Data Mining

Community Detection

Dr. Hanna Köpcke Wintersemester 2020

Abteilung Datenbanken, Universität Leipzig http://dbs.uni-leipzig.de

Übersicht

Inhaltsverzeichnis

- Einführung
- Dreiecke zählen
- Community Detection
 - Girvan-Newman Algorithmus
 - Spectral Clustering

Graphen

- Graphen bestehen aus Knoten und Kanten
- Graphen sind entweder gerichtet oder ungerichtet
 - Gerichtet: Kanten haben Richtung (z.B. Follower-Netzwerk von Twitter)
 - Ungerichtet: Kanten ohne Richtung (z.B. Freundschaften auf Facebook)

Soziale Graphen

- Knoten repräsentieren Akteure (insb. Personen und Gruppen)
- Kanten repräsentieren eine Beziehung zwischen Akteuren, z.B. Freundschaft, Kommunikation, Mitgliedschaft, ...
- Häufige Beobachtung: Small-World-Phänomen
 - Geringe durchschnittliche Distanz und
 - Gruppierungen

Data Mining

Transitivität

- Wenn eine Kante zwischen x und y und eine Kante zwischen y und z existiert, dann ist die Existenz einer Kante zwischen x und z wahrscheinlicher als in einem Zufallsgraph
 - Sei m die Anzahl der Kanten und n die Anzahl der Knoten
 - Ungerichteter Zufallsgraph: Wahrscheinlichkeit, dass eine bestimmte Kante existiert, ist $\frac{m}{\binom{n}{2}}$
- Erweiterung: Die Wahrscheinlichkeit der Existenz einer Kante zwischen x und z ist umso höher, je mehr gemeinsame Kontakte x und z haben

Inhaltsverzeichnis

- Einführung
- Dreiecke zählen
- Community Detection
 - Girvan-Newman Algorithmus
 - Spectral Clustering

Dreiecke zählen

- Dreieck: Vollständig verbundene 3-elementige Untermenge der Knoten
- Erwartete Anzahl der Dreiecke in Zufallsgraph: ca. $\frac{4}{3} \left(\frac{m}{n} \right)^3$
- Höhere Anzahl an Dreiecken ist Indikator für soziales Netzwerk
- Annahmen
 - Prüfung auf Existenz einer Kante in O(1)
 - Sei d_i die Anzahl der Kanten, die von einem Knoten i ausgehen (*Grad des Knotens*), dann können alle benachbarten Knoten dieses Knotens in $O(d_i)$ ermittelt werden
- 1. Ansatz: Prüfe alle 3-elementigen Mengen von Knoten auf die Existenz eines Dreiecks $O(n^3)$
- 2. Ansatz: Prüfe alle Kanten e und alle Knoten u, ob zwischen den beiden Enden von e und u jeweils eine Kante besteht O(nm)
- Effizientere Methode?

Heavy Hitters

- Heavy Hitter = Knoten mit mindestens \sqrt{m} Kanten (Grad $d_i \ge \sqrt{m}$)
- Es kann nicht mehr als $2\sqrt{m}$ Heavy Hitters in einem Graphen geben, da Summe aller Grade $\sum_i d_i = 2m$
- 1. Schritt:
 - Zähle alle Dreiecke, die in Mengen aus 3 Heavy Hitters vorkommen
 - $O((2\sqrt{m})^3) = O(m^{1.5})$
- 2. Schritt (Dreiecke mit maximal 2 Heavy Hitters)
 - Betrachte jede Kante mit den Knoten u und v wobei $d_v \ge d_u$
 - Ignoriere Kante, falls beide Enden Heavy Hitters
 - Sonst: Betrachte alle (max. $\sqrt{m}-1$) Kanten von u und zähle, wie viele der anderen Enden mit v verbunden sind
 - $O(m\sqrt{m}) = O(m^{1.5})$
- $O(m^{1.5}) \le O(n^3)$ und $O(m^{1.5}) \le O(nm)$

Verteilte Berechnung in sehr großen Graphen

- Hash-Funktion auf Knoten h:V→{1, ..., b}
- Insgesamt $\binom{b}{3}$ Reducer, die jeweils für eine Menge $\{x,y,z\}$ zuständig sind $(x,y,z) \in \{1,\ldots,b\}$
- Mapper: Für jede Kante (u,v), Mapping auf Schlüssel {h(u), h(v), z} für alle z ∈ {1, ..., b}
- Replikations rate r = b
- Jeder Reducer bekommt ca. $\frac{m \cdot b}{{b \choose 3}} \approx \frac{6m}{b^2}$ Kanten
- Algorithmus mit Heavy Hitters: $O\left(\frac{m^{1.5}}{b^3}\right)$
- Nachteil: Berechnungszeit der Mapper und Kommunikationskosten

Data Mining

Inhaltsverzeichnis

- Einführung
- Dreiecke zählen
- Community Detection
 - Girvan-Newman Algorithmus
 - Spectral Clustering

