Strongly Connected Components

Dr. G P Gupta

1

Strongly Connected Components

Definition: a strongly connected component (SCC) of a directed graph G=(V,E) is a maximal set of vertices U⊆ V such that

- For each $u,v \in U$ we have both $u \mapsto v$ and $v \mapsto u$ i.e., u and v are mutually reachable from each other ($u \stackrel{\iota}{\hookrightarrow} v$)

Let $G^T = (V, E^T)$ be the *transpose* of G = (V, E) where

 $E^{T} = \{(u,v): (u,v) \in E\}$

– i.e., E^T consists of edges of G with their directions reversed Constructing G^T from G takes O(V+E) time (adjacency list rep) Note: G and G^T have the same SCCs ($u \stackrel{\iota_n}{\to} v$ in $G \Leftrightarrow u \stackrel{\iota_n}{\to} v$ in G^T)

2

Strongly Connected Components

Algorithm

- (1) Run DFS(G) to compute finishing times for all $u \in V$
- (2) Compute G^T
- (3) Call **DFS**(G^T) processing vertices in main loop in decreasing f[*u*] computed in Step (1)
- (4) Output vertices of each DFT in DFF of Step (3) as a separate SCC

3

Strongly Connected Components

Lemma 1: no path between a pair of vertices in the same SCC, ever leaves the SCC

Proof: let u and v be in the same SCC $\Rightarrow u \stackrel{\iota}{\Rightarrow} v$ let w be on some path $u \mapsto w \mapsto v \Rightarrow u \mapsto w$ but $v \mapsto u \Rightarrow \exists$ a path $w \mapsto v \mapsto u \Rightarrow w \mapsto u$

QED

SCC: Example

5

SCC: Example

(1) Run DFS(G) to compute finishing times for all $u \in V$

6

