LEARNING TO PREDICT BY THE METHODS OF TEMPORAL DIF-FERENCES

From Reinforcement to Deep Reinforcement Learning

28-03-2019

Matthia Sabatelli¹

¹Montefiore Institute, Department of Electrical Engineering and Computer Science, Université de Liège, Belgium

Overview

1. Reinforcement Learning

2. Deep Reinforcement Learning

Reinforcement Learning

Supervised Learning setting

How does Reinforcement Learning (RL) differ from other machine learning paradigms?

In supervised learning (SL) we have \mathcal{X}_t , \mathcal{Y}_t , and a probability distribution $p_t(x,y)$ defined over $\mathcal{X}_t \times \mathcal{Y}_t$. The goal is to build a function $f: \mathcal{X}_t \to \mathcal{Y}_t$ that minimizes the expectation over $p_t(x,y)$ of a given loss function ℓ assessing the predictions made by f:

$$E_{(x,y)\sim p_t(x,y)}\{\ell(y,f(x))\},\tag{1}$$

We then learn this function via input-output pairs $LS_t = \{(x_i, y_i) | i = 1, ..., N_t\}$ drawn independently from $p_t(x, y)$.

4

Reinforcement Learning setting

However the RL setting is much different

- We do not assume any supervision but only a reward signal.
- Feedback to the learner can be delayed and is not instantaneous
- Time matters and earlier decisions might affect later ones

More generally we have to deal with time dependencies and causality

RL-cooking recipe

The core high level concepts of a RL system are:

- An Environment
 - \circ A set of possible states ${\cal S}$
 - \circ A set of possible actions ${\mathcal A}$
- An Agent
 - Policy $\pi: s \rightarrow a$
 - Value function $(V(s_t) \text{ or } Q(s_t, a_t))$
 - Model (optional)
- \bigcirc A Reward signal $\Re(s_t, a_t, s_{t+1})$,

Depending on the RL set-up some (or all) of these elements can be inter-connected, and they define what the RL-agent needs to **learn!**

Markov Decision Processes

Markov decision processes are based on Multi-Armed Bandit theory and include the elements which we have seen before:

- \bigcirc A set of possible states ${\mathcal S}$
- \bigcirc A set of possible actions ${\mathcal A}$
- \bigcirc A Reward signal $\Re(s_t, a_t, s_{t+1})$,
- \bigcirc A transition probability distribution $p(s_{t+1}|s_t, a_t)$

Markov Property

- The current state and action give all the necessary information for predicting to which next state the agent will step
- \bigcirc The reward obtained at r_t is only determined by the **previous** state and action

$$p(r_t = \Re|s_t, a_t) = p(r_t = \Re|s_t, a_t, ..., s_1, a_1)$$

Thus, for predicting the future it does not matter how the agent arrived in a particular state

8

Value Functions

In Value-based RL we want our agent to predict the 'goodness' of each state, and we can do this in two ways:

$$\mathbf{V}^{\pi}(\mathbf{s_t}) = E_{\pi} \left[G_t | S_t = s \right]$$

$$= E_{\pi} \left[\sum_{i=0}^{\infty} \gamma^i \Re_{t+i+1} \middle| S_t = s, \pi \right]$$
(2)

or by learning a State-Action Value function

$$\mathbf{Q}^{\pi}(\mathbf{s_t}, \mathbf{a_t}) = E_{\pi} \left[\sum_{i=0}^{\infty} \gamma^i \Re_{t+i+1} \middle| S_t = s, A_t = a \right]$$
(3)

Both functions express the $\mbox{\bf desirability}$ of being in a particular state and are both dependent on π

9

Why do we need Value functions?

Why should we care about them?

- Values encode the knowledge of the agent
- If they are precise the agent will know everything he needs to know
- It will predict the reward signals coming from the environment, therefore choosing appropriate actions
- O This leads to **Optimal Policies** π^* which satisfy the *Bellman* optimality equation .

$$Q^{\pi}(s_t, a_t) = \sum_{s_{t+1} \in \mathcal{S}} p(s_{t+1}|s_t, a_t) \big(\Re(s_t, a_t, s_{t+1}) + \gamma \max_{a_{t+1} \in \mathcal{A}} Q^{\pi}(s_{t+1}, a_{t+1}) \big)$$

$$\pi^*(s_t) = \underset{a \in A}{\operatorname{argmax}} \ Q^{\pi}(s_t, a_t). \tag{4}$$

$$V^*(s_t) = \underset{s \in A}{\operatorname{argmax}} \ Q^{\pi}(s_t, a_t). \tag{5}$$

Why do we need Value functions?

