SITUATION

Une fonction F est une primitive d'une autre fonction f si et seulement si la dérivée F' de la fonction F est égale à f.

ÉNONCÉ

Montrer que la fonction F définie sur $\mathbb R$ par $F\left(x\right)=\left(2x+5\right)e^{2x+3}$ est une primitive de la fonction f définie sur $\mathbb R$ par $f\left(x\right)=\left(4x+12\right)e^{2x+3}$.

Etape 1

Réciter le cours

On rappelle que *F* est une primitive sur *I* si et seulement si :

$$orall x\in I$$
 , $F^{\prime}\left(x
ight) =f\left(x
ight)$

APPLICATION

 \emph{F} est une primitive de \emph{f} sur $\mathbb R$ si et seulement si, $orall x \in \mathbb R$, $F'\left(x
ight) = f\left(x
ight)$.

Etape 2

Dériver F

On justifie la dérivabilité de F sur l'intervalle / puis on dérive F sur ce même intervalle.

APPLICATION

F est dérivable sur $\mathbb R$ en tant que produit de fonctions dérivables sur $\mathbb R$.

On remarque que F=uv , avec, pour tout réel x :

- u(x) = 2x + 5
- $v(x) = e^{2x+3}$

Donc F' = u'v + uv', avec, pour tout réel x:

- u'(x) = 2
- $v'(x) = 2e^{2x+3}$

On en déduit que :

$$orall x \in \mathbb{R}$$
 , $F'\left(x
ight) = 2 imes e^{2x+3} + (2x+5) imes 2e^{2x+3}$

Finalement:

$$orall x \in \mathbb{R}$$
 , $F'\left(x
ight) = \left(4x+12
ight)e^{2x+3}$

Etape 3

Conclure

On conclut que *F* est une primitive de *f* sur *l*.

APPLICATION

Montrer qu'une fonction F est une primitive d'une fonction f

Terminale Mathématiques

On a bien, $orall x \in \mathbb{R}$, $F'\left(x
ight) = f\left(x
ight)$.

Donc la fonction F est bien une primitive de f sur $\mathbb R$.