Test/ Debugger: imgCropMULTI

Summary: Works through step by step the preprocessing and cropping stages. Useful for code debugging and investigating preprocessing quality of a particular frame.

User notes:

- 1) Make sure relevant function files, videos and individual video frames are located in the same folder as this live script. So far, only works on horizontal flow videos.
- 2) There are some user-defined inputs, particularly video/ image file name. Other processing parameters can also be adjusted as see fit.

V2.0. SWC, 19 Feb 2021.

```
close all
clear
```

1) Load video

```
vid_file_name = 'WAT004_S05_17umL-13Wat_umL-10kfps
x4mag_sh50_C001H001S0016.avi'; %<----- user-defined input!!
% vid_file_name = 'DYE003_52%G1_W_0.003_Ink_S0_SPAN80_0.003_2kfps_.avi';
vid = VideoReader(vid_file_name); %read video
totframes = vid.NumFrames %check total num of frames in video</pre>
```

totframes = 1434

2a) Background generation - 'Basic' Statistical Approach

Shows 3 methods: i) Median, ii) Mode and iii) Mean

```
Processed video: WAT004_S05_17umL-13Wat_umL-10kfps x4mag_sh50_C001H001S0016.avi Median; Elapsed time = 19.86

Mode; Elapsed time = 40.28

Mean; Elapsed time = 33.90
```


2b) Background generation - 'Complex' Statistical Approach (Adapted from ADM method)

3) Load test image

% Load images

```
I = imread('WAT004_1360.jpg'); %<----- user-defined input!!

% check images loaded correctly
figure; imshow(I);</pre>
```


4) Background Subtraction

```
%% From Mean background generation
subMean = rescale(1-(double(I) - double(avg_bg))); % std diff with inversion
subMean2 = rescale(abs(double(I) - double(avg_bg))); % abs subtraction

%% From Median background generation
subMed = rescale(1-(double(I) - double(med_bg))); % std diff with inversion
subMed2 = rescale(abs(double(I) - double(med_bg))); % abs diff

%% From Mode background generation
subMax = rescale(1-(double(I) - double(mod_bg))); % std diff with inversion
subMax2 = rescale(abs(double(I) - double(mod_bg))); % abs diff

%% From complex background generation method
subCom = rescale(1-(double(I) - double(bg))); % std diff with inversion
subCom2 = rescale(abs(double(I) - double(bg))); % absdiff

figure;
montage({subMean subMed subMax subCom}, 'Size', [4 1]); title('standard diff + inversion');
```

standard diff + inversion


```
figure; montage({subMean2 subMed2 subMax2 subCom2}, 'Size', [4 1]);
title('absolute diff');
```

absolute diff


```
% figure; imshow(subMean); title('mean')
% figure; imshow(subMed); title('median')
% figure; imshow(subMax); title('mode')
% figure; imshow(subCom); title('complex')
```

5) Convert to binary image

```
bin1 = imbinarize(imadjust((subMean)), graythresh(subMean)); %graythresh uses
Otsu's Method
bin2 = imbinarize(imadjust((subMed)), graythresh(subMed));
bin3 = imbinarize(imadjust((subMax)), graythresh(subMax));
bin4 = imbinarize(imadjust((subCom)), graythresh(subCom));

figure; montage({bin1 bin2 bin3 bin4}, 'Size', [4 1]); title('standard difference + inversion');
```

standard difference + inversion


```
bin21 = imbinarize(imadjust((subMean2)), graythresh(subMean2));
bin22 = imbinarize(imadjust((subMed2)), graythresh(subMed2));
bin23 = imbinarize(imadjust((subMax2)), graythresh(subMax2));
bin24 = imbinarize(imadjust((subCom2)), graythresh(subCom2));
```

figure; montage({bin21 bin22 bin23 bin24}, 'Size', [4 1]); title('absolute
difference');

