Bayesian hierarchical models

Bruno Nicenboim / Shravan Vasishth 2020-03-14

Bayesian hierarchical models (also known as multilevel or mixed-effects models)

mixed-effects models)

(also known as multilevel or

Bayesian hierarchical models

The N400 effect (hierarchical normal likelihood)

In the EEG literature, it has been shown that words with low-predictability are accompanied by an *N400 effect* in comparison with high-predictable words, this is a relative negativity that peaks around 300-500 after word onset over central parietal scalp sites (first noticed in Kutas and Hillyard 1980, for semantic anomalies and in 1984 for low predictable word; for a review: Kutas and Federmeier 2011).

- 1. Example from DeLong, Urbach, and Kutas (2005)
 - a. The day was breezy so the boy went outside to fly a kite.
 - b. The day was breezy so the boy went outside to fly an airplane.

Figure 1: (ref:mot)

- We simplify the high-dimensional EEG data by focusing on the average amplitude of the EEG signal at the typical spatio-temporal window of the N400.
- We focus on the N400 effect for nouns from a subset of the data from Nieuwland et al. (2018). (To speed-up computation, we'll restrict the dataset to the participants from the Edinburgh lab)

```
df_eeg_data <- read_tsv("data/public_noun_data.txt") %>%
  filter(lab == "edin") %>%
  mutate(c_cloze = cloze / 100 - mean(cloze / 100))
df_eeg_data$c_cloze %>% summary()

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.47 -0.44 0.03 0.00 0.43 0.53
```

One nice aspect of this dataset is that the dependent variable is roughly normally distributed:

Figure 2: Histogram of the N400 averages for every trial in gray; density plot of a normal distribution in red.

A complete pooling model

We'll start from the simplest model which is basically a linear regression. **Note that this model is incorrect for these data due to point 2 below.**

- Model ${\cal M}_{cp}$ assumptions:
- 1. EEG averages for the N400 spatiotemporal window are normally distributed.
- 2. Observations are independent.
- 3. There is a linear relationship between cloze and the EEG average for the trial.

Likelihood:

$$signal_n \sim Normal(\alpha + c_cloze_n \cdot \beta, \sigma)$$
 (1)

• Priors:

$$lpha \sim Normal(0, 10)$$
 $eta \sim Normal(0, 10)$ (2) $\sigma \sim Normal_{+}(0, 50)$

Fitting the model

```
fit_N400_cp <- brm(n400 ~ c_cloze,
  prior =
    c(prior(normal(0, 10), class = Intercept),
      prior(normal(0, 10), class = b),
      prior(normal(0, 50), class = sigma)),
    data = df_eeg_data
)</pre>
```

```
## Family: gaussian
    Links: mu = identity; sigma = identity
##
## Formula: n400 ~ c cloze
     Data: df eeg data (Number of observations: 2827)
##
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##
          total post-warmup samples = 4000
##
## Population-Level Effects:
           Estimate Est.Error 1-95% CI u-95% CI Rhat
##
                                3.22 4.10 1.00
## Intercept 3.66 0.23
## c_cloze 2.26 0.55 1.19 3.33 1.00
       Bulk_ESS Tail_ESS
##
## Intercept 4301
                       3214
## c cloze
              4038
                       3036
##
## Family Specific Parameters:
##
        Estimate Est.Error 1-95% CI u-95% CI Rhat
## sigma 11.84 0.16 11.54 12.15 1.00
       Bulk ESS Tail ESS
##
## sigma 4865
                   3060
##
```

Camples are decembered as a compleme (NITEC) For such management Dully ECC

fit N400 cp

plot(fit_N400_cp)

No pooling model

- Model ${\cal M}_{np}$ assumptions:
- 1. EEG averages for the N400 spatio-temporal window are normally distributed.
- 2. Observations depend *completely* on the participant. (Participants have nothing in common.)
- 3. There is a linear relationship between cloze and the EEG average for the trial.

