POLS 6481. Research Design and Quantitative Methods II Lecture 25. Binary Independent Variables II: Different Slopes for Different Groups Readings: Wooldridge, *Introductory Econometrics 5e*, 6.2b + 7.4b Kam & Franzese, p. 1–26, 43–54, 60–67, 78–85

Outline

- 1. Simple and Complex Questions
- 2. Adding Variables and/or Estimating Sub-Sample Regressions
- 3. Interpreting Coefficients in Various Specifications
- 4. Interactions of One Binary and One Continuous Independent Variable
 - A. Introduce Example
 - B. Marginal Effects
 - C. Variances, Standard Errors, Hypothesis Tests
 - D. The Logic of Conditional Coefficients
- 5. The Chow Test

1. Simple and Complex Questions

o simple or 'first generation' effect of *x* on *y*

complex or 'second generation' effect of x on y depends on z

- under what conditions?
- moderated by... (not mediated by...); constrained by...; magnified by...; mitigated by...; etc.
- see fn. 4, p. 10: *interactive*
- (see fn. 2, p. 3: *multiplicative* and *intervening* have been subsumed)

2. Adding Variables and/or Estimating Sub-Sample Regressions

Five modeling strategies:

Linear pooled	$y = \beta_0 + \beta_x x + e$
Linear additive	$y = \beta_0 + \beta_x x + \beta_d d + e$
Linear interactive without a constituent term	$y = \beta_0 + \beta_x x + \beta_{xd} xd + e$
Linear interactive with all constituent terms	$y = \beta_0 + \beta_x x + \beta_d d + \beta_{xd} x d + e$
Linear, separate equations	$y_{d=0} = \beta_{0,d=0} + \beta_{x,d=0} x + e_{d=0}$ $y_{d=1} = \beta_{0,d=1} + \beta_{x,d=1} x + e_{d=1}$

- O Draw pictures of fitted line (or *lines*) in each framework
- O How do we interpret β_x and β_d and/or β_{xd} (if present) in each framework
- O Draw marginal effects curves $\frac{\Delta y}{\Delta x}$ and confidence intervals around them.

3. Interpreting coefficients in Various Specifications

Contrast pooled...

... and additive

$$y = \beta_0 + \beta_x x + e$$

$$y = \beta_0 + \beta_y x + \beta_d d + e$$

 β_d is an intercept shift! Fitted curves are two parallel lines.

- for d = 0, intercept equals β_0 & slope equals β_x

- for d = 1, intercept equals $\beta_0 + \beta_d$ & slope equals β_v

Contrast pooled...

$$y = \beta_0 + \beta_x x + e$$

... and interactive *without* all constituent terms

$$y = \beta_0 + \beta_x x + \beta_{xd} xd + e$$

 β_{xd} is a slope shift! Fitted curves have same intercept (β_0) but the trajectories deviate:

- for d = 0, intercept equals β_0

& slope equals β_{ν}

- for d = 1, intercept equals β_0

& slope equals $\beta_x + \beta_{xd}$

Contrast pooled...

$$y = \beta_0 + \beta_x x + e$$

... and interactive with all constituent terms

$$y = \beta_0 + \beta_x x + \beta_d d + \beta_{xd} x d + e$$

 β_d is an intercept shift and β_{xd} is a slope shift! Fitted curves are two entirely different lines:

- for d = 0, intercept equals β_0 & slope equals β_v

- for d = 1, intercept equals $\beta_0 + \beta_d$ & slope equals $\beta_x + \beta_{xd}$

4. Interactions of One Binary and One Continuous Independent Variable

A. Example of number of presidential candidates depending on number of groups in society

Dataset: candidates.dta

R script: Lecture 25 candidates.R

Sample: N = 16 presidential democracies

Dependent variable: Effective number of candidates $\in [1.956, 5.689]$; mean = 3.156

Independent variable: Number of groups \in [1, 2.756]; mean = 1.578 (s.d. = 0.630)

