

2020 Marking Scheme

	2020 Higher Chemistry Marking Scheme						
M <i>C</i> Qu	Answer	Reasoning					
1	Α	☑A Filtration is the process to separate an insoluble substance from a liquid. ☑B Distillation is the process where chemicals are separated due to different boiling points ☑C Evaporation is the process to separate a substance from the solvent it is dissolved in ☑D Collection over water is the process to collect insoluble gases using a delivery tube					
2	D	The size of atoms decree number of protons/incre attraction for the outer	ased nuclear char	ge. The increased	d nuclear char	rge has a greater	
3	В	☑A CO2 is non-polar due ☑B London dispersion fo ☑C No covalent bonds ar ☑D CO2 is non-polar due	rces are broken a re broken as it is s	s solid CO2 is cho still CO2 at the e	anged into gas nd of the cha	seous CO2 nge of state	
4	Α	☑A Elements with high e ☑B Elements with high e ☑C Elements with low ele ☑D Elements with low ele	electronegativities electronegativities ectronegativities	stend to gain ele stend to reduce : e.g. metals tend t	ctrons and ar so are oxidisi to lose electr	re reduced ng agents ons	
5	С	☑A X must be less visco ☑B Y must have the stro ☑C X is less viscous and ☑D X must be less visco	ongest van der Wa Y must have the s	als forces as the stronger van der	ball bearing Waals forces	_	
6	С	1 st ionisation e 2 nd ionisation e total	energy Be ⁺ (g) —	Be ⁺ (g) + e ⁻ Be ²⁺ (g) + e ⁻ Be ²⁺ (g) + e ⁻ Be ²⁺ (g) + e ⁻	e ⁻ ΔH = 175	7kJ mol ⁻¹	
7	D	 ■A 2-methylpropanoic a ■B propyl methanoate C ■C 2-ethylbutanoic acid ☑D ethyl propanoate C5+ 	₄ H ₈ O ₂ is not an iso C ₆ H ₁₂ O ₂ is not an	omer of pentanoi isomer of pentar	c acid C5H10O noic acid C5H1	2	
8	В	— OH	O -C - OH	0	-0-	O H - C - N -	
		Alcohol Number	0	0	•	4	
0	D	Number of carbons attached to carbon with -OH group	1	2	1	1	
9	В	Type of Alcohol Product of oxidation with	Primary	Secondary	Tertiary	Primary	
		acidified potassium dichromate	Ketone	[No Oxidation] Carboxylic Acid			
10	С	2-methylbutanal is an aldehyde which would reduce to the primary alcohol 2-methylbutan-1-ol. 2-methylbutanal \longrightarrow 2-methylbutan-1-ol $C_5H_{10}O$ \longrightarrow $C_5H_{11}OH$ $gfm = (5\times12)+(10\times1)+(1\times16)$ $gfm = (5\times12)+(12\times1)+(1\times16)$ $= 60+10+16$ $= 86g$ $= 88g$				-ol	
11	С	 ☑A ethyl methanoate wo ☑B methyl ethanoate wo ☑C propanoic acid C₂H₅C ☑D butanoic acid C₃H₇CO 	ould hydrolyse and OOH would react	form the salt so to form the salt	dium ethanoa sodium propo	ite (and methanol) anoate	

BA proteins are not hydrolysed into amino acids during denaturing B bydrogen bonds are broken in the denaturing step as the protein changes shape BC proteins are not hydrolysed into amino acids during denaturing BD water is removed in the condensation reaction to turn amino acids into proteins BA fats are more saturated than oils as oils have more C-C double bonds than fats BA fats are more saturated than oils as oils have more C-C double bonds than fats C C fats are more saturated than oils as oils have more C-C double bonds than fats BA fats are more saturated than oils and have higher melting points than oils BD fats have higher melting points than oil as fats are solid at room temperature BA antioxidants are easily oxidised themselves so act as electron donors BA antioxidants are easily oxidised themselves so act as electron donors BA antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised to themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing and themselves BD antioxidants are easily oxidised themselves so act as reducing	B							
BBC proteins are not hydrolysed into amino acids during denaturing BD water is removed in the condensation reaction to turn amino acids into proteins BA fats are more saturated than oils as oils have more C=C double bonds than fats BB fats are more saturated than oils as oils have more C=C double bonds than fats CC fats are more saturated than oils as oils have more C=C double bonds than fats BD fats have higher melting points than oils BD fats have higher melting points than oils BD fats have higher melting points than oils as oils have more C=C double bonds than fats CC fats are more saturated than oils as oils have more C=C double bonds than fats BD fats have higher melting points than oils as oils fats are solid at room temperature BB at a trainidants are easily oxidised themselves so act as electron donors BB at a trainidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD Termination Step with free radicals set of a recommon high BD activation step with free radicals of the narrow only BB Initiation Step with free radicals of the narrow only BB Initiation Step with free radicals of the narrow only BB C Termination Step with free radicals of the narrow only BB C Exhibition Energy does not change with a change in temperature BC Kelvin temperature scale must be used to investigate doubling the temperature BC Kelvin temperature is decreasing the time for reaction: increasing the rate BB activation Energy bear to high for the reaction to take place at room temp BC blind in the product of the place at room temp BC blind in the product of the place at room temp BC blind	BC proteins are not hydrolysed into amina acids during denaturing BD water is removed in the condensation reaction to turn amino acids into proteins BA fats are more saturated than oils as oils have more C-C double bonds than fats BB fats are more saturated than oils as oils have more C-C double bonds than fats BB fats are more saturated than oils as oils have more C-C double bonds than fats BC fats are more saturated than oils and have higher melting points than oils BD fats have higher melting points than oil as fats are solid at room temperature BA antioxidants are easily oxidised themselves so act as electron donors BC antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants acre easily oxidised themselves so act as reducing agents BC antioxidants acre easily oxidised themselves so act as reducing agents BC antioxidants acre easily oxidised themselves so act as reducing agents BC antioxidants acre easily oxidised themselves so act as reducing agents BC antioxidants acre easily oxidised themselves so act as reducing agents BC antioxidants acre easily oxidised themselves so act as reducing agents BC antioxidants acre easily oxidised themselves as act as reducing agents BC antioxidants acre easily oxidised themselves as act as reducing agents BC antioxidants acre easily oxidised themselves acre acre with free radicals BC acreaments of the control of the control oxide place acreaments BC acreaments of the control oxide place acreaments BC acreaments of the control oxide place acreaments BC acreaments acreament as the control oxide place acreament reduced acreament acrea			· · ·				
BD water is removed in the condensation reaction to turn amino acids into proteins BA fats are more saturated than oils as oils have more C=C double bonds than fats BB fats are more saturated than oils as oils have more C=C double bonds than fats BC fats are more saturated than oils and have higher melting points than oils BD fats have higher melting points than oil as fats are solid at room temperature BA antioxidants are easily oxidised themselves so act as electron donors BB antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants BD antioxidants are easily oxidised themselves so act as reduc	BD water is removed in the condensation reaction to turn amino acids into proteins BD water is removed in the condensation reaction to turn amino acids into proteins BB fots are more saturated than oils as oils have more C-C double bonds than fats BB fots are more saturated than oils as oils have more C-C double bonds than fats CC fats are more saturated than oils as oils have more C-C double bonds than fats BD fats have higher melting points than oil as fats are soild at room temperature BA antioxidants are easily oxidised themselves so act as electron donors BB antioxidants are easily oxidised themselves so act as electron donors BB antioxidants are easily oxidised themselves so act as reducing agents BC antioxidants are easily oxidised themselves so act as reducing agents BC antioxidants act as free radical scavengers and react with free radicals BA Termination Step with free radicals before the arrow only BC Termination Step with free radicals before the arrow only BC Termination Step with free radicals before the arrow only BC A small rise in temperature decreases the time and gives a large increase in reaction rate BB Activation Energy does not change with a change in temperature BC Kelvin temperature scale must be used to investigate doubling the temperature BC Kelvin temperature scale must be used to investigate doubling the temperature BC Kelvin temperature scale must be used to investigate doubling the temperature BC this enthalpy diagram is endothermic as the products are higher than the reactants BC this enthalpy diagram is endothermic as the products are higher than the reactants BC this enthalpy diagram is endothermic as the products are higher than the reactants BC 4 volumes of gas reactants becomes 2 volumes of gas products ∴ halving of reactants BC 4 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC 4 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC 4 volumes of gas reactants becomes 2 volum	12	В	, , , , , , , , , , , , , , , , , , , ,				
BA fats are more saturated than oils as oils have more C=C double bonds than fats	Ba fats are more saturated than oils as oils have more C=C double bonds than fats			, , , , , , , , , , , , , , , , , , ,				
The properties of the properties of the products of the produ	13 C B fats are more saturated than oils as oils have more C=C double bonds than fats DC fats are more saturated than oils and have higher melting points than oils BD fats have higher melting points than oils afts are solid at room temperature BA antioxidants are easily oxidised themselves so act as electron donors BB antioxidants are easily oxidised themselves so act as electron donors BB antioxidants are easily oxidised themselves so act as electron donors BB antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants are easily oxidised themselves so act as reducing agents BB antioxidants act as free radical scavengers and react with free radicals BA Termination Step with free radicals before the arrow only BC Termination Step with free radicals before the arrow only BC Termination Step with free radicals before the arrow only BC Termination Step with free radicals before the arrow only BC Termination Step with free radicals before the arrow only BC A small rise in temperature decreases the time and gives a large increase in reaction rate BB activation Energy does not change with a change in temperature BC Kelvin temperature scale must be used to investigate doubling the temperature BC Kelvin temperature is decreasing the time for reaction : increasing the rate 17 D rate = 1/1 = 1/5 = 0.2 s ⁻¹ relative rate = 0.20s ⁻¹ gives concentration = 0.96 mol 1 ⁻¹ BB A high activation energy barrier too high for the reaction to take place at room temp BC this enthalpy diagram is endothermic as the products are higher than the reactants BD this enthalpy diagram is endothermic as the products are higher than the reactants BB 1 volume of gas reactants becomes 2 volumes of gas products : in thaining of reactants BC 4 volumes of gas reactants becomes 2 volumes of gas products : in thaining of reactants BC 4 volumes of gas reactants becomes 2 volumes of gas products : in thaining of reactants BC 4 volumes of gas reactants becomes 2 volumes of gas products : in thaining of react			·				
