Dynamische Systeme

0 Grundlagen

Zustands-DGL: $\underline{\dot{x}} = \underline{f}(\underline{x},\underline{u},t)$ Ausgangsgleichung: $\underline{y} = \underline{h}(\underline{x},\underline{u},t)$ $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^q$, $t \in \mathbb{R}$

Steuerungsaffin: $\underline{\dot{x}} = f(\underline{x}) + \sum_{i=1}^{m} g_i(\underline{x})u_i$

$$\label{eq:Jacobi-Matrix:} \operatorname{Jacobi-Matrix:} \left[\frac{\partial f_i}{\partial x_j} \right] = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

0.1 Linearisierung um eine Referenzlösung

Referenzlösung: $\underline{x}^*(t),\underline{y}^*(t),\underline{u}^*(t),t>0$

Linearisierung:

$$\underline{\dot{x}}^* + \Delta \underline{\dot{x}} = \underline{f}\left(\underline{x}^*, \underline{u}^*\right) + \left[\frac{\partial f_i}{\partial x_j}\right]_{(x^*, u^*)} \Delta \underline{x} + \left[\frac{\partial f_i}{\partial u_j}\right]_{(x^*, u^*)} \Delta \underline{u}$$

Kleinsignalmodell

$$\Delta \underline{\dot{x}} = \left[\frac{\partial f_i}{\partial x_j} \right]_{(x^*, u^*)} \Delta \underline{x} + \left[\frac{\partial f_i}{\partial u_j} \right]_{(x^*, u^*)} \Delta \underline{u}$$

$$\Delta \underline{y} = \left[\frac{\partial h_i}{\partial x_j} \right]_{(x^*, u^*)} \Delta \underline{x} + \left[\frac{\partial h_i}{\partial u_j} \right]_{(x^*, u^*)} \Delta \underline{u}$$

 $\begin{aligned} \text{Standardform:} \, \Delta \underline{\dot{x}} &= A(t) \Delta \underline{x} + B(t) \Delta \underline{u} \\ \Delta y &= C(t) \Delta \underline{x} + D(t) \Delta \underline{u} \end{aligned}$

0.2 Linearisierung um eine Ruhelage

Ruhelage: $\underline{\dot{x}}^* = f(\underline{x}^*, \underline{u}^*, t) = \underline{0}$

Standardform: $\Delta \underline{\dot{x}} = A \Delta \underline{x} + B \Delta \underline{u}$ $\Delta y = C \Delta \underline{x} + D \Delta \underline{u}$

0.3 Lokale Existenz und Eindeutigkeit einer Lösung von

 $f(x,x_0,t)$

- Wenn f Lipschitz-stetig ist
- Lipschitz-stetigkeit schwer zu überprüfen, deshalb anderes Kriterium:
 - f ist stetig
 - 2. f ist stetig diff'bar

0.4 Gültigkeitsbereich von Eigenschaften

Hyperball: $\mathcal{B}_{\varepsilon} = \left\{ x \in \mathbb{R}^n | \|x - x^*\| \leq \varepsilon \right\}$ Eigenschaft gilt:

- ullet lokal, wenn sie für alle $x\in\mathcal{B}_{arepsilon}$ gilt
- global, wenn sie für alle $x \in \mathbb{R}^n$ gilt
- \bullet uniform, wenn sie für alle $t_0 \geq 0$ gilt

0.5 Definitheit von Funktionen

Positiv definite Funktionen (pdf)

$$V(x) > 0$$
 für $x \neq 0$ und $V(x) = 0$ für $x = 0$

Positiv semidefinite Funktionen (psdf)

$$\begin{array}{lll} V(x) \leq 0 & \mbox{ für } & x \neq 0 & \mbox{ und } \\ V(x) = 0 & \mbox{ für } & x = 0 & \end{array}$$

Negativ (semi)definite Funktionen

 $\begin{array}{ll} \mbox{negativ definit:} & -V(x) \mbox{ ist pd} \\ \mbox{negativ semidefinit:} & -V(x) \mbox{ ist psd} \\ \end{array}$

Lipschitz-Stetigkeit

$$\exists L \ge 0 : ||f(x,t) - f(y,t)|| \le L \cdot ||x - y||$$

Stabilität im Sinne von Lyapunov (iSvL)

Ruhelage $x^* = 0$ ist:

