

ELEMENTI DI INFORMATICA

DOCENTE: FRANCESCO MARRA

INGEGNERIA CHIMICA
INGEGNERIA ELETTRICA
SCIENZE ED INGEGNERIA DEI MATERIALI
INGEGNERIA GESTIONALE DELLA LOGISTICA E DELLA PRODUZIIONE
INGEGNERIA NAVALE

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II SCUOLA POLITECNICA E DELLE SCIENZE DI BASE

AGENDA

- Architettura del calcolatore
 - Evoluzione
 - Modello di von Neumann
 - CPU
 - Memoria
 - Dispositivi di Input e Output
 - Bus
 - Clock

CALCOLATORE

- Macchina che, in maniera automatica, ad altissima velocità, esegue operazioni elementari dettate da un algoritmo memorizzato
 - Non ha nessuna capacità decisionale o discrezionale, ma si limita a compiere determinate azioni secondo procedure prestabilite
 - Milioni di istruzioni per secondo (MIPS)
 - Può compiere solo un numero limitato di operazioni
 - Un algoritmo deve essere comunicato al calcolatore in un linguaggio ad esso comprensibile

EVOLUZIONE DEI CALCOLATORI

ENIAC:
Electronic Numerical
Integrator And Computer

Primo esempio: macchina limitata quasi priva di memoria priva di elasticità

EVOLUZIONE DEI CALCOLATORI

- Miglioramenti decisivi:
 - Intuizione di Alan Turing
 - permettere al computer (l'hardware) di eseguire istruzioni codificate in un programma (software) inseribile e modificabile dall'esterno.
 - Architettura proposta da John von Neumann
 - realizzazione della macchina universale inventata da Turing
 - computer programmabile nel senso moderno del termine

EVOLUZIONE DEI CALCOLATORI

EDVAC

(Electronic Discrete Variable Automatic Calculator)

Smartphone

MODELLO DI VON NEUMANN

• Schema di principio rappresentativo dei tradizionali computer

 Prende il nome da Von Neumann, il primo ricercatore che lo propose nel 1945

UNITÀ DEL MODELLO DI VON NEUMANN

CPU (Central Processing Unit)

Coordina l'esecuzione delle operazioni fondamentali

Memoria

 Contiene l'algoritmo con le operazioni da eseguire e i dati su cui opera

Unità di input

Consente l'inserimento di algoritmo e dati in memoria

• Unità di output

• Permette di presentare i risultati dell'attività della CPU

CARATTERISTICHE DEL MODELLO

- Si basa sul concetto di programma memorizzato
 - La macchina immagazzina nella propria memoria i dati su cui lavorare e le istruzioni per il suo funzionamento
- Flessibilità operativa
 - Macchine nate per fare calcoli possono essere impiegate nella risoluzione di problemi di natura completamente diversa, come problemi di tipo amministrativo, gestionale e produttivo

• Schema di funzionamento semplice nelle sue linee generali

CARATTERISTICHE DEL MODELLO

- Velocità nella esecuzione degli algoritmi
 - Milioni di istruzioni svolte dalla CPU in un secondo

• Affidabilità

- Un computer non commette mai errori di algoritmo poiché è un esecutore obbediente dell'algoritmo stesso la cui esecuzione gli è stata affidata
- Adeguata capacità di memoria (numero di informazioni)
 - Varia in base al tipo di memoria usato, all'architettura della memoria stessa ed al tipo di informazione
 - Si misura in numero di byte
- Costo vantaggioso

CPU

• Contiene i dispositivi elettronici in grado di acquisire, interpretare ed eseguire il programma contenuto in memoria centrale operando la trasformazione dei dati

- È composta da tre parti fondamentali:
 - Unità di Controllo o Control Unit (CU)
 - Unità Logico Aritmetica (ALU)
 - Registri interni

• In senso stretto, il processore corrisponde alla CU

UNITÀ DI CONTROLLO (CU)

- Interpreta le singole istruzioni e attiva tutti i meccanismi necessari al loro espletamento
- Controlla in maniera ciclica che una serie di fasi vengano correttamente eseguite

Ciclo del processore

FASI DEL CICLO DEL PROCESSORE

Boot

 Operazione iniziale atta ad informare la CU dell'indirizzo del registro di memoria che contiene la prima istruzione da eseguire

Fetch

- Un'istruzione viene prelevata dalla memoria centrale, decodificata e memorizzata in un registro interno
 - Anche detta Instruction Fetch and Decode

Operand Assembly

 I dati vengono prelevati dalla memoria (se servono all'istruzione)

