托福阅读 TPO2(试题+答案+译文)第 3 篇:Early Cinema

托福阅读答案

1-6.CBCBCD

7-12.ADBAAD

13.CEF

托福阅读译文

电影院的播放技术从最初的西洋镜形式演变为将影像投影到幽暗的影院屏幕,这一转变使得电影院大众化消费成为可能。在通过西洋镜播放电影的年代里,人们只能通过播放仪器的一个专门设置的小窗口来看电影。到了 1894 年,托马斯•爱迪生发明的活动电影放映机公布于众,这种放映机仅适用于活动电影放映室或电影娱乐城。它里面仅包含少量的独立播放器,每次仅允许一个顾客观看一部 50 张胶卷的小短片。第一个电影放映厅的放映机中有五台播放器。价格是 25 美分/次,(每台播放器观看价格是 5 美分)。观众们从一个播放器换到下一个播放器依次观看不同的影片(就像有名的职业拳击赛,每场都要连续进行好几轮比赛)。

这些电影播放厅是仿照留声机播放厅设计的,这也证明了爱迪生前几年的设计非常成功。在留声机播放厅中,顾客们通过独立的耳管听取已经录制好的声音,从一台机器换到另一台听取不同演讲或音乐的录音。电影放映室的功能与之类似。相比之下,爱迪生对这些电影放映机(每台一千美元)的销售更感兴趣,而不是那些需要放映的电影(每部 10-15 美元)。他不愿研究投影技术,因为他认为如果研发并且销售投影机,电影放映者就只会买一台投影机而不是几台。

然而,电影放映者们期望将自己的收益最大化,他们希望能更简易地将少量电影同时放映给几百个顾客(而不是每次为一个顾客播放一次电影),每次收费 25 到 50 美分。在 1894 年电影放映机公布的一年之后,摄影师如 Louis 和 Auguste Lumiere,Thomas Armat 和 Charles Francis Jenkins,Orville 和 WoodvilleLatham 以及爱迪生 先前的助手 William Dickson 将投影设备变得更加完善。这些早期的投影机在众多场合为大众观众播放电影,如:杂技剧团、正当的影院、当地镇上的礼堂、临时的影院店面、露天游乐场和游乐园等。

随着 1895-1896 年间投影机的到来,电影成为了大众消费的最终形式。在此之前,一群观众坐在剧场里观看表演,在那里几百个观众可以同时观看轻歌舞剧、流行戏剧、音乐剧、歌唱表演、古典演奏、演讲和胶片演示等。电影与这些娱乐形式明显的不同点是,电影无需依赖现场表演,也不需要串联全场节目的主持人的积极参与(例如胶片演示)。

尽管早期的电影放映者通常在电影放映时伴有现场表演,但是电影本身的内容是影院事先大量录制下来的,这些材料能在没有表演者或者表演者较少参与的情况在电影院中轻松地再现。即便这样,早期的电影放映者还是将电影和其它娱乐节目或者演讲结合在一起,他们认为用这样的方法能最大限度的吸引观众,他们管理的创造力还是非常有限的。观众们在这里可以看到的电影技术的进步;生活琐事的重现,如火车的运动,海浪拍击海岸,人们在街上行走等;以及由摄影特技和相机操控做出来的特效。

伴随投影机的到来,电影不在属于个别人的消费品。就像之前西洋镜时代的播放设备,如活动电影播放机和早期电影播放机,早期电影播放机播放的都是一系列独立的图像而不是胶片,把单个摄影卡上的图片串联起来形成影像。投影技术使得电影变得更加大众化了,观众能够和十二个、二十个、甚至是上百个人共同观看一部电影。与此同时,观众所看到的图像大小也从狭小的 1 英寸或 2 英寸西洋镜高度扩展到与实物状的 6 英尺或 9 英尺。

