

NUCLEIC ACIDS AND PROTEINS FROM STREPTOCOCCUS PNEUMONIAE

The present invention relates to proteins derived from *Streptococcus pneumoniae*, nucleic acid molecules encoding such proteins, the use of the nucleic acid and/or proteins as antigens/immunogens and in detection/diagnosis, as well as methods for screening the proteins/nucleic acid sequences as potential anti-microbial targets.

5 *Streptococcus pneumoniae*, commonly referred to as the pneumococcus, is an important pathogenic organism. The continuing significance of *Streptococcus pneumoniae* infections in relation to human disease in developing and developed countries has been authoritatively reviewed (Fiber, G.R., *Science*, **265**: 1385-1387 (1994)). That indicates that on a global scale this organism is believed to be the most common bacterial cause of acute respiratory infections, and is estimated to result in 1 million childhood deaths each year, mostly in developing countries (Stansfield, S.K., *Pediatr. Infect. Dis.*, **6**: 622 (1987)). In the USA it has been suggested (Breiman *et al*, *Arch. Intern. Med.*, **150**: 1401 (1990)) that the pneumococcus is still the most common cause of bacterial pneumonia, and that disease rates are particularly high in young children, in the elderly, and in patients with predisposing conditions such as asplenia, heart, lung and kidney disease, diabetes, alcoholism, or with immunosuppressive disorders, especially AIDS. These groups are at higher risk of pneumococcal septicaemia and hence meningitis and therefore have a greater risk of dying from pneumococcal infection. The pneumococcus is also the leading cause of otitis media and sinusitis, which remain prevalent infections in children in developed countries, and which incur substantial costs.

25

The need for effective preventative strategies against pneumococcal infection is highlighted by the recent emergence of penicillin-resistant pneumococci. It has been reported that 6.6% of pneumococcal isolates in 13 US hospitals in 12 states were found

to be resistant to penicillin and some isolates were also resistant to other antibiotics including third generation cyclosporins (Schappert, S.M., *Vital and Health Statistics of the Centres for Disease Control/National Centre for Health Statistics*, 214:1 (1992)). The rates of penicillin resistance can be higher (up to 20%) in some hospitals (Breiman *et al*, J. Am. Med. Assoc., 271: 1831 (1994)). Since the development of penicillin resistance among pneumococci is both recent and sudden, coming after decades during which penicillin remained an effective treatment, these findings are regarded as alarming.

10 For the reasons given above, there are therefore compelling grounds for considering improvements in the means of preventing, controlling, diagnosing or treating pneumococcal diseases.

15 Various approaches have been taken in order to provide vaccines for the prevention of pneumococcal infections. Difficulties arise for instance in view of the variety of serotypes (at least 90) based on the structure of the polysaccharide capsule surrounding the organism. Vaccines against individual serotypes are not effective against other serotypes and this means that vaccines must include polysaccharide antigens from a whole range of serotypes in order to be effective in a majority of cases. An additional problem arises because it has been found that the capsular polysaccharides (each of which determines the serotype and is the major protective antigen) when purified and used as a vaccine do not reliably induce protective antibody responses in children under two years of age, the age group which suffers the highest incidence of invasive pneumococcal infection and meningitis.

20

25 A modification of the approach using capsule antigens relies on conjugating the polysaccharide to a protein in order to derive an enhanced immune response, particularly by giving the response T-cell dependent character. This approach has

been used in the development of a vaccine against *Haemophilus influenzae*, for instance. There are, however, issues of cost concerning both the multi-polysaccharide vaccines and those based on conjugates.

5 A third approach is to look for other antigenic components which offer the potential to be vaccine candidates. This is the basis of the present invention. Using a specially developed bacterial expression system, we have been able to identify a group of protein antigens from pneumococcus which are associated with the bacterial envelope or which are secreted.

10 Thus, in a first aspect the present invention provides a *Streptococcus pneumoniae* protein or polypeptide having a sequence selected from those shown in table 1.

15 In a second aspect, the present invention provides a *Streptococcus pneumoniae* protein or polypeptide having a sequence selected from those shown in table 2.

A protein or polypeptide of the present invention may be provided in substantially pure form. For example, it may be provided in a form which is substantially free of other proteins.

20 As discussed herein, the proteins and polypeptides of the invention are useful as antigenic material. Such material can be "antigenic" and/or "immunogenic". Generally, "antigenic" is taken to mean that the protein or polypeptide is capable of being used to raise antibodies or indeed is capable of inducing an antibody response in 25 a subject. "Immunogenic" is taken to mean that the protein or polypeptide is capable of eliciting a protective immune response in a subject. Thus, in the latter case, the protein or polypeptide may be capable of not only generating an antibody response but, in addition, a non-antibody based immune response.

The skilled person will appreciate that homologues or derivatives of the proteins or polypeptides of the invention will also find use in the context of the present invention, ie as antigenic/immunogenic material. Thus, for instance proteins or polypeptides which include one or more additions, deletions, substitutions or the like are encompassed by the present invention. In addition, it may be possible to replace one amino acid with another of similar "type". For instance replacing one hydrophobic amino acid with another.

One can use a program such as the CLUSTAL program to compare amino acid sequences. This program compares amino acid sequences and finds the optimal alignment by inserting spaces in either sequence as appropriate. It is possible to calculate amino acid identity or similarity (identity plus conservation of amino acid type) for an optimal alignment. A program like BLASTx will align the longest stretch of similar sequences and assign a value to the fit. It is thus possible to obtain a comparison where several regions of similarity are found, each having a different score. Both types of identity analysis are contemplated in the present invention.

In the case of homologues and derivatives, the degree of identity with a protein or polypeptide as described herein is less important than that the homologue or derivative should retain the antigenicity or immunogenicity of the original protein or polypeptide. However, suitably, homologues or derivatives having at least 60% similarity (as discussed above) with the proteins or polypeptides described herein are provided. Preferably, homologues or derivatives having at least 70% similarity, more preferably at least 80% similarity are provided. Most preferably, homologues or derivatives having at least 90% or even 95% similarity are provided.

In an alternative approach, the homologues or derivatives could be fusion proteins, incorporating moieties which render purification easier, for example by effectively

tagging the desired protein or polypeptide. It may be necessary to remove the "tag" or it may be the case that the fusion protein itself retains sufficient antigenicity to be useful.

5 In an additional aspect of the invention there are provided antigenic/immunogenic fragments of the proteins or polypeptides of the invention, or of homologues or derivatives thereof.

For fragments of the proteins or polypeptides described herein, or of homologues or derivatives thereof, the situation is slightly different. It is well known that it is possible to screen an antigenic protein or polypeptide to identify epitopic regions, ie those regions which are responsible for the protein or polypeptide's antigenicity or immunogenicity. Methods for carrying out such screening are well known in the art. Thus, the fragments of the present invention should include one or more such epitopic regions or be sufficiently similar to such regions to retain their antigenic/immunogenic properties. Thus, for fragments according to the present invention the degree of identity is perhaps irrelevant, since they may be 100% identical to a particular part of a protein or polypeptide, homologue or derivative as described herein. The key issue, once again, is that the fragment retains the antigenic/immunogenic properties.

20 Thus, what is important for homologues, derivatives and fragments is that they possess at least a degree of the antigenicity/immunogenicity of the protein or polypeptide from which they are derived.

25 Gene cloning techniques may be used to provide a protein of the invention in substantially pure form. These techniques are disclosed, for example, in J. Sambrook *et al Molecular Cloning* 2nd Edition, Cold Spring Harbor Laboratory Press (1989). Thus, in a third aspect, the present invention provides a nucleic acid molecule

comprising or consisting of a sequence which is:

- (i) any of the DNA sequences set out in Table 1 or their RNA equivalents;
- 5 (ii) a sequence which is complementary to any of the sequences of (i);
- (iii) a sequence which codes for the same protein or polypeptide, as those sequences of (i) or (ii);
- 10 (iv) a sequence which has substantial identity with any of those of (i), (ii) and (iii);
- (v) a sequence which codes for a homologue, derivative or fragment of a protein as defined in Table 1.

15 In a fourth aspect the present invention provides a nucleic acid molecule comprising or consisting of a sequence which is:

- (i) any of the DNA sequences set out in Table 2 or their RNA equivalents;
- 20 (ii) a sequence which is complementary to any of the sequences of (i);
- (iii) a sequence which codes for the same protein or polypeptide, as those sequences of (i) or (ii);
- 25 (iv) a sequence which has substantial identity with any of those of (i), (ii) and (iii); or

(v) a sequence which codes for a homologue, derivative or fragment of a protein as defined in Table 2.

The nucleic acid molecules of the invention may include a plurality of such sequences, 5 and/or fragments. The skilled person will appreciate that the present invention can include novel variants of those particular novel nucleic acid molecules which are exemplified herein. Such variants are encompassed by the present invention. These may occur in nature, for example because of strain variation. For example, additions, substitutions and/or deletions are included. In addition, and particularly when utilising 10 microbial expression systems, one may wish to engineer the nucleic acid sequence by making use of known preferred codon usage in the particular organism being used for expression. Thus, synthetic or non-naturally occurring variants are also included within the scope of the invention.

15 The term "RNA equivalent" when used above indicates that a given RNA molecule has a sequence which is complementary to that of a given DNA molecule (allowing for the fact that in RNA "U" replaces "T" in the genetic code).

When comparing nucleic acid sequences for the purposes of determining the degree of 20 homology or identity one can use programs such as BESTFIT and GAP (both from the Wisconsin Genetics Computer Group (GCG) software package) BESTFIT, for example, compares two sequences and produces an optimal alignment of the most similar segments. GAP enables sequences to be aligned along their whole length and finds the optimal alignment by inserting spaces in either sequence as appropriate. 25 Suitably, in the context of the present invention when discussing identity of nucleic acid sequences, the comparison is made by alignment of the sequences along their whole length.

Preferably, sequences which have substantial identity have at least 50% sequence identity, desirably at least 75% sequence identity and more desirably at least 90 or at least 95% sequence identity with said sequences. In some cases the sequence identity may be 99% or above.

5

Desirably, the term "substantial identity" indicates that said sequence has a greater degree of identity with any of the sequences described herein than with prior art nucleic acid sequences.

10 It should however be noted that where a nucleic acid sequence of the present invention codes for at least part of a novel gene product the present invention includes within its scope all possible sequence coding for the gene product or for a novel part thereof.

15 The nucleic acid molecule may be in isolated or recombinant form. It may be incorporated into a vector and the vector may be incorporated into a host. Such vectors and suitable hosts form yet further aspects of the present invention.

20 Therefore, for example, by using probes based upon the nucleic acid sequences provided herein, genes in *Streptococcus pneumoniae* can be identified. They can then be excised using restriction enzymes and cloned into a vector. The vector can be introduced into a suitable host for expression.

25 Nucleic acid molecules of the present invention may be obtained from *S.pneumoniae* by the use of appropriate probes complementary to part of the sequences of the nucleic acid molecules. Restriction enzymes or sonication techniques can be used to obtain appropriately sized fragments for probing.

Alternatively PCR techniques may be used to amplify a desired nucleic acid sequence. Thus the sequence data provided herein can be used to design two primers for use in PCR so that a desired sequence, including whole genes or fragments thereof, can be targeted and then amplified to a high degree.

5

Typically primers will be at least 15-25 nucleotides long.

As a further alternative chemical synthesis may be used. This may be automated. Relatively short sequences may be chemically synthesised and ligated together to 10 provide a longer sequence.

There is another group of proteins from *S.pneumoniae* which have been identified using the bacterial expression system described herein. These are known proteins from *S.pneumoniae*, which have not previously been identified as antigenic proteins. 15 The amino acid sequences of this group of proteins, together with DNA sequences coding for them are shown in Table 3. These proteins, or homologues, derivatives and/or fragments thereof also find use as antigens/immunogens. Thus, in another aspect the present invention provides the use of a protein or polypeptide having a sequence selected from those shown in Tables 1-3, or homologues, derivatives 20 and/or fragments thereof, as an immunogen/antigen.

In yet a further aspect the present invention provides an immunogenic/antigenic composition comprising one or more proteins or polypeptides selected from those whose sequences are shown in Tables 1-3, or homologues or derivatives thereof, 25 and/or fragments of any of these. In preferred embodiments, the immunogenic/antigenic composition is a vaccine or is for use in a diagnostic assay.

In the case of vaccines suitable additional excipients, diluents, adjuvants or the like

may be included. Numerous examples of these are well known in the art.

It is also possible to utilise the nucleic acid sequences shown in Tables 1-3 in the preparation of so-called DNA vaccines. Thus, the invention also provides a vaccine composition comprising one or more nucleic acid sequences as defined herein. DNA vaccines are described in the art (see for instance, Donnelly *et al*, *Ann. Rev. Immunol.*, 15:617-648 (1997)) and the skilled person can use such art described techniques to produce and use DNA vaccines according to the present invention.

10 As already discussed herein the proteins or polypeptides described herein, their homologues or derivatives, and/or fragments of any of these, can be used in methods of detecting/diagnosing *S.pneumoniae*. Such methods can be based on the detection of antibodies against such proteins which may be present in a subject. Therefore the present invention provides a method for the detection/diagnosis of *S.pneumoniae*

15 which comprises the step of bringing into contact a sample to be tested with at least one protein, or homologue, derivative or fragment thereof, as described herein. Suitably, the sample is a biological sample, such as a tissue sample or a sample of blood or saliva obtained from a subject to be tested.

20 In an alternative approach, the proteins described herein, or homologues, derivatives and/or fragments thereof, can be used to raise antibodies, which in turn can be used to detect the antigens, and hence *S.pneumoniae*. Such antibodies form another aspect of the invention. Antibodies within the scope of the present invention may be monoclonal or polyclonal.

25 Polyclonal antibodies can be raised by stimulating their production in a suitable animal host (e.g. a mouse, rat, guinea pig, rabbit, sheep, goat or monkey) when a protein as described herein, or a homologue, derivative or fragment thereof, is injected into the

animal. If desired, an adjuvant may be administered together with the protein. Well-known adjuvants include Freund's adjuvant (complete and incomplete) and aluminium hydroxide. The antibodies can then be purified by virtue of their binding to a protein as described herein.

5

Monoclonal antibodies can be produced from hybridomas. These can be formed by fusing myeloma cells and spleen cells which produce the desired antibody in order to form an immortal cell line. Thus the well-known Kohler & Milstein technique (*Nature* 256 (1975)) or subsequent variations upon this technique can be used.

10

Techniques for producing monoclonal and polyclonal antibodies that bind to a particular polypeptide/protein are now well developed in the art. They are discussed in standard immunology textbooks, for example in Roitt *et al*, *Immunology* second edition (1989), Churchill Livingstone, London.

15

In addition to whole antibodies, the present invention includes derivatives thereof which are capable of binding to proteins etc as described herein. Thus the present invention includes antibody fragments and synthetic constructs. Examples of antibody fragments and synthetic constructs are given by Dougall *et al* in *Tibtech* 12 372-379 (September 20 1994).

25

Antibody fragments include, for example, Fab, F(ab')₂ and Fv fragments. Fab fragments (These are discussed in Roitt *et al* [supra]). Fv fragments can be modified to produce a synthetic construct known as a single chain Fv (scFv) molecule. This includes a peptide linker covalently joining V_h and V_l regions, which contributes to the stability of the molecule. Other synthetic constructs that can be used include CDR peptides. These are synthetic peptides comprising antigen-binding determinants. Peptide mimetics may also be used. These molecules are usually conformationally

restricted organic rings that mimic the structure of a CDR loop and that include antigen-interactive side chains.

Synthetic constructs include chimaeric molecules. Thus, for example, humanised (or primatised) antibodies or derivatives thereof are within the scope of the present invention. An example of a humanised antibody is an antibody having human framework regions, but rodent hypervariable regions. Ways of producing chimaeric antibodies are discussed for example by Morrison *et al* in PNAS, 81, 6851-6855 (1984) and by Takeda *et al* in Nature, 314, 452-454 (1985).

Synthetic constructs also include molecules comprising an additional moiety that provides the molecule with some desirable property in addition to antigen binding. For example the moiety may be a label (e.g. a fluorescent or radioactive label). Alternatively, it may be a pharmaceutically active agent.

Antibodies, or derivatives thereof, find use in detection/diagnosis of *S.pneumoniae*. Thus, in another aspect the present invention provides a method for the detection/diagnosis of *S.pneumoniae* which comprises the step of bringing into contact a sample to be tested and antibodies capable of binding to one or more proteins described herein, or to homologues, derivatives and/or fragments thereof.

In addition, so-called "Affibodies" may be utilised. These are binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain (Nord *et al*,) Thus, Small protein domains, capable of specific binding to different target proteins can be selected using combinatorial approaches.

It will also be clear that the nucleic acid sequences described herein may be used to detect/diagnose *S.pneumoniae*. Thus, in yet a further aspect, the present invention

provides a method for the detection/diagnosis of *S.pneumoniae* which comprises the step of bringing into contact a sample to be tested with at least one nucleic acid sequence as described herein. Suitably, the sample is a biological sample, such as a tissue sample or a sample of blood or saliva obtained from a subject to be tested.

5 Such samples may be pre-treated before being used in the methods of the invention. Thus, for example, a sample may be treated to extract DNA. Then, DNA probes based on the nucleic acid sequences described herein (ie usually fragments of such sequences) may be used to detect nucleic acid from *S.pneumoniae*.

10 In additional aspects, the present invention provides:

- (a) a method of vaccinating a subject against *S.pneumoniae* which comprises the step of administering to a subject a protein or polypeptide of the invention, or a derivative, homologue or fragment thereof, or an immunogenic composition of the invention;
- (b) a method of vaccinating a subject against *S.pneumoniae* which comprises the step of administering to a subject a nucleic acid molecule as defined herein;
- (c) a method for the prophylaxis or treatment of *S.pneumoniae* infection which comprises the step of administering to a subject a protein or polypeptide of the invention, or a derivative, homologue or fragment thereof, or an immunogenic composition of the invention;
- (d) a method for the prophylaxis or treatment of *S.pneumoniae* infection which comprises the step of administering to a subject a nucleic acid molecule as defined herein;

(e) a kit for use in detecting/diagnosing *S.pneumoniae* infection comprising one or more proteins or polypeptides of the invention, or homologues, derivatives or fragments thereof, or an antigenic composition of the invention; and

5 (f) a kit for use in detecting/diagnosing *S.pneumoniae* infection comprising one or more nucleic acid molecules as defined herein.

Given that we have identified a group of important proteins, such proteins are potential targets for anti-microbial therapy. It is necessary, however, to determine 10 whether each individual protein is essential for the organism's viability. Thus, the present invention also provides a method of determining whether a protein or polypeptide as described herein represents a potential anti-microbial target which comprises antagonising, inhibiting or otherwise interfering with the function or expression of said protein and determining whether *S.pneumoniae* is still viable.

15 A suitable method for inactivating the protein is to effect selected gene knockouts, ie prevent expression of the protein and determine whether this results in a lethal change. Suitable methods for carrying out such gene knockouts are described in Li *et al*, *P.N.A.S.*, 94:13251-13256 (1997) and Kolkman *et al*, 178:3736-
20 3741 (1996).

In a final aspect the present invention provides the use of an agent capable of 25 antagonising, inhibiting or otherwise interfering with the function or expression of a protein or polypeptide of the invention in the manufacture of a medicament for use in the treatment or prophylaxis of *S.pneumoniae* infection.

As mentioned above, we have used a bacterial expression system as a means of identifying those proteins which are surface associated, secreted or exported and

thus, would find use as antigens.

The information necessary for the secretion/export of proteins has been extensively studied in bacteria. In the majority of cases, protein export requires a signal peptide 5 to be present at the N-terminus of the precursor protein so that it becomes directed to the translocation machinery on the cytoplasmic membrane. During or after translocation, the signal peptide is removed by a membrane associated signal peptidase. Ultimately the localization of the protein (i.e. whether it be secreted, an integral membrane protein or attached to the cell wall) is determined by sequences 10 other than the leader peptide itself.

We are specifically interested in surface located or exported proteins as these are likely to be antigens for use in vaccines, as diagnostic reagents or as targets for therapy with novel chemical entities. We have therefore developed a screening 15 vector-system in *Lactococcus lactis* that permits genes encoding exported proteins to be identified and isolated. We provide below a representative example showing how given novel surface associated proteins from *Streptococcus pneumoniae* have been identified and characterized. The screening vector incorporates the staphylococcal nuclease gene *nuc* lacking its own export signal as a secretion reporter.

20 Staphylococcal nuclease is a naturally secreted heat-stable, monomeric enzyme which has been efficiently expressed and secreted in a range of Gram positive bacteria (Shortle, *Gene*, 22:181-189 (1983); Kovacevic *et al.*, *J. Bacteriol.*, 162:521-528 (1985); Miller *et al.*, *J. Bacteriol.*, 169:3508-3514 (1987); Liebl *et al.*, *J. Bacteriol.*, 174:1854-1861 (1992); Le Loir *et al.*, *J. Bacteriol.*, 176:5135-5139 25 (1994); Poquet *et al.*, *J. Bacteriol.*, 180:1904-1912 (1998)).

Recently, Poquet *et al.* ((1998), *supra*) have described a screening vector incorporating the *nuc* gene lacking its own signal leader as a reporter to identify exported proteins in Gram positive bacteria, and have applied it to *L. lactis*. This

vector (pFUN) contains the pAM β 1 replicon which functions in a broad host range of Gram-positive bacteria in addition to the ColE1 replicon that promotes replication in *Escherichia coli* and certain other Gram negative bacteria. Unique cloning sites present in the vector can be used to generate transcriptional and translational fusions
5 between cloned genomic DNA fragments and the open reading frame of the truncated nuc gene devoid of its own signal secretion leader. The nuc gene makes an ideal reporter gene because the secretion of nuclease can readily be detected using a simple and sensitive plate test: Recombinant colonies secreting the nuclease develop a pink halo whereas control colonies remain white (Shortle, (1983), *supra*; Le Loir
10 *et al.*, (1994), *supra*).

Thus, the invention will now be described with reference to the following representative example, which provides details of how the proteins, polypeptides and nucleic acid sequences described herein identified as antigenic targets.

15 We describe herein the construction of three reporter vectors and their use in *L. lactis* to identify and isolate genomic DNA fragments from *Streptococcus pneumoniae* encoding secreted or surface associated proteins.

20 The invention will now be described with reference to the examples, which should not be construed as in any way limiting the invention. The examples refer to the figures in which:

Figure 1: shows the results of a number of DNA vaccine trials; and
25 Figure 2: shows the results of further DNA vaccine trials.

EXAMPLE 1

(i) Construction of the pTREP1-nuc series of reporter vectors

30

(a) Construction of expression plasmid pTREP1

The pTREP1 plasmid is a high-copy number (40-80 per cell) theta-replicating gram positive plasmid, which is a derivative of the pTREX plasmid which is itself a derivative of the previously published pIL253 plasmid. pIL253 incorporates the broad Gram-positive host range replicon of pAM β 1 (Simon and Chopin, *Biochimie*, 70:559-567 (1988)) and is non-mobilisable by the *L. lactis* sex-factor. pIL253 also lacks the *tra* function which is necessary for transfer or efficient mobilisation by conjugative parent plasmids exemplified by pIL501. The Enterococcal pAM β 1 replicon has previously been transferred to various species including *Streptococcus*, *Lactobacillus* and *Bacillus* species as well as *Clostridium acetobutylicum*, (Oultram and Klaenhammer, *FEMS Microbiological Letters*, 27:129-134 (1985); Gibson *et al.*, (1979); LeBlanc *et al.*, *Proceedings of the National Academy of Science USA*, 75:3484-3487 (1978)) indicating the potential broad host range utility. The pTREP1 plasmid represents a constitutive transcription vector.

The pTREX vector was constructed as follows. An artificial DNA fragment containing a putative RNA stabilising sequence, a translation initiation region (TIR), a multiple cloning site for insertion of the target genes and a transcription terminator was created by annealing 2 complementary oligonucleotides and extending with Tfl DNA polymerase. The sense and anti-sense oligonucleotides contained the recognition sites for NheI and BamHI at their 5' ends respectively to facilitate cloning. This fragment was cloned between the XbaI and BamHI sites in pUC19NT7, a derivative of pUC19 which contains the T7 expression cassette from pLET1 (Wells *et al.*, *J. Appl. Bacteriol.*, 74:629-636 (1993)) cloned between the EcoRI and HindIII sites. The resulting construct was designated pUCLEX. The complete expression cassette of pUCLEX was then removed by cutting with HindIII and blunting followed by cutting with EcoRI before cloning into EcoRI and SacI (blunted) sites of pIL253 to generate the vector pTREX (Wells and Schofield, *In*

Current advances in metabolism, genetics and applications-NATO ASI Series, H 98:37-62 (1996)). The putative RNA stabilising sequence and TIR are derived from the *Escherichia coli* T7 bacteriophage sequence and modified at one nucleotide position to enhance the complementarity of the Shine Dalgarno (SD) motif to the ribosomal 16s RNA of *Lactococcus lactis* (Schofield *et al.* pers. coms. University of Cambridge Dept. Pathology.).

A *Lactococcus lactis* MG1363 chromosomal DNA fragment exhibiting promoter activity which was subsequently designated P7 was cloned between the EcoRI and BglII sites present in the expression cassette, creating pTREX7. This active promoter region had been previously isolated using the promoter probe vector pSB292 (Waterfield *et al.*, *Gene*, 165:9-15 (1995)). The promoter fragment was amplified by PCR using the Vent DNA polymerase according to the manufacturer.

The pTREP1 vector was then constructed as follows. An artificial DNA fragment which included a transcription terminator, the forward pUC sequencing primer, a promoter multiple -cloning site region and a universal translation stop sequence was created by annealing two overlapping partially complementary synthetic oligonucleotides together and extending with sequenase according to manufacturers instructions. The sense and anti-sense (pTREP_F and pTREP_R) oligonucleotides contained the recognition sites for EcoRV and BamHI at their 5' ends respectively to facilitate cloning into pTREX7. The transcription terminator was that of the *Bacillus penicillillase* gene, which has been shown to be effective in *Lactococcus* (Jos *et al.*, *Applied and Environmental Microbiology*, 50:540-542 (1985)). This was considered necessary as expression of target genes in the pTREX vectors was observed to be leaky and is thought to be the result of cryptic promoter activity in the origin region (Schofield *et al.* pers. coms. University of Cambridge Dept. Pathology.). The forward pUC primer sequencing was included to enable direct sequencing of cloned DNA fragments. The translation stop sequence which encodes a stop codon in 3

different frames was included to prevent translational fusions between vector genes and cloned DNA fragments. The pTREX7 vector was first digested with EcoRI and blunted using the 5' - 3' polymerase activity of T4 DNA polymerase (NEB) according to manufacturer's instructions. The EcoRI digested and blunt ended 5 pTREX7 vector was then digested with Bgl II thus removing the P7 promoter. The artificial DNA fragment derived from the annealed synthetic oligonucleotides was then digested with EcoRV and Bam HI and cloned into the EcoRI(blunted)-Bgl II digested pTREX7 vector to generate pTREP. A *Lactococcus lactis* MG1363 chromosomal promoter designated P1 was then cloned between the EcoRI and BglII sites present in the pTREP expression cassette forming pTREP1. This promoter was 10 also isolated using the promoter probe vector pSB292 and characterised by Waterfield *et al.*, (1995), *supra*. The P1 promoter fragment was originally amplified by PCR using vent DNA polymerase according to manufacturers instructions and cloned into the pTREX as an EcoRI-BglII DNA fragment. The 15 EcoRI-BglII P1 promoter containing fragment was removed from pTREX1 by restriction enzyme digestion and used for cloning into pTREP (Schofield *et al.* pers. coms. University of Cambridge, Dept. Pathology.).

(b) PCR amplification of the *S. aureus* nuc gene.

20 The nucleotide sequence of the *S. aureus* nuc gene (EMBL database accession number V01281) was used to design synthetic oligonucleotide primers for PCR amplification. The primers were designed to amplify the mature form of the nuc gene designated nucA which is generated by proteolytic cleavage of the N-terminal 25 19 to 21 amino acids of the secreted propeptide designated Snase B (Shortle, (1983), *supra*). Three sense primers (nucS1, nucS2 and nucS3, Appendix 1) were designed, each one having a blunt-ended restriction endonuclease cleavage site for EcoRV or SmaI in a different reading frame with respect to the nuc gene. Additionally BglII and BamHI were incorporated at the 5' ends of the sense and anti-sense primers

respectively to facilitate cloning into BamHI and BglII cut pTREP1. The sequences of all the primers are given in Appendix 1. Three nuc gene DNA fragments encoding the mature form of the nuclease gene (NucA) were amplified by PCR using each of the sense primers combined with the anti-sense primer described above. The 5 nuc gene fragments were amplified by PCR using *S. aureus* genomic DNA template, Vent DNA Polymerase (NEB) and the conditions recommended by the manufacturer. An initial denaturation step at 93 °C for 2 min was followed by 30 cycles of denaturation at 93 °C for 45 sec, annealing at 50 °C for 45 seconds, and extension at 73 °C for 1 minute and then a final 5 min extension step at 73 °C. The 10 PCR amplified products were purified using a Wizard clean up column (Promega) to remove unincorporated nucleotides and primers.

(c) Construction of the pTREP1-nuc vectors

15 The purified nuc gene fragments described in section b were digested with Bgl II and BamHI using standard conditions and ligated to BamHI and BglII cut and dephosphorylated pTREP1 to generate the pTREP1-nuc1, pTREP1-nuc2 and pTREP1-nuc3 series of reporter vectors. General molecular biology techniques were carried out using the reagents and buffer supplied by the manufacturer or using 20 standard conditions(Sambrook and Maniatis, (1989), *supra*). In each of the pTREP1-nuc vectors the expression cassette comprises a transcription terminator, lactococcal promoter P1, unique cloning sites (BglII, EcoRV or SmaI) followed by the mature form of the nuc gene and a second transcription terminator. Note that the sequences required for translation and secretion of the nuc gene were deliberately excluded in 25 this construction. Such elements can only be provided by appropriately digested foreign DNA fragments (representing the target bacterium) which can be cloned into the unique restriction sites present immediately upstream of the *nuc* gene.

In possessing a promoter, the pTREP1-nuc vectors differ from the pFUN vector described by Poquet *et al.* (1998), *supra*, which was used to identify *L. lactis* exported proteins by screening directly for Nuc activity directly in *L. lactis*. As the pFUN vector does not contain a promoter upstream of the *nuc* open reading frame the cloned genomic DNA fragment must also provide the signals for transcription in addition to those elements required for translation initiation and secretion of Nuc. This limitation may prevent the isolation of genes that are distant from a promoter for example genes which are within polycistronic operons. Additionally there can be no guarantee that promoters derived from other species of bacteria will be recognised and functional in *L. lactis*. Certain promoters may be under stringent regulation in the natural host but not in *L. lactis*. In contrast, the presence of the P1 promoter in the pTREP1-nuc series of vectors ensures that promoterless DNA fragments (or DNA fragments containing promoter sequences not active in *L. lactis*) will still be transcribed.

15

(d) Screening for secreted proteins in *S. pneumoniae*

Genomic DNA isolated from *S. pneumoniae* was digested with the restriction enzyme Tru9I. This enzyme which recognises the sequence 5'- TTAA -3' was used because it cuts A/T rich genomes efficiently and can generate random genomic DNA fragments within the preferred size range (usually averaging 0.5 - 1.0 kb). This size range was preferred because there is an increased probability that the P1 promoter can be utilised to transcribe a novel gene sequence. However, the P1 promoter may not be necessary in all cases as it is possible that many Streptococcal promoters are recognised in *L. lactis*. DNA fragments of different size ranges were purified from partial Tru9I digests of *S. pneumoniae* genomic DNA. As the Tru 9I restriction enzyme generates staggered ends the DNA fragments had to be made blunt ended before ligation to the EcoRV or SmaI cut pTREP1-nuc vectors. This was achieved by the partial fill-in enzyme reaction using the 5'-3' polymerase

activity of Klenow enzyme. Briefly Tru9I digested DNA was dissolved in a solution (usually between 10-20 μ l in total) supplemented with T4 DNA ligase buffer (New England Biolabs; NEB) (1X) and 33 μ M of each of the required dNTPs, in this case dATP and dTTP. Klenow enzyme was added (1 unit Klenow enzyme (NEB) per μ g of DNA) and the reaction incubated at 25°C for 15 minutes. The reaction was stopped by incubating the mix at 75°C for 20 minutes. EcoRV or SmaI digested pTREP-nuc plasmid DNA was then added (usually between 200-400 ng). The mix was then supplemented with 400 units of T4 DNA ligase (NEB) and T4 DNA ligase buffer (1X) and incubated overnight at 16°C. The ligation mix was precipitated directly in 100% Ethanol and 1/10 volume of 3M sodium acetate (pH 5.2) and used to transform *L. lactis* MG1363 (Gasson, 1983). Alternatively, the gene cloning site of the pTREP-nuc vectors also contains a BglII site which can be used to clone for example Sau3AI digested genomic DNA fragments.

L. lactis transformant colonies were grown on brain heart infusion agar and nuclease secreting (Nuc^+) clones were detected by a toluidine blue-DNA-agar overlay (0.05 M Tris pH 9.0, 10 g of agar per litre, 10 g of NaCl per liter, 0.1 mM CaCl₂, 0.03% wt/vol. salmon sperm DNA and 90 mg of Toluidine blue O dye) essentially as described by Shortle, 1983, *supra* and Le Loir *et al.*, 1994, *supra*). The plates were then incubated at 37°C for up to 2 hours. Nuclease secreting clones develop an easily identifiable pink halo. Plasmid DNA was isolated from Nuc^+ recombinant *L. lactis* clones and DNA inserts were sequenced on one strand using the NucSeq sequencing primer described in Appendix 1, which sequences directly through the DNA insert.

25 **Isolation of Genes Encoding Exported Proteins from
*S. pneumoniae***

A large number of gene sequences putatively encoding exported proteins in *S. pneumoniae* have been identified using the nuclease screening system. These have

now been further analysed to remove artefacts. The sequences identified using the screening system have been analysed using a number of parameters.

1. All putative surface proteins were analysed for leader/signal peptide sequences using the software programs Sequencher (Gene Codes Corporation) and DNA Strider (Marck, *Nucleic Acids Res.*, 16:1829-1836 (1988)). Bacterial signal peptide sequences share a common design. They are characterised by a short positively charged N-terminus (N region) immediately preceding a stretch of hydrophobic residues (central portion-h region) followed by a more polar C-terminal portion which contains the cleavage site (c-region). Computer software is available which allows hydropathy profiling of putative proteins and which can readily identify the very distinctive hydrophobic portion (h-region) typical of leader peptide sequences. In addition, the sequences were checked for the presence of or absence of a potential ribosomal binding site (Shine-Dalgarno motif) required for translation initiation of the putative nuc reporter fusion protein.

2. All putative surface protein sequences were also matched with all of the protein/DNA sequences using the publicly databases [OWL-proteins inclusive of SwissProt and GenBank translations]. This allows us to identify sequences similar to known genes or homologues of genes for which some function has been ascribed. Hence it has been possible to predict a function for some of the genes identified using the LEEP system and to unequivocally establish that the system can be used to identify and isolate gene sequences of surface associated proteins. We should also be able to confirm that these proteins are indeed surface related and not artifacts. The LEEP system has been used to identify novel gene targets for vaccine and therapy.

3. Some of the genes identified proteins did not possess a typical leader peptide sequence and did not show homology with any DNA/protein sequences in the database. Indeed these proteins may indicate the primary advantage of our screening method, i.e. the isolation of atypical surface-related proteins, which may

have been missed in all previously described screening protocols or approaches based on sequence homology searches.

In all cases, only partial gene sequences were initially obtained. Full length genes
5 were obtained in all cases by reference to the TIGR *S.pneumoniae* database (www.tigr.org). Thus, by matching the originally obtained partial sequences with the database, we were able to identify the full length gene sequences. In this way, as described herein, three groups of genes were clearly identified, ie a group of genes encoding previously unidentified *S.pneumoniae* proteins, a second group exhibiting
10 some homology with known proteins from a variety of sources and a third group which encoded known *S.pneumoniae* proteins, which were, however, not known as antigens.

Example 2: Vaccine trials

15 pcDNA3.1+ as a DNA vaccine vector

pcDNA3.1+

20 The vector chosen for use as a DNA vaccine vector was pcDNA3.1 (Invitrogen) (actually pcDNA3.1+, the forward orientation was used in all cases but may be referred to as pcDNA3.1 here on). This vector has been widely and successfully employed as a host vector to test vaccine candidate genes to give protection against pathogens in the literature (Zhang, *et al.*, Kurar and Splitter, Anderson *et al.*). The vector was designed for high-level stable and non-replicative transient expression in
25 mammalian cells. pcDNA3.1 contains the ColE1 origin of replication which allows convenient high-copy number replication and growth in *E. coli*. This in turn allows rapid and efficient cloning and testing of many genes. The pcDNA3.1 vector has a large number of cloning sites and also contains the gene encoding ampicillin
30 resistance to aid in cloning selection and the human cytomegalovirus (CMV) immediate-early promoter/enhancer which permits efficient, high-level expression of the recombinant protein. The CMV promoter is a strong viral promoter in a wide range of cell types including both muscle and immune (antigen presenting) cells. This is important for optimal immune response as it remains unknown as to which
35 cells types are most important in generating a protective response *in vivo*. A T7 promoter upstream of the multiple cloning site affords efficient expression of the

modified insert of interest and which allows *in vitro* transcription of a cloned gene in the sense orientation.

5 Zhang, D., Yang, X., Berry, J. Shen, C., McClarty, G. and Brunham, R.C. (1997) "DNA vaccination with the major outer-membrane protein genes induces acquired immunity to *Chlamydia trachomatis* (mouse pneumonitis) infection". *Infection and Immunity*, **176**, 1035-40.

10 Kurar, E. and Splitter, G.A. (1997) "Nucleic acid vaccination of *Brucella abortus* ribosomal L7/L12 gene elicits immune response". *Vaccine*, **15**, 1851-57.

15 Anderson, R., Gao, X.-M., Papakonstantinopoulou, A., Roberts, M. and Dougan, G. (1996) "Immune response in mice following immunisation with DNA encoding fragment C of tetanus toxin". *Infection and Immunity*, **64**, 3168-3173.

Preparation of DNA vaccines

20 Oligonucleotide primers were designed for each individual gene of interest derived using the LEEP system. Each gene was examined thoroughly, and where possible, primers were designed such that they targeted that portion of the gene thought to encode only the mature portion of the gene protein. It was hoped that expressing those sequences that encode only the mature portion of a target gene protein, would facilitate its correct folding when expressed in mammalian cells. For example, in the majority of cases primers were designed such that putative N-terminal signal peptide sequences would not be included in the final amplification product to be cloned into the pcDNA3.1 expression vector. The signal peptide directs the polypeptide precursor to the cell membrane via the protein export pathway where it is normally cleaved off by signal peptidase I (or signal peptidase II if a lipoprotein). Hence the signal peptide does not make up any part of the mature protein whether it be displayed on the surface of the bacteria surface or secreted. Where an N-terminal leader peptide sequence was not immediately obvious, primers were designed to target the whole of the gene sequence for cloning and ultimately, expression in pcDNA3.1.

