

Default Logic

- Standard logic can only express that something is true or that something is false.
 - Explicitly given rules (i.e., something is true if and only if it is explicitly stated as true in the knowledge base)
- Default logic is proposed to formalize reasoning with default assumptions.
 - Common sense (i.e., if there is nothing in the knowledge base that conflicts with our common sense, then we apply our common sense)
- It can express facts like
 - "by default, something is true".

Learning Goals

Understanding the:

- Default Rules
- Default Theory
- Default Logic Inference
 - Reiter Default Logic (RDL) inference
 - Limitations of RDL

Default Logic

- What do we see here?
 - A child is using his handphone
- · What do we intuitively think is going on?
 - He is playing a mobile game
- What do we intuitively conclude?
 - Doing so might negatively affect his study

Default Logic

Default Rules

Default Theory

conclusion

- Knowledge Base
- Default Logic Inference
 - Reiter Default Logic Inference
 - Makinson Approach
 - Process Tree

If $\alpha(x)$ is $T \not = \beta_1(x) \dots$ In (x) does not conflict Default Rule with $\alpha(x)$ Soundwide $\gamma(x)$ is Tprerequisite $\frac{\alpha(x): \beta_1(x), \dots, \beta_n(x)}{\gamma(x)}$ justification

where $\mathbf{x}=x_1,\ldots,x_m$, and $\alpha(\mathbf{x}),\beta_1(\mathbf{x}),\ldots,\beta_n(\mathbf{x}),\gamma(\mathbf{x})$ are formulae whose free variables are among x_1,\ldots,x_m .

e.g.,: $\frac{bird(x): has_wings(x)}{fly(x)}$

"By default, a bird can fly, unless we know that a particular bird that so has lost its wings"

**What is a particular bird that a particular bird that so has lost its wings"

Are there

amy thing in

our current K

lar bird that says

Default Rule

As long as Just to draw conclusion to don't conflict to draw conclusion

 $\frac{\text{Prerequisite}: Justification}_{1}, \dots, Justification}_{n}$ Conclusion

According to this default:

- If we believe that Prerequisite is true;
- AND each of Justifications is consistent with our current beliefs;
- THEN, we are led to believe that the Conclusion is true.

Default Rule

The default is **applied** by substituting **c** (the ground instance) into α and β to infer γ :

- Trigger: $\alpha(c)$ belongs to our set of beliefs.
- Justification: the set of our beliefs is consistent with each $\beta(c)$.

e.g.,:

{bird(Tweety), -has_wings(Tweety)}

 $\frac{bird(x): has_wings(x)}{fly(x)} \longleftarrow \{$

1) confin c is a bird

Our KB does not

entail $\neg \beta(c)$

Disthers any fact that codes hat have without if no fact concludes
Theoty has wings o
not that we can
conclude Theoty fix

: cannot condude that

Types of Default Rules

• Normal Defaults:
$$\frac{\alpha(x) : \gamma(x)}{\gamma(x)}$$

• Semi-Normal Defaults:
$$\frac{\alpha(x) : \beta(x)}{\gamma(x)}$$
, where $\beta(x) \vdash \gamma(x)$

E.g.,
$$\frac{bird(x) : has_wings(x)}{flies(x)}$$
,

where $has_wings(x) \vdash flies(x)$

Default Theory

Delta: Set of Default Rules 〈∆, Φ〉

Phi: A given KB (a set of "Facts")

Example – the default rule that "birds typically fly":

•
$$\Delta = \left\{ \frac{bird(x) : flies(x)}{flies(x)} \right\}$$

- This rule means that, "if x is a bird, and there is no fact in the knowledge base suggesting that x cannot fly, then we can conclude that x flies".
- $\Phi = \{bird(Tweety), cat(Sylvester)\}$

Types of Default Rules

 Open Defaults (Default Schemas) have unbounded variables, e.g., x

$$\frac{\alpha(x) : \beta_1(x), \dots, \beta_n(x)}{\gamma(x)}$$

Closed (Grounded) Defaults use ground terms, e.g., x=c

$$\frac{\alpha(c) : \beta_1(c), \dots, \beta_n(c)}{\gamma(c)}$$

Example

- · What do we see here?
 - A child is using his handphone (<u>Pre-requisite</u>)
- What do we intuitively think is going on?
 - He is playing a mobile game (Justification)
- · What do we intuitively conclude?
 - Doing so might negatively affect his study (<u>Conclusion</u>)

Example

He is attending online class (not playing game)

- What do we see here?
 - A child is using his handphone (Pre-requisite)

What do we intuitively think is going on?

