Trường Đại Học Bách Khoa Tp.HCM Hệ Đào Tạo Từ Xa Khoa Khoa Học và Kỹ Thuật Máy Tính

Mạng máy tính căn bản

Bài giảng 13: Mạng không dây

Tham khảo:

Chương 6: "Computer Networking – A top-down approach"

Kurose & Ross, 5th ed., Addison Wesley, 2010.

Chương 6: Mạng không dây và di động

Kiến thức nền:

- số thuê bao điện thoại di động bây giờ đã vượt qua số lượng thuê bao điện thoại cố định!
- mạng máy tính: laptop, máy tính bàn tay, PDA, cho phép truy cập Internet bất cử lúc nào
- hai thử thách quan trọng (nhưng khác biệt)
 - không dây: liên lạc qua liên kết qua liên kết không dây
 - di động: xử lí vấn đề người dùng thay đổi điểm truy cập vào mạng liên tuc

Chương 6: Mục lục

- 6.1 Giới thiệu
- 6.2 Liên kết không dây, các tính chất
 - CDMA
- 6.3 IEEE 802.11 LAN không dây ("wi-fi"), IEEE 802.15 (Bluetooth), IEEE 802.16 (WiMAX)

- 6.4 Mạng di động và truy
 cập Internet di dộng
 - cấu trúc
 - chuẩn (vd: GSM)
- 6.5 Tổng kết

Bảng đặc tính của các chuẩn liên kết không dây phổ biến

chế độ ad-học

- không có trạm không dây
- các nốt chỉ có thể gửi cho các nốt khác trong phạm vi bao phủ
- các nốt tự tổ chức thành một mạng: định tuyến giữa chúng với nhau

10

Phân loại mạng không dây

	một hop	nhiều hop
cơ sở hạ tầng (e.g., APs)	máy kết nối tới trạm không dây (WiFi, WiMAX, di động) mà có kết nối tới mạng Internet	máy có thể phải chuyển tiếp thông qua vài nốt không dây để kết nối tới mạng Internet: mạng kiểu lưới
không cơ sở hạ tầng	không có trạm không dây, không có kết nối tới Internet (Bluetooth, mạng ad-hoc)	ồng có trạm không dây, khôn có kết nối tới Internet. Có thể phải chuyển tiếp để tới được một nốt không dây có sẵn MANET, VANET

Đặc điểm của liên kết không dây (1)

Sự khác biệt so với liên kết có dây

- cường độ tín hiệu bị giảm: tín hiệu radio suy giảm khi nó truyền qua vật chất (mất trên đường đi)
- nhiễu bởi các nguồn khác: những tần số mạng không dây chuẩn (vd, 2.4 GHz) được chia sé bởi những t/bị khác (vd: đ/thoại);
- sự lan truyền qua nhiều đoạn đường: tín hiệu radio phản xạ các đối tượng trên mặt đất, đi đến đích ở những t/gian hơi chênh lêch

.... thực hiện liên lạc qua (thâm chí là điểm-tới-điểm) liên kết không dây "khó" hơn nhiều

Đặc điểm của liên kết không dây (2)

- SNR (Signal-to-noise ratio): tỉ số tín hiệu-trên-nhiễu
 - SNR càng lớn càng dễ để tách tín hiệu ra từ nhiễu -> càng tốt
- sự thỏa hiệp SNR vs BER (bit error ratio)
 - cùng một tầng vật lý: tăng cường đô -> tăng SNR->giảm BER
 - cùng một SNR: lựa chọn tầng vật lý mà đáp ứng yêu cầu BER, cho thông lượng cao nhất
 - SNR có thể thay đổi do di động: tự động thích nghi tầng vật lý (kĩ thuật mô đun hóa, tốc độ)

Tính chất mạng không dây

Nhiều người gửi và nhận không dây sẽ gây ra những vấn đề khác (ngoài việc quản lý đa truy cập):

