Recall Pascal's Formula

$$\mathbf{t}_{n,r} = \mathbf{t}_{n-1, r-1} + \mathbf{t}_{n-1, r}$$

Pascal's Formula - Combination version

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$

The visual "proof" is within Pascal's triangle

Looking at the terms in Pascal's Triangle again:

$$\begin{pmatrix}
1 \\
0
\end{pmatrix} 1$$

$$\begin{pmatrix}
1 \\
0
\end{pmatrix} 1$$

$$\begin{pmatrix}
1 \\
1
\end{pmatrix} 1$$

$$\begin{pmatrix}
2 \\
0
\end{pmatrix} 1$$

$$\begin{pmatrix}
2 \\
1
\end{pmatrix} 2$$

$$\begin{pmatrix}
2 \\
1
\end{pmatrix} 2$$

$$\begin{pmatrix}
2 \\
2
\end{pmatrix} 1$$

$$\begin{pmatrix}
3 \\
0
\end{pmatrix} 1$$

$$\begin{pmatrix}
3 \\
1
\end{pmatrix} 3$$

$$\begin{pmatrix}
3 \\
1
\end{pmatrix} 3$$

$$\begin{pmatrix}
4 \\
4
\end{pmatrix} 1$$

$$\begin{pmatrix}
4 \\
1
\end{pmatrix} 4$$

$$\begin{pmatrix}
4 \\
2
\end{pmatrix} 6$$

$$\begin{pmatrix}
4 \\
3
\end{pmatrix} 4$$

$$\begin{pmatrix}
4 \\
4
\end{pmatrix} 1$$

The terms correspond to Pascal's triangle!

Wow! ^ ^

Using combinations we can quickly find ANY term in Pascal's Triangle.

Ex: Re-write each as an equivalent expression using Pascal's Formula. Then verify the result.

(a)
$$\begin{pmatrix} 17 \\ 2 \end{pmatrix}$$

(b)
$$\binom{13}{5} + \binom{13}{6}$$

(c)
$$\binom{20}{6}$$
 - $\binom{19}{6}$

The Binomial Theorem:

Provides a nice connection between expanding binomials, combinations, and Pascal's Triangle

$$(a+b)^{n} = \binom{n}{0} a^{n} b^{0} + \binom{n}{1} a^{n-1} b^{1} + \dots + \binom{n}{r} a^{n-r} b^{r} + \dots + \binom{n}{n} a^{0} b^{n}$$

- For the nth power of the binomial, the coefficients represent the nth row of Pascal's triangle.
- This provides an easy method to expand higher power binomials.

 $\underline{\underline{Ex:}}$ State the value the exponent k in the binomial expansion of (a + b)

a) **a**3**b**k

b) akb2

c) ak+1 bk

 $\underline{\underline{Ex:}}$ State the coefficient for the following terms in the expansion of $(a + b)^1$

a) a9b2

b) a3b8

c) a_{11-r} b^r

Alternatively, we can write the BT as:

$$(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r} b^r$$

 \sum represents the "sum of" all the terms in the expansion

r is a value ranging between 0 to n $(0 \le r \le n)$

Ex: Expand $(5x + y)^4$ using the BT.

 $(a+b)^n = \binom{n}{0} a^n b^0 + \binom{n}{1} a^{n-1} b^1 + \dots + \binom{n}{r} a^{n-r} b^r + \dots + \binom{n}{n} a^0 b^n$

Ex: Expand the 4th to 7th terms of $(3x^2 - 2y)^9$ using the BT.

Factor the expression
1+10x ² +40x ⁴ +80x ⁶ +80x ⁸ +32x ¹⁰