

МОДУЛЬ ОТЛАДОЧНЫЙ САЛЮТ-ЭЛ24Д1 REV. 1.3 РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

ОГЛАВЛЕНИЕ

1.	ВВЕДЕНИЕ	3
	РАСПОЛОЖЕНИЕ ЭЛЕМЕНТОВ НА МОДУЛЕ	
3.	НАЗНАЧЕНИЕ РАЗЪЕМОВ НА МОДУЛЕ	7
4.	СВЕТОДИОДНАЯ ИНДИКАЦИЯ	9
5.	ПИТАНИЕ ОТЛАДОЧНОГО МОДУЛЯ	9
6.	ПАМЯТЬ НА ОТЛАДОЧНОМ МОДУЛЕ	10
7.	ТАКТИРОВАНИЕ	11
8.	ЗАПУСК LINUX НА ОТЛАДОЧНОМ МОДУЛЕ	11
9.	РАБОТА С ОТЛАДОЧНЫМ МОДУЛЕМ БЕЗ ОС	11
10.	ДОПОЛНИТЕЛЬНАЯ ДОКУМЕНТАЦИЯ	12
11	СХЕМОТЕХНИЧЕСКИЕ НЕЛОРАБОТКИ В МОЛУЛЕ РЕВИЗИИ 1 3	12

1.ВВЕДЕНИЕ

Модуль отладочный Салют-ЭЛ24Д1 реализован на основе микросхемы интегральной 1892ВМ14Я и предназначен для ознакомления с возможностями процессора, отладки программ и макетирования пользовательских систем.

Данный документ описывает ревизию 1.3 отладочного модуля Салют-ЭЛ24Д1.

2.РАСПОЛОЖЕНИЕ ЭЛЕМЕНТОВ НА МОДУЛЕ

Расположение элементов на модуле показано на рисунках 2.1, 2.2. Внешний вид модуля и его интерфейсы приведены на рисунке 2.3. Структурная схема отладочного модуля приведена на рисунке 2.4.

Рисунок 2.1. Расположение элементов на отладочном модуле. Лицевая сторона

Рисунок 2.2. Расположение элементов на отладочном модуле. Оборотная сторона

Рисунок 2.3. Внешний вид модуля и его интерфейсы

Рисунок 2.4. Структурная схема отладочного модуля

3. НАЗНАЧЕНИЕ РАЗЪЕМОВ НА МОДУЛЕ

Назначение разъемов указано в таблице 3.1.

Таблица 3.1. Назначение разъемов на отладочном модуле Салют-ЭЛ24Д1

Разъем	Назначение		
XP1	Интерфейс шины CAN		
XP2	RS232 (порт UART3 микросхемы1892ВМ14Я). Назначение выводов		
	стандартное		
XP3	Raspberry Pi-совместимый разъем		
XP4	Порты MFBSP0, MFBSP1		
XP5	Разъем PLD-20 для подключения JTAG-эмулятора. Назначение		
Al 3	выводов – стандартное		
XS1	Интерфейс MIPI CSI для подключения камеры		
XS2	Интерфейс MIPI DSI для подключения дисплея		
XS3	Ethernet 10/100. Назначение выводов стандартное.		
XS4	Разъем для подключения карты microSD. Назначение выводов		
	стандартное.		
XS5	HDMI. Назначение выводов стандартное.		
XS6	RS485 (порт UART2 микросхемы 1892BM14Я)		
XS7, XS8	USB Host. Назначение выводов стандартное.		
XS9	Аналоговый аудиовыход		
XS10	Аналоговый аудиовход		
XS11	Отладочный порт трассы		
XS12	Разъем питания +12B		
XS13	Разъем microUSB. Выведен как альтернативный разъем питания -		
	сигнальные линии USB на плате никуда не подключены		

В данной ревизии отладочного модуля не предусмотрен разъем для WiFi/Bluetoothантенны. При необходимости она может быть подпаяна к контактным площадкам на модуле, обозначенным надписью «Ant» рядом с разъемом Ethernet.

