Manual PID Tuning

 $cost_manual = 612.0727$

PID Gain Optimisation - ODE45

Norm of	First-order				
step	optimality	Feasibility	f(x)	-count	Iter F-
	2.395e+08	1.519e - 02	1.323707e+03	4	0
1.732e+00	2.778e+07	6.949e-03	6.583301e+02	8	1

Converged to an infeasible point.

fmincon stopped because the size of the current step is less than the value of the step size tolerance but constraints are not satisfied to within the value of the constraint tolerance.

```
<stopping criteria details>
gains_interiorP = 3×1
101.7317
    0.0055
    9.9655
```


cost_interiorP = 1.4607e+03

PID Gain Optimisation - Genetic Algorithm

Single objective optimization:

- 3 Variable(s)
- 4 Nonlinear equality constraint(s)

Options:

CreationFcn: @gacreationuniform
CrossoverFcn: @crossoverscattered
SelectionFcn: @selectionstochunif
MutationFcn: @mutationadaptfeasible

		Best	Max	Stall		
Generation	Func-count	f(x)	Constraint	Generations		
1	540	746.165	0.1034	0		
2	1060	739.826	0.1	0		
3	1580	734.465	0.09627	0		
<pre>gains_ga = 1×3</pre>						
78.5967	0.0101	9.6763				

cost_ga = 1.3150e+03

PID Gain Optimisation - Particle Swarm

		Best	Mean	Stall
Iteration	f-count	f(x)	f(x)	Iterations
0	100	441.2	1989	0
1	200	159.6	2031	0
2	300	159.6	1439	1
3	400	159.6	1138	2
4	500	159.6	1084	3
5	600	159.6	873.9	4
6	700	159.6	1307	5
7	800	159.6	986.1	6
8	900	159.6	698.1	7
9	1000	159.6	519.2	8
10	1100	159.6	389.1	9
11	1200	159.6	1245	10
12	1300	159.6	605.7	11
gains_ps = 1×3				

10.0000 0.0005 5.5422

cost_ps = 394.1584

PID Gain Optimisation - with Pseudospectral Formulation

Iter	Func-count	Fval	Feasibility	Step Length	Norm of step	First-order optimality
0	111	9.988662e+00	1.000e+01	1.000e+00	0.000e+00	1.492e+00
1	222	5.877683e - 01	4.950e+00	1.000e+00	6.849e+00	1.565e+03
2	333	7.434118e-01	3.393e - 01	1.000e+00	1.571e+00	1.246e+03
3	444	7.766592e-01	2.479e - 01	1.000e+00	4.257e-01	1.224e+03
4	559	7.723916e - 01	2.451e - 01	2.401e-01	2.269e - 01	1.212e+03
5	682	7.706580e-01	2.444e-01	1.384e-02	6.581e-02	1.208e+03
6	807	7.687243e-01	2.437e-01	6.782e-03	5.868e-02	1.205e+03
7	934	7.665904e-01	2.432e-01	3.323e-03	4.774e-02	1.203e+03
8	1063	7.649162e-01	2.428e-01	1.628e-03	3.633e-02	1.201e+03
9	1192	7.632871e - 01	2.424e - 01	1.628e-03	3.573e - 02	1.199e+03
10	1321	7.616790e-01	2.420e-01	1.628e-03	3.562e-02	1.198e+03
11	1448	7.584293e-01	2.412e-01	3.323e-03	7.268e - 02	1.194e+03
12	1576	7.561800e - 01	2.407e-01	2.326e - 03	5.096e - 02	1.191e+03

```
gains_psuedospectral = 1 \times 3
44.9336 0.0600 12.5120
```


cost_pseudospec = 4.3905e+03

Non-Linear Constraint for Pseudospectral Optimisation
System Dynamics Constraint Function - ODE
Cost Function
Input Calculator - PID - persistent variables

Spring Mass Damper System Dynamics

Chebyshev Pseudospectral Method