概率论与数理统计(12)

清华大学

2020 年春季学期

• 各自从总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$ 中抽样,样本容量分别为 10 和 15,样本方差分别为 56.5 和 52.4,求 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信水平为 $1-\alpha$ 的置信区间, $\alpha \in (0,1)$ 。

- 各自从总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$ 中抽样,样本容量分别为 10 和 15,样本方差分别为 56.5 和 52.4,求 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信水平为 $1-\alpha$ 的置信区间, $\alpha \in (0,1)$ 。
- m=10, n=15, $(m-1)s_1^2/\sigma_1^2\sim \chi^2(m-1)$, $(n-1)s_2^2/\sigma_2^2\chi^2(n-1)$,

2020

2 / 29

- 各自从总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$ 中抽样,样本容量分别为 10 和 15,样本方差分别为 56.5 和 52.4,求 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信水平为 $1-\alpha$ 的置信区间, $\alpha \in (0,1)$ 。
- m=10, n=15, $(m-1)s_1^2/\sigma_1^2\sim \chi^2(m-1)$, $(n-1)s_2^2/\sigma_2^2\chi^2(n-1)$,
- $F = \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2} \sim F(m-1, n-1).$

2020

2 / 29

- 各自从总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$ 中抽样,样本容量分别为 10 和 15,样本方差分别为 56.5 和 52.4,求 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信水平为 $1-\alpha$ 的置信区间, $\alpha \in (0,1)$ 。
- m=10, n=15, $(m-1)s_1^2/\sigma_1^2\sim \chi^2(m-1)$, $(n-1)s_2^2/\sigma_2^2\chi^2(n-1)$,
- $F = \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2} \sim F(m-1, n-1).$
- σ_1^2/σ_2^2 的 $1-\alpha$ 置信区间为

$$\begin{split} & [\frac{s_1^2}{s_2^2} \frac{1}{F_{1-\alpha/2}(m-1,n-1)}, \frac{s_1^2}{s_2^2} \frac{1}{F_{\alpha/2}(m-1,n-1)}] \\ & = [\frac{56.5}{52.4} \frac{1}{F_{1-\alpha/2}(9,15)}, \frac{56.5}{52.4} \frac{1}{F_{\alpha/2}(9,15)}]. \end{split}$$

2 / 29

某公司生产的合金强度服从正态分布 N(θ,16),其中 θ 的设计值为不低于 110 帕。为保证质量,该公司每天都对生产情况做例行检查,以判断生产是否正常,即平均强度不低于 110 帕。某天进行了 25 块合金的检测,强度平均值为 108.2 帕,问当天生产是否正常?

3/29

- 某公司生产的合金强度服从正态分布 N(θ,16),其中 θ 的设计值为不低于 110 帕。为保证质量,该公司每天都对生产情况做例行检查,以判断生产是否正常,即平均强度不低于 110 帕。某天进行了 25 块合金的检测,强度平均值为 108.2 帕,问当天生产是否正常?
- 这不是个参数估计问题。

3/29

- 某公司生产的合金强度服从正态分布 N(θ,16),其中 θ 的设计值为不低于 110 帕。为保证质量,该公司每天都对生产情况做例行检查,以判断生产是否正常,即平均强度不低于 110 帕。某天进行了 25 块合金的检测,强度平均值为 108.2 帕,问当天生产是否正常?
- 这不是个参数估计问题。
- 要求的回答不是参数值 θ 是多少,而是否合格,即当天生产的合计的平均强度是否不小 110 帕。

3 / 29

- 某公司生产的合金强度服从正态分布 N(θ,16),其中 θ 的设计值为不低于 110 帕。为保证质量,该公司每天都对生产情况做例行检查,以判断生产是否正常,即平均强度不低于 110 帕。某天进行了 25 块合金的检测,强度平均值为 108.2 帕,问当天生产是否正常?
- 这不是个参数估计问题。
- 要求的回答不是参数值 θ 是多少,而是否合格,即当天生产的合计的平均强度是否不小 110 帕。
- 对于命题"生产的合金是合格的"的回答仅涉及参数 θ 的取值 范围:

$$\Theta_0 = \{\theta \geqslant 110\}, \quad \Theta_1 = \{\theta < 110\}.$$

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (C)

3 / 29

- 某公司生产的合金强度服从正态分布 N(θ,16),其中 θ 的设计值为不低于 110 帕。为保证质量,该公司每天都对生产情况做例行检查,以判断生产是否正常,即平均强度不低于 110 帕。某天进行了 25 块合金的检测,强度平均值为 108.2 帕,问当天生产是否正常?
- 这不是个参数估计问题。
- 要求的回答不是参数值 θ 是多少,而是否合格,即当天生产的合计的平均强度是否不小 110 帕。
- 对于命题"生产的合金是合格的"的回答仅涉及参数 θ 的取值 范围:

$$\Theta_0 = \{\theta \geqslant 110\}, \quad \Theta_1 = \{\theta < 110\}.$$

这个两个非空不交的参数集合称为统计假设。

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ か Q ○

3 / 29

- 某公司生产的合金强度服从正态分布 N(θ,16),其中 θ 的设计值为不低于 110 帕。为保证质量,该公司每天都对生产情况做例行检查,以判断生产是否正常,即平均强度不低于 110 帕。某天进行了 25 块合金的检测,强度平均值为 108.2 帕,问当天生产是否正常?
- 这不是个参数估计问题。
- 要求的回答不是参数值 θ 是多少,而是否合格,即当天生产的合计的平均强度是否不小 110 帕。
- 对于命题"生产的合金是合格的"的回答仅涉及参数 θ 的取值 范围:

$$\Theta_0 = \{\theta \geqslant 110\}, \quad \Theta_1 = \{\theta < 110\}.$$

这个两个非空不交的参数集合称为统计假设。

• 如何利用总体性质 $N(\theta, 16)$ 和样本信息 $\bar{x} = 108.2$ 来判断命题 是否成立,为该假设的检验法则。

(清华大学) 概率论与数理统计 2020 3/29

• 建立假设:有两个不相交的参数集合 Θ_0 , Θ_1 , 我们希望 $H_0: \theta \in \Theta_0$ 成立,该假设为原假设或者零假设,对应的 $H_1: \theta_1 \in \Theta_1$ 为对立假设或者备选假设。

(清华大学)

- 建立假设: 有两个不相交的参数集合 Θ_0 , Θ_1 , 我们希望 $H_0: \theta \in \Theta_0$ 成立,该假设为原假设或者零假设,对应的 $H_1: \theta_1 \in \Theta_1$ 为对立假设或者备选假设。
- 若 Θ_0 中只有一个值,则称其为简单原假设,否则称为复杂或者复合原假设:

2020

4 / 29

- 建立假设:有两个不相交的参数集合 Θ_0 , Θ_1 , 我们希望 $H_0: \theta \in \Theta_0$ 成立,该假设为原假设或者零假设,对应的 $H_1:\theta_1\in\Theta_1$ 为对立假设或者备选假设。
- 若 Θn 中只有一个值、则称其为简单原假设、否则称为复杂或 者复合原假设:
 - $H_0: \theta = \theta_0$, 为简单原假设, 对立假设可以为: $\theta \neq \theta_0$, $\theta > \theta_0$, $\theta < \theta_0$.

2020

- 建立假设:有两个不相交的参数集合 Θ_0 , Θ_1 , 我们希望 $H_0: \theta \in \Theta_0$ 成立,该假设为原假设或者零假设,对应的 $H_1: \theta_1 \in \Theta_1$ 为对立假设或者备选假设。
- 若 Θ_0 中只有一个值,则称其为简单原假设,否则称为复杂或者复合原假设:
 - $H_0: \theta = \theta_0$, 为简单原假设, 对立假设可以为: $\theta \neq \theta_0$, $\theta > \theta_0$, $\theta < \theta_0$.
 - $H_0: \theta \ge 110$ 为复合原假设,对立假设可以为: $\theta < 110$.

- 建立假设:有两个不相交的参数集合 Θ_0 , Θ_1 , 我们希望 $H_0: \theta \in \Theta_0$ 成立,该假设为原假设或者零假设,对应的 $H_1: \theta_1 \in \Theta_1$ 为对立假设或者备选假设。
- 若 Θ_0 中只有一个值,则称其为简单原假设,否则称为复杂或者复合原假设:
 - $H_0: \theta = \theta_0$, 为简单原假设, 对立假设可以为: $\theta \neq \theta_0$, $\theta > \theta_0$, $\theta < \theta_0$.
 - $H_0: \theta \ge 110$ 为复合原假设,对立假设可以为: $\theta < 110$.
- 选择检验统计量,给出拒绝区域的形式:将样本空间划分为两个互不相交的部分,W和W,制定判断法则:
 - $(x_1,\ldots,x_n)\in W$, 则拒绝零假设 H_0 ,
 - $(x_1,\ldots,x_n)\in \overline{W}$, 不拒绝零假设, 即接受它。

- 建立假设:有两个不相交的参数集合 Θ_0 , Θ_1 , 我们希望 $H_0: \theta \in \Theta_0$ 成立,该假设为原假设或者零假设,对应的 $H_1: \theta_1 \in \Theta_1$ 为对立假设或者备选假设。
- 若 Θ_0 中只有一个值,则称其为简单原假设,否则称为复杂或者复合原假设:
 - $H_0: \theta = \theta_0$, 为简单原假设, 对立假设可以为: $\theta \neq \theta_0$, $\theta > \theta_0$, $\theta < \theta_0$.
 - $H_0: \theta \ge 110$ 为复合原假设,对立假设可以为: $\theta < 110$.
- 选择检验统计量, 给出拒绝区域的形式: 将样本空间划分为两个互不相交的部分, W和 W, 制定判断法则:
 - $(x_1, ..., x_n) \in W$, 则拒绝零假设 H_0 ,
 - $(x_1,\ldots,x_n)\in \overline{W}$, 不拒绝零假设, 即接受它。
 - W 的划分一般和选择的统计量的有关: 在前例中所选统计量为 \bar{x} , 可以选

$$W = \{(x_1, \ldots, x_n) : \bar{x} \leqslant c\}.$$

• 选择显著水平:确定好拒绝区域后,假设检验可能发生的错误:

- 选择显著水平: 确定好拒绝区域后, 假设检验可能发生的错误:
 - 第一类错误: $H_0:\theta\in\Theta_0$ 为真,样本却落到拒绝区域,从而认为其为假: 去真。

5 / 29

- 选择显著水平: 确定好拒绝区域后, 假设检验可能发生的错误:
 - 第一类错误: $H_0: \theta \in \Theta_0$ 为真, 样本却落到拒绝区域, 从而认为其为假: 去真。
 - 第二类错误: $H_0:\theta\in\Theta_0$ 为假,样本没有落到拒绝区域,从而认为 其为假: 存伪。

5 / 29

- 选择显著水平: 确定好拒绝区域后, 假设检验可能发生的错误:
 - 第一类错误: $H_0:\theta\in\Theta_0$ 为真, 样本却落到拒绝区域, 从而认为其为假: 去真。
 - 第二类错误: $H_0:\theta\in\Theta_0$ 为假,样本没有落到拒绝区域,从而认为 其为假: 存伪。
 - 第一类错误发生的概率为 $\alpha = P(X \in \overline{W}|H_0)$, 第二类错误发生的概率 为 $\beta = P(X \in W|H_1)$.

