Fakultät Informatik, Institut für Software und Multimediatechnik, Professur für Computergrafik und Visualisierung

Entwicklung und Evaluation eines Amira Plug-Ins zur Intraoperativen Bildfusion von MRT- und Thermografiedaten in der Neurochirurgie

Verteidigung der Masterarbeit, Florian Weidner

Betreuer: Dipl.-Inf Nico Hoffmann

M.Sc. Peter Urban

Gliederung

- 1. Einführung
- 2. Phantom
- 3. Amira Plug-In zur Bildfusion
- 4. Weitere Funktionen
- 5. Evaluation

Domäne: Neurochirurgie

Aufgabe: Tumorentfernung

Problem:

 Unterscheidung von tumorösen und gesundem Gewebe ⊗

• Lösung: Thermografie ©

Links: 3D-MRT eines Gehirns; Rechts: Thermografieaufnahme mit deutlicher Struktur

Thermografie

Problem:
 Kaum räumliche Informationen
 → erschwerte Analyse ⊗

• Lösung:
Bildfusion! ©

Transparenzbasierte Bildfusion

Bildfusion: Kombination von Informationen

Problem:
 Wie korrespondieren die Bilder?

• Lösung: Registrierung! ☺

Oben: Beispiele für fehlgeschlagene Überlagerungen. Unten: Erfolgreiche Überlagerung

Schematischer Überblick mit involvierten Komponenten. A: Neuronavigationssystem; B: Phantom/Subjekt; C: Instrumentenadapter; D: Thermokamera; E: Laptop (Amira, InfraTecServer)

BrainLab

Links: Neuronavigationssystem BrainLab VectorVision; A: Pointer; B: Thermokamera; C: Fiducial Marker; D: Instrumentenadapter mit Halterung

Bilder realer Komponenten (links: Neuronavigationssystem; rechts unten: Phantom; rechts oben: Thermografiekamera mit Stern

- Positionsdaten des Navigationssystems
- Kompensation der Differenz zwischen Instrumentenadapter und Kamera
- Bilder der Thermokamera

16.12.2014

Aufgaben

- 1. Phantom zum Testen und Evaluieren entwickeln
- 2. Setup der Geräte (Neuronavigationssystem, Kamera, Instrumentenadapter)
- 3. Tracking des Subjekts und des Instrumentenadapters
- 4. Kalibrierungsbasierte Registrierung des Thermobildes und der MRT-Aufnahme
- 5. Kontinuierliches Update der Farbe und Position des Thermobildes
- 6. Fusion des 2D-Bildes mit der 3D-MRT-Aufnahme

Anforderungen

- Merkmale: MRT, CT, Thermografie & Weißlicht
- Keine metallischen Teile
- Simulation
 - Eines Schädels/Gehirns
 - Brain Shift
 - Perfusion
 - Trepanation
- Reproduzierbare Messergebnisse

Finales Phantoms mit Bauteilen

Modellansicht des finalen Phantoms

MRT-Aufnahme (FLAIR) mit 500ml

MRT-Aufnahme (FLAIR) mit 525ml

Thermografieaufnahme des finalen Phantoms mit sichtbaren Merkmalen

Ablauf

- MRT-Aufnahme
- 2. Marker definieren → iPlanNet 3.0
- 4. Instrumentenadapter kalibrieren
- 3. Objekt registrieren → VectorVision cranial 2.5
 - → VectorVision cranial 2.5
- Kalibrierungsbasierte Registrierung
- Farbe aktualisieren → Amira 5.6
- Bilder fusionieren → Amira 5.6
- → Amira 5.6

Kalibrierungseinheit von BrainLab

Selbstentwickelte Kalibrierungslehre

Instrumentenadapter an Kalibrierungslehre

Komplettes Set-up zur Kalibrierung des Instrumentenadapters

- ✓ Phantom/Patient registriert
- ✓ Instrumentenadapter kalibriert & angebaut
- ✓ Neuronavigationssystem sendet Position und Orientierung des Instrumentenadapters im Koordinatensystem des registrierten Subjektes
- → zweite Registrierung + Update + Fusion → Amira

Amira: "Software zum *Analysieren*, *Visualisieren* und *Manipulieren* von medizinischen Datensätzen"

