#### Математический анализ-3 семестр

#### Лекция 1

#### Введение

#### Тема 1. Числовые ряды

- 1.1. Числовой ряд, сходимость числового ряда
- 1.2. Геометрическая прогрессия
- 1.3. Гармонический ряд
- 1.4. Необходимое условие сходимости числового ряда
- 1.5. Критерий Коши сходимости ряда
- 1.6. Свойства сходящихся рядов

#### Введение

# 1. Основные понятия, связанные с последовательностями

**Определение 1.** Пусть  $\forall n$  — натуральному числу поставлено в соответствие некоторое действительное число  $x_n \colon \forall n \to x_n$ .

Тогда совокупность элементов  $x_n$  (n=1,2,...) называется *числовой* последовательностью (обозначается  $\{x_n\}$ ).

Каждый элемент  $x_n$  называется членом последовательности, а n – его номером.

**Определение 2.** Число a называется *пределом* последовательности  $\{x_n\}$ :  $\lim_{n\to\infty}x_n=a,$  если

$$\forall \varepsilon > 0 \exists N(\varepsilon) > 0: \forall n > N(\varepsilon) \rightarrow |x_n - a| < \varepsilon.$$

Примеры числовых последовательностей: арифметическая и геометрическая прогрессии.

**Определение** 3. Последовательность  $\{\alpha_n\}$  называется бесконечно малой, если  $\lim_{n\to\infty}\alpha_n=0$ , т.е.  $\forall \varepsilon>0$   $\exists \ N(\varepsilon)>0$ :

$$\forall n > N(\varepsilon) \rightarrow |\alpha_n| < \varepsilon.$$



Например,  $\left\{\frac{1}{n}\right\}$ ,  $\left\{\frac{1}{n^2}\right\}$ .

**Определение 4**. Последовательность  $\{x_n\}$  называется бесконечно большой, если  $\lim_{n\to\infty}x_n=\infty$ , т.е.

$$\forall E > 0 \exists N(E) > 0: \forall n > N(E) \rightarrow |x_n| > E.$$
  
Например,  $\{n\}, \{n^2\}.$ 

**Определение 5**. Последовательность  $\{x_n\}$  называется *ограниченной сверху*, если существует число M такое, что

$$x_n \leq M \ \forall n \in \mathbb{N}.$$

**Определение 6**. Последовательность  $\{x_n\}$  называется *ограниченной снизу*, если существует число m такое, что

$$x_n \ge m \ \forall n \in \mathbb{N}$$
.

**Определение** 7. Последовательность  $\{x_n\}$  называется *ограниченной*, если она ограничена сверху и снизу.

**Определение** 8. Последовательность  $\{x_n\}$  называется возрастающей (неубывающей), если  $x_n < x_{n+1} \ (x_n \le x_{n+1}) \ \forall n \in \mathbb{N}$ , и убывающей (невозрастающей), если  $x_n > x_{n+1} \ (x_n \ge x_{n+1}) \ \forall n \in \mathbb{N}$ .

**Определение 9**. Возрастающие и убывающие последовательности называются *монотонными* последовательностями.

# Определение 10.

Если последовательность не имеет предела, то ее называют расходящейся.

**Теорема Вейеритрасса**. Всякая монотонная ограниченная последовательность имеет предел.



#### 2. Вычисление предела последовательности.

# Раскрытие неопределенностей

1). 
$$\left[ \frac{\infty}{\infty} \right] \lim_{n \to \infty} \frac{P_k(n)}{Q_m(n)} = \begin{cases} const, & k = m \\ \infty, & k > m \\ 0, & k < m \end{cases}$$

$$\lim_{n \to \infty} \frac{2n^2 + 3}{3n^2 - 6} = \lim_{n \to \infty} \frac{n^2 \left(2 + \frac{3}{n^2}\right)}{n^2 \left(3 - \frac{6}{n^2}\right)} = \frac{2}{3}$$

$$\lim_{n \to \infty} \frac{2n^3 + 3}{3n^2 - 6} = \infty \; ; \; \lim_{n \to \infty} \frac{2n^2 + 3}{3n^5 - 6} = 0 \; .$$

2).  $[\infty - \infty]$ 

$$\lim_{n \to \infty} (\sqrt{n+3} - \sqrt{n}) = \lim_{n \to \infty} \frac{n+3-n}{\sqrt{n+3} + \sqrt{n}} = \frac{3}{\infty} = 0$$

