Lecture 2.2

Models and Priors

Bayesian hierarchical model

Prior Distributions

Priors

- Reflect our prior expectations (and uncertainty) about values of parameters (without knowledge of the data)
 - Past observations
 - Personal beliefs
 - Use of a biological model

Uniform
Normal
Exponential
Lognormal
Gamma
Used to specify prior distributions of various continuous parameters
Used to specify prior distributions of continuous parameters that cannot take negative values

- Beta
- Dirichlet

- Uniform
- Normal
- Exponential
- Lognormal
- Gamma
- Beta
- Dirichlet

Parameters

• λ = rate of decay

- Uniform
- Normal
- Exponential
- Lognormal
- Gamma
- Beta
- Dirichlet

Parameters

- α = shape
- β = inverse scale

Scaled gamma:

 $\alpha = \beta$

- Uniform
- Normal
- Exponential
- Lognormal
- Gamma
- Beta
- Dirichlet

Used to specify the prior distributions of simplex parameters

- Base frequencies
- Relative rates in GTR model

- Uniform
- Normal
- Exponential
- Lognormal
- Gamma
- Beta
- Dirichlet

Parameters

• α_1 , α_2 , ... = shape parameters

$$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 1$$

$$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 1$$
 $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 300$

Discrete distributions

- Bernoulli distribution
- Binomial
- Multinomial
- Poisson

Default priors

	BEAST2	MrBayes
Rate matrix parameters	Gamma(0.05,10)	Dirichlet(1,1,1,1,1)
Base frequencies	Uniform(0,1)	Dirichlet(1,1,1,1)
Shape parameter (α)	Exponential(1)	Exponential(2)
Proportion invariable	Uniform(0,1)	Uniform(0,1)

Uninformative priors

Flat or uniform prior

Jeffreys prior

- Invariant to reparameterisation
- Only works well for models with a single parameter

Reference priors

- Maximise expected distance between prior and posterior
- Allows data to have maximum effect on posterior

Tree prior

- Use a flat prior (MrBayes)
 - All trees have equal probability
 - Also need a prior for branch lengths or node times

- 2. Use a **biological model** (*BEAST* and *MrBayes*)
 - Among species: speciation model
 - Within species: coalescent model

Priors on rooted trees

Speciation model

 Tree shape described by a stochastic branching process

Yule process

- The root lineage splits into two
- Lineages split at a constant rate
- Simulates speciation process

Birth-death process

Allow lineages to go extinct

Speciation model

 Tree shape described by a stochastic branching process

Yule process

- The root lineage splits into two
- Lineages split at a constant rate
- Simulates speciation process

Birth-death process

Allow lineages to go extinct

Coalescent model

Constant size

Exponential growth

Choosing a tree prior

Test whether inferences are robust to the choice of tree prior

- Mixed data sets: multiple sequences from each species
 - Birth-death prior generally works well

Compare tree priors using Bayesian model selection

 Bayesian model selection is usually based on the marginal probability of the data, conditioned on the model:

Pr(D|M)

- This is a weighted average of the likelihood
- Weights are given by the prior distribution

Marginal likelihood of the model

- Compare marginal likelihoods of competing models
- Ratio of marginal likelihoods is the Bayes factor

$$BF = \frac{Pr(D|M_1)}{Pr(D|M_2)}$$

$$logBF = logPr(D|M_1) - logPr(D|M_2)$$

- Models do not need to be nested
- Do not need to correct for number of parameters

Interpreting the Bayes factor

BF	log <i>BF</i>	Evidence against M ₂
1 – 3	0 – 1	Not worth mentioning
3 – 20	1 – 3	Positive
20 – 150	3 – 5	Strong
> 150	> 5	Very strong

Useful references

 The impact of the tree prior on molecular dating of data sets containing a mixture of interand intraspecies sampling Ritchie, Lo, & Ho (2017) Syst Biol, 66: 413–425.