- stabil: $\|x(t_0)\| < \delta \Rightarrow \|x(t)\| < \varepsilon$
- $\bullet \ \ \text{asymptotisch stabil:} \ \|x(t_0\|<\delta\Rightarrow \lim_{t\to\infty}\|x(t)\|=0=x^*$
- uniform stabil: $\|x(t_0)\| < \delta \Rightarrow \|x(t)\| < \varepsilon, \forall t \geq t_0$ uniform asymptotisch stabil: x^* ist uniform stabil und
- uniform asymptotisch stabil: x^* ist uniform stabil und $\|x(t_0)\| < \delta \Rightarrow \lim_{t \to \infty} \|x(t)\| = 0$
- instabil: x^* ist nicht stabil

Lie-Ableitung von V(x)

$$\dot{V}(\underline{x}) = \sum_{i=1}^{n} \frac{\partial V}{\partial x_i} f_i(x) = \frac{\partial V}{\partial \underline{x}} \underline{f}(\underline{x})$$

Lie-Ableitung

$$L_f h := \nabla h \cdot f$$

Mehrfache Anwendung der Lie-Ableitung

$$\begin{split} L_f^0 h &= h \\ L_f^i h &= L_f L_f^{i-1} h \end{split}$$

Lie-Klammern

$$[f,g] = \frac{\partial g}{\partial x} f - \frac{\partial f}{\partial x} g = L_f g - L_g f$$

ad-Operator

$$\begin{aligned} &\operatorname{ad}_f^0 g = g(x) \\ &\operatorname{ad}_f^i g = \left[f,\operatorname{ad}_f^{i-1} g\right] \end{aligned}$$

Ruhelage bestimmen

$$\dot{x} = f(x,t) \stackrel{!}{=} 0$$

1 Harmonische Balance

1.1 Periodisches Verhalten

Lösungstrajektorie: $\underline{\Phi}$ Grenzzyklus: $\underline{x}_G(t)$

Menge aller Punkte auf dem Grenzzyklus: $\{\underline{x}_G\}$

Lösungstrajektorie ist periodisch

 $\Leftrightarrow \underline{\Phi}\left((t+T),t_0,\underline{x}_0\right) = \underline{\Phi}\left(t,t_0,x_0\right)$ Kleinster Abstand ρ : $\rho\left(x(t),\{x_G\}\right) = \min_{\left\{x_G\right\}}\|x(t) - x_G(t)\|$

Bahnstabilität: $\{x_G\}$ ist bahnstabil \Leftrightarrow : $\exists \varepsilon > 0, \delta(\varepsilon) > 0: \rho(x_0, \{x_G\}) < \delta(\varepsilon) \Rightarrow \rho(x(t), \{x_G\}) < \varepsilon \Rightarrow \text{Anfangsabstand } \rho_0 < \delta(\varepsilon), \text{ dann Abstand immer} < \varepsilon$

1.2 Asymptotische Bahnstabilität

- 1. $\{x_G\}$ bahnstabil
- 2. $\lim_{t \to 0} \rho(x(t), \{x_G\}) = 0$
- \Rightarrow Trajektorie x(t) geht auf Grenzzyklus $x_G(t)$ zu, $\forall x \in \mathbb{R}^n$

1.3 Asymptotisch semistabil

 \Rightarrow Trajektorie x(t) geht nur für bestimmte Menge an Punkten $\in \mathbb{R}^n$ auf $x_G(t)$ zu.

1.4 Existenz von Grenzzyklen in planaren Systemen

$$\operatorname{im} \mathbb{R}^2 \colon \dot{x}_1 = f_1(x_1, x_2)$$

$$\dot{x}_2 = f_2(x_1, x_2)$$

Benedixson-Kriterium

Hat div $\left\{\underline{f}(x_1,x_2)\right\}$ keine Vorzeichenänderung in \mathcal{M} , dann gibt es keinen Grenzzyklus in \mathcal{M} mit div $\left\{f(x_1,x_2)\right\} = \left\lceil \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} \right\rceil$

ω -Limit-Set

 $\lim_{n\to\infty} \underline{\Phi}(t_n, t_0, x_0) = \underline{z}$ Menge aller Punkte z heißt ω -Limit-Set

1.5 Methode der Harmonischen Balance

System besteht aus Kennlinie $f(e,\operatorname{sgn}(\dot{e}))$ und Teilsystem $G(j\omega)$. Voraussetzungen:

- An Blöcke:
 - f(.) ist punktsymmetrisch
 - $G(j\omega)$ ist LTI und hat hinreichenden Tiefpass-Charakter (d.h. relativer Nennegrad j 2)
- eingeschwungen
- ullet e(t) bzw y(t) sind näherungsweise harmonisch

$$(\mathsf{d.h.}\ e(t) = A\sin(\omega t) = \mathsf{Re}\left\{-jAe^{j\,\omega\,t}\right\})$$

