## (19)日本国特許庁(J.P)

## (12) 公開特許公報(A)

(11)特許出願公開番号

# 特開平5-169739

(43)公開日 平成5年(1993)7月9日

(51)Int.Cl.<sup>5</sup>

識別記号

FΙ

技術表示箇所

B 4 1 J 11/42

N 9011-2C

庁内整理番号

13/00

9210-2C

G 0 6 F 3/12

C 8323-5B

審査請求 未請求 請求項の数7(全 20 頁)

(21)出願番号

特願平3-343284

(22)出願日

平成3年(1991)12月25日

(71)出願人 000001007

キャノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 西山 政希

東京都大田区下丸子3丁目30番2号キャノ

ン株式会社内

(74)代理人 弁理士 丸島 儀一

## (54)【発明の名称】 印字装置

## (57)【要約】

(修正有)

【目的】給紙のためにオフライン状態へ移行することな く給紙可能な印字装置。

【構成】オンライン中にもペーパーフィードキーを有効にするために、印字装置が印字中か否かを判定する判定手段を設け、判定手段による判定が"印字装置停止"を示している場合には、常にペーパーフィードが可能であり、給紙のために一旦オフライン状態へプリンタを移行することなく給紙可能で、更に改行キーと排紙キーとを同一にしてかつ排紙動作を中止する機能を付加することにより、スムーズな改行オペレーションを可能としている。



20

#### 【特許請求の範囲】

【請求項1】 ホストからのデータを受信し印字する印字手段と、

前記印字手段が印字装置駆動中であるか否かを判定する 判定手段と、

前記印字手段に給紙するための給紙手段と、

前記給紙手段に契機を与えるためのキー入力手段とを具 備し、

前記キー入力手段により前記給紙手段に契機が与えられた場合、前記判定手段の出力に応答して前記給紙手段を 起動することを特徴とした印字装置。

【請求項2】 前記判定手段の判定が駆動中でないと判定された場合、前記給紙手段を起動する請求項1記載の印字装置。

【請求項3】 前記給紙手段に自動的にカット紙を供給する自動カット紙供給手段を具備する請求項1記載の印字装置。

【請求項4】 前記印字手段を中断する中断手段と、前記中断手段に契機を与えるための第二キー入力手段とを 具備する請求項1記載の印字装置。

【請求項5】 ホストからのデータを受信し印字する印字手段と、

前記印字手段の紙送り手段と、

前記紙送り手段に動作の契機を与えるための単一のキー 入力手段と、

前記キー入力手段があらかじめ設定された時間連続的に押下されていることを判断する判断手段とを具備し、

前記キー入力手段により紙送り手段に契機が与えられた 場合、

前記判断手段の出力に応答して、前記紙送り手段を駆動 し、前記キー入力手段が再び押下されたときには、動作 を中止することを特徴とした印字装置。

【請求項6】 前記紙送り手段は、紙を排紙する動作を 含むことを特徴とする請求項5記載の印字装置。

【請求項7】 前記印字装置はホストと、汎用のパラレルインターフェースを介して接続されていることを特徴とする請求項1あるいは請求項5記載の印字装置。

### 【発明の詳細な説明】

#### . [0001]

【産業上の利用分野】本発明は、給紙のためにオフライン状態へ移行することがなく給紙可能な印字装置に関する。

#### [0002]

【従来の技術】従来、自動給紙機能付き印字装置ではオフライン中のみペーパーフィードキーによる自動給紙を 行っていた。

#### [0003]

【発明が解決しようとしている課題】従来技術では、自動給紙をペーパーフィードキーにより行う場合、プリンタを一旦オフラインにしてからペーパーフィードキーを

実行し更に、オンラインに戻すといった煩雑な操作が必要であった。また改行キーにより紙送りを実行する場合には改行キーを印字ヘッドが所望の位置に来るまで数回 ~数十回押下しなければならず煩雑であった。

#### [0004]

【課題を解決するための手段】かかる問題を解決するために、本発明は印字中であるか否か判定し、印字中でない場合には、オンライン中でもペーパーフィードを可能として無駄なキー操作を省くものである。更に改行と排紙キーを同一キーにしてかつ排紙中止機能を設けることにより、多量改行する場合であっても少ないキーストロークでできるようにするものである。

【0005】本発明によれば、ホストからのデータを受信し印字する印字手段と、前記印字手段が印字装置駆動中であるか否かを判定する判定手段と、前記印字手段に給紙するための給紙手段と、前記給紙手段に契機を与えるためのキー入力手段とを具備し、前記キー入力手段により前記給紙手段に契機が与えられた場合、前記判定手段の出力に応答して前記給紙手段を起動することができる。

【0006】本発明によれば、ホストからのデータを受信し印字する印字手段と、前記印字手段の紙送り手段と、前記紙送り手段に動作の契機を与えるための単一のキー入力手段と、前記キー入力手段があらかじめ設定された時間連続的に押下されていることを判断する判断手段とを具備し、前記キー入力手段により紙送り手段に契機が与えられた場合、前記判断手段の出力に応答して、前記紙送り手段を駆動し、かつ排紙が実行されている時に前記キー入力手段が再び押下されたときには、動作を中止することができる。

