# Math 206

#### Fall 2015

#### 8/26

#### **Definitions**

```
A norm on a vector space X (over \mathbb{F}) is a function ||| : X \to \mathbb{R}^+ such that ||x|| = 0 iff x = 0 ||\alpha x|| = |\alpha| ||x|| (for \alpha \in F) ||x + y|| \le ||x|| + ||y||
An algebra \mathscr{A} over \mathbb{F} is a vector space with distributive \cdot satisfying cx \cdot y = c(x \cdot y) x \cdot cy = c(x \cdot y) for all c \in F
A normed algebra over \mathbb{R} or \mathbb{C} is an algebra \mathscr{A} equipped with (vector space) norm satisfying ||ab|| \le ||a|| ||b|| for all a, b \in \mathscr{A}
A norm on \mathscr{A} induces a metric d(a,b) = ||a - b|| on \mathscr{A} and therefore a topology if \mathscr{A} is complete for this norm, it is a Banach algebra
```

# To figure out (use https://www.math.ksu.edu/ nagy/real-an/2-05-b-alg.pdf)

```
Supposing \mathscr{A} is not necessarily complete
```

 $||ab|| \le ||a|| ||b||$  gives uniform continuity on the product

hence the norm can be extended to the completion  $\bar{\mathscr{A}}$  to form a Banach algebra A metric space M is complete if all Cauchy sequences converge to an element of M The completion M is all equivalence classes of Cauchy sequences where

$$\{a_n\} \sim \{b_n\} \text{ iff } \lim_{x \to \infty} d(a_n - b_n) = 0$$

### **Examples**

```
For M a compact space, C(M) the set of continuous \mathbb{R}/\mathbb{C}-valued functions on M pointwise operations \|f\|_{\infty} = \sup\{|f(x)| : x \in M\} For M locally compact, C_{\infty}(M)
```

the set of continuous  $\mathbb{R}/\mathbb{C}$ -valued functions on M vanishing at  $\infty$  vanishing at  $\infty$ :  $\forall e \exists$  a compact subset of M, outside of which  $f < \epsilon$  note that this is non-unital (lacks an identity)

For  $\mathscr{O} \subset \mathbb{C}^n$  open

 $H^{\infty}(\mathscr{O})$  the set of all bounded holomorphic functions on  $\mathscr{O}$ 

(M, d) metric space and  $f \in C(M)$ 

Lipschitz constant (which can be  $+\infty$ )  $L_d(f) = \sup\{\frac{|f(x) - f(y)|}{d(x,y)} : x, y \in M, x \neq y\}$ 

The Lipschitz functions  $\mathcal{L}_d(M,d) = \{f : L(f) < \infty\}$ 

These form a dense subalgebra of C(M) and are in fact a \*-subalgebra

 $||f||_d := ||f||_{\infty} + L_d(f)$ , can be shown as a normed-algebra norm

 $L_d(M,d)$  is complete for this norm

so  $L_d(M,d)$  is a Banach algebra

 $L_d$  is a seminorm on  $\mathcal{L}_d(M,d)$  since it takes value 0 on the constant functions can recover d from  $L_d$ 

M a differentiable manifold (e.g.  $T = \mathbb{R}/\mathbb{Z}$  the circle)

 $C(M) \supseteq C^{(1)}(M)$  the singly-differentiable functions

$$f \in C^{(2)}(T) \to Df: T_xM \to \mathbb{R}, \mathbb{C}$$

with Df the derivative and  $T_x$  the tangent space

If we put on a Riemmannian metric, define  $||f||^{(1)} = ||f||_{\infty} + ||Df||_{\infty}$ 

If 
$$f \in C^{(1)}(T) : ||f||^{(1)} = ||f||_{\infty} + ||f'||_{\infty}$$

Banach algebra norm, for which this space of functions is complete

For the circle, 
$$C^{(2)}(T) \to ||f||^{(2)} = ||f||_{\infty} + ||f'||_{\infty} + \frac{1}{2}||f''||_{\infty}$$

the factor  $\frac{1}{2}$  ensures that this satisfies the normed algebra condition

$$C^{(n)}(T) = \sum_{k=0}^{n} \frac{1}{k!} ||f^{(k)}||_{\infty}$$

For  $C^{\infty}(T)$  using the collection of norms  $\{\|\|^{(n)}\}_{n=1}^{\infty}$  yields a Fréchet algebra A Fréchet algebra has a topology defined by a countable family of seminorms that respect the algebra structure and is complete **(clarify)** 

