

B

SEQUENCE LISTING

<110> Luo, Ying
Huang, Betty
Shen, Mary
Yu, PeiWen

<120> NOVEL APOPTOSIS PROTEINS

<130> A-68285/RMS/DHR

<140> US 09/762,491
<141> 2001-05-09

<150> PCT/US 99/17776
<151> 1999-08-06

<150> US 60/099,486
<151> 1998-09-08

<150> US 60/095,590
<151> 1998-08-06

<150> US 60/095,587
<151> 1998-08-06

<160> 10

<170> PatentIn version 3.1

<210> 1
<211> 1155
<212> DNA
<213> Homo sapiens

<400> 1
cacagacagg ctcttaactg tttatatcac tcacttggga aagtgtctca agctgttcta 60
caaatccatg caaaggccgt taaaaatag cagcgaaggt cctggactcg gtctcgtcca 120
gcacagcccc ttggctctct ctctgggctc tggccgcctg gccccgggg acccacacga 180
ggtcatggcg tgcttcggc agggggcg ggatcccata gacacctcag ctcccttaaga 240
gttctccgcc tgggccagga cgagcatggg ggtccccact gatgcccagag acagtgcggc 300
tgtgtgtgtg agccctcgac ccacataaca gagaggtgtc ctgatgcct ctgtcctctc 360
caggtggatc taggatccgg ctccaacat gtggcagctc tggcctccc tctgctgcct 420
gctgggtttt gccaatgccc ggagcaggcc ctcttccat cccgtgtcgg atgagctgg 480
caactatgtc aacaaacgga ataccacgtg gcaggccggg cacaacttct acaacgtgga 540
catgagctac ttgaagaggc tatgtggta cttcctgggt gggcccaagc caccggagag 600
agtatgttt accgaggacc tgaagctgcc tgcaagcttc gatgcacggg aacaatggcc 660

acagtgtccc accatcaaag agatcagaga ccagggctcc tgtggctcct gctggtaag 720
gccctgctgg ctggtgggaa agcgctggag agaaagtggg agcaacactg gagagtctg 780
ggggattcgg ggtggggaca actctgacaa ggcaagttat agaaacttc tgagtcccag 840
tttccatcag tacaaaaatc acaatccctc tggccatgaa tggcggcag gattaggtgg 900
agtggcgggc agagcatcca gcagattgca agtccacgtg tacaggtggc gaagcagctc 960
ccttccctg acatgctggc ccgtccgcaa ataccaggag ctctcactgc tactctgctt 1020
caagaaagca tcccttagt gtcagtgagc tgtcttaatt ttgtcattta attgtggtaa 1080
aatacacgta acagaaatgt aataatctt gcaatcttct ttgttttct ttttctttt 1140
ttttttttt ttttt 1155

