Fundação Getúlio Vargas

Mestrado em Modelagem Informacional

Visualização da Informação

Trabalho II: Análise e Reprodução de uma visualização reconhecida ou relevante Historicamente

Aluna: Juliana Carvalho de Souza

Curso: Graduação em Matemática Aplicada/4o Período

Professora: Asla Medeiros e Sá

Data: 2 de Novembro de 2021

Uma visualização importante foi a do Gapminder, proposta por Hans Rosling em 2005, como detalhado em https://www.washingtonpost.com/news/wonk/wp/2017/02/08/remembering-hans-rosling-the-visualization-pioneer-who-made-data-dance/). A visualização dinâmica explorava problemas de desenvolvimento social utilizando gráficos de bolhas. A palestra de 2006 do TedTalks entitulada "The best stats you've ever seen" e disponível em

[https://www.ted.com/talks/hans_rosling_the_best_stats_you_ve_ever_seen/transcript#t-288456 (https://www.ted.com/talks/hans_rosling_the_best_stats_you_ve_ever_seen/transcript#t-288456)] foi responsável por popularizar a chamada "storytellyng with data". Além desse vídeo, outro que fez sucesso foi o da BBC, disponível em: https://www.youtube.com/watch?v=jbkSRLYSojo&t=4s (https://www.youtube.com/watch?v=jbkSRLYSojo&t=4s)

Segundo Rosling and Johansson, 2009:

"The main innovation from Gapminder is so far 'the moving bubble chart' in the form of the Trendalyzer software that was acquired by Google in 2007. Google has made a 2008 version freely available as Google Motion Chart. Gapminder is a non-profit foundation founded in 2005 with a goal of '...increase use and understanding of statistics and other information about social, economic and environmental development at local, national and global levels."

Uma das visualizações geradas por Rosling relaciona a taxa de fecundidade com a expectativa de vida ao nascer de países de todos os continentes do globo. Para isso, utiliza-se bolhas proporcionais às populações desses países. O único acesso que consegui da visualização está disponível abaixo e, por ser de um vídeo de 2007 (disponível no link acima), não ficou com uma qualidade razoável.

Entretanto, mneste trabalho nos propomos a reproduzi-la, utilizando como ferramentas bibliotecas do Python, como o matplotlib e o plotly.

In [1]:

```
from PIL import Image
image = Image.open("visualizacao_original_2.png")

imagem_fertility_expectancy = image.resize((487, 362))
imagem_fertility_expectancy
```

Out[1]:

Parte 1: Encontrar os dados

Parte dos dados do Gapminder já estavam implementados na biblioteca plotly.express. Incluia, como será possível ver a seguir, nome dos países, continentes, população e a expectativa de vida. Os dados de fertility rate foram extraído do site do Gapminder (https://www.gapminder.org/data/

(https://www.gapminder.org/data/)), por meio de um documento csv. Para incorporá-lo aos demais dados, utilizei apenas o código desse notebook. Entre as ações realizadas, inclui uma nova coluna para indicar a taxa de fecundidade no dataframe do gapminder oferecido pelo plotly.express. Em seguida, cada tupla teve o novo valor de fertility rate conforme ano e country em comum com os dados extraídos do documento csv.

In [2]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import csv
```

In [3]:

```
import plotly.express as px
import plotly.offline as py
py.offline.init_notebook_mode(connected=True)
import plotly.graph_objs as go
from plotly.figure_factory import create_table

from vega_datasets import data
```

In [4]:

```
# Carrega os dados disponíveis em plotly express
gapminder = px.data.gapminder()
print(len(gapminder))
gapminder["childs_per_woman"] = -1.0
gapminder
```

1704

Out[4]:

	country	continent	year	lifeExp	pop	gdpPercap	iso_alpha	iso_num	child
0	Afghanistan	Asia	1952	28.801	8425333	779.445314	AFG	4	
1	Afghanistan	Asia	1957	30.332	9240934	820.853030	AFG	4	
2	Afghanistan	Asia	1962	31.997	10267083	853.100710	AFG	4	
3	Afghanistan	Asia	1967	34.020	11537966	836.197138	AFG	4	
4	Afghanistan	Asia	1972	36.088	13079460	739.981106	AFG	4	
								•••	
1699	Zimbabwe	Africa	1987	62.351	9216418	706.157306	ZWE	716	
1700	Zimbabwe	Africa	1992	60.377	10704340	693.420786	ZWE	716	
1701	Zimbabwe	Africa	1997	46.809	11404948	792.449960	ZWE	716	
1702	Zimbabwe	Africa	2002	39.989	11926563	672.038623	ZWE	716	
1703	Zimbabwe	Africa	2007	43.487	12311143	469.709298	ZWE	716	

1704 rows × 9 columns

In [5]:

```
data = pd.read_csv('children_per_woman_total_fertility.csv')
# Using DataFrame.drop
data.drop(data.columns[list(range(len(data.columns)-92, len(data.columns)))], ax
is=1, inplace=True)
data
```

Out[5]:

	country	1799	1800	1801	1802	1803	1804	1805	1806	1807	 1998	1999	20
0	Aruba	5.64	5.64	5.64	5.64	5.64	5.64	5.64	5.64	5.64	 1.91	1.87	1
1	Afghanistan	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	 7.57	7.49	7
2	Angola	6.93	6.93	6.93	6.93	6.93	6.93	6.93	6.94	6.94	 6.68	6.64	6
3	Albania	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60	 2.25	2.16	2
4	Netherlands Antilles	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	 2.11	2.10	2

197	Samoa	6.98	6.98	6.98	6.98	6.98	6.98	6.98	6.98	6.98	 4.54	4.50	4
198	Yemen	6.88	6.88	6.88	6.88	6.88	6.88	6.88	6.88	6.88	 6.51	6.31	6
199	South Africa	6.47	6.47	6.47	6.47	6.47	6.47	6.47	6.47	6.47	 2.87	2.83	2
200	Zambia	6.71	6.71	6.71	6.71	6.71	6.71	6.71	6.71	6.71	 6.07	6.04	6
201	Zimbabwe	6.75	6.75	6.75	6.75	6.75	6.75	6.75	6.75	6.75	 4.10	4.06	4

202 rows × 210 columns

→

In [6]:

Vamos também obter alguma informação sobre esses dados.

In [7]:

```
gapminder.columns
```

Out[7]:

In [8]:

```
gapminder.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1704 entries, 0 to 1703
Data columns (total 9 columns):
# Column Non-Null Count Dtype
```

			<i>,</i> ,
0	country	1704 non-null	object
1	continent	1704 non-null	object
2	year	1704 non-null	int64
3	lifeExp	1704 non-null	float64
4	pop	1704 non-null	int64
5	gdpPercap	1704 non-null	float64
6	iso_alpha	1704 non-null	object
7	iso_num	1704 non-null	int64
8	childs_per_woman	1704 non-null	float64
dtvn	es: $float64(3)$ in	t64(3) object(3	۲۱

dtypes: float64(3), int64(3), object(3)

memory usage: 119.9+ KB

In [9]:

gapminder.describe()

Out[9]:

	year	lifeExp	рор	gdpPercap	iso_num	childs_per_woma
cou	nt 1704.00000	1704.000000	1.704000e+03	1704.000000	1704.000000	1704.00000
mea	n 1979.50000	59.474439	2.960121e+07	7215.327081	425.880282	4.36894
st	d 17.26533	12.917107	1.061579e+08	9857.454543	248.305709	2.28198
mi	n 1952.00000	23.599000	6.001100e+04	241.165877	4.000000	-1.00000
25	6 1965.75000	48.198000	2.793664e+06	1202.060309	208.000000	2.36000
50	6 1979.50000	60.712500	7.023596e+06	3531.846989	410.000000	4.69500
75	6 1993.25000	70.845500	1.958522e+07	9325.462346	638.000000	6.45000
ma	x 2007.00000	82.603000	1.318683e+09	113523.132900	894.000000	8.45000
4						•

In [10]:

create_table(gapminder.head())

country	continent	year	lifeExp	рор	gdpF
Afghanistan	Asia	1952	28.801	8425333	779.4
Afghanistan	Asia	1957	30.3319999999999	997240934	820.8
Afghanistan	Acia	1062	21 007	10267083	ΩΕ2 1

Parte 2: Fazer uma análise de qual seria a função pretendida com a visualização proposta.

A função pretendida com a visualização proposta é de Exploração, pois busca surpreender o público com expectativas que vão além do senso comum sobre o desenvolvimento social e também de Explanação, já que um storytelling é criado (o autor inclui diversos eventos históricos como Guerras e doenças que modificaram a população).

Assim, questiona-se o senso comum de que países do terceiro mundo são aqueles que tem maior expectativa de vida e menor fecundidae -- em oposição aos países de primeiro mundo. Isso pode ser claramente visto com a ascenção de países asiáticos (como a China) e países latino americanos, por meio das posições das diferentes bolhas. Veja que quanto mais ao canto superior esquerdo, menor é a fecundidade e maior é a expectativa de vida.

Parte3: Fazer uma reprodução da visualização escolhida utilizando uma ferramenta computacional atual (de preferência a mesma escolhida por vocês no trabalho 1)

Na reprodução utilizei a biblioteca px.scatter do Plotly, conforme animação produzida pelo código abaixo.

In [11]:

Parte4: Propor alguma modificação (fundamentando conceitualmente) na visualização proposta. Exemplo: Incluir anotação, incluir interatividade, modificar título ou legenda, adicionar informação, etc.

O Bubble Chart utilizado identifica de maneira clara os dados representados, pois permite mostrar 3 variávies distintas (Expectativa de vida, taxa de fecundidade e relação entre o tamanho da população) e a animação mostra a sua evolução ao longo do tempo. A única modificação sugerida (que eu pelo menos não consegui observar na palestra original) é colocar um título no visualização que seja descritivo com o conteúdo. Ademais, como o autor cita a América Latina e os países do Oriente Médio na palestra, seria também interessante categorizá-los por cor.

Bônus: Visualização com outra base de dados

Entre as dificuldade encontradas para reproduzir a visualização históricas estava o fato de Hans Rosling ter realizado diversas visualizações e por isso encontramos várias animações e bases de dados distintas pela internet. A base de dados a seguir reune os dados das visualizações das duas palestras mais famosas do acadêmico. Esses dados estão disponíveis em:

https://raw.githubusercontent.com/theengineeringworld/statistics-using-python/master/gapminder.xls (https://raw.githubusercontent.com/theengineeringworld/statistics-using-python/master/gapminder.xls) e de acordo com o autor (que trabalha no canal TheEngineeringWorld e mostra um notebook Jupyter com os dados em: https://www.youtube.com/watch?v=VdWfB30QTYI&t=87s (https://www.youtube.com/watch?v=VdWfB30QTYI&t=87s)) foram extraídos do site GapMinder (https://www.gapminder.org/(https://www.gapminder.org/)). Entretanto, não há informações sobre como foi feita a limpeza dos dados.

In [12]:

```
from IPython import display
from ipywidgets import interact, widgets
import matplotlib.pyplot as pp
```

In [13]:

```
gapminder2 = pd.read_csv("gapminder.csv")
gapminder2.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14740 entries, 0 to 14739
Data columns (total 9 columns):
    Column
                      Non-Null Count
                                      Dtype
    ----
                      -----
0
    country
                      14740 non-null
                                      object
1
                      14740 non-null int64
    year
 2
                      14740 non-null object
    region
    population
                      14740 non-null float64
    life expectancy
                      14740 non-null float64
5
                      14740 non-null float64
    age5 surviving
6
                      14740 non-null
                                      float64
    babies per woman
7
                      14740 non-null
                                      float64
    gdp_per_capita
8
    gdp per day
                      14740 non-null float64
dtypes: float64(6), int64(1), object(2)
memory usage: 1.0+ MB
```

In [14]:

Uma outra visualização, proposta por quem elaborou o modelo, está disponível a seguir. Porém, note que não é interessante, pois a animação cria várias instancias do gráfico.

In [15]:

Out[15]:

<function __main__.plotyear(year)>

In []: