Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

1. (Previously presented) 2-Halofuryl/thienyl-3-carboxamides of the formula (I)

$$H \xrightarrow{H} \begin{array}{c} H \\ \downarrow \\ R \end{array} \begin{array}{c} M \\ \downarrow \\ Z \end{array} \hspace{1cm} (I),$$

in which

A represents O (oxygen) or S (sulphur),

Hal represents halogen,

C1-C8-alkyl, C1-C6-alkylsulphinyl, R hydrogen, C1-C6represents alkylsulphonyl, C1-C4-alkoxy-C1-C4-alkyl, C3-C8-cycloalkyl; C1-C6-haloalkyl, C1-C4 $haloalkylthio, \ C_1-C_4-haloalkylsulphinyl, \ C_1-C_4-haloalkylsulphonyl, \ halo-C_1-C_4-alkoxy-C_1-C_4-haloalkylsulphonyl, \ halo-C_1-C_4-alkoxy-C_1-C_4-haloalkylsulphinyl, \ halo-C_1-C_4-haloalkylsulphinyl, \ halo-C_1-C_4$ C4-alkyl, C3-C8-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine formyl. formyl-C1-C3-alkyl, (C1-C3-alkyl)carbonyl-C1-C3-alkyl, (C1-C3atoms: alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C1-C3alkoxy)carbonyl-C1-C3-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine (C1-C8-alkyl)carbonyl, (C1-C8-alkoxy)carbonyl, (C1-C4-alkoxy-C1-C4atoms; alkyl)carbonyl, (C3-C8-cycloalkyl)carbonyl; (C1-C6-haloalkyl)carbonyl, (C1-C6-(halo-C1-C4-alkoxy-C1-C4-alkyl)carbonyl, (C3-C8haloalkoxy)carbonyl, halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or -C(=O)C(=O)R1, -CONR2R3 or -CH2NR4R5,

 $R^1 \qquad \text{represents} \quad \text{hydrogen}, \quad C_1\text{-}C_8\text{-alkyl}, \quad C_1\text{-}C_8\text{-alkoxy}, \quad C_1\text{-}C_4\text{-alkoxy-}C_1\text{-}$

 R^2 and R^3 independently of one another each represent hydrogen, C_1 - C_8 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 -cycloalkyl; C_1 - C_8 -haloalkyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R² and R³ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains one or two further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur and NR⁶

R⁴ and R⁵ independently of one another represent hydrogen, C₁-C₈-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R⁴ and R⁵ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur and NR⁶,

- R⁶ represents hydrogen or C₁-C₆-alkyl,
- M represents a phenyl which is monosubstituted by R⁷,

- R^7 represents hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,
 - Z represents Z^1 , Z^2 , Z^3 or Z^4 , in which
- Z^1 represents phenyl which is optionally mono- to pentasubstituted by identical or different substituents W^1 ,
- W¹ represents halogen, cyano, nitro, amino, hydroxyl, formyl, carboxy, carbamoyl, thiocarbamoyl;

in each case straight-chain or branched alkyl, hydroxyalkyl, oxoalkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, dialkoxyalkyl, alkylthio, alkylsulphinyl or alkylsulphonyl having in each case 1 to 8 carbon atoms;

in each case straight-chain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms:

in each case straight-chain or branched haloalkyl, haloalkoxy, haloalkylthio, haloalkylsulphinyl or haloalkylsulphonyl having in each case 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms;

in each case straight-chain or branched haloalkenyl or haloalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms;

in each case straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylalkylaminocarbonyl, dialkylaminocarbonyl to 6 carbon atoms in the respective hydrocarbon chains, alkenylcarbonyl or alkynylcarbonyl having 2 to 6 carbon atoms in the respective hydrocarbon chains;

cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms;

doubly attached alkylene having 3 or 4 carbon atoms, oxyalkylene having 2 or 3 carbon atoms, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, oxo, methyl, trifluoromethyl and ethyl;

