Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

«Определение длины световой волны при помощи опыта Юнга»

Проверил:		Выполнил:
Пшеничнов В.Е.		Студент группы Р3255
« »	2019r.	Федюкович С. А.

Цель работы

Определение длины световой волны по интерференционной картине от двух щелей.

Теоретические основы

Интерференция света это пространственное распределение энергии вызванное суперпозицией электромагнитных волн видимого диапазона. Условием интерференции волн является их когерентность. Когерентность — это согласованность в протекании колебательных процессов. Необходимая согласованность заключается, в постоянстве разности фаз волн, приходящих в данную точку пространства. Из-за значительной немонохроматичности обычных источников это условие невыполнимо для волн, испускаемых двумя независимыми источниками. Поэтому обычно для получения когерентных световых волн, при наблюдении двухлучевой интерференции, поступают следующем образом: световой пучок от одного источника, разделяют тем или иным способом на два пучка, «идущие» разными путями в одну и ту же область пространства, где и наблюдается интерференция.

Различают два основных метода получения интерферирующих пучков: метод деления волнового фронта и метод деления амплитуды. Из-за малости длин волн видимого света и требований пространственной когерентности наблюдение интерференции света методом деления волнового фронта сопряжено с определенными сложностями. Один из первых успешных экспериментов, демонстрирующих двухлучевую интерференцию методом деления волнового фронта, был осуществлен Томасом Юнгом в начале XIX века. Яркий пучок солнечных лучей падает по нормали на экран A с малым отверстием S. Прошедший через отверстие свет образует расходящийся пучок, который падает на второй экран B с двумя малыми отверстиями S_1 и S_2 , расположенными близко друг к другу. Эти отверстия равноудалены от S и действуют как вторичные синфазные источники. Исходящие от них волны, перекрываясь, создают интерференционную картину, наблюдаемую на удаленном экране C. Измеряя ширину интерференционных полос, Юнг в 1802 г. определил длины световых волн разных цветов, хотя эти измерения и не были достаточно точными.

В данной лабораторной работе источником служит лазер, обладающий по сравнению с обычными источниками высокой степенью монохроматичности и большой яркостью. Это позволяет наблюдать значительное количество интерференционных полос. Кроме того, лазерное излучение является пространственно когерентным по всему сечению пучка, поэтому, если ширины пучка хватает, чтобы одновременно осветить оба отверстия S_1 и S_2 , то можно обойтись без первого экрана с отверстием S. Для увеличения яркости наблюдаемой интерференционной картины вместо точечных отверстий в качестве S_1 и S_2 в данной работе используются узкие длинные параллельные друг другу щели.

Найдем связь периода интерференционной картины с длиной волны в опыте Юнга. Обозначим: d — расстояние между источниками S_1 и S_2 , L — расстояние от источников до плоскости наблюдения интерференционной картины, x — расстояние от точки P до центра O' интерференционной картины. Обычно интерферирующие лучи идут под малыми углами к оси системы OO', угол θ мал, и для него справедливо соотношение: $\theta \approx x/L$. В этом случае разность хода $\Delta = r_2 - r_1$ можно выразить как:

$$\Delta \approx d\theta \approx dx/dL. \tag{1}$$

При выполнении условия:

$$\Delta = k\lambda,\tag{2}$$

где k — любое целое число, λ — длина волны света, в точке P наблюдается интерференционный максимум. Если же:

$$\Delta = (k + \frac{1}{2})\lambda,\tag{3}$$

то в точке P наблюдается минимум.

Шириной интерференционной полосы (периодом интерференционной картины) называют расстояние между соседними максимумами или минимумами. В данной лабораторной работе период картины определяется по расстоянию между минимумами, поскольку их положения фиксируются точнее. Сравнивая выражения (1) и (3), находим координаты минимумов в плоскости PO':

$$xk = (k + \frac{1}{2})\lambda \cdot \frac{L}{d} \tag{4}$$

Отсюда для ширины полосы получаем:

$$\Delta x = x_{k+1} - x_k = \lambda \frac{L}{d}.$$
 (5)

Для проверки формулы (5) и увеличения точности определения длины волны период Δx измеряется при нескольких расстояниях L. Как видно из уравнения (5), зависимость Δx от L является линейной, а коэффициент наклона графика этой зависимости $K = \lambda/d$. Построив экспериментальный график Δx от L, можно убедиться в том, что зависимость действительно линейна, а по коэффициенту наклона получившейся прямой и известному значению d определить длину волны.

