Учебник по Эконометрике Лекция 2: Линейная Алгебра и Матрицы

Джон Стачурски

Лекции: Акшай Шенкер Перевел: Алексей Кедо

27 сентября 2020 г.

Матрицы

Обычная $N \times K$ матрица:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1K} \\ a_{21} & a_{22} & \cdots & a_{2K} \\ \vdots & \vdots & & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NK} \end{pmatrix}$$

Символ a_{nk} означает элемент, стоящий в n-ой строке k-ого столбца

N imes K матрица также называется

- ullet вектором строки, если N=1
- ullet вектором столбца, если K=1

Если N=K, то матрицу ${f A}$ называют квадратной

Если ${f A}$ квадратная и $a_{nk}=a_{kn}$ для любых k и n, то ${f A}$ называют симметричной

Часто элементы матрицы **A** представляют собой коэффициенты в системе линейных уравнений

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1K}x_K = b_1$$

 \vdots
 $a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NK}x_K = b_N$

Для матрицы ${f A}$ применяются обозначения:

- row_n A означает n-ую строку A
- ullet col $_k$ **A** означает k-ый столбец **A**

Символы ${f 0}$ и ${f 1}$ представляют собой матрицы, все элементы которых равны нулю и единице соответственно

Для квадратной матрицы ${f A}$, элементы a_{nn} называют главной диагональю:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & \cdots & a_{2N} \\ \vdots & \vdots & & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NN} \end{pmatrix}$$

Единичная матрица:

$$\mathbf{I} := \left(egin{array}{cccc} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ dots & dots & dots \ 0 & 0 & \cdots & 1 \end{array}
ight)$$

 $\operatorname{3--}$ аметим, что $\operatorname{col}_n \mathbf{I} = \mathbf{e}_n - n$ -ый канонический базис \mathbb{R}^N

Алгебраические операции над матрицами

Операции над матрицами:

- Умножение на скаляр
- Сложение
- Умножение матриц

Умножение на скаляр выполняется поэлементно, как с векторами:

$$\gamma \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1K} \\
a_{21} & a_{22} & \cdots & a_{2K} \\
\vdots & \vdots & & \vdots \\
a_{N1} & a_{N2} & \cdots & a_{NK}
\end{pmatrix} := \begin{pmatrix}
\gamma a_{11} & \gamma a_{12} & \cdots & \gamma a_{1K} \\
\gamma a_{21} & \gamma a_{22} & \cdots & \gamma a_{2K} \\
\vdots & \vdots & & \vdots \\
\gamma a_{N1} & \gamma a_{N2} & \cdots & \gamma a_{NK}
\end{pmatrix}$$

Сложение тоже выполняется поэлементно:

$$\begin{pmatrix} a_{11} & \cdots & a_{1K} \\ a_{21} & \cdots & a_{2K} \\ \vdots & \vdots & \vdots \\ a_{N1} & \cdots & a_{NK} \end{pmatrix} + \begin{pmatrix} b_{11} & \cdots & b_{1K} \\ b_{21} & \cdots & b_{2K} \\ \vdots & \vdots & \vdots \\ b_{N1} & \cdots & b_{NK} \end{pmatrix}$$

$$:= \begin{pmatrix} a_{11} + b_{11} & \cdots & a_{1K} + b_{1K} \\ a_{21} + b_{21} & \cdots & a_{2K} + b_{2K} \\ \vdots & \vdots & \vdots \\ a_{N1} + b_{N1} & \cdots & a_{NK} + b_{NK} \end{pmatrix}$$

Заметим, что матрицы должны быть одинакового размера

Умножение матриц:

Произведение ${\bf AB}: i, j$ -ый элемент — скалярное умножение i-ой строки ${\bf A}$ и j-ого столбца ${\bf B}$

$$c_{ij} = \langle \operatorname{row}_i \mathbf{A}, \operatorname{col}_j \mathbf{B} \rangle = \sum_{k=1}^K a_{ik} b_{kj}$$

Для
$$i = j = 1$$
:

$$\begin{pmatrix} a_{11} & \cdots & a_{1K} \\ a_{21} & \cdots & a_{2K} \\ \vdots & \vdots & \vdots \\ a_{N1} & \cdots & a_{NK} \end{pmatrix} \begin{pmatrix} b_{11} & \cdots & b_{1J} \\ b_{21} & \cdots & b_{2J} \\ \vdots & \vdots & \vdots \\ b_{K1} & \cdots & b_{KJ} \end{pmatrix} = \begin{pmatrix} c_{11} & \cdots & c_{1J} \\ c_{21} & \cdots & c_{2J} \\ \vdots & \vdots & \vdots \\ c_{N1} & \cdots & c_{NJ} \end{pmatrix}$$

Здесь

$$c_{11} = \langle \operatorname{row}_1(\mathbf{A}), \operatorname{col}_1(\mathbf{B}) \rangle = \sum_{k=1}^K a_{1k} b_{k1}$$

Предположим, что размер $\mathbf{A} - N \times K$, $\mathbf{B} - J \times M$

- ${f AB}$ определена, только если K = J
- Размер $\mathbf{AB} N \times M$

Запомните правило:

Произведение
$$N imes K$$
 и $K imes M$ равно $N imes M$

Умножение не коммутативно: $\mathbf{AB}
eq \mathbf{BA}$

Заметим, что произведение ${f BA}$ определено, только если N=M соблюдается

Факт. (??) Для согласованных матриц A, B, C и скаляра α , верно

- $1. \ \mathbf{A}(\mathbf{BC}) = (\mathbf{AB})\mathbf{C},$
- $2. \mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C},$
- 3. (A+B)C = AC + BC,
- 4. $\mathbf{A}\alpha\mathbf{B} = \alpha\mathbf{A}\mathbf{B}$, и
- 5. $\mathbf{AI} = \mathbf{A}$ и $\mathbf{IA} = \mathbf{A}$, где \mathbf{I} единичная матрица.

Здесь "согласованость" значит, что операция определена при заданных размерностях матриц

 \emph{k} -ая мощность квадратной матрицы ${f A}$ определяется как

$$\mathbf{A}^k := \underbrace{\mathbf{A} \cdots \mathbf{A}}_{k \text{ terms}}$$

Если матрица ${f B}$ такая, что ${f B}^2={f A}$, то ${f B}$ называется квадратным корнем матрицы ${f A}$ и записывается как $\sqrt{{f A}}$

$$\mathbf{Ax} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1K} \\ a_{21} & a_{22} & \cdots & a_{2K} \\ \vdots & \vdots & & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NK} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_K \end{pmatrix}$$

$$= x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{N1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{N2} \end{pmatrix} + \cdots + x_K \begin{pmatrix} a_{1K} \\ a_{2K} \\ \vdots \\ a_{NK} \end{pmatrix}$$

$$= \sum_{k=1}^{K} x_k \operatorname{col}_k \mathbf{A}$$

Матрицы как отображения

Можно размышлять о матрице ${\bf A}$ размерна $N \times K$ как об отображении из ${\mathbb R}^K$ в ${\mathbb R}^N$:

$$\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$$

Такое отображение линейно

Как насчет примеров линейных функций, не использующих матрицы?

