Math 226- HW 3 Due: Sep 19 by Midnight

1. (10 points)

- a) (6 points) In \mathbb{F}^n (Take $\mathbb{F} = \mathbb{R}$ first if \mathbb{F} confuses you). Let e_j denote the vector whose jth coordinate is 1 and whose other coordinates are 0. Prove that $S := \{e_1, e_2, ..., e_n\}$ is linearly independent set and generates \mathbb{F}^n . **Remark:** The vectors $e_i : i = 1, 2, ..., n$ are called standard vectors. In \mathbb{R}^n , we use these frequently and call the set of standard vectors "the standard bases".
- c) (4 points) Let V be vector space over a field \mathbb{F} with characteristic not equal to two. (This means that if $x \neq 0$, then $x + x \neq 0$ for any $x \in \mathbb{F}$.) Let u and v be distinct vectors in V. Prove that $\{u, v\}$ is linearly independent if and only if $\{u + v, u v\}$ is linearly independent.

To see why, characteristic causes a trouble, note that you can gain zero while adding and subtracting the coefficients.

- 2. (22 pts) Let V be a vector space over \mathbb{F} and $S = \{v_1, v_2, ..., v_k\} \subseteq V$.
 - (a) (6 points) For every $x \in V$, prove that $x \in \text{span}(S)$ iff $\text{span}(S) = \text{span}(S \cup \{x\})$.
 - (b) (6 points) Suppose that $w \in V$ but $w \notin S$. Further suppose that S is linearly independent. Prove that $S \cup \{w\}$ is linearly independent iff $w \notin \text{span}(S)$.
 - (c) (10 points) We write $A \subseteq B$ to mean $A \subseteq B$ and $A \neq B$. Prove that a set $S = \{u_1, u_2, \dots, u_k\}$ is linearly independent iff

$$\{0\} \subsetneq \operatorname{span}(\{u_1\}) \subsetneq \operatorname{span}(\{u_1, u_2\}) \subsetneq \operatorname{span}(\{u_1, u_2, u_3\}) \subsetneq \cdots \subsetneq \operatorname{span}(\{u_1, ..., u_k\}).$$

Remark: Another insignificant looking, but <u>fundamental</u> result. With this problem, we say that a set is linearly independent iff the span gets bigger with addition of each vector vector.

- 3. (14 points) Suppose U and W are subspaces of V. Recall we define the set $U + W = \{u + w : u \in U, w \in W\}$. We say U + W is a direct sum if and only if $U \cap W = \{0\}$. In this case we represent the sum as $U \bigoplus W$. For example, if U = Span((1,0)) and W = Span((0,1)) then $\mathbb{R}^2 = U \bigoplus W$ since $\mathbb{R}^2 = U + W$ and $U \cap W = \{(0,0)\}$
 - a) (3 points) Let U be the subspace of \mathbb{R}^5 defined by $U := \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 = 3x_2, x_3 = 7x_4\}$. Find a basis of U. (Recall we did a simpler version of that in the class.)
 - (2 points) Extend the basis in the first part to a basis of \mathbb{R}^5
 - (2 points) Find a subspace W of \mathbb{R}^5 such that $\mathbb{R}^5 = U \bigoplus W$. Validate your answer.
 - b) (3 points) Let U be the subspace of $P_4(\mathbb{R})$ defined by $U =: \{ f \in P_4(\mathbb{R}) : f'(1) = 0 \}$. Find a basis of U.
 - (2 points) Extend the basis in the first part to a basis of $P_4(\mathbb{R})$.
 - (2 points) Find a subspace W of $P_4(\mathbb{R})$ such that $P_4(\mathbb{R}) = U \bigoplus W$. Validate your answer.
- 4. (7 points) We define $M_{n\times n}(\mathbb{F})$ as the matrices defined over \mathbb{F} with size $n\times n$. We also define trace of $A=[a_{ij}]_{n\times n}\in M_{n\times n}(\mathbb{F})$ as

$$Tr(A) = \sum_{i=1}^{n} a_{ii}$$

Find a basis for matrices in $M_{3\times 3}(\mathbb{R})$ with trace zero.

 ${\bf Practice\ Problems}:\, Sec\ 1.4:\ 8\text{-}16\ ,\, Sec\ 1.5\ 2\text{-}7,\ 9,\ 14,\ 15,\ 17,\ 18,\ 20$