1. (a)
$$(r+1)^3 - (r-1)^3 = (r^3 + 3r^2 + 3r + 1) - (r^3 - 3r^2 + 3r - 1)$$

= $6r^2 + 2$

(b)
$$\sum_{r=1}^{n} (6r^2 + 2) = 2^3 - 0^3$$
 (attempt to use an identity)

$$= 3^{3} - 1^{3}$$

$$4^{3} - 2^{3}$$
.

$$(n-1)^3 - (n-3)^3$$

$$n^3 - (n-2)^3$$

$$(n+1)^3 - (n-1)^3$$

= $(n+1)^3 + n^3 - 1^3$

$$6\sum_{r=1}^{n} r^2 = (n+1)^3 + n^3 - 1 - \underline{2n}$$
 2n or equiv.

$$= 2n^3 + 3n^2 + n$$

$$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(2n+1)(n+1)$$
(*) Sub. $\Sigma 2$ and $\div 6$ or equiv. c.s.o.

2. (a) IF =
$$e^{\int 1 + \frac{3}{x} dx}$$

= $e^{x+3\ln x}$
= $e^x e^{\ln x^3}$ must see
= $\frac{x^3 e^x}{2}$

(b)
$$x^3 e^x y = \int x^3 e^x \frac{1}{x^2} dx$$

 $= \int x e^x$
 $= x e^x - e^x + c \int by parts$
 $y = \frac{1}{x^2} - \frac{1}{x^3} + \frac{c}{x^3} e^{-x}$ o.e.

M1

A1

(c)
$$I = ce^{-1} : c = e^1$$
 M1

$$y = \frac{1}{4} - \frac{1}{8} + \frac{e \cdot e^{-2}}{8}$$
$$= \frac{1}{2} (1 + e^{-1})$$

$$= \frac{\frac{1}{8}(1 + e^{-1})}{\text{or} = 0.171}$$

differences (must see)

3

3. (a)

(b)
$$6-2x = (x-2)(x-4)$$
 and $-6+2x = (x-2)(x-4)$ M1, M1
 $x^2-4x+2=0$ $x^2-8x+14=0$ either M1
 $x = \frac{4 \pm \sqrt{16-8}}{2}$ $x = \frac{8 \pm \sqrt{64-56}}{2}$ $x = 4-\sqrt{2}$ A1, A1 5

(c)
$$2 - \sqrt{2} < x < 4 - \sqrt{2}$$
 M1, A1 2 [11]

4. (a)
$$m^2 + 4m \pm \sqrt{3} = 40$$

 $m = \frac{1}{2}$

$$= -2 \pm i$$

$$y = e^{-2x} (A\cos x \pm B\sin x)$$
M1

M1

A1

PI =
$$\lambda \sin 2x + \mu \cos 2x$$
 PI & attempt diff. M1
 $y' = 2\lambda \cos 2x - 2\mu \sin 2x$
 $y'' = -4\lambda \sin 2x - 4\mu \cos 2x$ A1

$$\therefore -4\lambda - 8\mu + 5\lambda = 65$$

$$-4\mu + 8\lambda + 5\mu = 0$$
subst in eqn. & equate

$$-4\mu + 8\lambda + 5\mu = 0$$
 subst. in eqn. & equate M1 $\lambda - 8\mu = 65$

$$8\lambda + \mu = 0$$
 solving sim. eqn. M1

$$64\lambda + 8\mu = 0$$

$$65\lambda = 65$$

$$\lambda = 1, \ \mu = -8$$

$$\therefore y = e^{-2x}(A\cos x + B\sin x) + \sin 2x - 8\cos 2x \qquad \text{on their } \lambda \text{ and } \mu \qquad \text{A1ft} \qquad 9$$

(b) As
$$x \to \infty$$
, $e^{-2x} \to 0$: $y \to \sin 2x - 8 \cos 2x$ B1ft
 $y \to R \sin(2x + \alpha)$ M1
 $R = \sqrt{65}$
 $\alpha = \tan^{-1} - 8 = -1.446 \text{ or } -82.9^{\circ}$ A1 3
[12]