## [0007]

## 【実施例】

(第1実施例)以下、添付図面に添って本発明に係る実施例を詳細に説明する。

【0008】図1は本発明の一実施例情報処理装置としてのプリンター体型のパーソナルコンピュータを示す斜視図で、装置本体101、キーボード102、表示部103を備える上カバー104、ペーパーフィードキー105、印字ストップキー106及びプリンタ2等の各部によって構成される。上カバー104は、装置本体101に対して、その後縁の両端に設けられたヒンジ104aを介して回動可能に取り付けられている。これにより本装置の使用時には、上カバー104は、その回動によって表示部103が視易くなる位置まで開けられ、また、不使用時は閉じられてカバーとして機能することができる。表示部103の表示素子としては、表示部を構成できることから液晶表示素子が用いられる。

【0009】インクジェット方式の記録ヘッドを用いた プリンタユニット2は表示部103の前方に配置され、 装置本体101内に収納されている。また、プリンタユ ニット2は操作者が開閉可能な開口部 (不図示) をもち、記録ヘッドの交換が可能なようになっている。

【0010】記録紙3はキーボード102の下部に設けられた給紙口101aから挿入され、装置本体101内を貫通する搬送路内を搬送されて装置後方の排紙口(不図示)から排出される。キーボード102は装置本体101の両側に設けられたヒンジ102aを介して回動可能に取り付けられている。これにより、封筒、ハガキ等の比較的長さの短い記録紙を使用する場合もキーボード102を上部に開き、記録紙3を搬送路内の奥に挿入することができる。このように、キーボード102の下部に記録紙3の搬送路が設けられているため、記録紙をセットした状態でもキーボード102および表示部103を用いた種々の操作が可能である。

【0011】本実施例ではプリンタユニット2を除く部分、いわゆるコンピュータ部をホストコンピュータと呼ぶことにする。

【0012】 [HostーPrinterの概略プロック図] 図2に、ホストコンピュータとプリンタの概略プロック図を示す。

【0013】まずホストコンピュータにおいては、主制 御をつかさどっているのが中央処理装置(CPU)であ り、その基本的な制御を指示するのがBIOS ROM (Basic Input Output Syste m ROM) である。フロッピーディスク (FDD) や ハードディスク (HDD) からフロッピーディスクコン トローラ (FDC) やハードディスクコントローラ (H DC) を経由してアプリケーション プログラムを読み 出し、システムメモリ(RAM)を利用してプログラム の実行を行う。この時、画面の表示方法としてはVGA (VideoGraphic Array)コントロー ラ(VGAC)を使って液晶(LCD)にキャラクタ等 の表示を行い、キーボード(KB)からのキー入力はキ ーボードコントローラ(KBC)を経由して行われる。 ここで、数値演算プロセッサ(FPU)はCPUに対し て演算処理のサポートを行うものである。また、リアル タイムクロック(RTC)は現時点の経過時間を示すも のでシステム全体の電源が切られた状態においても、専 用バッテリーにより動作は行われる。 DMAコントロー ラ(DMAC)は、メモリ~メモリ間、メモリ~I/O 間、I/O~I/O間において高速にデータの転送を行 うために、CPUの介在なしでデータ転送を行う。割り 込みコントローラ(IRQC)は各I/Oからの割り込 みを受け付け、優先順位に従って処理を行う。タイマ (TIMER) は、数チャンネルのフリーランニングタ イマを持ち、種々の時間管理を行う。その他に外部につ ながる、シリアルインターフェイス(SIO)、拡張ポ ート(PORT)や、ユーザに動作状況を伝えるLED がある。プリンタは、ホストコンピュータに対して汎用 のパラレルインターフェイスでつながる形になり、【/ 〇ポートのレジスタレベルでデータ送受信を行い、接続 のイメージとしては外部プリンタとやり取りした時と同 . 等となる。

【0014】図3は、本発明が実施もしくは適用されたインクジェット記録方式を用いたプリンタユニット2の内部構成を説明するための斜視図である。図3において、5001はインクタンクであり、5012はそれに結合された記録ヘッドである。5001のインクタンクと5012の記録ヘッドで一体型の交換可能なカートリッジを形成するものである。5014は、ぞのカートリッジをプリンタ本体に取り付けるためのキャリッジであり、5003はそのキャリッジを副走査方向に走査するためのガイドである。

【0015】5000は、記録紙3を主走査方向に走査させるためのプラテンローラである。5024は、プラテンローラを回転させるための紙送りモータである。なお、キャリッジ5014には、記録ヘッド5012に対して駆動のための倡号パルス電流やヘッド温調用電流を流すためのフレキシブルケーブル(図示せず)が、プリンタをコントロールするための電気回路を具備したプリント板(図示せず)に接続されている。

