## $\mathbb{A}^1$ -INVARIANCE FOR UNSTABLE $K_2$

#### S. SINCHUK, A. STAVROVA, AND A. LAVRENOV

#### 1. AIM OF THE PAPER

The aim of this text is to prove that the non-stable  $K_2$ -functors  $K_2^G$ , where G is a simply connected Chevalley group of suitable type, satisfy  $\mathbb{A}^1$ -invariance on regular rings R containing a field k, that is,

{eq:A1-main}

(1.1) 
$$K_2^G(R[t]) = K_2^G(R).$$

As a corollary, we should easily deduce that

$$K_2^G(R) = KV_2^G(R),$$

where  $KV_2^G(R)$  is the Karoubi–Villamayor K-functor associated to G. This functor originates from [J]. The above equality by e.g. [AHW, Corollary 4.3.3] implies that  $\pi_1^{\mathbb{A}^1}(G)(R) = K_2^G(R)$ , i.e. we obtain an explicit presentation for the  $\mathbb{A}^1$ -fundamental group of G in the sense of Morel–Voevodsky.

"Suitable type" here means that we consider only the cases where we know the centrality of  $K_2$ , or at least the Quillen-Suslin lgp. Some intermediate steps can be proved in larger generality.

Essentially, we need to prove that  $K_2^G(k[x_1,\ldots,x_n])=K_2^G(k)$ . (Then (1.1) follows by standard geometric methods.) There are two models: Tulenbaev's proof for the  $\mathrm{SL}_n$  case [Tul82] and Stavrova's proof for  $K_1^G$  [St14]. Tulenbaev [Tul82] uses stabilization of the  $K_2$ -functor, and the good properties of the limit=algebraic K-theory. In [St14] stabilization is not used. However, the key steps of both proofs are the same: the case of R=k (hidden somewhere around [Tul82, p. 140], or, respectively, [St14, Theorem 3.1]); Quillen-Suslin lgp;  $\mathbb{P}^1$ -gluing (see [Tul82, Theorem 5.1] or [St14, Theorem 1.1]).

1.1. The case R = k. We consider the case of  $K_2^G(k[t])$  vs.  $K_2^G(k)$ . (As in the  $\mathbb{A}^1$ -invariance of  $K_1^G$ , this case should be used to deduce that  $K_2^G(k[t_1,\ldots,t_n]) = K_2^G(k)$ .)

In Tulenbaev's framework, it follows from stabilization. However, the equality  $K_2^G(k[t]) = K_2^G(k)$  is sort of known for all groups. Namely, in [Wen14, Theorem 5.1]: let k be an infinite field and let G be a connected reductive group over k. Then the inclusion  $k \hookrightarrow k[t]$  induces an isomorphism

$$H_{\bullet}(G(k), \mathbb{Z}) \xrightarrow{\cong} H_{\bullet}(G(k[t]), \mathbb{Z}),$$

if the order of the fundamental group of G is invertible in k. Once we know that the homology  $H_2$  coincides with  $K_2^G$  (on both sides), this gives the result. It would be nice to check Wendt's proof; maybe, discuss it in a seminar?

Is it necessary to know the centrality in order to show that  $K_2^G$  coincides with  $H_2$ ? If yes, then we probably know it for  $K_2^G(k)$  even for isotropic groups [Deo], but only for the

<sup>2010</sup> Mathematics Subject Classification. 19C09, 19C20, 14L15, 20G35.

Key words and phrases. Chevalley group, non-stable  $K_2$ -functor, Steinberg group.

good Chevalley groups for  $K_2^G(k[t])$ . We should try to understand what is proved in [VW, Proposition 5.3 using only the universality of the Steinberg group. This may be useful. The paper is unpublished, so again everything should be double-checked if you want to refer to it.

# 1.2. Plan of the proof.

plan:3t

plan:k[t]

(1) (**done**, see Theorem 1). Let R be a local ring. Show that

$$\operatorname{St}^{\operatorname{G}}(R[t^{\pm 1}]) = i_{+}(\operatorname{St}^{\operatorname{G}}(R[t]))i_{-}(\operatorname{St}^{\operatorname{G}}(R[t^{-1}]))i_{+}(\operatorname{St}^{\operatorname{G}}(R[t]))$$

Here  $i_{\pm}$  denote the natural homomorphisms into  $\mathrm{St}^{\mathrm{G}}(R[t^{\pm 1}])$ .

