EXHIBIT 6

(12) United States Patent

(10) Patent No.: US 10,722,159 B2

(45) **Date of Patent:** *Jul. 28, 2020

(54) PHYSIOLOGICAL MONITORING DEVICES, SYSTEMS, AND METHODS

(71) Applicant: MASIMO CORPORATION, Irvine, CA (US)

(72) Inventor: **Ammar Al-Ali**, San Juan Capistrano, CA (US)

(73) Assignee: Masimo Corporation, Irvine, CA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

Claimer

(21) Appl. No.: 16/791,963

(22) Filed: Feb. 14, 2020

(65) Prior Publication Data

US 2020/0178867 A1 Jun. 11, 2020

Related U.S. Application Data

(63) Continuation of application No. 16/532,065, filed on Aug. 5, 2019, which is a continuation of application (Continued)

(51) **Int. Cl.**A61B 5/1455 (2006.01)

A61B 5/024 (2006.01)

(Continued)
(52) U.S. Cl.
CPC A61B 5/14552 (2013.01); A61B 5/0002

(2013.01); **A61B 5/02416** (2013.01);

(Continued)

(58) Field of Classification Search

None

See application file for complete search history.

References Cited

(56)

U.S. PATENT DOCUMENTS

4,960,128 A 10/1990 Gordon et al. 4,964,408 A 10/1990 Hink et al. (Continued)

FOREIGN PATENT DOCUMENTS

CN 101484065 B 7/2009 CN 101564290 B 10/2009 (Continued)

OTHER PUBLICATIONS

US 8,845,543 B2, 09/2014, Diab et al. (withdrawn) (Continued)

Primary Examiner — Eric F Winakur Assistant Examiner — Marjan Fardanesh (74) Attorney, Agent, or Firm — Knobbe, Martens, Olson & Bear, LLP

(57) ABSTRACT

A non-invasive, optical-based physiological monitoring system is disclosed. One embodiment includes an emitter configured to emit light. A diffuser is configured to receive and spread the emitted light, and to emit the spread light at a tissue measurement site. The system further includes a concentrator configured to receive the spread light after it has been attenuated by or reflected from the tissue measurement site. The concentrator is also configured to collect and concentrate the received light and to emit the concentrated light to a detector. The detector is configured to detect the concentrated light and to transmit a signal representative of the detected light. A processor is configured to receive the transmitted signal and to determine a physiological parameter, such as, for example, arterial oxygen saturation, in the tissue measurement site.

25 Claims, 7 Drawing Sheets

Page 2

5,800,349 A 9/1998 Isaacson et al. Related U.S. Application Data 5,810,734 A 9/1998 Caro et al. No. 16/226,249, filed on Dec. 19, 2018, now Pat. No. 5,823,950 A 10/1998 Diab et al. 5,830,131 A 11/1998 10,470,695, which is a continuation of application Caro et al. 5,830,137 A 11/1998 Scharf No. 15/195,199, filed on Jun. 28, 2016, now Pat. No. 5.833.618 A 11/1998 Caro et al. 10,448,871. 5,860,919 A 1/1999 Kiani-Azarbayjany et al. 5,890,929 A 4/1999 Mills et al. (60) Provisional application No. 62/188,430, filed on Jul. 5,904,654 A 5/1999 Wohltmann et al. 7/1999 2, 2015. 5,919,134 A Diab Tobler et al. 5,934,925 A 8/1999 5,940,182 A 8/1999 Lepper, Jr. et al. (51) **Int. Cl.** 5,987,343 A 11/1999 Kinast A61B 5/00 (2006.01)5,995,855 A 11/1999 Kiani et al. A61B 5/145 (2006.01)5,997,343 A 12/1999 Mills et al. 12/1999 (52) U.S. Cl. 6,002,952 A Diab et al. 6,011,986 A 1/2000 Diab et al. CPC A61B 5/14532 (2013.01); A61B 5/14546 6,027,452 A 2/2000 Flaherty et al. (2013.01); A61B 5/4875 (2013.01); A61B 6,036,642 A 3/2000 Diab et al. 5/6826 (2013.01); A61B 5/7278 (2013.01); 6,045,509 A 4/2000 Caro et al. A61B 5/742 (2013.01); A61B 2562/04 6,067,462 A 5/2000 Diab et al. 6,081,735 A (2013.01)6/2000 Diab et al. 6,088,607 A 7/2000 Diab et al. 6,102,856 A 8/2000 Groff et al. (56)**References Cited** 6,110,522 A 8/2000 Lepper, Jr. et al. 6,124,597 A 9/2000 Shehada U.S. PATENT DOCUMENTS 6,128,521 A 10/2000 Marro et al. 6,129,675 A 10/2000 Jay 8/1991 Hink et al. 5,041,187 A 6,144,868 A 11/2000 Parker 5,069,213 A 12/1991 Polczynski 6,151,516 A 11/2000 Kiani-Azarbayjany et al. 5,099,842 A 3/1992 Mannheimer et al. 6,152,754 A 11/2000 Gerhardt et al. 5,158,091 A 10/1992 Butterfield et al. 6,157,850 A 12/2000 Diab et al. 5,163,438 A 11/1992 Gordon et al. 6,165,005 A 12/2000 Mills et al. 5,203,329 A 4/1993 Takatani et al. 6,184,521 B1 2/2001 Coffin, IV et al. 5,228,449 A 7/1993 Christ et al. 6,206,830 B1 3/2001 Diab et al. 5,319,355 A 5,337,744 A 6/1994 Russek 6,223,063 B1 4/2001 Chaiken et al. 8/1994 Branigan 6,229,856 B1 5/2001 Diab et al. 5,341,805 A 8/1994 Stavridi et al. 6,232,609 B1 5/2001 Snyder et al. D353,195 S 12/1994 Savage et al. 6,236,872 B1 5/2001 Diab et al. D353,196 S 12/1994 Savage et al. 6.241.680 B1 6/2001 Miwa 1/1995 5,377,676 A Vari et al. 6,241,683 B1 6/2001 Macklem et al. D359,546 S 6/1995 Savage et al. 6,253,097 B1 6/2001 Aronow et al. 5,431,170 A 7/1995 Mathews 6,256,523 B1 7/2001 Diab et al. D361,840 S D362,063 S 8/1995 Savage et al. 6,263,222 B1 7/2001 Diab et al. 9/1995 Savage et al. 6,278,522 B1 8/2001 Lepper, Jr. et al. 5,452,717 A 9/1995 Branigan et al. 6,280,213 B1 8/2001 Tobler et al. D363,120 S 10/1995 Savage et al. 6,285,896 B1 9/2001 Tobler et al. 5,456,252 A 10/1995 Vari et al. 6.301.493 B1 10/2001 Marro et al. 5,462,051 A 10/1995 Oka et al. 6,308,089 B1 10/2001 von der Ruhr et al. 5,479,934 A 1/1996 Imran 6,317,627 B1 6,321,100 B1 11/2001 Ennen et al. 5,482,036 A 1/1996 Diab et al. 11/2001 Parker 5.490,505 A 2/1996 Diab et al. 6,325,761 B1 12/2001 5,494,043 A 2/1996 O'Sullivan et al. 6,334,065 B1 Al-Ali et al. 12/2001 5,497,771 A 5,533,511 A 3/1996 Rosenheimer 6,343,223 B1 1/2002 Chin et al. 7/1996 Kaspari et al 6,343,224 B1 1/2002 Parker 5,534,851 A 7/1996 Russek 6,349,228 B1 2/2002 Kiani et al. 5,561,275 A 10/1996 Savage et al. 6,356,203 B1 3/2002 Halleck et al. 5,562,002 A 10/1996 Lalin 6,360,114 B1 3/2002 Diab et al. 5,564,429 A 10/1996 Bornn et al. 6,368,283 B1 6,371,921 B1 4/2002 Xu et al. 5,584,296 A 12/1996 Cui et al. 4/2002 Caro et al. 5,590,649 A 1/1997 Caro et al. 6,377,829 B1 4/2002 Al-Ali 5,601,079 A 2/1997 Wong et al. 6,388,240 B2 5/2002 Schulz et al. 5,602,924 A 2/1997 Durand et al. 6,397,091 B2 5/2002 Diab et al. 5,623,925 A 4/1997 Swenson et al. 6,430,437 B1 8/2002 Marro 5,632,272 A 5/1997 Diab et al. 6,430,525 B1 8/2002 Weber et al. 5,638,816 A 6/1997 Kiani-Azarbayjany et al. 6,463,311 B1 10/2002 Diab 5,638,818 A 6/1997 Diab et al. 6,470,199 B1 10/2002 Kopotic et al. 5,645,440 A 7/1997 Tobler et al. 6,501,975 B2 12/2002 Diab et al. 5,685,299 A 11/1997 Diab et al. 6,505,059 B1 1/2003 Kollias et al. 5,699,808 A 5,729,203 A 12/1997 John 6,515,273 B2 2/2003 Al-Ali 3/1998 Oka et al. 6,519,487 B1 2/2003 Parker D393,830 S 4/1998 Tobler et al. 6,525,386 B1 2/2003 Mills et al 5,743,262 A 4/1998 Lepper, Jr. et al. 6,526,300 B1 2/2003 Kiani et al. 5,758,644 A 6/1998 Diab et al. 6,541,756 B2 4/2003 Schulz et al. 5,760,910 A 6/1998 Lepper, Jr. et al. 6,542,764 B1 4/2003 Al-Ali et al. 5,769,785 A 6/1998 Diab et al. 6,580,086 B1 6/2003 Schulz et al. 5,782,757 A 7/1998 Diab et al. 6,584,336 B1 5,785,659 A 6/2003 Ali et al. 7/1998 Caro et al. 7/2003 Cybulski et al. 5,791,347 A 6.595.316 B2 8/1998 Flaherty et al.

6,597,932 B2

7/2003 Tian et al.

5,792,052 A

8/1998 Isaacson et al.

(56)		Deferen	ces Cited	7,186,966 B2	3/2007	A1 A1;
(56)		Keleren	ices Cheu	7,190,261 B2	3/2007	
	U.S. 1	PATENT	DOCUMENTS	7,215,984 B2	5/2007	
	6,597,933 B2	7/2003	Kiani et al.	7,215,986 B2 7,221,971 B2	5/2007 5/2007	
	6,606,511 B1		Ali et al.	7,225,006 B2	5/2007	Al-Ali et al.
(6,632,181 B2	10/2003	Flaherty et al.	7,225,007 B2	5/2007	
	6,639,668 B1 6,640,116 B2	10/2003 10/2003	Trepagnier	RE39,672 E 7,227,156 B2		Shehada et al. Colvin, Jr. et al.
	6,643,530 B2		Diab et al.	7,239,905 B2	7/2007	Kiani-Azarbayjany et al.
(6,650,917 B2		Diab et al.	7,245,953 B1 7,254,429 B2	7/2007	Parker Schurman et al.
	6,654,624 B2 6,658,276 B2		Diab et al. Kiani et al.	7,254,429 B2 7,254,431 B2	8/2007	
	6,661,161 B1		Lanzo et al.	7,254,433 B2		Diab et al.
	6,671,526 B1		Aoyagi et al.	7,254,434 B2 7,272,425 B2	8/2007 9/2007	Schulz et al.
	6,671,531 B2 6,678,543 B2		Al-Ali et al. Diab et al.	7,274,955 B2		Kiani et al.
	6,684,090 B2		Ali et al.	D554,263 S	10/2007	Al-Ali
	6,684,091 B2	1/2004		7,280,858 B2 7,289,835 B2		Al-Ali et al. Mansfield et al.
	6,697,656 B1 6,697,657 B1	2/2004 2/2004	Shehada et al.	7,292,883 B2		De Felice et al.
	6,697,658 B2	2/2004	Al-Ali	7,295,866 B2	11/2007	
	RE38,476 E		Diab et al. Diab et al.	7,328,053 B1 7,332,784 B2		Diab et al. Mills et al.
	6,699,194 B1 6,714,804 B2		Al-Ali et al.	7,340,287 B2	3/2008	Mason et al.
]	RE38,492 E	4/2004	Diab et al.	7,341,559 B2	3/2008	Schulz et al.
	6,721,582 B2 6,721,585 B1	4/2004 4/2004	Trepagnier et al.	7,343,186 B2 D566,282 S		Lamego et al. Al-Ali et al.
	6,725,075 B2	4/2004		7,355,512 B1	4/2008	Al-Ali
(6,728,560 B2		Kollias et al.	7,356,365 B2 7,371,981 B2		Schurman Abdul-Hafiz
	6,735,459 B2 6,745,060 B2	5/2004 6/2004	Parker Diab et al.	7,373,193 B2		Al-Ali et al.
	6,760,607 B2	7/2004		7,373,194 B2		Weber et al.
	6,770,028 B1		Ali et al.	7,376,453 B1 7,377,794 B2		Diab et al. Al Ali et al.
	6,771,994 B2 6,785,568 B2		Kiani et al. Chance	7,377,899 B2		Weber et al.
(6,792,300 B1	9/2004	Diab et al.	7,383,070 B2		Diab et al.
	6,801,799 B2 6,813,511 B2		Mendelson Diab et al.	7,415,297 B2 7,428,432 B2		Al-Ali et al. Ali et al.
	6,816,741 B2	11/2004	Diab	7,438,683 B2		Al-Ali et al.
	6,822,564 B2	11/2004		7,440,787 B2 7,454,240 B2	10/2008	Diab Diab et al.
	6,826,419 B2 6,830,711 B2		Diab et al. Mills et al.	7,467,002 B2		Weber et al.
(6,831,266 B2	12/2004	Paritsky et al.	7,469,157 B2		Diab et al.
	6,850,787 B2 6,850,788 B2	2/2005 2/2005	Weber et al.	7,471,969 B2 7,471,971 B2		Diab et al. Diab et al.
	6,852,083 B2		Caro et al.	7,483,729 B2		Al-Ali et al.
	6,861,639 B2	3/2005		7,483,730 B2 7,489,958 B2		Diab et al. Diab et al.
	6,898,452 B2 6,920,345 B2		Al-Ali et al. Al-Ali et al.	7,496,391 B2		Diab et al.
(6,931,268 B1	8/2005	Kiani-Azarbayjany et al.	7,496,393 B2		Diab et al.
	6,934,570 B2 6,939,305 B2		Kiani et al. Flaherty et al.	D587,657 S 7,499,741 B2		Al-Ali et al. Diab et al.
	6,943,348 B1		Coffin, IV	7,499,835 B2		Weber et al.
	6,950,687 B2	9/2005	Al-Ali	7,500,950 B2 7,509,154 B2		Al-Ali et al. Diab et al.
	6,961,598 B2 6,970,792 B1	11/2005 11/2005		7,509,494 B2	3/2009	
(6,979,812 B2	12/2005	Al-Ali	7,510,849 B2		Schurman et al.
	6,985,764 B2 6,993,371 B2		Mason et al. Kiani et al.	7,519,327 B2 7,526,328 B2	4/2009 4/2009	Diab et al.
	6,996,427 B2		Ali et al.	7,530,942 B1	5/2009	Diab
	6,999,904 B2		Weber et al.	7,530,949 B2 7,530,955 B2		Al Ali et al. Diab et al.
	7,003,338 B2 7,003,339 B2		Weber et al. Diab et al.	7,563,110 B2		Al-Ali et al.
•	7,015,451 B2	3/2006	Dalke et al.	7,596,398 B2		Al-Ali et al.
	7,024,233 B2 7,027,849 B2	4/2006 4/2006	Ali et al.	7,601,123 B2 7,613,490 B2		Tweed et al. Sarussi et al.
	7,030,749 B2	4/2006		7,618,375 B2	11/2009	Flaherty
	7,039,449 B2	5/2006	Al-Ali	D606,659 S 7,647,083 B2		Kiani et al. Al-Ali et al.
	7,041,060 B2 7,044,918 B2	5/2006 5/2006	Flaherty et al. Diab	D609,193 S		Al-Ali et al.
,	7,048,687 B1	5/2006	Reuss et al.	D614,305 S	4/2010	Al-Ali et al.
	7,060,963 B2 7,067,893 B2		Maegawa et al. Mills et al.	RE41,317 E 7,726,209 B2	5/2010 6/2010	Parker Ruotoistenmäki
	7,096,052 B2		Mason et al.	7,729,733 B2		Al-Ali et al.
,	7,096,054 B2	8/2006	Abdul-Hafiz et al.	7,734,320 B2	6/2010	Al-Ali
	7,132,641 B2		Schulz et al.	7,740,588 B1 7,740,589 B2		Sciarra Maschke et al.
	7,142,901 B2 7,149,561 B2	12/2006	Kiani et al. Diab	7,740,389 B2 7,761,127 B2		Al-Ali et al.
				. , =		

(56)	Referen	nces Cited		8,255,028			Al-Ali et al.
U.S	S. PATENT	DOCUMENTS		8,260,577 8,265,723			Weber et al. McHale et al.
	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	BOCOMENTO		3,274,360			Sampath et al.
7,761,128 B2		Al-Ali et al.		8,280,469 8,280,473		10/2012 10/2012	Baker, Jr. et al.
7,764,982 B2 D621,516 S		Dalke et al. Kiani et al.		8,289,130	B2		Nakajima et al.
7,791,155 B2			1	3,301,217	B2	10/2012	Al-Ali et al.
7,801,581 B2	9/2010			8,306,596			Schurman et al.
7,822,452 B2 RE41,912 E	10/2010 11/2010	Schurman et al.		8,310,336 8,315,683			Muhsin et al. Al-Ali et al.
7,844,313 B2		Kiani et al.		RE43,860		12/2012	Parker
7,844,314 B2	11/2010	Al-Ali		3,337,403			Al-Ali et al.
7,844,315 B2				8,346,330 8,353,842			Lamego Al-Ali et al.
7,862,523 B2 7,865,222 B2		Ruotoistenmaki Weber et al.		3,355,766			MacNeish, III et al.
7,869,849 B2	1/2011	Ollerdessen et al.		8,359,080			Diab et al.
7,873,497 B2		Weber et al.		8,364,223 8,364,226			Al-Ali et al. Diab et al.
7,880,606 B2 7,880,626 B2		Al-Ali Al-Ali et al.		8,364,389			Dorogusker et al.
7,891,355 B2	2/2011	Al-Ali et al.		3,374,665			Lamego
7,894,868 B2		Al-Ali et al.		8,385,995 8,385,996			Al-Ali et al. Smith et al.
7,899,507 B2 7,899,510 B2		Al-Ali et al. Hoarau		8,388,353			Kiani et al.
7,899,518 B2	3/2011	Trepagnier et al.		8,399,822		3/2013	
7,904,132 B2		Weber et al.		8,401,602 8,405,608		3/2013 3/2013	Al-Ali et al.
7,909,772 B2 7,910,875 B2		Popov et al. Al-Ali		8,414,499		4/2013	Al-Ali et al.
7,919,713 B2	4/2011	Al-Ali et al.		8,418,524		4/2013	
7,937,128 B2		Al-Ali Massa et al		8,423,106 8,428,967			Lamego et al. Olsen et al.
7,937,129 B2 7,937,130 B2		Mason et al. Diab et al.		8,430,817	Bī		Al-Ali et al.
7,941,199 B2	5/2011	Kiani		8,437,825			Dalvi et al.
7,951,086 B2		Flaherty et al.		8,452,364 8,455,290			Hannula et al. Siskavich
7,957,780 B2 7,962,188 B2		Lamego et al. Kiani et al.		3,457,703		6/2013	
7,962,190 B1	6/2011	Diab et al.		3,457,707		6/2013	
7,976,472 B2				8,463,349 8,466,286			Diab et al. Bellot et al.
7,988,637 B2 7,990,382 B2				8,471,713			Poeze et al.
7,991,446 B2	8/2011	Al-Ali et al.		8,473,020			Kiani et al.
8,000,761 B2		Al-Ali Bellott et al.		8,483,787 8,489,364			Al-Ali et al. Weber et al.
8,008,088 B2 RE42,753 E		Kiani-Azarbayjany et al.	:	8,496,595	B2	7/2013	Jornod
8,019,400 B2	9/2011	Diab et al.		8,498,684 8,504,128			Weber et al. Blank et al.
8,028,701 B2 8,029,765 B2		Al-Ali et al. Bellott et al.		8,504,128 8,509,867			Workman et al.
8,036,727 B2		Schurman et al.		8,515,509	B2	8/2013	Bruinsma et al.
8,036,728 B2	10/2011	Diab et al.		8,515,515 8,523,781		8/2013 9/2013	McKenna et al.
8,046,040 B2 8,046,041 B2	10/2011	Ali et al. Diab et al.		3,525,781 8,529,301			Al-Ali et al.
8,046,042 B2		Diab et al.		3,532,727			Ali et al.
8,048,040 B2				8,532,728 D692,145			Diab et al. Al-Ali et al.
8,050,728 B2 8,071,935 B2		Al-Ali et al. Besko et al.		8,547,209			Kiani et al.
RE43,169 E	2/2012	Parker		8,548,548		10/2013	
8,118,620 B2		Al-Ali et al.		8,548,549 8,548,550			Schurman et al. Al-Ali et al.
8,126,528 B2 8,128,572 B2		Diab et al. Diab et al.		8,560,032			Al-Ali et al.
8,130,105 B2	3/2012	Al-Ali et al.		8,560,034			Diab et al.
8,145,287 B2 8,150,487 B2		Diab et al. Diab et al.		8,570,167 8,570,503		10/2013 10/2013	Vo et al.
8,175,672 B2		Parker		3,571,617	B2	10/2013	Reichgott et al.
8,180,420 B2	5/2012	Diab et al.		8,571,618			Lamego et al.
8,182,443 B1 8,185,180 B2		Kiani Diab et al.		8,571,619 8,577,431			Al-Ali et al. Lamego et al.
8,190,223 B2		Al-Ali et al.	:	8,581,732	B2	11/2013	Al-Ali et al.
8,190,227 B2	5/2012	Diab et al.		8,584,345			Al-Ali et al.
8,203,438 B2 8,203,704 B2		Kiani et al. Merritt et al.		8,588,880 8,591,426			Abdul-Hafiz et al. Onoe et al.
8,203,704 B2 8,204,566 B2		Schurman et al.		8,600,467			Al-Ali et al.
8,219,172 B2	7/2012	Schurman et al.		3,606,342	B2	12/2013	Diab
8,224,411 B2		Al-Ali et al.		8,615,290 8,626,255			Lin et al. Al-Ali et al.
8,228,181 B2 8,229,533 B2		Al-Ali Diab et al.		8,630,691			Lamego et al.
8,233,955 B2		Al-Ali et al.	:	3,634,889	B2		Al-Ali et al.
8,244,325 B2		Al-Ali et al.		8,641,631			Sierra et al.
8,255,026 B1		Al-Ali et al		8,652,060 8,655,004		2/2014	Al-Ali Prest et al.
8,255,027 B2	8/2012	Al-Ali et al.	•	3,033,004	DΖ	2/2014	rrest et ar.

