

Table of Contents

- Routing Basics
- ► IP Routing Process
- Static and Dynamic Routing

Routing Basics

Routing Basics

- IP routing is the process of sending packets from a host on one network to another host on a different remote network
- This process is usually done by routers
- Routers use routing tables
- Routers don't really care about hosts—they care only about networks and the best path to each network

CLARUSWAY®

4

Routing Basics

To be capable of routing packets, a router must know at least the following information:

- Destination network address
- Neighbor routers from which it can learn about remote networks
- Possible routes to all remote networks
- The best route to each remote network
- How to maintain and verify routing information

Routing Basics

- Each router maintains a routing table
- Routing table is used to determine the path to the destination network
- Each routing table consists of:
 - Network destination and subnet mask
 - Remote router IP address of the router
 - Outgoing interface

```
[Comware] display ip routing-table
Routing Tables: Public
Destinations: 7 Routes: 7
Destination/Mask Proto Pre Cost
                              NextHop
                                         Interface
10.2.0.0/18 OSPF 10 110
                               10.1.1.5
                                         Vlan3
10.2.64.0/18
              OSPF 10 130
                               10.1.1.13 Vlan5
10.2.128.0/17
              OSPF 10 30
                               10.1.1.5
                                         Vlan3
10.2.192.0/17
              OSPF 10 40
                               10.1.1.13 Vlan5
<-output omitted->
```


2

IP Routing Process

<u>R1</u>

Build a new frame and send to R2

H1 H2 192.168.1.1 fa.16.3e.87.9c.2a 192.168.1.254 fa.16.3e.4a.15.98 192.168.1.254 fa.16.3e.3c.7d.a4 R1 192.168.1.2.1 fa.16.3e.02.83.a1 192.168.1.2.2 fa.16.3e.02.83.a1 fa.16.3e.02.83.a1

<u>R2</u>

- Check the FCS of the Ethernet frame
- De-encapsulate the IP packet, discard the frame
- Check the IP header checksum
- Check the destination IP address

<u>R2</u>

Build a new frame and send to H2

H2

- Checks the FCS
- Finds its own MAC address as the destination MAC address
- De-encapsulates the IP packet from the frame
- Finds its own IP address as the destination in the IP packet

IP Routing Process

The host has a simple decision to make:

- Is the destination on the local network?
 - Check ARP table for **destination** IP address, if empty, send an ARP request.
- Is the destination on a remote network?
 - Check ARP table for **default gateway** IP address, if empty, send an ARP request.

IP Routing Process

The router has to perform a number of tasks:

- When it receives an Ethernet frame, checks if the FCS is correct. If not, drops the frame
- Checks if the destination address of the frame is:
 - destined to router's MAC address.
 - destined to a broadcast address of the network router's interface is in
 - destined to a multicast address that the router listens to
- De-encapsulates the IP packet from the frame, discard the Ethernet frame
- Looks for a match in the routing table for the destination IP address, figures out what the outgoing interface and optionally, the next hop IP address is
- Decreases the TTL field in the IP header, recalculates the header checksum
- Encapsulates the IP packet in a new Ethernet frame
- Checks the ARP table for the destination IP address or next hop IP address
- Transmits the frame

Static and Dynamic Routing

- How routers know the IP destinations?
- In static routing (or non-adaptive) routing, tables created and updated manually

Static and Dynamic Routing

- In dynamic routing (or adaptive) routing, tables created and updated automatically using routing protocols
- Dynamic routing is used in larger networks
- Finds the optimal route (shortest path)
- Reacts to topology changes and failures, recalculates optimal path

Static and Dynamic Routing

4/4	

Static	Dynamic	
Routes are user defined	Routes are updated according to the topology	
Does not use complex routing algorithms	Uses complex routing algorithms	
Provides high or more security	Provides less security	
Manual	Automated	
Implemented in small networks	Implemented in large networks	
Additional resources are not required	Additional resources are required	

CLARUSWAY®

20

