On *f*-Generic Types in Presburger Arithmetic

wu

March 1, 2023

Contents

1	Def	inable types and f-generics in presburger arithmetic	1
	1.1	Definable groups and f -generics	1
	1.2	End extensions of discrete orders	2
	1.3	Presburger arithmetic	4
	1.4	Definable types in Presburger arithmetic	4
	1.5	<i>f</i> -generics in Presburger arithmetic	6
2	Intr	oduction and Preliminaries	7
	2.1	Introduction	7
	2.2	Preliminaries	8
3		In results $ \text{The } f\text{-generics of } G^2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	12 12
4	Pro	Problem	

1 Definable types and f-generics in presburger arithmetic

Link

1.1 Definable groups and *f*-generics

Presburger arithmetic: the complete first-order theory of the ordered group of integers $(\mathbb{Z},+,<,0).$

Let T be a complete theory, with a monster model M. We also work with a larger monster model M^* in which we can take realizations of global types over M.

Suppose G=G(M) is a definbale group in T, let $S_G(M)$ denote the space of global types containing the formula defining G. Given $p\in S_G(M)$ and $g\in G$, we let gp denote the translate $\{\varphi(g^{-1}x):\varphi(x)\in p\}$ of p.

Definition 1.1. Let $p \in S_G(M)$ be a global G-type.

- 1. p is **definable (over** G) if, for any formula $\varphi(\bar{x}, \bar{y})$ there is a formula $d_p[\varphi](\bar{y})$ over G s.t., for any $\bar{b} \in G$, $\varphi(\bar{x}, \bar{b}) \in p$ iff $G \models d_p[\varphi](\bar{b})$
- 2. p is f-generic if, for every formula $\phi(x) \in p$ there is a small model M_0 s.t. no translate $\phi(gx)$ of $\phi(x)$ forks over M_0
- 3. p is **strongly** f**-generic** if there is a small model M_0 s.t. no translate gp of p forks over M_0
- 4. p is **definably** f**-generic** if there is a small model M_0 s.t. every translate gp is definable over M_0

1.2 End extensions of discrete orders

Assume \mathcal{L} contains a symbol < and T extends the theory of linear orders. We say that T is **definably complete** if any nonempty definable subset of M, with an upper bound in M, has a least upper bound in M, and similarly for lower bounds. Note that this does not depend on the model M.

If T is definably complete, and we further assume that M is discretely ordered by <, then it follows that definable subsets of M contain their least upper bound and greatest lower bound. We will say T is **discretely ordered** to indicate that the ordering < on M is discrete.

In a totally ordered structure, algebraic closure and definable closure coincide.

Given a tuple $\bar{a} \in (M^*)^n$, we let $M(\bar{a}) = \operatorname{dcl}(M\bar{a})$.

Definition 1.2. Given subsets $A \subseteq B$ of M^* , we say B is an **end extension** of A if, for all $b \in B \setminus A$, either b < a for all $a \in A$ or b > a for all $a \in A$.

Lemma 1.3. Suppose T is discretely ordered and definably complete. Fix a non-isolated type $p \in S_n(M)$ and a realization \bar{a} in M^* . If $M(\bar{a})$ is not an end extension of M then

1. p is not definable

2. p has at least two distinct coheirs to M^*

Proof. Since $M(\bar{a})$ is not an end extension of M, we may fix an M-definable function $f:(M^*)^n\to M^*$, and $m_1,m_2\in M$ s.t. $f(\bar{a})\notin M$ and $m_1< f(\bar{a})< m_2$. Define the upwards closed set

$$X = \{ m \in M : p \vDash f(\bar{a}) < m \}$$

Then m_1 and m_2 witness that X is nonempty and not all of M. If X has a minimal element m_0 and m_0^- is the immediate predecessor of m_0 in M, then we must have $m_0^- \leq f(\bar{a}) < m_0$ and so $f(\bar{a}) = m_0^- \in M$, which is a contradiction. So X has no minimal element, and therefore cannot be M-definable. This proves part 1.

Now define

$$C = \{c \in M^* : m < c < m' \text{ for all } m \in M \setminus X \text{ and } m' \in X\}$$

Then $f(\bar{a}) \in C$, and so $C \neq \emptyset$. We define the following partial types over M^* :

$$\begin{split} q_1 &= p \cup \{m < f(\overline{x}) < c : m \in M \smallsetminus X, c \in C\} \\ q_2 &= p \cup \{c < f(\overline{x}) < m : c \in C, m \in X\} \end{split}$$

Note that q_1 and q_2 are distinct since $C \neq \emptyset$. If we can show that they are each finitely satisfiable in M, then they will extend to distinct coheirs of p, which proves part 2. So we show q_1 is finitely satisfiable in M.

