Tutorial-6, MA 106 (Linear Algebra)

Linear Algebra and its Applications by Gilbert Strang

This tutorial sheet consists of the problems based on 2.6, 3.4 and 4.2. This includes:

Problem Set 2.6: [2, 4, 5, 11, 12, 17, 18, 27, 30, 31, 36, 44, 50]

Problem Set 3.4: [1, 10, 23, 16, 29, 32]

Review Exercises Chapter 3: [3.2, 3.7, 3.15, 3.19, 3.29, 3.31]

Problem Set 4.2: [4, 9, 12, 13, 14, 17, 19, 29]

Problem Set 4.3 [5, 6, 7, 9, 10, 15, 20, 21, 26, 35]

Section 2.6

- 1. On the space \mathcal{P}_3 of cubic polynomials, what matrix represents d^2/dt^2 ? Construct the 4 by 4 matrix from the standard basis 1, t, t^2 , t^3 . Find its nullspace and column space. What do they mean in terms of polynomials?
- 2. Suppose A is a linear transformation from the x-y plane to itself. Why does $A^{-1}(x+y) = A^{-1}x + A^{-1}y$? If A is represented by the matrix M, explain why A^{-1} is represented by M^{-1} .
- 3. What 3 by 3 matrices represent the transformations that
 - (a) project every vector onto the x y plane?
 - (b) reflect every vector through the x y plane?
 - (c) rotate the x-y plane through 90°, leaving the z-axis alone?
 - (d) rotate the x-y plane, then x-z, then y-z, through 90°.?
 - (e) carry out the same three rotations, but each one through 180°.?
- 4. The matrix $A = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$ yields a shearing transformation, which leaves the y-axis unchanged. Sketch its effect on the x-axis, by indicating what happens to (1,0) and (2,0) and (1,0) and how the whole axis is transformed.
- 5. Which of these transformations on \mathbb{R}^3 , satisfy T(v+w)=T(v)+T(w), and which satisfy T(cv)=cT(v)?
 - (a) T(v) = v/||v||.
 - (b) $T(v) = v_1 + v_2 + v_3$.
 - (c) $T(v) = (v_1, 2v_2, 3v_3)$.
 - (d) T(v) = largest component of v.
- 6. Find the range and kernel (those are new words for the column space and nullspace) of T.
 - (a) $T(v_1, v_2) = (v_2, v_1)$.
 - (b) $T(v_1, v_2, v_3) = (v_1, v_2).$
 - (c) $T(v_1, v_2) = (0, 0)$.
 - (d) $T(v_1, v_2) = (v_1, v_1)$.
- 7. Suppose T transposes every matrix M. Try to find a matrix A that gives $AM = M^T$ for every M. Show that no matrix A will do it. Is this a linear transformation that doesnt come from a matrix?
- 8. (a) What matrix transforms (1,0) into (2,5) and transforms (0,1) to (1,3)?

- (b) What matrix transforms (2,5) to (1,0) and (1,3) to (0,1)?
- (c) Why does no matrix transform (2,6) to (1,0) and (1,3) to (0,1)?
- 9. (a) What matrix M transforms (1,0) and (0,1) to (r,t) and (s,u)?
 - (b) What matrix N transforms (a, c) to (b, d) to (1, 0) and (0, 1)?
 - (c) What conditions on a, b, c and d will make the previous part impossible?
- 10. True or false: If we know T(v) for n different nonzero vectors in \mathbb{R}^2 , then we know T(v) for every vector in \mathbb{R}^n .

Section 3.4

- 11. Project b = (0,3,0) onto each of the orthonormal vectors $a_1 = (\frac{2}{3}, \frac{2}{3}, -\frac{1}{3})$ and $a_2 = (-\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$ and then find its projection p onto the plane of a_1 and a_2 .
- 12. Project the vector b = (1, 2) onto two vectors that are not orthogonal, $a_1 = (1, 0)$ and $a_2 = (1, 1)$. Show that, unlike the orthogonal case, the sum of the two one- dimensional projections does not equal b.
- 13. Find a third column so that the matrix

$$Q = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{14} \\ 1/\sqrt{3} & 2/\sqrt{14} \\ 1/\sqrt{3} & -3/\sqrt{14} \end{bmatrix}$$

is orthogonal. It must be a unit vector that is orthogonal to the other columns; how much freedom does this leave? Verify that the rows automatically become orthonormal at the same time.

- 14. If the vectors q_1 , q_2 , q_3 are orthonormal, what combination of q_1 and q_2 is closest to q_3 ?
- 15. Find an orthonormal set q_1, q_2, q_3 for which q_1, q_2 , span the column space of

$$A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{bmatrix}.$$

Which fundamental subspace contains q_3 ? What is the least-squares solution of Ax = b if $b = \begin{bmatrix} 1 & 2 & 7 \end{bmatrix}^T$?

- 16. Apply Gram-Schmidt to (1, -1, 0), (0, 1, -1), and (1, 0, -1), to find an orthonormal basis on the plane $x_1 + x_2 + x_3 = 0$. What is the dimension of this subspace, and how many nonzero vectors come out of Gram-Schmidt?
- 17. Find orthogonal vectors A, B, C by Gram-Schmidt from a = (1, -1, 0, 0), b = (0, 1, -1, 0), c = (0, 0, 1, -1). A, B, C and a, b, c are bases for the vectors perpendicular to d = (1, 1, 1, 1).
- 18. Construct the projection matrix P onto the space spanned by (1,1,1) and (0,1,3).
- 19. If Q is orthogonal, is the same true of Q^3 ?
- 20. The system Ax = b has a solution if and only if b is orthogonal to which of the four fundamental spaces?
- 21. Find an orthonormal basis for the plane x y + z = 0, and find the matrix P that projects onto the plane. What is the nullspace of P.