Таблица 3.2. Назначение выводов разъема XP1 (CAN)

Номер вывода	Назначение
1	nc
2	CAN_L
3	GND
4, 5	nc
6	GND
7	CAN_H
8, 9	nc

Таблица 3.3. Назначение выводов разъема XP3 (Raspberry Pi-совместимый). На разъем выведены порты I2C2, SPI1, UART0, GPIOA микросхемы 1892ВМ14Я

Номер вывода	Назначение	Номер вывода	Назначение
1	3.3 B	14	GND
2	5 B	15	GPIOA3
3	I2C2_SDA	16	GPIOA5
4	5 B	17	3.3 B
5	I2C2_SCL	18	GPIOA6
6	GND	19	SPI1_MOSI
7	GPIOA0	20	GND
8	UART0_TX	21	SPI1_MISO
9	GND	22	GPIOA7
10	UART0_RX	23	SPI1_SCK
11	GPIOA1	24	SPI1_NSS0
12	GPIOA4	25	GND
13	GPIOA2	26	SPI1 NSS1

Таблица 3.4. Назначение выводов разъема XP4 (MFBSP0, MFBSP1)

Номер вывода	Назначение	Номер вывода	Назначение
1	5 B	13	MFBSP0_DA5
2	5 B	14	MFBSP1_DA5
3	MFBSP0_DA0	15	MFBSP0_DA6
4	MFBSP1_DA0	16	MFBSP1_DA6
5	MFBSP0_DA1	17	MFBSP0_DA7
6	MFBSP1_DA1	18	MFBSP1_DA7
7	-	19	MFBSP0_CLK
8	MFBSP1_DA2	20	MFBSP1_CLK
9	MFBSP0_DA3	21	MFBSP0_ACK
10	MFBSP1_DA3	22	MFBSP1_ACK
11	MFBSP0_DA4	23	GND
12	MFBSP1_DA4	24	GND

Таблица 3.5. Назначение выводов разъема XS1 (CSI)

Номер вывода	Назначение	Номер вывода	Назначение
1	GND	9	CSI_CLK_P
2	CSI_D0_N	10	GND
3	CSI_D0_P	11	CSI_RST
4	GND	12	CSI_CAM_CLK
5	CSI_D1_N	13	I2C1_HDMI_ALC_CSI_SCL
6	CSI_D1_P	14	I2C1_HDMI_ALC_CSI_SDA
7	GND	15	3.3 B
8	CSI_CLK_N	16	GND

Таблица 3.6. Назначение выводов разъема XS2 (DSI)

Номер вывода	Назначение	Номер вывода	Назначение
1	GND	9	DSI_D0_P
2	DSI_D1_N	10	GND
3	DSI_D1_P	11	nc
4	GND	12	nc
5	DSI_CLK_N	13	GND
6	DSI_CLK_P	14	3.3 B
7	GND	15	3.3 B
8	DSI_D0_N	16	GND

4. СВЕТОДИОДНАЯ ИНДИКАЦИЯ

Назначение светодиодов на модуле показано в таблице 4.1.

Таблица 4.1. Назначение светодиодов на отладочном модуле

Светодиод	Назначение		
VD3-VD10	Подключены к выводам порта GPIOC микросхемы 1892ВМ14Я.		
	Загораются, если на вывод подается активный ноль.		
VD13	Индикатор наличия напряжения 5 В на плате (из которого		
	формируются остальные напряжения)		

5.ПИТАНИЕ ОТЛАДОЧНОГО МОДУЛЯ

В комплекте с модулем поставляется источник питания, предназначенный для подключения к разъему XS12. Источник питания должен обеспечивать постоянное напряжение 12-24В и ток не менее 1 А.

В случае питания от источника 12-24B, DA10 (LM5005MH) формирует напряжение 5 B, из которого формируются напряжения питания всех устройств на модуле и напряжения питания всех доменов микросхемы 1892BM14Я.

Также модуль может быть запитан через кабель microUSB (разъем XS13) – в этом случае источник питания DA10 не участвует в формировании напряжения 5 В, и внешний источник должен обеспечивать рабочий ток не менее 1.5 А.

Из напряжения питания 5 В на модуле формируются следующие напряжения:

Запитываемая часть	Номинал напряжения	Примечание
модуля		
Ядро микросхемы	1.1 B	Формируется микросхемой DA18
1892ВМ14Я		(FAN53555UC04XCT-ND)
Периферийные драйверы	3.3 B	Формируется микросхемой DA16 (XC6222B331PR-
микросхемы 1892ВМ14Я		(G)
(PST_CPU)		
Модуль WiFi/Bluetooth,	3.3 B	Формируется микросхемой DA17 (XC6222B331PR-
NAND Flash		(G)
SPI EEPROM, HDMI	3.3 B	Формируется микросхемой DA15
(3.3 В), RF-часть		(BU33SA4WGWL-E2)
навигационного модуля		
USB-xaб	3.3 B	Формируется микросхемой DA21
		(BU33SA4WGWL-E2)
Приемопередатчики RS232,	3.3 B	Общее напряжение формируется микросхемой
RS485, CAN		DA22 (BU33SA4WGWL-E2), далее через
		отдельные LC-фильтры подается на
		приемопередатчики RS232, RS485, CAN.
ZigBee, GPIO (разъем XP3)	3.3 B	Формируется микросхемой DA20
		(BU33SA4WGWL-E2), на ZigBee и разъем XP3
		подается через отдельные LC-фильтры
RF-часть навигационного	1.8 B, 3.3 B	1.8 В формируется микросхемой DA23
модуля, аудиокодек, разъем		(XC6222B181PR-G) и подается только к RF-части
CSI		навигационного модуля.
		3.3 В формируется микросхемой DA19
		(BU33SA4WGWL-E2), и через отдельные LC-
		фильтры подается на RF-часть навигационного
		модуля, аудиокодек и разъем CSI
Ethernet PHY	3.3 B	Формируется микросхемой DA24
		(BU33SA4WGWL-E2)