- 选择显著水平: 确定好拒绝区域后, 假设检验可能发生的错误:
 - 第一类错误: $H_0: \theta \in \Theta_0$ 为真,样本却落到拒绝区域,从而认为其为假: 去真。
 - 第二类错误: $H_0: \theta \in \Theta_0$ 为假,样本没有落到拒绝区域,从而认为 其为假: 存伪。
 - 第一类错误发生的概率为 $\alpha = P(X \in W|H_0)$, 第二类错误发生的概率 为 $\beta = P(X \in W|H_1)$.只要有随机性,这两个概率一般情况下都不可能为零。有没有可能有找到能让两个概率同时都很小的方法呢?

- 选择显著水平: 确定好拒绝区域后, 假设检验可能发生的错误:
 - 第一类错误: $H_0:\theta\in\Theta_0$ 为真,样本却落到拒绝区域,从而认为其为假: 去真。
 - 第二类错误: $H_0: \theta \in \Theta_0$ 为假,样本没有落到拒绝区域,从而认为 其为假: 存伪。
 - 第一类错误发生的概率为 $\alpha = P(X \in \overline{W}|H_0)$, 第二类错误发生的概率 为 $\beta = P(X \in W|H_1)$.只要有随机性,这两个概率一般情况下都不可能为零。有没有可能有找到能让两个概率同时都很小的方法呢? 一般也是不可能的。

- 选择显著水平: 确定好拒绝区域后, 假设检验可能发生的错误:
 - 第一类错误: $H_0: \theta \in \Theta_0$ 为真,样本却落到拒绝区域,从而认为其为假: 去真。
 - 第二类错误: $H_0: \theta \in \Theta_0$ 为假,样本没有落到拒绝区域,从而认为 其为假: 存伪。
 - 第一类错误发生的概率为 $\alpha = P(X \in W|H_0)$, 第二类错误发生的概率 为 $\beta = P(X \in W|H_1)$.只要有随机性,这两个概率一般情况下都不可能为零。有没有可能有找到能让两个概率同时都很小的方法呢? 一般也是不可能的。
- 势函数或者功效函数:设假设检验问题: $H_0:\theta\in\Theta_0$ vs $H_1:\theta\in\Theta_1$ 的拒绝域为 W,则样本落在拒绝域的概率为该检验的势函数,记为

$$g(\theta) = P_{\theta}(X \in W), \quad \theta \in \Theta_0 \cup \Theta_1.$$

2020

• 当 $\theta \in \Theta_0$ 时, $g(\theta) = \alpha(\theta)$, 当 $\theta \in \Theta_1$ 时, $g(\theta) = 1 - \beta(\theta)$, 也就有

$$\begin{cases} \alpha(\theta) = g(\theta), & \theta \in \Theta_0, \ \text{第一类错误的概率} \\ \beta(\theta) = 1 - g(\theta), & \theta \in \Theta_1 \ \text{第二类错误的概率}. \end{cases}$$

6 / 29

• 当 $\theta \in \Theta_0$ 时, $g(\theta) = \alpha(\theta)$, 当 $\theta \in \Theta_1$ 时, $g(\theta) = 1 - \beta(\theta)$, 也就有

$$\begin{cases} \alpha(\theta) = g(\theta), & \theta \in \Theta_0, \ \text{第一类错误的概率} \\ \beta(\theta) = 1 - g(\theta), & \theta \in \Theta_1 \ \text{第二类错误的概率}. \end{cases}$$

• 在前面合金的例子中, 拒绝域为 $W = \{\bar{x} \leq c\}$, 则势函数为

$$g(\theta) = P_{\theta}(\bar{x} \leqslant c) = P_{\theta}(\frac{\bar{x} - \theta}{\sqrt{16}/\sqrt{25}} \leqslant \frac{c - \theta}{4/\sqrt{25}}) = \Phi(\frac{c - \theta}{4/5}).$$

也就是有

$$\begin{cases} \alpha(\theta) = \Phi(\frac{c-\theta}{4/5}), & \theta \in \Theta_0, \\ \beta(\theta) = 1 - \Phi(\frac{c-\theta}{4/5}), & \theta \in \Theta_1. \end{cases}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めのぐ

2020

6 / 29

• 当 $\theta \in \Theta_0$ 时, $g(\theta) = \alpha(\theta)$, 当 $\theta \in \Theta_1$ 时, $g(\theta) = 1 - \beta(\theta)$, 也就有

$$\begin{cases} \alpha(\theta) = g(\theta), & \theta \in \Theta_0, \ \text{第一类错误的概率} \\ \beta(\theta) = 1 - g(\theta), & \theta \in \Theta_1 \ \text{第二类错误的概率}. \end{cases}$$

• 在前面合金的例子中, 拒绝域为 $W = \{\bar{x} \leq c\}$, 则势函数为

$$g(\theta) = P_{\theta}(\bar{x} \leqslant c) = P_{\theta}(\frac{\bar{x} - \theta}{\sqrt{16}/\sqrt{25}} \leqslant \frac{c - \theta}{4/\sqrt{25}}) = \Phi(\frac{c - \theta}{4/5}).$$

也就是有

$$\begin{cases} \alpha(\theta) = \Phi(\frac{c-\theta}{4/5}), & \theta \in \Theta_0, \\ \beta(\theta) = 1 - \Phi(\frac{c-\theta}{4/5}), & \theta \in \Theta_1. \end{cases}$$

• 减小 α , 就要降低 c, 降低 c 会增大 β .

(清华大学) 相

2020

• 当 $\theta \in \Theta_0$ 时, $g(\theta) = \alpha(\theta)$, 当 $\theta \in \Theta_1$ 时, $g(\theta) = 1 - \beta(\theta)$, 也就有

$$\begin{cases} \alpha(\theta) = g(\theta), & \theta \in \Theta_0, \ \$ -$$
 卷错误的概率
$$\beta(\theta) = 1 - g(\theta), & \theta \in \Theta_1 \ \$ -$$
 类错误的概率.

• 在前面合金的例子中, 拒绝域为 $W = \{\bar{x} \leq c\}$, 则势函数为

$$g(\theta) = P_{\theta}(\bar{x} \leqslant c) = P_{\theta}(\frac{\bar{x} - \theta}{\sqrt{16}/\sqrt{25}} \leqslant \frac{c - \theta}{4/\sqrt{25}}) = \Phi(\frac{c - \theta}{4/5}).$$

也就是有

$$\begin{cases} \alpha(\theta) = \Phi(\frac{c-\theta}{4/5}), & \theta \in \Theta_0, \\ \beta(\theta) = 1 - \Phi(\frac{c-\theta}{4/5}), & \theta \in \Theta_1. \end{cases}$$

- 减小 α , 就要降低 c, 降低 c 会增大 β .
- 减小 β , 要提升 c, 从而增大 α .

4□ > 4□ > 4 = > 4 = > = 90

• 当 $\theta \in \Theta_0$ 时, $g(\theta) = \alpha(\theta)$, 当 $\theta \in \Theta_1$ 时, $g(\theta) = 1 - \beta(\theta)$, 也就有

$$\begin{cases} \alpha(\theta) = g(\theta), & \theta \in \Theta_0, \ \text{第一类错误的概率} \\ \beta(\theta) = 1 - g(\theta), & \theta \in \Theta_1 \ \text{第二类错误的概率}. \end{cases}$$

• 在前面合金的例子中, 拒绝域为 $W = \{\bar{x} \leq c\}$, 则势函数为

$$g(\theta) = P_{\theta}(\bar{x} \leqslant c) = P_{\theta}(\frac{\bar{x} - \theta}{\sqrt{16}/\sqrt{25}} \leqslant \frac{c - \theta}{4/\sqrt{25}}) = \Phi(\frac{c - \theta}{4/5}).$$

也就是有

$$\begin{cases} \alpha(\theta) = \Phi(\frac{c-\theta}{4/5}), & \theta \in \Theta_0, \\ \beta(\theta) = 1 - \Phi(\frac{c-\theta}{4/5}), & \theta \in \Theta_1. \end{cases}$$

- 减小 α , 就要降低 c, 降低 c 会增大 β .
- 减小 β, 要提升 c, 从而增大 α.要两类错误都很小, 增大样本容量.

(清华大学) 概率论与数理统计 2020

6 / 29

• 显著水平: 对于检验问题 $H_0: \theta \in \Theta_0$ vs $H_1: \theta_1 \in \Theta_1$, 若对于 所有 $\theta \in \Theta_0$ 均有

$$g(\theta) \leqslant \alpha$$
,

则称该检验为显著水平为 α 的显著性检验,或者水平为 α 的检验。

(清华大学)

• 显著水平: 对于检验问题 $H_0: \theta \in \Theta_0$ vs $H_1: \theta_1 \in \Theta_1$, 若对于 所有 $\theta \in \Theta_0$ 均有

$$g(\theta) \leqslant \alpha$$

则称该检验为显著水平为 α 的显著性检验,或者水平为 α 的检验。

• 显著性检验要限制第一类错误的概率,通常 $\alpha=0.1$ 或 0.05.

(清华大学)

• 显著水平: 对于检验问题 $H_0: \theta \in \Theta_0$ vs $H_1: \theta_1 \in \Theta_1$, 若对于 所有 $\theta \in \Theta_0$ 均有

$$g(\theta) \leqslant \alpha$$

则称该检验为显著水平为 α 的显著性检验,或者水平为 α 的检验。

- 显著性检验要限制第一类错误的概率, 通常 $\alpha = 0.1$ 或 0.05.
- 给出拒绝域:在确定显著水平之后给出拒绝域:前合金例子中,要求

$$\theta \geqslant 110, \quad g(\theta) = \Phi(\frac{c-\theta}{4/5}) \leqslant \alpha.$$

• 显著水平: 对于检验问题 $H_0: \theta \in \Theta_0$ vs $H_1: \theta_1 \in \Theta_1$, 若对于 所有 $\theta \in \Theta_0$ 均有

$$g(\theta) \leqslant \alpha$$

则称该检验为显著水平为 α 的显著性检验,或者水平为 α 的检验。

- 显著性检验要限制第一类错误的概率, 通常 $\alpha=0.1$ 或 0.05.
- 给出拒绝域:在确定显著水平之后给出拒绝域:前合金例子中,要求

$$\theta \geqslant 110, \quad g(\theta) = \Phi(\frac{c-\theta}{4/5}) \leqslant \alpha.$$

此处, $g(\theta)$ 关于 θ 递减, 只要 $\theta = 110$ 出成立即可: $c \leq 110 + 0.8u_{\alpha}$. 即拒绝域为

$$W = \{\bar{x} \le 110 + 0.8u_{\alpha}\} = \{\frac{\bar{x} - 110}{4/5} \le u_{\alpha}\}.$$

(清华大学) 概率论与教理统计 2020 7 / 29

• 做出判断: $u = \frac{108.2 - 110}{4/5} = -2.25$.