Gleichung der Harmonischen Balance bzw Schwingbedingung

$$N(A) \cdot G(j\omega) = -1$$

mit Beschreibungsfunktion $N(A)=\frac{a_1+jb_1}{A}$ inverse Beschreibungsfunktion $N_I(A)=-\frac{1}{N(A)}$

Vorgehen zum Koeffizienten-Bestimmen

$$\begin{aligned} &1. \ \ a_1,b_1 \colon u(t) \ \text{fourier-transformieren zu} \ \bar{u}(t) \\ &\Rightarrow a_1 = \frac{2}{T_0} \int\limits_{T_0} u(t) \sin(\omega t) \ \mathrm{d}t; \\ &b_1 = \frac{2}{T_0} \int\limits_{T_0} u(t) \cos(\omega t) \ \mathrm{d}t \end{aligned}$$

2. $A: e(t) = A\sin(\omega t)$, bzw wird berechnet als A_q mit ω_q

Bestimmen von A_a , ω_a

- algebraisch:
- Aus Gleichung der Harmonischen Balance folgt: $N(A)G(j\omega) = -1$

$$\mathsf{bzw}\; G(j\omega) = N_I(A) \Rightarrow$$

- 1. Re $\{G(j\omega)\}=\operatorname{Re}\{N_I(A)\}$
- 2. $\operatorname{Im} \{G(j\omega)\} = \operatorname{Im} \{N_I(A)\}$
- graphisch:
- $G(j\omega)$ und $N_I(A)$ in komplexer Ebene aufzeichnen bei Schnittpunkten gilt: $G(j\omega)=N_I(A)$ Schnittpunkte sind mögliche Grenzschwingungen
- \Rightarrow algebraisch A_q und ω_q bestimmen

Stabilität von Grenzschwingungen, graphisch bestimmen

Nyquistkriterium bzgl kritischen Punktes $N_{I}(\boldsymbol{A}_{g})$ anwenden

2 Stabilität nichtlinearer Systeme

2.1 Direkte Methode von Lyapunov

Damit kann Stabilität, aber keine Instabilität nachgewiesen werden

Zeitinvariante Systeme

Direkte Methode von Lyapunov für lokale Stabilität

 x^* ist <u>lokal</u> (asymptotisch) stabil iSvL wenn:

- x* ist Ruhelage
- V(x) ist stetig diff'bar
- V(x) ist stellig dill ba
 V(x) ist lokal pd

wenn $\dot{V}(x) \leq 0 \Rightarrow$ lokal stabil $\dot{V}(x) < 0 \Rightarrow$ lokal asymptotisch stabil

Direkte Methode von Lyapunov für globale Stabilität

x* ist global (asymptotisch) stabil iSvL wenn:

- x* ist Ruhelage
- V(x) ist stetig diff'bar
- V(x) ist global pd
- \bullet V(x) ist radial unbeschränkt (dh $\|x\| \to \infty \Rightarrow V(x) \to \infty$

$$\begin{array}{lll} \text{wenn} & \dot{V}(x) \leq 0 \Rightarrow & \text{global stabil} \\ \dot{V}(x) < 0 \Rightarrow & \text{global asymptotisch stabil} \end{array}$$

Zeitvariante Systeme

Notwendige Bedingungen damit x^{*} lokal uniform (asymptotisch) stabil ist:

- x* ist Ruhelage
- V(x) ist stetig diff'bar

Lokale Stabilität

 x^* ist lokal uniform stabil iSvL wenn:

- ullet $W_1(x),W_2(x)$ stetig pdf
- $W_1(x) \le V(x,t) \le W_2(x)$

• $\dot{V}(x,t) = \frac{\partial V}{\partial t} + \frac{\overline{\partial V}}{\partial x} \underline{f}(x,t) \le 0$

- x^* ist lokal uniform asymptotisch stabil wenn zusätzlich gilt:

 $W_3(x)$ stetig, lokal pdf
 - $\dot{V}(x,t) = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(x,t) \le -W_3(x)$

Globale Stabilität

Uniforme Stabilität ist global wenn zusätzlich gilt: V(x,t) ist radial unbeschränkt

2.2 Häufig verwendete Lyapunov-Funktionen und deren Eigenschaften

 $V(x, t = \dots$

- $||x||^2$: pdf, abnehmend, radial unbeschränkt
- \bullet $x^T P x, P \in \mathbb{R}^{n \times n}$,pdf: pdf, abnehmend, radial unbeschränkt
- $(t+1)\|x\|^2$: pdf, radial unbeschränkt
- $e^{-t}||x||^2$: pdf, abnehmend
- $\sin^2(\|x\|^2)$: lokal pdf, abnehmend

