

PGM foundations - Part 2 Priors, Generative processes and Mixture models

Francisco Pereira

Filipe Rodrigues

DTU Management EngineeringDepartment of Management Engineering

Outline

- PGMs in continuous domain
- Generative processes
- Mixture models
- Summary: The big picture so far

Learning objectives

At the end of this lecture, you should be able to:

- Understand the concept of continuous random variable, and its specification in a PGM
- Understand the role of the prior, the importance of its form, and the concept of conjugate prior in inference
- Apply the generative process principles in the creation of a PGM and perform ancestral sampling with it
- Understand the concept mixture model, its representation, and inference challenges

PGM in continuous domain

- Thus far, we've been using only discrete variables
- Conditional Probability Tables
- Extension to continuous domain is intuitive...
- But with it, some concepts become more relevant
 - Prior
 - Conjugate prior

PGMs in continuous domain

General form

- We use functions instead of tables
- Typically, each function is a well-known distribution (or combination of them)
- \bullet Every distribution is parameterized by a set θ

PGMs in continuous domain

Gaussian distribution

• It has a well-known likelihood function

$$L(\mu, \sigma) = \prod_{i}^{N} \frac{1}{\sqrt{2\pi}\sigma} e^{\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)}$$

Corresponding log version

$$LL(\mu, \sigma) = -\frac{N}{2}(\log(2\pi) + \log(\sigma^2)) - \frac{1}{2\sigma^2} \sum_{i} (x_i - \mu)^2$$

PGMs in continuous domain

- A Graphical Model allows for a full Bayesian treatment
 - We can assign *priors* to the parameters
 - We can use domain knowledge
 - Good to prevent overfitting
 - What would be the form of those priors?

- \bullet To simplify, let's assume we know σ but not μ
- Can we pick any distribution, $D(\mu|\theta)$?
- Our joint distribution would become:

$$p(\mu, \mathbf{x} | \theta, \sigma) = D(\mu | \theta) \prod_{n=1}^{N} p(x_n | \mu, \sigma)$$

- \bullet To simplify, let's assume we know σ but not μ
- Can we pick any distribution, $D(\mu|\theta)$?
- Common simplification to unclutter notation:

$$p(\mu, \mathbf{x}|\theta, \sigma) = D(\mu|\theta) \prod_{n=1}^{N} p(x_n|\mu, \sigma)$$

- \bullet To simplify, let's assume we know σ but not μ
- Can we pick any distribution, $D(\mu|\theta)$?
- Common simplification to unclutter notation:

$$p(\mu, \mathbf{x}) = D(\mu|\theta) \prod_{n=1}^{N} p(x_n|\mu, \sigma)$$

- \bullet To simplify, let's assume we know σ but not μ
- Can we pick *any* distribution, $D(\mu|\theta)$?
- Our joint distribution would become:

$$p(\mu, \mathbf{x}) = D(\mu|\theta) \prod_{n=1}^{N} p(x_n|\mu, \sigma)$$

• If $D(\mu|\theta)$ is normal, then $p(\mu, \mathbf{x})$ is normal too!

• If $D(\mu|\theta)$ is normal, then $p(\mu, \mathbf{x})$ is normal too!

$$D(\mu|\theta) = \mathcal{N}(\mu|\alpha, \gamma)$$

• If $D(\mu|\theta)$ is normal, then $p(\mu, \mathbf{x})$ is normal too!

$$D(\mu|\theta) = \mathcal{N}(\mu|\alpha,\gamma)$$

• the log probability of our PGM would be:

$$LL(\mu, \alpha, \gamma, \sigma) = -\frac{N}{2}(\log(2\pi) + \log(\sigma^2))$$
$$-\frac{1}{2\sigma^2} \sum_{i} (x_i - \mu)^2$$
$$-\frac{\log(2\pi)}{2} - \frac{\log(\gamma^2)}{2} - \frac{(\alpha - \mu)^2}{2\gamma^2}$$

Playtime!

