Western New England University College of Engineering ECE Department Microwave Engineering EE 414 Spring 2024 Design Project #3 Due: April 17, 2024

Name:	Nittala Sa	atya Surya	<u>Lakshmi</u>	Vasuki Siv	<u>a Srinivas</u>
		#Id - 62	0094		
		Email –	sn620094	@wne.edu	_
Referen	nces:				

Design Project #3

	Score	Max
Lumped Element Design		200
MATLAB LE Simulation		100
WG Iris Design		500
WG Iris (HFSS – V1)		200
WG Iris (HFSS – V2)		100
Summary Graphs		100
Table 1		100
Table 2		100
Presentation		200
Total		1600

- 1. Design a lumped element bandpass filter that meets the following performance specifications:
 - $f_0 = 22 \text{ GHz}$.
 - $BW_f = 1 \text{ GHz}$.
 - $RL \ge 26 \,\mathrm{dB}$ for $f_L \le f \le f_H$.
 - $IL \ge 20 \text{ dB for } f \le f_{Ls} \text{ where } f_{Ls} = 21 \text{ GHz}$.
 - $IL \ge 35 \text{ dB}$ for $f \ge f_{Hs}$ where $f \ge f_{Hs} = 23.4 \text{ GHz}$.
 - The source and load impedances of the filter are $Z_0 = Z_0 (f_0)$ (waveguide impedance). Assume that the waveguide is a WR42 waveguide (a = 10.6680 mm, b = 4.3180 mm, and $t_w = 1.0160 \text{ mm}$).
- 2. Using MATLAB and ideal lumped elements, simulate the BPF. Employ a frequency range of 20.5 GHz to 23.5 GHz.
 - On the same graph, plot $|S_{11}|$ in dB and $|S_{21}|$ in dB. Employ a frequency range of 20.5 GHz to 23.5 GHz and a range of -40 dB to 0 dB for $|S_{k1}|$.
 - Plot $|S_{21}|$ in dB. Employ a frequency range of 21.4 GHz to 22.6 GHz and a range of -0.02 dB to 0 dB for $|S_{21}|$.
- 3. Convert the BPF into a waveguide inductive iris BPF. Assume that the waveguide is a WR42 waveguide (a=10.6680 mm , b=4.3180 mm , and $t_w=1.0160$ mm) and assume that each iris has a thickness of 1 mm (t=1 mm). For each impedance inverter, determine a value for K/Z_0 , X_p/Z_0 , X_s/Z_0 , ψ , ϕ , and a_g . For each resonator, determine a value for d and θ .
- 4. Using HFSS, simulate the waveguide inductive iris BPF. Employ a frequency range of 20.5 GHz to 23.5 GHz. In addition, assume that all metallic elements are perfect electric conductors.
 - On the same graph, plot $|S_{11}|$ in dB and $|S_{21}|$ in dB. Employ a frequency range of 20.5 GHz to 23.5 GHz and a range of -40 dB to 0 dB for $|S_{k1}|$.
 - Plot $|S_{21}|$ in dB. Employ a frequency range of 21.4 GHz to 22.6 GHz and a range of -0.02 dB to 0 dB for $|S_{21}|$.

- 5. Using HFSS, simulate the waveguide inductive iris BPF with conductor loss. Employ a frequency range of 20.5 GHz to 23.5 GHz. In addition, assume that all metallic elements are copper.
 - On the same graph, plot $|S_{11}|$ in dB and $|S_{21}|$ in dB. Employ a frequency range of 20.5 GHz to 23.5 GHz and a range of -40 dB to 0 dB for $|S_{k1}|$.
 - Plot $|S_{21}|$ in dB. Employ a frequency range of 21.4 GHz to 22.6 GHz and a range of -0.25 dB to 0 dB for $|S_{21}|$.
- 6. Summarize the results for the lumped element BPF (MATLAB), the waveguide inductive iris BPF (HFSS), and the waveguide inductive iris BPF with conductor loss.
 - On the same graph, plot $|S_{21}|$ in dB, for the three cases. Employ a frequency range of 20.5 GHz to 23.5 GHz and a range of -40 dB to 0 dB for $|S_{21}|$.
 - On the same graph, plot $|S_{21}|$ in dB, for the three cases. Employ a of frequency range 21.4 GHz to 22.6 GHz and a range of -0.25 dB to 0 dB for $|S_{21}|$.
 - On the same graph, plot $|S_{11}|$ in dB, for the three cases. Employ a frequency range of 21.4 GHz to 22.6 GHz and a range of -40 dB to 0 dB for $|S_{11}|$.
- 7. Complete Table 1.
- 8. Complete Table 2.
- 9. Present the results from the design project into a well-organized presentation.

Table 1 Summary of the impedance inverter parameters.

k, k + 1	01	12	23	$N_P, N_P + 1$	
$K_{k,k+1}/Z_0$					Ω/Ω
$X_{p(k,k+1)}/Z_0$					Ω/Ω
$X_{s(k,k+1)}/Z_0$					Ω/Ω
$\Psi_{k,k+1}$					0
$\phi_{k,k+1}$					0
a_{g}					mm

Table 2 Summary of the resonator parameters.

k	1	2	3	$N_{ m Resonators}$	
$\Theta_{k,k+1}$					0
d_k / λ_{g0}					Ω/Ω
d_k					mm

Design Project 3

By: Nittala Satya Surya Lakshmi Vasuki Siva Srinivas

#Id - 620094

Email – sn620094@wne.edu

- Design a lumped element bandpass filter that meets the following performance specifications:
 - $f_0 = 22 \, \text{GHz}$.
 - $BW_f = 1 \text{ GHz}$.
 - $RL \ge 26 \text{ dB for } f_L \le f \le f_H$.
 - $IL \ge 20 \text{ dB for } f \le f_{Ls} \text{ where } f_{Ls} = 21 \text{ GHz}$.
 - $IL \ge 35 \text{ dB for } f \ge f_{Hs} \text{ where } f \ge f_{Hs} = 23.4 \text{ GHz}.$
 - The source and load impedances of the filter are Z₀ = Z₀ (f₀) (waveguide impedance). Assume that the waveguide is a WR42 waveguide (a = 10.6680 mm, b = 4.3180 mm, and t_w = 1.0160 mm).

Hand Calculations


```
四日 = (名)[第)-任
  = (0.0455) (21) - (22)
  = (10455) [(0.9545) -]
  D-13 = -2.0476
Hes > conx-1 [[/e] (Txis)
         (esh-1 (102 cs))
  Nes = 4.4514
 . . HLS = 5
    Part-9
   145 - 23.4 PHZ
   AH >= 35 dB
   AHS = 10 (AHS/10)
       e 10 (35/10)
 Ans = 3/62.2776 W/w
```


20=1 % = 0.7563 Fz = 1-3049 X3 = 1.5773 g = 1.3049 95 = 0-7563 g6 = 1000

MATLAB Calculations

f0 = 22.0000 GHz			
Bwf = 1.0000 GHz			
fL = 21.5000 GHz	C1 = 303.7008 fF		
fH = 22.5000 GHz	L1 = 172.3253 pH		
delta = 0.0455	L2 = 82.3125 nH	lambda_fs = 13.9438 mm	K01 Z0 = 0.3998
S21_min (RL) = 0.9987 W/W	C2 = 635.8128 aF	lambda_g_fL = 18.4224 mm	_
S21_min (RL) = -0.0109 dB		lambda_fs_f0 = 13.6269 mm	K12_Z0 = 0.1217
Ap (RIPPLE) = 0.0109 dB	C3 = 633.3826 fF	lambda_g_f0 = 17.7095 mm	K23_Z0 = 0.0843
fc = 14.0510 GHz	L3 = 82.6283 pH	lambda_fs_fH = 13.3241 mm	K34 Z0 = 0.0843
lambda_fs0 = 13.6269 mm	L4 = 82.3125 nH	lambda g fH = 17.0596 mm	K31_20 - 0.0013
lambda_g0 = 17.7095 mm	C4 = 635.8128 aF	Delta Lambda = 0.0770	$K45_{20} = 0.1217$
ZTE = 489.5969 Ohms	C5 = 303.7008 fF	Delta_Lambda = 0.0770	K56 Z0 = 0.3998
Z0 = 396.3403 Ohms	C3 - 303.7000 II		_
NLS = 4.4514	L5 = 172.3253 pH		
NHS = 4.6568			

w0 = 138.2301 Grad/s

MATLAB Ideal Lumped Elements

Waveguide inductive iris BPF Design

BPF Full Model Iris Sweep

BPF Quarter Model Iris Sweep

Iris Sweep - Cubic spline Interpolation

WG iris BPF HFSS (PEC)

BPF iris Full Model Pec

Name	Value	Unit	Evaluated Value	Туре
a	10.668	mm	10.668mm	Design
b	4.318	mm	4.318mm	Design
tw	1.016	mm	1.016mm	Design
t	1	mm	1mm	Design
ag	[0, 5.737, 3.9424, 3.5427, 3.5427, 3.9424, 5.737, 0]	mm	[0, 5.737, 3.942	Design
zk	[0, 5.334, 13.1594, 21.9746, 30.9249, 39.7401, 47.5655, 53.8995]	mm	[0, 5.334, 13.15	Design
L	53.8995	mm	53.8995mm	Design
dp	(1/2)*a		5.334mm	Design
aw	a+2*tw		12.7mm	Design
bw	b+2*tw		6.35mm	Design

