Γραμμική Άλγεβρα

Ανάλυση πίνακα σε ιδιάζουσες τιμές Singular Value Decomposition (SVD)

Η ανάλυση σε ιδιάζουσες τιμές μπορεί να γίνει για οποιοδήποτε πίνακα, τετραγωνικό ή μη. Ας είναι A ένας πίνακας $m \times n$. Η ανάλυση είναι μια παραγοντοποίηση ως εξής

$$A = U\Sigma V^T$$
, we $U^TU = UU^T = \mathbf{I}$ nai $V^TV = VV^T = \mathbf{I}$,

όπου ο πίνακας Σ περιλαμβάνει τις ιδιάζουσες τιμές του A: $\{\sigma_1,\ldots,\sigma_r\}$ των οποίων το πλήθος είναι ίσο με την τάξη r του πίνακα A. Οι ιδιάζουσες τιμές είναι όλες θετικές. Ο πίνακας U είναι $m\times m$, ο πίνακας V είναι $n\times n$ και ο πίνακας Σ είναι $m\times n$. Πιο συγκεκριμένα ο τελευταίος πίνακας χωρίζεται σε μπλοκ ως εξής

$$\Sigma = \begin{bmatrix} \Sigma_{+} & \mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{(m-r) \times r} & \mathbf{0}_{(m-r) \times (n-r)} \end{bmatrix}, \quad \mu\epsilon \quad \Sigma_{+} = \begin{bmatrix} \sigma_{1} & 0 & \cdots & 0 \\ 0 & \sigma_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma_{r} \end{bmatrix}.$$

Για την εύρεση των U,V και Σ απαιτείται η εύρεση των χαρακτηριστικών μεγεθών των πινάκων A^TA και AA^T . Θα έχουμε

$$A^T A = V \Sigma^T U^T U \Sigma V^T = V \Sigma^T \Sigma V^T.$$

Με δοσμένο ότι ο πίνακας A^TA είναι συμμετρικός, ο πίνακας V περιλαμβάνει τα ιδιοδιανύσματα του πίνακα A^TA και ο διαγώνιος πίνακας $\Sigma^T\Sigma$ περιλαμβάνει τις ιδιοτιμές του. Θα είναι πιο συγκεκριμένα

$$\Sigma^{T}\Sigma = \begin{bmatrix} \Sigma_{+}^{2} & \mathbf{0}_{r\times(n-r)} \\ \mathbf{0}_{(n-r)\times r} & \mathbf{0}_{(n-r)\times(n-r)} \end{bmatrix}, \quad \mu\epsilon \quad \Sigma_{+}^{2} = \begin{bmatrix} \sigma_{1}^{2} & 0 & \cdots & 0 \\ 0 & \sigma_{2}^{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma_{r}^{2} \end{bmatrix}.$$

Άρα ο πίνακας Σ_+ περιλαμβάνει τις θετικές ρίζες των ιδιοτιμών του A^TA . Με τον ίδιο τρόπο αποδεικνύεται ότι ο πίνακας U περιλαμβάνει τα ιδιοδιανύσματα του AA^T .

Ακολουθούν παραδείγματα ανάλυσης πινάκων που είτε είναι ιδιόμορφοι, είτε δεν είναι τετραγωνικοί.

Παράδειγμα 1.1. Δ ίδεται ένας ιδιόμορφος πίναχας $A=\left[\begin{array}{cc}1&1\\2&2\end{array}\right]$. Θα είναι

$$A^TA = \left[\begin{array}{cc} 5 & 5 \\ 5 & 5 \end{array} \right] \quad \text{for} \quad AA^T = \left[\begin{array}{cc} 2 & 4 \\ 4 & 8 \end{array} \right].$$

Οπότε βρίσκουμε

$$A = \frac{1}{\sqrt{10}} \left[\begin{array}{cc} 1 & -2 \\ 2 & 1 \end{array} \right] \left[\begin{array}{cc} \sqrt{10} & 0 \\ 0 & 0 \end{array} \right] \left[\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right].$$

Παράδειγμα ${f 1.2.}$ Θεωρούμε ένα πίνακα στήλη $A=\left[egin{array}{c}1\\1\end{array}\right]$. Θα είναι

$$A^TA = \left[\begin{array}{cc} 2 \end{array} \right] \quad ext{xal} \quad AA^T = \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right].$$

Οπότε βρίσκουμε

$$A = \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right] \left[\begin{array}{c} \sqrt{2} \\ 0 \end{array} \right] \left[\begin{array}{c} 1 \end{array} \right].$$

 $oldsymbol{\Pi}$ αράδειγμα $oldsymbol{1.3.}$ Θεωρούμε ένα πίνακα γραμμή $A=\left[egin{array}{cc} 1 & 2 \end{array}
ight]$. Θα είναι

$$A^TA = \left[\begin{array}{cc} 1 & 2 \\ 2 & 4 \end{array} \right] \quad \text{for} \quad AA^T = \left[\begin{array}{cc} 5 \end{array} \right].$$

