On Saliency Maps and Adversarial Robustness

Puneet Mangla, Vedant Singh, and Vineeth Balasubramanian

Department of Computer Science and Engineering IIT Hyderabad, India

Overview

- *Robustness and Interpretability* are important parameters for DNNs
- *Early works:* focusing solely on either robustness or interpretability
- **Recent works:** started exploring relation between these notions
 - Robust DNNs exhibit high interpretability
- DNNs with robust explanations are inherently robust

- *Our contributions:* explore new tangible relationship between a saliency maps and adversarial perturbations
- propose a new method (SAT) that uses the saliency map while training to improve networks robustness.
 - Experimented on widely used datasets
 - Show that the improvement becomes more pronounced when a better saliency map is used
 - Exploit bounding boxes or segmentation masks as weak saliency to efficiently improve model's robustness

Adversarial Robustness

 (θ, x, y)) $x + \epsilon sign(\nabla_x J(\theta, x, y))$ ode" "gibbon" "gibbon" 99.3 % confidence

x
"panda"
57.7% confidence

 $\operatorname{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode" 8.2% confidence

- Adversarial Attacks:

- Adding imperceptible perturbations to input leading to wrong model predictions.
- E.g FGSM (Goodfellow et al. 2015), PGD (Madry et al 2018.), stAdv (Xiao et al. 2018)

Adversarial Training:

- Make models robust by augmenting training data with adversarial perturbations.
- Popular ones: PGD-AT (Madry et al. 2018) and TRADES (Zhang et al. 2019)

Interpretability

- **Backpropagation based:** importance of each pixel by backpropagating the class score error to the input image
 - E.g Guided Backprop (Springenberg et al. 2015), SmoothGrad (Smilkov et al 2017.), Integrated Gradients (Sundararajan et al. 2017)
- **Activation Based:** use linear combinations of activations of convolutional layers
 - E.g CAM (Zhou et al. 2016), GradCAM (Selvaraju et al 2017.), GradCAM++ (Chattopadhyay et al. 2018)

Coupling Robustness and Interpretability

- **Zhang et al. 2018:** Robust models are more biased towards image shape than its texture and evince more interpretable saliency maps
- **Etmann et al. 2019**: quantified above behavior of robust models by considering the alignment between saliency map and the image as the metric for interpretability
- **Dombrowski et al. 2019, Ghorbani et al. 2019 :** Do robust and interpretable saliency maps imply adversarial robustness ?

Our Work- Can saliency maps be used to induce robustness?

- Motivation: humans tend to learn new tasks in a robust fashion when provided with explanations during their learning phase
 - Eg. a medical student

 Our hypothesis: a DNN model that is trained with explanations is less easily fooled by adversarial perturbations.

Saliency Based Adversarial Training: Motivation

- An adversarial perturbation, **e**, which is intended as a perturbation to input **x** which results in a change of predicted label, can be modeled as follows:

Saliency Based Adversarial Training: Motivation

$$\exists j \neq i^* : e^T \cdot (\nabla_{\mathbf{x}} \Phi^j(\mathbf{x}) - \nabla_{\mathbf{x}} \Phi^{i^*}(\mathbf{x})) > \Phi^{i^*}(\mathbf{x}) - \Phi^j(\mathbf{x})$$

The infimum over **IIeII**, which provides a minimal perturbation to change the class label, is achieved by choosing **e** as a multiple of $\nabla_{\mathbf{v}}(\Phi^{\mathbf{j}}(\mathbf{x})-\Phi^{\mathbf{j}*}(\mathbf{x}))$.

- The direction of adversarial perturbation then becomes

$$\nabla_{\chi}(\Phi^{j}(\chi) - \Phi^{i*}(\chi)).$$

- This perturbation direction depends on two quantities:
 - (i) $\nabla x \Phi^{i*}(x)$ the saliency map for the true class **i***
 - (ii) $\nabla x \Phi^{j}(x)$, the saliency map of **x** for class **j** for which the infimum of **e** is attained.

