

0.1 Localisation et cloture intégrale

À savoir que la localisation commute avec clôture intégrale.

0.1.1 Si A est intégralement clos

Pour S une partie multiplicative, si A est intégralement clos, et $x^n + \sum a_i x^i = 0$ avec $a_i \in S^{-1}A$. Il existe s tel que $sx \in A$ puis $x \in S^{-1}A$.

0.1.2 Sinon

On prends \tilde{A} sa clôture dans K alors $\varphi(S)$ est multiplicative et $\varphi(S)^{-1}\tilde{A}$ est intégralement clos. Reste à voir que $S^{-1}A$ est intégralement close et égale. En gros qu'on a

égalité au niveau du ?. On a clairement

$$S^{-1}A \subset i(S)^{-1}\tilde{A}$$

d'où

$$\widetilde{S^{-1}A} \subset i(S)^{-1}\widetilde{A}$$

par minimalité en plus on a $\tilde{A} \subset \widetilde{S^{-1}A}$ et i(S) est clairement inversible par cette flèche d'où l'égalité par propriété universelle par exemple.

0.2 Idéaux fractionnaires

On se met dans un anneau noethérien intègre A et K = Frac(A). Y'a l'équivalence A-modules M de type fini dans K et $M = y^{-1}I$ avec $I \leq A$ un idéal. Pour gauche à droite une manière cool c'est que de $x \in (A:M)$ on obtient $M \leq x^{-1}A$. Faut montrer que c'est non vide, bon bah ça c'est que M est engendré par des fractions.

Chapitre 1

Anneaux de valuation discrète et de Dedekind

1.1 Anneaux de valuation discrète

Pour le contexte, moi je m'intéresse au cas intègre déjà et au cas où le DVR est un $A_{\mathfrak{p}}$ pour un anneau noethérien intègre de dimension 1. Sa clôture intégrale dans $\operatorname{Frac}(A)$ devient un anneau de Dedekind.

1.1.1 Les 2 définitions.

Y'a deux manières de les voir :

- 1. Dans un corps (K, v) muni d'une valuation discrète. Avec $A = \{x \in K | v(x) = 0\}$.
- 2. Comme un anneau principal (donc intègre) ayant un seul idéal premier non nul.

L'implication 1. implique 2. consiste juste à se placer dans l'espace ambiant K. L'autre côté consiste à construire une valuation par l'absurde, via $t \in A$ est soit dans A^{\times} soit dans \mathfrak{m} . D'où on construit $t^{(i)} = \pi t^{(i+1)}$ puis une suite

$$(t^{(i)}) \subset (t^{(i+1)})$$

et ca se déroule en rappelant que $1 + \mathfrak{m} \subset A^{\times}$.

1.1.2 Première caractérisation

Équivalences. Dans un anneau noethérien,

DVR \equiv local, noethérien, $\mathfrak{m} = (\pi)$ non nilpotent.

On veut écrire $x = \pi^n u$ de manière unique. On peut faire exactement la même chose que la partie d'avant. Dans le cas intègre c'est vraiment facile.

Note 1. Serre prouve que $\cap \mathfrak{m}^n = (0)$ ce qui est un peu plus fort en soi.

1.1.3 Deuxième caractérisation

Équivalences. DVR \equiv Noethérien, intégralement clos, un seul idéal premier $\neq 0$ (local mais pas un corps? Non! Tu verras pq.).

Là c'est un peu plus dur. Le point c'est de montrer que \mathfrak{m} est inversible, alors \mathfrak{m} est principal. On note $\mathfrak{m}' = \{x \in K | x\mathfrak{m} \subset A\}$. On a

$$\mathfrak{mm}' \subset A \text{ et } A \subset \mathfrak{m}' \text{ implique } \mathfrak{m} \subset \mathfrak{mm}'.$$

d'où $\mathfrak{m}\mathfrak{m}'=\mathfrak{m}$ ou A. Maintenant en fait

si
$$\mathfrak{m}\mathfrak{m}'=A$$
 alors $\sum x_iy_i=1$ d'où $u=x_{i_0}y_{i_0}\in A-\mathfrak{m}=A^{\times}$

par l'absurde. En particulier tout $z \in \mathfrak{m}$ se réécrit

$$z = x_{i_0}(u^{-1}y_{i_0}z)$$

parce que $x_{i_0}y_{i_0}u^{-1} = 1$ et $y_{i_0}z \in A!$

1.1.4 Idées de preuve de la deuxième caractérisation.

Donc a une remarque:

$$\mathfrak{m} \subseteq \mathfrak{mm}' \subseteq A$$

d'où $\mathfrak{m}\mathfrak{m}'=\mathfrak{m}$ ou $\mathfrak{m}\mathfrak{m}'=A.$ On peut montrer que

- 1. Dans le cas intégralement clos $\mathfrak{mm}' = \mathfrak{m}$ implique $\mathfrak{m}' = A$.
- 2. Dans le cas local, $\mathfrak{m}' \neq A$.

