Diferenciálny počet - aplikácie

Zuzana Minarechová

Katedra matematiky a deskriptívnej geometrie Slovenská technická univerzita, Stavebná fakulta

10 Október 2022

Obsah prednášky

- Diferenciál a diferenciály vyšších rádov
 - Približné výpočty hodnôt funkcií pomocou prvého diferenciálu
- Taylorov a Maclaurinov polynóm
- Vety o prírastku funkcie (Rolleho, Lagrangeova a Cauchyho)
- Výpočet limít pomocou L'Hopitalovho pravidla

Diferenciálny počet - aplikácie

Diferenciál a diferenciály vyšších rádov

Gottfried Wilhelm Leibniz prvý krát predstavil pojem diferenciál, a označenie derivácie pomocou diferenciálov $\frac{dy}{dx}$ je pomenované po ňom.

Obr.: Gottfried Wilhelm Leibniz (1646 – 1716)

- Pri aplikáciách matematiky je často potrebné pracovať s hodnotami komplikovaných funkcií. Je možné nahradiť ich hodnotami jednoduchších funkcií, ak sú tieto v rámci požadovanej presnosti.
- Často sa k tomu používajú lineárne funkcie, keďže sú na výpočty najjednoduchšie.
- Nech má funkcia f v bode x_0 deriváciu. Potom hodnoty funkcie f v blízkom okolí čísla x_0 najlepšie zo všetkých lineárnych funkcií aproximuje (približne vyjadruje) funkcia $y=f(x_0)+f'(x_0)(x-x_0)$. Preto

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

pre čísla x blízke číslu x_0 .

- Treba si uvedomiť, že aproximácia pomocou diferenciálu, t.j. pomocou dotyčnice, má iba lokálny význam v okolí bodu.
- Lineárny výraz

$$df(x_0, x) = f'(x_0)(x - x_0)$$

v tejto aproximácii voláme **diferenciál funkcie** f v bode x_0 .

ullet Všeobecne **diferenciál n-tého rádu funkcie** f v bode x_0 je výraz

$$d^n f(x_0, x) = f^{(n)}(x_0)(x - x_0)^n,$$

ak existuje n- tá derivácia funkcie f v bode x_0 . Špeciálne, pre n=0, diferenciálom nultého rádu je konštantna $f(x_0)$.

Obr.: Prvý diferenciál - geometrická interpretácia

Diferenciály vyšších rádov - Riešené príklady

Príklad 1

Nájdite prvých päť diferenciálov funkcie $f: y = \cos x$ v bode $x_0 = 0$.

Riešenie: K nájdeniu diferenciálu potrebujeme príslušnú deriváciu v danom bode. Keďže $y(0)=1,\ y'(0)=0,\ y''(0)=-1,\ y'''(0)=0,\ y^{(4)}(0)=1,\ y^{(5)}(0)=0,$ platí

$$\mathrm{d}^0 f(0,x) = 1, \quad \mathrm{d}^2 f(0,x) = -x^2, \quad \mathrm{d}^4 f(0,x) = x^4.$$

Ostatné hľadané diferenciály sú rovné nulovej konštante.

Diferenciál - Príklady

Príklad 2

Nájdite (prvý) diferenciál funkcie f v bode x_0 :

1)
$$f(x) = \ln(\sin x)$$
, $x_0 = \frac{\pi}{4}$ $df(\frac{\pi}{4}, x) = 1(x - \frac{\pi}{4})$

2)
$$f(x) = \arctan(\frac{x}{2}), x_0 = 2$$
 $df(2, x) = \frac{1}{4}(x - 2)$

3)
$$f(x) = \sqrt{x^2 + 1}$$
, $x_0 = 1$ $df(1, x) = \frac{\sqrt{2}}{2}(x - 1)$

Diferenciálny počet - aplikácie

Približné výpočty hodnôt funkcií pomocou prvého diferenciálu

Približné výpočty hodnôt funkcií

Ak máme **približne vypočítať hodnotu funkcie** f v bode x, ktorú nie sme z nejakého dôvodu schopní vypočítať presne, postupujeme nasledovne:

- Nájdeme taký bod x_0 čo najbližšie k bodu x, v ktorom sme schopní vypočítať hodnotu funkcie f a jej deriváciu.
- Použijeme vzťah $f(x) \approx f(x_0) + f'(x_0)(x x_0)$.
- ① Ak nie sme spokojní s presnosťou aproximácie, použijeme vzťah $f(x) \approx T_n(f,x_0,x)$ (t.j. vzťah pre aproximáciu Taylorovým polynómom) pre vhodné prirodzené číslo n>1.