Case of Binary Classifiers

- A binary classifier $h: x \rightarrow \{-1,1\}$ given by: $h=sign(\Phi(x,\theta))$, where $\Phi(x,\theta)$) represents the logit of the positive class.
- Let Φ'(x) denotes the logit of negative class, then

$$P(y = +1|\mathbf{x}) = \frac{1}{1 + \exp^{-\Phi(\mathbf{x},\theta)}}$$

$$P(y = -1|\mathbf{x}) = \frac{1}{1 + \exp^{-\Phi'(\mathbf{x},\theta)}}$$

$$P(y = -1|\mathbf{x}) = 1 - P(y = +1|\mathbf{x}) = \frac{1}{1 + \exp^{\Phi(\mathbf{x},\theta)}}$$

- Thus, logit score of the negative class is $-\Phi(x,\theta)$
- So, the direction of adversarial perturbation $\nabla_{\mathbf{y}}(\Phi^{\mathbf{j}}(\mathbf{x}) \Phi^{\mathbf{i}*}(\mathbf{x}))$ becomes $-\nabla \mathbf{x} \Phi^{\mathbf{i}*}(\mathbf{x})$
- The negative of saliency map, gives us the direction of adversarial perturbation in case of binary classifier

Case of Multi-class Classifiers

$$\nabla_{\mathbf{x}}(\Phi^{j}(\mathbf{x}) - \Phi^{i^{*}}(\mathbf{x}))$$

- The multi-class case would require finding the class **j** for which the infimum of **IIeII** is attained.
- To avoid this computational overhead, we rely on $\nabla x \Phi^{i*}$ (x) alone, and simply propose the use of $-\nabla x \Phi^{i*}$ (x) as the direction of perturbation.

This is a reasonable approximation. Why?

- Consider the multi-class setting as k binary classification problems
- For each individual problem, corresponding logit score of the negative class is $-\nabla x \Phi^{i*}(x)$
- Assuming that each of the classes != i* is equally likely to be the j that minimizes ||e||
- Approximate average direction of the perturbations across the k binary classification problems.

Saliency based Adversarial Training: Algorithm

- $-\nabla x \Phi^{i*}$ (x) is given to us in form of saliency map, **s.**
- We don't have any intermediate perturbations.
- While adversarial training, during the initial phases, the perturbations computed by the attack methods are random. But with training, they become more class-discriminative.

Saliency based Adversarial Training: Algorithm

To generate intermediate perturbations, we mimic the above observation

- We choose the i^{th} component $\delta^{t}[i]$ of perturbation as
- Note that saliency map, s, can be converted in range (-1,1) by using thresholds.

$$\delta^{t}[i] = \begin{cases} \mathbf{z}[i], & \text{with probability } \alpha^{t} \\ -\mathbf{s}[i], & \text{with probability } 1 - \alpha^{t} \end{cases}$$

where $\mathbf{z} \in \{-1,1\}^d$ is sampled randomly, and $0 < \alpha < 1$. D

Leveraging bounding-boxes and segmentation masks

- When additional annotations such as bounding boxes or segmentation masks are available in a dataset, our approach considers these as weak saliency maps for the methodology.

We generate the weak saliency from bounding boxes or segmentation masks as:

$$\tilde{\mathbf{s}}[i] = \begin{cases} 1, & \text{if i}^{\text{th}} \text{ pixel lies inside bbox or seg masks} \\ -1, & \text{otherwise} \end{cases}$$

Robustness Results on Tiny-Imagenet and Flower-17

Method	Tiny-Imagenet			FLOWER-17			
<u> </u>	$\epsilon = 1/255$	$\epsilon = 2/255$	$\epsilon = 3/255$	$\epsilon = 1/255$	$\epsilon = 2/255$	$\epsilon = 3/255$	
Original	1.04	0.4	0.0	63.2	48.01	34.2	
Original + Uniform-Noise	9.45	2.32	0.77	64.56	50.43	36.2	
\mathbf{SAT}	9.79	2.46	0.77	66.17	52.94	38.93	
PGD	18.91	14.34	11.37	72.38	70.4	70.3	
PGD + Uniform-Noise	19.57	15.49	11.66	73.52	72.79	72.71	
PGD-SAT	20.56	16.38	12.91	78.67	75.73	75.00	
TRADES	18.45	16.76	11.09	74.56	73.89	73.67	
TRADES + Uniform-Noise	19.96	16.13	12.58	76.47	74.26	74.0	
TRADES-SAT	20.04	16.45	12.96	79.41	77.94	77.20	

