CYK/2023/PH201 Mathematical Physics

Tutorial 8: Group Theory

- 1. Verify that each of the following sets is a group with given group product. Which groups are abelian?
 - (a) The set of all non-zero rationals under multiplication.
 - (b) The set of all complex numbers of unit magnitude under multiplication.
 - (c) The set of all complex roots of the equation $z^n = 1$.
 - (d) The set $\{1, 2, \dots, p-1\}$ under multiplication modulo (p), where p is a prime number.
 - (e) The set of following matrices under matrix multiplication:

$$\left\{\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}, \begin{bmatrix}0 & 1\\ -1 & 0\end{bmatrix}, \begin{bmatrix}-1 & 0\\ 0 & -1\end{bmatrix}, \begin{bmatrix}0 & -1\\ 1 & 0\end{bmatrix}, \begin{bmatrix}1 & 0\\ 0 & -1\end{bmatrix}, \begin{bmatrix}0 & 1\\ 1 & 0\end{bmatrix}, \begin{bmatrix}-1 & 0\\ 0 & 1\end{bmatrix}, \begin{bmatrix}0 & -1\\ -1 & 0\end{bmatrix}\right\}$$

(f) The set of functions under function composition:

$$f_1(x) = x$$
, $f_2(x) = 1 - x$, $f_3(x) = x/(x-1)$, $f_4(x) = 1/x$, $f_5(x) = 1/(1-x)$, $f_6(x) = (x-1)/x$,

- (g) The set $\{T_{ab} \mid a, b \in \mathbb{R}, a \neq 0\}$ of all linear transformations on \mathbb{R} , such that $T_{ab}(x) = ax + b$.
- (h) Set of all isometries on \mathbb{R}^2 that set of all linear transformations that leave the Euclidean norm invariant.
- (i) The set of all real 2×2 matrices $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$, where $ad \neq 0$.
- 2. Does the set of the three matrices

$$E = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

form a group under matrix multiplication? If not, add a minimum number of matrices to complete the group. Prepare the multiplication table.

- 3. Generate the matrix group (under matrix multiplication) which contains the two elements $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$. What is the order of the group? Is it abelian?
- 4. Dihedral group (D_n) is a group generated by two elements A and B subject to relations $A^2 = B^n = (AB)^2 = I$. What is the order of this group? Write down the elements of D_4 .
- 5. Find the subgroup of the symmetric (permutation) group S_4 , which leaves the polynomial $x_1x_2 + x_3 + x_4$ invariant.
- 6. An element a of a group G is said to be conjugate to $b \in G$ if $a = g^{-1}bg$ for some $g \in G$ and is denoted by $a \sim b$.
 - (a) Show that the conjugacy relation is an equivalence relation.
 - (b) Show that all elements of a class have same order. (For $a \in G$, minimal n such that $a^n = e$ is called the order of a)
 - (c) Show that in an abelian group, every element is a class by itself.
 - (d) Show that a normal subgroup contains complete classes.
- 7. Find all conjugacy classes and subgroups of the following groups.

(a) The set of following matrices under matrix multiplication:

$$\left\{\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}, \begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}, \begin{bmatrix}-1 & 0 \\ 0 & -1\end{bmatrix}, \begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}, \begin{bmatrix}1 & 0 \\ 0 & -1\end{bmatrix}, \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}, \begin{bmatrix}-1 & 0 \\ 0 & 1\end{bmatrix}, \begin{bmatrix}0 & -1 \\ -1 & 0\end{bmatrix}\right\}$$

- (b) The group generated by two elements $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$.
- (c) Group generated by σ and ψ with constraints $\sigma^2 = \psi^3 = e$ and $\sigma \psi = \psi^2 \sigma$.
- 8. Show that every subgroup of index 2 is a normal subgroup.
- 9. Show that the dihedral group D_4 is homomorphic to the group $\mathbb{Z}_2 = \{1, -1\}$ under multiplication.
- 10. Show that the group of all positive real numbers under multiplication is isomorphic to the set of real numbers under addition. (Hint: Mapping is logarithm function)
- 11. Construct a homomorphism of the group S_3 onto \mathbb{Z}_2 . What is the kernel of the homomorphism? Find the factor group of S_3 that is isomorphic to \mathbb{Z}_2 .

Note: The permutation group, S_n , is a group of all permutations of n symbols (which we will take as integers from 1 to n). Each element is denoted by $a = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ a_1 & a_2 & \cdots & a_{n-1} & a_n \end{pmatrix}$ or just by $a = (a_1, \ldots, a_n)$ where a_1 to a_n are permutations of 1 to n. The product is given by $a \circ b = (a_{b_1}, a_{b_2}, \ldots, a_{b_n})$. For example:

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$$

And
$$\mathcal{O}(S_n) = n!$$
.

12. Let N be a normal subgroup of G. Show that G is homomorphic to G/N.