Introduction to Optimization

CO 255

Ricardo Fukasawa

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the lectures of CO 255 during Winter 2020 as well as other related resources. I do not make any warranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

For any questions, send me an email via https://notes.sibeliusp.com/contact/.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Sibelius Peng

Contents

Preface							
0	Info)	3				
1	Introduction						
2	Linear Optimization						
	2.1	Determining Feasibility	7				
	2.2	Fourier-Motzkin Elimination	8				
	2.3	Certifying Optimality	13				
	2.4	Possible Outcomes	16				
	2.5	Duals of generic LPs	16				
		2.5.1 Cheat Sheet	17				
	2.6	Other interpretations of dual	19				

0

Info

Ricardo: MC 5036. OH: M $1{:}30$ - $3\mathrm{pm}$

TA: Adam Brown: MC 5462. OH: F 10-11am

Books (not required)

• Intro to Linear Opt. Bertsimas

• Int Programming. Conforti

Grading

• assns: 20% (≈ 5)

• mid: 30% (Feb 11 in class)

• final: 50%

Introduction

Given a set S, and a function $f: S \to \mathbb{R}$. An optimization problem is:

$$\max_{s.t.} f(x)$$
subject to (OPT)

- \bullet S feasible region
- A point $\overline{x} \in S$ is a feasible solution
- f(x) is objective function

(OPT) means: "Find a feasible solution x^* such that $f(x) \leq f(x^*), \forall x \in S$ "

- Such x^* is an **optimal solution**
- $f(x^*)$ is optimal value

Other ways to write (OPT):

$$\max\{f(x), x \in S\}$$
$$\max_{x \in S} f(x)$$

Analogous problem

$$\min f(x)$$

$$s.t. \ x \in S$$

Note

$$\max_{s.t.} f(x) = -1 \begin{pmatrix} \min_{s.t.} -f(x) \\ s.t. & x \in S \end{pmatrix}$$

Problem x^* may not exist

a) Problem is unbounded:

$$\forall M \in \mathbb{R}, \exists \overline{x} \in S, \ s.t. \ f(\overline{x}) > M$$

- b) $S = \phi$, i.e. (OPT) is **INFEASIBLE**
- c) There may not exist x^* achieving supremum.

Example:

$$\begin{array}{ll} \max & x \\ \text{s.t.} & x < 1 \end{array}$$

supremum

$$\sup\{f(x): x \in S\} = \begin{cases} +\infty & \text{if OPT unbounded} \\ -\infty & \text{if } S = \emptyset \\ \min\{x: x \ge f(x), \forall x \in S\} & \text{otherwise} \end{cases}$$

always exist and are well-defined

infimum

$$\inf\{f(x) : x \in S\} = -1 \cdot \sup\{-f(x) : x \in S\}$$

From this point on, we will abuse notation and say $\max\{f(x):x\in S\}$ is $\sup\{f(x):x\in S\}$.

One way to specify that I want an opt. sol. (if exists) is

$$x^* \in \operatorname{argmax} \{ f(x) : x \in S \}$$

Linear Optimization (Programming) (LP)

$$S = \{ x \in \mathbb{R}^n : Ax \le b \}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $f(x) = c^T x$, $c \in \mathbb{R}^n$.

$$\max_{x} c^{T} x$$

$$s.t. \ Ax \le b$$
(LP)

Note

$$A = \begin{pmatrix} | & & | \\ A_1 & \cdots & A_n \\ | & & | \end{pmatrix} \qquad A = \begin{pmatrix} - & a_1^T & - \\ & \vdots & \\ - & a_m^T & - \end{pmatrix}$$

Clarifying

$$u, v \in \mathbb{R}^n$$
, $u \le v \iff u_j \le v_j, \forall j \in 1, \dots, n$

Note

 $u \not\leq v$ is not the same as u > v

$$\binom{1}{0} \not\leq \binom{0}{1}$$

Example:

$$\begin{array}{cccc} \max & 2x_1 + & 0.5x_2 \\ s.t. & x_1 & \leq 2 \\ & x_1 + & x_2 \leq 2 \\ & x & \geq 0 \end{array}$$

• Strict ineq. not allowed

halfspace, hyperplane, polyhedron

Let $h \in \mathbb{R}^n$, $h_0 \in \mathbb{R}$.

 $\{x \in \mathbb{R}^n : h^T \leq h_0\}$ is a halfspace.

 $\{x \in \mathbb{R}^n : h^T = h_0\}$ is a hyperplane.

 $Ax \le b$ is a **polyhedron** (i.e. intersection of finitely many halfspaces).

Example:

n products, m resources. Producing $j \in \{1, ..., n\}$ given c_j profit/unit and consumes a_{ij} units of resource $i, \forall i \in \{1, ..., m\}$. There are b_i units available $\forall i \in \{1, ..., m\}$.

$$\max \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \quad \forall i = 1, \dots, m$$

$$x > 0$$

which is an LP.

2.1 Determining Feasibility

Given a polyhedron

$$P = \{ x \in \mathbb{R}^n : Ax < b \}$$

either find $\overline{x} \in P$ or show $P = \emptyset$.

Idea In 1-d, easy. \rightarrow Reduce problem in dimension n to one in dimension n-1.

Notation Let
$$S = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^p : Ax + Gy \leq b\}$$
, then $\operatorname{proj}_x S := \{x \in \mathbb{R}^n : \exists y \text{ so that } (x, y) \in S\}$

is the (orthogonal) projection if S onto x.

We will find if $P = \emptyset$ by looking at $\operatorname{proj}_{x_1,\dots,x_{n-1}}$ (P)

Fourier-Motzkin Elimination 2.2

Call a_{ij} entries of A. Let

$$M := \{1, 2, \dots, m\}$$

$$M^{+} := \{i \in M : a_{in} > 0\}$$

$$M^{-} := \{i \in M : a_{in} < 0\}$$

$$M^{0} := \{i \in M : a_{in} = 0\}$$

For $i \in M^+$ (1):

$$a_i^T \le b_i \iff \sum_{j=1}^n a_{ij} x_j \le b_i \iff \sum_{j=1}^{n-1} \frac{a_{ij}}{a_{in}} x_j + x_n \le \frac{b_i}{a_{in}}, \quad \forall i \in M^+$$

For $i \in M^-$ (2):

$$a_i^T x \le b_i \iff \sum_{j=1}^{n-1} \frac{a_{ij}}{a_{in}} x_j - x_n \le \frac{b_i}{-a_{in}}, \quad \forall i \in M^-$$

For $i \in M^0$ (3):

$$a_i^T x \le b_i \iff \sum_{j=1}^{n-1} a_{ij} x_j \le b_i, \quad \forall i \in M^0$$

$$P = \{x \in \mathbb{R}^n : (1)(2)(3)\}$$

Define (4):

$$\sum_{i=1}^{n-1} \left(\frac{a_{ij}}{a_{in}} - \frac{a_{kj}}{a_{kn}} \right) x_j \le \frac{b_i}{a_{in}} - \frac{b_i}{a_{kn}}, \quad \forall i \in M^+, \forall k \in M^-$$

Theorem 2.1

$$(\overline{x}_1, \dots, \overline{x}_{n-1})$$
 satisfies (3), (4) $\iff \exists \overline{x}_n : (\overline{x}_1, \dots, \overline{x}_n) \in P$

$$\iff \text{If } (\overline{x}_1, \dots, \overline{x}_n) \text{ satisfies } (1), (2), (3) \text{ then } (\overline{x}_1, \dots, \overline{x}_{n-1}) \text{ satisfies } (3) \text{ and } \\ \text{adding } (1), (2) \implies (\overline{x}_1, \dots, \overline{x}_{n-1}) \text{ satisfies } (4) \\ \implies \text{If } (\overline{x}_1, \dots, \overline{x}_{n-1}) \text{ satisfies } (4)$$

$$\implies$$
 If $(\overline{x}_1, \dots, \overline{x}_{n-1})$ satisfies (4)

$$\sum_{j=1}^{n-1} \frac{a_{ij}}{a_{in}} \overline{x}_j - \frac{b_i}{a_{in}} \le \sum_{j=1}^{n-1} \frac{a_{kj}}{a_{kn}} \overline{x}_j - \frac{b_k}{a_{kn}}, \quad \forall i \in M^+, k \in M^-$$