3). II замечательный предел:  $[1^{\infty}]$ :  $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$ 

$$\lim_{n \to \infty} \left( \frac{n^2 - 5}{n^2 + 1} \right)^{2n^2} = \lim_{n \to \infty} \left( \frac{n^2 + 1 - 6}{n^2 + 1} \right)^{2n^2} =$$

$$= \lim_{n \to \infty} \left( 1 + \frac{-6}{n^2 + 1} \right)^{2n^2} =$$

$$= \lim_{n \to \infty} \left( 1 + \frac{-6}{n^2 + 1} \right)^{\frac{n^2 + 1}{-6} \cdot \frac{-6}{n^2 + 1} \cdot 2n^2} =$$

$$= \lim_{n \to \infty} \left( 1 + \frac{-6}{n^2 + 1} \right)^{\frac{-6}{n^2 + 1}} e^{-2nt} =$$

$$= \lim_{n \to \infty} e^{\frac{-12n^2}{n^2 + 1}} = e^{-12}.$$

4). Замена бесконечно малых функций на эквивалентные.

Пусть 
$$\alpha_n \to 0$$
 при  $n \to \infty$ :

| 1.        | $\sin \alpha_n \sim \alpha_n$                   | 6.  | $e^{\alpha_n} - 1 \sim \alpha_n$               |
|-----------|-------------------------------------------------|-----|------------------------------------------------|
| 2.        | $tg \alpha_n \sim \alpha_n$                     | 7.  | $a^{\alpha_n} - 1 \sim \alpha_n \cdot lna$     |
| <b>3.</b> | $arcsin \alpha_n \sim \alpha_n$                 | 8.  | $\ln(1+\alpha_n)\sim\alpha_n$                  |
| 4.        | $arctg \ \alpha_n \sim \alpha_n$                | 9.  | $\log_b(1+\alpha_n) \sim \frac{\alpha_n}{lnb}$ |
| 5.        | $1 - \cos \alpha_n \sim \frac{(\alpha_n)^2}{2}$ | 10. | $(1+\alpha_n)^m-1\sim m$                       |
|           | $\frac{1}{2}$                                   |     | $\cdot  lpha_n$                                |



$$\lim_{n\to\infty} n^2 \cdot \left(e^{\frac{2}{n^2}} - 1\right) = \lim_{n\to\infty} n^2 \cdot \frac{2}{n^2} = 2.$$

#### 5). Правило Лопиталя:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \begin{cases} \begin{bmatrix} \frac{0}{0} \\ \frac{\infty}{\infty} \end{bmatrix} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}.$$

$$\lim_{n\to\infty} n^2 \cdot e^{-n} = \lim_{n\to\infty} \frac{n^2}{e^n} = \begin{bmatrix} \frac{\infty}{\infty} \end{bmatrix} = \lim_{n\to\infty} \frac{2n}{e^n} = \begin{bmatrix} \frac{\infty}{\infty} \end{bmatrix} = \lim_{n\to\infty} \frac{2}{e^n} = 0.$$

#### 1. Числовые ряды

#### 1.1. Числовой ряд, сходимость числового ряда

Рассмотрим числовую последовательность  $\{a_n\}$ :  $a_1$ ,  $a_2$ , ...  $a_n$ , ...

**Определение 1.** Числовым рядом называется бесконечная сумма членов числовой последовательности  $\{a_n\}$ , т.е.

$$a_1 + a_2 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n.$$

При этом  $a_n$  называется *общим членом* ряда.

**Замечание.** Последовательность  $\{a_n\}$  может состоять из вещественных или комплексных чисел, они могут иметь разные знаки. Пока будем считать, что  $a_n \in R$  (множеству действительных чисел).

# Примеры.

1). 
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
.

2). 
$$1 + 1 + \dots = \sum_{n=1}^{\infty} 1$$
.

3). 
$$1-1+1-\cdots=\sum_{n=1}^{\infty}(-1)^{n-1}$$
.

**Определение** 2. Частичными суммами числового ряда  $\sum_{n=1}^{\infty} a_n$  называются суммы:

$$S_1=a_1,\,S_2=a_1+a_2,\,\,\cdots$$
,  $S_n=a_1+a_2+\cdots+a_n,$  которые образуют новую числовую последовательность  $S_1,\,S_2,\,\,\ldots,\,S_n$  .



**Определение 3**. Числовой ряд называется *сходящимся*, если существует конечный предел последовательности его частичных сумм, т.е.

$$\exists \lim_{n\to\infty} S_n = S.$$

Число S называется суммой ряда.

