

Exercise: Learning about a Mortality Rate using a Mixture Prior

Learning about a Mortality Rate using a Mixture Prior

In the heart transplant surgery example in Section 3.3, suppose you are interested in estimating the mortality rate λ for a particular hospital. To construct your prior, you talk to two experts. The first expert's beliefs about λ are described by a gamma(1.5, 1000) distribution and the second expert's beliefs are described by a gamma(7, 1000) distribution. You place equal credence in both experts, so your prior beliefs are represented by the mixture prior

$$g(\lambda) = .5g_1(\lambda) + .5g_2(\lambda),$$

where g_1 and g_2 are respectively the gamma(1.5, 1000) and gamma(7, 1000) distributions.

Learning about a Mortality Rate using a Mixture Prior

- a) Using the curve function, construct a graph of the prior density for λ.
- b) Suppose this hospital experiences $y_{\text{obs}} = 4$ deaths with an exposure of e = 1767. Using the function poisson.gamma.mix in the LearnBayes package, compute the posterior distribution of λ . The inputs to this function are similar to the inputs to the function binomial.beta.mix described in Section 3.5.
- c) Plot the prior and posterior densities of λ on the same graph.
- d) Find the probability that the mortality rate λ exceeds .005.
- e) Based on the mixing probabilities, were the data more consistent with the beliefs of the first expert or the beliefs of the second expert? Explain.

poisson.gamma.mix()Function

Computes the posterior for Poisson sampling and a mixture of gammas prior

Description

Computes the parameters and mixing probabilities for a Poisson sampling problem where the prior is a discrete mixture of gamma densities.

Usage

poisson.gamma.mix(probs,gammapar,data)

poisson.gamma.mix()Function

Computes the posterior for Poisson sampling and a mixture of gammas prior

Arguments

probs: vector of probabilities of the gamma components of the prior.

gammapar: matrix of rate and shape parameters for a gamma component of the prior.

data: list with components y, vector of counts, and t, vector of time intervals.