Notes of Math 733: Probability Theory

Instructor: Timo Seppäläinen

YI WEI

Sep 2024

Contents

1	Intro	1
	1.1 Probability Space	1
	1.2 Independence	6
1	Intro	
D	Pate: Sep 5,2024]	
1.	1 Probability Space	
Se	etup (Undergraduate level):	
	Ω sample space: set of all the individual outcomes	
	${\mathcal F}$ event space: appropriate collection of subsets of Ω	
	P : a function on a subsets of $\Omega, P(A) = \text{ the probability of the set (event) } A$	
A :	xiom 1.1.	

$$P(\bigcup_{k} A_k) = \sum_{k} P(A_k)$$
 whenever A_k is a pairwise disjoint sequence of events

Example 1.1.

- 1. roll a dice: $\Omega = \{1, 2, 3, 4, 5, 6\}, \mathcal{F} = \mathcal{P}(\Omega) = \text{ power set of } \Omega = \text{ collection of all subset of } \Omega$
- 2. # of customers to a service station in some fixed time interval

$$\Omega = \mathbb{Z}_{\geqslant 0}$$

$$\mathcal{F} = \mathcal{P}(\Omega)$$

$$P(k) = e^{-\lambda} \frac{\lambda^k}{k!} \quad \text{for } k \in \Omega$$

$$P(A) = \sum_{k \in A} e^{-\lambda} \frac{\lambda^k}{k!} \quad \text{for } A \subseteq \Omega$$

3. Choose uniformly random real number from [0, 1]

$$P(x) = 0 \quad \forall \, x \in [0, 1]$$
 if $0 \le a < b \le 1$:

$$P([a,b]) = b - a$$

4. Flip a fair coin for infinitly many times, 0 = heads, 1 = tails:

$$\Omega = \{0, 1\}^{\mathbb{Z}_{\geq 0}}$$

$$P\{w : x_1 = a_1, x_2 = a_2, \dots, x_n = a_n\} = 2^{-n}$$
(*)

From this: $P\{w\} = 0 \quad \forall w \in \Omega$

Remark. how to prove Ω is uncountable: diagonal principle

Definition 1.1. Let X be a space. A σ -algebra on X is a collection \mathcal{A} of subsets of X that satisfies these properties:

- 1. $\emptyset \in \mathcal{A}$
- 2. $A \in \mathcal{A} \Longrightarrow A^C \in \mathcal{A}$
- 3. $\{A_k\}_{k=1}^{\infty} \Longrightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}$

And we call (X, A) is a measurable space.

Definition 1.2. Given (X, \mathcal{A}) A measure is a function $u : \mathcal{A} \to [0, \infty]$ such that:

- 1. $P(\emptyset) = 0$
- 2. $u(\bigcup_k A_k) = \sum_{k=1} u(A_k)$ for a pairwise disjoint sequence $\{A_k\}_k \subseteq \mathcal{A}$

 (X, \mathcal{A}, u) is a measure space.

Definition 1.3. If X is a metric space, its <u>Borel σ -algebra</u> \mathcal{B}_X is by definition the smallest σ -algebra containing all the OPEN subsets of X.

Definition 1.4. Lebesgue measure m on \mathbb{R}^d is the measure that satisfies

$$m\Big(\prod_{i=1}^{d}[a_i,b_i]\Big) = \prod_{i=1}^{d}(b_i - a_i)$$

Definition 1.5. A probability space (Ω, \mathcal{F}, P) is a measure space such that $P(\Omega) = 1$.

Example 1.2. Example of product σ -algebra from example 1.1. 4:

 $\mathcal{F} = \text{product } \sigma\text{-algebra} = \text{samllest } \sigma \text{-algebra that contains all sets of the type}$

$$\{w: x_1 = a_1, \dots, x_n = a_n\}$$
 $n \in \mathbb{Z}_{>0}, a_1, \dots, a_n \in \{0, 1\}.$

P obtained from Eq. *

Definition 1.6. Let (X, \mathcal{A}) , (Y, \mathcal{B}) be measurable space, and $f: X \to Y$ be a function. We say f is a <u>measurable function</u> if:

$$f^{-1}(B) = \{x \in X : f(x) \in \mathcal{B}\} \subseteq \mathcal{A}, \quad \forall B \in \mathcal{B}$$

