Zestaw 5

Zadanie 1. Niech τ , τ_1 i τ_2 będą momentami stopu. Udowodnij

- \mathcal{F}_{τ} jest σ ciałem,
- $\begin{array}{l} \ jeśli \ \tau \equiv t, \ to \ \mathcal{F}_{\tau} = \mathcal{F}_{t}, \\ \ A \in \mathcal{F}_{\tau} \ wtedy \ i \ tylko \ wtedy, \ gdy \ A \in \mathcal{F} \ i \ \{\tau = t\} \cap A \in \mathcal{F}_{t} \ dla \ dowolnego \end{array}$
- jeśli $\tau_1 \leq \tau_2$, to $\mathcal{F}_{\tau_1} \subset \mathcal{F}_{\tau_2}$.

Zadanie 2. Niech $T = [0, \infty)$ oraz niech τ będzie momentem stopu. Czy momentem stopu jest

- $-\tau^2$,
- $-\tau-1$,
- $-\tau + 1$,
- $-\tau + c, \ c > 0,$
- $-\tau c, \ c > 0.$

Zadanie 3. Niech T, S beda momentami stopu. Czy momentem stopu jest zmienna losowa T + S lub T - S?

Zadanie 4. Niech będzie dana przestrzeń probabilistyczna $(\Omega, \mathcal{F}, \mathbb{P})$ z filtracją zupełną $\{\mathcal{F}_n\}$. Niech τ, σ będą dwoma momentami Markowa o skończonych wartościach takimi, że istnieje $t_0 \geq 0$, takie, że $\mathbb{P}(\tau \geq t_0) = \mathbb{P}(\sigma \geq t_0) = 1$. Niech $A \in \mathcal{F}_{t_0}$. Sprawdź, czy momentem stopu jest zmienna losowa

$$U = \tau \cdot \mathbf{1}_A + \sigma \cdot \mathbf{1}_{A'}$$

względem podanej filtracji.

Zadanie 5. Niech τ , σ będą momentami stopu. Udowodnij, że $\tau \wedge \sigma$ i $\tau \vee \sigma$ są $momentami\ stopu.$

Zadanie 6. Niech S, T będą momentami stopu. Udowodnij, że zachodzi $\mathcal{F}_{\min\{T,S\}} =$ $\mathcal{F}_T \cap \mathcal{F}_S$.

Zadanie 7. Niech (X_i) będzie ciągiem niezależnych zmiennych losowych o tym samym rozkładzie U[0,1]. Niech $\tau = \inf\{n: X_1 + X_2 + \dots + X_n \ge 1\}$. Wyznacz $\mathbb{E}\tau$.

Zadanie 8. Niech (X_n) będzie ciągiem Bernoulliego, zaś $\tau = \inf\{n \colon S_n = 1\}.$ Wykaż, że $\mathbb{E}\tau = \infty$.

Zadanie 9. Niech τ będzie zmienną losową, a (X_n, \mathcal{F}_n) martyngałem. Kiedy $(X_{n \wedge \tau}, \mathcal{F}_n)$ jest martyngałem?

Zadanie 10. Niech $0 < T_1 < T_2 < \cdots < T_n < \dots$ będzie rosnącym do nieskończoności ciągiem momentów stopu o skończonych wartościach. Niech $N_t =$ $\sum_{i=1}^{\infty} \mathbf{1}_{\{i \geq T_i\}}$. Niech ponadto $\{U_i\}_{i \in \mathbb{N}}$ będzie ciągiem niezależnych zmiennych losowych takim, że jest on niezależny od procesu N. Załóżmy, że $\sup_i \mathbb{E}|U_i| < \infty$ oraz $\mathbb{E}U_i = 0$ dla dowolnego i. Udowodnij, że wtedy proces

$$Z_t = \sum_{i=1}^{\infty} U_i \mathbf{1}_{\{t \ge T_i\}}$$

jest martyngałem.

Zadanie* 11. Niech proces X będzie martyngałem i niech τ będzie momentem stopu.

- Udowodnij, że proces zastopowany $X_t^{\tau} = X(\min\{t, \tau\})$ jest martyngałem.
- Niech σ będzie momentem stopu takim, że $\sigma \leq \tau$ i niech τ , σ będą ograniczone. Udowodnij, że $\mathbb{E}(X_{\tau}|\mathcal{F}_{\sigma}) = X_{\sigma}$ prawie na pewno.
- Przypuśćmy, że istnieje całkowalna zmienna losowa Y taka, że dla dowolnego t, $|X_t| \leq Y$ i niech τ będzie momentem stopu skończonym prawie wszędzie. Udowodnij, że $\mathbb{E}X_{\tau} = \mathbb{E}X_0$.
- Niech X będzie procesem takim, że istnieje stała M taka, że $|X_{n-1}-X_n| \leq M$ dla dowolnego n i niech τ będzie momentem stopu takim, że $\mathbb{E}\tau < \infty$. Udowodnij, że wtedy $\mathbb{E}X_{\tau} = \mathbb{E}X_0$.