CH2: LE CODAGE DES NOMBRES ENTIERS

1) Codage d'un entier naturel en binaire

Sous ses grands airs, un ordinateur ne comprend finalement que deux choses : « le courant passe », qu'on notera 1 et « le courant ne passe pas », qu'on notera 0. C'est ce qu'on appelle le binaire.

Comment pourrait-on, pour communiquer avec un ordinateur, « noter » les entiers suivants : 0 ; 1 ; 2 ; 5 ; 45 ?

Représentation binaire

Habituellement, nous représentons les valeurs entières dans le système décimal, on dit aussi en base 10. Nous utilisons les dix chiffres de 0 à 9. La position des chiffres définit la valeur associée à ce chiffre. Par exemple, 5402 est compris comme 5 milliers, 4 centaines, 0 dizaine et 2 unités :

$$5402=5 \times 1000+4 \times 100+0 \times 10+2 \times 1$$

Les différents chiffres correspondent aux puissances successives de 10 :

$$542=5\times10^3+4\times10^2+0\times10^1+2\times10^0$$

L'information numérique, qu'il s'agisse de valeurs entières, de textes, d'images, ou de sons est en fin de compte représentée uniquement par des suites de 0 et de 1. On parle de bit : un bit peut prendre deux valeurs, 0 ou 1.

D'où vient le mot bit ?

Le système binaire permet d'écrire les valeurs entières en n'utilisant que les deux chiffres 0 et 1. On utilise alors la base 2.

De même que pour la base 10, les positions des chiffres sont associées aux puissances successives de 2

$$2^0 = 1$$
; $2^1 = 2$; $2^2 = 4$; $2^3 = 8$; $2^4 = 16$; $2^5 = 32$; $2^6 = 64$; etc.

Ainsi la valeur entière qui correspond à la représentation binaire 101010 est

$$1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 1 \times 32 + 0 \times 16 + 1 \times 8 + 0 \times 4 + 1 \times 2 + 0 \times 1 = 42$$

Il nous faut pouvoir indiquer que 101010 est une représentation binaire et non une représentation décimale, qui serait comprise *cent un mille dix* (ou encore une représentation dans une autre base...).

On notera par exemple 0b101010 ou 1010102, ou encore 101010.

On distingue donc les valeurs entières (les entiers) et leur représentation.

À une valeur entière donnée est associée une représentation décimale, mais aussi une représentation binaire.

Expliquez ce que peut signifier le signe '=' dans l'équation suivante : 10 = 2, et pourquoi on préférera écrire 0b10 = 2

Donnez les valeurs entières représentées par 0b0100, 0b10101, 0b101, 0b0101 et 0b00101.

Comparez les valeurs entières représentées par 0b11 et 0b100, 0b111 et 0b1000.

Combien d'entiers peut-on coder avec un octet ? (un octet est une série de 8 bits, c'est-à-dire une série de 8 « 0 ou 1 ») ?

Quelle est la représentation binaire de 14?

Passer d'un nombre en base dix à sa représentation binaire

<u>Méthode</u>: On divise le nombre donné par 2, on note le quotient et le reste (qui est 0 ou 1). On recommence en divisant le quotient par 2 ... On s'arrête lorsque le quotient vaut 0.

La représentation binaire du nombre est donnée par la suite des restes, de bas en haut.

Exemple : on souhaite écrire 135 en base 2 :

Nombre	Quotient de la par 2	Reste
135	67	1
67	33	1
33	16	1
16	8	0
8	4	0
4	2	0
2	1	0
1	0	1

L'écriture binaire de 135 est donc 0b10000111. Vous pouvez vérifier en transformant ce nombre binaire en décimal.

Donner la représentation binaire de 78 et de 561.

Sur *n* bits, combien d'entiers naturels peut-on coder ?

L'addition binaire fonctionne comme l'addition décimale, en utilisant le fait que 1+1=10 revient à « poser zéro et retenir 1 ».

On constate que l'addition de deux bits A et B donne A XOR B avec une retenue valant A ET B.

Additionner les nombres binaires 0110 et 1010 (vérifier en les traduisant en nombres décimaux).

Remarques

Multiplication et division

Multiplier par deux se fait en décalant chaque chiffre d'un cran à gauche et en insérant un zéro à la fin. C'est le même principe que pour multiplier par 10 un nombre décimal. Par exemple, deux fois onze :

```
1011 onze
//// décalage et insertion de 0
10110 vingt-deux
```

La division entière par deux se fait en décalant chaque chiffre d'un cran à droite, le chiffre de droite étant le reste supprimé. Par exemple onze divisé par deux :

```
1011 onze
\\\ décalage et suppression du chiffre à droite
101 cinq reste un
```

Vocabulaire

Dans une représentation binaire d'un nombre, le bit le plus à gauche est appelé **bit de poids fort**, celui le plus à droite **bit de poids faible**.

Et Python dans tout ça?

Par défaut, en Python, les nombres entiers sont en base 10. Pour manipuler des séquences de bits, on utilise la notation 0b....

```
In [1]: 0b01001101
Out[1]: 77
```

Inversement, on peut convertir une valeur entière en base 10 vers la base 2 à l'aide de la fonction bin() :

```
In [2]: bin(43)
Out[2]: '0b101011'
```

Vérifiez les résultats précédents à l'aide de ces instructions.

