This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C12N 15/61, 15/29, 15/62, 15/63, 1/21, C07K 14/415, C12N 9/90, G01N 33/53, C12Q 1/533, A61K 38/52

(11) Internationale Veröffentlichungsnummer:

WO 97/05258

A2

(43) Internationales Veröffentlichungsdatum:

13. Februar 1997 (13.02.97)

(21) Internationales Aktenzeichen:

PCT/AT96/00141

(22) Internationales Anmeldedatum: 2. August 1996 (02.08.96)

(30) Prioritätsdaten:

₩.

A 1320/95

2. August 1995 (02.08.95)

AT

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BIOMAY

PRODUKTIONS- UND HANDELSGESELLSCHAFT MBH [AT/AT]; Herrenstrasse 2, A-4020 Linz (AT).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): FERREIRA, Fatima [BR/AT]; Würzenberg 35, A-5102 Anthering (AT). RICHTER, Klaus [AT/AT]; Huberbergstrasse 18, A-5162 Obertrum (AT). ENGEL, Edwin [AT/AT]; Karl im Hof Weg 6, A-8773 Kammern (AT). EBNER, Christof [AT/AT]; St. Elisabethplatz 4/13, A-1040 Wien (AT). JILEK, Alexander [AT/AT]; Gruberstrasse 51, A-4020 Linz (AT). RHEINBERGER, Hans-Jörg [LI/AT]; Mascagnigasse 20, A-5020 Salzburg (AT). KRAFT, Dietrich [AT/AT]; Montigasse 1, A-1170 Wien (AT). BREITENBACH, Michael [AT/AT]; Alfred Kubinstrasse 11/11, A-5020 Salzburg (AT).

(74) Anwälte: CASATI, Wilhelm usw.; Amerlingstrasse 8, A-1061 Wien (AT).

(81) Bestimmungsstaaten: AU, CA, JP, NO, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

eque-lifts get

(54) Title: RECOMBINANT 60KDA VEGETABLE PANALLERGEN (CO-FACTOR-INDEPENDENT PHOSPHOGLYCERATE MU-TASE; E.C. 5.4.2.1.)

(54) Bezeichnung: REKOMBINANTES 60 KDA PFLANZLICHES PANALLERGEN (KOFAKTOR-UNABHÄNGIGE PHOSPHO-GLYCERATMUTASE; E.C. 5.4.2.1.)

(57) Abstract

The description relates to a recombinant DNA molecule which codes a polypeptide antigen property of the co-factor-independent phosphoglycerate mutase (E.C. 5.4.2.1.) of birch, mugwort or timothy grass pollen. This allergen in birch pollen is highly preserved on sequence and antigen property in all plants (but not in animal organisms). The amino acid sequence and the most important B and T-cell epitopes of the molecule are derived and demonstrated. The recombinant allergen was expressed in E. coli and binds the IgE serum of patients who are allergic to tree, grass and weed pollens and various foodstuffs. A monoclonal antibody (BIP 3) specifically bonds to said highly conserved protein from all plants tested. The significance of the co-factorindependent phosphoglycerate mutase (E.C. 5.4.2.1.) derives from the fact that it results in the cross-sensitisation of patients. The recombinant molecule and its partial peptides can be used in diagnostic and therapeutic methods based, for example, on antigen-antibody interaction, mediator release or T-cell reactivity.

(57) Zusammenfassung

Mediatorfreisetzung, oder T-Zell-Reaktivität beruhen.

Wir zeigen ein rekombinantes DNA Molekül, das für ein Polypeptid mit der Antigenität der Kofaktor-unabhängigen Phosphoglyceratmutase (E.C. 5.4.2.1.) des Birken-, Beifußoder Lieschgraspollen kodiert. Dieses Allergen des Birkenpollens ist in Sequenz und Antigenität in allen Pflanzen (aber nicht in tierischen Organismen) hoch konserviert. Die Aminosäuresequenz und die wichtigsten B-Zell- und T-Zell-Epitope des Moleküls werden abgeleitet und gezeigt. Das rekombinante Allergen wurde in Escherichia coli exprimiert und bindet Serum IgE von Patienten, die gegen Pollen von Bäumen, Gräsern und Unkräutern sowie gegen verschiedene Nahrungsmittel allergisch sind. Ein monoklonaler Antikörper (BIP 3) bindet spezifisch an dieses hochkonservierte Protein aus allen untersuchten Pflanzen. Die Bedeutung der Kofaktor-unabhängigen Phosphoglyceratmutase (E.C. 5.4.2.1.) liegt darin, daß sie zur Kreuzsensibilisierung von Patienten führt. Das rekombinante Molektil und seine Teilpeptide kann zu diagnostischen und therapeutischen Verfahren herangezogen werden, die z.B. auf Antigen-Antikörper Wechselwirkung,

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
ΑT	Österreich	GE	Georgien	NE	Niger
AU	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungarn	NZ	Neuseeland
BF	Burkina Faso	IE	Irland	PL	Polen
BG	Bulgarien	ГT	Italien	PT	Portugal
BJ	Benin	JP	Japan	RO	Rumānien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	П	Liechtenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litanen	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
EE	Estland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	Vereinigte Staaten von Amerika
FI	Finaland	MN	Mongolei	UZ	Usbekistan
FR	Frankreich	MR	Mauretanien	VN	Vietnam
GA	Gabon	MW	Malawi		*

Rekombinantes 60 kDa pflanzliches Panallergen (Kofakt r-unabhängige Phosphoglyceratmutase; E.C. 5.4.2.1.)

BIP3 ist ein gegen ein Birkenpollenprotein gerichteter monoklonaler Antikörper, der, 5 wie bereits früher gezeigt (1), ein Nebenallergen mit einem Molekulargewicht von 60 kDa erkennt. Eine Birkenpollen-cDNA-Expressionsbank wurde mit BIP3 als Probe gescreent und dabei eine cDNA kodierend für ein Pollenallergen mit dem Molekulargewicht 60 kDa isoliert. Dieses Allergen zeigt hohe Sequenzhomologie mit pflanzlichen Kofaktor-unabhängigen Phosphoglyceratmutasen. In weiterer Folge wurden cDNAs die 10 für das gleiche Protein kodieren sowohl aus einer cDNA-Bank von Lieschgraspollen sowie von Beifußpollen isoliert.

Phosphoglyceratmutasen (PGM) katalysieren in der Glykolyse und Glukoneogenese die Umwandlung von 3-Phosphoglycerat zu 2-Phosphoglycerat. Diese Reaktion findet ubi-15 quitar in prokaryotischen und eukaryotischen Organismen statt (2). Es gibt zwei Arten von PGM: Kofaktor-abhängige PGM (PGM-d), die 2,3-Bisphosphoglycerat als Kofaktor brauchen, und Kofaktor-unabhängige PGM (PGM-i), die 2,3-Bisphosphoglycerat nicht benötigen. PGM-d wurden in allen Vertebraten nachgewiesen, während Pflanzen PGM-i verwenden. In Prokaryoten und niederen Eukaryoten ist die Situation wesentlich 20 komplizierter. PGM aus Hefe wurde als PGM-d charakterisiert, während PGM aus Neurospora crassa, die ebenso wie Hefe zu den Pilzen, und damit zu den niederen Eukaryoten zählt, zu der PGM-i Gruppe gehört. PGM von gram-positiven Bakterien (z.B. Bacillus) ist Kofaktor-unabhängig, gram-negative Bakterien (z.B. Escherichia coli) haben Kofaktor-abhängige PGM. PGM von Säugern ist ein Dimer, wobei die Unterein-25 heiten ein Molekulargewicht von 30 kDa haben (2). Das Pflanzenenzym PGM-i ist ein Monomer mit einem Molekulargewicht von etwa 60 kDa (3). Bis jetzt wurden nur PGM-i Sequenzen von Mais (3), Rhizinus und Tabak (4) veröffentlicht. Es wurden keinerlei Sequenzhomologien zwischen PGM-i und PGM-d festgestellt, was den Schluß zuläßt, daß beide Enzyme - obwohl sie die gleiche Reaktion katalysieren - evolutionär 30 unabhängig entstanden sind.

Häufig sind atopische Patienten empfindlich gegen verschiedene Allergene unterschiedlicher Herkunft. In früheren klinischen Studien wurden Allergiesyndrome beschrieben,

D

PCT/AT96/00141

bei denen die Kreuzreaktivität der Patienten gegen Allergene verschiedener Herkunft (Pollenallergene von Bäumen, Gräsern und Unkräutern, sowie Nahrungsmittelallergene) eine charakteristische Rolle spielt (5,6,7).

-2-

Einige bestimmte Kombinationen der Allergenkreuzreaktivität scheinen häufiger aufzu5 treten. Zum Beispiel haben Patienten mit Birkenpollenallergie oft auch eine Intoleranz
gegen eine Vielzahl von Früchten und Gemüsen, wie Apfel, Birne, Nüsse, Karotten,
Kartoffel, Sellerie und viele andere pflanzliche Nahrungsmittel. Typische Symptome
sind lokale Reaktionen der Schleimhäute des oberen respiratorischen bzw. Verdauungstrakts (Jucken, Entzündung, Angioödem), bei vielen Patienten treten aber auch
10 systemische Symptome auf (Urticaria, Asthma, anaphylaktischer Schock).

In den letzten Jahren konnten durch cDNA Klonieren die abgeleiteten Aminosäuresequenzen vieler atopischer Allergene bestimmt werden. Mit Hilfe rekombinanter Allergene konnte in einigen Fällen gezeigt werden, welche allergenen Verbindungen für die Kreuzsensibilisierung verantwortlich sind. In einigen Fällen wurde die Kreuzsensibili-15 sierung durch IgE Antikörper, die homologe Proteine in unterschiedlichen Allergenquellen erkennen, verursacht. Zum Beispiel scheint Bet v 2, das zu der Profilinfamilie gehört und ein Nebenallergen aus Birkenpollen ist (8), in pollenallergischen Patienten eine solche kreuzreaktive Verbindung zu sein. Profiline sind ubiquitäre, aktinbindende Proteine, die in allen eukaryotischen Zellen gefunden werden. Pflanzliche Profiline 20 haben eine hohe Sequenzhomologie, wodurch die hochgradige Kreuzreaktivität mit Patienten-IgE verursacht wird. Als Folge sind Patienten, die gegen Profilin allergisch sind, empfindlich gegen viele pflanzliche Stoffe, wie z.B. Pollen, Früchte, Nüsse, Gemüse etc. Aus diesem Grund wird Profilin als Pflanzen Panallergen bezeichnet (9). Bet v 1, ein Hauptallergen aus Birkenpollen, ist ein anderes für Kreuzreaktionen verant-25 wortliches Pollenallergen. Bet v 1 gehört zu der Familie der Pflanzen PR (pathogenesis related) Proteine (10), die in vielen Pflanzen vorkommen. Mit Bet v 1 homologe Proteine kommen in Pollen von verwandten Bäumen vor (Erle, Hasel, Hainbuche) (11,12,13) vor, was die Kreuzsensibilität von Baumpollen-allergischen Patienten erklärt. Mit Bet v 1 verwandte Proteine wurden auch in Früchten, Gemüse und Nüssen 30 nachgewiesen (14). Das erklärt die klinische Beobachtung, warum pollenallergische Patienten häufig Symptome nach Einnahme bestimmter Früchte und Gemüse zeigen (7). Die Hauptallergene von Graspollen sind in vielen Grasfamilien konserviert (15), aber

-3-

bis jetzt wurden nur Profiline als kreuzreaktive Moleküle in Graspollen und pflanzlichen Nahrungsmitteln beschrieben (16). Kreuzreaktivitäten zwischen Katze, Hund und anderen tierischen Allergenquellen werden hauptsächlich dem Albumin zugeschrieben (17). Aus diesen Beobachtungen kann allgemein geschlossen werden, daß kreuzreagierende 5 Allergene hochkonservierte Proteine sind. Diese Beobachtungen führen dazu, daß das Konzept der Allergie gegen eine bestimmte Pflanzenspezies erweitert werden muß durch das Konzept der Allergie gegen ein bestimmtes hochkonserviertes Protein, das in vielen Pflanzenspecies vorkommt. Die genaue Identifizierung und Charakterisierung von kreuzreagierenden Allergenen ist von größter Wichtigkeit für die Diagnose und 10 mögliche Therapie von Typ I-Allergien.

In der folgenden Patentanmeldung wird gezeigt, daß die pflanzlichen Phosphoglyceratmutasen (E.C.5.4.2.1.) hochkonservierte Pflanzenallergene (d.h. ein Panallergen) sind, die zu einer hochgradigen Kreuzreaktivität von Patienten führen, die gegen Baum-, Gras- und Unkrautpollen bzw. pflanzliche Nahrungsmittel, wie Sellerie und Apfel aller-15 gisch sind.

Materialen und Methoden:

1. Herstellung der cDNA Banken:

20

Gesamt RNA wurde aus Birken-, Beifuß- sowie Lieschgraspollen (Allergon AB, Engelholm) mit der Guanidinium-Phenol-Extraktionsmethode isoliert. Poly(A)+ mRNA wurde mit oligo-dT magnetisierbaren Zellulosepartikeln (Serotec) nach Angaben des Herstellers isoliert. Die cDNA Synthese wurde mit dem Lambda-ZAP cDNA Synthese 25 Kit von Stratagene durchgeführt. Die Synthese des ersten Stranges wurde mit einem oligo(dT) Linker-primer, der eine XhoI Schnittstelle enthielt, gestartet. Nach der Synthese des zweiten Stranges wurden EcoRI Adaptoren an die cDNA ligiert. Die mit XhoI verdaute cDNA wurde dann an die vorverdauten Uni-ZAP XR Vektorarme ligiert und in vitro verpackt. In allen 3 Fällen wurden 1,0-1,5 x 106 rekombinante Plaques erhalten.

-4-

2. Screening der cDNA Bank mit dem monoklonalen Antikörper BIP 3, in vitro Excision und DNA Sequenzanalyse.

Die cDNA Banken von Birken- und Lieschgraspollen wurden mit dem monoklonalen 5 Antikörper BIP 3 gescreent (1). Positive Plaques wurden auf nachfolgende Art sichtbar gemacht: Inkubation mit Kaninchen Antimaus IgG, dann mit ¹²³J-Esel Antikaninchen IgG. Abschließend wurde Autoradiographie durchgeführt. Positive Plaques wurden isoliert und durch neuerliches Screening isoliert. Nachfolgend wurden mit den gereinigten Phagen die *in vitro* Excision wie im Stratagene Handbuch beschrieben durchgeführt, 10 um sie in den pBluescript SK+ Vektor (Stratagene) subklonieren zu können. Plasmide mit rekombinanten cDNA Inserts wurden isoliert, und die Inserts wurden nach der Sanger Methode (18) unter Verwendung des T7 Sequenzierkits (Pharmacia) sequenziert. Es wurden beide Stränge sequenziert.

15 3. Screening der cDNA-Bank mit radioaktiv markierter DNA

Aufgrund der großen Ähnlichkeit der isolierten cDNAs aus der Birken- und Lieschgrasbank wurde das Insert eines Lieschgrasklones (Phl1) isoliert und mittels der "random priming method" (19) radioaktiv markiert. Mit dieser radioaktiv markierten Sonde wurde ein Screening der Beifuß cDNA-Bank durchgeführt (20). Die Hybridisierung der Nitrocellulosefilter erfolgte in 1M Salzlösung bei 60°C für 15-20 Stunden. Anschließend wurden die Filter 2x 30 min mit 5xSSPE 0,1% SDS bei 50°C gewaschen, dann getrocknet und exponiert (1xSSPE= 150mM NaCl, 10 mM Na-phosphat pH 7,0, 1mM EDTA). Nach der Autoradiographie wurden positive Phagen isoliert und durch mehrmaliges Ausplattieren bei geringer Plaquedichte und wiederholtem Screening gereinigt. Die in vitro Excision und Sequenzierung wurde wie unter Punkt 2 beschrieben durchgeführt.

- 4. Herstellung der Nitrocellulosefilter mit rekombinanten Birken-, Beifuß- sowie Lieschgraspollen PGM-i Allergene und IgE Detektion.
- Rekombinante Lambda ZAP Phagen, die PGM-i Allergen cDNA exprimieren, wurden verwendet, um E. coli, Stamm XL-1 Blue, zu infizieren. Inkubation von E. coli

erfolgte in LB Medium mit 10 mM MgSO₄. Zur Expression des rekombinanten PGM-i Allergens wurden die Phagen induziert, indem auf die Platten in 10 mM Isopropyl-betathiogalaktosid (IPTG) getränkte Nitrozellulosefilter gelegt wurden. Die Nitrozellulosefilter wurden dann in Sektoren geschnitten und mit Sera von Patienten mit allergischen 5 Symptomen gegen Pollen von Birke, Gras, Unkraut oder gegen pflanzliche Nahrung inkubiert. Gebundenes IgE wurde mit 125J-Kaninchen Antihuman IgE (Pharmacia) nachgewiesen.

Ergebnisse

10

In diesem Teil wird gezeigt, daß es sich bei dem neu klonierten Allergen tatsächlich um ein hochkonserviertes Panallergen handelt, und daß es für eine verbesserte Diagnose und Therapie von Patienten mit einer Allergie gegen dieses Protein aus Pollen und pflanzlichen Nahrungsmitteln verwendet werden kann.

15

DNA- und Aminosäuresequenzen:

Fig. 1 zeigt die cDNA Sequenz und die abgeleitete Aminosäure Sequenz von Birkenpollen PGM-i. Fig. 7a,7b zeigen die cDNA Sequenz und abgeleitete Aminosäure Sequenz von Lieschgraspollen PGM-i (Isoformen Phl1 und Phl5), die gleich Ergebnisse für Beifußpollen PGM-i (Isoformen Art6 und Art17) zeigen die Fig. 10a,10b.

Wie weiter unten gezeigt, binden diese Moleküle den monoklonalen Antikörper BIP 3 (Ref. 1, Fig. 5a, Fig. 14a, Fig. 15a, Fig. 16a) und IgE von Patienten, die gegen Pollen und pflanzliche Nahrungsmittel empfindlich sind (Fig. 5b, Fig. 6, Fig. 14b, Fig. 15b, Fig. 16b).

25 Sequenzvergleich:

Fig. 2 zeigt die hohe Sequenzhomologie aller bisher bekannten pflanzlichen PGM-i (81% bis 87% Identität in allen paarweisen Kombinationen). Die drei bis jetzt bekannten pflanzlichen PGM-i wurden von den Autoren nicht als Allergene erkannt (3,4). Da die Sequenzhomologien so hoch sind, können wir aus dem Sequenzvergleich (Fig.2) schließen, daß in unserer cDNA-Sequenz der Birke die Kodons für die ersten 29 Aminosäuren (inklusive dem Start-Methionin) fehlen. Allerdings beeinflußt diese kurze N-terminale Deletion nicht die Antikörperbindung (Fig.6).

-6-

Fig. 13 zeigt die hohe Sequenzhomologie der von uns klonierten PGM-i aus Lieschgras (Phl1 und Phl5) und Beifuß (Art6 und Art17) sowie aus Birke (bvmut). Da die Sequenzhomologien sehr hoch sind konnte aus dem Sequenzvergleich geschlossen werden daß die gezeigten Sequenzen von Lieschgras und Beifuß vollständig sind. Die daraus berechneten paarweisen Distanzen sind: Birke/Beifuß 84% identische Aminosäuren, Birke/Lieschgras 83% und Lieschgras/Beifuß 82% identische Aminosäuren. Diese Zahlen zeigen, daß eine direkte immunologische Kreuzreaktion zwischen diesen Allergenen sehr wahrscheinlich ist. Um diese Kreuzreaktion direkt zu zeigen, sind Inhibitionsexperimente notwendig, die zur Zeit in unserem Laboratorium durchgeführt werden.

Die äußerst hohe Sequenzidentität der drei Phosphoglyceratmutasen (Birke, Beifuß und Lieschgras), und die dominante Bedeutung beim Beifuß und Lieschgras deuten auf die besondere Wichtigkeit dieser neuen Allergenfamilie hin. Hinsichtlich konventioneller Immuntherapie wäre hier zu sagen, daß dieses Allergen in seiner vollen Sequenzlänge nicht zur Immuntherapie verwendet werden sollte, weil die Gefahr der Induktion von allergischen Reaktionen besteht, die vorher beim Patienten nicht vorhanden waren. Sehr wohl können aber Teile oder Varianten dieses Moleküls zur Therapie benützt werden. Der Grund, warum Phosphoglyceratmutase trotz seiner extrem hohen Konservierung in der Evolution keinen Anlaß zu Autoimmunreaktionen beim Menschen gibt (wie dies zB. für die Superoxiddismutase, ein Hauptallergen von Aspergillus, gefunden wurde), besteht darin, daß es zwei Klassen von Phosphoglyceratmutasen gibt und die menschliche Phospho-20 glyceratmutase der anderen (Kofaktor-abhängigen) Klasse angehört.

Berechnung der B- und T-Zell Epitope:

Die B-Zell Epitope (Fig.3) von Birkenpollen PGM-i wurden mit "PepStructure", einem Teil des GCG Programmpakets berechnet. T-Zell Epitope (Fig.4) von Birkenpollen PGM-i wurden mit einem Programm von Margalit et al. (21) berechnet. Die B-Zell Epitope von Lieschgras- und Beifußpollen PGM-i (Fig.8a,8b; Fig. 11a,11b) sowie die T-Zell Epitope (Fig. 9a,9b; Fig. 12a,12b) von PGM-i aus beiden Pollen wurden in gleicher Weise berechnet.

Immunreaktivität

WO 97/05258

Fig.5A zeigt einen Immunoblot mit Pollenextrakten von Birke, Beifuß und Lieschgras, und Extrakten von Sellerie (Knollen- und Stangensellerie) und Apfel. Gezeigt ist das Autoradiogramm des mit BIP3 inkubierten Blots. Es ist bemerkenswert, daß der mono- klonale Antikörper BIP 3 in allen diesen Materialien ein 60 kDa Protein erkennt, was auf eine hohe Konservierung der antigenen Epitope hinweist. Weiters werden (Fig.5B) Immunoblots von BIP 3 -immunaffinitätsgereinigtem PGM-i aus Birkenpollen mit Birkenpollenextrakt als Kontrolle, geprobt mit zwei Patientensera (HP, HL) und nichtallergischem Normalhumanserum (NHS) gezeigt. Die beiden Patienten sind typische Graspollenallergiker, die jedoch das gereinigte Panallergen und im Birkenpollenextrakt ausschließlich PGM-i erkennen. Auch dieses Experiment zeigt die hohe Konservierung von pflanzlichem PGM-i Allergen und seine Bedeutung für die Kreuzreaktivität der Patientenseren.

Fig. 6 zeigt, daß Plaques, die das rekombinante Fusionsprotein bestehend aus der PGM15 i Sequenz (Fig. 1) und 36 Aminosäuren der beta-Galaktosidase enthalten, tatsächlich
BIP 3 binden. Die gleichen Plaquelifts wurden mit den Seren von 11 ausgewählten
Patienten, die allergisch sind gegen Pollen von Bäumen (SS), Gräsern (CM, HL, HP,
SE, MR, CF, BG, GP) oder Unkraut (KG,CW) bzw. Apfel (KG,CW) oder Sellerie
(KG,CW), inkubiert. Als Kontrolle wurde Serum eines gesunden, nicht allergischen
20 Patienten verwendet (NHS). In gleicher Weiser zeigen Fig. 14a, 15a, 16a die Bindung von
BIP3 Antikörper an rekombinante Fusionsproteine die die PGM-i Sequenz aus Lieschgras
(Fig. 14a,15a) und Beifuß (Fig.16a) enthalten. Die Fig. 14b, 15b, und 16b zeigen daß
Plaquelifts der gleichen rekombinanten Fusionsproteine aus Lieschgras (Fig. 14b, 15b) sowie aus Beifuß (Fig. 16b) ebenso IgE Antikörper aus Seren von allergischen Patienten (SS,
25 HP, KG) binden.

Fig. 5, Fig. 6, Fig. 14, Fig. 15 und Fig. 16 zusammen zeigen, daß wir tatsächlich ein hochkonserviertes Pflanzen Panallergen kloniert haben. Wir nehmen an, daß eine solch hohe
Konservierung einer allergenen Sequenz bzw. Struktur große Bedeutung für die Diagnose
und Therapie hat. Patienten, die dieses Molekül erkennen, sind wahrscheinlich kreuzreaktiv
mit vielen Pollen und pflanzlichen Nahrungsmitteln. Sie können aber andererseits durch
konventionelle Immuntherapie gut behandelt werden, weil PGM-i aus Pflanzen hochkonserviert sind, aber gleichzeit mit humanem oder tierischem PGM nicht verwandt sind.

SEQUENZ 1: Kofakt r-unabhängiger Phosph glyceratmutase (E.C.5.4.2.1.)