 $Shape + horiz. \\ B1$

3 B1 2

(b) Area =
$$\frac{1}{2} \int r^2 d\theta$$

= $\frac{9}{2} \int \frac{9 \cos^2 \theta}{2} \frac{\theta}{\theta} d\theta$ use of $\frac{1}{2} \int r^2$ M1
= $\frac{9}{2} \left[\frac{\sin 4\theta}{8} + \frac{\theta}{2} \right]_{\frac{\pi}{6}}^{\frac{\pi}{4}}$ use of $\cos 4\theta = 2\cos^2 2\theta - 1$ M1

M1, A1

$$= \frac{9}{2} \left[\frac{\pi}{8} - \frac{\sqrt{3}}{16} - \frac{\pi}{12} \right]$$
subst. $\frac{\pi}{4}$ and M1

$$= \frac{9}{2} \left[\frac{\pi}{24} - \frac{\sqrt{3}}{16} \right]$$
 or 0.103

(c)
$$r \sin \theta = 3 \sin \theta \cos 2\theta$$

$$\frac{d'y'}{d\theta} = 3 \cos \theta \cos 2\theta - 6 \sin \theta \sin 2\theta \qquad (\text{diff. } r \sin \theta) \qquad \text{M1, A1}$$

$$\frac{dy}{d\theta} = 0 \Rightarrow 6 \cos^2 \theta - 3 \cos \theta - 12 \sin^2 \theta \cos \theta = 0 \qquad \text{use of } \frac{dy}{d\theta} = 0 \qquad \text{M1}$$

$$6 \cos^2 \theta - 3 \cos \theta - 12(1 - \cos^2 \theta)\cos \theta = 0 \qquad \text{use double angle formula} \qquad \text{M1}$$

$$18 \cos^3 \theta - 15 \cos \theta = 0 \qquad \text{solving} \qquad \text{M1}$$

$$\cos \theta = 0 \text{ or } \frac{\cos^2 \theta = \frac{5}{6}}{\cos^2 \theta} \text{ or } \tan^2 \theta = \frac{1}{5} \text{ or } \sin^2 \theta = \frac{1}{6} \qquad \text{A1}$$

$$\therefore r = 3(2 \times \frac{5}{6}) - 1 \qquad \qquad = 2$$

$$\therefore r \sin \theta = 2\sqrt{\frac{1}{6}} \qquad \text{use of } d = 2r \sin \theta \qquad \text{M1}$$

$$\Rightarrow d = \frac{2\sqrt{6}}{3}$$
 A1 8

6. Solves
$$x^2 - 2 = 2x$$
 by valid method
Obtains $x = 1 \pm \sqrt{3}$ or equivalent
(may only obtain relevant root if graph is used)

A1

Solves
$$2 - x^2 = 2x$$
 M1

Obtains $x = -1 \pm \sqrt{3}$ A1

Rejects two of these roots and obtains (or uses graph and obtains)

 $x > 1 + \sqrt{3}$, $x < -1 + \sqrt{3}$ A1, A1 7

Special case:

Squares both sides to obtain quadratic in
$$x^2$$
 and solve to obtain $x^2 = 4 \pm 2$

Obtains
$$x = 1 \pm$$
 or $x = -1 \pm$

B1

M1

M1

A1

7. (a) Integrating Factor =
$$e^{2x}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(ye^{2x}) = xe^{2x}$$

$$ye^{2x} = \frac{1}{2}xe^{2x} - \int \frac{1}{2}e^{2x} dx$$

$$= \frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + c$$

$$\therefore y = \frac{1}{2}x - \frac{1}{4} + ce^{-2x}$$

(b)
$$1 = c - \frac{1}{4} \rightarrow c = \frac{5}{4}$$

$$\therefore y = \frac{1}{2}x - \frac{1}{4} + \frac{5}{4}e^{-2x} \text{ and } \frac{d}{dx} = \frac{1}{2} - \frac{5}{2}e^{-2x}$$

When
$$y' = 0$$
, $e^{-2x} = \frac{1}{5}$: $2x = \ln 5$

$$x = \frac{1}{2} \ln 5$$
, $y = \frac{1}{4} \ln 5$ at minimum point.