Binary **moderator** variable: Runoff election system $\in \{0,1\}$

Model: $\hat{y} = 4.303 - 0.979 \cdot Groups$ if Runoff = 0 (.650) (.407)

 $\hat{y} = 1.812 + 1.026 \cdot Groups$ if Runoff = 1 (1.262) (.708)

4. Interactions of One Binary and One Continuous Independent Variable

Kam and Franzese p. 19

TABLE 1. OLS Regression Results, Number of Presidential Candidates

	Coefficient (standard error p-Value
Ethnic Groups	-0.979
59	(0.770)
	0.228
Runoff	-2.491
	(1.561)
	0.136
Ethnic Groups × Runoff	2.005
	(0.941)
	0.054
Intercept	4.303
	(1.229)
	0.004
N (degrees of freedom)	16 (12)
Adjusted R ²	0.203
P > F	0.132

Note: Cell entries are the estimated coefficient, with standard error in parentheses, and two-sided p-level (probability |T| > t) referring to the null hypothesis that $\beta = 0$ in italics.

4. Interactions of One Binary and One Continuous Independent Variable

Model:
$$\hat{y} = 4.303 - .979 \cdot Groups - 2.491 \cdot Runoff + 2.005 Groups \cdot Runoff$$

B. Marginal Effects...

... of Changing Number of Ethnic Groups
$$\partial \hat{y}/\partial G = -.979 + 2.005 \cdot Runoff$$

= -.979 if $Runoff = 0$ *
= 1.026 if $Runoff = 1$ *

C. Variance of Marginal Effect: $V(\partial \hat{y}/\partial G) = V(\hat{\beta}_G) + Runoff^2 \cdot V(\hat{\beta}_{G \times R}) + 2 \cdot Runoff \cdot C(\hat{\beta}_G, \hat{\beta}_{G \times R})$

Standard Errors:
$$s.e.(\partial \hat{y}/\partial G) = \sqrt{V(\partial \hat{y}/\partial G)}$$

Hypothesis Tests:
$$t = \frac{\partial \hat{y}/\partial G}{s.e.(\partial \hat{y}/\partial G)}$$

*Note: compare these to the coefficients for sub-samples two slides earlier.

TABLE 13. Estimated Variance-Covariance Matrix of Coefficient Estimates, Predicting Number of Presidential Candidates

	Groups	Runoff	$Groups \times Runoff$	Intercept
Groups	0.593	h24.755.750		- 0
Runoff	0.900	2.435		
Groups × Runoff	-0.593	-1.377	0.885	
Intercept	-0.900	-1.509	0.900	1.509

C. Variance of Marginal Effect:
$$V(\partial \hat{y}/\partial G) = V(\hat{\beta}_G) + Runoff^2 \cdot V(\hat{\beta}_{G \times R}) + 2 \cdot Runoff \cdot C(\hat{\beta}_G, \hat{\beta}_{G \times R})$$

$$= .593 + Runoff^2 \cdot .885 + 2 \cdot Runoff \cdot (-.593)$$

$$= .593 \text{ if } Runoff = 0 \text{ (no runoff)}$$

$$= .292 \text{ if } Runoff = 1 \text{ (runoff)}$$

Standard Errors s. e.
$$(\partial \hat{y}/\partial G) = \sqrt{V(\partial \hat{y}/\partial G)}$$
 = .770 if Runoff = 0 * = .540 if Runoff = 1 *

^{*}Note: compare these to the standard errors for sub-samples three slides earlier.

