Introduction

Social Networks - July 2020

MCQ Assignment - Week 1

1.]	If string = 'PRERAJULISATION', what will be the output of string[3:7] (written in Python3)?
]	A. 'ERAJ' B. 'RAJU ' C. 'LISA' D. TypeError
	ANSWER: B A string acts as a list. Here, the index goes from 3 to 6.

2. Let L = ["There", "are", ["eight", "elements", "in", "this"], [["list"]], []] be the list.

- A. 5
- B. 6
- C. 7
- D. 8

ANSWER: A

There are only 6 objects in the list.

3. What is the output of L[-2] if L = [-4, -3, -2, -1, 0, 1, 2, 3, 4]?

What will be the output of len(L), written in Python3?

- A. 0
- B. 1
- C. 2
- D. 3

ANSWER: D

Negative index means, count from the right. The last element's index is -1. Keep reducing the index while going from right to left.

4. Total number of graphs (undirected and without loops) possible on n vertices is:

- A. n^2
- B. $\binom{n}{2}$
- C. 2^{n^2}
- D. $2^{\binom{n}{2}}$

ANSWER: D

In any graph with n vertices, the maximum possible number of edges is $\binom{n}{2}$. There are two possibilities

for each edge-either to be or not to be in the graph. So, for n edges each of these $2^{\binom{n}{2}}$ possibilities corresponds to different graphs. Hence the answer.

- 5. If d = {0:'a', 1:'b', 2:'c', 3:'d'} is the dictionary then which among the following codes (written in Python3) would reverse keys and values of d?
 - A. {v:k for k,v in d.items()}
 - B. {d[i]:i for i in range(4)}
 - C. {d[i]:i for i in d}
 - D. All of the above

ANSWER: D

All of the above codes reverses d to {'a':0, 'b':1, 'c':2, 'd':3}

- 6. Total number of possible edges on a graph (undirected and without loops) on n vertices is **not**:
 - A. $\frac{n(n-1)}{2}$
 - B. $\binom{n}{2}$
 - C. $1+2+3+\cdots+(n-1)+n$
 - D. $1 + 2 + 3 + \cdots + n 1$

ANSWER: C

In any graph with n vertices, the maximum possible number of edges is $\binom{n}{2}$. Option A and D are other forms of it.

- 7. Let t be a tuple ("Happy", "Learning", "from"). What will be the output of t.append(("IIT Ropar")), written in Python3?
 - A. ("Happy", "Learning", "from", "IIT Ropar")
 - B. ("Happy", "Learning", "from", ("IIT Ropar"))
 - C. ("Happy", "Learning", ("from", "IIT Ropar"))
 - D. Attribute Error

ANSWER: D

Python tuple is an immutable object. Hence any operation that tries to modify it (like append) is not allowed.

- 8. For integers n > 1, let G_n be a complete graph on n vertices such that each vertex is labeled by a distinct number $1, 2, 3, \dots, n$, and each edge is labeled by the sum of its endpoint labels. The sum of all the edge labels is:
 - A. $\frac{n(n-1)^2}{2}$
 - B. $\frac{n(n-1)(n+1)}{2}$
 - C. n(n-1)(n+1)
 - D. $\frac{n(n+1)}{2}$

ANSWER: B

$$(1+2) + (1+3) + (1+4) + \cdots + (1+n)$$

 $(2+3) + (2+4) + \cdots + (2+n)$

Each number is used (n-1) times in the sum. Hence, $\sum_{i=1}^{n} (n-1)i = \frac{n(n-1)(n+1)}{2}$.

9. True or False:

There exists a graph with 5 vertices where each vertex has degree 3.

- A. True
- B. False

ANSWER: B

This is not possible by the handshaking theorem, because the sum of the degrees of the vertices $3 \times 5 = 15$ is odd.

- 10. Let G be a graph with n vertices. We label these vertices as $0, 1, 2, \dots, (n-1)$. There is an edge between a vertex i and a vertex j if mod i j = 1. How many edges are there in the graph G?
 - A. 1
 - B. n 1
 - C. n
 - D. n + 1

ANSWER: C

We get C_n which has n edges.