

1/20

Figure 1

2/20

-255	cgaaattcgcggggcgc
-240	gtcgacccggccaggctcgggagacatgggggggttaaaggctcgtnattatcc
-180	ttcagtggttatggacttgcattatgtggatgtgccttagaggattatggaa
-120	tttggcagttcacccctgaccatcttggaaaataagttatctgtatctgtatgttt
-60	acttctccctcaccaacggagaacaaatgtggcaaaatgtgtacttctgtatgttt
1	ATGATTGTCAAAATTCTGTGGTTACATTGGAAATTATTATGTGATAACT
1	M I C Q K F C V V L L H W E F I Y V I T
61	GCGTTAACTTAATTCTGCATATCCAATTAAAGTTAAGTTGGAGATTCTGCCTTGCTTGCATGCCACCA
21	A F N L S Y P I T P W R F K L S C M P P
121	AATTCAACCTATGACTTACTTCCTTTGCCTGGACTCTCAAAGAATACTTCAAATTCCG
41	N S T Y D Y F L H P A G L S K N T S N S

Figure 2A

3/20

A - - - - - A

181 AATGGACATTATGAGACAGCTGTTAACCTAAAGTTAACCAAGTGGTACTCACTTTCT
61 N G H Y E T A V E P K F N S S G T H F S

241 AACTTATCCAAACTTCCACTGTTGCCTTCGGAGGTGAGCAAGATAAGAAACTGCTCC
81 N L S K T T F H C C F R Q D R N C S

301 TTATGGCAGACAAACATTGGAAAGGACATTTGGTTCAACAGTAAAATTCTTTAGTTT
101 L C A D N I E G R T F V S T V N S L V F

361 CAACAAATAGATgCAAACATGGAACATAACAGTGCTGGCTAAAAGGAGACTAAATTATTTC
121 Q Q I D A N W N I Q C W L K G D L K L F

421 ATCTGTTATGGAGTCATTTAACGAAATTCAACTAAACTATAAGGTCCAT
141 I C Y V E S L F K N L F R N Y N Y K V H

B - - - - - B

Figure 2B

4/20

B

481 CTTTTATATGGTCTGCCTGAAAGATTAGAAGATTACCTCTGGTTCCCCAAAAGGCCAGT
161 L L Y V L P E V L E D S P L V P Q K G S

541 TTTAGATGGTCACTGCAATTGCAGTGTCAATGTCATGAAATGTTGTCAAATGTCATGCTGTG
181 F Q M V H C N C S V H E C C E C L V P V

601 CCAACGCCAAACTAACGACACTCCCTATGTGTTGAAAATCACATCTGGTGGAGTA
201 P T A K L N D T L L M C L K I T S G G V

661 ATTTTCCrGTCAACCTCTAAATGTCAGTTCAAGCCATAATGGTGAAGCCTGATCCACCA
221 t F X S P L M S V Q P I N M V K P D P . P

721 TAGGTTGCATATGAAATCACAGATGATGGTAATTAAAGATTTCTGGTCCAGCCCCA
241 L G L H M E I T D D G N L K I S W S S P

C — - C

Figure 2C

5/20

C - - - - - C

781 CCATTGGTACCTCCACTTCAATTCAAGTGAATAATTCAAGGAAATTCTAGAGAATTACAAACAGTT
261 P L V P F P L Q Y Q V K Y S E N S T T V

841 ATCAGAGAAGCTGACAAGATTGTCTCAGCTACATCCCTGCTAGTAGACAGTATACTTCCCT
281 I R E A D K I V S A T S L L V D S I L P

901 GGGTCTTCGTTAGGGTTCAAGGTGAGGGCAAGAGACTGGATGCCAGGAATCTGGAGT
301 G S S Y E V Q V R G K R L D G P G I W S

961 GACTGGAGTACTCCCTCGTGTCTTACCAAGATGTCAATACTTCCACCTAAAT
321 D W S T P R V F T T Q D V I Y F P P K I

1021 CTGACAAAGTGGTCTAATGTTCTTTCACTGCATCTAAAGAAGGAAACAAAGAT
