PROBLEM NO: 11 DATE: 15/03/2023

ROLL NO: 1153

STATEMENT OF THE PROBLEM:

Write a c program to find a positive root of a following equation correct upto 5 decimal places by BISECTION METHOD.

$$3(2-px)^2 + x*cos(2+px)=2$$

Where p=1.5+ $\frac{R}{20}$ [Here R is the last digit of your roll no.]

*** WORKING FORMULA:**

We select a sufficiently small interval $[a_0,b_0]$ such that $f(a_0)^*f(b_0)<0$ and f'(x) has the same sign in (a_0,b_0) and $(o,a_0]$ does not contain any root. We then proceed to generate a sequence $\{x_n\}$ where x_n gives the n^{th} approximation of the actual root of f(x) = 0 in $[a_0,b_0]$. Take $x_1 = \frac{a_0+b_0}{2}$ if $f(x_1)=0$ then x_1 is the actual root of f(x)=0, otherwise we obtain, $a_1=a_0, b_0=x_1$ if $f(a_0)^*f(x_1)<0$ or $a_1=x_1, b_1=b_0$ if $f(x_1)^*f(b_0)<0$

Therefore the root lies in the interval (a_1,b_1) . In this way we obtain , $x_k=1,2,3,...,n,...$ and

Set
$$a_{+1}=a_k$$
, $b_{k+1}=x_{k+1}$ if $f(a_k)*f(x_{k+1})<0$

Or
$$a_{+1}=x_{k+1}$$
, $b_{k+1}=b_k$ if $f(b_k)^*f(x_{k+1})<0$

This process continue until the latest interval $[a_n,b_n]$ containing the root is as small as we desired.

PROBLEM NO: 12 DATE: 17/03/2023

ROLL NO: 1153

STATEMENT OF THE PROBLEM:

Write a c program to find a smallest positive root of a following equation correct upto 5 decimal places by Regula Falsi Method.

$$2x^{p+x} + \cos(px) - p = 0$$

Where $p=1+\frac{R+25}{50}$ [Here R is the last digit of your roll no.]

*** WORKING FORMULA:**

We select by tabulation method a sufficiently small interval $[a_o, b_o]$ We select by tabulation method a sufficiently small interval $[a_o, b_o]$ such that $f(a_o) * f(b_o) < o$ and f'(x) has the same sign in (a_o, b_o) and confirm that $(o, a_o]$ does not contain any root. We then proceed to generate a sequence $\{x_n\}$ where x_n gives the n^{th} approximation of the actual root of f(x) = o in $[a_o, b_o]$. Then having obtained x_n we get,

$$x_{n+1} = x_n - \frac{f(x_n)}{f(x_n) - f(x_{n-1})} (b_n - a_n) \text{ and } a_{n+1} = a_n, b_{n+1} = x_{n+1} \text{ if } f(a_n)^* f(x_{n+1}) < 0$$

 $a_{n+1} = x_{n+1}, b_{n+1} = b_n \text{ if } f(x_{n+1})^* f(b_n) < 0$

so that $[a_{n+1},b_{n+1}]$ contains the smallest positive root. Taking initially $x_0 = a_0$ or b_0 continues this process for n=0,1,2,...until $|x_{n+1}-x_n|$ as small as we desired.

PROBLEM NO: 13 DATE: 20/03/2023

ROLL NO: 1153

*** STATEMENT OF THE PROBLEM:**

Write a c program to find a positive root of a following equation correct upto 5 decimal places by BISECTION METHOD.

$$3(2-px)^2 + x*cos(2+px)=2$$

Where p=1.5+ $\frac{R}{20}$ [Here R is the last digit of your roll no.]

*** WORKING RULE:**

Let x_0 and x_2 be the first approximation of the equation f(x) = 0. We then proceed to generate a sequence $\{x_n\}$ where x_n gives the nth approximation of the actual root of f(x) = 0. Then having obtained x_n , we get

$$X_{n+1} = X_n - \frac{f(x_n)}{f(x_n) - f(x_{n-1})} (x_n - x_{n-1})$$

Continues this process for n=0,1,2,..until $|x_{n+1} - x_n|$ as small as we desired.