<210> 2
<211> 164
<212> PRT
<213> Homo sapiens

<400> 2

Met Trp Gln Leu Trp Ala Ser Leu Cys Cys Leu Leu Val Leu Ala Asn
1 5 10 15

Ala Arg Ser Arg Pro Ser Phe His Pro Val Ser Asp Glu Leu Val Asn
20 25 30

Tyr Val Asn Lys Arg Asn Thr Thr Trp Gln Ala Gly His Asn Phe Tyr
35 40 45

Asn Val Asp Met Ser Tyr Leu Lys Arg Leu Cys Gly Thr Phe Leu Gly
50 55 60

Gly Pro Lys Pro Pro Gln Arg Val Met Phe Thr Glu Asp Leu Lys Leu
65 70 75 80

Pro Ala Ser Phe Asp Ala Arg Glu Gln Trp Pro Gln Cys Pro Thr Ile
85 90 95

Lys Glu Ile Arg Asp Gln Gly Ser Cys Gly Ser Cys Trp Val Arg Pro
100 105 110

Cys Trp Leu Val Gly Lys Arg Trp Arg Glu Ser Gly Ser Asn Thr Gly
115 120 125

Glu Ser Trp Gly Ile Arg Gly Gly Asp Asn Ser Asp Lys Ala Ser Tyr
130 135 140

Arg Asn Phe Leu Ser Pro Ser Phe His Gln Tyr Lys Asn His Asn Pro
145 150 155 160

Ser Gly His Glu

<210> 3
<211> 1294
<212> DNA
<213> Homo sapiens

<400> 3	
tccaaagtccct ggatgagctc ggaagacacg tgctgctgcg gaaggactgt ggcccagtgg	60
acaccaaggt tccaggtgct ggggagccca agtcagcctt cactcagggc tcagccatga	120
tttcttctct gtcccaaaac catccagaca acagaaacga gactttcagc tcagtcattt	180
ccctgttcaa tgaggatccc ctgtcccagg acttgcctgt gaagatggct tcaatcttca	240
agaactttgt cattacctat aaccggacat atgagtcaaa ggaagaagcc cggtggcgcc	300
tgtccgtctt tgtcaataac atggtgcgag cacagaagat ccaggccctg gaccgtggca	360
cagctcagta tggagtcacc aagttcagtg atctcacaga ggaggagttc cgcactatct	420
acctgaatac tctcctgagg aaagagcctg gcaacaagat gaagcaagcc aagtctgtgg	480
gtgacctcgc cccacctgaa tgggactgga ggagtaaggg ggctgtcaca aaagtcaaag	540
accagggcat gtgtggctcc tgctggccct tctcagtcac aggcaatgtg gagggccagt	600
ggtttctcaa ccaggggacc ctgctctccc tctctgaaca ggagctcttg gactgtgaca	660
agatggacaa ggcctgcatg ggcggcttc cctccaatgc ctactcggcc ataaagaatt	720
tgggagggct ggagacagag gatgactaca gctaccaggg tcacatgcag tcctgcaact	780
tctcagcaga gaaggccaag gtctacatca atgactccgt ggagctgagc cagaacgagc	840
agaagctggc agcctggctg gccaagagag gccaatctc cgtggccatc aatgcctttg	900
gcatgcagtt ttaccggccac gggatctccc gcccctctcg gcccctctgc agcccttggc	960
tcattgacca tgcgggtttg cttgtggct acggcaaccg ctctgacgtt ccctttggg	1020
ccatcaagaa cagctggggc actgactggg gtgagaaggg ttactactac ttgcacatcg	1080
ggtccggggc ctgtggcggtg aacaccatgg ccagctcgcc ggtggtggac tgaagagggg	1140

cccccagctc gggacctgg gctgatcaga gtggctgctg ccccagcctg acatgtgtcc 1200
aggccccctcc ccggggaggta cagctggcag agggaaaggc actgggtacc tcagggtgag 1260
cagagggcac tgggctgggg cacagccccct gctt 1294