Približné výpočty hodnôt funkcií - Riešené príklady

Príklad 3

Vypočítajme pomocou prvého diferenciálu približne hodnotu $\sqrt{80}$.

Riešenie: Ide o výpočet hodnoty f(80) pre funkciu $f:\ y=\sqrt{x}$. Keď že

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0),$$

potrebujeme nájsť vhodnú hodnotu x_0 blízko hodnoty 80, v ktorej vieme vypočítať obidve hodnoty $f(x_0)$ aj $f'(x_0)$. Keďže $f'(x)=\frac{1}{2\sqrt{x}}$, vhodnou hodnotou je $x_0=81$. Platí f(81)=9 a $f'(81)=\frac{1}{18}$. Preto

$$\sqrt{80} \approx 9 + \frac{1}{18}(80 - 81) = 9 - \frac{1}{18} = \frac{161}{18} \approx 8,94.$$

Približné výpočty hodnôt funkcií - Príklady

Príklad 4

Použitím diferenciálu približne vypočítajte hodnoty:

- a) $\sqrt{98}$ ≈ 9.9
- b) $(2.03)^3 \approx 8.36$
- c) $3^{1.95} \approx 8.55$
- d) $\arctan(1.1)$ $\approx \frac{\pi}{4} + 0.05$
- e) $\sin(-0.2)$ ≈ -0.2
- f) $\ln(1.3)$ ≈ 0.3

Diferenciálny počet - aplikácie

Taylorov a Maclaurinov polynóm

Obr.: Brook Taylor (1685 - 1731) a Colin Maclaurin (1698 - 1746)

- Motivácia bola predstaviť si priebeh zložitých funkcií a tiež ich hodnoty.
- Obaja prišli s nápadom nahradiť zložitú funkciu jednoduchšou, napríklad polynómom a vybudovali teórie nezávisle na sebe.
- Základná myšlienka: Majme dve funkcie definované na okolí nejakého bodu z ich definičného oboru. Ak sa ich funkčné hodnoty rovnajú, tak sa rovnajú aj ich derivácie, t.j. napr. goniometrickú funkciu sínus môžme approximovať

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

alebo exponenciálnu funkciu

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Taylorova veta

• Nech funkcia f má v okolí bodu x_0 všetky derivácie až do rádu $n+1,\,n\in N.$ Potom pre všetky x z tohto okolia platí **Taylorov** vzorec

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x),$$

kde $R_n(x)$

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{(n+1)}$$

pričom ξ je vhodné číslo ležiace medzi x_0 a x.

• Chyba $R_n(x)$ sa nazýva **zvyšok** a takýto tvar sa nazýva **Lagrangeov tvar zvyšku**.

• Nech funkcia f má v okolí bodu x_0 všetky derivácie do rádu $n,\ n\in N.$ Potom pre všetky x z tohto okolia platí

$$T_n(f, x_0, x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n =$$

$$= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k = \sum_{k=0}^n \frac{d^{(k)}f(x_0, x)}{k!}$$

voláme **Taylorov mnohočlen (polynóm) funkcie** f **v bode** x_0 .

Taylorova veta

Potom platí

$$f(x) = T_n(f, x_0, x) + R_n(x) =$$

$$= T_n(f, x_0, x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{(n+1)}$$

• Všimneme si, že pre hodnoty x blízke číslu x_0 je posledný člen (**zvyšok**) blízky 0 a preto

$$f(x) \approx T_n(f, x_0, x)$$

pre x z blízkeho okolia čísla x_0 .

ullet Špeciálny prípad Taylorovho polynómu je ak $x_0=0$ a nazýva sa **Maclaurinov polynóm** funkcie f, označujeme ho $M_n(f,x)$.