Benutzeroberfläche von Amira

Datenobjekte ohne Manipulation

Ziel der Registrierung: Datenobjekte ausrichten (links) um Fusion zu ermöglichen (rechts)

Transformationen:

 $M_{BrainLab}$ Positionierung und Ausrichtung bzgl. des IA

 $M_{Kalibrierung}$ Initiale Position & Ausrichtung

*M*_{Skalierung} Bildgröße

 M_{Koord} Koordinatensystemtransformation

 $M_{final} = M_{Koord} \cdot M_{Skalierung} \cdot M_{Kalibrierung} \cdot M_{BrainLab}$

Skalierung

- Kamera hat geringe Schärfentiefe
- Fokuswert FE = Position des Schrittmotors
- Empirisch ermittelte Funktion für Distanz zwischen Fokusebene und Kamera (Kalibrieraufnahmen, Iterative Closes Point, gegeben)

$$d(FE) = Hauptpunkt + (\frac{Faktor}{FE} - P_{unendlich})$$

Skalierung

$$d(FE) = 1.46$$
cm + $(12357/FE-200)$

Skalierung

- Bildgröße: 640×480×1 [Pixel]
- Anfängliche Voxelgröße: 1×1×1 (mm)
- Bildfeld (horizontal × vertikal): 29.9×22.6 (°)
- Distanz von Funktion

$$Skalierungsfaktor \ s = \frac{Skaliert}{Original}$$

Kalibrierungsbasierte Registrierung

- Neuronavigationssystem liefert Position und Orientierung des Instrumentenadapters
- Wir wollen Position und Orientierung des Sensors der Kamera
- → Kalibrierung kompensiert Differenz in Position und Orientierung
- → Im Besten Fall nur einmal notwendig

Kalibrierung - Orientierung

- Physikalische Kamera senkrecht nach unten zeigen lassen
- Virtuelles Bild horizontal ausrichten
- → Übereinstimmung

Referenzpunkte an Kamera

Kalibrierung - Position

- Orientiertes Bild verschieben
 - → Überlagerung herstellen
- Kontrolle für verschiedene Positionen und anpassen
- → Universelle Kalibrierungsparameter

Mit Transformationen:

- → Bild skaliert
- → Bild positioniert
- → Bild orientiert

Ergebnis der Registrierung

3. Amira Plug-In zur Bildfusion (Update)

- InfraTecServer sendet Bilder
- Doppelpufferung
- Transparenz steuerbar
- Umrechnung
 Short Integer → Farbe
- Transferfunktion:
 - Lookup-Tabelle (hot/iron)
 - Beliebige Funktion

heiß

3. Amira Plug-In zur Bildfusion (Fusion)

Fusion: Kombination der Information

- Isosurface des 3D-Bildes generiert (Berechnung von Amira)
- Wärmebild als Textur der Isosurface (Texturmechanismus von Amira)
- Transparenz steuerbar (via Bildupdate)

- ✓ Kalibrierungsbasierte Registrierung
- ✓ Bildupdate
- ✓ Bildfusion

4. Weitere Funktionen

4. Weitere Funktionen

Tracking des Pointers

- Dateiausgabe
- Fixierbar
- Größe
- Anzeige

MRT-Bild des Phantoms mit durch eine Kugel verdeutlichter Position des Pointers

4. Weitere Funktionen

Record-and-Replay

- Aufzeichnung der Rohdaten
- Server mit OpenIGTLink
- Sendet entweder...
 - Nur Thermodaten
 - Nur Positionsdaten
 - Beides
- Sendefrequenz anpassbar
- 100MB Dateien

4. Weitere Funktionen

Konfigurationsdatei

```
#Kameraname, HH, INF, FAC
2 #Objektivname, min. Fokus, IFOV(mrad), FOV H, FOV V,
3 startCamera,
4 VarioCAM, 1.46, 200, 12357,
5 Lens, Weitwinkelobjektiv, 0.2, 2.8, 57, 44,
 6 Lens, Normalobjektiv, 0.3, 1.4, 30, 23,
   Lens, Teleobjektiv1, 2.0, 0.7, 15, 12,
8 endCamera,
9 startCamera,
10 VarioCamHD, 1.46, 2000, 123570,
11 Lens, Super-Weitwinkelobjektiv, 0.2, 0.139, 98.5, 82.1,
12 Lens, Weitwinkelobjektiv, 0.2, 0.065, 60.3, 47.0,
13 Lens, Normalobjektiv, 0.5, 0.033, 32.4, 24.6,
14 Lens, Teleobjektiv, 2.0, 0.016, 16.5, 12.4,
15 Lens, Superteleobjektiv, 10.0, 0.008, 8.3, 6.2,
16 endCamera,
17 End,
```

