AlphaGo

Дмитрий Пыркин

151

23 января 2018 г.

Table of Contents

- 📵 Вступление
- 💿 Правила игры
 - Основные правила
 - Запрещённые ходы
- AlphaGo
 - SL-policy
 - Rollout-network
 - RL-policy
 - Value-network
 - Monte-Carlo tree search
- Литература

Что за AlphaGo?

AlphaGo – первая программа для игры в го, которая выиграла матч без форы у профессионального игрока на стандартной доске 19х19. Разработана Google DeepMind в 2015 году.

В чём инновационность?

- В го количество возможных позиций намного больше чем в шахматах, поэтому традиционные методы, как например, альфа-бета отсечение давали довольно слабые результаты.
- AlphaGo представляет собой комбинацию Supervised learning (SL) и Reinforcement learning (RL)

Основные правила

- Игра начинается с пустой доски. Игроки по очереди ставят на доску камни своего цвета: чёрные и белые.
- Побеждает тот кто окружит больше территории.
- Окружённые камни снимаются с доски.
- Есть запрещённые ходы.
- Запрещается повторять позицию: правило ко.

Подсчёт очков

Здесь у черных территория в двух местах справа вверху и слева внизу. Территория белых вверху слева и внизу справа.

Удаление камней с доски

В данном примере во всех трёх случаях белые камни оказывается захваченными и снимаются с доски.

Самоубийственные ходы

В данном случае белые не могут пойти в пункт, отмеченный крестиком, т.к. это самоубийственный ход.

Κo

Чёрные могут взять отмеченный белый камень, если сделают ход в пункт а.

Ko

Белые не могут сходить в пункт b сейчас, но смогут через ход.

Из чего состоит AlphaGo?

- SL policy network
- Fast rollout policy
- RL policy network
- Value network
- Monte-Carlo tree search

Что требуется от SL policy network?

- Предсказание хода, сделанного человеком
- Требуется большая точность. В релизе 57%.
- Каждое предсказание занимает приблизительно 3ms.

Структура SL policy network

- Для каждой клетки на вход подаётся 48 признаков.
- 13 свёрточных слоев с softmax на выходном слое.
- Для обучения было использовано 30 миллионов позиций.

Как это обучать?

Обучение SL policy network

Используем стохастический градиентный спуск.

$$\Delta\sigma\proptorac{\partial\log p_{\sigma}(a|s)}{\partial\sigma}$$

 σ — веса сети.

s — текущая позиция на доске.

а — сделанный ход.

Fast rollout policy

- Делает то же, что и SL policy network.
- Точность 24.2%.
- ullet Время работы 2μ s.
- На вход подаётся очень большое количество заранее заготовленных признаков.

Как улучшить точность SL policy network?

Пришло время reinforcement learning

A как использовать RL для нейронных сетей?

Дообучение SL policy network

- RL policy network имеет такую же структуру, как и SL.
- Изначально её веса инициализируются весами SL.

 $\rho = \sigma$.

Reinforce algorithm

- На каждой итерации играем одновременно $m{n}$ игр между текущей сетью $m{p}_{
 ho}$ и случайной сетью с предыдущих итераций $m{p}_{
 ho^-}$.
- Каждая игра i из пула T^i играется до конца.

У нас есть состояния и действия, что насчёт награды?

$$r(s) = \begin{cases} 0, & \text{for non terminal state, } t < T \\ 1, & \text{for terminal state, } t = T \end{cases}$$

У нас есть состояния и действия, что насчёт награды?

$$r(s) = \begin{cases} 0, & \text{for non terminal state, } t < T \\ 1, & \text{for terminal state, } t = T \end{cases}$$

$$z_t = \pm r(s_T)$$

Outcome с точки зрения текущего игрока.

Обновление весов

$$\Delta
ho = rac{lpha}{n} \sum_{i=1}^n \sum_{t=1}^{T'} rac{\partial \log p_
ho(a_t^i | s_t^i)}{\partial
ho}$$

 α — step parameter. $v(s_t^i)$ — baseline. Используется для уменьшения дисперсии.

