FY-24LU1 开发套件用户手册

飞宇科技

修订历史记录

Revision Records

日期	版本	编制	审核	批准	说明
Date	Version	Written By	Checked By	Approved By	Explanation
2014.08.16	A	FiYu	彭宇杨		初建

第	一章 概述	.4
1.	产品介绍	.4
2.	开发套件清单	.4
3.	技术特性	.4
	1.1. 使用环境	.4
	1.2. 主要技术参数	.4
第	二章 硬件系统	.5
1.	产品功能	.5
2.	接口	.6
	9.1. 编程接口	.6
	9.2. USB 接口	.6
第	三章 开发板使用	.6
1.	开发工具	.7
2.	编程器使用	.7
3.	实验程序	.7
	1.1. GPIO 实验: 指示灯驱动	.7
	1.2. GPIO 实验:按键检测	.7
	1.3. 定时器实验	.8
	1.4. USB 实验: USB 收发数据	.8
	1.5. USB-RF 实验: USB 收发数据	10
第	四章 技术支持	11
1.	技术支持	11
2.	联系方式	11

第一章 概述

1. 产品介绍

FY-24LU1 开发套件是**飞字科技**推出的一款基于 NRF24LU1P 的无线开发平台,FY-24LU1 采用小型设计,板载一个指示灯、一个按键和调试接口。资料提供包括用户手册、PDF 原理图、主要元器件封装、试验程序源码包、测试工具、开发工具等,为开发者提供了完善的软件开发环境,帮助用户节省开发成本和时间。

FY-24LU1 是一块既可以学习 RF 又可以学习 USB 的开发板。

2. 开发套件清单

- ■基础版。
 - 1 块已经测试好的 NRF24LU1P 板卡:
 - 1 块已经测试好的转接板;
 - 1根十芯排线,间距 2.0mm。
 - 一个包装盒。

□ 标准版

- 1 块已经测试好的 NRF24LU1P 板卡;
- 1块已经测试好的转接板;
- 1个NRF24LE1/LU1专用ISP编程器
- 1根方口 USB 线;
- 1根十芯排线,间距 2.0mm。
- 1根十芯排线,间距 2.54mm。
- 一个包装盒。

注: 开发板出厂预先烧写的程序是: usb hid in out 例程。

3. 技术特性

3.1. 使用环境

- 1) 环境温度 (0~70) ℃;
- 2) 相对湿度: 不大于 95%。

3.2. 主要技术参数

- 1. 工作电源
 - 1) 额定工作电压: 5V;
 - 2) 工作电流: ≤35mA。
- 2. 无线信号的传输
 - 1) 信号调制方式: GFSK;

- 2) 频率范围: 涵盖 ISM 频段 2400~2483.5Mhz;
- 3) 信道数量: 125;
- 4) 空中速率:250 kbps, 1 Mbps , 2 Mbps;
- 5) 通讯距离: 30~50m(空旷无障碍。接收方和发送方均使用 PCB 天线)。

3. 尺寸

第二章 硬件系统

1. 产品功能

图 1: WM-24LE1 开发板

- □ 原装 nRF24LU1P 芯片。
- □ 射频部分采用 MURATA 原装电感(表面为金黄色)。
- □ 板载小型 PCB 天线。
- □ 板载编程接口: 2*5 双排,针间距: 2.0mm,方便编程,同时,也可以通过此接口引出 IO。

- □ 板载一个用户自定义按键和一个用户自定义指示灯。
- □ USB接口: TYPEA公头。
- □ USB 接入保护:保护计算机 USB 接口和设备。

2. 接口

2.1. 编程接口

编程接口为标准的 IDC3-10PIN 接口, 脚位排列顺序和功能如下:

图 2: 编程接口示意图

序号	名称	描述
1.	+5V	5V 电源正
2.	NC	未连接
3.	RESET	复位信号
4.	NSS	SPI 片选信号
5.	MISO	SPI 主入从出
6.	PROG	芯片编程使能: 高有效
7.	MOSI	SPI 主出从入
8.	SCK	SPI 时钟
9.	NC	未连接
10.	GND	GND

表 1: 编程接口管脚说明

2.2. USB 接口

USB接口: TYPEA公头。

第三章 开发板使用

1. 开发工具

NRF24LU1P 使用 Keil uVision4 开发环境,资料包提供的所有例程均在 Keil uVision4 开发环境中编写。

2. 编程器使用

参见资料包中的《WM-nRFPRO(nRF24LE1 专用 ISP 编程器)用户手册》。

3. 实验程序

NRF24LU1P 开发套件的实验程序放置在资料包中的"实验例程"中,通过下述方法使用例程。

- 1) 解压资料包中的"实验例程"目录下的"NRF24LU1P" 例程。
- 2) 拷贝"实验例程"目录下的"NRF24LU1P"文件夹,并粘贴到你想放置的地方(*建 议使用英文目录*)。
- 3) 打开"NRF24LU1P"目录下的的"projects"文件夹,所有例程的工程都在此目录下。
- 4) 使用 Keil uVision4 打开任一工程,即可对工程进行编译。编译的生成的 HEX 文件 位于 "Object" 文件夹中。

