Pages: 2

Traitement Numérique des Signaux Aléatoires

Série 2

Exercice 1

Soit x(n) un processus aléatoire stationnaire centré et d'autocorrélation $r_x(k)$.

On forme le processus y(n) tel que :

$$y(n) = x(n) + f(n)$$

avec f(n) une séquence déterministe.

Donner la moyenne $m_{\nu}(n)$ et l'autocorrélation $r_{\nu}(k,l)$ du processus y(n).

Exercice 2

Déterminer si les matrices suivantes sont de corrélation ou pas. Justifier la réponse :

$$R_1 = \begin{bmatrix} 4 & 1 & 1 \\ -1 & 4 & 1 \\ -1 & -1 & 4 \end{bmatrix}; R_2 = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix}; R_3 = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

Exercice 3

Laquelle des séquences suivantes correspond à un terme d'autocorrélation pour un processus SSL (justifier la réponse) :

1.
$$r_x(k) = 3\delta(k) + 2\delta(k-1) + 2\delta(k+1)$$
.

2.
$$r_x(k) = \delta(k-1) + \delta(k+1)$$
.

3.
$$r_{\chi}(k) = \exp\left(j\frac{k\pi}{4}\right)$$

4.
$$r_{x}(k) = 2^{-k^2}$$

Exercice 4

Pour chacune des propositions suivantes indiquer si le processus aléatoire est : SSL, ergodique.

- 1. x(n) = A; A une VA avec une densité de probabilité $f_A(\alpha)$.
- 2. $x(n) = A \cos(n\omega_0)$ avec A une VA uniforme sur $[0,2\pi]$.
- 3. $x(n) = A\cos(n\omega_0)$ avec A une VA gaussienne de moyenne m_A et de variance $\sigma_A^{\ 2}$.

Exercice 5

Trouver la densité spectrale de puissance (DSP) des processus aléatoires SSL dont on donne les autocorrélations :

1.
$$r_x(k) = 2\delta(k) + j\delta(k-1) - j\delta(k+1)$$

2.
$$r_x(k) = \delta(k) + 2(0.5)^{|k|}$$