We examine the free group via the set that it's defined over. In the language of categories  $\mathscr{F}^A$  is the free category of A, where the objects are like :  $A \to G$ , and the morphisms are group homomorphisms  $\sigma$  like

$$\begin{array}{c}
A \xrightarrow{j_1} G \\
\downarrow^{j_2} \downarrow^{\sigma} \\
H
\end{array}$$

Now we define

**Definition 0.1.** F(A) is an initial object in  $\mathscr{F}^A$ .

**Claim.** The maps  $\{a\} \rightarrow \langle a \rangle$  are initial in the category.

This defined F(A) up to isomorphism, but why do they exist? In particular, define the resolution of the first cancelation relation among the words by  $r:W(A)\to W(A)$ , and define moreover  $R:W(A)\to W(A)$  by  $w\longmapsto Rr^{\lfloor n/2\rfloor}(w)$ . Then  $F(A)=(R(W(A)),\cdot)$ , where  $\cdot$  denotes concatonation.

**Fact.** This is a group, and this is easy to check for yourself.

Then define the map  $j: A \to F(A)$  as the map that takes a letter as a set object to a letter as a word in the group F(A). Then the homomorphisms  $\sigma$  are defined letterwise in order to force the homomorphism condition.

In other words, just take  $abc \xrightarrow{\sigma} j(a)j(b)j(c)$ .

## 1 Subgroups

**Definition 1.1.** A Subgroup H of a group G (denoted by  $H \leq G$ ) is a subset  $H \subseteq G$  such that H is a group inheriting the group operation of G.

**Lemma 1.2.**  $H \subseteq G$  is a subgroup iff  $\forall a, b \in H$ ,  $ab^{-1} \in H$ .

*Proof.* Trivially verified.

**Example 1.3.** The image of a group homomorphism  $\varphi$  is a subgroup of the domain.

Now we can define a slightly more interesting object.

**Definition 1.4.** A subgroup  $H \leq G$  is called normal if  $g \in G$   $gHg^{-1} \in H$ 

**Example 1.5.** ker  $\varphi$  is a normal subgroup of the domain of  $\varphi$  since  $\forall h \in H, g \in G, \varphi(g)\varphi(h)\varphi(g)^{-1} = \varphi(g)\varphi(g)^{-1} = e$ 

Claim. All normal subgroups are the kernel of some homomorphism.

*Proof.* First notice that the left cosets of some normal subgroup  $K \leq G$  partition G. Now we claim that this gives us a well-defined group operation. This can be seen by noticing that

$$gK \cdot hK = ghK$$

$$gk_gK \cdot hk_hK = gk_ghk_hK$$

$$= ghk'_gk_hK$$

$$= ghK.$$

when K is normal, (where kh = hk' for  $k' \in K$ ). Now we denote this group G/K, with  $g \stackrel{\pi}{\mapsto} gK$ .

Then as a corollary of this, we get the following:

Corollary 1.6. If  $\varphi: G \to G'$  is onto, then

$$G/\ker \varphi \cong G'$$

And moreover,

**Theorem 1.7** (LaGrange's theorem). The order of any subgroup divides |G|. in other words: |G| = [G:H]|H|.

Quotient groups allow one to say that if  $\varphi: G \to G'$ :

$$G \xrightarrow{\pi} G/\ker \varphi \cong \operatorname{Im}\varphi \xrightarrow{\varphi} G'$$

## 2 Group Actions

The action of a group on a set is a homomorphism

$$\sigma: G \to \operatorname{Aut}(A)$$
.

Namely, a left action  $\rho: G \times A \to A$  is defined such that  $\rho(gh, a) = \rho(g, \rho(h, a))$ .

**Fact.** Every group acts faithfully on some set. Therefore it is a subgroup of a permutation group. Yes, we are just stating Cayley's theorem as a fact, eat shit idiot.