Численные методы

Домашнее задание №1. Приближенное решение уравнения с одним неизвестным

Решить данное уравнение (отделив корни графически) с точностью $\varepsilon = 10^{-4}$ (1) методом половинного деления, (2) методом хорд и касательных, (3) методом Ньютона.

N₂	Уравнение	No	Уравнение
1	$2\ln(x) - 1/x = 0$	2	$2\lg(x) - x/2 + 1 = 0$
3	$\ln(x)/\ln(10) - 1/x^2 = 0$	4	$\ln(x)/\ln(10) - 7/(2x+6) = 0$
5	$e^{-x} + x^2 - 2 = 0$	6	$e^{-x^2} - (x-1)^2 = 0$
7	$e^x + x^2 - 2 = 0$	8	$e^{x} - 2(x-1)^{2} = 0$
9	$2^{x} - 2x^{2} + 1 = 0$	10	$(x-1)^2 - 2\sin(x) = 0$
11	x - ctg(x) = 0	12	$x - \sin(2x) = 0$
13	$x^2 - \cos(x) = 0$	14	$e^{x} + e^{-3x} - 4 = 0$
15	$x - 2 + e^x = 0$	16	$2x - \ln(x) - 4 = 0$
17	$2^{x} - 4x = 0$	18	$8\sin(x) - x^2 = 0$
19	$\ln x + \left(x+1\right)^3 = 0$	20	$x \cdot 2^x - 1 = 0$
21	$3x + \cos x + 1 = 0$	22	$x + \lg x - 0.5 = 0$
23	$2 - x - \ln x = 0$	24	$x^2 + 4\sin x = 0$
25	$2x - \lg x - 7 = 0$	26	$\ln(x) - 1/x^2 = 0$
27	$x \cdot e^x - 2 = 0$	28	$3x\sin(x)-1=0$
29	$4x - 7\sin(x) = 0$	30	$x^2 \cdot \operatorname{arctg}(x) - 1 = 0$

Домашние задания №2-3. Решение системы линейных уравнений решение данной системы (1) методом Гаусса. (2) методом простой итераз

Найти решение данной системы (1) методом Гаусса, (2) методом простой итерации, (3) методом Зейделя:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 = b_3 \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 = b_4 \,. \end{cases}$$

$\mathcal{N}_{\underline{0}}$	Коз	Коэффициенты при неизвестных					
варианта	\mathbf{X}_1	\mathbf{X}_2	\mathbf{X}_3	\mathbf{X}_4	члены		
		_		_	_		
1	2	3	4	5	6		
	0,11270	-2,39990	8,95146	0,75000	8,60527		
1	9,58778	-3,45350	0,24300	1,46840	16,40216		
1.	0,86400	4,23700	-2,50200	-1,72927	-15,88846		
	-0,28427	-4,58674	-1,85970	0,14940	10,90588		