(2) (open, see Theorem 3). Show that  $K_2^G(k[t]) = K_2^G(k)$ .

(3) (done). Consequently,  $\operatorname{St}^{\operatorname{G}}(k[t]) \to \operatorname{St}^{\operatorname{G}}(k[t^{\pm 1}])$  is injective and  $\operatorname{St}^{\operatorname{G}}(k[t]) \cap \operatorname{St}^{\operatorname{G}}(k[t^{-1}]) =$  $St^{G}(k)$  inside  $St^{G}(k[t^{\pm 1}])$ . Also,  $K_{2}^{G}(k) = K_{2}^{G}(k[t^{\pm 1}])$ .

The first claim uses (2). The second claim follows from (2) and (1).

(4) (**done** for split ACDE, see Theorem 2). Prove Quillen-Suslin lgp for  $K_2^G$ .

(5) (Zariski gluing) for any commutative ring A and any non-nilpotent  $f, g \in A$  such that A = fA + gA, the sequence of pointed sets

$$1 \longrightarrow K_2^G(A) \xrightarrow{g \mapsto (g,g)} K_2^G(A_f) \times K_2^G(A_g) \xrightarrow{(g_1,g_2) \mapsto g_1g_2^{-1}} K_2^G(A_{fg})$$

is exact. The proof is usually almost the same as for (4).

(Remark. It seems that we need this property only for A = R[t] and f, g nonconstant polynomials.)

(6) (S-lemma) Let A be a commutative ring, S a multiplicative subset of A. If

$$K_2^G(A[X_1, \dots, X_n]) = K_2^G(A)$$

for some  $n \geq 1$ , then  $K_2^G(A_S[X_1, \ldots, X_n]) = K_2^G(A_S)$  as well.

This should be easy; see [A, Lemma 3.6].

plan:Nglu

- (7) (Nisnevich gluing) Assume that B is a subring of a commutative ring A, and let  $h \in B$ be a non-nilpotent element. Denote by  $F_h:A\to A_h$  the localization homomorphism.
  - (i) If Ah + B = A, i.e. the natural map  $B \to A/Ah$  is surjective, then for any  $x \in \operatorname{St}^{G}(A_{h})$  there exist  $y \in \operatorname{St}^{G}(A)$  and  $z \in \operatorname{St}^{G}(B_{h})$  such that  $x = F_{h}(y)z$ .
  - (ii) If moreover  $Ah \cap B = Bh$ , i.e.  $B/Bh \to A/Ah$  is an isomorphism, and h is not a zero divisor in A, then the sequence of pointed sets

$$K_2^G(B) \xrightarrow{g \mapsto (F_h(g),g)} K_2^G(B_h) \times K_2^G(A) \xrightarrow{(g_1,g_2) \mapsto g_1 F_h(g_2)^{-1}} K_2^G(A_h)$$

This should use something from the proof of (4) or (5); see St14, Lemma 3.4.

(8) ( $\mathbb{P}^1$ -gluing) Let A be any commutative ring. Show that the sequence of pointed sets

$$1 \longrightarrow K_2^G(A) \xrightarrow{g \mapsto (g,g)} K_2^G(A[t]) \times K_2^G(A[t^{-1}]) \xrightarrow{(g_1,g_2) \mapsto g_1g_2^{-1}} K_2^G(A[t,t^{-1}])$$

is exact.

This should use (2), (4), (1), (3).

(9) (Main corollary of  $\mathbb{P}^1$ -gluing) Let A be any commutative ring, and let  $f \in A[t]$  be a monic polynomial. Show that  $K_2^G(A[t]) \to K_2^G(A[t]_f)$  is injective. The proof uses (5) and (8).

plan:QSlgp plan:Zglu

n:k-intersect

plan:S-lemma

plan:[]f

plan:P1

plan:k(t)

(10) Prove that  $K_2^G(k(t)) = K_2^G(k)$ .