2.3 Exponentielle Stabilität

 $\boldsymbol{x}^* = \boldsymbol{0}$ ist exponentiell stabile Ruhelage wenn folgende äquivalente Aussagen gelten:

- $\begin{array}{l} \bullet \;\; \alpha_1,\alpha_2,\alpha_3,\alpha_4>0 \; \text{existieren so dass:} \\ \alpha_1\|x\|^2 \leq V(x,t) \leq \alpha_2\|x\|^2 \\ \dot{V}(x,t) \leq -\alpha_3\|x\|^2 \\ \|\frac{\partial V(x,t)}{\partial \underline{x}}\| \leq \alpha_4\|x\| \\ \end{array}$

2.4 Invarianzprinzip von LaSalle

Invarianzmenge $\mathcal{M}: x(t_0) \in \mathcal{M} \Rightarrow x(t) \in \mathcal{M}, \forall t \geq t_0$

Invarianzprinzip

 \bullet Ω ist kompakte(dh abgeschlossen und beschränkt) Invarianzmenge

• V(x) stetig diff'bar und $\dot{V}(x) \le 0$ auf Ω

• $\varepsilon \subset \Omega$ mit $V(\varepsilon) = 0$

• $\mathcal{M} \subseteq \varepsilon$, \mathcal{M} ist größte Invarianzmenge in ε

 \Rightarrow jede Lösung die in Ω beginnt, nähert sich $\mathcal M$ an für $t \to \infty$

Besteht \mathcal{M} nur aus $\underline{0}$ und ist $\dot{V}(x) \leq 0$, dann ⇒ Ruhelage 0 ist asymptotisch stabil

Korollar: Barbashin

• x^* ist Ruhelage

• V(x) ist stetig diff'bar und pdf auf $\mathcal{B}_{\varepsilon}$

• $\dot{V}(x) \leq 0$ auf $\mathcal{B}_{\varepsilon}$

• $\mathcal{S} := x \in \mathcal{B}_{\varepsilon} | \dot{V}(x) = 0$

Wenn nur x(t) = 0 in S bleiben kann, dann ist $x^* = 0$ asymptotisch

Korollar: Krasovski (globale Variante von Barbashin)

x* ist Ruhelage

• V(x) ist stetig diff'bar, pdf und radial unbeschränkt auf \mathbb{R}^n

• $\dot{V}(x) \leq 0$ auf \mathbb{R}^n

• $\mathcal{S} := x \in \mathbb{R}^n | \dot{V}(x) = 0$

Wenn nur x(t) = 0 in S bleiben kann, dann ist $x^* = 0$ global asym-

2.5 Indirekte Methode von Lyapunov

Zeitinvariante Systeme

Linearisierung um Ruhelage x* Systemmatrix $A = \left[\frac{\partial \underline{f}(\underline{x})}{\partial \underline{x}}\right]_{\underline{x}=\underline{x}^*}$

• A ist negativ definit $\Rightarrow x^*$ ist lokal asymptotisch stabil

• A ist indefinit oder positiv (semi-)definit $\Rightarrow x^*$ ist lokal instabil • A ist negativ semidefinit \Rightarrow keine Aussage über x^* möglich

Zeitvariante Systeme

Linearisierung um Ruhelage x^*

 $\Rightarrow \dot{x} = A(t)x + f_1(x, t)$, wobei

• $A(t) = \left[\frac{\partial f(x,t)}{\partial x}\right]_{x=x^*}$

• $f_1(x,t)$ Restterm

Bedingung: Vereinfachte Linearisierung $\dot{x} = A(t)x$ gültig falls:

 $\lim_{\|x\| \to 0} \sup_{t \ge 0} \frac{\|f_1(x,t)\|}{\|x\|} = 0$

Stabilität des nichtlinearen Systems

• x^* ist uniform asymptotisch stabil in Linearisierung

 $\Rightarrow x^*$ ist uniform asymptotisch stabil im nichtlinearen System

x* ist instabil in Linearisierung

 \Rightarrow keine Aussage über x^* im NL System möglich

• x^* ist instabil in Linearisierung und $A(t) = A_0 = const$ $\Rightarrow x^*$ instabil im NL System

Stabilität von LTV Systemen(1)

Ruhelage des LTV Systems ist exponentiell stabil wenn $A(t) + A(t)^{T}$ negativ definit ist für alle t

Stabilität von LTV Systemen(1)

Ruhelage des LTV Systems ist exponentiell stabil wenn A(t) negativ definit ist und A(t) beschränkt ist, dh

$$\int_{0}^{\infty} A(t)^{T} A(t) \, \mathrm{d}t < \infty$$

2.6 Instabilität

Falls Stabilität nicht nachgewiesen werden kann, versucht man Instabilität nachzuweisen

