Chapter 47

Linear Programming and Duality

47.1 Variants of the Farkas Lemma

If A is an $m \times n$ matrix and if $b \in \mathbb{R}^m$ is a vector, it is known from linear algebra that the linear system Ax = b has no solution iff there is some linear form $y \in (\mathbb{R}^m)^*$ such that yA = 0 and $yb \neq 0$. This means that the linear from y vanishes on the columns A^1, \ldots, A^n of A but does not vanish on b. Since the linear form y defines the linear hyperplane H of equation yz = 0 (with $z \in \mathbb{R}^m$), geometrically the equation Ax = b has no solution iff there is a linear hyperplane H containing A^1, \ldots, A^n and not containing b. This is a kind of separation theorem that says that the vectors A^1, \ldots, A^n and b can be separated by some linear hyperplane H.

What we would like to do is to generalize this kind of criterion, first to a system Ax = b subject to the constraints $x \ge 0$, and next to sets of inequality constraints $Ax \le b$ and $x \ge 0$. There are indeed such criteria going under the name of $Farkas\ lemma$.

The key is a separation result involving polyhedral cones known as the Farkas–Minkowski proposition. We have the following fundamental separation lemma.

Proposition 47.1. Let $C \subseteq \mathbb{R}^n$ be a closed nonempty (convex) cone. For any point $a \in \mathbb{R}^n$, if $a \notin C$, then there is a linear hyperplane H (through 0) such that

- 1. C lies in one of the two half-spaces determined by H.
- 2. $a \notin H$
- 3. a lies in the other half-space determined by H.

We say that H strictly separates C and a.

Proposition 47.1, which is illustrated in Figure 47.1, is an easy consequence of another separation theorem that asserts that given any two nonempty closed convex sets A and B of \mathbb{R}^n with A compact, there is a hyperplane H strictly separating A and B (which means that $A \cap H = \emptyset$, $B \cap H = \emptyset$, that A lies in one of the two half-spaces determined by H,