Допускается запись  $\sum_{n=1}^{\infty} a_n = S$ , которая придает символу бесконечной суммы числовой смысл.

**Определение 4**. Числовой ряд называется *расходящимся*, если предел последовательности частичных сумм равен бесконечности или не существует.

Исследуем на сходимость ряды.

Пример 1.

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}.$$

$$S_1 = \frac{1}{2}$$
,  $S_2 = \frac{1}{2} + \frac{1}{2 \cdot 3}$ 

$$S_n = \frac{1}{2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)}.$$

Разложим общий член ряда на сумму простейших дробей:

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}.$$

$$S_n = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}.$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 \Rightarrow S = 1$$
, ряд сходится.

Пример 2.

$$1 + 1 + \dots = \sum_{n=1}^{\infty} 1$$
.

$$S_n = 1 + 1 + \dots + 1 = n.$$

 $\lim_{n \to \infty} S_n = \lim_{n \to \infty} n = \infty \implies$  числовой ряд расходится.

# Пример 3.



$$1-1+1-\cdots=\sum_{n=1}^{\infty}(-1)^{n-1},$$

$$S_n = \left\{ egin{aligned} 1 \ , & ext{если } n - ext{нечетно, } n = 2k - 1 \ 0 \ , & ext{если } n - ext{четно, } n = 2k \end{aligned} 
ight..$$

Предел последовательности частичных сумм не существует, и ряд расходится.

### Пример 4.

$$1+3+5+\cdots+(2n-1)+\cdots=\sum_{n=1}^{\infty}(2n-1).$$

Вычислим частичную сумму этого ряда.

$$S_n = 1 + 3 + 5 + \dots + (2n - 1) = \frac{1 + (2n - 1)}{2} \cdot n = n^2.$$

 $\lim_{n \to \infty} S_n = \lim_{n \to \infty} n^2 = \infty$  , следовательно, данный ряд расходится.

Итак, исследование числового ряда на сходимость состоит из двух этапов:

- 1) вычисление  $S_n$
- 2) вычисление  $\lim_{n\to\infty} S_n$ .

#### 1.2. Геометрическая прогрессия

**Определение 5.** Геометрической прогрессией называется числовая последовательность  $b, bq, bq^2, ..., bq^{n-1}, ... (b \neq 0, q \neq 0)$ . Суммируя члены геометрической прогрессии, получим ряд  $\sum_{n=1}^{\infty} b \cdot q^{n-1}$  – ряд геометрической прогрессии.

Выясним вопрос о сходимости ряда геометрической прогрессии.

Запишем частичную сумму этого ряда:

$$S_{n+1} = b + bq + bq^2 + \dots + bq^n$$
 двумя способами:

$$S_{n+1} = b + q(b + bq + \dots + bq^{n-1}) =$$



$$= b + q \cdot S_n$$

$$S_{n+1} = (b + bq + \dots + bq^{n-1}) + bq^n =$$

$$= S_n + bq^n$$

Приравнивая эти выражения:

$$b + q \cdot S_n = S_n + bq^n$$
, получим  $S_n(1 - q) = b(1 - q^n)$ .

Предполагая, что 
$$q \neq 1$$
, выразим  $S_n$ :  $S_n = \frac{b(1-q^n)}{1-q}$ .

Если q=1, очевидно, что  $S_n=n\cdot b$  и  $\lim_{n\to\infty}S_n=\infty$ , т.е. ряд расходится.

Если 
$$|q|<1$$
, то  $\lim_{n\to\infty}q^n=0$  и  $\lim_{n\to\infty}S_n=\frac{b}{1-q}$ , т.е. ряд сходится, и его сумма  $S=\frac{b}{1-q}$ .

Если |q|>1, то  $\lim_{n\to\infty}q^n=\infty$  и  $\lim_{n\to\infty}S_n=\infty$ , т.е. ряд расходится.

Если 
$$q=-1$$
, то  $S_n=b-b+b-b+\cdots=\begin{cases} b, \ n=2k-1 \\ 0, \ n=2k \end{cases}$ .

Предел последовательности частичных сумм не существует. Ряд расходится.

Итак, доказана:

**Теорема 1** (о сходимости ряда геометрической прогрессии).

Ряд 
$$\sum_{n=1}^{\infty} b \cdot q^{n-1} - \begin{cases} \text{сходится, } S = \frac{b}{1-q}, \text{ если } |q| < 1 \\ \text{расходится, если } |q| \ge 1 \end{cases}$$

# 1.3. Гармонический ряд

**Определение 6.** Ряд  $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots = \sum_{n=1}^{\infty} \frac{1}{n}$  называется гармоническим.

