L3 ANSWER 1 OF 7 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2005:1234004 CAPLUS

TITLE: Hydrogel glycan microarrays

AUTHOR(S): Dyukova, V. I.; Dementieva, E. I.; Zubtsov, D. A.;

Galanina, O. E.; Bovin, N. V.; Rubina, A. Yu.

CORPORATE SOURCE: Engelhardt Institute of Molecular Biology, Russian

Academy of Sciences, Moscow, 119991, Russia

SOURCE: Analytical Biochemistry (2005), 347(1), 94-105

CODEN: ANBCA2; ISSN: 0003-2697

PUBLISHER: Elsevier DOCUMENT TYPE: Journal LANGUAGE: English

AB The technol. of hydrogel microchips manufacturing, which was developed previously for covalent immobilization of DNA and proteins, was applied

for the preparation of glycochips and combined glyco/protein chips. Microchips

consist of hydrogel drops separated with hydrophobic surface

consist of hydrogel drops separated with hydrophobic surface.

Spacered amino-saccharides and polyacrylamide

glycoconjugates were used for immobilization. Gel elements were .apprx.1 nl in volume (150 μm in diameter and 25 μm in height), and the amount of

covalently immobilized saccharide in the glycoarray was 0.4-1.7

pmol per gel element. Hydrogel glycan microchips were used for quant.

assay of antibodies against blood group antigens and

assay of lectins with fluorescent detection. In all cases, only specific interaction with chip-immobilized saccharides was observed, whereas

the background signal was very low. The detection limit of on-chip assays was comparable to that of the standard 96-well plate assays. Mixing of reaction solution allowed us to decrease the duration of the assays

significantly: 2-3 h for incubation and development steps and 10 min for washing. A method for determination of association consts. for binding of

compds.

with chip-immobilized ligands from the kinetics of their binding is proposed. Combined microchips containing different types of biomols. can be designed and used for simultaneous detection of different compds.

L3 ANSWER 2 OF 7 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2005:277396 CAPLUS

DOCUMENT NUMBER: 143:262936

TITLE: The isolation and characterization of human natural

 $\alpha Gal\mbox{-specific IgG}$ antibodies applicable to the

detection of αGal -glycosphingolipids

AUTHOR(S): Smorodin, E. P.; Kurtenkov, O. A.; Shevchuk, I. N.;

Tanner, R. H.

CORPORATE SOURCE: Department of Oncology & Immunology, National

Institute for Health Development, Tallinn, 11619,

Estonia

SOURCE: Journal of Immunoassay & Immunochemistry (2005),

26(2), 145-156

CODEN: JIIOAZ; ISSN: 1532-1819

PUBLISHER: Taylor & Francis, Inc.

DOCUMENT TYPE: Journal LANGUAGE: English

AB The $Gal\alpha 1-3Gal\beta$ (αGal) hapten is xenogeneic for humans;

natural anti- α Gal antibodies are present in human serum. To study the possible abnormal expression of the α Gal in humans and the

pathophysiol. role of antibodies, the method of affinity purification of human

anti- α Gal IgG was developed. The specificity of antibodies was

evaluated using polyacrylamide (PAA) -based glycoconjugates in direct and

competitive enzyme-linked immunosorbent assays (ELISA). The purified antibodies exhibited αGal -restricted specificity. The IC50 value for αGal -PAA was equal to 4 + 10-8 M. In a competitive assay,

the $Gal\alpha 1-3$ (Fuc $\alpha 1-2$) $Gal\beta$ -PAA (trisaccharide of

blood group B) was found to be one hundred times less

active inhibitor than αGal -PAA. The multivalent αGal -PAA was 1100 times more potent an inhibitor than the monovalent **spacered** αGal - **saccharide**. The antibodies did not show any reactivity to the neg. charged antigens (DNA, human tumor-derived mucins). At a concentration of $2\mu g/mL$, the antibodies agglutinated rabbit erythrocytes but not hare erythrocytes. The high reactivity of antibodies to the αGal -glycosphingolipids of rabbit erythrocytes and the pig kidney was shown by a modified sensitive method of thin-layer chromatog. with immunodetection.

REFERENCE COUNT: 25 THERE ARE 25 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L3 ANSWER 3 OF 7 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2004:88302 CAPLUS

DOCUMENT NUMBER: 140:152061

TITLE: Biol. active saccharides bound to matrixes for blood

separation

INVENTOR(S): Nilsson, Kurt

PATENT ASSIGNEE(S): Swed.

SOURCE: U.S., 8 pp.

CODEN: USXXAM

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 4

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
				-	
US 6686457	B1	20040203	US 2000-722241		20001127
US 2004242857	A1	20041202	US 2003-743269		20031223
PRIORITY APPLN. INFO.:			US 1998-91486	A2	19980619
			SE 2000-430	Α	20000208
			SE 2000-2462	Α	20000628
			SE 2000-4343	Α	20001124
			US 2000-722241	A2	20001127

The material contains at least one biol. active saccharide which is covalently bound via at least one spacer to a crosslinked matrix. In the production of the product, epoxy-activated Sepharose 4 Fast Flow is covalently bound to blood group A-O(CH2)nPhNHCO(CH2)mNH-, and Blood group B-O(CH2)nPhNHCO(CH2)mNH-, where n = 0-4, and m = 1-7. The products can be used, for example, for extra-corporal removal of blood group A- and blood group B-antibodies, resp., e.g. for treatment of blood, or for example, before a transplantation, for example over the blood group barrier. The product can be used in general for different types of transplantation as a part of the

treatment of the recipient before and during, and eventually after the transplantation. This is able to circumvent the problem of **blood**

group incompatibility between donor and recipient.

REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L3 ANSWER 4 OF 7 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1985:519383 CAPLUS

DOCUMENT NUMBER: 103:119383

TITLE: Conjugates prepared by fixing a ligand on an insoluble

support, and their biological use

INVENTOR(S): Faure, Alain; Ropars, Claude; Doinel, Christian;

Lefrancier, Pierre; Maman, Michel; Level, Michel

PATENT ASSIGNEE(S): Choay S. A., Fr.; Centre National de Transfusion

Sanguine

SOURCE: Fr. Demande, 26 pp.

CODEN: FRXXBL

DOCUMENT TYPE:

Patent

LANGUAGE:

French

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	FR 2553518	A1	19850419	FR 1983-16302	19831013
	FR 2553518	B1	19860418		
	CA 1250523	A1	19890228	CA 1984-465219	19841011
	JP 60100762	A2	19850604		19841012
	EP 141711	A2	19850515	EP 1984-402068	19841015
	EP-141711	A3	19850626		
	R: AT, BE, CH,	DE, GB	, IT, LI, LU	, NL, SE	
PRIO	RITY APPLN. INFO.:			FR 1983-16302 A	19831013
AB	The preparation is	describ	ed of new co	njugates which consist	of an insol.
	polymeric support w	ith a c	ovalently at	tached (through a space	er
	arm) biol. active m	ol. or	ligand conta	ining a saccharide or	
	glucosamino-glucuro	glycan	moiety (e.g.	, blood group	
	antigenic determina	nts, he	parin, cells	or their membranes, es	specially
	erythrocyte stromat	a, or N	-acetylgluco	samine). The applicati	ions of the
				ity and immunoaffinity	
	purifns. are also d	escribe	d. For exam	ple, a conjugate was pr	repared
				upport with a covalent	
	antigenic determina				-
	involved hydrazinol	vsis of	a PVC-acrvl	amide support and coupl	ling to
	solubilized trisacc	haride.	followed by	washing with 0.2M bora	ate buffer, pH
				specific for antiserum	
	blood-group antigen				
	absorption of antib				
				rbants are useful for 1	olood
	group typing for tr	ansfusi	ons. Exampl	es are also given of the ion (e.g., wheat germ a	ne use

ANSWER 5 OF 7 MEDLINE on STN

ACCESSION NUMBER: 2005611709 IN-PROCESS

PubMed ID: 16236238 DOCUMENT NUMBER:

Hydrogel glycan microarrays. TITLE:

Dyukova V I; Dementieva E I; Zubtsov D A; Galanina O E; AUTHOR:

Bovin N V; Rubina A Yu

Engelhardt Institute of Molecular Biology, Russian Academy CORPORATE SOURCE:

of Sciences, 119991 Moscow, Russia.

Analytical biochemistry, (2005 Dec 1) 347 (1) 94-105. SOURCE:

> Electronic Publication: 2005-09-27. Journal code: 0370535. ISSN: 0003-2697.

PUB. COUNTRY: United States

Journal; Article; (JOURNAL ARTICLE) DOCUMENT TYPE:

LANGUAGE: English

NONMEDLINE; IN-DATA-REVIEW; IN-PROCESS; NONINDEXED; FILE SEGMENT:

Priority Journals

ENTRY DATE: Entered STN: 20051122

Last Updated on STN: 20051122

The technology of hydrogel microchips manufacturing, which was developed previously for covalent immobilization of DNA and proteins, was applied for the preparation of qlycochips and combined glyco/protein chips. Microchips consist of hydrogel drops separated with hydrophobic surface. Spacered amino-saccharides and polyacrylamide glycoconjugates were used for immobilization. Gel elements were approximately 1nl in volume (150mum in diameter and 25mum in height), and the amount of covalently immobilized saccharide in the qlycoarray was 0.4-1.7pmol per gel element. Hydrogel glycan microchips were used for quantitative assay of antibodies against blood group antigens and assay of lectins with fluorescent detection.

In all cases, only specific interaction with chip-immobilized saccharides was observed, whereas the background signal was very low. The detection limit of on-chip assays was comparable to that of the standard 96-well plate assays. Mixing of reaction solution allowed us to decrease the duration of the assays significantly: 2-3h for incubation and development steps and 10min for washing. A method for determination of association constants for binding of compounds with chip-immobilized ligands from the kinetics of their binding is proposed. Combined microchips containing different types of biomolecules can be designed and used for simultaneous detection of different compounds.

ANSWER 6 OF 7 MEDLINE on STN ACCESSION NUMBER: 2005161831 MEDLINE PubMed ID: 15794123 DOCUMENT NUMBER:

The isolation and characterization of human natural TITLE:

alphaGal-specific IgG antibodies applicable to the

detection of alphaGal-glycosphingolipids.

Smorodin E P; Kurtenkov O A; Shevchuk I N; Tanner R H AUTHOR:

Department of Oncology & Immunology, National Institute for CORPORATE SOURCE:

Health Development, Hiiu 42, 11619, Tallinn, Estonia.

evgeni.smorodin@tai.ee

Journal of immunoassay & immunochemistry, (2005) 26 (2) SOURCE:

145-56.

Journal code: 100963688. ISSN: 1532-1819.

United States PUB. COUNTRY:

Journal; Article; (JOURNAL ARTICLE) DOCUMENT TYPE:

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200507

Entered STN: 20050330 ENTRY DATE:

> Last Updated on STN: 20050706 Entered Medline: 20050705

The Galalpha1-3Galbeta (alphaGal) hapten is xenogeneic for humans; natural anti-alphaGal antibodies are present in human serum. To study the possible abnormal expression of the alphaGal in humans and the pathophysiological role of antibodies, the method of affinity purification of human anti-alphaGal IqG was developed. The specificity of antibodies was evaluated using polyacrylamide (PAA)-based glycoconjugates in direct and competitive enzyme-linked immunosorbent assays (ELISA). The purified antibodies exhibited alphaGal-restricted specificity. The IC50 value for alphaGal-PAA was equal to $4 \times 10(-8)$ M. In a competitive assay, the Galalpha1-3(Fucalpha1-2)Galbeta-PAA (trisaccharide of blood group B) was found to be one hundred times less active inhibitor than alphaGal-PAA. The multivalent alphaGal-PAA was 1100 times more potent an inhibitor than the monovalent spacered alphaGalsaccharide. The antibodies did not show any reactivity to the negatively charged antigens (DNA, human tumor-derived mucins). At a concentration of 2 microg/mL, the antibodies agglutinated rabbit erythrocytes but not hare erythrocytes. The high reactivity of antibodies to the alphaGal-qlycosphingolipids of rabbit erythrocytes and the pig kidney was shown by a modified sensitive method of thin-layer chromatography with immunodetection.

ANSWER 7 OF 7 MEDLINE on STN ACCESSION NUMBER: 85051731 MEDITNE DOCUMENT NUMBER: PubMed ID: 6389168

TITLE: Plasmodium falciparum: carbohydrates as receptor sites of

invasion.

Hermentin P; Paulsen H; Kolar C; Enders B AUTHOR:

Experimental parasitology, (1984 Dec) 58 (3) 290-306. SOURCE:

Journal code: 0370713. ISSN: 0014-4894.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE) LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

198412

ENTRY DATE:

Entered STN: 19900320

Last Updated on STN: 19900320 Entered Medline: 19841231

AB Monosaccharides, disaccharides, and trisaccharides were tested as inhibitors of the in vitro growth of Plasmodium falciparum (strain FCB). While certain monosaccharides (N-acetyl-D-glucosamine, D-mannose, and 3-O-methyl-D-glucose) proved to exhibit a toxic or reversibly retarding effect on the intracrythrocytic development of the parasite, the corresponding alpha- or beta-methylglycosides did not. Several methylglycosides, synthetic di- and tri-saccharides, and artificial blood group antigens were further tested for inhibitory effects on invasion of host red blood cells in vitro. synthetic disaccharides beta DGlcNAc(1----4) alpha DManOMe and beta DGlcNAc(1----4) DGlcNAc (chitobiose) were good inhibitors of invasion at 10 mM concentration, whereas beta DGal(1---4)beta DGlcNAcOMe was negligibly inhibitory. The inhibition rate of N-acetyl-D-glucosamine, beta-glycosidically linked to bovine serum albumin (BSA) by an alipathic spacer, -(CH2)8CO-, was not enhanced, compared to the corresponding hapten, beta DGlcNAcO(CH2)8COOCH3. The inhibition rates of blood group A- and B-trisaccharide haptens, which were inhibitors of invasion, were also not significantly enhanced when coupled to BSA by way of the corresponding amide spacer, -(CH2)2NHCO(CH2)7CO-. A remarkable enhancement of the inhibition rate was, however, observed when beta DGal(1---3) alpha DGalNAcO(CH2)2NHCO(CH2)7COOCH3 (T-hapten) was coupled to BSA. A clear-cut decrease in the inhibition rates of different beta-glycosides of N-acetyl-D-glucosamine, beta DGlcNAcOR, was observed, depending on the nature of the aglycon R(p-nitrophenyl greater than -(CH2)8COOCH3 greater than -(CH2)2NHCO(CH2)2COOCH3 greater than -CH3). Also, p-nitrophenyl-alpha-D-glucopyranoside was a much better inhibitor of invasion than the corresponding methyl glycoside, alpha DGlcOMe, which was not inhibitory. The properties of the aglycon spacer, used for the covalent attachment of the carbohydrate to the carrier protein, may thus be crucial for the outcome of the inhibition rate.

