Microelectronics Circuit Analysis and Design Homework(15th)

Yuejin Xie U202210333

Nov 15th, 2023

15.15 Consider the bandpass filter in Figure P15.15.(a) Show that the voltage transfer function is

$$A_{\nu}(s) = \frac{\nu_O}{\nu_I} = \frac{-1/R_4}{(1/R_1) + sC + 1/(sCR_2R_3)}$$

- (b) For $C = 0.1 \, \mu \, \text{F}$, $R_1 = 85 \, \text{k}\Omega$, $R_2 = R_3 = 300 \, \Omega$, $R_4 = 3 \, \text{k}\Omega$, and $R_5 = 30 \, \text{k}\Omega$, determine:
- (i) $|A_{\nu}(\max)|$; (ii) the frequency f_o at which $|A_{\nu}(\max)|$ occurs; and (iii) the two 3 dB frequencies.

Figure 1: Problem 15.15

15.17 For each of the circuits in Figures P15.17, derive the expressions for the voltage transfer function $T(s) = V_o(s)/V_i(s)$ and the cutoff frequency $f_{\rm 3dB}$.

Figure 2: Problem 15.17

15.46 Consider the Schmitt trigger in Figure P15.46. Assume the saturated output voltages are $\pm V_P$. (a) Derive the expression for the crossover voltages V_{TH} and V_{TL} . (b) Let $R_A=10$ k Ω , $R_B=20$ k Ω , $R_1=5$ k Ω , $R_2=20$ k Ω , $V_P=10$ V, and $V_{REF}=2$ V. (a) Find V_{TH} and V_{TL} . (b) Sketch the voltage transfer characteristics.

Figure 3: Problem 15.46

15.47 The saturated output voltages are $\pm V_P$ for the Schmitt trigger in Figure P15.47. (a) Derive the expressions for the crossover voltages V_{TH} and V_{TL} (b) If $V_P = 12$ V, V REF= -10V, and $R_3 = 10$ k Ω , find R_1 and R_2 such that the switching point is $V_S = -5$ V and the hysteresis width is O.2 V. (c) Sketch the voltage transfer characteristics.

Figure 4: Problem 15.47

15.48 (a) Plot the voltage transfer characteristics of the comparator circuit in Figure P15.48 assuming the open-loop gain is infinite. Let the reverse Zener voltage be $V_Z = 5.6$ V and the forward diode voltage be $V_\gamma = 0.6$ V. (b) Repeat part (a) for an open-loop gain of 10^3 .(c) Repeat part (a) for 2.5 V applied to the inverting terminal 1 of the comparator.

Figure 5: Problem 15.48