SỞ GIÁO DỤC VÀ ĐÀO TẠO HẢI DƯƠNG

KÌ THI CHỌN HỌC SINH GIỚI TỈNH LỚP 12 THPT NĂM HỌC 2017 – 2018 MÔN THI : TOÁN

Thời gian làm bài: 180 phút (Đề thi gồm 01 trang)

Câu 1 (2 điểm)

1. Cho hàm số $y = \frac{x-1}{x+1}$ có đồ thị là (C). Viết phương trình tiếp tuyến của

đồ thị (C) sao cho khoảng cách từ tâm đối xứng của (C) đến tiếp tuyến là lớn nhất.

2. Tìm m để phương trình sau có nghiệm thực;

$$x^4 + \frac{1}{x^4} - (x^2 + \frac{1}{x^2}) + x + \frac{1}{x} = m$$

Câu 2 (2 điểm)

1. Giải phương trình: $\sin^{2017} x + \cos^{2018} x = \frac{x^2}{2} + \cos x$.

2. Giải hệ phương trình: $\begin{cases} 20\sqrt{6-x} - 17\sqrt{5-y} - 3x\sqrt{6-x} + 3y\sqrt{5-y} = 0 & (1) \\ 2\sqrt{2x+y+5} + 3\sqrt{3x+2y+11} = x^2 + 6x + 13 & (2) \end{cases} \quad (x, y \in \mathbb{R})$

Câu 3 (2 điểm)

1. Môn bóng đá nam SE GAME có 10 đội bóng tham dự trong đó có Việt Nam và Thái Lan. Chia 10 đội bóng này thành 2 bảng A, B. Mỗi bảng có 5 đội. Tính xác suất sao cho Việt Nam và Thái Lan ở cùng một bảng.

2. Cho dãy số (u_n) thoả mãn điều kiện: $u_1 = \frac{\sqrt{6} - \sqrt{2}}{2}$, $u_{n+1} = \sqrt{2 + u_n}$ với mọi n=1, 2, ...

Chứng minh rằng dãy số (u_n) có giới hạn và tìm $\lim_{n \to \infty} 2^n \cdot \sqrt{2 - u_n}$.

Câu 4 (3 điểm)

- 1. Cho tứ diện ABCD có AB = CD = c, AC = BD = b, AD = BC = a.
 - a. Tính góc giữa hai đường thẳng AB, CD.

b.Chứng minh rằng trọng tâm của tứ diện ABCD cách đều tất cả các mặt của tứ diện.

2. Cho hình chóp S.ABCD có SA = x, tất cả các cạnh còn lại có độ dài bằng 1. Tính thể tích khối chóp đó theo x và tìm x để thể tích đó là lớn nhất.

Câu 5 (1 điểm). Cho các số thực a, b, c sao cho $a \ge 0$, $b \ge 0$, $0 \le c \le 1$ và $a^2 + b^2 + c^2 = 3$. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức sau:

$$P = 2ab + 3bc + 3ca + \frac{6}{a+b+c}$$
.....Hết....

Họ và tên thí sinh: Số báo danh: Chữ ký của giám thị 1: Chữ ký của giám thị 2: Chữ ký chủa giám thị 2: Chữ kỷ chủa giám th

