Devoir d'Optimisation n°1 pour le mardi 23 avril 2019

1. Étude des extrémums locaux et éventuellement globaux des fonctions :

a)
$$f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x^3 + 3xy^2 - 15x - 12y$$

b)
$$g: \mathbb{R}^3 \to \mathbb{R}, (x, y, z) \mapsto x^2 + y^2 + z^2 - 2xyz.$$

2. Soit
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $(x, y) \mapsto x^2 + xy^2 + y^6$.

- a) Déterminer les points critiques de f. Montrer que f possède 2 minimums locaux et que la valeur de f en ces points est $-\frac{1}{432}$. (0,0) est-il un extrémum local ? (Considérer le signe de $f(y^3,y)$ par exemple). f admet-elle un maximum local ? un maximum global ?
- b) Montrer que, si $f(x,y) \leq 0$, alors $xy^2 + y^6 \leq 0$ et $x^2 + xy^2 \leq 0$ et qu'on a alors nécessairement $x \leq 0$ et $-y^2 \leq x \leq -y^4$, puis en déduire que les points où f est négative sont dans $[-1,0] \times [-1,1]$. Les minimums locaux précédents sont-ils globaux?
- **3.** Soit $(a,b) \in \mathbb{R}^2$ et $f: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto x^2 + y^2 + 2\sqrt{(x-a)^2 + (y-b)^2}$. Étude du minimum de f. (On discutera suivant la valeur de $a^2 + b^2$).
- 4. Étudier, suivant les valeurs de $\alpha \in \mathbb{R}$, les extrémums locaux et globaux de la fonction

$$F_{\alpha}: \mathbb{R}^2 \to \mathbb{R}, \ (x,y) \mapsto \alpha e^{xy} - (x^2 + y^2).$$