

A Schlumberger Company

μΑ1458 • μΑ1558 **Dual Internally Compensated Operational Amplifiers**

Linear Division Operational Amplifiers

Description

The μ A1458, μ A1558 are a monolithic pair of internally frequency compensated high performance amplifiers constructed using the Fairchild Planar Epitaxial process. They are intended for a wide range of analog applications where board space or weight are important. High common mode voltage range and absence of latch up make the μA1458, μA1558 ideal for use as voltage followers. The high gain and wide range of operating voltage provide superior performance in integrator, summing amplifier and general feedback applications.

The µA1458, µA1558 are short circuit protected and require no external components for frequency compensation. The internal 6.0 db/octave roll off ensures stability in closed loop applications. For single amplifier performance, see the µA741 data sheet.

The Fairchild µA1458, µA1558 slew rate has been improved to $0.8/\mu s$ typical.

- No Frequency Compensation Required
- Short Circuit Protection
- Large Common Mode And Differential Voltage

- Mini-Dip Package

	Ranges		
•	Low Power Consumption	A /	lata
_	No Lotob Lin		

Absolute Maximum Ratings

Absolute Maximum Hatings	
Storage Temperature Range	
Metal Can and Ceramic DIP	-65°C to +175°C
Molded DIP and SO-8	-65°C to +150°C
Operating Temperature Range	
Extended (µA1558M)	-55°C to +125°C
Commercial (µA1458C)	0°C to +70°C
Lead Temperature	
Metal Can and Ceramic DIP	
(soldering, 60 s)	300°C
Molded DIP and SO-8	
(soldering, 10 s)	265°C
Internal Power Dissipation ^{1, 2}	
8L-Metal Can	1.00 W
8L-Ceramic DIP	1.30 W
8L-Molded DIP	0.93 W
SO-8	0.81 W
Supply Voltage	
μA1558	± 22 V
μA1458	± 18 V
Differential Input Voltage	± 30 V
Common Mode Input Swing ³	± 15 V
Output Short Circuit Duration4	Indefinite
Notes	

^{1.} T_{J Max} = 150°C for the Molded DIP and SO-8, and 175°C for the Metal Can and Ceramic DIP.

Connection Diagram 8-Lead Metal Package (Top View)

Lead 4 connected to case.

Order Information

Device Code	Package Code	Package Description
μA1458HC	5W	Metal
μA1458CHC	5W	Metal
μA1558HM	5W	Metal

Connection Diagram 8-Lead DIP and SO-8 Package

Order Inform	A1458SC KC Molded Surface Mount									
Device Code	Package Code	Package Description								
μA1458RC	6T	Ceramic DIP								
μA1458SC	KC	Molded Surface Mount								
μA1458TC	9T	Molded DIP								
μA1458CRC	6T	Ceramic DIP								
μA1458CTC	9T	Molded DIP								
μA1558RM	6T	Ceramic DIP								

- 8.7 mW/°C, the 8L-Molded DIP at 7.5 mW/°C, and the SO-8 at 6.5 mW/°C.
- 3. For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.
- Short circuit may be to ground or either supply, Rating applies to eet 4U.com + 125°C case temperature or 70°C ambient temperature.

^{2.} Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 8L-Metal Can at 6.7 mW/°C, the 8L-Ceramic DIP at

μA1458 • **μA**1558

Equivalent Circuit (1/2 of Circuit)

μ **A 1458** • μ **A 1558**

 μA1458 and μA1458C Electrical Characteristics T_A = 25°C, V_CC = ±15 V, unless otherwise specified.

			μ Α1458			1	u A 1458 0	С	
Symbol	Characteristic	Condition	Min	Тур	Max	Min	Тур	Max	Unit
V _{IO}	Input Offset Voltage	$R_S \leq 10 \text{ k}\Omega$		2.0	6.0		2.0	10	mV
I _{IO}	Input Offset Current			0.03	0.2		0.03	0.3	μΑ
I _{IB}	Input Bias Current			0.2	0.5		0.2	0.7	μΑ
Zį	Input Impedance		0.3	1.0			1.0		МΩ
Icc	Supply Current			2.3	5.6		2.3	8.0	mA
P _c	Power Consumption	V _O = 0 V		70	170		70	240	mW
CMR	Common Mode Rejection		70	90		60	90		dB
V _{IR}	Input Voltage Range		± 12	± 13		± 11	± 13		٧
PSRR	Power Supply Rejection Ratio	$R_S \le 10 \text{ k}\Omega$		30	150		30		μ٧/٧
los	Output Short Circuit Current			20			20		mA
A _{VS}	Large Signal Voltage Gain	$V_O = \pm 10 \text{ V}, R_L \geqslant 2.0 \text{ k}\Omega$	20	100		20	100		V/mV
V _{OP}	Output Voltage Swing	$R_L = 10 \text{ k}\Omega$	± 12	±14		± 11	± 14		٧
fc	Unity Gain Crossover Frequency	ataone	#	1.1	J.C	OI	1.1		MHz
SR	Slew Rate	A _V = 1.0		0.8			0.8		V/μs

