Departamento de Matemática Universidade do Minho

quarto teste :: Álgebra 19 de janeiro de 2022

Lic. em Ciências de Computação - 2º ano duração: uma hora

Proposta de resolução

Responda no próprio enunciado, seguindo rigorosamente as instruções dadas em cada um dos grupos

GRUPO I

Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição, assinalando a opção conveniente. Cada questão está cotada com 1.2 valores numa escala de 0 a 20.

- 1. Seja $\varphi:A\to A'$ um morfismo de anéis. Se A' é comutativo então A é comutativo. $V\Box$ $F\boxtimes$
- 1. Seja $\varphi:A\to A'$ um epimorfismo de anéis. Se A' é comutativo então A é comutativo. $V\Box$ $F\boxtimes$

Contra-exemplo: Sejam A um anel não comutativo (por exemplo, o anel das matrizes quadradas de ordem 2) e $A' = \{0\}$ (anel trivial, que é comutativo). A aplicação $\varphi: A \to A'$ definida por $\varphi(x) = 0$, para todo $x \in A$, é um morfismo (de facto, é um epimorfismo).

1. Seja $\varphi:A\to A'$ um monomorfismo de anéis. Se A' é comutativo então A é comutativo. $V\boxtimes \mathsf{F}\square$

Sejam $x, y \in A$. Então,

$$\begin{array}{ll} \varphi(xy) &= \varphi(x)\varphi(y) & [\varphi \ \acute{e} \ \textit{morfismo}] \\ &= \varphi(y)\varphi(x) & [A' \ \acute{e} \ \textit{comutativo}] \\ &= \varphi(yx). & [\varphi \ \acute{e} \ \textit{morfismo}] \end{array}$$

Como φ é monomorfismo (injetiva), temos que xy=yx. Logo, A é comutativo.

- 2. A aplicação $f: \mathbb{Z} \to \mathbb{Z}_{10}$ definida por $f(x) = [5x]_{10}$, para todo $x \in \mathbb{Z}$, é um morfismo de anéis. $V \boxtimes F \square$
- 2. A aplicação $f: \mathbb{Z} \to \mathbb{Z}_{10}$ definida por $f(x) = [4x]_{10}$, para todo $x \in \mathbb{Z}$, é um morfismo de anéis. $V \square F \boxtimes I$
- 2. A aplicação $f: \mathbb{Z} \to \mathbb{Z}_{10}$ definida por $f(x) = [3x]_{10}$, para todo $x \in \mathbb{Z}$, é um morfismo de anéis. $V \square F \boxtimes I$

Fixado $0 \le k < 10$, a aplicação $f: \mathbb{Z} \to \mathbb{Z}_{10}$, definida por $f(x) = [kx]_{10}$, para todo $x \in \mathbb{Z}$, é morfismo de anéis se e só se f(x+y) = f(x) + f(y) e f(xy) = f(x)f(y), para todos $x, y \in \mathbb{Z}$. A primeira igualdade é trivialmente satisfeita, mas relativamente à segunda temos que

$$f(xy) = f(x)f(y), \forall x, y \Leftrightarrow [kxy]_{10} = [k^2xy]_{10}, \forall x, y \Leftrightarrow k \equiv k^2 \pmod{10} \Leftrightarrow k \in \{1, 5, 6\}.$$

- 3. Dado o morfismo de anéis $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ definido por f(x) = (2x, 3x), para todo $x \in \mathbb{Z}$, temos que $\operatorname{Nuc} f = 6\mathbb{Z}$. $\mathsf{V} \Box \mathsf{F} \boxtimes$
- 3. Dado o morfismo de anéis $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ definido por f(x) = (2x, 3x), para todo $x \in \mathbb{Z}$, temos que $\operatorname{Nuc} f = \mathbb{Z}_6$. $\mathsf{V} \square \mathsf{F} \boxtimes$
- 3. Dado o morfismo de anéis $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ definido por f(x) = (2x, 3x), para todo $x \in \mathbb{Z}$, temos que $\mathrm{Nuc} f = \{0\}$. $\mathsf{V} \boxtimes \mathsf{F} \square$

Uma vez que $0_{\mathbb{Z} \times \mathbb{Z}} = (0,0)$, por definição de núcleo, temos que

Nuc
$$f = \{x \in \mathbb{Z} : f(x) = (0,0)\} = \{x \in \mathbb{Z} : (2x,3x) = (0,0)\} = \{x \in \mathbb{Z} : x = 0\} = \{0\}.$$

