The Planck length: two electrons and how to make a black hole

Physics

The question I'll be answering:

• Is there a fundamental limit to the size an object or a region of space can be? If so, how do we calculate it?

A pair of electrons.

- Gravitational force of attraction
 - $F_G = \frac{Gm_1m_2}{r^2} = \frac{Gm^2}{r^2}$

$$\bullet \ F_E = \frac{Q_1 Q_2}{4\pi \varepsilon_0 r^2} = \frac{q^2}{4\pi \varepsilon_0 r^2}$$

Which is larger?

•
$$\frac{F_E}{F_G} = \frac{\frac{q^2}{4\pi\epsilon_0 r^2}}{\frac{Gm^2}{r^2}} = \frac{q^2}{4\pi\epsilon_0 Gm^2} = 4.16 \times 10^{42}$$
. Independent of separation?

Not that simple – Quantum mechanics.

- Uncertainty Principle
 - $\Delta p \ge \frac{\hbar}{2\Delta x} \Rightarrow \Delta p \ge \frac{\hbar}{2r} \Rightarrow \Delta E \ge \frac{\hbar c}{2r}$ and $\Delta E = mc^2$
 - $r \le \frac{\hbar}{mc}$ therefore $r \approx 3.86 \times 10^{-13}$
- Generally, $r\downarrow$, $\Delta E\uparrow$, therefore $m\uparrow and F_G\uparrow$
- When does $F_G = F_E$? At $r = 1.86 \times 10^{-34}$ (can't be bothered to do maths no time)

BLACK HOLES

- $F_G = \frac{GMm}{r^2}$, note F changes with distance [calculus...].
- To find energy required, use W = Fs

•
$$dW = Fdr = \frac{GMm}{r^2}dr$$

•
$$W = \int_r^\infty \frac{GMm}{r^2} dr = GMm \left[-\frac{1}{r} \right]_r^\infty = \frac{GMm}{r}$$

$$\bullet \ \frac{GMm}{r} = \frac{1}{2}mv^2$$

•
$$v = \sqrt{\frac{2GM}{r}}$$

What if escape velocity equals the speed of light

•
$$c = \sqrt{\frac{2GM}{r}} \Rightarrow r_S = \frac{2GM}{c^2}$$
 - the Schwarzschild radius

Things we know and a small black hole

- From QM and SR:
 - $r \sim \frac{\hbar}{mc}$
- From.. Gravity:
 - $r \sim \frac{Gm}{c^2}$
- Eliminate m and equate:
 - $r=\ell_P\sim \sqrt{\frac{G\hbar}{c^3}}\sim 1.616\times 10^{-35}m$ (small) or you could do this simply by unit consistency, but that would be no fun.
 - $m \sim \sqrt{\frac{\hbar c}{G}} \sim 2.21 \times 10^{-8} kg$