MA320 抽象代数 作业七

刘逸灏 515370910207

2018年4月25日

Ex. 2.8/1

充分性: 若群 G 是合数阶群,且阶数 n 可分解为至少两个素因数的幂 $p_1^{r_1}$ 和 $p_2^{r_2}$,则根据 Sylow 定理可知 G 中存在两个阶不同且都大于 1 的子群,与条件矛盾,故 G 一定是素数阶群。又由于 G 是单群,必须由一个生成元生成,故是循环群。

必要性:根据 Lagrange 定理可知,对于素数阶循环 Abel 群,其子群的阶只能为 p 或 1,易知 G 为单群。

Ex. 2.8/2

设 $g \notin H$, 则 gH 是 H 在 G 中的一个左陪集,且 H 也是 G 的一个左陪集。又由于 $g \notin H$ 可知 $H \cap gH = \emptyset$,且 G 中只有两个 H 的左陪集,故 $G = H \cup gH$ 。同理可得 $G = H \cup Hg$,则 易知 gH = Hg,即 H 是 G 的正规子群。

Ex. 2.8/3

$$a(ba^{-1}b^{-1}) \in M$$

$$(aba^{-1})b^{-1} \in N$$

$$a(ba^{-1}b^{-1}) = (aba^{-1})b^{-1} \in M \cap N = \{e\}$$

$$aba^{-1}b^{-1} = e$$

$$ab = ba$$

Ex. 2.8/4

根据 Sylow 定理可知有 Sylow-p 子群 H 的阶为 p^s , 其中 $p^s \mid n$ 且 $p^{s+1} \nmid n$, 对于 $\forall h \in H, h \neq e_H$, 根据 Lagrange 定理可知 h 的阶为 $p^t, 1 \leq t \leq s$, 故 $h^{p^{t-1}}$ 的阶为 p, 得证。

Ex. 2.8/5

作映射
$$\phi: x^{-1}Hx \to xN_G(H)$$
,则
$$u^{-1}Hu = v^{-1}Hv \to uN_G(H) = vN_G(H)u^{-1}Hu = v^{-1}Hv \to uN_G(H) = vN_G(H)$$
 故 ϕ 是一个一一映射,得证。

Ex. 2.8/9

根据 Lagrange 定理可知 C(G) 的阶只能为 p, p^2 。当阶为 p^2 时,显然有 C(G) = G,故 G 为 Abel 群。当阶为 p 时,G/C(G) 的阶为 p 是循环群,故 G 为 Abel 群。

Ex. 2.8/10

根据 Lagrange 定理可知 C(G) 的阶只能为 p, p^2, p^3 。显然当阶为 p^3 时 G 为 Abel 群,与条件矛盾。当阶为 p^2 时,G/C(G) 的阶为 p 是循环群,故 G 为 Abel 群,与条件矛盾。故 C(G) 的阶只能为 p,故其同构于 Z_p 。