(清华大学)

- 做出判断: $u = \frac{108.2 110}{4/5} = -2.25$.
 - $\alpha = 0.1$, $u_{0.1} = -1.282$, $u \leqslant u_{\alpha}$, 拒绝;

- 做出判断: $u = \frac{108.2 110}{4/5} = -2.25$.
 - $\alpha = 0.1$, $u_{0.1} = -1.282$, $u \leqslant u_{\alpha}$, 拒绝;
 - $\alpha = 0.025$, $u_{0.025} = -1.96$, 拒绝;

(清华大学)

- 做出判断: $u = \frac{108.2 110}{4/5} = -2.25$.
 - $\alpha = 0.1$, $u_{0.1} = -1.282$, $u \leqslant u_{\alpha}$, 拒绝;
 - $\alpha = 0.025$, $u_{0.025} = -1.96$, 拒绝;
 - $\alpha = 0.01$, $u_{0.01} = -2.326$, 接受;

- 做出判断: $u = \frac{108.2 110}{4/5} = -2.25$.
 - $\alpha = 0.1$, $u_{0.1} = -1.282$, $u \leqslant u_{\alpha}$, 拒绝;
 - $\alpha = 0.025$, $u_{0.025} = -1.96$, 拒绝;
 - $\alpha = 0.01$, $u_{0.01} = -2.326$, 接受;
 - $\alpha = 0.005$, $u_{0.005} = -2.576$, 接受。

(清华大学)

- 做出判断: $u = \frac{108.2 110}{4/5} = -2.25$.
 - $\alpha = 0.1$, $u_{0.1} = -1.282$, $u \leqslant u_{\alpha}$, 拒绝;
 - $\alpha = 0.025$, $u_{0.025} = -1.96$, 拒绝;
 - $\alpha = 0.01$, $u_{0.01} = -2.326$, 接受;
 - $\alpha = 0.005$, $u_{0.005} = -2.576$, 接受。
- 检验的 p 值: 一个假设检验问题中,利用样本观测值能够做出拒绝原假设的最小显著水平称为检验的 p 值。

2020

- 做出判断: $u = \frac{108.2 110}{4/5} = -2.25$.
 - $\alpha = 0.1$, $u_{0.1} = -1.282$, $u \leq u_{\alpha}$, 拒绝;
 - $\alpha = 0.025$, $u_{0.025} = -1.96$, 拒绝;
 - $\alpha = 0.01$, $u_{0.01} = -2.326$, 接受;
 - $\alpha = 0.005$, $u_{0.005} = -2.576$, 接受。
- 检验的 p 值:一个假设检验问题中,利用样本观测值能够做 出拒绝原假设的最小显著水平称为检验的 p 值。
- p 依赖于具体的样本数据。

- 做出判断: $u = \frac{108.2 110}{4/5} = -2.25$.
 - $\alpha = 0.1$, $u_{0.1} = -1.282$, $u \leqslant u_{\alpha}$, 拒绝;
 - $\alpha = 0.025$, $u_{0.025} = -1.96$, 拒绝;
 - $\alpha = 0.01$, $u_{0.01} = -2.326$, 接受;
 - $\alpha = 0.005$, $u_{0.005} = -2.576$, 接受。
- 检验的 p 值: 一个假设检验问题中,利用样本观测值能够做出拒绝原假设的最小显著水平称为检验的 p 值。
- p 依赖于具体的样本数据。一般来说,
 - $\alpha \geqslant p$, 在显著水平 α 下拒绝 H_0 ;

(清华大学)

- 做出判断: $u = \frac{108.2 110}{4/5} = -2.25$.
 - $\alpha = 0.1$, $u_{0.1} = -1.282$, $u \leqslant u_{\alpha}$, 拒绝;
 - $\alpha = 0.025$, $u_{0.025} = -1.96$, 拒绝;
 - $\alpha = 0.01$, $u_{0.01} = -2.326$, 接受;
 - $\alpha = 0.005$, $u_{0.005} = -2.576$, 接受。
- 检验的 p 值:一个假设检验问题中,利用样本观测值能够做 出拒绝原假设的最小显著水平称为检验的 p 值。
- p 依赖于具体的样本数据。一般来说,
 - $\alpha \geqslant p$, 在显著水平 α 下拒绝 H_0 ;
 - $\alpha < p$, 在显著水平 α 下接受 H_0 .

- 做出判断: $u = \frac{108.2 110}{4/5} = -2.25$.
 - $\alpha = 0.1$, $u_{0.1} = -1.282$, $u \leq u_{\alpha}$, 拒绝;
 - $\alpha = 0.025$, $u_{0.025} = -1.96$, 拒绝;
 - $\alpha = 0.01$, $u_{0.01} = -2.326$, 接受;
 - $\alpha = 0.005$, $u_{0.005} = -2.576$, 接受。
- 检验的 p 值: 一个假设检验问题中,利用样本观测值能够做出拒绝原假设的最小显著水平称为检验的 p 值。
- p 依赖于具体的样本数据。一般来说,
 - $\alpha \geqslant p$, 在显著水平 α 下拒绝 H_0 ;
 - $\alpha < p$, 在显著水平 α 下接受 H_0 .
 - p-值为在原假设成立的情况下,样本观测数值出现的概率! p-值越小,越应该拒绝原假设。
- 等价的判断方式:看样本是否在拒绝域,或者看检验的 p 值是否比显著水平小。哪个方便用哪个。

◆ロト ◆昼ト ◆差ト ◆差ト 差 めなぐ

• 总体为 $N(\mu, \sigma^2)$, $x_1, ..., x_n$ 为样本,考虑一下三种关于 μ 的 检验问题:

$$\begin{cases} I: H_0: \ \mu \leqslant \mu_0 \ vs \ H_1: \mu > \mu_0; \\ II: H_0: \ \mu \geqslant \mu_0 \ vs \ H_1: \mu < \mu_0; \\ III: H_0: \ \mu = \mu_0 \ vs \ H_1: \mu \neq \mu_0. \end{cases}$$

• 总体为 $N(\mu, \sigma^2)$, $x_1, ..., x_n$ 为样本,考虑一下三种关于 μ 的 检验问题:

$$\begin{cases} I: H_0: \ \mu \leqslant \mu_0 \ vs \ H_1: \mu > \mu_0; \\ II: H_0: \ \mu \geqslant \mu_0 \ vs \ H_1: \mu < \mu_0; \\ III: H_0: \ \mu = \mu_0 \ vs \ H_1: \mu \neq \mu_0. \end{cases}$$

• 在 σ 已经知道的情况下, $\bar{x} \sim N(\mu, \sigma^2/n)$, 考虑统计量

$$u = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}.$$

• 总体为 $N(\mu, \sigma^2)$, x_1, \ldots, x_n 为样本,考虑一下三种关于 μ 的 检验问题:

$$\begin{cases} I: H_0: \ \mu \leqslant \mu_0 \ vs \ H_1: \mu > \mu_0; \\ II: H_0: \ \mu \geqslant \mu_0 \ vs \ H_1: \mu < \mu_0; \\ III: H_0: \ \mu = \mu_0 \ vs \ H_1: \mu \neq \mu_0. \end{cases}$$

• 在 σ 已经知道的情况下, $\bar{x} \sim N(\mu, \sigma^2/n)$, 考虑统计量

$$u = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}.$$

• 对于检验 I, 统计量太大的时候应该拒绝; 对于检验 II, 统计量太小的时候应该拒绝; 对于检验 III, 统计量的绝对值太大时应该拒绝。

• 检验问题 I: $H_0: \mu \leq \mu_0 \text{ vs } H_1: \mu > \mu_0.$

(清华大学)

- 检验问题 I: $H_0: \mu \leq \mu_0 \text{ vs } H_1: \mu > \mu_0.$
- 拒绝域的形式为: $W_I = \{X : u \ge c\}$,

10 / 29

- 检验问题 I: $H_0: \mu \leq \mu_0 \text{ vs } H_1: \mu > \mu_0.$
- 拒绝域的形式为: $W_I = \{X: u \geq c\}$,若要求显著水平为 α ,则可要求

$$P_{\mu_0}(u \geqslant c) = \alpha,$$

10 / 29

- 检验问题 I: $H_0: \mu \leq \mu_0 \text{ vs } H_1: \mu > \mu_0.$
- 拒绝域的形式为: $W_I = \{X: u \geq c\}$,若要求显著水平为 α ,则可要求

$$P_{\mu_0}(u \geqslant c) = \alpha,$$

而当 $\mu = \mu_0$ 时, $u \sim N(0,1)$,所以 $c = u_{1-\alpha}$,从而拒绝域为:

$$W_I = \{u \geqslant u_{1-\alpha}\}.$$

10 / 29

- 检验问题 I: $H_0: \mu \leq \mu_0 \text{ vs } H_1: \mu > \mu_0.$
- 拒绝域的形式为: $W_I = \{X: u \geq c\}$,若要求显著水平为 α ,则可要求

$$P_{\mu_0}(u \geqslant c) = \alpha,$$

而当 $\mu = \mu_0$ 时, $u \sim N(0,1)$,所以 $c = u_{1-\alpha}$,从而拒绝域为:

$$W_I = \{u \geqslant u_{1-\alpha}\}.$$

• 该检验的势函数为

$$g(\mu) = P_{\mu}(X \in W_I) = P_{\mu}(\frac{\bar{x} - \mu + \mu - \mu_0}{\sigma / \sqrt{n}} \geqslant u_{1-\alpha})$$

= 1 - \Phi(\sqrt{n}(\mu_0 - \mu)/\sigma + u_{1-\alpha}).

4日ト 4個ト 4 差ト 4 差ト 差 めなぐ

• 该检验的 p 值为

$$p_I = P(u \geqslant \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}) = 1 - \Phi(\frac{\sqrt{n}(\bar{x} - \mu_0)}{\sigma}).$$

• 当 $p_I > \alpha$, 或者 $u < u_{1-\alpha}$ (不在拒绝域),接受 H_0 ;

11 / 29

• 该检验的 p 值为

$$p_I = P(u \geqslant \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}) = 1 - \Phi(\frac{\sqrt{n}(\bar{x} - \mu_0)}{\sigma}).$$

- 当 $p_I > \alpha$, 或者 $u < u_{1-\alpha}$ (不在拒绝域),接受 H_0 ;
- 当 $p_I < \alpha$, 或者 $u \ge u_{1-\alpha}$ (在拒绝域), 拒绝 H_1 .

