Reactive Scheduling of Computational Resources in Control Systems

Hodai Goldman

Ben-Gurion University of the Negev Department of Computer Science

January 1, 2018

- 1 Automata-based Scheduling
 - Motivation
 - Component-based Architecture
 - Büchi Games Interface
 - Sub-Summery: Component Definition
- 2 Integration with Kalman
 - Guiding Concept
 - Guided Tour Simulation
- 3 Experiment with real-life case-study
 - The Mission
 - Simplifying the Kalman filter with complementary filter
 - Results
- 4 Conclusion
 - Conclusion
 - Related Work

- Automata-based Scheduling
 - Motivation
 - Component-based Architecture
 - Büchi Games Interface
 - Sub-Summery: Component Definition
- 2 Integration with Kalman
 - Guiding Concept
 - Guided Tour Simulation
- 3 Experiment with real-life case-study
 - The Mission
 - Simplifying the Kalman filter with complementary filter
 - Results
- 4 Conclusion
 - Conclusion
 - Related Work

An control problem example

present the example: robot moving in root with obstacles, mission 1: avoid obstetrical(camera), mission 2: follow the guiding root(GPS)

Motivation Architecture Büchi Games Component Definitio

The Traditional Solution

				4.0	<u> </u>
lic tasks	period	+	- stens	time	Constant
اال لده	benou	_	ฮ รเษมร	unie	Constant

time steps							
	Task	Period	Deadline				
	Check for obstacles	10ms	1.5ms				
figure +	Check GPS position	10ms	0.5ms				
	Control Law	2ms	0ms				

The Main Software Design Problems

Task	Period	Deadline				
Check for obstacles	10ms	1.5ms				
Check GPS position	10ms	0.5ms				
Control Law	2ms	0ms				
•••						

The design problems from our point of view

- All the tasks are highly coupled: any change or addition of some task require to consider all other tasks requirements
- Static and inefficient scheduling: the table is defined for the worst case talk about related work on this direction
- No consideration of the environmental conditions: it is a cyber-physical system after all

The Goal

In this thesis we design an **reactive** scheduling framework for real-time systems

Required features:

- Independent and composable requirements
- Control objective based requirement interface
- Environment adoptive scheduler

- Automata-based Scheduling
 - Motivation
 - Component-based Architecture
 - Büchi Games Interface
 - Sub-Summery: Component Definition
- 2 Integration with Kalman
 - Guiding Concept
 - Guided Tour Simulation
- 3 Experiment with real-life case-study
 - The Mission
 - Simplifying the Kalman filter with complementary filter
 - Results
- 4 Conclusion
 - Conclusion
 - Related Work

The Proposed Architecture

Explain that the scheduler is involve in the control loops

Automata-Based Specification Interface

The Proposed Architecture

maybe add a word about RTcomposer and GameComposer

Why Automata

- Lite: minimal resource consumption at run-time
- Composable: easy to compose independent components
- Automata theory built in: allows for tools such GOAL
- Expressiveness

Example of Guarded Automata The Proposed Architecture

Obstacle avoidance component no obsticals no obsticals in frame in frame High GPS navigation component

Non

Non

Simplifying the Guarded Automata

The Proposed Architecture

Mode-based guarded automata (for good intuition) no obsticals in frame no obsticals in frame Low High

1

The automata in practice (best match ω -word theory)

Q: How to create the guarded automata? By wining Büchi

- Automata-based Scheduling
 - Motivation
 - Component-based Architecture
 - Büchi Games Interface
 - Sub-Summery: Component Definition
- 2 Integration with Kalman
 - Guiding Concept
 - Guided Tour Simulation
- 3 Experiment with real-life case-study
 - The Mission
 - Simplifying the Kalman filter with complementary filter
 - Results
- 4 Conclusion
 - Conclusion
 - Related Work

Büchi game remainder

Büchi game remainder

- Automata-based Scheduling
 - Motivation
 - Component-based Architecture
 - Büchi Games Interface
 - Sub-Summery: Component Definition
- 2 Integration with Kalman
 - Guiding Concept
 - Guided Tour Simulation
- 3 Experiment with real-life case-study
 - The Mission
 - Simplifying the Kalman filter with complementary filter
 - Results
- 4 Conclusion
 - Conclusion
 - Related Work

technical

Outline

Automata-based Scheduling

- Automata-based SchedulingMotivation
 - Component-based Architecture
 - Büchi Games Interface
 - Sub-Summery: Component Definition
- Integration with Kalman
 - Guiding Concept
 - Guided Tour Simulation
- Experiment with real-life case-study
 - The Mission
 - Simplifying the Kalman filter with complementary filter
 - Results
- 4 Conclusion
 - Conclusion
 - Related Work

- - Motivation
 - Component-based Architecture
 - Büchi Games Interface
 - Sub-Summery: Component Definition
- Integration with Kalman
 - Guiding Concept
 - Guided Tour Simulation
- - The Mission
 - Simplifying the Kalman filter with complementary filter
 - Results
- - Conclusion
 - Related Work

the simulation

- - Motivation
 - Component-based Architecture
 - Büchi Games Interface
 - Sub-Summery: Component Definition
- - Guiding Concept
 - Guided Tour Simulation
- Experiment with real-life case-study
 - The Mission
 - Simplifying the Kalman filter with complementary filter
 - Results
- - Conclusion
 - Related Work

1. mission definition 2. scheduling objectives 3. how we review the results (the x axis) 4. add a video

- - Motivation
 - Component-based Architecture
 - Büchi Games Interface
 - Sub-Summery: Component Definition
- - Guiding Concept
 - Guided Tour Simulation
- Experiment with real-life case-study
 - The Mission
 - Simplifying the Kalman filter with complementary filter
 - Results
- - Conclusion
 - Related Work

- - Motivation
 - Component-based Architecture
 - Büchi Games Interface
 - Sub-Summery: Component Definition
- - Guiding Concept
 - Guided Tour Simulation
- Experiment with real-life case-study
 - The Mission
 - Simplifying the Kalman filter with complementary filter
 - Results
- - Conclusion
 - Related Work

- - Motivation
 - Component-based Architecture
 - Büchi Games Interface
 - Sub-Summery: Component Definition
- - Guiding Concept
 - Guided Tour Simulation
- - The Mission
 - Simplifying the Kalman filter with complementary filter
 - Results
- Conclusion
 - Conclusion
 - Related Work

instead of with Related Work

- - Motivation
 - Component-based Architecture
 - Büchi Games Interface
 - Sub-Summery: Component Definition
- - Guiding Concept
 - Guided Tour Simulation
- - The Mission
 - Simplifying the Kalman filter with complementary filter
 - Results
- Conclusion
 - Conclusion
 - Related Work

Thanks