

Matching Logic in Coq Traian Florin Şerbănuță

2023-11-09, Logic Seminar, FMI@UniBuc

Overview of the talk

- (yet another) Introduction to matching logic
- Efforts on machine-formalizing matching logic
- ▶ The matching logic in Lean project
- My matching logic in Coq exercise
- A shallow embedding of ML in Coq
 - as a semantic theory on sets

What is (applicative) matching logic

Motivation

- Introduced to help with deductive verification of program executions in the $\mathbb K$ framework
 - for reasoning about the structure (e.g., memory, call stack, ...)
- Gradually refined into a general-purpose logic
 - ightharpoonup meant to serve as a mathematical basis for the entire $\mathbb K$ framework

Features

- Formulæ, named patterns, are interpreted as sets
 - allows mixing structure and logical constraints
- Supports fixpoints
 - allows to define and reason about reachability / program executions
 - allows defining inductive datatypes

Matching logic syntax

$$\varphi ::= \mathbf{X} \mid \mathbf{X} \mid \varphi \longrightarrow \varphi' \mid \exists \mathbf{X}. \varphi \mid \mu \mathbf{X}. \varphi \mid \sigma \mid \varphi \cdot \varphi' \mid$$

```
Structural element variables (x); constant symbols (\sigma); application (\varphi \cdot \varphi')
Logical set variables (X); logical implication (\varphi \longrightarrow \varphi'); existential quantification (\exists x.\varphi)
Fixpoints least fixpoint (\mu X.\varphi)
```

Derived connectives

- ▶ false ($\bot := \mu X.X$); negation ($\neg \phi := \phi \longrightarrow \bot$); true ($\top := \neg \bot$)
- ▶ disjunction ($\phi \lor \phi' := \neg \phi \longrightarrow \phi'$); conjunction ($\phi \land \phi' := \neg (\neg \phi \lor \neg \phi')$)
- ▶ universal quantification ($\forall x.\phi := \neg \exists x. \neg \phi$)

Structures and Valuations

- A structure A consists of a carrier set A and
 - ▶ an interpretation $\sigma^A \subseteq A$ for any constant σ
 - ▶ an interpretation of the application as a function $_*$: $A \times A \rightarrow 2^A$
- ightharpoonup A *valuation* (of variables) into structure $\mathcal A$ consists of
 - an interpretation of element variables as elements of A
 - an interpretation of set variables as subsets of A
- ightharpoonup A valuation *e* into a structure \mathcal{A} extends to a valuation of patterns
 - $e^+(x) = \{e(x)\}; e^+(X) = e(X); e^+(\sigma) = \sigma^A$
 - $e^+(\phi \longrightarrow \phi') = A \setminus (e^+(\phi) \setminus e^+(\phi'));$
 - $e^+(\exists x.\phi) = \bigcup_{a \in A} (e_{x \mapsto a})^+(\phi)$ (collecting all witnesses)
 - $e^+(\mu X.\phi) = \bigcap \{B \subseteq A \mid (e_{X \mapsto B})^+(\phi) \subseteq B\}$ (intersection of all pre-fixpoints)
 - $e^+(\phi \cdot \phi') = e^+(\phi) \star e^+(\phi') = \bigcup_{a \in e^+(\phi), b \in e^+(\phi')} a \star b$

Valuation of derived connectives

- $ightharpoonup e^+(\bot) = \emptyset$ and $e^+(\top) = A$
- $e^+(\neg\phi)=(e^+(\phi))^{\complement}$
- $ightharpoonup e^+(\phi \lor \phi') = e^+(\phi) \cup e^+(\phi')$
- $ightharpoonup e^+(\phi \wedge \phi') = e^+(\phi) \cap e^+(\phi')$
- $e^+(\forall x.\phi) = \bigcap_{a \in A} (e_{x \mapsto a})^+(\phi)$ (conjunction over all "instances")

Satisfaction

- ▶ valuation satisfaction: $A \models \phi[e]$ if $e^+(\phi) = A$
- ▶ model satisfaction: $A \models \phi$ if $A \models \phi[e]$ for every valuation e
- ▶ validity: $\models \phi$ if $\mathcal{A} \models \phi$ for every structure \mathcal{A}
- ▶ global semantic consequence: $\phi \models_g \phi'$ if for every \mathcal{A} , $\mathcal{A} \models \phi$ implies $\mathcal{A} \models \phi'$
- local semantic consequence: $\phi \models_l \phi'$ if for every \mathcal{A} and e, $\mathcal{A} \models \phi[e]$ implies $\mathcal{A} \models \phi'[e]$
- ▶ strong semantic consequence: $\phi \models_s \phi'$ if for every \mathcal{A} and e, $e^+(\phi) \subseteq e^+(\phi')$.
- ▶ globally/locally/strongly logically equivalent: $\phi \equiv_* \phi'$ if $\phi \models_* \phi'$ and $\phi' \models_* \phi$, where * is g, I, or s

Satisfaction for sets of patterns

- ▶ valuation satisfaction for sets of patterns: $A \models \Gamma[e]$ if $A \models \phi[e]$ for every $\phi \in \Gamma$
- ▶ model satisfaction: $A \models \Gamma$ if $A \models \Gamma[e]$ for every valuation e
- ▶ validity: $\models \Gamma$ if $A \models \Gamma$ for every structure A
- ▶ global semantic consequence: $\Gamma \models_g \Delta$ if for every A, $A \models \Gamma$ implies $A \models \Delta$
- ▶ local semantic consequence: $\Gamma \models_{l} \Delta$ if for every \mathcal{A} and e, $\mathcal{A} \models \Gamma[e]$ implies $\mathcal{A} \models \Delta[e]$
- ▶ strong semantic consequence: $\Gamma \models_s \Delta$ if for every \mathcal{A} and e, $\bigcap_{\gamma \in \Gamma} e^+(\gamma) \subseteq \bigcap_{\delta \in \Delta} e^+(\delta)$
- ightharpoonup $\Gamma \models_* \phi$ if $\Gamma \models_* \{\phi\}$.
- ightharpoonup |= s is stronger than |= j which is stronger than |= g

Free Variables, Substitution, Positive and Negative Occurences

- Free variables ($FV(\phi)$) and substitution ($Subf_{\chi}^{x}\phi$) are defined as usual, noting that \exists and μ bind their respective variables
- ▶ a free occurrence of X in ϕ is *positive/negative* if it occurs in the left operand of an even/odd number of implication operators.
- An applicative context C is a pattern containing a unique occurrence of a special set-variable \square with the property that on the path from \square to the top of the pattern there are only application operators.
 - ▶ $C[\phi]$ denotes the substitution of \Box by ϕ in C.

Matching logic proof system (axioms)

```
(TAUTOLOGY)
                                                \varphi if \varphi is a tautology
(∃-Quantifier)
                                               Subf_{n}^{x}\varphi \to \exists x.\varphi if x is free for y in \varphi
                                               \varphi \cdot \bot \to \bot \bot \cdot \varphi \to \bot
(Propagation | )
(Propagation<sub>y</sub>)
                                               (\varphi \lor \psi) \cdot \chi \to \varphi \cdot \chi \lor \psi \cdot \chi \qquad \chi \cdot (\varphi \lor \psi) \to \chi \cdot \varphi \lor \chi \cdot \psi
(Propagation<sub>∃</sub>)
                                               (\exists x.\varphi)\cdot\psi\to\exists x.\varphi\cdot\psi, \qquad \psi\cdot(\exists x.\varphi)\to\exists x.\psi\cdot\varphi
                                                if x \notin FV(\psi)
                                               Subf_{\mu X,\varphi}^{X}\varphi \to \mu X.\varphi if \varphi is positive in X
(Pre-Fixpoint)
                                                                                        and X is free for \mu X.\varphi in \varphi
(EXISTENCE)
                                               \exists x.x.
(SINGLETON VARIABLE) \neg (C_1[x \land \varphi] \land C_2[x \land \neg \varphi]).
```

Matching logic proof system (deduction rules)

$$\frac{\varphi \quad \varphi \to \psi}{\psi}$$

$$(\exists \text{-Quantifier rule}) \qquad \frac{\varphi \to \psi}{\exists x. \varphi \to \psi} \quad \text{if } x \not\in FV(\psi)$$

$$(\text{FRAMING}) \qquad \frac{\varphi \to \psi}{\varphi \cdot \chi \to \psi \cdot \chi} \qquad \frac{\varphi \to \psi}{\chi \cdot \varphi \to \chi \cdot \psi}$$

$$(\text{SET Variable Substitution}) \qquad \frac{\varphi}{Subf_{\psi}^{X}\varphi} \quad \text{if } X \text{ is free for } \psi \text{ in } \varphi$$

$$(\text{Knaster-Tarski}) \qquad \frac{Subf_{\psi}^{X}\varphi \to \psi}{\mu X \cdot \varphi \to \psi} \quad \text{if } X \text{ is free for } \psi \text{ in } \varphi$$

Soundness

- Global Soundness Let \vdash be the deduction induced by the proof system above. Then $\Gamma \vdash \phi$ implies $\Gamma \models_g \phi$.
- Local Soundness Let \vdash_I be the deduction induced by the proof system above from which (\exists -QUANTIFIER RULE) and (SET VARIABLE SUBSTITUTION) were removed. Then $\Gamma \vdash_I \phi$ implies $\Gamma \models_I \phi$.
- Strong Soundness Let \vdash_s be the deduction induced by the proof system for \vdash_l from which (FRAMING) and (KNASTER-TARSKI) were *additionally* removed. Then $\Gamma \vdash_s \phi$ implies $\Gamma \models_s \phi$.

Computer-based formalizations of matching logic

- University of Illinois
 - just syntax and deduction (in Metamath / Maude)
 - interactive theorem prover for ML + propositional tautology verifier
- Eötvös Loránd University, Hungary
 - syntax, semantics, deduction, soundness (using Coq)
 - an interactive theorem prover for ML (a proof mode, also in Coq)
- Institute of Logic and Data Science, Bucharest
 - syntax, semantics, deduction, soundness (using Lean)
 - export ML proofs to Metamath

Matching Logic in Lean project

- Institute of Logic and Data Science, Bucharest
- Phase I (completed)
 - a detailed mathematical exposition of (applicative) matching logic
 - syntax, semantics, deduction, soundness formalized using Lean
 - export ML proofs from Lean to Metamath
- Phase II
 - build first-order matching logit on top of applicative matching logic
 - import a K programming language specification
 - certify a program execution

My matching logic in Coq exercise

http://github.com/traiansf/aml-in-coq

- Follow the mathematical exposition of (applicative) matching logic as close as possible
- went through it page by page and added definitions and lemmas to Coq
 - even specified and proved unique readability
 - even specified and proved the set theory appendix https://github.com/traiansf/sets-in-coq

Credits and Acknowledgements

- Grigore Roşu
 - for matching logic itself
- Laurentiu Leustean
 - for the lecture notes on matching logic used here
- Ioana Leustean & Natalia Ozunu
 - for making me see matching logic as a modal logic
- My team at Runtime Verification, Inc.
 - for providing suggestions on Coq technical issues