Vấn đề máy ẩn

- B, A nghe thấy nhau
- B, C nghe thấy nhau
- A, C không thể nghe thấy nhau có nghĩa A, C không biết về sự giao thoa của chúng tại B

Sự suy giảm tín hiệu:

- B, A nghe thấy nhau
- B, C nghe thấy nhau
- A, C không thể nghe thấy nhau, giao thoa xảy ra ở B

Đa truy cập phân chia theo mã (CDMA)

- dùng trong vài chuẩn kênh không dây quảng bá (di động, vệ tinh, etc)
- mỗi n/dùng được gán một "mã" độc nhất;
- tất cả n/dùng chia sẻ cùng tần số, nhưng mỗi n/dùng có một số riêng (mã) để chuyển mã dữ liệu;
- tín hiệu đã chuyển mã = (dữ liệu gốc) X (mã số)
- dịch mã: tích trong của tín hiệu đã chuyển mã và số mã
- cho phép nhiều người dùng "cùng tồn tại" và truyền tải cùng lúc với sự giao thoa nhỏ nhất (nếu các số mã là "trực giao")

CDMA Chuyển mã/Dịch mã

16

CDMA: sự giao thoa giữa 2 ng/dùng

MẠNG MÁY TÍNH CĂN BẢN

Bai giảng 13 - Chương 6: Mang không dây

LAN không dâyIEEE 802.11

- 802.11b
 - dải không đăng kí 2.4-5 GHz
 - lên tới 11 Mbps
 - trải phổ chuỗi trực tiếp (DSSS) trong tầng vật lý
 - tất cả các máy sử dụng cùng môt mã

- 802.11a
 - dải 5-6 GHz
 - lên tới 54 Mbps
- 802.11g
 - dải 2.4-5 GHz
 - lên tới 54 Mbps
- 802.11n: nhiều ăng-ten
 - dải 2.4-5 GHz
 - lên tới 200 Mbps
- tất cả đều dùng CSMA/CA cho đa truy cập
- tất cả đều có phiên bản hạ tầng và ad-học

18

Kiến trúc LAN 802.11

- các máy không dây liên lạcvới các trạm cơ sở
 - trạm cơ sở = điểm truy cập (AP)
- Bộ dịch vụ căn bản (BSS) ("tế bào") trong chế độ cơ sở hạ tầng chứa:
 - các máy không dây
 - điểm truy cập (AP): trạm cơ sở
 - chế độ ad-hoc: chỉ có máy tính

802.11: Các kênh, sự liên kết

- 802.11b: dải phổ 2.4GHz-2.485GHz được chia thành 11 kênh với những tần số khác nhau
 - quản trị AP chọn tần số cho AP
 - có khả năng giao thoa: kênh có thể giống như kênh mà AP hàng xóm đã chọn!
- Máy: phải *liên kết* với một AP
 - dò kênh, lắng nghe các khung báo hiệu chứa tên (SSID) và đ/c MAC của AP
 - lựa chọn AP để liên kết tới
 - có thể thực hiện xác thực
 - thường chạy DHCP để lấy địa chỉ IP trong mạng con của AP

802.11: Dò bị động/chủ động

Sự dò bị động:

- (1)các khung hiệu được gửi từ AP
- (2)khung Yêu-Cầu-Liên-Kết được gửi: từ H1 tới AP được chọn
- (3)khung Trả-Lời-Liên-Kết được gửi: từ AP được chọn tới H1

Sư dò chủ đông:

- (1)Khung Yêu-Câu-Thăm-Dò được gửi từ H1
- (2)Khung Trả-Lời-Thăm-Dò gửi từ các AP
- (3)khung Yêu-Cầu-Liên-Kết được gửi: từ H1 tới AP được chọn
- (4)khung Trả-Lời-Liên-Kết được gửi: từ AP được chọn tới H1

