Practical No.2

Aim:- Data Frames and Basic Data Processing.

- Read data from CSV and JSON files into a data frame.
- Perform basic data pre-processing tasks such as handling missing values and outliers.
- Manipulate and transform data using functions like filtering, sorting, and grouping.

	COLI	C* 1	•	1 1
Create a		tile	orven	below.
Ci cate a	CDV		511011	OCIOW.

	_		
Roll no	Name	Marks	Grade
1	Harshal	80	О
2	Rahul	75	A+
3	Priya	55	B+
4	Roshan	67	A+
5	Om	78	A+
6	Soham	90	O+

Read Data from .CSV File

```
[1]: import pandas as pd

[2]: data = pd.read_csv("Student.csv")

#Display first five rows of file
print("Reading data from CSV file:")
data.head()
```

Reading data from CSV file:

[2]:		Roll No	Name	Marks	Grade
	0	1	Harshal	80	0
	1	2	Rahul	75	A+
	2	3	Priya	55	B+
	3	4	Roshan	67	A+
	4	5	Om	78	Α+

Create a JSON file as given below: (animals1)

```
"name": "Kitty",
"species": "cat",
"foods": {
 "likes": ["fresh food"],
 "dislikes": ["stale food"]
"name": "Pupster",
"species": "dog",
"foods": {
 "likes": ["tomatoes", "peas"],
 "dislikes": ["bread"]
"name": "Tux",
"species": "cat",
"foods": {
 "likes": ["fancy dishes"],
 "dislikes": ["basic cat food"]
```

Read Data from JSON File

```
[9]: data_json = pd.read_json("animals1.json")
print("Reading data from JSON file:")
data_json.head()
```

```
9]: name species foods

0 Kitty cat {'likes': ['fresh food'], 'dislikes': ['stale ...

1 Pupster dog {'likes': ['tomatoes', 'peas'], 'dislikes': ['...

2 Tux cat {'likes': ['fancy dishes'], 'dislikes': ['basi...
```

Create JSON data manually

Student ID: 001 Name: Nandita Age: 25 Student ID: 002 Name: Rinki Age: 19 Student ID: 009 Name: Kajal Age: 15

Handling Missing Values

[2]: df_car = pd.read_csv("Car Inventory Details.csv")
 df_car

[2]:		Make	Model	Color	Mileage	Sell Price	Buy Price
	0	Honda	Accord	Red	63,512	4000.0	3000
	1	Honda	Accord	Blue	95,135	2500.0	2000
	2	Toyota	Camry	Black	75,006	45000.0	44000
	3	Nissan	Altima	Green	69,847	3826.0	3000
	4	Toyota	Corolla	Black	87,278	2224.0	2100
	5	Honda	Civic	White	1,38,789	2723.0	1900
	6	Ford	F-150	Black	89,073	3950.0	3000
	7	Chevrolet	Silverado	Green	1,09,231	4959.0	4500
	8	Chevrolet	Impala	Silver	87,675	3791.0	3500
	9	Dodge	Charger	Silver	34,853	4349.0	3500
	10	Dodge	Charger	Silver	58,173	4252.0	4000
	11	Dodge	Charger	NaN	60,000	NaN	4000

```
[3]: #Drop rows with missing values

df_car_clean = df_car.dropna(axis=0,how='any')

df_car_clean
```

[3]:		Make	Model	Color	Mileage	Sell Price	Buy Price
	0	Honda	Accord	Red	63,512	4000.0	3000
	1	Honda	Accord	Blue	95,135	2500.0	2000
	2	Toyota	Camry	Black	75,006	45000.0	44000
	3	Nissan	Altima	Green	69,847	3826.0	3000
	4	Toyota	Corolla	Black	87,278	2224.0	2100
	5	Honda	Civic	White	1,38,789	2723.0	1900
	6	Ford	F-150	Black	89,073	3950.0	3000
	7	Chevrolet	Silverado	Green	1,09,231	4959.0	4500
	8	Chevrolet	Impala	Silver	87,675	3791.0	3500
	9	Dodge	Charger	Silver	34,853	4349.0	3500
	10	Dodge	Charger	Silver	58,173	4252.0	4000

```
[4]: #Filling missing values with a specific value.
df_car_filled = df_car_clean.fillna(0)
df_car_filled
```

