

2-2-2.함수의 극대, 극소와 그래프 천재(류희찬)

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2020-03-10

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다. ◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check /

[함수의 증가와 감소]

- •함수 f(x)가 어떤 구간에 속하는 임의의 두 실수 x_1 , x_2 에 대하여
- (1) $x_1 < x_2$ 일 때, $f(x_1) < f(x_2)$ 이면 f(x)는 그 구간에서 증가한다고 한다.
- (2) $x_1 < x_2$ 일 때, $f(x_1) > f(x_2)$ 이면 f(x)는 그 구간에서 감소한다고 한다.

[함수의 극대와 극소]

- •함수 f(x)에서 $x\!=\!a$ 를 포함하는 어떤 열린구간에 속하는 모든 x에 대하여
- (1) $f(x) \le f(a)$ 일 때, 함수 f(x)는 x = a에서 극대라 하며, f(a)를 극댓값이라 한다.
- (2) $f(x) \ge f(a)$ 일 때, 함수 f(x)는 x = a에서 극소라 하며, f(a)를 극솟값이라 한다.
- 이때 극댓값과 극솟값을 통틀어 극값이라 한다.

[함수의 그래프]

- •미분가능한 함수 f(x)의 그래프의 개형은 다음과 같은 순서로 그린다.
- ① f'(x) = 0인 x의 값을 구한다.
- ② ①에서 구한 x의 값의 좌우에서 f'(x)의 부호를 조사하여 증감표를 만들고, 극값을 구한다.
- ③ 함수 y=f(x)의 그래프와 x축 및 y축의 교점의 좌표를 구한다.
- ④ 함수 y = f(x)의 그래프의 개형을 그린다.

기본문제

[예제]

- **1.** 함수 $f(x) = x^2 2x + 4$ 가 반닫힌구간 $[a, \infty)$ 에서 증가할 때, 상수 a의 최솟값은?
 - $\bigcirc -3$
- (3) -1
- **4** 0

(5) 1

[문제]

- **2.** 함수 $f(x) = -x^2 + 3x$ 가 반닫힌구간 $(-\infty, a]$ 에서 증가할 때, 상수 a의 최댓값은?
 - 1
- ② $\frac{3}{2}$

3 2

 $4 \frac{5}{2}$

(5) ₃

3. 함수 $f(x) = x^3 - 3x + 1$ 이 닫힌구간 [a, a+2]에서 감소할 때, 상수 a의 값은?

- $\bigcirc -2$

③ 0

4) 1

⑤ 2

[문제]

[예제]

4. 함수 $f(x) = x^3 + 3x^2 - 2$ 가 감소하는 닫힌구간에 속하는 정수의 개수는?

- 1 0
- ② 1

3 2

④ 3

(5) 4

[문제]

5. 삼차함수 f(x)의 도함수 f'(x)의 그래프가 다음 그림과 같을 때, 함수 f(x)가 증가하는 구간은?

- ① [-3, 5]
- ② [-3, 6]
- (3)[-2,5]
- (4) [-2, 6]
- \bigcirc [-1, 5]

[문제

6. 닫힌구간 [a, e]에서 함수 y = f(x)의 그래프가 다음 그림과 같을 때, 극대가 되는 x 값의 개수를 α , 극소가 되는 x 값의 개수를 β 라 하자. $\alpha - \beta$ 의 값은?

1 0

2 1

3 2

(4) 3

⑤ 4

[예제]

- **7.** 함수 $f(x) = \frac{1}{3}x^3 x^2 4$ 의 극값을 모두 더하면?
 - (1) -10
- $\bigcirc -\frac{28}{3}$
- $3 \frac{26}{3}$
- (4) -8

[문제]

- **8.** 함수 $f(x) = x^4 8x^2 + 2$ 의 극댓값은?
 - ① 0
- ② 1

- 3 2
- (4) 3
- ⑤ 4

예제]

- **9.** 함수 $f(x) = x^3 + ax^2 + bx + 2$ 는 x = 1에서 극댓값을 갖고 x = 5에서 극솟값을 갖는다. 상수 a, b의 합 a + b의 값은?
 - ① 4
- ② 5
- 3 6
- (4) 7

