Seneca

Academic Year	2023		
Semester	⊠ Fall	☐ Winter	☐ Summer
Course Code - Name	BAN110 - I	Data Preparation and H	Handling
Instructor	Muhammad Rehman Zafar		
Assessment	Projects		

Student ID	Student Name	Role
113265227	Prashant Rokka	Group Lead
123445231	Sashank Ghimire	Member
143802221	Ankit Yadav	Member
129394235	Anik Bandu Das	Member
142488170	Malathi Chanti	Member

Projects

You are required to choose a project from the list of the projects specified in this document and complete it within groups of **three**.

Since this is a group project, it is required to be done in groups of **3**. Each group should have a Group Lead who would be responsible for submitting the project on Blackboard (Please note that not all the members of the group are required to submit the project separately on Blackboard. **One submission from the Group Lead would be sufficient**).

The detailed requirements for each project are available in this document, so please go through the details and fulfil all the requirements to avoid missing any marks.

Finally, follow the below mentioned instructions carefully.

Instructions:

To obtain maximum marks in this assessment, please ensure the followings:

- Don't forget to write your name and ID on the first page of this document. The student IDs and names of all the students in the group should be mentioned along with the roles.
- Submit the project by writing your solution in this document under the Solution heading below. Do not use a separate document. Everything related to the project should be included in this document, e.g., code, screenshots etc.
- This project has a weightage of **24%** marks of the course.
- This is a group project so only 1 submission from the group lead is required.
- Group Leads are required to submit the project on Blackboard as instructed. Submissions through email will not be accepted.
- The project deadline is **midnight December 5, 2023**. Submissions after the deadline will not be accepted.
- A separate session for presentation and QA for the project will be scheduled.
- Upload presentation slides separately to the Blackboard.

Rubric: Your assessment will be graded based on the following rubric:

	Excellent (7 - 10)	Average (4 – 6.9)	Poor (<4)	
Project Completion	The project was	The project was	The project is	
and Code	completed without	completed with few	incomplete. Does not	
(14)	any errors and output	errors. Fulfills some	fulfill all/most of the	
	is as expected. Fulfills	of the requirements	requirements.	
	all/most of the	for the project.		
	requirements for the			
	project.			
Presentation and	The student has a	The student has an	The student has no	
QA	good contribution to	average contribution	contribution to the	
(5)	the project. Knows	to the project. Does	1 0	
	the ins and outs of the	not know the whole	•	
	project.	project.	about the project.	
	The student has	The student has	The student has	
	presented his/her part	averagely presented		
	of the project very	his/her part of the	1 0	
	well. Knows	1 0	know much about the	
	everything / most of	<u> </u>	project.	
	his/her part.	his/her part.		
Report	Student has	Student has	Student has not	
(5)	contributed well in	contributed partially	contributed in	
	preparing the project	in preparing the	preparing the report.	
	report and knows all	project report and		
	the aspects of the	knows some aspects		
	report.	of the report.		

Project Instructions

You are provided with a few datasets however; you are free to pick any dataset you like to work on as a group. You are required to demonstrate at least the following skills in the project:

- 1. Dataset and task description
- 2. Data Import
 - This phase requires you to import the data from the provided excel file into SAS using Proc Import.
- 3. Dataset Characteristics and Cleaning
 - This phase requires you to clean your data before data analysis phase. You should use at least following concepts to complete this phase:
 - 1. Extract relevant data from the original dataset
 - 2. Convert a numeric column to character column or vice versa
 - 3. Create a new column based on existing columns and use it in your analysis
 - 4. Identify missing values and remove / replace using an appropriate technique
 - 5. Use built-in SAS function(s) to perform data cleaning, e.g., extracting year from the data column etc.

For example, if:

- Target variable
 - 1. If categorical, show the frequency distribution of each of the possible values. Interpret. Is the dataset balanced? Any other comment?
 - 2. If numerical, show the statistics (min, max, mean) and the shape of the distribution of the target variable through a histogram. In some case, numerical target variables need transformation to make data modeling possible.
- Categorical variables
 - 1. Check and correct errors when necessary.
 - 2. Check and treat missing values through imputation with the mode.
 - 3. Create one or more derived variables. Justify why the derived variable is created? Does it answer a specific question? Does it serve for data modeling? Etc..
- Numerical variables
 - 1. Check (range of values/ less than/larger than) and correct errors by deletion.
 - 2. Check for missing values and correct through imputation with the mean.
 - 3. Check the distribution of one or more numerical variables to decide which method to use for outlier detection.
 - 4. Detect and remove outliers.
 - 5. Test for normality and plot histogram and QQ plots for a variable with a skewed distribution. Apply a transformation and test for normality again with histogram and QQ plot.

