Northwestern University

Math 230-1 First Midterm Examination Fall Quarter 2019 Tuesday 22 October

	Tuesday 22 October	
Last name: SOLUTIONS		First name: SOLUTIONS

1. (5 points) Compute the angle θ (in radians) between $\mathbf{v} = \langle \sqrt{3}, 3, 2 \rangle$ and $\mathbf{w} = \langle -\sqrt{3}, -3, 2 \rangle$. Your answer cannot be expressed in terms of inverse trigonometric functions; i.e., the answer is a familiar angle.

Solution: We have

$$\cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}| |\mathbf{w}|} = \frac{-8}{\sqrt{16}\sqrt{16}} = -\frac{1}{2}.$$

It follows that $\theta = \frac{2\pi}{3}$.

2. (5 points) Let \mathcal{C} be the conic in \mathbb{R}^3 defined by the following system of equations:

$$\frac{(x-1)^2}{9} + \frac{(z-2)^2}{25} = 1$$

- (a) Describe \mathcal{C} qualitatively: include what type of conic it is, what its center is, and how it is situated in \mathbb{R}^3 .
- (b) Give a vector parametrization $\mathbf{r}(t)$ for \mathcal{C} . Include explicit bounds $a \leq t \leq b$ ensuring that the entire curve is parametrized. **No justification required**.

Solution: The curve C is an ellipse, centered at (1,3,2), situated in the plane y=3.

We have $\mathbf{r}(t) = \langle 1, 3, 2 \rangle + \langle 3\cos t, 3, 5\sin t \rangle = \langle 1 + 3\cos t, 3, 2 + 5\sin t \rangle, \ 0 \le t \le 2\pi.$

- 3. (10 points) Let \mathbf{v} and \mathbf{w} be two nonzero vectors.
 - (a) Give the dot product formula for $\operatorname{proj}_{\mathbf{w}} \mathbf{v}$. No justification required.
 - (b) Now suppose \mathbf{v} is parallel to \mathbf{w} . Show, using only the formula in (a), that $\operatorname{proj}_{\mathbf{w}} \mathbf{v} = \mathbf{v}$. You should begin by expressing with a vector equation what it means for \mathbf{v} to be parallel to \mathbf{w} .

Solution:

(a) We have $\operatorname{proj}_{\mathbf{w}} \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}$. (b) We assume $\mathbf{v} = c\mathbf{w}$ for some $c \neq 0$. Then

$$\operatorname{proj}_{\mathbf{w}} \mathbf{v} = \frac{(c\mathbf{w} \cdot \mathbf{w})}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}$$
$$= c \frac{\mathbf{w} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}$$
$$= c \mathbf{w}$$
$$= \mathbf{v},$$

as claimed.

- 4. (15 points) Let \mathcal{C} be the curve with parametrization $\mathbf{r}(t) = \langle \cos t, \sin t, \sin(2t) \rangle$.
 - (a) Exactly one of the figures below is a graph of $\mathbf{r}(t)$ for $0 \le t \le 2\pi$. Identify which is correct via a process of elimination: that is, indicate each incorrect graph with an 'X' and briefly explain why it cannot be a graph of $\mathbf{r}(t)$; then indicate the correct graph with a checkmark.

Note: I've included a shaded portion of the xy-plane in each figure to help you visualize the curve.

Solution: Th top left hits the xy-plane only twice, whereas $z = \sin(2t)$ is equal to 0 for $t = 0, \pi/2, \pi, 3\pi/2$.

The top right has only nonnegative z-coordinate values.

The bottom right has only nonnegative y-coordinates.

Thus the bottom left is the correct graph.

- 4. contd. Let \mathcal{C} be the curve with parametrization $\mathbf{r}(t) = \langle \cos t, \sin t, \sin(2t) \rangle$.
 - (b) Give the parametric equations for the tangent line to \mathcal{C} at $P = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1)$.
 - (c) Show that the velocity vector of a particle moving along \mathcal{C} according to $\mathbf{r}(t)$ never points in the vertical direction: i.e., is never parallel to the z-axis.

Solution:

(b) First observe that $t = \pi/4$ is input corresponding to point P.

Next compute $\mathbf{r}'(t) = \langle -\sin t, \cos t, 2\cos(2t) \rangle$.

At $t = \pi/4$ we have $\mathbf{r}'(\pi/4) = \langle -\sqrt{2}/2, \sqrt{2}/2, 0 \rangle$.