	1				
	1,11270	-3,02270	-10,91328	1,06140	11,56420
2.	8,40446	-3,45350	0,12430	0,84560	5,25400
4.	-0,33640	5,11230	-1,83880	16,03250	-11,79026
	-0,28427	5,85754	-2,48250	-0,16200	-13,67224
	1,42410	-2,71130	9,60540	0,43860	6,30236
3.	0,33853	-5,34326	-2,17110	-0,16200	12,83405
3.	-0,02500	5,11230	-2,46160	-16,71758	-11,58650
	8,40446	-2,83070	0,43570	1,15700	15,77090
	0,28640	5,11230	-2,15020	16,60758	-12,52887
4	0,80130	-2,39990	-8,29752	0,75000	7,078579
4.	8,52378	-2,83070	-0,18710	1,46840	-2,20182
	0,33853	4,72046	-1,85970	-0,16200	-11,78629
	0,11270	-2,71130	-9,60540	0,75000	8,93943
_	-8,99612	-3,45350	0,12430	1,15700	1,07023
5.	0,02500	5,11230	-2,15020	16,03250	-11,77124
	-0,28427	5,23474	-2,17110	-0,16200	-12,58937
	0,80130	-2,71130	9,60540	1,06140	6,16237
	8,52378	-3,14210	-0,18710	1,15700	16,18665
6.	0,02500	8,00900	-1,83880	-14,66234	-10,15728
	0,02713	-5,34326	-2,17110	-0,47340	14,18018
	0,86400	4,80090	-2,46160	16,60758	-12,88453
_	1,42410	-2,39990	-8,95146	0,43860	6,53240
7.	-10,17944	-3,45350	0,3570	1,46840	-0,61624
	-0,28427	5,23474	-1,85970	-0,47340	-12,05482
	0,80130	-3,02270	9,60540	0,75000	5,53137
0	-0,28427	-5,85754	-2,48250	-0,16200	15,60785
8.	-0,33640	5,11230	-2,15020	-16,71758	-13,11164
	8,52378	-3,45350	-0,18710	0,84560	15,88634
	-0,33640	5,42370	-2,46160	-10,08774	-14,95126
0	1,42410	-3,02270	10,25934	0,43860	4,97590
9.	8,99612	-3,45350	0,43570	8,45600	15,15486
	-0,28427	-5,83234	-2,48250	0,14940	13,79060
	8,01300	-2,71130	-8,95146	0,75000	9,11636
10	0,28427	5,20954	-2,17110	0,14940	-13,29494
10.	0,02300	5,42370	-2,15020	16,71758	-10,78791
	-9,11544	-3,45350	-0,18710	1,15700	1,72450
	1,42410	-2,71130	-10,25934	0,75000	9,42647
11	0,33853	3,18060	-2,17110	0,14940	-11,34148
11.	0,02500	5,42370	-2,50200	16,71758	-9,13914
	8,40446	-2,83070	0,43570	1,15700	-2,82800
10	0,28640	5,42370	-2,46160	-17,97774	-15,96309
12.	1,12700	-2,39990	8,29752	0,43860	6,97586
] ,	l	I	·	l

	8,99612	-3,14210	0,12430	1,46840	16,54115
	0,02713	-4,07246	-1,85970	0,14940	9,91665
	0,80130	-3,02270	-9,60540	0,75000	11,60641
12	7,93212	-3,14210	-0,18710	0,84560	0,64655
13.	-0,33640	5,42370	-2,15020	17,40266	-10,64578
	0,02713	5,31806	-2,28250	0,14940	-12,89141
	0,80130	-2,39990	8,95146	1,06140	6,70370
1.4	0,28427	-5,23474	-1,85970	-0,47340	13,31273
14.	0,28640	4,80090	-1,83800	-15,23742	-10,10485
	9,70710	-3,45350	-0,1871	1,46840	16,57743
	0,33640	4,80090	-1,83880	15,34742	-12,65950
15	1,42410	-3,02270	11,56722	1,06140	11,39202
15.	-8,99612	-3,45350	0,43570	0,84560	0,29410
	-0,28427	6,48034	-2,48250	-0,47340	-14,12547
	1,42410	-2,39990	10,25934	1,06140	6,91312
16	0,33853	-5,34326	-1,85970	-0,47340	12,56925
16.	0,28640	4,80090	-1,83880	-15,23742	-8,55119
	8,99612	-2,83070	0,43570	1,46840	16,28011
	0,80130	-2,39990	8,29752	0,75000	6,86659
17.	9,11544	-3,14210	-0,18710	1,46840	16,68709
1/.	0,28640	4,80090	-2,15020	-15,92250	-9,97026
	0,02713	-4,72046	-1,85970	-0,47340	12,24497
	1,42410	-3,02270	-10,91328	0,75000	11,45227
18.	-8,40446	-3,14210	0,35700	8,45600	-12,16038
10.	-0,33640	8,00900	-2,15020	16,03250	-12,70757
	0,02713	5,96606	-2,48250	-0,73400	-27,01020
	1,42410	-2,39990	8,95146	0,43860	6,84369
19.	9,58778	-3,14210	0,43570	1,46840	16,40812
17.	0,86400	5,11230	-2,46160	-17,29266	-11,66944
	0,02713	-4,09766	-1,85970	-0,16200	9,32315
	0,02500	4,80090	-2,50200	15,34742	-12,64048
20.	1,42410	-2,11300	-10,25934	0,75000	8,76250
20.	-9,58778	-3,45350	0,43570	1,15700	-0,16016
	-0,28427	5,85754	-2,17110	-0,47340	-13,13770
	0,28640	5,42370	-1,83880	16,60758	-9,22557
21.	1,42410	-2,39990	-10,25934	0,61400	6,77157
21.	10,17944	-3,45350	0,43570	1,46840	-0,16779
	0,28427	4,58674	-1,85970	0,14940	-10,62107
	1,42410	-2,71130	-9,13280	1,06140	9,36148
22.	8,99612	-3,14210	0,35700	1,57000	-1,40821
44.	0,25000	5,42870	-1,83880	6,03250	-9,30032
	0,02713	4,69526	-2,17110	0,49400	-10,27949