• 该检验的 p 值为

$$p_I = P(u \geqslant \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}) = 1 - \Phi(\frac{\sqrt{n}(\bar{x} - \mu_0)}{\sigma}).$$

- 当 $p_I > \alpha$, 或者 $u < u_{1-\alpha}$ (不在拒绝域),接受 H_0 ;
- 当 $p_I < \alpha$, 或者 $u \ge u_{1-\alpha}$ (在拒绝域), 拒绝 H_1 .
- 对于检验问题 II, $H_0: \mu \geqslant \mu_0 \ vs \ H_1: \mu < \mu_0$ 。当确定显著水平为 α 后,拒绝域为 $W_{II} = \{X: u \leqslant u_{\alpha}\};$

11 / 29

该检验的 p 值为

$$p_I = P(u \geqslant \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}) = 1 - \Phi(\frac{\sqrt{n}(\bar{x} - \mu_0)}{\sigma}).$$

- 当 $p_I > \alpha$, 或者 $u < u_{1-\alpha}$ (不在拒绝域),接受 H_0 ;
- 当 $p_I < \alpha$, 或者 $u \ge u_{1-\alpha}$ (在拒绝域), 拒绝 H_1 .
- 对于检验问题 II, $H_0: \mu \geqslant \mu_0 \ vs \ H_1: \mu < \mu_0$ 。当确定显著水平为 α 后,拒绝域为 $W_{II} = \{X: u \leqslant u_{\alpha}\};$
 - 该检验的 p 值为: $p_{II} = P(u \leqslant \frac{\bar{x} \mu_0}{\sigma / \sqrt{n}}) = \Phi(\frac{\sqrt{n}(\bar{x} \mu_0)}{\sigma}).$

11 / 29

• 该检验的 p 值为

$$p_I = P(u \geqslant \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}) = 1 - \Phi(\frac{\sqrt{n}(\bar{x} - \mu_0)}{\sigma}).$$

- 当 $p_I > \alpha$, 或者 $u < u_{1-\alpha}$ (不在拒绝域),接受 H_0 ;
- 当 $p_I < \alpha$, 或者 $u \ge u_{1-\alpha}$ (在拒绝域), 拒绝 H_1 .
- 对于检验问题 II, $H_0: \mu \geqslant \mu_0 \text{ vs } H_1: \mu < \mu_0$ 。当确定显著水平为 α 后,拒绝域为 $W_{II} = \{X: u \leqslant u_{\alpha}\};$
 - 该检验的 p 值为: $p_{II} = P(u \leqslant \frac{\bar{x} \mu_0}{\sigma / \sqrt{n}}) = \Phi(\frac{\sqrt{n}(\bar{x} \mu_0)}{\sigma}).$
 - 当 $p \leqslant \alpha$, 或者 $u \leqslant u_{\alpha}$, 拒绝 H_0 , 当 $p > \alpha$, 或者 $u > u_{\alpha}$, 保留 H_0 .

• 该检验的 p 值为

$$p_I = P(u \geqslant \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}) = 1 - \Phi(\frac{\sqrt{n}(\bar{x} - \mu_0)}{\sigma}).$$

- 当 $p_I > \alpha$, 或者 $u < u_{1-\alpha}$ (不在拒绝域),接受 H_0 ;
- 当 $p_I < \alpha$, 或者 $u \ge u_{1-\alpha}$ (在拒绝域), 拒绝 H_1 .
- 对于检验问题 II, $H_0: \mu \geqslant \mu_0 \ vs \ H_1: \mu < \mu_0$ 。当确定显著水平为 α 后,拒绝域为 $W_{II} = \{X: u \leqslant u_{\alpha}\};$
 - 该检验的 p 值为: $p_{II} = P(u \leqslant \frac{\bar{x} \mu_0}{\sigma / \sqrt{n}}) = \Phi(\frac{\sqrt{n}(\bar{x} \mu_0)}{\sigma}).$
 - 当 $p \leqslant \alpha$, 或者 $u \leqslant u_{\alpha}$, 拒绝 H_0 ; 当 $p > \alpha$, 或者 $u > u_{\alpha}$, 保留 H_0 .
- 对于检验问题 III, $H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0$ 。显著水平为 α 的拒绝域为 $W_{III} = \{|u| \geq u_{1-\alpha/2}\}.$
 - 该检验的 p 值为

$$p_{III} = 2(1 - \Phi(|\frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}|)).$$

• 从甲地发送一个信号到乙地。设乙地接收到的信号值是一个服从正态分布 $N(\mu,0.2^2)$ 的随机变量,其中 μ 为甲地发送的真实信号值。先甲地重复发送同一个信号 5 次,乙地收到的信号值为 8.05,8.15,8.2,8.1,8.25. 接受方有理由认为甲地发送的信号值为 8。问能否接受这一猜测。

12 / 29

(清华大学) 概率论与数理统计 20%

- 从甲地发送一个信号到乙地。设乙地接收到的信号值是一个服从正态分布 $N(\mu,0.2^2)$ 的随机变量,其中 μ 为甲地发送的真实信号值。先甲地重复发送同一个信号 5 次,乙地收到的信号值为 8.05,8.15,8.2,8.1,8.25. 接受方有理由认为甲地发送的信号值为 8。问能否接受这一猜测。
- 总体为 $N(\mu, 0.2^2)$, 检验问题为: $H_0: \mu = 8$ vs $H_1: \mu \neq 8$.

12 / 29

- 从甲地发送一个信号到乙地。设乙地接收到的信号值是一个服从正态分布 $N(\mu,0.2^2)$ 的随机变量,其中 μ 为甲地发送的真实信号值。先甲地重复发送同一个信号 5 次,乙地收到的信号值为 8.05,8.15,8.2,8.1,8.25. 接受方有理由认为甲地发送的信号值为 8。问能否接受这一猜测。
- 总体为 $N(\mu, 0.2^2)$, 检验问题为: $H_0: \mu = 8$ vs $H_1: \mu \neq 8$.
- 给定显著水平 $\alpha=0.05$, $u_{0.975}=1.96$, $\bar{x}=8.15$, $u=\frac{\bar{x}-8}{0.2/\sqrt{5}}=1.68$.

12 / 29

- 从甲地发送一个信号到乙地。设乙地接收到的信号值是一个服从正态分布 $N(\mu,0.2^2)$ 的随机变量,其中 μ 为甲地发送的真实信号值。先甲地重复发送同一个信号 5 次,乙地收到的信号值为 8.05,8.15,8.2,8.1,8.25. 接受方有理由认为甲地发送的信号值为 8。问能否接受这一猜测。
- 总体为 $N(\mu, 0.2^2)$, 检验问题为: $H_0: \mu = 8$ vs $H_1: \mu \neq 8$.
- 给定显著水平 $\alpha=0.05$, $u_{0.975}=1.96$, $\bar{x}=8.15$, $u=\frac{\bar{x}-8}{0.2/\sqrt{5}}=1.68$. 不拒绝。

12 / 29

- 从甲地发送一个信号到乙地。设乙地接收到的信号值是一个服从正态分布 $N(\mu,0.2^2)$ 的随机变量,其中 μ 为甲地发送的真实信号值。先甲地重复发送同一个信号 5 次,乙地收到的信号值为 8.05,8.15,8.2,8.1,8.25. 接受方有理由认为甲地发送的信号值为 8。问能否接受这一猜测。
- 总体为 $N(\mu, 0.2^2)$, 检验问题为: $H_0: \mu = 8$ vs $H_1: \mu \neq 8$.
- 给定显著水平 $\alpha=0.05$, $u_{0.975}=1.96$, $\bar{x}=8.15$, $u=\frac{\bar{x}-8}{0.2/\sqrt{5}}=1.68$. 不拒绝。
- 该检验的 p 值为 $p = 2(1 \Phi(1.68)) = 0.093$.

12 / 29

- 从甲地发送一个信号到乙地。设乙地接收到的信号值是一个 服从正态分布 $N(\mu, 0.2^2)$ 的随机变量, 其中 μ 为甲地发送的 真实信号值。先甲地重复发送同一个信号 5 次, 乙地收到的 信号值为 8.05、8.15、8.2、8.1、8.25. 接受方有理由认为甲地 发送的信号值为8。问能否接受这一猜测。
- 总体为 $N(\mu, 0.2^2)$, 检验问题为: $H_0: \mu = 8$ vs $H_1: \mu \neq 8$.
- 给定显著水平 $\alpha = 0.05$, $u_{0.975} = 1.96$, $\bar{x} = 8.15$, $u = \frac{\bar{x}-8}{0.2/\sqrt{5}} = 1.68$. 不拒绝。
- 该检验的 p 值为 $p = 2(1 \Phi(1.68)) = 0.093$. 所有低于 0.093 的显著水平都不会被拒绝。若显著水平为 $\alpha = 0.1$,则该检验 拒绝假设 H_0 .

• 总体为 $N(\mu, \sigma)$, σ 为未知。

13 / 29

• 总体为 $N(\mu,\sigma)$, σ 为未知。考虑

$$t = \frac{\sqrt{n}(\bar{x} - \mu_0)}{s}.$$

当 $\mu = \mu_0$ 时, $t \sim t(n-1)$.

• 对于检验问题 I, $H_0: \mu \leq \mu_0 \ vs \ H_1: \mu > \mu_0$, 拒绝域为 $W_I = \{t \geq t_{1-\alpha}\}$, p 值为 $p_I = P(t \geq t_0)$, t_0 为有样本数值计算出来的统计量的值。

(清华大学)

• 总体为 $N(\mu, \sigma)$, σ 为未知。考虑

$$t = \frac{\sqrt{n}(\bar{x} - \mu_0)}{s}.$$

当 $\mu = \mu_0$ 时, $t \sim t(n-1)$.

- 对于检验问题 I, $H_0: \mu \leq \mu_0 \ vs \ H_1: \mu > \mu_0$, 拒绝域为 $W_I = \{t \geq t_{1-\alpha}\}$, p 值为 $p_I = P(t \geq t_0)$, t_0 为有样本数值计算出来的统计量的值。
- 对于检验问题 II, $H_0: \mu \geqslant \mu_0 \text{ vs } H_1: \mu < \mu_0$, 拒绝域为 $W_{II} = \{t \leqslant t_{\alpha}\}, p$ 值为 $p_{II} = P(t \leqslant t_0)$.

• 总体为 $N(\mu,\sigma)$, σ 为未知。考虑

$$t = \frac{\sqrt{n}(\bar{x} - \mu_0)}{s}.$$

当 $\mu = \mu_0$ 时, $t \sim t(n-1)$.