...на самом деле, таких не существует!

Множеству линейных функций из \mathbb{R}^K в \mathbb{R}^N инъективно соответствует множество матриц $N \times K$:

Теорема. (??) Пусть T является функцией из \mathbb{R}^K в \mathbb{R}^N . Следующее эквивалентно:

- **1**. *T* линейна.
- 2. Существует матрица ${f A}$ размера N imes K, такая что $T{f x} = {f A}{f x}$ для всех ${f x} \in \mathbb{R}^K$.

Доказательство. $(1 \implies 2)$

Пусть $T\colon \mathbb{R}^K o \mathbb{R}^N$ линейна

Мы собираемся построить матрицу ${\bf A}$ размерности $N \times K$, такую что

$$T\mathbf{x} = \mathbf{A}\mathbf{x}, \quad \forall \, \mathbf{x} \in \mathbb{R}^K$$

Как обычно, пусть $\mathbf{e}_k - k$ -ый канонический базисный вектор в \mathbb{R}^K

Определим матрицу ${f A}$ как ${
m col}_k({f A})=T{f e}_k$. Возьмем любой ${f x}=(x_1,\dots,x_K)\in \mathbb{R}^K$. По линейности, получается

$$T\mathbf{x} = T\left[\sum_{k=1}^{K} x_k \mathbf{e}_k\right] = \sum_{k=1}^{K} x_k T\mathbf{e}_k = \sum_{k=1}^{K} x_k \operatorname{col}_k(\mathbf{A}) = \mathbf{A}\mathbf{x}$$

Доказательство. (2 \implies 1) Возьмем матрицу ${f A}$ размера N imes K и пусть T определяется

$$T: \mathbb{R}^K \to \mathbb{R}^N, \qquad T\mathbf{x} = \mathbf{A}\mathbf{x}$$

Возьмем любые $\mathbf{x},\ \mathbf{y}$ в \mathbb{R}^K , и любые скаляры lpha и eta

Правила матричной арифметики говорят нам, что

$$T(\alpha \mathbf{x} + \beta \mathbf{y}) := \mathbf{A}(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha \mathbf{A} \mathbf{x} + \beta \mathbf{A} \mathbf{y} =: \alpha T \mathbf{x} + \beta T \mathbf{y}$$

Рассмотрим возможность решения системы линейных уравнений, например, $\mathbf{A}\mathbf{x}=\mathbf{b}$

Существование: можем ли мы найти x, удовлетворяющий уравнению при любых заданных b?

- ullet является ли линейное отображение $T{f x}={f A}{f x}$ сюръекцией?
- ullet эквивалентно, равен ли $\operatorname{rng} T$ всему \mathbb{R}^N ?

Пространство столбцов

Диапазон T — все вектора вида $T\mathbf{x} = \mathbf{A}\mathbf{x}$, где \mathbf{x} варьируется в \mathbb{R}^K

Для $\mathbf{x} \in \mathbb{R}^K$ получается

$$\mathbf{A}\mathbf{x} = \sum_{k=1}^{K} x_k \operatorname{col}_k \mathbf{A}$$

Таким образом, $\operatorname{rng} T$ равен пространству столбцов \mathbf{A} — линейная оболочка столбцов \mathbf{A}

$$colspace \mathbf{A} := span\{col_1 \mathbf{A}, \dots, col_K \mathbf{A}\}$$

В итоге,

$$\operatorname{colspace} \mathbf{A} = \operatorname{rng} T = \{ \mathbf{A} \mathbf{x} : \mathbf{x} \in \mathbb{R}^K \}_{\text{constant}}$$

Ранг

Эквивалентные вопросы

- Насколько велик диапазон линейного отображения $T\mathbf{x} = \mathbf{A}\mathbf{x}$?
- Насколько велико пространство столбцов A?

Очевидной мерой размера линейного подпространства является его размерность

Pазмерность colspace A известна как ранг A

rank A := dim colspace A

Так как $\operatorname{colspace} \mathbf{A}$ — линейная оболочка K векторов, получается

 $\operatorname{rank} \mathbf{A} = \operatorname{dim} \operatorname{colspace} \mathbf{A} \leq K$

А имеет полный ранг системы столбцов, если

$$\operatorname{rank} \mathbf{A} = \operatorname{количество} \operatorname{столбцов} \mathbf{A}$$

Факт. (??) Для любой матрицы A, следующие утверждения эквивалентны:

- 1. А является полным рангом системы столбцов
- 2. Столбцы А линейно независимы
- 3. Если $\mathbf{A}\mathbf{x} = \mathbf{0}$, то $\mathbf{x} = \mathbf{0}$

Квадратные матрицы и обратимость

Рассмотрим случай с матрицей ${f A}$ размера N imes N

Мы ищем условия, при которых для каждого $\mathbf{b} \in \mathbb{R}^N$, существует только один $\mathbf{x} \in \mathbb{R}^N$, такой что $\mathbf{A}\mathbf{x} = \mathbf{b}$

Пусть T является линейным отображением $T\mathbf{x} = \mathbf{A}\mathbf{x}$

- $oldsymbol{f b}$ Когда каждая точка $oldsymbol{f b} \in \mathbb{R}^N$ имеет только один прообраз в T?
- Эквивалентно, когда T биекция?

Напомним, линейные биекции называются несингулярными функциями.

Факт. (??) Для матрицы ${\bf A}$ размера $N \times N$ следующее эквивалентно:

- 1. Столбцы А линейно независимы.
- 2. Столбцы ${f A}$ формируют базис ${\Bbb R}^N$.
- 3. rank $\mathbf{A} = N$.
- 4. colspace $\mathbf{A} = \mathbb{R}^N$
- 5. $Ax = Ay \implies x = y$.
- 6. $\mathbf{A}\mathbf{x} = \mathbf{0} \implies \mathbf{x} = \mathbf{0}$.
- 7. Для каждого $\mathbf{b} \in \mathbb{R}^N$, уравнение $\mathbf{A}\mathbf{x} = \mathbf{b}$ имеется решение.
- 8. Для каждого $\mathbf{b} \in \mathbb{R}^N$, уравнение $\mathbf{A}\mathbf{x} = \mathbf{b}$ имеет единственное решение.