(56)	References Cited	9,028,429 B2 9,037,207 B2	5/2015 Telfort et al. 5/2015 Al-Ali et al.
U.S.	PATENT DOCUMENTS	9,060,721 B2	6/2015 Reichgott et al.
8,663,107 B2	3/2014 Kiani	9,066,666 B2 9,066,680 B1	6/2015 Kiani 6/2015 Al-Ali et al.
8,666,468 B1	3/2014 Klain 3/2014 Al-Ali	9,072,437 B2	7/2015 Paalasmaa
8,667,967 B2 8,670,811 B2	3/2014 Al-Ali et al. 3/2014 O'Reilly	9,072,474 B2 9,078,560 B2	7/2015 Al-Ali et al. 7/2015 Schurman et al.
8,670,811 B2 8,670,814 B2	3/2014 O Renty 3/2014 Diab et al.	9,081,889 B2	7/2015 Ingrassia, Jr. et al.
8,676,286 B2 8,682,407 B2	3/2014 Weber et al. 3/2014 Al-Ali	9,084,569 B2 9,095,316 B2	7/2015 Weber et al. 8/2015 Welch et al.
RE44,823 E	3/2014 Al-All 4/2014 Parker	9,106,038 B2	8/2015 Telfort et al.
RE44,875 E 8,690,799 B2	4/2014 Kiani et al. 4/2014 Telfort et al.	9,107,625 B2 9,107,626 B2	8/2015 Telfort et al. 8/2015 Al-Ali et al.
8,700,111 B2	4/2014 Telloft et al. 4/2014 LeBoeuf et al.	9,113,831 B2	8/2015 Al-Ali
8,700,112 B2 8,702,627 B2	4/2014 Kiani 4/2014 Telfort et al.	9,113,832 B2 9,119,595 B2	8/2015 Al-Ali 9/2015 Lamego
8,706,179 B2	4/2014 Parker	9,131,881 B2	9/2015 Diab et al.
8,712,494 B1 8,715,206 B2	4/2014 MacNeish, III et al. 5/2014 Telfort et al.	9,131,882 B2 9,131,883 B2	9/2015 Al-Ali et al. 9/2015 Al-Ali
8,718,735 B2	5/2014 Lamego et al.	9,131,917 B2	9/2015 Telfort et al.
8,718,737 B2 8,718,738 B2	5/2014 Diab et al. 5/2014 Blank et al.	9,138,180 B1 9,138,182 B2	9/2015 Coverston et al. 9/2015 Al-Ali et al.
8,720,249 B2	5/2014 Al-Ali	9,138,192 B2	9/2015 Weber et al.
8,721,541 B2 8,721,542 B2	5/2014 Al-Ali et al. 5/2014 Al-Ali et al.	9,142,117 B2 9,153,112 B1	9/2015 Muhsin et al. 10/2015 Kiani et al.
8,723,677 B1	5/2014 Kiani	9,153,121 B2	10/2015 Kiani et al.
8,740,792 B1 8,754,776 B2	6/2014 Kiani et al. 6/2014 Poeze et al.	9,161,696 B2 9,161,713 B2	10/2015 Al-Ali et al. 10/2015 Al-Ali et al.
8,755,535 B2	6/2014 Telfort et al.	9,167,995 B2	10/2015 Lamego et al.
8,755,856 B2 8,755,872 B1	6/2014 Diab et al. 6/2014 Marinow	9,176,141 B2 9,186,102 B2	11/2015 Al-Ali et al. 11/2015 Bruinsma et al.
8,760,517 B2	6/2014 Sarwar et al.	9,192,312 B2	11/2015 Al-Ali
8,761,850 B2 8,764,671 B2	6/2014 Lamego 7/2014 Kiani	9,192,329 B2 9,192,351 B1	11/2015 Al-Ali 11/2015 Telfort et al.
8,768,423 B2	7/2014 Shakespeare et al.	9,195,385 B2 9,210,566 B2	11/2015 Al-Ali et al. 12/2015 Ziemianska et al.
8,768,426 B2 8,771,204 B2	7/2014 Haisley et al. 7/2014 Telfort et al.	9,210,300 B2 9,211,072 B2	12/2015 Ziennanska et al. 12/2015 Kiani
8,777,634 B2	7/2014 Kiani et al.	9,211,095 B1 9,218,454 B2	12/2015 Al-Ali 12/2015 Kiani et al.
8,781,543 B2 8,781,544 B2	7/2014 Diab et al. 7/2014 Al-Ali et al.	9,226,696 B2	1/2016 Kiani
8,781,549 B2	7/2014 Al-Ali et al.	9,241,662 B2 9,245,668 B1	1/2016 Al-Ali et al. 1/2016 Vo et al.
8,788,003 B2 8,790,268 B2	7/2014 Schurman et al. 7/2014 Al-Ali	9,259,185 B2	2/2016 Abdul-Hafiz et al.
8,801,613 B2 8,821,397 B2	8/2014 Al-Ali et al. 9/2014 Al-Ali et al.	9,267,572 B2 9,277,880 B2	2/2016 Barker et al. 3/2016 Poeze et al.
8,821,415 B2	9/2014 Al-Ali et al.	9,289,167 B2	3/2016 Diab et al.
8,830,449 B1 8,831,700 B2	9/2014 Lamego et al. 9/2014 Schurman et al.	9,295,421 B2 9,307,928 B1	3/2016 Kiani et al. 4/2016 Al-Ali et al.
8,838,210 B2	9/2014 Wood et al.	9,311,382 B2	4/2016 Varoglu et al.
8,840,549 B2 8,847,740 B2	9/2014 Al-Ali et al. 9/2014 Kiani et al.	9,323,894 B2 D755,392 S	4/2016 Kiani 5/2016 Hwang et al.
8,849,365 B2	9/2014 Smith et al.	9,326,712 B1 9,333,316 B2	5/2016 Kiani 5/2016 Kiani
8,852,094 B2 8,852,994 B2	10/2014 Al-Ali et al. 10/2014 Wojtczuk et al.	9,339,220 B2	5/2016 Kiain 5/2016 Lamego et al.
8,868,147 B2	10/2014 Stippick et al.	9,339,236 B2 9,341,565 B2	5/2016 Frix et al. 5/2016 Lamego et al.
8,868,150 B2 8,870,792 B2	10/2014 Al-Ali et al. 10/2014 Al-Ali et al.	9,351,673 B2	5/2016 Diab et al.
8,886,271 B2	11/2014 Kiani et al.	9,351,675 B2 9,357,665 B2	5/2016 Al-Ali et al. 5/2016 Myers et al.
8,888,539 B2 8,888,708 B2	11/2014 Al-Ali et al. 11/2014 Diab et al.	9,364,181 B2	6/2016 Kiani et al.
8,892,180 B2 8,897,847 B2	11/2014 Weber et al. 11/2014 Al-Ali	9,368,671 B2 9,370,325 B2	6/2016 Wojtczuk et al. 6/2016 Al-Ali et al.
8,909,310 B2	11/2014 Al-Ali 12/2014 Lamego et al.	9,370,326 B2	6/2016 McHale et al.
8,911,377 B2 8,912,909 B2	12/2014 Al-Alī 12/2014 Al-Ali et al.	9,370,335 B2 9,375,185 B2	6/2016 Al-Ali et al. 6/2016 Ali et al.
8,920,317 B2	12/2014 Al-Ali et al. 12/2014 Al-Ali et al.	9,386,953 B2	7/2016 Al-Ali
8,920,332 B2 8,921,699 B2	12/2014 Hong et al. 12/2014 Al-Ali et al.	9,386,961 B2 9,392,945 B2	7/2016 Al-Ali et al. 7/2016 Al-Ali et al.
8,922,382 B2	12/2014 Al-Ali et al.	9,397,448 B2	7/2016 Al-Ali et al.
8,929,964 B2 8,942,777 B2	1/2015 Al-Ali et al. 1/2015 Diab et al.	9,408,542 B1 9,436,645 B2	8/2016 Kinast et al. 9/2016 Al-Ali et al.
8,948,834 B2	2/2015 Diab et al.	9,445,759 B1	9/2016 Lamego et al.
8,948,835 B2 8,965,471 B2	2/2015 Diab 2/2015 Lamego	9,466,919 B2 9,474,474 B2	10/2016 Kiani et al. 10/2016 Lamego et al.
8,983,564 B2	3/2015 Al-Ali	9,480,422 B2	11/2016 Al-Ali
8,989,831 B2 8,996,085 B2	3/2015 Al-Ali et al. 3/2015 Kiani et al.	9,480,435 B2 9,489,081 B2	11/2016 Olsen 11/2016 Anzures et al.
8,998,809 B2	4/2015 Kiani	9,492,110 B2	11/2016 Al-Ali et al.

