

Synthèse d'Images Visibilité, Apparence, Texture

Tamy Boubekeur

RAPPEL: SCÈNE ET GÉOMÉTRIE

Modèles de Scène 3D

Image Numérique

- Une collection de modèles :
 - Capteur (caméra)
 - Géométries
 - Maillages, particules, iso-surfaces, etc
 - Apparence
 - Matériaux, textures
 - Lumières
 - Animation
 - Évolution temporelles des paramètres

Scène 3D

des autres modèles

- Physique solide, fluides, corps déformables
- Interactivité et actuators
- Une structure entre ces modèles
 - Appartenance et hiérarchie
 - Données et instances

Surface Maillée

- Maillage:
 - modèle géométrique dominant en rendu
 - Génération possible à partir des autres modèles
 - Cf cours de Modèlisation Géométrique
- Définition: un ensemble de faces polygonales E indexant un ensemble de sommets V.
- V: Ensemble de sommets (géométrie)
 - v1 (x, y, z)
 - v2 (x, y, z)
 - v3 (x, y, z)
 - v4 (x, y, z)
- F: Ensemble de faces (topologie)
 - (v1, v2, v3)
 - (v1, v3, v4)
- Outre la position, chaque sommet peut porter d'autres attributs:
 - vecteur normales, critiques en rendu.
 - Couleur par sommet
 - Coordonnées de textures (UV)

Coordonnées barycentrique

- Coordonnée d'un point dans l'espace d'un polygone
- Simple pour un triangle
- Permet d'interpoler linéairement tout attribut de sommet

Normales

- Essentielles pour le rendu
 - Alignement de la BRDF
- Stockage aux sommets ou par cartes (normal maps)
- Calculs possibles:
 - Moyennes des normales des faces incidentes
 - Moyennes pondérée par les angles des arêtes incidentes
 - Plus robustes pour les distributions de triangles non uniformes
 - Moyenne pondérée par l'aire de l'intersection du triangle et de la cellule de voronol du sommet.

Interpolation de Normales

- Une normale en chaque point d'un maillage à partir des normales de ses sommets [Phong 75].
- Soit un point p sur un triangle t tel que :

$$p = \lambda_0 p_0 + \lambda_1 p_1 + \lambda_2 p_2$$

Avec $(\lambda_0, \lambda_1, \lambda_2)$ les coordonnées barycentrique de p dans t.

Alors on définit la normale interpolée de Phong en p comme :

$$n_p = \frac{\lambda_0 n_0 + \lambda_1 n_1 + \lambda_2 n_2}{\|\lambda_0 n_0 + \lambda_1 n_1 + \lambda_2 n_2\|}$$

Normale de face

Normale de Phong

RAPPEL: CAMÉRA ET TRANSFORMATIONS

Modèle de Caméra

- En général: pinhole camera
- Projection perspectivique

Transformation et Projections

- Représentation par une matrice 4x4
- Transformation rigide
 - Translation
 - Rotation
 - Echelle
- Utilisation: changement de repère pour le placement des géométries dans le repère de la caméra et leur projection

Transformation Affine

Translation

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Rotation

$$R_X(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix} R_Y(\theta) = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} R_Z(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Scaling

$$\begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 Transformations appliquées pour :
• Déplacer les sommets des polygones en 3D
• Les placer dans le repère de la caméra

Transformations appliquées pour :

Projection

- Projeter les sommets des polygones (transformés) dans le plan de l'image.
- 2 types de projections:

• Encore une fois exprimable à l'aide d'une matrice 4x4 : la matrice de projection

Géométrie Projective

- Raisonner dans l'espace des droites
- Projection en perspective

Point xyz > xyzw : coordonnées homogènes

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} x \\ y \\ z \\ w = 1 \end{pmatrix} \rightarrow \dots transformations \dots \rightarrow \begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} \rightarrow \begin{pmatrix} x'/w' \\ y'/w' \\ z'/w' \end{pmatrix}$$
Solve the second states as the second state of the second states as the s

Projection Homogène

Rasterization & Lancer de Rayon

ALGORITHMES DE VISIBILITÉ

Visibilité

- **Objectif:** déterminer quels primitives sont visibles/cachées depuis un point donné, comme par exemple depuis :
 - une caméra > formation d'une image
 - une source de lumière > éclairage
- Détermine les 2 grandes classes d'algorithmes de rendu:

