تمارين على gcd و lcm.

- . \overline{ABC} يقبل القسمة على 7.8,9 . فأوجد كل قيم العدد $\overline{739ABC}$. إذا كان العدد
 - . gcd(n!+1,(n+1)!+1)=1 ليكن n عدد صحيح . اثبت أن (2)
- . $\gcd(F_m,F_n)=1$ فإن $m\neq n$ فإن $k\geq 0$ ، $F_k=2^{2^k}+1$ ليكن (3 ليكن $k\geq 0$ ، اثبت أن إذا كان $k\geq 0$ ، يسمى عدد فيرما والخاصية المطلوبة خاصية أولية مثيرة لأعداد فيرما).
 - . $\gcd(a^m-1,a^n-1)=a^{\gcd(m,n)}-1$: أثبت أن a>1 و m,n>0 و m,n>0 بفرض (4
 - . m=n فإن $mn\mid (m^2+n^2)$ بفرض m,n>0 بفرض (5
 - . $\frac{ab}{a-b}=c$ ، أعداد صحيحة موجبة a,b,c حيث $\gcd(a,b,c)=1$ ليكن a-b . اثبت أن a-b مربع كامل .
 - : نا عدد صحیح موحب فردي ، اثبت أن : (7)
 - $(1+2+....+n) | (1^k+2^k+....+n^k)$
 - . (12n+5,9n+4)=1 ليكن n عدد صحيح . اثبت أن (8
 - . $(2^m-1,2^n+1)=1$ البكن m,n عددين صحيحين موجبين m فردي . اثبت أن m,n
 - . $gcd(a^2 + b^2, ab) = 1$ ليكن . gcd(a, b) = 1
 - 11) بين أن الجذور النسبية لكثيرة حدود ذات معاملات صحيحة ومعامل رئيس ± 1 تكون أعداد صحيحة .
 - . lcm(m+k,m) = lcm(n+k,n) لتكن m,n,k أعداد صحيحة موجبة تحقق أن m,n,k . m=n أثبت أن
 - . بارامتر m عيث x^2-1 . أوجد كل الحلول الصحيحة x^2-1 للمعادلة x^2-1 المعادلة (x,m) عيث x^2-1