10 Décembre 2009

MT22-PARTIEL 2 : Durée 1 heure

Seules 4 pages format A4 sont autorisées

Exercice 1 Soient S_1 et S_2 deux surfaces définies respectivement par

$$S_{1} = \{M(u, v) = (x(u, v), y(u, v), z(u, v)); (u, v) \in \mathbb{R}^{2}\}$$

$$\begin{cases} x(u, v) = u + v \\ y(u, v) = -\frac{v}{2} + \frac{1}{2} \\ z(u, v) = u \end{cases}$$

$$S_{2} = \{M(u, v) = (x(u, v), y(u, v), z(u, v)); (u, v) \in \mathbb{R}^{2}\}$$

$$\begin{cases} x(u, v) = u \\ y(u, v) = v \\ z(u, v) = \sqrt{u^{2} + v^{2}} \end{cases}$$

- 1. Soit $M_0 = (0, 1, 1)$, déterminer (u_0, v_0) tel que $M_0 = M(u_0, v_0) \in S_2$.
- 2. Déterminer l'équation du plan tangent Π_2 à S_2 au point M_0 .
- 3. Donner les équations cartésiennes de S_1 et de S_2 , et préciser la nature des surfaces.
- 4. Retrouver l'équation du plan tangent Π_2 à S_2 au point M_0 .
- 5. Soit maintenant la courbe $C = S_1 \cap S_2$. On désigne par Π_i de normale \overrightarrow{N}_i , le plan tangent à S_i au point M_0 , i = 1, 2.

Soit \overrightarrow{V} un vecteur directeur de la droite Δ , tangente la courbe C au point M_0 .

- (a) Montrer que les plans Π_1 et Π_2 ne sont pas parallèles
- (b) Montrer que $\overrightarrow{V}.\overrightarrow{N_i}=0$ pour i=1,2 (vous pouvez admettre cette question et passer à la suite).
- (c) En déduire que

$$\overrightarrow{V} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

est un vec teur directeur de Δ .

(d) Donner les équations paramétriques et cartésiennes de la droite tangente Δ .

Exercice 2 Soit F un champ de vecteurs défini sur le domaine $U = \{(x, y, z) \in \mathbb{R}^3 : y > z\}$ par

$$\overrightarrow{F} = \begin{cases} y - z \\ z - x \\ x - y \end{cases}$$

- 1. Calculer $\overrightarrow{rot}(\overrightarrow{F})$
- 2. Soit f une fonction définie de \mathbb{R} dans \mathbb{R} de classe C^1 . Soit g la fonction de \mathbb{R}^3 dans \mathbb{R} définie par g(x,y,z)=y-z.

On définit la fonction h = fog et on rapelle que $\overrightarrow{rot}(h\overrightarrow{F}) = h\overrightarrow{rot}(\overrightarrow{F}) + \overrightarrow{\nabla h}\Lambda\overrightarrow{F}$.

- (a) On pose t = y z, montrer que $\overrightarrow{rot}(h\overrightarrow{F}) = 0 \Leftrightarrow tf'(t) + 2f(t) = 0$.
- (b) En déduire que le champ de vecteurs $\frac{1}{(y-z)^2}\overrightarrow{F}$ dérive d'un potentiel scalaire v à déterminer.