Learning a Value function is a fundamental problem in RL

- Learning
 - o The environment is unknown, we do not have any prior
 - We can only deal with it while interacting with it
- Planning
 - A model of the environment is given
 - Goal of the agent is to plan within this model
- $(V(s_t))$ is used for evaluating states, but does not give any information about which **policy** to follow!
- O If V is know with could try all possible actions and select s_{t+1} with the highest V value
- $Q(s_t, a_t)$ we can **immediately select** the action with the highest Q value

Exploration vs Exploitation

- What do we do until we have learned such functions?
- Exploration Strategies
 - \circ ϵ greedy exploration

$$a_t = \begin{cases} max_a Q(s_t, a_t) \text{ with prob } 1-\epsilon \\ \text{random action with prob } \epsilon \end{cases}$$
 (6)

Boltzmann exploration ¹

$$P(a) = \frac{e^{\frac{Q(a)}{\tau}}}{\sum_{i=1}^{K} e^{\frac{Q(i)}{\tau}}}$$
 (7)

Both ϵ and τ are parameters that need to be tuned with appropriate exploration schedules!

¹Wiering, M. A. (1999). Explorations in efficient reinforcement learning (Doctoral dissertation, University of Amsterdam).

How it was done

Before Sutton's work 2 a Value function could be learned via **Monte Carlo** methods

O For each state s_t at the end of a RL episode we compute the **Return** $G_t(s_t)$

$$G_t(s_t) = \sum_{i=0}^{N} \gamma^i r_{t+1} \tag{8}$$

- This denotes the sum of rewards in one episode, from the first visited state until the end
- A Value of a single state is simply the average of all the returns that are obtained when visiting that state

$$V(s_t) = \frac{\sum_{i=1}^k G_t(s)}{N(s)}$$
 (9)

²Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine learning, 3(1), 9-44.

MC-Learning

Monte Carlo based algorithms then learn the value of each state at time step t by updating:

$$V(S_t) \leftarrow V(S_t) + \alpha \big[G_t - V(S_t) \big] \tag{10}$$

The are two main drawbacks of this approach

- The variance of the updates is very high
- Overy **slow** convergence since we have to wait until a RL episode ends before updating $V(S_t)$

Temporal-Difference Learning

- A combination between Monte-Carlo ideas and Dynamic Programming strategies
- \bigcirc TD-methods can learn directly from **experience** pprox *on the fly*
- Learn wrt what has already been learned (strong recursive component)
- On not require episodes to end before learning: **Bootstraping**

Learning V with TD-Learning

- \bigcirc TD-Learning only cares about s_{t+1} and its relative reward
- O At each time-step we create a **target** to learn from \Rightarrow we do not have access to $G_t(s_t)$, but neither to $V^*(s)$!
- This target is (partially) given by the function that we want to learn!

Learning V with TD-Learning

O For each step from state s_t to s_{t+1} with reward r_t we do:

$$V(s_t) := V(s_t) + \alpha \underbrace{\left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t)\right]}_{\delta_t} - V(s_t)$$
 (11)

- O The TD-error δ_t is the error that is made at that exact time wrt the better estimate $r_{t+1} + \gamma V(S_{t+1})$.
- O We are learning V^* by guessing it at $V(s_t)$ wrt another guess at s_{t+1}

Is TD-Learning sound?

- The idea of learning on the fly is certainly appealing, but can we trust it?
- Will we really get better at guessing by guessing?
- Fortunately Yes, both TD-methods as MC ones converge asymptotically to the same correct predictions
- BUT There is no mathematical proof that shows the superiority of TD-methods over MC ones, even though experimentally they do work better!
- TD-methods are also computationally congenial

Learning the Q function

- So far we have seen that we can learn a Value function with TD-learning
- We also know that besides the V one, there also is the Q function which plays an important role in RL
- O It is straightforward to derive π from Q(s, a)

$$\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ Q^{\pi}(s, a). \tag{12}$$

Q-Learning

- Probably the most used/known RL algorithm ³
- \bigcirc The learned state action-value function directly approximates Q^*
- \bigcirc Even if a random π is followed Q-Learning still converges (eventually)
- Is a greedy algorithm
- \bigcirc We change a single Q-value given (s_t, a_t, r_t, s_{t+1})
- With respect to what?

$$Q(s_t, a_t) := Q(s_t, a_t) + \alpha [r_t + \gamma \max_{a_{t+1} \in \mathcal{A}} Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)].$$
(13)

 $^{^3}$ Watkins, C. J., Dayan, P. (1992). Q-learning. Machine learning, 8(3-4), 279-292.