ĐÁP ÁN VÀ HƯỚNG DẪN CHẨM MÔN TOÁN

KÌ THI CHỌN HỌC SINH GIỎI TỈNH LỚP 12 THPT NĂM HỌC 2017 – 2018

Câu	Ý	Nội dung	Điểm
I	1	Viết phương trình tiếp tuyến của đồ thị (C) sao cho khoảng cách từ tâm đối xứng của (C) đến tiếp tuyến là lớn nhất.	1,00
		Tâm đối xứng của đồ thị là I(-1; 1) Gọi N(x ₀ ,y ₀) là tiếp điểm của tiếp tuyến và đồ thị, khi đó tiếp tuyến của (C) tại M có phương trình: $y = \frac{2}{\left(x_0 + 1\right)^2} \left(x - x_0\right) + \frac{x_0 - 1}{x_0 + 1} \Leftrightarrow \begin{cases} x \neq -1 \\ 2x - \left(x_0 + 1\right)^2 y + x_0^2 - 2x_0 - 1 = 0 \end{cases}$	0,25
		Gọi d là khoảng cách từ I đến tiếp tuyến trên ta có: $d = \frac{4 x_0 + 1 }{\sqrt{4 + (x_0 + 1)^4}}; x_0 \neq -1,$	0,25
		Áp dụng bất đẳng thức côsi ta có $4 + (x_0 + 1)^4 \ge 2\sqrt{4 \cdot (x_0 + 1)^4} = 4(x_0 + 1)^2$ $\Rightarrow \sqrt{4 + (x_0 + 1)^4} \ge 2 x_0 + 1 $ $\Rightarrow d = \frac{4 x_0 + 1 }{\sqrt{4 + (x_0 + 1)^4}} \le 2$	0,25
		dấu '=" $\Leftrightarrow 4 = (x_0 + 1)^4 \Leftrightarrow \begin{bmatrix} x_0 = -1 + \sqrt{2} \\ x_0 = -1 - \sqrt{2} \end{bmatrix}$ Vậy ứng với hai giá trị đó ta có hai tiếp tuyến sau: $y = x + (2 + \sqrt{2})$;	
	2	$y = x + (2 - \sqrt{2});$ Tìm m để phương trình sau có nghiệm thực; $x^4 + \frac{1}{x^4} - (x^2 + \frac{1}{x^2}) + x + \frac{1}{x} = m$	0,25 1,00
		ĐK: $x \neq 0$ Đặt $t = x + \frac{1}{x}$ ($\text{DK} t \ge 2$) $x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 - 2 = t^2 - 2$ Ta có $\left(x^4 + \frac{1}{x^4}\right) = \left(x^2 + \frac{1}{x^2}\right)^2 - 2 = t^4 - 4t^2 + 2$	0,25
		Phương trình đã cho trở thành: $t^4 - 4t^2 + 2 - (t^2 - 2) + t = m$	

	Ta có VT = $\sin^{2017} x + \cos^{2018} x \le \sin^2 x + \cos^2 x = 1$ Do đó phương trình (*) tương đương	0,25
	$\begin{cases} VT = 1 \\ VF = 1 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ \sin^{2017} x = \sin^2 x \iff x = 0 \\ \cos^{2018} x = \cos^2 x \end{cases}$	0,25
2	Giải hệ phương trình: $\begin{cases} 20\sqrt{6-x} - 17\sqrt{5-y} - 3x\sqrt{6-x} + 3y\sqrt{5-y} = 0 & (1) \\ 2\sqrt{2x+y+5} + 3\sqrt{3x+2y+11} = x^2 + 6x + 13 & (2) \end{cases} (x, y \in \mathbb{R})$	1,00
	Điều kiện: $x \le 6$; $y \le 5$; $2x + y + 5 \ge 0$; $3x + 2y + 11 \ge 0$	
	$(20-3x)\sqrt{6-x} = (17-3y)\sqrt{5-y}$ $\Leftrightarrow (3(6-x)+2)\sqrt{6-x} = (3(5-y)+2)\sqrt{5-y} $ (3)	0,25
	Xét hàm số $f(t) = (3t+2)\sqrt{t}$ với $t \ge 0$, ta có $f'(t) = 3\sqrt{t} + \frac{3t+2}{2\sqrt{t}} > 0, \ \forall t > 0$ Kết hợp với (3) ta có $f(6-x) = f(5-y) \Leftrightarrow 6-x = 5-y \Leftrightarrow y = x-1$	0,25
	Thay vào phương trình (2) của hệ, ta được $2\sqrt{3x+4} + 3\sqrt{5x+9} = x^2 + 6x + 13, \text{ với } x \ge -\frac{4}{3}.$ $\Leftrightarrow 2\left(\sqrt{3x+4} - (x+2)\right) + 3\left(\sqrt{5x+9} - (x+3)\right) = x^2 + x$ $\Leftrightarrow \frac{-2x(x+1)}{\sqrt{3x+4} + (x+2)} + \frac{-3x(x+1)}{\sqrt{5x+9} + (x+3)} = x^2 + x$ $\Leftrightarrow x(x+1) \left(\frac{2}{\sqrt{3x+4} + (x+2)} + \frac{3}{\sqrt{5x+9} + (x+3)} + 1\right) = 0$ $\Leftrightarrow x = 0; x = -1 \text{ (vì } \frac{2}{\sqrt{3x+4} + (x+2)} + \frac{3}{\sqrt{5x+9} + (x+3)} + 1 > 1 \text{ với mọi } x \text{ thuộc}$ TXĐ)	0,25
	Với $x = 0 \Rightarrow y = -1$ Với $x = -1 \Rightarrow y = -2$ Thử lại ta thấy nghiệm của hệ phương trình đã cho là $(x;y) \in \{(0;-1);(-1;-2)\}$	0,25

