

Deep Learning Fundamentals

(A crash course)

Danda Pani Paudel

Computer Vision Lab @ ETH Zurich

Biological Neurons and Artificial Neurons

Biological Neurons and Artificial Neurons

Many Artificial Neurons

What is so special about it?

Binary classification

Binary classification example

$$x = \left[egin{array}{ccc} x_1 & x_2 & x_3 \end{array}
ight]^ op$$

Binary classification example

 $f(h) = \frac{1}{1+e^{-h}}$

Sigmoid

Binary classification example

$$x = [\ x_1 \quad x_2 \quad x_3 \]^{ op}$$
 Model parameters: w, b

Sigmoid squeezes the results between 0 and 1

Binary classification example

Logistic regression loss: Error of prediction from the true label

$$-\left(y\log\hat{y}+(1-y)\log(1-\hat{y})
ight)$$

Binary classification example

Logistic regression loss: Error of prediction from the true label

$$-\left(y\log\hat{y}+(1-y)\log(1-\hat{y})
ight)$$

Binary classification example

$$-\left(y\log\hat{y}+(1-y)\log(1-\hat{y})
ight) \quad \ 0 o\infty$$

A Convex Function w.r.t. h!!!

Gradient Descent for Logistic Regression

☐ Dummy example

Training dataset:

50 people: each person is represented by **height, weight and gender**

50 people: predict *overweight or not*?

☐ Gradient Descent evaluates all samples for each update

Stochastic Gradient Descent

☐ Dummy example

 $J_{\text{sgd}} = J_i$

 $i = \text{random_index}$

Training dataset:

50 people: each person is represented by height, weight and gender

50 people: predict *overweight or not*?

h w g

☐ SGD takes only one (few) random sample(s)

Why Stochastic Gradient Descent?

- Because of the memory/computational limitation
- To avoid local minima traps.... hopefully!

Source: https://reconsider.news/2018/05/09/ai-researchers-allege-machine-learning-alchemy/

Sneak - peak into current deep learning

- ☐ ImageNet: Learn to classify images using 1M training examples
- ☐ Using a deep neural Network of **60 M parameters**!!

How do I optimize millions of parameters?

Backpropagation

Learning representations by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hinton† ©1986 Nature Publishing Group & Ronald J. Williams*

$$E = \frac{1}{2} \sum_{c} \sum_{j} (y_{j,c} - d_{j,c})^{2}$$
 (3)

The backward pass starts by computing $\partial E/\partial y$ for each of the output units. Differentiating equation (3) for a particular case, c, and suppressing the index c gives

$$\partial E/\partial y_i = y_i - d_i \tag{4}$$

We can then apply the chain rule to compute $\partial E/\partial x_i$

$$\partial E/\partial x_j = \partial E/\partial y_j \cdot \mathrm{d}y_j/\mathrm{d}x_j$$

Differentiating equation (2) to get the value of dy_j/dx_j and substituting gives

$$\partial E/\partial x_i = \partial E/\partial y_i \cdot y_i (1 - y_i) \tag{5}$$

This means that we know how a change in the total input x to an output unit will affect the error. But this total input is just a linear function of the states of the lower level units and it is also a linear function of the weights on the connections, so it is easy to compute how the error will be affected by changing these states and weights. For a weight w_{ji} , from i to j the derivative is

$$\partial E/\partial w_{ji} = \partial E/\partial x_j \cdot \partial x_j/\partial w_{ji}$$
$$= \partial E/\partial x_i \cdot y_i \tag{6}$$

Training in practice

Gradient descent

Training in practice

Stochastic Gradient descent

Training in practice

Mini-batch Gradient descent

Mini-batch and Epoch

- Mini-batch: examples whose gradients are averaged before backpropagation
 - For more stable gradients

- Epoch: an ENTIRE dataset is passed forward and backward once
 - A complete training goes through several epoch

Source: https://createmomo.github.io/

Training in practice -- Overview

For multiple epochs,....

Problems in Training?

How good is SGD really?

- In the region of gentle slopes, gradients are very small.
- Near the minima loss are slightly ellipsoidal, where the first order Taylor approximations are almost orthogonal to the true direction of convergence.

Thought: Second order Taylor approximation may help.

But using Newton (or Gauss-Newton) is too expensive.