								0.0		•						
	ANG	ABE	N Z	U SE	Q ID	NO	:1									
5	(i) S	EQU	ENZ	KEN	NZE	ICHI	EN:									
		(A)	LÄN	GE:	1593	Base	npaa	re / 5	31 A	mino	säun	ereste	•			
		(B)	ART	:Nuk	leins	äure .	/ pro	tein								
		(C)	STR	ANG	FOR	M:ds	3									
		(D)	ТОР	olo	GIE:	linea	r									
10	(ii) A	RT 1	DES	MOI	EKÜ	JLS:	cDN	A zu	mRi	VA /	prote	ein				
	(iii) I	HYP	HTC	ETIS	CH:	nein										
	(iv) A	ANTI	SEN	SE: 1	nein											
	(v) A	RT I	DES :	FRA	GME	NTS	: Tei	lsequ	enz							
	(vi) (JRSF	ÜNO	GLIC	HE I	HERI	KUN	FT:								
15		(A)	ORG	ANI	SMU	S: Be	etula	vern	ıcosa							
		(C)]	ENT	WIC	KLU	NGS	STA	DIUN	И: Рс	ollen						
	(vii)	SEQ	UEN:	ZBE	SCHI	REIB	UNG	:SEC	QI Q	NO:	1:					
	1	GGG	GGC	GAG	GCC	AAG	CCC	GAT	CAG	TAC	AAC	TGC	ATC	CAT	GTG	42
20				Glu							-		_	_		
20																
	43			ACT												84
		Ala	Giu	Thr	Pro	Inr	met	Asp	5er	Leu	Lys	GIN	Gly	Ala	Pro	
	85	GAG	AAG	TGG	AGG	TTG	GTT	AGG	GCT	CAT	GGT	AAG	GCC	GTA	GGC	126
25		G1 u	Lys	Trp	Arg	Leu	Val	Arg	Ala	His	Gly	Lys	Ala	Val	Gly	
	127	СТТ	CC.	404	040	CAT	0.0	470	000		A 0.T		077	007		1.00
	127			ACA Thr												168
					<u></u>	,	р		u.,	,,,,,,,	J	ulu	, , ,	.	3	
	169	AAT	GCA	CTT	GGA	GCT	GGT	CGC	ATC	TTT	GCC	CAA	GGT	GCA	AAG	210
30		Asn	Ala	Leu	Gly	Ala	Gly	Arg	Ile	Phe	Ala	Gln	Gly	Ala	Lys	
	211	СТТ	CTT	GAC	TCT	CCT	СТТ	ccc	TCT	CC v	A A A	ΑΤΤ	TAT	CAA	GGA	252
	CII	U 1 1	G I I	UML	161	uc i		はしし	161	UUH	MMM	MII	IAI	UAA	אטט	252

Leu Val Asp Ser Ala Leu Ala Ser Gly Lys Ile Tyr Glu Gly

	253	GAA	GGT	TTT	AAG	TAC	ATA	AAG	GAA	TGT	TTT	GAA	AAT	GGC	ACA	294
•		Glu	Gly	Phe	Lys	Tyr	Ile	Lys	Glu	Cys	Phe	Glu	Asn	Gly	Thr	
	295	TTG	CAT	CTC	ATT	GGC	TTA	TTG	AGT	GAT	GGT	GGA	GTC	CAC	TCC	336
5		Leu	His	Leu	He	Gly	Leu	Leu	Ser	Asp	Gly	Gly	Va 1	His	Ser	
	337	AGG	CTT	GAT	CAG	TTG	CAG	TTA	TTG	CTT	AAA	GGA	GCT	AGT	GAG	378
		Arg	Leu	Asp	Gln	Leu	Gln	Leu	Leu	Leu	Lys	Gly	Ala	Ser	Glu	
	379	CGT	GGT	GCA	AAA	AGA	ATC	CGT	GTT	CAT	ATT	CTT	ACC	GAT	GGC	420
10		Arg	Gly	Ala	Lys	Arg	Ile	Arg	Val	His	Пe	Leu	Thr	Asp	Gly	
	421	CGT	GAT	GTT	TTG	GAT	GGT	TCA	AGT	GTA	GGA	TTT	GTT	GAA	ACT	462
		Arg	Asp	Val	Leu	Asp	Gly	Ser	Ser	Val	Gly	Phe	۷a٦	Glu	Thr	
	463							AAA								504
15		Leu	Glu	Asn	Asp	Leu	Ala	Lys	Leu	Arg	Glu	Lys	Gly	Val	Asp	
	505							GGT								546
		Ala	Gln	Ile	Ala	Ser	Gly	Gly	Gly	Arg	Met	Tyr	Val	Thr	Met	
	r 47	C 4 T	CCT	T.4.T	040			~00								
20	547	GAI	CGI	IAI	GAG	AAI	GAC	TGG	GAA	GTC	ATC	AAA	CGA	GGA	TGG	588
20		A		_	C 3			-	0.1					0.3	_	
		ASP	Arg	ıyr	614	Asn	Asp	Trp	Glu	Val	lle	Lys	Arg	61 y	1 rp	
	E 0 0	CAT	ccc	CAT	CTT	CTT	ССТ	CAA	ccc	CCT	TAC		***		ACT	630
	203							GAA								630
		MSh	AId	П15	Vai	Leu	ыу	Glu	Ala	Pro	ıyr	Lys	rne	Lys	2er	
25	631	CCT	CTT	CVV	CCT	CTC	AAC	AAA	CTC	۸۲۲	CAC	CAC	CTA	A A C	CTC	672
	031							Lys								0/2
		Alu	101	u, u	710	* 0 1	Lys	Lys	Leu	Aig	Gru	Giu	Leu	Lys	Vai	
	673	AGT	GAC	CAG	TAC	TTG	ССТ	CCA	TTC	GTC	ΔΤΤ	стт	CAT	GAC	ΔΔΤ	714
	0,0							Pro								714
			р	.	. , ,		0		, 11C	- 4 1	116	* 4 1	∆3h	~3h	,1311	
30	715	GGG	AAG	CCT	GTT	GGT	ССТ	ATA	GTT	GAT	GGT	GAT	GCT	GTG	GTT	756
								He								
		3	_, _	•		- · J				.	u , y	ASP	, u			

-10-757 ACA ATC AAC TTC CGA GCA GAT CGT ATG GTT ATG ATT GCT AAG 798 Thr Ile Asn Phe Arg Ala Asp Arg Met Val Met Ile Ala Lys 799 GCA CTT GAA TAT GAA AAT TTT GAC AAG ATT GAT CGA GTT CGA 840 Ala Leu Glu Tyr Glu Asn Phe Asp Lys Ile Asp Arg Val Arg 5 841 TTC CCT AAA ATC CGT TAT GCT GGA ATG CTT CAA TAT GAT GGC 882 Phe Pro Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr Asp Gly 883 GAG TTG AAG CTC CCG AGC CAT TAC CTT GTT GAA CCT CCA GAG 924 Glu Leu Lys Leu Pro Ser His Tyr Leu Val Glu Pro Pro Glu 10 925 ATA GAG AGA ACG TCT GGT GAA TAT CTA GTG CAC AAT GGC GTC 966 Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val His Asn Gly Val 967 CGT ACT TTT GCT TGC AGT GAG ACT GTC AAA TTT GGT CAT GTC Arg Thr Phe Ala Cys Ser Glu Thr Val Lys Phe Gly His Val 15 1009 ACT TTC TTC TGG AAT GGA AAC CGC TCT GGA TAT TTC AAT TCA Thr Phe Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser 1051 GAA CTG GAG GAA TAC GTG GAA ATT CCA AGT GAT AGT GGA ATT Glu Leu Glu Glu Tyr Val Glu Ile Pro Ser Asp Ser Gly Ile 20 1093 ACA TTC AAC GTC CAG CCA AAG ATG AAG GCA TTG GAG ATT GCT Thr Phe Asn Val Gln Pro Lys Met Lys Ala Leu Glu Ile Ala 1135 GAA AAA ACG AGA GAT GCT ATA CTT AGC GGA AAA TTT GAC CAG Glu Lys Thr Arg Asp Ala Ile Leu Ser Gly Lys Phe Asp Gln 25 1177 GTG CGT GTT AAC CTG CCA AAT GGT GAC ATG GTG GGG CAT ACA 1218 Val Arg Val Asn Leu Pro Asn Gly Asp Met Val Gly His Thr 1219 GGT GAT ATT GAG GAC ACA GTT GTG GCT TGC AAG GCT GCT GAT Gly Asp Ile Glu Asp Thr Val Val Ala Cys Lys Ala Ala Asp 30 1261 GAG GCT GAC AAG ATG ATC CTT GAT GCA ATA GAG CAA GTG GGT

Glu Ala Asp Lys Met Ile Leu Asp Ala Ile Glu Gln Val Gly

	1303	GGA	ATT	TAT	GTT	GTT	ACT	GCG	GAT	CAT	GGG	AAT	GCT	GAG	GAC	1344
٠		Gly	Ile	Tyr	Val	Val	Thr	Ala	Asp	His	Gly	Asn	Ala	G1 u	Asp	
	1345	ATG	GTG	AAG	AGG	AAC	AAG	TCC	GTG	CAA	ССТ	СТТ	CTT	GAC	AAG	1386
5		Met	Val	Lys	Arg	Asn	Lys	Ser	Val	Gln	Pro	Leu	Leu	Asp	Lys	
	1387	AAT	GGC	AAT	CTT	CAA	GTG	СТС	ACC	TCT	CAC	ACC	СТС	CAA	CCA	1428
		Asn	Gly	Asn	Leu	Gln	Val	Leu	Thr	Ser	His	Thr	Leu	G1n	Pro	
	1429	GTG	CCA	ATT	GCA	ATT	GGA	GGT	CCT	GCA	TTG	GCA	AGT	GGT	GTC	1470
10		Val	Pro	Ile	Ala	Ile	Gly	Gly	Pro	Ala	Leu	Ala	Ser	Gly	Val	
	1471	AGG	TTC	TGC	AAG	GAT	CTT	CCT	GAT	GGT	GGG	CTT	GCC	AAT	GTT	1512
		Arg	Phe	Cys	Lys	Asp	Leu	Pro	Asp	Gly	Gly	Leu	Ala	Asn	Val	
	1513	GCT	GCA	ACT	GTG	ATC	AAT	CTA	CAT	GGG	TTT	GAG	GCT	CCT	AGT	1554
15		Ala	Ala	Thr	Val	Ile	Asn	Leu	His	Gly	Phe	Glu	Ala	Pro	Ser	
	1555	GAC	TAT	GAG	CCA	ACC	CTC	ATT	GAA	CTC	GTT	GAT	AAC	TAG		1593
		Asp	Tyr	G1 u	Pro	Thr	Leu	Ile	Glu	Leu	Val	Asp	Asn	*		

ANGABEN ZU SEQ ID NO:2

20

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 2:

 Gly Gly Glu Ala Lys Pro Asp Gln Tyr Asn Cys Ile

1 5 10

-12-

```
ANGABEN ZU SEQ ID NO:3
   (i) SEQUENZKENNZEICHEN:
       (A) LÄNGE: 26
 5
       (B) ART: protein
  (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
   (vi) URSPÜNGLICHE HERKUNFT:
10
       (A) ORGANISMUS: Betula verrucosa
       (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 3:
  Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Gln Gly Ala Pro Glu Lys Trp
                                      10
                                                          15
Arg Leu Val Arg Ala His Gly Lys Ala
           20
                              25
  ANGABEN ZU SEQ ID NO:4
  (i) SEQUENZKENNZEICHEN:
       (A) LÄNGE: 14
20
       (B) ART: protein
  (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
25
       (A) ORGANISMUS: Betula verrucosa
       (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 4:
  Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly His
  1
                   5
                                      10
```

ANGABEN ZU SEQ ID NO:5

30

(i) SEQUENZKENNZEICHEN:

-13-

	(A) LÄNGE: 18	
	(B) ART: protein	
	(ii) ART DES MOLEKÜLS: peptide	
	(iii) HYPOTHETISCH: nein	
5	5 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus	
	(vi) URSPÜNGLICHE HERKUNFT:	
	(A) ORGANISMUS: Betula verrucosa	
	(C) ENTWICKLUNGSSTADIUM: Pollen	
	(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 5:	
10	Gly Lys Ile Tyr Glu Gly Glu Gly Phe Lys Tyr Ile Lys Glu Cys Phe Gl	u
	1 5 10 15	
	Asn	
	18	
	ANGABEN ZU SEQ ID NO:6	
15		
	(A) LÄNGE: 13	
	(B) ART: protein	
	(ii) ART DES MOLEKÜLS: peptide	
	(iii) HYPOTHETISCH: nein	
20	•	
	(vi) URSPÜNGLICHE HERKUNFT:	
	(A) ORGANISMUS: Betula verrucosa	
	(C) ENTWICKLUNGSSTADIUM: Pollen	
	(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 6:	
25		
	1 5 10	
	ANGABEN ZU SEQ ID NO:7	
	(i) SEQUENZKENNZEICHEN:	
30) (A) LÄNGE: 12	
	(B) ART: protein	
	(ii) ART DES MOLEKÜLS: peptide	

-14-

- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
- 5 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:
 - Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Val 1 10

10 ANGABEN ZU SEQ ID NO:8

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:

Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val 1 10

ANGABEN ZU SEQ ID NO:9

- ²⁵ (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 16
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 30 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:

-15-

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:

-16-

	Val	Lys	Lys	Leu	Arg	Glu	- G 1 u	Leu	Lys	Val	Ser	Asp	Glr	Tyr	Leu	Pro	
	1				5					10)				15		
	ANG	GAB	EN 2	ZU S	EQ I	D NO	D:12										
5	5 (i) S	EQU	JEN2	ZKE	NZ	EICH	IEN:										
		(A)	LÄ	NGE	: 21												
		(B)	AR	Γ: pn	otein												
	(ii)	ART	r de	S MO	OLE	KÜLS	S: pep	otide									
	(iii)	HYI	POTF	ETI	SCH	: neiı	1										
10	(v) A	ART	DES	FRA	AGM	ENT	S: N	Тегп	ninus	bis	C-Te	rmin	us				
	(vi)	URS	PÜN	IGLI	CHE	HER	KUN	VFT:									
		(A)	OR	GAN	ISM	US: I	Betula	a ver	rucos	a							
		(C)	ENT	IWI	CKL	JNG	SSTA	DIU	M: I	Poller	1						
	(vii)	SEC	(JUE	NZBI	SCF	IREI	BUN	G:SE	Q II	NO	: 12:						
15	Ala	Leu	Glu	Tyr	G1 u	Asn	Phe	Asp	Lys	Ile	Asp	Arg	۷a٦	Arg	Phe	Pro	Lys
	1		~		5					10					15		
	116	Arg	Tyr 20	Ala												•	
	ANC	SABI	EN Z	U SI	EQ II) NC):13										
20	(i) S	EQU	IENZ	KEN	INZI	EICH	EN:										
		(A)	LÄI	NGE:	35												
		(B)	ART	Γ: pro	otein												
	(ii) A	ART	DES	MO	LEK	ÜLS:	pept	ide									
	(iii)	HYP	ОТН	ETIS	SCH:	nein	1										
25	(v) A	RT	DES	FRA	GM	ENT:	S: N-	Term	ninus	bis (C-Tei	rminı	1S				
	(vi) 1	URS	PÜN	GLIC	CHE	HER	KUN	IFT:									
		(A)	ORG	GAN	ISMI	JS: E	Betula	verr	ucos	a							
		(C)	ENT	rwic	KLU	JNGS	SSTA	DIU	M: P	ollen	1						
	(vii)	SEQ	UEN	IZBE	SCH	REII	BUNG	G:SE	Q ID	NO	: 13:						
30	Mat								_		Pro	Ser	His	Tyr	Leu	Val	G1 u
20	1				5					10					15		
	Pro	Pro	Glu	Пe	Glu	Arg	Thr	Ser	Gly	G1 u	Tyr	Leu	Val	His	Asn	G1 y	Val

-17-30 20 25 Arg 35 **ANGABEN ZU SEQ ID NO:14** (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 25 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Betula verrucosa (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 14: Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser Glu Leu Glu Glu Tyr Val 15 10 Glu Ile Pro Ser Asp Ser Gly Ile 20 20 ANGABEN ZU SEQ ID NO:15 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 24 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide 25 (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Betula verrucosa (C) ENTWICKLUNGSSTADIUM: Pollen 30 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 15: Ser Gly Lys Phe Asp Gln Val Arg Val Asn Leu Pro Asn Gly Asp Met Val 15

10

5

1

-18-

Gly His Thr Gly Asp Ile Glu 20

ANGABEN ZU SEQ ID NO:16

5 (i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 17
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 16:
Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Ser Val Gln
1 5 10 15

ANGABEN ZU SEQ ID NO:17

- 20 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:
- 30 His Gly Phe Glu Ala Pro Ser Asp Tyr Glu Pro Thr Leu
 1 5 10

-19-

ANGABEN ZU SEQ ID NO:18

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
- 5 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
- 10 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 18:

Tyr Asn Cys Ile His Val Ala Glu Thr Pro Thr Met Asp

1 5 10

15 ANGABEN ZU SEQ ID NO:19

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 06
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 20 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 25 (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 19:

5

Glu Lys Trp Arg Leu Val

1

ANGABEN ZU SEQ ID NO:20

- (i) SEQUENZKENNZEICHEN:
- 30 (A) LÄNGE: 10
 - (B) ART: protein

-20-
(ii) ART DES MOLEKÜLS: peptide
(iii) HYPOTHETISCH: nein
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
(vi) URSPÜNGLICHE HERKUNFT:
5 (A) ORGANISMUS: Betula verrucosa
(C) ENTWICKLUNGSSTADIUM: Pollen
(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 20:
Phe Ala Gln Gly Ala Lys Leu Val Asp Ser
1 5 10
10
ANGABEN ZU SEQ ID NO:21
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 11
(B) ART: protein
15 (ii) ART DES MOLEKÜLS: peptide
(iii) HYPOTHETISCH: nein
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
(vi) URSPÜNGLICHE HERKUNFT:
(A) ORGANISMUS: Betula verrucosa
20 (C) ENTWICKLUNGSSTADIUM: Pollen
(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 21:
Glu Gly Glu Gly Phe Lys Tyr Ile Lys Glu Cys
1 5 10
ANCADEN ZU CEO ID MO.22
ANGABEN ZU SEQ ID NO:22 25 (i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 04
(B) ART: protein
(ii) ART DES MOLEKÜLS: peptide
(iii) HYPOTHETISCH: nein

30 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

- (A) ORGANISMUS: Betula verrucosa
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 22:

Thr Leu Glu Asn

51 4

ANGABEN ZU SEQ ID NO:23

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 11
- 10 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
- 15 (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 23:

Asn Asp Trp Glu Val Ile Lys Arg Gly Trp Asp

1 5 10

²⁰ ANGABEN ZU SEQ ID NO:24

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 09
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 25 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 30 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 24:

Val Glu Ala Val Lys Lys Leu Arg Glu

1

ANGABEN ZU SEQ ID NO:25 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 11 (B) ART: protein 5 (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Betula verrucosa 10 (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 25: Glu Tyr Glu Asn Phe Asp Lys Ile Asp Arg Val 1 5 10 15 ANGABEN ZU SEQ ID NO:26 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 10 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Betula verrucosa (C) ENTWICKLUNGSSTADIUM: Pollen ²⁵ (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 26: Arg Thr Phe Ala Cys Ser Glu Thr Val Lys 1 5 10

ANGABEN ZU SEO ID NO:27

30 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 11

(B) ART: protein

- (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: 5 (A) ORGANISMUS: Betula verrucosa (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 27: Ser Glu Leu Glu Glu Tyr Val Glu Ile Pro Ser 10 10 **ANGABEN ZU SEQ ID NO:28** (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 08 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Betula verrucosa (C) ENTWICKLUNGSSTADIUM: Pollen 20 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 28: His Thr Gly Asp Ile Glu Asp Thr 1 5 ANGABEN ZU SEQ ID NO:29 25 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 12 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein 30 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa

-24-

```
(C) ENTWICKLUNGSSTADIUM: Pollen
   (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 29:
   Met Ile Leu Asp Ala Ile Glu Gln Val Gly Gly Ile
   1
                    5
                                       10
   ANGABEN ZU SEQ ID NO:30
   (i) SEQUENZKENNZEICHEN:
       (A) LÄNGE: 12
       (B) ART: protein
   (ii) ART DES MOLEKÜLS: peptide
   (iii) HYPOTHETISCH: nein
   (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
   (vi) URSPÜNGLICHE HERKUNFT:
       (A) ORGANISMUS: Betula verrucosa
       (C) ENTWICKLUNGSSTADIUM: Pollen
   (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 30:
  Ser Gly Val Arg Phe Cys Lys Asp Leu Pro Asp Gly Gly Leu Ala Asn Val
                                       10
  Ala Ala
  18
20
  ANGABEN ZU SEQ ID NO:31
  (i) SEQUENZKENNZEICHEN:
       (A) LÄNGE: 09
       (B) ART: protein
   (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
       (A) ORGANISMUS: Betula verrucosa
       (C) ENTWICKLUNGSSTADIUM: Pollen
30
  (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 31:
  Asn Leu His Gly Phe Glu Ala Pro Ser
```

NO OFICEOR	DCTC/A TOOC (0.0.1.4.1
WO 97/05258	PCT/AT96/00141

						-		-	25-							
	1				5											
	ANG	ABE	N Z	J S E	Q ID	NO:	32									
	(i) SI	EQUI	ENZI	KENI	NZEI	CHE	N:									
5		(A) LÄ	NGE	: 167	1 Bas	senpa	аге /	556 .	Amin	osäu	reres	te			
		(B)) AR	T:Nu	klein	säure	/ pro	tein								
		(C)) STI	RANG	GFO	RM:d	s									
		(D)) TO	POL	OGIE	line	ar									
	(ii) A	RT E	ES 1	MOL	EKÜ.	LS: c	DNA	Zu r	nRN.	A/p	roteir	ı				
	(iii) F	IYPC	THE	ETISC	CH: n	ein										
10	(iv) A	NTI	SEN	SE: n	ein											
	(v) A	RT D	ES I	RAC	ME	NŢS:	Gesa	amtse	quen	z						
	(vi) U	JRSP	ÜNC	iLICI	HE H	ERK	UNF	T:								
		(A)	OR	GAN	ISM	US: P	hleur	m pra	tense	;						
					CKLU											
15	(vii) S	SEQU	JENZ	ZBES	CHR	EIBI	UNG	:SEQ	ID 1	VO : 3	32:					
	1	ATG	GCG	ACC	TCA	TGG	ACG	CTG	ССС	GAC	CAT	ССС	ACG	СТС	ССС	42
		Met	Ala	Thr	Ser	Trp	Thr	Leu	Pro	Asp	His	Pro	Thr	Leu	Pro	
20	13	AAG	eec	AAC.	۸۲۲	CTC	ccc	CTC	ATC	CTC	CTC	CAC	CCA	TCC	ccc	0.4
	43				Thr											84
		-, -		- <i>y</i> -			, <u>.</u>	•••			LCu	ЛЭР	u.,	,	uiy	
	85	GAG	GCC	AGC	GCT	GAC	CAG	TAC	AAC	TGC	ATC	CAT	CGT	GCC	GAG	126
		Glu	Ala	Ser	Ala	Asp	Gln	Tyr	Asn	Cys	Пe	His	Arg	Ala	Glu	
25	127	۷۲۲	ccc	CTC	ATC	CAT	TCC	CTC	440	AAT	CCT	CCT	ССТ	C+C	440	1.00
	161	ACG Thr			Met											168
			3			.	J.,		د ر ــ	,,,,,,,	u . y			UIU	Lys	
	169	TGG	ACA	СТА	GTG	AAG	GCT	CAT	GGA	ACT	GCT	GTT	GGT	СТС	ССТ	210

Trp Thr Leu Val Lys Ala His Gly Thr Ala Val Gly Leu Pro

Ser Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala

252

30 211 AGT GAT GAC GAC ATG GGC AAC AGT GAA GTT GGC CAC AAT GCT

-26-

	253	CTT	GGC	GCT	GGT	CGG	ATT	TTT	GCT	CAA	GGG	GCG	AAG	TTG	TTT	294
		Leu	Gly	Ala	Gly	Arg	Ile	Phe	Ala	Gln	Gly	Ala	Lys	Leu	Phe	
•																
	295	GAT	GCT	GCT	CTT	GCA	TCT	GGG	AAG	ATT	TGG	GAA	GAC	GAG	GGT	336
		Asp	Ala	Ala	Leu	Ala	Ser	Gly	Lys	Ile	Trp	Glu	Asp	Glu	Gly	
5																
	337	TTC	AAT	TAC	ATC	AAA	GAA	TCT	TTT	GCC	GAA	GGT	ACT	CTG	CAC	378
		Phe	Asn	Tyr	Ile	Lys	Glu	Ser	Phe	Ala	Glu	Gly	Thr	Leu	His	
	379	CTT	ATT	GGT	CTG	TTG	AGT	GAT	GGA	GGC	GTC	CAC	TCC	CGG	CTA	420
		Leu	He	Gly	Leu	Leu	Ser	Asp	Gly	Gly	Val	His	Ser	Arg	Leu	
10																
	421	GAC	CAA	GTG	CAG	TTG	CTT	GTG	AAA	GGT	GCC	AGT	GAG	AGG	GGA	462
		Asp	Gln	Val	Gln	Leu	Leu	Vai	Lys	Gly	Ala	Ser	Glu	Arg	Gly	
	463	GCA	AAA	AGA	ATT	CGG	CTT	CAC	ATT	CTT	ACC	GAT	GGG	CGT	GAT	504
		Ala	Lys	Arg	Пe	Arg	Leu	His	He	Leu	Thr	Asp	Gly	Arg	Asp	
15				•												
	505	GTC	TTG	GAT	GGA	AGC	AGT	GTT	GGT	TTC	GTA	GAG	ACA	CTA	GAG	546
		Val	Leu	Asp	Gly	Ser	Ser	Val	Gly	Phe	Val	Glu	Thr	Leu	G1u	
	547	AAT	GAT	CTT	GCT	CAG	CTT	CGT	GAG	AAG	GGT	GTT	GAT	GCA	CAG	588
		Asn	Asp	Leu	Ala	Gln	Leu	Arg	Glu	Lys	Gly	Val	Asp	Ala	Gln	
20																
	589	GTT	GCA	TCT	GGT	GGT	GGA	AGG	ATG	TAT	GTT	ACC	ATG	GAC	CGC	630
		Val	Ala	Ser	Gly	Gly	Gly	Arg	Met	Tyr	Val	Thr	Met	Asp	Arg	
	631	TAT	GAG	AAT	GAC	TGG	GAT	GTG	GTC	AAG	CGT	GGG	TGG	GAT	GCC	672
		Tyr	Glu	Asn	Asp	Trp	Asp	Val	Val	Lys	Arg	Gly	Trp	Asp	Αla	
25																
	673	CAG	GTG	CTT	GGA	GAA	GCA	CCA	TAC	AAA	TTC	AAA	AGT	GCA	CTT	714
		Gln	Val	Leu	Gly	Glu	Ala	Pro	Tyr	Lys	Phe	Lys	Ser	Ala	Leu	
	715	GAA	GCT	GTG	AAA	ACG	CTA	AGA	GCA	GAG	CCC	AAG	GCC	AAT	GAT	756
		Glu	Ala	Val	Lys	Thr	Leu	Arg	Ala	Glu	Pro	Lys	Ala	Asn	Asp	
30																
	757	CAG	TAC	TTG	ССТ	GCG	TTT	GTG	ATA	GTT	GAT	GAA	AGT	GGC	AAA	798
		Gln	Tyr	Leu	Pro	Ala	Phe	Val	Пe	Val	Asp	G1 u	Ser	Gly	Lys	

799 TCC GTT GGT CCT ATA GTA GAT GGC GAT GCA GTT GTG ATT TTC 840 Ser Val Gly Pro Ile Val Asp Gly Asp Ala Val Val Ile Phe 841 AAT TTC AGA GCT GAT CGC ATG GTT ATG CTT GCA AAG GCT CTT 882 5 Asn Phe Arg Ala Asp Arg Met Val Met Leu Ala Lys Ala Leu 883 GAG TTT GCT GAT TTT GAT AAA TTT GAC CGT GTT CGT GTA CCA 924 Glu Phe Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro 925 AAA ATT AAG TAT GCT GGG ATG CTC CAG TAT GAT GGT GAG TTG 966 10 Lys Ile Lys Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu 967 AAG CTT CCA AAC AAA TTC CTT GTT TCC CCA CCC TTG ATA GAG 1008 Lys Leu Pro Asn Lys Phe Leu Val Ser Pro Pro Leu Ile Glu 1009 AGG ACA TCT GGT GAA TAC TTG GTA AAG AAT GGC GTT CGC ACA 15 Arg Thr Ser Gly Glu Tyr Leu Val Lys Asn Gly Val Arg Thr 1051 TTT GCT TGC AGC GAG ACC GTG AAG TTT GGT CAT GTC ACA TTT Phe Ala Cys Ser Glu Thr Val Lys Phe Gly His Val Thr Phe 1093 TTC TGG AAT GGA AAC CGT TCT GGA TAC TTC GAT GAA ACC AAG 20 Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr Lys 1135 GAA GAG TAC ATA GAA ATT CCT AGT GAT AGT GGT ATC ACA TTC Glu Glu Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile Thr Phe 1177 AAT GAG CAG CCC AAA ATG AAG GCA CTT GAA ATT GCT GAG AAA 25 Asn Glu Gln Pro Lys Met Lys Ala Leu Glu Ile Ala Glu Lys 1219 ACC CGG GAT GCT ATC CTC AGT GGA AAG TTT GAC CAG GTA CGT Thr Arg Asp Ala Ile Leu Ser Gly Lys Phe Asp Gln Val Arg 1261 ATT AAC CTG CCA AAT GGT GAT ATG GTG GGT CAC ACC GGT GAT 30 Ile Asn Leu Pro Asn Gly Asp Met Val Gly His Thr Gly Asp 1303 ATT GAA GCC ACA GTC GTT GCC TGC AAG GCT GCT GAT GAA GCA 1344

