Homework 2

Anushka Nair, Bam Nakapakorn, and Madeline Luong

Study Datasets: BELL, CHILLER, and FREESTYLE fonts from given website.

BELL contains 956 observations/ instances and 412 features.

CHILLER contains 962 observations/ instances and 412 features.

FREESTYLE contains 956 observations/instances and 412 features.

Preliminary treatment:

Unneeded excess features, non-numerical values, and non- defined classes discarded.

BELL CLEAN contains 239 observations/instances and 404 features.

CHILLER CLEAN contains 238 observations / instances and 404 features.

FREESTYLE CLEAN contains 239 observations/ instances and 404 features.

Then defining the three classes (CL1, CL2. And CL3) to each dataset and unionizing them into a full dataset. DATA then contains 716 observations / instances and 404 features.

Part 0

Computing the mean(where m1 = mean(x1)...mean(400)=m400) and standard deviation (s1 = sd(x1)..sd(x400) = sd400) of the full data set. Here we standardize and scale the data. We want to standardize the features to the center at 0 and a standard deviation of 1 because different variables can be measured at different scales leading to bias.

We can see here that the standard deviation values are not one, so we will then normalize the data by the function yj = (xj - mj)/sj. After standardizing the data, a columns standard deviation will be extracted. Column 3's standard deviation is one, confirming that the data set has been rescaled and standardized, which we then name SDATA. To view the table containing all means and standard deviation prior to the standardization refer to the appendix section.

We then compute the correlation matrix of the 400 features. Finding the correlation matrix will show us the correlation coefficients between the 400 features. We want to display the ten highest absolute correlation coefficient values (shown in table below). A correlation matrix only calculates the correlation between numeric features, so we took out all non-numeric data, leaving us with a 400 x 400 array.

Pixel Po	ositions	Correlation
Xi, Xj	, Pair	Coefficient
r19c16	r19c15	0.91627
r0c4	r0c3	0.91518
r15c16	r14c16	0.91107
r19c15	r19c14	0.90619
r15c17	r14c17	0.90612
r14c18	r13c18	0.90470
r11c18	r10c18	0.90164
r0c5	r0c4	0.89906
r12c1	r11c1	0.89357
r0c3	r0c2	0.88880

Part 1

1.0 - Creating a TRAINSET and TESTSET

Taking the SDATA set, we will classify CL to SETROW, where CL1 is equal to SETROW1, CL2 is equal to SETROW2, and CL3 is equal to SETROW3. We then separate each class into individual subsets of SETROW1, SETROW2, and SETROW3 to create the proper train and test set distribution. Each subset will then be split arbitrarily where TRAIN will be about 80% of the subset and TEST will be about 20% of the

subset. After each subset has been split into train and test sets, all train sets will be unionized into a full TRAINSET (trainsetcl1, trainsetcl2, and trainset cl3). The same will be done to the TESTSET (testsetcl1, testsetcl2, and testsetcl3).

1.1 - Using the K- Nearest Neighbor algorithm (KNN) on the classification of CL1, CL2, CL3.

To apply the KNN algorithm, a matrix with the predictors in the TRAINSET is created labeled TRAIN_no. Similarly, a matrix containing the predictors in the TESTSET is created labeled TEST_no. Then two vectors are created that contain the class labels for the training observations and testing observations which are labeled TRAIN_label and TEST_label respectively. We then apply the knn() function on the TRAINSET and TESTSET to predict the CL classifications of each font based on grey level image intensity for pixel at each position. We set a random seed before applying knn() because if several observations are tied as nearest neighbor then R will break the tie. Here we used k = 12.

```
Percent correct classifications Trainperf^{12} = 0.733
Testperf^{12} = 0.687
```

We can see that the testperf accuracy is lower compared to trainperf. This makes sense because in the case of trainperf, the knn algorithm is trained and tested on the same data, while in the case of testperf, the algorithm has not been exposed to the data it is testing. Additionally, our test set is too small to conclude that it would perform similarly on new data. As we change the k value, the train set error could decline, however the test error may not. As we increase the K value, the variance will decrease but there will be a higher bias in classifier. If we decrease the K-value we might overfit the boundaries. So further exploration is needed to understand if increasing or decreasing the k value will decrease the error rate.

1.2 - Replicating KNN algorithm for K = 5,10,15,20,30,40,50 and 100 and visualizing it.

By using the same prior KNN function, to replicate this for values 5,10,15,20,30,40, 50 and 100 a loop will be created to identify the percent accuracy. This will be done to both the train and the test set. Then plotted to visualize the best range of k value. The plot of the k values will indicate if the values will overfit between each set.

```
Percent accuracy of each K value Testperf^5 = 68.75\%

Testperf^{10} = 66.66\%

Testperf^{15} = 66.66\%

Testperf^{20} = 68.05\%

Testperf^{30} = 61.80\%

Testperf^{40} = 59.02\%

Testperf^{50} = 58.33\%

Testperf^{100} = 58.33\%
```

Based on these values we can conclude that where k is [5 < k < 20] is at least 68% accuracy.

Figure 1:plot of percent accuracy with varying k with both test and train sets. A plot showing a negative linear correlation of percent accuracy which is obtained by using k = 5,10, 15, 20,30,40,50 100. The blue line is the trainset and the red line is the testset values. Each dot indicates the correlated k value and accuracy.

According to the curves of train and test sets, we can see that we have slightly overfit model, where the test error is higher than the train error by (3%). The discrepancy between the 2 curves show the magnitude of overfit. Allowing us to select knn =5 as the best fit of accuracy.

