Programación 1

Grado en Ingeniería Informática — Curso 2019-20

https://webdiis.unizar.es/asignaturas/PROG1/ https://moodle.unizar.es/add/course/view.php?id=29833

Profesores de la asignatura

Miguel Ángel Latre

latre@unizar.es

- Profesor responsable de la asignatura
- Simona Bernardi

simonab@unizar.es

José Neira

<u>ineira@unizar.es</u>

Ricardo J. Rodríguez

rjrodriguez@unizar.es

- Prof. por contratar
- Área de Lenguajes y Sistemas Informáticos
- Departamento de Informática e Ingeniería de Sistemas

Programación 1

- Asignatura de formación básica (obligatoria)
 - 6,0 créditos ECTS
 - Primer paso en el aprendizaje de la programación de computadores (se parte de cero)
 - Tiene continuidad en asignaturas posteriores de la materia común de Computación y Programación
 - Imprescindible para estudiar prácticamente cualquier otra materia de las que intervienen en los estudios

Objetivos

- Conocer los conceptos básicos ligados a la programación
- Saber analizar problemas concretos, plantear soluciones y desarrollar programas que permitan resolverlos en un computador
- Aprender a utilizar y familiarizarse con un entorno tecnológico específico:
 - Lenguaje C++ y entorno integrado CodeLite
- Ejercitarse como programador

Resultados de aprendizaje

Esta asignatura acredita que quien la apruebe:

- 1. Conoce conceptos básicos ligados a la programación y la informática.
- Comprende, analiza y resuelve problemas de tratamiento de información de complejidad baja o media y construye algoritmos que los resuelven.
- 3. Define las **estructuras de datos** más adecuadas para representar la información asociada a cada problema.
- 4. Diseña de forma **descendente** y documenta las **acciones** algorítmicas que resuelven cada problema de forma eficaz y eficiente.
- 5. Conoce algoritmos para resolver los **problemas más frecuentes** que se presentan al trabajar con **estructuras de datos secuenciales e indexadas.**

Resultados de aprendizaje

Esta asignatura acredita que quien la apruebe (cont.):

- 6. Conoce y comprende la **sintaxis** y la **semántica** de las construcciones básicas de un **lenguaje de programación: C++**
- 7. Escribe programas con **buen estilo**, con una **documentación** adecuada, con los comentarios precisos y con las **especificaciones** necesarias.
- 8. Sabe utilizar herramientas de edición, compilación, depuración y ejecución para desarrollar programas, así como sistemas operativos y otros programas con aplicación en ingeniería.
- 9. Utiliza **estrategias para corregir los programas** cuando no funcionan bien.
- 10. Implementa y ejecuta en un computador programas escritos en un lenguaje de programación determinado: **C++**

Programa

I. Conceptos y elementos básicos de Programación

- Problemas de tratamiento de información, algoritmos y programas
- Lenguajes de programación y ejecución de un programa
- Información, datos, operaciones y expresiones

II. Diseño de los primeros programas

- Diseño de algunos programas elementales
- Instrucciones simples y estructuradas
- Problemas de cálculos con enteros
- Desarrollo modular y descendente de programas
- Problemas de cálculo con números reales

Programa

III. Diseño de programas que trabajan con estructuras de datos

- Vectores
- Cadenas de caracteres
- Registros
- Algoritmos básicos de trabajo con estructuras de datos indexadas

IV. Diseño de programas que trabajan con ficheros

- Entrada y salida de datos
- Ficheros de texto
- Ficheros binarios
- Ficheros: otras posibilidades

Metodología de aprendizaje

- Clases magistrales
- Clases de problemas
- Prácticas en laboratorio
- Trabajo obligatorio
- Seguimiento de trabajos y prácticas
 - Práctica TP6
 - Tutorías

Grupos de prácticas y problemas (grupo de mañanas)

- Nuevos estudiantes:
 - Grupo 1: Apellido entre [AAA-CAT]
 - Grupo 2: Apellido entre [CAU-ESTER]
 - Grupo 3: Apellido entre [ESTES-GIMENE]
 - Grupo 4: Apellido entre [GIMENF-ZZZ]
- Resto de estudiantes:
 - Confirmar con el profesor la adscripción a un grupo

Grupos de prácticas y problemas (grupo de tardes)

- Nuevos estudiantes grado Informática:
 - Grupo 1: Apellido entre [AAA-LOQ]
 - Grupo 2: Apellido entre [LOR-MTZ]
 - Grupo 3: Apellido entre [MUA-RÑZ]
 - Grupo 4: Apellido entre [ROA-ZZZ]
- Estudiantes doble grado:
 - Grupo 1: Apellido entre [AAA-PAE]
 - Grupo 2: Apellido entre [PAF -ZZZ]
- □ Resto de estudiantes:
 - Confirmar con el profesor la adscripción a un grupo

