MATRIX FACTORIZATIONS

1. $A = LU = \begin{pmatrix} \text{lower triangular } L \\ \text{1's on the diagonal} \end{pmatrix} \begin{pmatrix} \text{upper triangular } U \\ \text{pivots on the diagonal} \end{pmatrix}$

Requirements: No row exchanges as Gaussian elimination reduces square A to U.

2. $A = LDU = \begin{pmatrix} \text{lower triangular } L \\ \text{1's on the diagonal} \end{pmatrix} \begin{pmatrix} \text{pivot matrix} \\ D \text{ is diagonal} \end{pmatrix} \begin{pmatrix} \text{upper triangular } U \\ \text{1's on the diagonal} \end{pmatrix}$

Requirements: No row exchanges. The pivots in D are divided out to leave 1's on the diagonal of U. If A is symmetric then U is L^{T} and $A = LDL^{T}$.

3. PA = LU (permutation matrix P to avoid zeros in the pivot positions).

Requirements: A is invertible. Then P, L, U are invertible. P does all of the row exchanges on A in advance, to allow normal LU. Alternative: $A = L_1 P_1 U_1$.

4. EA = R (m by m invertible E) (any m by n matrix A) = rref(A).

Requirements: None! The reduced row echelon form R has r pivot rows and pivot columns, containing the identity matrix. The last m-r rows of E are a basis for the left nullspace of A; they multiply A to give m-r zero rows in R. The first r columns of E^{-1} are a basis for the column space of A.

5. $S = C^TC =$ (lower triangular) (upper triangular) with \sqrt{D} on both diagonals

Requirements: S is symmetric and positive definite (all n pivots in D are positive). This Cholesky factorization $C = \operatorname{chol}(S)$ has $C^{\mathrm{T}} = L\sqrt{D}$, so $S = C^{\mathrm{T}}C = LDL^{\mathrm{T}}$.

6. A = QR = (orthonormal columns in Q) (upper triangular R).

Requirements: A has independent columns. Those are *orthogonalized* in Q by the Gram-Schmidt or Householder process. If A is square then $Q^{-1} = Q^{T}$.

7. $A = X\Lambda X^{-1} = (\text{eigenvectors in } X) \text{ (eigenvalues in } \Lambda) \text{ (left eigenvectors in } X^{-1}).$

Requirements: A must have n linearly independent eigenvectors.

8. $S = Q\Lambda Q^{T}$ = (orthogonal matrix Q) (real eigenvalue matrix Λ) (Q^{T} is Q^{-1}).

Requirements: S is real and symmetric: $S^{T} = S$. This is the Spectral Theorem.

564 Matrix Factorizations

- 9. $A = BJB^{-1} =$ (generalized eigenvectors in B) (Jordan blocks in J) (B^{-1}). **Requirements**: A is any square matrix. This *Jordan form* J has a block for each independent eigenvector of A. Every block has only one eigenvalue.
- **10.** $A = U\Sigma V^{\mathbf{T}} = \begin{pmatrix} \text{orthogonal} \\ U \text{ is } m \times m \end{pmatrix} \begin{pmatrix} m \times n \text{ singular value matrix} \\ \sigma_1, \dots, \sigma_r \text{ on its diagonal} \end{pmatrix} \begin{pmatrix} \text{orthogonal} \\ V \text{ is } n \times n \end{pmatrix}.$

Requirements: None. This *Singular Value Decomposition* (SVD) has the eigenvectors of AA^{T} in U and eigenvectors of $A^{T}A$ in V; $\sigma_{i} = \sqrt{\lambda_{i}(A^{T}A)} = \sqrt{\lambda_{i}(AA^{T})}$.

11. $A^+ = V\Sigma^+U^T = \begin{pmatrix} \text{orthogonal} \\ n \times n \end{pmatrix} \begin{pmatrix} n \times m \text{ pseudoinverse of } \Sigma \\ 1/\sigma_1, \dots, 1/\sigma_r \text{ on diagonal} \end{pmatrix} \begin{pmatrix} \text{orthogonal} \\ m \times m \end{pmatrix}.$

Requirements: None. The *pseudoinverse* A^+ has A^+A = projection onto row space of A and AA^+ = projection onto column space. $A^+ = A^{-1}$ if A is invertible. The shortest least-squares solution to $A\mathbf{x} = \mathbf{b}$ is $\mathbf{x}^+ = A^+\mathbf{b}$. This solves $A^{\mathrm{T}}A\mathbf{x}^+ = A^{\mathrm{T}}\mathbf{b}$.

12. A = QS = (orthogonal matrix Q) (symmetric positive definite matrix S).

Requirements: A is invertible. This polar decomposition has $S^2 = A^T A$. The factor S is semidefinite if A is singular. The reverse polar decomposition A = KQ has $K^2 = AA^T$. Both have $Q = UV^T$ from the SVD.

13. $A = U\Lambda U^{-1} = (\text{unitary } U)$ (eigenvalue matrix Λ) (U^{-1} which is $U^{H} = \overline{U}^{T}$).

Requirements: A is *normal*: $A^HA = AA^H$. Its orthonormal (and possibly complex) eigenvectors are the columns of U. Complex λ 's unless $S = S^H$: Hermitian case.

14. $A = QTQ^{-1} = \text{(unitary } Q\text{) (triangular } T \text{ with } \lambda \text{'s on diagonal) } (Q^{-1} = Q^{\text{H}}).$

Requirements: Schur triangularization of any square A. There is a matrix Q with orthonormal columns that makes $Q^{-1}AQ$ triangular: Section 6.4.

15. $F_n = \begin{bmatrix} I & D \\ I & -D \end{bmatrix} \begin{bmatrix} F_{n/2} & \\ & F_{n/2} \end{bmatrix} \begin{bmatrix} \text{even-odd} \\ \text{permutation} \end{bmatrix} = \text{one step of the recursive FFT.}$

Requirements: $F_n =$ Fourier matrix with entries w^{jk} where $w^n = 1$: $F_n \overline{F}_n = nI$. D has $1, w, \ldots, w^{n/2-1}$ on its diagonal. For $n = 2^{\ell}$ the Fast Fourier Transform will compute $F_n x$ with only $\frac{1}{2}n\ell = \frac{1}{2}n\log_2 n$ multiplications from ℓ stages of D's.