Fix a formula $\varphi(\bar{x}) \in p$ and some $m \in M \smallsetminus X$ (which exists since X is not all of M) . Set

$$A = \{ m' \in f(\varphi(M^n)) : m < m' \}$$

Then A is an M-definable subset of M, which is nonempty since $\bar{a} \in A(M^*)$. Since A is bounded below by m, we may fix a minimal element $m_0 \in A$. By elementarity, m_0 is the minimal element of $A(M^*)$. In particular, $m_0 < f(\bar{a})$, and so $m_0 \in M \setminus X$. In particular, $m_0 < f(\bar{a})$, and so $m_0 \in M \setminus X$. By definition of A, $m_0 = f(\bar{a}')$ for some $\bar{a}' \in M^n$ s.t. $M \models \varphi(\bar{a}')$. Altogether, we have $M \models \varphi(\bar{a}')$ and $m < f(\bar{a}') < c$ for any $c \in C$.

Suppose T is discretely ordered and definably complete. If, moreover, $\operatorname{dcl}(\emptyset)$ is nonempty, then T has definable Skolem functions by picking out either the maximal element of a definable set or the least element greater than some \emptyset -definable constant. It follows that $M(\bar{a})$ is the unique prime model over $M\bar{a}$.

1.3 Presburger arithmetic

Let $T = \text{Th}(\mathbb{Z}, +, <, 0)$. Let G denote a sufficiently saturated model of T, and let G^* denote a larger elementary extension of G, which is sufficiently saturated w.r.t. G. We treat types over G as *global types*, but use G^* as an even larger monster model in which we can realize such types.

Note that T satisfies the properties discussed above: it is discretely ordered and definably complete, with $\operatorname{dcl}(\emptyset)$ nonempty. Therefore, for $\bar{a} \in G^*$, $G(\bar{a})$ is the prime model over $G\bar{a}$. Recall that T has quantifier elimination in the expanded language $\mathcal{L}^* = \{+,<,0,1,(D_n)_{n<\omega}\}$ where D_n is a unary predicate interpreted as $n\mathbb{Z}$. Consequently, given $\bar{a} \in G^*$, $G(\bar{a})$ is the divisible hull of the subgroup of G^* generated by $G\bar{a}$.

Given $a\in G^*$ and n>0, let $[a]_n\in\{0,1,\dots,n-1\}$ be the unique remainder of a modulo n. Given $\bar k\in\mathbb Z^n$, we let $s_{\bar k}(\bar x)$ denote the definable function $\bar x\mapsto k_1x_1+\dots+k_nx_n$

Proposition 1.4. 1. Let $G_0 \prec G$ be a small model, and fix $a, b \in G$

- (a) If $G_0 < a < b$ then there is some $c \in G$ s.t. b < c and $a \equiv_{G_0} c$
- (b) If $a < b < G_0$ then there is some $c \in G$ s.t. c < a and $b \equiv_{G_0} c$
- 2. For any $p \in S_n(G)$ and $\bar{a} \models p$, if $G(\bar{a})$ is not an end extension of G then there are $h_1, h_2 \in G$ and $\bar{k} \in \mathbb{Z}^n$ s.t. $h_1 < s_{\bar{k}}(\bar{a}) < h_2$ and $s_{\bar{k}}(\bar{a}) \notin G$.
- Proof. 1. By quantifier elimination and saturation of G it is enough to fix an integer N>0 and find $c\in G$ s.t. b< c and $[c]_n=[a]_n$ for all $0< n\leq N$. To find such an element, simply note that $\bigcap_{0< n\leq N} nG+[a]_n$ is nonempty as it contains a and is therefore a single coset mG+r for some $m,r\in \mathbb{Z}$ (chinese remainder theorem). So we may choose $c=b-[b]_m+m+r$
 - 2. By assumption, there is $b \in \operatorname{dcl}(G\bar{a}) \setminus G$ and $h'_1, h'_2 \in G$ s.t. $h'_1 < b < h'_2$. By the description of definable closure in Presburger arithmetic, there are integers $r \in \mathbb{Z}^+$, $\bar{k} \in \mathbb{Z}^n$ and some $h_0 \in G$ s.t. $rb = s_{\bar{k}}(\bar{a}) + h_0$. Now let $h_i = rh'_i h_0$.