The above table shows results on Tiny-Imagenet and Flower-17 datasets where the given bounding boxes and segmentation masks are used as saliency maps. The value of ϵ denotes the maximum l_{∞} perturbation allowed in 5-step PGD attack. (More the ϵ , stronger the attack)

Time efficiency of training procedure

- PGD-SAT and TRADES-SAT require much less training time when compared to their vanilla counterparts, while achieving superior performance at the same time.
- In case of vanilla SAT, we observe an increase in robustness without much increase in training time.

Using better saliency maps for training (Cifar-100)

- The saliency maps used in this study were SmoothGrad, Guided Grad-CAM++ and Integrated Gradients.
- Better explanations improves performance of our trained models.

Notations X-Y-Z (Resnet10-Std.-GBP)

X: Model architecture (Resnet10)

Y: Training procedure (Std.)

Z: Saliency method (GBP)

Method		PGD				
	$\frac{1}{255}$	$\frac{2}{255}$	$\frac{3}{255}$	$\frac{4}{255}$		
Original	25.83	7.76	3.35	1.94		
Original + Uniform-Noise	33.15	13.50	6.01	3.22		
SAT						
Resnet-10 — Std. — GBP	20.53	7.52	3.5	2.12		
Resnet- 10 — Std. — S.Grad	39.22	19.89	9.44	4.49		
Resnet-10 — Std. — G.G.CAM $++$	21.46	8.00	3.53	2.23		
Resnet- 10 — Std. — I.Grad	36.2	5.43	7.28	3.37		
Resnet- 10 — Adv. — GBP	34.29	14.73	6.84	4.22		
Resnet- 10 — Adv. — S.Grad	40.01	21.2	10.96	4.85		
Resnet-10 — Adv. — G.G.CAM $++$	34.07	13.18	5.85	3.09		
Resnet- 10 — Adv. — I.Grad	37.56	16.45	7.55	4.31		

Acknowledgements

We are grateful to:

Government of India Ministry of Human Resource Development

Department of Sciences & Technology Government of India

ArXiv

GitHub

References

- Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR'15
- Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: ICLR'18
- Xiao, C., Zhu, J.Y., Li, B., He, W., Liu, M., Song, D.: Spatially transformed adversarial examples. In: ICLR'18
- Zhang, H., Yu, Y., Jiao, J., Xing, E.P., Ghaoui, L.E., Jordan, M.I.: Theoretically principled trade-off between robustness and accuracy. In: ICML'19
- Springenberg, J., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: The all convolutional net. In: ICLR (workshop track) (2015)
- Smilkov, D., Thorat, N., Kim, B., Vi 'egas, F.B., Wattenberg, M.: SmoothGrad : removing noise by adding noise. CoRR (2017)
- Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: ICML'17
- Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR'16
- Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D.: Grad-cam: Why did you say that? visual explanations from deep networks via gradient-based localization. In: ICCV'17
- Chattopadhyay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In: WACV'18
- Zhang, T., Zhu, Z.: Interpreting adversarially trained convolutional neural networks. In: ICML'18
- Etmann, C., Lunz, S., Maass, P., Scho "nlieb, C.B.: On the connection between adversarial robustness and saliency map interpretability. In: ICML'19
- Dombrowski, A.K., Alber, M., Anders, C.J., Ackermann, M., Mu "ller, K.R., Kessel, P.: Explanations can be manipulated and geometry is to blame. In: NeuRIPS'19
- Ghorbani, A., Abid, A., Zou, J.: Interpretation of neural networks is fragile. In: AAAI'19

