Treatment Switching Estimation based on Principal Stratification

PSI Onco Estimand Working Group - Treatment Switching Taskforce/ Yufei Wang

PSI Onco Estimand Working Group – Treatment Switching Taskforce

Yufei Wang

Kaifeng Lu

Songzi Li

Mehreteab Aregay

Natalia Kan

Agenda

- Introduction to Bayesian latent variable Principal Stratification Model¹ for Treatment Switching
- Demonstration based on Simulations
- Conclusion and Discussion

1. Alessandra Mattei, Fabrizia Mealli, Peng Ding, "Assessing causal effects in the presence of treatment switching through principal stratification", 2020, 2002.11989, arXiv, stat.AP link: [2002.11989] Assessing causal effects in the presence of treatment switching through principal stratification (arxiv.org)

Introduction to Bayesian latent variable Principal Stratification Model for Treatment Switching

Motivation

- Clinical trials focusing on survival outcomes often allow patients in the control arm to switch to the treatment arm if their physical conditions are worse than certain tolerance levels.
- The intention-to-treat analysis ignores the information of treatment switching.
- Other existing methods^{2,3,4,5} propose to reconstruct the outcome a subject would have had if he or she had not switched under strong assumptions.
- The proposed method¹ focuses on principal causal effects for patients belonging to subpopulations defined by the switching behavior under control.
 - 1. Alessandra Mattei, Fabrizia Mealli, Peng Ding, "Assessing causal effects in the presence of treatment switching through principal stratification", 2020, 2002.11989, arXiv, stat.AP
 - 2. Dodd, S., et al. (2019). "Adjustment for treatment changes in epilepsy trials: A comparison of causal methods for time-to-event outcomes." <u>Stat Methods Med Res</u> **28(3): 717-733.**
 - 3. Latimer NR, Abrams KR. NICE DSU Technical Support Document 16: Adjusting Survival Time Estimates in the Presence of Treatment Switching [Internet]. London: National Institute for Health and Care Excellence (NICE); 2014 Jul. PMID: 27466662.
 - 4. Robins, J. M. and A. A. Tsiatis (1991). "Correcting for non-compliance in randomized trials using rank preserving structural failure time models." <u>Communications in Statistics Theory and Methods</u> **20(8)**: **2609-2631**.
- 5. Sullivan TR, Latimer NR, Gray J, Sorich MJ, Salter AB, Karnon J. Adjusting for Treatment Switching in Oncology Trials: A Systematic Review and Recommendations for Reporting. Value Health. 2020 Mar;23(3):388-396. doi: 10.1016/j.jval.2019.10.015. Epub 2020 Jan 23. PMID: 32197735.

Causal estimands

- Intention-to-treat causal effects
 - Average causal effect:

$$ACE = E[Y_i(1)] - E[Y_i(0)]$$

Distributional causal effect:

$$DCE(y) = P{Y_i(1) > y} - P{Y_i(0) > y}$$

- Principal causal effects
 - Principal average causal effects:

$$ACE(s) = E[Y_i(1)|S_i(0) = s] - E[Y_i(0)|S_i(0) = s]$$

- Principal distributional causal effects:

$$DCE(y|s) = P{Y_i(1) > y|S_i(0) = s} - P{Y_i(0) > y|S_i(0) = s}$$

- Conditional principal distributional causal effects for switchers:

$$cDCE(y|s) = P\{Y_i(1) > y | Y_i(1) \ge S_i(0), S_i(0) = s\} - P\{Y_i(0) > y | Y_i(1) \ge S_i(0), S_i(0) = s\}$$

Observed Data Pattern & Principal Strata Setup for Treatment Switching

Placebo arm

Non-switcher

Switcher

Switcher

Switcher/ Non-switcher

Treatment arm

Switcher/

Non-switcher If treated

with placebo

Switcher/ Non-switcher

If treated with placebo

Assumptions on Switching Behaviour

Placebo arm

P4 —

Switcher/ Non-switcher

$$\pi_{NS} = \frac{\pi G_{Y(0)}^{\bar{S}}(C_i)}{\pi G_{Y(0)}^{\bar{S}}(C_i) + (1 - \pi)G_{S(0)}(C_i) \times 1}$$

