Royaume du Maroc Ministère de l'Éducation nationale, du Préscolaire et des Sports

année scolaire 2021-2022 Professeur : $Zakaria\ Haouzan$

Établissement : Lycée SKHOR qualifiant

Devoir Surveillé N°1 Filière 1Bac Sciences Mathématiques Durée 2h00

_Chimie 7pts/42min ______

Partie 1 :Les comprimés effervescents de Vitamine B5 .(3.5pts)

Les comprimés effervescents de Vitamine B5, contiennent acide pantothénique $C_9H_{17}NO_5$ et le panto thénate de sodium $NaC_9H_{16}NO_5$ est le sel de sodium de la vitamine B5 , ce dernier est employé comme

additif alimentaire.
1. Écrire l'équation de dissolution de pantothénate de sodium dans l'eau
2. Identifier le couple acide / base mettant en jeu l'acide pantothénique et écrire la demi-équation acido-basique correspondante(1pt)
3. On fait réagir une masse m = 3,00 g d'acide pantothénique avec 150 mL d'une solution d'hydroxyde de sodium (Na^+, HO^-) de concentration $C=2,50.10^{-1}mol.L^{-1}$.
(a) Identifier les couples acide / base mis en jeu, puis écrire l'équation de la réaction envisagée.(1pt)
(b) Établir un tableau d'avancement et déterminer l'avancement maximal de la réaction. Quel est le réactif limitant ?
Partie 2 : L'eau de javel
L'eau de javel est une solution aqueuse d'hypochlorite de sodium de formule $(Na_{(aq)}^+ + ClO_{(aq)}^-)$. La formule chimique d'une solution aqueuse d'acide chlorhydrique (H_3O^+, Cl^-)
1. Écrire les demi-équations électroniques des deux couples suivants : ClO^-/Cl_2 et Cl_2/Cl^- (0.5pt)
1. Écrire les demi-équations électroniques des deux couples suivants : ClO^-/Cl_2 et Cl_2/Cl^- (0.5pt) 2. Écrire l'équation de la réaction entre les ions chlorure et hypochlorite
2. Écrire l'équation de la réaction entre les ions chlorure et hypochlorite
 Écrire l'équation de la réaction entre les ions chlorure et hypochlorite

Physique 13pts - 78min

Les parties sont indépendantes

Partie 1 : Champ électrique créé par une charge ponctuelle (7pts)

Sur un axe (Ox), se trouve deux charges de valeurs $q_B = 2q_A = 2\mu C$, On place q_A dans l'origine O (A=O), les points A et B distants d'une distance AB = a = 8cm, on donne $k = 9.10^9 SI$

- 1. Soit un point $M \in AB$ d'abscisse x.
 - (a) Montrer que l'expression du vecteur champ électrostatique en M est :.....(2pt)

$$\vec{E}(M) = kq_A \cdot (\frac{1}{x^2} - \frac{2}{(a-x)^2})\vec{u}$$

Partie 2 : Principe de fonctionnement d'un oscilloscope . (6pts)

Dans le canon à électrons d'un oscillographe (voir fig.), les électrons sortant de la cathode avec une vitesse supposée nulle, sont accélérés par une tension U=1600V appliquée entre la cathode C et l'anode A.

- 1. Calculer en mètres par seconde la vitesse v_A des électrons à la sortie du canon......(1pt)
- 2. Calculer en joule et en kilo électronvolts, leur énergie cinétique E_{CA}(1pt)

- 3. Les électrons pénètrent avec une vitesse $V_O = V_A$, entre les plaques de déviation verticale, en un point O situé à égale distance de chacune d'elles. Lorsque la tension $U_1 = 500V$ est appliquée à ces plaques distantes de d = 2cm, les électrons sortent de l'espace champ en un point S tel que O'S=d'=0,6cm.
 - a. On prend l'origine des potentiels $V_0 = 0$ au point O. Calculer Vs potentiel électrostatique du point S del'espace champ......(1pt)
 - b. Déterminer Epo et Eps, énergies potentielles électrostatique d'un électron en O et en S dans l'espace champ, en joules et en kilo électronvolts......(2pt)