A random variable X is a measurable function:

$$X:(\Omega,\mathcal{F})\to(\mathbb{R},\mathcal{B}_{\mathbb{R}})$$

Example 1.3. flip of a fair coin $\Omega = \{w = (x_1, x_2) : x_1, x_2 \in \{0, 1\}\}, 0 = \text{heads}, 1 = \text{tails}:$

 $X_1(w) = x_1$ outcome of the first flip

 $X_2(w) = x_2$ outcome of the second flip

We define $Y(w) = X_1(w) + X_2(w) = \#$ of tails in the two flips

The information contained in Y(w) is represented by σ -algebra generated by Y defined as follows:

$$\begin{split} \sigma(Y) &= \{ \{Y \in B\} : B \in \mathcal{B}_{\mathbb{R}} \} \\ &= \left\{ \varnothing, \Omega, \{(0,0)\}, \{(0,1), (1,0)\}, \{(1,1)\} \text{ and the unions of these sets} \right\} \subsetneq \mathcal{F} \end{split}$$

[**Date:** Sep 10,2024]

1. push-forward: (X, \mathcal{A}, μ) is a measure space, and (Y, \mathcal{B}) is a measurable space. And there is a $f: X \to Y$. The push-forward of μ is the measure v on (Y, \mathcal{B}) defined by $v(\mathcal{B}) = u(f^{-1}(\mathcal{B}))$

Remark. Check v is a measure.

2. Absolute continuity: Let μ, λ be measures on (X, \mathcal{A}) . Then μ is absolute continuous w.r.t λ if $\lambda(A) = 0 \Longrightarrow \mu(A) = 0 \quad \forall A \in \mathcal{A}$.

Remark. $\mu \ll \lambda$. If $\mu \ll \lambda$, then there exists a measurable function $f: X \to \mathbb{R}_{\geq 0}$ s.t.

$$\mu(A) = \int_A f \, d\lambda \qquad \forall A \in \mathcal{A}$$

This is called Radom-Nikodym derivative $f(x) = \frac{d\mu}{d\lambda}(x)$

Definition 1.7. Let $X : (\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ be a random variable. The <u>distribution</u> of X is the $\mu = P \circ X^{-1}$, i.e.,

$$\mu(B) = P\{w \in \Omega : X(w) \in B\}$$
 for $B \in \mathcal{B}$

In short: $P\{X \in B\} = P(X \in B)$

Definition 1.8. The CDF of X is the function F on \mathbb{R} defined by

$$F(x) = P(X \le x) = \mu(-\infty, x]$$

Definition 1.9. If μ « Lebegue measure, then X has a density function f which satisfies

$$P(a < X \le b) = \int_{a}^{b} f(x) dx = \mu(a, b] = F(b) - F(a)$$

Remark. A <u>discrete random variable</u> has at most countably many values, and since individual pts have positive probability

$$\mu\{k\} = P(X = k) > 0 = leb\{x\}$$

Then we know μ «Leb fails and X has no density function.

Definition 1.10. The expectation of a r.v. X is defined by

$$EX = \int_{\Omega} X \, dP$$

Remark. Abstract Lebesgue integral on (Ω, \mathcal{F}, P)

Definition 1.11. If $A \in \mathcal{F}$ is an event, its indicator random variable is

$$\mathbf{1}_{A}(w) = \begin{cases} 1, & \text{if } w \in A, \\ 0, & \text{if } w \notin A. \end{cases}$$

We know

$$E[\mathbf{1}_A] = 0 \cdot P\{\mathbf{1}_A = 0\} + 1 \cdot P\{\mathbf{1}_A = 1\}$$

= $P(A)$

Example 1.4.

$$X \sim Poisson(\lambda) \Longrightarrow E[g(X)] = \sum_{k=0}^{\infty} g(k) \frac{e^{-\lambda} \lambda^k}{k!}$$

 $X \sim Exp(\lambda) \Longrightarrow E[g(X)] = \int_0^{\infty} g(x) \lambda e^{-\lambda} dx$

Theorem 1.2.

