PRACTICA 2

REDES BAYESIANAS

EJERCICIO 2.4 A)

En este ejercicio, hemos modificado el número máximo de iteraciones y hemos aumentado el número de muestras a 1000.

Resultados

Observamos en primer lugar, que no solo nunca se supera el número máximo de iteraciones (1000) sino que no se llega nunca a la iteración 26, por lo que el número máximo de iteraciones no influye en gran medida.

Por el contrario, aumentar el número de muestras, en el caso de datos completos, nos ha hecho ganar mucha precisión a la hora de estimar las variables, y en el caso de los datos incompletos, hemos mejorado en algunos casos, y empeorado en otros.

Dado el gran porcentaje de datos incompletos, los resultados son parcialmente positivos porque en algunos aspectos si reflejan la forma del modelo.

En el caso incompleto, la variable C siempre es falsa y ese es el mayor inconveniente.

A continuación, se adjuntan los resultados obtenidos en los que se puede advertir las diferencias con las probabilidades reales.

PROBABILIDADES MODELO

		$P(W \mid S)$	R, R, W =
S	R	false	${\it true}$
false	false	1.0	0.0
${\it true}$	false	0.1	0.9
false	true	0.1	0.9
true	${ m true}$	0.01	0.99

PROBALIDADES ESTIMADAS	CON	DATOS	COMPLETOS
numMuestras = 100			

PROBALIDADES ESTIMADAS CON DATOS COMPLETOS numMuestras = 1000

PROBALIDADES ESTIMADAS PARA EL NODO W

1	1	:	1.0000	0.0000
2	1	:	0.0556	0.9444
1	2	:	0.0435	0.9565
2	2	:	0.0000	1.0000

PROBALIDADES ESTIMADAS PARA EL NODO W

1 1 : 1.0000 0.0000 2 1 : 0.1085 0.8915 1 2 : 0.0905 0.9095 2 2 : 0.0250 0.9750

$\begin{array}{c|c} C & P(C) \\ \hline \text{false} & 0.5 \\ \text{true} & 0.5 \\ \end{array}$

	$P(S \mid$	C), S =
C	false	${f true}$
false	0.5	0.5
true	0.9	0.1

	$P(R \mid$	(C), R =
C	false	${ m true}$
false	0.8	0.2

0.8

true $\parallel 0.2$

PROBALIDADES ESTIMADAS PARA EL NODO C

		0.4700
2	:	0.5300

PROBALIDADES ESTIMADAS PARA EL NODO C

1: 0.4860 2: 0.5140

PROBALIDADES ESTIMADAS PARA EL NODO S

1	:	0.5532	0.4468
2	:	0.9057	0.0943

PROBALIDADES ESTIMADAS PARA EL NODO S

1 : 0.4979 0.5021 2 : 0.9066 0.0934

PROBALIDADES ESTIMADAS PARA EL NODO R

1	:	0.7234	0.2766
2	:	0.2264	0.7736

PROBALIDADES ESTIMADAS PARA EL NODO R

1 : 0.8066 0.1934 2 : 0.1673 0.8327

PROBABILIDADES MODELO

		$P(W \mid S)$	(R), W =
S	R	false	${f true}$
false	false	1.0	0.0
true	false	0.1	0.9
false	${ m true}$	0.1	0.9
true	${f true}$	0.01	0.99

C	P(C)
false	0.5
true	0.5

	$\mid P(S \mid$	C), S =
C	false	${ m true}$
false	0.5	0.5
true	0.9	0.1

	P(R)	(C), R =
C	false	${f true}$
false	0.8	0.2
true	0.2	0.8

PROBALIDADES ESTIMADAS CON DATOS INCOMPLETOS	PROBALIDADES ESTIMADAS CON DATOS INCOMPLETOS
numMuestras = 100	numMuestras = 1000
Máximo numero de iteraciones = 100	Máximo numero de iteraciones = 1000
PROBALIDADES ESTIMADAS PARA EL NODO W 1 1 : 0.9996 0.0004 2 1 : 0.0340 0.9660 1 2 : 0.0071 0.9929 2 2 : 0.1329 0.8671	PROBALIDADES ESTIMADAS PARA EL NODO W 1 1 : 0.9988 0.0012 2 1 : 0.2952 0.7048 1 2 : 0.1496 0.8504 2 2 : 0.0601 0.9399
PROBALIDADES ESTIMADAS PARA EL NODO C	PROBALIDADES ESTIMADAS PARA EL NODO C
1 : 1.0000	1 : 0.9996
2 : 0.0000	2 : 0.0004
PROBALIDADES ESTIMADAS PARA EL NODO S	PROBALIDADES ESTIMADAS PARA EL NODO S
1 : 0.6676 0.3324	1 : 0.6969 0.3031
2 : 0.9839 0.0161	2 : 1.0000 0.0000
PROBALIDADES ESTIMADAS PARA EL NODO R	PROBALIDADES ESTIMADAS PARA EL NODO R
1 : 0.4096 0.5904	1 : 0.4247 0.5753
2 : 0.0000 1.0000	2 : 0.0000 1.0000

EJERCICIO 2.4 B)

En este ejercicio, se ha realizado un script que resuelve los tres apartados,

En el se ha creado la red bayesiana, y usando dos motores se han inferido las dos probabilidades pedidas. Este ejercicio, no se ha preparado para poder ser lanzado directamente desde bash sino desde la interfaz Matlab.

