DATA SCIENCE – UNIVARIATE ANALYSIS

NORMAL DISTRIBUTION

def get_pdf_probability

Functions Code Explanation:-

- def get_pdf_probability(dataset, startrange, endrange):
- This line defines a function named get_pdf_probability. Think of a function like a mini-program within your main program. It takes three inputs:
- dataset: A collection of data (like a list of ages or heights).
- startrange: The beginning of the range you're interested in (e.g., age 10).

endrange: The end of the range (e.g., age 20).

2. from matplotlib import pyplot

 This line imports a tool called pyplot from the matplotlib library. matplotlib is used for creating graphs and plots.

3. from scipy.stats import norm

 This line imports the norm function from the scipy.stats library. The norm function is used for working with the normal distribution (a common bell-shaped curve in statistics).

4. import seaborn as sns

 This line imports the seaborn library, which is built on top of matplotlib and makes it easier to create nice-looking statistical graphs.

- 5. ax = sns.distplot(dataset,
 kde=True, kde_kws={'color': 'blue'},
 color='Green')
- This line creates a histogram (a type of graph) of your dataset using seaborn.
- kde=True adds a smooth curve (called a kernel density estimate) to the histogram.
- kde_kws and color control the colors of the curve and histogram.
- 6. pyplot.axvline(startrange, color='Red')
- This draws a vertical red line on the graph at the startrange value.
- pyplot.axvline(endrange, color='Red')

 This draws another vertical red line at the endrange value.

8. sample = dataset

 This line creates a variable named sample and assigns it the value of dataset. In this case, the sample is the entire dataset.

9. sample_mean = sample.mean()

 This calculates the average (mean) of the data in the sample and stores it in the variable sample_mean.

10. sample_std = sample.std()

 This calculates the standard deviation of the data in the sample and stores it in the variable sample_std. The standard deviation measures how spread out the data is.

- 11. print('Mean=%.3f, Standard
 Deviation=%.3f' % (sample_mean,
 sample_std))
- This line prints the calculated mean and standard deviation to the console (the text output area).
- 12. dist = norm(sample_mean,
 sample_std)
- This creates a normal distribution object (dist) using the calculated mean and standard deviation.
- 13. (one-liner for loop)

 values = [value for value in range(startrange, endrange)]
- This creates a list of numbers from startrange to endrange (not including endrange).

14. probabilities = [dist.pdf(value) for value in values]

 This calculates the probability of each value in the values list occurring in the normal distribution (dist). pdf stands for probability density function.

15. prob = sum(probabilities)

 This calculates the total probability by summing the individual probabilities in the probabilities list.

16. print("The area between range({},{}): {}".format(startrange, endrange, sum(probabilities)))

 This prints the calculated total probability (the area under the curve between the two red lines) to the console.

17. return prob

 This line makes the function return the calculated probability value (prob) when it's called.

Understanding Probability Calculationwith Python

What this code does:

- Visualizes Data: It creates a graph
 (histogram) of your data and highlights a specific range on it.
- 2. Calculates Average and Spread: It computes the average (mean) and spread (standard deviation) of your data.
- Normal Distribution: It uses the normal distribution (bell curve) to model your data.

- 4. Probability Calculation: It calculates the probability of data falling within a specified range on the graph.
- 5. Output: It prints the calculated probability and displays it on the graph.

Key Concepts:

- Functions: Reusable blocks of code that perform specific tasks.
- Data Visualization: Using graphs to understand data better.
- Statistics: Calculating mean and standard deviation to summarize data.
- Normal Distribution: A common pattern in data, used for probability calculations.
- Probability: The chance of an event occurring.