Personalized Medicine: Redefining Cancer Treatment Matt Shaffer · 16 August 2017

kaggle

Workflow

- A molecular pathologist selects a list of genetic variations of interest that he/she want to analyze
- The molecular pathologist searches for evidence in the medical literature that somehow are relevant to the genetic variations of interest
- 3. Finally, this molecular pathologist spends a huge amount of time analyzing the evidence related to each of the variations to classify them

Goal

Replace step 3 by a machine learning model.

Features

1. Gene

(the gene where this genetic mutation is located)

2. Variation

(the aminoacid change for this mutation)

3. Class

(1-9 the class this genetic mutation has been classified on)

4. Text corpus

(the clinical evidence used to classify the genetic mutation)

	ID	Gene	Variation	Class	Text
1108	1108	FANCA	S858R	4	Fanconi anemia (FA) is an autosomal recessive
1109	1109	FANCA	S1088F	1	null
1110	1110	FANCA	Truncating Mutations	1	Abstract Fanconi anemia is characterized by c
1111	1111	FANCA	H492R	4	Abstract Fanconi anemia (FA) is a genomic ins
1112	1112	FANCA	Y510C	4	Abstract Fanconi anemia (FA) is a genomic ins
1113	1113	FANCA	Deletion	1	Fanconi anemia (FA) is a genetic disease chara
1114	1114	FANCA	L274P	4	Abstract Fanconi anemia (FA) is a genomic ins
1115	1115	FANCA	W183A	4	Fanconi anemia (FA) is a recessively inherited
1116	1116	FANCA	L210R	4	Abstract Fanconi anemia (FA) is a genomic ins

CLASSES

- 1. Likely Loss-of-function
- 2. Likely Gain-of-function
- 3. Neutral
- 4. Loss-of-function
- 5. Likely Neutral
- 6. Inconclusive
- 7. Gain-of-function
- 8. Likely Switch-of-function
- 9. Switch-of-function

Missing Values

X_tes	st.loc	(X_tes	t['Text'].:	str.len()	<	100]
	ID	Gene	Variation	Text		
1623	1623	AURKB	Amplification	null		

Inconsistent Data

	Class	Gene	ID	Variation
3716	NaN	RUNX2	395	null522S
3967	NaN	PAX6	646	null423L
4017	NaN	SHOX	696	null293R
4540	NaN	ITM2B	1219	null267R
4749	NaN	SH2D1A	1428	null129R
4787	NaN	FKRP	1466	null496R
4859	NaN	PNPO	1538	null262Q
5428	NaN	HSD3B2	2107	null373C
5644	NaN	SELENON	2323	null462G
5688	NaN	KISS1R	2367	null399R
5738	NaN	IDUA	2417	null654G
5862	NaN	RAD50	2541	null1313Y
5907	NaN	FHL1	2586	null281E
5952	NaN	MOCS2	2631	null189Y
6094	NaN	IKBKG	2773	null420W
6899	NaN	CTSK	3578	null330W
7151	NaN	DBT	3830	null483L
7476	NaN	NHP2	4155	null154R
8188	NaN	FOXF1	4867	null380R

Observations Disproportionately Represented

Shared Text Corpus for Multiple Variations

	Text	text_length	Gene	Variation
3298	Introduction Myelodysplastic syndromes (MDS) \dots	40127	RUNX1	Y113*
3303	Introduction Myelodysplastic syndromes (MDS) \dots	40127	RUNX1	P173S
3305	Introduction Myelodysplastic syndromes (MDS) \dots	40127	RUNX1	S70fsX93
3317	Introduction Myelodysplastic syndromes (MDS) \dots	40127	RUNX1	A122*
3316	Introduction Myelodysplastic syndromes (MDS) \dots	73895	RUNX1	D171N
3314	Introduction Myelodysplastic syndromes (MDS) \dots	94151	RUNX1	G42R

Journal List > Proc Natl Acad Sci U S A > v.110(48); 2013 Nov 26 > PMC3845122

Proc Natl Acad Sci U S A. 2013 Nov 26; 110(48): 19525-19530. Medical Sciences

PMCID: PMC3845122

CDK10/cyclin M is a protein kinase that controls ETS2 degradation and is deficient in STAR syndrome

Vincent J. Guen, a Carly Gamble, a Marc Flajolet, b Sheila Unger, C Aurélie Thollet, d.e Yoan Ferandin, a Andrea Superti-

Author information ► Copyright and License information ►

This article has been cited by other articles in PMC.

