

Introduction to Deep Learning

Computer Vision

Traditional machine perception

Computer Vision

Computer vision features

Computer Vision

Computer vision features

Hand-crafted features:

- 1. Needs expert knowledge
- 2. Requires time-consuming hand-tuning
- 3. (Arguably) one of the limiting factors of computer vision systems

Deep Learning

Deep learning approach

Train:

Deploy:

Deep Learning

DEEP LEARNING EVERYWHERE

INTERNET & CLOUD

Image Classification Speech Recognition Language Translation Language Processing Sentiment Analysis Recommendation

MEDICINE & BIOLOGY

Cancer Cell Detection Diabetic Grading Drug Discovery

MEDIA & ENTERTAINMENT

Video Captioning Video Search Real Time Translation

SECURITY & DEFENSE

Face Detection Video Surveillance Satellite Imagery

AUTONOMOUS MACHINES

Pedestrian Detection Lane Tracking Recognize Traffic Sign

Deep Learning

Introduction

The 10 Technologies

Past Years

Deep Learning

With massive amounts of computational power, machines can now recognize objects and translate speech in real time. Artificial intelligence is finally getting smart.

Temporary Social Media

Messages that quickly self-destruct could enhance the privacy of online communications and make people freer to be spontaneous.

Prenatal DNA Sequencing

Reading the DNA of fetuses will be the next frontier of the genomic revolution. But do you really want to know about the genetic problems or musical aptitude of your unborn child?

Additive Manufacturing

Skeptical about 3-D printing? GE, the world's largest manufacturer, is on the verge of using the technology to make jet parts.

Baxter: The Blue-Collar Robot

Rodney Brooks's newest creation is easy to interact with, but the complex innovations behind the robot show just how hard it is to get along with people.

Memory Implants

A maverick neuroscientist believes he has deciphered the code by which the brain forms long-term memories. Next: testing a prosthetic implant for people suffering from longterm memory loss

Smart Watches

The designers of the Pebble watch realized that a mobile phone is more useful if you don't have to take it out of your pocket

Ultra-Efficient Solar Power

Doubling the efficiency of a solar cell would completely change the economics of renewable energy. Nanotechnology just might make it possible

Big Data from Cheap Phones

Collecting and analyzing information from simple cell phones can provide surprising insights into how people move about and behave – and even help us understand the spread of diseases.

Supergrids

A new high-power circuit breaker could finally make highly efficient DC power criss practical

DeepFace: Closing the Gap to Human-Level Performance in Face Verification

Yaniv Taigman Ming Yang Marc'Aurelio Ranzato Lior Wolf

Facebook AI Research Tel Aviv University
Menlo Park, CA, USA Tel Aviv, Israel

{yaniv, mingyang, ranzato}@fb.com

DeepFace 2014

Closing the Gap to **Human** Level **Performance** in **Face** Verification

Accuracy

DeepFace: 97.35% Human: 97.5% wolf@cs.tau.ac.il

News & Analysis

Microsoft, Google Beat Humans at Image Recognition

Deep learning algorithms compete at ImageNet challenge

R. Colin Johnson

2/18/2015 08:15 AM EST

14 comments

NO RATINGS
1 saves
LOGIN TO RATE

Deep Speech 2015

Baidu has developed a voice system that can recognize English and Mandarin speech **better than people**, in some cases.

"For short phrases, out of context, we seem to be **surpassing human levels of recognition**"- Andrew Ng

AlphaGo vs Human: 9-1

What is Deep Learning?

Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data by using a deep graph with multiple processing layers, composed of multiple non-linear transformations.

Perceptron

1957 Rosenblatt

THE SPACE OF MACHINE LEARNING METHODS

Fast-forward to today: ConvNets are everywhere

Fast-forward to today: ConvNets are everywhere

Classification Retrieval

[Krizhevsky 2012]

Fast-forward to today: ConvNets are everywhere

[Toshev, Szegedy 2014]

[Mnih 2013]

Fast-forward to today: ConvNets are everywhere

Detection

Segmentation

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

[Farabet et al., 2012]

Fast-forward to today: ConvNets are everywhere

NVIDIA Tegra X1

self-driving cars

Fast-forward to today: ConvNets are everywhere

[Sermanet et al. 2011] [Ciresan et al.]

Neuron

Neural Networks

Neural Networks: Architectures

before:

now:

Convolutional Neural Networks are just Neural Networks BUT:

1. Local connectivity

image: 32x32x3 volume

before: full connectivity: 32x32x3 weights

now: one neuron will connect to, e.g. 5x5x3 chunk and only have 5x5x3 weights.

note that connectivity is:

- local in space (5x5 inside 32x32)
- but full in depth (all 3 depth channels)

Convolutional Neural Networks are just Neural Networks BUT:

1. Local connectivity

Multiple neurons all looking at the same region of the input volume, stacked along depth.

Convolutional Neural Networks are just Neural Networks BUT:

1. Local connectivity

These form a single [1 x 1 x depth] "depth column" in the output volume

Replicate this column of hidden neurons across space, with some **stride**.

Replicate this column of hidden neurons across space, with some **stride**.

Replicate this column of hidden neurons across space, with some **stride**.

Replicate this column of hidden neurons across space, with some **stride**.

Replicate this column of hidden neurons across space, with some **stride**.