4. Data Analysis

• This phase requires you to analyze your cleaned dataset to answer at least 3 valid business questions. You are free to pick any business questions you like, however, please keep in mind that picking good business questions to answer would result in better marks.

5. Project Report

- This phase requires you to create a report in MS Word with the following requirements:
 - 1. Explain each and every phase of the project (from Phase 1 to 4) along with the screenshots of the output and the related SAS code
 - 2. Include answers to questions in Phase 4 in your report
 - 3. Create at least 1 graph / chart in your report which can be simply a Box plot to identify outliers etc.
 - 4. Make sure not to miss any phase and output of its screenshot

Dataset Options

1. Auto-mpg dataset:

https://www.kaggle.com/uciml/autompg-dataset

2. Heart disease dataset

https://www.kaggle.com/ronitf/heart-disease-uci

3. Census income dataset

https://www.kaggle.com/uciml/adult-census-income

4. Bike sharing dataset

https://www.kaggle.com/marklvl/bike-sharing-dataset

5. Suicide rates dataset:

https://www.kaggle.com/russellyates88/suicide-rates-overview-1985-to-2016

6. Breast Cancer

https://archive.ics.uci.edu/dataset/14/breast+cancer

You are free to use any other dataset from the following sources. Please make sure the dataset meets the requirements listed in dataset requirements section.

Kaggle: https://www.kaggle.com/datasets
UCI: https://archive.ics.uci.edu/dataset

Solution:

Dataset and Task Description:

The team has undertaken a comprehensive analysis of suicide rates utilizing a dataset available at Link: https://www.kaggle.com/russellyates88/suicide-rates-overview-1985-to-2016.

The provided SAS code demonstrates adept data preprocessing and analysis, incorporating procedures such as PROC IMPORT, PROC CONTENTS, PROC MEANS, PROC UNIVARIATE, PROC SGPlot, PROC RANK, among others. The code seamlessly handles tasks including data importation, managing missing values, generating insightful summary statistics, detecting outliers, variable transformation, and addressing key business questions. Noteworthy accomplishments include the succinct summarization of male and female suicides, as well as the identification of years exhibiting both the highest and lowest suicide rates.

Data Characteristics, Import Analysis and Cleaning:

The code begins by exploring the structure of the 'WORK.Suicides' dataset using PROC CONTENTS. It then identifies missing values in the 'suicides_no' variable, computes descriptive statistics, and generates visualizations (box plot and histogram) to understand the distribution of suicide numbers. Outliers are detected and trimmed, contributing to a more robust dataset for analysis.

```
7
   8 FILENAME REFFILE '/home/u63578004/BAN110/master.csv';
   9 PROC IMPORT DATAFILE=REFFILE
  10
         DBMS=CSV
  11
         OUT=WORK.Suicides;
  12
         GETNAMES=YES;
  13 RUN;
  15 PROC CONTENTS DATA=WORK.Suicides; RUN;
  16
  17 title 'Print Missing values for Suicides_no';
  18 data _null_;
         file print;
  19
  20
         set WORK.Suicides;
  21
         if missing(suicides_no) then
             put 'Missing value for Suicides_no in ' country= year=;
  22
  23 run;
  24 title 'Proc Means for suicides';
  25 proc means data=WORK.Suicides min max range mean stddev q1 q3 qrange n;
  26
        var suicides_no;
  27 run;
  28 title 'SG Plot for Suicides no';
  29 proc sgplot data=WORK.Suicides (keep=country suicides_no);
  30
        hbox suicides_no;
  31 run;
  32 title 'Univariate for Suicides Data';
  33 proc univariate data=WORK.Suicides (keep=country suicides_no);
  34 histogram suicides_no / normal;
  35 run;
  36
```

The CONTENTS Procedure Data Set Name WORK.IMPORT 27820 Observations Member Type DATA Variables 12 Engine Indexes 0 12/05/2023 13:39:36 112 Observation Length Last Modified 12/05/2023 13:39:36 **Deleted Observations** 0 Protection Compressed NO NO Data Set Type Sorted Label Data Representation SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64 Encoding utf-8 Unicode (UTF-8)