III	1		1,00
		$n(\Omega) = C_{10}^5 \cdot C_5^5$	
		Gọi A là biến cố: " Việt Nam và Thái Lan ở cùng một bảng"	0,25
		TH 1: "Việt Nam và Thái Lan ở cùng một bảng A"	
		Trường hợp này có $C_2^2.C_8^3.C_5^5$ cách chia.	0,25
		TH 1: "Việt Nam và Thái Lan ở cùng một bảng B"	0,23
		Trường hợp này có $C_2^2.C_8^3.C_5^5$ cách chia.	
		Suy ra: $n(A) = 2C_2^2 \cdot C_8^3 \cdot C_5^5$	0,25
		$P(A) = \frac{n(A)}{n(\Omega)} = \frac{2C_2^2 \cdot C_8^3 \cdot C_5^5}{C_{10}^5 \cdot C_5^5} = \frac{4}{9}$	0,25
	2		1,00
		Ta có $u_1 = 2\sin\left(\frac{\pi}{12}\right) = 2\cos\left(\frac{5\pi}{12}\right)$.	0,25
		Từ hệ thức truy hồi bằng phong pháp chứng minh quy nạp ta có đợc $u_n = 2\cos\left(\frac{5\pi}{6.2^n}\right), n = 1, 2,$	0,25
		Từ công thức xác định số hạng tổng quát của dãy, ta dễ dàng chứng minh dãy số có giới hạn. $Lim2^n \sqrt{2-2\cos\left(\frac{5\pi}{6.2^n}\right)} = Lim2^{n+1}\sin\left(\frac{5\pi}{6.2^{n+1}}\right) =$	0,25
		$Lim\left(\frac{\sin\frac{5\pi}{6.2^{n+1}}}{\frac{5\pi}{6.2^{n+1}}}\right)\frac{5\pi}{6} = \frac{5\pi}{6}$	0,25
IV	1		1,50
		A C C C C C C C C C C C C C C C C C C C	

a) Ta có	
$\overrightarrow{AB}.\overrightarrow{CD} = \overrightarrow{AB}(\overrightarrow{AD} - \overrightarrow{AC}) = \overrightarrow{AB}.\overrightarrow{AD} - \overrightarrow{AB}.\overrightarrow{AC}$	
$= \frac{AB^2 + AD^2 - BD^2}{2} - \frac{AB^2 + AC^2 - BC^2}{2} = a^2 - b^2$	0,5
Lại có, $\overrightarrow{AB}.\overrightarrow{CD} = AB.CD\cos(\overrightarrow{AB},\overrightarrow{CD}) \Rightarrow \cos(\overrightarrow{AB},\overrightarrow{CD}) = \frac{a^2 - b^2}{c^2}$	
Gọi α là góc giữa hai đường thẳng AB, CD ta có: $\cos \alpha = \left \cos\left(\overrightarrow{AB}, \overrightarrow{CD}\right)\right = \frac{\left a^2 - b^2\right }{c^2} \Rightarrow \alpha = \arccos\left \frac{a^2 - b^2}{c^2}\right $	0,5
b) .	
Gọi I, G lần lượt là trọng tâm của tứ diện ABCD và tam giác BCD	
Ta có $IG = \frac{1}{4}AG \Rightarrow V_{IBCD} = \frac{1}{4}V_{ABCD}$	
Turong tự, $V_{IABC} = V_{IABD} = V_{IACD} = \frac{1}{4}V_{ABCD}$	0,5
Vậy, $V_{IABC} = V_{IABD} = V_{IACD} = V_{IBCD}$	
Mặt khác, $\triangle ABC = \triangle BAD = \triangle CDA = \triangle DCB(c-c-c)$	0.4
Do đó, $d_{(I,(ABC))} = d_{(I,(ABD))} = d_{(I,(ACD))} = d_{(I,(BCD))}$	0,5
2	1,5

