Single-Source Shortest Paths

Heejin Park

Hanyang University

Contents

- Definition
- Dijkstra's algorithm
- The Bellman-Ford algorithm
- Single-source shortest paths in directed acyclic graphs

Definition

- Edge weight
- Path weight
 - The sum of all edge weights in the path.
- A Shortest path from u to v.
 - A path from u to v whose weight is the smallest.
 - Vertex u is the source and v is the destination.
- *The Shortest-path weight* from *u* to *v*.
 - The weight of a shortest-path from u to v
 - $\delta(u,v)$

Definition

Shortest-path problems

- Single-source & single-destination
 Single-source (& all destinations) old with the
- Single-destination (& all sources)
- All pairs → n-T(n)

4 G + GT; Single destinational 32

• An algorithm for single-source (& all destinations) problem can be used to solve all the other problems.

• What is a shortest path from s to g?

- Do all negative-weight edges cause a problem?
- Do all negative-weight cycles cause a problem?

-> NO, bachables our's teester.

• Do all negative-weight cycles reachable from the source cause a problem?

Single-source shortest paths can be defined if there are not any negative-weight cycles reachable from the source \ \[\bar{E}_{M} \]

Cycles

Cycles

- 17 Oraco 1 210th Crow 1 Crow 10000 Crown C
- There is a shortest path that does not include cycles.
- A shortest-path length is at word |V|-1.

Predecessor subgraph

- Predecessor subgraph
 Shortest-path tree (stores all SSSPs compactly.)
 - Optimal substructure

Predecessor subgraph

Predecessor subgraph

t: s
$$\rightarrow$$
 t
y: s \rightarrow t \rightarrow y
x: s \rightarrow t \rightarrow y \rightarrow x
z: s \rightarrow t \rightarrow y \rightarrow x \rightarrow z
O(V^2) space

O(V) space

Relaxation

Relaxation

Dijkstra's algorithm

• It works properly when all edge weights are nonnegative.

```
DIJKSTRA(G, w, s)
    INITIALIZE-SINGLE-SOURCE(G, s)
2 S = \emptyset — Shortest Path Thee (hode 2/8)
3 Q = G.V proofly Queve - man heap
    while Q \neq \emptyset
         u = \text{EXTRACT-MIN}(Q)
         S = S \cup \{u\}
        for each vertex v \in G.Adj[u]
             RELAX(u, v, w)
```


S	t	y	x	Z
0	∞	∞	∞	∞

$$S = \{s\}$$

S	t	y	X	Z
0	∞	∞	∞	∞

$$S = \{s\}$$

S	t	y	X	Z
0	8	8	∞	8
	10	-		1

$$S = \{s\}$$

S	t	y	X	Z
0	8	8	∞	8
	10	-		0.10

$$S = \{s\}$$

S	t	y	X	Z
0	8	8	∞	∞
	10	5		

$$S = \{s\}$$

$$S = \{s, y\}$$

S	t	y	X	Z
0	∞	∞	∞	∞
	10	5		71

$$S = \{s, y\}$$

S	t	y	X	Z
0	∞	∞	∞	∞
	10	5	1	7) ju
	8		-	

where
$$S = \{s, y\}$$

S	t	y	X	Z
0	8	8	∞	∞
	10	5	1	7)
	8		-	14-

$$S = \{s, y\}$$

S	t	y	X	Z
0	8	8	∞	8
	10	5		
	8		14	1

$$S = \{s, y\}$$

S	t	y	X	Z
0	8	8	∞	8
	10	5		
	8		14	

$$S = \{s, y\}$$

S	t	y	x	Z
0	8	8	8	8
	10	5		71
	8		14	7

$$S = \{s, y\}$$

S	t	y	x	Z
0	8	8	∞	8
	10	5		71
	8		14	7

$$S = \{s, y, z\}$$

S	t	у	X	Z
0	8	8	8	8
	10	5		
	8		14	7

$$S = \{s, y, z\}$$

S	t	y	x	Z
0	8	8	8	∞
	10	5		No.
	8		14	7

$$S = \{s, y, z\}$$

S	t	y	X	Z
0	8	8	8	8
	10	5		
	8		14	7

$$S = \{s, y, z\}$$

2	-			AL 7
S	t	y	X	Z
0	8	8	8	8
	10	5		1
	8		14	7
	8		13	

$$S = \{s, y, z\}$$

S	t	y	\boldsymbol{x}	Z
0	8	8	∞	8
	10	5	<u>_</u>	1
	8		14	7
	8		13	

$$S = \{s, y, z, t\}$$

Q		M.		
S	t	y	X	Z
0	8	8	∞	8
	10	5	<u> </u>	L
	THE PERSON			

$$S = \{s, y, z, t\}$$

$$S = \{s, y, z, t\}$$

Q

	1	113		
S	t	y	X	Z
0	8	8	8	8
	10	5		1
	8		14	7
	8		13	

$$S = \{s, y, z, t\}$$

Q

Z		13 / 1		ALC: Y
S	t	y	x	Z
0	8	8	8	8
	10	5		1
	8		14	7
	8		13	
_			9	

$$S = \{s, y, z, t, x\}$$

Q

Z		13 / 1		ALC: Y
S	t	y	x	Z
0	8	8	8	8
	10	5		1
	8		14	7
	8		13	
_			9	

$$S = \{s, y, z, t, x\}$$

$$S = \{s, y, z, t, x\}$$

TE WHO RESIDENT

Reduce Running True - + Using Man hearf

S	t	y	x	Z
	1	M.		