Let

$$\overline{x}_n := \max_{i \in M^+} \left\{ \sum_{j=1}^{n-1} \frac{a_{ij}}{a_{in}} \overline{x}_j - \frac{b_i}{a_{in}} \right\}$$

$$\implies \sum_{j=1}^{n-1} \frac{a_{ij}}{a_{in}} \overline{x}_j - \frac{b_i}{a_{in}} \le -\overline{x}_n, \quad \forall i \in M^+$$

and

$$-\overline{x}_n \le \sum_{j=1}^{n-1} \frac{a_{kj}}{a_{kn}} \overline{x}_j - \frac{b_k}{a_{kn}}, \quad \forall k \in M^-$$

$$\implies (\overline{x}_1, \dots, \overline{x}_n) \in P$$

Note

Proof assumes M^+, M^- are nonempty. But statement holds regardless.

(if M^+ or $M^- = \emptyset$ then (4) yields no constraints)

Fourier-MotzKin

- \bullet $A^n = A \cdot b^n = b$
- given A^i, b^i obtain A^{i-1}, b^{i-1} (A^{i-1} has one less column than A^i) by applying the steps described

$$P_i := \{ x \in \mathbb{R}^i : A^i x \le b^i \}$$

then

$$P_{i-1} = \operatorname{proj}_{x_1, \dots, x_{i-1}} P_i$$

and $P_{i-1} = \emptyset \iff P_i = \emptyset$.

• Keep applying projection until i = 1.

$$P_0 = \varnothing \iff P_n = P = \varnothing$$

Let

$$P_i^n = P_i \times \mathbb{R}^{n-i} = \{x \in \mathbb{R}^n (A^i, 0) x \le b^i\}$$

not hard to see $P_i^n = \emptyset \iff P_i = \emptyset$

Notice that

$$P_0 = \varnothing \iff P_0^n = \varnothing, P_0^n = \{0 \le b^0\}$$

Example:

$$P_2 = \begin{cases} x_1 & +x_2 & \le 1 \\ x \in \mathbb{R}^2 : & -x_1 & \le 0 \\ & -x_2 & \le -2 \\ & -3x_1 & -3x_2 & \le -6 \end{cases}$$

draw the graph, clearly empty $M^+\colon \tfrac12 x_1 + x_2 \le \tfrac12$ $M^-\colon -x_2 \le -2 \qquad -x_1 - x_2 \le -2$ $M^0\colon -x_1 \le 0$

$$P_{1} = \begin{cases} -x_{1} & \leq 0 \\ x_{1} \in \mathbb{R} : \frac{1}{2}x_{1} & \leq -\frac{3}{2} \\ -\frac{1}{2}x_{1} & \leq -\frac{3}{2} \end{cases}$$

 M^+ : $x_1 \le -3$ M^- : $-x_1 \le 0$ and $-x_1 \le -3$ $P_0^2 =$

$$P_0^2 = \left\{ x \in \mathbb{R}^2 : \begin{array}{c} 0 \le -3 \\ 0 \le -6 \end{array} \right\} = \emptyset$$

Here $b^0 = \begin{pmatrix} -3 \\ -6 \end{pmatrix}$

Remark:

Inequality in P_i^n :

- All inequalities are obtained by a nonnegative combination of inequality in $P_{i+1}^n \implies$ all nonnegative combination of inequalities in P.
- If all A, b are rational then so are all A^i, b^i
- If $b = 0, b_i = 0, \forall i$

Theorem 2.2: Farkas' Lemma

$$u^T A = 0$$

$$P = \{x \in \mathbb{R}^n : Ax \le b\} = \emptyset \iff \exists u \in \mathbb{R}^m : u^T b < 0$$

Proof:

 (\longleftarrow) Suppose \overline{x} satisfies $A\overline{x} \leq b$.

$$0 = u^T A \overline{x} < u^T b < 0$$

which is impossible.