C C fats are more saturated than oils and have higher melting points than oils ED fats have higher melting points than oil as fats are solid at room temperature EA Anticividants are easily oxidised themselves so act as electron donors EB anticividants are easily oxidised themselves so act as reducing agents ED anticividants are easily oxidised themselves so act as reducing agents ED anticividants are easily oxidised themselves so act as reducing agents ED anticividants are easily oxidised themselves so act as reducing agents ED anticividants are easily oxidised themselves so act as reducing agents ED anticividants are easily oxidised themselves so act as reducing agents ED anticividants are as free radicals scavengers and react with free radicals	13 C							
□ D fats have higher melting points than oil as fats are solid at room temperature □ A antioxidants are easily oxidised themselves so act as electron donors □ B antioxidants are easily oxidised themselves so act as electron donors □ B antioxidants are easily oxidised to stop oxidation of foods so do not act as oxidising agent □ B antioxidants act as free radical scavengers and react with free radicals □ D antioxidants act as free radical scavengers and react with free radicals □ D antioxidants act as free radicals before the arrow only □ D Propagation Step with free radicals before the arrow only □ D Propagation Step with free radicals on both sides of the arrow. □ A small rise in temperature decreases the time and gives a large increase in reaction rate □ D antioxidants □ D	□ D fats have higher melting points than oil as fats are solid at room temperature □ A antioxidants are easily oxidised themselves so act as electron donors □ C antioxidants are easily oxidised to stop oxidation of food so do not act as oxidising agent □ D antioxidants are easily oxidised themselves so act as reducing agents □ D antioxidants act as free radicals sefore the arrow only □ P ropagation Step with free radicals sefore the arrow only □ P ropagation Step with free radicals after the arrow only □ P ropagation Step with free radicals on both sides of the arrow. □ A small rise in temperature decreases the time and gives a large increase in reaction rate □ B activation Energy does not change with a change in temperature □ C Kelvin temperature scale must be used to investigate doubling the temperature □ D rate = 1 / 1 / 15	13	C					
B	B		_					
B	14 B							
BC antioxidants are easily oxidised themselves so act as reducing agents BD antioxidants act as free radical scavengers and react with free radicals BA Termination Step with free radicals before the arrow only BB Initiation Step with free radicals before the arrow only BC Termination Step with free radicals before the arrow only CD Propagation Step with free radicals before the arrow only DP Propagation Step with free radicals before the arrow only CD Propagation Step with free radicals on both sides of the arrow. A small rise in temperature decreases the time and gives a large increase in reaction rate BB activation Energy does not change with a change in temperature BD Increase in temperature scale must be used to investigate doubling the temperature DD rate = 1/15s = 0.2 s ⁻¹ relative rate = 0.20s ⁻¹ gives concentration = 0.96 mol l ⁻¹ The rate = 1/15s = 0.2 s ⁻¹ relative rate = 0.20s ⁻¹ gives concentration = 0.96 mol l ⁻¹ BA high activation energy barrier too high for the reaction to take place at room temp BC this enthalpy diagram is endothermic as the products are higher than the reactants BD this enthalpy diagram is endothermic as the products are higher than the reactants BA 3 volumes of gas reactants becomes 2 volumes of gas products : not halving of reactants BC 4 volumes of gas reactants becomes 2 volumes of gas products : not halving of reactants BC 4 volumes of gas reactants becomes 2 volumes of gas products : not halving of reactants BC 4 volume of gas reactants becomes 2 volumes of gas products : not halving of reactants BC 4 volume of gas reactants becomes 2 volumes of gas products : not halving of reactants BC 4 volume of gas reactants becomes 2 volumes of gas products : not halving of reactants BC 4 volume of gas reactants becomes 2 volumes of gas products : not halving of reactants BC 4 volume of gas reactants becomes 2 volumes of gas products : not halving of reactants BC 4 volume of gas reactants becomes 2 volumes of gas products : not halving of reactants BC 4 volume of gas react	B		_	•				
ED antioxidants act as free radical scavengers and react with free radicals	□ D antioxidants act as free radical scavengers and react with free radicals	14	В					
BA Termination Step with free radicals before the arrow only BB Initiation Step with free radicals after the arrow only BC Termination Step with free radicals before the arrow only CD Propagation Step with free radicals before the arrow only CD Propagation Step with free radicals before the arrow. A small rise in temperature decreases the time and gives a large increase in reaction rate BB activation Energy does not change with a change in temperature BC Keiwin temperature scale must be used to investigate doubling the temperature BC Increase in temperature is decreasing the time for reaction ∴ increasing the rate 17 D rate = 1/1 time = 1/5 s = 0.2 s¹ relative rate =0.20s¹ gives concentration = 0.96 mol t¹ 18 B A high activation energy barrier too high for the reaction to take place at room temp BC this enthalpy diagram is endothermic as the products are higher than the reactants BC this enthalpy diagram is endothermic as the products are higher than the reactants BC at volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC at volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC at volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC at volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC at volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC at volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC at volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC at volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC at volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC at volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC at volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC at volume of gas reactants becomes 2 volumes of gas produc	BA Termination Step with free radicals before the arrow only BB Initiation Step with free radicals after the arrow only BC Termination Step with free radicals before the arrow only BC Termination Step with free radicals before the arrow only BC Termination Step with free radicals before the arrow only BC Termination Step with free radicals before the arrow only BC Termination Step with free radicals before the arrow only BC Termination Step with free radicals before the arrow only BC Termination Step with free radicals on both sides of the arrow. BC A small rise in temperature decreases the time and gives a large increase in reaction rate BB activation Energy does not change with a change in temperature BD Increase in temperature is decreasing the time for reaction : increasing the rate BC Kelvin temperature scale must be used to investigate doubling the temperature BD Increase in temperature is decreasing the time for reaction : increasing the rate BC Kelvin temperature is decreasing the time for reaction : increasing the rate BC Kelvin temperature is decreasing the time for reaction : increasing the rate BC Kelvin temperature			,				
D B Initiation Step with free radicals after the arrow only BC Termination Step with free radicals before the arrow only D Propagation Step with free radicals on both sides of the arrow. DA small rise in temperature decreases the time and gives a large increase in reaction rate BB activation Energy does not change with a change in temperature BC Kelvin temperature scale must be used to investigate doubling the temperature BD Increase in temperature is decreasing the time for reaction ∴ increasing the rate The part of the second of the products are not increasing the rate BA high activation energy barrier too high for the reaction to take place at room temp BB low activation energy barrier and the reaction more likely to happen at room temp BC this enthalpy diagram is endothermic as the products are higher than the reactants BD this enthalpy diagram is endothermic as the products are higher than the reactants BB 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC 4 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants bc BD 1 v	D B Initiation Step with free radicals after the arrow only BC Termination Step with free radicals before the arrow only D Propagation Step with free radicals on both sides of the arrow. A small rise in temperature decreases the time and gives a large increase in reaction rate Bc A small rise in temperature decreases the time and gives a large increase in reaction rate Bc C Kelvin temperature scale must be used to investigate doubling the temperature Bc Increase in temperature is decreasing the time for reaction ∴ increasing the rate 17 D rate = 1/time = 1/5s = 0.2 s ⁻¹ relative rate = 0.20s ⁻¹ gives concentration = 0.96 mol t ⁻¹ 18 B A high activation energy barrier and the reaction more likely to happen at room temp Bc How activation energy barrier and the reaction more likely to happen at room temp Bc this enthalpy diagram is endothermic as the products are higher than the reactants Bc this enthalpy diagram is endothermic as the products are higher than the reactants Bc A 3 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants Bc A 3 volumes of gas reactants becomes 2 volumes of gas products ∴ halving of reactants Bc A 3 volumes of gas reactants becomes 2 volumes of gas products ∴ halving of reactants Bc A 3 volumes of gas reactants becomes 2 volumes of gas products ∴ halving of reactants Bc A 3 volumes of gas reactants becomes 2 volumes of gas products ∴ halving of reactants Bc A 3 volumes of gas reactants becomes 2 volumes of gas products ∴ halving of reactants Bc A 3 volumes of gas reactants becomes 2 volumes of gas products ∴ halving of reactants Bc A 3 volumes of gas reactants becomes 2 volumes of gas products ∴ halving of reactants Bc A 3 volumes of gas reactants becomes 2 volumes of gas products ∴ halving of reactants Bc A 3 volumes of gas reactants becomes 2 volumes of gas products ∴ halving of reactants Bc A 3 volumes of gas reactants becomes 2 volumes of gas products ∴ halving of reactants Bc A 4 decrease in temperature increases the view broad a 4 volume 4 vo			-				
EC Termination Step with free radicals before the arrow only □D Propagation Step with free radicals on both sides of the arrow. □A small rise in temperature decreases the time and gives a large increase in reaction rate □B activation Energy does not change with a change in temperature □C kelvin temperature scale must be used to investigate doubling the temperature □C kelvin temperature scale must be used to investigate doubling the temperature □C kelvin temperature scale must be used to investigate doubling the temperature □C kelvin temperature is decreasing the time for reaction ∴ increasing the rate □C kelvin temperature □C kelvin temperature is decreasing the time for reaction . ∴ increasing the rate □C kelvin temperature □C kelvin temp	Decorporation Decorporati	4-	_	,				