The following specifications apply for $0^{\circ}\text{C} \leqslant \text{T}_{\text{A}} \leqslant +70^{\circ}\text{C}$

V _{IO}	Input Offset Voltage	$R_S \leq 10 \text{ k}\Omega$			7.5		Ì	12	mV
$\Delta V_{IO}/\Delta T$	Input Offset Voltage Temperature Sensitivity	$H_S = 50 \Omega$		15			15		μV/°C
I _{IO}	Input Offset Current				0.3			0.4	μΑ
I _{IB}	Input Bias Current				0.8			1.0	μΑ
A _{VS}	Large Signal Voltage Gain	$V_O = \pm 10 \text{ V}, R_L \geqslant 2.0 \text{ k}\Omega$	15			15			V/mV
V _{OP}	Output Voltage Swing	$R_L = 2.0 \text{ k}\Omega$	± 10	± 13		± 9.0	± 13		V

μA1458 • μA1558

 μ A1558 Electrical Characteristics T_A = 25°C, V_{CC} = ± 15 V, unless otherwise specified.

				μ Α1558		
Symbol	Characteristic	Condition	Min Typ	Max	Unit	
V _{IO}	Input Offset Voltage	R _S ≤10 kΩ		1.0	5.0	mV
110	Input Offset Current			0.03	0.2	μΑ
lıB	Input Bias Current			0.2	0.5	μΑ
Z _I	Input Impedance		0.3	1.0		МΩ
lcc	Supply Current			2.3	5.0	mA
Pc	Power Consumption	V _O = 0 V		70	150	mW
CMR	Common Mode Rejection		70	90		dB
V _{IR}	Input Voltage Range		± 12	± 13		٧
PSRR	Power Supply Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$		30	150	μV/V
los	Output Short Circuit Current			20		mA
A _{VS}	Large Signal Voltage Gain	$V_0 = \pm 10 \text{ V}, R_L \geqslant 2.0 \text{ k}\Omega$	50	200		V/mV
V _{OP}	Output Voltage Swing	R _L = 10 kΩ	± 12	± 14		٧
fc	Unity Gain Crossover Frequency		J.C	1.1		MHz
SR	Slew Rate	A _V = 1.0		0.8		V/µs

The following specifications apply for $-55^{\circ}\text{C} \leqslant T_{\text{A}} \leqslant +\,125^{\circ}\text{C}$

V_{IO}	Input Offset Voltage	R _S ≤ 10 kΩ			6.0	mV
$\Delta V_{IO}/\Delta T$	Input Offset Voltage Temperature Sensitivity	$R_S = 50 \Omega$		15		μV/°C
lio	Input Offset Current				0.5	μΑ
l _{iB}	Input Bias Current				1.5	μΑ
A _{VS}	Large Signal Voltage Gain	$V_O = \pm 10 \text{ V}, R_L \geqslant 2.0 \text{ k}\Omega$	25			V/mV
V _{OP}	Output Voltage Swing	$R_L = 2.0 \text{ k}\Omega$	± 10	± 13		v

PC02431F

Typical Performance Curves $T_A = 25$ °C, $V_{CC} = \pm 15$ V, unless otherwise specified

Voltage Gain vs Supply Voltage

Power Bandwidth (Large Signal Swing vs Frequency)

Output Voltage Swing vs

Open Loop Frequency Response

Power Consumption vs Supply Voltage

Output Noise vs Source Resistance

Typical Applications

High Impedance, High Gain Inverting Amplifier

Quadrature Oscillator

μΑ1458 • μΑ1558

Typical Applications (Cont.)

Compressor/Expander Amplifiers

Notes

Maximum compression expansion ratio = R_1/R (10 $k\Omega > R \ge 0$) Diodes D1 through D4 are matched FD6666 or equivalent

Analog Multiplier

Note

1. Matched to 0.1% E_O = 100 E_{I1} x E_{I2}