 (\Longrightarrow) If $P=\varnothing$. Apply Fourier-Motzkin until we get

$$P_0^n = \varnothing = \{x \in \mathbb{R}^n : 0x \le b^0\}$$

i.e. there exists j for which $b_i^0 < 0$.

If we look at corresponding constraint in P_0^n is

$$0^T x \leq b_i^0$$

which can be obtained by a vector u such that $u^TA=0, u^Tb=b_j^0, u\geq 0.$

Farkas' Lemma (alternate statement)

Exactly one of the following has a solution:

a)
$$Ax \leq b$$

$$u^T A = 0$$

b)
$$u^T b < 0$$

$$u \ge 0$$

Farkas' Lemma (Different Form)

Exactly one of the following has a solution:

$$Ax = b$$

$$u^T A \ge 0$$

$$u^T b < 0$$

Proof:

(Sketch)

$$P = \left\{ x : \frac{Ax = b}{x \ge 0} \right\} = \left\{ x : \underbrace{\begin{pmatrix} A \\ -A \\ -I \end{pmatrix}}_{A'} x \le \underbrace{\begin{pmatrix} b \\ -b \\ -0 \end{pmatrix}}_{b'} \right\}$$

Apply original Farkas' Lemma to get $P = \emptyset \iff \exists u_1 \in \mathbb{R}^m, u_2 \in \mathbb{R}^m, v \in \mathbb{R}^n$:

$$u_1^TA - u_2^TA - v = 0$$

$$u_1^Tb - u_2^Tb < 0$$

$$u_1, u_2, v \ge 0$$
 Let $u = (u_2 - u_2)$
$$u^TA - v = 0 \implies u^TA \ge 0, \quad u^Tb < 0$$
 consider a linear programming (LP):

$$u^T A - v = 0 \implies u^T A > 0, \quad u^T b < 0$$

Consider a linear programming (LP):

$$\max_{s.t.} c^T x$$

$$s.t. Ax \le b$$
 (LP)

Theorem 2.3: Fundamental Theorem of Linear Programming

- (LP) has exactly one of 3 outcomes:
- a) Infeasible
- b) Unbounded
- c) There exists an optimal solution.

Proof:

Let's assume a), b) don't hold.

If n = 1, then (LP) has an optimal solution. (Why?)

Else, define

$$\max z$$

$$s.t. \ z - c^T x \le 0 \qquad (LP')$$

$$Ax \le b$$

(LP') is also not in case a) or b). (Why?)

Also if (x^*, z^*) is an optimal solution to (LP'), then x^* is an optimal solution to (LP). (Why?)

Apply Fourier-Motzkin to

$$\left\{ (x,z) : \begin{array}{c} z - c^T x \le 0 \\ Ax \le b \end{array} \right\}$$

Until we are left with a polyhedron

$$\{z \in \mathbb{R} : A'z \le b'\}$$

Now max z s.t $A'z \le b'$ is not cases a) or b). (Why?)

 \rightarrow can get an optimal solution z^* to such problem. Apply Fourier-Motzkin back to get (x^*, z^*) optimal solution to (LP'). (Why?)

2.3 Certifying Optimality

$$\max_{s.t} c^T x \\ s.t \quad Ax \le b$$
 (LP)

and let $\overline{x} \in P = \{x : Ax \leq b\}$

Question Can we certify that \overline{x} is optimal?

Example:

$$\max 2x_1 + x_2$$

$$x_1 + 2x_2 \le 2$$
s.t. $x_1 + x_2 \le 2$

$$x_1 - x_2 \le 0.5$$

Consider $\overline{x} = (0,1)^T$ is clearly NOT optimal.

