Recursive system identification

Week 9 – Advanced Topic 2

Outline

- System Identification
- Recursive system identification
- Algorithm explanation
- Code example
- Pros and Cons
- Key points

System Identification

- Build a mathematical model of a dynamic system
- Use input and output signals
- Process:
 - Measure the input x and output y signals
 - Select a model structure
 - Apply an estimation method to estimate the model parameters
 - Evaluate the model

Motivation: Recursive system identification

• Model with parameters $\hat{\theta}$ predicts outputs y from inputs x

- We have data from step 0 to step t-1: $x_{0:t-1}$ and $y_{0:t-1}$
 - Using $x_{0:t-1}$ and $y_{0:t-1}$ we can estimate our model parameters $\hat{\theta}_{t-1}$

- We then get one more datapoint (x_t, y_t)
 - How do calculate the next model estimate $\hat{\theta}_t$?

What do we do?

- Estimate $\hat{\theta}_t$ from all data $oldsymbol{x}_{0:t}$ and $oldsymbol{y}_{0:t}$
 - Need to save all data and computationally expensive

or

• Estimate $\hat{\theta}_t$ from $\hat{\theta}_{t-1}$ and only the newest datapoint (x_t, y_t)

Recursive system identification

• We calculate the next $\hat{\theta}_t$ by doing a 'simple' modification of $\hat{\theta}_{t-1}$

$$\hat{\theta}_t = \hat{\theta}_{t-1} + \Delta \hat{\theta}_t$$

• Where $\Delta \hat{\theta}_t$ is calculated from $\hat{\theta}_{t-1}$ and only the newest datapoint (x_t, y_t)

$$\Delta \hat{\theta}_t = f(\hat{\theta}_{t-1}, x_t, y_t)$$

Batch Least Squares Method

Let's assume of a sensor that gives us:

$$y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_N \end{bmatrix} \quad C = \begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ \vdots \\ C_N \end{bmatrix}$$

• Problem formulation: $\min_{\mathbf{x}} \|\mathbf{y} - C\mathbf{x}\|_2^2$

• Solution:
$$\hat{\mathbf{x}} = (C^T C)^{-1} C^T \mathbf{y}$$

Recursive Least Squares Method

Batch LS

$$y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_N \end{bmatrix} \quad C = \begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ \vdots \\ C_N \end{bmatrix}$$

$$\min_{\mathbf{x}} \|\mathbf{y} - C\mathbf{x}\|_2^2$$

$$\hat{\mathbf{x}} = (C^T C)^{-1} C^T \mathbf{y}$$

1. Gain matrix update

$$K_k = P_{k-1}C_k^T(R_k + C_k P_{k-1}C_k^T)^{-1}$$

2. Estimate update

$$\hat{\mathbf{x}}_k = \hat{\mathbf{x}}_{k-1} + K_k(\mathbf{y}_k - C_k \hat{\mathbf{x}}_{k-1})$$

3. Propagation of the estimation error covariance matric by using this equation

$$P_k = (I - K_k C_k) P_{k-1} (I - K_k C_k)^T + K_k R_k K_k^T$$
 or this equation

$$P_k = (I - K_k C_k) P_{k-1}$$

Code example

The python notebook shows

- 1. **Generating synthetic data** with known model parameters (e.g. a quadratic function)
- 2. Initialising the RLS parameters
- 3. Looping through the RLS algorithm
- 4. Comparing estimated and true parameters

Code example – RLS algorithm

At each time step:

- Predict output based on previous time step
- Calculate residual error
- Update
 - Parameter estimates
 - o Gain
 - Covariance matrix

```
# Step 3: Recursive Least Squares (RLS) algorithm with forgetting factor
for i in range(n):
    # Current data point
    x i = X[i, :] # Input vector for current data point (including intercept, x^2, x)
    v i = v true[i] # Observed output for current data point
    # Predict output based on current parameter estimates
    y hat = np.dot(theta est, x i)
    # Calculate prediction error (residual)
    error = y i - y hat
    # Compute Kalman gain (update step)
    P x = np.dot(P, x i)
    gain = P x / (forgetting factor + np.dot(x i.T, P x))
    # Update parameter estimates
    theta est = theta est + gain * error
    # Update the covariance matrix
    P = (P - np.outer(gain, P x)) / forgetting factor
    # Store the current estimates
    theta estimates.append(theta est.copy())
```


Code example – RLS parameter estimates over time for a QUADRATIC FUNCTION

True model:

$$y = ax^2 + bx + c$$

Code example – RLS parameter estimates over time

Increase time steps to 1000 – better convergence

Code example – True vs RLS fitted model

True model:

$$y = ax^2 + bx + c$$

Coding in practice

In practice use e.g. **sysidentpy** which contains:

Model Structure Selection

Use State of the Art techniques to build your models.

Learn More

Parameter Estimation

Use recursive methods, adaptive filters and many more.

Learn More

Multiple NARMAX Classes

Create Polynomial, Fourier and Neural NARX models.

Learn More >

Use cases

Fault detection and diagnosis

Real time monitoring of dynamic system performance.

Adaptive control systems

Update of system parameters.

Filtering and signal processing

Noise/Echo cancelation

Time-varying signals

Real-time estimation in control systems

Parameter and state estimation

Biomedical applications

Health monitoring

Communicatio n systems

Wireless and satelite communications

Pros Cons

Pros

Cons

Recursive LS

- Simpler & efficient (memory)
- Real-Time Adaptation dynamically
- Computationally Efficient

Batch LS

- Accurately estimate
- No Need for Sequential Updates:

- Less Accurate at Initial moment
- Struggles with noisy data or nonlinear systems
- Need Proper Tuning
- Complex to be implemented
- Not for realtime process
- Not adaptive to dynamic system

Conclusions

- System Identification is crucial for modeling and controlling dynamic systems.
- SystemID algorithem (such as Recursive LS) is designed for dynamic / real-time applications where data is continuously collected.

Keypoints:

- RLS more suitable for applications like real-time control, signal processing, and adaptive filtering
- RLS updates parameter estimates incrementally, making it more efficient for systems where model parameters must adapt to changing conditions.

Sources

- https://www.youtube.com/watch?v=uLbjeQrQJ3Q
- https://se.mathworks.com/help/ident/gs/about-systemidentification.html
- https://aleksandarhaber.com/introduction-to-kalman-filterderivation-of-the-recursive-least-squares-method-withpython-codes/

Thank you!