Assumptions on Switching Behaviour

Treatment arm

Switcher/ Non-switcher

Switcher/ Non-switcher

Metropolis-Hastings

Previous Candidate draw draw

Accept current draw with $P = \min(P(S_i(0)), 1)$

$$P\left(S_{i} (0)\right) = \frac{P\left\{S_{i}^{cand}(0)|\boldsymbol{\theta}, D_{i}^{obs}\right\}}{P\left\{S_{i}^{*}(0)|\boldsymbol{\theta}, D_{i}^{obs}\right\}} \times \frac{g\left(S_{i}^{*}(0)\right)}{g\left(S_{i}^{cand}(0)\right)}$$

 $\left(\begin{array}{c} prob \\ not \\ switching \end{array}\right) \left(\begin{array}{c} prob \\ switching \end{array}\right)$ $\left(\begin{array}{c} prob \\ switch \\ at \\ S_i \end{array}\right) \left(\begin{array}{c} 0 \end{array}\right)$

Assumptions on Outcome conditioned on Switching

Control Arm

- $Y_i(0)|S_i(0) = \bar{S} \sim \text{Weibull}(\bar{\alpha}_Y, \bar{\beta}_Y + X^T \bar{\eta}_Y)$
- $Y_i(0)|S_i(0) \in R_+ \sim S_i(0) + \text{Weibull}(\alpha_Y, \beta_Y + \lambda \log(S_i(0)) + X^T \eta_Y)$

Treatme nt arm

- $Y_i(1)|Y_i(0), S_i(0) = \bar{S} \sim \kappa Y_i(0) + \text{Weibull}(\bar{\nu}_Y, \bar{\gamma}_Y + X^T \bar{\zeta})$
- $Y_i(1)|Y_i(0), S_i(0) \in R_+ \sim \kappa Y_i(0) + \text{Weibull}(\nu_Y, \gamma_Y + \lambda \log(S_i(0)) + X^T \zeta)$

Bayesian Latent Variable Principal Stratification Model

Demonstration based on Simulations

Summary of Simulation

Data Pattern	Treatment	Switching status	OS event	n(%)	Time of switching	OS
1 attern	Treatment	Status	CVCIII	11(70)	Time of switching	05
1	0	0	1	120(12%)	cens _{t1}	wb(1, 0.6)
2	0	1	1	50(5%)	wb(1,0.4)	$c^{1} \times \text{wb}(1, 0.6) + (1-c) \times \text{wb}(1, 1)$
3	0	1	0	140(14%)	wb(1,0.4)	cens _{t.mx} ⁵
4	0	0	0	190(19%)	cens _{t1} ²	cens _{t2} ³
5	1	n/a	1	140(14%)	N/A	wb(1,1)
6	1	n/a	0	360(36%)	N/A	cens _{t3} ⁴

- 1. *c* is the proportion of time on plc
- 2. cens_{t1}: censoring quantile of wb(1, 0.4)
- 3. cens_{t2}: censoring quantile of wb(1, 0.6)
- 4. $cens_{t3}$: censoring quantile of wb(1, 1)
- 5. cens_{t.mx}: censoring quantile of c*wb(1,0.6) + censoring quantile of (1-c)*wb(1,1)

Bayesian Latent Variable Principal Stratification Model

IPCW^{2,3}

prob of switching (simulated) vs ipcw weights

	HR	95% CIs	P-value
Naïve approach*	0.9	(0.70, 1.12)	0.395
IPCW	0.57	(0.43, 0.75)	8.71×10 ⁻⁵
* censored at switching			

- 2. Dodd, S., et al. (2019). "Adjustment for treatment changes in epilepsy trials: A comparison of causal methods for time-to-event outcomes." <u>Stat Methods Med Res</u> **28(3): 717-733.**
- 3. Latimer NR, Abrams KR. NICE DSU Technical Support Document 16: Adjusting Survival Time Estimates in the Presence of Treatment Switching [Internet]. London: National Institute for Health and Care Excellence (NICE); 2014 Jul. PMID: 27466662.

RPSFTM^{3,4}

	HR	95% CIs	P-value
RPSFTM	0.59	(0.47, 0.74)	6.05×10 ⁻⁶

- 3. Latimer NR, Abrams KR. NICE DSU Technical Support Document 16: Adjusting Survival Time Estimates in the Presence of Treatment Switching [Internet]. London: National Institute for Health and Care Excellence (NICE); 2014 Jul. PMID: 27466662.
- 4. Robins, J. M. and A. A. Tsiatis (1991). "Correcting for non-compliance in randomized trials using rank preserving structural failure time models." <u>Communications in Statistics Theory and Methods</u> **20(8)**: **2609-2631**.

