Теория автоматов и формальных языков Контекстно-свободные языки: нисходящий анализ

Лектор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

16 ноября 2021

В предыдущей серии

- Контекстно-свободные грамматики (все правила вида A o lpha)
- КС языки и разрешимость проверки пустоты
- Нормальная форма Хомского
- Алгоритм СҮК

В предыдущей серии: НФХ

КС грамматика находится в **нормальной форме Хомского**, если все ее правила имеют вид:

- $A \rightarrow BC$, где $A, B, C \in V_N$
- ullet A o a, где $A\in V_N, a\in V_T$
- S
 ightarrow arepsilon, если в языке есть пустое слово, где S стартовый нетерминал
- 1 Удалить стартовый нетерминал из правых частей правил
- 2 Избавиться от неодиночных терминалов в правых частях
- 3 Удалить длинные правила (длины больше 2)
- 4 Удалить непродуктивные правила (ε -правила)
- 5 Удалить цепные правила

В предыдущей серии: СҮК

- Алгоритм синтаксического анализа, работающий с грамматиками в НФХ
- Динамическое программирование

CYK

- ullet Дано: строка ω длины \emph{n} , грамматика $\emph{G} = \langle \emph{V}_{\emph{T}}, \emph{V}_{\emph{N}}, \emph{P}, \emph{S}
 angle$ в НФХ
- Используем трехмерный массив d булевых значений размером $|V_N| \times n \times n, \ d[A][i][j] = true \Leftrightarrow A \Rightarrow \omega[i \dots j]$
- Инициализация: i = j
 - lacktriangledown d[A][i][i] = true, если в грамматике есть правило $A o \omega[i]$
 - d[A][i][i] = false, иначе
- Динамика. Предполагаем, d построен для всех нетерминалов и пар $\{(i',j') \mid j'-i' < m\}$
 - $d[A][i][j] = \bigvee_{A \to BC} \bigvee_{k=i}^{j} d[B][i][k] \wedge d[C][k+1][j]$
- В конце работы алгоритма в d[S][1][n] записан ответ, выводится ли ω в данной грамматике

СҮК — алгоритм восходящего анализа

Восходящий анализ: начинаем с символов входной строки, строим дерево вывода до стартового нетерминала

Восходящий анализ контринтуинтивен (особенно при диагностике ошибок)

Нисходящий синтаксический анализ

- Top-down parsing
- Начинаем разбирать со стартового нетерминала, применяем правила грамматики, пока не получим строку
 - С откатом ([full] backtracking)
 - ▶ Без отката (without backtracking)

Нисходящий синтаксический анализ с откатом

- Метод грубой силы, bruteforce
- Перебираем все возможные варианты разбора, если что-то пошло не так возвращаемся к началу и пробуем снова

S

$$egin{array}{lll} S &
ightarrow & {\sf aAd} & | & {\sf aB} \ {\sf A} &
ightarrow & {\sf b} & | & c \ {\sf B} &
ightarrow & {\sf ccd} & | & {\sf ddc} \ \end{array}$$
 $\omega = {\sf addc}$

$$S \Rightarrow aAd$$

$$egin{array}{lll} S &
ightarrow & {\sf aAd} & | & {\sf aB} \ {\sf A} &
ightarrow & {\sf b} & | & {\sf c} \ {\sf B} &
ightarrow & {\sf ccd} & | & {\sf ddc} \ \end{array}$$
 $\omega = {\sf addc}$

$$S \Rightarrow aAd \Rightarrow abd$$

$$S \Rightarrow aAd \Rightarrow abd$$

не подходит, откатываемся

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd$

не подходит, откатываемся

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd \Rightarrow acd$

не подходит, откатываемся

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd \Rightarrow acd$

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd \Rightarrow acd$
 $S \Rightarrow aAd \Rightarrow acd$

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd \Rightarrow acd$
 $S \Rightarrow aB$

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd \Rightarrow acd$
 $S \Rightarrow aB \Rightarrow accd$

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd \Rightarrow acd$
 $S \Rightarrow aB \Rightarrow accd$

не подходит, откатываемся не подходит, откатываемся не подходит, откатываемся

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd \Rightarrow acd$
 $S \Rightarrow aB \Rightarrow accd$
 $S \Rightarrow aB$

не подходит, откатываемся не подходит, откатываемся не подходит, откатываемся

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd \Rightarrow acd$
 $S \Rightarrow aB \Rightarrow accd$
 $S \Rightarrow aB \Rightarrow addc$

не подходит, откатываемся не подходит, откатываемся не подходит, откатываемся

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd \Rightarrow acd$
 $S \Rightarrow aB \Rightarrow accd$
 $S \Rightarrow aB \Rightarrow addc$

не подходит, откатываемся не подходит, откатываемся не подходит, откатываемся ура!

Проблема: ну очень уж долго работает: экспоненциальное время!

Нисходящий синтаксический анализ без отката

- Рекурсивный спуск (recursive descent parsing)
 - ▶ Для каждого нетерминала написана функция
 - Функции для нетерминалов рекурсивно вызывают друг друга

```
parse_S(word) =
  if (isEmpty(word))
  then (true, word)
  else
    let (r, w') = parse_lbr(word) in
    if (r)
    then
      let (r, w'') = parse_S(w') in
      if (r)
      then parser_rbr(w'')
      else (false, w')
    else (false, word)
```

Нисходящий синтаксический анализ без отката: $\mathsf{LL}(1)$

- Идея: откат запрещен, но разрешен предпросмотр
- По следующему терминалу принять решение о том, какую продукцию использовать
- Как и предыдущие 2 подхода не может обрабатывать леворекурсивные правила грамматики
- Достаточно хорош для используемых на практике языков

LL(1)-анализ

- Нисходящий синтаксический анализ с предпросмотром одного символа
- Читает вход слева направо (L: left-to-right), строит левый вывод в грамматике (L: leftmost)
- Состоит из:
 - Входного буфера (откуда читается входная строка)
 - Стека (для промежуточных данных)
 - ► Таблицы анализатора (управляет процессом разбора)
- Работает за O(n), где n длина входной строки

Таблица LL(1)-анализатора

Управляет процессом разбора: показывает, какую продукцию применять, если во время анализа рассматривается нетерминал A, а следующий символ входа — t

	 t	 \$
Α	 $A \rightarrow \alpha$	

Для заполнения таблицы надо научиться считать множества символов, которые можно встретить во время анализа

Множество FIRST

Множество символов, которые могут появиться первыми во время вывода из данной сентенциальной формы

- $FIRST(a\alpha) = \{a\},$ если $a \in V_T, \alpha \in (V_T \cup V_N)^*$
- $FIRST(\varepsilon) = \{\varepsilon\}$
- $FIRST(\alpha\beta) = FIRST(\alpha) \cup (FIRST(\beta), \text{ если } \varepsilon \in FIRST(\alpha))$
- $\mathit{FIRST}(S) = \mathit{FIRST}(\alpha) \cup \mathit{FIRST}(\beta),$ если есть правило $S \to \alpha \mid \beta$

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

• $FIRST(S) = \{a\}$

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

- $FIRST(S) = \{a\}$
- $FIRST(A) = \{a, \varepsilon\}$

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

- $FIRST(S) = \{a\}$
- $FIRST(A) = \{a, \varepsilon\}$
- $FIRST(A') = \{a, b\}$

$$\begin{array}{ccc} \mathcal{S} & \rightarrow & a\mathcal{S}' \\ \mathcal{S}' & \rightarrow & AbB\mathcal{S}' \mid \varepsilon \\ \mathcal{A} & \rightarrow & a\mathcal{A}' \mid \varepsilon \\ \mathcal{A}' & \rightarrow & b \mid a \\ \mathcal{B} & \rightarrow & c \mid \varepsilon \end{array}$$

- $FIRST(S) = \{a\}$
- $FIRST(A) = \{a, \varepsilon\}$
- $FIRST(A') = \{a, b\}$
- $FIRST(B) = \{c, \varepsilon\}$

$$\begin{array}{ccc} \mathcal{S} & \rightarrow & a\mathcal{S}' \\ \mathcal{S}' & \rightarrow & AbB\mathcal{S}' \mid \varepsilon \\ \mathcal{A} & \rightarrow & a\mathcal{A}' \mid \varepsilon \\ \mathcal{A}' & \rightarrow & b \mid a \\ \mathcal{B} & \rightarrow & c \mid \varepsilon \end{array}$$

- $FIRST(S) = \{a\}$
- $FIRST(A) = \{a, \varepsilon\}$
- $FIRST(A') = \{a, b\}$
- $FIRST(B) = \{c, \varepsilon\}$
- $FIRST(S') = \{a, b, \varepsilon\}$

Множество FOLLOW

Множество символов, которые могут появиться в некотором выводе сразу после данной сентенциальной формы

- Положим $FOLLOW(X) = \emptyset$
- ullet Если X стартовый нетерминал, $FOLLOW(X) = FOLLOW(X) \cup \{\$\}$ символ конца строки
- Для всех правил вида A o lpha X eta, $FOLLOW(X) = FOLLOW(X) \cup (FIRST(eta) \setminus \{ arepsilon \})$
- Для всех правил вида $A \to \alpha X$ и $A \to \alpha X \beta$, где $\varepsilon \in FIRST(\beta)$, $FOLLOW(X) = FOLLOW(X) \cup FOLLOW(A)$
- Повторять последние 2 пункта, пока можно что-то добавлять