- 1.3 *Identifying the "best" k value within the prior range.*
 - From the prior loop, we will run it again using a sequence function from the range [5:100] in sets of 5. Thus, testing it on 5,10,15,20,25...100. Which we can conclude that the "ideal" k value will be 5 with the percent accuracy of 68.75%
- 1.4 KNN algorithm using K = 5 and visualizing the respected correlation matrices and confidence intervals Based on the prior loop, we determine that k = 5. Then, we will run KNN algorithm on both the TESTSET and TRAINSET. After receiving the accuracy values, we will then do a 3x3 confusion matrix on both TESTSET and TRAINSEST to better visualize the classification for each class.

1	TRAI	N_lat	oel
knn.predtrainbest	CL1	CL2	CL3
CL1	154	43	18
CL2	24	132	8
CL3	13	15	165

Train			PREDICTION	
	Test K = 5	CL1	CL2	CL3
п.	CL1	71.63%	20.00%	8.37%
rrue	CL2	14.63%	80.49%	4.88%
	CL3	6.74%	7.77%	85.49%

1	TEST_	_labe	el
knn.predtestbest	CL1	CL2	CL3
CL1	36	16	4
CL2	7	23	3
CL3	5	9	41

Test			PREDICTION	
	Test K = 5	CL1	CL2	CL3
E	CL1	64.29%	28.57%	7.14%
TRUE	CL2	21.21%	69.70%	9.09%
	CL3	9.09%	16.36%	74.55%

Figure 2: Confusion matrices and percentage accuracy of TESTSET and TRAINSET

Top left and bottom left are the confusion matrix for train set and test set, which the rows are the predictions and the columns are the actual values. Right side of the figure will be the corresponding accuracy percentage for each classifier.

Train set

Based on the figure, we can see that 154 instances of "CL1" are classified correctly as "CL1". Then, 132 Instances of "CL2" are also classified correctly as "CL2". "CL3" was classified correctly 165 instances. 61 instances of "CL1" were classified incorrectly as "CL2" or "CL3". 32 instances of "CL2" were classified incorrectly as either "CL1" or "CL3". Lastly, 28 instances of "CL3" were classified incorrectly as either "CL1" or "CL2". Based on the percentages we can see that "CL3" was classified with the highest accuracy of 85.5%, comparatively to "CL2" at 80.5% and "CL1" at 71.6%.

Testset

Based on the figure, we can see that 36 instances of "CL1" are classified correctly as "CL1". Then, 23 Instances of "CL2" are also classified correctly as "CL2". "CL3" was classified correctly 41 instances. 20 instances of "CL1" were classified incorrectly as "CL2" or "CL3". 10 instances of "CL2" were classified incorrectly as either "CL1" or "CL3". Lastly, 14 instances of "CL3" were classified incorrectly as either "CL1" or "CL2". Based on the percentages we can see that "CL3" was classified with the highest accuracy of 74.5% comparatively to "CL2" at 69.7% and "CL1" at 64.3%

Overall, we can see that "CL3" had the "best" prediction with the k value at 5.

1.5 - Determining the confidence interval for both TESTSET and TRAINSET.

After determining the confusion matrix, we seek to find the confidence intervals diagonals to determine they overlap or are nearly disjoint with each other.

Confidence interval

Trainset: 95% CI : (0.7531, 0.8199) Testset: 95% CI : (0.6150, 0.7638)

We can see that the confidence intervals overlap with each other, which is evidence that quantities are close to each other. However, we cannot conclude that trainset quantile is greater than testset quantile.

1.6 - Creating the individual packages from the standardize full data set (SDATA).

We going to separate the data into 4 packs (PACK1, PACK2, PACK3, and PACK 4). Each pack will have 100 features corresponded to the 100 pixel intensities. We will divide the pack by rLcM as follows:

For each pack, we create train (80%) and test (20%) subsets. Then we will apply KNN classification using Kbest = 5 to each pack and assign the accuracy percentage as weighted values w1, w2, w3, and w4.

Accuracy of PACK 1
$$W1 = testperf^{bestk} = 58\%$$

1.7 - Finding the accuracy for each PACK using KNN algorithm, where K= 5. Using the same script from 1.6, replicating for the following PACKS.

```
Accuracy of PACKS
W2 = testperf^{bestk} = 75\%
W3 = testperf^{bestk} = 63\%
W4 = testperf^{bestk} = 66\%
```

According to the KNN classification to each pack, we can see that pack 2 has the highest accuracy rate of 75%. On the other hand, pack 1 resulted to be the lowest accuracy rate of 58%. This is 5 and 8 percentual points behind packs 3 and 4 respectively.

1.8 - Finding the KNN with the weighted features on global performance and TESTSET

We use the accuracy rates we found in 1.7 to weight each pack before standardizing and combining them into one data set. Pack 2 will have more weight than the other packs because it has the highest accuracy rate. The non-weighted set assumes that all features are equally important when they are not. Hence, we weigh the features to account for the importance of different features.

Weighted Trainset Confusion Matrix

Weighted Trainset Confusion Matrix

Train	- 1		PREDICTION	J	
	Test K = 5	CL1	CL2	CL3	

		·	-	-
RUE	CL1	73.89%	17.73%	8.37%
TRI	CL2	17.05%	77.84%	5.11%
	CL3	5.70%	8.81%	85.49%

Test		PREDICTION			
	Test K = 5	CL1	CL2	CL3	
JE	CL1	75.47%	15.09%	9.43%	
TRUE	CL2	8.51%	78.72%	12.77%	
	CL3	9.09%	6.82%	84.09%	

The global train set accuracy = 79.07%

The global test set accuracy = 79.42%

As we see, the global test accuracy is higher than our trainset, which is a good sign that there is no overfitting. There is an increase in accuracy in CL1 and CL2 when we move from trainset to test set, while there is a slight loss of accuracy in CL3 when we move from train set to test set.

