EDA on Sustainable Companies Driving Green Initiatives

```
import pandas as pd
In [1]:
          import numpy as np
          import seaborn as sns
          import matplotlib.pyplot as plt
          import matplotlib.cm as cm
          import matplotlib.colors as mcolors
         df = pd.read_csv("most sustainable corporations.csv", encoding='ISO-8859-1')
In [2]:
In [3]:
         df.head()
Out[3]:
                                                                                    Women
                                                                               CEO
                                                                                              Women in
                                                                                                        Women in
                                                                       Profit
                   Previous
                                                                                         on
             Rank
                             Company
                                       Location
                                                     Industry Revenue
                                                                                             Leadership
                                                                                                        Workforce
                                                                               Pay
                       Rank
                                                                                      Board
                                                                              Ratio
                                                                                         %
                                                       Waste
                                         Mascot,
          0
                         14
                              Sims Ltd
                                                               $ 38,525
                                                                         16%
                                                                               36:1
                                                                                       38%
                                                                                                  100%
                                                                                                             100%
                                        Australia
                                                  management
                                                  Furniture and
                                        Sydney,
                             Brambles
                 2
                                                      general
                                                                         12%
                                                                                                             100%
                                                                               61:1
                                                                                       36%
                                                                                                  100%
                                                               123,791
                                   Ltd
                                        Australia
                                                 manufacturing
                                Vestas
                                 Wind
                                                    Machinery
                                         Aarhus,
          2
                 3
                                                                         19%
                                                                               70:1
                                                                                       42%
                                                                                                  100%
                                                                                                             100%
                                                               141,969
                              Systems
                                        Denmark manufacturing
                                  A/S
                                Taiwan
                                                   Transit and
                                 High
                                          Taipei,
          3
                          9
                                                       ground
                                                                $7,698
                                                                         0%
                                                                               11:1
                                                                                       15%
                                                                                                  100%
                                                                                                             100%
                                Speed
                                         Taiwan
                                                 transportation
                              Rail Corp
                               Nordex
                                       Hamburg,
                                                    Machinery
                 5
                                                                         73%
                                                                               82:1
                                                                                                  100%
                       NaN
                                                                                       33%
                                                                                                             100%
                                                               160,887
                                       Germany manufacturing
         df.columns
In [4]:
Out[4]: Index(['Rank', 'Previous Rank', 'Company', 'Location', 'Industry', 'Revenue',
                  'Profit %', 'CEO Pay Ratio', 'Women on Board %',
```

'Women in Leadership %', 'Women in Workforce %', 'Climate Grade',

'Sustainability Initiatives'],

dtype='object')

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Rank	100 non-null	int64
1	Previous Rank	68 non-null	object
2	Company	100 non-null	object
3	Location	100 non-null	object
4	Industry	100 non-null	object
5	Revenue	96 non-null	object
6	Profit %	100 non-null	object
7	CEO Pay Ratio	82 non-null	object
8	Women on Board %	100 non-null	object
9	Women in Leadership %	100 non-null	object
10	Women in Workforce %	100 non-null	object
11	Climate Grade	99 non-null	object
12	Sustainability Initiatives	73 non-null	object

dtypes: int64(1), object(12)
memory usage: 10.3+ KB

```
In [6]: # Converting Revenue to numeric
    df['Revenue'] = df['Revenue'].replace('[\$,]', '', regex=True).astype(float)

# Converting Profit % to numeric
    df['Profit %'] = df['Profit %'].replace('%', '', regex=True).astype(float)

# Converting percentage columns to numeric
    df['Women on Board %'] = df['Women on Board %'].replace('%', '', regex=True).astype(float)
    df['Women in Leadership %'] = df['Women in Leadership %'].replace('%', '', regex=True).astype(float)

df['Women in Workforce %'] = df['Women in Workforce %'].replace('%', '', regex=True).astype(float)

# Converting Previous Rank to numeric
    df['Previous Rank'] = pd.to_numeric(df['Previous Rank'], errors='coerce')

df.head()
```

Out[6]:

	Rank	Previous Rank	Company	Location	Industry	Revenue	Profit %	CEO Pay Ratio	Women on Board %	Women in Leadership %	Women in Workforc
0	1	14.0	Sims Ltd	Mascot, Australia	Waste management	38525.0	16.0	36:1	38.0	100.0	100.
1	2	3.0	Brambles Ltd	Sydney, Australia	Furniture and general manufacturing	123791.0	12.0	61:1	36.0	100.0	100.
2	3	2.0	Vestas Wind Systems A/S	Aarhus, Denmark	Machinery manufacturing	141969.0	19.0	70:1	42.0	100.0	100.
3	4	9.0	Taiwan High Speed Rail Corp	Taipei, Taiwan	Transit and ground transportation	7698.0	0.0	11:1	15.0	100.0	100.
4	5	NaN	Nordex SE	Hamburg, Germany	Machinery manufacturing	160887.0	73.0	82:1	33.0	100.0	100.
■											•

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 13 columns):
 #
     Column
                                 Non-Null Count Dtype
     ----
                                 100 non-null
 0
     Rank
                                                 int64
 1
     Previous Rank
                                 67 non-null
                                                 float64
 2
                                 100 non-null
                                                 object
     Company
 3
     Location
                                 100 non-null
                                                 object
 4
     Industry
                                 100 non-null
                                                 object
 5
                                                 float64
     Revenue
                                 96 non-null
 6
    Profit %
                                 100 non-null
                                                 float64
 7
    CEO Pay Ratio
                                 82 non-null
                                                 object
 8
    Women on Board %
                                 100 non-null
                                                 float64
     Women in Leadership %
                                 100 non-null
                                                 float64
 10 Women in Workforce %
                                 100 non-null
                                                 float64
 11 Climate Grade
                                                 object
                                 99 non-null
 12 Sustainability Initiatives 73 non-null
                                                 object
dtypes: float64(6), int64(1), object(6)
```

EDA Begins

memory usage: 10.3+ KB

In [7]:

df.info()


```
In [23]: # Bar chart for Industry distribution
    plt.figure(figsize=(20, 7))
    df['Industry'].value_counts().plot(kind='bar', color='forestgreen')
    plt.title('Distribution of Companies by Industry')
    plt.xlabel('Industry')
    plt.ylabel('Number of Companies')
    plt.xticks(rotation=90, ha='right')
    plt.show()
```



```
In [10]: # Pie chart for Climate Grade distribution
    plt.figure(figsize=(9, 16))
    df['Climate Grade'].value_counts().plot(kind='pie', autopct='%1.1f%%', colors=plt.cm.Pai
    red.colors, startangle=140)
    plt.title('Proportion of Companies by Climate Grade')
    plt.ylabel('')
    plt.show()
```

Proportion of Companies by Climate Grade


```
In [11]: # Box plot for Profit % by Climate Grade
  plt.figure(figsize=(12, 6))
  sns.boxplot(x='Climate Grade', y='Profit %', data=df, palette='Greens_r')
  plt.title('Box Plot of Profit % by Climate Grade')
  plt.xlabel('Climate Grade')
  plt.ylabel('Profit %')
  plt.xticks(rotation=45)
  plt.show()
```



```
In [12]:
         # Normalizing values for color mapping
         norm revenue = mcolors.Normalize(vmin=df['Revenue'].min(), vmax=df['Revenue'].max())
         norm_profit = mcolors.Normalize(vmin=df['Profit %'].min(), vmax=df['Profit %'].max())
         # colormap
         cmap_revenue = cm.ScalarMappable(norm=norm_revenue, cmap='viridis')
         cmap_profit = cm.ScalarMappable(norm=norm_profit, cmap='plasma')
         plt.figure(figsize=(10, 6))
         sc = plt.scatter(df['Revenue'], df['Profit %'], c=df['Revenue'], cmap='Greens_r', edgeco
         lors='k', alpha=0.7, norm=norm_revenue)
         plt.colorbar(sc, label='Revenue')
         plt.title('Scatter Plot of Revenue vs. Profit %')
         plt.xlabel('Revenue')
         plt.ylabel('Profit %')
         plt.xscale('log')
         plt.yscale('linear')
         plt.grid(True)
         plt.show()
```



```
In [13]: # Correlation matrix
    correlation_matrix = df[numerical_columns].corr()

# heatmap
    plt.figure(figsize=(10, 8))
    sns.heatmap(correlation_matrix, annot=True, cmap='Greens_r', vmin=-1, vmax=1, center=0,
    fmt='.2f', linewidths=0.5)
    plt.title('Correlation Heatmap')
    plt.show()
```



```
In [14]: df_revenue = df.dropna(subset=['Revenue'])

# Sorting by Revenue to get top 10
top_10_revenue = df_revenue.nlargest(10, 'Revenue')

print("Top 10 Companies by Revenue:")
top_10_revenue[['Company', 'Revenue']]
```

Top 10 Companies by Revenue:

Out[14]:

	Company	Nevellue
25	Wheaton Precious Metals Corp	33251733.0
95	IGM Financial Inc	4947231.0
82	Nordea Bank Abp	3242058.0
36	Beazley PLC	2864982.0
86	Prologis Inc	1614690.0
90	Assicurazioni Generali SpA	1273258.0
5	Banco do Brasil SA	1106800.0
81	Svenska Handelsbanken AB	1052698.0
78	Sun Life Financial Inc	549255.0
10	Autodesk Inc	517478.0

Company

Revenue

```
In [15]: plt.figure(figsize=(12, 8))
    plt.barh(top_10_revenue['Company'], top_10_revenue['Revenue'], color='springgreen')
    plt.xlabel('Revenue')
    plt.title('Top 10 Companies by Revenue')
    plt.gca().invert_yaxis()
    plt.show()
```



```
In [16]: df_profit = df.dropna(subset=['Profit %'])

# Sorting by Profit % and to get top 10
top_10_profit = df_profit.nlargest(10, 'Profit %')

print("Top 10 Companies by Profit %:")
top_10_profit[['Company', 'Profit %']]
```

Top 10 Companies by Profit %:

Out[16]:

	Company	Profit %
4	Nordex SE	73.0
32	Zhuzhou CRRC Times Electric Co Ltd	28.0
44	Kering SA	28.0
47	SAP SE	28.0
56	Intesa Sanpaolo SpA	26.0
81	Svenska Handelsbanken AB	26.0
22	Trane Technologies PLC	25.0
64	KB Financial Group Inc	25.0
90	Assicurazioni Generali SpA	25.0
29	Risen Energy Co Ltd	23.0

```
In [17]: plt.figure(figsize=(12, 8))
    plt.barh(top_10_profit['Company'], top_10_profit['Profit %'], color='limegreen')
    plt.xlabel('Profit %')
    plt.title('Top 10 Companies by Profit %')
    plt.gca().invert_yaxis()
    plt.show()
```



```
In [18]: df_profit = df.dropna(subset=['Profit %'])

# Grouping by Industry and calculating the mean Profit %
    industry_profit = df_profit.groupby('Industry')['Profit %'].mean().sort_values(ascending =False)

# top 5 industries
    top_5_industry_profit = industry_profit.head(5)
    top_5_industry_profit
```

Out[18]: Industry

Machinery manufacturing 46.0
Retail, except grocery and auto 28.0
HVAC equipment manufacturing 25.0
Electrical equipment manufacturing 22.0
Personal products (retail chemical) 21.0
Name: Profit %, dtype: float64

```
In [19]: plt.figure(figsize=(12, 8))
    plt.barh(top_5_industry_profit.index, top_5_industry_profit.values, color='gold')
    plt.xlabel('Profit %')
    plt.title('Top 5 Industries by Profit %')
    plt.gca().invert_yaxis()
    plt.show()
```



```
In [20]: df_women_on_board = df.dropna(subset=['Women on Board %'])

# Grouping by Industry and calculating the mean Women on Board %
industry_women_on_board = df_women_on_board.groupby('Industry')['Women on Board %'].mean
().sort_values(ascending=False)

top_5_industry_women_on_board = industry_women_on_board.head(5)

top_5_industry_women_on_board
```

Out[20]: Industry

Insurance companies 49.750000
IT services except telecom and hosting 48.000000
Retail, except grocery and auto 46.000000
HVAC equipment manufacturing 45.000000
Waste management 44.333333

Name: Women on Board %, dtype: float64

```
In [21]: plt.figure(figsize=(12, 8))
    plt.barh(top_5_industry_women_on_board.index, top_5_industry_women_on_board.values, colo
    r='yellowgreen')
    plt.xlabel('Women on Board %')
    plt.title('Top 5 Industries by Women on Board %')
    plt.gca().invert_yaxis()
    plt.show()
```


Thank You!

Thank you for going through this notebook. I hope you found the Exploratory Data Analysis insightful and helpful.