

1	Solve each equations for θ in the interval $0 \le \theta \le 2\pi$.		1
1	Give your answers to 3s.f. where appropriate		
	a) $cosec^2\theta - 4 = 0$		
	b) $cot\theta cosec\theta = 6cot\theta$		
	c) $cosec\theta = 4sec\theta$		
	d) $2\cos\theta = \cot\theta$		TOTAL
	e) $5sin\theta - 2cosec\theta = 3$		15 marks
2	Prove each identity		
	a) $secx - cosx \equiv sinxtanx$		
	b) $(1 + cosx)(cosecx - cotx) \equiv sinx$		
	c) $\frac{\cot x - \cos x}{1 - \sin x} \equiv \cot x$		
	d) $(sinx + tanx)(cosx + cotx) \equiv (1 + sinx)(1 + cosx)$		TOTAL
3	Show that:		12 marks
	$\mathbf{a} \csc^2 x + \tan^2 x \equiv \sec^2 x + \cot^2 x$		
	$\mathbf{b} \cot^2 x + \cos^2 x \equiv (\csc x - \sin x)(\csc x + \sin x)$		
	$c \frac{1}{1 + \sin x} + \frac{1}{1 - \sin x} = 2 + 2 \tan^2 x$		TOTAL
	$1 + \sin x$ $1 - \sin x$		9 marks
4	Given that $sinx = \frac{4}{5}$ and that $90^{\circ} \le x \le 180^{\circ}$, find the exact values of		Jillarks
	a) cosx		
	b) cotx		TOTAL
	c) cosecx		5 marks
5	Solve $2cosec^2x + 5cotx = 5$ in the interval $-\pi \le \theta \le \pi$, giving your answers to 2 d.p.		TOTAL
	D 1 1 10 10 10 10 10 10 10 10 10 10 10 10		4 marks
6	a Prove that $\sec^4 \theta - \tan^4 \theta = \sec^2 \theta + \tan^2 \theta$.	(3 marks)	TOTAL
	b Hence solve, in the interval $-180^{\circ} \le \theta \le 180^{\circ}$, $\sec^4 \theta = \tan^4 \theta + 3 \tan \theta$.	(4 marks)	7 marks
	$1 \qquad \qquad 1 \qquad \qquad 2 \qquad 1 \leq in\Theta$		

Sinx

$$\frac{Sinx}{Cotx - cosx} = cotx - cosx = cotx - cotx sinx \Rightarrow \frac{1}{t_{anx}} - cosx = \frac{1}{t_{anx}} - \frac{1}{t_{anx}} sinx \Rightarrow -cosx = \frac{cosx}{sin} = cosx$$

$$\frac{1}{t_{anx}} = cotx - cosx = cotx - cotx sinx \Rightarrow \frac{1}{t_{anx}} - cosx = \frac{1}{t_{anx}} - \frac{1}{t_{anx}} sinx \Rightarrow -cosx = \frac{cosx}{sin} = cosx$$

$$\frac{1}{t_{anx}} = cotx - cosx = cotx - cotx sinx \Rightarrow \frac{1}{t_{anx}} - \frac{1}{t_{anx}} sinx \Rightarrow -cosx = \frac{1}{t_{anx}} - \frac{1}{t_{anx}} sinx \Rightarrow$$

$$(Sinx + tan)c)(cosx + cotx) = (1+ Sinx)(1+cosx)$$

$$Sinx(cosx + Sinx cotx + tan x cosx + tan x cotx = 1+ cosx + Sinx cosx$$

$$Sinx(cosx + Sinx)(\frac{cosx}{sinjer}) + cotx(\frac{sinx}{cosk}) + \frac{tan}{tan}x = 1 + cosx + sinx + sinx cosx$$

$$Sinx(cosx + cosx + sinx + 1) = 1 + cosx + sinx + sinx cosx$$

$$= (1+sinx)(1+cosx)$$

$$= (1+cosx)(1+cosx)$$

$$= (1+sinx)(1+cosx)$$

$$= (1+cosx)(1+cosx)$$

$$= (1+cosx)(1+c$$