☑D Propagation Step with free radicals on both sides of the arrow. ☑A small rise in temperature decreases the time and gives a large increase in reaction rate ②B activation Energy does not change with a change in temperature ②D Increase in temperature scale must be used to investigate doubling the temperature ③D Increase in temperature is decreasing the time for reaction ∴ increasing the rate □D Increase in temperature is decreasing the time for reaction ∴ increasing the rate □D Increase in temperature is decreasing the time for reaction ∴ increasing the rate □D Increase in temperature is decreasing the time for reaction ∴ increasing the rate □D Increase in temperature is decreasing the time for reaction ∴ increasing the rate □D Increase in temperature is decreasing the time for reaction ∴ increasing the rate □D Increase in temperature for and the reaction more likely to happen at room temp □D Increase in temperature and the reaction more likely to happen at room temp □D Increase in generating □D Increase in sendothermic as the products are higher than the reactants □D Increase in sendothermic as the products are higher than the reactants □D Increase in generating of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants □D Increase in generating of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants □D Increase	Image: Propagation Step with free radicals on both sides of the arrow. Image: Propagation Step with free radicals on both sides of the arrow. Image: Propagation Step with a change in the angives a large increase in reaction rate. Image: Propagation Step with a change in temperature. Image: Propagation Step with a change in temperature is decreasing the time for reaction. Image: Image: Propagation Step with a change in temperature is decreasing the time for reaction. Image: Propagation Step with a change in temperature is decreasing the time for reaction. Image: Propagation Step with a change in temperature is decreasing the time for reaction. Image: Propagation Step with a change in temperature is decreasing the time for reaction. Image: Propagation Step with a change in temperature Image: Propaga	15	D	·				
Masmall rise in temperature decreases the time and gives a large increase in reaction rate Masmall rise in temperature decreases the time and gives a large increase in reaction rate Masmall rise in temperature scale must be used to investigate doubling the temperature Masmall rise in temperature is decreasing the time for reaction ∴ increasing the rate	Masmall rise in temperature decreases the time and gives a large increase in reaction rate MB activation Energy does not change with a change in temperature MB activation Energy does not change with a change in temperature MB activation Energy does not change with a change in temperature MB activation Energy does not change with a change in temperature MB activation Energy does not change with a change in temperature MB activation Energy does not enter MB activation energy barrier too high for the reaction in the place at room temp MB activation energy barrier and the reaction more likely to happen at room temp MB activation energy barrier and the reaction more likely to happen at room temp MB activation energy barrier and the reaction more likely to happen at room temp MB activation energy barrier and the reaction more likely to happen at room temp MB activation energy barrier and the reaction more likely to happen at room temp MB activation energy barrier and the reaction more likely to happen at room temp MB activation energy barrier and the reaction more likely to happen at room temp MB activation energy barrier and the reaction more likely to happen at room temp MB activation energy barrier and the reaction more likely to happen at room temp MB activation energy barrier and the reaction more likely to happen at room temp MB activation energy barrier and the reaction more likely to happen at room temp MB activation energy barrier and the reaction more likely to happen at room temp MB activation energy barrier and the reaction more likely to happen at room temp MB activation energy barrier and the reaction more likely to happen at room temp MB activation energy barrier and the reaction to happen at happen in the measure of gas products : not halving of reactants MB activation energy barrier and the reaction is explained to happen and MB activation energy barrier barrier and the reaction is explained to happen MB activation energy barrier barrier and the re			,				
B activation Energy does not change with a change in temperature BC Kelvin temperature scale must be used to investigate doubling the temperature BD Increase in temperature is decreasing the time for reaction ∴ increasing the rate 17 D rate = 1/time = 1/5s = 0.2 s ⁻¹ relative rate =0.20s ⁻¹ gives concentration = 0.96 mol L ⁻¹ B A high activation energy barrier too high for the reaction to take place at room temp B I was decreased by the reaction more likely to happen at room temp B I was entalpy diagram is endothermic as the products are higher than the reactants B I volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants B I volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants B I volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants B I volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants B I f 80% Yield produces 0.8 mol of ester product then 100% Yield would be 1.0 mol of ester CH3COOC2H5 + H2O CH3COOC2H5 + H2O 1.0 mol 1.0 mol 1.0 mol 1.0 mol 1.0 mol D A decrease in temperature increases the yield by more forward reaction as exothermic B Equilibrium is achieved at 250°C and 300 atm but reverse reaction is still happening B C The 500°C line is always below the 250°C line so increasing temperature lowers yield D There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H2SO4 = volume x concentration = 0.05litres x 0.2 mol L ⁻¹ = 0.01 mol 0.02 mol 1 mol 0.02 mol 0.01 mol B A P is closer to base line than P ∴ R must be more polar than P B B Q is further from the base line than P ∴ Q must be smaller than P B S is closer to base line than Q ∴ S must be larger than Q Sample 1 is ignored as rough titre sample 3 is ignored as beyond 0.2 cm³ limit for concordance A verage = 20.3 + 20.4 / 2 = 20.35 cm³	Bactivation Energy does not change with a change in temperature BC kelvin temperature scale must be used to investigate doubling the temperature BC kelvin temperature is decreasing the time for reaction ∴ increasing the rate							
BD Increase in temperature is decreasing the time for reaction ∴ increasing the rate 17 D rate = 1/time = 1/5s = 0.2 s ⁻¹ relative rate =0.20s ⁻¹ gives concentration = 0.96 mol l ⁻¹ B BA high activation energy barrier too high for the reaction to take place at room temp BB low activation energy barrier and the reaction more likely to happen at room temp BC this enthalpy diagram is endothermic as the products are higher than the reactants BD this enthalpy diagram is endothermic as the products are higher than the reactants BA 3 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BB 1 volume of gas reactants becomes 2 volumes of gas products ∴ halving of reactants BC 4 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BC 4 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants Tf 80% Yield produces 0.8mol of ester product then 100% Yield would be 1.0mol of ester CH3COOH + C2H5OH CH3COOC2H5 + H2O 1.0mol 1.0mol 1.0mol 1.0mol BCA decrease in temperature increases the yield by more forward reaction and decrease in temperature favours the exothermic reaction ∴ forward reaction is still happening BC The 500°C line is always below the 250°C line so increasing temperature lowers yield BD There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H25O4 = volume x concentration = 0.05litres x 0.2mol l ⁻¹ = 0.01mol 0.02mol 0.01mol BA P is closer to base line than 5 ∴ P must be more polar than S BB Q is further from the base line than P ∴ Q must be smaller than P CR is closer to base line than P ∴ R must be more polar than P BC Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = 20.3 + 20.4 / 2 = 20.35cm³	Experimental experiments actual must be used in threshight a doubting the trainer at the ED Increase in temperature is decreasing the time for reaction ∴ increasing the rate 17 D rate = 1/time = 1/5s = 0.2 s ⁻¹ relative rate = 0.20s ⁻¹ gives concentration = 0.96 mol l ⁻¹ 18 B EA high activation energy barrier too high for the reaction to take place at room temp EQ this enthalpy diagram is endothermic as the products are higher than the reactants EQ this enthalpy diagram is endothermic as the products are higher than the reactants EQ 3 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants EQ 4 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants EQ 4 volumes of gas reactants becomes 2 volumes of gas products ∴ halving of reactants EQ 4 volumes of gas reactants becomes 2 volumes of gas products ∴ halving of reactants If 80% yield produces 0.8 mol of ester product then 100% yield would be 1.0 mol of ester CH ₃ COOCH + C2H ₅ COH ← CH ₃ COOCH ₅ + H ₂ O 1.0 mol 21 A decrease in temperature increases the yield by more forward reaction and decrease in temperature favours the exothermic reaction ∴ forward reaction is exothermic EB Equilibrium is achieved at 250°C and 300 atm but reverse reaction is exothermic 22 B Equilibrium is achieved at 250°C and 300 atm but reverse reaction is still happening EQ The 500°C line is always below the 250°C line so increasing temperature lowers yield ED There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H ₂ SO ₄ = volume × concentration = 0.05tires × 0.2 mol 1 = 0.01 mol 23 C EB Q is further from the base line than P ∴ R must be more polar than S EB Q is further from the base line than P ∴ R must be more polar than P ED S is closer to base line than P ∴ R must be more polar than P ED S is closer to base line than P ∴ R must be more polar than Q Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2 cm³ lim	16	Λ	☑B activation Energy does not change with a change in temperature				