Satz von Chetaev

• $x^* = 0$ ist Ruhelage

• V(x) ist stetig diff'bar, V(0) = 0, $V(x_0) > 0$ für $||x_0|| > 0$ *U* := {x ∈ B_ε |V(x) > 0}

Wenn $\dot{V}(x) > 0$ auf $\dot{\mathcal{U}}$, dann ist $x^* = 0$ instabil

V(x) muss keine pdf sein

• Es genügt Menge \mathcal{U} zu finden, so dass: V(x) > 0 und $0 \in \mathcal{U}$

2.7 Einzugsgebiet

Falls asymptotisch stabile Ruhelage nicht global asymptotisch stabil ⇒ Einzugsgebiet bestimmen, in der die Ruhelage lokal asymptotisch stabil

Einzugsgebiet, Domain of Attraction, Basin

$$\mathcal{A}(x^*) := \left\{ x_0 | \lim_{t \to \infty} \Phi(t, t_0, x_0) = x^* \right\}$$
 mit $\Phi(t, t_0, x_0)$ als Lösung der DGL

Bestimmen des Einzugsgebiets

• x* ist Ruhelage, asymptotisch stabil

• $V = x^* \cup \{x | V(x) > 0, \dot{V}(x) < 0\}$

• $\mathcal{E}_c = \{x | V(x) \leq c\}$ Wenn $\mathcal{E}_c \subseteq \mathcal{V}$ und \mathcal{E}_c ist beschränkt, dann ist \mathcal{E}_c Teilmenge des Ein-

2.8 Lyapunov-basierter Reglerentwurf

1. V(x) so aufstellen, dass u in V(x) und in $\dot{V}(x)$ vorkommt

2. u so einstellen, dass V(x) > 0 und $\dot{V}(x) < 0$

3 Passivität

Achtung: V(x) ist abstrakte Speicherfunktion Energiespeicherfunktion zB aus physikalischer Energiebetrachtung

Verallgemeinerte Energiebilanz und Versorgungsrate eines Systems:

$$\int\limits_0^t s(u,y)\,\mathrm{d}\tau + V(x(0)) = \int\limits_0^t g(\tau)\,\mathrm{d}\tau + V(x(t))$$
 Mit:

Netto-Energiezufluss: $\int s(u, y) d\tau$

Versorgungsrate: s(u, y)

Anfangs gespeicherte Energie: V(x(0))

dissipierte Energie: $\int g(\tau) d\tau$

dissipierte Leistung: $g(\tau)$

gespeicherte Energie: V(x(t))

Es gilt $\int\limits_{\cdot}^{\cdot} |s(u(\tau),y(\tau))| \,\mathrm{d} \tau < \infty$

Dissipativität (dissipativ bzgl s(u, y))

V(x) ist psdf

Integrale Dissipativitätsungleichung: $\int s(u,y) d\tau + V(x(0)) >$

Differentielle Dissipativitätsungleichung: $s(u, y) > \dot{V}(x(t))$

Passivität

Dissipativ bzgl spezieller Versorgungsrate $s(u, y) = y^T u$

Integrale Passivitätsungleichung: $\int_{0}^{t} y^{T} u d\tau + V(x(0)) \geq V(x(t))$

Differentielle Passivitätsungleichung: $s(u, y) > \dot{V}(x(t))$ streng passiv: \Rightarrow bei '>' bzw q(t) > 0

 \Rightarrow bei '=' bzw q(t) = 0verlustlos:

3.1 Passivität und Stabilitätseigenschaften

Passivität und Lyapunov-Stabilität

System ist passiv

• V ist stetig diff'bar und psd

 \Rightarrow Ruhelage x = 0 ist stabil iSvL

Null-Zustandsbeobachtbarkeit

Nur
$$x^*=0$$
 kann in $\mathcal{S}=\{x\in\mathbb{R}|h(x,0)=0\}$ bleiben

Passivität und asymptotische Stabilität

 $x^* = 0$ ist asymptotisch stabil wenn eine der beiden Punkte zutrifft:

- System ist streng passiv
- über V(x):
 - Svstem ist passiv
 - -V(x) ist stetig diff'bar und pdf
 - $-\dot{V}(x) = 0 \Leftrightarrow y = 0$
 - Null-Zustand beobachtbar

Wenn V(x) zusätzlich radial unbeschränkt ist $\Rightarrow x^* = 0$ ist global asymptotisch stabil

4 Passivitätsbasierte Regelung

 $x^* = 0$ ist global asymptotisch stabil

 \Rightarrow System kann stabilisiert werden mit $u = -\Phi(y)$, wobei:

