DISZKRÉT MATEMATIKA I.

2. előadás

Halmazelmélet

A Halmaz, halmaz eleme: definiálatlan alapfogalom.

Jelölés:

• x eleme az X halmaznak: $x \in X$ (vagy $X \ni x$);

• y nem eleme az Y halmaznak: $y \notin Y$ (vagy $Y \not\ni y$).

Fontos! Egy halmaz akkor adott, ha bármiről *egyértelműen eldönthető*, hogy beletartozik vagy nem.

Pl. a szép kutyák nem alkotnak halmazt.

Halmaz megadása:

- elemeinek felsorolásával vagy a felsorolás érzékeltetésével, pl. $A=\{1,2,5\}$, $\mathbb{N}=\{0,1,2,3,4,\dots\}$;
- \bullet megmondjuk, hogy milyen tulajdonságú dolgok az elemei, pl. B a 30 évnél fiatalabb magyar állampolgárok halmaza;
- adott halmazokból műveletekkel állítjuk elő, lásd később.

Az X halmaz elemeinek számát |X| jelöli, pl. |A|=3, $|\mathbb{N}|=\infty$.

Nevezetes számhalmazok

Természetes számok: $\mathbb{N} = \{0, 1, 2, 3, \dots\}$;

Egész számok: $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \dots\};$

Racionális számok: $\mathbb{Q} = \{p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0\};$

Valós számok: $\mathbb{R} = \{ \text{racionális sorozatok határértékei} \};$

Irracionális számok: $\mathbb{Q}^* = \{x \in \mathbb{R} \mid x \notin \mathbb{Q}\};$

Komplex számok: $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}, i^2 = -1\}.$

♣ Definíció. Két halmaz <u>egyenlő</u>, ha elemeik megegyeznek. Jelölés: =.

PI. $\{2,5,7\} = C \neq D = \{10\text{-n\'el kisebb pr\'imsz\'amok}\}$, mert $3 \in D$ és $3 \notin C$;

Pl. $\{2003 \text{ számjegyei}\} = E = F = \{0, 2, 3\}$, mivel a halmazok minden elemét csak egyszer tüntetjük fel.

\clubsuit Definíció. Üres halmaz az a halmaz melynek nincsenek elemei. Jelölés: \emptyset .

Pl. $G = \{\sin x + \cos x = 5 \text{ egyenlet valós gyökei}\}$ esetén $G = \emptyset$.

 \clubsuit **Definíció.** Az X halmaz <u>része</u> az Y halmaznak, ha $\forall x \in X$ esetén $x \in Y$ is teljesül.

Jelölés: $X \subset Y$ (vagy $Y \supset X$).

Pl. Bármely X halmazra $X \subset X$, $\emptyset \subset X$.

Arr Definíció. Az X halmaz <u>valódi része</u> az Y halmaznak, ha $X\subset Y$ és $X\neq Y$.

Jelölés: $X \subsetneq Y$ (vagy $Y \supsetneq X$).

PI. $\mathbb{N} \subsetneq \mathbb{R}$ (persze $\mathbb{N} \subset \mathbb{R}$ igaz).

 \clubsuit Részhalmazok megadása: valamely U (Univerzum) alaphalmazból bizonyos tulajdonságú elemek kiemelése. Ha τ a tulajdonság, H a kapott részhalmaz:

$$H = \{x \in U \mid x \text{ elem } \tau \text{ tulajdonságú}\}$$

pl.
$$H = \{x \in \mathbb{R} \mid -2 \le x \le 5\};$$

A Halmazok szemléltetése: Venn-diagrammal.

Véges halmaz részhalmazainak száma?

Véges halmaz részhalmazainak száma?

Véges halmaz részhalmazainak száma?

 \clubsuit **Definíció.** A H halmaz részhalmazait tartalmazó halmazt a H halmaz <u>hatványhalmazának</u> nevezzük.

Jelölés:
$$\mathcal{P}(H) = \{X \subset H\}.$$

PI. Ha
$$H = \{1, 2, 3\}$$
, akkor
$$\mathcal{P}(H) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

A Tétel. Ha |H| = n, akkor $|\mathcal{P}(H)| = 2^n$.

 \clubsuit **Definíció.** Az X és Y halmazok <u>metszetén (közös részén)</u> azt a halmazt értjük, melynek elemei X-nek és Y-nak is elemei.

Jelölés:
$$X \cap Y = \{x \in U \mid x \in X \text{ és } x \in Y\}.$$

PI.

$$U = \{ n \in \mathbb{N} \mid n \le 14 \}$$

$$A = \{n \in U \mid n \text{ páros}\}$$

$$B = \{ n \in U \mid n \text{ osztható 3-mal} \}$$

\$\rightarrow\$ Definíció. X és Y halmazok diszjunktak ha $X \cap Y = \emptyset$.

 \clubsuit **Definíció.** Az X és Y halmazok <u>unióján (egyesítésén)</u> azt a halmazt értjük, melynek elemei X és Y közül legalább az egyiknek elemei.

Jelölés: $X \cup Y = \{x \in U \mid x \in X \text{ vagy } x \in Y\}.$

 \clubsuit **Definíció.** Az X és Y halmazok (ilyen sorrendben vett) különbségén azt a halmazt értjük, melynek elemei X-nek de nem elemei Y-nak.

Jelölés: $X \setminus Y = \{x \in U \mid x \in X \text{ és } x \notin Y\}.$

 \clubsuit **Definíció.** Az X halmaz <u>komplementerén (kiegészítésén)</u> azt a halmazt értjük, melynek elemei nem elemei X-nek.

Jelölés: $\overline{X} = \{x \in U \mid x \notin X\}.$

Példa

$$I = \{ x \in \mathbb{R} \mid 0 < x < 2 \},\$$

$$J = \{ x \in \mathbb{R} \mid 1 < x < 5 \}$$

 \Downarrow

$$I \cap J = \{x \in \mathbb{R} \mid 1 < x < 2\}, \quad I \cup J = \{x \in \mathbb{R} \mid 0 < x < 5\},$$

$$I \setminus J = \{x \in \mathbb{R} \mid 0 < x \le 1\} \ne J \setminus I = \{x \in \mathbb{R} \mid 2 \le x < 5\}.$$

Kérdés

Létezik-e az összes halmazt tartalmazó halmaz?