托福阅读答案

1-6.BBAADC 7-12.DDCACB 13.ACD

托福阅读译文

沙漠已经占据了地球表面积约四分之一,而且最近几十年正以惊人的速度扩张。沙漠化是指类似沙漠的环境漫延到原本并非沙漠的区域。据估计,地球表面另外四分之一的地方正面临沙漠化威胁。

沙漠化主要通过以下过程实现:首先自然植被不断减少,随后风力和雨水加速了土壤的腐蚀。有的时候松散的土壤全部被风刮走,留下石质化的表层;其它情况下细小的沙粒可能会被吹走,而正常沙粒大小的砂子不断堆积,从而形成移动的沙丘或者沙脊。

即便是在保留了土壤表层的区域,植被减少也已成为土壤大量吸取地下水的能力下降的典型因素。雨水对松散土壤的冲击会把细小的粘土颗粒冲到土壤空隙中,封闭了土壤并降低土地表层水的渗透率。地表对水的吸收急剧减少,大量水资源流失,因此土壤的腐蚀率也随即增加。地表吸收水分的能力进一步弱化使得土壤越发干燥,导致植被的进一步流失,于是便形成了土壤沙漠化的恶性循环。

在一些地方,沙漠面积的扩大很大程度上归因于干燥的气候条件。在过去的几千年里,不断增加的温室效应使得一些地方干旱问题愈发严重。倘若空气污染带来的温室效应继续恶化,沙漠化进程会在未来数十年内加速实现。

然而,可以肯定的是,大部分地区沙漠化主要都是由于人类活动造成,而非自然条件导致。沙漠边缘的半干旱土地 所处的生态平衡环境非常脆弱,环境压力持续增加,而这些半干旱区域适应环境压力的能力极其有限。人口数量的 增加使得人们不断向土地施压,依其提供食物和燃料。在湿润的季节里,土地兴许能够应付这些压力。但是在干旱 的季节里,在沙漠周边的土地上,存在着这样一个十分普遍的现象:人类对土地施加的压力远远超过了土地自身减 压的能力,因此最终形成了沙漠。

导致沙漠化的主要因素有四个:过度种植,过度放牧,过分砍伐,过度灌溉。由于人口密度增加,人们对粮食作物的种植已经扩展到日益干燥的区域进行。这些区域很有可能经常会发生干旱,所以农作物种植失败是很正常的事情。大多数农作物的种植需要事先移除天然植被,而农作物欠收后又会留下大面积荒地,非常容易被风力和雨水侵蚀。

在半干旱地区,草坪是主要的天然植被,家畜饲养是当地的一项主要经济活动。在一个地区过量饲养家畜会导致植被覆盖面积减少,土地被大量践踏和碾碎。通常,随之而来的就是土地硬化和加速侵蚀。

在很多国家木材是用来做饭和加热的最主要燃料。人口增加带来的压力促使人们大量砍伐木材,导致许多城市和乡村周围大面积树木和灌木减少。同时人们大量使用烘干的动物排泄物作为替代燃料同样对土壤不利,因为这些珍贵的土壤成分调节剂和植物营养资源将不会再回归至土壤当中。

造成土地沙漠化的最后一个主要人为因素在于人类过度灌溉导致土壤的盐碱化。灌溉多余的水渗透到地下水位。假如没有排水系统的存在,那么地下水位上升,把溶解的盐分带到土壤表面。水分蒸发后,盐分留在了表面,形成白色的地壳层,这一地壳层阻止了空气和水接触地底下的土壤。

沙漠化问题异常严重,这是因为有很广阔的地区和数量庞大的人群都受到了沙漠化的影响,而且要想逆转沙漠化的进程甚至减缓沙漠化的速度都面临着巨大的困难。一旦土壤被侵蚀,需要再经过几百到上千年的时间才会产生新的土壤。那些大量土壤仍保存完好的地方,亟需一个严谨而有力的保护政策和植被覆盖计划来保护现有土地。