1.4 Definable types in Presburger arithmetic

Consider the situation where G is the monster model M, and the definable group is $G^n = \mathbb{Z}^n(G)$, for a fixed n > 0, under coordinate addition. In particular.

4

Definition 1.5. A type $p \in S_n(G)$ is **algebraically independent** if for all (some) $\bar{a} \models p$, $a_i \notin G(\bar{a}_{\pm i})$ for all $1 \le i \le n$.

Lemma 1.6. Suppose $p \in S_n(G)$ is algebraically independent and for all (some) $\bar{a} \models p$, $G(\bar{a})$ is an end extension of G. Then p is definable over \emptyset .

Proof. Let \mathbb{Z}_*^n denote $\mathbb{Z}^n \setminus \{0\}$. By quantifier elimination, it suffices to give definitions for atomic formulas of the following forms:

- $\varphi_1(\bar{x},\bar{y}):=(s_{\bar{k}}(\bar{x})=t(\bar{y}))$, where $\bar{k}\in\mathbb{Z}_*^n$ and $t(\bar{y})$ is a term in variables \bar{y} .
- $\begin{array}{l} \bullet \ \ \varphi_2(\bar x,\bar y):=(s_{\bar k}(\bar x)>t(\bar y)) \text{, where } \bar k\in\mathbb Z^n_* \text{ and } t(\bar y) \text{ is a term in variables } \bar y \end{array}$
- $\varphi_3(\bar x,\bar y):=([s_{\bar k}(\bar x)+t(\bar y)]_m=0)$, where $\bar k\in\mathbb Z^n_*$, $m\in\mathbb Z^+$, and $t(\bar y)$ is a term in variables $\bar y$.

Fix $\bar{a} \vDash p$ and fix $\bar{k} \in \mathbb{Z}_*^n$. Since p is algebraically independent, it follows that $s_{\bar{k}}(\bar{a}) \notin G$. Since $G(\bar{a})$ is an end extension of G, we may partition $\mathbb{Z}_*^n = S^+ \cup S^-$ where

$$S^+ = \{\bar{k}: s_{\bar{k}}(\bar{a}) > G\} \quad \text{ and } \quad S^- = \{\bar{k}: s_{\bar{k}}(\bar{a}) < G\}$$

Note that S^+ and S^- depends only on p, and not choice of realization \bar{a} . Moreover, for any $\bar{k} \in \mathbb{Z}^n$ and m>0, the integer $[s_{\bar{k}}(\bar{a})]_m \in \{0,\dots,m-1\}$ depends only on p. We now give the following definitions for p (note that they are formulas over \emptyset):

$$\begin{split} d_p[\varphi_1](\bar{y}) &:= (y_1 \neq y_1) \\ d_p[\varphi_2](\bar{y}) &:= \begin{cases} y_1 = y_1 & \bar{k} \in S^+ \\ y_1 \neq y_1 & \bar{k} \in S^- \end{cases} \\ d_p[\varphi_3](\bar{y}) &:= ([t(\bar{y}) + [s_{\bar{k}}(\bar{a})]_m]_m = 0) \end{split}$$

Theorem 1.7. Given $p \in S_n(G)$, TFAE

- 1. p is definable over G
- 2. p has a unique coheir to G^*
- 3. For any (some) $\bar{a} \models p$, $G(\bar{a})$ is an end extension of G

Proof. $1 \Rightarrow 2$: True for any NIP theory

 $2 \Rightarrow 3$: 1.3

 $3\Rightarrow 1$: We may assume p is non-isolated. We proceed by induction on n. If n=1 then p is algebraically independent since it is non-isolated, and so we apply Lemma 1.6. Assume the result for n'< n and fix $p\in S_n(G)$. If p is algebraically independent then we apply Lemma 1.6. So assume, W.L.O.G., that we have $\bar{a}\vDash p$ with $a_n\in G(\bar{a}_{< n})$. Let $q=\operatorname{tp}(\bar{a}_{< n}/G)\in S_{n-1}(G)$. By assumption, $G(\bar{a}_{< n})=G(\bar{a})$ is an end extension of G, and so g is definable by induction. Fix a G-definable function $f:(G^*)^{n-1}\to G^*$ s.t. $f(\bar{a}< n)=a_n$. Fix a formula $\varphi(\bar{x},\bar{y})$ and define

$$\psi(\bar{x}_{< n}, \bar{y}) := \varphi(\bar{x}_{< n}, f(\bar{x}_{< n}), \bar{y})$$

