Logique et quantificateurs

Définition 1. Soit P une proposition. La proposition **NON** P, appelée négation de P, est la proposition fausse si P est vraie, et vraie si P est fausse.

Exemples

- Soit P la proposition : 'La fonction f est croissante'. On a alors NON(P) :
 - En particulier, ceci ne signifie pas 'la fonction f est décroissante'.
- Soit P la proposition : 'Pour tout $x \in \mathbb{R}$, $x^2 + 2x 1 > 0$ '. On a alors NON(P) :
- NON (x = 1):
- NON (x > y):

Définition 2. Soient P, Q deux propositions. La proposition P **OU** Q, est la proposition vraie si soit P soit Q est vraie, et fausse sinon.

Exemples

- (la fonction ln est croissante sur \mathbb{R}_{+}^{*}) ou (la fonction sin est paire) est
- (3<0) ou $(\pi \text{ est un entier})$ est
- (la fonction sin est impaire) ou (la fonction cos est paire) est

Définition 3. Soient P, Q deux propositions. La proposition $P \to Q$, est la proposition vraie si à la fois P et Q sont vraies, et fausse sinon.

Exemples

- (la fonction ln est croissante sur \mathbb{R}_+^*) et (la fonction sin est paire) est
- (3<0) et $(\pi \text{ est un entier})$ est
- (la fonction sin est impaire) et (la fonction cos est paire) est

Définition 4. Soient P,Q deux propositions. On définit $P \Longrightarrow Q'$ par ' NON(P) OU Q'. On dit que P implique Q.

Heuristiquement ceci correspond à dire que P 'est plus forte que' Q: Si P est vraie alors nécessairement Q est vraie. En revanche si P est fausse on ne peut rien dire sur Q. A partir d'un postulat faux on peut arriver à tout et n'importe quoi!

De manière pratique, pour prouver une implication on s'intéressera seulement au cas où P est vraie.

Exemples

- $-\forall x \in \mathbb{R}, (x > 1) \Longrightarrow (x^2 > 1)$ est une proposition
- $\forall x \in \mathbb{R}, (x^2 > 1) \Longrightarrow (x > 1)$ est une proposition
- $\forall x \in \mathbb{R}^+, (\sqrt{x} > 1) \Longrightarrow (x > 1)$ est une proposition

Définition 5. Soient P, Q deux propositions. On définit $P \iff Q'$ par $P \implies Q \to P'$. On dit que P équivaut à Q.

Dans ce cas, P est vraie si et seulement si Q est vraie.

Proposition 1. Avec les opérateurs ET et OU :

- NON $(P \cup Q) = \text{NON}(P) \times \text{TNON}(Q)$
- NON $(P \to Q) = NON(P) \cup NON(Q)$
- $P \operatorname{ET}(Q \operatorname{OU} R) = (P \operatorname{ET} Q) \operatorname{OU}(P \operatorname{ET} R)$
- POU(QETR) = (POUQ)ET(POUR)

Exemple On utilise cette propriété : " $P \operatorname{ET}(Q \operatorname{OU} R) = (P \operatorname{ET} Q) \operatorname{OU}(P \operatorname{ET} R)$ " lorsque l'on fait une disjonction de cas. Considérons par exemples la propriété

$$P(x)$$
: " $|x+1| < x$ "

Remarquons que x est solution de l'équation |x+1| < x si et seulement si P(x) est vraie. La disjonction de cas consiste alors à considérer les deux propositions

$$Q(x)$$
: " $x + 1 > 0$ " et $R(x)$: " $x + 1 \le 0$ ".

Remarquons que Q(x) OU R(x) est vraie pour tout $x \in \mathbb{R}$. Ainsi (P(x) ET(Q(x) OU R(x))) = P(x).

Enfin les propositions $(P(x) \operatorname{ET} Q(x))$ et $(P(x) \operatorname{ET} R(x))$ correspondent aux solutions respectives de l'équation dans le cas où x+1>0 puis $x+1\leq 0$.

Proposition 2. Avec l'opérateur \implies :

- $'P \Longrightarrow Q' = 'NON(Q) \Longrightarrow NON(P)'$ (C'est la base de la contraposée)
- 'NON $(P \Longrightarrow Q)' = 'P \operatorname{ET} \operatorname{NON}(Q)'$ (C'est la base du raisonnement par l'absurde)

Exemples

- Méthode directe
 - Montrer que pour tout entier n, $(n \ge 2 \Rightarrow n + \frac{1}{n} \ge 2)$.
 - Si $n \in \mathbb{N}$ est impair alors n^2 est impair.
- Contraposée : Au lieu de prouver $P \Longrightarrow Q$ on prouve $NON(P) \Longrightarrow NON(Q)$ qui lui est équivalent.
 - Si $x^3 = 2$ alors x < 2.
 - Si $n^2 \in \mathbb{N}$ est pair alors n est pair.
- Absurde. Au lieu de prouver $P \Longrightarrow Q$ on prouve que $P \to TNON(Q)$ est fausse.
 - (Le grand classique) $\sqrt{2}$ est irrationel.
 - Si $x \in \mathbb{N}$ est entier alors $x + \frac{1}{2}$ n'est pas entier.