341 L T S V G S N V S F H C I Y K K E N K I

D - - - - - D

Figure 2D

6/20

D ----- D

1081 GTTCCCTCAAAAGAGATTGTTGGATGAATTAGCTGAGAAAATTCCCTCAAAGCCAG
361 V P S K E I V W W M N L A E K I P Q S Q

1141 TATGATGTTGAGTGCATGTTAGCAAAGTTACTTTCAATCTGAATGAAACCAA
381 Y D V V S D H V S K V T F N L N E T K

1201 CCTCGAGAAAGTTACCTATGATGCAGTGCTGCAATGAAACATGCCATCAT
401 P R G K F T Y D A V Y C C N E H E C H H

1261 CGCTATGCTGAATTATGATTGATGTCAATATCAATCTCATGTGAAACTGATGG
421 R Y A E L Y V I D V N I S C E T D G

1321 TACTTAACCTAAATGACTTGCAGATGGTCAACCAGTACATCCAGTCACTTGGAAAGC
441 Y L T K M T C R W S T S T I Q S L A E S

E ----- E

Figure 2E

7/20

E ----- E

1381 ACTTTGCAATTGAGGTATCATAGGAGCCAGCCTTACTGTTCTGATATTCCATCTATTCA
461 T L Q L R Y H R S S L Y C S D I P S I H

1441 CCCATATCTGAGCCAAAGATTGCATATTGCAGAGTGATGGTTTATGAATGCATTTC
481 P I S E P K D C Y L Q S D G F Y E C T F

1501 CAGCCAATCTTCCTATTATCTGGCTACACAAATGTGGATTAGGATCAAATCACTCTAGGT
501 Q P I F L L S G Y T M W I R I N H S L G

1561 TCACTTGACTCTCCACCAACATGTGTCTCCTGATTCTGGTAAGCCACTGCCCTCCA
521 S L D S P P T C V L P D S V K P L P P

1621 TCCAGTGTGAAAGCAGAAATTACTATAAACATTGGATTATTGAAATACTTGGGAAAG
541 S S V K A E I T I N I G L L K I S W E K

F ----- F

Figure 2F

8/20

F ----- F

1681 CCAGTCTTTCCAGAGAAATAACCTTCAATTCCAGATTTCGCTATGGTTAACGTGGAAAAGAA
561 P V F P E N N L Q F Q I R Y G L S G K E

1741 GTACAATGGAAGATGTATGAGGTTATGATCCAAACCACAAATCTGTCACTCCCAGTT
581 V Q W K M Y E V D P K P K S V S L P V

1801 CCAGACTTGTGCAGTCTATGCTGTTCAAGGTCTTAAGAGGCTAGATGGACTGGGA
601 P D L C A V Y A V Q V R F K R L D G L G

1861 TATTGGAGTAATTGGAGCAATCCAGCCTACACAGTTGATGGATATAAAGTTCTATG
621 Y W S N W S N P A Y T V M D I K V P M

1921 AGAGGACCTGAATTGGAGATAATTAAATTGAGATACTATGAAAAAGGAGAAAAATGTC
641 R G P E F W R I I N G D T M K K E K N V

G ----- G

Figure 2G

G ----- G

1981 ACTTTACTTGGAAAGCCCCCTGATGAAAATGACTCATTGGCAGTGTTCAGAGATAATGTC
661 T L L W K P L M K N D S L C S V Q R Y V

2041 ATAAACCATACATTTCCATSCAATGGAACATGGTCAGAAGATGTGGAAATCACACGAAA
681 I N H H T S X N G T W S E D V G N H T K

2101 TTCACTTCTGTGGACAGAACATACTGTTACGGTTCTGGCCATCAATCAATT
701 F T F L W T E Q A H T V T V L A I N S I T

2161 GGTGCTTCTGTTgCaAAATTAAATTAACTCTTTCATGGCCATAGGCAAAGTAATACT
721 G A S V A N F N L T F S W P M S K V N I

2221 GTGCAGTCACTCAGTGCTTATCCTTAAACAGCAGTTGTGATGTTCCCTGGATACTA