non-commutative algebras

X a Banach space

 $\mathscr{B}(X)$  the algebra of bounded operators on X

 $\| \|$  operator norm  $\rightarrow$  Banach algebra

Any closed subalgebra of  $\mathcal{B}(X)$  is a Banach algebra

## 8/28

Sketch of the course

X a Banach space, B(X) bounded functions on the space

 $\mathscr{H}$  a Hilbert space,  $\mathscr{B}(\mathscr{H})$  bounded operators on the space

for 
$$T \in \mathcal{B}(\mathcal{H}) \exists$$
 adjoint operator  $T^* \in \mathcal{B}(\mathcal{H})$ 

$$< T\xi, \eta > = < \eta, T^*\xi > \text{for } \xi, \eta \in \mathcal{H}$$

adjoint is additive, conjugate linear,  $T^{**} = T$ ,  $(ST)^* = T^*S^*$ 

An algebra A over  $\mathbb R$  or  $\mathbb C$  is a \*-algebra if it has a \* :  $A \to A$  satisfying

```
certain properties (look up)
A *-normal algebra is a normal *-algebra such that
    (\forall a \in A) ||a^*|| = ||a||
A Banach *-algebra is a *-normal algebra that is a Banach algebra.
For any T \in \mathcal{B}(\mathcal{H}), have ||T^*T|| = ||T||^2 (check: parse through defns)
For M a locally compact space, A = C_{\infty}(M, \mathbb{C}), f^* := \bar{f} is a Banach *-algebra
    Also have ||f^*f|| = ||f||^2 (verify: should be easier than the other)
Little Gelfand-Naimark theorem:
   Let A be a commutative Banach *-algebra satisfying ||a^*a|| = ||a||^2.
   Then A \cong C_{\infty}(M) for some locally compact M.
One view of the "spectral theorem"
   Let T \in \mathcal{B}(\mathcal{H}) with T^* = T
   Let A be the closed subalgebra of \mathscr{B}(\mathscr{H}) generated by T and I (i.e. p(T) := \Sigma \alpha_k T^K)
   Polynomials closed or stable under *
   If S \in A then S^* \in A (i.e. A is a *-subalgebra of \mathscr{B}(\mathscr{H})
   So A is a Banach *-suubalgebra satisfying ||S^*S|| = ||S||^2
   Moreover, A is commutative. (unital, since generated by I)
   Then by the Little Gelfand-Naimark theorem, A \cong C(M)
   Indeed M \subset \mathbb{R}, the spectrum of T
   If \mathcal{H} is finite dimensional, then M is the set of eigenvalues of T
   T is normal if TT^* = T^*T
A C*-algebra is a Banach *-algebra over C satisfying
    ||a^*a|| = ||a||^2
Theorem: A commutative C*-algebra is \cong C_{\infty}(M).
Big Gelfand-Naimark Theorem: (Math 208, C*-algebras)
   Any C*-algebra is \cong to a closed *-subalgebra of \mathscr{B}(\mathscr{H}) for some Hilbert space \mathscr{H}.
Tangent
    algebraic topology, differential geometry, Riemann manifolds, "non-commutative ge-
ometry" (Connes)
A von-Neumann algebra is a *-subalgebra of \mathscr{B}(\mathscr{H})
   which is closed under the strong operator topology.
    Every commutative von-Neumann algebra is \cong L^{\infty}(X, S, \mu) (measure spaces) acting
on L^2(X, S, \mu) by positive sldkjfalksdjf
For group G, \alpha : G \to Auto(X) \subseteq \mathcal{B}(X)
    Auto(X) a Banach space
   Look at subalgebra of \mathcal{B}(X) generated by \alpha(G).
   Leads to considering l'(G) with product (f \star g)(x) = \sum f(y)g(y^{-1}x) convolution
    f^*(x) = f(x^{-1})
   Banach *-algebra, G commutative \rightarrow Fourier transform
```

### 8/31

K a field, X a set,  $\mathscr{F}(X,K)$  the set of all K-valued functions on X with pointwise operations Given  $f \in \mathscr{F}(X,K)$ .

```
Let \lambda \in K. Then \lambda \in \text{range}(f) exactly if (f - \lambda 1) is not invertible.
```

For any  $a \in A$ , the *spectrum* of a is  $\{\lambda \in K : a - \lambda 1_A \text{ is not invertible in A}\}$ .

The spectrum depends on the containing algebra

Assuming that this algebra A (over the field K) has an identity  $1_A$ 

Example: Let A = C([0, 1]), and B = polynomials, viewed as a dense subalgebra of A.

Let p be a polynomial of degree  $\geq 2$ . Then

$$\sigma_a(p) = p([0,1]).$$
  
 $\sigma_B(p) = \mathbb{R}, \mathbb{C}$ 

Let A be a Banach algebra with 1 (||1|| = 1), and  $a \in A$ .