Ordinary Distance KNN Test Set

Weighted Distance KNN Test Set

Ordinary		PREDICTION				
TEST	Test K = 5	CL1	CL2	CL3		
ш	CL1	64.29%	28.57%	7.14%		
TRUE	CL2	21.21%	69.70%	9.09%		
	CL3	9.09%	16.36%	74.55%		

Weighted		PREDICTION				
TEST	Test K = 5	CL1	CL2	CL3		
Æ	CL1	75.47%	15.09%	9.43%		
TRUE	CL2	8.51%	78.72%	12.77%		
	CL3	9.09%	6.82%	84.09%		

Ordinary KNN: Global test set accuracy = 69.51% Weighted KNN: Global test set accuracy = 79.42%

The performance of the knn algorithm improved drastically after implementing the weighted distance knn. Our global performance increased by approximately 10%. Similarly, all three classes see an increase in accuracy by around 10%

Summary of Work done: Script/work: 33% Anushka

> 33% Bam 33% Madeline

Interpretation and formatting: 33% Madeline

33% Bam 33%Anushka

All work done was dividedly evenly as we coded the script together over a team meeting and interpreted together.

Appendix:

Mean table:

m1	m2	m3	m4	m5	m6	m7	m8	m9	m10
26.7081	36.92179	46.43017	55.00419	60.21508	66.82123	71.97346	79.44693	81.97486	83.860
m11	m12	m13	m14	m15	m16	m17	m18	m19	m20
88.7081	89.04749	91.94553	95.91341	95.49581	90.9162	83.73464	79.82961	82.23464	65.199
m21	m22	m23	m24	m25	m26	m27	m28	m29	m30
28.48883	42.46788	57.28212	72.61592	83.20251	93.10056	96.30866	96.7081	97.27933	102.42
m31	m32	m33	m34	m35	m36	m37	m38	m39	m40
106.8142	109.1313	112.1439	113.8841	111.9972	110.3506	108.7696	108.1578	100.5126	70.089
m41	m42	m43	m44	m45	m46	m47	m48	m49	m50
25.73464	41.55307	61.39944	84.64665	96.72486	98.11732	93.86453	96.34777	98.97626	105.43
m51	m52	m53	m54	m55	m56	m57	m58	m59	m60
106.2682	100.3827	97.75279	93.25698	96.82542	105.4106	111.7877	106.1397	88.23045	57.966
m61	m62	m63	m64	m65	m66	m67	m68	m69	m70
26.51117	44.41061	65.39804	84.6243	91.09916	91.68156	89.34218	85.93994	88.74162	94.174
m71	m72	m73	m74	m75	m76	m77	m78	m79	m80
94.99302	84.22207	78.65503	80.50279	83.31564	91.29888	99.26257	95.79749	81.15503	54.636
m81	m82	m83	m84	m85	m86	m87	m88	m89	m90
31.68994	51.38966	69.23184	82.30587	88.89665	87.60475	82.59358	83.44134	88.93296	90.5
m91	m92	m93	m94	m95	m96	m97	m98	m99	m10
86.35056	79.75	79.48184	83.94693	87.02654	90.92598	90.69972	90.39804	78.70531	52.768
m101	m102	m103	m104	m105	m106	m107	m108	m109	m11
34.80587	56.18017	71.91201	87.16899	91.76816	91.64385	85.90084	88.4595	90.05866	88.431
m111	m112	m113	m114	m115	m116	m117	m118	m119	m12
87.06285	83.18715	84.82682	87.87151	90.98883	89.27235	90.74302	83.57542	71.46089	46.078
m121	m122	m123	m124	m125	m126	m127	m128	m129	m13
38.17458	58.43017	72.93436	91.46229	94.81425	92.9162	92.61034	88.0852	85.48464	88.357
m131	m132	m133	m134	m135	m136	m137	m138	m139	m14
89.8324	88.07821	87.51397	88.1257	85.42598	84.42737	88.91061	81.97067	64.95251	43.826
m141	m142	m143	m144	m145	m146	m147	m148	m149	m15
42.85056	58.81704	72.43017	90.09637	95.11732	94.88687	95.42877	95.30726	91.45112	95.561
m151	m152	m153	m154	m155	m156	m157	m158	m159	m16
100.2109	100.6313	99.70251	88.32961	83.58939	85.28073	86.26536	78.32402	59.49581	43.560
m161	m162	m163	m164	m165	m166	m167	m168	m169	m17
46.69693	63.60335	76.88547	94.75559	99.97905	101.9316	104.7612	105.8464	100.6034	104.63
m171	m172	m173	m174	m175	m176	m177	m178	m179	m18
113.014	110.4441	100.1271	91.85196	90.48883	88.23324	86.32542	73.97486	58.37709	41.776
m181	m182	m183	m184	m185	m186	m187	m188	m189	m19
47.51676	69.37291	85.98184	104.2095	106.2709	108.5461	108.0028	105.3478	104.3939	110.05
							100	100	m20
m191 107.3757	m192 96.6662	m193 93.67318	m194 94.45531	m195 92.03073	m196 88.23045	m197 87.01257	m198 73.92039	m199 57.44274	43.864

