EE224/283: SIGNALS AND SYSTEMS - HOMEWORK #01

DUE ON TUESDAY MAY 22^{ND} , 2012

- (1) Determine the complex exponential Fourier series of the following signals and sketch the magnitude and phase spectra.
 - (a) $x_1(t) = 7\sin(5t)$
 - (b) $x_2(t) = \cos(4t) + \sin(6t)$
 - (c) $x_3(t) = \sin^2(t)$
 - (d) $x_4(t) = x_1(t) + x_2(t) + x_3(t)$
- (2) If a signal x(t) is real, even symmetric and has a period of T_0 then x(t) can be written as

$$x(t) = a_0 + 2a_1 \cos(1\omega_0 t) + 2a_2 \cos(2\omega_0 t) + \dots$$
 where $a_k = \frac{1}{T_0} \int_{T_0} x(t) \cos(k\omega_0 t) dt$.

That is, the complex exponential Fourier Series is reduced to a real cosine series. Using this, find an expression for the k^{th} coefficient a_k of the cosine series for x(t) where

$$g(t) = \begin{cases} 1 + \cos(2\pi t) & \text{for } |t| \le 0.5\\ 0 & \text{elsewhere} \end{cases}$$

and
$$x(t) = \sum_{k=-\infty}^{\infty} g(t-2k)$$
. Evaluate a_0 , a_1 and a_2 .

(3) Let

$$x(t) = \begin{cases} t & \text{for } 0 \le t < 1\\ 2 - t & \text{for } 1 \le t < 2 \end{cases}$$

be a periodic signal with fundamental period T=2 and Fourier Series coefficient X_k .

- (a) Determine X_0
- (b) Determine the Fourier series expansion of $\frac{\mathrm{d}x(t)}{\mathrm{d}t}$
- (c) Using the result in problem 3b and the differentiation property determine the Fourier series coefficients of x(t).
- (4) Let

$$x(t) = \begin{cases} 1 & \text{for } |t| < T_1 \\ 0 & \text{for } T_1 \le |t| < T/2 \end{cases}$$

be a periodic signal with fundamental period T and Fourier Series coefficient X_k .

- (a) Determine X_0 and X_k for $k \neq 0$.
- (b) If

$$y(t) = \begin{cases} 1 & \text{for } 0 \le t < 2\\ 0 & \text{for } 2 \le t < 4 \end{cases}$$

is periodic with T = 4. Sketch y(t) and use the result in 4a to determine the expressions for Y_0 and Y_k by selecting suitable vales for T_1 and T.

- (c) What is the fundamental frequency ω_0 for the y(t) in 4b. Express y(t) in terms of Y_k , substituting appropriate values for ω_0 . That is, write down the Fourier series of y(t).
- (d) Let g(t) = y(2t). Sketch g(t). What is the fundamental frequency ω_0 for g(t)? Use the result in 4b to derive G_0 and G_k and write down the Fourier series expansion of g(t).
- (e) Sketch m(t) = y(t) + g(t). Find the Fourier series coefficients M_0 , M_1 and M_2 of m(t) using the results in 4b-4d.

(5) Let

$$x(t) = \begin{cases} 0 & \text{for } t < -\frac{1}{2} \\ t + \frac{1}{2} & \text{for } -\frac{1}{2} \le t \le \frac{1}{2} \\ 1 & \text{for } t > \frac{1}{2} \end{cases} \quad \text{and} \quad y(t) = \begin{cases} 0 & \text{for } t < -\frac{1}{2} \\ t + \frac{1}{2} & \text{for } -\frac{1}{2} \le t \le \frac{1}{2} \\ 0 & \text{for } t > \frac{1}{2} \end{cases}$$

- (a) Find the Fourier transform of $\frac{\mathrm{d}x(t)}{\mathrm{d}t}$.
- (b) Using the result in 5a and an appropriate property of Fourier transform to find the Fourier transform of x(t).
- (c) Find the Fourier transform of $\frac{dy(t)}{dt}$.
- (d) Using the result in 5c and an appropriate property of Fourier transform to find the Fourier transform of y(t).
- (e) Find the Fourier transform of $g(t) = x(t) \frac{1}{2}$.
- (6) (a) Show that $\mathcal{F}^{-1}\left[\frac{\mathrm{d}X(j\omega)}{\mathrm{d}\omega}\right] = (-jt)x(t)$. This is the differentiation property of the Fourier transform in the frequency domain.
 - (b) Using the Fourier transform integral, find the Fourier transform of $x(t) = e^{-|t|}$.
 - (c) Using the property derived in 6a and the result in 6b, find the Fourier transform of $te^{-|t|}$.
 - (d) If $X(j\omega)$ is the Fourier transform of x(t), using the property $\mathcal{F}[X(t)] = 2\pi x(-\omega)$ (this is called the duality property), find the Fourier transform of $\frac{4t}{(1+t^2)^2}$.

(7) Let

$$x(t) = \begin{cases} 0 & \text{for } |t| > 1\\ (1+t)/2 & \text{for } -1 \le t \le 1 \end{cases}$$

- (a) Determine the Fourier transform $X(j\omega)$ of x(t) using the differentiation and integration property of Fourier transform.
- (b) What is Re $[X(j\omega)]$? Show that it is equal to the even part of x(t).
- (c) What is the Fourier transform of the odd part of x(t).