Contents

Preface xiii

I Foundations

ations			
	Introd	luction 3	
1	The R	ole of Algorithms in Computing 5	
	1.1	Algorithms 5	
	1.2	Algorithms as a technology 12	
2	Getting Started 17		
	2.1	Insertion sort 17	
	2.2	Analyzing algorithms 25	
	2.3	Designing algorithms 34	
3	Chara	acterizing Running Times 49	
	3.1	O-notation, Ω -notation, and Θ -notation 50	
	3.2	Asymptotic notation: formal definitions 53	
	3.3	Standard notations and common functions 63	
4	Divide-and-Conquer 76		
	4.1	Multiplying square matrices 80	
	4.2	Strassen's algorithm for matrix multiplication 85	
	4.3	The substitution method for solving recurrences 90	
	4.4	The recursion-tree method for solving recurrences 95	
	4.5	The master method for solving recurrences 101	
*	4.6	Proof of the continuous master theorem 107	

4.7 Akra-Bazzi recurrences 115

5 Probabilistic Analysis and Randomized Algorithms 126

- 5.1 The hiring problem 126
- 5.2 Indicator random variables 130
- 5.3 Randomized algorithms 134
- ★ 5.4 Probabilistic analysis and further uses of indicator random variables 140

II Sorting and Order Statistics

Introduction 157

6 Heapsort 161

- 6.1 Heaps 161
- 6.2 Maintaining the heap property 164
- 6.3 Building a heap 167
- 6.4 The heapsort algorithm 170
- 6.5 Priority queues 172

7 Quicksort 182

- 7.1 Description of quicksort 183
- 7.2 Performance of quicksort 187
- 7.3 A randomized version of quicksort 191
- 7.4 Analysis of quicksort 193

8 Sorting in Linear Time 205

- 8.1 Lower bounds for sorting 205
- 8.2 Counting sort 208
- 8.3 Radix sort 211
- 8.4 Bucket sort 215

9 Medians and Order Statistics 227

- 9.1 Minimum and maximum 228
- 9.2 Selection in expected linear time 230
- 9.3 Selection in worst-case linear time 236

III Data Structures

Introduction 249

10 Elementary Data Structures 252

- 10.1 Simple array-based data structures: arrays, matrices, stacks, queues 252
- 10.2 Linked lists 258
- 10.3 Representing rooted trees 265

Contents vii

11 Hash Tables 272

- 11.1 Direct-address tables 273
- 11.2 Hash tables 275
- 11.3 Hash functions 282
- 11.4 Open addressing 293
- 11.5 Practical considerations 301

12 Binary Search Trees 312

- 12.1 What is a binary search tree? 312
- 12.2 Querying a binary search tree 316
- 12.3 Insertion and deletion 321

13 Red-Black Trees 331

- 13.1 Properties of red-black trees 331
- 13.2 Rotations *335*
- 13.3 Insertion *338*
- 13.4 Deletion 346

IV Advanced Design and Analysis Techniques

Introduction 361

14 Dynamic Programming 362

- 14.1 Rod cutting *363*
- 14.2 Matrix-chain multiplication 373
- 14.3 Elements of dynamic programming 382
- 14.4 Longest common subsequence 393
- 14.5 Optimal binary search trees 400

15 Greedy Algorithms 417

- 15.1 An activity-selection problem 418
- 15.2 Elements of the greedy strategy 426
- 15.3 Huffman codes 431
- 15.4 Offline caching 440

16 Amortized Analysis 448

- 16.1 Aggregate analysis 449
- 16.2 The accounting method 453
- 16.3 The potential method 456
- 16.4 Dynamic tables 460

V Advanced Data Structures

T 4 1	ı 4°	477
Introd	luction	477
HILLIVU	ucuvii	7//

17 Augmenting Data Structures 480

- 17.1 Dynamic order statistics 480
- 17.2 How to augment a data structure 486
- 17.3 Interval trees 489

18 B-Trees 497

- 18.1 Definition of B-trees 501
- 18.2 Basic operations on B-trees 504
- 18.3 Deleting a key from a B-tree 513

19 Data Structures for Disjoint Sets 520

- 19.1 Disjoint-set operations 520
- 19.2 Linked-list representation of disjoint sets 523
- 19.3 Disjoint-set forests 527
- ★ 19.4 Analysis of union by rank with path compression 531