- Z² represents bicycloalkyl or cycloalkyl which is optionally mono- or polysubstituted by identical or different substituents,
- Z³ represents unsubstituted C₂-C₂₀-alkyl or represents C₁-C₂₀-alkyl which is mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkylsulphonyl, haloalkylamino, halodialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl,
- Z⁴ represents C₂-C₂₀-alkenyl or C₂-C₂₀-alkynyl, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkylamino, halo-dialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl,

 $R^8 \ and \ R^9 \ independently \ of one another represent \ hydrogen, \ C_1-C_8-alkyl, \ C_1-C_8-alkyl, \ C_1-C_8-alkyl, \ C_1-C_4-alkyl, \$

R¹⁰ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₆-alkylthio-C₁-C₄-alkyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, C₁-C₆-haloalkyl, C₂-C₈-alkynyl, C₁-C₆-baloalkyl, C₂-C₈-alkynyl, C₁-C₆-baloalkyl, C₂-C₈-alkynyl, C₂-C₈-alkynyl, C₁-C₆-baloalkyl, C₂-C₈-alkynyl, C₁-C₆-baloalkyl, C₂-C₈-alkynyl, C₂-C₈-alkynyl, C₁-C₆-baloalkyl, C₂-C₈-alkynyl, C₂-C₈-alkynyl, C₂-C₈-alkynyl, C₂-C₈-alkynyl, C₂-C₈-alkynyl, C₂-C₈-alkynyl, C₂-C₈-alkynyl, C₂-C₈-alkynyl, C₃-C₈-alkynyl, C₄-C₈-alkynyl, C₄-C₈-alkynyl, C₄-C₈-alkynyl, C₄-C₈-alkynyl, C₄-C₈-alkynyl, C₅-C₈-alkynyl, C₅-C₈-alkynyl, C₆-baloalkyl, C₆-C₈-alkynyl, C₇-C₈-alkynyl, C₈-C₈-alkynyl, C₈

C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₃-C₆-cycloalkyl, or represents in each case optionally substituted phenyl or phenylalkyl.

- (Currently amended) 2-Halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1 in which
 - A represents O (oxygen) or S (sulphur),
 - Hal represents fluorine, chlorine, bromine or iodine,
- C1-C6-alkyl, C1-C4-alkylsulphinyl, R represents hvdrogen, C1-C4alkylsulphonyl, C1-C3-alkoxy-C1-C3-alkyl, C3-C6-cycloalkyl; C1-C4-haloalkyl, C1-C4haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₃-alkoxy-C₁-C3-alkyl, C3-C8-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine formyl-C1-C3-alkyl, (C1-C3-alkyl)carbonyl-C1-C3-alkyl, formyl, atoms: alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C1-C3alkoxy)carbonyl-C1-C3-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine (C1-C4-alkoxy)carbonyl, (C1-C3-alkoxy-C1-C3-(C₁-C₆-alkyl)carbonyl, atoms: alkyl)carbonyl, (C3-C6-cycloalkyl)carbonyl; (C1-C4-haloalkyl)carbonyl, (C1-C4haloalkoxy)carbonyl, (halo-C1-C3-alkoxy-C1-C3-alkyl)carbonyl, (C2-C6halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms, or -C(=O)C(=O)R1, -CONR2R3 or -CH2NR4R5,
- $R^1 \qquad \text{represents} \quad \text{hydrogen,} \quad C_1\text{-}C_6\text{-alkyl,} \quad C_1\text{-}C_4\text{-alkoxy,} \quad C_1\text{-}C_3\text{-alkoxy-}C_1\text{-}$

 R^2 and R^3 independently of one another each represent hydrogen, C_1 - C_6 -alkyl, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, C_1 - C_6 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R² and R³ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur and NR⁶,

R⁴ and R⁵ independently of one another represent hydrogen, C₁-C₆-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms.

R⁴ and R⁵ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur and NR⁶,

R⁶ represents hydrogen or C₁-C₄-alkyl,

M represents

where the bond marked "*" is attached to the amide and the bond marked "#" is attached to the radical Z.