Если любое из эквивалентных условий факта $\ref{eq:constraint}$ верное, мы назовем несингулярной не только отображение T, но и основную матрицу \mathbf{A}

Если хоть одно — и, следовательно, все — из этих условий не выполняются, то ${f A}$ называется сингулярной

Любая биекция имеет обратную функцию (смотрите §?? в ЕТ)

Любое несингулярное отображение T имеет несингулярное обратное T^{-1} (факт $\ref{thm:property}$??)

• если T создано матрицей ${f A}$, обратное T^{-1} также связано с матрицей, называемой обратной ${f A}$

Теорема. (??) Для несингулярной **A** следующие утверждения верны:

- 1. Существует квадратная матрица ${f B}$, такая что ${f AB}={f BA}={f I}$, где ${f I}$ единичная матрица. Матрица ${f B}$ называется обратной ${f A}$, и записывается как ${f A}^{-1}$.
- 2. Для каждого $\mathbf{b} \in \mathbb{R}^N$, единственное решение задачи $\mathbf{A}\mathbf{x} = \mathbf{b}$ записывается как

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

Пример. Расстмотрим линейный спрос для N товаров

$$q_n = \sum_{k=1}^N a_{nk} p_k + b_n, \quad n = 1, \dots, N$$

где q_n и p_n — количество и цена n-ого товара

Мы хотим вычислить обратную функцию спроса, которая показывает зависимость цены от количества

Записшем систему в матричной форме: $\mathbf{q} = \mathbf{A}\mathbf{p} + \mathbf{b}$

Если столбцы ${\bf A}$ линейно независимы, то система обратима — единственное решение существует для любых фиксированных ${\bf q}$ и ${\bf b}$:

$$\mathbf{p} = \mathbf{A}^{-1}(\mathbf{q} - \mathbf{b})$$

Для матриц ${f A}$ и ${f B}$ размера N imes N, если

- ullet ${f B}$ является левой обратной, в том смысле, что ${f B}{f A}={f I}$
- ullet или ${f B}$ является правой обратной, в том смысле, что ${f A}{f B}={f I}$

Тогда ${f A}$ обратима и ${f B}$ является обратной матрицей ${f A}$

Факт. (??) Пусть ${\bf A}$ и ${\bf B}$ — квадратные матрицы размера $N \times N$. Если ${\bf B}$ является левой или правой обратной матрицы ${\bf A}$, то ${\bf A}$ несингулярна и ${\bf B}$ — ее обратная матрица.

1.
$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$
,

2.
$$(\alpha \mathbf{A})^{-1} = \alpha^{-1} \mathbf{A}^{-1}$$
, и

3.
$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$

Определитель

Определитель — уникальное число для любой квадратной матрицы A

Пусть S(N) является множеством всех биекций из $\{1,\ldots,N\}$ в саму себя

Для $\pi \in S(N)$ определим функцию знака π

$$\operatorname{sgn}(\pi) := \prod_{m < n} \frac{\pi(m) - \pi(n)}{m - n}$$

Определитель матрицы ${\bf A}$ размера $N \times N$ — это

$$\det \mathbf{A} := \sum_{\pi \in S(N)} \operatorname{sgn}(\pi) \prod_{n=1}^N a_{\pi(n)n}$$

 $oldsymbol{\Phi}$ акт. $(\ref{eq:constraint})$ Если $oldsymbol{I}$ — единичная матрица размера N imes N и $lpha \in \mathbb{R}$, то

- 1. $\det I = 1$,
- 2. **A** несингулярна тогда и только тогда, когда $\det \mathbf{A} \neq 0$,
- 3. $det(\mathbf{AB}) = det(\mathbf{A}) det(\mathbf{B})$,
- 4. $\det(\alpha \mathbf{A}) = \alpha^N \det(\mathbf{A})$, и
- 5. $\det(\mathbf{A}^{-1}) = (\det(\mathbf{A}))^{-1}$.

В случае матрицы размера 2×2 можно показать, что

$$\det\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = ad - bc$$

Доказательство. (Факт ??)

Возьмем кважратную матрицу ${\bf A}$ и предположим, что правая обратная матрица ${\bf B}$ существует:

$$AB = I$$

Тогда обе матрицы \mathbf{A} и \mathbf{B} несингулярны, так как по правилам факта $\mathbf{??}$:

$$det(\mathbf{A}) det(\mathbf{B}) = 1$$

Оба определителя $\det \mathbf{A}$ и $\det \mathbf{B}$ ненулевые и, следовательно, обе матрицы несингулярные. Далее, $\mathbf{AB} = \mathbf{I}$, значит

$$BAB = B$$

Диагональные и треугольные матрицы

Квадратная матрица назвается нижней треугольной, если каждый элемент строго выше главной диагонали равен нулю

Пример.

$$\mathbf{L} := \left(\begin{array}{ccc} 1 & 0 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 1 \end{array} \right)$$

Квадратная матрица назвается верхней треугольной, если каждый элемент строго ниже главной диагонали равен нулю

Пример.

$$\mathbf{U} := \left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 5 & 6 \\ 0 & 0 & 1 \end{array} \right)$$

Квадратная матрица назвается треугольной, если она верхняя или нижняя треугольная

Факт. (??) Если $\mathbf{A} = (a_{mn})$ треугольная, то $\det \mathbf{A} = \prod_{n=1}^{N} a_{nn}$.

Пример.

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

становится

$$x_1 = b_1$$

$$2x_1 + 5x_2 = b_2$$

$$3x_1 + 6x_2 + x_3 = b_3$$

Верхнее уравнение включает только x_1 , так что его можно решить напрямую

Подставьте это значение во второе уравнение и решите для x_2 и т.д.