Projection

Rasterization

- Alg. du peintre
- Z-Buffer
- Ombrage Différé

Lancer de rayon

Ray casting/tracing

- Intersection rayon/triangle
- Récursion

Rasterisation

- Discrétisation d'un polygone dans une grille (image)
- Plusieurs algorithmes alternatifs
 - 1 triangle > n fragments

- Fragment = {x,y}
- Pixel = fragment visible
 - Plusieurs triangles peuvent couvrir les même pixel
 - · Visibilité déterminé plus tard

Rasterisation

- Discrétisation d'un polygone dans une grille (image)
- Plusieurs algorithmes alternatifs
 - Pixel = fragment visible

- Sans précaution, tous les polygones de la scène sont traités
 - > Elimination de primitives

- Projection des sommets 3D du triangle dans le plan de l'image.
- Calcul de la boîte englobante {{minX, minY},{maxX, maxY}} des pixels candidats
- Calcul des coordonnées barycentriques {b0, b1, b2} de ceux-ci en fonction du – triangle
- 4. Classification des pixels effectivement couverts
 - b0,b1,b2 >= 0 et b0+b1+b2 = 1
- 5. Emission des fragments correspondant

Elimination de primitives (Culling)

Occlusion culling:

- éliminer les objets occultés dans la pyramide de vue
- Compliqué > peu utilisé

Backface culling

Elimination des faces arrières Test: normal vs caméra orientation

Visibilité dans le champ de vue

 Comment déterminer les parties visibles et les parties cachées de la géométrie des objets depuis un point donné (e.g. position de la caméra) ?

Algorithme du peintre

- Ordonnancement général des polygones le long de l'axe de vue
- Dessin de loin en proche de la liste ordonnée
- Lent > Optimisé via un BSP-Tree, mais statique
- Cas ambigus : intersection de polygones

Rasterization avec Z-Buffer

Idée: maintenir un tampon (buffer) ZB de la même taille que le tampon couleur FB de l'écran, mais stockant pour chaque pixel la profondeur de la géométrie le recouvrant

Algorithme

```
Pour chaque polygone t :

Si t hors-champ ou t non face caméra Ignorer t

Rasterizer t

Pour chaque fragment (x,y) de t :

c := couleur de de t en (x,y)

z := distance fragment-caméra

Si ZB(x,y) > z alors :

FB(x,y) := c

ZB(x,y) := z

Sinon

Ignorer (x,y)
```


- © Rapide, support GPU, linéaire en temps
- © Plusieurs polygones par pixel / aliasing

Lancer de Rayon (Ray Tracing)

Idée: partir du point de vue et chercher pour chaque pixel le premier objet intersectant la ligne de vue au travers du pixel Algorithme

```
Pour chaque pixel (x,y)

r := rayon caméra-pixel

e = +∞

FB (x,y) = (0,0,0)

Pour chaque polygone t

x := intersection (r, t)

Si x != null

d = distance camera-x

Si d < e

e = d

FB (x,y) = couleur de X
```

- © Simple, facilement généralisable
- ⊗ Couteux

Accélération:

- Ranger les polygone dans un kd-tree
 - Pré-calcul en O(n log n)
- Utiliser pour le kd-tree pour la recherche d'intersection
 - Coût par pixel: O(log n)

Intersection Rayon-Triangle

```
IntersectionRayonTriangle (o, w, p0, p1, p2):
     e0 = p1 - p0
     e1 = p2 - p0
     n = e0^e1 / |e0^e1|
     q = w^e1
     a = e0.q
     \sin n.w >= 0 \text{ ou } |a| < \text{epsilon}
           retourner null
     s = (o - p0)/a
     r = s^e0
     b0 = s.q
     b1 = r.w
     b2 = 1 - b0 - b1
     si b0 < 0 ou b1 < 0 ou b2 < 0
           retourner null
     t = e1.r
     sit >= 0
           retourner [b0, b1, b2, t]
     retourner null
```


Intersection exprimée:

- selon le triangle, en coordonnées barycentriques x=b0*p0+b1*p1+b2*p2
- Selon la forme paramétrique du rayon : x = o + t*w

