

Airflow

a platform to programmatically author, schedule and monitor workflows.

Fact & Problems

We're facing with a lots of workflows.

Sale Orders

New Employee Onboarding

We're facing with a lots of disadvantages with current methods.

Homemade *orchestration system* to monitor & maintain 100+ cron jobs

Custom scripts for;

- Check job status
- Email on job failures
- Re-run mechanism

Cron job Cron job

Cron job Cron job

Cron job Cron job

• ...

Spend efforts on maintaining both!

Do nothing without saying Good luck!

No notification when finish/fail/retry

No status monitoring for running script

No flexible integration mechanism

No dependencies management

No version controller for workflow's scripts

No failure-retry and re-run mechanism

No centralize logging mechanism

No backfill mechanism

No scalability

Airflow comes into the picture

Go deep in technical perspective

Agenda

Overview of Airflow

Airflow Operators

Airflow Executors

Demo

Airflow is **created by Airbnb**

Written in **Python**

Is a workflow management system

Open-source, no cost

"Configuration as code" principal

Airflow is **used for:**

Run ETL pipelines

Data ingestion pipelines

Machine learning pipelines

Predictive data pipelines

General purpose scheduler

We need to know some concepts.

DAG Directed Acyclic Graph

DAG

Figure 2

DAGDirected Acyclic Graph

DAG

Directed Acyclic Graph

We need calculate: (a+b) * (d+c)

$$task_2 = d + c$$

We write DAG:


```
22
    import datetime as dt
23
    from airflow.models import DAG
24
    from airflow.operators.dummy_operator import DummyOperator
25
    from airflow.operators.latest_only_operator import LatestOnlyOperator
26
27
    from airflow.utils.dates import days_ago
    from airflow.utils.trigger_rule import TriggerRule
28
29
30
    dag = DAG(
31
        dag_id='latest_only_with_trigger',
32
        schedule interval=dt.timedelta(hours=4),
33
        start_date=days_ago(2),
        tags=['example']
34
35
36
    latest_only = LatestOnlyOperator(task_id='latest_only', dag=dag)
37
    task1 = DummyOperator(task_id='task1', dag=dag)
38
    task2 = DummyOperator(task_id='task2', dag=dag)
39
    task3 = DummyOperator(task_id='task3', dag=dag)
40
    task4 = DummyOperator(task_id='task4', dag=dag, trigger_rule=TriggerRule.ALL_DONE)
41
42
43
    latest_only >> task1 >> [task3, task4]
44
    task2 >> [task3, task4]
```


A DAG can run manually or automatically.

A DAG can be scheduled in the future.

A DAG can run **periodically**

Three types of **Task**

Operators

Sensors

TaskFlow

Operators

An Operator is conceptually a template for a predefined Task

Builtin

BashOperator - executes a bash command

PythonOperator - calls an arbitrary Python function

EmailOperator - sends an email

Provider Packages

SimpleHttpOperator

MySqlOperator

PostgresOperator

MsSqlOperator

OracleOperator

JdbcOperator

DockerOperator

KubernetesPodOperator

S3FileTransformOperator

PrestoToMySqlOperator

SlackAPIOperator

Sensors

Sensors are a special type of Operator that are designed to do exactly one thing - wait for something to occur

- The FileSensor: Waits for a file or folder to land in a filesystem.
- The S3KeySensor: Waits for a key to be present in a S3 bucket.
- The **SqlSensor**: Runs a sql statement repeatedly until a criteria is met.
- The ExternalTaskSensor: Waits for a different DAG or a task in a different DAG to complete for a specific execution date.
- The **DateTimeSensor**: Waits until the specified datetime (Useful to add some delay to your DAGs)
- The **TimeDeltaSensor**: Waits for a timedelta after the task's execution_date + schedule interval (Looks similar to the previous one no?)

TaskFlow

```
from airflow.decorators import task
from airflow.operators.email import EmailOperator
@task
def get_ip():
    return my_ip_service.get_main_ip()
@task
def compose_email(external_ip):
    return {
        'subject':f'Server connected from {external_ip}',
        'body': f'Your server executing Airflow is connected from the external IP {external_ip}<br>'
email_info = compose_email(get_ip())
EmailOperator(
    task_id='send_email',
    to='example@example.com',
    subject=email_info['subject'],
    html_content=email_info['body']
```

Architect

Metadata Database to store system data

DAG Directory to store DAG files

Webserver to monitor executors

Scheduler engine to fire executors

Executor execute DAGs

Architect

Webserver

Executors

Local

Debug Executor - debug tool and can be used from IDE **Local Executor** - runs tasks by spawning processes in a controlled fashion in different modes.

Sequential Executor - run one task instance at a time (for testing purpose)

Remote

Celery Executor

CeleryKubernetes Executor

Dask Executor

Kubernetes Executor

LocalKubernetes Executor

Local Executor

one of the ways you can scale out the number of workers.

- runs within scheduler
- multiple task instance at a time
- Pros:
 - ✓ Easy to Setup
 - ✓ Cheap & Light weight
 - ✓ Can run multiple tasks
- Cons:
 - X Not suitable to scale
 - **X** Not suitable for production
 - X Single point of failure

Celery Executors

one of the ways you can scale out the number of workers.

- Runs tasks on dedicated machine
- Distributed Task Queue
- Pros:
 - ✓ Build for horizontal scaling
 - ✓ Fault tolerant
 - ✓ Production ready
- Cons:
 - X Takes time to setup
 - X Resource wastage if no task scheduled
 - **X** Not cost effective

K8sExecutors

The Kubernetes executor runs each task instance in its own pod on a Kubernetes cluster.

- Runs tasks on dedicated pod
- Uses Kubernetes API to manage pods
- Pros:
 - Can Scale to Zero
 - ✓ Fault tolerant
 - ✓ Can assign resources to individual tasks
 - ✓ Cost & resource effective
- Cons:
 - X Launching Pod for each task takes few seconds
 - X Kubernetes knowledge required

K8sExecutors

K8sExecutors vs K8sPodOperator

K8s Executor - create a Pod with Airflow image (can not change) and then run the task inside it. Task in Pod will save result into DB.

K8s Pod Operator - the task run outside of K8s cluster and then create Pod with any image and run anything inside Pod. After finish, Pod return the results to task, task save result into DB.

Demo

Case #1
Run simple DAG at Local

Case #2 Run complex DAG on local

Case #3 **FileSensor**

Case #4 **ML training pipeline**

Thank you for your attention!

