

Model Predictive Control for Cooperative Hunting in 3D Environment

ESC499Y1 2019-2020 Final Presentation

Student Name: Che (Charles) Liu

Student Number: 1002246839

Supervisor: Prof. Hugh H.T. Liu

Division of Engineering Science, University of Toronto March 27, 2020

Background

- ☐ Cooperative hunting is a popular area of study in robotics
- ☐ It is a collective behavior commonly seen in nature, especially in pack hunters or social predators

 O Wolfs, wild dogs, falcons, chimpanzees, etc.
- ☐ More likely to capture the prey and prevents it from escaping

Figure 1: Mollies pack wolves hunting a bison.

Why three-dimensional?

- ☐ Most of existing solutions only consider the 2D case or collapse the 3D problem into 2D
- ☐ The UAV dynamics can be better modelled in 3D, which allows for more optimal surroundings

Figure 2: An example of cooperative hunting in 3D.

Crazyflie 2.1 + Robot Operating System (ROS)

- ☐ A flying development platform based on a nanoquadcopter
 - LightweightSmall in size

 - o Flexible
 - Robot Operating System(ROS)
- ☐ Ideal for hunting purposes
- ☐ Takes the desired [roll, pitch, yaw rate, thrust] through *cmd_vel*

Figure 3: A Crazyflie 2.1 nano-quadcopter.

Design Overview

trajectory/waypoint

Figure 5: Different modules in the thesis design.

☐ Low-level to high-level design

- 1. Crazyflie 2.1 attitude controller approximation
- 2. Linear quadratic regulator (LQR) for roll and pitch
- 3. Trajectory controller design

- ☐ Crazyflie uses a cascade PID for attitude control
- Abstract the motors away and approximate the plant as a double integrator
- □Pulse width modulation (PWM) → acceleration

Figure 6: Attitude controller approximation.

| Model Predictive Control for Cooperative Hunting in 3D Environment

Figure 7: Block diagram of the approximated block diagram.

Red → 'inner PID'

Purple → 'outer PID'

Orange → 'inner closed-loop system'

Green → 'outer closed-loop system'

The gains used for the cascade PID controller are:

$$k_{p_{inner}} = 250.0, k_{i_{inner}} = 500.0, k_{d_{inner}} = 2.5, ilim_{inner} = 33.0$$

$$k_{p_{outer}} = 6.0, k_{i_{outer}} = 3.0, k_{d_{outer}} = 0.0, ilim_{outer} = 20.0$$

$$G(s) = \frac{u(s)}{e(s)} = k_p + \frac{k_i}{s} + k_d s = \frac{k_d s^2 + k_p s + k_i}{s}$$

Substitute the gains in, and after some manipulations

$$G(s)_{inner} = \frac{2.5s^2 + 250s + 500}{s}$$

$$G(s)_{outer} = \frac{6s + 3}{s}$$

$$G(s)_{inner_{CLS}} = \frac{G(s)_{inner} \frac{1}{s}}{1 + G(s)_{inner} \frac{1}{s}} = \frac{0.7143s^2 + 71.43s + 142.9}{s^2 + 71.43s + 142.9}$$

$$G(s)_{outer_{CLS}} = \frac{G(s)_{outer} G(s)_{innerCLS} \frac{1}{s}}{1 + G(s)_{outer} G(s)_{innerCLS} \frac{1}{s}} = \frac{4.286s^3 + 430.7s^2 + 1071s + 428.6}{s^4 + 75.71s^3 + 573.6s^2 + 1071s + 428.6}$$

Model Order Reduction

$$G(s)_{outer_{CLS}} = \frac{G(s)_{outer}G(s)_{innerCLS}\frac{1}{s}}{1 + G(s)_{outer}G(s)_{innerCLS}\frac{1}{s}} = \frac{4.286s^3 + 430.7s^2 + 1071s + 428.6}{s^4 + 75.71s^3 + 573.6s^2 + 1071s + 428.6}$$

- Transfer function of the cascade-PID controller
- □ 4th order transfer function
 - Eight-dimensional state-space representation if we include both roll and pitch
 - High computational complexity
 - Prune to numerical issues
 - Difficult to interpret the states
- Can approximate the system with a lower-order one