Let $d_q[\psi](\bar{y})$ be an \mathcal{L}_G -formula s.t., for any $\bar{b} \in G$, $\psi(\bar{x}_{< n}, \bar{b}) \in q$ iff $G \models d_q[\psi](\bar{b})$. Then for any $\bar{b} \in G$, we have

$$\varphi(\bar{x},barb) \in p \Leftrightarrow G^* \vDash \varphi(\bar{a},\bar{b}) \Leftrightarrow G^* \vDash \psi(\bar{a}_{< n},\bar{b}) \Leftrightarrow G \vDash d_a[\psi](\bar{b})$$

1.5 *f*-generics in Presburger arithmetic

Proposition 1.8. Any f-generic $p \in S_n(G)$ is algebraically independent

Proof. Suppose p is not algebraically independent. W.L.O.G., fix $\bar{a} \vDash p$ with $a_n \in G(\bar{a}_{< n})$. Then there are $r, k_1, \dots, k_{n-1} \in \mathbb{Z}$ and $b \in G$ s.t. $ra_n = b + k_1 a_1 + \dots + k_{n-1} a_{n-1}$. Consider the formula $\phi(\bar{x};b) := rx_n = b + k_1 x_1 + \dots + k_{n-1} x_{n-1}$, and note that $\phi(\bar{x};b) \in p$. We fix a small model $G_0 \prec G$, and find a translate of $\phi(\bar{x};b)$ that forks over G_0 .

Pick $c\in rG$ s.t. $b-c\notin G_0$, and set $g=\frac{c}{r}$. Let $\bar{g}=(0,\dots,0,g)$ and set $\psi(\bar{x};b,\bar{g}):=\phi(\bar{x}+\bar{g};b)$. By construction, we may find automorphism $\sigma_i\in \operatorname{Aut}(G/G_0)$ s.t. $\sigma_i(b-c)\neq\sigma_j(b-c)$ for all $i\neq j$. (b-c) is not almost G_0 -definable, therefore it has infinite orbits) Setting $b_i=\sigma_i(b)$ and $\bar{g}_i=\sigma_i(\bar{g})$, we have that $\{\psi(\bar{x};b_i,\bar{g}_i):i<\omega\}$ is 2-inconsistent. So $\psi(\bar{x};b,\bar{g})$ forks over G_0

Theorem 1.9. If $p \in S_n(G)$ is algebraically independent, TFAE

- 1. p is f-generic
- 2. p is strongly f-generic
- 3. p is definable f-generic

- 4. p is definable over G
- 5. p is definable over \emptyset
- 6. For any (some) $\bar{a} \models p$, $G(\bar{a})$ is an end extension of G

Proof. $4 \Leftrightarrow 6$: 1.7 $6 \Rightarrow 5$: 1.6 $5 \Rightarrow 4$: trivial

 $1\Rightarrow 6$: Suppose $G(\bar{a})$ is not an end extension of G, and fix $\bar{k}\in\mathbb{Z}^n$ and $h_1,h_2\in G$ s.t. $s_{\bar{k}}(\bar{a})\notin G$ and $h_1< s_{\bar{k}}(\bar{a})< h_2$. Consider the formula $\phi(\bar{x};h_1,h_2):=h_1< s_{\bar{k}}(\bar{x})< h_2$, and note that $\phi(\bar{x};h_1,h_2)\in p$. We fix a small model $G_0\prec G$, and find a translate of $\phi(\bar{x};h_1,h_2)$ that forks over G_0 . W.L.O.G., assume b>0 and also $h_1>0$. Let k_i be a nonzero element of the tuple \bar{k} . By saturation of G, we may find $g\in G$ s.t. $k_ig>c$ for all $c\in G_0$. Let $\bar{g}\in G^n$ be s.t. $g_j=0$ for all $j\neq i$ and $g_i=g$. For $t\in\{1,2\}$, set $c_t=h_t+k_ig\in G$. Then $\phi(\bar{x}-\bar{g};h_1,h_2)$ is equivalent to $c_1< s_{\bar{k}}(\bar{x})< c_2$. Since $c< c_1$ for all $c\in G_0$, by Proposition 1.4, that $\phi(\bar{x}-\bar{g};h_1,h_2)$ forks over G_0 , as desired. (By increase g, we can show that $\phi(\bar{x};h_1,h_2;g_i)$) is 2-inconsistent or something. So p is not f-generic.

