Задание 1. Элементы теории графов

Связный ориентированный граф $G(X, \Gamma)$ задан множеством вершин $X = \{x_1, x_2, ..., x_n\}$ и отображением Γx_i , i = 1, 2, ..., n, где i — текущий номер вершины, n-количество вершин графа. Значение индексов n, вид закона отображения Γx_i , K и L взять из таблицы 1 в соответствии с номером варианта.

Выполнить следующие действия:

- а) определить исходный граф и ассоциированный с ним неориентированный граф аналитическим, графическим и матричным способами;
- б) установить центры и периферийные вершины графов. Найти радиус и диаметр.
- в) описать систему уравнений, соответствующую сигнальному графу, считая, что передача между вершинами x_i и x_i определяется как

$$\mathit{Kij} = \begin{cases} i*j & \text{при} \quad i \geq j; \\ 1/(p+1) & \text{при} \quad i < j. \end{cases}$$

Найти передачу между вершинами x_1 и x_n , используя правило Мезона. Построить структуру кибернетической системы, определяемой топологией графа.

- г) определить количество покрывающих деревьев, которые можно построить на неориентированном графе. Найти эти деревья.
- д) для одного из деревьев записать код Прюфера для некорневого дерева;
 - е) представить дерево в корневой форме и записать код дерева.

Таблица 1

№	n	K	L	Γx_i
варианта				
1	5	1	2	$\Gamma x_i = \left\{ x_{i+K}, \ x_{ i\pm L } \right\}$
2	5	1	3	$\Gamma x_i = \left\{ x_{i+K}, \ x_{ i\pm L } \right\}$
3	5	1	4	
4	5	2	1	
5	5	1	2	
6	5	1	3	$\Gamma x_i = \left\{ x_{i+K}, \ x_{ i-L } \right\}$
7	5	1	4	$\Gamma x_i = \left\{ x_{i+K}, x_{ i-L } \right\}$

8	5	3	1	$\Gamma x_i = \left\{ x_{ i \pm K }, x_{i+L} \right\}$
9	5	1	2	$\Gamma x_i = \left\{ x_{ i \pm K }, x_{ i+L } \right\}$
10	5	1	3	$\Gamma x_i = \left\{ x_{ i \pm K }, x_{ i+L } \right\}$
11	5	1	4	$\Gamma x_i = \left\{ x_{ i \pm K }, x_{ i+L } \right\}$
12	5	4	1	$\Gamma x_i = \left\{ x_{ i \pm K }, x_{i+L} \right\}$
13	5	1	2	$\Gamma x_i = \left\{ x_{i+K}, x_{ i\pm L } \right\}$
14	5	1	3	$\Gamma x_i = \left\{ x_{i+K}, \ x_{ i\pm L } \right\}$
15	5	1	4	$\Gamma x_i = \left\{ x_{i+K}, x_{ i\pm L } \right\}$
16	6	1	2	$\Gamma x_i = \left\{ x_{i+K}, x_{ i\pm L } \right\}$
17	6	1	3	$\Gamma x_i = \left\{ x_{i+K}, x_{ i\pm L } \right\}$
18	6	1	4	$\Gamma x_i = \left\{ x_{i+K}, \ x_{ i \pm L } \right\}$
19	6	2	1	$\Gamma x_i = \left\{ x_{ i \pm K }, x_{i+L} \right\}$
20	6	1	5	$\Gamma x_i = \left\{ x_{i+K}, x_{ i\pm L } \right\}$
21	6	1	2	$\Gamma x_i = \left\{ x_{i+K}, x_{ i \pm L } \right\}$
22	6	1	3	$\Gamma x_i = \left\{ x_{i+K}, \ x_{ i\pm L } \right\}$
23	6	1	4	$\Gamma x_i = \left\{ x_{i+K}, x_{ i\pm L } \right\}$
24	6	3	1	$\Gamma x_i = \left\{ x_{ i \pm K }, x_{i+L} \right\}$
25	6	1	2	$\Gamma x_i = \left\{ x_{i+K}, x_{ i-L } \right\}$
26	6	1	3	$\Gamma x_i = \left\{ x_{i+K}, \ x_{ i-L } \right\}$
27	6	1	4	$\Gamma x_i = \left\{ x_{i+K}, x_{ i-L } \right\}$
28	6	1	5	$\Gamma x_i = \left\{ x_{i+K}, x_{ i-L } \right\}$
29	6	4	1	$\Gamma x_i = \left\{ x_{ i \pm K }, x_{i+L} \right\}$
30	6	1	4	$\Gamma x_i = \left\{ x_{ i \pm K }, x_{i+L} \right\}$