N

 Θ

N

strengths and redshifts in qualitative agreement with typical values measured for Of stars; these need to be refined with a more accurate calculation. On the whole, the Castor-Abbott-Klein model appears to give a fairly satisfactory picture of the basic dynamics of Of atmospheres; but many questions remain open.

FRONTIERS

The theory of radiatively driven winds is at an early stage of its development, and many interesting (and challenging) problems remain to be attacked. Within the framework of the Castor-Abbott-Klein theory, refinements of the force law to include the complete spectrum, a more realistic ionization-excitation equilibrium, and more accurate treatment of the transfer (accounting for the fact that a photon scattered at one point in the envelope can subsequently interact with the material at some other point), should yield more precise and reliable results.

A more difficult problem is posed by the question of how to treat properly the energy equation and thereby determine the temperature structure of the flow. The observations (533) of O VI lines, described earlier in this section, have been interpreted (assuming collisional ionization only—an assumption that requires further consideration) as requiring temperatures of the order of 2 × 10⁵ °K, which is much higher than can be produced radiatively. This suggests that there may be mechanical energy deposition that produces a (relatively cool) corona. Mechanisms for producing a mechanical flux (which presumably dissipates and heats the outer layers) have been proposed in (289; 290; 404), but these are not entirely satisfactory in their present form. If the flow were to become turbulent (see below), energy dissipation and heating could occur and, because $\rho v^2 \gg kT$, even a rather low efficiency in the conversion of flow energy to heat could have a large effect on the temperature. Nevertheless, it must be stressed that, although current models do not convincingly determine the temperature structure, the dynamics of the flow will remain essentially unaltered for $T \lesssim 3 \times 10^7$ °K (a value that seems completely excluded observationally), unless the energy deposition changes the topology of the solution [e.g., by the introduction of additional critical points (307)] and, thereby, even the qualitative nature of the solution. These possibilities all await further exploration.

One of the problems that will ultimately have to be faced by the "core-halo" models is that evidence has been presented for atmospheric extension effects in the continuous energy distribution of the most extreme Of stars (367; 466). Unless it can be shown that there are errors in the observations or in their reduction (e.g., in the allowance for interstellar reddening), it will be necessary to find ways to construct models showing a slower outward rise of the velocity. Such models seem essential for WR stars, where a critical analysis

(304) of the energy distribution of HD 50896 (WN5) seems absolutely to require an extended subsonic-flow region; some models of this type have been constructed (133), but only with ad hoc force laws, and much further work remains to be done before they can be regarded as satisfactory.

Although all theoretical models of radiatively driven winds assume that the flow is steady, there is ample evidence that the spectrum (and hence the wind) of Of stars is time-variable. A wide range of time-scales (176; 536) has been noted. It appears, in fact, that essentially all early-type supergiants that show emission lines are intrinsic spectrum variables (537). In a few cases, pathological spectra with transient *inverse* P-Cygni profiles (presumably indicating temporary *inflow* of the material) have been observed (173). If the time-scale of the variations is long compared to the time a fluid parcel requires to move from the photosphere to the critical point, then one can argue that the flow can be considered as a sequence of quasi-stationary states, each of which is well approximated by steady flow. The only problem then remaining would be to understand the mechanism leading to the variations. On the other hand, if very short time-scales are ever observed, then a fully time-dependent treatment might be required, and this would introduce staggering difficulties into the problem.

Although the assumption of spherical symmetry of the wind is a reasonable starting point, it may not adequately describe the flow for some stars. In particular, if the star is rapidly rotating, then centrifugal forces can appreciably lower the effective surface gravity, to the point where it barely exceeds even continuum radiation-forces. This may lead to enhanced mass loss from the equatorial regions of the star (409), in which case the flow becomes axisymmetric instead of spherically symmetric. The divergence of streamlines away from the equatorial plane again introduces the possibility of a radical alteration of the topology of the solution (307). Furthermore, rotation implies that the flow has nonzero vorticity and, in the presence of rotational shear, the flow may disintegrate and become turbulent, as suggested by the very large Reynolds numbers mentioned earlier in this section. In this event, gross inhomogeneities may develop in the wind, and again the theoretical complexity becomes overwhelming.

Finally, there is the question of whether magnetic fields play a significant role in winds from early-type stars. The O-stars are very young, and have only recently formed from the interstellar medium. Presumably any fields present in the medium could persist as weak fields in the atmospheres of these stars. There would then be the possibility of a region of forced corotation out to an Alfvenic point, with subsequent radial expansion. Could this give rise to the profiles with broad emission wings extending beyond the shortwavelength edge of the P-Cygni absorption feature, as observed in some stars? Could such fields produce structural inhomogeneities with flow-tube divergences such as are seen in the solar corona and wind (307)? Could they

References

It should be clear from the points raised above that there remains much to be learned about the physics of stellar winds for early-type stars. Without doubt it is unrealistic to suppose that these issues can be decided on the basis of theoretical considerations alone. It is obvious that a thorough analysis of the spectroscopic data, at a high level of internal consistency, with the goal of diagnosing the physical conditions in the flow semiempirically, is required, and that such efforts will be immensely rewarding.

1.	Abhvankar.	K.	1964	Astronhys	I	140 - 1353

- 2. _____. 1964. Astrophys. J. 140:1368.
- 3. _____. 1965. Astrophys. J. 141:1056.
- 4. Abramowitz, M., and I. Stegun. 1964. Handbook of Mathematical Functions. Washington, D.C.: U.S. Dept. of Commerce.
- Abt, H., A. Meinel, W. Morgan, and J. Tapscott. 1969. An Atlas of Low-Dispersion Grating Stellar Spectra. Kitt Peak National Observatory, Steward Observatory, and Yerkes Observatory.
- 6. Adams, T., D. Hummer, and G. Rybicki. 1971. J.Q.S.R.T. 11:1365.
- 7. Adams, T., and D. Morton. 1968. Astrophys. J. 152:195.
- 8. Alder, B., S. Fernbach, and M. Rotenberg (eds.). 1967. Methods in Computational Physics, Vol. 7. New York: Academic Press.
- 9. Allen, C. 1973. Astrophysical Quantities, 3rd ed. London: Athlone Press.
- 10. Aller, L. 1956. Gaseous Nebulae. New York: Wiley.
- 11. _____. 1963. The Atmospheres of the Sun and Stars, 2nd ed. New York: Ronald Press.
- 12. _____. 1965. Advances in Astron. and Astrophys. 3:1.
- 13. Aller, L., and J. Greenstein. 1960. Astrophys. J. Supp. No. 46 5:139.
- Aller, L., and D. McLaughlin (eds.). 1965. Stellar Structure. Chicago: Univ. of Chicago Press.
- Ambartsumyan, V., (ed.). 1958. Theoretical Astrophysics. London: Pergamon Press.
- 16. Athay, R. 1964. Astrophys. J. 140:1579.

-293-

17. Athay, R. 1970. Astrophys. J. 161:713. 18. ____. 1972. Radiation Transport in Spectral Lines. Dordrecht: Reidel. 19. ____ (ed.). 1974. Chromospheric Fine Structure. Dordrecht: Reidel. 20. _____. 1976. The Solar Chromosphere and Corona: Quiet Sun. Dordrecht: Reidel. 21. Athay, R., and R. Canfield. 1969. Astrophys. J. 156:695. 22. Athay, R., and B. Lites. 1972. Astrophys. J. 176:809. 23. Athay, R., J. Mathis, and A. Skumanich (eds.). 1968. Resonance Lines in Astrophysics. Boulder: National Center for Atmospheric Research. 24. Athay, R., and A. Skumanich. 1968. Astrophys. J. 152:141. 25. _____. 1968. Astrophys. J. 152:211. 26. ____. 1968. Solar Phys. 3:181. 27. ____. 1968. Solar Phys. 4:176. 28. _____. 1971. Astrophys. J. 170:605. 29. Athay, R., and R. Thomas. 1958. Astrophys. J. 127:96. 30. Auer, L. 1967. Astrophys. J. Letters 150: L53. 31. _____. 1968. Astrophys. J. 153:783. 32. _____. 1971. J.O.S.R.T. 11:573. 33. _____. 1973. Astrophys. J. 180:469. 34. _____. 1976. J.Q.S.R.T. 16:931. 35. Auer, L., and J. Heasley. 1971. Unpublished Yale Univ. Observatory Report. 36. Auer, L., J. Heasley, and R. Milkey. 1972. Kitt Peak Natl. Obs. Contr. No. 555. Tucson: Kitt Peak National Observatory. 37. Auer, L., and J. Heasley. 1976. Astrophys. J. 205:165. 38. Auer, L., and D. Mihalas. 1968. Astrophys. J. 151:311. 39. _____. 1968. Astrophys. J. 153:245. 40. ____. 1969. Astrophys. J. 156:157. 41. ____. 1969. Astrophys. J. 156:681. 42. _____. 1969. Astrophys. J. 158:641. _____. 1970. Astrophys. J. 160:233. _____. 1970. M.N.R.A.S. 149:60. _____. 1972. Astrophys. J. Supp. No. 205 24:193. 46. _____. 1973. Astrophys. J. Supp. No. 223 25:433. 47. _____. 1973, Astrophys. J. 184:151. 48. Auman, J. 1969. Astrophys. J. 157:799. 49. Auvergne, M., H. Frisch, U. Frisch, C. Froeschlé, and A. Pouquet. 1973. Astron. and Astrophys. 29:93. 50. Avery, L., and L. House. 1968. Astrophys. J. 152:493. 51. Avrett, E. 1966. Astrophys. J. 144:59. 52. _____. 1971. J.Q.S.R.T. 11:519. 53. Avrett, E., and D. Hummer. 1965. M.N.R.A.S. 130:295. 54. Avrett, E., and W. Kalkofen. 1968. J.Q.S.R.T. 8:219. 55. Avrett, E., and M. Krook. 1963. Astrophys. J. 137:874. 56. Ayres, T., J. Linsky, and R. Shine. 1974. Astrophys. J. 192:93. 57. _____. 1975. Astrophys. J. Letters 195: L121. 58. Ayres, T., and J. Linsky. 1975. Astrophys. J. 200:660.

59. ____. 1976. Astrophys. J. 205:874.

60. Baker, J., and D. Menzel. 1938. Astrophys. J. 88:52. 61. Bappu, M., and J. Sahade (eds.). 1973. Wolf-Rayet and High-Temperature Stars. Dordrecht: Reidel. 62. Baranger, M. 1958. Phys. Rev. 111:481. 63. _____. 1958. Phys. Rev. 111:494. 64. _____, 1958. Phys. Rev. 112:855. 65. Baranger, M., and B. Mozer. 1959. Phys. Rev. 115:521. 66. Barnard, A., J. Cooper, and L. Shamey. 1969. Astron. and Astrophys. 1:28. 67. Barnard, A., and J. Cooper. 1970. J.Q.S.R.T. 10:695. 68. Barnard, A., J. Cooper, and E. Smith. 1974. J.Q.S.R.T. 14:1025. 69. ____. 1975. J.Q.S.R.T. 15:429. 70. Baschek, B., W. Kegel, and G. Traving (eds.). 1975. Problems in Stellar Atmospheres and Envelopes. Berlin: Springer-Verlag. 71. Baschek, B., and J. Oke. 1965. Astrophys. J. 141:1404. 72. Bates, D. 1952. M.N.R.A.S. 112:40. 73. ____ (ed.). 1962. Atomic and Molecular Processes. New York: Academic Press. 74. Bates, D., and A. Damgaard. 1949. Phil. Trans. Roy. Soc. (London) 242A: 75. Beals, C. 1929. M.N.R.A.S. 90:202. _____. 1930. P. Dominion Astrophys. Obs. Victoria 4:271. 77. _____. 1931. M.N.R.A.S. 91:966. 78. _____. 1934. P. Dominion Astrophys. Obs. Victoria 6:95. 79. _____. 1950. P. Dominion Astrophys. Obs. Victoria 9:1. 80. Bell, R. 1970. M.N.R.A.S. 148:25. 81, _____. 1971, M.N.R.A.S. 154:343. 82. Bell, R., and D. Gottlieb. 1971. M.N.R.A.S. 151:449. 83. Bell. R., and S. Parsons. 1974. M.N.R.A.S. 169:71. 84. Benett, S., and H. Griem. 1971. Univ. of Maryland Technical Report No. 71-097. College Park: Univ. of Maryland. 85. Berger, J. 1956. Astrophys. J. 124:550. Berman, P., and W. Lamb. 1969. Phys. Rev. 187:221. 87. Bethe, H., and E. Salpeter. 1957. Quantum Mechanics of One- and Two-Electron Atoms. Berlin: Springer-Verlag. Bhatnagar, P., M. Krook, D. Menzel, and R. Thomas. 1955. Vistas in Astron. Biermann, L. 1946. Naturwiss. 33:118. _____. 1948. Z. für Astrophys. 25:135. 91. ____. 1951. Z. für Astrophys. 29:274. 92. ____. 1953. Mem. Roy. Soc. Sci. Liege 13:291. ____. 1957. Observatory 107:109. 94. Billings, D. 1966. A Guide to the Solar Corona. New York: Academic Press. Blaha, M. 1969. Astrophys. J. 157:473. Bless, R., A. Code, and E. Fairchild. 1976. Astrophys. J. 203:410. Bode, G. 1965. Die Kontinuierliche Absorption von Sternatmosphären. Kiel:

Institut für Theoretische Physik.