V⊠ F□

4. O único morfismo de anéis entre \mathbb{R} e \mathbb{Z} é o morfismo nulo.

	Tanto $\mathbb Q$ como $\mathbb R$ são corpos e, como tal, os seus únicos ideais são o ideal trivial e o ideal impróprio. Se morfismo de anéis cujo domínio é $\mathbb Q$ ou $\mathbb R$, sendo $\operatorname{Nuc} f$ um ideal do domínio, $\operatorname{Nuc} f$ ou é o ideal trivial (o que que o morfismo f é injetivo) ou é o ideal impróprio (o que significa que o morfismo f é o morfismo nulo). C existem aplicações injetivas de domínio $\mathbb Q$ ou $\mathbb R$ e conjunto de chegada $\mathbb Z$, concluímos que o morfismo f termorfismo nulo.	e significa Como não
4.	O único morfismo de anéis entre $\mathbb Z$ e $\mathbb R$ é o morfismo nulo.	V□ F⊠
	A aplicação $f:\mathbb{Z} o\mathbb{R}$ definida por $f(x)=x$, para todo $x\in\mathbb{Z}$, é um morfismo não nulo de \mathbb{Z} em \mathbb{R} .	
5.	Os anéis \mathbb{Z}_{36} e $\mathbb{Z}_4 imes \mathbb{Z}_9$ são isomorfos.	V⊠ F□
	Cálculos rotineiros mostram que a aplicação $f: \mathbb{Z}_{36} \to \mathbb{Z}_4 \times \mathbb{Z}_9$, definida por $f([x]_{36}) = ([x]_4, [x]_9)$, para todé um isomorfismo de anéis.	do $x \in \mathbb{Z}$,
5.	Os anéis \mathbb{Z}_{36} e $\mathbb{Z}_6 imes \mathbb{Z}_6$ são isomorfos.	V□ F⊠
	Os anéis \mathbb{Z}_{36} e $\mathbb{Z}_6 \times \mathbb{Z}_6$ têm características diferentes $(c(\mathbb{Z}_{36}) = 36 \text{ e } c(\mathbb{Z}_6 \times \mathbb{Z}_6) = \text{m.m.c.}(6,6) = 6)$, pe anéis não são isomorfos.	lo que os
5.	Os anéis \mathbb{Z}_{36} e $\mathbb{Z}_2 imes \mathbb{Z}_{18}$ são isomorfos.	V□ F⊠
	Os anéis \mathbb{Z}_{36} e $\mathbb{Z}_2 \times \mathbb{Z}_{18}$ têm características diferentes ($c(\mathbb{Z}_{36}) = 36$ e $c(\mathbb{Z}_2 \times \mathbb{Z}_{18}) = \text{m.m.c.}(2,18) = 18$), os anéis não são isomorfos.	pelo que
6.	Sejam D um domínio de integridade e $a,b,c,d\in D$. Se $a\mid b$ e $c\mid d$ então $(a+c)\mid (b+d)$.	V□ F⊠
	No domínio de integridade \mathbb{Z} , $2,3,4,9\in\mathbb{Z}$ são tais que $2\mid 4$, $3\mid 9$, mas $5\nmid 13$.	
6.	Sejam D um domínio de integridade e $a,b,c,d\in D$. Se $a\mid b$ e $c\mid d$ então $(ac)\mid (bc+da)$.	V⊠ F□
	Se $a \mid b$, como $c \mid c$, temos que $ac \mid bc$. De modo análogo, de $c \mid d$, concluímos que $ac \mid ad$. Como ac é fato de ad , também é fator de $bc + ad$.	or de bc e
6.	Sejam D um domínio de integridade e $a,b,c,d\in D$. Se $a\mid b$ e $c\mid d$ então $(ac)^2\mid b^2d^2$.	V⊠ F□
	Se $a \mid b \in c \mid d$, temos que $ac \mid bd$ e, portanto, $(ac)^2 \mid (bd)^2$. Como D é comutativo, $(bd)^2 = b^2d^2$, pelo que o pretendido.	se obtém
7.	No domínio de integridade $\mathbb{Z}[i]$, 2 é um elemento irredutível.	V□ F⊠
	$2 = (1+i)(1-i)$ e $1+i, 1-i \notin \mathcal{U}_{\mathbb{Z}[i]} = \{1, -1, i, -i\}.$	
7.	No domínio de integridade $\mathbb{Z}[\sqrt{-2}]$, 2 é um elemento irredutível.	V□ F⊠
	$2 = -\sqrt{-2} \times \sqrt{-2} \ e \ -\sqrt{-2}, \sqrt{-2} \notin \mathcal{U}_{\mathbb{Z}[\sqrt{-2}]} = \{-1, 1\}.$	
7.		V□ F⊠
	$3 = -\sqrt{-3} \times \sqrt{-3} \ e \ -\sqrt{-3}, \sqrt{-3} \notin \mathcal{U}_{\mathbb{Z}[\sqrt{-3}]} = \{-1, 1\}.$	
8.	Num corpo, todos os elementos primos são irredutíveis.	V⊠ F□
8.	Num corpo todos os elementos irredutíveis são primos.	V⊠ F□
8.	Num corpo não há elementos irredutíveis.	V⊠ F□
	Num corpo, todos os elementos não nulos são unidades, pelo que nenhum elemento de um corpo é irredutível ou primo. Assim, as duas primeiras afirmações são verdadeiras pois estamos a fazer uma afirmação sobre todos os elementos do conjunto vazio.	
9.	Seja D um domínio euclidiano com valoração $\delta.$ Então, $\delta(-1_D)=\delta(1_D).$	V⊠ F□
9.	Seja D um domínio euclidiano com valoração δ . Então, $\delta(u)=\delta(-u)$, para todo $u\in\mathcal{U}_D$.	V⊠ F□
9.	Seja D um domínio euclidiano com valoração $\delta.$ Então, $\delta(a)=\delta(-a)$, para todo $a\in D.$	V⊠ F□

