MA 101 (Mathematics - I) Tutorial Problems 4: (Differentiability 1, 2)

1. Give an example of a continuous function on $\mathbb R$ which is not differentiable exactly at

(i)
$$1$$
, (ii) $1, 2, 3$, (iii) every integer.

Solution: (i) |x-1|, (ii) |x-1| + |x-2| + |x-3|, (iii) $f(x) = \begin{cases} x - [x] & \text{if } [x] \text{ is even,} \\ 1 - (x - [x]) & \text{if } [x] \text{ is odd.} \end{cases}$ or $f(x) = |\sin \pi x|$. Verify the claims.

2. Let r > 0 be a rational number, and $f : [0, \infty) \to \mathbb{R}$ be defined by $f(x) = x^r \sin \frac{1}{x}$ for $x \neq 0$ and f(0) = 0. Determine those values of r for which f is differentiable.

Solution: For x > 0, f is differentiable at x, and

$$\frac{d}{dx}x^r\sin\frac{1}{x} = rx^{r-1}\sin\frac{1}{x} - x^{r-2}\cos\frac{1}{x}.$$

At the point 0: We have $\frac{f(x)-f(0)}{x-0}=x^{r-1}\sin\frac{1}{x}$ has the limit 0 as $x\to 0$, if r>1.

Let $0 < r \le 1$. Then $\lim_{x \to 0+} x^{r-1} \sin \frac{1}{x}$ does not exist.

Thus, f is differentiable on $[0, \infty)$ if and only if r > 1.

3. If $f: \mathbb{R} \to \mathbb{R}$ is differentiable at $c \in \mathbb{R}$, show that $f'(c) = \lim_{n \to \infty} \left(n \left(f(c + \frac{1}{n}) - f(c) \right) \right)$. Show by an example that the existence of the limit of this sequence does not imply the existence of f'(c).

Solution: Consider $g(x) = \frac{f(x) - f(c)}{x - c}$ for $x \neq c$. Then $\lim_{x \to c} g(x) = f'(c)$. Since the sequence $(c + \frac{1}{n})$ converges to c, we must have $g(c + \frac{1}{n}) \to f'(c)$.

Consider $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} 1, & x \in \{c + \frac{1}{n} : n \in \mathbb{N}\} \cup \{c\}, \\ 0, & \text{otherwise.} \end{cases}$$

Then the given limit is 0, but f is not continuous at c.

4. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable. Let $n \in \mathbb{N}$, $a \in \mathbb{R}$. Find the limit $\lim_{x \to a} \frac{a^n f(x) - x^n f(a)}{x - a}$.

Solution:
$$\lim_{x \to a} \frac{a^n f(x) - x^n f(a)}{x - a} = \lim_{x \to a} \frac{a^n f(x) - a^n f(a) - (x^n f(a) - a^n f(a))}{x - a} = a^n f'(a) - f(a) n a^{n-1}.$$

5. Let $f: I \to \mathbb{R}$ be differentiable at $c \in (a,b)$, and $x_n < c < y_n$ in I such that $y_n - x_n \to 0$. Find $\lim_{n \to \infty} \frac{f(y_n) - f(x_n)}{y_n - x_n}$, if it exists.

Solution: By Carathéodary's theorem, $f(x) - f(c) = \phi(x)(x - c)$ on I, where ϕ is continuous at c and $\phi(c) = f'(c)$. Thus,

$$f(y_n) - f(x_n) = (f(y_n) - f(c)) - (f(x_n) - f(c)) = \phi(y_n)(y_n - c) - \phi(x_n)(x_n - c)$$

$$= (y_n - x_n)\phi(y_n) + x_n(\phi(y_n) - \phi(x_n)) - c(\phi(y_n) - \phi(x_n))$$

$$= (y_n - x_n) \left[\phi(y_n) - \frac{c - x_n}{y_n - x_n} (\phi(y_n) - \phi(x_n)) \right]$$

that is,

$$\left| \frac{f(y_n) - f(x_n)}{(y_n - x_n)} - f'(c) \right| = \left| (\phi(y_n) - f'(c)) - \frac{c - x_n}{y_n - x_n} (\phi(y_n) - \phi(x_n)) \right|$$

$$\leq |\phi(y_n) - f'(c)| + \frac{c - x_n}{y_n - x_n} |\phi(y_n) - \phi(x_n)|$$

$$\leq |\phi(y_n) - f'(c)| + |\phi(y_n) - \phi(x_n)| \to 0,$$

as
$$0 < \frac{c - x_n}{y_n - x_n} < 1$$
, $\phi(y_n) - \phi(x_n) \to \phi(c) - \phi(c) = 0$, and $\phi(y_n) \to \phi(c) = f'(c)$. Therefore,
$$\lim_{n \to \infty} \frac{f(y_n) - f(x_n)}{y_n - x_n} = f'(c).$$

6. Suppose $f:[a,b]\to\mathbb{R}$ is differentiable on (a,b) and $\lim_{x\to a+}f'(x)=\ell$. Show that f is differentiable at a and $f'(a)=\ell$ if and only if f is continuous at a.