【0016】さらに、上記構成のプリンタユニット2を詳細に説明する。駆動モータ5013の正逆回転に連動して駆動力伝達ギア5011、5009を介して回転するリードスクリュー5004の螺旋溝5005に対して係合するキャリッジ5014はピン(不図示)を有し、矢印a, b方向に往復移動される。5002は紙押え板であり、キャリッジ移動方向にわたって紙をプラテン500に対して押圧する。5007、5008はフォトカプラでキャリッジ5014のレバー5006のこの域での存在を確認してモータ5013の回転方向切換等を行うためのホームポジション検知手段である。5016は記録ヘッドの前面をキャップするキャップ内を吸引する吸引手段であり、キャップ内開口5023を介して記録ヘッド5012の吸引回復を行う。

【0017】5017は、クリーニングブレードで、5019はこのブレード5017を前後方向に移動可能にする部材であり、本体支持板5018にこれらは支持されている。ブレードは、この形態でなく周知のクリーニングブレードが本例に適用できることはいうまでもない。また、5021は、吸引回復の吸引を開始するためのレバーで、キャリッジ5014と係合するカム5020の移動に伴って移動し、駆動モータからの駆動力がクラッチ切換等の公知の伝達手段で移動制御される。

【0018】すなわち、駆動モータ5013をキャリッジ5014のホームポジションから逆回転することにより、動力伝達ギア5011を5010に切り替え(不図示)、駆動モータ5013からの駆動力がカム5020を介してレバー5021に伝わり、記録ヘッド5012

のキャッピングおよびクリーニング、吸引回復が行える ように構成されている。

【0019】 [Printerのブロック図] 図4に、 プリンタのブロック図を示す。

【0020】プリンタは、プリンタ制御用のCPU#2、プリンタ制御プログラムやプリンタエミュレーションや印字フォントを備えたROM#2、印字のための展開データやホストからの受信データを蓄えておく不揮発性のRAM#2、プリンタの印字ヘッドやモータを駆動するプリンタドライバ、メモリのアクセス制御やホスト10とのデータのやり取りやプリンタドライバへの制御信号送出を行うコントローラで構成されている。

【0021】 [プリンタドライバの構成図] 図5に、記録ヘッド及びヘッドドライバの構成を示す。

【0022】ここで、本例では吐出ユニットは64個の吐出口を有するものとし、#1~#64は吐出ユニットに設けられた吐出口の位置に対応した番号を示すものとする。R1~R64はそれぞれ#1~#64の吐出口に対応して設けられた吐出エネルギ発生素子としての発熱抵抗体である。発熱抵抗体R1~R64は8個を単位としたブロックに分割され、各ブロックに共通にコモン側ドライバ回路のスイッチング用トランジスタQ2~Q8が接続される。トランジスタQ1~Q8は、それぞれ制御信号COM1~COM8のオン/オフに応じ通電経路をオン/オフする。なお、各発熱抵抗体R1~R64~の通電経路に配置されたD1~D64は逆流防止用のダイオードである。

【0023】各ブロック間で対応する位置にある発熱抵抗体に対しては、セグメント側ドライバ回路のオン/オフ用トランジスタQ9~Q16が接続される。トランジ 30スタQ1~Q16はそれぞれ制御信号SEG1~SEG8のオン/オフに応じて発熱抵抗体に対する通電経路をオン/オフする。

【0024】図6は、斯かる構成によるヘッド駆動のタイミングチャートを示す。ヘッド走査方向上のある位置において、コモン側制御信号COM8~COM1が順次オンされる。そのオンにより1つのブロックが選択されて通電可能な状態になるので、選択されたブロック内において記録による画像に応じてセグメント側制御信号SEG8~SEG1をそれぞれオンまたはオフすることに40より、発熱抵抗体に選択的に通電が成され、発熱に応じてインクが吐出されてドット記録が行われる。

【0025】図7はキャリッジモータ及びモータドライバの構成図である。

【0026】図8はその駆動タイミングを示す。

【0027】図7、図8を参照して説明すると、キャリッジモータとしてコイルΦ1~Φ4を有するステッピングモータを用い、駆動信号CM1~CM4により各コイルに接続されたスイッチ用トランジスタTR1~TR4を適切にオン/オフすることにより、図8に示す様に2

相励磁方式にて駆動する。

【0028】フィードモータについても同様な構成で、 駆動信号FM1~FM4により駆動される。

【0029】 [プリンタコントローラの構成] 図9にプリンタコントローラの構成図を示す。

【0030】コントローラの機能プロックとしては、ホストとのコマンドレベルでのデータのやり取りを行う I / Oデータレジスタ、そしてそのレジスタから受信データをRAM#2に直接書き込む受信バッファコントローラ、RAM#2の記録データバッファから記録データを読み出しヘッドドライバへ対してCOM1~COM8/SEG1~SEG8の制御信号の送出を行う印字バッファコントローラ、更にRAM#2に対して3方向(つまり、CPU#2、受信バッファコントローラ、印字バッファコントローラ)からのメモリアクセスを制御するメモリコントローラ、以上4つのプロックで構成されている。