U.S. PATENT DOCUMENTS 9,484,300 B1 122017 Kaini et al. 9,484,300 B2 122016 Kaini et al. 9,510,279 B2 122016 Kaini et al. 9,510,279 B2 122016 Kaini et al. 9,510,249 B2 122017 Lamego et al. 9,530,240 B2 122017 Lamego et al. 9,530,250 B2 122017 Lamego et al. 9,540,650 B2 122017 Lamego et al. 9,550,252 B2 122017 Lamego et al. 9,550,253 B2 122017 Lamego et al. 9,550,473 B2 122017 Sandi et al. 9,550,193 B2 122017 Sandi et al. 9,5	(56)	Referei	nces Cited	9,847,002 B2		Kiani et al.
9,497,534 B2 11/2016 Prest et al. 9,497,534 B2 12/2017 Raghuram et al. 9,519,739 B2 12/2016 Stanier at al. 9,519,739 B2 12/2017 Lamego et al. 9,534,30 B2 12/2017 Lamego et al. 9,538,930 B2 12/2017 Telfort et al. 9,538,930 B2 12/2017 Telfort et al. 9,538,735 B2 12/2018 Maaniet al. 9,554,737 B2 12/2017 Stanier at al. 9,554,737 B2 12/2017 Al-Ali et al. 9,554,737 B2 22/2017 Al-Ali et al. 9,554,737 B2 32/2017 Dalvi et al. 9,590,309 B2 22/2017 Jamen et al. 9,504,004 B2 22/2018 Myers et al. 9,504,004 B2 22/2017 Jamen et al. 9,504,0	11.6	PATENT	DOCUMENTS	9,847,749 B2 9.848.800 B1		
9.510,779 BZ 12,2016 Pooze et al. 9.848,823 BZ 12,2018 Raghurm et al. 9.510,779 BZ 12,2016 Kani et al. 9.861,306 BZ 12,018 Elechrome et al. 9.861,306 BZ 12,018 Elechrome et al. 9.861,306 BZ 12,018 Al-Ali et al. 9.861,306 BZ 12,018 Al-Ali et al. 9.873,838,90 BZ 12,017 Al-Ali et al. 9.861,306 BZ 12,017 Al-Ali et al. 9.873,838,90 BZ 12,017 Lamego et al. 9.867,578 BZ 12,018 Maani et al. 9.873,838,90 BZ 12,017 Halanaka et al. 9.877,658 BZ 12,018 Maani et al. 9.873,837 BZ 12,017 Elamego et al. 9.873,838 BZ 12,018 Maani et al. 9.873,838 BZ 12,018 Mani et al. 9.873,838 BZ 12,018 Mali et al. 9.973,838 BZ 12,	0). FAILUNI	DOCUMENTS	, ,		
9,517,024 B2 12,2016 Känni et al. 9,861,208 B2 12,2018 kökerborn et al. 9,526,439 B2 12,2017 Karines et al. 9,861,308 B1 12,018 Weber et al. 9,867,578 B2 12,019 Karines et al. 9,867,578 B2 12,019 Karines et al. 9,876,329 B2 12,017 Felfort et al. 9,876,329 B2 12,018 Al-Ali et al. 9,976,329 B2 12,018 Al-Ali et al. 10,	9,497,534 B2	11/2016	Prest et al.			
9,556,430 B2 122016 Srinivas et al. 9,861,300 B2 122018 Ak-Ali et al. 9,553,738 B1 122018 Weber et al. 9,861,308 B1 122018 Weber et al. 9,861,308 B1 122018 Weber et al. 9,861,308 B1 122018 Weber et al. 9,861,378 B2 122017 Lamego et al. 9,861,378 B2 122017 Mean et al. 9,867,378 B2 122018 Mana et al. 9,876,308 B2 122017 Hannago et al. 9,867,362 B2 122018 Ak-Ali et al. 9,876,503 B2 122018 Ak-Ali et al. 9,876,503 B2 122018 Ak-Ali et al. 9,876,509 B2 122017 Ak-Ali et al. 9,876,608 B2 122018 Ak-Ali et al. 9,876,609 B2 122017 Ak-Ali et al. 9,876,609 B2 122017 Ak-Ali et al. 9,871,609 B2 122017 Ak-Ali et al. 9,881,079 B2 122018 Musin et al. 9,871,609 B2 122018 Ak-Ali et al. 9,871,609 B2 122017 Ak-Ali et al. 9,881,079 B2 122018 Ak-Ali et al. 9,891,079 B2 122018 Ak-Ali et al. 9,991,079 B2						
9,533,722 B2 1,2017 Lamego et al. 9,861,305 B1 1,2018 Weber et al. 9,536,607 B2 1,2017 Hatanaka et al. 9,536,607 B2 1,2018 Al-Ali et al. 9,536,009 B2 2,2017 Al-Ali et al. 9,537,608 B2 1,2018 Mubriston et al. 9,536,009 B2 2,2017 Al-Ali et al. 9,536,009 B2 2,2018 Mubriston et al. 9,536,009 B2 2,2017 Al-Ali et al. 9,536,009 B2 2,2018 Al-Ali et al. 9,5						
9,538,049 B2 L 2017 Al-Ali et al. 9,366,671 B1 L2018 Manni et al. 9,536,650 B2 L2017 Telfort et al. 9,367,573 B2 L2018 Manni et al. 9,536,573 B2 L2018 Manni et al. 9,536,099 B2 L2017 Al-Ali et al. 9,537,650 B2 L2018 Manni et al. 9,536,099 B2 L2017 Al-Ali et al. 9,537,650 B2 L2018 Manni et al. 9,538,650 B2 L2017 Manni et al. 9,948,879 B2 L2018 Manni et al. 9,538,650 B2 L2017 Manni et al. 9,948,879 B3 L2018 Manni et al. 9,538,650 B2 L2017 Manni et al. 9,948,879 B3 L2018 Manni et al. 9,538,650 B2 L2017 Manni et al. 9,948,879 B3 L2018 Manni et al. 9,538,650 B2 L2017 Manni et al. 9,948,879 B3 L2018 Manni et al. 9,538,947 B2 L2018 Manni et al. 9,538,948 B2 L2017 Manni et al. 9,538,948 B2 L2018 Manni et al. 9,538,948 B2 L2018 Manni et al. 9,538,948 B2 L2018 Manni et al. 9,538,948 B2 L2017 Manni et al. 9,538,948 B2 L2017 Manni et al. 10,538,848 B2 L2017 Manni et al. 10,538,848 B2 L2017 Manni et al. 10,538,848 B2 L2018 Manni et al. 10,538,848 B2 L201				9,861,305 B1	1/2018	Weber et al.
9,549,696 B2 1/2017 Lamego et al. 9,867,578 B2 1/2018 Al-Ali et al. 9,573,623 B2 1/2018 Al-Ali et al. 9,573,623 B2 1/2018 Al-Ali et al. 9,573,6320 B2 1/2018 Al-Ali et al. 9,573,6320 B2 1/2018 Al-Ali et al. 9,573,6320 B2 1/2018 Mishin et al. 1,550,099 B2 2/2017 Al-Ali et al. 9,573,636 B2 1/2018 Mishin et al. 1,550,099 B2 2/2017 Al-Ali et al. 9,573,636 B2 1/2018 Mishin et al. 1,550,099 B2 2/2017 Al-Ali et al. 9,573,636 B2 1/2018 Mishin et al. 1,550,099 B2 2/2017 Jamsen et al. 9,573,090 B2 2/2017 Jamsen et al. 9,573,090 B2 2/2018 Mishin et al. 1,550,099 B2 2/2017 Jamsen et al. 9,573,090 B2 2/2018 Mishin et al. 1,550,099 B2 2/2018 Mishin et al. 1,5	9,538,949 B2	1/2017	Al-Ali et al.			
9.533,625 B2 1/2017 Hatanaka et al. 9.560,996 B2 1/2017 Kham at al. 9.560,996 B2 2/2017 Kham at al. 9.560,996 B2 2/2017 Al-Ali et al. 9.560,996 B2 2/2017 Al-Ali et al. 9.506,019 B2 2/2017 Al-Ali et al. 9.506,019 B2 2/2017 Al-Ali et al. 9.506,019 B2 2/2017 Al-Ali et al. 9.509,097 B2 2/2017 Al-Ali et al. 9.509,098 B2 3/2017 King 9.509,099 B2 3/2017 Al-Ali et al. 9.509,099 B2 3/2017 Al-Al						
9,554,737 B2 1/2017 Schurman et al. 9,376,320 B2 1/2018 Coversion et al. 9,506,098 B2 2/2017 Al-Ali et al. 9,377,686 B2 1/2018 Mulsin et al. 9,506,098 B2 2/2017 Al-Ali et al. 9,387,7686 B2 1/2018 Mulsin et al. 9,506,098 B2 2/2017 Al-Ali et al. 9,387,7686 B2 1/2018 Mulsin et al. 9,506,098 B2 2/2017 Jansen et al. 9,387,698 B2 2/2018 Mulsin et al. 9,387,698 B2 2/2018 Singh Alvarado et al. 9,387,698 B2 2/2018 Singh Alvarado et al. 9,387,698 B2 2/2018 Mulsin et al. 9,388,699 B2 2/20						
9.56(0.98 B2 2.2017 Al-Ali et al. 9.887,086 B2 1/2018 Al-Ali et al. 9.56(0.99 B2 2.2017 Al-Ali et al. 9.88)1079 B2 2/2018 Dalivi et al. 9.88)1079 B2 2/2018 Dalivi et al. 9.88)1079 B2 2/2018 Shim et al. 9.591,975 B2 3/2017 Dalivi et al. 9.88)107 B2 2/2018 Myers et al. 9.591,975 B2 3/2017 Dalivi et al. 9.88)107 B2 2/2018 Myers et al. 9.591,976 B2 4/2017 Dalivi et al. 9.88)107 B2 2/2018 Myers et al. 9.622,692 B2 4/2017 Lamego et al. 9.915,676 B2 3/2018 Al-Ali et al. 9.934,978 B2 3/2018 Al-Ali et al. 9.934,978 B2 3/2018 Shim et al. 9.934,978 B2 3/2018 Al-Ali et al. 9.935,978 B2 5/2018 Al-Ali et al. 9.935,978 B2 7/2017 Al-Ali et al. 9.935,978 B2 7/2017 Al-Ali et al. 9.935,978 B2 7/2018 Ali et al. 9.935,						
9.566.019 B2 22017 Al-Ali et al. 9.891.079 B2 22018 Dalvi 9.579.039 B2 22017 Jansen et al. 9.891.590 B2 22018 Mine et al. 9.593.969 B2 32017 King 9.898.049 B2 22018 Mine et al. 9.593.969 B2 32017 King 9.898.049 B2 22018 Myers et al. 9.593.969 B2 42017 Lamego et al. 9.915.617 B2 32018 Myers et al. 9.622.693 B2 42017 Diab 9.915.617 B2 32018 Myers et al. 9.622.693 B2 42017 Diab 9.915.617 B2 32018 Myers et al. 9.622.693 B2 42017 Diab 9.915.616 B2 32018 Al-Ali et al. 9.923.893 B2 32018 Schurman et al. 9.636.055 B2 52017 Al-Ali et al. 9.923.893 B2 32018 Schurman et al. 9.636.055 B2 52017 Al-Ali et al. 9.945.299 B2 42018 Al-Ali et al. 9.952.095 B1 42018 Al-Ali et al. 9.956.846 B2 52017 Calman et al. 9.956.946 B2 52018 Telfor Binisma et al. 9.986.67 B2 52018 Telfor Binisma et al. 9.986.67 B2 52018 Al-Ali 9.988.919 B2 62017 Schurman et al. 9.986.919 B2 62017 Binisma et al. 9.986.919 B2 62018 Al-Ali 9.988.919 B2 62018 Al-Ali et al. 9.988.91						
9,579,039 B2 2/2017 Jansen et al. 9,881,599 B2 2/2018 Shim et al. 9,591,979 B2 2/2018 Jan. 1 et al. 9,591,979 B2 2/2018 Myers et al. 9,593,969 B2 2/2018 Myers et al. 9,593,969 B2 2/2018 Myers et al. 9,503,969 B2 2/2018 Myers et al. 9,622,602 B2 4/2017 Lamego et al. 9,918,646 B2 3/2018 Shim et al. 9,248,933 B2 3/2018 Shim et al. 9,248,934,934 B2 3/2018 Shim et al. 9,248,934 B2 3/2						
9.533,960 B2 3/2017 King 9.889,8049 B2 2/2018 Myers et al. 9.622,693 B2 4/2017 Lamego et al. 9.918,164 B2 3/2018 Singh Alvarado et al. 9.622,693 B2 4/2017 Lamego et al. 9.924,893 B2 3/2018 Singh Alvarado et al. 9.624,893 B2 3/2018 Singh Alvarado et al. 9.636,055 B2 5/2017 Al-Ali et al. 9.924,893 B2 3/2018 Singh Alvarado et al. 9.636,056 B2 5/2017 Al-Ali et al. 9.924,893 B2 3/2018 Singh Alvarado et al. 9.636,056 B2 5/2017 Al-Ali et al. 9.934,260 B2 4/2018 Poeze et al. 9.646,054 B1 5/2017 Gowreesunker et al. 9.945,676 B2 4/2018 Muhsin et al. 9.651,406 B1 5/2017 Gowreesunker et al. 9.945,676 B2 4/2018 Muhsin et al. 9.656,866 B2 5/2017 Coubert 9.955,907 B1 4/2018 Illotelling et al. 9.656,867 B2 5/2017 Cubert 9.955,907 B1 4/2018 Illotelling et al. 9.656,867 B2 5/2017 Kinain et al. 9.986,676 B2 5/2018 Kinain et al. 9.986,676 B2 5/2018 Muhsin et al. 9.986,675 B2 6/2018 Muhsin et al. 9						
Section Sect						
9,022,693 24,2017 Diab 9,918,646 B2 3,2018 Singh Alvarado et al.						
D788,312 S 5/2017 Al-Ali et al. 9,924,8873 B2 3/2018 Schurman et al. 9,636,956 B2 5/2017 Al-Ali et al. 9,924,8875 B2 3/2018 Schurman et al. 9,936,9617 B2 4/2018 Modul-Haffz 9,640,9054 B2 5/2017 Al-Ali et al. 9,943,266 B2 4/2018 Al-Ali et al. 9,943,266 B2 4/2018 Al-Ali et al. 9,956,2676 B2 4/2017 Al-Ali et al. 9,958,2678 B2 4/2018 Al-Ali et al. 9,958,2678 B2 4/2017 Al-Ali et al.				9,918,646 B2	3/2018	Singh Alvarado et al.
9,936,015 82 2,2017 Al-Ali et al. 9,936,917 82 4,2018 Poeze et al. 9,436,069 82 4,2018 Al-Ali et al. 9,636,469 82 4,2018 Al-Ali et al. 9,636,668 82 6,2017 Schurman et al. 9,985,997 82 5,2018 Elfort 9,658,668 82 6,2017 Schurman et al. 9,986,667 82 5,2018 Elfort 9,668,668 82 6,2017 Schurman et al. 9,986,667 82 5,2018 Elfort 1,2017 Al-Ali et al. 9,986,678 82 6,2017 Al-Ali et al. 9,986,678 82 6,2017 Al-Ali et al. 9,986,919 82 6,2018 Elfort 1,2017 Al-Ali et al. 9,986,919 82 6,2018 Elfort 1,2017 Al-Ali et al. 9,988,560 82 6,2018 Elfort 1,2018	D788,312 S	5/2017	Al-Ali et al.			
9,649,054 B2 5,2017 Lamego et al. 9,943,269 B2 4/2018 Minhsin et al. 9,651,050 B2 4/2018 Minhsin et al. 9,652,095 B1 4/2018 Hotelling et al. 9,652,095 B1 4/2018 Hotelling et al. 9,652,095 B1 4/2018 Hotelling et al. 9,656,867 B2 6/2017 Culbert 9,955,937 B2 5/2018 Minhsin et al. 9,668,670 B2 6/2017 Buinsma et al. 9,965,946 B2 5/2018 Minhsin et al. 9,668,670 B2 6/2017 Buinsma et al. 9,980,695 B2 5/2018 Minhsin et al. 9,668,703 B2 6/2017 Diah 9,980,619 B2 6/2018 Minhsin et al. 9,668,703 B2 6/2017 Diah 9,980,695 B2 6/2018 Minhsin et al. 9,668,703 B2 6/2017 Diah 9,980,695 B2 6/2018 Minhsin et al. 9,668,703 B2 6/2017 Diah 9,980,695 B2 6/2018 Minhsin et al. 9,684,703 B2 6/2017 Minhsin et al. 9,980,695 B2 6/2018 Minhsin et al. 9,684,703 B2 6/2017 Minhsin et al. 9,998,505 B2 6/2018 Minhsin et al. 9,684,703 B2 6/2017 Minhsin et al. 9,998,505 B2 6/2018 Minhsin et al. 9,687,160 B2 6/2017 Minhsin et al. 9,988,505 B2 6/2018 Minhsin et al. 9,687,160 B2 6/2017 Minhsin et al. 9,988,505 B2 6/2018 Minhsin et al. 9,687,160 B2 6/2017 Minhsin et al. 9,989,505 B2 6/2018 Minhsin et al. 9,697,373 B2 6/2017 Minhsin et al. 9,989,505 B2 6/2018 Minhsin et al. 9,697,373 B2 7/2017 Al-Ali et al. B22,215 S 7/2018 Al-Ali et al. 10,007,578 B2 6/2018 Milhsin et al. 10,007,578 B2 6/2018 Milhsin et al. 10,007,578 B2 6/2018 Milhsin et al. 10,007,579 B2 7/2018 Milhsin et al. 10,007,579 B2						
9,651,405 B1 5/2017 Gowresunker et al. 9,946,676 B2 4/2018 Al-Ali 9,666,8676 B2 6/2017 Al-Ali et al. 9,955,937 B2 5/2018 Telfort 9,955,937 B2 5/2018 Telfort 9,955,937 B2 5/2018 Telfort 9,956,946 B2 5/2018 Al-Ali et al. 9,668,680 B2 6/2017 Schurman et al. 9,980,667 B2 5/2018 Klani et al. 9,668,680 B2 6/2017 Al-Ali et al. 9,980,667 B2 5/2018 Klani et al. 9,668,680 B2 6/2017 Al-Ali et al. 9,980,667 B2 5/2018 Klani et al. 9,668,680 B2 6/2017 Al-Ali et al. 9,980,691 B2 6/2018 Dalvi et al. 9,668,690 B2 6/2017 Pirsum 9,986,992 B2 6/2018 Dalvi et al. 9,681,690 B2 6/2017 Klani 9,986,919 B2 6/2018 Dalvi et al. 9,681,690 B2 6/2017 Klani 9,993,207 B2 6/2018 Dalvi et al. 9,681,690 B2 6/2017 Klani 9,993,207 B2 6/2018 Al-Ali et al. 9,693,719 B2 7/2017 Al-Ali et al. 10,007,758 B2 6/2018 Al-Ali et al. 9,693,737 B2 7/2017 Al-Ali et al. 10,010,276 B2 7/2018 Al-Ali et al. 9,693,737 B2 7/2017 Al-Ali et al. 10,010,276 B2 7/2018 Al-Ali et al. 9,693,737 B2 7/2017 Al-Ali et al. 10,010,276 B2 7/2018 Al-Ali et al. 9,716,748 B2 8/2017 Klani et al. 10,032,002 B2 7/2018 Barker et al. 9,716,748 B2 8/2017 First et al. 10,039,482 B2 8/2018 Klani et al. 9,717,448 B2 8/2017 First et al. 10,039,482 B2 8/2018 Klani et al. 9,717,448 B2 8/2017 First et al. 10,039,482 B2 8/2018 Al-Ali et al. 9,718,488 B2 8/2017 Al-Ali et al. 10,039,482 B2 8/2018 Al-Ali et al. 9,724,026 B2 8/2017 Al-Ali et al. 10,039,482 B2 8/2018 Al-Ali et al. 9,724,026 B2 8/2017 Al-Ali et al. 10,039,482 B2 8/2018 Al-Ali et al. 9,724,026 B2 8/2017 Al-Ali et al. 10,039,482 B2 8/2018 Al-Ali et al. 9,724,026 B2 8/2017 Al-Ali et al. 10,039,482 B2 8/2018 Al-Ali et al. 9,724,026 B2 8/2017 Al-Ali et al. 10,039,482 B2 8/2018 Al-Ali et al. 9,724,025 B1 8/2017 First et al. 10,039,482 B2 8/2018 Al-Ali et al. 9,724,025 B1 8/2017 First et al. 10,039,482 B2 8/2018 Al-Ali et al. 9,724,025 B1 8/2017 Al-Ali et al. 10,058,275 B2 8/2018 Al-Ali et al. 10,069,797 B2 9/2017 B2 8/2017 First et al. 10,05				9,943,269 B2		
9,668,676 B2				, ,		
9,668,679 B.2 6-2017 Schurman et al. 9,965,946 B.2 52018 Al-Alii 9,668,680 B.2 6-2017 Schurman et al. 9,886,967 B.2 52018 Lamego et al. 9,668,703 B.2 6-2017 Al-Alii 9,986,910 B.2 6-2018 Lamego et al. 9,986,910 B.2 6-2018 Lamego et al. 9,986,900 B.2 6-2017 Fresura 9,986,950 B.2 6-2018 Lamego et al. 9,986,900 B.2 6-2017 Kiani 9,986,900 B.2 6-2017 Kiani 9,986,900 B.2 6-2017 Kiani 9,993,207 B.2 6-2018 Al-Ali et al. 9,693,719 B.2 7/2017 Al-Ali et al. 10,007,788 B.2 6-2018 Al-Ali et al. 9,693,737 B.2 7/2017 Al-Ali et al. 10,007,788 B.2 6-2018 Al-Ali et al. 10,007,788 B.2 7/2017 Al-Ali et al. 10,007,788 B.2 7/2017 Al-Ali et al. 10,007,788 B.2 7/2017 Qian et al. 10,003,200 B.2 7/2018 Al-Ali et al. 10,003,200 B.2						
9,668,680 B2 6/2017 Bruinsma et al. 9,980,667 B2 5/2018 Kinni et al. 9,668,703 B2 6/2017 Al-Ali DS20,865 S 6/2018 Muhsin et al. 9,675,286 B2 6/2017 Presura 9,986,919 B2 6/2018 Dalvi et al. 9,884,900 B2 6/2017 Motoki et al. 9,985,606 B2 6/2018 Dalvi et al. 9,884,900 B2 6/2017 Motoki et al. 9,985,606 B2 6/2018 Dalvi et al. 9,687,160 B2 6/2017 Al-Ali et al. 9,993,207 B2 6/2018 Al-Ali et al. 9,693,737 B2 7/2017 Al-Ali et al. DS22,216 S 7,2018 Al-Ali et al. 9,693,737 B2 7/2017 Al-Ali et al. DS22,216 S 7,2018 Al-Ali et al. 9,693,938 B2 7/2017 Al-Ali et al. DS22,216 S 7,2018 Barker et al. 9,693,938 B2 7/2017 Qian et al. 10,010,276 B2 7/2018 Mal-Ali et al. 9,716,493 B2 7/2017 Qian et al. 10,010,276 B2 7/2018 Mal-Ali et al. 9,717,425 B2 8/2017 Kiani et al. 10,033,098 B2 7/2018 Miller et al. 9,717,448 B2 8/2017 Lamego et al. 10,039,491 B2 8/2018 Morphson et al. 9,713,498 B2 8/2017 Lamego 10,052,037 B2 8/2017 Al-Ali et al. 10,039,491 B2 8/2018 Morphson et al. 9,734,016 B1 8/2017 Al-Ali et al. 10,055,121 B2 8/2018 Morphson et al. 9,734,024 B2 8/2017 Kiani et al. 10,055,121 B2 8/2018 Morphson et al. 9,734,024 B2 8/2017 Al-Ali et al. 10,055,121 B2 8/2018 Mal-Ali et al. 9,734,024 B2 8/2017 Mali 10,055,121 B2 8/2018 Mal-Ali et al. 9,743,887 B2 8/2017 Al-Ali et al. 10,064,562 B2 9/2018 Al-Ali et al. 9,749,232 B2 8/2017 Olan et al. 10,064,562 B2 9/2018 Al-Ali et al. 9,749,232 B2 8/2017 Olan et al. 10,064,562 B2 9/2018 Al-Ali et al. 9,750,443 B2 9/2017 Olan et al. 10,064,562 B2 9/2018 Al-Ali et al. 9,749,232 B2 8/2017 Al-Ali et al. 10,055,121 B2 8/2018 Al-Ali et al. 10,056,138 B1 10/2018 Al-Ali et al. 10,076,257 B2 9/2018 Al-Ali et al. 10,078,259 B2 10/2017 Al-Ali et al. 10,078,259 B2 10/2018 Al-Ali et al. 10,078,259 B2						
9,675,286 B2 6/2017 Diab. 9,687,180 B2 6/2017 Presura 9,986,952 B2 6/2018 Dalvi et al. 9,681,812 B2 6/2017 Motoki et al. 9,983,560 B2 6/2018 Dalvi et al. 9,983,207 B2 6/2018 Al-Ali et al. 9,983,207 B2 6/2018 Al-Ali et al. 9,983,207 B2 6/2018 Al-Ali et al. 9,693,737 B2 7/2017 Al-Ali D822,216 S 7/2018 Al-Ali et al. 9,693,737 B2 7/2017 Al-Ali D822,216 S 7/2018 Al-Ali et al. 9,699,546 B2 7/2017 Qian et al. 9,716,937 B2 7/2017 Qian et al. 9,716,937 B2 7/2017 Qian et al. 9,717,425 B2 8/2017 Kiani et al. 9,717,448 B2 8/2017 First et al. 9,717,448 B2 8/2017 First et al. 9,717,448 B2 8/2017 First et al. 9,718,971 B1 8/2017 Al-Ali et al. 9,724,016 B1 8/2017 Al-Ali et al. 9,724,024 B2 8/2017 Al-Ali et al. 9,724,025 B1 8/2017 Al-Ali et al. 9,730,640 B2 8/2017 Diab et al. 9,730,640 B2 8/2017 Al-Ali et al. 9,730,641 B1 9/2017 Al-Ali et al. 9,730,930 B2 10/2017 Al-Ali et al. 9,730,930 B2 10/2017 Al-Ali et al. 9,730,930 B2 10/2017 Al-Ali et al. 9,330,530 B2 10/2017 Al-Ali et al. 9,331,530 B2 10/2017 Al-Ali et al. 9,331,530 B2 10/2017 Al-Ali et al. 9,331,530 B2 10/2017 Al-Ali et al. 9,333,130 B2 10/2017 Al-Ali et al. 9,333,130 B2 10/2017 Al-Ali et al. 9,333,330						
9,681,812 B2 6/2017 Presura 9,986,952 B2 6/2018 Dalvi et al. 9,684,900 B2 6/2018 Motoki et al. 9,993,500 B2 6/2018 Poeze et al. 9,687,160 B2 6/2017 Kiani 1,000,7758 B2 6/2018 Al-Ali et al. 9,993,207 B2 6/2018 Al-Ali et al. 9,993,737 B2 7/2017 Al-Ali et al. 10,007,758 B2 6/2018 Al-Ali et al. 9,693,737 B2 7/2017 Al-Ali et al. 10,002,768 B2 7/2018 Al-Ali et al. 9,693,738 B2 7/2017 Qian et al. 10,002,768 B2 7/2018 Al-Ali et al. 9,716,937 B2 7/2017 Qian et al. 10,032,002 B2 7/2018 Al-Ali et al. 9,716,937 B2 7/2017 Qian et al. 10,032,002 B2 7/2018 Al-Ali et al. 9,716,937 B2 7/2017 Kiani et al. 10,039,080 B2 7/2018 Kiani et al. 9,717,448 B2 8/2017 Kiani et al. 10,039,482 B2 8/2018 Al-Ali et al. 9,717,448 B2 8/2017 Lamego 10,052,037 B2 8/2018 Thompsone et al. 9,733,997 B1 8/2017 Al-Ali et al. 10,039,491 B2 8/2018 Thompsone et al. 9,734,024 B2 8/2017 Al-Ali et al. 10,039,491 B2 8/2018 Chaudhri et al. 9,734,025 B1 8/2017 Al-Ali et al. 10,058,275 B2 8/2018 Al-Ali et al. 9,734,040 B2 8/2017 Al-Ali et al. 10,066,670 B2 9/2018 Al-Ali et al. 9,734,387 B2 8/2017 Al-Ali et al. 10,066,670 B2 9/2018 Al-Ali et al. 9,743,232 B2 8/2017 Al-Ali et al. 10,066,70 B2 9/2018 Al-Ali et al. 9,743,232 B2 8/2017 Al-Ali et al. 10,066,70 B2 9/2018 Al-Ali et al. 9,743,232 B2 8/2017 Mal-Ali et al. 10,066,970 B2 9/2018 Al-Ali et al. 9,750,442 B2 9/2017 Simpath et al. 10,076,257 B2 9/2018 Al-Ali et al. 9,750,443 B2 9/2017 Simpath et al. 10,076,257 B2 9/2018 Al-Ali et al. 9,750,443 B2 9/2017 Disen 10,086,138 B1 10/2018 Novak, Jr. 9,750,446 B1 9/2017 Tielfort 10,092,249 B2 10/2018 Al-Ali et al. 9,755,45 B2 10/2017 Al-Ali et al. 10,098,510 B2 10/2018 Al-Ali et al. 9,755,45 B2 10/2017 Al-Ali et al. 10,098,510 B2 10/2018 Al-Ali et al. 9,755,545 B2 10/2017 Al-Ali et al. 10,098,510 B2 10/2018 Al-Ali et al. 9,755,346 B2 10/2017 Al-Ali et al. 10,098,510 B2 10/2018 Al-Ali et al. 9,755,346 B2 10/2017 Al-Ali et al. 10,098,510 B2 10/2018 Al-Ali et al. 10,098,510 B2 10/2018 Al-Ali et al. 10,098,510 B2 10/2018 Al-Ali et al. 10,144,145 B2 11/2018 Barker et al. 10,				,		
9,884,900 B2 6/2017 Kitani 9,989,560 B2 6/2018 Al-Ali et al.	, ,					
9,687,160 B2 6/2017 Kiani 9,993,207 B2 6/2018 Al-Ali et al. 9,693,719 B2 7/2017 Al-Ali et al. 10,007,758 B2 6/2018 Al-Ali et al. 9,693,737 B2 7/2017 Al-Ali et al. D822,215 S 7/2018 Al-Ali et al. 9,699,546 B2 7/2017 Qian et al. 10,010,276 B2 7/2018 Al-Ali et al. 9,716,937 B2 7/2017 Qian et al. 10,032,002 B2 7/2018 Al-Ali et al. 9,716,937 B2 7/2017 Qian et al. 10,032,003 B2 7/2018 Miller et al. 9,717,448 B2 8/2017 Fix et al. 10,039,080 B2 7/2018 Miller et al. 9,717,448 B2 8/2017 Fix et al. 10,039,481 B2 8/2018 Al-Ali et al. 9,714,448 B2 8/2017 Lamego et al. 10,039,491 B2 8/2018 Miller et al. 9,724,016 B1 8/2017 Al-Ali et al. 10,055,121 B2 8/2018 Kinast et al. 9,724,024 B2 8/2017 Al-Ali et al. 10,055,121 B2 8/2018 Al-Ali et al. 9,724,024 B2 8/2017 Diab et al. 10,066,970 B2 9/2018 Al-Ali et al. 9,730,640 B2 8/2017 Diab et al. 10,066,970 B2 9/2018 Al-Ali et al. 10,076,257 B2 8/2018 Al-Ali et al. 10,076,257 B2 9/2018 Al-Ali et al. 10,076,257 B2 9/2018 Al-Ali et al. 10,078,052 B2 9/2018 Al-Ali et al. 10,078,052 B2 9/2018 Al-Ali et al. 10,078,052 B2 9/2018 Al-Ali et al. 10,078,053 B2 9/2018 Al-Ali et al. 10,092,244 B2 10/2017 Al-Ali et al. 10,098,501 B2 10/2018 Al-Ali et al. 10,118,303 B1 10/2018 Al-Ali et al. 10,118,303 B1 10/2018 Al-Ali et al. 10,11				9,989,560 B2	6/2018	Poeze et al.
9,697,928 B2 772017 Al-Ali et al. D822,216 S 7,2018 Al-Ali et al. 9,697,928 B2 772017 Al-Ali et al. D822,216 S 7,2018 Al-Ali et al. 9,697,936 B2 7,2017 Qian et al. 10,010,276 B2 7,2018 Al-Ali et al. 9,716,937 B2 7,2017 Qian et al. 10,032,002 B2 7,2018 Kiani et al. 9,717,448 B2 8,2017 Frix et al. 10,039,488 B2 8,2018 Al-Ali et al. 9,717,448 B2 8,2017 Lamego et al. 10,039,491 B2 8,2018 Al-Ali et al. 9,724,016 B1 8,2017 Al-Ali et al. 10,055,121 B2 8,2018 Kinast et al. 9,724,024 B2 8,2017 Al-Ali et al. 10,058,275 B2 8,2018 Al-Ali et al. 9,734,040 B2 8,2017 Kiani et al. 10,064,562 B2 9,2018 Al-Ali et al. 9,743,887 B2 8,2017 Al-Ali et al. 10,066,970 B2 9,2018 Al-Ali et al. 9,744,225 B1 8,2017 Al-Ali et al. 10,076,257 B2 9,2018 Al-Ali et al. 9,749,232 B2 8,2017 Al-Ali et al. 10,076,257 B2 9,2018 Al-Ali et al. 9,749,232 B2 8,2017 Al-Ali et al. 10,076,257 B2 9,2018 Al-Ali et al. 9,750,442 B2 9,2017 Olsen 10,086,138 B1 10,2018 Al-Ali et al. 9,750,443 B2 9,2017 Smith et al. 10,092,200 B2 10,2018 Al-Ali et al. 9,750,446 B1 9,2017 Fifort 10,092,249 B2 10,2018 Al-Ali et al. 9,755,925 B2 9,2017 Chu et al. 10,092,249 B2 10,2018 Al-Ali et al. 9,775,546 B2 10,2017 Al-Ali et al. 10,098,610 B2 10,2018 Al-Ali et al. 9,778,079 B1 10,2017 Al-Ali et al. 10,098,610 B2 10,2018 Al-Ali et al. 9,778,079 B1 10,2017 Al-Ali et al. 10,098,610 B2 10,2018 Al-Ali et al. 9,788,758 B2 10,2017 Al-Ali et al. 10,117,587 B2 11,2018 Al-Ali et al. 9,788,758 B2 10,2017 Al-Ali et al. 10,130,299 B2 10,2018 Al-Ali et al. 9,788,758 B2 10,2017 Al-Ali et al. 10,130,299 B2 11,2018 Al-Ali et al. 9,795,730 B2 10,2017 Al-Ali et al. 10,130,299 B2 11,2018 Al-Ali et al. 9,795,730 B2 10,2017 Al-Ali et al. 10,130,299 B2 11,2018 Al-Ali et al. 9,795,730 B2 10,2017 Al-Ali	9,687,160 B2	6/2017	Kiani			
9,697,928 B2 7,2017 Al-Ali et al. 10,010,276 B2 7,2018 Barker et al. 9,699,546 B2 7,2017 Qian et al. 10,010,276 B2 7,2018 Kiani et al. 10,716,937 B2 7,2018 Kiani et al. 10,032,002 B2 7,2018 Kiani et al. 10,717,425 B2 8,2017 Kiani et al. 10,032,008 B2 7,2018 Kiani et al. 10,717,425 B2 8,2017 Kiani et al. 10,039,080 B2 7,2018 Kiani et al. 10,717,425 B2 8,2017 Kiani et al. 10,039,491 B2 8,2018 Kiani et al. 10,717,425 B2 8,2017 Lamego et al. 10,039,491 B2 8,2018 Kiani et al. 10,717,425 B2 8,2018 Kiani et al. 10,724,016 B1 8,2017 Al-Ali et al. 10,058,275 B2 8,2018 Chaudhri et al. 10,724,016 B1 8,2017 Kiani et al. 10,058,275 B2 8,2018 Chaudhri et al. 10,724,016 B1 8,2017 Kiani et al. 10,066,970 B2 9,2018 Gowresunker et al. 10,736,275 B2 9,2018 Gowresunker et al. 10,736,275 B2 9,2018 Gowresunker et al. 10,736,275 B2 9,2018 Kiani et al. 10,736,275 B2 9,2017 Chu et al. 10,092,244 B2 10,2018 Al-Ali et al. 10,922,244 B2 10,2018 Al-Ali et al. 10,922,244 B2 10,2018 Al-Ali et al. 10,927,735,546 B2 10,2017 Al-Ali et al. 10,098,550 B2 10,2018 Al-Ali et al. 10,237,268 B2 10,2017 Al-Ali et al. 10,098,550 B2 10,2018 Al-Ali et al. 10,237,268 B2 10,2017 Al-Ali et al. 10,237,268 B2 10,2017 Al-Ali et al. 10,237,268 B2 10,2017 Al-Ali et al. 10,136,289 B2 11,2018 Al-Ali et al. 10,136,28						
9,699,546 B2 7/2017 Qian et al. 10,012,76 B2 7/2018 Al-Ali et al. 10,032,002 B2 7,2018 Miller et al. 10,032,002 B2 7,2018 Miller et al. 10,032,002 B2 7,2018 Miller et al. 10,039,080 B2 7,2018 Miller et al. 10,039,080 B2 7,2018 Miller et al. 10,039,080 B2 7,2018 Miller et al. 10,039,491 B2 8,2018 Al-Ali et al. 10,039,491 B2 8,2018 Miller et al. 10,055,121 B2 8,2018 Miller et al. 10,064,562 B2 9,2018 Miller et al. 10,078,052 B2 9,2018 Miller et al. 10,092,204 B2 10,2018 Miller et al. 10,093,501 B2 10,2018 Miller et al. 10,098,501 B2 10,2018 Miller et al. 10,2018 Mi						
9,717,425 B2 82017 Kiani et al. 10,039,080 B2 7,72018 Miller et al. 9,717,448 B2 82017 Frix et al. 10,039,482 B2 82018 Thompson et al. 10,039,481 B2 82018 Miller et al. 9,717,448 B2 82017 Lamego 10,055,037 B2 82018 Miller et al. 10,039,491 B2 82018 Miller et al. 9,724,016 B1 82017 Al-Ali et al. 10,039,491 B2 82018 Miller et al. 9,724,016 B1 82017 Al-Ali et al. 10,055,121 B2 82018 Kinast et al. 9,724,024 B2 82017 Al-Ali et al. 10,058,275 B2 82018 Chaudhri et al. 9,724,025 B1 82017 Miller et al. 10,058,275 B2 82018 Chaudhri et al. 9,730,640 B2 82017 Miller et al. 10,066,507 B2 92018 Al-Ali et al. 9,743,887 B2 82017 Al-Ali et al. 10,066,507 B2 92018 Gowressunker et al. 9,743,887 B2 82017 Al-Ali et al. 10,076,257 B2 92018 Miller et al. 9,750,442 B2 92017 Olsen 10,086,138 B1 10/2018 Ness et al. 9,750,442 B2 92017 Olsen 10,086,138 B1 10/2018 Novak, Jr. 9,750,443 B2 92017 Chu et al. 10,092,200 B2 10/2018 Al-Ali et al. 9,752,925 B2 9/2017 Chu et al. 10,092,209 B2 10/2018 Al-Ali et al. 9,775,546 B2 10/2017 Al-Ali et al. 10,098,508 B2 10/2018 Al-Ali et al. 9,775,570 B2 10/2017 Al-Ali et al. 10,098,508 B2 10/2018 Al-Ali et al. 9,775,570 B2 10/2017 Al-Ali et al. 10,098,610 B2 10/2018 Al-Ali et al. 9,782,079 B1 10/2017 Al-Ali et al. 10,117,887 B2 11/2018 Al-Ali et al. 9,782,079 B1 10/2017 Baranski et al. 10,117,887 B2 11/2018 Al-Ali et al. 9,782,568 B2 10/2017 Lamego et al. 10,117,887 B2 11/2018 Al-Ali et al. 9,783,568 B2 10/2017 Lamego et al. 10,117,887 B2 11/2018 Barker et al. 9,783,568 B2 10/2017 Al-Ali et al. 10,130,291 B2 11/2018 Al-Ali et al. 9,783,568 B2 10/2017 Al-Ali et al. 10,130,291 B2 11/2018 Barker et al. 9,783,568 B2 10/2017 Al-Ali et al. 10,130,291 B2 11/2018 Barker et al. 9,783,568 B2 10/2017 Al-Ali et al. 10,130,291 B2 11/2018 Barker et al. 9,783,568 B2 10/2017 Al-Ali et al. 10,130,291 B2 11/2018 Al-Ali et al. 9,785,568 B2 10/2017 Al-Ali et al. 10,130,291 B2 11/2018 Barker et al. 9,881,418 B2 11/2017 Weber et al. 10,148,831 B1 1/2019 Al-Ali et al. 9,801,588 B2 10/2017 Al-Ali et al. 10,148,836 B2 11/2018 Al-						
9,717,448 B2 82017 Frix et al. 10,039,482 B2 8/2018 Al-Ali et al. 9,717,458 B2 8/2017 Lamego 10,052,037 B2 8/2018 Thompson et al. 9,723,997 B1 8/2017 Al-Ali et al. 10,039,487 B2 8/2018 Thompson et al. 9,724,016 B1 8/2017 Al-Ali et al. 10,055,121 B2 8/2018 Al-Ali et al. 9,724,024 B2 8/2018 Al-Ali et al. 10,055,121 B2 8/2018 Al-Ali et al. 9,724,024 B2 8/2017 Kiani et al. 10,058,275 B2 8/2018 Al-Ali et al. 9,730,640 B2 8/2017 Diab et al. 10,066,970 B2 9/2018 Al-Ali et al. 9,749,232 B2 8/2017 Sampath et al. 10,078,052 B2 9/2018 Lin et al. 9,749,232 B2 8/2017 Sampath et al. 10,078,052 B2 9/2018 Kinast et al. 9,750,443 B2 9/2017 Smith et al. 10,086,138 B1 10/2018 Novak, Jr. 9,750,443 B2 9/2017 Felfort 10,092,200 B2 10/2018 Al-Ali et al. 9,750,443 B2 9/2017 Telfort 10,092,200 B2 10/2018 Al-Ali et al. 9,755,292 B2 9/2017 Chu et al. 10,092,204 B2 10/2018 Al-Ali et al. 9,755,465 B2 10/2017 Al-Ali et al. 10,098,550 B2 10/2018 Al-Ali et al. 10,998,590 B2 10/2018 Al-Ali et al. 10,978,579 B2 10/2017 Al-Ali et al. 10,098,610 B2 10/2018 Al-Ali et al. 9,775,546 B2 10/2017 Al-Ali B1 D. 10,2014 Al-Ali B1 D. 10,2014 Al-Ali et al. 10,2015 Al-Ali et al. 10,2015 Al-Ali et al. 10,2016 Al-Ali et al. 10,2017 Al-Ali e			N			
9,717,458 B2 8/2017 Lamego et al. 9,724,016 B1 8/2017 Al-Ali et al. 9,724,024 B2 8/2017 Al-Ali et al. 9,724,025 B1 8/2017 Al-Ali et al. 9,730,640 B2 8/2017 Diab et al. 9,743,387 B2 8/2017 Al-Ali et al. 9,749,232 B2 8/2017 Al-Ali et al. 9,749,232 B2 8/2017 Al-Ali et al. 9,749,387 B2 8/2017 Al-Ali et al. 9,749,3887 B2 8/2017 Olsen 10,078,052 B2 9/2018 Lin et al. 9,750,442 B2 9/2017 Olsen 10,086,138 B1 10/2018 Novak, Jr. 9,750,443 B2 9/2017 Smith et al. 9,750,443 B2 9/2017 Telfort 10,092,244 B2 10/2018 Chuang et al. 9,752,925 B2 9/2017 Chu et al. 9,755,546 B2 10/2017 Al-Ali et al. 9,775,546 B2 10/2017 Diab et al. 10,098,591 B2 10/2018 Al-Ali et al. 9,778,079 B1 10/2017 Al-Ali et al. 9,778,079 B1 10/2017 Al-Ali et al. 9,781,984 B2 10/2017 Lamego et al. 10,117,587 B2 11/2018 Al-Ali et al. 9,782,110 B2 10/2017 Lamego et al. 9,782,110 B2 10/2017 Al-Ali et al. 9,785,568 B2 10/2017 Al-Ali et al. 9,785,758 B2 10/2017 Lamego et al. 9,785,758 B2 10/2017 Al-Ali et al. 9,782,110 B2 10/2017 Al-Ali et al. 9,782,110 B2 10/2017 Lamego et al. 9,783,758 B2 10/2017 Al-Ali et al. 9,785,758 B2 10/2017 Al-Ali et al. 9,785,758 B2 10/2017 Lamego et al. 10,130,289 B2 11/2018 Al-Ali et al. 9,785,758 B2 10/2017 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 9,785,758 B2 10/2017 Lamego et al. 10,130,289 B2 11/2018 Al-Ali et al. 9,785,758 B2 10/2017 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 9,785,758 B2 10/2017 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 9,785,758 B2 10/2017 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 9,785,388 B2 10/2017 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 9,785,388 B2 10/2017 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 10,144,616 B2 12/2018 Barker et al. 9,785,388 B2 10/2017 Al-Ali et al. 10,144,616 B2 12/2018 Barker et al. 10,159,412 B2 12/2018 Barker et al. 9,883,375 B2 12/2017 Kiani et al. 10,183,348 B2 1/2019 Kiani et al. 10,183,348 B2 1/2019 Kiani et al. 10,144,616 B2 1/2019 Kiani et al.						
9,724,016 B1 8/2017 Al-Ali et al. 9,724,024 B2 8/2017 Al-Ali 10,058,275 B2 8/2018 Chaudhri et al. 9,724,025 B1 8/2017 Kiani et al. 10,058,275 B2 8/2018 Al-Ali et al. 9,730,640 B2 8/2017 Diab et al. 10,066,970 B2 9/2018 Al-Ali et al. 9,749,232 B2 8/2017 Al-Ali et al. 10,078,052 B2 9/2018 Lin et al. 9,749,232 B2 8/2017 Olsen 10,078,052 B2 9/2018 Lin et al. 9,750,442 B2 9/2017 Olsen 10,086,138 B1 10/2018 Novak, Jr. 9,750,443 B2 9/2017 Smith et al. 10,092,244 B2 10/2018 Al-Ali et al. 9,755,945 B2 9/2017 Chu et al. 10,092,244 B2 10/2018 Chuang et al. 9,755,545 B2 10/2017 Al-Ali et al. 10,092,249 B2 10/2018 Kiani et al. 9,775,546 B2 10/2017 Diab et al. 10,098,591 B2 10/2018 Al-Ali et al. 9,775,570 B2 10/2017 Al-Ali et al. 10,098,610 B2 10/2018 Al-Ali et al. 9,778,079 B1 10/2017 Baranski et al. 10,117,587 B2 10/2018 Al-Ali et al. 9,781,984 B2 10/2017 Baranski et al. 10,117,587 B2 11/2018 Al-Ali et al. 9,782,077 B2 10/2017 Lamego et al. 10,117,587 B2 11/2018 Al-Ali et al. 9,782,110 B2 10/2017 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 9,788,756 B2 10/2017 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 9,788,756 B2 10/2017 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 9,788,758 B2 10/2017 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 9,788,756 B2 10/2017 Al-Ali et al. 10,130,289 B2 11/2018 Barker et al. 9,789,330 B2 10/2017 Al-Ali et al. 10,130,281 B2 11/2018 Barker et al. 9,789,330 B2 10/2017 Al-Ali et al. 10,130,281 B2 11/2018 Barker et al. 9,795,330 B2 10/2017 Al-Ali et al. 10,130,281 B2 11/2018 Barker et al. 9,795,330 B2 10/2017 Al-Ali et al. 10,130,281 B2 11/2018 Barker et al. 9,795,330 B2 10/2017 Al-Ali et al. 10,130,281 B2 11/2018 Barker et al. 9,838,755 B2 12/2017 Kiani 10,188,348 B2 1/2019 Kiani et al. 9,833,150 B2 12/2017 Kiani et al. 10,188,348 B2 1/2019 Kiani et al. 9,833,375 B2 12/2017 Kiani et al. 10,184,847 B2 2/2019 Kiani et al.						
9,724,024 B2 8/2017 Al-Ali et al. 10,058,275 B2 9/2018 Al-Ali et al. 9,724,025 B1 8/2017 Kiani et al. 10,064,562 B2 9/2018 Al-Ali et al. 9,734,387 B2 8/2017 Diab et al. 10,076,257 B2 9/2018 Convresunker et al. 9,749,232 B2 8/2017 Al-Ali et al. 10,076,257 B2 9/2018 Lin et al. 9,749,232 B2 8/2017 Sampath et al. 10,076,257 B2 9/2018 Ness et al. 10,750,442 B2 9/2017 Olsen 10,086,138 B1 10/2018 Novak, Jr. 9,750,443 B2 9/2017 Smith et al. 10,092,200 B2 10/2018 Al-Ali et al. 10,9750,443 B2 9/2017 Telfort 10,092,244 B2 10/2018 Al-Ali et al. 10,9752,925 B2 9/2017 Chu et al. 10,092,244 B2 10/2018 Al-Ali et al. 10,9752,925 B2 9/2017 Diab et al. 10,098,591 B2 10/2018 Al-Ali et al. 10,9775,546 B2 10/2017 Al-Ali et al. 10,098,591 B2 10/2018 Al-Ali et al. 10,9775,570 B2 10/2017 Al-Ali et al. 10,098,591 B2 10/2018 Al-Ali et al. 10,978,598 B2 10/2017 Baranski et al. 10,175,878 B2 10/2017 Baranski et al. 10,175,878 B2 10/2017 Baranski et al. 10,175,878 B2 11/2018 Al-Ali et al. 10,175,878 B2 10/2017 Lamego et al. 10,123,726 B2 11/2018 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 10,130,289 B2 11/2018 Barker et al. 10,154,815 B2 12/2018 Barker et al. 10,159,412 B2 12/2018 Barker et al. 10,159,412 B2 12/2018 Barker et al. 10,144,418 B2 10/2017 Al-Ali et al. 10,159,412 B2 12/2018 Al-Ali et al. 10,144,418 B2 11/2017 Perca et al. 10,188,331 B2 11/2019 Al-Ali et al. 10,188,331 B1 11/2019 Al-Ali et al. 10,188,331 B1 11/2019 Al-Ali et al. 10,188,331 B2 11/2019 Al-Ali et al. 10,188,331 B2 11/2019 Al-Ali						
9,724,025 B1 8/2017 Kiani et al. 10,064,562 B2 9/2018 Al-Ali 9,730,640 B2 8/2017 Diab et al. 10,066,970 B2 9/2018 Gowreesunker et al. 9,743,887 B2 8/2017 Sampath et al. 10,078,052 B2 9/2018 Ness et al. 9,749,232 B2 8/2017 Sampath et al. 10,078,052 B2 9/2018 Ness et al. 9,750,442 B2 9/2017 Smith et al. 10,092,200 B2 10/2018 Novak, Jr. 9,750,443 B2 9/2017 Telfort 10,092,204 B2 10/2018 Chuang et al. 9,750,461 B1 9/2017 Telfort 10,092,244 B2 10/2018 Chuang et al. 9,752,925 B2 9/2017 Chu et al. 10,098,550 B2 10/2018 Kiani et al. 9,775,545 B2 10/2017 Diab et al. 10,098,550 B2 10/2018 Al-Ali et al. 9,775,545 B2 10/2017 Diab et al. 10,098,50 B2 10/2018 Al-Ali et al. 9,775,576 B2 10/2017 Diab et al. 10,098,50 B2 10/2018 Al-Ali et al. 9,778,079 B1 10/2017 Al-Ali et al. 10,098,610 B2 10/2018 Al-Ali et al. 9,778,079 B1 10/2017 Lamego et al. 10,117,587 B2 11/2018 Delong et al. 10,117,587 B2 11/2018 Han 9,782,077 B2 10/2017 Lamego et al. 10,130,291 B2 11/2018 Al-Ali et al. 9,788,735 B2 10/2017 Al-Ali Dass,5283 S 12/2018 Barker et al. 9,788,735 B2 10/2017 Al-Ali Dass,5283 S 12/2018 Barker et al. 9,785,368 B2 10/2017 Al-Ali Dass,5283 S 12/2018 Barker et al. 9,795,300 B2 10/2017 Al-Ali Dass,5285 S 12/2018 Barker et al. 9,795,300 B2 10/2017 Al-Ali Dass,5285 S 12/2018 Barker et al. 9,795,300 B2 10/2017 Al-Ali Dass,5285 S 12/2018 Barker et al. 9,795,300 B2 10/2017 Al-Ali Dass,5285 S 12/2018 Barker et al. 9,795,308 B2 10/2017 Al-Ali Dass,5285 S 12/2018 Barker et al. 9,795,308 B2 10/2017 Al-Ali Dass,5285 S 12/2018 Barker et al. 9,795,308 B2 10/2017 Al-Ali Dass,5285 S 12/2018 Barker et al. 9,801,586 B2 10/2017 Al-Ali et al. 10,154,815 B2 12/2018 Al-Ali et al. 9,801,586 B2 10/2017 Al-Ali et al. 10,188,331 B1 1/2019 Al-Ali et al. 9,801,586 B2 10/2017 Al-Ali et al. 10,188,331 B1 1/2019 Al-Ali et al. 9,801,586 B2 10/2017 Al-Ali et al. 10,188,331 B1 1/2019 Al-Ali et al. 9,803,3150 B2 12/2017 Kiani d1. 10,188,348 B2 1/2019 Al-Ali et al. 9,833,150 B2 12/2017 Kiani et al. RE47,244 E 2/2019 Kiani et al. 9,839,379 B2 12/2017 Al-Ali et al. 10,1						
9,730,640 B2 8/2017 Diab et al. 10,066,970 B2 9/2018 Gowresunker et al. 9,743,887 B2 8/2017 Sampath et al. 10,076,257 B2 9/2018 Lin et al. 10,9749,232 B2 8/2017 Sampath et al. 10,078,052 B2 9/2018 Ness et al. 9,750,442 B2 9/2017 Olsen 10,086,138 B1 10/2018 Novak, Jr. 9,750,461 B1 9/2017 Telfort 10,092,200 B2 10/2018 Al-Ali et al. 10,092,244 B2 10/2018 Chuang et al. 9,755,946 B2 10/2017 Chu et al. 10,092,244 B2 10/2018 Chuang et al. 9,775,546 B2 10/2017 Diab et al. 10,098,550 B2 10/2018 Al-Ali et al. 10,098,551 B2 10/2018 Al-Ali et al. 10,098,571 B2 10/2017 Diab et al. 10,098,591 B2 10/2018 Al-Ali et al. 9,775,576 B2 10/2017 Al-Ali et al. 10,098,591 B2 10/2018 Al-Ali et al. 9,778,079 B1 10/2017 Al-Ali et al. 10,117,587 B2 11/2018 Delong et al. 10,117,587 B2 11/2018 Al-Ali et al. 10,130,289 B2 11/2018 Barker et al. 10,130,289 B2 11/2018 Barker et al. 10,130,291 B2 11/2018 Barker et al. 10,130,291 B2 11/2018 Barker et al. 10,149,616 B2 12/2018 Barker et al. 10,149,616 B2 12/2018 Barker et al. 10,154,815 B2 12/2018 Barker et al. 10,165,954 B2 12/2019 Al-Ali et al. 10,188,331 B1 12/2019 Al-Ali et a				10,064,562 B2	9/2018	Al-Ali
9,749,232 B2 8/2017 Sampath et al. 10,078,052 B2 9/2018 Ness et al. 9,750,442 B2 9/2017 Olsen 10,086,138 B1 10/2018 Al-Ali et al. 10,092,244 B2 10/2018 Al-Ali et al. 10,092,244 B2 10/2018 Chuang et al. 10,755,045 B2 10/2017 Chu et al. 10,092,244 B2 10/2018 Chuang et al. 10,775,545 B2 10/2017 Chu et al. 10,098,550 B2 10/2018 Al-Ali et al. 10,1098,550 B2 10/2018 Al-Ali et al. 10,1098,550 B2 10/2018 Al-Ali et al. 10,117,587 B2 11/2018 Al-Ali et al. 10,123,726 B2 11/2018 Al-Ali et al. 10,130,299 B2 11/2018 Barker et al. 10,149,616 B2 12/2018 Barker et al. 10,159,530 B2 10/2017 Al-Ali Barker et al. 10,149,616 B2 12/2018 Barker et al. 10,159,543 B2 10/2017 Al-Ali et al. 10,159,412 B2 12/2018 Barker et al. 10,188,338 B1 12/2018 Barker et al. 10,188,338 B1 12/2019 Al-Ali et al. 10,188,331 B1 12/2019 Al-Ali et al. 10,18	9,730,640 B2					
9,750,442 B2 9/2017 Olsen 10,086,138 B1 10/2018 Novak, Jr. 9,750,443 B2 9/2017 Smith et al. 10,092,200 B2 10/2018 Al-Ali et al. 10,092,244 B2 10/2018 Chuang et al. 10,750,461 B1 9/2017 Telfort 10,092,244 B2 10/2018 Kiani et al. 10,092,249 B2 10/2018 Kiani et al. 10,092,592 B2 9/2017 Chu et al. 10,092,592 B2 10/2018 Kiani et al. 10,098,550 B2 10/2018 Al-Ali et al. 10,098,575,546 B2 10/2017 Al-Ali 10,098,610 B2 10/2018 Al-Ali et al. 10,117,587 B2 11/2018 Al-Ali et al. 10,117,587 B2 11/2018 Al-Ali et al. 10,117,587 B2 11/2018 Al-Ali et al. 10,123,726 B2 11/2018 Al-Ali et al. 10,123,726 B2 11/2018 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 10,130,291 B2 11/2018 Barker et al. 10,795,300 B2 10/2017 Al-Ali et al. 10,835,282 S 12/2018 Barker et al. 10,795,300 B2 10/2017 Al-Ali et al. 10,835,285 S 12/2018 Barker et al. 10,795,300 B2 10/2017 Al-Ali et al. 10,149,616 B2 12/2018 Barker et al. 10,795,338 B2 10/2017 Al-Ali et al. 10,149,616 B2 12/2018 Barker et al. 10,159,412 B2 12/2018 Lamego et al. 10,165,954 B2 10/2017 Kiani 10,159,412 B2 12/2018 Lamego et al. 10,188,331 B1 1/2019 Al-Ali et al. 10,188,331 B1 1/2019 Kiani et al. 10,833,180 B2 12/2017 Kiani 10,188,334 B2 1/2019 Kiani et al. 10,833,180 B2 12/2017 Kiani et al. RE47,248 E 2/2019 Kiani et al. 10,983,3379 B2 12/2017 Al-Ali et al. RE47,249 E 2/2019 Kiani et al. 10,194,847 B2 2/2019 Al-Ali et al. 10,194,847 B2 2/2019 Al-Ali et al.						
9,750,443 B2 9/2017 Smith et al. 9,750,461 B1 9/2017 Telfort 10,092,244 B2 10/2018 Chuang et al. 9,752,925 B2 9/2017 Chu et al. 10,092,249 B2 10/2018 Kiani et al. 9,775,545 B2 10/2017 Al-Ali et al. 10,098,550 B2 10/2018 Al-Ali et al. 9,775,546 B2 10/2017 Diab et al. 10,098,550 B2 10/2018 Al-Ali et al. 9,775,570 B2 10/2017 Al-Ali et al. 10,098,591 B2 10/2018 Al-Ali et al. 9,778,079 B1 10/2017 Al-Ali et al. 10,098,591 B2 10/2018 Al-Ali et al. 9,778,079 B1 10/2017 Al-Ali et al. 10,098,610 B2 10/2018 Al-Ali et al. 9,781,984 B2 10/2017 Baranski et al. 10,117,587 B2 11/2018 DeJong et al. 9,782,077 B2 10/2017 Lamego et al. 10,112,726 B2 11/2018 Al-Ali et al. 9,782,110 B2 10/2017 Kiani 10,130,289 B2 11/2018 Al-Ali et al. 9,788,758 B2 10/2017 Lamego et al. 10,130,289 B2 11/2018 Al-Ali et al. 9,788,768 B2 10/2017 Al-Ali D835,282 S 12/2018 Barker et al. 9,798,768 B2 10/2017 Al-Ali D835,282 S 12/2018 Barker et al. 9,795,300 B2 10/2017 Al-Ali D835,284 S 12/2018 Barker et al. 9,795,338 B2 10/2017 Al-Ali D835,284 S 12/2018 Barker et al. 9,795,338 B2 10/2017 Al-Ali D835,285 S 12/2018 Barker et al. 9,795,338 B2 10/2017 Al-Ali D835,285 S 12/2018 Barker et al. 9,795,338 B2 10/2017 Al-Ali D835,285 S 12/2018 Barker et al. 9,801,586 B2 10/2017 Al-Ali 10,154,815 B2 12/2018 Al-Ali et al. 9,801,588 B2 10/2017 Weber et al. 10,159,412 B2 12/2018 Al-Ali et al. 9,801,588 B2 10/2017 Kiani 10,159,412 B2 12/2018 Lamego et al. 9,801,588 B2 10/2017 Kiani 10,188,296 B2 1/2019 Lee 9,808,188 B1 11/2017 Weber et al. 10,188,296 B2 1/2019 Al-Ali et al. 9,803,3152 B2 12/2017 Kiani 10,188,331 B1 1/2019 Al-Ali et al. 9,833,152 B2 12/2017 Kiani 10,188,331 B1 1/2019 Al-Ali et al. 9,833,152 B2 12/2017 Kiani et al. RE47,248 E 2/2019 Kiani et al. 9,833,153 B2 12/2017 Qian et al. RE47,249 E 2/2019 Kiani et al. 9,833,152 B2 12/2017 Al-Ali et al. RE47,249 E 2/2019 Kiani et al.				10,086,138 B1		
9,752,925 B2 9/2017 Chu et al. 10,092,249 B2 10/2018 Kiani et al. 9,775,545 B2 10/2017 Al-Ali et al. 10,098,550 B2 10/2018 Al-Ali et al. 10,098,550 B2 10/2018 Al-Ali et al. 10,098,551 B2 10/2018 Al-Ali et al. 10,098,591 B2 10/2018 Al-Ali et al. 10,098,591 B2 10/2018 Al-Ali et al. 10,098,591 B2 10/2018 Al-Ali et al. 10,098,610 B2 11/2018 Al-Ali et al. 10,117,587 B2 11/2018 Al-Ali et al. 10,117,587 B2 11/2018 Al-Ali et al. 10,123,726 B2 11/2018 Al-Ali et al. 10,123,726 B2 11/2018 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 10,130,291 B2 11/2018 Barker et al. 10,588,768 B2 10/2017 Al-Ali D835,283 S 12/2018 Barker et al. 10,595,300 B2 10/2017 Al-Ali D835,283 S 12/2018 Barker et al. 10,595,358 B2 10/2017 Al-Ali D835,285 S 12/2018 Barker et al. 10,149,616 B2 12/2018 Al-Ali et al. 10,159,412 B2 12/2018 Lamego et al. 10,188,388 B1 11/2017 Weber et al. 10,188,331 B1 1/2019 Lee 10/2017 Al-Ali et al. 10,188,331 B1 1/2019 Al-Ali et al. 10,18						
9,775,545 B2 10/2017 Al-Ali et al. 10,098,550 B2 10/2018 Al-Ali et al. 10,9775,570 B2 10/2017 Al-Ali et al. 10,098,610 B2 10/2018 Al-Ali et al. 10,978,570 B2 10/2017 Al-Ali et al. D833,624 S 11/2018 DeJong et al. 9,778,079 B1 10/2017 Baranski et al. 10,117,587 B2 11/2018 Han 10,117,587 B2 11/2018 Han 10,117,587 B2 11/2018 Han 10,123,726 B2 11/2018 Al-Ali et al. 10,117,587 B2 11/2018 Han 10,123,726 B2 11/2018 Al-Ali et al. 10,123,726 B2 11/2018 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 10,130,291 B2 11/2018 Al-Ali et al. 10,130,291 B2 11/2018 Barker et al. 10,130,291 B2 11/2018 Barker et al. 10,30,289 B2 11/2018 Barker et al. 10,30,291 B2 10/2017 Al-Ali BARS,288 S 12/2018 Barker et al. 10,30,295 B2 10/2017 Al-Ali et al. 10,49,616 B2 12/2018 Al-Ali et al. 10,49,616 B2					10/2018	Chuang et al. Kiani et al.
9,775,546 B2 10/2017 Diab et al. 10,098,591 B2 10/2018 Al-Ali et al. 10,778,079 B1 10/2017 Al-Ali Et al. 10,098,610 B2 10/2018 Al-Ali et al. 10,078,079 B1 10/2017 Al-Ali Et al. 10,117,587 B2 11/2018 DeJong et al. 11/2018 Han 10,117,587 B2 11/2018 Han 10,117,587 B2 11/2018 Han 10,117,587 B2 11/2018 Al-Ali et al. 10,117,587 B2 11/2018 Al-Ali et al. 10,123,726 B2 11/2018 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 10,130,289 B2 11/2018 Al-Ali et al. 10,130,291 B2 11/2018 Al-Ali et al. 10,130,291 B2 11/2018 Al-Ali et al. 10,130,291 B2 11/2018 Barker et al. 10,583,282 S 12/2018 Barker et al. 10,583,283 S 12/2018 Barker et al. 10,583,283 S 12/2018 Barker et al. 10,594,300 B2 10/2017 Al-Ali Barker et al. 10,130,289 B2 11/2018 Barker et al. 10,130,291 B2 10/2017 Al-Ali Barker et al. 10,130,291 B2 12/2018 Barker et al. 10,149,616 B2 12/2018 Barker et al. 10,149,616 B2 12/2018 Barker et al. 10,149,616 B2 12/2018 Al-Ali et al. 10,154,815 B2 12/2018 Al-Ali et al. 10,159,412 B2 12/2018 Al-Ali et al. 10,159,412 B2 12/2018 Lamego et al. 10,159,412 B2 12/2018 Lamego et al. 10,159,412 B2 12/2018 Lamego et al. 10,188,296 B2 1/2019 Al-Ali et al. 10,188,296 B2 1/2019 Al-Ali et al. 10,188,296 B2 1/2019 Al-Ali et al. 10,188,331 B1 1/2019 Kiani et al. 10,833,152 B2 12/2017 Kiani et al. RE47,244 E 2/2019 Kiani et al. 10,833,180 B2 12/2017 Qian et al. RE47,244 E 2/2019 Kiani et al. 10,933,379 B2 12/2017 Al-Ali et al. 10,194,847 B2 2/2019 Al-Ali					10/2018	Al-Ali et al.
9,778,079 B1 10/2017 Al-Ali et al. 9,778,079 B1 10/2017 Al-Ali et al. 9,781,984 B2 10/2017 Baranski et al. 9,782,077 B2 10/2017 Lamego et al. 10,117,587 B2 11/2018 Han 10,123,726 B2 11/2018 Al-Ali et al. 9,782,110 B2 10/2017 Kiani 10,130,289 B2 11/2018 Al-Ali et al. 9,787,568 B2 10/2017 Lamego et al. 9,788,758 B2 10/2017 Lamego et al. 9,788,768 B2 10/2017 Al-Ali D835,282 S 12/2018 Barker et al. 9,788,768 B2 10/2017 Al-Ali D835,283 S 12/2018 Barker et al. 9,795,300 B2 10/2017 Al-Ali D835,284 S 12/2018 Barker et al. 9,795,310 B2 10/2017 Al-Ali D835,285 S 12/2018 Barker et al. 9,795,358 B2 10/2017 Al-Ali D835,285 S 12/2018 Barker et al. 9,795,739 B2 10/2017 Al-Ali D835,285 S 12/2018 Barker et al. 9,801,556 B2 10/2017 Kiani 10,159,412 B2 12/2018 Al-Ali et al. 9,801,588 B2 10/2017 Weber et al. 10,159,412 B2 12/2018 Lamego et al. 9,801,588 B1 11/2017 Perea et al. 10,165,954 B2 1/2019 Lee 9,808,188 B1 11/2017 Weber et al. 10,188,331 B1 1/2019 Al-Ali et al. 9,814,418 B2 11/2017 Kiani 10,188,348 B2 1/2019 Al-Ali et al. 9,833,152 B2 12/2017 Kiani et al. 9,833,152 B2 12/2017 Kiani et al. 9,833,158 B2 12/2017 Kiani et al. 9,833,758 B2 12/2017 Kiani et al. 9,838,775 B2 12/2017 Al-Ali et al. RE47,244 E 2/2019 Kiani et al. 9,838,775 B2 12/2017 Al-Ali et al. 10,194,847 B2 2/2019 Kiani et al.	9,775,546 B2	10/2017	Diab et al.			
9,781,984 B2 10/2017 Baranski et al. 10,117,587 B2 11/2018 Al-Ali et al. 9,782,077 B2 10/2017 Lamego et al. 10,130,289 B2 11/2018 Al-Ali et al. 9,787,568 B2 10/2017 Lamego et al. 10,130,291 B2 11/2018 Schurman et al. 9,788,7568 B2 10/2017 Al-Ali D835,282 S 12/2018 Barker et al. 9,788,7568 B2 10/2017 Al-Ali D835,282 S 12/2018 Barker et al. 9,795,300 B2 10/2017 Al-Ali D835,283 S 12/2018 Barker et al. 9,795,310 B2 10/2017 Al-Ali D835,284 S 12/2018 Barker et al. 9,795,358 B2 10/2017 Al-Ali D835,285 S 12/2018 Barker et al. 9,795,739 B2 10/2017 Al-Ali D835,285 S 12/2018 Barker et al. 9,795,739 B2 10/2017 Al-Ali D835,285 S 12/2018 Barker et al. 9,795,739 B2 10/2017 Al-Ali D835,284 S 12/2018 Barker et al. 10,149,616 B2 12/2018 Al-Ali et al. 10,154,815 B2 12/2018 Al-Ali et al. 10,154,815 B2 12/2018 Al-Ali et al. 10,159,412 B2 12/2018 Lamego et al. 10,165,954 B2 12/2018 Lamego et al. 10,165,954 B2 1/2019 Lee 9,808,188 B1 11/2017 Perea et al. 10,188,331 B1 1/2019 Lee 9,814,418 B2 11/2017 Weber et al. 10,188,348 B2 1/2019 Al-Ali et al. 10,188,348 B2 11/2017 Kiani 10,188,348 B2 11/2019 Kiani et al. 9,833,152 B2 12/2017 Kiani 10,188,348 B2 12/2017 Kiani et al. RE47,244 E 2/2019 Kiani et al. 9,838,775 B2 12/2017 Kiani et al. RE47,244 E 2/2019 Kiani et al. 9,838,775 B2 12/2017 Qian et al. RE47,249 E 2/2019 Kiani et al. 9,839,379 B2 12/2017 Al-Ali et al. 10,194,847 B2 2/2019 Kiani et al.						
9,782,077 B2 10/2017 Lamego et al. 10,123,726 B2 11/2018 Al-Ali et al. 10,787,7568 B2 10/2017 Lamego et al. 10,130,289 B2 11/2018 Schurman et al. 10,788,735 B2 10/2017 Al-Ali et al. 10,130,291 B2 11/2018 Barker et al. 10,788,768 B2 10/2017 Al-Ali et al. 10,835,282 S 12/2018 Barker et al. 10,795,300 B2 10/2017 Al-Ali Barker et al. 10,835,283 S 12/2018 Barker et al. 10,795,310 B2 10/2017 Al-Ali Barker et al. 10,149,616 B2 12/2018 Barker et al. 10,149,616 B2 12/2018 Barker et al. 10,154,815 B2 10/2017 Al-Ali et al. 10,154,815 B2 12/2018 Al-Ali et al. 10,154,815 B2 12/2018 Al-Ali et al. 10,159,412 B2 12/2018 Lamego et al. 10,165,954 B2 12/2018 Lamego et al. 10,165,954 B2 1/2019 Lee 1/2019 Al-Ali et al. 10,188,331 B1 1/2019 Al-Ali et al. 10,188,331 B1 1/2019 Al-Ali et al. 10,188,331 B1 1/2019 Al-Ali et al. 10,188,348 B2 1/2017 Kiani 10,188,348 B2 1/2019 Kiani et al. 10,833,152 B2 12/2017 Kiani et al. 10,188,348 B2 12/2017 Kiani et al. 10,83,775 B2 12/2017 Kiani et al. 10,83,775 B2 12/2017 Kiani et al. 10,184,749 E 2/2019 Kiani et al. 10,83,775 B2 12/2017 Al-Ali et al. 10,194,847 B2 2/2019 Kiani et al. 10,983,775 B2 12/2017 Al-Ali et al. 10,194,847 B2 2/2019 Kiani et al.						
9,787,568 B2 10/2017 Al-Ali						
9,788,735 B2 10/2017 Al-Ali et al. 9,788,768 B2 10/2017 Al-Ali et al. 9,795,300 B2 10/2017 Al-Ali Et al. 9,795,310 B2 10/2017 Al-Ali Et al. 9,795,358 B2 10/2017 Al-Ali Et al. 9,795,378 B2 10/2017 Al-Ali Et al. 9,795,378 B2 10/2017 Al-Ali Et al. 9,795,378 B2 10/2017 Al-Ali Et al. 9,801,556 B2 10/2017 Al-Ali Et al. 9,801,558 B2 10/2017 Al-Ali Et al. 9,801,588 B2 10/2017 Weber et al. 10,159,412 B2 12/2018 Barker et al. 10,149,616 B2 12/2018 Barker et al. 10,149,616 B2 12/2018 Al-Ali et al. 10,154,815 B2 12/2018 Al-Ali et al. 10,159,415 B2 12/2018 Al-Ali et al. 10,159,412 B2 12/2018 Lamego et al. 10,165,954 B2 1/2019 Lee 9,808,188 B1 11/2017 Weber et al. 10,165,954 B2 1/2019 Lee 9,808,188 B1 11/2017 Weber et al. 10,188,331 B1 1/2019 Al-Ali et al. 9,814,418 B2 11/2017 Kiani 10,188,348 B2 1/2019 Kiani et al. 9,833,152 B2 12/2017 Kiani et al. 9,833,180 B2 12/2017 Shakespeare et al. RE47,218 E 2/2019 Kiani et al. 9,838,775 B2 12/2017 Qian et al. RE47,244 E 2/2019 Kiani et al. 9,839,379 B2 12/2017 Al-Ali et al. 10,194,847 B2 2/2019 Kiani et al.			Kiani			
9,788,768 B2 10/2017 Al-Ali et al. D835,283 S 12/2018 Barker et al. D835,284 S 12/2018 Barker et al. D835,284 S 12/2018 Barker et al. D835,285 S 12/2018 Barker et al		10/2017				
9,795,310 B2 10/2017 Al-Ali						
9,795,358 B2 10/2017 Telfort et al. 10,149,616 B2 12/2018 Al-Ali et al. 10,795,739 B2 10/2017 Al-Ali et al. 10,154,815 B2 12/2018 Al-Ali et al. 10,159,412 B2 12/2018 Lamego et al. 10,165,954 B2 10/2017 Weber et al. 10,165,954 B2 1/2019 Lee 9,808,188 B1 11/2017 Perea et al. 10,188,296 B2 1/2019 Al-Ali et al. 10,188,296 B2 11/2017 Weber et al. 10,188,331 B1 1/2019 Al-Ali et al. 10,188,331 B1 1/2017 Kiani 10,188,348 B2 1/2019 Kiani et al. 10,183,348 B2 1/2019 Kiani et al. 10,833,180 B2 12/2017 Kiani et al. RE47,218 E 2/2019 Kiani et al. 10,833,180 B2 12/2017 Shakespeare et al. RE47,244 E 2/2019 Kiani et al. 10,838,775 B2 12/2017 Al-Ali et al. 10,194,847 B2 2/2019 Kiani et al. 10,194,847 B2 2/2019 Al-Ali						
9,795,739 B2 10/2017 Al-Ali et al. 10,159,412 B2 12/2018 Lamego et al. 9,801,556 B2 10/2017 Weber et al. 10,165,954 B2 1/2019 Lee 9,808,188 B1 11/2017 Perea et al. 10,188,296 B2 1/2019 Al-Ali et al. 10,188,296 B2 1/2019 Al-Ali et al. 10,188,331 B1 1/2019 Al-Ali et al. 10,188,348 B2 1/2019 Kiani et al. 10,188,34						
9,801,588 B2 10/2017 Weber et al. 10,165,954 B2 1/2019 Lee 9,808,188 B1 11/2017 Perea et al. 10,188,296 B2 1/2019 Al-Ali et al. 9,814,418 B2 11/2017 Weber et al. 10,188,331 B1 1/2019 Al-Ali et al. 9,820,691 B2 11/2017 Kiani 10,188,348 B2 1/2019 Kiani et al. 9,833,152 B2 12/2017 Kiani 10,188,348 B2 1/2019 Kiani et al. 9,833,180 B2 12/2017 Shakespeare et al. RE47,218 E 2/2019 Al-Ali 9,838,775 B2 12/2017 Qian et al. RE47,244 E 2/2019 Kiani et al. 9,839,379 B2 12/2017 Al-Ali et al. 10,194,847 B2 2/2019 Al-Ali						
9,808,188 B1 11/2017 Perea et al. 10,188,296 B2 1/2019 Al-Ali et al. 9,814,418 B2 11/2017 Weber et al. 10,188,331 B1 1/2019 Al-Ali et al. 9,820,691 B2 11/2017 Kiani 10,188,348 B2 1/2019 Kiani et al. 9,833,152 B2 12/2017 Kiani et al. RE47,218 E 2/2019 Al-Ali 9,833,180 B2 12/2017 Shakespeare et al. RE47,244 E 2/2019 Kiani et al. 9,838,775 B2 12/2017 Qian et al. RE47,249 E 2/2019 Kiani et al. 9,839,379 B2 12/2017 Al-Ali et al. 10,194,847 B2 2/2019 Al-Ali		10/2017	Kiani			
9,814,418 B2 11/2017 Weber et al. 10,188,331 B1 1/2019 Al-Ali et al. 9,820,691 B2 11/2017 Kiani 10,188,348 B2 1/2019 Kiani et al. 9,833,152 B2 12/2017 Kiani et al. RE47,218 E 2/2019 Al-Ali 9,833,180 B2 12/2017 Shakespeare et al. RE47,244 E 2/2019 Kiani et al. 9,838,775 B2 12/2017 Qian et al. RE47,249 E 2/2019 Kiani et al. 9,839,379 B2 12/2017 Al-Ali et al. 10,194,847 B2 2/2019 Al-Ali						
9,820,691 B2 11/2017 Kiani 10,188,348 B2 1/2019 Kiani et al. 9,833,152 B2 12/2017 Kiani et al. RE47,218 E 2/2019 Al-Ali 9,833,180 B2 12/2017 Shakespeare et al. RE47,244 E 2/2019 Kiani et al. 9,838,775 B2 12/2017 Qian et al. RE47,249 E 2/2019 Kiani et al. 9,839,379 B2 12/2017 Al-Ali et al. 10,194,847 B2 2/2019 Al-Ali						
9,833,180 B2 12/2017 Shakespeare et al. RE47,244 E 2/2019 Kiani et al. 9,838,775 B2 12/2017 Qian et al. RE47,249 E 2/2019 Kiani et al. 9,839,379 B2 12/2017 Al-Ali et al. 10,194,847 B2 2/2019 Al-Ali	9,820,691 B2	11/2017	Kiani	10,188,348 B2	1/2019	Kiani et al.
9,838,775 B2 12/2017 Qian et al. RE47,249 E 2/2019 Kiani et al. 9,839,379 B2 12/2017 Al-Ali et al. 10,194,847 B2 2/2019 Al-Ali						
9,839,379 B2 12/2017 Ål-Ali et al. 10,194,847 B2 2/2019 Al-Ali				RE47,244 E RE47,240 E		
	, ,					