 $6\Rightarrow 3$: Suppose $G(\bar{a})$ is an end extension of G. For any $\bar{g}\in G^n$, we have $G(\bar{a})=G(\bar{g}+\bar{a})$, and $\bar{g}p$ is still algebraically independent. Therefore, for any $\bar{g}\in G^n$, we use Lemma 1.6 to conclude that $\bar{g}p$ is definable over \emptyset . \square

2 Introduction and Preliminaries

2.1 Introduction

Marcin Petrykowski gave a nice description of f-generic types in groups $(R,+)\times(R,+)$ with $(R,<,+,\cdot)$ with $(R,<,+,\cdot)$ an o-minimal expansion of real closed field. An analogs question is: What are the f-generic types of G^n , the product of n copies of ordered additive groups $(\mathbb{Z},+,<)$ of integers.

Let M be an elementary extension of $(\mathbb{Z},+,<,0)$, $\mathbb{M}\succ M$ a monster model. G denotes the additive group $(\mathbb{M},+)$, $S_G(M)$ the space of complete types over M extending the formula $'x\in G'$. G^0 is the definable connected component of G. Namely, G^0 is the intersection of all definable subgroups of G with finite index.

Let L_n denote the space of homogeneous n-ary $\mathbb Q$ -linear functions. For $f,g\in L_n$ and $\alpha,\beta\in \mathbb M^n$ s.t. $\alpha\in \mathrm{dom}(f)$ and $\beta\in \mathrm{dom}(g)$, by $f(\alpha)\ll_M g(\beta)$ we mean that for all $a,b\in M$ and $k,l\in \mathbb N^+$, $kf(\alpha)+a< lg(\beta)+b$. By $f(\alpha)\sim_M g(\beta)$ we mean that neither $f(\alpha)\ll_M g(\beta)$ nor $g(\beta)\ll_M f(\alpha)$. Let

 $f_0,\dots,f_m\in L_n\text{, we say }0\ll_M f_1(\alpha)\ll_M\dots\ll_M f_m(\alpha)\text{ is a maximal positive chain of }\alpha\text{ over }M\text{ if for any }g\in L_n\text{ with }g(\alpha)>0\text{, neither }f_m(\alpha)\ll_M g(\alpha)\text{ nor }g(\alpha)\ll_M f_1(\alpha)$

Theorem 2.1. Let $M > \mathbb{Z}$, $\alpha = (\alpha_1, \dots, \alpha_n) \in (G^n)^0$. Then there exists a finite subset $\{f_0, \dots, f_m\} \subset L_n$ s.t. $f_0(\alpha) = 0 \ll_M f_1(\alpha) \ll_M \dots \ll_M f_m(\alpha)$ is the maximal positive chain of α over M. If α realizes an f-generic type $p \in S_{G^n}(M)$ then for every $\beta \in G^0$, $p = \operatorname{tp}(\alpha, \beta/M) \in S_{G^{n+1}}(M)$ is an f-generic type iff one of the following holds:

- 1. $f_m(\alpha) \ll_M \beta$ or $\beta \ll_M -f_m(\beta)$
- 2. there is i with $0 \le i < m$ and $g \in L_n$ s.t. $f_i(\alpha) \ll_M \epsilon(\beta g(\alpha)) \ll_M f_{i+1}(\alpha)$ where $\epsilon = \pm 1$
- 3. there is i with $1 \leq i \leq m$ and $g \in L_n$ s.t. for all $h \in L_n$ with $h(\alpha) \sim_M f_i(\alpha)$ there is an irrational number $r_h \in \mathbb{R} \setminus \mathbb{Q}$ s.t. $q_1h(\alpha) < \beta g(\alpha) < q_2h(\alpha)$ for all $q_1, q_2 \in \mathbb{Q}$ with $q_1 < r_h < q_2$

2.2 Preliminaries

Definition 2.2. 1. A definable subset $X \subseteq G$ is f-generic if for some/any model M over which X is defined and any $g \in G$, gX does not divide over M. Namely, for any M-indiscernible sequence $(g_i:i<\omega)$ with $g=g_0,\{g_iX:i<\omega\}$ is consistent.

Remark. The class of all non-weakly generic formulas forms an ideal. So any weakly generic type $p \in S_G(M)$ has a global extension $\bar{p} \in S_G(M)$ which is weakly generic.

