CMPE 310 Systems Design and Programming

L8: Chapter 10 – Memory Interface

L8 Objectives

- * To interface memory components to x86 Pentium
- * Diagram how EPROM and SRAM modules are connected to x86 Pentium

8086 - 80386SX (16-bit) memory interface

- These machines differ from the 8088/80188 in several ways:
- * The data bus is 16-bits wide.
- * The IO/M pin is replaced with M/IO (8086/80186) and MRDC and MWTC for 80286 and 80386SX.
- * BHE, Bus High Enable, control signal is added.
- * Address pin A_0 (or BLE, **Bus Low Enable**) is used differently.
- * The 16-bit data bus presents a new problem:
 - The microprocessor must be able to read and write data to any 16-bit location in addition to any 8-bit location.
 - * The data bus and memory are divided into banks:

8086 - 80386SX (16-bit) memory interface

BHE and BLE are used to select one or both:

BHE	BLE	Function
0	0	Both banks enabled for 16-bit transfer
0	1	High bank enabled for an 8-bit transfer
1	0	Low bank enabled for an 8-bit transfer
1	1	No banks selected

- * Bank selection can be accomplished in two ways:
 - * Separate write decoders for each bank (which drive CS) OR
 - * A separate write signal (strobe) to each bank (which drive \overline{WE}).
 - * Note that 8-bit read requests in this scheme are handled by the microprocessor (it selects the bits it wants to read from the 16-bits on the bus).
- Note in either method that A₀ does not connect to memory and bus wire A₁ connects to memory pin A₀, A₂ to A₁, etc.

CMPE 310

16-bit memory interface (separate write strobe)

- * A separate write strobe for each memory bank can be generated to handle bank selection by using a 74LS32 OR gate to combine A₀ or BHE with WR
 - * WR is generated by using the MWTC
 - * Only require 1 decoder to select a 16-bit wide memory

- * See text for Separate Write Strobe scheme plus some examples of the integration of EPROM and SRAM in a complete system.
 - * It is just an application of what we've been covering.

CMPE 310

3

80386DX and 80486 (32-bit) memory interface

- 80386DX and 80486 have 32-bit data buses and therefore 4 banks of memory.
 - * 32-bit, 16-bit and 8-bit transfers are accomplished by different combinations of the bank selection signals BE₃, BE₂, BE₁, BE₀.
 - * The Address bits A_o and A₁ are used within the microprocessor to generate these signals.
 - * They are don't cares in the decoding of the 32-bit address outside the chip (using a PLD such as the PAL 16L8).
 - * The high clock rates of these processors usually require *wait states* for memory access.

80386DX and 80486 (32-bit) memory interface

Separate write strobes are developed, by using a simple 74LS32 OR gate

- A memory interface for 80386DX or 80486 requires four bank write strobes for each memory bank and decoding a 32-bit address.
- There are no integrated decoders, such as the 74LS138, that can easily accommodate a memory interface for the 80386DX or 80486
 - PLD is often used for bank write signal generation because of its sizeable address bits

Pentium (64-bit) memory interface

- * The Pentium, Pentium Pro, Pentium II and III contain a 64-bit data bus.
 - * Therefore, 8 decoders or 8 write strobes are needed as well as 8 memory banks.
 - * The write strobes are obtained by combining the bank enable signals (BEX) with the MWTC signal.
 - * MWTC is generated by combining the M/IO and W/R signals.

CMPE 310

5

Next Time * 10 Interface

CMPE 310