ANSWER 1 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2004:565191 CAPLUS

DOCUMENT NUMBER:

141:123856

TITLE:

Method of purifying/concentrating sugar chain with sugar chain-trapping molecule and method of analyzing

sugar chain structure

INVENTOR(S):

Nishimura, Shinichiro; Niikura, Kenichi; Nakagawa,

Hiroaki; Okayama, Minenobu

PATENT ASSIGNEE(S):

Shionogi Co., Ltd., Japan PCT Int. Appl., 153 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

SOURCE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

```
PATENT NO.
                            KIND
                                     DATE
                                                  APPLICATION NO.
                                                                             DATE
                             _ _ _ _
     WO 2004058687
                             A1
                                     20040715
                                                 WO 2003-JP16841
              AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
              CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
              GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
              LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO,
              NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
          RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE,
              ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK,
              TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
                                                 EP 2003-782913
                                                                             20031225
                                     20050921
     EP 1577293
                             A1
              AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
              IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK
                                                  JP 2002-378733
                                                                          A 20021226
PRIORITY APPLN. INFO.:
                                                  WO 2003-JP16841
                                                                          W 20031225
```

OTHER SOURCE(S): MARPAT 141:123856

AB Provided is a UV-polymerizable substance comprising a sugar chain-trapping functional group-spacer-polymerizable functional group which contains a functional group such as hydroxylamino, N-alkyl hydroxylamino, hydrazino, semicarbazido, or cysteine group interacting with aldehyde group in a fluid and can specifically interact with sugar chains, wherein the degree of interaction between the sugar chains and the substance amts. to a dissociation energy of at least 5 eV required under irradiation with laser in

matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. The said substance is represented by general formula X-Y-Z [wherein R1NHO-X1-C(:X2)-N(R2)-, R1NHO-X1-N(R2)-C(:X2)-, H2NNHC(:X2)-N(R2)-, H2NNHC(:X2)-X1-C(:X3)-N(R2)-, H2NNHC(:X2)-X1-N(R2)-C(:X3)-, HS-X4-CH(NH2)-C(:X2)-N(R2)-, HS-X4-CH(NH2)-C(:X2)-N(R2)-X1-C(X3)-N(R3)-, HS-X4-CH(NH2)-C(:X2)-N(R2)-X1-N(R3)-C(X3)-; X1 = each (un) substituted alkylene or alkenylene; X2, X3 =O, S; X4 = CH2, CH2CH2; R1-R3 = H, alky1; Y = a single bond, O, S, S-S, N(Ra)CO, CON(Rb), (un)substituted alkylene optionally interrupted by at least one group selected from (un) substituted phenylene, (un) substituted alkenylene optionally interrupted by at least one group selected from O, S, S-S, N(Ra), CO, CON(Rb), and (un) substituted phenylene; Z = -N(R4)-C(:Z1)-C.tplbond.CC.tplbond.C-Z3, -C(:Z1)-N(R4)-C.tplbond.CC.tplbond.C-Z3, -N(R4)-C(:Z1)-Z2-N(R5)-C(:Z4)-CH:CH2, -C(:Z1)-N(R4)-Z2-N(R5)-C(:Z4)-CH:CH2, -N(R4)-C(:Z1)-Z2-O-C(:Z3)-CH:CH2, -C(:Z1)-N(R4)-Z2-O-C(:Z3)-CH:CH2; Z1, Z4 = O, S; Z2, Z3 = each (un) substituted alkylene or alkenylene optionally interrupted by phenylene; R4, R5 = H, alkyl]. Also provided is a method of separating, concentrating, or purifying sugar chains or a sugar chain-containing substance

contained in a sample, which comprises: (a) a step in which a sugar chain-trapping carrier having a substance which can specifically interact with sugar chains is contacted in a fluid phase with the sample under such conditions that the sugar chain-trapping carrier can react with the sugar chains or sugar chain-containing substance; (b) a step in which a composite of the sugar chain-trapping carrier with the sugar chains or sugar chain-containing substance is taken out of the fluid phase; and (c) a step in which the composite is exposed to conditions under which the interaction between the sugar chain-trapping carrier and the sugar chains or sugar chain-containing substance is eliminated at least partly. This method efficiently separates, purifies, and concs. glycoproteins derived from cells or biol. samples and complex glycolipids, removes impurities such as proteins or lipids, makes direct anal. such as mass spectrometry easy, and can transfer two dimensional images of sugar chains derived from pathol. Contacting the surface of pretreated biol. sample with sugar chain-trapping polymers described above in combination with in vivo enzyme enables the isolation of sugar chains derived from bores of duct cells such as milk vessel or bile duct belonging to gland tissues. compns. isolated are useful for diagnosis of diseases or as drugs such as vaccine or health food and the residual proteins or lipids after removing glycoproteins or glycolipids are used as drugs reduced in antigenicity or low allergic foods. Thus, amidation of 10,12-pentacosadiynoic acid with N-(10,12-pentacosadiynoyl)-3,6-dioxaoctane-1,8-diamine using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride in CHCl3 at 0° for 1 h and at room temperature for 8 h gave N-(10,12pentacosadiynoyl)-3,6-dioxaoctane-1,8-diamine which was similarly amidated with [(N-tert-butoxycarbonylamino)oxy]acetic acid in CHCl3 containing 5% MeOH to give N-(10,12-pentacosadiynoyl)-N'-[[(N-tertbutoxycarbonylamino)oxy]acetyl]-3,6-dioxaoctane-1,8-diamine. Deprotection of the latter compound by treatment with CF3CO2H at 0° for 5 h gave N-(10,12-pentacosadiynoyl)-N'-[(aminooxy)acetyl]-3,6-dioxaoctane-1,8diamine which was copolymd. with di(10,12-pentacosadiynoyl)phosphatidylcho line under irradiation with a UV lamp for 30 min to give N-(10,12pentacosadiynoyl) -N'-[(aminooxy)acetyl]-3,6-dioxaoctane-1,8-diaminedi(10,12-pentacosadiynoyl)phosphatidylcholine copolymer as spherical sugar trapping polymer. Human Ig was dissolved in 0.01 N HCl, adjusted to pH 2 with 0.1N HCl, and heated at 90° for 60 min, neutralized with ammonium bicarbonate, freeze-dried, dissolved in 50 mM ammonium bicarbonate, treated with trypsin at 37° for 24 h, heated at 90° for 15 min, then treated with N-glycosidase at 37° for 24 h, and heated at 90° for 15 min to give a solution of human Iq-derived sugar chains in ammonium carbonate solution The sugar chain

was mixed with a solution of the sugar chain-trapping polymer prepared above in 3 N acetate buffer (pH 5.6), treated with MeOH, and allowed to stand at 37° for 12 h and centrifuged to give a polymer concentrate which was treated with ultrapure water, centrifuged, and treated with ultrapure water to give a polymer concentrate The polymer concentrate was shaken with Amberlite

IR-120 at 37° for 1 h and centrifuged. The filtrate was analyzed by MALDI-TOF mass spectrometer using 2,5-dihydroxybenzoic acid as the matrix agent. A total of 8 oligosaccharides was purified and separated be this method.

L5 ANSWER 2 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

20.03:478420 CAPLUS

DOCUMENT NUMBER:

139:174557

TITLE:

Phosphacan Short Isoform, a Novel Non-proteoglycan Variant of Phosphacan/Receptor Protein Tyrosine Phosphatase- β , Interacts with Neuronal Receptors and Promotes Neurite Outgrowth

AUTHOR (S):

Garwood, Jeremy; Heck, Nicolas; Reichardt, Frank;

Faissner, Andreas

CORPORATE SOURCE:

Laboratoire de Neurobuiologie du Developpement et de

la Regeneration, Centre de Neurochimie, CNRS,

Strasbourg, 67084, Fr.

SOURCE:

Journal of Biological Chemistry (2003), 278(26),

24164-24173

CODEN: JBCHA3; ISSN: 0021-9258

PUBLISHER:

American Society for Biochemistry and Molecular

Biology

DOCUMENT TYPE:

Journal

English LANGUAGE: Phosphacan, one of the principal proteoglycans in the extracellular matrix of the central nervous system, is implicated in neuron-glia interactions associated with neuronal differentiation and myelination. report here the identification of a novel truncated form of phosphacan, phosphacan short isoform (PSI), that corresponds to the N-terminal carbonic anhydrase- and fibronectin type III-like domains and half of the spacer region. The novel cDNA transcript was isolated by screening of a neonatal brain cDNA expression library using a polyclonal antibody raised against phosphacan. Expression of this transcript in vivo was confirmed by Northern blot hybridization. Anal. of brain protein exts. reveals the presence of a 90-kDa glycosylated protein in the phosphate-buffered saline-insol. 100,000 x g fraction that reacts with antisera against both phosphacan and a recombinant PSI protein and that has the predicted N-terminal sequence. This protein is post-translationally modified with oligosaccharides, including the HNK-1 epitope, but, unlike phosphacan, it is not a proteoglycan. expression of the PSI protein varies during central nervous system development in a fashion similar to that observed for phosphacan, being first detected around embryonic day 16 and then showing a dramatic increase in expression to plateau around the second week post-natal. Both the native and recombinant PSI protein can interact with the Ig cell adhesion mols., F3/contactin and L1, and in neurite outgrowth assays, the PSI protein can promote outgrowth of cortical neurons when used as a coated substrate. Hence, the identification of this novel isoform of phosphacan/receptor protein tyrosine phosphatase- β provides a new component in cell-cell and cell-extracellular matrix signaling events in which these proteins have been implicated.

REFERENCE COUNT:

53 THERE ARE 53 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 3 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2002:614422 CAPLUS

TITLE:

Design and synthesis of well defined oligomeric

assemblies of hyaluronan

AUTHOR(S):

Iyer, Suri S.; Rele, Shyam; Baskaran, Subramanium;

Chaikof, Elliot

CORPORATE SOURCE:

Department of Surgery, Emory University, Atlanta, GA,

30030, USA

SOURCE:

Abstracts of Papers, 224th ACS National Meeting, Boston, MA, United States, August 18-22, 2002 (2002), CARB-093. American Chemical Society: Washington, D.

C.

CODEN: 69CZPZ

DOCUMENT TYPE:

Conference; Meeting Abstract

LANGUAGE: English

An efficient strategy has been designed for the preparation of disaccharides of hyaluronan (HA), a linear high mol. weight polysaccharide present in the extracellular matrix with alternating β 1,3 and 1,4 linkages between D-glucuronic acid and N-acetyl D-glucosamine units. Specifically, the structurally related region b-D-GlcA-(1,3)- α/β -D-GlcNHAc and its dimerized oligomers separated by a diakyldiamine spacer have been synthesized. Construction of the target mols. was achieved through a combination of

protection/deprotection protocols, trichloroacetimidate glycosylation methodol followed by ozonolysis and reductive amination. The syntheses and potential therapeutic applications of these tailored synthetic mimics will be presented.

ANSWER 4 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2001:597849 CAPLUS

DOCUMENT NUMBER:

135:185510

TITLE:

Oligosaccharide supports for removal of antibodies

from blood

INVENTOR(S):

Nilsson, Kurt

CODEN: PIXXD2

PATENT ASSIGNEE(S):

Glycorex Transplantation Ab, Swed.

SOURCE:

PCT Int. Appl., 19 pp.

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

KIND DATE	APPLICATION NO.	DATE
A1 20010816	WO 2001-SE241	20010207
		•
AA 20010816	CA 2001-2366469	20010207
A1 20020102	EP 2001-910272	20010207
, DE, DK, ES; FR,	GB, GR, IT, LI, LU,	NL, SE, MC, PT,
', LV, FI, RO		
A1 20040205	US 2003-958272	20030612
	SE 2000-430	A 20000208
	SE 2000-1833	A 20000516
	SE 2000-2462	A 20000628
	SE 2000-4343	A 20001124
	WO 2001-SE241	W 20010207
	A1 20010816 R, CA, CN, CZ, IL, I, CY, DE, DK, ES, AA 20010816 A1 20020102 I, DE, DK, ES; FR, C, LV, FI, RO	A1 20010816 WO 2001-SE241 R, CA, CN, CZ, IL, IN, JP, MX, PL, RU, I, CY, DE, DK, ES, FI, FR, GB, GR, IE, AA 20010816 CA 2001-2366469 A1 20020102 EP 2001-910272 I, DE, DK, ES, FR, GB, GR, IT, LI, LU, I, LV, FI, RO A1 20040205 US 2003-958272 SE 2000-430 SE 2000-1833 SE 2000-2462 SE 2000-4343

AΒ A material contains at least 1 biol. active oligosaccharide which is covalently bound via at least 1 spacer to a crosslinked matrix and the material is autoclaved. The matrix can be selected from a polymer or a polysaccharide attached to a spacer group. The material is useful for the removal of antibodies from blood.

REFERENCE COUNT:

THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 5 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

8

ACCESSION NUMBER:

CORPORATE SOURCE:

2001:526586 CAPLUS

DOCUMENT NUMBER:

135:177582

TITLE:

Synthesis of a macroporous hydrophilic ternary copolymer and its application in boronate-affinity

separation

AUTHOR (S):

Lei, Yinlin; Liu, Zuozhen; Liu, Qinfeng; Wu, Xingyan State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai,

200237, Peop. Rep. China

SOURCE:

Reactive & Functional Polymers (2001), 48(1-3),

159-167

CODEN: RFPOF6; ISSN: 1381-5148

PUBLISHER:

Elsevier Science B.V.