4. O único morfismo de anéis entre $\mathbb Q$ e $\mathbb Z$ é o morfismo nulo.

V⊠ F□

Pela primeira condição da definição de domínio euclidiano, temos que, se $a,b \neq 0_D$ são tais que $a \mid b$, então $\delta(a) \leq \delta(b)$.

Seja $a \in D$. Se $a = 0_D$, temos que $-a = 0_D$, e, por isso, temos trivialmente que $\delta(a) = \delta(-a)$.

Se $a \neq 0_D$, temos que $a \mid -a \mid a$, pelo que o resultado é facilmente obtido.

- 10. Sejam p e p' elementos primos de um domínio de integridade D. Então, p e p' são associados. $V \boxtimes F \square$
- 10. Sejam p e p' elementos irredutíveis de um domínio de integridade D. Então, p e p' são associados. $V \square F \boxtimes$

Os inteiros 2 e 3 são elementos irredutíveis (e primos) de $\mathbb Z$ e não são associados (pois $2 \neq \pm 3$).

10. Sejam p e p' elementos primos de um domínio de integridade D tais que $p \mid p'$. Então, p e p' são associados.

V□ F⊠

Se $p \mid p'$, então p' = pa, para algum $a \in D$. Como p' é primo, p' é irredutível e, portanto, $p \in \mathcal{U}_D$ ou $a \in \mathcal{U}_D$. Como p é primo, por definição, $p \notin \mathcal{U}_D$. Logo, temos que $a \in \mathcal{U}_D$. Assim, $p' \in p\mathcal{U}_D$, pelo que p e p' são associados.

GRUPO II

Este grupo tem duas questões em alternativa, ambas cotadas com 8.0 valores numa escala de 0 a 20. Deve escolher APENAS UMA DAS QUESTÕES para responder. Se responder às duas, ignorarei a segunda resposta.

- Alternativa 1. Justifique devidamente todas as respostas. Dê um exemplo, caso exista, de
 - (a) um morfismo de anéis $\varphi:A\to A'$ para o qual $A/\mathrm{Nuc}\varphi\simeq A'$. Sejam $A=\mathbb{Z},\ A'=\mathbb{Z}_5$ e $\varphi:\mathbb{Z}\to\mathbb{Z}_5$ o epimorfismo definido por $\varphi(x)=[x]_5$. Então, tendo em conta o Teorema Fundamental do Homomorfismo, $\mathbb{Z}/\mathrm{Nuc}\varphi\simeq\varphi(\mathbb{Z})=\mathbb{Z}_5$.
 - (b) um isomorfismo de anéis entre $\mathbb{Z}_2 \times \mathbb{Z}_5$ e \mathbb{Z}_{10} .