- ${\ensuremath{\mathbb{R}}}^7$ represents hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,
 - Z represents Z^1 , Z^2 , Z^3 or Z^4 , where
- $Z^{l} \qquad \text{represents phenyl which is optionally mono- to pentasubstituted by} \\ \text{identical or different substituents W^{l},}$
- W¹ represents halogen, cyano, nitro, amino, hydroxyl, formyl, carboxy, carbamoyl, thiocarbamoyl;

in each case straight-chain or branched alkyl, hydroxyalkyl, oxoalkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, dialkoxyalkyl, alkylthio, alkylsulphinyl or alkylsulphonyl having in each case 1 to 8 carbon atoms;

in each case straight-chain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms:

in each case straight-chain or branched haloalkyl, haloalkoxy, haloalkylsthio, haloalkylsulphinyl or haloalkylsulphonyl having in each case 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms;

in each case straight-chain or branched haloalkenyl or haloalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms;

in each case straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylalkylaminocarbonyl, dialkylaminocarbonyl to 6 carbon atoms in the respective hydrocarbon chains, alkenylcarbonyl or alkynylcarbonyl having 2 to 6 carbon atoms in the respective hydrocarbon chains;

cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms;

doubly attached alkylene having 3 or 4 carbon atoms, oxyalkylene having 2 or 3 carbon atoms, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, oxo, methyl, trifluoromethyl and ethyl:

- Z^2 represents cycloalkyl or bicycloalkyl having in each case 3 to 10 carbon atoms and being in each case optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and/or C_1 - C_4 -alkyl,
- Z^3 represents unsubstituted C_2 - C_2 0-alkyl or C_1 - C_2 0-alkyl which is mono- or polysubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine, iodine, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulphinyl, C_1 - C_6 -haloalkylsulphinyl, C_1 - C_6 -haloalkyl, C_1
- Z^4 represents C_2 - C_{20} -alkenyl or C_2 - C_{20} -alkynyl, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, iodine, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulphinyl, C_1 - C_6 -alkylsulphonyl, C_1 - C_6 -alkylsulphonyl, C_1 - C_6 -alkylsulphinyl, C_1 - C_6 -haloalkylsulphonyl, C_1 - C_6 -haloalkylsulphinyl, C_1 - C_6 -haloalkylsulphonyl, C_1 - C_6 -haloalkylamino, halo-di(C_1 - C_6 -alkyl)amino, -SiR $^8R^9R^{10}$ and C_3 - C_6 -cycloalkyl, where the cycloalkyl moiety is optionally mno- mono- to tetrasubstituted by identical or

- 10 -

different substituents from the group eonsisting consisting of fluorine, chlorine, bromine, iodine, C_1 - C_4 -alkyl and C_1 - C_4 -haloalkyl,

 $R^8 \ and \ R^9 \ independently \ of \ one \ another \ represent \ C_1-C_6-alkyl, \ C_1-C_6-alkoxy, \ C_1-C_3-alkyl, \ C_1-$

 R^{10} represents C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, C_1 - C_3 -alkyl, C_3 - C_6 -cycloalkyl, phenyl or benzyl.

- (Previously presented) Process for preparing the 2-halofuryl/thienyl-3carboxamides of the formula (I) according to Claim 1, characterized in that
 - a) carboxylic acid derivatives of the formula (II)

$$H \xrightarrow{Hal} X^1$$
 (II)

in which

A and Hal are as defined in Claim 1 and

X¹ represents halogen or hydroxyl

are reacted with aniline derivatives of the formula (III)

$$\underset{R}{\overset{\text{HN}}{\downarrow}} \underset{Z}{\overset{\text{M}}{\downarrow}} \qquad \qquad \text{(III)}$$