Каждый член гармонического ряда, начиная со второго, является гармоническим средним соседних с ним членов:



$$\frac{1}{a_n} = \frac{1}{2} \left( \frac{1}{a_{n-1}} + \frac{1}{a_{n+1}} \right), \text{ T.K.}$$

$$a_n = \frac{1}{n}$$
,  $a_{n+1} = \frac{1}{n+1}$ ,  $a_{n-1} = \frac{1}{n-1}$ ,  $\frac{1}{2}(n-1+n+1) = n$ .

Покажем, что гармонический ряд является расходящимся. Воспользуемся тем, что:

1) последовательность  $\left(1+\frac{1}{n}\right)^n$  является монотонно возрастающей, т.к.

$$a_1 = 2 < a_2 = \frac{9}{4} < a_3 = \left(\frac{4}{3}\right)^3 = \frac{64}{27}$$
 и т.д.

2)  $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$  (2-ой замечательный предел), следовательно, все члены этой последовательности меньше числа e:

$$a_n < e, \left(1 + \frac{1}{n}\right)^n < e$$
.

Прологарифмируем данное неравенство по основанию e:

$$\ln\left(1+\frac{1}{n}\right)^n < \ln e \Rightarrow \quad n\ln\left(\frac{n+1}{n}\right) < 1 \Rightarrow \frac{1}{n} > \ln(n+1) - \ln n.$$

$$\frac{1}{n} > \ln(n+1) - \ln n$$

Полученное неравенство справедливо для всех натуральных значений n.

$$+ \begin{cases} 1 > \ln 2 - \ln 1 \\ \frac{1}{2} > \ln 3 - \ln 2 \\ \frac{1}{3} > \ln 4 - \ln 3 \\ \dots \\ \frac{1}{n} > \ln(n+1) - \ln n \end{cases}$$

Складывая эти неравенства, получим  $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} > \ln(n+1)$ .

Это означает, что

$$S_n > \ln(n+1)$$
,



$$\lim_{n\to\infty} S_n > \lim_{n\to\infty} \ln(n+1) = \infty,$$

а, следовательно, гармонический ряд расходится.

### 1.4. Необходимое условие сходимости числового ряда

**Теорема 2.** Если числовой ряд  $\sum_{n=1}^{\infty} a_n$  сходится, то его общий член стремится к нулю, т.е.  $\lim_{n\to\infty} a_n = 0$ .

<u>Доказательство:</u> для сходящегося ряда  $\exists \lim_{n\to\infty} S_n = S$  и  $\exists \lim_{n\to\infty} S_{n-1} = S$ .

Т.к. 
$$a_n = S_n - S_{n-1}$$
, то  $\exists \lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = S - S = 0$ .

<u>Замечание.</u> Мы получили *необходимое* условие сходимости числового ряда. При нарушении этого условия ряд заведомо расходится. При выполнении этого условия ряд может быть как сходящимся, так и расходящимся.

Вернемся к примерам:

- 1). Гармонический ряд  $\sum_{n=1}^{\infty} \frac{1}{n}$ ;  $\lim_{n\to\infty} a_n = 0$ , но ряд расходится.
- 2). Ряд  $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ ;  $\lim_{n\to\infty} a_n = 0$ , ряд сходится.

<u>Следствие</u>. Если  $\lim_{n\to\infty} a_n \neq 0$ , то ряд расходится.

Необходимое условие удобно применять для доказательства расходимости рядов.

# Примеры.

1). Ряд 
$$\sum_{n=1}^{\infty} \frac{2n+1}{3n+2}$$
 расходится, т.к.  $\lim_{n\to\infty} \frac{2n+1}{3n+2} = \frac{2}{3} \neq 0$ .

2). Ряд 
$$\sum_{n=1}^{\infty} \left(\frac{3n+1}{3n+2}\right)^n$$
 также является расходящимся, т.к.

$$\lim_{n \to \infty} \left( \frac{3n+1}{3n+2} \right)^n = \lim_{n \to \infty} \left( \left( 1 - \frac{1}{3n+2} \right)^{-(3n+2)} \right)^{-\frac{n}{3n+2}} = e^{-\frac{1}{3}} \neq 0,$$



т.е. необходимое условие не выполняется.

