Desarrollo de ejercicios

Ejercicio 1: Proposiciones y tablas de verdad

1. Se identifican las proposiciones simples y el lenguaje simbólico dados en la actividad:

Primera proposición simple:

p: Se aplica el trabajo inteligente para obtener una mayor eficiencia.

Segunda proposición simple:

r: Se logra mayor productividad en los resultados.

Tercera proposición simple:

s: Se alcanza el éxito rápidamente.

Lenguaje simbólico dado por el ejercicio:

$$(p \rightarrow r) \land s$$

2. Se utiliza la tabla de verdad de los operadores lógicos para resolver el ejercicio:

-a	cor	junció	n			La	dis	yunció	n		L	a negació
р	q	рΛq			[р	q	рνα	7			p ~ p
٧	٧	٧				٧	٧	٧				∨ F
٧	F	F				V	F	V				F V
F	٧	F				F	٧	V				11 11 11 11 11
F	F	F				F	F	F				
			Eld	one	diciona	1			EII	oico	ndicion	al
			р	q	$p \rightarrow q$				p	q	$p \leftrightarrow q$	
				V	V				V	٧	V	
			V	V					V	F	F	
			V	F	F	e:			V	1	■ 3(3)	
			0.00	70	F	C.			F	٧	F	

3. Se utiliza la formula 2^n para identificar el número de filas que tendrá la tabla, donde n es el número de proposiciones simples:

Como tenemos 3 proposiciones simples queda:

$$2^3 = 2 * 2 * 2 = 8$$
 filas

- 4. Ahora se llenan con verdaderos y falsos cada fila de cada proposición, de esta forma, donde p, r y s tienen su propia columna:
 - 4.1.1. Primero se divide 8/2, dando como resultado 4: es decir que la primera columna tendrá primero 4 verdaderos y luego 4 falsos
 - 4.1.2. Segundo se divide 4/2, dando como resultado 2 para la segunda columna, es decir que la segunda columna empezará con dos verdaderos y dos falsos, es decir los grupos van de 2 en dos
 - 4.1.3. Para la tercera columna los grupos de falsos y verdaderos van de 1 en 1

Como se muestra en la siguiente tabla:

р	r	s
V	V	V
V	V	F
V	F	V
V	F	F
F	V	V
F	V	F
F	F	V
F	F	F

5. Ahora hacemos la columna $p \to r$, así, teniendo en cuenta la columna de p y la columna de r y como estamos usando el condiciona \to , nos ayudamos de la tabla del condicional:

_					
EI	cor	ıdı	C	10	าล

р	q	$p\toq$			
V	٧	V			
V	F	F			
F	<	٧			
F	F	V			

Por lo tanto, queda:

6. Ahora hacemos la columna resultada $\ (p
ightarrow r) \land s$:

Como notamos que se está usando el operador \bigwedge , utilizamos la tabla del operador lógico conjunción:

La	con	junció
р	q	рΛq
٧	V	٧
٧	F	F
F	٧	F
F	F	F

Para esto tenemos en cuenta la columna de la proposición s y la columna de p o rEntonces la tabla queda de esta forma:

$(p \to r) \land s$
V
F
F
F
V
F
V
F

Por lo tanto, la tabla de verdad del ejercicio 1 queda de la siguiente manera:

р	r	S	$p \rightarrow r$	$(p \rightarrow r) \land s$
V	V	V	V	V
V	V	F	V	F
V	F	V	F	F
V	F	F	F	F
F	V	V	V	V
F	V	F	V	F
F	F	V	V	V
F	F	F	V	F

Ahora comparamos con el simulador de tablas de verdad proporcionado por la Universidad Nacional:

р	r	S	(p→r)∧s
V	V	V	V
V	V	f	F
V	f	V	F
V	f	f	F
f	V	V	V
f	V	f	F
f	f	V	V
f	f	f	F

Notamos que la tabla resultada es correcta, por lo que se concluye que la tabla resultada para este ejercicio representa una **CONTINGENCIA**, puesto que en la columna resultado hay valores verdaderos y falsos.

Ejercicio 2.

"Los estudiantes hacen sus tareas' y 'los profesores explican claramente', entonces 'los estudiantes obtendrán buenas calificaciones'. Si y solo si, 'los estudiantes hacen sus tareas' o 'los profesores no explican claramente', entonces 'los estudiantes obtendrán buenas calificaciones'."

