[13.7] SO(3) is the group of rotations of the unit sphere in 3-space. O(3) extends SO(3) by including reflections. (A) Show that SO(3) is a normal subgroup of O(3) and (B) show that it is the only proper normal subgroup.

Note. (B) is actually not true. There is one other proper normal subgroup of O(3). If 1 is the identity element (null rotation) of SO(3) and R is the reflection operator then $\mathcal{I} = \{1, R(1)\}$ is a normal subgroup of O(3). This is because if g is a (reflective or non-reflective) rotation, then g^{-1} 1 g = 1 and g^{-1} R(1) g = R(1). So we revise (B) to be that O(3) has only two proper normal subgroups.

Note: In this proof we adopt the convention that f g represents rotating by f followed by g. So f R means to rotate and then reflect while R f means to reflect then rotate.

Proof: Penrose gives the hint: "What are the only sets in O(3) that are rotation invariant?". The answer is simple. There are only 2 such sets, which are described shortly. But first, some preliminaries...

Definitions:

- 1. Let **S** be the unit sphere of \mathbb{R}^3
- 2. Let R be the reflection operation S
- 3. Let T = R[SO(3)] be the coset of reflective rotations in O(3)
- 4. Let 1 be the identity of O(3), the null rotation

R is defined as an operation that reverses xyz orientation. It can be a reflection through the xy-plane, the yz-plane, or the xz-plane, or (preferred) a reflection through the origin, which is the composition of reflecting first through the xy-plane, then the yz-plane, and then the xz-plane.

While SO(3) is a group, T is not. (It is only a coset.) For example, $1 \notin T$. Also, if t_1 and t_2 belong to T, their composition t_1 $t_2 \notin T$. Rather, t_1 $t_2 \in SO(3)$. This is because R is applied twice during t_1 t_2 . In fact, any expression with an even number of reflections belongs to SO(3), and it belongs to T if the number of reflections is odd.

SO(3) and T are disjoint, and O(3) = SO(3) \cup T.

If $t \in T$, there are elements s_1 , $s_2 \in SO(3)$ such that $t = R s_1$ and $t = s_2 R$.

We need the following theorem to answer Penrose's invariant question.

Theorem 1. Let s_1 , $s_2 \in SO(3)$. Then $\exists s_3 \in SO(3)$ such that $s_2 = s_3 s_1$.

Proof: $s_3 = s_2 s_3^{-1}$.

Theorem 2 (Answer to Penrose's question): SO(3) and T are the only proper subsets of O(3) that are rotation invariant.

Proof: SO(3) is the first rotation-invariant set because applying a rotation to any rotation in SO(3) yields another rotation, which belongs to SO(3). SO(3) has no proper subset A that is rotation-invariant because, by Theorem 1, given any $s_1 \in A$ and $s_3 \in SO(3)$ – one can find a rotation s_2 such that $s_1 s_2 = s_3$.

Similarly, T is rotation invariant because applying a rotation to any element of T remains in T because only 1 reflection has occurred. Like SO(3), T cannot have a proper subset that is rotation invariant because, like in Theorem 1, from any $t_1 \in T$ one can obtain any other $t_2 \in T$ by applying a rotation.

Theorem A: SO(3) is a normal subgroup of O(3)

Proof. First, SO(3) is clearly a group because it contains the identity; inverses of are just reverse rotations which are still rotations; and the product (composition) of 2 rotations is a rotation (closed). To see that it is normal, let $s \in SO(3)$. If $g \in SO(3)$, then $g^{-1} s g \in SO(3)$ because it is the composition of 3 rotations. If $g \in T$, then $g^{-1} s g \in SO(3)$ because it involves 2 reflections. So $g^{-1} SO(3) g = SO(3)$. Multiplying both side by g yields SO(3) g = g SO(3). So SO(3) is normal.

That proof didn't use Penrose's hint, so here is another proof. Since SO(3) is rotation invariant, $g SO(3) \subseteq SO(3)$. By Theorem 1, $g SO(3) \supseteq SO(3)$. Therefore g SO(3) = SO(3). Similarly SO(3) g = SO(3). g SO(3) = SO(3) g which proves SO(3) is normal.

We need the following Lemma a few times so it is worth documenting here.

Lemma: If g and h are non-trivial rotations (i.e., not the zero rotation) whose axes of rotation are perpendicular, and g is a 90° rotation, then $f = g^{-1} h g$ is a rotation whose rotation axis is perpendicular to the other two.

Proof: This is not difficult to visualize. WLOG g uses the z-axis to rotate the xaxis into the y-axis, and h rotates by some angle θ about the x-axis. Imagine first a 90° clockwise rotation about the z-axis. Then a counterclockwise θ rotation about the x-axis followed by a 90° counterclockwise rotation about the z-axis. The result is a clockwise θ rotation about the y-axis. (I provide a rigorous, equation-based geometric proof of this claim in my version 2 solution to this problem.)

It was shown in problem [12.17] that SO(3) is group isomorphic to the (solid) 3-ball \mathcal{R} of radius π in which antipodal points on the surface of \mathcal{R} are identified.

Definition: For $0 \le \theta \le \pi$ let S_{θ} be the sphere of radius θ in \mathcal{R} .

 \mathcal{R} consists of rotations of angle θ about all axes of rotation.

Theorem 3: If a point h of SO(3) with rotation angle θ belongs to a normal subgroup H of SO(3), then $S_{\theta} \subseteq H$.

Proof: Let $g \in SO(3)$. First, the following fact is hard to visualize, but $k = g^{-1} h g$ has the same angle of rotation θ as h, albeit about a possibly different axis of rotation. One might make a (weak) argument that based upon symmetry g and g^{-1} have the same rotation magnitude but opposite directions, so neither should dominate to make the rotation angle of k either larger or smaller than that of h. (See my version 2 solution to this problem for the equations that verify this.) Thus $\{k = g^{-1} h g : g \in SO(3)\} \subseteq S_{\theta}$. That is, using just the normality operation on h, we cannot generate all of SO(3). We can only generate points in S_{θ} .

Since k has rotation angle θ , we can write k as $k = \theta(a, b, c)$ where $a^2 + b^2 + c^2 = 1$. The point (a, b, c) identifies the axis of rotation. Thus to generate S_{θ} , it suffices to generate a set of rotations $\{k\}$ whose axes of rotation are associated each point of the unit sphere.

WLOG we can let $h = \theta$ (0, 0, 1). Consider the set { $g \in SO(3)$ } having 90° rotation angles. From the Lemma if h and g have perpendicular axes of rotation, then $k = g^{-1} h g$ has a rotation axis perpendicular to both h and g. At the other extreme, if g has the same axis of rotation as h, then k has the same axis of rotation as both h and g. Let g move along a great circle from $h = \frac{\pi}{2} \theta(0, 0, 1)$ to

 $f = \frac{\pi}{2}$ (1, 0, 0). The points (a, b, c) associated with $k = g^{-1} h g$ sweep out the great circle arc from (1, 0, 0) to (0, 0, 1).

As f moves around the circle of radius θ about the origin in the xy-plane, the points (a, b, c) associated with the great circle arcs sweep out the northern hemisphere of the unit sphere. Note that $h^{-1} = \theta(0, 0, -1) \in H$ since H is a group, and arcs from h^{-1} similarly sweep out the southern hemisphere. Thus every point on the unit sphere is associated with either $g^{-1}hg$ or $g^{-1}h^{-1}g$ for some $g \in SO(3)$, concluding the proof. (This proof is performed rigorously using equations with graphical illustrations in my ver 2 proof.)

Theorem 4: SO(3) has no proper normal subgroup.

Proof: Let H be a proper normal subgroup of SO(3). \exists 1 \neq $h \in$ H having some rotation angle θ . By Theorem 3, $S_{\theta} \subseteq H$.

We take products of elements in S_{θ} to expand H beyond S_{θ} . Let $f, g \in S_{\theta}$ and h = f g. The maximum possible angle for h is 2θ and the minimum is 0. The maximum is obtained when g = f and the minimum is obtained when $g = f^{-1}$. By letting g take a path from f to f^{-1} it is possible to generate a set of points h = f g in H having every possible angle from 0 to 2θ . By Theorem 3, $S_{\phi} \subseteq H$ for $0 \le \phi \le 2\theta$. Thus every point of \mathcal{R} in the closed disk of radius 2θ belongs to H. If $\theta \ge \pi$, then we are done. If not, starting from circle $S_{2\theta}$ we generate the closed disk of radius 4θ in H, then 8θ , ... Since \mathcal{R} is a ball of radius π , eventually we obtain that all of $\mathcal{R} = SO(3) \subseteq H$.

Theorem B: SO(3) and $\mathcal{I} = \{1, R(1)\}$ are the only proper normal subgroups of O(3).

Proof: Let $H \neq SO(3)$ and $H \neq \mathcal{I}$ be a nontrivial normal subgroup of O(3). We need to show that H = O(3).

By Theorem 4, $\exists t \in H \cap T$. Suppose for the moment that $t^2 \neq 1$. Then $t^2 \in SO(3) \cap H \Rightarrow SO(3) \subseteq H$ by Theorem 4. Also, $\exists s \in SO(3)$ such that t = s R. To see that $T \subseteq H$, let $t_1 \in T$. $\exists s_1 \in SO(3)$ such that $t_1 = s_1 R$. Let $s_2 = s_1 s^{-1} \in SO(3)$. Then $s_1 = s_2 s$. So, $t_1 = s_1 R = s_2 s R = s_2 t \in H$ since $s_2 \in SO(3) \subseteq H$. Thus $T \subseteq H$. Since $SO(3) \subseteq H$, H = O(3).

Unfortunately if t has a 180° rotation angle, then t^2 = 1 and this argument doesn't quite hold. Actually, everything will still be true except that we need a new argument that SO(3) \subset H. Once we prove this, we again get that $t_1 \in$ H and H = SO(3).

Let g be a 90° rotation about an axis perpendicular to the axis of s. From the Lemma we know that $g^{-1} s g$ has an axis of rotation perpendicular to that of s. Consider $t_2 = g^{-1} t g$. By normality, $t_2 \in H$. We can regard t as a rotation of the reflected sphere, and g as a 90° rotation of the reflected sphere about an axis perpendicular to t. So by the Lemma, since $g \ne 1$ and $t \ne R(1)$, then t_2 rotates the reflected sphere about an axis perpendicular to t. Let $s_3 = t t_2$. Because the reflection operator appears twice, $s_3 \in SO(3)$. Suppose $s_3 = 1$. That would mean $t_2 = t^{-1}$. But, inverses rotate about the same axis. Since the axes of t and t_2 are perpendicular, this is false. Therefore $s_3 \ne 1$. Because t is a group, t is a group, t is t inversed t in t inversed t in t inversed t is a group, t inversed t in t in t inversed t in t inversed t is a group, t in t inversed t