If 
$$||a|| < 1$$
, then 1 - a is invertible, and  $||(1-a)^{-1}|| \le \frac{1}{1-||a||}$ 

Proof:

$$\frac{1}{1-a} = \sum_{n=0}^{\infty} a^n \ (a^0 := 1_A)$$

For any n > 0, let  $s_n = \sum_{k=0}^n a^k$ .

Show that  $\{s_n\}$  is a Cauchy sequence.

If 
$$n > m$$
,  $||s_n - s_m|| = ||\sum_{k=m+1}^n a^k|| \le \sum_{k=m+1}^n ||a||^k$ .

Given  $\epsilon > 0 \exists N$  such that if  $m, n \geq N$  then  $\sum_{k=m+1}^{n} ||a||^k \leq \epsilon$ 

So  $\{s_n\}$  is a Cauchy sequence.

By completeness there is a  $b \in A$  with  $s_n \to b$  as  $n \to \infty$ .

Want to show  $b = (1 - a)^{-1}$ .

$$b(1-a) = \lim_{n \to \infty} (s_n(1-a))$$
  
=  $\lim_{n \to \infty} (1 + a + a^2 + a^3 + \dots + a^n - (a + a^2 + a^3 + \dots + a^{n+1}))$ 

$$= \lim_{n\to\infty} (1 - a^{n+1}) = 1$$

Then 1 - (1 - a) is invertible, i.e. a is invertible.

$$\|(1-a)^{-1}\| = \lim \|s_n\| \le \lim \sum_{k=0}^n \|a^k\| = \frac{1}{1-\|a\|} (\|1\| = 1)$$

 $||ab|| \le ||a|| ||b||$ : can very easily check that multiplication is cts (do this?)

Corollary: If 
$$a \in A$$
 and  $||1-a|| < 1$  then a is invertible, and  $||a^{-1}|| \le \frac{1}{1-||1-a||}$ 

I.e. the open unit ball about 1 consists of invertible elements.

Let  $a \in A$ . Let  $L_a$ ,  $R_a$  be the operators of left and right multiplication by a on A.

 $a \to L_a$  is an algebra homomorphism of A into  $\mathcal{L}(A)$  (linear operators on A)

$$L_aL_b = L_{ab}$$
,  $R_aR_b = R_{ba}$  (R is an antihomomorphism)

 $1 \in A$ 

If a is invertible, then so is  $L_a$ ,  $L_aL_{a-1} = I_a$ 

Then if A is a normed algebra,  $||L_a|| = ||a||$ 

$$||L_{ab}|| = ||ab|| \le ||a|| ||b||$$

$$||L_a 1_a|| = ||a||$$

so if  $a \in A$  is invertible, then  $L_a$  is a homeomorphism of A onto itself.

Thus if *A* is a Banach algebra, with 1, and a is invertible:

 $\{L_ab: ||1-b|| < 1\}$  is an open neighborhood of a consisting of invertible elements

Let GL(A) be the set of invertible elements of A. (general linear group)

Then (for A a unital Banach algebra) GL(A) is an open subset of A.

(Fails for Poly  $\subseteq C([0, 1])$ )

Two Fréchet algebras, for one, GL(A) is an open subset, for another it isn't.

ask about this?: not sure what he was talking about

$$C^{\infty}(T)$$
,  $||f^{(n)}||$ 

```
C(R) cont fns on \mathbb R (or \mathbb C) maybe unbounded
```

For each n let  $||f||_n = \sup\{|f(t)| : |t| \le n\}$ 

Corollary: For A a Banach algebra with 1 and  $a \in A$ ,  $\sigma(a)$  is a closed subset of  $\mathbb C$ 

#### 9/2

Proposition: Let A be a unital Banach algebra and  $a \in A$ .

Then  $\sigma(a)$  is a closed subset of  $\mathbb{C}$  or  $\mathbb{R}$ . If  $\lambda \in \sigma(a)$  then  $\|\lambda\| \leq \|a\|$ .

Proof:  $\sigma(a) = \{\lambda : (a - \lambda) \text{ is not invertible}\}\$ 

Its complement, the *resolvant set*, of a is  $\{\lambda : (a - \lambda) \in GL(A)\}$ , is open.

If  $|\lambda| > ||a||$  then  $(\lambda - a) = \lambda(1 - \frac{a}{\lambda})$ ,  $||a/\lambda|| < 1$ 

so  $(\lambda - a)$  is invertible, ie  $\lambda \in \sigma(a)$ .