 $x^* = (1, 0.5)^T$ and $c^T x^* = 2.5$. Any feasible solution satisfies

$$\begin{array}{rrrr} x_1 + 2x_2 & \leq 2 & \times 1/3 \\ x_1 + x_2 & \leq 2 & \times 1 \\ + & x_1 - x_2 & \leq 0.5 & \times 2/3 \\ \hline & 2x_1 + x_2 & \leq 3 & \end{array}$$

Instead do $1 \times 1st$ constraint $+ 1 \times 3rd$ constraint $\implies 2x_1 + x_2 \le 2.5$

In general:

$$\begin{array}{cccc} x_1 + 2x_2 & \leq 2 & \times y_1 \\ x_1 + x_2 & \leq 2 & \times y_2 \\ & + x_1 - x_2 & \leq 0.5 & \times y_3 \\ (y_1 + y_2 + y_3)x_1 + (2y_1 + y_2 - y_3)x_2 \leq 2y_1 + 2y_2 + 0.5y_3 \end{array}$$

As long as $y_1, y_2, y_3 \ge 0$ and

$$y_1 + y_2 + y_3 = 2$$
$$2y_1 + y_2 - y_3 = 1$$

This leads to the following linear program:

min
$$2y_1 + 2y_2 + 0.5y_3$$

 $y_1 + y_2 + y_3 = 2$
s.t. $2y_1 + y_2 - y_3 = 1$
 $y_1, y_2, y_3 \ge 0$

This is called the dual LP.

In general:

$$\max_{s.t.} c^T x$$

$$s.t. Ax \le b$$
 (P)

Dual of (P)

Remark:

We call (P) primal LP.

Theorem 2.4: Weak Duality

Let \overline{x} feasible for (P), \overline{y} feasible for (D). Then $c^T x \leq b^T y$.

Proof:

$$c^T \overline{x} = \overline{y}^T (A \overline{x}) \le \overline{y}^T b$$

where we used $A\overline{x} < b$ and $\overline{y} > 0$.

Corrollary 2.5

Several results:

- If (P) is unbounded then (D) is infeasible.
- If (D) is unbounded then (P) is infeasible.

Note

(P) and (D) can both be infeasible.

• If \overline{x} is feasible for (P) \overline{y} feasible for (D) $c^T\overline{x} = b^T\overline{y}$, then \overline{x} optimal for (P), \overline{y} optimal for (D).

Theorem 2.6: Strong Duality

 x^* is optimal for (P) $\iff \exists y^*$ feasible for (D) such that $c^T x^* = b^T y^*$.

Proof:

$$(\iff)$$
 \checkmark (\implies) Is (D) infeasible? Suppose $\left\{y \in \mathbb{R}^n : A^T y = c \atop y \ge 0\right\} = \varnothing$

(Alternate version of Farkas' Lemma) $\exists u: u^T A \geq 0 \iff \exists d: Ad \leq 0$ $c^T d > 0$

Take look at $x' = x^* + d$, then

$$Ax' = Ax^* + Ad \le b$$
$$c^T x' = c^T x^* + c^T d > c^T x^*$$

Contradiction. Thus (D) has an optimal solution y^* .

Now let $\gamma = b^T y^*$, and let $\theta := \left\{ x \in \mathbb{R}^n : \begin{matrix} Ax \leq b \\ -c^T x \leq -\gamma \end{matrix} \right\}$.

If $\theta = \emptyset$, by Farkas'

Case 1: $\overline{\lambda} > 0$.

Let $y' = \frac{\overline{y}}{\overline{\lambda}}$. Then we have

$$A^T y' = A^T \frac{\overline{y}}{\overline{\lambda}} = c$$
 and $b^T y' = b^T \frac{\overline{y}}{\overline{\lambda}} < \gamma$ and $y' = \frac{\overline{y}}{\overline{\lambda}} \ge 0$

Contradicts optimality of y^* .

$$A^Ty=0$$

Case 2: $\overline{\lambda} = 0$. Then $b^T y < 0$

$$\overline{y} \ge 0$$

Now we can do the same thing previously. Let $y' = y^* + \overline{y}$, then

$$A^T y' = A^T y^* + A^T \overline{y} = c$$

and

$$y' = y^* + \overline{y} \ge 0$$
$$b^T y' = b^T y^* + b^T \overline{y} < b^T y^*$$

Contradicts optimality of y^* .

Thus $\theta \neq \emptyset$.

Let
$$\overline{x} \in \theta$$

$$c^T x^* \underbrace{\leq}_{\text{weak duality}} b^T y^* = \gamma \underbrace{\leq}_{\overline{x} \in \theta} c^T \overline{x} \leq c^T x^*$$

where the last inequality is because \overline{x} feasible for (P), x^* optimal for (P).

