Condiciones de singularidad de manipuladores seriales

Gonzalez Solis Diego Moises 21 de octubre de 2019

Matrices de Rotación. Ángulos de Euler

Transformaciones Ortogonales

(i,j,k)base fija o del espacio

$$\vec{e}_{1} = e_{11}\vec{i} + e_{12}\vec{j} + e_{13}\vec{k}$$

$$\vec{e}_{2} = e_{21}\vec{i} + e_{22}\vec{j} + e_{23}\vec{k}$$

$$\vec{e}_{3} = e_{31}\vec{i} + e_{32}\vec{j} + e_{33}\vec{k}$$

$$E = \begin{bmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{bmatrix}$$

E ortonormal de determinante = 1

Transformaciones Ortogonales

Cambio de base

$$\overrightarrow{P} = p_x \cdot \overrightarrow{i} + p_y \cdot \overrightarrow{j} + p_z \cdot \overrightarrow{k} = p_1 \cdot \overrightarrow{e_1} + p_2 \cdot \overrightarrow{e_2} + p_3 \cdot \overrightarrow{e_3}$$

$$\vec{P} = p_{x} \cdot \vec{i} + p_{y} \cdot \vec{j} + p_{z} \cdot \vec{k} =$$

$$= p_{1} \cdot \left(e_{11} \vec{i} + e_{12} \vec{j} + e_{13} \vec{k} \right) +$$

$$+ p_{2} \cdot \left(e_{21} \vec{i} + e_{22} \vec{j} + e_{23} \vec{k} \right) +$$

$$+ p_{3} \cdot \left(e_{31} \vec{i} + e_{32} \vec{j} + e_{33} \vec{k} \right)$$

Transformaciones Ortogonales

Cambio de base

Rotaciones

Giro de un ángulo α alrededor de eje X

Rotaciones

Giro de un ángulo θ alrededor de eje \boldsymbol{Y}

Rotaciones

Giro de un ángulo ψ alrededor de eje **Z**

$$k \uparrow e_{3} \qquad E_{z,\psi} = \begin{bmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$e_{2} \uparrow \psi \qquad e_{1}$$

Teorema de Euler

Leonhard Paul Euler

(Basilea, Suiza, 15/07/1707 - San Petersburgo, Rusia, 18/09/1783)

"Rotando una esfera de forma arbitraria alrededor de su centro, siempre es posible encontrar un diámetro cuya posición tras la rotación es igual que la inicial"

Teorema de Euler

El movimiento más general de un SR con punto fijo se puede replicar mediante un único giro alrededor de un eje que pasa por el punto fijo $\begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix}$

Como las rotaciones con punto fijo son matrices E ortonormales: $E = \begin{bmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{bmatrix}$

Toda matriz ortonormal con determinante unidad tiene un autovalor igual a 1 (y solo uno)

• El eje de la rotación es el autovector del autovalor λ =1:

Si **P**
$$\epsilon$$
 al eje, queda invariante: $E \cdot \overrightarrow{P} = \lambda \overrightarrow{P} = \overrightarrow{P}$

• El ángulo de giro
$$\theta$$
 vale: $\cos(\theta) = \frac{1}{2}(e_{11} + e_{22} + e_{33} - 1)$

Ángulos de Euler

Expresan la posición más general de un SR con punto fijo mediante 3 ángulos. La posición se alcanza mediante 3 rotaciones sucesivas:

1 - Precesión: giro alrededor de un eje fijo:

2-Nutación: giro alrededor del eje

perpendicular al fijo y a otro solidario:

3 - Rotación propia (Spin): giro alrededor del eje solidario al cuerpo:

Ángulos de Euler

Peis de la eoliptica Nutración
Precesión

Rotación

Eja terrestre

Precesión: T≈25800 años

Nutación: T≈18.6 años

Spin: T≈24 horas

Ángulos de Euler: Primer giro: ángulo de precesión ϕ

$$\begin{bmatrix}
i_1 \\
j_1 \\
k_1
\end{bmatrix} = \begin{bmatrix}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
i \\
j \\
k
\end{bmatrix}$$

$$\begin{bmatrix}
i_1 \\
j_1 \\
k_1
\end{bmatrix} = Ez\phi \cdot \begin{bmatrix}
i \\
j \\
k
\end{bmatrix}$$

$$\begin{bmatrix}
i_1 \\
j_1 \\
k_1
\end{bmatrix} = Ez\phi \cdot \begin{bmatrix}
i \\
j \\
k
\end{bmatrix}$$

