Filière GL

Examen de rattrapage : Vision et perception numérique

Année universitaire 2016/2017

Pr. EL FKIHI Sanaa

Durée: 1h00

Document non autorisé

Exercice 1

1. Expliquer les termes suivants :

- Compression avec perte;
- Compression sans perte;
- Bruit dans une image.
- 2. Dans une image binaire, quelles opérations morphologiques permettent de "boucher les trous"?
- 3. Donner trois exemples de causes de bruit dans une image.
- 4. Expliquer le principe de la segmentation par quadtee.

Exercice 2

Soit une image à niveaux de gris, codée sur 8bits, représentée par la figure 1.

10_	10	50	50	50	50	19	50	10	10
10	50-	50	140	10	50	1	5 p	20	zο
10	50	10	10	10	10	10	9,0	16	10
10	50	10	50_	50	50	10	5 b	1⁄0	1 0
10	50	10	1 p	10	50	10	5b	10	10
10	50	6 0	10	50-	50	10	50	10	10
10	_1 0	50	50	50	10	10	50	5/0	50

Figure1: Représentation à niveau de gris d'une image

- 1. Nous faisons une segmentation par région de l'image de la figure 1. Le prédicat considéré est
 - a. Donnez le résultat de cette segmentation (réponse à donner en Annexe1) ; à noter chaque région par un label avec .
 - b. Quel est le nombre de segments obtenus ?

- 2. Donner la dynamique de l'image.
- 3. Faire une égalisation de l'histogramme de l'image.

Exercice 4

Nous considérons la figure2 qui représente une image binaire. Cette image contient un objet représenté avec la couleur noire.

- 1. Donnez le nombre de composantes connexes et de trous pour l'objet de la figure2 en connexité 4 et en connexité 8.
- 2. Calculez le nombre d'Euler (en connexité 4 et en connexité 8) pour l'objet de la
- 3. En considérant une connexité 4, donnez la chaîne de Freeman utilisée pour coder le contour de la composante connexe à laquelle appartient le point A. Soit A le point de départ du codage.

Exercice 5

Soit une image à niveaux de gris, codée sur 8bits, représentée par la matrice suivante :

90	90	50	40	10
				0
90	90	50	40	40
60	30	60	90	10
				0

Figure3 : Représentation matricielle d'une image à niveaux de gris

On considère le filtre de convoluton défini par le noyau suivant :

- 1. Quel est le gain en continu du filtre?
- 2. Quel est le filtre ? Expliquer le rôle de ce filtre et comment il doit être utilisé.
- 3. Appliquer le filtre à l'image représentée par la matrice précédente (figure3).

Nous désirons compresser l'image donnée à la figure 3.

- 4. Appliquer le codage Huffman à l'image.
- 5. Appliquer le codage de Shannon Fano.
- 6. Donner le nombre moyen de bits nécessaires pour chaque type de codage considéré.
- 7. Donner le gain de compression pour chaque type de codage considéré.