98. Böhm, K.-H. 1961. Astrophys. J. 134:264.

- Böhm, K.-H. 1963. Astrophys. J. 137:881.
- 100. ____. 1963. Astrophys. J. 138:297.
- 101. _____. 1969. Astron. and Astrophys. 1:180.
- 102. Böhm-Vitense, E. 1973. Astrophys. J. 181:379.
- 103. Bolton, C. 1970. Astrophys. J. 161:1187.
- 104. Bond, J., K. Watson, and J. Welch. 1965. Atomic Theory of Gas Dynamics. Reading, Mass.: Addison-Wesley.
- 105. Bradley, P., and D. Morton. 1969. Astrophys. J. 156:687.
- 106. Brandt, J. 1964. Icarus 3:253.
- 107. _____. 1970. Introduction to the Solar Wind. San Francisco: W. H. Freeman and Company.
- 108. Brandt, J., and J. Cassinelli. 1966. Icarus 5:47.
- 109. Branscomb, L., and B. Pagel. 1958. M.N.R.A.S. 118:258.
- 110. Brechot, S., and H. Van Regemorter. 1964. Ann. d'Astrophys. 27:432.
- 111. _____. 1964. Ann. d'Astrophys. 27:739.
- 112. Breene, R. 1961. The Shift and Shape of Spectral Lines. Oxford: Pergamon Press.
- 113. Brown, R., J. Davis, and L. Allen. 1974. M.N.R.A.S. 167:121.
- 114. Brucato, R. 1971, M.N.R.A.S. 153:435.
- 115. Brucato, R., and D. Mihalas. 1971. M.N.R.A.S. 154:491.
- 116. Brueckner, K. 1971. Astrophys. J. 169:621.
- 117. Buckingham, R., S. Reid, and R. Spence. 1952. M.N.R.A.S. 112:382.
- 118. Burgess, A. 1964. Astrophys. J. 139:776.
- 119. _____. 1965. Astrophys. J. 141: 1588.
- 120. Burgess, A., and M. Seaton. 1960. M.N.R.A.S. 120:121.
- 121. Burgess, A., and H. Summers. 1969. Astrophys. J. 157:1007.
- 122. Burgess, D. 1970. J. Phys. B. 3: L70.
- 123. Burgess, D., and C. Cairns. 1970. J. Phys. B. 3:L67.
- 124. ____. 1971. J. Phys. B. 4:1364.
- 125. Cameron, R., (ed.). 1967. The Magnetic and Related Stars. Baltimore: Mono Book Corp.
- 126. Carbon, D. 1974. Astrophys. J. 187:135.
- 127. Carlson, B., and K. Lathrop. 1968. In Computing Methods in Reactor Physics, ed. H. Greenspan, C. Kelber, and D. Okrent. New York: Gordon and Breach.
- 128. Carrier, G., and E. Avrett. 1961. Astrophys. J. 134: 469.
- 129. Carruthers, G. 1968. Astrophys. J. 151:269.
- 130. Cassinelli, J. 1971. Astrophys. J. 165:265.
- 131. _____. 1971. Astrophys. Letters 8:105.
- 132. Cassinelli, J., and J. Castor. 1973. Astrophys. J. 179:189.
- 133. Cassinelli, J., and L. Hartmann. 1975. Astrophys. J. 202:718.
- 134. Castor, J. 1970. M.N.R.A.S. 149:111.
- 135. _____. 1972. Astrophys. J. 178: 779.
- 136. _____. 1974. Astrophys. J. 189:273.
- 137. _____. 1974. M.N.R.A.S. 169:279.
- 138. Castor, J., D. Abbott, and R. Klein. 1975. Astrophys. J. 195:157.
- 139. Castor, J., and H. Nussbaumer. 1972. M.N.R.A.S. 155:293.
- 140. Castor, J., and D. Van Blerkom. 1970. Astrophys. J. 161:485.

- 141. Cayrel, R. 1961. Ann. d'Astrophys. 23:235.
- 142. _____. 1963. C.R. Acad. Sci. Paris 257; 3309.
- 143. _____. 1966. J.Q.S.R.T. 6:621.
- 144. Cayrel, R., and G. Cayrel de Strobel. 1966. Ann. Rev. Astron. and Astrophys. 4:1.
- 145. Cayrel, R., and M. Steinberg (eds.). 1976. Physique des Mouvements dans les Atmospheres Stellaires. Paris: Centre National de la Recherche Scientifique, p. 363.
- 146. Cayrel, R., and G. Traving. 1960. Z. für Astrophys. 50:239.
- 147. Chamberlain, J. 1961. Astrophys. J. 133:675.
- 148. Chandrasekhar, S. 1934. M.N.R.A.S. 94:443.
- 149. _____. 1934. M.N.R.A.S. 94:522.
- 150. _____. 1936. M.N.R.A.S. 96:21.
- 151. _____. 1943. Rev. Mod. Phys. 15:1.
- 152. _____. 1944. Astrophys. J. 99: 180.
- 153. _____. 1944. Astrophys. J. 100:76.
- 154. _____. 1945. Astrophys. J. 101:95.
- 155. _____. 1945. Astrophys. J. 101:328.
- 156. _____. 1945. Astrophys. J. 102:402.
- 157. _____. 1945. Rev. Mod. Phys. 17:138.
- 158. _____. 1947. Astrophys. J. 106:145.
- 159. _____. 1948. Proc. Roy. Soc. (London) A192:508.
- 1957. An Introduction to the Study of Stellar Structure. New York: Dover.
- 161. _____. 1960. Radiative Transfer. New York: Dover.
- 162. Chandrasekhar, S., and F. Breene. 1946. Astrophys. J. 104:430.
- 163. Chapman, R. 1966. Astrophys. J. 143:61.
- 164. Chapman, S., and V. Ferraro. 1931. Terr. Magn. and Atm. Elec. 36:77.
- 165. _____. 1940. Terr. Magn. and Atm. Elec. 45; 245.
- 166. Chapman, S. 1959. Proc. Roy. Soc. (London) A253:450.
- 167. Chapelle, J., and S. Sahal-Brechot. 1970. Astron. and Astrophys. 6:415.
- 168. Chipman, E. 1971. S.A.O. Special Report No. 338. Cambridge, Mass.: Smithsonian Astrophysical Observatory.
- 169. Code, A., J. Davis, R. Bless, and R. Brown. 1976. Astrophys. J. 203:417.
- 170. Cody, W., K. Paciorek, and H. Thacher. 1970. Math. Comp. 24:171.
- 171. Cohen, M., M. Barlow, and L. Kuhi. 1975. Astron. and Astrophys. 40:291.
- 172. Condon, E., and G. Shortley. 1963. Theory of Atomic Spectra. Cambridge: Cambridge Univ. Press.
- 173. Conti, P. 1972. Astrophys. J. Letters 174: L79.
- 175. _____. 1974. Astrophys, J. 187;539.
- 176. Conti, P., and S. Frost. 1974. Astrophys. J. Letters 190: L137.
- 177. Conti, P., and E. Leep. 1974. Astrophys. J. 193:113.
- 178. Cooper, J. 1966. Proceedings of Workshop Conference on the Lowering of the Ionization Potential [J.I.L.A. Report No. 79]. Boulder: Joint Institute for Laboratory Astrophysics.
- 179. _____. 1967. Rev. Mod. Phys. 39:167.
- 180. Cooper, J., and G. Oertel. 1969. Phys. Rev. 180: 286.

N ഗ O

 \mathcal{N}

യ

ത

- 181. Courant, R., and D. Hilbert. 1962. Methods of Mathematical Physics, Volume II: Partial Differential Equations. New York: Interscience.
- 182. Cowley, C., and A. Cowley. 1964. Astrophys. J. 140:713.
- 183. Cowley, C. 1971. Observatory 91:139.
- 184. Cox, A., J. Stewart, and D. Eilers. 1965. Astrophys. J. Supp. No. 94 11:1.
- 185. Cram, L. 1972. Solar Phys. 22:375.
- 186. Cram, L., and I. Vardavas. 1977. In press.
- 187. Cuny, Y. 1967. Ann. d'Astrophys. 30:143.
- 188. Dalgarno, A., and J. Browne. 1967. Astrophys. J. 149:231.
- 189. Dalgarno, A., and D. Williams. 1962. Astrophys. J. 136:690.
- 190. Davis, J., and J. Webb. 1970. Astrophys. J. 159:551.
- 191. Dekker, E. 1969. Astron. and Astrophys. 1:72.
- 192. De Loore, C. 1970. Astrophys. and Space Sci. 6:60.
- 193. Deridder, G., and W. van Rensbergen. 1976. Astron. and Astrophys. Supp. 23:147.
- 194. Deutsch, A. 1970. Astrophys. J. 159:985.
- 195. Dietz, R., and L. House. 1965. Astrophys. J. 141:1393.
- 196. Dirac, P. 1925. M.N.R.A.S. 86:825.
- 197. _____. 1958. The Principles of Quantum Mechanics. Oxford: Clarendon Press.
- 198. Dumont, S., and N. Heidmann. 1973. Astron. and Astrophys, 27:273.
- 199. Dupree, A., and L. Goldberg. 1970. Ann. Rev. Astron. and Astrophys. 8:231.
- 200. Durney, B. 1971. Astrophys. J. 166:669.
- 201. Durney, B., and P. Roberts. 1971. Astrophys. J. 170:319.
- 202. Durney, B., and N. Werner. 1972. Astrophys. J. 171:609.
- 203. Ecker, G. 1955. Z. für Phys. 140:274.
- _____. 1955. Z. für Phys. 140:292.
- 205. ____. 1957. Z. für Phys. 148:593.
- 206. ____. 1957. Z. für Phys. 149:254.
- 207. Einstein, A. 1917. Phys. Z. 18:121.
- 208. Epstein, P. 1916. Ann. d. Phys. 50:489.
- 209. Feautrier, P. 1964. C.R. Acad. Sci. Paris 258: 3189.
- 210. _____, 1967. Ann, d'Astrophys. 30: 125.
- 211. _____. 1968. Ann. d'Astrophys. 31:257.
- 212. Finn, G. 1967. Astrophys. J. 147: 1085.
- _____. 1971. J.Q.S.R.T. 11:477. 213.
- 214. _____. 1972. J.Q.S.R.T. 12:35.
- 215. _____. 1972. J.Q.S.R.T. 12:149.
- _____. 1972. J.Q.S.R.T. 12;1217.
- 217. Finn, G., and J. Jefferies. 1968. J.Q.S.R.T. 8:1705.
- __. 1969. J.Q.S.R.T. 9:469.
- 219. Finn, G., and D. Mugglestone. 1965. M.N.R.A.S. 129:221.
- 220. Fischel, D., and W. Sparks. 1971. Astrophys. J. 164:355.
- 221. Foley, H. 1946. Phys. Rev. 69:616.
- 222. Fowler, R., and E. Milne. 1923. Phil. Mag. 45:1.
- _____. 1924. M.N.R.A.S. 84:499.
- 224. Fransden, S. 1974. Astron. and Astrophys. 37:139.

- 225. Friere, R., and F. Praderie. 1974. Astron. and Astrophys. 37:117.
- 226. Frisch, H. 1975. Astron. and Astrophys. 40:267.
- 227. Frisch, H., and U. Frisch. 1976. M.N.R.A.S. 175:157.
- 228. Fuhr, J., G. Martin, and B. Specht. 1975. Bibliography on Atomic Line Shapes and Shifts (July 1973 through May 1975) [N.B.S. Special Pub. No. 366, Supp. 2]. Washington, D.C.: U.S. Dept. of Commerce.
- 229. Fuhr, J., L. Roszman, and W. Wiese. 1974. Bibliography on Atomic Line Shapes and Shifts (April 1972 through June 1973) [N.B.S. Special Pub. No. 366, Supp. 1]. Washington, D.C.: U.S. Dept. of Commerce.
- 230. Fuhr, J., and W. Wiese. 1971. Bibliography on Atomic Transition Probabilities: July 1969 through June 1971 [N.B.S. Special Pub. No. 320, Supp. 1]. Washington, D.C.: U.S. Dept. of Commerce.
- 231. _____. 1973. Bibliography on Atomic Transition Probabilities: July 1971 through June 1973 [N.B.S. Special Pub. No. 320, Supp. 2], Washington, D.C.: U.S. Dept. of Commerce.
- 232. Fuhr, J., W. Wiese, and L. Roszman. 1972. Bibliography on Atomic Line Shapes and Shifts (1889 through March 1972) [N.B.S. Special Pub. No. 366]. Washington, D.C.: U.S. Dept. of Commerce.
- 233. Fullerton, W., and C. Cowley. 1970. Astrophys. J. 162:327.
- 234. Gail, H., E. Hundt, W. Kegel, J. Schmid-Burgk, and G. Traving. 1974. Astron. and Astrophys. 32:65.
- 235. Gail, H., and E. Sedlmayr. 1974. Astron. and Astrophys. 36:17.
- 236. Gail, H., E. Sedlmayr, and G. Traving. 1975. Astron. and Astrophys. 44:421.
- _____. 1976. Astron. and Astrophys. 46:441.
- 238. Gebbie, K., and R. Thomas. 1968. Astrophys. J. 154:285.
- 239. _____. 1970. Astrophys. J. 161:229.
- 240. _____, 1971. Astrophys. J. 168:461.
- 241. Gehrz, R., and J. Hackwell. 1974. Astrophys. J. 194:619.
- 242. Geltman, S. 1962. Astrophys. J. 136:935.
- 243. Gerasimovič, B. 1934. Z. für Astrophys. 7:335.
- 244. Gibson, E. 1973. The Quiet Sun. Washington, D.C.: National Aeronautics and Space Administration.
- 245. Gieske, H., and H. Griem. 1969. Astrophys. J. 157:963.
- 246. Gingerich, O. 1963. Astrophys. J. 138: 576.
- 247. (ed.). 1969. Theory and Observation of Normal Stellar Atmospheres. Cambridge, Mass.: M.I.T. Press.
- 248. Gingerich, O., and C. de Jager. 1968. Solar Phys. 3:5.
- 249. Gingerich, O., R. Noyes, W. Kalkofen, and Y. Cuny. 1971. Solar Phys. 18:347.
- 250. Goldberg, L. 1935. Astrophys. J. 82:1.
- 251, _____. 1936. Astrophys. J. 84:11.
- 252. Goldberg, L., E. Müller, and L. Aller. 1960. Astrophys. J. Supp. No. 45 5:1.
- Goldstein, H. 1969. Classical Mechanics. Reading, Mass.: Addison-Wesley. 253.
- 254. Gordon, W. 1929. Ann. Phys. 2:1031.
- 255. Grant, I., and A. Peraiah. 1972. M.N.R.A.S. 160:239.
- 256. Gray, D. 1976. The Observation and Analysis of Stellar Photospheres. New York: Wiley.

