4CCS1ELA-ELEMENTARY LOGIC WITH APPLICATIONS

3-IMPORTANT SEMANTICAL NOTIONS

3.3-LOGICAL CONSEQUENCE

Dr. Odinaldo Rodrigues

odinaldo.rodrigues@kcl.ac.uk
Room BH(S) TBC, +44 (0)20 7848 2087
Department of Informatics
King's College London

© Dr. Odinaldo Rodrigues

4CCS1ELA 3.3 - Logical Consequence

3.3.0 (14)

LOGICAL CONSEQUENCE

Logical consequence and arguments

The Internet Encyclopedia of Philosophy defines an *argument* as a sequence of statements (*the premises, or the hypotheses*) which are intended to provide support, justification or evidence for the truth of another statement (the conclusion).

In the argument

$$A_1$$
 \vdots
 A_n
 B

 A_1, \ldots, A_n are the premises and B is the conclusion (you can read ' A_1, \ldots, A_n , therefore B').

© Dr. Odinaldo Rodrigues

4CCS1ELA 3.3 - Logical Consequence

3.3.2 (14)

Logical consequence

Logical (semantic) consequence

In a valid **argument**, we say informally that a conclusion B "follows" from a set of premises A_1, \ldots, A_n .

More formally, we say that the formula B is a *logical consequence* of the set of formulae $\{A_1, \ldots, A_n\}$, if the following implication holds for *every* interpretation v:

If
$$v(A_i) = 1$$
, for all $1 \le i \le n$, then $v(B) = 1$.

We often drop the brackets in the set of premises above.

Alternative definition of \models

Let the symbol \mathcal{I} denote the set of all interpretations.

Let $S = \{A_1, \dots, A_n\}$. We have that

$$\mathcal{S} \models B \text{ iff } \mod(\mathcal{S}) \subseteq \mod(B)$$

Notice that $mod(\neg B) = \mathcal{I} - mod(B)$ and hence

$$mod(B) \cap mod(\neg B) = \varnothing$$
.

Therefore, if $S \models B$, then $mod(S) \cap mod(\neg B) = \emptyset$ and hence $S \cup \{\neg B\}$ is unsatisfiable (see bullet point 3 in slide 3.3.7).

© Dr. Odinaldo Rodrigues

4CCS1ELA 3.3 - Logical Consequence

3.3.4 (14)

Logical consequence

Example

Show that $P, P \rightarrow Q \models Q$.

Solution:

	Р	Q	$P{ ightarrow}Q$	$P \wedge (P \rightarrow Q)$	Q	F
<i>V</i> ₀	0	0	1	0	0	√ (premises false)
<i>V</i> ₁	0	1	1	0	1	√ (premises false)
<i>V</i> ₂	1	0	0	0	0	√ (premises false)
<i>V</i> ₃	1	1	1	1	1	√ (premises + conclusion true)

The statement follows because in every row in which the columns for P and $P \rightarrow Q$ contain 1 (the premises), so does the column for Q (the conclusion): $mod(\{P, P \rightarrow Q\}) = \{v_3\} \subseteq mod(\{Q\}) = \{v_1, v_3\}.$

In this example, the only required row to check is the one in red.

This type of derivation is called *modus ponens*.

Alternative terminologies

The following statements are equivalent.

- \bigcirc *B* is a logical consequence of A_1, \ldots, A_n .
- $\bigcirc A_1,\ldots,A_n\models B.$
- \bigcirc The argument $A_1, \ldots, A_n \models B$ is *valid*.
- \bigcirc B is semantically entailed (or implied) by A_1, \ldots, A_n
- \bigcirc *B* is a *valid consequence* of A_1, \ldots, A_n .

© Dr. Odinaldo Rodrigues

4CCS1ELA 3.3 - Logical Consequence

3.3.6 (14)

Logical consequence

Relationship with other semantic concepts

 $A_1, \ldots, A_n \models B$ if and only if

- \bigcirc $A_1 \land \ldots \land A_n \rightarrow B$ is a tautology (i.e., logically valid).
- \bigcirc $A_1 \land \ldots \land A_n \land \neg B$ is a contradiction
- \bigcirc The set $\{A_1, \ldots, A_n, \neg B\}$ is inconsistent (i.e., unsatisfiable)

Exercise: Check that the above is indeed the case for the example in Slide 3.3.5.

SPECIAL CASES OF LOGICAL CON-SEQUENCE

Special cases of logical consequence

Special case: unsatisfiable premises

If Jack takes a holiday, then Jill will be happy and she will not cry. Jack will take a holiday and if Jill is happy she will cry. **Therefore** Jack will take a holiday.

Let *J* stand for 'Jack will take a holiday'; *H* stand for 'Jill will be happy'; and *C* stand for 'Jill will cry'.

The argument $J \to (H \land \neg C), J \land (H \to C) \models J$ is valid!

$$\mathcal{S}: \quad \begin{cases} J \to (H \land \neg C) \\ J \land (H \to C) \end{cases}$$

$$B: \quad J$$

This is because $mod(S) = \emptyset \subseteq mod(B)$. In fact, any conclusion follows from an unsatisfiable set of premises!

Special case: tautological conclusions

Tautologies are always true, so if A is a tautology, then $mod(A) = \mathcal{I}$.

This fact has two immediate effects:

- 1. A tautology is a logical consequence of any set of formulae.
- 2. A tautology also follows from "nothing".

Notice that 2. is a special case of 1:

Any interpretation satisfies all of the formulae in the empty set (because there are none in it!). Therefore, $mod(\emptyset) = \mathcal{I}$.

However, if A is a tautology, then $mod(A) = \mathcal{I}$ and hence $mod(\emptyset) = \mathcal{I} \subseteq mod(A) = \mathcal{I}$.

© Dr. Odinaldo Rodrigues

4CCS1ELA 3.3 - Logical Consequence

3.3.10 (14)

INVALID ARGUMENTS

Invalid arguments

An argument that is not valid is said to be **invalid**.

By the definition of logical consequence, $A_1, \ldots, A_n \not\models B$ if there exists an interpretation v such that

$$v(A_i) = 1$$
 for all $1 \le i \le n$, but $v(B) = 0$.

Thus, in order to show that a conclusion does not follow from a set of premises, we must find an interpretation that makes all of the premises true, but under which the conclusion is false.

Notice the similarity with the truth-table for implication!

© Dr. Odinaldo Rodrigues

4CCS1ELA 3.3 - Logical Consequence

3.3.12 (14)

Invalid Arguments

Examples

1. Show that $P \not\models Q$, where P, Q are atoms.

Solution: Take the interpretation *v* with

$$v(P) = 1 \text{ and } v(Q) = 0.$$

2. Show that $P \rightarrow Q \not\models Q$, where P, Q are atoms.

Solution: Take the interpretation v with

$$v(P) = 0$$
 and $v(Q) = 0$.

These are not solutions:

- The interpretation v_1 with $v_1(P) = 1$, $v_1(Q) = 0$, because v_1 does not satisfy $P \rightarrow Q$.
- The interpretation v_2 with $v_1(P) = 1$, $v_1(Q) = 1$, because v_2 does satisfy Q.

To know more...

Logical consequence is explained in Sections 1.2 and 1.3 of Gabbay and Rodrigues' "Elementary Logic with Applications, 1st edition.

© Dr. Odinaldo Rodrigues

4CCS1ELA 3.3 - Logical Consequence

3.3.14 (14)