Contrasts

STAT 401 - Statistical Methods for Research Workers

Jarad Niemi

Iowa State University

21 September 2013

Mice diet

Simple hypothesis

Consider the one-way ANOVA model: $Y_{ij} \sim N(\mu_i, \sigma^2)$ where i = 1, ..., I.

Here are a few simple alternative hypotheses:

- Mean lifetime for N/R40 and N/R50 diet is different.
- Mean lifetime for N/R40 is different than for N/R50 and R/R50 combined.
- Mean lifetime for NP and N/N85 combined is different than for low calorie diets combined.

$$\begin{split} H_0: \gamma &= 0 \qquad H_1: \gamma \neq 0: \\ \gamma_1 &= \mu_{N/R40} - \mu_{N/R50} \\ \gamma_2 &= \mu_{N/R40} - \frac{1}{2} \big(\mu_{N/R50} + \mu_{R/R50} \big) \\ \gamma_3 &= \frac{1}{2} \big(\mu_{NP} + \mu_{N/N85} \big) - \frac{1}{4} \big(\mu_{N/R50} + \mu_{R/R50} + \mu_{N/R40} + \mu_{lopro} \big) \end{split}$$

Contrasts

i	NP	N/N85	lopro	N/R50	R/R50	N/R40
1	0	0	0	-1	0	1
2	0	0	0	-1/2	-1/2	1
3	1/2	1/2	-1/4	-1/4	-1/4	-1/4
	C_1	C_2	<i>C</i> ₃	C ₄	C_5	C_6

$$\gamma = C_1 \mu_1 + C_2 \mu_2 + \cdots + C_I \mu_I$$

Estimated by

$$g = C_1 \overline{Y}_1 + C_2 \overline{Y}_2 + \cdots + C_I \overline{Y}_I$$

with standard error

$$SE(g) = s_p \sqrt{\frac{C_1^2}{n_1} + \frac{C_2^2}{n_2} + \dots + \frac{C_I^2}{n_I}}$$

t-statistic and CI

$$t = rac{g}{SE(g)}$$
 $g \pm t_{df}(1 - lpha/2)SE(g)$

Examples

	diet	n	mean	sd
1	NP	49	27.40	6.13
2	N/N85	57	32.69	5.13
3	lopro	56	39.69	6.99
4	N/R50	71	42.30	7.77
5	R/R50	56	42.89	6.68
6	N/R40	60	45.12	6.70

 $s_p = 6.68$ with 343 degrees of freedom

	g	SEg	t	р	L	U
1	2.82	1.17	2.41	0.02	0.52	5.12
2	2.53	1.05	2.41	0.02	0.46	4.59
3	-12.45	0.78	-15.96	0.00	-13.98	-10.92

SAS

```
DATA case0501;
  INFILE 'case0501.csv' DSD FIRSTOBS=2;
  INPUT lifetime diet $;
PROC MEANS DATA=case0501:
 CLASS diet;
  VAR lifetime;
  RUN:
```

42.3000000
54.6000000
51.9000000
35.5000000
50.7000000
49.7000000

SAS

```
PROC GLM;
  CLASS diet;
  MODEL lifetime = diet / CLPARM;
  ESTIMATE 'N/R40 - N/R50'
    diet 0 1 -1 0 0 0;
  ESTIMATE 'N/R40 - (N/R50+R/R50)/2'
    diet 0 1 -.5 0 -.5 0 :
  ESTIMATE '(NP+N/N85)/2 - (N/R50+R/R50+N/R40+lopro)/4'
    diet 2 -1 -1 2 -1 -1 / DIVISOR = 4;
  RUN:
```

Parameter	Estimate	Standard Error	t Value	Pr > t
N/R40 - N/R50	2.8194836	1.17109686	2.41	0.0166
N/R40 - (N/R50+R/R50)/2 (NP+N/N85)/2 - (N/R50+R/R50+N/R40+lopro)/4	2.5252180 -12.4496851	1.04854904 0.78001425	2.41 -15.96	0.0166 <.0001

Parameter

95% Confidence Limits

N/R40 - N/R50	0.5160481	5.1229190
N/R40 - (N/R50+R/R50)/2	0.4628224	4.5876136
(NP+N/N85)/2 - (N/R50+R/R50+N/R40+lopro)/4	-13.9838985	-10.9154718

Summary

- Contrasts are linear combinations that sum to zero
- t-test tools are used to calculate pvalues and confidence intervals