- 对于检验问题 I, $H_0: \mu \leq \mu_0 \text{ vs } H_1: \mu > \mu_0$, 拒绝域为 $W_I = \{t \geq t_{1-\alpha}\}$, p 值为 $p_I = P(t \geq t_0)$, t_0 为有样本数值计算出来的统计量的值。
- 对于检验问题 II, $H_0: \mu \geqslant \mu_0 \text{ vs } H_1: \mu < \mu_0$, 拒绝域为 $W_{II} = \{t \leqslant t_{\alpha}\}, p$ 值为 $p_{II} = P(t \leqslant t_0)$.
- 对于检验问题 III, $H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0$, 拒绝域为 $W_{III} = \{|t| \geq t_{1-\alpha/2}\}, p$ 值为 $p_{III} = P(|t| \geq |t_0|) = 2P(t \geq t_0).$

• 某厂生产的某种铝材的长度服从正态分布, 其均值设定为 240cm。先抽取 5 件产品, 测得其长度为 239.7, 239.6, 239, 240, 239.2. 判断该厂此类铝材的长度是否满足设定要求。

14 / 29

- 某厂生产的某种铝材的长度服从正态分布, 其均值设定为 240cm。先抽取 5 件产品, 测得其长度为 239.7, 239.6, 239, 240, 239.2. 判断该厂此类铝材的长度是否满足设定要求。
- $H_0: \mu = 240 \text{ vs } H_1: \mu \neq 240.$

14 / 29

- 某厂生产的某种铝材的长度服从正态分布, 其均值设定为 240cm。先抽取 5 件产品, 测得其长度为 239.7, 239.6, 239, 240, 239.2. 判断该厂此类铝材的长度是否满足设定要求。
- $H_0: \mu = 240 \text{ vs } H_1: \mu \neq 240.$
- $t = \sqrt{5}|239.5 240|/0.4 = 2.795$.

14 / 29

- 某厂生产的某种铝材的长度服从正态分布, 其均值设定为 240cm。先抽取 5 件产品, 测得其长度为 239.7, 239.6, 239, 240, 239.2. 判断该厂此类铝材的长度是否满足设定要求。
- $H_0: \mu = 240 \text{ vs } H_1: \mu \neq 240.$
- $t = \sqrt{5}|239.5 240|/0.4 = 2.795.$
- 若显著水平 $\alpha = 0.05$, $t_{0.975} = 2.776$, 统计量数值进入拒绝域。 所以拒绝 H_0 .

14 / 29

- 某厂生产的某种铝材的长度服从正态分布, 其均值设定为 240cm。先抽取 5 件产品, 测得其长度为 239.7, 239.6, 239, 240, 239.2. 判断该厂此类铝材的长度是否满足设定要求。
- $H_0: \mu = 240 \text{ vs } H_1: \mu \neq 240.$
- $t = \sqrt{5}|239.5 240|/0.4 = 2.795$.
- 若显著水平 $\alpha=0.05$, $t_{0.975}=2.776$, 统计量数值进入拒绝域。 所以拒绝 H_0 .
- 该检验的 p 值为 $p = 2P(t \ge 2.795) = 0.0491$.

14 / 29

• 设 x_1, \ldots, x_n 是来自总体 $N(\mu, \sigma^2)$ 的样本。

- 设 x_1, \ldots, x_n 是来自总体 $N(\mu, \sigma^2)$ 的样本。
- 考虑双边检验问题 III, 显著水平为 α 的检验接受域为

$$\bar{W}_{III} = \{ |\bar{x} - \mu_0| \leqslant \frac{s}{\sqrt{n}} t_{1-\alpha/2}(n-1) \}
= \{ \mu_0 \in [\bar{x} - \frac{s}{\sqrt{n}} t_{1-\alpha/2}(n-1), \bar{x} + \frac{s}{\sqrt{n}} t_{1-\alpha/2}(n-1)] \}.$$

4□▶ 4□▶ 4 Ē▶ 4 Ē▶ Ē 90

15 / 29

- 设 x_1, \ldots, x_n 是来自总体 $N(\mu, \sigma^2)$ 的样本。
- 考虑双边检验问题 III, 显著水平为 α 的检验接受域为

$$\bar{W}_{III} = \{ |\bar{x} - \mu_0| \leqslant \frac{s}{\sqrt{n}} t_{1-\alpha/2}(n-1) \}
= \{ \mu_0 \in [\bar{x} - \frac{s}{\sqrt{n}} t_{1-\alpha/2}(n-1), \bar{x} + \frac{s}{\sqrt{n}} t_{1-\alpha/2}(n-1)] \}.$$

• 也就是说,如果零假设里面的的 μ_0 值落到了 $1-\alpha$ 置信区间中,这接受零假设。

◆□▶◆□▶◆壹▶◆壹▶ 壹 釣Q@

15 / 29

- 设 x_1, \ldots, x_n 是来自总体 $N(\mu, \sigma^2)$ 的样本。
- 考虑双边检验问题 III, 显著水平为 α 的检验接受域为

$$\bar{W}_{III} = \{ |\bar{x} - \mu_0| \leqslant \frac{s}{\sqrt{n}} t_{1-\alpha/2}(n-1) \}
= \{ \mu_0 \in [\bar{x} - \frac{s}{\sqrt{n}} t_{1-\alpha/2}(n-1), \bar{x} + \frac{s}{\sqrt{n}} t_{1-\alpha/2}(n-1)] \}.$$

- 也就是说,如果零假设里面的的 μ_0 值落到了 $1-\alpha$ 置信区间中,这接受零假设。
- 对于单边假设检验问题 I, 显著性水平为 α 的接受域为

$$\bar{W}_I = \{\bar{x} - \mu_0 < \frac{s}{\sqrt{n}} t_{1-\alpha}\} = \{\bar{x} - \frac{s}{\sqrt{n}} t_{1-\alpha} < \mu_0\}.$$

15 / 29

- 设 x_1, \ldots, x_n 是来自总体 $N(\mu, \sigma^2)$ 的样本。
- 考虑双边检验问题 III, 显著水平为 α 的检验接受域为

$$\bar{W}_{III} = \{ |\bar{x} - \mu_0| \leqslant \frac{s}{\sqrt{n}} t_{1-\alpha/2}(n-1) \}
= \{ \mu_0 \in [\bar{x} - \frac{s}{\sqrt{n}} t_{1-\alpha/2}(n-1), \bar{x} + \frac{s}{\sqrt{n}} t_{1-\alpha/2}(n-1)] \}.$$

- 也就是说,如果零假设里面的的 μ_0 值落到了 $1-\alpha$ 置信区间中,这接受零假设。
- 对于单边假设检验问题 I, 显著性水平为 α 的接受域为

$$\bar{W}_I = \{\bar{x} - \mu_0 < \frac{s}{\sqrt{n}} t_{1-\alpha}\} = \{\bar{x} - \frac{s}{\sqrt{n}} t_{1-\alpha} < \mu_0\}.$$

● 若原假设与(单侧)置信区间相交非空,则接受之。

- 设 $x_1, ..., x_m$ 是来自正态总体 $N(\mu_1, \sigma_1^2)$ 的样本, $y_1, ..., y_n$ 是来自另一个正态总体 $N(\mu_2, \sigma_2^2)$ 的样本,两个样本相互独立。考虑一下三类检验问题:
 - I: $H_0: \mu_1 \mu_2 \leqslant 0$ vs $H_1: \mu_1 \mu_2 > 0$.
 - II: $H_0: \mu_1 \mu_2 \geqslant 0$ vs $H_1: \mu_1 \mu_2 < 0$.
 - III: $H_0: \mu_1 \mu_2 = 0$ vs $H_1: \mu_1 \mu_2 \neq 0$.

16 / 29

- 设 $x_1, ..., x_m$ 是来自正态总体 $N(\mu_1, \sigma_1^2)$ 的样本, $y_1, ..., y_n$ 是来自另一个正态总体 $N(\mu_2, \sigma_2^2)$ 的样本,两个样本相互独立。考虑一下三类检验问题:
 - I: $H_0: \mu_1 \mu_2 \leqslant 0$ vs $H_1: \mu_1 \mu_2 > 0$.
 - II: $H_0: \mu_1 \mu_2 \geqslant 0$ vs $H_1: \mu_1 \mu_2 < 0$.
 - III: $H_0: \mu_1 \mu_2 = 0$ vs $H_1: \mu_1 \mu_2 \neq 0$.
- σ₁, σ₂ 已知;
- σ₁, σ₂ 未知。
 - $\sigma_1 = \sigma_2$ 具体数值未知;
 - $\sigma_1/\sigma_2=c$,比例 c 已知。

(清华大学)

• σ₁ 和 σ₂ 为已知。考虑统计量

17 / 29

• σ₁ 和 σ₂ 为已知。考虑统计量

• 检验问题 I, $H_0: \mu_1 - \mu_2 \leq 0$ vs $H_1: \mu_1 - \mu_2 > 0$ 。 拒绝域为 $W_I = \{u \geq u_{1-\alpha}\}$, p-值为 $p_I = 1 - \Phi(u_0)$, 其中 u_0 为根据样本 数据计算的统计量的值。

17 / 29

• σ₁ 和 σ₂ 为已知。考虑统计量

- 检验问题 I, $H_0: \mu_1 \mu_2 \leq 0$ vs $H_1: \mu_1 \mu_2 > 0$ 。 拒绝域为 $W_I = \{u \geq u_{1-\alpha}\}$, p-值为 $p_I = 1 \Phi(u_0)$, 其中 u_0 为根据样本数据计算的统计量的值。
- 对于检验问题 II, $H_0: \mu_1 \mu_2 \geqslant 0$ vs $H_1: \mu_1 \mu_2 < 0$ 。 拒绝 域为 $W_{II} = \{u \leqslant u_{\alpha}\}$, p-值为 $p_{II} = \Phi(u_0)$.

17 / 29

• σ1 和 σ2 为已知。考虑统计量

- 检验问题 I, $H_0: \mu_1 \mu_2 \leq 0$ vs $H_1: \mu_1 \mu_2 > 0$ 。 拒绝域为 $W_I = \{u \geq u_{1-\alpha}\}$, p-值为 $p_I = 1 \Phi(u_0)$, 其中 u_0 为根据样本 数据计算的统计量的值。
- 对于检验问题 II, $H_0: \mu_1 \mu_2 \geqslant 0$ vs $H_1: \mu_1 \mu_2 < 0$ 。 拒绝 域为 $W_{II} = \{u \leqslant u_{\alpha}\}$, p-值为 $p_{II} = \Phi(u_0)$.
- 对于检验问题 III, $H_0: \mu_1 \mu_2 = 0$ vs $H_1: \mu_1 \mu_2 \neq 0$ 。拒绝 域为 $W_{III} = \{|u| \geqslant u_{1-\alpha/2}\}$,p-值为 $p_{III} = 2(1 \Phi(|u_0|))$.