Value-network

Оценивает позицию s при условии, что оба игрока используют стратегию p.

$$v^p(s) = \mathbb{E}[z_t|s_t = s, a_{t...T} \sim p]$$

Value-network

Оценивает позицию s при условии, что оба игрока используют стратегию p.

$$egin{align} v^{
ho}(s) &= \mathbb{E}[z_t|s_t=s, a_{t...T} \sim
ho] \ & v_{ heta}(s) pprox v^{
ho}(s) pprox v^*(s) \ \end{aligned}$$

Обучение Value-network

- Имеет схожую архитектуру с policy network.
- Обучается на парах (s, z).
- Используется SGD для минимизации MSE.
- ullet $\Delta heta \propto rac{\partial v_{ heta}(s)}{\partial heta}(z-v_{ heta}(s))$

Как бороться с переобучением?

Борьба с переобучением

- ullet Делается **N** ходов с помощью SL policy network.
- Делается случайный легальный ход.
- Игра доигрывается с помощью RL policy network.
- Для обучения используется только ход N+2.

Ну а как теперь играть?

Selection

На каждом шаге t выбираем ребро следующим образом:

$$a_t = \arg\max_a (Q(s_t, a) + u(s_t, a))$$

Q(s,a) — action value. u(s,a) — бонус, поощряющий посещение плохо изученных вершин.

Selection

На каждом шаге t выбираем ребро следующим образом:

$$a_t = \arg\max_a (Q(s_t, a) + u(s_t, a))$$

Q(s, a) – action value.

u(s,a) — бонус, поощряющий посещение плохо изученных вершин.

$$u(s,a) = \propto \frac{P(s,a)}{1 + N(s,a)}$$

Expansion

- Рассматриваем лист дерева с позицией s.
- ullet Для каждого легального хода $oldsymbol{a}$ считаем его вероятность с помощью SL policy network $P(s,a)=p_{\sigma}(a|s)$.

Evaluation

Каждый лист оценивается двумя способами.

- С помощью value network.
- С помощью outcome игры, сыгранной с помощью rollout policy.

Evaluation

Каждый лист оценивается двумя способами.

- С помощью value network.
- С помощью outcome игры, сыгранной с помощью rollout policy.

Итоговая оценка:

$$V(s_L) = (1 - \lambda)v_{\theta}(s_L) + \lambda z_L$$

Backup

Теперь необходимо обновить action value и количество посещений всех посещенных рёбер.

$$N(s, a) = \sum_{i=1}^{n} 1(s, a, i)$$
 $Q(s, a) = \frac{1}{N(s, a)} \sum_{i=1}^{n} 1(s, a, i) V(s_{L}^{i})$

Extended Data Table 2 | Input features for neural networks

Feature	# of planes	Description
Stone colour	3	Player stone / opponent stone / empty
Ones	1	A constant plane filled with 1
Turns since	8	How many turns since a move was played
Liberties	8	Number of liberties (empty adjacent points)
Capture size	8	How many opponent stones would be captured
Self-atari size	8	How many of own stones would be captured
Liberties after move	8	Number of liberties after this move is played
Ladder capture	1	Whether a move at this point is a successful ladder capture
Ladder escape	1	Whether a move at this point is a successful ladder escape
Sensibleness	1	Whether a move is legal and does not fill its own eyes
Zeros	1	A constant plane filled with 0
Player color	Î	Whether current player is black

Feature planes used by the policy network (all but last feature) and value network (all features).

Extended Data Table 4 | Input features for rollout and tree policy

Feature	# of patterns	Description
Response	1	Whether move matches one or more response pattern features
Save atari	1	Move saves stone(s) from capture
Neighbour	8	Move is 8-connected to previous move
Nakade	8192	Move matches a <i>nakade</i> pattern at captured stone
Response pattern	32207	Move matches 12-point diamond pattern near previous move
Non-response pattern	69338	Move matches 3×3 pattern around move
Self-atari	1	Move allows stones to be captured
Last move distance	34	Manhattan distance to previous two moves
Non-response pattern	32207	Move matches 12-point diamond pattern centred around move

Features used by the rollout policy (first set) and tree policy (first and second set). Patterns are based on stone colour (black/white/empty) and liberties (1, 2, ≥3) at each intersection of the pattern.

Литература

- https://en.wikipedia.org/wiki/Go_(game)
- Mastering the Game of Go with Deep Neural Networks and Tree Search, Google DeepMind
- https://habrahabr.ru/post/279071/