IEEE 802.11: Da truy câp

- Tránh đung độ: 2+ nốt truyền tải đồng thời
- 802.11: CSMA kiểm tra trước khi truyền
 - không đung độ với các truyền tải hiện tại bởi nốt khác
- 802.11: không có phát hiện đụng độ!
 - khó nhận được (đụng độ) khi truyền tải do tín hiệu nhận được yếu (giảm)
 - không thể phát hiện được tất cả đụng độ trong mọi trường hợp: máy ẩn, suy giảm tín hiệu
 - mục tiêu: tránh đụng độ: CSMA/C(ollision) A(voidance)

Giao thức MAC IEEE 802.11: CSMA/CA

n/gửi 802.11

- 1 Nếu thấy kênh rỗi trong **DIFS** thì gửi nguyên khung (không CD)
- 2 Nếu thấy kênh bận thì

bắt đầu thời gian thoái lui ngẫu nhiên bô đếm t/g giảm xuống khi kênh rỗi truyền dữ liệu khi bộ đếm hết giờ nếu không ACK, tăng thời gian thoái lui ngẫu nhiên, lặp lại 2

n/nhân 802.11

- Nếu khung được nhận OK

gửi lại ACK sau khoảng SIFS (ACK cần thiết vì vấn đề máy ẩn)

Tránh đụng độ (tt)

- ý tưởng: cho phép n/gửi "đăng kí trước" kênh thay vì truy cập ngẫu nhiên: tránh các đụng độ của các khung dữ liệu dài
- n/gửi đầu tiên truyền tải các gói yêu-cầu-gửi (RTS) nhỏ tới BS sử dụng CSMA
 - RTS có thể va chạm với nhau (nhưng chúng ngắn)
- BS gửi quảng bá gói được-phép-gửi CTS để trả lời cho RTS
- tất cả nốt đều nghe được CTS
 - n/gửi truyền khung dữ liệu
 - các trạm khác hoãn việc gửi lại

hoàn toàn tránh được đụng độ khung dữ liệu bằng cách dùng các gói dự trữ nhỏ!

Sự tránh đụng độ: trao đổi RTS-CTS

Khung 802.11: đánh địa chỉ

Khung 802.11: đánh địa chỉ

Khung 802.11: tiếp theo

28

802.11: di động trong cùng mạng con

- H1 vẫn ở trong cùng mạng con IP: địa chỉ IP có thể giữ nguyên
- BCM: AP nào liên kết với H1?
 - "sự tự học" : bcm sẽ xem khung từ H1 và "nhớ lại" cổng nào có thể dùng để tới H1

802.11: các khả năng cao cấp

Sự tự điều chỉnh tốc độ

trạm cơ sở, t/bị di động tự thay đổi tốc độ truyền tải (kĩ thuật điều biến tầng vật lý) khi thiết bị di chuyển, SNR thay đổi

- 1. SNR giảm, BER tăng khi nốt di chuyển xa dần trạm cơ sở
- 2. Khi BER trở nên quá cao, chuyển sang tốc độ truyền tải thấp hơn nhưng có BER thấp hơn

802.11: các khả năng cao cấp

Quản lý năng lượng

- nốt-tới-AP: "Tôi sẽ ngủ cho đến khung hiệu tiếp theo"
 - AP không gửi khung cho nốt này
 - onốt thức dậy trước khi khung hiệu tiếp theo
- khung hiệu: chứa danh sách của các t/bị di động với các khung AP-tới-thiết bị đang chờ để gửi
 - onốt sẽ thức nếu như có khung AP-tới-thiết bị chuẩn bị được gửi cho nó; ngoài ra, sẽ ngủ đến khung hiệu tiếp theo

802.15: Mạng vùng cá nhân (PAN)

- đường kính 10 m trở xuống
- thay thế cho các loại cáp (chuột, phím, tai nghe)
- ad-hoc: không có cơ sở hạ tầng
- chủ/tớ:
 - tớ yêu cầu sự cho phép gửi (tới chủ)
 - chủ cấp phép cho các yêu cầu
- 802.15: phát triển từ đặc tả Bluetooth
 - dải băng radio 2.4-2.5 GHz
 - lên tới 721 kbps