- Open notebook "3-PGM fundamentals.ipynb"
- Do part 1 (est. duration=30 min)

Conjugate priors

ullet For many known distributions, there is a corresponding *conjugate prior*, P, that preserves its form under multiplication. I.e., if we have distribution L and its conjugate prior P_0 , we should have

$$P_1 = L \times P_0$$

- ullet where P_1 has the same form as P_0
- For example, the Beta distribution is the conjugate prior of Bernoulli; and we've seen that the Normal is the conjugate for the mean of the Normal (when variance is known).
- If we have a known closed form for model, inference is generally more efficient!
- This is great for online learning (why?)!

Conjugate priors

• We usually use a table

Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters	Interpretation of hyperparameters ^[note 1]	Posterior predictive ^[note 2]
p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^n x_i, \ \beta + n - \sum_{i=1}^n x_i$	$\begin{array}{l} \alpha-1 \text{ successes, } \beta-1 \\ \text{failures}^{[\text{note 1}]} \end{array}$	$p(ilde{x}=1)=rac{lpha'}{lpha'+eta'}$
p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^n x_i, \ \beta + \sum_{i=1}^n N_i - \sum_{i=1}^n x_i$	$\begin{array}{l} \alpha-1 \text{ successes, } \beta-1 \\ \text{failures}^{[\text{note 1}]} \end{array}$	$\operatorname{BetaBin}(\tilde{x} lpha',eta')$ (beta-binomial)
p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^n x_i, \ \beta + rn$	$\begin{array}{l} \alpha-1 \text{ total successes, } \beta-1 \\ \text{failures}^{[\text{note 1}]} \text{ (i.e., } \frac{\beta-1}{r} \\ \text{experiments, assuming } r \text{ stays} \\ \text{fixed)} \end{array}$	
Poisson λ (rate)	Gamma	k, θ	$k+\sum_{i=1}^n x_i, \ \frac{\theta}{n\theta+1}$	k total occurrences in $\frac{1}{\theta}$ intervals	$\mathrm{NB}(ar{x} k', heta')$ (negative binomial)
		$\alpha,eta^{ ext{[note 3]}}$	$\alpha + \sum_{i=1}^{n} x_i, \ \beta + n$	α total occurrences in β intervals	$\operatorname{NB}\!\left(ilde{x} lpha',rac{1}{1+eta'} ight)$ (negative binomial)
p (probability vector), k (number of categories; i.e., size of p)	Dirichlet	α	$oldsymbol{lpha} + (c_1, \dots, c_k), ext{ where } c_i ext{ is the number of observations in category } i$	$lpha_i - 1$ occurrences of category $i^{[\text{note 1}]}$	$p(\tilde{x} = i) = \frac{{\alpha_i}'}{\sum_i {\alpha_i}'}$ $= \frac{{\alpha_i} + c_i}{\sum_i {\alpha_i} + n}$
	ρ (probability) ρ (probability) ρ (probability) λ (rate) ρ (probability vector), κ (number of categories; i.e., size		$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Figure: From Wikipedia

Some conjugate priors to remember...

Likelihood	Prior
Normal with known varia	nce Normal
Normal with known mean	Inverse Gamma
Multivariate normal, knov	vn Inverse Wishart
mean	
Multivariate normal, unkr	nown Normal-inverse-Wishart
mean and variance	
Exponential	Gamma
Bernoulli	Beta
Mulitnomial	Dirichlet
Poisson	Gamma

• For our Gaussian example, the posterior $p(\mu|\mathbf{X}) = \mathcal{N}(\tilde{\alpha}, \tilde{\gamma})$ will be directly

$$\tilde{\alpha} = \frac{1}{\gamma^{-2} + \frac{N}{\sigma^2}} \left(\frac{\alpha}{\gamma^2} + \frac{\sum_{i=1}^{N} x_i}{\sigma^2} \right)$$
$$\tilde{\gamma} = \sqrt{\left(\gamma^{-2} + \frac{N}{\sigma^2} \right)^{-1}}$$

- We just followed the conjugate priors table
- Calculation in constant time, no need to optimize anything!
- We could use this as the next prior!...
- BUT if $p(\mu, \mathbf{x})$ is not a known distribution, we may have trouble deriving it (analytically)...

