Atomic coordinates to atomic bonding graphs: exploration of data-scientific treatment

Materials Design Group
2nd Innovation Camp of
Computational Materials Science
Oct. 4th, 2018

Extraction of information from atomic coordinates

crystal?

Conversion to graphs!

Atomic bonding graph

Corresponding graphs treatable by libraries

Atomic coordinates (sample input of OpenMX)

Determine atomic bonding by comparing with cut-off distances

$$d_{AB} < r_{max}(A) + r_{max}(B)$$

Boost Graph Library (1)

- Generate graphs from atomic coordinates and/or any physical systems
- Analyze those graphs using Boost Graph Library
- https://www.boost.org/
- Detailed Japanese instructions in https://boostjp.github.io/

Boost graph Library (2)

- Installation
- Test program (from boostjp)

cd boost_1_66_0
sh bootstrap.sh
./b2

```
#include <utility>
#include <string>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/graph_utility.hpp>
typedef boost::adjacency_list<boost::listS, boost::vecS, boost::directedS> Graph;
typedef std::pair<int, int> Edge;
enum { A, B, C, D, E, N };
const std::string name = "ABCDE";
int main()
    const std::vector<Edge> edges = {
        {A, B}, {A, C}, {A, D},
        {B, E}, {C, E}, {D, E}
    };
    const Graph g(edges.begin(), edges.end(), N);
    boost::print_graph(g, name.c_str());
```

Example (1)

O18

H38

1.40721 1.11194

H37

0.94729

Convert a molecule into a graph

Sialic acid (from sample input of OpenMX)

1.21316

Example (2)

Extraction of shortest path

route length: 9.85865

Our proposal...

- Prepare graph data by text file from atomic coordinates!
- Then read it by c++ program!
- Use Boost library, then we can do something... (?)

Possible application to materials design

- Analysis of molecular conduction?
 - Effective electron paths should be important!