35 Having said that, however, other additional features of proteins may also affect the expression and presentation of a soluble protein. DNA sequences encoding such features in the genes encoding the proteins of interest were excluded during the design of oligonucleotides. These features included:

40

1. LPXTG cell wall anchoring motifs.
2. LXXC ipoprotein attachment sites.
3. Hydrophobic C-terminal domain.

4. Where no N-terminal signal peptide or LXXC was present the start codon was excluded.
5. Where no hydrophobic C-terminal domain or LPXTG motif was present the stop codon was removed.

5

Appropriate PCR primers were designed for each gene of interest and any and all of the regions encoding the above features was removed from the gene when designing these primers. The primers were designed with the appropriate enzyme restriction site followed by a conserved Kozak nucleotide sequence (in most cases(NB except in occasional instances for example ID59) GCCACC was used. The Kozak sequence facilitates the recognition of initiator sequences by eukaryotic ribosomes) and an ATG start codon upstream of the insert of the gene of interest. For example the forward primer using a BamH1 site the primer would begin GCGGGATCCGCCACCATG followed by a small section of the 5' end of the gene of interest. The reverse primer was designed to be compatible with the forward primer and with a Not1 restriction site at the 5' end in most cases (this site is TTGCAGGCCGC) (NB except in occasional instances for example ID59 where a XbaI site was used instead of Not1).

10

PCR primers

The following PCR primers were designed and used to amplify the truncated genes of interest.

15

ID5

Forward Primer 5'

CGGATCCGCCACCATGGGTCTAATTGAAGACTTAAAAATCAA 3'

Reverse Primer 5' TTGCAGGCCGCATGCTAGACTAAACACAAGACTCA 3'

20

ID59

Forward Primer 5' CGCGGATCCATGAAAAAAATCTATTCACTTTAGCA 3'

Reverse Primer 5' CCCTCGAGGGCTACTTCCGATACATTTAAACTGTAGG

25

3'

ID51

30

Forward Primer 5' CGGATCCGCCACCATGAGTCATGTCGCTGCAAATG 3'

Reverse Primer 5' TTGCAGGCCGCATACCAACGCTGACATCTACG 3'

35

ID29

Forward Primer 5' CGGATCCGCCACCATGCAAAAGAGCGGTATGGTTATG
3'
5 Reverse Primer 5' TTGCAGGCCGCACCCCCATTCTTAATCCCTT 3'

ID50

Forward Primer 5'
10 CGGATCCGCCACCATGGAGGTATGTGAAATGTCACGTAAA 3'
Reverse Primer 5' TTGCAGGCCGCTTTACAAAGTCAAGCAAAGCC 3'

Cloning

15 The insert along with the flanking features described above was amplified using PCR against a template of genomic DNA isolated from type 4 *S. pneumoniae* strain 11886 obtained from the National Collection of Type Cultures. The PCR product was cut with the appropriate restriction enzymes and cloned in to the multiple cloning site of pcDNA3.1 using conventional molecular biological techniques. Suitably mapped clones of the genes of interested were cultured and the plasmids isolated on a large scale (> 1.5 mg) using Plasmid Mega Kits (Qiagen). Successful cloning and maintenance of genes was confirmed by restriction mapping and sequencing ~ 700 base pairs through the 5' cloning junction of each large scale preparation of each construct.

25 Strain validation
A strain of type 4 was used in cloning and challenge methods which is the strain from which the *S. pneumoniae* genome was sequenced. A freeze dried ampoule of a homogeneous laboratory strain of type 4 *S. pneumoniae* strain NCTC 11886 was obtained from the National Collection of Type Strains. The ampoule was opened and the cultured re suspended with 0.5 ml of tryptic soy broth (0.5% glucose, 5% blood). The suspension was subcultured into 10 ml tryptic soy broth (0.5% glucose, 5% blood) and incubated statically overnight at 37°C. This culture was streaked on to 5% blood agar plates to check for contaminants and confirm viability and on to blood agar slopes and the rest of the culture was used to make 20% glycerol stocks. The slopes were sent to the Public Health Laboratory Service where the type 4 serotype was confirmed.

40 A glycerol stock of NCTC 11886 was streaked on a 5% blood agar plate and incubated overnight in a CO₂ gas jar at 37°C. Fresh streaks were made and optochin sensitivity was confirmed.

Pneumococcal challenge

5 A standard inoculum of type 4 *S. pneumoniae* was prepared and frozen down by passaging a culture of pneumococcus 1x through mice, harvesting from the blood of infected animals, and grown up to a predetermined viable count of around 10^9 cfu/ml in broth before freezing down. The preparation is set out below as per the flow chart.

10 Streak pneumococcal culture and confirm identity

15 Grow over-night culture from 4-5 colonies on plate above

20 Animal passage pneumococcal culture
(i.p. injection of cardiac bleed to harvest)

25 Grow over-night culture from animal passaged pneumococcus

30 Grow day culture (to pre-determined optical density) from over-night of animal passage and freeze down at -70°C - This is standard minimum

35

Thaw one aliquot of standard inoculum to viable count

40

Use standard inoculum to determine effective dose (called Virulence Testing)

|
V

5 All subsequent challenges - use standard inoculum to effective dose

An aliquot of standard inoculum was diluted 500x in PBS and used to inoculate the mice.

10 Mice were lightly anaesthetised using halothane and then a dose of 1.4×10^5 cfu of pneumococcus was applied to the nose of each mouse. The uptake was facilitated by the normal breathing of the mouse, which was left to recover on its back.

S. pneumoniae Vaccine trials

15 Vaccine trials in mice were carried out by the administration of DNA to 6 week old CBA/ca mice (Harlan, UK). Mice to be vaccinated were divided into groups of six and each group was immunised with recombinant pcDNA3.1+ plasmid DNA containing a specific target-gene sequence of interest. A total of 100 μ g of DNA in Dulbecco's PBS (Sigma) was injected intramuscularly into the tibialis anterior muscle of both legs (50 μ l in each leg). A boost was carried using the same procedure 4 weeks later. For comparison, control groups were included in all vaccine trials. These control groups were either unvaccinated animals or those administered with non-recombinant pcDNA3.1+ DNA (sham vaccinated) only, using the same time course described above. 3 weeks after the second immunisation, all mice groups were challenged intra-nasally with a lethal dose of *S. pneumoniae* serotype 4 (strain NCTC 11886). The number of bacteria administered was monitored by plating serial dilutions of the inoculum on 5% blood agar plates. A problem with intranasal immunisations is that in some mice the inoculum bubbles out of the nostrils, this has been noted in results table and taken account of in calculations. A less obvious problem is that a certain amount of the inoculum for each mouse may be swallowed. It is assumed that this amount will be the same for each mouse and will average out over the course of inoculations. However, the sample sizes that have been used are small and this problem may have significant effects in some experiments. All mice remaining after the challenge were killed 3 or 4 days after infection. During the infection process, challenged mice were monitored for the development of symptoms associated with the onset of *S. pneumoniae* induced-disease. Typical symptoms in an appropriate order included piloerection, an increasingly hunched posture, discharge from eyes, increased lethargy and reluctance to move. The latter symptoms usually coincided with the development of a moribund state at which stage the mice were culled to prevent further suffering. These mice were deemed to be very close to death, and the time of culling was used

to determine a survival time for statistical analysis. Where mice were found dead, the survival time was taken as the last time point when the mouse was monitored alive.

5 Interpretation of Results

A positive result was taken as any DNA sequence that was cloned and used in challenge experiments as described above which gave protection against that challenge. Protection was taken as those DNA sequences that gave statistically 10 significant protection (to a 95% confidence level ($p < 0.05$)) and also those which were marginal or close to significant using Mann-Whitney or which show some protective features for example there were one or more outlying mice or because the time to the first death was prolonged. It is acceptable to allow marginal or non-significant results to be considered as potential positives when it is considered that 15 the clarity of some of the results may be clouded by the problems associated with the administration of intranasal infections.

Results
Trials 1-6 (see figure 1)

Mouse number	Mean survival times (hours)								
	Unvacc control (1)	pcDNA 3.1+ (1)	ID5 (1)	Unvacc control (2)	ID59 (2)	Unvacc control (5)	ID59 (5)	Unvacc control (6)	ID51 (6)
1	47.5	61.0	61.0	49.0	55.0	58.0	55.3	71.6*	50.0
2	57.0	47.5	61.0	51.0	55.0	75.0	98.0	60.7	99.9T
3	47.5	50.5	57.0	49.0	55.0	48.0	58.5	98.5	53.6
4	47.5	50.5	72.0	55.0	69.5	46.7	55.3	(101.2)*T	99.9
5	77.0	72.0	47.5	49.0	74.0	58.0	53.5	60.7	59.4
6	57.0	50.5	mouse died	49.0	mouse died	75.0	98.0	50.8	50.0*
Mean	55.6	55.3	59.7	50.3	61.7	60.1	69.8	68.4	68.8
sd	11.5	9.4	8.8	2.4	9.3	12.5	21.9	18.3	24.4
p value 1	-	-	0.1722	-	0.0064	-	0.2862	-	<36.0
p value 2	-	-	0.2565	-	-	-	-	-	-

* - bubbled when dosed so may not have received full inoculum.

T - terminated at end of experiment having no symptoms of infection.

Numbers in brackets - survival times disregarded assuming incomplete dosing

p value 1 refers to significance tests compared to unvaccinated controls

p value 2 refers to significance tests compared to pcDNA3.1+ vaccinated controls

Statistical Analyses.

5 Trial 1 - None of the other groups had significantly longer survival times than the controls. The survival times of the unvaccinated and pcDNA3.1 control groups were not significantly different. One of the mice from ID5 was an outlying result and the mean survival times for ID5 were extended but not significantly so.

10 Trial 2 - The group vaccinated with ID59 had significantly longer survival times than the unvaccinated control group.

15 Trial 5 - The group vaccinated with ID59 again survived for an average of almost 10 hours longer than the controls but the results were not quite statistically significant.

Trial 6 - The group vaccinated with ID51 did not have survival times significantly higher than unvaccinated controls ($p = < 36.0$), however, there were 2 outlying mice in the vaccinated group.

15

Vaccine trials 7 and 8 (See figure 2)

Mouse number	Mean survival times (hours)			
	Unvacc control (7)	ID29 (7)	Unvacc control (8)	ID50 (8)
1	59.6	73.1	45.1	60.6
2	47.2	54.8	50.8	60.6
3	59.6	59.3	60.4	51.1
4	70.9	54.8*	55.2	60.6
5	68.6*	59.3	45.1	60.6
6	76.0	54.8	45.1	60.6
Mean	63.6	59.35	50.2	59.1
sd	10.3	7.1	6.4	3.9
p value 1	-	<39.0	-	0.0048

* - bubbled when dosed so may not have received full inoculum.

20 T - terminated at end of experiment having no symptoms of infection.

Numbers in brackets - survival times disregarded assuming incomplete dosing
p value 1 refers to significance tests compared to unvaccinated controls

Statistical Analyses.

5 Trial 7 - The ID29 vaccinated group showed prolonged times to the first death. T
Trial 8 - The group vaccinated with ID50 survived significantly longer than
unvaccinated controls.

Appendix I - Oligonucleotide primers

nucS1

Bgl II Eco RV

5' - cgagatctgatatctcacaaacagataacggcgtaaatag -3'

nucS2

Bgl II Sma I

5' - gaagatctccccggatcacaaacagataacggcgtaaatag -3'

10

nucS3

Bgl II Eco RV

5' - cgagatctgataccatcacaaacagataacggcgtaaatag -3'

15

nucR

Bam HI

5' - cgggatccatggacctgaatcagcggtgtc -3'

20

NucSeq

5' - ggatgcgttgtttcagggtgtatc -3'

pTREP_F

5' - catgatatcggtacctcaagctcatatcattgtccggcaatgggtgggttttttttttagcggataacaattcacac -3'

25

pTREPR

5' - gcgatccccccgggttaattaaatgtttaaacactagtcgaagatctcgcaatttcctgtgtgaaatttttatccgata -3'

30

pUC_F

5' - cggcagggtttcccgatcagc -3'

VR

5' - tcagggggcggagcctatg -3'

35

V1

5' - tcgtatgtgtgtggaaattgtg -3'

V2

5'- tccggctcgtatgttgttggaaattg -3'

TABLE 1

ID4 1200 bp

5 ATGAGAAATATGTGGGGTGAATCAAGGAAACCTATCTCGACATGTCGAGTCATGGAGTTCTTCTTATGGTA
 TTCGCCGTTCCCTTTAGGAATCTGTAGGAATTGGCATCTCCAAGGTTCTCTATGGCTAAAATAATAA
 AGTGGCAGTAGTGACAACAGTGCATCTGTAGCAGAAGGACTGAAGAATGTAATGGTAACTTCGACTATAA
 AGACGAAGCAAGTGCCAAAGAACGAAATTAAAGAAGAAAAATTAAAGGTTATITGACCATTGATCAAGAAGATA
 GTGTTCAAAGGCAGTTATCATGGCGAAACATCGCTGAAAATGGAAATTAAATTGAGGTTACAGGTACACTCA
 ATGAACTGCAAATCAGCTTAACTGTCCTGTCAAGAGCAGGAAAACGCTTAGCGCAGACAA
 TTCAATTACAGAAAAGATTGATGAAGCCAAGGAAAATAAAAAGTTTAAACAACATTGAGCAGGTGCTTAG
 GATTCTTCTTATATGATTCTGATTACCTATGGGGTGTACAGCTCAGGAAGTGCAGTGAAAAGGCACCAA
 AATTATGGAAGTCGTTTTCTAGCATAAAGGGCAAGTCACTATTTCTATGCGCGATGATGGCTCTGTTCTAGTG
 ATTAAACGCATATTGGATCATGGTGTAGGTTCTGGCTGCGTTTCTGTTAAAGATTGCCATTCTGCG
 TCAGTCTGGTATTGGATCATGGGAGATGCTACTCCTACTGAAACCTTGCTTATTGATCAGTCTTCA
 TGACGTAGTCTTGCAGCCTCTAGGATCTATGGTTCTGCTGAGGACTCAGGGAAAGCCTTGTGCTT
 GATGATTTGATTATGGTGGTTTTGGAGTGACAGCTCTAGGTGAGCTGGTACAACTCCTTGAAGATT
 GTTCTTATATCCCTTATTCGACCTCTTATGCCCTTCAACGATTAATGACTATGCGGGGGGAGCAGAAG
 CATGGATTCACCTGCTATTACAGTGATTGGCTGGTAGCAACAGGATTATCGGACGATGATGCTAGTCT
 CGTTCTCAAACGGATGATTAGGGATTGGAAAACCTTAAACGTGCCTTATCTTAAATAG

25 MRNMWVVIKETYLRHVESWSFFFVISPFLFLGISVGIGHLQGSSMAKNKVAVVTVPSVAEGLKNVNFGDYKD
 EASAKEAIKEELKGYLTIDQEDSVLKAVYHGETSELENGKFEVTGTLNEQNQLNRSTASLSQEQEKRQATIQFTEKI
 DEAKENKKFIQTLAAGALGFLYMLITYAGVTAQEVAEKGTKIMEVVFSIRASHFYARMMALFLVILTHIGIYVVG
 GLAAVLLFKDLPFLAQSGILDHLGDAISLNLLFILSFLMFYVLAFLGMSVRPEDSGKALSPLMILIMGGFFGVTLG
 AAGDNLLKIGSYIPFISTFFMPFRINDYAGGAEAWISLAITVIAVVATGFIGRMYASLVLQTDLGIWKTFRKRALSYK
 Z

ID5 1125 bp

30 CCTGGAAAGTCTGAAAATTATGATAGAATGGGAAGGAAAATTCAAGGAGAGTACTAGTGACTCAAATGTT
 GAAAGTCTCTGATTCATTGATTCAGTCATACAATGAAGAAAATATGCTCTGGCTTAATTGAAGACTTAA
 AAAATCAAACCTATCCTAAAGAGGATATTGAAATTCTATTATAAATGCTATGTCACAGATGGGACACAGCTA
 TCATTCAAGCAATTATAAAGGAAGATACAGAGTTAACACTCAATTAGATTGTATAACAATCTAAGAAAATCAAG
 CTAGTGGTTAACCTGGGAGTTAACACTCTGTAGGGGACTTATTAAAATTGATGCTCATTCAAAGTTAC
 TGAGACTTTGTAATGAAACATGTGGTATTATTACAACAGGTAATTGCTGTGGGGGCTAGACCGACGATT
 GTCGAAGGAAAAGGAAATGGGAGACCTTGCACTTGTGAGGAAAATATGTTGGCAGTAGCATTGCCAAT
 TATCGAAATAGTCTGAGGATAGATATGTTCTTATTTTCTATGGAATGTATAAACAGAGAGGTTTCCAGAAGG
 TTGGTTTAGTAAATGAGCAACTGGCGAAGTAACTGACAGATAATGATATTCTATTAGAATTGAGAATATGGTTATAA
 AATCCGCTATGCCCAAGTCTATCTTATGACCAACATCAAGAAAATGCTGATCAAAGTAT
 TCAATGGTTGTGGATTGGCTGACAAGTCATGTTAGTTAAAGTGTATCATTATGCTACTATGTTCTGTT
 ATTTGTTTAGTCTGTGTTAGTCAGCATTGCACTTGTGACTTTATTAACATAAAATGGATTCTAATTGATGCCCTT
 ATTTCTACTTTGTCATTACTCACTTGTGACTTTATTAACATAAAATGGATTCTAATTGATGCCCTT
 ATTTTATTCACATTCACTTGTGCTATGCCCTGGGACGATTGAGGTTAATTAGAGGATTAAATGGAAGAAGG
 AGTACAAGAGAACATAATTATGGATAAAATAAGCCAATAATGCTATAA

50 PGKVLKIMIEWWKEKFRVVVTQNVESLLVSIVISAYNEEKYLPGLIEDLKNQTYPKEDIEILFINAMSTDGTTAIQQFIK
 EDTEFNSIRLYNNPKKNQASGFNLGVHSVGDILIKIDAHSKVETFVMNNVIIQQGEFVCGGPRPTIVEGKGKAET
 LHLVEENMFGSSIANRNSSEDRYVSISIFHGMYKREVFQKVGLNEQLGRTEDNDIHRYREGYKIRYSPSILSYQYIRP
 TFKKMLHQKYSNLWIGLTSVQFKCLSLPHYVPCFLVLSVFLALLPITFVFTLLLGYFLLSLLTLLKHNGF
 LIVMPFILFSIHFAYGLCTIVGLRGFWKKEYKRTIYLDKISQINQNMLZ

ID11 696 bp

55 ATGATGAAAGAACAAAATACGATAGAAATCGATGTATTCTAATTAGTTAAAGCTTGTGGAAACGCAAGCTAATG
 ATTAAATAGTGGCACTTGTGACAGGTGGGGCTTTGCAATATAGCATTATTGTTAAGCCAGAATATACGA
 GTACCAAGCGAATTACGTAGTGAATCGCAATCAAGGAGACAAGCCGGGGTGCACAAATCAGGATTTGCAAGGCGAG
 GAACCTATCTGGAAAAGACTACCGTGAGATTACCTTCTGCAAGGATGTTGGAGGAAGTTGTTCTGATTGAA
 ACTAGATTGACGCCAAAAGGTTGGCTAATAAAAATTAAAGTGACAGTACCGAGTTGATACCCGTTATGCTCTATT
 TCAGTTAATGATCGAGTTCTGAAAGAGGCAAGCCGTATCGCTAACTCTTGAGAGAAGTAGCTGCTCAAAAT
 ATCAGTATTACTCGTGTGTTCTGACGTGACAACACTGGAGGAGGCAAGGCCGGCATACTCCCGTCTCGCCAAT
 ATAAACGCAATACACTAATTGGTTTGGCAGGGGTGATTGAACTAGTGTATAGTCTCATCTGAACTTTT

GGATACTCGTGTGAAACGTCCGAAGATATCGAAAATACATTGCAGATGACACTTTGGGAGTTGTGCCAAACTT
GGGTAAGTTGAAATAG

5 MMKEQNTIEIDVFQLVSLWKRKLMILIVALVTGAGAFAYSTFIVKPEYTTTRIYVNRNQGDKPGLTNQDLQAGTYL
VKDYREIIISQDVLEEVVSDLKLDDTPKGANKIKVTVPVDRVISVNDRVPEEASRIANSREVAAQKIIISITRVDVT
TLEEARPAISPSSPNIKRNTLIGFLAGVIGTSVILHLELLDTRVKRPEDIENTLQMTELGVVPNLGKLZ

ID19 555 bp

10 ATGGTAAAAGTAGCAGTTTATAGCTCAGGGCTTGAGAAATTGAAGCCTTGACAGTTGAGATGTCCTGCGTC
GAGCCAATATCACATGTGATGGTGGTTGAGAGCAAGTAACGGGTTCGCATGCAATCCAAGTAAGAGCAG
ATCATGTCCTTGATGGAGATTATCAGACTATGATGATTGTCCTGGAGGTATGCTGGTTCTGCACATT
CGTATAATCAGACCTGATTCAAGAATTGCAAAGCTTCGAGCAAGAAGGGAAAGAAACTAGCAGCCATTGTGCG
GCACCAATTGCCCTCAATCAAGCAGAGATATTGAAAAATAAGCGATAACTTGTATGACGGCGTCAAGAGCAA
ATCCTTGATGGTCACTAGTCAGGAAACAGTAGTGGTAGATGGTAGTTGACAAACCAGTCGGGCTTCACA
GCCCTTGCTTGCCTACAGGAGTTGGAGCAACTAGGAGGGACGCAGAGAGTTACGAACAGGAATGCTAT
CGAGATGTCCTGGTAAAAATCAGTAA

20 MVKVAVILAQGFEEIEALTVVDVLRRANITCDMVGFEQVTGSHAIQVRADHVFDGDSLSDYDMIVLPGGMPGSAHLR
DNQTLIQELQSFEQEGKKLAAICAAPIALNQAEILKNKRYTCYDGVQEQLDGHYVKETVVVDGQLTTSRGPSLALAF
YELVEQLGGDAESLRGMLYRDVFGKNZ

ID27 306 bp

25 GTGGTAGGGATGGTAGAACCAACCTAGAAAGCCTTATAAAAGATCTTACAATCATGCTCGACATGATTGAGT
GAAGATTAGTTGCTGCTCTCTAGAGACTACTAAAAAACTGCCTACTACAAATGAGCAATTGCAAGGCAGTC
TCAGGCCCTGGTCAATCGTAATTGCTCTAAATCCCAAATCCAGCAGCTGAGTTGCTCAACTTGGCTCGTT
TGTCAAAAGAGAAGAACCCAAGTACAGAGGAACTGCGACTTCTGCCTTATGTATGAGGAACTCTTAAATGCT
TTGA

30 MVGMVEPNLESLIKDLYNHARHDLSEDLVAALLETTKLPTTNEQLQAVRLSGLVNRELLNPKHPAPELLNLARFK
REEAKYRGATSALMYEELFKMLZ

ID29 945 bp

35 TTGTTCTTAAAAAAGGAAAGAGAGGTAATCAGCATGCGAAATGGACAAAAGGATTCTCATCTTGGTGTGGTG
ACTACCGTTATCGGCTTTATCCTGCTTTGTAGCTATCCAATCTGACGGGAAAGAGCCTACTTCCATGTCCAA
AGAACCTGCTATGATAGCGTACGGAAAAGCTAACCTTGGCAAGGAAAGTCGAAAACCTAGAAATTACTCTCCA
CCAACACAGCCTCACCATCACAGACTTCTGATGATCAAATCCACATTCTTACCATCCATCTTCTGCTCAC
CATGATCTTACCCAATCAGAACGATAGAACTCTGAGTCTCACTGATAAGAAACTGCTGAAACTCCGTTCT
CTTCTGGAATTGGGGATTCTCATATCGCAAGTAGCTACTCTAGTCGTTGAAGAAGTTATTCTCGACTACC
AAAAGGGGAAACTCTAAAGGATCACACATCTCAGCAAATCGGACAAACCACCATCATAATGCTAGCCCTGA
AAATGCGACCTCAACAAACAGCTATATCCTCGAATTGAGGAAGTCGATCAAACAGTAAACTCACAAC
GCCCAATATCGTAAATCTTGTACAGTTACAGATAGTCAGTCAACAGAGAATCCTCCACGCT
45 GAAAATATCCAAGTCATGGCAAGGTTGAAGTCACTGCAAAGATTATCTCAGAATCATCCTAGACCAAGAAAGAA
AGCCAACGAATTAACTGGACATCTAAGCAACTATGGTCTATCTCCAATTACAAGAGAAAAGCCTGAATCA
AGAGGTACCGAATTAAGCAACCCTAACAAACTGAAAAAACCAGATGTCAGGATCAACTCATTGCGAGATCTGAT
GATAATATTGATCTAATATCCACACCAAGCAGACGTTGA

50 MFLKKEREVISMWKWTGFLIGVVTIVGFIILFVGQISQDGKSLSMSKEPVYDSRTEKLTFGKEVENLEITLHQHTLT
TDSFDDQHISYHPSLSAHDLITQNQDRTLSLTDKLLSETPFLSSGIGGILHISSYSSRFEEVILRLPKGRTLKG
QOTTINASLENATLNTNSYILRIEGSRKNSKLTPNIVNIFDTVLTSQLESTENHFHAENIQVHGKV
QKESQRINWDISSNYGSIFQFTREKPESRGTELSNPYKTEKTDVKDQLIARSDDNIDLISTPSRRZ

ID30 879 bp

55 ATGAAACAAGAACATGGTTGAAAGTAATGATTTGTAAAAAACACAAGCAAGAACAGCTGAAGAGCAAGCTCA
AGAGGTTGAGACAAGGCTGAAGAACGATGCGATCTCGATACACCAATTGAAAAAAATACTCAGTTAGAGG
AGGAAGTCCTCAAGCTGAAGTCGAATTGAAAAGCCAGCAAGAAGAGAAAATTGAGCTCCTGAAGACAGTGA
GCGAGAACAGAAATAGAAGAAAAGAAGGCATCTAATTCTACTGAAGAAGAGCCAGACCTTCTAAAGAACAGA
AAAAGTCACTATAGCTGAAGAGAGCCAAGAAGCTCTCCTCAGCAAAAGCAACCCAGAAAGAGCCTACTTCT
CAGTAAATCTTGTAGAAAGTCCTTATATCCCCGACCAAGTCCTCAAATCTAGGGATAATGGAAAGAGCAAGTGC
TGATTTTGCTCTTGTCTTGTAGTGGAGCGATCAAATCTCTACAGTAAGTGGAAACAAGTATCACACACAGTTAC
ACAGCCTTCTTCTGCTCTTGTCTGCTCTTCTGCTCTTCTGCTCTTCTGCTCTTCTGCTCTTCTGCTCTTCT
65 GGACATATAGCAAGCATTAAAGCTCGCTCCCTGAGCAGCTAGCTCTTAAACTCTTCTATCATCTATCCT

AGTAGCGACAACACTCTTCTTTCACTCCTTGGGTAGTTCTGAGACGATTATCCACCAGGAAAAG
 GACTGGACGCTAGACAAGGTTCCAACAATATAGTCACACTTGGCAATTCAATCTCCTCACTGCTATTGCTAG
 TTTCTTGTCTTCTTGATAGCTACGATTACAGCCCTTGTGTGA

5 MKQEWFESNDFVKTSKNKPEEQAEVADKAETIADLDTPIEKNTQLEEEVPQAEVELESQQEEKIEAPEDSEARTEIE
 EKKASNSTEEPDLSKETEKVTIAEESQEALPQQKATTKEPLLISKSLESPYIPDQAPKSRDKWKEQVLDFWSWLVEAIKS
 PTSKLETSLTSHSYTAFLLLILFSASSFFSIYHIKHAYYGHIASNSRFPEQLAPLTLFSIISILVATTLFFFSLLGSFVVRFIIH
 QEKDWTLKVLQQYSQLLAIPISSLLLVSLLSLIAYDLQPSCVZ

10 ID105 990 bp
 ATGCAACTCGCTTCTCGGTCTACTCATGGTCTGGTACAATTGTTCTAAAAAGGAAAGAGAGGTAATCA
 GCATGCGTAAATGGACAAAAGGATTCTCATCTTGGTGTGGTACTACCGTTATGGCTTATCTGCTTTTGTAA
 GGTATCCAATCTGACGGGATTAAGAGCCTACTTCCATGTCACAGGCTATGATAGCCGACGGAAAAG
 CTAACCTTGGCAAGGAAGTCGAAAAGCTAGAAATTACTCTCCACCAACACGCTCACCACAGACTCTTC
 GATGATCAAATCCACATTCTTACCATCCATCTTCTGCTCACCATGATCTTATCCAATCAGAACGATAGAA
 CTCTGAGTCTCACTGATAAGAAACTGTCGAAACTCCGTTCTCTTCTGGAATTGGTGGGATCTTATATCGC
 AAGTAGCTACTCTAGCTGTTGAAGAAGTTATTCTCGACTACAAAAGGGAGAACCTAAAGGGATCAACAT
 CTCAGCCAATCGCGGACAAACCATCATAATGCTAGCCTGAAAATGCGACCCCTCAATACAAACAGCTATAT
 CCTCCGAATTGAAGGAAGTCGTATCAAACAGTAAACTCACACGCCAATATCGTTAATATCTTGTATACAGTT
 CTTACAGATAGTCAGCTAGAGTCACAGAGAACACTTCCACGCTGAAAATATCCAAGTCCATGGCAAGGGTGA
 CTGACTGCCAAAGATTATCTCAGAATCATCTCAGACAGAAAAGCAACGAATTAACCTGGGACATCTCAAGC
 AACTATGGTCTATCTCCAATTACAAGAGAAAAGCCTGAATCAAGAGGTACGGAATTAGCAACCCCTACAAA
 ACTGAAAAAAACCGATGTCAAGGATCAACTCATTGCGAGATCTGATGATAATTGATCTAATATCCACACCAAGC
 AGACGTTGA

15 MQLASSVYSLFWYNNLFLKKEREVISMRKWTKGFLIFGVTTVIGFILLFGVIOSDGKISLMSMSKEPVYDSRTEKLTFG
 KEVENLEITLHQHTLTDSFDDQIHISYHPSLSAHHDLTNQNDRTSLTDKLSLSETPFLLSGIGGILHIASSYSSRFEVIL
 20 RLPKGRTLKGGINISANRGOTTIINASLENATLNTNSYILRIEGSRIKNSKLTPNIVNIFDTVLTDSQLESTENHFHAENIQV
 HGKVELTAKDYLRIILDQKESQRINWDISSNYGSIFQFTREKPESRGTELSPYKTEKTDVKDQLIARSDDNIDLISTPSRR
 Z

25 ID107 -78bp
 ATGATATGTAATGAAGCAGGGAGGGAGCAGGGCGTGTGGGATGGAGAGTGGGGAGGGACGCTGCTATT
 TAATC

30 MICKMKQGGSRACWGWRVGEGRCYFN

35 ID109 714 bp
 CGATAAAAGAGGCCTGAGTAATCTCAATTGAGATTGAAAATGGAGAGATTATGGCTTGATTGGCTATAATGG
 GGCTGAAAATCGACCACTATAAAATCCCTAGTCAGTATCATTCTCACCAGCAGTGGCTGATTGGTAGACCGT
 CAGGAGTTATCGGAAAATCGCTTGGCTATTAAACGAAAGATTGGCTACGTCAGAGCTCGCTGACTTATTCTAC
 GCTTAACGGCCAATGAATTGGGAATTGATCGCCTCATCTTATGATCTGAGTAGATCTGACTTGGAGGCTAGTCT
 AGCTAGGCTATTGAACGTTTGTGATTGCTGAAATCGCTATCAGGTTATTGAAACTCTTCTCACGGAATGCGT
 CAGAAAGTCTTGTCTCGGAGCACTCTGCTGATCCCGATATTGGGTTTGACGAAACCTTGACTGGTTGG
 40 ATCCCCAGGGCTGCCATTGATTGAAACAGATGATGAGGAACATGCACAAAAGGGAAACAGACTCTTGTCTCA
 CTCATGCTCTAGGGTGGCAGAGCAAGTCTGATGCGATTGCCATTGAAAAGGGGATTGATTATTGTGG
 TAAGGTAGAGGACTTGAGGAAAGACCACCCAGACCAGTCTTGGAAAGTATCTACCTTAGTCTGCTGGTAGAAA
 AGAGGAGGTTGGATGCGTCTCAAGGTATTAA

45 AGAGGAGGTTGGATGCGTCTCAAGGTATTAA

50 DKEALSNLNQIENGEMGLIGHNGAGKSTTIKSLVSIISPSSGIRLVDQQELSENRLAKRKIGYVADSPDLFLRLTANE
 WELIASSYDLSRSDEASLARLLNVFDAENRYQVIETLSHGMRQKVFIGALLSDPDIWVLDPEPLTGLDPQAADF
 LKQMMKEHAQKGKTVLFSTHVLEVAEQVCDRIAILKKHLYCGKVEDLRKDHPDQSLESIYLSAGRKEEVADASQGHZ

55 ID112 360 bp
 ATGGCTTGTGAGAGAGGAGGAGCAGTACCGAAGACACCAATGGCAAGTCCAATAATGAGACCTATGATGGTT
 CCGACGATAGAGATTAAAGAGTGTACCGACCCAGCAAGAGTTGTCAGTTGCTGCTTGTGAGCTTGGCAGGTTGTCCTGATCATACGATCCA
 ACTTGGCTAAAGAAACTACTGCTAGTCTCTCAGTTGTTGAGCTTGGCAGGTTGTCCTGATCATACGATCCA
 TCAAGGCAACTGGTCTATCTTGAATGGTTCAATGCTGGCATTGATTGGCTAAACGATTGTCATTGGTACAGA
 60 AGCCCGATAGCGATAGCTGATCTTCTCCCAGTTGAAACCAGGTTCTACTTGA

65 AGCCCGATAGCGATAGCTGATCTTCTCCCAGTTGAAACCAGGTTCTACTTGA

MALFSERGAVRKTPMASPIMRPMMVPTIEIKRVIPAPRKSCQFSERILATWLKKLLLVSVVVASAGCSLIIRSIKATWSS
FEMVSMALIWLRLSPIAVSSPVLPGSTZ

5 ID 128 - 3.43

ATGAAATTAGAAAAATATAGCAGCTGGATCAGCTGTTATCGTATC
CTTGA
10 CTTGACTATGTGCTATGCACTAAACCAGCATCGTCAGGAAAATA
AGGACA
15 AGTAAACTTGACACCAGGTTAGCCAGAAAAGAAGGAATTCAAGGC
TGAGCAA
20 ATTATGTAATCAAATTACAGATCAGGGCTATGTAACGTCACACG
GTGACCACTATCATTACTATAATGGGAAAGTCCTTATGATGCCCTCTT
AGTGA
25 GAGAACTCTTGATGAAGGATCCAACATCAACTAAAGACGCTGA
TATITGCAATGAAGGTTATATCATCAAGGTCATGGAAAAT
ATTATGCTACCTGAAAGATGCAAGCTCATGCTGATAATGTTGAACTAAA
GATGA
30 ATTA
25 GAAATCAATCGTAAAACAAGAACATGTCAGGAACTGAAAGATAATGAGAAGGT
TAACTCTAATGTTGCTGTAGCAAGGTCAGGGACGATATACGACA
35 AAATG
20 ATGGTTATGCTTTAATCCAGCTGATATTATCGAAGATAACGGTAATGCT
TATATCGTICCTCATGGAGGTCACTACTACATCCCCAAAAGCGATT
ATCTGCTAGTGAATTAGCAGCAGCTAAAGCACATCTGGCTGGAAAAAATA
TGCAACCGAGTCAGCTTCAACAGCTAGTGA
30 CAATCTGAGCAAAGGATCAACTAGCAAGCAGCAAATAATCTGAAA
TCTCCAGAGTCTTGAAGGAACCTATGATTACCTAGCGCCCAACGTT
ACAGTGA
35 ATCAGTGAATCAGATGGCTGGTCTTGACCTGCTAAGATTATCAGTCGT
ACACCAAATGGAGGTTGCGATTCCGATGGCAGCATTACCACTTATTCC
TTACAGCAAGCTTCTGCCTTACAAGAAAAGATTGCCAGATGGTGCCTA
TCAGTGGAACTGGTCTACAGTTCTAAATGCAAACCTAATGAAGTA
GTGTCTAGTCTAGGCAGTCTTCAAGCAATCCTCTTAAACGACAAG
TAAGGAGCTCTTCAGCATCTGATGGTTATTTAAATCCAAAAGATA
TCGTTGAAGAAACGGCTACAGCTTATTTGAAGACATGGTGTACATTTC
CATTACATTCAAATCAAATCAAATTGGCAACCGACTCTCCAAACAA
TAGTCTAGCAACACCTCTCCATCTTCCATCAATCCAGGAACCTCAC
ATGAGAAACATGAAGAAGATGGATACGGATTGATGCTAATCGTATTATC
GCTGAAGATGAATCAGGTTGTCATGAGTCACGGAGACCAATCATT
TTCTCAAGAAGGACTTGACAGAAGAGCAAATTAAAGGTGCGAAAAACA
TTAG

40 MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQK
SENLTDPQSQKEGIQEIQIVIKITDQGYVTSHGDHYHYYNGKVPYDALF
SEELLMKDPNYQLKDADIVNEVKGGYIUKVDGKYYVYLKDAAHADNVRTK
DEINRQKQEHVKDNEKVNSNVAVARSQGRYTTNDGYVFNPADIIEDTGN
YIVPHGGHYHYPKSDSLASELAAAKAHLAGKNMOPSLYSSTSADNN
QSVAKGSTSKPANKSENLQSLKELYDPSAQRYSES DGLVFDPAKII
TPNGVAIPHGDHYHFIPYSKLSALEEKIARMVPISGTGSTVSTNAKPNEV
VSSLGSLSNPSSLTTSKELSSASDGYIFNPKDIVEETATA
YIVRHGDHF
HYIPKSQNQIGQPTLPNNSLATPSPLPINPGTSHEKHEEDGYGFDANII
AEDESFGVMSHGDHNHYFFKKDLTEEQIKVRKNI*

