ASSIGNMENT-1

Subject Name: Basic Electronics Subject Code: 303107151

Chapter 1

- 1. What is doping? Why it is required? List types of doping materials.
- 2. Explain the formation of PN Junction Diode. Also explain the Forward bias and reverse bias operation of PN junction diode with V-I characteristics.
- 3. If the surface-leakage current is 2 nA for a reverse voltage of 25 V, what is the surface leakage current for a reverse voltage of 35V?
- 4. Draw the diode equivalent circuit in forward bias and reverse bias for first, second and third approximation along with their curves.
- 5. Explain the energy band diagram in PN Junction Diode before diffusion and after equilibrium. Also explain energy hill.
- 6. Diode is linear device or non-linear device? Why? Explain the forward and reverse resistance of diode.
- 7. What is the output voltage as per first, second and third approximation in the following figure. Consider bulk resistance of diode is 0.23Ω

- 8. Explain the operation of Half Wave rectifier & Full Wave rectifier with circuit diagram and waveforms. Also derived the formula for V_{DC} , V_{RMS} , ripple factor & efficiency.
- 9. Explain the operation of the Bridge rectifier with circuit diagram & waveforms.
- 10. For the half wave rectifier circuit, AC supply given to the primary of the transformer is 240 V AC RMS with 50Hz. The resistance of the transformer secondary is 5 Ω , forward resistance of the diode $R_f = 50 \Omega$, load resistance is 1k Ω . Also note transformer primary to secondary turn ratio is 4:1. Calculate the following.
 - a. Average load current & average load voltage
 - b. RMS load current & RMS load voltage
 - c. DC load power & AC input power
 - d. Rectification Efficiency
- 11. A full wave rectifier circuit is fed from center tap transformer. The RMS voltage from the end of secondary to center tap is 30V. If the diode forward resistance is 2 Ω and that of the half secondary is 8 Ω . Calculate the following for the 1k Ω load resistance.
 - a. Average load current & average load voltage
 - b. RMS load current & rms load voltage
 - c. DC load power & AC input power
 - d. Rectification Efficiency

12. Determine the output waveform for the network shown in below figure (Consider ideal Diode).

- 13. What is clamper circuit? Explain the positive and negative clamper circuit with waveforms and circuit diagrams.
- 14. Explain the difference between clipper and clamper circuit.
- 15. Why filter circuit is required? What are components can be used as filter elements? Explain the operation of half wave & Bridge Rectifiers with shunt capacitor filters with circuit diagram & waveforms.
- 16. What is the importance of the voltage multiplier circuit? Explain the Half wave and Full wave voltage double circuit with neat waver form and circuit diagram.
- 17. Define the following terms.
 - 1. Free electrons
 - 2. Holes
 - 3. Covalent Bonds
 - 4. Core of atom
 - 5. Valance saturation
 - 6. Recombination
 - 7. Carrier Life time
 - 8. PN Junction Diode
 - 9. Depletion Region
 - 10. Potential Barrier
 - 11. Reverse saturation current
 - 12. Knee Voltage
 - 13. Break down voltage
 - 14. Surface Leakage current
 - 15. Peak Inverse Voltage
 - 16. Surge current