1.

$$R_o = Q_o + C_o$$

$$Q_o = B_o + \sum_{V_i, P_i < P_o} \left[\frac{Q_o + \alpha_i}{T_j} \right] C_j$$

Since Po is the smallest $\sum_{V_j, P_j \in P_i} \left[\frac{Q_0 + \alpha_j}{T_j} \right] C_j = 0$

⇒ Ro = Bo + Co = 30 + 10 = 40

Iteration	LHS (Q_0)	B_0	RHS	Stop?
1	30	30	30	yes

2

Iteration	LHS (Q_1)	B_1	j	$Q_1 + \tau$	T_j	$\left\lceil rac{Q_1 + au}{T_j} ight ceil$	C_{j}	RHS	Stop?
1	3 O	3 0	0	30. l	50	1	10	40	no
2	4C	℃	0	40.1	50	1	10	40	des

Based on the above table,

$$R_1 = Q_1 + C_1 = 40 + 30 = 70$$

3

Iteration	LHS (Q_2)	B_2	j	$Q_2 + au$	T_j	$\left\lceil \frac{Q_2 + \tau}{T_j} \right\rceil$	C_{j}	RHS	Stop?
1	≥0	20	0	20.1	\$0 200	1	10 ≩ 0	Ю	no
2	60	20	0 1	60-1	88	2	10 30	70	no
3	70	≥0	0 1	70.1	XX CX	2	Ω 3Ο	70	Yes

Based on the above table,

$$R_2 = Q_2 + C_2 = 70 + 20 = 90$$

```
2.56
3.16
3.68
4.28
5.2
9.68
19.36
20.32
29.4
29.76
30.28
#include <bits/stdc++.h>
using namespace std;
int main()
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    double n, tau;
    cin >> n >> tau; // n = number of messages, tau = time doubleerval
    vector<double> priority(n), transmission_time(n), period(n), response_time(n, 0);
    for (int i = 0; i < n; i++)
        cin >> priority[i] >> transmission_time[i] >> period[i];
    for (int i = 0; i < n; i++)
        double LHS = -1, RHS = transmission_time[i];
        while (LHS != RHS)
            LHS = RHS;
            double blocking_time = 0, sigma = 0;
            for (int j = 0; j < n; j++)
                if (priority[j] >= priority[i])
                    blocking_time = max(blocking_time, transmission_time[j]);
            for (int j = 0; j < n; j++)
                if (priority[j] < priority[i])</pre>
                    sigma += ceil((LHS + tau) / period[j]) * transmission_time[j];
            RHS = blocking_time + sigma;
        response_time[i] = RHS + transmission_time[i];
    for (int i = 0; i < n; i++)
        cout << response_time[i] << "\n";</pre>
    return 0;
```

1.44 2.04 IterationLHS (R_0) C_0 RHSStop?11010103es

2.

Iteration	LHS (R_1)	C_1	j	R_1	T_j	$\left\lceil rac{R_1}{T_j} ight ceil$	C_j	RHS	Stop?
1	30	30	0	30	50	1	10	40	no
9	40	30	n	40	50	1	10	40	Ym.

3

Iteration	LHS (R_2)	$oxed{C_2}$	j	R_2	T_j	$\left\lceil rac{R_2}{T_j} ight ceil$	C_j	RHS	Stop?
1	20	20	0 1	20	50 200	1	10 30	60	no
2	60	20	0 1	60	50 200	2	10 30	70	no
3	70	20	0 1	70	50 200	2	10 30	70	Yes

4

The algorithm for M overestimates the worst case response time while the algorithm for P doesn't.

 $(2,5,1,2) \Rightarrow (4,10,1,2,6,7)$ $(4,10,0,3,5,6) \Rightarrow (4,10,0,3,5,6,10,13,15,16) \text{ a}$ $(4,10,1,2,6,7) \Rightarrow (4,10,1,2,6,7,11,12,16,17) \text{ s}$ $(4,10,1,2,6,7) \Rightarrow (4,10,1,2,6,7,11,12,16,17) \text{ s}$ $(4,10,1,2,6,7) \Rightarrow (4,10,1,2,6,7,11,12,16,17) \text{ s}$

$oxed{k}$	$\max_{1 \le j \le n} (s_{j+k} - s_j)$	=	$\min_{1 \le i \le m} (a_{i+k-1} - a_i)$	=	(Column-3) – (Column-5)
1	$\max_{1 \le j \le 4} (s_{j+1} - s_j)$	4	$\min_{1 \leq i \leq 4} (a_i - a_i)$	0	4
2	$\max_{1 \le j \le 4} (s_{j+2} - s_j)$	2	$\min_{1 \le i \le 4} (a_{i+1} - a_i)$	1	4
3	$\max_{1 \le j \le 4} (s_{j+3} - s_j)$	9	$\min_{1 \le i \le 4} (a_{i+2} - a_i)$	3	6
4	$\max_{1 \le j \le 4} (s_{j+4} - s_j)$	10	$\min_{1 \le i \le 4} (a_{i+3} - a_i)$	6	4

worst case response time = 1 + 6 = 7

α	β	γ	LHS	$\alpha + \beta - \gamma \le 1$	$\alpha - \beta + \gamma \le 1$	$-\alpha + \beta + \gamma \le 1$	RHS	LHS=RHS?
0	0	0	T	Τ	Τ	Τ	T	T
0	0	1	T	T	T	Τ	T	T
0	1	0	Τ	T	Τ	T	Т	T
0	1	1	F	T	Τ	F	F	Т
1	0	0	τ	7	Τ	T	Τ	T
1	0	1	F	T	F	Τ	F	Τ
1	1	0	F	F	Τ	Τ	F	Τ
1	1	1	T	Τ	T	Τ	T	7

2

α	β	γ	LHS	$\alpha + \beta - 1 \le \gamma$	$\gamma \leq \alpha$	$\gamma \leq \beta$	RHS	LHS=RHS?
0	0	0	T	τ	τ	T	T	τ
0	0	1	F	Т	F	F	F	Τ
0	1	0	τ	Τ	Τ	T	T	Τ
0	1	1	F	T	F	T	F	Τ
1	0	0	τ	τ	Τ	T	T	Τ
1	0	1	F	T	Τ	F	F	T
1	1	0	F	F	7	τ	F	T
1	1	1	T	Τ	T	Т	T	Τ

3

β	LHS	$0 \le y \le x$	$x - M(1 - \beta) \le y$	$y \leq M\beta$	RHS
0	0 = y	$0 \le y \le x$	$x - M \le y$	$y \leq 0$	$x - M \le y = 0 \le x$
1	x = y	$0 \le y \le x$	$x \leq y$	$y \leq M$	$0 \le y = x \le M$

from the table, we can know

 $X - M \le 0 \le X$ $0 \le y = X \le M$ $0 \le X \ge y \ge 0$

since $X \le 2022$, we can select M as 2022,

yes. To transmit Mo, we need 8+44+3 bits. μ_{1} .. $\epsilon + 44 + 3$... Mo', " 16+44+3 " We can save a lot bits if we use the new design. 2. No. The senders are not the same. yes. $\mu_{o'}$: (16 + 44 + 3) / 50 = 1.26 bpms $\mu_2 = ((6+44+3)/50 = 1.26 \text{ bpms}$ $\mu_3 = (16 + 44 + 3) / 100 = 0.63 \text{ bpms}$ Since the sender of Mo' and Ms are the same, we can concat M3 behind Mo'. $\mu_0'' = (32 + 44 + 3)/50 = 1.58 < 1.26 + 0.63$