Integer Programming ISE 418

Lecture 4

Dr. Ted Ralphs

Reading for This Lecture

• N&W Sections I.4.1-I.4.3

Some Conventions

If not otherwise stated, the following conventions will be followed for lecture slides during the course:

- A will denote a matrix of dimension m by n (rational).
- b will denote a vector of dimension m (rational).
- x will denote a vector of dimension n.
- c will denote a vector of dimension n (rational).
- p will be the number of integer variables.
- \mathcal{P} will denote a polyhedron contained in \mathbb{R}^n , usually given in the form

$$\mathcal{P} = \{ x \in \mathbb{R}^n \mid Ax \le b \}$$

- S will be $\mathcal{P} \cap (\mathbb{Z}_+^p \times \mathbb{R}_+^{n-p})$.
- An integer program is then described fully by the quadruplet (A, b, c, p).
- Vectors will be column vectors unless otherwise noted.
- When taking the product of vectors, we will sometimes leave off the transpose.

Additional Notation

• The notation A_N will denote a submatrix formed by taking the columns indexed by set $N \subseteq \{1, \ldots, n\}$.

- The i^{th} column of A will be denoted A_i .
- The i^{th} row of A will be denoted a_i .

Linear Algebra Review: Linear Independence

Definition 1. A finite collection of vectors $x^1, \ldots, x^k \in \mathbb{R}^n$ is linearly independent if the unique solution to $\sum_{i=1}^k \lambda_i x^i = 0$ is $\lambda_i = 0, i \in [1..k]$. Otherwise, the vectors are linearly dependent.

Let A be a square matrix. Then, the following statements are equivalent:

- The matrix A is invertible.
- The matrix A^{\top} is invertible.
- The determinant of A is nonzero.
- The rows of *A* are linearly independent.
- The columns of A are linearly independent.
- For every vector b, the system Ax = b has a unique solution.
- There exists some vector b for which the system Ax = b has a unique solution.

Linear Algebra Review: Affine Independence

Definition 2. A finite collection of vectors $x^1, \ldots, x^k \in \mathbb{R}^n$ is affinely independent if the vectors $x^2 - x^1, \ldots, x^k - x^1 \in \mathbb{R}^n$ are linearly independent.

- Linear independence implies affine independence, but not vice versa.
- The property of linear independence is with respect to a given origin.
- Affine independence is essentially a "coordinate-free" version of linear independence.

Proposition 1. The following statements are equivalent:

- 1. $x_1, \ldots, x_k \in \mathbb{R}^n$ are affinely independent.
- 2. $x_2 x_1, \ldots, x_k x_1$ are linearly independent.
- 3. $(x_1, 1), \ldots, (x_k, 1) \in \mathbb{R}^{n+1}$ are linearly independent.

Linear Algebra Review: Subspaces

Definition 3. A nonempty subset $H \subseteq \mathbb{R}^n$ is called a subspace if $\alpha x + \gamma y \in H$ $\forall x, y \in H$ and $\forall \alpha, \gamma \in \mathbb{R}$.

Definition 4. A linear combination of a collection of vectors $x^1, \ldots x^k \in \mathbb{R}^n$ is any vector $y \in \mathbb{R}^n$ such that $y = \sum_{i=1}^k \lambda_i x^i$ for some $\lambda \in \mathbb{R}^k$.

Definition 5. The span of a collection of vectors $x^1, \ldots x^k \in \mathbb{R}^n$ is the set of all linear combinations of those vectors.

Definition 6. Given a subspace $H \subseteq \mathbb{R}^n$, a collection of linearly independent vectors whose span is H is called a basis of H. The number of vectors in the basis is the dimension of the subspace.

Linear Algebra Review: Subspaces and Bases

- A given subspace has an infinite number of bases.
- Each basis has the same number of vectors in it.
- If S and T are subspaces such that $S \subseteq T \subseteq \mathbb{R}^n$, then a basis of S can be extended to a basis of T.
- The span of the columns of a matrix A is a subspace called the *column* space or the range, denoted range(A).
- ullet The span of the rows of a matrix A is a subspace called the row space.
- The dimensions of the column space and row space are always equal. We call this number rank(A).
- Clearly, $rank(A) \leq \min\{m, n\}$. If $rank(A) = \min\{m, n\}$, then A is said to have *full rank*.
- The set $\{x \in \mathbb{R}^n \mid Ax = 0\}$ is called the *nullspace* of A (denoted null(A)) and has dimension n rank(A).