<210> 4
<211> 338
<212> PRT
<213> Homo sapiens

<400> 4

Met Ile Ser Ser Leu Ser Gln Asn His Pro Asp Asn Arg Asn Glu Thr
1 5 10 15

Phe Ser Ser Val Ile Ser Leu Leu Asn Glu Asp Pro Leu Ser Gln Asp
20 25 30

Leu Pro Val Lys Met Ala Ser Ile Phe Lys Asn Phe Val Ile Thr Tyr
35 40 45

Asn Arg Thr Tyr Glu Ser Lys Glu Glu Ala Arg Trp Arg Leu Ser Val
50 55 60

Phe Val Asn Asn Met Val Arg Ala Gln Lys Ile Gln Ala Leu Asp Arg
65 70 75 80

Gly Thr Ala Gln Tyr Gly Val Thr Lys Phe Ser Asp Leu Thr Glu Glu
85 90 95

Glu Phe Arg Thr Ile Tyr Leu Asn Thr Leu Leu Arg Lys Glu Pro Gly
100 105 110

Asn Lys Met Lys Gln Ala Lys Ser Val Gly Asp Leu Ala Pro Pro Glu
115 120 125

Trp Asp Trp Arg Ser Lys Gly Ala Val Thr Lys Val Lys Asp Gln Gly
130 135 140

Met Cys Gly Ser Cys Trp Ala Phe Ser Val Thr Gly Asn Val Glu Gly
145 150 155 160

Gln Trp Phe Leu Asn Gln Gly Thr Leu Leu Ser Leu Ser Glu Gln Glu
165 170 175

Leu Leu Asp Cys Asp Lys Met Asp Lys Ala Cys Met Gly Gly Leu Pro
180 185 190

Ser Asn Ala Tyr Ser Ala Ile Lys Asn Leu Gly Gly Leu Glu Thr Glu
195 200 205

Asp Asp Tyr Ser Tyr Gln Gly His Met Gln Ser Cys Asn Phe Ser Ala
210 215 220

Glu Lys Ala Lys Val Tyr Ile Asn Asp Ser Val Glu Leu Ser Gln Asn
225 230 235 240

Glu Gln Lys Leu Ala Ala Trp Leu Ala Lys Arg Gly Pro Ile Ser Val
245 250 255

Ala Ile Asn Ala Phe Gly Met Gln Phe Tyr Arg His Gly Ile Ser Arg
260 265 270

Pro Leu Arg Pro Leu Cys Ser Pro Trp Leu Ile Asp His Ala Val Leu
275 280 285

Leu Val Gly Tyr Gly Asn Arg Ser Asp Val Pro Phe Trp Ala Ile Lys
290 295 300

Asn Ser Trp Gly Thr Asp Trp Gly Glu Lys Gly Tyr Tyr Tyr Leu His
305 310 315 320

Arg Gly Ser Gly Ala Cys Gly Val Asn Thr Met Ala Ser Ser Ala Val
325 330 335

Val Asp

<210> 5
<211> 1557
<212> DNA
<213> Homo sapiens

<400> 5
atgtcgtgcg tcaagttatg gcccagcggt gccccggccc cttgggtgtc catcgaggaa 60
ctggagaacc aggagctcgt cggcaaagac gggttcggca cagtgttccg ggcgcaacat 120
aggaagtggg gctacgatgt ggcggtcaag atcgtaaact cgaaggcgat atccagggag 180

gtcaaggcca	tggcaagtct	ggataacgaa	ttcgtgtgc	gcctagaagg	ggttatcgag	240
aaggtaact	gggaccaaga	tcccaagccg	gctctggta	ctaaattcat	ggagaacggc	300
tccctgtcgg	ggctgctgca	gtcccagtgc	cctcgccct	ggccgctcct	ttgccgcctg	360
ctgaaagaag	tggtgcttgg	gatgtttac	ctgcacgacc	agaacccggt	gctcctgcac	420
cgggacctca	agccatccaa	cgtcctgccg	gaccagagc	tgcacgtcaa	gctggcagat	480
tttggcctgt	ccacattca	gggaggctca	cagtcaaggaa	cagggtccgg	ggagccaggg	540
ggcaccctgg	gctacttggc	cccagaactg	tttgttaacg	taaaccggaa	ggcctccaca	600
gccagtgacg	tctacagctt	cgggatccta	atgtggcag	tgcttgctgg	aagagaagtt	660
gagttgccaa	ccgaaccatc	actcgtgtac	gaagcagtgt	gcaacaggca	gaaccggcct	720
tcattggctg	agctgccccaa	agccggccct	gagactcccg	gcttagaagg	actgaaggag	780
ctaattgcagc	tctgctggag	cagtgagccc	aaggacagac	cctccttcca	ggaatgccta	840
ccaaaaactg	atgaagtctt	ccagatggtg	gagaacaata	tgaatgctgc	tgtctccacg	900
gtaaaggatt	tcctgtctca	gctcaagagc	agcaatagga	gattttctat	cccagagtca	960
ggccaaggag	ggacagaaat	ggtatggcttt	aggagaacca	tagaaaacca	gcactctcg	1020
aatgatgtca	tggtttctga	gtggctaaac	aaactgaatc	tagaggagcc	tcccagctct	1080
gttcctaaaa	aatgcccag	ccttaccaag	aggagcaggg	cacaagagga	gcaggttcca	1140
caagcctgga	cagcaggcac	atcttcagat	tcgatggccc	aacctccccca	gactccagag	1200
acctaactt	tcagaaacca	gatgcccagc	cctacctcaa	ctggaacacc	aagtccctgga	1260
ccccgagggaa	atcagggggc	tgagagacaa	ggcatgaact	ggtcctgcag	gacccggag	1320
ccaaatccag	taacagggcg	accgctcggt	aacatataca	actgctctgg	ggtgcaagtt	1380
ggagacaaca	actacttgac	tatgcaacag	acaactgcct	tgcccacatg	gggcttggca	1440
ccttcgggca	aggggaggggg	cttgcagcac	cccccaccag	tagttcgca	agaaggccct	1500
aaagatcctg	aagcctggag	caggccacag	ggttggtaaa	atcatagcgg	gaaataaa	1557

<210> 6
 <211> 519
 <212> PRT
 <213> Homo sapiens

<400> 6

Met	Ser	Cys	Val	Lys	Leu	Trp	Pro	Ser	Gly	Ala	Pro	Ala	Pro	Leu	Val
1				5				10					15		