(清华大学) 概率论与数理统计 2020 17 / 29

• $\sigma_1 = \sigma_2 = \sigma$, σ 未知。考虑统计量

$$t = \frac{\bar{x} - \bar{y}}{s_w \sqrt{\frac{1}{m} + \frac{1}{n}}}, \quad s_w^2 = \frac{\sum_{i=1}^m (x_i - \bar{x})^2 + \sum_{j=1}^n (y_i - \bar{y})^2}{m + n - 2}.$$

当
$$\mu_1 - \mu_2 = 0$$
 时, $t \sim t(m+n-2)$

18 / 29

• $\sigma_1 = \sigma_2 = \sigma$, σ 未知。考虑统计量

$$t = \frac{\bar{x} - \bar{y}}{s_w \sqrt{\frac{1}{m} + \frac{1}{n}}}, \quad s_w^2 = \frac{\sum_{i=1}^m (x_i - \bar{x})^2 + \sum_{j=1}^n (y_i - \bar{y})^2}{m + n - 2}.$$

当
$$\mu_1 - \mu_2 = 0$$
 时, $t \sim t(m+n-2)$

• 检验问题 I, $H_0: \mu_1 - \mu_2 \leq 0$ vs $H_1: \mu_1 - \mu_2 > 0$, $W_I = \{t \geq t_{1-\alpha}(m+n-2)\}, \ p_I = P(t \geq t_0);$

18 / 29

• $\sigma_1 = \sigma_2 = \sigma$, σ 未知。考虑统计量

$$t = \frac{\bar{x} - \bar{y}}{s_w \sqrt{\frac{1}{m} + \frac{1}{n}}}, \quad s_w^2 = \frac{\sum_{i=1}^m (x_i - \bar{x})^2 + \sum_{j=1}^n (y_i - \bar{y})^2}{m + n - 2}.$$

当 $\mu_1 - \mu_2 = 0$ 时, $t \sim t(m+n-2)$

- 检验问题 I, $H_0: \mu_1 \mu_2 \leq 0$ vs $H_1: \mu_1 \mu_2 > 0$, $W_I = \{t \geq t_{1-\alpha}(m+n-2)\}, \ p_I = P(t \geq t_0);$
- 检验问题 II, $H_0: \mu_1 \mu_2 \geqslant 0$ vs $H_1: \mu_1 \mu_2 < 0$, $W_{II} = \{t \leqslant t_{\alpha}\}, \ p_{II} = P(t \leqslant t_0);$

◆ロト ◆団ト ◆豆ト ◆豆ト □ りへで

18 / 29

• $\sigma_1 = \sigma_2 = \sigma$, σ 未知。考虑统计量

$$t = \frac{\bar{x} - \bar{y}}{s_w \sqrt{\frac{1}{m} + \frac{1}{n}}}, \quad s_w^2 = \frac{\sum_{i=1}^m (x_i - \bar{x})^2 + \sum_{j=1}^n (y_i - \bar{y})^2}{m + n - 2}.$$

当 $\mu_1 - \mu_2 = 0$ 时, $t \sim t(m+n-2)$

- 检验问题 I, $H_0: \mu_1 \mu_2 \leq 0$ vs $H_1: \mu_1 \mu_2 > 0$, $W_I = \{t \geq t_{1-\alpha}(m+n-2)\}, \ p_I = P(t \geq t_0);$
- 检验问题 II, $H_0: \mu_1 \mu_2 \geqslant 0$ vs $H_1: \mu_1 \mu_2 < 0$, $W_{II} = \{t \leqslant t_{\alpha}\}, \ p_{II} = P(t \leqslant t_0);$
- 检验问题 III, $H_0: \mu_1 \mu_2 = 0$ vs $H_1: \mu_1 \mu_2 \neq 0$, $W_{III} = \{|t| \geq t_{1-\alpha/2}\}, \ p_{III} = P(|t| \geq t_0).$

(清华大学)

• $\sigma_1/\sigma_2=c$, 比例已知。

19 / 29

• $\sigma_1/\sigma_2=c$, 比例已知。考虑统计量

$$t = \frac{\bar{x} - \bar{y}}{\sqrt{(m-1)s_x^2 + (n-1)s_y^2/c}} \sqrt{\frac{mn(m+n-2)}{mc+n}}.$$

19 / 29

• $\sigma_1/\sigma_2=c$, 比例已知。考虑统计量

$$t = \frac{\bar{x} - \bar{y}}{\sqrt{(m-1)s_x^2 + (n-1)s_y^2/c}} \sqrt{\frac{mn(m+n-2)}{mc+n}}.$$

当 $\mu_1 - \mu_2 = 0$ 时, $t \sim t(m+n-2)$.

19 / 29

• $\sigma_1/\sigma_2=c$, 比例已知。考虑统计量

$$t = \frac{\bar{x} - \bar{y}}{\sqrt{(m-1)s_x^2 + (n-1)s_y^2/c}} \sqrt{\frac{mn(m+n-2)}{mc+n}}.$$

当 $\mu_1 - \mu_2 = 0$ 时, $t \sim t(m+n-2)$.

• 检验问题 I, $H_0: \mu_1 - \mu_2 \leq 0$ vs $H_1: \mu_1 - \mu_2 > 0$, $W_I = \{t \geq t_{1-\alpha}(m+n-2)\}, \ p_I = P(t \geq t_0);$

◆ロト ◆個ト ◆屋ト ◆屋ト ■ めのの

19 / 29

• $\sigma_1/\sigma_2=c$, 比例已知。考虑统计量

$$t = \frac{\bar{x} - \bar{y}}{\sqrt{(m-1)s_x^2 + (n-1)s_y^2/c}} \sqrt{\frac{mn(m+n-2)}{mc+n}}.$$

当 $\mu_1 - \mu_2 = 0$ 时, $t \sim t(m+n-2)$.

- 检验问题 I, $H_0: \mu_1 \mu_2 \leq 0$ vs $H_1: \mu_1 \mu_2 > 0$, $W_I = \{t \geq t_{1-\alpha}(m+n-2)\}, \ p_I = P(t \geq t_0)$;
- 检验问题 II, $H_0: \mu_1 \mu_2 \geqslant 0$ vs $H_1: \mu_1 \mu_2 < 0$, $W_{II} = \{t \leqslant t_{\alpha}\}, \ p_{II} = P(t \leqslant t_0);$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ ■ 900

19 / 29

• $\sigma_1/\sigma_2=c$, 比例已知。考虑统计量

$$t = \frac{\bar{x} - \bar{y}}{\sqrt{(m-1)s_x^2 + (n-1)s_y^2/c}} \sqrt{\frac{mn(m+n-2)}{mc+n}}.$$

当 $\mu_1 - \mu_2 = 0$ 时, $t \sim t(m+n-2)$.

- 检验问题 I, $H_0: \mu_1 \mu_2 \leq 0$ vs $H_1: \mu_1 \mu_2 > 0$, $W_I = \{t \geq t_{1-\alpha}(m+n-2)\}, \ p_I = P(t \geq t_0)$;
- 检验问题 II, $H_0: \mu_1 \mu_2 \geqslant 0$ vs $H_1: \mu_1 \mu_2 < 0$, $W_{II} = \{t \leqslant t_{\alpha}\}, \ p_{II} = P(t \leqslant t_0);$
- 检验问题 III, $H_0: \mu_1 \mu_2 = 0$ vs $H_1: \mu_1 \mu_2 \neq 0$, $W_{III} = \{ |t| \geq t_{1-\alpha/2} \}, \ p_{III} = P(|t| \geq t_0).$

4□ ▶ 4□ ▶ 4 □ ▶ 4 □ ▶ 9<0

- 为提高钢材的硬度,某厂采用了新的锻造工艺。现有数据:
 - 新, 样本容量 8, 硬度均值 $\bar{x} = 73.39$, 样本方差 $s_x^2 = 191.7958/8$;
 - 旧,样本容量 9,硬度均值 $\bar{y} = 68.2756$,样本方差 $s_y^2 = 91.1548/9$.

20 / 29

- 为提高钢材的硬度,某厂采用了新的锻造工艺。现有数据:
 - 新, 样本容量 8, 硬度均值 $\bar{x} = 73.39$, 样本方差 $s_x^2 = 191.7958/8$;
 - 旧,样本容量 9,硬度均值 $\bar{y} = 68.2756$,样本方差 $s_y^2 = 91.1548/9$.
- 假设新工艺对钢材硬度的方差不产生影响。新工艺有用吗?

20 / 29

- 为提高钢材的硬度,某厂采用了新的锻造工艺。现有数据:
 - 新,样本容量 8,硬度均值 $\bar{x} = 73.39$,样本方差 $s_x^2 = 191.7958/8$;
 - 旧,样本容量 9,硬度均值 $\bar{y} = 68.2756$,样本方差 $s_y^2 = 91.1548/9$.
- 假设新工艺对钢材硬度的方差不产生影响。新工艺有用吗?
- $H_0: x = y \quad vs \quad H_1: x > y.$

20 / 29

- 为提高钢材的硬度,某厂采用了新的锻造工艺。现有数据:
 - 新,样本容量 8,硬度均值 $\bar{x}=73.39$,样本方差 $s_x^2=191.7958/8$;
 - 旧,样本容量 9,硬度均值 $\bar{y} = 68.2756$,样本方差 $s_y^2 = 91.1548/9$.
- 假设新工艺对钢材硬度的方差不产生影响。新工艺有用吗?
- $H_0: x = y \quad vs \quad H_1: x > y.$
- $s_w = \sqrt{\frac{1}{8+9-2}(191.7958 + 91.1548)} = 4.3432,$

$$t = \frac{\bar{x} - \bar{y}}{s_w \sqrt{\frac{1}{8} + \frac{1}{9}}} = 2.4233.$$

20 / 29

- 为提高钢材的硬度,某厂采用了新的锻造工艺。现有数据:
 - 新,样本容量 8,硬度均值 $\bar{x} = 73.39$,样本方差 $s_x^2 = 191.7958/8$;
 - 旧, 样本容量 9, 硬度均值 $\bar{y} = 68.2756$, 样本方差 $s_y^2 = 91.1548/9$.
- 假设新工艺对钢材硬度的方差不产生影响。新工艺有用吗?
- $H_0: x = y \quad vs \quad H_1: x > y.$
- $s_w = \sqrt{\frac{1}{8+9-2}(191.7958 + 91.1548)} = 4.3432,$

$$t = \frac{\bar{x} - \bar{y}}{s_w \sqrt{\frac{1}{8} + \frac{1}{9}}} = 2.4233.$$

• $\alpha = 0.05$, $t_{0.95}(15) = 1.7531$, $t > t_{0.95}$, 所以拒绝原假设。即,新工艺提高硬度。

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□P

20 / 29

- 为提高钢材的硬度,某厂采用了新的锻造工艺。现有数据:
 - 新,样本容量 8,硬度均值 $\bar{x}=73.39$,样本方差 $s_x^2=191.7958/8$;
 - 旧, 样本容量 9, 硬度均值 $\bar{y} = 68.2756$, 样本方差 $s_y^2 = 91.1548/9$.
- 假设新工艺对钢材硬度的方差不产生影响。新工艺有用吗?
- $H_0: x = y \quad vs \quad H_1: x > y.$
- $s_w = \sqrt{\frac{1}{8+9-2}(191.7958 + 91.1548)} = 4.3432$,

$$t = \frac{\bar{x} - \bar{y}}{s_w \sqrt{\frac{1}{8} + \frac{1}{9}}} = 2.4233.$$

- $\alpha = 0.05$, $t_{0.95}(15) = 1.7531$, $t > t_{0.95}$, 所以拒绝原假设。即,新工艺提高硬度。
- p-值为 $p = P(t \ge 2.433) = 0.0142$.

