NONVOLATILE SEMICONDUCTOR MEMORIES

YUKUN HSIA

谢汝别

University of Santa Clara Santa Clara, Ca. 95053

Microprocessor Division FAIRCHILD/SCHLUMBERGER 450 National Avenue Mountain View, Ca. 94043

11 May, 1984

NONVOLATILE SEMICONDUCTOR MEMORIES

CLASSIFICATION BY FUNCTION

ROM

PROM

EPROM

E2PROM

• CLASSIFICATION BY TECHNOLOGY

INTERCONNECT DEPENDENT STORAGE

FLOATING GATE STORAGE

GATE INSULATOR STORAGE

SEAM P. DEFAMILY

Average Power access dissipa- filme, rs lion, mW 20 350 70 Hi 40 40 770 Fe 40 40 800 Hi 20 20 500 Hi 21 20 770 Fe 21 20 500 Hi 22 770 Fe 21 20 500 Hi 22 770 Fe 21 20 500 Hi 22 770 Fe	6	riest cape	city nonvole	file memo	des ave Bab	The greatest capacity nonvolatile memories available commercially.				
Crearly Chiral Coates Technology Line width Secess Clasipe Line width Line width								Average	Power	
1mb 1048 576		Aldered Caral	Bits per	Cast \$	Cost par	Technology	Line widih.	line, rs	dissipe-	Manufecturer
W CATO CA	3	4	20.8			CMOS	22	926	R	Hisself Lid.
BATE 65.50 56 0.000743 Bipoles 4.0 40 770 BATE 65.50 100 0.000362 Bipoles 5.0 60 60 25.61 262.144 -67 0.000362 NMOB 2.0 500 500 258.45 262.14 3.04 0.001774 NMOB 2.0 770 500 ALI 265 27 20 770 500 500 ALI 265 27 20 500 500 500	PROM	\$	800	8	ELOCOTES	Ofpoler		•	81	Fahehild Camara an Instrument Corp.
BATE CES 639 109 0.001528 Bipoler 5.5 60 800 258 tb 262 t4 -67 0.000332 NMOB 2.0 20 500 258 tb 262 t44 304 0.001374 NMOB 2.0 178 320 44 tb 304 0.001374 NMOB 2.0 178 320 44 tb 305 400 100		\$	2		000000	100	3	8	270	Fulfier Ltd.
29tb 202144 -67 0.000382 NMOB 246 20 500 500 200 200 200 200 100 200 200 200 200 2			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	0.0015.20	Dipoler	Ŀ	8		Hants Corp.
2910 20214 304 0001774 NACS 20 20 178 200	MORE	2 2	42.0%	B	0.0003322	HADB	!	22		
MACH. 21 20 620		982	202.44	3.	0.DB1274	NACE	ล	R .		Advenced Micro Devices
	1000	Ę	858	1	,	104	17	R	8	frames Corp.

3112

DEC 2 9 1999
FENWICK & WEST

To-FENWICK & WEST LLP

A CON CONTROL OF THE PARTY OF T

Introduction to MOS LSI design

J. MAVOR, M.A. JACK, P.B. DENYER

Received 12-29-99 10:21_{am}

From-714 828 4146

To-FENWICK & WEST LLP

Page 02

Received 12-29-99 10:21am

From-714 838 4148

To-FENWICK & WEST LLP

Page 03

10-EENAICK T MEZI

Fujio Memote, Shall Arizamil, Teire Innes, Mithibito Ona, Norio Endo An ton 18th ROM Tothile Corp.

De ilmetters	gog gland Ag Başımadırı		į is	31:12	4.8	0 140	0 1/1	- App moph
3	D • • • • • • • • • • • • • • • • • • •			\$20.00	17.2	0 7.4	• •	stage stade. N
Chronel Scratture	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		prog. Table crito	62.42	ě	3	0 = 1	strade solp-St
	1	Prices I De		(3) at a (pa) (2. Up prime rate)	('el el eb ile [e']	to orand the	dre sta	Lucture
		1		1 0-		1	_ـــــــــــــــــــــــــــــــــــــ	

TABLE 1—Comparison of characteristics of new stratters and correct stratters.