(56)	Referen	ces Cited	2012/0165629			Merritt et al.
211	PATENT	DOCUMENTS	2012/0179006 2012/0197093			Jansen et al. LeBoeuf et al.
0.5	. IAILINI	DOCUMENTS	2012/0197137			Jeanne et al.
10,201,286 B2	2/2019	Waydo	2012/0209082	A1	8/2012	Al-Ali
10,201,298 B2		Al-Ali et al.	2012/0209084			Olsen et al.
10,205,272 B2		Kiani et al.	2012/0283524 2012/0296178			Kiani et al.
10,205,291 B2		Scruggs et al.	2012/0296178		12/2012	Lamego et al.
10,213,108 B2 10,215,698 B2	2/2019	Han et al.	2012/0330112			Lamego et al.
10,219,706 B2	3/2019		2013/0006076	A1	1/2013	McHale
10,219,746 B2		McHale et al.	2013/0018233			Cinbis et al.
10,219,754 B1		Lamego	2013/0023775 2013/0041591			Lamego et al. Lamego
10,226,187 B2 10,226,576 B2	3/2019	Al-Ali et al.	2013/0046204		2/2013	Lamego et al.
10,231,657 B2		Al-Ali et al.	2013/0060147		3/2013	Welch et al.
10,231,670 B2		Blank et al.	2013/0085346			Lin et al.
10,231,676 B2		Al-Ali et al.	2013/0096405 2013/0096936		4/2013	Sampath et al.
RE47,353 E		Kiani et al. Ness et al.	2013/0030330			Gu et al.
10,247,670 B2 10,251,585 B2		Al-Ali et al.	2013/0190581			Al-Ali et al.
10,251,586 B2		Lamego	2013/0204112			White et al.
10,255,994 B2		Sampath et al.	2013/0211214		8/2013	Olsen Siskavich
10,258,265 B1		Poeze et al.	2013/0243021 2013/0253334			Al-Ali et al.
10,258,266 B1 10,265,024 B2		Poeze et al. Lee et al.	2013/0262730			Al-Ali et al.
10,271,748 B2	4/2019		2013/0267804		10/2013	
10,278,626 B2	5/2019	Schurman et al.	2013/0274572			Al-Ali et al.
10,278,648 B2		Al-Ali et al.	2013/0296672 2013/0296713			O'Neil et al. Al-Ali et al.
10,279,247 B2 10,285,626 B1	5/2019	Kıanı Kestelli et al.	2013/0250713			Dalvi et al.
10,283,626 B1 10,292,628 B1		Poeze et al.	2013/0324808			Al-Ali et al.
10,292,657 B2		Abdul-Hafiz et al.	2013/0331660			Al-Ali et al.
10,292,664 B2	5/2019		2013/0331670		12/2013	
10,299,708 B1		Poeze et al.	2014/0012100 2014/0034353			Al-Ali et al. Al-Ali et al.
10,299,709 B2 10,305,775 B2		Perea et al. Lamego et al.	2014/0051953			Lamego et al.
10,307,111 B2		Muhsin et al.	2014/0051955		2/2014	Tiao et al.
10,325,681 B2		Sampath et al.	2014/0066783			Kiani et al.
10,327,337 B2		Triman et al.	2014/0073887 2014/0073960			Petersen et al. Rodriguez-Llorente et al.
10,390,716 B2 10,398,383 B2		Shimuta van Dinther et al.	2014/0077956		3/2014	
10,406,445 B2		Van Bindier et al. Vock et al.	2014/0081100		3/2014	Muhsin et al.
10,416,079 B2		Magnussen et al.	2014/0081175			Telfort
2002/0042558 A1		Mendelson	2014/0094667 2014/0100434		4/2014	Schurman et al. Diab et al.
2003/0036690 A1 2004/0054290 A1		Geddes et al. Chance	2014/0107493			Yuen et al.
2004/0034230 A1		Spycher et al.	2014/0114199	A1	4/2014	Lamego et al.
2005/0277819 A1	12/2005	Kiani et al.	2014/0120564			Workman et al.
2006/0009607 A1		Lutz et al.	2014/0121482 2014/0121483		5/2014	Merritt et al.
2006/0161054 A1 2006/0182659 A1		Reuss et al. Unlu et al.	2014/0121483			Bellott et al.
2007/0282478 A1		Al-Ali et al.	2014/0129702			Lamego et al.
2008/0030468 A1		Al-Ali et al.	2014/0135588			Al-Ali et al.
2009/0177097 A1		Ma et al.	2014/0142401 2014/0163344		5/2014 6/2014	Al-Ali et al.
2009/0247984 A1 2009/0275813 A1	10/2009	Lamego et al.	2014/0163402			Lamego et al.
2009/0275813 A1 2009/0275844 A1	11/2009		2014/0166076	A1	6/2014	Kiani et al.
2010/0004518 A1	1/2010	Vo et al.	2014/0171146			Ma et al.
2010/0030040 A1		Poeze et al.	2014/0171763 2014/0180038		6/2014 6/2014	
2010/0030043 A1 2010/0113948 A1	2/2010	Kuhn Yang et al.	2014/0180038			Sierra et al.
2011/0004106 A1		Iwamiya et al.	2014/0180160			Brown et al.
2011/0082711 A1		Poeze et al.	2014/0187973			Brown et al.
2011/0085721 A1		Guyon et al.	2014/0192177 2014/0194766			Bartula et al. Al-Ali et al.
2011/0105854 A1		Kiani et al. Telfort et al.	2014/0206954			Yuen et al.
2011/0125060 A1 2011/0208015 A1		Welch et al.	2014/0206963		7/2014	
2011/0213212 A1		Al-Ali	2014/0213864			Abdul-Hafiz et al.
2011/0230733 A1	9/2011		2014/0221854		8/2014	
2011/0237969 A1		Eckerbom et al.	2014/0266790 2014/0275808			Al-Ali et al. Poeze et al.
2011/0245697 A1 2011/0288383 A1	10/2011	Miettinen Diab	2014/02/5808			Lamego et al.
2011/0208363 A1 2011/0301444 A1	12/2011		2014/0275871			Lamego et al.
2012/0041316 A1		Al-Ali et al.	2014/0275872			Merritt et al.
2012/0046557 A1	2/2012		2014/0275881			Lamego et al.
2012/0059267 A1		Lamego et al.	2014/0276013			Muehlemann et al.
2012/0088984 A1 2012/0150052 A1		Al-Ali et al. Buchheim et al.	2014/0276115 2014/0276116			Dalvi et al. Takahashi et al.
2012/0130032 Al	0/2012	Dacimenni et al.	2017/02/0110	73.1	2/2014	rananasın et al.