Ángulos de Euler: Segundo giro: ángulo de nutación heta

$$\begin{vmatrix} i_2 \\ j_2 \\ k_2 \end{vmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} \cdot \begin{pmatrix} i_1 \\ j_1 \\ k_1 \end{pmatrix}$$

$$egin{array}{c} heta & igg| egin{array}{c} m{i}_1 \ m{j}_1 \ m{k}_1 \ \end{array}$$

Ángulos de Euler: Tercer giro: ángulo de spin ψ

$$\begin{bmatrix}
\mathbf{e}_{1} \\
\mathbf{e}_{2} \\
\mathbf{e}_{3}
\end{bmatrix} = \begin{bmatrix}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
\mathbf{i}_{2} \\
\mathbf{j}_{2} \\
\mathbf{k}_{2}
\end{bmatrix} \quad \mathbf{k} = \mathbf{k}_{1} \quad \mathbf{e}_{2}$$

$$\begin{bmatrix}
\mathbf{e}_{1} \\
\mathbf{e}_{1}
\end{bmatrix} \quad \begin{bmatrix}
\mathbf{i}_{2} \\
\mathbf{i}_{2}
\end{bmatrix} \quad \mathbf{e}_{3} = \mathbf{k}_{2}$$

$$\begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{pmatrix} = \mathbf{E} \mathbf{z} \psi \cdot \begin{pmatrix} \mathbf{i}_2 \\ \mathbf{j}_2 \\ \mathbf{k}_2 \end{pmatrix}$$

Ángulos de Euler. Matriz de rotación de los 3 giros

$$\begin{bmatrix}
i_{1} \\
j_{1} \\
k_{1}
\end{bmatrix} = Ez\phi \cdot \begin{bmatrix}
i \\
j \\
k
\end{bmatrix} \qquad \begin{bmatrix}
i_{2} \\
j_{2} \\
k_{2}
\end{bmatrix} = Ex\phi \cdot \begin{bmatrix}
i_{1} \\
j_{1} \\
k_{1}
\end{bmatrix} \qquad \begin{bmatrix}
e_{1} \\
e_{2} \\
e_{3}
\end{bmatrix} = Ez\psi \cdot \begin{bmatrix}
i_{2} \\
j_{2} \\
k_{2}
\end{bmatrix}$$

$$\begin{bmatrix}
i_{2} \\
j_{2} \\
k_{2}
\end{bmatrix} = Ex\phi \cdot Ez\phi \begin{bmatrix}
i \\
j \\
k
\end{bmatrix}$$

$$\begin{bmatrix}
e_{1} \\
e_{2} \\
e_{3}
\end{bmatrix} = Ez\psi \cdot Ex\phi \cdot Ez\phi \begin{bmatrix}
i \\
j \\
k
\end{bmatrix} \Rightarrow \begin{bmatrix}
e_{1} \\
e_{2} \\
e_{3}
\end{bmatrix} = E \begin{bmatrix}
i \\
j \\
k
\end{bmatrix}$$

Ángulos de Euler. Matriz de Euler

$$\begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix} = \mathbf{E} z \psi \cdot \mathbf{E} x \theta \cdot \mathbf{E} z \phi \begin{pmatrix} i \\ j \\ k \end{pmatrix} \Longrightarrow \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix} = \mathbf{E} \cdot \begin{pmatrix} i \\ j \\ k \end{pmatrix}$$

$$E = \begin{bmatrix} \cos \psi \cos \phi - \cos \theta \sin \phi \sin \psi & \cos \psi \sin \phi + \cos \theta \cos \phi \sin \psi & \sin \theta \sin \psi \\ -\sin \psi \cos \phi - \cos \theta \sin \phi \cos \psi & -\sin \psi \sin \phi + \cos \theta \cos \phi \cos \psi & \sin \theta \cos \psi \\ & \sin \theta \sin \phi & -\sin \theta \cos \phi & \cos \theta \end{bmatrix}$$

Ángulos de Euler. Problema Inverso

Los datos de partida, en lugar de ser los 3 ángulos ϕ , θ , ψ son los vectores e₁ e₂ e₃ que representan la posición del SR

$$\begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix} = \begin{bmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
¿Cuánto valen ϕ , θ , ψ ?