VI Graph Algorithms

Introduction 547

20 Elementary Graph Algorithms 549

- 20.1 Representations of graphs 549
- 20.2 Breadth-first search 554
- 20.3 Depth-first search 563
- 20.4 Topological sort 573
- 20.5 Strongly connected components 576

21 Minimum Spanning Trees 585

- 21.1 Growing a minimum spanning tree 586
- 21.2 The algorithms of Kruskal and Prim 591

22 Single-Source Shortest Paths 604

- 22.1 The Bellman-Ford algorithm 612
- 22.2 Single-source shortest paths in directed acyclic graphs 616
- 22.3 Dijkstra's algorithm 620
- 22.4 Difference constraints and shortest paths 626
- 22.5 Proofs of shortest-paths properties 633

Contents ix

23 All-Pairs Shortest Paths 646

- 23.1 Shortest paths and matrix multiplication 648
- 23.2 The Floyd-Warshall algorithm 655
- 23.3 Johnson's algorithm for sparse graphs 662

24 Maximum Flow 670

- 24.1 Flow networks 671
- 24.2 The Ford-Fulkerson method 676
- 24.3 Maximum bipartite matching 693

25 Matchings in Bipartite Graphs 704

- 25.1 Maximum bipartite matching (revisited) 705
- 25.2 The stable-marriage problem 716
- 25.3 The Hungarian algorithm for the assignment problem 723

VII Selected Topics

Introduction 745

26 Parallel Algorithms 748

- 26.1 The basics of fork-join parallelism 750
- 26.2 Parallel matrix multiplication 770
- 26.3 Parallel merge sort 775

27 Online Algorithms 791

- 27.1 Waiting for an elevator 792
- 27.2 Maintaining a search list 795
- 27.3 Online caching 802

28 Matrix Operations 819

- 28.1 Solving systems of linear equations 819
- 28.2 Inverting matrices 833
- 28.3 Symmetric positive-definite matrices and least-squares approximation 838

29 Linear Programming 850

- 29.1 Linear programming formulations and algorithms 853
- 29.2 Formulating problems as linear programs 860
- 29.3 Duality 866

30 Polynomials and the FFT 877

- 30.1 Representing polynomials 879
- 30.2 The DFT and FFT 885
- 30.3 FFT circuits 894

Coni	ents			
31	Num	ber-Theoretic Algorithms 903		
	31.1	Elementary number-theoretic notions 904		
	31.2	Greatest common divisor 911		
	31.3	Modular arithmetic 916		
	31.4	Solving modular linear equations 924		
	31.5	The Chinese remainder theorem 928		
	31.6	Powers of an element 932		
	31.7	The RSA public-key cryptosystem 936		
*	31.8	Primality testing 942		
32	Strin	ring Matching 957		
	32.1	The naive string-matching algorithm 960		
	32.2	The Rabin-Karp algorithm 962		
	32.3	String matching with finite automata 967		
*	32.4	The Knuth-Morris-Pratt algorithm 975		
	32.5	Suffix arrays 985		
33	Machine-Learning Algorithms 1003			
	33.1	Clustering 1005		
	33.2	Multiplicative-weights algorithms 1015		
	33.3	Gradient descent 1022		
34	NP-C	Completeness 1042		

- 34.1 Polynomial time 1048
- 34.2 Polynomial-time verification 1056
- 34.3 NP-completeness and reducibility 1061
- 34.4 NP-completeness proofs 1072
- 34.5 NP-complete problems 1080

Approximation Algorithms 1104

- 35.1 The vertex-cover problem 1106
- 35.2 The traveling-salesperson problem 1109
- 35.3 The set-covering problem 1115
- 35.4 Randomization and linear programming 1119
- 35.5 The subset-sum problem 1124

VIII Appendix: Mathematical Background

Introduction 1139

\mathbf{A} Summations 1140

- Summation formulas and properties 1140
- Bounding summations 1145

Contents xi

B Sets, Etc. 1153

- B.1 Sets 1153
- B.2 Relations 1158
- B.3 Functions 1161
- B.4 Graphs 1164
- B.5 Trees 1169

C Counting and Probability 1178

- C.1 Counting 1178
- C.2 Probability 1184
- C.3 Discrete random variables 1191
- C.4 The geometric and binomial distributions 1196
- ★ C.5 The tails of the binomial distribution 1203

D Matrices 1214

- D.1 Matrices and matrix operations 1214
- D.2 Basic matrix properties 1219

Bibliography 1227

Index 1251