«Поволжская электротехническая компания»

МЕХАНИЗМ СИГНАЛИЗАЦИИ ПОЛОЖЕНИЯ

MCΠ -1

Руководство по эксплуатации ВЗИС.421321.024 РЭ

ООО «Поволжская электротехническая компания»

Почтовый адрес: Российская Федерация, Чувашская Республика, 428000, г. Чебоксары, а/я 163

Тел./факс: (8352) 57-05-16, 57-05-19

Электронный адрес E-mail: info@piek.ru Caйт: www.piek.ru

Содержание

1.	Описание и работа механизмов	4
1.1	Назначение механизмов	4
1.2	Технические характеристики	5
1.3	Состав, устройство и работа механизма	6
1.4	Маркировка механизма	6
1.5	Меры безопасности	6
2.	Использование механизмов	7
2.1	Подготовка механизмов к использованию	7
2.2	Порядок работы	7
3	Техническое обслуживание	8
3.1	Возможные неисправности и способы их устранения	8
4.	Правила хранения и транспортирования	9
5	Утилизация	9

Приложения:

- А Общий вид, габаритные и присоединительные размеры механизма МСП-1
- Б Схема электрическая принципиальная механизмов МСП-1 с блоком БСПТ-10AM
- В Схема подключения механизма МСП-1 (напряжение питания 220V с блоком БСПТ-10АМ)

вниманию потребителей!

Предприятие непрерывно проводит работы по совершенствованию конструкции механизмов, поэтому некоторые конструктивные изменения в руководстве могут быть не отражены.

Настоящее руководство по эксплуатации (далее – PЭ) предназначено для ознакомления потребителя с механизмом сигнализации положения МСП-1 (далее механизм) и содержит описание устройства, принципе работы, а также технические характеристики и другие сведения, необходимые для правильного транспортирования, хранения и эксплуатации механизма.

Настоящее РЭ распространяется на типы механизмов, указанные в таблице 2.

Работы по монтажу, регулировке и пуску механизмов разрешается выполнять лицам, имеющим допуск к эксплуатации электроустановок напряжением до 1000 V.

Во избежание поражения электрическим током при эксплуатации механизма должны быть осуществлены меры безопасности, изложенные в разделе 1.5 «Меры безопасности».

1. ОПИСАНИЕ И РАБОТА МЕХАНИЗМОВ

1.1. Назначение механизмов

Механизмы сигнализации положения МСП-1 предназначены для комплектации регулирующей арматуры со встроенным приводом.

Область применения: системы автоматического регулирования технологических процессов в энергетической и других отраслях промышленности.

Запись обозначения механизма при заказе и в документации другой продукции, в которой он может быть применен, имеет вид, представленный на рисунке 1.

1.1.1 Механизмы изготавливаются в серийном исполнении в следующих климатических условиях по ГОСТ 15150-69 согласно таблице 1.

Таблица 1

Климатическое	Температура	Верхнее значение относительной влажности
исполнение и категория	окружающей среды	окружающей среды
размещения		
У1; У2	от минус 40 до плюс	до 98 % при температуре 25 °С и более низких
	45° C	температурах без конденсации влаги.
T2	от минус 10 до плюс	до 100 % при температуре 35 ⁰ С и более
	$50^{0} \mathrm{C}$	низких температурах с конденсацией влаги.
УХЛ1;	от минус 60 до плюс	до 100 % при температуре 25 °С и более низких
УХЛ2	40^{0} C	температурах с конденсацией влаги.

Механизмы с категорией размещения «2» по ГОСТ 15150-69 предназначены для эксплуатации под навесом, исключающим прямое воздействие атмосферных осадков или в помещениях.

MCII - 1XX-X- X-	-XX
Тип датчика механизма:	
И – индуктивный датчик	
АМ или без шифра - токовый датчик	
В – выносной блок питания —	
Без шифра – встроенный блок питания	
Полный ход выходного вала (об)	
1 - 35	
2 - 18,5	
3 - 7,5	
4 - 0,63	
44;100; 180; 240; 720	
Климатическое исполнение и категория размещения:	
VI VO TO VVIIO VVIII	

1.1.2 Степень защиты механизмов IP 65 или по специальному заказу IP 67 по ГОСТ 14254-2015.

