Nelson e Winter (1982: cap 12): Dynamic Competition and Technical Progress

Competição dinâmica e progresso tecnológico

André Correia Bueno Gabriel Petrini João Paulo Farias Fenelon João Victor Machado

IE/Unicamp

28 de Abril de 2020

Estrutura da Apresentação

Introdução

Fundamentação teórica

Modelo

Casos extremos

Simulações

Performance

Evolução da estrutura

Considerações finais

Introdução

Introdução

Introdução

Objetivo Analisar as relações entre estrutura de mercado e progresso tecnológico com desempenho industrial Por que uma abordagem evolucionária?

André Correia Bueno, Gabriel Petrini, João Paulo Farias Fenelon, João Victor Machado

Introdução

- O capítulo 12 se destaca pelo esforço de maior aderência ao pensamento de Joseph A. Schumpeter (1911, 1942).
- O processo de competição dinâmica é analisado acrescido de duas novidades: (i) fornecimento de diferentes perspectivas ex-ante de avanço técnico das empresas; (ii) estabelecimento de conexões entre a estrutura de mercado, gastos com Pesquisa e Desenvolvimento (P&D) e avanço técnico.
- Os autores criticam a teoria ortodoxa devido ignorar a presença de vencedores e perdedores e o contínuo deseguilíbrio.

Fundamentação teórica

Fundamentação teórica

Schumpeter (1911)

Teoria do desenvolvimento econômico

Schumpeter (1942)

Capitalismo, socialismo e democracia

A estrutura complexa dos argumentos schumpeterianos

A relação entre estrutura de mercado e inovação

Overview

Destagues (Science-based) Uma firma pode reduzir seus custos unitários ao descobrir técnicas mais produtivas por meio de:

- Inovação
- **Imitação**

Ambas estratégias dependem do tamanho da firma (K_{it}) , afetam a lucratividade (π_{it}) e são incertas (Pr).

Resultado: Estrutura de mercado é endógena e apresenta uma relação bidirecional com a inovação.

Equações

Plena Capacidade: $Q_{i,t} = A_{i,t}K_t$ $Q_t = \sum_{i} Q_{i,t}$ Produto total:

 $P = D(Q_t)$ Curva de demanda:

Taxa de Lucro: $\pi_{i,t} = P_t A_{i,t} - c - r_{im} - r_{in}$

 $Pr(d_{im}=1) = a_m r_{im} K_{i,t}$ Sucesso imitação:

 $Pr(d_{in}=1) = a_n r_{in} K_{i,t}$ Sucesso inovação:

 $A_{t+1} = \max(A_{i,t}, \hat{A}_t, A_{i,t}^{\sim})$ Mudança produtiva:

 $\Delta K_{t+1} = I(\mu, s, \pi_{i,t}, \delta) \cdot K_{i,t} - \delta K_{i,t}$ Expansão:

 $\lim_{s\to 0} I(1,s,0,\delta) = \delta$ Reprodução simples:

Hipóteses simplificadoras

- Produto homogêneo
- Curva de demanda unitária.
- Retorno constante de escala e coeficientes fixos e insumos são perfeitamente elásticos
- Não há ganhos de escala com gastos em P&D
- Barrada a entrada de novas firmas
- Vantagem apropriadora das grandes firmas: custos de implementar é igual ao das firmas pequenas.

Gastos com P&D são incertos e proporcionais ao tamanho da firma. Aleatorização em duas etapas: (i) Sorteia se é capaz de inovar; se sim, A será determinado por uma distribuição de probabilidade lognormal cuja média é chamada de **produtividade latente**. No caso de imitação, sorteia-se uma vez. Para expandir, o mark-up deve ser tanto maior quanto o tamanho da firma.

Casos extremos

ndamentação teórica Modelo **Casos extremos Si**mulações Considerações fi 0000 000 000 000

Casos extremos

Solução analítica

Caso	r _{in}	r _{im}	g _A	A_i	Produtividade Média	Custo Unitário	Equilíbrio
Sem P&D (firmas iguais)	0	0	0	Ā	cte	c	Determinístico $(s_i = 1/N)$
Sem P&D (firmas diferentes)	0	0	0	A_i	cte	Ci	Deterministico $s_i = f(\underline{c_i})$
Sem P&D (uma firma maior)	0	0	0	$A_1 >> A_{i\neq 1}$	Mecanismos de expulsão	$c_1 >> c_{i\neq 1}$	Determinístico $(c_j >> c_1 \Rightarrow s_j = 0)$
Imitadoras	0	ī _{im}	cte	$A_i = f(r_{im})$	Mecanismos de expulsão	min c i₀	Estocástico
Inovadoras (mesmo tamanho)	+	+	cte	$P; \pi_i \Rightarrow A_i$	Flutua em torno da produtividade latente	$c_i = f(A_i)$	Estocástico
Inovadoras (tamanhos diferentes)	+	+	cte	$P; \pi_i \Rightarrow A_i$	Depende da elasticidade-preço da demanda	$c_i = f(A_i)$	Estocástico

André Correia Bueno, Gabriel Petrini, João Paulo Farias Fenelon, João Victor Machado

Nelson e Winter (1982: cap 12): Dynamic Competition and Technical Progress

No caso em que as firmas não inovam e nem imitam, sempre que os preços são superiores aos custos unitários, haverá incentivos à expansão uma vez que os únicos custos são de produção.