T is said to be (or have) NIP if for any indiscernible sequence $(b_i:i<\omega)$ formula $\psi(x,y)$ and $a\in\mathbb{M}$, there is an eventual truth value of $\psi(a,b_i)$ as $i\to\infty$.

A type definable over A subgroup $H \leq G$ has bounded index if $|G/H| < 2^{|T|+|A|}$. For groups definbale in NIP structures, the smallest type-definable subgroup G^{00} exists. Namely, the intersection of all type-definable subgroup of bounded index still has bounded index. We call G^{00} the **type-definable connected component** of G. Another model theoretic invariant is G^0 , called the definably-connected component of G, which is the intersection of all definable subgroup of G of finite index.

The Keisler measure over M on X, with X a definable set over M, is a finitely additive measure on the Boolean algebra of definable subsets of X over M.

A definable group G is **definably amenable** if it admits a global (left) G-invariant probability Keisler measure

Fact 2.3. Assuming NIP, a nip group G is definably amenable iff it admits a global type $p \in S_G(\mathbb{M})$ with bounded G-orbit.

Fact 2.4. For a definable amenable NIP group G, we have

- weakly generic definable subsets, formulas and types coincide with f-generic definable subsets, formulas, and types, respectively
- ullet $p \in S_G(\mathbb{M})$ is f-generic iff it has bounded G-orbit
- ullet $p \in S_G(\mathbb{M})$ is f-generic iff it is G^{00} -invariant
- A type-definable subgroup H fixing a global f-generic type is exactly G^{00}

Remark. Assuming that *G* is definable amenable NIP group

Assume that $T=\operatorname{Th}(\mathbb{Z},+,\{D_n\}_{n\in\mathbb{N}^+},<,0)$ is the first order theory of integers in Presburger language $L_{Pres}=(+,\{D_n\}_{n\in\mathbb{N}^+},<,0)$ where each D_n is a unary predicate symbol for the set of elements divisible by n. \mathbb{M} is the monster model of T.

T has quantifier elimination and cell decomposition.

Definition 2.5. We call a function $f: X \subseteq M^m \to M$ **linear** if there is a constant $\gamma \in M$ and integers a_i , $0 \le c_i < n_i$ for $i=1,\ldots,m$ s.t. $D_{n_i}(x_i-c_i)$ and

$$f(x) = \sum_{1 \leq i \leq m} a_i (\frac{x_i - c_i}{n_i}) + \gamma$$

for all $x=(x_1,\ldots,x_m)\in X$. We call f **piecewise linear** if there is a finite partition $\mathcal P$ of X s.t. all restrictions $f|_A$, $A\in \mathcal P$ are linear.

Note that $x \in \text{dom}(f)$ iff $D_{n_i}(x_i - c_i)$ for each i.

Definition 2.6. • A (0)-cell is a point $\{a\} \subset M$.

• An (1)-cell is a set with infinite cardinality of the form

$$\{x\in M|a\square_1x\square_2b,D_n(x-c)\}$$

with $a, b \in M$, integers $0 \le c < n$ and \square_i either \le or no condition.

• Let $i_j \in \{0,1\}$ for $j=1,\ldots,m$ and $x=(x_1,\ldots,x_m)$. A $(i_1,\ldots,i_m,1)$ -cell is a set A of the form

$$\{(x,t) \in M^{m+1} \mid x \in D, f(x) \square_1 t \square_2 g(x), D_n(t-c)\}$$

with $D=\pi_m(A)$ an (i_1,\ldots,i_m) -cell. $f,g:D\to M$ linear functions, \square_i either \leq or no condition and integers $0\leq c< n$ s.t. the cardinality of the fibers $A_x=\{t\in M\mid (x,t)\in A\}$ can not be bounded uniformly in $x\in D$ by an integers.

• An $(i_1, \dots, i_m, 0)$ -cell is a set A of the form

$$\{(x,t)\in M^{m+1}\mid x\in D, t=g(x)\}$$

with $g:D\to M$ a linear function and $D\in M^m$ an (i_1,\dots,i_m) -cell

Fact 2.7 ([?]Cell Decomposition Theorem). Let $X \subset M^m$ and $f: X \to G$ be definable. Then there exists a finite partition \mathcal{P} of X into cells, s.t. the restriction $f|_A: A \to M$ is linear for each cell $A \in \mathcal{P}$. Moreover, if X and f are S-definable, then the parts A can be taken S-definable.