D'où le résultat.

Anneaux de valuation discrète et de Dedekind

1.1.5 Premier point

On veut montrer que si A est intégralement clos alors $\mathfrak{m}'\mathfrak{m} = \mathfrak{m}$ implique $\mathfrak{m}' = A$. On prends $z \in \mathfrak{m}' - 0$, alors

$$z\mathfrak{m}\subset\mathfrak{m}$$

d'où $z^i\mathfrak{m}\subset\mathfrak{m}$ en itérant. Puis $\sum_{i=0}^n z^iA\subset\mathfrak{m}'$ pour tout n et on sait que \mathfrak{m}' est noethérien. D'où

$$A[z]$$
 est noethérien

d'où z est entier sur A et le résultat.

1.1.6 Second point

On veut montrer que si A a un seul idéal premier non nul alors $\mathfrak{m}' \neq A$. Un argument c'est

- 1. On montre que pour $x \in \mathfrak{m} 0$, $A_x = K$ via l'hypothèse.
- 2. En faisant varier x, $\mathfrak{m}^N \subset zA$ pour un N minimal.
- 3. Puis si $y \in \mathfrak{m}^{N-1} zA$ alors $y\mathfrak{m} \subset zA$ puis

$$y/z \in \mathfrak{m}' - A$$

Plusieurs détails où faut faire attention :

- 1. Il faut prendre $z \in \mathfrak{m} 0$, sinon on peut pas prendre $y \in \mathfrak{m}^{N-1} zA$. Par exemple si $z \in A^{\times}$ alors zA = A et $\mathfrak{m}^{N-1} zA = \emptyset$. Ducoup dans tout les autres cas c'est bon.
- 2. L'hypothèse c'est un seul idéal premier non nul. Et pour la première étape c'est nécessaire, pas juste local. Parce que si $A_x \neq K$, alors on a $\mathfrak{p} \in A_x$ maximal non nul. Et $\mathfrak{p} \cap A \neq \mathfrak{m}$ car $x \notin \mathfrak{p}$. D'où $\mathfrak{p} \cap A \neq \mathfrak{m}$ est premier non nul.

Voilà ça conclut la preuve!

1.1.7 Notes

Note 2. Le troisième point se traduit en $Spec(K) = D(x) \subset Spec(A)$ et

$$A_x = \mathcal{O}_{D(x)}(D(x))$$

$$= \mathcal{O}_{Spec(A)}(Spec(A))|_{(0)}$$

$$= \mathcal{O}_{Spec(A),(0)}$$

$$= (A \setminus 0)^{-1}A$$

$$= K$$

Aussi, cette histoire de $y\in \mathfrak{m}^{n-1}-zA$ et $y\mathfrak{m}\subset zA$ ça fait remarquer de l'arithmétique plus habituelle.

1.1.8 But de ces caractérisations

Celle qui nous intéresse c'est la deuxième qui permet de montrer que \mathfrak{m} est principal. Alors on peut utiliser la première pour montrer que c'est un DVR.

1.2 Anneaux de Dedekind

On montre que

Équivalences. $A_{\mathfrak{p}}$ est un dvr pour tout $\mathfrak{p} \equiv A$ est noethérien intégralement clos de dimension 1.

1.2.1 Tout les $A_{\mathfrak{p}}$ sont des DVR.

C'est assez direct de la première. La dimension 1 force un seul idéal premier non nul et le fait d'être intégralement clos c'est clair. L'autre côté y'a deux manières instructives de faire. Si $x \in K$ est entier sur A, on le note x = b/c. On a pour tout \mathfrak{p} :

$$x \in A_{\mathfrak{p}}$$

d'où $b \in cA_{\mathfrak{p}}$ autrement dit il existe $s \in A - \mathfrak{p}$ tel que $sb \in cA$. En particulier (cA : bA) est contenu dans aucun idéal premier d'où $1 \in (cA : bA)!!$

Note 3. Nique ta race Serre