- 1. Stage 1: Machine Learning (Inputs are in Number)
 - Stage 2: Supervised Learning (Inputs and Outputs are well known)
 - Stage 3: Binary Classification (Outputs are in Yes or No Format)
- 2. 399 Rows25 Columns
- 3. One Hot Encoding To convert String into Number
- **4.** Here we are using Logistic Regression, KNN, Navie Bayes, SVM Classification, Decision Tree Classification and Random Forest Classification algorithms to find Best Model.

5. 1) Logistic Regression

<pre>print("The report:\n",clf_report)</pre>				
The report:				
•	precision	recall	f1-score	support
0	0.98	1.00	0.99	51
1	1.00	0.99	0.99	82
accuracy			0.99	133
macro avg	0.99	0.99	0.99	133
weighted avg	0.99	0.99	0.99	133

Classification Report of Logistic Regression

Overall Performance of this model is 0.99

2) KNN Classifier

•				
print("The rep	oort:\n",clf_	report)		
The report:				
	precision	recall	f1-score	support
0	0.93	1.00	0.96	51
1	1.00	0.95	0.97	82
accuracy			0.97	133
macro avg	0.96	0.98	0.97	133
weighted avg	0.97	0.97	0.97	133

Classification Report of KNN Classifier

Overall Performance of this model is 0.97

3) Navie Bayes

I. MultinomialNB

```
Fitting 5 folds for each of 8 candidates, totalling 40 fits
{'alpha': 0.01, 'fit prior': True}
Confusion Matrix:
 [[50 1]
 [14 68]]
Classification Report:
              precision recall f1-score
                                              support
                            0.98
                                      0.87
          0
                  0.78
                                                  51
          1
                  0.99
                            0.83
                                      0.90
                                                  82
                                      0.89
                                                 133
    accuracy
                            0.90
   macro avg
                  0.88
                                      0.89
                                                 133
weighted avg
                  0.91
                            0.89
                                      0.89
                                                 133
```

Overall Performance of this model is 0.89

II. BernoulliNB

Fitting 5 folds for each of 24 candidates, totalling 120 fits {'alpha': 0.01, 'binarize': 0.0, 'fit_prior': True}
Confusion Matrix:

[[51 0] [3 79]]

Classification Report:

	precision	recall	f1-score	support
0	0.94	1.00	0.97	51
1	1.00	0.96	0.98	82
accuracy			0.98	133
macro avg	0.97	0.98	0.98	133
weighted avg	0.98	0.98	0.98	133

Overall Performance of this model is 0.98

III. ComplementNB

Fitting 5 folds for each of 16 candidates, totalling 80 fits {'alpha': 0.01, 'fit_prior': True, 'norm': False}
Confusion Matrix:

[[50 1] [14 68]]

Classification Report:

1 0.99 0.83 0.90	ort
	51
accuracy 0.89 1	82
	33
macro avg 0.88 0.90 0.89 1	33
weighted avg 0.91 0.89 0.89 1	33

Overall Performance of this model is 0.89

IV. GaussianNB

Confusion Matrix:

[[51 0] [3 79]]

Classification Report:

	precision	recall	f1-score	support
0	0.94	1.00	0.97	51
1	1.00	0.96	0.98	82
accuracy			0.98	133
macro avg	0.97	0.98	0.98	133
weighted avg	0.98	0.98	0.98	133

Overall Performance of this model is 0.98

4) SVM Classification

The report:

	precision	recall	f1-score	support
0	0.98	1.00	0.99	51
1	1.00	0.99	0.99	82
accuracy			0.99	133
macro avg	0.99	0.99	0.99	133
weighted avg	0.99	0.99	0.99	133

Overall Performance of this model is **0.99**

5) Decision Tree Classification

print("The rep	oort:\n",clf_	report)		
The report:				
·	precision	recall	f1-score	support
0	0.96	1.00	0.98	51
1	1.00	0.98	0.99	82
accuracy			0.98	133
macro avg	0.98	0.99	0.98	133
weighted avg	0.99	0.98	0.99	133

Overall Performance of this model is **0.98**

6) Random Forest Classification

<pre>print("The report:\n",clf_report)</pre>				
The report:				
	precision	recall	f1-score	support
0	0.96	0.98	0.97	51
1	0.99	0.98	0.98	82
accuracy			0.98	133
macro avg	0.97	0.98	0.98	133
weighted avg	0.98	0.98	0.98	133

Overall Performance of this model is **0.98**

6. Two models (Logistic Regression and SVM Classification) are giving 0.99 accuracy. I have chosen **Logistic Regression** for deployment due to its **interpretability, speed, lower complexity, and reliability.**