By the Cell Decomposition Theorem, we conclude that every definable subset of M^n is a finite union of cells. So every definable subset $X\subseteq M$ is a finite union of points and intervals mod some $n\in\mathbb{N}$. This implies that T has NIP.

From now on, we assume that $G=(\mathbb{M},+)$ is the additive group of the Presburger arithmetic. Namely, G is defined by the formula "x=x", $G=\mathbb{M}$ as a set, and G(M)=M for any $M\prec \mathbb{M}$. For any n-tuple $x=(x_1,\ldots,x_n)$, by $D_m(x)$ we mean $\bigwedge_{1\leq i\leq n}D_m(x_i)$. For any $\alpha\in \mathbb{M}$, and $A\subseteq \mathbb{M}$, by $\alpha>A$ we mean $\alpha>a$ for all $a\in \operatorname{acl}(A)$.

 $\operatorname{dcl}(A) = \operatorname{acl}(A)$ since $\mathbb M$ is a linear order If $a \in \operatorname{acl}(A)$, then suppose $\varphi(\mathbb M)$ is finite, then $\varphi(\mathbb M)$ lies in some finite interval in A

Fact 2.8. For every $n \in \mathbb{N}$

- G^n is definably amenable;
- \bullet the type-definable connected component of G^n is $\bigcap_{m\in\mathbb{N}^+}D_m(\mathbb{M}^n)$

Proof. Let $x=(x_1,\dots,x_n)$ be an n-tuple. Let $\Pi(x)$ be the partial type of form

$$\begin{split} \{x_1 > \mathbb{M}\} \wedge \{x_2 > \operatorname{dcl}(\mathbb{M}, x_1)\} \wedge \dots \\ \wedge \{x_n > \operatorname{dcl}(\mathbb{M}, x_1, \dots, x_{n-1})\} \wedge \{D_m(x) : m \in \mathbb{N}^+\} \end{split}$$

By the cell decomposition theorem, and induction on n, it is easy to see that Π determines a unique type $p \in S_{G^n}(\mathbb{M})$. Moreover, Π is invariant under $\bigcap_{m \in \mathbb{N}^+} D_m(\mathbb{M}^n)$.

Since $D_m(\mathbb{M}^n)$ is a definable subgroup of G^n of finite index, $G^{00} \leq \bigcap_{m \in \mathbb{N}^+} D_m(\mathbb{M}^n)$. Thus p is G^{00} -invariant and hence has a bounded orbit.

By Fact 2.3 G^n is definably amenable and $G^{n00} = \bigcap_{m \in \mathbb{N}^+} D_m(\mathbb{M}^n)$

Corollary 2.9. $G^{n0} = G^{n00}$ for all $n \in \mathbb{N}^+$.

Remark. • G^0 is a densely linear ordered divisible abelian group, hence is isomorphic to an ordered vector space over \mathbb{Q} .

• For every $n \in \mathbb{N}^+$, $(G^0)^n = (G^n)^0$

Proof. divisibility and abelian is trivial. For any $a, b \in G^0$, $\frac{a+b}{2} \in G^0$.

Fact 2.10. Suppose that f is an M-definable function from $X \subseteq \mathbb{M}^n$ to $Y \subseteq \mathbb{M}$. Then for any $\alpha \in (G^0)^n$ there are $q_1, \ldots, q_n \in \mathbb{Q}$ and $a \in M$ s.t. $f(\alpha) = q_1\alpha_1 + \cdots + q_n\alpha_n + a$

Proof. By Cell Decomposition we may assume f is linear. Then apply remark 2.2, $\alpha \in (G^n)^0$, therefore $\alpha_i \in G^0$ and we don't need the c_i .

Definition 2.11. We call the function f of the form $q_1x_1+\dots+q_nx_n+a$ with $q_1,\dots,q_n\in\mathbb{Q}$ and $a\in M$ an n-ary \mathbb{Q} -linear function over M. If a=0, we call f a **homogeneous** n-ary \mathbb{Q} -linear function. By $L_n(M)$ we mean the space of all n-ary \mathbb{Q} -linear functions over M, and L_n the space of all homogeneous n-ary \mathbb{Q} -linear functions.

