- Prova 1 - Calado II andrew gabriel Jomes

Suetão 1.
$$\rightarrow$$
 Espace gréfoo. | auma de nível.
 $\pm(x,y) = 30 - (x^2 + \frac{1}{4}, y^2 + \frac{1}{9}, z^2)$

(a) na origin, and x, y, z=0 e temperatura = 30

(b) na superficie do
elipsoide, quando $x^{2}+y^{2}+z^{2}=1$ y=9

(c) diminuição

mostron que lim $\frac{x^2 y^3}{x^3 + y}$ n existe _s learnes + amulamento $0 \leq y^3 \leq x^3 + y^{-1}$ $\leq \frac{y^3}{x^3+y} \leq \frac{x^3+y}{x^3+y} = 9$ Imitada O limite existe

3MM

Quetão 3. $\times 15 \text{ Am} \left(\frac{1}{x^2+y^2}\right) \leq 1.$ Im X X XXM (1 XZ+1yz) Elm - X3 - X2+Y2 $\frac{\chi^3}{\chi^2 + \chi^2} \rightarrow \frac{\chi^3}{2\chi^2} \rightarrow \frac{\chi}{2} = \frac{0}{2} = 0$ $\frac{13}{\chi^{2} + \chi^{4}} \rightarrow \frac{\chi^{2}}{\chi^{2}(1 + \chi^{2})} \rightarrow \frac{\chi}{1 + \chi^{2}} \rightarrow \frac{0}{1} = 0$ 1) y=x2 $\lim_{(X,Y)\to 0} \frac{X^3}{X^2 + y^2} = 0$

$$\lim_{(x,y)\to 0} \frac{33x^2}{x^3+0} = 0$$

$$(x,y) = 0$$
 $3x^2 - y^2 + 5$ $x^2 + 4y^2 + 2$

$$0 = x \qquad 3x^{2} - x^{2} + 5 \qquad 1 = 5 - 2$$

$$x^{2} + x^{2} + 2 \qquad x = x^{2} + 2 + 2 = 2$$

Questão 4)
$$f(x,y) = 3x$$

(a)
$$J(1)^2 = \frac{3 \cdot 1}{2 - 1} = \frac{3}{1} = \frac{3}{3}$$

(b)
$$f(3,-1) = 3.3 = 9 = 2 -0.9$$

$$\bigcirc \downarrow (1,-1) = 3.1 = 3 - -1,5$$

(a)
$$f(x,y) = \sqrt{x+y-1} - 3x+y-17,0$$

 $x+y=1$

(b)
$$\int (x,y) = 1$$
 0 $2x-y+1 \neq 0$ $2x-y+1 = 1$

9. which 7.
$$f(x)y = y - x$$

(A) $D = \{R\}$
(b) $Im = \{R\}$

(c) $C = 1 \rightarrow y - x = 1 \quad C3 = 3 \quad y - x = 3 \quad y = 3 + x$
 $y = 1 + x$
 $y = 3 + x$

(c) $C = 2 \rightarrow y - x = 2 \quad C4 = 4 \quad y = x + x$

(c) $C = 2 \rightarrow y - x = 2 \quad C4 = 4 \quad y = x + x$

(c) $C = 2 \rightarrow y - x = 2 \quad C4 = 4 \quad y = x + x$

(c) $C = 2 \rightarrow y - x = 2 \quad C4 = 4 \quad y = x + x$

(c) $C = 2 \rightarrow y - x = 2 \quad C4 = 4 \quad y = x + x$

(c) $C = 2 \rightarrow y - x = 2 \quad C4 = 4 \quad y = x + x$

(c) $C = 2 \rightarrow y - x = 2 \quad C4 = 4 \quad y = x + x$

(c) $C = 2 \rightarrow y - x = 2 \quad C4 = 4 \quad y = x + x$

(c) $C = 2 \rightarrow y - x = 2 \quad C4 = 4 \quad y = x + x$

(c) $C = 2 \rightarrow y - x = 2 \quad C4 = 4 \quad y = x + x$

(d) $C = 2 \rightarrow y - x = 2 \quad y = x + x$

(e) $C = 2 \rightarrow y - x = 2 \quad y = x + x$

(f) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(e) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(f) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$

(g) $C = 2 \rightarrow y - x = 3 \quad y = x = 3$