

CIS2520 Data Structures

Fall 2011, Assignment 3

PART A (35%)

All functions below (f, f_1 , f_2 , g, g_1 , g_2 , h, $\sqrt{}$, log, etc.) are seen as functions from \mathbb{Z}_+ (the set of positive integers) to \mathbb{R}_+ (the set of positive real numbers). The domain of definition of a function f is denoted by log.

Definitions

D1

We say that f is defined on a neighbourhood of infinity iff: $\exists m \in \mathbb{Z}_+, m..+\infty \subseteq D_f$

D2

We say that f is less than or equal to g on a neighbourhood of infinity, and we write $f \leq g$, iff: $\exists m \in \mathbb{Z}_+, \forall n \in m..+\infty$, $f(n) \leq g(n)$

Note that f and g are then defined on a neighbourhood of infinity $(m..+\infty)$ in the expression above.

D3

We say that f is O(g) iff: $\exists \lambda \in \mathbb{R}_+, \exists m \in \mathbb{Z}_+, \forall n \in m..+\infty, f(n) \leq \lambda g(n)$

Note that f and g are then defined on a neighbourhood of infinity $(m..+\infty)$ in the expression above).

D4

Let L be a real number. We say that the limit of f at $+\infty$ is L, and we write $\lim_{n\to +\infty} f(n)=L$, iff: $\forall \epsilon \in \mathbb{R}_+$, $\exists m \in \mathbb{Z}_+$, $\forall n \in m..+\infty$, $|f(n)-L|<\epsilon$

In this case, we also say that the limit (exists and) is finite. Moreover, note that f is then defined on a neighbourhood of infinity (m..+ ∞ in the expression above).

D5

We say that the limit of f at $+\infty$ is $+\infty$, and we write $\lim_{n\to +\infty} f(n) = +\infty$, iff: $\forall \epsilon \in \mathbb{R}_+$, $\exists m \in \mathbb{Z}_+$, $\forall n \in m..+\infty$, $f(n) > \epsilon$

In this case, we also say that the limit (exists and) is infinite. Moreover, note that f is then defined on a neighbourhood of infinity (m..+ ∞ in the expression above).

Properties

P1

For any positive real numbers $\alpha \le 1$, $\beta > 1$ and $\gamma > 1$ we have: $1 \le \log_{\beta} n \le n^{\alpha} \le n.\log_{\beta} n \le n^{\gamma} \le \beta^n \le n! \le n^n$

P2

For any positive real number α we have: α is O(1).

P3

For any positive real numbers $\alpha>1$ and $\beta>1$ we have: \log_{α} is $O(\log_{\beta})$.

P4

If f is defined on a neighbourhood of infinity then f is O(f).

P5

For any positive real number α , if there exists a positive real number ϵ such that $\epsilon \leq f$ then $f+\alpha$ is O(f).

P6

If f–g is defined on a neighbourhood of infinity then f–g is O(f).

Ρ7

If $f \leq g$ then f is O(g).

P8

If f is O(g) and g is O(h) then f is O(h).

P9

If f is O(h) and g is O(h) then f+g is O(h).

P10

If f_1 is $O(g_1)$ and f_2 is $O(g_2)$ then f_1+f_2 is $O(g_1+g_2)$.

P11

If f_1 is $O(g_1)$ and f_2 is $O(g_2)$ then f_1+f_2 is $O(\max(g_1,g_2))$.

P12

If f_1 is $O(g_1)$ and f_2 is $O(g_2)$ then f_1f_2 is $O(g_1g_2)$.

P13

If the limit of f/g at $+\infty$ is finite then f is O(g).

P14

If the limit of f/g at $+\infty$ is infinite then g is O(f).

Questions

- 1) Show that we may have
 - (a) f_1 is $O(g_1)$, f_2 is $O(g_2)$, f_1-f_2 and g_1-g_2 are defined on a neighbourhood of infinity, but f_1-f_2 is not $O(g_1-g_2)$.
 - **(b)** f is O(g), but the limit of f/g at $+\infty$ does not exist.
- **2)** Prove **(a)** P3, **(b)** P5, **(c)** P11, **(d)** P13.
- 3) Using the properties P1 to P14, show, step-by-step, that
 - (a) $2n^4+9(n^3\sqrt{n})-17$ is $O(n^4)$.
 - **(b)** $18 \text{ n} \log_2 n + 19 n + 3 \text{ is } O(n \log n).$

PART B (65%)

Download **assign3.zip** from **Moodle**. It packs 9 files:

StudentType.h StudentInterface.h StudentImplementation.c

TreeType.h TreeInterface.h TreeImplementation.c

myProgram.c test.txt makefile Complete **TreeImplementation.c** and **myProgram.c**. The latter is a simple test program: it uses the functions declared in **StudentInterface.h** and **TreeInterface.h** to create a binary search tree from the student data stored in **test.txt** and to sort these data according to the students' grades. The output of the program should be the following:

Ashley	35%
Tom	45%
Adam	45%
Liz	55%
Bob	60%
Karen	65%
Ann	70%
John	75%
Pete	80%
Mary	85%
Dave	90%

SUBMISSION

PART A

Turn in a hardcopy at the <u>start</u> of the lecture on Nov 15, i.e., <u>no later than 2:31pm</u>.

PART B

Place the 9 text files (and the 9 text files only) in a folder **CIS2520_LastNameFirstName_A3**. Zip it and upload it to **Moodle** by Nov 13, 11:55pm.