It is easy to see that any $f\in L_n(M)$ is M-definable, and there is a natural number m s.t. $D_m(\mathbb{M}^n)\subseteq \mathrm{dom}(f)$ (common factor). In particular, $(G^0)^n\subseteq \mathrm{dom}(f)$. By Fact 2.7 and Fact 2.10 we conclude that:

Corollary 2.12. If $\alpha = (\alpha_1, ..., \alpha_n) \in (G^0)^n$, then for any $\phi(x_1, ..., x_n) \in \operatorname{tp}(\alpha/M)$ there is a formula $\psi(x_1, ..., x_n) \in \operatorname{tp}(\alpha/M)$ of the form

$$\theta(x_1,\ldots,x_{n-1}) \wedge D_m(x_n) \wedge (f_1(x_1,\ldots,x_{n-1}) \square_1 x_n \square_2 f_2(x_1,\ldots,x_{n-1}))$$

with $m \in \mathbb{N}$, $\theta(M)$ a cell, $f_i \in L_{n-1}(M)$, and \square_i either \leq or no condition, s.t. $M \models \forall x (\psi(x) \rightarrow \phi(x))$.

Remark. There are only 2 f-generic types contained in every coset of G^0 . More precisely, for any model M,

$$\begin{split} p^+(x) &= \{D_n(x) \mid n \in \mathbb{N}^+\} \cup \{x > a \mid a \in M\} \\ p^-(x) &= \{D_n(x) \mid n \in \mathbb{N}^-\} \cup \{x < a \mid a \in M\} \end{split}$$

Then every f-generic type over M is one of G(M)-translates of p^+ or p^- .

3 Main results

3.1 The f-generics of G^2

Let $\mathbb M$ be the saturated model of $\mathrm{Th}(\mathbb Z,+,D_n,<,0,1)_{n\in\mathbb N+}$, T the theory of Presburger Arithmetic.

Proposition 3.1. For any $M > \mathbb{Z}$, the f-generic type $\operatorname{tp}(\alpha, \beta/M) \in S_{G^2}(M)$, with $\alpha, \beta \in G^0$, has one of the following forms:

- $\beta > \operatorname{dcl}(M, \alpha) \ (+\infty \text{-type})$
- $\beta < \operatorname{dcl}(M, \alpha) (-\infty type)$
- there is some $q \in \mathbb{Q}$ s.t. $q\alpha + m < \beta < (q + \frac{1}{n})\alpha$ for all $m \in M$ and $n \in \mathbb{N}$ $(q^+$ -type)
- there is some $q \in \mathbb{Q}$ s.t. $(q \frac{1}{n})\alpha < \beta < q\alpha + m$ for all $m \in M$ and $n \in \mathbb{N}$ $(q^-$ -type)
- there is some $r \in \mathbb{R}$ s.t. $q_1 \alpha < \beta < q_2 \alpha$ for all $q_1, q_2 \in \mathbb{Q}$ with $q_1 < r < q_2$ $(r^0$ -type)

Proof. Let $p=\operatorname{tp}(\alpha,\beta/M)$ be a f-generic type which contained in $(G^2)^0$. By the cell decomposition, we may assume that every formula $\phi(x,y)$ in p is of the form

$$D_n(x) \wedge (a < x) \wedge D_n(y) \wedge (f_1(x) \square_1 y \square_2 f_2(x))$$

with $n\in\mathbb{N}$, $a\in M$, $f_i:D_n(M)\to M$ linear, and \square_i either \leq or no condition.

If every formula in p contains a cell of the form $D_n(x)\wedge D_n(y)\wedge f_1(x)\leq y$, it's then a $+\infty$ -type

Similar for $-\infty$ -type.

Otherwise there are linear functions $f_1(x)=q_1x+b_1$ and $f_2(x)=q_2x+b_2$, with $q_1,q_2\in\mathbb{Q}$ and $b_1,b_2\in M$ s.t. the cell

$$D_n(x) \wedge (a < x) \wedge D_n(y) \wedge (f_1(x) \le y \le f_2(x))$$

is contained in p, where both nq_1 and nq_2 are some integers. We call the above cell a (n,a,q_1,q_2) -cell.

Let

```
\begin{aligned} Q_1 &= \{t \in \mathbb{Q}: \text{there is an } (n,a,t,q_2)\text{-cell which is contained in } p(x,y)\} \\ Q_2 &= \{t \in \mathbb{Q}: \text{there is an } (n,a,q_1,t)\text{-cell which is contained in } p(x,y)\} \end{aligned}
```

Then both Q_1 and Q_2 are nonempty.

 $\#+END_{proof}$

4 Problem

2.2

2.2

1.2

1.3