Local First-Order Logic with Two Data Values

Benedikt Bollig, Arnaud Sangnier, Olivier Stietel

FSTTCS 2021

December 15-17, 2021

Introduction

Context

- Data-aware systems are omnipresent
 - Database
 - Sets of data for learning
 - Distributed/ Concurrent Systems
- Need for specification languages to describe systems with data

Motivation

- Logic to secify input-output behavior of distributed algorithms
- Structures with two data values
- The input values can be compared with the output values

Consensus problem

First-order logic with two data values

- Famous problem in distributed computing
- The goal is to design an algorithm such that:
 - All entities in a network have an input value
 - They should all agree on the same value
 - The chosen value should be one of the input values

First-order logic with two data values

0000

First-order logic with two data values

 \bullet Σ finite set of unary relation symbols

Definition

A structure is a tuple $\mathfrak{A} = (A, f_1, f_2, (P_{\sigma})_{\sigma \in \Sigma})$ where:

- A is the nonempty finite universe
- $f_1, f_2: A \to \mathbb{N}$ map each element to two data values
- $P_{\sigma} \subseteq A$ for all $\sigma \in \Sigma$

Example

Logic with two data values

- \bullet Σ finite set of unary relation symbols
- $\Gamma \subseteq \{1,2\} \times \{1,2\}$ set of binary relation symbols

Definition

The logic $FO[\Sigma; \Gamma]$ is given as follows:

$$\varphi ::= \sigma(x) \mid x \mid_{\sim_j} y \mid x = y \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists x. \varphi$$

where $\sigma \in \Sigma$ and $(i,j) \in \Gamma$

Logic with two data values

- Σ finite set of unary relation symbols
- $\Gamma \subseteq \{1,2\} \times \{1,2\}$ set of binary relation symbols

Definition

The logic $FO[\Sigma; \Gamma]$ is given as follows:

$$\varphi ::= \sigma(x) \mid x \mid_{\sim_j} y \mid x = y \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists x. \varphi$$

where $\sigma \in \Sigma$ and $(i, j) \in \Gamma$

Example

Logic with two data values

- Σ finite set of unary relation symbols
- $\Gamma \subseteq \{1,2\} \times \{1,2\}$ set of binary relation symbols

Definition

The logic $FO[\Sigma; \Gamma]$ is given as follows:

$$\varphi ::= \sigma(x) \mid x \mid_{\sim_j} y \mid x = y \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists x. \varphi$$

where $\sigma \in \Sigma$ and $(i, j) \in \Gamma$

Example

 $\frac{1}{2} \models \exists^{=1} x. \mathsf{leader}(x) \land \forall y. \exists x. (\mathsf{leader}(x) \land x_1 \sim_2 y)$

 $FO^2[\Sigma; \Gamma]$ is the two-variable fragment.

0000

First-order logic with two data values

Definition

The problem DataSat(\mathcal{F}, Γ) is defined as follows:

Input: Finite set Σ ; sentence $\varphi \in \mathcal{F}[\Sigma; \Gamma]$.

Question: Is there a data structure \mathfrak{A} such that $\mathfrak{A} \models \varphi$?

Definition

The problem DataSat(\mathcal{F}, Γ) is defined as follows:

Input: Finite set Σ ; sentence $\varphi \in \mathcal{F}[\Sigma; \Gamma]$.

Question: Is there a data structure \mathfrak{A} such that $\mathfrak{A} \models \varphi$?

Theorem (Janiczak, 1953)

DataSat(FO, $\{(1,1),(2,2)\}$) is undecidable, even when $\Sigma = \emptyset$.

0000

First-order logic with two data values

Definition

The problem DataSat(\mathcal{F}, Γ) is defined as follows:

Input: Finite set Σ ; sentence $\varphi \in \mathcal{F}[\Sigma; \Gamma]$.

Question: Is there a data structure \mathfrak{A} such that $\mathfrak{A} \models \varphi$?

