Week 5 Day 3

Pick A Word

Make sure you know your neighbors' names. Then pick one of the following linear algebra words, and take 2 minutes to summarize to each other what you understand about that word:

Vector Space, Subspace, Basis, Dimension

Coordinates

- 1. Let U be the span of $\mathcal{B} = \{(1, 1, 0), (0, 1, 1)\}$. Which of the following is true about the vector $\mathbf{v} = (3, 8, 5)$?
- (A) It is not in U.
- (B) It is in U, and its \mathscr{B} -coordinate vector is (3, 8, 5).
- (C) It is in U, and its \mathscr{B} -coordinate vector is (3,5).
- (D) None of the above.

2. (A) True or (B) False? $\{1, 2t, -2 + 4t^2, -12t + 8t^3\}$ is a basis for \mathbb{P}_3 .

- 3. Suppose U is a 3-dimensional subspace of \mathbb{R}^4 and the vectors $\mathbf{u}_1=(1,1,0,0)$ and $\mathbf{u}_2=(0,1,1,0)$ are in U. If this is all of the information you're given about U, which of the following is guaranteed to be true?
- (A) $\mathbf{v} = (1, 2, 1, 0)$ must be in U.
- (B) $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{w}\}$ must be a basis for U, where $\mathbf{w} = (0, 0, 0, 1)$.
- (C) $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{x}\}$ must be a basis for U, where $\mathbf{x} = (0, 0, 1, 1)$.
- (D) None of the above OR more than one of the above.

4. Let $T: \mathbb{P}_3 \to \mathbb{R}^2$ be the linear map given by

$$T(p) = \begin{bmatrix} p(0) \\ p(1) \end{bmatrix}$$
.

Find a basis for the null space of A. Find a basis for the column space of A.

5. (A) True or (B) False? In the vector space of all real-valued functions on \mathbb{R} , the functions $\sin(t)$ and $\cos(t)$ are linearly independent.

- 6. Inside the vector space of all real-valued functions on \mathbb{R} , consider the set $\mathcal{B} = \{\sin^2(x), \cos^2(x)\}$. This set is linearly independent (why?), so it is a basis for $U = \operatorname{span} \mathcal{B}$. Which of the following is true?
- (A) The constant function 1 is not in U.
- (B) The constant function 1 is in U, and $[1]_{\mathcal{B}} = (1,1)$.
- (C) The constant function 1 is in U, and $[1]_{\mathcal{B}} = (0,0)$.
- (D) None of the above.