802.16: WIMAX

- giống 802.11 & và mạng di động: mô hình trạm cơ sở
 - truyền tải đến/từ trạm cơ sở bởi các máy với ăng-ten nhiều-hướng
 - trạm liên kết trực tiếp tới trạm chính thông qua ăngten điểm-tới-điểm
- không giống 802.11:
 - phạm vi ~ 10 km (mức độ thành phố)
 - ∼14 Mbps

802.16: WiMAX: sự lập lịch tải xuống và tải lên

- khung truyền tải
 - khung con tải xuống: trạm cơ sở tới nốt
 - khung con tải lên: nốt tới trạm cơ sở

 chuẩn WiMAX cung cấp cơ chế cho việc lập lịch nhưng không cung cấp giải thuật lập lịch -> người hiện thực tự chọn

34

Các thành phần của kiến trúc mạng di động

kết nối các TB vào mạng diện rộngquản lí thiết lập cuộc gọi

tế bào

- bao phủ một vùng địa lý
- □ *trạm cơ sở* (BS) tương tự AP 802.11
- n/dùng di động gắn vào mạng qua BS
- □ *giao diện-không khí:* giao thức tầng vật lý và liên kết giữa thiết bị và BS

MSC - mobile swithcing center

Trường Đại Học Bách Khoa Tp.HCM Khoa Khoa Học và Kỹ Thuật Máy Tính © 2011 MẠNG MÁY TÍNH CĂN BẢN Bài giảng 13 - Chương 6: Mạng không dây

Mạng di động: hop đầu tiên

Hai kĩ thuật để chia sẽ phổ radio từ thiết bi-tới-BS

- két hơp FDMA/TDMA: chia phổ thành những kênh tần số, chia mỗi kênh thành những ô thời gian
- CDMA: đa truy cập phân chia theo mã các dải tần số

36

Các chuẩn di động: Tóm lược

hệ thống 2G: các kênh âm thanh

- IS-136 TDMA: kết hợp FDMA/TDMA (bắc Mỹ)
- GSM (global system for mobile communications): kết hợp FDMA/TDMA
 - được triển khai rộng rãi nhất
- IS-95 CDMA: đa truy cập phân chia theo mã

Không nên đi quá sâu vào các chuẩn: chỉ sử dụng để tham khảo.

Các chuẩn di động: Tóm tắt

hệ thống 2.5 G: các kênh âm thanh và dữ liệu

- dành cho những người mà không thể chờ được 3G: bản mở rộng của 2G
- dịch vụ vô tuyến gói tổng hợp (GPRS)
 - phát triển từ GSM
 - dữ liệu được gửi trên nhiều kênh (nếu có sẵn)
- tốc độ dữ liệu nâng cao cho cải tiến toàn cầu (EDGE)
 - cũng phát triển từ GSM, sử dụng điều biến nâng cao
 - tốc độ dữ liệu lên tới 384K
- CDMA-2000 (pha 1)
 - tốc đô dữ liêu lên tới 144K
 - phát triển từ IS-95

Các chuẩn di động: Tóm tắt

hệ thống 3G: âm thanh/dữ liệu

- Universal Mobile Telecommunications Service (UMTS)
 - dịch vụ dữ liệu: High Speed Uplink/Downlink packet Access (HSDPA/HSUPA): 3 Mbps
- CDMA-2000: CDMA trong các ô TDMA
 - dịch vụ dữ liệu: 1xEvlution Data Optimized (1xEVDO) lên tới
 14 Mbps

Chương 6: Tổng kết

Không dây

- các liên kết không dây:
 - dung lượng, khoảng cách
 - những suy giảm kênh truyền
 - CDMA
- IEEE 802.11 ("wi-fi")
 - CSMA/CA thể hiện các tính chất của kênh truyền không dây
- truy cập mạng di động
 - kiến trúc
 - các chuẩn (ví dụ: GSM, CDMA-2000, UMTS)