IT4371: Distributed Systems Spring 2016

Overview and Introduction

Dr. Nguyen Binh Minh

Department of Information Systems
School of Information and Communication Technology
Hanoi University of Science and Technology

Why should you Study Distributed Systems?

Application Domain	Associated Networked Application
Finance and commerce	eCommerce e.g. Amazon and eBay, PayPal, online banking and trading
The information society	Web information and search engines, ebooks, Wikipedia; social networking: Facebook and MySpace.
Creative industries and entertainment	online gaming, music and film in the home, user-generated content, e.g. YouTube, Flickr
Healthcare	health informatics, on online patient records, monitoring patients
Education	e-learning, virtual learning environments; distance learning
Transport and logistics	GPS in route finding systems, map services: Google Maps, Google Earth
Science	The Grid as an enabling technology for collaboration between scientists
Environmental management	sensor technology to monitor earthquakes, floods or tsunamis

Definition of a Distributed System

Why Distributed Systems?

Scale

- Processing
- Data

Diversity in Application Domains

Collaboration

Cost

Why Distributed Systems?

- A. Big data continues to grow:
 - In mid-2010, the information universe carried 1.2 zettabytes and 2020 predictions expect nearly 44 times more at 35 zettabytes coming our way.
- B. Applications are becoming data-intensive.

- **C.** Individual computers have limited resources compared to scale of current day problems & application domains:
 - 1. Caches and Memory:

Blade Performance

7

- 2. Hard Disk Drive:
- Limited capacity
- Limited number of channels
- Limited bandwidth

Why Distributed Systems?

- 3. Processor:
- The number of transistors that can be integrated on a single die has continued to grow at Moore's pace.
- Chip Multiprocessors (CMPs) are now available

- Processor (cont'd):
- Up until a few years ago, CPU speed grew at the rate of 55% annually, while the memory speed grew at the rate of only 7% [HP report].

Why Distributed Systems?

 Even if 100s or 1000s of cores are placed on a CMP, it is a challenge to deliver input data to these cores fast enough for processing.

Requirements

- But this requires:
 - A way to express the problem as parallel processes and execute them on different machines (Programming Models and Concurrency).
 - A way for processes on different machines to exchange information (Communication).
 - A way for processes to cooperate, synchronize with one another and agree on shared values (Synchronization).
 - A way to enhance reliability and improve performance (Consistency and Replication).

Requirements

- But this requires (Cont.):
 - A way to recover from partial failures (Fault Tolerance).
 - A way to secure communication and ensure that a process gets only those access rights it is entitled to (Security).

Course Objectives

Obligatory Assessments

- Obligatory project : for group of students (max. 3 students/group)
 - o 4 topics
- Final exam (70%)

Assignment Register Links

- Project (Obligatory)
- o Register Deadline: before 12 PM, Feb 18, 2016
- Link: https://goo.gl/bWjDtS
- O Defense: on 14th and 15th week

Text Books

The primary textbooks for this course are:

- Andrew S. Tannenbaum and Maarten Van Steen, Distributed Systems: Principles and Paradigms, 2nd E. Pearson, 2007.
- George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair, Distributed Systems: Concepts and Design, 5th E, Addison Wesley, 2011
- James E. Smith, and Ravi Nair, Virtual Machines: Versatile Platforms for Systems and Processes, 1st E, Morgan Kaufmann, 2005.

Reference Book:

4. Tom white, *Hadoop: The Definitive Guide*, 2nd E, O'Reilly Media, 2011

email: minhnb@soict.hust.edu.vn

Q&A