Рассмотрим квадратную матрицу ${f A}$ размера N imes N

N элементов a_{nn} называются главной диагональю

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & \cdots & a_{2N} \\ \vdots & \vdots & & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NN} \end{pmatrix}$$

Квадратная матрица ${f D}$ называется диагональной, если все значения вне главной диагонали равны нулю

$$\mathbf{D} = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & d_N \end{pmatrix}$$

Часто записывается как

$$\mathbf{D} = \operatorname{diag}(d_1, \dots, d_N)$$

Диагональные системы очень легко решить

Пример.

$$\begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

эквивалентно

$$d_1x_1 = b_1$$
$$d_2x_2 = b_2$$
$$d_3x_3 = b_3$$

Факт. (??) Если
$$\mathbf{C} = \mathrm{diag}(c_1, \ldots, c_N)$$
 и $\mathbf{D} = \mathrm{diag}(d_1, \ldots, d_N)$, то

- 1. $C + D = diag(c_1 + d_1, ..., c_N + d_N)$
- 2. **CD** = diag $(c_1d_1, ..., c_Nd_N)$
- 3. $\mathbf{D}^k = \operatorname{diag}(d_1^k, \dots, d_N^k)$ для любых $k \in \mathbb{N}$
- 4. $d_n > 0$ для всех $n \implies \mathbf{D}^{1/2}$ существует и равняется $\operatorname{diag}(\sqrt{d_1},\ldots,\sqrt{d_N})$

5.
$$d_n \neq 0$$
 для всех $n \implies \mathbf{D}$ несингулярна и

 $\mathbf{D}^{-1} = \text{diag}(d_1^{-1}, \dots, d_N^{-1})$

Доказательства: Проверьте 1 и 2 напрямую. Части 3-5 следуют из 1 и 2.

След, транспонирование, симметрия

След матрицы определяется как

trace
$$\begin{pmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & & \vdots \\ a_{N1} & \cdots & a_{NN} \end{pmatrix} = \sum_{n=1}^{N} a_{nn}$$

 $oldsymbol{\Phi}$ акт. (\ref{A}) Если $oldsymbol{A}$ и $oldsymbol{B}$ являются квадратными матрицами и $lpha,eta\in\mathbb{R}$, то

$$trace(\alpha \mathbf{A} + \beta \mathbf{B}) = \alpha \operatorname{trace}(\mathbf{A}) + \beta \operatorname{trace}(\mathbf{B})$$

Если ${f A}$ размера $N \times M$ и ${f B}$ размера $M \times N$, то ${
m trace}({f A}{f B}) = {
m trace}({f B}{f A})$

Транспонирование превращает матрицу ${\bf A}$ размера $N \times K$ в матрицу \mathbf{A}^{T} размера $K \times N$, определяемую как

$$\operatorname{col}_n(\mathbf{A}') = \operatorname{row}_n(\mathbf{A})$$

Пример. Если

$$\mathbf{A} := \left(egin{array}{ccc} 10 & 40 \ 20 & 50 \ 30 & 60 \end{array}
ight)$$
 , to $\mathbf{A}' = \left(egin{array}{ccc} 10 & 20 & 30 \ 40 & 50 & 60 \end{array}
ight)$

Если

$$\mathbf{B} := \left(egin{array}{ccc}1&3&5\2&4&6\end{array}
ight)$$
 , то $\mathbf{B}' := \left(egin{array}{ccc}1&2\3&4\5&6\end{array}
ight)$

Квадратная матрица ${f A}$ называется симметричной, если ${f A}^{\mathsf{T}}={f A}$

ullet эквивалентно, $a_{nk}=a_{kn}$ для всех k и n

Матрицы $\mathbf{A}^\mathsf{T}\mathbf{A}$ и $\mathbf{A}\mathbf{A}^\mathsf{T}$ всегда корректно определены и симметричны

Факт. (??) Для согласующихся матриц А и В транспонирование удовлетворяет

- 1. $(A^{T})^{T} = A$,
- 2. $(\mathbf{A}\mathbf{B})^{\mathsf{T}} = \mathbf{B}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}$,
- 3. $(A + B)^{T} = A^{T} + B^{T}$, и
- 4. $(c\mathbf{A})^{\mathsf{T}} = c\mathbf{A}^{\mathsf{T}}$ для любых постоянных c.

- 1. $trace(\mathbf{A}) = trace(\mathbf{A}^{\mathsf{T}})$ и
- 2. $det(\mathbf{A}^{\mathsf{T}}) = det(\mathbf{A})$.
- 3. Если \mathbf{A} несингулярна, то \mathbf{A}^T тоже несингулярна, и $(\mathbf{A}^{\mathsf{T}})^{-1} = (\mathbf{A}^{-1})^{\mathsf{T}}$.

Если **a** и **b** — векторы размера $N \times 1$, умножение матриц $\mathbf{a}^\mathsf{T}\mathbf{b} = \mathbf{b}^\mathsf{T}\mathbf{a}$ равняется $\sum_{n=1}^N a_n b_n$,

так же, как скалярное произведение $\langle a,b \rangle$

Собственные значения и собственные векторы

Возьмем матрицу ${f A}$ размера N imes N

Обычно ${f A}$ отображает ${f x}$ в какое-то произвольное новое место ${f A}{f x}$

Но иногда x будет только масштабироваться:

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$
 для некоторого скаляра λ (1)

 $\mathsf{E}\mathsf{c}\mathsf{n}\mathsf{u}\ (1)$ выполняется $\mathsf{u}\ \mathsf{x}$ is ненулевой, то

- 1. ${\bf x}$ называется собственным вектором ${\bf A}$ и λ называется собственным значением
- 2. (\mathbf{x}, λ) называется собственной парой

Ясно, что (\mathbf{x},λ) — собственная пара $\mathbf{A} \implies (\alpha \mathbf{x},\lambda)$ — собственная пара \mathbf{A} для любых ненулевых α

Пример. Пусть

$$\mathbf{A} := \begin{pmatrix} 1 & -1 \\ 3 & 5 \end{pmatrix}$$

Тогда

$$\lambda = 2$$
 и $\mathbf{x} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

формируют собственную пару, потому что $\mathbf{x} \neq \mathbf{0}$ и

$$\mathbf{A}\mathbf{x} = \begin{pmatrix} 1 & -1 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \lambda \mathbf{x}$$

Пример. Рассмотрим матрицу

$$\mathbf{R} := \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right)$$

Вызывает вращение против часовой стрелки в любой точке на 90°

Значит ни одна точка \mathbf{x} не масштабируется

Значит <u>не</u> существует пары $\lambda \in \mathbb{R}$ и $\mathbf{x}
eq \mathbf{0}$, такой что

$$\mathbf{R}\mathbf{x} = \lambda \mathbf{x}$$

Другими словами, не существует вещественных собственных пар

 Puc .: Матрица \mathbf{R} поворачивает точки на 90°

 Puc .: Матрица \mathbf{R} поворачивает точки на 90°

Ho $\mathbf{R}\mathbf{x}=\lambda\mathbf{x}$ может выполняться, если мы допускаем комплексные числа

Пример.

$$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} 1 \\ -i \end{array}\right) = \left(\begin{array}{c} i \\ 1 \end{array}\right) = i \left(\begin{array}{c} 1 \\ -i \end{array}\right)$$