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

20 / 29

• $(x_1, y_1), \dots, (x_n, y_n)$, 为 (X, Y) 的样本, $X \sim N(\mu_1, \sigma^2)$, $Y \sim N(\mu_2, \sigma^2)$, X 与 Y 相互独立。考虑检验问题 $H_0: \mu_1 = \mu_2$ vs $H_1: \mu_1 \neq \mu_2$.

(清华大学)

• $(x_1, y_1), \dots, (x_n, y_n)$, 为 (X, Y) 的样本, $X \sim N(\mu_1, \sigma^2)$, $Y \sim N(\mu_2, \sigma^2)$, X 与 Y 相互独立。考虑检验问题 $H_0: \mu_1 = \mu_2$ vs $H_1: \mu_1 \neq \mu_2$.

• 有两种处理方式,

21 / 29

• $(x_1, y_1), \dots, (x_n, y_n)$, 为 (X, Y) 的样本, $X \sim N(\mu_1, \sigma^2)$, $Y \sim N(\mu_2, \sigma^2)$, X 与 Y 相互独立。考虑检验问题 $H_0: \mu_1 = \mu_2$ vs $H_1: \mu_1 \neq \mu_2$.

有两种处理方式,一是将其看成分别来自两个正态总体的样本,考虑

$$t_1 = \frac{\bar{x} - \bar{y}}{s_w / \sqrt{1/n + 1/n}}, s_w^2 = \frac{s_x^2 + s_y^2}{2}.$$

21 / 29

• $(x_1, y_1), \dots, (x_n, y_n)$, 为 (X, Y) 的样本, $X \sim N(\mu_1, \sigma^2)$, $Y \sim N(\mu_2, \sigma^2)$, X 与 Y 相互独立。考虑检验问题 $H_0: \mu_1 = \mu_2$ vs $H_1: \mu_1 \neq \mu_2$.

有两种处理方式,一是将其看成分别来自两个正态总体的样本、考虑

$$t_1 = \frac{\bar{x} - \bar{y}}{s_w / \sqrt{1/n + 1/n}}, s_w^2 = \frac{s_x^2 + s_y^2}{2}.$$

• 另一种是,考虑 $d_i = x_i - y_i$, $d = X - Y \sim N(d, 2\sigma^2)$, $d = \mu_1 - \mu_2$, 则原检验问题就变成 $H_0: d = 0$ vs $H_1: d \neq 0$.

再用单个正态总体的检验,考虑统计量 $t_2 = \bar{d}/(s_d/\sqrt{n})$ 。

(清华大学) 概率论与数理統計 2020 21 / 29

• $(x_1, y_1), \dots, (x_n, y_n)$, 为 (X, Y) 的样本, $X \sim N(\mu_1, \sigma^2)$, $Y \sim N(\mu_2, \sigma^2)$, X 与 Y 相互独立。考虑检验问题

$$H_0: \mu_1 = \mu_2 \quad \text{vs} \quad H_1: \mu_1 \neq \mu_2.$$

有两种处理方式,一是将其看成分别来自两个正态总体的样本、考虑

$$t_1 = \frac{\bar{x} - \bar{y}}{s_w / \sqrt{1/n + 1/n}}, s_w^2 = \frac{s_x^2 + s_y^2}{2}.$$

• 另一种是,考虑 $d_i = x_i - y_i$, $d = X - Y \sim N(d, 2\sigma^2), d = \mu_1 - \mu_2$, 则原检验问题就变成 $H_0: d = 0$ vs $H_1: d \neq 0$.

再用单个正态总体的检验,考虑统计量 $t_2 = \overline{d}/(s_d/\sqrt{n})$ 。

• 有时候会得到不一样的结论。

• $(x_1, y_1), \dots, (x_n, y_n)$, 为 (X, Y) 的样本, $X \sim N(\mu_1, \sigma^2)$, $Y \sim N(\mu_2, \sigma^2)$, X 与 Y 相互独立。考虑检验问题

$$H_0: \mu_1 = \mu_2 \quad {\rm vs} \quad H_1: \mu_1 \neq \mu_2.$$

有两种处理方式,一是将其看成分别来自两个正态总体的样本,考虑

$$t_1 = \frac{\bar{x} - \bar{y}}{s_w / \sqrt{1/n + 1/n}}, s_w^2 = \frac{s_x^2 + s_y^2}{2}.$$

• 另一种是,考虑 $d_i = x_i - y_i$, $d = X - Y \sim N(d, 2\sigma^2)$, $d = \mu_1 - \mu_2$, 则原检验问题就变成 $H_0: d = 0$ vs $H_1: d \neq 0$.

再用单个正态总体的检验,考虑统计量 $t_2 = \bar{d}/(s_d/\sqrt{n})$ 。

• 有时候会得到不一样的结论。倾向于第二种方式,利用了数据式对山坝的特点。

• x_1, \ldots, x_m 是总体 $N(\mu_1, \sigma^2)$ 的样本, y_1, \ldots, y_n 是总体 $N(\mu_2, \sigma^2)$ 的样本,两个样本相互独立。考虑一下假设检验问题

 $H_0: c\mu_1 + d\mu_2 = \delta$ vs $H_1: c\mu_1 + d\mu_2 \neq \delta$, 其中 $c \neq 0, d \neq 0, \delta$ 均为已知常数。

22 / 29

• x_1, \ldots, x_m 是总体 $N(\mu_1, \sigma^2)$ 的样本, y_1, \ldots, y_n 是总体 $N(\mu_2, \sigma^2)$ 的样本,两个样本相互独立。考虑一下假设检验问题

$$H_0: c\mu_1 + d\mu_2 = \delta$$
 vs $H_1: c\mu_1 + d\mu_2 \neq \delta$,
其中 $c \neq 0, d \neq 0, \delta$ 均为已知常数。

• $c\bar{x} + d\bar{y} \sim N(c\mu_1 + d\mu_2, (\frac{c^2}{m} + \frac{d^2}{n})\sigma^2).$

22 / 29

• x_1, \ldots, x_m 是总体 $N(\mu_1, \sigma^2)$ 的样本, y_1, \ldots, y_n 是总体 $N(\mu_2, \sigma^2)$ 的样本,两个样本相互独立。考虑一下假设检验问题

$$H_0: c\mu_1 + d\mu_2 = \delta$$
 vs $H_1: c\mu_1 + d\mu_2 \neq \delta$,
其中 $c \neq 0$, $d \neq 0$, δ 均为已知常数。

- $c\bar{x} + d\bar{y} \sim N(c\mu_1 + d\mu_2, (\frac{c^2}{m} + \frac{d^2}{m})\sigma^2).$
- 如果原假设成立,则

$$u = \frac{c\bar{x} + d\bar{y} - \delta}{\sigma\sqrt{\frac{c^2}{m} + \frac{d^2}{n}}} \sim N(0, 1).$$

进而

$$t = \frac{c\bar{x} + d\bar{y} - \delta}{s_w \sqrt{\frac{c^2}{m} + \frac{d^2}{n}}} \sim t(m + n - 2).$$

• 显著水平为 α 的拒绝域为 $W=\{|t|\geqslant t_{1-\alpha/2}(m+n-2)\}.$

• 单个正态总体方差的 χ^2 检验。

(清华大学)

- 单个正态总体方差的 χ^2 检验。 x_1, \ldots, x_n 是来自 $N(\mu, \sigma^2)$ 的样本,对方差可考虑一下三个检验问题:
 - $I: \quad H_0: \sigma^2 \leqslant \sigma_0^2 \quad \text{vs} \quad H_1: \sigma^2 > \sigma_0^2.$
 - $H: H_0: \sigma^2 \geqslant \sigma_0^2$ vs $H_1: \sigma^2 < \sigma_0^2$.
 - III: $H_0: \sigma^2 = \sigma_0^2$ vs $H_1: \sigma^2 \neq \sigma_0^2$.

(清华大学)

- 单个正态总体方差的 χ^2 检验。 x_1, \ldots, x_n 是来自 $N(\mu, \sigma^2)$ 的样本,对方差可考虑一下三个检验问题:
 - $\bullet \ I: \quad H_0: \sigma^2 \leqslant \sigma_0^2 \quad \text{vs} \quad H_1: \sigma^2 > \sigma_0^2.$
 - $II: \quad H_0: \sigma^2 \geqslant \sigma_0^2 \quad \text{vs} \quad H_1: \sigma^2 < \sigma_0^2.$
 - $\bullet \ III: \quad H_0: \sigma^2 = \sigma_0^2 \quad \text{vs} \quad H_1: \sigma^2 \neq \sigma_0^2.$
- 考虑统计统计量 $\chi^2 = (n-1)s^2/\sigma_0^2 \sim \chi^2(n-1)$ (当 $\sigma = \sigma_0$ 时).

23 / 29

- 单个正态总体方差的 χ^2 检验。 x_1, \ldots, x_n 是来自 $N(\mu, \sigma^2)$ 的样本,对方差可考虑一下三个检验问题:
 - $\bullet \ I: \quad H_0: \sigma^2 \leqslant \sigma_0^2 \quad \text{vs} \quad H_1: \sigma^2 > \sigma_0^2.$
 - $II: \quad H_0: \sigma^2 \geqslant \sigma_0^2 \quad \text{vs} \quad H_1: \sigma^2 < \sigma_0^2.$
 - $III: \quad H_0: \sigma^2 = \sigma_0^2 \quad \text{vs} \quad H_1: \sigma^2 \neq \sigma_0^2.$
- 考虑统计统计量 $\chi^2 = (n-1)s^2/\sigma_0^2 \sim \chi^2(n-1)$ (当 $\sigma = \sigma_0$ 时).
 - 对于检验问题 I, $W_I = \{\chi^2 \geqslant \chi^2_{1-\alpha}(n-1)\}, p_I = P(\chi^2 \geqslant \chi^2_0).$
 - 对于检验问题 II, $W_{II} = \{\chi^2 \leqslant \chi^2_{\alpha}(n-1)\}, p_{II} = p(\chi^2 \leqslant \chi^2_0).$
 - 对于检验问题 III, $W_{III} = \{\chi^2 \leqslant \chi^2_{\alpha/2}(n-1)\} \cup \{\chi^2 \geqslant \chi^2_{1-\alpha/2}(n-1)\}.$ $p_{III} = 2\min\{P(\chi^2 \geqslant \chi^2_0), P(\chi^2 \leqslant \chi^2_0)\}.$

• 两个正态总体方差比的 F 检验:

• 两个正态总体方差比的 F 检验: $x_1, ..., x_m$ 是来自 $N(\mu_1, \sigma_1^2)$ 的样本, $y_1, ..., y_n$ 是来自 $N(\mu_1, \sigma_2^2)$ 的样本。