 \mathcal{N}

ഗ

- 257. Green, L., P. Rush, and C. Chandler. 1957. Astrophys. J. Supp. No. 26 3:37.
- 258. Greene, R., and J. Cooper. 1975. J.Q.S.R.T. 15:1037.
- 259. ____. 1975. J.Q.S.R.T. 15:1045.
- 260. Greene, R., J. Cooper, and E. Smith. 1975. J.Q.S.R.T. 15: 1025.
- 261. Greenstein, J., (ed.). 1960. Stellar Atmospheres. Chicago: Univ. of Chicago Press.
- 262. Griem, H. 1960. Astrophys. J. 132:883.
- 263. _____. 1962. Astrophys. J. 136:422.
- 264. _____. 1964. Plasma Spectroscopy. New York: McGraw-Hill.
- _____. 1967. Astrophys. J. 147:1092.
- 266. _____. 1968. Astrophys. J. 154:1111.
- 267. ____. 1968. Phys. Rev. 165:258.
- ______. 1974. Spectral Line Broadening by Plasmas. New York: Academic Press.
- 269. Griem, H., M. Baranger, A. Kolb, and G. Oertel. 1962. Phys. Rev. 125: 177.
- 270. Griem, H., A. Kolb, and K. Shen. 1959. Phys. Rev. 116:4.
- 271. _____. 1962. Astrophys. J. 135:272.
- 272. Griem, H., and K. Shen. 1961. Phys. Rev. 122:1490.
- 273. Groth, H., and P. Wellmann (eds.). 1970. Spectrum Formation in Stars with Steady-State Extended Atmospheres. Washington, D.C.: U.S. Dept. of Com-
- 274. Gustafsson, B. 1971. Astron. and Astrophys. 10:187.
- 275. Gustafsson, B., and P. Nissen. 1972. Astron. and Astrophys. 19:261.
- 276. Hack, M., (ed.), 1967. Modern Astrophysics, A Memorial to Otto Struve. Paris: Gauthier-Villars.
- 277. Hackwell, J., R. Gehrz, and J. Smith. 1975. Astrophys. J. 192:383.
- 278. Haisch, B. 1976. Astrophys. J. 205:520.
- 279. Harman, R., and M. Scaton. 1964. Astrophys. J. 149:824.
- 280. Harrington, J. 1970. Astrophys. J. 162:913.
- 281. Harris, D. 1948. Astrophys. J. 108:112.
- 282. Hartle, R., and P. Sturrock. 1968. Astrophys. J. 151:1155.
- 283. Harvard-Smithsonian Conference on Stellar Atmospheres. 1964. Proceedings of the First Conference [S.A.O. Special Report No. 167]. Cambridge, Mass.: Smithsonian Astrophysical Observatory.
- 284. ______, 1965, Proceedings of the Second Conference [S.A.O. Special Report No. 174]. Cambridge, Mass.: Smithsonian Astrophysical Observatory.
- 285. Hayes, D. 1968. Unpublished Ph.D. thesis, Univ. of California, Los Angeles.
- 286. _____. 1970. Astrophys. J. 159:165.
- 287. Hayes, D., and D. Latham. 1975. Astrophys. J. 197:593.
- 288. Hayes, D., D. Latham, and S. Hayes. 1975. Astrophys. J. 197: 587.
- 289. Hearn, A. 1973. Astron. and Astrophys. 23:97.
- 290. _____. 1975. Astron. and Astrophys. 40:355.
- 291. Heasley, J. 1975. Solar Phys. 44:275.
- 292. Heasley, J., and F. Kneer. 1976. Astrophys. J. 203:660.
- 293. Heitler, W. 1954. Quantum Theory of Radiation. Oxford: Clarendon Press.
- 294. Helfer, L., G. Wallerstein, and J. Greenstein. 1959. Astrophys. J. 129:700.
- 295. Henyey, L. 1946. Astrophys. J. 103:332.

- 296. Henyey, L., and W. Grassberger. 1955. Astrophys. J. 122:498.
- 297. Herzberg, G. 1944. Atomic Spectra and Atomic Structure. New York: Dover.
- 298. Hicock, F., and D. Morton. 1968. Astrophys. J. 152:203.
- 299. Higginbotham, N., and P. Lee. 1974. Astron. and Astrophys. 33:277.
- 300. Hiltner, W., (ed.). 1962. Astronomical Techniques. Chicago: Univ. of Chicago Press.
- 301. Hindmarsh, W. 1959. M.N.R.A.S. 119:11.
- 302. ____. 1960. M.N.R.A.S. 121:48.
- 303. Hindmarsh, W., A. Petford, and G. Smith. 1967. Proc. Roy. Soc. (London) A297:296.
- 304. Holm, A., and J. Cassinelli. 1977. Astrophys. J. 211:432.
- 305. Holtsmark, J. 1919. Ann. d. Phys. 58:577.
- 306. Holstein, T. 1950. Phys. Rev. 79:744.
- 307. Holzer, T. 1977. J. Geophys. Res. 82:23.
- 308. Hooper, C. 1966. Phys. Rev. 149:77.
- 309. _____. 1968. Phys. Rev. 165:215.
- 310. ____. 1968. Phys. Rev. 169:193.
- 311. Hudson, R., and L. Kieffer. 1971. Atomic Data 2:205.
- 312. Hulst, H. van de. 1957. Light Scattering by Small Particles. New York: Wiley.
- 313. Hummer, D. 1962. M.N.R.A.S. 125:21.
- 314. _____. 1965. Mem. R.A.S. 70:1.
- 315. _____. 1968. *M.N.R.A.S.* 138:73.
- 316. _____. 1969. M.N.R.A.S. 145:95.
- 317. _____. 1976. In Be and Shell Stars [I.A.U. Symposium No. 70], p. 281. Dordrecht: Reidel.
- 318. Hummer, D., and D. Mihalas. 1967. Astrophys. J. Letters 150: L57.
- 319. _____. 1970. M.N.R.A.S. 147:339.
- 320. Hummer, D., and G. Rybicki. 1966. J.Q.S.R.T. 6:661.
- 321. _____. 1968. Astrophys. J. Letters 153: L107.
- 322. ____. 1970. M.N.R.A.S. 150:419.
- 323, _____, 1971, M.N.R.A.S. 152:1.
- 324. Hundhausen, A. 1972. Coronal Expansion and Solar Wind. New York: Springer-Verlag.
- 325. Hundt, E., K. Kodaira, J. Schmid-Burgk, and M. Scholz. 1975. Astron. and Astrophys. 41:37.
- 326. Hutchings, J. 1968. M.N.R.A.S. 141:219.
- 327. _____. 1968. M.N.R.A.S. 141:329.
- 328. _____. 1970. M.N.R.A.S. 147:161.
- 329. _____. 1970. M.N.R.A.S. 147:367.
- 330. Hynek, J., (ed.). 1951. Astrophysics: A Topical Symposium. New York: McGraw-Hill.
- 331. Jackson, J. 1962. Classical Electrodynamics. New York: Wiley.
- 332. Jacobs, V. 1973. Photolonization from Excited States of Helium [NASA Report X-641-73-317]. Greenbelt, Md.: National Aeronautics and Space Administration.
- 333. Jefferies, J. 1960. Astrophys. J. 132:775.
- 334. _____. 1968. Spectral Line Formation. Waltham, Mass.: Blaisdel.

 \mathcal{N}

യ

 ∞

- 335. Jefferies, J., and R. Thomas. 1958. Astrophys. J. 127:667.
- 336. _____. 1959. Astrophys. J. 129:401.
- 337. ____. 1960. Astrophys. J. 131:695.
- 338. Jefferies, J., and O. White. 1960. Astrophys. J. 132:767.
- 339. Jockers, K. 1970. Astron. and Astrophys. 6:219.
- 340. John, T. 1967. Astrophys. J. 149:449.
- 341. Johnson, H. 1974. NCAR Technical Note No. NCAR-TN/STR-95. Boulder: National Center for Atmospheric Research.
- 342. Johnson, H., R. Beebe, and C. Snedden. 1975. Astrophys. J. Supp. No. 280 29:123.
- 343. Joos, G. 1959. Theoretical Physics, 3rd ed. New York: Hafner.
- 344. Jordan, S., and E. Avrett. 1973. Stellar Chromospheres. Washington, D.C.: National Aeronautics and Space Administration.
- 345. Kalkofen, W. 1966. J.Q.S.R.T. 6:633.
- 346. _____. 1968. Astrophys. J. 151:317.
- 347. _____. 1974. Astrophys. J. 188:105.
- 348. Kalkofen, W., and S. Strom. 1966. J.Q.S.R.T. 6:653.
- 349. Kamp, L. 1973. Astrophys. J. 180:447.
- 350. Kaplan, S., and S. Pikelner. 1970. The Interstellar Medium. Cambridge. Mass.: Harvard Univ. Press.
- 351. Karp, A. 1972. Astrophys. J. 173:649.
- 352. Karzas, W., and R. Latter. 1961. Astrophys. J. Supp. No. 55 6:167.
- 353. Kepple, P. 1968. Improved Stark Profile Calculations for the First Four Members of the Hydrogen Lyman and Balmer Series [Univ. of Maryland Report #831]. College Park: Univ. of Maryland.
- 354. ____. 1972. Phys. Rev. A6:1.
- 355. _____. 1972. Stark Profile Calculations for Ionized Helium Lines [Univ. of Maryland Report No. 72-018]. College Park: Univ. of Maryland.
- 356. Kepple, P., and H. Griem. 1968. Phys. Rev. 173:317.
- 357. Klinglesmith, D. 1971. Hydrogen Line Blanketed Model Stellar Atmospheres. Washington, D.C.: National Aeronautics and Space Administration.
- 358. Kneer, F. 1975. Astrophys. J. 200:367.
- 359. Kondratyev, K. 1969. Radiation in the Atmosphere. New York: Academic Press.
- 360. Kosirev. N. 1934. M.N.R.A.S. 94:430.
- 361. Kourganoff, V. 1963. Basic Methods in Transfer Problems. New York: Dover,
- 362. Kraft, R. 1967. Astrophys. J. 150:551.
- 363. Kramers, H. 1923. Phil. Mag. 46:836.
- 364. Krishna-Swamy, K. 1961. Astrophys. J. 134: 1017.
- 365. Krook, M. 1955. Astrophys. J. 122:488.
- 366. Kuan, P., and L. Kuhi. 1975. Astrophys. J. 199: 148.
- 367. _____. 1976. P.A.S.P. 88:128.
- 368. Kudritzki, R. 1973. Astron. and Astrophys. 28:103.
- 369. Kuhi, L. 1973. Astrophys. J. 180:783.
- 370. Kulander, J. 1967. Astrophys. J. 147: 1063.
- 371. _____. 1968. J.Q.S.R.T. 8:273.
- 372. _____. 1971. Astrophys. J. 165;543.

- 373. Kulander, J., and J. Jefferies. 1966. Astrophys. J. 146: 194.
- Kunasz, P., and D. Hummer. 1974. M.N.R.A.S. 166:19.
- _____. 1974. M.N.R.A.S. 166:57.
- 376. Kunasz, P., D. Hummer, and D. Mihalas. 1975. Astrophys, J. 202:92.
- 377. Kuperus, M. 1965. The Transfer of Mechanical Energy in the Sun and the Heating of the Corona. Dordrecht: Reidel.
- _____. 1969. Space Sci. Rev. 9:713.
- 379. Kurucz, R. 1971. S.A.O. Special Report No. 309. Cambridge, Mass.: Smithsonian Astrophysical Observatory.
- _____. 1974. Solar Phys. 34:17.
- 381. Kurucz, R., E. Peytremann, and E. Avrett. 1974. Blanketed Model Atmospheres for Early-Type Stars. Washington, D.C.: Smithsonian Institution.
- 382. Kusch, H. 1958. Z. für Astrophys. 45:1.
- 383. Lamers, H., and D. Morton. 1976. Astrophys. J. Supp. 32:715.
- 384. Lamers, H., and M. Sniiders. 1975. Astron. and Astrophys. 41:259.
- 385. Landau, L., and E. Lifshitz. 1959. Fluid Mechanics. Reading, Mass.: Addison-Wesley.
- 386. ___. 1962. The Classical Theory of Fields, 2nd ed. Oxford: Pergamon Press.
- 387. Larson, R. 1969. M.N.R.A.S. 145:297.
- 388. Lathem, E. 1969. The Poetry of Robert Frost. New York: Holt, Rinehart and Winston.
- 389. Lawrence, G. 1967. Astrophys. J. 147:293.
- 390. Leckrone, D. 1971. Astron. and Astrophys. 11:387.
- 391. Leckrone, D., J. Fowler, and S. Adelman. 1974. Astron. and Astrophys. 32:237.
- 392. Leighton, R. 1959. Principles of Modern Physics. New York: McGraw-Hill.
- Leighton, R., R. Noyes, and G. Simon. 1962. Astrophys. J. 135:474.
- Lighthill, M. 1952. Proc. Roy. Soc. (London) A211:564.
- _____. 1954. Proc. Roy. Soc. (London) A222:1.
- Limber, D. 1958. Astrophys. J. 127:363. 396.
- 397. Lindholm, E. 1941. Arkiv f. Math. Astron. och Fysik 28B(no. 3).
- _____. 1945. Arkiv f. Math. Astron. och Fysik 32A(no. 17).
- 399. Lindquist, R. 1966. Ann. Phys. 37:341.
- 400. Linsky, J. 1970. Solar Phys. 11:355.
- 401. Linsky, J., and E. Avrett. 1970. P.A.S.P. 82:169.
- 402. Lotz, W. 1968. Z. für Physik 216:241.
- 403. Lucy, L. 1971, Astrophys. J. 163:95,
- 404. Lucy, L., and P. Solomon. 1970. Astrophys. J. 159:879.
- 405. Maeder, A. 1971. Astron, and Astrophys. 13:444.
- 406. Magnan, C. 1974. J.Q.S.R.T. 14: 123.
- 407. Mark, C. 1947. Phys. Rev. 72:558.
- Marlborough, J., and J.-R. Roy. 1970. Astrophys. J. 160:221.
- Marlborough, J., and M. Zamir. 1975. Astrophys. J. 195:145.
- 410. Massey, H., and E. Burhop. 1969. Electronic and Ionic Impact Phenomena, 2nd ed. (4 vols.). Oxford: Clarendon Press.
- 411. Matsushima, S. 1969. Astrophys. J. 158:1137.