Model Order Reduction

$$G(s)_{outer_{CLS}} = \frac{G(s)_{outer}G(s)_{innerCLS}\frac{1}{s}}{1 + G(s)_{outer}G(s)_{innerCLS}\frac{1}{s}} = \frac{4.286s^3 + 430.7s^2 + 1071s + 428.6}{s^4 + 75.71s^3 + 573.6s^2 + 1071s + 428.6}$$

- □ MATLAB's [sysb, g] = balreal(sys) function computes a balanced realization of sysb
 - o g contains the Hankel singular values for each state
 - Small value indicates that the corresponding state has low energy and can be removed
 - For our system, the values are 0.5490, 0.0385, 0.0108, and 0.0004, which suggests that the first (and possibly the second) state should suffice
- \square MATLAB's rsys = modred(sys, elim, method) function computes the system after state elimination
 - First-order system reduction
 - Second-order system reduction

□ The transfer function becomes:

$$\widetilde{G}(s)_{CLS} = \frac{5.836}{s + 5.316}$$

□ The corresponding state-space model in controllable canonical form is:

$$\mathbf{A} = -5.316, \ \mathbf{B} = -2.416, \ \mathbf{C} = -2.416, \ \mathbf{D} = 0$$

$$\dot{\boldsymbol{x}} = \mathbf{A}\boldsymbol{x} + \mathbf{B}\boldsymbol{u}$$

$$\boldsymbol{y} = \mathbf{C}\boldsymbol{x}$$

□ To obtain the output dynamics, a coordinate transform from the internal state to the output need to be performed

$$\mathbf{y} = \mathbf{T}(\mathbf{x}) = \mathbf{P}^{-1}\mathbf{x} = \mathbf{C}\mathbf{x}$$

$$\hat{\mathbf{A}} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{C}\mathbf{A}\mathbf{C}^{-1} = -5.3155$$

$$\hat{\mathbf{B}} = \mathbf{P}^{-1}\mathbf{B} = \mathbf{C}\mathbf{B} = 5.8363$$

$$\dot{\phi} = -5.3155\phi + 5.8363u$$

□ At steady state, the angle converges to:

$$\dot{\phi} = 0 = -5.3155\phi + 5.8363u$$

$$\phi = \frac{5.8363}{5.3155}u > u$$

□ To get rid of the steady-state error, average the coefficient:

$$\dot{\phi} = -\frac{5.3155 + 5.8363}{2}\phi + \frac{5.3155 + 5.8363}{2}u = -5.5759\phi + 5.5759u$$

Max diff in time delay:

$$(\Delta time\ delay)_{max} = \frac{(\Delta\phi)_{max}}{f} \frac{\pi}{180} \approx 2\ ms$$

Figure 8: Bode plot of the reduced-order system vs. the original system

Step response

- No steady-state error
- $_{\circ}$ Comparable rise time ($\sim 0.4 \text{ s}$)
- Smaller overshoot

Figure 10: Step response of the first-order reduced system.

The state-space model with state $x = (x, y, \dot{x}, \dot{y}, \phi, \theta)$ is thus:

where a small angle approximation $tan(\theta) \approx \theta$ (in radians) was used for accelerations in x and y directions

Figure 9: Force diagram of a quadcopter.

$$tan(\theta) = \frac{F_x}{mg}$$

$$\ddot{x} = \frac{F_x}{m} \approx g\theta(rad) = g\frac{\pi}{180}\theta(deg)$$

$$\ddot{y} = \frac{F_y}{m} \approx -g\phi(rad) = -g\frac{\pi}{180}\phi(deg)$$

□ The transfer functions reduces to:

$$\widetilde{G}(s)_{angle} = \frac{angle}{angle_d} = \frac{4.321s + 417}{s^2 + 73.08s + 384.4}$$

$$\widetilde{G}(s)_{rate} = \frac{rate}{angle_d} = \frac{4.286}{2} + 419.4s - 12.89$$

$$2 + 73.08s + 384.4$$

In controllable canonical form:

$$\mathbf{A} = \begin{bmatrix} -1.84 & -15.68 \\ 16.16 & -71.24 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} -3.337 \\ 10.81 \end{bmatrix}$$
$$\mathbf{C} = \begin{bmatrix} -1.031 & 0.08154 \\ 3.174 & 10.81 \end{bmatrix}, \ \mathbf{D} = \begin{bmatrix} 0 \\ 4.286 \end{bmatrix}$$