Model fitted in R 4.1.2 with R::Rcpp, R:: Armadillo

3 chains;

150,000 posterior samples each chain with thinning of 10

Par	mean s.d. Percentile						Accept	Gelman	
								Rate	R
			2.5%	25%	50%	75.00%	97.50%		
η_0	20.05	1.79	16.61	18.81	20.02	21.22	23.66	N/A	1
η1	-68.76	5.89	-80.61	-72.71	-68.65	-64.66	-57.43	N/A	1
π	0.38	0.01	0.36	0.37	0.38	0.38	0.39	N/A	1
$a_{\rm s}$	1.5	0.07	1.36	1.46	1.5	1.55	1.65	29.00	1
$\beta_{\rm s}$	3.85	0.3	3.27	3.63	3.83	4.07	4.43	24.80	1.01
η_s	-1.91	1.32	-4.55	-2.78	-1.9	-0.96	0.61	29.90	1.03
$\overline{\alpha}_y$	1.02	0.09	0.85	0.96	1.02	1.08	1.2	30.63	1.01
$\overline{m{eta}}_y$	0.6	0.71	-0.74	0.08	0.6	1.12	1.92	22.33	1.08
$\overline{\eta}_y$	-0.19	1.73	-3.36	-1.43	-0.19	1.07	3.05	26.93	1.07
$a_{\rm v}$	0.86	0.12	0.64	0.77	0.85	0.93	1.1	24.73	1
$\hat{\beta_{y}}$	0.49	0.8	-1.11	-0.04	0.48	1.04	2.06	33.10	1.02
$\eta_{y}^{'}$	0.71	2.54	-4.09	-1	0.61	2.39	5.89	17.43	1.03
$\overline{\mathbf{v}}_{y}$	1.02	0.07	0.89	0.98	1.02	1.07	1.16	28.40	1
$\bar{\gamma}_y$	-0.03	0.42	-0.85	-0.32	-0.03	0.25	0.81	24.93	1.04
ζ	0.29	1.08	-1.82	-0.42	0.27	1.02	2.38	30.77	1.04
$\mathbf{v}_{\mathbf{y}}$	1.04	0.09	0.88	0.98	1.04	1.1	1.23	38.07	1
$\dot{\gamma_{\mathrm{y}}}$	0.91	0.23	0.47	0.76	0.91	1.06	1.36	34.93	1
ζ	-6.24	2.62	-11.38	-7.88	-6.14	-4.54	-1.33	19.53	1.01
λ	-0.05	0.17	-0.37	-0.16	-0.05	0.06	0.28	37.90	1.01
$ACE(\bar{S})$	0.32	0.17	0.01	0.21	0.31	0.43	0.69	N/A	1.01

Conclusion and Discussion

Conclusions

- The proposed method targets the principal causal effects for subpopulations defined by switching status and time
- The Bayesian parametric modelling is flexible; however, the results are sensitive to the assumed relationship between potential survival outcomes within a principal stratum
- The method may be extended to handle two-way switching and informative censoring

References

- 1. Alessandra Mattei, Fabrizia Mealli, Peng Ding, "Assessing causal effects in the presence of treatment switching through principal stratification", 2020, 2002.11989, arXiv, stat.AP
- link: [2002.11989] Assessing causal effects in the presence of treatment switching through principal stratification (arxiv.org)
- 2. Dodd, S., et al. (2019). "Adjustment for treatment changes in epilepsy trials: A comparison of causal methods for time-to-event outcomes." Stat Methods Med Res 28(3): 717-733.
- 3. Latimer NR, Abrams KR. NICE DSU Technical Support Document 16: Adjusting Survival Time Estimates in the Presence of Treatment Switching [Internet]. London: National Institute for Health and Care Excellence (NICE); 2014 Jul. PMID: 27466662.
- 4. Robins, J. M. and A. A. Tsiatis (1991). "Correcting for non-compliance in randomized trials using rank preserving structural failure time models." <u>Communications in Statistics Theory and Methods **20(8): 2609-2631.**</u>
- 5. Sullivan TR, Latimer NR, Gray J, Sorich MJ, Salter AB, Karnon J. Adjusting for Treatment Switching in Oncology Trials: A Systematic Review and Recommendations for Reporting. Value Health. 2020 Mar;23(3):388-396. doi: 10.1016/j.jval.2019.10.015. Epub 2020 Jan 23. PMID: 32197735.

Thank You!

