向量范数

定义

 $\frac{\mathbb{C} \times 1}{\mathbb{C} \times 1}$ 如果 V 是数域 K 上的线性空间,且对于 V 的任意一向量 X ,对应一个实值函数,

它满足以下三个条件:

- (1) 非负性: $\exists x \neq 0$ 时, ||x|| > 0; $\exists x = 0$ 时, ||x|| = 0;
- (2) 齐次性: $||ax|| = |a||x||, a \in K, x \in V$
- (3) 三角不等式: $||x + y|| \le ||x|| + ||y||, x, y \in V$. 则称 ||x||为 V上向量 x的范数,简称向量范数

常用范数:

对于复向量 $x = (\xi_1, \xi_2, \cdots, \xi_n) \in C^n$

1. l_1 范数: $||x||_1 = \sum_{i=1}^n |\xi_i|$

2. l_2 范数: $\|x\|_2 = \sqrt{|\xi_1|^2 + |\xi_2|^2 + \cdots + |\xi_n|^2}$

3. l_∞ 范数: $||x||_\infty = \max_i |\xi_i|$

4. l_p 范数: $\|x\|_p = \left(\sum_{i=1}^n |\xi_i|^p\right)^{1/p}, 1 \le p \le +\infty$ 前三种范数可以看作第四种范数对应的p取值。之后是一些不常用的范数:

5. 加权范数\椭圆范数:

例 设A 是任意一个n阶对称正定矩阵,列向量 $x \in \mathbb{R}^n$,则函数 $\|x\|_A = (x^T A x)^{1/2}$ 是一种向量范数, 称为加权范数或椭圆范数.

性质:

1. 等价性:

定义设 $\|\mathbf{x}\|_{\alpha}$ 和 $\|\mathbf{x}\|_{\beta}$ 为有限维线性空间V的任意两种向量范数,若存在两个与向量无关的正常数 c_1 和 c_2 使下面不等式成立

$$c_1 \|\mathbf{x}\|_{\beta} \le \|\mathbf{x}\|_{\alpha} \le c_2 \|\mathbf{x}\|_{\beta}$$

则称 $\|\mathbf{x}\|_{\alpha}$ 与 $\|\mathbf{x}\|_{\beta}$ 是等价的。

2. 有限维空间中任何两种范数都是等价的。

证明中常见不等式

- 1. 柯西-施瓦兹不等式: $(\sum x_i y_i)^2 \le \sum x_i^2 \sum y_i^2$,拓展为: $|(x,y)| \le \sqrt{(x,x)(y,y)}$
- 2. 引理-Young不等式:已知u,v是非负实数,p>1,q>1,且1/p+1/q=1,则 $uv\leq \frac{1}{p}u^p+\frac{1}{q}u^q$
- 3. Hoider不等式:

$$X = [x_1, x_2, \dots, x_n]^T, Y = [y_1, y_2, \dots, y_n]^T \in C^n$$

则

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q\right)^{\frac{1}{q}}$$

其中
$$p > 1$$
, $q > 1$ 且 $\frac{1}{p} + \frac{1}{q} = 1$

证明见PPT

4. Minkowski不等式:
$$\alpha = \begin{bmatrix} a_1, a_2, \cdots, a_n \end{bmatrix}^T, \beta = \begin{bmatrix} b_1, b_2, \cdots, b_n \end{bmatrix}^T \in C^n$$

$$\mathbb{U}(\sum_{i=1}^n \left|a_i + b_i\right|^p)^{1/p} \leq (\sum_{i=1}^n \left|a_i\right|^p)^{1/p} + (\sum_{i=1}^n \left|b_i\right|^p)^{1/p}$$
其中实数 $p \geq 1$ 。