- □ The rate transfer function is not strictly proper
 - we cannot use the same coordinate transform to get the dynamic in the output angle

- Can use the step response characteristics of the original system to design a second order system
- Rise time and percent overshoot from MATLAB's stepinfo(sys) function

$$T_r = 0.2948, M_p = 5.9900$$

 The undamped natural frequency and damping ratio can be calculated

$$\omega_n = \frac{1.8}{T_r} = 6.1058$$

$$\xi = \frac{|\ln(M_p/100)|}{\sqrt{\pi^2 + \ln^2(M_p/100)}} = -0.6673$$

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2} = \frac{37.2808}{s^2 + 8.1488s + 37.2808}$$

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2} = \frac{37.2808}{s^2 + 8.1488s + 37.2808}$$

□ In controllable canonical form:

$$\mathbf{A} = \begin{bmatrix} -8.149 & -4.66 \\ 8 & 0 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$$
$$\mathbf{C} = \begin{bmatrix} 0 & 0.5825 \\ 4.66 & 0 \end{bmatrix} \quad \mathbf{D} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

□ After the same coordinate transform:

$$\hat{\mathbf{A}} = \mathbf{C}\mathbf{A}\mathbf{C}^{-1} = \begin{bmatrix} 0 & 1 \\ -37.2808 & -8.1488 \end{bmatrix}$$

$$\hat{\mathbf{B}} = \mathbf{C}\mathbf{B} = \begin{bmatrix} 0 \\ 37.2808 \end{bmatrix}$$

- Step response
 - Similar rise time to the first order system
 - $_{\circ}$ Bigger overshoot than the first order system ($\sim 5\%$)

Figure 11: Step response of the second-order reduced system.

□ The state-space model with state $\mathbf{x} = (x, y, \dot{x}, \dot{y}, \phi, \theta, \dot{\phi}, \dot{\theta})$ is thus:

Double Integrator		i i	0 0 0 0	0 0 0 0	1 0 0 0	0 1 0 0	0 0 0 $-g\frac{\pi}{180}$	$0 \\ g \frac{\pi}{180} \\ 0$	0 0 0	0 0 0 0		$\begin{bmatrix} x \\ y \\ \dot{x} \\ \dot{y} \end{bmatrix}$	0 0 0 0	0 0 0 0	$\left[u_{\phi} ight]$
	ģ	5	0	0	0	0	0	0	1	0		ϕ $ $ $^+$	0	0	$\lfloor u_{ heta} \rfloor$
Second-order	ė	į	0	0	0	0	0	0	0	1		9	0	0	
Attitude	ģ	5	0	0	0	0	-37.2808	0	-8.1488	0		$\dot{\phi}$	37.2808	0	
	Ė	j	0	0	0	0	0	-37.2808	0	-8.1488		$\dot{\theta}$	0	37.2808	

System Discretization

- □ The state-space model is in the continuous-time domain and needs to be discretized
- □ Since sampling time (~0.01 s) << time constant (~0.25 s), all discretization methods produce similar results
- Zero Order Hold (ZOH) method
- Each sample value is held constant for one sample interval

$$\mathbf{y}_{k} = \mathbf{y}(t_{k}), \quad t_{k} = kdt, k = 0, 1, 2, 3, \cdots$$
 $\mathbf{u}(t) = \mathbf{u}_{t_{k}}, \quad t_{k} \le t < t_{k+1}, k = 0, 1, 2, 3, \cdots$

Figure 12: ZOH to discretize a signal.

System Discretization

Using MATLAB's sysd = c2d(sysc, dt) function, the discretized system with dt = 0.01s is:

$$oldsymbol{x}_{k+1} = \mathbf{A}_d oldsymbol{x}_k + \mathbf{B}_d oldsymbol{u}_k$$

→ For the first-order reduced system:

$$\mathbf{A}_{d} = \begin{bmatrix} 1 & 0 & 0.01 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0.01 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0.001665 \\ 0 & 0 & 0 & 1 & -0.001665 & 0 \\ 0 & 0 & 0 & 0 & 0.9458 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.9458 \end{bmatrix}, \mathbf{B}_{d} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0.05423 & 0 \\ 0 & 0.05423 \end{bmatrix}$$

System Discretization

□ For the second-order reduced system:

	$\lceil 1 \rceil$	0	0.01	0	0	0	0	0		0	0
	0	1	0 1 0 0	0.01	0	0	0 0 0 0.009597 0 0.92	0	19 19 11	0	0
	0	0		0	0	0.001711		0	$,\mathbf{B}_{d}=% \mathbf{B}_{d}$	0	0
Δ, _	0	0		1	0.001711	0		0		0	0
$\mathbf{A}_d = ig $	0	0		0	0.9982	0 0.9982 0		0		0.001814	0
	0	0	0	0	0			0.009597		0	0.001814
	0	0	0	0	-0.3578			0		0.3578	0
	0	0	0	0	0	-0.3578	0	0.92	8 .	0	0.3578

trajectory/waypoint

Linear Quadratic Regulator (LQR) Design

- LQR is a controller that provides optimally controlled feedback gains to stabilize a system
- □ Applicable when the system is linear and the cost function is quadratic $\sum_{\infty}^{\infty} (x^T x^T x^T$

 $J = \sum_{ au=0}^{\infty} \left(ilde{oldsymbol{x}}_{ au}^T \mathbf{Q} ilde{oldsymbol{x}}_{ au} + oldsymbol{u}_{ au}^T \mathbf{R} oldsymbol{u}_{ au}
ight) \qquad oldsymbol{u}_k \ = \ \mathbf{K}_{lqr} ilde{oldsymbol{x}}_k$

□ The optimal gain is the solution to the algebraic Riccati equation:

$$\mathbf{P} = \mathbf{Q} + \mathbf{A}^T \mathbf{P} \mathbf{A} - \mathbf{A}^T \mathbf{P} \mathbf{B} \left(\mathbf{R} + \mathbf{B}^T \mathbf{P} \mathbf{B} \right)^{-1} \mathbf{B}^T \mathbf{P} \mathbf{A}$$
 $\mathbf{K}_{lqr} = -\left(\mathbf{R} + \mathbf{B}^T \mathbf{P} \mathbf{B} \right)^{-1} \mathbf{B}^T \mathbf{P} \mathbf{A}$

Linear Quadratic Regulator (LQR) Design

Figure 13: Position and angle of the closed-loop system.

Linear Quadratic Regulator (LQR) Design

- In comparison to double-integrator dynamics:
 - Smaller overshoot
 - Smaller maximum angle
 - Longer risetime
- Proceed with the first-order approximation

Fine Tuning for Critical Damping

$$\mathbf{Q} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.01 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.01 \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} 0.01 & 0 \\ 0 & 0.01 \end{bmatrix}$$

Figure 13: Position of the critically damped closed-loop system.

$$\mathbf{K}_{lqr} = \begin{bmatrix} 0 & 10 & 0 & 17.4568 & -0.7527 & 0 \\ -10 & 0 & -17.4568 & 0 & 0 & -0.7527 \end{bmatrix}$$

Yaw and Thrust

□ Yaw

- In simulation, assumed to be 0
- In experiment, controlled with a simple PD controller and converges to 0 in minimal time

□ Thrust

- Not applicable in simulation, height controlled with a PID controller
- In experiment, cascade PID for height, the output acceleration is mapped to the desired thrust with a linear mapping

$$thrust = (a_z + 1)\frac{(max_thrust - min_thrust)}{2} + min_thrust$$

Future improvement

Hunting/Encirclement Criteria

A platonic solid is a regular, convex polyhedron

Figure 14: Platonic solids in three dimensions.