Accélération du lancer de rayon

- Pour chaque rayon > éviter d'inspecter les polygones de la scène un à un
- Ranger les polygones au préalable dans une structure de données
 - Hiérarchique
 - Ajustée à la scène
 - Permettant de rapidement éliminer des pans entier de la scène lorsqu'on qu'on cherche l'intersection d'un rayon (ou d'un ensemble de rayon) avec celle-ci
- Solutions classiques
 - kD-Tree
 - BVH

kD-Tree

- Structure de partitionnement orthogonale d'échantillons
- Arbre binaire. A chaque niveau:
 - Calculer la boite englobante de P
 - Diviser P le long du plus grand axe (X, Y ou Z)
- Algorithme de construction:

```
KDNode buildKDTree (PointList P) {
    BBox B = computeBoundingBox (P);
    Point q = findMedianSample (B,P);
    Node n;
    Plane H = plane (q, maxAxis (B)
        n.data = <q,H>;
    PointList Pu = upperPartition (P, H);
    PointList Pl = lowerPartition (P, H);
    n.leftChild = buildKDTree (Pu);
    n.rightChild = buildKDTree (Pl);
    return n;
}
```


Propriétés du kD-Tree

Générique

- Ordonnancement spatial en dimension arbitraire
- Robuste et constructible sur n'importe quel ensemble de points

Accélération de la recherche des plus proches voisins (NN)

- Recherche par distance: tous les points à située dans une boule de rayon r centrée sur l'origine de la recherche
 - Basées sur le test d'intersection sphère/boite
- Recherche par cardinal: trouver les k plus proches voisins (kNN)
 - via une file à priorité de taille maximum pour ordonner les points (O(k log N) pour une arbre équilibré

Accélération des tests d'intersection

- Test récursif
- Traitement de « paquets de rayons »
- Possibilité d'ajouter un biais géométrique
 - e.g. Surface Area Heuristic ou SAH

Lumière, réflectance, couleur.

APPARENCE

Apparence

Surface Diffuse

Surface *Glossy*

Surface Spéculaire Carte Couleur

Carte Relief

- Matériaux
- **Textures**
 - Variation des paramètres des matériaux sur la surface
- Meso- et micro-structure de la surface

Apparence

- Couleur en un point p :
 - depuis un point de vue donné
 - pour une scène donnée
- Fonction de:
 - L'éclairage (illumination) en p
 - La réflectance du matériau en p

Eclairage

Radiance en un point:

- Mesure radiométrique décrivant la quantité d'énergie passant en un point pour une direction donnée.
- Exprimée en Watt par Stéradian par Mètre-carré (W /m²sr)

Champ de Lumière

- Ou Light Field
- $L(\boldsymbol{p}, \boldsymbol{\omega}), \boldsymbol{p} \in \mathbb{R}^3, \boldsymbol{\omega} \in S^2$
- **Radiance** (éclairement) au point $oldsymbol{p}$, dans la direction $oldsymbol{\omega}$
- Résulte
 - des sources primaires (surfaces émissives, source virtuelles),
 - du transport lumineux global dans la scène
 - éclairage indirect

Sources Virtuelles de Lumière

- Intensité
- Couleur:
 - En général: un triplet RVB attaché à la source
 - Modélisation physique: spectre complet
- Type :
 - Sources ponctuelle : définit par une position
 - Emet de l'énergie dans toutes les directions
 - Source directionnelle : une position + une direction
 - Rayons parallèles
 - Souvent utilisée pour modéliser la lumière du soleil
 - Spot: portion angulaire d'une source ponctuelle
 - Source Etendue (Area Light) : un morceau de surface émettant de la lumière
 - Ombres douces
 - Peut-être défini à partir de n'importe quelle géométrie de la scène

Atténuation Lumineuse

- Modélise l'énergie reçu en un point à une distance d de la source
- Typiquement caractérisé en information par un triplet de valeurs:
 - $-a_c$ le coefficient d'atténuation constante
 - $-a_l$ le coefficient d'atténuation linéaire
 - $-a_q$ le coefficient d'atténuation quadratique

$$L(d) = \frac{L}{a_c + a_l \cdot d + a_q \cdot d^2}$$

Note : à l'air libre, l'atténuation d'une source ponctuelle se modélise avec

$$a_c = 0$$
, $a_l = 0$, $a_q = 1$

Environnement Lumineux

Analytique

 Ensemble de sources lumineuses

Echantillonné

- Exemple: fonction (hémi)sphérique décrivant l'éclairage (supposé) infiniment distant
 - Capturée via un lightprobe