Some Properties of Subspaces

Proposition 2. The following are equivalent:

- 1. $H \subseteq \mathbb{R}^n$ is a subspace.
- 2. There is an $m \times n$ matrix A such that $H = \{x \in \mathbb{R}^n \mid Ax = 0\}$.
- 3. There is a $k \times n$ matrix B such that $H = \{x \in \mathbb{R}^n \mid x = uB, u \in \mathbb{R}^k\}$.

Proposition 3. If $\{x \in \mathbb{R}^n \mid Ax = b\} \neq \emptyset$, the maximum number of affinely independent solutions of Ax = b is n + 1 - rank(A).

Proposition 4. If $H \subseteq \mathbb{R}^n$ is a subspace, the subspace $\{x \in \mathbb{R}^n \mid x^\top y = 0 \ \forall \ y \in H\}$ is a subspace called the orthogonal subspace and denoted H^{\perp} .

Proposition 5. If $H = \{x \in \mathbb{R}^n \mid Ax = 0\}$, with A being an $m \times n$ matrix, then $H^{\perp} = \{x \in \mathbb{R}^n \mid x = A^{\top}u, u \in \mathbb{R}^m\}$.

Affine Spaces

Definition 7. An affine combination of a collection of vectors $x^1, \ldots x^k \in \mathbb{R}^n$ is any vector $y \in \mathbb{R}^n$ such that $y = \sum_{i=1}^k \lambda_i x^i$ for some $\lambda \in \mathbb{R}^k$ with $\sum_{i=1}^k \lambda_i = 1$.

Definition 8. A nonempty subset $A \subseteq \mathbb{R}^n$ is called an affine space if A is closed with respect to affine combination.

Definition 9. A basis of an affine space $A \subseteq \mathbb{R}^n$ is maximal set of affinely independent points of A.

Definition 10. The inclusionwise minimal affine space containing a set S is called the affine hull of S, denoted aff(S).

Definition 11. All bases of an affine space A have the same cardinality and this is the dimension of the affine space.

Projections

Definition 12. If $p \in \mathbb{R}^n$ and H is a subspace, the projection of p onto H is the vector $q \in H$ such that $p - q \in H^{\perp}$.

- Note that this is a decomposition of a vector p into the sum of a vector in H and a vector in H^{\perp} .
- The projection of a set is the union of the projections of all its members.
- Projections play a very important role in discrete optimization, as we will see later in the course.

Polyhedra, Hyperplanes, and Half-spaces

Definition 13. A polyhedron is a set of the form $\{x \in \mathbb{R}^n \mid Ax \leq b\}$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Definition 14. A polyhedron $\mathcal{P} \subset \mathbb{R}^n$ is bounded if there exists a constant K such that $|x_i| < K \ \forall x \in S, \forall i \in [1, n]$.

Definition 15. A bounded polyhedron is called a polytope.

Definition 16. Let $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ be given.

- The set $\{x \in \mathbb{R}^n \mid a^\top x = b\}$ is called a hyperplane.
- The set $\{x \in \mathbb{R}^n \mid a^\top x \leq b\}$ is called a half-space.

Convex Sets

Definition 17. A set $S \subseteq \mathbb{R}^n$ is convex if $\forall x, y \in S, \lambda \in [0, 1]$, we have $\lambda x + (1 - \lambda)y \in S$.

Definition 18. Let $x^1, \ldots, x^k \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}^k_+$ be given such that $\lambda^\top \mathbf{1} = 1$. Then

- 1. The vector $\sum_{i=1}^k \lambda_i x^i$ is said to be a convex combination of x^1, \ldots, x^k .
- 2. The convex hull of x^1, \ldots, x^k is the set of all convex combinations of these vectors.
- The convex hull of two points is a line segment.
- A set is convex if and only if for any two points in the set, the line segment joining those two points lies entirely in the set.
- All polyhedra are convex.