TABLE 14. Hypothesis Tests of whether Groups Affects Number of Presidential Candidates

4	∂ŷ/∂G	s.e. (ðŷ/∂G)	t-Statistic	One-Tailed p-Value H_0 : β_C + $\beta_{GR}Runoff \le 0$	One-Tailed p-Value $H_0: \beta_G +$ $\beta_{GR}Rumoff \ge 0$	90% Confidence Interval
Runoff = 0	-0.979	0.770	-1.271	0.886	0.114	[-2.352, 0.394]
Runoff = 1	1.026	0.540	1.902	0.041	0.959	[0.064, 1.988]

Fig. 6. Marginal effect of Groups, with 90 percent confidence intervals

4. Interactions of One Binary and One Continuous Independent Variable

Model:
$$\hat{y} = 4.303 - .979 \cdot Groups - 2.491 \cdot Runoff + 2.005 Groups \cdot Runoff$$

B. Marginal Effect...

... of Changing Electoral System
$$\partial \hat{y}/\partial R = -2.491 + 2.005 \cdot Groups$$

When Groups = 1:
$$\partial \hat{y}/\partial R = -2.491 + 2.005 \times 1 = -0.486$$

When Groups = 1.5:
$$\partial \hat{y}/\partial R = -2.491 + 2.005 \times 1.5 = 0.517$$

When Groups = 2:
$$\partial \hat{y}/\partial R = -2.491 + 2.005 \times 2 = 1.520$$

When Groups =
$$2.5$$
: $\partial \hat{y}/\partial R = -2.491 + 2.005 \times 2.5 = 2.522$

When Groups = 3:
$$\partial \hat{y}/\partial R = -2.491 + 2.005 \times 3 = 3.525$$

4. Interactions of One Binary and One Continuous Independent Variable

Model: $\hat{y} = 4.303 - .979 \cdot Groups - 2.491 \cdot Runoff + 2.005 Groups \cdot Runoff$

B. Marginal Effect...

... of Changing Electoral System $\partial \hat{y}/\partial R = -2.491 + 2.005 \cdot Groups$

$$\partial \hat{y}/\partial R = -2.491 + 2.005 \cdot Groups$$

TABLE 2. Predicted Number of Presidential Candidates

Runoff = 0	Runoff = 1	-0.486
3.324	2.838	>= 0.517
2.835	3.351	1 520
2.345	3.865	→ 1.520
1.855	4.378	→= 2.522
1.366	4.891	→ 3.525
	3.324 2.835 2.345 1.855	3.324 2.838 2.835 3.351 2.345 3.865 1.855 4.378

TABLE 13. Estimated Variance-Covariance Matrix of Coefficient Estimates, Predicting Number of Presidential Candidates

	Groups	Runoff	$Groups \times Runoff$	Intercept
Groups	0.593	No. Company		- 0
Runoff	0.900	2.435		
Groups × Runoff	-0.593	-1.377	0.885	
Intercept	-0.900	-1.509	0.900	1.509

C. Variance of Marginal Effect:
$$V(\partial \hat{y}/\partial R) = V(\hat{\beta}_R) + Groups^2 \cdot V(\hat{\beta}_{G \times R}) + 2 \cdot Groups \cdot C(\hat{\beta}_R, \hat{\beta}_{G \times R})$$

= 2.435 + $Groups^2 \cdot .885 + 2 \cdot Groups \cdot (-1.377)$
= 0.566 if $Groups = 1$
= 0.467 if $Groups = 2$
= ...

Standard Errors
$$s.e.(\partial \hat{y}/\partial R) = \sqrt{V(\partial \hat{y}/\partial G)}$$
 = 0.752 if $G = 1$ = 0.682 if $G = 2$ = ...

TABLE 15. Hypothesis Tests of whether Runoff Affects Number of Presidential Candidates

	∂ŷ/∂R	s.e. (∂ŷ/∂R)	t-Statistic	One-Tailed p-Value H_0 : β_R + β_{GR} Groups ≤ 0	One-Tailed p-Value H_0 : $\beta_K +$ $\beta_{GK}Groups \ge 0$	90% Confidence Interval
Groups = 1	-0.486	0.752	-0.646	0.735	0.265	[-1.826, 0.854]
Groups = 1.5	0.517	0.542	0.954	0.180	0.820	[-0.449, 1.483]
Groups = 2	1,520	0.682	2.229	0.023	0.977	[0.305, 2.735]
Groups = 2.5	2.522	1.038	2.430	0.016	0.984	[0.672, 4.373]
Groups=3	3.525	1.461	2.413	0.016	0.984	[0.922, 6.128]

Fig. 4. Marginal effect of Runoff, with 90 percent confidence interval

POLS 6481. Research Design and Quantitative Methods II Lecture 25. Binary Independent Variables II: Different Slopes for Different Groups Readings: \varnothing

- 4. Interactions of One Binary and One Continuous Independent Variable
- D. The Logic of Conditional Coefficients

If you have an interaction, say between variables *x* and *z*, then:

- the value of β_x is the marginal effect of x when z = 0;
- the value of β_z is the marginal effect of z when x = 0.