45

TABLE 2

ID2 840 bp

5 ATGGGAATTGCTAGAAAATGTGAATTACATATCAAGAAGGTACTCCCTAGCTTCAGCAGTTGCGGATG
 TTTCTTGACGATTGAAGATGGCTTATACAGCTTAATTGGCACACAGGTAGTGGTAAATCAACTATTTACA
 ACTCTAAATGGTTATTGGTCCAAGTCAGGGAGTGGAGGTTTGATACTTAAATCACCTCGACTTCTAA
 AATAAAAGATATTGCTCAAATTAGAAAACAGGTTGGCTTGGTATTTCAGTTGCTGAAAATCAGATTGAGAAA
 CGGTTTGAAGGACGTTGCTTGGACCGCAAATTGGAGTTCTGAGAAGATGCTGTGAAGACTGCCGTGA
 GAAACTGGCTCTGGTTGAATTGATGAATCACTTTGATCGTAGTCGTTGAGCTGTCAAGGGGACAAATGAGA
 CGTGTGCCATTGCAAGGCATACTTGCCTAGGAGCTATATTAGTCTTAGATGAGCCAACAGCTGGCTAGATC
 CTCTAGGGAGAAAAGAGTTGATGACCTGTCAAAATTCCACAGTCAGGGATGACCATGCTTGGTAACGC
 ATTGATGGATGATGTTGCTGATAATGCGAATCAGTCTATGAAATGAAAAGGGACGTTAGTAAAGGGGCA
 AACCAAGTGTCTTCAAGACGTTTTATGGAAGAAGTTCAGTTGGGACTACCTAAAATTACGGCTTITG
 TAAACGATTGGCTAGAGGGCTGTATTAAACGATTACCGATTAGAGATAGGGAGTCAAGGAGTCGCTAAA
 TGGATAG

10 MGIALEVNFTYQEGTPLASAALSDVSLIEDGSYTALIGHTGSGKSTILOLLNLVPSONSVRFDTLITSTSNNKDIR
 QIRKVQGLVFQFAENQIFEETVLKDVAFGPQNFGVSEEDAVKTAREKLALVGIDESLFDRSPFELSGGQMRRVAIAGILA
 MEPAILVLDEPTAGLDPLGRKELMTLFKKLHQSGMTIVLVTHLMDDVAEYANQVYVMEKGRLVKGKPSDVFQDVY
 FMEEVQLGVPKITAFCKRLADRGVSFKRPIKEEFKESLNGZ

ID 3 6360 bp

25 TACCCGGTAGTCTAGCAGACACATCTAGCTCTGAAGATGTTAACATCTGTATAAAGAAAAAGTAGCAGAA
 AATAAAGAGAAACATGAAAATATCCATAGTGTATGGAAACTTCACAGGATTAAAGAGAAGAAAACAGCAGTC
 ATTAAGGAAAAGAGTTGTTAGTAAAATCCTGTGATAAGACATAACACTAGCAATGAAGAAGCAAAATCAA
 AGAAGAAAATTCCAATAATCCAAGGAGATTACGGACTCATTTGTAATAAAACACAGAAAATCCAAA
 AGAAGATAAAAGTTGCTATATTGCTGAATTAAAGATAAAGAAATCTGGAGAAAAGCAATCAAGGAACATTCAG
 TCTTAAGAATACAAAAGTTTATATACTTATGATAAGATTAAACGGCTAGTCCAGAGAAACACTCCAGATAAC
 TTGGACAAAATTAACAAATAGAAGGTTTCTCATGGTGAAGGGCACAAGGCTCAACCCATGATGAATCAT
 GCCAGAAAAGGAAATTGGAGTTGAGGAAGCTATTGATTACCTAAAGTCTATCAATGCTCGTTGGGAAAATT
 GATGGTAGAGGTATGGTCATTCAAAATATCGATACTGGAACAGATTAGACATAAGGCTATGAGAATCGATGAT
 GATGCAAGGCTCAATGAGATTAAAAAGAAGACTGATAAAATTATTGGTTGAGTGATAAAA
 ATCCCTCATGGCTCAATTATAATGGTGCACAAATCAGTGTAGAAAAATATGATGATGGAAAGGGATTATTG
 ACCCACATGGGATGCATATTGCAAGGATTCTGCTGAAATGATGCAACAGACATCAAAACTTAAACGGCA
 TAGATGGAATTGCAACCTAATGCACAAATTCTCTTACAAAATGTATTCTGACGCAAGGATCTGGTTGCGGGTGA
 TGAAACATGTTTCAATGCTATTGAGATTCTATCAAACACAAGCTTGTGATGTTTTCGGTATCATGGTTTACA
 GGACAGGTCTGTAGGTGAGAAAATGGCAAGGCTTGGGATTAGCAAAAGCAGGCACTTCAATGGTTGTC
 GCTACGGGTAACATGCACTTCGTTCAAGTGTGATGGGATTAGTAGCAAAATAATCATCTGAAAATGACCG
 ACACGGAAATGTAACACGAACCTGCAAGATGCGATAGGGCTCTCTGCTAAAATCAAACAGTTG
 AGTTGATAAAAGTTAACATAGGTGGAGAAATTAAATACAGAAATATAGGGCCTTTTCGATAAGACTAAA
 TCACACAAATGAGATGAAACAAAAGCTCTAGTAAATTAAATTTGTATATAGGCAAGGGCAAGGACCAAG
 ATTGATAGGTTGATCTTGGGCAAAATTGCACTGAGTAAAGGAGATTATACAAAGGATTAAAAAAATGCTT
 TAAAAAAGCTATGGATAAGGGTGCACGCCATTATGGTGTAAACTCTGAAATTACTACAATAGAGATAATTG
 GACAGAGCTTCAAGCTATGGGATATGAGCGGATGAAGGTACTAAAGTCAAGTGTCTCAATTCTGGAGATGA
 TGGTGTAAAGCTATGGAACATGATTAATCTGATAAAAAAAACTGAAGTCAAAGAAATAAAAGAAGATTAA
 AGATAAATTGGAGCAACTATCCAATGATGAGGAAATTAAATCCAAACAAACCGAATGTTAGGTGACGAAAA
 AGAGATTGACTTAAAGTTGCACTGACACAGACAAAGAACTCTATAAGAGATATCATGGTCCACCGAGGATC
 TACATCTGGGGCCAAGAATAGATTACTTAAACCCGATHTTCAGCACCTGGTAAAAATATTAAATCCACG
 CTTAATGTTATTAAAGCAAAATCAACTTATGGCTATATGTCAGGAACCTAGTATGGGACTCCAATCTGGCAGCTT
 CTACTTTTGTAGGACCGAAATTAAAGGGAAACTGTTGAAAGACCTGTATTGAAATTCTTAAGGGAGATGACA
 AAATAGATCTTACAAGTCTTACAAAATGGCTTACAAAATCTGCGGACCTATGGATGCAACTTCTGG
 AGGGTAAAGCAATTGTCAGGAAATTACCCAGAAAAGTCAAAGGAGCAAAATATCACATTGAGCATGATACT
 TTCACATAGGCGAAATTCTAGTTGATTGATGCGTTATAAATTTGGAGAGGCCAAAACAAAAATAAAA
 TTTGAGATCATTATTGAGTCAGTGGAGCGATGGAAGCTCTAAACTCAGCGGGAGAAAATAAAC
 TTCAACCTTCTTGTGCGATGCTCTAATGGGATTGCTGGGAATTGGAACCACGAACCAATCTGATAAATGG
 CTTGGGAAGAAGGGTCAAGATCAAAAACACTGGGAGCTTATGATGATGTTAAACCGAAAATTCCAGGAAACCT
 TAAATAAGGGAAATTGGGAGAACATGGTATAGATAAAATTAAATCCAGCAGGAGTTACAAAATAGAAAAGATA
 AAAATACAACATCCCTGGATCAAAATCCAGAATTATGCTTCAATAACGAAGGGATCAACGCTCCATCATCAA
 GTGGTCTAAGATTGCTAACATTATCCTTGTAGATTCAAATGGAATCCTCAAGATGCTCAACTTGAAAGAGGATT

AACACCTTCTCACTGTATTAAAGAAGTGCAGAAGAAGGGATTCAATGTAATACAATAAGAGGGAGA
 AAATCAAAGAGACTTAAAAGTCATTGAGAGAACACTTATTAGAGGAATTAAATTCTAAAAGCAATGATGC
 AAAGGGAAATCAATCATCTAAACTAAAAGTTGGGGTCACTTGAGTGGGATGGACTCATCTATAATCTAGAGG
 TAGAGAAGAAAATGCACCAGAAAGTAAGGATAATCAAGATCCTGCTACTAAGATAAGAGGTCAATTGAGCGAT
 TCGGGAAGGTCAATTTCTATAAATTAAATAGATAACTAAAGATTACCCATGGCAGGTTCTATATTCT
 GTAAAAATTGATAACACGCCCTAAGATTGTTGGTATTCTAACTCCTGAAAGGTTAAAGTGTACAGGATACAA
 AGGATACTTACATCAAGGTAAAAGTCAGTATAAGAATGAAACGCTATTGCGAGAGATCAAAGAACATCTG
 AAAAATTGACGAGATTGCGAACGAAGTTGGTATGCTGGCGCCTTGTAAATGAAGATGGAGAGGTGAAA
 AAATCTGAAAGTAACTTACCGCAGGTGAGGGTCAAGGAAGAAATAGAAAACCTGATAAAAGACGGAATACCAATT
 ATGAAATTAAAGGTGGGGAGATTGTTAGGAAAGGAAATCATTGAAAGTCATTGATTAGATGGTTCTAGCAATT
 CAAAGATTCATGAAATTAAATTGCTATCAGGCTGATGAAAAGGGATGATTCTCTATTATCTAGTAGATCTG
 TCAAGATTCATCTAAATATCAAAGCTGGCAGATTGCGAAATCTAAATTAAAGGAAATGGAAAAGA
 GGGTAGTCTAAAAAAAGATAACTGGTAGAACATCATCATCAAGAAAATGAAGAGTCTATTAAAGAAAAAT
 CTAGTTTACTACTGATGAAATTTCAACAACTTAGAGACTTGGAAAGGAAACTTAAAGGAAACTCATTAAAAAA
 GAATTTAGAGAAGTTGATGTTTACAAGTGGAAAGGAAATCATTGAAAGTGGAGGAAATGATTAAATACGATGA
 TAAAGGAAATAATATAGCCTACGATGATGGACTGATCTAGAATATGAAACTGAGAAAATCAAATC
 AAAAATTATGGTCTAAGTCCGCTAAAGATGGACACTTGTAAATTCTGAAAGATAAGTAATGTTCTAA
 ATGCCAAGGTATATTGGAAACTAATAAATCTAGAAATCAAAGCAGCAACTGATTGTTCTCAGGAGATCTCAA
 ACGATGACATTGATCTACGCTAATATTAACTGATATTGATGTTGAGATTGCTTGCAGGAGATATGAGATT
 TTGTTAAAGATAATGATCAGAAAAAAAGCTGAAATTAAATTAGAATGCTGAAAAAATTAAAGGAAACTAAATCAG
 AAATATCCCTATGATCTACGTTATGGGATGTCTAGAATTAGGGGAGGAGATCTTCAAAAACAAACAGACA
 ATTAACTAAATGGATCTGTTAAATCTATTGATCTGAAAGGAAACAAATATCTGTTAAAGGAAACTATCAT
 TCTAAGGAAAGGCTGATCATAAAAGTGAACCTCTAACTCTGAAAGGAGATGTTAGAAGGAAATGGAGT
 CTATAGCAAGGAGATATGCAAAACAGGCAATCTAATCTAAGAGCCTTCAGAACACAATT
 TGCTGATAGTAGAAATGTAAGATGGAAGAAGTACCAATCTGTTAAATGCGGTTGGACGGCTTAACT
 ATAAGGATCTACGTTACATTGAAATGGAAAGGAGATCTGATAAGACGGAATCTTGAC
 GATTCTTCAACTGTTATTGGTAAGGATGATAAAAGTACACTGGAGGAGATAAGTCAATGAGCTA
 TAAAAGAAGATGCTCATGTTATTGATACCAACAGTAAACCTTCATGATAAGAACTACTTAACT
 ATCTAAATCTAATAAAATTATGTAAGCAATCCAGAAATTATTAAAGGTTAAAGGAGTAACTTCTGATAAGGGTT
 AACTGGGAAAGGAGTTAAGTAACTGGGATGTTAGATAATTAACTACGGGAGATTACACATTGATAACACTA
 GAGATTAAATTAAGCTGAAATGTTAAAGACGGTGCACATCTGGGATGGGAAAGACTATAAGGAAACAG
 GATTCCAGATAAGGAAACAGATATGGTGGAAATGTTATCTTAACTGGCTATAGGGATTGAAATGCTAAAGC
 AGTTGGAGTCCACTATCAGTTTATATGATAATGTTAAACCGAAGTAAACATTGATCTAAGGAAATACTAGT
 ATCGAATATCTGATGAAATGTTAGTCTTAACTCATCAATGATAAAAGAAATAATGGATCTGAGTT
 CAAGAACACATATTATAAAATGGAAAGAATATACATCTGATAATTAAACAAATAATAGACAAGGACA
 CTAACACATTAAAGATTGTTGAAAGATTGCTAAACCTGAAAGGAAATTCATTAAATAAGATAAC
 GGAGAGGTAAGTGAATTAAACCTCATAGGTTACTGTGACCTTCAAAATGGAAAGGAAATGAGTCAACGATA
 GTGTCGGAAGAAGGTTTCTGCTGTTAAAGGTTAAGGAAATGAGGAAACCTTGTGTTAAACCTGTT
 TTCTGGTTTCAAGGTAAGGAAAGCTGCTGTTAAAGGTTAAGGAAATGAGGAAACCTTGTGTTAAACCTGTT
 CAAGAAAATAGAGGAGAAAAGGAGGAAAGAAAACCTACTTTGATGATCTGAAAAAGAAAGATAACCCAC
 AAGTAAACCATAGTCAATTAAATGAAAGTCAGGAAAGGAGTTACAAGAGAAGAGCATTCAACAAATCT
 GATTCAACTAAGGATGTTACAGTCAGCTTCTGATAAAACAAATATCAGTAGTAAATCAACTAACAATCT
 AATAAGTTGCCAAAATCTGAAACAGCAAGCGGAGCCCAGACACTATTAGCTGCCGAATAATGTTATAGTAGGA
 ATTGTTCTGGATTGAGGAAAATCAAGATTAA
 45 YPVVLADTSSEDALNISDKEKVAENKEKHENIHSAMETSQDFKEKKTAVIKEEVVSKNPVIDNNNTSNEEAKIKEENS
 KSQGDYTDSPVNKNTEPKEDKVYIAEFKDKESEGEKAIELSSLKNTVKLYTYDRIFNGSAIETTPDNLDKIKQIEGIS
 SVERAQKVQPMNMHARKEIGVEEADYLKSINAPFGKNFDGRGMVISNDTGYDRHKAMRIDDADAKASMRFKEDL
 KGTDKNWLSDKIPHAFNYYNGKITVEKYDDGRDYFDPHGMHIAGILAGNDTEQDIKNFNGIDGIAPNAQIFSYKMY
 SDAGSGFAGDETMFHAIEDSKHNVDFVSSGFTGTVGKPYWQAIRALRKAGIPMVVATGNYATSASSSSWDLV
 NHLMKMTDTGNVTRTAHEDEIAVASAKNQTVFEDKVNIGGESFKYRNIGAFFDKSKITTNEGDTKAPSCLKFVYIGK
 GQDQDLIGLTLRGKIAVMDRYTKDLKNAFKKAMDKGARAIMVNTVNYNRNDWTELPMGYEADEGTKSQVFSI
 SGDDGVKLWNMINPDKKTEVRRNNEKFDFDKLEQYYPIDMESFNSNKPNVGDEKEIDFKFAPDTDKELYKEDIVPAG
 STSWGPRLLLKPDVSAPGKNIKSTLNVINGKSTYGMGTSMATPIVAESTVLIRPKLKEMLERPVLKNLGDDKIDL
 TSLTKIALQNTARPMMDATSWKEKSQYFASPRQQGAGLINVANALNEVVATFKNTDSKGLVNSYGSISLKEIKGDKK
 YFTIKLHNTSNRPLTFKVSASAATTDSLDRKLDETYKDEKSPDGKQIVPEIHPKVKGANITFEHDTFTIGANSSFDLN
 AVINVEAKNKNKFVESFIHFESVEAMEALNSSGKKINFQPSLSPMPLMGFAGNWNEHPLDKWAWEEGRSKTLGGYD
 DDGKPKIPGTLNKJGIGGEHIDKFNPAVGVQNRKDNNTSLDQNPELFAFNNEGINAPSSSGSKIANIYPLDSNGNPQDA
 QLERGLTPSPVLRSAEEGLISIVNTKEGENQRDLKVISREHFIRGILNSKSNDAGKIKSSLKLVWGDLKWDGLIYNPRG
 REENAPESKDQNPATKIRGOFEPPIAEQGYFYKFKYRLTDYPWQVSYIPVKIDNTAPKIVSVDFSNPEKIKLITKDTYHK
 VKDQYKNETLFARDQKEHPEKFDEIANEWYAGAALVNEDGEVENLEVYAGEQGRNRKLDKDGTIYEIKGAG
 DLRGKIEVIALGSSNFTKIHRIKPFANQADEKGMSYLYLVDPDQDSSKYQKLGEIAESFKNLGNKGESLKKDTTGVE
 HHHQENEESIKEKSSFTIDRNISTIRDENKLKKLKKKREVDDFTSETGKRMEEYDYKDDKGNNIIAYDDGTDELEYE
 TEKLDEIKSKIYGVLSPSKDGHFIELGKISNVSKNAKVVYGNYKSKIEIKATKYDFHSKMTFDLYANINDIVDGLAFAG
 DMRLFVKDNQKKAIEKIRMPEKIKETKSEYPYVSSYGNVIELGEDLSKNKPDPNLTKMESGKIYSDSEKQQYLLDNII

5 LRKGYALKVTTYNPGKTDMLEGNGVYSKEDIAKIQOKANPNLRALSETTIYADSRNVEDGRSTQSVLMSALDGFNIIRYQ
 VFTFKMNDKGEAIDKDNLVTDSLVLFGKDDKEYTGEDKFVNVEAIKEGDSMLFIDTKPVNLSMDKNFNPNSKNI
 YVRNPEFYLRGKISDKGGFNWELRVNESVVDNYLIYGDHLIDNTRDFNIKLNVKDGDIMDWGMKDYKANGFPDKVTD
 MDGNVYLQTYGSDLNAKAVGVHVFYQFLYDNVKPENIDPKGNTSIEYADGKSVVFVNINDKRNNNGFDGEISEQHIYINGK
 EYTSFNDIKQIIDKTLNIKIVVKDFARNTTVKEFLNKKDTGEVSELKPHRVTVTIQNGKEMSSIVSEEDFILPVYKGELEK
 GYQFDGWEISGFEGKKDAGYVINLSKDTFKIPVFKKIEEKKEEENKPTFDVSKKDNPQVNHSQLNE SHR KEDLQREEH
 SQKSDSTKDVATVLDKNNISSKSTTNNPKLKTGTASGAQTLAAGIMFIVGIFLGLKKKNQDZ

ID6 597 bp

10 CTTGAATTAAAATAAAAACGTCATGCGACTAACGCTTTACTGATAAGCTTGTGATCCAAAGATGTGCGTACGG
 CTATGAAATTGCAACCTTAGGCCAACGCCAACACAGCAGCCTGGAAATTGTGCGTACGTGAGAAAAA
 ATGCTGAACTGGCAAAGTTAGCTTATGTTCAATTGAAACAGGTATCATAGCGCTGTAAACCTTGTGAGAGCAA
 15 TTACAGATACGGACTTAGCCAACAGTGTCTGAAGATTGCCGTGTTGGTGTCTAATAACTTTCTGAAGAGCAA
 CTTCATATTTATGAAAAATTCGCAAGCTGGTCTTACAGTGAAGAACAGTCAGCGACTACCTAGCTC
 TCAATGCAGGTTGGTGCATGAACTTGGTCTTGCATTGACAGACAGAAGAATTGGTCTAACATTATTCTGG
 TTTGACAATCAAAGTTAATGAAGTTGGAAATCAAGACCGTTCCCGCAGAACACTTGTACAGTGGGT
 TATACAGACGAAAATTGGAACCAAGCTACCGCTTGCCAGTAGATGAATCATCGAGAAAAGATAG

20 LENKKRKHATKHTDKLVDPKDVRATIEIATLPSAHNSQPWKFFVREKNAELAKLAYGSNFQVSSAPVTIALFTDT
 DLAKRARKIAVGGANNFSEEQLOYFMKNLPAEFARYSEQQVSDYLALNAGLVAMNLVLA TDQGIGSNILGFDKSK
 VNEVLEIEDRFRPELLITVGTDKELEPSYRLPDEIIEKRZ

ID7 1401 bp

25 ATGACAGCAATTGATTTACAGCAGAAAGTAGAAAAACGCAAAGAACCTTGGTACTTGTAGCCTTTG
 GAAATCAGAACTGAGCTGATGACAGCACAGCTGATGCCACGATCTGGCTGGTCCAGTAAGGCTTG
 GAGAAAATTCTTGAATTCGAGACCGCGATGGCTACCCAACTAAGAATGTTAACTATCAGGACATTGGAG
 TTTGGTATGGAGAAGAGTTCTGGAAATCTTGCCTATGGATGTTGCTGTGGTAGCGTTGGACACAG
 30 ACCCTTACACACCAACTATCAAAGATGGTGCCTTATGCGCGCGGGGCTTGGACGATAAGGGTCTAACACAG
 CTGTTACTATGGTGAACATCAAAAGATGGTCTTCAACTTCTAAGAAAAGTCGCTTACATGTTGGAC
 AGACGAAGAACATGGCTGGCAGACATGGACTACTTTGAGCACGTTGCAAAACAGATTCGGTT
 CTCACCAAGATGCTAATTCAATCATCAATGGTAAAAAGGAATATCAGGAATACCTTCACTTGCAGGAGA
 AAATACAGGTGTTGCCGTCTCACAGCTTACAGGTGTTACGTGAAAATATGGTACCAAGAACAGC
 35 AGTCGTTACAGGTGACTTGGCTGACTTGGCTGAGCTAAACTAGATGCCCTTGTGCAAGAACACAAAACCTAGAGGAGA
 ACTCCAAGAACAGTGGCAAAATCAAGGTGACGATATTGGTAAATCAGGCCACGGTGTCTATGCCCTTCAGG
 TGTCATGGCGCAACTTACCTGCCCTCTCCTCAGCCAGTTGGCTTGTGCTGCCAGCAAAGACTACCTTGC
 ATTCGAGGTTAAATCTCTGAAACGATCATGGTGAAGGTTAACTTAAAGGTGCTCATGTTGGATGAAAAGATGGG
 40 GCTCTTCTATGAATGCCGCTCTCCACTTCGATGGTAAAGTGTGATAATACCATGGCCCTAACATCCGCT
 ATCCAAAAGAACAGTCCAGAACATCACTGCAATGGTAAACATTGCAAGTGTGTTAGCTGTCTGA
 ACACGGTCACACGCCCTCATATGCAATGGAAAGATCCACTGTGCAAACTTGTGAAATATCATGAAAACA
 AACTGGCTTAAAGGTGATGAAACAGTATCGGTGTTGGAACCTTGTGCTAGAACCGGGAGTTGCCA
 CGGTGCTATGTTCCAGACTGATGACCATGACCAAGGCAATGAATTATGCCCTGGATGATCTTCCGA
 GCAGCAGCAATTATGCCGAAGCTATTACGAATTGTCAAAATA

45 MTAIDPTAEVEKRKEDLLADLFSLLEINSERDDS KADAQHPFGPGPVKA LEK FLEIADR DGYPTKNVD NYAGHFERGD
 GEEVLGIFAHMDVVPGSGWDTPYPTPTIKDGRLYARGASDDKGPTTACYYGLKIIKEGLPTSKVRFIVGTDEESGW
 ADMDYFEHVGLAKPDGFSPDAEFPINKEGNITEYLHAGENTGVARLHSFTGGLRENVPESATAVSGDLADL
 QAKLDAFVAEHLRGEQEEAGKYKVTHGKSANGAMPASGVNGATYLAFLS QFGFAGPAKDYLDIAGKILLNDHEG
 50 ENLKIAHVDEKMGALSMNAGVFHDSETSADNTIALNIRYPKGTSPEQIKSILENLPVSVSLSEHGHPTHYVPMEDPLVQ
 TLLNIYEKQTGFKGHEQVGGTGFRLLERGVAYGAMFPDSIDTMHQANE FIALDDLFRAAAIIYAEAIYELIKZ

ID8 1617 bp

55 GTGTATACTATTAAAATCAAATATAAAAAAATTAGTTATTACGATATTATTGTGCTGGTCAATTATTGCT
 AATTATGCAACTATTATGCTGGTGTGAATGAATTATGGCATGATTTAGAGCGGTTTGAATG
 TCAATCTACCAAAATGTTGGTGTGGATAATATTCTGACTGGTAGAAGGAAATTATCAGGTTGAAGTGA
 TCCAAGAGTTAAATCTAGAGATTGCAAAATAGAGTTGGCCACAGACATCTAACCTATCAAGAAATTCTACAG
 60 TAAATCATCAGAACATATCTTCTGCTGCTAAATAATGATGTTGACTTTAAATGATCAGGCTTAAACAACTT
 TTTTGTAAATAAAAGGAATTCTGGTACTATATTGCACTTGTGACTCTTAATCACTATCATGGTCTTGTACTGT
 AGCCACCTTGTCTTCTTAAATGATTGACTTGTGACCAAAATCTTGCATCGAAATGCGAGAAGTTAGTCTA
 AATTAACTAACCAAAATGAAGCTTTAAATCTAGTGAGACTATATTGATGTTGATGTTAGCGTCT
 TGAATCTTTATATGTTGGCTTAAGAAAATTAAAGAAGCAGGAATTTTAAAGATGGTTATACAAAGAAGA
 CAACTGTAGAAACGTTAGCAGGGCTTATTGCTTCTCAATATTGTTGACTATCTCTGTTTTAACA
 GGCTATCTGCAATAAAAGGAATAGTGAAGAAATTGGTACTATTGAGCAATAGGAGCACTAACAGGTGTTTTT

ACAGCGCTAGGTGAATTAGGAGGTCAATTATCCTTATTATGGTACGAAGCCTATTTTAAATTGTATTCATAA
TTAATCCAATTGAGTCAAATAAAAATGAATGATATCGAACCAAATGAGGTGAATAGAGATTTCCGTATATGAAG
CAAAAATATTGCTATAAGTATCGAGATAAGAAATTAAAAACTTAATTTTGTTTCAACGTAATGAAAA
GTATTTAATTAGGTGAAAGTGGAAAGCGGGAAATCTACATTAAAAAATTATGGAATGGCTTGGAGAGATT
AGTGGAGAATTGCGATTCTCGGGGATGATATAAAAAAAACCTCTTAAATATGGTTTCAAGTGTCTATATG
TAGATCAAAAGCTTATTGTTGAGGTACGATTAGAGATAATATTATTGGAAGAAAATTACTGTAGAAGA
AATACTACAGTCTTAGAGCAAGTGGTTGAGTGTAAAAGATTTCCCTAATAACATTTAGATTATTATGGTGG
GATGATGGGAGATTACTGTAGGGAGGGCAGAAACAAAAAATTACTTTAGCTAGAGGGCTAATTAGAAATAAGAA
AATAGTATTAAATTGACGAGGGAACTTCTGCTATCGATAGGGAGAACTTCCGTAGCGATTGAACGTAAGATATTAGA
TAGAGGAGATTGACTGTCTTATTGTTACCATGCTCCGCATCCGGAACTTAAACAATATTACTAAGAGATATAT
CAATTCCAAAGGATTATTAA

15 MYTIKSNKKFSLLTIVAGQLLLIYAATINALVNEELIAMNLERFLKLSIYQMIWCGIIFLDWVVKNYQVEVIQEFLNL
EIRNRVATDISNSTYQEFHSKSSGTYSWLNNDVTLNDQAFKQLFLVIGKISGTFIAVTLNHYHWSLTATLFSLMIM
LLVPKIFASKMREVSNLNTNONEAFLKSSSETILNGFDVLASLNLLYVLPKKIKEAGILLKVMVIRKTTVETLAGAISFFLNI
FFQISLVLFTGLYLAIKGVKIGTIEAIGALTGVFTALGEGLGGQKLSIIGTKPIFLKLYSINPIESNKMNDIEPNEVNRDPLFYE
AKNICYKGDKIELKLNFCORNEKYLILGESGSKSTLKLNNFLRDSGELRFFCDDIKKTSYLNVMVSNLVYDQ
KAYLFEGTIRDNLLEENYTDEEILQSLEQVGLSVKDPPNILDYVGDDGRLLSGGQKQKITLARGLIRNKKIVLIDEGT
SAIDRRTLSLAIERKILDREDLTVIIVTHAPHPELKQYFTKIQYQPKDFIZ

ID9 705 bp

ATAAACAGTTAACAGATTATGGACGAAATAGCGTTCAGATATGACTGCAAGGCCCTATTA
25 CAGGAATTAGCT GATAAAGATTGCTGATTGCTGCATGGTGGAGCTGAAAAACTTCGAACCAACTCCCTTTGACTAATGAGCGAT
CAAATTTGAAAACAAGGCCCTCCAACGGCAGAAAAACAGAAATAGCCCATTGCGCAGTCTAGTAGAA
GAAAGAGAAACTATTTCATTGGACCGGAAACATTAGAGTTTGCGCGAGTTGCGCTATTGACAATATCC
GCGTCGTAAACCAACAGTCTACCTGTTTCTGATTTAACGGCAACGAAAATTAAACAGATTGATTAAATAGCTGG
30 AAATTATCGCATATTACAGGTGCTTGTGTGTACATTGACCTACAAAATCTCTAATCTCCATTCTAA
GCTTCTGTTAGCTGTAATGGTATTCAAAACGGAGCTAGCTACTTTAGCGAGGAAGAGGGAGAGGCTCAACGC
ATCGCTTAAATAATTCTAATAAAAAAATATTACTCGCAGATCATAGCAAGTTCAATAAGTTGATTITATACTTT
TTATAATGTTATCAACATTGACTATTGTTCAAGTCTAAACTAAGTGTATTCAATCCTTTAAAGCTATCTAAAC
ACATTAAGTCATCAAGCTTAA

ITVKQIMDEIAVSDMTARRYLOELADKDLLIRVHGAKELRNTSLLTNEERSNIEKQALQTAEKQEIAHFAGSLVEERETI
FIGPGTTLEFFARELPIDNIRVTNSLPVFLILSERKLTDLILIGGNYRDITGAFVGTLTLQNLNSLQFSKAFVSCNGIQNGA
LATFSEEGEAQRIALNNSNKKYLLADHSKFNFKDFYTFYVNLSNLDITVSDSKLSDSILFKLSKHIKVKPZ

ID10 483 bp

40 ATGACTGAGTTTCTGGATCTTCTAGAAGCCATTAAACTAGCTCGTGGACCTACTACTATCACTTGAAC
AGCTAGACAAAACAGATAAAGACCAAGAGCTTAAACTGAAATTCAATCCATCTTATCGAACACAAGGGAAATT
ATGCTTATCGCCGGGTTCATTAGAACTAAGAAATCGTGGTTATCTGGTAATCATAAAAGAGTTCAGGCTTGAT
GAAAGTACTCAATTACAATTACAGCTTAAATCGCAAGGAAACGAAAATATTCTTCTCATAAAGGAGACGTTGGTAAGAA
GGCAGAGAAATCTTCAAGGCCAATTGAGGCTCTAAACAAATGGAAAAGTGCTACACAGATGTGACTGAATT
45 TGCCATTCCAGCAAGTACTCAAAGCTTACTTACCCAGTTTAGATGGCTTAAACAGCGAAATTATTGCTTIT
AATCTTCTGCTCAATTAGAATAA

MTEFSLDLLLEAIKLARWTYYYHLKQLDKTDKDQELKTEIQSIFIEHKGNAYRRVHLELRNRGVLVNHKRVQGLMK
VNLNQAKMRKKRKYSSHKGDVGKKAENLIQAQFEGSKTMEKYTDVTEFAIPASTQKLYLSPVLDGFNSEIIAFNLSCS
PNLEZ

ID14 1266 bp

55 CCAGGATTGGTACCGTTGCAAGTGGTGTGCCCTCCTAAAGGAAATGGAGGAAAATCAATCAATCAGCA
CATTCAGATATCAAAGTTGTAAGGTATTGGTCAAGGATGAAGATGAAAAAAATCGCTGCTGCAGCAGGGAA
GACTTTAACCTTGAAACCAATGTGGATGATATTTCATGACGACCGATATTACTATCGTAGTGGAAATTGATGGGGC
GTATTGAGCTGCTAAACCTTATCACTCGTGCCTTGGAAAGCTGAAAACACGTTACTGCTAACAGGACCT
TTAGCTGTCATGGCCAGAATTGCTAGAAATCGCTAACGCTAACAGGATGAGCATTACTACAGAACGAGCACT
TGCTGGTGGGATTCCAATTCTCGTACTTACGAAATTCTGGCTTCTGATAAAAATACGCCGCTGCTTGGAGTA
60 GTCAACGGAACCTCCAACCTTCAATGGTACCGAAGATGGTGGAGAAGGGTGGCTTACGATGATGCTTGGCAGA
GCACAACGCTAGGATTGAGCAAGGCGATCCGACGAATGACGTAGATGGGATTGATGCAGCCTACAAGATGGT
ATTTGAGCCAATTGCTTGGCATGAAGATGCTTGTATGATGACTGCCAACAGGGAAATCCGAATATCACAC
CAGAACGCTAGCTGAGCTAACGAGCTGGTACGTAGGAATTGGTGGTCTATTGAGGAAACTCTTCAGG
65 TATTGCTGAGAAGTGACTCCAACCTCTACCTAAAGCGACCCACTGCTAGTGATGCTGGCAATGAAACGCT
GTCTTGTAGAATCTACGGTATTGGTAGCTATGTACTACGGACCAGGTGCGGGTCAAAAACCAACTGCAACA

5 AGTGTGTAAGCTGATATTGTCGTATCGTCGTTGAATGATGGTACTATTGGCAAAGACTCAACGAATA
 GCCGTACTGGCTTGCAAATCTGAAGATGCAAAGCAACTACTATTCTCAATCTGGCTAGACTCAA
 AGGTCAAGGCTTGAAGTGGCTGAAATCTCAATGCTCAAGATAATTCCCTAAGCAAATCTCAAGATGGCAA
 GAGGGTGACAAGGCGCTGCTTATCATCACACACAAGATAATAAAGCCCAGCTGAAAATGTCAGCTGAA
 TTGAAGAAGGTTTCAAGGCTTGAATACCTCAAGGCTAGGAGAATA

10 PGFGTVASGPFLKENGKINQSAHS DIKVAKVLVKDEDEKNRLAAGNDNFVTNVDDILSDQDITVVELMGRIEP
 AKTFITRALEAGKHVVTANKDLLAVHGAELLEIAQANKVALYEEAVAGGIPILRTLANSLASDKITRVLGVVNGSNF
 MVTKMVEEGWSYDDALAEARQLGFAESDPNDVDGIDAAYKVMVLSQAFGMKIAFDDVAHKGRNNTPEDVAVAQE
 LGYVVKLGVGSIETSSGIAAEVTPFLPKAHPLASVNGVMNAVFVESIGIGESMYYPGAGQKPTATSVVADIVRVR
 NDGTIGKDFNEYSRDLVLANPEDVKANYFSILALSKQV рлаеifnaQDISFKQILQDGKEGDKARVVIITHKINKA
 QLENVSAELKKVSEFDLNTFKVLGEZ

ID16 1725 bp

15 ATGAAACACCTATTATCTTACTTCAAACCCATACATCAAGGAATCAATTAGCCCCCTTGTCAAGCTTTAGAAG
 CTGTTTGAGCTTCTGGTCCCCTATGGTATTGCTGGGATTGCAACTCTTACCTCAGGGAGATCAAGGCTCA
 TCTCTGGATGCAGATTGCCCTGCTCTTATCTTGCAGTAAATTGGCTTCTAGTGCCTTGTAGCTCAATTACT
 CAGCAAAGGCAGCAGTAGGTTCTGCTAAGGAATGACAACGATCTTATCGTCATATTCTTGCCTGCCAGGA
 CAGCAGAGACCGCTGACAACCTCTAGTTGGTACTCGCTGACTTCGGATACCTACCAAGATTCAAGACTGGTATC
 AATCAATTCTCGCTCTTTTACGAGCGCCATTATCGTTTTGGTGCATTATGGCTTATCGAATCTCAGC
 TGAGTTGACTTTCTGGTCTTAGTCTGGTGCATTGACATTGTCTAGGGTTATCTCAGTTGGTCAAC
 CTTCTACAGTAGCTCAGAAAACGGACCAACTGGTCTAGGAAACGGCCAGCAATTGCAAGGGATGCGGG
 TTATTCGCTTTGGTCAAGAAAACAGAGTTACAGATTTCAAACCTTAACCAAGTTATGCTAGATTACA
 AGAAAAGACAGTTCTGGTCTAGTTATAACACCTCTGACCTATCTGATTGCAATGGAACCTTCTGTTATT
 ATCTGGCAAGGCTATATTCAATTCAAGGAGGTGCTCAGTCAAGGTGCTCTATTGCTCTTATCAATTACCTCT
 TACAGATTGGTGAATGGTCAAGCTAGCCATGTTGATCAATTCTCAACCAGTCTTATATCTCAGTCAGCG
 AAATCGAGGAAGTCTTGTGAGGCTCCAGGGATATCCATTAGAGTTAGAACAAAAGCAAGCTACCAAGAGATAA
 GTTTTACAAGTCAAAGATTGACCTTACCTATCTGATGCCCTCCAGGGCTCTGAGATAACATTCTTGTAT
 ATGACTCAAGGACAATTCTAGGTATCATGGGGAACTGGTCTGGTAATCAAGCTTGTCAACTCTTACTTG
 GACTTTATCCAGTAGACAAGGGAACTTGCACCTTATCAAATGGACGTAGTCTCTTAAATTGGAGCAGTGGC
 GGTCTGGATTGCTATGACCTCAAAGGTCGAACCTTTAAGGAACCTTGTCTCAACTTGACTCTAGGTT
 CAATCAGAAAGTCTGACCAGGAACCTGGCAGGGCTTGGAGATTGCGCAAGCTAAGGATTGGTCACTGAAAA
 GGAAAGACTTGGATGCTCTAGTTGAGGCGAGGGGGGAATTTCAGGGTGGACAAAAGAAAGATTGTCTAT
 CGCCCGAGCAGTCTGCCCCAGGCTCGTTCTCATCTAGATGATGCAACCTGGCACTGGATACCATTACAGAG
 TCCAAGCTCTGAAAGCTATTAGAGAAAATTCCAAACAGAGCTTAATTGATCTCAACGAACCTCAACTT
 TACAGATGGGGACCAGATTCTCTTGGAAAAAGGTGAGTTGCTAGCTGTTGGCAAGCACGATGACTGATGA
 AATCCAGCCAAGTCTATTGAAATCAATGCACTCCACATGGAAAGGAGGACTAG