Likelihood:

$$signal_n \sim Normal(\alpha_{i[n]} + c_cloze_n \cdot \beta_{i[n]}, \sigma)$$
 (3)

• Priors:

$$\begin{split} &\alpha_i \sim Normal(0,10) \\ &\beta_i \sim Normal(0,10) \\ &\sigma \sim Normal_+(0,50) \end{split} \tag{4}$$

We fit it in brms by removing the common intercept with 0 + and thus having an intercept and effect for each level of subject:

```
Family: gaussian
     Links: mu = identity: sigma = identity
## Formula: n400 ~ 0 + factor(subject) + c_cloze:factor(subject)
      Data: df eeg data (Number of observations: 2827)
##
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##
            total post-warmup samples = 4000
##
## Population-Level Effects:
                               Estimate Est Error
##
## factorsubjectedin1
                                   5.35
                                              1.35
## factorsubjectedin10
                                   2.72
                                              1.43
## factorsubjectedin11
                                   2.71
                                              1.33
## factorsubjectedin12
                                   7.61
                                              1.30
## factorsubjectedin13
                                   1.30
                                              1.31
## factorsubjectedin14
                                  -0.07
                                              1.35
## factorsubjectedin15
                                   1.20
                                              1.31
## factorsubjectedin16
                                   5.59
                                              1.33
## factorsubjectedin17
                                   2.54
                                              1.28
## factorsubjectedin18
                                   2.52
                                              1.31
## factorsubjectedin19
                                   5.52
                                              1.36
## factorsubjectedin2
                                   3.38
                                              1.36
## factorsubjectedin20
                                   2.61
                                              1.26
## factorsubjectedin21
                                  -0.53
                                              1.34
## factorsubjectedin23
                                   2.84
                                              1.32
## factorsubjectedin24
                                  -0.13
                                              1.38
## factorsubjectedin25
                                   6.29
                                              1.42
## factorsubjectedin26
                                              1.39
                                   1.34
## factorsubjectedin27
                                   7.65
                                              1.30
## factorsubjectedin28
                                   6.27
                                              1.30
```

We plot the estimates using bayesplot.

```
# I first peek at the internal names of the parameters.
# parnames(fit N400 np)
ind effects np <- paste0(</pre>
  "b_factorsubject",
 unique(df eeg data$subject), ":c cloze"
mcmc_intervals(fit_N400_np,
  pars = ind_effects_np,
 prob = 0.8,
 prob_outer = 0.95,
 point_est = "mean"
```


We can then calculate the average of the β 's, even though the model doesn't assume that there's one common β :

```
## mean 2.5% 98%
## 2.2 1.2 3.2
```

Varying intercept and varying slopes model (M_v)

- Model M_v assumptions:
- 1. EEG averages for the N400 spatio-temporal window are normally distributed.
- 2. Each subject deviates to some extent (this is made precise below) from the grand mean and from the mean effect of predictability.
- 3. There is a linear relationship between cloze and the EEG average for the trial.

Likelihood:

$$signal_n \sim Normal(\alpha + u_{0,i[n]} + c_cloze_n \cdot (\beta + u_{1,i[n]}), \sigma)$$

• Prior:

$$\alpha \sim Normal(0, 10)$$
$$\beta \sim Normal(0, 10)$$

$$u_0 \sim Normal(0, \tau_{u_0})$$
$$u_1 \sim Normal(0, \tau_{u_0})$$

$$\begin{aligned} u_1 &\sim Normal(0, \tau_{u_1}) \\ \tau_{u_2} &\sim Normal_+(0, 20) \end{aligned}$$

$$au_{u_0} \sim Normal_+(0, 20)$$
 $au \sim Normal_+(0, 20)$

$$au_{u_1} \sim Normal_+(0, 20)$$

$$\sigma \sim Normal_+(0, 50)$$

(5)

(6)

Some important (and sometimes confusing) points:

Why does u have a mean of o?

Because we want u to capture only differences between subjects, we could achieve the same by assuming that

$$\begin{split} &\mu_n = \alpha_{i[n]} + \beta_{i[n]} \cdot c_cloze_n \text{and} \\ &\alpha_i \sim Normal(\alpha, \tau_{u_0}) \\ &\alpha \sim Normal(0, 10) \\ &\beta_i \sim Normal(\beta, \tau_{u_1}) \\ &\beta \sim Normal(0, 10) \end{split} \tag{7}$$

And in fact, that's another common way to write the model.