Execute

L'istruzione viene eseguita

- Esegue operazioni aritmetiche, di confronto o bitwise sui dati della memoria centrale o dei registri interni
- L'esito dei suoi calcoli viene segnalato da appositi bit in un registro chiamato Condition Code
- A seconda dei processori l'ALU può essere molto complessa
 - Nei sistemi attuali l'ALU viene affiancata da processori dedicati alle operazioni sui numeri in virgola mobile detti *processori matematici*

REGISTRI INTERNI

- Durante le sue elaborazioni la CU può depositare informazioni nei suoi registri interni
 - Sono più facilmente individuabili e hanno *tempi di accesso inferiori* a quelli dei registri della memoria centrale

• Il numero e tipo di tali registri varia a seconda dell'architettura della CPU

PRINCIPALI REGISTRI INTERNI

- Instruction Register (IR)
 - Contiene l'istruzione prelevata dalla memoria e che la CU sta eseguendo
- Prossima Istruzione (PI) o Program Counter (PC)
 - Ricorda alla CU la posizione in memoria della successiva istruzione da eseguire
 - Dopo ogni prelievo di una istruzione dalla memoria, il suo valore viene aggiornato in maniera tale da puntare alla prossima istruzione
- Accumulatore (ACC)
 - Serve come deposito di dati da parte dell'ALU
 - Può contenere prima di un'operazione uno degli operandi, e al termine il risultato calcolato
- Condition Code (CC) o Status Register (SR)
 - Indica le **condizioni** che si verificano durante l'elaborazione, quali risultato nullo, NaN e overflow

MEMORIE

- Insieme di contenitori fisici di dimensioni finite e fissate, detti registri
 - La posizione di un registro nell'insieme si chiama indirizzo di memoria
 - La dimensione di un registro si misura in numero di bit
- La memoria centrale di un computer è organizzata come un array di stringhe di bit, dette parole o word, aventi lunghezza m (m = LUNGHEZZA DI PAROLA)
 - gli m bit di una parola sono accessibili dal processore (in lettura/scrittura) mediante un'unica operazione
 - ogni parola è individuata da un indirizzo, cioè un intero compreso tra $0 e_{N-1}$ (SPAZIO DI INDIRIZZAMENTO), con $N = 2^{\text{(numero di bit usabili per ogni indirizzo)}}$

MEMORIE

• Logicamente si può pensare ad un memoria come ad una tabella a due colonne

N bit = 32,64

M bit = Lunghezza della Parola, con M= 8, 16, 32..

Spazio di Indirizzamento = 2^N

Indirizzo	Dato
0010101000101010	0101101001011010
0010101011111001	0101111101011111
0100011101010100	1010101001011111
1010101010100010	10101010101010
•••••	••••

OPERAZIONI SUI REGISTRI DI MEMORIA

Lettura

- Preleva l'informazione contenuta nel registro senza però distruggerla
- Anche detta LOAD

Scrittura

- Inserisce una informazione nel registro eliminando quella precedente
- Anche detta STORE

Buffer

Area di transito dei dati dalla CPU alla memoria e viceversa

FUNZIONAMENTO DELLE MEMORIE

• La CPU indica l'indirizzo del registro interessato dall'operazione

- La memoria decodifica l'indirizzo abilitando solo il registro ad esso corrispondente affinché:
 - Per una operazione STORE il dato del buffer sia copiato nel registro
 - Per una operazione LOAD il dato del registro sia copiato nel buffer
- I tempi di attuazione delle operazioni di LOAD e STORE dipendono da:
 - tecnologie usate per la costruzione delle memorie
 - modalità di accesso

LOAD E STORE: SCHEMI DI FUNZIONAMENTO

PRESTAZIONI DELLE MEMORIE

- Le prestazioni di un componente di memoria vengono misurate in termini di *tempi di* accesso
- I tempi di attuazione delle operazioni di LOAD e STORE possono essere differenti e dipendono da:
 - Tecnologie usate per la costruzione delle memorie
 - Modalità di accesso

• LOAD

• Tempo di accesso = tempo che trascorre tra la selezione del registro di memoria e la disponibilità del suo contenuto nel registro di buffer

STORE

• Tempo di accesso = tempo necessario alla selezione del registro e il deposito del contenuto del registro di buffer in esso

PRESTAZIONI VS COSTI

- Le memorie devono mostrare tempi di accesso adeguati alle capacità della CPU
 - Non devono introdurre ritardi quando essa trasferisce dati

Memorie con tempo di accesso bassi

Costo componenti

CLASSIFICAZIONE MEMORIE

Selezione di un registro di memoria

Casuale

- Il tempo di accesso non dipende dalla posizione
- Le memorie ad accesso casuale sono dette RAM (Random Access Memory)