【0031】図10はプリンタのI/Oデータレジスタ (図9に示す)のマップを示す。

【0032】この中でモータコントロールポートは、レジスタの値を直接書き換えることによりポートを制御し各モータを駆動するものである(CM1~CM4、FM1~FM4)。

【0033】印字バッファエリアは、印字に必要なデータ領域を設定するもので、開始アドレス(PB START)と終了アドレス(PB END)を設定することにより、その範囲内で印字バッファコントローラによって開始アドレスから順番に印字データを読み出し、終了アドレスに至るまでRAM#2から印字データを読み出し、ヘッドドライバに制御信号を送出する。この時、印字データアドレスポインタ(PB POINT)は現在データ送出中のデータアドレスを示している。

【0034】受信データバッファエリアでも同様に、受信に必要なデータ領域を設定するもので、開始アドレス(IB START)と終了アドレス(IB END)を設定することにより、その範囲内で受信バッファコントローラによって開始アドレスから順番に受信データを書き込み、終了アドレスに至るまでRAM#2へ受信データを書き込む。この時、受信データアドレスポインタ(IB POINT)は現在データ受信済になっているデータアドレスを示している。

【0035】図11では上記動作におけるRAM#2上での印字パッファ(PB)と受信パッファ(IB)のアドレス領域をおのおの示している。各アドレスは、図10に示す様に、プリンタI/Oレジスタにおいて指示されている。インターフェイス領域は、ホストコンピュータとプリンタ間での共通のI/O領域である。インターフェイス領域の部分は、ホストコンピュータとのデータのやり取りを行う領域であり、ホストコンピュータにおいてはパラレルインターフェイスのポートに相当する。

10

【0036】インターフェイス領域については、図12 においてホストコンピュータとプリンタのインターフェ イス領域における相関関係を示した図で説明する。

【0037】ホスト側におけるI/Fデータ、I/Fス テータス、I/Fコントロールのレジスタが、プリンタ 側のI/Fデータ、I/Fステータス、I/Fコントロ ールのレジスタと同一のアドレスを示す様に、ホスト側 から見た(n, n+1, n+2)のアドレスが、プリン 夕側から見た (m, m+1, m+2) のアドレスと対応 が取れる様にアドレスマップが設定されている。

【0038】すなわち、この部分のアドレスは双方向で 読み書きできるレジスタになっている。

【0039】なお、ホストコンピュータ側にも、周辺機 器を制御するためのI/Oレジスタを備えていて、ホス トコンピュータ内でのI/O制御に使われている。すな わち図2で示した各プロックのI/O領域をもってい て、その中のインターフェイスの制御領域についてのみ が、プリンタ側の [/Oレジスタのインターフェイス領 域と共通になっているという構成になっている。図12 は、その関係を示すものである。

【0040】以下、ホストコンピュータ側の電源投入後 の各処理について説明する。

【0041】図13に電源投入時のフローチャートで、 まずステップS10に進む。キーボードによるソフトリ セット処理も電源投入時と同様に、ステップS10へ入 って来る。ステップS10でPOST処理が行われ、P OST処理はpower on self-test で、各ハードウェアのテスト及び初期化を実行する。次 にステップS11へ進みシステムプログラム起動のため の、ブートプログラムのロードが行われる。ブートプロ グラムはFD (フロッピィディスク) あるいはHD (ハ ードディスク)等に保存され、例えば、トラック〇、セ レクタ1に配置される。トラック0、セレクタ1をメモ リ内に読み込むことでプートプログラムのロードが行わ れる。ステップS10からステップS11まではROM BIOS内に存在する。次にステップS12へ進み、ロ ードされたプートプログラムが実行される。ブートプロ グラムは、FD、あるいはHDからOSプログラムをロ ードするためのプログラムをロードするプログラムで、 次にステップS13へ進み、OSロードプログラムをロ ードする。次にステップS14へ進み、OSロードプロ グラムを実行する。OSロードプログラムは、OSをメ モリ内にロードするためのプログラムで、まずステップ S15で1/Oドライバをロードする。1/Oドライバ というのは、I/Oを制御するためのプログラムで、I /OドライバによりOSは、各種 I / Oとのデータのや り取りを行う。次にステップS16へ進み、I/Oのテ ストと初期化を行う。次にステップS17へ進みOSを メモリヘロードする。ここまでのステップでOSが実行 される準備がととのい次にステップS18へ進んで、O

Sが実行に移される。OSは、キーボードからの入力を 処理し、各種メッセージを表示器に表示し、操作者との やり取りを行う。OSは操作者の各種コマンドの入力に 従って各種コマンド処理の実行を行う。

