## DM 1 : Électronique numérique Éléments de correction

| N°    | Elts de rép.                     | Pts | Note |
|-------|----------------------------------|-----|------|
| 1     | recherches de tous les exercices | 1   |      |
| 2.    | propreté de la copie             | 0.5 |      |
| 3.    | rendu pour le jour demandé       | 0.5 |      |
| Bonus | exercice supplémentaire          | 0.5 |      |

| Elts de rép.                                                                                                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Convertisseur analogique/numérique à compteur d'impulsions                                                                                                   |  |
| pour $t < 0$ , K est fermé donc $u_1(t < 0) = 0$ , pour $t \ge 0$ , K est ouvert donc                                                                        |  |
| $i_c = C \frac{du_1}{dt} = I_0$ plus continuité de la tension pour un condensateur donc                                                                      |  |
| $u_1(0) = 0 \text{ donc } u_1(t \ge 0) = \frac{I_0}{C}t$                                                                                                     |  |
| Tracer les graphes $u_0$ droite et $u_1$ droite linéaire. Repérer la valeur de $u_0$ ,                                                                       |  |
| a pente de $u_1$ de $10^3$ V.s <sup>-1</sup> , l'instant $t = 7,31$ ms de croisement de $u_0$ et $u_1$                                                       |  |
| Pour $0 < t < 7,31 \text{ ms}, u_1 < u_0 \Rightarrow u_2 = -15 \text{ V. Pour } 7,31 \text{ ms} < t, u_0 < u_1 \Rightarrow$                                  |  |
| $u_2 = +15$ V. faire un graphe de $u_2(t)$ . Si $rC \ll T$ le condensateur se charge et                                                                      |  |
| décharge instantanément, plus interrupteur $K_c$ commandé par $u_2$ , donc pour                                                                              |  |
| $t < 7,31 \text{ ms}, u_3 = \text{créneaux faits par H, pour } t > 7,31 \text{ ms } u_3 = 0.$ Faire un                                                       |  |
| graphe de $u_3$ . Remrquer qu'il fait 7 impulsions.                                                                                                          |  |
| Le compteur compte donc 7 impulsions : la tension analogique $u_0 = 7,31 \text{ V}$ a                                                                        |  |
| donc été convertie entre une valeur numérique approchée de 7 V. Pour obtenir une précision du déci-volt, il faut compter 73 impulsions, et il suffit donc de |  |
| prendre $T = 0, 1$ ms.                                                                                                                                       |  |
| Elts de rép.                                                                                                                                                 |  |
|                                                                                                                                                              |  |
| Mouvement apparent                                                                                                                                           |  |
| Une goutte sortant du robinet sans vitesse initiale à la date $t = 0$ a pour                                                                                 |  |
| altitude $z(t)$ avec $\ddot{z} = -g$ donc $\dot{z} = -gt$ et $z(t) = H - \frac{1}{2}gt^2$ avec $H = 5,00$ m.                                                 |  |
| Elle tombe au sol quand $z=0$ donc à la date $t=\sqrt{\frac{2H}{g}}=1,01$ s. Juste avant                                                                     |  |
| l'impact, à une date un tout petit peu inférieure à cette date, on voit donc la                                                                              |  |
| goutte émise $\frac{1}{3}$ de seconde plus tard, celle émise $\frac{2}{3}$ de seconde plus tard, et celle                                                    |  |
| émise une seconde plus tard vient de commencer sa chute. On distingue donc                                                                                   |  |
| exceptionnellement 4 gouttes, mais le plus souvent 3 gouttes.                                                                                                |  |
|                                                                                                                                                              |  |

