

UART Fingerprint Sensor (C) User Manual

CONTENT

Overview	2
Features	2
Specification	2
Hardware	4
Dimension	4
Interface	4
Commands	5
Commands format	5
Commands Types:	6
Communication process	13
Add fingerprint	13
Delete user	14
Delete all users	14
Acquire image and upload eigenvalue	15
User guides	
Connect to PC	16
Hardware connection	16
Testing	
Connect to XNUCLEO-F103RB	
Connect to Raspberry Pi	

OVERVIEW

This is a highly integrated round-shaped all-in-one capacitive fingerprint sensor module, which is nearly as small as a nail plate. The module is controlled via UART commands, easy to use. Its advantages includes 360° omni-directional verification, fast verification, high stability, and low power consumption, etc.

Based on a high-performance Cortex processor, combined with high-security commercial fingerprinting algorithm, the UART Fingerprint Sensor (C) features functionalities like fingerprint enrolling, image acquisition, feature finding, template generating and storing, fingerprint matching, and so on. Without any knowledge about the complicate fingerprinting algorithm, all you need to do is just sending some UART commands, to quickly integrate it into fingerprint verification applications which require small size and high precision.

FEATURES

- Easy to use by some simple commands, you don't have to know any fingerprint technology, or the module inter structure
- Commercial fingerprinting algorithm, stable performance, fast verification, supports fingerprint enrolling, fingerprint matching, collect fingerprint image, and upload fingerprint feature, etc.
- Capacitive sensitive detection, just touch the collecting window lightly for fast verification
- Hardware highly integrated, processor and sensor in one small chip, suit for small size applications
- Narrow stainless-steel rim, large touching area, supports 360° omni-directional verification
- Embedded human sensor, the processor will enter sleep automatically, and wake up when touching, lower power consumption
- Onboard UART connector, easy to connect with hardware platforms like STM32 and Raspberry Pi

SPECIFICATION

Sensor type: capacitive touching

Resolution: 508DPI

Image pixels: 192×192

Image grey scale: 8

Sensor size: R15.5mm

Fingerprint capacity: 500

● Matching time: <500ms (1:N, and N≤100)

• False acceptance rate: <0.001%

• False rejection rate: <0.1%

Operating voltage: 2.7~3.3V

Operating current: <50mA

● Sleep current: <16uA

Anti-electrostatic: contact discharge 8KV / aerial discharge 15KV

Interface: UART

3 / 18

Baudrate: 19200 bps

Operating environment:

■ Temperature: -20°C~70°C

■ Humidity: 40%RH~85%RH (no condensation)

Storage environment:

■ Temperature: -40°C~85°C

■ Humidity: <85%RH (no condensation)

• Life: 1 million times

HARDWARE

DIMENSION

INTERFACE

Note: The color of actual wires may be different with the image. According to the PIN when connecting but not the color.

VIN: 3.3V

GND: Ground

RX: Serial data input (TTL)

TX: Serial data output (TTL)

RST: Power enable/disable Pin

■ HIGH: Power enable

■ LOW: Power disable (Sleep Mode)

 WAKE: Wake up pin. When module is in sleep mode, WKAE pin is HIGH when touch sensor with finger.

COMMANDS

COMMANDS FORMAT

This module works as slaver device, and you should control Master device to send commands to control it. Communicating interface is UART: 19200 8N1.

The format commands and responses should be:

1) =8 bytes

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	CMD	P1	P2	Р3	0	СНК	0xF5
ACK	0xF5	CMD	Q1	Q2	Q3	0	СНК	0xF5

Notes:

CMD: Type of command/response

P1, P2, P3: Parameters of command

Q1, Q2, Q3: Parameters of response

Q3: Generally Q3 is valid/invalid information of the operation, it should be:

#define ACK_SUCCESS 0x00 //操作成功

#define ACK_FAIL 0x01 //操作失败

#define ACK_FULL 0x04 //指纹数据库已满

#define ACK_NOUSER 0x05 //无此用户

#define ACK_USER_OCCUPIED 0x06 //用户已存在

#define ACK_FINGER_OCCUPIED 0x07 //指纹已存在

#define ACK_TIMEOUT 0x08 //采集超时

CHK: Checksum, it is XOR result of bytes from Byte 2 to Byte 6

2) >8 bytes. This data contains two parts: data head and data packet data head:

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	CMD	Hi(Len)	Low(Len)	0	0	СНК	0xF5
ACK	0xF5	CMD	Hi(Len)	Low(Len)	Q3	0	СНК	0xF5

Note:

CMD, Q3: same as 1)

Len: Length of valid data in data packet, 16bits (two bytes)

Hi(Len): High 8 bits of Len

Low(Len): Low 8 bits of Len

CHK: Checksum, it is XOR result of bytes from Byte 1 to Byte 6

data packet:

Byte	1	2Len+1	Len+2	Len+3
CMD	0xF5	Data	СНК	0xF5
ACK	0xF5	Data	СНК	0xF5

Note:

Len: numbers of Data bytes

CHK: Checksum, it is XOR result of bytes from Byte 2 to Byte Len+1

data packet following data head.

COMMANDS TYPES:

1. Modify SN number of module (CMD/ACK both 8 Byte)

Byte	1	2	3	4	5	6	7	8
CMD	٥٧٢	0,00	New SN	New SN	New	0	CHIV	٥٧٢٢
CMD	0xF5	0x08	(Bit 23-16)	(Bit 15-8)	SN(Bit 7-0)	0	CHK	0xF5
A CIV	٥٠٠٢٢	000	old SN	old SN	old SN	0	CHIV	٥٠٠٢٢
ACK	0xF5	0x08	(Bit 23-16)	(Bit 15-8)	(Bit 7-0)	0	СНК	0xF5

Notes: SN numbers is 24 bits constant.

2. Query Model SN (CMD/ACK both 8 Byte)

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	0x2A	0	0	0	0	СНК	0xF5
A C I	٥٧٢٢	0x2A	SN	SN	SN	0	СНК	٥٧٢٢
ACK	0xF5	UXZA	(Bit 23-16)	(Bit 15-8)	(Bit 7-0)	U	CHK	0xF5

3. Sleep Mode (CMD/ACK both 8 Byte)

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	0x2C	0	0	0	0	СНК	0xF5
ACK	0xF5	0x2C	0	0	0	0	СНК	0xF5

4. Set/Read fingerprint adding mode (CMD/ACK both 8 Byte)

There are two mode: enable duplication mode and disable duplication mode. When module is in disable duplication mod: same fingerprint could only added as one ID. If you want to add another ID with the same fingerprint, DSP response failed information. Module is in disable mode after powering on.

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	0x2D	0	Byte5=0: 0:Enable 1:Disbale Byte5=1: 0	0: new mode 1: read current mode	0	СНК	0xF5
ACK	0xF5	0x2D	0	Current mode	ACK_SUCCUSS ACK_FAIL	0	СНК	0xF5

5. Add fingerprint (CMD/ACK both 8 Byte)

Master device should send commands triple times to module and add fingerprint triple times, make sure the fingerprint added is valid.

a) First

Byte	1	2	3	4	5	6	7	8
CMD	0xF 5	0x0 1	User ID (High 8Bit)	User ID (Low 8Bit)	Permission (1/2/3)	0	СНК	0xF5
	0xF	0x0	(Tilgii obit)	,	ACK_SUCCESS	_		
ACK	5	1	0	0	ACK_FAIL	0	СНК	0xF5

		ACK_FULL		
		ACK_USER_OCCUPIED		
		ACK_FINGER_OCCUPIED		
		ACK_TIMEOUT		

Notes:

User ID: 1~0xFFF;

User Permission: 1,2,3, (you can define the permission yourself)

b) Second

Byte	1	2	3	4	5	6	7	8
CMD	٥٧٢٢	0,02	User ID	User ID	Permission	0	CLIV	٥٧٢٢
CMD	0xF5	0x02	(High 8Bit)	(Low 8Bit)	(1/2/3)	0	СНК	0xF5
					ACK_SUCCESS			
ACK	0xF5	0x02	0	0	ACK_FAIL	0	СНК	0xF5
					ACK_TIMEOUT			

c) third

Byte	1	2	3	4	5	6	7	8
CNAD	0	003	User ID	User ID	Permission	•	CLIK	٥٠،٢٢
CMD	0xF5	0x03	(High 8Bit)	(Low 8Bit)	(1/2/3)	0	СНК	0xF5
					ACK_SUCCESS			
ACK	0xF5	0x03	0	0	ACK_FAIL	0	СНК	0xF5
					ACK_TIMEOUT			

Notes: User ID and Permission in three commands.

