Konzept - Arbeitsgruppe AG_B 3

Erkennen von Spielkarten

Ziel

Das Programm soll ein Pokerblatt anhand eines Bildes der Spielkarten erkennen, also deren Farbe und Wert ausgeben.

Eingabe

Ein Bilddatei in einem der folgenden Formate: .png, .tiff, .jpg. Das Programm arbeitet nach der Angabe des Bildes von alleine und benötigt keine weitere Interaktion.

Ausgabe

Der Output ist textuell und gibt jeweils Farbe und Wert der einzelnen Spielkarten an. Die Reihenfolge der Karten wird hierbei nicht beachtet.

Voraussetzungen

- der Hintergrund muss einfarbig und darf nicht weiß sein
- die Karten dürfen nicht überlappen oder berühren
- die Karten müssen parallel zum Bildrand liegen
- die Karten dürfen nicht am Bildrand liegen oder diesen schneiden
- das Bild muss von oben aufgenommen sein (keine verzerrte Perspektive)
- das Kartendeck ist vorgegeben, genau eines

Methodik

- Einlesen des Bildes
- Glätten zur weiteren Verarbeitung mit Gauß (um Störkanten und -pixel zu entfernen; wird auch in weiteren Operationen benötigt)
- Binärbild erstellen mit Threshold nach Otsu (um Karten von Hintergrund zu trennen)
- Karten segmentieren mit Connected Component Labeling:
 - Es werden die Labels mit dem relativ größten Flächenanteil ausgewählt, d.h., die Labels die am öftesten vorkommen (Histogram der Labels)
 - Das größte dieser Labels ist der Hintergrund und wird ignoriert
 - Die einzelnen Karten werden isoliert indem der min- und max-Wert der x- und y-Koordinaten der einzelnen Labels bestimmt werden
- Weiterverarbeitung der einzelnen Karten:
- Isolieren von jeweils Kartenwert und Kartensymbol durch Angabe relativer Positionen (ist bekannt durch das gegebene Kartendeck)
- Kartenwert erkennen mit MATLABs built-in OCR-Funktion
- Kartenfarbe (Pik, Kreuz, Herz, Karo) erkennen mit Template Matching:
 - (eventuell zuerst Unterscheidung nach Farbe: rot/schwarz durch Vergleich der kumulativen Summe der Rotkanäle)

- isoliertes Symbol und Template werden auf gleiche Größe skaliert
- größere Übereinstimmung der skalierten Bilder zeigt Symbol
- Textausgabe der Werte auf der Konsole

Evaluierung

- Wieviel Prozent der Testdatensätze liefern ein korrektes Ergebnis?
- Werden die Farben korrekt unterschieden?
- Werden die Kartenpositionen richtig erkannt?
- Wird die richtige Anzahl an Karten erkannt?
- Bis zu welcher Kartenneigungen werden diese richtig erkannt?
- Wie weit können sich die Karten überlappen ohne Beeinträchtigung des Ergebnis?
- Werden die Bilder richtig eingelesen und erkannt/verarbeitet?
- Werden alle Karten erkannt oder nur eine bestimmte Anzahl?

Datenbeispiel

Figure 1: Input Beispiel

Output: Pik Sechs, Karo Sechs, Kreuz Zehn, Karo Ass, Karo König

Zeitplan

Meilenstein	beendet am	Personen	Arbeitsaufwand in h
Kartendeck kaufen	22.10.2015	Markus,	1
		Julian	
Testdatensatz zusammenstellen	26.10.2015	Markus,	10
		Thomas	
MATLAB-Prototyp (=Backbone des	10.11.2015	Timon, Chris	50
Programm), ohne Template-Matching			
complete Template-Matching	12.11.2015	Julian	30
complete Gauß-Filter	12.11.2015	Thomas,	10
		Markus	
complete Otsu-Threshold	12.11.2015	Thomas,	20
		Markus	
complete MATLAB-Protoyp (funktionsfähig)	16.11.2015	alle	10
complete Connected Component Labeling	19.11.2015	Timon, Chris	30
funktionsfähiges Programm	26.11.2015	alle	40
complete Evaluierung	03.12.2015	alle	60
complete Abschlussbericht -> Projekt aus	10.12.2015	alle	40

References

- [1] R. Walczyk; A. Armitage; T.D. Binnie. Comparative study on connected component labeling algorithms for embedded video processing systems. In L. Deligiannidis Hamid R. Arabnia, editor, *IPCV'10*, Las Vegas, USA, 2010.
- [2] Wilhelm Burger; Mark J. Burge. Principles of Digital Image Processing. Advanced Methods. Springer, London, 2013.
- [3] Wen-Yuan Chen; Chin-Ho Chung. Robust poker image recognition scheme in playing card machine using hotelling transform, dct and run-length techniques. *Digital Signal Processing*, (20):769–779, 2010.
- [4] Frederic Jurie; Michel Dhome. A simple and efficient template matching algorithm. In *International Conference* on Computer Vision (ICCV '01), volume 2, pages 544–549, Vancouver, Canada, 2001. IEEE Computer society.
- [5] unknown. Poker vision: Playing cards and chips identification based on image processing (pattern recognition and image analysis). online document, last visit: 2015/10/22, 2011. URL: http://what-when-how.com/pattern-recognition-and-image-analysis/poker-vision-playing-cards-and-chips-identification-based-on-image-processing-pattern-recognition-and-image-analysis/.