Key	Value data type	Name	Value		
BF	encoding <int></int>	BAM bit flags	see separate section		
CF	encoding <int></int>	CRAM bit flags	see specific section		
RI	encoding <int></int>	reference id	record reference id from the SAM file header		
RL	encoding <int></int>	read lengths	read lengths		
AP	encoding <int></int>	in-seq positions	if $AP-Delta = true$: 0-based alignment start		
			delta from the AP value in the previous record.		
			Note this delta may be negative, for example		
			when switching references in a multi-reference		
			slice. When the record is the first in the slice, the		
			previous position used is the slice alignment-start		
			field (hence the first delta should be zero for single-reference slices, or the AP value itself for		
			multi-reference slices).		
			if AP-Delta = false: encodes the alignment start		
			position directly		
RG	encoding <int></int>	read groups	read groups. Special value '-1' stands for no		
			group.		
RNa	encoding syte[]>	read names	read names		
MF	encoding <int></int>	next mate bit flags	see specific section		
NS	encoding <int></int>	next fragment	reference sequence ids for the next fragment		
NID	1.	reference sequence id			
NP	encoding <int></int>	next mate alignment	alignment positions for the next fragment		
TS	encoding <int></int>	start template size	template sizes		
NF	encoding <int></int>	distance to next	number of records to skip to the next fragment ^b		
111	encoding \mi>	fragment	number of records to skip to the next fragment		
TL^{c}	encoding <int></int>	tag ids	list of tag ids, see tag encoding section		
FN	encoding <int></int>	number of read	number of read features in each record		
		features			
FC	encoding byte>	read features codes	see separate section		
FP	encoding <int></int>	in-read positions	positions of the read features; a positive delta to		
			the last position (starting with zero)		
DL	encoding <int></int>	deletion lengths	base-pair deletion lengths		
BB	encoding encoding >	stretches of bases	bases		
QQ	encoding syte[]>	stretches of quality	quality scores		
Da	1. 1.	scores			
BS	encoding byte>	base substitution	base substitution codes		
IN	an and in melasta []	codes insertion	inserted bases		
RS	encoding encoding <int></int>	reference skip length	number of skipped bases for the 'N' read feature		
PD	encoding <int></int>	padding	number of padded bases		
HC	encoding <int></int>	hard clip	number of hard clipped bases		
SC	encoding encoding encoding >	soft clip	soft clipped bases		
MQ	encoding int>	mapping qualities	mapping quality scores		
BA	encoding shyte>	bases	bases		
QS	encoding byte>	quality scores	quality scores		
TC^{d}	N/A	legacy field	to be ignored		
TN^{d}	N/A	legacy field	to be ignored		

^a Note RN this is decoded after MF if the record is detached from the mate and we are attempting to auto-generate read names.

^b The count is reset for each slice so NF can only refer to a record later within this slice.

^c TL is followed by decoding the tag values themselves, in order of appearance in the tag dictionary.

^d TC and TN are legacy data series from CRAM 1.0. They have no function in CRAM 3.0 and should not be present. However some implementations do output them and decoders must silently skip these fields. It is illegal for TC and TN to contain any data values, although there may be empty blocks associated with them.

Note some auxiliary tags can be created automatically during decode so can optionally be removed by the encoder. However if the decoder finds a tag stored verbatim it should use this in preference to automatically computing the value.

The RG (read group) auxiliary tag should be created if the read group (RG data series) value is not -1.

The MD and NM auxiliary tags store the differences (an edit string) between the sequence and the reference along with the number of mismatches. These may optionally be created on-the-fly during reference-based sequence reconstruction and should match the description provided in the SAMtags document. An encoder may decide to store these verbatim when no reference is used or where the automatically constructed values differ to the input data.

Note there is no mechanism to describe which records have MD/NM present and which do not. If this is deemed important, the only recourse is to store all MD and NM verbatim and to request that the decoding software does not automatically generate its own for records that have no stored MD and NM tags.

10.6 Mapped reads

Read feature records

Read features are used to store read details that are expressed using read coordinates (e.g. base differences respective to the reference sequence). The read feature records start with the number of read features followed by the read features themselves. Each read feature has the position encoded as the distance since the last feature position, or the absolute position (i.e. delta vs zero) for the first feature. Finally the single mapping quality and per-base quality scores are stored.

Data series type	Data series	Field	Description	
	name			
int	FN	number of read	the number of read features	
		features		
int	FP	in-read-position ^a		
			position delta-position of the read	
			feature	
byte	FC	read feature code ^a	See feature codes below	
*	*	read feature data ^a	See feature codes below	
int	MQ	mapping qualities	mapping quality score	
byte[read length]	QS	quality scores	the base qualities, if preserved	

^a Repeated FN times, once for each read feature.

Read feature codes

Each feature code has its own associated data series containing further information specific to that feature. The following codes are used to distinguish variations in read coordinates:

This would be encoded as

```
binary 01 10 00 11, 01 00 10 11, 10 00 01 11, 00 10 01 11, 00 01 10 11 or hex 0x63, 0x4b, 0x87, 0x27 0x1b.
```

To decode, we would use the following lookup table, showing the same data as above with codes sorted into 0, 1, 2, 3 order.

	BS Code				
Ref. base	0	1	2	3	
A	Т	С	G	N	
\mathbf{C}	G	A	Τ	N	
G	С	\mathbf{T}	A	Ν	
${ m T}$	A	G	\mathbf{C}	N	
N	A	\mathbf{C}	G	Τ	

Substitution Code Assignment

There is no strict requirement on using a specific substitution matrix, nor that it be optimal. However one strategy may be to ensure the most common substitution is always given code 0, the next most common is code 1, and so on. This means the distribution of BS values will be skewed towards lower values, which helps improve compression over more uniformly distributed frequencies.

For example, let us assume the following substitution frequencies for base A:

AC: 15% AG: 25% AT: 55% AN: 5%

Then the substitution codes are T=0, G=1, C=2, N=3.

Decode mapped read pseudocode

```
1: procedure DecodeMappedRead
       feature number \leftarrow \text{ReadItem}(\text{FN}, \text{Integer})
2:
       last feature position \leftarrow 0
3:
       for i \leftarrow 1 to feature number do
4:
5:
           DECODEFEATURE
       end for
6:
7:
       mapping quality \leftarrow ReadItem(MQ, Integer)
       if CF AND 1 then
                                                                                         ▷ Quality stored as an array
8:
           for i \leftarrow 1 to read length do
9:
10:
               quality \ score \leftarrow \text{ReadItem}(QS, Integer)
           end for
11:
       end if
12:
13: end procedure
14: procedure DECODEFEATURE
       feature code
                         \leftarrow READITEM(FC, Integer)
       feature\_position \leftarrow \text{ReadItem(FP, Integer)} + last\_feature\_position
16:
17:
       last\_feature\_position \leftarrow feature\_position
       if feature\_code =  'B' then
18:
           base
                                \leftarrow READITEM(BA, Byte)
19:
                                \leftarrow READITEM(QS, Byte)
20:
           quality score
       else if feature code = 'X' then
21.
           substitution \ code \leftarrow ReadItem(BS, Byte)
22:
23:
       else if feature code = 'I' then
           inserted bases
                                \leftarrow ReadItem(IN, Byte[])
24:
       else if feature code = 'S' then
25:
           softclip bases
                                \leftarrow ReadItem(SC, Byte[])
26:
```