TEST REPORT

Reference No. : WTS16S1063232-1E

FCC ID : 2AEHF-VOLTNX5

Applicant.....: NOBUX, LLC

Address: 8600 NW SOUTH RIVER DR #103 MIAMI, FLORIDA, United States

Manufacturer: NOBUX, LLC

Address: 8600 NW SOUTH RIVER DR #103 MIAMI, FLORIDA, United States

Product Name.....: 3G Mobile Phone

Model No.: SMART VOLT NX5

Brand.....: NOBUX

Standards.....: FCC CFR47 Part 15.247:2015

Date of Receipt sample : Oct. 20, 2016

Date of Test : Oct. 21-Nov. 05, 2016

Date of Issue.....: Nov. 08, 2016

Test Result..... : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Zero Zhou / Test Engineer

Philo Zhong / Manager

RVICEADDroved by:

Reference No.: WTS16S1063232-1E Page 2 of 76

2 Laboratories Introduction

Waltek Services Test Group Ltd is a professional third-party testing and certification organization with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by CNAS (China National Accreditation Service for Conformity Assessment) AQSIQ, CMA and IECEE for CBTL. Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CPSC(Consumer Product Safety Commission), CEC(California energy efficiency), IC(Industry Canada) and ELI(Efficient Lighting Initiative). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as UL, Intertek(ETL-SEMKO), CSA, TÜV Rheinland, TÜV SÜD, etc.

Waltek Services Test Group Ltd. is one of the largest and the most comprehensive third party testing organizations in China, our headquarter located in Shenzhen and have branches in Foshan, Dongguan, Zhongshan, Suzhou,Ningbo and Hong Kong, Our test capability covered four large fields: safety test. ElectroMagnetic Compatibility(EMC), reliablity and energy performance, Chemical test. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

3 Contents

		Page
1	COVER PAGE	1
2	LABORATORIES INTRODUCTION	2
3	CONTENTS	3
4	REVISION HISTORY	5
5	GENERAL INFORMATION	6
	5.1 GENERAL DESCRIPTION OF E.U.T. 5.2 DETAILS OF E.U.T. 5.3 CHANNEL LIST. 5.4 TEST MODE.	
_	5.5 TEST FACILITY	
6	TEST SUMMARY	
7	EQUIPMENT USED DURING TEST	
	 7.1 EQUIPMENTS LIST 7.2 DESCRIPTION OF SUPPORT UNITS 7.3 MEASUREMENT UNCERTAINTY 7.4 TEST EQUIPMENT CALIBRATION 	11 11
8	CONDUCTED EMISSION	
	8.1 E.U.T. OPERATION	
9	RADIATED SPURIOUS EMISSIONS	15
	9.1 EUT OPERATION	
10	CONDUCTED SPURIOUS EMISSIONS	
	10.1 TEST PROCEDURE	
11	BAND EDGE MEASUREMENT	33
	11.1 TEST PROCEDURE	34
12	20 DB BANDWIDTH MEASUREMENT	
	12.1 TEST PROCEDURE	48
13	MAXIMUM PEAK OUTPUT POWER	
	13.1 TEST PROCEDURE	54
14	HOPPING CHANNEL SEPARATION	
	14.1 TEST PROCEDURE	

Reference No.: WTS16S1063232-1E

15	NUM	BER OF HOPPING FREQUENCY	66
		TEST PROCEDURETEST RESULT	
16	DWE	LL TIME	68
		Test Procedure	
	16.2	TEST RESULT	68
17	ANTE	ENNA REQUIREMENT	74
18	RF E	XPOSURE	75
19	PHO	TOGRAPHS OF TEST SETUP AND EUT	76

Page 4 of 76

Reference No.: WTS16S1063232-1E Page 5 of 76

4 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS16S1063232- 1E	Oct. 20, 2016	Oct. 21-Nov. 05, 2016	Nov. 08, 2016	original	1	Valid