Furga, C Pascale A. Cohen, d.e Laurent Meijer, a,1 and Pierre Colasa.

SIGNIFICANCE

Go to: ☑

STAR syndrome is an X-linked dominant developmental disorder caused by mutations in FAM58A, which codes for an orphan cyclin with undescribed functions. Here we demonstrate that cyclin M interacts with CDK10 (one of the last orphan CDKs) to form a novel cyclin-dependent kinase. CDK10 is known to be involved in the control of cell division and in the resistance of certain breast cancers to endocrine therapy. We show that CDK10/cyclin M phosphorylates and positively regulates the degradation of ETS2, a transcription factor that plays key roles in cancer and development. These results shed light on the molecular mechanisms underlying STAR syndrome, and they pave the way for the exploration of the functions of the CDK10/cyclin M kinase.

ABSTRACT

Cyclin-dependent kinases (CDKs) regulate a variety of fundamental cellular processes. CDK10 stands out as one of the last orphan CDKs for which no activating cyclin has been identified and no kinase activity revealed. Previous work has shown that CDK10 silencing increases ETS2 (v-ets erythroblastosis virus E26 oncogene homolog 2)-driven activation of the MAPK pathway, which confers tamoxifen resistance to breast cancer cells. The precise mechanisms by which CDK10 modulates ETS2 activity, and more generally the functions of CDK10, remain elusive. Here we demonstrate that CDK10 is a cyclin-dependent kinase by identifying cyclin M as an activating cyclin. Cyclin M, an orphan cyclin, is the product of FAM58A, whose mutations cause STAR syndrome, a human developmental anomaly whose features include toe syndactyly, telecanthus, and anogenital and renal malformations. We show that STAR syndrome-associated cyclin M mutants are unable to interact with CDK10. Cyclin M silencing ies CDK 10 silencing in increasing c-Raf and in conferring tamoxifen resistance to br

BRIEF COMMUNICATIONS

Mutations in the cyclin family member FAM58A cause an X-linked dominant disorder characterized by syndactyly, telecanthus and anogenital and renal malformations

Sheila Unger^{1,2,12}, Detlef Böhm^{3,12}, Frank J Kaiser⁴, Silke Kaulfuß⁵, Wiktor Borozdin³, Karin Buiting⁶, Peter Burfeind⁵, Johann Böhm¹, Francisco Barrionuevo¹, Alexander Craig¹, Kristi Borowski², Kim Keppler-Noreuil², Thomas Schmitt-Mechelke⁸, Bernhard Steiner⁹, Deborah Bartholdi⁵, Johannes Lemke⁹, Geert Mortier¹⁰, Richard Sandford¹¹,

We identified four girls with a consistent constellation of facial dysmorphism and malformations previously reported in a single mother-daughter pair. Toe syndactyly, telecanthus and a single induced vacagine plan. The sympacty system can appropriate and great malformations were present in all affecte individuals; thus, we propose the name STAR syndrome for this disorder. Using array CGAI, qCRC and sequence analysis, we found causative mutations in FAMSBA on Xq28 in all affected individuals, suggesting an X-linked dominant inheritance pattern for this recognizable syndrome.

We identified four uncedated girls with anogenital and renal malfor-mations, dysmorphic facial features, normal intellect and syndactyly of toes. A similar combination of features had been reported previously in a mother-dupleter pair [Table 1 and Supplementary Note online]. These authors noted dinical overlap with Townes-Brocks in a motification of relative state deal regionary precision as well as the state of the state o

(ref. 3) and MYCN^d but found no mutations in any of these genes (Supplementary Methods online). Next, we carried out genome-wide high-resolution oligonucleotide array comparative genomic wise ings-resourch oigomacerouse array comparative genomic hybridization (CGH)² analysis (Supplementary Methods) of genomic DNA from the most severely affected individual (case 1, with lower ild coloboma, epilepsy and syringomyelia) and identified a hetero-zygous deletion of 37:9–90.7 kb on Xq28, which removed exoms 1 and sygous dechon of 37.9-30.7 xb on xq2x, which removed exors 1 and 2 of EAMSAS (Fig. 14). Using real-time PCR, we confirmed the deletion in the child and excluded it in her unaffected parents (Supplementary Fig. 1a online, Supplementary Methods and Supplementary Table 1 online). Through CGH with a customized oligonucleotide array enriched in probes for Xq28, followed by break-point cloning, we defined the exact deletion size as 40,088 bp (g.152,514,164_152,554,231del(chromosome X, NCBI Build 36.2); (g.132.3/4,164_1.3/2.5/2.4/10ti(ctromotome A, N.481 Bauta Se./.); Fig. 13 and Supplementary Figs. 2.3 online). The decition removes the coding regions of exons 1 and 2 as well as intron 1 (2,774 bp), 492 bp of intron 2, and 36,600 bp of 5 sequence, including the 5 UTR and the entire KRT18PAPs pseudopene (NCBI gene ID 340988). Paternity was proven using routine methods. We did not find deletions overlapping FAM58A in the available copy number variation

