Chapter 13: Statistics

★ What You'll Learn

- How to calculate:
 - Mean
 - Median
 - Mode
- For **grouped data** (not just ungrouped)
- Using formulas and shortcuts like:
 - Direct Method
 - Assumed Mean Method
 - Step-Deviation Method
- Concepts of **Cumulative Frequency** and **Ogives** (curve graphs)

📊 13.2 Mean of Grouped Data

Direct Method

If fi = frequency and xi = class mark:

Mean(x):-

$$\overline{x} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i}$$

Assumed Mean Method

Choose any a as assumed mean:

$$\overline{x} = a + \frac{\sum f_i d_i}{\sum f_i}$$

where di = xi - a

Table 13.4

Class interval	Number of students (f_i)	Class mark (x_i)	$d_i = x_i - 47.5$	$f_i d_i$
10 - 25	2	17.5	-30	-60
25 - 40	3	32.5	-15	-45
40 - 55	7	47.5	0	0
55 - 70	6	62.5	15	90
70 - 85	6	77.5	30	180
85 - 100	6	92.5	45	270
Total	$\Sigma f_i = 30$			$\Sigma f_i d_i = 435$

Step-Deviation Method

Use when di values have a common factor h:

$$\overline{x} = a + h \left(\frac{\sum f_i u_i}{\sum f_i} \right)$$

here ui = (xi - a) / h

Table 13.5

Class interval	f_i	x_i	$d_i = x_i - a$	$u_i = \frac{x_i - a}{h}$	$f_i u_i$	
10 - 25	2	17.5	-30	-2	-4	
25 - 40 40 - 55	3 7	32.5 47.5	-15 0	-1 0	-3 0	
55 - 70 70 - 85	6	62.5 77.5	15 30	1 2	6 12	
85 - 100 Total	$\Sigma f_i = 30$	92.5	45	3	$\frac{18}{\sum f_i u_i} = 29$	

¶ (See Table 13.5)

 \bigcirc All three methods give the **same mean** – choose based on ease of calculation.

✓ 13.3 Mode of Grouped Data

• Formula:

Mode =
$$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

Where:

- l = lower limit of modal class
- h = class width
- f1 = frequency of modal class
- f0 = frequency of class before modal
- f2 = frequency of class after modal
- Use mode when you need the most frequent value.

13.4 Median of Grouped Data

Steps:

- 1. Find total frequency n
- 2. Find n/2
- 3. Locate the **median class** (class where n/2 lies in cumulative frequency)
- 4. Use this formula:

Median =
$$l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$$
,

Where:

- l = lower boundary of median class
- cf = cumulative frequency before median class
- f = frequency of median class
- h = class size
 - ¶ (See Table 13.15)
- Median gives the middle value best when data has extreme values.
- 💡 13.5 Summary of Formulas
- ✓ Mean
 - Direct:

$$\bar{x} = \Sigma(fi \times xi) / \Sigma(fi)$$

• Assumed Mean:

$$\bar{x} = a + [\Sigma(fi \times di) / \Sigma(fi)]$$

• Step-Deviation:

$$\bar{x} = a + h \times [\Sigma(fi \times ui) / \Sigma(fi)]$$

✓ Mode

Mode =
$$l + [(f1 - f0) / (2f1 - f0 - f2)] \times h$$

✓ Median

$$Median = l + [(n/2 - cf) / f] \times h$$

When to Use What?

Situation	Use
Want overall average	Mean
Data has outliers/extremes	Median
Need most repeated/common value	Mode

Empirical Relation

3 × Median = Mode + 2 × Mean