3.1. GPIO 实验: 指示灯驱动

- □ 工程名称: led。
- □ 实验内容: 使用 NRF24LU1P 的 IO 口驱动指示灯闪烁。
- □ 调试方法:
 - 在 Keil uVision4 中打开工程"led.uvproj"并编译;
 - 将"led.hex"下载到开发板中。
- □ 实验现象:

指示灯每隔 100ms 状态取反一次。

3.2. GPIO 实验: 按键检测

- □ 工程名称: key。
- □ 实验内容: 使用 NRF24LU1P 的 IO 口的输入检测功能。
- □ 调试方法:

- 在 Keil uVision4 中打开工程"key.uvproj" 并编译;
- 将"key.hex"下载到开发板中。
- □ 实验现象:

按下按键,指示灯点亮,松开按键,指示灯熄灭。

3.3. 定时器实验

- □ 工程名称: Timer。
- □ 实验内容: 了解 NRF24LU1P 的定时器的应用。
- □ 调试方法:
 - 在 Keil uVision4 中打开工程"Timer.uvproj" 并编译;
 - 将"Timer.hex"下载到开发板中。
- □ 实验现象:

定时器 0 每 20ms 产生一次中断,在中断中每隔 500ms 将指示灯状态取反。可以观察到指示灯以 500ms 的间隔闪烁。

3.4. USB 实验: USB 收发数据

- □ 工程名称: usb hid in out。
- □ 实验内容:

使用 NRF24LU1P 的 USB 枚举成 HID 设备传输数据。

- □ 调试方法:
 - 将 FY-24LU1 模块的 USB 连接到计算机。
 - 在 Keil uVision4 中打开工程 "usb_hid_in_out.uvproj" 并编译;
 - 将 "usb_hid_in_out.hex" 下载到开发板中。
 - 打开 NRF24LU1P USB 收发测试软件, 打开的软件界面如下:

- 确认 USB 已经连接上,即软件上显示"Connected"。如果已经连接,软件会 读取 NRF24LU1P 的 PID、VID 和 NAME。
- 在发送显示中输入数据。
- 点击"发送"按钮发送数据,数据将以字符的形式被发送。
 - NRF24LU1P 接收到主机的数据后,会将接收到的数据返回。

□ 实验现象:

主机通过 USB HID 发送到 NRF24LU1P 的数据,会被 NRF24LU1P 全部返回,接收显示文本框中会显示接收到的数据,应和发送的数据一样,如下图所示。

3.5. USB-RF 实验: USB 收发数据

- □ 工程名称: usb_hid_rf。
- □ 实验内容: NRF24LU1P 通过无线接收设备的数据,接收的数据通过的 USB HID 传送给主机。

□ 调试方法:

- 将 FY-24LU1 模块的 USB 连接到计算机。
- 在 Keil uVision4 中打开工程 "usb_hid_rf.uvproj" 并编译;
- 将"usb_hid_rf.hex"下载到开发板中。
- 在 Keil uVision4 中打开工程 "Tag.uvproj" (WM-24LE1 开发套件中的例程,位于 ".../ activetag/tag 目录下") 并编译;
- 将"usb_hid_rf.hex"下载到开发板中。
- 打开 NRF24LU1P USB-RF 收发测试软件,打开的软件界面如下:

• 确认 USB 已经连接上,即软件上显示"Connected"。如果已经连接,软件会读取 NRF24LU1P 的 PID、VID 和 NAME。软件上会显示接收到的 Tag 发送的信息,如下图所示:

配置 NRF24LU1P:

• 在无线参数配置选项中输入无线信道和数据长度 (Payload 长度),点击配置按钮即可配置 NRF24LU1P 的信道和数据长度。

发送数据到 NRF24LU1P:

• 在发送文本框中输入数据,点击"发送按钮"即可发送数据到NRF24LU1P,发送的数据长度以无线参数配置中的数据长度为准,如果输入的数据大于此长度,按此长度为准,如果输入的数据小于此长度,按实际长度为准。

第四章 技术支持

1. 技术支持

飞宇科技对所销售的产品提供免费技术支持服务,技术支持服务范围:

- □ 提供飞宇科技产品的软硬件资源;
- 帮助用户正确地编译和运行我们提供的源代码;
- □ 用户在按照本公司提供的产品文档操作的情况下,如本公司的产品出现异常问题,我们 将提供技术支持;
- □ 帮助用户判定是否存在产品故障。

2. 联系方式

QQ 群: 385384699

邮箱: FIYU SUPPORT@163.com

官方店铺:飞宇科技