Clases magistrales

- Aprendizaje de conceptos y metodologías de diseño de programas
 - 2 horas semanales
 - Asistencia voluntaria
- Aula 18 del edificio Torres Quevedo
 - Grupo de mañanas
 - Lunes y viernes 12:10 a 13:00

Clases magistrales

- Aprendizaje de conceptos y metodologías de diseño de programas
 - 2 horas semanales
 - Asistencia voluntaria
- Aula 18 del edificio Torres Quevedo
 - Grupo de tardes
 - □ Martes de <u>17:10</u> a 18:00
 - Viernes de 16:00 a 16:50

Clases de problemas

- Aplicación de conceptos y metodologías al diseño de algoritmos y programas
 - 1 hora semanal, los jueves
 - Asistencia voluntaria
- Grupo de mañanasProfesora: Simona Bernardi
 - Grupos 3 y 4: 12:10 a 13:00 (aula 19)
 - Grupos 1 y 2: 13:10 a 14:00 (aula 18)

Clases de problemas

- Aplicación de conceptos y metodologías al diseño de algoritmos y programas
 - 1 hora semanal, los jueves
 - Asistencia voluntaria
- Grupo de tardesProfesor: Miguel Ángel Latre
 - Grupos 3 y 4: 18:10 a 19:00 (aula 14)
 - Grupos 1 y 2: 19:10 a 20:00 (aula 18)

- Tecnología necesaria para programar, ejecutar y depurar utilizando C++ y en un entorno concreto
- □ 2 horas cada dos semanas
- Asistencia voluntaria

Grupo de mañanas

Horario: 10:00-12:00

Laboratorio L.0.04 del edificio Ada Byron

■ **Grupo 1: lunes A** Profesor: Ricardo J. Rodríguez

Grupo 2: lunes B Profesor: José Neira

Grupo 3: martes A Profesor: Miguel Ángel Latre

Grupo 4: martes B Profesor: Miguel Ángel Latre

□ Grupo de tardes

Horario: 15:00–17:00

Laboratorio L.0.04 del edificio Ada Byron

Grupo 1: martes A Profesor: José Lloret

■ Grupo 2: martes B Profesor: José Lloret

■ **Grupo 3: lunes A** Profesor: Ricardo J. Rodríguez

Grupo 4: lunes B Profesor: Miguel Ángel Latre

- □ Puestos de trabajo del laboratorio L.0.04
 - Equipos con sistema operativo Linux (CENT OS), Windows, ...
 - Clúster (hendrix) hace funciones de servidor de ficheros
 - Cuenta para el acceso a los equipos y al clúster
 - Se os informará de su nombre de usuario y contraseña en la primera sesión de prácticas
- □ ¿Dónde desarrollar programas C++?
 - Trabajando desde cualquier puesto del L.0.04 (o de otro laboratorio del DIIS) con cualquier entorno de desarrollo (editor de texto + compilador, CodeLite, Code::Blocks, ...)
 - Trabajando desde tu computador personal con cualquier entorno de desarrollo (editor de texto + compilador, CodeLite, Code::Blocks, ...)

- Prácticas individuales
 - Es positivo intercambiar experiencias y resolver dudas con compañeros
- Preparación de las prácticas (antes de la sesión):
 - Lectura completa de los guiones de prácticas
 - Resolución de los problemas en la medida de lo posible
 - Identificación de dudas
- Durante las sesiones de prácticas:
 - Consulta de dudas al profesor
 - Supervisión del trabajo por el profesor
 - Finalización del trabajo de prácticas

Prácticas

- Las prácticas son de entrega voluntaria
 - En el enunciado de cada práctica se indicará qué hay que entregar en concreto
- Plazo de entrega genérico: sábados de las semanas B antes de las 18:00, a través de Moodle
 - En el enunciado de cada práctica se indicará la fecha en concreto
- Algunas de las entregas serán corregidas por los profesores
- Un 10% de la calificación obtenida con los trabajos corregidos se sumará a la calificación obtenida en la convocatoria de <u>febrero</u> en el caso de haber <u>aprobado</u> la asignatura.
 - No se aplica a quienes no aprueben la asignatura en febrero y no se conserva para la convocatoria de septiembre.

Trabajo obligatorio y seguimiento de trabajos y prácticas

- □ Trabajo de programación
 - Se publicará en la primera quincena de diciembre
 - Entrega en enero, al finalizar el periodo de clases (en torno al 15 de enero)
- Seguimiento de trabajos y prácticas
 - Prácticas TP6
 - En horarios de tutorías específicos de los profesores José Neira y Miguel Ángel Latre

- Tutorías académicas
 - Supervisión del trabajo de los alumnos, orientación, resolución de dudas, recomendación de bibliografía, revisión de trabajos y pruebas, etc., dentro del ámbito de la asignatura

- Miguel Ángel Latre
- Lugar
 - Despacho D.2.22, edificio Ada Byron
- Horario
 - Martes: 12:00 a 13:00
 - Jueves: 11:30 a 13:30 y 15:00 a 18:00
 - http://webdiis.unizar.es/~latre/tutorias
 - Las tutorías deben reservarse con antelación a través del siguiente calendario Google: https://goo.gl/w94D5J