1					1
	1,42410	-3,02270	-11,56722	1,06140	2,15109
23.	0,38530	9,40860	-2,48250	0,19400	-12,32926
45.	-0,33640	5,42370	-1,83880	16,71758	-9,25325
	8,12800	-2,83070	0,35700	0,84560	-2,28724
	0,80130	-3,02270	-10,25934	1,06140	11,73637
24	-0,28427	5,83234	-2,48250	0,49400	-14,47291
24.	-0,33640	5,42370	-1,83880	16,71758	-10,80692
	-8,52378	-3,45350	-0,18710	0,84560	2,17967
	0,80130	-2,71130	-8,29752	0,43860	9,08626
25	-8,52378	-3,14210	-0,18710	1,15700	0,10103
25.	-0,02500	5,42370	-2,46160	17,40266	-10,62675
	0,02713	4,69526	-2,17110	0,14940	-11,71343
	0,28640	4,80090	-1,83880	15,23742	-13,39031
26	1,11270	-2,39990	-9,60540	1,06140	6,73204
26.	-8,99612	-3,14210	0,12430	1,46840	-1,25720
	0,02713	4,72046	-1,85970	-0,47340	-11,35118
	0,80130	-2,39990	-7,64358	0,43860	6,89578
27	-0,28427	4,58674	-1,85970	0,14940	-12,02186
27.	0,26640	5,42370	-2,46160	17,07774	-10,64711
	-9,70710	3,45350	-0,18710	1,46840	1,26392
	-0,33640	4,80090	-2,46160	-16,71758	-8,98045
20	1,11270	-3,02270	9,60540	0,43860	5,41943
28.	7,81280	-3,14210	0,12430	0,84560	14,99671
	0,02713	-5,96606	-2,48250	-0,47340	15,29948
	1,11270	-2,71130	8,95146	0,43860	6,06062
20	8,99612	-3,45350	0,12430	1,15700	15,49607
29.	-0,02500	4,80090	-2,46160	-16,03250	-9,14355
	-0,28427	-5,85754	-2,17110	-0,47340	14,35349
	1,42410	-3,02270	11,56722	1,06140	4,74101
20	8,40446	-3,14210	0,43570	0,84560	15,12192
30.	-0,33640	5,11230	-1,83880	-16,03250	11,68307
	0,02713	-5,34326	-2,48250	-0,16200	12,90826

Домашнее задание № 4. Решение нелинейных систем

Задача 1. Решить систему уравнений методом итераций

1
$$\begin{cases} \sin(x+1) - y = 1,2 \\ 2x + \cos y = 2 \end{cases}$$
 2 $\begin{cases} \cos(x-1) + y = 0,5 \\ x - \cos y = 3 \end{cases}$ 3 $\begin{cases} \sin x + 2y = 2 \\ \cos(y-1) + x = 0,7 \end{cases}$ 4 $\begin{cases} \cos x + y = 1,5 \\ 2x - \sin(y-0,5) = 1 \end{cases}$