This may be a bit tricky; I will think if we can get rid of it. I don't think Tulenbaev uses it.

plan:k[tn]

(11) Prove that

$$K_2^G(k[t_1,\ldots,t_n]) = K_2^G(k).$$

If we strictly follow the pattern of  $K_1^G$ , this uses (9), (2), and (10). There may be other ways.

plan:final

- (12) Final result: let R be a regular ring containing a field k. Then  $K_2^G(R[t]) = K_2^G(R)$ . This uses (4), (11) and (7).
  - 2. Steinberg groups of Chevalley groups: preliminaries

Definition, functoriality, "congruence subgroups"  $\operatorname{St}^{\operatorname{G}}(\Phi, R, I)$  versus  $\ker(\operatorname{St}^{\operatorname{G}}(\Phi, R) \to \operatorname{St}^{\operatorname{G}}(\Phi, R/I))$ .

3. Decomposition theorems for  $\operatorname{St}^{\operatorname{G}}(A[t^{\pm 1}])$  and  $\operatorname{St}^{\operatorname{G}}(A((t)))$ .

**Lemma 3.1.** Let (R, m) be a local ring, and let G be a simply connected simple group over R of isotropic rank  $\geq 2$ . Let  $i_+: \operatorname{St}^{G}(R[t]) \to \operatorname{St}^{G}(R[t^{\pm 1}])$  and  $i_-: \operatorname{St}^{G}(R[t^{-1}] \to \operatorname{St}^{G}(R[t^{\pm 1}])$  be the natural homomorphisms. Then

$$i_{+}(\operatorname{St}^{\operatorname{G}}(m \cdot R[t])^{\operatorname{St}^{\operatorname{G}}(R[t])})i_{-}(\operatorname{St}^{\operatorname{G}}(R[t^{-1}]) = i_{-}(\operatorname{St}^{\operatorname{G}}(R[t^{-1}])i_{+}(\operatorname{St}^{\operatorname{G}}(m \cdot R[t])^{\operatorname{St}^{\operatorname{G}}(R[t])})$$

inside  $St^G(R[t^{\pm 1}])$ .

*Proof.* This is proved exactly as [St14, Lemma 5.12].

thm:3t

**Theorem 1.** Let R be a local ring, and let G be a simply connected simple group over R of isotropic rank  $\geq 2$ . Let  $i_+: \operatorname{St}^G(R[t]) \to \operatorname{St}^G(R[t^{\pm 1}])$  and  $i_-: \operatorname{St}^G(R[t^{-1}] \to \operatorname{St}^G(R[t^{\pm 1}])$  be the natural homomorphisms. Then

$$\operatorname{St}^{\operatorname{G}}(R[t^{\pm 1}]) = i_{+}(\operatorname{St}^{\operatorname{G}}(R[t]))i_{-}(\operatorname{St}^{\operatorname{G}}(R[t^{-1}]))i_{+}(\operatorname{St}^{\operatorname{G}}(R[t])).$$

*Proof.* This is proved exactly as [St14, Theorem 5.1].

4. Quillen-Suslin Lgp, Zariski gluing, Nisnevich gluing, S-lemma

thm:lg-k2

**Theorem 2.** Let R be arbitrary commutative ring and let G be a simple Chevalley group of type  $A_{\ell}$ ,  $C_{\ell}$ ,  $D_{\ell}$  or  $E_{\ell}$  and rank  $\ell \geq 3$ . An element  $g \in St^{G}(R[t], tR[t])$  is trivial if and only if its image in  $St^{G}(R_{M}[t], tR_{M}[t])$  is trivial for all maximal ideals  $M \leq R$ .

*Proof.* In the case  $\Phi = \mathsf{C}_{\ell}$ ,  $\ell \geq 3$  the assertion of the theorem is the main result of [La15]. For a simply laced  $\Phi$  of rank  $\geq 3$  this can be proved by the same token as [S15, Theorem 2] if one uses a stronger variant of Tulenbaev's lemma proved in the appendices below (see Corollary A.5).

