

Universidade Presbiteriana Mackenzie

Faculdade de Computação e Informática

- Sistemas de Arquivos
 - Discos atuais têm grande capacidade de armazenamento
 - Acesso aos dados no disco constitui um dos problemas de desempenho
 - Problema de confiabilidade
 - Componentes internos do disco podem falhar
 - Perda total ou parcial dos dados armazenado

- RAID Redundant Array of Independent Disks
 (Redundant Array of Inexpensive Disks)
 - Conjunto Redundante de Discos Econômicos
 - Constituído de dois ou mais discos, que são vistos pelo S.O.
 com uma área contigua de armazenamento de dados
 - Proporciona
 - Melhor desempenho na operações de transferência de dados
 - Utilização de paralelismo no acesso aos vários discos
 - Confiabilidade no armazenamento utilizando mecanismos de redundância dos dados armazenados

- RAID Redundant Array of Independent Disks
 - Hardware
 - Placa controladora dedicada
 - Controladora oferece a visão de um disco lógico único
 - Solução robusta com um desempenho melhor

Software

- Utilização de drivers no S.O. para combinar os discos rígidos conectados ao computador em um disco lógico
- Solução mais flexível e mais econômica

- RAID Redundant Array of Independent Disks
 - Formas de organizar um conjunto de discos rígidos em RAID
 - Níveis RAID padronizados pela Storage Networking Industry Association

- RAID Redundant Array of Independent Disks
 - Nível 0
 - Discos físicos são divididos em área de tamanho fixo chamadas fatias ou faixa (stripes)
 - Cada fatia armazena um ou mais blocos de do disco lógico
 - As fatias são preenchidas usando uma estratégia round-robin (Round-Robin algoritmos de escalonamento utilizando quantum)
 - Disco lógico terá como tamanho a soma dos discos físicos.
 - Grande volume dados e alto desempenho de leitura/gravação
 - Recomendados para sistemas científicos com utilização de grande volume de dados temporários

- RAID Redundant Array of Independent Disks
 - Nível 1
 - Cada disco possui um "espelho", ou seja, outro disco com a copia do conteúdo, sendo por isso, chamado de espelhamento de discos
 - Cada bloco lógico está escrito em dois discos distintos
 - Não há ganho de escrita, pois a operação de escrita é replicada em todos os discos
 - Custo alto de implementação

- RAID Redundant Array of Independent Disks
 - Nível 2
 - Fatia os dados em bits individuais que são escritos nos discos físicos em sequencia
 - Discos adicionais são usados para armazenar códigos corretores de erros
 - Este nível não é usado na prática

- RAID Redundant Array of Independent Disks
 - Nível 3
 - Os dados são escritos nos discos em sequencia
 - Um disco separado contem dados de paridade, usado para recuperação de erros
 - A cada leitura ou escrita, os dados do disco de paridade devem ser atualizados, o que implica na serialização dos acessos e consequente queda de desempenho
 - Raramente utilizada

• Raid 3

- RAID Redundant Array of Independent Disks
 - Nível 4
 - Similar ao RAID 3, com a diferença de que o fatiamento é feito por blocos
 - Raramente utilizada

- RAID Redundant Array of Independent Disks
 - Nível 5
 - Armazena informações de paridade para tolerar falhas em discos
 - A paridade é distribuído uniformemente em diversos discos
 - Elimina o gargalo de desempenho no acesso aos dados de paridade
 - Bom desempenho e redundância de dados com um custo menor que o espelhamento

- RAID Redundant Array of Independent Disks
 - Nível 6
 - Extensão do RAID 5
 - Utiliza blocos com códigos de corretores de Reed-Solomon, além dos blocos de paridade
 - Tolerante a falha de até dois discos simultaneamente

- RAID Redundant Array of Independent Disks
 - Nível 7
 - Tecnologia proprietária, e utiliza um sistema operacional embutido para gerenciar as operações de paridade e cache realizadas através de um barramento especial chamado X-Bus
 - Custo alto
 - Fabricado por Storage Computer Corporation

- RAID Redundant Array of Independent Disks
 - Nível 0+1
 - Combinação dos níveis 0 (Distribuição) e 1 Espelhamento
 - Os dados são divididos entre os discos para melhorar o rendimento
 - Utiliza outros discos para duplicar as informações
 - Pelo menos 4 discos para montar um RAID desse tipo
 - Se um dos discos vier a falhar, o sistema vira um RAID 0

- RAID Redundant Array of Independent Disks
 - Nível 0+5 ou RAID 50
 - Maior performance em velocidade
 - Reparte o bloco de dados no RAID 0 e escreve simultaneamente no RAID 5
 - Alta taxa de transferência
 - Ótimo para ser utilizado em servidores
 - Alto custo de implementação

Bibliografia

Maziero, C. A. Sistemas Operacionais, disponível em 01/11/2011 http://dainf.ct.utfpr.edu.br/~maziero/lib/exe/fetch.php/so:so-cap07.pdf

Silberschatz, A., Galvin, P., and Gane, G.; Sistemas Operacionais – Conceitos e Aplicações, Campus, 2001

Jamilson Bispo dos Santos jamilson@mackenzie.br