A (bit Has)

(bit 11m)

P. well CMOS Deuble Poly-Sigate	Fully static serve and with negative feedback	128K words x 6b 5.2 x 6.64m²	7.08 s. 7.7mm2	Bons		A\$	8mA at a 200m cycle	0.01µA	28 pin, 600 mil Ul
Technology		Organization		Adves seems time	Cycle ties	Power sapply	Active current	Sundby curent	Package 1

(b) Carrent cell

TABLE 1-Semmeny of typical characteristics.

- 1964 IEEE International Solid-State Chrolis Conference

(s) New Co.71

EDM to

An example of the programmed SADL cell array.

A NEW CELL FOR HIGH CAPACITY MASK NOW BY THE DOUBLE LOCUS TECKNIQUE NOT IAKI Sato, Takahiro Nawata, and Kunihiko Wada IC Development Division, Fujitsu Linited

Received 12-29-99 10:21am

From-714 838 4146

To-FENWICK & WEST LLP

Page DE

CMOS PROM with Polysilican Fusible Links

FB. 1. (a) Layout of the 4-bit cell. (b) Singlebit equivalent checit,

Fig. 2. SEN photograph of a 4-bit cell.

HAN STREET MAYER ----

PILATIA M. CRILICION

Fig. 4. Block diserran of the Perry.

HETZGER: 16K CHOS PROM WITH POLY & FURBILE LINKS IZEE JOURNAL OF SOLIDSTATE CIRCUITS, VOL. SC.18, NO. 5, OCTOBER 1913

Received

2-29-89

10:21 am

From-714 838 4146

To-FENWICK & WEST LLP

ngo O7

Received 12-29-99 10:21am

From-714 838 4148

To-FENWICK & WEST LLP

Page U5

Junction-Shorting PROM

Fig. 1. Block diagram of a 44 thit PROM with an SIT2 word x8 this organization.

paramen e al : 40 as 64 Edit tructhon-shoritho prohests forestoned of solid-state circuity, vol. 85-19, M. 2, april 1994

60.9

9010 828 014

DEC-36-66 MED 1114¢ AHF

The second secon

Year

restee/February 24, 1965

-4

Ebotresides/February 24, 1983

L. Swaked. Two-micromater design rates aquestas the E-PROM cost deven to 0 by 6 jun. The active channel area, bennesh the locating polysticon gate, is just 1 by 1.2 jun. The n° regions are 0.6 jun deep.

TABLE 1-Characteristics of 256K CHOS EPROM

256Kb CMOS EPROM Histiam fo, To-Long Chie, Teang-Ching Me, Gust Penhapas SEEO Technology, Inc.

11.54m Gan x 4.25cm 4.37cm x 4.57com 22k x 8	160µA 160µA 160µW at 3KHz 125w (179.) 12 to 16V
Pryriad Characteristics Maintenn feature dec Cell sice Die sien Organization	Electrical Characteristics NC (standby) IPP (standby) Active powtt Acces time Programming voltage

URE 1-SEM photograph of 6µm x 6.75µm cell in uray grass sectional view of the OROS IPRON technology (6).

3

6 y 1864 (EEE International Solid-State Circulta Conference

EPROM Deprogramming

History

■ Recurrent problem with floating-gate EPROM devices

Impact on Devices

- Previously written memory bits become erased when exposed to high voltages on device control-gate with source and drain grounded or at low potential
- Failure mechanism is also manifested as immediate retention loss or failure to write (program)
- Also as Read-disturb

Impact on Product Yield

Deprogramming reduces yield

EPROM Device Operational Modes

Operation	Node Voltage	Vs	VG	V _D
	Read	Gnd	Gnd 5 V	≈1.6 V
Selected Device	Write	Gnd	≈25 V	Gnd ≈25 V 16-18 V
Unselected	Write Inhibit on Same Word Line	Gnd	Gnd ≈25 V	Gnd
Device	Write Inhibit on Same Bit Line	Gnd	≈Gnd	Gnd ≈Gnd 16-18 V