Taylorov polynóm - Riešené príklady

Príklad 5

Nájdeme Taylorov polynóm 4. stupňa v bode $x_0=0$ pre funkciu $f(x)=\cos x.$

Riešenie: Potrebujeme nájsť diferenciály do rádu 4 funkcie $f(x) = \cos x$. Preto

$$T_4(\cos x, 0, x) = 1 - \frac{x^2}{2} + \frac{x^4}{24}$$

ullet Majme funkcie f(x) a g(x)

Obr.: Grafy funkcií f a g

 \bullet $T_1(f,0,x)$ a $T_1(g,0,x)$

Obr.: Grafy funkcií f a g a ich dotyčnice

 \bullet $T_2(f,0,x)$ a $T_2(g,0,x)$

Obr.: Aproximácia polynómom druhého stupňa

• $T_3(f,0,x)$ a $T_3(g,0,x)$

Obr.: Aproximácia polynómom tretieho stupňa

 \bullet $T_4(f,0,x)$ a $T_4(g,0,x)$

Obr.: Aproximácia polynómom štvrtého stupňa

• $T_5(f,0,x)$ a $T_5(g,0,x)$

Obr.: Aproximácia polynómom piateho stupňa

• $T_6(f,0,x)$ a $T_6(g,0,x)$

Obr.: Aproximácia polynómom šiesteho stupňa

 \bullet $T_7(f,0,x)$ a $T_7(g,0,x)$

Obr.: Aproximácia polynómom siedmeho stupňa

• $T_8(f,0,x)$ a $T_8(g,0,x)$

Obr.: Aproximácia polynómom ôsmeho stupňa

• $T_9(f,0,x)$ a $T_9(g,0,x)$

Obr.: Aproximácia polynómom deviateho stupňa

 \bullet $T_{10}(f,0,x)$ a $T_{10}(g,0,x)$

Obr.: Aproximácia polynómom desiateho stupňa

ullet Majme funkcie f(x) a g(x)

Obr.: Grafy funkcií f a g

 \bullet $T_1(f,0,x)$ a $T_1(g,0,x)$

Obr.: Grafy funkcií f a g a ich dotyčnice

 \bullet $T_2(f,0,x)$ a $T_2(g,0,x)$

Obr.: Aproximácia polynómom druhého stupňa

 \bullet $T_3(f,0,x)$ a $T_3(g,0,x)$

Obr.: Aproximácia polynómom tretieho stupňa

• $T_4(f,0,x)$ a $T_4(g,0,x)$

Obr.: Aproximácia polynómom štvrtého stupňa

 \bullet $T_5(f,0,x)$ a $T_5(g,0,x)$

Obr.: Aproximácia polynómom piateho stupňa

 \bullet $T_6(f,0,x)$ a $T_6(g,0,x)$

Obr.: Aproximácia polynómom šiesteho stupňa

 \bullet $T_7(f,0,x)$ a $T_7(g,0,x)$

Obr.: Aproximácia polynómom siedmeho stupňa

• $T_8(f,0,x)$ a $T_8(g,0,x)$

Obr.: Aproximácia polynómom ôsmeho stupňa

• $T_9(f,0,x)$ a $T_9(g,0,x)$

Obr.: Aproximácia polynómom deviateho stupňa

 \bullet $T_{10}(f,0,x)$ a $T_{10}(g,0,x)$

Obr.: Aproximácia polynómom desiateho stupňa

Taylorov polynóm - Príklady

Príklad 6

Nájdite Maclaurinov polynóm daného stupňa n funkcie f:

a)
$$f(x) = \frac{1}{2^x}, n = 3$$

b)
$$f(x) = \tan(x), n = 3$$

c)
$$f(x) = \cos(x), n = N$$

Príklad 7

Nájdite Taylorov polynóm daného stupňa n funkcie f v bode x_0 :

a)
$$f(x) = x \ln(x), x_0 = 1, n = 4$$

b)
$$f(x) = x^x$$
, $x_0 = 1$, $n = 2$

c)
$$f(x) = \arctan(x), x_0 = 1, n = 2$$

Taylorov polynóm - Príklady

Príklad 8

Napíšte Taylorov vzorec pre funkciu $f(x) = \arctan(x)$ v bode $x_0 = 1$ pre n = 2.