Ход работы

- 1. Расстояние до экрана $X_{
 m s}=18,000 [{
 m {\tiny MM}}].$ Расстояние между щелями $0,100\pm0,001.$
- 2. Для щели №39:

$$Y_1 = 3,620 [\text{mm}]; \ Y_2 = 4,540 [\text{mm}]; \\ Y_1 = 3,660 [\text{mm}]; \ Y_2 = 4,500 [\text{mm}]; \\ Y_1 = 3,680 [\text{mm}]; \ Y_2 = 4,530 [\text{mm}]; \\ d_{\text{cp}} = 0,100 \cdot ((4,540-3,620)+(4,500-3,660)+(4,530-3,680))/3 \approx 0,087 [\text{mm}]. \\ \Delta_{\text{cp}} = 0,100 \cdot 1,300 \cdot \sqrt{\frac{1}{N(N-1)} \cdot ((0,920-0,879)^2 + \frac{1}{N(N-1)} \cdot ((0,920-0,879)^2 + \frac{1}{N(N-1)} \cdot ((0,920-0,870)^2)} \approx 0,003 [\text{mm}]$$

Для щели №40:

$$Y_1 = 3,600 [\text{mm}]; \ Y_2 = 4,540 [\text{mm}]; \\ Y_1 = 3,580 [\text{mm}]; \ Y_2 = 4,520 [\text{mm}]; \\ Y_1 = 3,620 [\text{mm}]; \ Y_2 = 4,560 [\text{mm}]; \\ d_{\text{cp}} = 0,100 \cdot ((4,540-3,600)+(4,520-3,580)+(4,560-3,620))/3 \approx 0,094 [\text{mm}]. \\ \Delta_{\text{cp}} = 0,100 \cdot 1,300 \cdot \sqrt{\frac{1}{N(N-1)} \cdot ((0,940-0,940)^2 + \frac{1}{N(0,940-0,940)^2})} = 0,000 [\text{mm}]$$

Таким образом, $\Delta d_{\rm cp} = 0,001 [{\rm MM}].$

3. Для щели №39:

$$X = 20,000; 30,000; 40,000; 50,000; 60,000; 70,000 [cm];$$

$$Y = 18,200; 28,200; 38,200; 48,200; 58,200; 68,200 [cm];$$

$$18,200: 1 = 6,000 [mm]; k = 4,000; \partial x = 1,500 [mm]$$

$$28,200: 1 = 9,000 [mm]; k = 4,000; \partial x = 2,250 [mm]$$

$$38,200: 1 = 12,000 [mm]; k = 4,000; \partial x = 3,000 [mm]$$

$$48,200: 1 = 15,000 [mm]; k = 4,000; \partial x = 3,750 [mm]$$

$$58,200: 1 = 19,000 [mm]; k = 4,000; \partial x = 4,750 [mm]$$

$$68,200: 1 = 22,000 [mm]; k = 4,000; \partial x = 5,500 [mm]$$

Для щели №40:

$$X = 20,000; 30,000; 40,000; 50,000; 60,000; 70,000 [cm];$$

$$Y = 18,200; 28,200; 38,200; 48,200; 58,200; 68,200 [cm];$$

$$18,200: 1 = 7,000 [mm]; k = 5,000; \partial x = 1,400 [mm]$$

$$28,200: 1 = 10,000 [mm]; k = 5,000; \partial x = 2,000 [mm]$$

$$38,200: 1 = 16,000 [mm]; k = 6,000; \partial x = 2,670 [mm]$$

$$48,200: 1 = 19,000 [mm]; k = 6,000; \partial x = 3,170 [mm]$$

$$58,200: 1 = 15,000 [mm]; k = 4,000; \partial x = 3,750 [mm]$$

$$68,200: 1 = 22,000 [mm]; k = 5,000; \partial x = 4,400 [mm]$$

4. Графики зависимости длины штриха от расстояния:

Рис. 2: Зависимость длины штриха от расстояния для щели №40

5. Вычисление коэффициентов наклона:

$$K_{39} = \frac{B_y - A_y}{B_x - A_x} = \frac{5,750 - 1,250}{72,000 - 17,000} \cdot 0,100 \approx 0,008; K_{40} = \frac{4,750 - 1,250}{74,000 - 15,000} \cdot 0,100 \approx 0,005$$

Длины волн для двух серий эксперимента:

$$\lambda_{39} = K_{39} \cdot d_{\rm cp} = 0,008 \cdot 0,087 \approx 705,000 [{\rm HM}].$$

$$\lambda_{40} = K_{40} \cdot d_{\rm cp} = 0,005 \cdot 0,055 \approx 555,000 [{\rm HM}].$$

6. Погрешность для λ_{40} :

$$\Delta K_{40} = \frac{K_{40}}{B_y - A_y} \cdot \sqrt{\frac{2}{N - 2} \cdot ((1,500 - 1,400)^2 + (2,000 - 2,00$$

$$\overline{+(2,500-2,670)^2+(3,350-3,170)^2+(3,750-3,750)^2+(4,500-4,400)^2)}\approx 33,000[\text{HM}]$$

$$\Delta \lambda_{40} = \sqrt{\left(\frac{d\lambda \Delta K_{40}}{dK}\right)^2 + \left(\frac{d\lambda \Delta d_{\rm cp}}{d\,d_{\rm cp}}\right)^2} \approx 32,500 [{\rm HM}]$$

Вывод

В ходе работы я определил длину световой волны по картине дифракции на круглом отверстии на основе опыта Юнга, которая составила $\lambda_{39}\approx 705,000 [\text{нм}]$, также $\lambda_{40}\approx 555,000\pm 32,500 [\text{нм}]$

Диапазон красного цвета спектра определяют длиной волны $620-740 [{
m hm}]$, поэтому, полученные значения в результате выполнения лабораторной работы попадает под заданные значения диапазона.

Погрешность составила около 8,5%, что является приемлемой погрешностью. Вызвана она в связи с неточностью измерений маленьких величин, а так же погрешностью при расчетах.