Лабораторная работа N 2.1.6

Александр Романов Б01 107 $24~{\rm мартa}~2022~{\rm r}.$

1 Введение

Цель работы:

1) определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры; 2) вычисление по результатам опытов коэффициентов Ван дер Ваальса «а» и «b».

Используемое оборудование:

трубка с пористой перегородкой; труба Дьюара; термостат; термометры; дифференциальная термопара; микровольтметр; балластный баллон; манометр.

2 Работа:

Проводим измерения измерения температуры при заданной разнице давлений.

При T = 296 K:

При $T = 296K$					
$\Delta P, Pa$	4	3.5	3.2	2.7	2.1
$\Delta T, K$	5.291	4.558	3.826	3.053	2.035

 $\verb|tex/graph1-eps-converted-to.pdf|$

Полученная линейная (вида y=ax+b) зависимость: y=1.735x-1.624 $\sigma_a=0.537$, $\sigma_b=0.352$

При этой температуре получаем значение коэффициента Джоуля-Томпсона:

$$\frac{\delta T}{\delta P} = 1.735 K/Pa$$

При T = 303 K:

При $T = 303K$						
$\Delta P, Pa$	4.0	3.5	3.3	2.7	2.2	
$\Delta T, K$	5.088	4.192	3.866	2.768	1.994	

 $\verb|tex/graph2-eps-converted-to.pdf|$

Полученная линейная (вида y=ax+b) зависимость: y=1.73x-1.85 $\sigma_a=0.506$, $\sigma_b=0.318$

При этой температуре получаем значение коэффициента Джоуля-Томпсона:

$$\frac{\delta T}{\delta P} = 1.73 K/Pa$$

При T = 313 K:

	При $T = 313K$						
ſ	$\Delta P, Pa$	4.1	3.5	3.2	2.7	2.2	
	$\Delta T, K$	4.95	3.952	3.411	2.87	1.955	

 $\verb|tex/graph3-eps-converted-to.pdf|$

Полученная линейная (вида y=ax+b) зависимость: y=1.538x-1.4 $\sigma_a=0.485$, $\sigma_b=0.317$

При этой температуре получаем значение коэффициента Джоуля Томпсона:

$$\frac{\delta T}{\delta P} = 1.54 K/Pa$$

При T = 323 K:

	При $T = 323K$					
ĺ	$\Delta P, Pa$	4.1	3.5	3.2	2.7	2.2
Ì	$\Delta T, K$	4.8	3.825	3.442	2.72	1.955

 $\verb|tex/graph4-eps-converted-to.pdf|$

Полученная линейная (вида y = ax + b) зависимость: y = 1.482x - 1.304 $\sigma_a = 0.474$, $\sigma_b = 0.31$

При этой температуре получаем значение коэффициента Джоуля Томпсона:

$$\frac{\delta T}{\delta P} = 1.482 K/Pa$$

Построим график μ от $\frac{1}{T}$:

$\frac{1}{T}$, $10^3 K^1$	0.0034	0.003.7	0.0032	0.0031
$\mu, K/Pa$	1.735	1.73	1.54	1.482

 $\verb|tex/graph5-eps-converted-to.pdf|$

Полученная линейная (вида y=ax+b) зависимость: y=949x-1.462 $\sigma_a=0.006K^2/Pa$, $\sigma_b=6.6\ 10^{-7}\ {\rm K/Pa}$

По коэффициентам прямой прямой определим коэффициенты a и b для углекислого газа.

Согласно формуле:

$$\mu = \frac{2}{RTC_p} \cdot a - \frac{b}{C_p}$$

Из этой зависимости мы можем вычислить значения a и b:

$$a = 0.115 \frac{H \cdot M^4}{mole^2}, b = 42.5 \frac{cm^3}{mole}$$

Коэффициент b достаточно точно совпадает с табличным: $b=42, 8\frac{cm^3}{mole}$

Коэффициент же a по какой-то причине отличается от табличного $a=0.36\frac{H\cdot M^4}{mole^2}$ более чем в 3 раза.

По пересечению графиком $\mu\left(\frac{1}{T}\right)$ оси абсцисс находим значение температуры инверсии для углекислого газа:

$$T_{inv} = 649K$$

Это значение близко к табличному.

3 Краткие выводы: