

Skewed Classes

- Skewed classes (dataset is imbalanced): when there is no sufficient training examples for one of the classes
 - For example in the default data set,
 3% of the training examples actually defaulted and 97% did not.
 - In this case, a trivial classifier that always predicts that an individual will not default will have error rate of 3% (relatively good)
 - Another example: assume that email spam detection system has data set with only 1% of emails are spam..
 - Predicting all emails are not spam would lead to 99% accuracy (or 1% error rate)

Ref: https://sci2s.ugr.es/imbalanced

Performance Measures

- Thus, error rate (or accuracy) is not sufficient evaluation metric when classes are skewed
- Other metrics are more convenient: confusion matrix, precision, recall, ...
- These measures are also helpful to analyze the performance of classifiers even if classes are not skewed (have balanced dataset)

Confusion Matrix

- Assume two classes: negative class (Null) & positive class (Non-null)
 - For imbalanced dataset Assume Positive class is the rare class

		Predicted class		
		– or Null	+ or Non-null	
True	– or Null	True Neg. (TN)	False Pos. (FP)	
class	+ or Non-null	False Neg. (FN)	True Pos. (TP)	

- True negative (TN): # correctly classified samples belonging to negative class
- False positive (FP): # samples in negative class misclassified as positive
- False negative (FN): # samples in positive class misclassified as negative
- True positive (TP): # correctly classified samples belonging to positive class

Confusion matrix

Some of samples predicted negative are true/correct (TN) or false (FN):

Some of samples predicted as positive are true (FP) or false (FP)

Example: Imbalanced DataSet

- Dataset in sklearn (load_digits) contains digits from 0 − 9
- Suppose you want to build a classifier that classifies digit 9 (against the remaining digits 0-8)
 - Your prediction is either the digit is 9 or not
 - You created an imbalanced dataset
 - Since number of times where 9 appears is much less than the number of times the other digits appear
 - A dummy classifier that selects majority (not 9) will have accuracy around 90%

Example .. cont

Confusion Matrix of Logistic Regression (C=0.1)

Positive class is the rare class

Example: Apply LDA to Credit Card Default Data Set

- Objective: predict whether or not an individual will default (i.e., 2 classes: default, not default)
 - Two features (p=2): income and balance on the credit card
 - Dataset contains information of n=10,000 individuals
- Confusion matrix (here applied on training data for illustration, in real-world we do not use training for evaluation)

LDA is applied here

Modify the classifier could help!

- We can modify the classifier to do better job
- For example: with LDA we use Bayes rule and, we predict an individual will default if:

$$P(default = Yes|X = x) > P(default = No|X = x)$$
.

This is equivalent to deciding that an individual will default if:

$$\Pr(\text{default} = \text{Yes}|X = x) > 0.5$$

Note that:
$$P(default = Yes|X = x) + P(default = No|X = x) = 1$$

We can modify the classifier by changing the 0.5 threshold!

Example

- If credit card company wants to avoid incorrectly classifying an individual who will default (& sees misclassification of not default to be less problematic)
 - Then can lower the threshold:

$$\Pr(\text{default} = \text{Yes}|X = x) > 0.2$$

The resulted confusion matrix in this case is:

		Predicted default status	
		No	Yes
	No	9432	235
True default status	Yes	138	195

Precision and Recall

 Precision: Out of the all classes that we predicted positive, what fraction is actually positive

$$Precision = \frac{True \ positive}{All \ predicted \ positives} \\ = \frac{True \ positive (TP)}{True \ positive (TP) + False \ Positive (FP)}$$

Positive class is the rare class

Precision and Recall

Recall (detection accuracy, true positive rate, sensitivity):
 Out of all the actual positive examples, what fraction we
 correctly detect as positive

$$Recall = \frac{True \ positive}{Actual \ positives} \\ = \frac{True \ positive \ (TP)}{True \ Positive \ (TP) + False \ Negative \ (FN)}$$

Precision and Recall

- Positive class is the rare class, we need to detect with high accuracy
- It is desired to have high precision and recall
- Other metrics:
 - F-score = 2*precision * recall/(precision+ recall)
 - False positive rate (FPR): FPR = FP/(FP+TN)
 - Specificity = 1 false positive rate = True negative rate

Receiver Operating Characteristics (ROC) Curve

- Curve shows: false positive rate (FPR) versus true positive rate (recall)
 - FPR = FP/(FP+TN)
 - Number of times you misclassified as positive divided by all the negative examples
- ROC is also used to analyze the behavior of the classifier
 - Each point represent different threshold used for classification
 - Largest area under curve (AUC) = 1
- Required: high recall (true positive) and low false positive rate
 - But there is a trade-off between them

Confusion Matrix for Multiclass Classification

- Similar to two-class classification, average error or accuracy will not be adequate if the data set is imbalanced datasets
 - Example: Assume 3 classes with a dataset that has: **90**% of examples in class 1, **5**% in class 2, and **5**% in class 3
- We also use confusion matrix:
 - Each row represents a true label, and column elements represents the predicted label

Example: 10 handwritten digit classification with Logistic Regression

Confusion matrix when applying logistic regression with default setting to the load_digit data set

All digit Zero are classified correctly,

For digit 1, 39 examples are classified correctly, 2 samples are
misclassified as 6, and 2 were misclassified as 8

- Precession, Recall can be evaluated for each class in a similar manner as two-class classification
 - Classification report in python
 - We can get average over all classes

Reference: Muller, Introduction to Machine Learning with Python Confusion matrix 3 0 Frue label 0 6 7 8 Predicted label

Evaluation Metrics in Python

```
from sklearn.metrics import confusion_matrix, precision_score, recall_score

PredictedOutput=Model.predict(X_test) # predicted output of classification

confusion=confusion_matrix(Y_test,PredictedOutput)

print(precision_score(Y_test,PredictedOutput))

print(recall_score(Y_test,PredictedOutput))
```

Classification report for multiclass classification: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html

ROC curve: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc curve.html

from **sklearn.metrics** import roc_curve

FalsePositive, TruePositive, thresholds = roc_curve(Y_test, Fitted_Model.predict_proba(X_test)[:, 1])

Score of the positive class