

Predictive Analytics and Diabetes Diagnosis

BTMA 531 Group 11

Jan Petallo

Table of Contents

Problem Data Discussion Formulation Results and Analysis Discussion

O1
Problem Formulation

The Problem

- Diabetes affects around 3.8 million people in Canada
- It contributes to various complications:
 - □ Stroke
 - Heart Attacks
 - ☐ Kidney Failures
 - ☐ Reduced lifespan of 5-15 years.
- Ambiguity regarding dominant factors influencing diabetes risk: Genetics?
 Lifestyle?

The Goal

- ☐ Use predictive analytics to estimate the likelihood of having prediabetes or diabetes based on health and lifestyle factors
- Empower the following with actionable insights
 - Individuals
 - ☐ Healthcare providers
 - Researchers

About the Dataset

- Dataset is derived from the 2021 Behavioral Risk Factor Surveillance System (BRFSS)
- Annual survey conducted by Centers for Disease Control and Prevention
- Ongoing telephone survey collecting data such as health-related risk behaviors and chronic health conditions

- 236,378 records
 - ~ 203k people without diabetes
 - ~ 33k people with diabetes
 - Target variable: Diabetes_binary
 - 0 = no diabetes
 - 1 = prediabetes or diabetes
- 21 feature variables

Represent health indicators and lifestyle factors

Variable	Description				
Diabetes_binary	0 = no diabetes, 1 = prediabetes and diabetes				
HighBP	0 = no high BP, 1 = high BP				
HighChol	0 = no high cholesterol, 1 = high cholesterol				
CholCheck	0 = no cholesterol check in 5 years, 1 = yes cholesterol check in 5 years				
BMI	Body Mass Index (numerical)				
Smoker	0 = no, 1 = yes (Have you smoked at least 100 cigarettes in your entire life?)				
Stroke	0 = no, 1 = yes (Ever told you had a stroke)				
HeartDiseaseorAttack	0 = no, 1 = yes (Coronary Heart Disease or Myocardial Infarction)				
PhysActivity	0 = no, 1 = yes (Physical activity in past 30 days - not including job)				
Fruits	0 = no, 1 = yes (Consume Fruit 1 or more per day)				
Veggies	0 = no, 1 = yes (Consume Vegetables 1 or more per day)				
HvyAlcoholConsump	0 = no, 1 = yes (Heavy drinkers, based on gender-specific criteria)				
AnyHealthcare	0 = no, 1 = yes (Have any kind of health care coverage)				
NoDocbcCost	0 = no, 1 = yes (Could not see a doctor in past 12 months due to cost)				
GenHlth	1 = excellent, 2 = very good, 3 = good, 4 = fair, 5 = poor (General health)				
MentHlth	Number of days (0-30) mental health was not good in the past 30 days				
PhysHlth	Number of days (0-30) physical health was not good in the past 30 days				
DiffWalk	0 = no, 1 = yes (Serious difficulty walking or climbing stairs)				
Sex	0 = female, 1 = male				
Age	Value between 1 to 13 (Age group)				
Education	Value between 1 to 6 (Highest grade or year of school completed)				
Income	Value between 1 to 11 (Income group)				

Age Group		
Age 18 to 24		
Age 25 to 29		
Age 30 to 34		
Age 35 to 39		
Age 40 to 44		
Age 45 to 49		
Age 50 to 54		
Age 55 to 59		
Age 60 to 64		
Age 65 to 69		
Age 70 to 74		
Age 75 to 79		
Age 80 or older		

Value	Income Range		
1	Less than \$10,000		
2	\$10,000 to < \$15,000		
3	\$15,000 to < \$20,000		
4	\$20,000 to < \$25,000		
5	\$25,000 to < \$35,000		
6	\$35,000 to < \$50,000		
7	\$50,000 to < \$75,000		
8	\$75,000 to < \$100,000		
9	\$100,000 to < \$150,000		
10	\$150,000 to < \$200,000		
11	\$200,000 or more		

Value	Education Level
1	Never attended school or only kindergarten
2	Grades 1 through 8 (Elementary)
3	Grades 9 through 11 (Some high school)
4	Grade 12 or GED (High school graduate)
5	College 1 year to 3 years (Some college or technical school)
6	College 4 years or more (College graduate)

03 Analysis

Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA)

Modeling Approach

- □ 70% training set
- □ 30% test set
- ☐ Seet seed: 2025

Models Used

- **□** Logistic Regression:
- ☐ simple, interpretable, standard classifier
- ☐ Gradient Boosting Machine (GBM):
- □ Captures complex, non-linear patterns

Threshold Selection

- **0.15**
- □ To balance sensitivity and specificity

Model Comparison

	Accuracy	Sensitivity	Specificity	
Cogistic Regression	73.14%	75.38%	72.76%	
	73.81%	74.83%	73.64%	

Relevant Predictors

BMI

The person's Body Mass Index, derived from their height and weight measurements

High BP

Whether the person has high blood pressure levels

Heart Attack or Disease

Whether the person has a history of cardiovascular complications

High Chol

Whether the person has a high cholesterol

Diff Walking

Whether the person has difficulty walking

General Health

Whether the person has Excellent (1) or Poor (5) health

Physical Activity

Whether the person has done any strenuous physical activity in the last 30 days

Age Education Income

Insights

- □ Poor general health and high BMI were strongly associated with higher diabetes risk.
- □ Older adults face a significantly higher likelihood of diabetes, especially those over 65.
- □ Lower income and education levels were linked to higher diabetes prevalence
- □ Physical inactivity and mobility difficulties also contributed to diabetes risk

Challenges and Limitations

Future Opportunities

Recommendations

For Individuals: Prioritize managing BMI and staying physically active; seek regular checkups especially if older or at risk.

For Healthcare Providers: Screen patients with high BMI, high blood pressure, or poor general health more proactively.

For Researchers: Expand predictive models by including more clinical and socioeconomic variables; validate on non-U.S. populations.

Thank You

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.

References

Diabetes Canada. (2023, July). *Diabetes in Canada 2023 Backgrounder.* https://www.diabetes.ca/DiabetesCanadaWebsite/media/Advocacy-and-Policy/Backgrounder/2023_Backgrounder_Canada_English.pdf

Ginsberg, H. N., Goldberg, R. B., Haffner, S. M., Rivera, G. V., Klein, E. J., Ryan, E. A., ... & ADOPT Study Group. (2000). *Detection and management of prediabetes in the primary prevention of cardiovascular disease and type 2 diabetes*. Circulation, 102(suppl_1), I-377–I-384. https://doi.org/10.1161/circ.102.suppl_1.I-377

Hidaji, H. (2025, February 6). *Module 4: Classification* [PowerPoint slides]. University of Calgary D2L site. https://d2l.ucalgary.ca

Hidaji, H. (2025, March 13). *Module 8: Advanced Trees* [PowerPoint slides]. University of Calgary D2L site. https://d2l.ucalgary.ca

Johns Hopkins Medicine. (n.d.). *Diabetes and high blood pressure*. https://www.hopkinsmedicine.org/health/conditions-and-diseases/diabetes-and-high-blood-pressure

National Council on Aging. (2022, April 26). What are 10 warning signs of diabetes in older adults? https://www.ncoa.org/article/what-are-10-warning-signs-of-diabetes-in-older-adults/

Nazreen, J. (2023, November 27). *Diabetes health indicators dataset*. Kaggle. https://www.kaggle.com/datasets/julnazz/diabetes-health-indicators-dataset/data

Public Health Agency of Canada. (2024, October). *Diabetes: Overview*. https://www.canada.ca/en/public-health/services/chronic-diseases/diabetes.html