m201	m202	m203	m204	m205	m206	m207	m208	m209	m210
47.67318	70.52374	89.88128	105.8911	109.5894	106.8799	102.7793	101.1047	103.5782	103.0391
m211	m212	m213	m214	m215	m216	m217	m218	m219	m220
92.43436	89.40642	91.94274	94.38687	89.35335	88.04469	85.08799	72.8324	60.12849	42.51816
m221	m222	m223	m224	m225	m226	m227	m228	m229	m230
46.96369	74.15782	91.32402	108.0209	111.7793	104.3911	96.69274	97.54609	99.99022	96.56425
224	m232	222	224	335	226	227	220	220	240
m231 89.95531	88.1676	m233 90.79469	m234 90.72905	m235 86.94274	m236 82.74581	m237 81.83659	m238 72.56006	m239 59.98603	m240 42,47765
65.55551	00.1070	30.73403	30.72303	00.34274	02.74301	61.63033	72.30000	33.30003	42.47703
m241	m242	m243	m244	m245	m246	m247	m248	m249	m250
51.99302	76.88128	97.09777	114.1201	112.9302	104.5601	94.80307	94.55447	94.3757	97.4148
m251	m252	m253	m254	m255	m256	m257	m258	m259	m260
95.10894	89.85475	90.93017	88.59218	85.42318	82.03771	82.26117	71.89246	58.2067	43.5433
m261	m262	m263	m264	m265	m266	m267	m268	m269	m270
53.55307	82.01955	102.8073	116.8589	110.7332	102.1215	91.22765	86.50978	85.61313	89.84078
20.0007	02.01333	102.0075	110.0303	110.7552	102.1210	J1.2270J	55.56576	33.01313	03.01070
m271	m272	m273	m274	m275	m276	m277	m278	m279	m280
88.0824	84.97486	86.62291	81.9162	79.17318	75.89246	77.90363	66.14385	53.25838	38.96229
m281	m282	m283	m284	m285	m286	m287	m288	m289	m290
50.73743	88.76257	107.1034	118.8073	109.4721	93.23464	77.59218	75.58101	77.34777	82.05307
m291	m292	m293	m294	m295	m296	m297	m298	m299	m300
85.16201	82.36313	78.02793	76.03212	74.44274	75.5852	77.13547	66.03771	52.36872	36.41341
m301	m302	m303	m304	m305	m306	m307	m308	m309	m310
57.83799	93.67598	117.5154	121.2807	105.2472	85.12849	70.23743	71.2067	72.85615	76.26397
m311	m312	m313	m314	m315	m316	m317	m318	m319	m320
80.76536	76.34497	72.51676	71.56285	74.19274	74.78911	76.81425	64.84078	48.77654	32.9567
m321	m322	m323	m324	m325	m326	m327	m328	m329	m330
62.48883	97.34218	119.6425	121.7123	104.5042	87.53352	77.50838	70.58939	71.02374	75.5014
								71.02574	, 5.561
m331								72.02374	75.5014
	m332	m333	m334	m335	m336	m337	m338	m339	m340
79.65363	m332 75.66201	m333 70.96369	m334 71.43855	m335 75.08939	m336 76.88268	m337 75.81564	m338 58.55168		m340
79.65363	75.66201	70.96369	71.43855	75.08939	76.88268	75.81564	58.55168	m339 42.13268	m340 24.60056
								m339	m340 24.60056 m350
79.65363 m341	75.66201 m342	70.96369 m343	71.43855 m344	75.08939 m345	76.88268 m346	75.81564 m347	58.55168 m348	m339 42.13268 m349	m340 24.60056 m350
79.65363 m341	75.66201 m342	70.96369 m343	71.43855 m344	75.08939 m345	76.88268 m346	75.81564 m347	58.55168 m348	m339 42.13268 m349	m340 24.60056 m350
79.65363 m341 66.76397	75.66201 m342 101.324	70.96369 m343 113.1592	71.43855 m344 123.8869	75.08939 m345 114.6969	76.88268 m346 99.82821	75.81564 m347 86.76117	58.55168 m348 83.02095	m339 42.13268 m349 80.04609	m340 24.60056 m350 83.0852 m360
79.65363 m341 66.76397 m351	75.66201 m342 101.324 m352	70.96369 m343 113.1592 m353	71.43855 m344 123.8869 m354	75.08939 m345 114.6969 m355	76.88268 m346 99.82821 m356	75.81564 m347 86.76117 m357	58.55168 m348 83.02095 m358	m339 42.13268 m349 80.04609	m340 24.60056 m350 83.0852 m360
79.65363 m341 66.76397 m351 86.09358	75.66201 m342 101.324 m352 79.51816	m343 113.1592 m353 77.0433	71.43855 m344 123.8869 m354 74.55307	75.08939 m345 114.6969 m355 76.02654	76.88268 m346 99.82821 m356 77.21229	75.81564 m347 86.76117 m357 74.80587	m348 83.02095 m358 52.57821	m339 42.13268 m349 80.04609 m359 37.72067	m340 24.60056 m350 83.0852 m360 22.63408
79.65363 m341 66.76397 m351 86.09358 m361	75.66201 m342 101.324 m352 79.51816 m362	70.96369 m343 113.1592 m353 77.0433 m363	71.43855 m344 123.8869 m354 74.55307 m364	75.08939 m345 114.6969 m355 76.02654 m365	76.88268 m346 99.82821 m356 77.21229 m366	75.81564 m347 86.76117 m357 74.80587	58.55168 m348 83.02095 m358 52.57821 m368	m339 42.13268 m349 80.04609 m359 37.72067	m340 24.60056 m350 83.0852 m360 22.63408
79.65363 m341 66.76397 m351 86.09358 m361 74.89804	75.66201 m342 101.324 m352 79.51816 m362 103.352	m343 113.1592 m353 77.0433 m363 109.3031	71.43855 m344 123.8869 m354 74.55307 m364 115.7514	75.08939 m345 114.6969 m355 76.02654 m365 119.1327	76.88268 m346 99.82821 m356 77.21229 m366 116.324	75.81564 m347 86.76117 m357 74.80587 m367 103.7346	m348 83.02095 m358 52.57821 m368 89.72486	m339 42.13268 m349 80.04609 m359 37.72067 m369 86.31983	m340 24.60056 m350 83.0852 m360 22.63408 m370 90.04469
79.65363 m341 66.76397 m351 86.09358 m361 74.89804 m371	75.66201 m342 101.324 m352 79.51816 m362 103.352 m372	m343 113.1592 m353 77.0433 m363 109.3031 m373	71.43855 m344 123.8869 m354 74.55307 m364 115.7514	75.08939 m345 114.6969 m355 76.02654 m365 119.1327	m346 99.82821 m356 77.21229 m366 116.324	75.81564 m347 86.76117 m357 74.80587 m367 103.7346	m348 83.02095 m358 52.57821 m368 89.72486	m339 42.13268 m349 80.04609 m359 37.72067 m369 86.31983 m379	m340 24.60056 m350 83.0852 m360 22.63408 m370 90.04469
79.65363 m341 66.76397 m351 86.09358 m361 74.89804 m371 90.88547	75.66201 m342 101.324 m352 79.51816 m362 103.352 m372 84.53492	m343 113.1592 m353 77.0433 m363 109.3031 m373 78.83939	m344 123.8869 m354 74.55307 m364 115.7514 m374 79.26955	75.08939 m345 114.6969 m355 76.02654 m365 119.1327 m375 79.95531	m346 99.82821 m356 77.21229 m366 116.324 m376 73.06983	75.81564 m347 86.76117 74.80587 m367 103.7346 m377 63.76117	m348 83.02095 m358 52.57821 m368 89.72486 m378 47.6662	m339 42.13268 m349 80.04609 m359 37.72067 m369 86.31983 m379 35.25	m340 24.60056 m350 83.0852 m360 22.63408 m370 90.04469 m380 26.96927
79.65363 m341 66.76397 m351 86.09358 m361 74.89804 m371 90.88547	75.66201 m342 101.324 m352 79.51816 m362 103.352 m372 84.53492 m382	m343 113.1592 m353 77.0433 m363 109.3031 m373 78.83939	71.43855 m344 123.8869 m354 74.55307 m364 115.7514 m374 79.26955	75.08939 m345 114.6969 m355 76.02654 m365 119.1327 m375 79.95531	m346 99.82821 m356 77.21229 m366 116.324 m376 73.06983	75.81564 m347 86.76117 m357 74.80587 m367 103.7346 m377 63.76117	m348 83.02095 m358 52.57821 m368 89.72486 m378 47.6662 m388	m339 42.13268 m349 80.04609 m359 37.72067 m369 86.31983 m379 35.25 m389	m340 24.60056 m350 83.0852 m360 22.63408 m370 90.04469 m380 26.96927