PROBLEM NO: 15 DATE: 04/04/2023

ROLL NO: 1153

STATEMENT OF THE PROBLEM:

Write a C-programming to solve the following system of linear equation by Gausselimination Method correct upto five decimal places.

AX=B,

Where A =
$$\begin{bmatrix} 3.91 + a & 1.13 & 0.15 & 0.85 \\ 1.13 & -3.81 + a & -0.39 & 0.97 \\ 0.15 & -0.39 & -5.01 + a & 1.03 \\ 0.85 & 0.97 & 1.03 & 4.11 + a \end{bmatrix}$$

a = 0.5+ $\frac{R}{10}$ [Here R is the last digit of your roll no.]

$$X = [x_1 \ x_2 \ x_3 \ x_4]^T$$

$$B = [1.11 -2.12 \ 3.13 \ 1.23]^T$$

***** WORKING RULE:

By this method the the solution of the following system of equation is given by

$$x_{i} = \frac{1}{a_{ii}^{(i)}} \left[b_{i}^{(i)} - \sum_{j=i+1}^{n} a_{ij}^{(i)} x_{j} \right]$$

Where, i,j=1,2,3,4,...n and j=n-1,n-2,...

*** RESULT:**

*******CROUT'S LU DECOMPOSITION METHOD********

PROBLEM NO: 16 DATE: 06/04/2023

ROLL NO: 1153

STATEMENT OF THE PROBLEM:

Write a C-programming to solve the following system of linear equation by LU Decomposition Method correct upto four decimal places.

AX=B,

Where A =
$$\begin{bmatrix} 5.11 + a & 1.32 & 0.91 & -1.81 \\ 2.31 & 6.45 + a & 1.11 & 0.45 \\ 1.69 & -0.45 & 5.27 + a & 1.06 \\ 2.08 & 1.19 & -2.18 & 7.15 + a \end{bmatrix}$$

 $a = \frac{R}{2}$ [Here R is the last digit of your roll no.]

$$X = [x_1 \ x_2 \ x_3 \ x_4]^T$$

 $B = [-1.49 \ 8.19 \ -8.54 \ 30.95]^T$

❖ WORKING RULE:

PROBLEM NO: 17 DATE: 11/04/2023

ROLL NO: 1153

STATEMENT OF THE PROBLEM:

Write a C-programming to solve the following system of linear equation by LU Decomposition Method correct upto five decimal places.

AX=B

Where A =
$$\begin{bmatrix} 4.49 + a & 1.41 & 1.28 & 1.35 \\ 1.19 & -7.31 + a & -3.14 & 2.23 \\ 1.88 & -2.74 & 7.55 + a & 1.85 \\ 1.85 & 2.23 & 1.65 & 6.41 + a \end{bmatrix}$$

a = 1+0.1*R [Here R is the last digit of your roll no.]

$$X=[x_1 x_2 x_3 x_4]^T$$

B=
$$[4.41 \ 5.14 \ -4.27 \ 3.76]^T$$

❖ WORKING RULE:

The (r+1)th approximation is given by

$$x^{(r+1)} = \frac{b_i}{a_{ij}} - \sum_{\substack{j=1\\j \neq i}}^{n} \frac{a_{ij}}{a_{ii}} x^{(r)}$$

Where,i=1,2,3,...n and r=0,1,2,...

PROBLEM NO: 18 DATE: 13/04/2023

ROLL NO: 1153

STATEMENT OF THE PROBLEM:

Write a C-programming to solve the following system of linear equation by LU Decomposition Method correct upto four decimal places.

AX=B

Where A =
$$\begin{bmatrix} 8.12 + a & 1.54 & 1.36 & 1.41 \\ 2.74 & 9.65 + a & 2.65 & 2.23 \\ 1.14 & -0.57 & 8.45 + a & 2.07 \\ -0.23 & -2.04 & -1.59 & 7.24 + a \end{bmatrix}$$

a =1.2 + $\frac{R}{4}$ [Here R is the last digit of your roll no.]

$$X=[x_1 \ x_2 \ x_3 \ x_4]^T$$

B=
$$[1.74-a \ 10.56-a \ 11.63-a \ 2.87-a]^T$$

***** WORKING RULE:

Rearrange the given equation such that the coefficient matrix A of the new system becomes diagonally dominant. In this method (r+1)th approximation is given by

$$x^{(r+1)} = \frac{b_i}{a_{ij}} - \sum_{i < i} \frac{a_{ij}}{a_{ii}} x^{(r+1)} - \sum_{j > i} \frac{a_{ij}}{a_{ii}} x^{(r)}$$

i,j=1,2,3,4 and r=0,1,2,...