Sequenziale

- Il tempo di accesso dipende dalla posizione
- Le memorie ad accesso sequenziale sono dette SAM (Sequential Access Memory)

CLASSIFICAZIONE MEMORIE

Memorie volatili

- Memorie che perdono le informazioni in esse registrate quando il sistema viene spento
 - RAM e memorie elettroniche in generale

Memorie permanenti

- Memorie che conservano le informazioni in esse registrate anche quando il sistema viene spento
 - Memorie di tipo magnetico, ottico e tutti i tipi di ROM

ROM (Read Only Memory)

- Alcune memorie vengono realizzate in modo che sia possibile una sola scrittura di informazioni
 - Ad esempio, il BIOS (Basic Input-Output System) è un insieme di programmi che fornisce funzionalità di base per l'accesso all'hardware del computer e alle periferiche integrate sulla scheda madre, da parte del sistema operativo e degli altri programmi

MODELLO DI VON NEUMANN MODIFICATO

- Memorie di massa
 - Memorie ausiliarie caratterizzate da una elevata capacità

MEMORIE DI MASSA

TRASFERIMENTO DATI

Memoria centrale ← → CPU

• Le informazioni contenute nella memoria centrale possono essere direttamente prelevate dalla CPU

Memoria di massa → Memoria centrale → CPU

 Le informazioni contenute nella memoria di massa devono essere dapprima trasferite nella memoria centrale e successivamente elaborate

• CPU → Memoria centrale → Memoria di massa

 Le informazioni prodotte dalla CPU devono essere depositate in memoria centrale per poi essere conservate nelle memorie di massa

BUFFER

- Le memorie di massa hanno *tempi di accesso maggiori* rispetto alle memorie centrali dovuti alle tecnologie impiegate per realizzarle
- Per ovviare a questa differenza di velocità si provvede facendo in modo che la memoria centrale contenga delle aree di accumulo > buffer interni alle memorie centrali
- Buffer di input
 - Ha il compito di accumulare dati in memoria ricevendoli da un dispositivo lento prima che la CPU provveda ad elaborarli
- Buffer di output
 - La CPU, molto più veloce, accumula i dati prodotti in un buffer di uscita prima di abilitarne il trasferimento
- Con i buffer si procede verso una *separazion*e dei compiti tra i componenti del modello di von Neumann
 - Rendono possibile la cooperazione tra dispositivi caratterizzati da velocità di trattamento dati diverse tra loro

MODELLO DI VON NEUMANN MODIFICATO

DISPOSITIVI DI INPUT E OUTPUT

- Unità di input
 - Tastiera, mouse, penna ottica, tavoletta grafica, scanner,...

- Unità di output
 - Monitor, plotter, stampanti,...

CANALE DI COMUNICAZIONE

- Obiettivo
 - permettere lo scambio di informazioni tra le varie componenti funzionali del calcolatore trasferimento dei dati e delle informazioni di controllo

- Due possibili soluzioni
 - collegare ciascun componente con ogni altro componente
 - collegare tutti i componenti a un unico canale (bus)

• L'utilizzo di un bus favorisce la modularità e l'espandibilità del calcolatore

- Canale di comunicazione condiviso da più utilizzatori
 - Permette alla CPU di comunicare con la memoria e tutti i dispositivi di input ed output
- Collega due unità alla volta abilitandone una alla trasmissione e l'altra alla ricezione
 - Il trasferimento di informazioni avviene sotto il controllo della CPU

- Tipologie di bus
 - Bus di Controllo (Control Bus)
 - Bus Dati (Data Bus)
 - Bus Indirizzi (Address Bus)

CONTROL BUS

- Serve alla CU per indicare ai dispositivi cosa devono fare
- Tipici segnali del Control Bus sono quelli di read e write
 - Usati dalla CU per indicare ai dispositivi se si tratta di un'operazione di lettura (read) dal dispositivo o di scrittura (write) sul dispositivo

DATA BUS

 Permette ai dati di fluire tra CPU e registro di memoria selezionato per operazioni di STORE e LOAD

• La CU controlla il flusso di informazioni con il mondo esterno abilitando il transito delle informazioni dalla memoria verso le risorse di output e viceversa da quelle di input

• Il funzionamento delle memorie di massa è simile a quello di un dispositivo che opera sia in input che in output

ADDRESS BUS

 Serve alla CU per comunicare l'indirizzo del dispositivo interessato da una operazione di lettura o scrittura

• Anche i dispositivi di input/output sono identificati da un indirizzo

- Tutti i componenti del sistema devono essere in grado di riconoscere sull'Address Bus il proprio indirizzo
 - Attraverso l'Address Bus la CU effettua la *selezione* del dispositivo a cui sono rivolti i comandi e i dati