- Goal is to control the agents so that they eventually form a platonic solid around the target
 - Four agents for this thesis
 - Method to be presented is generalizable to an arbitrary number of agents
- \Box For a tetrahedron centered at (x_t, y_t, z_t) , the Cartesian coordinates of the vertices are:

$$V_1 = (x_t + l, y_t + l, z_t + l)$$

$$V_2 = (x_t + l, y_t - l, z_t - l)$$

$$V_3 = (x_t - l, y_t + l, z_t - l)$$

$$V_4 = (x_t - l, y_t - l, z_t + l)$$

The Hungarian Algorithm

- ☐ Assign vertices to the agents in a way that minimizes trajectory crossing
- ☐ Hungarian Algorithm can solve the assignment problem in polynomial time. The cost matrix is:

$$C = (-1) \begin{bmatrix} a_1 \cdot v_1 & a_1 \cdot v_2 & a_1 \cdot v_3 & a_1 \cdot v_4 \\ a_2 \cdot v_1 & a_2 \cdot v_2 & a_2 \cdot v_3 & a_2 \cdot v_4 \\ a_3 \cdot v_1 & a_3 \cdot v_2 & a_3 \cdot v_3 & a_3 \cdot v_4 \\ a_4 \cdot v_1 & a_4 \cdot v_2 & a_4 \cdot v_3 & a_4 \cdot v_4 \end{bmatrix} = (-1) \begin{bmatrix} \cos(\theta_{11}) & \cos(\theta_{12}) & \cos(\theta_{13}) & \cos(\theta_{14}) \\ \cos(\theta_{21}) & \cos(\theta_{22}) & \cos(\theta_{23}) & \cos(\theta_{24}) \\ \cos(\theta_{31}) & \cos(\theta_{32}) & \cos(\theta_{33}) & \cos(\theta_{34}) \\ \cos(\theta_{41}) & \cos(\theta_{42}) & \cos(\theta_{43}) & \cos(\theta_{44}) \end{bmatrix}$$

- \square [C]_{ij} is the cost of assigning vertex j to agent i
- ☐ The optimal assignment minimizes the following cost

$$J = \sum_{i} \sum_{j} [C]_{ij} [X]_{ij}$$

□ Algorithm

For each (agent, vertex) pair, perform the following steps in the plane containing the vertex vector and the agent vector:

- 1. Create N equally-spaced circles centered at the target, with the first going through the agent and the last going through the vertex
- 2. The angular difference from \mathbf{V}_t^a to \mathbf{V}_t^v is divided by N, represented by the dashed lines
- 3. The *i*th waypoint is the intersection of the *i*th circle with the *i*th dashed line
- 4. Use a pure pursuit controller for line following

Figure 15: Diagram of Design #1.

Figure 16: Trajectory generated using 10, 20 and 50 waypoints.

- □ Pure Pursuit line follower
 - Exploits geometric relationships
 - Gently brings the vehicle towards the path
 - Works well when the maneuver isn't aggressive

Figure 17: Pure pursuit line follower.

□ Pure Pursuit line follower

Figure 18: Geometry in the pure pursuit line follower.

Design #1: Offline Waypoints Generation + Pure Pursuit

Figure 19: Pure pursuit with 20 waypoints and a look-ahead distance of 5, 15, and 30 cm.

Discussion

- □ Requires an ideal environment to work well
- ☐ The offline generation of the next waypoint assumes perfect tracking of the current waypoint.
 - ☐ Downwash when trajectories cross
 - ☐ Reactive collision avoidance
- □ Design #1 results in perfect encirclement trajectories and can serve as a baseline
- ☐ The next waypoint generated using the current position of the agent will be more optimal
- ☐ This leads us to Design #2

- □ Now generate the waypoint on the fly
- □ Algorithm

For each (agent, vertex) pair, perform the following steps in the plane containing the vertex vector and the agent vector:

- 1. Hungarian Algorithm for assignment
- 2. Recalculate the angular and radial difference denoted by θ and D, respectively
- 3. Then, the look-ahead point is obtained by rotating the agent vector by $d\theta = \alpha_1 \theta$ and shrink its magnitude by $dD = \alpha_2 D$
- 4. Rinse and repeat

Figure 20: Diagram of Design #2.

Figure 21: Simulation results of Design #2.

Figure 21: Simulation results of Design #2.

□ Effect of decreasing the alphas

□ Effect of increasing the alphas

Che (Charles) Liu

Figure 21: Simulation results of Design #2.

