Машинное обучение

Лекция 4

Построение ансамблей, Random Forest и Gradient Boosting

Виктор Кантор

План

- I. Обзор методов построения композиций
- II. Ансамбли решающих деревьев

I. Обзор методов построения композиций

Bagging

Bagging = Bootstrap aggregation

Бутстреп

Выборка из некоторого распределения:

Nº	значение
1	
2	
3	
N	

Бутстреп

Выборка из некоторого распределения:

Nº	значение
1	
2	
3	
N	

Хотим вычислить какуюто величину X по данным наблюдениями.

Было бы здорово вычислить X на многих выборках из распределения, а потом усреднить, но их у нас нет

Бутстреп

Выборка из некоторого распределения:

	-
Nº	значение
1	
2	
3	
N	

Хотим вычислить какуюто величину X по данным наблюдениями.

Было бы здорово вычислить X на многих выборках из распределения, а потом усреднить, но их у нас нет

Решение:

- 1. Выбираем наугад одно наблюдение из имеющихся.
- 2. Повторяем пункт 1 столько раз, сколько у нас есть наблюдений. При этом некоторые из них мы можем выбрать повторно
- 3. Считаем интересующие нас величины по новой выборке. Запоминаем результат.
- 4. Повторяем пункты 1-3 много раз и усредняем

Bagging

Bagging = Bootstrap aggregation

По схеме выбора с возвращением, генерируем М обучающих выборок такого же размера, обучаем на них модели и усредняем

Bagging

Бэггинг в классификации

Вариации: Pasting, RSM

- RSM Random Subspace Method, выбираем не объекты, а признаки
- Pasting выбираем объекты без возвращения

Обучающая выборка:

Обучаем М базовых алгоритмов на выборке А

Обучающая выборка:

Обучаем М Считаем их прогнозы на выборке А выборке В

Обучающая выборка:

Обучаем М базовых алгоритмов на выборке А

Считаем их прогнозы на выборке В

B1 B2

₹

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$$

Обучаем другую модель (например, линейную регрессию с $w_0 = 0$)

Смесь нескольких сильных классификаторов:

$$a(x) = \sum_{t=1}^{I} \alpha_t b_t(x)$$

+ веса неотрицательны и дают в сумме единицу

Смесь нескольких сильных классификаторов:

$$a(x) = \sum_{t=1}^{I} \alpha_t b_t(x)$$

+ веса неотрицательны и дают в сумме единицу

Преимущества и недостатки:

• Очень прост идейно, хорошо работает, логичен

Смесь нескольких сильных классификаторов:

$$a(x) = \sum_{t=1}^{I} \alpha_t b_t(x)$$

+ веса неотрицательны и дают в сумме единицу

Преимущества и недостатки:

- Очень прост идейно, хорошо работает, логичен
- Иногда надо перебирать веса или использовать дискретную оптимизацию

Смесь нескольких сильных классификаторов:

$$a(x) = \sum_{t=1}^{I} \alpha_t b_t(x)$$

+ веса неотрицательны и дают в сумме единицу

Преимущества и недостатки:

- Очень прост идейно, хорошо работает, логичен
- Иногда надо перебирать веса или использовать дискретную оптимизацию
- Не всегда композиция в виде взвешенной суммы то, что надо. Иногда нужна более сложная композиция

$$a(x) = \sum_{t=1}^{T} \beta_t h_t(x)$$

«Слабые» алгоритмы

 $h_k(x)$ – как правило, решающие деревья небольшой глубины или линейные модели

Пример: бустинг над линейными классификаторами

Алгоритмы бустинга

- Основные алгоритмы:
 - Градиентный бустинг
 - Адаптивный бустинг (AdaBoost)
- Вариации AdaBoost:
 - AnyBoost (произвольная функция потерь)
 - BrownBoost
 - GentleBoost
 - LogitBoost

—

Бэггинг и бустинг

Bagged Decision Rule

Boosted Decision Rule

Бэггинг и бустинг: переобучение

Преимущества и недостатки бустинга

- Позволяет очень точно приблизить восстанавливаемую функцию или разделяющую поверхность классов
- Плохо интерпретируем
- Композиции могут содержать десятки тысяч базовых моделей и долго обучаться
- Переобучение на выбросах при избыточном количестве классификаторов

II. Ансамбли решающих деревьев

Леса решающих деревьев

Random Forest

- 1. Бэггинг над деревьями
- 2. Рандомизированные разбиения в деревьях: выбираем k случайных признаков и ищем наиболее информативное разбиение по ним

Extreemly Randomized Trees

- 1. Бэггинг над «сильно рандомизированными» деревьями
- 2. При разбиении в дереве выбираем k случайных признаков и случайные пороги по ним, затем ищем наиболее информативное из этих разбиений

Extreemly Randomized Trees

- 1. Бэггинг над «сильно рандомизированными» деревьями
- 2. При разбиении в дереве выбираем k случайных признаков и случайные пороги по ним, затем ищем наиболее информативное из этих разбиений