The same interpretations apply to the standard errors:

- the standard error of β_x is the standard error of the marginal effect of x when z = 0;
- the standard error of β_z is the standard error of the marginal effect of z when x = 0.

If you wish to get the marginal effect and standard error at some other point, you can

- change the baseline group (in case z is binary; e.g., change from female to male)
- subtract a constant from all values of x (in case x is continuous)

(At a minimum, you should change do this ↑ to check your math.)

POLS 6481. Research Design and Quantitative Methods II Lecture 25. Binary Independent Variables II: Different Slopes for Different Groups Readings: Wooldridge, *Introductory Econometrics 5e*, 6.2b + 7.4b

- 5. The Chow Test To Pool or Not to Pool?
- ♦ as described on top half of p. 247 contrasts pooled model and separate equations model

Get
$$SSR_{p}$$
 from: $y = \beta_{0} + \beta_{x}x + e$
Get SSR_{0} from: $y_{d=0} = \beta_{0,d=0} + \beta_{x,d=0}x + e_{d=0}$
Get SSR_{1} from: $y_{d=1} = \beta_{0,d=1} + \beta_{x,d=1}x + e_{d=1}$

$$F = \frac{(SSR_{p} - (SSR_{0} + SSR_{1}))/2}{(SSR_{0} + SSR_{1})/(n-4)}$$

$$SSR_{p} = 20.651 \text{ when:} \qquad \hat{y} = 2.497 + 0.418 \cdot Groups$$

$$SSR_{0} = 1.935 \text{ when:} \qquad \hat{y} = 4.303 - 0.979 \cdot Groups \text{ if } Runoff = 0$$

$$SSR_{1} = 11.898 \text{ when:} \qquad \hat{y} = 1.812 + 1.026 \cdot Groups \text{ if } Runoff = 1$$

$$F = \frac{(6.818)/2}{(13.833)/(12)} = 2.957$$

POLS 6481. Research Design and Quantitative Methods II Lecture 25. Binary Independent Variables II: Different Slopes for Different Groups Readings: Wooldridge, *Introductory Econometrics 5e*, 6.2b + 7.4b

- 5. The Chow Test To Pool or Not to Pool?
- \spadesuit as described on bottom half of p. 247 contrasts additive model (has common slope, but intercept shift for d=1) and separate equations model

Get
$$SSR_{p}$$
, from: $y = \beta_{0} + \beta_{x}x + \beta_{d}d + e$
Get SSR_{0} from: $y_{z=0} = \beta_{0,d=0} + \beta_{x,d=0}x + e_{d=0}$
Get SSR_{1} from: $y_{z=1} = \beta_{0,d=1} + \beta_{x,d=1}x + e_{d=1}$

$$F = \frac{(SSR_{p'} - (SSR_{0} + SSR_{1}))/1}{(SSR_{0} + SSR_{1})/(n-4)}$$

$$SSR_{p} = 19.073 \text{ when:} \qquad \hat{y} = 2.263 + 0.366 \cdot Groups + .631 \cdot Runoff$$

$$SSR_{0} = 1.935 \text{ when:} \qquad \hat{y} = 4.303 - 0.979 \cdot Groups \text{ if } Runoff = 0$$

$$SSR_{1} = 11.898 \text{ when:} \qquad \hat{y} = 1.812 + 1.026 \cdot Groups \text{ if } Runoff = 1$$

$$F = \frac{(5.240)/1}{(13.833)/(12)} = 4.546$$