# **Exercices Sécurité Informatique Cryptographie**

#### Exercice1 (César):

Soit le message : « Ici c'est licence SI » En appliquant l'algorithme de César et le Code ASCII chiffrer le message avec :

- 1- un décalage à droite de 4
- 2- un décalage à gauche de 3
- 3- un décalage à droite de 3

### Exercice2 (RSA):

On suppose l'algorithme RSA avec : p=5, q=13, e=17, m=123

Question: Chiffrer m.

## **Exercice3 (Disponibilité):**

Soit le système composé de 5 serveurs :

S1: 99%, S2: 80%, S3: 90%, S4: 95%, S5: 56%

- Calculer la disponibilité du système dans les cas suivants :
  - Système en parallèle
  - Système en série

# Exercice4: (Sécurité des Bases de Données):

Soit la matrice suivante :

|       | T1       | T2       | T3     |
|-------|----------|----------|--------|
| Bob   | ALL      | SELECT * |        |
| Alice | UPDATE * | SELECT*, | ALL    |
|       |          | UPDATE   |        |
| Jack  |          | SELECT   | DELETE |
|       |          | INSERT * |        |
|       |          | UPDATE   |        |

- 1) Pour chacun des cas suivants dire si la requête s'exécute ou non, justifier votre réponse :
- a) Jack fait select \* from T1
- b) Bob fait INSERT INTO T1
- c) Alice fait DROP TABLE T2
- d) Alice fait SELECT \* FROM T3
- 2) Donner la suite des requêtes SQL permettant de l'attribution de cette matrice
- 3) Supposons les cas suivants :
- -> Bob voulait supprimer le droit de sélection sur T2 de Alice
- -> Alice voulait supprimer le droit de INSERT sur T1 de Bob
- -> Bob voulait donner le droit de DELETE sur T3 à tout le monde

Pour chaque cas donner Bob-> T1 Jack -> T3 Alice -> T2

4- Donner le graphe d'action des droits de la matrice saquant que les sujets chacun possible de la table

Ex : Bob -> T1, Jack -> T3, Alice -> T2

# Corrigé des exercices :

# **Exercice1:**

Le message : « Ici c'est licence SI »

1) décalage à droite de 4 :

Mgm g'iwx pmgirgi WM

2) décalage à gauche de 3 :

Haf y'zmm dzstbpq DS

3) décalage à droite de 3 :

Lfl f'hvw olfhqfh VL

## Exercice2:

#### **RAPPEL sur RSA:**

Soit 2 nbres premiers p et q

n=p\*q

 $\phi(n) = (p - 1)(q - 1)$ 

 $e: 1 < e < \phi(n)$  c'est un nbre premier

 $d=pgcd(e, \phi(n))=1$ 

clé public :  $(e, \phi(n))$ 

clé privé : d
Chiffrement :
C=Memod(n)

Déchiffrement de C :

 $D=C^d mod(n)$ 

```
p=5, q=13, e=17, M=123

n=p*q=5*13=64

φ(n)=(p-1)*(q-1)=(5-1)*(13-1)=4*12=48

e est déjà donné =17
```

On retrouve d tel que:

 $d = pgcd(e, \phi(n)) = 1 = pgcd(17,48) = 3$ 

**Clé publique** : (17,48)

Clé privée: 3

#### **Chiffrement:**

 $C=M^e \mod(n) = 123^{17} \mod(64) = 59$ 

#### Déchiffrement :

 $D=C^{d} \mod(n)=59^{3} \mod(64)=3$ 

#### Exercice3:

Cas d'un système en série :

1)

$$\int_{n}^{n} (di) = 0.99 * 0.8 * 0.9 * 0.95 * 0.56 = 0.37$$

Cas d'un système en parallèle :

2)



1- 
$$\prod_{i=1}^{n} (1-di) = 1-((1-0.99)*(1-0.8)*(1-0.9)*(1-0.95)*(1-0.56) = 0.99$$

$$D = 1 - ((1 - (999 \times 99) \times (1 - (995 \times 99) \times ($$

## **Exercice4:**

1)

- a) refusé, il n'a aucun droits (y compris le droit de SELECT)
- b) accepté (il a le droit de select)
- c) refusé (elle n'a pas le droit de supprimer une table)
- d) accepté (elle a le droit de select sur le table T2)

### 2) les requêtes :

GRANT ALL on T1 to Bob

GRANT SELECT on T2 to Bob with GRANT OPTIONS

**GRANT SELECT on T2 to Alice with GRANT OPTIONS** 

**GRANT UPDATE on T2 to Alice** 

GRANT ALL on T3 to Alice

GRANT UPDATE on T1 to Alice with GRANT OPTIONS

GRANT SELECT, INSERT, UPDATE on T2 to JACK

**GRANT DELETE on T3 to Jack** 

3)

- REVOKE GRANT OPTIONS SELECT on T2 FROM Alice
- Impossible car Alice n'a pas le droit sur T1
- Impossible car Bob n'a aucun droit sur T3

4-