DOCUMENT TYPE:

Journal

LANGUAGE:

English

A new macroporous ternary copolymer was synthesized using vinyl acetate (VAC), glycidyl methacrylate (GMA) and allyl methacrylate (AMA) through suspension polymerization with a mixture of n-heptane and Bu acetate as the porogenic agent. The effects of the crosslinking degree, the level of GMA and the porogenic agent mixture and composition on the pore structure of the copolymer and on the properties of the alcoholyzed copolymer were investigated. The properties of a typical adsorbent were pore diameter 18.9 nm, pore volume 0.38 mL/g, and sp. surface area 80.2 m2/g. A hydrophilic polyvinyl alc.-based matrix was obtained on alcoholysis of the copolymer with the epoxy group unaffected. The alcoholyzed copolymer was then attached to a spacer, 6-aminocaproic acid (6-ACA), and finally coupled to 3-aminophenylboronic acid (APBA) as a ligand. The addition reaction between the epoxy group of the matrix and the amino group of 6-ACA was also examined The ligand d. of the prepared affinity adsorbent was 0.865 mmol/g dry resin, which was applied to purify a polysaccharide peptide of Coriolus versicolor (PSP). The optimal conditions for the adsorption of PSP was 0.2 M ammonium acetate (pH 8.2) containing 0.2 M NaCl.

REFERENCE COUNT: 14 THERE ARE 14 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 6 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2000:826376 CAPLUS

DOCUMENT NUMBER: 134:322933

TITLE: Study on preparation of polyvinyl alcohol affinity

adsorbent and its application for purifying glycoprotein. (II) Absorbent preparation

AUTHOR(S): Lei, Yinlin; Liu, Zuozhen; Liu, Qinfeng; Wu, Xingyan

CORPORATE SOURCE: State Key Lab of Bioreactor Engineering, Huazhen

Company, East China University of Science and Technology, Shanghai, 200237, Peop. Rep. China

SOURCE: Lizi Jiaohuan Yu Xifu (2000), 16(5), 420-425

CODEN: LJYXE5; ISSN: 1001-5493

PUBLISHER: Lizi Jiaohuan Yu Xifu Bianjibu

DOCUMENT TYPE: Journal LANGUAGE: Chinese

AB An affinity adsorbent was prepared with the alcoholytic product of macroporous copolymer vinyl acetate-qlycidyl methacrylate-allyl

methacrylate as matrix, 6-aminocaproic acid as spacer

and 3-aminophenylboric acid as ligand in the presence of EDAC catalyst.

The conjugation rate of the preparation course was up to 89%. The application

of the adsorbent in the purification of polysaccharide-peptide of

Coriolus versicolor (PSP) was studied. The adsorption capacity of this

adsorbent was 7.7 times higher than that of the blank matrix.

L5 ANSWER 7 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2000:700678 CAPLUS

DOCUMENT NUMBER: 134:21375

TITLE: Lectin-mediated drug targeting: selection of valency,

sugar type (Gal/Lac), and spacer length for cluster glycosides as parameters to distinguish ligand binding to C-type asialoglycoprotein receptors and galectins

AUTHOR(S): Andre, Sabine; Frisch, Benoit; Kaltner, Herbert;

Desouza, Debora Lima; Schuber, Francis; Gabius,

Hans-J.

CORPORATE SOURCE: Institut fur Physiologische Chemie, Tierarztliche

Fakultat, Ludwig-Maximilians-Universitat, Munchen,

D-80539, Germany

SOURCE: Pharmaceutical Research (2000), 17(8), 985-990

CODEN: PHREEB; ISSN: 0724-8741

PUBLISHER: Kluwer Academic/Plenum Publishers

DOCUMENT TYPE: Journal LANGUAGE: English

AB Common oligosaccharides of cellular glycoconjugates are ligands

for more than one type of endogenous lectin. Overlapping specificities to

 $\beta\text{-galactosides}$ of C-type lectins and galectins can reduce target

selectivity of carbohydrate-ligand-dependent drug targeting. of this study is to explore distinct features of ligand presentation and structure for design of cluster glycosides to distinguish between asialoglycoprotein-specific (C-type) lectins and galectins. binding of labeled sugar receptors to two types of matrix -immobilized (neo)glycoproteins and to cells was evaluated in the absence and presence of competitive inhibitors. This panel comprised synthetic mono-, bi-, and trivalent glycosides with two spacer lengths and galactose or lactose as ligand part. In contrast to C-type lectins of hepatocytes and macrophages, bi- and trivalent glycosides do not yield a notable glycoside cluster effect for galectins-1 and -3. Also, these Ca2+-independent galactoside-binding proteins prefer to home in on lactose-bearing glycosides relative to galactose as ligand, while spacer length requirements were rather similar. Trivalent cluster glycosides with Gal/GalNAc as ligand markedly distinguish between C-type lectins and galectins. Undesired side reactivities to galectins for C-type lectin drug deLivery will thus be minimal.

REFERENCE COUNT:

30 THERE ARE 30 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 8 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2000:421113 CAPLUS

DOCUMENT NUMBER:

133:58802

TITLE:

Preparation of hydroxycarbamoylalkylcarboxylic acid

azacyclic hydrazides as $TNF-\alpha$ inhibitors

INVENTOR(S):

Broadhurst, Michael John; Johnson, William Henry;

Walter, Daryl Simon

PATENT ASSIGNEE(S):

F. Hoffmann-La Roche Ag, Switz.

SOURCE:

PCT Int. Appl., 128 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

P	PATENT NO.		KINI	D	DATE									DATE 19991202 CN, CU, CZ, IL, IN, IS, MA, MD, MG, SI, SK, SL, BY, KG, KZ, CH, CY, DE, BF, BJ, CF,				
- ·	2000				<u>-</u> ·	-	2000	0622					7094			1	9991	202
W																		
	w:																	
						UA,	UG,	UΣ,	VIV,	ΥU), 2	ΔA,	ΔW,	ΑM,	A4,	ы,	κG,	κZ,
			RU,				an		~~				C71.7	7 (7)		OT T	CIV.	DE
	RW:																	
															SE,	BF,	BJ,	CF,
							GW,									_		
	A 2353																	
BI	R 9916	5005			Α		2001	0904		BR	199	99-:	L600!	5		1	9991	202
E	? 1137	7640			A1		2001	1004		ΕP	199	99-9	9654	32		1	9991	202
E	2 1137																	
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR	≀,]	ΙΤ,	LI,	LU,	NL,	SE,	MC,	PT,
					LV,													
TI	R 2001	0164	4	•	T2		2001	1121		TR	200	01-2	2001	01644	<u>l</u>	1	9991	202
Α	J 7657	729			B2		2003							0				
Cl	N 1132	819			В		2003	1231		CN	199	99-8	3143	23		1	9991	202
U	5 6281	.363			В1		2001	0828						98			9991	209
22	A 2001	0046	70		Α		2002	0909		ZA	200	01-4	1670		•	2	0010	607
PRIORI										GB	199	98-2	2740	8		A 1	9981	211
							•			GB	199	99-2	2521	1		A 1	9991	025
														23			9991	202
Omited (7011001	2/C) .			MAD	ייי ע כו	122.	E0001	,									

OTHER SOURCE(S): MARPAT 133:58802

HO N
$$\mathbb{R}^2$$
 \mathbb{R}^2 $\mathbb{R}^$

The title hydrazine derivs. (I) [wherein V = a spacer group; W = aAB O, S, CO, NR5, (CR3R4)m, or forms a fused ring; \bar{X} and \bar{Y} = independently CO, NR5, (CH2)n, or forms a fused ring; Z = CO, CS, SO2, or CH2; R1 = (cyclo)alkyl, alkenyl, cycloalkylalkyl, or aryl(alkyl); R2 = (cyclo)alkyl, alkenyl, cycloalkylalkyl, V-aryl, V-heterocyclyl or (CH2)q-CH=CR8R9; R3, R4, and R5 = independently H, (un)substituted, (cyclo)alkyl, alkenyl, cycloalkylalkyl, aryl(alkyl), hetercyclyl(alkyl), or form a fused ring; R8 and R9 together = alkylene in which a CH2 is optionally replaced by a heteroatom; m = 0 or 1; n = 0-2; q = 1 or 2] and their pharmaceutically acceptable salts were prepared For example, II was formed in a 9-step sequence involving (1-3) preparation of (E)-2(R)-[1(S)-(tert-butoxycarbonyl)-4phenyl-3-butenyl]-4-methylvalerohydrazide, (4) addition of N-(9-fluorenylmethyloxycarbonyl)glycine, (5) N-deprotection, (6) cycloaddn. with phosqene, (7) deesterification, (8) addition of O-(tetrahydro-2H-pyran-2-yl)hydroxylamine, and (9) O-deprotection. Eighteen invention compds. tested for inhibition of bacterial lipopolysaccharide-induced release of tumor necrosis factor alpha $(TNF-\alpha)$ in THP1 cells displayed IC50 of 147-620 nM. In contrast to structurally related hydroxamic acid derivs., I showed only weak inhibitory activity against the matrix metalloproteinase (MMP) family of enzymes, such as collagenases, stromelysins, and gelatinases (no I are useful as medicaments, especially in the treatment of data). inflammatory

and autoimmune diseases, osteoarthritis, respiratory diseases, tumors, cachexia, cardiovascular diseases, fever, hemorrhage and sepsis.

REFERENCE COUNT:

THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 9 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1998:383102 CAPLUS

DOCUMENT NUMBER:

129:132724

TITLE:

ADAMTS-1 protein anchors at the extracellular matrix through the thrombospondin type I motifs and its

spacing region

AUTHOR (S):

Kuno, Kouji; Matsushima, Kouji

CORPORATE SOURCE:

Department of Pharmacology, Cancer Research Institute,

Kanazawa University, Ishikawa, 920, Japan

SOURCE:

Journal of Biological Chemistry (1998), 273(22),

13912-13917

CODEN: JBCHA3; ISSN: 0021-9258

PUBLISHER:

American Society for Biochemistry and Molecular

Biology

DOCUMENT TYPE:

Journal

LANGUAGE:

MAGE: English
Cellular disintegrin and metalloproteinases (ADAMs) are a family of genes

with a sequence similar to those of snake venom metalloproteinases and disintegrins. The ADAMTS-1 gene encodes a new type of ADAM protein with respect to possessing the thrombospondin (TSP) type I motifs. Expression of the gene is induced in kidney and heart by in vivo administration of lipopolysaccharide, suggesting a possible role in the inflammatory reaction. In this study, we characterized the ADAMTS-1 gene product by using a transient expression system in COS-7 cells. We found that the precursor and processed forms of ADAMTS-1 were secreted from cells. Under normal growth conditions, little or none of both forms was detected in the cell culture medium, and instead the majority was found associated with the extracellular matrix (ECM). In addition, when cells were cultured in the presence of heparin, the mature form of ADAMTS-1 protein was detected in the cell culture medium, suggesting that binding of ADAMTS-1 to the ECM is mediated through sulfated glycosaminoglycans such as heparan sulfate. Analyses of deletion mutants of the ADAMTS-1 protein revealed that the spacer region as well as three TSP type I motifs in the carboxyl-terminal region of the ADAMTS-1 protein are important for a tight interaction with the ECM. These results suggest that the ADAMTS-1 is a unique ADAM family protein that anchors at the ECM.

REFERENCE COUNT: 38 THERE ARE 38 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 10 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1996:421459 CAPLUS

DOCUMENT NUMBER: 125:123453

TITLE: Polysaccharides as carriers for magnetic resonance

imaging contrast agents: synthesis and stability of a

new amino acid linker derivative

AUTHOR(S): Rongved, Paal; Fritzell, Tone Hauk; Strande, Per;

Klaveness, Jo

CORPORATE SOURCE: Nycomed Imaging AS, Oslo, N-0401, Norway

SOURCE: Carbohydrate Research (1996), 287(1), 77-89

CODEN: CRBRAT; ISSN: 0008-6215

PUBLISHER: Elsevier DOCUMENT TYPE: Journal LANGUAGE: English

The relative hydrolytic stability of contrast agents for MRI, consisting of paramagnetic metal chelates bound to polysaccharides through an ester bond, has been investigated. Four prepns. of biodegradable, crosslinked starch particles were studied as model compds.: DTPA-starch particles (I), two batches of gadolinium-DTPA (GdDTPA)-starch particles (II, III) with different Gd content, and N-(2-phenylethyl)succinamoyl starch ester particles (IV). In a study of hydrolytic rates in water suspension, the derivs. with GdDTPA bound directly to the particle via the carboxylic acid groups in DTPA (II, III) showed 74 and 86% remaining matrix-bound GdDTPA, resp., after 21 days. The unchelated derivative (I) showed 96% remaining matrix-bound DTPA, while for the succinamoyl-linked derivative (IV), no significant hydrolysis took place during the same time span. To investigate the corresponding stability of ester bonds in water-soluble, blood-pool agents for MRI, the degradation rate

of

the macromol. derivs. dextran-DTPAGd (V) and dextran- β -alanine-DTPAGd (VI) were compared in artificial blood plasma. The remaining fraction of undegraded ester bond in VI was approx. 95% after 100 min, while V was approx. fully degraded over the same time span. These results indicate that the conjugate with the β -alanine **spacer** may have a more suitable degradation rate for blood-pool MRI contrast purposes than the derivs. with GdDTPA directly ester bound. It was also shown by relaxation measurements that gadolinium-EDTA (GdEDTA) was demetalated in a test solution of phosphate (3 mM) at 37°C. No demetalation was observed for GdDTPA derivs. of water-soluble **polysaccharides**, represented by the dextran-GdDTPA conjugate V and aminoethyldextran-GdDTPA, lacking an ester bond between GdDTPA and the dextran **matrix**.

