Week 10: Sampling Distributions and Limits

MATH697

Sahir Bhatnagar

November 7, 2017

McGill University

Sampling Distributions and Limits

 This section make the transition between probability and inferential statistics.

- This section make the transition between probability and inferential statistics
- Given a sample of n observations from a population, we will be calculating estimates of the population mean, median, standard deviation, and various other population characteristics (parameters).

- This section make the transition between probability and inferential statistics
- Given a sample of n observations from a population, we will be calculating estimates of the population mean, median, standard deviation, and various other population characteristics (parameters).
- Prior to obtaining data, there is uncertainty as to which of all possible samples will occur.

- This section make the transition between probability and inferential statistics
- Given a sample of n observations from a population, we will be calculating estimates of the population mean, median, standard deviation, and various other population characteristics (parameters).
- Prior to obtaining data, there is uncertainty as to which of all possible samples will occur.
- Because of this, estimates such as \bar{x} (the sample mean) will vary from one sample to another

 The behavior of such estimates in repeated sampling is described by what are called sampling distributions.

- The behavior of such estimates in repeated sampling is described by what are called sampling distributions.
- Any particular sampling distribution will give an indication of how close the estimate is likely to be to the value of the parameter being estimated.

 $\boldsymbol{\cdot}$ We will use probability results to study sampling distributions.

- We will use probability results to study sampling distributions.
- A particularly important result is the Central Limit Theorem, which shows how the behavior of the sample mean can be described by a particular normal distribution when the sample size is large.

Statistics and Their Distributions

Two random samples will be different

• The observations in a single sample are denoted by x_1, x_2, \dots, x_n

Two random samples will be different

- The observations in a single sample are denoted by x_1, x_2, \dots, x_n
- Consider selecting two different samples of size *n* from the same population distribution.

Two random samples will be different

- The observations in a single sample are denoted by x_1, x_2, \dots, x_n
- Consider selecting two different samples of size *n* from the same population distribution.
- The x_i's in the second sample will virtually always differ at least
 a bit from those in the first sample.

Uncertainty in Summary Measures of the Random Samples

 This variation in observed values in turn implies that the value of any function of the sample observations - such as the sample mean or sample standard deviation also varies from sample to sample.

Uncertainty in Summary Measures of the Random Samples

- This variation in observed values in turn implies that the value of any function of the sample observations - such as the sample mean or sample standard deviation also varies from sample to sample.
- That is, prior to obtaining x_1, \ldots, x_n , there uncertainty as to the value of \bar{x} and s (the sample standard deviation)

Two Random Samples from a N(2,4) Distribution

Sample 1 Mean = 1.95, Sample 2 Mean = 3.26

A Statistic

Definition 1 (Statistic)

- A statistic is any quantity whose value can be calculated from sample data
- Prior to obtaining data, there is uncertainty as to what value of any particular statistic will result.
- A statistic is a random variable and will be denoted by an uppercase letter (e.g. \bar{X})
- A lowercase letter is used to represent the calculated or observed value of the statistic (e.g. \bar{x})

Sample Mean is a Statistic

 Suppose a drug is given to a sample of patients, another drug is given to a second sample, and the cholesterol levels are denoted by X₁,..., X_m and Y₁,..., Y_n, respectively.

Sample Mean is a Statistic

- Suppose a drug is given to a sample of patients, another drug is given to a second sample, and the cholesterol levels are denoted by X₁,..., X_m and Y₁,..., Y_n, respectively.
- The statistic $\bar{X}-\bar{Y}$, i.e., the difference between the two sample mean cholesterol levels, may be important.

Any Statistic has a Probability Distribution

• Suppose, for example, that n=2 components are randomly selected and the number of breakdowns while under warranty is determined for each one.

