Lista 1 - Integração

Semestre 2018/2 - Prof. Ricardo M. S. Rosa

Entregar até o dia 6 de agosto de 2018

As questões abaixo se referem à medida de Lebesgue em \mathbb{R}^d , $d \in \mathbb{N}$, apesar de alguns resultados valerem no contexto abstrato que veremos mais adiante. A medida de Lebesgue é denotada por m e a medida exterior, por m^* .

1º Questão: Seja $E \subset \mathbb{R}^d$. Suponha que, para todo $\varepsilon > 0$, exista um conjunto mensurável $F \subset \mathbb{R}^d$ tal que

$$m_*(E\Delta F) < \varepsilon$$
.

Mostre que E é mensurável.

- **2º** Questão: Seja $\{E_j\}_{j\in\mathbb{N}}$ uma sequência de conjuntos mensuráveis.
 - (1) Mostre que

$$m(\liminf_{j} E_j) \le \liminf_{j} m(E_j).$$

(2) Mostre que, se $m(\cup E_j) < \infty$, então

$$\limsup_{j} m(E_j) \le m(\limsup_{j} E_j).$$

(3) Dê um exemplo de uma sequência de conjuntos mensuráveis em $\mathbb R$ tal que valem as desigualdades estritas

$$m(\liminf_{j} E_j) < \liminf_{j} m(E_j) < \limsup_{j} m(E_j) < m(\limsup_{j} E_j).$$

(4) Se a sequência converge e $m(\cup E_j) < \infty$, segue dos resultados acima que $\lim_j m(E_j) = m(\lim_j E_j)$. Mostre, no entanto, que existe uma sequência convergente com $m(\cup E_j) = \infty$ e

$$\lim_{j} (E_j) > m(\lim_{j} E_j).$$

- 3º Questão: Demonstre o Lema de Borel-Cantelli: Seja $\{E_j\}_{j\in\mathbb{N}}$ uma sequência de conjuntos mensuráveis e suponha que $\sum_j m(E_j) < \infty$. Então $m(\limsup_j E_j) = 0$.
- **4º** Questão: Dado η tal que $0 < \eta < 1$, considere o conjunto do tipo Cantor dado por $C_{\eta} = \bigcap_k C_{\eta,k}$, onde $C_{\eta,0} = I = [0,1]$ e cada $C_{\eta,k}$, $k \ge 1$, é a união de 2^k intervalos obtidos removendo de cada um dos 2^{k-1} intervalos de C_{k-1} um intervalo centralizado de comprimento $\ell_k = (1-\eta)/3^k$. Mostre que $m(C_{\eta}) = \eta$.
- **5º** Questão: Seja $E \subset \mathbb{R}^d$, $d \in \mathbb{N}$, um conjunto mensurável e considere, para cada $n \in \mathbb{N}$, a sua vizinhança $O_n = \{y \in \mathbb{R}^d; \exists x \in E; |y x| < 1/n\}$.
 - (1) Mostre que, se E é compacto, então $m(E) = \lim_{n \to \infty} m(O_n)$.
 - (2) Mostre que existe um E fechado e ilimitado tal que $m(E) < \lim_{n \to \infty} m(O_n)$
 - (3) Mostre que existe um E aberto e limitado tal que $m(E) < \lim_{n \to \infty} m(O_n)$

6º Questão: Este é um exemplo de que existem conjuntos A e B com m(A) = m(B) = 0 e m(A + B) > 0. Basta considerar o conjunto de Cantor A = C e o conjunto B = C/2. Nesse caso, mostre que $A + B \supset [0, 1]$ e, portanto, $m(A + B) \ge 1$.

7º Questão: Exercício 28 do Capítulo 1 do Stein & Shakarski.

8º Questão: Exercício 29 do Capítulo 1 do Stein & Shakarski.

9º Questão: Exercício 33 do Capítulo 1 do Stein & Shakarski.

10º Questão: Seja $f:[0,1]\to\mathbb{R}$ uma função contínua com $f(x)>0,\ \forall x\in[0,1].$ Seja $A=\{(x,y)\in\mathbb{R}^2;\ x\in[0,1],\ 0\le y\le f(x)\}.$ Considerando a medida de Lebesgue em \mathbb{R}^2 e a integral de Riemann na reta, mostre que

$$m(A) = \int_0^1 f(x) \, \mathrm{d}x.$$