Ser Ile Glu Glu Leu Glu Asn Gln Glu Leu Val Gly Lys Asp Gly Phe
20 25 30

Gly Thr Val Phe Arg Ala Gln His Arg Lys Trp Gly Tyr Asp Val Ala
35 40 45

Val Lys Ile Val Asn Ser Lys Ala Ile Ser Arg Glu Val Lys Ala Met
50 55 60

Ala Ser Leu Asp Asn Glu Phe Val Leu Arg Leu Glu Gly Val Ile Glu
65 70 75 80

Lys Val Asn Trp Asp Gln Asp Pro Lys Pro Ala Leu Val Thr Lys Phe
85 90 95

Met Glu Asn Gly Ser Leu Ser Gly Leu Leu Gln Ser Gln Cys Pro Arg
100 105 110

Pro Trp Pro Leu Leu Cys Arg Leu Leu Lys Glu Val Val Leu Gly Met
115 120 125

Phe Tyr Leu His Asp Gln Asn Pro Val Leu Leu His Arg Asp Leu Lys
130 135 140

Pro Ser Asn Val Leu Pro Asp Pro Glu Leu His Val Lys Leu Ala Asp
145 150 155 160

Phe Gly Leu Ser Thr Phe Gln Gly Gly Ser Gln Ser Gly Thr Gly Ser
165 170 175

Gly Glu Pro Gly Gly Thr Leu Gly Tyr Leu Ala Pro Glu Leu Phe Val
180 185 190

Asn Val Asn Arg Lys Ala Ser Thr Ala Ser Asp Val Tyr Ser Phe Gly
195 200 205

Ile Leu Met Trp Ala Val Leu Ala Gly Arg Glu Val Glu Leu Pro Thr
210 215 220

Glu Pro Ser Leu Val Tyr Glu Ala Val Cys Asn Arg Gln Asn Arg Pro
225 230 235 240

Ser Leu Ala Glu Leu Pro Gln Ala Gly Pro Glu Thr Pro Gly Leu Glu
245 250 255

Gly Leu Lys Glu Leu Met Gln Leu Cys Trp Ser Ser Glu Pro Lys Asp
260 265 270

Arg Pro Ser Phe Gln Glu Cys Leu Pro Lys Thr Asp Glu Val Phe Gln
275 280 285

Met Val Glu Asn Asn Met Asn Ala Ala Val Ser Thr Val Lys Asp Phe
290 295 300

Leu Ser Gln Leu Lys Ser Ser Asn Arg Arg Phe Ser Ile Pro Glu Ser
305 310 315 320

Gly Gln Gly Gly Thr Glu Met Asp Gly Phe Arg Arg Thr Ile Glu Asn
325 330 335

Gln His Ser Arg Asn Asp Val Met Val Ser Glu Trp Leu Asn Lys Leu
340 345 350

Asn Leu Glu Glu Pro Pro Ser Ser Val Pro Lys Lys Cys Pro Ser Leu
355 360 365

Thr Lys Arg Ser Arg Ala Gln Glu Glu Gln Val Pro Gln Ala Trp Thr
370 375 380

Ala Gly Thr Ser Ser Asp Ser Met Ala Gln Pro Pro Gln Thr Pro Glu
385 390 395 400

Thr Ser Thr Phe Arg Asn Gln Met Pro Ser Pro Thr Ser Thr Gly Thr
405 410 415

Pro Ser Pro Gly Pro Arg Gly Asn Gln Gly Ala Glu Arg Gln Gly Met
420 425 430

Asn Trp Ser Cys Arg Thr Pro Glu Pro Asn Pro Val Thr Gly Arg Pro
435 440 445

Leu Val Asn Ile Tyr Asn Cys Ser Gly Val Gln Val Gly Asp Asn Asn
450 455 460

Tyr Leu Thr Met Gln Gln Thr Thr Ala Leu Pro Thr Trp Gly Leu Ala
465 470 475 480

Pro Ser Gly Lys Gly Arg Gly Leu Gln His Pro Pro Pro Val Gly Ser
485 490 495

Gln Glu Gly Pro Lys Asp Pro Glu Ala Trp Ser Arg Pro Gln Gly Trp
500 505 510

Tyr Asn His Ser Gly Lys Glx
515

<210> 7
<211> 11
<212> RNA
<213> Artificial sequence

<220>
<223> synthetic

<400> 7
ggaauuggag c 11

<210> 8
<211> 11
<212> RNA
<213> Artificial sequence

<220>
<223> antisense sequence

<400> 8
gcuccaaauuc c 11

<210> 9
<211> 11
<212> DNA
<213> Artificial sequence

<220>
<223> antisense sequence

<400> 9
gctccaaattc c 11

<210> 10
<211> 17
<212> PRT
<213> Artificial sequence

<220>

<223> DEVD linker sequence

<400> 10

Gly Ser Gly Ser Gly Ser Asp Glu Val Asp Gly Gly Ser Gly Ser Gly
1 5 10 15

Ser