Запитываемая часть	Номинал напряжения	Примечание
модуля		
HDMI (1.2 B)	1.2 B	Формируется микросхемой DA28
		(NCP584HSN12T1G)
SD-карта	1.8 B, 3.3 B	Напряжение 1.8 В формируется микросхемой
		DA26 (XC6222B181PR-G), напряжение 3.3 В –
		микросхемой DA25 (XC6222B331PR-G). Выбор
		используемого напряжения осуществляется с
		помощью мультиплексора питания DA27
		(TPS2115ADRB), управляемого выводом
		SDMMC0_18EN микросхемы 1892BM14Я
DDR3_0	1.5 B	Напряжение питания контроллера DDRMC0 в
		микросхеме 1892ВМ14Я формируется
		микросхемой DA7 (LM3691TL-1.5/NOPB).
		Напряжение питания микросхем DDR3,
		подключенных к DDRMC0, формируется
		микросхемой DA8 (LM3691TL-1.5/NOPB).
		Референсное напряжение VREF формируется
		микросхемой DA9 (TPS51206DSQR)
DDR3_1	1.5 B	Полностью аналогично DDR3_0. Напряжения
_		формируются микросхемами DA12, DA13, DA14
		соответственно
RTC	1.2 B	Формируется микросхемой DA11
		(NCP584HSN12T1G) либо из напряжения
		PST_CPU, либо из напряжения, получаемого с
		батарейки, установленной на модуле

6.ПАМЯТЬ НА ОТЛАДОЧНОМ МОДУЛЕ

На отладочном модуле установлено 2 Гбайт DDR3 SDRAM - 1 Гбайт подключен к контроллеру DDRMC0 и 1 Гбайт – к контроллеру DDRMC1.

К порту NANDMPORT подключено 4 Гбайт NAND Flash.

К порту SPI0 подключена SPI-флэш объемом 4 Мбайт. При поставке в SPI-флэш прошита программа, осуществляющая загрузку с SD-карты.

Режим загрузки процессора выбирается с помощью блока переключателей SA1, подписанного на плате «ВООТ». Режимы загрузки указаны в таблице 6.1.

Таблица 6.1. Режимы загрузки процессора 1892ВМ14Я на отладочном модуле Салют-ЭЛ24Д1

BOOT[2]	BOOT[1]	BOOT[0]	Режим загрузки	
0	0	0	NOR Flash/EEPROM, подключенная к порту NORMPORT (на данном	
			модуле отсутствует)	
0	0	1	NAND Flash, подключенная к порту NANDMPORT (по умолчанию на	
			данном модуле программа туда не записана)	
0	1	0	Порт UART0	
0	1	1	SPI Flash, подключенная к порту SPI0 (по умолчанию на модуле в нее	
			прошит загрузчик с SD-карты)	
1	0	0	SD-карта, подключенная к порту SDMMC0 (поддерживаются не все	
			типы SD-карт)	
1	0	1		
1	1	0	зарезервировано	
1	1	1		

7. ТАКТИРОВАНИЕ

Источники тактовой частоты на отладочном модуле указаны в таблице 7.1.

Таблица 7.1. Тактовые частоты на отладочном модуле

Тактируемый узел	Тактовая частота	Источник тактовой частоты
Процессор 1892ВМ14Я (вход XTI_24M)	24 МГц	Генератор G1
Блок RTC процессора 1892BM14Я	32768 Гц	Резонатор BQ1
(выводы XTI_32K, XTO_32K)		
Ethernet PHY (DD11)	25 МГц	Генератор G2
Модуль WiFi/Bluetooth (DD14)	26 МГц, 32 КГц	Генераторы G3, G4
Аудиокодек (DA6)	24.576 МГц	Генератор G5
Приемопередатчик CAN (DD16)	16 МГц	Резонатор BQ2
Приемопередатчик ZigBee (DD22)	16 МГц	Резонатор BQ3
USB-xa6 (DD23)	24 МГц	Резонатор BQ4

8.3АПУСК LINUX НА ОТЛАДОЧНОМ МОДУЛЕ

Для процессора 1892ВМ14Я и данного отладочного модуля портирована и поддерживается операционная система Linux (ядро 4.1). Собранный образ ядра записан на карте microSD, подставляемой в комплекте с модулем. Для загрузки с SD-карты необходимо выставить переключатели ВООТ в положение «011».