Why do the adjustments u have a normal distribution?

Mostly because of "convention", that's the way it's implemented in most frequentist mixed models.

But also because if we don't know anything about the distribution besides its mean and variance, the normal distribution is the most conservative assumption (see also chapter 9 of McElreath 2015).

Let's see how we need to set up the priors:

```
get prior(n400 ~ c cloze + (c cloze | subject), data = df eeg data)
##
                   prior
                             class
                                        coef
                                                group resp
## 1
                                  h
## 2
                                     c cloze
## 3 student_t(3, 4, 11) Intercept
## 4 student_t(3, 0, 11)
                                sd
## 5
                                sd
                                              subject
## 6
                                     c_cloze subject
                                sd
## 7
                                sd Intercept subject
## 8 student_t(3, 0, 11)
                            sigma
##
     dpar nlpar bound
## 1
## 2
## 3
## 4
## 5
## 6
## 7
## 8
```

```
## Family: gaussian
  Links: mu = identity; sigma = identity
##
## Formula: n400 ~ c cloze + (c cloze || subject)
##
    Data: df_eeg_data (Number of observations: 2827)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
      total post-warmup samples = 4000
##
##
## Group-Level Effects:
## ~subject (Number of levels: 37)
              Estimate Est.Error 1-95% CI u-95% CI
##
## sd(Intercept) 2.20
                         0.37 1.56 3.01
## sd(c_cloze) 1.56
                          0.90 0.08 3.42
## Rhat Bulk ESS Tail ESS
## sd(Intercept) 1.00 1392 1893
## sd(c cloze) 1.00 1130 1437
##
## Population-Level Effects:
## Estimate Est.Error 1-95% CI u-95% CI Rhat
## Intercept 3.65 0.42 2.80 4.48 1.00
## c_cloze 2.32 0.62 1.07
                                     3.58 1.00
       Bulk_ESS Tail_ESS
##
```

plot(fit_N400_v, N = 6)

Individual effects

```
# parnames(m_N400_v)
ind_effects_v <- paste0("r_subject[", unique(eeg_data$subject), ",ccloze]")
mcmc_intervals(fit_N400_v,
   pars = ind_effects_v,
   prob = 0.8,
   prob_outer = 0.95,
   point_est = "mean"
)</pre>
```


Shrinkage

Correlated varying intercept varying slopes model (M_h)

- In M_h , we model the EEG data with the following assumptions:
- 1. EEG averages for the N400 spatio-temporal window are normally distributed.
- 2. Some aspects of the signal voltage and the effect of predictability on the signal depend on the participant, and these two might be correlated, i.e., we assume random intercept, slope and correlation by-subject.
- 3. There is a linear relationship between cloze and the EEG average for the trial.

Likelihood:

$$signal_n \sim Normal(\alpha + u_{i[n],0} + c_cloze_n \cdot (\beta + u_{i[n],1}), \sigma)$$
 (8)

We need to have priors on the adjustments for intercept and slopes, $u_{.0-1}$.

· Priors:

$$\alpha \sim Normal(0, 10)$$

$$\beta \sim Normal(0, 10)$$

$$\sigma \sim Normal_{+}(0, 50)$$

$$\begin{pmatrix} u_{i,0} \\ u_{i,1} \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \Sigma_{u} \end{pmatrix}$$
 (9)

$$\Sigma_{u} = \begin{pmatrix} \tau_{u_{0}}^{2} & \rho_{u}\tau_{u_{0}}\tau_{u_{1}} \\ \rho_{u}\tau_{u_{0}}\tau_{u_{1}} & \tau_{u_{1}}^{2} \end{pmatrix}$$

(10)

And now we need priors for the τ_u s and for ρ_u :

$$\tau_{u_0} \sim Normal_+(0,20)$$

$$\tau_{u_1} \sim Normal_+(0,20)$$

$$\rho_u \sim LKJcorr(2)$$
 (11)

Figure 3: Visualization of the LKJ prior with four different values of the η parameter.