EPROM Deprogramming

Deprogramming Model

Loss of stored charges from floating-gate to controlgate on unselected devices during Write operation

Loss Mechanism

- Asperities or other surface features found on floatinggate polysilicon surface or in the interpoly oxide cause localized enhancement of electric field which promotes Fowler-Nordheim emission of stored charges
- Overly sharp edges on floating-gate poly under control-gate overlap region causing Fowler-Nordheim emission of stored charges

3808 EPROM Poly Profiles

Ideal

Actual

(Drawing courtesy of A. Mecchi)

DEC-38-88 HED 11125 AHF

The Impact of Procsing Conditions and Device Deogramming on EPROMsperities

Yukun Hsia anden Y. C. Mei

EPROM Deprogramming

Potential Processing Solutions

■ Asperity Related

- Poly deposition temperature
- Poly doping temperature
- Increased poly doping level
- Poly anneal
- Pre-oxidation clean
- Higher interpoly oxidation temperature
- HCI interpoly oxidation
- Post-oxidation anneal

■ Edge Effect Related

- Etch slope control through alteration of etch ambient
- Higher interpoly oxidation temperature

1384-YH9

9010 828 01

DEC-38-68 NED 11124 AHF

Experiment Result Summary

(Exclusive of interpoly oxide temperature and doping level)

Asperity Related

- Lower poly deposition temperature
 - Problem with uniformity control
- Increased poly doping temperature
 - Deprogramming increased
- Poly anneal
 - No effect discernible
- Pre-oxidation RCA clean
 - No effect discernible
- **■** HCl interpoly oxidation
 - Small Improvement observed
- **■** Post-oxidation anneal
 - Not investigated

Edge related

- Etch slope control
 - SF₆ showed small improvement

Summary of Successful Results on Deprogramming Experiments

Interpoly oxide temperature and doping level experiments

Process Variation	Total Wafers	Total	Good	Good	Good Ver 1	Good Ver 2	Good Good Good Good Good Total Func Write Ver 1 Ver 2 Die	2 Aield	512 Bits Sampled	8	% Oebto
РОХ	\$ 2(2030) 3(2031)	1014	588 58%	289	228	82 % 82 %	25 % S	22	497	~	0.003
W	\$ 5(2030)	940	468	N &	316	3,3	317	×	379	•	0.000
Control	5 4(2030) 1(2035)	949	471	325 69%	217 67%	3 %	8 =	-	8	Ē	760.0

INTEL EEPROM

HUGHES EEPROM

XICOR EFFROM

Cross-Sections of Floating Gate EEPROMs

CAICS FLOATING GATE 1.54-m STEPPER

141 × 273 mHe

FABRICATION
FECHNOLOGY
DESIGN RULES
LITHDGRAPHY
PHYSICAL CHARACTERISTICS
DIE SIZE
ORIGANZATION
PACKAGE
DC PERPORMANCE
PU
OPERATION
SUPPLY VOLFAGE
STANDBY CURRENT
TI
VO LEVELS

FIALLY STATTC 5 VOLTS 56mA 16pA (CHOS BOUT LEYELS) TTL

A 15m CMOS EEPROM Richard Zaman, Chun Ha, Taomas Chard Esel Monoelaceronics, Inc.

J

B

gy:	3 =		Į
20 P. J.	8 !	R	3
	:	2	and and
OPERATING VOCTACE	E	-	
Thateston Type:	MONTO VOCACE	TOM MORTEDE	PERSONAL RANGE OFFICE

TABLE 1-Semeny performance.

2 8 ± E

AC PERFORMANCE
ADORESS ACCESS THE
CHIP SELECT THE
WRITE THE

FABLE 3-junction depth, country thickness and channel langth for N. and Pubmand high and learnedings translated models debts.

