SIEMENS

2-A DC Motor Driver

TLE 4202 B

Bipolar IC

Overview

Features

- Drives motors up to 2 A
- Integrated free-wheeling diodes 2.5 A
- Short-circuit proof to ground
- Overtemperature protection
- Low saturation voltages through bootstrap
- Wide temperature range
- Suitable for applications in automotive engineering

Туре	Ordering Code	Package
TLE 4202 B	Q67000-A8225	P-TO220-7-1

Description

The two power comparators can switch magnets, motors or other loads either by being separated from each other or by being combined to a full-bridge circuit. The IC is designed for application in motor vehicles. It can be applied at package temperatures between -40 °C and 130 °C.

The IC contains two amplifiers featuring a typical open-loop voltage gain of 80 dB at 500 Hz.

The input stages are PNP differential amplifiers thus resulting in a common-mode input voltage range from 0 V to approx. the value of $V_{\rm S}$ and in a maximum input differential voltage of $V_{\rm S}$. To obtain low saturation voltages at the sink circuit, the drive circuit of the sink transistor is connected to the supply voltage. An SOA protective circuit protects the IC against ground short-circuits. At chip temperatures above approx. 160 °C the source transistors are turned off.

Figure 1 Pin Configuration (top view)

Pin Definitions and Functions

Pin No.	Symbol	Function
1	I1	Input 1 Non-inverting input 1, to be connected to pin 2 and pin 3 according to general rules
2	13	Inverting input 3 Inverting inputs of the two comparators; internally connected to reference voltage across 50 k Ω (typ. 1.7 V)
3	Q1	Output Q1 Push-pull output B DC-short-circuit proof to ground. Integrated free-wheel diodes to ground and to supply voltage
4	GND	Ground
5	Q2	Output Q2, see pin 3
6	$V_{\mathbb{S}}$	Supply voltage Has to be blocked to ground with a ceramic capacitor of at least 100 nF directly at the pins of the ICs
7	12	Input 2 Non-inverting input 2; see pin 1

Figure 2 Block Diagram

Absolute Maximum Ratings

 $T_{\rm C}$ = - 40 to 130 $^{\circ}$ C

Parameter	Symbol	Limi	it Values	Unit
		min.	max.	
Supply voltage	$V_{\mathbb{S}}$	_	40	V
Output current of sink transistors $T_{\rm C} \le 85 ^{\circ}{\rm C}$	I_{Q}	-	2.5	А
Output current of source transistors internally limited	I_{Q}	_	_	_
Diode peak currents				
to + $V_{ m S}$ to ground	$I_{F+} \ I_{F-}$	_	2.5 2.5	A A
Voltage at pins I1, I2, I3 Voltage at	V _{1, 2, 7}	- 0.3	$V_{\mathtt{S}}$	V
pins Q1, Q2 1)	$V_{3,5}$	_	_	V
Junction temperature Storage temperature	$T_{ m j} \ T_{ m stg}$	- - 55	150 125	°C °C

Operating Range

Supply voltage	V_{S}	3.5	17	V
Case temperature during operation $R_{\rm L} \ge 6~\Omega,~V_{\rm S} = 7~\dots~16~{\rm V}$ $R_{\rm L} \ge 9~\Omega,~V_{\rm S} = 16~{\rm V}$	T_{C}	- 40 -	- 130	°C °C
Voltage amplification (at negative feedback with external connection)	V_{V}	30	_	dB
Thermal resistance system - case	R_{thSC}	_	4	K/W

¹⁾ The output voltages are kept within a permissible range by free-wheel diodes

Outputs Q1 and Q2 short-circuit proof to ground

 $R_{\rm L}$: Resistance between output 1 and output 2

Characteristics

 $V_{\rm S}$ = 13 V; $T_{\rm j}$ = 25 °C

Parameter	Symbol	Limit Values			Unit	Test Condition	Test
		min. typ. max.				Circuit	

General Data

Quiescent current	$I_{\mathbb{S}}$	_	15	25	mA	S = 1	1
Open-loop gain	G_{VO}	50	80	_	dB	f = 500 Hz	1
						$V_{\rm S} \le 7 \text{ V} \le 16 \text{ V}$	
						$T_{\rm C}$ = $-$ 40 °C to	
						110 °C	