Нестандартные применения случайного леса

- Метрика и поиск похожих объектов
- Преобразование признаков

Может ли *** работать лучше RF

Random Forest Classifier

3-Nearest Neighbors

Идея Gradient Boosted Decision Trees (с прошлой лекции)

$$a_n(x) = h_1(x) + \dots + h_n(x)$$

Аналогия с численной оптимизацией

Нам нужно минимизировать ошибку:

$$Q(\hat{y}, y) = \sum_{i=1}^{t} (\hat{y}_i - y_i)^2 \to min \qquad \hat{y}_i = a(x_i)$$

Аналогия с численной оптимизацией

Нам нужно минимизировать ошибку:

$$Q(\hat{y}, y) = \sum_{i=1}^{t} (\hat{y}_i - y_i)^2 \to min \qquad \hat{y}_i = a(x_i)$$

Если бы мы подбирали ответы \hat{y} итеративно, можно было бы это делать градиентным спуском

Аналогия с численной оптимизацией

Нам нужно минимизировать ошибку:

$$Q(\hat{y}, y) = \sum_{i=1}^{t} (\hat{y}_i - y_i)^2 \to min \qquad \hat{y}_i = a(x_i)$$

Если бы мы подбирали ответы \hat{y} итеративно, можно было бы это делать градиентным спуском

Но нам нужно подобрать не ответы, а функцию a(x)

Градиентный бустинг и градиент

В бустинге
$$a(x) = \sum_{t=1}^{T} \beta_t h_t(x)$$

Идея: будем каждый следующий алгоритм выбирать так, чтобы он приближал антиградиент ошибки

$$h_t(x) \approx -\frac{\partial Q(\hat{y}, y)}{\partial \hat{y}}$$

Градиентный бустинг и градиент

Если
$$h_t(x) \approx -\frac{\partial Q(\hat{y},y)}{\partial \hat{y}}$$
 и $Q(\hat{y},y) = \sum_{i=1}^l (\hat{y}_i - y_i)^2$

$$h_t(x_i) \approx -\frac{\partial Q(\hat{y}_i, y_i)}{\partial \hat{y}_i} = -2(\hat{y}_i - y_i) \propto y_i - \hat{y}_i$$

GBM с квадратичными потерями

- 1. Обучаем первый базовый алгоритм h_1 , $\beta_1 = 1$
- 2. Повторяем в цикле по t от 2 до T:

обучаем h_t на ответы $y_i - a_{t-1}(x_i)$

выбираем β_t

GBM с квадратичными потерями

- 1. Обучаем первый базовый алгоритм h_1 , $\beta_1 = 1$
- 2. Повторяем в цикле по t от 2 до T:

обучаем h_t на ответы $y_i - a_{t-1}(x_i)$

выбираем β_t

Стратегии выбора β_t :

- всегда равен небольшой константе
- как в методе наискорейшего спуска
- ullet уменьшая с ростом t

GBM с произвольными потерями

- 1. Обучаем первый базовый алгоритм h_1 , $\beta_1 = 1$
- 2. Повторяем в цикле по t от 2 до T:

обучаем
$$h_t$$
 на $-\frac{\partial Q(\hat{y}_i, y_i)}{\partial \hat{y}_i} = -\frac{\partial L(\hat{y}_i, y_i)}{\partial \hat{y}_i}$

выбираем β_t

Здесь
$$Q(\hat{y}, y) = \sum_{i=1}^{l} L(\hat{y}_i, y_i)$$
 $\hat{y}_i = a_{t-1}(x_i)$

GBM в наиболее общем виде

- 1. Обучаем первый базовый алгоритм h_1 , $\beta_1 = 1$
- 2. Повторяем в цикле по t от 2 до T:

$$h_t = \underset{h}{\operatorname{argmin}} \sum_{i=1}^{l} \tilde{L}\left(h(x_i), -\frac{\partial L(\hat{y}_i, y_i)}{\partial \hat{y}_i}\right)$$

выбираем β_t

Здесь
$$Q(\hat{y}, y) = \sum_{i=1}^{l} L(\hat{y}_i, y_i)$$
 $\hat{y}_i = a_{t-1}(x_i)$

Bagging, Random Forest, GBDT

Spam Data

GTBM u RF

California Housing Data

Распараллеливание

Вопрос для обсуждения:

Какой из ансамблей деревьев больше подходит для распараллеливания? Как это делать в одном и в другом случае?

Резюме

- I. Обзор методов построения композиций
 - Bagging
 - Stacking
 - Blending
 - Boosting
- II. Ансамбли решающих деревьев
 - Random Forest
 - Gradient Boosted Decision Trees

Отзывы

Отзывы о прошедших лекциях и семинарах можно и нужно оставлять здесь:

https://ml-mipt.github.io/2017part1/