6) Morphological fill

• only use best result from previous parts

```
Img = bin4; % choose a binary image to process

fill1 = imfill(Img, 'holes'); %fill fully closed drops
figure; imshow(fill1)
```


minA = 50; % anything with area less than this will be treated as noise object
cfill1 = bwareaopen(fill1,minA); %noise object removal
figure; imshow(cfill1);

rg = regionprops('table',cfill1,'Area') %detect ROI

rg =	13×1 table	
	Area	
1	3501	
2	3493	
3	3036	
4	3592	
5	2762	
6	1122	
7	3529	
8	3111	
9	3863	
10	7663	
11	4490	
12	6925	
13	414	

```
[bwl n] = bwlabel(cfill1,8); %assign label to each detected ROI
minA = 0.4*max(rg.Area)
```

minA = 3.0652e + 03


```
L = cfill1 | fill2; %combine to form a final mask
figure; imshow(L);
```


7) Drop Segmentation

• attempt to separate drops that were wrongly fused together from previous steps

```
L2 = imerode(L, strel('diamond',3));
```

figure; imshow(L2)

8) Identify Bounding Box of ROI

ROI = regionprops('table', L2)

 $ROI = 13 \times 3 \text{ table}$

	Area	Centroid		•••
1	3173	38.2909	479.6004	
2	3178	38.3940	586.4443	
3	2726	38.4314	695.6031	
4	3199	39.2001	367.6561	
5	2464	38.3636	261.0515	
6	2493	39.8817	112.6992	
7	3208	194.7684	329.3148	
8	2814	274.5192	330.3927	
9	3545	389.8674	332.2688	
10	7051	530.1533	333.9592	
11	4148	720.3717	335.9549	
12	6396	873.5300	332.7958	
13	1700	1.0091e+03	323.6724	

% first entry in ROI table is the drop nearest to left frame border

```
leadEdge = ROI.Centroid(1,1) + 1.4*(ROI.BoundingBox(1,3) /2) % estimate point of entrance to main channel
```

```
leadEdge = 78.8909
```

```
% remove any drops outside of main flow channel
ROI(ROI.Centroid(:,1) < leadEdge, :) = []</pre>
```

ROI = 7×3 table							
	Area	Centroid		•••			
1	3208	194.7684	329.3148				
2	2814	274.5192	330.3927				
3	3545	389.8674	332.2688				
4	7051	530.1533	333.9592				
5	4148	720.3717	335.9549				
6	6396	873.5300	332.7958				
7	1700	1.0091e+03	323.6724				

Assumptions:

- · horizontal flow in main channel
- entrance region is captured in video (i.e., video does not just purely show a segment of main flow)
- drop identified as that nearest to left frame border is not a random noise object (and thus the width is not representative of a regular drop)

9) Plot results

```
figure; imshow(I);
hold on

% visualise centroid
plot(ROI.Centroid(:,1), ROI.Centroid(:,2), 'b+')

% visualise bounding box
for i=1:height(ROI)
    rectangle('Position',ROI.BoundingBox(i,:),'EdgeColor','b')
end

% visualise estimated leading edge for analysed region
plot([leadEdge leadEdge], [0 vid.Height])
```


6) Crop and show individual drops

```
roiTable = ROI.BoundingBox;
cropSize = [128 128];
for i = 1: height(roiTable)
    dim = 1.5*max([roiTable(i,3:4)]); % this will be the width/ height of
square cropped area
    % x-coord of centroid of cropping region
    cx = roiTable(i,1) + roiTable(i,3)/2;
    % y-coord of centroid of cropping region
    cy = roiTable(i,2) + roiTable(i,4)/2;
    % coordinates of bottom-left vertex of intended crop region
    xmin = cx - dim/2;
    ymin = cy - dim/2;
    % crop region defined as [x-coord of bottom left point, y-coord of
    % bottom left point, width, height]
    Img = imcrop(I, [xmin, ymin, dim, dim]);
    % resize cropped image
    Img = imresize(Img, cropSize);
    %show image
    figure; imshow(Img)
```