2.4 Possible Outcomes

See here.

2.5 Duals of generic LPs

$$\max 2x_1 + 3x_2 - 4x_3$$

$$x_1 + 7x_3 \le 5$$

$$2x_2 - x_3 \ge 3$$
s.t.
$$x_1 + x_3 = 8$$

$$x_2 \le 6$$

$$x_1 \ge 0$$

$$x_2 \le 0$$

and dual

min
$$(5, -3, 8, -8, 6, 0, 0)y$$

s.t. $\begin{pmatrix} 1 & 0 & 1 & -1 & 0 & -1 & 0 \\ 0 & -2 & 0 & 0 & 1 & 0 & 1 \\ 7 & 1 & 1 & -1 & 0 & 0 & 0 \end{pmatrix} y = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}$ and $y \ge 0$ (D_1)

min
$$(5, -3, 8, -8, 6)y$$

s.t. $\begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & -2 & 0 & 0 & 1 \\ 7 & 1 & 1 & -1 & 0 \end{pmatrix} y \stackrel{\geq}{\leq} \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}$ and $y \geq 0$ (D_2)

Claim (y_1^*, \ldots, y_5^*) is optimal for $(D_2) \iff (y_1^*, \ldots, y_5^*, y_6^*, y_7^*)$ optimal for (D_1) with

$$y_6^* = y_1^* + y_3^* - y_4^* - 2$$

$$y_7^* = 3 - (-2y_2^* + y_5^*)$$

min
$$(5,3,8,6)y$$

s.t. $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 7 & -1 & 1 & 0 \end{pmatrix} y \stackrel{\geq}{\leq} \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}$ and $y_1 \geq 0, y_2 \leq 0$ $y_4 \geq 0$ (D_3)

Claim Opt value of (D_2) and (D_3) are same.

In general

2.5.1 Cheat Sheet

Here or

Primal (m	ax)	Dual (min)	
Constraint	\ \ \ \	≥ 0 ≤ 0 free	Variable
Variable	≥ ≤ free		Constraint

Remark:

This is not symmetric... The way you can remember it is by thinking natural variables in real life, like you cannot have negative number of cars and so on...

Q What if you start with a minimization LP as primal?

Example:

min
$$x_1 - x_2$$

 $2x_1 + 3x_2 \le 5$
s.t. $x_1 - x_2 \ge 3$
 $x_1 + 5x_2 = 7$
 $x_1 \ge 0, x_2 \le 0$ (P)

Rewrite as:

$$-1 \times \begin{pmatrix} \max & -x_1 + x_2 \\ \downarrow & \\ \text{s.t.} & \dots \end{pmatrix}$$

Will lead to finding dual:

$$\begin{array}{ll} \max & 5y_1 + 3y_2 + 7y_3 \\ \downarrow & \\ & 2y_1 + y_2 \le 1 \\ \text{s.t.} & 3y_1 - y_2 + 5y_3 \ge -1 \\ & y_1 \le 0, y_2 \ge 0, y_3 \text{ free} \end{array}$$

Also

- Weak duality holds. If \overline{x} feasible for (P), \overline{y} feasible for (D), then $c^T \overline{x} \geq b^T \overline{y}$.
- Strong duality holds

Note

The dual of the dual of (P) is (P).

Example:

Given a simple undirected graph G = (V, E). $M \subseteq E$ is a matching if every vertex $v \in V$ is incident to ≤ 1 edge in M.

See examples of matching in CO 342 or MATH 249.

Max cardinality matching

Find matching M with largest |M|.

