Table 1: Simulated data

rule_id	coalition_id	coalitions	coalition_unopposed	coalition_success	coalition_size	coalition_business	comment_length	comments	cong_support
527	561	1	0	0.5	17	0	20.0	60885	0
554	1378	1	0	0.5	3	1	16.5	59688	9
1187	1287	2	1	-0.5	24	0	10.6	111855	0
1328	1066	2	1	-0.5	9	1	15.3	1	0
1289	750	2	1	0.5	14	1	16.5	189593	4
170	635	1	0	0.5	15	1	9.4	24996	7
107	786	1	0	0.5	24	1	14.1	25592	3
88	1376	1	0	-0.5	9	1	9.4	93001	5
740	329	1	0	0.5	8	0	15.3	1	2
743	1119	1	0	0.0	17	0	12.9	1	2

1 Pre-analysis

1.1 SIMULATED DATA

To illustrate my planned analysis, I simulate data for each variable described above.

Dependent variable: Coalition success is drawn from a descrete distribution {-1, -.5, 0, .5, 1}.

Explanatory variables: Coalition size (a count) is drawn from a Poisson distribution. Business coalition is binomial. In reality, business coalitions are more common than non-business coalitions, but here I estimate a balanced sample. I set rule pages constant at 85 and draw comment lengths from a Poisson distribution. While in reality, less than one percent of coalitions lobbying in rulemaking opt for a mass-comment campaign, I aim to gather a balanced sample, so half of the simulated data are assumed to have no mass comment campaign (comments = 1, log(comments) = 0) and the other half have a number of comments drawn from a Zero-Truncated Poisson distribution, which is then transformed to a log scale.

1.2 SIMULATED RESULTS

Unsurprisingly this model yields no significant results. With lobbying success as the dependent variable, the coefficient on the main variable of interest would be interpreted as a one-unit increase in the logged number of comments corresponds to a $\beta_{logmasscomments}$ increase in the five-point influence scale.

OLS model of coalition lobbying sucess with simulated data

To assess congressional support as a mediator in the influence of public pressure campaigns on rulemaking, I estimate the average conditional marginal effect (ACME, conditional on the number of comments from Members of Congress) and average direct effect (ADE) of mass comments using causal mediation analysis.

```
library(mediation)
# model predicting mediator
model.m <- lm(cong_support ~
                               log(comments) + comment_length + coalition_business+
# model predicting DV
model.y <- lm(coalition_success ~ log(comments) + cong_support + comment_length + coalit</pre>
med.cont <- mediate(model.m, model.y, sims=1000, treat = "log(comments)",</pre>
mediator = "cong_support")
summary(med.cont)
##
## Causal Mediation Analysis
## Quasi-Bayesian Confidence Intervals
##
                   Estimate 95% CI Lower 95% CI Upper p-value
##
                                                   0.00
## ACME
                   4.54e-06
                                -1.10e-04
                                                            0.91
## ADE
                  -1.71e-03
                                -6.28e-03
                                                   0.00
                                                            0.50
## Total Effect
                  -1.71e-03
                                -6.28e-03
                                                   0.00
                                                           0.50
## Prop. Mediated -4.02e-04
                                -1.86e-01
                                                   0.16
                                                            0.94
##
## Sample Size Used: 2000
##
##
## Simulations: 1000
```