Predicting with trees

Jeffrey Leek, Assistant Professor of Biostatistics Johns Hopkins Bloomberg School of Public Health

Key ideas

- Iteratively split variables into groups
- Split where maximally predictive
- Evaluate "homogeneity" within each branch
- Fitting multiple trees often works better (forests)

Pros:

- Easy to implement
- Easy to interpret
- Better performance in nonlinear settings

Cons:

- Without pruning/cross-validation can lead to overfitting
- Harder to estimate uncertainty
- · Results may be variable

Example Tree

Decision Tree: The Obama-Clinton Divide

http://graphics8.nytimes.com/images/2008/04/16/us/0416-nat-subOBAMA.jpg

Basic algorithm

- 1. Start with all variables in one group
- 2. Find the variable/split that best separates the outcomes
- 3. Divide the data into two groups ("leaves") on that split ("node")
- 4. Within each split, find the best variable/split that separates the outcomes
- 5. Continue until the groups are too small or sufficiently "pure"

Measures of impurity

$$\hat{p}_{mk} = \frac{1}{N_m} \sum_{x_i \text{ in Leaf } m} \mathbb{1}(y_i = k)$$

Misclassification Error:

$$1 - \hat{p}_{mk(m)}$$

Gini index:

$$\sum_{k \neq k'} \hat{p}_{mk} \times \hat{p}_{mk'} = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

Cross-entropy or deviance:

$$-\sum_{k=1}^K \hat{p}_{mk} \ln \hat{p}_{mk}$$

Example: Iris Data

```
data(iris)
names(iris)
```

```
[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"
```

```
table(iris$Species)
```

```
setosa versicolor virginica
50 50 50
```

Iris petal widths/sepal width

```
plot(iris$Petal.Width,iris$Sepal.Width,pch=19,col=as.numeric(iris$Species))
legend(1,4.5,legend=unique(iris$Species),col=unique(as.numeric(iris$Species)),pch=19)
```


Iris petal widths/sepal width

```
# An alternative is library(rpart)
library(tree)
tree1 <- tree(Species ~ Sepal.Width + Petal.Width, data=iris)
summary(tree1)</pre>
```

```
Classification tree:

tree(formula = Species ~ Sepal.Width + Petal.Width, data = iris)

Number of terminal nodes: 5

Residual mean deviance: 0.204 = 29.6 / 145

Misclassification error rate: 0.0333 = 5 / 150
```

Plot tree

```
plot(tree1)
text(tree1)
```


Another way of looking at a CART model

```
plot(iris$Petal.Width,iris$Sepal.Width,pch=19,col=as.numeric(iris$Species))
partition.tree(tree1,label="Species",add=TRUE)
legend(1.75,4.5,legend=unique(iris$Species),col=unique(as.numeric(iris$Species)),pch=19)
```


Predicting new values

```
set.seed(32313)
newdata <- data.frame(Petal.Width = runif(20,0,2.5),Sepal.Width = runif(20,2,4.5))
pred1 <- predict(tree1,newdata)
pred1</pre>
```

```
setosa versicolor virginica
1
        0
             0.02174
                        0.97826
2
             0.02174
                        0.97826
3
             0.00000
                        0.00000
        1
             1.00000
                        0.00000
4
5
             0.02174
                        0.97826
        0
             0.02174
                        0.97826
6
             0.02174
                        0.97826
8
             0.90476
                        0.09524
9
             1.00000
                        0.00000
        0
             0.02174
10
                        0.97826
11
             1.00000
                        0.00000
12
             0.00000
                        0.00000
13
             0.00000
                        0.00000
                                                                                              11/18
14
                        0.00000
        1
             0.00000
```

Overlaying new values

```
pred1 <- predict(tree1,newdata,type="class")
plot(newdata$Petal.Width,newdata$Sepal.Width,col=as.numeric(pred1),pch=19)
partition.tree(tree1,"Species",add=TRUE)</pre>
```


Pruning trees example: Cars

```
data(Cars93,package="MASS")
head(Cars93)
```

	Manufacturer	Model	Type M	in.Price	Price	Max.Price	MPG.cit	y MPG.highway	AirBag	js
1	Acura	Integra		12.9		18.8		5 31	Non	
2	Acura	Legend	Midsize	29.2	33.9	38.7	1	.8 25	Driver & Passenge	er
3	Audi	90	Compact	25.9	29.1	32.3	2	26	Driver onl	-У
4	Audi	100	Midsize	30.8	37.7	44.6	1	.9 26	Driver & Passenge	ì
5	BMW	535i	Midsize	23.7	30.0	36.2	2	2 30	Driver onl	-у
6	Buick	Century	Midsize	14.2	15.7	17.3	2	2 31	Driver onl	-У
	DriveTrain Cy	ylinders	EngineSiz	e Horsepo	ower I	RPM Rev.pe	c.mile M	[an.trans.avai]	l Fuel.tank.capaci	Lty
1	Front	4	1.	8	140 63	300	2890	Yes	13	3.2
2	Front	6	3.	2	200 55	500	2335	Yes	18	3.0
3	Front	6	2.	8	172 55	500	2280	Yes	16	5.9
4	Front	6	2.	8	172 55	500	2535	Yes	21	L.1
5	Rear	4	3.	5	208 57	700	2545	Yes	21	L.1
6	Front	4	2.	2	110 52	200	2565	No	16	5.4
	Passengers Le	ength Whe	eelbase Wi	dth Turn	circle	e Rear.seat	t.room L	uggage.room We		
1	5	177	102	68	37	7	26.5	11	2705 non-USA 13/18	
2	5	195	115	71	38	3	30.0	15	3560 non-USA	

Build a tree

Plot errors

```
par(mfrow=c(1,2))
plot(cv.tree(treeCars,FUN=prune.tree,method="misclass"))
plot(cv.tree(treeCars))
```


pruneTree <- prune.tree(treeCars,best=4)</pre>

Prune the tree

```
pruneTree <- prune.tree(treeCars, best=4)
plot(pruneTree)
text(pruneTree)</pre>
```


Show resubstitution error *

```
table(Cars93$DriveTrain,predict(pruneTree,type="class"))
```

```
4WD Front Rear

4WD 5 5 0

Front 1 66 0

Rear 1 10 5
```

```
table(Cars93$DriveTrain,predict(treeCars,type="class"))
```

```
4WD Front Rear

4WD 5 5 0

Front 2 61 4

Rear 0 3 13
```

· Note that cross validation error is a better measure of test set accuracy

Notes and further resources

- · Hector Corrada Bravo's Notes, code
- Cosma Shalizi's notes
- Elements of Statistical Learning
- Classification and regression trees
- · Random forests