6. Add users and upload eigenvalues (CMD =8Byte/ACK > 8 Byte)

This commands are similar to "5. add fingerprint", you should add triple times as well.

a) FirstSame as the First of "5. add fingerprint"

b) Second

Same as the Second of "5. add fingerprint"

c) Third

CMD Format:

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	0x06	0	0	0	0	СНК	0xF5

ACK Format:

1) Data head:

Byte	1	2	3	4	5	6	7	8
					ACK_SUCCESS			
ACK	0xF5	0x06	Hi(Len)	Low(Len)	ACK_FAIL	0	СНК	0xF5
					ACK_TIMEOUT			

2) Data packet:

Byte	1	2	3	4	5Len+1	Len+2	Len+3
ACK	0xF5	0	0	0	Eigenvalues	СНК	0xF5

Notes:

Length of Eigenvalues(Len-) is 193Byte

Data packet is sent when fifth byte of ACK data is ACK_SUCCESS

7. Delete user (CMD/ACK both 8 Byte)

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	0x04	User ID (High 8Bit)	User ID (Low 8Bit)	0	0	СНК	0xF5
ACK	0xF5	0x04	0	0	ACK_SUCCESS ACK_FAIL	0	СНК	0xF5

8. Delete all users (CMD/ACK both 8 Byte)

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	0x05	0	0	0: Delete all users 1/2/3: delete users whose permission is 1/2/3	0	СНК	0xF5
ACK	0xF5	0x05	0	0	ACK_SUCCESS ACK_FAIL	0	СНК	0xF5

9. Query count of users (CMD/ACK both 8 Byte)

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	0x09	0	0	0: Query Count 0xFF: Query Amount	0	СНК	0xF5
ACK	0xF5	0x09	Count /Amount (High 8Bit)	Count /Amount (Low 8Bit)	ACK_SUCCESS ACK_FAIL 0xFF(CMD=0xFF)	0	СНК	0xF5

10. 比对 1:1 (CMD/ACK both 8Byte)

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	0x0B	User ID	User ID	0	0	СНК	0xF5
CIVID	UXFS	UXUB	(High 8 Bit)	(Low 8 Bit)	O	0	СПК	UXF3
					ACK_SUCCESS			
ACK	0xF5	0x0B	0	0	ACK_FAIL	0	СНК	0xF5
					ACK_TIMEOUT			

11. Comparison 1: N (CMD/ACK both 8 Byte)

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	0x0C	0	0	0	0	СНК	0xF5
ACK	0xF5	0x0C	User ID (High 8 Bit)	User ID (Low 8 Bit)	Permission (1/2/3) ACK_NOUSER ACK_TIMEOUT	0	СНК	0xF5

12. Query Permission (CMD/ACK both 8 Byte)

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	0x0A	User ID(High 8Bit)	User ID(Low8Bit)	0	0	СНК	0xF5
ACK	0xF5	0x0A	0	0	Permission (1/2/3) ACK_NOUSER	0	СНК	0xF5

13. Set/Query comparison level (CMD/ACK both 8 Byte)

Byte	1	2	3	4	5	6	7	8	
CMD	0xF5	0x28	0	Byte5=0: New Level	0: Set Level	0	СНК	0xF5	
CIVID	OXI J	0,20	U	Byte5=1: 0	1: Query Level)	CHK	OXI 3	
A C K	٥٧٢٢	0,20	0	Current Lovel	ACK_SUCCUSS	•	CHIV	٥،۲۲	
ACK	0xF5	0x28	U	Current Level	ACK_FAIL	U	CHK	0xF5	