Resultados

Resultados ejercicio B.2

PROBABILIDAD DE QUE NO TENGA CANCER DE PULMON 0.998395

Resultados ejercicio B.3

EXPLICACION MAS PROBABLE PARA QUE UN PACIENTE TENGA CANCER:

POLUCION: false FUMADOR: true CANCER: true RAYOS X: true DISNEA: true

La explicación más probable es que sea fumador, los rayos x hayan dado positivo y sufra disnea.

EJERCICIO 3.2.1 1)

Para resolver este ejercicio y el siguiente, se han creado dos scripts, uno en bash y otro en Matlab.

Se puede ejecutar el .sh como sigue:

USO: analisisMixturaGausianas.sh [1] [2] [3] [4] [5]

- [1] = datos_entrenamiento
- [2] = etiquetas entrenamiento
- [3] = datos_test
- [4] = etiquetas_test
- [5] = nom funcion matlab

Ejemplo ejecucion:

- ./analisisMixturaGausianas.sh ./data/spam/tr.dat
- ./data/spam/trlabels.dat ./data/spam/ts.dat ./data/spam/tslabels.dat p3

Tomando esos parámetros, llamará al script octave y nos creará un .csv con los resultados pedidos, nos dará el número de gaussianas utilizadas, el número máximo de iteraciones, el porcentaje de error y el intervalo de confianza, con estos datos, llegamos a que para el corpus de spam, con 4 gausianas se puede llegar al 0% de error y normalmente los mejores resultados se obtienen con dos iteraciones.

En cuanto al corpus USPS, necesitamos llegar a las 9 gausianas para obtener un valor cercano al mejor \sim 10,5 %. Para obtener los mejores resultados se necesitan realizar 6 iteraciones normalmente. No se puede bajar del 10% de error.

Gráficas relación número de gaussianas y porcentaje de error.

CORPUS SPAM				
Numero-	Número máximo iteraciones	Porcentaje-	+- Intervalo-	
gaussianas		error	Confianza	
1	2	0,57929	0,40026	
2	4	0,14482	0,20057	
3	2	0,21723	0,24556	
4	4	0	0	
5	2	0	0	
6	2	0	0	
7	2	0,14482	0,20057	
8	2	0,072411	0,14187	
9	2	0,072411	0,14187	
10	2	0,072411	0,14187	
11	4	0,072411	0,14187	
12	2	0,072411	0,14187	
13	2	0	0	
14	2	0,072411	0,14187	
15	2	0,072411	0,14187	
16	2	0,072411	0,14187	
17	2	0,072411	0,14187	
18	2	0,072411	0,14187	
19	2	0,072411	0,14187	
20	2	0,072411	0,14187	
21	2	0	0	
22	2	0,072411	0,14187	
23	2	0,072411	0,14187	
24	2	0,072411	0,14187	
25	2	0,072411	0,14187	
26	2	0,072411	0,14187	
27	2	0,072411	0,14187	
28	2	0,072411	0,14187	
29	2	0,072411	0,14187	

CORPUS USPS				
Numero-	Número máximo iteraciones	Porcentaje-	+- Intervalo-	
gaussianas		error	Confianza	
1	2	20,329	1,7607	
2	8	18,585	1,7018	
3	8	16,542	1,6256	
4	8	13,204	1,4811	
5	5	12,407	1,4423	
6	8	12,755	1,4595	
7	5	11,609	1,4015	
8	8	12,506	1,4472	
9	6	11,31	1,3857	
10	8	11,56	1,3989	
11	4	11,659	1,4041	
12	8	11,46	1,3936	
13	8	11,809	1,4119	
14	8	11,56	1,3989	
15	6	11,011	1,3695	
16	5	10,713	1,3531	
17	4	11,161	1,3776	
18	5	11,261	1,383	
19	6	10,463	1,3391	
20	6	11,011	1,3695	
21	3	11,46	1,3936	
22	6	10,812	1,3586	
23	6	10,862	1,3613	
24	6	10,613	1,3475	
25	6	11,211	1,3803	
26	6	11,56	1,3989	
27	6	11,759	1,4093	
28	6	11,211	1,3803	
29	6	10,762	1,3558	
30	6	10,713	1,3531	
31	6	10,962	1,3668	
32	6	11,809	1,4119	
33	6	10,214	1,3249	
34	6	11,41	1,391	
35	6	11,56	1,3989	
36	6	10,762	1,3558	
37	6	10,962	1,3668	
38	6	10,713	1,3531	
39	6	12,407	1,4423	
40	6	11,46	1,3936	
41	6	11,011	1,3695	
42	6	12,506	1,4472	