Over  $\mathbb{R}$ , can have  $\sigma(a) = \emptyset$ , e.g. (2x2 matrix (0 -1 1 0))

"If  $a \in GL(A)$  and b is close to a then  $b^{-1}$  is not much bigger than  $a^{-1}$ ".

Let  $\mathcal{O} = \{c : ||1 - c|| < 1/2\}$ 

So c is invertible, and  $||c^{-1}|| \le \frac{1}{1-||1-c||} \le 2$ 

Let  $b \in a\mathscr{O}$ , so b = ac for  $c \in \mathscr{O}$ , then  $||b^{-1}|| = ||c^{-1}a^{-1}|| \le 2||a^{-1}||$ .

For  $a, b \in GL(A)$ .

 $b^{-1} - a^{-1} = b^{-1}(a - b)a^{-1}$ 

Thus  $||b^{-1} - a^{-1}|| \le ||b^{-1}|| ||a - b|| ||a^{-1}||$ .

So  $b \to b^{-1}$  is continuous for the norm.

So GL(A) is a topological group for topology from norm.

$$b^{-1} = (1 + b^{-1}(a - b))a^{-1}$$

On  $\rho(a)$  (the resolvant set, complement of the spectrum) define the resolvant of a This is the function  $R(a,\lambda)=(\lambda-a)^{-1}$ 

 $R(a,\lambda)$  is an analytic function on  $\rho(a)$ .

Proof: Let f(z) = R(a, z).

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \frac{(z+h-a)^{-1} - (z-a)^{-1}}{h}$$

$$= \lim_{h \to 0} \frac{1}{2} (z+h-a)^{-1} ((z-a) - (z+h-a))$$

$$= \lim_{h \to 0} \frac{1}{h} (z + h - a)^{-1} ((z - a) - (z + h - a)) (z - a)^{-1}$$

$$= \lim_{h \to 0} \int_{h} (z + h - a)^{-1} (z - a)^{-1} = -(z - a)^{-2}$$

$$f'' = +z(z - a)^{-3}$$

Given  $z_0 \in \rho(a)$ 

Will use 
$$b^{-1} = (1 + b^{-1}(a - b))a^{-1}$$
 and  $f(z) = (z - a)^{-1} = \sum c_n(z - z_0)^n$ 

$$f(z) = (z - a)^{-1}$$

 $b \rightarrow z - a$ 

$$f(z) = (1 + (z - a)^{-1}((z_0 - a) - (z - a))(z_0 - a)^{-1}$$
  
=  $(1 + (z - a)^{-1}(z_0 - z))(z_0 - a)^{-1}$ 

where  $(z - a)^{-1}(z_0 - z) \le 1$  then the above

 $= \sum (-1)^n (z-a)^{-n} (z-z_0)^n = \sum (-1)^n (z-a)^{-n-1} (z-z_0)^n$ 

a proper power series expansion.

Examine R(a,z) at  $\infty$ .

$$R(a,z^{-1}) = (z^{-1} - a)^{-1} = \frac{1}{z^{-1} - a}$$
  
=  $z(1 - za)^{-1}$  (for small z, ie  $||za|| < 1$ )

 $R(a,z^{-1})$  approaches 0 as  $z \to 0$ .

defn  $R(a,0^{-1}) = 0$ , see R(a,z) is analytic at ∞.

Theorem: For a Banach algebra over  $\mathbb{C}$  with 1, and for any  $a \in A$ ,

 $\sigma(a) \neq \emptyset$ , that is, the spectrum is non-empty.

Proof: Suppose that  $\sigma(a) = \emptyset$ .

Then R(a,z) is defined on all of  $\mathbb{C}$  and is bounded.

By Liouville's, R(a,z) is constant, = 0,  $(a-z)^{-1} = 0 \ \forall z$ 

Why can we use Liouville's in this Banach space case?

Let A' be the dual Banach space to A.

For  $\varphi \in A'$ ,  $z \mapsto \varphi(R(a,z))$  is a  $\mathbb{C}$ -valued analytic function.

So set  $\varphi(R(a,z)) = 0 \ \forall z, \forall \varphi$ 

so R(a, z) = 0.

Knowing that there is anything in here is the Hahn-Banach Theorem, depending on the axiom of choice.

Theorem (Gelfand-Mayer)

Let A be a unital Banach algebra over C.

If every nonzero element is invertible, then  $z \to z1_A$  is an isomorphism from  $\mathbb C$  onto A. Proof:

Given  $a \in A$  let  $z \in \sigma(a) \neq \emptyset$ .

So (z - a) is not invertible so z - a = 0.

Fails over  $\mathbb{R}$  since have  $\mathbb{R}$ ,  $\mathbb{C}$ , quaternions