【0042】図14は、図13のS10のPOSTを詳 細に説明するフローチャートで、CPU(図2のFPU (数値演算プロセッサ、コプロセッサ) のテストを行う (ステップS20)。次にROMのテストを行う(ステ ップS21)。次に電源、バッテリィのチェックを行う (ステップS22)、次にLCD、LCDアダプタのテ ストと初期化を行うLCDアダプタには、RAM、RO Mを含みそれらのチェックも行う(ステップS23)。 次に割り込みコントローラのテストと初期化を行う(ス テップS24)。次にタイマのテストを行う (ステップ S25)。次にDMAコントローラのテストを行う(ス テップS26)。次にキーボード、キーボードコントロ ーラのテストを行う (ステップS27)。 次にシリアル パラレルポートのテスト、初期化を行う(ステップS2 8)。次にソフトリセットかどうかをチェックする(ス 20 テップS29)。ソフトリセットならば、ステップS3 0のRAMのテストと初期化処理をスキップしステップ S31へ進む。 ソフトリセットでない場合ステップS3 0へ進みRAMのテストと初期化を行う。次にFD (フ ロッピーディスク) のテストを行う (ステップS3 次にHD(ハードディスク)のテストを行う(ス テップS32)。次にリアルタイムクロックのテストを 行う(ステップS33)。次にプリンタのテストを行う (ステップS34)。プリンタのテストは各種プリンタ ポートのチェックとプリンタ接続のチェックを行う。次 にLEDのテストを行う(ステップS35)。次に戻り となる。以上の処理により図13のS10で示すPOS T処理が行われ、各装置にエラー等があった場合、それ らを知らしめる。

【0043】次にキーボード割り込み処理とキーコード 取得処理について説明する。キーボード割込み処理は、 キーボードのキー押下に従ってキーボードコントローラ .から割り込みが発生し割り込みコントローラにより処理 され、キーボード割り込み処理が実行される。キーコー・ ド取得処理は、キーボード割り込みにより保存されたキ 40 ーコードをキーバッファから取り出し、キーコードは必 要とする処理に戻される。なお、キーバッファは不図示 ではあるが、図2のRAM上のBIOSコモンエリア内 に設けられる。キーボード割り込み処理は、各I/Oの 割り込みマップ上 (不図示) のハードウェア割り込みの エントリなどに割り当てられ、またキーコード取得処理 は、ソフトウェア割り込みのエントリ等に割り当てられ る。それぞれキーボードから割り込み、ソフトウェア割 り込みの呼び出しにより実行に移される。

【0044】図15は、キーボード割り込みが発生した 50 場合の処理に関するフローチャートを示す。同図におい (6)

10

て、まずキーボード割り込みが発生すると、S40にお いて、キースキャンコードをI/Oのキーボードに割り 当てられたポートから読み取る。読み取ったコードはS 41においてソフトリセットに相当するコードであるか どうか判断され、YesであればS42で印字バッファ クリアコマンド送信を実行し、実行後実際のソフトリセ ット動作を開始する。読み取ったコードがソフトリセッ トでない場合、S43においてキーボードバッファが一 杯でないかどうか確認する、一杯であれば、S44によ って警告のためBeep音を発生し、処理を終了する。 一杯でなければ、S45によってキースキャンコードを 文字コードに対応したキーコードに変換し、さらに変換 されたキーコードをS46によってキーバッファにセッ トして処理を終了する。

【0045】以上説明したように、キーボード割り込み 処理内でソフトリセット実行時にプリンタにパッファク リアコマンド送信され、プリンタのバッファリクア処理 が行われる。

【0046】図16はキーコード取得処理に関するフロ ーチャートを示す。

【0047】同図において、キーコード取得が開始され ると、まずS50においてキーボードバッファにキーコ ードがあるかどうかチェックされる。なければS50を 繰り返し、キーコードバッファに入れられるのを待つ。 キーコードが存在した場合、S51においてキーコード の変換が必要かどうかチェックされ、必要な場合、S5 2によってキーコードの変換が行われる (キーコードの 変換は、主として国別にキーボードが異なる場合などに 発生する。)。

【0048】キーコードの変換が必要でない時、また必 要でS52において変換が行われたあと、S53によっ てキーコードがキーコードを返すためのレジスタにセッ トされ、処理を終了する。

【0049】図1.7はキーに対するホスト側コマンド解 析処理フローである。

【0050】最初にS100でキーコード取得処理を実 行する。次にS101でキーコードがペーパーフィード キーのキーコードと一致するか否か判断する。判断が 『偽』の場合にはそのキーコードに対する処理をS10 2で実行しS100に戻る。一方『真』の場合にS10 3 で紙センサが ONか否か判断する。判断が『偽』の場 合にはペーパーフィードコマンドをS104でプリンタ に発行しS100に戻る。S103の判断が『真』の場 合にはS105としてペーパーフィードキー105が 1. 5秒以上連続して押下されているか否か判断する。 判断が『偽』の場合にはラインフィードコマンドをS1 06でプリンタに発行しS100に戻る。S105の判 断が『真』の場合には、次にS107で再び紙センサが ONか否か判断する。判断が『偽』の場合にはS100

ィードコマンドをS108でプリンタに発行する。次に S109でキー入力があるか否か判断する。判断が 『偽』の場合、S107に戻る。一方S109の判断が 『真』の場合には、S110でキーコードを取得する。 次にS111でキーコードがペーパーフィードキーのキ ーコードと一致するか否か判断する。判断が『偽』の場 合にはS107に『真』の場合にはS100に戻る。 【0051】次にプリンタ側の処理について説明を行

