1.2: Entorno analógico de los sistemas discretos (primera aproximación)

- ◆ Conversión A/D
- Muestreo de componentes frecuenciales
- ◆ Conversión D/A

Conversión A/D

T_M = Periodo de muestreo

$$x[n] = x_a(nT_M)$$

Dispositivo práctico

 $\begin{array}{ll} \text{Muestreo temporal} \implies & \text{Periodo T}_{\text{M}} \\ \text{Cuantificación} \implies & \text{Número de bits N} \end{array}$

Cuantificación

Si N >> 1
$$\Rightarrow$$
 $x_q[n] \cong x[n]$

Elección del periodo de muestreo

T_M óptimo: mayor posible sin pérdida de información

Ejemplos clásicos

	F _M	N	Bits/s
Telefonía	8 kHz	8 (256 niveles)	64k
Audio	44,1kHz	16 (65536 niveles)	700k
Vídeo	13,1MHz	24 (RGB)	300M

Muestreo de componentes frecuenciales

Motivación:

- Análisis de Fourierseñal = Σ sinusoides
- 1 Muestreo de una sinusoide
- 2 Muestreo de una señal arbitraria

Componente frecuencial analógica

$$x_a(t) = e^{j\Omega t}$$

- \triangleright Pulsación: Ω (rad/s)
- Frecuencia: $F = \Omega / 2\pi$ (Hz)
- Periodo: $T = 1 / F = 2\pi / \Omega$ (s)

Componente frecuencial discreta :

$$x[n] = x_a(nT_M) \implies x[n] = e^{j\Omega nT_M} = e^{j\omega n}$$

Limitación de la representación discreta

 $\{ \omega + 2k\pi \}, \forall k$

- 1) Pulsaciones diferentes
- 2) Misma forma de onda

Consecuencias:

- \triangleright la componente $e^{j\omega n}$ representa todas las pulsaciones $\omega_k = \omega + 2\pi k$
- ightharpoonup La representación frecuencial es periódica de periodo 2π

Muestreo de una sinusoide (I)

- 3 pasos
- 1) Duplicación de las componentes
- 2) Normalización ω = $2\pi\Omega$ / $\Omega_{\rm M}$ (f = F / F_M)
- 3) Periodización

Muestreo de una sinusoide (II)

- ◆ En el intervalo fundamental:
 - Mismas componentes frecuenciales:

 $\pm \pi/2$

 $\triangleright \Omega_1 \ y \ \Omega_2$

Misma representación en discreto Indistinguibles después del muestreo

$$\Omega_2 = 3 \Omega_{\rm M} / 4$$

Muestreo de una señal compuesta

3 pasos

- 1) Duplicación de las componentes
- 2) Normalización $\omega = 2\pi\Omega / \Omega_{\rm M}$ (f = F / F_M)
- 3) Periodización

• Anchura de banda $< \Omega_{\rm M} / 2$

Periodización sin alteración

• Anchura de banda > $\Omega_{\rm M}$ / 2

Periodización con alteración

Para evitar el aliasing

Criterio de Nyquist: $B < \Omega_M / 2$

 Actuar sobre la frecuencia de muestreo:

Tomar Ω_{M} TQ 2B < Ω_{M}

◆ Actuar sobre la señal:

Limitar el ancho de banda de la señal

Conversión D / A

◆ A intervalos fijos (de tiempo T_M) se genera una tensión proporcional a los valores de x[n]

◆ Se suavizan las transiciones

Resumen

El entorno analógico de los sistemas discretos

Filtro anti-aliasing:

$$F_c < F_M / 2$$

$$x_a(t)$$

$$(-F_{\rm M}/2, F_{\rm M}/2)$$

$$(-1/2, 1/2) \pm k$$

$$y_a(t)$$

$$(-F_{\rm M}/2, F_{\rm M}/2) \pm k F_{\rm M}$$

Filtro reconstructor:

$$F_c < F_M / 2$$