Notes: Comparison level can be 0~9, larger the value, stricter the comparison. Default 5

14. Acquire image and upload (CMD=8 Byte/ACK >8 Byte)

CMD Format:

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	0x24	0	0	0	0	СНК	0xF5

ACK Format:

1) Data head:

Byte	1	2	3	4	5	6	7	8
					ACK_SUCCUSS			
ACK	0xF5	0x24	Hi(Len)	Low(Len)	ACK_FAIL	0	СНК	0xF5
					ACK_TIMEOUT			

2) Data packet

Byte	1	2Len+1	Len+2	Len+3
ACK	0xF5	Image data	СНК	0xF5

Notes:

In DSP module, the pixels of fingerprint image are 280*280, every pixel is represented by 8 bits. When uploading, DSP is skip pixels sampling in horizontal/vertical direction to reduce data size, so that the image became 140*140, and just take the high 4 bits of pixel. each two pixels composited into one byte for transferring (previous pixel high 4-bit, last pixel low 4-pixe).

Transmission starts line by line from the first line, each line starts from the first pixel, totally transfer 140*140/2 bytes of data.

Data length of image is fixed of 9800 bytes.

15. Acquire image and upload eigenvalues (CMD=8 Byte/ACK > 8Byte)

CMD Format:

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	0x23	0	0	0	0	СНК	0xF5

ACK Format:

1) Data head:

Byte	1	2	3	4	5	6	7	8
					ACK_SUCCUSS			
ACK	0xF5	0x23	Hi(Len)	Low(Len)	ACK_FAIL	0	СНК	0xF5
					ACK_TIMEOUT			

2) Data packet

Byte	1	2	3	4	5Len+1	Len+2	Len+3
ACK	0xF5	0	0	0	Eigenvalues	СНК	0xF5

Notes: Length of Eigenvalues (Len -3) is 193 bytes.

16. Download eigenvalues and compare with fingerprint acquired (CMD >8 Byte/ACK=8 Byte) CMD Format:

1) Data head:

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	0x44	Hi(Len)	Low(Len)	0	0	CHK	0xF5

2) Data packet

Byte	1	2	3	4	5Len+1	Len+2	Len+3
ACK	0xF5	0	0	0	Eigenvalues	СНК	0xF5

Notes: Length of Eigenvalues (Len -3) is 193 bytes.

ACK Format:

Byte	1	2	3	4	5	6	7	8
					ACK_SUCCUSS			
ACK	0xF5	0x44	0	0	ACK_FAIL	0	СНК	0xF5
					ACK_TIMEOUT			

17. Download eigenvalues and comparison 1:1 (CMD >8 Byte/ACK=8 Byte)

CMD Format:

1) Data head:

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	0x42	Hi(Len)	Low(Len)	0	0	CHK	0xF5

2) Data packet

Byte	1	2	3	4	5Len+1	Len+2	Len+2
A C K	٥٧٢٢	User ID	User ID	0	Figonyolyos	CHK	٥٧٢٢
ACK	0xF5	(High 8 Bit)	(Low 8 Bit)		Eigenvalues	CHK	0xF5

Notes: Length of Eigenvalues (Len -3) is 193 bytes.

ACK Format:

Byte	1	2	3	4	5	6	7	8
ACK	0xF5	0x43	0	0	ACK_SUCCUSS ACK_FAIL	0	СНК	0xF5

18. Download eigenvalues and comparison 1:N (CMD >8 Byte/ACK=8 Byte)

CMD Format:

1) Data head:

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	0x43	Hi(Len)	Low(Len)	0	0	СНК	0xF5

2) Data packet

Byte	1	2	3	4	5Len+1	Len+2	Len+2
ACK	0xF5	0	0	0	Eigenvalues	СНК	0xF5

Notes: Length of Eigenvalues (Len -3) is 193 bytes.