PROBLEM NO: 19 DATE: 20/04/2023

ROLL NO: 1153

STATEMENT OF THE PROBLEM:

Write a C-programming to compute dominant eigen pair of the following matrix correct upto four decimal places by Power Method.

AX=B,

Where A =
$$\begin{bmatrix} 8.11 + r & 3.24 & 1.24 & -0.18 \\ 3.24 & 9.57 + r & 0.77 & -0.55 \\ 1.24 & 0.77 & 9.89 + r & 2.89 \\ -0.18 & -0.55 & 2.89 & 6.66 + r \end{bmatrix}$$

a = $\frac{R+4}{20}$ [Here R is the last digit of your roll no.]

***** WORKING RULE:

Let x_1 be the eigen vector corresponding to the largest eigenvalue of the matrix A.Let v_0 be an initial guess for x_1 , Then the sequence $\{v_k\}$ of vectors generated recusively by, $y_k = Av_k$ and $v_{k+1} = \frac{1}{a_{k+1}}$, k=0,1,2,...

where $a_{k+1} = \max |(y_k)_r|, (y_k)_r$ denote the rth component of the vector , y_k r=1(1)n.The process stops after k steps if the difference of a_{k-1} and a_k is within the tollerence level and we declare that a_k is the numerically largest eigen value with corresesponding eigenvector v_k of the matrix A.

PROBLEM NO: 20 DATE: 25/04/2023

ROLL NO: 1153

STATEMENT OF THE PROBLEM:

Write a C-programming to solve the following initial value problem by EULER's METHOD and tabulate the values of y for x=0(0.1)1 round to 4D.

$$\frac{dy}{dx} = \frac{1 + \cos(0.25x^2 + 0.40y^2)}{1 + 0.25x^3 + 0.40y^2}$$

With y(0)=1 + $\frac{R}{10}$ [Here R is the last digit of your roll no.]

***** WORKING RULE:

Let y(x) be the exact solution of the problem:

$$\frac{dy}{dx} = f(x,y)$$
, $0 \le x \le x_n$

With initial condition $y(x_0)=y_0$. Let y_i denote the approximate value of y at $x=x_i=x_0+ih$, (i=1,2,3,...,n) where h denote the positive increment and $y(x_i)=y_i$, i=1(1)n. We find y_{i+1} in terms of y_i by the formula $y_{i+1}=y_i+hf(x_i,y_i)$,

$$i = 0(1)n - 1$$

PROBLEM NO: 21 DATE: 27/04/2023

ROLL NO: 1153

STATEMENT OF THE PROBLEM:

Write a C-programming to solve the following initial value problem by MODIFIED EULER's METHOD and tabulate the values of y for x=0.1(0.1)1 round to 4D.

$$\frac{dy}{dx} = \frac{\sqrt[3]{1 + x^3 y^3}}{\sqrt{1 + x^2 y^2}}$$

With y(0)=1.1 + $\frac{R}{100}$ [Here R is the last digit of your roll n

***** WORKING RULE:

Let y(x) be the exact solution of the problem:

$$\frac{dy}{dx} = f(x,y) , x_0 \le x \le x_n$$

With initial condition $y(x_0)=y_0$. Let y_i denote the approximate value of y at $x=x_i=x_0+ih$, (i=1,2,3,...,n) where h denote the positive increment and $y(x_i)=y_i$,

i=1(1)n. We find y_{i+1} in terms of y_i by the formula:

$$y_{i+1}=y_i+hf(x_i+\frac{h}{2},y_i+\frac{h}{2}f(x_i,y_i))$$

PROBLEM NO: 22 DATE: 04/05/2023

ROLL NO: 1153

STATEMENT OF THE PROBLEM:

Write a C-programming to solve the following initial value problem by MODIFIED EULER's METHOD and tabulate the values of y for x=0.1(0.1)1 round to 4D.

$$\frac{dy}{dx} = \sqrt{\frac{P + xy^2 + (p-1)x^2y}{2 + 1.3x^2 + 3.1y^2}}$$

With y(0) = 1.1 + $\frac{R}{50}$ and P= $\frac{28 + R}{20}$ [Here R is the last digit of your roll no.]

