Lineare Algebra I, Blatt 2

Gruppe 4

Lorenz Bung (Matr.-Nr. 5113060)

lorenz.bung@students.uni-freiburg.de Tobias Remde (Matr.-Nr. 5100067)

tobias.remde@gmx.de

22. November 2020

Aufgabe 1

(a) **Behauptung**: $g_1 \sim g_2 \Leftrightarrow \exists h \in G(hg_1h^{-1} = g_2)$ ist eine Äquivalenzrelation.

Beweis: \sim ist eine Äquivalenzrelation, wenn \sim reflexiv, symmetrisch und transitiv ist.

Reflexivität.

z.z.: $g_1 \sim g_1$.

Bew.: $g_1 \sim g_1 \Leftrightarrow \exists h \in G(hg_1h^{-1} = g_1)$. Sei h das neutrale Element von G. Dann ist $hg_1h^{-1} = eg_1e^{-1} = eg_1e = g_1$.

Symmetrie.

z.z.: $g_1 \sim g_2 = g_2 \sim g_1$.

Bew.: $g_1 \sim g_2 \Leftrightarrow \exists h \in G(hg_1h^{-1} = g_2)$. Existiere also ein solches $h \in G$. Dann ist

$$hg_1h^{-1} = g_2$$

$$hg_1 = g_2h$$

$$g_1 = h^{-1}g_2h.$$

Wähle nun $i := h^{-1}$: Dann existiert ein $i \in G(ig_2i^{-1} = g_1)$ und somit $g_2 \sim g_1$.

Transitivität.

z.z.: $g_1 \sim g_2 \wedge g_2 \sim g_3 \Rightarrow g_1 \sim g_3$.

Bew: $g_1 \sim g_2 \wedge g_2 \sim g_3 \Leftrightarrow \exists h, i \in G : hg_1h^{-1} = g_2 \wedge ig_2i^{-1} = g_3$. Dann ist $ig_2i^{-1} = ihg_1h^{-1}i^{-1}$. Da (G, \cdot) eine Gruppe ist (und somit abgeschlossen), ist auch $(i \cdot h) \in G$ und damit auch $(i \cdot h)^{-1} \in G$. Sei nun $l := i \cdot h$. Dann ist $g_1 \sim g_3 \Leftrightarrow \exists l \in G(lg_1l^{-1} = g_3)$.

Somit ist \sim reflexiv, symmetrisch und transitiv und damit eine Äquivalenzrelation.

(b) **Behauptung**: $[e] = \{e\}.$

Beweis: $e \sim x \Leftrightarrow \exists h \in G : heh^{-1} = x$. Dann ist $heh^{-1} = (he)h^{-1} = hh^{-1} = e$. Also muss x = e sein und damit $[e] = \{e\}$.

(c) **Behauptung**: $(hgh^{-1})^{-1}$ liegt in der Äquivalenzklasse von g^{-1} .

Beweis: Aufgrund von *Bemerkung 1.21* im Skript ist $(a*b)^{-1} = b^{-1}*a^{-1}$. Somit ist $(hgh^{-1})^{-1} = (gh^{-1})^{-1}h^{-1} = (h^{-1})^{-1}g^{-1}h^{-1} = hg^{-1}h^{-1}$, was nach Definition in der Äquivalenzklasse von g^{-1} liegt.

Behauptung: $(hgh^{-1})^n$ liegt in der Äquivalenzklasse von g^{-n} .

Beweis: $(hgh^{-1})^n = \prod_{k=0}^n hgh^{-1} = hgh^{-1} * \cdots * hgh^{-1}$.

Da $hgh^{-1} \in [g^{-1}]_{\sim}$, liegt jeder Faktor des Produkts in der Äquivalenzklasse von g^{-1} . Somit liegt das Gesamtprodukt in der Äquivalenzklasse von $g^{-1} * g^{-1} * \cdots * g^{-1}$, also in $[g^{-n}]$.

(d) Behauptung: Sei $r \in \mathbb{R}^*$ und $z \in \mathbb{Z}$. Dann ist $[r] = \{r\}$ und $[z] = \{z\}$.

