Ejercicios para el Tema 2. Operaciones matemáticas básicas

Curso Física Computacional

M. en C. Gustavo Contreras Mayén.

1. Cuadraturas de Gauss-Legendre.

Las cuadraturas de Gauss-Legendre son métodos de integración numérica que utilizan puntos de Legendre (raíces de polinomios de Legendre); las cuadraturas de Gauss no se pueden utilizar para integrar una función dad de la forma de tabla con intervalos de separación uniforme debido a que los puntos de Legendre no están separados de esa manera, sin embargo, son más adecuados para integrar funciones analíticas.

La cuadratura de Gauss que se extiende en el intervalo [-1,1] está dada por

$$\int_{-1}^{1} f(x)dx = \sum_{k=1}^{N} w_k f(x_k)$$
 (1)

donde N es el número de puntos de Gauss, los w_i son los pesos y las x_i son los puntos de Gauss, que se indican en la siguiente tabla:

	$\pm x_i$	w_i
N=2	0.577350269	1,000000000
N=3	0	0.88888889
	0.7745986669	0.555555556
N=4	0.339981043	0.652145155
	0.861136312	0.347854845
N=5	0	0.568888889
	0.538469310	0.478628670
	0.906179846	0.236926885
N=6	0.238619186	0.467913935
	0.661209387	0.360761573
	0.932469514	0.171324492
N=8	0.183434642	0.362683783
	0.525532410	0.313706646
	0.796666478	0.222381034
	0.960289857	0.101228536
N=10	0.148874339	0.295524225
	0.433395394	0.269266719
	0.865063367	0.149451349
	0.973906528	0.066671344

Los signos \pm en la tabla significan que los valores de x de los puntos de Gauss aparecen son pares, uno de los cuales es positivo y el otro negativo.

La fórmula de integración de Gauss puede aplicarse a cualquier intervalo arbitrario [a,b] con la transformación

$$x = \frac{2z - a - b}{b - a} \tag{2}$$

donde z es la coordenada original en a < z < b y x es la coordenada normalizada en -1 < x < 1. La transformación de x en z es

$$z = \frac{(b-a)x + a + b}{2} \tag{3}$$

Por medio de ésta transformación, la integral puede escribirse como

$$\int_{a}^{b} f(z)dz = \int_{-1}^{1} f(z)\frac{dz}{dx}dx = \frac{b-a}{2} \sum_{k=1}^{N} w_{k} f(z_{k})$$
(4)

donde $\frac{dz}{dx} = \frac{b-a}{2}$. Los valores de x_k se obtienen al sustituir x en la ecuación (3) por los puntos de Gauss, a saber:

$$z_k = \frac{(b-a)x_k + a + b}{2} \tag{5}$$

2. Otras cuadraturas de Gauss.

Las cuadraturas de Gauss analizadas en la sección anterior se llaman cuadraturas de Gauss-Legendre por que se basan en la ortogonalidad de los polinomios de Legendre. Existen cuadraturas análogas con base en polinomos de Hermite, de Laguerre y de Chebyshev, que reciben por nombre cuadraturas de Gauss-Hermite, Gauss-Laguerre y Gauss-Chebyshev, respectivamente. Las cuadraturas de Gauss-Hermite son adecuadas para

$$\int_{-\infty}^{\infty} exp(-x^2)f(x)dx \tag{6}$$

y están dadas por

$$\int_{-\infty}^{\infty} exp(-x^2)f(x)dx = \sum_{k=1}^{N} w_k f(x_k)$$
(7)

En la ecuación (7) los x_k son raíces del polinomio de Hermite de orden N y los w_k son los pesos (**Nota:** no son los mismos puntos de la tabla que se presentaron en la Sección 1. Consulta una referencia de tablas matemáticas.)

Las cuadraturas de Gauss-Laguerre son adecuadas para

$$\int_{0}^{\infty} exp(-x)f(x)dx \tag{8}$$

y están dadas por

$$\int_0^\infty exp(-x)f(x)dx = \sum_{k=1}^N w_k f(x_k)$$
(9)

donde los x_k son raíces del polinomio de Laguerre de orden N y los w_k son los pesos.

Las cuadraturas de Gauss-Chebyshev son adecuadas para

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x) dx \tag{10}$$

y están dadas por

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x) dx = \sum_{k=1}^{N} w_k f(x_k)$$
(11)

En la ecuación (11) los x_k son las raíces de los polinomios de Chebyshev de orden N y los w_k son los pesos. Las raíces de los polinomios de Chebyshev de orden N son

$$x_k = \cos\frac{k - 1/2}{N}\pi, \qquad k = 1, 2, \dots, N$$
 (12)

Los pesos son

$$w_k = \frac{\pi}{N}$$
 para toda k (13)

Así la ecuación (11) se reduce a

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x) dx = \frac{\pi}{N} \sum_{k=1}^{N} f(x_k)$$
 (14)

Los límites de integración de [-1,1] se pueden cambiar a un dominio arbitrario [a,b], mediante la ecuación (4).