7x7 input assume 3x3 connectivity, stride 1 => 5x5 output

Examples time:

Input volume: 32x32x3

Receptive fields: 5x5, stride 1

Number of neurons: 5

Output volume: (32 - 5) / 1 + 1 = 28, so: 28x28x5 How many weights for each of the 28x28x5 neurons?

In practice: Common to zero pad the border

(in each channel)

e.g. input 7x7
neuron with receptive field 3x3, stride 1
pad with 1 pixel border => what is the output?

7x7 => preserved size!

in general, common to see stride 1, size F, and zero-padding with (F-1)/2. (Will preserve input size spatially)

In practice: Common to zero pad the border

(in each channel)

e.g. input 7x7
neuron with receptive field 3x3, stride 1
pad with 1 pixel border => what is the output?

7x7 => preserved size!

in general, common to see stride 1, size F, and zero-padding with (F-1)/2. (Will preserve input size spatially)

There's one more problem...

Assume input [32 x 32 x3]

30 neurons with receptive fields 5x5, applied at stride 1/pad1:

=> Output volume: [32 x 32 x 30] (32*32*30 = 30720 neurons)

Each neuron has 5*5*3 (=75) weights

=> Number of weights in such layer: 30720 * 75 ~= 3 million :\

Example trained weights

IDEA: lets not learn the same thing across all spatial locations

These layers are called Convolutional Layers

1. Connect neurons only to local receptive fields

2. Use the same neuron weight parameters for neurons in each "depth slice" (i.e. across

spatial positions)

In ConvNet architectures, Conv layers are often followed by Pool layers

 convenience layer: makes the representations smaller and more manageable without losing too much information. Computes MAX operation (most common)

MAX POOLING

Single depth slice

x T	1	1	2	4
	5	6	7	8
	3	2	1	0
	1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

Modern CNNs:

- use filter sizes of 3x3 (maybe even 2x2 or 1x1!)
- use pooling sizes of 2x2 (maybe even less e.g. fractional pooling!)
- stride 1
- very deep

INPUT -> [[CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC where the * indicates repetition, and the POOL? indicates an optional pooling layer.

 $N \ge 0$ (and usually $N \le 3$), $M \ge 0$, $K \ge 0$ (and usually $K \le 3$).

Case study: VGGNet / OxfordNet (runner-up winner of ILSVRC 2014) [Simonyan and Zisserman]

best model

		ConvNet C	onfiguration		
A	A-LRN	В	C	D	Е
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	i	nput (224×2	24 RGB imag)	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
		max	pool	1	
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
		max	pool		
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-25 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256
	- 0	max	pool	4 1	
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		
		FC-	4096		
		1000	4096		
			1000		
		soft-	-max		

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

Training ConvNets

Mini-batch SGD

- Loop:
- 1. **Sample** a batch of data
- 2. **Forward** prop it through the graph, get loss
- 3. **Backprop** to calculate the gradients
- 4. **Update** the parameters using the gradient

Training ConvNets

Activation Functions

Sigmoid

$$\sigma(x) = 1/(1 + e^{-x})$$

tanh tanh(x)

ReLU max(0,x)

Leaky ReLU

max(0.1x, x)

Maxout

$$\max(w_1^Tx+b_1,w_2^Tx+b_2)$$

ELU

$$f(x) \ = \ \begin{cases} x & \text{if } x > 0 \\ \alpha \ (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

Data Augmentation

- i.e. simulating "fake" data
- explicitly encoding image transformations that shouldn't change object identity.

Data Augmentation

1. Flip horizontally

Data Augmentation

2. Random crops/scales

Sample these during training (also helps a lot during test time)

e.g. common to see even up to 150 crops used

Data Augmentation 3.

Random mix/combinations of:

- translation
- rotation
- stretching
- shearing,
- lens distortions, ... (go crazy)

Data Augmentation

4. Color jittering

(maybe even contrast jittering, etc.)

- Simple: Change contrast small amounts, jitter the color distributions, etc.
- Vignette,... (go crazy)

"You need a lot of a data if you want to train/use CNNs"

Transfer Learning

Transfer Learning with CNNs

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
quite a lot of data	Finetune a few layers	Finetune a larger number of layers

CPU vs GPU

CPU vs GPU in practice

N=16 Forward + Backward time (ms)

(CPU performance not well-optimized, a little unfair)

CPU vs GPU

	Cores	Clock Speed	Memory	Price	Speed
CPU (Intel Core i7-7700k)	4 (8 threads with hyperthreading)	4.2 GHz	System RAM	\$339	~540 GFLOPs FP32
GPU (NVIDIA GTX 1080 Ti)	3584	1.6 GHz	11 GB GDDR5 X	\$699	~11.4 TFLOPs FP32
TPU NVIDIA TITAN V	5120 CUDA, 640 Tensor	1.5 GHz	12GB HBM2	\$2999	~14 TFLOPs FP32 ~112 TFLOP FP16
TPU Google Cloud TPU	?	?	64 GB HBM	\$6.50 per hour	~180 TFLOP

CPU: Fewer cores, but each core is much faster and much more capable; great at sequential tasks

GPU: More cores, but each core is much slower and "dumber"; great for parallel tasks

TPU: Specialized hardware for deep learning

A zoo of frameworks