- Φ ist lokal Lipschitz-stetig
- Φ ist beliebig
- $\Phi(0) = 0$
- $y^T \Phi > 0$ für $y \neq 0$

mögliche Φ : $\Phi = k_i \operatorname{sat}(y_i)$ $\Phi = \frac{2k_i}{2} \operatorname{atan}(y_i)$

Feedback-Passivierung

Ziel: Nicht-Passive Systeme in passive transformieren durch spezielle Wahl der Ausgangsfunktion y = h(x)

$$\dot{x} = f(x) + G(x)u$$

$$\Rightarrow$$
 Ausgang $y = h(x) \stackrel{\mathsf{def}}{=} \left[\frac{\partial V}{\partial x} G \right]^T$

Ist Ausgang dann Null-Zustandsbeobachtbar ⇒ es kann global stabilisierendes Regelgesetz gefunden werden

5 Feedback-Linearisierung

Nichtlineare System-Transformation: $z = \varphi(x)$

5.1 Vorgehen

1. Zustandstransformation: $z = \varphi(x)$

2. NL-RNF aufstellen

3. Überprüfen ob $\varphi(x)$ ein Diffeomorphismus ist

4. Feedback-linearisierendes Regelgesetz aufstellen

Nichtlineare Regelungsnormalform, NL-RNF

$$\dot{z}_1 = z_2
\dot{z}_2 = z_3$$

$$\dot{z}_n = a(x) + b(x)u$$

Diffeomorphismus

z=arphi(x) ist (lokal) gültige Zustandstransformation wenn $\nabla arphi$ nicht singulär ist, $\Leftrightarrow \det(\nabla \varphi) \neq 0$

$$\nabla \underline{\varphi} = \left[\frac{\partial \varphi_i}{\partial x_i} \right]$$
, Jacobi-Matrix

Feedback-linearisierendes Regelgesetz

$$\begin{array}{l} u(x) = \frac{1}{b(x)}[v - a(x)] \\ \Rightarrow \dot{z}_n = v \end{array}$$

6 E/A-Linearisierung

- 1. Ausgang y festlegen, dessen dynamische Antwort auf Reglereingang v linearisiert werden soll
- 2. Zeitliche Ableitung des Ausgangs y liefert nach einigen Schritten die E/A-Beziehung in RNF
- 3. Aus RNF das feedback-linearisierende Regelgesetz aufstellen
- 4. Bei Bedarf Systemtransformation durchführen, so dass $\dot{z}_n = v$ $\dot{x} = f(x) + g(x)u$

$$\Rightarrow \dot{y}(x) = \frac{\partial h}{\partial x} f(x) + \frac{\partial h}{\partial x} g(x) u = L_f h(x) + L_g h(x) u$$

u so large ableiten bis: u = a(x) + b(x)u

 $\dot{u} = L_f h$ $(mitL_a h(x) = 0)$ $\ddot{u} = L_{f}^{2}h$ $(mitL_qL_fh(x)=0)$

 $\overset{(r)}{y} = L_f^r h + L_g L_f^{r-1} h(x) u$

zu 3.

$$u(x) \stackrel{!}{=} \frac{1}{h(x)} [v - a(x)]$$

Neuer virtueller Systemeingang: $v = \overset{r}{y}$

Regelgesetz: $u(x) = \frac{v - L_f^r h(x)}{L_q L_f^{r-1} h(x)}$

Relativer Grad bzw Differenzengrad

Vollstandige Linearisierung: r=ninterne Dynamik vorhanden: r < n

Nulldynamik: $y(t) = 0, \forall t$, mit interner Dynamik

6.1 Zustands-Linearisierung
$$\dot{x} = f(x) + g(x)u$$

$$\dot{z} = \nabla \varphi(x) \left(f(x) + g(x)u \right)$$

Vorgehen

- 1. Nichtlineare Zustandstransformation bestimmen $\Rightarrow \varphi(x)$
- 2. Regelgesetz bestimmtn

zu 1.