1.1.3 Механизмы не предназначены для работы в средах, содержащих агрессивные пары, газы и вещества, вызывающие разрушение покрытий, изоляции и материалов, и во взрывоопасных средах.

1.2 Технические характеристики

1.2.1 Механизм изготавливается в исполнениях, приведенных в таблице 2.

Электрическое питание механизмов –однофазная сеть переменного тока номинальным напряжением 220V частотой 50 Hz.

Допустимые отклонения от номинальных значений:

- напряжения питания от минус 15 до плюс 10%;
- частоты питания от минус 2 до плюс 2%.

Таблица 2

Условное обозначение	Словное обозначение Полный ход входного вала,	
механизма	обороты	
МСП-1-1	35	
МСП-1АМ-1		
МСП-1АМ-В-1		
МСП-1И-1		
МСП-1-2	18,5	
МСП-1АМ-2		4,0
МСП-1АМ-В-2		4,0
МСП-1И-2		
МСП-1-3	7,5	
МСП-1АМ-3		
МСП-1АМ-В-3		
МСП-1И-3		
МСП-1-4	0,63	
МСП-1АМ-4		3,8
МСП-1АМ-В-4	МСП-1АМ-В-4	
МСП-1И-4		
МСП-1-AM-44	44	
МСП-1-АМ-100	100	
МСП-1-АМ-180	180	4,0
МСП-1-АМ-240	240	
МСП-1-АМ-720	720	

По желанию заказчика изготавливаются МСП-1 и с другим передаточным числом.

Примечание. Значению полного хода входного вала, указанному в таблице 2, соответствует поворот профильного кулачка токового датчика механизма на 225^0 (работа на профиле $0-225^0$).

Предусмотрена возможность уменьшения полного хода входного вала в 2,5 раза (работа на профиле 0- 90^0).

Дифференциальный ход микровыключателей не более 4% от полного хода механизма.

Разрывная мощность контактов микровыключателей 30 VA при переменном напряжении до 220V частоты 50 или 60 Hz.

Мощность, потребляемая механизмом, не более 9 VA.

Средний срок службы 15 лет.

1.3 Состав, устройство и работа механизма

Механизм состоит из трех основных узлов (приложение А): редуктора, блока сигнализации положения, блока питания БП-20 (при заказе с токовым датчиком БСПТ-10M или БСПТ-10AM).

Редуктор предназначен для приведения полного хода входного вала к полному ходу блока датчика. Редуктор размещен в корпусе из алюминиевого сплава. Набор цилиндрических шестерен размещен под основанием блока сигнализации положения.

В зависимости от заказа, механизм может быть изготовлен с блоком сигнализации положения: токовый БСПТ-10М или БСПТ-10АМ, индуктивный БСПИ-10. РЭ блока входит в комплект документации на механизм.

Подвод цепей питания и выходных сигналов осуществляется через кабельный ввод, расположенный на корпусе редуктора. Кабельный ввод имеет два сальникового ввода.

1.4 Маркировка механизма

- **1.4.1** Маркировка механизма соответствует ТР ТС 010-2011, ГОСТ 18620-86.
- 1.4.2 Механизм имеет табличку, на которой нанесены следующие данные:
- товарный знак предприятия изготовителя;
- условное обозначение механизма;
- номинальное напряжение питания, V;
- частота напряжения питания, Нz;
- надпись «Сделано в России» на русском языке;
- номер механизма по системе нумерации предприятия изготовителя;
- год изготовления;
- изображение единого знака обращения продукции на рынке государств членов Таможенного союза.
- **1.4.3** Место и способ нанесения маркировки на табличке согласно конструкторской документации механизмов.