⑤ 8

- [문제]
- **10.** 함수 $f(x) = x^3 3x^2 + ax + b$ 는 x = -1에서 극댓 값을 갖고 x = 3에서 극솟값 -24를 갖는다. 이때, a + b의 값은? (단, a, b는 상수이다.)
 - $\bigcirc -7$
- $\bigcirc -6$
- (3) 5
- \bigcirc -4
- (5) -3

- [문제]
- **11.** 사차함수 y = f(x)의 그래프의 개형이 다음과 같다. $f(x) = ax^4 + bx^3 + c$ 라 할 때, f(2)의 값은?

- ① 17
- ② 18
- 3 19
- **4** 20
- ⑤ 21

- [예제]
- **12.** 최고차항의 계수가 1인 삼차함수 y = f(x)의 그 래프의 개형이 다음과 같다. 이때, f(5)의 값은?

① 3

2 4

35

4 6

⑤ 7

평가문제

[스스로 확인하기]

13. 다음 중 (¬), (L) 안에 알맞은 것을 고르면?

- (1) 함수 f(x)가 어떤 구간에서 미분가능하고, 이 구간의 모든 x에서 f'(x) > 0이면 f(x)는 이 구간에서 하다.
- (2) 함수 f(x)가 x = a에서 미분가능하고 x = a에서 극 값을 가지면 $f'(a) = \square(0)$ 다.
- ① (기) : 증가, (L) : -1
- ② (기): 감소, (니): -1
- ③ (ㄱ) : 증가, (ㄴ) : 0
- ④ (기): 감소, (니): 0
- ⑤ (기) : 증가, (니) : 1

[스스로 확인하기]

14. 함수 $f(x)=3x^4+4x^3-6x^2-12x+1$ 의 극솟값은?

- $\bigcirc -10$
- $\bigcirc -8$
- 3 6
- (4) -4
- (5) 2

[스스로 확인하기]

- **15.** 함수 $f(x) = -x^3 + 3x^2 + ax + 2$ 가 닫힌구간 [-2, 4]에서 증가하기 위한 실수 a의 최솟값은?
 - ① 20
- ② 22
- 3 24
- (4) 26
- (5) 28

[스스로 확인하기]

- **16.** 함수 $f(x) = x^3 3x + a$ 의 극댓값과 극솟값의 합 이 6일 때, 상수 a의 값은?
 - ① 3
- 3 5
- **4**) 6
- (5) 7

- [스스로 확인하기]
- **17.** 함수 $f(x) = x^3 ax^2 + (a-1)x + 3$ 이

-1 < x < 0인 x의 값에서 극댓값을 갖고 x > 0인 x의 값에서 극솟값을 가질 때 실수 a의 값의 범위는?

- ① $-\frac{1}{3} < a < \frac{1}{2}$ ② $-\frac{1}{3} < a < 1$
- $3 \frac{2}{3} < a < \frac{1}{2}$ $4 \frac{2}{3} < a < 1$
- \bigcirc -1 < a < 1

[스스로 확인하기]

18. 다음은 어느 지역의 1년 동안 x월에 따른 대기 중의 미세먼지의 농도 y를 나타낸 그래프이다.

위의 그래프가 $y = x^3 + ax^2 + bx + c$ 의 일부이고, x = 3에 서 극대, x = 7에서 극소라 하자. 3월과 1월의 대기 중의 미세먼지 농도 차는?

- 1) 28
- ② 32
- ③ 36
- **4**0
- ⑤ 44

[스스로 확인하기]

19. 다음은 함수 $f(x) = x^3 + 3x^2 + 1$ 의 그래프의 개형 을 그리는 과정이다. 다음 중 (ㄱ), (ㄴ) 안에 알맞은 것을 고르면?

$$f'(x) = 3x^2 + 6x = 3x(x+2)$$
이므로

$$f'(x) = 0$$
에서 $x = -2$ 또는 $x = 0$

함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	•••	-2	•••	0	•••
f'(x)	+	0	_	0	+
f(x)	1	[(7)]	À	(ㄴ)	1

(중략)

- ① (\neg) : 4, (\bot) : -1
- ② (\neg) : 4, (\bot) : 1
- ③ (\neg) : 5, (\bot) : -1
- (4)(7):5,(L):0
- (5) (¬) : 5, (∟) : 1

[스스로 마무리하기]

20. 삼차함수 f(x)가 다음 조건을 모두 만족시킬 때, f(3)의 값은?

(7)
$$\lim_{x \to 1} \frac{f(x)}{x-1} = 0$$

(나)
$$x = 2$$
에서 극솟값 -2 을 갖는다.

1) 4

- ② 8
- ③ 12
- 4) 16
- **⑤** 20

[스스로 마무리하기]

21. 삼차함수 y = f(x)의 도함수와 이차함수 y = q(x)의 도함수의 그래프가 다음 그림과 같다.

h(x) = f(x) - g(x)라 하고 $f(\alpha) = g(\alpha)$ 일 때, <보기> 에서 옳은 것만을 있는 대로 고른 것은?

<보기>

- ㄱ. $\alpha < x < \beta$ 에서 h(x)는 감소한다.
- L. 함수 h(x)는 $x = \gamma$ 에서 극솟값을 갖는다.
- Γ . 방정식 h(x) = 0은 서로 다른 세 실근을 갖는다.
- ¬
- ② L
- ③ ¬, ∟
- ④ ¬. ⊏
- ⑤ ┐, ∟, ⊏

[스스로 마무리하기]

- **22.** 함수 $f(x) = x^3 + ax^2 + bx + c$ 는 x = -1에서 극댓 값 α , x=1에서 극솟값 β 를 갖는다. $\alpha+2\beta=0$ 일 때, $\alpha + \beta$ 의 값은? (단, a, b, c는 상수이다.)
 - ① $\frac{1}{3}$

③ 1

- $4\frac{4}{3}$

[스스로 마무리하기]

23. 최고차항의 계수가 1인 삼차함수 f(x)와 그 도 함수 f'(x)가 다음 조건을 모두 만족시킬 때, 함수 f(x)의 극댓값은?

- (가) 함수 f(x)는 x=1에서 극댓값을 갖는다.
- (나) 모든 실수 x에서 f'(3-x) = f'(3+x)
- (다) f(0) = 0
- ① 3

- 2 5
- ③ 7
- **4** 9
- ⑤ 11

유사문제

24. 닫힌구간 [-2,4] 에서 함수 $f(x)=x^3-3x^2+4$ 의 최댓값은?

- ① 12
- ② 14
- ③ 16
- **4**) 18
- **⑤** 20

25. 두 함수
$$f(x) = x^4 + 3x^3 - 2x^2 - 9x$$
,

 $q(x) = 7x^3 - 2x^2 - 25x + a$ 가 모든 실수 x 에 대하여 부등식 $f(x) \ge g(x)$ 를 만족할 때, 상수 a의 최댓값 은?

- \bigcirc -11
- $\bigcirc -12$
- 3 13
- \bigcirc -14
- (5) 15

정답 및 해설

1) [정답] ⑤

[해설] f'(x) = 2x - 2

 $2x-2 \ge 0$ 에서 $x \ge 1$

∴ a의 최솟값은 1

2) [정답] ②

[해설] f'(x) = -2x + 3

 $-2x+3 \ge 0$ 에서

 $x \leq \frac{3}{2}$

 $\therefore a$ 의 최댓값은 $\frac{3}{2}$

3) [정답] ②

[해설] f'(x)를 구하면

 $f'(x) = 3x^2 - 3 = 3(x+1)(x-1)$

f'(x) = 0에서

x = -1 또는 x = 1

f'(x)의 부호를 조사하여 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x		-1	•••	1	
f'(x)	+	0		0	+
f(x)	1	3	Ŋ	-1	1

따라서 [-1, 1]에서 함수 f(x)가 감소하므로 a=-1

4) [정답] ④

[해설] $f'(x) = 3x^2 + 6x$

f'(x) < 0을 만족하는 x의 범위는

-2 < x < 0

따라서 f(x)는 닫힌구간 [-2, 0]에서 감소한다.

