Guida su Teoria ed Esercizi

🖺 Elementi di Analisi Matematica 2

1 - Integrali Indefiniti

Primitive

Definizione

Sia $f:(a,b)\to\mathbb{R}$.

f è dotata di primitive in (a,b) se $\exists F:(a,b)\to\mathbb{R}$ tale che

- 1. F è derivabile in (a, b)
- 2. $F'(x) = f(x) \quad \forall x \in (a,b)$

△ Nota

- Non tutte le funzioni hanno primitive (es. la funzione segno)
- Una funzione continua ha primitive. Una funzione non continua non implica il non avere primitive. La continuità è una condizione sufficiente, ma non necessaria.

Caratterizzazione delle primitive di una funzione in un intervallo

(i) Teorema

✓ Enunciato

Ipotesi

 $f:(a,b)
ightarrow \mathbb{R}$ dotata di primitive in (a,b)F primitiva di f in (a,b)

Tesi

Tutte e sole le funzioni primitive di f in (a, b) sono le funzioni del tipo:

$$F(x) + c, \quad c \in \mathbb{R}$$

Dimostrazione

1. Dimostro che tutte le funzioni del tipo F(x)+c, con $c\in\mathbb{R}$ sono primitive di f in (a,b)

$$\exists D[F(x) + c] = F'(x) + 0 = f(x)$$

2. Dimostro che tutte le funzioni del tipo F(x) + c sono le sole primitive.

Se $G:(a,b)\to\mathbb{R}$ è un'altra primitiva di f in (a,b) allora $\exists\,c\in\mathbb{R}$ tale che $G(x)=F(x)+c\quad \forall x\in(a,b)$ Consideriamo la funzione G(x) - F(x). Essa è derivabile in (a, b) e

$$D[G(x) - F(x)] = G'(x) - F'(x) = f(x) - f(x) = 0$$

Il 2° corollario di Lagrange dice: se due funzioni hanno la stessa derivata in un intervallo, esse differiscono per una costante.

Quindi,
$$G(x) - F(x) = \mathrm{costante} o G(x) = F(x) + c, \quad orall x \in (a,b)$$

Integrale Indefinito

mettere definizione

Integrali Indefiniti Notevoli

 $(c \in \mathbb{R})$

- $\int 0 dx = c$
- $\int 1 dx = x + c$
- $\int x^{lpha}\,dx=rac{x^{lpha+1}}{lpha+1}+c,\quad lpha
 eq0$
- $\bullet \int \frac{1}{x} dx = \ln|x| + c$
- $\int lpha^x \, dx = rac{lpha^x}{\ln |x|}, \quad lpha \in \mathbb{R}, lpha > 0, lpha
 eq 0$
- $\int \sin x \, dx = -\cos x + c$
- $\int \cos x \, dx = \sin x + c$
- $\int \frac{1}{1+x^2} = \arctan x + c$
- $\int \frac{1}{\sqrt{1-x^2}} = \arcsin x + c$

Integrali di Funzioni Composte

- $\int [f(x)]^{lpha} \cdot f'(x) \, dx = rac{[f(x)]^{lpha+1}}{lpha+1} + c$
- gli altri sono uguali a quelli notevoli ma con x = f(x), tutto per f'(x).

Proprietà di Omogeneità

✓ Enunciato

Ipotesi

 $f:(a,b) o\mathbb{R}$ dotata di primitive in (a,b) $k\in\mathbb{R}, k
eq 0$

Tesi

- 1. kf è dotata di primitive in (a, b)
- 2. $\int kf(x) dx = k \int f(x) dx$

Dimostrazione

1. Per ipotesi f è dotata di primitive in (a,b) e sia F una sua primitiva.

$$\exists D[k \cdot F(x)] = k \cdot F'(x) = k \cdot f(x) \quad \forall x \in (a,b)$$

2. Per provare la 2 si dimostrano le due inclusioni.

Si prova che $\int k \cdot f(x) \, dx \subseteq k \cdot \int f(x) \, dx$

$$G \in \int k \cdot f(x) \, dx$$
 $\exists G'(x) = k \cdot f(x)$

Dobbiamo provare che $G\in k\cdot\int f(x)\,dx$, quindi $G=k\cdot {
m primitiva}$ di f Se k
eq 0 possiamo dire che $G(x)=k\cdot\left\lceil\frac{G(x)}{k}\right\rceil$

Se proviamo che $\left[\frac{G(x)}{k}\right]$ è uguale a una primitiva di f in (a,b), allora abbiamo provato che $G(x)\in k\cdot\int f(x)\,dx.$

$$D\left[rac{G(x)}{k}
ight] = rac{1}{k}\cdot G'(x) = rac{1}{\cancel{k}}\cdot [\cancel{k}\cdot f(x)] = f(x)$$

