L'Hôpital's (Selection) Rule An Empirical Bayes Application to French Hospitals

Fu Zixuan

June 20, 2024

Outline

Introduction

Data and Estimation

Empirical Bayes Compound decision: The Selection Problem

Motivation: Invidious decision

► League table mentality: Ranking & Selection.

Noisy estimates: Unobserved heterogeneity.

► Bayesian view: Prior distribution.

Introduction 3

Motivation: French Hospitals

- Productivity/Efficiency: Factories, Schools, Hospitals etc.
- ► *Methodology*:
 - (Parametric) Stochastic Frontier
 [Aigner et al., 1977, Meeusen and van Den Broeck, 1977]→ How far it is to the frontier.
 - 2. (Non-Parametric): Data Envelopment [Charnes et al., 1978] \rightarrow Compare with other units.
 - 3. Input demand function: [Croiset and Gary-Bobo, 2024].
- Ownership: Public (Teaching, Ordinary) vs. Private (For profit, Non-profit).

Introduction 4

Questions

- ▶ Out of the top 20% hospitals in France¹, how many of them are public hospitals/private hospitals?
- ▶ What would be the selection outcome if I also control for the False Discovery Rate?
- ▶ Does different ranking/selection rule produce contradicting results? And to what degree?

¹in terms of labor (nurses) employment efficiency Introduction

Roadmap

- 1. Data: The Annual Statistics of Health Establishments (SAE), from 2013 to 2022.
- 2. Estimation of efficiency
 - Y: Labor input (number of full time equivalent nurses).
 - X: Hospital output (e.g., inpatient/outpatient stays, medical sessions).
- 3. Selection problem: Compound decision framework and optimal decision rule
- 4. Comparison of outcomes under different decision rules
- 5. Conclusion

Outline

Introduction

Data and Estimation

Empirical Bayes Compound decision: The Selection Problem

Hospital Types

Year	Teaching	Normal Public	Private FP	Private NP	Total
2013	198	1312	1305	1382	4197
2014	201	1274	1293	1349	4117
2015	211	1275	1297	1349	4132
2016	212	1266	1297	1313	4088
2017	211	1249	1297	1306	4063
2018	214	1247	1296	1288	4045
2019	214	1236	1287	1281	4018
2021	219	1222	1293	1264	3998
2022	220	1220	1296	1259	3995

Data and Estimation 8

Output

Output	Normal Public	Private Non Profit	Private For Profit	Teaching
STAC ² inpatient	8.08%	5.66%	16.3%	7.9%
STAC oupatient	2.26%	4.02%	22.61%	3.59%
Sessions	4.34%	23.31%	27.17%	4.8%
Outpatient Consultations	58.23%	43.55%	0.8%	69.18%
Emergency	21.14%	6.78%	17.3%	12.64%
Follow-up care and Long-term care	1.67%	11.26%	12.16%	1.09%
Home hospitalization	0.06%	0.76%	0.17%	0.08%
Psychiatry stays	4.22%	4.66%	3.49%	0.72%

²Short term acute care Data and Estimation

First glance

Dependent Variable:	Nurses		
Model:	(1)	(2)	
Variables			
Constant	1.59***	1.58***	
	(0.067) 0.278***	(0.069) 0.277***	
STAC inpatient			
	(0.012)	(0.013)	
Private Forprofit	-0.303***	-0.280***	
	(0.061) -0.215***	(0.065) -0.188***	
Private Nonprofit			
	(0.056) 0.717***	(0.055) 0.709***	
Teaching			
	(0.056)	(0.056)	
Fit statistics			
Observations	15,335	13,402	
R ²	0.835	0.837	

Clustered (FI) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Panel data Estimator

Strict exogeneity: Within Group/First Diffrence

$$E[\epsilon_{it}|x_{i1},\ldots,x_{iT},\theta_i]=0$$

▶ Relaxed: First Difference GMM [Arellano and Bond, 1991], System GMM [Arellano and Bover, 1995, Blundell and Bond, 1998a].

$$E[\epsilon_{it}|x_{i1},\ldots,x_{it-p},\theta_i]=0$$

Issues: Weak instruments [Blundell and Bond, 1998b] and the proliferation of instruments [Roodman, 2007].

$$\mathbb{E}[\Delta x_{i,t-1}(y_{it} - \beta x_{it})] \quad \text{if} \quad \mathbb{E}[\Delta x_{i,t-1}(\theta_i + \varepsilon_{i,t})] = 0$$

Panel Data Estimation

Dependent Variable:	log(ETP_INF)			
Model:	Within Group (1)	First Difference (2)	System GMM (3)	
Variables				
log(SEJHC_MCO)	0.10***	0.07***	0.70***	
	(0.00)	(0.01)	(0.05)	
log(SEJHP_MCO)	0.02***	0.01***	-0.05	
	(0.00)	(0.00)	(0.04)	
log(SEANCES_MED)	0.02***	0.02***	0.07***	
	(0.00)	(0.00)	(0.03)	
log(SEJ_PSY)	0.00	0.00	0.07***	
	(0.00)	(0.00)	(0.01)	
Fit statistics				
Observations	15335	13502	11536	
n	1833	1833	1833	
T	9	9	9	

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Outline

Introduction

Data and Estimation

Empirical Bayes Compound decision: The Selection Problem

Compound Decision Framework

Observe:

$$\hat{m{ heta}} = (\hat{ heta}_1, \dots, \hat{ heta}_n)$$
 where $\hat{ heta}_i | heta_i \sim P_{ heta_i}$

Decision:

$$\delta(\hat{\boldsymbol{\theta}}) = (\delta_1(\hat{\boldsymbol{\theta}}), \dots, \delta_n(\hat{\boldsymbol{\theta}}))$$

Compound Loss and Risk

Loss:

$$L_n(\theta, \delta(\hat{\boldsymbol{\theta}})) = \sum_{i=1}^n L(\theta_i, \delta_i(\hat{\theta})).$$

Risk (Expectation of risk):

$$\begin{split} R_n(\theta, \delta(\hat{\boldsymbol{\theta}})) &= \mathbb{E}[L_n(\theta, \delta(\hat{\boldsymbol{\theta}}))] \\ &= \frac{1}{n} \sum_{i=1}^n \mathbb{E}[L(\theta_i, \delta_i(\hat{\boldsymbol{\theta}}))] \\ &= \frac{1}{n} \sum_{i=1}^n \int \dots \int L(\theta_i, \delta_i(\hat{\theta}_1, \dots, \hat{\theta}_n)) dP_{\theta_1}(\hat{\theta}_1) \dots dP_{\theta_n}(\hat{\theta}_n). \end{split}$$

The Selection Task

- ▶ Select the bottom 20% 3 out of the population of θ_i , those i whose $\alpha_i < G^{-1}(0.2)$
- ► Control the overall false discovery rate at 20%,

$$\frac{\mathbb{E}_{G}\left[1\left\{\theta_{i} > \theta_{\alpha}, \delta_{i} = 1\right\}\right]}{\mathbb{E}_{G}\left[\delta_{i}\right]} \leq \gamma$$

³The most efficient 20%.

Problem Formulation

The loss function is

$$L(\delta, \theta) = \sum h_i (1 - \delta_i) + \tau_1 \left(\sum (1 - h_i) \delta_i - \gamma \delta_i \right) + \tau_2 \left(\sum \delta_i - \alpha n \right)$$

Therefore, the problem is to find δ such that

$$\begin{split} & \underset{\delta}{\min} \quad \mathbb{E}_{G} \mathbb{E}_{\theta \mid \hat{\theta}} \left[L(\delta, \theta) \right] \\ & = \mathbb{E}_{G} \sum_{i} \mathbb{E}(h_{i})(1 - \delta_{i}) + \tau_{1} \left(\sum_{i} (1 - \mathbb{E}(h_{i})) \delta_{i} - \gamma \delta_{i} \right) \\ & + \tau_{2} \left(\sum_{i} \delta_{i} - \alpha n \right) \\ & = \mathbb{E}_{G} \sum_{i} v_{\alpha}(\hat{\theta})(1 - \delta_{i}) + \tau_{1} \left(\sum_{i} (1 - v_{\alpha}(\hat{\theta})) \delta_{i} - \gamma \delta_{i} \right) + \tau_{2} \left(\sum_{i} \delta_{i} - \alpha n \right) \end{split}$$

where $v_{\alpha}(\hat{\theta}) = \mathbb{P}(\theta < \theta_{\alpha}|\hat{\theta})$ is the **posterior tail probability**.

Prior Distribution *G*

Observe

$$Y_{it} = \theta_i + \varepsilon_{it}$$
 $\varepsilon_{it} \sim \mathcal{N}(0, \sigma_i^2)$ $(\theta_i, \sigma_i^2) \sim G$

Neither θ_i nor σ_i^2 is known. But the sufficient statistics are

$$Y_i = rac{1}{T_i} \sum_{t=1}^{T_i} Y_{it}$$
 where $Y_i | heta_i, \sigma_i^2 \sim \mathcal{N}(heta_i, \sigma_i^2 / T_i)$

$$S_i = rac{1}{T_i - 1} \sum_{t=1}^{T_i} (Y_{it} - Y_i)^2$$
 where $S_i | \sigma_i^2 \sim \Gamma(r_i = (T_i - 1)/2, 2\sigma_i^2/(T_i - 1))$

Tail probability

Given the two sufficient statistics, the posterior tail probability is

$$\begin{split} v_{\alpha}(Y_i, S_i) &= P(\theta_i > \theta_{\alpha} | Y_i, S_i) \\ &= \frac{\int_{-\infty}^{\theta_{\alpha}} \Gamma(s_i | r_i, \sigma_i^2) f(y_i | \theta_i, \sigma_i^2) dG(\theta_i, \sigma_i^2)}{\int_{-\infty}^{\infty} \Gamma(s_i | r_i, \sigma_i^2) f(y_i | \theta_i, \sigma_i^2) dG(\theta_i, \sigma_i^2)} \end{split}$$

We want to find a cutoff λ such that both constraints are satisfied ⁴:

- ► Capacity: $\int \int P(v_{\alpha}(Y_i, S_i) > \lambda) dG(\theta_i, \sigma_i^2) \leq \alpha$
- ▶ FDR: $\int \int \frac{E[1\{v_\alpha(Y_i,S_i)>\lambda\}(1-v_\alpha(Y_i,S_i))]}{E[1\{v_\alpha(Y_i,S_i)>\lambda\}]} dG(\theta_i,\sigma_i^2) \leq \gamma$

⁴Relaxed discrete optimization problem, following [Basu et al., 2018] Empirical Bayes Compound decision: The Selection Problem

Estimate G

Following [Koenker and Mizera, 2014] The primal problem:

$$\min_{f=dG} \left\{ -\sum_{i} \log g(y_i) \middle| g_i = T(f_i), \ K(f_i) = 1, \ \forall i \right\}$$

where $T(f_i) = \int p(y|\alpha) f_i d\alpha$ and $K(f_i) = \int f_i d\alpha$.

Discretize the support:

$$\min_{f=dG} \left\{ -\sum_{i} \log g(y_i) \middle| g = Af, \ 1^T f = 1 \right\}$$

where $A_{ij} = p(y_i | \alpha_j)$ and $f = (f(\alpha_1), f(\alpha_2), \dots, f(\alpha_m))$.

The dual problem:

$$\max_{\lambda,\mu} \left\{ \sum_{i} \log \lambda_1(i) \middle| A^T \lambda_1 < \lambda_2 1, \ (\lambda_1 > 0) \right\}$$

The estimated \hat{G}

Case 1: σ_i unknown, only S_i observed.

Case 2: σ_i known.

Unknown σ_i : Posterior Tail probability

Unknown σ_i : Posterior Mean

Known σ_i : Posterior Tail probability

Known σ_i : Posterior Mean

"Face value"

Outline

Introduction

Data and Estimation

Empirical Bayes Compound decision: The Selection Problem

Conclusion

Conclusion

- ▶ Difference in whether to assume known σ_i .
- ► Control for the False Discovery Rate.
- ▶ Private (FP and NP) hospitals are indeed more "efficient".

Limitation

- Specification
- ► Endogeneity issue
- ightharpoonup Normality assumption on ε_{it}
- ▶ Interpretation of the θ_i .

References I

Aigner, D., Lovell, C. K., and Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. *Journal of econometrics*, 6(1):21–37.

Arellano, M. and Bond, S. (1991).

Some tests of specification for panel data: Monte carlo evidence and an application to employment equations.

The review of economic studies, 58(2):277-297.

📄 Arellano, M. and Bover, O. (1995).

Another look at the instrumental variable estimation of error-components models.

Journal of econometrics, 68(1):29–51.

Basu, P., Cai, T. T., Das, K., and Sun, W. (2018).

Weighted false discovery rate control in large-scale multiple testing.

Journal of the American Statistical Association, 113(523):1172–1183.

References II

- Blundell, R. and Bond, S. (1998a).
 Initial conditions and moment restrictions in dynamic panel data models.

 Journal of econometrics, 87(1):115–143.
- Blundell, R. and Bond, S. (1998b).
 Initial conditions and moment restrictions in dynamic panel data models.

 Journal of Econometrics, page 115–143.
- Charnes, A., Cooper, W. W., and Rhodes, E. (1978). Measuring the efficiency of decision making units. *European journal of operational research*, 2(6):429–444.
- Croiset, S. and Gary-Bobo, R. (2024).

 Are public hospitals inefficient? an empirical study on french data.

References III

Convex optimization, shape constraints, compound decisions, and empirical bayes rules. *Journal of the American Statistical Association*, 109(506):674–685.

Meeusen, W. and van Den Broeck, J. (1977).

Efficiency estimation from cobb-douglas production functions with composed error.

International economic review, pages 435–444.

Roodman, D. (2007).

A short note on the theme of too many instruments.

Center for Global Development Working Paper, 125(10.2139).

Normality assumption on ε_{it}

Estimate the fixed effect θ_i by

$$\hat{\theta}_i = \frac{1}{T} \sum_{i} (\theta_i + \varepsilon_{it} + x_{it}(\beta - \hat{\beta}))$$

$$\stackrel{N \to \infty}{\longrightarrow} \theta_i + \frac{1}{T} \sum_{t} \varepsilon_{it}$$

When T is relatively small (or even fixed), can't use central limit theorem to claim that $\hat{\theta}_i \stackrel{d}{\to} \mathcal{N}(\theta_i, \frac{\sigma_i^2}{T})$. \longleftarrow Assume that $\varepsilon_{it} \sim \mathcal{N}(0, \sigma_i^2)$.

TP vs PM

TP vs JS

TP vs MLE