	Engine/Host Dependent Information			
Data Set Page Size	131072			
Number of Data Set Pages	24			
First Data Page	1			
Max Obs per Page	1168			
Obs in First Data Page	1138			
Number of Data Set Repairs	0			
Filename	$/saswork/SAS_workBFCA0001BF68_odaws02-usw2.oda.sas.com/SAS_workB32F0001BF68_odaws02-usw2.oda.sas.com/import.sas7bdat$			
Release Created	9.0401M7			
Host Created	Linux			
Inode Number	1610787836			
Access Permission	TW-FF			
Owner Name	u63573329			
File Size	змв			
File Size (bytes)	3276800			

	Alphabetic List of Variables and Attributes					
#	Variable	Type	Len	Format	Informat	
10	gdp_for_year (\$)	Char	15	\$15.	\$15.	
9	HDI for year	Char	1	\$1.	\$1.	
4	age	Char	11	\$11.	\$11.	
13	age_group	Char	8			
1	country	Char	7	\$7.	\$7.	
8	country-year	Char	11	\$11.	\$11.	
11	gdp_per_capita (\$)	Num	8	BEST12.	BEST32.	
12	generation	Char	15	\$15.	\$15.	
6	population	Num	8	BEST12.	BEST32.	
3	sex	Char	6	\$6 .	\$6.	
7	suicides/100k pop	Num	8	BEST12.	BEST32.	
5	suicides_no	Num	8	BEST12.	BEST32.	
2	year	Num	8	BEST12.	BEST32.	

Proc Means for suicides The MEANS Procedure Analysis Variable : suicides_no Minimum Maximum Range Mean Std Dev Lower Quartile Upper Quartile Quartile Range N 0 22338.00 22338.00 242.5744069 902.0479168 3.0000000 131.0000000 128.0000000 27820

Univariate for Suicides Data

The UNIVARIATE Procedure Variable: suicides_no

Moments					
N	27820	Sum Weights	27820		
Mean	242.574407	Sum Observations	6748420		
Std Deviation	902.047917	Variance	813690.444		
Skewness	10.3529103	Kurtosis	157.168842		
Uncorrected SS	2.4273E10	Corrected SS	2.26361E10		
Coeff Variation	371.864422	Std Error Mean	5.40817885		

	Basic Statistical Measures				
Location Variability					
Mean	242.5744	Std Deviation	902.04792		
Median	25.0000	Variance	813690		
Mode	0.0000	Range	22338		
		Interquartile Range	128.00000		

Tests for Location: Mu0=0					
Test	Statistic p Value				
Student's t	t 44.85325		Pr > t	<.0001	
Sign	M	11769.5	Pr >= M	<.0001	
Signed Rank	S	1.3853E8	Pr >= S	<.0001	

Quantiles (Definition 5)		
Level	Quantile	
100% Max	22338.0	
99%	3995.0	
95%	1050.5	
90%	496.0	
75% Q3	131.0	
50% Median	25.0	
25% Q1	3.0	
10%	0.0	
5%	0.0	
1%	0.0	
0% Min	0.0	

Extreme Observations				
Lov	Lowest		hest	
Value	Obs	Value	Obs	
0	27544	20705	21058	
0	27496	21063	21069	
0	27472	21262	21081	
0	27460	21706	21009	
0	27364	22338	20997	

Univariate for Suicides Data

The UNIVARIATE Procedure
Fitted Normal Distribution for suicides no

Parameters for Normal Distribution				
Parameter	Parameter Symbol Estimate			
Mean	Mu	242.5744		
Std Dev	Sigma	902.0479		

Goodness-of-Fit Tests for Normal Distribution					
Test	Statistic p Value				
Kolmogorov-Smirnov	D	0.39400	Pr > D	<0.010	
Cramer-von Mises	W-Sq	1389.29731	Pr > W-Sq	<0.005	
Anderson-Darling	A-Sq	6693.01123	Pr > A-Sq	<0.005	

Quantiles for Normal Distribution				
	Qua	ntile		
Percent	Observed	Estimated		
1.0	0.00	-1855.903		
5.0	0.00	-1241.162		
10.0	0.00	-913.447		
25.0	3.00	-365.848		
50.0	25.00	242.574		
75.0	131.00	850.996		
90.0	496.00	1398.595		
95.0	1050.50	1726.311		
99.0	3995.00	2341.052		