Définition 6. Soit E un ensemble et P(x) une propriété.

- \forall se lit 'quelque soit' Si P(x) est vraie pour tout $x \in E$, on écrit : $\forall x \in E, P(x)$
- \exists se lit 'il existe' Si P(x) est vraie pour au moins un $x \in E$, on écrit : $\exists x \in E, P(x)$

Plus rarement on utilise \exists ! qui se lit 'il existe un unique'. Si P(x) est vraie pour un unique élément $x \in E$, on écrit alors $\exists ! x \in E, P(x)$

Toutes les variables doivent être quantifiées.

L'ordre des quantificateurs est important. Plus précisément :

Les quantificateurs ne peuvent pas être interchangés.

On n'utilisera pas les quantificateurs à la place du français. Tirer du programme officiel : « L'usage des quantificateurs hors des énoncés mathématiques est à proscrire. » Cette mise en garde s'applique aussi pour les opérateurs \Longrightarrow et \Longleftrightarrow .

La négation d'un 'pour tout' est 'il existe', et vice-versa, la négation d'un 'il existe' est 'pour tout'.

"NON(
$$\forall x \in E, P(x)$$
)" = " $\exists x \in E, NON(P(x))$ "

"NON(
$$\exists x \in E, P(x)$$
)" = " $\forall x \in E, NON(P(x))$ "

Exercice 1. Les assertions suivantes sont-elles vraies ou fausses? Donner leur négation.

1.
$$\forall x \in \mathbb{R}, x \geq 0$$
.

2.
$$\exists y \in \mathbb{R}, y \geq 0$$
.

3.
$$\forall x \in \mathbb{R}^+, \exists y \in \mathbb{R}, x = y^2.$$

4.
$$\exists y \in \mathbb{R}, \ \forall x \in \mathbb{R}^+, \ x = y^2$$
.

5.
$$\exists x \in \mathbb{R}^+, \ \forall y \in \mathbb{R}, \ x = y^2$$
.

6.
$$\exists x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x + y > 0.$$

7.
$$\forall x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ x + y > 0.$$

8.
$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x + y > 0.$$

Exercice 2. Soit (f,g) deux fonctions de \mathbb{R} dans \mathbb{R} . Écrire à l'aide des quantificateurs les énoncés suivants puis les nier. Donner des exemples de fonctions qui vérifient ces propriétés ou leur négation.

- 1. Pour tout $x \in \mathbb{R}$, $f(x) \leq 1$.
- 2. L'application f est croissante.
- 3. Il existe un réel positif x tel que $f(x) \geq 0$.
- 4. La fonction f est paire.

- 5. La fonction f ne s'annule jamais.
- 6. La fonction f atteint toutes les valeurs de \mathbb{N} .
- 7. La fonction f est inférieure à la fonction g.
- 8. La fonction f est périodique.

Exercice 3. Soit $(x,y) \in \mathbb{R}^2$. Écrire les négations des propositions suivantes :

- 1. $1 \le x < y$.
- 2. $(x^2 = 1) \Longrightarrow x = 1$.
- 3. $\forall x \in E, \ \forall x' \in E, \ (x \neq x') \Longrightarrow f(x) \neq f(x').$

Exercice 4. Soit f une fonction de \mathbb{R} dans \mathbb{R} . On considère les trois propositions suivantes

$$P_1(f)$$
: " $\exists M \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) < M$ "

$$P_2(f)$$
: " $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, f(x) < f(y)$ "

$$P_3(f)$$
: " $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}^+, f(x) \ge f(y)$ "

- 1. Donner les négations de ces propositions
- 2. Dire si ces propositions sont vraies ou fausses pour les fonctions suivantes :

$$f \left| \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & 1 \end{array} \right|, \quad g \left| \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \exp(x) \end{array} \right|, \quad h \left| \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \cos(x) \end{array} \right|$$

On justifiera, dans le cas où les propositions sont vraies, en donnant une valeur pour les variables quantifiées par le quantificateur ∃

^{1.} Sauf les variables 'muettes' celles se trouvant au sein d'une foc
ntion mathématique telles que $\sum_{k=0}^{n}$ (ici k est muet mais pas n) ou $\lim_{x\to 0} f(x)$ (ici x est muet.) Ces variables sont 'muettes' car elles n'ont pas de valeurs bien définies, et ne servent qu'à l'utilisation du symbole mathématiques sous-jacent.