P4 de Álgebra Linear I – 2001.2 Data: 3 de dezembro de 2001.

Nome:	Matrícula:		
Assinatura:	Turma:		

Questão	Valor	Nota	Revis.
1	2.5		
2a	0.5		
2b	0.5		
2c	0.5		
2d	0.5		
3a	0.5		
3b	0.5		
3c	1.0		
3d	0.5		
3e	0.5		
4a	1.5		
4b	0.5		
4c	1.0		
Total	10.5		

Instruções:

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando ou rasuradas terá nota zero.
- Nas questões 2, 3 e 4 justifique cuidadosamente todas as respostas de forma completa, ordenada e coerente. Escreva de forma clara e legível.
- Nas questões 2, 3 e 4 da prova não haverá pontuação menor que 0.5 Verifique cuidadosamente suas respostas.
- Faça a prova na sua turma.

Marque no quadro as respostas da primeira questão. Não é necessário justificar esta questão.

ATENÇÃ0: resposta errada vale ponto negativo!, a questão pode ter nota negativa!

Para uso exclusivo do professor	****	****
Certas:	$\times 0.3$	
Erradas:	$\times -0.2$	
****	Total	

1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque **com caneta** sua resposta no quadro abaixo. **Atenção:** responda **todos** os itens, use " $\mathbf{N} =$ não sei" caso você não saiba a resposta. Cada resposta certa vale 0.3, cada resposta errada vale -0.2, cada resposta \mathbf{N} vale 0. Respostas confusas e ou rasuradas valerão -0.2.

Itens	V	\mathbf{F}	N
1.a			
1.b			
1.c			
1.d			
1.e			
1.f			
1.g			
1.h			
1.i			

- **1.a)** Se $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ e existem vetores u e w tais que Au = 2u e Aw = -w, então a soma dos autovalores de A^6 é igual a 63.
- **1.b)** A distância entre o plano de equação x+y+z=0 e o plano de equação x+y+z=1 é igual a 1.
- 1.c) A reta de equações x=y=z é paralela ao plano de equação 2x-y-z=3.
- **1.d)** O volume do paralelepípedo formado pelos vetores $(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}})$, $(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})$ e (0, 1, 0) é igual a 3.
- **1.e)** É possível encontrar dois vetores u e v não nulos no plano tais que ||u+v|| = ||u-v||.
- **1.f)** Se u, v e w são três vetores de \mathbb{R}^3 perpendiculares entre si, então existem α, β e γ números reais não nulos tais que $\alpha u + \beta v + \gamma w = \vec{0}$.
 - **1.g)** Seja T uma matriz ortogonal. Então se $Tv = \vec{0}$, então $v = \vec{0}$.
- **1.h)** Se -1, 1 e 1 (isto é, 1 tem multiplicidade 2) são os autovalores de uma matriz A 3×3 , então A representa um espelhamento com relação a um plano.
- **1.i)** Se R é uma rotação de 90^o em \mathbb{R}^3 e se u não pertence ao eixo de rotação, então $u \cdot Ru = 0$, isto é, $u \in R(u)$ são ortogonais.

2) Considere as retas $r \in s$ definidas pelas equações:

$$r: \left\{ \begin{array}{lll} x & + & y & + & z & = & 0 \\ x & - & y & & = & 1 \end{array} \right.$$

$$s: \left\{ \begin{array}{lll} x & = & 0 & + & t \\ y & = & 1 & + & t & & t \in \mathbb{R}. \\ z & = & -1 & + & 2t & & \end{array} \right.$$

- **2.a)** Determine uma equação paramétrica de r.
- **2.b)** Determine uma equação cartesiana de s, isto é, escreva s como interseção de dois planos dados em equações cartesianas.
 - **2.c)** Estude a posição relativa de $r \in s$.
- **2.d)** Se a sua resposta no item (2.c) foi reversas ou paralelas calcule a distância entre r e s, e se foi se intersectam determine a equação cartesiana do plano que contém as retas r e s.

- 3) Considere $\beta = \{(1,1,0), (1,0,1), (0,1,1), (0,1,0)\}.$
- **3.a)** Estude se β é uma base de \mathbb{R}^3 .
- **3.b)** Considere uma transformação linear A de \mathbb{R}^3 em \mathbb{R}^3 verificando

$$A(1,1,0) = (1,0,1), \quad A(1,0,1) = (0,1,1), \quad A(0,1,1) = (1,0,1).$$

Estude se A é ortogonal.

- 3.c) Determine a matriz de A na base canônica.
- $\mathbf{3.d}$) Determine um autovalor e um autovetor (associado ao autovalor encontrado) de A.
 - 3.e) Encontre uma base onde a matriz de A é da forma

$$\left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right) \; .$$

4) Considere a matriz

$$P = \begin{pmatrix} 2/3 & a & b \\ -1/3 & 2/3 & c \\ -1/3 & -1/3 & d \end{pmatrix} .$$

- **4.a)** Determine a, b, c e d para que P represente uma projeção ortogonal em um plano. Determine a equação do plano de projeção.
 - 4.b) Considere agora a matriz

$$A = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & -1/\sqrt{3} \\ 0 & -2/\sqrt{6} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{6} & -1/\sqrt{6} & -2/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \end{pmatrix}.$$

Determine os autovalores de A.

4.c) Finalmente considere a matriz

$$B = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & -1/\sqrt{3} \\ 0 & -2/\sqrt{6} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{6} & -1/\sqrt{6} & -2/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \end{pmatrix}.$$

Interprete geometricamente B. Nos casos envolvendo projeções determine a reta ou plano de projeção, nos casos envolvendo espelhamentos determine o plano ou reta de espelhamento, e nos casos envolvendo rotações determine o ângulo e o eixo de rotação.