¿Resolver el sistema de ecuaciones? (no lineal)

$$\begin{bmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{bmatrix} =$$

$$= \begin{bmatrix} \cos\psi\cos\phi - \cos\theta \, sen\phi \, sen\psi & \cos\psi \, sen\phi + \cos\theta\cos\phi \, sen\psi & sen\theta \, sen\psi \\ -sen\psi\cos\phi - \cos\theta \, sen\phi\cos\psi & -sen\psi \, sen\phi + \cos\theta\cos\phi\cos\psi & sen\theta\cos\psi \\ sen\theta \, sen\phi & -sen\theta\cos\phi & \cos\theta \end{bmatrix}$$

Ángulos de Euler. Problema Inverso

Conocida la posición del SR dados \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3 ¿Cuánto valen ϕ , θ , ψ ?

Ángulos de Euler: Problema Inverso

Ángulos de Euler: Problema Inverso

$$\overrightarrow{e_n} \cdot \overrightarrow{i} = \cos \phi$$

$$\overrightarrow{e_n} = \cos\phi \overrightarrow{i} + sen\phi \overrightarrow{j}$$

Ángulos de Euler: Problema Inverso

$$\overrightarrow{e_n} \cdot \overrightarrow{e_1} = \cos \psi$$

$$\overrightarrow{e_n} = \cos \psi \overrightarrow{e_1} - sen\psi \overrightarrow{e_2}$$

$$\overrightarrow{e_n} = \cos \psi \overrightarrow{e_1} - sen\psi \overrightarrow{e_2}$$

$$\vec{\omega} = \dot{\phi}\vec{k} + \dot{\theta}\vec{e_n} + \dot{\psi}\vec{e_3}$$

¡¡no es un triedro ortogonal!!

$$\vec{\omega} = \dot{\phi}\vec{k} + \dot{\theta}\vec{e_n} + \dot{\psi}\vec{e_3}$$

$$\vec{\omega} = \begin{bmatrix} \dot{\theta} \cdot \cos \phi + \dot{\psi} \cdot \sin \theta \cdot \sin \phi \\ \dot{\theta} \cdot \sin \phi - \dot{\psi} \cdot \sin \theta \cdot \cos \phi \\ \dot{\phi} + \dot{\psi} \cdot \cos \theta \end{bmatrix}_{0}$$

$$\vec{\omega} = \dot{\phi}\vec{k} + \dot{\theta}\vec{e_n} + \dot{\psi}\vec{e_3}$$

En base del cuerpo sin spin ⇒ (base 2)

$$\vec{k} = \begin{bmatrix} 0 \\ \sin \theta \\ \cos \theta \end{bmatrix}; \vec{e_n} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}; \vec{e_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}_2$$

$$\vec{\omega} = \begin{bmatrix} \dot{\theta} \\ \dot{\phi} \cdot \sin \theta \\ \dot{\phi} \cdot \cos \theta + \dot{\psi} \end{bmatrix}_{2} = \dot{\theta} \vec{e}_{n} + (\dot{\phi} \cdot \sin \theta) \vec{j}_{2} + (\dot{\phi} \cdot \cos \theta + \dot{\psi}) \vec{e}_{3}$$

$$\vec{\omega} = \dot{\phi}\vec{k} + \dot{\theta}\vec{e_n} + \dot{\psi}\vec{e_3}$$

En la base del cuerpo

$$\vec{k} = \begin{bmatrix} \sin\theta \cdot \sin\psi \\ \sin\theta \cdot \cos\psi \\ \cos\theta \end{bmatrix}; \vec{e}_n = \begin{bmatrix} \cos\psi \\ -\sin\psi \\ 0 \end{bmatrix}; \vec{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}_3$$

$$\vec{\omega} = \begin{bmatrix} \dot{\phi} \cdot \sin \theta \cdot \sin \psi + \dot{\theta} \cdot \cos \psi \\ \dot{\phi} \cdot \sin \theta \cdot \cos \psi - \dot{\theta} \cdot \sin \psi \\ \dot{\phi} \cdot \cos \theta + \dot{\psi} \end{bmatrix}_{3}$$

$$\vec{\omega} = \dot{\phi}\vec{k} + \dot{\theta}\vec{e_n} + \dot{\psi}\vec{e_3}$$

