2012-2013 学年第一学期《控制工程基础》课内考试卷 (A卷)

授课班号_	108301/2/	(3) 年级	专业_2010	机自	学号		姓名
	题号 题分 得分	20	三 15 20	<u> </u>	<u>£i</u> 20	总分	审核
一、填 1、控 和	制系统	0 分,每 品 质 指 标	空格1分) 示的基本要。	要求是稳	定性,	快速性	题分 得分 20
2、已知 是_	7系统的微	数分方程。	为 $3\ddot{x}_0(t)$ + 6	$d\dot{x}_{0}(t)+2\sigma$	$c_0\left(t\right) = 2x$	t,ig(tig),则豸	系统的传递函数
3、某系	统的传递	 色函数为	$G(s) = \frac{(s+1)}{(s+5)}$	-, 其零点	5.是	,极,	点是。
 4、某典 系 	型环节的	力传递函数 常数为	数是 $G(s) =$,其阶	$\frac{1}{5s+1}$, 以 跃响应由	则该环节 1线的调1	是	环节,
S	エ	走的允; 半平	分必要条何 在。	牛是闭环	传递函	数的极点	均严格位于
6、减小 ² 中_	和消除稳 环节	态误差方 ; 已知某	了法有:提高 注单位反馈系	高系统的: 系统开环4	开环 专递承数	,增加; 为 <i>G</i> (a)	开环传递函数 $\frac{6}{s^2 + 5s + 10},$
时,	其最大 起	J阻尼比为 留调量为	为	,自然频 调节时[率 间为	;当输力 ,稳	s ² +5s+10' 入为单位阶跃 总态位置误差
为		。(公式	$: \sigma\% = e^{-\frac{1}{\sqrt{2}}}$	$\frac{\varsigma\pi}{\sqrt{1-\varsigma^2}} \times 100^{\circ}$	V_0 ; $t_s = -\frac{1}{2}$	$\frac{3.5}{20}$)	
7、给开环	「传递函数	文增加	的	作用是使	· 尼根轨迹向	可左半s平	面移动。
8、设系为	统的开	环传递	函 数 为	$\frac{K}{T_1 s + 1)(T_2 \cdot$	$\frac{1}{(s+1)}$,	则其开环	「幅频特性

9、已知开环幅频特性如图一55示,则系统的稳定性为_____(稳定或不稳定)。

10、延迟环节的频率特性的极坐标图为一个_____

已知 R-L-C 网络如图所示,

求系统的传递函数 $\frac{U_o(s)}{U_i(s)}$ (15 分)

题分	得分
	1.0.00
15	

三、求图三所示系统的传递函数C(s)/R(s)。

ーー 国団 /→	
赵万	
20	
20	

图三

四、已知单位反馈系统的开环传递函数为:

题分	得分
25	

$$G(s)H(s) = \frac{K^*}{s(s+2)(s+3)}$$

- (1)作闭环系统的概略根轨迹;(10分)
- (2)确定根轨迹与虚轴交点; (7分)
- (3)确定系统稳定的开环增益 K 值范围。(8分)

五、己知一最小相位系统开环的对数幅频特性曲线如下图所示,

	// // // // // // // // // // // // //
20	
$\angle 0$	

- 1、写出系统开环传递函数G(s);(12分)
- 2、利用稳定性 Bode 判据求系统闭环稳定的开环增益 K 的范围。(8 分