(56)	Referen	ces Cited	2016/0029933			Al-Ali et al.
U.S.	PATENT	DOCUMENTS	2016/0038045 2016/0041531			Shapiro Mackie et al.
0.0.		DOCOMENTO	2016/0045118		2/2016	
2014/0288400 A1		Diab et al.	2016/0051157		2/2016 2/2016	Waydo
2014/0303520 A1		Telfort et al.	2016/0051158 2016/0051205			Al-Ali et al.
2014/0316217 A1 2014/0316218 A1		Purdon et al. Purdon et al.	2016/0058302			Raghuram et al.
2014/0316228 A1		Blank et al.	2016/0058309		3/2016	
2014/0323825 A1		Al-Ali et al.	2016/0058310 2016/0058312		3/2016	Lijima Han et al.
2014/0323897 A1 2014/0323898 A1		Brown et al. Purdon et al.	2016/0058338			Schurman et al.
2014/0323898 A1 2014/0330092 A1		Al-Ali et al.	2016/0058347	A1	3/2016	Reichgott et al.
2014/0330098 A1		Merritt et al.	2016/0058356			Raghuram et al.
2014/0330099 A1		Al-Ali et al.	2016/0058370 2016/0066823			Raghuram et al. Kind et al.
2014/0336481 A1 2014/0357966 A1		Shakespeare et al. Al-Ali et al.	2016/0066824			Al-Ali et al.
2014/0361147 A1	12/2014		2016/0066879			Telfort et al.
2014/0371548 A1		Al-Ali et al.	2016/0071392 2016/0072429			Hankey et al. Kiani et al.
2014/0371632 A1 2014/0378784 A1		Al-Ali et al. Kiani et al.	2016/0073967			Lamego et al.
2014/03787844 A1	12/2014		2016/0081552		3/2016	Wojtczuk et al.
2015/0005600 A1		Blank et al.	2016/0095543 2016/0095548			Telfort et al. Al-Ali et al.
2015/0011907 A1		Purdon et al. Poeze et al.	2016/0093348			Al-Ali et al.
2015/0012231 A1 2015/0018650 A1		Al-Ali et al.	2016/0106367			Jorov et al.
2015/0025406 A1		Al-Ali	2016/0113527			Al-Ali et al.
2015/0032029 A1		Al-Ali et al.	2016/0143548 2016/0154950		5/2016	Al-Alı Nakajima et al.
2015/0038859 A1 2015/0045637 A1	2/2015	Dalvi et al.	2016/0157780			Rimminen et al.
2015/0045685 A1		Al-Ali et al.	2016/0166182	A1	6/2016	Al-Ali et al.
2015/0051462 A1	2/2015	Olsen	2016/0166183			Poeze et al.
2015/0065889 A1		Gandelman et al.	2016/0196388 2016/0197436			Lamego Barker et al.
2015/0080754 A1 2015/0087936 A1		Purdon et al. Al-Ali et al.	2016/0213281			Eckerbom et al.
2015/0094546 A1	4/2015		2016/0213309			Sannholm et al.
2015/0097701 A1		Al-Ali et al.	2016/0228043 2016/0233632			O'Neil et al. Scruggs et al.
2015/0099324 A1 2015/0099950 A1		Wojtczuk et al. Al-Ali et al.	2016/0233032			Schmidt et al.
2015/0099951 A1		Al-Ali et al.	2016/0256058		9/2016	Pham et al.
2015/0099955 A1	4/2015	Al-Ali et al.	2016/0256082			Ely et al.
2015/0101844 A1		Al-Ali et al.	2016/0267238 2016/0270735		9/2016 9/2016	Nag Diab et al.
2015/0106121 A1 2015/0112151 A1		Muhsin et al. Muhsin et al.	2016/0283665			Sampath et al.
2015/0116076 A1		Al-Ali et al.	2016/0287090			Al-Ali et al.
2015/0119725 A1		Martin et al.	2016/0287107 2016/0287181			Szabados et al. Han et al.
2015/0126830 A1 2015/0133755 A1		Schurman et al. Smith et al.	2016/0287786		10/2016	
2015/0140863 A1		Al-Ali et al.	2016/0296169			McHale et al.
2015/0141781 A1		Weber et al.	2016/0296173		10/2016	Culbert Isikman et al.
2015/0165312 A1 2015/0173671 A1	6/2015	Kiani Paalasmaa et al.	2016/0296174 2016/0310027		10/2016	
2015/01/5071 A1 2015/0196237 A1		Lamego	2016/0310052	Al	10/2016	Al-Ali et al.
2015/0201874 A1	7/2015	Diab	2016/0314260		10/2016	
2015/0208966 A1		Al-Ali	2016/0324488 2016/0327984		11/2016	Al-Ali et al.
2015/0216459 A1 2015/0230755 A1		Al-Ali et al. Al-Ali et al.	2016/0331332		11/2016	
2015/0238722 A1		Al-Ali	2016/0367173			Dalvi et al.
2015/0245773 A1	9/2015	Lamego et al.	2016/0378069 2016/0378071			Rothkopf Rothkopf
2015/0245793 A1 2015/0245794 A1		Al-Ali et al. Al-Ali	2017/0000394			Al-Ali et al.
2015/0255001 A1		Haughav et al.	2017/0007134			Al-Ali et al.
2015/0257689 A1		Al-Ali et al.	2017/0007183 2017/0007198			Dusan et al. Al-Ali et al.
2015/0272514 A1 2015/0281424 A1		Kiani et al. Vock et al.	2017/0007198			Prest et al.
2015/0318100 A1		Rothkopf et al.	2017/0014083	A1	1/2017	Diab et al.
2015/0351697 A1	12/2015	Weber et al.	2017/0014084			Al-Ali et al.
2015/0351704 A1		Kiani et al.	2017/0024748 2017/0042488		1/2017 2/2017	Muhsin
2015/0359429 A1 2015/0366472 A1	12/2015	Al-Ali et al. Kiani	2017/0055851		3/2017	
2015/0366507 A1	12/2015		2017/0055882	Al	3/2017	Al-Ali et al.
2015/0374298 A1		Al-Ali et al.	2017/0055887		3/2017	
2015/0380875 A1 2016/0000362 A1		Coverston et al. Diab et al.	2017/0055896 2017/0074897			Al-Ali et al. Mermel et al.
2016/0000362 A1 2016/0007930 A1		Weber et al.	2017/0074897			Telfort et al.
2016/0019360 A1		Pahwa et al.	2017/0084133			Cardinali et al.
2016/0022160 A1		Pi et al.	2017/0086689			Shui et al.
2016/0023245 A1		Zadesky et al.	2017/0086723			Al-Ali et al.
2016/0029932 A1	2/2016	Al-Ali	2017/0086742	AI	5/2017	Harrison-Noonan et al.