- ou un panorama de photos
- En général en haute dynamique (imagerie HDR)
- Analyse fréquentielle

Carte d'Environnement HDR

- Image sphérique à haute dynamique (HDR), approximant l'éclairage distant.
- Evaluation explicite
 - Séquences quasi-aléatoire d'échantillons,
 - Eventuellement modulée par une fonction d'importante (énergie, réflectance au point éclairé),
 - Chaque échantillon agit comme une source directionnelle.
- Projection dans une base de fonction sphérique
 - Peu de coefficients, grands composantes capturées rapidement
 - E.g., harmoniques sphériques

Equation du rendu

Equation du rendu

Simplification pour une Source ponctuelle unique

$$L_o(\omega_o) = L_i(\omega_i) f(\omega_i, \omega_o) (n \cdot \omega_i)$$

Plusieurs sources ponctuelles

$$L_o(\omega_o) = \sum_i L_i(\omega_i) f(\omega_i, \omega_o) (n \cdot \omega_i)$$

Evaluation dans le cas non ponctuel (e.g. sources étendues) par la méthode de *Monte-Carlo*

Eclairage direct

Considérer un point de surface indépendamment

- Avec ou sans ombre porté
- Pas d'échange lumineux avec les autres points de la scène
- Modélisation du matériau par une BRDF (Bidirectional Reflectance Distribution Function)
 - Plusieurs modèles analytiques existent
 - Paramètres
 - uniforme sur une surface
 - Ou variant et spécifié par une carte sur la surface
 - carte couleur/albedo diffus
 - Carte de brillance
 - etc

Réflectance

- Définit en un point par la fonction de distribution de réflectance bidirectionnelle ou BRDF
 - BRDF: composante réflective de la BSDF (dispersion)
 - Pour l'instant, on oublie la composante transmissive (BTDF)

- Composantes classiques :
 - Diffuse : distribution de l'énergie dans toutes les directions
 - **Spéculaire/Fresnel** : réflexion directionnelle
 - Miroir : réflexion spéculaire parfaite

Compositions

Terme diffus

Terme spéculaire

Diffus + Spéculaire

BRDF

- Définit la micro-structure d'un matériau dans le cadre de l'optique géométrique.
- Cas classique : une fonction à 4 dimensions

$$f: S^2 \times S^2 \to [0,1]$$

$$\omega_i \times \omega_o \to r$$

$$\omega_{i} = (\theta_{i}, \phi_{i}) \qquad \omega_{o} = (\theta_{o}, \phi_{o}) \qquad \omega_{h} = \frac{\omega_{i} + \omega_{o}}{\|\omega_{i} + \omega_{o}\|}$$
Lumière incidente Direction d'émission HalfVector

Valeur en inférieur ou égale à 1

$$L_o(\omega_o) = L_i(\omega_i) f(\omega_i, \omega_o) (n \cdot \omega_i)$$

BRDF Physiquement Plausibles

• Respecte la réciprocité d'Helmotz

$$f(\omega_i, \omega_o) = f(\omega_o, \omega_i)$$

Conservative

$$\int_{\Omega} f(\omega_i, \omega_o) \cos \theta_o d\omega_o \le 1$$

Positivité

$$f(\omega_i, \omega_o) \ge 0, \forall \omega_i, \omega_o$$

Propriétés

- Isotropie/Anisotropie
- Nombre réduit de paramètres
- Séparabilité « diffus/spéculaire »

$$f(\omega_i, \omega_o) = f^d(\omega_i, \omega_o) + f^s(\omega_i, \omega_o)$$

Evaluable par la méthode de Monte-Carlo

Note sur la couleur

- Pour l'instant, on considère le cas où la BRDF s'applique aux trois canaux couleur de la même manière
- Albedo diffuse : couleur de base du matériau
- Couleur spéculaire :
 - Modèles physiques : dépend du coefficient de Fresnel et de la conductivité du matériau
 - Modèles empirique : spécifiée indépendamment

BRDF diffuse

Modèles de Lambert

$$f^d(\omega_i,\omega_o)=rac{k_d}{\pi}$$
 Coefficient Diffus

- Standard
- Indépendant du point de vue
- Réutilisé dans la plupart des autres modèles, qui se concentrent sur les réflexions spéculaires dépendante du point de vue.