Key result:

$$E[f(X)] := \int_{\Omega} f(X) dP = \int_{\mathbb{R}} f \, d\mu$$

Here: X is a r.v. on (Ω, \mathcal{F}, P) , $\mu = P \circ X^{-1} = \text{distribution of } X$, $f : \mathbb{R} \to \mathbb{R}$ is a Borel function $f(X(w)) = (f \circ X)(w)$

Proof.

1. $f = \mathbf{1}_B, B \in \mathcal{B}_{\mathbb{R}}$.

Remark. Notation: $\int_{\Omega} \mathbf{1}_B(X(w)) P(\mathrm{d}w)$ (same as dP(w))

$$\begin{split} \int_{\Omega} \mathbf{1}_B(X(w)) P(\mathrm{d}w) &= \int_{\Omega} \mathbf{1}_{X^{-1}(\mathcal{B})}(w) \mathrm{d}x \\ &= P(X^{-1}(B)) = \mu(B) = \int_{\mathbb{R}} \mathbf{1}_B d\mu \end{split}$$

2. $f = \sum_{i=1}^{n} a_i \mathbf{1}_{B_i}, a_1, \dots, a_n \in \mathbb{R}, B_1, \dots, B_n \in \mathcal{B}_{\mathbb{R}}$

$$\int_{\Omega} \sum_{i=1}^{n} a_i \mathbf{1}_{B_i}(X) dP = \sum_{i=1}^{n} a_i \int_{\Omega} \mathbf{1}_{B_i}(X) dP$$
$$= \sum_{i=1}^{n} a_i \int_{\mathbb{R}} \mathbf{1}_{B_i} d\mu$$
$$= \int_{R} \sum_{i=1}^{n} a_i \mathbf{1}_{B_i} d\mu$$

3. $f \ge 0, \exists$ simple function $0 \le f_n$

$$\int_{\Omega} f(X) dP = \lim_{n \to \infty} \int_{\Omega} f_n(X) dP \qquad (M.C.T.)$$

$$= \lim_{n \to \infty} \int_{\mathbb{R}} f_n d\mu$$

$$= \int_{\mathbb{R}} f d\mu$$

Remark. $f_n(x) = \sum_{k=0}^{n(2^n-1)} \frac{k}{2^n} \mathbf{1}\{\frac{k}{2^n} \leqslant f(x) < \frac{k+1}{2^n}\} + n \mathbf{1}\{f(x) > n\}$

4. For general $f: \mathbb{R} \to \mathbb{R} = f^+ - f^-$ Borel function where $f^+, f^- \ge 0$

$$\int_{\Omega} f(X) dP = \int_{\Omega} f^{+}(X) dP - \int_{\Omega} f^{-}(X) dP$$
$$= \int_{\mathbb{R}} f^{+} d\mu - \int_{\mathbb{R}} f^{-} d\mu$$
$$= \int_{\mathbb{R}} f d\mu$$

Example 1.5. 1. $X \sim Possion(\lambda)$, $\mu = \text{distribution of } X$. We know $\mu(B) = \sum_{k:k \in B} e^{-\lambda} \frac{\lambda^k}{k!} \Longrightarrow \mu(\mathbb{R}\backslash\mathbb{Z}_{\geq 0}) = 0$. Then we have:

$$E[e^{-tX}] = \int_{\mathbb{R}} e^{-tx} \mu(dx)$$

$$= \int_{\mathbb{Z}_{\geqslant 0}} e^{-tx} \mu(dx)$$

$$= \sum_{k \in \mathbb{Z}_{k \geqslant 0}} \int_{\{k\}} e^{-tx} \mu(dx)$$

$$= \sum_{k \geqslant 0} e^{-tk} e^{-\lambda} \frac{\lambda^k}{k!}$$

$$= e^{-\lambda} e^{\lambda e^{-t}}$$

$$= e^{\lambda(e^{-t} - 1)}$$

2. $X \sim Exp(\lambda)$

$$E[e^{-tX}] = \int_{\mathbb{R}} e^{-tx} \mu(dx) = \int_{[0,\infty)} e^{-tx} \lambda e^{-\lambda x} dx$$

$$= \lim_{M \to \infty} \int_{[0,M]} \lambda e^{-(t+\lambda)x} dx = \lim_{M \to \infty} R \int_{0}^{M} \lambda e^{-(t+\lambda)x} dx$$

$$= \lim_{M \to \infty} \left(-\frac{\lambda}{t+\lambda} \right) e^{-(t+\lambda)x} \Big|_{0}^{M}$$

$$= \lim_{M \to \infty} \left(\left(-\frac{\lambda}{t+\lambda} \right) e^{-(t+\lambda)M} + \frac{\lambda}{t+\lambda} \right)$$

$$= \frac{\lambda}{t+\lambda}$$

[Date: Sep 12, 2024]