5. The case of  $K_2^G(k[t])$  and some corollaries

Theorem 3. Let k be a field. Let  $G = G(\Phi, -)$  be a simply connected simple Chevalley group of rank  $\geq 2$  such that ... Then

$$K_2^G(k[t]) = K_2^G(k).$$

cor:k[t]inj

Corollary 5.1. Let G, k be as in Theorem 3. Then  $St^G(k[t]) \to St^G(k[t^{\pm 1}])$  is injective and  $St^G(k[t]) \cap St^G(k[t^{-1}]) = St^G(k)$  inside  $St^G(k[t^{\pm 1}])$ .

Proof. Clearly,  $g \in \ker(\operatorname{St}^G(k[t]) \to \operatorname{St}^G(k[t^{\pm 1}]))$  implies  $g \in K_2^G(k[t])$ . Since  $K_2^G(k[t]) = K_2^G(k)$ , and there is a section  $K_2^G(k[t^{\pm 1}]) \to K_2^G(k)$ , the map is injective. Second claim: take  $g \in \operatorname{St}^G(k[t]) \cap \operatorname{St}^G(k[t^{-1}])$ . Then the image  $\phi(g)$  belongs to  $E(k) = E(k[t]) \cap E(k[t^{-1}])$ , and after adjusting g by an element of  $\operatorname{St}^G(k)$ , we can assume that  $g \in K_2^G(k[t]) \cap K_2^G(k[t^{-1}])$ . Hence  $g \in K_2^G(k) \subseteq \operatorname{St}^G(k)$ .

Corollary 5.2. Let G, k be as in Theorem 3. Then  $K_2^G(k[t^{\pm 1}]) = K_2^G(k)$ .

*Proof.* We use Theorem 1. Take  $g \in K_2^G(k[t^{\pm 1}])$ , then  $g = x_1yx_2, x_i \in St^G(k[t])$ ,  $y \in St^G(k[t^{-1}])$  . Since  $E(k[t]) \cap E(k[t^{-1}]) = E(k)$ , we have  $y \in St^G(k)K_2^G(k[t^{-1}]) = St^G(k)$  and  $x_1x_2 \in St^G(k)$ . That is,  $g \in K_2^G(k)$ . □

## 6. $\mathbb{P}^1$ -GLUING

The following lemma is an analog of [Tul82, Proposition 4.3 (a)].

**Lemma 6.1.** Let R be a local ring, k = R/m, and let k, G be as in Theorem 3. The natural homomorphism  $\operatorname{St}^{G}(R[t]) \to \operatorname{St}^{G}(R[t^{\pm 1}])$  is injective.

Proof. Let I be the maximal ideal of R, l = R/I, and consider the natural maps  $\rho$ :  $\operatorname{St}^{G}(R[t,t^{-1}]) \to \operatorname{St}^{G}(l[t,t^{-1}])$ ,  $\rho_{+}: \operatorname{St}^{G}(R[t]) \to \operatorname{St}^{G}(l[t])$ ,  $\rho_{-}: \operatorname{St}^{G}(R[t^{-1}]) \to \operatorname{St}^{G}(l[t^{-1}])$ . Take  $x \in \ker(\operatorname{St}^{G}(R[t]) \to \operatorname{St}^{G}(R[t^{\pm 1}])$ . By the field case Corollary 5.1 one has  $\rho_{+}(x) = 1$ , hence  $x \in \operatorname{St}^{G}(I \cdot R[t])^{\operatorname{St}^{G}(R[t])}$ .

**Lemma 6.2.** Let G, k be as in Theorem 3. Let (R, m) be a local ring such that R/m = k. Then

$$\operatorname{St}^{\operatorname{G}}(R[t]) \cap \operatorname{St}^{\operatorname{G}}(R[t^{-1}]) = \operatorname{St}^{\operatorname{G}}(R)$$

inside  $St^G(R[t^{\pm 1}])$ .

**Theorem 4.** Let A be any commutative ring. Then the sequence of pointed sets

$$1 \longrightarrow K_2^G(A) \xrightarrow{g \mapsto (g,g)} K_2^G(A[t]) \times K_2^G(A[t^{-1}]) \xrightarrow{(g_1,g_2) \mapsto g_1g_2^{-1}} K_2^G(A[t,t^{-1}])$$

is exact.