Исходные коды ядра предоставляются в виде архива, доступного по ссылке ниже (поддиректория «linux»). Там же доступен собранный образ для записи на карту microSD.

ftp://ftp-1892VM-ro:8GBPC99ttX@ftp.elvees.com/

9.РАБОТА С ОТЛАДОЧНЫМ МОДУЛЕМ БЕЗ ОС

Для сборки программ, не использующих операционную систему, в составе сред разработки MCStudio 3A и MCStudio 4 предоставляются инструменты для CPU-ядер (Cortex-A9) и DSP-ядер (ELcore-30M). Также данные инструменты могут быть предоставлены отдельно, собранные под Linux или Windows, по запросу в службу технической поддержки.

Для отладки приложений без операционной системы на отладочном модуле выведен разъем интерфейса JTAG (XP5). Для запуска и отладки программ необходима среда разработки MCStudio 3A/MCStudio 4, поставляемая отдельно от модуля.

Эмулятор JTAG не входит в комплект поставки отладочного модуля и приобретается отдельно.

10. ДОПОЛНИТЕЛЬНАЯ ДОКУМЕНТАЦИЯ

На диске, поставляемом в комплекте с модулем, а также на сайте http://multicore.ru/доступны следующие документы:

- руководство пользователя на микросхему 1892ВМ14Я;
- описание архитектуры и системы команд DSP-кластера DELcore-30M;
- инструкция по сборке и запуску ОС Linux;
- инструкция по запуске тестов функционального контроля;
- принципиальная электрическая схема отладочного модуля Салют-ЭЛ24Д1 rev1.3 (PDF);
- топология отладочного модуля Салют-ЭЛ24Д1 rev1.3 (PDF);
- схемный элемент микросхемы 1892ВМ14Я и посадочное место на плату (Altium Designer);
- IBIS-модель микросхемы 1892ВМ14Я.

11. CXEMOTEXHИЧЕСКИЕ НЕДОРАБОТКИ В МОДУЛЕ РЕВИЗИИ 1.3

- вывод BT_HOST_WAKE модуля WiFi/Bluetooth AP6210 заведен на вывод GPIOB11 микросхемы 1892ВМ14Я. Однако сформировать прерывание по сигналу на этом выводе процессор 1892ВМ14Я не может. Поэтому желательно вывод BT_HOST_WAKE заводить на выводы порта GPIOA микросхемы 1892ВМ14Я (по сигналу на них прерывание может быть сформировано);
- вывод WL_HOST_WAKE модуля WiFi/Bluetooth AP6210 заведен на вывод GPIOB9 микросхемы 1892ВМ14Я. Однако сформировать прерывание по сигналу на этом выводе процессор 1892ВМ14Я не может. Поэтому желательно вывод WL_HOST_WAKE заводить на выводы порта GPIOA микросхемы 1892ВМ14Я (по сигналу на них прерывание может быть сформировано);
- вывод CAN_INT микросхемы DD16 подключен к выводу GPIOB6 микросхемы 1892ВМ14Я. Однако сформировать прерывание по сигналу на этом выводу процессор 1892ВМ14Я не может. Поэтому желательно вывод CAN_INT заводить на выводы порта GPIOA микросхемы 1892ВМ14Я (по сигналу на них прерывание может быть сформировано). На поставляемом модуле с помощью навесного монтажа сигнал CAN_INT подключен к выводу GPIOA26;
- вывод MFBSP0_LDAT2 микросхемы 1892ВМ14Я подключен к выводу SADC микросхемы аудиокодека ALC5623. Вывод SADC является выходом, принимающим только состояния активной единицы и активного нуля. **Нельзя переводить вывод MFBSP0_LDAT2 в режим выхода**;

- вывод SDMMC1_DETN (Card Detect) контроллера SDMMC1 на микросхеме 1892ВМ14Я находится в обрыве. В результате, контроллер считает, что к нему ничего не подключено и не работает с подключенным модулем WiFi AP6210. Этот вывод должен быть подключен к нулю. Может быть скорректировано программно;
- некорректно выбран режим работы USB-хаба он определяется как Low-speedустройство. Необходимо выводы CFG_SEL0, CFG_SEL1, NON_REM0, NON_REM1 микросхемы USB-хаба притянуть к земле. Скорректировано на модуле с помощью навесного монтажа.