- 412. Matsushima, S., and Y. Terashita. 1969. Astrophys. J. 156:203.
- 413. McCrea, W. 1928. M.N.R.A.S. 88:729.
- 414. McCrea, W., and K. Mitra. 1936. Z. für Astrophys. 11:359.
- 415. Menzel, D., (ed.). 1962. Selected Papers on Physical Processes in Ionized Plasmas. New York: Dover.
- 416. _____ (ed.). 1966. Selected Papers on the Transfer of Radiation. New York:
- 417. Menzel, D., and C. Pekeris. 1935. M.N.R.A.S. 96:77.
- 418. Merzbacher, E. 1970. Quantum Mechanics, 2nd ed. New York: Wiley.
- 419. Michard, R. 1949. Ann. d'Astrophys. 12:291.
- 420. Mihalas, D. 1964. Astrophys. J. 140:885.
- 421. _____. 1965. Astrophys. J. Supp. No. 92 9:321.
- 422. ____. 1965. Astrophys. J. 141:564.
- 423. ____. 1966. Astrophys. J. Supp. No. 114 13:1.
- 424. _____. 1966. J.Q.S.R.T. 6:581.
- 425. _____. 1967. Astrophys. J. 149:169.
- 426. _____. 1967. Astrophys. J. 150:909.
- 427. _____. 1968. Astrophys. J. 153:317.
- 428. _____. 1969. Astrophys. J. 157:1363.
- 429. _____. 1971. Astrophys. J. 170:541.
- 430. ____. 1972. Astrophys. J. 176:139.
- 431. _____, 1972, Astrophys. J. 177:115.
- 432. _____. 1972. NCAR Technical Note NCAR-TN/STR-76. Boulder: National
- Center for Atmospheric Research.
- 433. _____. 1973. P.A.S.P. 85:593.
- 434. _____. 1974. Astron. J. 79:1111.
- 435. Mihalas, D., and R. Athay. 1973. Ann. Rev. Astron. and Astrophys. 11:187.
- 436. Mihalas, D., and L. Auer. 1970. Astrophys. J. 160:1161.
- Mihalas, D., L. Auer, and J. Heasley. 1975. NCAR Technical Note NCAR-TN/STR-104. Boulder: National Center for Atmospheric Research.
- Mihalas, D., A. Barnard, J. Cooper, and E. Smith. 1974. Astrophys. J. 190:315.
- 439. ____. 1975. Astrophys. J. 197:139.
- 440. Mihalas, D., and D. Hummer. 1973. Astrophys. J. 179:827.
- 441. _____. 1974. Astrophys. J. Letters 189: L39.
- 442. ____. 1974. Astrophys. J. Supp. No. 265 28:343.
- 443. Mihalas, D., D. Hummer, and P. Conti. 1972. Astrophys. J. Letters 175: L99.
- 444. Mihalas, D., P. Kunasz, and D. Hummer. 1975. Astrophys. J. 202:465.
- 445. _____. 1976. Astrophys. J. 203:647.
- 446. _____. 1976. Astrophys. J. 206:515.
- 447. _____. 1976. Astrophys. J. 210:419.
- 448. Mihalas, D., and W. Luebke. 1971. M.N.R.A.S. 153:229.
- 449. Mihalas, D., and D. Morton. 1965. Astrophys. J. 142:253.
- 450. Mihalas, D., B. Pagel, and P. Souffrin. 1971. Theorie des Atmospheres Stellaires. Geneva: Observatoire de Genève.
- 451. Mihalas, D., R. Shine, P. Kunasz, and D. Hummer. 1976. Astrophys. J. 205:492.

- 452. Mihalas, D., and M. Stone. 1968. Astrophys. J. 151:293.
- 453. Miles, B., and W. Wiese. 1969. Critically Evaluated Transition Probabilities for Ba I and Ba II [N.B.S. Technical Note No. 474]. Washington, D.C.: U.S. Dept. of Commerce.
- 454. 1970. Bibliography on Atomic Transition Probabilities: January 1916 through June 1969 [N.B.S. Special Pub. No. 320]. Washington, D.C.: U.S. Dept. of Commerce.
- 455. Milkey, R., T. Ayres, and R. Shine. 1975. Astrophys. J. 197:143.
- 456. Milkey, R., and D. Mihalas. 1973. Astrophys. J. 185:709.
- 457. _____. 1973. Solar Phys. 32:361.
- 458. _____. 1974. Astrophys. J. 192:769.
- 459. Milkey, R., R. Shine, and D. Mihalas. 1975. Astrophys. J. 199:718.
- 460. _____. 1975. Astrophys. J. 202:250.
- 461. Milne, E. 1924. Phil. Mag. 47:209.
- 462. Mitchell, A. 1969. Computational Methods in Partial Differential Equations.

 London: Wiley.
- 463. Modisette, J. 1967. J. Geophys. Res. 72:1521.
- 464. Molnar, M. 1973. Astrophys. J. 179:527.
- Morgan, W., P. Keenan, and E. Kellman. 1943. An Atlas of Stellar Spectra. Chicago: Univ. of Chicago Press.
- 466. Morrison, N. 1976. Astrophys. J. 200:113.
- 467. Morton, D. 1967. Astrophys. J. 147:1017.
- 468, _____. 1967. Astrophys. J. 150:535.
- 469. Morton, D., E. Jenkins, and R. Bohlin. 1968. Astrophys. J. 154:661.
- 470. Morton, D., E. Jenkins, and N. Brooks. 1969. Astrophys. J. 155:875.
- 471. Morton, D., and G. Van Citters. 1970. Astrophys. J. 161:695.
- 472. Mozer, B., and M. Baranger. 1960. Phys. Rev. 118:626.
- 473. Münch, G. 1945. Astrophys. J. 102:385.
- 474. _____. 1946. Astrophys. J. 104:87.
- 475. _____. 1948. Astrophys. J. 108:116.
- 476. _____. 1949. Astrophys. J. 109:275.
- 477. Newkirk, G. 1967. Ann. Rev. Astron. and Astrophys. 5:213.
- 478. Noerdlinger, P., and G. Rybicki. 1974. Astrophys. J. 193:651.
- 479. Nordlund, A. 1974. Astron. and Astrophys. 32:407.
- 480. Norris, J. 1970. Astrophys. J. Supp. No. 176 19:305.
- 481. _____. 1971. Astrophys. J. Supp. No. 197 23: 193.
- 482. O'Brien, J., and C. Hooper. 1972. Phys. Rev. A5:867.
- 483. Oertel, G., and L. Shomo. 1968. Astrophys. J. Supp. No. 145 16:175.
- 484. Oke, J. 1960. Astrophys. J. 131:358.
- 485. _____. 1964. Astrophys. J. 140:189.
- 486. _____. 1965. Ann. Rev. Astron. and Astrophys. 3:23.
- 487. Oke, J., and R. Schild. 1970. Astrophys. J. 161:1015.
- 488. Olson, E. 1974. P.A.S.P. 86:80.
- 489. Omont, A., E. Smith, and J. Cooper. 1972. Astrophys. J. 175:185.
- Owczarek, J. 1964. Fundamentals of Gas Dynamics. Scranton: International. Textbook.
- 491. Pagel, B. 1959. M.N.R.A.S. 119:609.

583

- 492. Pagel, B. 1968. Proc. Roy. Soc. (London) A306:91.
- 493. ____. 1973. Space Sci. Rev. 15:1.
- Panofsky, W., and M. Phillips. 1962. Classical Electricity and Magnetism, 2nd ed. Reading, Mass.: Addison-Wesley.
- 495. Pannekoek, A. 1922. Bull. Astr. Inst. Netherlands 1:107.
- 496. Parker, E. 1958. Astrophys. J. 128:664.
- 497. _____. 1960. Astrophys. J. 132:821.
- 498. _____. 1963. Interplanetary Dynamical Processes. New York: Interscience.
- 499. _____. 1965. Astrophys. J. 141:1463.
- 500. Parsons, S. 1969. Astrophys. J. Supp. No. 159 18:127.
- Payne, C. 1925. Stellar Atmospheres. Cambridge, Mass.: Harvard Univ. Press.
- 502. Peach, G. 1962. M.N.R.A.S. 124:371.
- 503. _____. 1967. Mem. R.A.S. 71:13.
- 504. _____, 1970, Mem, R.A.S. 73:1.
- 505. Pecker, J.-C. 1951. Ann. d'Astrophys. 14:383.
- 506. _____, 1965, Ann. Rev. Astron. and Astrophys. 3:135.
- 507. Peraiah, A., and I. Grant. 1973. J. Inst. Math. Applics. 12:75.
- 508. Peters, G. 1976. Astrophys. J. Supp. 30:551.
- Peterson, D. 1968. S.A.O. Special Report No. 293. Cambridge, Mass.: Smithsonian Astrophysical Observatory.
- 510. Peterson, D., and M. Scholz. 1971. Astrophys. J. 163:51.
- 511. Peterson, D., and S. Strom. 1969. Astrophys. J. 157:1346.
- 512. Peytremann, E. 1974. Astron. and Astrophys. 33:203.
- 513. _____, 1974, Astron. and Astrophys. Supp. 18:81.
- 514. _____. 1975. Astron. and Astrophys. 38:417.
- 515. Pfennig, H., and E. Trefftz. 1966. Z. für Phys. 190:253.
- 516. Philip, A., and D. Hayes. 1975. Multicolor Photometry and the Theoretical HR Diagram [Dudley Obs. Report No. 9]. Albany, N.Y.: Dudley Observatory.
- 517. Pierce, A., and J. Waddell. 1961. Mem. R.A.S. 58:89.
- 518. Placzek, G. 1947. Phys. Rev. 72:556.
- 519. Placzek, G., and W. Seidel. 1947. Phys. Rev. 72:550.
- 520. Planck, M. 1959. The Theory of Heat Radiation. New York: Dover.
- 521. Pomraning, G. 1973. Radiation Hydrodynamics. Oxford: Pergamon Press.
- 522. Preston, G. 1971. P.A.S.P. 83:571.
- 523. _____. 1973. Ann. Rev. Astron. and Astrophys. 11:115.
- 524. Prokof'ev, V. 1962. Soviet Phys.—Doklady 6:861.
- 525. Proudman, I. 1952. Proc. Roy. Soc. (London) A214:119.
- Ralston, A. 1965. A First Course in Numerical Analysis. New York: McGraw-Hill.
- 527. Reichel, A. 1968. J.Q.S.R.T. 8:1601.
- 528. _____. 1969. Math. Comp. 23:645.
- 529. Reichel, A., and I. Vardavas. 1975. J.Q.S.R.T. 15:929.
- Richtmyer, R., and K. Morton. 1967. Difference Methods for Initial-Value Problems, 2nd ed. New York: Interscience.
- 531. Roberts, P. 1971. Astrophys. Letters 9:79
- 532. Roberts, P., and A. Soward. 1972. Proc. Roy. Soc. (London) A328:185.

- 533. Rogerson, J., and H. Lamers. 1975. Nature 256:190.
- 534. Rohrlich, F. 1959. Astrophys. J. 129:441.
- 535. _____. 1959. Astrophys. J. 129:449.
- 536. Rosendhal, J. 1973. Astrophys. J. 182:523.
- 537. _____. 1973, Astrophys, J. 186:909.
- 538. Ross, J., and L. Aller. 1968. Astrophys. J. 153:235.
- 539. Roueff, E. 1970. Astron. and Astrophys. 7:4.
- 540. _____. 1975. Astron. and Astrophys. 38:41.
- 541. Roueff, E., and H. Van Regemorter. 1969. Astron. and Astrophys. 1:69.
- 542. Russell, H. 1929. Astrophys. J. 70:11.
- 543. Rybicki, G. 1971. J.Q.S.R.T. 11:589.
- 544. Rybicki, G., and D. Hummer. 1967. Astrophys. J. 150:607.
- 545. _____. 1969. *M.N.R.A.S.* **144**:313.
- 546. Saha, M. 1920. Phil. Mag. 40:472.
- 547. _____. 1921. Proc. Roy. Soc. (London) A99:135.
- 548. Sahal-Brechot, S. 1969. Astron. and Astrophys. 2:322.
- 549. Sahal-Brechot, S., and E. Segre. 1971. Astron. and Astrophys. 13:161.
- 550. Sahal-Brechot, S. 1974. Astron. and Astrophys. 35:319.
- 551. Sampson, D. 1965. Radiative Contributions to Energy and Momentum Transport in a Gas. New York: Interscience.
- 552. Sargent, W. 1964. Ann. Rev. Astron. and Astrophys. 2:297.
- 553. Scarf, F., and L. Noble. 1965. Astrophys. J. 141: 1479.
- 554. Schatzman, E. 1962. Ann. d'Astrophys. 25:18.
- 555. Schild, R., D. Peterson, and J. Oke. 1971. Astrophys. J. 166:95.
- 556. Schmeltekopf, A., F. Fehsenfeld, and E. Ferguson. 1967. Astrophys. J. Letters 148: L155.
- 557. Schmid-Burgk, J. 1974. Astron. and Astrophys. 32:73.
- 558. _____. 1975. Astron. and Astrophys. 40:249.
- 559. Schmid-Burgk, J., and M. Scholz. 1975. Astron. and Astrophys. 41:41.
- 560. Scholz, M. 1972. Vistas in Astron. 14:53.
- 561. Schrödinger, E. 1926. Ann. d. Phys. 80:437.
- 562. Schuster, A. 1905. Astrophys. J. 21:1.
- 563. Schwarzschild, K. 1916. Sitzber. Deutsch. Akad. Wiss. (Berlin), p. 584.
- 564. Schwarzschild, M. 1948. Astrophys. J. 105:1.
- Sears, F. 1953. Thermodynamics, The Kinetic Theory of Gases, and Statistical Mechanics. Reading, Mass.: Addison-Wesley.
- 566. Seaton, M. 1958. M.N.R.A.S. 118:504.
- 567. Shimooda, H. 1973. P.A.S. Japan 25:547.
- 568. Shine, R. 1975. Astrophys. J. 202:543.
- 569. Shine, R., and J. Linsky. 1974. Solar Phys. 39:49.
- 570. Shine, R., R. Milkey, and D. Mihalas. 1975. Astrophys. J. 199:724.
- 571. _____. 1975. Astrophys. J. 201:222.
- 572. Shore, B., and D. Menzel. 1968. Principles of Atomic Spectra. New York: Wiley.
- 573. Shoub, E. 1977. Astrophys. J. Supp. 34:259.
- 574. Simonneau, E. 1973. Astron. and Astrophys. 29:357.
- 575. Skumanich, A., and B. Domenico. 1971. J.Q.S.R.T. 11:547.