GLS lösen:

$$\underbrace{\begin{bmatrix} g^T \\ [\operatorname{ad}_f g]^T \\ \vdots \\ [\operatorname{ad}_f^{n-2} g]^T \\ [\operatorname{ad}_f^{n-1} g]^T \end{bmatrix}}_{\mathcal{S}^T} \underbrace{\begin{bmatrix} \partial \varphi_1(x) \\ \partial x \end{bmatrix}}^T = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ g^* \end{bmatrix}$$

Matrix S ist Erreichbarkeitsmatrix

GLS ist gleichbedeutend mit:

$$L_g L_f^i \varphi_1(x) = \begin{cases} 0, & i = 0, \dots, n-2 \\ \hat{g}^*(x), & i = n-1 \end{cases}$$

ist gleichbedeutend mit:

$$\left[\frac{\partial \varphi_1(x)}{\partial x}\right] \operatorname{ad}_f^i g(x) = \begin{cases} 0, & i = 0, \dots, n-2 \\ \hat{g}(x), & i = n-1 \end{cases}$$
 wobei:
$$\hat{\boldsymbol{\beta}}^* \quad \boldsymbol{\alpha}^* \neq 0$$

$$\hat{g}^*, g^* \neq 0$$

 $g^* = (-1)^{n-1} \hat{g}^*$

Dann nach $\frac{\partial \varphi_1}{\partial x}$ auflösen und daraus φ_1 bestimmen. Für die restlichen φ_i gilt: $\varphi_i(x) = L_f^i \varphi_1$

zu 2.

Regelgesetz:
$$u(x)=\frac{1}{L_g\,L_f^{n-1}}\varphi_1(x)\left(v-L_f^n\varphi_1(x)\right)$$
 wobei v : neuer Regeleingang

7 Flachheitsbasierte Regelung

Vorgehen

- 1. Flachheitsanalyse
- 2. Flachheitsbasierte Steuerung
- 3. Flachheitsbasierte Folgeregelung

zu 1. Flachheitsanalyse

System ist flach wenn folgende Bedingungen erfüllt sind

- ullet es gibt (fiktiven) Ausgang $y=\Phi(x,u,\dot{u},\ldots,\overset{(lpha)}{u})$ $\mathsf{mit}\;\mathsf{dim}\;y=\mathsf{dim}\;u$
- eine (lokal) eindeutige Zustandsfunktion kann gefunden werden: $x = \Psi_1(y, \dot{y}, \dots, \overset{(\gamma)}{y})$
- eine (lokal) eindeutige Eingangsfunktion kann gefunden werden: $u = \Psi_2(y, \dot{y}, \dots, \overset{(\gamma+1)}{y})$

Flachen Ausgang bestimmen

- Ausgang sollte möglichst viel Information über das dynamische Systemverhalten haben
- Sukzessive zeitliche Ableitung des Kandidaten zur Herleitung von Gleichungen zur Bestimmung von x und u
- y muss so oft abgeleitet werden, bis aus dem resultierenden GLS von y, \ldots, y alle unbekannten x und u (lokal) bestimmt werden
- Kandidat ist umso erfolgversprechender, je häufiger abgeleitet werden kann ohne dass Eingänge u auftauchen

Danach $x = \Psi_1(y, \dot{y}, \dots, \overset{(\gamma)}{y})$ und $u = \Psi_2(y, \dot{y}, \dots, \overset{(\gamma+1)}{y})$ be-

zu 2. Flachheitsbasierte Steuerung

Solltraiektorie bestimmen:

- 1. y_d bestimmen: entweder vorgegeben oder falls y_d nicht vorgegeben, dann aus x_d oder Regelgröße w bestim-
- 2. zugehörige x_d und u_d bestimmen

zu 3. Flachheitsbasierte Folgeregelung

Zustandsrückführung und Nichtlineares Regelgesetz aufstellen

- 1. fiktive (differentierte) Ausgänge $\begin{bmatrix} y, \dots, {\alpha \choose y} \end{bmatrix}$ als Eingänge v
- 2. Nichtlineares Regelgesetz aufstellen: $u = \Psi\left(y, \dots, \overset{(\alpha)}{y}, v\right)$
- 3. Zustandstransformation: $z = \dots$
- 4. Zustands-DGL: $\dot{z}=\ldots$

8 Backstepping

8.1 Anwendungsgebiet

$$\begin{aligned} u \to \dot{x}_n \to \int \cdots \to \dot{x}_i \to \int \to \dot{x}_1 \to \int \to x_1 \\ \dot{x}_1 &= & f_1(x_1) + g_1(x_1)x_2 \\ \dot{x}_2 &= & f_2(x_1, x_2) + g_2(x_1, x_2)x_3 \\ &\vdots \\ \dot{x}_i &= & f_i(x_1, \dots, x_i) + g_i(x_1, \dots, x_i)x_{i+1} \\ &\vdots \\ \dot{x}_n &= & f_n(x_1, \dots, x_n) + g_n(x_1, \dots, x_n)u \end{aligned}$$

8.2 Verfahren (rekursiv anwenden)

System wird in Teilsysteme unterteil. Ausgang des einen Teilsystems ist Pseude-Stellgröße des nachfolgenen Systems

