Solar Powered Charging Dock: Sustainability

Zachary Bleam Samu Tanaka Blitch Nate Durham

Background Information

- Solar Charging Dock:
 - Provides renewable energy source for charging electric personal transportation vehicles
- Website:
 - https://solarchargingstation.github.io/web

Progress and Materials Used

• Progress:

- Components being shipped
- Structure being built
- Already in process of programming and designing base structure
- Materials:
 - Solar panel
 - Wood for structure
 - Batteries
 - 2 microcontrollers & Raspberry Pi

Investment

Money Spent (rounded for convenience):

Structure:	\$120	
Solar Panel:	\$170	(provided)
Components:		
• pi	\$40	(provided)
 Arduino Uno 	\$20	(provided)
 High-powered 		
Simple Motor Controller	\$60	
 Linear Actuator 	\$140	
mounts	\$40	

Total:

<u>\$590</u>

Social Sustainability

- Public view of solar panels is mostly positive, optimistically resulting in good outlook from public.
- Will get public more involved in the use of renewable resources.

Social Sustainability Cont.

- Increasing popularity of eScooter Transportation.
- Can be seen as an add on to any home.
- Place to store eScooter.
 - Keeps out of buildings
 - Safely lock up scooter
 - Charge overnight
 - Place to step out of the rain

Environmental Sustainability (solar panels)

Pros

- Renewable energy source
- Made mostly of wood and reusable/recyclable parts
- No emissions

Cons

- Production of solar panels can produce environmental waste
- Can be expensive
- Like some batteries, solar panels can be harmful waste if disposed of improperly

Economic Sustainability

- The project is expected to cost an upwards of \$700-800 after more parts have been ordered.
- In statesboro, cost of power is \$0.10 per kW*hr
 - The solar panel we use produces 100W
 - 100W * hr = 0.1 kW*hr
 - The average amount of sunlight per day across the globe is 12 hrs.
 - At a single solar panel it would take roughly 15.98 years for project to pay itself off.

Economic Sustainability (cont.)

0.01*n*12*d = 700 + 170*(n-1) n = [number of solar panels] d = [days to meet payoff]

Number of solar panels	Years to pay off
1	15.98
2	9.931
3	7.914

 continuing this trend, it would be smartest to invest in 2 solar panels because that is where the largest jump is.

Economic Sustainability (cont.)

Solar Panel Payback Period(General)

6-12 Months

Time

To pay back the environmental costs of production such as emission in the process of production.

Economical Cost Refund

7-8 Years

Time + Financial Benefits

To pay back initial investments

Solar Panel Payback Period(cont.)

Calculating the Economic Payback Period:

- 1. Gross Cost of Solar Panel System
- 2. Starting Incentives
- 3. Energy Use/Generation
- 4. Additional Incentives

1 can vary on size of the instillation and installers of the project

2 considers tax breaks and rebates you can get from installing a solar system. Federal investment tax credit allows you to deduct 30% of the cost of your system from your taxes

3 is calculated by comparing monthly use to generation which can be calculated to annual savings per year.

4 can be any other incentives that can come in as credit so help pay off the cost.

Payback Period = (1-2)/(3+4)

1-2 being the real cost of the solar system, and 3+4 being the real annual benefits of the solar system.

Calculate your solar payback period

Gross cost of system* \$30,000

*This is the amount you pay upfront to install your solar panel system

Upfront incentives*
-\$10.000

*Includes the 30% federal investment tax credit plus \$1,000 in local rebate:

\$20,000

Savings per year* \$1,200

*Assumes \$100 monthly pre-solar electricity bill and solar panels coverir 100% of electricity use

Additional incentives* \$1.500

*Income from selling SRECs

Annual benefits \$2,700

Your payback period

energysage.com

Regional Sustainability

Sunlight throughout year [1]

Regional Sustainability (cont.)

- Increased distance from equator produces greater change in sunlight exposure throughout year.
- Statesboro is roughly 32°N

Questions?

References

- [1] http://www.physicalgeography.net/fundamentals/6i.html
- [2] https://news.energysage.com/understanding-your-solar-panel-payback-period/
- [3] https://en.wikipedia.org/wiki/Social_sustainability