O morfismo $f: \mathbb{Z}_{10} \to \mathbb{Z}_2 \times \mathbb{Z}_5$ definida por $f([x]_{10}) = ([x]_2, [x]_5)$ é um isomorfismo. De facto, se $([x]_2, [x]_5) = ([y]_2, [y]_5)$, temos que $[x]_2 = [y]_2$ e $[x]_5 = [y]_5$, ou seja, temos que $2 \mid (y-x)$ e $5 \mid (x-y)$. Como 2 e 5 são primos entre si, temos que $10 \mid (y-x)$, pelo que $[x]_{10} = [y]_{10}$ e, portanto, f é injetiva. Como os dois anéis têm o mesmo número de elementos, a função é também sobrejetiva. Assim, f^{-1} é um isomorfismo entre $\mathbb{Z}_2 \times \mathbb{Z}_5$ e \mathbb{Z}_{10} .

(c) um domínio de integridade que não é domínio de fatorização única.

O domínio de integridade $\mathbb{Z}[\sqrt{-7}]$ não é domínio de fatorização única. (ver exercício 85 da folha 11).

(d) dois inteiros gaussianos que admitem um único máximo divisor comum em $\mathbb{Z}[i]$.

Não existem. Entre dois quaisquer elementos existem exatamente 4 máximos divisores comuns. O domínio de integridade $\mathbb{Z}[i]$ é um domínio euclidiano e, por isso, é um domínio de fatorização única. Como tal, existe sempre máximo divisor comum entre dois quaisquer elementos $a,b\in\mathbb{Z}[i]$. No entanto, se d é $\mathrm{m.d.c.}(a,b)$, temos que

$$[a,b]=d\mathcal{U}_{\mathbb{Z}[i]}=\{d,-d,di,-di\}.$$

(e) um morfismo de anéis onde a imagem de um ideal não é um ideal.

Seja $f: \mathbb{Z} \to \mathbb{R}$ o morfismo definido por f(x) = x, para todo $x \in \mathbb{Z}$. Temos que \mathbb{Z} é ideal de \mathbb{Z} e $f(\mathbb{Z}) = \mathbb{Z}$ não é ideal de \mathbb{R} (os únicos ideais de \mathbb{R} são $\{0\}$ e \mathbb{R}).

- **Alternativa 2.** Sejam A um anel com identidade 1_A , I um ideal não trivial de A, $u \in A$ um elemento invertível e $\varphi: A \to A/I$ a aplicação definida por $\varphi(x) = uxu^{-1} + I$, para todo $x \in A$.
 - (a) Mostre que φ é um morfismo de anéis.

Começamos por observar que a adição e a multiplicação em A/I são as operações usuais de classes. Sejam $x,y\in\mathbb{A}$. Então:

- (i) $\varphi(x) + \varphi(y) = uxu^{-1} + I + uyi^{-1} + I = (uxu^{-1} + uyu^{-1}) + I = u(x+y)u^{-1} + I = \varphi(x+y).$
- (ii) $\varphi(x)\varphi(y) = (uxu^{-1} + I)(uyu^{-1} + I) = ((uxu^{-1})(uyu^{-1})) + I = (uxuu^{-1}yu^{-1}) + I = ux1_Ayu^{-1} + I = uxyu^{-1} + I = \varphi(xy).$

Por (i) e (ii), concluímos que φ é um homomorfismo.

(b) Mostre que $Nuc\varphi = I$.

Por definição, $\mathrm{Nuc} \varphi = \{x \in A : \varphi(x) = 0_{A/I}\}$. Como $0_{A/I} = I$, temos que

$$\begin{split} \varphi(x) &= 0_{A/I} & \Leftrightarrow uxu^{-1} + I = I \\ & \Leftrightarrow uxu^{-1} \in I \\ & \Leftrightarrow uxu^{-1} = i, \text{ para algum } i \in I \\ & \Leftrightarrow x = u^{-1}iu^{-1} \in I. \end{split}$$

Logo, $\mathrm{Nuc}\varphi=I$.

(c) Será φ um monomorfismo? E um epimorfismo? Justifique as suas respostas.

Sabendo que $I \neq \{0_A\}$, temos, por (b), que $\mathrm{Nuc}\varphi \neq \{0\}$ e, portanto, φ não é monomorfismo. No entanto, φ é um epimorfismo. De facto, para qualquer classe $y+I \in A/I$, temos que $y \in A$. Assim, $u^{-1}yu \in A$ e

$$\varphi(u^{-1}yu) = u(u^{-1}yu)u^{-1} + I = 1_A y 1_A + I = y + I.$$