Define
$$x_e = \begin{cases} 1, & \text{if } e \in M \\ 0, & \text{otherwise} \end{cases}$$

$$\max \sum_{e \in E} x_e$$

$$\downarrow \qquad \qquad \sum_{e \in \delta(v)} x_e \le 1, \quad \forall v \in V$$
s.t.
$$0 \le x_e, \quad \forall e \in E$$

where $\delta(v) = \text{set of edges in } E \text{ incident to } v.$

$$\min \sum_{v \in V} y_v$$

$$\downarrow$$
s.t.
$$y_u + y_v \ge 1, \qquad \forall e = uv \in E$$

2.6 Other interpretations of dual

Example:

				Resources
		Per unit Profit	Per u	nit consumption
		Per unit Pront	A	В
Due duet	1	5	2	3
Product	2	3	4	1
Avai	labl	e Resources	15	10

$$\begin{array}{ll} \max & 5x_1 + 3x_2 \\ \downarrow & \\ & 2x_1 + 4x_2 \leq 15 \\ \text{s.t.} & 3x_1 + x_2 \leq 10 \\ & x \geq 0 \end{array}$$

Suppose somebody wants to buy A, B from me. What is the lowest price I should ask?

Let y_A, y_B be prices:

$$\begin{array}{ll} \min & 15y_A + 10y_B \\ \downarrow & \\ & 2y_A + 3y_B \geq 5 \\ \text{s.t.} & 4y_A + y_B \geq 3 \\ & y \geq 0 \end{array}$$

Example: Zero-Sum

Alice, Bob play game. A: m choices. B: n choices. Alice play i, Bob plays j, Bob pays Alice M_{ij} dollars.

Zero-sum: Amount won by Alice - Amount won by Bob = 0

Let $y \in \mathbb{R}^m_+$, Alice's probability distribution. Let $x \in \mathbb{R}^n_+$, Bob's probability distribution.

Expected Amount Bob pays Alice:

$$\sum_{i=1}^{m} \sum_{j=1}^{n} y_i M_{ij} x_j = y^T M_x$$

$$P = \left\{ x \in \mathbb{R}^n : \sum_{x \ge 0} x_j = 1 \right\}$$

$$Q = \left\{ y \in \mathbb{R}^m : \begin{array}{l} \sum y_i = 1 \\ y \ge 0 \end{array} \right\}$$

Alice wants $\max_{y \in Q} \left\{ \min_{x \in P} \ y^T M_x \right\}$. Bob wants $\min_{x \in P} \left\{ \max_{y \in Q} \ y^T M_x \right\}$.

Suppose $\overline{y} \in Q$ is fixed. Bob's problem is

$$\min_{x \in P} \quad \overline{y}^T M_x = \downarrow \\ \sup_{x \in P} \quad \overline{y}^T M_x = \sum_{j=1}^n x_j = 1 \\ x \ge 0$$

This is equivalent to picking smallest number in

$$\left\{ \sum_{i=1}^{m} M_{ij} \overline{y}_{i} \right\}_{j=1}^{n}$$

$$\implies \max_{y \in Q} \min_{x \in P} y^{T} M_{x} = \max_{y \in Q} \left\{ \begin{cases} \max u \\ \downarrow \\ \text{s.t.} \quad u \leq y^{T} M e_{j}, \quad \forall j = 1, \dots, n \end{cases} \right\}$$

$$= \begin{cases} \max u \\ \downarrow \\ \text{s.t.} \quad u \leq y^{T} M e_{j}, \quad \forall j = 1, \dots, n \end{cases}$$

$$\text{s.t.} \quad y^{T} = 1$$

$$u \geq 0$$

Similarly Bob's problem:

$$\min \quad v$$

$$\downarrow \qquad \qquad v \ge e_i^T M_x, \quad \forall i = 1, \dots, m$$
s.t.
$$x^T = 1$$

$$x \ge 0$$

There are x^*, y^* for which strategy values match \rightarrow Nash's Equilibrium.

Now get back to Farkas' Lemma Theorem 2.2. ¹

Proof:

$$\max_{x \in A} 0^T x$$

$$\downarrow \qquad (P)$$
s.t. $Ax \leq b$

¹Rephrase it a little bit: Exactly one of the two has a solution (i) $Ax \leq b$ (ii) $u^T \dots$

(D) is always feasible (u = 0).

If $\exists \overline{x}: A\overline{x} \leq b$, \overline{x} optimal for (P) \implies optimal for (D) has value 0. $\implies \not\exists u$ satisfying (i).

And the converse is also true. \Box

Index

Н	S
halfspace, hyperplane, polyhedron 7	supremum 5
infimum 5	