40 MKHLLSYFKPYIKESILAPLFKLLEAVFELLVPMVIAGIVDQSLPOGDQGHLMWQMIGLLI
 FAVGVVLVALIAQFYSAKA
 AVGSAKELTNDLYRHILSPKDSRDRLLTSSLVTRLTSPTYQIQTGINQFLRLRAPIIVFGAIFMAYRISAELTFWFLVL
 VAILTIVIVGLSRLVNPFYSSRLRKKTDLQVQETRQQLQGMRVIRAFQKRELQIFQTLNQVYARLQEKTGFWSLLTPL
 TYLIVNGTLLVIIWQGYISIQGGVLSQGALIALINYLQILVELVKLAMLINSLNQSYISVKRIEVEFV
 APEAEDIHSELEOKQ
 ATRDKVQLQEVLTFTYDAAQPSLRYIISFDMTQGQILGIIGGTGSGKSLVQLLGLYPVDKGNIDL
 YQNGRSPNLNEQ
 WRSWIAYVPQKVELFKGJRSNLTLGFNOEVSDQELWQALEIAQAKDFVSEKEGLLDALVEAGGRNFSGGQKQRLSIA
 RAVLROQAPFLIDDATSALDTITESKLLKAIRENFNTSLILISQRTSTLQMDQILLLEKGELLA
 VKGHDLMKSSQVYC
 EINASQHGKEDZ

ID18 1224 bp

50 ATGAAACGTTCTCTGACTCAAGAGTCGATTACAGTTGCTTGTCCAGTATTTTCTACTGGTCACTGGTGTGGT
 GGCTATCTATATAGCCGTTAGTCATGATTATCCAATAATATTCTGCCATTAGGGCAGCAGGTGCGCTGGATT
 GCCTCTGGGCTTGTGATTGGTTCTGGTCTGCTCTTAAACAGAAATTCTTGGAGGGTGAACCCCTTCTATA
 TATTAGCTGGACTTATGATCTGCCATTGCTTATTAATCCAAGCTTGTGATCAACGGGTGCCAAA
 AACTGGGTATCAAAATGGAATTACCCATTCCAACCGTCAGAATTATGAGATACTCTATATCTCATGTTGG
 CTCGTGTCATTGCAATTACAAAGAAAACAAGGAATGGAGACGCACGGTCCGCTGGACTTTGTTAATT
 CTGGATGATTCTCTTACCAATTCCAGTCCTAGTTCTTCTAGCACTTCAAAGTGAATTGGGGACGGCTTGGTT
 TAGCCATTCTCAGGAATGTTTATTACAGGGTTCTGGAAAATTATTACCCAGTATTGACTGCTGTA
 ACAGGAGTTGCTGGTTCTAGCTATTAGCAAGGACGGAGCAGCTTCTACCAAGATTGGAAATGCCGA
 CCTACCAAAATTACGGATTGGCTTGGCTCAATCCCTTGAGTTGCCCCAAACACGACTTACCCAGGCTCA
 AGGGCAGATTGCCATTGGAGTGGTGGCTATTGGTCAAGGGATTAAATGCTTCGAATCTGCTTATCCCAGTTCGA
 GAGTCAGATATGATTACGGTTATTGAGAAGATTCTAAATCAAACAGCTTCTACACTTATATTCCACAGGTTGA
 TTATGATGTTGCTTCCACATCTTGGAGAATACGGTCTGACTGGACTACTTCTTGTGACGGGATTCCCTG
 CCTTCAATTGCAAGGGGATCAGCTATTACAGTAATCTGATTGGTGTGGTTATCGATGAGTTACCA

GACTAATCTAGCTGAAGAAAAGAGCGGAAAGTCCCATTCAAACGGAAAAGGTTGTATTAAAACAAATTAAATA
A

5 MKRSLSRVVDYSLLPVFLLVIGVVAYIYIAVSHDYPNNILPILGQQVAWIALGLVIGFVVMLFNTEFLWKVTPFLYILGL
GLMILPIVFYNPSLVASTGAKNWVSINGITLFPSEFMKISYILMLARVIVQFTKKHKEWRRTVPLDFLLIFWMILFTIPVL
VLLALQSDLGTAALVFAIFSGIVLLSGVSWKIIIPVFTAATGVAGFLAIFSKDGRAFLHQIMPTYQINRILA WLNPEF
AQTTTYQQAQGQIAIGSGGLFGQGFNASNLIPVRESDMIFTVIAEDFGFIGSVLVIALYLMLIYRMLKITLKSNNQFYT
ISTGLIMMLLFHIFENIGAVTGLLPLTGIPLPFISQGGSAIISNLIGVGLLSMSYQTNLAEEKSGKVPFKRKVVVKQIKZ

10 ID22 987 bp

ATGGTGGCTAAGAAAAAAATCTTATTTTATGTGGTCTTTCTTGGAGGTGGTGCAGAGAACATTCTATCAA
CCATTGTTCAATCTGGATCCAGAAAAGTATGATATTGATATTCTTGAATGGAGCATTGACAAGGGATATGA
ATCTGTTCAAAGCATGTACGCATTAAAATCCCTCAAGATTATGCCAAACCCAGATGGTACAGAGCTTTTG
TGGAGAATGAGAATTATTTCCAAGACTGACTCGTCTGTTGAAAAGATGATTATGATGTTGAAGTTCTT
TTACCATATGAATCCACCACTGTTCTCTAAAAGAGAATCACATAGAAGCCAGTGGATGTCGAATAATTGAG
TGAAGAACTCTAAGGATAGCTAAAAGAGAATCACATAGAAGCCAGTGGATGTCGAATAATTGAG
GATTCTAAAAGACCAGCAATTCTATCAAGGAAGTTCAGATTACTCTAAATTACAGACAATCTACAAAT
GGATGATTCTAGACTATCTAGAAGAACATCTCAAGAGAACATCGATATCGAGATTGCTCTCAAAGTATCTGTA
CTATCGGACGGATTGAGGAAAATAAGGGTTCTGACCGTGTAGTGGAAAGTGTGATACGATTATTACACCAAGAGGAA
AAAATCTACATCTCTATTATCGGGGCTGGTGTAGTGGAAAGAGGAACGTGAAAAAACAGAGTCAAAGAGTATGGG
TTGAGGACTATGTACATTCTCTGGTGTAGTGGAGGCTTGAGTCTGGACTCCCTTTATCTACGGACG
ATGTCATAACAAAGAAGGTTCTGGTGTAGTGGAGGCTTGAGTCTGGACTCCCTTTATCTACGGACG
TTGGAGGGCTGGAGGATTATCCAAGAAGGACGATTGGACAATCATGAGAGCAATCAAGAGGCAAGCTCAG
GCGATTACTAATTACATGACTCTGCCCTCAAATTCTGATGTCGAGGCTAGCCAATTCAACAATTACAA
TTACAAAACAAATCGAACAAAGTAGAAAAACTATTAGAGGAGTAG

MVAKKKILFFMWSFSLGGGAEKILSTIVSNLDPEKYDIDILEMEHFDKGYESVPKHVRILKSLQDYRQTRWLRAFLWRM
RYFPRLTRLLVKDDYDVEVSFTIMNPLLFSKRREVKKISWIHSIEELLKDSSKRESHRSQLDAANTVGIKSCKTSNSIK
EVYPDYSKQLQIYNGDFQTIKLEKSQEKEIDIEIAPOSICITIGRIEENKGSDRVVEVIRLLHQEGKNYHYFIGAGDMEEEL
KKRVEKEYGIEDYVHFLGYQKNPYQYLSQTKVLLSMSKQEGFPGVYVEALSLGLPFISTDVGGAEEELSQEGRFGQIIESNQ
EAAQAITNYMTSASNFDVDEASQFIQQFTIKQIEQVEKLLEEZ

35 ID23 1434 bp

ATGGAAACTGCATTAATTAGTGTGATTGTGCCAGTCTATAATGTGGCGCAGTACCTAGAAAAATCGATAGCTTCA
TTCAGAACAGACCTATCAAATCTGGAAATTATTCTTGTGATGATGGTCAACAGATGAAAGTGGTCGCTTG
TGATTCAATCGCTGAACAAGATGACAGGGTGTCACTGCTTCAAAAAAGAACGAAGGATTGTCGAAGCACGAAA
TGATGGGATGAAGCAGGCTCACGGGGATTATCTGATTTTACTGACTAGATGATTATCCATCCAGAAATGATT
CAGAGGTTATATGCAATTAGTCAAGAACATGCGGATGTTCGAGCTGTTGTCATGAATGTCATGCTAATG
ATGAAAGCCACAGTCAGCCAATCAGGATGACTATTGCTGTGATTCTCAAACATTCTAAAGGAATACCTCAT
AGGTGAAAAAAATACCTGGGACGATTGCAATAAGCTAATCAAGAGAACAGATTGCAACTGCCCTATCTTCTAA
GGGGTTGATTACGAAGATGCCATTACCATTTGATTAAATCAAGTTGCCAAGAAGTATGTTAATACTAAA
CCCTTATTACTATTCATAGAGGGGATAGTATTACGACCAACCTATCGAGAGAACGGATTAGCCTATATTG
ATATCTACCAAAAGTTTATAATGAAGTTGTGAAAACATCTGACTTGAAGAGGTCGCTTTTCAGATTGG
CTATGCCCACTCTTATTCTGGATAAGATGTTGCTAGATGATCTAAACAGTTGAAGCCTATTCTCAGATT
CATGTTTTAAAAGGCCATGCCATTGCTATTCTAGGAATCAATTCTGTAAGGGGAGAAGAATTAGTGCCT
TGGCCCTATTCTATAAAATATTCTTATATGATTCTTATTACTGAAAAATATTGAAAAATCTAAAAATTACATTA
G

50 METALISVIVPVNVNAQYLEKSIASIQKOTYQNLEIILVDDGATDESGRLCDSIAEQDRVSVLHKKNEGLSQARNDGM
KQAHGDYLIFIDSDDYIHPEMIQSLYEQLVQEDADVSSCGVMNVYANDESPQSANQDDYFVCDSQFLKEYLIGEKG
TICNKLIKQRQIATALSFPKGLIYEDAYYHFDLIKLAKKYVNTKPYYYYFHRGDSITTKPYAEKDLAYIDYQKFYNEVV
55 KNYPDLKEVAFFRLAYAHFFILDKMLDDQYKQFEAYSQIHRFLKGHAFAISRNPIFRKGRRISSALALFINISLYRFL
NIEKSKKLHZ

ID24 735bp

60 ATGAGAATCAAAGAGAAAACCAATAATTAAATGGAGGAATAAAAATGTAAGTAAGCATTATGGTCATTCAATC
ATTCTCAAAGATATAAAATTCTGCACTTAACAAGGGTGAATTGTTGGTCTAGCAGGGAGAAATGGAGTTGGTAAG
AGTACGTTGATGAAATTCTGTCAGAATAATCAACCGACTTCAGGTAAATTATAAGCAGTGTATAATGTTGG
ATTTAATCGAAGAACAAAATTATTCTAAACAGGTTAGAGAATTAAAATTGTCATTAAATTTATAGG
TGTGACTACAATCAAGAAAGATTAGATGTTGATCCAAGAGTTAGATTGACTCAGTCTATTAAATTTAAAGTA
65 AAGACCTATTCTTGGTACAAAACAAAATTAGCTTGTCTAATCTCGTACCGAACCTGATATTGATT

TAGATGAACCGACTAATGGTTAGATATTGAATCATCACAAATAGTTTAGCGGTTCTAAAAAAATTAGCTTAC
TGAAAATGTGGGAATTITTAATATCGAGTCATAAATTAGAAGACATTGAAGAAATTGTGAGAGAGTTCTTTCTG
GAGAACGGCTTTGACATTCAAAAAGTAGGAAAAGATAGTCATAATTCTGTGAGATAGCTTTCATCAG
CTACAGATAGAGACATTTCATTACCAACAAGAATTGGGATATTGGTAG
ID25 1704bp
ATGACTGAATTAGATAAACGTCACCGCAGTAGCATTGACAGCATGGTTAACCTAACCGTGTATGCTTC
GTGCGACTGGTATGACAGATAAGGACTTGAACACATCGATTGTGGGAGTGATTGCACTTGGGCCAAAATACAC
CATGTAACATTCACTCGATGATTCCGGAAAATCGCTAAAGAAGGTGCAAATCTGCAGGCCCTGGCCTGTAC
AGTTTGGAAACATTACCGTAGGGGAGGGATCGCTATGGGAAACGCCCTGTATGGCTTCTCTAACATCTCGTA
CATCATCGGGACTCCATCGAGGCCGCTATGAGTGGTCAACACGTTGGATGCCCTCGCTATCGCTGGTGTGA
CAAGAACATGCCCTGGATCTATGATTGCTATTGCTAATATGGATATCCAGCTATTGCCCTATGGTGGAACTATT
GCACCGGGAAATCTTGATGGTAAAGATATCGACTTGGTTCTGTCTTGAGGGTATCGAAAATGGAACACGGT
GACATGACAGCTGAGGACGTGAAACGCTTGAATGCTGCCCTGGCCCTGGGTTGTGGTGTGGTATGTAT
ACTGCTAATACCAATGGCAACTGCTATCGAAGTTCTAGGGATGAGTTGCCAGGGTATCCTCTCACCCAGTGAAT
CAGCTGATAAGAAAGAACATCGAAGCAGCAGGACGTGTTGAAGATGTTGAACATGGTCTCAACACCAT
CAGATATCTTGACTCGTGAAGCCTTGAAGATGCTATCACTGTAACGATGGCTCTCGGTTCTACAAAGCCAC
TCTTCACTTGCTGCCATTGCCATGCCAAATGTTGACTTGTCACTTGAGGACTTCATACGATTCAAGAACGT
GTGCTCACTTGCCGACTTGAACCATCTGTCAAGTATGCTTCCAAGACCTTACGAAGTCTGGTGTCCCTG
CGGTTATGAAGTATTGTCGAAATGGTTCTCGGAACTGCGGAGATCGCATCACATGACTGGTAAGACTGTAGCTGA
AAACTGGGTCGACTTGCAGACTTGCCTCCAGGCCAAAAGTTATCGCACTTGAAGGAAATCCAAAAGCTGGCA
TGGTCCGCTTATCATCTTGACGGGAACCTTGCCTCGAGGGTCAAGGTCTTGAAGATGCTGAGGGTTAAAGTGCCT
CGTCACGTTGGGCCAGCTAAGGTCTTGAICAGAAGATGCGATTAGGCCCTCTGACAGATGAAATGTT
GATGGCGATGTAGTCGTTGTTGGACCTAAAGGTGGCTGGTATGCCAGATGCTATCACTTCTC
AATGATTGTTGGTAAAGGTGAGGAGATAAGGTTGGCCCTTGA CGGGACGGACGTTCTCTGGTGTACTTATGGT
CTGGTTGGACATATCGCTCTGAAGCTCAGGATGGTGGACCAATTGCTATCTGGTACCCGGCGATATGCTTA
CGGTTGACCAAGATACCAAAAGAAATTCTATGGCCGTATGCCAGAAGAACCTGAAAACGCAAGGCAGAAACA
ACCTTGCACCAACTTACAGCGTGGTGTCTCGGTAATATGCCACATGCTATCATCTGCTTACGCCAGGGAGCCG
TGACAGACTCTGGAATATGGACAAGTCAGGTTAAAAATAA
ID26 274bp
ATGTTATAATAAAAATAAAGAATTAAAGGAAAATACAATATGTCATTTTATTGGAGGAGCATGGCCATATGC
AAACGGTTCTGTTACATATTGGTACCGCCAGCGCTTACCGGGGGATATTCTGCAAGATACTATCGTCAGAA
GGGAGAGGAAGTTTATATGTTCTGGAGTGATTGTAATGGAAACCCCTATTCTATCAGAGCTAAAAAGAAAA
TAAGTCTGTGAAAGAAATTGCTGATTTTATCATAAAGGAATTAAATCCA
**CYNKNKEFKEKYNMSIFIGGAWPYANGSLHIGHAAALLPGDILARYYRQKGEEVLYVSGSDCNGTPISIRAKKENKSVK
EIADFYHKEFNP**
ID28 1065bp
ATGACAACATTATTTCAAAAATTAAAGAAGTAACAGAACCTGTCAGTCAGGTCTGCAAGCGCCGTGCG
GCTTATCTCGTAAAAGTTGACACCGCATGGATGAAGTGGAGACAGATGGCTGGGTTATTTGGTATCA
AACATTCAAGCCAGATGGTACCTCCGTGCTGAGAAATCGTGGCTGGAAACCCATGGGTTAGCAGCCACGTT
CAAACCTTGACTCGTGTGGATGACCGCCAGCGCTTGGCTCATATGGACGAAGTTGGTTTATGGTCAGCGA
AATCAAGCCAGATGGTACCTCCGTGCTGAGAAATCGTGGCTGGAAACCCATGGGTTAGCAGCCACGTT
CAAACCTTGACTCGTGTGGATGACCGCCAGCGCTTGGCTCATATGGACGAAGTTGGTTTATGGTCAGCGA
GGGGGACCAACCATGCCAGCCATTGCGATATGGTTTGTGAGGAGGCTGAGGAGGAGAAGT
TTGGGATCCTGCTCTGGTGTGATACCATTGACCGAGATGTTGCAATTGGACAGCCATGAAAATATCATCT
CAAAGCTTGGGATAACCGTACCGGCTCATGGTAAAGCAGGATAGCTGAAGCTTATGGGCTTACCCCTACACCAACCAAGT
GCAATGAACTCTATCTGGTTCTAACGTCCAAGAAGTTGGCTGGCTGCTACCTCTACACCAACCAAGT

5 TGACCCAGAAGTCTTCAGTTGCTCACCGCAGGTATGCTACGGTGGTCAAGGCAAGATTGGAGA
 TGGAAACCTTGATTGTTCTATGATCCAGGTCACTTGCTTCTCCAGGGATGAAGGATTCTTGTACAACGGCT
 GAAGAAGCTGGTATCAAGTACCAATACTACTGTGGTAAGGGCGAACAGATGCAGGTGCTCATCTGAAAAT
 GGTGGTGTCCCATCAACAACATCGGTCTGCCCTCGTTATATCACCACCAACCTCTATGCAATGGATG
 ACTTCCCTAGAAGCGCAAGCTTCTTACAAGCCTGGTAAGAAATTGGATCGTTCAACGGTGTAGTTGATTAAACA
 TTATTAAC

10 MTTLFSKIKEVTELAAVSGHEAPVRAYLREKLTPHDEVVTGDLGGIFGIKHSEADAPRLVASHMDEVGFMVSEIKP
 DGTFRVVEIGGWNPVMVSSQRFKLLTRDGHEIPVISGSVPPLTRKGKGPTMPAIADIVFDGGFADKAEEAEFGIRPGDT
 IVPDSSAILTANEKNIISKAWDNRYGVLMSLAEALSGQKLGNEYLGSNVQEEVGLRGAHTSTTKFDPEVFLAVDCS
 PAGDVYGGQKGKIDGTLIRFYDPGHLLPGMKDFLTTAEEAGIKYQYYCGKGDTAGAAHLKNGGPSTTIGVCARY
 IHSHQTLYAMDDFLEAQAFQLVKKLDRSTVDLIKHYZ

ID31_1182bp

15 15 ATGGAATTCTTCTATGAAATCAGTCAAAGGACTACTCTTATCATAGCTAGTTTATCTTACTCTTTGACTTTGGAT
 GAACACTTCCCCAATTCTATGATTCAGGACTAGCTTAAACAAGCTATCTCTGACTTTATCTTAGCCACTCGT
 CTCCCCACTACTAGAAAGCTGGTTCAAGTTGGAGAAGGCTACACCGTCCACAAATTACAGCCTTCTCTCAA
 TCATCCTACTAACTCTTCTATGAAACTTTAGTATGGCGGTTGTGGGGCTCGTTAGCTGCTCAGTTGGCAATCTT
 GCCATCTATATCTTGCAGCATCATCCTTGTGCCCTATTTAGGCAAATACATCCAATACGAAGCTTGGCAGTGG
 TTCACCGCCTGGTTACCTAGCCTATTTAGGACTCTTCACTACATGATAATGGGCAATCGTCTCCTTACA
 TTTAATCTTCAAGTCTTGTGGTAGCTATGCCCTTACGGCTACTAGCTGGTTTATATCATTTCTATAT
 CAAAGAGTTCTTCCCTATCTAGGAAAATTACCCATCTAACGCTTAAACAGCTTAAAGATTTCCAAGAAGGCTTGGAAA
 20 25 ATCCATCTTAGCAGACCTTCAACTACATCAGACAATTGCTTCTAAAGATTTCCAAGAAGGCTTGGAAA
 GTGCTCCGCATCCCTTCTATCTCAGGAGGTATGGTCAAACCTTACTTACTGTTAAACCTCAGGCGACCA
 TACCAAGAATATCTATGATAATCTCAAGCCGGCAGCAAAGTAACCCCTAGACAGAGCTTACGGACACATGATCAT
 AGAAGAAGACGAGAAAATCAGGTTGGATTGCTGGAGGTATTGGATCACCCCTTCTATCTTACATCCGTGA
 ACATCTTATTTAGATAAAACAGGTTACTCTACTATAGCTTGTGGAGATGAAAATGCACTACCTAGATT
 30 35 CTCCGTAACTATGCTAGAAAAATCTAAATTGAAACTCTATCTAACGACAGTACGAAAGACGGCTATCTTAAATT
 TTGAACAAAAAGAAGTGGCCGAACATGCAACCGTCTATATGTGTGGCTTATCTATGATGAAGGCACTTGCCA
 AACAGATTAAGAAACAAACAGAGCATATTAC

MEFSMKSVKLLFIASFLTLLTWMTNSPQFMPIGLALTSLSLTFLATRLPLESWFHSLEKVYTWHKFTAFLSIIILFH
 NFSMGLWGSRLAAQFGNLAIYIFASILVAYLKYIQtyEARWIHLRVLYAYLGLFHIYIMGNRLLTFNLLSFLVGS
 YALLGLLAGFYIIFLYQKISFPYLGKITHLKRLNHDREIQIHLSRPNYQSGQFAFLKIFQEGFESAPHFSISGGHQTLY
 FTVKTSGDHTKNIYDNLQAGSKVTLDRAYGHMIEEGRENQVWIAGGIGITPFISYIREHPILDQVHFYYSFRGDENAV
 YLDLLRNQAQKNPNFELHIDSTKDGYLNFQKEVPEHATVYMCGPISMKALAKQIKQNPKTEHY

ID32_900bp

40 40 ATGACTTTAAATCAGGCTTGTAGCCATTAGGACGTCCAATGTTGGGAAGTCAACCTTTAAATCAGTTA
 TGGGGCAAAGATGGCATCATGAGTGACAAGGGCAGACAAACGCGAAACAGCTTAAACATGGAAATTACACGACTG
 ATAAGGAGCAAATTGCTTATGACACACCCAGGGATCACAAGCTTAAACAGCTCTGGAGATTCTATGGTTG
 AGTCTGCCTACAGTACCTTGCAGAAGTGGACACTGTTCTTATGGCTCTGATGAAGCGCTGGTAAGGG
 45 45 GGACGATATGATTATGAGCGTCTCAAGGCTGCAAGGTTCTGTGATTGGTGTGAAATAAAATCGATAAGGTC
 CATCCAGACAGCTTGTCTCAGATTGATGACTCCGTAATCAAATGGACTTAAAGGAAATTGTTCAATCTCAG
 CCCTTCAGGAAATAACGTGCTCGTCTAGTGGATATTGGTGAAGGTTCCAATATTCCC
 GTCTGATCAAATCACAGACCATCCAGAACGTTCTGGTTCTGAGAAATGGCTCGAGAACAGTCTGCACCTAACT
 CGTGAAGAGATTCCGATTCTGTAGCAGTAGTTGACTCTATGAAACAGAGACGAAGAGACAGACAAGGTTCAC
 50 50 ATCCGTGCAACCATCATGGTCAGCGCGATAGCCTAAAGGGATTATCATGGTAAAGGTGGCTATGCTTAAG
 AAAATCGTAGCATGGCCGCTGTGATATGCAACTCATGCTAGGAGACAAGGTTCTAGAAACCTGGGTCAG
 GTCAAGAAAAACTGGCCGATAAAAGCTAGATTGGCTGACTTGGCTATAATGAAAGAGAACTAA

55 55 MTFKSGFVAILGRPNVGKSTFLNHVMQKIAIMSMDKAQTRNKMIGIYTDKEQIVFIDTPGIHKPKTALGDFMVESAYS
 TLREVDTVLFMVPADEARGKGDDMIERLKAALKVPLVNVNKIDKVHPDQLSQIDDFRNQMDFKEIVPISALQGNNV
 RLVDILSENLDGFQYFPQSDQITDPERFLVSEMVERKVLHLTREEIPHSAVVVDSMRDEETDKVHIRATIMVERDSQ
 KGIIIGKGAMLKKIGSMARRDIELMLGDKFVLETWVKVKKNWRDKLDAFGYNEREYZ

ID33_855bp

60 60 CTGCTTCTGTTTACAGAAGGAGCTATGCCCTGAATTACCTGAGGTGAAACCGTTGTCGGCTTAGAAA
 AATTGATTATAGGAAAGAAGATTCGAGTATAGAAATTGCTACCCCAAGATGATTAAGACGGATTGGAAGAGT
 TTCAAAGGGAAATTGCTACTAGTCAGATTATGAGTCATGGGACGTGTTGAAAATATTGCTTTATCTGACAGA
 CAAGGTCTGATTCCCTTGCAGGATGGAGGGCAAGTATTCTACTATCAGACCAAGGACCTGAACGCAAGCAT
 65 65 GCCCCATGTTCTTCTATTTGAAGATGGTGGCACGCTTGTGTTATGAGGATGGTGCAGTTGGAAACCATGGAAC

5 TCTGGGTGCTGACCTT TAGCGTCACTTTATTC TAAAAAATTAGGTCTGAACCAAGCGAACAGACTTG
 TITACAGGTCTTCAATCTGCCCTGCCAAGTCCAAAAGCCTATCAAATCCCCTCAGCCAGACCTGGTA
 GCTGGACTTGGCAATATCTATGTGGATGAGGTTCTGGCAGGCTCAGGTTCATCCAGCTAGACCTCCAGACTT
 TGACACCAGAAGAAGCGACTGCCATTGACCAAGACATTGCTTTGGGCCAGGCTGTTAAAAGGTGGCT
 CCACCAATTGGACTTATAACCAATGCCCTGGGAAGATGGAAGCATGCAGGACTTCATCAGGTATGATAAAGA
 CTGGTCAAGAATGTGACCGCTGTGGTACCATCATTGAGAAAATTCAACTAGGCGACGTGGAACCCACTTTGTCC
 AAACTGTCAAAGGAGGGACTGA

10 MLLVFTEGGLMPPEVETVRGLEKLIIGKISSIEIRYPKMIKTDLEEFQRELPSPQIESMRRGYLLFYLDKVLSHL
 RMEGKYFYYPDQGPERKHAVFFHFEDGTLVYEDVRKFGTMELLVPDLDVYFISKKLGPESPSEQDFDLQVFQSALA
 KSKKPIKSHLLDQLTVAGLGNIVYDEVWLRAQVHPARPSQTLAEAAIAHDQTIAVLGQAVEKGSTIRTYNAFGED
 GSMQDFHQVYDKTGQECVRCGTIEKIQLGGGRGTHFCPNQRRDZ

ID34 633bp

15 TTGTCCAACACTGTCAAAGGAGGGACTGATGGGAAAATCATCGGAATCACTGGGAAATTGCCCTGGTAAGTCA
 ACTGTGACAAATTTCTAACAGCACAGGCTTCAGTAGTGGATGCCAGCGACTCGTCCACCAACTACAGAAA
 CCTGGTGGTCGTTGAGGCTCTAGTACAGCACTTGGCAAGAAAATCATTGAAAACGGAGAACTCAATC
 GCCCTCTCCTAGCTAGTCTCATCTTCAATCCTGATGAACGAGAAATGGTCAAGCAAATCAAGGGAGATTAT
 20 CCGTGGAGAACCTGGCTACTTGAGAGAACAGTTGGCTCAGACAGAAAGAGATTTCTCATGGATATTCCCTACTT
 TTGAGCAGGACTACAGCGATGGTTCTGAGACTTGGTGGTATGTGACCGAGATGCCAAGTGGAACGC
 TTAATGAAAAGGGACCAGTGTCCAAGATGAAGCTGAGTCTGTCGAGCAGGCTTAAAGAAAAG
 AAAGATTGGCCAGCCAGGTTCTGATAATAATGCCAATCAGAACCCAGCTTAACTCAAGTCATATCCTTCTG
 AGGGAGGTAGGCAAGATGACAGAGATTAA

25 MSKLSEKGLMGKIIGITGGIAGSKSTVTNFLRQQGFQVVADAVVHQLQKPGGRLFEALVQHFGQEIELENGELNRPLL
 ASLIFSNPDEREWSKQIQGEIIREEATLREQLAQTEEIFMDIPLLFEQDYSDWFAETWLVYVDRDAQVERLMKRDQLS
 KDEAESRLAAQWPLEKKKDLASQVLDDNNQNQNLNNQVHILLEGRQDDRDZ

ID35 1269bp

30 TTGATAATAATGGCAATCAGAACAGCTTAAATCAAGTCATACTCTTCTGAGGGAGGTAGGCAAGATGACA
 GAGATTAACGGAAAGATAATCTGCGCATGCCCTGGTAAATTCTGACAGGAGCCAGTATTCTGGTT
 35 TACCTTTATGCCATCTGTTGGAAAATCTAGGTAGGGAGTCAGCAAGTCGTTTATGCAAGGCTTAGCAAT
 TTCTGCTCTGCTATTCCGCGCGCTCTTCTCTATTTGGGTATTCTGTCACAAATACGGCCGAAAACCCA
 TGATGATTGGCAGGTCTGCTATGACTACTATGGGAGCTGGCTTGTCCAAATATCTATTGGTTAAT
 CTTCTGTTTACTAACGGTGTATTGCAAGGTTGCTTCTAATGCAACGGCAGTCAGTCAGGTTCA
 AAGGAGAAATCAGGCTCTGCTTAGGTACTTTGCTACAGGCGTAGTGCAAGGTACTCTAATGGCCCTTATTG
 GTGCTTATGCAAGAATTGGCATTGTCAGTCTACTGGTAGTTCTATTAGCTGTCTATT
 40 TGACTATTGCTTATCAAGGAGATTTCAACCGTAGCCAAGGAAAGGCTTCCAAACAAAGGAATTATTC
 CTCGGTTAAATACCCCTATCTTGTCAATCTCTTCAACCGATTGTCATCCAAATTTCAGCTCAATCGATTG
 GCCCTATTGGCTTTATGTACCGCACTTGGCAGACAGAAATCTCTTGTCTCTGTTGATGTC
 AGTATGGGCTTCCAGCATGATGAGTGCAGGAGTCATGGCAAGCTAGGTGACAAGGGCAATCATCGTCTC
 TTGTTGTCGCGCAGTTTATCAGTCATCATCTCTGTCGCAACTGCTCTAGCCCCCTCAACTAGGACT
 45 CTATCGTCTCTTGGATTGGAAACCGGTGCGCTTGGGGTTAATGCCCTACTCAGCAAATGACTCCC
 AAAGCGGGCATTGAGGCTTGCCTCAATCAGGTATTCTTATCTGGAGGTTGTTGGTCCCAGGGCAG
 GTTCTGAGTAGCAGGTCATGGCTTATGCAAGCCTTGTGCTTACAGCTTAACTTCAGGTTAAT
 TTAAACCTGATTCATTCAGACATTAAAAGTAAAGGAATCTAG

50 MIIMAIRTSFLIKCISFLREVGMKTEINWKDNLRRIAWFGNFLTGSASLIVVPMPIFVENLGVGSQQVAFYAGLAISVSA
 AALFSPIWGLILADKYGRKPMIIRAGLAMTTMGLAFVNPNIYWLFLRLNGVFAGFVNPATALIASQVPKEKGSALG
 TLSTGVVAGTLGPFIGGFIAEFLGIRTFLVSGFLFLAILTICPIKEDFQPVAKEKAIPKELFTSVKPYLLLNLFLTS
 FVIOFSAQSISGPILALYVRDLOQTENLLFVSGSLIVSSMGFSSMSAGVMGKLGDKVNHRLLVVAFYVSIYLLCANAS
 SPLQLGLYRFLPLGLTGALIPGVNALLSKMTPKAGISRVFAFNQVFFYLGGVVGPMAVGQFGYHAVFYATSLCV
 AFSCLFNLIQFRLLKVKIEZ

ID36 1311bp

55 ATGGCCCTACCAACTATTGCCATTGAGGACGTCCCAATGGGGAAATCAACCCATTAACTGGATCGCTGGTG
 AGCGAATCTCATGTTAGAGATGTCGAAGGAGTGACACGTGACCGTATTATGCAACGGGTGAGTGGCTCAATC
 60 GTTCTTTAGCATGATTGATCACAGGAGGAATTGATGATGTCGATGCCCTTCTGGAAACAATCAAGCACCAGC
 AGAAATTGCCATGGAAGAACGAGATGTTATGCTCTGGTCTGGTAAGGAAGGAATTACTGATGCAAGCA
 ATACGTAGCTCGTAAGCTTAAAGACCCACAAACCACTGTTATCTCCAGTCACAAAGGTGACAACCCCTGAGAT
 GAGAAATGATATATGATTCTATGCTCTGGTTGGTGAACCAATTGCTATCTCATCTGTCATGGAAATCGGT
 ACAGGGGATGTGCTAGATGCGATCGTAGAAAATCTCAAATGAAATGAGGAAGAAAATCCAGATGTCATTAAG
 TTAGCTGATTGGCTCTAACGTTGGAAAATCAAGCTGATCAATGCTATCTGGGAGAAGACCGTGTATTG

CTAGTCCTGTTGCTGGAACAACCTCGTATGCCATTGATACCCACTTACAGATAACAGATGGTCAAGAGTTACCAT
 GATTGATACGGCTGGTATCGTAAGTCTGGTAAGGTTATGAAAATACTGAGAAATACTCTGTATCGTGCCATG
 CGTGTATTGACCGTTCAGATGTTGCTTGTATGGTCATCAATCGGAAAGAAGGCATTCTGAGTACGACAAGCGT
 ATCGCAGGATTGCCATGAAGCTGGTAAGGGATGATTATCGTGGTCAACAAGTGGGATCGCTGAAAAAGAT
 5 AACCACACTATGAAAATCGGAGAAGATACCGTGACAGCAGTCCAATACCTGCCACGCAACCGATTATCTT
 GTATCAGCTTAACCAAGCAACGCTCCACAAACTCTGAGATGATTAAGCAAATCAGCGAAAGTCAAAATACA
 CGTATTCATCAGCTGCTTGAACGATGTCATGGATGCCATTGCCATCAACCCAACCGACAGACAAGGA
 AACGCTCAAGATTTCTATGCCACCAAGTGGCAACCAAACCAACCTTGTCACTTTGTCAATGAAGAAG
 AACTCATGCACTTTTCACTCGTCTTGTGAAAATCAAATCCGCAAGGCTTGTGAGGGAACACCGAT
 10 TCATCTCATCGCAAGAAAACGCAAATAA
 MALPTIAIVGRPNVGKSTLFNRIAGERISIVEDVEGVTRDRJYATGEWLRSFSMDTGGIDDVDAPFMEQIKHQAEIAM
 EEAADVVFVSGKEGITDADEYVARKLYKTHKPVLAVNKVDNPEMRNDIYDFYALGLGEPLPISSHIGTGDVLD
 15 VENLPNEYEEENPDVKFSLIGRPNVGKSSLINAILGEDRVIASPVAGTRDAIDHTFTDQQEFTMDTAGMRKSGKV
 YENTEKYSVVRAMRAIDRSVVLMVINAEEGREYDKRIAGFAHEAGKGMIVVNWKDTLEKDNTMKNWEEDIREQ
 FQYLPYAPIIFVSALTQQLHKLPEMIKQISESQNTRIPSAVLNDVIMDAIAINPTDKGKRLKIFYATQVATKPPTFIVF
 NEEELMHFSYLRFLLENQIRKAFCVFGTPIHLARKRZ
 20 ID37 714bp
 ATGACAGAAACCATTAAATTGATGAAGGCTCATCTCGTGCAGGTTAAAGAGCAAGAAATTCCCCAAGTA
 GACTTAAATGAGATTGAGCAGCAGCCAGATGGCATCATCTGGAAAGAATTCCAATCTACTCTGTGATTGTGG
 TACGAAGTAAAGAGAAGAAAGATGCCATTGTATGAATTGGTACCTCAAGAAGCCATTGCCAGCTGCTGTTTCT
 TCTCTTGTGGAGATTGAAACCGAGCAGAAAGGGAGCCGACTTCATACCGACACCTTCAACCCCAAGGTGT
 25 GGAAGGTCTCTGATTAGTCGGTCATGCAGCTCTGCTGGACAAAAGCCTTGTGGCAGCTGAAAGCTGGGC
 TATGGTTGTGATTATCGGTTGGTCAACAGTCTGAAGAAGTGGCAGAGCTTAACTCTGACTACA
 CCTATTCTGTCTTGGGATGGCACTGGTGTGCAAATCACATCATGATATGAAACCGAGACTGCCACTAGAGA
 ATGTTGCTTGAGGAAGAATACCAAGAACGACTTCAGTGGAGCAATTCAAGCTTATGACCGTGTTCAGGCTGACT
 ATGCTGGGGCGCTGCGACCAAGCTGGAGTCAGCGCTAGCAGAACAGTTGTCAAGCTGAAACCAAGCTCAA
 30 CTAGAAAAATCTGAACAGAAAGAAATTATTGTAG
 MTETIKLMAHTSVRRFKEQEIPQVDLNEILTAQMSSWKNFQSYSVIVRSQEKKDALYELVPQEAIROSAYFLLFV
 GDLNRAEKGARLHTDFQPQGVGELLISSVDAALAGQNALLAESLGYYGGVIIGLVRYKSEEVAEFLPDYTSVFG
 35 MALGPVNQHHDMKPRPLENVVFEEYQEOSTEAIQAYDRVQADYAGARATTSWSQRLAEQFGQAEPSTRKNLEQK
 KLLZ
ID38 729bp
 ATGACAGAAATTAGACTAGAGCACGTCACTTATGCCATTGGTCAGGAGAGGATTAGAGGATATCAACCTACAG
 40 GTGACTTCAGCGAAGTGGTTCCATCTAGGCCAACGGTGTGGAAAGACCAACCCCTTTAATCTAACGCTG
 GGATTTAGAAGTTCAGTCAGGGAGAATTGCTCTGATGGTGAAGAAAATCCAAGGGCGCTGAGTTATATGT
 TGCAAAGGATCTGCTTGGGACACAAGACGGTGTGGAAATATCATTCTGCCCTTGTGATTCAAAGGTGG
 ATAAGGCAGAAAGCTATTCCCGAGCGGATAAAATTCTTGCACCTTCAGCTGACAGCTGTAAGAGAACAGTATC
 CTCATGAACTTAGCGGTTGGGATGCGCCAGCGTGTAGCCTACTCGGACCTACCTTTGGGCACAAGCTTCT
 45 CTTAGATGAGGCCTTACGCGCTTGGATGAGATGACAAAGATGAACTCCACGCTGGTATCTGAGATTACAA
 GCAGTGCAGCTAACACCCGTATCATCAGCATGTTAGGAGGCCCTCAATCTCAGCGACCGTATCTATATC
 TTGAAAATGCCCTGGGAGATTGTTAGAAATTAAACTAGATTGGTCTGAAGATGAGGACAAGGAAGTCCAA
 AAGATTGCCAACACGCTAAATTGGCGGAATTAGGCTTAGATAAGTAG
 50 MTEIRLEHSVYAYQOERILEDINLQVTSGEVSVILGPSVGKTLFNLIAGILEVQSGRIVLDGEENPKGRVSYMLQKD
 LEHKTVLGNIIPLLIQKVDKAEASRADKILATFQLTAVRDKYPHELGGMRQRVALLRTYLFGHKLFLDEAFSALDE
 MTKMELHAWYLEIHQLQLTTLIITHSIEEALNSDRIYILKNRPGQIVSEIKLDWSEDEDKEVQKIAYKRQILAEGLDK
 Z
 55 ID39 2433bp
 ATGAACTATTCAAACGATTGAATGAATGTATCGAAAGTGCCTACATGGTGTGGACATTGGAGCTGTTAC
 TAGACTCGTGGCAGCTTGTGATTGCCATGCTAATCACAGTTATGCTAGCAGGGCAACTTAAATGATTATCC
 GTATGAGATGGACCGTTAGAAGAGGTGGCTTGGAACTGACTGAAACGGACTATAGCCAGGATGAAACCTTAC
 60 GGAATTGCCGTTCTCCCGTCGTTGCAGGTTCTTGTAGAAGCAGAGTATGCTAGCGTCACTGGTCCATGCTAAG
 GTACTAGGGACAGAGCACGTCCTCTATGCATGATAGCAATGCCCTGGCAGCTCTATCTGGAGAGG
 GCTGGTTCTTATGAAGACAAGAAAGATCAGGTCAAGATTGCTGCTTGTGAAATTAGAAGAACGGCA
 GGCTGGACTCGTGAAGATCTAAGGCTTACGCCAACGCCATGTCAGTACAGTACAGTACAAGCAAGCAAATTCTATGGCC
 AATATGATGGGATGCCAGACTCCTAGTGGTGTCTCGAGGATTATACGCATGATTGACAGAGCAAGCGCGT
 65 TCTGGCAAGTTAGAACCGACTCGTCGGGACAAGGAAATCTCACGTATGATTCAAATCTTGCAGGCCAGACT

