Analysis 1 – Tutorium 4 robin.mader@campus.lmu.de 27.11.2020

Aufgabe 1 (Kompaktheit). *Erinnerung:* Ein topologischer Raum (X, \mathcal{T}) heißt kompakt, falls es für jede Familie $(U_i)_{i \in I} \in \mathcal{T}^I$ von offenen Mengen in X mit $X = \bigcup_{i \in I} U_i$ eine endliche Indexmenge $E \subset I$ gibt, sodass noch $X = \bigcup_{i \in E} U_i$ gilt.

1. Wir bezeichnen mit $\mathcal{T}_{\mathbb{R}}$ die Standardtopologie auf \mathbb{R} . Es seien $M \subseteq \mathbb{R}$ eine Teilmenge und $\mathcal{T}_M = \{V \cap M \mid V \in \mathcal{T}_{\mathbb{R}}\}$ die Relativtopologie. Zeige:

M ist eine kompakte Teilmenge von \mathbb{R} (im Sinne der Definition 2.26)

$$\iff$$

 (M, \mathcal{T}_M) ist ein kompakter topologischer Raum.

2. Es sei $A \subseteq \mathbb{R}$ eine kompakte Menge. Es sei $x \in \mathbb{R} \setminus A$. Zeige: Es gibt offene Mengen $U, V \subseteq \mathbb{R}$ mit $U \cap V = \emptyset$ und $x \in U$, $A \subseteq V$.

Gehe dazu wie folgt vor:

- (a) Gegeben $a \in A$, konstruiere offene Mengen $U_a, V_a \subseteq \mathbb{R}$ mit $U_a \cap V_a = \emptyset$ und $x \in U_a$, $a \in V_a$.
- (b) Verwende die Kompaktheit von A, um U und V aus den Familien $(U_a)_{a\in A}$, $(V_a)_{a\in A}$ zu konstruieren.

Hinweis: Nutze, dass endliche Schnitte und Vereinigungen offener Mengen offen sind.

3. Zeige, dass $\mathbb{R} \cup \{\pm \infty\}$ mit der in Abschnitt 2.2 definierten Topologie kompakt ist.

Aufgabe 2. Es sei $P \subseteq \mathbb{C}$ die Menge der Eckpunkte eines regelmäßigen n-Ecks mit Zentrum $0 \in \mathbb{C}$, wobei $n \in \mathbb{Z}_{\geq 2}$. Wir nehmen an, dass ein Eckpunkt auf der reellen Achse liegt, sagen wir $a \in \mathbb{R} \cap P$.

- (a) Schreibe P als Menge in aufzählender Notation. Stelle hierbei die Elemente aus P in Polarkoordinaten dar.
- (b) Zeige: $\sum_{z \in P} z = 0$.

Aufgabe 3 (Häufungspunkte). Bestimme (ohne Beweis) die Häufungspunkte der Folge $(a_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ in folgenden Fällen: Für $n\in\mathbb{N}$ sei:

(a)
$$a_n = (-1)^n$$
 (b) $a_n = (-1)^n + \frac{1}{n}$

(c)
$$a_n = \begin{cases} n & \text{falls } n \in 2\mathbb{N}, \\ \frac{1}{n} & \text{falls } n \in 2\mathbb{N}_0 + 1 \end{cases}$$
 (d) $a_n = (-1)^n \frac{n}{n+1}$