CSD2250 Linear Algebra Week 5 Homework

10th June 2022

You are given until 17th of June 2022, 2359 HRS to submit this homework.

Question 1 (Orthogonality/Orthonormality)

Let

$$v = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}$$
 and $w = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$.

- (a) Check that \boldsymbol{v} and \boldsymbol{w} are orthogonal.
- (b) Using \boldsymbol{v} and \boldsymbol{w} , determine a pair of orthonormal vectors.

Question 2

Determine the values of k for which

$$\boldsymbol{v} = \begin{bmatrix} k \\ k \\ 1 \end{bmatrix}$$
 and $\boldsymbol{w} = \begin{bmatrix} k \\ 5 \\ 6 \end{bmatrix}$

are orthogonal.

Question 3 (Projection onto a line)

Let

$$\boldsymbol{a} = \begin{bmatrix} -1\\2\\3 \end{bmatrix}$$
 and $\boldsymbol{b} = \begin{bmatrix} 3\\-1\\4 \end{bmatrix}$.

- (a) Find the projection \boldsymbol{p} of \boldsymbol{b} onto the line l through \boldsymbol{a} .
- (b) Determine the shortest distance from the point \boldsymbol{b} to the line l.

Question 4 (Invertibility of A^TA)

Let

$$\boldsymbol{a}_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \qquad \boldsymbol{a}_2 = \begin{bmatrix} 3 \\ -2 \\ 2 \end{bmatrix},$$

and A be the 3×2 matrix with \boldsymbol{a}_1 and \boldsymbol{a}_2 as its columns (from left to right).

- (a) Verify that the vectors \boldsymbol{a}_1 and \boldsymbol{a}_2 are linearly independent.
- (b) Verify that $A^T A$ is invertible.

Question 5 (Projection onto a subspace)

Let \boldsymbol{a}_1 , \boldsymbol{a}_2 , and A be defined as in Question 4. Set \boldsymbol{b} as the vector

$$\boldsymbol{b} = \begin{bmatrix} 3 \\ 1 \\ 11 \end{bmatrix}.$$

Furthermore, let S be the subspace spanned by the vectors \mathbf{a}_1 and \mathbf{a}_2 .

- (a) Verify that $\boldsymbol{b} \notin C(A)$, by showing that $A\boldsymbol{x} = \boldsymbol{b}$ has no solution.
- (b) Find the projection \boldsymbol{p} of \boldsymbol{b} onto S.
- (c) Determine the shortest distance from \boldsymbol{b} to the subspace S.