【0052】図18は図4に示したRAM#2における バッファ、フラグ等を含むリード/ライトメモリの詳細 を示した図である。図中、受信バッファは本体からプリ ンタへ転送された印字コマンド、印字データを受信する ためのバッファで、プリンタの入力ポートに入力したデ ータが保持される。ペーパーフィードイネーブルフラグ (PFEF) はペーパーフィードが実行可能か否か判断 するためのメモリ、印字データエリアは、印字に必要な フラグ、レジスタを含んだデータエリアで、印字はこの エリアに保持された値、例えばマージン情報等を用いて 20 行われる。ワークバッファは一時的に使用されるワーク エリアで、データの加工、変更等の仕事に利用される。 印字バッファは印字するためのデータを保持するエリア で、印字イメージデータが蓄えられ、この印字バッファ に保持されたデータが印字部に転送され印字が実行され る。

【0053】図19はプリンタ初期化処理のフローを示 す図である。

【0054】まず、S201でプリンタ駆動系1/Oポ ートを初期化し、S202で図18に示される印字デー タエリアを初期化する。更にS203、S204、S2 05により駆動系(キャリッジ、キャッピング、紙送 り)の初期化を行う。最後にS206でペーパーフィー ドイネーブルフラグ (PFEF) をセットして終了す

【0055】図20は印字処理のフローを示す図であ る。

【0056】S301でCPU1は、ペーパーフィード イネーブルフラグ (PFEF) をリセットする。次にS 302で、ホストからの受信データを64個のノズル

40. (オリフィス、開口部)を用いてインクを吐出させ印字 する。印字動作の説明はここでは省略する。全ての受信 データ印字事後のS303では、再びペーパーフィード イネーブルフラグ (PFEF) をセットする。

【0057】図21はペーパーフィードコマンドに対す るプリンタ処理である。

【0058】最初にS401で、ペーパーフィードイネ ーブルコマンドが"0"か否か判断する。判断が『真』 の場合には処理を終了し、『偽』の場合にはS402 で、ペーパーフィード処理を実行する。

-に戻る。S107の判断が『真』の場合には、ラインフ 50 【0059】図22はペーパーフィード処理のフローで ある。

【0060】 S501でペーパーフィードモータを順方 向に728パルス回転させる。S502でペーパーセン サ(PE)に紙が到達したか否か判断する。判断が

『真』の場合には給紙を完了し、『偽』の場合には、ペ ーパーアウトエラーとしてブザー等を鳴動させるが、こ こでは説明を省略する。

【0061】図23はラインフィードコマンドに対する プリンタ処理である。

ーブルフラグが"0"か否か判断する。判断が『真』の 場合には処理を終了し、『偽』の場合にはS602で、 ラインフィード処理を実行する。

【0063】図24はペーパーフィード処理のフローで ある。

【0064】S701でペーパーフィードモータを順方 向に121パルス回転させる。S702でペーパーセン サ(PE)に紙が到達したか否か判断する。判断が

『真』の場合には給紙を完了し、『偽』の場合には、ペ ーパーアウトエラーとしてブザー等を鳴動させるが、こ こでは説明を省略する。

【0065】(第2実施例)実施例1にオートカットシ ートフィーダーを付加して更なる自動化を達成しても良 い。オートカットシートフィーダーの制御は従来技術で あるので詳細は省略する。

【0066】 (第3実施例) 或は、印字動作を中断する ためのストップキー図1の106を設け、1行毎に印字 を中断可能としても良い。この場合には図20の処理を 行毎に実行すれば実施例1と同様であるので詳細は省略 する。

【0067】 (第4実施例) 或は、実施例1、実施例3 のペーパーフィードキー、ストップキーの処理をホスト 側でなくプリンタ側で制御することによりホスト側の負 荷を軽減する。この場合には、ホストからのペーパーフ ィードコマンド及びストップコマンドでなく直接ペーパ ーフィードキー、ストップキーにより契機が与えられる こと以外は実施例1と同様であるので詳細は省略する。 【0068】以上述べてきたように、本発明によればオ ンライン/オフラインを意識することなく常にペーパー フィードが可能となり、更に多量に改行する場合であっ ても少ないキー操作(排紙のためのキー操作+排紙スト ップのためのキー操作)でスムーズなオペレーションを 行うことができる。

【0069】以上詳述したように、本発明により常にペ ーパーフィードが可能かつ改行動作も2キーストローク という非常に操作性の良いシステムが構築可能となる。 [0070]

【発明の効果】以上詳述した様に、ホストからのデータ を受信し印字する印字手段と、前記印字手段が印字装置 駆動中であるか否かを判定する判定手段と、前記印字手 50 105 ペーパーフィードキー