Beweis: Seien $g_1, g_2 \in \mathbb{R}^*$. Dann ist $g_1 \sim g_2 \Leftrightarrow \exists h \in \mathbb{R}^* : hg_1h^{-1} = g_2$. Da (\mathbb{R}^*, \cdot) abelsch ist, ist jedoch $g_2 = hg_1h^{-1} = hh^{-1}g_1 = eg_1 = g_1$. Somit ist $[g_1] = \{g_1\}$.

Beweis für $(\mathbb{Z}, +)$ ist analog (abelsche Gruppe).

Aufgabe 2

Behauptung: Jede injektive Abbildung $f: X \to X$ ist auch surjektiv.

Beweis: Wir führen den Beweis induktiv über die Kardinalität #X.

Induktionsanfang (#X = 0): trivial, da in diesem Fall $X = \emptyset$.

Induktionsvoraussetzung: Sei nun $f:X\to X$ injektiv und surjektiv für #X=n.

Induktionsschritt $(n \Rightarrow n+1)$: Sei #X = n+1. Da f für eine Menge mit n Elementen sowohl injektiv als auch surjektiv ist, kann jedes Element im Definitionsbereich nur auf exakt ein Element im Wertebereich abgebildet werden. Hat X nun ein Element mehr, bleibt für dieses Element im Definitionsbereich nur noch ein Element im Wertebereich übrig, da f für #X = n ja bereits bijektiv ist. Somit ist f auch für #X = n+1 bijektiv.

Aufgabe 3

Behauptung: Die Äquivalenzklasse von $(1\ 2\ 3)$ ist die folgende Menge: $[(1\ 2\ 3)] = \{id, (1\ 2\ 3), (1\ 3\ 2)\}.$

Beweis: Ein Element g ist in der Äquivalenzklasse von $(1\ 2\ 3)$, falls gilt:

$$\exists h \in S_4 : h \cdot (1 \ 2 \ 3) \cdot h^{-1} = g.$$

Es muss also einen Zyklus $(a_1 \ldots a_n) \in S_4$ geben, sodass

$$(a_1 \ldots a_n)(1 \ 2 \ 3)(a_n \ldots a_1) = (1 \ 2 \ 3).$$

Für die abzählbar vielen Elemente in S_4 kann nun einzeln geprüft werden, ob dies der Fall ist. Es ergibt sich, dass nur die Elemente id, $(1\ 2\ 3)$ und $(1\ 3\ 2)$ in $[(1\ 2\ 3)]$ liegen.

Aufgabe 4

(a) **Behauptung**: $\mathcal{M}_{2\times 2}(R)$ ist ein nicht-kommutativer Ring.

Beweis: Es handelt sich um einen Ring, wenn:

- (R, +) eine abelsche Gruppe mit neutralem Element 0_R ist
- (R, \cdot) ein Monoid mit neutralem Element 1_R ist
- die Distributivgesetze $a \cdot (b+c) = a \cdot b + a \cdot c$ und $(a+b) \cdot c = a \cdot c + b \cdot c$ gelten.

Assoziativität von $(\mathcal{M}_{2\times 2}(R), +)$.

Beh.: $(\mathcal{M}_{2\times 2}(R), +)$ ist assoziativ.

Bew.: Seien $a, \dots, l \in R$. Dann ist

$$\begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix} \end{pmatrix} + \begin{pmatrix} i & j \\ k & l \end{pmatrix}$$

$$= \begin{pmatrix} a+e & b+f \\ c+g & d+h \end{pmatrix} + \begin{pmatrix} i & j \\ k & l \end{pmatrix}$$

$$= \begin{pmatrix} a+e+i & b+f+j \\ c+g+k & d+h+l \end{pmatrix}$$

$$= \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e+i & f+j \\ g+k & h+l \end{pmatrix}$$

$$= \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} + \begin{pmatrix} i & j \\ k & l \end{pmatrix} \end{pmatrix}.$$

Kommutativität von $(\mathcal{M}_{2\times 2}(R), +)$.

Beh.: $(\mathcal{M}_{2\times 2}(R), +)$ ist kommutativ.

