Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms

Adrien Todeschini

Inria Bordeaux

JdS 2014, Rennes Aug. 2014

Joint work with François Caron (Univ. Oxford), Marie Chavent (Inria, Univ. Bordeaux)

A. Todeschini 1/35

Disclaimer

- ▶ Not a fully Bayesian approach.
- Derivation of an EM algorithm for MAP estimation.

But builds on a hierarchical prior construction.

A. Todeschini 2/35

Outline

Introduction

Hierarchical adaptive spectral penalty

EM algorithm for MAP estimation

Experiments

A. Todeschini 3/35

Matrix Completion

- Netflix prize
- ▶ 480k users and 18k movies providing 1-5 ratings
- ▶ 99% of the ratings are missing
- ▶ Objective: predict missing entries in order to make recommendations

A. Todeschini 4/35

Matrix Completion

Objective

Complete a matrix X of size $m \times n$ from a subset of its entries

Applications

- ► Recommender systems
- ► Image inpainting
- ► Imputation of missing data

A. Todeschini 5 / 35

Matrix Completion

- ▶ Potentially large matrices (each dimension of order $10^4 10^6$)
- ▶ Very sparsely observed (1%-10%)

A. Todeschini 6/35

► Assume that the complete matrix **Z** is of low rank

$$Z \simeq A B^T$$
 $m \times n \qquad m \times k \times n$

with $k \ll \min(m, n) = r$.

A. Todeschini 7/35

► Assume that the complete matrix **Z** is of low rank

$$Z \simeq A B^T$$
 $m \times n = m \times k \times n$

with $k \ll \min(m, n) = r$.

A. Todeschini 7/35

- Let $\Omega \subset \{1,\ldots,m\} imes \{1,\ldots,n\}$ be the subset of observed entries
- ▶ For $(i,j) \in \Omega$

$$X_{ij} = Z_{ij} + arepsilon_{ij},\, arepsilon_{ij} \overset{\mathsf{iid}}{\sim} \mathcal{N}(0,\sigma^2)$$

where $\sigma^2 > 0$

A. Todeschini 8 / 35

► Optimization problem

minimize
$$\underbrace{\frac{1}{2\sigma^2}\sum_{(i,j)\in\Omega}(X_{ij}-Z_{ij})^2 + \lambda \; \mathsf{rank}(\pmb{Z})}_{-\mathsf{loglikelihood}}$$

where $\lambda > 0$ is some regularization parameter.

- Non-convex
- ightharpoonup Computationally hard for general subset Ω

A. Todeschini 9 / 35

► Matrix completion with nuclear norm penalty

minimize
$$\underbrace{\frac{1}{2\sigma^2}\sum_{(i,j)\in\Omega}\left(X_{ij}-Z_{ij}\right)^2 + \boldsymbol{\lambda}\left\|\boldsymbol{Z}\right\|_*}_{-\text{loglikelihood}}$$
 penalty

where $\|Z\|_*$ is the nuclear norm of Z, or the sum of the singular values of Z.

► Convex relaxation of the rank penalty optimization

- ► Complete matrix *X*
- ► Nuclear norm objective function

$$\mathop{\mathsf{minimize}}\limits_{Z} \ \frac{1}{2\sigma^2} ||X-Z||_F^2 + \lambda \ ||Z||_*$$

where $||\cdot||_F^2$ is the Frobenius norm

Global solution given by a soft-thresholded SVD

$$\widehat{Z} = \mathrm{S}_{\lambda\sigma^2}(X)$$

where
$$\mathbf{S}_{\lambda}(X) = \widetilde{U}\widetilde{D}_{\lambda}\widetilde{V}^T$$
 with $\widetilde{D}_{\lambda} = \mathrm{diag}((\widetilde{d}_1 - \lambda)_+, \dots, (\widetilde{d}_r - \lambda)_+)$ and $t_+ = \max(t, 0)$.

[Cai et al., 2010, Mazumder et al., 2010]

Soft-Impute algorithm

- Start with an initial matrix $Z^{(0)}$
- At each iteration $t = 1, 2, \dots$
 - **Replace** the missing elements in X with those in $Z^{(t-1)}$
 - Perform a soft-thresholded SVD on the completed matrix, with shrinkage λ to obtain the low rank matrix $Z^{(t)}$

