SVM_Project (1)

December 9, 2024

```
[196]: from google.colab import drive
       drive.mount('/content/drive')
      Drive already mounted at /content/drive; to attempt to forcibly remount, call
      drive.mount("/content/drive", force remount=True).
      Import Libraries
[197]: import pandas as pd
       import numpy as np
       import matplotlib.pyplot as plt
       import seaborn as sns
      Machine Learning tools
[198]: from sklearn.preprocessing import StandardScaler
       from sklearn.svm import SVC
       from sklearn.model_selection import train_test_split, RandomizedSearchCV, __
        →TimeSeriesSplit, cross_val_score
       from sklearn.metrics import classification_report, roc_curve, auc, __
        →precision_recall_curve, confusion_matrix
       from imblearn.over_sampling import SMOTE
       from imblearn.under_sampling import TomekLinks
       from sklearn import metrics
       from scipy.stats import uniform, randint
       from sklearn.decomposition import PCA
       import warnings
       warnings.filterwarnings('ignore')
[199]: | df = pd.read_csv('/content/drive/My Drive/ML Assignment/TSLA.csv')
       df.head()
[199]:
                           High
               Date
                                       Low
                                                 Open
                                                           Close
                                                                      Volume \
       0 2019-09-30 48.796001 47.222000 48.599998 48.174000 29399000.0
       1 2019-10-01 49.189999 47.826000 48.299999
                                                       48.938000
                                                                  30813000.0
       2 2019-10-02 48.930000 47.886002 48.658001 48.625999
                                                                  28157000.0
```

3 2019-10-03 46.896000 44.855999 46.372002 46.605999 75422500.0

```
Adj Close
       0 48.174000
       1 48.938000
       2 48.625999
       3 46.605999
          46.285999
[200]: df.tail()
[200]:
                  Date
                               High
                                                          Open
                                                                      Close
                                             Low
       634
           2022-04-05
                        1152.869995
                                     1087.300049
                                                   1136.300049
                                                                1091.260010
                       1079.000000
           2022-04-06
       635
                                     1027.699951
                                                   1073.469971
                                                                1045.760010
       636
           2022-04-07
                        1076.589966
                                     1021.539978
                                                  1052.390015
                                                                1057.260010
           2022-04-08 1048.439941
                                     1022.440002 1043.209961
       637
                                                                1025.489990
       638 2022-04-11 1008.469971
                                      974.640015
                                                    980.400024
                                                                 975.929993
                          Adj Close
                Volume
       634
           26691700.0
                       1091.260010
       635
           29782800.0
                        1045.760010
                       1057.260010
       636 26482400.0
       637
           18293300.0 1025.489990
       638
           19660500.0
                         975.929993
[201]: df.shape
[201]: (639, 7)
[202]: df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 639 entries, 0 to 638
      Data columns (total 7 columns):
                      Non-Null Count Dtype
           Column
       0
           Date
                      639 non-null
                                       object
       1
                      639 non-null
                                       float64
           High
       2
           Low
                      639 non-null
                                       float64
       3
           Open
                      639 non-null
                                       float64
       4
           Close
                      639 non-null
                                       float64
       5
           Volume
                      639 non-null
                                       float64
           Adj Close 639 non-null
                                       float64
      dtypes: float64(6), object(1)
      memory usage: 35.1+ KB
[203]: df.describe()
```

