IN THE CLAIMS

Please amend the claims as follows:

19. (Currently amended): A silica-soda-lime glass composition comprising the following components:

SiO ₂	55-75%
Na ₂ O	4 .5-10 <u>2-8</u> %
CaO	7-12%
$A1_2O_3$	0-7%
ZrO_2	0-8%
K ₂ O	0-8%
MgO	0-5%
B_2O_3	0-3%

wherein the glass composition has a $\frac{1}{2}$ $\underline{\varnothing}$ coefficient of between 0.5 and 0.85 N/(mm^{2.o}C), a working point of less than 1200°C, a thermal expansion coefficient α_{20-300} of between 60 and 88 x 10⁻⁷°C⁻¹, and a strain point of greater than 570°C.

- 20. (Previously Presented) The composition of claim 19 which has a softening point of greater than 750°C.
- 23. (Previously Presented) The composition of claim 19, wherein the working point is less than 1190°C, the softening point is at least 805°C, the thermal expansion coefficient is between 75.6 and 85 X 10⁻⁷°C⁻¹, and the strain point is between 580 and 590°C.
- 24. (Previously Presented) The composition of claim 19 wherein the Ø coefficient satisfies the relationship

$$0.7 \text{ MPa}^2/^{\circ}\text{C}^2 < \varnothing^2 \cdot \text{c/a} < 2 \text{ MPa}^2/^{\circ}\text{C}^2.$$

25. (Previously Presented) The composition of claim 19, comprising the following components:

SiO ₂	55-75%
Na ₂ O	5-10%
CaO	8-12 %
$A1_2O_3$	0-7%
ZrO_2	0-8%
K ₂ O	0-8%.

26. (Currently Amended) The composition of claim 19, comprising the following components:

SiO ₂	55-75%
Na ₂ O	4 .5 <u>2</u> -8%
K ₂ O	2.9 <u>2</u> -8%
CaO	7 <u>4</u> -11%
Al_2O_3	0-7%
ZrO ₂	0-8%
MgO	0-5%.

Application No. 09/242,803 Reply to Office Action of July 11, 2003

27. (Previously Presented) The composition of claim 19 comprising the following components:

SiO2	55-75%
ZrO ₂	3-8%
Na ₂ O	4.5-8%
K ₂ O	3.5-7.5%
CaO	7-11%
$A1_2O_3$	0-5%.

28. (Amended) The composition of claim 19, comprising the following components:

SiO ₂	64.5-75%
ZrO_2	3-7.5%
Na ₂ O	5-9%
K ₂ O	3.5-7.5%
CaO	5-11%
SrO	3-7%
$A1_2O_3$	0-1%
MgO	0-2%
BaO	0-1.5%.

- 29. (Previously Presented) The composition of claim 19, wherein \emptyset is between 0.75 and 0.84, and having an electrical resistivity such that $\log \rho(250^{\circ})$ is greater than 6.6.
- 30. (Previously Presented) The composition of claim 29 wherein the electrical resistivity is such that $\log \rho_{(250^{\circ})}$ is greater than 8.

Application No. 09/242,803 Reply to Office Action of July 11, 2003

- 31. (Previously Presented) An article comprising the glass composition of claim 19.
- 32. (Previously Presented) The article of claim 31 in the form of a monolithic glazing panel, a plasma-screen substrate, an electroluminescent-screen or a cold-cathode-screen substrate.
- 33. (Previously Presented) The composition of claim 19, wherein the sum of the SiO₂, ZrO₂, and Al₂O₃ contents is from 71.5% to 75% by weight.