**Определение** 7. Если отбросить первые n членов ряда  $\sum_{k=1}^{\infty} a_k$ , то получится ряд  $a_{n+1} + a_{n+2} + \dots + a_{n+m} + \dots = \sum_{k=n+1}^{\infty} a_k$ , который называется остатком данного ряда с номером n:  $r_n = \sum_{k=n+1}^{\infty} a_k$ .

**Теорема 3.** Ряд сходится тогда и только тогда, когда сходится любой из его остатков.

<u>Доказательство</u>: Действительно, отбрасывание некоторого числа первых членов ряда изменит значения членов последовательности частичных сумм на некоторую величину, равную сумме отброшенных членов, но не повлияет на сходимость.

**Теорема 4.** Если ряд сходится, сумма его остатка стремится к нулю с возрастанием номера остатка.

<u>Доказательство</u>: Если S и  $S_n$  — соответственно сумма и частичная сумма с номером n сходящегося ряда,

а  $r_n$  — сумма его остатка, то

$$r_n = S - S_n$$
.

Следовательно,

$$\lim_{n\to\infty} r_n = \lim_{n\to\infty} (S - S_n) = 0.$$

# 1.5. Критерий Коши сходимости ряда

Согласно определению, числовой ряд сходится, если сходится последовательность его частичных сумм. Для числовой последовательности критерий сходимости (критерий Коши) формулируется следующим образом:

для того, чтобы числовая последовательность  $S_n$ , n=1,2,3,..., имела конечный предел, необходимо и достаточно, чтобы для любого  $\varepsilon>0$  существовал такой номер N, что для всех  $n\geq N$  и для всех натуральных чисел k выполнялось неравенство

$$|S_{n+k} - S_n| < \varepsilon$$
.



Формулируя эту теорему для последовательности частичных сумм, получим критерий сходимости числовых рядов:

**Теорема 5.** Для того чтобы сходился числовой ряд  $\sum_{n=1}^{\infty} a_n$ , необходимо и достаточно, чтобы для любого  $\varepsilon > 0$  существовал такой номер N, что для всех  $n \geq N$  и для всех натуральных чисел k выполнялось неравенство

$$|a_{n+1} + a_{n+2} + \dots + a_{n+k}| < \varepsilon.$$

В качестве примера применения критерия Коши, еще раз докажем расходимость гармонического ряда.

Для этого оценим разность между частичными суммами гармонического ряда  $|S_{n+k} - S_n|$ , полагая k = n:

$$|S_{2n} - S_n| = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{1}{2n} \cdot n = \frac{1}{2}$$
.

Следовательно, какой бы ни был номер n, можно выбрать число

$$k = n$$
 так, что  $|S_{n+k} - S_n| > \frac{1}{2}$ .

Итак, если выбрать  $\varepsilon = \frac{1}{2}$  и для любого номера n выбрать число

$$k = n$$
, to  $|S_{n+k} - S_n| > \varepsilon$ 

и, согласно критерию Коши, гармонический ряд расходится.

# 1.6. Свойства сходящихся рядов

Сходящиеся ряды обладают следующими простыми свойствами:

1) если члены сходящегося ряда умножить на одно и то же число, то его сходимость не нарушится (сумма умножится на то число, на которое были умножены члены ряда):

$$\sum_{n=1}^{\infty} a_n = S \implies \sum_{n=1}^{\infty} c \cdot a_n = c \cdot S.$$

2) если ряды  $\sum_{n=1}^{\infty} a_n$  и  $\sum_{n=1}^{\infty} b_n$  сходятся, и их суммы равны A и B соответственно, то ряд  $\sum_{n=1}^{\infty} (a_n + b_n)$  также сходится и его сумма равна



A + B, T.e.

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$$

3) если ряды 
$$\sum_{n=1}^{\infty} a_n$$
 и  $\sum_{n=1}^{\infty} b_n$  сходятся, то  $\sum_{n=1}^{\infty} (c_1 a_n + c_2 b_n) =$ 

$$= c_1 \cdot \sum_{n=1}^{\infty} a_n + c_2 \cdot \sum_{n=1}^{\infty} b_n.$$

Обратное, вообще говоря, неверно. Например,

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} (\frac{1}{n} - \frac{1}{n+1}) =$$

$$= \sum_{n=1}^{\infty} \frac{1}{n} - \sum_{n=1}^{\infty} \frac{1}{n+1},$$

ряд  $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$  сходится, рассматривали в п.1.1, а ряды  $\sum_{n=1}^{\infty} \frac{1}{n}$  и  $\sum_{n=1}^{\infty} \frac{1}{n+1}$  расходятся.