Príklad 9

Nájdite Maclaurinov vzorec pre všeobecné n pre funkciu e^x .

Príklad 10

Pomocou Maclaurinovho polynómu vypočítajte približnú hodnotu čísla e s chybou menšou ako 0,01. ($Inými\ slovami:$ Aké n musím zobrať, aby chyba mojej aproximácie bola menšia ako 0,01?)

Taylorov polynóm - Príklady

Príklad 11

Vyčíslite približne hodnotu $\ln(1.3)$ pomocou Taylorovho polynómu 2. stupňa a odhadnite akej maximálnej chyby ste sa pri tejto aproximácii dopustili.

Diferenciálny počet - aplikácie

Aplikácie - Vety o prírastku funkcie

Obr.: Michel Rolle (1652 — 1719) a Joseph Louis Lagrange (1736 – 1813)

Obr.: Augustin Louis Cauchy (1789 - 1857)

- Existuje viac viet o strednej hodnote, ktoré sa tiež volajú vety o
 prírastku funkcie. Tieto vety vyjadrujú za istých podmienok vzťah
 medzi rozdielom ("prírastkom") hodnôt funkcie v dvoch bodoch a
 deriváciou funkcie v istom čísle medzi týmito bodmi.
- Lagrangeova veta o strednej hodnote Nech f má deriváciu v intervale (a,b) a naviac je spojitá v bodoch a a b. Potom existuje také číslo r z intervalu (a,b), že

$$f'(r) = \frac{f(b) - f(a)}{b - a}.$$

ullet Ak medzi predpoklady Lagrangeovej vety doplníme podmienku f(a)=f(b), tak dostaneme **Rolleho vetu**, ktorá zaručuje existenciu takého čísla r z intervalu (a,b), že

$$f'(r) = 0.$$

Obr.: Rolleho veta (existencia nulového bodu prvej derivácie)

Obr.: Lagrangeova veta (okamžitá a priemerná rýchlosť)

Zovšeobecnením Lagrangeovej vety je **Cauchyho veta o strednej hodnote**:

Nech sú dané funkcie f(x) a g(x), ktoré sú spojité na uzavretom intervale $\langle a,b\rangle$ a diferencovateľné na otvorenom intervale (a,b), pričom $g'(x)\neq 0$, potom existuje $r\in (a,b)$ také, že

$$\left(\frac{f'}{g'}\right)(r) = \frac{f'(r)}{g'(r)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

- Vety o strednej hodnote majú veľký teoretický význam, ich dôsledkom je veľa poznatkov v diferenciálnom počte a jeho aplikáciách.
- Názorný fyzikálny zmysel viet o strednej hodnote môže byť napríklad vyjadrený v nasledujúcom tvrdení: Ak auto prejde za 2 hodiny 100 km, tak aspoň v jednom okamihu cesty dosiahne rýchlosť presne 50 km za hodinu.
- ullet V prípade n=0 sa Taylorova veta zhoduje s Lagrangeovou vetou o strednej hodnote.

Diferenciálny počet - aplikácie

Aplikácie - Výpočet limít pomocou L'Hospitalovho pravidla

Výpočet limít

Skutočným autorom **L'Hôpitalovho (resp. L'Hospitalovho) pravidla** je švajčiarsky matematik **Johann Bernoulli**, Guillaume de l'Hôpital toto pravidlo len ako prvý publikoval vo svojej knihe v roku 1696.

