F	$\Sigma_{\mathcal{F}}(\mu)$	$H^{\times}(\mu \ \mathcal{F})$
\mathcal{G}_{Σ}	Σ	$\frac{N}{2}\ln(2\pi) + \frac{1}{2}\operatorname{tr}(\Sigma^{-1}\Sigma_{\mu}) + \frac{1}{2}\ln\det(\Sigma)$
$\mathcal{G}_{r\mathcal{I}}$	$r\mathcal{I}$	$\frac{N}{2}\ln(2\pi) + \frac{1}{2r}\operatorname{tr}(\Sigma_{\mu}) + \frac{N}{2}\ln r$
$\mathcal{G}_{(\cdot \mathcal{I})}$	$\frac{\operatorname{tr}(\Sigma_{\mu})}{N}\mathcal{I}$	$\frac{N}{2}\ln(2\pi e/N) + \frac{N}{2}\ln(\mathrm{tr}\Sigma_{\mu})$
$\mathcal{G}_{ ext{diag}}$	$\operatorname{diag}(\Sigma_{\mu})$	$\frac{N}{2}\ln(2\pi e) + \frac{1}{2}\ln(\det(\operatorname{diag}(\Sigma_{\mu})))$
\mathcal{G}	Σ_{μ}	$\frac{N}{2}\ln(2\pi e) + \frac{1}{2}\ln\det(\Sigma_{\mu})$

Table 1: Table of cross-entropy formulas with respect to Gaussian subfamilies.

1 Entropy formulas

 \mathcal{G} - family of all normal distributions

 \mathcal{G}_A - where A proper matrix (square, symetric positvelly defined) is a subfamilly of $\mathcal G$ which covariance equals A

$$\mathcal{G}_{(\cdot \mathcal{I})} = \cup_{r \in \mathbb{R} - \{0\}} \mathcal{G}_{r \cdot \mathcal{I}}$$

2 Cluster formulas

Assume we we have a cluster A with parameters l, m, Σ and we add to this cluster point y we will get a new cluter A_{+y} with parameter given by formulas:

$$\begin{array}{rcl} l_{+y} & = & l+1, \\ m_{+y} & = & \frac{lm+y}{l+1}, \\ \Sigma_{+y} & = & \frac{l}{l+1} [\Sigma + \frac{1}{l+1} (m-y) (m-y)^T]. \end{array}$$

Let's assume we'll substract point y from cluster A our new cluster will have parameters given by formula :

$$\begin{array}{rcl} l_{-y} & = & l-1, \\ m_{-y} & = & \frac{l}{l-1}m - \frac{1}{l-1}y, \\ \Sigma_{-y} & = & \frac{l}{l-1}[\Sigma - \frac{1}{l-1}(m-y)(m-y)^T], . \end{array}$$