-300

ω

- 576. Slater, J. 1960. Quantum Theory of Atomic Structure, Vol. 1. New York: McGraw-Hill.
- 577. _____. 1960. Quantum Theory of Atomic Structure, Vol. 2. New York: McGraw-Hill.
- 578. Smirnov, B. 1967. Soviet Phys. J.E.T.P. 24:314.
- 579. Smith, A. 1969. Astrophys. J. 156:93.
- _____. 1972. Astrophys. J. 176:405.
- 581. Smith, E., J. Cooper, and C. Vidal. 1969. Phys. Rev. 185:140.
- 582. Smith, E., C. Vidal, and J. Cooper. 1969. J. Res. Nat. Bur. Standards 73A:
- 583. Smith, M., and S. Strom. 1969. Astrophys. J. 158:1161.
- 584. Smith, M., and W. Wiese. 1973. J. Phys. Chem. Ref. Data 2:85.
- 585. Sneden, C., H. Johnson, and B. Krupp. 1976. Astrophys. J. 204:281.
- 586. Snijders, M., and H. Lamers. 1975. Astron. and Astrophys. 41:245.
- 587. Snijders, M. 1977. Astron. and Astrophys. 60:377.
- 588. _____. 1977. In press.
- 589. Snow, T., and D. Morton. 1976. Astrophys. J. Supp. 32:429.
- 590. Sobolev, V. 1957. Soviet Astron. 1:678.
- 591. _____. 1960. Moving Envelopes of Stars. Cambridge, Mass.: Harvard Univ. Press. [Russian edition, 1947.]
- 592. Somerville, W. 1964. Astrophys. J. 139:192.
- 593. ____. 1965. Astrophys. J. 141:811.
- 594. Spiegel, E. 1971. Ann. Rev. Astron. and Astrophys. 9:323.
- 595. _____. 1972. Ann. Rev. Astron. and Astrophys. 10:261.
- 596. Spitzer, L. 1943. Astrophys. J. 98:107.
- 597. _____. 1944. Astrophys. J. 99:1.
- 598. _____. 1956. Physics of Fully Ionized Gases. New York: Wiley.
- 599. Stacey, D., and J. Cooper. 1971. J.Q.S.R.T. 11:1271.
- 600. Stecher, T. 1970. Astrophys. J. 159:543.
- 601. Stein, R. 1968. Astrophys. J. 154:297.
- 602. Stein, R., and J. Leibacher. 1974. Ann. Rev. Astron. and Astrophys. 12:407.
- 603. Stewart, A., and T. Webb. 1963. Proc. Phys. Soc. (London) 82:532.
- 604. Stilley, J., and J. Callaway. 1970. Astrophys. J. 160:245.
- 605. Stone, P., and J. Gaustad. 1961. Astrophys. J. 134:456.
- 606. Stothers, R. 1966. Astrophys. J. 144:959.
- 607. Strom, S. 1967. Astrophys. J. 150:637.
- Strom, S., and E. Avrett. 1965. Astrophys. J. Supp. No. 103 12:1.
- Strom, S., O. Gingerich, and K. Strom. 1966. Astrophys. J. 146:880.
- 610. Strom, S., and W. Kalkofen. 1966. Astrophys. J. 144:76.
- 611. _____. 1967. Astrophys. J. 149:191.
- 612. Strom, S., and R. Kurucz. 1966. J.Q.S.R.T. 6:591.
- 613. Strömgren, B. 1935. Z. für Astrophys. 10:237.
- 614. Struve, O. 1929. Astrophys. J. 69:173.
- 615. _____. 1929. Astrophys. J. 70:85.
- 616. _____. 1946. Astrophys. J. 104:138.
- 617. Struve, O., and C. Elvey. 1934. Astrophys. J. 79:409
- 618. Sturrock, P., and R. Hartle. 1966. Phys. Rev. Letters 16:628.

- 619. Sykes, J. 1951. M.N.R.A.S. 111:377.
- 620. Terashita, Y., and S. Matsushima. 1966. Astrophys. J. Supp. No. 121 13:461.
- 621. Thomas, L. 1930. Quart. J. Math. 1:239.
- 622. Thomas, R. 1957. Astrophys. J. 125:260.
- 623. _____, 1960. Astrophys. J. 131:429.
- 624. (ed.). 1960. Aerodynamic Phenomena in Stellar Atmospheres [I.A.U. Symposium No. 12]. Bologna: N. Zanichelli.
- ____. 1965. Astrophys. J. 144:333. 625.
- 626. _____. 1965. Some Aspects of Non-Equilibrium Thermodynamics in the Presence of a Radiation Field. Boulder: Univ. of Colorado Press.
- _____. 1973. Astron. and Astrophys. 29:297.
- 628. Thomas, R., and R. Athay. 1961. Physics of the Solar Chromosphere. New York: Interscience.
- 629. Traving, G. 1960. Über die Theorie der Druckverbreiterung von Spektrallinien. Karlsruhe: Verlag G. Braun.
- 630. Ulmschneider, P. 1967. Z. für Astrophys. 67:193.
- 631. _____. 1971. Astron. and Astrophys. 12:297.
- 632. _____. 1971. Astron. and Astrophys. 14:275.
- 633. Underhill, A. 1949. M.N.R.A.S. 109:563.
- 634. Underhill, A., and J. Waddell. 1959. Stark Broadening Functions for the Hydrogen Lines [N.B.S. Circular No. 603]. Washington, D.C.: U.S. Dept. of Commerce.
- 635. Unno, W., and M. Kondo. 1976. P.A.S. Japan 28:347.
- 636. Unsöld, A. 1931. Z. für Astrophys. 1:138.
- 637. _____. 1943. Vierteljahresschrift der Astron. Gess. 78:213.
- 638. _____. 1955. Physik der Sternatmospharen, 2nd ed. Berlin: Springer-Verlag.
- 639. Van Regemorter, H. 1962. Astrophys. J. 136:906.
- 640. Vardavas, I. 1976. J.O.S.R.T. 16:1.
- ____. 1976. J.Q.S.R.T. 16:715.
- 642. Vardavas, I., and L. Cram. 1974. Solar Phys. 38:367.
- 643. Vardya, M. 1965. M.N.R.A.S. 129:205.
- 644. _____. 1967. Mem. R.A.S. 71:249.
- 645. Vernazza, J., E. Avrett, and R. Loeser. 1973. Astrophys. J. 184:605.
- 646. _____. 1976. Astrophys. J. Supp. 30:1.
- 647. Vidal, C., J. Cooper, and E. Smith. 1970. J.Q.S.R.T. 10:1011.
- 648. _____. 1971. J.O.S.R.T. 11:263.
- 649. _____. 1971. Unified Theory Calculations of Stark Broadened Hydrogen Lines Including Lower State Interactions [N.B.S. Monograph No. 120]. Washington, D.C.: U.S. Dept. of Commerce.
- 650. _____. 1973. Astrophys. J. Supp. No. 214 25:37.
- 651. Vitense, E. 1951. Z. für Astrophys. 28:81.
- ____. 1953. Z. für Astrophys. 32:135.
- 653, _____. 1958. Z. für Astrophys. 46:108.
- 654. Voigt, H., (ed.). 1965. Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, new series, group VI, vol. I. Berlin: Springer-Verlag.
- 655. Waddell, J. 1962. Astrophys. J. 136:231.

656.	Waddell, J.	1963.	Astrophys. J.	138 :1147.

- Walborn, N. 1971. Astrophys. J. Supp. No. 198 23:257.
- 658. Wallerstein, G., and P. Conti. 1969. Ann. Rev. Astron. and Astrophys. 7:99.
- 659. Weber, E., and L. Davis. 1967. Astrophys. J. 148:217.
- _____. 1970. J. Geophys. Res. 75:2419.
- 661. Weisskopf, V. 1932. Z. für Phys. 75:287.
- _____. 1933. Physik. Z. 34:1.
- 663. _____. 1933. Observatory 56:291.
- 664. Wendroff, B. 1963. Los Alamos Scientific Laboratory Report No. LAMS-2795.
- 665. Weymann, R. 1960. Astrophys. J. 132:380.
- _____. 1962. Astrophys. J. 136:476.
- 667. Whang, Y., and C. Chang. 1965. J. Geophys. Res. 70:4175.
- 668. Whang, Y., C. Liu, and C. Chang. 1966. Astrophys. J. 145:255.
- 669. White, O. 1968. Astrophys. J. 152:217.
- 670. Wiese, W., and J. Fuhr. 1975. J. Phys. Chem. Ref. Data 4:263.
- 671. Wiese, W., D. Kelleher, and D. Paquette. 1972. Phys. Rev. A6:1132.
- 672. Wiese, W., M. Smith, and B. Glennon. 1966. Atomic Transition Probabilities, Vol. 1: Hydrogen through Neon [NSRDS-NBS-4]. Washington, D.C.: U.S. Dept. of Commerce.
- 673. Wiese, W., M. Smith, and B. Miles. 1969. Atomic Transition Probabilities, Vol. 2: Sodium through Calcium [NSRDS-NBS-22]. Washington, D.C.: U.S. Dept. of Commerce.
- 674. Wilson, O. 1934. Astrophys. J. 80:259.
- 675. _____. 1963. Astrophys. J. 138:832.
- 676. Wilson, O., and V. Bappu. 1957. Astrophys. J. 125:661.
- Wilson, O., and A. Skumanich. 1964. Astrophys. J. 140:1401.
- Wilson, R. 1958. P. Roy. Obs. Edinburgh 2:61.
- Wilson, S., and K. Sen. 1965. Ann. d'Astrophys. 28:348.
- _____. 1965. Ann. d' Astrophys. 28:855.
- 681. Wolff, C., J. Brandt, and R. Southwick. 1971. Astrophys. J. 165:181.
- 682. Wolff, S., L. Kuhi, and D. Hayes. 1968. Astrophys. J. 152:871.
- 683. Woolley, R. 1938. M.N.R.A.S. 98:624.
- 684. Woolley, R., and D. Stibbs. 1953. The Outer Layers of a Star. Oxford: Clarendon Press.
- 685. Wright, A., and M. Barlow. 1975. M.N.R.A.S. 170:41.
- Wright, K. 1948. P. Dominion Astrophys. Obs. Victoria 8:1.
- Wrubel, M. 1949. Astrophys. J. 109:66.
- _____. 1950. Astrophys. J. 111:157.
- _____. 1954. Astrophys. J. 119:51.
- 690. Zanstra, H. 1941. M.N.R.A.S. 101:273.
- 691. _____. 1946. M.N.R.A.S. 106:225.
- 692. Zeldovich, Ya., and Yu. Raizer. 1966. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (2 vols.). New York: Academic Press.
- 693. Zinn, R. 1970. Astrophys. J. 162:909.
- 694. Zirin, H. 1966. The Solar Atmosphere. Waltham, Mass.: Blaisdell.

Glossary of Physical Symbols

Physical symbols used in the text are listed below, along with a brief description of their meaning and the page number on which each first appears. Standard mathematical symbols, dummy variables and indices, and notations used only in one location are not included.

	Ratio of damping width to Doppler width, $\Gamma/4\pi \Delta v_D$	279
а		519
а	Isothermal sound speed	65
a_i	Quadrature weight	142
a_{II}	Branching ratio $j \rightarrow i$ in radiative decay of state j	7
a_R	Radiation constant in Stefan's law	519
a.	Adiabatic sound speed	319
$a_{\mathbf{v}}$	Macroscopic absorption coefficient uncorrected for stimulated emission	78
a,	Coefficient in linear expansion of Planck function	148
•	Bohr radius	89
a_0 $a_j(t)$	Coefficient of eigenstate ψ_j in expansion of a general	85
$a_v(\mu)$	Absorption-depth, relative to continuum, in spectrum-line intensity-profile at angle $\cos^{-1} \mu$ from disk-center, $1 - r_{\nu}(\mu)$	269 7
A	Vector potential	
A	Rate matrix of statistical equilibrium equations	138
A_a	Autoionization transition probability	134
•	Atomic weight of chemical species i	110
A_i A_{ji}	Einstein spontaneous-emission probability for transition $i \rightarrow i$	78
A_s	Stabilization transition probability in dielectronic recombination process	135
A_{ν}	Absorption-depth, relative to continuum, in spectrum line flux-profile, $1 - R_v$	269

A_0	Central absorption depth of an infinitely opaque line	318	d_{mn}	Matrix element of dipole moment $\langle \phi_m^* \mathbf{d} \phi_n \rangle$	86
\mathbf{A}_d	Matrix coupling depth-points $d-1$ and d in Feautrier		d^3r	Volume element	8
	difference-equation solution of transfer equation	155	D	Distance from star to observer	11
b_i	Non-LTE departure coefficient (n_i/n_i^*) for level i	219	D	Debye length, Debye radius	122
b_{v}	Coefficient in linear expansion of Planck function	148	D	Electric displacement	7
$b_{\alpha}(au)$	Planck function normalized to value at surface of	74	D_B	Balmer jump (in magnitudes)	195
h (-)	atmosphere $B_{\nu}[T(\tau)]/B_{\nu}(T_0)$ Planck function normalized to disk-center intensity,	76	D_{P}	Paschen jump (in magnitudes)	195
$b_{\mathbf{v}}(\tau_{\mathbf{v}})$	$B_{\nu}[T(\tau_{\nu})]/I_{\nu}(0,1)$	262	\mathbf{D}_d	Auxiliary matrix used in developing Feautrier difference- equation solution of transfer equation	156
В	Magnetic induction	7	(D/Dt)	Fluid-frame or Lagrangian derivative	514
<i>9</i> 8	Righthand-side vector of statistical equilibrium equations	138	$(D/Dt)_{coll}$	Time rate of change of distribution function caused by	
B_{ij}	Einstein absorption probability for transition $i \rightarrow j$	77	(2)21/6011	collisions	33
B_{ji}	Einstein induced-emission (or stimulated-emission) probability for transition $j \rightarrow i$	78	e	Electron charge	81
B_0	Planck function at $T = T_0$	312	e	Specific internal energy of a fluid	517
B_1	$(\partial B_{\nu}/\partial \overline{\tau}) \text{ evaluated at } \overline{\tau} = 0$	312	e(∞)	Residual energy per particle at infinite distance in stellar wind, E/F	531
B*	Equivalent Planck function for recombination emission in		E	Total particle energy	494
_	non-LTE source function	360	E	Total energy flux in stellar wind	526
\mathbf{B}_d	Coupling matrix at depth-point d in Feautrier difference- equation solution of transfer equation	155	E	Electric field	7
B(T)	Frequency-integrated Planck function	52	E	Matrix giving definition of J in terms of u_i 's in Rybicki	
$B_{\rm eff}(au)$	Effective thermal source in line with overlapping continuum	352		difference-equation solution of transfer equation	159
$B_{\mathbf{v}}(T)$	Planck function	7	8	Energy in radiation field	3
$B_{v}^{*}[T(\tau)]$	Planck function for temperature distribution that gives	1	E_{l}	Energy of atomic state i relative to ground state	22
-46-703	radiative equilibrium	179	E_{v}	Contribution to emissivity from (fixed) overlapping	397
c	Velocity of light	4	_	transitions	391
C_{ij}	Collisional transition rate from level i to level j	127	E_{ullet}	Energy received at frequency v from an expanding atmosphere by an external observer	474
$C_{i\kappa}$	Collisional ionization rate of level i to continuum	123	E_{0}	Magnitude of electric field	8
$C_{\mathbf{k}}$	Interaction coefficient of kth component of hydrogen Stark		E _o	Threshold energy of collision process	132
_	pattern	295	E*	Thermodynamic equilibrium value of radiation energy-	
C_{p}	Specific heat at constant pressure	186	∠ _K	density	7
C_p, C_3, C_4, C_6	Coefficient of power-law expression for perturber-radiator interaction	283	$E(\omega)$	Energy spectrum of oscillator	275
C_{v}	Specific heat at constant volume	186	$E_c(\infty)$	Heat-conduction flux at infinite distance in stellar wind	531
C_{0}	Numerical constant in collision rate formula, $\pi a_0^2 (8k/m\pi)^{\frac{1}{2}}$	133	$E_n(x)$	Exponential integral of order n	40
C_d	Matrix coupling depth-points d and $d + 1$ in Feautrier	133	$E_R(\mathbf{r}, \mathbf{v}, t),$		
C _d	difference equation solution of transfer equation	155	$E_R(\mathbf{r}, \mathbf{v}),$	Monochromatic energy density in radiation field	6
\mathscr{C}_{i}	Net collisional rate into level i	486	$E_R(v)$		
d	Electron-impact line shift	306	$E_R(\mathbf{r}, t),$		
d	Electric dipole moment	86	$E_R(\mathbf{r}),$	Total (frequency-integrated) energy density in radiation field	6
d_{i}	Departure of ratio of non-LTE to LTE population of level i		E_R		
	from unity, $(b_i - 1)$	219	f	Force-per-unit-volume acting on a fluid	516

