15. EXPECTED VALUE, VARIANCE, STANDARD DEVIATION

Definition 15.1. Let X be a discrete random variable with range R_X . The expected value, mean or average of X, denoted by $\mathbb{E}(X)$, is defined as

$$\mathbb{E}(X) = \sum_{k \in R_X} k \cdot P_X(k)$$

Example 15.2. (1) We throw a die, that is, $\Omega = \{1, 2, 3, 4, 5, 6\}$ and let X denote the outcome, that is, $X(\omega) = \omega$. Then

$$\mathbb{E}(X) = \sum_{k=1}^{6} k \cdot \underbrace{P_X(k)}_{=\frac{1}{6}} = \frac{1}{6} \cdot (1 + 2 + 3 + 4 + 5 + 6) = \frac{21}{6} = 3.5$$

(2) Let $X \sim \text{Bernoulli}(p)$. Then $R_X = \{0, 1\}$ and

$$\mathbb{E}(X) = 0 \cdot P_X(0) + 1 \cdot P_X(1) = 0 \cdot (1 - p) + 1 \cdot p = p$$

(3) Let $X \sim \text{Geometric}(p)$. Then $R_X = \{1, 2, 3, ...\}$ and $P_X(k) = p(1-p)^{k-1}$, for $k \in R_X$. Then

$$\mathbb{E}(X) = \sum_{k=1}^{\infty} k \cdot P_X(k) = p \cdot \underbrace{\sum_{k=1}^{\infty} k \cdot (1-p)^{k-1}}_{= \frac{1}{(1-(1-p))^2}} = \frac{1}{p}$$

(4) Let $X \sim \text{Poisson}(\lambda)$. Then $R_X = \{0, 1, 2, \ldots\}$ and $P_X(k) = \frac{e^{-\lambda} \lambda^k}{k!}$, for $k \in R_X$. Then

$$\mathbb{E}(X) = \sum_{k=1}^{\infty} k \cdot P_X(k) = e^{-\lambda} \cdot \sum_{k=1}^{\infty} \frac{\lambda^k}{(k-1)!} = \lambda \cdot e^{-\lambda} \cdot \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}$$
$$= \lambda \cdot e^{-\lambda} \cdot e^{\lambda} = \lambda$$

Lemma 15.3. Let X and X_1, \ldots, X_n be random variables and $a, b \in \mathbb{R}$. Then

- (1) $\mathbb{E}(a \cdot X + b) = a \cdot \mathbb{E}(X) + b$
- (2) $\mathbb{E}(X_1 + \ldots + X_n) = \mathbb{E}(X_1) + \ldots + \mathbb{E}(X_n)$

Proof. (1) Let $Y = a \cdot X + b$. Then $R_Y = \{a \cdot x + b : x \in R_X\}$. Also $P(Y = a \cdot x + b) = P(X = x)$, for all $x \in R_X$. Now

$$\mathbb{E}(a \cdot X + b) = \sum_{y \in \mathbb{R}_Y} y \cdot P_X(y) = \sum_{x \in \mathbb{R}_X} (a \cdot x + b) \cdot P_X(x) = a \cdot \mathbb{E}(X) + b$$

(2) We show the case n=2. First note that

$$\mathbb{E}(X_1) = \sum_{\substack{k_1 \in R_{X_1} \\ k_2 \in R_{X_2}}} k_1 \cdot P(X_1 = k_1) = \sum_{\substack{k_1 \in R_{X_1} \\ k_2 \in R_{X_2}}} k_1 \cdot \sum_{\substack{k_2 \in R_{X_2} \\ k_2 \in R_{X_2}}} P(X_1 = k_1, X_2 = k_2)$$

and likewise

$$\mathbb{E}(X_2) = \sum_{\substack{k_1 \in R_{X_1} \\ k_2 \in R_{X_2}}} k_2 \cdot P(X_1 = k_1, X_2 = k_2)$$

Then

$$\mathbb{E}(X_1 + X_2) = \sum_{\substack{k_1 \in R_{X_1} \\ k_2 \in R_{X_2}}} (k_1 + k_2) \cdot P(X_1 = k_1, X_2 = k_2)$$

$$= \sum_{\substack{k_1 \in R_{X_1} \\ k_2 \in R_{X_2}}} k_1 \cdot P(X_1 = k_1, X_2 = k_2) + \sum_{\substack{k_1 \in R_{X_1} \\ k_2 \in R_{X_2}}} k_2 \cdot P(X_1 = k_1, X_2 = k_2)$$

$$= \mathbb{E}(X_1) + \mathbb{E}(X_2)$$

Example 15.4. (1) Let $X \sim \text{Binomial}(n, p)$. Then $X = \sum_{i=1}^{n} Y_i$, where $Y_i \sim \text{Bernoulli}(p)$, for all i = 1, ..., n. Now

$$\mathbb{E}(X) = \mathbb{E}(Y_1 + \ldots + Y_n) = n \cdot \mathbb{E}(Y_1) = n \cdot p$$

(2) Let $X \sim \operatorname{Pascal}(r, p)$. Then $X = \sum_{i=1}^{r} Y_i$, where $Y_i \sim \operatorname{Geometric}(p)$, for all $i = 1, \ldots, r$. Now

$$\mathbb{E}(X) = \mathbb{E}(Y_1 + \ldots + Y_r) = r \cdot \mathbb{E}(Y_1) = \frac{r}{p}$$

Definition 15.5. Let X be a discrete random variable. The variance of X, denoted by Var(X), is defined as

$$Var(X) = \mathbb{E}([X - \mathbb{E}(X)]^2)$$

Furthermore, the standard deviation of X, denoted by σ_X , is defined as

$$\sigma_X = \sqrt{\operatorname{Var}(X)}$$

Remark 15.6. Variance and standard deviation indicate how far or how close X is distributed around its average.

Lemma 15.7. Let X be a discrete random variable. Then

$$\operatorname{Var}(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2$$

Proof. We have

$$Var(X) = \mathbb{E}([X - \mathbb{E}(X)]^2) = \mathbb{E}([X^2 - 2X\mathbb{E}(X) + [\mathbb{E}(X)]^2)$$

$$= \mathbb{E}(X^2) - 2\mathbb{E}(X) \cdot \mathbb{E}(X) + \mathbb{E}([\mathbb{E}(X)]^2) = \mathbb{E}(X^2) - 2\mathbb{E}(X)^2 + [\mathbb{E}(X)]^2$$

$$= \mathbb{E}(X^2) - [\mathbb{E}(X)]^2$$

Example 15.8. (1) We throw a die, that is, $\Omega = \{1, 2, 3, 4, 5, 6\}$ and let X denote the outcome. Then $\mathbb{E}(X) = 3.5$. Furthermore

$$\mathbb{E}(X^2) = \sum_{k=1}^{6} k^2 \cdot P_X(k) = \frac{1}{6} \cdot (1 + 4 + 9 + 16 + 25 + 36) = \frac{91}{6} = 15.166...$$

Hence $Var(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2 = 15.166 - (3.5)^2 = 2.91$. Furthermore $\sigma_X = \sqrt{2.91} = 1.708$.

(2) Let $X \sim \text{Bernoulli}(p)$. Then $R_X = \{0, 1\}$ and $\mathbb{E}(X) = p$. Furthermore $\mathbb{E}(X^2) = 0^2 \cdot P_X(0) + 1^2 \cdot P_X(1) = 0 \cdot (1-p) + 1 \cdot p = p$ and so $\text{Var}(X) = p - p^2 = p(1-p)$.

Lemma 15.9. (1) Let X be a random variable and $a, b \in \mathbb{R}$. Then $\operatorname{Var}(a \cdot X + b) = a^2 \cdot \operatorname{Var}(X)$.

(2) Let $X_1, ..., X_n$ be independent random variables. Then $\operatorname{Var}(X_1 + ... + X_n) = \operatorname{Var}(X_1) + ... + \operatorname{Var}(X_n)$.

Proof. (1) Set
$$Y = a \cdot X + b$$
. Then $\mathbb{E}(Y) = a \cdot \mathbb{E}(X) + b$. Now $\operatorname{Var}(Y) = \mathbb{E}[(Y - \mathbb{E}(Y))^2] = \mathbb{E}[(a \cdot X + b - a \cdot \mathbb{E}(X) - b)^2]$
$$= \mathbb{E}[a^2 \cdot (X - \mathbb{E}(X))^2] = a^2 \cdot \mathbb{E}[(X - \mathbb{E}(X))^2] = a^2 \cdot \operatorname{Var}(X)$$

Example 15.10. Let $X \sim \text{Binomial}(n, p)$. Then $X = \sum_{i=1}^{n} Y_i$, where $Y_i \sim \text{Bernoulli}(p)$, for all i = 1, ..., n, and all Y_i are independent. Now

$$Var(X) = Var(Y_1 + \ldots + Y_n) = n \cdot Var(Y_1) = n \cdot p \cdot (1 - p)$$