(56)	References Cited	2018/0130325 A1		Kiani et al.
U.S.	PATENT DOCUMENTS	2018/0132769 A1 2018/0132770 A1		Weber et al. Lamego
0.0.	THE TEST DOCUMENTS	2018/0146901 A1	5/2018	Al-Ali et al.
2017/0086743 A1	3/2017 Bushnell et al.	2018/0146902 A1		Kiani et al.
2017/0094450 A1	3/2017 Tu et al.	2018/0153418 A1 2018/0153442 A1	6/2018 6/2018	Sullivan et al. Eckerbom et al.
2017/0143281 A1 2017/0147774 A1	5/2017 Olsen 5/2017 Kiani	2018/0153446 A1	6/2018	
2017/0156620 A1	6/2017 Al-Ali et al.	2018/0153447 A1		Al-Ali et al.
2017/0164884 A1	6/2017 Culbert et al.	2018/0153448 A1 2018/0161499 A1		Weber et al. Al-Ali et al.
2017/0172435 A1 2017/0172476 A1	6/2017 Presura 6/2017 Schilthuizen	2018/0101499 A1 2018/0164853 A1		Myers et al.
2017/0173632 A1	6/2017 Schitharzen 6/2017 Al-Ali	2018/0168491 A1	6/2018	Al-Ali et al.
2017/0187146 A1	6/2017 Kiani et al.	2018/0174679 A1	6/2018	Sampath et al.
2017/0188919 A1 2017/0196464 A1	7/2017 Al-Ali et al.	2018/0174680 A1 2018/0182484 A1	6/2018 6/2018	Sampath et al. Sampath et al.
2017/0196464 A1 2017/0196470 A1	7/2017 Jansen et al. 7/2017 Lamego et al.	2018/0184917 A1	7/2018	
2017/0202505 A1	7/2017 Kirenko et al.	2018/0192924 A1	7/2018	
2017/0209095 A1	7/2017 Wagner et al.	2018/0192953 A1 2018/0192955 A1		Shreim et al. Al-Ali et al.
2017/0224262 A1 2017/0228516 A1	8/2017 Al-Ali 8/2017 Sampath et al.	2018/0196514 A1		Allec et al.
2017/0245790 A1	8/2017 Al-Ali et al.	2018/0199871 A1		Pauley et al.
2017/0248446 A1	8/2017 Gowreesunker et al.	2018/0206795 A1 2018/0206815 A1	7/2018 7/2018	
2017/0251974 A1 2017/0251975 A1	9/2017 Shreim et al. 9/2017 Shreim et al.	2018/0200813 A1 2018/0213583 A1	7/2018	
2017/0251973 A1 2017/0258403 A1	9/2017 Shiehii et al.	2018/0214031 A1		Kiani et al.
2017/0273619 A1	9/2017 Alvarado et al.	2018/0214090 A1		Al-Ali et al.
2017/0281024 A1	10/2017 Narasimhan et al.	2018/0218792 A1 2018/0225960 A1		Muhsin et al. Al-Ali et al.
2017/0293727 A1 2017/0311851 A1	10/2017 Klaassen et al. 11/2017 Schurman et al.	2018/0228414 A1	8/2018	
2017/0311891 A1	11/2017 Kiani et al.	2018/0238718 A1	8/2018	
2017/0325698 A1	11/2017 Allec et al.	2018/0238734 A1 2018/0242853 A1	8/2018 8/2018	Hotelling et al.
2017/0325728 A1 2017/0325744 A1	11/2017 Al-Ali et al. 11/2017 Allec et al.	2018/0242833 A1 2018/0242921 A1		Muhsin et al.
2017/0323744 A1 2017/0332976 A1	11/2017 Alece et al. 11/2017 Al-Ali et al.	2018/0242923 A1		Al-Ali et al.
2017/0340209 A1	11/2017 Klaassen et al.	2018/0242924 A1		Barker et al.
2017/0340219 A1	11/2017 Sullivan et al.	2018/0242926 A1 2018/0247353 A1		Muhsin et al. Al-Ali et al.
2017/0340293 A1 2017/0347885 A1	11/2017 Al-Ali et al. 12/2017 Tan et al.	2018/0247712 A1		Muhsin et al.
2017/0354332 A1	12/2017 Lamego	2018/0249933 A1		Schurman et al.
2017/0354795 A1	12/2017 Blahnik et al.	2018/0253947 A1 2018/0256087 A1		Muhsin et al. Al-Ali et al.
2017/0358239 A1 2017/0358240 A1	12/2017 Arney et al. 12/2017 Blahnik et al.	2018/0256113 A1		Weber et al.
2017/0358240 A1	12/2017 Thompson et al.	2018/0279956 A1		Waydo et al.
2017/0360306 A1	12/2017 Narasimhan et al.	2018/0285094 A1 2018/0289325 A1		Housel et al. Poeze et al.
2017/0360310 A1 2017/0366657 A1	12/2017 Kiani et al. 12/2017 Thompson et al.	2018/0289337 A1		Al-Ali et al.
2017/0367632 A1	12/2017 Hompson et al. 12/2017 Al-Ali et al.	2018/0296161 A1		Shreim et al.
2018/0008146 A1	1/2018 Al-Ali et al.	2018/0300919 A1		Muhsin et al.
2018/0013562 A1 2018/0014752 A1	1/2018 Haider et al. 1/2018 Al-Ali et al.	2018/0310822 A1 2018/0310823 A1		Indorf et al. Al-Ali et al.
2018/0014732 A1 2018/0014781 A1	1/2018 Al-All et al. 1/2018 Clavelle et al.	2018/0317826 A1	11/2018	Muhsin
2018/0025287 A1	1/2018 Mathew et al.	2018/0317841 A1		Novak, Jr.
2018/0056129 A1	1/2018 Narasimha Rao et al.	2018/0333055 A1 2018/0333087 A1	11/2018	Lamego et al.
2018/0028124 A1 2018/0042556 A1	2/2018 Al-Ali et al. 2/2018 Shahparnia et al.	2019/0000317 A1		Muhsin et al.
2018/0049694 A1	2/2018 Singh Alvarado et al.	2019/0000362 A1		Kiani et al.
2018/0050235 A1	2/2018 Tan et al.	2019/0015023 A1 2019/0021638 A1		Monfre Al-Ali et al.
2018/0055375 A1 2018/0055385 A1	3/2018 Martinez et al. 3/2018 Al-Ali	2019/0021036 A1 2019/0029574 A1		Schurman et al.
2018/0055390 A1	3/2018 Kiani et al.	2019/0029578 A1		Al-Ali et al.
2018/0055430 A1	3/2018 Diab et al.	2019/0038143 A1 2019/0058280 A1	2/2019	Al-Ali Al-Ali et al.
2018/0055439 A1 2018/0064381 A1	3/2018 Pham et al. 3/2018 Shakespeare et al.	2019/0058280 A1 2019/0058281 A1		Al-Ali et al.
2018/0069776 A1	3/2018 Lamego et al.	2019/0069813 A1	3/2019	Al-Ali
2018/0070867 A1	3/2018 Smith et al.	2019/0069814 A1	3/2019	
2018/0078151 A1	3/2018 Allec et al.	2019/0076028 A1 2019/0082979 A1		Al-Ali et al. Al-Ali et al.
2018/0078182 A1 2018/0082767 A1	3/2018 Chen et al. 3/2018 Al-Ali et al.	2019/0090748 A1	3/2019	
2018/0085068 A1	3/2018 Telfort	2019/0090760 A1		Kinast et al.
2018/0087937 A1	3/2018 Al-Ali et al.	2019/0090764 A1	3/2019	
2018/0103874 A1 2018/0103905 A1	4/2018 Lee et al. 4/2018 Kiani	2019/0104973 A1 2019/0110719 A1		Poeze et al. Poeze et al.
2018/0103903 A1 2018/0110469 A1	4/2018 Maani et al.	2019/0110719 A1 2019/0117070 A1		Muhsin et al.
2018/0110478 A1	4/2018 Al-Ali	2019/0117139 A1	4/2019	Al-Ali et al.
2018/0116575 A1	5/2018 Perea et al.	2019/0117140 A1		Al-Ali et al.
2018/0125368 A1	5/2018 Lamego et al.	2019/0117141 A1 2019/0117930 A1	4/2019 4/2019	
2018/0125430 A1 2018/0125445 A1	5/2018 Al-Ali et al. 5/2018 Telfort et al.	2019/0117930 A1 2019/0122763 A1	4/2019	
		2010.0122.00 711		

Page 10

(56) References Cited

U.S. PATENT DOCUMENTS

2019/0133525 A1	5/2019	Al-Ali et al.
2019/0142283 A1	5/2019	Lamego et al.
2019/0142344 A1	5/2019	Telfort et al.
2019/0150800 A1	5/2019	Poeze et al.
2019/0150856 A1	5/2019	Kiani et al.
2019/0167161 A1	6/2019	Al-Ali et al.
2019/0175019 A1	6/2019	Al-Ali et al.
2019/0192076 A1	6/2019	McHale et al

FOREIGN PATENT DOCUMENTS

CN	103906468 A	7/2014
EP	0630208 A1	12/1994
EP	0770349 A1	5/1997
EP	0781527 A1	7/1997
EP	0880936 A2	12/1998
EP	0985373 A1	3/2000
EP	1124609 B1	8/2001
EP	2277440 A1	1/2011
GB	2243691 A	11/1991
JP	H09257508 A	10/1997
JP	H10314133 A	12/1998
JP	H1170086 A	3/1999
JP	2919326 B2	7/1999
KR	2010/0091592 A	8/2010
KR	20100091592 A	8/2010
WO	WO 1994/23643 A1	10/1994
WO	WO 1995/000070 A1	1/1995
WO	WO 1995000070 A1	1/1995
WO	WO 1996/027325 A1	9/1996
WO	WO 1997/00923 A1	1/1997
WO	WO 1997009923 A1	3/1997
WO	WO 1996/063883 A1	12/1999
WO	WO 1999063883 A1	12/1999
WO	WO 2000/028892 A1	5/2000
WO	WO 2000028892 A1	5/2000
WO	WO 02/028274	4/2002
WO	WO 2006/113070 A1	10/2006
WO	WO 2008/107238 A1	9/2008
WO	WO 2009/001988 A1	12/2008
WO	WO 2009/137524 A1	11/2009
WO	WO 2011/069122 A1	6/2011
WO	WO 2013/030744 A1	3/2013
WO	WO 2013030744 A1	3/2013
WO	WO 2013/106607 A1	7/2013
WO	WO 2013/181368 A1	12/2013
WO	WO 2014/18447 A1	1/2014
WO	WO 2014/115075 A1	7/2014
WO	WO 2014/153200 A1	9/2014
WO	WO 2014/178793 A1	11/2014
WO	WO 2014184447 A1	11/2014
WO	WO 2015/187732 A1	12/2015
WO	WO 2016/066312 A1	5/2016

OTHER PUBLICATIONS

- "Heart Rate Measurement Technology" EPSON, 2019.
- "Introducing Easy Pulse: A DIY Photoplethysmographic Sensor for Measuring Heart Rate", Embedded Lab, 2012.
- "PerformTek Precision Biometrics", ValenCell, 2013.
- "Galaxy S5 Explained: The Heart Rate Sensor and S Health 3.0." Samsung Global Newsroom, 2014.
- "Withings Pulse: Activity Tracker—Sleep Analyzer Hear Rate Analyzer; Installation and Operating Instructions", Withings, 2015. Jan. 9, 2020 Complaint for (1) Patent Infringement (2) Trade Secret Misappropriation and (3) Ownership of Patents and Demand for Jury Trial, Masimo Corporation and Cercacor Laboratories, Inc. v. Apple Inc., Case No. 8:20-cv-00048, 64 pages.
- Anliker et al., "AMON: a wearable multiparameter medical monitoring and alert system," in *IEEE Transactions on Information Technology in Biomedicine*, vol. 8, No. 4, Dec. 2004.

Asada, et al. "Mobile Monitoring with Wearable Photoplethysmographic Biosensors", IEEE Engineering in Medicine and Biology Magazine, 2003.

Bagha, et al. "A Real Time Analysis of PPG Signal for Measurement of SpO2 and Pulse Rate", International Journal of Computer Applications (0975-8887), vol. 36—No. 11, 2011.

Branche, et al. "Measurement Reproducibility and Sensor Placement Considerations in Designing a Wearable Pulse Oximeter for Military Applications", IEEE, 2004.

Branche, et al. "Signal Quality and Power Consumption of a New Prototype Reflectance Pulse Oximeter Sensor", IEEE, 2005.

Celka, et al. "Motion resistant earphone located infrared based heart rate measurement device", Research Gate, 2004.

Comtois, et al. "A Comparative Evaluation of Adaptive Noise Cancellation Algorithms for Minimizing Motion Artifacts in a Forehead-Mounted Wearable Pulse Oximeter", IEEE, 2007.

Comtois, et al. "A Noise Reference Input to an Adaptive Filter Algorithm for Signal Processing in a Wearable Pulse Oximeter", IEEE, 2007.

Conway, et al. "Wearable computer as a multi-parametric monitor for physiological signals," Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering, pp. 236-242, 2000.

Crilly, et al. "An Integrated Pulse Oximeter System for Telemedicine Applications", IEEE Instrumentation and Measurement Technology Conference, 1997.

Dassel, et al. "Reflective Pulse Oximetry at the Forehead Improves by Pressure on the Probe", J. Clin. Monit, 11:237-244, 1995.

Dresher, et al. "A New Reflectance Pulse Oximeter Housing to Reduce Contact Pressure Effects", IEEE, 2006.

Dresher, et al. "Reflectance Forehead Pulse Oximetry: Effects of Contact Pressure During Walking", IEEE, 2006.

Faulkner, "Apple Watch Heart Rate Sensor: Everything You Need to Know." TechRadar India, TechRadar, 2015.

Gibbs, et al. "Active motion artifact cancellation for wearable health monitoring sensors using collocated MEMS accelerometers", SPIE, vol. 5765, 2005.

Hayes, "How the Sensors inside Fitness Tracker Work." Digital Trends, 2014.

Heerlein, et al. "LED-Based Sensor for Wearable Fitness Tracking Products", EDN, 2014.

Johnston, et al. "Extracting Breathing Rate Information from a Wearable Reflectance Pulse Oximeter Sensor", IEEE, 2004.

Johnston, et al. "Extracting Heart Rate Variability From a Wearable Reflectance Pulse Oximeter", IEEE, 2005.

Keikhosravi, et al. "Effect of deep breath on the correlation between the wrist and finger photoplethysmograms", pp. 135-138, 2012.

Kilbane, et al. "Design Considerations for Wrist-Wearable Heart Rate Monitors," Arrow Intelligent Systems, 2015.

Konig, V. et al., "Reflectance Pulse Oximetry—Principles and Obstetric Application in the Zurich System," J Clin Monit 1998; 14: 403-412.

Konstantas, et al. "Mobile Patient Monitoring: The MobiHealth System", Research Gate, 2004.

Kuboyama, "Motion Artifact Cancellation for Wearable Photoplethysmographic Sensor", Massachusetts Institute of Technology, pp. 1-66, 2010.

Kviesis-Kipge, et al., "Miniature Wireless Photoplethysmography Devices: Integration in Garments and Test Measurements", SPIE vol. 8427 84273H-6, 2012.

Lee, et al. "Development of a Wristwatch-Type PPG Array Sensor Module", IEEE, 2011.

Lin, et al. "RTWPMS: A Real-Time Wireless Physiological Monitoring System", IEEE Transactions on Information Technology in Biomedicine, vol. 10, No. 4, 2006.

Lingaiah, et al. "Measurement of Pulse rate and SPo2 using Pulse Oximeter developed using LabVIEW", IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), e-ISSN: 2278-1676,p-ISSN: 2320-3331, vol. 8, Issue 1, pp. 22-26, 2013.

Lukowicz, et al. "AMON: a wearable medical computer for high risk patients," *Proceedings. Sixth International Symposium on Wearable Computers*, 2002.

Lukowicz, et al. "The Weararm Modular, Low-Power Computing Core", IEEE Micro, 2001.

Page 11

(56) References Cited

OTHER PUBLICATIONS

Mapar "Wearable Sensor for Continuously Cigilant Blood Perfusion and Oxygenation", UCLA, 2012.

Mendelson et al. "Noninvasive Pulse Oximetry Utilizing Skin Reflectance Photoplethysmography", IEEE Biomedical Engineering, vol. 35 No. 10, 1988.

Mendelson et al., "A Mobile PDA-Based Wireless Pulse Oximeter," Proceedings of the IASTED International Conference Telehealth, Jul. 19-21, 2005, pp. 1-6.

Mendelson et al., "A Wearable Reflectance Pulse Oximeter for Remote Physiological Monitoring," Proceedings of the 28th IEEE EMBS Annual International Conference, Aug. 30-Sep. 3, 2006, pp. 912-915.

Mendelson et al., "Accelerometery-Based Adaptive Noise Cancellation for Remote Physiological Monitoring by a Wearable Pulse Oximeter," Proceedings of the 3rd IASTED International Conference TELEHEALTH, May 31-Jun. 1, 2007, pp. 28-33.

Mendelson et al., "Measurement Site and Photodetector Size Considerations in Optimizing Power Consumption of a Wearable Reflectance Pulse Oximeter," Proceedings of the 25th Annual International Conference of the IEEE EMBS, Sep. 17-21, 2003, pp. 3016-3019

Mendelson et al., "Minimization of LED Power Consumption in the Design of a Wearable Pulse Oximeter," Proceedings of the IASTED International Conference Biomedical Engineering, Jun. 25-27, 2003, 6 pages.

Oliver et al., "HealthGear: A Real-time Wearable System for Monitoring and Analyzing Physiological Signals," Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks, IEEE Computer Society, 2006, pp. 1-4.

Pandian et al., "Smart Vest: Wearable Multi-Parameter Remote Physiological Monitoring System," Medical Engineering & Physics 30, 2008. pp. 466-477.

Phattraprayoon, et al. "Accuracy of Pulse Oximeter Readings From Probe Placementon Newborn Wrist and Ankle", Journal of Perinatology, vol. 32, pp. 276-280, 2012.

Poh et al. "Motion-Tolerant Magnetic Earring Sensor and Wireless Earpiece for Wearable Photoplethysmography", IEEE Transactions on Information Technology in Biomedicine, vol. 14, No. 3, 2010. Pujary, "Investigation of Photodetector Optimization in Reducing Power Consumption by a Noninvasive Pulse Oximeter Sensor", Worcester Polytechnic Institute, pp. 1-133, 2004.

Purjary et al., "Photodetector Size Considerations in the Design of a Noninvasive Reflectance Pulse Oximeter for Telemedicine Applications", IEEE, 2003.

Renevey et al., "Wrist-Located Pulse Detection Using IR Signals, Activity and Nonlinear Artifact Cancellation," Proceedings of the 23rd Annual EMBS International Conference, Oct. 25-28, 2001, pp. 3030-3033.

Rhee et al. "Artifact-Resistant Power-Efficient Design of Finger-Ring Plethysmographic Sensors," IEEE Transactions on Biomedical Engineering, vol. 48, No. 7, Jul. 2001, pp. 795-805.

Rhee et al. "Artifact-Resistant, Power Efficient Design of Finger-Ring Plethysmographic Sensors, Part I: Design and Analysis," 22nd Annual International Conference IEEE Engineering in Medicine and Biology Society, Jul. 23-28, 2000, pp. 2792-2795.

Rhee et al., "Design of a Artifact-Free Wearable Plethysmographic Sensor," 21st Annual International Conference IEEE Engineering in Medicine and Biology Society, Oct. 13-16, 1999, p. 786.

Rhee et al., "The Ring Sensor: a New Ambulatory Wearable Sensor for Twenty-Four Hour Patient Monitoring," Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Oct. 29-Nov. 1, 1998, 4 pages.

Savage et al., "Optimizing Power Consumption in the Design of a Wearable Wireless Telesensor: Comparison of Pulse Oximeter Modes," Proceedings of IEEE 29th Annual Nonheust Bioengineering Conference, 2003, pp. 150-151.

Scully, et al. "Physiological Parameter Monitoring from Optical Recordings with a Mobile Phone", IEEE Trans Biomed Eng.; 59(2): 303-306, 2012.

Shaltis et al., "Novel Design for a Wearable, Rapidly Depolyable, Wireless Noninvasive Triage Sensor," Proceedings of the 2005 IEEE, Engineering in Medicine and Biology 27th Annual Conference, Sep. 1-4, 2005, pp. 3567-3570.

Shin et al., "A Novel Headset with a Transmissive PPG Sensor for Heart Rate Measurement", ICBME 2008, Proceedings 23, pp. 519-522, 2009.

Shyamkumar, et al. "Wearable Wireless Cardiovascular Monitoring Using Textile-Based Nanosensor and Nanomaterial Systems", Electronics 3, pp. 504-520, 2014.

Stojanovic, et al. "Design of an Oximeter Based on LED-LED Configuration and FPGA Technology", Sensors, 13, 574-586, 2013. Stuban, et al. "Optimal filter bandwidth for pulse oximetry", Rev. Sci. Instrum. 83, 104708, 2012.

Tamannagari, "Power Efficient Design of Finder-Ring Sensor for Patient Monitoring," Master of Science in Electrical Engineering, The University of Texas at San Antonio, College of Engineering, Department of Electrical Engineering, Dec. 2008, 74 pages.

Tamura et al. "Wearable Photoplethysmographic Sensors—Past and Present", Electronics, 3, 282-302, 2014.

Tofs, et al. "Body-Heat Powered Autonomous Pulse Oximeter", IEEE Sensors, 2006.

Townsend, et al. "Pulse Oximetry", Medical Electronics, 2001.

Tura, et al., "A Medical Wearable Device with Wireless Bluetooth-based Data Transmission", Measurement Science Review, vol. 3, Section 2, 2003.

Vogel, et al. "In-Ear Vital Signs Monitoring Using a Novel Microoptic Reflective Sensor", IEEE Transactions on Information Technology in Biomedicine, vol. 13, No. 6, 2009.

Warren, et al. "Designing Smart Health Care Technology into the Home of the Future", United States: N. p., 1999.

Written Opinion received in International Application No. PCT/US2016/040190, dated Jan. 2, 2018.

Yamashita et al., "Development of a Ring-Type Vital Sign Telemeter," Biotelemetry XIII, Mar. 26-31, 1995, pp. 145-150.

Yan,et al. "An Efficient Motion-Resistant Method for Wearable Pulse Oximeter", IEEE Transactions on Information Technology in Biomedicine, vol. 12, No. 3, 2008.

Yang, et al. "A Twenty-Four Hour Tele-Nursing System Using a Ring Sensor", Proc. of 1998 Int. Conf. on Robotics and Automation, 1998.

Yang, et al. "Development of the Ring Sensor for Healthcare Automation", Robotics and Autonomous Systems, 30, pp. 273-281, 2000

Yang, et al. "SpO2 and Heart Rate Measurement with Wearable Watch Based on PPG", IEEE, 2015.

Zhai, et al. "A Wireless Sensor Network for Hospital Patient Monitoring", University of Calgary, 2007.