Standard Deviation table:

std1	std2	std3	std4	std5	std6	std7	std8	std9	std10
65.01184	77.77399	89.92133	96.12808	99.45747	99.72622	98.61528	102.475	103.1712	105.9436
std11	std12	std13	std14	std15	std16	std17	std18	std19	std20
107.6655	104.0043	105.9508	107.8664	109.742	109.6022	105.7334	103.4696	104.9	98.1944
std21	std22	std23	std24	std25	std26	std27	std28	std29	std30
73.17727	86.51969	96.27368	106.1496	109.0525	110.0521	110.8936	110.9029	111.1358	114.3951
					. 10.0				
std31	std32	std33	std34	std35	std36	std37	std38	std39	std40
114.3278	113.6467	114.3165	112.2357	111.1863	110.0747	110.2678	108.8677	111.6475	99.15723
-4441	std42	-142	-4-14-4	-145	-146	-147	-440	-140	std50
std41 66.57551	84.47719	std43 97.02959	std44 107.7706	std45 113.2899	std46 111.2893	std47 109.3168	std48 109.8132	std49 111.3044	112.7589
00.57551	04.4//19	97.02959	107.7706	113.2099	111.2093	109.5108	109.6132	111.5044	112./569
std51	std52	std53	std54	std55	std56	std57	std58	std59	std60
112.8439	110.385	108.4825	106.3678	109.7662	110.2009	112.0855	112.2007	107.0797	95.61727
112.0433	110.303	100.4023	100.3076	105.7002	110.2003	112.0055	112.2007	107.0757	33.01727
std61	std62	std63	std64	std65	std66	std67	std68	std69	std70
69.36742	85.77395	98.22711	108.7697	110.647	110.9331	109.0668	107.3659	107.3419	110.3963
03.30742	03.77333	30.22722	200.7037	220.047	220.5552	203.0000	107.5055	207.5425	110.0303
std71	std72	std73	std74	std75	std76	std77	std78	std79	std80
110.3127	104.9195	103.6291	104.8655	105.7869	107.8932	111.6919	108.3138	106.6593	94.56195
std81	std82	std83	std84	std85	std86	std87	std88	std89	std90
75.43729	92.55121	102.674	109.417	110.6596	110.3763	107.0574	108.2463	109.1284	108.89
std91	std92	std93	std94	std95	std96	std97	std98	std99	std100
108.0318	104.181	104.6612	106.5682	107.9011	108.3206	109.3257	109.7276	104.9904	93.3721
std101	std102	std103	std104	std105	std106	std107	std108	std109	std110
77.89744	94.80273	104.4505	112.626	113.1938	111.1614	108.8512	110.2526	110.0633	110.4286
std111	std112	std113	std114	std115	std116	std117	std118	std119	std120
109.6303	105.2838	106.7398	107.8662	109.614	107.5424	108.1313	108.2292	101.9768	89.27608
std121	std122	std123	std124	std125	std126	std127	std128	std129	std130
80.53627	99.00712	104.8335	111.2779	112.9202	109.4507	109.9541	109.7387	106.6592	111.197
-14121	-14122	-14122	-14124	-44125	-1-d12C	-44127	-44120	-44120	std140
std131 109.768	std132 109.3948	std133 108.6424	std134 108.226	std135 106.7134	std136 106.2038	std137 108.989	std138 108.5067	std139 100.8332	87.79576
105.766	103.3340	108.0424	100.220	100.7134	100.2036	100.303	100.3007	100.0552	87.75570
std141	std142	std143	std144	std145	std146	std147	std148	std149	std150
86.72678	98.77327	104.2127	111.5359	112.1147	112.5665	109.2385	107.8951	107.8542	108.746
00.72070	30.77327	104.2127	111.55555	111.1147	112.5005	203.2503	107.0331	207.0542	100.740
std151	std152	std153	std154	std155	std156	std157	std158	std159	std160
111.6187	110.6202	110.2695	106.4121	105.9861	108.3065	109.6404	106.6664	98.57256	90.1915
std161	std162	std163	std164	std165	std166	std167	std168	std169	std170
91.06014	101.5346	105.3303	110.7277	112.8108	109.7708	111.0405	111.2728	109.0092	111.9694
std171	std172	std173	std174	std175	std176	std177	std178	std179	std180
114.6164	110.6253	107.4026	106.6358	109.0423	109.2527	107.7716	103.7001	96.97228	87.56876
std181	std182	std183	std184	std185	std186	std187	std188	std189	std190
90.50053	104.3334	108.927	114.7246	114.2001	111.7583	112.395	110.4983	110.1754	114.7988