ANSWER 11 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

1995:996900 CAPLUS ACCESSION NUMBER:

124:24884 DOCUMENT NUMBER:

Dehydrogenase and/or reductase coimmobilized in TITLE:

polymeric matrix with cofactor-polymeric spacer

conjugate

Ruedel, Ulrich; Gruendig, Bernd INVENTOR (S):

Institut fuer Chemo- und Biosensorik, Germany PATENT ASSIGNEE(S):

Ger., 6 pp. SOURCE:

CODEN: GWXXAW

DOCUMENT TYPE:

solution of

the

Patent German

LANGUAGE: FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 4419024	C1	19951019	DE 1994-4419024	19940531
PRIORITY APPLN. INFO.:			DE 1994-4419024	19940531

A dehydrogenase and/or a reductase is coimmobilized in a polymeric AB matrix with its cofactor(s). The cofactor is attached to a
polymeric spacer such as PEG, a polypeptide, or a

polysaccharide. Relative to prior art methods, the described method provides improved enzymic stability and activity. The method finds use in preparation of enzyme electrodes and sensors. Thus, an aqueous

Moldola blue, PEG-NAD(H) conjugate, and alc. dehydrogenase was degassed with N. Pyrrole was added to the solution then Pt and Ag/AgCl electrodes were inserted into the solution Upon application of 700 mV for 1 min, a polymer layer was deposited on the Pt electrode. This was used as an enzyme electrode for detection of EtOH.

ANSWER 12 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1993:164437 CAPLUS

DOCUMENT NUMBER: 118:164437

Covalent binding of urease on ammonium-selective TITLE:

potentiometric membranes

Gil, M. H.; Piedade, A. P.; Alegret, S.; Alonso, J.; AUTHOR(S):

Martinez-Fabregas, E.; Orellana, A.

Dep. Chem., Univ. Coimbra, Coimbra, P-3049, Port. CORPORATE SOURCE:

Biosensors & Bioelectronics (1992), 7(9), 645-52 SOURCE:

CODEN: BBIOE4; ISSN: 0956-5663

DOCUMENT TYPE: Journal LANGUAGE: English

As part of the development of disposable urea bioselective probes, the covalent binding of urease on ammonium-selective potentiometric membranes has been assessed. Nonactin/bis(1-butylpentyl)adipate/poly(vinylchloride) (PVC) membranes, directly applied to an internal solid contact (conductive epoxy-graphite composite), has been used as a support for covalent immobilization of urease. Two types of all-solid-state construction process have been assayed: thin layers of cellulose acetate (CA) were coated on the PVC ammonium-selective membranes (type 1) and blends of PVC and CA at various ratios were used as ammonium-selective membrane

matrixes (type 2). Urease was covalently attached to CA via aldehyde groups. These groups were created on the polysaccharide with sodium periodate to which the enzyme was immobilized through a spacer (hexamethylenediamine). The viability of both types of

probe for the determination of ammonium ions was assessed after each step of

activation process. Results indicated that type 2 potentiometric probes are altered after the treatment with sodium periodate. Good results were obtained with type 1 probes. Their dynamic concentration range of response to urea was from 2 + 10-5 to 0.01M with a sensibility of 50 mV/decade.

ANSWER 13 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

1991:675262 CAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 115:275262

Spatially addressable immobilization of antiligands on TITLE:

surfaces

Barrett, Ronald W.; Pirrung, Michael; Stryer, Lubert; INVENTOR(S):

Holmes, Christopher P.; Sundberg, Steven A.

Affymax Technologies N. V., Neth. PATENT ASSIGNEE(S):

SOURCE:

PCT Int. Appl., 73 pp. CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PATENT NO.			KIN	D :	DATE	•	I	APP	LI CA'	rion	NO.		D	ATE			
	WO	9107	087	-		A1	_	 1991	0530	Ţ	70 WO	1990	 -US66	- 07	-	1	9901	113
		W:	AT,	AU,	BB,	BG,	BR,	CA,	CH,	DE,	DK	, ES	, FI,	GB,	HU,	JP,	ΚP,	KR,
									NO,									
		RW:	ΑT,	BE,	ВJ,	CF,	CG,	CH,	CM,	DE,	DK	, ES	FR,	GA,	GB,	GR,	ΙT,	LU,
								TD,										
	ΑU	9168	867			A1		1991	0613	Ž	UA	1991	-6886	7		1	9901	113
	EP	5020	60			A1		1992	0909]	EΡ	1990	-9175	25		1	9901	113
		R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR	, IT	, LI,	LU,	NL,	se		
	JP	0550	1611			T2		1993	0325	ı,	JΡ	1991	-5005	63		1	9901	113
	US	5252						1993	1012	Ţ	US	1990	-6126	71		1	9901	113
	US	5451	683			Α		1995	0919	Ţ	US	1993	-5312	4		1	9930	423
	US	5482	867			Α		1996	0109				-5412				9930	423
		2003		_				2003	0109	1	US	2002	-7707	0		2	0020	214
	US	2004	0291	15		Α9		2004	0212									
PRIO	RIT	APP	LN.	INFO	.:					Ţ	US	1989	-4353	16		A 1	9891	113
										τ	US	1990	-6126	71		A3 1	9901	113
										Ţ	OW	1990	-US66	07		A 1	9901	113
										Ţ	US	1997	-8298	93		A1 1	9970	402

MARPAT 115:275262 OTHER SOURCE(S):

Methods and compns. are described for immobilizing anti-ligands, e.g. antibodies or antigens, hormones or hormone receptors, oligonucleotides, and polysaccharides on surfaces of solid substrates for various uses. The methods provide surfaces covered with caged (i.e. protected) binding members which contain protecting groups capable of being removed upon application of a suitable energy source. Spatially addressed irradiation of predefined regions on the surface permits immobilization of anti-ligands at the activated regions on the surface. Cycles of irradiation on different regions of the surface and immobilization of different anti-ligands allows formation of an immobilized matrix of anti-ligands at defined sites on the surface. The immobilized matrix of anti-ligands permits simultaneous screenings of a liquid sample for ligands having high affinities for certain anti-ligands of the matrix. A preferred embodiment of the invention involves attaching photoactivatable biotin derivs. to a surface. Photolytic activation of the biotin derivs. forms biotin analogs having strong binding affinity for avidin. Biotinylated anti-ligands can be immobilized on activated regions of the surface previously treated with avidin. Thus, a nitroveratryloxycarbonyl (NVOC) derivative of biotin was prepared,

derivatized

to an active ester, and the active ester reacted with a glass microscope slide which had been derivatized with N-Boc-aminopropyltriethoxysilane (Boc = tert-butoxycarbonyl) and then with an activated ester of N-Boc-6-aminocaproic acid. The microscope slide having the NVOC-biotin covalently attached by a caproic-Pr spacer was illuminated with

broad band UV/blue light through a checkerboard pattern mask. Following photolysis, the surface was rinsed and preincubated in a solution containing phosphate-buffered saline, bovine serum albumin, and Tween 20. The surface was then sequentially treated with streptavidin and a fluorescein-biotin derivative. The resulting slide was washed, dried, and examined with a scanning fluorescence microscope (image included). The light squares indicated regions of high fluorescence intensity resulting from localization of the fluorescein label attached to biotin, thereby demonstrating the binding of a ligand (fluorescein-biotin) to streptavidin immobilized in a spatially addressable manner. The spatially addressable immobilization of 2 different antibodies on the same surface is also described.

L5 ANSWER 14 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1991:533977 CAPLUS

DOCUMENT NUMBER: 115:133977

TITLE: Covalent immobilization of a hapten on a solid matrix

INVENTOR(S):
Mang, Thomas; Maier, Josef

PATENT ASSIGNEE(S): Boehringer Mannheim G.m.b.H., Germany

SOURCE: Ger. Offen., 9 pp.

CODEN: GWXXBX

DOCUMENT TYPE: Patent LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	PAT	TENT	NO.			KINI)	DATE		AP	PLICAT	'ION I	. O <i>l</i> .			DATE	
				·			-										-
	DE	3841	566			A1		1990	0613	DE	1988-	3841	566			19881209)
	ΕP	3725	81			A2		1990	0613	EP	1989-	1227	10			19891208	}
	ΕP	3725	81			A3		1991	0703								
		R:	AT,	BE,	CH,	DE,	ES,	FR,	GB,	GR, I	Γ, LI,	LU,	NL,	SE			
	JΡ	0221	1241			A2		1990	0822	JP	1989-	3190	56			19891211	L
RIOR	ITY	APP	LN.	INFO.	. :					DE	1988-	3841	566		A	19881209)
_	n 1.		1		1	£		7					1				

AB A hapten bearing ≥1 functional group is attached covalently (without a spacer) to a solid matrix (e.g. a water-insol. polysaccharide) for use in immunoassays, affinity chromatog., etc. Either of the 2 components is previously activated for the reaction. Thus, cellulose was activated with tosyl chloride and coupled to T3.

ANSWER 1 OF 8 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2005:146298 CAPLUS

Oligosaccharide mimics containing galactose and fucose TITLE:

specifically label tumour cell surfaces and inhibit

cell adhesion to fibronectin

Kim, Evelyn Y.-L.; Gronewold, Claas; Chatterjee, AUTHOR (S):

Amitava; Von der Lieth, Claus-Wilhelm; Kliem,

Christian; Schmauser, Birgit; Wiessler, Manfred; Frei,

Molecular Toxicology, Deutsches CORPORATE SOURCE:

Krebsforschungszentrum, Heidelberg, 69120, Germany

ChemBioChem (2005), 6(2), 422-431 SOURCE:

CODEN: CBCHFX; ISSN: 1439-4227

Wiley-VCH Verlag GmbH & Co. KGaA PUBLISHER:

DOCUMENT TYPE: Journal LANGUAGE: English

With the aim of establishing a versatile and easy synthesis of branched

saccharides for biol. applications, we used mol.-dynamics

simulations to model Lewisy to two classes of dior triantennary

saccharide mimetics. One set of mimetics was based on

1,3,5-tris(hydroxymethyl)cyclohexane (TMC) as the core, the other on

furan, and both were derivatized with galactose and/or fucose. The

TMC-based saccharides were biotinylated, while the furan

disaccharides were treated with maleimide-activated biotin in a

Diels-Alder fashion to yield oxazatricyclodecanes (OTDs). These were then assayed as cell-surface labels in human colon (SW480 and CaCo-2), liver (PLC), Glia (U333 CG 343) and ovary (SKOV-3) tumor cell lines. Discrete staining patterns were observed in all cells, usually at one or two poles of the cells, particularly with the asym. 3-β-L-fucopyranosyloxymethyl-4-

 β -D-galactopyranosyloxymethyl-OTD. Normal SV40-transformed

fibroblasts (SV80) showed no staining. Adhesion of the highly metastatic mouse melanoma line B16F10 to fibronectin was inhibited by 80% by the

TMC-digalactoside and by 30% by 3,4-bis-(β -D-

galactopyranosyloxymethyl) furan. None of the saccharide

mimetics inhibited the adhesion of the less metastatic B16F1 line.

Migration of B16F10 cells through Matrigel was greatly inhibited

by the TMC-digalactoside and weakly inhibited by the TMC-trigalactoside.

The saccharide mimetics that had shown the best structural agreements with the terminal saccharides of Lewisy in the mol.

dynamics simulation were also the most biol. potent compds.; this

underlines the predictive nature of mol. dynamics simulations. The use of

the non-saccharide cores enabled us to adapt spacer

lengths and terminal saccharides to optimize the structures to

bind more avidly to cell-surface lectins. 31

ANSWER 2 OF 8 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2004:650087 CAPLUS

DOCUMENT NUMBER: 141:170455

TITLE: Polymer carriers with bonded saccharides for

immobilization of biological systems

THERE ARE 31 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

INVENTOR (S): Labsk, Jiri

Ustav Makromolekularni Chemie Akademie Vedceske PATENT ASSIGNEE(S):

Republiky, Czech Rep.

SOURCE: PCT Int. Appl., 37 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

REFERENCE COUNT:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

```
DATE
                                   KIND
                                                             APPLICATION NO.
                                            DATE
       PATENT NO.
                                                             -----
       -----
                                   ----
                                            _____
                                                            WO 2004-CZ5
                                                                                              20040126
                                             20040812
                                   A2
      WO 2004067732
                                    Α3
                                             20041118
      WO 2004067732
            W: AE, AE, AG, AL, AL, AM, AM, AM, AT, AT, AU, AZ, AZ, BA, BB, BG,
                 AE, AE, AG, AL, AL, AM, AM, AM, AT, AT, AU, AZ, AZ, BA, BB, BG, BG, BR, BR, BW, BY, BY, BZ, BZ, CA, CH, CN, CN, CO, CO, CR, CR, CU, CU, CZ, CZ, DE, DE, DK, DK, DM, DZ, EC, EC, EE, EE, EG, ES, ES, FI, FI, GB, GD, GE, GE, GH, GM, HR, HR, HU, HU, ID, IL, IN, IS, JP, JP, KE, KE, KG, KG, KP, KP, KP, KR, KR, KZ, KZ, KZ, LC, LK, LR, LS, LS, LT, LU, LV, MA, MD, MD, MG, MK, MN, MW, MX, MX,
                  MZ, MZ, NA, NI
                                                                                              20030127
                                             20050518
                                                             CZ 2003-251
                                    B6
       CZ 295117
                                                              CZ 2003-251
                                                                                         A 20030127
PRIORITY APPLN. INFO.:
      The solution concerns polymer carriers with bonded saccharides for
       immobilization of biol. systems, where at the nonreducing end of a
      disaccharide is mannose or galactose that are covalently bonded to polymer
      matrix through various types of spacers, which enables a
      better contact of a saccharide mol. with receptors of biol.
       systems.
```

L1 ANSWER 3 OF 8 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2004:88302 CAPLUS

DOCUMENT NUMBER:

140:152061

TITLE:

Biol. active saccharides bound to matrixes for blood

separation

INVENTOR(S):

Nilsson, Kurt

PATENT ASSIGNEE(S):

Swed.