Reference No.: WTS16S1063232-1E Page 6 of 76

5 General Information

5.1 General Description of E.U.T.

Product Name: 3G Mobile Phone

Model No.: SMART VOLT NX5

Model Description: N/A

GSM Band(s): GSM 850/900/1800/1900MHz

GPRS/EGPRS Class: 12

WCDMA Band(s): FDD Band I/II/V

LTE Band(s): N/A

Wi-Fi Specification: 2.4G-802.11b/g/n HT20/n HT40

Bluetooth Version: Bluetooth v4.0 with BLE

GPS: Support NFC: N/A

Hardware Version: WF5 2.1

Software Version: WF581.JF.M0.F.GAL1SAG1.B125.0622.V3.03.Test

Highest frequency

26MHz

(Exclude Radio):

Storage Location: Internal Storage

5.2 Details of E.U.T.

Operation Frequency: GSM/GPRS/EDGE 850: 824~849MHz

PCS/GPRS/EDGE 1900: 1850~1910MHz

WCDMA Band II: 1850~1910MHz WCDMA Band V: 824~849MHz

WiFi: 802.11b/g/n HT20: 2412~2462MHz 802.11n HT40: 2422~2452MHz

Bluetooth: 2402~2480MHz

Max. RF output power: GSM 850: 32.85dBm

PCS1900: 29.90dBm

WCDMA Band II: 22.63dBm WCDMA Band V: 22.59dBm

WiFi (2.4G): 9.48dBm Bluetooth: 1.09dBm

Type of Modulation: GSM,GPRS: GMSK

EDGE: GMSK, 8PSK WCDMA: BPSK WiFi: CCK, OFDM

Bluetooth: GFSK, Pi/4 DQPSK, 8DPSK

Reference No.: WTS16S1063232-1E Page 7 of 76

Antenna installation: GSM/WCDMA: internal permanent antenna

WiFi/Bluetooth: internal permanent antenna

Antenna Gain: GSM 850: -0.8dBi

PCS1900: -1.0dBi

WCDMA Band II: -1.0dBi WCDMA Band V: -0.8dBi

WiFi(2.4G): -0.7dBi Bluetooth: -0.7dBi

Technical Data: Battery DC 3.8V, 2200mAh

DC 5V, 1.0A, charging from adapter

(Adapter Input: 100-240V~50/60Hz 0.15A)

Adapter: Manufacture: Shenzhen Lianxunweiye Teehnology Co.ltd.

Model No.: LXD-S15B

5.3 Channel List

Normal

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	-

5.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests; the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2441MHz	2480MHz

5.5 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A

Waltek Services(Shenzhen) Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A, October 15, 2015.

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

Waltek Services (Shenzhen) Co.,Ltd.

Reference No.: WTS16S1063232-1E Page 9 of 76

6 Test Summary

Test Items	Test Requirement	Result
	15.205(a)	
Radiated Spurious Emissions	15.209	PASS
	15.247(d)	
Conducted Spurious emissions	15.247(d)	PASS
Don'd adag	15.247(d)	DAGG
Band edge	15.205(a)	PASS
Conduct Emission	15.207	PASS
20dB Bandwidth	15.247(a)(1)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Frequency Separation	15.247(a)(1)	PASS
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
Dwell time	15.247(a)(1)(iii)	PASS
Antenna Requirement	15.203	Complies
Maximum Permissible Exposure	4.4007(5)(4)	DAGG
(Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

7 Equipment Used during Test

7.1 Equipments List

	7.1 Equipments List						
Condu	cted Emissions Test \$	Site 1#			_		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.12,2016	Sep.11,2017	
2.	2. LISN R&S		ENV216	101215	Sep.12,2016	Sep.11,2017	
3.	3. Cable Top		TYPE16(3.5M)	=	Sep.12,2016	Sep.11,2017	
Condu	cted Emissions Test \$	Site 2#					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.12,2016	Sep.11,2017	
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.12,2016	Sep.11,2017	
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.12,2016	Sep.11,2017	
4.	Cable	LARGE	RF300	-	Sep.12,2016	Sep.11,2017	
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	1#			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1	Spectrum Analyzer	R&S	FSP	100091	Apr.29, 2016	Apr.28, 2017	
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Apr.09,2016	Apr.08,2017	
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.09,2016	Apr.08,2017	
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.12,2016	Sep.11,2017	
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.09,2016	Apr.08,2017	
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.09,2016	Apr.08,2017	
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Apr.13,2016	Apr.12,2017	
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.13,2016	Apr.12,2017	
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	2#			
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date	
1	Test Receiver	R&S	ESCI	101296	Apr.13,2016	Apr.12,2017	
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Apr.09,2016	Apr.08,2017	
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Apr.13,2016	Apr.12,2017	
4	Cable	HUBER+SUHNER	CBL2	525178	Apr.13,2016	Apr.12,2017	

