1 Oblicz całkę $\int \frac{2x^2-3x-11}{x^3+2x^2-x-2} dx$. 2 Wyznacz pole obszaru zawartego pomiędzy liniami $y = 2x^2 - x - 1$ oraz $y = x^2 - x + 3$.

3 Wyznacz ekstrema lokalne funkcji $z = x^3 - 2xy +$ $y^2 - 5x$.

1 Oblicz całkę $\int \frac{2x^2-3x-11}{x^3+2x^2-x-2} dx$.

2 Wyznacz pole obszaru zawartego pomiędzy liniami $y = 2x^2 - x - 1$ oraz $y = x^2 - x + 3$.

3 Wyznacz ekstrema lokalne funkcji $z = x^3 - 2xy +$ $y^2 - 5x$.

 ${\bf I}$ 1 Oblicz całkę $\int \frac{2x^2-3x-11}{x^3+2x^2-x-2} dx$. 2 Wyznacz pole obszaru zawartego pomiędzy liniami $y = 2x^2 - x - 1$ oraz $y = x^2 - x + 3$.

3 Wyznacz ekstrema lokalne funkcji $z = x^3 - 2xy +$ $y^2 - 5x$.

1 Oblicz całkę $\int \frac{2x^2-3x-11}{x^3+2x^2-x-2} dx$. 2 Wyznacz pole obszaru zawartego pomiędzy liniami $y = 2x^2 - x - 1$ oraz $y = x^2 - x + 3$.

3 Wyznacz ekstrema lokalne funkcji $z = x^3 - 2xy +$ $y^2 - 5x$.

1 Oblicz całkę $\int \frac{2x^2 - 3x - 11}{x^3 + 2x^2 - x - 2} dx$.

2 Wyznacz pole obszaru zawartego pomiędzy liniami $y = 2x^2 - x - 1$ oraz $y = x^2 - x + 3$.

3 Wyznacz ekstrema lokalne funkcji $z = x^3 - 2xy +$ $y^2 - 5x$.

 ${\bf I}$ 1 Oblicz całkę $\int \frac{2x^2-3x-11}{x^3+2x^2-x-2} dx$. 2 Wyznacz pole obszaru zawartego pomiędzy liniami $y = 2x^2 - x - 1$ oraz $y = x^2 - x + 3$.

3 Wyznacz ekstrema lokalne funkcji $z = x^3 - 2xy +$ $y^2 - 5x$.

I Oblicz całkę $\int \frac{2x^2 - 3x - 11}{x^3 + 2x^2 - x - 2} dx$.

2 Wyznacz pole obszaru zawartego pomiędzy liniami $y = 2x^2 - x - 1$ oraz $y = x^2 - x + 3$.

3 Wyznacz ekstrema lokalne funkcji $z = x^3 - 2xy +$ $y^2 - 5x$.

 \mathbf{II}

1 Oblicz $\int \frac{5x^2-6x+13}{x^3-3x^2+x-3}dx$. 2 Wyznacz objętość bryły powstałej przez obrót linii $y = \frac{1}{x^2}$ wokół osi Ox, gdy $1 \le x \le 2$.

3 Wyznacz ekstrema lokalne funkcji z = (2x - 3y - $1)^2 + (3x - 2y - 4)^2.$

1 Oblicz $\int \frac{5x^2-6x+13}{x^3-3x^2+x-3}dx$. 2 Wyznacz objętość bryły powstałej przez obrót linii $y = \frac{1}{x^2}$ wokół osi Ox, gdy $1 \le x \le 2$.

3 Wyznacz ekstrema lokalne funkcji z = (2x - 3y - $(1)^2 + (3x - 2y - 4)^2$.

1 Oblicz $\int \frac{5x^2-6x+13}{x^3-3x^2+x-3}dx$. 2 Wyznacz objętość bryły powstałej przez obrót linii $y = \frac{1}{x^2}$ wokół osi Ox, gdy $1 \le x \le 2$.

3 Wyznacz ekstrema lokalne funkcji z = (2x - 3y - $1)^2 + (3x - 2y - 4)^2.$

1 Oblicz $\int \frac{5x^2-6x+13}{x^3-3x^2+x-3} dx$. 2 Wyznacz objętość bryły powstałej przez obrót linii $y = \frac{1}{x^2}$ wokół osi Ox, gdy $1 \le x \le 2$.

3 Wyznacz ekstrema lokalne funkcji z = (2x - 3y - $(1)^2 + (3x - 2y - 4)^2$.

1 Oblicz $\int \frac{5x^2-6x+13}{x^3-3x^2+x-3}dx$. 2 Wyznacz objętość bryły powstałej przez obrót linii $y = \frac{1}{x^2}$ wokół osi Ox, gdy $1 \le x \le 2$.

3 Wyznacz ekstrema lokalne funkcji z = (2x - 3y - $(1)^2 + (3x - 2y - 4)^2$.

1 Oblicz $\int \frac{5x^2-6x+13}{x^3-3x^2+x-3}dx$. 2 Wyznacz objętość bryły powstałej przez obrót linii $y = \frac{1}{x^2}$ wokół osi Ox, gdy $1 \le x \le 2$.

3 Wyznacz ekstrema lokalne funkcji z = (2x - 3y - $(1)^2 + (3x - 2y - 4)^2$.

1 Oblicz $\int \frac{5x^2-6x+13}{x^3-3x^2+x-3} dx$. 2 Wyznacz objętość bryły powstałej przez obrót linii $y = \frac{1}{x^2}$ wokół osi Ox, gdy $1 \leqslant x \leqslant 2$.

3 Wyznacz ekstrema lokalne funkcji z = (2x - 3y - $1)^2 + (3x - 2y - 4)^2.$