SOURCE:

U.S., 8 pp. CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 4

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
	-	-		-	
US 6686457	B1	20040203	US 2000-722241		20001127
US 2004242857	A1	20041202	US 2003-743269 .		20031223
PRIORITY APPLN. INFO.:			US 1998-91486	A2	19980619
			SE 2000-430	Α	20000208
		*	SE 2000-2462	Α	20000628
			SE 2000-4343	Α	20001124
			US 2000-722241	A2	20001127

The material contains at least one biol. active saccharide which is covalently bound via at least one spacer to a crosslinked matrix. In the production of the product, epoxy-activated Sepharose 4—Fast Flow is covalently bound to blood group.A-O(CH2)nPhNHCO(CH2)mNH-, and Blood group B-O(CH2)nPhNHCO(CH2)mNH-, where n = 0-4, and m = 1-7. The products can be used, for example, for extra-corporal removal of blood group A- and blood group B-antibodies, resp., e.g. for treatment of blood, or for example, before a transplantation, for example over the blood group barrier. The product can be used in general for different types of transplantation as a part of the treatment of the recipient before and during, and eventually after the transplantation. This is able to circumvent the problem of blood group incompatibility between donor and recipient.

REFERENCE COUNT:

THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L1 ANSWER 4 OF 8 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1998:233760 CAPLUS

DOCUMENT NUMBER:

128:308678

TITLE:

Biotinyl-L-3-(2-naphthyl)-alanine hydrazide

derivatives of N-glycans: versatile solid-phase probes

for carbohydrate-recognition studies

AUTHOR(S): Leteux, Christine; Childs, Robert A.; Chai, Wengang;

Stoll, Mark S.; Kogelberg, Heide; Feizi, Ten

CORPORATE SOURCE: Glycobiology Group, The Glycosciences Laboratory,

Imperial College School of Medicine, Northwick Park

Hospital, Middlesex, HA1 3UJ, UK

Glycobiology (1998), 8(3), 227-236 CODEN: GLYCE3; ISSN: 0959-6658

PUBLISHER: Oxford University Press

DOCUMENT TYPE: Journal LANGUAGE: English

SOURCE:

AB Biotinyl-oligosaccharides are a relatively new generation of saccharide probes that enable immobilization of desired oligosaccharides on streptavidin matrixes for studies of carbohydrate-protein interactions. Here we describe the facile preparation of biotinyl-L-3-(2-naphthyl)-alanine hydrazide (BNAH) derivs. of

oligosaccharides, containing a strong UV absorbing and fluorescent group, in which the ring of the reducing-end monosaccharide is non-reduced. We evaluate reactivities of immobilized BNAH-N-glycans with plant lectins that recognize aspects of the oligosaccharide core or outer-arms. We make some comparisons with 2-amino-6-amidobiotinyl-pyridine (BAP) derivs. obtained by reductive amination, and 6-(biotinyl)-aminocaproyl-hydrazide (BACH) derivs. which have a longer spacer-arm. N-Glycan-BNAH and-BAP derivs. have, overall, comparable reactivities with lectins which recognize N-glycan outer-arms or the trimannosyl core, but only BNAH and BACH derivs. are bound by lectins which recognize the non-reduced core. Moreover, with Pisum sativum agglutinin (PSA) which addnl. requires the fucosyl-N-glycan-asparaginyl core for high affinity binding, the immobilized BNAH derivative (which is an alanine hydrazide β -glycoside) can substitute for the natural β -glycosylasparaginyl core, whereas

can substitute for the natural β -glycosylasparaginyl core, whereas the BACH derivative (aminocaproyl-hydrazide- β -glycoside) is less effective. BNAH is a derivatization reagent of choice, therefore, for

solid phase carbohydrate-binding expts. with immobilized N-glycans.

REFERENCE COUNT: 31 THERE ARE 31 CITED REFERENCES AVAILABLE FOR THIS

REFERENCE COUNT: 31 THERE ARE 31 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L1 ANSWER 5 OF 8 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1997:81221 CAPLUS

DOCUMENT NUMBER: 126:154913

TITLE: Differential targeting of closely related ECM

glycoproteins: the pherophorin family from Volvox

AUTHOR(S): Godl, Klaus; Hallmann, Armin; Wenzl, Stephan; Sumper,

Manfred

CORPORATE SOURCE: Lehrstuhl Biochemie I, Univ. Regensburg, Regensburg,

D-93053, Germany

SOURCE: EMBO Journal (1997), 16(1), 25-34

CODEN: EMJODG; ISSN: 0261-4189

PUBLISHER: Oxford University Press

DOCUMENT TYPE: Journal LANGUAGE: English

AB The alga Volvox carteri represents one of the simplest multicellular organisms. Its extracellular matrix (ECM) is modified under developmental control, e.g. under the influence of the sex-inducing

pheromone that triggers development of males and females at a concentration

below

10-16 M. A novel ECM glycoprotein (pherophorin-S) synthesized in response to this pheromone was identified and characterized. Although being a typical member of the pherophorins, which are identified by a C-terminal domain with sequence homol. to the sex-inducing pheromone, pherophorin-S exhibits a completely novel set of properties. In contrast to the other members of the family, which are found as part of the insol. ECM structures of the cellular zone, pherophorin-S is targeted to the

cell-free interior of the spherical organism and remains in a soluble state. A main structural difference is the presence of a polyhydroxyproline spacer in pherophorin-S that is linked to a saccharide containing a phosphodiester bridge between two arabinose residues. Sequence comparisons indicate that the self-assembling proteins that create the main parts of the complex Volvox ECM have evolved from a common ancestral gene.

REFERENCE COUNT: 40 THERE ARE 40 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L1 ANSWER 6 OF 8 MEDLINE ON STN ACCESSION NUMBER: 2005108819 MEDLINE DOCUMENT NUMBER: PubMed ID: 15651048

TITLE: Oligosaccharide mimics containing galactose and fucose

specifically label tumour cell surfaces and inhibit cell

adhesion to fibronectin.

AUTHOR: Kim Evelyn Y-L; Gronewold Claas; Chatterjee Amitava; von

der Lieth Claus-Wilhelm; Kliem Christian; Schmauser Birgit;

Wiessler Manfred; Frei Eva

CORPORATE SOURCE: Molecular Toxicology, Deutsches Krebsforschungszentrum, Im

Neuenheimer Feld 280, 69120 Heidelberg, Germany.

SOURCE: Chembiochem: a European journal of chemical biology, (2005

Feb) 6 (2) 422-31.

Journal code: 100937360. ISSN: 1439-4227. Germany: Germany, Federal Republic of

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

PUB. COUNTRY:

L1

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200509

ENTRY DATE: Entered STN: 20050303

Last Updated on STN: 20050916 Entered Medline: 20050915

with the aim of establishing a versatile and easy synthesis of branched AB saccharides for biological applications, we used molecular-dynamics simulations to model Lewis(y) to two classes of di- or triantennary saccharide mimetics. One set of mimetics was based on 1,3,5-tris(hydroxymethyl)cyclohexane (TMC) as the core, the other on furan, and both were derivatised with galactose and/or fucose. TMC-based saccharides were biotinylated, while the furan disaccharides were treated with maleimide-activated biotin in a Diels-Alder fashion to yield oxazatricyclodecanes (OTDs). These were then assayed as cell-surface labels in human colon (SW480 and CaCo-2), liver (PLC), Glia (U333 CG 343) and ovary (SKOV-3) tumour cell lines. Discrete staining patterns were observed in all cells, usually at one or two poles of the cells, particularly with the asymmetric 3-beta-Lfucopyranosyloxymethyl-4-beta-D-galactopyranosyloxymethyl-OTD. Normal SV40-transformed fibroblasts (SV80) showed no staining. Adhesion of the highly metastatic mouse melanoma line B16 F10 to fibronectin was inhibited by 80 % by the TMC-digalactoside and by 30 % by 3,4-bis-(beta-Dgalactopyranosyloxymethyl) furan. None of the saccharide mimetics inhibited the adhesion of the less metastatic B16 F1 line. Migration of B16 F10 cells through Matrigel was greatly inhibited by the TMC-digalactoside and weakly inhibited by the TMC-trigalactoside. The saccharide mimetics that had shown the best structural agreements with the terminal saccharides of Lewis(y) in the molecular dynamics simulation were also the most biologically potent compounds; this underlines the predictive nature of molecular dynamics simulations. The use of the non-saccharide cores enabled us to adapt spacer lengths and terminal saccharides to optimise the structures to bind more avidly to cell-surface lectins.

ACCESSION NUMBER: 1998119783 MEDLINE DOCUMENT NUMBER: PubMed ID: 9451032

TITLE: Biotinyl-1-3-(2-naphthyl)-alanine hydrazide derivatives of

N-glycans: versatile solid-phase probes for

carbohydrate-recognition studies.

AUTHOR: Leteux C; Childs R A; Chai W; Stoll M S; Kogelberg H; Feizi

Т

CORPORATE SOURCE: The Glycosciences Laboratory, Imperial College School of

Medicine, Harrow, Middlesex, United Kingdom.

SOURCE: Glycobiology, (1998 Mar) 8 (3) 227-36.

Journal code: 9104124. ISSN: 0959-6658.

PUB. COUNTRY: ENGLAND: United Kingdom

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199805

ENTRY DATE: Entered STN: 19980520

Last Updated on STN: 20021218 Entered Medline: 19980514

Biotinyl-oligosaccharides are a relatively new generation of AB saccharide probes that enable immobilization of desired oligosaccharides on streptavidin matrices for studies of carbohydrate-protein interactions. Here we describe the facile preparation of biotinyl-1-3-(2-naphthyl)-alanine hydrazide (BNAH) derivatives of oligosaccharides, containing a strong UV absorbing and fluorescent group, in which the ring of the reducing-end monosaccharide is nonreduced. We evaluate reactivities of immobilized BNAH- N -glycans with plant lectins that recognize aspects of the oligosaccharide core or outer-arms. We make some comparisons with 2-amino-6-amidobiotinylpyridine (BAP) derivatives obtained by reductive amination, and 6-(biotinyl)-aminocaproyl-hydrazide (BACH) derivatives which have a longer spacer-arm. N -Glycan-BNAH and-BAP derivatives have, overall, comparable reactivities with lectins which recognize N -glycan outer-arms or the trimannosyl core, but only BNAH and BACH derivatives are bound by lectins which recognize the non-reduced core. Moreover, with Pisum sativum agglutinin (PSA) which additionally requires the fucosyl- Nglycan-asparaginyl core for high affinity binding, the immobilized BNAH derivative (which is an alanine hydrazide beta-glycoside) can substitute for the natural beta-glycosylasparaginyl core, whereas the BACH derivative (aminocaproyl-hydrazide-beta-glycoside) is less effective. BNAH is a derivatization reagent of choice, therefore, for solid phase carbohydrate-binding experiments with immobilized N -glycans.

L1 ANSWER 8 OF 8 MEDLINE ON STN ACCESSION NUMBER: 97162277 MEDLINE DOCUMENT NUMBER: PubMed ID: 9009264

TITLE: Differential targeting of closely related ECM

glycoproteins: the pherophorin family from Volvox.

AUTHOR: Godl K; Hallmann A; Wenzl S; Sumper M

CORPORATE SOURCE: Lehrstuhl Biochemie I, Universitat Regensburg, Germany.

SOURCE: EMBO journal, (1997 Jan 2) 16 (1) 25-34.

Journal code: 8208664. ISSN: 0261-4189.

PUB. COUNTRY: ENGLAND: United Kingdom

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals OTHER SOURCE: GENBANK-Y07752

ENTRY MONTH: 199702

ENTRY DATE: Entered STN: 19970227

Last Updated on STN: 19970227 Entered Medline: 19970213

AB The alga Volvox carteri represents one of the simplest multicellular organisms. Its extracellular matrix (ECM) is modified under

developmental control, e.g. under the influence of the sex-inducing pheromone that triggers development of males and females at a concentration below 10(-16) M. A novel ECM glycoprotein (pherophorin-S) synthesized in response to this pheromone was identified and characterized. Although being a typical member of the pherophorins, which are identified by a C-terminal domain with sequence homology to the sex-inducing pheromone, pherophorin-S exhibits a completely novel set of properties. In contrast to the other members of the family, which are found as part of the insoluble ECM structures of the cellular zone, pherophorin-S is targeted to the cell-free interior of the spherical organism and remains in a soluble state. A main structural difference is the presence of a polyhydroxyproline spacer in pherophorin-S that is linked to a saccharide containing a phosphodiester bridge between two arabinose residues. Sequence comparisons indicate that the self-assembling proteins that create the main parts of the complex Volvox ECM have evolved from a common ancestral gene.

ANSWER 15 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN 1.5

1990:495947 CAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER:

113:95947

TITLE:

Comparison of the carbohydrate-binding specificities of seven N-acetyl-D-galactosamine-recognizing lectins

AUTHOR (S):

Piller, Veronique; Piller, Friedrich; Cartron, Jean

Pierre

CORPORATE SOURCE:

Inst. Natl. Transfus. Sanguine, Paris, F-75739, Fr. European Journal of Biochemistry (1990), 191(2), 461-6

CODEN: EJBCAI; ISSN: 0014-2956

DOCUMENT TYPE:

Journal

LANGUAGE:

SOURCE:

English

Seven plant lectins, Dolichos biflorus agglutinin (DBA), Griffonia simplicifolia agglutinin (GSA, isolectin A4), Helix pomatia agglutinin (HPA), soybean (Glycine max) agglutinin (SBA), Salvia sclarea agglutinin (SSA), Vicia villosa agglutinin (VVA, isolectin B4) and Wistaria floribunda agglutinin (WFA), known to be specific for N-acetyl-Dqalactosamine-(GalNAc) bearing glycoconjugates, have been compared by the binding of their radiolabeled derivs., to eight well-characterized synthetic oligosaccharides immobilized via a spacer on an inert silica matrix (Synsorb). The eight oligosaccharides included the Forssman, the blood group A and the T antiqens, as well as α GalNAc coupled directly to the support (Tn antigen) and also structures with GalNAc linked α or β to positions 3 or 4 of an unsubstituted Gal. The binding studies clearly distinguished the lectins into aGalNAc-specific agglutinins like DBA, GSA and SSA, and lectins which recognize α - as well as β -linked GalNAc residues like HPA, VVA, WFA and SBA. HPA was the only lectin which bound to the β Gall \rightarrow 3 α GalNAc-Synsorb adsorbent (T antiqen) indicating that it also recognizes internal GalNAc residues. Among the aGalNAc-specific lectins, DBA strongly recognized blood group A structures while GSA displayed weaker recognition, and SSA bound only slightly to this affinity matrix

In addition, DBA and SSA were able to distinguish between GalNAc linked $\alpha 1 \rightarrow 3$ and GalNAc linked $\alpha 1 \rightarrow 4$, to the support, the latter being a much weaker ligand. These results were corroborated by the binding of the lectins to biol. substrates as determined by their hemagglutination titers with native and enzyme-treated red blood cells carrying known GalNAc determinants, e.g. blood group A, and the Cad and Tn antigens. For SSA, the binding to the aGalNAc matrix was inhibited by a number of glycopeptides and glycoproteins confirming the strong preference of this lectin for aGalNAc-Ser/Thr-bearing glycoproteins.

