Algorithm Analysis and Optimization

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

Degree in Informatics Engineering

Worksheet 3 – Partial Solution

Subject(s):

Simplex Method

Exercises from: F. S. Hillier and G. L. J., Introduction to Operations Research. McGraw-Hill Education, 2015.

Part 1

4.5-2.

a)

b) Yes. Optimal solution is: $(x_1, x_2) = (0, 10)$ e $Z^* = 10$.

c) No. The objective function value is maximized by sliding the objective function line to the right. This can be done forever, so there is no optimal solution.

d) No, solutions exist that will make the profit arbitrarily large. This usually occurs when a constraint is left out of the model.

e) Iteration 0 Right x_1 x_2 x_3 χ_4 side Z -1 0 0 0 -1 3 0 30 x_3 1 -3 1 0 1 30 χ_4 Iteration 1 Right x_1 x_2 x_3 x_4 side Z 2/3 0 1/3 0 10 1/3 -1/3 0 10 x_2 -8/3 -1/3 20 χ_4

 $Z*_{(0,10)} = 10.$

4.5-7.

a)

s.t. $x_1 \le 6$ $x_2 \le 3$ $-x_1 + 3x_2 \le 6$

b)

Objective function (Z)	Multiple optimal solutions
$Z = -x_1 + 3x_2$	Line segment between (0, 2) e (3, 3)
$Z = x_2$	Line segment between (3, 3) e (6, 3)
$Z = x_1$	Line segment between (6, 3) e (6, 0)
$Z = -x_2$	Line segment between (0, 0) e (6, 0)
$Z = -x_1$	Line segment between (0, 0) e (0, 2)

c) Optimal solution: $Z^*_{(0, 2)} = 4$.

Corner point (x_1, x_2)	$\mathbf{Z} = -x_1 + 2x_2$
(0,0)	Z = 0
(0, 2)	Z = 4
(3, 3)	Z = 3
(6, 3)	Z = 0
(6, 0)	Z = -6

d)
max.
$$\mathbf{Z} = -x_1 + 2x_2$$

s.t. $x_1 \le 6$
 $x_2 \le 3$
 $-x_1 + 3x_2 \le 6$

Iteration 0	x_1	x_2	x_3	x_4	x_5	Right
				y		side
Z	1	-2	0	0	0	0
x_3	1	0	1	0	0	6
x_4	0	1	0	1	0	3
x_5	-1	3	0	0	1	6

Iteration 1	x_1	x_2	x_3	x_4	x_5	Right side
Z	1/3	0	0	0	2/3	4
x_3	1	0	1	0	0	6
x_4	1/3	0	0	1	-1/3	1
x_2	-1/3	1	0	0	1/3	2

Optimal solution: $Z^*_{(0, 2)} = 4$.

Part 2

4.5-8.

Iteration 0:

Bas	Eq		Coefficient of							
Var		Z	Х1	X2	Х3	X4	X5	Х6	Right Side	
z	।	1	-1	-1	-1	-1	0	0	0	
X5	1	0	1	1	0	0	1	0	3	
X6		0	0.	0	1	1	0	1	2	

Iteration 1:

Bas	Eq		Coefficient of							
Var	No	Z	x ₁	X2	Х3	X4	X5	Х6	Right Side	
z	0	1	0	۰	-1	-1	1	0	3	
x_1	1	0	1	1	0	0	1	0	3	
X6	2	0	0	0	1	1	0	1	2	

Iteration 2:

Bas	Eq	Eq Coefficient of							Right
Var	No	Z	X1	X ₂	Хз	X4	X5	Х6	Side
z	0	1	0	0	0	0	1	1	5
x ₁	1	0	1	1	0	0	1	0	3
x ₁ x ₃	2	0	0	0	1	1	0	1	2

Optimal solution: $Z^*_{(3, 0, 2, 0)} = 5$.