-28-

1345 GTC AAG ATT GTT TTG GAT GCA GTG GAG CAA GTT GGT GGT ATT 1386 Val Lys Ile Val Leu Asp Ala Val Glu Gln Val Gly Gly Ile

5

- 1387 TAT CTT GTC ACT GCT GAT CAT GGA AAC GCA GAG GAT ATG GTG 1428

 Tyr Leu Val Thr Ala Asp His Gly Asn Ala Glu Asp Met Val
- 1429 AAA AGA AAC AAA TCT GGC CAG CCT GCT CTT GAC AAG AGC GGT 1470 Lys Arg Asn Lys Ser Gly Gln Pro Ala Leu Asp Lys Ser Gly

10

- 1471 AGC ATC CAG ATT CTT ACC TCG CAT ACG CTT CAG CCA GTC CCT 1512 Ser Ile Gln Ile Leu Thr Ser His Thr Leu Gln Pro Val Pro
- 1513 GTT GCG ATC GGA GGC CCT GGT CTC CAC CCA GGA GTG AAG TTC 1554
 Val Ala Ile Gly Gly Pro Gly Leu His Pro Gly Val Lys Phe

15

- 1555 AGG TCT GAT ATC AAC ACA CCT GGA CTC GCC AAT GTT GCC GCC 1596 Arg Ser Asp Ile Asn Thr Pro Gly Leu Ala Asn Val Ala Ala
- 1597 ACC GTG ATG AAC CTC CAT GGC TTC CAG GCC CCT GAT GAT TAT 1638

 Thr Val Met Asn Leu His Gly Phe Gln Ala Pro Asp Asp Tyr

 20

1639 GAG ACG CTC ATT GAA GTT GCT GAC AAG TAA

Glu Thr Thr Leu Ile Glu Val Ala Asp Lys *

ANGABEN ZU SEQ ID NO: 33

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 15
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 30 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:

-29-

		(.	A) O	RGA	NISN	AUS:	Phle	um p	raten	se						
		(C) Eì	ИТW	ICKI	LUNG	GSSI	ADI	UM:	Polle	n					
	(vii)	SE(QUE	VZBE	SCH	REI	BUN	G:SE	Q ID	NO:	33:					
5	Ser 1	Trp	Thr	Leu	Pro 5	Asp	His	Pro	Thr	Leu 10	Pro	Lys	Gly	Lys	Thr 15	
	AN	GAB	EN Z	U SE	EQ II	ON C	: 34									
	(i) S	EQU	JENZ	KEN	INZE	EICH	EN:									
		(/	A) LÄ	ÄNGI	E: 35											
10		(1	B) AI	RT: p	rotei	n										
	(ii) <i>i</i>	ART	DES	MOI	LEKT	ÜLS:	pepti	ide								
	(iii)	HYP	отн	ŒTIS	CH:	nein										
	(v)	ART	DES	FRA	GMI	ENTS	S: N-	Term	inus l	ois C-	-Tern	ninus				
	(vi)	URS	PÜN	GLIC	HE	HER	KUN	FT:								
15		(/	A) OI	RGAI	VISM	IUS:	Phle	um pi	ratens	se						
		((C) EN	1TW	CKL	UNC	SSST	ADI	JM : 1	Polle	n					
	(vii)	SEC	(UEN	IZBE	SCH	REII	BUNG	G:SE	Q ID	NO:	34:					
	Asp	Gly	Trp	Gly	G1 u	Ala	Ser	Ala	Asp	G1 n	Tyr	Asn	Cys	Пe	His	Arg
20	1				5					10					15	
	Αla	Glu	Thr	Pro 20	Val	Met	Asp	Ser	Leu 25	Lys	Asn	Gly	Ala	Pro 30	Glu	Lys
	Trp	Thr	Leu													
٥.			35													
25																
	ANO	GAB	EN Z	U SE	QIE) NO	: 35									
	(i) S	EQU	ENZ	KEN	NZE	ICHI	EN:									
		(4	A) LÄ	NGE	E: 19											
30		(I	3) AF	RT: pi	roteir	n										
	(ii) <i>A</i>	ART	DES	MOI	EKÜ	Ĵ LS :	pepti	de								
	(iii)	НУР	отн	ETIS	CH.	nein										

-30-

	(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
	(vi) URSPÜNGLICHE HERKUNFT:
	(A) ORGANISMUS: Phleum pratense
	(C) ENTWICKLUNGSSTADIUM: Pollen
5	5 (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 35:
	Leu Pro Ser Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala
	1 5 10 15
	Leu Gly Ala
10	
	ANGABEN ZU SEQ ID NO: 36
	(i) SEQUENZKENNZEICHEN:
	(A) LÄNGE: 18
15	(B) ART: protein
	(ii) ART DES MOLEKÜLS: peptide
	(iii) HYPOTHETISCH: nein
	(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
	(vi) URSPÜNGLICHE HERKUNFT:
20	(A) ORGANISMUS: Phleum pratense
20	(C) ENTWICKLUNGSSTADIUM: Pollen
	(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 36:
	Gly Lys Ile Trp Glu Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe 1 10 15
	100
25	Ala Glu
	ANGABEN ZU SEQ ID NO: 37
	(i) SEQUENZKENNZEICHEN:
30	(A) LÄNGE: 13
	(B) ART: protein
	(ii) ART DES MOLEKÜLS: peptide

-31-

```
(iii) HYPOTHETISCH: nein
```

- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSTADIUM: Pollen 5
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 37:

Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Val 1 5 10

10

ANGABEN ZU SEQ ID NO: 38

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12
 - (B) ART: protein
- 15 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 38:

Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Leu 1 5 10

25

ANGABEN ZU SEQ ID NO: 39

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
- 30 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 41:

-33-

Ser Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp

1 10 15

Trp Asp Val Val Lys Arg Gly Trp Asp Ala 5 20 25

ANGABEN ZU SEQ ID NO: 42

- (i) SEQUENZKENNZEICHEN:
- 10 (A) LÄNGE: 9
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 42:

Glu Ala Pro Tyr Lys Phe Lys Ser Ala 201 5

ANGABEN ZU SEQ ID NO: 43

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 14

25

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
- 30 (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen

-34-

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 43:

Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp Gln Tyr Leu Pro
1 5 10

5

ANGABEN ZU SEQ ID NO: 44

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
- 10 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- 15 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 44:

Asp Glu Ser Gly Lys Ser Val

1

5

20

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 6
 - (B) ART: protein
- 25 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 45:

Phe Arg Ala Asp Arg Met

1 5

ANGABEN ZU SEQ ID NO: 46

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 31
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 46:

15

Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro Lys Ile Lys Tyr

1 5 10 15

Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Asn Lys
20 25 30

20

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 18
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- 30 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 47:

Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Lys Asn Gly Val 1 5 10 Arg Thr **ANGABEN ZU SEQ ID NO: 48** (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 36 (B) ART: protein 10 (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Phleum pratense 15 (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 48: Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr Lys Glu Glu 5 1 10 15 Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile Thr Phe Asn Glu Gln Pro 20 25 30 Lys Met Lys Ala 35 25 ANGABEN ZU SEQ ID NO: 49 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 8 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein

-37-(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Phleum pratense (C) ENTWICKLUNGSSTADIUM: Pollen 5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 49: Ile Ala Glu Lys Thr Arg Asp Ala 1 10 ANGABEN ZU SEQ ID NO: 50 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 24 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide 15 (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Phleum pratense (C) ENTWICKLUNGSSTADIUM: Pollen 20 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 50: Ser Gly Lys Phe Asp Gln Val Arg Ile Asn Leu Pro Asn Gly Asp Met 1 5 10 15 Val Gly His Thr Gly Asp Ile Glu 20 25

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 26
- 30 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein

- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 51:

Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Ser Gly
1 10 15

Gln Pro Ala Leu Asp Lys Ser Gly Ser Ile 10 20 25

ANGABEN ZU SEQ ID NO: 52

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8

15 (B) ART: protein

- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
- 20
- (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 52:

Leu Thr Ser His Thr Leu Gln Pro
25 1 5

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 19
 - (B) ART: protein
- 30 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein

-39-

5	(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Phleum pratense (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 53:													
	Gly Pro Gly Leu His Pro Gly Val Lys Phe Arg Ser Asp Ile Asn Th	r												
	1 5 10 15													
	Pro Gly Leu													
10)													
	ANGABEN ZU SEQ ID NO: 54													
•	(i) SEQUENZKENNZEICHEN:													
	(A) LÄNGE: 14													
	(B) ART: protein													
15	(ii) ART DES MOLEKÜLS: peptide													
	(iii) HYPOTHETISCH: nein													
	(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus													
	(vi) URSPÜNGLICHE HERKUNFT:													
	(A) ORGANISMUS: Phleum pratense													
20	(C) ENTWICKLUNGSSTADIUM: Pollen													
20	(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 54:													
	Leu His Gly Phe Gln Ala Pro Asp Asp Tyr Glu Thr Thr Leu													
	1 5 10													
25														
	ANGABEN ZU SEQ ID NO: 55													
	(i) SEQUENZKENNZEICHEN:													
	(A) LÄNGE: 5													
	(B) ART: protein													
20	(ii) ART DES MOLEKÜLS: peptide													
30	(iii) HYPOTHETISCH: nein													

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

-40-

- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Polien
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 55:

5 Trp Gly Glu Ala Ser 1 5

- 10 ANGABEN ZU SEQ ID NO: 56
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 15 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 20 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 56:

Met Asp Ser Leu Lys Asn Gly Ala 1 5

- 25 ANGABEN ZU SEQ ID NO: 57
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 30 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:

-41-

- (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 57:

 $5 \frac{\text{Phe Ala Gln Gly Ala Lys Leu Phe Asp Ala}}{1}$

ANGABEN ZU SEQ ID NO: 58

- (i) SEQUENZKENNZEICHEN:
- 10 (A) LÄNGE: 5
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 15 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 58:

Gly Lys Ile Trp Glu 20₁ 5

- (i) SEQUENZKENNZEICHEN:
- 25 (A) LÄNGE: 4
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 30 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen

PCT/AT96/00141

WO 97/05258

-42-

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 59:

Thr Leu Glu Asn

5

ANGABEN ZU SEQ ID NO: 60

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 6
 - (B) ART: protein
- 10 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSTADIUM: Pollen 15
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 60:

Asn Asp Trp Asp Val Val 1 5

20

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
- 25 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSTADIUM: Pollen 30
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 61:

-43-

Leu Glu Ala Val Lys Thr Leu 1 5

ANGABEN ZU SEQ ID NO: 62

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 6
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 62:

15 Leu Ala Lys Ala Leu Glu 1 5

ANGABEN ZU SEQ ID NO: 63

- 20 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 63:

Phe Ala Cys Ser Glu Thr Val Lys

-44-

```
ANGABEN ZU SEQ ID NO: 64
   (i) SEQUENZKENNZEICHEN:
         (A) LÄNGE: 11
         (B) ART: protein
 5
   (ii) ART DES MOLEKÜLS: peptide
   (iii) HYPOTHETISCH: nein
   (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
   (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Phleum pratense
10
         (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 64:
  Leu Asp Ala Val Glu Gln Val Gly Gly Ile Tyr
  1
                                       10
15
  ANGABEN ZU SEQ ID NO: 65
  (i) SEQUENZKENNZEICHEN:
        (A) LÄNGE: 8
        (B) ART: protein
  (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Phleum pratense
25
        (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 65:
```

Pro Gly Leu Ala Asn Val Ala Ala 1 5

30

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 5 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 66:

Asn Leu His Gly Phe Gln Ala Pro Asp Asp 1 5 10

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1668 Basenpaare / 555 Aminosäurereste
 - (B) ART: Nukleinsäure / protein
 - (C) STRANGFORM:ds
 - (D) TOPOLOGIE:linear
- (ii) ART DES MOLEKÜLS: cDNA zu mRNA / protein
- (iii) HYPOTHETISCH: nein
- (iv) ANTISENSE: nein
- (v) ART DES FRAGMENTS: Gesamtsequenz
- (vi) URSPÜNGLICHE HERKUNFT:
- 25 (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 67:
- 30 1 ATG ACC TCA TGG ACG CTG CCC GAC CAC CCC ACG CTC CCC AAG 42
 Met Thr Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro Lys

	43	GĢC	AAG	ACG	GTG	GCC	GTC	ATC	GTG	СТС	GAC	GGA	TGG	GGC	GAG	84
	•	G1 y	Lys	Thr	۷a٦	Ala	Val	Ile	۷a٦	Leu	Asp	Gly	Trp	G1 y	Glu	
	85	GCC	AGC	GCT	GAC	CAG	TAC	AAC	TGC	ATC	CAT	CGC	GCC	GAG	ACG	126
		Ala	Ser	Ala	Asp	Gln	Tyr	Asn	Cys	Пe	His	Arg	Ala	G1 u	Thr	
5																
	127										GCT					168
		Pro	Val	Met	Asp	Ser	Leu	Lys	Asn	Gly	Ala	Pro	G1 u	Lys	Trp	
	160	ACA	CTA	CTC	440	CCT	CAT	004	ACT	007	077	007				
	109										GTT Val					210
10	211										GGC					252
											Gly					232
		·	•	•		- 3			•		٠.,			, .		
	253	GGC	GCT	GGT	CGG	ATT	TTC	GCT	CAA	GGG	GCG	AAG	TTG	TTT	GAT	294
		Gly	Ala	Gly	Arg	Пe	Phe	Ala	Gln	Gly	Ala	Lys	Leu	Phe	Asp	
15	295										GAA					336
		Ala	Ala	Leu	Ala	Ser	Gly	Lys	Ile	Trp	Glu	Asp	Glu	Gly	Phe	
	337	ΛΛΤ	TAC	ATC	A A A	C A A	тст	TTT	ccc	C A A	GGT	ACT	CTC	646	CTT	270
	337										Gly					378
					_, .		50,	,,,,	,,,,	u i u	uiy	• • • • • • • • • • • • • • • • • • • •	Leu	1113	Leu	
20	379	ATT	GGT	CTG	TTG	AGT	GAT	GGA	GGC	GTC	CAC	TCC	CGG	СТА	GAC	420
		Пe	Gly	Leu	Leu	Ser	Asp	Gly	Gly	Val	His	Ser	Arg	Leu	Asp	
										•						
	421										AGT					462
		Gln	Val	Gln	Leu	Leu	Val	Lys	Gly	Ala	Ser	Glu	Arg	Gly	Ala	
25	462	A A A	ACA	ATT	ccc	СТТ	CAC	ATT	CTT	400	GAT	000	COT	047	0.7.0	504
	703										Asp					504
		-, -	3	•••	5		5		Leu	****	лэр	uly	Ai y	изр	V G I	
	505	TTG	GAT	GGA	AGC	AGT	GTT	GGT	TTC	GTA	GAG	ACA	CTA	GAG	AAT	546
											Glu					
30	547	GAT	CTT	GCT	CAG	CTT	CGT	GAG	AAG	GGT	GTT	GAT	GCA	CAG	GTT	588
		Asp	Leu	Ala	G1n	Leu	Arg	Glu	Lys	Gly	Val	Asp	Ala	Gln	Val	

									•		•					
	589	GCA	TCT	GGT	GGT	GGA	AGG	ATG	TAT	GTT	ACC	ATG	GAC	CGC	TAT	630
		Ala	Ser	Gly	Gly	Gly	Arg	Met	Tyr	Val	Thr	Met	Asp	Arg	Tyr	
	•															
	631	GAG	AAT	GAC	TGG	GAT	GTG	GTC	AAG	CGT	GGG	TGG	GAT	GCC	CAG	672
		Glu	Asn	Asp	Trp	Asp	Va1	Val	Lys	Arg	Gly	Trp	Asp	Ala	Gln	
5				•												
	673			GGA												714
		Val	Leu	Gly	Glu	Ala	Pro	Tyr	Lys	Phe	Lys	Ser	Ala	Leu	G1 u	
	715			AAA												756
10				Lys												
10	757															798
		Tyr	Leu	Pro	Ala	Phe	Val	IJe	Val	Asp	Glu	Ser	Gly	Lys	Ser	
	700		00-													
	799			CCT												840
		Vai	ыу	Pro	116	vai	ASP	ыу	Asp	Ala	Val	Val	Thr	Phe	Asn	
15	841	TTC	A C A	ССТ	CAT	ccc	ATC	CTT	ATC	CTT	CCA	440	CCT	CTT	CAC	000
	041			Ala												882
		, ,,,	Ai y	AID	nsh	AI Y	Met	Val	met	Leu	AId	Lys	AId	reu	GIU	
	883	TTT	GCT	GAT	TTT	GAT	ΑΑΑ	TTT	GAC	CGT	STT	CGT	GTA	CCA	ΔΔΔ	924
				Asp												J24
				•		•				3		,			-, -	
20	925	ATT	AAG	TAT	GCT	GGG	ATG	СТС	CAG	TAT	GAT	GGT	GAG	TTG	AAG	966
				Tyr												
												•			•	
	967	CTT	CCA	AAC	AAA	TTC	CTT	GTT	TCC	CCA	CCC	TTG	ATA	GAG	AGG	1008
		Leu	Pro	Asn	Lys	Phe	Leu	Val	Ser	Pro	Pro	Leu	Пe	Glu	Arg	
25	1009	ACA	TCT	GGT	GAA	TAC	TTG	GTA	AAG	AAT	GGC	GTT	CGC	ACA	TTT	1050
		Thr	Ser	Gly	Glu	Tyr	Leu	Val	Lys	Asn	Gly	Val	Arg	Thr	Phe	
	1051														_	1092
		Ala	Cys	Ser	G1 u	Thr	Val	Lys	Phe	G1 y	His	Val	Thr	Phe	Phe	
20																
3 U	1093															1134
		Trp	Asn	Gly	Asn	Arg	Ser	Gly	Tyr	Phe	Asp	Glu	Thr	Lys	Glu	

	1135	GAG	TAC	ATA	GAA	ATT	CCT	AGT	GAT	AGT	GGT	ATC	ACA	TTC	AAT	1176
		Glu	Tyr	Пe	G1 u	He	Pro	Ser	Asp	Ser	Gly	Ile	Thr	Phe	Asn	
	•															
	1177	GAG	CAG	CCC	AAA	ATG	AAG	GCA	CTT	GAA	ATT	GCT	GAG	AAA	ACC	1218
		G1 u	Gln	Pro	Lys	Met	Lys	Ala	Leu	Glu	Ile	Ala	Glu	Lys	Thr	
5																
	1219	CGG	GAT	GCT	ATC	CTC	AGT	GGA	AAG	TTT	GAC	CAG	GTA	CGT	ATT	1260
		Arg	Asp	Ala	Ile	Leu	Ser	Gly	Lys	Phe	Asp	Gln	Val	Arg	Ile	
	1261	AAC	CTG	CCA	AAT	GGT	GAT	ATG	GTG	GGT	CAC	ACC	GGT	GAT	ATT	1302
		Asn	Leu	Pro	Asn	Gly	Asp	Met	Val	Gly	His	Thr	Gly	Asp	Пe	
10	1303	GAA	GCC	ACA	GTC	GTT	GCC	TGC	AAG	GCT	GCT	GAT	GAA	GCA	GTC	1344
		Glu	Ala	Thr	Val	Val	Ala	Cys	Lys	Ala	Ala	Asp	Glu	Ala	Val	
	1345	AAG	ATT	GTT	TTG	GAT	GCA	GTG	GAG	CAA	GTT	GGT	GGT	ATT	TAT	1386
		Lys	He	Val	Leu	Asp	Ala	Val	Glu	Gln	Val	Gly	Gly	Ile	Tyr	
15	1387	CTT	GTC	ACT	GCT	GAT	CAT	GGA	AAC	GCA	GAG	GAT	ATG	GTG	AAA	1428
		Leu	Val	Thr	Αla	Asp	His	Gly	Asn	Ala	Glu	Asp	Met	Val	Lys	
	1429	AGA	AAC	AAA	TCT	GGC	CAG	CCT	GCT	CTT	GAC	AAG	AGC	GGT	AGC	1470
		Arg	Asn	Lys	Ser	Gly	Gln	Pro	Ala	Leu	Asp	Lys	Ser	Gly	Ser	
20																
20	1471															1512
		He	Gin	lle	Leu	Thr	Ser	His	Thr	Leu	Gln	Pro	Val	Pro	Val	
	1510	000	4.7.0	004	000											
	1513															1554
		АІа	116	ыу	Gly	Pro	GIY	Leu	HIS	Pro	Gly	Val	Lys	Phe	Arg	
25	1555	тст	CAT	ATC	A A C	A C A	ССТ	CCA	CTC	ccc		CTT	000	000	400	1506
23	1555															1596
		361	нэр	116	Asn	HIL	FFU	ыу	Leu	Ald	ASN	vai	Ala	Ald	ınr	
	1597	GTG	ΔΤΩ	ΔΔΓ	רדר	CAT	GGC	TTC	CVC	CCC	ССТ	CAT	CAT	TAT	CVC	1638
	200,				Leu											1030
				4711	LUU	3	uıj	1116	uili	710	110	nah	vah	ועו	uiu	
30	1639	ACG	ACG	CTC	ΔTΤ	GΔΔ	GTT	GCT	GAC	ΔΔΩ	ΤΔΛ					1668
					Ile						*					1000
				Leu	116	u i u	741	A10	vsh	r y s	•					

	ANG	ABI	en z	U SE	EQ II	NO	: 68									
•	(i) SE	QU	ENZ	KEN	NZE	ICHI	EN:									
		(A	L) LÄ	NGI	E: 16											
5		(B) AF	RT: p	rotei	n										
,	(ii) A	RT 1	DES	MOI	EK	ÜLS:	pepti	ide								
	(iii) H	YP(HTC	ETIS	CH:	nein										
	(v) A	RT I	DES	FRA	GMI	ENTS	: N-	Ferm i	inus t	ois C-	-Tem	ninus				
	(vi) U	RSI	PÜN	GLIC	HE	HER	KUN	FT:								
• ^		(A) OF	(GA)	VISM	IUS:	Phle	ım pı	ratens	se						
10	1	(C) EN	TW	CKL	UNC	SST	ADI	JM : 1	Polle	n					
	(vii) S	EQ	UEN	ZBE	SCH	REIE	UNC	G:SE	Q ID	NO:	68:					
	•															
	Met 1	hr	Ser	Trp		Leu	Pro	Asp	His		Thr	Leu	Pro	Lys		Lys
	-				5					10					15	
15																
	ANG	ABE	N Z	U SE	QID	NO	69									
	(i) SE	QU	ENZ	KEN	NZE	ICHI	EN:									
		(A) LÄ	NGE	E: 35											
		(B) AR	T: pi	roteir	3										
20	(ii) Al	RT I	DES	MOI	EKÜ	JLS:	pepti	de								
	(iii) H	YP(HTC	ETIS	CH:	nein										
	(v) Al	RTI	DES	FRA	GME	ENTS	: N- 7	Fermi	inus b	ois C-	Term	ninus				
	(vi) U	RSF	PÜN	GLIC	HE I	HERI	KUN	FT:								
		(A) OP	(GA)	NSM	IUS:	Phlet	ım pr	atens	e						
25		(C) EN	TWI	CKL	UNC	SST	ADI	ЈМ : 1	Polle	n.					
	(vii) S	EQ	UEN	ZBE	SCH	REIE	UNC	G:SE	Q ID	NO:	69:					
			_				_				_		_			
	Asp (ìУ	lrp	Gly	Glu 5	Ala	Ser	Ala	Asp	GIn 10	Tyr	Asn	Cys	He		Arg
					J					10					15	
30	Ala (alu	Thr	Pro	Val	Met	Asp	Ser	Leu	Lys	Asn	Gly	Ala	Pro	G1 u	Lys
				20					25					30		

-50-

Trp Thr Leu

35

ANGABEN ZU SEQ ID NO: 70

⁵ (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 19

(B) ART: protein

- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 70:

15
Leu Pro Ser Asp Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala
1 5 10 15

Leu Gly Ala

20

ANGABEN ZU SEQ ID NO: 71

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 17
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 30 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 71:

Gly Lys Ile Trp Glu Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe

-51-

1 5 . 10 15

Ala

5 ANGABEN ZU SEQ ID NO: 72

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 10 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 15 (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 72:

Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Val
1 5 10

- 20 ANGABEN ZU SEQ ID NO: 73
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 25 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 73: 30

Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Leu 1 5 10

-52-

```
ANGABEN ZU SEQ ID NO: 74
   (i) SEQUENZKENNZEICHEN:
        (A) LÄNGE: 13
 5
        (B) ART: protein
   (ii) ART DES MOLEKÜLS: peptide
   (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
10
        (A) ORGANISMUS: Phleum pratense
        (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 74:
  Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val
15 1
                   5
                                       10
  ANGABEN ZU SEQ ID NO: 75
  (i) SEQUENZKENNZEICHEN:
        (A) LÄNGE: 17
20
        (B) ART: protein
  (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
25
        (A) ORGANISMUS: Phleum pratense
        (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 75:
  Glu Thr Leu Glu Asn Asp Leu Ala Gln Leu Arg Glu Lys Gly Val Asp
                                       10
                                                           15
```

30

Ala

-53-

ANGABEN ZU SEQ ID NO: 76

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 26
- 5 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- 10 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 76:

Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp 1 5 10 15

15

Trp Asp Val Val Lys Arg Gly Trp Asp Ala
20 25

- 20 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 9
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 77:
- 30 Glu Ala Pro Tyr Lys Phe Lys Ser Ala 1 5

```
ANGABEN ZU SEQ ID NO: 78
   (i) SEQUENZKENNZEICHEN:
        (A) LÄNGE: 14
        (B) ART: protein
   (ii) ART DES MOLEKÜLS: peptide
   (iii) HYPOTHETISCH: nein
   (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Phleum pratense
10
        (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 78:
  Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp Gln Tyr Leu Pro
  1
                   5
                                       10
15
  ANGABEN ZU SEQ ID NO: 79
  (i) SEQUENZKENNZEICHEN:
        (A) LÄNGE: 7
        (B) ART: protein
  (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Phleum pratense
25
        (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 79:
```

30

1

ANGABEN ZU SEQ ID NO: 80

Asp Glu Ser Gly Lys Ser Val

5

```
-55-
  (i) SEQUENZKENNZEICHEN:
        (A) LÄNGE: 7
        (B) ART: protein
  (ii) ART DES MOLEKÜLS: peptide
 5 (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Phleum pratense
        (C) ENTWICKLUNGSSTADIUM: Pollen
(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 80:
  Asn Phe Arg Ala Asp Arg Met
                   5
15 ANGABEN ZU SEQ ID NO: 81
  (i) SEQUENZKENNZEICHEN:
        (A) LÄNGE: 31
        (B) ART: protein
  (ii) ART DES MOLEKÜLS: peptide
20 (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Phleum pratense
        (C) ENTWICKLUNGSSTADIUM: Pollen
(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 81:
  Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro Lys Ile Lys Tyr
```

10

Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Asn Lys

25

15

30

1

30

5

20

PCT/AT96/00141 WO 97/05258

-56-

ANGABEN ZU SEQ ID NO: 82

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 18

(B) ART: protein

- 5 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 82:

Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Lys Asn Gly Val 1 10 15

15 Arg Thr

ANGABEN ZU SEQ ID NO: 83

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 36
- 20 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
- 25 (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 83:

Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr Lys Glu Glu 30 ₁ 10 15

Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile Thr Phe Asn Glu Gln Pro

WO 97/05258

-57-

20

25

30

Lys Met Lys Ala 35

5

ANGABEN ZU SEQ ID NO: 84

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
- 10 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 84:

Ile Ala Glu Lys Thr Arg Asp Ala 1 5

20

ANGABEN ZU SEQ ID NO: 85

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 24
 - (B) ART: protein
- 25 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- ³⁰ (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 85:

Ser Gly Lys Phe Asp Gln Val Arg Ile Asn Leu Pro Asn Gly Asp Met

PCT/AT96/00141

-58-

1 5 10 15

Val Gly His Thr Gly Asp Ile Glu 20

5

ANGABEN ZU SEQ ID NO: 86

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 26
 - (B) ART: protein
- 10 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 86:

Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Ser Gly

1 10 15

20 Gln Pro Ala Leu Asp Lys Ser Gly Ser Ile

- (i) SEQUENZKENNZEICHEN:
- 25 (A) LÄNGE: 8
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 30 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen

-59-

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 87:

Leu Thr Ser His Thr Leu Gln Pro 1 5

5

ANGABEN ZU SEQ ID NO: 88

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 19
 - (B) ART: protein
- 10 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSTADIUM: Pollen 15
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 88:

Gly Pro Gly Leu His Pro Gly Val Lys Phe Arg Ser Asp Ile Asn Thr 1 10 15

20 Pro Gly Leu

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 14
- 25 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
- 30 (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 89:

-60-

Leu His Gly Phe Gln Ala Pro Asp Asp Tyr Glu Thr Thr Leu

1 5 10

- ⁵ ANGABEN ZU SEQ ID NO: 90
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 5
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 10 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 15 (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 90:

Trp Gly Glu Ala Ser
1 5

- 20 ANGABEN ZU SEQ ID NO: 91
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 25 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 30 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 91:

Met Asp Ser Leu Lys Asn Gly Ala

1

-61-

.

