Hilbert Space: $\mathcal{H}_{\Psi} = L^2(\mathbb{R}^4) \otimes \mathcal{F}$ where \mathcal{F} is the Fock space for field excitations. Wavefunction $\Psi(\mathbf{x},t)$ represents field amplitude distributions over spacetime.

Hamiltonian: $\hat{H} = \hat{T} + \hat{V} + \hat{C}$ where:

$$\hat{T} = \int d^3x \, \frac{1}{2m} |\nabla \Psi(\mathbf{x}, t)|^2 \quad \text{(kinetic)}$$

$$\hat{V} = \int d^3x \, V(\mathbf{x}) \Psi^{\dagger}(\mathbf{x}, t) \Psi(\mathbf{x}, t) \quad \text{(potential)}$$

$$\hat{C} = \int d^3x d^3y J(\mathbf{x}, \mathbf{y}) \Psi^{\dagger}(\mathbf{x}, t) \Psi(\mathbf{y}, t) \quad \text{(coherence)}$$

Coherence Operator

 \hat{C} encodes non-local wavefunction correlations through kernel $J(\mathbf{x}, \mathbf{y}) = \alpha \exp(-|\mathbf{x} - \mathbf{y}|^2/\sigma^2)$ with coherence length σ and strength α . This replaces dark matter interactions.

Traditional dark matter parameter δm is eliminated. All gravitational anomalies explained through wavefunction coherence terms \hat{C} which are: (1) Mathematically well-defined, (2) Quantum mechanically consistent, (3) Experimentally measurable via interferometry.

(1) Galaxy rotation curves via coherence-modified Schrödinger equation, (2) Cosmic microwave background anisotropy from wavefunction interference patterns, (3) Gravitational lensing effects from coherence field gradients, (4) Laboratory verification using macroscopic quantum systems.

Ψ -QFT: The Wavefunction Glue

A Foundational Framework for Adaptive Evolution Beyond Dark Matter

Nnamdi Michael Okpala
OBINexus Technical Specification
Project Aegis - Quantum Field Theory Applications
support@obinexus.org

August 9, 2025

Executive Summary - OBINexus Framework

Ψ-QFT Theory: Replaces dark matter (δm) with wavefunction coherence (Ψ) as the fundamental cosmic binding mechanism. Mathematical framework integrates classical and quantum physics through adaptive Hamiltonian evolution.

Key Innovation: Coherence operator \hat{C} provides testable alternative to invisible matter assumptions. **Project Status**: Formal specification phase. Ready for computational implementation via OBINexus toolchain.

1 Theoretical Foundation

Definition 1.1 (Ψ -QFT Framework). The Ψ -QFT (Psi-Quantum Field Theory) framework treats the wavefunction Ψ as the fundamental medium encoding:

- 1. Force coherence across spacetime
- 2. Particle interaction dynamics

- 3. Field binding mechanisms
- 4. Adaptive evolutionary processes

Core Premise (Technical)

Rejection of Dark Matter: Traditional cosmology requires unverified invisible mass δm to explain galactic rotation curves and cosmic structure formation.

 Ψ -QFT Alternative: All gravitational anomalies emerge from wavefunction coherence interactions encoded in operator \hat{C} , eliminating need for ad hoc dark matter assumptions.

Mathematical Basis: "This isn't woo. It's math. QFT = fields + rules."

2 Mathematical Framework

- 2.1 Complete Hamiltonian Specification
- 2.2 Hilbert Space Definition
- 2.3 Coherence Operator

3 Dynamic Evolution

The fundamental evolution equation for Ψ -QFT systems:

$$i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle = \hat{H} |\Psi(t)\rangle$$
 (4)

where $\hat{H} = \hat{T} + \hat{V} + \hat{C}$ integrates:

- Kinetic energy: \hat{T} (standard quantum mechanics)
- Potential energy: \hat{V} (classical field interactions)
- Coherence binding: \hat{C} (novel wavefunction correlations)

Theorem 3.1 (Coherence-Driven Stability). For systems with coherence operator \hat{C} , stable bound states exist without requiring additional invisible matter, provided the coherence length σ and strength α satisfy:

$$\alpha > \frac{\hbar^2}{2m\sigma^2}$$
 (binding condition) (5)

4 Dark Matter Replacement

4.1 Rejection Criteria

Dark Matter Rejection Criteria

4.2 Coherence Alternative

Traditional approach:

Observed Gravity = Visible Matter +
$$\underbrace{\delta m}_{\text{dark matter}}$$
 (6)

 Ψ -QFT approach:

Observed Gravity = Visible Matter +
$$\underbrace{\langle \Psi | \hat{C} | \Psi \rangle}_{\text{coherence field}}$$
 (7)

5 Testable Predictions

5.1 Laboratory Verification

Experimental Protocol

Macroscopic Quantum Coherence: Use Bose-Einstein condensates or superconducting circuits to demonstrate coherence operator \hat{C} effects at measurable scales.

Interferometry: Detect wavefunction coherence through phase measurements in quantum interferometers.

Gravitational Sensors: Use precision gravimeters to measure coherence field gradients $\nabla \langle \hat{C} \rangle$.

6 Adaptive Evolution Mechanism

Proposition 6.1 (Self-Organization). Systems governed by Ψ -QFT exhibit emergent complexity through adaptive coherence feedback, where higher field densities strengthen local coherence interactions, promoting structure formation.

7 OBINexus Implementation Strategy

7.1 Computational Framework

Aegis Project Integration

Toolchain: Implement via riftlang.exe \rightarrow .so.a \rightarrow rift.exe \rightarrow gosilang pipeline **Build Orchestration:** Use nlink \rightarrow polybuild for mathematical library compilation **Validation:** Apply no-ghosting compliance framework to prevent theoretical hallucination

Documentation: Maintain LaTeX specifications with Markdown repository integration

7.2 Development Milestones

- 1. Phase 1: Matrix representation of coherence operator \hat{C}
- 2. Phase 2: Numerical solution of Ψ -QFT evolution equations
- 3. Phase 3: Cosmological simulation framework
- 4. Phase 4: Experimental validation protocols

8 Conclusion