Off-policy vs On-policy

On-policy

- \circ Update and learn π from episodes that have been generated using π itself
- $\circ pprox$ Learning while *doing the job*

Off-policy

- Learn π from episodes that are generated by a π which is not the one being followed by the agent
- $\circ~pprox$ Learn by letting someone else do the job

Was learning the V function via TD methods online or offline?

$$V(s_t) := V(s_t) + \alpha \big[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \big]$$
 (14)

And Q Learning?

$$Q(s_t, a_t) := Q(s_t, a_t) + \alpha \left[r_t + \gamma \max_{a_{t+1} \in \mathcal{A}} Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right].$$
(15)

Q-Learning issues and biases

Despite having convergence guarantees *Q*-Learning has been shown to suffer from numerous biases

$$Q(s_t, a_t) := Q(s_t, a_t) + \alpha \left[r_t + \gamma \max_{a_{t+1} \in \mathcal{A}} Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right].$$

$$(16)$$

- \bigcirc The max_{$a_{t+1} \in \mathcal{A}$} operator makes the algorithm **over-optimistic** and **greedy** when it shouldn't be ⁴
- The algorithm has been proven to be delusional and to lead to "bizarre" policy updates 5

⁴Hasselt, H. V. (2010). Double Q-learning. In Advances in Neural Information Processing Systems (pp. 2613-2621).

⁵Lu, T., Schuurmans, D., Boutilier, C. (2018). Non-delusional Q-learning and value-iteration. In Advances in Neural Information Processing Systems (pp. 9971-9981).

Deep Reinforcement Learning

Scaling Reinforcement Learning Up

We want to use RL techniques to solve large problems

- O Backgammon: 10²⁰ states
- Go: 10¹⁷⁰ states
- Autonomous driving in continuous action-space

Scaling Reinforcement Learning Up

Learning a Value function was done with lookup tables

- \bigcirc Each state s has an entry V(s)
- Or each state-action pair s, a has an entry Q(s, a)
- O Problem when dealing with large MDPs
 - There are too many states/actions to store in memory
 - Learning them all is too slow and computationally intensive
- Estimate value functions with a function approximator
 - $V_{\theta}(s) \approx V_{\pi}(s)$
 - $Q_{\theta}(s,a) pprox Q_{\pi}(s,a)$

In principle **any** function approximator can be used, linear vs non-linear ... Neural Networks, Regression Trees ⁶, ...

⁶Ernst, D., Geurts, P., Wehenkel, L. (2005). Tree-based batch mode reinforcement learning. JMLR, 503-556.

TD-Learning with Neural Networks

- O We want to approximate the true $V^{\pi}(s)$ as much as possible, however remember that this function is not available
- O We need to construct a **target** for learning this function

This is done exactly as in the tabular case by constructing an approximated target: $r_t + \gamma V(St_{t+1}, \theta)$ which can be incrementally learnt with

$$\triangle \theta_t = (r_t + \gamma V(s_{t+1}, \theta) - V(s_t, \theta)) \nabla_{\theta} V(s_t, \theta)$$
 (17)

The Rise of Deep Reinforcement Learning

Deep Q-Networks

The idea is to approximate the state-action value function that is usually learnt by:

$$Q(s_t, a_t) := Q(s_t, a_t) + \alpha \left[r_t + \gamma \max_{a_{t+1} \in \mathcal{A}} Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right].$$
(18)

Similar to how we have approached the V function we can now approximate the Q function that can be learnt as a **regression** problem:

$$L_{\theta} = E \left[(r_t + \gamma \max_{a_{t+1} \in \mathcal{A}} Q(s_{t+1}, a_{t+1}, \theta) - Q(s_t, a_t, \theta))^2 \right].$$
 (19)

Deep Q-Networks

There are however some **problems**...

- O Minimizing L_{θ} after each RL-transition $\langle s_t, a_t, r_t, s_{t+1} \rangle$ can be very slow
- The network will risk to only focus on RL-trajectories that are highly correlated between eachother
- \bigcirc We need to introduce a stochastic element when learning that \approx breaks causality

The solution is called **Experience Replay** ⁷

⁷Moore, A. W. (1990). Efficient memory-based learning for robot control.