4 2019-10-04 46.956001 45.613998 46.321999 46.285999 39975000.0

```
[203]:
                                                             Close
                                                                          Volume \
                     High
                                    Low
                                                Open
       count
               639.000000
                             639.000000
                                          639.000000
                                                        639.000000
                                                                    6.390000e+02
                                          531.004088
                                                                    4.819130e+07
       mean
               543.362885
                            517.883537
                                                       531.298030
       std
               340.837426
                                          333.534448
                                                        333.362040
                                                                    3.579030e+07
                            325.395864
      min
                46.896000
                              44.855999
                                           45.959999
                                                        46.285999
                                                                    9.800600e+06
       25%
               170.258003
                             162.379997
                                          167.349998
                                                        164.783005
                                                                    2.392195e+07
       50%
               620.409973
                             595.500000
                                          603.880005
                                                        605.130005
                                                                    3.448900e+07
       75%
               796.584991
                            767.744995
                                          779.445007
                                                        781.304993
                                                                    6.329725e+07
              1243.489990
                                         1234.410034
                                                      1229.910034 3.046940e+08
                           1217.000000
       max
                Adj Close
               639.000000
       count
               531.298030
       mean
       std
               333.362040
       min
                46.285999
       25%
               164.783005
       50%
               605.130005
       75%
               781.304993
              1229.910034
       max
      Feature engineering
[204]: df['Price Change'] = df['Close'] - df['Open']
       df['Price Direction'] = np.where(df['Price Change'] > 0, 1, 0)
[205]: X = df[['High', 'Low', 'Open', 'Close', 'Volume']]
       y = df['Price Direction']
      Scaling features
[206]: scaler = StandardScaler()
[207]: X_scaled = scaler.fit_transform(X)
      Train-validation-test split
[208]: train_size = int(len(df) * 0.7) # 70% training
       valid_size = int(len(df) * 0.15) # 15% validation
       test_size = len(df) - train_size - valid_size
[209]: | X_train, X_valid, X_test = X_scaled[:train_size], X_scaled[train_size:
        strain_size + valid_size], X_scaled[train_size + valid_size:]
       y_train, y_valid, y_test = y[:train_size], y[train_size:train_size +_
```

Check the class distribution

⇔valid_size], y[train_size + valid_size:]

```
[210]: class_counts = df['Price Direction'].value_counts()
       print("Class Distribution:")
       print(class_counts)
      Class Distribution:
      Price Direction
           331
           308
      0
      Name: count, dtype: int64
      Visualize the class distribution
[211]: plt.figure(figsize=(6, 4))
       class_counts.plot(kind='bar', color=['skyblue', 'orange'])
       plt.title("Class Distribution in Target Variable")
       plt.xlabel("Class")
       plt.ylabel("Number of Samples")
       plt.xticks(rotation=0)
       plt.show()
```

Class Distribution in Target Variable

Calculate the imbalanced ratio

```
[212]: imbalance_ratio = class_counts.max() / class_counts.min()
print(f"\nImbalance Ratio: {imbalance_ratio:.2f}")
```

```
Imbalance Ratio: 1.07
```

```
[213]: if imbalance_ratio > 1.5:
    print("The dataset is imbalanced.")
    else:
        print("The dataset is balanced.")
```

The dataset is balanced.

Apply SMOTE to balance the classes in the training set

```
[214]: smote = SMOTE(random_state=42)
X_train_res, y_train_res = smote.fit_resample(X_train, y_train)
```

Apply Tomek Links to remove noise and refine boundaries

```
[215]: tomek = TomekLinks()
X_train_res, y_train_res = tomek.fit_resample(X_train_res, y_train_res)
```

Hyperparameter tuning using RandomizedSearchCV for SVM

```
[216]: param_dist = {
    'C': uniform(0.1, 10), # generate random values between 0.1 and 10
    'gamma': ['scale', 'auto', 0.1, 0.5, 1], # Gamma values for kernel
    'kernel': ['linear'], # Different kernel types
    'class_weight': ['balanced', None],
    'degree': [3], # Degree for polynomial kernel
    'tol': [1e-3, 1e-4] # Tolerance for stopping criterion
}
```

Time series split for time series validation

```
[217]: tscv = TimeSeriesSplit(n_splits=3) #Avoid data leakage
```

Perform RandomizedSearchCV for SVM

Best model from RandomizedSearchCV

```
[219]: best_model_svm = random_search.best_estimator_
print("\nBest Parameters from RandomizedSearchCV:", random_search.best_params_)
```

```
Best Parameters from RandomizedSearchCV: {'C': 9.494989415641891, 'class_weight': None, 'degree': 3, 'gamma': 0.5, 'kernel': 'linear', 'tol': 0.0001}
```