En este caso vamos a armar el lenguaje simbólico para la situación dada:

- 1. Identificamos las proposiciones simples:
 - p: 'Los estudiantes hacen sus tareas'
 - r: 'Los profesores explican claramente'
 - s: 'Los estudiantes obtendrán buenas calificaciones'
- 2. Escribimos en el lenguaje simbólico utilizando los operadores lógicos:

$$[((p \land r) \rightarrow s) \leftrightarrow ((p \lor \sim r) \rightarrow s)]$$

3. Se utiliza la formula 2^n para identificar el número de filas que tendrá la tabla, donde n es el número de proposiciones simples:

Como tenemos 3 proposiciones simples queda:

$$2^3 = 2 * 2 * 2 = 8$$
 filas

- 4. Ahora se llenan con verdaderos y falsos cada fila de cada proposición, de esta forma, donde p, r y s tienen su propia columna:
 - i. Primero se divide 8/2, dando como resultado 4:

es decir que la primera columna tendrá primero 4 verdaderos y luego 4 falsos

- ii. Segundo se divide 4/2, dando como resultado 2 para la segunda columna, es decir que la segunda columna empezará con dos verdaderos y dos falsos, es decir los grupos van de 2 en dos
- iii. Para la tercera columna los grupos de falsos y verdaderos van de 1 en 1

r	S
V	V
V	F
F	V
F	F
V	V
V	F
F	V
F	F
	V V F

Ahora hacemos la columna de $\sim r$

Como es negación todo lo que está verdadera queda falso y lo que esta falso, queda verdadera por la tabla de la negación.

~ r
F
F
V
V
F
F
V
V

Ahora hacemos la columna $p \ \land r$

Como es el operador de conjunción utilizamos la tabla de la conjunción:

La conjunción					
р	q	рΛq			
٧	V	٧			
٧	F	F			
F	\vee	F			
F	F	F			

Teniendo en cuenta la columna de la proposición p y la columna de la proposición r

$p \wedge r$
V
V
F
F
F
F
F
F

Ahora hacemos la columna de $(p \ \land r)
ightarrow \mathit{s}$

En este caso usamos la tabla del condicional teniendo en cuenta la columna de p Λ r y la columna de s:

El condicional			
р	q	$p \to q$	
V	Λ	V	
V	Ŧ	F	
F	Λ	V	
F	F	V	

Y la columna queda de esta forma:

$$(p \land r) \rightarrow s$$

V	
V	
F	
F	
F	
F	
F	
F	

Ahora se construye la columna $p \mid \mathsf{V} \sim r$

Para esto tenemos en cuenta las columnas p $y \sim r y$ usamos la tabla del operador lógico disyunción

∟a	dis	yunciór
р	q	рvq
٧	٧	V
V	F	V
F	٧	V
F	F	F

Quedando la columna de esta forma:

$p \lor \sim r$
V
V
V
V
F
F
V
V

Ahora construimos la columna $\ (p \ \ \lor \sim r) \to \ s$

$(p \lor \sim r) \rightarrow s$	
V	
F	_
V	

F	
٧	
V	
V	
F	

Finalmente se construye la columna resultando
$$[(p \land r) \rightarrow s) \leftrightarrow (p \lor \sim r) \rightarrow s]$$

Para este caso se utiliza la tabla del operador lógico bicondicional:

El bicondicional

р	q	$p \leftrightarrow q$
V	Λ	٧
٧	F	F
F	٧	F
F	F	٧

Quedando la tabla de esta forma:

$((p \land r) \to s) \leftrightarrow ((p \lor \sim r) \to s)]$	
V	
V	
V	
F	

V
V
V
F

Entonces la tabla completa queda de la siguiente manera:

р	r	s	~ r	$p \wedge r$	$(p \land r) \rightarrow s$	<i>p</i> ∨ ~ <i>r</i>	$(p \lor \sim r) \to s$	$((p \land r) \rightarrow s) \leftrightarrow ((p \lor \sim r) \rightarrow s)]$
V	٧	٧	F	V	V	V	V	V
V	٧	F	F	V	V	V	V	V
V	F	٧	V	F	F	V	V	V
V	F	F	V	F	F	V	F	F
F	٧	٧	F	F	F	F	V	V
F	٧	F	F	F	F	F	V	V
F	F	٧	V	F	F	V	V	V
F	F	F	V	F	F	V	F	F

Podemos notas que en la columna resultado hay falsos y verdaderos, por lo que concluimos que la tabla de verdad del ejercicio numero 2 representa una **CONTINGENCIA**, puesto que hay valores verdaderos y falsos

Ahora comparamos con la tabla proporcionado con el simulador para confirmar que todo está correcto:

р	r	s	((p∧r)→s)↔((p∨~r)→s)	
V	V	V	V	
V	V	f	V	
V	f	V	V	
V	f	f	F	
f	V	V	V	
f	V	f	V	
f	f	V	V	
f	f	f	F	