Let $y = \{0, 1\}$ and X_1, \dots, X_n be the features. Then

$$\mathcal{D} = \Big\{ egin{bmatrix} ec{X}_1 \ ec{X}_2 \ dots \ ec{X}_n \ \end{bmatrix}, egin{bmatrix} y_1 \ y_2 \ dots \ y_n \ \end{bmatrix} \Big\}$$

Note that we use p+1 because there is a bias of 1 in our model. We need $y^* = g(\vec{x}^*)$. Use $g = \mathcal{A}(\mathcal{H}, \mathcal{D})$ where

$$\mathcal{H} = \left\{ \mathbb{1}_{\vec{w} \cdot \vec{x} > 0}, \vec{w} \in \mathbb{R}^{p+1} \right\}$$

Perceptron Learning Algorithm:

- 1. Initialize $\vec{w}^{t=0} = \vec{0}$ or random
- 2. Calculate $\hat{y}_i = \mathbb{1}_{\vec{w}^t \cdot \vec{x} > 0}$
- 3. Update all weights from j = 1, ..., p + 1

$$w_1^{t=1} = w_1^{t=0} + (y_i - \hat{y}_i)1$$

$$w_2^{t=1} = w_2^{t=0} + (y_i - \hat{y}_i)x_{0,1}$$

$$\vdots$$

$$w_{p+1}^{t=1} = w_{p+1}^{t=0} + (y_i - \hat{y}_i)x_{p+1,1}$$

- 4. Repeat steps 2 and 3 for all $i \in \{1, ..., n\}$
- 5. Repeat steps 2 through 4 until a threshold error is reached or a maximum number of iterations.

Note: If \mathcal{D} is linearly separable $(\exists \vec{w} \text{ such that } \mathbb{1}_{\vec{w} \cdot \vec{x} > 0})$ yields no errors in \mathcal{D} , then the algorithm will find it.

Perceptron Diagrams:

