IV - L'eau et le sol

Cours Physique du Sol - 2007

IV - Eau et Sol

- A. Définition Humidité du sol
- B. Les divers modes de rétention de l'eau par le sol
 - Les forces qui agissent sur l'eau
 - Le potentiel de l'eau
- D. Notion de potentiel capillaire ou matriciel
 - Définition
 - Mesure du potentiel capillaire : le tensiomètre
 - Relations Humidités et pF
- F. Humidités caractéristiques du sol
 - Définitions
 - Mesures des humidités
- H. Le sol réservoir d'eau pour les plantes : calcul de la capacité de rétention R.U. et R.F.U.

A - Définition de l'humidité du sol

- Massique :
 - Hm (ω) = (masse eau / masse sol sec) \square 100
- Volumique :
 - Hv (θ) = (volume d'eau / volume sol sec) ☐ 100

- Teneur en eau :
 - Θ = masse eau / masse sol sec

Porosité du sol

Légende:

- (1) grosse crevasse déterminant la sur-structure.
- (2) crevasse de 2ème ordre délimitant les agrégats (3) fissures fines déterminant la sous-structure
- (4) canalicules de faible diamètre
- (5) grosse lacune travérsant les agrégats
- (6) lacune tubulaire creusée par un lombric (7) lacune aveugle.

(d'après GAUCHER).

A - Définition de l'humidité du sol

h mm = Hm% □ zmm □ da □ 10-2 = Hm% □ zdm □ da

IV - Eau et Sol

- A. Définition Humidité du sol
- B. Les divers modes de rétention de l'eau par le sol
 - Les forces qui agissent sur l'eau
 - Le potentiel de l'eau
- D. Notion de potentiel capillaire ou matriciel
 - Définition
 - Mesure du potentiel capillaire : le tensiomètre
 - Relations Humidités et pF
- F. Humidités caractéristiques du sol
 - Définitions
 - Mesures des humidités
- H. Le sol réservoir d'eau pour les plantes : calcul de la capacité de rétention R.U. et R.F.U.

B - Les forces s'exerçant sur l'eau du sol

Source: Soltner (2003)

IV - Eau et Sol

- A. Définition Humidité du sol
- B. Les divers modes de rétention de l'eau par le sol
 - Les forces qui agissent sur l'eau
 - Le potentiel de l'eau
- D. Notion de potentiel capillaire ou matriciel
 - Définition
 - Mesure du potentiel capillaire : le tensiomètre
 - Relations Humidités et pF
- F. Humidités caractéristiques du sol
 - Définitions
 - Mesures des humidités
- H. Le sol réservoir d'eau pour les plantes : calcul de la capacité de rétention R.U. et R.F.U.

Potentiel total de l'eau: Φ

• Formule : $\Phi = \Phi g + \Phi p$ (simplifiée)

p □ potentiel de pression ou Hp ou Ψ
 Tient compte adsorption, pression capillaire

g = gZ ☐ potentiel gravitaire ou Pg ou Hg

Potentiel de pression: Eau pelliculaire et capillaire

Eau pelliculaire et capillaire

Mesure de la Capillarité : Loi de JURIN

P1 (pression interne) < P0 (pression atm.)

h en cm = $\Delta P / (\rho e \square g)$

Avec $\Delta P = P0-P1 = (2\gamma) \cos \alpha / r$

 γ tension superficielle de l'eau (72,8 dynes/cm)

r rayon du tube capillaire en cm

Etat de l'eau

- Si le sol est saturé d'eau
 - Φp ou Hp est >0
 - − Φg ou Hg >> Φp ou Hp □ eau gravitaire
- Si le sol n'est pas saturé d'eau
 - Φp ou Hp ou Ψ < 0 ☐ le potentiel de pression abaisse le potentiel de l'eau