741 V Q S L S A Y F L N S S C V I V S W I L

9/20

H ----- H

Figure 2H

10/20

H ----- H

2281 TCACCCAGT GATTACAAGCTTAATGTTATTGAGTGGAAAATCTTAATGAAGAT
761 S P S D Y K L M Y F I I E W K N L N E D

2341 GGTGAAATAAAATGGCTTAGAATCTCTCATCTGTTAAGAAGTATTATCCATGATCAT
781 G E I K W L R I S S V K Y T H D H

2401 TTTATCCCCATTGAGAACGTTCACTCAGTCAGTCTTACCCAATATTATGGAAAGGAGTGGGA
801 F I P I E K Y Q F S L Y P I F M E G V G

2461 AACCAAAGATAATTAAATAGTTCAACTCAAGATGATATTGAAAAACACCAGAGTGTGCA
821 K P K I I N S F T Q D D I E K H Q S D A

2521 GGTTTATGTAATTGTGCCAGTAATTTCCTCCATCTTGCCTTGGAAACATTA
841 G L Y V I V P V I S S I L L G T L

I ----- I

Figure 2!

11/20

TTAATATCACACCAAGAACATTGGAAAGCTATTGGGAAGATGTCGGAACCCCCAAGAAT
861 L I S H Q R M K L F W E D V P N P K N

TGTTCCCTGGGCACAGGACTTAATTTCAGAAAGAGAACGGACATCTTtgaagtctaatac
881 C S W A Q G L N F Q K R T D I L *

2701 atgatcactacagatgtccaaatgtccaaaccttccaaacacagtctatagagttatagaag
3761 attttacatttgaaaggggaggcaaatctaaaaaaaattcaggttgaacttctgagag
2821 ttaacatatggattatgtgatttqaacttaaaaatagatgtcattaaacccaagt
2881 ttcatcataactcaggtaaacactaacactaaataaaagtttagatgttcaaatt
2941 ttcatcataactaaaggaccggaaaactaaacagttataaggaccaggattttgttaattc
3001 ttttaataccgacaacgacagtaatgtatagataatttacagtttatcacatctg
3061 ttaggacattaaatccactttagatgttgcacgtttagactgtttatcgaaaattttatgt
3121 tactaataattcatacccttagtcactttataaaatcaaaaatacaggtttgaaaaa

J. - - - - - J

Figure 2J

12/20

3181 ggttaaatctaaggaaatatctgtgcagtggatttttagtcggataaggcccacaaagaaa
3241 actttagaggaccgtaaaaacatagattgaaacaagtttagacccttaaagtcaaaaggtt
3301 attaggaactttaccgaaattcactattgaaggccaaagtcaattttcccttgggctcaac
3361 acaaacacgacgggtgtccctgtcacccctcaatgtcaagtagtatagtccctactggatgtatg
3421 ggtcccgatctaactggccctggttccctttagctgaaagattacagggtggatttaggttctggagaccgtccgtc
3481 attaaatactggatttagattaaatgaaagggtgacttggttaggttctggagaccgtccgtc
3541 cctttaccggtcactasgttttccctctgagaacactcgaaaaatacttatcaagttacc
3601 actccctgtcttggaaaaagatgaaagtctgtctgacgaaacgatcaaaaataacttaag

Figure 2K

13/20

Figure 3A

Figure 3B

Figure 3C

Figure 3D

14/20

β me + -

Figure 4

15/20

Figure 5A

16/20

Figure 5B

17/20

Figure 6

18/20

Cross-species conservation of the NR-2 gene

Figure 7

19/20

Figure 8

20/20

Expression of the Leptin Receptor (NR2) in murine tissues

Figure 9

TOP