- □ Simona Bernardi
- Lugar
 - Despacho D.2.12, edificio Ada Byron
- □ Horario
 - Martes 12:00 a 14:00
 - Miércoles 12:00 a 14:00
 - Viernes 12:00 a 14:00

- □ José Neira
- Lugar
 - Despacho D.1.19, edificio Ada Byron
- ☐ Horario
 - Martes 11:00 a 13:00
 - Jueves 16:00 a 18:00
 - Viernes 9:00 a 11:00

- □ Ricardo J. Rodríguez
- Lugar
 - Despacho D.0.08, edificio Ada Byron
- Horario
 - Martes y Jueves, de 15.00 a 17.00
 - Miércoles, de 11.00 a 13.00

Carga de trabajo

- Estimación de 150 horas efectivas de trabajo:
 - 56 horas de actividades presenciales activas
 - clases «teóricas»
 - clases de problemas
 - prácticas en laboratorio
 - 91 horas de estudio personal efectivo
 - estudio de apuntes y textos
 - resolución de problemas
 - preparación clases y prácticas
 - desarrollo de programas
 - 3 horas de examen final escrito

Proceso de aprendizaje

- El aprendizaje de la programación exige un trabajo continuado desde el primer día de clase:
 - **comprensión** de conceptos,
 - ■análisis y la resolución de problemas utilizando lápiz y papel,
 - puesta a punto en computador de un buen número de programas.
- □ "A programar se aprende programando"

¿Qué hacer para aprender?

- Asistir a clase
 - Habiendo realizado el trabajo previo que se haya encargado
 - Atendiendo y participando activamente en la clase
 - Repasando después y comprendiendo cada lección
- Resolver los problemas de programación propuestos en las clases de problemas y en las prácticas:
 - Lápiz y papel
 - Programación en computador
 - Validación del código desarrollado
- □ Colaborar con otros compañeros y consultarles
- Consultar dudas a los profesores en sus horarios de tutorías

Actividades de evaluación

- □ P1 Prueba escrita
 - Nota mínima: 4,0
 - Ponderación: 70%
- P2 Trabajos y prueba de programación en laboratorio.
 - Ponderación: 30%
 - Febrero
 - □ Trabajo obligatorio. Ponderación 15%
 - □ Prueba de programación en laboratorio. Ponderación 15%
 - Septiembre
 - □ Prueba de programación en laboratorio. Ponderación 30%
- □ Prácticas
 - Entrega voluntaria
 - Permiten subir la nota, hasta 1 punto, a quienes aprueben en febrero

Actividades de evaluación

Las calificaciones obtenidas en febrero en las pruebas P1 y P2 se mantienen en septiembre, salvo que se opte por presentarse a la prueba correspondiente en septiembre, en cuyo caso prevalecerá la nueva calificación

Bibliografía básica

- □ **Javier Martínez**: *Curso de Programación 1*. 2017
- Miguel Ángel Latre y Javier Martínez: Prácticas de Programación 1. Moodle. 2019
- Miguel Ángel Latre y Javier Martínez: Diversos materiales docentes.
 - Web de la asignatura:
 http://webdiis.unizar.es/asignaturas/PROG1
 - Curso en Moodle:
 https://moodle.unizar.es/add/course/view.php?id=29833

Bibliografía de consulta

- □ Páginas web con documentación sobre el lenguaje C++
 - http://www.cplusplus.com/
 - http://www.cprogramming.com/
 - http://es.wikibooks.org/wiki/Programación en C++
- □ Manual en línea de bibliotecas predefinidas en C++
 - http://www.cplusplus.com/reference/
- Entorno de ejecución en línea
 - http://cpp.sh/
- Hay muchos textos para apoyar la enseñanza de un primer curso de programación utilizando el lenguaje C++

Web de la asignatura

https://webdiis.unizar.es/asignaturas/PROG1/

https://moodle.unizar.es/add/course/view.php?id=29833

Para la clase del jueves...

- □ Notación Backus-Naur o BNF
 - Lectura de la sección 2.1.2 de los apuntes del Profesor Martínez
 - Disponible en Moodle

Para la clase del martes/viernes...

- Problemas de tratamiento de información
 - Objetivo: resolución automática del problema
 - ¿Quién? Un computador
 - Necesidad de programarlo

Algoritmo

- Conjunto de operaciones
 - ordenado,
 - finito,
 - carente de ambigüedades,

que permite hallar la solución de un problema de tratamiento de información

Para la clase del martes/viernes...

- Resolución de un problema de tratamiento de información
- Hacer una tortilla de patata

File:Tortilla de Patatas (Corte transversal).jpg. (9 de marzo de 2017). Wikimedia Commons, the free media repository. Accedido el 18 de septiembre de 2017.

https://commons.wikimedia.org/w/index.php?title=File:Tortilla de Patatas (Corte transversal).jpg&oldid=236535592.