То есть

$$\mathbf{R}\mathbf{x} = \lambda\mathbf{x}$$
 для $\lambda := i$ и $\mathbf{x} := \begin{pmatrix} 1 \\ -i \end{pmatrix}$

Тогда (\mathbf{x},λ) является собственной парой при условии, что мы допускаем комплексные числа

Факт. (??) для любой квадратной матрицы А

 λ является собственным значением $\mathbf{A} \iff \det(\mathbf{A} - \lambda \mathbf{I}) = 0$

Доказательство. Пусть ${\bf A}$ — матрица размера $N \times N$ и ${\bf I}$ — единичная матрица размера $N \times N$

Получается

$$\det(\mathbf{A}-\lambda\mathbf{I})=0\iff \mathbf{A}-\lambda\mathbf{I}$$
 сингулярно
$$\iff\exists\,\mathbf{x}\neq\mathbf{0}\text{ s.t. }(\mathbf{A}-\lambda\mathbf{I})\mathbf{x}=\mathbf{0}$$
 $\iff\exists\,\mathbf{x}\neq\mathbf{0}\text{ s.t. }\mathbf{A}\mathbf{x}=\lambda\mathbf{x}$ $\iff\lambda$ является собственным значением \mathbf{A}

Пример. В случае матрицы 2×2 ,

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \implies \mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$

$$\therefore \det(\mathbf{A} - \lambda \mathbf{I}) = (a - \lambda)(d - \lambda) - bc$$
$$= \lambda^2 - (a + d)\lambda + (ad - bc)$$

Значит собственные значения ${f A}$ являются двумя корнями уравнения

$$\lambda^2 - (a+d)\lambda + (ad - bc) = 0$$

Эквивалентно.

$$\lambda^2 - \operatorname{trace}(\mathbf{A})\lambda + \det(\mathbf{A}) = 0$$

Existence of Eigenvalues

Fix $N \times N$ matrix **A**

Φακτ. There exist complex numbers $\lambda_1, \ldots, \lambda_N$ such that

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \prod_{n=1}^{N} (\lambda_n - \lambda)$$

Each such λ_i is an eigenvalue of ${f A}$ because

$$\det(\mathbf{A} - \lambda_i \mathbf{I}) = \prod_{n=1}^{N} (\lambda_n - \lambda_i) = 0$$

Important: not all eigenvalues are necessarily distinct — there can be repeats

Φακτ. (??) Given $N \times N$ matrix **A** with eigenvalues $\lambda_1, \ldots, \lambda_N$ we have

- 1. $\det(\mathbf{A}) = \prod_{n=1}^{N} \lambda_n$
- 2. trace(**A**) = $\sum_{n=1}^{N} \lambda_n$
- 3. если **A** is symmetric, then $\lambda_n \in \mathbb{R}$ для всех n
- 4. если A is nonsingular, then eigenvalues of $\mathbf{A}^{-1} = 1/\lambda_1, \dots, 1/\lambda_N$
- 5. если $\mathbf{A} = \operatorname{diag}(d_1, \ldots, d_N)$, then $\lambda_n = d_n$ для всех n

Hence **A** is nonsingular \iff all eigenvalues are nonzero

Quadratic Forms

Fix $N \times N$ matrix **A**

The quadratic function or quadratic form on \mathbb{R}^N associated with \mathbf{A} is the map Q defined by

$$Q(\mathbf{x}) := \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \sum_{j=1}^{N} \sum_{i=1}^{N} a_{ij} x_i x_j$$

Пример. Let N=2 и let ${\bf A}$ be the identity matrix ${\bf I}$. In this case,

$$Q(\mathbf{x}) = \|\mathbf{x}\|^2 = x_1^2 + x_2^2$$

Рис.: Quadratic function $Q(\mathbf{x}) = x_1^2 + x_2^2$

Notice:

• The graph for $Q(\mathbf{x}) = \|\mathbf{x}\|^2 = x_1^2 + x_2^2$ lies everywhere above zero

Matrix ${f A}$ with Quadratic form with the above property $Q({f x}) \geq 0$ называется positive definite

More generally, an N imes N symmetric matrix ${f A}$ называется

- nonnegative definite если $\mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} \geq 0$ для всех $\mathbf{x} \in \mathbb{R}^N$,
- positive definite если $\mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} > 0$ для всех $\mathbf{x} \in \mathbb{R}^N$ with $\mathbf{x} \neq \mathbf{0}$,
- ullet nonpositive definite если ${f x}^{\mathsf T}{f A}{f x} \le 0$ для всех ${f x} \in \mathbb{R}^N$, и
- negative definite если $\mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} < 0$ для всех $\mathbf{x} \in \mathbb{R}^N$ with $\mathbf{x} \neq \mathbf{0}$.

если A fits none of these categories, then A называется indefinite

Рис.: Quadratic function $Q(\mathbf{x}) = -x_1^2 - x_2^2$

Рис.: Quadratic function $Q(\mathbf{x}) = x_1^2/2 + 8x_1x_2 + x_2^2/2$

When the matrix A is diagonal:

$$\mathbf{A} = \operatorname{diag}(d_1, \dots, d_N)$$
 implies $Q(\mathbf{x}) = d_1 x_1^2 + \dots + d_N x_N^2$

A diagonal matrix is positive definite если и only если all diagonal elements are positive

Факт. (??) Let A be any symmetric matrix. A is

- positive definite если и only если its eigenvalues are all positive,
- negative definite если и only если its eigenvalues are all negative,

...и similarly for nonpositive и nonnegative definite

 Φ акт. (\ref{A}) если ${\bf A}$ is positive definite, then ${\bf A}$ is nonsingular, with $\det {\bf A}>0$

A necessary (but not sufficient) condition for each kind of definiteness:

Факт. (??) если A is positive definite, then each element a_{nn} on the principal diagonal is positive, u the same for nonnegative, nonpositive u negative.

Projection Matrices

Recall given any subspace of \mathbb{R}^N , S, the corresponding projection $\mathbf{P}=\operatorname{proj} S$ is a linear map from \mathbb{R}^N to \mathbb{R}^N

Recall Theorem $\ref{eq:condition}$: there exists an N imes N matrix $\hat{\mathbf{P}}$ such that $\mathbf{P}\mathbf{x} = \hat{\mathbf{P}}\mathbf{x}$ для всех $\mathbf{x} \in \mathbb{R}^N$

• from now on P will also represent the corresponding matrix

What does this matrix look like?