in which R, M and Z are as defined in Claim 1,

optionally in the presence of a catalyst, optionally in the presence of a condensing agent, optionally in the presence of an acid binder and optionally in the presence of a diluent, or b) halocarboxamides of the formula (IV)

$$H \longrightarrow \begin{array}{c} H & 0 \\ N & M \\ R & X^2 \end{array}$$
 (IV)

in which

A, Hal, R and M are as defined in Claim 1,

X² represents bromine, iodine or trifluoromethylsulphonate, are reacted with boronic acid derivatives of the formula (V)

$$G^{1}-O-B-O-G^{2}$$
 $I_{7^{1}}$ (V

in which

Z¹ is as defined in Claim 1 and

G1 and G2 each represent hydrogen or together represent tetramethylethylene,

in the presence of a catalyst, optionally in the presence of an acid binder and optionally in the presence of a diluent, or

c) boronic acid derivatives of the formula (VI)

$$H \xrightarrow{A} \begin{array}{c} H \\ R \\ R \\ Hal G^2 O^{-B} O \cdot G^4 \end{array}$$
 (VI)

in which

A, Hal, R and M are as defined in Claim 1,

 ${
m G}^3$ and ${
m G}^4$ each represent hydrogen or together represent tetramethylethylene are reacted with phenyl derivatives of the formula (VII)

$$x^3-z^1$$
 (VII)

in which

Z¹ is as defined in Claim 1 and

X³ represents chlorine, bromine, iodine or trifluoromethylsulphonate,

optionally in the presence of a catalyst, optionally in the presence of an acid binder and optionally in the presence of a diluent, or

d) halocarboxamides of the formula (IV)

$$\underset{A \longrightarrow L_{2}}{\overset{H}{\longrightarrow}} \underset{R}{\overset{O}{\longrightarrow}} \underset{X^{2}}{\overset{M}{\longrightarrow}}$$
 (IV)

in which

A, Hal, R and M are as defined in Claim 1,

X² represents bromine, iodine or trifluoromethylsulphonate, are reacted with phenyl derivatives of the formula (VII)

in which

Z¹ is as defined in Claim 1 and

X³ represents chlorine, bromine, iodine or trifluoromethylsulphonate,

in the presence of a palladium or nickel catalyst and in the presence of 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bis-1,3,2-dioxaborolane, optionally in the presence of an acid binder and optionally in the presence of a diluent, or

e) 2-halofuryl/thienyl-3-carboxamides of the formula (I-a)

$$H \xrightarrow{H} \bigcap_{R} \bigcap_{X^4} M$$
 (I-a)

in which

A. Hal, R and M are as defined in Claim 1,

 X^4 represents C_2 - C_{20} -alkenyl or C_2 - C_{20} -alkynyl which are in each case optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, -SiR 8 R 9 R 10 and C_3 - C_6 -cycloalkyl, where the cycloalkyl moiety is optionally substituted by halogen and/or C_1 - C_4 alkyl,

are hydrogenated, optionally in the presence of a diluent and optionally in the presence of a catalyst, or

f) hydroxyalkylcarboxamides of the formula (VIII)

in which

A. Hal, R and M are as defined in Claim 1,

X⁵ represents C₂-C₂₀-hydroxyalkyl which is optionally additionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety is optionally substituted by halogen and/or C₁-C₄-alkyl,

are dehydrated, optionally in the presence of a diluent and optionally in the presence of an acid, or

g) halocarboxamides of the formula(IV)

$$H \xrightarrow{H} N \xrightarrow{R} X^{2}$$
 (IV)

in which

A, Hal, R and M are as defined in Claim 1,

X² represents bromine, iodine or trifluoromethylsulphonate, are reacted with an alkyne of the formula (IX)

in which

 G^5 represents C_2 - C_{18} -alkyl which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylsulphinyl, haloalkylsulphonyl, haloalkylsulphonyl, haloalkylsulphonyl, haloalkylamino, haloalkylamino, -SiR $^8R^9R^{10}$ and C_3 - C_6 -cycloalkyl, where the cycloalkyl moiety is optionally substituted by halogen and/or C_1 - C_4 -alkyl,

or an alkene of the formula (X)

$$G_{\theta}$$
 (X)

in which

 G^6 , G^7 and G^8 independently of one another each represent hydrogen or alkyl which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkylsulphonyl, haloalkylsulphonyl,

haloalkoxy, haloalkylamino, halodialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety is optionally substituted by halogen and/or C₁-C₄-alkyl and the total number of carbon atoms of the open-chain molecular moiety (without substituents) does not exceed the number 20.

