L'arithmetique

Table des matières

1	Multiples et diviseurs d'un nombre entier.											
2	PGCD, PPCM.											
	2.1 Plus grand diviseur commun											
	2.2 Plus petit commun multiple											
	2.3 (hors programme) Propriété surprenante du PGCD et PGCM											
3	Division euclidienne.											
	3.1 Division euclidien : quotient et reste											
	3.2 Division euclidienne par 2											
4	Nombres premiers.											
	4.1 Définition d'un nombre premier											
	4.2 Propriété fondamentale des nombres premiers											
	4.3 La liste des nombres premiers											

1 Multiples et diviseurs d'un nombre entier.

Définition 1: Multiples d'un nombre entier

Soit $n \in \mathbb{Z}$ un nombre relatif. Alors, on appelle *multiple* de n tous les nombres de la forme $kn = k \times n$ avec $k \in \mathbb{Z}$ un nombre entier relatif.

Exemple 1

On peut représenter l'ensemble des multiples d'un nombre à l'aide de la représentation ci-dessous. Ici, vous avez un aperçu des multiples de 4.

Question 1

- 1. Peut-on dire que l'ensemble des multiples d'un nombre correspond aux tables de multiplication de ce nombre ?
- 2. Combien un nombre admet-il de multiples?
- 3. Donner la «bande des multiples» de 3. Rappelez le critère rapide qui permet de savoir si un nombre est divisible par 3 ou non.
- 4. Donner la «bande des multiples» de 6. Y'a-t-il des éléments en commun avec la bande des multiples de 3? Pourquoi?

Proposition 1

Seul 0 est multiple de tous les nombres entiers.

Démonstration 1

C'est le seul qui est présent dans toute les «bandes» de nombres qui correspond aux multiples.

Définition 2: Diviseurs d'un nombre entier

Soit n un nombre entier. Alors un diviseur de n est un nombre d tel que n est un multiple de d.

Exemple 2

les diviseurs des nombres dans les bandes du multiples sont présent dans la seconde ligne de la bande. regardez les multiples de 23 par exemple.

Exemple 3

On peut lire par exemple que -115 est un multiple de -5 (mais aussi de 23).

Proposition 2

On voit donc que le terme **multiple** et **diviseur** sont en dualité. L'un est lié à l'autre, et le point de vue est inversé. Il faut prendre le temps d'utiliser ce vocabulaire.

Exemple 4

On représentera l'ensemble des diviseurs positifs d'un nombre à l'aide de la boite de la figure 1 dans le cours. Par exemple, voici la liste des diviseurs de 30.

Figure 1 – Liste des diviseurs de 30

Question 2

À partir de la situation $23 \times 4 = 92$, faites une pharse qui contient le mot :

- 1. «multiple»
- 2. «diviseur»

(vous ferez donc deux phrases différentes).

Proposition 3

L'entier 1 est le seul diviseur positif de tous les nombres.

Démonstration 2

Tout nombre n peut s'écrire $n = n \times 1$, donc 1 est un diviseur de n.

Question 3

- 1. Faites la liste des diviseurs de 25 (il faut aussi compter les diviseurs négatifs).
- 2. De même pour 26.
- 3. Que peut-on dire des nombres qui admettent exactement trois diviseurs positifs?

Question 4

Quelle est le nombre minimum de diviseurs que peut admettre un nombre entier?

2 PGCD, PPCM.

2.1 Plus grand diviseur commun

Définition 3: PGCD: plus grand diviseur commun

Soit a et b deux nombres entiers positifs. On considère les listes respectives des diviseurs de a et des diviseurs de b. On définit $\operatorname{pgcd}(a,b)$ par le plus grand diviseur qui est présent dans la liste des diviseurs de a et dans la liste des diviseurs de b.

Exemple 5

Le plus grand diviseur commun de 42 et 54 est 6, puisque c'est le plus grand nombre commun aux deux listes des diviseurs de 42 et 36.

Exemple 6

Les boites suivantes illustrent les diviseurs des nombres inscrits en haut.

1 2 3 6 7 14 21 42

2.2 Plus petit commun multiple

Définition 4: PPCM: plus petit commun multiple

Soit a et b deux nombres entiers positifs. On considère la bande de multiples positifs, et on définit ppcm(a,b) par le **plus petit multiple positif** commun entre les deux.

Question 5

Soit a et b deux nombres entiers positifs. Montrer alors que $a \times b$ est un multiple commun de a et b.

Exemple 7

Prenons 6 et 15, et regardons leur multiple. Peux-tu montrer que ppcm(6, 15) = 30?

2.3 (hors programme) Propriété surprenante du PGCD et PGCM

Question 6

- 1. Grâce aux illustrations suivantes, déterminer le pgcd et le pgcm de 76 et 57
- 2. Que peut-on dire de pgcd(76,57) multiplié par pgcm(76,57)? Indice : $76 \times 57 = 4332$
- 3. Félicitation, vous avez montré (sur un exemple) une propriété peu connue sur le pgcd et le pgcm!

3 Division euclidienne.

3.1 Division euclidien : quotient et reste

Proposition 4

Soit a>b deux nombres entiers naturels positifs.

Alors, il existe un unique couple d'entiers positifs q et r tel que

- 1. a = bq + r
- 2. $0 \le r < b$

Définition 5: Reste de la division euclidienne

Dans la proposition précédente, on appelle q le quotient et r le reste de la division euclidienne de a par b.

Exemple 8

Regarde l'image suivante, et explique pourquoi si on prend a=34 et b=5 on obtient q=6 et r=4. En effet, $34=5\times 6+4$. On dit donc que le reste de la division euclidienne de 34 par 5 est 4.

Division euclidienne de 34 par 5

Exemple 9

Pour obtenir rapidement le quotient et le reste d'une division euclidienne à la calculatrice, voici ce que vous pouvez faire. Ici, on cherche à retrouver le résultat de l'exemple précédent.

- 1. Calculer $34 \div 5 = 6.8$, arrondissez à l'entier inférieure, et vous obtenez q = 6
- 2. Maintenant que vous connaissez q, vous pouvez en déduire r par a-bq=r autrement dit $r=34-5\times 6=4$.
- 3. Vous trouvez bien q = 6 et r = 4

Question 7

- 1. Quelle est le reste de la division euclidienne de 340 par 50?
- 2. Quelle est le reste de la division euclidienne de 134 par 5?
- 3. Quelle est le reste de la division euclidienne de 35 par 5?

Proposition 5

Le reste d'une division euclidienne de a par b est nul **si et seulement si** b divise a.

Exemple 10

Voici un exemple avec a=40 et b=5, on voit que le reste est nul, et ainsi on a bien 5 qui divise 40, ou dit autrement, 40 est un multiple de 5.

Division euclidienne de 40 par 5

Figure 2 – 5 divise bien 40 car la division euclidienne de 40 par 5 a un reste nul.

Exemple 11

Réciproquement, si le reste d'une division euclidienne de a par b n'est pas nul, alors b ne divise pas a. Prenons a=2341 et b=301 pour le voir sur la figure 3. Le reste (ici, r=234) n'est pas nul, donc 301 ne divise pas 2341.

Division euclidienne de 2341 par 301

Figure 3 - 301 ne divise pas 2341

Question 8

Expliquer sans trop d'efforts pourquoi 2341 - 234 = 2107 est divisible par 301!

3.2 Division euclidienne par 2

Regarde attentivement ces exemples :

Division euclidienne de 16 par 2

Division euclidienne de 17 par 2

Division euclidienne de 18 par 2

Division euclidienne de 19 par 2

On peut montrer la proposition suivante :

Proposition 6

Un nombre est pair si et seulement si le reste de sa division euclidienne par 2 vaut 0. Si le reste de la division euclidienne d'un nombre par 2 vaut 1, alors ce nombre est impair, et réciproquement.