<u>Theore</u>m (Janiczak, 1953)

DataSat(FO, $\{(1,1),(2,2)\}$) is undecidable, even when $\Sigma = \emptyset$.

Theorem (Kieronski and Tendera, 2009)

DataSat(FO^2 , {(1, 1), (2, 2)}) is decidable.

Definition

The problem DataSat(\mathcal{F}, Γ) is defined as follows:

Input: Finite set Σ ; sentence $\varphi \in \mathcal{F}[\Sigma; \Gamma]$.

Question: Is there a data structure $\mathfrak A$ such that $\mathfrak A \models \varphi$?

Theorem (Janiczak, 1953)

 $\mathsf{DataSat}(\mathsf{FO}, \{(1,1), (2,2)\}) \text{ is undecidable, even when } \Sigma = \emptyset.$

Theorem (Kieronski and Tendera, 2009)

DataSat(FO^2 , $\{(1,1),(2,2)\}$) is decidable.

Other related work: Two-variable logic on data words [Bojanczyk, David, Muscholl, Schwentick, and Segoufin, 2011]

Local first-order logic

First-order logic with two data values

First-order logic with two data values

Local first-order logic

- \bullet $\mathcal{G}(\mathfrak{A})$ data graph when $\Gamma = \{(1,1),(2,2),(1,2)\}$

- $\mathcal{G}(\mathfrak{A})$ data graph when $\Gamma = \{(1,1),(2,2),(1,2)\}$
- $B_1^{\mathfrak{A}}(a)$ 1-ball (blue nodes)

- $\mathcal{G}(\mathfrak{A})$ data graph when $\Gamma = \{(1,1),(2,2),(1,2)\}$
- $B_1^{\mathfrak{A}}(a)$ 1-ball (blue nodes)
- $\mathfrak{A}|_a^1$ 1-neighborhood of a

- $\mathcal{G}(\mathfrak{A})$ data graph when $\Gamma = \{(1,1),(2,2),(1,2)\}$
- $B_1^{\mathfrak{A}}(a)$ 1-ball (blue nodes)
- $\mathfrak{A}|_a^1$ 1-neighborhood of a
- local formula $\langle\!\langle \psi \rangle\!\rangle_x^1$ with $\psi \in \mathsf{FO}[\Sigma; \Gamma]$ can reason about $\mathfrak{A}|_a^1$

Local logic with two data values

- \bullet Σ finite set of unary relation symbols
- $\Gamma \subseteq \{1,2\} \times \{1,2\}$ set of binary relation symbols

Definition

For a radius $r \in \mathbb{N}$, the logic r-Loc-FO[Σ ; Γ] is given as follows:

$$\varphi ::= \langle \langle \psi \rangle \rangle_x^r \mid x = y \mid \exists x . \varphi \mid \varphi \lor \varphi \mid \neg \varphi$$

where $\sigma \in \Sigma$ and $(i,j) \in \Gamma$

Local logic with two data values

- \bullet Σ finite set of unary relation symbols
- $\Gamma \subseteq \{1,2\} \times \{1,2\}$ set of binary relation symbols

Definition

For a radius $r \in \mathbb{N}$, the logic r-Loc-FO[Σ ; Γ] is given as follows:

$$\varphi ::= \langle \langle \psi \rangle \rangle_{x}^{r} \mid x = y \mid \exists x . \varphi \mid \varphi \lor \varphi \mid \neg \varphi$$

where $\sigma \in \Sigma$ and $(i,j) \in \Gamma$

Example

$$\begin{array}{c|c} \hline 1 \\ \hline 2 \\ \hline 2 \\ \hline \end{array} \begin{array}{c} \hline 2 \\ \hline 2 \\ \hline \end{array} \begin{array}{c} \hline 1 \\ \hline 2 \\ \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \exists^{=1}x. \langle \langle \mathsf{leader}(x) \rangle \rangle_x^1 \ \land \\ \hline \forall y. \langle \langle \exists x. \mathsf{leader}(x) \land y \ _2 \sim_1 x \rangle \rangle_y^1 \end{array}$$