Expression du potentiel de pression en zone non saturée

- $-\Psi$ = POTENTIEL MATRICIEL
- Valeur absolue = succion de l'eau par le sol

IV - Eau et Sol

- A. Définition Humidité du sol
- B. Les divers modes de rétention de l'eau par le sol
 - Les forces qui agissent sur l'eau
 - Le potentiel de l'eau
- D. Notion de potentiel capillaire ou matriciel
 - Définition
 - Mesure du potentiel capillaire : le tensiomètre
 - Relations Humidités et pF
- F. Humidités caractéristiques du sol
 - Définitions
 - Mesures des humidités
- H. Le sol réservoir d'eau pour les plantes : calcul de la capacité de rétention R.U. et R.F.U.

Définition du potentiel matriciel

•Le potentiel matriciel :

'est égal à la quantité d'énergie qu'il faut fournir à 1 cm3 de volume élémentaire d'eau du sol, pour le faire passer à l'état 'libre'. On l'appelle aussi Succion de l'eau par le sol.'

Expression du potentiel matriciel

En Pa, bars, **cm** : 1 à 106 kPa

Transformé en pF = log (-Hp) : 1 à 7

IV - Eau et Sol

- A. Définition Humidité du sol
- B. Les divers modes de rétention de l'eau par le sol
 - Les forces qui agissent sur l'eau
 - Le potentiel de l'eau
- D. Notion de potentiel capillaire ou matriciel
 - Définition
 - Mesure du potentiel capillaire : le tensiomètre
 - Relations Humidités et pF
- F. Humidités caractéristiques du sol
 - Définitions
 - Mesures des humidités
- H. Le sol réservoir d'eau pour les plantes : calcul de la capacité de rétention R.U. et R.F.U.

Mesure du pF: Le tensiomètre

IV - Eau et Sol

- A. Définition Humidité du sol
- B. Les divers modes de rétention de l'eau par le sol
 - Les forces qui agissent sur l'eau
 - Le potentiel de l'eau
- D. Notion de potentiel capillaire ou matriciel
 - Définition
 - Mesure du potentiel capillaire : le tensiomètre
 - Relations Humidités et pF
- F. Humidités caractéristiques du sol
 - Définitions
 - Mesures des humidités
- H. Le sol réservoir d'eau pour les plantes : calcul de la capacité de rétention R.U. et R.F.U.

Relation Humidité x pF

II - Eau et Sol

- A. Définition Humidité du sol
- B. Les divers modes de rétention de l'eau par le sol
 - Les forces qui agissent sur l'eau
 - Le potentiel de l'eau
- D. Notion de potentiel capillaire ou matriciel
 - Définition
 - Mesure du potentiel capillaire : le tensiomètre
 - Relations Humidités et pF
- F. Humidités caractéristiques du sol
 - Définitions
 - Mesures des humidités
- H. Le sol réservoir d'eau pour les plantes : calcul de la capacité de rétention R.U. et R.F.U.

C - Humidités caractéristiques du sol

Cliquez pour modifier les styles du texte du masque SATURATION <u>Troisième niveau</u> 1 Patrième niveau 40 Cinquième niveau grains eau CAPACITE AU 20 20 CHAMP 100 P. FLETRISSEMENT 100 30 air

Humidités à pF4,2 (Point de flétrissement) pour différents sols

Texture	Humidité à pF4,2
Sableux	2,5 %
Sablo-argileux (11% A)	4 %
Sablo limono argileux	6 %
Limono-argileux (13% A)	13 %
Argilo - sableux	13 %
Argilo - limoneux	20,5 %

Source :Schofield et Bothelo Da Costa (1935) ; Perigaud (1963) in Henin, 1977)

Estimations de Hcc, HpF4,2 et He

Pour une large gamme de terres :

He: 0,59 A + 0,16 L + 5,47 si He > 20 %

He: 0,51 A + 0,14 L + 7,35 si He < 20 %

formule de GRAS-BETREMIEUX (1957 – 1963)