This is the direction vector for our tangent line. Taking the given P as our point on the line, we derive the parametric equations

$$x = \sqrt{2}/2 - t\sqrt{2}/2$$
$$y = \sqrt{2}/2 + t\sqrt{2}/2$$
$$z = 1$$

(c) We saw above that $\mathbf{v}(t) = \mathbf{r}'(t) = \langle -\sin t, \cos t, 2\cos(2t) \rangle$. For this to be vertical we need a t satisfying

$$-\sin t = 0 \tag{1}$$

$$\cos t = 0 \tag{2}$$

Equation (1) implies $t = \pi n$ for some n. But $\cos(\pi n) = (-1)^n \neq 0$. Thus there is no such t, and the velocity vector is never vertical.

- 5. (15 points) Let M be the plane through the points P = (0,0,0), Q = (1,-1,0), and R = (1,0,1). Let N be the plane containing the point S = (1,0,-2) with normal vector $\mathbf{n} = \langle 2,1,1 \rangle$.
 - (a) Find an equation for M.
 - (b) Determine whether the planes M and N intersect. If they do intersect, find the parametric equations for their line of intersection.

Solution: (a) Using point P = (0, 0, 0) and normal vector

$$\mathbf{n}' = \overrightarrow{PQ} \times \overrightarrow{PR} = \langle 1, -1, 0 \rangle \times \langle 1, 0, 1 \rangle = \langle -1, -1, 1 \rangle,$$

we obtain the equation -x - y + z = 0, or x + y - z = 0 for M.

(b) Since the normal vectors for two planes are not parallel, the planes intersect.

To find the line of intersection L we observe that its direction vector, which lies in both planes, is orthogonal to \mathbf{n} and \mathbf{n}' , and thus may be chosen as $\mathbf{v} = \mathbf{n} \times \mathbf{n}' = \langle 2, -3, -1 \rangle$.

The equation of plane N is 2(x-1) + y + (z+2) = 0, or 2x - y + z = 0. To find a point on the intersection of the two planes we need to provide a solution to the system

$$x + y - z = 0$$
$$2x + y + z = 0$$

We see by inspection that P = (0,0,0) itself is a solution. Using P = (0,0,0) as our point on L, and $\mathbf{v} = \langle 2, -3, -1 \rangle$ we obtain the parametric equations

$$x = 2t$$
$$y = -3t$$
$$z = -t$$

- 6. (10 points) Let S be the surface with equation $x^2 + y^2 + 4z^2 2x + 4y + 1 = 0$.
 - (a) Identify S as one of our familiar named surfaces. You should first do some algebra to bring the equation into a more standard form.

Justify your answer. You may reference your work in (b) if you like.

Solution: Completing squares yields the equation $(x-1)^2 + (y+2)^2 + 4z^2 = 4$, or $\frac{(x-1)^2}{4} + \frac{(y+2)^2}{4} + z^2 = 1$. We recognize this as a standard form for an ellipsoid, shifted by $\langle 1, -2, 0 \rangle$. Alternatively, as we see below, all three cross section types are ellipses.

(b) Find equations for the (x = 1)-, (y = -2)- and (z = 0)-cross sections, and sketch these in the coordinate system below. Each cross section sketch must include at least 4 plotted points.

x=1: $\frac{(y+2)^2}{4}+z^2=1$, an ellipse centered at (1,-2,0), parallel to the yz-plane. (In red)

y = -2: $\frac{(x-1)^2}{4} + z^2 = 1$, an ellipse centered at (1, -2, 0), parallel to the xz-plane. (In blue)

z=0: $(x-1)^2+(y+2)^2=4$, a circle of radius 2 centered at (1,-2,0), in the xy-plane. (In green)

YOU MUST SUBMIT THIS PAGE.

If you would	like work on	this page sc	ored, then o	clearly indicat	e to which	question the	work	belongs	and
indicate on the	he page conta	aining the or	iginal questi	ion that there	is work or	this page to	score.		

YOU MUST SUBMIT THIS PAGE.

If you	would	d like	work	on this	page	scored,	then	clearly	indicate	to	which	question	the	work	belongs	and
indica	te on	the pa	age co	ntaining	g the	original	ques	tion tha	at there i	is w	ork on	this pag	e to	score.		

Гuesday 22 October	Math 230-1 First Midterm Examination	Page 9 of
	DO NOT WRITE ON THIS PAGE.	