BRDF de Phong

Terme spéculaire

$$f^{s}(\omega_{i}, \omega_{o}) = k_{s}(r \cdot \omega_{o})^{s}$$

$$r = 2n(\omega_{i} \cdot n) - \omega_{i}$$
Coefficient de spécie

Coefficient de spécularité

Brillance

- Terme diffus : Lambert
- Modèle empirique non conservatif

BRDF de Blinn-Phong

Modèle de Phong modifié

$$f^{s}(\omega_{i},\omega_{o}) = k_{s}(n \cdot \omega_{h})^{s}$$

- Simple, efficace
- Modèle empirique non conservatif
- Normalisé en 2008

Modèles à Micro-Facettes

$$f^{S}(\omega_{i},\omega_{o}) = \frac{D(\omega_{h})F(\omega_{i},\omega_{h})G(\omega_{i},\omega_{o},\omega_{h})}{4(n\cdot\omega_{i})(n\cdot\omega_{o})}$$

- Modèle statistique de la micro-géométrie
- $\alpha \in [0,1]$ la rugosité du matériau
 - En pratique souvent élevée au carrée
- Caractérisation géométrique

Pixel (x+1,y)

Rugosité

Distribution de micro-facettes

- D : Modèles la distribution de normales de la surface à l'échelle microscopique
- Exemple :
 - Distribution de Beckmann (BRDF Cook-Torrance, 1981-1982)
 - Distribution GGX/Trowbridge-Reitz
 - Et variantes
- Idéalement : F et G doivent être dérivés de D

Distribution de Beckmann

$$D(\omega_h) = \frac{1}{\pi \alpha^2 (n \cdot \omega_h)^4} e^{\frac{(n \cdot \omega_h)^2 - 1}{\alpha^2 (n \cdot \omega_h)^2}}$$

- Employée par la BRDF de Cook-Torrance
- Distribution des ondes électromagnétiques
- Déterministe
- Supposition:
 - toutes les facettes ont la même aire
 - Toute facette a une facette symétrique par rapport à la normale

Distribution GGX

Introduit par Trowbridge et Reitz (1975), généralisé par Burley (2012)

$$D(\omega_i, \omega_o) = \frac{\alpha_p^2}{\pi \left(1 + \left(\alpha_p^2 - 1\right) \cdot (n \cdot \omega_h)^2\right)^2}$$

Standard industriel (Disney, Unreal Engine, etc)

Terme de Fresnel

Fraction réfléchi de la lumière incidente pour une surface plate.

Distingue les matériaux et conducteurs et diélectriques Approximation de Schlick [1993]

$$F(\omega_i, \omega_h) = F_0 + (1 - F_0)(1 - max(0, \omega_i \cdot \omega_h))^5$$

Avec $F_0 \in \mathbb{R}$ l'indice de réfraction de Fresnel, dépendant du matériau (. Exemples :

- Plastique (diélectrique) : 0.02 à 0.05
- Aluminium (conducteur) : [0.91, 0.92, 0.92], « reflet coloré », variance significative selon la longueur d'onde

Terme Géométrique

- Modélise les effets d'ombrage et de masquage des micro-facettes entre elles
- Dépend de la rugosité et de la distribution D

Terme Géométrique Cook-Torrance

Distingue les effets de masquage et de l'ombrage inter-facettes

$$G = \min[1, \frac{2(n \cdot \omega_h)(n \cdot \omega_i)}{(\omega_o \cdot \omega_h)}, \frac{2(n \cdot \omega_h)(n \cdot \omega_o)}{(\omega_o \cdot \omega_h)}]$$

Ombrage

Masquage

Terme Géométrique GGX

Terme géométrique associé à la distribution de micro-facettes GGX

$$G^{Smith}(\omega_i, \omega_o) = G_1^{Smith}(\omega_i)G_1^{Smith}(\omega_o)$$

$$G_1^{Smith}(\omega) = \frac{2(n \cdot \omega)}{n \cdot \omega + \sqrt{\alpha^2 + (1 - \alpha^2)(n \cdot \omega)^2}}$$

Approximation de Schlick :

$$G_1^{Schlick}(\omega) = \frac{(n \cdot \omega)}{(n \cdot \omega)(1-k)+k}$$
 avec $k = \alpha \sqrt{\frac{2}{\pi}}$