- 22. CT scanners examine the patient from different directions and produce a matrix giving the densities of bone and tissue at each point. Mathematically, the problem is to recover a matrix from its projections. in the 2 by 2 case, can you recover the matrix A if you know the sum along each row and down each column?
- 23. Find an orthonormal basis for \mathbb{R}^3 starting with the vector (1,1,1).

Section 4.2

- 24. For each n, how many exchanges will put (R_n, \ldots, R_1) into the normal order (R_1, \ldots, R_n) ? Find det(P) for $n \times n$ permutation matrix with 1's on the reverse diagonal.
- 25. True or False, with reason if true and counterexample if false.
 - (a) If A and B are identical except that $b_{11} = 2a_{11}$, then det(B) = 2 det(A).
 - (b) The determinant is the product of pivots.
 - (c) If A is invertible and B is singular, then A + B is invertible.
 - (d) If A is invertible and B is singular, then AB is singular.
 - (e) The determinant of AB BA is zero.
- 26. For which values of λ , $A \lambda I = \begin{pmatrix} 4 \lambda & 2 \\ 1 & 3 \lambda \end{pmatrix}$ is singular?
- 27. If every row of A adds to zero, prove that det(A) = 0. If every row adds to 1, prove that det(A I) = 0. Show by an example that this does not imply det(A) = 1.
- 28. Suppose that CD = -DC and find the flaw in the following argument: Taking determinants gives det(C) det(D) = -det(D) det(C), so either det(C) = 0 or det(D) = 0. Thus CD = -DC is only possible if C or D is singular.
- 29. Find these determinants by Gaussian elimination:

$$\det \begin{pmatrix} 11 & 12 & 13 & 14 \\ 21 & 22 & 23 & 24 \\ 31 & 32 & 33 & 34 \\ 41 & 42 & 43 & 44 \end{pmatrix}, \quad \det \begin{pmatrix} 1 & t & t^2 & t^3 \\ t & 1 & t & t^2 \\ t^2 & t & 1 & t \\ t^3 & t^2 & t & 1 \end{pmatrix}$$

30. What is wrong with this proof that projection matrices have det(P) = 1?

$$P = A(A^{T}A)^{-1}A^{T}$$
, so $|P| = |A|\frac{1}{|A^{T}||A|}|A^{T}| = 1$

Section 4.3

31. Let A_n be $n \times n$ matrix which is (1,1,1) tri-diagonal.

$$A_1 = (1), \ A_2 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ A_3 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

- (a) Let $D_n = det(A_n)$. Expand along first row to show that $D_n = D_{n-1} D_{n-2}$.
- (b) Starting from $D_1 = 1, D_2 = 0, \text{ find } D_3, \dots, D_8$. Find D_{1000} .

- 32. (a) Find the LU factorization, the pivots, and determinant of 4×4 matrix whose entries are $a_{ij} =$ smaller of i and j.
 - (b) Find the determinant if $a_{ij} = \text{smaller of } n_i \text{ and } n_j$, where $n_1 = 2, n_2 = 6, n_3 = 8, n_4 = 10$. Can you give a general rule for any $n_1 \le n_2 \le n_3 \le n_4$?
- 33. In a 5×5 matrix, does a + sign or sign go with $a_{15} a_{24} a_{33} a_{42} a_{51}$ down the reverse diagonal?
- 34. Suppose the matrix A is fixed, except that a_{11} varies from $-\infty$ to $+\infty$. Give examples in which det(A) is always zero or never zero. Then show from the cofactor expansion that otherwise det(A) = 0 for exactly one value of a_{11} .
- 35. Compute the determinant of A_2, A_3, A_4 . Can you predict A_n ?

$$A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ A_3 = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \ A_4 = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

- 36. (a) Place the smallest number of zeros in a 4×4 matrix that will guarantee that det(A) = 0.
 - (b) Place as many zeros as possible while still showing det(A) = 0.
- 37. Show that det(A) = 0, regardless of the five nonzeros marked with x. Find rank of $A = \begin{pmatrix} x & x & x \\ 0 & 0 & x \\ 0 & 0 & x \end{pmatrix}$.
- 38. (a) If $a_{11}=a_{22}=a_{33}=0$, how many of the six terms in $det(A_{3\times 3})$ will be zero?
 - (b) If $a_{11} = a_{22} = a_{33} = a_{44} = 0$, how many of the 24 terms in $det(A_{4\times 4})$ will be zero?
- 39. Let A_n be $n \times n$ matrix which is (-1, 2, -1) tri-diagonal. Let B_n be same as A_n except that $b_{11} = 1$. Find $det(B_n)$.
- 40. With 2 by 2 blocks, you cannot always use block determinants.

$$\det\begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A)\det(D), \text{ but } \det\begin{pmatrix} A & B \\ C & D \end{pmatrix} \neq \det(A)\det(D) - \det(C)\det(B)$$

- (a) Why is first statement true. Somehow B does not enter.
- (b) Show by example that equality fails when C enters.
- (c) Show by example that the answer det(AD CB) is also wrong.

*******₌₌******