ACK Format:

Byte	1	2	3	4	5	6	7	8
ACK	0xF5	0x43	User ID (High 8 Bit)	User ID (Low 8 Bit)	Permission (1/2/3) ACK_NOUSER	0	СНК	0xF5

19. Upload eigenvalues from DSP model CMD=8 Byte/ACK >8 Byte)

CMD Format:

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	0x31	User ID	User ID	0	0	СНК	0xF5
CIVID	UXF3	0.001	(High 8 Bit)	(Low 8 Bit)	U	U	CHK	UXF3

ACK Format:

1) Data head:

Byte	1	2	3	4	5	6	7	8
ACK	0xF5	0x31	Hi(Len)	Low(Len)	ACK_SUCCUSS ACK_FAIL ACK_NOUSER	0	СНК	0xF5

2) Data packet

Byte	1	2	3	4	5Len+1	Len+2	Len+3
ACK	0xF5	User ID	User ID(Low	Permission	Eigenvalues	СНК	0xF5
ACK	UXF3	(High 8 Bit)	8 Bit)	(1/2/3)	Eigenvalues	СПК	UXFS

Notes: Length of Eigenvalues (Len -3) is 193 bytes.

20. Download eigenvalues and save as User ID to DSP (CMD>8 Byte/ACK =8 Byte)

CMD Format:

1) Data head:

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	0x41	Hi(Len)	Low(Len)	0	0	СНК	0xF5

2) Data packet

Byte	1	2	3	4	5Len+1	Len+2	Len+3
A CK	0xF5	User ID	User ID	Permission	Figanyalyas	СНК	0xF5
ACK	UXFS	(High 8 Bit)	(Low8 Bit)	(1/2/3)	Eigenvalues	СПК	UXFS

Notes: Length of Eigenvalues (Len -3) is 193 bytes.

ACK Format:

Byte	1	2	3	4	5	6	7	8
ACK	0xF5	0x41	User ID	User ID	ACK_SUCCESS	0	СНК	0xF5
ACK	UXFS	UX41	(High 8 Bit)	(Low 8 Bit)	ACK_FAIL	U	СПК	UXFS

21. Query information (ID and permission) of all users added (CMD=8 Byte/ACK >8Byte)

CMD Format:

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	0x2B	0	0	0	0	СНК	0xF5

ACK Format:

1) Data head:

Byte	1	2	3	4	5	6	7	8
ACK	0xF5	0x2B	Hi(Len)	Low(Len)	ACK_SUCCUSS ACK_FAIL	0	СНК	0xF5

2) Data packet

Byte	1	2	3 4Len+1		Len+2	Len+3
A CV	0xF5	User ID	User ID	User information (User	CLIK	٥٧٢٢
ACK	UXFS	(High 8 Bit)	(Low 8 Bit)	ID and permission)	CHK	0xF5

Notes:

Data length of Data packet (Len) is "3*User ID+2"

User information Format:

Byte	4	5	6	7	8	9	:	
Data	User ID1 (High 8 Bit)	User ID1 (Low 8 Bit)	User 1 Permission (1/2/3)	User ID2 (High 8 Bit)	User ID2 (Low 8 Bit)	User 2 Permission (1/2/3)		

22. Set/Query fingerprint capture timeout (CMD/ACK both 8 Byte)

Byte	1	2	3	4	5	6	7	8
CMD	0xF5	0x2E	0	Byte5=0: timeout Byte5=1: 0	0: Set timeout 1: query timeout	0	СНК	0xF5
ACK	0xF5	0x2E	0	timeout	ACK_SUCCUSS ACK_FAIL	0	СНК	0xF5

Notes:

Range of fingerprint waiting timeout (tout) value is 0-255. If the value is 0, the fingerprint acquisition process will keep continue if no fingerprints press on; If the value is not 0, the system will exist for reason of timeout if no fingerprints press on in time tout * TO.

Note: T0 is the time required for collecting/processing an image, usually 0.2-0.3 s.