Задача 2. Решить систему уравнений методом Ньютона

1.
$$\begin{cases} tg(xy+0,4) = x^2 \\ 0,6x^2 + 2y^2 = 1, \ x > 0, \ y > 0 \end{cases}$$
2.
$$\begin{cases} sin(x+y) = 1,5x - 0,1 \\ x^2 + y^2 = 1 \end{cases}$$
3.
$$\begin{cases} sin(x+y) = -1,6y = 0 \\ x^2 + y^2 = 1, \ x > 0,y > 0 \end{cases}$$
4.
$$\begin{cases} tg(xy+0,4) = x^2 \\ 0,8x^2 + 2y^2 = 1, \end{cases}$$
5.
$$\begin{cases} tg(xy+0,1) = x^2 \\ x^2 + 2y^2 = 1 \end{cases}$$
6.
$$\begin{cases} sin(x+y) = 1,5x - 0,1 \\ x^2 + y^2 = 1 \end{cases}$$

7.
$$\begin{cases} \sin(x+y) - 1, 2x = 0, 2 \\ x^2 + y^2 = 1 \end{cases}$$

9.
$$\begin{cases} tg(xy+0.3) = x^2 \\ 0.9x^2 + 2y^2 = 1 \end{cases}$$

10.
$$\begin{cases} \sin(x+y) - 1.3x = 0 \\ x^2 + y^2 = 1 \end{cases}$$

13.
$$\begin{cases} tg \ xy = x^2 \\ 0.8x^2 + 2y^2 = 1 \end{cases}$$

15.
$$\begin{cases} \sin(x+y) - 1.5x = 0.1 \\ x^2 + y^2 = 1 \end{cases}$$

17.
$$\begin{cases} tg \ xy = x^2 \\ 0.7x^2 + 2y^2 = 1 \end{cases}$$

19.
$$\begin{cases} \sin(x+y) = 0.1 + 1.2x \\ x^2 + y^2 = 1 \end{cases}$$

21.
$$\begin{cases} tg(xy+0,2) = x^2 \\ 0,6x^2 + 2y^2 = 1 \end{cases}$$
23.
$$\begin{cases} tg(xy) = x^2 \\ 0,5x^2 + y^2 = 1 \end{cases}$$

23.
$$\begin{cases} tg(xy) = x^2 \\ 0.5x^2 + y^2 = 1 \end{cases}$$

25.
$$\begin{cases} \sin(x+y) = 1,2x - 0,2\\ x^2 + y^2 = 1 \end{cases}$$

8.
$$\begin{cases} tg(xy+0,1) = x^2 \\ 0.9x^2 + 2y^2 = 1 \end{cases}$$

10.
$$\begin{cases} \sin(x+y) - 1, 4x = 0 \\ x^2 + y^2 = 1 \end{cases}$$

12.
$$\begin{cases} tg(xy+0,1) = x^2 \\ 0.5x^2 + 2y^2 = 1 \end{cases}$$

14.
$$\begin{cases} \sin(x+y) = 1,1x - 0,1 \\ x^2 + y^2 = 1 \end{cases}$$

16.
$$\begin{cases} tg(x-y) - xy = 0 \\ x^2 - 2xy = 1 \end{cases}$$

18.
$$\begin{cases} \sin(x-y) - xy = -1 \\ x^2 - y^2 = \frac{3}{4} \end{cases}$$

20.
$$\begin{cases} tg(xy+0,2) = x^2 \\ x^2 + 2y^2 = 1 \end{cases}$$

22.
$$\begin{cases} \sin(x+y) - 1.5x = 0 \\ x^2 + y^2 = 1 \end{cases}$$

24.
$$\begin{cases} tg(xy) = x^2 \\ 0.6x^2 + 2y^2 = 1 \end{cases}$$

26.
$$\begin{cases} \sin(x+y) - 1, 2x = 0 \\ x^2 + y^2 = 1 \end{cases}$$

Задача 3. Решить систему уравнений методом наискорейшего спуска (ε=0,001)