X_1	X_2	\bar{X}
0	0	0
0	1	0.5
1	0	0.5
0	2	1
2	0	1
:	:	:

Any Statistic has a Probability Distribution

- Suppose, for example, that n=2 components are randomly selected and the number of breakdowns while under warranty is determined for each one.
- Possible values for the sample mean number of breakdowns \bar{X} are

X_1	X_2	\bar{X}
0	0	0
0	1	0.5
1	0	0.5
0	2	1
2	0	1
:	:	:

Probability Distribution of Statistic is its Sampling Distribution

• The probability distribution of \bar{X} specifies $P(\bar{X}=0)$, $P(\bar{X}=0.5)$, $P(\bar{X}=1)$ and so on

Probability Distribution of Statistic is its Sampling Distribution

- The probability distribution of \bar{X} specifies $P(\bar{X}=0)$, $P(\bar{X}=0.5)$, $P(\bar{X}=1)$ and so on
- From these, other probabilities such as $P(1 \le \bar{X} \le 3)$ and $P(\bar{X} \ge 2.5)$ can be calculated

Probability Distribution of Statistic is its Sampling Distribution

- The probability distribution of \bar{X} specifies $P(\bar{X}=0)$, $P(\bar{X}=0.5)$, $P(\bar{X}=1)$ and so on
- From these, other probabilities such as $P(1 \le \bar{X} \le 3)$ and $P(\bar{X} \ge 2.5)$ can be calculated
- The probability distribution of a statistic is referred to as its sampling distribution to emphasize that it describes how the statistic varies in value across all samples that might be selected.

Random Samples

Definition 2 (Random Sample)

The random variables X_1, X_2, \ldots, X_n are said to form a **random** sample of size n is

- The X_i 's are independent random variables
- Every X_i has the same probability distribution

These two conditions can be paraphrased by saying that the X_i 's are independent and identically distributed (iid).

 Probability rules can be used to obtain the distribution of a statistic provided that

- Probability rules can be used to obtain the distribution of a statistic provided that
 - it is a fairly simple function of the X_i 's and

- Probability rules can be used to obtain the distribution of a statistic provided that
 - it is a fairly simple function of the X_i 's and
 - either there are relatively few different X values in the population or the population distribution has a nice form

- Probability rules can be used to obtain the distribution of a statistic provided that
 - it is a fairly simple function of the X_i 's and
 - either there are relatively few different X values in the population or the population distribution has a nice form
- The next examples illustrate such a situation and provides a motivation for finding an approximation of the sampling distribution

Example (MP3 Players)

Example 3 (MP3 Players)

A certain brand of MP3 player comes in three configurations:

memory	2 GB	4 GB	8 GB
x (cost)	80	100	120
p(x)	0.20	0.30	0.50

With $\mu=$ 106, $\sigma^2=$ 244. Suppose only two MP3 players are sold today: X_1 and X_2 representing the cost of the 1st and 2nd player, respectively. When n=2, $s^2=(x_1-\overline{x})^2+(x_2-\overline{x})^2$

s^2	\bar{x}	$p(x_1, x_2)$	x_2	x_1
0	80	(.2)(.2) = .04	80	80
200	90	(.2)(.3) = .06	100	80
800	100	(.2)(.5) = .10	120	80
200	90	(.3)(.2) = .06	80	100
0	100	(.3)(.3) = .09	100	100
200	110	(.3)(.5) = .15	120	100
800	100	(.5)(.2) = .10	80	120
200	110	(.5)(.3) = .15	100	120
0	120	(.5)(.5) = .25	120	120

Example (MP3 Players) cont 1

Example 4 (MP3 Players)

To obtain the probability distribution of \bar{X} , the sample average cost per MP3 player, we must consider each possible value \bar{X} and compute its probability, e.g., $P(\bar{X}=100)=0.10+0.09+0.10=0.29$, $P(S^2=800)=0.10+0.10=0.20$. The complete sampling distributions of \bar{X} and S^2 are given below:

\bar{X}	80	90	100	110	120
$p_{\overline{X}}(\bar{x})$.2 .12		.29	.30	.5
s^2		0	200	80	0
$p_{S^2}(s^2)$.38	.42	.20)

- $\cdot \quad E(\bar{X}) = \sum \bar{x} p_{\bar{X}}(\bar{x}) = 106 = \mu$
- \cdot $V(\overline{X}) = \sum (\overline{X} \mu)^2 = \sum (\overline{X} 106)^2 p_{\overline{X}}(\overline{X}) = 122 = 244/2 = \sigma^2/2$ (half the population variance: why?)

$$E(S^2) = \sum s^2 p_{S^2}(s^2) = 0(0.38) + 200(0.42) + 800(0.20) = 244 = \sigma^2$$

Example (MP3 Players) cont 2

Example 5 (MP3 Players)

The probability histogram for both the original distribution X (a) and the \overline{X} (b) distribution. We see that the mean of \overline{X} (denoted by $E(\overline{X})$) is equal to the mean of the original distribution. We also see that the \overline{X} distribution has smaller spread than the original distribution, since the values of \overline{X} are more concentrated toward the mean. The \overline{X} sampling distribution is centered at the population mean μ .

