Student Information

Full Name : Amirmohammad Erfan

Id Number : 2546794

Answer 1

a)

Our statement is Tautology.

	-a	7	
q	$\neg q$		
$\mid T \mid$	F		
F	T		
p	q	$p \rightarrow q$	
T	T	T	
T	F	F	
F	T	T	
F	F	T	
p	q	$p \wedge \neg q$	
T	T	F	
T	F	T	
F	T	F	
F	F	F	
p -	$\rightarrow q$	$p \land \neg q$	$(p \to q) \oplus (p \land \neg q)$
7	Γ	F	T
1	Γ	T	T
T		F	T
T		F	T

b)

$$\mathbf{p} \to ((\mathbf{q} \vee \neg \mathbf{p}) \to \mathbf{r})$$

$\neg p \lor ((q \lor \neg p) \to r)$	First rule table seven
$\neg p \lor (\neg (q \lor \neg p) \lor r)$	First rule table seven
$(\neg p \vee \neg (q \vee \neg p)) \vee r$	Associative table six
$(\neg p \lor (\neg q \land \neg \neg p)) \lor r$	Demorgan table six
$(\neg p \lor (\neg q \land p)) \lor r$	Double Negation table six
$((\neg p \vee \neg q) \wedge (\neg p \vee p)) \vee r$	Distributive table six
$((\neg p \vee \neg q) \wedge T) \vee r$	Negation table six
$(\neg p \vee \neg q) \vee r$	Identity table six
$\neg (p \land q) \lor r$	Demorgan table six
$(p \land q) \to r$	First rule table seven

c)

1. F **2.** F **3.** F **4.** T **5.** T

Answer 2

- a) $\exists x (P(can, x) \land T(x, L))$
- **b)** $\forall x \exists y (T(x,s) \rightarrow P(y,x) \land N(y,turk))$
- c) $\forall x (T(x,S) \rightarrow \exists y \forall z (R(x,y) \land (T(z,S) \land (T(y,S) \land (R(x,z) \rightarrow y = z)))$
- **d)** $\forall x \exists y (P(y, x) \land N(y, english) \rightarrow \neg W(M, x))$
- e) $\exists x \exists y (N(x, turk) \land N(y, turk) \land T(x, G) \land T(y, G) \land x \neq y \land \forall p (T(p, G) \land N(p, Turk) \rightarrow p = x \lor p = y))$
- f) $\exists x \exists y \exists z ((T(x,y) \land T(x,z)) \land y \neq z)$

Answer 3

1.	$p \to q$	premise
2.	$(r \wedge s) \to p$	premise
3.	$(r \land \neg q)$	premise
4.	r	$\wedge e, 3$
5.	$\neg q$	^e, 3
6.	s	assume
7.	$r \wedge s$	^i, 4, 6
8.	p	\rightarrow e, 2, 7
9.	q	\rightarrow e, 1, 8
10.	¬ q	сору, 5
11.	上	¬e, 9, 10
12.	\neg s	¬i, 6-11

Answer 4

$$\exists x (P(x) \to S(x)), \forall x P(x) \vdash \exists x S(x)$$

Proof:

1.
$$\exists x(P(x) \to S(x))$$
premise2. $\forall xP(x)$ premise3. $P(a) \to S(a)$ assume4. $P(a)$ $\forall e, 2$ 5. $S(a)$ $\to e, 3, 4$ 6. $\exists xS(x)$ $\exists i, 5$ 7. $\exists xS(x)$ $\exists e, 3-6$