Beispiel einer Konfigurationsdatei mit zwei Kameras und verschiedenen Obiektiven

4. Weitere Funktionen

Höhenprofil

- Orientierung
- Alle Seiten
- Dateiausgabe
- ITK-basiert

Abbildung xxx – Isosurface (links) mit zugehöriger Höhenkarte (rechts; schwarz = nahe, $wei\beta = fern$)

Tab Image Fusion

ImageFusion								
8	ImageFusion Cal	ibration	Thermography	N	euronavigation	Evaluation	Options	
Para	ameter:							
8	Scale X::		Δ	_	0			
8	Scale Y::	_	Δ	_	0			
8	Scale Z::		Δ	_	0			
8	Translation X (red):		Δ	•	0			
8	Translation Y (green):		Δ	•	-148			
8	Translation Z (blue):		Δ	•	-256			
8	Rotate X [deg]:		Δ	•	64.1728			
8	Rotate Y [deg]:	4	Δ	•	-0.0657634			
8	Rotate Z [deg]:	4	Δ		0.66133			
8	Distance Offset [FE]:	-	Δ	_	0			
8	Reset all!							
Overview:								
8	Transform!							
8	Thermography:	0						
8	Neuronavigation:	0	= 1 0 111					

Tab Calibration

Tab Thermography

Tab Evaluation

Tab Optionen

- Referenz: Mittelpunkte der Marker im MRT
- Methode: Bildfusion
- Messen: Abstand zwischen Merkmalspunkte
 - Fusioniertes Thermobild
 - MRT

Messszenarien

- Registrierung mit BrainLab
- Instrumentenadapter kalibrieren
- Instrumentenadapter anbringen
- Winkel- und Distanzabhängigkeit:
 - Distanz A, B, C bei 0°
 - Distanz A, B, C bei 30°

Registrierung Subjekt zu Navigationssystem

Tabelle 1: Axialer Fehler durch die Registrierung des Subjekts zum Neuronavigationssystem

	X (mm)	Y (mm)	Z (mm)
Mittlerer Fehler	0,37	0,43	0,99
Standardabweichung	0,31	0,31	0,79

Instrumentenadapter an Kalibrierungslehre

Kalibrierung des Instrumentenadapters

Tabelle 2: Fehler in der Orientierung und Position des Instrumentenadapters durch die Kalibrierung

	Winkel (°)	Position (mm)
Mittlerer Fehler	0,2	0,1
Standardabweichung	0,1	0,1

Kalibrierung

Anbringen des Instrumentenadapters

Tabelle 3: Fehler in der Orientierung und Position des Instrumentenadapters durch das Montieren

	Winkel (°)	Position (mm)
Mittlere Position	96	479,3
Standardabweichung	0,5	0,4

Skizze des IA für folgende Folie

Links: Halterung für IA; Rechts: Komplettes System

Anbringen des Instrumentenadapters

Tabelle 4: Mittlerer Fehler/Mittlere Distanz der Mittelpunkte mit schlecht montiertem Instrumentenadapter

	- $oldsymbol{\phi}$ (mm)	+ $oldsymbol{\phi}$ (mm)
Mittlerer Fehler	10,06	7,94
Standardabweichung	0,52	0,68

16.12.2014

Florian Weidner: Bildfusion in der Neurochirurgie

Einzelfehler

- Definieren der Passermarken und Registrieren des Objekts zum Neuronavigationssystem
- Kalibrierung und Anbringen des Instrumentenadapters
- Einstellen des Fokuswertes
- MRT-Bildgebung
- Texture Mapping
- Verzerrung durch die Linse

Jetzt: Gesamtfehler

Links: 15,02cm; Mitte: 29,30cm; Rechts: 48,48cm

Tabelle 5: Mittlerer Abstand der Marker-Mittelpunkte bei einem Kamerawinkel von 0° und für drei Distanzen