A1

4

(c)

8. (a) Auxiliary equation:
$$m^2 + 2m + 2 = 0 \rightarrow m = -1 \pm i$$
 M1

Complementary Function is $y = e^{-1}$ ($A \cos t + B \sin t$) M1A1

Particular Integral is $y = \lambda e^{-1}$, with $y' = -\lambda e^{-1}$, and $y'' = \lambda e^{-1}$ M1

$$\therefore (\lambda - 2\lambda + 2\lambda)e^{-1} = 2e^{-1} \rightarrow \lambda = 2$$
 A1
$$\therefore y = e^{-1}(A \cos t + B \sin t + 2)$$
 B1 6

(b) Puts
$$1 = A + 2$$
 and solves to obtain $A = -1$

$$y' = e^{-1}(-A \sin t + B \cos t) - e^{-1}(A \cos t + B \sin t + 2)$$

$$Puts $1 = B - A - 2$ and uses value for A to obtain B

$$B = 2$$

$$\therefore y = e^{-t}(2 \sin t - \cos t + 2)$$
Alcso 6
[12]$$

9. (a)
$$3a(1-\cos\theta) = a(1+\cos\theta)$$
 M1
 $2a = 4a\cos\theta \rightarrow \cos\theta = \frac{1}{2} : \theta = \frac{\pi}{3} \text{ or } -\frac{\pi}{3}$ M1
 $r = \frac{3a}{2}$ A1A1 4

[Co-ordinates of points are $(\frac{3a}{2}, \frac{\pi}{3})$ and $(\frac{3a}{2}, -\frac{\pi}{3})$]

(b)
$$AB = 2r\sin\theta = \frac{3a\sqrt{3}}{2}$$
 M1A1 2
$$Area = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{1}{2} r^2 d\theta$$

$$= \frac{1}{2} \int [a^2 (1 + \cos\theta)^2 - 9a^2 (1 - \cos\theta)^2] d\theta$$
M1 M1

$$= \frac{1}{2} \int [a^{2}(1+\cos\theta)^{2} - 9a^{2}(1-\cos\theta)^{2}] d\theta$$

$$= \frac{a^{2}}{2} \int [1+2\cos\theta + \cos^{2}\theta - 9(1-2\cos\theta + \cos^{2}\theta)] d\theta$$

$$= \frac{a^{2}}{2} \int [-8+20\cos\theta - 8\cos^{2}\theta)] d\theta$$
A1

Uses limits $\frac{\pi}{3}$ and $-\frac{\pi}{3}$ correctly or uses twice smaller area and uses limits $\frac{\pi}{3}$ and 0 correctly. (Need not see 0 substituted)

$$= a^{2}[-4\pi + 10\sqrt{3} - \sqrt{3}] \text{ or } = a^{2}[-4\pi + 9\sqrt{3}] \text{ or } 3.022a^{2}$$
 A1

(d)
$$3a\frac{\sqrt{3}}{2} = 4.5 \rightarrow a = \sqrt{3}$$
 B1

$$\therefore \text{Area} = 3[9\sqrt{3} - 4\pi], = 9.07 \text{ cm}^2$$
M1, A13
[16]

10. (a)
$$f'(x) = \sec^2 x$$
 $f''(x) = 2\sec x(\sec x \tan x)$ (or equiv.) M1 A1

$$f''(x) = 2\sec^2 x(\sec^2 x) + 2 \tan x(2\sec^2 x \tan x)$$
 (or equiv.) A1 3

$$(2\sec^2 x + 6\sec^2 x \tan^2 x)$$
 (2 $\sec^4 x + 4 \sec^2 x \tan^2 x$), (6 $\sec^4 x - 4 \sec^2 x$), (2 + 8 $\tan^2 x + 6 \tan^4 x$)

(b)
$$\tan \frac{\pi}{4} = 1 \text{ or } \sec \frac{\pi}{4} = \sqrt{2}$$
 (1, 2, 4, 16) B1
 $\tan x = f\left(\frac{\pi}{4}\right) + \left(x - \frac{\pi}{4}\right)f'\left(\frac{\pi}{4}\right) + \frac{1}{2}\left(x - \frac{\pi}{4}\right)^2 f''\left(\frac{\pi}{4}\right) + \frac{1}{6}\left(x - \frac{\pi}{4}\right)^3 f'''\left(\frac{\pi}{4}\right)$ M1
 $= 1 + 2\left(x - \frac{\pi}{4}\right) + 2\left(x - \frac{\pi}{4}\right)^2 + \frac{8}{3}\left(x - \frac{\pi}{4}\right)^3$ A1(cso)3
(Allow equiv. fractions)

(c)
$$x = \frac{3\pi}{10}$$
, so use $\left(\frac{3\pi}{10} - \frac{\pi}{4}\right)$ $\left(\frac{\pi}{200}\right) + \left(\frac{8}{3} \times \frac{\pi^3}{8000}\right) = 1 + \frac{\pi}{10} + \frac{\pi^2}{200} + \frac{\pi^3}{3000}$ (*)

A1(cso)2

[8]

M1

11. (a)
$$n = 1$$
: $\frac{d}{dx} (e^x \cos x) = e^x \cos x - e^x \sin x$

M1

A₁

(Use of product rule)

$$\cos\left(x + \frac{\pi}{4}\right) = \cos x \cos\frac{\pi}{4} - \sin x \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}(\cos x - \sin x)$$
 M1

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(e^x \cos x \right) = 2^{\frac{1}{2}} e^x \cos \left(x + \frac{\pi}{4} \right) \qquad \text{True for } n = 1 \text{ (c.s.o. + comment)}$$

Suppose true for n = k.

$$\left[\frac{\mathrm{d}^{k+1}}{\mathrm{d}x^{k+1}}\left(\mathrm{e}^x \cos x\right)\right] = \frac{\mathrm{d}}{\mathrm{d}x}\left(2^{\frac{1}{2}k} \mathrm{e}^x \cos\left(x + \frac{k\pi}{4}\right)\right)$$
 M1

$$=2^{\frac{1}{2}k}\left[e^{x}\cos\left(x+\frac{k\pi}{4}\right)-e^{x}\sin\left(x+\frac{k\pi}{4}\right)\right]$$

$$= 2^{\frac{1}{2}k} e^x \sqrt{2} \cos\left(x + \frac{k\pi}{4} + \frac{\pi}{4}\right) = 2^{\frac{1}{2}(k+1)} e^x \cos\left(x + (k+1)\frac{\pi}{4}\right)$$
 M1 A1

 \therefore True for n = k + 1, so true (by induction) for all $n \in \{1\}$

(b)
$$1 + \left(\sqrt{2}\cos\frac{\pi}{4}\right)x + \frac{1}{2}\left(2\cos\frac{\pi}{2}\right)x^2 + \frac{1}{6}\left(2\sqrt{2}\cos\frac{3\pi}{4}\right)x^3 + \frac{1}{24}(4\cos\pi)x^4$$
(1) (0) (-2) (-4)
$$e^x \cos x = 1 + x - \frac{1}{3}x^3 - \frac{1}{6}x^4$$
 (or equiv. fractions)
A2(1,0)3
[11]

12. (a)
$$\arg z = \frac{\pi}{4} \implies z = \lambda + \lambda i$$
 (or putting x and y equal at some stage)

$$w = \frac{(\lambda + 1) + \lambda i}{\lambda + (\lambda + 1)i}$$
, and attempt modulus of numerator or denominator. M1

(Could still be in terms of x and y)

$$|(\lambda + 1) + \lambda i| = |\lambda + (\lambda + 1)i| = \sqrt{(\lambda + 1)^2 + \lambda^2}, : |w| = 1 (*)$$
 A1, A1cso

(b)
$$w = \frac{z+1}{z+i} \Rightarrow zw + wi = z+1 \Rightarrow z = \frac{1-wi}{w-1}$$

$$|z| = 1 \Rightarrow |1-wi| = |w-1| \quad M1 \quad A1$$

$$For \quad \psi = \overline{b}, \quad |1-\psi| = |1-\psi| = |1-\psi| = |1-\psi|$$

$$V(1+\overline{b}) = -a \quad \text{Image is (line)} \quad y = -x$$

$$M1$$

$$M1$$

$$M1$$

$$M1$$

(d)
$$z = i \text{ marked } (P) \text{ on } z\text{-plane sketch.}$$
 B1
$$z = i \Rightarrow \frac{1+i}{2i} = \frac{i-1}{-2} = \frac{1}{2} - \frac{1}{2}i \text{ marked } (Q) \text{ on } w\text{-plane sketch.}$$
 B1
$$2$$
[14]