이 구간에 속하는 정수의 개수는 3

5) [정답] ⑤

[해설] 그래프의 축이 x = 2이므로

 $f'(x) = a(x-2)^2 + b \ (a < 0)$

f'(5)=0이므로

9a + b = 0

b = -9a

 $f'(x) = a(x-2)^2 - 9a = a(x^2 - 4x - 5) = a(x-5)(x+1)$

 $f'(x) \ge 0$ 인 x의 범위는

 $-1 \le x \le 5$

따라서 증가하는 구간은 [-1,5]이다.

6) [정답] ②

[해설] x = b, d에서 y = f(x)는 극댓값을 갖고, x = c에서 y = f(x)는 극솟값을 갖는다.

 $\therefore \alpha - \beta = 2 - 1 = 1$

7) [정답] ②

[해설] $f'(x)=x^2-2x=x(x-2)$

f'(x) = 0에서 x = 0 또는 x = 2

함수 f(x)의 증가와 감소를 표로 나타내면 다음 과 같다.

x	•••	0	•••	2	
f'(x)	+	0	_	0	+
f(x)	1	-4	7	$-\frac{16}{3}$	1

따라서 f(x)는

x=0에서 극대이고 극댓값은 f(0)=-4,

x=2에서 극소이고 극솟값은 $f(2)=-\frac{16}{3}$ 이다.

따라서 극값의 합은 $-\frac{28}{3}$

8) [정답] ③

[해설] $f'(x) = 4x^3 - 16x = 4x(x-2)(x+2)$

f'(x)=0에서 x=-2또는 x=0 또는 x=2 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	•••	-2	•••	0	•••	2	•••
f'(x)	_	0	+	0	_	0	+
f(x)	7		7		7		7

따라서 f(x)는 x = 0에서 극댓값을 갖는다. f(0) = 2

9) [정답] ③

[해설] f'(x)를 구하면 $f'(x) = 3x^2 + 2ax + b$

함수 f(x)가 x=1, x=5에서 극값을 가지므로

f'(1) = 3 + 2a + b = 0 ...

 $f'(5) = 75 + 10a + b = 0 \cdots \bigcirc$

 \bigcirc , \bigcirc 을 연립하여 풀면 a=-9, b=15

 $\therefore a+b=6$

10) [정답] ②

[해설] $f'(x) = 3x^2 - 6x + a$

의 두 근이 x = -1, 3이므로 근과 계수와의 관계에 의해

 $\frac{a}{3} = -3$

a = -9

 $f(x) = x^3 - 3x^2 - 9x + b$

f(3)=-24이므로

 $-24 = 3^3 - 3 \times 3^2 - 27 + b$

b = 3

 $\therefore a+b=-6$

11) [정답] ①

[해설] f(0)=1이므로 c=1

f(1)=f'(1)=0이므로

4a + 3b = 0

a+b+1=0

a = 3, b = -4

따라서
$$f(x)=3x^4-4x^3+1$$

 $f(2)=48-32+1=17$

12) [정답] ⑤

[해설] 그래프의 y절편에 의해

$$f(x) = x^3 + ax^2 + bx + 2$$

$$f'(x) = 3x^2 + 2ax + b$$

그래프에서 x = -1,3에서 극값을 가지므로

$$f'(x) = 3(x-3)(x+1)$$

$$f'(x) = 3x^2 - 6x - 9$$

$$a = -3, b = -9$$

$$f(x) = x^3 - 3x^2 - 9x + 2$$

$$\therefore f(5) = 7$$

13) [정답] ③

[해설] (1) 함수 f(x)가 어떤 구간에서 미분가능하고, 이 구간의 모든 x에서 f'(x)>0이면 f(x)는 이 구간에서 증가한다.

(2) 함수 f(x)가 x=a에서 미분가능하고 x=a에서 극값을 가지면 f'(a)=0(이)다.

