2309 CS106 & CS442 & SE442 Course Outline

Subject Code : CS106; CS442; SE442

Subject Title : Principles of Compilers (CS106); Compiler Construction (CS442 & SE442)

Course Type : Elective

Level : 1 Credits : 3

Teaching Activity : Lecture 45 hours

Prior Knowledge* : C programming

Class Schedule : Class

Class	Week	Time	Classroom	Date	
CS106(D1)		19:00		01/9/2022	
CS442(D1)	WED	_	C309	01/Sep/2022 -	
SE442(D1)		21:50	21:50		17/Dec/2022

Instructor : Zhiyao Liang Contact Number : 8897-2940

E-mail Address : <u>zyliang@must.edu.mo</u>

Office : Room A324

Office Hour : Mon. 13:00 -15:00

Tue. 9:00 - 11:00 Wed. 13:30 -17:30 Thu. 9:00 - 11:00

COURSE DESCRIPTION

This course is designed to introduce the basic concepts and techniques of compilers. It covers some essential aspects of constructing a compiler: specification of programming languages, lexical analysis, syntactic analysis, semantic analysis, run-time environment, and code generation. It also briefly discusses some of the advanced topics. A course project covers different stages of constructing a compiler, including a scanner, parser, semantic analyzer, and code generator. The source language and target language can be freshly designed. The project is non-trivial while feasible. Fundamentals of the theory of computation, including regular expression, grammar, and finite state machines, will be taught and practiced.

TEXTBOOKS

No recommended textbook. The learning materials will be provided to students during the classes.

Reference book:

- Kenneth C. Louden, *Compiler Construction Principles and Practice* ISBN: 9780534939724, Publisher: Course Technology, 1997
- Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, Compilers: Principles, Techniques, and Tools, 2ed, Pearson Education, 2006

- Andrew w. Appel, *Modern Compiler Implementation in C*, Cambridge University Press, 1999
- Steven S. Muchnick, Advanced Compiler Design Implementation, Academic Press, 1997
- Other suggested books will be introduced at be the beginning of the course.

INTENDED LEARNING OUTCOMES

Upon successful completion of this subject, students will be able to:

- 1. Understand the basic concepts and principles of compilers.
- 2. Understand relatively large C program.
- 3. Implementing different parts of compilers.
- 4. Learn and apply the knowledge of automata and formal languages that are related to programming language and compilers.
- 5. Experience working and communication in groups for projects.
- 6. Understand different aspects of designing a programming language.
- 7. Apply knowledge and skills of programming language and data structures to construct compilers.
- 8. Experience cooperation and team works in doing projects.

Weekly Schedule

No.	Торіс	Hours	Teaching Method
1	Introduction:	1.5	Lecture and
	Paradigms of programming languages, levels of		discussion
	languages, structure of a compiler, brief history		
	of compilers, categories and features of		
	compilers, compiler design issues.		
1	Language Processors:	1.5	Lecture and
	Translator & compiler, manipulation of		discussion
	programs, bootstrapping and tombstone		
	diagrams, real and abstract machines.		
2-3	Theory of computation topics:	6	Lecture and
	Natural language & formal language, DFA,		discussion
	NFA, Regular Expressions, regular grammar,		
	formalism of grammar vs. automaton,		
	Chomsky classification, context-free		
	grammars, PDAs, Turing machines.		
4	Language Specification	3	Lecture and

	Backus-Naur Form (BNF), regular expression,		discussion
	Extended BNF, sspects of specification for a		
	programming language, syntax trees.		
5 – 6	Lexical Analysis	6	Lecture and
	Syntax trees in processing of compiler, from		discussion
	program text to tokens, Disambiguating rules,		
	Finite-state machines and language recognition,		
	Finite state automata, Creating a lexical		
	analyzer, Error handling, Lexical analyzer		
	generator.		
7 - 8	Syntactic Analysis	6	Lecture and
	Parsing, Derivation, Construction of parse tree,		discussion
	Handling ambiguity, Top-down parsing,		
	Bottom-up parsing, Error detection and		
	recovery, Recursive-descent parsing, Predictive		
	parsing, $LL(k)$ grammar and parsing.		
9	Contextual/Semantic Analysis	3	Lecture and
	Identification, Symbol table, Scope, Block		discussion
	structures, Attributes, Standard environment,		
	Type checking, Attribute grammar.		
10	Run-time Organization	3	Lecture and
	Data representation, Expression evaluation,		discussion
	Postfix expression, Conversion algorithm,		
	Storage allocation, Routines.		
11 - 12	Code Generation	6	Lecture and
	Simple code generation with pure stack		discussion
	machine and pure register machine,		
	Introduction to three-address code. Translation		
	for declaration, assignment, arithmetic		
	expressions, and control flow structures.		
	Syntax-directed translation. Interpretation.		
13	Advanced topics	3	Lecture and
			discussion
14 – 15	Review of course content. Discussing the	6	Lecture and
	projects of development of a tiny compiler for a		discussion on
	specific language.		projects

ASSESSMENT APPROACH

Assessment aspect	%
	weight
Attendance (Class participation)	8%
Assignments and Projects	57%
Final exam	35%
Total	100%

Guideline for Letter Grade:

Marks	Grade
93-100	A+
88-92	A
83-87	A-
78-82	B+
72-77	В
68-71	B-
63-67	C+
58-62	С
53-57	C-
50-52	D
0-49	F

Additional Information

Course-related information and materials, including slides, handouts, notes, and videos, etc., will be distributed online by methods like Moodle and WeChat.