First randomly initialize duster centroids

 u_1, u_2, \ldots, u_k

have the same dimension as centroid will training set.

First step: Assign points to cluster

which duster untroid is close to each point by its index.

such uk is the nearest

centroid for all K.

$$(x^{(i)}, c^{(i)}) = \underline{1} \rightarrow closer to centroid 1 : assigned 1.$$

$$(x^{(i)}, c^{(i)}) = \underline{1} \rightarrow closer to centroid 2.$$

$$(x^{(i)}, c^{(i)}) = \underline{2} \rightarrow closer to centroid 2.$$

Second step: Reavourge duster points by moving the centroid

for K = 1 to K

Mr: - average mean of points assigned to cluster k.

for k = 1 to K

}

We'll look at the points' average location on horizontal and vertical axis.

Mathematically, an average would be $\frac{x^{(1)} + x^{(2)} + x^{(3)} + x^{(4)}}{1}$ new location of u_1

x2

In summary, the algorithm works like this:

Repeat {

Assign points to cluster centroids

for i = 1 to m $c^{(i)} := index$ (from 1 to K) of cluster

centroid closest to $x^{(i)}$ # Move cluster centroids

 μ_k := average (mean) of points assigned to cluster k

If no points are assigned to a cluster centroid then it is removed i.e. K=2 K=1 or we reinitialize the $M_1...M_K$ hoping it gets assigned some points but in majority cases we just remove it

K means will also work for points that are not well separated