**Corollary 6.3.** Let A be any commutative ring, and let  $f \in A[t]$  be a monic polynomial. Show that  $K_2^G(A[t]) \to K_2^G(A[t]_f)$  is injective.

# Appendices

### A. Linear Steinberg group in rank 3

The main goal of this subsection is to show that Tulenbaev's [Tul82, Lemma 2.3] remains valid for the linear Steinberg group of rank  $\geq 3$ . In order to do this we will need yet another presentation for the relative linear Steinberg group (cf. [S15, Definitions 3.3 and 3.7]).

**Definition A.1.** The relative Steinberg group  $St^*(n, R, I)$  is the group defined by the following two families generators and four families of relations.

- Generators:
  - (1)  $X^1(u, v)$ , where  $u \in E(n, R) \cdot e_1$ ,  $v \in I^n$  such that  $v^t \cdot u = 0$ ;
  - (2)  $X^2(u,v)$ , where  $u \in I^n$ ,  $v \in E(n,R) \cdot e_1$  such that  $v^t \cdot u = 0$ .

Notice that  $\phi$  maps both  $X^1(u,v)$  and  $X^2(u,v)$  to  $T(u,v)=e+u\cdot v^t\in E(n,R,I)$ .

- Relations:
  - (1)  $X^1(u,v) \cdot X^1(u,w) = X^1(u,v+w), u \in E(n,R) \cdot e_1, v,w \in I^n;$

  - (2)  $X^{2}(u,v) \cdot X^{2}(w,v) = X^{2}(u+w,v), u,w \in I^{n}, v \in E(n,R) \cdot e_{1};$ (3)  $X^{\sigma(u^{2},v^{2})}X^{\tau}(u^{1},v^{1}) = X^{\tau}(T(u^{2},v^{2}) \cdot u^{1},T(v^{2},u^{2})^{-1} \cdot v^{1}), \sigma,\tau = 1,2;$
  - (4)  $X^{1}(g \cdot e_{1}, g^{*} \cdot be_{2}) = X^{2}(g \cdot be_{1}, g^{*} \cdot e_{2})$  where  $b \in I$  and  $g^{*} = g^{t-1}$  denotes the contragradient matrix.

**Lemma A.2.** The groups  $St^*(n, R, I)$  and St(n, R, I) are isomorphic.

Proof. **TODO**:

The next step of the proof is to is construct certain elements in St(n,R) similar to Tulenbaev's elements  $X_{u,v}(a)$  see [Tul82, § 1].

Let  $v \in \mathbb{R}^n$  be a column. Denote by O(v) the submodule of  $\mathbb{R}^n$  consisting of all columns w such that  $w^t \cdot v = 0$ . A column  $w \in \mathbb{R}^n$  is called v-decomposable if it can be presented as a finite sum  $w = \sum_{i=1}^{p} w^{i}$  such that each  $w^{i}$  has at least two zero entries and  $v^{t} \cdot w^{i} = 0$ . Denote by D(v) the submodule of O(v) consisting of all v-decomposable columns. For a column  $v \in \mathbb{R}^n$  denote by I(v) the ideal of R spanned by its entries  $v_1, \ldots, v_n$ .

Let  $u, v, w \in \mathbb{R}^n$  be columns such that  $w^t v = 0$ . It is easy to check (cf. [Ka, Lemma 3.2]) that

$$(uv) \cdot w = \sum_{i < j} w_{ij}$$
, where  $w_{ij} = (w_i u_j - w_j u_i)(v_j e_i - v_i e_j) \in A^n$ .

The above decomposition is called the *canonical* decomposition of  $(uv) \cdot w$ . In particular, this shows that the column  $a \cdot w$  is always v-decomposable for  $a \in I(v), w \in O(v)$ , i.e.  $I(v) \cdot O(v) \subseteq D(v)$ . It is also straightforward to check that  $D(v) \subseteq D(bv)$ ,  $b \cdot D(v) \subseteq D(v)$ for  $b \in R$ .

