

Bigdata Hadoop Programming

Lab 3 Assignment

Team Members:

Pragathi Thammaneni Sridevi Mallipudi

Introduction:

The main core concept for executing the Lab 3 Assignment is to implement the MapReduce Algorithm for finding Facebook common friends problem and run the MapReduce job on Apache Spark. And also, to implement the Spark Data frames and including intuitive queries like pattern recognition, topic discussion, most important terms etc.

Objectives:

To code for the 2 questions the below concepts are implemented.

Map reduce Algorithm for Facebook common friend's problem

Apache Spark

Spark Data frames

Datasets -queries

Approaches / Methods:

Apache Spark

Workflow & Datasets/Parameters and Evaluation:

The below each question will follow different approaches to solve. Coding is done to perform the evaluation of each individual snippet to execute the datasets which are provided as the input parameters.

Question 1:

1. Hadoop MapReduce Algorithm

- a) Implement MapReduce algorithm for finding Facebook common friends problem and run the MapReduce job on Apache Spark.
- b) *Use the following dataset to run your program:* https://umkc.box.com/s/y6juor0fwe96f6louboy3mvbfpli6pgt
- c) Write a report including your algorithm and result screenshots.

For solving the below question a map reduce algorithm is used to find out the face book common friend problem. Below is the sample use case for implementing the Map reduce.

Use Case Diagram:

Below is the screen shot for the Map Reduce Algorithm

Output Screenshot:

Question 2:

2. Spark Data Frames

Datasets:

- 1. FIFA World Cup:
 - https://www.kaggle.com/abecklas/fifa-world-cup#WorldCupMatches.csv
- 2. Kickstarter Projects
 - https://www.kaggle.com/kemical/kickstarter-projects
- 3. Google-Landmarks Dataset
 - https://www.kaggle.com/google/google-landmarks-dataset
 - a. Create a Spark DataFrame using one of datasets, trying to use all different StructType.
 - Perform 10 intuitive questions in Dataset (e.g.: pattern recognition, topic discussion, most important terms, etc.). Use your innovation to think out of box.
 - c. Perform any 5 queries in Spark RDD's and Spark Data Frames. Compare the results

Queries implemented:

Below are the queries that has been implemented on the data sets FIFA World Cup.

- 1. Creation of Spark Data Frame using FIFA World Cup.
- 2. Queries regarding pattern recognition, topic discussion and most important terms has been performed.

3. Performed queries using Spark RDD's and Spark Data Frames.

Please refer the source code folder for the queries description

Struct Type:

10 intuitive queries:

Query 1:Count of teams that reached different levels(stages) of the game

Query 2:Filtering the Home teams that scored goals >= 3 and <= 10

Query 3: Correlated subquery for finding attendance and max_attendance for a stadium

Query 4: Left outer join query

Query 5: Pattern recognization query for team that reached Finals

Query 6: Average goals scored by a team

Query 7: Count of rows after performing UNION ALL operation

Query 8: Number of times a country scores goals greater than or equal to 4

Query 9: Number of maximum number of goals scored by a country between years 2000 nd 2010

Query 10: Total number of goals scored by a country

Spark RDD's: Apply the schema to the RDD

Query 1: Filtering the Home teams that scored goals >= 3 and <= 10 with RDD

Query 2: Correlated subquery for finding attendance and max_attendance for a stadium with RDD

Query 3: Pattern recognition query for team that reached Finals with RDD

Query 4: Average goals scored by a team with RDD

Query 5: Number of times a country scores goals greater than or equal to 4 with RDD

Comparison between Spark RDD's and the data frames:

Spark RDD's	Spark Data Frames
RDD is a fault-tolerant collection of elements that	It is a distributed collection of data. Basically,
can be operated on in-parallel, also we can say	data is organized into named columns in data
RDD is the fundamental data structure of Spark	frames.
Basically, it is read-only partition collection of	Spark also introduced catalyst optimizer, along
records. Moreover, it supports in-memory	with data frame. To build an extensible query
computations on large clusters in a fault-tolerant	optimizer, it also leverages advanced
manner	programming features.
An RDD can come easily handle data with no	In Spark, data frame allows developers to impose
predefined structure.	a structure onto a distributed data. It also allows
	higher-level abstraction.
Compile- Time Type Safety	If we try to access any column which is not
RDD- RDD Supports object-oriented	present in the table, then an attribute error may
programming style with compile-time type	occur at runtime. Data frame will not support
safety.	compile-time type safety in such case.
Spark does not compute their result right away, it	Computation happens only when action appears
evaluates RDDs lazily	as Spark evaluates data frame lazily

RDDs of Apache spark offers low-level functionality and control. Whereas datasets offer higher functionality. While data frame offers high-level domain-specific operations, saves space and executes at high speed. Therefore, it increases the efficiency of the system.

Conclusion:

As stated, the above workflow with certain set of parameters is followed in solving the execution by implementing the core and basic concepts Apache Spark.

Source code link:

 $\underline{https://github.com/PragathiThammaneni/Bigdata-Programming--Hadoop-Spark/tree/m}\\ \underline{aster/Lab\%203}$

Video Link: Provided in wiki https://youtu.be/31C5D00zQSE

Wiki Link:

https://github.com/PragathiThammaneni/Bigdata-Programming--Hadoop-Spark/wiki/Lab-3-Assi gnment