Back in USSR

Polyak momentum (1964)

Boris Polyak

Nesterov momentum (1983)

Yurii Nesterov

Polyak Momentum

Damping factor Learning rate Momentum: $\mathrm{m}_t = \eta \mathrm{m}_{t-1} + \lambda \nabla L(\mathrm{x}_t)$ Update: $\mathrm{x}_{t+1} = \mathrm{x}_t - \mathrm{m}_t$

Nesterov Momentum

Look ahead: $\mathbf{x}_{temp} = \mathbf{x}_t - \eta \mathbf{m}_{t-1}$

Momentum: $\mathbf{m}_t = \eta \mathbf{m}_{t-1} + \lambda \nabla L(\mathbf{x}_{temp})$

Update: $\mathbf{x}_{t+1} = \mathbf{x}_t - \mathbf{m}_t$

Polyak vs. Nesterov Momentum

(a) Momentum-Based Gradient Descent

(b) Nesterov Accelerated Gradient Descent

Playing with the learning rate......

• **AdaGrad:** larger updates for infrequent and smaller updates for frequent parameters

$$\mathbf{x}_t = \mathbf{x}_{t-1} - rac{\lambda}{\mathrm{RMS}[
abla L(\mathbf{x}_t)]_t}
abla L(\mathbf{x}_t)$$

Where $\mathrm{RMS}[
abla L(\mathbf{x}_t)]_t$ is the sum of the squares of the past gradients.

torch.optim.Adagrad(params, 1r=0.01, eps=1e-10)

Major issue: rapid decay!

Fixing AdaGrad......

• **AdaDelta:** monotonically decrease using **running average** within some fixed window.

$$\mathbf{x}_t = \mathbf{x}_{t-1} - rac{\mathrm{RMS}[\Delta\mathbf{x}]_{t-1}}{\mathrm{RMS}[\nabla L(\mathbf{x}_t)]_t}
abla L(\mathbf{x}_t)$$

• **RMSProp:** decrease learning rate using a moving average of the squared gradients

$$\mathbf{x}_{t+1} = \mathbf{x}_t - rac{\lambda}{\sqrt{v_t + \epsilon}}
abla L(\mathbf{x}_t)$$
 where, $v_t = (1 - lpha)
abla L(\mathbf{x}_t)^2 + lpha v_{t-1}$

torch.optim.RMSprop(params, lr=0.01, alpha=0.99, eps=1e-08)

So, finallywhat are the possible choices?

Adam: adaptive moment estimation

Adam is a combination of RMSprop and SGD with momentum

RMSprop

$$\mathbf{x}_{t+1} = \mathbf{x}_t - rac{\lambda}{\sqrt{v_t + \epsilon}}
abla L(\mathbf{x}_t)$$

SGD with momentum

Momentum: $\mathrm{m}_t = \eta \mathrm{m}_{t-1} + \lambda \nabla L(\mathrm{x}_t)$

Update: $\mathbf{x}_{t+1} = \mathbf{x}_t - \mathbf{m}_t$

Update:
$$\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{\lambda \hat{m_t}}{\sqrt{\hat{v_t} + \epsilon}}$$

where,
$$\hat{m_t} = rac{m_t}{1-eta_1^t}$$
 and $\hat{v_t} = rac{v_t}{1-eta_2^t}$

with,

$$m_t = (1-eta_1)
abla L(\mathbf{x}_t) + eta_1 m_{t-1}$$
 $v_t = (1-eta_2)
abla L(\mathbf{x}_t)^2 + eta_2 v_{t-1}$ Moving averages of gradient and squared gradient

$$v_t = (1-eta_2)
abla L(\mathbf{x}_t)^2 + eta_2 v_{t-1}$$

Moving averages of gradient and squared gradient

Adam: adaptive moment estimation

Adam: A Method for Stochastic Optimization

https://arxiv.org > cs ▼

return θ_t (Resulting parameters)

by DP Kingma - 2014 - Cited by 34535 - Related articles

Abstract: We introduce **Adam**, an algorithm for first-order gradient-based **optimization** of stochastic objective functions, based on adaptive estimates of ...