std191	std192	std193	std194	std195	std196	std197	std198	std199	std200
113.1017	108.6419	109.2085	108.7343	109.1884	109.3082	108.5542	103.8954	98.97647	87.74166

std201	std202	std203	std204	std205	std206	std207	std208	std209	std210
92.01754	104.2321	109.8432	114.6027	113.2071	113.8214	109.4575	110.4317	111.8202	112.487
std211	std212	std213	std214	std215	std216	std217	std218	std219	std220
109.4322	108.0547	110.4015	109.7561	110.5369	109.9244	107.6943	103.3079	100.1288	88.2283
std221	std222	std223	std224	std225	std226	std227	std228	std229	std230
91.25816	105.2779	109.9194	112.8844	114.9206	111.5774	107.163	107.874	107.9325	109.292
std231	std232	std233	std234	std235	std236	std237	std238	std239	std240
109.4669	105.0402	107.7556	108.6229	109.1807	109.9411	106.8203	102.5766	100.6049	87.096
std241	std242	std243	std244	std245	std246	std247	std248	std249	std25
93.7575	108.449	109.9511	115.9125	114.2496	111.2856	109.6687	110.8891	109.2339	111.96
		-1-1252			- A James		-1-1250	-1-1250	-1-126
std251 111.8796	std252 106.9934	std253 109.0582	std254 108.1925	std255 108.5237	std256 107.9135	std257 107.5531	std258 102.8561	std259 98.68922	std26
111.0/90	100.9934	109.0362	106.1925	108.5257	107.9133	107.5551	102.6501	90.00922	67.529
std261	std262	std263	std264	std265	std266	std267	std268	std269	std27
93.36729	109.8922	111.4953	112.6009	113.0407	112.3428	106.9395	107.1242	107.0708	110.56
std271	std272	std273	std274	std275	std276	std277	std278	std279	std28
108.9861	107.1868	108.3472	106.5621	106.8883	106.1196	105.1396	100.1424	96.23932	83.935
std281	std282	std283	std284	std285	std286	std287	std288	std289	std29
91.57904	110.9244	110.3894	111.9533	115.3169	109.2023	101.6306	102.8668	104.9358	109.17
std291	std292	std293	std294	std295	std296	std297	std298	std299	std30
110.7465	107.8505	105.1314	105.8037	106.1284	105.7429	106.1472	102.521	94.94	80.986
std301	std302	std303	std304	std305	std306	std307	std308	std309	std31
95.86064	112.5366	111.2259	114.6515	113.2413	106.5227	100.4918	104.3293	104.7076	106.61
33.00004	112.5500	111.2255	114.0515	113.2413	100.5227	100.4510	104.5255	104.7070	100.01
std311	std312	std313	std314	std315	std316	std317	std318	std319	std32
108.2493	105.1838	103.7918	104.2295	105.9652	104.5951	107.7814	100.857	90.04037	74.625
std321	std322 111.1248	std323 109.7204	std324	std325	std326	std327	std328	std329	std33
99.64644	111.1248	109.7204	114.3687	112.5473	108.0533	103.521	103.6508	102.5066	107.83
std331	std332	std333	std334	std335	std336	std337	std338	std339	std34
109.4559	105.4097	103.7165	102.8979	104.2572	107.4286	105.4292	93.91935	82.48611	64.883
std341	std342	std343	std344	std345	std346	std347	std348	std349	std35
99.94294	114.1181	110.0377	109.68	112.3892	110.8319	105.0558	107.7337	105.5764	109.61
std351	std352	std353	std354	std355	std356	std357	std358	std359	std36
109.7017	106.2313	104.8682	104.0605	103.1199	104.9302	102.6363	88.94438	77.34717	60.945
std361	std362	std363	std364	std365	std366	std367	std368	std369	std37
100.9806	115.4522	107.9828	108.6567	109.7589	110.6269	107.9677	105.5335	106.5381	109.30
-4.4974	-4-1975			-/-lass				-/-in-c	-1.10-
std371	std372	std373	std374	std375	std376	std377	std378	std379	std38
109.5063	105.0214	103.2706	103.7606	101.7176	101.7131	97.80341	83.94673	78.43226	69.638
std381	std382	std383	std384	std385	std386	std387	std388	std389	std39
96.92621	104.1647	106.2246	108.6647	108.2422	105.9109	104.6085	106.9265	105.6322	108.37
std391 107.99	std392 104.29	std393 101.3722	std394 98.43293	std395 99.17809	std396 99.26074	std397 93.79278	std398 87.30378	std399 82.70183	72.5121