Figure 6.2 Probability histograms for (a) the underlying population distribution and (b) the sampling distribution of \overline{X} in Example 6.2

Example (MP3 Players) cont 3

Example 6 (MP3 Players)

If four MP3 players had been purchased on the day of interest, the sample average $\cot \overline{X}$ would be based on a random sample of four X_i 's. More calculation eventually yields the distribution of \overline{X} for n=4 as

\bar{X}	80	85	90	95	100	105	110	115	120
$p_{\overline{X}}(\bar{x})$.0016	.0096	.0376	.0936	.1761	.2340	.2350	.1500	.0625

From this,
$$E(\overline{X})=106=\mu$$
 and $V(\overline{X})=61=\sigma^2/4$

Some Remarks

• The previous example showed us that the computation of $p_{\bar{X}}(\bar{x})$ and $p_{S^2}(s^2)$ can be tedious

Some Remarks

- The previous example showed us that the computation of $p_{\bar{X}}(\bar{x})$ and $p_{S^2}(s^2)$ can be tedious
- This example should also suggest that there are some general relationships between $E(\bar{X})$, $V(\bar{X})$, $E(S^2)$ and the population mean μ and variance σ^2 .

Some Remarks

- The previous example showed us that the computation of $p_{\bar{X}}(\bar{x})$ and $p_{S^2}(s^2)$ can be tedious
- This example should also suggest that there are some general relationships between $E(\bar{X})$, $V(\bar{X})$, $E(S^2)$ and the population mean μ and variance σ^2 .
- Sampling distributions can sometimes be computed by direct computation or by approximations such as the central limit theorem (CLT)

Some Remarks

- The previous example showed us that the computation of $p_{\bar{X}}(\bar{x})$ and $p_{S^2}(s^2)$ can be tedious
- This example should also suggest that there are some general relationships between $E(\bar{X})$, $V(\bar{X})$, $E(S^2)$ and the population mean μ and variance σ^2 .
- Sampling distributions can sometimes be computed by direct computation or by approximations such as the central limit theorem (CLT)
- Techniques for deriving such approximations will be discussed next

Definition 7 (Convergence in Probabilty)

Let X_1, X_2, \ldots be an infinite sequence of random variables, and let Y be another random variable. Then the sequence $\{X_n\}$ converges in probability to Y, if for all $\epsilon > 0$

$$\lim_{n \to \infty} P(|X_n - Y| \ge \epsilon) = 0 \tag{1}$$

or equivalently

$$\lim_{n \to \infty} P(|X_n - Y| < \epsilon) = 1 \tag{2}$$

In short notation we write $X_n \stackrel{p}{\to} Y$

We plot the differences X_n-Y for selected values of n, for 10 generated sequences $\{X_n-Y\}$ for a typical situation where the random variables X_n converge to a random variable Y in probability. We have also plotted the horizontal lines at $\pm\epsilon$ for $\epsilon=0.25$. From this we can see the increasing concentration of the distribution of X_n-Y about 0, as n increases, as required by Definition (7). In fact, the 10 observed values of $X_n=100$ - $X_n=100$ all satisfy the inequality $|X_{n00}-Y|<0.25$.

Convergence in Probability Example

Example 8 (Identical Random Variables)

Let Y be any random variable, and let $X_1 = X_2 = X_3 = \cdots = Y$, i.e., the random variables are all identical to each other.