Derivando la ω expresada en velocidades de Euler

$$\vec{\alpha} = \frac{d\vec{\omega}}{dt}$$

$$\vec{\alpha} = \vec{\phi} \cdot \vec{k} + \vec{\theta} \cdot \vec{e_n} + \dot{\theta} \cdot (\dot{\phi} \cdot \vec{k} \times \vec{e_n}) + \ddot{\psi} \cdot \vec{e_3} + \dot{\psi} \cdot (\dot{\phi} \cdot \vec{k} + \dot{\theta} \cdot \vec{e_n}) \times \vec{e_3}$$

$$\vec{\alpha} = \frac{d\vec{\omega}}{dt} \quad \vec{\omega} = \begin{bmatrix} \dot{\theta} \cdot \cos\phi + \dot{\psi} \cdot \sin\theta \cdot \sin\phi \\ \dot{\theta} \cdot \sin\phi - \dot{\psi} \cdot \sin\theta \cdot \cos\phi \\ \dot{\phi} + \dot{\psi} \cdot \cos\theta \end{bmatrix}$$

Si ω en base fija

hay que derivar las componentes

Por ejemplo:

$$\alpha_{x} = \dot{\omega}_{x} = \frac{d(\cos\phi \cdot \dot{\theta} + \sin\theta \cdot \sin\phi \cdot \dot{\psi})}{dt} = -\sin\phi \cdot \dot{\theta} \cdot \dot{\phi} + \cos\phi \cdot \ddot{\theta} + \dots$$

$$\vec{\alpha} = \frac{d\vec{\omega}}{dt} \qquad \vec{\omega} = \begin{bmatrix} \dot{\theta} \\ \dot{\phi} \cdot \sin \theta \\ \dot{\phi} \cdot \cos \theta + \dot{\psi} \end{bmatrix}_{2}$$

$$e_{3} = \mathbf{z}_{2}$$

Si ω en base del cuerpo sin spín ⇒ (base 2)

$$\vec{\alpha} = \frac{\vec{d\omega}}{dt} = \frac{\vec{d\omega}}{dt} \Big|_{2} + \vec{\omega}_{2} \times \vec{\omega} = \begin{pmatrix} \dot{\omega}_{1} \\ \dot{\omega}_{2} \\ \dot{\omega}_{3} \end{pmatrix}_{2} + \begin{vmatrix} \vec{i}_{2} & \vec{j}_{2} & \vec{k}_{2} \\ \dot{\theta} & \dot{\phi} \cdot \sin \theta & \dot{\phi} \cdot \cos \theta \\ \dot{\theta} & \dot{\phi} \cdot \sin \theta & \dot{\phi} \cdot \cos \theta + \dot{\psi} \end{vmatrix}$$

$$\overrightarrow{\omega}_2 = \dot{\phi} \cdot \vec{k} + \dot{\theta} \cdot \overrightarrow{e}_n$$

$$\vec{\alpha} = \frac{d\vec{\omega}}{dt} \quad \vec{\omega} = \begin{bmatrix} \dot{\phi} \cdot \sin \theta \cdot \sin \psi + \dot{\theta} \cdot \cos \psi \\ \dot{\phi} \cdot \sin \theta \cdot \cos \psi - \dot{\theta} \cdot \sin \psi \\ \dot{\phi} \cdot \cos \theta + \dot{\psi} \end{bmatrix}_{3}^{e_{3} = \mathbf{Z}_{2}}$$

Si ω en base del cuerpo

$$\vec{\alpha} = \frac{d\vec{\omega}}{dt} = \frac{d\vec{\omega}}{dt} \Big|_{3} + \vec{\omega}_{3} \times \vec{\omega} = \frac{d\vec{\omega}}{dt} \Big|_{3}$$

$$\vec{\omega}_{3} = \vec{\omega}$$

hay que derivar las componentes