1.2 Independence

Perhaps you recall this: events A and B are independent if $P(A \cap B) = P(A)P(B)$

Definition 1.12. Let Ω, \mathcal{F}, P be a probability space.

Let $\mathcal{F}_1, \ldots, \mathcal{F}_n$ be sub- σ -algebra of \mathcal{F} . (Means each \mathcal{F}_i is a σ -algebra and $\mathcal{F}_i \subseteq \mathcal{F}$) Then we say $\mathcal{F}_1, \ldots, \mathcal{F}_n$ are independent if $\forall A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2, \ldots, A_n \in \mathcal{F}_n$, then

$$P(\bigcap_{i=1}^{n} A_i) = \prod_{i=1}^{n} P(A_i)$$

Now r.v.'s X_1, \ldots, X_n on Ω are independent if the σ -algebra $\sigma(X_1), \ldots, \sigma(X_n)$ are independent.

Equivalently, \forall measurable sets in the range space,

$$P(\bigcap_{i=1}^{n} \{X_i \in B_i\}) = \prod_{i=1}^{n} P\{X_i \in B_i\}$$

Events A_1, \ldots, A_n are independent if the r.v.'s $\mathbf{1}_{A_1}, \ldots, \mathbf{1}_{A_n}$ are independent.

And arbitrary collection $\{\mathcal{F}_{\beta}: \beta \in \mathcal{J}\}$ of sub- σ -algebra is independent if \forall distinct $\beta_1, \ldots, \beta_n \in \mathcal{J}, \mathcal{F}_{\beta_1}, \ldots, \mathcal{F}_{\beta_n}$ are independent.

Remark. Fact: X_1, \ldots, X_n are independent, then so are $f_1(X_1), \ldots, f_n(X_n)$

Remark. Why product?

X,Y discrete r.v.'s. We're interested in the event $\{X=k\}$. Suppose we learn that Y=m. We replace P with $P(\cdot,Y=m)$ defined by $P(A|Y=m)=\frac{P(A\cap\{Y=m\})}{P(Y=m)}$

When is P(X = k) = P(X = k|Y = m)?

$$P(X = k) = P(X = k | Y = m)$$

$$\iff P(X = k)P(Y = m) = P(X = k, Y = m)$$

We need some notions/tool to check easily if two r.v.'s are independent.

- 1. Develop a simpler criterion for checking independence of a given collection of r.v.'s.
- 2. To construct a probability space with desired independent r.v.'s.

Example 1.6. Let X_1, X_2, X_3 be independent Bernolli(p) r.v.'s.

$$P(X_i = 1) = p = 1 - P(X_i = 0)$$

Consider the following events:

$$\begin{cases} \{X_1 + X_2 = 1\} \\ \{X_2 + X_3 = 1\} \end{cases}$$

Firstly we have:

$$P(X_1 + X_2 = 1) = P(01) + P(10) = 2p(1-p) = P(X_2 + X_3 = 1)$$

And we have:

$$P(X_1 + X_2 = 1, X_2 + X_3 = 1) = P(101) + P(010) = p^2(1-p) + p(1-p)^2 = p(1-p)$$

If the two events and independent, we have:

$$P(X_1 + X_2 = 1, X_2 + X_3 = 1) = P(X_1 + X_2 = 1) \cdot P(X_2 + X_3 = 1)$$

$$\iff p(1-p) = 4p^2(1-p)^2$$

$$\iff p(1-p) = \frac{1}{4}, \ p = 0, \text{ or } p = 1$$

$$\iff p = \frac{1}{2}, 0, \text{ or } 1$$

Theorem 1.3. Let A_1, \ldots, A_n be subcollection of \mathcal{F} , Assume that each A_i is closed under intersection, which means $(A, B \in A_i \Longrightarrow A \cap B \in A_i)$ and $\Omega \in A_i$. Assume that the probability $P(\bigcap_{i=1}^n A_i) = \prod_{i=1}^n P(A_i) \quad \forall A_1 \in A_1, \ldots, A_n \in A_n$. Then the σ -algebra $\sigma(A_1), \ldots, \sigma(A_n)$ are independent.

