Centro Universitário de Anápolis - UniEvangélica

Ana Caroliny Amancio Veiga

Lucas Galvão Lima

Mauricio Luan

Relatório de implementação de uma tabela verdade em Arduino.

Prof

Me. Alexandre Tannus

Introdução

Este relatório apresentará uma explicação breve de como foi feito e qual lógica foi para desenvolvimento do trabalho com base nos conceitos aprendidos em sala de aula e nas disciplinas de programação, redes de computadores e demais.

Materiais usados

Primeiramente foi feito uso da ferramenta online Autodesk Tinkercard® para montage do circuito por ausência de um arduíno físico.

O projeto usou:

- 1 placa de arduíno modelo Uno R3
- 1 Placa protoboard Breadboard Small
- 3 resistores de 10k 1/4w
- 3 leds 1 na cor vermelha; 1 na cor azul; 1 na cor verde
- 6 fios para ligar o arduíno à placa
- 2 fios para ligar a protoboard ao arduíno sendo 1 ligado no positivo, outro negativo.

Funcionamento...

A princípio, desenvolvemos o circuito de modo que fosse possível visualizar como funciona cada componente sem que suas linhas se traçassem. A lógica usada no código parte do princípio da estrutura da linguagem C (logo, que a linguagem do arduíno é uma linguagem C-like), usamos criação do *setup* para definir as portas a serem usadas no circuito conforme mostra o código abaixo:

```
void setup()
{
          //RED - entrada de dados(valores lógicos) na porta 13
          pinMode(13, INPUT);
          //BLUE - entrada de dados(valores lógicos) na porta 11
          pinMode(11, INPUT);
          //GREEN - resultado da comparação
          pinMode(9, OUTPUT);
}
Logo após, criamos as funções anteriormente à criação do método principal da maneira
que está sendo representada abaixo:
//função and (A saída é "verdadeira" quando ambas as entradas são "verdadeiras")
int funcaoAnd(int a, int b){
       return a && b;
}
//função Or(A saída é verdadeira se uma delas forem verdadeiras - não ambas)
       int funcaoOr(int a, int b){
       return a || b;
}
//função Nand(
       int funcaoNand(int a, int b){
       return !(a && b);
}
```

```
//função de negação
       int funcaoNot(int a){
       return !a;
}
//Função Nor
int funcaoNor(int a, int b){
       return !(a \parallel b);
}
//Função Xor
int funcaoXor(int a, int b){
       return a ^ b;
}
//Função Xnor
int funcaoXnor(int a, int b){
       return !(a ^ b);
}
O ultimo trecho do nosso código é o principal, na linguagem C chamamo-no de Main.
Nesse trecho, representaremos o funcionamento do nosso código juntamente com as
chamadas das funções.
//função principal da aplicação
void loop()
{
       //chama a função And já criada
       delay(1000);
       digitalWrite(13, HIGH);
       digitalWrite(11, LOW);
```

```
a = digitalRead(13);
b = digitalRead(11);
digitalWrite(9, funcaoAnd(a,b));
digitalWrite(13, LOW);
digitalWrite(11, LOW);
a = digitalRead(13);
b = digitalRead(11);
digitalWrite(9, funcaoOr(a,b));
digitalWrite(13, LOW);
digitalWrite(11, HIGH);
a = digitalRead(13);
b = digitalRead(11);
digitalWrite(9, funcaoNor(a,b));
delay(1000);
digitalWrite(13, HIGH);
digitalWrite(11, HIGH);
a = digitalRead(13);
b = digitalRead(11);
digitalWrite(9, funcaoNot(a,b));
delay(1000);
```

}

Lições aprendidas

O presente trabalho fez que desenvolvéssemos pensamento sistêmico sobre uso de hardware com o funcionamento de software por trás. O desenvolvimento do presente projeto fez com que corrêssemos atrás de melhorias para o projeto tanto esteticamente como no seu algoritmo que impacta no seu funcionamento.