The group G is isomorphic to the group labelled by [10, 1] in the Small Groups library. Ordinary character table of $G \cong D10$:

	1a	5a	5b	2a
χ_1	1	1	1	1
χ_2	1	1	1	-1
χ_3	2	$E(5) + E(5)^4 E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	0
χ_4	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0

This is 1 ---- a share star table of $C \sim D10$ at m = 0

Trivial source character table of $G \cong D10$ at $p = 2$:								
Normalisers N_i	N_1			N_2				
p-subgroups of G up to conjugacy in G	P_1			P_2				
Representatives $n_j \in N_i$	1a	5a	5b	1a				
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4$	2	2	2	0				
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4$	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0				
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4$	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0				
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4$	1	1	1	1				

$$P_1 = Group([()]) \cong 1$$

 $P_2 = Group([(1, 2)(3, 10)(4, 9)(5, 8)(6, 7)]) \cong C2$

$$N_1 = Group([(1,2)(3,10)(4,9)(5,8)(6,7),(1,3,5,7,9)(2,4,6,8,10)]) \cong D10$$

 $N_2 = Group([(1,2)(3,10)(4,9)(5,8)(6,7)]) \cong C2$