Bew.: Seien $a, \ldots, h \in R$. Dann ist

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix}$$
$$= \begin{pmatrix} a+e & b+f \\ c+g & d+h \end{pmatrix}$$
$$= \begin{pmatrix} e+a & f+b \\ g+c & h+d \end{pmatrix}$$
$$= \begin{pmatrix} e & f \\ g & h \end{pmatrix} + \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Neutrales von $(\mathcal{M}_{2\times 2}(R), +)$.

Beh.: Die Matrix $0_{\mathcal{M}_{2\times 2}(R)}:=\begin{pmatrix}0&0\\0&0\end{pmatrix}$ ist das neutrale Element von $(\mathcal{M}_{2\times 2}(R),+).$

Bew.: Seien $a, \ldots, d \in R$. Dann ist

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} a+0 & b+0 \\ c+0 & d+0 \end{pmatrix}$$
$$= \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Inverses von $(\mathcal{M}_{2\times 2}(R), +)$.

Beh.: Die Matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_{2\times 2}(R)$ mit $a, \dots, d \in R$ hat das Inverse $\begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}$.

Bew.: Seien also $a, \ldots, d \in R$. Dann ist

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}$$
$$= \begin{pmatrix} a - a & b - b \\ c - c & d - d \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0_R.$$

Assoziativität von $(\mathcal{M}_{2\times 2}(R),\cdot)$.

Beh.: $(\mathcal{M}_{2\times 2}(R), \cdot)$ ist assoziativ.

Bew.: Seien $a, \ldots, l \in R$. Dann ist

$$\begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} e & f \\ g & h \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} i & j \\ k & l \end{pmatrix} \\
= \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix} \cdot \begin{pmatrix} i & j \\ k & l \end{pmatrix} \\
= \begin{pmatrix} aei + bgi + afk + bhk & aej + bgj + afl + bhl \\ cei + dgi + cfk + dhk & cej + dgj + cfl + dhl \end{pmatrix} \\
= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} ei + fk & ej + fl \\ gi + hk & gj + hl \end{pmatrix} \\
= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} \cdot \begin{pmatrix} i & j \\ k & l \end{pmatrix} \right).$$

Neutrales von $(\mathcal{M}_{2\times 2}(R),\cdot)$.

Beh.: Die Matrix $1_{\mathcal{M}_{2\times 2}(R)}:=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ ist das neutrale Element von $(\mathcal{M}_{2\times 2}(R),\cdot).$

Bew.: Seien $a, \ldots, d \in R$. Dann ist

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1a + 0b & 0a + 1b \\ 1c + 0d & 0c + 1d \end{pmatrix}$$
$$= \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Somit handelt es sich um einen Ring.

Die Kommutativität des Monoids $(\mathcal{M}_{2\times 2}(R),\cdot)$ (und damit auch des Ringes) ist jedoch nicht erfüllt: Seien $a,\ldots,h\in R$. Dann ist

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} e & f \\ g & h \end{pmatrix}$$

$$= \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix}$$

$$\neq \begin{pmatrix} ea + fc & eb + fd \\ ga + hc & gb + hd \end{pmatrix}$$

$$= \begin{pmatrix} e & f \\ g & h \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

(b) **Behauptung**: Wenn R positive Charakteristik k > 0 hat, ist die Charakteristik $char \mathcal{M}_{2\times 2}(R) = k$. **Beweis**:

$$\begin{aligned} 0_{\mathcal{M}_{2\times 2}(R)} &= \begin{pmatrix} 0_R & 0_R \\ 0_R & 0_R \end{pmatrix} \\ &= \begin{pmatrix} \sum_{i=0}^k 1_R & 0_R \\ 0_R & \sum_{i=0}^k 1_R \end{pmatrix} \\ &= \begin{pmatrix} \sum_{i=0}^k 1_R & \sum_{i=0}^k 0_R \\ \sum_{i=0}^k 0_R & \sum_{i=0}^k 1_R \end{pmatrix} \\ &= \sum_{i=0}^k \begin{pmatrix} 1_R & 0_R \\ 0_R & 1_R \end{pmatrix} = (1_{\mathcal{M}_{2\times 2}(R)})^k. \end{aligned}$$