***** WORKING RULE:

For an initial value problem

$$\frac{dy}{dx} = f(x,y)$$
 With an initial condition $y(a) = 0$

To find the solution over the interval $x \in [a,b]$. Now we divide the interval [a,b] into n equal subintervals.

The family of explicit Runge-Kutta Method of m'th stage is given by:-

$$y_{i+1} = y_i + \sum_{j=1}^{m} \lambda_j k_j$$
 for $i = 0,1,2,...,n-1$, where

$$k_1 = hf(x_i + y_i)$$

$$k_2 = hf\left(x_i + \frac{h}{2}, y_i + \frac{k_1}{2}\right)$$

$$k_3 = hf\left(x_1 + \frac{h}{2}, y_1 + \frac{k_2}{2}\right)$$

$$k_4 = hf(x_i + h, y_i + k_3)$$

PROBLEM NO: 23 DATE: 11/05/2023

ROLL NO: 1153

STATEMENT OF THE PROBLEM:

Write a C-programming to solve the following differential equation for x=0.4 by PICARD'S METHOD upto 3^{rd} approximation correct to 4D .

$$\frac{\mathrm{dy}}{\mathrm{dx}} = x^2 + y^2$$

With $y(0) = \frac{R}{10}$ [Here R is the last digit of your roll no.]

***** WORKING RULE:

Let y be the exact solution of the problem: $\frac{dy}{dx} = f(x,y), x_0 \le x \le x_r$

With initial condition $y(x_0) = y_0$. Let $y^{(i)}(x)$ denotes the i^{th} approximate value of y(x). We find $y^{(i+1)}(x)$ in terms of $y^{(i)}(x)$ by the formula

$$y^{(r)} = y_0 + \int_{x_0}^x f(x, y^{(r-1)}) dx, (x \ge 1)$$

The value of $y(x_i)$ at each iteration is computed directly by substituting the value of $x_i=x_0+ih$ for i=0(1), to a desire degree of accuracy.

PROBLEM NO: 24 DATE: 08/05/2023

ROLL NO: 1153

STATEMENT OF THE PROBLEM:

Fit a straight line of the form y = ax + b to the following data by least square method

correct to 4D:

х	1.4	2.4	3.4	4.4	5.4	6.4	7.4	8.4	9.4
У	3.9 +k ¹	7.4+ <i>k</i> ³	9.1+k ¹	12.5+k ³	15.9+k ¹	20.1+k ^J	24.6+k ¹	23.6+k ^J	29.5+k ¹

where $k^{J} = \frac{3R}{20}$ and R is the last digit of your Roll Number.

❖ WORKING FORMULA: STRAIGHT LINE FITTING

Suppose it is required to fit a straight line y = ax + b to a given set of observations $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.

The normal equations are $\sum_{i=1}^n y_i = a \sum_{i=1}^n x_i + nb$ and $\sum_{i=1}^n x_i y_i = a \sum_{i=1}^n x_i^2 + b \sum_{i=1}^n x_i$ Solving these equations for a and b and using these values in the equation y = ax + b, we obtain the desired curve of best fit.

RESULT:

The required straight line is y = x + y

PROBLEM NO: 25 DATE: 10/05/2023

ROLL NO: 1153

STATEMENT OF THE PROBLEM:

Fit a curve of the form $y = a + bx + cx^2$ to the following data by least square method, correct to 4D:

	x	2.1	3.1	4.1	5.1	6.1	7.1	8.1	9.1
3	$y = \frac{R}{10}$	6.2571	8.9821	11.6305	15.8305	19.3065	22.5 247	27.8189	31.2772

where R be the last digit of your Roll Number.

❖ WORKING FORMULA: PARABOLIC CURVE FITTING

Suppose the equation to be fit is given by $y = a + bx + cx^2$. Let the data points be $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$.

Solving these linear equations for a, b and c, and using these values in equation $y = a + bx + cx^2$, we obtain the desired curve of best fit.

RESULT:

The required curve is