24 / 29

- 两个正态总体方差比的 F 检验: $x_1, ..., x_m$ 是来自 $N(\mu_1, \sigma_1^2)$ 的样本, $y_1, ..., y_n$ 是来自 $N(\mu_1, \sigma_2^2)$ 的样本。考虑以下三个假设检验问题:
 - $I: H_0: \sigma_1^2 \leqslant \sigma_2^2 \text{ vs } H_1: \sigma_1^2 > \sigma_2^2;$
 - $H_1: H_0: \sigma_1^2 \geqslant \sigma_2^2$ vs $H_1: \sigma_1^2 < \sigma_2^2$;
 - $\bullet \ III: \quad H_0: \sigma_1^2 = \sigma_2^2 \quad \text{vs} \quad H_1: \sigma_1^2 \neq \sigma_2^2.$
- 考虑统计量 $F = s_x^2/s_y^2$, 当 $\sigma_1 = \sigma_2$ 时, $F \sim F(m-1, n-1)$.
 - 对于检验问题 I, $W_I = \{F \geqslant F_{1-\alpha}(m-1, n-1)\}, p_I = P(F \geqslant F_0).$
 - 对于检验问题 II, $W_{II} = \{F \leqslant F_{\alpha}(m-1, n-1)\}, p_{II} = P(F \leqslant F_{0}).$
 - 对于检验问题 III, $W_{III} = \{ F \leqslant F_{\alpha/2}(m-1,n-1), F \geqslant F_{1-\alpha/2}(m-1,n-1) \}, \\ p_{III} = 2 \min \{ P(F \geqslant F_0), P(F \leqslant F_0) \}.$

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ト ・ 恵 ・ からぐ

- 为比较正常成年男女所含红血球的差异,对某地区的男女进行了测量:
 - 男,156名,样本均值465.13,样本方差54.80²;
 - 女,74名,样本均值422.16,样本方差49.20².
 - 假设红血球含量服从正态分布。男女所含的红血球量的均值有差异吗?

- 为比较正常成年男女所含红血球的差异,对某地区的男女进行了测量:
 - 男,156名,样本均值465.13,样本方差54.80²;
 - 女,74 名,样本均值422.16,样本方差49.202.
 - 假设红血球含量服从正态分布。男女所含的红血球量的均值有差异吗?
- 现检验正态分布的方差是和否相等。 $H_0: \sigma_1 = \sigma_2, vs H_1: \sigma_1 \neq \sigma_2.$
- $\alpha=0.05$, $F=\frac{s_x^2}{s_y^2}=\frac{54.80^2}{49.20^2}=1.24$, $F_{0.975}(155,73)=1.5$, $F_{0.025}(155,73)=0.68$. 不拒绝原假设。

(清华大学) 概率论与数理统计

25 / 29

- 为比较正常成年男女所含红血球的差异,对某地区的男女进行了测量:
 - 男,156名,样本均值465.13,样本方差54.80²;
 - 女,74 名,样本均值422.16,样本方差49.202.
 - 假设红血球含量服从正态分布。男女所含的红血球量的均值有差异吗?
- 现检验正态分布的方差是和否相等。 $H_0: \sigma_1 = \sigma_2, vs H_1: \sigma_1 \neq \sigma_2.$
- $\alpha=0.05$, $F=\frac{s_x^2}{s_y^2}=\frac{54.80^2}{49.20^2}=1.24$, $F_{0.975}(155,73)=1.5$, $F_{0.025}(155,73)=0.68$. 不拒绝原假设。
- 在方差相等的假设下,进行检验: $H_0: \mu_1 = \mu_2$ vs $H_1: \mu_1 \neq \mu_2$.

| 4 日 ト 4 回 ト 4 直 ト 4 直 ・ 夕 Q C・

- 为比较正常成年男女所含红血球的差异,对某地区的男女进行了测量:
 - 男,156名,样本均值465.13,样本方差54.80²;
 - 女,74名,样本均值422.16,样本方差49.20².
 - 假设红血球含量服从正态分布。男女所含的红血球量的均值有差异吗?
- 现检验正态分布的方差是和否相等。 $H_0: \sigma_1 = \sigma_2, vs H_1: \sigma_1 \neq \sigma_2.$
- $\alpha=0.05$, $F=\frac{s_x^2}{s_y^2}=\frac{54.80^2}{49.20^2}=1.24$, $F_{0.975}(155,73)=1.5$, $F_{0.025}(155,73)=0.68$. 不拒绝原假设。
- 在方差相等的假设下,进行检验: $H_0: \mu_1 = \mu_2$ vs $H_1: \mu_1 \neq \mu_2$.
- t = 5.96, $t_{0.975}(228) = 1.96 < 5.96$, 在拒绝域, 拒绝 H_0 . 即可认为有差异。

(清华大学) 概率论与教理统计 2020 25 / 29

• x_1, \ldots, x_n 是来自总体 $Exp(\frac{1}{\theta})$ 的样本, $p(x; \theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}$, x > 0.

- x_1, \ldots, x_n 是来自总体 $Exp(\frac{1}{\theta})$ 的样本, $p(x; \theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}$, x > 0.考虑关于 θ 的检验问题:
 - $I: H_0: \theta \leqslant \theta_0 \text{ vs } H_1: \theta > \theta_0.$
 - $\bullet \ II: \quad H_0: \theta \geqslant \theta_0 \quad \text{vs} \quad H_1: \theta < \theta_0.$
 - III: $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$.

- x_1, \ldots, x_n 是来自总体 $Exp(\frac{1}{\theta})$ 的样本, $p(x; \theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}$, x > 0.考虑关于 θ 的检验问题:
 - $I: H_0: \theta \leqslant \theta_0 \text{ vs } H_1: \theta > \theta_0.$
 - $II: \quad H_0: \theta \geqslant \theta_0 \quad \text{vs} \quad H_1: \theta < \theta_0.$
 - III: $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$.
- 考虑统计量 $n\bar{x} = \sum_{i=1}^{n} x_i \sim Ga(n, \frac{1}{\theta_0})$ (当 $\theta = \theta_0$ 时).

(清华大学)

- x_1, \ldots, x_n 是来自总体 $Exp(\frac{1}{a})$ 的样本, $p(x; \theta) = \frac{1}{a}e^{-\frac{x}{\theta}}$, x>0.考虑关于 θ 的检验问题:
 - $I: H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$.
 - $II: H_0: \theta \geqslant \theta_0$ vs $H_1: \theta < \theta_0$.
 - $III: H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0.$
- 考虑统计量 $n\bar{x} = \sum_{i=1}^{n} x_i \sim Ga(n, \frac{1}{\theta_0})$ (当 $\theta = \theta_0$ 时).即有

$$\chi^2 = \frac{2n\bar{x}}{\theta_0} \sim \chi^2(2n) = Ga(\frac{2n}{2}, \frac{1}{2}).$$

- 对于检验问题 I, $W_I = \{\chi^2 \geq \chi^2_{1-\alpha}(2n)\}, p_I = P(\chi^2 \geq \chi^2_0).$
- 对于检验问题 II, $W_{II} = \{\chi^2 \leq \chi^2_0(2n)\}, p_{II} = p(\chi^2 \leq \chi^2_0).$
- 对于检验问题 III, $W_{III} = \{\chi^2 \leq \chi^2_{\alpha/2}(2n)\} \cup \{\chi^2 \geq \chi^2_{1-\alpha/2}(2n)\}.$ $p_{III} = 2 \min\{P(\chi^2 \ge \chi_0^2), P(\chi^2 \le \chi_0^2)\}.$

概率论与数理统计 26 / 29

大样本检验

• x_1, \ldots, x_n 来自某总体 $F(x; \theta)$ 的样本, 设总体均值为 θ , 方差 为 θ 的函数 $\sigma^2(\theta)$,

(清华大学)

大样本检验

- x_1, \ldots, x_n 来自某总体 $F(x, \theta)$ 的样本,设总体均值为 θ , 方差为 θ 的函数 $\sigma^2(\theta)$, 可考虑一下假设检验问题:
 - $\bullet \ I: \quad H_0: \theta \leqslant \theta_0 \quad \text{vs} \quad H_1: \theta > \theta_0.$
 - $\bullet \ II: \quad H_0: \theta \geqslant \theta_0 \quad \text{vs} \quad H_1: \theta < \theta_0.$
 - $\bullet \ III: \quad H_0: \theta = \theta_0 \quad \text{vs} \quad H_1: \theta \neq \theta_0.$
- 考虑统计量

其中 $\hat{\theta}$ 是 θ 的最大似然估计。

- $W_I = \{u \geqslant u_{1-\alpha}\}.$
- $W_{II} = \{u \leqslant u_{\alpha}\}.$
- $W_{III} = \{|u| \geqslant u_{1-\alpha/2}\}.$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

• 给你一块硬币,如何决定改硬币是"公平"的?

28 / 29

- 给你一块硬币, 如何决定改硬币是"公平"的?
- $H_0: p = \frac{1}{2} vs H_1: p \neq \frac{1}{2}.$

28 / 29

- 给你一块硬币, 如何决定改硬币是"公平"的?
- $H_0: p = \frac{1}{2} vs H_1: p \neq \frac{1}{2}.$
- 统计量: $u = \frac{\bar{x} \frac{1}{2}}{\sqrt{\bar{x}(1 \bar{x})/n}}$.

28 / 29

- 给你一块硬币, 如何决定改硬币是"公平"的?
- $H_0: p = \frac{1}{2} vs H_1: p \neq \frac{1}{2}.$
- 统计量: $u = \frac{\bar{x} \frac{1}{2}}{\sqrt{\bar{x}(1 \bar{x})/n}}$.
- 给定显著水平 α , 拒绝域: $W_{III} = \{|u| \geqslant u_{1-\alpha/2}\}$.

28 / 29

- 给你一块硬币,如何决定改硬币是"公平"的?
- $H_0: p = \frac{1}{2} vs H_1: p \neq \frac{1}{2}.$
- 统计量: $u = \frac{\bar{x} \frac{1}{2}}{\sqrt{\bar{x}(1 \bar{x})/n}}$.
- 给定显著水平 α , 拒绝域: $W_{III} = \{|u| \ge u_{1-\alpha/2}\}$.
- 近似 p-值?

28 / 29

- 给你一块硬币,如何决定改硬币是"公平"的?
- $H_0: p = \frac{1}{2} vs H_1: p \neq \frac{1}{2}.$
- 统计量: $u = \frac{\bar{x} \frac{1}{2}}{\sqrt{\bar{x}(1 \bar{x})/n}}$.
- 给定显著水平 α , 拒绝域: $W_{III} = \{|u| \ge u_{1-\alpha/2}\}$.
- 近似 p-值? P(|u| ≥ u₀).

28 / 29

一般大样本,一般参数的假设检验

• 如果 x_1, \ldots, x_n 来自某总体 $p(x; \theta)$, θ 不是总体的均值。有什么办法进行假设检验?

29 / 29