PROURE 1-Cell comparison faculty referred also; the ISR EDFROM only used him dealer releas scaled EIFROM

FRURE 1-(a)-SEM photograph of a two-transfth EFROM cell with by te education device, (b)-cross section was of floating poly EEROM, (c)-spreading sesition

A GAX) CHÚS EEROM oth Be-Chip ECC

P1 . a

Senjey Mehrstra, Teang-Orling Ma, Th-Long Chiu, Gust Perhyon

SEED Tachrology, Inc.

STANTIBLE AT SALE AND DOOD ONLY AND DOOD ONL	TANKS AND THE PROPERTY
3	CASSACRA CONCENTRA NOW WAY TO SEE THE

Kwell CMOS on rpi

Manimum feature size
Mend pitch
NY to Pr apacing
Poly St I Gate Oxide
Ady. St II Gate Oxide
Turnel dielectrite

TABLE 1 - Characteristics of 64Ke CHOS ECROM.

6pm 9pm 660 A 600 A 65 40 Jun 162 40 Jun 162 40 mill 1mm > 166 program/ense cydm 100 m 20 m A

Die side: Programming time Endurance

3 E

Active current Standby current

Acors time

a 1884 ILEE International Solik-State Circuits Conference

Assume of Injected Charge (C/cm^a) 714. I. Effect of Pemperature on Charge Tropping in Ompalition

D MOS

HIGH TEMPERATURE AND EXTENDED ENDURANCE CHARACTERISTICS OF EBROW

Ching S. Jenq, Fing Wong and Bhazati Joshi 8220 Technology, Inc. San Jose, Ca and

Chenaing Ru University of California, Berkeley, Ca

ned mederine Cherges (x10170m)

TO-FERMICK & WEST

IEEB STANDARD BW 681-1976

O 1903 IEEE International Solit-State Circulas Conference

+6V-Cmty IIK EEFRON Darra D. Donstos, Edward M. Hannigtord, Louth J. Toth NCR Microstronia Distan

RETEMBON/ENDURANCE © 135°C

FIGURE 3—Typical data returbus/sudments curve measured on a 4Kb tot chip. Dez puberos determinal by doughty is a second follows with verying the amount privately.

PROCESS
ONDE-SULCON-MITTINDE
ORGANIZATION
ORGANIZATION
ORGANIZATION
ORGANIZATION
ORGANIZATION
ORGANIZATION
IS WORDS X & BITTS
ORGANIZATION
IS WORDS X & BITTS
IS WORD

PABLE 1-Male Lecture of the STK PEPBON.

Received 12-29-1999 10:30am

0 - 19-8 /F CYCLES

MEMORY THRESHOLD (YOLTS)

0-16

From-714 828 4146

To-FENWICK & WEST

Page 016

A BY-ONLY EEP ROIM with Internal Program/Enus Central
Art Lorcestor, Bob Johnstons, John Chritis, Gorry Tolkes, Dovid Mooren
Inness Corp.

PICURE 1-River menery and

	IP		·	
	1 4	Ē	1	2
	8/2 Cotum Ame 64 x 8 Cotum Lato	EFRON Arry	Par Care) 80 E
		E0) Q00000		8 10 10 10 10 10 10 10 10 10 10 10 10 10
		7		- Constant
	1	P ST	-	FIGURE 2-Portional
1		(VO-000 Janu	•••	Ē

PROGRAMMETRALE MODE
CONTROL
A & AS counted darkey FE before Order
A &

FIGURE 9-Propuntum control and a

E - 1mS @ 26V E - 10m8 - 20V

MCDONNELL DOUGLAS MNOS W - 200µ8 @ 22V E . 1m8 @ 22V

Figure Comparison of the Effect of Endurance Cycling on Memory Thresholds for the MDC MNOS, Hitachi MNOS and Intel Flotox Nonvolatile Memory Transistors

Received 12-29-1999 10:30am From-714 838 4146

To-FENWICK & WEST

Page 020

MNOS Data Retention

TIME, DAYS

Data retention, MNOS array.

MBIA: MINOS LEI MEMORY DEVICE

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-24, NO. 8, MAY 1977

Received 12-29-1999 10:30am

From-714 838 4146

To-FENWICK & WEST

Page 021

United States Patent 4,063,267

Inventor: Yakes Hele, Sensogs, Call. Dec. 13, 1977

620 0823

TO-FENNICK & WEST

Prom-714 858 4148

WEOS:01 8881-82-21 PMA

MNOS TRAPS AND TAILORED TRAP DISTRIBUTION GATE DIELECTRIC MINOS PRESENTED AT THE 1879 INTERNATIONAL CONFERENCE
ON SOLID STATE DEVICES

AUGUST 27-29, 1879, TOKYO, JAPAN

MICROSCOPIC MODEL OF MEMORY TRAPS

3 Si Hq + 4 NH3 --- Si3Nq + 12 H2

CHEMICAL REACTION FOR FILM FORMATION

SATURATED N:Si:N SI —N BOND N

DANGLING SI – BOND ELECTRON EXCHANGE TO FORM AMPHOTERIC TRAPS

2 Ny Si . ----- Ny Si : + Ny Si

00 TRAP + 0" TRAP

YUKUN HSIA

K. L. NOA

ALL ENERGY VALUES IN EV

ELECTRON ENERGY DIAGRAM OF MNOS STRUCTURE

PROPERTIES OF NITRIDE APTLY INTERPRETED BY THE MODEL

- ELECTRON AND HOLE TRAPS ARE EQUAL IN NUMBER
- CHARGE TRAPS ARE DISTRIBUTED IN THE NITRIDE BULK
- TRAPS ARE CHARGED
- EXCESS SILICON IN NITRIDE IS OBSERVED WITH SPECTROSCOPY
- LOWER NH3/SIH4 RESULTS IN LARGER THRESHOLD WINDOW
- N IMPLANT INCREASES NET POSITIVE FIX CHARGES WITH NEGATIVE SHIFT OF C-V HYSTERESIS
- B IMPLANT INCREASES NET NEGATIVE FIX CHARGES WITH POSITIVE SHIFT OF C-V HYSTERES IS

TEN ARES

EFFECT OF HYDROGEN ON MEMORY TRAPS

≡ SI—H BONDS ARE OBSERVED IN LOW TEMPERATURE DEPOSITED NITRIDE

•
$$2 \equiv SI - H \longrightarrow 2 \equiv SI - + H_2$$

• SIMILARLY, DURING ENDURANCE CYCLING, IT IS POSTULATED THAT

AND/OR

$$= SI - H + h^{+} + = SI - N - SI - M + = SI - H + = SI + H + H + = SI + H +$$

MNOS THRESHOLD WINDOW (AVT) VERSUS NH3:SIHA RATIO USED IN NITRIDE DEPOSITION (770°C NITROGE) CARRIER CVD NITRIDE)

NH3:SIH4 RATIO	250.1	175:1	1:21	15:1	50:1	
					16.7	
V _T IN VOLTS	6.6	10.8	11.7	4.4		

MNOS RETENTION VS SIN COMPOSITION

92.a

Received 12-29-1889 10:30-mm

MNOS Retention-Endurance Characteristics

Yukun Hsia, Eden Mr. and Kia L. Noat

Proceedings of the 14th Conference (1982 International) on Solid State Devices, Tokyo, 1982; Japanese Journal of Applied Physics, Volume 22 (1983) Supplement 22-1, pp. 89-93

MNOS Retention-Endurance Characteristics Graded Nitride Dielectric

Yukun Hsia, Eden Mm and Kia L. NGAI Proceedings of the 14th Conference (1982 International) on Solid State Devices, Tokyo, 1982; Japanese Journal of Applied Physics, Volume 22 (1983) Supplement 22-1, pp. 89-93

Received 12-29-1999 10:30am From-714 939 4145 To-FENWICK & WEST Page 032

10-FENNICK & WEST

ROR

N V H V N

ROR

A IV Only Single Ohly Microcompeter with Remediath SRAM Parto Restrict Roberto Finantini, Mauribio Gaibotti

SESATES MAN INV

1984 IZ EE Intermettens! Solid Sure Charles Conference

DEC-30-00 HED

7010 828