Причинно-следственные связи в данных

Георгий Калашнов, Ольга Сучкова

26 февраля 2020 г.

Вот почему попугаи за номером один, два и три были так похожи друг на друга: они были просто одним и тем же попугаем. (А. и Б. Стругацкие)

План на сегодня

Немного о курсе

Причинная модель Рубина

Оценка эффекта воздействия

Table of Contents

Немного о курсе

Причинная модель Рубина

Оценка эффекта воздействия

Преподаватели

Георгий Калашнов go9513@gmail.com

Ольга Сучкова suchkovaolga.91@mail.ru

На какие вопросы можно ответить?

- Как изменится занятость в результате принятия закона о минимальной заработной плате?
- Как размер школьного класса влияет на эффективность обучения школьников?
- Как изекится заболеваемость ВИЧ среди школьниц в Кении после провестительских лекций и/или раздачи бесплатных средств защиты?

За "экспериментальный подход к борьбе с глобальной бедностью"

Пример - жульничество на выборах: Enikolopov, R., Korovkin, V., Petrova, M., Sonin, K. (2012)

- Рандомизация независимых наблюдателей по 156 участкам из 3164 в Москве.
- ▶ Рандомизация не «монеткой» / «кубиком», а по порядковому номеру участка.
- Однородные участки (исключены больницы и военные части).

Результат эксперимента

Пример гетерогенности - программа переселения из ветхого жилья в Чикаго (статья Chyn, 2018)

 Различия в судьбе детей из переселённых семей и оставшихся жить в неблагополучном районе.

Эффекты для разных групп (Chyn, 2018)

Примеры: что если нет эксперимента, но...

- Мы понимаем, от чего зависит назначение табетки
- Кандидат побеждает на выборах с 50.1 процентом голосов
- Не каждый, кому выдадут таблетку, ее примет

Про зачёт по курсу

В качестве зачетной работы будет предложено разобрать эмприческое исследование и ответить на вопросы по нему. Пример - статья Vincent Pons «Will a Five-Minute Discussion Change Your Mind? A Countrywide Experiment on Voter Choice in France» American Economic Review 2018, 108(6): 1322–1363.

- Какой исследовательский вопрос интересует авторов? Что именно они хотят измерить?
- Какие данные используют исследователи для ответаа на этот вопрос? Какой метод используют и почему?
- Какой из полученных результатов отвечает на главный исследовательский вопрос?
 Проинтерпретируйте оценки.
- В уравнениях регрессии в качестве контрольных переменных используются резльтаты прошлых выборов. Является ли это «плохим контролем»?

Table of Contents

Немного о курсе

Причинная модель Рубина

Оценка эффекта воздействия

Потенциальные исходы

Потенциальные исходы – температура пациента, если они принял таблетку и если не принял

	Y_1	<i>Y</i> ₀	X
Пациент 1	36.6	36.8	Из Европы
Пациент 2	37	36.6	Из Европы
Пациент 3	38	37.3	Из Азии
Пациент 4	39.2	39.1	Из Азии
Пациент 5	35.3	35	Из Европы

Зная потенциальные исходы, можно оценить средний эффект воздействия:

$$\tfrac{1}{N_1} \sum Y_1 - \tfrac{1}{N_0} \sum Y_0$$

Причинная модель Рубина

Вероятностная модель:

- $ightharpoonup Y_1$, Y_0 потенциальные исходы (potential outcomes)
- ightharpoonup T-1, если наблюдение в эксперименте и 0 иначе (treatment variable)
- X Независимые переменные (covariates)

Мы хотим оценить распределение эффекта воздействия (treatment effect): $au=Y_1-Y_0$

A скорее средний эффект воздействия (average treatment effect): ATE $= \mathbb{E} au$

$$\frac{1}{N_1} \sum Y_1 - \frac{1}{N_0} \sum Y_0 \stackrel{\rho}{\longrightarrow} \mathbb{E}\tau$$

Table of Contents

Немного о курсе

Причинная модель Рубина

Оценка эффекта воздействия

Фундаментальная проблема причинного вывода

	Y_1	<i>Y</i> ₀	X
Пациент 1	-	36.8	Из Европы
Пациент 2	-	36.6	Из Европы
Пациент 3	38	-	Из Азии
Пациент 4	39.2	-	Из Азии
Пациент 5	35.3	-	Из Европы

Fundamental problem of causal inference: для каждого элемента выборки мы наблюдаем либо Y_1 , либо Y_0

- Исходное данные: (Y₁, Y₀, T, X)
- ightharpoonup Мы наблюдаем только (Y,T,X), где $Y=TY_1+(1-T)Y_0$ observed outcomes

Можем ли мы оценить эффект воздействия?