AAGAACAAACCTGCTTGGTTGGGATGCTGGTCGGAAAACAGCTTGGCGCTTGGCTTGGCCAGCGTATTG
 CTAGTGGTGACGTGCCGCGAAATGGCTAAGATGCGCGTGTAGAACCTGATTTGATGAATGTCGTTGCAGGG
 CACGCTTCCGTGGTACTTGAAGAACCGCATGAATAATATCATCAAGGATATTGAAGAACAGTGGCCAGTCATCC
 TCTTATCGATGAACCTTACACCATCATGGGTTCTGGTAGCGGGATTGATTGACTCTGGATGCGGCCAATATCTT
 5 GAAACCAGCCTGGCCCTGGAACTTGTAGAACCGGGTGGCACTACTCAGGAAGAACATCAAAACATATCGA
 AAAAGATCGGCACCTTCTCGTCGTTCTGCTAAAGTGACGATTGAAGAACCAAGTGTGGCAGATAGTACTAT
 TTACAGTGGCTCATCGTTTAAACAGTCGCTCATGGCAGACTCTGCTATCGATCTCTGGATGAGGGCAGCA
 TAAGATGGCTCATCGTTTAAACAGTCGCTCATGGCAGACTCTGCTATCGATCTCTGGATGAGGGCAGCA
 ACAGTGCACAAATAAGGCAAAGCATGTAAGGACAGCAGATTGAGATGGAGAACATCGCTAACAAAGACTTGGTACAGA
 10 GGCAAGTGGAAACAGCAGCCCAGCTAATCGCAAAAGAACAGAGGAAGTACCTGCTAACAAAGACTTGGTACAGA
 GTCTGATATTGACCAACCTTGAGTCGCTGTAGGAATCCAGTTCAAAACGACTCAAGCAGGATGCTAACAG
 TATTAATCTTGAGCAGAACCTCATAAACGGTTATCGCTAACAGTCAGGTTCAAGCATTAGCCGCA
 TTGCGCAACCGTCAAGGGATTCGAGCTCATAGCTCGGATTGGTCTTATGTTCTAGGGCTACAGGTG
 15 CGGGAAAAGTGAATTAGCAAGGGTCTGGCAGAAGTCTTGTAGCAGGAAATCAGCCATTACGCTTGTATG
 AGTGAGTATATGGAAAATTGAGCTAGTCGCTCAACGGAGCTCTCCAGGCTATGAGGATATGAAGAACGGT
 GGGGAGTTGACAGAGAACGGTTCGCAAAACCTTACCGTCTCTTGTAGGTTAGAGAACGGCCACCCA
 GATATCTTAAATGTTCTTGAGGTTCTGGATGACGGTCTTGAAGATAGCAAGGGACGCAAGGTGATT
 20 CAAATACCATATTGATGACATCGAATTCAGTCGACTGCCCCCTGCTAGCAATGAGTGGTAAAGACTGTTGGG
 TAAGGATATTGTTGACCAGGAAAATATGGAAAACGATGTTGAAGAACAGTGGAAATTAGACCGGA
 ATTCAACCGTATTGATGAGAACGGTGGTCTTCAAGCTATCTAGTGTATCATATGCAGGAAGTGGTAAAGATT
 ATGGTCAAGCTTATGGCAAGTTGACTGAAAAGGCACTGATGAAATTACAAGCTCAGCTCTGAAATTG
 TAGCAAATCAAGGATATGACCCAGAGATGGGAGCTGCCCACTTCGAGAACCTGCAACAGAACAGTGGAGGAC
 AAGTGGCAGAACCTCTCAAGGGAGATTAGTGGCAGGCAGCACACTTAAGATTGGTCAAAGCAGGCCAG
 25 TTAAAATTGATATTGATCAA
 MNYSKALNECIESAYMVAGHFGARYLESWHILLIAMSNSHYSVAGATLNDYPYEMDRLEEVALELTETDYSQDETFT
 LPFSRRLQLVLFDEAEYVAVSVHAKVLGTEHVLYAILHDSNALATILERAGFSYEDKKDQVKIAALRRNLEERAGWTR
 EDLKALQRHRHTVADKQNSMANMMGMPQTPSGGLEDYTHDLTEQARSGKLEPIGRDKEISRMQILSRTKNNPVLV
 GDAGVGKTLALGLAQRIASGDVPAEMAKMRVLELDLMNVAGTRFRGDFEERMNNIKDIEEDGQVILFIDELHTIM
 30 GSMSGIDSTLDAANILKPALARGLTBLRVGATTQEEYOKHIEKDAALSRRFKVTIEEPSVADSMILQGLKATYEKHHRV
 QITDEAVTKMAHRYLTSRHLPSDAIDLQDAAATVQNKAHKVADDSDLSPADKALMDGKWQAAQLIAKEEEV
 PVYKLVLTVESDILTLSSLGIPVKLQTDAKYLNEAELHKRVIDQDQAVSSIRAINNOSGIRSHKRPIGSFMLGP
 TVGKTELAKALAEVLFDDESALIRFDMSEYMEKFAASRLNGAPPYVGEEGGELTEKVRNKPYSVLLFDEVEKAHP
 DIFNVLLQLVLDGVLTDSKGRKVDFSNLMSNTIALRDKTVFGAKDIRFDQENMEKRMFEELKKAYRPEFIN
 RIDEKVVHSLSSDHMQEVVKIMVKPLVASLKEGIDLKLQASALKLANQGYDPEMGRPLRRTLQTEVEDKLAELL
 LKGDLVAGSTLKIVKAGQLKFIAZ

ID40 1008bp

40 ATGAAGAAAACATGGAAAGTGTAAAAACGCTGTAAACAGCTCTGTAGCTGTTGTGGCTGTGGTCAAG
 GAACCTGCTTCTAAAGACAACAAAGAGGCAGAACCTAAGAACGGTACTTATCTAGACTGGACACCAAATACCA
 ACCACACAGGGTTTATGTTGCCAAGGAAAAGGTTATTCAAAGAACGCTGGAGTGGATGTTGATTTGAAATTGC
 CACCAAGAAAAGTCTCTGACTGGTATCAACGGAAAGCAGATTCTGGTCAAGCTATTGTTGAACACATACATGGC
 TAAGAATTGGAAAAGGAGCAGGAATCACTGCCGTTGCAGCTATTGTTGAACACATACATCAGGAATCATCTC
 45 TCGTAAATCTGATAATGTAAGCACTCCAAAAGACTTGGTGAAGAACATGGGACATGGAATGCCAACTGA
 ACTTGCTATGTTGAAAACCTGGTGAATCTCAAGGTGGAGACTTGGAGAACGGTTGAAAAGTACCAAAATACGA
 CTCAAACCTCAACACCCATTGCCAATGGCGTCTTGTACTGCTGGATTACTACGGTTGGGATGGTATCCTT
 GCTAAATCTCAAGGTGAGATGCTAACTCTGACTGAAGAACGACTATCTCAAGGAGTTGACTACTATTCACCGAG
 TTATCATGCAAACACGACTATCTGAAAGATAACAAAGAACGACTCTGCAAGGCTCAAGGCTCAACAAAAA
 50 GGCTACCAATATGCCATGGAACATCCAGAACAGCTGCAAGATATTCTCATCAAGAACGACTCTGAACTCAAGGAA
 AACGTCACCTTGTATCGAATCTCAAAATACTTGTCAAAGAACATCGAACAGCAGAACAGAAAATGGGTCAA
 TTGACCGAGCTCGCTGGATGCTTCTACAAATGGATAAAGAACAGTGGTATCCTAAAGAACAGTGGCAGAC
 AAAGGCTTACCAACGAATTGTAAGGAA
 55 MKKTWKVFLTVTALVAVVLVACGQGTASKDNKEAELKKVDFILDWTPNTNHTGLYVAKEKGYFKEAGVDVDLKL
 PEESSSDLVINGKAPFAVFQDYMAMKKLEKGAGITAVAAIVEHNTSGHSRKSDNVSSPKDLVGKKYGTWNDFTELAML
 KTLVESQGGDFKEVKVPNNDNSNTPIANGVFDATAIWYYGWDGILAKSQGVANDFMYLKDYVKEFDYSPVIIANN
 YLKDNEKEARKVIQAIKKGYQYAMEHPEEADILKNAPELKEKRDVFIESQYLSKEYASDKEKWGQFDAARWNAYF
 KWDKENGILKEDTDKGFTNEFKZ

ID41 762bp

60 TTGATGAGAAAACCTGAGAAGTACTGAGACGACACATTAGCTATTGGCTTCTGGAGTATTGTCATCTGGC
 AGTTAGCAGGTTTCTAAACCTCTCCCCAAGTTATCTGCGACACCTTGTAAATTCTCAGGCCCTTGTG
 65 GACAGAGAATTCTCTGGCACCATAGCTGGGAGACTGGCTTACTGGGCTGATTGGAGTTG

TTGCCTGCTTATGGCTGCTCATGGATAGTTGACTTGGCTCAATGACCTGATTACCCATGATGGTGGTCATT
 CAGACCATTCCGACCATTGCCATAGCTCTATCCTGGCTTGTGGCTAGGTTATGGATTTCGCAAGGATATGCT
 5 TGATTATCTAACGACAACCTTCCCACATCGTTAGTATTTGGACGGTTAGGATTGCGACAAGGATATGCT
 GACCTTGTAGTCTGAGGGTCAGTGTCTCCACGGCTTATCACAACGTGGTATCTGAGTGGTTGGGAGGTTTG
 TTTATGCAGGTCTGAGGGTCAGTGTCTCCACGGCTTATCACAACGTGGTATCTGAGTGGTTGGGAGGTTTG
 AAGGTCTTGGTTATATGATTCACTGTTAGTATGATAACCATGGCTTGGCATTATTATCTGAGTGGTTGGGAGGTTTG
 TCGATTATCAGTCTTTGGTATGAAGCTGGTCACTGAAAGAAAATGTGATTAATGGAAACGTCAG
 10 MMRNLSILRRHISLLGFLGVLSIWQLAGFLKLLPKFILPTPLEILQPFRDREFLWHSWATLRVALLGLGVIACLM
 AVLMDSLTWLNDLIYPMMVVQTIPIAIPILVLWLGYGILPKIVLIIITTFPIVSILDGFRHCDKDMTLFSLMRAKP
 WQILWHFKIPVSLPYFYAGLRSVSYAFITVVSEWLGFFEGLGVYMIQSKKLFQYDTMFIAIIILVSIISLLGMKLVDE
 KYVIWKRSZ

ID42 372bp

15 TTGATTTAACTCTATTTGCTGATGATAAGGGAAAAGAAAAGGGGACAGAGATATGGCTTTACCAATACCCACA
 TGCATGCTAGTTGGTATTGTTACAGCTGCTGATGACATCATTGACTTTGGTATATCATGACCAT
 TTCTAAAAAAATGCTTGAATTGAGAAGAACTCGAGTTCAATTGCTTAATAACCAAGGAAAGATTACCTCC
 20 ACTTTCAAGTCAACACCTCCACAGCCATTGATTTGACTTTAACCATCCTTCGACCTCTGTTATCCCCAAGA
 GTACTGGTTAGACATGGACGGTAGAGAAAATCCTCCAGAAGAAAATGACCTATTAA
 MIFNPICCMIREKKGDRDMAFTNTHMRSAFGIVTSLPDDIDSFWYIIDHFLKNVFELEEELEFQLNNQGKITFHFSQ
 HLPTAIDDFDFNHPFDPRYPPRVLVLDMDGRETILLPEENDLFZ

ID43 1569bp

25 ACAGCGGTGTCATTCTATCTATTAAAGAAAAGTAATAATCAATTGTTAAAATAGTAAAAAAATGGAGGTTCTG
 ATGAAATATTGTTCTAATGAGGTATTCACTGTTAAATTAAAGGTGGGACTTGTCTGGTACTATTGCAA
 30 TTCAATTGGGAAGCCAAGGTATTATCGGATGAAGTTACTAGTTCTCACCGATGGTACAAAAGAGTC
 TTCTAATGCAATTACTAATGATTAGATAATTCAACACTGTTAATCAGAACTGTTCTGCTGAAATGATTGCTCT
 AATTCAACCACTAATGGTTAGATAATTCTGTTAAGTGTAAAGCATGCTTAATGGTACTATTGTTCCCAATT
 CACAATTAGACAACAGAACAGTGAATCTACAGTAACTACTAATGAAAAGAGTTAAAGGAAGATGTTA
 TAAGTGACAGAATTATCAAAAAGAATTGAGACTGCTTAAAGTGTAAAAGGATTATGGTCAGTAGGTGATG
 GGATTCAATGATGATGACAAGCAATTCAAGATGCAATTAGTGCTGAGCTAACAGGGCTAGGGTAGGGAAATGTTA
 35 ATTTCCTGAAGGAACCTTATTAGTAAAAGAAATTGTTAAAAGTCATAACACACTTAAAGTGAATGAGAA
 AGCTACAATTCTAAATGGTATAATATTAAAGAATCACCCTTCATTGTTTATGACAGGTTATTACGGATGAT
 GGTGCGCAAGTGAATGGGCCCCAACAGAAAGTATTAGTTACTGTTCTGGTACGGATTGATATGAACGGTGTGTTG
 AATGAAGAAGGAACCTAAAGCAAAATCTACCACTTAAATTCTCAGGTGCTATTGCTATTGGAAATTCAAAT
 AACGTAATATAAAAATGACATTCAAGGATAGTTACCAAGGGCATGCTATTCAAATTGCAAGGTTGAAAAT
 40 GTATTAGTTGATAATTCTGTTCTGGCAAGCCTACCCAAACGATGAAGGGATGGGCAAATCATAAGTAAGG
 AGAGCATTGAGATTGAACCATTAACCTAGAAAAGGTTCTTATGCCCTGAATGATGGAAAAAAATCTGAAA
 ATGTGACTATTCAAATTCTATTGGCAAAAGTGAATAATCTGGGAAATTGTAACAGCAATTGGCACACACTA
 TCAAACATTGCGACACAGAACCCCTCTAATATTAAATTCAAATAATCTTGTGATAACATGATGTGAGGT
 GTACGTTTACAGGTTACTGATGTTAAATCAAAGGAAATGCTTGTGATAAGGAAAGTTAAAGGAGAGAGTGA
 45 CATTATCGAGAAAAGCGGAGCAGCTTGTGATAATGCTTATAGCTATAAAACACTAAAGACCTATTAGATTAAAT
 AAACAGGTGGTTATGCCGAAAATATTTAATTGCGATCTAAACAAAAGCGATACGAGTTGCAAAAGAT
 AGTCAGAATGTTAGGAAAAGTACAGATTTACTGTAACAAAAAAATGTAATTATAATAATTCTAAGGAAACA
 GAACAACCAAATATTGAAATTACGAGTTAGTGATAATTAGTGCTCAGAGAATAGT

50 QRCHSIYFKKSNNQLLKIVKKLEVLMKYFVPNEVFSIRKLKVGTCSVLAISILGSQGILSDEVVTSSPMATKESNAITN
 DLDNSPTVNQNRSAEMIASNSTTNGLDNSLSVNSISSNGTIRSNQLDNRTVESTVTSTNEKSYKEDVISDRIKEFEDT
 ALSVKDYGAVGDGJHDDRQAIQDAIDAAAQGLGGGNVYFPETGYLVEIVFLKSHTHLENEKATLINGINIKNHSIVF
 MTGLFTDDGAQVEWGPTEDISYSGGTIDMNGLNEEGTKAKNLPLINSSGAFAGNSNNVTIKNVTFKDSYQGHAIQIA
 GSKNVLVDNSRFLQALPKTMKDQIUSKESIQIEPLTRKGFPYALNDDGKSENVTIQNSYFGKSDKSGELVTAIGTHY
 55 QTLSTQNPNSNIKIQNHHFDNMYYAGVRFTGFTDVLIKGNRFDKVKGESVHYRESGAALVNAYSKNTKDLDLNQ
 VVIAENIFNIADPKTKAIRVAKDSAECLGKVSDITVTKNVINNNSKETEQPNIELRVSDNLVSENS

ID44 324bp

60 GTGATGAAAGAAAACCTAGCTATTAAAGGTGTTCTGAAAGGTTGTCTGGATATGATTGGTCAAAAAGAGCGG
 TATGGTTATGAGTTGGTTCACTTGGAGAGGCTGGATTGATACATCGTCCAGGAACATTATCCTTGTGTT
 GCAAAAGTTAGAAAAAAATCAATGGATAAGAGGCGACATGCGCCCGTCCAGATGGTCCAGATCGGAAGTATT
 TTCATTAAATGAAAGAAGGAGAAGAGCGTGTCTCAGTCTTGGCAACAATGGGAGGATTGAGTCAAAAAGTGA
 AGGGATTAAGAATGGGGGTTAA

MMKETQLLKVLEGCVLDMIGQKERYGYELVQLREAGFDTIVPGTIYPLLQKLEKNQWIRGDMRSPDGPDRKYFSL
MKEGEERVSFWQQWDDLSQKVEGIKNGZ

ID45 816bp

5 ATGAAGAAAATGAAGTATTACGAAGAACAAAGCGTTGCTACATGAGTTTCTGAGGGAGAATCAAAGTATT
GAGGAGTTGGAAAAGTTTAATCTTGCTGATTCTCATGATGAAGACTATCTCAGAGAGCAGATCTATTG
10 TGATGCTAGATTCTCAGAACGAGATGGCATGTCAGAGGATTATCTAGTAAGAATCCTAAAAAAA
TAATGAAAGAGATTCTAAGGGAGCACCTCGAGTTCTACAAAGAGTCCCTTGACGCCAATTCTGCTGC
GGTATTACGTTATTATCAACTACTAAGTGATTCTAAAGGCTCTCTAACAGTCATTGCTCACATTAG
GGCAGACTTCTTCTGATTGGACTTGGCTGCCCCACAATTACGAAGAAGTTAGTCCAAGATTCTCT
AAAATGAAAGTGGCACTTACATGTTGGACTATAGTTCTAGTTAGTGTAGTATTGAGGAATGGCAA
GCTTCATACAAGAAGGAGCCTTATATTCCGGCTCCCTGGGATAGTTGCTGCTTACGATTGCTAGTTAC
GGTATTGGAATTGAAAGAAGCGGCTTCTGCTCCATTGCTAGTATGATTATGCCCATCTGTGGGGTCT
GCTCCGTTATTATGAGTGGATGGAATTCAAAATGTTCTTACAAAGTTATTCCCTTAGCTGTCCCTTATTG
GAATCTTGTCTTCCGTGGGTTAAGAAGATAAAATGGAGTGAAGTATAG

20 MKMKMYYEETSALLHEPSEENQKYFEELWESFNLAGFLYDEDYLREQIYLMMLDFSEAERGMSAEDYLGKNPKIM
KEILKGAPRSSIKESLLTPILVLAVLRYYQLLSDFSKGPPLTVNLLTFLQGLLIFLIGFGLVATLRRSLVQDSPKMKGTYI
VVGTVLVLVLYVGVMASFIQEGAFYIPAPWDLSVFTISLVIGIWNWKEAVFRPFVSMIIAHLVVGSLRYEWMGISN
VFLTKVPIPLAVLFIGIFVLFRGFKKIKWSEVZ

ID46 348bp

25 CTGTTTTTATTTACTCAATGAAAATCAAAGAGCAAACCTAGGAAGCTAGCCGAGGTTGCTCAAAACACTGTT
,TTGAGGTTGAGACGAAACTGACGAAGTCAGCTAAAACATGTTTGAGGTTGAGATGAAACTGACGAAGTC
GCTAAAACACTGTTTGAGGTTGAGATGAAACTGACGAAGTCAGCTAAAACACTGTTTGAGGTTGAGATG
AAACTGACGAAGTCAGCTAAAACATGTTTGAGGTTGAGATGAAACTGACGAAGTCAGTAACCACATAC
GTAGGGCGACGCTGACCTGGTTGAAGAGATTTCGAAGAGTATTAA

30 MFFYLYSMIKEQTRKLAAGCSKHCFEVVDETDEVSSKHVFEEVDETDEVSSKHCFEVVDETDEVSSKHCFEVVDET
EVSSKHVFEEVDETDEVSNHTYGRATLTWFEEIFEYZ

ID47 1260bp

35 ATGCAGAAATCTGAAATTGCTTTCATCTATCATGGCTACAAGATGCGTTCTTGCTTACTATGATTGGGATTAT
TATCGGTGTTCATCAGTTGTTGATTATGGCTTGGGTGATTCCCTATCTGTCAGTCATAAAAGATATGACTA
AATCTCAGAAAATATTAGCGCTTCTCTCCTAAAAGTAAAGACGGGTCTTTACTCAGAAACAATCAGC
TTTACGGTTCTGAAAGGAAGAGGAAGTTCTGTGAAACGCCAAAACGCCAAGAATCTGGGTCCAAGAGGC
40 AGCTAAACTGAAGGGAGTGGATAGTTACTATGTAACCAATTCAACGAATGCCATTGACCTATCAAGATAAAA
GGTTGAGAATGTAATTGACAGGTGAAACAGAAACTTACATGGACGCTGTTAAGAATGAAATTATTGAGGTC
TAGTGTGAGAGGAGAATTCAAAGACTTGCAGTGTCAATTGCTAGATGAGGAATTGTCATTAGTTATT
GAATCTCCTCAAGAGGTATAACAGGTTGAGATGCAATTGTTAGTTACGGGTCAATTGGGTTATACTA
GTCCGGAGGCTAAAAGATCAAATATATGGTTGGCTGCTTACTACCAATATCTCCCTGTCGCAA
45 TTTAATGTAAGATGAAATAGCTAATATTGTCAGTGAAATGATACCAAGTTAACCCAACTCTGGGTCCAGAA
CTGGCACGAAAATGACAGAGCTTCAGGCTTACAACAGGGAGAATACCAAGGTGGCAGATGAGTCCGTTGATT
GCAGAAAATTCACAAATCGTTAGTTATGACGACGATTATTAGTCCATCGCAGGGATTCTCTCTTGTGGAG
GAACTGGTGTCAAGACATCATGCTGGTTGGTGCAGAGCGCACTCGTGAAGATTGGCTTCGTAAGGCTTGG
50 TGCAACACGTGCCAATATTAACTGAGTTGATTGAATCCATGATTGACCTTGTAGGTGGCTTAA
TGACAATTGCAAGTGGTTAACTGCCCTAGCAGGTTGTTACTGCAAGGTTAATAGAAGGTATAGAAGTGGAGT
ATCAATCCCAGTCGCCCTATTAGTCTGCAAGTTGGCTAGTTGGTATGATTGGAGTCTTGCAGGCCAAC
AAGGCATGAAACTGATCCAATTGAAAGGCCCTGTTATGAATGA

55 MQNLKFAFSSIMAHKMRSLLTMIIGVSSVVIMALGDSLRSQVNKDMTKSOKNISVFFSPKKSKDGSFTQKQSAFTVS
GKEEEVPVEPPKPQEWVQEAKLKGVDSYYVTNSTNAILTYQDKKVENANLTTGGNRTYMDAVKNEIAGRSLREQDF
KEFASVILLDEELSIFLFESPQEAINKVVEVNGFSYRVIGVYTSPEAKRSKIYFGGLPITTNSLAANFNVDEIANIVFRVN
DTSLPTLGPELARKMTTELAGLQQGEYQVADESVVFAEIQQSFSFMTTIISSIAGISLFGVGTGMNIMLVSVTERTREIG
LRKALGATRANILIQFLIESMILTLGGLGLTIAISGLTALAGLLQGLIEGIEVGVSIPVALFSLAVSASVGMIFGVLPANK
ASKLDPIEALRYEZ

ID48 705bp

60 CTGATGAAGCAACTAATTAGTCAAAAATATCTTCAGAAGTTACCGTAATGGTACCAAGAACTGCAGGTTCTC
AAAAATATCAATCTAGAAGTGAATGAGGGTGATTGTAAGCCATCATGGGACCATCTGGGTCTGGTAAGTCCACT
65 CTGATGAATACGATTGGCATGTTGGATACACCAACCAGTGGAGAATATTATCTGAAAGGTCAAGAAGTGGCTGG

CTTGGTAAAAACAACAGCTAAGGTCGTAAACCAACAAATCGGTTTGCTTTCAGCAGTCTTCTATCGA
 AGCTCAATGCCTGCAAATGAGATTGCCCTGATTTACGAGGAGTTCTGCTTCAAAACGTGCAAGTTGC
 TGAGGAATATTAAGACAAGGTTGAATTGACAGAACGTAGTCACCATTACCTTCAAGAATTATCTGGTGGTAAA
 GCAACGTGTAACCGTGCCTGGTAAACAAATCCTTCTATTACCTAGCGGATGAACCGACAGGAGCCTTG
 5 GATACCAAAACAGCTAACCAATTATGCAATTATGGTTGATTGAATAAGAAGGAAAACCATATTATCATGGT
 ACGCATGAGCCTGAGATTGCTGCCTATGCCAACGTCAGATTGCTATTGGGATGGGTCATTCTGACAGTG
 CTCAGTTAGGAAGAGGAGAAAACCTAA

 MMKQLISLKNIFRSYRNGDQELQVLKNINLEVNEGEFAIMGPSGSKSTLMNTIGMLDPTSGEYYLEGQEAGLGEK
 10 OLAKVRNQQIFVFQQFFLSKLNALQNVPLIYAGVSSSKRRKLAEEYLDKVELTERSHHLPSELGGQKQRVAIARA
 LVNNPSIILADEPTGALDTKTGNQIMQLLVDLNKEGTIIMVTHEPEIAAYAKRQIVRDGVISSDAQLGKEENZ

ID49 1200bp

 15 ATGAAAGAAAAAGAATGGTAAAGCTAAAAAGTGGCAACTGTATGCAGCAATCGGTGCTGGAGGTAGTTGATTG
 GGTGCTGGGGGATTTACTCTTAGACAACCTCTCAGACTGCTCTAAAGATGAGCCTACTCATCTGTTTG
 CCAAGGAAGGAAGCGTGCCTCTCTGTTTATTGTCAGGGACAGTAACAGCAAAATGAACAATATGTTATT
 TTGATGCTAGTAAGGGTATTTAGATGAAATCCTGTTCTGTTGGCGATAAGGTAGCGAAGGGCAGGCTTGT
 CAAGTACAGTAGTTCAAGAGCGCAGGGCCTATGATTCACTAGTCAGCTAGGCAAGTCTAGGGCAGATCGTCATAT
 20 CAATGAACCTCAATCAAGCACGAAATGAAGCCGCTTCAGCTCCAGCTCCAGTACCCAGTACCCAGGCGCAGTAGGAGGAGA
 AGATGCAACGGTGCAGGAAAGCCAACCTCAGTGGCTGAAATTCTGTTCTATTGACGCTCAATTGGGTGATGCC
 CGTATGCGCTGAGATGCTGCAGGCAATTAAAGCAAGGCTCAAAGTCATTGGATGCAACAACCTGTTCTAGT
 ACCCTAGAGGGAACTGTGGTCGAAGTCATAGCAATGTTCTAAATCTCAAACAGGGGAGTCAGTTATGGTT
 25 CATATTGTCAGCAATGAAAATTACAAGTCAGGGAGAATTGTCAGTACAATCTAGCCAACCTTCTGAGGTC
 AAGAAGTAAGCTTACTCTAAAGTGTATCTGATAAAAATGGACTGGAAATTAAAGCTATATTCTGACTATCC
 TAAAACAATGGTGAAGCAGCTAGTCCAGCAGCCGGAAATAACAGGTTCTAAATACCTTATACTATTGATGT
 GACAGGGCAGGGTGGTGAATTGAAACAAGGTTCTGTCACATTGGAGGTTAAAGCAAAACTAAGGCTATTCT
 GTTCTGTTAGCTAGTAAATGGATGATAGTAAAATTATGTCGGATTGGATGAAACAACAAAAGGCTAAA
 30 AAAGTTGAGCTTCATTGGAAATGTCAGCAGAAAATCAAGAAATCACTCTGGTTAACGAAACGGTGCTAAG
 GTCATCAGTAATCCAACATCTCTGGAGAAGGAAAGAGGTGAAGGCTGATGAAGCAACTAATTAG

 MKKKNGKAKWQLYAAIGAASVVVLGAGGILLFRQPSQTALKDEPTHLVVAKERGSVASSVLLSGTVAKNEQYVYFD
 ASKGDLDEILVSVDKVSSEGQALVKYSSSEAQAAYSASRAVARADRHNELNQARNEAASAPAPQLPAPVGGEDATV
 35 OSPTPVAGNSVASIDAQLGDARDARADAAQLSKAQSQLDATTVLSTLETVVEVNSNVSKPTGASQVMVHIVSNEN
 LQVKGELSEYNLANLSVGQEVTSKVPDKWTGKLSYISDYPKNNGEAASPAAGNNTGSKYPTIDVTGEVGDLKQ
 GFSVNIEVSKTKAILVPVSSLVMDSKNYWIVDEQQKAKKVEVSLGNADAENQEITSGLTNGAKVISNPTSSLEEGKE
 VKADEATNZ

ID50 759bp

 40 ATGTCACGTAAACCAATTATCGTGTAACTGGAAAATGAACAAAATCCAGAAGAAGCTAAAGCATTGTA
 GCAGTTGCACTAAAACCTCTCATCAGATCTGTTGAAGCAGGTATCGTCTCCAGCTCTTGTATTGACAACCT
 TTCTGCTGTTGCAAAGGCTAAACCTTAAAGTTGCTGCTAAAACCTGACTCTTGTAAAATGAGGTGTTTAC
 45 TGGTAAACTAGCCCACAAGTTGAAAGAAATCGGTACTGACTACGTTGTTATCGGTACTCAGAACGCCGTGA
 CTACTTCATGAAACTGATGAAGATATCAACAAAAGCAACAGCAATTGCGAACGGTATGCTTCAATCAT
 CTGTTGTTGGAATCCTGAAACTACGAAGCTGGTAAAGCTGCTGAATTGCTAGGTGCTCAAGTATCTGCTGCA
 TTGGCTGGATTGACTGCTGAACAAGTTGCTGCTCAGTTATGCTTATGAGCCAATCTGGCTATCGGTACTGGTA
 AATCAGCTTACAAGACGATGCAACAAAATGTGAAAGTTGTTGCTGAGCTGACTGCTACTGGTCAAG
 50 AAGTCGAGACAAAGTCGTGTTCAATACGGTGGTTCTGTTAAACCTGAAAATGTTGTTACATGGTTGCC
 AGACGTTGACGGTGCCTGTAGGTGGCGTCATTGAAGCTTCTGGCTTGTACTTTGTTAAA
 TAA

 MSRKPFIAGNWKMKNPPEAKFVEAVASKLPSLVEAGIAAPALDLTVLAVAKGSNLKVAACQNCYFENAGAFTG
 ETSPQVLKEIGTDYVVIHGHSERRDYFHETDEDINKAKAIFANGMLPIICCGESLEYEAGKAAEFVGAQVSAALAGLT
 55 EQVAASVIAYEPIWAIGTKSASQDDAKMCKVVRDVVAADFGQEADKVRVQYGGSVKPNENASYMACPDVGDAL
 VGGASLEAESFLALLDFVKZ

ID51 1473bp

 60 TTGAAAACAAAATTGGATTAGCAAGTATCTGTTACTAGGCTGGCAACTAGTCATGTCGCTGCAAATGAAACTG
 AAGTAGCAAAAACCTCGCAGGATACAACGACAGCCTCAAGTAGTTGAGGCAAATCAGTCCTAATAAAACGC
 AAACCGAGCCAGAAAGTACAGACTAATGCTGCTGCCACTGGGATGGGATTATTATGTAAGGATGATGGTTCTA
 AAGCTCAAAGTGAATGGATTGACAACACTACTATAAGGCTGGTTATATTAAATTACAGATGGCTACTCGCA
 GAATGAATGGCATGGAAATTACTACCTGAAACATCAGGTGGATATATGGCCAAAACCGAGTGGATATGACAGTAA
 65 TTACAAGAGTTGGTTATCTCAAGTCAGATGGGCTTATGCTCATCAAGAATGGCAATTGATTGGAAATAAGTGG

TACTACTTCAAGAAGTGGGGTACATGGCTAAAGCCAATGGCAAGGAAGTATTCTTGAATGGTCAGGAGCT
 ATGATGCAAAATGAATGGCTCATGATCCAGCTATTCTGCTATTTATCTAAAATCGATGGAACCTATGCTA
 ACCAAGAGTGGCAAAAGTGGCGCAATGGTACTATTCAAGAAGTGGGCTATGGCTCGGAATGAGTGC
 AAGGCAACTACTATTGACTGGAAGTGGTGCATGGCAGTGACGAAGTGTATTGGATGGTACTCGCTATATCT
 TGCGGCCCTGGTGAAGCTCAAAGAAAAAAAGATTGATGTCGGCTGGTTCACAGAGATGGTAAGCGCTATT
 CTITAATAATAGAGAAGAACAGTGGGAACCGAACATGCTAAGAAAAGTCATTGATATTAGTGAGCACAATGGTC
 TATCAATGATTGGAAAAAGGTTATTGATGAGAACGAAGTGGATGGTCTATTGTCAGGTTAGCGGTAA
 AGAAGACAAGGAATTGGCGCATAACATTAAGGAGTTAACCGCTGGGATTCCTTATGGTCTATCTTAC
 CTATGCTAAATGAGACCGTGTGAGAGTGACGCTAACAGACCATTAAGGACTTAAAGAAATACAATATGAAC
 CTGCTTACCCATCTATTGATGTTGAGAATGGGAATATGTAATAAGAGCAAGAGAGCTCCAAAGTGATACA
 GGCACCTGGGTTAAATCATCAACAAGTACATGGACAGCTGAAGCAGGGGTTATCAAATGTTATGCTAT
 AGCTATCGTAGTTATTACAGACCGCTTAAACACCCAGATATTAAACATGAACTGGTAGCGGGCTATA
 CGAATGCTTAAATGGGAAACCCCTCATTATTCAAGGAAAAAGGTTGGCAATATACTCTTCTGAATACATGA
 AAGGAATCCAAGGGCGCGTAGATGTCAGCGTTGGTATTAA

5 MKTKIGLASICLLGLATSHVAANETEVAKSQDTTTASSSEQNQSSNKTQTSAEVQTNAAAHWDGDYVVKDDGSKAQ
 SEWIFDNYYKAWFYINSDGRYSQNNEWHGNYYLKSQGYMAQNEWIYDSNYKSWFYLKSDGAYAHQEQLIGNKWY
 FKKWGYMAKSQWQGSYFLNGQGAMMQNEWLYDPAYSAYFYLKSDGTYANQEWAQVGGKWWYFKWGYMARNE
 WQGNNYLTGSGAMATDEVIMDGTRYIFAASGELKEKKDLNVGVWVHRDGKRYFFNNREEQVGTEHAKKVIDISEHNG
 10 RINDWKKVIDENEVDGVIVRLGYSGKEDLANHNIKELNRQIPIYGVLYTAEENETDAESDAKQTIELIKKYNMNL
 PIYYDVENVYVNKSRAKPSDTGTVVKIJNKYMDTMKQAGYQNYYVSYRSLLQTRLKHPDILKHVNWVAA
 EWENPHYSGKKGWQYTSSEYMKGIQGRVDVSVWYZ

15 **ID52 774bp**
 20 ATGAAAAAAATTGCCAACCTTATCTGGACTGGTCTTCTGGCCTCTACCTGCCATCTTTACTGATTGGCTA
 TGCCCTTAATGCTGGTGTGATGATGAAATAGCTTACAGGTTTAGCTGGACTCATTGAAACCATGTTGGAGAT
 25 GGGAGACATGCTGATTGGCTCAGACATTCTTGGCCTCTACAGCCTTGATAGCGACCATTATGGGA
 CTTTGGGCCATTACATCTACAGCTCGTAAGAAATACCAAGAGCCTTCTACACTCAATAATATCCTCAT
 30 GGTGCGCCTGACGTATGATGGTCTAGCTTGTGATCTTACCAACTCAAGGTTTCACTTGGCTTTG
 CCGTCTATCTAGTCAGCTGGCCTCTCCATTCTATGTTGCTTGTGCTGACTCAAGGAAATGAA
 TGGCGACATGATTGATGCGGCCTATGACTTGGAGCTAGTCATTGAGTGTCAAGGAAATCATGCTTCTTAC
 CTGACTCCGTCTATCATTACTGGTTATTCTGGCCTCACCATTGTTAGATGACTTGGCTGACCTTCTTGT
 35 AACAGGAAATGGCTTTCAACCTATCAGTCAGATTACTCTCGTCTCGCAAGGGATTCTTAGAAATCAAT
 GCCCTGCTGCTCTAGCTTCTTCTAGTATTATCCTAGTTGAGTTATTACTCTAGTCTAGGTTAGAAATCAAT
 GCAAGCATGA