Let's see how we need to set up the priors:

```
get prior(n400 ~ c cloze + (c cloze | subject), data = df eeg data)
##
                     prior
                               class
                                           coef
                                                  group
## 1
                                   h
## 2
                                   b
                                       c cloze
## 3
                   lkj(1)
                                 cor
## 4
                                 cor
                                                subject
## 5
      student_t(3, 4, 11) Intercept
## 6
      student_t(3, 0, 11)
                                  sd
## 7
                                  sd
                                                subject
## 8
                                       c_cloze subject
                                  sd
## 9
                                  sd Intercept subject
## 10 student_t(3, 0, 11)
                               sigma
##
      resp dpar nlpar bound
## 1
## 2
## 3
## 4
## 5
## 6
## 7
```

Fitting the model

```
fit_N400_h <- brm(n400 ~ c_cloze + (c_cloze | subject).
                  prior =
                      c(prior(normal(0, 10), class = Intercept),
                        prior(normal(0, 10), class = b, coef = c cloze),
                        prior(normal(0, 50), class = sigma),
                        prior(normal(0, 20), class = sd, coef = Intercept,
                              group = subject),
                        prior(normal(0, 20), class = sd, coef = c_cloze,
                              group = subject),
                        prior(lkj(2), class = cor,
                              group= subject)),
              data = df_eeg_data)
```

```
## Family: gaussian
##
    Links: mu = identity; sigma = identity
## Formula: n400 ~ c_cloze + (c_cloze | subject)
##
     Data: df_eeg_data (Number of observations: 2827)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
          total post-warmup samples = 4000
##
##
## Group-Level Effects:
## ~subject (Number of levels: 37)
##
                       Estimate Est.Error 1-95% CI
## sd(Intercept)
                                    0.36 1.57
                           2.22
## sd(c cloze)
              1.46
                                    0.90 0.08
## cor(Intercept,c_cloze) 0.17
                                    0.36 -0.60
##
                       u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)
                           2.97 1.00
                                       1418
                                                2688
## sd(c cloze)
                           3.36 1.00 1128
                                                1724
## cor(Intercept,c_cloze) 0.79 1.00
                                       3602
                                                2786
##
## Population-Level Effects:
##
           Estimate Est Error 1-95% CI u-95% CI Rhat
## Intercept 3.62
                       0.44
                                2.77
                                        4.47 1.00
```

2 24 0 60 1 17

3 53 1 00

fit N400 h

6 6]070

plot(fit_N400_h, N = 6)

Why should we take the trouble of fitting a Bayesian hierarchical model?

- We can better characterize the generative process by adding the relevant clusters in our data (participants, items, maybe labs, etc)
- The same approach we used here can be used to extend any parameter of any model:
 - (generalized) linear models
 - non-linear/cognitive models

How much structure should we add to our statistical models?

The level of complexity depends on

- 1. the answers we are looking for
- 2. the size of the data at hand
- 3. our computing power
- 4. our domain and experimental knowledge.

"Simplification is essential, but it comes at a cost, and real understanding depends in part on understanding the effects of the simplification" McClelland (2009)

References

DeLong, Katherine A, Thomas P Urbach, and Marta Kutas. 2005. "Probabilistic Word Pre-Activation During Language Comprehension Inferred from Electrical Brain Activity." *Nature Neuroscience* 8 (8): 1117–21. https://doi.org/10.1038/nn1504.

Kutas, Marta, and Kara D. Federmeier. 2011. "Thirty Years and Counting: Finding Meaning in the N400 Component of the Event-Related Brain Potential (ERP)." *Annual Review of Psychology* 62 (1): 621–47. https://doi.org/10.1146/annurev.psych.093008.131123.

Kutas, Marta, and Steven A Hillyard. 1980. "Reading Senseless Sentences: Brain Potentials Reflect Semantic Incongruity." *Science* 207 (4427): 203–5. https://doi.org/10.1126/science.7350657.