17 D rate = 1/time = 1/5s = 0.2 s ⁻¹ relative rate =0.20s ⁻¹ gives concentration = 0.96 mol l ⁻¹ 18 B B A high activation energy barrier too high for the reaction to take place at room temp EDB low activation energy barrier and the reaction more likely to happen at room temp EC this enthalpy diagram is endothermic as the products are higher than the reactants EDD this enthalpy diagram is endothermic as the products are higher than the reactants EA 3 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants EC 4 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants EC 4 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants If 80% Yield produces 0.8mol of ester product then 100% Yield would be 1.0mol of ester PH3COOC2H5 + H2O 1.0mol 1.0mol 1.0mol 1.0mol 1.0mol 1.0mol A decrease in temperature increases the yield by more forward reaction and decrease in temperature favours the exothermic reaction ∴ forward reaction is exothermic EB Equilibrium is achieved at 250°C and 300 atm but reverse reaction is still happening EC The 500°C line is always below the 250°C line so increasing temperature lowers yield ED There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H₂SO₄ = volume × concentration = 0.05litres × 0.2mol l ⁻¹ = 0.01mol 2KOH + H₂SO₄ → K₂SO₄ + 2H₂O 2mol 1mol 0.02mol 0.01mol EAP is closer to base line than S ∴ P must be more polar than S EB Q is further from the base line than P ∴ Q must be smaller than P EC R is closer to base line than P ∴ R must be more polar than P EC R is closer to base line than P ∴ R must be more polar than P EC R is closer to base line than P ∴ R must be more polar than P EC R is closer to base line than P ∴ R must be more polar than P EC R is closer to base line than P ∴ R must be more polar than P EC R is closer to base line than P ∴ R must be more polar than P EC R is closer to base line than P ∴ R must be more polar than P EC	17	10	A	▼ C Kelvin temperature scale must be used to investigate doubling the temperature				
B	BA high activation energy barrier too high for the reaction to take place at room temp BB low activation energy barrier and the reaction more likely to happen at room temp BC this enthalpy diagram is endothermic as the products are higher than the reactants BD this enthalpy diagram is endothermic as the products are higher than the reactants BA 3 volumes of gas reactants becomes 2 volumes of gas products. not halving of reactants BB 1 volume of gas reactants becomes 2 volumes of gas products. not halving of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products. halving of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products. halving of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products. halving of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products. halving of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products. halving of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products. hothing of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products. hothing of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products. hothing of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products. hothing of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products. hothing of reactant vol BD 2 A decrease in temperature increases the product then 100% Yield would be 1.0mol 2.0mol 2.0mol 2.0mol 1.0mol 2.0mol 2.0mol 2.0mol 3.0mol 2.0mol 3			☑D Increase in temperature is decreasing the time for reaction ∴ increasing the rate				
B	BA high activation energy barrier too high for the reaction to take place at room temp BB low activation energy barrier and the reaction more likely to happen at room temp BC this enthalpy diagram is endothermic as the products are higher than the reactants BD this enthalpy diagram is endothermic as the products are higher than the reactants BB 1 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BB 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BD 2 Nool Inon 1 non	47	_					
B B low activation energy barrier and the reaction more likely to happen at room temp	B B Dow activation energy barrier and the reaction more likely to happen at room temp Down this enthalpy diagram is endothermic as the products are higher than the reactants Down this enthalpy diagram is endothermic as the products are higher than the reactants Down this enthalpy diagram is endothermic as the products are higher than the reactants Down this enthalpy diagram is endothermic as the products are higher than the reactants Down this enthalpy diagram is endothermic as the products are higher than the reactants Down this enthalpy diagram is endothermic as the products are higher than the reactants Down this enthalpy diagram is endothermic as the products are higher than the reactants Down this enthalpy diagram is endothermic of gas products are not halving of reactants Down this enthalpy diagram is endothermic products and the products are not halving of reactants Down this end to product are products are not halving of reactants Down this end to product are products and the products are not halving of reactants Down this end to product are products are not halving of reactants Down this end to product are products are not halving of reactants Down this end to product are products are not halving of reactants Down this end to product are products are not halving of reactants Down this end to product are products and the products are not halving of reactants Down this end to product are not halving of reactants Down this end to product are not halving of reactants Down this end this end to product are not halving of reactants Down this end this end to product are not halving of reactants Down this end to product are not halving of reactants Down this end this end to product are not halving of reactants Down this end this end this end to product are not halving of reactants Down this end this end to product are not halving of reactants Down this end this end to product are not halving of reactants Down this end this end to product are not halving o	1/	D	$\frac{\text{rate}}{\text{time}} = \frac{1}{5s} = 0.2 \text{ s}^{-1}$ relative rate =0.20s ⁻¹ gives concentration = 0.96 mol (-1)				
B B low activation energy barrier and the reaction more likely to happen at room temp	B B Dow activation energy barrier and the reaction more likely to happen at room temp Down this enthalpy diagram is endothermic as the products are higher than the reactants Down this enthalpy diagram is endothermic as the products are higher than the reactants Down this enthalpy diagram is endothermic as the products are higher than the reactants Down this enthalpy diagram is endothermic as the products are higher than the reactants Down this enthalpy diagram is endothermic as the products are higher than the reactants Down this enthalpy diagram is endothermic as the products are higher than the reactants Down this enthalpy diagram is endothermic as the products are higher than the reactants Down this enthalpy diagram is endothermic of gas products are not halving of reactants Down this enthalpy diagram is endothermic products and the products are not halving of reactants Down this end to product are products are not halving of reactants Down this end to product are products and the products are not halving of reactants Down this end to product are products are not halving of reactants Down this end to product are products are not halving of reactants Down this end to product are products are not halving of reactants Down this end to product are products are not halving of reactants Down this end to product are products and the products are not halving of reactants Down this end to product are not halving of reactants Down this end to product are not halving of reactants Down this end this end to product are not halving of reactants Down this end this end to product are not halving of reactants Down this end to product are not halving of reactants Down this end this end to product are not halving of reactants Down this end this end this end to product are not halving of reactants Down this end this end to product are not halving of reactants Down this end this end to product are not halving of reactants Down this end this end to product are not halving o			■A high activation energy barrier too high for the reaction to take place at room temp				
BD this enthalpy diagram is endothermic as the products are higher than the reactants BD this enthalpy diagram is endothermic as the products are higher than the reactants BA 3 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BB 1 volume of gas reactants becomes 2 volumes of gas products ∴ halving of reactant vol BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ halving of reactants If 80% Vield produces 0.8mol of ester product then 100% Vield would be 1.0mol of ester CH3COOH + C2H5OH ← CH3COOC2H5 + H2O 1.0mol 1.0mol 1.0mol 1.0mol A decrease in temperature increases the yield by more forward reaction and decrease in temperature favours the exothermic reaction ∴ forward reaction is exothermic BB Equilibrium is achieved at 250°C and 300 atm but reverse reaction is still happening C The 500°C line is always below the 250°C line so increasing temperature lowers yield D There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H2SO4 = volume × concentration = 0.05litres × 0.2mol l² = 0.01mol 2KOH + H2SO4 → K2SO4 + 2H2O 2mol 1mol 0.02mol 0.01mol BA P is closer to base line than S ∴ P must be more polar than S BB Q is further from the base line than P ∴ Q must be smaller than P C R is closer to base line than P ∴ R must be more polar than P BD S is closer to base line than Q ∴ S must be larger than Q Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = 20.3 + 20.4 / 2 = 20.35cm³	Bot this enthalpy diagram is endothermic as the products are higher than the reactants Bot this enthalpy diagram is endothermic as the products are higher than the reactants Bot 3 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants Cot 4 volumes of gas reactants becomes 2 volumes of gas products ∴ halving of reactants Cot 4 volumes of gas reactants becomes 2 volumes of gas products ∴ halving of reactants If 80% Yield produces 0.8mol of ester product then 100% Yield would be 1.0mol of ester Ch3COOH + C2H5OH CH3COOC2H5 + H2O 1.0mol 1.0mol 1.0mol 1.0mol 1.0mol Ch3cooc2H5 + H2O 1.0mol 1.0mol 1.0mol 1.0mol 1.0mol Experimentation is exothermic reaction ∴ forward reaction and decrease in temperature favours the exothermic reaction ∴ forward reaction is exothermic Experimentation is always below the 250°C line so increasing temperature lowers yield Experimentation is exothermic reaction ∴ forward reaction is exothermic Experimentation is exothermic reaction ∴ forward reaction is exothermic Experimentation is exothermic reaction ∴ forward reaction is exothermic Experimentation is exothermic reaction in still happening Experimentation is exothermic reaction. Experimentation is exothermic reaction in still happening Experimentation is exothermic reaction. Experimentation is	10	D					
EA 3 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants EB 1 volume of gas reactants becomes 1 volume of gas products ∴ not halving of reactants CC 4 volumes of gas reactants becomes 2 volumes of gas products ∴ halving of reactant vol ED 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants If 80% Yield produces 0.8mol of ester product then 100% Yield would be 1.0mol of ester CH3COOH + C2H5OH	EA 3 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants BB 1 volume of gas reactants becomes 1 volume of gas products ∴ not halving of reactants CC 4 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants D 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants If 80% Yield produces 0.8mol of ester product then 100% Yield would be 1.0mol of ester CH3COOH + C2H5OH ← CH3COOC2H5 + H2O 1.0mol 1.0mol 1.0mol 1.0mol A decrease in temperature increases the yield by more forward reaction and decrease in temperature favours the exothermic reaction ∴ forward reaction is exothermic BE Equilibrium is achieved at 250°C and 300 atm but reverse reaction is still happening BC The 500°C line is always below the 250°C line so increasing temperature lowers yield D There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H₂SO₄ = volume × concentration = 0.05litres × 0.2mol □¹ = 0.01mol 2KOH + H₂SO₄ ← X₂SO₄ + 2H₂O 2mol 1mol 0.02mol 0.01mol BA P is closer to base line than S ∴ P must be more polar than S BB Q is further from the base line than P ∴ Q must be smaller than P CR is closer to base line than P ∴ R must be more polar than P CR is closer to base line than P ∴ R must be more polar than P CR is closer to base line than P ∴ R must be more polar than P CR is closer to base line than P ∴ R must be more polar than P A verage = 20.3 + 20.4	10	В	-				