In conclusione, $rac{G(x)}{k}$ è primitiva di f in (a,b), quindi $G\in k\cdot\int f(x)\,dx$

Proviamo adesso l'altra inclusione $k \cdot \int f(x) \, dx \subseteq \int k \cdot f(x) \, dx$

$$G \in k \int f(x) \, dx$$
, quindi $G(x) = k \cdot F(x)$

Devo provare che G è una primitiva di $k \cdot F(x)$

$$G'(x) = D[k \cdot F(x)] = k \cdot F'(x) = k \cdot f(x)$$

Abbiamo dimostrato che G è una primitiva di $k \cdot f$

Proprietà di Linearità

✓ Enunciato

Ipotesi

 $f,g:(a,b) o\mathbb{R}$ dotate di primitive in (a,b)

Tesi

- 1. f + g è dotata di primitive in (a, b)
- 2. $\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$

△ Osservazione

Al secondo membro avviene la somma tra due insiemi, che di norma non è definita. Si intende invece l'insieme formato dalle funzioni che sono la somma di una delle primitive di f e una delle primitive di g.

3. $\int [f(x) + g(x)] dx = F(x) + \int g(x) dx$, con F primitiva di f

△ Osservazione

Al secondo membro si intende che, quando si tratta di una somma con un integrale, è possibile omettere la costante.

Integrazione per decomposizione in somma

✓ Enunciato

Ipotesi

 $f,g:(a,b) o\mathbb{R}$ dotate di primitive

 $h,k\in\mathbb{R}$ non entrambi nulli ($h^2+k^2>0$)

Tesi

- 1. $h \cdot f + k \cdot g$ è dotate di primitive in (a, b)
- 2. $\int [h \cdot f(x) + k \cdot g(x)] dx = h \cdot \int f(x) dx + k \cdot \int g(x) dx$

Integrazione indefinita per parti

✓ Enunciato

Ipotesi

 $f,g:(a,b) o\mathbb{R}$ derivabili $f'\cdot g$ dotata di primitive in (a,b)

Tesi

- 1. $f \cdot g'$ è dotata di primitive in (a, b)
- 2. $\int f(x) \cdot g'(x) dx = f(x) \cdot g(x) \int f'(x) \cdot g(x) dx$

Dimostrazione

f e g sono derivabili, quindi lo è anche $f \cdot g$.

$$D[f(x)\cdot g(x)] = f'(x)\cdot g(x) + f(x)\cdot g'(x), \quad orall x\in (a,b)$$

Spostando di membro si ottiene: $f'(x) \cdot g(x) = D[f(x) \cdot g(x)] + f(x) \cdot g'(x)$

Si integrano entrambi i membri e per la proprietà di linearità si ottiene:

$$\int f(x) \cdot g'(x) \, dx = f(x) \cdot g(x) + \int f'(x) \cdot g(x) \, dx$$

f(x) è detto fattore finito

g(x) è detto fattore differenziale

Integrali indefiniti ciclici

& Metodo risolutivo

Per risolvere un integrale del tipo:

$$\int f(x)\,dx = H(x) + lpha\cdot\int f(x)\,dx,\quad lpha
eq 1$$

È sufficiente portare al primo l'integrale e risolvere l'equazione isolandolo.

Integrali di Polinomi Trigonometrici

🖺 Prerequisiti di Trigonometria

- $\cos^2 x + \sin^2 x = 1$
- $\sin^2 \alpha = \frac{1-\cos(2\alpha)}{2}$

•
$$\cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$$

•
$$\cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$$

• $\sin \alpha \cdot \cos \alpha = \frac{1}{2} \sin 2\alpha$

$\int \cos^n x \, dx$ oppure $\int \sin^n x \, dx$

n pari

- 1. Si scompone $\int \sin^{2n}x\,dx$ in $\int (\sin^2x)^n\,dx$
- 2. Si trasforma $\sin^2 x$ in $\frac{1-\cos(2\alpha)}{2}$
- 3. Si svolge il quadrato di binomio se n=2, il cubo di binomio se n=3, ecc
- 4. Si scompone utilizzando la proprietà di linearità degli integrali .
- 5. Si procede ricorsivamente utilizzando i vari metodi risolutivi.

$$\int \sin^6 x \, dx = \int (\sin^2 x)^3 \, dx$$

n dispari

$$\int \cos^n x \cdot \sin^m x \, dx$$

$$n = m$$

assioma trigonometria

n
eq m con n e m entrambi pari

n
eq m con almeno n oppure m dispari