ANGABEN ZU SEQ ID NO: 92

5

5 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 10

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- ¹⁰ (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 92:

ANGABEN ZU SEQ ID NO: 93

(i) SEQUENZKENNZEICHEN:

20

- (A) LÄNGE: 5
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 25 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 93:

$$30 \, \frac{\text{Tyr Ile Lys. Glu Ser}}{1} \quad \qquad 5$$

```
ANGABEN ZU SEQ ID NO: 94
```

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 4
- 5 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
- (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 94:

Thr Leu Glu Asn

1

15

ANGABEN ZU SEQ ID NO: 95

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 6
- 20 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense

25 (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 95:

Asn Asp Trp Asp Val Val

1

30

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 5 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 96:

Leu Glu Ala Val Lys Thr Leu 1 5

- 15 ANGABEN ZU SEQ ID NO: 97
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 97:

25

Leu Ala Lys Ala Leu Glu Phe 1 5

- ANGABEN ZU SEQ ID NO: 98
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8

-64-

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 5 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 98:

Phe Ala Cys Ser Glu Thr Val Lys 10 1 5

ANGABEN ZU SEQ ID NO: 99

- (i) SEQUENZKENNZEICHEN:
- 15 (A) LÄNGE: 9
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
- (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 99:

Leu Asp Ala Val Glu Gln Val Gly Gly 25 1 5

ANGABEN ZU SEQ ID NO: 100

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8

30 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- 5 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 100:

Pro Gly Leu Ala Asn Val Ala Ala 1 5

10

ANGABEN ZU SEQ ID NO: 101

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10
 - (B) ART: protein
- 15 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 101:

Asn Leu His Gly Phe Gln Ala Pro Asp Asp
1 5 10

25

ANGABEN ZU SEQ ID NO: 102

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1674 Basenpaare / 557 Aminosäurereste
 - (B) ART: Nukleinsäure / protein
 - (C) STRANGFORM:ds

30

- (D) TOPOLOGIE:linear
- (ii) ART DES MOLEKÜLS: cDNA zu mRNA / protein

WO 97/05258

-66-

PCT/AT96/00141

	(iii) HYPOTHETISCH: nein (iv) ANTISENSE: nein															
	(iv)	ANT	ISEN	ISE: 1	nein											
	(v) A	ART I	DES	FRA	GME	NTS	: Ges	amts	eque	nz						
	(vi) 1	URSI	PÜN	GLIC	HE I	ÆRI	KUN	FT:								
5		(A) OR	GAN	NSM	US:	Arter	nisia	vulga	ıris						
•		(C) EN	TWI	CKL	UNG	SST	ADΠ	- ЛМ: I	Poller	1					
	(vii)	SEQ	UEN	ZBE:	SCHI	REIB	UNC	3:SEC	OID.	NO:	102:					
	1 ATG GGA AGC TCA GGA TTT TCA TGG AAG CTA GCG GAC CAC CCA 42															
	1															42
10		Met	Gly	Ser	Ser	Gly	Phe	Ser	Trp	Lys	Leu	Ala	Asp	His	Pro	
10	43	۸۸۵	CTC	CCA	A A C	A A C	A A C	CTC	CT.	000	4.70					
	43										Met				GAC	84
		,-			_, ,	,,,,,,	L) 3	LCU	*4,	710	net	116	Vai	Leu	Asp	
	85	GGA	TGG	GGT	GAA	GCT	TCT	ССТ	GAT	AAA	TAT	AAC	TGT	ATC	CAC	126
		Gly	Trp	61 y	G1 u	Ala	Ser	Pro	Asp	Lys	Tyr	Asn	Cys	Пe	His	
15	127										CTC					168
		Val	Ala	Glu	Thr	Pro	Thr	Met	Asp	Ser	Leu	Lys	Asn	Gly	Ala	
	169	CCT	GΔT	CAC	TCC	AGA	TTG	CTC	ACC	ССТ	CAT	CCA	ACT	CCT	CTT	210
	103										His					210
			•						9		,,, ,	u .,	••••	A10	***	
20	211	GGG	CTT	CCC	ACT	GAA	GAT	GAC	ATG	GGA	AAC	AGT	GAA	GTC	GGA	252
		Gly	Leu	Pro	Thr	Glu	Asp	Asp	Met	Gly	Asn	Ser	Glu	Val	Gly	
	252															
	253										TTT					294
		n15	WZII	Ald	Leu	ыу	Ala	ыу	Arg	He	Phe	Ala	GIN	Gly	Ala	
25	295	AAA	СТС	GTT	GAT	CAA	GCA	CTT	GCC	тст	GGG	AGA	ATT	TAC	GAA	336
											Gly					330
											-	•		•		
	337										TCA					378
		Asp	G1u	Gly	Phe	Asn	Tyr	Пe	Lys	G1 u	Ser	Phe	Ala	Thr	Asn	
30	270	۸۲۲	TT^	CAT	CTT	477	00:	TT0	4.7.0		•			_		
<i>5</i> 0	3/9										GAT					420
			Leu	1112	Leu	116	uıy	reu	net	ser	Asp	υly	uly	164	H18	

WO 97/05258

	421	. ILA	LUI	CII	UA I	CAG	116	LAG	116	116	iCII	AAC	GGA	GCT	AGT	462
		Ser	Arg	Leu	Asp	Gln	Leu	G1n	Leu	Leu	Leu	Asn	Gly	Ala	Ser	
	463	GAG	CGT	GGT	GCC	AAG	AAG	ATC	CGT	GTT	CAC	GTG	CTT	ACT	GAT	504
5		Glu	Arg	Gly	Ala	Lys	Lys	Ile	Arg	Val	His	Val	Leu	Thr	Asp	
	505	GGT	CGT	GAT	GTT	TTG	GAT	G GT	TCA	AGT	GTC	GGT	TTT	GCT	GAA	546
		Gly	Arg	Asp	Val	Leu	Asp	Gly	Ser	Ser	Val	Gly	Phe	Ala	Glu	
	547	ACA	CTT	GAA	GCA	GAA	СТТ	GCA	AGT	СТС	CGC	AGC	AAG	GGC	ATT	588
10		Thr	Leu	Glu	Ala	Glu	Leu	Ala	Ser	Leu	Arg	Ser	Lys	Gly	Ile	
	589	GAT	GCT	CAG	GTT	GCT	TCT	GGT	GGA	GGA	CGT	ATG	TAT	GTC	ACC	630
		Asp	Ala	Gln	Val	Ala	Ser	Gly	Gly	Gly	Arg	Met	Tyr	Val	Thr	
	631	ATG	GAT	CGT	TAC	GAG	AAT	GAC	TGG	GAA	GTT	GTG	AAA	СТТ	GGA	672
		Met	Asp	Arg	Tyr	G1u	Asn	Asp	${\rm Trp}$	Glu	Val	Val	Lys	Leu	Gly	
15	673	TGG	GAT	GCT	CAG	GTT	CTT	GGT	GAA	GCT	CCA	CAC	AAG	TTT	AAA	714
		Trp	Asp	Ala	Gln	Val	Leu	Gly	Glu	Ala	Pro	His	Lys	Phe	Lys	
	715	AAT	GTT	GTT	GAG	GCT	ATT	AAG	ACA	СТС	AGA	CAA	GCT	ССТ	GGT	756
		Asn	Val	Val	Glu	Ala	Ile	Lys	Thr	Leu	Arg	G1n	Ala	Pro	Gly	
20	757										GTT					798
		Ala	Asn	Asp	Gln	Tyr	Leu	Pro	Pro	Phe	Val	Ile	Val	Asp	Asp	
	799										GAT					840
		5er	Gly	Ihr	Pro	Vai	Gly	Pro	Val	Val	Asp	Gly	Asp	Ala	Val	
25	841										ATG					882
		Val	Thr	Val	Asn	Phe	Arg	Ala	Asp	Arg	Met	Thr	Met	Leu	Ala	
	883										AAG				_	924
		Gln	Ala	Leu	Glu	Tyr	Glu	Lys	Phe	Asp	Lys	Phe	Asp	Arg	Val	
30	925	CGT	TTC	CCA	AAA	ATC	CGT	TAT	GCT	GGT	ATG	СТС	CAG	TAT	GAT	966
		Arg	Phe	Pro	Lys	Пe	Arg	Tyr	Ala	Gly	Met	Leu	Gln	Tyr	Asp	

-68-

967 GGA GAG TTG AAG CTT CCA AAC CAT TAC CTT GTT TCT CCC CCA 1008 Gly Glu Leu Lys Leu Pro Asn His Tyr Leu Val Ser Pro Pro

1009 TTG ATT GAC AGG ACA TCT GGC GAA TAT TTG GTG CAT AAT GGT 1050 Leu Ile Asp Arg Thr Ser Gly Glu Tyr Leu Val His Asn Gly

1051 GTC CGC ACT TTT GCT TGC AGT GAG ACT GTC AAA TTC GGT CAT 1092

Val Arg Thr Phe Ala Cys Ser Glu Thr Val Lys Phe Gly His

1093 GTC ACA TTT TTC TGG AAT GGA AAC CGC TCT GGT TAC TTC AAC 1134

Val Thr Phe Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn

10

1135 TCA GAG TTG GAA GAA TAT GTT GAA ATT CCA AGT GAT AGT GGT 1176 Ser Glu Leu Glu Glu Tyr Val Glu Ile Pro Ser Asp Ser Gly

1177 ATT ACC TTC AAC GTC AAA CCA AAG ATG AAA GCT TTG GAG ATT 1218

Ile Thr Phe Asn Val Lys Pro Lys Met Lys Ala Leu Glu Ile

15 1219 GGT GAG AAG ACC CGT GAT GCT ATC CTC AGC GGA AAG TTT GAC 1260 Gly Glu Lys Thr Arg Asp Ala Ile Leu Ser Gly Lys Phe Asp

1261 CAG GTA CGT GTG AAC ATA CCA AAC GGT GAC ATG GTT GGG CAC 1302
Gln Val Arg Val Asn Ile Pro Asn Gly Asp Met Val Gly His

20 1303 ACC GGT GAT GTT GAG GCT ACT GTC GTG GCC TGC AAG GCT GCT 1344
Thr Gly Asp Val Glu Ala Thr Val Val Ala Cys Lys Ala Ala

- 1345 GAT GAA GCT GTT AAG ATG ATC CTT GAT GCC GTA GAG CAA GTG 1386 Asp Glu Ala Val Lys Met Ile Leu Asp Ala Val Glu Gln Val
- 25 1387 GGT GGG ATA TAC GTT GTG ACT GCC GAT CAC GGT AAT GCT GAG 1428 Gly Gly Ile Tyr Val Val Thr Ala Asp His Gly Asn Ala Glu
 - 1429 GAC ATG GTA AAG AGA AAC AAG AAG GGT GAG CCT CTT CTC AAG 1470 Asp Met Val Lys Arg Asn Lys Lys Gly Glu Pro Leu Lys
- 30 1471 GAC GGC GAG GTC CAG ATT CTA ACA TCA CAC ACT CTT CAG CCG 1512
 Asp Gly Glu Val Gln Ile Leu Thr Ser His Thr Leu Gln Pro

-69-

1513 GTG CCA ATT GCA ATT GGA GGT CCT GGG TTA TCC GCT GGT GTG 1554 Val Pro Ile Ala Ile Gly Gly Pro Gly Leu Ser Ala Gly Val

1555 AGG TTC CGC AAG GAT GTA CCA AGT GGA GGA CTT GCA AAC GTA 1596 Arg Phe Arg Lys Asp Val Pro Ser Gly Gly Leu Ala Asn Val

5

1597 GCA GCA ACT GTG ATG AAT CTT CAT GGG TTT GTG GCT CCT GAG 1638 Ala Ala Thr Val Met Asn Leu His Gly Phe Val Ala Pro Glu

1639 GAC TAC GAG ACT ACT CTG ATC GAA GTT GTT GAG TAA 1674 Asp Tyr Glu Thr Thr Leu Ile Glu Val Val Glu *

10

ANGABEN ZU SEQ ID NO: 103

- (i) SEQUENZKENNZEICHEN:
- (A) LÄNGE: 21 15
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

- (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 103:

Met Gly Ser Ser Gly Phe Ser Trp Lys Leu Ala Asp His Pro Lys Leu 25 1 5 10 15

Pro Lys Asn Lys Leu

20

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 14

-70-

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 5 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 104:

Asp Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys Ile 10₁ 5 10

ANGABEN ZU SEQ ID NO: 105

- (i) SEQUENZKENNZEICHEN:
- (A) LÄNGE: 25 15
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

- (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 105:

Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Asn Gly Ala Pro Asp His 25 1 10 15

Trp Arg Leu Val Arg Ala His Gly Thr 20 25

30 ANGABEN ZU SEQ ID NO: 106

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 19

					-71-		-						
(1	B) ART: p	rotein											
(ii) ART DES MOLEKÜLS: peptide													
(iii) HYPOTHETISCH: nein													
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus													
5 (vi) URSPÜNGLICHE HERKUNFT:													
(A) ORGANISMUS: Artemisia vulgaris													
(C) ENTWICKLUNGSSTADIUM: Pollen													
(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 106:													
Leu Pro	Thr Glu	Asp Ası) Met	G1 y	Asn	Ser	Glu	Val	Glv	His	Asn	Ala	
10 ₁		5				10			- •		15		
Leu Gly	Δla												
ceu uiy	7,10												
15 ANG AD		0 m 110											
	EN ZU SE	-											
• • • • • • • • • • • • • • • • • • • •	ENZKEN		EN:										
•	A) LÄNGE												
·	3) ART: pi			4.									
20 (iii) HYP	DES MOL			ae									
	DES FRA			`armi	ana b	: C	Torm						
* *	PÜNGLIC				iius u	115 C-	I CI III	iiius					
` '	A) ORGAN				sailos	rie.							
`	C) ENTWI						_						
25 (vii) SEQ													
23 (VII) SEQ	OENLDE	SCHREI	טאנטפו	J.3E.	ųω	INO:	107:						
Gly Arg	Ile Tyr	Glu Asp	Glu	Gly	Phe	Asn	Tyr	Ile	Lys	Glu	Ser	Phe	
1		5				10			-		15		

Ala Thr Asn Thr
30 20

-72-

ANGABEN ZU SEQ ID NO: 108

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12
 - (B) ART: protein
- 5 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 108:

Met Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln
1 5 10

15

ANGABEN ZU SEQ ID NO: 109

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12
 - (B) ART: protein
- 20 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- ²⁵ (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 109:

Gly Ala Ser Glu Arg Gly Ala Lys Lys Ile Arg Val 1 5 10

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13

-73-

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 5 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 110:

Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val 10₁ 5 10

ANGABEN ZU SEQ ID NO: 111

(i) SEQUENZKENNZEICHEN:

15

- (A) LÄNGE: 10
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

- (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 111:

Ala Ser Leu Arg Ser Lys Gly Ile Asp Ala 25 1 10

ANGABEN ZU SEQ ID NO: 112

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 19

30

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide

-74-

- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- 5 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 112:

10 Trp Glu Val

ANGABEN ZU SEQ ID NO: 113

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 9

15 (A) LAI

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

20

- (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 113:

Glu Ala Pro His Lys Phe Lys Asn Val $25^{\,1}$

ANGABEN ZU SEQ ID NO: 114

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 16

30

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide

PCT/AT96/00141 WO 97/05258

-75-

```
(iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Artemisia vulgaris
        (C) ENTWICKLUNGSSTADIUM: Pollen
 5
  (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 114:
  Ile Lys Thr Leu Arg Gln Ala Pro Gly Ala Asn Asp Gln Tyr Leu Pro
  1
                                       10
                                                           15
10
  ANGABEN ZU SEQ ID NO: 115
  (i) SEQUENZKENNZEICHEN:
        (A) LÄNGE: 7
        (B) ART: protein
15 (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Artemisia vulgaris
        (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 115:
  Asp Asp Ser Gly Thr Pro Val
  1
                   5
25
  ANGABEN ZU SEQ ID NO: 116
  (i) SEQUENZKENNZEICHEN:
        (A) LÄNGE: 7
        (B) ART: protein
```

(ii) ART DES MOLEKÜLS: peptide

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(iii) HYPOTHETISCH: nein

-76-

- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 116:

5 Asn Phe Arg Ala Asp Arg Met 1 5

ANGABEN ZU SEQ ID NO: 117

- 10 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 39
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 15 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 117:
- 20 Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp Arg Val Arg Phe Pro 1 5 10 15

Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu 20 25 30

25 Pro Asn His Tyr Leu Val Ser 35

- 30 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 18
 - (B) ART: protein

-77-

	(ii)	ART	DES	MO	LEKU	ÜLS:	pept	ide								
	(iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus															
	(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus															
	(vi)	URS	PÜN	GLIC	HE	HER	KUN	FT:								
5		(/	A) Ol	RGAI	NISM	IUS:	Arte	misia	vulg	aris						
		(0	C) EN	(WTV	ICKI	UNC	3SST	`ADI	UM:	Polle	n					
	(vii)	SEC	UEN	IZBE	SCH	REI	BUN	G:SE	Q ID	NO:	118:					
	_	Leu	Ile	Asp		Thr	Ser	Gly	Glu		Leu	Val	His	Asn		Val
10	1				5					10					15	
••	Arg	Thr														
	3															
	ANC	GABI	EN Z	U SE	Q ID	NO	: 119									
15	(i) S	EQU	ENZ	KEN	NZE	ICHI	EN:									
13		(/	A) LÄ	NGE	E: 46											
		(E	3) AR	tT: pi	roteir	1										
	(ii) A	ART	DES	MOI	EKÜ	JLS:	pepti	ide								
	(iii) I	HYP	OTH	ETIS	CH:	nein										
	(v) A	ART :	DES	FRA	GME	ENTS	: N -7	Fermi	inus t	ois C-	Term	ninus				
20	(vi) l	URS	PÜN	GLIC	HE I	HERI	KUN	FT:								
		(A	A) OF	(GA)	NISM	IUS:	Arte	misia	vulga	aris						
		((C) EN	ITWI	CKL	UNG	SST	ADI	JM: I	Polle	n					
	(vii)	SEQ	UEN	ZBE	SCH	REIE	BUNG	G:SE	QID	NO:	119:					
		_	_				_									
25		Trp	Asn	Gly		Arg	Ser	Gly	Tyr		Asn	Ser	Glu	Leu		Glu
	1				5					10					15	
	Tyr	Val	Glu	Пe	Pro	Ser	Asp	Ser	Gly	Ile	Thr	Phe	Asn	Val	Lvs	Pro
				20			•		25					30	,	
30	Lys	Met	Lys	Ala	Leu	Glu	Пe	Gly	Glu	Lys	Thr	Arg	Asp	Ala		
			35										45			

-78-

ANGABEN ZU SEQ ID NO: 120

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 24
 - (B) ART: protein
- 5 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 120:

Ser Gly Lys Phe Asp Gln Val Arg Val Asn Ile Pro Asn Gly Asp Met

1 10 15

15 Val Gly His Thr Gly Asp Val Glu

20

ANGABEN ZU SEQ ID NO: 121

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
- ²⁰ (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- 25 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 121:

Lys Ala Ala Asp Glu Ala Val 1 5

30

-79-

```
(i) SEQUENZKENNZEICHEN:
```

(A) LÄNGE: 25

(B) ART: protein

- (ii) ART DES MOLEKÜLS: peptide
- 5 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 122:

Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Lys Gly

10
15

Glu Pro Leu Leu Lys Asp Gly Glu Val
20 25

ANGABEN ZU SEQ ID NO: 123

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
- 20 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
- 25 (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 123:

Leu Thr Ser His Thr Leu Gln Pro 1 5 30

-80-

ANGABEN ZU SEQ ID NO: 124

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
- 5 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 124:

Gly Val Arg Phe Arg Lys Asp Val Pro Ser Gly Gly Leu
1 5 10

15

ANGABEN ZU SEQ ID NO: 125

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- ²⁵ (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 125:

Val Ala Pro Glu Asp Tyr Glu Thr Thr Leu

1 5 10

30

ANGABEN ZU SEQ ID NO: 126

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 5
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 5 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 126:

ANGABEN ZU SEQ ID NO: 127

- 15 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 16
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 127:

- (i) SEQUENZKENNZEICHEN:
- (A) LÄNGE: 7
 - (B) ART: protein

- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
- 5 (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 128:

Asp His Trp Arg Leu Val Arg 1 5

ANGABEN ZU SEQ ID NO: 129

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10
- 15 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
- (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 129:

Phe Ala Gln Gly Ala Lys Leu Val Asp Gln
1 5 10

25

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 19
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein

- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Artemisia vulgaris (C) ENTWICKLUNGSSTADIUM: Pollen 5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 130: Glu Ala Pro His Lys Phe Lys Asn Val Val Glu Ala Ile Lys Thr Leu 1 10 15 Arg Gln Ala 10 **ANGABEN ZU SEQ ID NO: 131** (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 10 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Artemisia vulgaris 20 (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 131: Arg Thr Phe Ala Cys Ser Glu Thr Val Lys 1 5 10 25 **ANGABEN ZU SEQ ID NO: 132** (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 8 (B) ART: protein 30 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein

- -84-(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Artemisia vulgaris (C) ENTWICKLUNGSSTADIUM: Pollen 5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 132: Ser Glu Leu Glu Glu Tyr Val Glu 1 5 10 ANGABEN ZU SEQ ID NO: 133 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 14 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide 15 (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Artemisia vulgaris (C) ENTWICKLUNGSSTADIUM: Pollen 20 (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 133: Val Lys Met Ile Leu Asp Ala Val Glu Gln Val Gly Gly Ile 1 5 10 25 ANGABEN ZU SEQ ID NO: 134 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 8 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:

PCT/AT96/00141

-85-

- (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 134:

Gly Gly Leu Ala Asn Val Ala Ala 5

ANGABEN ZU SEQ ID NO: 135

- (i) SEQUENZKENNZEICHEN:
- 10 (A) LÄNGE: 9
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 15 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 135:

Asn Leu His Gly Phe Val Ala Pro Glu 20 1 5

- (i) SEQUENZKENNZEICHEN:
- (A) LÄNGE: 1683 Basenpaare / 560 Aminosäurereste 25
 - (B) ART: Nukleinsäure / protein
 - (C) STRANGFORM:ds
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: cDNA zu mRNA / protein
- (iii) HYPOTHETISCH: nein 30
 - (iv) ANTISENSE: nein
 - (v) ART DES FRAGMENTS: Gesamtsequenz

-86-

	(vi) URSPÜNGLICHE HERKUNFT:															
	(A) ORGANISMUS: Artemisia vulgaris															
	(C) ENTWICKLUNGSSTADIUM: Pollen															
	(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 136:															
5	5															
		4-0			TO.											
	1							AAA Lys								42
		HEL	uiy	261	261	עום	АЗР	Lys	7 111	1 111	пр	Lys	Leu	Ald	ASP	
	43	CAC	CCA	AAA	СТА	CCA	AAA	GGA	AAA	ATG	ATC	GCG	GTT	GTT	GTT	84
10		His	Pro	Lys	Leu	Pro	Lys	Gly	Lys	Met	Ile	Ala	Val	Val	Val	
	85							GCT								126
		Leu	ASP	ыу	тгр	ыу	GIU	Ala	Ser	Pro	Asp	Lys	iyr	Asn	Lys	
	127	ATC	CAT	GTT	GCC	CAA	ACA	CCC	GTC	ATG	TAT	тст	CTT	AAA	AAC	168
15		Ile	His	Val	Ala	61n	Thr	Pro	Val	Met	Tyr	Ser	Leu	Lys	Asn	
	169							AGA								210
		Ser	Ala	Pro	Asp	His	irp	Arg	Leu	Val	Arg	Ala	His	Gly	Thr	
	211	GCT	GTG	GGG	CTT	CCC	ACA	GAC	GAT	GAC	ATG	GGA	AAC	AGC	GAA	252
20								Asp								
	253							GGA								294
		Val	Gly	His	Asn	Ala	Leu	Gly	Ala	Gly	Arg	He	Tyr	Ala	Gln	
	295	GGT	GCA	ΔΔΔ	CTT	GTG	GAT	CTT	GCT	СТТ	GCC	тст	CCV	ΔAG	ΔΤΔ	336
25	230							Leu								330
23		-					•						- 3			
	337	TAT	GAC	GAT	GAA	GGT	TTT	AAT	TAC	ATT	AAG	GAA	TCT	TTT	GCA	378
		Tyr	Asp	Asp	Glu	Gly	Phe	Asn	Tyr	He	Lys	G1 u	Ser	Phe	Ala	
	270	A A T	A A T	A C A	TTO	C 4 C	CTC		00.	***		• • • •		000	007	400
30	3/9							ATT Ile								420
JU									<u> </u>	u	.,	J-,	P	٠, ٦	٠.,	

421 GTG CAC TCT CGC CTT GAT CAG TTA CAG CTG TTG CTC AAA GGT 462

Val His Ser Arg Leu Asp Gln Leu Gln Leu Leu Leu Lys Gly 463 GCT AGT GAA CGT GGT GCC AAG AAG ATC CGT GTC CAC GTA CTT 504 Ala Ser Glu Arg Gly Ala Lys Lys Ile Arg Val His Val Leu 5 505 ACT GAT GGC CGT GAT GTT TTG GAT GGT TCA AGT GTA GGC TTT 546 Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val Gly Phe 547 GCA GAA ACA CTT GAA AAG GAC CTT GCA GAC CTA CGT AGC AAA 588 Ala Glu Thr Leu Glu Lys Asp Leu Ala Asp Leu Arg Ser Lys 10 589 GGT ATA GAT GCT CAG GTT GCT TCT GGT GGA GGT CGC ATG TAT 630 Gly Ile Asp Ala Gln Val Ala Ser Gly Gly Gly Arg Met Tyr 631 GTC ACC ATG GAT CGT TAT GAG AAT GAT TGG GAT GTT GTG AAA 672 Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Asp Val Val Lys 15 673 CGT GGT TGG GAT GCT CAG GTG CTT GGT GAA GCC CCA CAC AAA 714 Arg Gly Trp Asp Ala Gln Val Leu Gly Glu Ala Pro His Lys 715 TTC AAG AGT GCT GTT GAG GCT ATC AAG AAG CTA AGG GAA GCT 756 Phe Lys Ser Ala Val Glu Ala Ile Lys Lys Leu Arg Glu Ala 757 CCA AAT GCT AAT GAT CAG TAC TTA CCC CCA TTT GTG ATT GTT 798 20 Pro Asn Ala Asn Asp Gln Tyr Leu Pro Pro Phe Val Ile Val 799 GAT GAG AGT GGG AAG CCT GTG GGT CCC ATA ATG GAC GGT GAT 840 Asp Glu Ser Gly Lys Pro Val Gly Pro Ile Met Asp Gly Asp 841 GCT GTT GTC ACA TTC AAC TTC CGA GCA GAT CGA ATG ACA ATC 882 25 Ala Val Val Thr Phe Asn Phe Arg Ala Asp Arg Met Thr Ile 883 CTT GCC CAG GCT CTT GAG TAT GAG AAG TTT GAT AAA TTT GAC 924 Leu Ala Gln Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp 925 AGG GTG CGG TTC CCT AAA ATC CGC TAT GCT GGA ATG CTT CAA 966 30 Arg Val Arg Phe Pro Lys Ile Arg Tyr Ala Gly Met Leu Gln 967 TAT GAT GGG GAG TTG AAG CTA CCA AGT CGT TAC CTG GTT TCT

Tyr Asp Gly Glu Leu Lys Leu Pro Ser Arg Tyr Leu Val Ser

- Pro Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Asn
- 5 1051 AAT GGT ATC CGC ACC TTT GCT TGT AGT GAA ACA GTA AAA TTT 1092 Asn Gly Ile Arg Thr Phe Ala Cys Ser Glu Thr Val Lys Phe
 - 1093 GGT CAT GTT ACC TTC TTT TGG AAT GGG AAC CGC TCT GGA TAT 1134
 Gly His Val Thr Phe Phe Trp Asn Gly Asn Arg Ser Gly Tyr
- 10 1135 TTT AAT TCA GAG TTG GAG GAA TAT GTA GAA ATT CCA AGT GAT 1176

 Phe Asn Ser Glu Leu Glu Glu Tyr Val Glu Ile Pro Ser Asp
 - 1177 AAT GGA ATT TCC TTC AAT GTC CAA CCA AAG ATG AAG GCT TTG 1218
 Asn Gly Ile Ser Phe Asn Val Gln Pro Lys Met Lys Ala Leu
- 15 1219 GAG ATT GGT GAG AAG GCC CGT GAT GCA ATT CTC AGT CGC AAA 1260 Glu Ile Gly Glu Lys Ala Arg Asp Ala Ile Leu Ser Arg Lys
- 1261 TTT GAC CAG GTA AGG GTG AAT ATA CCA AAT GGT GAC ATG GTT 1302
 Phe Asp Gln Val Arg Val Asn Ile Pro Asn Gly Asp Met Val
 1303 GGG CAT ACC GGT GAC ATT GAG GCA ACA GTT GTG GCA TGC AAG 1344
 20 Gly His Thr Gly Asp Ile Glu Ala Thr Val Val Ala Cys Lys
 - 1345 GCT GCT GAT GCT GTT AAG ATG ATC CTT GAT GCA ATA AAG 1386 Ala Ala Asp Asp Ala Val Lys Met Ile Leu Asp Ala Ile Lys
- 25 1387 GAA GTA GGT GGA ATA TAT GTG GTG ACT GCG GAT CAT GGT AAT 1428
 Glu Val Gly Gly Ile Tyr Val Val Thr Ala Asp His Gly Asn
 - 1429 GCA GAG GAC ATG GTG AAG AGA AAC AAG GAG GGA GAG CCC CTT 1470
 Ala Glu Asp Met Val Lys Arg Asn Lys Glu Gly Glu Pro Leu
- 30 1471 CTT GAT AAG GAT GGC AAA GTT CAG ATC CTA ACC TCG CAC ACT 1512 Leu Asp Lys Asp Gly Lys Val Gln Ile Leu Thr Ser His Thr

-89-

1513	CTG	CAG	CCA	GTA	CCG	GTT	GCA	ATT	GGA	GGT	CCT	GGG	TTA	GCA	1554
	Leu	61n	Pro	Val	Pro	Val	Ala	He	Gly	Gly	Pro	Gly	Leu	Ala	

1555 GCA GGT GTG AAA TTC CGC AAG GAT GTG CCA AAT GGT GGA CTA 1596 Ala Gly Val Lys Phe Arg Lys Asp Val Pro Asn Gly Gly Leu

5

1597 GCA AAT GTA GCA GCA ACA GTG ATG AAT CTG CAT GGT TTT GTG 1638 Ala Asn Val Ala Ala Thr Val Met Asn Leu His Gly Phe Val

1639 GCT CCT GAT GAC TAT GAG ACA ACC CTT ATT GAA GTT GTT GAT 1680 Ala Pro Asp Asp Tyr Glu Thr Thr Leu Ile Glu Val Val Asp

10

1681 TAA 1683

ANGABEN ZU SEQ ID NO: 137

15 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 23

(B) ART: protein

- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 20 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 137:

Met Gly Ser Ser Gly Asp Lys Thr Thr Trp Lys Leu Ala Asp His Pro 5 1 10 15

Lys Leu Pro Lys Gly Lys Met

20

30

-90-

(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 14 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide 5 (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Artemisia vulgaris (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 138: Asp Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys Ile 10 15 ANGABEN ZU SEQ ID NO: 139 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 18 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Artemisia vulgaris (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 139: 25 Ser Leu Lys Asn Ser Ala Pro Asp His Trp Arg Leu Val Arg Ala His 1 5 10 15 Gly Thr 30 ANGABEN ZU SEQ ID NO: 140

-91-

(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 19 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide 5 (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Artemisia vulgaris (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 140: Leu Pro Thr Asp Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala 1 10 15 Leu Gly Ala 15 ANGABEN ZU SEQ ID NO: 141 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 21 (B) ART: protein ²⁰ (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Artemisia vulgaris 25 (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 141: Gly Lys Ile Tyr Asp Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe

10

15

30 Ala Asn Asn Thr Leu

1

5

ANGABEN ZU SEQ ID NO: 142 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 13 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Artemisia vulgaris 10 (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 142: Met Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Leu 1 10 15 ANGABEN ZU SEQ ID NO: 143 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 12 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Artemisia vulgaris 25 (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 143: Gly Ala Ser Glu Arg Gly Ala Lys Lys Ile Arg Val 1 5 10 30

WO 97/05258

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 5 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 144:

Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val
1 5 10

15 ANGABEN ZU SEQ ID NO: 145

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 17
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 145:

25

Glu Thr Leu Glu Lys Asp Leu Ala Asp Leu Arg Ser Lys Gly Ile Asp

1 10 15

Ala

30

ANGABEN ZU SEQ ID NO: 146

(i) SEQUENZKENNZEICHEN:

-94- .

(A) LÄNGE: 26

(B) ART: protein

- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 5 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 146:

Trp Asp Val Lys Arg Gly Trp Asp Ala
20 25

15

ANGABEN ZU SEQ ID NO: 147

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 9
 - (B) ART: protein
- 20 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- 25 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 147:

Glu Ala Pro His Lys Phe Lys Ser Ala 1 5

30

ANGABEN ZU SEQ ID NO: 148

(i) SEQUENZKENNZEICHEN:

-95-

- (A) LÄNGE: 16
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 5 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 148:
- 10 Ile Lys Lys Leu Arg Glu Ala Pro Asn Ala Asn Asp Gln Tyr Leu Pro
 1 5 10 15

ANGABEN ZU SEQ ID NO: 149

- 15 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 20 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 149:
- Asp Glu Ser Gly Lys Pro Val

- 30 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein

-96-

```
(ii) ART DES MOLEKÜLS: peptide
   (iii) HYPOTHETISCH: nein
   (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
   (vi) URSPÜNGLICHE HERKUNFT:
         (A) ORGANISMUS: Artemisia vulgaris
 5
         (C) ENTWICKLUNGSSTADIUM: Pollen
   (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 150:
   Asn Phe Arg Ala Asp Arg Met
   1
                    5
10
   ANGABEN ZU SEQ ID NO: 151
   (i) SEQUENZKENNZEICHEN:
         (A) LÄNGE: 39
         (B) ART: protein
15
  (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Artemisia vulgaris
20
        (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 151:
  Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp Arg Val Arg Phe Pro
  1
                                        10
                                                            15
25
  Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu
               20
                                   25
                                                        30
  Pro Ser Arg Tyr Leu Val Ser
           35
30
```

-97-

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 17

(B) ART: protein

- (ii) ART DES MOLEKÜLS: peptide
- 5 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 152:

Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Asn Asn Gly Ile
1 5 10 15

Arg

15

ANGABEN ZU SEQ ID NO: 153

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 6
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 20 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 25 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 153:

Ser Glu Thr Val Lys Phe 1 5

30

	-98-															
	(i) S	SEQU	JENZ	KEN	INZE	EICH	EN:									
	(A) LÄNGE: 72															
		(B) Al	RT: p	rotei	n										
	(ii) ART DES MOLEKÜLS: peptide															
5	5 (iii) HYPOTHETISCH: nein															
	(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus															
	(vi) URSPÜNGLICHE HERKUNFT:															
(A) ORGANISMUS: Artemisia vulgaris																
	(C) ENTWICKLUNGSSTADIUM: Pollen															
(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 154:																
	Phe	Trp	Asn	Gly	Asn	Arg	Ser	G1 y	Tyr	Phe	Asn	Ser	G 1u	Leu	Glu	Glu
	1				5					10					15	
	Tvr	V = 1	G1	110	Dno	C	A	A	C1	T1 -	C	DL -			0.3	
		¥	Giu	20	Pro	3er	ASP	ASN	25	Ile	Ser	Phe	Asn	30	Gin	Pro
15														30		
	Lys	Met	Lys	Ala	Leu	G1 u	Пe	Gly	Glu	Lys	Ala	Arg	Asp	Ala	Пe	Leu
			- 35					40					45			
	Sar	Ara	Lve	Pho	۸۶۵	Gl n	V - 1	۸na	V - 1	Asn	11.	D	A	C1	A	M - A
		50	Lys	riie	vsh	am	55	Arg	Vai	ASII	116	60	ASN	ыу	ASP	met
20																
	۷a٦	Gly	His	Thr	Gly	Asp	Пe	Glu								
	65					70										
25	ANC	SABI	EN Z	U S E	QID	NO:	155									
	(i) S	EQU	ENZ	KEN	NZE	ICHE	EN:									
		(A	LÄ	NGE	: 2 6											
		(E) AR	T: pr	otein	l										
	(ii) A	RT I	DES	MOL	EKÜ	JLS:	pepti	de								
30	30 (iii) HYPOTHETISCH: nein															

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

-99-

- (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 155:

5 Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Glu Gly
1 10 15

Glu Pro Leu Leu Asp Lys Asp Gly Lys Val 20 25

10

ANGABEN ZU SEQ ID NO: 156

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- ²⁰ (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 156:

Leu Thr Ser His Thr Leu Gln Pro 1 5

- ²⁵ ANGABEN ZU SEQ ID NO: 157
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 30 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:

-100-

- (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 157:

5 Val Lys Phe Arg Lys Asp Val Pro Asn Gly Gly Leu
5 10

ANGABEN ZU SEQ ID NO: 158

- (i) SEQUENZKENNZEICHEN:
- 10 (A) LÄNGE: 10
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 15 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 158:

Val Ala Pro Asp Asp Tyr Glu Thr Thr Leu 20 1 5 10

- (i) SEQUENZKENNZEICHEN:
- 25
- (A) LÄNGE: 6
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 30 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen

-101-

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 159:

Leu Ala Asp His Pro Lys 1 5

5

ANGABEN ZU SEQ ID NO: 160

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 11
 - (B) ART: protein
- 10 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- 15 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 160:

Val Val Val Leu Asp Gly Trp Gly Glu Ala Ser 1 5 10

20

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
- 25 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 161:

-102-

Asp His Trp Arg Leu Val Arg
1 5

ANGABEN ZU SEQ ID NO: 162

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 162:

Phe Ala Glu Thr Leu Glu Lys Asp Leu Ala
1 5 10

ANGABEN ZU SEQ ID NO: 163

- 20 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 6
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 163:

Asn Asp Trp Asp Val Val

5

ANGABEN ZU SEQ ID NO: 164
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 21

(B) ART: protein

- (A) LANGE. 2
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 164:

Glu Ala Pro His Lys Phe Lys Ser Ala Val Glu Ala Ile Lys Lys Leu 1 5 10 15

15

10

Arg Glu Ala Pro Asn

20

ANGABEN ZU SEQ ID NO: 165

- ²⁰ (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 5
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 165:

30 Lys Phe Asp Arg Val 1 5

-104-

```
ANGABEN ZU SEQ ID NO: 166
```

- (i) SEQUENZKENNZEICHEN:
- 5 (A) LÄNGE: 14
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 166:

Asn Asn Gly Ile Arg Thr Phe Ala Cys Ser Glu Thr Val Lys
15 1 5 10

ANGABEN ZU SEQ ID NO: 167

- (i) SEQUENZKENNZEICHEN:
- (A) LÄNGE: 8
- 20
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
- 25
- (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 167:

Ser Glu Leu Glu Glu Tyr Val Glu $30^{\,1}$

-105-

ANGABEN ZU SEQ ID NO: 168

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 16
 - (B) ART: protein
- 5 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 168:

Asp Asp Ala Val Lys Met Ile Leu Asp Ala Ile Lys Glu Val Gly Gly

1 10 15

15

ANGABEN ZU SEQ ID NO: 169

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- ²⁵ (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 169:

Gly Gly Leu Ala Asn Val Ala Ala 1 5

30

ANGABEN ZU SEQ ID NO: 170

(i) SEQUENZKENNZEICHEN:

-106-

- (A) LÄNGE: 9
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 5 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 170:
- 10 Asn Leu His Gly Phe Val Ala Pro Asp

15

20

25

Literaturzitate:

- 5 1. Jarolim, E., Tejkl, M., Rohac, M., Schlerka, G., Scheiner, O., Kraft, D., Breitenbach, M., Rumpold, H. (1989) Monoclonal antibodies against birch pollen allergens: Characterization by immunoblotting and use for single-step affinity purification of the major allergen Bet v 1. Int. Arch. Allergy Appl. Immunol. 90: 54-60.
- 10 2. Fothergill-Gilmore, L., Watson, H. (1989) Adv. Enzymol. 62: 227-313.
 - 3. Graña, X., de Lecea, L., El-Maghrabi, M.R., Ureña, J.M., Caellas, C., Carreras,
- J., Puigdomenech, P., Pilkis, S.J., Climent, F. (1992) Cloning and sequencing of a cDNA encoding 2,3-bisphosphoglycerate-independent phosphoglycerate mutase from 15 maize. Possible relationship to the alkaline phosphatase family. J. Biol. Chem. 267: 12797-12803.
- Huang, Y., Blakeley, S.D., McAleese, S.M., Fothergill-Gilmore, L.A., Dennis,
 D.T. (1993) Higher-plant cofactor-independent phosphoglyceromutase: purification,
 molecular characterization and expression. Plant Mol. Biol. 23: 1039-1053.
 - 5. Aalberse, R.C., Kosthe, V., Clemens, J.G.J. (1981) Immunoglobulin E antibodies that crossreact with vegetable foods, pollen, and hymenoptera venom. J. Allergy Clin. Immunol 68: 356-364.

- 6. Eriksson, N.E., Formgren, H., Svenonius, E. (1982) Food hypersensitivity in patients with pollen allergy. Allergy 37: 437-443.
- 7. Halmepuro, L., Vuontela, K., Kalimo, K., Björksten, F. (1984) Cross-reactivity of 30 IgE antibodies with allergens in birch pollen, fruits and vegetables. Int. Arch. Allergy Appl. Immunol. 74: 235-240.

-108-

8. Valenta, R., Duchene, M., Pettenburger, K., Sillaber, C., Valent, P., Bettelheim, P., Breitenbach, M., Rumpold, H., Kraft, D., Scheiner, O. (1991) Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science 253:557-560.

- 9. Valenta, R., Duchene, M., Ebner, C., Valent, P., Sillaber, C., Deviller, P., Ferreira, F., Tejkl, M., Edelmann, H., Kraft, D., Scheiner, O. (1993) Profilins constitute a novel family of functional plant pan-allergens. J. Exp. Med. 175:377-385.
- 10 10. Breiteneder, H., Pettenburger, K., Bito, A., Valenta, R., Kraft, D., Rumpold, H., Scheiner, O., Breitenbach, M. (1989) The gene coding for the major birch pollen allergen, Bet v I, is highly homologous to a pea disease resistance response gene. EMBO J. 8:1935-1938.
- 15 11. Breiteneder, H., Ferreira, F., Reikerstorfer, A., Duchene, M., Valenta, R., Hoffmann-Sommergruber, K., Ebner, C., Breitenbach, M., Kraft, D., Scheiner, O. (1992) Complementary DNA cloning and expression in Escherichia coli of Aln g I, the major allergen in pollen of alder (Alnus glutinosa). J. Allergy Clin. Immunol. 90:909-917.
- 20 12. Breiteneder, H., Ferreira, F., Hoffmann-Sommergruber, K., Ebner, C., Breitenbach, M., Rumpold, H., Kraft, D., Scheiner, O. (1993) Four recombinant isoforms of Cor a I, the major allergen of hazel pollen, show different IgE-binding properties. Eur. J. Biochem. 212:355-362.
- 25 13. Larsen, J.N., Stroman, P., Ipsen, H. (1992) PCR based cloning and sequencing of isogenes encoding the tree pollen major allergen Car b I from Carpinus betulus, hornbeam. Mol. Immunol. 29:703-711.
- Ebner, C., Hirschwehr, R., Bauer, L., Breiteneder, H., Valenta, R., Ebner, H.,
 Kraft, D., Scheiner, O. (1995) Identification of allergens in fruits and vegetables: IgE cross-reactivities with the important birch pollen allergens Bet v 1 and Bet v 2 (birch profilin). J. Allergy Clin. Immunol. 95: 962-969.

15. Valenta, R., Vrtala, S., Ebner, C., Kraft, D., Scheiner, O. (1992) Diagnosis f grass pollen allergy with recombinant timothy grass (Phleum pratense) pollen allergens. Int. Arch. Allergy Immunol. 97: 287-294.

5

- 16. Van Ree, R., Voitenko, V., Van Leeuwen, W.A., Aalberse, R.C. (1992) Profilin is a crss-reactive allergen in pollen and vegetable food. Int. Arch. Allergy Immunol. 98: 97-104.
- 10 17. Spitzauer, S., Schweiger, C., Sperr, W.R., Pandjaitan, B., Valent, P., Mühl, S., Ebner, C., Scheiner, O., Kraft, D., Rumpold, H., Valenta, R. (1993) Molecular characterization of dog albumin as a cross-reactive allergen. J. Allergy Clin Immunol. 93: 614-627.
- 15 18. Sanger, F., Nicklen, S., Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5468.
 - 19. Feinberg, A.P. and Vogelstein, B. (1984) A technique for radiolabeling DNA restriction Endonuclease fragments to high specific activity. Anal. Biochem. 137:266-267.

- 20. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular Cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, New York, 2nd ed.
- Margalit, H., Spogue, J.L., Cornette, J.L., Cease, K.B., Delisi, C., Berzofsky,
 J.A. (1987) Prediction of immunodominant helper T cell antigenic sites from the primary sequence. (1987) J. Immunol. 138: 2213.

WO 97/05258

Patentansprüche:

- 1. Rekombinante DNA Moleküle, dadurch gekennzeichnet, daß sie eine Nukleinsäurese-5 quenz aufweisen, die mit den in Fig. 1, Fig. 7a,7b, Fig. 10a,10b dargestellten gesamten Sequenzen oder Teilbereichen derselben in homologer Weise übereinstimmen oder die durch Degeneration aus der in Fig. 1, Fig. 7a,7b, Fig. 10a,10b dargestellten Sequenzen ableitbar sind und für ein Polypeptid kodieren, das die Antigenität des Allergens "Kofaktor-unabhängige Phosphoglyceratmutase (E.C. 5.4.2.1.)" aus Birken-, Beifuß- oder Lieschgraspollen besitzt oder für ein Peptid, das mindestens ein Epitop dieser Allergene aufweist, sowie eine Nukleinsäuresequenz, die mit den genannten Nukleinsäuresequenzen unter den stringenten Bedingungen hybridisert, beispielsweise 1M Salz, 60°C und das Hybrid unter stringenten Waschbedingungen beispielsweise 2x 30min, 5x SSPE, 0,1% SDS bei 50°C stabil bleibt, insbesondere für die Kofaktor-unabhängige Phosphoglyceratmutase (E.C. 5.4.2.1.) des Pollens von Birke, Hasel, Erle, Eiche, Buche, Hainbuche und Olive, von Gräser, wie Phleum pratense. Lolium perenne, Poa pratensis, Secale cereale, von Unkräutern wie Beifuß sowie von pflanzlichen Nahrungsmitteln wie Apfel, Kartoffel, Banane, Kiwi, Sellerie. Karrotte, Birne, Kirsche, Pfirsich, Pflaume, Marille, Walnuß, Haselnuß, Erdnuß, Mandel, Pistazien, Pfeffer, Kümmel und Koriander.
- 20 2. Rekombinante DNA-Moleküle nach Anspruch 1, dadurch gekennzeichnet, daß sie eine Nukleinsäuresequenz aufweisen, die für ein Polypeptid kodiert, das als Antigen kreuzreaktiv mit der Kofaktor-unabhängigen Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Birken-, Lieschgras- oder Beifußpollen ist, insbesondere mit allen pflanzlichen Kofaktor-unabhängigen Phosphoglyzeratmutasen (E.C. 5.4.2.1.), die zu den in Fig. 1, Fig. 7a,7b, Fig. 10a, 25 10b gezeigten Sequenzen eine hohe Homologie aufweisen.
 - 3. Rekombinante DNA-Moleküle nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie funktionell mit einer Expressions-Kontrollsequenz zu einem Expressionskonstrukt verbunden sind.
- Wirtssystem, dadurch gekennzeichnet, daß es mit einem rekombinanten Expressionskonstrukt nach Patentanspruch 3 transformiert ist.

- 5. Aus inem DNA-Molekül nach Anspruch 1 oder 2 abgeleitetes rekombinantes oder synthetisches Protein oder Polypeptid, dadurch gekennzeichnet, daß es die Antigenität von Kofaktor-unabhängiger Phosphoglyzeratmutase (E.C. 5.4.2.1.) aus Birken-, Lieschgrasoder Beifußpollen oder zumindestens eines Epitops davon aufweist und eine Aminosäuresequenz besitz, die einer der in Fig. 1, Fig. 7a,7b, Fig. 10a,10b gezeigten Sequenzen im Ganzen oder in Teilen entspricht.
- 6. Rekombinantes oder synthetisches Protein oder ein Polypeptid nach Patentanspruch 4 oder 5, dadurch gekennzeichnet, daß es ein Fusionsprodukt darstellt, das die Antigenität der Kofaktor-unabhängigen Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Birken-, Lieschgras- oder Beifußpollen oder zumindestens eines Epitops davon aufweist und einen zusätzlichen Polypeptidanteil aufweist, wobei das gesamte Fusionsprodukt von der DNA eines Expressionskonstrukts gemäß Anspruch 5 kodiert wird.
- 7. Rekombinantes oder synthetisches Protein oder Polypeptid nach Patentanspruch 6, dadurch gekennzeichnet, daß der besagte zusätzliche Polypeptidanteil beta-Galaktosidase, eine Teilsequenz der beta-Galaktosidase oder ein anderes zur Fusion geeignetes Polypeptid ist.
- 20 8. Diagnostisches oder therapeutisches Reagens, dadurch gekennzeichnet, daß es ein synthetisches Protein oder Polypeptid gemäß einem der Patentansprüche 5 bis 7 enthält.
- 9. Verfahren zum in vitro Nachweis der Allergie eines Patienten gegen Kofaktor-unabhängige Phosphoglyzeratmutase (E.C. 5.4.2.1.), dadurch gekennzeichnet, daß die Reaktion der IgE Antikörper im Serum des Patienten mit einem rekombinanten oder synthetischen Protein oder Polypeptid nach einem der Patentansprüche 7 bis 10 gemessen wird.
- 10. Verfahren zum in vitro Nachweis der zellulären Reaktion auf Kofaktor-unabhängige Phosphoglyceratmutase (E.C. 5.4.2.1.), dadurch gekennzeichnet, daß ein rekombinantes oder synthetisches Protein oder Polypeptid nach einem der Patentansprüche 5 bis 7 zur Stimulierung oder Hemmung der zellulären Reaktion eingesetzt wird.

1/48

Fig. 1:

cDNA Sequenz und abgeleitete Aminosäuresequenz von Kofaktor-unabhängiger Phosphoglyceratmutase 5 (E.C. 5.4.2.1.)

