Midterm Exam Review Session

Instructor: Dr. Liting Hu

Introduction to Operating Systems

1. Introduction to Operating Systems

1.1 Computer Architecture

1.2 The CPU Control Unit

What is CPU pipeline?

load R3, b load R4, c add R3, R4 store R3, a

Control Unit

Primary Memory

1.3 CPU Response to Interrupts

1.4 System Calls

When to switch from user mode to kernel mode?

Processes management

2. Processes Management

2.1 Address Space

2.2 Multi-threaded Process

— Thread (Execution Engine) Process vs Thread?

2.3 Process Finite State Diagrams

2.4 Process Scheduler

2.5 Scheduler Metrics

- CPU Utilization
- Throughput
- Waiting time
- Service time
- Turnaround time for a process
- Response time

2.5.1 First Come, First Served Scheduler

Process	Service time
p1	140
p2	75
р3	320
p4	280
p5	125

() 14	40 2°	15 53	85 8	15 9	40
	p1	p2	р3	p4	p5	

2.5.2 Shortest Job Next Scheduler

		Process		S	Service	time	
		p1		14	.0		
		p2		7	5		
					32	.0	
			p3 p4		28	0	
			p5		12	5	
7	5	20	00 34	40	62	20	
p2	p5		p1		p4	рЗ	

2.5.3 Round Robin Scheduler

Process	Service time
p1	140
p2	75
рЗ	320
p4	280
p5	125

Interprocess Communication and Synchronization

3. IPC and Synchronization

Potential IPC problems

Race condition?

Critical region?

What is data inconsistency?

3.1 Possible solutions

- Software solution
- Disable interrupts
- Mutex and Semaphore

3.2 Bounded Buffer (Producers and Consumers)

Deadlocks

Deadlocks

A deadlock condition can occur when two processes need multiple shared resources at the same time in order to continue.

How to avoid deadlocks?

Review Tips

- Slides
- Section quiz
- Exam review session
- Sample midterm
- Text book