40 MKKFANLYGLFLVLYLPIFYLIGYAPNAGDDMNSFTGFSWTHFETMPGDGRMLILAQTFFLAFLSALIATIIGTFA
 IYIYQSRKYQEAFLSLNNILMVAPDVMIGASFNUFTOLKFLGFLTVLSSHVAFSIPVVLMLVPLRLEMNGDMI
 DLGASQFQMFKEIMLPYLTSPSIITGYMAFTYSLDDFAVTFFVTGNGFSTLSVEIYSRARKGISLEIN
 ALSALVFLFSIIUV
 GYYFISREKEEQAZ

45 **ID59 1071bp**
 50 ATGAAAAAAATCTATTCACTTCTAGCAGGAATTGCGAGCTTCTGGGGAACTTCTGGGAAATTGCGACTCATTTAG
 ATAGAAAAATCAATAGTCGAGATGTCAAAATTGGTTATCTATAACTGGGGAGACTATATCGATCCCTGAACCT
 GACTCAGTTACAGAAGAACAGGAATTCAAGTCAGTCCAGAGACTTACTCCAAACGAAGCCATGTACACTAA
 GATAAACGAGGGTGAAACGACCTACGATATTGCCATTCAAGTAATCATGATTAACAGATGAAGGGACGAAG
 ACCTTGGTCCGCTTGTATTCAAAATTGAAGGAATCGAAAATATGGACCAAGGAGTTCTCAACCAGTCCTT
 TGACCCAGGAATAAATTCTCCATCCCTTACTCTGGGGAACTTAGGAATTGCTACACGAAACCATGGTAGAT
 55 GAAGGCCCTGAGCATGGGATGACCTTGGGAAGCGGAGTATAAGAATTCTATCATGCTCTTGTGGCGCG
 GAGGTGCTGGACTAGGACTCAATTCCCTCGCTACAGCCTCAACTCCAAAGGATCTGCGCAGTGGGAAGAGAC
 GTGGATAAGCTACAAACTGACTCCAAATATCAAGGCTATGCTGCGCAGGAGTGAAGGGCTATATGATT
 AATAATGTTGAATCGCGTGACCTCTGCTGAAGCCAGCCAATTGTTAGAAAAAAATGAAATCTACGTT
 60 GTGGTACCGACAGAGGCCAGCAATTGGTTGACAATATGGTCTTCCAAAACAGTTAAAACCAAAACTCA
 GCCTATGCCATTCAACTTATGTTGAAACCTGAAAATGCTCCAAAATGCGGAGTATGTCGGCTATTCAACAC
 CAAACCTACCGCAAGGAATTGCTCCAGAGGAACAAAGGAAGATAAGGCCCTTATCCCGATGTTGAAACCA
 TGAAACACCTAGAACGTTATGAGAAATTGACCCATAATGACAGGGAAATATAGCGACCTTCTACAGTT
 AAATGTATCGGAAGTAG

65 MKKIYFLAGIAAAILVLWGLIATHLDKINSRDSOKLVIYNWGDYIDPELLTQFTEETGIQVQYETFDSN
 EAMYTKIKQGG
 TTYDIAIPSEYMINMKDEDLVPLDYSKIEGIENIGPEFLNQSFDPGNKFISIPYFWGTLGIVYNET
 MVDEAPEHWDDLW
 KPEYKNSIMLFDAEVLGLGLNSLGYSLSNKSNDLQQLLEETVDKLKLPNIKAIVADEMKGYMIQNN
 VAIQVTFGEAS
 QMLEKNENLRVVVPTEASNLWFDNMVIPKTVKNQNSAYAFINFMLKPENALQNAEYVGYSTPNLPA
 KELLPEETKED
 KAFYPDVETMKHLEVYEKFHDHKWTGKYSDFLQFKMYRKZ

ID61 1851bp

5 ATGAATAAAAACTAACAGATTATGTGATTGATCTGGTGGAAATTAAATAAAACAACAAAAGCAGGTTCTGG
 GGAATATTGATATTTCAGTATGGTTCCATCATGTATCTTATATTATGGCTGATTAATCCAGC
 ACCTGTTGACTACATTATCTATACAGAGTTGGCCTTCTGTTCTATCAATTGATGATGGTTGGGGTTGAACG
 CGAGCATTAGTCGTTACAGCAAGATTACCGGATTCTCATGAAAATCTTTGGGTGACTGCTAGCAGTCTTGTC
 ATATAGTACTGTTATGCCCTTGCACACTCTCCATCCGTTCTCATCTTATCTGTTGAGTACCTTCTT
 GATTATTGCCACGGATTACTTGCAGTTAATCTACTCCAGACGCAAAAAGGTAGTGGTGTATGGAGAACACCG
 TCGGACCTCTTGTGGTGCCTGATGGTGGGCTCTTATGGATAGTTACCAACATCCAACCAGTGAATTA
 10 GAACTGGTCGGTATTGGATAAGGATTCTAAGAAAAAGGGTCAAAAACCTGGTGTATTCTGTTGGGCTCTT
 ATGACAATCTGCTGAATTAGCCAAACGCCATCAAATCGAGCGTGTATCGITGCGATTCCGTGCTGGATCCGT
 AGAATATGAGCGTATCTGCAGATGTAAATAAGCTGGTGTCAAATGTTACAAGATGCTAAGGTTAACCTGT
 TGTTAGGGCTTACCAAGCAGGTACTGGCTTCAAAAAGGTGATTGATTAATACGGACCTTGGTGTAGGAAATC
 15 CGTCTGACGAATCGCGTCTGGGTGAGAAGTCACTGACAGGTAAGACCATCTTAGTCACAGGAGCTGGAGGTTCAATC
 GGTCTGAAATCTGCGTCAAGTTAGTCGTTCAATCTGACGATTGCTTGTCTCGGTATGGGAAAACCTCAA
 TCTACCTTGTATCATGATTGATTCGTAAGTCCAAGGGATTGATTATGACCTGTGATGGCGACATTCAAGA
 CTATGATCTTGTGCAAGTCTTGCAGTACAAACCTGCTATGTTATCATGGCGCAGCCCACAAGCATGTT
 CCTATGATGGAGCGCAATCCAAAAGAAGCTTCAAAAACATATCCGTTGAACTTACAATGTTGTAAGGCTT
 20 GATGAAGCTAAAGTGTCAAGATGGTATGTTGACAGATAAGGCAGTCAATCCACCAAATGTTATGGAGCA
 ACCAAGCGCGTGGCGAGTTGATGTCAGTGGCTTAAACCAACGTAGCCAATCAACCTACTGTGCAAGTCTGTTG
 GGAATGTTCTTGTAGCCGTGGTAGTGTCACTTCAGCTTGAACGTCAGATGTCAGGTGGCCTGTAACCGT
 GACAGACTCCGTATGACCCGTTACTTATGACCTTCCAGAAGCTAGCCGTCTGGTTATCCATGCTGGTCTTAT
 25 GCCAAAGATGGGAAGCTTATCTTGATATGGCAACCCAGTCAAGATTATGACTTGGCAAGAAGATGGT
 CTTCTAAGTGGCCACACTGAAAGTAAATTCAATGTTGAGTTGAAATCCGCCCCAGGTGAAAACCTACGAA
 GAACTCTGGTATCAACCGAACTCGTGTATAATCAAGTTATGGATAAGATTTCGTTGAAAGGTTATGTCACTG
 CTTTAAATCCATCAATCAAAGATTGGAGAGTTCGCACTCTAGTGGAGATGAGTTGAAGCAAGCTATTATCG
 CTTTGCTAATCAAACAAACCCACATTGAATAA

30 MNKKLTDYVIDLVEILNKQQKQVFWGIFDIFSMVVIIVSYIYLFGLINPAPVDYIIYTSIPLFLYQLMIGFWGLNASISRY
 SKITDFMKIFFGVTAASSVLSYSICY AFLPLFSIRFIIILFILLSTFLILLPRITWOLIYSRRKKSGDGHEHRRFLIGADGGALF
 MDSYQHPTESELELVGILDKDSKKKGQKLGGIPVLGSYDNLPALAKRHQIERVIVIAIPSLDPSEYERILQMCNKLGVKCYK
 MPKVETVHQGLHQAGTGFQKIDITDLLGROEIRLDESRGLAEKTGKILVTGAGGSIGEICRQVSRFNPERIVLLGHGEN
 SIYLVHEILRKFQGIDYVPVIADIQDYDRLLQVFEQYKPAIVYHAAAHKHVPMMERNPKEAFKNNIRGTYNVAKAVD
 35 EAKVSKVMISTDKAVNPVNVMGATKRVAAELIVTGFNQRQSSTYCAVRFGNVLSRSRVIPVFERQIAEGGPVTDFR
 MTRYFMTIPEASRLVIHAGAYAKDGEVFILDGMKPVKIYDLAKKMVLSSGHTESIPIVEVGIRPGEKLYEELLVTELV
 DNQVMDKIFVGKVNVMPLSINQKIGFRTLSGDELKQAIIFANQTTHIEZ

ID101 1338bp

40 ATGATTGAACCTTATGATAGTTACGTCAAGAAAAGTCGAGATTACATGAAAGTCTAGTCGACTGGTCTTCTC
 AACTGGAGTGGTCATCGATGCGAGATGGTTCTGCTGATGGTCTGTTCTCCTTACCTTATCTAGGTTAC
 GAGGATGGAAAACCTCTCTATTAACTCAAGTCCCGTGTAGATTGGAAATTAGGAGATAATCAGTCTG
 CTGTTATGAAAGATCTGAGCTTACAGTCAGGTTGACCAACTAACATGCTTGGAGCTTGTGTTAAACA
 45 GGTAGACTGGAAAAGACCTAGAAGGTCGAGTACGTCAGGTTGACCAACTAACATGCTTGGAGCTTGTGTTACTGAC
 AACGACTTATGCGAGATAGCGAGCCGATTATGACAGTTACCAAGATGTCATGGTCAACAAAGTTTACTGGA
 AAACCATGTGACGGGTGATATCTTATTGACTTGCAGGTCACTTACATGCTTACTTGCAAATAAGTTGAATT
 ATCACCTCTTGTCAAGATTGAAATAGACACTGAGTCAGCTTATCTTAAACTCTAGCGACTCCTTCTGTT
 TTCCCTCATCATCCAGATAATCTGGCTCGATGTCGTTGATGGCAGGAACCTCTATGTCATGCCATTCCAGGT
 50 AATATGCACTGGTATTTGAAAGTGTAAATGTCGACTAAGAAGATCATCATTCCAAATAAGGCACATTGAG
 CGCGCTTAAAGTTAACTGACGAGAAATACCATGTCAGTTGTCACCTGGGTTATCATTACAGTTCAACACGTG
 ATAATTCCTAAGACGAGATGCTTAATCTGACCAATTGACATTGAGCAAGTAGAAGCAATCGCAGGAG
 CCTTGCTGATGTCACCTTCGTTATGCAAGGGTGCAGAGAGATGTCCTCTAAGCTTACAGATGCTTGCCTATCCT
 AATGTGCCCTTACAGAACGCTAGTCCACAGAAGATCAGGAGCTGATCAACTGTCGGATATTACTTGGATA
 55 TAAACACAGATAATGAGTTGCTACAGGCACTGGCTCAGGAGCTTGAACGACAATCTTGTGATCTGGCTTAAATCA
 GACGGTGACAATAGACTTATATGCTCCAGACCATCTTGAAGTAGTGAAGTTGCTGCTTGGGTTGAGACC
 ATTAAATTGCCCTTACAGATGTTGATCAAATGCGTCAGGCACTTGGCAAACAAGGCCACATGCAAATTATGTTG
 ACTTGGTAGAGATACAGGAAACCATGCAAACGTGTTAGGAGGCTAA

60 MIELYDYSQSERSDLHESLVATGLSQLVVIDADGFLPDGLLSPFTYLYGEDGKPLYFNQVPSDFWEILGDNQSACIE
 DVTQERAVIHYADGMQARLVKQVDWKDLEGVRVQDVHYNRFACFATTYSADSEPIMVYQDVNGQQVLLENHV
 TGDIILTPGQSMRYFANKVEFITFFLQDLEIDTSQFLNTLAPFLVSFHHPDKGSDVLLVWQEPYDAIPGNMQLILES
 DNRVTKIIIPNKATYERALELTDEKYHDQFVHLGYHYQFKRDNFLRRDALILTNSDQIEQVEAIALPDVTFRIAVT
 EMSSKLLDMLCYPNVALLYQNASPQKIQELYQLSDIYLDINHSNELLQAVRQAFEHNLILGFNFQTVHNRLYIAPDHILFE
 65 SSEVAALVETIKLALSVDQMRQALGKQQHANYVDLVRYQETMQTVLGZ

ID102_1512bp

5 ATGACAATTACAATATAAATTAGGAATTGGTGGCTAGTAGCGGTGTTGAATACGCTCAAGCCTATCGTGCTG
 GTGTTTTCGAAATTAAATCTGCTCTAAGTTATCTTACAGATATGATTAGCCGATAATATTCAAGCACTTA
 ACAGCCAATATTGGTTGATGATAATCAGGTTATCGGCTTATAATCATTACAGATATCAAATTGCACCTA
 CTAGCGTACAGTGGATGATGTCGGTACTTGGTGGTGAAGAAAGTCACAGAGAAAAAATGGCAAGGTTT
 TACGTGATTCTTGTGACCAAGATAAGTTGTAACCTGTTATTGGTGTGAGAACAGGACTTGGTCAACA
 TGCGAGATGTTTAAGGAAACCTGATTCGGAAGGATTACTTTCTTACCGCTTATTGTAGCGAGTATT
 10 GCTCCAAAGGACAATGTTGAGCTTACCAACGAACTTTTATAATGAAGACGGGACTCCAGTCTATGATATCT
 TGATGAATCAAGGAAAGGAAGAAGTTTATCATTCAAGGATAAGATTCTATGAAAGCAAGCTTTGTGCGT
 CCTTATGAAATCTTGAATTGAATAAGTCGATTGGTCACTTCGATAGGGAGACAGGTATTGGACAGGTT
 GTTTGGAGGAAGCACAGCACATCTAGCGTAGTGTGATGCGGAGCATTAGTGAAGAACAGGACTTGGT
 15 GGACTATCCTTGAAGAAACTATTAGACTATCAGTTACCAATGCAGATAAGGTTGACTTCTTATCGTGCT
 ACTGATAGACAAAATGAAGTCTACAAGAGCAATTGCAAAATTAACGATCAGCAGGAAAGATTGTTACCA
 CCTGAGGAGTATTGATTCTGACAGATCAAGTCAGGCGCAACACATTTCATTGATTACGGCTTACGTC
 TTGCCAAAGAAAACACATTGATTGGCTGTGAAAGCTGATTGAAAGCTCATAAAGGAGTACCGGAACTAAC
 TTGATATCTATGGTAGTGGTGGAGAAGATTCTGCTTAGAGAAATTATTGCAAATCATCAGGAGGACTAT
 20 CCAACTCAAGGGGATCGGGAACTTGCAGATTAGCCAGTATGAGGTCTACTTAACGGCTTACCGAGCGA
 AGGATTGGTGTGACCTTGATGGAAGCTATTGGTCAGGTCTACCTCTAATTGTTTGTGCTTATGGTAATC
 AGACCTTATAGAGGATGGGAAATGGTTATTGATTCAGGCTATGACCATGAGAACAGCAAATCAAGC
 AAGCTTATGCCCTAAGATTGTCATAAGAAAATGTTGGAAGCTATGCGTGCCTATTCTACCAAAT
 TGAGAAGGCTTGTGACCAAAAGAAATTAGAAAGTGAAGAACAGTAGAGGAGGTGCTCATGATTGA
 25 MTIYNINLGIWASSGVEYAQAYRAGVFRKLNLSSKFIFTDMILADNIQHLTANIGFDDNQVIWL
 VDDVLAYFGGEESHREKNGKVLRVFFDQDKFVTCYLVDENKDLVQHAEVYFKGNLIRKDYSYTRYSE
 FAPKDN
 VAVLYQRTFYNEGTGTVYDILMNQKGEEVYHFKDIFYGKQAFVRAFMKSNLNKSDFVLDRET
 GIGQVVFEAQTA
 HLAVVVAEHNSENATNEDYILWINNYYDYQFTNADKVDFIVSTDRENEVLQEQQFAKY
 TQHQPKIVTIPVGSI
 DSQGRKPPSLITASRLAKEKHIDWLVKAVIEAHKELPELT
 FDYGGGEDSLLREIIANHQAE
 DYIQLKGHAELSQIYSQE
 30 VYLTASTSEGFLTLMEAIGSGLPLIGFDV
 PYGNQTFIEDGQNGYLIPSSSDHVEDQIKQAYAAKICQLYQEN
 LEAMRA
 YSYQIAEGFLTKEILEWKKTVEEVLDZ

35

ID103_2292bp

40 ATGCTCTCTTTCGATCAAGAATTAGTAGCTAAAACAGTAGAGTTCTGAGCGTCTTCCGAGGGAGAAAGTC
 TAGACGATAATTGGTGAAGCTTCTGCTGCTGAGCAGATAAGCGGATTAGGGATGTTCTTATGA
 TGTTCAAGTCATGGAGCTATTGTCATGCACTATGAAATGTTGCTGAGATGAAATACGGGGGAGGTAAAGACCTT
 GACAGCTACCTGGCTGTCTATTGAAACGCTTTCAGGAGAAGGAGTGTGTTGACTCTAATGAGTATT
 TCAAAGCGTGTGAGGGAGGAAATGGTCAAGTTATCGTTCTAGGATTGACCATTGGTGTACCATTTACGGAAG
 ATCCAAAAGAAGGAGATGAAAGCTGAGAAAAGAAGCTTATGCTTCCGATATCATCTACACAAACAAATAGTA
 ATTAGTTTGATTATCTAAATGATAACCTAGCTCGAATGAGAAGGTAGTTTACGACCGTTAACTATGT
 GATTGATGAAATTGATGATGATCTGCTTGTAGTGACCAAACCTCTGATTATTGCGGGTTCTCTCGTGTT
 45 AGTCTAATTACTATGGCATATTGATGACACTTGAACAAACCTGGTCAAGGAGAGGAGGTTATCTTAAAGAGGA
 GAAAGAGGAGGTTGGCTCACTACTAAGGGGCAAGTGTGAGAAATTCTCTAGGATTGATAATTACAA
 GGAAGAGCATCGCTTTGCTCGTATTGTTATGCGATTGAGCTCATAGCTTAACTAAAGATAAGGAC
 TATATCATTGAGGAAATGAGATGGTACTGGTGATAAGGGAACAGGGCGTCTAATGAAATGACTAAACTCAA
 GGAGGCTCCATCAGCTATTGAGGCAAGGAAACATGTCAAATTCTCTGAGACGGCGGGCTATGCCCTCGATC
 ACCTATCAGAGTCTTTAAGATTTAAGATATCTGGTATGACAGGGACAGGTAGGTCGCGGAAAAAGAG
 TTTATTGAAACTTACATATGTCAGTACGCATTCCACCAATCGCAGACAACGGATTGACTATCCAGATA
 50 ATCTATATACCTGAAAGTGTATGCTCATCTTGGAGTACATCAAGCAATACCATGCTAAGGAAATCC
 TTTACTCGTTTGAGGCTCAGTTGAAATGTCACCTATCGTCTCTTGTGTTCTGTAAGGGATTGCCATA
 ATGCTCTAAATGCTAAATGCGCGCGTGGAGGCTCAGATTATCTCCGAGTCAGTGGGGGCTGTGACAG
 TGGTACCTCTATGGCAGGACGGTGTACGGATATCAAGCTTGTAAAGGAGTCGAGAGCTTGGGGCTTGATT
 TTATTGGACTGAGGGAGTGGAAAGTCAGCGATCGACCTACAAATTGTCGGCGTTCTGTCGTCAGGGAGATC
 CTGGTATGAGTAAATTGTTGATCTTAGGAGGATGATGTTATCAAGAAATTGGTCCATCTGGGTGATA
 55 AAAA
 GTACAAAGACTATCAGGTTCAAGATATGACTCAACCGGAAGTGTGAAATACCGGAAACTAGTCGA
 AAAGGCTCAGCATGGCAGTGTAGTGTGCTGGACGTTCAAGCAGTCGAGACTCTGGAGTATGCTGAAAGTATGAA
 TATACAACGGGATATGCTATAAAAGAGAGAAATGCTTAATAGATGTTCTGTCGACTTAGAGGATGTTGTT
 GATATCATTGAGGAGATACAGAAGAGGTAGCGGCTGATCACTATGCTAGTCGTTGAAATTGTTTACTTTATTG
 TGACCAATATTGTTCTGTTAAGAGGTTCCAGATTATAGATGTAACGACAAAATGCACTTCTGAGCTT
 60 TATGAAGCAGGTGATTGATAAAGAAACTTCTGAAAAGAAATTACTTAATCAACATGACTTATATGAACAGT
 65

TTTACGACTTCACTGCTAAAGCCATTGATGACAACGGTAGAGCAGGTAGACTATCTACAACAGCTATCCATG
GCTATCGGGTCAATCTGCTAGTCAGAAAATCCAATCGTAGAGTACTATCAAGAACCTACGCCGGCTTGAA
GCTATGAAAGAACAGATCATCGGATATGGTGCCTAATCTCCTGATGGGCTGGTGGAGTCCTCCAAAAGGT
GAAATCGTGAACATTTCCATAA

5 MSSLSDQELVAKTVEFRQLSEGESLDDILVEAFAVVREADKRILGMFPYDVQVMGAIVMHYGNVAEMNTGEKLT
ATMPVYLNASFEGVMVTPNEYLSKRDAEEMGQVYRFLGLTIGVPFTEDPKEMKAEEKKLIYASDIIYTTNSNLGF
DYLNDNLASNEEGKFRLPFPNYVIIDEIDDLDSAQTPLIAGSPRVQSNSYYAIIDLVTTLVEGEDYIFKEEKEEVWLT
10 GAKSAENFLGIDNLYKEEHASFARHLVYAIRAKLFTKDHYIRGNEMVLVDKGTRLMEMTKLQGGLHQAJEAKEH
VKLSPETRAMASITYQSLFKMFNKISGMTCGVKAEEKEFIETYNMSSVVRPTNRQRIDYPDNLYTLPKVVASLEYIK
QYHAKGNPLLVFGSVEMSQLYSSLLFREGIAHNVLNANNAAREAQIISESGQMGAVTVATSMAGRGTDLKLGKV
15 LLGIVIGTERMESQRIDLQIRGRSGRQGDPMKFSVLEDDVVIKFGPSWHKKYKDYVQDMTQPEVLIKGRKYK
LVEKAQHASDSAGRSARRQTLAESMNIQRDIVYKERNRLIDGSRDLEDVVVDIERYTEEVADHYASRELLFHFI
NISFHVKEVPDFYIDVTDKTAVRSFMKQVIDKELSEKELLNQHDLYEQFLRSLLKAIADDNWVEQVDYLQQLSMAIGG
QSASQKNPIVEYYQEAYAGFEAMKEQIHADMVRNLLMGLVEVTPKGIEVTHFPZ

ID104 879bp

20 ATGAAACAAGAATGGTTGAAAGTAATGATTGTAAAAACAAAGCAAGAACAGCTGAAGAGCAAGCTCA
AGAGGTTGCAGACAAGGCTGAAGAAAGGATACCGATCTCGATACACCAATTGAAAAAAATACTCAGTTAGAGG
AGGAAGTCTCTCAAGCTGAAGTCGAATTGAAAGCCAGCAAGAAGAGAAAATTGAAGCTCCTGAAGACAGTGAA
GCGAGAACAGAAATAGAAGAAAAGAGGACATCTAATTCTACTGAAGAGAGCCAGACCTTTCTAAAGAAACAGA
AAAAGTCACTATAGCTGAAGAGGCCAGAACGCTCTCCCTCAGCAAACAGCAACCACGAAAGAGCCACTCTTAT
CAGTAATCTTAGAAAAGCTCTTATATCCCAGCCAAGCTCCAAAATCTAGGGATAATGAAAGAGCAAGTGCT
25 TGATTTTGGCTTGGCTAGTGGAAAGCAGTCATCTCCTACAAGTAAGTTGGAAACAAGTATCACACACAGTTAC
ACAGCCTTCTCTGCTATTCTGTTCTGCATCTCTTCTTCTAGTATCTACATCAAACATGCTTACTAT
GGACATATAGCAAGCATTAAACAGTCGCTTCCCTGAGCAGCTAGCTCTTAACTCTTTCTATCATCTATCCT
AGTAGCGACAAACACTCTCTCTTCTGGTAGTTCTGGTAGACGATTATCCACCAGGAAAG
GACTGGACGCTAGACAAGTTCTCCAACAATATAGCAACTCTGGCAATTCAAATCTCCTACTGCTATTGCTAG
30 TTCTTGCCTTCTTGATAGCCTACGATTACAGCCCTCTTGTGTGTA
MKQEWFESNDFVKTTSKNPREEQAEVADKAERIPDLDTPIEKNTQLEEVSVQAEVELESQEEKIEAPEDSEARTEIE
EKKASNSTEEEPDLSKETEKVIAEESQEAALPQQKATTKEPLLISKSLESPTYIPDQAPSKSRDKWKEQVLFWSWLVEAIKS
35 PTSKLETTSYTAFLLLILFSASSFFSYIHKHYGHIASNSRFPEQLAPLTLFSIISLIVATTLFFFSLGSFVVRRIH
QEKDWTLDKVQLQYSQLLAIPISSLLLVSLLSLIAYDLQPSCVZ

ID106 327bp

40 ATGACTTTCCAACATCCTCTGCCTGATTGAATTCTCATCTGGCTGACTGGAGCAGGGTATTCTATGGTA
TGAGATTAGCCAAACCATTAAGCTGATCGCTAATATCAAAGAACATCCACACTCTATCCATTCTAAAAATTGGA
AGGCAATAGCTTCTGACAACCTATTCTAGAGAGTCCAAAGGTGCGATGCCAAATACTACTCCTGACAAACGG
TGGTATAGAGCAGCTCTGACCCCTAAAGATGAATGGGACTCTATACAGACACCATCAATGGCATCATAGAAGG
GAGTATCGCCATGACAAGAAGTGA
45 MYFPTSSALIEFLILAVLEQGDSYGYEISQTIKIANIKESTLYPIKKLEGNSFLTTYSREFQGRMRKYYSLNGGIEQLLT
LKDEWALYTDTINGIEGSIRHDKNZ

ID108 954bp

50 ATGGATTTGAAAAATTGAACAAGCTTATATCTATTACTAGAGAATGTCAAAGTCATCCAAAGTGATTGGCGA
CCAACCTTTATGACGCCCTGGTGGAGCAAATAGCATCTATCTGGATGGAAACTGAGCTAAACCAGGTCAAG
ACAACAATCAGGCCCTTAAAGCCTTGGAGCAAAGAGAACAGTCAGACCTACCGCTAACAGCTTCTTGTGTTAT
AGGCTGGCACAACAGAACCCCTTGAGGCCAACTCAGCTTGGAGCAAAGAGAACAGCTTCTTGTGTTAT
TGTGGAAAGTTGTTAAAGAGGAGGAAATTACTATCCTCGAAATGGGTTCTGGATGGGAATTCTAGGCCTAT
55 TTTCTGACCTCGCTTACTAAAAGGTGGATTACTTGGGAATGAAAGTGGATTTGCTGATTGATCTGGCAGCT
AGCATGGCAGATGTAATTGGTTGAGGCTGGCTTGTCCAAGGAGATGCCGTTGCCACAAATGCTAAAGAA
AGCGATGTGGTCACTGACTTGCCTGTCGGCTATTCTGATGATGCCGTTGCCACAAATGCTAAAGTGGCTT
CTAGCCAAGAACATACTTACGCCCATACTTGCCTGATGAAACAGGGCTTAAAGTACTCAAGTCAGACGGATACG
CTATTTCTAGCTCCGAGTATTGTTGACCACTGCTCAAAGTGGCTGAAAGAACAGG
60 GAGTCTGGTGTCTAGATTAGCTGCTGAAATCTTGTCTAATGCCAAACATCAAGACTATTTATCTTAC
AGAAGAAAATGAAATAGCAGTAGAGCCTTGTATCCACTTGTCTAGCTTGTCAAGATGCAAGTGTAAATGAA
ATTTAAAGAAAATTCTAAAATGGACTCAAGGTACTGAAATATAA
65 MDFEKIEQAYIYLLENVQVIQSDLATNFYDALVEQNSIYLDGETELNQVKDNNQALKRLALRKEEWLKYQFLMKA
QTEPLQANHQFTPDAIALLVIVEELFKEEETILEMGSGMILGAIFLTSLTKVDYLGMEVDDLLIDLAASMADV

GLQAGFVQGDAVRPQMLKESDVVISDLPVGYYPPDAVASRHQVASSQEHTYAHHLMEQGLKYLKSDGYAIFLAPSD
LLTSPQS DLLKEWLKEEASLVAMISL PENLFANAKOSKTIFILQKKNEIAVEPFVYPLASLQDASVLMKFKENFQKWTQG
TEIZ

5 ID110 1902bp

ATGATTATTTACAAGCTAATAAAATTGAACGTTCTTGCAGGAGAGGTTCTTCGATAATATCAACCTGCAGG
TTGATGAACGAGATCGGATTGCTCTGGGGAAAAATGGTCAGGTAAAGTCTACTCTTGAGAAGATTTAGTTGG
AGAAGAGGAGCCAACTAGCGGAGAAAATCAATAAGAAAAAGATATTCTGCTTACCTAGCCCAAGGATAGCCG
10 TTTGAGGAGCTGAAAATACCATCTCGATGAAATGGCTCATGCTTAAATGATTGCGTGGACGGAGAGACAACCTG
CGTCAGATGGAGCTGGAGATGGTGAAGGAGGGATAAACTGATGTCAGATTATGACCGCTTA
TCTGAGAATTTGCCAACAGGGCTTACCTGAAAGCTGATTCGAGCGATTGAATGGATTCAGGTTG
ACGAGTCTATGTGGCAGATGAAAATTGTCAGGCTTCTGGGGTCAAATACTCGTTGGACTTCCAAAATGCT
CCTGAAAAGGCCAACATCTCTGGCTTGGACGAGCCAACTAACCACTGGATATTGAAACCATCGCTGGCTAGA
GAATTACTGGTAAACATAACGGCTGGCCCTCATATCGTCAGCCACGACCGTTATTCCTGGACAAGGTTGCAGA
15 ATTACCGTAGATTGCAACGATTCTCTGGATCGTATGTTGGGAATTACTCTCGTTTGTCGAATTGAAGGAGC
AAAAGCTAGTTACTGAGGCAAAAACATGAAAAGCAACAGAAGGAAATCGCTGCTCTGGAAAGACTTTGCAATC
GCAATCTAGTTCTGCTTCAACGACTAAACGTCTCAATCTCGCGTAAACAACATGAGAAAATGGAGCGTTGG
ACAAGCTGAAGCTGCAAGAAAAGCAGCAACATGACCTTCCAGTCTGAAAAAACGTCGGGCAATGTTTTGA
20 CTGTTGAAAATGCACTGCTGGCTATGACGGGGAACTTCTGCAACCTACGATCTTCGTAAGAGATGAA
TGCTGCGTATCGTTGGCTTCAATGGTATCGCAAGTCACCTTCACTGCTATGTTGGACAGATTCCCTTT
ATCAAGGGAGAAAAGCCTTGGCCTAATGTTGAGGGTGGTACTATGACCAAACCCAAAGCAAGCTGACACCA
AGTAATACGGTCTGGATGAACTCTGGAATGATTCAAACATGACACCAGAAGTGAATCCGCAACCGTCTTGG
GCCTTCTCTCAGGAGATGATGTTAAAACAGCTGGCATGCTATCTGGTGGCAGAAAAGCTCGTTGCTT
25 TAGCTAAATTGCTATGGAAAACAATAACTTTGATTCTGGATGAGCCGACCAACCTTGGATATTGATAGTAA
GGAAGTGTAGAAAACGCTTGTGACTTTGATGGAACCTGCTGTTGTCAGTCAGTATGTTACTTTATCAAT
CGTGTGGCAACTCATGTTGGATTGTCTGAGAATGGTCAACTCTCACCTGGAGATTACGACTACTATGTTG
AGAAGAAAAGCAACAGCAGAAATGAGTCAGACTGAGGAAGCTCAACTAGCAATCAAGCAAGGAAGCAAGTCCA
30 GTCAATGACTATCAGGCCAGAAAAGAAGTTCGCAAACACTATGCGCAAAATCGAAAGTCTAGA
AGCTGAAATTGAGAGCTGAAAGCTAAAGCCAAGCATTCTGAACAAATGTTGAAACAAACGATGCCGACA
AACTCATGGAATTACAGGCTGAGCTGGACAAATCAGCCATGTCAGGAAGAGCTATGCTGAGTGGAGAAT
TATCAGAGCAGGTGAA

35 MIIQANKIERSFAGEVLFDNINLQVDERDRIALVGKNGACKSTLLKILVGEEPEPTSGEINKKDISLSYLAQDSRFESENT
IYDEMLHVFNDLRTEROLRQEMELEMGEKSGEELDKLMSDYDRLENFRQAGGFTYEADIRAILNGFKDESMWQMK
IAELSGGQNTRALAKMILLEKPNNLVLDEPTNHLDIETIAWLENLVNYSGALIVSHDRYFLDKVATITDLTKHSLDR
YVGNSRVELKEQKLVTAEKNYEQKKEIAALEDFVNRLVRASRTTAKRACOSRRKQLEKMERLDKPEAGKKAANMTF
40 QSEKTSQNVVLTVENAAVGYDGEVLSPQINLDRKMNAAIVGPNGIKSTFIKSIVDQIPFKGEKRFGANVEGVYYDQ
TOSKLTPSNTVLDLWNDFKLTPEVIRNRLGAFPLSGDDVKSVGMLSGKECARLLAKLMSMENNFFILDEPTNHL
DIDSKEVLENALIDFDGTLLFVSHDRYFINRVATHVLELESENSTLYLGDYDYYVEKKATAEMSQTEEASTSNQAKEAS
PVNDYQAQKESQKEVRKLMRQIESLEAIEELESQSQAISEQMLENDADKLMELQAELDKISHRQEEAMLEWEELSEQ
VZ

45 ID111 1179bp

45 ATGAATCGTATGCACTGCACTGGTATTAGCCGGGGCTATCAATAAAATGGGAAATATGCTCTATGATTATGGA
AATAGTGTCTGGGGCTATGGGGACTATAGGACAGACAGTTTAGGAATGATCAGATTCTGAGCTCGTCA
50 CATCTATTCTGTCATCCCTTGGCGAGTATTCTGACCCGTTTCTGCTGTAAGATTTAATGACGGCAGAT
CTTGTGTTGGGATTCTTGTCTGGCTATTCTTCAAGGAATGATAGCTGGATGATGGCGCTTGATTGTTG
TAACATTGTGCAGGCATTGCTTCTGCACAGCAATAAGCTATCATAACTGAAGTGGAGAAA
55 GATGAGATTGTGATCTATAATTCTGCTTAGAGCTGGTTGGCAGGTTAGGTGTTAGCTCTCTGTTCTTCTT
CCTGTTTACAGTTGCAAGTCTCATATGAGCTACTGCTAGACTCGCTGACTTTTCTATTGCTTGTCTAG
TGGCTTCTCCAAAAGAGGAAGCAAAGTCAAGAGAAAAGGCTTTACTGGAGAGATATTGTTAGATA
TCAAGGATGGGTTACACTATATCTGGCATCAGCAAGAAATTCTTCTTCTGGTAGCTTCCAGCGTTAATT
60 CTTTTTGAGCTTTGAATTCTACTCTCCCTTCACTGCTTACGCTTACGGCTCAGAAGGAGGCTATGCAAGTATT
TAACTATGGGGCTATTGGTTCATCATTGGGGCTCTTCTAGTAAAGCTAATATTATAATCTT
GATTCTACTGGCTTGACAGGTCTGGAGTTTATGATGGATTACCACTTCAACTTTCTTCTTCTGGAA
ATTAGTTGTGAATTGTTATGACGATTTAATATTCACTTTTACTCAAGTACAACCAAGGTTGAGAGCGAA
TTCTGGAGAGTACTGAGTACAATTCTACTGCTATTCTATTGCTATTGCAAAAGGATTATGACAGT
CTTGCCAAGTGTCACTCTTATTCTTCTGATTGGACTTGGAGTTGAGCTTATATTCTAGCTCTCGGAT
ATGTTGCAACTCATTTGAAAATTGATATAA

65 MNRYAVQLISRGAINKMGNMLYDYGNSVWLASMGTIGQTVLGMYQISELVTSLVNPFGGVISDRFSRKILMTADLV
CGILCLAIISFIRNDSWMIGALIVANIVQAIAFAFSRANKAIITEVVEKDEIVIYNSRLELVLOVVGSSPVLSFLVLFQASL
HMTLLLDSLTFIAFVLAFLPKEEAKVQEKKAAFTGRDIFVDIKDGLHYIWHQQEIFFLLL VASSVNFFFAAFEFLLPFSN

QLYGSEGAYASILTMGAIGSIIGALLASKIKANIYNLLILLALTGVGVFMMGLPLPTFLSGNLVCELFMTIFNIHFFTQV
QTKVESEFLGRVLSTIFTLALFMPIAKGFMVTLPVHLYSFLIILGVVALYFLALGYVRTHFEKLIZ