Input Characteristics

Input ourropt							
Input current							
(pins I1, I2)	$I_{11,7}$	-	1	3	μΑ	$V_{11,12} = 0$	2
Input current	I_{12}	_	35	70	μΑ	$V_{12} = 0; V_{11,7} = V_{S}$	1
	$-I_{12}$	_	230	300	μΑ	$V_{12} \le V_{\rm S}; V_{11,7} = 0 \text{ V}$	_
Input resistance	$R_{\rm I1,7}$	1	5	_	$M\Omega$	f	1
Input reference	V_{12}	1.4	1.7	2	V	= 1 kHz	1
voltage						$I_2 = 0$; $V_{11,7} = 0 \text{ V}$	
Input offset	V_{10}	- 20	_	20	mV	,	3
voltage						_	

Characteristics (cont'd)

 $V_{\rm S} = 13 \text{ V}; T_{\rm j} = 25 \, ^{\circ}\text{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition	Test
		min.	typ.	max.			Circuit

Output Characteristics

Saturation							<u> </u>
voltages							
Source operation	V_{Sato}	_	0.9	1	V	$I_{\rm Q} = -0.3 \text{ A; S1} = 1$	2
measured to $V_{\mathtt{S}}$	V_{Sato}	_	1.2	1.6	V	$I_{\rm Q} = -1.0 \text{ A;S1} = 1$	2
	V_{Sato}	_	1.5	2.1	V	$I_{Q} = -2 \text{ A}; \text{ S1} = 1$	2
Sink operation	V_{Satu}	_	0.25	0.4	V	$I_{\rm Q} = 0.3 \text{A}; \text{S1} = 2$	2
			0.5	0.75	V	$I_{Q} = 1 \text{ A}; S1 = 2$	2
	V_{Satu}	_	1	1.3	V	$I_{Q} = 2 \text{ A}; \text{S1} = 2$	2
Short-circuit	I_{SC}	_	1.25	1.6	Α	$V_{Q} = 0 \text{ V}$	2
current							
Diode forward							
voltage to + $V_{\rm S}$	$V_{F extsf{+}}$	_	1	1.3	V	$I_{F} = I_{Q} = 1 A$	2
to ground	V_{F-}	_	0.9	1.2	V	$I_{\rm F} = I_{\rm Q} = 1$ A	2
Slew rate	SR	_	6	_	V/μs	_	1
falling edge							
Slew rate	SR	_	6	_	V/μs	_	1
rising edge							

Switching Times

Rise time of V_{Q}	t_{r}	_	1.5	_	μs	_	1
Fall time of V_{Q}	t_{f}	_	1.5	_	μs	_	1
Switch-ON delay	$t_{\sf ON}$	_	3	_	μs	_	1
Switch-OFF delay	t_{OFF}	_	1.5	_	μs	_	1
Quiescent current	I_{S}	_	15	30	mA	S = 1	1

Characteristics

 $V_{\rm S}$ \leq 7 V to 17 V; $T_{\rm C}$ = - 40 to 110 $^{\circ}$ C

Parameter	Symbol	Li	mit Val	ues	Unit	Test Condition	Test
		min.	typ.	max.			Circuit
Saturation Voltaç	ge						
Source operation	V_{Sato}	_	0.9	1.2	V	$I_{Q} = -0.3 \text{ A; S} = 1$	2
measured to $V_{\rm S}$	$V_{Sato} \ V_{Sato}$	_	1.2 1.5	1.8 2.4	V V	$I_{Q} = -1 \text{ A}; S = 1$ $I_{Q} = -2 \text{ A}; S = 1$	2
Sink operation	$V_{Satu} \ V_{Satu}$	_	0.25 0.5	0.60 1.1	V	$I_Q = 0.3 \text{ A}; \text{S1} = 2$ $I_Q = 1 \text{ A}; \text{S1} = 2$	
	V_{Satu}	_	1.2	2	V	$I_{\rm Q} = 1 \text{A}, \qquad \text{S1} = 2$ $I_{\rm Q} = 2 \text{A}; \qquad \text{S1} = 2$	
Short-circuit current	- I _{SC}	_	_	3.5	V	$V_{\rm Q}$ = 0 V $T_{\rm C}$ = 25 °C to 110 °C	-

Figure 3 Test Circuit 1

1998-02-01

Figure 4 Test Circuit 2

Figure 5 Test Circuit 3

Figure 6 Application Circuit

Figure 7 Diagrams

SIEMENS

Saturation Voltage versus Output Current

Saturation Voltage versus Temperature

Package Outlines

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

Dimensions in mm