On peut reformuler cela par la proposition suivante :

Proposition 7

Pour tout nombre pair n, il existe k tel que :

n=2R

De même, pour tout nombre impair, il existe k tel que :

n = 2k + 1

Question 9

- 1. Quel est le lien entre les deux propositions précédentes?
- 2. Est-ce que le nombre $2 \times (53) + 4$ est pair?
- 3. Est-ce que le nombre 2(n+1) est pair, sachant que n est un entier positif?
- 4. Si n est un entier pair, est-ce que n+4 l'est aussi? Montrer cela à l'aide de la proposition précédente.
- 5. Si n est un entier quelconque, quelle est la parité du nombre n(n+1)?

4 Nombres premiers.

4.1 Définition d'un nombre premier

Définition 6: Nombres premiers

Un nombre entier strictement plus grand que 1 est dit premier si et seulement si ses seuls diviseurs positifs sont 1 et lui même.

Question 10

D'après les liste de diviseurs ci-dessous, quels sont les nombres qui sont premiers?

245

1 5 7 35 49 245

109

1 109

1427

1 1427

110

1 2 5 10 11 22 55 110

99

1 3 9 11 33 99

34

1 2 17 34

25

 $1 \qquad \qquad 5 \qquad \qquad 25$

1234

1 2 617 1234

4.2 Propriété fondamentale des nombres premiers

Proposition 8

Tout nombre entier admet une unique décomposition en facteur premier.

Exemple 12

Soit le nombre 264. Alors, sa décomposition en nombre premier est :

$$264 = 2 \times 2 \times 2 \times 3 \times 11 = 2^3 \times 3 \times 11$$

Question 11

- 1. Trouver la décomposition de 245, de 352 et 1000.
- 2. Pourquoi la décomposition de 24 n'est pas $24 = 6 \times 4$?
- 3. Est-ce que 1 est un nombre premier?
- 4. Regarde la figure 4. Que peut-on dire des diviseurs qui apparaissent dans la liste et de la décomposition en nombre premier de 265?

Figure 4 - Liste des diviseurs de 265

4.3 La liste des nombres premiers

Proposition 9

La liste des nombres premiers est infinie

Démonstration 3

L'idée de la démonstration est de montrer qui s'il y en a un plus grand noté P, alors on peut en construire un plus grand, ce qui montre bien qu'il n'y a pas de plus grand nombre premier.

On peut construire N de la manière suivante : on forme produit de tous les nombres premiers p_1 , p_2 , etc, plus petit que P auquel on ajoute 1 :

$$N = p_1 \times p_2 \times \dots P + 1$$

Ainsi, ce nombre est à son tour un nombre premier, car aucun nombre plus petit que N ne le divise à part 1

Donc, on a une contradiction, puisque N > P. La liste les nombres premiers est donc infinie.

Exemple 13

À l'aide de Python, on peut facilement fournir la liste des «petits» nombres premiers. Le programme 1 donne la liste des nombres premiers plus petit que 1000. La liste générée par ce programme est à retrouver au tableau 1.

```
import sympy #permet d'utiliser la fonction isprime

listePremier = []
for i in range(1000) :
    if sympy.isprime(i) : #isprime nous indique si le nombre testé (ici, i) est premier ou non
    listePremier.append(i)
return listePremier
```

Listing 1: Programme qui permet de lister les nombres premiers plus petit que 1000

	Table 1 – Liste des nombres premiers plus petit que 1000													
2	3	5	7	11	13	17	19	23	29	31	37	41		
41	43	47	53	59	61	67	71	73	79	83	89	97		
97	101	103	107	109	113	127	131	137	139	149	151	157		
157	163	167	173	179	181	191	193	197	199	211	223	227		
227	229	233	239	241	251	257	263	269	271	277	281	283		
283	293	307	311	313	317	331	337	347	349	353	359	367		
367	373	379	383	389	397	401	409	419	421	431	433	439		
439	443	449	457	461	463	467	479	487	491	499	503	509		
509	521	523	541	547	557	563	569	571	577	587	593	599		
599	601	607	613	617	619	631	641	643	647	653	659	661		
661	673	677	683	691	701	709	719	727	733	739	743	751		
751	757	761	769	773	787	797	809	811	821	823	827	829		
829	839	853	857	859	863	877	881	883	887	907	911	919		
919	929	937	941	947	953	967	971	977	983	991	997			