ID113 2466bp

5 ATGAAAAATCAATTAAATGAATTAAAACGAAAAATGCTGGAATTTCAGCAAAACAAAAAATAAAAATCA
GCTAGACCTGCAAGAAAGGTTCAAGTACCAAAAAATCTAAACCTTAGATAAGTCAGCCATTCCAGCTATT
10 TTACTGAGTATAAAACGCTTATTACCTACTCTTGACTCGGTTCTAGGAGGAATTTGGAGCTGGGATTG
CTTGGGATACGGAGTGGCTTATTGCAAGGTTGGGTGCCTCAGACAGAAGAATTGGTAATCAGGTCAAGG
ACATCTCTTCTATTGAGAGATTACCTATTGGACGGGACGGTATTGCTTCATAGAGAGTGATTGGTGCAC
TTCTATCTCATCTGAGCAAATTGCGAAAATCTGAAGAAGGCTATCATTGCGACAGAAGATGAACACTTAAAGA
ACATAAGGGTGTAGTACCCAAGGCGGTGATTCTGCCACCTGGGAAATTGTTAGGTTGGGTTCTAGTGG
GGTCAACCTGACCCAGCAACTAATTAAACAGCAGGTGGTGGGGATGCCGACCTGGCTCGTAAGGCCA
GAGATTGGATGCTCTTGGAACCGCCATGAAATAAGGATGAGATTAAACGACTATCTAAATGTTGCT
15 CCTTGGCCGAAATAATAAGGACAGAAATTCAGGGCTCGCAAGCAGCTGAGGGATTTCGGTAGATG
CCAGTCAGTGTACTGTTCTCAAGCAGCATTAGCAGGACTCCACAGAGTCCCATTACTACTCTCTTATGA
AAATACTGGGAGTGAAGAGTGTAGAAGACTAGAAATTGGCTAAGACGGGCTAAGGCAGTTTACAGTAT
GTATCGTACAGGTGATTAAAGCAAAAGCAGGATTTCTCAGTAAACAGGATTATGACCTTAAACAGGACTTAC
ATCGGGCACGGTTACAGGAATTTCAGGAGACTATTACTTAACTTTGGCAGAACGCTCAAGAACGTATGAT
20 GACTATCAGTCAGAGAGACAATGCTCCGTAAGGAGTTGAAAATGAGGCAACTCAGAAGTTTATCAGAGAT
TTGGCAGCCAAGGAAATTGAAAATGGTGGTTATAAGATTACTACCATAGATCAGAAAATTCTGCCATG
CAAATGCGGTGCTGATTATGGCTATCTTCTAGCGATGGTCTAGGTTAGGTTGCTGATTACAGAAAATCATGCC
GATAACCAAACAGCGTCTATTCTAGGTTAGGTTAGGTTGCTGATTACAGAAAATCATGCC
25 ATACCAAAACCTCGCAGCTCTACTAACAGGCTCTGCTACGGTATTGACCTAGGTTAGGTTGCTGATTACAGAAA
AAAGTAAAAGCTTCTACTAACCAAAACTTCTGTAATTGGCAATCCGATTATGCTATGCTAATAGCAAGGG
AACAGGAATGATGACCTGGAGAAGCTCTGAACTATTCTGAAATATCCCTGCTACTGGACCTATGCT
CGTAAAAGGGTGTGATGTCAGGTTATGGAAAAGATGGTTACGAGATTCTGAGTACGGTATTGAGAGC
30 TTGCCAATGGTGGTGTATTGAAAGTCACAGTGGCCAGCATACCAATGGCTACAGCCTAGCTAATAATGGA
GTTATCATCAGAACGATGTTGATTCAAGGATGAGCAGCAGATGGTAGAGTGGTATGAGTATCAGGATAAA
CCGGTCAAGTCTATTCAAAGCTACTGGCAGCATTGAGGATTGCTACGAGAACTTCTATCCTCGTGTG
CAACAACCTCAAGTCTAACCTGACTTTAAATCTACTCTGGCTAATGAGGATTGGATTGGGAAAGACTGGTAC
35 AACCAACCAAGCAGAAAATGTTGCTCATGCTTGGCACCTAGATTAACTCTAGGTTGCTGATTGGGATG
TGATAATCATCATTGTCAGTAGAGCAGGTTACTTAACCTTAATTACATGGCTCATCTGGTAAATGCGATT
CAGCAAGCTTCCCAGCACTTGGGGAAACGAGCCTTGTGTTAGATCTGAGTGTAGGAAATCGGAAGTCTT
AAATCAACAGGTCAAAACAGAGAAAGGTTCTGTTGAAGGAAAAGAAGTAGAGGTCACAGGTTGACTGTTAC
40 AGCTATTGGCTATAAGTCAGGAGCAGCAGTATGGCTATTGGGAGTCTACCAACTCCAGCTCAGTCAAGTGT
CAGAATGCTGGTCTAGTATTGTTGGAGTCTACCAACTCCAGCTCAGCAGTCAAGTAGTAGTTCTAGCG
ATAGCGTAACACTCAAGTACTACAGCACCTCTTCAAGGGCGAGACGATAA
50 MQNQLNELKRKMLEFFQQKQKNKSARPGKKGSSTKSCTLDSKAIFPAILLSIKALFNLLFVLGFLGGMLGAGIALGY
GVALFDKVVRVPQTEELVNQVKDIIISIETYSQDGTVIASIESDLRLRTSISSEQISENLKKAIATEDEHFKEHKGVVPKAVIR
ATLGKFVGLGSSGGSTLTLQLIKQQVVGDAPLARKAAEVDALALERAMNKDEILTTLVAPFGRNMKQONIAGA
RQAAEGIFGVDASQLTVPOQAFLAGPSPQTYSPYENTGELKSDELEIGLRRAKAVLYSMYRTGALSKEDEYSQYKD
DLKQDFLPSGTGTSRDLYFTTLAEAOERMYDYLAQRDNVSAKELNEATQKFYRDLAKEIENGYKITTIDQKI
HSAMQSAADYGYLDDGTRVEGVNVLMNDNQTGAILGFVGRNYQENQNNHAFDTKRSPOSTKPLLAYGIAIDQG
45 LMGSETILSNYPTNFANGNPIMYANSKGTMMLGEALNYSWNIPAYWTYRMLREKGVDKGYMEKMGYEIPEYGIE
SLPMGGGIEVTVAQHTNGYQTLANNGVYHQHVISKIEAADGRVYBEYQDKPVQVYSKATATIMQGLLREVLSRVTT
TFKSNLTSLNPTLANADWIGKTGTQNQDENMWLMSTPRLTLGWIGHDDNHSLSRRAGYSNNNSYMAHLVNQNAWSSI
SPSIWGNERFALDPSVVVKSEVLKSTGOKPEKVSVEKEVEVTGSTVTSYWANKSGAPATSYRFAGGSDADYQNAWSSI
VGSLPTPSSSSSSSSSDSSNSSTRPSSRARRZ

ID114 1974bp

55 ATGAAAAAAATTTATGTAAGTCCAATTTCCTATTCTAGTAGGATTGCTTGGAGTCTTACCACTTCAT
TATTTTGTAAATAATAATCTGTTGACGGTTAAATTGTTCTTGTAGGAGGCTATGTTTTATTTAAAGAA
ACTGAGAGTGCATTATAACAGGAGTGTAGAACAGATACTGTTAACCACCAAGCGGAAGAAAGTTGAC
AGCTCTATTGAAACAGATGCCTGAGGTGTTATGAAATTGTTCTGAGGAGGTTGAGTGGTTAAATCCC
TATGCTGAAATTGTTGACCAAGGAAGATGGTATTGTTAGAAGCTGTTCAAACGATTATCAAGGCTCAG
TAGGAAATCCGCTACTTATGCCAAGCTGGTGAAGCAGCTTATGCTGTTATGGATGCTTCTCCGGTGT
60 GTATTTGTAGATGTATCCAGGGAAACAGCCATAACAGATGAATTGTAACAAGTAGACAGTGATTGGATTGT
CTCTGTTGAAATTGATGTTGGAGGATGAAACTCTGAGTCAGATATTAGTCATGTTATGCTTCTCCGGTGT
AATTGTTATCATCAGAGTTTCAAGAAAACACATGATGTTCTGCTGGTAAGTATGGATGATTATCTATTAC
TGACTACAGGTGCTTGGGCTTGTAGTAAATTTCTGTTATGCTTCTGAGAAGAGTCAGAACAG
AGACAGTTGCCCTGACCTTAAGTATGGATTCTATGGCAGTGGAAATCATGATGAGATAGGAAAGTTGCT
65 TGCTCAATTGAACTTGGCTGAAGTACGTGGTGGCGACCAGGTGGTTGTTAAGGAAAACGACGAAACGAAAATC

CAGTTTATTTGGTGGTGGTCTGCTGCTCAATCAAGCGTACACGGACTCGTACGCAGCCTATGATGACAGCTAT
 5. TTCAAGATAAGATTGGAGGTAGATCAGGTTTGAGTCGGTCACAAAATTAGACATGGATGCTTGGGCTCT
 GCTGTAGGTATGCAGTTGCCAGCAATGTGATTGAAAATAGCTATGCTTTATGATGAAGAACAAATGTC
 CAGATATTGAACGAGCTGTTCATAGAAAAAGAAGGAGTTACGAAGTTGTTGCTGTTAAGGATGCAATGG
 GGATGGTGACCAATCGTTCTTGTGATTCTGAGACCATTAAGACAGCCTTAACATTATCAAAAGAATT
 10. TGATTATTACCCAAACCATGTTATTGACCCATAGAAGGGATCAGGATTTCAGATAATGCGTTTATTACT
 TATATCGAAAGTGGTCAAGTAGTGCCAGTGAGTTGTAACGGAATTGATTCAGTTCCAGAATTCAAGAAA
 CGTTGAGTCGTATGCAAGCAAGTGTCTGATGGCTGGTATGTTGGATACTAAAATTACCTCGCAGTAA
 CTAGTCGGACATTGATGTTGAGCTATCTCAGAACGCGCCGAAGTGATACTTTGCTATCCAGGAATCGCTGC
 GACAGATTGAGAAGAATATCGTGGGTCATAGAACTTATTTCACAGGGCGTAAATTAGGTTAGATGTTACTAATA
 15. GCAGAGGCTAAGGACATGAATGCTATGATACAGTTGTTATTAGTAAGGAGCAGATGCCATGTTAGCCATGTCA
 GGTATTGAAGCGAGTTGTTCTGCGAAGAATAACACAAGGATTATCTCTATCTCAGCTCGAAGTCGTAGTAAAC
 TGAATGTACAACGGATTATGGAAGAGTTAGCGCTGGAGGCCACTTAAATTGGCAGCAGCTCAAATTAAAGATG
 TAACCTTGTCAAGCAGGTGAAAACGTACAGAAATTGTTAAATGAAATGAAGGAAAAGGAGAAGAAAGAA
 TGA

MKKFYVSPIFPILVGLIAFGVLSTFIIFVNNNLLTVLILFLFVGGYVFLFKKLRVHYTRSDVEQIQYVNHQAEESLTALLE
 20. QMPVGVMKLNLSGEVEWNPYAEELILTKEDEPDFLEAVQTIKASVGNPSTYAKLGEKRYAVHMDASSGVLYFDVS
 REOAITDELTSRPVIGIVSVNDDLEDETSESDISQINSFVANFISEFSEKHMMSRVRVSMDRFYLFTDYTVLEGIMN
 DKFSVIDAFREESKQRQLPLTMSMGFSYQDGNHDEIKGVALLNLNAEVRRGDQVVVKENDETKNPVPYFGGSAASIK
 RTRTRTRAMMTAISDKIRSVDFQVFVVGHNLDMDALGSAVMQLFASNVIENSIALYDEEQMSPDIERAVSFIEKEGV
 TKLLSVKDAMGMVTNRSLLIVDHSKTALTLSKEFYDLFTQTTIVIDHHRDQDFPDNAVITYIESGASSASELVTELIOFQ
 NSKKNRLSRLMQASVLMAGMMMLDTKNFTSRVTSRTFDVASYLRTRGDSIAIQEIAATDFEEYREVNELILQGRKLGSDV
 LIAEKDMKCYDTVVISKAADAMLAMSGIEASFVLAKNTQGFISISARSRSKLNQRIIMEELGGGHFNAAAQIKDVT
 25. LSEAGEKLTEIVLNEMKEKEKEEZ

ID115 663bp

ATGAAGTCTCTTATGTGGCGAGACTATGAAGACTGTTAACCTTTAGTGTCTTACTCTGAGGAATGATG
 30. ACTCTTGTCTTGTTCAGACTGTGATTCTACTTTGAAAGAATTGGGAAGAGAAGACTGTCCAATTGTATGAAA
 AGAGTTGTCACAAAGTGTCAAGATTGTCACCTTGGTAAAGAGGGAGTTGAAGTCAGTCAGAGCGATT
 TACTTACAATCAAGCTATGAAGGATTTCAGTCGGTATAAGTTGATGGAGACTTCTGTTAAGAAAAGTT
 GCTTCATTTAAAGTGGAGTTGAAAAAGTACAAGAGTATCAATTGTTGTAATTCCCTAAGTCCTGATAGAT
 ATGCTAATAGAGGATTACGGTTGAGGGCTTGTAGAGGAGCAGCAGGCTTGTAGATCTGATTATTAGAGA
 35. AAAGAGAAGAGAGAGGCGAGTCTCTAAACATGTTGAGCCGTTGGGGAGAGAACCTTCTTCTTAA
 GTGGAGTCACTATTCTCTAAACATCTTACTTATAGATGATATCTACTACAGAGGACAATATAATCGTAA
 GAAACTGTTGGAAGAAGCTGGTCAAGGATGTAACATTCTCTGTTAAGATGA

MKCLCGQTMKVLTFSLLLLRNDDSCLCDSTFERIGEENCPNCMKTELSTKCQDCQLWCKEGVEVSHRAIFTY
 40. NQAMKDFFSRYKFDGFLLRKVFAFLSEELKKYKEYQFVVIPLSPDRYANRGFNQVEGLVEAAGFEYLDLLEKREER
 ASSSKNRSERLGTTELPPFKISGVTPKKILLDDIYTGTATINRVKKLLEEAGAKDVTFPSLVRZ

ID116 1299bp

ATGAAAGTAAATTAGATTATCTGGTCGTTTATTAATCTGAGAAATGAAATTACAGAAGAAGAACGTCAGTTGGCG
 45. GAGAAACTTCAGCAATGAGAAAGGAGAAGGGAAACTTTCTGCAACCGCTGTAATAGTACTATTCTAGAAGAA
 TGTATTTGCCATCGGTGTTACTATTGTCAGAGTGCTGCTGATGAAGGGAGTCAGAAGTGTCAAACATT
 ACTATTTCGCAGGGAGATTCTCAAGAACAGATGTTCTCAAATGGCGGCCAATTAACCTCTTCAAGAGAA
 GGTGTCAGAGGATTGCTTCAAGTAGTACAGAACAGGAAACCTTACTGTTGCTACATGGGTAACAGGAAGCTGGAAA
 GACAGAAATGATTATCAAGTAGTGGCTAAAGTGATCAATGCGGGTGTGAGTTGTTGGCTAGTCCTCGCAT
 50. AGATTTGTTGGAGCTGTACAAGCCCTGCAACAGGATTCTTCTGCGGAGTAGCTTGTACATGGAGAATCG
 GAACCTTATTTCGAACACCACTAGTTGTCACAAACCCATCAGTTATGAAAGTTTATCAAGCTTGTATTGCT
 GATAGTGGATGAAGTAGATGCTTCTTCTTATGTTGATAATCCCAGCTTACACCGCTGTCAGAATAGTGTAAAG
 GAGAATGGATTGAGAATTCTTAAACAGCAGCTGGACCAATGAGTTAGATAAAAAGGCTGGTTAGGAGAAACTA
 55. AAAAGACTGAATTACCGAGACGGTTTGTACATGGAAATCGTTGATTAATCCAAACCAATTGGTTATCGGATT
 ATCGCTACTTAGACAAGAAATCGTTGTCACCAAAAGTTAAAGTCTATATTGAGAAGCAGAGAAAGACGTTATC
 CGTTACTCATTTGCTTCAGAAATTAGAAAGGGAGCAGTTAGCAGAAATCTTACAGGAGCAATTCCAAATG
 AGAAAATTGGCTTGTATCTCTGTAACAGAGGATCGATTAGAGCAAGTACAAGCTTCTGAGATGGAGAACTGA
 60. CATAACTTATCAGTACGACAAATCTGGAGCGCCGAGTTACCTTCCCTGTTGAGTTGTTCTGAGTAA
 TCATCGTTGTTACCAAGTCTAGTTGTTGATTCAGATTGGTGGACGAGTTGGACGAAGCATGGATAGACCGACAGGA
 GATTGCTTCTTCCATGATGGTTAAATGTTCAATCAAGAAGCGATTAAGGAAATTCAAGATGATGAATAAGG
 AGGCTGGTCTATGA

MKVNLDYLGRLFTENELTEERQLAEKLPMARKEKGKLFQRCNSTILEEWYLPIGAYYCRCCLLMKRVRSQDQLYYF
 65. PQEDFPKQDVLKWRGQLTPQEKFVSEGLLQVVDKQKPTLVHAUTGAGKTEMUYQVVAKVINAGGAACLASPRIDVCL

ELYKRLQQDFSCGIALLHGESEPYFRTPILVVATTHQLLKFYQAFDLILIVDEVDAFFYVDNPMLYHAVKNSVKENGLRF
 LTATSTNELDKKVRLGELKRLNLPRRFHGNPLIIPKPIWLSDFNRYLDKNRSLPKLSYIEQRKTAYPLLIFASEIKKGE
 QLAEILQEQQFNEKIGFVSSVTEDRLEQVQAFRDGETLISTTILERGVTFPCDVVFVVEANHRLFTKSSLIQIGGRVGRS
 MDRPTGDLLFFHDGLNASIKKAIKEIQMNMKEAGLZ

5

ID117 870bp

ATGCAAATTCAAAAAAGTTTAAGGGCAGTCCTCCATGGCAAGCTGTATCTAGTGGCAACGCCGATTGGCAAT
 CTAGATGATATGACTTTCTGCTATCCAGACCTTGAAAGAAGTGGACTGGATTGCTGCTGAGGATAACGCCAAT
 ACAGGGCTTGTCAAGCATTTGACATTTCCACCAAGCAGATCAGTTCTGAGCACAATGCCAAGGAAAAA
 ATTCTGATTGTTCTGAAAGCAGGGCAAGTATTGCTCAGGTCTGATGCCGTTGCCTAGCATT
 CAGACCCCTGGTCACTGTTAGGAGCAGCTATTGAGGAAGAATTGAGGTGAGCTGACAGTTCCAGGTGCCTCTGC
 AGGAATTCTGCTTGTGTTAGGCCAGTGGTTAGGCCACAGGCCACATATCTTACGGTTTACCGAGAAAATCA
 GGTAGCAGCAGAAGCAATTGGCTGAAAAAAGATTATCTGAAACACAGATTATGAATCACCTCATCGT
 TAGCAGACACGTTGGAAAATATGTTAGAAGTCTACGGTACCCCTCGTTGCTTGGTCAGGGATTGACCAAA
 TCTATGAAAGAATACCAACGAGGACTATCTGAGTTAGAAGCATTGCTGAAACGCCACTCAAGGGCGAAT
 GTCTCTCATTTGAGGGTGCAGTGGGTGAGGAAAAGGACGAGGAAGACTTGTGAGAAATTCAA
 CCCGCATCCAGCAAGGGTGAAGAAAACCAAGCTCAAGGAAGTGCCTAAGGAAAGTGGAAATAAAAGTC
 AGCTTACGCTGCCTACCACGACTGGGAAGAAAACAATAA

10

MQIQKSFKGQSPYKGKLYLVATPIGNLDDMTFRALKEVWDWIAAEDTRNTGLLKHFDISTKQISFHEHNAKEKIPDLI
 GLKAGQSIAQVSDAGLPSIDPGHDLVKAIIEEEIAVVTVPAGASAGISALIASGLAPQPHIFYGFLPRKSGQQKQFFGLKK
 DYPETQIIFYESPHRVADTLNMLEVYGRSVVLVRELTKIYEYQRGTISLESIAETPLKGECLLIVEGASQGVEEKDE
 EDLFVEIQTRIQQGVKKNQAIKEVAKIYQWNKSQLYAYHDWEEKQZ

15

ID118 345bp

ATGATAAAAGAAAGGAAAGGGCTGTTTATGGACAAAAAAGAATTATTGACCGCTGGATGATTTCCAACAA
 TTATTGTAACCTTAGCCATGTGGAAGCCATCAAGAAAATCTCAAGAGCCTGGTAGAGGAAAATACAGCTTT
 CGCTTGGAAAATAGTAAGTTCGAGAACGCTTGGTGAAGCAGATGCTCTGTAAGGCCAACGATGTT
 CGCGAAAGTGTCCGTCTGTTACCGTGTGGATTACGCTATGTAATGATTTATGGACAACGTCGAGAGCAGG
 ACGAAGAATGTATGTTGTGACGAGTTGTTACAGGGAGTAA

20

MIKKGKGFMDKKELFDALDDFSQQLLVTADVEAIKKNLKSLVEENTALRENSKLRLERLGEVEADAPVKAKHRES
 VRJYRDGFHVNCDFYQQRREQDEECMFCDLLYREZ

ID119 639bp

ATGTCAAAAGGATTTAGTCTCTTGAGGGACCAGAGGGAGCAGGAAGACCACTGTTAGAGGCTCTGCTA
 CCAATTAGAGAAAAGGAGTAGAGGTGTTGACGACCCGTGACCTGGGGAGTCTGATTGGGAGAAGATT
 CGGGAACTGATTGGATCCAAGTCATACTCAGATGGTCTAAACAGAGCTACTCTCTATATTGCACTGCGA
 GACAGCATTGGGAAAAGTTCTCAGGCCCTGAAGCTGGCAAGTGGTCTGATCATGGATCGTTATCGATAG
 TTCTGTCCTATCAGGGATTGGCTGGCTTAGATATTGAAGCATTGACTGGCTCAATCAGTTGGCAGAGAT
 GGCTCAAACCCATTGACACTCTATTGACATCGAGGTGGAAGAAGGGCTGGCTGATTGCTGTAATAGT
 ACCCGAGGTTAACGTTGGATTGGAGGGACTGCTATAAAAAGTTCGTCAAGGCTACCTTCTCTCT
 GGATAAAAGAGGAAATCGCATTGCAAGATTGATGCTAGTCCCTTGGAGCAAGTTGTGAAACTACCAAGGC
 TGCTTGTGACGGAATGGGCTTGGCCAATGA

25

MSKGFLVSLEGPEGAGKTSVLEALLPILEEKGVETLREPVGVLIGEKIREVILDPSHTQMDAKTELLYIASRRQHLVE
 KVLPALAEAGKLVIMDRFIDSSVAYQGFGRGLDIEAIDWLQFATDGLKPDLTLYF DIEVEEGLARIAANSREVNRDL
 EGLDLHKVVRQGYLSLLDKEGNRIVKIDASLPLEQVVEETKAVLFDMGLAKZ

ID120 408bp

ATGGTAGAACAAAGAAAATCAATTACCATGAAAGATGTTGCTTAAAGCAGGAGTAGTGTGGAACTGTTCA
 CGTGAATTAAATAAAAGAAAAGGCATTAAGAAGTAACCTTGAAAAGTGGAAACAGCATTAAAACCTTGAAT
 TACATTCCAGATTACTACGCTAGAGGAATGAAAAAAATCGAACAGAAACGATTGCAATCATTGACCAAGTATC
 TGGCATCCCTCTTTCAAGAATTGCTATGCTATGGAAAATGAAGTCTATAAGAGAAATACAAATTACTCTTAT
 GTTCTATCAATGGTACAATAGAGAGCAAGACTATCTGGAGATGTTGCGTCATAATAAGTTGATGGAGTGGTTG
 CCATTACCTATAGGCCAATTGAACATTACTTGACGTCAGGAATCCCTTGTAGTATTGACCGCACATACTCAGA
 GATTGCCATTCCCTTGTTCA

30

MVEQRKSITMKDVALEAGVSGTVSRVINKEKGKVEQAIKTLNYIPDYYARGMKNRTEITAIJVPSIWHPFF
 SEFAMHVNENEVYKRNNKLLCSINGTNREQDYLEMLRHNKVDGVAITYRPIEHYLTSQIPFVSIDRTYSEIAIPCVS

35

ID121 285bp

ATGAATATTTAGAACAAAGAACATGTTAGATAAAAACAGAGATGCATAGGCATTGAAGTTATGGGATTG
 5 ATTTCTGGGTATCGGAGCCATGGTAGGGACAGGCCTTACAATCACAGGTACTGCAGCTGCAACACTTGCTG
 GCCCAGCCCTAGTGAATTCAATCGTTATTCCTGCTGTGGGATTATCAGCCCTTTTGAGAATTGCC
 TCAGAGTACCCGCTACAGGAGGTGCCTATAGTTACCTCATGCTATCTAGGAGAATTCCCTGCCTGGTGGCTG
 GTTGGTTAACCATGATGGAGTTATGACGCCATCAGGGTAGCTCGGGTGGCAGCTATTAA

MNIFRTKNSLDKTEMHRHLKLWDLILLGIGAMVTGVFTITGTAATLAGPALVISIVISALCVGLSALFFAEPASRVP
 10 ATGGAYSYLYAILGEPAWLAGWLTMMEFMTAISGVASGWAAYF

ID124 131bp

ATGAAATCAAGAGTAAAGGAACCCAGTATGGATAAAAATTGTTGTTCAAGGTGGCGATAATCGCTGGTAGGAAGC
 15 GTGACGATCGAGGGAGCAAAATGGCAGTCTTACCCCTTGTGGCAGCGACTATTCTAGCAAGTGAAGGAAAGACC
 GTCTTGAGAATGTTCCGATTTCTGGATGCTTATTATGAATCAGTGTGGTGGTTGAATGCCAAGGTTG
 ACTTTGATGAGGAAGCTCATCTGTCAGGTGGATGCTACTGGCGACATCACTGAGGAAGGCCCTACAAGTATG
 TCAGCAAGATGCGCCCTCCATCGTTGATTAGGGCCAATCTTGCCTGTTGGTATGCCAAGGTATCCATGCC
 AGGTGGTTGACCGTGGCTTATTGATCTTCAAGGTGGTGAAGGTATGGGGTTAAGATTAGT
 20 CAGACAGCTGGTACATCGAACGCCAAGGCAGAAGCTGGCTGATGGTCTCATATCTATGAGCTTCCAAGGTGTTG
 GTGCAACCGCAGAACTTGTGAGCAGCTCTGGCTGATGGGGTGCAGCTGATTGAGAATGCTGCGCGTGCAGC
 CTGAGATTGTTGACTTAGCCATTCTCTTAATGAAATGGGAGCCAAGGTCAAAGGTGCTGGTACAGAGACTATAA
 CCATTACTGTTGAGAACCTCATGTCAGCTACAATGTAGTCAAGACCGTATCGAAGCAGGAACCTTAT
 25 GGTAGCTGCTGCCATGACTGGTGGATGTCCTGATTGAGACGGCTGCTGGGAGCACAAACGGTCCCTGATTGCC
 AAGTTACTGAAATGGTGTGAAGTAATGAGAAGAGCAGAAGGAATTGTTGCTTCTCAACTAGAAAATCTA
 AAAGCTTCTATGAAACCTTGCACCCACCCAGGATTTCACAGATATGAGGCTCAATTACAGCCTGATGA
 CAGTTGAAAAGGCCAATCAACCATGGTGGAGACAGTTTCAAAATCTTCAAACCTAGAAGAGATGCGCCG
 CATGGGCTTGCAATTGAGATTATCGTGTACAGCTGTATTGTTGGAGACGGCTTGCAGGGAGCAGAAGTT
 30 CTTCAACTGACCTTGTGCCAGTGGCTTGTGATTTCACAGGTTGACAGGTTGACACAGGGAGAAACTGTGGTCGGTA
 AATTGGTTCACTGGATAGAGGTACTACGGTTCCATGAGAAGTTGGCAGCTAGGTGCTAAGATTACAGCGGAT
 TGAGGCAAGTGTAGAAGATGAATAA

MKSRSVKETSMDKIVVQGGDNRLVGSVTIEGAKNAVLPLLAATILASEGKTVLQNVPILSDVFIMNQVVGGLNALKVDFD
 EEAHLVKVDATGDITEEAPYKVSKMRASIVVLGPILARVGHAKVSMPPGGCTIGSPRIDLHKGLEAMGVKISQTAGYIE
 35 AKAERLHGAIHYMDFPSVGATQNLMMATLADGVTVIENAAREPEIVDIALLNEMGAKVKAGETETTTGVEKLHG
 TTHNVVQDRIEAGTFMVAAAMTGGDVLRDAWEHNRPLIAKLLEMGVIEEDEGIRVRSQLENLKAVHVKTLPHP
 GFPTDMQAQFTALMTVAKGESTMVTVEFNRFQHLEEMRRMGLHSEIIRDATARIVGGQLQGAEVLSLDRASAALIL
 TGLVAQGETVVGKLVHLDRGYYGFHEKLAQLGAKIQRIEASDEDZ

ID125 1101bp

ATGTTATTAGCGTCACACAGTAGCCTGTCATTGCCCCAGTATTGGCAACTCAAGCAGAAGAAGTTCTTGGACTG
 CACGTAGTGTGAGCAAATCCAAAACGATTGACTAAAACGGACAACAAAACAAGTTATACGTACAGTATGGTG
 45 ATACTTTGAGCACCATGAGCAGCTGAGAAGACTGCAATGAGCTGCTGCAATGAGCTGAGGAAATCTGAAACAAAATCA
 GGACTTGATTTCCCAGAAACTGTTGACAACGACTGCAATGAGCTGAGGAAATCTGAAACAAAACAAGTTGAAATCTA
 AACACCTCAAGCAGACTCTAGTGAAGAAGTACAACCTGCCACAGCAGGAGATTGACCAACTATCAAGTGACCGTTGA
 TGATCCTGAGGTCTTCAACCACACAGCTGCTTCAACCAATTGAGGAAATCTGAGGAAACTGAGTACAGTGGTTCTGAAGAA
 50 GTGGCACCATCTACGGCACTCTGCTCCAGGGAGGACAAACGACCGAACAAACACTGCCAGTTGAGAAGAAGCT
 CCTCAGGAAACGACTCCAGCTGAGAAGCAGGGAAACACAAACAAGCCCTCAAGCTGCTCATCAGCAGTGGAGAAC
 TACAACAGTTCAAGCAGAACAGTACGATCATCAAATGGAGCTACAGCAGCAGTTCTACTTATCAACCAGA
 AGAAACGAAAGTAATTCAACACTACGAGGCTCAGCTGCGCCGATTATGCTGGACTGAGTAGCAAATC
 55 TGAAAATGAGGTCTTCAACCACACAGCTGCTTAAWGAGAAATGCTAACTTGTGTTGGCATTACATCCTT
 AGTGGTTATGTCAGGAGACAGTGGAGAGTACCGGAAAGGGTGGCTATGCACTTATGGTACCAAGACGTTCA
 GAATTAGGGATAAGATTGCGGAATATGCTATTCAAATATGGCCAGCCGTTGCAATTAGTTACATCATCTGGAAA
 CAACGTTCTATGCTCATTGATAGCAAATATGGCCAGCTAACACTTGGAAACCCAAATGCCAGACCGTGGTAGT
 GTGACAGAAAATCACTATGATCACGTTACGTTCAATGAATGGATAA

MLLASTVALSFAPVLAQAEVEVLWTARSVEQIQNDLTNDKTSYTQYQGDTLSTIAEALGVDTVVLANLNKITNMDL
 IFPETVLTIVNEAEEVTEVEIQTQADSSEEVTTADLTNNQVTVDQTVQVADLSQPIAEVTKTIVASEEVAPSTGTS
 60 VPEEQTTETTRPVAAEAPQETTPAEKQETQTSPOAASAVEATTSSSEAKEVASSNGATAAVSTYQPEETKVISTTYEAPA
 APDYAGLAVAKSENAGLQPQTAAFKKLLTCLAHPLVVIVQETVEITEKVVLSLWYQNVQNZGIRLRNMLFKIWP
 VALVTSGNNVMSLHSIANMGQTLGTCQTVVZQKITMITFTFQZMD

ID126 1281bp

5 TTGTTAAAGAAAAATAAAGACATTCTAATATTGCAATTGCCAGCTATGGGTGAAAACTTTGCAGATGCTAATGG
 GAATGGTGGACAGTTATTGGTTGCTCATTTAGGATTGATAGCTATTTCAGGGGTTTCAGTAGCTGGTAATATTAT
 CACCATTTATCAGGCATTTCATCGCTCTGGGAGCTGCTATTCCAGTGTATTCAAAGCATAGGGCAGAAA
 GACCAGTCGAAGTTGGCCTATCATGTACTGAGGGCTGAAAGATTACCTTACTATTAAAGTTCCCTTTAGGATT
 10 TGCCATCTCGCTGGAAAGAGATGATAGGACTTTGGGGACGGAGAGGGATGAGCTGAGAGTGTTGGACTGT
 ATCTATCTTGTAGCGATCGATTGTTCTTAAGGTTAATGACTAGTCACTAGGAGCCTGATTCTGCAACGCA
 TAATCCACGCTGCCTCTATGTTAGTTTATCCAATGCCCTGAATATTCTTTCAAGTCTAGCTATTGTTG
 TCCTGGATATGGGGATAGCTGGTGTGCTGGGGACAATTGTGTCGTTGGTGTGATTGTTGGTAC
 AATTAAACTGCCTATGGGAAGCCAACCTTGGTTAGATAAGGAACCTGTGACCTGGCTTACACAGCAGCTGG
 15 AGAGCAGTATGAGGGCTGGAGATGATGATCATTGCTTGGCTGTTCTTGGGACGGAGGCAGTTGCT
 GGGAAATGCAATCGAGAACGACTTGCACCCAGTTAACTATATGCTGCCTGGCGTCACGGCAACGGTCATG
 CTGTTGGCCCAGCAGTTGGAGAGGATGATTGGAAAAGAGTTGCTAGTTGAGTAAACAAACCTTTGGCTTCTC
 TGTTCTCATGTTGCCCTGCTTAACTATATGCTTGGGTGACCTTAACTCATCTCTACGACTGATTCT
 CTACCGGTGGAGGCTAGTGTCTAGTGCACACTGTTCACACTGGGACCCCTATGACGACAGGAACAGTCATCT
 ATACGGCAGTCTGGCAGGGATTAGGAATCAGCCTCTTATGCGACAAGTATAGGAATGTGTTGATAC
 20 GCATTGGGACAGGATATCTGATGGGATTGTGCTGGTGGGCTGCTGGTATTGGCAGGGCTCTGGGA
 TAATGGTTTCGCTGGTATTCTACGCTATCGTACCGCTATATGAGCTGAAAGGATAG

LFKKNDILNIALPAMGENFLQMLMGMVDSYLV AHLGLIAISGVSVAGNIITIYQAFIALGAAISSVISKSIGOKDQS KLA
 YHVTEALKITLILSFLLGFLSIFAGKEMIQLLTERDV AESGGLYLSLVGGTIVLGLMTSLGALIRATHN PRLPLYVSP L
 25 SNALNILFSSLAIFVLDMGIAGVAWGTIVSRLVGLVILWSQLKLPYKGPTFGLDKELLTLALPAAGERLMMRAGDVIIA
 LVVSFGTEAVAGNAIGEVLTQFNYPMAFGVATATVMLLARAVGEDDWKRVASLSKQTFWLSLFLMLPLSFSIYVLGP V
 LTHLYTTDSLAVEASVLVTLSLLGTPMTTGTVIYTA VWQGLGNARLPFYATSI GMWCIRIGTGYLMGIVLGWGLPGIW
 AGSLLDNGFRWLFLRYRQYMSLKGZ

ID127 894bp

30 GTGGGAAGAATTATCAGAGCAGGTGAAAGATGGAAACATCTGGAAAAGTATTCTGTAATTGCAACAAAGTGG A
 ATTATTCTTAAAGGAAGCAGCAGGGCAATCCTGCTCACCTCTCAGTTATCTCGCTTGAGCTGGGGAGTCTG
 35 ACCTGGCAGTCTCCGTTCTTGAGATTGGATAACATTCATGTAACAAATCGAAAATTTCATGGATAAGGCAAG
 GAATTTCATAATCATGAACATGTTCTATGATGGCACAGATTATCCACTTACTATTCAAACGATATTGAGGT
 TTTCAAAAGCTCAAAGAGAACAACTGAAAAGTCTAAGAGTTGACGACTCCCTTATTGAGCTGAACCTGGA
 TTTGCTACAAGGTGATTCTCAAAGAGATGGACCATGTTGAGATTGAGCAGGATGATTGGTAAGGTAGCAG
 40 ATTATCTCTTAAACAGAACAGAACATGGAGGTTATGAGCTGATCTTTCGTAACCTCTATAGTTCTACGATGT
 AGACTATGTCACTCGGATTGGTAGAGAAGTTATGAGAGGGAGGAATTTCACAGAGATTAGTCGCCATAAGAG
 ATTAGTGTGATTGGCCTCAATTGTTACAGCATTGTTAGAGCATTCTTATATGCCAATCTTAA
 45 AGGCTTATACAGAGAACAGTGTAAAGAAGGCTGTAAGCAGATGCAAGAGGCCATGCATATTGATGTGTT
 TGCCATTATCAAAAGGACAGTGTAAAGAAGGCTGTAAGCAGATGCAAGAGGCCATGCATATTGATGTGTT
 AGGTCTCCAGAGCAAGTACGCTATTATCAGGAACACTACGAAAATTGTCAAAAGTTAA

VGRRIAGVKMEHLGKVFRFRPSGNYSNLKEAAGESCSTSLSRFELGESDLAVSRFFEILDNIHVTIENFMDKARNFHN
 HEHVSMMAQIIPLYSNDIAGFQKLQREQLEKSKSSTPLYFELNWILLQGLICQRDASYDMKQDDLGKVADYLFKTEE
 WTMYELILFGNLYSFYDVYVTRIGREV MERE EFYQEISRHKRLVILALNCYQHCLEHSSFYNANYFEAYTEKIIDKG I
 KLYERNVFHYLKGFALYQKGQCKEGCKQMQEAMHIFDVGLPEQVAYYQEHYEKFVKSZ

TABLE 3**ID1 1068bp**

5 ATGTCTAACATTCAAAACATGTCCCTGGAGGACATCATGGGAGAGCGCTTGGTCGCTACTCCAAGTACATTATC
 AAGACCGGGCTTGCCAGATATTGTGATGGGTTGAAGCGCGTTCAGCGCCGTATTCTTATTCTATGAATAAGGA
 TAGCAAATACTTTGACAAGAGCTACCGTAAGTCGGCGAAGCTAGTCAGTCGGGAACATCATGGGAATTTCACCCACA
 CGGGATTCTCTATCTATGCCCAGGGTCATGTACAGAACTGGAAAAATCTGTGAGATTCTAGTTGAAATG
 CACCGTAATAACGGTCTATGGACGGAGATCCTCTCGGGCATGCGTTACTGAGGCACGTTGCTGAAATTG
 10 CAGGTACCTTCTCAGGATATCGAGAAAAGACAGTCCTTGCATGGAACCTTGACGATACGGAGAAAAGAAC
 CAACGGCTTGGCAGCAGCCTTCAAACCTTGTCAATGGTCAGTCAGTGGGATTGCGCTGGTATGCCACAGA
 CATCCCTCCCATAATTAGCTGAGGTCTAGATGCTGAGGTACATGATTGACCACCCACTGCAAGAATTGAT
 AAACATGGAATTCTGCTGGCACAGACTTCCCTACAGGGGCTATTATCAGGGTGTGATGAAATCAAGAAA
 15 GCTTATGAGACTGGAAAGGGCGCTGGTTCTGAGACTGAAATTGAAAAGCTAAAGGTGTAAGGAA
 CAAATGTTATTATTGAGATTCTTATGAAATCAATAAGGCCAATCTAGTCAGAAAATCGATGATGTTGTTA
 ATAACAAGGTAGCTGGGATTGCTGAGGTTGTGATGAGTCGACCGTGTGATGTTCTCGTATCGCTATGAACTTAA
 GAAAGACGCTAATACTGAGCTTCTCAACTACTTAAAGTACACCGACCTACAAATCAACTACAACCTTAA
 ATGGTGGCATTGACAATTTCACACCTCGTCAGGTTGGATTGTTCAATCCTGCTAGCTATATCGTCACCGTCG
 AGAAGTGA