| 6     | La fréquence des éclairs est égale à la fréquence du phénomène observé, il                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       | y a donc immobilité apparente, chaque goutte observée prend la place de la                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|       | précédente.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 7     | Prenons l'origine des dates $t=0$ au moment où une goutte (1) est émise supposons que le premier éclair ait lieu à cette date. La goutte suivante est émise à la date $T=\frac{1}{f}=0,333$ s. Le deuxième éclair intervient à la d $T=\frac{1}{f_e}=0,345$ s, à laquelle la goutte (1) est à l'altitude $z(T_e)=4,42$ et (2) est à l'altitude $z(T_e)=4,000$ m. L'absorvateur considère donc                                                                                                             |  |
|       | et (2) est à l'altitude $z(T_e - T) = 4,999$ m. L'observateur considère donc que la goutte (2) a pris la place de la (1) et que celle-ci s'est un tout petit peu déplacée d'environ 1 mm. Il y a donc mouvement ralenti vers le bas. La goutte la plus haute, juste en dessous du robinet est observée aux altitudes apparentes successives $z(0)$ , $z(T_e - T)$ , $z(2(T_e - T))$ , , $z(n(T_e - T))$ . Une goutte est émise toutes les $T$ secondes, donc lorsque la précédente se trouve à l'altitude |  |
|       | z(T). Dans le mouvement ralenti apparent, on aura donc l'impression qu'une                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|       | nouvelle goutte est émise lorsqu'on observera la goutte la plus haute à cette altitude, donc lorsque $z(n(T_e-T))=z(T)$ soit $H-\frac{1}{2}g(n(T_e-T))^2=H-\frac{1}{2}gT^2$                                                                                                                                                                                                                                                                                                                               |  |
|       | soit $n(T_e - T) = T$ soit $n = \frac{T}{T_e - T}$ donc à la date $nT_e = \frac{TT_e}{T_e - T}$ . La fréquence apparente d'émission des gouttes est donc $f_a = \frac{1}{nT_e} = \frac{T_e - T}{TT_e} = f - f_e = 0, 10$                                                                                                                                                                                                                                                                                  |  |
| 8     | gouttes par seconde, ou une goutte toutes les 10 secondes.  Prenons $t = 0$ à l'instant où la goutte (1) est émise et notons (2) la goutte sui-                                                                                                                                                                                                                                                                                                                                                           |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|       | vante. (1) touche le sol à la date $t_1 = \sqrt{\frac{2H}{g}}$ , à laquelle (2) se trouve à l'altitude                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|       | $z(t_1-T)$ et un éclair se produit. L'éclair suivant a lieu à la date $t_1+T_e$ et à cette                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|       | date, (2) se trouve à l'altitude $z(t_1 - T + T_e) = H - \frac{1}{2}g\left(\sqrt{\frac{2H}{g}} - T + T_e\right)^2 = \frac{1}{2}g\left(\sqrt{\frac{2H}{g}} - T + T_e\right)^2$                                                                                                                                                                                                                                                                                                                             |  |
|       | 0,106 m. L'observateur a donc l'impression que (1) a été remplacée par (2) : il y a mouvement ralenti rétrograde, les gouttes semblent remonter. La vitesse apparente de la goutte semblant remonter du sol est $v_a = \frac{z(t_1 - T + T_e)}{T_e} = 0,328$ m. s <sup>-1</sup> .                                                                                                                                                                                                                         |  |
| N°    | Elts de rép.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 09-10 | Multiplexage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 9     | Le critère de Nyquist-Shannon impose une fréquence minimale d'échantillonnage $f_e > 2f_{max}$ soit $f_e > 6800$ Hz. Chaque seconde, il faut donc échantillonner chacun des N+2 signaux $f_e$ fois, ce qui représente un total de $f_e(N+2)$ octets.                                                                                                                                                                                                                                                      |  |
|       | On en déduit que $f_e(N+2) = 256.10^3$ soit $N+2 = \frac{256.10^3}{f_e}$ donc $N+2 < 37,6$<br>La plus grande puissance de 2 correspondante est $N+2=32$ , donc $N=30$ .                                                                                                                                                                                                                                                                                                                                   |  |
| 10    | La fréquence d'échantillonnage correspondante est $f_e=\frac{256.10^3}{32}=8,0$ kHz. Elle vérifie bien le critère de Nyquist-Shannon.                                                                                                                                                                                                                                                                                                                                                                     |  |
| N°    | Elts de rép.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 11-13 | Théorème de Shannon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 11    | période d'échantillonnage $T_e = \frac{1}{f_e} = 50 \mu s$ , intervalle minimal entre deux raies                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|       | $\Delta f = \frac{1}{NT_e} = 20$ Hz. D'après le théorème de Shannon $f_{max} < 10$ kHz. Pour diminuer $\Delta f$ il faut augmenter $N$ , pour augmenter $f_{max}$ il faut augmenter $f_e$ .                                                                                                                                                                                                                                                                                                               |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |

| 12    | $2f_{max} < f_e = \frac{N}{t_{obs}}$ et $\Delta f = \frac{1}{t_{obs}} < (f_1 - f_2)$ donc $\frac{1}{f_1 - f_2} < t_{obs} < \frac{N}{2f_{max}}$ donc $0.1 \text{ s} < t_{obs} < 0.4 \text{ s}$ |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | $0.1 \text{ s} < t_{obs} < 0.4 \text{ s}$                                                                                                                                                     |
| 13    | ici $\Delta f < (f_{n+1} - f_n) = 100 \text{ Hz et si on veut visualiser les 50 premières har-}$                                                                                              |
|       | moniques $2f_{max} = 10$ kHz, donc $f_e = 10$ kHz convient et $N = 4000 = \frac{f_e}{\Delta f} > 10$                                                                                          |
|       | $\frac{f_e}{f_{n+1}-f_n}$ convient.                                                                                                                                                           |
| N°    | Elts de rép.                                                                                                                                                                                  |
| 14-16 | Filtrage numérique avec Python                                                                                                                                                                |
| 14    | $\frac{dv_s}{dt} + \omega_c v_s = \omega_c v_e$                                                                                                                                               |
| 15    | $\frac{dv_s}{dt} + \omega_c v_s = \omega_c v_e$ $A = \frac{2 - \omega_c T_e}{2 + \omega_c T_e} \text{ et } B = \frac{\omega_c T_e}{2 + \omega_c T_e}$                                         |
| 16    |                                                                                                                                                                                               |

```
[2]: import numpy as np
    import matplotlib.pyplot as plt
    N=1024
    Fe=1200
    Te=1/Fe
    deltaF=Fe/N
    t=np.linspace(0,Te*(N-1),N)
    amp=5
    ve = np.zeros(N)
    for i in range(N) :
        ve[i] = amp*np.sin(2.0*np.pi*40*t[i])+amp*np.sin(2.0*np.pi*500*t[i])
    fc = 150
    omegac = 2*np.pi*fc
    A = (2.0-\text{omegac}*Te)/(2.0+\text{omegac}*Te)
    B = omegac*Te/(2.0+omegac*Te)
    vs = np.zeros(N)
    for i in range(N-1):
        vs[i+1] = A*vs[i]+B*(ve[i+1]+ve[i])
    Se=ve
    vT, vF = np.arange(N)*Te,np.arange(N)*deltaF
    TF_Se = np.fft.fft(Se)
    plt.subplots_adjust(hspace=.5)
    plt.subplots_adjust(wspace=.5)
    plt.subplot(221)
    plt.plot(vT[:200],Se[:200])
    plt.xlabel('t (s)')
    plt.ylabel('$v_{e}$')
    plt.subplot(223)
    plt.plot(vF[:N//2],1/N*2*abs(TF_Se[:N//2]))
    plt.xlabel('F (Hz)')
    plt.ylabel('$A(v_{e})$')
    Se=vs
    vT, vF = np.arange(N)*Te,np.arange(N)*deltaF
    TF_Se = np.fft.fft(Se)
    plt.subplots_adjust(hspace=.5)
    plt.subplots_adjust(wspace=.5)
    plt.subplot(222)
    plt.plot(vT[:200],Se[:200])
    plt.xlabel('t (s)')
    plt.ylabel('$v_{s}$')
    plt.subplot(224)
```

```
plt.plot(vF[:N//2],1/N*2*abs(TF_Se[:N//2]))
plt.xlabel('F (Hz)')
plt.ylabel('$A(v_{s})$')
```

[2]: Text(0, 0.5, '\$A(v\_{s})\$')



[]:

| N°    | Elts de rép.                                                                                         |  |
|-------|------------------------------------------------------------------------------------------------------|--|
| 17-19 | Convertisseurnumérique/analogique 4 bits                                                             |  |
| 17    | Il y a autant de valeurs possibles pour ue que de choix des quatre états des                         |  |
|       | interrupteurs, soit $2^4 = 16$ . C'est aussi le nombre d'entiers dont la valeur est                  |  |
|       | comprise en base 2 entre 0000 et 1111.                                                               |  |
| 18    | Le potentiel auquel est porté la tige de l'interrupteur $k$ vaut $0$ ou $E$ selon que                |  |
|       | $\epsilon_k$ vaut 0 ou 1. Ce potentiel vaut donc $\epsilon_k.E$ . On peut alors appliquer la loi des |  |
|       | nœuds en termes de potentiel à chaque nœud de la ligne horizontale inférieure.                       |  |
|       | soit $u = \frac{\epsilon_0 + 2\epsilon_1 + 4\epsilon_2 + 8\epsilon_3}{16}$ . E                       |  |
| 19    | En prenant $E = 16$ V, on obtient donc une tension u dont la valeur en volt                          |  |
|       | est égale à celle de l'entrée $u_e$ en base 2. C'est donc bien un convertisseur                      |  |
|       | numérique/analogique.                                                                                |  |