HGEN8341 Module 3 Project (Spring 2021)

You are given a few datasets and you will carry out various calculations, using R or any other software if you prefer. Each dataset is an N by M+2 table, with each row representing an individual, and the $1^{\rm st}$ column indicating the individual ID, the $2^{\rm nd}$ column indicating the affection status, and the remaining M columns representing genotypes of M variants. Each variant is bi-allelic, with '0' representing the reference allele, and '1' representing the alternative allele. The genotype is in the form of 0/0, 0/1 or 1/1, which represent homozygous reference allele, heterozygote, and homozygous alternative allele. The following are the results to generate.

1. Allele frequency estimates

- 1.1. Estimate the allele frequency (AF) of the alternative allele for each variant and store the estimates in a file named "AF.txt".
- 1.2. Plot the distribution (histogram) of the estimated AF
- 1.3. Discuss your thoughts of the allele frequency pattern regarding genetic association studies.

2. Hardy-Weinberg Equilibrium

- 2.1. Calculate the p value of HWE for each variant and store the p values in a file named "HWE.txt". Do this only for variants with MAF>0.05.
- 2.2. Plot the distribution of the p values and QQ plot of the p values (log scale). An R code for QQ plot is provided.
- 2.3. Discuss the HWE patterns observed in the datasets.

3. Linkage Disequilibrium

- 3.1. Remove variants with MAF<0.05
- 3.2. Calculate the pairwise LD among the first 100 pairs of the variants (D, D' and R²). Store the pair-wise LD for each of the D, D' and R2 in 3 files named "LD_D.txt", "LD_Dprime.txt" and "LD_r2.txt", with the first two columns being the names of the pair of variants and the 3rd row being the corresponding LD measurement. The variants in the output files should be in the same order as they appear in the input genotype data. You need to use **EM algorithm to estimate the haplotype** frequencies.
- 3.3. Investigate how LD (D, D' and R²) measures are related to each other

4. Principal component analysis

- 4.1. Code the genotypes using an additive model (i.e. use 0, 1 and 2 to code 0/0, 0/1 and 1/1) and carry out PCA. Calculate the proportion of variance accounted for by the 1^{st} , the 2^{nd} , and the 3^{rd} PC.
- 4.2. Plot the first two PCs of all individuals on an X-Y plot.
- 4.3. Repeat 4.2 for PC1 vs. PC3 and PC2 vs. PC3. Which plot gives clear patterns about the pop substructure?