Jingyun_thesis_problems

Current result

strategy	Decrease factor (emergency)	GP length scale	linear	quadratic	cubic	schwefel	quartic
Baseline (Arash's)		8	503	214	198	1503	1236
Emergency CSA	0.68	8	299	144	178	949	720
Emergency CSA	0.72	8	304	142	184	916.5	717.5
Emergency CSA	0.72	32	350	134	192	977	682

Problems

Since what I did is a combination of (1+1)-ES and $(\mu/\mu, \lambda)$ -ES, specifically, $((\mu/\mu, \lambda) + (\mu/\mu, \lambda))$ -ES ((mml+mml)-ES). I'm not sure it falls more into (1+1)-ES or mml-ES. The most confusing question is should I do the Section 3 Analysis on mml-ES and propose the emergency situation in step size adaptation and therefore use (mml+mml)-ES in Section 4 or just propose (mml+mml)-ES in Section 3 (I think the analysis would be different) referred to the question in 3 a iii.

Some clarifications:

- 1. In introduction, I'd focus on the effect of using a population in offspring generation that could potentially avoid poorer step size and render the bias due to the surrogate model.
- 2. In related work, I want to include
 - a. Surrogate models
 - In comparison, should I pays more attention to surrogate-assisted mmI-ES and their result or (1+1)-ES.
 - b. Step size adaptation
 - In the context that we use mml-ES in each iteration, I'd the usually used step size adaptation mechanism CSA and CMA. Should I mention 1/5-rule since the idea of emergency is borrowed from that.
- 3. In analysis, the most confusing part. I'll try put the equation in your paper first and derive that if time permits. Some detailed questions
 - a. Plot expected progress rate over normalized step size for different noise-to-signal ratio

 \circ i. for the solid line $(n \to \infty)$, i could simply use the equation in your paper

$$\eta = E[\Delta_R^*] = \frac{\sigma^* c_{\mu/\mu,\lambda}}{\sqrt{1+\vartheta^2}} - \frac{(\sigma^*)^2}{2\mu}$$

∘ ii. for the dotted lines (n=10,100), I would use the following equation in your paper

$$\eta pprox rac{c_{\mu/\mu,\lambda}\sigma^*(1+\sigma^{*2}/2\mu N)}{\sqrt{1+\sigma^{*2}/2\mu N)}\sqrt{1+\vartheta^2+\sigma^{*2}/2N}} - N \left[\sqrt{1+rac{\sigma^{*2}}{\mu N}-1}\right]$$

- iii. for circle (experimental result for n=100) and cross (experimental result for n=10)
 For experimental result should I use the mmI-ES or (mmI+mmI)-ES (using normalized step size and Gaussian distributed noise to model GP)
- o iv. dashed line (performance of surrogated assisted (1+1)-ES) for comparision
- iv. the other problem is how to make the plot clear. I think possibly I should include i-iii for different lambda but that will makes the figure very messy, wonder if you have any suggestions on that
- 4. I wrote a pseudo code and wonder if the surrogate training part should be included. If so I need to add another if condition right after $y_i \leftarrow x + \sigma z_i$ and that makes the algorithm ugly.

Algorithm 1 A Surrogate Assisted $((\mu/\mu, \lambda) + (\mu/\mu, \lambda))$ -ES

$$c \leftarrow \frac{\mu+2}{n+\mu+5}$$

$$d \leftarrow 1 + 2\max(0, \sqrt{\frac{\mu-1}{n+1}} - 1)$$

$$p \leftarrow 0$$

$$D \leftarrow 0.68$$
while not terminate() **do for** $i = 1, 2, ..., \lambda$ **do**

Generate standard normally distributed $z_i \in \mathbb{R}^N$

$$y_i \leftarrow x + \sigma z_i$$
Evaluate y_i using the surrogate model, yieding $\hat{f}(y_i)$
end for

$$z = \frac{1}{\mu} \sum_{i=1}^{\mu} z_{i;\lambda}$$

$$y = x + \sigma x$$
Evaluate y using true objective function, yieding $f(y)$
Update surrogate modle
if $f(x) < f(y)$ (Emergency) **then**

$$\sigma \leftarrow \sigma D$$
else

$$s \leftarrow (1 - c)s + \sqrt{c(2 - c)\mu z}$$

$$\sigma \leftarrow \sigma \times \exp\left(\frac{c}{d} \frac{\|X\|}{E\|N(0,I)\|} - 1\right)$$
end if end while