Probability mass functions

We've already learned that histograms (geom_histogram()) are a convenient way to represent numerical data in a single column (variable)

We've already learned that histograms (geom_histogram()) are a convenient way to represent numerical data in a single column (variable)

mean_work_travel
25.1
25.8
23.8
28.3
33.2
28.1
25.1
•••

We've already learned that histograms (geom_histogram()) are a convenient way to represent numerical data in a single column (variable)

We've already learned that histograms (geom_histogram()) are a convenient way to represent numerical data in a single column (variable)

A histogram represents the **frequency** that values show up for a given variable

We've already learned that histograms (geom_histogram()) are a convenient way to represent numerical data in a single column (variable)

A histogram represents the **frequency** that values show up for a given variable

binwidth changes the "buckets" for the data, impacting the frequency heights.

We've already learned that histograms (geom_histogram()) are a convenient way to represent numerical data in a single column (variable).

A histogram represents the **frequency** that values show up for a given variable

binwidth changes the "buckets" for the data, impacting the frequency heights.

So far, we've largely skipped over the question of how to compare distributions with varying numbers of observations.

So far, we've largely skipped over the question of how to compare distributions with varying numbers of observations.

In our current example of average times to travel to work, we can group the data by state and compare Virginia to Maryland.

So far, we've largely skipped over the question of how to compare distributions with varying numbers of observations.

In our current example of average times to travel to work, we can group the data by state and compare Virginia to Maryland.

So far, we've largely skipped over the question of how to compare distributions with varying numbers of observations.

In our current example of average times to travel to work, we can group the data by state and compare Virginia to Maryland.

In which state am I more likely to have a 30 minute commute?

So far, we've largely skipped over the question of how to compare distributions with varying numbers of observations.

In our current example of average times to travel to work, we can group the data by state and compare Virginia to Maryland.

So far, we've largely skipped over the question of how to compare distributions with varying numbers of observations.

In our current example of average times to travel to work, we can group the data by state and compare Virginia to Maryland.

In the dataset, Virginia has 134 counties compared to Maryland's 24 counties.

So far, we've largely skipped over the question of how to compare distributions with varying numbers of observations.

In our current example of average times to travel to work, we can group the data by state and compare Virginia to Maryland.

In the dataset, Virginia has 134 counties compared to Maryland's 24 counties.

We need to **normalize** the frequency counts.

Normalization is straightforward, just divide the frequency count in each "bucket" by the total number of observations in the histogram.

Normalization is straightforward, just divide the frequency count in each "bucket" by the total number of observations in the histogram.

If you group by categories, that you should divide by the number of observations in each group.

Normalization is straightforward, just divide the frequency count in each "bucket" by the total number of observations in the histogram.

If you group by categories, that you should divide by the number of observations in each group.

To normalize the histograms from the prior example, we need to divide the Virginia frequencies by 134 and the Maryland frequencies by 24.

Normalization is straightforward, just divide the frequency count in each "bucket" by the total number of observations in the histogram.

If you group by categories, that you should divide by the number of observations in each group.

To normalize the histograms from the prior example, we need to divide the Virginia frequencies by 134 and the Maryland frequencies by 24.

Just like a histogram, except that the bar heights reflect **probabilities** instead of **frequency counts**.

Just like a histogram, except that the bar heights reflect **probabilities** instead of **frequency counts**.

Allows for a meaningful comparison of distributions with different numbers of observations.

Just like a histogram, except that the bar heights reflect **probabilities** instead of **frequency counts**.

Allows for a meaningful comparison of distributions with different numbers of observations.

In which state am I more likely to have a 30 minute commute?

Just like a histogram, except that the bar heights reflect **probabilities** instead of **frequency counts**.

Allows for a meaningful comparison of distributions with different numbers of observations.

In which state am I more likely to have a 30 minute commute?