Community Detection

Suche nach Mengen von Knoten mit einer hohen Dichte an Kanten

Girvan-Newman Algorithmus

- Edge-Betweenness eine Kante e:
 - Anzahl aller kürzesten Pfade des Graphen, welche e enthalten
 - Bei mehreren (m) kürzesten Pfaden zwischen 2 Knoten wird der Anteil 1/m addiert

- Girvan-Newman-Algorithmus (ungerichteter Graph):
 - Wiederhole bis gewünschte Anzahl an Cluster erreicht
 - Berechne Edge-Betweenness aller Kanten
 - Entferne Kante mit maximaler Edge-Betweenness
 - Verbundene Komponenten sind Cluster
 - Hierarchische Zerlegung der Graph

Girvan-Newman: Beispiel

Girvan-Newman: Beispiel

Schritt 1:

Schritt 2:

Schritt 3:

Hierarchische Zerlegung:

Berechnung der Edge-Betweenness

 Sortierung der Knoten über Breitensuche (Breath-first Search), ausgehend von einem Knoten A

Berechnung der Edge-Betweenness

- 2. Berechnung der Anzahl der kürzesten Pfade mit Knoten A als Anfang:
 - Wurzelknoten bekommt die Zahl 1 als Beschriftung
 - Anzahl der kürzesten Pfade zu einem Knoten = Summe der Beschriftungen der direkten Vorgängerknoten

Berechnung der Edge-Betweenness

- 3. Berechnung des **Flow** aller Knoten und Kanten
 - Beginne auf untersten Stufe (Knoten K)
 - Flow eines Knotens: 1 + (Summe des Flow aller nachfolgenden Kanten)

Aufteilung des Flow über alle vorherigen Kanten, anteilig nach den Beschriftungen

Data Mining

Optimale Anzahl an Cluster

- Cluster = Menge von Knoten mit einer hohen Dichte an Kanten
- Definition: Modularität **Q** (ungerichteter Graph)
 - Maß für die Güte einer Partitionierung eines Graphen in Cluster
 - Gegeben einer Partitionierung S:

$$Q(S) = \sum_{\text{Cluster } i \in S} \left[\frac{o_{ii}}{2} - e_i^2 \right]$$

- $a_{vw}=1$, falls eine Kante zwischen v und w existiert und $a_{vw}=0$, falls keine Kante existiert; d.h. $a_{vw}=a_{wv}$
- $o_{ij} = \frac{1}{m} \sum_{v \in i, w \in j} a_{vw}$
 - Mit $i \neq j$: o_{ij} ist Anteil der Kanten mit einem Ende in i und dem anderen Ende in j
 - Außerdem: $\frac{o_{ii}}{2}$ ist die Anteil der Kanten innerhalb i
- $-e_i = \frac{1}{2}\sum_j o_{ij}$ bezeichnet den Anteil der Kanten**enden** mit Ursprung in i
- d.h. e_i^2 ist der (in einem Zufallsnetzwerk) erwartete Anteil der Kanten innerhalb i

Modularität

$$- o_{12} = o_{21} = \frac{2}{13}, o_{23} = o_{32} = \frac{2}{13}, o_{24} = o_{42} = \frac{1}{13}$$

$$-o_{11} = \frac{2}{13}, o_{22} = \frac{12}{13}, o_{33} = \frac{2}{13}, o_{44} = 0$$

$$-e_1 = \frac{4}{26}, e_2 = \frac{17}{26}, e_3 = \frac{4}{26}, e_4 = \frac{1}{26}$$

$$-Q = \frac{1}{13} - \frac{4}{169} + \frac{6}{13} - \frac{289}{676} + \frac{1}{13} - \frac{4}{169} + 0 - \frac{1}{676} = 0.14$$

- Q liegt im Intervall [-1, 1]
 - Q > 0 falls Anzahl der tatsächlichen Kanten innerhalb der Cluster die erwartete
 Anzahl in einem Zufallsgraph überschreitet
 - Falls Q > 0.3 spricht man von einer Clusterstruktur
- Bei Girwan-Newman: Verwendung der Modularität um optimale Partitionierung in Cluster zu wählen
- Alternative: Verwendung der Modularität um Partitionierung zu finden (z.B. Louvain Methode)

Inhaltsverzeichnis

- Einführung
- Dreiecke zählen
- Community Detection
 - Girvan-Newman Algorithmus
 - Spectral Clustering

Graphpartitionierung

- Finden einer Partitionierung mit hoher Modularität
 - Maximiere die Anzahl der Kanten innerhalb der Gruppen
 - Minimiere die Anzahl der Kanten zwischen den Gruppen

Einfacheres Maß für die Güte einer Partitionierung bei nur zwei Gruppen:
 Anzahl der Kanten zwischen den Gruppen (Graph Cut)

