App-controlled LEGO 3-DoF robotic arm

Project of lecture "Mobile Computing" (winter term 2018/2019)

Christoph Ulrich HTWG Konstanz Constance, Germany christoph.ulrich@htwg-konstanz.de

Benjamin Schaefer HTWG Konstanz Constance, Germany benjamin.schaefer@htwg-konstanz.de

Abstract—it's reasonable to write this after all other sections of this paper have been completed

I. Introduction / Motivation

- control of a robotic arm is a fundamental task in robotics - easy hands on experience for everybody to this fundamental robotic application with this paper and the created low cost LEGO 3-DoF robot arm (incl. instructions)
- application and hardware could be used in basic lecture "Grundlagen der mobilen Robotik" to better understand robot kinematics, ROS and a bit of perception
- recycling of old and unused hardware of the robotics lab at the HTWG Konstanz
- typical industrial applications to control a robotic arm run on more powerful hardware and often offer a complicated and - for beginners - confusing GUI,

Christoph: insert example(s)

so we developed an easy to use mobile application for Android platforms

- ROS because widely used, very modular/extensible and basic framework which almost every student starting with robotics has to get in touch with
- new paragraph

Christoph: description of background and main "problem"

II. STATE OF THE ART

Christoph: find two or three example applications/hardware components, analyze and compare them, also look at mobile application programming techniques used in these

- https://www.hackster.io/slantconcepts/control-arduinorobot-arm-with-android-app-1c0d96
- https://www.instructables.com/id/Robot-Arm-Arduino-App/
- https://www.kuka.com/en-us/products/roboticssystems/software/application-software/kuka-hrc-guideapp

III. PROPOSED APPROACH

A. Requirements Engineering

Christoph: what should the arm be able to achieve in the end? How should the app look like and which functions does it have to provide?

B. Arm Construction

Christoph: graphics, moment/transmission calculations, ...

C. Algorithms

Christoph: implementation of forward and backward kinematics

D. App Development

Christoph: communication/process description, ROS, navigation strategy, ...

E. Expected Results

Christoph: speed, accuracy, ...

IV. RESULTS

V. Conclusion

VI. FURTHER WORK

- 3D graphics in App

incomt arramanla(a)

QUELLENVERZEICHNIS

[1] Khronos - OpenGL: Primitives - Triangle Primitives, https://www.khronos.org/opengl/wiki/Primitive

TODO LIST

insert example(s)	1
description of background and main "problem"	1
find two or three example applications/hardware com-	
pontents, analyze and compare them, also look at	
mobile application programming techniques used	
in these works	1
what should the arm be able to achieve in the end? How	
should the app look like and which functions does	
it have to provide?	1
graphics, moment/transmission calculations,	1

implementation of forw	ard and backward kinematics .	1
communication/process	description, ROS, navigation	
strategy,		1
speed, accuracy,		1