The second of t	The solution of gas reactants becomes 1 volume of gas products ∴ not halving of reactants and the solution of gas reactants becomes 2 volumes of gas products ∴ halving of reactants and solution of gas reactants becomes 2 volumes of gas products ∴ halving of reactants and solution of gas reactants becomes 2 volumes of gas products ∴ halving of reactants are solved and solved as product then 100% Yield would be 1.0mol of ester and solved as the product of then 100% Yield would be 1.0mol of ester and solved as the product of then 100% Yield would be 1.0mol of ester and solved then 100% Yield would be 1.0mol of ester and solved then 100% Yield would be 1.0mol of ester and solved then 100% Yield would be 1.0mol of ester and solved then 1.0mol of 1.0m							
Description of gas reactants becomes 2 volumes of gas products ∴ halving of reactant volences 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants If 80% Yield produces 0.8mol of ester product then 100% Yield would be 1.0mol of ester considering the product of the produ	20 C 4 volumes of gas reactants becomes 2 volumes of gas products ∴ halving of reactant vol ED 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants							
BD 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants If 80% Yield produces 0.8mol of ester product then 100% Yield would be 1.0mol of ester CH3COOH + C2H5OH CH3COOC2H5 + H2O 1.0mol 1.0mol 1.0mol 1.0mol A decrease in temperature increases the yield by more forward reaction and decrease in temperature favours the exothermic reaction ∴ forward reaction is exothermic BE Equilibrium is achieved at 250°C and 300 atm but reverse reaction is still happening C The 500°C line is always below the 250°C line so increasing temperature lowers yield D There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H2SO4 = volume × concentration = 0.05litres × 0.2mol l ⁻¹ = 0.01mol 2KOH + H2SO4	ED 1 volume of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants If 80% Yield produces 0.8mol of ester product then 100% Yield would be 1.0mol of ester CH3COOC2H5 + H2O 1.0mol 1.0mol 1.0mol 1.0mol 21 A decrease in temperature increases the yield by more forward reaction and decrease in temperature favours the exothermic reaction ∴ forward reaction is exothermic B Equilibrium is achieved at 250°C and 300 atm but reverse reaction is still happening CThe 500°C line is always below the 250°C line so increasing temperature lowers yield D There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H2SO4 = volume × concentration = 0.05litres × 0.2mol 1³ = 0.01mol 2KOH + H2SO4 → K2SO4 + 2H2O 2mol 1mol 0.02mol 0.01mol A P is closer to base line than S ∴ P must be more polar than S B Q is further from the base line than P ∴ Q must be smaller than P CR is closer to base line than P ∴ R must be more polar than P ED S is closer to base line than Q ∴ S must be larger than Q 3mple 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = 20.3 + 20.4 Increasing the pressure favours the forward pressure-reducing reaction. The mixture becomes paler as NO2 turns into N2O4 ∴ NO2 is brown. Increasing the temperature makes mixture darker brown (i.e. more NO2). The reverse reaction must be endothermic if it is favoured by an increase in temperature.	19	C					
If 80% Yield produces 0.8mol of ester product then 100% Yield would be 1.0mol of ester CH3COOH + C2H5OH CH3COOC2H5 + H2O 1.0mol 1.0mol 1.0mol 1.0mol 1.0mol 1.0mol 1.0mol A decrease in temperature increases the yield by more forward reaction and decrease in temperature favours the exothermic reaction forward reaction is exothermic B Equilibrium is achieved at 250°C and 300 atm but reverse reaction is still happening C The 500°C line is always below the 250°C line so increasing temperature lowers yield D There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H2SO4 = volume × concentration = 0.05litres × 0.2mol t ⁻¹ = 0.01mol 2KOH + H2SO4	If 80% Yield produces 0.8mol of ester product then 100% Yield would be 1.0mol of ester CH ₃ COOC ₂ H ₅ + H ₂ O 1.0mol 1.0mol 1.0mol 1.0mol 1.0mol 21 A decrease in temperature increases the yield by more forward reaction and decrease in temperature favours the exothermic reaction ∴ forward reaction is exothermic BE Equilibrium is achieved at 250°C and 300 atm but reverse reaction is still happening C The 500°C line is always below the 250°C line so increasing temperature lowers yield D There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H ₂ SO ₄ = volume × concentration = 0.05litres × 0.2mol t ¹ = 0.01mol 2KOH + H ₂ SO ₄ → K ₂ SO ₄ + 2H ₂ O 2mol 1mol 0.02mol 0.01mol EAP is closer to base line than S ∴ P must be more polar than S EB Q is further from the base line than P ∴ Q must be smaller than P C R is closer to base line than P ∴ R must be more polar than P D S is closer to base line than Q ∴ S must be larger than Q Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = 20.3 + 20.4 / 2 = 20.35cm³ Increasing the pressure favours the forward pressure-reducing reaction. The mixture becomes paler as NO ₂ turns into N ₂ O ₄ ∴ NO ₂ is brown. Increasing the temperature makes mixture darker brown (i.e. more NO ₂). The reverse reaction must be endothermic if it is favoured by an increase in temperature.							
1.0mol 1.0mol 1.0mol 1.0mol 1.0mol A decrease in temperature increases the yield by more forward reaction and decrease in temperature favours the exothermic reaction ∴ forward reaction is exothermic B Equilibrium is achieved at 250°C and 300 atm but reverse reaction is still happening C The 500°C line is always below the 250°C line so increasing temperature lowers yield There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H₂SO₄ = volume × concentration = 0.05litres × 0.2mol t¹ = 0.01mol 2KOH + H₂SO₄ → K₂SO₄ + 2H₂O 2mol 1mol 0.02mol 0.01mol AP P is closer to base line than S ∴ P must be more polar than S BA P is closer to base line than P ∴ Q must be smaller than P CR is closer to base line than P ∴ R must be more polar than P DS is closer to base line than Q ∴ S must be larger than Q Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = 20.3 + 20.4/2 = 20.35cm³	1.0mol 1.0mol 1.0mol 1.0mol 1.0mol A decrease in temperature increases the yield by more forward reaction and decrease in temperature favours the exothermic reaction ∴ forward reaction is exothermic B Equilibrium is achieved at 250°C and 300 atm but reverse reaction is still happening C The 500°C line is always below the 250°C line so increasing temperature lowers yield D There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H₂SO₄ = volume × concentration = 0.05litres × 0.2mol t¹ = 0.01mol 2KOH + H₂SO₄ → K₂SO₄ + 2H₂O 2mol 1mol 0.02mol 0.01mol A P is closer to base line than S ∴ P must be more polar than S B Q is further from the base line than P ∴ Q must be smaller than P C R is closer to base line than P ∴ R must be more polar than P D S is closer to base line than Q ∴ S must be larger than Q A Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = 20.3 + 20.4 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			<u> </u>				
1.0mol 1.0mol 1.0mol 1.0mol 1.0mol A decrease in temperature increases the yield by more forward reaction and decrease in temperature favours the exothermic reaction ∴ forward reaction is exothermic B Equilibrium is achieved at 250°C and 300 atm but reverse reaction is still happening C The 500°C line is always below the 250°C line so increasing temperature lowers yield There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H₂SO₄ = volume × concentration = 0.05litres × 0.2mol t¹ = 0.01mol 2KOH + H₂SO₄ → K₂SO₄ + 2H₂O 2mol 1mol 0.02mol 0.01mol AP P is closer to base line than S ∴ P must be more polar than S BA P is closer to base line than P ∴ Q must be smaller than P CR is closer to base line than P ∴ R must be more polar than P DS is closer to base line than Q ∴ S must be larger than Q Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = 20.3 + 20.4/2 = 20.35cm³	1.0mol 1.0mol 1.0mol 1.0mol 1.0mol A decrease in temperature increases the yield by more forward reaction and decrease in temperature favours the exothermic reaction ∴ forward reaction is exothermic B Equilibrium is achieved at 250°C and 300 atm but reverse reaction is still happening C The 500°C line is always below the 250°C line so increasing temperature lowers yield D There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H₂SO₄ = volume × concentration = 0.05litres × 0.2mol t¹ = 0.01mol 2KOH + H₂SO₄ → K₂SO₄ + 2H₂O 2mol 1mol 0.02mol 0.01mol A P is closer to base line than S ∴ P must be more polar than S B Q is further from the base line than P ∴ Q must be smaller than P C R is closer to base line than P ∴ R must be more polar than P D S is closer to base line than Q ∴ S must be larger than Q A Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = 20.3 + 20.4 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20	D	CH3COOH + C2H5OH C H3COOC2H5 + H2O				
temperature favours the exothermic reaction :. forward reaction is exothermic B Equilibrium is achieved at 250°C and 300 atm but reverse reaction is still happening C The 500°C line is always below the 250°C line so increasing temperature lowers yield D There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H ₂ SO ₄ = volume × concentration = 0.05litres × 0.2mol L ⁻¹ = 0.01mol 2KOH + H ₂ SO ₄ END The is closer to base line than S P must be more polar than S B Q is further from the base line than P :. Q must be smaller than P C R is closer to base line than P :. R must be more polar than P D S is closer to base line than Q :. S must be larger than Q Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = 20.3 + 20.4 A everage = 20.3 + 20.4 B everage = 20.3 + 20.4 A everage = 20.3 + 20.4 B everage = 20.3	temperature favours the exothermic reaction ∴ forward reaction is exothermic B Equilibrium is achieved at 250°C and 300 atm but reverse reaction is still happening C The 500°C line is always below the 250°C line so increasing temperature lowers yield There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H₂SO₄ = volume × concentration = 0.05litres × 0.2mol l³ = 0.01mol 2KOH + H₂SO₄ → K₂SO₄ + 2H₂O 2mol 1mol 0.02mol 0.01mol A P is closer to base line than S ∴ P must be more polar than S B Q is further from the base line than P ∴ Q must be smaller than P C R is closer to base line than P ∴ R must be more polar than P D S is closer to base line than Q ∴ S must be larger than Q A Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Increasing the pressure favours the forward pressure-reducing reaction. The mixture becomes paler as NO₂ turns into N₂O₄ ∴ NO₂ is brown. Increasing the temperature makes mixture darker brown (i.e. more NO₂). The reverse reaction must be endothermic if it is favoured by an increase in temperature.							
