CHENNAI MATHEMATICAL INSTITUTE

Discrete Mathematics

Assignment 1:

If you have discussed the solutions with anyone please write their names.

Do write the assignment yourself.

Jan 8, 2019.

- (1) State and prove using induction the criterion of divisibility by 11.
- (2) Let $a_1 = 1$ and define $a_{n+1} = 3a_n + 4$. Prove by induction that $a_n \leq 3^n$.
- (3) Suppose a_1, a_2, \ldots, a_n are positive integers such that $a_1 \leq a_2 \ldots \leq a_n$. Show that

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} = 1$$

implies $a_n < \frac{1}{2^{n!}}$.

- (4) Prove that any Boolean expression in the variables x_1, \ldots, x_n can be written in conjunctive normal form.
- (5) Consider the algorithm Euclid(a,b), which takes integers $a \ge b \ge 0$ and outputs integers x,y,d (in that order) such that d=gcd(a,b) and d=ax+by.

If the input is (a, 0) return (1, 0, a), otherwise return the $Euclid(b, a \mod b)$. Prove that the algorithm is correct.

(6) Let V be a vector space over \mathbb{C} and let $L: V \to V$ be a linear map. For $\lambda \in \mathbb{C}$ an eigen value of L define $E(\lambda)$ to be the subspace of vectors $v \in V$ such that $L(v) = \lambda v$. Let $\lambda_1 \dots, \lambda_r$ be the distinct eigen values of the operator L. Prove by induction on r that V is a direct sum of $E(\lambda_1) \oplus E(\lambda_2) \cdots \oplus E(\lambda_r)$.