14) [정답] ①

[해설] $f'(x) = 12x^3 + 12x^2 - 12x - 12$

$$=12(x-1)(x+1)^2$$

$$f'(x) = 0$$
에서 $x = -1$ 또는 $x = 1$

함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	•••	-1		1	•••
f'(x)	-	0	_	0	+
f(x)	7		7	극소	1

따라서 f(x)는 x = 1에서 극소이며, 극솟값은 f(1) = -10이다.

15) [정답] ③

[해설]
$$f'(x) = -3x^2 + 6x + a$$

$$=-3(x-1)^2+a+3$$

함수 f(x)가 $-2 \le x \le 4$ 에서 증가하려면 $-2 \le x \le 4$ 에서 $f'(x) \ge 0$ 이어야 하므로 다음 그림에서

$$f'(-2) = f'(4) = -24 + a \ge 0$$

 $\therefore a \ge 24$

따라서 실수 a의 최솟값은 24이다.

16) [정답] ①

[해설]
$$f'(x)=3x^2-3=3(x+1)(x-1)$$

 $x=-1,1$ 에서 극댓값과 극솟값을 갖는다.
 $f(-1)=2+a, \ f(1)=a-2$
 $f(-1)+f(1)=2a=6$
 $\therefore a=3$

17) [정답] ④

[해설]
$$f'(x) = 3x^2 - 2ax + a - 1$$

방정식 f'(x)=0의 두 실근을 $\alpha,\ \beta(\alpha<\beta)$ 라 하면

 $-1 < \alpha < 0, \beta > 0$ 이어야 하므로

y = f'(x)의 그래프는 다음과 같아야한다.

따라서 f'(-1)>0, f'(0)<0 이 성립해야 한다.

$$f'(-1) = 3 + 2a + a - 1 = 3a + 2 > 0 \cdots \bigcirc$$

$$f'(0) = a - 1 < 0 \cdots \bigcirc$$

$$\bigcirc$$
, 일에서 $-\frac{2}{3} < a < 1$

18) [정답] ②

[해설] 주어진 삼차함수를 $f(x) = x^3 + ax^2 + bx + c$ (a, b, c는 상수)라 하면

$$f'(x) = 3x^2 + 2ax + b$$

주어진 그래프가 x=3에서 극대, x=7에서 극소 이므로

$$f'(3) = 0$$
에서 $27 + 6a + b = 0$ …

$$f'(7) = 0$$
에서 $147 + 14a + b = 0$ …①

⊙, ⓒ을 연립하여 풀면

$$a = -15, b = 63$$

따라서 $f(x) = x^3 - 15x^2 + 63x + c$ 이므로

구하는 1월과 3월의 차는

f(3) - f(1) = (27 - 135 + 189 + c) - (1 - 15 + 63 + c)

=(81+c)-(49+c)=32

19) [정답] ⑤

[해설] 함수 $f(x)=x^3+3x^2+1$ 에서

$$f'(x) = 3x^2 + 6x = 3x(x+2)$$
이므로

$$f'(x) = 0$$
에서 $x = -2$ 또는 $x = 0$

함수 f(x)의 증가와 감소를 표로 나타내면 다음 과 같다.

x	•••	-2	•••	0	•••
f'(x)	+	0	_	0	+
f(x)	7	5	7	1	1

20) [정답] ②

[해설] 조건 (가)에 의해, f(1)=0, f'(1)=0

따라서 f(x)는 $(x-1)^2$ 을 인수로 갖는다.

조건 (나)에 의해, f(2)=-2, f'(2)=0

 $f(x) = (x-1)^2(ax+b)$ 라 할 때.

$$f'(x) = 2(x-1)(ax+b) + a(x-1)^2$$

$$f(2) = 2a + b = -2$$

$$f'(2) = 5a + 2b = 0$$

$$a = 4, b = -10$$

$$f(x) = (x-1)^2(4x-10)$$

$$f(3) = 4 \times 2 = 8$$

21) [정답] ③

[해설] h(x) = f(x) - q(x)에서 h'(x) = f'(x) - q'(x)이때 y = f'(x)와 y = g'(x)의 그래프가 $x = \alpha$, $x = \gamma$ 에서 만나므로 h'(x) = 0에서