U.S. Patent Jul. 28, 2020 Sheet 1 of 7 US 10,722,159 B2

U.S. Patent

Jul. 28, 2020

Sheet 2 of 7

US 10,722,159 B2

FIG. 4A

U.S. Patent

Jul. 28, 2020

Sheet 3 of 7

US 10,722,159 B2

FIG. 4B

U.S. Patent Jul. 28, 2020 Sheet 4 of 7 US 10,722,159 B2

U.S. Patent US 10,722,159 B2 Jul. 28, 2020 Sheet 5 of 7 710 120 079 FIG. 6 (PRIOR ART)

U.S. Patent

Jul. 28, 2020

Sheet 6 of 7

US 10,722,159 B2

FIG. 7B

1

PHYSIOLOGICAL MONITORING DEVICES, SYSTEMS, AND METHODS

INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 16/532,065 filed Aug. 5, 2019, which is a continuation of U.S. patent application Ser. No. 16/226, 249 filed Dec. 19, 2018, which is a continuation of U.S. patent application Ser. No. 15/195,199 filed Jun. 28, 2016, which claims priority benefit under 35 U.S.C. § 119(e) from U.S. Provisional Application No. 62/188,430, filed Jul. 2, 2015, which is incorporated by reference herein. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.

FIELD OF THE DISCLOSURE

The present disclosure relates to the field of non-invasive optical-based physiological monitoring sensors, and more particularly to systems, devices and methods for improving the non-invasive measurement accuracy of oxygen saturation, among other physiological parameters.

BACKGROUND

Spectroscopy is a common technique for measuring the concentration of organic and some inorganic constituents of a solution. The theoretical basis of this technique is the Beer-Lambert law, which states that the concentration C, of an absorbent in solution can be determined by the intensity of light transmitted through the solution, knowing the pathlength d_{λ} , the intensity of the incident light $I_{0,\lambda}$, and the extinction coefficient $\epsilon_{1,\lambda}$ at a particular wavelength A.

In generalized form, the Beer-Lambert law is expressed as:

$$I_{\lambda} = I_{0,\lambda} e^{-d_{\lambda} \cdot \mu_{a,\lambda}} \tag{1}$$

$$\mu_{\alpha,\lambda} = \sum_{i=1}^{n} \varepsilon_{i,\lambda} \cdot c_{i}$$
 (2)

where $\mu_{\alpha,\lambda}$ is the bulk absorption coefficient and represents the probability of absorption per unit length. The minimum number of discrete wavelengths that are required to solve 50 equations 1 and 2 is the number of significant absorbers that are present in the solution.

A practical application of this technique is pulse oximetry, which utilizes a noninvasive sensor to measure oxygen saturation and pulse rate, among other physiological parameters. Pulse oximetry relies on a sensor attached externally to the patient to output signals indicative of various physiological parameters, such as a patient's blood constituents and/or analytes, including for example a percent value for arterial oxygen saturation, among other physiological parameters. The sensor has an emitter that transmits optical radiation of one or more wavelengths into a tissue site and a detector that responds to the intensity of the optical radiation after absorption by pulsatile arterial blood flowing within the tissue site. Based upon this response, a processor 65 determines the relative concentrations of oxygenated hemoglobin (HbO₂) and deoxygenated hemoglobin (Hb) in the

2

blood so as to derive oxygen saturation, which can provide early detection of potentially hazardous decreases in a patient's oxygen supply.

A pulse oximetry system generally includes a patient monitor, a communications medium such as a cable, and/or a physiological sensor having one or more light emitters and a detector, such as one or more light-emitting diodes (LEDs) and a photodetector. The sensor is attached to a tissue site, such as a finger, toe, earlobe, nose, hand, foot, or other site having pulsatile blood flow which can be penetrated by light from the one or more emitters. The detector is responsive to the emitted light after attenuation or reflection by pulsatile blood flowing in the tissue site. The detector outputs a detector signal to the monitor over the communication medium. The monitor processes the signal to provide a numerical readout of physiological parameters such as oxygen saturation (SpO2) and/or pulse rate. A pulse oximetry sensor is described in U.S. Pat. No. 6,088,607 entitled Low Noise Optical Probe; pulse oximetry signal processing is ²⁰ described in U.S. Pat. Nos. 6,650,917 and 6,699,194 entitled Signal Processing Apparatus and Signal Processing Apparatus and Method, respectively; a pulse oximeter monitor is described in U.S. Pat. No. 6,584,336 entitled Universal/ Upgrading Pulse Oximeter; all of which are assigned to Masimo Corporation, Irvine, Calif., and each is incorporated by reference herein in its entirety.

There are many sources of measurement error introduced to pulse oximetry systems. Some such sources of error include the pulse oximetry system's electronic components, including emitters and detectors, as well as chemical and structural physiological differences between patients. Another source of measurement error is the effect of multiple scattering of photons as the photons pass through the patient's tissue (arterial blood) and arrive at the sensor's light detector.

SUMMARY

This disclosure describes embodiments of non-invasive methods, devices, and systems for measuring blood constituents, analytes, and/or substances such as, by way of non-limiting example, oxygen, carboxyhemoglobin, methemoglobin, total hemoglobin, glucose, proteins, lipids, a percentage thereof (e.g., saturation), pulse rate, perfusion index, oxygen content, total hemoglobin, Oxygen Reserve IndexTM (ORITM) or for measuring many other physiologically relevant patient characteristics. These characteristics can relate to, for example, pulse rate, hydration, trending information and analysis, and the like.

In an embodiment, an optical physiological measurement system includes an emitter configured to emit light of one or more wavelengths. The system also includes a diffuser configured to receive the emitted light, to spread the received light, and to emit the spread light over a larger tissue area than would otherwise be penetrated by the emitter directly emitting light at a tissue measurement site. The tissue measurement site can include, such as, for example, a finger, a wrist, or the like. The system further includes a concentrator configured to receive the spread light after it has been attenuated by or reflected from the tissue measurement site. The concentrator is also configured to collect and concentrate the received light and to emit the concentrated light to a detector. The detector is configured to detect the concentrated light and to transmit a signal indicative of the detected light. The system also includes a processor configured to receive the transmitted signal indicative of the detected light and to determine, based on an

amount of absorption, an analyte of interest, such as, for example, arterial oxygen saturation or other parameter, in the tissue measurement site.

3

In certain embodiments of the present disclosure, the diffuser comprises glass, ground glass, glass beads, opal 5 glass, or a microlens-based, band-limited, engineered diffuser that can deliver efficient and uniform illumination. In some embodiments the diffuser is further configured to define a surface area shape by which the emitted spread light is distributed onto a surface of the tissue measurement site. 10 The defined surface area shape can include, by way of non-limiting example, a shape that is substantially rectangular, square, circular, oval, or annular, among others.

According to some embodiments, the optical physiological measurement system includes an optical filter having a 15 light-absorbing surface that faces the tissue measurement site. The optical filter also has an opening that is configured to allow the spread light, after being attenuated by the tissue measurement site, to be received by the concentrator. In an embodiment, the opening has dimensions, wherein the 20 dimensions of the opening are similar to the defined surface area shape by which the emitted spread light is distributed onto the surface of the tissue measurement site. In an embodiment, the opening has dimensions that are larger than the defined surface area shape by which the emitted spread 25 light is distributed onto the surface of the tissue measurement site. In other embodiments, the dimensions of the opening in the optical filter are not the same as the diffuser opening, but the dimensions are larger than the detector

In other embodiments of the present disclosure, the concentrator comprises glass, ground glass, glass beads, opal glass, or a compound parabolic concentrator. In some embodiments the concentrator comprises a cylindrical structure having a truncated circular conical structure on top. The 35 truncated section is adjacent the detector. The light concentrator is structured to receive the emitted optical radiation, after reflection by the tissue measurement site, and to direct the reflected light to the detector.

In accordance with certain embodiments of the present 40 disclosure, the processor is configured to determine an average level of the light detected by the detector. The average level of light is used to determine a physiological parameter in the tissue measurement site.

According to another embodiment, a method to determine 45 a constituent or analyte in a patient's blood is disclosed. The method includes emitting, from an emitter, light of at least one wavelength; spreading, with a diffuser, the emitted light and emitting the spread light from the diffuser to a tissue measurement site; receiving, by a concentrator, the spread 50 light after the spread light has been attenuated by the tissue measurement site; concentrating, by the concentrator, the received light and emitting the concentrated light from the concentrator to a detector; detecting, with the detector, the emitted concentrated light; transmitting, from the detector, a 55 signal responsive to the detected light; receiving, by a processor, the transmitted signal responsive to the detected light; and processing, by the processor, the received signal responsive to the detected light to determine a physiological parameter.

In some embodiments, the method to determine a constituent or analyte in a patient's blood includes filtering, with a light-absorbing detector filter, scattered portions of the emitted spread light. According to an embodiment, the light-absorbing detector filter is substantially rectangular in 65 shape and has outer dimensions in the range of approximately 1-5 cm in width and approximately 2-8 cm in length,

and has an opening through which emitted light may pass, the opening having dimensions in the range of approximately 0.25-3 cm in width and approximately 1-7 cm in length. In another embodiment, the light-absorbing detector filter is substantially square in shape and has outer dimensions in the range of approximately 0.25-10 cm², and has an opening through which emitted light may pass, the opening having dimensions in the range of approximately 0.1-8 cm². In yet another embodiment, the light-absorbing detector filter is substantially rectangular in shape and has outer

in yet another embodiment, the light-absorbing detector filter is substantially rectangular in shape and has outer dimensions of approximately 3 cm in width and approximately 6 cm in length, and has an opening through which emitted light may pass, the opening having dimensions of approximately 1.5 cm in width and approximately 4 cm in

length.

In still other embodiments of the method to determine a constituent or analyte in a patient's blood, spreading, with a diffuser, the emitted light and emitting the spread light from the diffuser to a tissue measurement site is performed by at least one of a glass diffuser, a ground glass diffuser, a glass bead diffuser, an opal glass diffuser, and an engineered diffuser. In some embodiments the emitted spread light is emitted with a substantially uniform intensity profile. And in some embodiments, emitting the spread light from the diffuser to the tissue measurement site includes spreading the emitted light so as to define a surface area shape by which the emitted spread light is distributed onto a surface of the tissue measurement site.

According to yet another embodiment, a pulse oximeter is disclosed. The pulse oximeter includes an emitter configured to emit light at one or more wavelengths. The pulse oximeter also includes a diffuser configured to receive the emitted light, to spread the received light, and to emit the spread light directed at a tissue measurement sight. The pulse oximeter also includes a detector configured to detect the emitted spread light after being attenuated by or reflected from the tissue measurement site and to transmit a signal indicative of the detected light. The pulse oximeter also includes a processor configured to receive the transmitted signal and to process the received signal to determine an average absorbance of a blood constituent or analyte in the tissue measurement site over a larger measurement site area than can be performed with a point light source or point detector. In some embodiments, the diffuser is further configured to define a surface area shape by which the emitted spread light is distributed onto a surface of the tissue measurement site, and the detector is further configured to have a detection area corresponding to the defined surface area shape by which the emitted spread light is distributed onto the surface of the tissue measurement site. According to some embodiments, the detector comprises an array of detectors configured to cover the detection area. In still other embodiments, the processor is further configured to determine an average of the detected light.

For purposes of summarizing, certain aspects, advantages and novel features of the disclosure have been described 55 herein. It is to be understood that not necessarily all such advantages can be achieved in accordance with any particular embodiment of the systems, devices and/or methods disclosed herein. Thus, the subject matter of the disclosure herein can be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as can be taught or suggested herein.

BRIEF DESCRIPTION OF THE DRAWINGS

Throughout the drawings, reference numbers can be reused to indicate correspondence between referenced ele-

ments. The drawings are provided to illustrate embodiments of the disclosure described herein and not to limit the scope thereof

5

FIG. 1 illustrates a conventional approach to two-dimensional pulse oximetry in which the emitter is configured to 5 emit optical radiation as a point optical source.

FIG. 2 illustrates the disclosed three-dimensional approach to pulse oximetry in which the emitted light irradiates a substantially larger volume of tissue as compared to the point source approach described with respect to 10 FIG. 1.

FIG. 3 illustrates schematically a side view of a threedimensional pulse oximetry sensor according to an embodiment of the present disclosure.

FIG. 4A is a top view of a portion of a three-dimensional 15 pulse oximetry sensor according to an embodiment of the present disclosure.

FIG. **4**B illustrates the top view of a portion of the three-dimensional pulse oximetry sensor shown in FIG. **4**A, with the addition of a tissue measurement site in operational ²⁰ position.

FIG. 5 illustrates a top view of a three-dimensional pulse oximetry sensor according to an embodiment of the present disclosure.

FIG. **6** illustrates a conventional two-dimensional ²⁵ approach to reflective pulse oximetry in which the emitter is configured to emit optical radiation as a point optical source.

FIG. 7A is a simplified schematic side view illustration of a reflective three-dimensional pulse oximetry sensor according to an embodiment of the present disclosure.

FIG. 7B is a simplified schematic top view illustration of the three-dimensional reflective pulse oximetry sensor of FIG. 7A.

FIG. **8** illustrates a block diagram of an example pulse oximetry system capable of noninvasively measuring one or more blood analytes in a monitored patient, according to an embodiment of the disclosure.

DETAILED DESCRIPTION

FIG. 1 illustrates schematically a conventional pulse oximetry sensor having a two-dimensional (2D) approach to pulse oximetry. As illustrated, the emitter 104 is configured to emit optical radiation as a point optical source, i.e., an optical radiation source that has negligible dimensions such 45 that it may be considered as a point. This approach is referred to herein as "two-dimensional" pulse oximetry because it applies a two-dimensional analytical model to the three-dimensional space of the tissue measurement site 102 of the patient. Point optical sources feature a defined, freely 50 selectable, and homogeneous light beam area. Light beams emitted from LED point sources often exhibit a strong focus which can produce a usually sharply-defined and evenly-lit illuminated spot often with high intensity dynamics. Illustratively, when looking at the surface of the tissue measure- 55 ment site 102 (or "sample tissue"), which in this example is a finger, a small point-like surface area of tissue 204 is irradiated by a point optical source. In some embodiments, the irradiated circular area of the point optical source is in the range between 8 and 150 microns. Illustratively, the 60 emitted point optical source of light enters the tissue measurement site 102 as a point of light. As the light penetrates the depth of the tissue 102, it does so as a line or vector, representing a two-dimensional construct within a threedimensional structure, namely the patient's tissue 102.

Use of a point optical source is believed to reduce variability in light pathlength which would lead to more 6

accurate oximetry measurements. However, in practice, photons do not travel in straight paths. Instead, the light particles scatter, bouncing around between various irregular objects (such as, for example, red blood cells) in the patient's blood. Accordingly, photon pathlengths vary depending on, among other things, their particular journeys through and around the tissue at the measurement site 102. This phenomenon is referred to as "multiple scattering." In a study, the effects of multiple scattering were examined by comparing the results of photon diffusion analysis with those obtained using an analysis based on the Beer-Lambert law, which neglects multiple scattering in the determination of light pathlength. The study found that that the difference between the average lengths of the paths traveled by red and infrared photons makes the oximeter's calibration curve (based on measurements obtained from normal subjects) sensitive to the total attenuation coefficients of the tissue in the two wavelength bands used for pulse oximetry, as well as to absorption by the pulsating arterial blood.

FIG. 2 illustrates schematically the disclosed systems, devices, and methods to implement three-dimensional (3D) pulse oximetry in which the emitted light irradiates a larger volume of tissue at the measurement site 102 as compared to the 2D point optical source approach described with respect to FIG. 1. In an embodiment, again looking at the surface of the tissue measurement site 102, the irradiated surface area 206 of the measurement site 102 is substantially rectangular in shape with dimensions in the range of approximately 0.25-3 cm in width and approximately 1-6 cm in length. In another embodiment, the irradiated surface area 206 of the measurement site 102 is substantially rectangular in shape and has dimensions of approximately 1.5 cm in width and approximately 2 cm in length. In another embodiment, the irradiated surface area 206 of the measurement site 102 is substantially rectangular in shape and has dimensions of approximately 0.5 cm in width and approximately 1 cm in length. In another embodiment, the irradiated surface area 206 of the measurement site 102 is substantially rectangular in shape has dimensions of approximately 1 cm in width and approximately 1.5 cm in length. In yet another embodiment, the irradiated surface area 206 of the measurement site 102 is substantially square in shape and has dimensions in a range of approximately 0.25-9 cm². In certain embodiments, the irradiated surface area 206 of the measurement site 102 is within a range of approximately 0.5-2 cm in width, and approximately 1-4 cm in length. Of course a skilled artisan will appreciate that many other shapes and dimensions of irradiated surface area 206 can be used. Advantageously, by irradiating the tissue measurement site 102 with a surface area 206, the presently disclosed systems, devices, and methods apply a three-dimensional analytical model to the three-dimensional structure being measured, namely, the patient's sample tissue 102.

According to the Beer-Lambert law, the amount of light absorbed by a substance is proportional to the concentration of the light-absorbing substance in the irradiated solution (i.e., arterial blood). Advantageously, by irradiating a larger volume of tissue 102, a larger sample size of light attenuated (or reflected) by the tissue 102 is measured. The larger, 3D sample provides a data set that is more representative of the complete interaction of the emitted light as it passes through the patient's blood as compared to the 2D point source approach described above with respect to FIG. 1. By taking an average of the detected light, as detected over a surface area substantially larger than a single point, the disclosed pulse oximetry systems, devices, and methods will yield a

more accurate measurement of the emitted light absorbed by the tissue, which will lead to a more accurate oxygen saturation measurement.

FIG. 3 illustrates schematically a side view of a pulse oximetry 3D sensor 300 according to an embodiment of the 5 present disclosure. In the illustrated embodiment, the 3D sensor 300 irradiates the tissue measurement site 102 and detects the emitted light, after being attenuated by the tissue measurement site 102. In other embodiments, for example, as describe below with respect to FIGS. 7A and 7B, the 3D sensor 300 can be arranged to detect light that is reflected by the tissue measurement site 102. The 3D sensor 300 includes an emitter 302, a light diffuser 304, a light-absorbing detector filter 306, a light concentrator 308, and a detector 310. In some optional embodiments, the 3D sensor 300 further 15 includes a reflector 305. The reflector 305 can be a metallic reflector or other type of reflector. Reflector 305 can be a coating, film, layer or other type of reflector. The reflector 305 can serve as a reflector to prevent emitted light from emitting out of a top portion of the light diffuser 304 such 20 that light from the emitter 302 is directed in the tissue rather than escaping out of a side or top of the light diffuser 304. Additionally, the reflector 305 can prevent ambient light from entering the diffuser 304 which might ultimately cause errors within the detected light. The reflector 305 also 25 prevent light piping that might occur if light from the detector 302 is able to escape from the light diffuser 304 and be pipped around a sensor securement mechanism to detector 310 without passing through the patient's tissue 102.

The emitter 302 can serve as the source of optical radia- 30 tion transmitted towards the tissue measurement site 102. The emitter 302 can include one or more sources of optical radiation, such as LEDs, laser diodes, incandescent bulbs with appropriate frequency-selective filters, combinations of the same, or the like. In an embodiment, the emitter 302 35 includes sets of optical sources that are capable of emitting visible and near-infrared optical radiation. In some embodiments, the emitter 302 transmits optical radiation of red and infrared wavelengths, at approximately 650 nm and approximately 940 nm, respectively. In some embodiments, the 40 emitter 302 includes a single source optical radiation.

The light diffuser 304 receives the optical radiation emitted from the emitter 302 and spreads the optical radiation over an area, such as the area 206 depicted in FIG. 2. In some embodiments, the light diffuser 304 is a beam shaper that 45 can homogenize the input light beam from the emitter 302, shape the output intensity profile of the received light, and define the way (e.g., the shape or pattern) the emitted light is distributed to the tissue measurement site **102**. Examples of materials that can be used to realize the light diffuser 304 50 include, without limitation, a white surface, glass, ground glass, glass beads, polytetrafluoroethylene (also known as Teflon®, opal glass, and greyed glass, to name a few. Additionally, engineered diffusers can be used to realize the respect to intensity and distribution. Such diffusers can, for example, deliver substantially uniform illumination over a specified target area (such as, for example, irradiated surface area 206) in an energy-efficient manner. Examples of engineered diffusers can include molded plastics with specific 60 shapes, patterns or textures designed to diffuse the emitter light across the entirety of the patient's tissue surface.

Advantageously, the diffuser 304 can receive emitted light in the form of a point optical source and spread the light to fit a desired surface area on a plane defined by the surface 65 of the tissue measurement site 102. In an embodiment, the diffuser 304 is made of ground glass which spreads the

8

emitted light with a Gausian intensity profile. In another embodiment the diffuser 304 includes glass beads. In some embodiments, the diffuser 304 is constructed so as to diffuse the emitted light in a Lambertian pattern. A Lambertian pattern is one in which the radiation intensity is substantially constant throughout the area of dispersion. One such diffuser 304 is made from opal glass. Opal glass is similar to ground glass, but has one surface coated with a milky white coating to diffuse light evenly. In an embodiment, the diffuser 304 is capable of distributing the emitted light on the surface of a plane (e.g., the surface of the tissue measurement site 102) in a predefined geometry (e.g., a rectangle, square, or circle), and with a substantially uniform intensity profile and energy distribution. In some embodiments, the efficiency, or the amount of light transmitted by the diffuser 304, is greater than 70% of the light emitted by the emitter 302. In some embodiments, the efficiency is greater than 90% of the emitted light. Other optical elements known in the art may be used for the diffuser 304.

In an embodiment, the diffuser 304 has a substantially rectangular shape having dimensions within a range of approximately 0.5-2 cm in width and approximately 1-4 centimeters in length. In another embodiment, the substantially rectangular shape of the diffuser 304 has dimensions of approximately 0.5 cm in width and approximately 1 cm in length. In another embodiment, the diffuser's 304 substantially rectangular shape has dimensions of approximately 1 cm in width and approximately 1.5 cm in length. In yet another embodiment, the diffuser 304 has a substantially square shape with dimensions in the range of approximately $0.25-10 \text{ cm}^2$.

The light-absorbing detector filter 306, which is also depicted in FIG. 4A in a top view, is a planar surface having an opening 402 through which the emitted light may pass after being attenuated by the tissue measurement site 102. In the depicted embodiment, the opening 402 is rectangularshaped, with dimensions substantially similar to the irradiated surface area 206. According to an embodiment, the light-absorbing detector filter is substantially rectangular in shape and has outer dimensions of 4 cm in width and 8 cm in length, and has an opening through which emitted light may pass, the opening having dimensions of 2 cm in width and 5 cm in length. In another embodiment, the lightabsorbing detector filter is substantially rectangular in shape and has outer dimensions in the range of 1-3 cm in width and 2-8 cm in length, and has an opening through which emitted light may pass, the opening having dimensions in the range of 0.25-2 cm in width and 1-4 cm in length. In yet another embodiment, the light-absorbing detector filter is substantially rectangular in shape and has outer dimensions of 3 cm in width and 6 cm in length, and has an opening through which emitted light may pass, the opening having dimensions of 1.5 cm in width and 4 cm in length.

The top surface of the light-absorbing filter 306 (facing diffuser 304 by providing customized light shaping with 55 the tissue measurement site 102 and the emitter 302) is coated with a material that absorbs light, such as, for example, black pigment. Many other types of light-absorbing materials are well known in the art and can be used with the detector filter 306. During operation, light emitted from the emitter 302 can reflect off of the tissue measurement site 102 (or other structures within the 3D sensor 300) to neighboring portions of the 3D sensor 300. If those neighboring portions of the 3D sensor 300 possess reflective surfaces, then the light can reflect back to the tissue measurement site 102, progress through the tissue and arrive at the detector 310. Such multiple scattering can result in detecting photons whose pathlengths are considerably lon9

ger than most of the light that is detected, thereby introducing variations in pathlength which will affect the accuracy of the measurements of the pulse oximetry 3D sensor 300. Advantageously, the light-absorbing filter 306 reduces or eliminates the amount of emitted light that is reflected in this 5 manner because it absorbs such reflected light, thereby stopping the chain of scattering events. In certain embodiments, the sensor-facing surfaces of other portions of the 3D sensor 300 are covered in light-absorbing material to further decrease the effect of reflective multiple scattering.

The light concentrator 308 is a structure to receive the emitted optical radiation, after attenuation by the tissue measurement site 102, to collect and concentrate the dispersed optical radiation, and to direct the collected and concentrated optical radiation to the detector 310. In an 15 embodiment, the light concentrator 308 is made of ground glass or glass beads. In some embodiments, the light concentrator 308 includes a compound parabolic concentrator.

As described above with respect to FIG. 1, the detector 310 captures and measures light from the tissue measurement site 102. For example, the detector 310 can capture and measure light transmitted from the emitter 302 that has been attenuated by the tissue in the measurement site 102. The detector 310 can output a detector signal responsive to the light captured or measured. The detector 310 can be implemented using one or more photodiodes, phototransistors, or the like. In addition, a plurality of detectors 310 can be arranged in an array with a spatial configuration corresponding to the irradiated surface area 206 to capture the attenuated or reflected light from the tissue measurement site.