590 Glossary	of Physical Symbols			Glossary of Physical Symbols	591
			$\mathscr{F}(\mathbf{r}, \mathbf{v}, t),$		
$f_{\mathbf{b}}$	Buoyancy force	188	$\mathscr{F}(\mathbf{r}, \mathbf{v}),$	Monochromatic vector flux of radiation field	9
f_{c}	Continuum oscillator strength	123	\mathscr{F}_{\bullet}		
f_{ij}	Oscillator strength of transition $i \rightarrow j$	84	${\mathscr F}_{\sf BB}(v)$	Flux from blackbody	12
<i>f</i> .	Monochromatic flux received by observer	11	g	Surface gravity in planar atmosphere	170
f(n', n)	Oscillator strength for transition between states with principal quantum numbers n' and n	88	$g_{ m crit}$	Surface gravity at which radiation force exceeds gravitational force in atmosphere	170
f(n', l'; n, l)	Oscillator strength for transition from substate l' of state n' to substate l of state n	88	$g_{ m eff}$	Net acceleration, gravitational minus radiative, of stellar atmospheric material	256
f(t)	Amplitude of time-variation of oscillator	274	g_i	Statistical weight of atomic state i	77
$f(\mathbf{v}), f(\mathbf{v})$	Maxwellian velocity distribution	110		Statistical weight of excitation state i of ionization state j of	
$f(\mathbf{r}, \mathbf{p}, t)$	Particle distribution function	32	Gijk	chemical species k	110
$f(\mathbf{r}, \mathbf{v}, t), f$	A dition distribution function	32	g_{nl}	Statistical weight of substate l of state n	88
$f(\mathbf{r}, \mathbf{v}, t),$			g _R	Acceleration produced by radiation force	554
f(z, v, t),	Variable Eddington factor K_v/J_v	18	g _{R, I}	Radiative acceleration produced by all spectrum lines	558
f_{\bullet}			g_R^0	Acceleration produced by radiation force in a single	
$f_{jk}(n_e, T)$	Fraction of chemical species k in ionization stage j, N_{lk}/N_k	114		spectrum line	555
$f_K(n', n)$	Kramers'-formula oscillator strength for transition $n' \rightarrow n$		g_R	Four-force of radiation on matter	498
	in hydrogen	90	$g(\mathbf{n}', \mathbf{n}),$		
$f_R(\mathbf{r}, \mathbf{n}, \mathbf{v}, t)$	Photon distribution function	4	$g(\mu', \mu, \phi'),$	Angular phase functions in scattering process	29
F	Perturber field-strength	291	$g(\mu',\mu)$		
F	Particle flux in stellar wind	525	$g_{\mathfrak{l}}(n',n)$	Gaunt factor, for bound-bound transition $n' \rightarrow n$ in	90
F	Imposed external force	32		hydrogen	90
F. F	Frequency-integrated flux	44	$g_{II}(n, k),$	Gaunt factor for bound-free transition $n \rightarrow k$ in hydrogen	99
F_{c}	Flux in continuum near spectrum line	269	$g_{II}(n, v)$		
F_{conv}	Energy flux transported by convection	188	$g_{III}(k, l),$		101
$F_{\sf rad}$	Energy flux transported by radiation	190	$g_{iii}(v, v),$	Gaunt factor for free-free transitions in hydrogen	101
F^{α}	Four-force	541	$\overline{g}_{III}(v,T)$		255
F_{0}	Normal field strength	291	G	Newtonian gravitation constant	255
\mathbf{F}_{rad}	Radiative damping force on an oscillator	82	G_{em}	Momentum density in electromagnetic field	14
${\cal F}_{_{ m BB}}$	Frequency-integrated flux from blackbody	12	G_R	Momentum density in radiation field	10
F(v)	Spontaneous recapture probability for electrons of velocity v	94	G(v)	Induced recapture probability for electrons of velocity v	94
F(v)	Dawson's function	280	$G(v), \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Generalized statistical weight ratio in stimulated emission	165
$F(\mathbf{r}, \mathbf{v}, t),$	T /n Manachamatic Watnesday in 199 (Louis Cardinalis		$G_{lu}(v)$	correction	
F(z, v, t),	F _w /π Monochromatic "astrophysical" flux of radiation field	10	· h	Planck's constant	4
$F_{\mathbf{v}}$ \int		10	ħ	Reduced Planck's constant $h/2\pi$	85
$F(\omega)$	Fourier transfrom	275	h	Specific enthalpy of a fluid	518
$F(\omega, T)$	Fourier transfrom of wavetrain of duration T	281	h,	Eddington factor giving ratio $H_{\nu}(0)/J_{\nu}$ at surface of atmosphere	157
$\mathcal{F}(\mathbf{r}, \mathbf{v}, t),$	Monochromatic flux of radiation field in direction normal		Н	Frequency-integrated Eddington flux	54
$\mathscr{F}(z, v, t),$	to atmospheric layers	10	Н	Pressure scale height	188

Pressure scale height

Н

Glossary of Physical Symbols

Н	Magnetic field	7	$J(\mathbf{r}, t), J$	Frequency-integrated mean intensity, $\int_0^\infty J_v dv$	6
H	Nominal Eddington flux, $\sigma_R T_{\rm eff}^4/4\pi$	174	$J(\mathbf{r}, v, t),$		
$H_{\mathbf{A}}$	Hamiltonian for atom	85	$J(\mathbf{r}, \mathbf{v}),$		
H_P	Perturber Hamiltonian	298	J(z, v),	Mean intensity	5
H_{v}^{0}, H^{0}	Current value of Eddington flux in Avrett-Krook procedure	174	$J_{\nu}(\tau)$,		
H_{o}	Magnitude of magnetic field	8	J_{v}		
H_{0}	Flux-constant in extended atmosphere, $r^2H = L/16\pi^2$	245	k	Boltzmann's constant	7
H(a, v)	Voigt function	279	k	Wavenumber	8
$H(q_i, p_i)$	Hamiltonian operator	85	k	Continuum-state quantum number for hydrogen	98
$H(\mathbf{r}, v, t),$			k	Unit vector in z-direction	3
H(z, v, t),	Monochromatic Eddington flux, $\frac{1}{4}F_{\nu} = \mathcal{F}_{\nu}/4\pi$	10	k_{c}	Continuum opacity uncorrected for stimulated emission	321
H_{v}			k_a	Root of characteristic equation in discrete-ordinate method	66
$H(\mu)$	Limb-darkening function	70	K	Frequency-integrated second moment of radiation field	55
$H_n(v)$	Expansion function in power-series expression for Voigt		K	Numerical coefficient in hydrogen cross-section	99
	function	280	\mathbf{K}_{i}	Discrete representation of depth-variation of thermal source	
i	Unit vector in x-direction	3		terms at angle-frequency point i in Rybicki difference- equation solution of transfer equation	159
I	Frequency-integrated specific intensity	54		equation solution of transfer equation	137
1	Moment of inertia of a star	536	$K(\mathbf{r}, v, t),$	a la	16
I _c	Specific intensity emitted from core in expanding, extended atmosphere	478	$K(z, v, t),$ K_{v}	Second angular moment of monochromatic radiation field	10
I_k	Fractional intensity of kth component of hydrogen Stark pattern	296	$K_{\beta}(\tau)$	Line-formation kernel function for an expanding atmosphere	481
I_{ul}	Total line intensity in transition $u \rightarrow l$	488	$K_1(\tau)$	Line-formation kernel function	339
I_{H}	Ionization energy of hydrogen	133	$K_{1,r}(\tau)$	Kernel for line-formation with overlapping continuum	351
$I(\mathbf{r}, \mathbf{n}, \mathbf{v}, t),$			1	Azimuthal quantum number	89
$I_{\nu}(T,\mu),$		_	i	Continuum-state quantum number for hydrogen	100
$I_{\nu}(\mu),$	Specific intensity of radiation	2	i	Convective mixing length	188
I_{ν}	•		1 .	Correlation length in turbulent velocity field	464
$I(\omega)$	Power spectrum of oscillator	275	$l_{\mathbf{v}}$	Photon mean-free-path	51
$I_{\rm v}(p,\infty)$	Emergent specific intensity along ray with impact parameter		L L	Stellar luminosity	49
	p in extended atmosphere	247	L	Photon destruction length	333
$^{+}(\mu, \nu), I^{+}$	Specific intensity traveling in $+\mu$ direction	36	_ L	Rotational angular momentum of a star	536
$^{-}(\mu, \nu), I^{-}$	Specific intensity traveling in $-\mu$ direction	36	L L	Total orbital angular momentum of atom	92
j	Unit vector in y-direction	3	L, L_{μ}^{a}	Lorentz transformation	493
j	Current density	7	$L_{\rm crit}$	Critical luminosity at which radiation force exceeds	
J	Jacobian of transformation of coordinates	32	-erii	gravitational force in atmosphere	171
J	Total angular momentum of atom	92	L_{α}	Integration constant in discrete-ordinate method	67
J_{ν}^{0} , J^{0}	Current value of mean intensity in Avrett-Krook procedure	174	L_d	Source-term in Feautrier difference-equation solution of	
J , J_{ij}	Mean intensity averaged over line profile, $\int \phi_{\nu} J_{\nu} d\nu$	129		transfer equation	155
J	Discrete representation of depth-variation of $J(z)$ in Rybicki difference-equation solution of transfer equation	159	$L_{1,r}(\tau)$ m	Continuum kernel function Mass of electron	351 83

Glossary of Physical Symbols

595

Glossary of Physical Symbols

594 Glossary of Physical Symbols Magnetic quantum number m Column mass in atmosphere m Mass of electron m, Mass of proton m, Mass of hydrogen atom $m_{\rm H}$ Rest (proper) mass of a particle m_0 Average mass per nucleus (atoms + ions) m M Mach number M Stellar mass Integration constant in discrete ordinate method M_{α}

Mass-loss rate

Index of refraction

Radiation force multiplier

Principal quantum number

equilibrium equations

recombination process

Number density of free electrons

stage j of chemical species k

Propagation vector of plane wave

Total particle density (all species)

excitation and ionization states Number density of nuclei (atoms + ions)

Number density of perturbers

Number of transitions $k \rightarrow m$

Total pressure

Proton number density

Turbulent eddy density

radiation at frequency v

Number density of atoms in state i

Directions of radiation propagation

Occupation-number solution-vector of statistical

LTE value of number density of atoms in state i

Particle density of particle species k in a gas

Number density in doubly excited state of dielectronic

Number density of atoms in excitation state i of ionization

Number density of atoms in state i capable of absorbing

Ratio of population in substate v of state i to line profile,

Number density of atoms in all excitation states of

Number density of atoms of chemical species k in all

Third angular moment of monochromatic radiation field

ionization stage j of chemical species k

À

n

n

n

 n_d

 n_e

 n_i

 n_i^*

 n_{ijk}

 n_p

no

 $n(\tau)$

 $n_k(\mathbf{r}, t)$

 $n_i(v)$

 $\tilde{n}_i(v)$

Ν

Ν

 N_{Jk}

 N_k

 N_N

 N_{ν}

р

 \mathcal{N}_{km}

M(t)

n, n'

89

170

89

89

170

494

170

520

171

67

516

561

4

89

2

138

135

94

78

79

110

138

464

513

77

436

115

282

111

114

115

502

87

170

P	Impact parameter of ray in extended atmosphere	247
p	Exponent in power-law expression for perturber-radiator interaction	283
	Momentum of a particle	32
p	Electron pressure	103
P _e	Total gas pressure	115
p_{g}	Generalized momentum coordinate	85
p _i	Pressure in interstellar medium	533
P _i	Cascade probability of state <i>i</i> to state <i>i</i>	142
p _{ji}	Partial pressure of particle species k in a gas	514
P _k	Probability of photoionization at frequency v	94
$p_{\mathbf{v}}$	Coefficient in linear expansion of Planck function on τ_{ν} scale	310
p_{v} $p(x, x')$	Joint probability of absorption from substate x and return to substate x' in a line transition	277
$p(\xi', \xi)$	Redistribution probability in atom's rest frame	412
$p_R(\mathbf{r}, v, t),$		
$p_R(z, v, t),$ $p_R(z, v, t),$	Monochromatic radiation pressure scalar	16
$p_R(z, v, t), p_R(v)$	Monocino mano successor processor comme	
$p_R^*(\mathbf{r}, \mathbf{v}, t),$	Thermodynamic equilibrium value of monochromatic	
$p_R^*(z, v, t)$	radiation pressure scalar	17
P	Radiation-pressure tensor	12
P_d	Photon destruction probability	333
P_{ii}	Component ij of radiation pressure tensor	12
P_{ij}	Total transition rate from level i to level j	128
Pª	Four-momentum	494
P	Mean radiation pressure	13
P(t)	Power radiated from accelerating charge	82
$P(u_h)$	Probability distribution function for dimensionless velocity in turbulent atmosphere	464
$\langle P(\omega) \rangle$	Average power radiated at circular frequency ω by harmonic oscillator	82
$P_e(\tau)$	Photon escape probability	334
$P_{nl}(r)$	Radial charge density	89
q	Heat delivered to a gas, per unit volume	517
q_i	Generalized space coordinate	85
q_{v}	Sphericality factor in extended atmosphere	251
q.	Conductive heat flux	517
$q(\tau)$	Hopf function	55
$q_{ij}(T)$	Collision rate $i \rightarrow j$, per atom in state i, per electron,	
117.	averaged over Maxwellian velocity distribution at temperature T	132

