Problema 14

Elías López Rivera ¹

 1 Universidad Nacional Autónoma de México $\label{eq:Facultad} Facultad \ de \ Ciencias.$ $\{^1 \texttt{elopezr2300}\} \texttt{@alumno.ipn.mx.}$

7 de julio de 2025

1. Enunciado

i)Sean $x, y \in \mathbb{R}$ dos números reales distintos. **Demuestre** que existen dos vecindades U de x y V de y tales que $U \cap V = \emptyset$. **Deduzca** que para todo $x \in \mathbb{R}$ el conjuno $\{x\}$, es la intersección de todas sus vecindades.

2. Solución

Sean x, y dos números reales diferentes, por tricotomía x < y ó x > y, tomaremos que x < y

Definimos $\delta := \frac{|x-y|}{2}$, es claro que $\delta > 0$.

Ahora definamos $V := (x - \delta, x + \delta)$ $U := (y - \delta, y + \delta)$, Como U, V son dos intervalos abiertos que contienen a x, y respectivamente se sigue que V es vecindad de x, y que U es vecindad de y.

A su vez notamos que:

$$x + \delta = x + \frac{|x - y|}{2} = \frac{x}{2} + \frac{y}{2} = y - \frac{|x - y|}{2} = y - \delta$$

Demostremos que $U \cap V = \emptyset$

Problema 14 2 SOLUCIÓN

Procedamos por contradicción es decir $\exists \ r \in \mathbb{R} : r \in V \cap U \implies r < x + \delta, r > y - \delta$ de donde se sigue que $r = x + \delta = y - \delta$ pero esto implica que $r \notin U, r \notin V$, una contradicción.

Se concluye que: $U \cap V = \emptyset$

ii) Sea
$$\overline{X} := \bigcap_{V \in V(x)} V$$

Es claro que cualquier vecindad de x debe contener a x, de donde se sigue: $x \in \overline{X}$

Ahora tomemos a > x, demostremos que $a \notin \overline{X}$

Podemos definir $a := x + \epsilon$, para algún $\epsilon > 0$, es claro que sea $I := (x - \epsilon, x + \epsilon)$, tenemos que $I \in V(x)$, pero $a \notin I$, de esto se sigue que $a \notin \overline{X}$ (el caso a < x es análogo)

De esto se concluye: $\overline{X} = \{x\}$