1.5. Меры безопасности

- **1.5.1.** В процессе технического обслуживания должны выполняться следующие меры безопасности:
- монтаж, настройку и регулировку механизма разрешается проводить лицам, имеющим специальную подготовку и допуск к эксплуатации электроустановок напряжением до 1000 V и ознакомленным с настоящим руководством по эксплуатации;
- корпуса механизма и блока питания должны быть заземлены медным проводом, место подсоединения провода должно быть защищено от коррозии нанесением консервационной смазки;
- все работы по ремонту и монтажу механизма производить только исправным инструментом при полностью снятом напряжении питания. При этом на щите управления необходимо укрепить табличку с надписью «Не включать работают люди!»;
- если при проверке на какие-либо цепи механизма подается напряжение, то не следует касаться токоведущих частей.
- **1.5.2.** Соблюдение мероприятий по технике безопасности и ремонт механизмов должны производиться в полном соответствии с требованиями «Правил технической эксплуатации электроустановок потребителей» (ПТЭ).
- **1.5.3** Эксплуатация механизма осуществляется при наличии инструкции по технике безопасности, учитывающей специфику соответствующего производства и утвержденной руководством предприятия- потребителя.

2 ИСПОЛЬЗОВАНИЕ МЕХАНИЗМОВ

2.1 Подготовка механизмов к использованию

Осмотреть механизм и убедиться в отсутствии внешних повреждений. Проверить комплектность поставки механизма в соответствии с паспортом.

Включить напряжение питания. Перемещать входной вал. Убедиться в том, что выходной сигнал изменяется от начального до максимального значения.

Схема электрическая принципиальная механизма приведена в приложении Б.

Подключая поочередно омметр к контактам микровыключателей убедиться в том, что при перемещении входного вала микровыключатели четко срабатывают.

При размещении и монтаже механизма на регулирующей арматуре линии подключения механизма должны быть пространственно удалены от проводов питания электродвигателей привода и других силовых линий. Подключение к выходным цепям токового или индуктивного датчика должно быть выполнено отдельным кабелем.

Подключение внешних электрических цепей к механизму осуществляется через сальниковый ввод многожильным круглым гибким кабелем диаметром от 7 до 11 mm и сечением проводников каждой жилы должно быть в пределах от 0,5 до 1,5 mm². При легком подергивании кабель не должен выдергиваться и проворачиваться в узле уплотнения.

Для этого необходимо открутить гайку сальникового ввода, пропустить провод через цанговый зажим. Подсоединить провод к разъему РП-10-30. Закрутить гайку сальникового ввода.

Пайку монтажных проводов цепей внешних соединений к контактам розетки разъема производить оловянно-свинцовым припоем с применением бескислотных флюсов. После пайки флюс необходимо удалить путем промывки мест паек спиртом, а затем покрыть бакелитовым лаком или эмалью.

2.2 Порядок работы

Регулирование и настройку механизма, установленного на арматуре, производить следующим образом:

- для ввода механизма в действие на месте эксплуатации необходимо произвести его настройку и регулировку в следующей последовательности:
 - снять крышку 4 (приложение А);
- установить регулирующий орган в начальное положение (положение регулирующего органа «ЗАКРЫТО»);
 - произвести настройку блока сигнализации положения;
 - произвести настройку в конечном положении регулирующего органа;
- аналогично настроить два кулачка для срабатывания выключателей в промежуточных положениях;
- пробным включением проверить работоспособность механизма и правильность настройки блока сигнализации положения.

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Периодичность профилактических осмотров механизмов устанавливается в зависимости от производственных условий, но не реже чем через год, а блока сигнализации положения через каждые 6 месяцев.

При профилактическом осмотре необходимо производить следующие работы:

- после отключения механизма от источника питания очистить наружные поверхности механизма от грязи и пыли;
- проверить затяжку всех крепежных болтов, болты должны быть равномерно затянуты;
- проверить состояние заземляющего устройства, в случае необходимости (при наличии ржавчины), заземляющие элементы должны быть очищены и после затяжки болта заземления вновь покрыты консистентной смазкой;
- проверить уплотнение сальникового ввода. При легком подергивании кабель не должен выдергиваться и проворачиваться в узле уплотнения.
- проверить настройку блока сигнализации положения, в случае необходимости произвести его подрегулировку.

Через пять лет эксплуатации необходимо произвести разборку, осмотр и замену старой смазки. Для этого механизм необходимо отсоединить от источника питания, снять с места установки и последующие работы производить в мастерской.