$q_x(au)$	Exponential absorption factor for a turbulent atmosphere	465	\mathscr{R}_i	Net radiative into level i	486
$\langle q_x(\tau)\rangle_S$	Static average of $q_x(\tau)$	466	R(x', x)	Angle-averaged redistribution function in dimensionless	100
Q	Integration constant in discrete-ordinate method	67	(,,	frequency units	427
Q	Factor correcting for ionization and radiation pressure		$R(x', \mathbf{n}'; x, \mathbf{n})$	Redistribution function in dimensionless frequency units	418
Ł	effects on mean molecular weight of a gas	188	R(v', v)	Angle-averaged redistribution function	28
Q_{ij}	Collision cross-section in units of πa_0^2	132	$R(v', \mathbf{n}'; v, \mathbf{n})$	Redistribution function for scattering process	27
$Q(r, \mu)$	Derivative of radial velocity along a line of sight in Sobolev method	479	$R_c(v', \mathbf{n}'; v, \mathbf{n})$	Redistribution function in laboratory frame for coherent scattering in atom's frame	418
$Q_x(s)$	Laplace transform of $q_x(\tau)$	466	$R_{nl}(r)$	Radial wavefunction	89
r	Radial distance from center of a star	3	$R_{u}(v', v)$	Angle-averaged redistribution function for atom moving	
r	Distance between two test points	4		with (dimensionless) velocity u	425
r	Ratio of continuum to line opacity χ_c/χ_t	36	$R_v(v', \mathbf{n}'; v, \mathbf{n})$	Redistribution function for atom moving with velocity v	416
r	Opacity ratio in schematic Lyman continuum problem	222	S	Path length	31
r	Position in a stellar atmosphere	2	S	Spin quantum number	89
r _c	Core radius in extended atmosphere	251	s_e	Electron scattering coefficient per gram of stellar material	554
r _c	Critical radius in transsonic wind	526	S	Surface area	3
r,	Sonic point radius	562	S	Frequency-integrated source function	54
r_A	Alfvenic radius	535	S	Poynting vector	11
r_0	Mean interatomic distance	111	\$	Total spin angular momentum of atom	92
r_0	Radial coordinate of surface of constant radial velocity,		S_{t}	Line source function	80
·	$(z_0^2 + p^2)^{\frac{1}{2}}$	479	S_{max}	Maximum source function in finite slab	347
$r_{\frac{1}{2}}$	Radius at Rosseland optical depth $\bar{\tau}_R = \frac{2}{3}$	256	S_d	Discrete representation of source function at depth-point d	
r_{*}	Stellar radius	1,1		in Feautrier difference-equation solution of transfer	
î .	Unit vector in radial direction	3	S(; n	equation	157
$r_{v}(\mu)$	Residual specific intensity, relative to continuum, in spectrum line at angle $\cos^{-1} \mu$ from disk center, $1 - a_v(\mu)$	270	S(i, j) $S(\mathbf{r}, v),$	Line strength in transition $i \rightarrow j$	88
R	Stellar radius	49	S(z, v),	Source function, η_v/χ_v	35
R R	Rydberg constant	89	s,		-
R R	Reynolds number	560	S(α)	Normalized Stark profile	296
R R	Stress-energy tensor of radiation field	498	$S(-\mu)$	Angular distribution of intensity emergent from grey	
R_{db}	Dielectronic recombination rate $d \rightarrow b$	135	. , ,	atmosphere	70
	Radiative transition rate from state i to state i	77	$\mathscr{S}(\mathscr{L})$	Strength of line within multiplet	92
R_{ij}	Photoionization rate of level i to continuum	123	$\mathscr{S}(\mathscr{M})$	Multiplet strength	92
R _{ik}	Radiative de-excitation rate $j \rightarrow i$ scaled to equilibrium	125	$S_x(s)$	Laplace transform of $\langle q_x(\tau)\rangle_S$	466
R_{jl}	value $R_{ji} = n_j^* R_{ji}^* / n_i^*$	129	t	Time	2
R'_{ji}	Radiative de-excitation rate $j \rightarrow i$ per atom in upper state	129	t	Current optical depth scale in Avrett-Krook procedure	174
$R_{\kappa i}$	Radiative recombination rate $\kappa \to i$ scaled to equilibrium value $R_{\kappa i} = n_{\kappa}^* R_{\kappa i}'/n_i^*$	131	t	Equivalent electron-scattering optical depth in expanding atmosphere	561
$R'_{\kappa l}$	Radiative recombination rate $\kappa \rightarrow i$ per ion in ground state	130	t_{c}	Self-relaxation time for electrons in a plasma	122
R _v	Residual flux, relative to continuum, in spectrum line		t_r	Average recombination time	122
•	profile, $1 - A_{\nu}$	269	T	Absolute thermodynamic temperature	7
R_{o}	Residual flux at center of infinitely opaque line	312	T	Stress-energy tensor of electromagnetic field	497

$T_{\mathbf{c}}$	Color temperature	248	v_c	Critical velocity in transsonic wind	526
T_c	Radiation temperature of core in expanding atmosphere	486		Escape velocity from stellar surface	550
T_{ϵ}	Kinetic temperature of electrons	122	$v_{ m esc}$	Expansion velocity in radial direction	474
$T_{\rm eff}$	Effective temperature	49	v_z	Expansion velocity in radial direction Expansion velocity along a ray with impact parameter p	474
$T_{\mathbf{k}}$	Kinetic temperature of atoms and ions	123		Most probable speed	
T,	Radiation temperature	360	<i>v</i> _o	Terminal velocity in stellar wind	110
$T_{\mathbf{v}}$, T	Total optical thickness of finite slab	36	v_{∞}	Fiducial thermal velocity	530
T_{0}	Boundary temperature of atmosphere	61	<i>ប</i> ដ់ <u>ប</u>	•	449
T_1	Temperature perturbation in Avrett-Krook procedure	174	v v	Average speed of convective elements	188
T _i	Tridiagonal matrix representing differential operator for		·	Acceleration	81
-1	angle-frequency point i in Rybicki difference-equation solution of transfer equation	157	$v(z, v, \mu), v_{v\mu}$	Antisymmetric angle-average of specific intensity $\frac{1}{2}[I(\nu, +\mu) - I(\nu, -\mu)]$	152
ТМ	Maxwell stress tensor	14	v(r)	Expansion velocity of atmosphere	449
$T(k^2), T(X)$	Characteristic function in discrete ordinate method	66	$v_h(au)$	Hydrodynamic velocity in turbulent atmosphere	464
	Time development operator	298	V	Volume	6
T(t,0)	Time-development operator for atom	301	V	Perturbation potential	86
$T_{\mathbf{A}}(t,0)$ $T_{\mathbf{P}}(t,0)$	Time-development operator for perturber	300	ν	Velocity of atmosphere in fiducial thermal velocity units, $v/v_{\rm th}^*$	449
$T_R(\nu, \mu),$			V_{i}	The ith component of total particle velocity in a gas	513
$T_R(v),$	Radiation temperature	121	V_I'	The ith component of thermal velocity of a particle in a gas	513
T_R			$\langle V_i \rangle = v_i$	The ith component of fluid (or mean flow) velocity in a gas	513
$T_{0}(t)$	Current temperature distribution in Avrett-Krook	174	V_{mn}	Matrix element of perturbation potential $\langle \phi_m^* V \phi_n \rangle$	86
	procedure	41'7	V ²	Four-velocity	542
u	Velocity in units of thermal velocity $(m/2kT)^{\frac{1}{2}}$ v	417	\mathbf{v}_{ι}	Mothin containing double application of any distance and the	
\mathbf{u}_{d} .	Discrete representation of $u(z_d, v, \mu)$ in Feautrier difference- equation solution of transfer equation	155	٧,	Matrix containing depth-variation of quadrature weights and profile functions at angle-frequency point i in Rybicki difference-equation solution of transfer equation	160
\mathbf{u}_i	Discrete representation of depth-variation of $u(z, v_i, \mu_i)$ in	1.57	V (a)	Classical interaction potential	159
	Rybicki difference-equation solution of transfer equation	157	$V_{ci}(t)$	· · · · · · · · · · · · · · · · · · ·	301
$u(z, v, \mu), u_{\nu\mu}$	Symmetric angle-average of specific intensity $\frac{1}{2}[I(\nu, +\mu) + I(\nu, -\mu)]$	152	$V'_{cl}(t)$	Canonical transformation of classical interaction potential to interaction representation	302
$u_h(\tau)$	Hydrodynamic velocity in turbulent atmosphere in units of		w	Electron-impact line width	306
\mathbf{U}_{i}	local thermal velocity $v_h(\tau)/v_{th}(\tau)$ Matrix giving depth-coupling to J at angle-frequency point	464	w	Doppler width corresponding to thermal velocity $(v_0/c)(2kT/m)^{\frac{1}{2}}$	417
0,	i in Rybicki difference-equation solution of transfer		w_k	Quadrature weight	144
	equation	159	w_1, w_2	Relative probabilities of line and continuum bands in	
U(t,0)	Time-development operator in interaction representation	302		picket-fence model	207
$U_i(r, \theta, \phi)$		0.1	W	Dilution factor	120
n, l, m, s)	Electron orbital	91	W	Matrix in final system $WJ = Q$ in Rybicki difference-	
$U_{jk}(T)$	Partition function of ionization stage j of chemical species k	111		equation solution of transfer equation	160
υ	Frequency displacement from line-center measured in	279	<i>W</i> _e	Electron distribution function	292
	Doppler widths, $(v - v_0)/\Delta v_D$	282	W_{l}	Ion distribution function	292
υ	Average relative velocity of colliding particles	7	W_{λ}, W_{ν}	Equivalent width of spectrum line	270
V	Velocity	,	W*	Reduced equivalent width, $W/2A_0\Delta v_D$	318

Glossary of Physical Symbols

600	Glossary	of Physical Symbols			Glossary of Physical Symbols	601
	W(r)	Nearest-neighbor distribution function	290	$\alpha_{ij}(v)$	Absorption cross-section at frequency v in bound-bound	
	W(t)	Energy density in electromagnetic field	8	, ,	transition $i \rightarrow j$	128
	$W(\beta)$	Field-strength distribution function	291	$\alpha_{i\kappa}(v)$	Absorption cross-section at frequency v in bound-free transition $i \to \kappa$	130
	$W(\beta, \delta)$	Field-strength distribution function allowing for shielding	202	$\alpha_{\mathrm{DR}}(T)$	Dielectronic recombination coefficient	135
		effects	293	$\alpha_{RR}(T)$	Radiative recombination coefficient	131
	$W(\xi)$	Distribution function for velocities along line-of-sight	279	$\alpha_{\kappa\kappa}(\nu)$	Free-free absorption cross-section at frequency v	165
	$W_H(\beta)$	Holtsmark field-strength distribution function	294	β	Ratio of line to continuum opacity in picket-fence model	207
$W_{\lambda}(\mu)$	$W_{\nu}(\mu)$	Equivalent width of spectrum line at angle $\cos^{-1} \mu$ from disk-center	270	β	Field strength in units of normal field strength, F/F_0	291
	x	Cartesian coordinate in horizontal direction	3	β	Velocity in units of speed of light	493
	x	Frequency displacement from line-center measured in		eta_c	Probability of penetration of core radiation to test point in	
		Doppler or damping widths	338		expanding atmosphere	478
	<i>X</i> ₂	$1/k_{\alpha}$, where k_{α} is a characteristic root	69	$\beta_{\rm v}$	Fractional departure of monochromatic opacity from	
	<u>X</u>	Minimum of absolute value of incident and scattered		o	mean value	74
		photon frequencies measured in dimensionless units from line-center	428	$oldsymbol{eta_{ extsf{v}}}$	Ratio of line opacity to continuum opacity, $\chi_l(v)/\chi_c = \chi_l \phi_v/(\kappa_c + \sigma)$	200
		Maximum of absolute value of incident and scattered	420	$eta_{ m o}$	Ratio of line to continuum opacity for line with Voigt	309
	7.	photon frequencies measured in dimensionless units from		, •	profile, $\beta_v = \beta_0 H(a, v)$, $\beta_0 = \chi_0/\chi_c$	312
		line-center	428	$\beta(r)$	Photon escape-probability in expanding atmosphere	478
	X_{α}	$x_{\alpha}^{2} = 1/k_{\alpha}^{2}$, where k_{α} is a characteristic root	69	γ	Classical damping constant	82
	$X_{\mathbf{v}}$	Generalized optical depth variable in spherical atmosphere	251	γ	Ratio of specific heats for an ideal gas	186
	X_{ν}	Contribution to opacity from (fixed) overlapping transitions	397	γ	Convective efficiency parameter	189
	X_{0}	$u_0/(1 - e^{-u_0})$, where $u_0 = (hv_0/kT)$	313	γ	Ratio of radiation force to its limiting value in diffusion	
	$X_{t}[f(t)]$	K-integral operator	41		approximation	255
	y .	Cartesian coordinate in horizontal direction	3	γ	Fraction of all emission that occurs coherently in atom's rest-frame	41.5
	Y	Ratio of abundance of helium to hydrogen by number	138	A 1	Velocity gradient $\partial V/\partial \tau$ in uniformly expanding atmosphere	415
	Y_{ij}	Net collisional bracket	132	y y	Lorentz transformation factor $(1 - v^2/c^2)^{-\frac{1}{2}}$	481 493
	$Y_l^m(\theta,\phi)$	Spherical harmonic	89	γ, γ	Ratio of monochromatic opacity to mean value or	493
	Z	Cartesian coordinate in vertical direction (normal to atmospheric layers)	3		continuum value	74
	z	Path-length along ray in extended atmosphere	247	γ,	Generalized noncoherent scattering coefficient in non-LTE source function	223
20(1	$p, x), z_0$	The z-coordinate of surface of constant radial velocity corresponding to frequency shift x	479	$\gamma(z, p)$	Coefficient of frequency-derivative in comoving-frame transfer equation using optical depth scale	504
	Z	Total geometrical thickness of finite slab	36	$\widetilde{\gamma}(z,p)$	Coefficient of frequency-derivative in comoving-frame	204
	Z	Charge number of atomic nucleus	91	7,-777	transfer equation	504
	Z_i	Ionic charge	330	Γ	Ratio of specific heats for non-ideal gas (i.e., including	
	Z_{ji}	Net radiative bracket in transition $j \rightarrow i$	129		ionization and radiation pressure effects)	186
	α	Stark shift in \mathring{A} per unit normal field strength, $\Delta \lambda/F_0$	296	Γ	Ratio of radiation force to gravity force	256
	α_k	Relative abundance of chemical species k	115	Г	Reciprocal lifetime of excited state	277
	α_{ν}	Energy absorption cross-section per atom	94	_ 	Total damping width of a line	278
	α*	Stellar angular diameter	12	Γ_{ϵ}	Ratio of radiation force from electren scattering only to	2
	$\alpha(t)$	Atomic wave function	300		gravity	256