1	666	66 6	GAG	GCC	AAG	LLL	GAI	LAG	IAL	AAC	160	AIC	CAI	GIG	42
	Gly	Gly	Glu	δſΑ	Lys	Pro	Asp	Gln	Tyr	Asn	Cys	He	His	Val	
43						ATG								-	84
	Ala	Glu	Thr	Pro	Thr	Met	Asp	Ser	Leu	Lys	Gln	Gly	Ala	Pro	
85						GTT									126
	Glu	Lys	Irp	Arg	Leu	Val	Arg	Ala	His	Gly	Lys	Ala	Val	Gly	
127	СТТ	CCA	ACA	CAC	CAT	GAC	ATC	ccc	A A C	ACT	C A A	CTT	ССТ	CAC	168
127						Asp									100
	Leu	110	1 :11	Jiu	vah	nsh	nec	Uly	Maii	261	diu	Vai	uly	1113	
169	AAT	GCA	CTT	GGA	GCT	GGT	CGC	ATC	TTT	GCC	CAA	GGT	GCA	AAG	210
						Gly									
						- •	_					_ •			
211	CTT	GTT	GAC	TCT	GCT	CTT	GCC	TCT	GGA	AAA	ATT	TAT	GAA	GGA	252
	Leu	۷al	Asp	Ser	Ala	Leu	Ala	Ser	Gly	Lys	Пe	Tyr	Glu	G1 y	
253	GAA	GGT	TTT	AAG	TAC	ATA	AAG	GAA	TGT	TTT	GAA	AAT	GGC	ACA	294
	Glu	Gly	Phe	Lys	Tyr	Пe	Lys	Glu	Cys	Phe	Glu	Asn	Gly	Thr	
295	TTG	CAT	CTC	ATT	GGC	TTA	TTG	AGT	GAT	GGT	GGA	GTC	CAC	TCC	336
	Leu	His	Leu	Ile	Gly	Leu	Leu	Ser	Asp	Gly	Gly	Val	His	Ser	
337						CAG									378
	Arg	Leu	Asp	Gln	Leu	Gln	Leu	Leu	Leu	Lys	Gly	Ala	Ser	Glu	
276	207		•••												400
3/9						ATC									420
	Arg	61 y	Ala	Lys	Arg	Пe	Arg	Va!	His	He	Leu	ihr	Asp	61 y	

2/48

Fig. 1: Fortsetzung

421	CGT	GAT	GTT	TTG	GAT	GGT	TCA	AGT	GTA	GGA	TTT	GTT	GAA	ACT	462
	Arg	Asp	Val	Leu	Asp	Gly	Ser	Ser	Val	Gly	Phe	Val	Glu	Thr	
463	CTT	GAG	AAT	GAC	CTT	GCA	AAA	СТА	CGT	GAG	AAG	GGT	GTT	GAT	504
	Leu	Glu	Asn	Asp	Leu	Ala	Lys	Leu	Arg	Glu	Lys	Gly	Val	Asp	
505	GCA	CAG	ATT	GCA	TCT	GGT	GGT	GGT	CGC	ATG	TAT	GTC	ACA	ATG	546
	Ala	Gln	lle	Ala	Ser	Gly	Gly	Gly	Arg	Met	Tyr	Val	Thr	Met	
547				GAG											588
				Glu			·							•	
589				GTT											630
				Val											
631				GCT											672
				Ala									_		
673				TAC											714
716				Tyr									·		
/15				GTT											756
767				Val					·		·				
/5/				TTC											798
700				Phe											
/99				TAT											840
				Tyr				·	-		·	•			
841				ATC											882
000				Ile									•		
883				CTC											924
	to I U	Leu	LYS	Leu	rro	ser	HIS	lyr	Leu	val	6 I U	Pro	Pro	Glu	

3/48

Fig. 1:Fortsetzung

925	ATA	GAG	AGA	ACG	TCT	GGT	GAA	TAT	CTA	GTG	CAC	AAT	GGC	GTC	966
	Ile	Glu	Arg	Thr	Ser	Gly	Glu	Tyr	Leu	Val	His	Asn	Gly	Val	
967	CGT	ACT	TTT	GCT	TGC	AGT	GAG	ACT	GTC	AAA	TTT	GGT	CAT	GTC	1008
	Arg	Thr	Phe	Ala	Cys	Ser	Glu	Thr	Val	Lys	Phe	Gly	His	Val	
1009	ACT	TTC	TTC	TGG	AAT	GGA	AAC	CGC	TCT	GGA	TAT	TTC	AAT	TCA	1050
	Thr	Phe	Phe	Trp	Asn	Gly	Asn	Arg	Ser	Gly	Tyr	Phe	Asn	Ser	
1051	GAA	CTG	GAG	GAA	TAC	GTG	GAA	ATT	CCA	AGT	GAT	AGT	GGA	ATT	1092
	Glu	Leu	Glu	G1 u	Tyr	Val	61u	Ile	Pro	Ser	Asp	Ser	Gly	Ile	
1093	ACA	TTC	AAC	GTC	CAG	CCA	AAG	ATG	AAG	GCA	TTG	GAG	ATT	GCT	1134
	Thr	Phe	Asn	Val	Gln	Pro	Lys	Met	Lys	Ala	Leu	G1 u	Ile	Ala	
1135	GAA	AAA	ACG	AGA	GAT	GCT	ATA	CTT	AGC	GGA	AAA	TTT	GAC	CAG	1176
	G1 u	Lys	Thr	Arg	Asp	Ala	Ile	Leu	Ser	Gly	Lys	Phe	Asp	Gln	
1177	GTG	CGT	GTT	AAC	CTG	CCA	AAT	GGT	GAC	ATG	GTG	GGG	CAT	ACA	1218
	Val	Arg	Val	Asn	Leu	Pro	Asn	G1 y	Asp	Met	Val	Gly	His	Thr	
1219	GGT	GAT	ATT	GAG	GAC	ACA	GTT	GTG	GCT	TGC	AAG	GCT	GCT	GAT	1260
	Gly	Asp	He	Glu	Asp	Thr	Val	Va1	Ala	Cys	Lys	Ala	Ala	Asp	
1261	GAG	GCT	GAC	AAG	ATG	ATC	СТТ	GAT	GCA	ATA	GAG	CAA	GTG	GGT	1302
	G1 u	Ala	Asp	Lys	Met	Ilе	Leu	Asp	Ala	Пe	G 1u	G1n	۷a٦	Gly	
1303	GGA	ATT	TAT	GTT	GTT	ACT	GCG	GAT	CAT	GGG	AAT	GCT	GAG	GAC	1344
	Gly	Ile	Tyr	Val	Val	Thr	Ala	Asp	His	Gly	Asn	Ala	G1 u	Asp	
1345															1386
	Met	Val	Lys	Arg	Asn	Lys	Ser	Val	Gln	Pro	Leu	Leu	Asp	Lys	
1387	AAT	GGC	AAT	CTT	CAA	GTG	CTC	ACC	TCT	CAC	ACC	стс	CAA	CCA	1428
	Asn	Gly	Asn	Leu	Gln	۷a٦	Leu	Thr	Ser	His	Thr	Leu	Gln	Pro	

4/48

Fig. 1: Fortset	tzu	nq
-----------------	-----	----

1429	GTG	CCA	ATT	GCA	ATT	GGA	GGT	ССТ	GCA	TTG	GCA	AGT	GGT	GTC	1470
	۷a٦	Pro	Ile	Ala	Ile	Gly	Gly	Pro	Ala	Leu	Ala	Ser	Gly	Val	
1471	AGG	TTC	TGC	AAG	GAT	CTT	CCT	GAT	GGT	GGG	CTT	GCC	AAT	GTT	1512
	Arg	Phe	Cys	Lys	Asp	Leu	Pro	Asp	G1 y	Gly	Leu	Ala	Asn	۷al	
1513	GCT	GCA	ACT	GTG	ATC	AAT	CTA	CAT	GGG	TTT	GAG	GCT	CCT	AGT	1554
	Ala	Ala	Thr	Val	Пe	Asn	Leu	His	Gly	Phe	Glu	Ala	Pro	Ser	
1555	GAC	TAT	GAG	CCA	ACC	СТС	ATT	GAA	СТС	GTT	GAT	AAC	TAG		1593
	Asp	Tyr	Glu	Pro	Thr	Leu	Пe	G1 u	Leu	Val	Asp	Asn	*		

5/48

Fig.2:

Sequenzvergleich von PGM-i aus Birkenpollen (bvmut), Rhizinus (rcmut), Mais (zmmut) und Tabak (ntmut)

Plurality: 2.00 Threshold: 1.00 AveWeight 1.00 AveMatch 0.54 AvMisMatch -0.40

PRETTY of: mut.msf{*} July 22, 1995 19:13 ...

```
1
                                                                  50
mut.msf{bvmut}
               .....g GEAKPDQYNC IHVAETPtMD
mut.msf{rcmut} ...geFtWKL aDHPKLPKGK TIAmVVLDGW GEAKPDQYNC IHVAETPtMD
mut.msf{zmmut} MGSSGFsWtL pDHPKLPKGK sVAVVVLDGW GEAnPDQYNC IHVAqTPvMD
mut.msf{ntmut} MGSSGdaWKL kDHPKLPKGK TVAVIVLDGW GEAKPneFNa IHVAETPvMy
    Consensus
               ----- GEA-P---N- IHVA-TP-M-
               51
                                                                 100
mut.msf{bvmut}
               SLKQGAPEKW RLVrAHGKAV GLPTEDDMGN SEVGHNALGA GRIFAQGAKL
mut.msf{rcmut}
               SFKKtAPErW RLIKAHGTAV GLPTEDDMGN SEVGHNALGA GRIYAQGAKL
mut.msf{zmmut} SLKNGAPEKW RLVKAHGTAV GLPsDDDMGN SEVGHNALGA GRIFAQGAKL
mut.msf{ntmut}
               SLKNGAPEKW RLIKAHGNAV GLPTEDDMGN SEVGHNALGA GRIFAQGAKL
    Consensus S-K--APE-W RL--AHG-AV GLP--DDMGN SEVGHNALGA GRI-AQGAKL
               101
                                                                 150
mut.msf{bvmut} VDsALASGKI YEGEGFKYIK ECFEnGTLHL IGLLSDGGVH SRLDOLOLLL
mut.msf{rcmut}
               VDLALASGKI YEGEGFKYVK ECFDKGTLHL IGLLSDGGVH SRLDQLQLLL
mut.msf{zmmut}
               VDqALASGKI YDGDGFnYIK EsFEsGTLHL IGLLSDGGVH SRLDQLQLLL
mut.msf{ntmut} VDLALASGKI YEGEGFKYVK ECFEKGTLHL IGLLSDGGVH SRLDQvQLLL
    Consensus VD-ALASGKI Y-G-GF-Y-K E-F--GTLHL IGLLSDGGVH SRLDQ-QLLL
               151
                                                                 200
mut.msf{bvmut}
               KGAsErGAKR IRVHILTDGR DVLDGSSVGF VETLENDLAK LREKGVDAQI
mut.msf{rcmut}
               KGAaEhGAKR IRVHVLTDGR DViDGtSVGF aETLEKDLen LREKGVDAQV
mut.msf{zmmut}
               KGvsErGAKk IRVHILTDGR DVLDGSSIGF VETLENDLle LRaKGVDAQI
mut.msf{ntmut}
               KGAakhGAKR IRVHaLTDGR DVLDGSSVGF mETLENsLAg LREKGIDAQV
    Consensus KG----GAK- IRVH-LTDGR DV-DG-S-GF -ETLE--L-- LR-KG-DAO-
```

Fig. 2: Fortsetzung 6/48

	201				050
<pre>mut.msf{bvmut}</pre>		MDRYENDWEV	INDCHDVPA	CEARVUEUCA	250
mut.msf{rcmut}					
mut.msf{zmmut}		MDRY ENDWnV MDRY ENDWDV			
mut.msf{ntmut}		MDRYENDWDV			•
Consensus				•	-
Consensus	ASOUDINITYT	MDRYENDW-V	-KKOWUA-VL	GEAP-KFK	-EA-K-LK
•	251				, 300
mut.msf{bvmut}		FVIVDDNGKP	VGPIVDGDAV	VTINEDADDM	
mut.msf{rcmut}		FVIVDENGKP			
mut.msf{zmmut}		FVIVDDsGna			
mut.msf{ntmut}		FVIVDDSGNO			
Consensus		FVIVDG			
5656565	JQ.L.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V	VI THI KADKII	VFI-ARALLI-
	301				350
mut.msf{bvmut}	NFDKiDRVRf	PKIRYAGMLQ	YDGELKLPSH	YLVePPEIER	TSGEYLVHNG
mut.msf{rcmut}	NFDtFDRVRf	PKIhYAGMLQ	YDGELKLPSH	YLVSPPEIER	TSGEYLVHNG
<pre>mut.msf{zmmut}</pre>	dFDnFDRVRv	PKIRYAGMLQ	YDGELKLPSr	YLVSPPEIDR	TSGEYLVKNG
<pre>mut.msf{ntmut}</pre>	NFDKFDRVRv	PKIRYAGMLQ	YhGELqLPSH	YLVSPPEIaR	hSGEYLVrNG
Consensus	-FDDRVR-	PKI-YAGMLQ	Y-GEL-LPS-	YLV-PPEI-R	-SGEYLV-NG
	351				400
mut.msf{bvmut}	VRTFACSETV	KFGHVTFFWN	GNRSGYFNsE	LEEYVEIPSD	SGITFNVQPK
mut.msf{rcmut}	VhTFACSETV	KFGHVTFFWN	GNRSGYFNpE	MEEYVEIPSD	vGITFNVQPK
mut.msf{zmmut}	IRTFACSETV	KFGHVTFFWN	${\tt GNRSGYFdat}$	kEEYVEVPSD	SGITFNVaPn
<pre>mut.msf{ntmut}</pre>	VRTFACSETV	KFGHVTFFWN	GNRSGYFNek	LEEYVEIPSD	SGITFNVkPK
Consensus	TFACSETV	KFGHVTFFWN	GNRSGYF	-EEYVE-PSD	-GITFNV-P-
	401				450
mut.msf{bvmut}	MKALEIAEKt	RDAILSGKFD	QVRVNLPNGD	MVGHTGDIEd	TVVACKAADE
mut.msf{rcmut}	MKAiEIAEKa	RDAILSGKFq	QVRVNiPNGD	MVGHTGDVEA	TVVgCKAADE
mut.msf{zmmut}		RDA1LSGKFD			
mut.msf{ntmut}	MKALEIAErt	RDAILSGKFD	QVRVNLPNGD	MVGHTGDIkA	TIeACKsADE
Consensus	MKA-EIAE	RDA-LSGKF-	QVRVN-PNGD	MVGHTGD	TCK-ADE

7/48

Fig. 2: Fortsetzung

451 500 mut.msf{bvmut} AdKMILDAIE QVGGIYvVTA DHGNAEDMVK RNKSvqPLLD KNGN1QVLTS mut.msf{rcmut} AVKMIiDAIE QVGGIYvVTA DHGNAEDMVK RdKSGKPMaD KsGkIQILTS mut.msf(zmmut) AVKiILDAVE QVGGIYIVTA DHGNAEDMVK RNKSGKPLLD KNdrIQILTS mut.msf{ntmut} AVKMILEAIE QVGGIYIVTA DHGNAEDMVK RNKkGePaLD KNGNIQILTS Consensus A-K-I--A-E QVGGIY-VTA DHGNAEDMVK R-K---P--D K----Q-LTS 501 550 mut.msf{bvmut} HTLQPVPIAI GGPaLAsGVR FckDlPdGGL ANVAATViNL HGFEAPSDYE mut.msf{rcmut} HTLQPVPIAI GGPGLtPGVR FRsDiPTGGL ANVAATVMNL HGFEAPSDYE mut.msf{zmmut} HTLQPVPVAI GGPGLhPGVk FRnDiqTpGL ANVAATVMNL HGFEAPaDYE mut.msf{ntmut} HTcePVPIAI GGPGLAPGVR FRqD1PTGGL ANVAATfMNL HGsEAPSDYE Consensus HT--PVP-AI GGP-L--GV- F--D----GL ANVAAT--NL HG-EAP-DYE 551 560 mut.msf{bvmut} PTLIE1VDN. mut.msf{rcmut} PTLIEaVDN.

mut.msf{zmmut} qTLIEVaDN.

mut.msf{ntmut} PslIEVVDNm

Consensus -- LIE-- DN-

Fig.3:

8/48

B-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus

Birkenpollen

Folgende B-Zell Epitope wurden bestimmt:

- Epitop 1: Gly Gly Glu Ala Lys Pro Asp Gln Tyr Asn Cys Ile (AS 1-12)
- Epitop 2: Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Gln Gly Ala Pro Glu Lys Trp Arg Leu Val Arg Ala His Gly Lys Ala (AS 15-40)
- Epitop 3: Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly His (AS 43-56)
- Epitop 4: Gly Lys Ile Tyr Glu Gly Glu Gly Phe Lys Tyr Ile Lys Glu Cys Phe Glu Asn (AS 79-96)
- Epitop 5: Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Leu (AS 105-117)
- Epitop 6: Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Val (AS 123-134)
- Epitop 7: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val (AS 137-149)
- Epitop 8: Glu Thr Leu Glu Asn Asp Leu Ala Lys Leu Arg Glu Lys Gly Val Asp (AS 153-168)
- Epitop 9: Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Glu Val Ile Lys Arg Gly Trp Asp Ala (AS 179-198)

Fig. 3: Fortsetzung 9/48

- Epitop 10: Val Lys Lys Leu Arg Glu Glu Leu Lys Val Ser Asp Gln Tyr Leu Pro (AS 215-230)
- Epitop 11: Ala Leu Glu Tyr Glu Asn Phe Asp Lys Ile Asp Arg Val Arg Phe Pro Lys Ile Arg Tyr Ala (AS 267-287)
- Epitop 12: Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Ser His

 Tyr Leu Val Glu Pro Pro Glu Ile Glu Arg Thr Ser Gly Glu Tyr

 Leu Val His Asn Gly Val Arg (AS 289-323)
- Epitop 13: Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser Glu Leu Glu Glu Tyr Val Glu Ile Pro Ser Asp Ser Gly Ile (AS 340-364)
- Epitop 14: Ser Gly Lys Phe Asp Gln Val Arg Val Asn Leu Pro Asn Gly Asp Met Val Gly His Thr Gly Asp Ile Glu (AS 387-410)
- Epitop 15: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Ser Val Gln (AS 441-457)
- Epitop 16: His Gly Phe Glu Ala Pro Ser Asp Tyr Glu Pro Thr Leu (AS 512-524)

Fig.4:

10/48

T-Zell Epitope von Kofaktor-unabhängiger Phosphoglycera tmutase (E.C. 5.4.2.1.) aus Birkenpollen

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Tyr Asn Cys Ile His Val Ala Glu Thr Pro Thr Met Asp (AS 9-21)

Epitop 2: Glu Lys Trp Arg Leu Val (AS 29-34)

Epitop 3: Phe Ala Gln Gly Ala Lys Leu Val Asp Ser (AS 65-74)

Epitop 4: Glu Gly Glu Gly Phe Lys Tyr Ile Lys Glu Cys (AS 83-93)

Epitop 5: Thr Leu Glu Asn (AS 154-157)

Epitop 6: Asn Asp Trp Glu Val Ile Lys Arg Gly Trp Asp (AS 187-197)

Epitop 7: Val Glu Ala Val Lys Lys Leu Arg Glu (AS 212-220)

Epitop 8: Glu Tyr Glu Asn Phe Asp Lys Ile Asp Arg Val (AS 269-279)

Epitop 9: Arg Thr Phe Ala Cys Ser Glu Thr Val Lys (AS 323-332)

Epitop 10: Ser Glu Leu Glu Glu Tyr Val Glu Ile Pro Ser (AS 350-360)

Epitop 11: His Thr Gly Asp Ile Glu Asp Thr (AS 405-412)

Epitop 12: Met Ile Leu Asp Ala Ile Glu Gln Val Gly Gly Ile (AS 425-436)

Fig.4: Fortsetzung

11/48

Epitop 13: Ser Gly Val Arg Phe Cys Lys Asp Leu Pro Asp Gly Gly Leu Ala Asn Val Ala Ala (AS 488-506)

Epitop 14: Asn Leu His Gly Phe Glu Ala Pro Ser (AS 510-518)

12/48
Fig.5A: BIP 3 Immunblot mit Pollenextrakten von Birke, Beifuß und Lieschgras, und Extrakten von Sellerie und Apfel.

Fig.5B: IgE Immunblots von BIP 3-immunaffinitätsgereinigtem PGM-i aus Birkenpollen (MU), Birkenpollenextrakt (BPEX). Sera von graspollenallergischen Patienten (HP, HL), Normalhumanserum (NHS).

13/48 Fig.6: Plaque-lifts getestet mit Patientensera und BIP 3

Fig.7a:

14/48

cDNA Sequenz und abgeleitete Aminosāuresequenz
von Kofaktor-unabhängiger Phosphoglyceratmutase
(E.C. 5.4.2.1.) aus Lieschgraspollen
(Isoform Phl1)

Sequence: a:\phllcod.dna, Length: 1671, Range for analysis: 1-1671

1	ATG	GCG	ACC	TCA	TGG	ACG	CTG	ССС	GAC	CAT	ССС	ACG	стс	ССС	42
	Met	Ala	Thr	Ser	Trp	Thr	Leu	Pro	Asp	His	Pro	Thr	Leu	Pro	
43		GGC													84
	Lys	Gly	Lys	Thr	Val	Ala	Val	Ile	Val	Leu	Asp	Gly	Trp	Gly	
οr	CAC		400	CCT	0.0		T.0								
85		GCC													126
	Glu	Ala	Ser	Ala	Asp	Gln	Tyr	Asn	Cys	Ile	His	Arg	Ala	Glu	
127	۸۲۵	CCC	CTC	ATC	CAT	TCC	CTC	**	A A T	CCT	CCT	CCT		440	1.00
121															168
	inr	Pro	vai	met	Asp	5er	Leu	Lys	Asn	Gly	Ala	Pro	Glu	Lys	
169	TCC	ACA	CTA	CTC	AAC.	CCT	САТ	CCV	ACT	CCT	СТТ	ССТ	CTC	ССТ	210
103															210
	irp	Thr	Leu	VdI	Lys	AId	nıs	ыу	ınr	Ala	vaı	ыу	Leu	Pro	
211	ΔGT	GAT	GAC	GAC	ΔTG	eec	ΔΔΓ	AGT	GAA	GTT	ccc	CAC	ΛΛΤ	CCT	252
		Asp													232
	361	wsh	изh	мэр	riet	шу	Maii	Ser.	Giu	Vai	עוט	пі2	WZII	Ald	
253	CTT	GGC	GCT	GGT	CGG	ATT	TTT	GCT	CAA	GGG	GCG	AAG	TTG	TTT	294
•		Gly													,
	LCu	u.,	71.0	0.5	n, a	110	1116	710	0111	uıy	Ala	Lys	Leu	1116	
295	GAT	GCT	GCT	CTT	GCA	TCT	GGG	AAG	ATT	TGG	GAA	GAC	GAG	GGT	336
		Ala													
	.,,,,			LCU	.,,,	J	J. y	-,3	116	, , μ	uiu	чэр	a, u	uly	
337	TTC	AAT	TAC	ATC	AAA	GAA	TCT	TTT	GCC	GAA	GGT	ACT	ств	CAC	378
		Asn													J. J
			٠,٠		_, ,	3,4	JC.		aid	ulu	u : y				

15/48

Fig.7a: Fortsetzung

379	CTT	ATT	GGT	CTG	TTG	AGT	GAT	GGA	GGC	GTC	CAC	TCC	CGG	CTA	420
	Leu	Ile	Gly	Leu	Leu	Ser	Asp	Gly	G1 y	Val	His	Ser	Arg	Leu	
421	GAC	CAA	GTG	CAG	TTG	CTT	GTG	AAA	GGT	GCC	AGT	GAG	AGG	GGA	462
	Asp	Gln	Val	Gln	Leu	Leu	Val	Lys	Gly	Ala	Ser	Glu	Arg	Gly	
463	GCA	AAA	AGA	ATT	CGG	CTT	CAC	ATT	CTT	ACC	GAT	GGG	CGT	GAT	504
	Ala	Lys	Arg	Пe	Arg	Leu	His	Ile	Leu	Thr	Asp	Gly	Arg	Asp	
505	GTC	TTG	GAT	GGA	AGC	AGT	GTT	GGT	TTC	GTA	GAG	ACA	CTA	GAG	546
				Gly											
547				GCT											588
				Ala											
589				GGT											630
				Gly									·	•	
631				GAC											672
670				Asp								·	·		
6/3				GGA											714
715				Gly											
/15				AAA											756
				Lys										•	
/5/				CCT							-				798
700				Pro						·			·	•	
/99				CCT											840
245				Pro											
341				GCT											882
	Asn	Phe	Arg	Ala	Asp	Arg	Met	Val	Met	Leu	Ala	Lys	Ala	Leu	

16/48

Fig.7a: Fortsetzung

883	GAG	TTT	GCT	GAT	TTT	GAT	AAA	TTT	GAC	CGT	GTT	CGT	GTA	CCA	924
	Glu	Phe	Ala	Asp	Phe	Asp	Lys	Phe	Asp	Arg	Val	Arg	Val	Pro	
925	AAA	ATT	AAG	TAT	GCT	GGG	ATG	CTC	CAG	TAT	GAT	GGT	GAG	TTG	966
	Lys	Пe	Lys	Tyr	Ala	Gly	Met	Leu	Gln	Tyr	Asp	Gly	Glu	Leu	
967	AAG	CTT	CCA	AAC	AAA	TTC	CTT	GTT	TCC	CCA	CCC	TTG	ATA	GAG	1008
	Lys	Leu	Pro	Asn	Lys	Phe	Leu	Val	Ser	Pro	Pro	Leu	He	Glu	
1009															1050
	Arg	Thr	Ser	Gly	Glu	Tyr	Leu	Val	Lys	Asn	Gly	Val	Arg	Thr	
1051															1092
	Phe	Ala	Lys	Ser	Glu	lhr	Val	Lys	rne	Gly	HIS	vaı	ınr	rne	
1093	TTC	TCC	AAT	CCV	A A C	CCT	тст	CCA	TAC	TTC	CAT	CAA	۸۲۲	AAC	1134
1093				Gly											1154
	THE	ייי	Mail	uly	ASII	AI Y	Sei	uij	131	1116	Vah	uiu	1111	Lys	
1135	GAA	GAG	TAC	АТА	GAA	ATT	ССТ	AGT	GAT	AGT	GGT	ATC	ACA	TTC	1176
				Ile											
			-						•		•				
1177	AAT	GAG	CAG	ССС	AAA	ATG	AAG	GCA	CTT	GAA	ATT	GCT	GAG	AAA	1218
	Asn	Glu	Gln	Pro	Lys	Met	Lys	Ala	Leu	Glu	Пe	Ala	Glu	Lys	
1219	ACC	CGG	GAT	GCT	ATC	CTC	AGT	GGA	AAG	TTT	GAC	CAG	GTA	CGT	1260
	Thr	Arg	Asp	Ala	Пe	Leu	Ser	G1 y	Lys	Phe	Asp	Gln	Val	Arg	
1261	ATT	AAC	CTG	CCA	AAT	GGT	GAT	ATG	GTG	GGT	CAC	ACC	GGT	GAT	1302
	Пe	Asn	Leu	Pro	Asn	Gly	Asp	Met	Val	G1 y	His	Thr	Gly	Asp	
1303															1344
	Ile	Glu	Ala	Thr	Val	Val	Ala	Cys	Lys	Ala	Ala	Asp	Glu	Ala	
1345															1386
	Val	Lys	Пe	۷al	Leu	Asp	A l a	۷al	Glu	Gln	Val	Gly	Gly	Ile	

Fig	./a	: F	orts	etzur	ng			77	/4	B					
1387	TAT	СТТ	GTC	ACT	GCT	GAT	CAT	GGA	AAC	GCA	GAG	GAT	ATG	GTG	1428
	Tyr	Leu	Val	Thr	Ala	Asp	His	Gly	Asn	Αla	Glu	Asp	Met	Val	
1429	AAA	AGA	AAC	AAA	TCT	GGC	CAG	CCT	GCT	СТТ	GAC	AAG	AGC	GGT	1470
	Lys	Arg	Asn	Lys	Ser	Gly	Gln	Pro	Ala	Leu	Asp	Lys	Ser	Gly	
1471	AGC	ATC	CAG	ATT	СТТ	ACC	TCG	CAT	ACG	СТТ	CAG	CCA	GTC	ССТ	1512
	Ser	Пe	Gln	Ile	Leu	Thr	Ser	His	Thr	Leu	Gln	Pro	Val	Pro	
1513	GTT	GCG	ATC	GGA	GGC	ССТ	GGT	СТС	CAC	CCA	GGA	GTG	AAG	TTC	1554
	Val	Ala	lle	Gly	Gly	Pro	Gly	Leu	His	Pro	Gly	Val	Lys	Phe	
1555	AGG	тст	GAT	ATC	AAC	ACA	CCT	GGA	СТС	GCC	AAT	GTT	GCC	GCC	1596
	Arg	Ser	Asp	Ile	Asn	Thr	Pro	Gly	Leu	Ala	Asn	Val	Ala	Ala	
1597	ACC	GTG	ATG	AAC	СТС	CAT	GGC	TTC	CAG	GCC	CCT	GAT	GAT	TAT	1638
	Thr	Val	Met	Asn	Leu	His	Gly	Phe	Gln	Ala	Pro	Asp	Asp	Tyr	
1639	GAG	ACG	ACG	СТС	ATT	GAA	GTT	GCT	GAC	AAG	TAA				1671
•	Glu	Thr	Thr	Leu	Ile	G1u	Val	Αla	Asp	Lys	*				

Fig.7b:

18/48

cDNA Sequenz und abgeleitete Aminosäuresequenz von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus 5 Lieschgraspollen (Isoform Phl5)

Sequence: a:\ph15cod.dna, Length: 1668, Range for analysis: 1-1668 1 ATG ACC TCA TGG ACG CTG CCC GAC CAC CCC ACG CTC CCC AAG 42 Met Thr Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro Lys 43 GGC AAG ACG GTG GCC GTC ATC GTG CTC GAC GGA TGG GGC GAG 84 Gly Lys Thr Val Ala Val Ile Val Leu Asp Gly Trp Gly Glu 85 GCC AGC GCT GAC CAG TAC AAC TGC ATC CAT CGC GCC GAG ACG 126 Ala Ser Ala Asp Gln Tyr Asn Cys Ile His Arg Ala Glu Thr 127 CCC GTC ATG GAT TCG CTC AAG AAT GGT GCT CCT GAG AAG TGG 168 Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu Lys Trp 169 ACA CTA GTG AAG GCT CAT GGA ACT GCT GTT GGT CTC CCT AGT 210 Thr Leu Val Lys Ala His Gly Thr Ala Val Gly Leu Pro Ser 211 GAT GAC GAC ATG GGC AAC AGT GAA GTT GGC CAC AAT GCT CTT 252 Asp Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala Leu 253 GGC GCT GGT CGG ATT TTC GCT CAA GGG GCG AAG TTG TTT GAT 294 Gly Ala Gly Arg Ile Phe Ala Gln Gly Ala Lys Leu Phe Asp 295 GCT GCT CTT GCA TCT GGG AAG ATT TGG GAA GAT GAG GGT TTC 336 Ala Ala Leu Ala Ser Gly Lys Ile Trp Glu Asp Glu Gly Phe 337 AAT TAC ATC AAA GAA TCT TTT GCC GAA GGT ACT CTG CAC CTT 378 Asn Tyr Ile Lys Glu Ser Phe Ala Glu Gly Thr Leu His Leu

Fig.7b:Fortsetzung 19/48

379	ATT	GGT	CTG	TTG	AGT	GAT	GGA	GGC	GTC	CAC	TCC	CGG	CTA	GAC	420
	Ile	Gly	Leu	Leu	Ser	Asp	Gly	Gly	Val	His	Ser	Arg	Leu	Asp	
421	CAA	GTG	CAG	TTG	CTT	GTG	AAA	GGT	GCC	AGT	GAG	AGG	GGA	GCA	462
	Gln	Val	Gln	Leu	Leu	Val	Lys	Gly	Ala	Ser	Glu	Arg	Gly	Ala	
463	AAA	AGA	ATT	CGG	CTT	CAC	ATT	CTT	ACC	GAT	GGG	CGT	GAT	GTC	504
						His									
505	TTG	GAT	GGA	AGC	AGT	GTT	GGT	TTC	GTA	GAG	ACA	CTA	GAG	ΔΔΤ	546
						Val									340
547	GAT	CTT	GCT	CAG	CTT	CGT	GAG	AAG	GGT	GTT	GAT	GCA	CAG	GTT	588
						Arg									300
589	GCA	TCT	GGT	GGT	GGA	AGG	ATG	TAT	GTT	ACC	ATG	GAC	CGC	TAT	630
						Arg									000
631	GAG	AAT	GAC	TGG	GAT	GTG	GTC	AAG	CGT	GGG	TGG	GAT	GCC	CAG	672
						Val									0.2
673	GTG	CTT	GGA	GAA	GCA	CCA	TAC	AAA	TTC	AAA	AGT	GCA	CTT	GAA	714
						Pro									
715	GCT	GTG	AAA	ACG	СТА	AGA	GCA	GAG	CCC	AAG	GCC	AAT	GAT	CAG	756
						Arg									
757	TAC	TTG	ССТ	GCG	TTT	GTG	ATA	GTT	GAT	GAA	AGT	GGC	AAA	TCC	798
						Val									
799	GTT	GGT	ССТ	ATA	GTA	GAT	GGC	GAT	GCA	GTT	GTG	ACT	TTC	AAT	840
	Val	Gly	Pro	Ile	Val	Asp	Gly	Asp	Ala	Val	Val	Thr	Phe	Asn	
341	TTC	AGA	GCT	GAT	CGC	ATG	GTT	ATG	СТТ	GCA	AAG	GCT	СТТ	GAG	882
						Met									

Fig	.7b	:Fo	rts	etzu	ıng			2	0/4	18					
883	TTT	GCT	GAT	TTT	GAT	AAA	TTT	GAC	CGT	GTT	CGT	GTA	CCA	AAA	924
	Phe	Ala	Asp	Phe	Asp	Lys	Phe	Asp	Arg	Val	Arg	Val	Pro	Lys	
925	ATT	AAG	TAT	GCT	GGG	ATG	стс	CAG	TAT	GAT	GGT	GAG	TTG	AAG	966
	Ile	Lys	Tyr	Ala	Gly	Met	Leu	Gln	Tyr	Asp	Gly	Glu	Leu	Lys	
967		CCA													1008
	Leu	Pro	Asn	Lys	Phe	Leu	Val	Ser	Pro	Pro	Leu	Ile	Glu	Arg	
1009															1050
	Thr	Ser	Gly	Glu	Tyr	Leu	Val	Lys	Asn	Gly	Val	Arg	Thr	Phe	
1051															1092
	Ala	Cys	Ser	Glu	Thr	Val	Lys	Phe	Gly	His	Val	Thr	Phe	Phe	
1093															1134
	тгр	Asn	ыу	ASII	Arg	2er	ыу	ıyr	rne	ASP	GIU	Inr	Lys	61u	
1135		TAC Tyr													1176
	g, u	131	116	uiu	116	710	361	Ash	361	оту	116	1111	rne	ASII	
1177		CAG Gln													1218
				2,3		L) J	,,,,	LCG	g,u	110	7.0	uiu	LJS	• • • • • • • • • • • • • • • • • • • •	
1219		GAT Asp													1260
		·								·					
1261		CTG Leu													1302
		000										• • •		-	
1303		Ala													1344
1245	440	ATT	CTT	***	T42	00.	070	040	C		007	007	477	T. ~	1200
1345		Ile													1386

Fig.7b:Fortsetzung 21/48

1387	CTT	GTC	ACT	GCT	GAT	CAT	GGA	AAC	GCA	GAG	GAT	ATG	GTG	AAA	1428
	Leu	Val	Thr	Ala	Asp	His	Gly	Asn	Ala	Glu	Asp	Met	Val	Lys	
1429	AGA	AAC	AAA	TCT	GGC	CAG	CCT	GCT	CTT	GAC	AAG	AGC	GGT	AGC	1470
												Ser			
1471	ATC	CAG	ΔΤΤ	CTT	Δ۲۲	TCG	CAT	ACC.	стт	CVC	CCV	CTC	ССТ	CTT	1512
												Val			1312
1513	GCG	ATC	GGA	GGC	CCT	GGT	CTC	CAC	CCA	GGA	GTG	AAG	TTC	AGG	1554
	Ala	Пe	Gly	Gly	Pro	Gly	Leu	His	Pro	Gly	Val	Lys	Phe	Arg	
1555	тст	GAT	ATC	AAC	ACA	ССТ	GGA	СТС	GCC	AAT	GTT	GCC	GCC	ACC	1596
	Ser	Asp	Пe	Asn	Thr	Pro	Gly	Leu	Ala	Asn	Val	Ala	Ala	Thr	
1597	GTG	ATG	AAC	СТС	CAT	GGC	TTC	CAG	GCC	ССТ	GAT	GAT	TAT	GAG	1638
												Asp			1000
1620	400	A.C.C	CTC												
1639															1668
	ihr	Thr	Leu	110	610	Val	Δla	Asn	lvs	*					

Fig. 8a:

22/48

B-Zell Epitope von Kofaktor-unabhängiger
Phosphoglyceratmutase (E.C. 5.4.2.1.) aus
Lieschgraspollen (Isoform Phl1)

Folgende B-Zell Epitope wurden bestimmt:

- Epitop 1: Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro Lys Gly Lys Thr (AS 4-18)
- Epitop 2: Asp Gly Trp Gly Glu Ala Ser Ala Asp Gln Tyr Asn Cys Ile His Arg Ala Glu Thr Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu Lys Trp Thr Leu (AS 25-59)
- Epitop 3: Leu Pro Ser Asp Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala Leu Gly Ala (AS 69-87)
- Epitop 4: Gly Lys Ile Trp Glu Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe Ala Glu (AS 105-122)
- Epitop 5: Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Val (AS 131-143)
- Epitop 6: Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Leu (AS 148-160)
- Epitop 7: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val

 (AS 163-175)
- Epitop 8: Glu Thr Leu Glu Asn Asp Leu Ala Gln Leu Arg Glu Lys Gly Val Asp Ala (AS 179-195)
- Epitop 9: Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Asp Val Val Lys Arg Gly Trp Asp Ala (AS 199-224)

Fig. 8a:Fortsetzung

23/48

Epitop 10: Glu Ala Pro Tyr Lys Phe Lys Ser Ala (AS 229-237)

- Epitop 11: Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp Gln Tyr Leu Pro (AS 243-256)
- Epitop 12: Asp Glu Ser Gly Lys Ser Val (AS 262-268)
- Epitop 13: Phe Arg Ala Asp Arg Met (AS 282-287)
- Epitop 14: Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro Lys
 Ile Lys Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu
 Lys Leu Pro Asn Lys (AS 297-327)
- Epitop 15: Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Lys Asn Gly Val Arg Thr (AS 333-350)
- Epitop 16: Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr Lys Glu Glu Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile Thr Phe Asn Glu Gln Pro Lys Met Lys Ala (AS 365-400)
- Epitop 17: Ile Ala Glu Lys Thr Arg Asp Ala (AS 403-410)
- Epitop 18: Ser Gly Lys Phe Asp Gln Val Arg Ile Asn Leu Pro Asn Gly Asp Met Val Gly His Thr Gly Asp Ile Glu (AS 413-436)
- Epitop 19: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Ser Gly Gln Pro Ala Leu Asp Lys Ser Gly Ser Ile (AS 467-492)
- Epitop 20: Leu Thr Ser His Thr Leu Gln Pro (AS 495-502)
- Epitop 21: Gly Pro Gly Leu His Pro Gly Val Lys Phe Arg Ser Asp Ile Asn Thr Pro Gly Leu (AS 509-527)
- Epitop 22: Leu His Gly Phe Gln Ala Pro Asp Asp Tyr Glu Thr Thr Leu (AS 537-550)

Fig. 8b:

24/48

B-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Lieschgraspollen (Isoform Phl5)

Folgende B-Zell Epitope wurden bestimmt:

- Epitop 1: Met Thr Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro Lys Gly Lys (AS 1-16)
- Epitop 2: Asp Gly Trp Gly Glu Ala Ser Ala Asp Gln Tyr Asn Cys Ile His Arg Ala Glu Thr Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu Lys Trp Thr Leu (AS 24-58)
- Epitop 3: Leu Pro Ser Asp Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala Leu Gly Ala (AS 68-86)
- Epitop 4: Gly Lys Ile Trp Glu Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe Ala (AS 104-121)
- Epitop 5: Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Val
 (AS 130-142)
- Epitop 6: Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Leu (AS 148-159)
- Epitop 7: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val (AS 162-174)
- Epitop 8: Glu Thr Leu Glu Asn Asp Leu Ala Gln Leu Arg Glu Lys Gly Val Asp Ala (AS 178-194)
- Epitop 9: Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Asp Val Val Lys Arg Gly Trp Asp Ala (AS 198-223)

Fig. 8b:Fortsetzung 25/48

- Epitop 10: Glu Ala Pro Tyr Lys Phe Lys Ser Ala (AS 228-236)
 - Epitop 11: Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp Gln Tyr Leu Pro (AS 242-255)
 - Epitop 12: Asp Glu Ser Gly Lys Ser Val (AS 261-267)
 - Epitop 13: Asn Phe Arg Ala Asp Arg Met (AS 280-286)
 - Epitop 14: Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro Lys Ile Lys Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Asn Lys (AS 296-326)
 - Epitop 15: Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Lys Asn Gly Val Arg Thr (AS 332-349)
 - Epitop 16: Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr
 Lys Glu Glu Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile
 Thr Phe Asn Glu Gln Pro Lys Met Lys Ala (AS 364-399)
 - Epitop 17: Ile Ala Glu Lys Thr Arg Asp Ala (AS 402-409)
 - Epitop 18: Ser Gly Lys Phe Asp Gln Val Arg Ile Asn Leu Pro Asn
 Gly Asp Met Val Gly His Thr Gly Asp Ile Glu (AS 412-435)
 - Epitop 19: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Ser Gly Gln Pro Ala Leu Asp Lys Ser Gly Ser Ile (AS 466-491)
 - Epitop 20: Leu Thr Ser His Thr Leu Gln Pro (AS 494-501)
 - Epitop 21: Gly Pro Gly Leu His Pro Gly Val Lys Phe Arg Ser Asp Ile Asn Thr Pro Gly Leu (AS 508-526)
 - Epitop 22: Leu His Gly Phe Gln Ala Pro Asp Asp Tyr Glu Thr Thr Leu (AS 536-549)

Fig. 9a:

26/48

T-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Lieschgraspollen (Isoform Phl1)

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Trp Gly Glu Ala Ser (AS 27-31)

Epitop 2: Met Asp Ser Leu Lys Asn Gly Ala (AS 46-53)

Epitop 3: Phe Ala Gln Gly Ala Lys Leu Phe Asp Ala (AS 91-100)

Epitop 4: Gly Lys Ile Trp Glu (AS 115-119)

Epitop 5: Thr Leu Glu Asn (AS 180-183)

Epitop 6: Asn Asp Trp Asp Val Val (AS 213-218)

Epitop 7: Leu Glu Ala Val Lys Thr Leu (AS 238-244)

Epitop 8: Leu Ala Lys Ala Leu Glu (AS 290-295)

Epitop 9: Phe Ala Cys Ser Glu Thr Val Lys (AS 351-358)

Epitop 10: Leu Asp Ala Val Glu Gln Val Gly Gly Ile Tyr (AS 453-461)

Epitop 11: Pro Gly Leu Ala Asn Val Ala Ala (AS 525-532)

Epitop 12: Asn Leu His Gly Phe Gln Ala Pro Asp Asp (AS 536-545)

Fig. 9b:

27/48

T-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Lieschgraspollen (Isoform Ph15)

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Trp Gly Glu Ala Ser (AS 26-30)

Epitop 2: Met Asp Ser Leu Lys Asn Gly Ala (AS 45-52)

Epitop 3: Phe Ala Gln Gly Ala Lys Leu Phe Asp Ala (AS 90-99)

Epitop 4: Tyr Ile Lys Glu Ser (AS 114-118)

Epitop 5: Thr Leu Glu Asn (AS 179-182)

Epitop 6: Asn Asp Trp Asp Val Val (AS 212-217)

Epitop 7: Leu Glu Ala Val Lys Thr Leu (AS 237-243)

Epitop 8: Leu Ala Lys Ala Leu Glu Phe (AS 289-295)

Epitop 9: Phe Ala Cys Ser Glu Thr Val Lys (AS 350-357)

Epitop 10: Leu Asp Ala Val Glu Gln Val Gly Gly (AS 452-460)

Epitop 11: Pro Gly Leu Ala Asn Val Ala Ala (AS 524-531)

Epitop 12: Asn Leu His Gly Phe Gln Ala Pro Asp Asp (AS 535-544)

Fig.10a:

28/48

cDNA Sequenz und abgeleitete Aminosäure-sequenz von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus 5 Beifußpollen (Isoform Art6))

Sequence: a:\art6cod.dna, Length: 1674, Range for analysis: 1-1674

42	CCA	CAC	GAC	GCG	СТА	AAG	TGG	TCA	TTT	GGA	TCA	AGC	GGA	ATG	1
	Pro	His	Asp	Ala	Leu	Lys	Trp	Ser	Phe	Gly	Ser	Ser	Gly	Met	
0.4	CAC	TTG	CTC		ATC	ccc	CTA	CTC	A A C	A A C	A A C	CCA	CTC	A A C	12
84															43
	Asp	Leu	Val	Ile	Met	Ala	Val	Leu	Lys	Asn	Lys	Pro	Leu	Lys	
126	CAC	ATC	TGT	AAC	TAT	AAA	GAT	CCT	тст	GCT	GAA	GGT	TGG	GGA	85
	-	Ile	_	_											
	пі5	116	Lys	ASII	ıyı	Lys	жър	710	261	Ala	Giu	Uly	117	uly	
168	GCC	GGC	AAC	AAA	СТС	тст	GAT	ATG	ACC	ССТ	ACT	GAG	GCC	GTG	127
	Ala	Gly	Asn	Lvs	Leu	Ser	Asp	Met	Thr	Pro	Thr	Glu	Ala	Val	
							•								
210	GTT	GCT	ACT	GGA	CAT	GCT	AGG	GTG	TTG	AGA	TGG	CAC	GAT	CCT	169
	Val	Ala	Thr	Gly	His	Ala	Arg	۷al	Leu	Arg	Trp	His	Asp	Pro	
252	GGA	GTC	GAA	AGT	AAC	GGA	ATG	GAC	GAT	GAA	ACT	CCC	CTT	GGG	211
	Gly	Val	Glu	Ser	Asn	Gly	Met	Asp	Asp	G1 u	Thr	Pro	Leu	Gly	
	-														
294	GCT	GGT	CAA	GCT	TTT	ATC	AGG	GGA	GCT	GGT	CTT	GCT	AAT	CAC	253
	Ala	Gly	Gln	Ala	Phe	Пe	Arg	Gly	Ala	Gly	Leu	Ala	Asn	His	
		-													
336	GAA	TAC	ATT	AGA	GGG	TCT	GCC	CTT	GCA	CAA	GAT	GTT	CTC	AAA	295
	G1 u	Tyr	He	Arg	Gly	Ser	Ala	Leu	Ala	Gln	Asp	۷al	Leu	Lys	
		=		_	Ţ										
378	AAC	ACC	GCC	TTT	TCA	GAA	AAG	ATC	TAC	AAT	TTC	GGT	GAA	GAT	337
	Asn	Thr	Ala	Phe	Ser	Glu	Lys	He	Tyr	Asn	Phe	Gly	Glu	Asp	

Fig.10a: Fortsetzung 29/48

3/9	ACC	HG	CAI	CH .	AII	GGA	TTG	ATG	AGT	GAT	GGT	GGT	GTT	CAC	420
	Thr	Leu	His	Leu	Ile	Gly	Leu	Met	Ser	Asp	Gly	Gly	Val	His	
421	TCA	CGT	CTT	GAT	CAG	TTG	CAG	TTG	TTG	CTT	AAC	GGA	GCT	AGT	462
	Ser	Arg	Leu	Asp	Gln	Leu	Gln	Leu	Leu	Leu	Asn	Gly	Ala	Ser	
463	GAG	CGT	GGT	GCC	AAG	AAG	ATC	CGT	GTT	CAC	GTG	СТТ	ACT	GAT	504
	Glu	Arg	Gly	Ala	Lys	Lys	Ile	Arg	Val	His	Val	Leu	Thr	Asp	
505	GGT	CGT	GAT	GTT	TTG	GAT	GGT	TCA	AGT	GTC	GGT	TTT	GCT	GAA	546
	G1 y	Arg	Asp	Val	Leu	Asp	Gly	Ser	Ser	Val	Gly	Phe	Ala	Glu	
547	ACA	СТТ	GAA	GCA	GAA	стт	GCA	AGT	СТС	CGC	AGC	AAG	GGC	ATT	588
	Thr	Leu	Glu	Ala	Glu	Leu	Ala	Ser	Leu	Arg	Ser	Lys	Gly	Ile	
589	GAT	GCT	CAG	GTT	GCT	тст	GGT	GGA	GGA	CGT	ATG	TAT	GTC	ACC	630
	Asp	Ala	Gln	Val	Ala	Ser	Gly	Gly	Gly	Arg	Met	Tyr	Val	Thr	
631	ATG														672
	Met	Asp	Arg	Tyr	Glu	Asn	Asp	Trp	Glu	Val	Val	Lys	Leu	Gly	
673	TGG														714
	Trp	Asp	Ala	Gln	Val	Leu	Gly	Glu	Ala	Pro	His	Lys	Phe	Lys	
715	AAT														756
	Asn	Val	Val	Glu	Ala	Пe	Lys	Thr	Leu	Arg	G1n	Ala	Pro	Gly	
757	GCT														798
	Ala	Asn	Asp	Gln	Tyr	Leu	Pro	Pro	Phe	Val	Ile	Val	Asp	Asp	
799	AGC														840
	Ser	Gly	Thr	Pro	Va1	Gly	Pro	Val	Val	Asp	Gly	Asp	Ala	Val	
841	GTC														882
	Val	Thr	Val	Asn	Phe	Arg	Ala	Asp	Arg	Met	Thr	Met	Leu	Ala	

Fig.10a:Fortsetzung 30/48

883	CAA	GCT	CTT	GAA	TAC	GAG	AAG	TTT	GAT	AAG	TTT	GAC	AGA	GTG	924
	Gln	Ala	Leu	Glu	Tyr	Glu	Lys	Phe	Asp	Lys	Phe	Asp	Arg	Val	
				•											
925										ATG		-			966
	Arg	Phe	Pro	Lys	He	Arg	Tyr	Ala	Gly	Met	Leu	Gln	Tyr	Asp	
967	GGA	GAG	TTG	AAG	CTT	A	144	CΔT	TAC	СТТ	GTT	TCT	רננ	433	1008
										Leu					1000
									Ū						
1009	TTG	ATT	GAC	AGG	ACA	TCT	GGC	GAA	TAT	TTG	GTG	CAT	AAT	GGT	1050
	Leu	Ile	Asp	Arg	Thr	Ser	Gly	Glu	Tyr	Leu	Val	His	Asn	Gly	
1051	070	000													
1051										_		_		_	1092
	Vai	Arg	ınr	rne	АТА	Lys	2er	GIU	Inr	Val	Lys	rne	ыу	HIS	
1093	GTC	ACA	TTT	TTC	TGG	AAT	GGA	AAC	CGC	тст	GGT	TAC	TTC	AAC	1134
	Val	Thr	Phe	Phe	Trp	Asn	G1 y	Asn	Arg	Ser	G1 y	Tyr	Phe	Asn	
1135	TCA	GAG	TTG	GAA	GAA	TAT	GTT	GAA	ATT	CCA	AGT	GAT	AGT	GGT	1176
	Ser	Glu	Leu	Glu	Glu	Tyr	Val	G1 u	Ile	Pro	Ser	Asp	Ser	61 y	
1177	ATT	۸۲۲	TTC	A A C	CTC		CCA	A A C	ATC		CCT	TTC	CAC	ATT	1210
11//										Lys					1218
	1,0	• • • • • • • • • • • • • • • • • • • •		A311	v a.	Lys		Lys	net	Lys	ЛІФ	LEU	uiu	116	
1219	GGT	GAG	AAG	ACC	CGT	GAT	GCT	ATC	СТС	AGC	GGA	AAG	TTT	GAC	1260
	Gly	Glu	Lys	Thr	Arg	Asp	Ala	Ile	Leu	Ser	Gly	Lys	Phe	Asp	
1261															1302
	Gln	Val	Arg	Val	Asn	Ile	Pro	Asn	Gly	Asp	Met	Val	Gly	His	
1303	Δ۲۲	CGT	GAT	GTT	CAC	GCT	ΔζΤ	GTC	GTG	CCC	TCC	۸۸G	CCT	CCT	1344
1000										Ala					1544
		u.,	ур		J. U	.,, ,			***	7110	Uy 3	Lys			
1345	GAT	GAA	GCT	GTT	AAG	ATG	ATC	СТТ	GAT	GCC	GTA	GAG	CAA	GTG	1386
	Asp	Glu	Ala	Val	Lys	Met	He	Leu	Asp	Ala	Val	Glu	Gln	Val	

Fig.10a:Fortsetzung 31/48

1387	GGT	GGG	ATA	TAC	GTT	GTG	ACT	GCC	GAT	CAC	GGT	AAT	GCT	GAG	1428
	Gly	Gly	He	Tyr	Val	Val	Thr	Ala	Asp	His	Gly	Asn	Ala	Glu	
1429	GAC	ATG	GTA	AAG	AGA	AAC	AAG	AAG	GGT	GAG	CCT	CTT	CTC	AAG	1470
	Asp	Met	Val	Lys	Arg	Asn	Lys	Lys	Gly	Glu	Pro	Leu	Leu	Lys	
								٠							
1471	GAC	GGC	GAG	GTC	CAG	ATT	CTA	ACA	TCA	CAC	ACT	CTT	CAG	CCG	1512
	Asp	Gly	Glu	Val	Gln	De	Leu	Thr	Ser	His	Thr	Leu	Gln	Pro	
1513	GTG	CCA	ATT	GCA	ATT	GGA	GGT	CCT	GGG	TTA	TCC	GCT	GGT	GTG	1554
	Val	Pro	Ile	Ala	Ile	Gly	Gly	Pro	Gly	Leu	Ser	Ala	Gly	Val	
1555	AGG	TTC	CGC	AAG	GAT	GTA	CCA	AGT	GGA	GGA	CTT	GCA	AAC	GTA	1596
	Arg	Phe	Arg	Lys	Asp	Val	Pro	Ser	Gly	Gly	Leu	Ala	Asn	Val	
1597															1638
	Ala	Ala	Thr	Val	Met	Asn	Leu	His	Gly	Phe	Val	Ala	Pro	Glu	
1620	C 4 C	T.A.C	C 4 C	ACT	467				^TT	^T.	0.0	.			1674
1639												I AA			1674
	Asp	lyr	Glu	Ihr	lhr	Leu	11e	Glu	Val	Val	Glu	*			

Fig.10b:

32/48

cDNA Sequenz und abgeleitete Aminosāure-sequenz von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus 5 Beifußpollen (Isoform Art17)

Sequence: a:\art17cod.dna, Length: 1683, Range for analysis: 1-1683

1			GGA Gly						42
43			CCA Pro						84
85			GGT Gly					-	126
127			CAA Gln						168
169			CAC His						210
211			CCC Pro						2 52
253			GCT Ala						294
295			GTG Val						336
337			GGT Gly						378