段に給紙するための給紙手段と、前記給紙手段に契機を 与えるためのキー入力手段とを具備し、前記キー入力手 段により前記給紙手段に契機が与えられた場合、前記判 定手段の出力に応答して前記給紙手段を起動する印字装 置を提供することが可能となった。

12

【0071】以上説明した様に、本発明により、ホスト からのデータを受信し印字する印字手段と、前記印字手 段の紙送り手段と、前記紙送り手段に動作の契機を与え るための単一のキー入力手段と、前記キー入力手段があ 【0062】最初にS601で、ペーパーフィードイネ 10 らかじめ設定された時間連続的に押下されていることを 判断する判断手段とを具備し、前記キー入力手段により 紙送り手段に契機が与えられた場合、前記判断手段の出 力に応答して、前記紙送り手段を駆動し、かつ排紙が実 行されている時に前記キー入力手段が再び押下されたと きには、動作を中止する印字装置を提供することが可能 となった。

【図面の簡単な説明】

【図1】本発明のプリンター体型パーソナルコンピュー タの斜視図。

【図2】ホストコンピュータとプリンタの概略プロック 20 図。

【図3】図1の2のプリンタユニット内部構成。

【図4】プリンタブッロク図。

【図5】 記録ヘッド及びヘッドドライバーの構成図。

【図6】ヘッド駆動のタイミングチャート。

【図1】キャリッジモータ及びモータドライバーの構成 図。

【図8】図7のドライバーの駆動タイミング。

【図9】プリンタコントローラの構成図。

【図10】プリンタI/Oレジスタのマップを表す図。

【図11】記録データバッファと受信バッファのアドレ ス領域を示す図。

【図12】ホストコンピュータとプリンタのI/O領域 における相関関係を示す図。

【図13】電源投入時のフローチャート。

【図14】POSTのフローチャート。

【図15】キーボード割り込み処理のフローチャート。

【図16】キーコード取得処理のフローチャート。

【図17】コマンド解析処理のフローチャート。

【図18】RAM2の構成を示す図。 40

【図19】プリンタ初期化処理のフローチャート。

【図20】印字処理のフローチャート。

【図21】ペーパーフィードコマンドに対するプリンタ 側処理のフローチャート。

【図22】ペーパーフィード処理のフローチャート。

【図23】ラインフィードコマンドに対するプリンタ側 処理のフローチャート。

【図24】ラインフィード処理のフローチャート。 【符号の説明】

## CPU 中央処理装置



【図2】

Host - Printer 概略ブロック図



【図18】

|           | _ |
|-----------|---|
| 受信バッファ    |   |
| ペーパーフィールド |   |
| イネーブルフラグ  |   |
| 印字データエリア  |   |
| ワークバッファ   |   |
| 印字バッファ    | , |
|           |   |





【図4】

ブリンタ ブロック図











[図9]

コントローラ構成図







【図12】

Host - Printer 間の L/O レジスタ



【図13】



【図14】





【図15】



【図16】



【図17】



【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第2部門第4区分 【発行日】平成11年(1999)8月3日

【公開番号】特開平5-169739 【公開日】平成5年(1993)7月9日 【年通号数】公開特許公報5-1698 【出願番号】特願平3-343284 【国際特許分類第6版】

B41J 11/42 13/00 G06F 3/12

[FI]

B41J 11/42 N 13/00 G06F 3/12 C

#### 【手続補正書】

【提出日】平成10年6月25日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】発明の名称

【補正方法】変更

【補正内容】

【発明の名称】 印刷装置及び方法

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

### 【特許請求の範囲】

【請求項1】 受信したデータに基づき用紙に印刷を行う印刷手段と、前記印刷手段にセットされている用紙の紙送りの指示を行う指示手段と、オンライン状態で前記指示手段により前記印刷手段にセットされている用紙の紙送りの指示がされた際、前記印刷手段が駆動中であると判別された場合、前記印刷手段にセットされている用紙の紙送りを実行させず、前記印刷手段が駆動中でないと判別された場合、前記印刷手段にセットされている用紙の紙送りを実行させる制御手段とを有すること特徴とする印刷装置。

【請求項2】 前記印刷手段が駆動中の場合、所定のフラグを立て、前記所定のフラグの状態により前記印刷手段が駆動中であるか否かを判別することを特徴とする請求項1記載の印刷装置。

【請求項3】 前記指示手段は、ペーパーフィードキーであることを特徴とする請求項1記載の印刷装置。

【請求項4】 受信したデータに基づき用紙に印刷を行う印刷手段と、前記印刷手段にセットされている用紙の紙送りの指示を行う指示手段と、前記指示手段により前

記印刷手段にセットされている用紙の紙送りの指示が所定時間されたか否かを判別し、所定時間されないと判別された場合、前記印刷手段にセットされている用紙の紙送りを行わせ、所定時間されたたと判別された場合、前記印刷手段にセットされている用紙の連続紙送りを行わせ、前記印刷手段にセットされている用紙の連続紙送り中に前記指示手段により指示された場合、連続紙送りを停止させる制御手段とを有すること特徴とする印刷装置。