Last note on priors

• Depending on what you know of the problem (or the constraints you want to impose...):

Generative processes

- By now, you understand that you can combine variables in multiple ways in your graphical model
- On the other hand, you may be overwhelmed about where to start doing your own
 - Small models, with few variables, are simple
 - What if you have a lot of variables, assumptions, domain knowledge?...
- You need to think from a generative perspective...

"Generative story" of data

How is a data point generated?

- ullet Given a parameter heta
- For n=1..N, do
 - **1** Draw a random latent variable, $z_n \sim p(z|\theta)$
 - **2** Given z_n , generate x_n such that $x_n \sim p(x|\theta,z_n)$
- In fact, this resembles a program structure!

A more complex example - Dwell time prediction

For a given bus stop, that serves a single line, can we predict the amount of time the next bus will be stopped there to load/unload passengers (the dwell time)?

- Our dataset contains $\{x_n=\{0,1\}$ -representing peak/non-peak hour, dt_n dwell time $\}$.
- Notice that, sometimes, the bus does not stop at all!
- ullet When it stops, we measure the duration as dt
- When it doesn't stop, dt = 0

Dwell time prediction

DTU

Given N, σ_{β} , σ_{ϵ} and π

- **1** Draw a pair of parameters¹, $\boldsymbol{\beta} \sim \mathcal{N}(\mathbf{0}, \sigma_{\beta} \mathbf{I})$
- **2** For n = 1..N
 - **1** Draw one value for z_n , such that $z_n \sim \mathsf{Bernoulli}(\pi)$
 - If $z_n = 1$, the bus has stopped ($z_n = 0$ otherwise)
 - ullet Distributed as Bernoulli, with parameter π
 - **2** Draw one value for k_n , such that $k_n \sim \mathcal{N}(\beta_0 + \beta_1 x_n, \sigma_{\epsilon})$
 - **3** If $z_n = 1$, $dt_n = k_n$, otherwise $dt_n = 0$

 $^{^1}$ We need two values for β , one for the intercept, another for the peak/non-peak information.

Dwell time prediction

- After you define your model, you need to estimate it. I.e. infer the following:
 - Distribution of β
 - Optimal values of σ_{ϵ} , σ_{β} , and π (we defined them as constants!)
- Of course, when you have them, you can make your predictions!
- Your model will look different:

"Generative story" of data

- Set up the building blocks, as per available knowledge
- Easy to change data distributions inside the model
- Can be used to actually generate data!
 - Ancestral sampling
 - Do prior predictive checks!

Playtime!

- Open notebook "3-PGM fundamentals.ipynb"
- Do part 2 (est. duration=30 min)

Mixture models

- A PGM is composed of observed and latent variables, parameters, constants.
- In this course, we'll approach some examples from this very large family
- Mixture models are pervasive in data modelling in general
- Problem:
 - Sub-populations of data
 - Data generated from combination/competition of multiple sources
 - Number of sources usually discrete and finite

The canonical example: Gaussian Mixture

• What we observe

• What really happens

Generative story

DTU

Given:

- A dataset with N points (or vectors) $(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$ and a value K
- **1** Draw π , and (μ_k, Σ_k) for all K gaussians
- **2** For n = 1, 2, ..., N
 - ① Draw $z_n \sim \mathsf{Multinomial}(\pi)$ where π is a vector $(1 \times K)$ with the probabilities of each class
 - **2** Define $k=z_n$. Generate \mathbf{x}_n , from the k-th Gaussian, $\mathbf{x}_n \sim \mathcal{N}(\boldsymbol{\mu_k}, \boldsymbol{\Sigma_k})$

Generative story

Given:

- A dataset with N points (or vectors) $(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$ and a value K
- $oldsymbol{1}$ Draw $oldsymbol{\pi}$, and $(oldsymbol{\mu_k}, oldsymbol{\Sigma_k})$ for all K gaussians
- **2** For n = 1, 2, ..., N
 - ① Draw $z_n \sim \mathsf{Multinomial}(\pi)$ where π is a vector $(1 \times K)$ with the probabilities of each class
 - **2** Define $k=z_n$. Generate \mathbf{x}_n , from the k-th Gaussian, $\mathbf{x}_n \sim \mathcal{N}(\boldsymbol{\mu_k}, \boldsymbol{\Sigma_k})$

Factorization:

$$p(\boldsymbol{\pi}) \bigg(\prod_{k=1}^K p(\boldsymbol{\mu_k}) p(\boldsymbol{\Sigma_k}) \bigg) \prod_{n=1}^N \sum_{k=1}^K p(z_n = k | \boldsymbol{\pi}) p(\mathbf{x}_n | \boldsymbol{\mu_k}, \boldsymbol{\Sigma_k})$$

Note: in practice we need to be exhaustive

...particularly in probabilistic programming (e.g. STAN)

- ullet $oldsymbol{\pi} \sim \mathsf{Dirichlet}(oldsymbol{lpha})$
- $\mu_{m{k}} \sim \mathcal{N}(\mathbf{0}, \sigma_{\mu} \mathbf{I})$
- $\Sigma_{\pmb{k}} \sim \mathcal{W}^{-1}(\Psi, \nu)$ \mathcal{W}^{-1} denotes the Inverse Wishart distribution; typically $\nu =$ degrees of freedom (typically number of dimensions of \mathbf{x}), and $\Psi = \mathbf{I}$

Note: in practice we need to be exhaustive

...particularly in probabilistic programming (e.g. STAN)

- ullet $\pi \sim \mathsf{Dirichlet}(oldsymbol{lpha})$
- ullet $oldsymbol{\mu_k} \sim \mathcal{N}(oldsymbol{0}, \sigma_{\mu} oldsymbol{\mathsf{I}})$
- $\Sigma_{\pmb{k}} \sim \mathcal{W}^{-1}(\Psi, \nu)$ \mathcal{W}^{-1} denotes the Inverse Wishart distribution; typically $\nu =$ degrees of freedom (typically number of dimensions of ${\bf x}$), and $\Psi = {\bf I}$

The factorization becomes:

$$\mathsf{Dirichlet}(\pmb{\pi}|\pmb{\alpha}) \bigg(\prod_{k=1}^K \mathcal{N}(\pmb{\mu_k}|\pmb{0}, \sigma_{\mu} \mathbf{I}) \mathcal{W}^{-1}(\pmb{\Sigma_k}|\pmb{\Psi}, \nu) \bigg) \prod_{n=1}^N \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n|\pmb{\mu_k}, \pmb{\Sigma_k})$$

In log format:

$$\log(\mathsf{Dir}(\boldsymbol{\pi}|\boldsymbol{\alpha})) + \sum_{k=1}^K \bigg(\log \mathcal{N}(\boldsymbol{\mu_k}|\boldsymbol{0}, \sigma_{\boldsymbol{\mu}}\boldsymbol{I}) + \log \mathcal{W}^{-1}(\boldsymbol{\Sigma_k}|\boldsymbol{\Psi}, \boldsymbol{\nu})\bigg) + \sum_{n=1}^N \log \sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{\mathsf{x}}_n|\boldsymbol{\mu_k}, \boldsymbol{\Sigma_k})$$

Playtime!

- Open notebook "3-PGM fundamentals.ipynb"
- Do part 3 (est. duration=45 min)

The big picture so far

- Probability and statistics recap
 - Probability theory at the center of everything that we do
 - Allows to capture uncertainty
- Probabilistic graphical models (PGMs)
 - Intuitive and compact way of representing the structure of a prob. model
 - Relationships between variables and conditional independencies
 - How the joint distribution factorizes
- Generative processes
 - A "story" of how the observed data was generated
 - Explicit description of how the different variables in the model are related
 - Complementary to PGM representation: more detailed, but less intuitive
- Joint probability distribution and Bayesian inference
 - Joint probability of the model: central object for all computations
 - ullet Bayesian inference: model + data o patterns
 - Important concepts: likelihood, prior, posterior, conjugate prior, etc.

Step back: The big picture so far

Everything is related...

$$p(\boldsymbol{\beta}, \mathbf{z}, \mathbf{k}, \mathbf{dt}) = p(\boldsymbol{\beta} | \sigma_{\beta}) \prod_{n=1}^{N} p(k_n | \mathbf{x}_n, \boldsymbol{\beta}, \sigma_{\epsilon}) p(z_n | \pi) p(dt_n | z_n, k_n)$$

- **1** Draw a pair of parameters¹, $\boldsymbol{\beta} \sim \mathcal{N}(\mathbf{0}, I\sigma_{\boldsymbol{\beta}})$
- **2** For n = 1..N
 - **1** Draw one value for z_n , such that $z_n \sim Bern(\pi)$.
 - ullet If $z_n=1$, the bus has stopped ($z_n=0$ otherwise)
 - ullet Distributed as Bernoulli, with parameter π
 - **2** Draw one value for k_n , such that $k_n \sim \mathcal{N}(\mathbf{x}_n^T \boldsymbol{\beta}, \sigma_{\epsilon})$
 - **3** If $z_n = 1$, $dt_n = k_n$,
 - ullet otherwise $dt_n=0$

The problem of inference

- Model + Data \rightarrow Insights
- Answer various types of questions about the data by computing the posterior distribution of the latent variables given the observed ones

• Example: $p(x_2|x_5, x_6, x_7) = ?$

The problem of inference

- Inference in general: given a set of latent variables $\mathbf{z} = \{z_m\}_{m=1}^M$ and observed variables $\mathbf{x} = \{x_n\}_{n=1}^N$, compute $p(\mathbf{z}|\mathbf{x})$
- Two classes of approaches:
 - Exact inference (Bayes' theorem)

$$\underbrace{p(\mathbf{z}|\mathbf{x})}_{p(\mathbf{z}|\mathbf{x})} = \underbrace{\frac{p(\mathbf{x},\mathbf{z})}{p(\mathbf{x})}}_{p(\mathbf{x})} = \underbrace{\frac{p(\mathbf{x}|\mathbf{z})}{p(\mathbf{z})}}_{evidence}$$

- For most problems of interest, it is often infeasible to evaluate posterior exactly or to compute expectations with respect to it
- Approximate Inference
 - STAN uses approximate inference!
 - Stochastic vs. variational methods

- Stochastic
- Variational

- Stochastic
 - We try to sample from the posterior distribution
 - Samples provide approximate representation of the true posterior
 - We can use samples to compute expectations w.r.t. the posterior
 - Example: Markov Chain Monte Carlo (MCMC) methods

Variational

- Stochastic
- Variational
 - Approximate intractable distribution with a simpler, tractable one
 - Goal: find the parameters of the simpler distribution that make it as similar as possible to the true distribution
 - Similar in what sense?
 - E.g. using Kullback-Leibler (KL) divergence
 - Becomes an optimization problem (of minimizing the difference between true and approximate distribution)

- Stochastic
- Variational
- STAN can use:
 - MCMC (Hamiltonian Monte Carlo or NUTS)
 - Automatic Differentiation Variational Inference (ADVI) a variational approach with a stochastic component...

References

- Main reading: Chapter 8.1 "Bayesian Networks", pages 363-366, and Chapter 9.2: "Mixture Models and EM", pages 430-435 of Chris Bishop's book, "Pattern Recognition and Machine Learning" (PRML) URL: https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf)
- More on Mixture Models: Chapter 11: "Mixture models and the EM algorithm", pages 337-345 of Kevin Murphy's book "Machine Learning: A Probabilistic Perspective"
- (Koller and Friedman, 2009) Koller, D., and Friedman, N. Probabilistic graphical models: principles and techniques. MIT press. (2009).