Fig.10b: Fortsetzung 33/48

3/9	AAI /	AAI	ALA	116 (CAC		AII (iGA	ITG /	ATG /	AGT	SAT	GGG (GGT	420
	Asn	Asn	Thr	Leu	His	Leu	Ile	Gly	Leu	Met	Ser	Asp	Gly	Gly	
421	GTG	CAC	тст	CGC	СТТ	GAT	CAG	TTA	CAG	CTG	TTG	СТС	AAA	GGT	462
	Val	His	Ser	Arg	Leu	Asp	Gln	Leu	G1n	Leu	Leu	Leu	Lys	Gly	
463	GCT	AGT	GAA	CGT	GGT	GCC	AAG	AAG	ATC	CGT	GTC	CAC	GTA	СТТ	504
	Ala	Ser	Glu	Arg	G1 y	Ala	Lys	Lys	Ile	Arg	Val	His	Val	Leu	
505	ACT	GAT	GGC	CGT	GAT	GTT	TTG	GAT	GGT	TCA	AGT	GTA	GGC	TTT	546
	Thr	Asp	G1 y	Arg	Asp	Val	Leu	Asp	Gly	Ser	Ser	Val	Gly	Phe	
547	GCA	GAA	ACA	стт	GAA	AAG	GAC	CTT	GCA	GAC	СТА	CGT	AGC	AAA	588
	Ala	Glu	Thr	Leu	Glu	Lys	Asp	Leu	Ala	Asp	Leu	Arg	Ser	Lys	
589	GGT	ATA	GAT	GCT	CAG	GTT	GCT	тст	GGT	GGA	GGT	CGC	ATG	TAT	630
	Gly	Ile	Asp	Ala	Gln	Val	Ala	Ser	Gly	Gly	G1 y	Arg	Met	Tyr	
631	GTC	ACC	ATG	GAT	CGT	TAT	GAG	AAT	GAT	TGG	GAT	GTT	GTG	AAA	672
	Val	Thr	Met	Asp	Arg	Tyr	61u	Asn	Asp	Trp	Asp	Val	Val	Lys	
673	CGT	GGT	TGG	GAT	GCT	CAG	GTG	СТТ	GGT	GAA	GCC	CCA	CAC	AAA	714
	Arg	Gly	Trp	Asp	Ala	Gln	Val	Leu	Gly	Glu	Ala	Pro	His	Lys	
715	TTC														756
	Phe	Lys	Ser	Ala	Val	Glu	Ala	Ile	Lys	Lys	Leu	Arg	Glu	Ala	
757	CCA														798
	Pro	Asn	Ala	Asn	Asp	Gln	Tyr	Leu	Pro	Pro	Phe	Val	Ile	Val	
799	GAT														840
	Asp	Glu	Ser	Gly	Lys	Pro	Val	Gly	Pro	Ile	Met	Asp	Gly	Asp	
841	GCT														882
	Ala	Val	Val	Thr	Phe	Asn	Phe	Arg	Ala	Asp	Arg	Met	Thr	Ile	

Fig. 10b: Fortsetzung 34/48

883	CTT	GCC	CAG	GCT	CTT	GAG	TAT	GAG	AAG	TTT	GAT	AAA	TTT	GAC	924
	Leu	Ala	Gln	Ala	Leu	Glu	Tyr	Glu	Lys	Phe	Asp	Lys	Phe	Asp	
925	AGG	GTG	CGG	TTC	CCT	AAA	ATC	CGC	TAT	GCT	GGA	ATG	CTT	CAA	966
	Arg	Val	Arg	Phe	Pro	Lys	Пe	Arg	Tyr	Ala	Gly	Met	Leu	Gln	
967	TAT	GAT	GGG	GAG	TTG	AAG	CTA	CCA	AGT	CGT	TAC	CTG	GTT	TCT	1008
	Tyr	Asp	Gly	Glu	Leu	Lys	Leu	Pro	Ser	Arg	Tyr	Leu	Val	Ser	
1009	CCT	CCA	TTG	ATA	GAG	AGG	ACA	TCT	GGT	GAA	TAT	CTA	GTC	AAT	1050
	Pro	Pro	Leu	He	Glu	Arg	Thr	Ser	Gly	Glu	Tyr	Leu	Val	Asn	
1051															1092
	Asn	Gly	Ile	Arg	Thr	Phe	Ala	Cys	Ser	Glu	Thr	Val	Lys	Phe	
1093	ССТ	CAT	CTT	۸۲۲	TTC	TTT	TCC	AAT	ccc	A A C	ccc	TCT	CC4	TAT	1124
1033			Val												1134
	uiy	1112	Vai	1111	rne	rne	rrp	WZII	UIY	A5D	Arg	3er	ыу	ıyr	
1135	TTT	AAT	TCA	GAG	TTG	GAG	GΔΔ	ΤΔΤ	GTA	GΔΔ	ΔΤΤ	411	AGT	GAT	1176
			Ser												1170
				• • •			• • •	٠,,	• •				J	МЭР	
1177	AAT	GGA	ATT	TCC	TTC	AAT	GTC	CAA	CCA	AAG	ATG	AAG	GCT	TTG	1218
			Пe												
1219	GAG	ATT	GGT	GAG	AAG	GCC	CGT	GAT	GCA	ATT	CTC	AGT	CGC	AAA	1260
	Glu	Πe	Gly	Glu	Lys	Ala	Arg	Asp	Ala	Пe	Leu	Ser	Arg	Lys	
1261	TTT	GAC	CAG	GTA	AGG	GTG	AAT	ATA	CCA	AAT	GGT	GAC	ATG	GTT	1302
	Phe	Asp	Gln	Val	Arg	Val	Asn	He	Pro	Asn	Gly	Asp	Met	Val	
1303	GGG	CAT	ACC	GGT	GAC	ATT	GAG	GCA	ACA	GTT	GTG	GCA	TGC	AAG	1344
	Gly	His	Thr	Gly	Asp	He	G1 u	Ala	Thr	Val	Val	Ala	Cys	Lys	
1345															1386
	Ala	Ala	Asp	Asp	Ala	Val	Lys	Met	He	Leu	Asp	Ala	He	Lys	

Fig. 10b: Fortsetzung 35/48

1387	GAA	GTA	GGT	GGA	ATA	TAT	GTG	GTG	ACT	GCG	GAT	CAT	GGT	AAT	1428
	Glu	Val	Gly	Gly	lle	Tyr	Val	Val	Thr	Ala	Asp	His	Gly	Asn	
1429	GCA	GAG	GAC	ATG	GTG	AAG	AGA	AAC	AAG	GAG	GGA	GAG	CCC	CTT	1470
	Ala	Glu	Asp	Met	Val	Lys	Arg	Asn	Lys	Glu	Gly	Glu	Pro	Leu	
1471	CTT	GAT	AAG	GAT	GGC	AAA	GTT	CAG	ATC	CTA	ACC	TCG	CAC	ACT	1512
	Leu	Asp	Lys	Asp	Gly	Lys	Val	Gln	Пe	Leu	Thr	Ser	His	Thr	
1513	CTG	CAG	CCA	GTA	CCG	GTT	GCA	ATT	GGA	GGT	CCT	GGG	TTA	GCA	1554
	Leu	Gln	Pro	Val	Pro	Val	Ala	Ile	Gly	Gly	Pro	Gly	Leu	Ala	
1555	GCA	GGT	GTG	AAA	TTC	CGC	AAG	GAT	GTG	CCA	AAT	GGT	GGA	CTA	1596
	Ala	Gly	Val	Lys	Phe	Arg	Lys	Asp	Val	Pro	Asn	Gly	Gly	Leu	
1597	GCA	AAT	GTA	GCA	GCA	ACA	GTG	ATG	AAT	CTG	CAT	GGT	TTT	GTG	1638
	Ala	Asn	Val	Ala	Ala	Thr	Val	Met	Asn	Leu	His	Gly	Phe	Val	
1639	GCT	CCT	GAT	GAC	TAT	GAG	ACA	ACC	CTT	ATT	GAA	GTT	GTT	GAT	1680
	Ala	Pro	Asp	Asp	Tyr	Glu	Thr	Thr	Leu	He	Glu	Val	Val	Asp	
1681	TAA														1683

Fig.11a:

36/48

B-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus BeifuBpollen (Isoform Art6)

Folgende B-Zell Epitope wurden bestimmt:

- Epitop 1: Met Gly Ser Ser Gly Phe Ser Trp Lys Leu Ala Asp His Pro Lys Leu Pro Lys Asn Lys Leu (AS 1-21)
- Epitop 2: Asp Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys Ile (AS 28-41)
- Epitop 3: Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Asn Gly Ala Pro Asp His Trp Arg Leu Val Arg Ala His Gly Thr (AS 44-68)
- Epitop 4: Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala Leu Gly Ala (AS 72-90)
- Epitop 5: Gly Arg Ile Tyr Glu Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe Ala Thr Asn Thr (AS 108-127)
- Epitop 6: Met Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln
 (AS 134-146)
- Epitop 7: Gly Ala Ser Glu Arg Gly Ala Lys Lys Ile Arg Val (AS 152-163)
- Epitop 8: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val
 (AS 166-178)
 - Epitop 9: Ala Ser Leu Arg Ser Lys Gly Ile Asp Ala (AS 189-198)
 - Epitop 10: Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Glu Val (AS 202-220)

37/48

Fig.11a: Fortsetzung

- Epitop 11: Glu Ala Pro His Lys Phe Lys Asn Val (AS 232-240)
- Epitop 12: Ile Lys Thr Leu Arg Gln Ala Pro Gly Ala Asn Asp Gln
 Tyr Leu Pro (AS 244-259)
- Epitop 13: Asp Asp Ser Gly Thr Pro Val (AS 265-271)
- Epitop 14: Asn Phe Arg Ala Asp Arg Met (AS 284-290)
- Epitop 15: Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp Arg Val Arg Phe Pro Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Asn His Tyr Leu Val Ser (AS 296-334)
- Epitop 16: Pro Leu Ile Asp Arg Thr Ser Gly Glu Tyr Leu Val His Asn Gly Val Arg Thr (AS 336-353)
- Epitop 17: Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser Glu
 Leu Glu Glu Tyr Val Glu Ile Pro Ser Asp Ser Gly Ile
 Thr Phe Asn Val Lys Pro Lys Met Lys Ala Leu Glu Ile
 Gly Glu Lys Thr Arg Asp Ala (AS 368-413)
- Epitop 18: Ser Gly Lys Phe Asp Gln Val Arg Val Asn Ile Pro Asn Gly Asp Met Val Gly His Thr Gly Asp Val Glu (AS 416-439)
- Epitop 19: Lys Ala Ala Asp Glu Ala Val (AS 446-452)
- Epitop 20: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Lys Gly Glu Pro Leu Leu Lys Asp Gly Glu Val (AS 470-494)
- Epitop 21: Leu Thr Ser His Thr Leu Gln Pro (AS 497-504)
- Epitop 22: Gly Val Arg Phe Arg Lys Asp Val Pro Ser Gly Gly Leu (AS 517-529)

Fig.11a: Fortsetzung

38/48

Epitop 23: Val Ala Pro Glu Asp Tyr Glu Thr Thr Leu (AS 543-552)

Fig.11b:

4

39/48

B-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Beifußpollen (Isoform Art17)

Folgende B-Zell Epitope wurden bestimmt:

- Epitop 1: Met Gly Ser Ser Gly Asp Lys Thr Thr Trp Lys Leu Ala Asp His Pro Lys Leu Pro Lys Gly Lys Met (AS 1-23)
- Epitop 2: Asp Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys Ile (AS 30-43)
- Epitop 3: Ser Leu Lys Asn Ser Ala Pro Asp His Trp Arg Leu Val Arg Ala His Gly Thr (AS 53-70)
- Epitop 4: Leu Pro Thr Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala Leu Gly Ala (AS 74-92)
- Epitop 5: Gly Lys Ile Tyr Asp Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe Ala Asn Asn Thr Leu (AS 110-130)
- Epitop 6: Met Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Leu (AS 136-148)
- Epitop 7: Gly Ala Ser Glu Arg Gly Ala Lys Lys Ile Arg Val (AS 154-165)
- Epitop 8: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val (AS 168-180)
- Epitop 9: Glu Thr Leu Glu Lys Asp Leu Ala Asp Leu Arg Ser Lys Gly Ile Asp Ala (AS 184-200)
- Epitop 10: Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Asp Val Val Lys Arg Gly Trp Asp Ala (AS 204-229)

Fig.11b:Fortsetzung 40/48

Epitop 11: Glu Ala Pro His Lys Phe Lys Ser Ala (AS 234-242)

Epitop 12: Ile Lys Lys Leu Arg Glu Ala Pro Asn Ala Asn Asp Gln
Tyr Leu Pro (AS 246-261)

Epitop 13: Asp Glu Ser Gly Lys Pro Val (AS 267-273)

Epitop 14: Asn Phe Arg Ala Asp Arg Met (AS 286-292)

Epitop 15: Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp Arg Val Arg Phe Pro Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Ser Arg Tyr Leu Val Ser (AS 298-336)

Epitop 16: Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Asn Asn Gly Ile Arg (AS 338-354)

Epitop 17: Ser Glu Thr Val Lys Phe (AS 359-364)

Epitop 18: Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser Glu
Leu Glu Glu Tyr Val Glu Ile Pro Ser Asp Asn Gly Ile
Ser Phe Asn Val Gln Pro Lys Met Lys Ala Leu Glu Ile
Gly Glu Lys Ala Arg Asp Ala Ile Leu Ser Arg Lys Phe
Asp Gln Val Arg Val Asn Ile Pro Asn Gly Asp Met Val
Gly His Thr Gly Asp Ile Glu (AS 370-441)

Epitop 19: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Glu Gly Glu Pro Leu Leu Asp Lys Asp Gly Lys Val (AS 472-497)

Epitop 20: Leu Thr Ser His Thr Leu Gln Pro (AS 500-507)

Epitop 21: Val Lys Phe Arg Lys Asp Val Pro Asn Gly Gly Leu (AS 521-532)

Epitop 22: Val Ala Pro Asp Asp Tyr Glu Thr Thr Leu (AS 546-555)

Fig. 12a:

41/48

T-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Beifußpollen (Isoform Art6)

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Ala Asp His Pro Lys (AS 11-15)

Epitop 2: Tyr Asn Cys Ile His Val Ala Glu Thr Pro Thr Met Asp Ser Leu Lys (AS 38-53)

Epitop 3: Asp His Trp Arg Leu Val Arg (AS 58-64)

Epitop 4: Phe Ala Gln Gly Ala Lys Leu Val Asp Gln (AS 94-103)

Epitop 5: Glu Ala Pro His Lys Phe Lys Asn Val Val Glu Ala Ile Lys Thr Leu Arg Gln Ala (AS 232-250)

Epitop 6: Arg Thr Phe Ala Cys Ser Glu Thr Val Lys (AS 352-361)

Epitop 7: Ser Glu Leu Glu Glu Tyr Val Glu (AS 379-389)

Epitop 8: Val Lys Met Ile Leu Asp Ala Val Glu Gln Val Gly Gly Ile (AS 452-465)

Epitop 9: Gly Gly Leu Ala Asn Val Ala Ala (AS 527-534)

Epitop 10: Asn Leu His Gly Phe Val Ala Pro Glu (AS 538-546)

Fig. 12b:

7

42/48

T-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Beifußpollen (Isoform Art17)

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Leu Ala Asp His Pro Lys (AS 12-17)

Epitop 2: Val Val Leu Asp Gly Trp Gly Glu Ala Ser (AS 26-36)

Epitop 3: Asp His Trp Arg Leu Val Arg (AS 60-66)

Epitop 4: Phe Ala Glu Thr Leu Glu Lys Asp Leu Ala (AS 182-191)

Epitop 5: Asn Asp Trp Asp Val Val (AS 218-223)

Epitop 6: Glu Ala Pro His Lys Phe Lys Ser Ala Val Glu Ala Ile Lys Lys Leu Arg Glu Ala Pro Asn (AS 234-254)

Epitop 7: Lys Phe Asp Arg Val (AS 306-310)

Epitop 8: Asn Asn Gly Ile Arg Thr Phe Ala Cys Ser Glu Thr Val Lys (AS 350-363)

Epitop 9: Ser Glu Leu Glu Glu Tyr Val Glu (AS 381-388)

Epitop 10: Asp Asp Ala Val Lys Met Ile Leu Asp Ala Ile Lys Glu Val Gly Gly (AS 451-466)

Epitop 11: Gly Gly Leu Ala Asn Val Ala Ala (AS 530-537)

Epitop 12: Asn Leu His Gly Phe Val Ala Pro Asp (AS 541-549)

Fig. 13:

3

43/48

Sequenzvergleich von PGM-i aus Lieschgraspollen (Ph15, Ph11), Beifußpollen (Art6. Art17) und 5 Birkenpollen (bvmut)

Plurality: 2.00 Threshold: 1.00 AveWeight 1.00 AveMatch 0.54 AvMis-Match -0.40

PRETTY of: pat.msf{*} July 28, 1996 22:24

```
1
                                                                   50
 pat.msf{Ph15}
               .....mTSW tLpDHPtLPK GKtVAVIVLD GWGEASaDQY NCIHrAETPV
 pat.msf{phl1}
               .....maTSW tLpDHPtLPK GKtVAVIVLD GWGEASaDQY NCIHrAETPV
 pat.msf{Art6} MGSSG..fSW kLaDHPkLPK nKIVAmIVLD GWGEASPDky NCIHVAETPt
pat.msf{Art17} MGSSGdkTtW kLaDHPkLPK GKmIAVVVLD GWGEASPDkY NCIHVAgTPV
pat.msf{bvmut}
               .....gGEAkPDQY NCIHVAETPt
     Consensus MGSSG--TSW -L-DHP-LPK GK-VAVIVLD GWGEASPDQY NCIHVAETPV
               51
                                                                 100
               MDSLKNGAPE KWŁLVKAHGT AVGLPSDDDM GNSEVGHNAL GAGRIFAQGA
 pat.msf{Ph15}
 pat.msf{phl1}
               MDSLKNGAPE KWŁLVKAHGT AVGLPSDDDM GNSEVGHNAL GAGRIFAQGA
 pat.msf{Art6}
               MDSLKNGAPD hWRLVRAHGT AVGLPTEDDM GNSEVGHNAL GAGRIFAOGA
pat.msf{Art17}
               MySLKNsAPD hWRLVRAHGT AVGLPTDDDM GNSEVGHNAL GAGRIYAQGA
pat.msf{bvmut}
               MDSLKqGAPE KWRLVRAHGK AVGLPTEDDM GNSEVGHNAL GAGRIFAQGA
     Consensus MDSLKNGAPE KWRLVRAHGT AVGLPTDDDM GNSEVGHNAL GAGRIFAQGA
               101
                                                                 150
 pat.msf{Ph15}
               KLFDAALASG KIWEDEGFNY IKESFAeGTL HLIGLLSDGG VHSRLDQVQL
 pat.msf{phl1}
               KLFDAALASG KIWEDEGFNY IKESFAeGTL HLIGLLSDGG VHSRLDQVQL
 pat.msf{Art6}
               KLVDqALASG rIYEDEGFNY IKESFAtnTL HLIGLMSDGG VHSRLDQLQL
pat.msf{Art17}
               KLVDIALASG KIYDDEGFNY IKESFAnnTL HLIGLMSDGG VHSRLDQLQL
pat.msf{bvmut}
               KLVDsALASG KIYEgEGFkY IKEcFenGTL HLIGLLSDGG VHSRLDQLQL
     Consensus KLVDAALASG KIYEDEGFNY IKESFA-GTL HLIGLLSDGG VHSRLDQLQL
               151
                                                                 200
```

pat.msf{Ph15} LvKGASERGA KRIR1HILTD GRDVLDGSSV GFVETLENDL AOLREKGVDA

Fig. 13: Fortsetzung

ì

44/48

```
pat.msf{phll}
              LVKGASERGA KRIRIHILTD GRDVLDGSSV GFVETLENDL AQLREKGVDA
               LLnGASERGA KKIRVHVLTD GRDVLDGSSV GFaETLEaEL ASLRSKGIDA
pat.msf{Art6}
pat.msf{Art17} LLKGASERGA KkIRVHVLTD GRDVLDGSSV GFaETLEkDL AdLRsKGIDA
pat.msf{bvmut} LLKGASERGA KRIRVHILTD GRDVLDGSSV GFVETLENDL AkLREKGVDA
     Consensus LLKGASERGA KRIRVHILTD GRDVLDGSSV GFVETLENDL AOLREKGVDA
                201
                                                                   250
               QVASGGGRMY VTMDRYENDW DVVKRGWDAQ VLGEAPYKFK SA1EAVKTLR
 pat.msf{Ph15}
               QVASGGGRMY VTMDRYENDW DVVKRGWDAQ VLGEAPYKFK SA1EAVKTLR
 pat.msf{phll}
 pat.msf{Art6}
               QVASGGGRMY VTMDRYENDW EVVKIGWDAQ VLGEAPHKFK nvVEAIKTLR
               QVASGGGRMY VTMDRYENDW DVVKRGWDAQ VLGEAPHKFK SAVEAIKKLR
pat.msf{Art17}
               QIASGGGRMY VTMDRYENDW EVIKRGWDAH VLGEAPYKFK SAVEAVKKLR
pat.msf{bvmut}
               QVASGGGRMY VTMDRYENDW DVVKRGWDAQ VLGEAPYKFK SAVEAVKTLR
     Consensus
                251
                                                                   300
pat.msf{Ph15}
               aEPKANDOYL PaFVIVDESG KSVGPIVDGD AVVTFNFRAD RMVMLAKALE
               aEPKANDOYL PaFVIVDESG KsVGPIVDGD AVVIFNFRAD RMVMLAKALE
pat.msf{phl1}
pat.msf{Art6}
               qaPgANDQYL PPFVIVDDSG tPVGPVVDGD AVVTvNFRAD RMtMLAqALE
               eaPnANDQYL PPFVIVDESG KPVGPImDGD AVVTFNFRAD RMtiLAqALE
pat.msf{Art17}
               eElkvsDOYL PPFVIVDDnG KPVGPIVDGD AVVTiNFRAD RMVMiAKALE
pat.msf{bvmut}
     Consensus
               -EPKANDOYL PPFVIVDESG KPVGPIVDGD AVVTFNFRAD RMVMLAKALE
                                                                   350
                301
               FadFDKFDRV RvPKIkYAGM LQYDGELKLP NkFLVSPPLI ERTSGEYLVk
pat.msf{Ph15}
pat.msf{phll}
               FadFDKFDRV RVPKIKYAGM LQYDGELKLP NKFLVSPPLI ERTSGEYLVK
               YEKFDKFDRV RFPKIRYAGM LOYDGELKLP NHYLVSPPLI DRTSGEYLVH
pat.msf{Art6}
               YEKFDKFDRV RFPKIRYAGM LQYDGELKLP STYLVSPPLI ERTSGEYLVn
pat.msf{Art17}
pat.msf{bvmut}
               YENFDKiDRV RFPKIRYAGM LQYDGELKLP shYLVePPeI ERTSGEYLVh
               YE-FDKFDRV RFPKIRYAGM LOYDGELKLP N-YLVSPPLI ERTSGEYLV-
     Consensus
                351
                                                                   400
               NGVRTFACSE TVKFGHVTFF WNGNRSGYFd etkEEYIEIP SDSGITFNeQ
 pat.msf{Ph15}
               NGVRTFACSE TVKFGHVTFF WNGNRSGYFd etkEEYIEIP SDSGITFNeQ
 pat.msf{phll}
               NGVRTFACSE TVKFGHVTFF WNGNRSGYFN SELEEYVEIP SDSGITFNVK
 pat.msf{Art6}
pat.msf{Art17}
               NGIRTFACSE TVKFGHVTFF WNGNRSGYFN SELEEYVEIP SDnGIsFNVO
pat.msf{bvmut} NGVRTFACSE TVKFGHVTFF WNGNRSGYFN SELEEYVEIP SDSGITFNVQ
```

Fig.13:Fortsetzung

7

45/48

Consensus NGVRTFACSE TVKFGHVTFF WNGNRSGYFN SELEEYVEIP SDSGITFNVQ

	401				450
<pre>pat.msf{Ph15}</pre>	PKMKALEIAE	KTRDAILSGK	FDQVRINLPN	GDMVGHTGDI	EATVVACKAA
<pre>pat.msf{phll}</pre>	PKMKALEIAE	KTRDAILSGK	FDQVRINLPN	GDMVGHTGDI	EATVVACKAA
<pre>pat.msf{Art6}</pre>	PKMKALE1gE	KTRDAILSGK	FDQVRVNiPN	GDMVGHTGDV	EATVVACKAA
<pre>pat.msf{Art17}</pre>	PKMKALE I g E	KaRDAILSrK	FDQVRVNiPN	GDMVGHTGDI	EATVVACKAA
<pre>pat.msf{bvmut}</pre>	PKMKALEIAE	KTRDAILSGK	FDQVRVNLPN	GDMVGHTGDI	Edtvvackaa
Consensus	PKMKALEIAE	KTRDAILSGK	FDQVRVNLPN	GDMVGHTGDI	EATVVACKAA
	451				500
<pre>pat.msf{Ph15}</pre>	DEAVKIVLDA	VEQVGGIYIV	TADHGNAEDM	VKRNKSGQPa	LDKsGSIQIL
<pre>pat.msf{phl1}</pre>	DEAVKIVLDA	VEQVGGIYIV	TADHGNAEDM	VKRNKSGQPa	LDKsGSIQIL
<pre>pat.msf{Art6}</pre>	DEAVKMILDA	VEQVGGIYVV	TADHGNAEDM	VKRNKkGePL	L.KdGeVQIL
<pre>pat.msf{Art17}</pre>	DDAVKMILDA	IkeVGGIYVV	TADHGNAEDM	VKRNKeGePL	LDKdGkVQIL
<pre>pat.msf{bvmut}</pre>	DEAdKMILDA	IEQVGGIYVV	TADHGNAEDM	VKRNKSvQPL	LDKnGn1QVL
Consensus	DEAVKMILDA	VEQVGGIYVV	TADHGNAEDM	VKRNKSGQPL	LDK-GS-QIL
	501				550
<pre>pat.msf{Ph15}</pre>	TSHTLQPVPV	AIGGPGLhpG	${\tt VKFRsDInTp}$	GLANVAATVM	NLHGFqAPDD
<pre>pat.msf{phl1}</pre>	TSHTLQPVPV	AIGGPGLhpG	${\tt VKFRsDInTp}$	GLANVAATVM	NLHGFqAPDD
<pre>pat.msf{Art6}</pre>	TSHTLQPVPI	AIGGPGLsaG	${\tt VrFRKDVPsG}$	GLANVAATVM	NLHGFVAPED
<pre>pat.msf{Art17}</pre>	TSHTLQPVPV	${\tt AIGGPGLaaG}$	VKFRKDVPnG	GLANVAATVM	NLHGFvAPDD
<pre>pat.msf{bvmut}</pre>	TSHTLQPVPI	${\tt AIGGPaLasG}$	VrFcKD1PdG	GLANVAATVi	NLHGFeAPsD
Consensus	TSHTLQPVPV	AIGGPGLG	VKFRKD-PTG	GLANVAATVM	NLHGF-APDD
	551 56	51			
<pre>pat.msf{Ph15}</pre>	YETTLIEVaD	K			
<pre>pat.msf{phl1}</pre>	YETTLIEVaD	K			
<pre>pat.msf{Art6}</pre>	YETTLIEVVE	•			
<pre>pat.msf{Art17}</pre>	YETTLIEVVD	•			
<pre>pat.msf{bvmut}</pre>	YEpTLIE1VD	n			
Consensus	YETTLIEVVD	K			

PCT/AT96/00141 WO 97/05258

46/48

Fig. 14: Plaquelifts von Klon Phl1 c dierend für Lieschgras PGM-i getestet mit Patientensera (A) und BIP3 (B).

Sera von allergischen Patienten (SS, HP, KG)

Serum eines nicht-allergischen Donors (NHS)

Kontrollster ohne PIP3 (C)

Kontrollfilter ohne BIP3 (C)

A

)

B

BIP3

47/48

Fig. 15: Plaquelifts von Klon Phl5 codierend für Lieschgras PGM-i getestet mit Patientensera (A) und BIP3 (B).

Sera von allergischen Patienten (CC ---

Sera von allergischen Patienten (SS, HP, KG) Serum eines nicht-allergischen Donors (NHS) Kontrollfilter ohne BIP3 (C)

A

B

48/48

Fig. 16: Plaquelifts von Klon Art17 c dierend für Beifuß PGM-i getestet mit Patientensera (A) und BIP3 (B).

Sera von allergischen Patienten (SS, HP, KG)

Serum eines nicht-allergischen Donors (NHS)

Kontrollfilter ohne BIP3 (C)

Kontrollfilter ohne BIP3 (C)

A

Ł

B