RF Coi	RF Conducted Testing							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.12,2016	Sep.11,2017		
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.12,2016	Sep.11,2017		
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.12,2016	Sep.11,2017		

7.2 Description of Support Units

Equipment	Manufacturer	Model No.	Series No.
/	/	/	/

7.3 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
Radiated Spurious Emissions tost	± 5.03 dB (Bilog antenna 30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (Horn antenna 1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

7.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS16S1063232-1E Page 12 of 76

8 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: Frequency (MHz) Limit (dBµV)

Quasi-peak Average

0.15 to 0.5

66 to 56*

56 to 46*

 Outsi-peak
 Average

 0.15 to 0.5
 66 to 56*
 56 to 46*

 0.5 to 5
 56
 60

 5 to 30
 60
 50

8.1 E.U.T. Operation

Operating Environment:

Temperature: 22.8 °C
Humidity: 52.6 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in TX Transmitting mode, the test data were shown in the report.

8.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10.

8.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

8.4 Conducted Emission Test Result

Remark: only the worst data (GFSK modulation mode) were reported

Live line:

Reference No.: WTS16S1063232-1E Page 14 of 76

Neutral line:

Reference No.: WTS16S1063232-1E Page 15 of 76

9 Radiated Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10

Test Result: PASS
Measurement Distance: 3m

Limit:

_	Field Strength		Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

9.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 51.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in TX Transmitting mode, the test data were shown in the report.

9.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Analyzer

Network

The test setup for emission measurement above 1 GHz.

System

Spectrum Analyzer Setup 9.3

Below 30MHz		
	Sweep Speed IF Bandwidth Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS16S1063232-1E Page 18 of 76

9.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the Z position. So the data shown was the Z position only.

9.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Limit

9.6 Summary of Test Results

Test Frequency: 9KHz~30MHz

Remark: only the worst data (GFSK modulation Low Channel mode) were reported

Frequency	Measurement results dBµV @3m	Detector PK/QP	Correct factor dB/m	Extrapolatio n factor dB	Measurement results (calculated) dBµV/m @30m	Limits dBµV/m @30m	Margi n dB
(MHz)	Measurement results	Detector	Correct factor	Extrapolatio n factor	Measurement results (calculated)	Limits	Margi n
6.136	25.63	QP	21.84	40.00	7.47	29.54	-22.07
8.205	26.33	QP	21.02	40.00	7.35	29.54	-22.19
26.741	24.58	QP	20.55	40.00	5.13	29.54	-24.41

.

Test Frequency: 30MHz ~ 1GHz

Remark: only the worst data (GFSK modulation Low Channel mode) were reported.

Low Channel - Horizontal

Low Channel - Vertical

Test Frequency: Above 1GHz

Remark: only the worst data (GFSK modulation Low Channel mode) were reported

Low Channel - Horizontal

Low Channel - Vertical

Reference No.: WTS16S1063232-1E Page 22 of 76

10 Conducted Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10

Test Result: PASS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

10.1 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer:

RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

Reference No.: WTS16S1063232-1E Page 23 of 76

Start 9.0 kHz

10.2 Test Result

9KHz - 30MHz GFSK

Stop 30.0 MHz

Pi/4DQPSK

Reference No.: WTS16S1063232-1E Page 26 of 76

8DPSK

30MHz - 25GHz

GFSK Low Channel

GFSK Middle Channel

GFSK High Channel

Pi/4 DQPSK Low Channel

Pi/4 DQPSK Middle Channel

Pi/4 DQPSK High Channel

8DPSK Low Channel

8DPSK Middle Channel

8DPSK High Channel

Reference No.: WTS16S1063232-1E Page 33 of 76

11 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in

the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section

15.209(a) (see Section 15.205(c)).