Local logic with two data values

- \bullet Σ finite set of unary relation symbols
- $\Gamma \subset \{1,2\} \times \{1,2\}$ set of binary relation symbols

Definition

For a radius $r \in \mathbb{N}$, the logic r-Loc-FO[Σ ; Γ] is given as follows:

$$\varphi ::= \langle \langle \psi \rangle \rangle_{x}^{r} \mid x = y \mid \exists x . \varphi \mid \varphi \lor \varphi \mid \neg \varphi$$

where $\sigma \in \Sigma$ and $(i,j) \in \Gamma$

Example

$$\begin{array}{c|c} \hline 1 \\ \hline 2 \\ \hline 2 \\ \hline \end{array} \begin{array}{c|c} \hline 2 \\ \hline 2 \\ \hline \end{array} \begin{array}{c|c} \hline 1 \\ \hline 2 \\ \hline \end{array} \begin{array}{c|c} \hline = & \exists^{=1}x. \langle \langle \mathsf{leader}(x) \rangle \rangle_x^1 \ \land \\ \hline \forall y. \langle \langle \exists x. \mathsf{leader}(x) \land y \ _2 \sim_1 x \rangle \rangle_y^1 \end{array}$$

 $\in 1\text{-Loc-FO}[\{\text{leader}\}; (1,1), (2,2), (2,1)]$

Decidability result

Decidability result

•000000

First-order logic with two data values

Theorem

DataSat(1-Loc-FO, $\{(1,1),(2,2),(1,2)\}$) is decidable.

Decidability result 000000

Theorem

DataSat(1-Loc-FO, $\{(1,1), (2,2), (1,2)\}$) is decidable.

Proof.

Reduction to DataSat(FO^2 , $\{(1,1),(2,2)\}$):

First-order logic with two data values

$\mathsf{Theorem}$

DataSat $(1-Loc-FO, \{(1,1), (2,2), (1,2)\})$ is decidable.

Proof.

Reduction to DataSat(FO^2 , $\{(1,1),(2,2)\}$):

Step 1: Transform binary into unary relations

Theorem

DataSat $(1-Loc-FO, \{(1,1), (2,2), (1,2)\})$ is decidable.

Proof.

Reduction to DataSat(FO^2 , $\{(1,1),(2,2)\}$):

Step 1: Transform binary into unary relations

Step 2: Well-diagonalized structures

Theorem

DataSat(1-Loc-FO, $\{(1,1), (2,2), (1,2)\}$) is decidable.

Proof.

Reduction to DataSat(FO^2 , $\{(1,1),(2,2)\}$):

Step 1: Transform binary into unary relations

Step 2: Well-diagonalized structures

Step 3: Getting rid of the diagonal relation

Theorem

DataSat(1-Loc-FO, $\{(1,1),(2,2),(1,2)\}$) is decidable.

Proof.

Reduction to DataSat(FO^2 , $\{(1,1),(2,2)\}$):

Step 1: Transform binary into unary relations

Step 2: Well-diagonalized structures

Step 3: Getting rid of the diagonal relation

Step 4: Counting in two-variable logic

Theorem

DataSat(1-Loc-FO, $\{(1,1), (2,2), (1,2)\}$) is decidable.

Proof.