1
$$\begin{cases} -5x^2 - 4xy = -32 \\ -3x^2 - 3y^2 = -75 \end{cases}$$
16
$$\begin{cases} -2x^2 - xy = -18 \\ -3x^2 + 3y^2 = 63 \end{cases}$$
2
$$\begin{cases} 2x^2 + 2xy = -4 \\ -3x^2 + y^2 = -3 \end{cases}$$
17
$$\begin{cases} x^2 + 3xy = 10 \\ -3x^2 - y^2 = -76 \end{cases}$$
3
$$\begin{cases} 4x^2 + 5xy = 21 \\ -x^2 + 2y^2 = -7 \end{cases}$$
18
$$\begin{cases} 4x^2 + 2xy = 12 \\ -2x^2 + y^2 = -2 \end{cases}$$
4
$$\begin{cases} -3x^2 - 3xy = -30 \\ 2x^2 + 5y^2 = 53 \end{cases}$$
19
$$\begin{cases} -4x^2 + 4xy = -80 \\ 3x^2 + 5y^2 = 53 \end{cases}$$
5
$$\begin{cases} -2x^2 + 4xy = -54 \\ 3x^2 + y^2 = 36 \end{cases}$$
20
$$\begin{cases} x^2 - y^2 = 3 \\ 2x^2 - 3xy + 2y^2 = 4 \end{cases}$$

$$\begin{cases} -5x^2 - xy = -64 \\ -2x^2 + 3y^2 = 16 \end{cases} & \begin{cases} x^2 - 2xy - 5y^2 = -2 \\ 3x^2 + 2xy + y^2 = 2 \end{cases}$$

$$\begin{cases} -5x^2 + 3xy = -20 \\ -3x^2 + 4y^2 = 97 \end{cases} & \begin{cases} x^2 - 2y^2 = -2 \\ xy + y^2 = 1 \end{cases}$$

$$\begin{cases} 3x^2 + 4xy = 0 \\ 2x^2 - 2y^2 = 14 \end{cases} & \begin{cases} 5x^2 - 2xy + y^2 = 4 \\ 3x^2 - 3xy + 2y^2 = 2 \end{cases}$$

$$\begin{cases} -5x^2 - 3xy = -28 \\ 3x^2 - 4y^2 = -52 \end{cases} & \begin{cases} x^2 - 3xy + 2y^2 = 2 \end{cases}$$

$$\begin{cases} -5x^2 + 2xy = -104 \\ 5x^2 + 4y^2 = 116 \end{cases} & \begin{cases} x^3 - y^3 = 7(x - y) \end{cases}$$

$$\begin{cases} -5x^2 + 2xy = -104 \\ 5x^2 + 3y^2 = 93 \end{cases} & \begin{cases} x^2 + 2y^2 + 5x + 5y + 3xy = 15 \\ x^2 + 2y^2 - x - y + xy = 1 \end{cases}$$

$$\begin{cases} -5x^2 - 2y^2 = -13 \end{cases} & \begin{cases} x^2 - 2y^2 - 3x - 3y + xy = -1 \\ x^2 + y^2 - x - y + xy = 1 \end{cases}$$

$$\begin{cases} x^2 - 2y^2 = -112 \end{cases} & \begin{cases} x^2 + y^2 - 2x - 2y + 3xy = 1 \end{cases}$$

$$\begin{cases} x^2 - 2y^2 - 3x - 3y + xy = -1 \\ x^2 + y^2 - 2x - 2y + 3xy = 1 \end{cases}$$

$$\begin{cases} -3x^2 + 3xy = -15 \\ -4x^2 - 3y^2 = -148 \end{cases} & \begin{cases} 2x^8 = x^4y^4 + 1 \\ 3y^8 = x^4y^4 + 2 \end{cases}$$

$$\begin{cases} 2x^2 - 2xy - 3y^2 + x + y = 6 \\ 2x^2 - 5xy + 3y^2 + x - y = 2 \end{cases}$$

Домашнее задание № 5. Построение интерполяционных многочленов Задача 1.

- 1. Протабулировать функцию с шагом h = 0,2 на [0, 1].
- 2. Построить многочлен Лагранжа четвертого порядка.