temperature favours the exothermic reaction :. forward reaction is exothermic B Equilibrium is achieved at 250°C and 300 atm but reverse reaction is still happening C The 500°C line is always below the 250°C line so increasing temperature lowers yield D There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H ₂ SO ₄ = volume × concentration = 0.05litres × 0.2mol L ⁻¹ = 0.01mol 2KOH + H ₂ SO ₄ END The scloser to base line than S P must be more polar than S B Q is further from the base line than P Q must be smaller than P C R is closer to base line than P :. R must be more polar than P D S is closer to base line than Q :. S must be larger than Q Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = 20.3 + 20.4 A exerage = 20.3 + 20.4 B exerage = 20.3 + 20.4 A exerage = 20.3 + 20.4 B exerage = 20.3 +	temperature favours the exothermic reaction ∴ forward reaction is exothermic B Equilibrium is achieved at 250°C and 300 atm but reverse reaction is still happening C The 500°C line is always below the 250°C line so increasing temperature lowers yield There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H₂SO₄ = volume × concentration = 0.05litres × 0.2mol l³ = 0.01mol 2KOH + H₂SO₄ → K₂SO₄ + 2H₂O 2mol 1mol 0.02mol 0.01mol A P is closer to base line than S ∴ P must be more polar than S B Q is further from the base line than P ∴ Q must be smaller than P C R is closer to base line than P ∴ R must be more polar than P D S is closer to base line than Q ∴ S must be larger than Q A Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Increasing the pressure favours the forward pressure-reducing reaction. The mixture becomes paler as NO₂ turns into N₂O₄ ∴ NO₂ is brown. Increasing the temperature makes mixture darker brown (i.e. more NO₂). The reverse reaction must be endothermic if it is favoured by an increase in temperature.			☑A decrease in temperature increases the yield by more forward reaction and decrease in				
EC The 500°C line is always below the 250°C line so increasing temperature lowers yield ED There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H ₂ SO ₄ = volume × concentration = 0.05litres × 0.2mol t ⁻¹ = 0.01mol 2KOH + H ₂ SO ₄ → K ₂ SO ₄ + 2H ₂ O 2mol 1mol 0.02mol 0.01mol EA P is closer to base line than S ∴ P must be more polar than S EB Q is further from the base line than P ∴ Q must be smaller than P CC R is closer to base line than P ∴ R must be more polar than P ED S is closer to base line than Q ∴ S must be larger than Q Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = 20.3 + 20.4 2 20.35cm³	EC The 500°C line is always below the 250°C line so increasing temperature lowers yield ED There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H₂SO₄ = volume × concentration = 0.05litres × 0.2mol l¹ = 0.01mol 2KOH + H₂SO₄ → K₂SO₄ + 2H₂O 2mol 1mol 0.02mol 0.01mol EA P is closer to base line than S ∴ P must be more polar than S EB Q is further from the base line than P ∴ Q must be smaller than P ☑C R is closer to base line than P ∴ R must be more polar than P ☑D S is closer to base line than Q ∴ S must be larger than Q Average = 20.3 + 20.4 Increasing the pressure favours the forward pressure-reducing reaction. The mixture becomes paler as NO₂ turns into N₂O₄ ∴ NO₂ is brown. Increasing the temperature makes mixture darker brown (i.e. more NO₂). The reverse reaction must be endothermic if it is favoured by an increase in temperature.		Α	temperature favours the exothermic reaction forward reaction is exothermic				
BD There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H ₂ SO ₄ = volume x concentration = 0.05 tres x 0.2mol t ⁻¹ = 0.01mol 2KOH + H ₂ SO ₄	BD There is increase in product yield when the pressure increased after 200 atmospheres no. of mol H ₂ SO ₄ = volume × concentration = 0.05 itres × 0.2mol l ⁻¹ = 0.01mol 2KOH + H ₂ SO ₄ → K ₂ SO ₄ + 2H ₂ O 2mol 1mol 0.02mol 0.01mol BAP is closer to base line than S ∴ P must be more polar than S BBQ is further from the base line than P ∴ Q must be smaller than P CR is closer to base line than P ∴ R must be more polar than P DS is closer to base line than Q ∴ S must be larger than Q AN Experience of the pressure favours the forward pressure-reducing reaction. The mixture becomes paler as NO ₂ turns into N ₂ O ₄ ∴ NO ₂ is brown. Increasing the temperature makes mixture darker brown (i.e. more NO ₂). The reverse reaction must be endothermic if it is favoured by an increase in temperature.	21		· · · · · · · · · · · · · · · · · · ·				
B no. of mol H ₂ SO ₄ = volume × concentration = 0.05 litres × 0.2 mol l ⁻¹ = 0.01 mol 2KOH + H ₂ SO ₄	B no. of mol H ₂ SO ₄ = volume × concentration = 0.05 litres × 0.2 mol L ⁻¹ = 0.01 mol 2KOH + H ₂ SO ₄							
B 2KOH + H ₂ SO ₄ → K ₂ SO ₄ + 2H ₂ O 2mol 1mol 0.02mol 0.01mol EAP is closer to base line than S ∴ P must be more polar than S EBQ is further from the base line than P ∴ Q must be smaller than P CR is closer to base line than P ∴ R must be more polar than P ED S is closer to base line than Q ∴ S must be larger than Q Average = 20.3 + 20.4 Average = 20.35cm³	B 2KOH + H ₂ SO ₄			·				
2mol 1mol 0.02mol 0.01mol ZA P is closer to base line than S P must be more polar than S B Q is further from the base line than P Q must be smaller than P C R is closer to base line than P R must be more polar than P D S is closer to base line than Q S must be larger than Q A Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = 20.3 + 20.4 2 = 20.35cm³	23 C Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = \frac{20.3 + 20.4}{2} = 20.35cm³ Increasing the pressure favours the forward pressure-reducing reaction. The mixture becomes paler as NO2 turns into N2O4 \(\therefore \text{NO2} \) is favoured by an increase in temperature.							
2mol 1mol 0.02mol 0.01mol ZA P is closer to base line than S ∴ P must be more polar than S B Q is further from the base line than P ∴ Q must be smaller than P C R is closer to base line than P ∴ R must be more polar than P D S is closer to base line than Q ∴ S must be larger than Q A Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = 20.3 + 20.4 Average = 20.35cm³	23 C Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance	22	В					
C Sample 1 is ignored as beyond 0.2cm³ limit for concordance EA P is closer to base line than S ∴ P must be more polar than S EB Q is further from the base line than P ∴ Q must be smaller than P ED S is closer to base line than Q ∴ S must be larger than Q Average = 20.3 + 20.4 Average = 20.35cm³	Z3 C Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Increasing the pressure favours the forward pressure-reducing reaction. The mixture becomes paler as NO₂ turns into N₂O₄∴NO₂ is brown. Increasing the temperature makes mixture darker brown (i.e. more NO₂). The reverse reaction must be endothermic if it is favoured by an increase in temperature.							
C B Q is further from the base line than P ∴ Q must be smaller than P C R is closer to base line than P ∴ R must be more polar than P D S is closer to base line than Q ∴ S must be larger than Q Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = 20.3 + 20.4 2 = 20.35cm³	23 C □ B Q is further from the base line than P ∴ Q must be smaller than P □ C R is closer to base line than P ∴ R must be more polar than P □ D S is closer to base line than Q ∴ S must be larger than Q 24 A □ Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = 20.3 + 20.4 2							
 ∠C R is closer to base line than P ∴ R must be more polar than P ∠D S is closer to base line than Q ∴ S must be larger than Q A Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = 20.3 + 20.4 2 2 20.35cm³				· ·				
Sample 1 is ignored as rough titre Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = 20.3 + 20.4 2 = 20.35cm³		23	C					
Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = 20.35cm³	Sample 3 is ignored as beyond 0.2cm^3 limit for concordance Average = $\frac{1}{2}$ = $\frac{20.35 \text{cm}^3}{2}$ Increasing the pressure favours the forward pressure-reducing reaction. The mixture becomes paler as NO_2 turns into N_2O_4 NO_2 is brown. Increasing the temperature makes mixture darker brown (i.e. more NO_2). The reverse reaction must be endothermic if it is favoured by an increase in temperature.			<u>'</u>				
Sample 3 is ignored as beyond 0.2cm³ limit for concordance Average = 20.35cm³	Sample 3 is ignored as beyond 0.2cm^3 limit for concordance Increasing the pressure favours the forward pressure-reducing reaction. The mixture becomes paler as NO_2 turns into N_2O_4 NO_2 is brown. Increasing the temperature makes mixture darker brown (i.e. more NO_2). The reverse reaction must be endothermic if it is favoured by an increase in temperature.	24	A					
Increasing the pressure favours the forward pressure-reducing reaction.	The mixture becomes paler as NO_2 turns into N_2O_4 $\therefore NO_2$ is brown. Increasing the temperature makes mixture darker brown (i.e. more NO_2). The reverse reaction must be endothermic if it is favoured by an increase in temperature.	24	A	Avances =				
	The mixture becomes paler as NO_2 turns into N_2O_4 $\therefore NO_2$ is brown. Increasing the temperature makes mixture darker brown (i.e. more NO_2). The reverse reaction must be endothermic if it is favoured by an increase in temperature.			Increasing the pressure favours the forward pressure-reducing reaction.				
	Increasing the temperature makes mixture darker brown (i.e. more NO ₂). The reverse reaction must be endothermic if it is favoured by an increase in temperature.			, ,				
	The reverse reaction must be endothermic if it is favoured by an increase in temperature.	25	Α	· ·				
	: Forward reaction is exothermic			· · · · · · · · · · · · · · · · · · ·				
Forward reaction is exothermic	or man a reasonable entering			Forward reaction is exothermic				

2020 Higher Chemistry Marking Scheme											
Long Qu	Answer	Reasoning									
1a(i)	Increase in atomic number gives increase in electronegativity	As you go across a period, the electronegativity increases as the electrons within a bond are more attracted to the nuclei at either end of the bond. The bonded electrons are closer to each nucleus as size of atoms decrease as you cross a period.									
1 a(ii)	They don't form covalent bonds	_	The noble gases in group 0 are unreactive as they already have a full outer shell. This means noble gases don't need to form bonds to achieve a full outer shell.								
1a(iii)	One answer from:		ning effec action for			Со				s so less at red electro	
1b(i)	2.8 ±0.05	Problem S	Solving:	Select	ing info	ormo	ation				
1b(ii)	Cross at (2.1,1.8)	Problem S	Solving:	Select	ing info	ormo	ation				
		Write down and valence	,		Over arrow				cal formulo necessary)	ion and	narges to each multiple ions ed brackets
1b(iii)A	(Li ⁺) ₂ S ²⁻	Li	5	Li	\times	•		Li ₂ ,	S	(Li	-) ₂ 5 ²⁻
		1	2	1	2)					/ L -
1b(iii)B	Due to changes to the data booklet in 2021, the answers to this question no longer come to 1.5	Answer Elements Electronegativity Difference	Carbon Electronegati = 2.6	ivity Electro	orine negativity E	Sulp Electrone = 2	egativity	Fluo Electron	egativity El	Boron lectronegativity = 2.0	Oxygen Electronegativity = 3.4
1c	Polar (covalent)	The covalent bond in hydrogen fluoride is a polar bond due to the electronegativity difference within the bond is 1.8. The polar bond is a permanent dipole and is so polar it takes part in hydrogen bonding between molecules.									
2α(i)	graphite	There are • Car	three fo	orms of form of 1	the ele Fullerene	ment is a m	olecula	r form			nd graphite.
2a(ii)	Covalent bond London dispersion forces	There are two forms of carbon which are covalent network; diamond and graphite. Diamond is a covalent network so covalent bonds are broken when diamond undergoes sublimation into a gas. Fullerene is a non-polar molecule and London dispersion forces are broken when fullerene undergoes sublimation into a gas.									
2a(iii)	12	$C_{60} + 12Br_2 \longrightarrow C_{60}Br_{24}$ $1 \text{mol} \qquad 12 \text{mol} \qquad 1 \text{mol}$ $1 \text{ Br}_2 \text{ molecule will add across each } C=C \text{ double bond.}$									
2b	45.8	atom ec	onomy = $\frac{m}{t}$	nass of use otal mass	eful produ of reacta	icts ints	100 = -	(1×159	(2×55.8) 9.6) + (3×	28.0) ×100	= 45.8%
2c	+250 kJ mol ⁻¹	0 6 0 0 2 2 8	-1 -3 -3	1 ₂ + 1 ₄ +	½O ₂ 2O ₂ CO ₂ 3H ₂ O 2O ₂	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	H ₂ O CO ₂ CO 3H ₂ CO ₂	+ + + +	2H ₂ O ¹ / ₂ O ₂ 1 ¹ / ₂ O ₂ 2H ₂ O	ΔH=-283 k. ΔH=-286 k. ΔH=-891 k. ΔH=+283 k. ΔH=+858 k. ΔH=-891 k. ΔH=-250 k	J mol ⁻¹ 「mol ⁻¹ J mol ⁻¹ J mol ⁻¹ 「mol ⁻¹
		0'+@)+ ⑤	14 T	1 120	7		т	JF 12	△11-+200 K	W MUI

		3 mark answer	2 mark answer	1 mark answer			
3	Open Question Answer to Include:	Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	Demonstrates a <u>reasonable</u> understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.	Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.			
4a	Bond enthalpy is high	booklet. To become re	nitrogen is 945kJmol ⁻¹ and active, the N≡N triple bo gen atoms can then combi	nd has to be broken			
4b	1 mark for each workable diagram	1st mark potass hydrox (potassium hydroxide must b	xide	2 nd mark hot copper HEAT copper must be labelled)			
4c(i)	Working showing:	no. of moles N2 = Moles N2 =	1mol 0.0242mol (required) e (0.0375mol) than is required	-1 = 0.0375mol (available) 2Li3N(s) 2mol			
4c(ii)	$Cu^+(aq) + e^- \rightarrow Cu(s)$	Reduction is the gain of electrons so electrons appear before arrow. State symbols are not required.					
4c(iii)	(ionic) lattice/network	Ionic compounds form ionic lattices with alternating positive and negative ions in all directions. Ionic lattices are also called ionic networks.					
4d(i)	atoms/molecules with an unpaired electron	reactive as it seeks to	npaired electron which mak pair up its unpaired electro rmed by exposure to uv ligl	n with another species.			
4d(ii)	676	Bond Breaking S 1xN=N bond	teps	Sond Forming Steps 2x X kJ = 2X kJ ng = 2X kJ			
4d(iii)A	termination	Step Initiation Propagation Termination	Reactants (before Arrow) No free radicals on Reactant Side Free Radicals found on both Free radicals on Reactant Side	Products (after Arrow) Free radicals on Product Side In sides of arrow No free radicals on Product Side			

4d(iii)B	one diagram from:	H—O—N=O or H—N					
4e(i)	Answer to include:	1st Mark decreasing temperature favours exothermic reaction or increasing temperature favours endothermic reaction 2nd Mark Increases the yield of ammonia					
4e(ii)A	Equation showing:	$C_3H_5N_3O_9 \longrightarrow 3CO_2 + 2\frac{1}{2}H_2O + 1\frac{1}{2}N_2 + \frac{1}{4}O_2$					
4e(ii)B	One answer from:	the shock/bump provides the activation energy/EA the shock/bump provides sufficient/enough energy to start the reaction the activation energy/EA to start the reaction the rea					
5α	One answer from:	Contains oxygen Sample is surrounded by Sealed container Stirring to to ensure water so all energy prevents/reduces ensure accurate transferred/reduce heat loss to the temperature combustion heat loss to surroundings surroundings (measurement)					
5b(i)	-34 078	Heat Energy = Specific Heat Capacity \times Mass \times Change In Temperature $E_h = c \times m \times \Delta T$ $E_h = 4.18 \text{ kJ kg}^{-1} \circ C^{-1} \times 0.775 \text{kg} \times 11.9 \circ C$ $E_h = 38.55 \text{ kJ}$ $\text{gfm triolein} = 884g \text{ (in question)}$ $\text{no. of mol triolein} = \frac{\text{mass}}{\text{gfm}} = \frac{1.00}{884} = 0.00113 \text{mol}$ $0.00113 \text{mol triolein} \xrightarrow{\bullet} 38.55 \text{ kJ} \times \frac{1}{0.00113}$ $= -341078 \text{kJ mol}^{-1}$					
5b(ii)	0.7125	$C_{57}H_{104}O_6 + 80 O_2 \longrightarrow 57CO_2 + 52H_2O$ $80\text{mol} \qquad 57\text{mol}$ Because 1 mole of a gas has the same volume at same conditions of temperature and pressure: $80\text{vol} \qquad 57\text{vol}$ $Respiratory \ Quotient = \frac{CO_2 \ produced}{O_2 \ consumed} = \frac{57\text{vol}}{80\text{vol}} = 0.7125$					
5c(i)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
5c(ii)	Glycerol has 3 hydroxyl groups Glycerol has three hydroxyl -OH groups. H H H H Each hydroxyl group reacts with a fatty $H-C-C-C-H$ acid any condensation reaction where a $OH OH OH$ water molecule is removed. glycerol						
6a	1st Mark (for mass) (for units) 0.00113 kg 1.13 g 1130 mg	0.133g iodine obtained from 1000g seaweed 0.15mg iodine = 0.00015g iodine $0.00015g \text{ iodine obtained from } 1000g \times \frac{0.00015g}{0.133g} = 1.13g \text{ seaweed}$					

6b(i)	Answer to include:	Measuring the mass of container + seaweed/sample then subtract the mass of the container					
6b(ii)	I ⁻ ions or Iodide ions	Reducing agents reduce another species while being oxidised themselves (losing electrons in the process) $H_2O_2 + 2I^- + 2H^+ \longrightarrow 2H_2O + I_2$ $2I^- \longrightarrow I_2 + 2e^-$					
6b(iii)	Answer to include:	A solution of accurately/exactly/precisely known concentration					
6b(iv)A	0.00013	I ₂ + 2Na ₂ S ₂ O ₃ → 2NaI + Na ₂ S ₄ O ₆ 1mol. 2mol 0.00013mol 0.00026mol					
6b(iv)B	0.033	gfm I_2 = (2×126.9) = 253.8g m ass = n o. of mol × gfm = 0.00013 × 253.8 = 0.03299g					
6c(i)		Essential amino acids must be obtained from the diet if they are going to be joined together to form all the different proteins needed in the body.					