Obr.: Guillaume François Antoine, Marquis de l'Hôpital (1661 – 1704) a Johann Bernoulli (1667 - 1748)

Použitie derivácie pri výpočte limít

- Vypočty limít typu " $\frac{0}{0}$ "sú často veľmi komplikované.
- Jedným z riešení je použiť tvz. L'Hospitalovo pravidlo:

Nech $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$, v istom okolí čísla a majú obidve funkcie f a g deriváciu, existuje $\lim_{x \to a} \frac{f'(x)}{g'(x)}$. Potom existuje aj $\lim_{x \to a} \frac{f(x)}{g(x)}$ a platí $\lim_{x \to a} f(x) = \lim_{x \to a} f'(x)$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

 Treba si uvedomiť, že pri L'Hospitalovom pravidle namiesto podielu funkcií, počítame podiel ich derivácií, t.j. funkcie derivujeme každú zvlášť, nie ako podiel.

Použitie derivácie pri výpočte limít

 Užitočnosť L'Hospitalovho pravidla vynikne viac, ak si uvedomíme, že limity typu:

$$\frac{\infty}{\infty}$$
, $0.\infty$, $\infty - \infty$, 1^{∞} , ∞^0 , 0^0

môžeme pomocou úprav previesť na limitu typu

 $\frac{0}{0}$

 L'Hospitalovo pravidlo môžeme použiť aj niekoľkokrát za sebou a platí aj pre jednostranné limity a limity v nevlastných bodoch.

L'Hospitalovo pravidlo - Riešené príklady

Príklad 12

Pomocou L'Hospitalovho pravidla vypočítame

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{e^x}{1} = 1.$$

Príklad 13

Pomocou L'Hospitalovho pravidla vypočítame

$$\lim_{x \to 0^+} x \ln(x) = \lim_{x \to 0^+} \frac{\ln(x)}{\frac{1}{x}} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0^+} -x = 0.$$

L'Hospitalovo pravidlo - Riešené príklady

Príklad 14

Pomocou L'Hospitalovho pravidla vypočítame $\lim_{x\to 1} \left(\frac{1}{\ln x} - \frac{1}{x-1}\right)$

Riešenie:

$$\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right) = \lim_{x \to 1} \frac{x - 1 - \ln x}{(x - 1)\ln x} =$$

$$= \lim_{x \to 1} \frac{1 - \frac{1}{x}}{\ln x + \frac{x - 1}{x}} =$$

$$= \lim_{x \to 1} \frac{\frac{1}{x^2}}{\frac{1}{x} + \frac{1}{x^2}} =$$

$$= \frac{1}{2}.$$

L'Hospitalovo pravidlo - Príklady

Príklad 15

Pomocou L'Hospitalovho pravidla vypočítajte:

1)
$$\lim_{x \to 2} \frac{x^3 - 2x - 4}{x^2 - x - 2} = \frac{10}{3}$$

$$2) \lim_{x \to \infty} \frac{e^{2x}}{x^3} = \infty$$

3)
$$\lim_{x \to 1} \left(\frac{1}{2\ln(x)} - \frac{1}{x^2 - 1} \right) = \frac{1}{2}$$

4)
$$\lim_{x \to 0^+} x \ln(x) = 0$$

5)
$$\lim_{x \to 0^+} \sqrt{x} \ln(x) = 0$$

6)
$$\lim_{x \to 0} \cos(x)^{\cot g^2(x)}$$
, $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) = \frac{1}{\sqrt{e}}$

L'Hospitalovo pravidlo - Príklady

7)
$$\lim_{x \to 0} \frac{x - \sin(x)}{x^3} = \frac{1}{6}$$

8)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin(x)} \right) = 0$$

9)
$$\lim_{x \to \infty} \sqrt[x]{x} = 1$$

$$10) \lim_{x \to \infty} x e^{-x} = 0$$

11)
$$\lim_{x \to \frac{\pi}{2}} \frac{\cos(5x)}{\cos(3x)} = -\frac{5}{3}$$

12)
$$\lim_{x \to \frac{\pi}{2}} \left(\tan(x) - \frac{1}{\cos(x)} \right) = 0$$

$$13) \lim_{x \to \infty} \frac{\ln(x)}{x} = 0$$

Ďakujem za pozornosť.