№ варианта	функция	№ варианта	функция
1,2	$\sin x^2$	17,18	$x\cos(x+\ln(1+x))$
3,4	cos x ²	19,20	$\frac{10\ln 2x}{1+x}$
5,6	e ^{sin x}	21,22	$\sin x^2 \cdot e^{-(x/2)^2}$
7,8	$\frac{1}{0.5 + x^2}$	23,24	$\cos\left(x+\cos^3x\right)$
9,10	$e^{-(x+\sin x)}$	25,26	$\cos\left(x + e^{\cos x}\right)$

11,12	$\frac{1}{1+e^{-x}}$	27,28	$\cos(2x+x^2)$
13,14	$\sin(x + e^{\sin x})$	29,30	$e^{\cos x^2} \cdot \cos x^2$
15,16	$e^{-(x+1/x)}$		

Задача 2.

- 1. Протабулировать функцию с шагом h = 0,1 на [a, B].
- 2. По таблице с помощью интерполяционного многочлена Ньютона вычислить значение функции в точке \mathbf{x}_0 .
- 3. Вычислить значение производной в точке x_1 .
- 4. Вычислить значение второй производной в точке x_2 .

№]			
1	[0; 0,4]	$x_0 = 0.15$	$x_1 = 0.2$	$x_2 = 0.3$
2	[1; 1,4]	$x_0 = 1,18$	$x_1 = 1,2$	$x_2 = 1,4$
3	[0; 0,4]	$x_0 = 0.35$	$x_1 = 0.2$	$x_2 = 0,1$
4	[1; 1,4]	$x_0 = 1,28$	$x_1 = 1,4$	$x_2 = 1,1$
5	[0; 0,4]	$x_0 = 0.23$	$x_1 = 01$	$x_2 = 0.4$
6	[1; 1,4]	$x_0 = 1,18$	$x_1 = 1,2$	$x_2 = 1,4$
7	[0; 0,4]	$x_0 = 0.34$	$x_1 = 0.2$	$x_2 = 0.3$
8	[1; 1,4]	$x_0 = 1,25$	$x_1 = 1,3$	$x_2 = 1,1$
9	[2,4; 2,8]	$x_0 = 2,53$	$x_1 = 2,5$	$x_2 = 2.7$
10	[3; 3,4]	$x_0 = 3,26$	$x_1 = 3.3$	$x_2 = 3,4$
11	[0; 0,4]	$x_0 = 0.29$	$x_1 = 0.3$	$x_2 = 0.2$
12	[2; 2,4]	$x_0 = 2,31$	$x_1 = 2,1$	$x_2 = 2,4$
13	[0; 0,4]	$x_0 = 0.21$	$x_1 = 0,1$	$x_2 = 0.3$
14	[1; 1,4]	$x_0 = 1,12$	$x_1 = 1,1$	$x_2 = 1,3$
15	[1; 1,4]	$x_0 = 1,13$	$x_1 = 1,2$	$x_2 = 1,3$
16	[2; 2,4]	$x_0 = 2,18$	$x_1 = 2,1$	$x_2 = 2,3$
17	[1; 1,4]	$x_0 = 1,33$	$x_1 = 1,1$	$x_2 = 2,2$
18	[3; 3,4]	$x_0 = 3,05$	$x_1 = 3,2$	$x_2 = 3.3$
19	[3; 4,4]	$x_0 = 4,04$	$x_1 = 4,1$	$x_2 = 4.2$
20	[5; 5,4]	$x_0 = 5,05$	$x_1 = 5,2$	$x_2 = 5,3$
21	[7,5; 7,9]	$x_0 = 7,63$	$x_1 = 7,6$	$x_2 = 7,7$
22	[5,4; 5,8]	$x_0 = 5,53$	$x_1 = 5,6$	$x_2 = 5.8$
23	[0; 0,4]	$x_0 = 0.13$	$x_1 = 0.3$	$x_2 = 0,1$
24	[3,6; 4,0]	$x_0 = 3,66$	$x_1 = 3.8$	$x_2 = 3.9$
25	[3,5; 3,9]	$x_0 = 3,64$	$x_1 = 3,5$	$x_2 = 3.9$

