Pressione di radiazione. Forza su una superficie

Si consideri una superficie piana di area A su cui incide, ad angolo θ , una radiazione e.m. piana. Dimostrare che la forza agente su tale superficie, dovuta alla pressione di radiazione, è:

- (a) $F_{\text{ass}} = \frac{I}{c} A \cos \theta$, nel caso di superficie perfettamente assorbente.
- (b) $F_{\text{rifl}} = 2\frac{I}{c}A\cos^2\theta$, nel caso di superficie perfettamente riflettente.

Calcolare, in entrambi i casi, anche la pressione di radiazione.

Si consideri ora una superficie sferica di raggio R.

(c) Dimostrare che la forza agente sulla superficie sferica è

$$F_{\text{sfera}} = \pi R^2 \frac{I}{c}$$

sia nel caso di superficie perfettamente assorbente che perfettamente riflettente.

Guida alla soluzione

La figura mostra la radiazione che incide su una superficie di area A (qui disegnata di forma rettangolare, ma ciò è irrilevante) la cui normale forma un angolo θ con la direzione di propagazione dell'onda e.m., scelta lungo l'asse x.

La quantità di moto $\Delta \mathbf{p}_i$ che giunge, nell'intervallo di tempo Δt , sulla superficie A è quella che, nello stesso tempo, attraversa la superficie A_{\perp} , proiezione di A sul fronte d'onda incidente. Ovviamente vale la relazione $A_{\perp} = A\cos\theta$.

Nell'unità di tempo si ha, in modulo,

$$\frac{\Delta p_i}{\Delta t} = \frac{I}{c} A_{\perp} = \frac{I}{c} A \cos \theta .$$

Indicheremo con $\Delta \mathbf{p}_A$ la quantità di moto che nello stesso tempo Δt viene trasferita alla superficie A.

(a) Superficie piana perfettamente assorbente

La quantità di moto che incide sulla superficie nel tempo Δt è $\Delta \mathbf{p}_i$ e viene interamente trasferita alla superficie: $\Delta \mathbf{p}_A = \Delta \mathbf{p}_i$, per cui la forza che agisce sulla superficie è

$$\mathbf{F}^{(ass)} = \dots$$

La pressione sulla superficie A è data dal rapporto tra la componente di F normale alla superficie e l'area della superficie stessa:

$$P_{rad}^{(ass)} = \frac{F_{\perp}}{A} = \frac{\Delta p_{A\perp}}{\Delta t A} = \frac{\Delta p_i \cos \theta}{\Delta t} \frac{1}{A} = \dots$$

(b) Superficie piana perfettamente riflettente

Sia $\Delta \mathbf{p}_i$ la quantità di moto incidente nel tempo Δt sulla superficie e sia $\Delta \mathbf{p}_r$ la quantità di moto riflessa dalla superficie sempre nello stesso intervallo di tempo. Scriviamo $\Delta \mathbf{p}_i$ come somma di due componenti, rispettivamente parallela e perpendicolare alla superficie A: $\Delta \mathbf{p}_i = \Delta \mathbf{p}_{i\parallel} + \Delta \mathbf{p}_{i\perp}$. I moduli delle due componenti sono, ovviamente, $\Delta p_{i\parallel} = \Delta p_i \sin \theta$ e $\Delta p_{i\perp} = \Delta p_i \cos \theta$. Siccome la superficie è, per ipotesi, perfettamente riflettente, la componente della quantità di moto riflessa parallela alla superficie è uguale a quella incidente $\Delta \mathbf{p}_{r\parallel} = \Delta \mathbf{p}_{i\parallel}$, mentre la componente normale è opposta $\Delta \mathbf{p}_{r\perp} = -\Delta \mathbf{p}_{i\perp}$. Quindi la quantità di moto riflessa risulta

$$\Delta \mathbf{p}_r = \Delta \mathbf{p}_{r\parallel} + \Delta \mathbf{p}_{r\perp} = \Delta \mathbf{p}_{i\parallel} - \Delta \mathbf{p}_{i\perp}$$
.

Per la conservazione della quantità di moto, alla superficie A viene comunicata una quantità di moto $\Delta \mathbf{p}_A$ tale che $\Delta \mathbf{p}_i = \Delta \mathbf{p}_r + \Delta \mathbf{p}_A$, cioè

$$\Delta \mathbf{p}_A = \Delta \mathbf{p}_i - \Delta \mathbf{p}_r = 2\Delta \mathbf{p}_{i\perp},$$

quindi la quantità di moto acquistata dalla superficie è perpendicolare alla superficie stessa, e il suo modulo è

$$\Delta p_A = 2\Delta p_i \cos \theta = \dots$$

La forza sulla superficie e la pressione di radiazione si ottengono immediatamente.

(c) Superficie sferica

Un elemento di superficie infinitesimo, individuato dagli angoli θ e φ , è

$$dA = R^2 \sin \theta \, d\theta \, d\varphi.$$

Esaminiamo separatamente i casi della superficie perfettamente assorbente o riflettente.

(c.1) Superficie sferica perfettamente assorbente

La forza che agisce sull'elemento infinitesimo di superficie è dato dalla formula ricavata al punto (a):

$$dF^{(ass)} = \frac{I}{c} dA \cos \theta = \dots$$

La somma dei contributi di tutti gli elementi infinitesimi di superficie (ma solo della parte "illuminata"!) si ottiene integrando sulle variabili angolari.

(c.2) Superficie sferica perfettamente riflettente

La forza che agisce sull'elemento infinitesimo di superficie è dato dalla formula ricavata al punto (b), ma occorre osservare che solo la componente x contribuisce alla forza risultante sull'intera superficie.

Per l'elemento infinitesimo si ha

$$dF_x = dF^{(rifl)}\cos\theta = 2\frac{I}{c}dA\cos^3\theta = 2\frac{I}{c}R^2\sin\theta\cos^3\theta\,d\theta\,d\varphi$$

Integrando sugli angoli si ottiene $F=\frac{I}{c}\pi R^2$, esattamente come per la superficie totalmente assorbente.

In pratica la simmetria della sfera, selezionando solo la componente \boldsymbol{x} della forza che agisce sulla superficie, compensa esattamente il fattore 2 tipico della superficie riflettente.