Correctif si MO > 1% alors on ajoute : 0,75 * MO + 0,93 à la formule

Avec A: % argile, L: % de limons fins et MO: % de matière organique

Liaisons entre différentes humidités caractéristiques

Type de sol	
Sables fins purs ou argileux (10% A)	HpF4,2 = Hcc / (5,5 à 6)
Sables limoneux avec 10-25% A	HpF4,2 = Hcc / (3 à 4)
Sables 'moyens' avec 20-25 % A	HpF4,2 = Hcc / 2
Argiles sableuses (40-80% A)	HpF4,2 = Hcc / (1,5 à 1,7)

Source : Perigaud (1963)

II - Eau et Sol

- A. Définition Humidité du sol
- B. Les divers modes de rétention de l'eau par le sol
 - Les forces qui agissent sur l'eau
 - Le potentiel de l'eau
- D. Notion de potentiel capillaire ou matriciel
 - Définition
 - Mesure du potentiel capillaire : le tensiomètre
 - Relations Humidités et pF
- F. Humidités caractéristiques du sol
 - Définitions
 - Mesures des humidités
- H. Le sol réservoir d'eau pour les plantes : calcul de la capacité de rétention R.U. et R.F.U.

Méthodes mesures Humidités

Hm: boîtes à humidité + étuve

- Hv:
 - cylindre + étuve
 - Sonde à neutron
 - TDR (Time Domain Reflectometry)

Sonde à neutrons

TDR

II - Eau et Sol

- A. Définition Humidité du sol
- B. Les divers modes de rétention de l'eau par le sol
 - Les forces qui agissent sur l'eau
 - Le potentiel de l'eau
- D. Notion de potentiel capillaire ou matriciel
 - Définition
 - Mesure du potentiel capillaire : le tensiomètre
 - Relations Humidités et pF
- F. Humidités caractéristiques du sol
 - Définitions
 - Mesures des humidités
- H. Le sol réservoir d'eau pour les plantes : calcul de la capacité de rétention R.U. et R.F.U.

D - Réserve Utile : R. U.

Le sol : un réservoir d'eau pour les plantes

Calcul de la R.U.

RU en mm = (Hcc - HpF4,2) das * z * (1-x) * (1-y)

- Avec :
 - Hcc: formule de GRAS en %
 - HpF4,2 = à peu près ½ HCC ou valeurs particulières
 - da : densité apparente ou formule de KELI (1984) :

$$da = 1,60 - 0,0153 A$$

- z : profondeur de sol considéré en dm.
- Si cailloux non poreux [] % de terre fine = (1-x)
 avec x % de cailloux sous forme décimale
- y renvoi au motte ∆ (attention voir cours d'Yvan Gautronneau) sous forme décimale

Texture et volume d'eau utilisable

Texture	da	Hcc-HpF4,2	da (Hcc-HpF4,2)
Sable grossier	1,55	5 – 7	8 – 11 mm/dm
Sable fin humifère	1,35	11 – 12	15 – 16 mm/dm
Sable fin peu humifère	1,6	9 – 10	15 – 16 mm/dm
Sable argileux	1,5	11 – 12	16 – 19 mm/dm
Sable limono-argileux	1,6	13 – 20	20 – 32 mm/dm
Argile sableuse	1,48	9 - 12	13 – 18 mm/dm

Source: Perigaud (1963) in Henin, 1977)

Exercice: calcul de la RU

- Profondeur max: 1 m profondeur utile: 90 cm
- Argile: 14,9 %
- Limons grossiers: 10,5 %
- Limons fins : 12,7 %
- Sables fins: 26,7 %
- Sables grossiers: 33,3 %
- Calcaire: 186 g/kg
- Matière organique : 1,8 %
- HpF4,2:8%
- Densité apparente : 1,4
- Cailloux: 0
- Mottes compactes (Δ) : 20 % soit 0,2