26	[4; 4,4]	$x_0 = 4,39$	$x_1 = 4,0$	$x_2 = 4,4$
27	[5,3; 5,7]	$x_0 = 5,42$	$x_1 = 5,3$	$x_2 = 5.7$
28	[7,2; 7,6]	$x_0 = 7,35$	$x_1 = 7,6$	$x_2 = 7,1$
29	[3,3; 3,7]	$x_0 = 3,61$	$x_1 = 3.7$	$x_2 = 3.3$
30	[4; 4,4]	$x_0 = 4,41$	$x_1 = 4,2$	$x_2 = 4,3$

Домашнее задание № 6. Приближенное вычисление определенных интегралов

Вычислить интеграл (1) методом прямоугольников, (2) методом трапеций, (3) методом Симпсона

No.	F(x)	a	b	3
1	2	3	4	<u>ε</u> 5
1	$\cos^3 x \cdot \cos 3x$	0	1,6	10-4
2	$\sin^{0,4} x \cdot \sin 0.4x$	0	1,6	10-4
3	$\sqrt{\sin x} \cdot \cos 0.5x$	0	1,6	10-4
4	$\cos 3x/(1+0.7\cos x)$	0	1,6	10-4
5	$1/(0.5\sin x + 3\cos x)^2$	0	1,6	10-4
6	$1/(1-0.49\sin^2 x)$	0	1,6	10-4
7	$x \cdot \sin(ex)/(1+\cos^2 ex)$	0	3	10-3
8	$\sin^2 x/(9+0.3\cos x)$	0	3	10-3
9	$1/(10+6\sin(x+e))$	0	1,6	10-4
10	$1/(5-4\sin x)+x$	0	1,6	10-4
11	$\sin^2/(13-12\cos x)$	0	3	10-3
12	$x^4 \ln \left(x + \sqrt{x^2 - 0.36} \right)$	1,25	2,45	10^{-4}
13	$\ln\left(x + \sqrt{x^2 - 0.25}\right)/2x^2$	0,5	1,7	10^{-4}
14		0,32	1,52	10 ⁻⁴
15	$\ln \sin x - \frac{1}{x^2}$ $\cos \ln x + \frac{1}{x^3}$	1,16	2,72	10 ⁻⁴
16	$x \cdot e^x/(1+x)^2$	0,3	1,1	10^{-4}
17	$x \cdot e^{0.4x}/(1+0.4x)^2$	0,3	1,5	10^{-4}
18	$1/(3,28+0,73\cdot e^{-1,3x})$	0,3	1,5	10^{-4}
19	$\frac{1}{x^4} \cdot \arctan \frac{x}{2,73}$	1,7	2,5	10 ⁻⁴
20	$\left(\arccos\frac{x}{1,2}\right)^2 + \frac{1,44}{x^2}$	0,2	1,0	10 ⁻⁴
21	$\sqrt{9-x^2}/x^2$	1,7	2,9	10^{-4}

22	$\sqrt{1,1+0,7} \times \sqrt{0,93+1,3} \times \sqrt$	0,7	1,9	10^{-4}
23	$x^{3}/(\sqrt{2,5+x^{2}})^{3}$	1,3	2,9	10^{-4}
24	$x^{5}/(\sqrt{0.36+x^{2}})^{5}$	0,05	1,65	10^{-4}
25	$\ln(1.3 \mathrm{x})/\mathrm{x}^{1.3}$	0,1	1,7	10^{-4}
26	$\ln(1.3 x)/x^{1.3}$	01	1,7	10^{-4}
27	$x^{0,2} \cdot \ln(0,7x)$	2/3	3/5	10^{-4}
28	$\ln(x + \sqrt{x^2 + 1.21})/x^3$	2,3	3,5	10^{-4}
29	$\ln\left(x + \sqrt{x^2 2,25}\right)/x^2$	2,3	3,1	10^{-4}
30	$\frac{1}{x^2} \arcsin \frac{x}{9}$	1,5	3,1	10^{-4}

Домашнее задание № 7. Приближенное решение дифференциальных уравнений

Составить таблицу дифференциального уравнения y'=f(x,y) с начальными условиями $x=x_0$; $y=y_0$ на отрезке $\begin{bmatrix} a,b \end{bmatrix}$ (1) методом Эйлера, (2) методом Рунге-Кутты. Построить график решения.