Reduction to DataSat(FO^2 , $\{(1,1),(2,2)\}$):

- Step 1: Transform binary into unary relations
- Step 2: Well-diagonalized structures
- Step 3: Getting rid of the diagonal relation
- Step 4: Counting in two-variable logic
- Step 5: Putting it All Together

(a) data structure

Decidability result

0000000

- data structure
- (b) adding unary predicates for a

Decidability result

0000000

First-order logic with two data values

- data structure
- adding unary predicates for a
- adding counting constraints to a

- (a) data structure
- (b) adding unary predicates for a
- (c) adding counting constraints to a
- (d) well-typed data structure

Step 2: Adding diagonal elements

- (a) Adding diagonal elements labeled with ed
 - For each data, there is one element labeled with ed having the data in its input [resp. output] field
- (b) Adding predicates eq for the elements with the same value
- (c) Verify that the structure is correctly labeled without using diagonal relation
 - Making data structure eq-respecting: (a)←(b)

Step 2: Adding diagonal elements

- (a) Adding diagonal elements labeled with ed
 - For each data, there is one element labeled with ed having the data in its input [resp. output] field
- (b) Adding predicates eq for the elements with the same value
- (c) Verify that the structure is correctly labeled without using diagonal relation
 - Making data structure eq-respecting: (a)←(b)

Step 3: Getting rid of the diagonal relation

- checking counting constraints in extended data structure without using diagonal relation
- Use diagonal elements to remove diagonal relations
- To check whether there exist two elements with the same output value as the input value of a1
- Check whether for the diagonal element *b*1, there exist two elements with the same output value as *b*1

Step 4: Counting intersections

Counting intersections for M=3 and elements with label p

- Intersection: elements with the same input and output values
- Trick:
 - Add unary predicates to count inside intersections
 - Add unary predicates to count intersections
 - Count up to a certain bound
- Use these predicates to verify that counting constraints labeling is correct

Step 5: Putting it all together

Given a formula $\varphi \in 1$ -Loc-FO[Σ ; {(1,1),(2,2),(1,2)}:

- (a) Build a formula $\varphi_{CC} \in \mathsf{FO}[\Sigma \cup CC; \emptyset]$ (where CC are counting constraints)
- (b) Build a formula $\varphi_{ed} \in FO^2[-; \{(1,1),(2,2)\}]$ to ensure the presence of diagonal elements;
- (c) Build a formula $\varphi_{wt} \in FO^2[\Sigma \cup CC; \{(1,1),(2,2)\}]$ to ensure that the counting constraints are correctly placed
- (d) Check the satisfiability of $\varphi_{cc} \wedge \varphi_{ed} \wedge \varphi_{wt}$
- (e) Redce to a satisfiability problem for $FO^2[-; \{(1,1),(2,2)\}]$

Beyond r = 1: Undecidability

Theorem

The following problems are undecidable:

- DataSat(3-Loc-FO, {(1,1), (2,2)})
- DataSat(2-Loc-FO, $\{(1,1),(2,2),(1,2)\}$)

Beyond r = 1: Undecidability

Theorem

The following problems are undecidable:

- DataSat(3-Loc-FO, {(1,1), (2,2)})
- DataSat(2-Loc-FO, {(1,1), (2,2), (1,2)})

Proof.

Reduction from Periodic Tiling Problem:

- Inputs: D a finite set of dominos, an horizontal relation $H \subseteq D \times D$ and a vertical relation $V \subseteq D \times D$;
- Output: Is there a periodic tiling of a plan with dominos respecting H and V?

Main idea

- Encode the plan using data and equivalence relation
- Example for DataSat(2-Loc-FO, $\{(1,1),(2,2),(1,2)\}$)

Green zone : same input data, Red zone : same output data, Black line : diagonal relation

Conclusion and Future Works

What we have seen:

- DataSat $(1-Loc-FO, \{(1,1), (2,2), (1,2)\})$ is undecidable
- DataSat(3-Loc-FO, $\{(1,1),(2,2)\}$) and DataSat(2-Loc-FO, $\{(1,1),(2,2),(1,2)\}$) are undecidable

Perspectives:

- Complete the picture:
 - Consider both diagonal relations
 - Consider elements outside the ball
- Study other fragments with quantifiers restrictions
- Develop approximation methods

Thank you!