Information systems for assessing the environmental impact of industrial processes

Marco Cardia

Department of Computer Science University of Pisa

Outline

- 1. Introduction
- 2. Related Work
- 3. Project overview
- 4. Conclusion

Analytical parameters

- Chemical Oxygen Demand (COD)
- Biochemical Oxygen Demand (BOD)
- pH, conductivity, hardness...

Analytical parameters

- Chemical Oxygen Demand (COD)
- Biochemical Oxygen Demand (BOD)
- pH, conductivity, hardness...

Objectives

- Build a continuous monitoring system
- Reduce laboratory analysis cost
- Limit air and water pollution

Current method

- Titrimetric analysis
 - Laboratory
- Chemometrics
 - Data-driven

Spectrum

Ultra-violet and Visible (UV-Vis)

spectroscopy

Spectrum

- Ultra-violet and Visible (UV-Vis)
 spectroscopy
- Beer-Lambert law

Spectrometer

Absorbance

Optical sensor

Related work

Collect absonbance

Select a wavelenght

Build linear regressor

Related work

Related work - drawbacks

Laboratory prepared samples

One wavelength

Linear regressor stiffness

Our project

- Machine Learning
- Life Cycle Assessment

Project overview

Predict the level of pollutants in wastewaters

Monitor the pollutants

Simulate the production varying chemical agent

Dataset

• 212 features

• 119 samples

Data distribution

Estimating COD

Principal Component Analysis (PCA)

Compare Machine Learning Algorithm

Evaluation measures

RMSE

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

• R²

$$R^{2}(y, \hat{y}) = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Results

	RMSE		R2	
Model	Training	Validation	Training	Validation
Null model	14484.14	14165.42	0.00	-0.25
Ridge Regression	275.16	36052.17	0.99	-7.30
Random Forest	4164.05	10638.99	0.86	0.29
SVM	2661.48	4329.57	0.95	0.77
MLP	3522.22	6548.99	0.92	0.55
KNN	7845.81	10672.14	0.68	0.30

Conclusion and next steps

- Objective: Construct a reliable system to constantly monitor pollutants
- Analyse how our work may impact on industries
- Does a chemical agent impact on the pollution?

Thank you!

Marco Cardia marco.cardia@phd.unipi.it

