Conceptos Generales

CONTROL Y PROGRAMACIÓN DE ROBOTS

Grado en Electrónica, Robótica y Mecatrónica

Índice

- 1. Introducción
- 2. Localización de objetos
- 3. Modelado cinemático
 - Modelo cinemático directo
 - Modelo cinemático inverso
 - Modelo diferencial. Singularidades.
- Modelado dinámico
- 5. Control cinemático. Generación de trayectorias.
- 6. Control dinámico
- 7. Ejemplo de arquitectura (funcional) de control

Introducción

Objetivos:

- Exposición de problemas asociados al control de robots
- · Conceptos a tener en cuenta en la programación

Repaso breve de la asignatura *Fundamentos de Robótica*

Control y Programación de Robots. GIERM

3

Localización de objetos

Necesidad:

Localización de objetos

 ${}^{A}T_{B}$ debe contener datos de la localización de B con respecto a A

- Translación (origen de *A* distinto de origen de *B*)
- Rotación (A y B no están igualmente orientados)

Control y Programación de Robots. GIERM

5

Localización de objetos

Posibilidad:

^AT_B como Matriz de Transformación Homogénea

$${}^{A}T_{B} = \begin{pmatrix} {}^{A}R_{B} & {}^{A}P_{ORGB} \\ 0_{3\times 1} & 1 \end{pmatrix}$$

 $^{A}P_{ORGB}$: Translación (coordenadas x,y,z del origen de B en ejes A)

^AR_B: Matriz de rotación de B con respecto a A (sólo 3 parámetros independientes, p.e., ángulos de Euler)

Ángulos de Euler más utilizados: XYZ fijos, ZXZ móviles y ZYZ móviles

Localización de objetos

Propiedad de las MTH:

Camino desde U hasta pieza por robot:

Camino desde U hasta pieza por base:

$$^{U}T_{Pieza} = ^{U}T_{Base} \times ^{Base}T_{Pieza}$$

Igualando y despejando:

$$T_{Pieza} = \left({^U}T_{Robot} \times {^{Robot}} T_{Mu\~{n}eca} \times {^{Mu\~{n}eca}} T_{Herramienta} \right)^{\!-1} \times {^U} T_{Base} \times {^{Base}} T_{Pieza}$$

Control y Programación de Robots. GIERM

7

Modelado cinemático

Espacio articular y cartesiano (de la tarea):

• q = (q1, q2, ·····, qn) : vector de variables articulares.

• $\mathbf{x} = (\mathbf{x}, \mathbf{y}, \mathbf{z}, \alpha, \beta, \gamma)$: posición y orientación en el espacio euclídeo cartesiano.

Cinemática directa: x=f(q)

Cinemática inversa: $q=f^{-1}(x)$

Modelo cinemático directo

- Conocer posición y orientación del extremo del robot en función de sus coordenadas articulares (GDL)
- Ejemplos:

$$x = l_{1} \cos q_{1} + l_{2} \cos (q_{1} + q_{2})$$

$$y = l_{1} senq_{1} + l_{2} sen(q_{1} + q_{2})$$

$$z = 0$$
[nea] = $Rotz(q_{1} + q_{2})$

 Para cadenas cinemáticas más complejas, existen métodos sistemáticos para estos cálculos (Denavit-Hartenberg)

Control y Programación de Robots. GIERM

9

Modelo cinemático inverso

- Conocer coordenadas articulares del robot en función de la posición y orientación de su extremo.
- Problema complejo sin solución analítica en general.
- Ejemplo:

El cálculo de

$$(q_1,q_2)=f^{-1}(x,y)$$

no es inmediato, y proporciona dos soluciones

q₁

• Posibilidad de **múltiples soluciones**, con necesidad de especificar en la programación cual es la deseada.

Modelo diferencial

 Relaciona las velocidades del extremo del robot en el espacio cartesiano (de la tarea) con las velocidades de las articulaciones del robot.

Modelo diferencial directo: $\dot{x}=J(q)\dot{q}$

Modelo diferencial inverso: $\dot{q} = J^{-1}(q)\dot{x}$

- J(q): matríz Jacobiana de las velocidades
- No tiene por que ser cuadrada
 - En caso de no ser cuadrada inversa por pseudo inversa
- Necesario para el sistema de control.

Control y Programación de Robots. GIERM

11

Singularidades

• Configuraciones de las articulaciones, **q**, para las que la Jacobiana sea singular:

 $det(J(q))=0 \implies J^{-1}(q) \rightarrow \infty$

- Para estas configuraciones, velocidades finitas en el espacio de la tarea demandan velocidades infinitas de las articulaciones.
- Clasificación según si se da en límites del espacio de trabajo o en su interior.
- Implica la pérdida de algún grado de libertad.
- Evitar programar el robot en esas configuraciones.
- Existen algoritmos que las detectan y las gestionan.

Singularidades

Control y Programación de Robots. GIERM

13

Modelado dinámico

Movimiento de las articulaciones en función de la fuerza/par que ejerce el actuador

- Obtención a partir de ecuaciones:
 - Lagrange: en términos energéticos
 - Newton/Euler: equilibrio de fuerzas y pares
- Sistema de ecuaciones diferenciales acopladas.
- Relación alta en reductores (R>>1) ayuda al desacoplo.

Modelado dinámico

Robot plano RR vertical

$$\tau = \begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix} \quad q = \begin{bmatrix} q_1 \\ q_2 \end{bmatrix}$$

Eslabones

$$m_1 = m_2 = 3 \text{ Kg}$$
 $l_1 = l_2 = 1 \text{ m}$
 $l_1 = l_2 = 0.2536 \text{ Kg.m}^2$ $l_{c1} = l_{c2} = 0.5 \text{ m}$

Motores

$$J_{m1} = J_{m2} = 0.025 \ Kg.m^{2}$$

$$B_{m1} = B_{m2} = 3.6 \times 10^{-6} \ Nm/(rad/s)$$

$$K_{t1} = K_{t2} = 10 \ Nm/A$$

$$R_{1} = R_{2} = 25 \ vs \ R_{1} = R_{2} = 1$$

Control y Programación de Robots. GIERM

15

Modelado dinámico

Robot plano RR vertical

$$K_{t}RI_{m} = (M(q) + J_{m}R^{2})q + (C(q,q) + B_{m}R^{2})q + G(q) + F(q)$$

$$\begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix} \begin{bmatrix} \tau_{m1} \\ \tau_{m2} \end{bmatrix} = \begin{bmatrix} 20.8572 + 3.0\cos(q_2) & 1.0036 + 1.5\cos(q_2) \\ 1.0036 + 1.5\cos(q_2) & 16.8536 \end{bmatrix} * \begin{bmatrix} \vdots \\ q_1 \\ \vdots \\ q_2 \end{bmatrix}$$

$$+ \begin{bmatrix} -1.5\sin(q_2)(2\dot{q}_1\dot{q}_2 + \dot{q}_2^2) + 0.0022\dot{q}_1 \\ -1.5\sin(q_2)\dot{q}_1^2 + 0.0022\dot{q}_2 \end{bmatrix} + \begin{bmatrix} 44.1\cos(q_2) + 14.7(q_1 + q_2) \\ 14.7\cos(q_1 + q_2) \end{bmatrix}$$

 $R_1 = R_2 = 1$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \tau_{m1} \\ \tau_{m2} \end{bmatrix} = \begin{bmatrix} 5.0326 + 3.0\cos(q_2) & 1.0036 + 1.5\cos(q_2) \\ 1.0036 + 1.5\cos(q_2) & 1.029 \end{bmatrix} * \begin{bmatrix} q_1 \\ q_2 \end{bmatrix}$$

$$+ \begin{bmatrix} -1.5\sin(q_2)(2\dot{q}_1\dot{q}_2 + \dot{q}_2^2) + 3.6 \times 10^{-6}\dot{q}_1 \\ -1.5\sin(q_2)\dot{q}_1^2 + 3.6 \times 10^{-6}\dot{q}_2 \end{bmatrix} + \begin{bmatrix} 44.1\cos(q_2) + 14.7(q_1 + q_2) \\ 14.7\cos(q_1 + q_2) \end{bmatrix}$$

Control cinemático

- Generar las trayectorias de referencia que debe seguir cada articulación del robot a lo largo del tiempo para las distintas órdenes de movimiento.
- Se debe tener en cuenta:

MOVELD POS 300

- Punto de destino
- Tipo de trayectoria del extremo
- Tiempo invertido
- etc..
- Necesario conocimiento de modelo cinemático.
- Es necesario atender a las restricciones físicas de los accionamientos y criterios de calidad (suavidad, precisión...)

Control y Programación de Robots. GIERM

17

Control cinemático

- Pasos para generar trayectorias:
 - A partir de orden de movimiento, calcular ecuaciones de trayectorias en cartesianas
 - Obtención de puntos concretos muestreando en le tiempo la trayectoria en cartesianas
 - Conversión de puntos en cartesianas a espacio articular con modelo cinemático inverso
 - Generación de trayectorias (posición, velocidad y aceleración) en espacio articular mediante interpolación de coordenadas articulares en el tiempo
 - Interpolador con splines
 - Interpolador con velocidad trapezoidal

Control cinemático

• Paso 1:

• Paso 2:

Control y Programación de Robots. GIERM

19

Control cinemático

• Paso 3:

• Paso 4:

Control dinámico

- Gestionar de manera adecuada las señales de control de los actuadores (motores) de manera que las posiciones articulares reales del robot se parezcan la más posible a las trayectorias de referencia generadas por el control cinemático.
- Control en bucle cerrado: necesidad de sensores internos de posición y velocidad.
- A mayor velocidad de movimiento, peor comportamiento (errores más grandes) en control del robot.
- En general es necesario **estrategias de control avanzadas**, si bien el problema se simplifica con factores altos en los reductores.

Control y Programación de Robots. GIERM

21

Control dinámico

Arquitectura de control

Arquitectura funcional

Ejemplo:

Control y Programación de Robots. GIERM

23