Practice prob	ns	
Wednesday, July 19, 2023	:25 PM	
	1. Today is July 18. The CSE422 midterm exam is just seven days away.	
	nfortunately, you have been procrastinating this entire semester and you still have	
	ab assignment (L) and a written assignment (W) left. You also have not yet come	
	with an idea for the project (P). Each of these things takes one day to do. In	
	dition, you still need two days to study for the midterm (S1 and S2).	
	ou decide to formulate the problem of managing all your tasks as a Constraint	
	tisfaction Problem. The details are as follows.	
	Variables: L, W, P, S1, S2	
	Domains: Each variable has the domain {1, 2, 3, 4, 5, 6, 7} where the	
	simbers denote days of the week. For example, setting $W = 2$ means that but are deciding to do the written assignment on day 2.	
	ou also have the following constraints.	
	No two different tasks can be done on the same day.	
	All the assignment and project-related tasks (L, W, P) must be completed	
	fore you start studying for the midterm (S1).	
	The lab assignment (L) and the project idea submission (P) are both due in 4	
	ys. So, they have to be completed in days 1, 2, 3, or 4.	
(4	The first day of studying (S1) must come before the second day of studying	
	. Also, you like to take rests. So, no two study days in a row.	
(5	The written assignment (W) cannot be done on an odd-numbered day.	
N		
	v answer the following questions: ou first decide to enforce the unary constraints (also called enforcing node	
	sistency). List the values that remain in the domain of each variable. You should	
	t constraint (3) as a pair of unary constraints.	
	ontinuing from (a), you now decide to enforce arc consistency for each arc. It turns	
	all of the arcs except S1 \rightarrow L, S1 \rightarrow W, S1 \rightarrow P, S1 \rightarrow S2 and S2 \rightarrow S1 are	
	ady consistent. Enforce consistency of the arc S1 \rightarrow S2 and list the values that ain in the domains of the variables S1 and S2.	
re	am in the domains of the variables \$1 and \$2.	
c.	ontinuing from (b), determine the arcs that used to be consistent but need to be	
	arust	
d.	how that at least one of the arcs vou listed in (c) is not consistent anymore $ \begin{array}{c} $	
	$_{\odot}$ $_{\backslash}WP \leq^{5/22}$	
	(,, 1, 4)	
	(1) Lip = 2 (12)" ')	

26,77	
b) Suppose, the following graph represents a map coloring CSP problem. You are trying to color the following graph with 3 colors: Red, Green and Blue such that no two adjacent node has the same color. Node A is already colored as Red (R) and node G is colored as Green (G). Assess which node will be visited in the following map coloring example if i) Degree heuristic is used. Explain your answer.ii) According to Least constraining value heuristic, which color will be chosen for node B in the given graph? Explain your answer.	
Colors: Red, Green, Blue B C D E	
PONT (I	

5	Consider the constraint graph of a problem above, where each region has to be filled up with either 1, 2, or 3. No two adjacent regions can have the same digit. a. Formulate the variable, domain, constraint, and the goal of the problem
	b. Based on the variable ordering procedure, mention the order of variables to be assigned with digit. Provide adequate explanation for your ordering. c. Consider that node B already has digit 1 and all the other nodes are empty. If you are to provide digit to node D next, which digit should you pick? Identify your choice based on value selection procedure. d. If node B has digit 1, node D has digit 2, and rest of the nodes are unassigned, does the constraint graph remain arc consistent? Why or why not? Explain.

	B (F) (F) (H) (F) (F) (F) (F) (F) (F) (F) (F) (F) (F
	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b)	S-Queen problem. Consider two chromosomes. X1: 12256748 X2: 32828991. Your job is to maximize the difference of sum of numbers in even positions and sum of numbers in odd positions. Now make a fitness function that is suitable for your job. Evaluate the chromosomes X1 and X2 in light of the fitness function that you just designed. Apply crossover between X1 and X2 at mid point and make two chromosomes X3 and X4 and evaluate X3 and X4 as well.
	Function - Sum (even pos nums) - sum (odal pos nums)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

S 10 D 1 C B			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D B 3+15=18		
M(100e) 15 12 5 2 16 15 5 16 1	5+12-17 lot8-28 31		
	(F) D D = 27		
ţ	2+9=16 742=9		
	9+9-18 8+18-26		
1413-17	8+18=26		
	<i>3</i> 17		
17+1°18	5-A	∀ '	
(H) (1)			
	7		

Fall 22 Thursday, July 20, 2023 12:03 AM											
	b.	If you run minima the values at node Define the values here? Analyze the game A to C is pruned it nodes A, B, and C	s A, B, and C? Sho of α and β at nodes tree and sort the l if you ran alpha-be	w your entir A, B, and C i eaf nodes in	e process. f you ran alp a way so tha	oha-beta pruning	3				
		2 5					2	A B 5	DEX 10	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1

Thursday, July	20, 2023	12:03 AM												
2 000	P	dues/defin	a tha fann a	uitauia that				halana.						
2. CO2	b) Analy	vze the con	e the four coplexity, co	mpleteness	and opti	mality for	the follow	imques. ing search						
	techniqu	es. Write th	he space an	d time com	plexity, v	vhether the	e search te	chnique is						
	complete	e or not, an	d whether i	t is optima	l or not. C	ive reason	ning for yo	ur answer.						
	→ i) Depth-Fir	rst Search Deepening	Denth-Firs	t Search									
	c) Intro	duce a scer	Deepening nario where	breadth-fi	rst search	may be su	boptimal.	كر						
	1 Strain					min 53	(3% a 111 m	(
4. CO	(A) Ana	alyze the di	rawbacks of Select one s	f Hill Clim	bing Sear	ch along w	ith the po	ssible						
		ons. Now, S stify the rea		olution wh	ich can gi	arantee to	find the g	lobal max	ima					
			ason. greedy appi	roaches of	Greedy B	est First Se	earch and	Hill Climb	ing					
	Search				•				Ü					
3. CO3		(A											
				•	Heuristic	cs								
	~	4	3	2	A 9									
	(B)) (c)	(D)	В 5	;								
	1	4 4	1/6	6/	C 4									
		E	F		D 6									
		5	4 2	8	F 2									
		/			G 0) ii								
		į	(G)											
	a) Pred	dict whether	er A* searcl	h algorithm	will be a	ble to prov	vide an op	timal path						
	from th	ne start nod	le A to the g	goal node C	for the a	bove grap	h. Why or	why not?						
			as the star given graph					* search						
	aigoriti	in ior the (giveri grapn	i. Make Sul	e to snow	each step	J.							