► Thresholding rule

Figure : Thresholding rules on the singular values \widetilde{d}_i of X

A. Todeschini

Outline

Introduction

Hierarchical adaptive spectral penalty

EM algorithm for MAP estimation

Experiments

A. Todeschini 14 / 35

Nuclear Norm penalty

► Maximum A Posteriori (MAP) estimate

$$\hat{Z} = \arg\max_{Z} \left[\log p(X|Z) + \log p(Z)\right]$$

under the prior

$$p(Z) \propto \exp\left(-\lambda \left\|Z\right\|_*\right)$$

where $Z = UDV^T$ with $D = \operatorname{diag}(d_1, d_2, \ldots, d_r)$, and

 $U, V \overset{\mathsf{iid}}{\sim} \mathsf{Haar}$ uniform prior on unitary matrices $d_i \overset{\mathsf{iid}}{\sim} \mathsf{Exp}(\lambda)$

A. Todeschini 15 / 35

Hierarchical adaptive spectral penalty

- Each singular value has its own random shrinkage coefficient
- lacktriangle Hierarchical model, for each singular value $i=1,\ldots,r$

$$d_i | \gamma_i \sim \operatorname{Exp}(\gamma_i)$$

 $\gamma_i \sim \operatorname{Gamma}(a,b)$

• We set $a = \lambda b$ and $b = \beta$

[Todeschini et al., 2013]

Hierarchical adaptive spectral penalty

Marginal distribution over d_i:

$$p(d_i) = \int_0^\infty \operatorname{Exp}(d_i; \gamma_i) \operatorname{Gamma}(\gamma_i; a, b) d\gamma_i = rac{ab^a}{(d_i + b)^{a+1}}$$

Pareto distribution with heavier tails than exponential distribution

A. Todeschini

Hierarchical adaptive spectral penalty

$$pen(Z) = -\log p(Z) = \sum_{i=1}^{r} (a+1)\log(b+d_i)$$
(a) Nuclear norm (b) HASP $(\beta=1)$ (c) HASP $(\beta=0.1)$ (d) Rank penalty

(e) ℓ_1 norm (f) HAL $(\beta=1)$ (g) HAL $(\beta=0.1)$ (h) ℓ_0 norm

Admits as special case the nuclear norm penalty $\lambda ||Z||_*$ when $a=\lambda b$ and $b\to\infty$.

A. Todeschini

Outline

Introduction

Hierarchical adaptive spectral penalty

EM algorithm for MAP estimation

Experiments

A. Todeschini 19 / 35

Expectation Maximization (EM) algorithm to obtain a MAP estimate

$$\widehat{Z} = \arg\max_{Z} \left[\log p(X|Z) + \log p(Z) \right]$$

i.e. to minimize

$$L(Z) = rac{1}{2\sigma^2} \left\| P_{\Omega}(X) - P_{\Omega}(Z)
ight\|_F^2 + (a+1) \sum_{i=1}^r \log(b+d_i)$$

where

$$P_\Omega(X)(i,j) = \left\{egin{array}{ll} X_{ij} & ext{if } (i,j) \in \Omega \ 0 & ext{otherwise} \end{array}
ight. \ P_\Omega^\perp(X)(i,j) = \left\{egin{array}{ll} 0 & ext{if } (i,j) \in \Omega \ X_{ij} & ext{otherwise} \end{array}
ight.$$

A. Todeschini 20 / 35

- lacktriangle Latent variables: $\gamma=(\gamma_1,\ldots,\gamma_r)$ and $P_\Omega^\perp(X)$
- ► E step:

$$egin{aligned} Q(Z,Z^\star) &= \mathbb{E}\left[\log(p(P_\Omega^\perp(X),Z,\gamma))|Z^\star,P_\Omega(X)
ight] \ &= C - rac{1}{2\sigma^2} \left\|X^\star - Z
ight\|_F^2 - \sum_{i=1}^r \omega_i d_i \end{aligned}$$

where $X^\star=P_\Omega(X)+P_{\Omega^\perp}(Z^\star)$ and $\omega_i=\mathbb{E}[\gamma_i|d_i^\star]=rac{a+1}{b+d_i^\star}.$

A. Todeschini 21/3

► M step:

(1) is an adaptive spectral penalty regularized optimization problem, with weights $\omega_i = \frac{a+1}{b+d^*}$.

$$d_1^\star \geq d_2^\star \geq \ldots \geq d_r^\star$$

$$\Rightarrow 0 \le \omega_1 \le \omega_2 \le \dots \le \omega_r \tag{2}$$

Given condition (2), the solution is given by a weighted soft-thresholded SVD

$$\widehat{Z} = S_{\sigma^2 \omega}(X^*) \tag{3}$$

where $\mathbf{S}_{\omega}(X) = \widetilde{U}\widetilde{D}_{\omega}\widetilde{V}^T$ with

$$\widetilde{D}_{\omega} = \mathsf{diag}((\widetilde{d}_1 - \omega_1)_+, \ldots, (\widetilde{d}_r - \omega_r)_+).$$

[Gaïffas and Lecué, 2011]

Figure : Thresholding rules on the singular values \widetilde{d}_i of X

The weights will penalize less heavily higher singular values, hence reducing bias.

