Kruskal's MST Algorithm and Find-Union Data Structure

CS 4102: Algorithms

Spring 2022

Robbie Hott and Tom Horton

Topics in this slide-deck:

- Motivating Problem: Minimum Spanning Trees
 - This is a graph problem, and you've seen it
- One solution
 - Kruskal's Algorithm (Uses a find-union structure)
- Define and design the find-union to support Kruskal's Algorithm
 - Will require some clever implementation details

Minimum Spanning Trees

Readings: CLRS 23 (but not 23.1 and only first part of 23.2)

Spanning Tree

- A *spanning tree* of a graph G is a subgraph of G that contains every vertex in G and is also a *tree* (i.e., it has no cycles)
 - All connected graphs have spanning tree(s)
 - All spanning trees have the same number of nodes (all of them)
 - You can construct a spanning tree by arbitrarily remove edges from cycles

Spanning Tree: Example

• Original Graph:

Possible spanning trees:

Spanning Tree: Example (almost)

Minimum Spanning Tree

- Just constructing any spanning tree is simple
- Suppose edges have costs!
 - Cost of building tracks between two stations
 - Length of wire between boxes in a house
- Each spanning tree has a different total cost (sum of edges included in tree)
- The Minimum Spanning Tree is the spanning tree with lowest overall cost

Minimum Spanning Tree

Given a connected and undirected graph G=(V, E)

- Find a graph G' = (V, E') such that:
 - E' is a subset of E
 - -|E'| = |V| 1
 - G' is connected (assuming G was connected)
 - Sum of cost of edges in E' is minimum
- G' is then the minimum spanning tree

Kruskal's MST Algorithm

Readings: CLRS first part of 23.2

Kruskal's MST Algorithm

- Prim's approach:
 - Build one tree. Make the one tree bigger and as good as it can be.
- Kruskal's approach
 - Choose the best edge possible: smallest weight
 - Not one tree maintain a forest!
 - Each edge added will connect two trees.
 Can't form a cycle in a tree!
 - After adding n-1 edges, you have one tree, the MST

Kruskal's MST Algorithm

- Idea: Have a forest (set of trees) that eventually shrinks into one tree
 - At each step, add an edge that joins two trees (no cycles!)
 - Choose the one (v,w) that has the smallest weight of possible connecting edges
 - Continue until you have one tree, which will be a MST

MST Example

MST and Kruskal's Example

Cost(MST) = 16

Kruskal code

```
void Graph::kruskal(){
                                          Assumes we've created a heap. (Could we sort?)
  int edgesAccepted = 0;
                                           Initialize DisjSet object so all items in separate set
  DisjSet s(NUM VERTICES); 
                                                             |E| heap ops
  while (edgesAccepted < NUM_VERTICES - 1) {</pre>
    e = smallest weight edge not deleted yet;
    // edge e = (u, v)
    uset = s.find(u);
    vset = s.find(v);
                                                 2 | E | finds
    if (uset != vset) {
       edgesAccepted++;
       s.unionSets(uset, vset);
                                            |V| unions
```

Runtime of Kruskal's

- Every edge is placed on priority queue once and removed once
 - $\Theta(E * \log(E)) = \Theta(E * \log(V))$
- For each edge you do 2 set finds and one set union.
 - Let f(V) be time of find, and u(V) be time of union.
 - $-\Theta\left(E*\left(2f(V)+u(V)\right)\right)$
 - If find and union are linear time, then $\Theta(E*(2V+V)) = \Theta(E*V) = O(V^3)$
- Overall: $\Theta(E*\log(V)+E*V)=\Theta(E*V)={\it O}({\it V}^3)$ //Assumes find and union linear time

Strategy for Kruskal's

- EL = sorted set of edges ascending by weight
 - (For this discussion, we're sorting here, not using a heap)
- Foreach edge e in EL
 - T1 = tree for head(e)
 - T2 = tree for tail(e)
 - If (T1 != T2)
 - add e to the output (the MST)
 - Combine trees T1 and T2
- Seems simple, no?
 - But, how do you keep track of what trees a vertex is in?
 - Trees are sets of vertices. Need to findset(v) and "union" two sets

Disjoint Sets and Find/Union Algorithms

Readings: CLRS 21.3

- An Abstract Data Type (ADT) for a collection of sets of any kind of item, where an item can only belong to one of the sets
 - We'll assume each item is identified by a unique integer value
- Need to support the following operations

```
    void makeSet(int n) // construct n independent sets
    int findSet(int i) // given i, which set does i belong to?
    void union(int i, int j) // merge sets containing i and j
```

Represent Sets As Trees

- In our implementation, we'll represent each set as a tree
- Identify set by its root node's ID (its "label")
 - findSet() means tracing up to root
 - union() makes one root child of the other root

- Needs to support the following operations
 - void makeSet(int n) //construct n independent sets
- Solution:
 - Store as array of size n. Each location stores label for that set.

- Needs to support the following operations
 - int findSet(int i) //given i, which set does i belong to?
- Solution: Trace around array until we find place where index and contents match
 - Start at index i and repeat:
 - If a[i] == i then return i
 - Else set i = a[i]

- Needs to support the following operations
 - void union(int i, int j) //merge sets i and j
- Solution: find label for each set (call find() method), then set one label to point to other
 - Label1 = find(i); Label2 = find(j)
 - a[Label1] = Label2 //OR a[Label2] = Label1

• Example:

- union(4,5)
- union(6,7)
- union(1,2)
- union(5,6)
- find(1); find(4); find(6)

Example Using MST Example

- Time-complexity, where n is size of array?
- makeSet()
 - Linear: just create array and fill it with values
- find()
 - Linear if have to trace a long way to get to label
 - Constant if lucky and input is the label (root note) or near it
- union()
 - Constant to change the label BUT...
 - Could be linear to find the two labels first.

Optimization 1: Union by rank

Two Sets:

Union'd under 0:

Union'd under 3:

Optimization 1: Union by rank

- Easy to implement!!
- What's "rank" here?
 - Upper bound on height of a node in our set's tree
- Union by rank:
 - Make the root with smaller rank
 point to the root with larger rank

```
MAKE-SET(x)
   x.p = x
  x.rank = 0
UNION(x, y)
   Link(Find-Set(x), Find-Set(y))
LINK(x, y)
   if x.rank > y.rank
       y.p = x
   else x.p = y
      if x.rank == y.rank
           y.rank = y.rank + 1
```

Optimization 2: Path Compression

- Nothing special about tree's structure, as long as we can trace back to root
- Idea: as we do a find, each node we visit gets updated to point directly to root
- <u>Later</u> finds will be faster

Optimization 2: Path Compression

- Also easy to implement
 - CLRS code uses recursion \rightarrow
 - Or would loop and keep a list

```
def find_set(x):
    path = []
    while x != x.p:
        path.append(x)
        x = x.p
    for n in path:
        n.p = x.p
    return x.p
```

```
FIND-SET(x)

1 if x \neq x.p

2 x.p = \text{FIND-SET}(x.p)

3 return x.p
```

Complexity for Kruskal's

- Union-by-rank and path compression yields m operations in $\Theta\big(m*\alpha(n)\big)$
 - where $\alpha(n)$ a VERY slowly growing function. (See textbook for details)
 - m is the number of times you run the operation. So constant time, for each operation
- So overall Kruskal's with path compression:

$$\Theta(E * \log(V) + E * 1) = \Theta(E * \log(V))$$
 //now the heap is slowest part

Originally:

$$\Theta(E * \log(V) + E * V) = \Theta(E * V) = O(V^3)$$
 //Assumed find and union linear time

– (Time complexity if we'd sorted edges and not used a heap?)

Summary

What did we learn?

- Minimum Spanning Trees
 - Review!
- Kruskal's Algorithm
 - Review again!
- Find-union
 - How to implement
 - How to optimize
 - How it affects runtime of Kruskal's algorithm.