Denote by  $B^1$  the subset of  $R^n \times R^n \times R$  consisting of triples (u, v, a) such that  $v^t \cdot u = 0$ ,  $v \in D(u), a \in I(u)$ . Denote by  $B^2$  the set consisting of triples (v, u, a) such that  $(u, v, a) \in$  $B^1$ .

lem:Zfacts

**Lemma A.3.** Assume that  $n \ge 4$ . One can define two families of elements  $Z^{\tau}(u, v, a)$ ,  $\tau = 1, 2$  of the group St(n, R) parametrized by  $(u, v, a) \in B^{\tau}$  satisfying the following properties:

- (1)  $\phi(Z^{\tau}(u, v, a)) = e + uav^{t} \in E(n, R), (u, v, a) \in B^{\tau};$
- (2)  $Z^1(u, v + w, a) = Z^1(u, v, a) \cdot Z^1(u, w, a);$
- (3)  $Z^{2}(v+w,u,a) = Z^{2}(v,u,a) \cdot Z^{2}(w,u,a);$
- (4) for  $\tau = 1, 2$  and  $b \in R$  if  $(u, vb, a), (ub, v, a) \in B^{\tau}$  then one has

$$Z^{\tau}(u, vb, a) = Z^{\tau}(u, v, ab) = Z^{\tau}(ub, v, a);$$

(5) 
$${}^{g}Z^{\tau}(u, v, a) = Z^{\tau}(\phi(g) \cdot u, \phi(g)^* \cdot v, a), \ \tau = 1, 2, \ g \in St^{G}(n, R).$$

*Proof.* One constructs the elements  $Z^1(u, v, a)$  in exactly the same way as Tulenbaev constructs his elements  $X_{u,v}(a)$  (see definitions preceding [Tul82, Lemma 1.2]). Indeed, set

(A.1) 
$$Z^{1}(v, w, a) = \prod_{k=1}^{p} X(v, a \cdot w^{k}), \quad Z^{2}(w, v, a) = \prod_{k=1}^{p} X(a \cdot w^{k}, v).$$

where X(u, v) denotes the elements defined by Tulenbaev before [Tul82, Lemma 1.1].

The correctness of this definition and all the assertions of the lemma (with the exception of the last one in the case n=4) can be proved by the same token as in [Tul82, Lemma 1.3].

For the rest of this section a denotes a nonnilpotent element of R and  $\lambda_a \colon R \to R_a$  is the morphism of principal localization at a.

lem:rk3rels

**Lemma A.4.** For any  $g \in E(n, R_a)$  there exist  $u, v \in R^n$  and sufficiently large natural numbers k, m such that the following facts hold:

- (1)  $\lambda_a(u) = g \cdot a^k e_1$ ,  $\lambda_a(v) = g^* \cdot a^k e_2$  and  $u^t \cdot v = 0$ ;
- (2)  $(u, v, a^m) \in B^1 \cap B^2$ ;
- (3) for  $b \in R$  divisible by some sufficiently large power of a one has

$$Z^{1}(u,b\cdot v,a^{m}) = Z^{2}(b\cdot u,v,a^{m}).$$

*Proof.* It is straightforward to choose u and v satisfying the first requirement of the lemma. We can even choose u, v in such a way that  $u \in D(v)$  and  $v \in D(u)$ . Indeed, notice that  $I(u) = a^{k_1}$ ,  $I(v) = a^{k_2}$  for some natural  $k_1$ ,  $k_2$  hence for  $u' = a^{k_2} \cdot u$  and  $v' = a^{k_1} \cdot v$  one has

$$u' \in I(v) \cdot O(v) \subset D(v) \subset D(v'), \quad v' \in I(u) \cdot O(u) \subset D(u) \subset D(u'),$$

as required.