Теорема. (??) Let S be a subspace of \mathbb{R}^N . если $\mathbf{P} = \operatorname{proj} S$, then

$$\mathbf{P} = \mathbf{B}(\mathbf{B}^{\mathsf{T}}\mathbf{B})^{-1}\mathbf{B}^{\mathsf{T}} \tag{2}$$

for every matrix ${f B}$ such that the columns of ${f B}$ form a basis of S

See exercise ?? for proof

ullet The matrix ${f M}={f I}-{f P}$ denotes the residual projection (see page $\ref{eq:matrix}$)

We found the projection of $\mathbf{v} \in \mathbb{R}^N$ onto span $\{\mathbf{1}\}$ is $\bar{y}\mathbf{1}$

Same result using Theorem (??):

Since 1 is a basis for span{1}:

$$\mathbf{P} = \text{proj span}\{\mathbf{1}\} \implies \mathbf{P} = \mathbf{1}(\mathbf{1}^{\mathsf{T}}\mathbf{1})^{-1}\mathbf{1}^{\mathsf{T}} = \frac{1}{N}\mathbf{1}\mathbf{1}^{\mathsf{T}}$$

- Thus, $\mathbf{P}\mathbf{y} = \bar{y}\mathbf{1}$, as expected
- Corresponding residual projection is

$$\mathbf{M}_c = \mathbf{I} - \frac{1}{N} \mathbf{1} \mathbf{1}^\mathsf{T}$$

- 1. MB = 0
- 2. PB = B

Proof is an exercise (ex. ?? in ET)

Easy to see M_c in the previous example maps 1 to 0

A square matrix A is idempotent если AA = A

 Φ акт. (??) Both \mathbf{P} и \mathbf{M} are symmetric и idempotent

(Exercise: check by direct calculation)

Intuition: projecting onto a subspace twice is the same as projecting once — recall fact ?? on page ??

- 1. rank $\mathbf{P} = \text{trace } \mathbf{P} = \dim S$ и
- 2. rank $\mathbf{M} = \operatorname{trace} \mathbf{M} = N \dim S$

Доказательство.

- The rank of a linear map is the dimension of its range. When $\mathbf{P} = \text{proj } S$, the range of \mathbf{P} is exactly S
- To show that trace $P = \dim S$ also holds, use fact ??trace $\mathbf{P} = \dim S$.
- It follows that trace $\mathbf{M} = N \dim S$, because

$$trace \mathbf{M} = trace (\mathbf{I} - \mathbf{P}) = trace \mathbf{I} - trace \mathbf{P} = N - \dim S$$

Overdetermined Systems of Equations

Paccмотрим systems of equations of the form $\mathbf{A}\mathbf{x}=\mathbf{b}$ when:

- The matrix **A** is $N \times K$ in has full column rank
- The vector \mathbf{x} is $K \times 1$
- The vector \mathbf{b} is $N \times 1$
- *K* < *N*

Taking ${f A}$ u ${f b}$ as given, we seek ${f x} \in \mathbb{R}^K$ such that ${f A}{f x} = {f b}$

если K=N, then system has precisely one solution

When N > K, the system of equations said to be **overdetermined**:

- number of equations > number of unknowns
- number of constraints > degrees of freedom

May not be able find a ${f b}$ that satisfies all N equations

Recall the linear map $T \colon \mathbb{R}^K \to \mathbb{R}^N$ corresponding to **A** is $T\mathbf{x} = \mathbf{A}\mathbf{x}$

The following statements are equivalent:

- 1. there exists an $\mathbf{x} \in \mathbb{R}^K$ with $\mathbf{A}\mathbf{x} = \mathbf{b}$
- 2. the vector $\mathbf{b} \in \operatorname{colspace} \mathbf{A}$
- 3. the vector $\mathbf{b} \in \operatorname{rng} T$

Матрицы и Линейные уравнения

Theorem ?? on page ??: when K < N, the function T cannot be onto - possible **b** lies outside the range of T

When K < N, the scenario $\mathbf{b} \in \operatorname{colspace} \mathbf{A}$ is "very rare" because:

- ullet the point ${f b}$ is an arbitrary point in \mathbb{R}^N
- the space colspace $\bf A$ has dimension K
- ullet K-dimensional subspaces of \mathbb{R}^N have "Lebesgue measure zero"
 - the "chance" of ${f b}$ happening to lie in this subspace is tiny

Stuard approach: admit an exact solution may not exist

Focus on finding $\mathbf{x} \in \mathbb{R}^K$ to make $\mathbf{A}\mathbf{x}$ as close to \mathbf{b} as possible

• close in terms of ordinary Euclidean norm

The minimization problem, called the least squares problem

$$\hat{\mathbf{x}} : = \underset{\mathbf{x} \in \mathbb{R}^K}{\operatorname{argmin}} \| \mathbf{b} - \mathbf{A} \mathbf{x} \| \tag{3}$$

Assuming **A** is $N \times K$ with $K \leq N$ in **b** is $N \times 1$, we can use the orthogonal projection theorem to solve (3)

Теорема. $(\ref{eq:colored})$ если $\mathbf A$ has full column rank, then (3) has the unique solution

$$\hat{\mathbf{x}} := (\mathbf{A}^\mathsf{T} \mathbf{A})^{-1} \mathbf{A}^\mathsf{T} \mathbf{b} \tag{4}$$

Матрицы и Линейные уравнения

Let:

- A и b be as in the statement of the theorem
- x̂ be as in (4) и
- $S := \operatorname{colspace} \mathbf{A}$

By full column rank assumption, the columns of A form a basis for S. Applying theorem $\ref{solution}$, orthogonal projection of **b** onto S is

$$\mathbf{P}\mathbf{b} := \mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{b} = \mathbf{A}\hat{\mathbf{x}}$$
 (5)

Since the orthogonal projection theorem gives a unique minimizer in terms of the closest point in S to \mathbf{b} ,

$$\|\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}\| < \|\mathbf{b} - \mathbf{y}\|$$
 для всех $\mathbf{y} \in S$, $\mathbf{y} \neq \mathbf{A}\hat{\mathbf{x}}$ (6)

Доказательство. (cont.) Pick any $\mathbf{x} \in \mathbb{R}^K$ such that $\mathbf{x} \neq \hat{\mathbf{x}}$

We have $\mathbf{A}\mathbf{x} \in S$

In addition, since $x \neq \hat{x}$, u since A has full column rank, it must be that $Ax \neq A\hat{x}$ (ex. ??)

