PH30030: Quantum Mechanics Problems Sheet 2

This problems sheet covers section 2 of the course, on angular momentum. Quite a few of the problems are about checking and filling in the details of derivations from the lecture notes – these are designed to give you more practice in handling operators, and to help you understand exactly where the results come from.

- 1. In the lecture notes we showed that the commutator of \hat{L}_x and \hat{L}_y is $\left[\hat{L}_x,\hat{L}_y\right]=i\hbar\,\hat{L}_z$. Work carefully through the derivation, and make sure that you can follow every step. In a similar way, show that $\left[\hat{L}_y,\hat{L}_z\right]=i\hbar\,\hat{L}_x$.
- 2. In the lectures, we stated that $\left[\hat{L}^2,\hat{L}_z\right] = \left[\hat{L}_x^2,\hat{L}_z\right] + \left[\hat{L}_y^2,\hat{L}_z\right] + \left[\hat{L}_z^2,\hat{L}_z\right] = 0$, because $\left[\hat{L}_x^2,\hat{L}_z\right]$ and $\left[\hat{L}_y^2,\hat{L}_z\right]$ cancel, and $\left[\hat{L}_z^2,\hat{L}_z\right] = 0$. The last one is easy (see question 9 on problems sheet 1) but the cancellation of the first two needs some work. Show that

$$\begin{bmatrix} \hat{L}_{x}^{2}, \hat{L}_{z} \end{bmatrix} = -i\hbar \left(\hat{L}_{x}\hat{L}_{y} + \hat{L}_{y}\hat{L}_{x} \right)$$
$$\begin{bmatrix} \hat{L}_{y}^{2}, \hat{L}_{z} \end{bmatrix} = +i\hbar \left(\hat{L}_{x}\hat{L}_{y} + \hat{L}_{y}\hat{L}_{x} \right)$$

Note: this is quite tricky, but it can be done just by using the commutation relations $\left[\hat{L}_x, \hat{L}_y\right] = i\hbar \hat{L}_z$, $\left[\hat{L}_y, \hat{L}_z\right] = i\hbar \hat{L}_x$, $\left[\hat{L}_z, \hat{L}_x\right] = i\hbar \hat{L}_y$.

3. Work carefully through the derivations in the lecture notes to confirm that

$$\begin{split} \left[\hat{L}_{\scriptscriptstyle +}, \hat{L}_{\scriptscriptstyle -} \right] &= 2\hbar\,\hat{L}_{\scriptscriptstyle z} \\ \left[\hat{L}_{\scriptscriptstyle z}, \hat{L}_{\scriptscriptstyle +} \right] &= \hbar\,\hat{L}_{\scriptscriptstyle +} \\ \left[\hat{L}_{\scriptscriptstyle z}, \hat{L}_{\scriptscriptstyle -} \right] &= -\hbar\,\hat{L}_{\scriptscriptstyle -} \end{split}$$

- 4. In the lecture notes we showed that if $|\phi_n\rangle$ is an eigenfunction of \hat{L}_z with eigenvalue β_n , then $\hat{L}_+|\phi_n\rangle$ is an eigenfunction of \hat{L}_z with eigenvalue $\beta_n+\hbar$. We also stated that $\hat{L}_-|\phi_n\rangle$ is an eigenfunction of \hat{L}_z with eigenvalue $\beta_n-\hbar$. Confirm that this is true.
- 5. In the lecture notes we started from $\hat{L}_{+} |\phi_{\max}\rangle = 0$ to show that $\alpha = \beta_{\max} (\beta_{\max} + \hbar)$ (see the notes for the meaning of the symbols). Starting from $\hat{L}_{-} |\phi_{\min}\rangle = 0$, confirm that $\alpha = \beta_{\min} (\beta_{\min} \hbar)$.
- 6. By following a similar procedure to that we used in the lecture notes for \hat{L}_z , it can be shown that \hat{L}_x and \hat{L}_y can be expressed in spherical polars as

$$\hat{L}_{x} = i\hbar \left(\sin \phi \, \frac{\partial}{\partial \theta} + \cot \theta \, \cos \phi \, \frac{\partial}{\partial \phi} \right)$$

$$\hat{L}_{y} = i\hbar \left(-\cos \phi \, \frac{\partial}{\partial \theta} + \cot \theta \, \sin \phi \, \frac{\partial}{\partial \phi} \right)$$

1

Show that the ladder operators \hat{L}_{+} and \hat{L}_{-} can be expressed in spherical polars as

$$\hat{L}_{+} = \hbar \exp(i\phi) \left(\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right)$$

$$\hat{L}_{-} = \hbar \exp(-i\phi) \left(-\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right)$$

- 7. Use the results from question 6 to confirm that the ladder operator \hat{L}_{+} has the expected effect on the eigenfunctions of angular momentum for $\ell = 1$, i.e.,

 - a) $\hat{L}_{+} | Y_{1-1} \rangle \propto | Y_{10} \rangle$ b) $\hat{L}_{+} | Y_{10} \rangle \propto | Y_{11} \rangle$ c) $\hat{L}_{+} | Y_{11} \rangle = 0$

Note: the proportional sign is needed here because the operation of the ladder operators leads to eigenfunctions that are not normalised.

- 8. In the lecture notes we showed that $\left[\hat{S}_x, \hat{S}_y\right] = i\hbar \hat{S}_z$. Show, using the Pauli matrices given in the notes, that $\left[\hat{S}_{y},\hat{S}_{z}\right] = i\hbar \,\hat{S}_{x}$ and $\left[\hat{S}_{z},\hat{S}_{x}\right] = i\hbar \,\hat{S}_{y}$.
- 9. Confirm that the eigenvectors given in the lecture notes for \hat{S}_x , \hat{S}_y and \hat{S}_z are indeed eigenvectors with the given eigenvalues. Confirm also that, for each component of spin, the two eigenvectors are normalised and orthogonal to each other.
- 10. In the first section of the course we saw that a wavefunction $|\psi\rangle$ can be expanded in terms of eigenfunctions $|\phi_n\rangle$ as $|\psi\rangle = \sum_n c_n |\phi_n\rangle$, with the coefficients given by $c_m = \langle \phi_m | \psi \rangle$. The probability of measuring the eigenvalue associated with $\ket{\phi_{\scriptscriptstyle m}}$ is $\ket{c_{\scriptscriptstyle m}}^2$. The same ideas work with spin. A general wavefunction can be expressed as $|\psi\rangle = \begin{pmatrix} a \\ b \end{pmatrix}$ where a and b are complex numbers and, to ensure that $|\psi\rangle$ is normalised, we require $|a|^2 + |b|^2 = 1$. We can write $|\psi\rangle = c_1 |\phi_1\rangle + c_2 |\phi_2\rangle$, where $|\phi_1\rangle$ and $|\phi_2\rangle$ are the eigenvectors of one of the spin components, with $c_1 = \langle \phi_1 | \psi \rangle$ and $c_2 = \langle \phi_2 | \psi \rangle$.
 - a) Express $|\psi\rangle = \begin{pmatrix} a \\ b \end{pmatrix}$ in terms of the eigenvectors of \hat{S}_x . If a measurement is made of the x component of spin angular momentum, what are the probabilities of measuring $+\frac{h}{2}$ and $-\frac{\hbar}{2}$?
 - b) Repeat a) for both \hat{S}_y and \hat{S}_z .