{U_0 m a^2/\hbar^2} \gg 1$.

Задача 16.

Найти положение, ширину и время жизни низшего квазистационарного уровня в поле $U(x)=\infty$ при $x<0,\ U(x)=G\delta(x-a)$ при x>0, считая барьер малопроницаемым, т.е. $mGa/\hbar^2\gg 1$.

Задача 17.

Найти волновые функции стационарных состояний и уровни энергии плоского ротатора с моментом инерции $I=\mu\,R_0^2$. Гамильтониан такой системы имеет вид $\hat{H}=-(\hbar^2/2I)\,\partial^2/\partial\varphi^2$.

Задача 18.

Плоский ротатора (система с гамильтонианом $\hat{H} = -(\hbar^2/2I)\,\partial^2/\partial\varphi^2$) в момент времени t=0 находится в состоянии с волновой функцией $\psi(\varphi,t=0) = A\,e^{i\varphi}\cos^2\varphi$. Найти среднее значение момента ротатора l_z и $\psi(\varphi,t>0)$.

Задача 19.

Найти возможные значения момента l_z , их вероятности и среднее значение l_z в состоянии системы, описываемом волновой функцией $\psi(\varphi) = A \, e^{i\varphi} \cos^2 \varphi$.

Задача 20.

Доказать, что $\overline{\hat{l}_x^2}$ $\overline{\hat{l}_y^2} \ge (\overline{\hat{l}_z})^2/4$, где средние значения операторов взяты по состояниям с определённым орбитальным моментом l и его проекцией m на ось z. Для каких m выполняется равенство?

Задача 21.

Найти $\tilde{Y}_{1m}(\theta,\varphi)$ — собственные функции оператора \hat{l}_x через функции $Y_{1m}(\theta,\varphi)$ собственные для оператора \hat{l}_z .

Задача 22.

Указать, при каких m и m' могут быть отличны от нуля матричные элементы дипольного момента $< m' | \vec{r} | m >$.

Задача 23.

Вычислить средние значения $<\psi|\hat{\vec{l}}|\psi>$ для $\psi=Y_{l\,0}$ и $\psi=(Y_{11}+Y_{1-1})/\sqrt{2}$.

Залача 24.

Какие значения проекции момента l_z и квадрата момента $\vec{l}^{\ 2}$ реализуются в состоянии $\psi_{100}(x,y,z)$ пространственного изотропного осциллятора (т.е. частицы в поле $U=m\omega^2\vec{r}^{\ 2}/2$).

Задача 25.

Найти кратность вырождения уровней энергии пространственного изотропного $(\omega_x = \omega_y = \omega_z = \omega)$ осциллятора.

Задача 26.

Найти условие существования дискретного уровня энергии в центральносимметричной потенциальной яме: $U(r) = -U_0$ при r < a, U(r) = 0 при r > a.

Задача 27.

Получить уравнение для определения уровней энергии частицы, движущейся с моментом l=0 в центрально-симметричной потенциальной яме: $U(r)=-U_0$ при $r< a,\, U(r)=0$ при r>a. Когда в ней появляется n-й уровень?

Задача 28.

Прямым вариационным методом найти энергию основного состояния атома водорода, используя пробную функцию $A e^{-r/b}$.

Задача 29.

Показать, что в основном состоянии атома водорода наиболее вероятное значение r равно $a=\hbar^2/me^2$, а среднее значение $\overline{(1/r)}=1/a$.

Задача 30.

Сравнить энергии основных состояний и размеры (наиболее вероятные значения r) для водородоподобных атомов $\mathrm{He^+}$, $\mathrm{Li^{++}}$, e^+e^- (позитроний) с соответствующими величинами для атома водорода.

Задача 31.

Найти вероятность того, что при β -распаде трития ³H электрон, находившийся в основном состоянии, попадёт на первый возбуждённый уровень энергии иона ³He⁺ в состояние с волновой функцией $\psi_{200} = (1 - r/(2a))e^{-r/(2a)}/\sqrt{8\pi a^3}$. Как связан здесь параметр a с боровским радиусом?

Задача 32.

Найти распределение вероятностей различных значений импульса электрона в основном состоянии атома водорода.

Залача 33.

Найти собственные функции и собственные значения гамильтониана $H=\frac{\hbar^2}{2\mu R_0^2}(\hat{l}_z+\frac{1}{2})^2$, где $\hat{l}_z=-i\partial/\partial\varphi$, а μ и R_0 — параметры. Какова кратность вырождения уровней?