He is playing a mobile game (<u>Justification</u>)

- What do we intuitively conclude?
 - Doing so might negatively affect his study (Conclusion)

Conflict with our default justification

13

Example

Given Theory:
$$T = \left\langle \Delta = \left\{ \frac{bird(x) : flies(x)}{flies(x)} \right\}, \Phi = \left\{ bird(Tweety), cat(Sylvester) \right\} \right\rangle$$

- Guess the extension = $Cn(\{flies(Tweety)\} \cup \Phi)$
- Our initial knowledge is $F = \Phi$
- Sylvester-instance of default not applicable:
 - not hold $\Phi \vdash bird(Sylvester)$
- $\Phi \vdash bird(Tweety)$ and flies(Tweety) is consistent with F
- $F = \Phi \cup \{flies(Tweety)\}$
- · No more default rules to apply
- An extension is reached

Reiter Default Logic (RDL) Inference

- Guess the extension Ξ (pronounced as "Xi")
- Initialise beliefs $\Xi^* = \Phi \implies$ initialise initial belief to tast part in KB.
- (loop over) c-ground instance of an (unused) default $\frac{\alpha(x) : \beta(x)}{x(x)}$:
 - Check two conditions >is c a member of class of
 - Triggered?: $\Xi^* \vdash \alpha(c)$
 - Justified?: $\beta(c)$ is consistent with Ξ
 - If yes: update beliefs $\Xi^* \leftarrow \Xi^* \cup \{\gamma(c)\}$
- (end loop)
- If $\Xi = \Xi^*$ then extension found/confirmed

The extension is added to our KB as new knowledge

LOOK through KB to see if any food contradiat Bis

Add new sentence to KE that old is that

RDL Limitation - Nixon Diamond

The default rules may be applied in <u>different orders</u>, and this may lead to <u>different extensions</u>. E.g.:

RDL Limitation - Nixon Diamond

Given $\langle \Delta, \Phi \rangle$

- $\Delta = \begin{cases} quaker(x) : pacifist(x) \\ pacifist(x) \end{cases}$, $\frac{republican(x) : \neg pacifist(x)}{\neg pacifist(x)} \end{cases}$
- $\Phi = \{quaker(Nixon), republican(Nixon)\}$

There are two extensions:

- 1. One that contains: pacifist(Nixon)
- 2. .. and the one that contains: ¬ pacifist(Nixon)

Example

- The Nixon diamond example theory has two extensions:
 - one in which Nixon is a pacifist; and
 - one in which Nixon is not a pacifist.
- Thus, we have:
 - Neither Pacifist(Nixon) nor ¬Pacifist(Nixon) are skeptically entailed.
 - Both Pacifist(Nixon) and ¬Pacifist(Nixon) are credulously entailed.
- The credulous extensions of a default theory can be inconsistent with each other.

Addressing the RDL Limitation

- A default theory can have 0, 1 or more extensions.
- Entailment of a formula from a default theory can be defined in one of two ways:

decision makers properties

- Skeptical:

- a formula is entailed by a default theory if it is entailed by <u>all its extensions</u>.
- Credulous: (Relaxed)
 - a formula is entailed by a default theory if it is entailed by at least one of its extensions.

18

Thank you!

Recap

- A default rule can be applied to a theory
 - if its precondition is entailed by the theory; and
 - its justifications are all consistent with the theory.
- The application of a default rule leads to the addition of its consequence to the theory.
- Other default rules may then be applied to the resulting theory.
- When the theory is such that no other default can be applied, the theory is called an <u>extension</u> of the default theory.
- The default rules may be applied in <u>different orders</u>, and this may lead to <u>different extensions</u>.

Learning Goals

Understanding the:

- Default Logic Inference
 - Makinson Approach
 - Process Tree

Makinson Approach

- Order **ground** instances of defaults in Δ : d_1 , d_2 , ...
- Initialize beliefs $\Xi_0 = \Phi$ and used defaults set $\Delta_0 = \emptyset$
- Define Ξ_{n+1} from Ξ_n ,
 - Find $d = \frac{\alpha(c) : \beta_1(c),...,\beta_n(c)}{\gamma(c)} \notin \Delta_n$ such that
 - Triggered?: $\Xi_n \vdash \alpha(c)$
 - Justified?: Ξ_n is consistent with $\beta_1(c), ..., \beta_m(c)$
 - If $\Xi_n \cup \{\gamma(c)\}$ is consistent with each $\beta'(c')$ in $\Delta_n \cup \{d\}$
 - $\Xi_{n+1} = \Xi_n \cup \{\gamma(c)\}, and \Delta_{n+1} = \Delta_n \cup \{d\}$
 - else abort -- no extension for this order of defaults
- The extension is $\Xi = \bigcup_{i \geq 0} \Xi_i$

Makinson Approach

- · No extension guessing
 - **Choose** the order of defaults in Δ : d_1 , d_2 , ...
- There still may be more than one possible extension
 - **Different orders** of defaults can lead to different Ξ
- We get the same extensions as in Reiter's approach
 - If they exist at all

Operational Semantics

Given a default theory $T = \langle \Delta, \Phi \rangle$, let $\Pi = (\delta_0, \delta_1, ...)$ be (a finite or infinite) sequence of (closed) defaults from Δ without multiple occurrences.

 $\Pi[k]$ denotes the initial segment of sequence Π with length k.

Model of the initial Segment of sequence Π with with length k.

Model of the initial segment of sequence Π with length k.

Each sequence Π is associated with two sets:

• $In(\Pi) = Cn(\Phi \cup \{consequence(\delta) | \delta \ occurs \ in \ \Pi\})$

For any detaut rule that we have

• Out(Π) = { $\neg \phi | \phi \in justifications(\delta) \text{ for some } \delta \text{ in } \Pi$ }

Everything I have denied the existence of as a result of my assumptions (i.e., the negation of all the justifications)

Remember ...

portion of theose rules

Process, Successful, Closed

 Π is a process of $T = \langle \Delta, \Phi \rangle$ iff default δ_k is applicable to $In(\Pi[k])$ for every k such that δ_k occurs in Π .

Let Π be a process. We define:

- Π is **successful** iff $In(\Pi) \cap Out(\Pi) = \emptyset$ (Nothing in the out set can be inferred from the in set); Otherwise, it **fails**.
- Π is **closed** iff every $\delta \in \Delta$ that is applicable to $In(\Pi)$ already occurs in Π .

UCF every defaut rule in the current default theory hat's applicable has already occurred and been extended

Extension

- Let $T = \langle \Delta, \Phi \rangle$ be a default theory. A set of formulae Ξ is an **extension** of T iff there is some **closed and successful** Π such that Ξ = $In(\Pi)$.
- To **find a successful** process: generate a process Π , test whether in(Π) \cap $Out(\Pi) = \emptyset$. If not, then backtrack (try another process).

Example

Consider
$$T=\langle \Delta,\Phi \rangle$$
 with $\Phi=\{\alpha\}$ and defaults from Δ :
$$\delta_1=\frac{\alpha:\neg\beta}{\eta}, \qquad \delta_2=\frac{true:\gamma}{\beta}$$

$$\Pi_1=(\delta_1) \text{ is } \frac{successful}{In(\Pi_1)=Cn(\alpha,\eta)} \text{ and } Out(\Pi_1)=\{\beta\} \text{ -No aver lap this } \text{ In set λ outset}$$

$$In(\Pi_1)=Cn(\alpha,\eta) \text{ and } Out(\Pi_1)=\{\beta\} \text{ -No vales that says it is or } u \text{ T} \Rightarrow \text{ but not closed, since } \delta_2 \text{ is applicable, too.} \text{ then } b \Rightarrow T$$

$$\Pi_2=(\delta_1,\delta_2) \text{ is } \frac{\text{closed, but } \text{not successful}}{In(\Pi_2)}=Cn(\alpha,\eta,\beta) \text{ and } Out(\Pi_2)=\{\beta,\neg\gamma\}, \qquad \text{Arthing wanches} \text{ if } \tau \Rightarrow T \Rightarrow \text{Add-to in } t \text{ In}(\Pi_3)=Cn(\alpha,\beta) \text{ and } Out(\Pi_3)=\{\gamma\}, \qquad t \text{ no partion if } \tau \text{ bout}$$

$$In(\Pi_3)\cap Out(\Pi_3)=\emptyset$$

$$\delta_1: \text{ of applies but}$$

$$-\text{distillation } p:T \text{ conflicts to } \delta_2$$

$$\tau p \Rightarrow M \text{ non conclusive } t \text{ outsithetion } p:T \text{ conflicts to } \delta_2$$

$$\tau p \Rightarrow M \text{ non conclusive } t \text{ outsithetion } p:T \text{ conflicts to } \delta_2$$

$$\tau p \Rightarrow M \text{ non conclusive } t \text{ outsithetion } t \text{ ou$$

 $T = \langle \Delta, \Phi \rangle$ be a default theory. A **process tree** is a tree G = (V, E) such that all nodes $v \in V$ are labelled with two sets of formulae:

- an In-set In(v) and
- an Out-set Out(v).

The root of G is labelled with $Cn(\Phi)$ as the In-set and \emptyset as the Out-set. Every $e \in E$ denotes a default application and is labelled by it.

A process is thus a path in G starting from the root. A node $v \in V$ is **expanded** if $In(v) \cap Out(v) = \emptyset$. Otherwise, it is a "failed" leaf of the tree.

Process Tree Example

Let $T=(W,\,D)$ be the default theory with $W=\emptyset$ and $D=\{\delta_1,\,\delta_2\}$ with

Thank you!

Process Tree: Properties

- A process is thus a path in G starting from root.
- A node $v \in V$ is **expanded** if $In(v) \cap Out(v) = \emptyset$.
- Otherwise, it is a "failed" leaf of the tree.
- Expanded $v \in V$ has a child node, w_{δ} , for every $\delta = \frac{\alpha \colon \beta_1, \dots, \beta_n}{\gamma}$
 - w_{δ} does not appear on the path from the root to v
 - δ is applicable to In(v)
 - w_{δ} connected to v by an edge labelled with δ
 - \mathbf{w}_{δ} is labelled with $In(\mathbf{w}_{\delta}) = Cn(In(\mathbf{v}) \cup \{\gamma\})$ and $Out(\mathbf{w}_{\delta}) = Out(\mathbf{v}) \cup \{\neg\beta_1, ..., \neg\beta_n\}$