Convergence in Probability Example

Example 9 (Functions of Uniforms)

Let $U \sim Uniform(0, 1)$. Define X_n by

$$X_n = \begin{cases} 3 & U \le 2/3 - 1/n \\ 8 & otherwise \end{cases}$$

and define Y by

$$Y = \begin{cases} 3 & U \le 2/3 \\ 8 & otherwise \end{cases}$$

Convergence in Probability Example

Example 10 (Exponential and a Constant)

Let $Z_n \sim Exponential(n)$ and let Y = 0.

 One of the most important applications of convergence in probability is the weak law of large numbers

- One of the most important applications of convergence in probability is the weak law of large numbers
- Suppose X_1, X_2, \cdots is a sequence of independent random variables that each have the same mean μ and variance σ^2

- One of the most important applications of convergence in probability is the weak law of large numbers
- Suppose X_1, X_2, \cdots is a sequence of independent random variables that each have the same mean μ and variance σ^2
- · For all positive integers n, let

$$\bar{X}_n = \frac{1}{n}(X_1 + \dots + X_n)$$

be the sample average, or sample mean, for X_1, \dots, X_n

- One of the most important applications of convergence in probability is the weak law of large numbers
- Suppose X_1, X_2, \cdots is a sequence of independent random variables that each have the same mean μ and variance σ^2
- · For all positive integers n, let

$$\bar{X}_n = \frac{1}{n}(X_1 + \dots + X_n)$$

be the sample average, or sample mean, for X_1, \dots, X_n

• When the sample size n is fixed, we will often use \overline{X} as a notation for sample mean instead of \overline{X}_n .

- One of the most important applications of convergence in probability is the weak law of large numbers
- Suppose X_1, X_2, \cdots is a sequence of independent random variables that each have the same mean μ and variance σ^2
- For all positive integers n, let

$$\bar{X}_n = \frac{1}{n}(X_1 + \dots + X_n)$$

be the sample average, or sample mean, for X_1, \dots, X_n

- When the sample size n is fixed, we will often use \bar{X} as a notation for sample mean instead of \bar{X}_n .
- The sample mean is itself a random variable with mean μ and variance σ^2/n (why?)

• If we flip a sequence of fair coins, and if $X_i = 1$ or $X_i = 0$ as the *i*th coin comes up heads or tails, then \bar{X}_n represents the fraction of the first n coins that came up heads

- If we flip a sequence of fair coins, and if $X_i = 1$ or $X_i = 0$ as the *i*th coin comes up heads or tails, then \bar{X}_n represents the fraction of the first n coins that came up heads
- We might expect that for large n, this fraction will be close to 1/2, i.e., to the expected value of the X_i

- If we flip a sequence of fair coins, and if $X_i = 1$ or $X_i = 0$ as the *i*th coin comes up heads or tails, then \bar{X}_n represents the fraction of the first n coins that came up heads
- We might expect that for large n, this fraction will be close to 1/2, i.e., to the expected value of the X_i
- The weak law of large numbers provides a precise sense in which average values \bar{X}_n tend to get close to $E(X_i)$, for large n

- Running proportion of Heads in 6 sequences of fair coin tosses. Dashed lines at 0.6 and 0.4 are plotted for reference. As the number of tosses increases, the proportion of Heads approaches 1/2.

Weak Law of Large Numbers

Theorem 11 (Weak Law of Large Numbers (WLLN))

Let X_1, X_2, \cdots , be a sequence of independent random variables, each having the same mean μ and each having finite variance $\sigma^2 < \infty$. Then for all $\epsilon > 0$,

$$\lim_{n \to \infty} P(|\bar{X}_n - \mu| \ge \epsilon) = 0 \tag{3}$$

That is, the averages converge in probability to the common mean μ or $\bar{X}_n \stackrel{p}{\to} \mu$

Proof: on board

Consistency of Sample Variance

Example 12 (Sample Variance)

Let X_1, X_2, \cdots , be a sequence of iid random variables, each having the same mean $E(X_i) = \mu$ and each having variance $V(X_i) = \sigma^2 < \infty$. If we define

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$
 (4)

can we prove a WLLN for S_n^2 ?

Consistency of Sample Variance

Example 12 (Sample Variance)

Let X_1, X_2, \cdots , be a sequence of iid random variables, each having the same mean $E(X_i) = \mu$ and each having variance $V(X_i) = \sigma^2 < \infty$. If we define

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$
 (4)

can we prove a WLLN for S_n^2 ?

Using Chebyshev's Inequality we have,

$$P(|S_n^2 - \sigma^2| \ge \epsilon) \le \frac{E(S_n^2 - \sigma^2)^2}{\epsilon^2} = \frac{Var(S_n^2)}{\epsilon^2}$$

and thus, a sufficient condition that S_n^2 converges in probability to σ^2 is that $Var(S_n^2) \to 0$ as $n \to \infty$

WLLN Applications

Example 13 (Fair coins)

Consider flipping a sequence of identical fair coins. Let \bar{X}_n be the fraction of the first n coins that are heads. Then $\bar{X}_n = (X_1 + \cdots + X_n)/n$, where $X_i = 1$ if the ith coin is heads, otherwise $X_i = 0$.

Visualization of the Law of Large Numbers

Exercise in R: To plot the running proportion of Heads in a sequence of independent fair coin tosses, we first generate the coin tosses themselves:

```
nsim <- 300
p <- 1/2
x <- rbinom(nsim, 1, p)
```

Then we compute \bar{X}_n for each value of n and store the results in **xbar**:

```
# what is this code doing?
xbar <- cumsum(x) / (1:nsim)</pre>
```

Finally, plot xbar against the number of coin tosses. What do you notice?

• The law of large numbers (LLN) is essential for **simulations**, statistics, and science!!.

- The law of large numbers (LLN) is essential for **simulations**, statistics, and science!!.
- Consider generating data from a large number of independent replications of an experiment, performed either by computer simulation or in the real world

- The law of large numbers (LLN) is essential for simulations, statistics, and science!!.
- Consider generating data from a large number of independent replications of an experiment, performed either by computer simulation or in the real world
- Every time we use the proportion of times that something happened as an approximation to its probability, we are implicitly appealing to LLN.

- The law of large numbers (LLN) is essential for simulations, statistics, and science!!.
- Consider generating data from a large number of independent replications of an experiment, performed either by computer simulation or in the real world
- Every time we use the proportion of times that something happened as an approximation to its probability, we are implicitly appealing to LLN.
- Every time we use the average value in the replications of some quantity to approximate its theoretical average, we are implicitly appealing to LLN.

Summary

• A sequence $\{X_n\}$ of random variables converges in probability to Y if

$$\lim_{n\to\infty} P(|X_n - Y| \ge \epsilon) = 0$$

Summary

• A sequence $\{X_n\}$ of random variables converges in probability to Y if

$$\lim_{n\to\infty} P(|X_n - Y| \ge \epsilon) = 0$$

• The Weak Law of Large Numbers (WLLN) says that if $\{X_n\}$ is iid, then

$$\bar{X}_n = (X_1 + \cdots + X_n)/n \stackrel{p}{\to} E(X_i)$$

Definition 14 (Convergence with Probability 1)

Let X_1, X_2, \ldots , be an infinite sequence of random variables. We shall say that the sequence $\{X_i\}$ converges with probability 1 (or converges almost surely (a.s.)) to a random variable Y if

$$P(\lim_{n\to\infty} X_n = Y) = 1 \tag{5}$$

we write this as $X_n \stackrel{a.s.}{\longrightarrow} Y$

- Graph of the sequence of differences $\{X_n - Y\}$ for a typical situation where the random variables X_n converge to a random variable Y with probability 1.

• Definition (14) indicates that for any given $\varepsilon > 0$, there will exist a value N_{ε} such that $|X_n - Y| < \varepsilon$ for every $n \ge N_{\varepsilon}$.

- Graph of the sequence of differences $\{X_n - Y\}$ for a typical situation where the random variables X_n converge to a random variable Y with probability 1.

- Definition (14) indicates that for any given $\varepsilon > 0$, there will exist a value N_{ε} such that $|X_n Y| < \varepsilon$ for every $n > N_{\varepsilon}$.
- Contrast this with the situation depicted for convergence in probability, which only says that the
 probability distribution X_n Y concentrates about 0 as n grows and not that the individual
 values of X_n Y will necessarily all be near 0

Strong Law of Large Numbers

The following is a strengthening of the weak law of large numbers because it concludes convergence with probability 1 instead of just convergence in probability.

Theorem 15 (Strong Law of Large Numbers (SLLN))

Let X_1, X_2, \cdots , be a sequence of independent random variables, each having finite mean μ . Then

$$P\left(\lim_{n\to\infty}\bar{X}_n=\mu\right)=1\tag{6}$$

That is, the averages converges with probability 1 to the common mean μ or $\bar{X}_n \stackrel{p}{\to} \mu$

Proof: beyond the scope of this course

SLLN Applications

Example 16 (Monte Carlo Integration)

Suppose we want to evaluate the integral $\mathcal{I}=\int_a^b h(x)dx$ for some function h. If h is complicated there may be no known closed form expression for \mathcal{I} . Monte Carlo integration is an approach for approximating \mathcal{I} which is notable for its simplicity, generality and scalability. Let us begin by writing

$$\mathcal{I} = \int_{a}^{b} h(x)dx = \int_{a}^{b} w(x)f(x)dx$$

where w(x) = h(x)(b-a) and f(x) = 1/(b-a). Notice that f is the PDF for a Uniform(a,b). Hence

$$\mathcal{I} = E_f[w(X)]$$

where $X \sim \textit{Uniform}(a,b)$. If we generate $X_1, \ldots, X_N \sim \textit{Unif}(a,b)$, then by the Strong Law of Large Numbers

$$\widehat{\mathcal{I}} \equiv \frac{1}{N} \sum_{i=1}^{N} w(X_i) \stackrel{P}{\to} E(w(X)) = \mathcal{I}$$

Monte Carlo Integration Visual

Monte Carlo Integration Exercise

Use Monte Carlo integration to solve for these integrals and see that its close to the actual value.

Exercise 17 (Monte Carlo Integration)

- 1. Let $h(x) = x^3$. Then $\mathcal{I} = \int_0^1 x^3 dx = 1/4$.
- 2. $\mathcal{I}=\Phi(\text{1.25})=\int_{-\infty}^{\text{1.25}}\frac{\text{1}}{\sqrt{2\pi}}e^{-y^2/2}dy$. Verify your answer with pnorm
- 3. $\mathcal{I}=\int_{0.25}^{0.75}\frac{4}{1+\chi^2}dx$. Verify your answer with integrate

MGFs to Determine Distribution of the Sample Mean

Theorem 18 (MGF of Sample Mean)

Let X_1, X_2, \dots , be a sequence of independent random variables with MGF $M_X(t)$. Then the MGF of the sample mean is

$$M_{\bar{X}}(t) = [M_X(t/n)]^n \tag{7}$$

Proof: on board

This theorem is only useful if the expression for $M_{\bar{\chi}}(t)$ is a familiar MGF.

Distribution of the Mean

Example 19 (Normal RVs)

Let X_1, X_2, \ldots be iid with distribution $N(\mu, \sigma^2)$. Using MGFs, find the distribution of the sample mean \bar{X}_n

Session Info

devtools::session_info()

```
##
   setting value
##
   version R version 3.4.1 (2017-06-30)
##
    system
            x86_64, linux-gnu
##
    пi
            X11
##
   language en US
    collate en US.UTF-8
##
##
   t.z
            Canada/Eastern
##
    date
            2017-11-14
##
               * version
##
    package
                            date
                                        source
##
    abind
                 1.4-5
                            2016-07-21 cran (a1.4-5)
                            2016-11-27 cran (al.9-3)
##
    arm
                 1.9-3
##
   assertthat
                 0.2.0
                            2017-04-11 CRAN (R 3.4.1)
    backports
              1.1.0
                            2017-05-22 cran (a1.1.0)
##
##
    base
                * 3.4.1
                            2017-07-08 local
    hindr
                            2016-11-13 CRAN (R 3.4.1)
##
                 0.1
    bindrcpp
                 0.2
                            2017-06-17 CRAN (R 3.4.1)
##
##
   hlme
                 1.0-4
                            2015-06-14 cran (al.0-4)
##
   broom
                 0.4.2
                            2017-02-13 CRAN (R 3.4.1)
```