Devoir surveillé n°5

Durée: 3 heures, calculatrices et documents interdits

I. Suite de Fibonacci.

La suite (u_n) (suite de Fibonacci) est définie par

$$u_0 = 1$$
; $u_1 = 1$ et $\forall n \in \mathbb{N} \ u_{n+2} = u_{n+1} + u_n$.

- 1) Résoudre cette relation de récurrence et donner une expression de u_n en fonction de n. Dans toute la suite on n'utilisera plus les résultats de la question précédente.
 - **2)** Montrer que pour tout $n \in \mathbb{N}$, $u_n \in \mathbb{N}^*$.
 - 3) Montrer que la suite (u_n) est croissante.
 - 4) Montrer que, pour tout $n \in \mathbb{N}$, $u_n \ge n$. Que peut-on en déduire quant à la limite de (u_n) ?
 - 5) Démontrer que, pour tout $n \in \mathbb{N}$, $u_n u_{n+2} u_{n+1}^2 = (-1)^n$. Indication: On pourra introduire la suite $a_n = u_n u_{n+2} - u_{n+1}^2$ et montrer que, pour tout $n \in \mathbb{N}$, $a_{n+1} = -a_n$.
 - 6) En déduire que pour tout $n \in \mathbb{N}$, u_n et u_{n+1} sont premiers entre eux.
 - 7) Pour tout entier naturel n, on pose $v_n = \frac{u_{n+1}}{u_n}$, puis $x_n = v_{2n}$ et $y_n = v_{2n+1}$.
 - a) Démontrer la relation $v_{n+1} = 1 + \frac{1}{v_n}$ pour tout entier naturel n.
 - **b)** Démontrer la relation $v_{n+2} v_n = \frac{(-1)^n}{u_n u_{n+2}}$ pour tout $n \in \mathbb{N}$.
 - c) En déduire que les suites (x_n) et (y_n) sont adjacentes.
 - d) En déduire que la suite (v_n) converge. Quelle est sa limite?

II. Équation de Pell-Fermat

On appelle équation de Pell-Fermat toute équation de la forme $x^2 - dy^2 = 1$ où les inconnues x et y sont des entiers, et où $d \in \mathbb{N}$ n'est pas un carré parfait. Nous allons résoudre cette équation pour d = 7. Cette méthode pourrait se généraliser à n'importe quelle valeur de d.

On note $\mathbb{Z}[\sqrt{7}]$ l'ensemble $\{a + b\sqrt{7} \mid a, b \in \mathbb{Z} \}$.

- 1) a) Montrer que $\mathbb{Z}[\sqrt{7}]$ est un sous-groupe de $(\mathbb{R}, +)$.
 - b) Montrer aussi que $\mathbb{Z}[\sqrt{7}]$ est stable par la loi \times , puis en déduire que $(\mathbb{Z}[\sqrt{7}], +, \times)$ est un anneau commutatif.
- 2) a) Montrer que $\sqrt{7}$ est irrationnel.
 - b) Montrer

$$\forall x \in \mathbb{Z}[\sqrt{7}] \quad \exists ! (a,b) \in \mathbb{Z}^2 \quad x = a + b\sqrt{7}$$

L'élément $a-b\sqrt{7}$ de $\mathbb{Z}[\sqrt{7}]$ est appelé conjugué de $x=a+b\sqrt{7}$ et est noté \overline{x} (ne pas le confondre avec le conjugué complexe!).

- c) On considère l'application $\varphi:\mathbb{Z}[\sqrt{7}]\to\mathbb{Z}[\sqrt{7}]$. Montrer que φ est un endomorphisme d'anneaux.
- 3) Pour tout $x \in \mathbb{Z}[\sqrt{7}]$, on pose $N(x) = x\overline{x}$. Ce réel est appelé norme de x.
 - a) Montrer que pour tout $x \in \mathbb{Z}[\sqrt{7}], N(x) \in \mathbb{Z}$.
 - **b)** Montrer que pour tout $x, x' \in \mathbb{Z}[\sqrt{7}], N(xx') = N(x)N(x').$
 - c) Soit $x \in \mathbb{Z}[\sqrt{7}]$. Montrer que x est inversible si et seulement si $N(x) = \pm 1$.
 - **d)** On pose $G = \{ x \in \mathbb{Z}[\sqrt{7}] \mid N(x) = 1 \}$. Montrer que (G, \times) est un groupe.
 - e) Expliquer en quoi la détermination des éléments de G est équivalente à la détermination des solutions entières de l'équation $x^2 7y^2 = 1$.
- 4) Soit $x \in G \cap]1, +\infty[$. On note $x = a + b\sqrt{7}$, avec $a, b \in \mathbb{Z}$.
 - a) Calculer $x + \overline{x}$ et en déduire que a > 0.
 - **b)** Montrer que $x^2 = 1 + 2bx\sqrt{7}$ et en déduire que b > 0.
 - c) Montrer que $b \ge 3$ et $a \ge 8$.
 - d) En déduire que $G \cap]1, +\infty[$ contient un plus petit élément $x_0 = a_0 + b_0\sqrt{7}$ pour l'ordre naturel sur \mathbb{R} .
 - e) Montrer qu'il existe un entier naturel n tel que $x_0^n \leqslant x < x_0^{n+1}$.
 - f) En déduire que $x = x_0^n$.
 - **g)** Montrer finalement que $G = \{ \pm x_0^n \mid n \in \mathbb{Z} \}.$
- 5) En déduire toutes les solutions de l'équation $x^2 7y^2 = 1$.