ANSWER 16 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1988:479719 CAPLUS

DOCUMENT NUMBER: TITLE:

109:79719

Functionalized pharmaceutical liposomes containing an

amphiphilic compound, especially lipopolysaccharides,

in the membrane matrix.

INVENTOR(S):

Kida, Masaaki; Kitabata, Isako; Kubotsu, Kazuhisa;

Sakata, Yoshitsugu

PATENT ASSIGNEE(S):

Wako Pure Chemical Industries, Ltd., Japan

Eur. Pat. Appl., 19 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

SOURCE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

APPLICATION NO. . DATE KIND PATENT NO. DATE -----

EP 247497	A2	19871202	EP 1987-107259		19870519
EP 247497	A3	19880914			
EP 247497	В1	19920304			
R: AT, BE,	CH, DE,	ES, FR, GB,	GR, IT, LI, LU, NL,	SE	
JP 63096560	A2	19880427	JP 1986-242746		19861013
JP 07107535	B4	19951115			
US 4861597	Α	19890829	US 1987-51349		19870519
AT 72973	E	19920315	AT 1987-107259		19870519
ES 2032776	Т3	19930301	ES 1987-107259		19870519
JP 63107742	A2	19880512	JP 1987-123542		19870520
PRIORITY APPLN. INFO.	. :		JP 1986-115405	Α	19860520
			JP 1986-242746	Α	19861013
			EP 1987-107259	Α	19870519

AB Functionalized liposomes containing a high-mol.-weight amphiphilic compound, e.g.

lipopolysaccharides (LPS), as one of the matrix materials have a very high encapsulation efficiency and readily undergo lysis. Antigens, antibodies, etc., can be immobilized on the liposomes efficiently with a sufficient binding rate by using the amphiphilic compound as a spacer. Dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol, cholesterol, and LPS were mixed in CHC13-MeOH; the dried residue was treated with alkaline phosphatase (AP) in CHC13-Et2O and HEPES buffer, and the mixture was vortexed, the organic solvent was removed, the material was centrifuged to remove free AP and the residue was suspended in NaHCO3 buffer. The above liposome suspension was treated with NaIO4, centrifuged, and IgG was added to give IgG-attached AP-containing liposomes. The liposomes contained 127 μg attached IgG of the 300 μg used in preparation, and retained 70% of AP activity; in contrast, liposomes containing ganglioside rather than LPS retained 69/300 μg , and 45% AP activity.

L5 ANSWER 17 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1986:494131 CAPLUS

DOCUMENT NUMBER:

105:94131

TITLE:

Amphipathic gel-product for chromatographic and

batchwise adsorption

INVENTOR(S):

Porath, Jerker; Belew, Makonnen Exploaterings AB T.B.F., Swed.

PATENT ASSIGNEE(S):

Eur. Pat. Appl., 13 pp.

SOURCE:

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 180563	A2	19860507	EP 1985-850321	19851011
EP 180563	A3	19870204		
R: DE, FR, GB				
SE 8405431	Α	19860501	SE 1984-5431	19841030
SE 452557	В	19871207		
SE 452557	С	19880317		
JP 61165661	A2	19860726	JP 1985-243799	19851030
PRIORITY APPLN. INFO.:			SE 1984-5431 A	. 19841030

AB The title product comprising a hydrophobic group coupled to a hydrophilic gel through a thio-ether bridge provides better chromatog. separation and batchwise adsorption than products in which hydrophobic group is bound to the hydrophilic gel through an O bridge. The gel may be a crosslinked polysaccharide, a polyacrylic acid derivative or an inorg. substance, such as silica gel, glass, or their derivs. The hydrophobic group may comprise alkyl, alkenyl, cycloalkenyl, alkaryl, aralkyl, heteroaryl, alkheteroalkyl with substituted or unsubstituted elec. neutral groups in

addition to the thio-ether group. The hydrophobic group may be separated from matrix by a spacer having ≥1 methylene groups.

The gel-product is prepared by introducing an oxirane or thiosulfate group into a hydrophilic gel and subsequently contacting the gel with a hydrophobic mercaptan in an alkaline solution For example, agarose gel was

mixed

with NaBH4, butane dioldiglycidyl ether and NaOH solution The resulting oxirane gel was contacted with octylmercaptan in the presence of NaBH4 and NaOH. The resulting octyl-S-agarose adsorbed human serum albumin as well as conventionally used octyl-O-agarose. However, the octyl-S-agarose provided a pure serum albumin when eluting with a Tris buffer containing ethylene glycol.

L5 ANSWER 18 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1984:135431 CAPLUS

DOCUMENT NUMBER: 100:135431

TITLE: Affinity gel-adsorbent

INVENTOR(S): Grandics, Peter

PATENT ASSIGNEE(S): USA

SOURCE: U.S., 5 pp.

CODEN: USXXAM

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE _---------------19831227 US 1982-352013 19820224 US 4423208 Α US 1982-352013 PRIORITY APPLN. INFO.: 19820224

AB An improved adsorbent is described for the affinity chromatog. purification of glucocorticoid receptor from rat liver cytosol. The adsorbent is prepared by coupling at pH 7-9 a steroid ligand with an amino gel (prepared by coupling a spacer arm to a polysaccharide

matrix). The steroid ligand is prepared by treating a C-21
corticosteroid sequentially with methanesulfonyl chloride and
methyl-p-hydroxybenzoate Na salt. The ligand is then mixed with
N-hydroxysuccinimide, N,N'-dicyclohexylcarbodiimide, and the prepared amino
gel. The adsorbent is washed with dioxane-H2O (1:1) and 1M NaCl,
acetylated with Ac2O, and washed with dioxane and MeOH. The gel can be
regenerated after use by using a reagent containing 1M NaCl, distilled water,

and

an organic solvent mixture containing Triton X 100. The unactivated receptor was

purified 100-200-fold compared to crude liver cytosol, and 1000-fold after subsequent gel filtration.

L5 ANSWER 19 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1984:99473 CAPLUS

DOCUMENT NUMBER: 100:99473

TITLE: Polysaccharide matrices comprising

macromolecular spacer arms for use as

adsorbents in affinity chromatography techniques

INVENTOR(S): Cuatrecasas, Pedro; Parikh, Indu

PATENT ASSIGNEE(S): USA

SOURCE: U.S., 7 pp. Cont. of U.S. Ser. No. 97,889 abandoned.

CODEN: USXXAM

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

```
US 1981-286763
                                                               19810727
    US 4411832
                              19831025
                        Α
PRIORITY APPLN. INFO.:
                                         US 1974-475314
                                                          A1 19740531
                                         US 1976-713108
                                                           A1 19760810
                                                           A1 19780208
                                         US 1978-876126
                                         US 1979-6175
                                                           A1 19790124
                                         US 1979-97889
                                                           A1 19791126
```

AB Improved polysaccharide matrices are described as adsorbents for the affinity chromatog. of biol. mols. which have polyfunctional water-soluble macromol. spacers, e.g. polylysine, poly(lysylalanine), native or denatured albumin, covalently bonded to the backbone of the polysaccharide matrix (cellulose, starch, crosslinked dextran, albumin) so that the functional groups of the spacers are sterically unhindered. The ligand (protein, hormone, nucleoside, nucleotide) is separated from the matrix by a distance of approx. 150 A°. Thus, the branched-chain copolymer of L-lysine (backbone) and DL-alanine (side chain) was coupled to agarose by a known CNBr activation method for the preparation of poly(lysylalanine)-agarose.

L5 ANSWER 20 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1982:488257 CAPLUS

DOCUMENT NUMBER: 97:88257

TITLE: Activated matrix and method of activation

INVENTOR(S): Ayers, John S.; Bethell, Geoffrey S.; Hancock, William

S.; Hearn, Milton T. W.

PATENT ASSIGNEE(S): Development Finance Corp. of New Zealand, N. Z. SOURCE: U.S., 12 pp. Cont.-in-part of U.S. 4,224,439.

CODEN: USXXAM

DOCUMENT TYPE: ' Patent

LANGUAGE: Facence English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 4330440	Α	19820518	US 1980-128847	19800310
US 4224439	Α	19800923	US 1978-874628	19780202
PRIORITY APPLN. INFO.:			US 1978-874628	A2 19780202
			NZ 1977-183283	A 19770208

Crosslinked polysaccharides (e.g. agarose, dextran, cellulose), their copolymers with synthetic polymers (e.g. acrylamides), acrylates, and methacrylates), or rigid supports (e.g. silica beads, coated with hydroxyalkyl groups) are activated by carbonylation with N,N'-carbonyldiimidazole(CDI), N,N'-carbonyldi-1,2,4-triazole, and N,N'-carbonyldi-1,2,3-benzotriazole and then coupled to various ligands for use as stationary phases for chromatog, or immobilization of biol. compds. The greatest advantage of using the carbonylating agents instead of CNBr for activation is that no charged groups are introduced into the matrix during the coupling steps. In 1 example, Sepharose CL 6B was activated with CDI, coupled to soybean trypsin inhibitor (with or without the spacer compound 6-aminohexanoic acid), and used for the affinity chromatog, of trypsin. Results of the activation of other common matrixes by carbonylation are described.

L5 ANSWER 21 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1981:528361 CAPLUS

DOCUMENT NUMBER: 95:12836

TITLE: Polymers containing quinone groups as carriers for

immobilization of enzymes

AUTHOR(S): Manecke, Georg; Beier, Wilfried

CORPORATE SOURCE: Fritz-Haber-Inst. Max-Planck-Ges., Berlin, 1000/33,

Fed. Rep. Ger.

SOURCE: Angewandte Makromolekulare Chemie (1981), 97(1), 23-33

CODEN: ANMCBO; ISSN: 0003-3146

DOCUMENT TYPE: Journal LANGUAGE: German

Crosslinked poly(4-styrenesulfonyl chloride) was reacted with AB 3-amino-4-hydroxyphenylbenzoate, and then the product was saponified and oxidized to give a reactive carrier containing p-benzoquinone. Three such carriers with varying degrees of crosslinking were prepared The binding ability of these carriers with α -chymotrypsin (I) as well as I activity was tested with these carriers. I binding and activity was increased by the introduction of either ethylenediamine or hexamethylenediamine as spacers between the polystyrene matrix and the p-benzoquinone. Also, crosslinked poly(vinyl alc.) was reacted with p-benzoquinone to give a reactive carrier on which I was immobilized. The latter carrier had the best binding ability and allowed the largest amount of I activity than the other carriers. However, relatively low amts. of I were bound and relatively low immobilized I activities were found for all of the carriers tested. This is probably due to the low swelling capacity of these carriers compared to polysaccharides. The poly(vinyl alc.)-containing carrier had a good stability on storage for 4 mo, whereas the other carriers were not as stable on storage. The pH optimum of I on the spacer-containing polystyrene carriers and the poly(vinyl alc.) carrier was shifted to pH 9 from the normal 8.5.

L5 ANSWER 22 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1981:493183 CAPLUS

DOCUMENT NUMBER: 95:93183

TITLE: Affinity adsorbents with polysaccharide spacers.

Preparation and properties

AUTHOR(S): Klyashchitskii, B. A.; Mitina, V. Kh.

CORPORATE SOURCE: Inst. Biol. Med. Chem., Moscow, 119121, USSR SOURCE: Journal of Chromatography (1981), 210(1), 55-65

CODEN: JOCRAM; ISSN: 0021-9673

DOCUMENT TYPE: Journal LANGUAGE: English

AB Soluble branched and neutral polysaccharides may be used as polymeric hydrophilic and inert spacers in affinity adsorbents.

A series of methods for preparation of such adsorbents were developed. These methods involve introduction of a definite number of reactive groups into a

polysaccharide mol. with subsequent coupling of the modified

polysaccharide to a solid matrix, activation of the polysaccharide spacer and, finally, covalent binding of

ligands of various chemical nature. The conditions are specified for the preparation of biospecific adsorbents containing Hb, RNase, poly(U), uridine, hexamethylenediamine and L-lysine as ligands and dextran, glycogen and

amylopectin derivs. as spacers. The adsorbents having polysaccharide spacers were characterized by higher

ligand concns. and stability than analogous adsorbents without such spacers. The title adsorbents may be used for enzyme purification

L5 ANSWER 23 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1981:437599 CAPLUS

DOCUMENT NUMBER: 95:37599

TITLE: Stepwise immobilization of proteins via their

glycosylation

AUTHOR(S): Gemeiner, Peter; Viskupic, Emil

CORPORATE SOURCE: Inst. Chem., Slovak Acad. Sci., Bratislava, 809 33,

Czech.

SOURCE: Journal of Biochemical and Biophysical Methods (1981),

4(5-6), 309-19

CODEN: JBBMDG; ISSN: 0165-022X

DOCUMENT TYPE: Journal LANGUAGE: English

Glycosyl derivs. of bovine serum albumin in which the glycosyl residue is AB represented by mono- or disaccharide can be, after periodate oxidation, coupled to polyhydrazides having a macroporous matrix (cross-linked polyacrylamide, bead cellulose). The amount of the linked neoglycoprotein depends not only on the phys. structure of the matrix but also on the degree of its substitution with hydrazide groups and on the type and concentration of glycosyl residue in the neoglycoprotein. A high degree of substitution as well as the presence of the D-galactosyl unit both play a pos. role. Since the glucosyl unit in disaccharide residues (cellobiosyl, lactosyl) also contributes pos. to spacer properties, the monolactosyl derivative of albumin exhibits good binding properties towards macroporous polyhydrazides. Whereas the high sugar-containing conjugates of glycosyl derivs. of albumin with polyhydrazides are stable for 2 wk at pH 6-9, the conjugates of the monolactosyl derivative of albumin can only be stored at pH 7.5. The binding site of albumin immobilization is considered.