Full script:

```
attach (BELL)
library(dplyr) #Package for subseting data
View(bell clean)
attach (CHILLER)
chiller clean<- select(CHILLER, -c(2,3,6,7,8,9,10,11,12))
View(chiller clean)
attach (FREESTYLE)
View(freestyle clean)
BELL clean <-data.frame (BELL clean) #creating a data frame to add conditional statements to
BELL clean$CL = ifelse((BELL clean$strength == 0.4 & BELL clean$italic == 0), "CL1", "NA")
BELL CLEAN = BELL clean[which(BELL clean$CL =="CL1"),] #labeling the new filter data as
View(BELL CLEAN)
CHILLER clean<-data.frame(CHILLER clean)
CHILLER clean $CL = ifelse((CHILLER clean $strength == 0.4 & CHILLER clean $italic ==
CHILLER CLEAN = CHILLER clean[which(CHILLER clean$CL =="CL2"),]
View(CHILLER CLEAN)
FREESTYLE clean<-data.frame(FREESTYLE clean)</pre>
View(FREESTYLE CLEAN)
DATA <- rbind (BELL CLEAN, CHILLER CLEAN, FREESTYLE CLEAN)
View (DATA)
mean(DATA[,3]) #mean of this column is 0 which is ok
```

```
DATASD<-DATA %>% summarize if(is.numeric, sd)
library(standardize)
SDATA <- DATA %>% mutate if (is.numeric, function (x) as.vector(scale(x))) # scaling by
View (SDATA)
cor(sDATA1)
cor.df = data.frame(cor(DATA1)) #renaming to view actual full matrix
View(cor.df)
library(dplyr)
 gather(var2, value, -var1) %>%
 arrange(desc(value)) %>%
  group by(value) %>%
  filter(row number()==1)
    SDATA$SETROW[i] = "SETROW1"
}else if(SDATA$CL[i]=="CL2"){
}else{
n<-nrow(SETROW1[which(SETROW1$SETROW=="SETROW1"),])
trainset<-sample(1:n, 0.8*n)
```

```
SETROW2 = SDATA[which(SDATA$SETROW =="SETROW2"),]
n<-nrow(SETROW2[which(SETROW2$SETROW=="SETROW2"),])
trainset<-sample(1:n, 0.8*n)</pre>
SETROW3 = SDATA[which(SDATA$SETROW =="SETROW3"),]
n<-nrow(SETROW3[which(SETROW3$SETROW=="SETROW3"),])
trainset<-sample(1:n, 0.8*n)</pre>
trainsetcl3 <- SETROW3[trainset,]</pre>
testsetcl3 <- SETROW3[-trainset,]</pre>
TRAIN SET<-rbind(trainsetcl1, trainsetcl2, trainsetcl3)
library(class)
RNGkind(sample.kind = "Rounding")
set.seed(1)
set.seed(1)
mean(knn.predtrain12!= TRAIN label) #[1] 0.2814685 pretty bad
mean(knn.predtest12 != TEST label) #[1] 0.3194444 very high which makes sense because its
table(data.frame(knn.predtrain,TRAIN label))
table(data.frame(knn.predtest, TEST label))
set.seed(1)
knn.test.accuracy <- numeric(length(K.set))</pre>
for (j in 1:length(K.set)) {
                   test=TEST no,
```

```
knn.test.accuracy[j] <- mean(knn.pred == TEST label)</pre>
for (i in seq(5, 100, by = 5)) {
 knn.mod<- knn(train = TRAIN no, test = TEST no, cl = TRAIN label, k= i)
 k.optm[i] <- 100 * sum(TEST label == knn.mod) / NROW(TEST label)
set.seed(1)
knn.train.accuracy <- numeric(length(K.set))</pre>
for (j in 1:length(K.set)){
                   test=TRAIN no,
plot(K.set, knn.train.accuracy, type="o", col="blue", pch="o", lty=1)
points(K.set, knn.test.accuracy, col="red", pch="*")
lines(K.set, knn.test.accuracy, col="red",lty=2)
knn.test.accuracy <- numeric(length(K.set))</pre>
set.seed(1)
for (j in 1:length(K.set)){
max(knn.test.accuracy)
set.seed(1)
set.seed(1)
                 cl = TRAIN label,
```

```
trainmt<-table(data.frame(knn.predtrainbest,TRAIN label))</pre>
testtt<-table(data.frame(knn.predtestbest, TEST label))</pre>
library(DescTools)