602	Glossary o	f Physical Symbols			Glossary of Physical Symbols	603
002		Collisional damping width	282	$\Delta H(au)$	Error in integrated Eddington flux in Unsöld-Lucy	64
	Γ_c	Reciprocal mean lifetime of lower and upper states of			procedure	173
	Γ_L , Γ_U	transition $L \leftrightarrow U$	277	$\Delta T(m)$	Temperature perturbation at depth (column mass) m	327
	Γ_{R}	Radiative damping width	282	$\Delta heta$	Difference in θ_{exc} between Sun and a star	279
	Γw	Collisional damping width in Weisskopf theory	283	Δν	Frequency shift arising from Doppler effect	112
	Γ3	Resonance damping width	287	Δχ	Lowering of ionization potential	276
	Γ ₆	Van der Waals damping width	326	$\Delta \lambda_{\epsilon}$	Classical damping width in wavelength units	2.0
	$\Gamma_{tt}(T)$	Secondary temperature-dependent factor for collision rates	133	$\Delta \lambda_W$	Wavelength shift produced by perturber located at Weisskopf radius	296
δ , δ_L ,	$\delta_U, \delta_R, \delta_C$	Reduced damping widths, $\Gamma/2$ in circular frequency units, $\Gamma/4\pi$ in ordinary frequency units	277	$\Delta v_{ m D}$	Doppler width in frequency units	279
	•	Number of perturbers in Debye sphere	294	$\Delta v_{\mathrm{D}}^{*}$	Fiducial Doppler width	449
	$\delta \ \delta$	Ratio of continuum to total opacity averaged over line	351	$\Delta \tau_{d+\frac{1}{2}}$	Optical depth increment between mesh-points d and $d + 1$ in difference-equation solution of transfer equation	154
	δN , δN_d	profile Perturbation of total number density (at depth-point d) in	118	$\Delta \omega_{g}$	Frequency shift from line-center at boundary between impact and statistical-broadening regimes	289
	δT , δT_a	linearization procedure Perturbation of temperature (at depth-point d) in		$\Delta\omega_{w}$	Frequency shift produced by perturber located at Weisskopf radius	289
	v., v.,	linearization procedure	118	$\Delta\omega_0$	Line shift in Lindholm theory	285
	δN	Perturbation of total number density distribution in	184	$\Delta\omega_0$ $\Delta\omega_0$	Normal frequency shift	290
	δТ	linearization method Perturbation of temperature distribution in linearization	184	$\Delta\omega(t)$	Instantaneous frequency shift induced by collision with perturber	283
		method	14	3	Electric permittivity	7
	δ_{ij}	Kronecker δ-symbol	14	ε ε	Fraction of line emission that is thermal (classical theory)	35
δ	Sne, Sne,d	Perturbation of electron density (at depth-point d) in linearization procedure	117	ε, ε'	Collisional thermalization parameter in non-LTE source function	337
δ	$\begin{cases} n_i, & \delta n_{i,d}, \\ \delta n_d \end{cases}$	Perturbation of level-populations (at depth-point d) in linearization procedure	118	$\epsilon_{ m v}$	Generalized thermal emission parameter in non-LTE source function	223
	$\delta J_{\rm v}, \delta J_{\rm dn}$	Perturbation of mean intensity (at depth-point d) in linearization procedure	143	ट	Thermalization parameter in schematic Lyman continuum	224
	δJ_k	Perturbation of depth-variation of mean intensity	104		problem Non-LTE source function parameter	226
		(at frequency v_k) in linearization procedure	184	ζ_v , ζ_k	Photoionization coupling parameter in non-LTE source	
	$\delta(x)$	Dirac delta-function	8	η	function	359
	$\delta(z)$	Ratio of Doppler width to fiducial Doppler width,	449	no	Critical phase shift in Weisskopf theory	283
		$\Delta v_D(z)/\Delta v_D^*$ Perturbation of mass density (at depth-point d) in		n'	Phase change in time-interval ds	284
	$\delta \rho$, $\delta \rho_d$	linearization procedure	183	$\eta(t)$	Instantaneous phase shift induced by collision with perturber	283
	$\delta\eta_{v}$, $\delta\eta_{dn}$	Perturbation of emissivity (at depth d , frequency v_n) in linearization procedure	183	$\eta(t, s)$	Change in phase in time interval $(t, t + s)$	284
	$\delta\chi_{v}$, $\delta\chi_{dn}$	Perturbation of opacity (at depth d , frequency v_n) in linearization procedure	183	$ \eta(\mathbf{r}, \mathbf{v}, t), \\ \eta(\mathbf{z}, \mathbf{v}, t), \} $	Emission coefficient	25
	δχ,	Change in opacity produced by departures from LTE	219	$\eta(2, \mathbf{v}, t)$	**************************************	
	$\delta \psi_d$	Perturbation of solution vector in complete linearization method	231	$\eta(\infty), \eta(\rho)$	Total phase shift produced in collision with perturber at impact parameter ρ	283
	$\Delta B(\tau)$	Correction to integrated Planck function at depth τ in Unsöld-Lucy procedure	63	$\eta^{t}(\mathbf{r}, \mathbf{v}, t), \eta^{t}(\mathbf{v})$	Thermal emission coefficient	26

Glossary of Physical Symbols 604 $\eta^{s}(\mathbf{r}, v, t), \quad \eta^{s}(v)$ Scattering emission coefficient $\eta^*(\mathbf{r}, v, t)$ Thermodynamic equilibrium value of emission coefficient η*(v) 5040/T θ θ normal to atmosphere layers

26 322 Polar angle between direction of pencil of radiation and 3 Recombination source term in non-LTE source function 359 213 Excitation temperature parameter deduced from curve of $\theta_{\rm exc}$ 322 growth, $5040/T_{\rm exc}$ Unit vector in direction of change in polar angle for Ô orthogonal spherical coordinate system 16 3 Θ Polar angle of a point on a spherical surface Angle between incident and scattered photons 416 Θ 517 Thermal conductivity κ Continuum absorption coefficient 205 60 Absorption-mean opacity Ŗ, 59 Planck mean opacity ĸ, $\kappa(\mathbf{r}, \nu, t),$ Absorption ("true") coefficient 24 $\kappa(z, v, t)$ κ, Thermodynamic equilibrium value of "true" absorption $\kappa^*(\mathbf{r}, \nu, t),$ 26 coefficient $\kappa^*(v)$

28

65

89

2

22

99

λ	Wayelength	8
X	De Broglie wavelength	300
λţ	Ratio of true absorption to total opacity $\kappa_{\nu}/(\kappa_{\nu} + \sigma_{\nu}) = (1 - \rho_{\nu})$	148
λ,	Fraction of total emission that is thermal in classical line-	
•	formation theory $[(1 - \rho) + \varepsilon \beta_v]/(1 + \beta_v)$	309
٨	Thermalization depth	335
Λ_{I}	Discrete matrix representation of Λ -operator at (v_i, μ_i)	160
$\Lambda_{i}[f(t)]$	Lambda (mean-intensity) operator	41
μ, μ'	$\cos \theta$ (cosine of polar angle of pencil of radiation)	3
μ	Magnetic permeability	7
μ	Number of atomic mass units per free particle in a gas	519

Angle-point in discrete-ordinate method

Frequency associated with transition $i \rightarrow j$

Threshold frequency for ionization from nth state of

Reduced mass of hydrogen atom

Frequency

hydrogen

 μ_l

 $\mu_{\rm H}$

 v_{ij}

 v_n

ν, ν'

v_0	Threshold frequency for continuum absorption	123
v_0	Line-center frequency	278
<u>v</u>	Minimum of incident and scattered photon frequencies	426
\overline{v}	Maximum of incident and scattered photon frequencies	426
v_d	Auxiliary vector used in developing Feautrier difference- equation solution of transfer equation	156
ξ	Line-of-sight velocity	279
ξ, ξ'	Photon frequency in atom's rest frame	412
$\xi_{ m therm}$	Most probable line-of-sight thermal speed at temperature $T_{\rm exc}$ deduced from curve of growth	323
ξ_{turb}	Most probable line-of-sight speed of small-scale "turbulent" mass motions in atmosphere	323
ξ,	Photon destruction probability at frequency x from line center	350
ξ,, ξ,	Non-LTE source function parameter	225
ξo	Most probable line-of-sight velocity	279
ξ	Average photon destruction probability in a line	351
$\pi(t)$	Perturber wave function	300
П	Gas pressure tensor	516
Π_{ij}	The ijth component of gas pressure tensor	514
Π_{ij}^{k}	The ij th component of partial pressure tensor for particle species k in a gas	514
ρ	Charge density	7
ρ	Mass density	170
ρ	Impact parameter in collision	283
ρ_j	Density matrix element	298
ρ_{A}	Density matrix for atomic states	301
$ ho_{ extsf{P}}$	Density matrix for perturber states	301
$\rho_{\scriptscriptstyle W}$	Weisskopf radius	283
$ ho_{ m v}$	Ratio of scattering coefficient to opacity, $\sigma_{\nu}/(\kappa_{\nu} + \sigma_{\nu}) = (1 - \lambda_{\nu})$	43
$ ho_0$	Effective impact parameter for collision-broadening	283
$ ho_0$	Invariant mass density	542
$ ho_{00}$	Equivalent mass density of invariant mass density plus internal energy of fluid	542
$ ho_{000}$	Equivalent mass density of invariant mass density plus enthalpy of fluid	542
σ	Continuum scattering coefficient	309
σ_{e}	Thomson scattering cross-section for free electrons	106
$\sigma_{ m tot}$	Total scattering cross-section	84
σ_I	Imaginary part of collision integral	285
σ_R	Stefan-Boltzmann constant	12

Glossary of Physical Symbols

σ_R	Real part of collision integral	285
$\sigma(\mathbf{r}, v, t),$		
$\sigma(z, v, t),$	Scattering coefficient	24
σ_{v}		
$\sigma_{ij}(v)$	Cross-section for transition $i \rightarrow j$ induced by collisions with electrons of velocity v	132
τ	Mean time between collisions	282
τ	Proper time	542
τ_c	Continuum optical depth	271
τ_e	Optical thickness of convective element	189
τ_l	Static line optical depth	453
t_s	Effective impact time	288
$\overline{\tau}_R$	Rosseland mean optical depth	58
τ_1	Optical-depth perturbation in Avrett-Krook method	174
₹	Mean optical depth	56
$\tau(\mathbf{r}, \nu),$		
$\tau(z, \nu),$	Monochromatic optical depth	34
τ,		
$\tau_0(r_0)$	Line-of-sight optical depth through uniformly expanding envelope in Sobolev theory	479
φ	Azimuthal angle of pencil of radiation around normal to atmospheric layers	3
φ	Scalar potential	7
φ	Ratio of Paschen jump to Balmer jump, D_p/D_B	236
ф	Unit vector in direction of change in azimuthal angle for orthogonal spherical coordinate system	16
$\phi(s)$	Reduced autocorrelation function	284
$\phi(v), \phi_v$	Line absorption profile	27
$\phi_i(\mathbf{r})$	Time-independent wave function of atomic state i	85
Φ	Azimuthal angle of a point on a spherical surface	3
Φ_{ab}	Matrix element describing broadening of spectrum line $a \rightarrow b$	302
Φ_v	Continuum photon-absorption rate coefficient, 4πα _ν /hν	223
$\Phi(s)$	Autocorrelation function	275
$\Phi(x)$	$\int_{-\infty}^{x} \phi(x) dx$	479
$\Phi_{ijk}(T)$	Saha-Boltzmann factor of excitation state i of ionization stage j of chemical species k relative to ground-state population of ionization stage $j + 1$, $n_{ijk}^{*} = n_e n_{0, j+1, k} \Phi_{ijk}$	113
$ ilde{\Phi}_{ijk}(T)$	Saha-Boltzmann factor of excitation state i of ionization stage j of chemical species k relative to total number	
A ()	density in ionization stage $j + 1$, $n_{ijk}^* = n_e N_{jk} \tilde{\Phi}_{ijk}$	113
$\Phi_{\mathbf{v}}(\mu)$	Limb-darkening function	262

$\Phi_{\mathbf{r}}[f(t)]$	Phi (flux) operator	41
χε	Opacity in continuum	35
Χij	Line opacity in transition $i \to j$, $\chi_l(v) = \chi_{lj}\phi_v$	316
Xıjk	Excitation potential of state i , relative to ground state, of ionization stage j of chemical species k	110
Xion, XI	Ionization potential	94
₹	Mean opacity	56
₹c	Chandrasekhar mean opacity	74
χ̃F	Flux-weighted mean opacity	57
ŽR	Rosseland mean opacity	58
χο (, , , ,)	Line opacity assuming a Voigt profile, $\chi_l(v) = \chi_0 H(a, v)$, $\chi_0 = \chi_{lj}/(\pi^{\frac{1}{2}} \Delta v_D)$	317
$\chi(\mathbf{r}, v, t),$	Fusingston and Colons and also seed also well as a first	22
$\chi(z, v, t),$	Extinction coefficient, opacity, total absorption coefficient	23
χ _ν) χ _ι (ν), χ _ι	Line opacity	35
χ _ι (ν), χ _ι Ψ _m	Numerical factor in expression for total phase shift	283
Ψ _P Ψ _A	Solution vector at depth-point d in complete linearization	203
Ψ2	method	230
$\psi(\mathbf{r}_1,\ldots,\mathbf{r}_N)$	Wave function of N-electron atom	84
$\psi(v), \psi_v$	Line emission profile	27
$\psi_t(\mathbf{r}, t)$	Time-dependent wave function of atomic state i	85
$\psi^*(v)$	Natural-excitation line emission profile	29
ω	Solid angle	. 3
ω	Circular frequency	8
ω_{mn}	Circular frequency associated with transition $m \rightarrow n$	86
ω_{v}	Ratio of line emission profile to absorption profile, ψ_{ν}/ϕ_{ν}	437
ω_0	Resonant frequency of an oscillator	82
ω_{0}	Line-center frequency	276
∇ , ∇_E	Logarithmic temperature-pressure gradient in ambient atmosphere and convective elements	187
$\nabla_{\mathbf{A}}, \nabla_{\mathbf{R}}$	Adiabatic and radiative logarithmic temperature-pressure gradient	186
∇_p	Gradient with respect to momentum coordinates	33
⊕	Earth symbol	524
0	Sun symbol	171
∮	Integral over all solid angles	5