L5 ANSWER 24 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1980:617229 CAPLUS

DOCUMENT NUMBER:

93:217229

TITLE:

Comparison of characteristics of immobilized enzymes

prepared by graft-copolymerization and support

activation

AUTHOR (S):

D'Angiuro, L.; Mazzola, G.; Vecchio, G.; Focher, B.;

Cremonesi, P.

CORPORATE SOURCE:

Stn. Sper. Cellul., Milan, 26, Italy

SOURCE:

Journal of Applied Biochemistry (1980), 2(3), 208-17

CODEN: JABIDV; ISSN: 0161-7354

DOCUMENT TYPE:

Journal

LANGUAGE:

English

A comparison of the properties of immobilized enzyme systems obtained by graft copolymn. of vinylenzymes onto a polysaccharide support (Sepharose) and those obtained by support activation using CNBr or cyanuric chloride is reported. Immobilization of horseradish peroxidase by graft-copolymn. gives rise to products in which, because the enzyme can be located favorably within the solid matrix, the kinetic properties (K'm = 0.70 + 10-4M) are similar to those of the free enzyme (Km = 0.57 + 10-4M) and are independent of the monomer used to derivatize the enzyme. Depending on the crosslinking tendency of the bifunctional monomer, enzyme immobilization occurs by 2 simultaneous mechanisms; graft-copolymn. and entrapment. In polyglycidylmethacrylate copolymers, immobilization by graft-copolymn. is the prevalent mechanism, whereas for the other copolymers entrapment reaches .apprx.50%. contrast, the kinetic behavior of the immobilized enzyme synthesized by support activation is different (K'm = 1.55 + 10-4M) from that of the native enzyme and phenomena indicative of diffusion limitations were observed The differences in kinetics were ascribed to the synthetic polymer spacer arm between support and enzyme present in the immobilized systems prepared by graft-copolymn. Operational stability and thermal stability were independent of the immobilization method used.

L5 ANSWER 25 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 197

1979:50791 CAPLUS

DOCUMENT NUMBER:

90:50791

TITLE:

Synthesis of imidazole containing matrixes

(polyhydroxyethylmethacrylates, polysaccharides) and

its application in affinity chromatography

AUTHOR (S):

Mohr, P.; Pommerening, K.; Kuehn, M.; Stamberg, J.;

Benes, M.

CORPORATE SOURCE:

Cent. Inst. Mol. Biol., Ger. Acad. Sci., Berlin, Ger.

Dem. Rep.

SOURCE:

Affinity Chromatogr., Proc. Int. Symp. (1978), Meeting Date 1977, 129-32. Editor(s): Hoffmann-Ostenhof, O.;

Breitenbach, M.; Koller, F. Pergamon: Oxford, Engl.

CODEN: 39QEAS

DOCUMENT TYPE: Conference LANGUAGE: English

Methods for the covalent binding of imidazole to

poly(hydroxyethylmethacrylates) and polysaccharides are

described. These matrixes are suitable for affinity chromatog.

of hemoproteins (Hb/myoglobin, cytochrome P-450/cytochrome P-420, etc.).

The separation effectivity depends on the spacer length of the

matrix, pH, and temperature Ligand specific contacts (coordination

binding between hemin Fe and imidazole) are essential in case of a short

spacer. Long spacers are responsible for nonspecific

interactions. Separation of Hb/myoglobin also is possible by means of

matrixes containing @-aminoalkyl groups.

ANSWER 26 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1977:449582 CAPLUS

DOCUMENT NUMBER:

87:49582

TITLE:

A spin labeling study of a polysaccharide support

matrix for affinity chromatography

AUTHOR (S):

Aplin, John D.; Hall, Laurance D.

CORPORATE SOURCE:

Dep. Chem., Univ. British Columbia, Vancouver, BC,

Can.

SOURCE:

Journal of the American Chemical Society (1977),

99(12), 4162-3 CODEN: JACSAT; ISSN: 0002-7863

DOCUMENT TYPE:

Journal

LANGUAGE:

English

The use of 2 nitroxide spin label probes to investigate the structure of agarose and its use as a matrix for affinity chromatog. are

described. Evidence for the existence of tertiary structure and for cross-linking of polysaccharide strands during chemical activation

is presented. The effect of a spacer arm on the rotation

freedom of the ligand is discussed.

ANSWER 27 OF 33 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1975:439254 CAPLUS

DOCUMENT NUMBER:

83:39254

TITLE:

Bovine trypsin and thrombin

AUTHOR (S):

Hixson, H. F., Jr.; Nishikawa, A. H.

CORPORATE SOURCE:

Abbott Diagn. Div., Abbott Lab. Inc., Chicago, IL, USA Methods in Enzymology (1974), 34 (Affinity Tech.:

SOURCE:

Enzyme Purif., Part B), 440-8 CODEN: MENZAU; ISSN: 0076-6879

DOCUMENT TYPE:

Journal

LANGUAGE:

English

The purification of trypsin and thrombin by affinity chromatog. on polysaccharide gels containing synthetic inhibitors of the enzymes is Trypsin was purified on agarose or polyacrylamide bead matrices containing 6-aminohexanoate and monosuccinylated

1,6-diaminohexane spacers and the ligand inhibitors, m- and p-aminobenzamidines. The enzyme was eluted by standard buffer containing 10 mM benzamidine-HCl. Thrombin was purified on 1 of 2 matrix-

spacer columns containing m- and p-aminobenzamide inhibitors.

matrix-spacer columns used were 4% agarose containing

6-aminohexanoic acid and 6% agarose containing succinylated 1,6-diaminohexane. Thrombin was eluted from the affinity column by 50 mM benzamidine in standard buffer.

ANSWER 28 OF 33 MEDLINE on STN 2003305683 ACCESSION NUMBER: MEDLINE DOCUMENT NUMBER: PubMed ID: 12700241

Phosphacan short isoform, a novel non-proteoglycan variant TITLE:

of phosphacan/receptor protein tyrosine phosphatase-beta, interacts with neuronal receptors and promotes neurite

outgrowth.

AUTHOR: Garwood Jeremy; Heck Nicolas; Reichardt Frank; Faissner

Andreas

Laboratoire de Neurobiologie du Developpement et de la CORPORATE SOURCE:

Regeneration, CNRS Centre de Neurochimie, 67084 Strasbourg,

France. garwood@neurochem.u-strasbg.fr

Journal of biological chemistry, (2003 Jun 27) 278 (26) SOURCE:

24164-73. Electronic Publication: 2003-04-16.

Journal code: 2985121R. ISSN: 0021-9258.

United States PUB. COUNTRY:

Journal; Article; (JOURNAL ARTICLE) DOCUMENT TYPE:

English LANGUAGE:

FILE SEGMENT: Priority Journals OTHER SOURCE: GENBANK-AJ428208

ENTRY MONTH: 200308

ENTRY DATE: Entered STN: 20030702

> Last Updated on STN: 20030821 Entered Medline: 20030820

Phosphacan, one of the principal proteoglycans in the extracellular AB matrix of the central nervous system, is implicated in neuron-glia interactions associated with neuronal differentiation and myelination. report here the identification of a novel truncated form of phosphacan, phosphacan short isoform (PSI), that corresponds to the N-terminal carbonic anhydrase- and fibronectin type III-like domains and half of the spacer region. The novel cDNA transcript was isolated by screening of a neonatal brain cDNA expression library using a polyclonal antibody raised against phosphacan. Expression of this transcript in vivo was confirmed by Northern blot hybridization. Analysis of brain protein extracts reveals the presence of a 90-kDa glycosylated protein in the phosphate-buffered saline-insoluble 100000 x g fraction that reacts with antisera against both phosphacan and a recombinant PSI protein and that has the predicted N-terminal sequence. This protein is post-translationally modified with oligosaccharides, including the HNK-1 epitope, but, unlike phosphacan, it is not a proteoglycan. expression of the PSI protein varies during central nervous system development in a fashion similar to that observed for phosphacan, being first detected around embryonic day 16 and then showing a dramatic increase in expression to plateau around the second week post-natal. the native and recombinant PSI protein can interact with the Ig cell adhesion molecules, F3/contactin and L1, and in neurite outgrowth assays, the PSI protein can promote outgrowth of cortical neurons when used as a coated substrate. Hence, the identification of this novel isoform of phosphacan/receptor protein tyrosine phosphatase-beta provides a new component in cell-cell and cell-extracellular matrix-signaling events in which these proteins have been implicated.

ANSWER 29 OF 33 MEDLINE on STN ACCESSION NUMBER: 2000477576 MEDLINE

DOCUMENT NUMBER: PubMed ID: 11028946

TITLE: Lectin-mediated drug targeting: selection of valency, sugar

type (Gal/Lac), and spacer length for cluster glycosides as

parameters to distinguish ligand binding to C-type

asialoglycoprotein receptors and galectins.

AUTHOR: Andre S; Frisch B; Kaltner H; Desouza D L; Schuber F;

CORPORATE SOURCE: Institut fur Physiologische Chemie, Tierarztliche Fakultat,

Ludwig-Maximilians-Universitat, Germany.

SOURCE: Pharmaceutical research, (2000 Aug) 17 (8) 985-90.

Journal code: 8406521. ISSN: 0724-8741.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE) LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200102

ENTRY DATE: Entered STN: 20010322

Last Updated on STN: 20010322 Entered Medline: 20010215

AB PURPOSE: Common oligosaccharides of cellular glycoconjugates are ligands for more than one type of endogenous lectin. Overlapping specificities to beta-galactosides of C-type lectins and galectins can reduce target selectivity of carbohydrate-ligand-dependent drug targeting. The purpose of this study is to explore distinct features of ligand presentation and structure for design of cluster glycosides to distinguish between asialoglycoprotein-specific (C-type) lectins and galectins. METHODS: Extent of binding of labeled sugar receptors to two types of matrix-immobilized (neo)glycoproteins and to cells was evaluated in the absence and presence of competitive inhibitors. This panel comprised synthetic mono-, bi-, and trivalent glycosides with two spacer lengths and galactose or lactose as ligand part. RESULTS: In contrast to C-type lectins of hepatocytes and macrophages, bi- and trivalent glycosides do not yield a notable glycoside cluster effect for qalectins-1 and -3. Also, these Ca2+-independent galactoside-binding proteins prefer to home in on lactose-bearing glycosides relative to galactose as ligand, while spacer length requirements were rather similar. CONCLUSIONS: Trivalent cluster glycosides with Gal/GalNAc as ligand markedly distinguish between C-type lectins and galectins. Undesired side reactivities to galectins for C-type lectin drug delivery will thus be minimal.

L5 ANSWER 30 OF 33 MEDLINE on STN

ACCESSION NUMBER: 1998256323 MEDLINE

DOCUMENT NUMBER:

PubMed ID: 9593739

TITLE:

ADAMTS-1 protein anchors at the extracellular matrix through the thrombospondin type I motifs and its spacing

region.

AUTHOR:

Kuno K; Matsushima K

CORPORATE SOURCE:

Department of Pharmacology, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa

920, Japan.. koujim@m.u-tokyo.ac.jp

SOURCE:

Journal of biological chemistry, (1998 May 29) 273 (22)

13912-7.

Journal code: 2985121R. ISSN: 0021-9258.

PUB. COUNTRY:

United States

DOCUMENT TYPE:

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

199807

ENTRY DATE:

Entered STN: 19980713

Last Updated on STN: 20020420 Entered Medline: 19980701

AB Cellular disintegrin and metalloproteinases (ADAMs) are a family of genes with a sequence similar to those of snake venom metalloproteinases and disintegrins. The ADAMTS-1 gene encodes a new type of ADAM protein with respect to possessing the thrombospondin (TSP) type I motifs. Expression of the gene is induced in kidney and heart by in vivo administration of lipopolysaccharide, suggesting a possible role in the inflammatory reaction. In this study, we characterized the ADAMTS-1 gene product by using a transient expression system in COS-7 cells. We found that the precursor and processed forms of ADAMTS-1 were secreted from cells. Under normal growth conditions, little or none of both forms was detected in the cell culture medium, and instead the majority was found associated with the extracellular matrix (ECM). In addition, when cells were cultured in the presence of heparin, the mature form of ADAMTS-1 protein was detected in the cell culture medium, suggesting that binding of

ADAMTS-1 to the ECM is mediated through sulfated glycosaminoglycans such as heparan sulfate. Analyses of deletion mutants of the ADAMTS-1 protein revealed that the **spacer** region as well as three TSP type I motifs in the carboxyl-terminal region of the ADAMTS-1 protein are important for a tight interaction with the ECM. These results suggest that the ADAMTS-1 is a unique ADAM family protein that anchors at the ECM.

L5 ANSWER 31 OF 33 MEDLINE on STN ACCESSION NUMBER: 93183458 MEDLINE DOCUMENT NUMBER: PubMed ID: 1292521

TITLE: Covalent binding of urease on ammonium-selective

potentiometric membranes.

AUTHOR: Gil M H; Piedade A P; Alegret S; Alonso J;

Martinez-Fabregas E; Orellana A

CORPORATE SOURCE: Department of Chemistry, University of Coimbra, Portugal.

SOURCE: Biosensors & bioelectronics, (1992) 7 (9) 645-52.

Journal code: 9001289. ISSN: 0956-5663.

PUB. COUNTRY: ENGLAND: United Kingdom

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199304

ENTRY DATE: Entered STN: 19930416

Last Updated on STN: 19990129 Entered Medline: 19930408

AB As part of the development of disposable urea bioselective probes, the covalent binding of urease on ammonium-selective potentiometric membranes has been assessed. Nonactin/bis(1-butylpentyl)adipate/poly(vinylchloride) (PVC) membranes, directly applied to an internal solid contact (conductive epoxy-graphite composite), has been used as a support for covalent immobilization of urease. Two types of all-solid-state construction process have been assayed: thin layers of cellulose acetate (CA) were coated on the PVC ammonium-selective membranes (type 1) and blends of PVC and CA at various ratios were used as ammonium-selective membrane matrices (type 2). Urease was covalently attached to CA via aldehyde groups. These groups were created on the polysaccharide with sodium periodate to which the enzyme was immobilized through a spacer (hexamethylenediamine). The viability of both types of probe for the determination of ammonium ions was assessed after each step of the activation process. Results indicated that type 2 potentiometric probes are altered after the treatment with sodium periodate. Good results were obtained with type 1 probes. Their dynamic concentration range of response to urea was from 2 x 10(-5) to 0.01 M with a sensibility of 50 mV/decade.