Example 1.7. The basis of Borel-algebra. $A_i = \{(a, b) : -\infty < a < b < \infty\}$, then $\sigma(A_i) = \mathcal{B}_{\mathbb{R}}$. Or you can take $(-\infty, b]$

The tool for proving the theorem: Dynkin's $\pi - \lambda$ theorem.

Definition 1.13. Let \mathcal{A} be a collection of subset of Ω

- 1. \mathcal{A} is a π -system if it is closed under intersections.
- 2. \mathcal{A} is a λ -system if it has the following three properties:
 - (a) $\Omega \in \mathcal{A}$
 - (b) $\forall A, B \in \mathcal{A} \text{ and } A \subseteq B \Longrightarrow B \backslash A \in \mathcal{A}$
 - (c) If $A_1 \subseteq A_2 \cdots \subseteq A_n \subseteq \cdots$ and each $A_i \in \mathcal{A}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$

Theorem 1.4. Suppose \mathcal{P} is a π -system, \mathcal{L} is a λ -system and $\mathcal{P} \subseteq \mathcal{L}$, then $\sigma(\mathcal{P}) \subseteq \mathcal{L}$

We use theorem 1.4 to prove theorem 1.3.

Proof of theorem 1.3: Fix $A_2 \in \mathcal{A}_2, \ldots, A_n \in \mathcal{A}_n$, set $\mathcal{F} = A_2 \cap \cdots \cap A_n$

$$\mathcal{L} = \{ A \in \mathcal{F} : P(A \bigcap F) = P(A)P(F) \}$$

Claim 1.5. $A_1 \subseteq \mathcal{L}$

Proof of claim 1.5. Check that $P(F) = \prod_{i=2}^{n} P(A_i)$

Take $A_1 = \Omega$

Let
$$A_1 \in A_1$$
. $P(A_1 \cap F) = P(\bigcap_{i=1}^n A_i) = \prod_{i=1}^n P(A_i) = P(A_i)P(F)$

Claim 1.6. \mathcal{L} is a λ -system.

Proof of claim 1.6. 1. $\Omega \in A_1 \subseteq \mathcal{L}$

2. Let $A, B \in \mathcal{L}, A \subseteq B$. We want $B \setminus A \in \mathcal{L}$.

$$P\Big((B\backslash A)\bigcap F\Big)=P\Big((B\bigcap F)\backslash (A\bigcap F)\Big)=P(B\bigcap F)-P(A\bigcap F)$$

3. Let $\mathcal{L} \ni A_i \nearrow A$.. We want: $A \in \mathcal{L}$

$$P(A \bigcap F) = \lim_{n \to \infty} P(A_n \bigcap F)$$
 because $A_n \bigcap F \nearrow A \bigcap F$

We've checked that \mathcal{L} is a λ -system. So $\sigma(A_1) \subseteq \mathcal{L}$

We continue the proof of theorem 1.4:

Then
$$P(\bigcap_{i=1}^{n} A_i) = \prod_{i=1}^{n} P(A_i)$$
 $\forall A_1 \in \sigma(A_1), A_2 \in A_2, \dots, A_n \in A_n$

We can use the same argument to upgrade each \mathcal{A}_i in turn to $\sigma(\mathcal{A}_i)$. At the end we have the product properties for all members of $\sigma(\mathcal{A}_1), \ldots, \sigma(\mathcal{A}_n)$

Corollary 1.7. \mathbb{R} -valued r.v.'s X_1, \ldots, X_n are independent iff

$$P(\bigcap_{i=1}^{n} \{X_i \leqslant s_i\}) = \prod_{i=1}^{n} P\{X_i \leqslant s_i\}$$