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0,1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
m_0 \leftarrow 0 (Initialize 1^{\text{st}} moment vector)
v_0 \leftarrow 0 (Initialize 2^{\text{nd}} moment vector)
t \leftarrow 0 (Initialize timestep)
while \theta_t not converged do
t \leftarrow t+1
g_t \leftarrow \nabla_\theta f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
m_t \leftarrow \beta_1 \cdot m_{t-1} + (1-\beta_1) \cdot g_t (Update biased first moment estimate)
v_t \leftarrow \beta_2 \cdot v_{t-1} + (1-\beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
\widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
\widehat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t/(\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
```


It's finally done! You understood everything.

Vanishing/Exploding gradient?

- Treatments
 - Weight initialization
 - Skip connections

Need better gradients...??

Batch normalization

1. compute the empirical mean and variance independently for each dimension.

$$\hat{x}_k = rac{x_k - \mathbb{E}[x_k]}{\sqrt{ ext{Var}(x_k)}}$$

nn.BatchNorm1d(input_size)

Deep Learning Fundamentals -- Checklist*

Settings...

- Optimizers ✓
- Learning rate ✓
- Batch size ✓
- → Hyperparameters
- Weight decay
- Dropouts

Design...

- Batch Normalization ✓
- → Layers/Channels
- Activations
- Data Augmentation
- Loss functions
- Softmax

What is Overfitting?

- Treatments:
 - Dropouts
 - Weight decay
 - Data augmentation

Overfitting?

Dropouts

nn.Dropout (p=0.4)

Overfitting??

- Weight decay:
 - Add penalty for large weights

$$L(\mathbf{x}_t) = L_{data}(\mathbf{x}_t) + rac{eta}{2} ||\mathbf{x}_t||^2$$

Update:
$$\mathbf{x}_{t+1} = \mathbf{x}_t - \lambda \nabla L_{data}(\mathbf{x}_t) - \beta \mathbf{x}_t$$

torch.optim.Adam (params, 1r=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.01)

Overfitting??

☐ Data Augmentation: make the problem more difficult

transforms.RandomHorizontalFlip(); transforms.CenterCrop(); ts.transforms.Rotate();

Activation functions: ReLu, Sigmoid, and more...

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

nn.ReLU(); nn.Sigmoid(); nn.Tanh()......

What loss to minimize?

- L1-norm, L2-norm,
- Robust losses.....

$$Least-square:=||\hat{y}-y||^2$$

Prediction ground-truth

Name	$\rho(x)$	$\psi(x)$	$\omega(x)$
Least-squares	$x^{2}/2$	х	1
L_1 -norm	x	sgn(x)	1/ x
L_p -norm	$ x ^p/p$	$sgn(x) x ^{p-1}$	$ x ^{p-2}$
Fair	$\xi^2(\frac{ x }{\xi} - \log(1 + \frac{ x }{\xi}))$	$\frac{x}{1+ x /\xi}$	$\frac{1}{1+ x /\xi}$
Cauchy	$\frac{\xi^2}{2}log(1+x^2/\xi^2)$	$\frac{x}{(1+x^2/\xi^2)}$	$\frac{1}{(1+x^2/\xi^2)}$
Huber $\begin{cases} x \le \xi \\ x > \xi \end{cases}$	$\int x^2/2$	$\int x$	$\int 1$
$ x > \xi$	$\int \xi(x - \xi/2)$	$\int \xi sgn(x)$	$\xi/ x $
Tukey $\begin{cases} x \le \xi \\ x > \xi \end{cases}$	$\int \frac{x^6}{6} - \frac{\xi^2 x^4}{2} + \frac{\xi^4 x^2}{2}$	$\int x \left(\xi^2 - x^2\right)^2$	$\int \left(\xi^2 - x^2\right)^2$
$ x > \xi$	$\frac{\xi^6}{6}$	0	0

- Cross Entropy → logistic outputs (e.g. classification)
 - In binary classification, the cross-entropy is:

$$-\left(y\log\hat{y}+(1-y)\log(1-\hat{y})\right)$$

O If the number of classes M>2 (i.e. multiclass classification), it turns out to be:

$$-\sum_{c=1}^M y_{o,c} \log(p_{o,c})$$

Multi-class classification

■ Softmax

Multiple outputs of probabilities

nn.functional.softmax(input)

A General Overview.....

Lab session...

- Install pytorch
- Plot the loss function and accuracy evolution with change in
 - Learning rate
 - Batch size
 - Optimizers

Using github code: yunjey/pytorch-tutorial

Link: https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/01-basics/logistic_regression/main.py

Feel free to try other "pytorch-tutorial" code in the same repository!