S	t	y	X	Z
	1	villa e		

S	t	y	X	Z
		, M.		

S	t	y	X	Z
		, M.		

S	t	У	x	Z
	S	17.		

S	t	У	x	Z
	S	17.		

S	t	y	x	Z
	S	v Mily		

S	t	У	x	Z
	S	S		

S	t	У	x	Z
	S	S		14

S	t	У	x	Z
	S	S		

S	t	У	X	Z
	S	S		

S	t	У	x	Z
	S	S		

S	t	У	x	Z
	S	S		

S	t	У	x	Z
	y	S		

S	t	У	x	Z
	y	S		

S	t	y	X	Z
	y	S	y	

S	t	У	X	Z
	y	S	y	

S	t	У	X	Z
	y	S	y	y

S	t	У	X	Z
	y	S	y	y

S	t	У	X	Z
	y	S	y	y

S	t	У	X	Z
	y	S	y	y

S	t	У	X	Z
	y	S	y	y

S	t	У	X	Z
	y	S	y	y

S	t	У	X	Z
	y	S	y	y

S	t	У	X	Z
	y	S	y	y

S	t	У	X	Z
	y	S	Z	y

S	t	y	X	Z
	y	S	Z	y

S	t	У	X	Z
	y	S	Z	y

S	t	У	X	Z
	y	S	Z	y

S	t	У	X	Z
	y	S	Z	y

S	t	У	X	Z
	y	S	Z	y

S	t	У	x	Z
	y	S	t	y

Dijkstra's Algorithm

S	t	У	X	Z
	y	S	t	y

Dijkstra's Algorithm

S	t	У	X	Z
	y	S	t	y

Dijkstra's Algorithm

S	t	У	X	Z
	y	S	t	y

Dijkstra's algorithm

```
DIJKSTRA(G, w, s)
\begin{array}{c} \text{(i)} \\ \text{(i)
1000 4

1000 5

000+E) 6

7

11 EGY = 8
                                                                                                                                                                      while Q \neq \emptyset
                                                                                                                                                                                                                                                 u = \text{EXTRACT-MIN}(Q)
                                                                                                                                                                                                                                                 S = S \cup \{u\}
                                                                                                                                                                                                                                         for each vertex v \in G.Adj[u]
                                                                                                                                                                                                                                                                                                                         RELAX(u, v, w) \rightarrow DECREASE_ KEYI V, 301) <math>\stackrel{?}{=} 43
```

Dijkstra's algorithm

Running time

- $\bigcirc O(V^2)$ if we use an (unsorted) array
 - $O(V \lg V + E \lg V)$ if we use a heap $\longrightarrow 24$ connected significant
 - $O(V \lg V + E)$ if we use a Fibonacci heap.

The Bellman-Ford algorithm

• it solves the single source shortest-paths problem in the general case in which edge weights may be negative.

```
BELLMAN-FORD(G, w, s)
HOE) \begin{vmatrix} 2 & \text{for } i = 1 \text{ to } |G.V| - 1 \end{vmatrix}
             INITIALIZE-SINGLE-SOURCE(G, s)
                       for each edge(u, v) \in G.E
          for each edge (u, v) \in G.E

if v.d > u.d + w(u, v)

v.d = u.d + w(u, v)
                        return FALSE
             return TRUE
```

• Relaxation order $\frac{1}{2}$ $\frac{1}{$

update Stol.

Relaxation order

$$\odot$$
(t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

Relaxation order

$$\odot$$
(t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

- The Bellman-Ford algorithm
 - Running time : O(VE)

$$\sum_{i=1}^{k} d[v_i] \le \sum_{i=1}^{k} (d[v_{i-1}] + w(v_{i-1}, v_i))$$

$$= \sum_{i=1}^{k} d[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

$$\sum_{i=1}^{k} d[v_i] = \sum_{i=1}^{k} d[v_{i-1}]$$

$$0 \le \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

$$0 \leq \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

$$| 3 \leq \sum_{i=1}^{k} w(v_{i-1}, v_i) | 3 \leq \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

DAG-SHORTEST-PATHS(G, w, s)

- 1 topologically sort the vertices of G
- 2 INITIALIZE-SINGLE-SOURCE(G, s)
- 3 for each vertex u, taken in topologically sorted order
- 4 **for** each vertex $v \in G.Adj[u]$
- 5 RELAX(u, v, w)

Runnay Tarez H(V+E)

• Running time: $\Theta(V+E)$ time

PERT chart

• PERT

- Program evaluation and review technique
- Edges represent jobs to be performed.
- Edge weights represent the times required to perform particular jobs.

PERT chart

• PERT

- If edge (u,v) enters vertex v and edge (v,x) leaves v, then job (u,v) must be performed prior to job (v,x).
- A path through this dag represents a sequence of jobs that must be performed in a particular order.
- A *critical path* is a longest path through the dag.

PERT chart

Finding a critical path in a dag

 Negate the edge weights and run DAG-SHORTEST-PATHS or

• Run DAG-SHORTEST PATHS, with the modification that we replace " ∞ " by "- ∞ " and ">" by "<".