Solution: If f is differentiable at a, then it must be continuous at a, that is, continuity at a is necessary. Conversely, suppose f is continuous at a. Let $\epsilon > 0$ be given. Then there exists $0 < \delta \le b - a$ such that $|f'(c) - \ell| < \epsilon$ for $c \in (a, a + \delta)$. Now, let $x \in (a, a + \delta)$. Then, f is continuous on [a, x] and differentiable on (a, x). By MVT, there is $c \in (a, x)$ such that $\frac{f(x) - f(a)}{x - a} = f'(c)$. Thus,

$$\left| \frac{f(x) - f(a)}{x - a} - \ell \right| = |f'(c) - \ell| < \epsilon.$$

Since this is true for $x \in (a, a + \delta)$, f is differentiable at a and $f'(a) = \ell$.

7. Let $f:[a,b] \to [a,b]$ be differentiable. Assume that $f'(x) \neq 1$ for $x \in [a,b]$. Prove that f has a unique fixed point in [a,b].

Solution: Since f is continuous, we know that f has a fixed point (using IVT). Suppose, if possible, $c, d \in [a, b], c < d, f(c) = c, f(d) = d$. Since f is differentiable on [c, d], by MVT we get $t \in (c, d)$ such that $f'(t) = \frac{f(d) - f(c)}{d - c} = 1$, a contradiction.

8. Let $f:[a,b]\to\mathbb{R}$ be differentiable. Assume that there exists no $x\in[a,b]$ such that f(x)=0=f'(x). Prove that the number of zeroes of f in [a,b] is finite.

Solution: Suppose there are infinitely many zeros of f in [a, b]. Then we get a sequence (x_n) of distinct points in [a, b] such that $f(x_n) = 0$ for every n. By Bolzano-Weierstrass Theorem, we get a convergent subsequence, say (y_n) of (x_n) . Let $c = \lim y_n$. Then $c \in [a, b]$. Since f is continuous at c, we have

 $f(c)=\lim f(y_n)=0.$ (Note that at most one y_n can be c. Delete it from the sequence if there is one.) Let $g(x)=\frac{f(x)-f(c)}{x-c}$ for $x\neq c$. Then, $\lim_{x\to c}g(x)=f'(c)$. Since $y_n\to c$, and $g(y_n)=0$, we get f'(c)=0, that is, f(c)=0=f'(c).

9. Show that $\frac{\sin x}{x}$ is strictly decreasing on $(0, \pi/2)$. (There was a typo: decreasing, not increasing.)

Solution: Differentiate. Differentiate the numerator again.

10. Consider the function $h: \mathbb{R} \to \mathbb{R}$ given by $h(x) = x^3 + 2x + 1$. Show that h is a bijection, and therefore has an inverse h^{-1} on \mathbb{R} . Find $(h^{-1})'(y)$ at the points y corresponding to x = 0, 1, -1.

Solution: First, show that $h(x) = h(y) \implies x = y$, so that h is one-one. As $\lim_{x \to \infty} h(x) = \infty$ and $\lim_{x \to -\infty} h(x) = -\infty$, h is onto, by intermediate value theorem. Since $h'(0) = 2, h'(\pm 1) = 5$, we have $(h^{-1})'(y)$ at the points corresponding to x = 0, 1, -1 are 1/2, 1/5, 1/5, respectively.

11. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable such that f(0) = f(1) = 0 and f'(0) > 0, f'(1) > 0. Show that there are distinct $c_1, c_2 \in (0, 1)$ such that $f'(c_1) = f'(c_2) = 0$.

Solution: Since f'(0) > 0, there is $0 < \delta_1 < 1$ such that f(x) > f(0) = 0 for all $x \in (0, \delta_1)$. Similarly, since f'(1) > 0 there is $0 < \delta_2 < 1$ such that f(x) < f(1) = 0 for all $x \in (\delta_2, 1)$. Thus, $f(\frac{\delta_1}{2}) > 0$ and $f(\frac{1+\delta_2}{2}) < 0$. By, IVT, there is c between $\frac{\delta_1}{2}$ and $\frac{1+\delta_2}{2}$ such that f(c) = 0. Now use Rolle's theorem for [a, c] and [c, b].