optionally in the presence of a diluent, optionally in the presence of an acid binder and optionally in the presence of one or more catalysts, or

ketones of the formula (XI)

$$H \longrightarrow \begin{array}{c} H & O \\ N & M \\ R & O \\ G^9 \end{array}$$
 (XI)

in which

A, Hal, R and M are as defined in Claim 1,

G⁹ represents hydrogen or C₁-C₁₈-alkyl which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety is optionally substituted by halogen and/or C₁-C₄-alkyl,

are reacted with a phosphorus compound of the general formula (XII)

in which

G¹⁰ represents C₁-C₁₈-alkyl which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkyltmino, haloalkylthio,

haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety is optionally substituted by halogen and/or C₁-C₄-alkyl,

Px represents a grouping $-P^+(C_6H_5)_3C\Gamma$, $-P^+(C_6H_5)_3B\Gamma$, $-P^+(C_6H_5)_3\Gamma$, $-P(=O)(OCH_3)_3$ or $-P(=O)(OC_2H_5)_3$,

optionally in the presence of a diluent, or

2-halofuryl/thienyl-3-carboxamides of the formula (I-b)

in which

A, Hal, R, M and Z are as defined in Claim 1 are reacted with halides of the formula (XIII) $\label{eq:linear}$

in which

R^a represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphinyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms; (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₆-haloalkyl)carbonyl, (halo-C₁-C₆-haloalkyl)carbonyl, (halo-C₁-C₆-haloalkyl)carbonyl

 C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, (C_3 - C_8 -halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or -C(=O)C(=O) R^1 , - $CONR^2R^3$ or - $CH_2NR^4R^5$,

R1, R2, R3, R4 and R5 are as defined above,

X⁶ represents chlorine, bromine or iodine,

in the presence of a base and in the presence of a diluent.

 (Previously presented) A composition comprising at least one 2halofuryl/thienyl-3-carboxamide of the formula (I) according to Claim 1, and one or more extenders and/or surfactants.

5. (Cancelled)

- 6. (Previously presented) A method for controlling fungi and bacteria in crop protection, comprising applying at least one 2-halofuryl/thienyl-3-carboxamide of the formula (I) according to Claim 1 to fungi, bacteria and/or their habitat.
- 7. (Previously presented) A process for preparing a composition according to Claim 4, comprising mixing at least one 2-halofuryl/thienyl-3-carboxamide of the formula (I) according to Claim 1 with extenders and/or surfactants.

8-11. (Cancelled)

- (Previously presented) 2-Halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1, in which
 - R represents hydrogen, and
 - Z represents Z^1 .

- 13. (Previously presented) 2-Halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1, in which
 - R represents hydrogen, and
 - Z represents Z^3 .
- (Previously presented) 2-Halofuryl/thienyl-3-carboxamides of the formula
 (I) according to Claim 1, in which
 - R represents hydrogen, and
 - Z represents Z⁴.
- (Previously presented) 2-Halofuryl/thienyl-3-carboxamides of the formula
 (I) according to Claim 1, in which
 - R represents hydrogen,
 - R⁷ represents hydrogen or fluorine, and
 - Z represents Z^3 .
- 16. (Previously presented) 2-Halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 15, in which
 - Z³ represents unsubstituted C₂-C₂₀-alkyl.
- (Previously presented) N-[2-(1,3-dimethylbutyl)phenyl]-2-iodothiophene-3carboxamide: