Операционные системы

22 марта 2019 г.

Содержание

1	Вве	дение															2
	1.1	Препо,	цаватель														2
	1.2	Опера	ционные с	систем	ы.												2
	1.3	Ядро і	прочее														3
2	Про	цессы															4
	2.1^{-2}																4
	2.2	Shedul	er														5
	2.3	API ar	d ABI .														5
	2.4	Модел	ь памяти	процес	cca												6
	2.5	Систем	иные вызо	овы дл	я раб	боты	сп	роц	ecc	ами	Ι.						6
	2.6	PID .															7
	2.7	Calling	conventio	on													7
	2.8	Проце	ес и ОС .														9
	2.9	Кратк	ое описан	ие ДЗ1	l .												10
	2.10	Перек.	іючение к	сонтекс	ста												10
	2.11	Литера	атура														10
0	ж ч	,															10
3			системь														12 12
	3.1		ды														12
	3.2		ели Прр														12 12
		3.2.1	HDD														
	2.2	3.2.2	Общее .														13
	3.3	DEIGHN															10
		-	одействие														13
		3.3.1	Интересн	ые чис						· ·							13
	2. 4	3.3.1 3.3.2	Интересн Выводы ,	ње чис для НІ	 сла DD	 				· · · · · · · · · · · · · · · · · · ·		 	 	 			13 14
	3.4	3.3.1 3.3.2 Structi	Интересн Выводы , are packag	ые чис для HI jing	 сла DD		 		 	 		 	 	 	 		13 14 14
	3.5	3.3.1 3.3.2 Structu Алгорг	Интересн Выводы , are packag итмы элен	ње чис для HI jing затора	сла DD		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		 	 	 	 	 	13 14 14 14
	3.5 3.6	3.3.1 3.3.2 Structu Алгорг Файл .	Интересн Выводы , иге packag итмы элев 	ње чис для HI jing затора 	сла DD				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		 	· · · · · · · ·	 	 		13 14 14 14 15
	3.5	3.3.1 3.3.2 Structu Алгори Файл . Дирек	Интересн Выводы , ure packag итмы элен гория	ые чис для HI ing ватора 	сла DD			 	 	 	 		13 14 14 14 15 15
	3.5 3.6	3.3.1 3.3.2 Structu Алгори Файл Дирек 3.7.1	Интересн Выводы , иге раскад итмы элен гория Права —	ые чис для HI jing затора просто	сла DD 	 								 	 		13 14 14 14 15 15
	3.5 3.6 3.7	3.3.1 3.3.2 Structu Алгори Файл . Дирек 3.7.1 3.7.2	Интересн Выводы , ire packag итмы элен гория Права — sticky bit	ые чис для HI jing ватора просто	CDA OD O O O O O O O O O O O O O O O O O	 			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · ·		 	 		13 14 14 14 15 15 15
	3.5 3.6	3.3.1 3.3.2 Structu Алгорг Файл . Дирек 3.7.1 3.7.2 Иерарг	Интересн Выводы , иге раскад итмы элен гория Права —	ые чио для HI jing ватора просто 	сла DD 									 	 		13 14 14 14 15 15

Лекция 1

Введение

1.1 Преподаватель

Банщиков Дмитрий Игоревич **email:** me@ubique.spb.ru

1.2 Операционные системы

- Операционная система это уровень абстракции между пользователем и машиной. Цель курса в том, чтобы объяснить что происходит в системе от нажатия кнопки в браузере до получения результата.
- Курс будет посвящен Linux, потому что иначе говорить особо не о чем. Linux это операционная система общего назначения, для машин от самых маленьких почти без ресурсов до мощнейших серверов. Простой ответ почему Linux настолько популярен, а не Windows в некоторых случаях он бесплатный.
- Почему полезно разрушить абстракцию черного ящика? Чтобы писать более оптимизированный и функциональный код. Иногда встречаются проблемы которые не могут быть решены без знания внутренней работы ОС.

1.3 Ядро и прочее

Рис. 1.1: Kernel scheme

- Ядро Linux (kernel) монолитное, это оправдано для ядра, но уязвимость одной части ядра ставит в угрозу все остальные части.
- Микроядерные ОС альтернатива монолитным (мы не будем их изучать), но с ними сложно работать, потому что протоколы общения между частями требуют ресурсов.
- *UNIX-like* системы это системы предоставляющие похожий на *UNIX* интерфейс.

TODO Написать побольше

Лекция 2

Процессы

2.1 Общее

- Процесс экземпляр запущенной программы. Процессы должны уметь договариваться чтобы сосуществовать, но в то же время не знать друг о друге и владеть монополией на ресурс машины.
- С точки зрения ОС процесс это абстракция, позволяющая абстрагироваться от внутренностей процеса.
- С точки зрения программиста процесс абстракция, которая позволяет думать что мы монопольно владеем ресурсами машины.
- На момент выполнения процесс можно охарактеризовать полным состоянием его памяти и регистров. Чтобы приостановить процесс нам нужно просто сохранить его 'отпечаток', а чтобы возобновить нужно загрузить его память и регистры
- Батч-процессы (например, сборки или компиляции) не требуют отзывчивости пока жрут ресурсы.

Могут быть сформулированы следующие тезисы:

- Система не отличает между собой процессы
- Процессы в общем случае ничего не знают друг о друге
- Процесс с одной стороны абстракция, которая позволяет не различать их между собой, с другой конкретная структура
- Память и регистры однозначно определяют процесс
- Способ выбора процесса алгоритм shedulerивания
- Переключение с процесса на процесс смена контекста процесса
- Контекст процесса указатель на виртуальную память и значения регистров
- Как отличать процессы между собой pid

2.2 Sheduler

- Заводит таймер для процесса(квант времени), после его истечения или когда процесс сам закончился выбирает другой процесс.
- Производительность разбиение на несколько процессов
- Дизайн приложения

Рис. 2.1: Process-interruption

2.3 API and ABI

2.4 Модель памяти процесса

Общие соображения:

- **stack** выделяется неявно, **heap** должны выделять сами (malloc, new и тп),
- \bullet секции data, text
- data статические, глобальные переменные, text
- stack растет вниз, heap вверх
- frame область памяти стека, хранящая данные об адресах возврата, информацию о локальных переменных
- Резидентная память та, которая действительно есть

2.5 Системные вызовы для работы с процессами

• fork() - для того чтобы создать новый процесс

fork-example.c

```
void f() {
    const pid_t pid = fork();

    if (pid == -1) {
        // handle error
    }
    if (!pid) {
            // we are child
    }
    if (pid) {
            // we are parent
    }
}
```

fork-бомба

- \bullet wait(pid) ждем процесс
- exit() завершаемся
- execve() запустить программу

execve-example.c

```
int main(int argc, char *argv[]) {
   char *newargv[] = { NULL, "hello", "world", NULL };
   char *newenviron[] = { NULL };
   if (argc != 2) {
      fprintf(stderr, "Usage: %s <file-to-exec>\n", argv[0]);
      exit(EXIT_FAILURE);
   }
   newargv[0] = argv[1];
   execve(argv[1], newargv, newenviron);
   perror("execve"); /* execve() returns only on error */
   exit(EXIT_FAILURE);
}
```

• SIGKILL - принудительное завершение другого процесса (**\$ kill**)

2.6 PID

- У каждого *PID* есть parentPID (*PPID*)
- \$ рѕ позволяет посмотреть специфичные атрибуты процесса
- Процесс $init(pid\ 0)$ создается ядром и выступает родителем для большинства процессов, созданных в системе
- Можно построить дерево процессов (**\$ pstree**)

Процесс делает fork(). Возможны 2 случая:

- 1. Процесс не делает wait(childpid)
 - Зомби-процесс (zombie) когда дочерний процесс завершается быстрее, чем вы сделаете wait
- 2. Процесс завершается, что происходит с дочерним процессом?
 - Сирота (orphan) процесс, у которого умер родитель. Ему назначется родителем процесс с $pid\ 1$, который время от времени делает wait() и освобождается от детей

PID - переиспользуемая вещь (таблица процессов)

2.7 Calling convention

\$ man syscall - как вызываются syscall

syscall.h

```
#ifndef SYSCALL_H
#define SYSCALL_H

void IFMO_syscall();
#endif
```

syscall.s

```
.data
.text
.global IFMO_syscall

IFMO_syscall:
    movq $1, %rax
    movq $1, %rdi
    movq $0, %rsi
    movq $555, %rdx
    syscall
    ret
```

syscall-example.c

```
#include "syscall.h"
int main() {
    IFMO_syscal();
}
```

Что здесь просходит?

- 1. Вызываем write()
- 2. Просим ядро записать 555 байт начинающихся по адресу 0 в файловый дескриптор №1 (stdout-N 1, stdin-N 2, stderr-N 3)
- 3. Ничего не происходит, так как: $write(1,\ NULL,\ 555)\ {\rm возвращает}\ \text{-1}\ (EFAULT\ \text{-}\ {\rm Bad\ address})$

Как со всем этим работать?

• **\$ strace** — трассировка процесса (подсматриваем за процессом, последовательность *syscall* с аргументами и кодами возврата)

Если syscall ничего не возвращает, то в выводе пишется ? вместо возвращаемого значения

• \$ man errno - ошибки

Если делаем fork() - проверяем код возврата (хорошая практика) $char^* strerror(int\ errnum)$ - возвращает строковое описание кода ошибки Почему $char^*$, а не $const\ char^*$? Потому что всем было лень. $thread_local$ — решение проблемы: переменная с ошибкой - общая для каждого потока

- До main() и прочего (конструкторы) происходит куча всего (munmap, mprotect, mmap, access) размещение процесса в памяти и т.д.
- Программа не всегда завершается по языковым гарантиям (деструкторы)
- \$ ptrace позволяет одному процессу следить за другим (используется, например, в GDB)
- ERRNO переменная с номером последней ошибки, strerror
- \bullet finalizers, библиотечный вызов exit

2.8 Процесс и ОС

Рис. 2.2: Диаграмма времени жизни процесса и взаимодействия с ОС

2.9 Краткое описание ДЗ1

Написать shell-интерпретатор

- Читать из stdin
- В дочернем процессе execve()
- В родительском процессе wait()
- Сдавать через github

2.10 Переключение контекста

Шедулер OC раскидывает процессы и создает иллюзию одновременного выполнения

Рис. 2.3: Иллюзия многозадачности

2.11 Литература

- Windows Internals by Mark Russinovich
- Операционная система UNIX. Андрей Робачевский
- Unix и Linux. Руководство системного администратора. Эви Немет.

TODO Добавить еще одну картинку из images

TODO ABI and API

TODO fork бомба

 $\rm TODO$ Секция sheduler из презентации (состояния процесса)

TODO SIGKILL и kill - подробнее

Лекция 3

Файловые системы

3.1 Команды

- **\$ find** поиск
- \$ ls содержимое директории

3.2 Носители

3.2.1 HDD

Рис. 3.1: Жесткий диск

- Обороты в минуту $(O) 5400, 7200, 10000, \dots$
- $\frac{1}{2*O}$ минимальное время доступа (случайное чтение)
- В мире Unix не существует дефрагментации (ОС должна сама заботиться)
- Время отказа (MTBF min time before failure) условное количество циклов наработки до отказа
- На server сутки, desktop часы (разница в 3 раза примерно, если одно и то же число циклов)
- Плюсы: стоимость, объем
- Минусы: время доступа, надежность

3.2.2 Общее

- EOPS TODO
- **seek** рандомное чтение (512 байт)
- SATA и NVME протоколы для дисков
- ullet NVME новомодная штука для SSD
- $\bullet\,$ Минимум информации: сектор 512 байт -> 4096 байт
- Чтение одного байта равносильно чтению всего сектора с этим байтом
- Запись одного байта считать один сектор, заменить байт и записать один сектор
- Аналогия процессор-память cacheline

3.3 Быстродействие

3.3.1 Интересные числа

Числа, которые должен знать каждый программист

Cycle	1 ns
Main memory reference	100 ns
Read 4K randomly from SSD	150 us
Read 1 MB sequentially from SSD	1 ms
Disk seek	10 ms
Read 1 MB sequentially from disk	20 ms

3.3.2 Выводы для HDD

- Читать нужно последовательно
- Обращения к диску следует минимизировать
- Стоимость доступа сильно дороже передачи данных

3.4 Structure packaging

Сколько будет занимать памяти следующая структура?

hole1.c

```
struct hole {
    uint64_t a;
    uint32_t b;
    uint64_t c;
    uint32_t d;
}
```

Ответ: 32 байта, так как b и d будут выравнены по MAX_ALLIGNMENT Очевидное решение проблемы:

hole2.c

```
struct hole {
    uint64_t a;
    uint32_t b;
    uint32_t d;
    uint64_t c;
}
```

Данная структура будет занимать 24 байта на х86_64.

3.5 Алгоритмы элеватора

Ссылка на презентацию

1. SLIDE 6

Алгоритмы элеватора обрабатывают последовательности запросов к диску (переупорядочивают их)

2. SLIDE 7

FCFS (FIFO) — самый простой и медленный

3. SLIDE 8-9

SSTF (Shortest Seek Time First)— сортировка (очередной запрос определяется наименьшим временем seek)

4. SLIDE 10 - ...

Различные способы упорядочивания(SCAN)

3.6 Файл

- Абстракция для данных
- Последовательность байтов
- Формат не определен
- Unix все есть файл (абстракция-интерфейс внутри ядра)
- Типы файлов
 - regular
 - directory
 - symlink
 - socket, fifo
 - character device, block device

3.7 Директория

- Содержит имена находящихся в ней файлов
- . ссылка на текущую
- .. ссылка на родителя
- \$ cd , \$ pwd
- Формирование дерева: **\$ ls**
- filename vs pathname: \$ realpath

3.7.1 Права — просто числа

- \$ view /etc/passwd
- \$ view /etc/group
- \$ id показывает идентификаторы того, кто ее вызывал
- \$ execute search
- \$ read directory listing
- \$ write changing directory

- Темные директории (переход в директорию внутри директории, для который ты не можешь посмотреть все файлы)
- Права rwx (read, write, execute)
- \$ chmod меняет права доступа
 \$ chmod 123 1 user, 2 group, 3 other
- У процесса есть информация о том, кто его запустил

3.7.2 sticky bit

- Изменение поведения при создании нового файла
- /tmp
- \bullet Создаешь директорию со $sticky\ bit$ и все, кто создают файлы в этой директории имеют на них права

3.8 Иерархия

```
bin/
dev/
etc/
sbin/
home/
var/
usr/
* bin/
* sbin/
- tmp
```

3.9 Монтирование

- Есть корень и есть узлы, в которые можно монтировать другие файловые системы (часть из них виртуальная)
- \$ mount
- Для / обычно используется **ext4** (использует журналирование)
- Для /boot может использоваться $\mathbf{ext2}$ так как это более проверено временем (на Ubuntu)

- Файловая система для узла это не константа, ее можно менять
- \$ df h , \$ du -hs

3.10 Inode

TODO More from presentation

- Директория задает mapping имени файла в ero inode
- \$ ln
- ullet Hardlink существует в рамках одной файловой системы
- Softlink(symlink) бит l
- ullet \$ stat информация о файле
- *atime* время последнего доступа
- *ctime* изменение мета-информации
- *mtime* изменение содержимого файла