Distanz (cm)	15,02	29,30	48,48		
Mittlerer Fehler (mm)	0,64	0,52	52 0,62		
Standardabweichung (mm)	0,08	0,26	0,16		

• 30°

Links: 15,86cm; Mitte: 24,81cm; Rechts: 46,76cm

Tabelle 6: Mittlerer Abstand der Marker-Mittelpunkte bei einem Kamerawinkel von 30° und für drei Distanzen

Distanz (cm)	15,86	24,81	46,76		
Mittlerer Fehler (mm)	2,09	2,84	2,71		
Standardabweichung (mm)	1,27	1,36	0,08		

Fazit

- Genaue Registrierung des Objekts notwendig
- Instrumentenadapter hat großen Einfluss
- Parameter müssen sorgfältig bestimmt werden
- → Mittlerer Fehler = 2,46mm ©

Zusammenfassung

- Phantom
- Amira Plug-In zur Bildfusion
 - Verbindung zur Thermokamera
 - Verbindung zu Neuronavigationssystem
 - Kalibrierungsparameter
 - Kalibrierungsbasierte Registrierung
 - Fusion
 - Zusätzliche Funktionen
- Evaluation

Vielen Dank für die Aufmerksamkeit!

Abbildungen:

- Abb. xxx: http://www.brandenburgischer.kulturbund.de/michendorf/0490a79af20ee3809/sw%20notebo
 ok%20clipart.jpg , 17.9.14
- Abb. xxx: http://www.myorthosurgeon.com/image/Vector vision.jpg, 17.9.14
- Rest: Screenshots und Patientendaten
- O. Sergeeva, F. Uhlemann, G. Schackert, C. Hergeth, U. Morgenstern, and R. Steinmeier. Integration of intraoperative 3D-ultrasound in a commercial navigation system. Zentralblatt für Neurochirurgie, 67(4):197–203, November 2006.

Ausblick

- Bessere Hardware
 - Kalibrierung
 - Instrumentenadapter
- Bessere Projektion
 - Raycasting
- Kompression der Daten
- InfraTecServer erweitern
- Verfeinerung durch merkmalsbasierte Registrierung

Texturierung

Problem mit Parametern:

- Varierende bzw. falsche IA Daten
- → Parameter nur für eine Position korrekt

Mikroskop Adapter-Set

Modifiziertes Bauteil

Raycasting

Die Thermokamera kann mit dem Modell einer Lochblenden-Kamera beschrieben werden

Raycasting

Abbildung xxx - Raycasting invertiert Projektion der Lochblenden-Kamera

Ablauf (einmalig):
Daten initialisieren
Plug-In initialisieren
Plug-In konfigurieren

Verbindungen herstellen

Eventuell manuell justieren

→ Analysieren ©

Ablauf (laden): Amira Netz laden Starten

→ Analysieren ©

Was passiert in Amira:

- 1. ColorField laden (Thermobild)
- 2. DICOM laden (MRT)
- 3. Isosurface aus DICOM (Intensitäten)
- 4. SurfaceView erstellen
- 5. ColorField als Textur für SurfaceView
- 6. Mit Image Fusion verbinden & starten

BrainLab Pointer Ungenauigkeit

3. Amira Plug-In zur Bildfusion (Registrierung)

Registrierung: Notwendige Manipulationen am 2D Bild

cs_w Weltkoordinatensystem

 I_{ref} Referenzbild

 cs_{ref} Koordinatensystem I_{ref}

 P_2 Ursprung von cs_{ref}

 $\rightarrow v_2$ Oberflächennormale I_{ref}

 I_m Bewegtes Bild

 cs_m Koordinatensystem I_m

 P_1 Urpsrung von cs_m

 $_{v_1}^{\rightarrow}$ Oberflächennormale I_m

16.12.2014

Florian Weidner: Bildfusion in der Neurochirurgie

Texturierung

- Koordinaten im virtuellen Screen → Pixmap
- Sucht über Pixmap-Koordinate die Texturkoordinate → Farbwert

