

On considère la fonction suivante définie sur]0; $+\infty$ [:

$$f(x) = 3x^2 + 4x + 3 - 15x^2 \ln(x)$$

- 1. Calculer la limite de f en 0^+
- **2.** Calculer la limite de f en $+\infty$
- **3.** Calculer la dérivée de f.
- **4.** Calculer la dérivée seconde de f.
- **5.** Déterminer le signe de f''(x).
- **6.** En déduire le tableau de variation de f'(x).
- 7. Déterminer le nombre de solutions de f'(x) = 0 et en donner un encadrement d'amplitude 10^{-2} .
- **8.** En déduire le tableau de variation de f(x).
- **9.** Déterminer le nombre de solutions de f(x) = 0.

Logarithme TG

Correction:

1. On sait que:

$$\lim_{x \to 0^{+}} 3x^{2} + 4x + 3 = 3$$

$$\lim_{x \to 0^{+}} 15x^{2} \ln(x) = 0 \text{ par propriété du cours}$$
donc
$$\lim_{x \to 0^{+}} 3x^{2} + 4x + 3 - 15x^{2} \ln(x) = 3$$

2.

$$\lim_{x \to +\infty} 3x^2 + 4x + 3 = +\infty$$

$$\lim_{x \to +\infty} -15x^2 \ln(x) = -\infty \quad \text{par propriété du cours}$$
 donc
$$\lim_{x \to +\infty} 3x^2 + 4x + 3 - 15x^2 \ln(x) = -\infty \quad \text{par prédominance de } x^2 \ln(x)$$

3.

$$f'(x) = 6x + 4 - 15(x^{2}\ln(x))'$$

$$= 6x + 4 - 15((x^{2})'\ln(x) + x^{2} \times \ln(x)')$$

$$= 6x + 4 - 15(2x\ln(x) + x^{2} \times \frac{1}{x})$$

$$= 6x + 4 - 15(2x\ln(x) + x)$$

$$= -9x + 4 - 30\ln(x)$$

4.

$$f''(x) = -9 - 30 (x \ln(x))'$$

$$= -9 - 30 (x' \ln(x) + x \times \ln(x)')$$

$$= -9 - 30 (\ln(x) + x \times \frac{1}{x})$$

$$= -9 - 30 (\ln(x) + 1)$$

$$= -39 - 30 \ln(x)$$

5.

$$f'(x) \ge 0$$

$$-39 - 30 \ln(x) \ge 0$$

$$-30 \ln(x) \ge 39$$

$$\ln(x) \le \frac{39}{-30}$$

$$x \le e^{\frac{39}{-30}}$$

6. On a:

Logarithme TG

x	0	e	<u>39</u> -30	+∞
f''(x)		+	0 -	
f'(x)	4	4+3	$50e^{\frac{39}{-30}}$	-∞

7. D'après le tableau de variation, comme 4 > 0, la fonction f' ne peut pas s'annuler sur l'intervalle $]0; e^{\frac{39}{-30}}]$.

Pour $x > e^{\frac{39}{-30}}$, la fonction est décroissante de $4 + 30e^{\frac{39}{-30}} > 0$ vers $-\infty$, donc, d'après le théorème des valeurs intermédiaires, il existe une unique valeur $\alpha > e^{\frac{39}{-30}}$ telle que $f'(\alpha) = 0$.

En utilisant la calculatrice, on trouve :

$$f'(0.27) > 0$$

 $f'(0.28) < 0$
 $0.27 < \alpha < 0.28$

8. On a:

9. D'après le tableau de variation, comme 3 > 0, la fonction f ne peut pas s'annuler sur l'intervalle $]0; \alpha]$.

Pour $x > \alpha$, la fonction est décroissante de $f(\alpha) > 0$ vers $-\infty$, donc, d'après le théorème des valeurs intermédiaires, il existe une unique valeur $\beta > \alpha$ telle que $f(\beta) = 0$.

$$f(1.57) < 0$$

 $f(1.56) > 0$
donc $1.56 < \beta < 1.57$