Hence

$$\|\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}\| < \|\mathbf{b} - \mathbf{A}\mathbf{x}\|$$
 для всех $\mathbf{x} \in \mathbb{R}^K$, $\mathbf{x}
eq \hat{\mathbf{x}}$

In other words, $\hat{\mathbf{x}}$ is the unique solution to (3)

In (4), the matrix $({\bf A}^{\sf T}{\bf A})^{-1}{\bf A}^{\sf T}$ называется the pseudoinverse of ${\bf A}$

если K=N, then the least squares solution $\hat{m{x}}$ in (4) reduces to:

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

What happens если the columns of ${f A}$ are not linearly independent?

- the set colspace A is still a linear subspace и the orthogonal projection theorem still gives us a closest point Pb to b in colspace A
- ullet since $\mathbf{Pb} \in \operatorname{colspace} \mathbf{A}$, there still exists a vector $\hat{\mathbf{x}}$ such that $Pb = A\hat{x}$
- but there exists an infinity of such vectors

See Exercise ??

QR Decomposition

The QR decomposition of a given matrix ${\bf A}$ is a product of the form ${\bf Q}{\bf R}$

- first matrix has orthonormal columns и
- the second is upper triangular

Applications include least squares problems u the computation of eigenvalues

Теорема. (??) если **A** is an $N \times K$ matrix with full column rank, then there exists a factorization $\mathbf{A} = \mathbf{O}\mathbf{R}$ where

- 1. **R** is $K \times K$, upper triangular и nonsingular, и
- 2. **O** is $N \times K$, with orthonormal columns

See page ?? in ET for a proof

0.00

Given the decomposition $\mathbf{A} = \mathbf{Q}\mathbf{R}$, the least squares solution $\hat{\mathbf{x}}$ defined in (4) can also be written as:

$$\hat{\mathbf{x}} = \mathbf{R}^{-1} \mathbf{Q}^{\mathsf{T}} \mathbf{b}$$

See Ex. ??

Premultiplying by \mathbf{R} :

$$R\hat{x} = Q^{\mathsf{T}}b$$

Diagonalisation и Spectral Theory

если $f\colon A\to A$ и $g\colon B\to B$, then g is said to be **topologically conjugate** to f whenever there exists a continuous bijection $\tau\colon B\to A$ such that

$$f = \tau \circ g \circ \tau^{-1}$$

Can be beneficial если g is somehow simpler than f

A square matrix ${f A}$ is said to be similar to another matrix ${f B}$ если there exists an invertible matrix ${f P}$ such that ${f A}={f P}{f B}{f P}^{-1}$

Puc.: A is similar to B

если ${f A}$ is similar to a diagonal matrix, then ${f A}$ is called diagonalizable

We are interested in similarity to simple matrices, и diagonal matrices are the simplest kind

000

000

Факт. (??) если **A** is similar to **B**, then \mathbf{A}^t is similar to \mathbf{B}^t для всех $t \in \mathbb{N}$

Пример. We want to calculate \mathbf{A}^t for some given $t \in \mathbb{N}$ если $\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$ for some $\mathbf{\Lambda} = \mathrm{diag}(\lambda_1, \dots, \lambda_N)$, then by fact ?? и fact ??, we have

$$\mathbf{A}^t = \mathbf{P}\operatorname{diag}(\lambda_1^t, \dots, \lambda_N^t)\mathbf{P}^{-1}$$

Diagonalization и Eigenvalues

Факт. (??) если $\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$ for some $\mathbf{\Lambda} = \mathrm{diag}(\lambda_1, \ldots, \lambda_N)$, then $(\mathrm{col}_n \mathbf{P}, \lambda_n)$ is an eigenpair of \mathbf{A} for each n

Доказательство. Observe $\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$ implies $\mathbf{A} \mathbf{P} = \mathbf{P} \mathbf{\Lambda}$

Equating the nth column on each side gives

$$\mathbf{A}\mathbf{p}_n = \lambda_n \mathbf{p}_n$$

Where $\mathbf{p}_n := \operatorname{col}_n \mathbf{P}$

Note \mathbf{p}_n is not the zero vector because \mathbf{P} is invertible

But when is A diagonalizable?

Факт. (3.3.7) An $N \times N$ matrix **A** is diagonalizable если и only если it has N linearly independent eigenvectors

000

In some cases, we can get an even simpler matrix decomposition если the matrix \mathbf{P} has orthogonal columns

These kinds of matrices are called orthogonal matrices

Факт. (??) если \mathbf{Q} и \mathbf{P} are $N \times N$ orthogonal matrices, then

- 1. \mathbf{O}^{T} is orthogonal и $\mathbf{O}^{-1} = \mathbf{O}^{\mathsf{T}}$.
- 2. **OP** is orthogonal, и
- 3 $\det \mathbf{Q} \in \{-1, 1\}$

если $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1}$ и \mathbf{Q} has orthonormal columns, then

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$$

Clearly, **A** must be symmetric. Next theorem shows symmetry of **A** is also sufficient

Teopema. (??) если A is symmetric, then A can be diagonalized as $A = Q\Lambda Q^T$, where Q is an orthogonal matrix Π is the diagonal matrix formed from the eigenvalues of A

 $\mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^\mathsf{T}$ называется the symmetric eigenvalue decomposition of \mathbf{A} – action of \mathbf{A} on an $N\times 1$ vector \mathbf{x} :

$$\mathbf{A}\mathbf{x} = \sum_{n=1}^{N} \lambda_n(\mathbf{u}_n^{\mathsf{T}}\mathbf{x})\mathbf{u}_n$$

where λ_n is the *n*th eigenvalue of **A** \mathbf{u} $\mathbf{u}_n = \operatorname{col}_n \mathbf{Q}$

Compare with
$$\mathbf{x} = \sum_{n=1}^{N} (\mathbf{u}_{n}^{\mathsf{T}} \mathbf{x}) \mathbf{u}_{n}$$

Матрицы и Линейные уравнения

Факт. (??) если A is nonnegative definite, then \sqrt{A} exists и equals $\mathbf{Q}\sqrt{\Lambda}\mathbf{Q}^{\mathsf{T}}$. The matrix $\sqrt{\Lambda}$ is given by $\mathrm{diag}(\sqrt{\lambda_1},\ldots,\sqrt{\lambda_N})$

 Φ акт. (??) если **A** is positive definite, then there exists a nonsingular, upper triangular matrix \mathbf{R} such that $\mathbf{A} = \mathbf{R}^{\mathsf{T}}\mathbf{R}$

