Theoretische Informatik: Endliche Automaten, Formale Sprachen und Grammatiken

Marko Livajusic

4. November 2024

Inhaltsverzeichnis

1	Det	terministische Endliche Automaten	2
	1.1	Transduktor	
	1.2	Akzeptor	
		1.2.1 Moore-Automat	
2	Nic	htdeterministische Endliche Automaten	6
	2.1	Epsilon-NEAs	
		2.1.1 Epsilon-NEA zu NEA	
	2.2	NEA zu DEA mit Potenzmengenkonstruktion	
3	Reg	guläre Ausdrücke	12
	3.1	RegEx zu NEA	12
		3.1.1 Regulärer Ausdruck: Leere Menge	12
		3.1.2 Regulärer Ausdruck: Leeres Wort	12
		3.1.3 Regulärer Ausdruck: Eingabesymbol	12
		3.1.4 Regulärer Ausdruck: Verkettung	12
		3.1.5 Regulärer Ausdruck: Alternative	13
		3.1.6 Regulärer Ausdruck: N-malige Wiederholung	13

1. Deterministische Endliche Automaten

1.1 Transduktor

Definition 1 Ein Transduktorautomat $\mathcal{T}: \{\Sigma, A, Z, z_0, \delta, \lambda\}$ ist ein deterministicher endlicher Automat ohne einen Endzustand.

 Σ : Eingabealphabet

A: Ausgabealphabet

Z: Zustandsmenge

 $\mathbf{z_0} \in Z$: Startzustand

 $\delta: \Sigma \times Z \to Z: Überführungsfunktion$

 $\lambda: \Sigma \times Z \to A^*$: Ausgabefunktion

1.1.1 Mealy-Automat

Definition 2 Ein Mealy-Automat ¹ ist ein Transduktor, dessen Ausgabe von der Überführungsfunktion δ und vom aktuellen **Zustand** z_n abhängig ist.

1.2 Akzeptor

Definition 3 Ein Akzeptor $\mathcal{A}: \{\Sigma, Z, z_0, \delta, F\}$ ist ein deterministicher endlicher Automat, der die Eingabe überprüft und keine Ausgabe besitzt. Er lässt sich wie folgt beschreiben:

¹für die Klausur irrelevant.

 Σ : Eingabealphabet

Z: Zustandsmenge

 z_0 : Startzustand

 δ : Überführungsfunktion

F: Endzustandsmenge

1.2.1 Moore-Automat

Definition 4 Ein Moore-Automat ist ein Transduktor, dessen Ausgabe vom aktuellen **Zustand** z_n abhängig ist.

1.2.2 Minimierung von DEAs

Zu minimieren sei folgender DEA:

Diagonale als äquivalent markieren:

Zustand	q_0	q_1	q_2	q_3
q_0	=			
q_1		=		
q_2			=	
q_3				=

Felder, wo ein Zustand auf einen Endzustand trifft, streichen

Zustand	q_0	q_1	q_2	q_3
q_0	=			
q_1		=		
q_2			=	
q_3	X	X	X	=

Eine Übergangstabelle mit übrigen Zuständen erstellen. Die Zustandspaare, die auf einen bereits gestrichenen Zustandspaar abgebildet werden, streichen

Zustand	0	1
(q_0,q_1)	(q_1,q_2)	$(\mathbf{q_2},\mathbf{q_3})$
(q_0,q_2)	(q_1,q_1)	$(\mathbf{q_2},\mathbf{q_3})$
(q_1,q_2)	(q_2,q_1)	(q_3,q_3)

Die neue Tabelle sieht dann so aus:

Zustand	q_0	q_1	q_2	q_3
q_0	=			
q_1	X	=		
q_2	X		=	
q_3	X	X	X	=

Die leeren Felder als äquivalent markieren:

Zustand	q_0	q_1	q_2	q_3
q_0	=			
q_1	X	=		
q_2	X	=	=	
q_3	X	X	X	≡

Spaltenweise die Zustände zusammenfassen:

2. Nichtdeterministische Endliche Automaten

2.1 ϵ -NEAs

Definition 5 Ein ϵ -NEA ist ein Akzeptor, der ϵ -Übergänge besitzt und deshalb mit dem leeren Wort Zustände wechseln kann.

2.1.1 ϵ -NEA \rightarrow NEA

Gegeben sei folgendes Zustandsdiagramm eines ϵ -NEA, welches in einen NEA umgewandelt werden soll:

Zuerst wird eine leere Übergangstabelle erstellt:

Zustand	0	1
q_0		
q_1		
q_2		
q_3		

Danach wird für jedes Eingabesymbol eine Tabelle mit der ϵ -Hülle erstellt:

Zus	stand	ϵ^*	0	ϵ^*
q_0				

Wie oben zu sehen ist, wird zuerst der Startzustand q_0 eingetragen. Danach wird die ϵ -Hülle des Zustands q_0 berechnet und eingetragen.

Definition 6 Eine ϵ -Hülle ist die Menge aller Zustände, die ein Zustand q_n mit dem leeren Wort ϵ erreichen kann.

Da im vorigen Beispiel q_0 mit dem leeren Wort keinen anderen Zustand als sich selbst erreichen kann, wird für dessen ϵ -Hülle q_0 eingetragen.