(CNV) databases.

Subsequently, we carried out qPCR analysis of the three other affected individuals (cases 2, 3 and 4) and the mother-daughter pair from the literature (cases 5 and 6). In case 3, we detected a de novo heterozygous deletion of 1.1–10.3 kb overlapping exon 5 (Supplementary Fig. 1b online). Using Xq28-targeted array CGH and breakpoint cloning, we identified a deletion of 4,249 bp (g.152,504,123_152,508,371del(chromosome X, NCBI Build 36.2); Fig. 1j and Supplementary Figs. 2,3), which removed 1,265 bp of intron 4, all of exon 5, including the 3' UTR, and 2,454 bp of 3' sequence.

We found heterozygous FAM58A point mutations in the remaining nant entity (MIM601446). Here we define the 4, we identified the frameshift mutation 201dup T, which immediately autosomi dominant entity (MIM601460). Here we define the 4, we identified the frame/hill mutation 201dapT, which immediately credibil in a presumature stop codes NSSEXLX. In case 3 and 6, with apparent indexanthus and broad tripertite mast tip, variable we detected the mutation S64-1G>A, which albert the spike youldarly of ton 2 -5, hypoplattic falsa, and attestia and unspike acceptor size of intent. We will added the point mutations and deficients [Fig. 1a-b]. We also observed a variety of other and deficients [Fig. 1a-b]. We also observed a variety of other and deficients [Fig. 1a-b]. We also observed a variety of other and deficients [Fig. 1a-b]. We also observed a variety of other and the state of the state influentiments (e.g., user), we and outered a variety of user as weathern by addition of the phenotypic overlap with Towner-Brocks, the point mutations and deficions in all sporadic cases. None (Shihim and Feingold syndromes, we analyzed SALLI (ref. 2), SALLI of the mutations were seen in the DNA of 60 unaffected female

Technical Human Genetics, Tomber to Installation and Administration Medicine, Districtly, and Technical Engineery, Technical Engineery,

Received 10 October 2007: accepted 2 January 2008: published online 24 February 2008: doi:10.1038/ng.86

TF-IDF

- 。 Bigram- 2690998 tokens
- 。 Trigrams 33,126,986 tokens
- 。 10% of Vocabulary

SVD

- 20 Features for dataset scaled to 10% of original
- 200 Final Model

```
'problem genetic', 2394330),
('size inversely', 2649165),
('Invitrogen catalog', 669650),
 'methylation mutational', 2115605),
 'hotspot SNPs', 1850576),
 'Endogenous MyD88', 500475),
('Recently NUP98', 921101),
('phase data', 2322665),
('resistance clinical', 2533397),
('site frequency', 2646231),
('underline 712', 2843950),
('pGBT9 TRP1', 2276264),
('Fgfr3 Viable', 533516),
('pY869 detected', 2282312),
('665752 JNJ38877605', 225464),
('Research Inc', 926139),
('key advance', 1985754),
('site Their', 2645338))
('ssa hdr', 7250466),
('10 dl hematocrit', 37545),
('functioning different pathway', 3452747),
('tumor tissue sts', 7876878),
('nk granulo monocytic', 5343760),
('vivo study pk', 8146749),
('containing p53 dna', 2137352),
('deficiency promotes differentiated', 2392257),
('pvh1213 lysine', 6268396),
('project bi78d3 santa', 6135025),
('counted study property', 2214788),
```

Substitution

Insertion

Deletion

Original sequence

Mutated sequence

TGGCAG

 $T G G \hookrightarrow G$

TGGTATCAG

TGGG

tmVar normalization format:

Substitution:

<Sequence type>|SUB|<wild type>|<mutation position>|<mutant> e.g., "c.435C>G" --> "c|SUB|C|435|G"

Deletion:

<Sequence type>|DEL|<mutation position>|<mutant> e.g., "c.104delT" --> "c|DEL|104|T" e.g., "c.1544-? 2916+?" --> "c|DEL|1544-? 2916+?|"

Insertion:

<Sequence type>|INS|<mutation position>|<mutant> e.g., "c.104insT" --> "c|INS|104|T"

Insertion+Deletion:

<Sequence type>|INDEL|<mutation position>|<mutant> e.g., "c.2153 2155delinsTCCTGGTTTA" --> "c|INDEL|2153 2155|TCCTGGTTTA"

Duplication:

<Sequence type>|DUP|<mutation position>|<mutant>|<duplication times>

e.g., "c.1285-1301dup" --> "c|DUP|1285 1301||" e.g., "c.1978(TATC)(1-2)" --> "c|DUP|1978|TATC|1-2"

Frame shift:

<Sequence type>|FS|<wild type>|<mutation position>|<mutant>|<frame shift position>

e.g., "p.Val35AlafsX25" --> "p|FS|V|35|A|25"

e.g., "p.Ser119fsX" --> "p|FS|S|119||"

<Sequence type>:

c: DNA sequence

r: RNA sequence

g: Genome sequence

p: Protein sequence

m: Mitochondrial sequence

<wild type> / <mutant>:

A,T,C,G: DNA nucleotide

C,I,S,Q,M,N,P,K,D,T,F,A,G,H,L,R,W,V,E,Y,X: Amino acid

2943	C630R					170			
2944	V648I			.	138	138	EGFR	L747_T751delinsP	7
2945	1852M		C 63	30 R	139	139	EGFR	S752_I759del	2
2946	C620R				141	141	EGFR	D770_P772dup	7
1550,000	C634Y		C 6	30 R	144	144	EGFR	N771_H773dup	7
2948	V804G		C 0.	30 K	146	146	EGFR	E746_T751insIP	7
2949	R886W				147	147	EGFR	D770_N771insD	7
2950	F893L		C 6	20 Aug	149	149	EGFR	K745_A750del	7
2951	Y791F		Cys 6.	30 Arg	165	165	EGFR	D770_N771insNPG	7
2952	R177*				166	166	EGFR	E746_A750del	7
2953	Y113*	Cysteine 630 Arginine					EGFR	A859_L883delinsV	2
2954	R139G						EGFR	 A750_E758del	7
2955	K83N				174 175	174 175	EGFR	V769_D770insGVV	7
2956	R177Q				184	184	EGFR	A750_E758delinsP	7
2957	R166Q				187	187	EGFR	L747_P753delinsS	7
2958	P173S				107	107	LOITI	2747_1 70000iii130	- 1
2959	R201Q								
2960	S70fsX93								
2961	W279*	Input	HGVS Committee	HGVS ClinVar/NCBI	HGVS Ens	embl	HG	VS Mutalyzer	\neg
2962	R174*	m.8993T>G	m.8993T>G	NC_012920.1:m.8993T>G	MT:g.899	7. S.	_	_012920.1:g.8993T>G	
2963	D171G	8993G	m.8993T>G	NC_012920.1:m.8993T>G	MT:g.899			_012920.1:g.8993T>G	
2964	RUNX1-EVI1 Fusion	T8993G	m.8993T>G	NC_012920.1:m.8993T>G	MT:g.899			_012920.1:g.8993T>G	
2965	TEL-RUNX1 Fusion	8993d	m.8993_8993del	NC_012920.1:m.8993_8993del	MT:g.899	3_8993	del NC_	012920.1:g.8993_8993	del
2966	H78Q	8527	m.8527A>G	NC_012920.1:m.8527A>G	MT:g.852	7A>G	NC_	_012920.1:g.8527A>G	
		8527A>G	m.8527A>G	NC_012920.1:m.8527A>G	MT:g.852	7A>G	NC_	_012920.1:g.8527A>G	
2968	RUNX1-RUNX1T1 Fusion	MT.6328C>T	m.6328C>T	NC_012920.1:m.6328C>T	MT:g.632	BC>T	NC_	_012920.1:g.6328C>T	
2969	D171N	8042_8043d	m.8042_8043del	NC_012920.1:m.8042_8043del	MT:g.804	2_8043	del NC_	_012920.1:g.8042_8043	del
2970	A122*	1494.1T	m.1494_1495insT	NC_012920.1:m.1494_1495insT	MT:g.149	4_1495	insT NC_	_012920.1:g.1494_1495	insT
CASTAGEA.	R80C	7472.XA	m.7472_7473insAA	NC_012920.1:m.7472_7473insAA	MT:g.747	2_7473	insAA NC_	_012920.1:g.7472_7473	insAA
2972	K83E								