Οπότε βρίσκουμε

$$A = \frac{1}{\sqrt{5}} \left[\begin{array}{cc} 1 \end{array} \right] \left[\begin{array}{cc} \sqrt{5} & 0 \end{array} \right] \left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array} \right].$$

Με βάση την παραγοντοποίηση ο πίνακας μπορεί να αναλυθεί χρησιμοποιώντας τις ιδιάζουσες τιμές ως εξής

$$A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T,$$

όπου \mathbf{u}_i είναι οι στήλες του U και \mathbf{v}_i είναι οι στήλες του V. Σε συνέχεια αυτού του αναπτύγματος μπορεί να ευρεθεί ο γενικευμένος αντίστροφος του πίνακα

$$A^{\#} = \sum_{i=1}^{r} \frac{1}{\sigma_i} \mathbf{v}_i \mathbf{u}_i^T.$$

Ο γενιχευμένος αντίστροφος μπορεί επίσης να γραφεί ως εξής

$$A^{\#} = V \Sigma^{\#} U^T, \quad \text{we} \quad \Sigma^{\#} = \left[\begin{array}{cc} \Sigma_{+}^{-1} & \mathbf{0}_{r \times (m-r)} \\ \mathbf{0}_{(n-r) \times r} & \mathbf{0}_{(n-r) \times (m-r)} \end{array} \right]$$

Η γενικευμένη επομένως επίλυση του συστήματος $A\mathbf{x}=\mathbf{b}$ δίδει

$$\mathbf{x}^{\#} = A^{\#}\mathbf{b} = V\Sigma^{\#}U^{T}\mathbf{b} = \sum_{i=1}^{r} \frac{1}{\sigma_{i}} \mathbf{v}_{i} \mathbf{u}_{i}^{T}\mathbf{b} = \sum_{i=1}^{r} \frac{b_{i}}{\sigma_{i}} \mathbf{v}_{i}.$$

Άρα με τη γενικευμένη έννοια το σύστημα $A\mathbf{x}=\mathbf{b}$ έχει πάντοτε μία λύση. Αν ο αριθμός των εξισώσεων είναι μεγαλύτερος από τον αριθμό των αγνώστων, και ο πίνακας A^TA είναι αντιστρέψιμος, τότε πρόκειται για τη λύση των ελαχίστων τετραγώνων. Αν ο αριθμός των πραγματικών εξισώσεων είναι μικρότερος από τον αριθμό των αγνώστων, τότε επιλέγεται μεταξύ των λύσεων εκείνη που έχει το ελάχιστο μέτρο.

 Δ ίδονται στη συνέχεια οι γενικευμένες λύσεις στα γραμμικά συστήματα των παραπάνω παραδειγμάτων.

Παράδειγμα 2.1. Ας υποθέσουμε ότι έχουμε προς λύση το σύστημα

$$\left[\begin{array}{cc} 1 & 1 \\ 2 & 2 \end{array}\right] \mathbf{x} = \left[\begin{array}{c} 5 \\ 8 \end{array}\right].$$

Οι δύο εξισώσεις είναι ασύμβατες, δηλαδή δύο παράλληλες ευθείες στο επίπεδο, και με τη γενικευμένη λύση βρίσκουμε

$$\mathbf{x}^{\#} = \frac{1}{10} \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right] \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] \left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array} \right] \left[\begin{array}{cc} 5 \\ 8 \end{array} \right] = \frac{1}{10} \left[\begin{array}{cc} 21 \\ 21 \end{array} \right].$$

Σχήμα 1: Γραφική αναπαράσταση των εξισώσεων του Παραδείγματος 2.1.

Παράδειγμα 2.2. Ας υποθέσουμε ότι έχουμε προς λύση το σύστημα

$$\left[\begin{array}{c}1\\1\end{array}\right]x=\left[\begin{array}{c}5\\6\end{array}\right].$$

Πάλι έχουμε δύο ασύμβατες εξισώσεις και βρίσκουμε

$$x^{\#} = \frac{1}{2} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 11 \\ 11 \end{bmatrix}.$$

Η μέθοδος των ελαχίστων τετραγώνων δίδει ακριβώς την ίδια λύση.

Παράδειγμα 2.3. Ας υποθέσουμε ότι έχουμε προς λύση το σύστημα

$$\left[\begin{array}{cc} 1 & 2 \end{array}\right] \mathbf{x} = 3.$$

Βρίσκουμε

$$\mathbf{x}^{\#} = \frac{3}{5} \left[\begin{array}{cc} 1 & -2 \\ 2 & 1 \end{array} \right] \left[\begin{array}{c} 1 \\ 0 \end{array} \right] = \frac{3}{5} \left[\begin{array}{c} 1 \\ 2 \end{array} \right].$$

Σε αυτό το παράδειγμα έχουμε μία εξίσωση με δύο άγνωστες. Μεταξύ των άπειρων λύσεων, δηλαδή μια ολόκληρη ευθεία, η γενικευμένη λύση είναι αυτή με το ελάχιστο μέτρο.

Σχήμα 2: Γραφική επίλυση της εξίσωσης του Παραδείγματος 2.3.