Modes of Operation

NMOS

- $v_{GS} < V_{tn}$: no channel; transistor in cutoff; $i_D = 0$
- $v_{GS} = V_{tn} + v_{OV}$: a channel is induced; transistor operates in the triode region or the saturation region depending on whether the channel is continuous or pinched off at the drain end;

Continuous channel, obtained by:

$$v_{GD} > V_{tn}$$

or equivalently:

$$v_{DS} < v_{OV}$$

Then,

$$i_D = k_n' \left(\frac{W}{L}\right) \left[\left(v_{GS} - V_{tn}\right) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$

or equivalently,

$$i_D = k_n' \left(\frac{W}{L}\right) \left(v_{OV} - \frac{1}{2}v_{DS}\right) v_{DS}$$

Pinched-off channel, obtained by:

$$v_{GD} \leq V_{tn}$$

or equivalently:

$$v_{DS} \ge v_{OV}$$

Then

$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L} \right) \left(v_{GS} - V_{tn} \right)^2$$

or equivalently,

$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L} \right) v_{OV}^2$$

 i_D vs v_{DS} curves

The $i_D - v_{GS}$ Characteristic

Voltage-controlled current source

Saturation current

$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) (v_{GS} - V_{tn})^2$$

$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) v_{OV}^2$$

 i_D vs v_{GS} curve

Large-Signal Model

However

Finite Output Resistance in Saturation

ideal infinite output resistance

Channel-length modulation

$$i_{D} = \frac{1}{2} k'_{n} \left(\frac{W}{L}\right) (v_{GS} - V_{tn})^{2} (1 + \lambda v_{DS})$$

$$(V^{-1})$$

"lamda" parameter channel-length modulation parameter ideal $\lambda = 0$

$$i_D = \frac{1}{2} k'_n \left(\frac{W}{L}\right) (v_{GS} - V_{tn})^2 (1 + \lambda v_{DS})$$

$$r_o \equiv \left[\frac{\partial i_D}{\partial v_{DS}}\right]_{v_{GS} \text{ constant}}^{-1}$$

$$r_o = \left[\lambda \frac{k_n'}{2} \frac{W}{L} (V_{GS} - V_{tn})^2 \right]^{-1}$$

$$r_o = \frac{1}{\lambda I_D}$$

Transistor model with output resistance

$$r_o = \frac{V_A}{I_D'}$$
 $I_D' = \frac{1}{2} k_n' \frac{W}{L} (V_{GS} - V_{tn})^2$

Modes of Operation PMOS

As you study, note voltage polarities and use of absolute values

- $v_{SG} < |V_{tp}|$: no channel; transistor in cutoff; $i_D = 0$
- $v_{SG} = |V_{tp}| + |v_{OV}|$: a channel is induced; transistor operates in the triode region or in the saturation region depending on whether the channel is continuous or pinched off at the drain end;

Continuous channel, obtained by:

$$v_{DG} > \left| V_{tp} \right|$$

or equivalently

$$v_{SD} < |v_{OV}|$$

Then

$$i_D = k_p' \left(\frac{W}{L}\right) \left[(v_{SG} - |V_{tp}|) v_{SD} - \frac{1}{2} v_{SD}^2 \right]$$

or equivalently

$$i_D = k_p' \left(\frac{W}{L}\right) \left(\left|v_{OV}\right| - \frac{1}{2}v_{SD}\right) v_{SD}$$

Pinched-off channel, obtained by:

$$v_{DG} \le \left| V_{tp} \right|$$

or equivalently

$$v_{SD} \ge |v_{OV}|$$

Then

$$i_D = \frac{1}{2} k_p' \left(\frac{W}{L}\right) \left(v_{SG} - |V_{tp}|\right)^2$$

or equivalently

$$i_D = \frac{1}{2} k_p' \left(\frac{W}{L}\right) v_{OV}^2$$

Channel-length modulation (PMOS)

$$i_D = \frac{1}{2} k_p' \left(\frac{W}{L}\right) \left(v_{SG} - \left|V_{tp}\right|\right)^2 (1 + |\lambda| v_{SD})$$

$$i_D = \frac{1}{2} k_p' \left(\frac{W}{L}\right) \left(v_{SG} - |V_{tp}|\right)^2 \left(1 + \frac{v_{SD}}{|V_A|}\right)$$

NMOS

PMOS