COMMUNICATION PROCESS

ADD FINGERPRINT Begin Send CMD=0x01 command No Response Q3=ACK_FULL If database is full? Acquire fingerprint timeout, response Q3=ACK_TIMEOUT eigenvalue is less, response Process image Response Q3=ACK_SUCCESS Send CMD=0x02 command timeout, response Q3=ACK_TIMEOUT Acquire fingerprint eigenvalue is less , response Q3=ACK_FAIL Process image Response Q3=ACK_SUCCESS Send CMD=0x03 command timeout, response Q3=ACK_TIMEOUT Acquire fingerprint eigenvalue is less , response Q3=ACK_FAIL Process image Fingerprint has existed, response Judge uniqueness (Only do in disable duplication Q3=ACK_USER_EXIST mode) Add fingerprint to database End Response Q3=ACK_SUCCESS

DELETE USER

DELETE ALL USERS

ACQUIRE IMAGE AND UPLOAD EIGENVALUE

USER GUIDES

If you want to connect the fingerprint module to PC, you need to buy one UART to USB module. We recommend you use Waveshare FT232 USB UART Board (micro) module.

If you want to connect the fingerprint module to development board like Raspberry Pi, if the working level of your board is 3.3V, you can directly connect it to UART and GPIO pins of your board. If it is 5V, please add level convert module/circuity.

CONNECT TO PC

HARDWARE CONNECTION

You need:

- UART Fingerprint Sensor (C)*1
- FT232 USB UART Board *1
- micro USB cable *1

Connect the fingerprint module and FT232 USB UART Board to PC

UART Fingerprint Sensor (C)	FT232 USB UART Board
Vcc	Vcc
GND	GND
RX	TX
TX	RX
RST	NC
WAKE	NC

TESTING

- Download UART Fingerprint Sensor test software from wiki
- Open software and choose the correct COM port. (The software can only support COM1~COM8,
 if the COM port in your PC is out of this range, please modify it)
- Testing

There are several functions provided in Testing interface

1. Query Count

Choose **Count**, then click **Send**. The count of users is returned and display in **Information Response** interface

2. Add User

Choose **Add User**, check **Acquire Twice** and Auto **ID+1**, type the ID (**P1** and **P2**) and permission (**P3**), then click **Send**. Finally, touch sensor to acquire fingerprint.

3. Delete user

Choose Delete User, type the ID (P1 and P2) and permission (P3), then click Send.

4. Delete All Users

Choose Delete All Users, then click Send

5. Comparison 1:1

Choose 1:1 Comparison, type the ID (P1 and P2) and permission (P3), then click Send.

6. Comparison 1:N

Choose **1:N Comparison**, then click Send.

...

For more function, please test it. (Some of the functions are unavailable for this module)

CONNECT TO XNUCLEO-F103RB

We provide a demo codes for XNCULEO-F103RB, you can download from wiki

UART Fingerprint Sensor (C)	XNUCLEO-F103RB
Vcc	3.3V
GND	GND
RX	PA9
TX	PA10
RST	PB5
WAKE	PB3

Note: About the pins, please refer to Interface above

- 1. Connect UART Fingerprint Sensor (C) to XNUCLEO_F103RB, and connect programmer
- 2. Open project (demo code) by keil5 software
- 3. Check if programmer and device are recognized normally
- 4. Compile and download
- 5. Connect XNUCELO-F103RB to PC by USB cable, open Serial assistance software, set COM port: 115200, 8N1

Type commands to test module according to information returned.

CONNECT TO RASPBERRY PI

We provide python example for Raspberry Pi, you can download it from wiki

Before you use the example, you should enable serial port of Raspberry Pi first:

Input command on Terminal: sudo raspi-config

Choose: Interfacing Options -> Serial -> No -> Yes

Then reboot.

UART Fingerprint Sensor (C)	Raspberry Pi
Vcc	3.3V
GND	GND
RX	14 (BCM) – PIN 8 (Board)
TX	15 (BCM) – PIN 10 (Board)
RST	24 (BCM) – PIN 18 (Board)
WAKE	23 (BCM) – PIN 16 (Board)

- 1. Connect fingerprint module to Raspberry Pi
- 2. Download demo code to Raspberry Pi: wget https://www.waveshare.com/w/upload/9/9d/UART-Fignerprint-RaspberryPi.tar.gz
- unzip it tar zxvf UART-Fignerprint-RaspberryPi.tar.gz
- Run the example
 cd UART-Fignerprint-RaspberryPi/
 sudo python main.py
- 5. Following guides to test the module.