20 MSNIQNMSLEDIMGERGRYSKYIIQDRLPDIRDGLKPVQRRILYSMNKDSNTFDKSYRKSAKSVGNIMGNFPHGD
 SIYDAMVRMSQNWKREILVEMHGNNSMDGPAAAMRYTEARLSEIAGYLLODIEKKTVFAWNFDDEKEPTVLP
 AAFPNLLVNGSTGISAGYATDIPPHNLAEVIDAAVYMDHPTAKIDKLMEFLPGPDFPTGANQGRDEIKKAYETGKRV
 VVRSKTEIEKLKGKGEQIVIIPEYEINKANLVKKIDDVRVNNKVAGIAEVRSDESDRDLRIAIELKDDANTEVLNLYFK
 25 YTDLQINYNFMVAIDNFTPQVGLFQSCLASLTVEKZ

ID12 684bp

30 ATGCCGACATTAGAAATAGCACAAAAAAACTGGAGTTCTTAAGAAGGCAGAAGAATTACAAATGCCCTGTG
 ACAAAATACAGTTGAGGGAGATAAAACTAAAGTAATTCCCTACTCTGTTAACCCCTGGGAAGGAAAAC
 ACTACTCCATAAAATATAGCATGGTCGTTGCGCGTGCAGGCTATAAAACTCTTGTGATGGCGATACTCGAA
 ATTCACTGTTAGTAGGTTAAATCTCGTAAAGGAAATTACAGGGCTAACAGAAATTTTATCTGGGACAGCTGA
 TTTATCTCACGGTTATGTGATACAAATATTGAAATTATTGTTAGTTCAATCGGATCTGTATCACCAACCC
 ACAGCCTGTTACAAAGTAAATTAAATGATATGATTGAAACATTGCTAAATTTGATTATATCATTATG
 35 ATACACCGCCTATTGAAATTGTTATGTGCGGCAATTACTCAAAAGTGTGATGCGTCATCTGTAACAGC
 AACAGGTGAGGCGAATAAACGTGATATCCAAAAGCGAAACACAATTAAAACAAACAGGGAAACTGTTCTAG
 GAGTTGTTAAATAAAATTGGATATCTGGTTAATAAGTATGGAGTTACGGTCTATGGAATTATGGTAAAAAA
 ATAA

40 MPTLEIAQKKLEFIKKAEEYYNALCTNIQLSGDKLKVISVTSVPGEKTTTSINIAWSFARAGYKTLIDGDTRNSVML
 GVFKSREKITGLTEFLSGTADLSHGLCDTNIENLFVQSGSVSPNPTALLQSKNFNDMIETRKYFDYIHDTPPIGIVIDAA
 ITQKCDASILVTATGEANKRDIQKAKQQLQTKGKFLGVVNLKLDISVNKGVYGSYGNYCKZ

ID13 1182bp

45 ATGGAGGCAAATATGAAAATCTAAAAACATTAAACAAAAATGGTTCAATTATTAGTCGTTATCGTCATTAGCT
 TTTTAGGGAGCCTGGTAGTTCTAATAACTCAACTCAACTAAAAAGTAGTGTAAACAACACTCTAACACAA
 TAGTACTATTACACAAACTGCTTAAAGAACGAAAATTCAACAAACACAGGGTAAACAAAGTAAAAGATGCTGT
 50 TGTTCTGTTATTACTTATTCTGGCAACAGACAAAATAGCGTATTGGCAATGATGATACTGACACAGATTCTCAG
 CGAATCTCTAGTAAGGATCTGGAGTTATTAAAAAGATGATAAGAAGCTTACATCGTACCCACAAATCAC
 GTTATTAAATGGCGCCAGCAAAGTAGATATTGCTGATTGTCAGATGGGACTAAAGTACCTGGAGAAATTGCGGAGCT
 GACACTTCTCTGATATTGCTGCTCAAATCTCTCGAAAAGTGACAAACAGTAGCTGAGTTGGTATTCTA
 GTAAGTTAACTGTAGGAGAAAAGTCTGCTATTGCCATCGTAGCCCTAGGTTCTGAATATGCAAATACTGTCACTCA
 AGGTATCGTATCCAGTCTCAATAGAAATGTATCCTTAAATCGAAGATGGACAAGCTATTCTACAAAAGCCAT
 55 CCAAACGTACTGCTATTACCCAGGTAACTCTGGCGCCCACTGATCAATTCAAGGGCAGGTTATCGGAAT
 TACCTCAAGTAAAATGCTACAAATGGAGGAACATCTGTAGAAGGTCTGGTTCGCAATTCTGCAAATGATGCT
 ATCAATATTATGAAACAGTTAGAAAAAAAGCGAAAAGTGCACGCGTCCAGCTTGGGAATCCAGATGGTTATTAA
 TCTAATGTGAGTACAAGCGACATCAGAAAGACTCAATATTCCAAGTAAATGTTACATCTGGTGTATTGTCGTTGG
 60 TACAAAGTAATATGCTGCCATGGTCACCTGAAAAATCGATGTAATTACAAAAGTAGATGACAAGAGATTG
 CTTCATCAACAGACTTACAAAGTGTCTTACAACCACTATCGGAGACACCAATTAAAGATAACCTACTATCGTAA
 CGGGAAAGAAGAAACTACCTCTACAAACTAACAGAGTTCAAGGTATTAGAATCTTAA

65 MEANMKHLKTFYKKWFQLLVVIVSFFSGALGSFSITQLTQKSSVNNNSNNNSTTQAYKNENSTTQA VNKVKDAVVSV
 ITYSANRQNSVFGNDTDTSQRISSEGSVYIKKNDKEAYIVTNHNVINGASKVDIIRSLDGTKVPGIVGADTFSDIAV
 VKISSEKVTVAEFGDSSKLTVGETAIAGSPLGSEYANTVTQGIVSSLNRNVSLKSEDGQAIKQTDTAINPGNSGGP

LINIQQVIGITSSKIATNGTSVEGLGFAIPANDAINIIEQLEKNGKVTRPALGIQMVNLSNVSTDRLNIPSNTSGVIV
RSVQSNMPANGHLEKYDVITKVDDKEIASSTDLQSAALYNSIGDTIKITYRNGKEETTSIKLNKSSGDLESZ

ID15 939bp

5 ATGGCAGAAATTATCTAGCAGGTGGTGTGGGCTAGAGGAATATTTCACGCATTCGGAGTGCTAG
AAACCAAGTGTGGCTACGCTAATGGTCAAGTCGAACGACCAATTACCAAGTGTCAAGGAAACAGACCATGCAAG
AAACGGTCCAAGTGTACGATGAGAAGGAAGTGTCACTCAGAGAGATTATTTATTTCCGAGTTATCGA
10 TCCCTATCTATCAATCAAAAGGGAAATGACCGTGGTCGCCAATATCGAAGTGGGATTATTCAGGATGAAAGC
AGATTTCCAGTATCTACACAGTGTGCAAGGAGCAGGAACGCATGCTGGGTCGAAAGGATTGAGTAGAAAGTGA
GCAATTACGCCACTACATTGGCTGAAGAGACTACCAAGACTATCTCAGGAAGAATCTTCAGGTTACTGTCA
ATCGATGTGACCGATGCTGATAAGCCATTGATTGATGCAAGCAGAAACTATGAAAAGCCTAGTCAAGAGGTTGAAG
15 GCGAGTCTATCTGAAGAGCTTATCGTCACACAAGAAGCTGCTACAGAGGCTCATTACCAATGCCATGACC
AAACCTTGAGAGGGGATTATGTAGATAATTACGACAGGTGAGCCACTCTTTCAGCAAGGATAAGTTGCTC
AGGTGTGGTGGCCAAGTTTAGCCCTCGGATTCAAAGAGTTGATTCAATTACAAGGATCTGACCCATGGA
ATGGAGCGAATTGAAGTTGTTCTCGTCAGGCACTGGTCACTGGGTCATGTTTACAGATGGACCGCGGGAGT
TAGGCCTCCGTACTGTATCAATTCTGTTTACGCTTGTGGCCAAGGATGAGATGGAAAAAGCAGGATA
TGGCTATCTATTGCTTACTTAAACAAATAA

20 MAEIYLAGGFWGLEYFSRISGVLETSGYANGQVETTNQQLKETDHAETVQVIYDEKEVSLREILLYFRVIDPLSI
NQQGNDRGRQYRTGIYYQDEADLPAYTVVQEQRMLRKIAVEEQLRHILAEDYHQDYLKNPSGYCHIDVTDA
DKPLIDAANYEKPSQEVLKASLSEESYRVTQEAAEAPFTNAYDQTFFEEIYVDITTGEPFLFAKDFKASGCGWPSFSRPI
SKELIHYYKDLSHGMERIEVRSRSGSAHLGHVFTDCPREGGLRYCINSASLRFVAKDEMFKAGYGYLLPYLNKZ

ID17 870bp

25 ATGAAGATTATTGTACCTGCAACCAGTCCAATATCGGGCCAGGTTTGACTCGTCGGTGTAGCTGTAAACCAAGT
ATCTTCAAATTGAGGTCTGCAAGAACGAGATGAGTGGCTGATTGAACACCAGATTGCAATGGATCCACATG
ACGAGCGTAATCTTGTCAAATCGTTGCAATTGTACAGACTTGCACCAAGACGCTTGAAGAAC
GTGATGCCCCCTGGCGCGGGTTGGGTTCTCAGCTGGTATCGTTGCTGGGATTGAACTAGCAACCAACT
GGGTCAACTCAACTTATCAGACCATGAAAATTGCAAGTTGCAAGTGTAGCAGGCAAGATTGAAAGGGCATCTGACAATGTGGC
30 TCCAGCCATTATGTAATCTCGTTATTGCAAGTTCTGTGAGGGCAAGTCTCTGCTATCGTAGCAGACTTTCCA
GAGTGTGATTCTAGCTTACATCCAAACTATGAATTACGTAATCGCAGCCGAGCTTGTCTGGCTAAAGAAC
TGTCTTAAAGGAAGCTGTGTCAGCAATTGCAATGTAGCGGTGCTGCTTGGCAGGAGACATGGT
GACCGCTGGCAAGCAATCGAGGGAGACCTCTCCATGAGCCCTATGTCAGGACTTGGTAAGAGAATTGCGAT
40 GATTAAGCAAGTGACCAAGAAAATGGGCTATGCAACCTACCTTCTGGTGTGGCTGGGCGACAGTTATGGTCT
GGCTTCTCATGACAAGATGCCAACATTAGGAGAATTGGAAAAGCAACCTTCAAGGAAACTGCAATGACT
GAGAGTTGATACCAAGGTGTCCGTGAGAACAAATAA

45 MKIIPATSAIGPGFDGSVGAVTKYLQIEVCEERDEWIEHQIGKWHIPHDERNLLKIALQIVPDLQPRRLKMTSDVPLA
RGLGSSSSVIVAGIELANQLQLNLSDHEKLQLATKIEGHPDNVAPAIYGNLVIASSVEGQVAIVADFPECDFLAYIPNY
ELRTRDSRSVLPKKLSYKEAVAASSIANAVAALLAGDMVTAGQAIEGDLFHERYRQDLVREFAMIKQVTKENGAYAT
YLSGAGPTVMVLASHDKMPTKAELEKQPKGKLHDLRVDTQGVREAKZ

ID20 564bp

50 ATGAAATATCACGATTACATCTGGGATTAGGTGAACTTACTGGATAATTATGAAACTTCAACAGCTGCATTG
TTGAAACATTGGCACTGTATGGTATCACACAAGACCATGACAGTGTCTATCAAGCTTAAAGGTTCTACTCCTT
TGCAGTTGAGACATTGCTCCAAATTAGAGAATTAGAAAAGTACAAGGAAAATGACAGGCTTGA
ACACCCGATTATTGAAGGGAGTTCTGACCTATTGAAAGACATTCAAAATCAAGGTGGCGTCATTGGT
55 TCTCTGCAAAATGATCAGGTTTGGAAATTAGAAAACCTCTATAGCAGCTTATTACAGAAGTGGTACTT
CTAGCTCAGGCTTAAGAGAAAGCCAATCCCAGTATGCAAGTGTGTTATTAAAGAGAAAAGTACGATTAGCTCTG
GTCTTGCTATTGGTATCGCAGGATTGATATCGAAGCAGGTCAAGCTGCAGGACTTGTACCCACTTGTACCA
TATCGTAATTAAAGACAAGTATTAGACATATAA

55 MKYHDYIWDLGGTLLDNYETSTAASFETLALYGITQDHDSVYQALKVSTPFAIETFAPNLLENFLEKYKENEARELEHPI
LFEGVSDLEDISNQGGRHFLVSHRNQVLEILEKTSIAAYFTEVVTSSSGFKRKPNPESMLYLREKYQISSGLVIGDRPID
IEAGQAAGLDTHLFTSIVNLRQVLDZ

ID21 1875bp

60 ATGACAGAAGAAAATCAAAATCTGCAGGCACAGGATTATGATGCCAGTCAAATTCAAGTTAGAGGGCTTAGAG
GCTGTTCTGATGCGTCCAGGGATGACATTGGATCAACCTCAAAGAAGGTCTTCACCATCTAGCTGGAAATTG
65 TTGATAACTCAATTGACGAGGGCTTGGCAGGATTGCCAGCATATTCAAGTTTATTGAGCCAGATGATTGAT
TACTGTTGGATGATGGCGTGGTATCCAGTCGATATTAGGAAAAACAGGCCGCTCTGCTGTTGAGACCGT

CTTTACAGTCCTCACGCTGGAGGAAGTTCGGCGGTGGGATACAAGGTTCAAGGGTGTCTCACGGGGTGGG
 GTCGTCAGTAGTTAATGCCCTTCCACTCAATTAGACGTTCATGTTACAAAAAATGTAAGATTCACTTACCAAGAA
 TACCGTCGTGGTCATGTTGCGCAGATCTGAAATAGTGGAGATACGGATAAAACAGGAACAACGTTCACCTC
 ACACCGGACCCAAAATCTTCACTGAAACAACAATCTTGATTITGATAAATTAAATAACGGATTCAAGAGTTG
 GCCTTCTAAATCGCGTCTCAAATTACAGATAAGGCCAAGGTTGAAACAAACCAAGCATTATCATT
 ATGAAGGGTGGGATTGCTAGTTACGTTGAATATATCAACAGAGAACAGGATGTAATCTTGATACACCAATCTATA
 CAGACGGTGAAGATGGATATCACAGTTGAGGTAGCCATGCAGTACACAAACTGGTTACCATGAAAATGTCATGA
 GTTTCGCAATAATATTACACCCATGAAGGTGAAACACATGAAGGTTCCGTACAGCCTTGACACGTGTTAT
 CAACGATTATGCTCGTAAAATAAGTTACTGAAAGACAATGAAGATAATTACAGGGAGATGTCGAGGG
 CTTAAGTCAGTTATCTCAGTTAACACCCAAATCCACAGTTGAAGGACAAACCAAGACAAATTGGGAAATAG
 CGAAGTGGTCAAGATTACCAATCGCCTTCTCAGTGAAAGCTTCTCGATTCTCATGAAAATCCACAGATTGCC
 AAACGTATCGTAGAAAAGGAATTGGCTGCAAGGCTCGTGTGGCAGCAGCTGCGGTGAAGTCACACCGT
 AAAAATCTGTTGGAAATTCCAACCTTCAGGGAAATAGCAGACTGTTCTCTAAACCCCTGCTGAAAACAG
 AACTCTCATCGCGAAGGAGACTCAGCTGGTGGATCAGCCAATCTGGTGTAAACCGTGTAGTTCAAGGCTATCCT
 TCCAATTCGCGGTAAAGATTGAAACGTTAAAAAGCAAGTATGGATAAGATTCTAGCCAACGAAGAAATTCTGTAG
 TCTTTCACGCCATGGGAACAGGATTGGCGCAGAATTGATGTTGAAAGGCCGTTACCAAAACTCGTTTG
 ATGACCGATGCCGATGCGATGGGCCACATTGCTACCGCTTAACTCTGATTATGTTATGAAACCAA
 TCTAGAAGCTGGTTATGTTATATTGCCAACCAATCTATGGTGTCAAGGTTGGAGCGAGATAAGAATA
 TATCCAGCCGGGTGCGAGATCAAGAAATCAAACCTCAAGAAGCTTAGCCGTTATAGTGAAAGGTCGACCAACC
 GACTATTCAAGCGTTATAAGGGCTAGGTGAAATGGACGATCATCAGCTGGGAAACACCATGGATCCCGAAC
 TCGCTTGTGCTAGAGTTCTGTAGATGATGTGCGAGAAGCAGATAAAATCTTGATATGTTGA

 MTEEIKNLQAQDYDASQIQVLEGLEAVRMRPGMYIGSTSKEGLHHLVWEIVDNEIDEALAGFASHIQVFIEPDDSDITVV
 DGRGIPVDIQEKTGRPAVETVFTVLHAGGKFGGGGYKVSSGLHVGVSSVNVNLDVHVHKNGKIHYQEYRRGIV
 VADLEIVGDTDKTGTGTVHFPTDPKIFETTIFDFDKLNKRQELAFLNRGLQISITDKRQGLEQTKH
 YEGGIASYVEI
 NENKDVIFDTPIYTDGEMDDITVEAMQYTTGYHENVMSFANNIHTHEGGTHEQGFRALTTRVINDYARKNKLKD
 EDNLGEDVREGLTAVISVKHPNPQFEGOTKTKLGNSEVVKITNRLFSEAFSDFLMENPQIAKRIVEKGILAAKARVA
 RAREVTRKKSGLAEISNLPGLKACDSSNNPAETELFIVEGDSAGGSAKSGRNREFQAILPIRGKILNVEKASMDKILANEE
 RSLFTAMGTGFGAEFDVSKARYQKLVLMTADVDGAHIRTLLTLIYRHMKPILEAGYVYIAQPPIYGKVGSEIKEYI
 QPGADQEIKLQEALARYSEGRTKPTIQRYKGLGEMDDHQWLWETTMDPEHRLMARVSDDVQKQIKSLICZ

ID54 1446bp

ATGAGTAGACGTTAAAAAATCACGTTCACAGAAAGTGAAGCGAAGTGTAAATATAGTTGCTGACTATTIATT
 TATTGTTAGTTGTTTTATTGTTCTTAATCTTAAGTACAATATCCTGTTAGATATCTTAATCTAGTGGTAA
 CTGCGTTAGCTACTAGTTGCTTGGTAGGGCTACTCTGATTATCTATAAAAAGCTAAAAGTTACTATTTT
 CTGTTGGTGTCTATCCTGTTGCTAGCTCTGTCGCTTTGCACTACAGCAGTTGTTGACTGACCAATCGTT
 AAATGCGACTTCTAATTACAGAAATCTAACATCGTGTGCTGTTAGCAGATAGTGAAGATCGAAAATGTTACG
 CAACTGACAGGTGACAGCACCGACTGGGACTAAATGAAAATATTCAAGAAATACTAGCTGATATCAAGTCA
 AGTCAGAAATCCGATTGACGGTCAACCAAGAGTTCTTACTTGGCAGCTACAAGAGTTGATTGAGGGGG
 ACTAAGGCCATTGCTCTAAATAGTGTCTTGAACATCATCGAGTCAGAGTATCCAGACTACGCATCGAAGATA
 AAAAAGGATTTACTAAGGGATTCACTAAAAAGTAGAAGCTCTAACAGCTAACAGACTCAGTCTTCAATATC
 TATGTTAGTGGATTGACACCTATGGTCTTATTAGTTCGCTGCGCATCAGATGTCACATCTGATGACTGTCA
 ATCGAGATACCAAGAAAATCTCTGACACCAACGCCACGTGATGCCATTACCAATCCGAGATGGTGGAAATA
 ATCAAAAAGATAAAATTGACTCATCGGGCATTTATGGAGTTGATTGTCCTTACACACCTTAAAGAAATCTCTATGG
 AGTGGATATCAATTACTATGCGATTGAAACTCCTCGTTTTGAAATTGATTGATTGTTGGGTGAAATTGATG
 TTATAATGATCAAGAATTACTGCCCCATACGAATGGAAAGTATTACCCCTGCAGGCAATGTTCATCTGATTCA
 ACAGGCTCTGGTTTGTGAGCGCTACTCCCTAGCAGATGGCAGTCAGTGGCAGCGGGCCATCAACAAA
 GTGATTGTGGTATCTCTCTAAAATTACGTCAACCGAAGTGTGAAAGGTTATAGTACGATCATTAATAGCTT
 CAAGATTCTATCCAAACAAATATGCCACTTGAGACCATGATAAATTGTCATGCTAGTTAGAAAAGTGGAGGG
 AATTATAAAGTAAATTCTCAAGATTAAAAGGGACAGGTCGGATGGATCTTCTTATGCAATGCCAGACAGTA
 ACCTCTATGTGATGAAATAGATGATAGTAGTTAGCTGTAGTTAAAGCAGCTACAGGATGTGATGGAGGGTA
 GATGA

55 MSRRFKKSRSQVKRSVNVILLTIYLLVCFLLFLIFKYNILAFRYLNLVVTALVLLVALVGLLIIYKKA
 EKFTIFLLVFS
 ILVSSVSLFAVQQFVGLTNRNATSNSYSEYSISAVLADSEIEVNTQLTSVTA
 PTGTTNNENIQKLADIKSSQNTDLTVNQ
 SSSYLAAYKSLIAGETKAIVLNSVFENIIESEYPDYASKKKIYT
 KGFTKKVEAPKTSKSQSFNIYVSGIDTYGPISSVSRSDV
 NILMTVRNDTCKILLTTTPRDAYVPIADGGNNQDKLTHAGIYGV
 DSSSIITLENLYGVNDINYYVRLNFTSFLKLIDLLGG
 IDVYNDQEFTAHTNGKYPAGNVHLDSEQALGFV
 RERYSLADGDRDRGRHQ
 QKVIVAILQKLSTEVLKNYSTIINSQ
 DSIQTNMPLETMINLVNAQLESGGNYKVNSQDLKGTRM
 DLPYAMPDSNLVYMEIDDSSLAVVKA
 AIQDVMGRZ

ID55 732bp

ATGATAGACATCCATTGATCGATATCGTTTGATGTAGATGACGGTCCCAGTCAGAGAGGAAAGCAAGGCTCTC
 5 TTGGCAGAACATCTACAGACAGGGGTGCGAACCATTTCTACCTCTACCGTCGAAGGGCATGTTGAAACTC
 CGGAAGAGAAGATAGCAGAAAATTTCTCAGGTCGGAAATAGCTAAGGAAGTGGCGAGTGACTTGGTCATTG
 CTACGGGGCTGAAATTATTACACACCAAGATGTTCTGATAAGCTGAAAAAAAGCGGATTCCGACCCCTCAATG
 ATAGCTTATGCCCTGATAGAGTTAGTATGAAACACTCTTATCGGATATTCAAGCCTTGAGCAAGATCTT
 GATGTTGGAAATTACTCCAGTCATTGCCACATTGAGCGCTATGATGCTCTGAAAATAATGAAAACGCCTCGA
 GAACGTGATCGATATGGGCTTACCGCAAGTAATAGTTCACTGCTCAACCCAAACTTTGGCGAACGTT
 10 ATAAATTCTAGAAAAAAAGAGCTCAGTATTTAGAGCAGGATITGGTCATTGCAAGTGATATGCACAA
 TCTAGCGTAGACCTCTCATGGCAGAACATGACCTTGTACCCAAAATACGGAGAACGAAAGCGAAGGCTCA
 GGAACCTTTATAGACAATCTCGAAAATTGATCAACTAATTAG

MIDIHSIVFDVDDGPKSREESKALLAESYRQGVRTIVSTSHRRKGMFETPEEKIAENFLQVREIAKEVASDLVIAYGAEI
 15 YYTPDVLDKLEKKRIPTLNDSRYALIEFSMNTPYRDIHALS KILMLGITPVIAHIERYDALENNEKRVRELIDMGCYTQV
 NSSHVLPKPLFGERYKFMKRAQYFLEQDLVHVIASDMHNLDGRPHMAEAYDLVTQKYGEAKAQELFIDNPKIVM
 DQLIZ

ID58 3990bp

20 TTGATTTATATAATCGCTATCAATATAACAATGCAATCAGGAGGTTTGCAATGAAACATGAAAAAACACAGCGT
 TTTCTATTGCTAAATACGCTGAGGAGCAGCTCTGTTCTAATTGGATTGCCCTCCAACCCACAGACTGTTGAG
 CCGATGGAGTTACTCCTACTACAGAAAACCAACCGACCATTCCATCGGTTCTGATTCCCTCAATCATCCGA
 AAATCGGACTGAGGAAACCTAAAGCAGTGTCTCACCCAGAAAGCTCCAAAACAGAGAAAACAGAAACTCCAG
 CTACTGATAAGGTAGCTAGTCTCCAAAACAGAGAAAACACCAAGAGGAAAGTGTAGTCAACTCTAGTGTATA
 AAGCAGAAGTGGTAACTCCAACTCTGCTGAAAAGAAAACAGTCTAATAAAAGGCAAGAAGAGCTAGCCCTAAA
 25 AAGGAAGAAGCGAAAGAGGGTGTAAAGAGTCTAAACAGACAAGACTGACAAGGATAAAACAGCTAAAAAA
 AGATGAAGCGAAAGCAGAGGGTGTGACAAACCGGCAACAGAGGCAGGAAAGGAACAGTGTGCAACTGTAAATGAAA
 AACTAGCGAAAAGAAAATTGTTCTATTGATGCTGGACGTAAATATTCTCACCGAACAGCTCAAGGAAATCA
 TCGATAAAGCGAAACATTATGGCTACACTGATTACACCTATTAGTCGAAATGATGGACTCCGTTCATGTTGGA
 30 CGATATGAGCATCACAGCTAACCGAACAGCTATGGCAGTGTGACAGATGTCACCGCCTGATTGAAAAGGTACAAA
 TGATTATTACACGATCAAACCGCAATCACTTAAAGAAAGTCTAAACAGACAAGACTGATAACTATGCCAAGA
 TAAAGGTATCGGTCTCATCCGACAGTAAATAGTCTGGACACATGGATGCCATTCTCAATGCCATGAAAGAATT
 GGAATCCAAAACCTAACTTTAGTCTATTGGAAAGAATCGCCCTACTGCTGATCTGACAACCGAACAGC
 TGCGCTTCTACAAAAGCCCTTATCGACAAGTATGCTGCTTATTGCGAAAAGACTGAAATCTTCAACATCGGA
 35 CTGATGATAATGCCATGTCGACAGATGCTAACAGGTTGGAGTGTGCTTCAAGCTGATAAAACTATCCAAAC
 GAAGGCTACCTGTAAAAGGCTATGAAAATTATTGCTACGCCATGACCTCGCTGTTGACAAGAAC
 GGTCTCAAACCAATGGTTTAAAGCAGGTATCTACTACAATAGCGACACAAGCTTGGTAGTTGACAAGAC
 ATCATCGTTCTATGGAAGCTGGTGGGGAGGGTACAGATGCTGCTTCTAAACTACTAGCTGAAAAGGTC
 40 ACCAAATCCTAATACCAATGATGCTGGTACTACGTTCTGGACGAAACGCTGATGGCAAGGCTGTTACATCT
 CGATCAGGGCTCAATGGTATTAAAACACCAACTCTGTCACCCAAAAGAGCTAACAGGAGCTGATATCCCAAT
 CATCGGTGATGGTAGCTGCTGGCTGACACTCCATCTGCAGCTGATTGATCTGAGAGCAAGCACTAACGAGGT
 CGTCATTGCAAATGCCAACGCTGAATACTTCGCACTGCTGATTGATCTGAGAGCAAGCACTAACGAGGT
 45 CCAAAGACCTGAAAGCTTACTCGACAGAACGCTCACGCCCTAAAGAGCTGAAAAGCTTCTCTC
 GATAGCACCTTAGCGTCCCACAAAGATACGCTGATGGTACAGGCTATGCTAACTTCAAGGAAACTGTCAACAAAC
 TTGACCCCTACGCTGAAGCTCAAAAAGAGAAGAGCTAACAGTGGAGGTTGAAAAGTGTCAACAAAGGT
 AATCTCAATCGATGCTGGACGCAAATCTTACTCTGAAACAGCTAACGCTGAGACAAGGCGAGTGAGCT
 50 CGGATATTGATGTCATCTCTCTAGGAAATGACGGACTTCGTTCTACTCGATGATATGACCATTACTGCC
 AACGGAAAAACCTATGCTAGTGTGCTGTTAAAAGCTTATGCAAGGAACTAAAGCTTACTACGACGATCCA
 AACGGTACTGCACTAACACAGGCGAGAAGTAAACAGCTAACAGGCTATGCTAAACTCTAACAGGATCGCTC
 CCAGCTTAAACAGTCCAGGTCAATGATGCTATGCTGGTGGCATGAAAATTAGGTATTAAAATCTCTCAA
 55 GCCCACTTGTATAAAAGTTCAAAAACAATATGGACTTGAACCAAGGCTAACGCTGAGACAAGGCGAGTGAGCT
 ATCGTAAATACATGGACTTCTTGCGAGTAAAACAAAGATTTCACCTTGGTACTGACGAATACGCCAACGAT
 CGCAGACTGTCGCAAGGCTGGTACTACCTCACTGCTGATCAAGCTTACTATGCCAATATGCCAACACC
 CTCGAGCTATGCCAAAGGAAAGGGCTCAACCAATGGCTTCAACGATGGCTTCTACTATGAAAGACAAGGAC
 GATGTTCTGTTGACAAGAGTGTCTGTTACTGCTTAAAGCTGGTGGGGATATAACCTCGCATCACCTC
 60 AATACCTAGCAAGCAAAGCTATAAACTTGTAAACCAACGGTACTGGTACTACATTCTGGTAAAACCCAG
 AAAGATGGTGGTTCTCAAGAAAAGCTTGTGAGAAACTGGAAAACACCATTCATCAACTAGCTTCTACCA
 AATATCTCTGAAAGTGTGATCTTCAACAGTCTGAAAGTATGCTTCAATCTGGCAGATAGACCAAGCGCTGAATACA
 AGGAAGAGGAAATCTTGAACTCATGACTGCTTGGAGCAGACCAACAAAGACTACTTCGTGCTAATTATAATG
 CTCTCCGCGAGAAGATTAGCTAAAATTCTACAAACTAGAAGGATATGTAAGAAAAGTCTTGTGAGGCCCTGACG
 CAGCTAAAACAGCTCAAATTACAACCTCAACCGTAAACAAAGCTGAGCTTGTGACACGCTTGTAGCCAACCTAA
 65 AAGCCGCTCTCAAGGCTCAAACCGAGCTGAACTATTCAAGGAGCCTAGATGAAAGAAAATGAGTGGCTGCCAATG
 TTGAAACCAAGACCGAGAACACTCATCACAGAACGAAACTGAGAAAATTCCATTGAGGTTATCAAGGAAAGAAAATCTTAACC
 TCCCGCGGTAGGAAAATTATCACAGCAGGAGTCAAAGGTGAACGAACTTACATCTCTGACTCACTG
 AAAATGAAAACAACAGAAAAGCTCTGATGCCAGGTAAACCAAGGTTATAACCAAGTGGTTGAAGTT
 GGCCTCCTGTAACTCACAAGGGTGTGAAAGTGGCTTGCACCAACTACTGAGGTAAAACCTAGACTGGATATC

CAAGAAGAAGAAATTCCATTACACAGTGACTTGTGAAAATCCACTCTTACTCAAAGGAAAACACAAGTCATT
 ACTAAGGGCGTCAATGGACATCGTAGCAACTTCTACTCTGTGAGCACCTCTGCCGATGGTAAGGAAGTGAAAACA
 CTTGAAAATAGTGTGCTAGCACAGGAAGCCTTACTCAAATAGTCGAAGTCGAACTATGTAACACATGTAGGC
 GATGAAAACCGGACAAGCCCTATTGCTGAAGAAAAACCAAAACTAGAAAATCCAAGGCCAACAGCTCCATCAAC
 5 TGCTCTGCTGAGGAAAGCAAGATTCTCCTCAAGATCCAGCTCTGTGTTAACAGAGAAAAACTTCTGAAAC
 AGGAACTCACGATTCTGCAAGGACTAGTAGTCGCAAGGACTCATGTCACACTAGCAGCCTATGGACTCACTAAAG
 AAAAGAAGACTAA
 MIYIINTMQSGGFAMKHEKQQRFSIRKYAVGAASVILGFQAQTVAAAGVTPTTENOPTIHTVSDSPQSSENRT
 10 TPKAVLQPEAKPTVETETPATDKVASLPKTEEKPKQEEVSSPSDKEAEVVTPTSAEKETANKKAEEASPKKEEAKEVDSKE
 SNTDKTDKDPACKDEAKAEDKPATEAKERAATVNEKLAKKKVISIDAGRKYFSPQLKEIIDKAKHYGYTDLHLL
 VGNGLRFMLDDMSITANGKTYASDDVKRAIEKGTDNYNDPNGNHLTESQMTDLINYAKDKGIGLIPTVNSPGHMD
 AILNAMKELGIQNPNFSYFCCKSARTVLDNEQAFAKKTIEFNLGDEYANDATAKGVWSVLQA
 15 DKYPNEGYPVKYEFIAYANDLARIVSHGLKPMAFNDGIVNSDTSFGSFKDIIVSMWTTGGWGGYDVASSKLLA
 EKGHQILNTNDAYYYYVLGRNADGQGWYNDQGLNGKNTPITSVPKTEGADIPIIGMVAAWADTPSARYSPSRLFKL
 MRHFANANAEEYFAADYESAEQALNEVPKDLNRYTAEBSVTAVKEAEKAIRSLDSNLSRAQQDTIDQAIKLOETVNNLT
 LTPEAQKEEEEAKREVEKLAKNKVISIDAGRKYFTLNQLKRIVDKASELGYSDVHLLLNGDGLRFLDDMTITANGKTYA
 20 SDDVKKAIIEGTAKYYDDPGNTALTQAEVTELIEYAKSKDIDLIPAINSPGHMDAMLVAMEKLGKNPQAHFDKVSKTT
 MDLKNEEAMNFVKALIGKYMDFFFAGTKIFNFGEYANDATSAQGWYLYKWLQYLGKFAEYANTLAAMAKERGL
 QPMAFNDDGFYEDKDDVQFDKDVLYWSKGWWGYNLASPQYLASKGKFLNTNGDWYYILGQKPEDGGFLKKAI
 ENTGKTPNQLASTKYPEVDLPTVGMSLISWDRPSAEYKEEIEFELMFTAFAHDKDYFRANYNALREELAKIPTNLEG
 YSKESLEALDAAKTALNYNLRNKQAELDTLVANLKAALQGLKPAVTHSGSLDENEAANVETRPELITRTEEPFEVI
 KKENPNLPAGQENITAGVKGERTHYISVLTEGTTTETVLDQSQTKEVINQVVEVGAPVTHKGDGESGLAPTTEVKPRL
 25 DQEEEIPFTTVTCENPLLLKGKTQVITKGVNGHRSNFYSVSTSADGKEVKTIVNSVVAQEAVTQIVEVGTMVTHVGDE
 NGQAAIAEEKPKEIPSQPAPSTAPAEESKVLQPDPAPVVTEKKLPETGTHDSAGLVVAGLMSTLAAYGLTKRKEDZ

ID122 825bp
 ATGAAACAAAAAAACAAGACAGACACTAATCGGACTGCTAGTGTATTCGTTACAGGGAGCTATTATATC
 30 AAGCAGATGCCGTCGGCACCTAATAGTCCAAAACCAATCTTAGTCAGAAAAAAACAAGCGTCTGAAGCTCCTAGT
 CAAGCATTGGCAGAGAGTGTCTAACAGACGCAAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTC
 AGGTGCTTTATCGTCAATCGTAATAAAACAAATCTAGATGCCAACCGTAGCTAATGCCCTTGTCTAAGGCCACTCGTCAGTCAGTC
 35 AACAAAGACACTGGGCAAGGAAACTGTCCAACCGTAGCTAATGCCCTTGTCTAAGGCCACTCGTCAGTCAGTCAGTC
 GAATCGTAAAGAAACTGGGATGGTCAACTCTGGACTCTCCAGGTTGGCATCAGGTCAAGAATCTAAAGGG
 CTCTTATACCATGCACTGCAAGGGTCTATTGTTAGGCTATGCCCTAACCGGTGGATGGTTGGATGGTTTGATGCC
 CAACAAGCACTCTAAACATTGCTGTCAGACAGCTGGCAAAATCAGGCACAAGCCAGTATTGACTGGTC
 40 AAAACTACTATGAAAGCAAGGTGCGTAAAGCCTTGACCAAAACAGCGTGTCCGTTACCGTGTAAACCTTACT
 ACCCTCAACAGAGGATTAGTCCCTCAGCTCACAGATTGAAGCCAAGTCTCGGATGGAGAATTGAATTCA
 ATGTTCTAGTCCCATTGTCAAAAGGACTTCACACTGGATTACCGAACCTGGAGAAGTAACTGTAACTCAGTAA
 MNKKTRQTLIGLLVLLLSTGSYYIKQMPSPNPKTNLSQKKQASEAPSQALAESVLTDAVKSQIKGSLEWNGSGAFIV
 45 VNGKNTLDAKVSSKPYADNKTKTVGKETVPTVANALLSKATRQYKNRKETGNGSTSWTPGWHQVKNLKGSYTHAV
 DRGHLLGYALIGGLDGFDASTSNPKNIAVQTAWANQAOAEYSTGQNYYESKVRKALDQNKRVRVRYRTLYASNEDL
 VPSASQIEAKSSDGELEFNVLVPNVQKGLQDRTGEVTVTQZ

ID123 225bp
 GTGCTAAGATTCAAGCGGATTGAGGCAAGTGTGAAGATGAATAAGAAATCAAGCTACGTAGTCAGCGTTTACTT
 TTAGTCATCATAGTACTGATTTAGGTACTCTGGCTTAGGAATCGGTTAACGGTTATGGTAGGTATGGAATCTGGGCA
 50 AGGGTCAAGATCCATGGCTATCTGTCCAGCAAAATGGCAGGAATTGATTCAAAATTACAGGAATTAG
 VLRFSLRQVMKMNKKSSYVVKRLLLVIILGTLALGIMVGYGILGKQDPWAILSPAKWQELIHKFTGNZ