	Y_1	Y_0	X
Пациент 1	36.6	36.8	Из Европы
Пациент 2	37	36.6	Из Европы
Пациент 3	38	37.3	Из Азии
Пациент 4	39.2	39.1	Из Азии
Пациент 5	35.3	35	Из Европы

Средний эффект положительный

	Y_1	Y ₀	X
Пациент 1	-	36.8	Из Европы
Пациент 2	-	36.6	Из Европы
Пациент 3	38	-	Из Азии
Пациент 4	39.2	-	Из Азии
Пациент 5	-	35	Из Европы

Средний эффект отрицательный Почему?

Немного определений

Средний эффект воздействия (average treatment effect):

$$\mathsf{ATE} = \mathbb{E}(\tau) = \mathbb{E}(Y_1 - Y_0)$$

 Средний эффект воздействия на задействованных (average treatment on the treated):

$$\mathsf{ATT} = \mathbb{E}(\tau|T=1) = \mathbb{E}(Y_1 - Y_0|T=1)$$

 Средний эффект воздействия на незадействованных (average treatment on the non-treated):

$$\mathsf{ATnT} = \mathbb{E}(\tau|T=0) = \mathbb{E}(Y_1 - Y_0|T=0)$$

Смещенность выборки

$$\begin{split} \frac{1}{N_1} \sum Y_1 - \frac{1}{N_0} \sum Y_0 &\longrightarrow \mathbb{E}(Y_1 | \mathcal{T} = 1) - \mathbb{E}(Y_0 | \mathcal{T} = 0) = \\ \mathbb{E}(Y_1 | \mathcal{T} = 1) - \mathbb{E}(Y_0 | \mathcal{T} = 1) + \mathbb{E}(Y_0 | \mathcal{T} = 1) - \mathbb{E}(Y_0 | \mathcal{T} = 0) = \\ \mathbb{E}(Y_1 - Y_0 | \mathcal{T} = 1) + \mathbb{E}(Y_0 | \mathcal{T} = 1) - \mathbb{E}(Y_0 | \mathcal{T} = 0) \\ &= \mathsf{ATT} + \mathsf{Sample Bias} \neq \mathsf{ATT} \end{split}$$

$$\begin{split} \frac{1}{N_1} \sum Y_1 - \frac{1}{N_0} \sum Y_0 &\longrightarrow \mathbb{E}(Y_1 | T = 1) - \mathbb{E}(Y_0 | T = 0) = \\ \mathbb{E}(Y_1 | T = 1) - \mathbb{E}(Y_1 | T = 0) + \mathbb{E}(Y_1 | T = 0) - \mathbb{E}(Y_0 | T = 0) = \\ \mathbb{E}(Y_1 - Y_0 | T = 0) + \mathbb{E}(Y_1 | T = 1) - \mathbb{E}(Y_1 | T = 0) \\ &= \mathsf{ATnT} + \mathsf{Sample Bias} \neq \mathsf{ATnT} \end{split}$$

Что нужно, чтобы не было смещения

ightharpoonup Экзогенность воздействия: $(Y_1, Y_0, X)_i \perp T_i$. Таблетка назначается случайным образом и не связана с потенциальными исходами и другими характеристиками. Это можно проверить!

Баланс ковариатов и плацебо-тест

Что надо запомнить

- Наша основная задача: оценить эффект от бинарного воздействия. Например от приема таблетки.
- Эффект воздействия может отличаться на разных подвыборках
- Чтобы получить несмещенную оценки нужно назначать таблетку случайно.
- Можно проверить, случайно таблетка назначалась, или нет

Литература: книжки

- Angrist, Joshua D., and Jörn-Steffen Pischke. Mostly harmless econometrics, Смещенная выборка: раздел 2, Простой вариант экзогенности воздействия (равенство условных матожиданий): раздел 3.2.1
- Imbens, G. W., & Rubin, D. B. Causal inference in statistics, social, and biomedical sciences. Cambridge University Press, Потенциальные исходы, SUTVA: глава 1, Полная экзогенность: глава 3, парная регрессия для treatment эффектов: глава 7.4

Литаратура: статьи

- Enikolopov, R., Korovkin, V., Petrova, M., Sonin, K., & Zakharov, A. (2013). Field experiment estimate of electoral fraud in Russian parliamentary elections. Proceedings of the National Academy of Sciences, 110(2), 448-452.
- Rubin, D. B. (1978). Bayesian inference for causal effects: The role of randomization. The Annals of statistics, 34-58.
- ► Chyn, E. (2018). Moved to opportunity: The long-run effects of public housing demolition on children. *American Economic Review*, 108(10), 3028-56.