MATH 503 NUMERICAL ANALYSIS

MID-TERM 1

Instructions:

- Examination time: 2 h.
- This examination is open book.
- Answer with an Expression/Formula/Text, write intermediate solutions, not just a final answer or suffer a penalty! Clearly indicate the question number.

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Total
2	4	2	2	2	2	4	2	20

- 1. (2 pts, 0.5 pts ea) Circle the correct answer(s).
 - 1.1. Newton's Root finding method may fail when:
 - a) f(x) is negative
 - b) f'(x) is large
 - c) f'(x) is zero
 - d) The method never fails!

1.2. The number resulting from 0.01850×103 has	significant digits
---	--------------------

- a) 3
- b) 4

c) 5

d) 6

- 1.3. The reason for using numerical methods is
 - a) one cannot always find exact solutions
 - b) numerical methods are more precise than analytical methods
 - c) one can easily experiment with model parameters.
- 1.4. f(x) is a continuous function. $f(a) \cdot f(b) > 0$ for two real numbers a and b. Then,
 - a) At least one root of f(x) is in interval [a, b]
 - b) No root of f(x) lies in interval [a, b]
 - c) Either no root or an even number of roots lie in [a, b]
 - d) We must know whether the function is differentiable before stating something about number and existence of roots.

- 2. (4 pts, 1+1+2) The bisection method is applied to the function (graph is given below) f(x) = (x-0.3)(x-1)(x-3)(x-4). The initial interval used for the method is [0, 5]. The function obviously has zeros at 0.3, 1, 3 and 4.
 - a) Why is the interval [0, 5] not a satisfactory starting interval for bisection?
 - b) If you start with [0.5, 5], which root will the method converge to (circle it on the graph)?
 - c) Using as a starting interval [0, 0.32]. How many iterations will be required to attain an accuracy of 0.01?

- 3. (2 pts) Show that Newton's method applied to a linear function f(x) = mx + b, $m \ne 0$, will converge to a root on the first iteration.
- 4. (2 pts) The iteration scheme of Newton's method for root finding is

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
, $k = 0, 1, 2, ..., x_0$ is a given initial approximation.

Show that Newton's method is also an example of the fixed point method (express Newton's method in the iteration scheme of the fixed-point method).

5. (2 pts) For the equation $f(x) = x^2 - x - 2 = 0$ each of the following functions yields an equivalent fixed-point problem $x = g_i(x)$, where

$$g_1(x) = x^2 - 2,$$

 $g_2(x) = \sqrt{x+2}.$

Analyze the convergence properties of **one** of the corresponding fixed-point iteration schemes for the root x = 2 by considering $|g'_i(2)|$.

- 6. (2 pts) A hypothetical algorithm for solution of nonlinear equation achieves the **cubic** convergence rate. During your testing you noticed that after the three initial iterations the error of the solution was 10^{-1} . How many **more** iterations do you need to reduce the error to better than 10^{-14} . Explain.
- 7. (4 pts) Suppose that $x_0 = 0$, $x_1 = 1$, $x_2 = 2$ and $x_3 = 3$. Find the coefficients a_0 , a_1 , a_2 and a_3 in the representation

$$p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2)$$

of the Newton's polynomial of degree 3 whose graph passes through the points:

$$p(x_0)=3$$
, $p(x_1)=1$, $p(x_2)=3$ and $p(x_3)=15$.

8. (2 pts) The function values are given in 4 nodes: f(0.1)=0.665; f(0.2)=0.8; f(0.3)=1.8 and f(0.4)=0.25.

Use the appropriate Lagrange interpolating polynomial of degree **two** $P_2(x)$ to approximate f(0.22) (Note: You **do not need** to find the actual value of f(0.22); instead, you only need to write down the interpolating polynomial. Do not simplify the expression!).