A. Todeschini

Hierarchical Adaptive Soft Impute (HASI) algorithm for matrix completion

- Initialize $Z^{(0)}$ with Soft-Impute. At iteration $t\geq 1$ For $i=1,\ldots,r$, compute the weights $\omega_i^{(t)}=\frac{a+1}{b+d_i^{(t-1)}}$ Set $Z^{(t)}=\mathbf{S}_{\sigma^2\omega^{(t)}}\left(P_\Omega(X)+P_\Omega^\perp(Z^{(t-1)})\right)$

A. Todeschini 24 / 35

- ▶ HASI algorithm admits the Soft-Impute algorithm as a special case when $a = \lambda b$ and $b = \beta \to \infty$. In this case, $\omega_i^{(t)} = \lambda$ for all i.
- ▶ When β < ∞, the algorithm adaptively updates the weights so that to penalize less heavily higher singular values.

A. Todeschini 25 / 35

Outline

Introduction

Hierarchical adaptive spectral penalty

EM algorithm for MAP estimation

Experiments

Simulated data

Collaborative filtering examples

A. Todeschini 26 / 35

Simulated data

A. Todeschini 27 / 35

Simulated data

We then remove 20% of the observed entries as a validation set to estimate the regularization parameters. We use the unobserved entries as a test set.

miss. miss. miss.

A. Todeschini 28 / 35

Collaborative filtering examples (Jester)

	Jester 1		Jester 2		Jester 3	
	24983 imes 100		$\boldsymbol{23500 \times 100}$		24938×100	
	27.5 % miss.		27.3% miss.		75.3% miss.	
Method	NMAE	Rank	NMAE	Rank	NMAE	Rank
MMMF	0.161	95	0.162	96	0.183	58
Soft Imp	0.161	100	0.162	100	0.184	78
Soft Imp+	0.169	14	0.171	11	0.184	33
Hard Imp	0.158	7	0.159	6	0.181	4
HASI	0.153	100	0.153	100	0.174	30

A. Todeschini 29 / 35

Collaborative filtering examples (Jester)

A. Todeschini 30 / 35

Collaborative filtering examples (MovieLens)

	MovieLens 100k		MovieLens 1M		
	943×1682		6040 imes 3952		
	93.7% miss.		95.8% miss.		
Method	NMAE	Rank	NMAE	Rank	
MMMF	0.195	50	0.169	30	
Soft Imp	0.197	156	0.176	30	
Soft Imp+	0.197	108	0.189	30	
Hard Imp	0.190	7	0.175	8	
HASI	0.187	35	0.172	27	

A. Todeschini 31/35

Conclusion and perspectives

Conclusion:

- Good results compared to several alternative low rank matrix completion methods.
- ▶ Bridge between nuclear norm and rank regularization algorithms.
- Can be extended to binary matrices
- Non-convex optimization, but experiments show that initializing the algorithm with the Soft-Impute algorithm provides very satisfactory results
- Matlab code available online

► Perspectives:

- Fully Bayesian approach
- Tensor factorization
- Online EM

A. Todeschini 32 / 35

Bibliography I

Cai, J., Candès, E., and Shen, Z. (2010).

A singular value thresholding algorithm for matrix completion. *SIAM Journal on Optimization*, 20(4):1956–1982.

Candès, E. and Recht, B. (2009).

Exact matrix completion via convex optimization. Foundations of Computational mathematics, 9(6):717–772.

Candès, E. J. and Tao, T. (2010).

The power of convex relaxation: Near-optimal matrix completion. *Information Theory, IEEE Transactions on,* 56(5):2053–2080.

Fazel, M. (2002).

Matrix rank minimization with applications.

PhD thesis, Stanford University.

Gaïffas, S. and Lecué, G. (2011).

Weighted algorithms for compressed sensing and matrix completion. arXiv preprint arXiv:1107.1638.

Larsen, R. M. (2004).

Propack-software for large and sparse svd calculations.

Available online. URL http://sun. stanford. edu/rmunk/PROPACK.

A. Todeschini 33 / 35

Bibliography II

Mazumder, R., Hastie, T., and Tibshirani, R. (2010). Spectral regularization algorithms for learning large incomplete matrices. The Journal of Machine Learning Research, 11:2287–2322.

Todeschini, A., Caron, F., and Chavent, M. (2013).

Probabilistic low-rank matrix completion with adaptive spectral regularization algorithms.

In Advances in Neural Information Processing Systems, pages 845–853.

A. Todeschini 34 / 35

Thank you

A. Todeschini 35 / 35