BUS

- I bus sono utilizzati per trasferire dati fra le unità funzionali
 - l'unità che inizia il trasferimento (in genere la CPU) fornisce l'indirizzo, che individua univocamente il dato, sulle linee del **bus indirizzi**, e configura le linee del **bus controllo**, inviando un comando al dispositivo che contiene il dato (es. READ)
 - Il dato da trasferire è reso disponibile sul **bus dati** e viene ricopiato nel dispositivo destinatario

REGOLE PER LO SCAMBIO DI INFORMAZIONI

- La CPU è l'unico elemento che fornisce un *indirizzo* all'Address Bus
- Memorie e dispositivi di input ed output devono "ascoltare" l'Address Bus per attivarsi quando su di esso compare il proprio indirizzo identificativo
- La *memoria* si attiva quando viene riconosciuto l'indirizzo corrispondente ad uno dei registri di cui essa è composta
- Il dispositivo attivo deve interpretare i segnali del Control Bus per eseguire i comandi della CU
- Le memorie prelevano dati dal Data Bus o immettono dati in esso in funzione del **comando** impartito dalla CU
- I dispositivi di *input* possono solo immettere dati sul Data Bus
- I dispositivi di output possono solo prelevare dati dal Data Bus

LARGHEZZA DEL CANALE DI UN BUS

Bus seriale

- Bus costituito da un solo filo
- Su di esso i bit transitano uno dietro l'altro

- Bus costituito da n fili
- Su di esso transitano n bit alla volta
 - Ad es. 8, 32,...

• L'Address Bus ed il Data Bus sono paralleli e le loro dimensioni caratterizzano i sistemi di calcolo

IMPORTANZA DELLE DIMENSIONI DEI BUS

- Capacità di indirizzamento della CPU
 - Capacità di gestire la dimensione della memoria e il numero di dispositivi di input ed output
 - Corrisponde al numero di bit dell'Address Bus
 - Con n bit un Address Bus consente di selezionare un registro tra 2ⁿ

- Velocità di scambio delle informazioni tra i dispositivi
 - Condizionata dalla dimensione del Data Bus
 - Con m fili possono viaggiare contemporaneamente m bit

TRASFERIMENTO DATI TRA CPU E MEMORIA

CLOCK

- I componenti del modello di von Neumann vengono coordinati dalla CU secondo sequenze prestabilite
- Ad ogni operazione della CU corrisponde una prefissata sequenza di attivazione dei diversi dispositivi

Clock

• Le attività di tutti i dispositivi non si svolgono casualmente ma vengono sincronizzate tra loro mediante un orologio interno che scandisce i ritmi di lavoro

FREQUENZA DEL CLOCK

- Il clock è un segnale periodico di periodo fisso
 - È un'onda quadra caratterizzata da un *periodo* T (detto ciclo) e da una *frequenza* f (f=1/T) misurata in Hertz (Hz)
- Esempio
 - Un clock composto da 10 cicli al secondo ha la frequenza f = 10 Hz e il periodo T = 100 ms
- Le attuali frequenze dei clock spaziano dai MHz ai GHz
 - 1 MHz corrisponde a un milione di battiti al secondo
 - 1 GHz corrisponde a un miliardo di battiti al secondo
- Il clock è un segnale che raggiunge tutti i dispositivi per fornire la cadenza temporale per l'esecuzione delle operazioni elementari

• Alla frequenza del clock è legato il *numero di operazioni* elementari che vengono eseguite nell'unità di tempo dalla CU

Esempio

- Se ad ogni ciclo di clock corrisponde esattamente l'esecuzione di una sola operazione
- La frequenza del clock indica il numero di operazioni che vengono eseguite nell'unità di tempo dalla CU
 - Con un clock a 3 GHz, il processore è in grado di eseguire 3 miliardi di operazioni al secondo

CLOCK E PRESTAZIONI

- L'esecuzione di una operazione può richiedere più cicli di clock
 - Per la complessità delle operazioni
 - Per la lentezza dei dispositivi collegati alla CPU

- La memoria centrale è realizzata mediante moduli che hanno prestazioni inferiori rispetto alla tecnologia utilizzata per costruire le CPU
 - Si realizzano quindi dei bus che rallentano la trasmissione di un fattore 10 rispetto al clock

ESEMPI DI TEMPIFICAZIONE Ipotesi semplificativa In un solo ciclo di clock è possibile leggere/scrivere il dato dal Data Bus sulla memoria clock address read write data Tempificazione del LOAD Tempificazione dello STORE