Detecting Outliers:

```
CODE
         LOG
                   RESULTS
大 50 - 日 図 16 | B | B | P | で | が N m m m l Line # | O | 次 M | 2 頭 | M
 37 /* Detecting Outliers */
 38 proc rank data=WORK.Suicides(keep=country suicides_no) out=WORK.Suicides_trp1 groups=10;
 39     var suicides_no;
 40
       ranks Rank_suicides_no;
 41 run;
 42
 43 title 'Suicides Data sorted by Ranks of Suicides_no';
 44 proc print data=WORK.Suicides_trp1;
 45 run;
 46
 47 proc means data=WORK.Suicides_trp1 noprint;
 where Rank_suicides_no not in (0, 9);
        *Trimming the top and bottom 10%;
 49
 50
        var suicides_no;
      output out=WORK.Mean_std_trimmed(drop=type freq) mean=std= / autoname;
 51
 52 run;
```

Suicides	Data s	orted	by	Ranks	of	Suicide	s_no

Obs	country	suicides_no	Rank_suicides_no
1	Albania	21	4
2	Albania	16	4
3	Albania	14	4
4	Albania	1	1
5	Albania	9	3
6	Albania	1	1
7	Albania	6	3
8	Albania	4	2
9	Albania	1	1
10	Albania	0	0
11	Albania	0	0
12	Albania	0	0
13	Albania	2	2
14	Albania	17	4
15	Albania	1	1
16	Albania	14	4
17	Albania	4	2
18	Albania	8	3
19	Albania	3	2
20	Albania	5	3
21	Albania	5	3
22	Albania	4	2
23	Albania	0	0
24	Albania	0	0
25	Albania	2	2

```
* O LOG RESULTS OUTPUT DATA

* O LOG RESULTS OUTPUT DATA

54 title 'Normality for Suicides_no after trimming';

proc univariate data=WORK.Suicides_trp1(keep=country suicides_no);

histogram suicides_no / normal odstitle=title;

inset n normal(ksdpval) / pos=ne format=6.3;

run;

59
```

Normality for Suicides_no after trimming

The UNIVARIATE Procedure Variable: suicides_no

Moments					
N	27820	Sum Weights	27820		
Mean	242.574407	Sum Observations	6748420		
Std Deviation	902.047917	Variance	813690.444		
Skewness	10.3529103	Kurtosis	157.168842		
Uncorrected SS	2.4273E10	Corrected SS	2.26361E10		
Coeff Variation	371.864422	Std Error Mean	5.40817885		

	Basic Statistical Measures					
Loc	Location Variability					
Mean	242.5744	Std Deviation	902.04792			
Median	25.0000	Variance	813690			
Mode	0.0000	Range	22338			
		Interquartile Range	128.00000			

Tests for Location: Mu0=0					
Test	Statistic p Value				
Student's t	t 44.85325		Pr > t	<.0001	
Sign	M	11769.5	Pr >= M	<.0001	
Signed Rank	S	1.3853E8	Pr >= S	<.0001	

Quantiles (Definition 5)			
Level	Quantile		
100% Max	22338.0		
99%	3995.0		
95%	1050.5		
90%	496.0		
75% Q3	131.0		
50% Median	25.0		
25% Q1	3.0		
10%	0.0		
5%	0.0		
1%	0.0		
0% Min	0.0		

Extreme Observations					
Lov	vest	Higl	hest		
Value	Obs	Value	Obs		
0	27544	20705	21058		
0	27496	21063	21069		
0	27472	21262	21081		
0	27460	21706	21009		
0	27364	22338	20997		

Normality for Suicides_no after trimming

The UNIVARIATE Procedure Fitted Normal Distribution for suicides_no

Parameters for Normal Distribution					
Parameter Symbol Estimate					
Mean	Mu	242.5744			
Std Dev	Sigma	902.0479			

Goodness-of-Fit Tests for Normal Distribution				
Test Statistic p Value				
Kolmogorov-Smirnov	D	0.39400	Pr > D	<0.010
Cramer-von Mises	W-Sq	1389.29731	Pr > W-Sq	<0.005
Anderson-Darling	A-Sq	6693.01123	Pr > A-Sq	<0.005