Die nächte Spalte steht für den Zustand, der erreicht wird, wenn bei q_0 das Eingabesymbol 0 eingegeben wird. Dies ist in diesem Beispiel der Zustand q_1 :

Zustand	ϵ^*	0	ϵ^*
q_0	q_0	$\mathbf{q_1}$	

Die letzte Spalte bezieht sich auf die ϵ -Hülle des Zustands aus der mittleren Spalte, welcher hier fettgedruckt steht. Die ϵ -Hülle von q_1 ist dabei $\{q_1,q_2\}$. Diese wird ebenfalls eingetragen:

Zustand	ϵ^*	0	ϵ^*
q_0	q_0	q_1	$\{q_1,q_2\}$

Diese ϵ -Hülle $\{q_1, q_2\}$ repräsentiert dabei die Zustände, die q_0 bei der Eingabe von 0 erreicht werden. Deshalb können diese in die Übergangstabelle eingetragen werden:

Zustand	0	1
q_0	$\{q_1, q_2\}$	
q_1		
q_2		
q_3		

Dieser Vorgang wird für alle Zustände durchgeführt, sowohl für die Eingabe von 0 als auch von 1. Die Tabellen sehen nach dem Algorithmus wie folgt aus:

Zustand	ϵ^*	0	ϵ^*
$\{q_0\}$	$\{q_0\}$	$\{q_1\}$	$\{q_1, q_2\}$
\int_{a}	$\{q_1\}$	Ø	Ø
$\{q_1\}$	$\{q_1, q_2\}$	$\{q_2\}$	$\{q_2\}$
$\{q_2\}$	$\{q_2\}$	$\{q_2\}$	$\{q_2\}$
$\{q_3\}$	$\{q_3\}$	Ø	Ø

Zustand	ϵ^*	1	ϵ^*
$\{q_0\}$	$\{q_0\}$	Ø	Ø
$\{q_1\}$	$\{q_1\}$	$\{q_1\}$	$\{q_1,q_2\}$
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\{q_2\}$	$\{q_3\}$	$\{q_3\}$
$\{q_2\}$	$\{q_2\}$	$\{q_3\}$	$\{q_3\}$
$\{q_3\}$	$\{q_3\}$	Ø	Ø

Zustand	0	1
$\{q_0\}$	$\{q_1,q_2\}$	Ø
$\{q_1\}$	$\{q_2\}$	$\{q_1,q_2,q_3\}$
$\{q_2\}$	$\{q_2\}$	$\{q_3\}$
$\{q_3\}$	Ø	Ø

Noch sollen die Endzustände ermittelt werden. Zu den Endzuständen gehört der Endzustand aus dem ϵ -NEAund die Zustände, die durch das leere Wort ϵ in den ursprünglichen Endzustand gelangen können. Deshalb wird in diesem Fall nur q_3 der Endzustand. Gezeichnet sieht das neue Zustandsdiagramm wie folgt aus:

Abbildung 2.1: Der neue NEA, ohne ϵ -Übergänge.

"o" steht hier für die leere Menge \emptyset .

2.1.2 ϵ -NEA \rightarrow DEA

Es sei folgendes Zustandsdiagramm eines ϵ -NEAs gegeben:

Die Umwandlung in ein DEA geschieht wie üblich mit der Potenzmengenkonstruktion:

Zustand	A	В
$\rightarrow \{q_0\}$	$\{q_1,q_4\}$	$\{q_3\}$
$\{q_1,q_4\}$	$\{q_0\}$	$\{q_2^*\}$
$\{q_3\}$	$\{q_4\}$	Ø
$\{q_2^*\}$	$\{q_4\}$	$\{q_3\}$
$\{q_4\}$	Ø	$\{q_2\}$
Ø	Ø	Ø

Anschlißend wird das neue Zustandsdiagramm des DEAs gezeichnet. qE repräsentiert dabei die leere Menge \emptyset .

Abbildung 2.2: Umwandlung von $\epsilon\textsc{-NEA}$ zu DEA. Dieser ist jedoch nicht zwangsläufig optimal bzw. minimal.

2.2 NEA \rightarrow DEA (Potenzmengenkonstruktion)

Dieser NEA soll in einen DEA umgewandelt werden:

Vorgehen: Es wird zuerst eine Übergangstabelle aufgestellt und geschaut, welche Zustände neu auftreten.

Zustand	a	b
$\rightarrow \{q_0\}$	$\{q_0\}$	$\{q_0,q_1\}$
$\{q_0,q_1\}$	$\{q_0\}$	$\{q_0, q_1, q_2^*\}$
$\{q_0, q_1, q_2\}^*$	$\{q_0, q_2^*\}$	$\{q_0, q_1, q_2^*\}$
$\{q_0, q_2\}^*$	$\{q_0, q_2^*\}$	$\{q_0, q_1, q_2^*\}$

Danach wird aus dieser Übergangstabelle der DEA gezeichnet:

3. Reguläre Ausdrücke

+: wiederhole das Zeichen davor n-mal, wobei n > 0

*: wiederhole das Zeichen davor n-mal, wobei $\mathbf{n} \geq \mathbf{0}$

3.1 $\text{RegEx} \rightarrow \epsilon\text{-NEA}$

3.1.1 $R = \emptyset$

3.1.2 $R = \epsilon$

3.1.3 R = a

3.1.4 R = ab

3.1.5 R = a|b

3.1.6 $R = a^*$

Beispiel 1 Es soll der reguläre Ausdruck $(0|1)^*01$ in einen ϵ -NEA umgewandelt werden.