Remarque

- Dans le cas purement physique : F et G doivent être dérivés de D
- Formelle, dans le cas des modèles à microfacettes,
 - $-f(\omega_i, \omega_o) := f^d(\omega_i, \omega_o) + f^s(\omega_i, \omega_o)$
 - Mais: on garde en pratique le terme diffus car
 - il permet de compenser empiriquement beaucoup de phénomène non pris en compte dans par les microfacettes
 - Par convention, de nombreuses technologies de rendu le maintiennent

Matériaux métalliques

- Conducteurs
- Couleur réfléchie modulée par le matériau
 - En pratique si matériau métallique : réflexion avec la couleur de base
 - Sinon : la lumière incidente conserve sa teinte

« Un » modèle pour le rendu basé physique

- Matériau « PBR » (Physically Based Rendering)
 - Albedo (couleur diffuse moyenne)
 - Rugosité (entre 0 et 1)
 - « Metallique »
 - valeur binaire (conducteur ou pas)
- Voir le modèle plus complet proposé
 - Physically-based Shading, SIGGRAPH

Couches de BRDF

- Nécessaire en pratique pour modéliser de nombreux matériaux
- Reproduit
 l'empillement de
 matériaux semi transparents.

Couche à dominante diffuse

Couche à dominante spéculaire

Empillement

BRDF Basée-Donnée

- Echantillonnée à partir d'un véritable matériel
- Pas de forme analytique simple
- Représentée par un nombre réduit de coefficients une fois projetée une base de fonctions spécifique :
 - harmoniques sphériques
 - ondelettes

TEXTURES

Définition

- Une carte de valeurs (map)
 - Albedo, définit une distribution de points colorés sur les surfaces (color map); autre paramètre de la BRDF aussi modulables via une carte (rugosité, brillance)
 - Normal, définit une distribution de vecteur normaux sur une surfaces (normal map)
 - Déplacement, définit une distribution de vecteurs de déplacements sur une surface (displacement map)
- Textures 2D (carte scalaire ou vectorielle) plaquée sur une surface 3D via sa *paramétrisation UV*

Plaquage de texture

Texture couleur (image 2D RGB)

Coordonnées paramétriques

a.k.a « Coordonnées de texture », a.k.a « Coordonnées uv »

$$(u,v) \in \Re^2$$
 par convention: $(u,v) \in [0,1]^2$

Définition d'une propriété de surface à partir d'un fonction bivariée:

$$f: \\ \mathbb{R}^2 \to \mathbb{R}^n$$

 $u, v \rightarrow c$

Exemple: valeur d'un pixel dans une images (« texture mapping »)

Définition de coordonnées paramétriques continues sur l'ensemble des sommets d'un maillage : <u>Paramétrisation</u>

Exemples d'algorithme de paramétrisation: <u>LSCM</u>, Floater

Texture couleur

Texture normale

Couleur et normale

Type de textures

Texture 512x512 RGB

- 1D, 2D, 3D, etc
 - scalaire, vectorielle,
 - couleur, alpha, paramètre de BRDF
- 2 types principaux
 - Carte
 - Procédural

Carte de Texture

- « Image » prédéfinis, artificielle ou capturée (photo)
- Coût mémoire parfois élevé
 - Compression/décompression à la volée
- Nécessite un filtrage pour éviter les effets d'aliasing, de moiré, etc
- Evaluation efficace :
 - Accès mémoire + filtrages
- Pré-calculs possibles
 - Traitement d'image (rehaussement, débruitage, etc)
 - Calcul d'une pyramide (mip-map)
 - Quantification et compression

Texture Procédurale

- Une fonction évaluable en tout point d'un domaine
- Léger en mémoire : code la fonction + paramètres
- Couteux à l'évaluation
- A priori, une infinité de fonctions possible, mais quelques propriétés sont souhaitables
 - Déterministe
 - Variation naturelle (pseudo-aléatoire)
 - Faible nombre de paramètres intuitifs
 - Evaluations dé-corrélées les unes des autres
 - Calcul parallèle / GPU
- Exemples : <u>bruit de Perlin</u>, <u>bruit en ondelette</u>, <u>bruit de Gabor</u>

Bruit de Perlin

- Introduit par Ken Perlin en 1985
- Bruit de gradient
- Donne une apparence pseudo-aléatoire aux surfaces
- Multi-échelle : sommes de bruit de Perlin à plusieurs échelles