ID

Gene

Variation Class

Variant Types

	0
0	EGFRvV
1	Hypermethylation
2	TRKAIII Splice Variant
3	Promoter Mutations
4	Deletion
5	Copy Number Loss
6	DNA binding domain deletions
7	Wildtype
8	DNA binding domain insertions
9	Epigenetic Silencing
10	MYC-nick
11	EGFRvIII
12	Overexpression
13	Truncating Mutations Upstream of Transactivati
14	Amplification
15	Truncating Mutations in the PEST Domain
16	Single Nucleotide Polymorphism
17	Truncating Mutations
18	Promoter Hypermethylation
19	DNA binding domain missense mutations
20	EGFR-KDD
21	EGFRvII

22 EGFRvIV

Amino acid \$	3- letter ^[132] *	1- letter ^[132] *	Side chain class	Side chain polarity ^[132] ◆	Side chain charge (pH ÷ 7.4) ^[132]	Hydropathy index[133]	Absorbance λ _{max} (nm) ^[134] •	ε at λ _{max} (mM ⁻¹ cm ⁻¹) ^[134]	MW (weight)	Occurrence in proteins (%)[135]
Alanine	Ala	Α	aliphatic	nonpolar	neutral	1.8			89.094	8.76
Arginine	Arg	R	basic	basic polar	positive	-4.5			174.203	5.78
Asparagine	Asn	N	amide	polar	neutral	-3.5			132.119	3.93
Aspartic acid	Asp	D	acid	acidic polar	negative	-3.5			133.104	5.49
Cysteine	Cys	С	sulfur- containing	nonpolar	neutral	2.5	250	0.3	121.154	1.38
Glutamic acid	Glu	E	acid	acidic polar	negative	-3.5			147.131	6.32
Glutamine	Gln	Q	amide	polar	neutral	-3.5			146.146	3.9
Glycine	Gly	G	aliphatic	nonpolar	neutral	-0.4			75.067	7.03
Histidine	His	Н	basic aromatic	basic polar	positive(10%) neutral(90%)	-3.2	211	5.9	155.156	2.26
Isoleucine	lle	1	aliphatic	nonpolar	neutral	4.5			131.175	5.49
Leucine	Leu	L	aliphatic	nonpolar	neutral	3.8			131.175	9.68
Lysine	Lys	K	basic	basic polar	positive	-3.9			146.189	5.19
Methionine	Met	М	sulfur- containing	nonpolar	neutral	1.9			149.208	2.32
Phenylalanine	Phe	F	aromatic	nonpolar	neutral	2.8	257, 206, 188	0.2, 9.3, 60.0	165.192	3.87
Proline	Pro	Р	cyclic	nonpolar	neutral	-1.6			115.132	5.02
Serine	Ser	S	hydroxyl- containing	polar	neutral	-0.8			105.093	7.14
Threonine	Thr	Т	hydroxyl- containing	polar	neutral	-0.7			119.119	5.53
Tryptophan	Trp	W	aromatic	nonpolar	neutral	-0.9	280, 219	5.6, 47.0	204.228	1.25
Tyrosine	Tyr	Y	aromatic	polar	neutral	-1.3	274, 222, 193	1.4, 8.0, 48.0	181.191	2.91
Valine	Val	٧	aliphatic	nonpolar	neutral	4.2			117.148	6.73

Dense Network

```
model = Sequential()
model.add(Dense(512, input_dim=input_shape, kernel_initializer='normal', activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(256, kernel initializer='normal', activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(128, kernel initializer='normal', activation='relu'))
model.add(Dropout(0.5))
model.add(Dropout(0.5))
model.add(Dense(128, kernel initializer='normal', activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(256, kernel initializer='normal', activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(512, kernel_initializer='normal', activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(output shape, kernel initializer='normal', activation="softmax"))
model.compile(loss='categorical crossentropy', optimizer='adam', metrics=['accuracy'])
```

(Similar Idea)