Conf(trainmt)
PACK1<-
PACK2<-
PACK4<-
packcl1 = PACK1[which(PACK1$SETROW=="SETROW1"),]
n<-nrow(packcl1)
PACKCL11 < -sample(1:n, 0.8*n)
packcl2 = PACK1[which(PACK1$SETROW=="SETROW2"),]
n<-nrow(packcl2)</pre>
PACKCL21<-sample(1:n, 0.8*n)
PACKCL2 train1 <- packcl2[PACKCL21,]
packcl3 = PACK1[which(PACK1$SETROW=="SETROW3"),]
n<-nrow(packcl3)</pre>
PACKCL31<-sample(1:n, 0.8*n)
PACKCL3 train1 <- packcl3[PACKCL31,]
PACKCL3 test1 <- packcl3[-PACKCL31,]
PACK1 TRAINALL<- rbind(PACKCL1 train1, PACKCL2 train1, PACKCL3 train1)
packcl1p2 = PACK2[which(PACK2$SETROW=="SETROW1"),]
n<-nrow(packcl1p2)
PACKCL1 train2 <- packcl1p2[PACKCL1p2,]
```

```
PACKCL1 test2 <- packcl1p2[-PACKCL1p2,]
packcl2p2 = PACK2[which(PACK2$SETROW=="SETROW2"),]
n<-nrow(packcl2p2)
PACKCL2p2<-sample(1:n, 0.8*n)
packcl3p2 = PACK2[which(PACK2$SETROW=="SETROW1"),]
n<-nrow(packcl3p2)
PACKCL3p2<-sample(1:n, 0.8*n)
PACK2 TRAINALL<- rbind(PACKCL1 train2, PACKCL2 train2, PACKCL3 train2)
packcl1p3 = PACK3[which(PACK3$SETROW=="SETROW1"),]
n<-nrow(packcl1p3)
PACKCL1p3<-sample(1:n, 0.8*n)
PACKCL1 test3 <- packcl1p3[-PACKCL1p3,]
packcl2p3 = PACK3[which(PACK3$SETROW=="SETROW2"),]
n<-nrow(packcl2p3)
packcl3p3 = PACK3[which(PACK3$SETROW=="SETROW3"),]
n<-nrow(packcl3p3)</pre>
PACKCL3p3<-sample(1:n, 0.8*n)
PACKCL3 test3 <- packcl3p3[-PACKCL3p3,]
PACK3 TESTALL<- rbind(PACKCL1 test3, PACKCL2 test3, PACKCL3 test3)
packcl1p4 = PACK4[which(PACK4$SETROW=="SETROW1"),]
n<-nrow(packcl1p4)
PACKCL1p4<-sample(1:n, 0.8*n)
PACKCL1 train4 <- packcl1p4[PACKCL1p4,]
PACKCL1 test4 <- packcl1p4[-PACKCL1p4,]
packcl2p4 = PACK4[which(PACK4$SETROW=="SETROW2"),]
n<-nrow(packcl2p4)</pre>
```

```
PACKCL2 train4 <- packcl2p4[PACKCL2p4,]
PACKCL2 test4 <- packcl2p4[-PACKCL2p4,]
packcl3p4 = PACK4[which(PACK4$SETROW=="SETROW3"),]
n<-nrow(packcl3p4)</pre>
PACKCL3p4<-sample(1:n, 0.8*n)
PACKCL3 train4 <- packcl3p4[PACKCL3p4,]</pre>
PACKCL3 test4 <- packcl3p4[-PACKCL3p4,]
PACK4 TRAINALL<- rbind(PACKCL1 train4, PACKCL2 train4, PACKCL3 train4)
PACK1 TRAINALL LABEL <- PACK1 TRAINALL[,"CL"]
PACK2 TRAINALL no<- PACK2 TRAINALL[,-c(101,102)]
PACK1 TESTALL no<- PACK1 TESTALL[,-c(101,102)]
PACK2 TESTALL no<- PACK2 TESTALL[,-c(101,102)]
PACK3 TESTALL no<- PACK3 TESTALL[,-c(101,102)]
PACK4 TESTALL no<- PACK4 TESTALL[,-c(101,102)]
PACK4 TESTALL LABEL <- PACK4 TESTALL[,"CL"]
set.seed(1)
                     cl = PACK1 TRAINALL LABEL,
set.seed(1)
                    test=PACK2 TESTALL no,
                    cl = PACK2 TRAINALL LABEL,
set.seed(1)
                    test=PACK3 TESTALL no,
set.seed(1)
                    cl = PACK4 TRAINALL LABEL,
```

```
w1 <- mean(knn.predPACK1 == PACK1 TESTALL LABEL)
w2 <- mean(knn.predPACK2 == PACK2 TESTALL LABEL)
w3 <- mean(knn.predPACK3 == PACK3 TESTALL LABEL)
w1 #0.5486111
w2 #0.7569444
w3 #0.6319444
w4 #0.6666667
wpack1<-PACK1 no*w1
wpack2<-PACK2 no*w2
wpack4<-PACK4 no*w4
View(wpackfull)
Swpackfull <- wpackfull %>% mutate if (is.numeric, function (x) as.vector(scale(x))
waptestset no <- waptestset[,-401]</pre>
waptestset label <- waptestset[,401]</pre>
set.seed(1)
                    test=waptestset no,
table(data.frame(knn.predwtrain, waptrainset label))
table(data.frame(knn.predwtest, waptestset label))
```