Graph Cut

Kriterium: Minimaler Cut

$$arg min_{A,B} cut(A,B)$$

 Problem: Keine Berücksichtigung der Kantendichte innerhalb der Cluster bzw. der Größe der Cluster

Alternative: Normalisierter Cut

$$ncut(A,B) = \frac{cut(A,B)}{vol(A)} + \frac{cut(A,B)}{vol(B)}$$

- Verbundenheit zwischen den Clustern relativ zu der Dichte der einzelnen Cluster
- $vol(A) = \sum_{i \in A} d_i$ (Summe der Grade aller Knoten des Clusters)

Spectral Graph Partitioning

- Wie kann eine Aufteilung mit minimalem normalisierten Cut effizient identifiziert werden?
- Matrixrepräsentation $\mathbf{M}(n \times n)$ eines Graphen, wobei n die Anzahl der Knoten im Graphen
- Eigenvektoren $\mathbf{x} = (x_1, ..., x_n)^T$:

$$\mathbf{M} \cdot \mathbf{x} = \lambda \cdot \mathbf{x}$$

- **Spektrum**: zu den Eigenvektoren x_i gehörige Eigenwerte λ_i : $\Lambda = \{\lambda_1, \dots, \lambda_n\}$ mit $\lambda_1 \leq \dots \leq \lambda_n$
- Spectral Graph Theory: Analyse des "Spektrums" der Matrixrepräsentation eines Graphen

Matrixrepräsentation eines Graphen

Adjazenzmatrix A

	1	2	3	4	5	6
1	0	1	1	0	1	0
2	1	0	1	0	0	0
3	1	1	0	1	0	0
4	0	0	1	0	1	1
5	1	0	0	1	0	1
6	0	0	0	1	1	0

Gradmatrix D

	1	2	3	4	5	6
1	3	0	0	0	0	0
2	0	2	0	0	0	0
3	0	0	3	0	0	0
4	0	0	0	3	0	0
5	0	0	0	0	3	0
6	0	0	0	0	0	2

Matrixrepräsentation eines Graphen

• Laplace-Matrix L = D - A

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

• Eigenschaft: Laplace-Matrix ist **positive semi-definite**:

$$x^T L x = x^T D x - x^T A x = \sum_{i=1}^n d_i x_i^2 - \sum_{\{i,j\} \in E} 2x_i x_j = \sum_{\{i,j\} \in E} \left(x_i - x_j\right)^2 \ge 0$$

- E ist Menge der Kanten
- D.h. Eigenwerte sind nicht-negative reelle Zahlen

Data Mining

Der zweitkleinste Eigenwert λ_2

• Erster Eigenvektor von L (mit kleinstem Eigenwert): $x = (1, ..., 1)^T$:

$$L \cdot x = 0$$
 und $\lambda = \lambda_1 = 0$

• Satz: Unter der Bedingung $x^Tx = 1$ und x orthogonal zum ersten Eigenvektor gilt für den zweitkleinsten Eigenwert von L

$$\lambda_2 = \min_{x} x^T L x = \min_{x} \sum_{\{i,j\} \in E} (x_i - x_j)^2$$

- Der Vektor x ist der zugehörige Eigenvektor
- Intuition:
 - Minimiere $x^T L x$: Wähle x_i und x_j nahe beieinander, falls $\{i, j\} \in E$
 - Da x orthogonal zu erstem Eigenvektor (1, ..., 1), muss $\sum_{i=1}^{n} x_i = 0$ gelten
 - Es müssen also sowohl positive als auch negative Werte in x vorkommen
- Idee: Einteilung der Knoten mit $x_i > 0$ in Cluster X und alle Knoten mit $x_i < 0$ in Cluster Y

Data Mining

Spectral Partitioning

 Vorbehandlung: Erstellung der Laplace-Matrix

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

2. Aufspaltung

- Berechne Eigenwerte und Eigenvektoren
- Verwende zweiten Eigenvektor um die Knoten zwei Clustern zuzuordnen
 - Einfach: Aufteilung an der 0
 - Komplex: Aufteilung an Schwellenwert, so dass normalisierter Cut minimal

0.4	0.3	-0.5	-0.2	-0.4	-0.5
0.4	0.6	0.4	-0.4	0.4	0.0
0.4	0.3	0.1	0.6	-0.4	0.5
0.4	-0.3	0.1	0.6	0.4	-0.5
0.4	-0.3	-0.5	-0.2	0.4	0.5
0.4	-0.6	0.4	-0.4	-0.4	0.0

1	0.3
2	0.6
3	0.3
4	-0.3
5	-0.3
6	-0.6

1	0.3
2	0.6
3	0.3

4	-0.3
5	-0.3
6	-0.6

Aufteilung an der 0

Beispiel: Spectral Partitioning

Beispiel: Spectral Partitioning

Beispiel: Spectral Partitioning

Kombination mehrerer Eigenvektoren um Graph in mehr als zwei Cluster zu partitionieren bzw. den normalisierten Cut zu minimieren