Schema des Texture Mappings

Einordnung der Registrierung

Medizinische Registrierung: Taxonomie									
Dimension	Basis der Registrierung	Art der Transformation	Gültigkeit der Transformation	Interaktion	Optimierung	Modalitäten	Subjekt	Objekt	
Raum und Zeit (4D)	Extrinsisch	Rigide	Lokal	Interaktiv	Parameter berechnen	Monomodal	Intra-Subjekt	Kopf	
Raum (2D, 3D)	Intrinsisch	Affin	Global	Semi- automatisch	Parameter suchen	Multimodal	Inter-Subjekt	Thorax	
	Nicht bild- basiert	Projektiv		Automatisch		Modalität zu Modell	Atlas	Abdomen	
		Verkrümmt				Patient zu Model		Pelvis und Perineum	
		Nicht-rigide						Extremitäten	
								Wirbelsäule und Wirbel	

3. Amira Plug-In zur Bildfusion Komponentendiagramm

Programmstruktur dargestellt durch vereinfachtes Komponentendiagramm

3. Amira Plug-In zur Bildfusion Aufbau eines Threads

Vereinfachte Struktur der Komponenten InfraTec und VectorVision

Kommunikation

Kommunikationsdiagramm mit den erforderlichen OpenIGTLink-Nachrichten beim Programmstart

Folie Nr. 82 von 59

Datenübertragung

- OpenIGTLink (http://openigtlink.org/)
 - Offen, erweiterbar
 - Für medizinische Anwendungen
- WLAN 802.11n: ca. 13 Bilder pro Sekunde
- Ein PC: >50 Bilder pro Sekunde

Kommunizierende Komponenten mit Protokoll

Transformationsmatrizen

$$M_{RotX}(\alpha) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix} \qquad M_{Translation} = \begin{pmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$M_{Translation} = egin{pmatrix} 1 & 0 & 0 & x \ 0 & 1 & 0 & y \ 0 & 0 & 1 & z \ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$M_{RotY}(\beta) = \begin{pmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{pmatrix} \qquad M_{Skalierung} = \begin{pmatrix} s_{\chi} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$M_{Skalierung} = \begin{pmatrix} s_{\chi} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$M_{RotZ}(\gamma) = \begin{pmatrix} \cos(\gamma) & -\sin(\gamma) & 0\\ \sin(\gamma) & \cos(\gamma) & 0\\ 0 & 1 & 1 \end{pmatrix}$$

$$M_{Rotation} = M_{RotZ} \cdot M_{RotY} \cdot M_{RotX}$$

Transformationsmatrizen

Homogene Koordinaten

- Raumpunkt? Richtungsvektor?
- Transformation:
 - Raumpunkt: Alles
 - Richtungsvektor: Nur Skalierung, Rotation
- → Dimensionserweiterung
 - 3x3-Matrix zu 4x4-Matrix
 - 3x1 zu 4x1

Transformationsmatrizen

Homogene Koordinaten

Vierte Komponente: 1 oder 0!

- Translation: Matrixmultiplikation
- Punkt im unendlichen: w = 0

$$V_3 = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \longrightarrow V_4 = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$$

$$M_{3x3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \longrightarrow M_{4x4} = \begin{pmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & w \end{pmatrix}$$

MRT-Aufnahme → Marker definieren → Objekt registrieren → Instrumentenadapter → Bildfusion

- Import nach iPlanNet 3.0
- Import nach Amira
- Eventuell vorverarbeiten

MRT-Aufnahme des Prototypen

MRT-Aufnahme → Marker definieren → Objekt registrieren → Instrumentenadapter → Bildfusion

iPlanNet 3.0: Marker (rote Punkte) im Modell definieren

MRT-Aufnahme → Marker definieren → **Objekt registrieren** → Instrumentenadapter → Bildfusion

3. Amira Plug-In zur Bildfusion (Fusion)

3. Amira Plug-In zur Bildfusion (Fusion)

Isosurface & "Voltex" mit Textur "dirty hack"; Geschwindigkeitseinbruch durch Volumenrendering

Isosurface & "SurfaceView" mit Textur: Anpassbare Region, gute Geschwindigkeit

5. Evaluation

• 60°

Abbildung xxx - Links: 15,42cm; Mitte: 28,95cm; Rechts: 42,93cm

Tabelle 7: Mittlerer Abstand der Marker-Mittelpunkte bei einem Kamerawinkel von 60° und für drei Distanzen

Distanz (cm)	15,42	28,95	42,93
Mittlerer Fehler (mm)	4,30	3,80	3,58
Standardabweichung (mm)	1,54	0,50	0,90