Referring to FIG. 4A, a top view of a portion of the 3D sensor 300 is provided. The light-absorbing detector filter 306 is illustrated having a top surface coated with a lightabsorbing material. The light-absorbing material can be a black opaque material or coating or any other dark color or 35 coating configured to absorb light. Additionally, a rectangular opening 402 is positioned relative to the light concentrator 308 (shown in phantom) and the detector 310 such that light may pass through the rectangular opening 402, into the light concentrator 308, and to the detector 310. FIG. 4B 40 illustrates the top view of a portion of the 3D sensor 300 as in FIG. 4A, with the addition of the tissue measurement site 102 in operational position. Accordingly, the rectangular opening 402, the light concentrator 308 and the detector 310 are shown in phantom as being under the tissue measure- 45 ment site 102. In FIGS. 4A and 4B, the light concentrator 308 is shown to have dimensions significantly larger than the dimensions of the rectangular opening 402. In other embodiments, the dimensions of the light concentrator 308, the rectangular opening 402, and the irradiated surface area 206 50 are substantially similar.

FIG. 5 illustrates a top view of a 3D pulse oximetry sensor 500 according to an embodiment of the present disclosure. The 3D sensor **500** is configured to be worn on a patient's finger 102. The 3D sensor 500 includes an adhesive sub- 55 strate 502 having front flaps 504 and rear flaps 506 extending outward from a center portion 508 of the 3D sensor 500. The center portion 508 includes components of the 3D pulse oximetry sensor 300 described with respect to FIGS. 3, 4A and 4B. On the front side of the adhesive substrate 502 the 60 emitter 302 and the light diffuser 304 are positioned. On the rear side of the adhesive substrate 502 the light-absorbent detector filter 306, the light concentrator 308 and the detector 310 are positioned. In use, the patient's finger serving as the tissue measurement site 102 is positioned over the 65 rectangular opening 402 such that when the front portion of the adhesive substrate is folded over on top of the patient's

10

finger 102, the emitter 302 and the light diffuser 304 are aligned with the measurement site 102, the filter 306, the light concentrator 308 and the detector 310. Once alignment is established, the front and rear flaps 504, 506 can be wrapped around the finger measurement site 102 such that the adhesive substrate 502 provides a secure contact between the patient's skin and the 3D sensor 500. FIG. 5 also illustrates an example of a sensor connector cable 510 which is used to connect the 3D sensor 500 to a monitor 809, as described with respect to FIG. 8.

FIG. 6 is a simplified schematic illustration of a conventional, 2D approach to reflective pulse oximetry in which the emitter is configured to emit optical radiation as a point optical source. Reflective pulse oximetry is a method by which the emitter and detector are located on the same side of the tissue measurement site 102. Light is emitted into a tissue measurement site 102 and attenuated. The emitted light passes into the tissue 102 and is then reflected back to the same side of the tissue measurement site 102 as the emitter. As illustrated in FIG. 6, a depicted reflective 2D pulse oximetry sensor 600 includes an emitter 602, a light block 606, and a detector 610. The light block 606 is necessary because the emitter 602 and the detector 610 are located on the same side of the tissue measurement site 102. Accordingly, the light block 606 prevents incident emitter light, which did not enter the tissue measurement site 102, from arriving at the detector 610. The depicted 2D pulse oximetry sensor 600 is configured to emit light as a point source. As depicted in FIG. 6, a simplified illustration of the light path 620 of the emitted light from the emitter 602, through the tissue measurement site 102, and to the detector **610** is provided. Notably, a point source of light is emitted, and a point source of light is detected. As discussed above with respect to FIG. 1, use of a point optical source can result in substantial measurement error due to pathlength variability resulting from the multiple scatter phenomenon. The sample space provided by a 2D point optical emitter source is not large enough to account for pathlength variability, which will skew measurement results.

FIGS. 7A and 7B are simplified schematic side and top views, respectively, of a 3D reflective pulse oximetry sensor 700 according to an embodiment of the present disclosure. In the illustrated embodiment, the 3D sensor 700 irradiates the tissue measurement site 102 and detects the emitted light that is reflected by the tissue measurement site 102. The 3D sensor 700 can be placed on a portion of the patient's body that has relatively flat surface, such as, for example a wrist, because the emitter 702 and detector 710 are on located the same side of the tissue measurement site 102. The 3D sensor 700 includes an emitter 702, a light diffuser 704, a light block 706, a light concentrator 708, and a detector 710.

As previously described, the emitter 702 can serve as the source of optical radiation transmitted towards the tissue measurement site 102. The emitter 702 can include one or more sources of optical radiation. Such sources of optical radiation can include LEDs, laser diodes, incandescent bulbs with appropriate frequency-selective filters, combinations of the same, or the like. In an embodiment, the emitter 702 includes sets of optical sources that are capable of emitting visible and near-infrared optical radiation. In some embodiments, the emitter 702 transmits optical radiation of red and infrared wavelengths, at approximately 650 nm and approximately 940 nm, respectively. In some embodiments, the emitter 702 includes a single source of optical radiation.

The light diffuser 704 receives the optical radiation emitted from the emitter 702 and homogenously spreads the optical radiation over a wide, donut-shaped area, such as the

area outlined by the light diffuser 704 as depicted in FIG. 7B. Advantageously, the diffuser 704 can receive emitted light in the form of a 2D point optical source (or any other form) and spread the light to fit the desired surface area on a plane defined by the surface of the tissue measurement site 102. In an embodiment, the diffuser 704 is made of ground glass or glass beads. A skilled artisan will understand that may other materials can be used to make the light diffuser

11

The light blocker 706 includes an annular ring having a cover portion 707 sized and shaped to form a light isolation chamber for the light concentrator 708 and the detector 710. (For purposes of illustration, the light block cover 707 is not illustrated in FIG. 7B.) The light blocker 706 and the cover 707 can be made of any material that optically isolates the light concentrator 708 and the detector 710. The light isolation chamber formed by the light blocker 706 and cover 707 ensures that the only light detected by the detector 710 is light that is reflected from the tissue measurement site.

The light concentrator **708** is a cylindrical structure with a truncated circular conical structure on top, the truncated section of which of which is adjacent the detector **710**. The light concentrator **708** is structured to receive the emitted optical radiation, after reflection by the tissue measurement 25 site **102**, and to direct the reflected light to the detector **710**. In an embodiment, the light concentrator **708** is made of ground glass or glass beads. In some embodiments, the light concentrator **708** includes a compound parabolic concentrator

As previously described, the detector 710 captures and measures light from the tissue measurement site 102. For example, the detector 710 can capture and measure light transmitted from the emitter 702 that has been reflected from the tissue in the measurement site 102. The detector 710 can 35 output a detector signal responsive to the light captured or measured. The detector 710 can be implemented using one or more photodiodes, phototransistors, or the like. In addition, a plurality of detectors 710 can be arranged in an array with a spatial configuration corresponding to the irradiated 40 surface area depicted in FIG. 7B by the light concentrator 708 to capture the reflected light from the tissue measurement site.

Advantageously, the light path 720 illustrated in FIG. 7A depicts a substantial sample of reflected light that enter the 45 light isolation chamber formed by the light blocker 706 and cover 707. As previously discussed, the large sample of reflected light (as compared to the reflected light collected using the 2D point optical source approach) provides the opportunity to take an average of the detected light, to derive 50 a more accurate measurement of the emitted light absorbed by the tissue, which will lead to a more accurate oxygen saturation measurement.

Referring now to FIG. 7B, a top view of the 3D sensor 700 is illustrated with both the emitter 702 and the light blocker cover 707 removed for ease of illustration. The outer ring illustrates the footprint of the light diffuser 704. As light is emitted from the emitter 702 (not shown in FIG. 7B), it is diffused homogenously and directed to the tissue measurement site 102. The light blocker 706 forms the circular wall of a light isolation chamber to keep incident light from being sensed by the detector 710. The light blocker cover 707 blocks incidental light from entering the light isolation chamber from above. The light concentrator 710708 collects the reflected light from the tissue measurement site 102 and 65 funnels it upward toward the detector 710 at the center of the 3D sensor 700.

12

FIG. 8 illustrates an example of an optical physiological measurement system 800, which may also be referred to herein as a pulse oximetry system 800. In certain embodiments, the pulse oximetry system 800 noninvasively measures a blood analyte, such as oxygen, carboxyhemoglobin, methemoglobin, total hemoglobin, glucose, proteins, lipids, a percentage thereof (e.g., saturation), pulse rate, perfusion index, oxygen content, total hemoglobin, Oxygen Reserve IndexTM (ORITM) or many other physiologically relevant patient characteristics. These characteristics can relate to, for example, pulse rate, hydration, trending information and analysis, and the like. The system 800 can also measure additional blood analytes and/or other physiological parameters useful in determining a state or trend of wellness of a patient.

The pulse oximetry system 800 can measure analyte concentrations at least in part by detecting optical radiation attenuated by tissue at a measurement site 102. The measurement site 102 can be any location on a patient's body, such as a finger, foot, earlobe, wrist, forehead, or the like.

The pulse oximetry system 800 can include a sensor 801 (or multiple sensors) that is coupled to a processing device or physiological monitor 809. In an embodiment, the sensor 801 and the monitor 809 are integrated together into a single unit. In another embodiment, the sensor 801 and the monitor 809 are separate from each other and communicate with one another in any suitable manner, such as via a wired or wireless connection. The sensor 801 and monitor 809 can be attachable and detachable from each other for the convenience of the user or caregiver, for ease of storage, sterility issues, or the like.

In the depicted embodiment shown in FIG. 8, the sensor 801 includes an emitter 804, a detector 806, and a front-end interface 808. The emitter 804 can serve as the source of optical radiation transmitted towards measurement site 102. The emitter 804 can include one or more sources of optical radiation, such as light emitting diodes (LEDs), laser diodes, incandescent bulbs with appropriate frequency-selective filters, combinations of the same, or the like. In an embodiment, the emitter 804 includes sets of optical sources that are capable of emitting visible and near-infrared optical radiation.

The pulse oximetry system 800 also includes a driver 811 that drives the emitter 804. The driver 111 can be a circuit or the like that is controlled by the monitor 809. For example, the driver 811 can provide pulses of current to the emitter 804. In an embodiment, the driver 811 drives the emitter 804 in a progressive fashion, such as in an alternating manner. The driver 811 can drive the emitter 804 with a series of pulses for some wavelengths that can penetrate tissue relatively well and for other wavelengths that tend to be significantly absorbed in tissue. A wide variety of other driving powers and driving methodologies can be used in various embodiments. The driver 811 can be synchronized with other parts of the sensor 801 to minimize or reduce jitter in the timing of pulses of optical radiation emitted from the emitter 804. In some embodiments, the driver 811 is capable of driving the emitter 804 to emit optical radiation in a pattern that varies by less than about 10 parts-permillion.

The detector 806 captures and measures light from the tissue measurement site 102. For example, the detector 806 can capture and measure light transmitted from the emitter 804 that has been attenuated or reflected from the tissue at the measurement site 102. The detector 806 can output a detector signal 107 responsive to the light captured and measured. The detector 806 can be implemented using one

or more photodiodes, phototransistors, or the like. In some embodiments, a detector 806 is implemented in detector package to capture and measure light from the tissue measurement site 102 of the patient. The detector package can include a photodiode chip mounted to leads and enclosed in 5 an encapsulant. In some embodiments, the dimensions of the detector package are approximately 2 square centimeters. In other embodiments, the dimensions of the detector package are approximately 1.5 centimeters in width and approximately 2 centimeters in length.

13

The front-end interface **808** provides an interface that adapts the output of the detectors **806**, which is responsive to desired physiological parameters. For example, the front-end interface **808** can adapt the signal **807** received from the detector **806** into a form that can be processed by the 15 monitor **809**, for example, by a signal processor **810** in the monitor **809**. The front-end interface **808** can have its components assembled in the sensor **801**, in the monitor **809**, in a connecting cabling (if used), in combinations of the same, or the like. The location of the front-end interface **808** can be chosen based on various factors including space desired for components, desired noise reductions or limits, desired heat reductions or limits, and the like.

The front-end interface **808** can be coupled to the detector **806** and to the signal processor **810** using a bus, wire, 25 electrical or optical cable, flex circuit, or some other form of signal connection. The front-end interface **808** can also be at least partially integrated with various components, such as the detectors **806**. For example, the front-end interface **808** can include one or more integrated circuits that are on the 30 same circuit board as the detector **806**. Other configurations can also be used.

As shown in FIG. **8**, the monitor **909** can include the signal processor **810** and a user interface, such as a display **812**. The monitor **809** can also include optional outputs 35 alone or in combination with the display **812**, such as a storage device **814** and a network interface **816**. In an embodiment, the signal processor **810** includes processing logic that determines measurements for desired analytes based on the signals received from the detector **806**. The 40 signal processors **810** can be implemented using one or more microprocessors or sub-processors (e.g., cores), digital signal processors, application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), combinations of the same, and the like.

The signal processor 810 can provide various signals that control the operation of the sensor 801. For example, the signal processor 810 can provide an emitter control signal to the driver 811. This control signal can be useful in order to synchronize, minimize, or reduce jitter in the timing of 50 pulses emitted from the emitter 804. Accordingly, this control signal can be useful in order to cause optical radiation pulses emitted from the emitter 804 to follow a precise timing and consistent pattern. For example, when a transimpedance-based front-end interface 808 is used, the control 55 signal from the signal processor 810 can provide synchronization with an analog-to-digital converter (ADC) in order to avoid aliasing, cross-talk, and the like. As also shown, an optional memory 813 can be included in the front-end interface 808 and/or in the signal processor 810. This 60 memory 813 can serve as a buffer or storage location for the front-end interface 808 and/or the signal processor 810, among other uses.

The user interface **812** can provide an output, e.g., on a display, for presentation to a user of the pulse oximetry system **800**. The user interface **812** can be implemented as a touch-screen display, a liquid crystal display (LCD), an

organic LED display, or the like. In alternative embodiments, the pulse oximetry system 800 can be provided without a user interface 812 and can simply provide an

14

output signal to a separate display or system.

The storage device 814 and a network interface 816 represent other optional output connections that can be included in the monitor 809. The storage device 814 can include any computer-readable medium, such as a memory device, hard disk storage, EEPROM, flash drive, or the like. The various software and/or firmware applications can be stored in the storage device 814, which can be executed by the signal processor 810 or another processor of the monitor 809. The network interface 816 can be a serial bus port (RS-232/RS-485), a Universal Serial Bus (USB) port, an Ethernet port, a wireless interface (e.g., WiFi such as any 802.1x interface, including an internal wireless card), or other suitable communication device(s) that allows the monitor 809 to communicate and share data with other devices. The monitor 809 can also include various other components not shown, such as a microprocessor, graphics processor, or controller to output the user interface 812, to control data communications, to compute data trending, or to perform other operations.

Although not shown in the depicted embodiment, the pulse oximetry system 800 can include various other components or can be configured in different ways. For example, the sensor 801 can have both the emitter 804 and detector 806 on the same side of the tissue measurement site 102 and use reflectance to measure analytes.

Although the foregoing disclosure has been described in terms of certain preferred embodiments, many other variations than those described herein will be apparent to those of ordinary skill in the art.

Conditional language used herein, such as, among others, "can," "might," "may," "e.g.," and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment. The terms "comprising," "including," "having," and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term "or" is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term "or" means one, some, or all of the elements in the list. Further, the term "each," as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term "each" is applied.

While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the systems, devices or algorithms illustrated can be made without departing from the spirit of the disclosure. As will be recognized, certain embodiments of the disclosure described herein can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others.

15

The term "and/or" herein has its broadest, least limiting meaning which is the disclosure includes A alone, B alone, both A and B together, or A or B alternatively, but does not require both A and B or require one of A or one of B. As used herein, the phrase "at least one of" A, B, "and" C should be 5 construed to mean a logical A or B or C, using a non-exclusive logical or.

The apparatuses and methods described herein may be implemented by one or more computer programs executed by one or more processors. The computer programs include processor-executable instructions that are stored on a nontransitory tangible computer readable medium. The computer programs may also include stored data. Non-limiting examples of the non-transitory tangible computer readable medium are nonvolatile memory, magnetic storage, and 15 optical storage. Although the foregoing disclosure has been described in terms of certain preferred embodiments, other embodiments will be apparent to those of ordinary skill in the art from the disclosure herein. Additionally, other combinations, omissions, substitutions and modifications will be 20 apparent to the skilled artisan in view of the disclosure herein. Accordingly, the present invention is not intended to be limited by the description of the preferred embodiments, but is to be defined by reference to claims.

Additionally, all publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application were specifically and individually indicated to be incorporated by reference.

What is claimed is:

- 1. A physiological monitoring device comprising:
- a plurality of emitters configured to emit light in a first shape;
- a material positioned between the plurality of emitters and a tissue measurement site on a wrist of a user when the 35 physiological monitoring device is in use, the material configured to change the first shape into a second shape by which the light emitted from one or more of the plurality of emitters is projected towards a surface of the tissue measurement site;
- a plurality of detectors configured to detect at least a portion of the light after passing through tissue, the plurality of detectors further configured to output at least one signal responsive to the detected light;
- a surface comprising a dark-colored coating, the surface 45 positioned between the plurality of detectors and the tissue when the physiological monitoring device is in use, wherein an opening defined in the dark-colored coating is configured to allow at least a portion of light reflected from the tissue to pass through the surface; 50
- a light block configured to prevent at least a portion of the light emitted from the plurality of emitters from reaching the plurality of detectors without first reaching the tissue: and
- a processor configured to receive and process one or more 55 signals responsive to the at least one outputted signal and determine a physiological parameter of the user responsive to the one or more signals.
- 2. The physiological monitoring device of claim 1, further comprising a display configured to present visual feedback 60 responsive to the determined physiological parameter.
- 3. The physiological monitoring device of claim 2, wherein the display is a touch-screen display.
- **4**. The physiological monitoring device of claim **1**, wherein the plurality of emitters and the plurality of detectors are arranged in a reflectance measurement configuration.

16

- 5. The physiological monitoring device of claim 1, wherein the plurality of detectors are arranged in an array having a spatial configuration corresponding to a shape of a portion of the tissue measurement site bounded by the light block
- 6. The physiological monitoring device of claim 1, wherein the light block comprises an at least partially circular shape, and wherein the plurality of emitters are positioned outside the light block and the plurality of detectors are positioned inside the light block.
- 7. The physiological monitoring device of claim 1, wherein the physiological parameter comprises pulse rate.
- **8**. The physiological monitoring device of claim **1**, wherein the physiological parameter comprises oxygen saturation.
- **9**. The physiological monitoring device of claim **1**, wherein the material comprises plastic.
- 10. The physiological monitoring device of claim 1, wherein the material comprises glass.
- 11. The physiological monitoring device of claim 1, wherein the second shape comprises a circular geometry.
- 12. The physiological monitoring device of claim 1, wherein the opening defined in the dark-colored coating comprises a width and a length, and wherein the width is larger than the length.
- 13. The physiological monitoring device of claim 1, wherein the dark-colored coating comprises black.
 - 14. A physiological monitoring device comprising:
 - a plurality of optical sources configured to emit light proximate a wrist of a user;
 - a diffuser configured to be positioned between the plurality of optical sources and a tissue measurement site on the wrist of the user when the physiological monitoring device is in use;
 - a light block having a circular shape;
 - a plurality of detectors configured to detect at least a portion of the light after the light passes through a portion of the tissue measurement site bounded by the light block, wherein the plurality of detectors are arranged in an array having a spatial configuration corresponding to a shape of the portion of the tissue measurement site bounded by the circular shaped light block, wherein the plurality of detectors are further configured to output at least one signal responsive to the detected light, and wherein the plurality of optical sources and the plurality of detectors are arranged in a reflectance measurement configuration;
 - wherein the light block is configured to prevent at least a portion of light emitted from the plurality of optical sources from reaching the plurality of detectors without first reaching tissue;
 - a processor configured to receive and process one or more signals responsive to the at least one outputted signal and determine a physiological parameter of the user responsive to the one or more signals; and
 - wherein the physiological monitoring device is configured to transmit physiological parameter data to a separate processor.
- 15. The physiological monitoring device of claim 14, wherein the plurality of optical sources are positioned outside the light block and the plurality of detectors are positioned inside the light block.
- **16**. The physiological monitoring device of claim **14**, wherein the physiological parameter comprises pulse rate.
- 17. The physiological monitoring device of claim 14, wherein the physiological parameter comprises oxygen saturation.

17

- 18. The physiological monitoring device of claim 14, wherein the plurality of optical sources are configured to emit light in a first shape, and wherein the diffuser comprises a material configured to change the first shape into a second shape by which the light emitted from one or more of the plurality of optical sources is projected towards the tissue measurement site.
- **19**. A system configured to measure one or more physiological parameters of a user, the system comprising:
 - a physiological monitoring device comprising:
 - a plurality of emitters configured to emit light in a first shape;
 - a material positioned between the plurality of emitters and a tissue measurement site when the physiological monitoring device is in use, the material configured to change the first shape into a second shape by which the light emitted from one or more of the plurality of emitters is projected towards the tissue measurement site;
 - a plurality of detectors configured to detect at least a portion of the light passing through tissue, the plurality of detectors further configured to output at least one signal responsive to the detected light;
 - a surface comprising a dark-colored coating, the surface positioned between the plurality of detectors and the tissue when the physiological monitoring device is in use, wherein an opening defined in the dark-colored coating is configured to allow at least a portion of light reflected from the tissue to pass through the surface;
 - a light block configured to prevent at least a portion of light from the plurality of emitters from reaching the plurality of detectors without first reaching the tissue; and

18

- a processor configured to receive and process one or more signals responsive to the outputted at least one signal and determine a physiological parameter of the user responsive to the one or more signals; and
- a processing device configured to wirelessly receive physiological parameter data from the physiological monitoring device, wherein the processing device comprises a user interface, a storage device, and a network interface configured to wirelessly communicate with the physiological monitoring device, and wherein the user interface includes a touch-screen display configured to present visual feedback responsive to the physiological parameter data.
- **20**. The system of claim **19**, wherein the system is configured to determine a state of wellness of the user based on the determined physiological parameter.
- 21. The system of claim 19, wherein the system is configured to determine a trend of wellness of the user based on the determined physiological parameter.
- 22. The system of claim 19, wherein the visual feedback presented by the touch-screen display is responsive to at least one of a pulse rate and an oxygen saturation of the user.
- 23. The system of claim 19, wherein the material comprises at least one of glass and plastic.
- 24. The system of claim 19, wherein the second shape comprises a width and a length, and wherein the width is different from the length.
- 25. The system of claim 19, wherein the plurality of detectors are arranged in an array having a spatial configuration corresponding to a shape of a portion of the tissue measurement site bounded by the light block.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 10,722,159 B2 Page 1 of 2

APPLICATION NO. : 16/791963 DATED : July 28, 2020 INVENTOR(S) : Ammar Al-Ali

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page

On Page 10, Column 1, Item (56), Line 7, under Other Publications, delete "Hear" and insert --Heart--.

On Page 10, Column 2, Item (56), Line 66, under Other Publications, delete "SPo2" and insert --SpO2--.

On Page 11, Column 1, Item (56), Line 1, under Other Publications, delete "Cigilant" and insert -- Vigilant--.

On Page 11, Column 1, Item (56), Line 34, under Other Publications, delete "Placementon" and insert --Placement on--.

On Page 11, Column 1, Item (56), Line 57, under Other Publications, delete "Conference" and insert -- Conference--.

On Page 11, Column 2, Item (56), Line 12, under Other Publications, delete "Depolyable," and insert - Deployable,--.

On Page 11, Column 2, Item (56), Line 38, under Other Publications, delete "Microoptic" and insert --Micro optic--.

In the Drawings

On Sheet 7 of 7, FIG. 8, Reference Number 810, Line 2, delete "PROCESOR" and insert -- PROCESSOR--.

Signed and Sealed this Eighth Day of September, 2020

Andrei Iancu Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) U.S. Pat. No. 10,722,159 B2

Page 2 of 2

In the Specification

In Column 1, Line 33, delete "C," and insert -- C_i,--.

In Column 1, Line 37, delete " $\varepsilon_{1,\lambda}$ " and insert -- $\varepsilon_{i,\lambda}$ --.

In Column 1, Line 37, delete "A." and insert $-\lambda$.--.

In Column 1, Line 42 (Approx.), delete " $\mu_{a,\lambda}$ " and insert -- $\mu_{\alpha,\lambda}$ --.

In Column 7, Line 52, delete "(also" and insert --also--.

In Column 8, Line 1, delete "Gausian" and insert -- Gaussian--.

In Column 11, Line 64, delete "710708" and insert --708--.

In Column 12, Line 37, delete "light emitting" and insert --light-emitting--.