[4]:		Make	Model	Color	Mileage	Sell Price	Buy Price
	0	Honda	Accord	Red	63,512	4000,0	3000
	1	Honda	Accord	Blue	95,135	2500.0	2000
	2	Toyota	Camry	Black	75,006	45000.0	44000
	3	Nissan	Altima	Green	69,847	3826.0	3000
	4	Toyota	Corolla	Black	87,278	2224,0	2100
	5	Honda	Civic	White	1,38,789	2723.0	1900
	6	Ford	F-150	Black	89,073	3950.0	3000
	7	Chevrolet	Silverado	Green	1,09,231	4959.0	4500
	8	Chevrolet	Impala	Silver	87,675	3791.0	3500
	9	Dodge	Charger	Silver	34,853	4349.0	3500
	10	Dodge	Charger	Silver	58,173	4252.0	4000

Handling Outliers

```
[5]: #Assume 'Sell Price' is the coulmn with outliers eg. Sell Price with value 45000.

#Replace outliers with the median value.

median_value = df_car_filled['Sell Price'].median()

upper_threshold = df_car_filled['Sell Price'].mean() + 2 * df_car_filled['Sell Price'].std()

lower_threshold = df_car_filled['Sell Price'].mean() - 2 * df_car_filled['Sell Price'].std()

df_car_filled['Sell Price'] = df_car_filled['Sell Price'].apply(lambda x: median_value if x > upper_threshold or x <lower_threshold else x)
```

[6]: df_car_filled

[6]:		Make	Model	Color	Mileage	Sell Price	Buy Price
	0	Honda	Accord	Red	63,512	4000.0	3000
	1	Honda	Accord	Blue	95,135	2500.0	2000
	2	Toyota	Camry	Black	75,006	3950.0	44000
	3	Nissan	Altima	Green	69,847	3826.0	3000
	4	Toyota	Corolla	Black	87,278	2224.0	2100
	5	Honda	Civic	White	1,38,789	2723.0	1900
	6	Ford	F-150	Black	89,073	3950.0	3000
	7	Chevrolet	Silverado	Green	1,09,231	4959.0	4500
	8	Chevrolet	Impala	Silver	87,675	3791.0	3500
	9	Dodge	Charger	Silver	34,853	4349.0	3500
	10	Dodge	Charger	Silver	58,173	4252.0	4000

```
[7]: #filtering
filtered_data = df_car_filled[df_car_filled['Sell Price'] > 3000]
filtered_data
```

[7]:		Make	Model	Color	Mileage	Sell Price	Buy Price
	0	Honda	Accord	Red	63,512	4000.0	3000
3	2	Toyota	Camry	Black	75,006	3950.0	44000
	3	Nissan	Altima	Green	69,847	3826.0	3000
	6	Ford	F-150	Black	89,073	3950.0	3000
	7	Chevrolet	Silverado	Green	1,09,231	4959.0	4500
	8	Chevrolet	Impala	Silver	87,675	3791.0	3500
	9	Dodge	Charger	Silver	34,853	4349.0	3500
	10	Dodge	Charger	Silver	58,173	4252.0	4000

```
[8]: #sorting
sorted_data = df_car_filled.sort_values(by='Sell Price', ascending=False)
sorted_data
```

[8]:		Make	Model	Color	Mileage	Sell Price	Buy Price
	7	Chevrolet	Silverado	Green	1,09,231	4959.0	4500
	9	Dodge	Charger	Silver	34,853	4349.0	3500
	10	Dodge	Charger	Silver	58,173	4252.0	4000
	0	Honda	Accord	Red	63,512	4000.0	3000
	2	Toyota	Camry	Black	75,006	3950.0	44000
	6	Ford	F-150	Black	89,073	3950.0	3000
	3	Nissan	Altima	Green	69,847	3826.0	3000
	8	Chevrolet	Impala	Silver	87,675	3791.0	3500
	5	Honda	Civic	White	1,38,789	2723.0	1900
	1	Honda	Accord	Blue	95,135	2500.0	2000
	4	Toyota	Corolla	Black	87,278	2224.0	2100

```
[9]: #Grouping and calculating mean for numeric columns
numeric_columns= ['Sell Price', 'Buy Price']
grouped_data = df_car_filled.groupby('Make')[numeric_columns].mean()
grouped_data
```

[9]: Sell Price Buy Price

Make		
Chevrolet	4375.000000	4000.0
Dodge	4300.500000	3750.0
Ford	3950.000000	3000.0
Honda	3074.333333	2300.0
Nissan	3826.000000	3000.0
Toyota	3087.000000	23050.0