 $x = \alpha$ $\mathfrak{L} = \gamma$

함수 h(x)의 증가와 감소를 표로 나타내면 다음 과 같다.

x		α	•••	γ	
h'(x)	+	0	_	0	+
h(x)	7	극대	7	극소	7

ㄱ. $\alpha < x < \beta$ 일 때, h'(x) < 0이므로 h(x)는 감 소한다. (참)

 $L. h'(\gamma) = 0$ 이고 $x = \gamma$ 의 좌우에서 h'(x)의 부 호가 음에서 양으로 바뀌므로 h(x)는 $x = \gamma$ 에서 극솟값을 갖는다. (참)

 \sqsubset . $f(\alpha) = g(\alpha)$ 이므로 $h(\alpha) = 0$, $h'(\alpha) = 0$ y = h(x)의 그래프의 개형은 다음과 같다.

따라서 y=h(x)의 그래프는 x축과 서로 다른 두 점에서 만나므로 방정식 h(x)=0은 서로 다른 두 실근을 갖는다. (거짓) 이상에서 옳은 것은 ㄱ, ㄴ이다.

22) [정답] ④

[해설] $f'(x) = 3x^2 + 2ax + b$ 이고

f(x)가 x=-1, x=1에서 극값을 가지므로

$$f'(-1) = 3 - 2a + b = 0$$
 ... \bigcirc

$$f'(1) = 3 + 2a + b = 0 \cdots \bigcirc$$

 \bigcirc , \bigcirc 을 연립하여 풀면 a=0, b=-3

$$rac{4}{7} f(x) = x^3 - 3x + c$$

$$\alpha = 2 + c$$
, $\beta = c - 2$

$$\alpha + 2\beta = 3c - 2 = 0$$

$$c = \frac{2}{2}$$

$$\therefore \alpha + \beta = 2c = \frac{4}{3}$$

23) [정답] ③

[해설] 함수 f(x)는 x=1에서 극댓값을 가지므로

$$f'(1) = 0$$

모든 실수 x에서 f'(3-x) = f'(3+x)이므로

이 식의 양변에 x=2를 대입하면

$$f'(1) = f'(5)$$

이때 f'(1) = 0이므로 f'(5) = 0

따라서 함수 f(x)는 x=5에서 극솟값을 갖는다.

 $f(x) = x^3 + ax^2 + bx + c$ (a, b, c는 상수)라 하면

조건 (다)에 의해 c=0

$$f'(x) = 3x^2 + 2ax + b$$

이때 f'(x) = 0이 x = 1, x = 5를 근으로 가지므

로
$$f'(x) = 3(x-1)(x-5)$$

으로 놓을 수 있다. 즉

$$f'(x) = 3x^2 + 2ax + b = 3x^2 - 18x + 15$$

이므로

a = -9, b = 15

따라서 $f(x) = x^3 - 9x^2 + 15x$ 이므로 함수 f(x)의 극댓값은

f(1)=1-9+15=7

24) [정답] ⑤

[해설] $f'(x) = 3x^2 - 6x = 3x(x-2)$

f'(x) = 0에서 x = 0 또는 x = 2

닫힌구간 [-2,4]에서

f(-2) = -16, f(0) = 4, f(2) = 0, f(4) = 20로 최댓값은 20이다.

25) [정답] ①

[해설] 부등식 $f(x) \ge g(x)$ 에서

$$x^4 + 3x^3 - 2x^2 - 9x \ge 7x^3 - 2x^2 - 25x + a$$

$$\therefore x^4 - 4x^3 + 16x \ge a$$

 $h(x) = x^4 - 4x^3 + 16x$ 라 하면

$$h'(x) = 4x^3 - 12x^2 + 16 = 4(x+1)(x-2)^2$$

h'(x) = 0에서 x = -1 또는 x = 2

즉 함수 h(x)는 x=-1에서 극소이면서 최소이다.

따라서 부등식이 성립하려면

 $h(-1) = -11 \ge a$

이어야 하므로 상수 a의 최댓값은 -11이다.