Se as firmas só imitam, os custos de produção tenderão a ser iguais ao menor dos custos unitários iniciais.

No caso que as firmas inovam, mas ficam sempre do mesmo tamanho (mecanismo de investimento e entrada e saída), a dinâmica da produtividade independe dos preços e da lucratividade. A produtividade se aproximará da produtividade latente.

Caso que firmas inovam e possuem tamanhos diferentes e com curva de demanda com inclinação unitária: estoque de capital não se altera. O aumento percentual da produtividade gera uma mesma diminuição dos custos unitários e dos preços. Em outras palavras, a dinâmica da produtividade por si só não causa uma tendência no estoque de capital;

Simulações

Configurações iniciais I

- ▶ 5 condições iniciais diferentes: 2,4,6,8,16,32 empresas;
- Metade das firmas gasta em inovação e a outra metade em imitação;
 - Inovadoras também gastam com imitação
- Inicialmente todas as firmas são do mesmo tamanho e tem o mesmo nível de produtividade (latente);
- Os custos de produção são iguais, porém firmas que gastam P&D possuem custos totais mais elevados inicialmente;
 - Gasto em inovação e imitação são os mesmos para todas as condições iniciais;
- O investimento líquido inicial é igual a zero;

Simulações 0000

Configurações Iniciais II

O modelo foi especificado para dois regimes de financiamento:

- Bank 1.0 Financiamento limitado ao seu lucro (1x);
- Bank 2.5 A empresa pode financiar até 2,5x seu lucro;
- ► Totalizando 10 condições experimentais: 5 estruturas e 2 regimes de financiamento:
- Cada condição foi rodada 5 vezes para 100 períodos (25 anos);
- ► Modelo "Science-based": produtividade latente avança 1% por período:
- Inovadores pouco rentáveis e imitadores constantes ao longo do tempo; → 個 ト → 三 ト → 三 → へ Q (へ

Configurações Iniciais III

As simulações estão dividas em duas partes:

Performance Demonstra como o comportamento das variáveis selecionadas respondem as condições iniciais da indústria:

Melhores técnicas

Mark up;

Produtividade média:

Preco

Evolução da estrutura Demonstra os efeitos da concentração inicial na maneira como a estrutura da indústria evolui:

- Rentabilidade das inovações;
- Sobrevivências das empresas inovadores;
- Tendências para concentração ou estabilidade.

André Correia Bueno, Gabriel Petrini, João Paulo Farias Fenelon, João Victor Machado

Simulações 0000 0000000 0000

Performance

Performance

Casos extremos

Simulações Considerações finais

Performance

Simulações

Melhor técnica

_____ 1.0 _____ 2.5

32

Performance

Simulações

8 Número de firmas

16

Casos extremos

Simulações

Considerações finais

Performance

Simulações

Gastos das inovadoras com P&D

André Correia Bueno, Gabriel Petrini, João Paulo Farias Fenelon, João Victor Machado

Casos extremos

Simulações ○○○ ○○○ ○○○ ○○○

Considerações finais

Performance

Simulações

Razão da produtividade média: Inovadoras/Imitadoras

Simulações ○○○ ○○○○ ○○○○ Considerações finais

Performance

Simulações

Casos extremos

Considerações finais

Performance

Simulações

Preço

André Correia Bueno, Gabriel Petrini, João Paulo Farias Fenelon, João Victor Machado

Simulações 0000 0000000 **0000**

Evolução da estrutura

Evolução da estrutura

Evolução da estrutura

Simulações

(e) Taxa de recuperação da inovação

(f) Patrimônio líquido: Imitadoras - Inovadoras

Simulações ○○○ ○○○○ ○○◆○ Considerações finais

Evolução da estrutura

Estrutura de mercado

Capital Share das firmas inovadoras

Casos extremos

Simulações

Considerações finais

Evolução da estrutura

Estrutura de mercado

Equivalente ao índice Herfindahl

André Correia Bueno, Gabriel Petrini, João Paulo Farias Fenelon, João Victor Machado

Considerações finais

Conclusões

- ► Hipótese Schumpeteriana com um nexo causal distinto;
- Produtividade média positivamente correlacionado com o grau de concentração da indústria
- Produtividade das firmas inovadoras é maior que das imitadoras
 - ► Tal superioridade é menor em uma estrutura de mercado mais competitiva
- Custos de produção maiores em uma estrutura de mercado mais competitiva
 - Produtividade média é relativamente menor
- Quanto maior o grau de rivalidade, mais firmas perdem relevância

Críticas e limitações

- Formação dos preços;
- Distribuição do mercado entre as firmas;
- Plena capacidade de produção;
- ► Ausência de *spillovers* de P&D;
- Ausência de cumulatividade tecnológica;
- Ausência de um processo específico à firma de exploração das oportunidades tecnológicas.