6c(ii)	One from:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
7α	2 marks awarded top half (1 mark) bottom half (1 mark)	1 mark for: sulfur dioxide + oxygen reactor with catalyst sulfur trioxide 1 mark for: concentrated sulfuric acid sulfuric acid					
7b	Requires heat to be removed	Highly exothermic reactions need the excess heat energy removed safely from the reaction system. Excess heat could lead to the evaporation of liquid reactants/products and the resultant large increase in gas pressure could lead to an explosion.					
7c(i)	Answer to include:	1st description of LDFs as forces of attraction between temporary dipoles (and mark induced dipoles) 2nd explanation of the cause of temporary dipoles in terms of uneven distribution mark of electrons/electron wobble/movement of electrons in the molecule					

7c(ii)	1 st Mark Sulphur has more electrons than oxyger 2 nd Mark forces are stronger due to sulphur structure being S ₈ whereas oxygen is O ₂					
7d	Effect of catalyst on enthalpy change activation energy stay the same decrease	A catalyst lowers the activation energy by providing an alternative route to the products. The activation energy is the minimum energy required for an activated complex to be formed and the new substance(s) formed. A catalyst has no effect on the enthalpy change for a reaction as the energy of the reactants and products are not changed by the catalyst.				
7e(i)	Do not form scum	Scum is formed as a precipitate between ions in hard water (usually Ca^{2+} ions) and the negative ion found in soaps/detergents. Soft water lacks Ca^{2+} ions so no precipitate/scum is formed when soap is used with soft water. Soapless detergents are designed to not form a precipitate with Ca^{2+} and no precipitate/scum formed with hard or soft water.				
7e(ii)	Answer to include:	One word from below to describe the HEAD TAIL Hydrophilic Hydrophobic Polar Non-polar Ionic Non-polar Water soluble Fat soluble				
8a(i)	pentyl ethanoate	HOHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH				
8a(ii)	Condensation or esterification	A condensation reaction happens when two molecules join together and a small molecule (usually water) is Condensation removed where they joined. Condensation reactions where an ester is formed are also known as esterification reactions. A hydrolysis reaction happens when a molecule splits into two molecules and a small molecule (usually				
8b(i)	Carbon dioxide is (relatively) insoluble Or has very low solubility	Hydrolysis into two molecules and a small molecule (usually water) is added across the break point. Although carbon dioxide is soluble it is only sparingly soluble in water. The majority of carbon dioxide does not dissolve in the water as it makes its way through the water to the upside down measuring cylinder filled with water. NO2 and NH3 are much more soluble in water than CO2. Best way to collect any gas which is soluble is in a gas syringe				

	no. of moles $CO_2 = \frac{\text{Volume}}{\text{Molar Volume}} = \frac{0.055 \text{ litres}}{24 \text{ litres mol}^{-1}} = 0.00229 \text{mol}$							
		C ₆ H ₈ O ₇ + 3NaHCO ₃ → 3CO ₂ + 3H ₂ O + C ₆ H ₅ O ₇ Na ₃						
8b(ii)	0.029	1mol 3mol						
OB(II)	0 02)	0.000764mol 0.00229mol						
		gfm citric acid = 192g						
		mass citric acid in 5 sweets = no. of mol x gfm = 0.000764 x 192 = 0.147g						
		m ass citric acid in 1 sweet = $0.147g/_{5}$ = 0.0293g						
		Oxidising Colour Primary alcohol Secondary Alcohol Aldehyde						
8c(i)A	orange to green	Agent Change Aldehyde Ketone Carboxylic Acid						
		Hot copper(II) oxide Brown to black Acidified dichromate Orange to green						
8c(i)B	Tollens' reagent or	Acidified dichromate Orange to green Fehling's solution Blue to brick red X						
OC(I)B	Fehling's solution	Tollen's Reagent Silver mirror × ×						
]						
8c(ii)	2	Formula of isoprene = C_5H_8 2 isoprene units join together						
OC(II)	_	Formula of limonene = $C_{10}H_{16}$ to form limonene						
		J						
		100cm ³ solution contains 0.184g vanillin						
		5cm^3 solution contains $0.184g \times \frac{5}{100} = 0.0092g$ vanillin						
	1 pence	1000g vanillin costs £1050.00						
8c(iii)	or	$0.0092g \text{ vanillin}$ costs £1050.00 x $0.0092/_{1000}$						
	£0·01	= £0.00966						
		= 0.966p						
		≈ 1p						
		100cm ³ mouthwash contains 1.5g of 35% hydrogen peroxide solution						
		300cm ³ mouthwash contains 4.5g of 35% hydrogen peroxide solution						
9a(i)	1.575	, , ,						
		35% of 4.5g = $\frac{35}{100}$ ×4.5g =1.575g						
		Proteins are polymers made by the condensation polymerisation of						
9α(ii)	Protein(s)	amino acids. Enzymes are biological catalysts which are specially shaped						
Ju(ii)	11016111(3)	proteins and catalyse chemical reactions at body temperatures.						
		Pipettes and burette are more accurate methods of measuring volumes of liquids than measuring cylinders and beakers.						
9a(iii)	pipette and burette							
		Essential oils are concentrated extracts of the volatile, non-water soluble						
		aroma compounds from plants. They are mixtures of many different						
9b	essential oils	compounds. They are widely used in perfumes, cosmetic products, cleaning						
		products and as flavourings in foods.						
		<u> </u>						
		l l Č						
		H ₂ C						
		№ 9						
9c(i)	2-methylbuta-1,3-diene	C—CH						
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/ \\ a						
		H ₂ C∕ \\C\L_2						
		H3C CH2						
		2-methylbuta-1,3-diene						
		Menthol is a secondary alcohol as its hydroxyl -OH group has two						
9c(ii)	ketone	carbons attached to the carbon with the -OH group.						
	ACTORE							
		Secondary alcohols oxidise to ketones.						

		salicylic acid + X C7H6O3 + CxHy	•	salicylate + water H ₈ O ₃ + H ₂ O				
9d(i)	methanol	For C: $7+x = 8+0 : x = 8+$ For H: $6+y = 8+2 : y = 8+$	2-6 = 4	$C_1H_4O_1 = CH_4O$				
		For $O: 3+z = 3+1 : z = 3+$	1-3 = 1 Metha	nol has formula CH4O				
9d(ii)	79·24	salicylic acid + metha 1mol 0.205mol gfm methyl salicylate = 1!		thyl salicylate + water 1mol 0.205mol (theoretical)				
		%Vield = Ad	ctual x100 = 0.163mol	x 100 = 79 24%				
9d(iii)	6.5	1kg body mass has toxic 65kg body mass has toxic 7.0g methyl salicylate for	%Yield = $\frac{Actual}{Theoretical} \times 100 = \frac{0.163 mol}{0.205 mol} \times 100 = 79.24\%$ 1kg body mass has toxicity at 0.14g methyl salicylate 65kg body mass has toxicity at 0.14g $\times 65/1 = 9.1$ g methyl salicylate 7.0g methyl salicylate found in 5.0cm³ oil of wintergreen 9.1g methyl salicylate found in 5.0cm³ $\times 9.1/7.0$ = 6.5cm³ oil of wintergreen					
		3 mark answer	2 mark answer	1 mark answer				
10	Open Question Answer to Include:	Demonstrates a <u>good</u> understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	Demonstrates a <u>reasonable</u> understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.	Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.				
11a(i)	Reactants/solvent is flammable/catches fire with a flame	The reactants and the so flame could cause any esc this issue, If a temperate should be used instead.	caping vapours to catch f	ire. A water bath solves				
11a(ii)	condenser	The condenser is fitted to the flask to give a cold surface for the vapours escaping the flask to condense back to liquids and return to then flask. In reflux techniques the water should enter the condenser at the bottom and leave at the top of the condenser.						
11b(i)	addition	The CH_3CH_2MgBr molecule is added across the $C=O$ carbonyl group of ethanal. H O H C H H H C C C C C Mg Br H H H H H						
11b(ii)	2-methylbutan-2-ol	H H CH ₃ H C C C C C C C C C C C C C C C C C C C	•	bons on Hydroxyl -OH n chain functional group on C2				