№	Уравнения	\mathbf{x}_0	y_0	a	b	3
1.	$y' = x + \sin \frac{y}{x}$	4	11	4	5,1	10-4
2.	$y' = x + \sin \frac{y}{\sqrt{10}}$	1,6	2,9	1,6	2,7	10-4
3	$y' = x + \cos\frac{y}{\pi}$	1,7	5,3	1,7	2,6	10-3
4	$y' = x + \cos\frac{x}{3}$	0,6	0,8	0,6	1,4	10-3
5	$y' = x + \cos \frac{y}{3}$	1,6	4,6	1,6	2,4	10-3
6	$y' = x + \cos\frac{y}{e}$	1,4	2,2	1,4	2,2	10-3
7	$y' = x + \cos \frac{y}{\sqrt{7}}$	0,5	0,6	0,5	1,3	10-3
8	$y' = x + \cos \frac{\sqrt{7}}{5} y$	0,8	1	0,8	1,6	10-3
9	$y' = x + \cos\frac{y}{2,25}$	1,4	2,2	1,4	2,0	10-3
10	$y' = x + \cos \frac{y}{\sqrt{5}}$	1,8	2,6	1,8	2,6	10-4

11	$y' = \sqrt{1 + x^3 + y}$	0,8	3,8	0,8	1,9	10-3
12	$y' = \frac{x}{2} + \frac{e^2}{x + y}$	1,8	4,5	1,8	2,5	10-4
13	$y' = \frac{x}{2} + \frac{e^2}{x + y}$ $y' = x + \frac{1}{2}\sqrt{\frac{7}{y}}$	3	6,1	3	4,4	$2 \cdot 10^{-4}$
14	$y' = \sqrt[3]{3 + y^2}$	0,3	0,2	0,3	1,1	10-4
15	$y' = \sqrt[3]{x^2 + 3y}$	3	5	3	5,7	$3 \cdot 10^{-4}$
16	$x' = \frac{\cos y}{1 + x^2}$	0	0	0	0,8	10-4
17	$x' = \frac{\cos 1.4 y}{1.4 + x^2}$	0	0	0	0,8	10-4
18	$x' = \frac{\cos 1.8 y}{1.8 + x^2}$	0	0	0	0,8	10-4
19	$x' = \frac{\cos 2.2 y}{2.2 + x^2}$	0	0	0	0,8	10-4
20	$x' = \frac{\cos 2.6 y}{2.6 + x^2}$	0	0	0	0,8	10-4
21	$x' = \frac{\cos 3y}{3 + x^2}$	0	0	0	0,8	10-4
22	$x' = e^{-y}(x^2 + 1)$	0	0	0	0,8	10-4
23	$x' = e^{-1.4y}(x^2 + 1.4)$	0	0	0	0,8	10-4
24	$x' = e^{-1.8y}(x^2 + 1.8)$	0	0	0	0,8	10-4
25	$x' = e^{-2.2y}(x^2 + 2.2)$	0	0	0	0,8	10-4
26	$x' = e^{-2.6y}(x^2 + 2.6)$	0	0	0	0,8	10-4
27	$x' = e^{-3y}(x^2 + 3)$	0	0	0	0,8	10-4
28	$\mathbf{x}' = \cos(\mathbf{y} + \mathbf{x}) + \mathbf{y} - \mathbf{x}$	0	0	0	0,8	10-4
29	x' = cos(1,4y + x) + y - x	0	0	0	0,8	10-4
30	x' = cos(1.8y + x) + y - x	0	0	0	0,8	10-4
	· , , , ,					