In fact, we can also choose two extra columns  $x, y \in \mathbb{R}^n$  and a large natural p in such a way that vectors u, v, x, y additionally satisfy the following properties

$$\lambda_a(x) = g^* \cdot a^k e_3, \ \lambda_a(y) = g \cdot a^k e_3, \ y^t \cdot x = a^p \in R,$$
$$u^t \cdot x = 0, \ u^t \cdot v = 0, \ y^t \cdot v = 0,$$
$$(u, x, a^m) \in B^1, \ (y, v, a^m) \in B^2.$$

Now direct computation using Lemma A.3 shows that

$$\begin{split} Z^2(a^{m+p}b \cdot u, v, a^m) &= Z^2(b \cdot (e + a^m \cdot ux^t)y, (e - a^m \cdot xu^t)v, a^m) \cdot Z^2(-by, v, a^m) = \\ &= [Z^1(u, x, a^m), Z^2(b \cdot y, v, a^m)] = \\ &= Z^1(u, x, a^m) \cdot Z^1((e + a^mb \cdot yv^t)u, -(e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^m)x, a^m = Z^1(u,$$

hence the third assertion of the lemma follows.

cor:tulmap

Corollary A.5. [Tulenbaev's lemma] For  $n \geq 4$  there is a map  $T_n$  so that the following diagram commutes.



*Proof.* Follows from Lemma A.4 by the same token as in [Tul82, Lemma 2.3].

|                           |                           | References                                                                                                                                                                                                                                                                                                                                     |
|---------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abe                       | [A]                       | E. Abe, Whitehead groups of Chevalley groups over polynomial rings, Comm. Algebra 11 (1983), 1271–1307.                                                                                                                                                                                                                                        |
| AHW15                     | [AHW]                     | A. Asok, M. Hoyois, M. Wendt, Affine representability results in $A^1$ -homotopy theory II: principal bundles and homogeneous spaces, 2015 arXiv:1507.08020.                                                                                                                                                                                   |
| Deo                       | [Deo]                     | V. V. Deodhar, On central extensions of rational points of algebraic groups, Amer. J. Math. 100 (1978), 303–386.                                                                                                                                                                                                                               |
| J<br>S15                  | [J]<br>[S15]              | <ul> <li>J.F. Jardine, On the homotopy groups of algebraic groups, J. Algebra 81 (1983), 180–201.</li> <li>S. Sinchuk, On centrality of K₂ for Chevalley groups of type Eℓ, J. Pure Appl. Algebra 220 (2016), 857–875.</li> </ul>                                                                                                              |
| St-poly<br>St-serr<br>Sus | [St14]<br>[St15]<br>[Su]  | A. Stavrova, Homotopy invariance of non-stable $K_1$ -functors, J. K-Theory <b>13</b> (2014), 199–248.<br>A. Stavrova, Non-stable $K_1$ -functors of multiloop groups, Canad. J. Math. (2015), Online First.<br>A.A. Suslin, On the structure of the special linear group over polynomial rings, Math. USSR Izv.<br><b>11</b> (1977), 221–238. |
| Tu                        | [Tul82]                   | M. S. Tulenbaev, The Steinberg group of a polynomial ring, Mat. Sb. (N.S.) 117(159) (1982), no. 1, 131–144.                                                                                                                                                                                                                                    |
| Ka                        | [Ka]                      | W. van der Kallen, Another presentation for Steinberg groups, Indag. Math. <b>80</b> , (1977), no. 4, 304–312.                                                                                                                                                                                                                                 |
| W-k[t]                    | [La15]<br>[Wen14]<br>[VW] | A. Lavrenov, Local-global principle for symplectic $K_2$ to appear.<br>M. Wendt, On homology of linear groups over $k[t]$ , Math. Res. Lett. 21 (2014), no. 6, 1483–1500.<br>K. Völkel, M. Wendt, On $\mathbb{A}^1$ -fundamental groups of isotropic reductive groups,                                                                         |

DEPARTMENT OF MATHEMATICS AND MECHANICS, St. Petersburg State University, St. Petersburg, Russia

 $E ext{-}mail\ address: sinchukss@gmail.com}$ 

2012 arXiv:1207.2364.

DEPARTMENT OF MATHEMATICS AND MECHANICS, St. PETERSBURG STATE UNIVERSITY, St. PETERSBURG, RUSSIA

 $E\text{-}mail\ address: \verb"anastasia.stavrova@gmail.com"}$ 

Mathematisches Institut der Universität München, Theresienstr. 39, D-80333 München  $E\text{-}mail\ address:}$  avlavrenov@gmail.com