【請求項5】 前記指示手段は、ペーパーフィードキー であることを特徴とする請求項4記載の印刷装置。

【請求項6】 受信したデータに基づき用紙に印刷を行う印刷手段と、前記印刷手段にセットされている用紙の紙送りの指示を行う指示手段とを利用する印刷方法であって、オンライン状態で前記指示手段により前記印刷手段にセットされている用紙の紙送りの指示がされた際、前記印刷手段が駆動中であると判別された場合、前記印刷手段が駆動中でないと判別された場合、前記印刷手段にセットされている用紙の紙送りを実行させることを特徴とする印刷方法。

【請求項7】 前記印刷手段が駆動中の場合、所定のフラグを立て、前記所定のフラグの状態により前記印刷手段が駆動中であるか否かを判別することを特徴とする請求項6記載の印刷方法。

【請求項8】 前記指示手段は、ペーパーフィードキーであることを特徴とする請求項6記載の印刷方法。

【請求項9】 受信したデータに基づき用紙に印刷を行う印刷手段と、前記印刷手段にセットされている用紙の紙送りの指示を行う指示手段とを利用する印刷方法であって、前記指示手段により前記印刷手段にセットされている用紙の紙送りの指示が所定時間されたか否かを判別

し、所定時間されないと判別された場合、前記印刷手段にセットされている用紙の紙送りを行わせ、所定時間されたたと判別された場合、前記印刷手段にセットされている用紙の連続紙送りを行わせ、前記印刷手段にセットされている用紙の連続紙送り中に前記指示手段により指示された場合、連続紙送りを停止させること特徴とする印刷方法。

【請求項10】 前記指示手段は、ペーパーフィードキーであることを特徴とする請求項9記載の印刷方法。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】 0001

【補正方法】変更

【補正内容】

[0001]

【産業上の利用分野】本発明は、受信したデータに基づき要しに印刷を行う印刷装置および方法に関する。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0004

【補正方法】変更

【補正内容】

【0004】以上の点に鑑み、本発明の目的は、オンライン状態でも紙送りを実行できる印刷装置および方法を提供することにある。また、連続紙送り操作を容易にできる印刷装置および方法を提供することにある。

【課題を解決するための手段】上記目的を達成するた め、本発明の印刷装置は、受信したデータに基づき用紙 に印刷を行う印刷手段と、前記印刷手段にセットされて いる用紙の紙送りの指示を行う指示手段と、オンライン 状態で前記指示手段により前記印刷手段にセットされて いる用紙の紙送りの指示がされた際、前記印刷手段が駆 動中であると判別された場合、前記印刷手段にセットさ れている用紙の紙送りを実行させず、前記印刷手段が駆 動中でないと判別された場合、前記印刷手段にセットさ れている用紙の紙送りを実行させる制御手段とを有する こと特徴とする。また、本発明の印刷装置は、受信した データに基づき用紙に印刷を行う印刷手段と、前記印刷 手段にセットされている用紙の紙送りの指示を行う指示 手段と、前記指示手段により前記印刷手段にセットされ ている用紙の紙送りの指示が所定時間されたか否かを判 別し、所定時間されないと判別された場合、前記印刷手

段にセットされている用紙の紙送りを行わせ、所定時間 されたたと判別された場合、前記印刷手段にセットされ ている用紙の連続紙送りを行わせ、前記印刷手段にセッ トされている用紙の連続紙送り中に前記指示手段により 指示された場合、連続紙送りを停止させる制御手段とを 有すること特徴とする。また、本発明の印刷方法は、受 信したデータに基づき用紙に印刷を行う印刷手段と、前 記印刷手段にセットされている用紙の紙送りの指示を行 う指示手段とを利用する印刷方法であって、オンライン 状態で前記指示手段により前記印刷手段にセットされて いる用紙の紙送りの指示がされた際、前記印刷手段が駆 動中であると判別された場合、前記印刷手段にセットさ れている用紙の紙送りを実行させず、前記印刷手段が駆 動中でないと判別された場合、前記印刷手段にセットさ れている用紙の紙送りを実行させることを特徴とする。 また、本発明の印刷方法は、受信したデータに基づき用 紙に印刷を行う印刷手段と、前記印刷手段にセットされ ている用紙の紙送りの指示を行う指示手段とを利用する 印刷方法であって、前記指示手段により前記印刷手段に セットされている用紙の紙送りの指示が所定時間された か否かを判別し、所定時間されないと判別された場合、 前記印刷手段にセットされている用紙の紙送りを行わ せ、所定時間されたたと判別された場合、前記印刷手段 にセットされている用紙の連続紙送りを行わせ、前記印 刷手段にセットされている用紙の連続紙送り中に前記指 示手段により指示された場合、連続紙送りを停止させる こと特徴とする。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0070

【補正方法】変更

【補正内容】

[0070]

【発明の効果】以上詳述したように、本発明によれば、 オンライン状態でも紙送りを実行できる。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】 0 0 7 1

【補正方法】変更

【補正内容】

【0071】また、連続紙送り操作を容易にできる。