Test Method: ANSI C63.10

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

11.1 Test Procedure

 Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto
 Detector function = peak, Trace = max hold

Reference No.: WTS16S1063232-1E Page 34 of 76

11.2 Test Result

GFSK Transmitting Band edge-right side Vertical

Reference No.: WTS16S1063232-1E Page 42 of 76

Pi/4 DQPSK Transmitting Band edge-right side Vertical

8DPSK Transmitting Band edge-right side Horizontal

Reference No.: WTS16S1063232-1E Page 48 of 76

12 20 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10

Test Mode: Test in fixing operating frequency at low, Middle, high channel.

12.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

12.2 Test Result

Modulation	Test Channel	Bandwidth(MHz)	
GFSK	Low	0.964	
GFSK	Middle	0.964	
GFSK	High	0.964	
Pi/4 DQPSK	Low	1.287	
Pi/4 DQPSK	Middle	1.287	
Pi/4 DQPSK	High	1.287	
8DPSK	Low	1.287	
8DPSK	Middle	1.287	
8DPSK	High	1.287	

-80 dBm

CF 2.402 GHz

Test plots

Span 3.0 MHz

Reference No.: WTS16S1063232-1E Page 54 of 76

13 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz

band: 0.125 watts.

Test mode: Test in fixing frequency transmitting mode.

13.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.///

13.2 Test Result

Modulation	Test Channel	Output Power (dBm)	Limit (dBm)
GFSK	Low	0.43	30
GFSK	Middle	0.86	30
GFSK	High	1.07	30
Pi/4 DQPSK	Low	0.23	21
Pi/4 DQPSK	Middle	0.66	21
Pi/4 DQPSK	High	0.90	21
8DPSK	Low	0.45	21
8DPSK	Middle	0.86	21
8DPSK	High	1.09	21

Page 55 of 76

Test plots

Reference No.: WTS16S1063232-1E Page 60 of 76

14 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

Test Mode: Test in hopping transmitting operating mode.

14.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 3.0MHz. Sweep = auto;
 Detector Function = Peak. Trace = Max hold.
- Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

14.2 Test Result

Modulation	Test Channel	Separation (MHz)	Limit(MHz)	Result
GFSK	Low	1.000	0.964	PASS
GFSK	Middle	1.000	0.964	PASS
GFSK	High	1.000	0.964	PASS
Pi/4 DQPSK	Low	1.000	0.858	PASS
Pi/4 DQPSK	Middle	1.000	0.858	PASS
Pi/4 DQPSK	High	1.000	0.858	PASS
8DPSK	Low	1.000	0.858	PASS
8DPSK	Middle	1.000	0.858	PASS
8DPSK	High	1.000	0.858	PASS

Test plots

Reference No.: WTS16S1063232-1E Page 66 of 76

15 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

15.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.483GHz. Sweep=auto;

15.2 Test Result

Test Plots:

79 Channels in total

Reference No.: WTS16S1063232-1E Page 68 of 76

16 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided

that a minimum of 15 channels are used.

Test Mode: Test in hopping transmitting operating mode.

16.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set spectrum analyzer span = 0. Centred on a hopping channel;
- Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

16.2 Test Result

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)	
DH5	1600/79/6*0.4*79*(MkrDelta)/1000	
DH3	1600/79/4*0.4*79*(MkrDelta)/1000	
DH1	1600/79/2*0.4*79*(MkrDelta)/1000	
Remark: Mkr Delta is once pulse time.		

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
GFSK	DH5	Low	2.880	0.307	0.4
		middle	2.880	0.307	0.4
		High	2.880	0.307	0.4
Pi/4DQPSK	DH5	Low	2.880	0.307	0.4
		middle	2.880	0.307	0.4
		High	2.880	0.307	0.4
8DPSK	DH5	Low	2.872	0.306	0.4
		middle	2.872	0.306	0.4
		High	2.872	0.306	0.4

Remark: Only the worst-case mode DH5 is recorded.

17 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has an integrated antenna, fulfil the requirement of this section.

Reference No.: WTS16S1063232-1E Page 75 of 76

18 RF Exposure

Remark: refer to SAR test report: WTS16S1063229E

Reference No.: WTS16S1063232-1E Page 76 of 76

19 Photographs of test setup and EUT.

Note: Please refer to appendix: WTS16S1063232E-Photo.

====End of Report=====