National Taiwan Normal University CSU0007 - Basic Electronics Homework 5

100 points total. Due on 9AM, Monday, 6/8/2020.

Submit your answer via Moodle. Clearly state your analysis to earn full score.

Please tweak your image files to help save some ink! For example, grey-out the background color. Thanks! 請影像處理您的作業照片以節省列印墨水 (例如把背景顏色調淡)~ 謝謝!

We assume all MOSFETs have V_T=1 V, K=1 mA/V², and we use the SCS model.

- 1 Explain the following concepts in your own words. You may use figures to illustrate your points.
 - 1.1 (10 points) Suppose that the MOSFET is in the cutoff region. If we fix voltage V_{DS} (and suppose that $V_{DS} > 0$) and gradually increase voltage V_{GS} , the MOSFET will move to the other two regions in the following order: \rightarrow saturation \rightarrow triode.
 - 1.2 (10 points) Suppose that the MOSFET is in the triode region. If we fix voltage V_{GS} and gradually increase voltage V_{DS} , the MOSFET will move to the saturation in the end.

- 2 Consider the MOSFET circuit in Figure 1 and answer the following questions.
 - 2.1 (10 points) Suppose $V_{in}=3$ V. Then $i_{DS}=?$
 - 2.2 (10 points) Suppose $V_{in}=3$ V, $V_{out}=5$ V, and $R_L=10$ k Ω . Then $V_S=?$

Figure 1

- 3 Consider the MOSFET circuit in Figure 2.
 - 3.1 (5 points) Suppose V₂=4 V. What would be the range of V₁ for the MOSFET to operate in the saturation region?
 - 3.2 (5 points) Suppose that the MOSFET is operating in the triode region. Could we make the MOSFET to move into the saturation region by just increasing V_2 ? If your answer is yes, give the range of V_2 .

Figure 2

4 (10 points) Consider the MOSFET amplifier in Figure 3. Assume the MOSFET is operating in the saturation region. Suppose $V_S=15$ V, $R_L=5$ k Ω , and $V_{in}=3$ V. Compute the gain for this configuration.

Figure 3

- Consider the MOSFET amplifier in Figure 4. Suppose that the MOSFET is in the saturation region, and $V_S=15~V$, $R_1=5~k\Omega$, $R_2=10~k\Omega$, and $R_3=2~k\Omega$. (Note: If you've downloaded the earlier version of the lecture note, make sure you've made the following correction: the last equation on page 77 should have a square over the parenthesis.)
 - 5.1 (5 points) If V_{in}=8 V. Find V_{out}.
 - 5.2 (5 points) Find the minimum value of V_{in} for the MOSFET to stay in the saturation region.
 - 5.3 (5 points) If we can change R_3 , what is the maximum value of R_3 for the MOSFET to stay in the saturation region?
 - 5.4 (5 points) What is the maximum V_{in} that will make the gain larger than or equal to 1?

Figure 4

6 Consider the MOSFET amplifier in Figure 5.

- 6.1 (5 points) Apply the graphical analysis to explain the following phenomenon: if we decrease R_L , then the same V_{in} will produce a larger V_{out} .
- 6.2 (5 points) Apply the graphical analysis to illustrate an example that if we increase V_T , the valid range of V_{in} for the MOSFET to stay in the saturation region will decrease.

Figure 5

- 7 Apply the graphical analysis for the following two questions. Consider the MOSFET amplifier in Figure 5.
 - 7.1 (5 points) Suppose the following plot of V_{out} - V_{in} relation is accurate. To estimate the maximum V_{in} for the MOSFET to stay in the saturation region, which one of the following three estimation is better than the other two, and why? (A) 4.2 V; (B) 6.8; (C) 8.1.

7.2 (5 points) Following Question 7.1, suppose V_{GSmax} in the following plot is our estimation of the maximum V_{in} . Determine the value of V_Z .