托福阅读答案

1-6. BACCAB 7-12.DDBCDB

13. ABE

托福阅读译文

众所周知,鲸类动物是哺乳动物,如鲸鱼、鼠海豚和海豚。它们用肺呼吸,而不是鳃,属于胎生。鲸类动物呈流线型的身体,后腿的消失,尾片和气孔的出现,这些特征都不能掩饰它们和陆生哺乳动物的相似之处。然而,想知道

世上第一只鲸长什么样并非易事,不像还原海獭及鳍足类动物(四肢水陆两用如海豹,海狮,海象)的原貌那么简单。一些完全水生的鲸类动物虽然已经灭绝,但仍可通过化石来对它们进行考察。陆栖哺乳动物和海洋鲸类之间有何联系?近期发现的化石已经可以很清晰地帮助人们了解这个问题,以及他们之间的过渡关系。

科学家们通过一些令人振奋的发现重现了鲸类动物几近真实的起源。**1979** 年,在巴基斯坦北部,一个寻找化石的考察队发掘到了最古老的鲸鱼化石。这块化石被官方命名为 Pakicifus,以纪念人们发现它的地方。这块化石是在一条河的沉积岩中发现的,这条河有 **5200** 万年的历史,离古地中海不远。

Pakicifus 包括一个完整原始动物的头盖骨,它的主人是现代鲸类的祖先。尽管只是个头盖骨,但它却提供了研究原始鲸类动物起源的珍贵信息。这个头盖骨和鲸类动物的很像,但它的下颌骨和现代鲸类略有不同,现代鲸类动物的下颌骨中含有额外的空间储存脂肪或者油脂来吸收水下的声音。Pakicifus 的主人可能会像陆生哺乳动物那样通过张开的耳朵来探测声音。另外,这个头盖骨没有呼吸孔,而鲸类动物有,这便是鲸类动物为了适应水生环境的另一种适应性表现。然而,专家认为 Pakicifus 的其它特征表明它们是已灭绝的食肉哺乳动物(中兽科动物)和鲸类动物的过渡型。有人认为 Pakicifus 靠吃浅水的鱼类为生,未能适应在辽阔的大海里生活。它们很有可能在陆地进行生育繁殖。

1989 年,在埃及有了另一个重大发现。人们在古地中海残留的沉积物中发现了另一类早期鲸鱼 Basilosaurus 的一些骨骸,这些骨骸如今暴露在撒哈拉大沙漠上。Basilosaurus 生活在大约 4000 万年前,比 Pakicifus 鲸鱼晚了 1200 万年。尽管发现的这些骨骼并不完整,但这是专家们第一次在原始动物身上发现完整的后肢,它有三个小脚趾作为的足部特征。可这些后肢还太小,远无法支撑 50 英尺长的 Basilosaurus 在陆地行走。因此,

Basilosaurus 必定是完全水生的鲸鱼,它们的后肢已经不起任何作用,或者说已经退化。

1994 年,巴基斯坦报道了一个更令人兴奋的发现。目前已经灭绝的鲸鱼 Ambulocetus natans(可以步行的鲸类)4900 万年前曾在古地中海生活过。比 Pakicetus 晚大约 300 万年,比 Basilosaurus 早 900 万年左右。幸运的是,被发现的 Ambulocetus natans 保留着完整的后肢。它的后肢很强壮,底部有长足,非常像现在的鳍足类动物。这些后肢使得他们既能在陆地行走又能在海里游行。虽然 Ambulocetus natans 保留了尾巴,但它们缺少现代水生鲸类动物用于行动的主要身体部位——尾片。不过,从 Ambulocetus 的脊椎结构上可以看出,即使缺少尾片,它们也能像现代鲸鱼那样通过身体背部的上下摆动来游走。大的后肢通常被当作是水中前行的发动机。在它们可能交配繁殖的陆地上,Ambulocetus 行动起来非常像现代海狮。毫无疑问,鲸鱼是连接着陆地生命和海洋生命的物种。