Разобрать редуктор механизма и удалить старую смазку с его деталей. Собрать редуктор, предварительно смазав подшипники и поверхности трения подвижных частей смазкой ЦИАТИМ-203.

3.1 Возможные неисправности и способы их устранения

Перечень возможных неисправностей, вероятные причины их возникновения, способы устранения приведены в таблице 3

	_	_
I a	олина	1 3

Неисправность	Вероятная причина	Способ устранения
Выходной сигнал при		
повороте вала:		
- не изменяется и равен	Неисправен блок	Заменить плату блока питания
нулю;	питания	
- не изменяется;	Неисправен датчик, не	Заменить датчик или настроить блок
	настроен блок датчика	датчика
Не срабатывает	Неисправность	Заменить микровыключатель.
микровыключатель.	микровыключателя.	

4 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

Хранение механизмов со всеми комплектующими изделиями должно производиться с консервацией и в заводской упаковке в условиях « 3» по ГОСТ 15150.

Срок хранения механизмов не более 24 месяцев со дня отгрузки. При необходимости более длительного хранения должна производиться переконсервация механизмов по варианту защиты B3-14 или B3-15 по ГОСТ 9.014-78.

Условия транспортирования механизмов должны соответствовать условиям хранения «5» для климатического исполнения «У1», «У2», «УХЛ1», «УХЛ2» или «6» для климатического исполнения «Т2», по ГОСТ 15150-69, но при атмосферном давлении не ниже 35,6 кРа и температуре не ниже минус 50°С. Время транспортирования – не более 45 суток.

Механизмы могут транспортироваться всеми видами транспорта в соответствии с правилами перевозки грузов, действующими на каждом виде транспорта.

Транспортирование на самолётах должно осуществляться в герметизированных отапливаемых отсеках.

Во время погрузочно – разгрузочных работ и транспортирования, упакованные механизмы не должны подвергаться резким ударам и воздействию атмосферных осадков. Способ укладки упакованных механизмов на транспортное средство должен исключить их самопроизвольное перемещение.

5 УТИЛИЗАЦИЯ

Механизм не представляет опасности для жизни, здоровья людей и окружающей среды и подлежит утилизации после окончания срока службы по технологии, принятой на предприятии, эксплуатирующем механизм.

Приложение А (обязательное)

Общий вид, габаритные и присоединительные размеры механизма МСП–1

1– редуктор, 2– блок сигнализации положения, 3– блок питания БП–20, 4–крышка, 5– фланец, 6– сальниковый ввод, 7– болт заземления

Диаметр кабеля сальникового ввода (D) должен быть в пределах (7 – 11)тт

ПРИЛОЖЕНИЕ Б (обязательное) Схема электрическая принципиальная механизма МСП-1 с блоком БСПТ-10АМ

S1 – промежуточный микровыключатель открытия

Таблица Б.1 Диаграмма работы микровыключателей

микро	контакт		Положение арматуры	ложение арматуры	
выклю- чатель	соедини- теля X1	открыто	промежуточное	закрыто	
S1	5–6				
21	7–8				
CO	9–10				
S2	11–12				
C	19–20				
S3	21–22				
CI	23–24				
S4	25–26				
- КОНШОКШ ЗОМКНИШ					

– контакт замкнут

_____ – контакт разомкнут

Таблица Б.2 Условные обозначения

Обоз– начение	Наименование	примечание
S1S4	Микровыключатели	
БД-20	Датчик токовый	
X1	Разъемы РП10-30	
БП-20	Блок питания БП–20	

S2 – промежуточный микровыключатель закрытия

S3 – конечный микровыключатель открытия

S4 – конечный микровыключатель закрытия

ПРИЛОЖЕНИЕ В (рекомендуемое) Схема подключения механизма МСП-1

(напряжение питания 220V с блоком БСПТ-10AM)

S1 - промежуточный микровыключатель открытия

S2 - промежуточный микровыключатель закрытия

S3 - конечный микровыключатель открытия

S4 - конечный микровыключатель закрытия