	B A	
	Gọi H là hình chiếu của S trên (ABCD) Do SB = SC = SD nên HB = HC = HD, suy ra H là tâm đường tròn ngoại tiếp tam giác BCD. Mặt khác, tam giác BCD cân tại C nên H thuộc CO, với O là giao của AC và BD. Lại có, $\Delta CBD = \Delta ABD = \Delta SBD \Rightarrow OC = OA = OS$ nên ΔSAC vuông tại S \Rightarrow $AC = \sqrt{x^2 + 1}$	0,25
	Ta có, $\frac{1}{SH^2} = \frac{1}{SA^2} + \frac{1}{SC^2} \Rightarrow SH = \frac{x}{\sqrt{x^2 + 1}}$ ABCD là hình thoi $\Rightarrow AC \perp BD \Rightarrow OB = \sqrt{AB^2 - AO^2} = \frac{1}{2}\sqrt{3 - x^2}$	0,25
	$+ S_{ABCD} = \frac{1}{2}AC.BD = \frac{1}{2}\sqrt{x^2 + 1}.\sqrt{3 - x^2} \Rightarrow V = \frac{1}{6}x\sqrt{3 - x^2}$	0,25
	V có giá trị lớn nhất là $\frac{1}{4}$ khi $x = \sqrt{3 - x^2} \Leftrightarrow x = \frac{\sqrt{6}}{2}$	0,25
V	Tìm giá trị lớn nhất và nhỏ nhất	1,00
	Ta có: $P = (a + b + c)^{2} - a^{2} - b^{2} - c^{2} + bc + ca + \frac{6}{a + b + c} \ge (a + b + c)^{2} - 3 + \frac{6}{a + b + c}$ $\frac{6}{a + b + c}$ Đặt $t = a + b + c \Longrightarrow t \in [\sqrt{3}; 3]$. Xét $f(t) = t^{2} - 3 + \frac{6}{t}$, với $t \in [\sqrt{3}; 3]$.	0,25
	Vì f'(t) > 0, \forall t \in [$\sqrt{3}$; 3] => f(t) \geq f($\sqrt{3}$) = $\frac{6}{\sqrt{3}}$. Dấu bằng xảy ra khi a =c = 0, b = $\sqrt{3}$ hoặc b =c = 0, a = $\sqrt{3}$	0,25

Vậy Pmin = $\frac{6}{\sqrt{3}}$ khi a =c = 0, b = $\sqrt{3}$ hoặc b =c = 0, a = $\sqrt{3}$	
Ta có:	
$P = (a + b + c)^{2} - a^{2} - b^{2} - c^{2} + bc + ca + \frac{6}{a + b + c}$	
$\leq (a+b+c)^2 - 3 + \frac{a^2+b^2+2c^2}{2} + \frac{6}{a+b+c}$	
$\leq (a+b+c)^2 - 1 + \frac{6}{a+b+c}$	0,2
Vì g'(t) > 0, $\forall t \in [\sqrt{3}; 3] \Rightarrow g(t) \le g(3) = 10.$	
Dấu bằng xảy ra khi $a = b = c = 1$. Vậy Pmax = 10 khi $a = b = c = 1$.	
	0,2

Chú ý: Nếu học sinh làm theo cách khác mà đúng thì cho điểm tối đa.