1. Transformiertes Teilsystem aufstellen

$$z = \dots$$

 $\dot{z} = \dots$

- 2. Pseudo-Stellgröße festlegen
- 3. Partielle Lyapunov Funktion aufstellen:

$$\begin{aligned} & \bullet & \text{Meist:} \\ & V_1 = \frac{1}{2} z_1^2 \\ & V_i = V_{i-1} + \frac{1}{2} z_i^2 \\ & V_n = \frac{1}{2} \sum_i^n z_i^2 \end{aligned}$$

- $\bullet \ \, \dot{V}_i = \Psi(z,x_{i+1}) \Rightarrow x_{i+1} \mbox{ so festlegen, dass } \dot{V}_i^* < 0$
- 4. Funktion für gewünschte Stellgröße α_i bestimmen: $x_{i+1} := \alpha_i$
- 5. So lange rekursiv anwenden bis $\alpha_i = u$

9 Sliding Mode Regelung

System:
$$\dot{x}=f(x)+g(x)u+d(t)$$
 wobei $d(t)$ unbekannte Störfunktion ist Schaltmannigfaltigkeit: $S=\{x\in\mathbb{R}^n | s(x)=0\}$ unstetige Stellgröße: $u(x)=\begin{cases} u^+(x) & \mathrm{fiir} s(x)>0 \\ u^-(x) & \mathrm{fiir} s(x)<0 \end{cases}$ unstetiges Systemverhalten: $\dot{x}=\begin{cases} f^+(x) & \mathrm{fiir} s(x)>0 \\ f^-(x) & \mathrm{fiir} s(x)<0 \end{cases}$ Regelziel: Systemzustand soll nach ersten Kontakt auf Schaltmannigfaltig-

keit s(x) = 0 bleiben

Gezielte Unterdrückung von Störung ist möglich wenn:

- d(x,t) liegt in dem von g(x) aufgespannten Raum
- $|d_i| < D_i, D_i = const \in \mathbb{R}$

Vorgehen

- 1. Diskontinuierliche Reglerfunktion finden, so dass System in endlicher Zeit in den Sliding Mode geht
- 2. Schaltmannigfaltigkeit so wählen, dass im Sliding Mode gewünschte Systemdynamik auftritt

zu 1.

Um in den Sliding Mode zu kommen muss gelten:

$$\begin{array}{l} \bullet \ s_i \dot{s}_i < 0 \\ \bullet \ \lim_{s_i(x) \rightarrow 0^+} \dot{s}_i(x) = k^- < 0 \ \text{und} \lim_{s_i(x) \rightarrow 0^-} \dot{s}_i(x) = k^+ > \\ 0 \end{array}$$

zu 2., Beschreibung des Systemverhaltens \dot{x}

Idealer Sliding Mode nach Filippov

$$\begin{split} \dot{x} &= f(x) \\ \text{Ansatz: } \dot{x}_{\mathrm{fi}} &= \alpha f^+(x) + (1-\alpha)f^-(x) \text{ mit } 0 \leq \alpha \leq 1 \\ \text{Bedingung: } \dot{s}(x_{\mathrm{fi}}) &= \frac{\partial s}{\partial x} \dot{x}_{\mathrm{fi}} = 0 \end{split}$$

$$\begin{split} & \text{Man erh\"{a}lt: } \alpha = \frac{\frac{\partial s}{\partial x} f^-(x)}{\frac{\partial s}{\partial x} (f^-(x) - f^+(x))} \\ & \text{und somit:} \\ & \dot{x}_{\text{fi}} = \frac{\frac{\partial s}{\partial x} f^-(x)}{\frac{\partial s}{\partial x} (f^-(x) - f^+(x))} f^+(x) - \frac{\frac{\partial s}{\partial x} f^+(x)}{\frac{\partial s}{\partial x} (f^-(x) - f^+(x))} f^-(x) \\ & \text{Wobei: } \frac{\partial s}{\partial x} f \geq 0 \text{ und } \frac{\partial s}{\partial x} f^+ \leq 0 \end{split}$$

Idealer Sliding Mode nach der Equivalent Control Method

```
\dot{x} = f(x) + g(x)u
Es gilt: s(x) = 0, \dot{s}(x) = 0
Daraus folgt: \dot{s}(x) = \dot{L}_f s(x) + L_g s(x) \tilde{u}_{eq}
Kontinuierliche Ersatzstellgröße: \tilde{u}_{\text{eq}} = -L_g s(x)^{-1} L_f s(x)
Systemdynamik: \dot{x} = f(x) - g(x)L_{g}s(x)^{-1}L_{f}s(x)
```

9.1 Blockschaltbild