Train the best SVM model

```
[220]: best_model_svm.fit(X_train_res, y_train_res)
```

[220]: SVC(C=9.494989415641891, gamma=0.5, kernel='linear', probability=True, tol=0.0001)

Evaluate model on validation set

```
[221]: y_pred_svm = best_model_svm.predict(X_valid)
```

Evaluate model on test set

```
[223]: y_test_pred = best_model_svm.predict(X_test)
y_test_proba = best_model_svm.predict_proba(X_test)[:, 1]
```

Print classification report

```
[224]: print("\nClassification Report (Validation Data):")
print(classification_report(y_valid, y_pred_svm))
```

Classification Report (Validation Data):

		precision	recall	f1-score	support
	0	0.67	0.95	0.79	43
	1	0.94	0.62	0.73	52
	1	0.94	0.02	0.74	52
260172	C17			0.77	95
accura	Су				
macro a	vg	0.81	0.78	0.77	95
weighted a	vg	0.82	0.77	0.76	95

```
[225]: print("\nClassification Report (Test Data):")
print(classification_report(y_test, y_test_pred))
```

Classification Report (Test Data):

support	f1-score	recall	precision	
46	0.98	0.98	0.98	0
51	0.98	0.98	0.98	1
97	0.98			accuracy
97	0.98	0.98	0.98	macro avg
97	0.98	0.98	0.98	weighted avg

Reduce to 3 Principal components

```
[226]: pca = PCA(n_components=3) #For demensionality reduction and faster training
```

```
[227]: X_scaled_pca = pca.fit_transform(X_scaled)
```

Compute AUC and plot ROC curve

Plot precision-Recall curve

Confusion Matrix for validation data

Cross-validation with SVM

```
[233]: cv_scores_res_svm = cross_val_score(best_model_svm, X_train_res, y_train_res, \_ \circ cv=tscv, scoring='roc_auc')

print(f"\nCross-Validation AUC After SMOTE and Tomek Links: {cv_scores_res_svm. \circ mean():.4f} \pm {cv_scores_res_svm.std():.4f}")
```

Cross-Validation AUC After SMOTE and Tomek Links: 0.8491 \pm 0.2044 Evaluate model on original data

```
print(f"\nSVM Model Performance (AUC):")
print(f"Training AUC: {train_auc:.4f}")
print(f"Validation AUC: {valid_auc:.4f}")
print(f"Test AUC: {test_auc:.4f}")
```

SVM Model Performance (AUC):

Training AUC: 0.9045 Validation AUC: 0.9602

Test AUC: 0.9991

Comparison

1.AUC:

SVM has a significantly higher Test AUC (0.9991) compared to Logistic Regression (0.9961). Higher AUC suggests that SVM is better at distinguishing between classes across all threshold values.

2. Accuracy:

*SVM achieves higher Test Accuracy (0.98) than Logistic Regression Test Accuracy (0.94).

3. Precision, Recall, F1-Score:

*SVM has consistently higher scores (0.98) compared to Logistic Regression (0.94) on Test Data.

4. Validation Performance:

*Logistic Regression performs better in Validation Classification Report (Accuracy: 0.89) compared to SVM (Accuracy: 0.77).

*Logistic Regression shows better balance between classes in Validation Data.

5. Overfitting:

*SVM shows signs of potential overfitting since its performance drops on Validation Data (AUC: 0.9602) compared to Test Data (AUC: 0.9991). Logistic Regression appears more stable between Validation and Test Data.

Conclusion

*Test Performance is Critical

SVM is preferable, as it has higher AUC, Accuracy, and better classification metrics on the Test Data.

*Validation Performance is Important

Logistic Regression is more balanced, especially for unseen data (Validation Set), and less prone to overfitting.

Summary

Based on the given matrices SVM is better model when we prioritize overall test performance and higher AUC.

But according to my model, SVM may be overfitting because of that I think Logistic regression is better.