III. Formule d'inversion de Möbius.

On appelle $\mathscr{A} = \mathbb{C}^{\mathbb{N}^*}$ l'ensemble des fonctions de \mathbb{N}^* dans \mathbb{C} (ensemble des fonctions arithmétiques). Pour tout entier n non nul, on note $\mathscr{D}^+(n)$ l'ensemble des diviseurs positifs de n:

$$\mathcal{D}^+(n) = \{ d \in \mathbb{N}^* , \ d \mid n \}.$$

Si $f,g\in\mathscr{A}$, on définit la fonction $f*g:\mathbb{N}^*\to\mathbb{C}$ par :

$$\forall n \in \mathbb{N}^*, \ (f * g)(n) = \sum_{d \in \mathscr{D}^+(n)} f(d)g\left(\frac{n}{d}\right).$$

On pourra remarquer que

$$\forall n \in \mathbb{N}^*, \ (f * g)(n) = \sum_{a,b \in \mathbb{N}^*, \ ab=n} f(a)g(b).$$

Cette opération * est appelée convolution de Dirichlet et définit naturellement une loi de composition interne sur \mathscr{A} .

On définit deux éléments δ et $\mathbf{1}$ de \mathscr{A} par :

$$\forall n \in \mathbb{N}^*, \ \delta(n) = \begin{cases} 1 & \text{si } n = 1 \\ 0 & \text{sinon} \end{cases}$$

et

$$\forall n \in \mathbb{N}^*, \ \mathbf{1}(n) = 1.$$

I - Structure de $(\mathscr{A}, +, *)$.

- 1) Justifier que * est associative sur \mathscr{A} .
- 2) La loi * est-elle commutative sur \(\mathre{A} \)?
- 3) Montrer que δ est un élément neutre pour * dans \mathscr{A} .
- 4) Soit $f \in \mathscr{A}$ vérifiant f(1) = 0. Cet élément f est-il inversible? Est-ce que $(\mathscr{A}, *)$ possède une structure de groupe?
- 5) La réciproque du résultat précédent est-elle vraie?
- **6)** Montrer que $(\mathscr{A}, +, *)$ a une structure d'anneau.
- 7) Cet anneau est-il intègre?

II - Fonction et formule d'inversion de Möbius.

On définit l'élément μ de \mathscr{A} (fonction de Möbius) de la manière suivante : pour tout $n \in \mathbb{N}^*$:

- si n est divisible par le carré d'un nombre premier, $\mu(n) = 0$;
- si n s'écrit comme le produit de k nombres premiers distincts, $\mu(n) = (-1)^k$.
- 8) Soit I un ensemble fini non vide. Justifier que I possède autant de parties de cardinal pair que de parties de cardinal impair.
 - Remarque : on se rappellera que si $0 \le k \le n$, tout ensemble fini contenant n éléments possède exactement $\binom{n}{k}$ parties ayant k éléments.
- 9) En déduire que pour tout $n \in \mathbb{N}^*$ différent de 1 :

$$\sum_{d\in \mathscr{D}^+(n)} \mu(d) = 0.$$

- 10) Comment peut-on réécrire le résultat précédent, en fonction de 1 et au regard des objets introduits dans la première partie?
- 11) En déduire la formule d'inversion de Möbius : pour tout $f, g \in \mathcal{A}$,

$$\left(\forall n \in \mathbb{N}^*, \ g(n) = \sum_{d \in \mathscr{D}^+(n)} f(d)\right) \Leftrightarrow \left(\forall n \in \mathbb{N}^*, \ f(n) = \sum_{d \in \mathscr{D}^+(n)} g(d) \mu\left(\frac{n}{d}\right)\right).$$

III - Une application.

Soit $n \in \mathbb{N}^*$. On note $\omega = e^{\frac{2i\pi}{n}}$ et on rappelle que

$$\mathbb{U}_n = \left\{ \omega^k, \ 0 \leqslant k \leqslant n - 1 \right\}.$$

Si $z \in \mathbb{U}_n$, on appelle ordre de z le plus petit entier $d \geqslant 1$ tel que $z^d = 1$.

Si $d \ge 1$, on note $\varphi(d)$ le nombre d'entiers de [1, d] premiers avec d:

$$\varphi(d) = \operatorname{Card} \{k \in [1, d], \ k \wedge d = 1\}.$$

- 12) Soit $z \in \mathbb{U}_n$, montrer que l'ordre de z est bien défini, et qu'il divise n.
- 13) Soit $d \in [1, n-1]$ tel que d|n. Montrer qu'il y a exactement $\varphi(d)$ éléments d'ordre d dans \mathbb{U}_n . Indication : avec $e \in [1, n-1]$ tel que $d \cdot e = n$, considérer ω^e .
- **14)** En déduire que pour tout $n \ge 1$, $\varphi(n) = \sum_{\substack{a,b \in \mathbb{N}^* \\ ab=n}} a\mu(b)$.

— FIN —