This decomposition называется the Cholesky decomposition

000

Доказательство. (Cholesky decomposition) We can write:

$$\boldsymbol{A} = \boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{\intercal} = \boldsymbol{Q}\sqrt{\boldsymbol{\Lambda}}\sqrt{\boldsymbol{\Lambda}}\boldsymbol{Q}^{\intercal} = (\sqrt{\boldsymbol{\Lambda}}\boldsymbol{Q}^{\intercal})^{\intercal}\sqrt{\boldsymbol{\Lambda}}\boldsymbol{Q}^{\intercal}$$

Then apply the QR decomposition to $\sqrt{\Lambda} \mathbf{Q}^{\mathsf{T}}$:

$$\sqrt{\Lambda}Q^{\intercal} = \tilde{Q}R$$

where R is nonsingular u upper triangular, u \tilde{Q} has orthonormal columns

Because the columns of $\tilde{\mathbf{Q}}$ are orthonormal,

$$\mathbf{A} = (\tilde{\mathbf{Q}}\mathbf{R})^{\mathsf{T}}\tilde{\mathbf{Q}}\mathbf{R} = \mathbf{R}^{\mathsf{T}}\tilde{\mathbf{Q}}^{\mathsf{T}}\tilde{\mathbf{Q}}\mathbf{R} = \mathbf{R}^{\mathsf{T}}\mathbf{R}$$

Norms и Continuity

Given vector sequence $\{\mathbf{x}_n\}$ in \mathbb{R}^K и any point $\mathbf{x} \in \mathbb{R}^K$, we say that $\{\mathbf{x}_n\}$ converges to \mathbf{x} и write $\mathbf{x}_n \to \mathbf{x}$ если, для любых $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that $\|\mathbf{x}_n - \mathbf{x}\| < \epsilon$ whenever $n \geq N$

Equivalently, the real-valued sequence $z_n := \|\mathbf{x}_n - \mathbf{x}\|$ converges to zero in \mathbb{R} as $n \to \infty$

000

- 1. если $\mathbf{x}_n \to \mathbf{x}$ и $\mathbf{y}_n \to \mathbf{y}$, then $\mathbf{x}_n + \mathbf{y}_n \to \mathbf{x} + \mathbf{y}$.
- 2. если $\mathbf{x}_n \to \mathbf{x}$ и $\alpha \in \mathbb{R}$, then $\alpha \mathbf{x}_n \to \alpha \mathbf{x}$.
- 3. $\mathbf{x}_n \to \mathbf{x}$ если и only если $\mathbf{a}^\mathsf{T} \mathbf{x}_n \to \mathbf{a}^\mathsf{T} \mathbf{x}$ для всех $\mathbf{a} \in \mathbb{R}^K$.

We want to extend notion of convergence to matrices

The matrix norm of $N \times K$ matrix A:

$$\|\mathbf{A}\| := \max \left\{ \|\mathbf{A}\mathbf{x}\| : \mathbf{x} \in \mathbb{R}^K, \|\mathbf{x}\| = 1 \right\}$$
 (7)

The value of the matrix norm is not easy to solve for in general However, the matrix norm behaves like the vector norm Diag

- 1. $\|\mathbf{A}\| > 0$ и $\|\mathbf{A}\| = 0$ если и only если all entries of **A** are zero.
- 2. $\|\alpha \mathbf{A}\| = |\alpha| \|\mathbf{A}\|$ для любых scalar α ,
- 3. $\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$, и
- 4 $\|AB\| \le \|A\| \|B\|$

Факт. (??) для любых $J \times K$ matrix **A** with elements a_{jk} , we have

$$\|\mathbf{A}\| \le \sqrt{JK} \max_{jk} |a_{jk}|$$

если every element of A is close to zero then ||A|| is also close to zero

000

Neumann Series

Later on, we study dynamic systems of the form

$$\mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t + \mathbf{b}$$

Does there exist a "stationary" vector $\mathbf{x} \in \mathbb{R}^N$, in the sense that $\mathbf{x}_t = \mathbf{x}$ implies $\mathbf{x}_{t+1} = \mathbf{x}$?

We seek an $\mathbf{x} \in \mathbb{R}^N$ that solves the system of equations

$$\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b}$$
 (A is $N \times N$ in b is $N \times 1$) (8)

000

Paccмотрим the scalar case x = ax + b

если |a| < 1, then there is a unique solution

$$\bar{x} = \frac{b}{1-a} = b \sum_{k=0}^{\infty} a^k$$

The Neumann series Lemma helps generalise to \mathbb{R}^N

Теорема. (??) если ${f A}$ is square и $\|{f A}^j\|<1$ for some $j\in \mathbb{N}$, then ${f I}-{f A}$ is invertible, и

$$(\mathbf{I} - \mathbf{A})^{-1} = \sum_{i=0}^{\infty} \mathbf{A}^{i}$$

When the condition of the Neumann series lemma holds, (8) has the unique solution

$$\bar{\mathbf{x}} = (\mathbf{I} - \mathbf{A})^{-1}\mathbf{b} = \sum_{i=0}^{\infty} \mathbf{A}^i \mathbf{b}$$

To test the condition, we use the **spectral radius** of **A**:

$$\varrho(\mathbf{A}) := \max\{|\lambda| : \lambda \text{ is an eigenvalue of } \mathbf{A}\}$$

 $|\lambda|$ is the **modulus** of the possibly complex number λ

Факт. если $\varrho(\mathbf{A}) < 1$, then $\|\mathbf{A}^j\| < 1$ for some $j \in \mathbb{N}$

Why is $\rho(\mathbf{A}) < 1$ is sufficient?

We need $\sum_{i=0}^{t} \mathbf{A}^{i}(\mathbf{I} - \mathbf{A})$ to close be I for large t

We have:

$$\sum_{i=0}^{t} \mathbf{A}^{i} (\mathbf{I} - \mathbf{A}) = \sum_{i=0}^{t} \mathbf{A}^{i} - \sum_{i=0}^{t} \mathbf{A}^{i+1} = \mathbf{I} - \mathbf{A}^{t+1}$$

$$A = P\Lambda P^{-1}$$

where Λ is a diagonal matrix containing the eigenvalues $\lambda_1, \ldots, \lambda_N$ of A on its principal diagonal

Now, use fact ??,

$$\mathbf{A}^t = \mathbf{P} \begin{pmatrix} \lambda_1^t & 0 & \cdots & 0 \\ 0 & \lambda_2^t & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_N^t \end{pmatrix} \mathbf{P}^{-1}$$

если $\varrho(\mathbf{A}) < 1$, then $|\lambda_n| < 1$ для всех n, и hence $\lambda_n^t o 0$ as $t \to \infty$. It follows that $\mathbf{A}^t \to \mathbf{0}$