- Observations
 - Different from Design #1
 - ☐ Trajectory for each agent no longer lie entirely in one plane
 - ☐ Convergence is faster in the z direction

Figure 21: Simulation results of Design #2.

trajectory/waypoint

Experiment Setup

Crazyflie class

Figure 22: Experiment Setup.

Simplified ROS Architecture

Figure 23: Simplified ROS architecture.

Single-Agent Test

Figure 24: Trajectory using position reference.

Figure 25: Trajectory using full state reference.

Spline Interpolation

- ☐ A spline is a special function defined piecewise by polynomials
 - High accuracy
 - Low computational effort
 - Differentiability
- ☐ In our case, the next 10 waypoints are calculated for interpolation

Figure 26: Spline interpolation for velocity and acceleration.

- □ The position, velocity, and acceleration at 5*dt = 0.5 s are used for the reference state
- □ Look-ahead point

■ Based on *Flocking for Multi-Agent Dynamic Systems:*Algorithm and Theory by Olfati-Saber

$$\mathbf{u}_{i} = c_{1} \sum_{j \in N_{i}} \phi_{\beta} \left(\left\| \mathbf{q}_{j} - \mathbf{q}_{i} \right\|_{\sigma} \right) \mathbf{n}_{i,j} + c_{2} \sum_{j \in N_{i}} b_{i,j} \left(\mathbf{p}_{j} - \mathbf{p}_{i} \right)$$

Figure 27: Plot of $\phi_{\beta}(z)$.

Away from agent j Same direction as agent j
$$\mathbf{u}_{i} = c_{1} \sum_{j \in N_{i}} \phi_{\beta} \left(\|\mathbf{q}_{j} - \mathbf{q}_{i}\|_{\sigma} \right) \mathbf{n}_{i,j} + c_{2} \sum_{j \in N_{i}} b_{i,j} \left(\mathbf{p}_{j} - \mathbf{p}_{i} \right)$$

Plot of
$$b_{i,k}(q) = \rho_h \left(\frac{\|q_k - q_i\|_{\sigma}}{d_{\beta}} \right)$$
, $\rho_h(z) = \begin{cases} 1 & \text{if } z \in [0, h) \\ \frac{1}{2} \left[1 + \cos \left(\pi \frac{(z-h)}{(1-h)} \right) \right] & \text{if } z \in [h, 1] \\ 0 & \text{otherwise} \end{cases}$

Figure 28: Plot of $\rho_h(z)$.

□ Simulation results

Figure 29: Collision test looking from the above.

Figure 30: Collision test looking from the side.

UTIAS

□ Experiment results

Figure 31: Collision avoidance experiments.

Multi-agent Cooperative Hunting

Figure 32: Multi-agent cooperative hunting experiments.

Cooperative Hunting with Moving Target

- ☐ The algorithm can be extended to handle moving target
- ☐ Use the Crazyflie dynamics for the target as well
- □ Vertices are no longer fixed

- □ Programmable ring deck
 - \circ Red \rightarrow target

Figure 34: Crazyflie quadcopter with LED ring deck.

Figure 33: Cooperative hunting with moving target.

Moving Target – Experiment

Failure Analysis

- ☐ The hunter agents were able to capture the target at the first and second stop
- ☐ At one point, two agents decides to swap places due to a change in the assignment
- □ Trajectories cross → downwash→ more assignment change

Future Improvement

- ☐ Thrust not modeled
 - Double-integrator dynamics in simulation
 - Acceleration to thrust mapping in experiment
- □ Can get stuck in local minimums when using a reactive collision avoidance controller
 - Add a planner module to plan around obstacles
- □ Encirclement is not simultaneous
- □ Trajectories cross
 - Downwash
 - Assignment change
- □ Add obstacles in the environment

Conclusion

- □ 3D cooperative hunting algorithm for the undergraduate thesis
- □ Preliminary experimental results
- ☐ Thanks to the Flight System and Control Lab!
 - Thanks to Prof. Liu for the summer research + thesis opportunity
 - Thanks to Jacky for the guidance, hope everything goes well after graduation

Contact: Che (Charles) Liu,. Tel: 416-559-9916

Email: charlesliuoft@gmail.com