Множество FOLLOW: пример

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

• $FOLLOW(S) = \{\$\}$

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

- *FOLLOW(S)* = {\$}
- $FOLLOW(S') = \{\$\}$

 $(S \rightarrow aS')$

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

- $FOLLOW(S) = \{\$\}$
- $FOLLOW(S') = \{\$\}$
- $FOLLOW(A) = \{b\}$

$$(S' \rightarrow AbBS')$$

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

- *FOLLOW(S)* = {\$}
- $FOLLOW(S') = \{\$\}$
- $FOLLOW(A) = \{b\}$
- $FOLLOW(A') = \{b\}$

$$(S
ightarrow aS') \ (S'
ightarrow AbBS') \ (A
ightarrow aA')$$

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

•
$$FOLLOW(S') = \{\$\}$$

•
$$FOLLOW(A) = \{b\}$$

•
$$FOLLOW(A') = \{b\}$$

•
$$FOLLOW(B) = \{a, b, \$\}$$

$$(S' \rightarrow AbBS')$$

$$(A \rightarrow aA')$$

$$(S' \to AbBS', \varepsilon \in FIRST(S'))$$

$$S \rightarrow (S) \mid \varepsilon$$

Размещаем продукции в таблице (по горизонтали — нетерминалы; по вертикали — терминалы + \$)

- ullet Продукции вида A o lpha в ячейки (A,a), где $a\in \mathit{FIRST}(lpha),$ a
 eq arepsilon
- Продукции вида $A o \alpha$ в ячейки (A,a), где $a \in FOLLOW(A)$, если $\varepsilon \in FIRST(\alpha)$

$$S \rightarrow (S) \mid \varepsilon$$

Размещаем продукции в таблице (по горизонтали — нетерминалы; по вертикали — терминалы +\$)

- ullet Продукции вида A o lpha в ячейки (A,a), где $a\in \mathit{FIRST}(lpha), a
 eq arepsilon$
- Продукции вида $A o \alpha$ в ячейки (A,a), где $a \in FOLLOW(A)$, если $\varepsilon \in FIRST(\alpha)$

N	FIRST	FOLLOW	()	\$
S	$\{(,\varepsilon\}$	$\{),\$\}$			

$$S \rightarrow (S) \mid \varepsilon$$

Размещаем продукции в таблице (по горизонтали — нетерминалы; по вертикали — терминалы +\$)

- ullet Продукции вида A o lpha в ячейки (A,a), где $a\in \mathit{FIRST}(lpha),$ a
 eq arepsilon
- Продукции вида A o lpha в ячейки (A,a), где $a \in FOLLOW(A)$, если $arepsilon \in FIRST(lpha)$

Ν	FIRST	FOLLOW	()	\$
S	$\{(,\varepsilon\}$	{),\$}	S o (S)		

$$S \rightarrow (S) \mid \varepsilon$$

Размещаем продукции в таблице (по горизонтали — нетерминалы; по вертикали — терминалы +\$)

- ullet Продукции вида A o lpha в ячейки (A,a), где $a\in \mathit{FIRST}(lpha), a
 eq arepsilon$
- Продукции вида A o lpha в ячейки (A,a), где $a \in FOLLOW(A)$, если $arepsilon \in FIRST(lpha)$

16 ноября 2021

LL(1)-анализ

- Инициализация: указатель в строке на первый символ, в стек помещаем \$ и стартовый нетерминал
- Пока стек не пуст
 - Если на вершине стека нетерминал N, указатель в строке на символе t, смотрим на содержимое ячейки (N,t) управляющей таблицы
 - ★ Если ячейка пуста, сообщаем об ошибке анализа
 - \star Если в ячейке продукция N oarepsilon, снимаем со стека N
 - * Если в ячейке продукция $N \to \alpha$, снимаем со стека N, символы α кладем на стек в обратном порядке
 - ightharpoonup Если на вершине стека терминал t
 - * Если указатель в строке на терминале t, снимаем со стека вершину, двигаем указатель на следующий символ
 - Если указатель в строке на любом другом терминале, сообщаем об ошибке
- Если строка прочитана полностью, анализ завершен успешно.
 Иначе полагается сообщить об ошибке

Пример (доска)

$$S \rightarrow (S) \mid \varepsilon$$

N	FIRST	FOLLOW	()	\$
S	$\{(,\varepsilon\}$	{),\$}	$S \rightarrow (S)$	S o arepsilon	S o arepsilon

$$\omega = (())$$
\$
Стек: $\$, S,), S, (,), S, ($

Когда LL-анализ не возможен

- Леворекурсивные правила
- Когда при построении таблицы в одну ячейку нужно записать больше одной записи
 - FIRST-FIRST конфликт

*
$$A \rightarrow \alpha \mid \beta, FIRST(\alpha) \cap FIRST(\beta) \neq \emptyset$$

$$\star$$
 $E \rightarrow T + E \mid T * E$

- ► FIRST-FOLLOW конфликт
 - **★** $FIRST(A) \cap FOLLOW(A) \neq \emptyset$

★
$$S \rightarrow Aab, A \rightarrow a \mid \varepsilon$$

- Как с этим бороться?
 - ▶ Избавиться от левой рекурсии
 - Избавиться от недетерминизма
 - Факторизовать грамматику
 - ▶ Использовать аннотации (если есть)
 - Переписать грамматику
 - ▶ Использовать более одного символа предпросмотра