Solving Ax = b

- 1. When A is invertible, i.e., if $A_{n\times n}$ has rank n, then Ax = b always has _____ solution.
- 2. When A is singular.
 - (a) x is a least squares solution if ______ is as small as possible.
 - (b) x is a least norm if furthermore _____ is as small as possible.
 - (c) Given $A = U\Sigma V^T = U_1\Sigma_r V_1^T$, the solution $x = \underline{\hspace{1cm}}$ is always a least-squares, least-norm solution.

Orthogonal complement

- 1. If V and W are vector subspaces of \mathbb{R}^n , we say that V and W are orthogonal if for every $v \in V$, and $w \in W$, we have _____.
- 2. V^{\perp} is the set of all $w \in \mathbb{R}^n$ such that w is perpendicular to each vector $v \in V$.
- 3. $V = (V^{\perp})^{\perp}$
 - $Col(A)^{\perp} = Leftnull(A)$
 - $\operatorname{Row}(A)^{\perp} = \operatorname{Null}(A)$
 - $\operatorname{Null}(A)^{\perp} = \operatorname{Row}(A)$
 - Leftnull $(A)^{\perp} = \operatorname{Col}(A)$
- 4. Suppose A is a $m \times n$ matrix with rank r, then
 - dim Row(A) =
 - $\dim \text{Null}(A) =$
 - dim Col(A) =
 - dim $Null(A^T) =$

Problems

1. Let
$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
.

(a) What is the rank of A?

(b) What is the dimension of the solution space of Ax = 0? What is the dimension of the solution space of $A^Tx = 0$?

(c) Does $A^Ty=\begin{pmatrix}1\\1\\0\\-1\end{pmatrix}$ has a solution? If not, find the least norm. (Hint: First, write down a SVD for A^T .)

- 2. Let V be subspace of \mathbb{R}^4 $V = span(\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\0\\0 \end{pmatrix})$.
 - (a) Find the orthogonal complement of V.

(b) Write down all the solutions of $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$.

3. Let A be an $m \times n$ matrix and B be an $n \times k$ matrix. Suppose we have AB = 0. Show that $\operatorname{rank}(A) + \operatorname{rank}(B) \leq n$.