Quantiles for Normal Distribution					
	Quantile				
Percent	Observed	Estimated			
1.0	0.00	-1855.903			
5.0	0.00	-1241.162			
10.0	0.00	-913.447			
25.0	3.00	-365.848			
50.0	25.00	242.574			
75.0	131.00	850.996			
90.0	496.00	1398.595			
95.0	1050.50	1726.311			
99.0	3995.00	2341.052			

```
title 'Outlier for Suicides_no Based on Trimmed Statistics';

data null;

file print;

set WORK.Suicides(keep=country suicides_no);

if n=1 then

set WORK.Mean_std_trimmed;

mult=1.49;

if suicides_no lt suicides_no_mean - mult*suicides_no_stdDev and not missing(suicides_no) or sui

put 'Outlier detected in ' country= suicides_no=;

run;
```

```
Outlier for Suicides no Based on Trimmed Statistics
Outlier detected in country=Albania suicides_no=21
Outlier detected in country=Albania suicides_no=16
Outlier detected in country=Albania suicides no=14
Outlier detected in country=Albania suicides_no=1
Outlier detected in country=Albania suicides_no=9
Outlier detected in country=Albania suicides_no=1
Outlier detected in country=Albania suicides no=6
Outlier detected in country=Albania suicides no=4
Outlier detected in country=Albania suicides_no=1
Outlier detected in country-Albania suicides no=0
Outlier detected in country=Albania suicides_no=0
Outlier detected in country=Albania suicides_no=0
Outlier detected in country=Albania suicides_no=2
Outlier detected in country-Albania suicides_no=17
Outlier detected in country=Albania suicides_no=1
Outlier detected in country=Albania suicides_no=14
Outlier detected in country=Albania suicides_no=4
Outlier detected in country=Albania suicides_no=8
Outlier detected in country=Albania suicides_no=3
Outlier detected in country=Albania suicides_no=5
Outlier detected in country=Albania suicides_no=5
Outlier detected in country=Albania suicides no=4
Outlier detected in country=Albania suicides no=0
Outlier detected in country=Albania suicides_no=0
Outlier detected in country-Albania suicides_no=2
Outlier detected in country=Albania suicides_no=18
Outlier detected in country=Albania suicides_no=15
Outlier detected in country=Albania suicides_no=6
Outlier detected in country=Albania suicides_no=12
Outlier detected in country=Albania suicides_no=7
Outlier detected in country=Albania suicides_no=5
Outlier detected in country=Albania suicides no=2
Outlier detected in country=Albania suicides_no=1
Outlier detected in country=Albania suicides_no=0
Outlier detected in country=Albania suicides_no=0
Outlier detected in country=Albania suicides_no=0
Outlier detected in country=Albania suicides no=12
Outlier detected in country=Albania suicides_no=9
```



```
title 'Univariate Procedure for Suicides_no after transformation';
proc univariate data=WORK.Suicides_skewed(keep=country log_suicidesno root4_suicidesno);
histogram log_suicidesno root4_suicidesno / normal;
inset n normal(ksdpval) / pos=ne format=6.3;
run;
```

Univariate Procedure for Suicides_no after transformation

The UNIVARIATE Procedure Variable: log_suicidesno

Moments					
N	27820	Sum Weights	27820		
Mean	3.38662635	Sum Observations	94215.9452		
Std Deviation	2.05481487	Variance	4.22226417		
Skewness	0.3844963	Kurtosis	-0.7240422		
Uncorrected SS	436533.37	Corrected SS	117459.167		
Coeff Variation	60.6743898	Std Error Mean	0.01231953		

Basic Statistical Measures				
Loc	Location Variability			
Mean	3.386626	Std Deviation	2.05481	
Median	3.295837	Variance	4.22226	
Mode	0.693147	Range	9.32099	
		Interquartile Range	3.28091	

Tests for Location: Mu0=0				
Test	Statistic p Value			
Student's t	t	274.899	Pr > t	<.0001
Sign	M	13910	Pr >= M	<.0001
Signed Rank	S	1.935E8	Pr >= S	<.0001

Quantiles (Definition 5)			
Level	Quantile		
100% Max	10.014134		
99%	8.293299		
95%	6.958923		
90%	6.210600		
75% Q3	4.890349		
50% Median	3.295837		
25% Q1	1.609438		
10%	0.693147		
5%	0.693147		
1%	0.693147		
0% Min	0.693147		

Extreme Observations					
Lowe	Lowest Highest				
Value	Obs	Value	Obs		
0.693147	27544	9.93823	21058		
0.693147	27496	9.95537	21069		
0.693147	27472	9.96477	21081		
0.693147	27460	9.98544	21009		
0.693147	27364	10.01413	20997		

Univariate Procedure for Suicides_no after transformation

The UNIVARIATE Procedure Fitted Normal Distribution for log_suicidesno

Parameters for Normal Distribution					
Parameter	Parameter Symbol Estimate				
Mean	Mu	3.386626			
Std Dev	Sigma	2.054815			

Goodness-of-Fit Tests for Normal Distribution				
Test Statistic p Value				
Kolmogorov-Smirnov	D	0.094960	Pr > D	<0.010
Cramer-von Mises	W-Sq	44.813696	Pr > W-Sq	<0.005
Anderson-Darling	A-Sq	354.161850	Pr > A-Sq	<0.005

Quantiles for Normal Distribution			
	Quantile		
Percent	Observed	Estimated	
1.0	0.69315	-1.39359	
5.0	0.69315	0.00676	
10.0	0.69315	0.75328	
25.0	1.60944	2.00067	
50.0	3.29584	3.38663	
75.0	4.89035	4.77258	
90.0	6.21060	6.01998	
95.0	6.95892	6.76650	
99.0	8.29330	8.16684	

SAS Code:

```
CODE
           LOG
                  RESULTS OUTPUT DATA
犬 ூ→ 🔒 😡 🖟 📳 🚇 🐚 🍽 🔗 😘 🛍 🛭 Line# 😥 🔖 班 💹 💥 🔀
  85 title 'To know the missing values from the generation column';
  86 proc freq data=WORK.Suicides (keep=generation);
  87 run;
  88
89 data WORK.Suicides;
        set WORK.Suicides;
  90
  91
  92
        if Sex='male' then
  93
            sex='M';
        else if sex='female' then
  94
  95
            sex='F';
  96
  97
       age=scan(age, 1, ' ');
  98
  99
       if age='5-14' then
 100
            age_group='Children';
       else if age='15-24' then
 101
 102
           age_group='Young';
      else if age='25-34' then
 103
           age_group='Middle';
 104
      else if age='35-54' then
 105
 106
           age_group='Late_Middle';
       else if age='55-74' then
 107
 108
           age_group='Senior';
 109
       else if age='75+' then
 110
            age_group='Late_Senior';
 111 run;
 112 proc print data = work.suicides;
 113 run:
```

Output:

To know the missing values from the generation column

The FREQ Procedure

generation	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Boomers	4990	17.94	4990	17.94
G.I. Generation	2744	9.86	7734	27.80
Generation X	6408	23.03	14142	50.83
Generation Z	1470	5.28	15612	56.12
Millenials	5844	21.01	21456	77.12
Silent	6364	22.88	27820	100.00

Data Analysis and Business Question:

This section involves transforming the 'suicides_no' variable through logarithmic and root transformations, addressing missing values in the 'generation' column, and conducting analyses to answer specific business questions. Business questions include summarizing female and male suicides separately, as well as identifying the year with the highest and lowest suicide rates. The results of these analyses provide valuable insights into the dataset and support decision-making processes.

```
/* Business questions */
/* Number of female suicides */
proc means data=WORK.Suicides noprint;
where sex = 'F';
var suicides_no;
output out=FemaleSummary sum=Sum_FemaleSuicides;
run;

title 'Summary of Female Suicides';
proc print data=FemaleSummary label;
var Sum_FemaleSuicides;
run;
```


SAS Code:

```
/* Number of male suicides */
proc means data=WORK.Suicides noprint;

where sex = 'M';
var suicides_no;
output out=MaleSummary sum=Sum_MaleSuicides;
run;

title 'Summary of Male Suicides';
proc print data=MaleSummary label;
var Sum_MaleSuicides;
run;
```

Output:

SAS Code:

```
/* Year with highest and lowest suicides */
proc freq data=WORK.Suicides;
    tables year / noprint out=YearSummary (keep=year count percent) sparse;
run;

title 'Summary of Suicides by Year';
proc print data=YearSummary label;
    var year count percent;
    label count = 'Number of Suicides' percent = 'Percentage';
run;
```

Output:

Summary	/ of	Suicides	hy Vear
Summary	/ 01	Suiciues	Dy Teal

Obs	year Number of Suicides		Percentage
1	1985	576	2.07045
2	1986	576	2.07045
3	1987	648	2.32926
4	1988	588	2.11359
5	1989	624	2.24299
6	1990	768	2.76060
7	1991	768	2.76060
8	1992	780	2.80374
9	1993	780	2.80374
10	1994	816	2.93314
11	1995	936	3.36449
12	1996	924	3.32135
13	1997	924	3.32135
14	1998	948	3.40762
15	1999	996	3.58016
16	2000	1032	3.70956
17	2001	1056	3.79583
18	2002	1032	3.70956
19	2003	1032	3.70956
20	2004	1008	3.62329
21	2005	1008	3.62329
22	2006	1020	3.66643
23	2007	1032	3.70956
24	2008	1020	3.66643
25	2009	1068	3.83896
26	2010	1056	3.79583