L5 ANSWER 32 OF 33 MEDLINE ON STN ACCESSION NUMBER: 90345955 MEDLINE DOCUMENT NUMBER: PubMed ID: 2384093

TITLE: Comparison of the carbohydrate-binding specificities of

seven N-acetyl-D-galactosamine-recognizing lectins.

AUTHOR: Piller V; Piller F; Cartron J P

CORPORATE SOURCE: Institut National de la Sante et de la Recherche Medicale

Unite 76, Institut National de Transfusion Sanguine, Paris,

France.

SOURCE: European journal of biochemistry / FEBS, (1990 Jul 31) 191

(2) 461-6.

Journal code: 0107600. ISSN: 0014-2956. GERMANY, WEST: Germany, Federal Republic of

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

PUB. COUNTRY:

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199009

ENTRY DATE: Entered STN: 19901026

Last Updated on STN: 19901026 Entered Medline: 19900914

Seven plant lectins, Dolichos biflorus agglutinin (DBA), Griffonia AB simplicifolia agglutinin (GSA, isolectin A4), Helix pomatia agglutinin (HPA), soybean (Glycine max) agglutinin (SBA), Salvia sclarea agglutinin (SSA), Vicia villosa agglutinin (VVA, isolectin B4) and Wistaria floribunda agglutinin (WFA), known to be specific for N-acetyl-Dgalactosamine-(GalNAc) bearing glycoconjugates, have been compared by the binding of their radiolabelled derivatives, to eight well-characterized synthetic oligosaccharides immobilized via a spacer on an inert silica matrix (Synsorb). The eight oligosaccharides included the Forssman, the blood group A and the T antigens, as well as alpha GalNAc coupled directly to the support (Tn antigen) and also structures with GalNAc linked alpha or beta to positions 3 or 4 of an unsubstituted Gal. The binding studies clearly distinguished the lectins into alpha GalNAc-specific agglutinins like DBA, GSA and SSA, and lectins which recognize alpha- as well as beta-linked GalNAc residues like HPA, VVA, WFA and SBA. HPA was the only lectin which bound to the beta Gal1----3 alpha GalNAc-Synsorb adsorbent (T antigen) indicating that it also recognizes internal GalNAc residues. Among the alpha GalNAc-specific lectins, DBA strongly recognized blood group A structures while GSA displayed weaker recognition, and SSA bound only slightly to this affinity matrix. In addition, DBA and SSA were able to distinguish between GalNAc linked alpha 1----3 and GalNAc linked alpha 1---4, to the support, the latter being a much weaker ligand. These results were corroborated by the binding of the lectins to biological substrates as determined by their hemagglutination titers with native and enzyme-treated red blood cells carrying known GalNAc determinants, e.g. blood group A, and the Cad and Tn antigens. For SSA, the binding to the alpha GalNAc matrix was inhibited by a number of glycopeptides and glycoproteins confirming the strong preference of this lectin for alpha GalNAc-Ser/Thr-bearing glycoproteins.

L5 ANSWER 33 OF 33 MEDLINE ON STN ACCESSION NUMBER: 81240551 MEDLINE DOCUMENT NUMBER: PubMed ID: 7252044

TITLE: Stepwise immobilization of proteins via their

glycosylation.

AUTHOR: Gemeiner P; Viskupic E

SOURCE: Journal of biochemical and biophysical methods, (1981 Jun)

4 (5-6) 309-19.

Journal code: 7907378. ISSN: 0165-022X.

PUB. COUNTRY:

Netherlands

DOCUMENT TYPE: Journal; A

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

198109

ENTRY DATE:

Entered STN: 19900316

Last Updated on STN: 19900316 Entered Medline: 19810925

AB Glycosyl derivatives of bovine serum albumin in which the glycosyl residue is represented by mono- or disaccharide can be, after periodate oxidation, coupled to polyhydrazides having a macroporous matrix (cross-linked polyacrylamide, bead cellulose). The amount of the linked neoglycoprotein depends not only on the physical structure of the matrix but also on the degree of its substitution with hydrazide groups and on the type and concentration of glycosyl residue in the neoglycoprotein. A high degree of substitution as well as the presence of the D-galactosyl unit both play a positive role. Owing to the fact that the glucosyl unit in disaccharide residues (cellobiosyl, lactosyl) also contributes positively to spacer properties, in the monolactosyl derivative of albumin exhibits good binding properties towards macroporous polyhydrazides. While the high sugar-containing

conjugates of glycosyl derivatives of albumin with polyhydrazides are stable for two weeks at pH 6-9, the conjugates of the monolactosyl derivative of albumin can only be stored at pH 7.5. The binding site of albumin immobilization is considered.

ANSWER 1 OF 5 CAPLUS COPYRIGHT 2005 ACS on STN L6

1986:494131 CAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER:

105:94131

Amphipathic gel-product for chromatographic and TITLE:

batchwise adsorption

Porath, Jerker; Belew, Makonnen INVENTOR (S): Exploaterings AB T.B.F., Swed. PATENT ASSIGNEE(S):

SOURCE: Eur. Pat. Appl., 13 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

LANGUAGE:

Patent English

FAMILY ACC. NUM. COUNT: 1 .

PATENT INFORMATION:

F	PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
-						
· E	EP 180563	A2	19860507	EP 1985-850321		19851011
F	EP 180563	A3	19870204			
	R: DE, FR, GB					
5	SE 8405431	Α	19860501	SE 1984-5431		19841030
2	SE 452557	В	19871207			
9	SE 452557	C	19880317			
Ċ	JP 61165661	A2	19860726	JP 1985-243799		19851030
PRIORI	TY APPLN. INFO.:			SE 1984-5431	Α	19841030
	other and a first contract of the contract of		1	الأمال والمستمين المالما		hard-namh i 1

The title product comprising a hydrophobic group coupled to a hydrophilic gel through a thio-ether bridge provides better chromatog. separation and batchwise adsorption than products in which hydrophobic group is bound to the hydrophilic gel through an O bridge. The gel may be a crosslinked polysaccharide, a polyacrylic acid derivative or an inorg. substance, such as silica gel, glass, or their derivs. The hydrophobic group may comprise alkyl, alkenyl, cycloalkenyl, alkaryl, aralkyl, heteroaryl, alkheteroalkyl with substituted or unsubstituted elec. neutral groups in addition to the thio-ether group. The hydrophobic group may be separated from matrix by a spacer having ≥1 methylene groups.

The gel-product is prepared by introducing an oxirane or thiosulfate group into a hydrophilic gel and subsequently contacting the gel with a hydrophobic mercaptan in an alkaline solution For example, agarose gel was mixed with NaBH4, butane dioldiglycidyl ether and NaOH solution The resulting oxirane gel was contacted with octylmercaptan in the presence of NaBH4 and NaOH. The resulting octyl-S-agarose adsorbed human serum albumin as well as conventionally used octyl-O-agarose. However, the octyl-S-agarose provided a pure serum albumin when eluting with a Tris buffer containing ethylene glycol.

ANSWER 2 OF 5 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1984:99473 CAPLUS

DOCUMENT NUMBER: 100:99473

TITLE: Polysaccharide matrices comprising

macromolecular spacer arms for use as

adsorbents in affinity chromatography techniques

INVENTOR(S): Cuatrecasas, Pedro; Parikh, Indu

PATENT ASSIGNEE(S):

SOURCE: U.S., 7 pp. Cont. of U.S. Ser. No. 97,889 abandoned.

CODEN: USXXAM

DOCUMENT TYPE:

Patent

English LANGUAGE ·

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 4411832	Α	19831025	US 1981-286763	19810727

PRIORITY APPLN. INFO.:	US 1974-475314	A1 19740531
-	US 1976-713108	A1 19760810
	US 1978-876126	A1 19780208
	US 1979-6175	Al 19790124
	US 1979-97889	A1 19791126

AB Improved polysaccharide matrices are described as adsorbents for the affinity chromatog. of biol. mols. which have polyfunctional water-soluble macromol. spacers, e.g. polylysine, poly(lysylalanine), native or denatured albumin, covalently bonded to the backbone of the polysaccharide matrix (cellulose, starch, crosslinked dextran, albumin) so that the functional groups of the spacers are sterically unhindered. The ligand (protein, hormone, nucleoside, nucleotide) is separated from the matrix by a distance of approx. 150 A°. Thus, the branched-chain copolymer of L-lysine (backbone) and DL-alanine (side chain) was coupled to agarose by a known CNBr activation method for the preparation of poly(lysylalanine)-agarose.

L6 ANSWER 3 OF 5 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1982:488257 CAPLUS

DOCUMENT NUMBER: 97:88257

TITLE: Activated matrix and method of activation

INVENTOR(S): Ayers, John S.; Bethell, Geoffrey S.; Hancock, William

·S.; Hearn, Milton T. W.

PATENT ASSIGNEE(S): Development Finance Corp. of New Zealand, N. Z. SOURCE: U.S., 12 pp. Cont.-in-part of U.S. 4,224,439.

CODEN: USXXAM

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE	
				-		
US 4330440	A	19820518	US 1980-128847		19800310	
US 4224439	Α	19800923	US 1978-874628		19780202	
PRIORITY APPLN. INFO.:			US 1978-874628	A2	19780202	
			NZ 1977-183283	Α	19770208	

Crosslinked polysaccharides (e.g. agarose, dextran, cellulose), their copolymers with synthetic polymers (e.g. acrylamides), acrylates, and methacrylates), or rigid supports (e.g. silica beads, coated with hydroxyalkyl groups) are activated by carbonylation with N,N'-carbonyldiimidazole(CDI), N,N'-carbonyldi-1,2,4-triazole, and N,N'-carbonyldi-1,2,3-benzotriazole and then coupled to various ligands for use as stationary phases for chromatog. or immobilization of biol. compds. The greatest advantage of using the carbonylating agents instead of CNBr for activation is that no charged groups are introduced into the matrix during the coupling steps. In 1 example, Sepharose CL 6B was activated with CDI, coupled to soybean trypsin inhibitor (with or without the spacer compound 6-aminohexanoic acid), and used for the affinity chromatog. of trypsin. Results of the activation of other common matrixes by carbonylation are described.

L6 ANSWER 4 OF 5 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1977:449582 CAPLUS

DOCUMENT NUMBER: 87:49582

TITLE: A spin labeling study of a polysaccharide support

matrix for affinity chromatography

AUTHOR(S): Aplin, John D.; Hall, Laurance D.

CORPORATE SOURCE: Dep. Chem., Univ. British Columbia, Vancouver, BC,

Can.

SOURCE: Journal of the American Chemical Society (1977),

99(12), 4162-3

CODEN: JACSAT; ISSN: 0002-7863

DOCUMENT TYPE: Journal LANGUAGE: English

AB The use of 2 nitroxide spin label probes to investigate the structure of

agarose and its use as a matrix for affinity chromatog.

are described. Evidence for the existence of tertiary structure and for

cross-linking of polysaccharide strands during chemical activation

is presented. The effect of a spacer arm on the rotation

freedom of the ligand is discussed.

L6 ANSWER 5 OF 5 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1975:439254 CAPLUS

DOCUMENT NUMBER:

83:39254

TITLE:

Bovine trypsin and thrombin

AUTHOR (S):

Hixson, H. F., Jr.; Nishikawa, A. H.

CORPORATE SOURCE:

Abbott Diagn. Div., Abbott Lab. Inc., Chicago, IL, USA

SOURCE:

Methods in Enzymology (1974), 34 (Affinity Tech.:

Enzyme Purif., Part B), 440-8

DOCUMENT TYPE:

benzamidine in standard buffer.

CODEN: MENZAU; ISSN: 0076-6879 Journal

LANGUAGE:

English

AB The purification of trypsin and thrombin by affinity chromatog. on polysaccharide gels containing synthetic inhibitors of the enzymes is reported. Trypsin was purified on agarose or polyacrylamide bead matrices containing 6-aminohexanoate and monosuccinylated 1,6-diaminohexane spacers and the ligand inhibitors, m- and p-aminobenzamidines. The enzyme was eluted by standard buffer containing 10 mM benzamidine-HCl. Thrombin was purified on 1 of 2 matrix-spacer columns containing m- and p-aminobenzamide inhibitors. The matrix-spacer columns used were 4% agarose containing succinylated 1,6-diaminohexane. Thrombin was eluted from the affinity column by 50 mM

=> d his

(FILE 'HOME' ENTERED AT 12:17:57 ON 08 DEC 2005)

	FILE	'CAPL	JS,	, MEDLINE' ENTERED AT 12:18:06 ON 08 DEC 2009	5
L1		8	S	SACCHARIDE? (P) SPACER (P) MATRI?	
L2		1	S	SACCHARIDE? (P) SPACER? (P) FILTR?	
L3		7	S	SACCHARIDE? (P) SPACER? (P) BLOOD GROUP?	
L4		41	S	?SACCHARIDE? (P) SPACER? (P) MATRI?	
L5		33	S	L4 NOT L1	
T 6		5	C	IE AND ACABORE	

(FILE 'HOME' ENTERED AT 12:17:57 ON 08 DEC 2005)

	FILE	CAPLUS	S, MEDLINE' ENTERED AT 12:18:06 ON 08 DEC 2005	1
L1		8 S	S SACCHARIDE? (P) SPACER (P) MATRI?	
L2		1 S	S SACCHARIDE? (P) SPACER? (P) FILTR?	
L3		7 S	S SACCHARIDE? (P) SPACER? (P) BLOOD GROUP?	
L4		41 S	S ?SACCHARIDE? (P) SPACER? (P) MATRI?	
L5		33 S	S L4 NOT L1	
L6		5 S	S L5 AND AGAROSE	