2) Les entiers relatifs (ou entiers signés)

Nous savons maintenant coder les entiers naturels. On pourrait imaginer, pour coder les relatifs, réserver le premier bit du nombre au signe : 0 pour positif, 1 pour négatif par exemple.

Avec cette méthode, coder en binaire, sur un octet, les nombres 15 et -15. Additionner ces deux nombres en binaire et transformer le résultat en nombre décimal. Que constatez-vous ?

Cette méthode n'est donc pas pertinente. Pour coder un entier relatif, on utilisera la méthode « du complément à 2 ».

Additionner, après codage binaire sur 4 bits, les nombres 15 et 1.

Sur 4 bits, le résultat est donc 0. Pour la machine, 1111 est l'opposé de 0001, donc 1111 représente -1.

On souhaite déterminer l'opposé de 5 (codé en binaire sur 4 bits 0101).

Compléter l'addition suivante :

Pour la machine, sur 4 bits, l'opposé de 5 est donc codé par 1011.

Méthode générale

De manière générale, avec n bits, la représentation machine d'un entier relatif r est l'écriture binaire de la différence $2^n - r$. Cette représentation s'appelle le complément à 2^n , souvent abrégée en complément à 2.

Pratiquement, pour trouver la représentation d'un entier négatif r, on prend l'écriture binaire de -r (qui est un entier positif), on inverse les bits de cette écriture et on ajoute 1. Inverser les bits et ajouter 1 sont des opérations simples pour la machine. Dans toutes ces écritures, le nombre de bits est fixé.

On effectue l'opération inverse pour trouver l'entier relatif correspondant à un nombre binaire commençant par un.

Exemple: on souhaite coder -12, sur 6 bits.

Codage de 12 en binaire sur 6 bits : 001100

On inverse chaque bit : 110011

On ajoute 1 : 110100

La représentation de -12 en complément à 2 sur 6 bits est donc 110100.

Déterminer la représentation de -28 en complément à 2 sur 8 bits. Vérifier qu'après codage en binaire, on a bien -28+28=0

Quel est l'entier relatif codé en complément à 2 sur 8 bits par 10011001 ?

Sur 1 octet (8 bits), quels sont les plus petit et plus grand entiers relatifs que l'on peut coder ? Quelle est la caractéristique des entiers positifs ? Celle des entiers négatifs ?

Avec n bits, on peut représenter les entiers compris entre -2^{n-1} et $2^{n-1}-1$.Les nombres négatifs ont tous le bit de poids fort égal à 1.

La représentation en machine est fixée par le nombre de bits utilisés. Ainsi avec un octet, on peut représenter les entiers naturels de 0 à 255. On peut également représenter les entiers relatifs de $-2^7 = -128$ à $2^7 - 1 = 127$.

Avec certains langages, le nombre d'octets avec lequel on travaille sur les entiers peut être précisé. En Python, c'est Python qui gère la taille, a priori illimitée. Les entiers sont représentés par le type **int** (integer). Si un nombre dépasse la taille maximale que peut gérer le processeur, ce nombre est découpé en deux ou plusieurs parties, et Python s'occupe des différentes opérations à effectuer. Cela prend alors plus de temps et d'espace en mémoire ...

Exécuter le script ci-contre Que remarque-t-on ? Expliquer.

```
from time import time
start=time()
for i in range(50000):
    a=2**i
print(time()-start)

start=time()
for i in range(50000):
    a=3**i
print(time()-start)
```

3) L'hexadécimal

La base 16, dite hexadécimale, est fréquemment utilisée. Pour pouvoir écrire 16 « chiffres » hexadécimaux, on utilise les chiffres de 0 à 9, puis les lettres A à F (A correspondant à 10 et F à 15).

Le codage fonctionne sur le même principe que pour une base 2 ou 10 :

Le nombre 3A5 vaut $3 \times 16^2 + 10 \times 16 + 5 \times 16^0 = 933$.

La base 16 est souvent utilisée pour simplifier l'écriture de nombres binaires. En effet, on peut aisément passer d'un nombre en base 2 à un nombre en base 16 en regroupant les chiffres binaires par 4 comme ci-dessous :

Le nombre binaire 1001 0101 1111 0011 se code donc A5F3 en hexadécimal.

La transformation inverse se fait en codant chaque chiffre hexadécimal en binaire sur 4 bits.

Remarques:

On utilise parfois la notation \dots_b pour indiquer que le nombre (représenté ici par \dots) est codé en base b. Ceci permet d'éviter la confusion entre 101_2 , 101_{10} et 101_{16} !

Python permet de manipuler les nombres hexadécimaux à l'aide de la notation 0x et de transformer un nombre en hexadécimal à l'aide de la fonction hex().

In [1]: 0xDF40E
Out[1]: 914446

In [4]: hex(1759)
Out[4]: '0x6df'

```
In [3]: bin(0xA4F2)
Out[3]: '0b1010010011110010'
In [5]: hex(0b10101)
Out[5]: '0x15'
```

Vérifier « à la main » les affichages de la première colonne ci-dessus.