Maryland

```
county %>%
  filter(state == "Virginia" | state == "Maryland") %>%
  ggplot() +
  geom_histogram(
    mapping = aes(x = mean_work_travel, fill = state),
    position = "identity",
    alpha = 0.5
)
```

```
county %>%
  filter(state == "Virginia" | state == "Maryland") %>%
  ggplot() +
  geom_histogram(
    mapping = aes(x = mean_work_travel, fill = state),
    position = "identity",
    alpha = 0.5
)
```

```
county %>%
  filter(state == "Virginia" | state == "Maryland") %>%
  ggplot() +
  geom_histogram(
    mapping = aes(x = mean_work_travel, fill = state),
    position = "identity",
    alpha = 0.5
)
```



```
county %>%
  filter(state == "Virginia" | state == "Maryland") %>%
  ggplot() +
  geom_histogram(
    mapping = aes(x = mean_work_travel, y = ..density.., fill = state),
    position = "identity",
    alpha = 0.5
)
```


1. Compute them manually

- 1. Compute them manually
- 2. Extract them from your ggplot2 visualization

- 1. Compute them manually
- 2. Extract them from your ggplot2 visualization

- 1. Compute them manually
- 2. Extract them from your ggplot2 visualization

Assign the figure to a variable

```
va_md_pmf_figure <- county %>%
  filter(state == "Virginia" | state == "Maryland") %>%
  ggplot() +
  geom_histogram(
    mapping = aes(x = mean_work_travel, y = ..density.., fill = state),
    binwidth = 2,
    center = 0
)
```

- 1. Compute them manually
- 2. Extract them from your ggplot2 visualization

Assign the figure to a variable

```
va_md_pmf_figure <- county %>%
  filter(state == "Virginia" | state == "Maryland") %>%
  ggplot() +
  geom_histogram(
    mapping = aes(x = mean_work_travel, y = ..density.., fill = state),
    binwidth = 2,
    center = 0
)
```

Use ggplot_build() with purrr::pluck() and as_data_frame() as follows:

```
va_md_pmf_data <- va_md_pmf_figure %>%
  ggplot_build() %>%
  purrr::pluck("data", 1) %>%
  as_data_frame()
```

```
va_md_pmf_data %>%
  glimpse()
```

```
## Observations: 30
## Variables: 17
## $ fill
          <chr> "#00BFC4", "#F8766D", "#00BFC4", "#F8766D", "#00BFC4"...
## $ v
          <dbl> 0.003731343, 0.003731343, 0.029850746, 0.029850746, 0...
## $ count
          <dbl> 1, 0, 8, 0, 7, 0, 7, 0, 26, 5, 11, 2, 16, 1, 11, 4, 1...
## $ x
          <dbl> 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 2...
## $ xmin
          <dbl> 13, 13, 15, 15, 17, 17, 19, 19, 21, 21, 23, 23, 25, 2...
## $ xmax
          <dbl> 15, 15, 17, 17, 19, 19, 21, 21, 23, 23, 25, 25, 27, 2...
## $ density
          <dbl> 0.003731343, 0.0000000000, 0.029850746, 0.000000000, 0...
## $ ncount
          <dbl> 0.03846154, 0.000000000, 0.30769231, 0.00000000, 0.269...
## $ ndensity <dbl> 0.03846154, 0.00000000, 0.30769231, 0.00000000, 0.269...
## $ PANEL
          ## $ group
          <int> 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...
## $ ymin
          <dbl> 0.000000000, 0.003731343, 0.000000000, 0.029850746, 0...
## $ vmax
          <dbl> 0.003731343, 0.003731343, 0.029850746, 0.029850746, 0...
## $ colour
          ## $ size
          ## $ alpha
```

To get the Maryland PMF data:

```
md_pmf_data <- va_md_pmf_data %>%
  filter(group == 1) %>%
  select(x, density)
```

X	density
14	0
16	0
18	0
20	0
22	0.104166666666667
24	0.0416666666666667
26	0.0208333333333333
•••	•••

To get the Virginia PMF data:

```
va_pmf_data <- va_md_pmf_data %>%
  filter(group == 2) %>%
  select(x, density)
```

x	density
14	0.00373134328358209
16	0.0298507462686567
18	0.0261194029850746
20	0.0261194029850746
22	0.0970149253731343
24	0.041044776119403
26	0.0597014925373134
•••	•••

Credits

License

Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International