Name	Value	Unit	Evaluated Value	Туре
a	10.668	mm	10.668mm	Design
b	4.318	mm	4.318mm	Design
tw	1.016	mm	1.016mm	Design
t	1	mm	1mm	Design
ag	[0, 5.737, 3.9424, 3.5427, 3.5427, 3.9424, 5.737, 0]	mm	[0, 5.737, 3.942	Design
zk	[0, 5.334, 13.1594, 21.9746, 30.9249, 39.7401, 47.5655, 53.8995]	mm	[0, 5.334, 13.15	Design
L	53.8995	mm	53.8995mm	Design
dp	(1/2)*a		5.334mm	Design
aw	a+2*tw		12.7mm	Design
bw	b+2*tw		6.35mm	Design

WG iris BPF HFSS (PEC) $|S_{11}|$ and $|S_{21}|$

WG iris BPF HFSS (PEC) $|S_{21}|$

WG iris BPF HFSS (Copper(Loss))

Name	Value	Unit	Evaluated Value	Type
a	10.668	mm	10.668mm	Design
b	4.318	mm	4.318mm	Design
tw	1.016	mm	1.016mm	Design
t	1	mm	1mm	Design
ag	[0, 5.737, 3.9424, 3.5427, 3.5427, 3.9424, 5.737, 0]	mm	[0, 5.737, 3.942	Design
zk	[0, 5.334, 13.1594, 21.9746, 30.9249, 39.7401, 47.5655, 53.8995]	mm	[0, 5.334, 13.15	Design
L	53.8995	mm	53.8995mm	Design
dp	(1/2)*a		5.334mm	Design
aw	a+2*tw		12.7mm	Design
bw	b+2*tw		6.35mm	Design

BPF iris Full Model Copper

Name	Value	Unit	Evaluated Value	Type
a	10.668	mm	10.668mm	Design
b	4.318	mm	4.318mm	Design
tw	1.016	mm	1.016mm	Design
t	1	mm	1mm	Design
ag	[0, 5.737, 3.9424, 3.5427, 3.5427, 3.9424, 5.737, 0]	mm	[0, 5.737, 3.942	Design
zk	[0, 5.334, 13.1594, 21.9746, 30.9249, 39.7401, 47.5655, 53.8995]	mm	[0, 5.334, 13.15	Design
L	53.8995	mm	53.8995mm	Design
dp	(1/2)*a		5.334mm	Design
aw	a+2*tw		12.7mm	Design
bw	b+2*tw		6.35mm	Design

BPF iris Quarter Model Copper

WG iris BPF HFSS (Copper(Loss)) $|S_{11}|$ and $|S_{21}|$

WG iris BPF HFSS (Copper(Loss)) $|S_{21}|$

Summary of the outcomes.

On the same graph, plot $|S_{21}|$ in dB, for the three cases. Employ a frequency range of 20.5 GHz to 23.5 GHz and a range of -40 dB to 0 dB for $|S_{21}|$.

On the same graph, plot $|S_{21}|$ in dB, for the three cases. Employ a of frequency range 21.4 GHz to 22.6 GHz and a range of -0.25 dB to 0 dB for $|S_{21}|$.

On the same graph, plot $|S_{11}|$ in dB, for the three cases. Employ a frequency range of 21.4 GHz to 22.6 GHz and a range of -40 dB to 0 dB for $|S_{11}|$.

Table 01

k,k+1	01	12	23	34	45	56	
$K_{k,k+1}/Z_0$	0.3998	0.1217	0.0843	0.0843	0.1217	0.3998	Ω/Ω
$X_{p(k,k+1)}/Z_0$	0.5538	0.1270	0.0867	0.0867	0.1270	0.5538	Ω/Ω
$X_{s(k,k+1)}/Z_0$	0.1321	0.0876	0.0763	0.0763	0.0876	0.1321	Ω/Ω
$\Psi_{k,k+1}$	7.5244	5.0091	4.3654	4.3654	5.0091	7.5244	O
$\emptyset_{k,k+1}$	-58.6319	-23.8746	-18.3867	-18.3867	-23.8746	-58.6319	o
a_g	5.737	3.9424	3.5427	3.5427	3.9424	5.737	mm

Table 02

k	1	2	3	4	5	
$\theta_{k,k+1}$	138.7467	158.8693	161.6133	158.8693	138.7467	0
d_k/λ_{g0}	0.3854	0.4413	0.4489	0.4413	0.3854	Ω/Ω
d_k	6.8254	7.8153	7.9502	7.8153	6.8254	mm

Appendices

- HFSS
- MATLAB
- MS Excel

THE END