Deep Q-Networks and Experience Replay

- \bigcirc Essentially consists of a memory buffer, D, of size N, in which experiences are stored in the form $\langle s_t, a_t, r_t, s_{t+1} \rangle$
- Once this memory buffer is filled it is possible to uniformly sample batches of experiences $\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)$ for optimizing the Q-Network

$$L_{\theta} = E_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \left[\left((y_t) - Q(s_t, a_t, \theta) \right)^2 \right]. \tag{20}$$

Deep Q-Networks and targets

- An Experience Replay buffer is however not enough to guarantee stable learning of the Q-Network
- A hack was introduced in ⁸ and is known as the Target-Network

A fair approximation of the Q function would be:

$$L_{\theta} = E \left[(r_t + \gamma \max_{a_{t+1} \in \mathcal{A}} Q(s_{t+1}, a_{t+1}, \theta) - Q(s_t, a_t, \theta))^2 \right].$$
 (21)

However, even if combined with experience replay DQN is known to not be performing well, leading to the following *trick*

$$L_{\theta} = E\left[\left(r_{t} + \gamma \max_{a_{t+1} \in \mathcal{A}} Q(s_{t+1}, a_{t+1}, \boldsymbol{\theta}^{-}) - Q(s_{t}, a_{t}, \theta)\right)^{2}\right]. \tag{22}$$

 $^{^8} Mnih,$ Volodymyr, et al. Human-level control through deep reinforcement learning. Nature 518.7540 (2015): 529.

- So far we have seen how to learn one single value function with TD-Learning and neural networks
- But how about learning both the V function and the state-action Q function at the same time?
- One function can learn from the other and accelerate training.

The idea proposed by Deep Quality-Value Learning 9

⁹Sabatelli, M. et al. Deep Quality-Value (DQV) Learning Advances in Neural Information Processing Systems (NeurIPS), Deep Reinforcement Learning Workshop.

- Novel DRL algorithm which combines the benefits of TD-Learning on two different levels
- Stability of the algorithm is ensured by the most recent contributions present in the DRL literature
- Main idea is to learn two value functions simultaneously that share the same targets to bootstrap

Learning the V function

$$L_{\Phi} = E\left[\left(r_t + \gamma V(s_{t+1}, \Phi^-) - V(s_t, \Phi)\right)^2\right]$$
 (23)

Learning the Q function

$$L_{\theta} = E\left[\left(r_{t} + \gamma V(s_{t+1}, \Phi^{-}) - Q(s_{t}, a_{t}, \theta)\right)^{2}\right]. \tag{24}$$

There are different **pro**s and **cons** of this algorithm

- Learning two Value functions is beneficial and yields faster and better learning
- Our Using $(r_t + \gamma V(s_{t+1}, \Phi^-))$ as a target allows us to get rid off a nasty $\max_{a_{t+1} \in \mathcal{A}}$ operator

However this comes at a cost

- O We need to make two Value functions co-exist without making them interfer between eachother (Φ^-)
- We have two parametrized neural networks to keep in memory instead of only one

Learning both the Q and the V function can however been seen as an instance of $Multi-Task\ Learning$ and can be tackled with hardly-parametrized neural networks.

Dueling Architectures for DQV

Figure: A value based multi-task RL architecture.

Going off-policy with the DQV idea

$$L_{\theta} = E_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \left[\left\{ r_t + \gamma V(s_{t+1}, \Phi) - Q(s_t, a_t, \theta) \right\}^2 \right], \quad (25)$$

$$L_{\Phi} = E_{\langle s_{t}, a_{t}, r_{t}, s_{t+1} \rangle \sim U(D)}$$

$$\left[\left\{ r_{t} + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a_{t+1}, \theta) - V(s_{t}, \Phi) \right\}^{2} \right]. \quad (26)$$

Conclusion

- To recap Deep Reinforcement Learning is a nice combination of 30 years old ideas and Deep Learning advancements
- \bigcirc However the transition from RL \Rightarrow to DRL has opened several research possibilities
 - New biases in algorithms keep being discovered
 - Which in combination with neural networks still make the DRL field "green"
 - Long trainig times + large sets of trajectories + sparse rewards environments + target networks ...

I believe the solution to some of these problems can be found in the original **RL** theory which once understood will give as a higher control over **DRL**.

The End