Homework sheet 4 - Due 03/16/2025

Problem 1: Expectation values and time evolution for two spins. [4 + 3 + 3 = 10 points]

Consider two spin 1/2 particles with four basis states $\{|\uparrow,\uparrow\rangle,|\uparrow,\downarrow\rangle,|\downarrow,\uparrow\rangle,|\downarrow,\downarrow\rangle\}$. Let the system be in the following states

$$|\psi\rangle = \frac{1}{2}|\uparrow,\uparrow\rangle + \frac{1}{2}|\uparrow,\downarrow\rangle + \frac{1}{\sqrt{2}}|\downarrow,\downarrow\rangle.$$
 (1)

- a) Single qubit measurements:
 - i) First, we measure $\hat{S}_z^{(1)}$. Determine the probability to measure $-\hbar/2$. What is the state after the measurement?
 - ii) Immediately after measuring $\hat{S}_z^{(1)}$ and having obtained $-\hbar/2$, we measure $\hat{S}_x^{(1)}$. Which results are possible and what are the probabilities?
 - iii) Now $\hat{S}_z^{(1)}$ and $\hat{S}_z^{(2)}$ are measured simultaneously. Determine the probability to obtain equal or opposite values.
- b) Calculate $\langle \hat{\vec{S}}^{(1)} \rangle, \langle \hat{\vec{S}}^{(2)} \rangle$ where $\langle \dots \rangle$ are quantum-mechanical expectation values with respect to $|\psi\rangle$. Demonstrate that the vectors of expectation values have a norm below $\hbar/2$. Interpret the result. Which type of states would imply vectors of expectation values with norm equal to $\hbar/2$.
- c) Now consider time evolution with the Hamiltonian

$$H = -\omega_1 \hat{S}_z^{(1)} - \omega_2 \hat{S}_z^{(2)}. \tag{2}$$

Calculate $|\psi(t)\rangle$ with $|\psi(0)\rangle = |\psi\rangle$ as given above.

Problem 2: Two-qubit gates and entanglement [2+3+5= 10 points]

Consider two spin-1/2 particles with spin operators $\hat{\vec{S}}^{(1)}$, $\hat{\vec{S}}^{(2)}$.

a) Using the basis $\{|\uparrow,\uparrow\rangle\,,|\uparrow,\downarrow\rangle\,,|\downarrow,\uparrow\rangle\,,|\downarrow,\downarrow\rangle\}$, determine the matrix form of the time evolution operator $U(t)=e^{-iHt/\hbar}$ for

$$H = \frac{J}{\hbar^2} \hat{\vec{S}}^{(1)} \cdot \hat{\vec{S}}^{(2)} + \frac{J}{4}$$
 (3)

Comment: The resulting U(t) is a gate which is closely related to the fSim-gate, a native continuous two-qubit gate for some platforms of quantum computers, e.g. in Google's superconducting quantum chips [link].

- b) Assume that the system is prepared in one of the four product states $|\uparrow,\uparrow\rangle$, $|\uparrow,\downarrow\rangle$, $|\downarrow,\uparrow\rangle$, $|\downarrow,\downarrow\rangle$. For each of those four initial states, answer the following questions
 - Does U(t) create entangled states?
 - If U(t) does create entanglement, write out the state.
- c) We next define a measure of entanglement in the $m_1 + m_2 = 0$ sector of states. Such states can most generically be represented as $|\psi\rangle = \cos(\theta) |\uparrow,\downarrow\rangle + \sin(\theta)e^{i\phi} |\downarrow,\uparrow\rangle$.
 - i) Relate θ, ϕ to the state obtained by applying the unitary from the previous section, U(t), to $|\uparrow, \downarrow\rangle$. Which θ correspond to Bell-pairs?
 - ii) Using the basis states $\{|\uparrow,\downarrow\rangle,|\downarrow,\uparrow\rangle\}$, write out the density matrix $\rho=|\psi\rangle\langle\psi|$.
 - iii) Determine the reduced density matrix at site 1. It is defined as

$$\rho_1 = \sum_{m_2 = \uparrow, \downarrow} (2\langle m_2 |) \rho (|m_2\rangle_2). \tag{4}$$

Write ρ_1 as a matrix.

Hint: For clarity we added a subscript $_2$ to indicate that $|m_2\rangle_2$ lives in the Hilbert space of the second qubit. In this calculation it is useful to return to a less compact notation $|m_1, m_2\rangle = |m_1\rangle_1 \otimes |m_2\rangle_2$ to see that partial inner products are taken as $(2\langle \tilde{m}_2|) |m_1, m_2\rangle = |m_1\rangle_1 \langle \tilde{m}_2|m_2\rangle_2 = \delta_{m_2, \tilde{m}_2} |m_1\rangle_1$

iv) For which θ is the entanglement entropy

$$S_{\text{entanglement}}(\theta) = -\text{tr}\left[\rho_1 \ln \rho_1\right] \tag{5}$$

maximal? For which θ is it minimal? Compare to the angles θ correspoding to Bell pairs (subexercise i) and to angles corresponding to product states. Sketch the entanglement entropy as a function of θ .

Problem 3: Heisenberg trimer. [3 + 3 + 4 = 10 points]

- a) Consider a system of three spin-1/2 particles $\hat{\vec{S}}^{(1)},\hat{\vec{S}}^{(2)},\hat{\vec{S}}^{(3)}.$
 - i) Demonstrate that the total Hilbert space decomposes as

$$\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} = \frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2}. \tag{6}$$

Hint: First take the direct product of the Hilbert spaces of the first and second spin. For \otimes and \oplus you may use the same rules of distributivity and associativity as for regular multiplication and addition on \mathbb{R} .

ii) Consider the Hamiltonian

$$H = \frac{J}{\hbar^2} \left[\hat{\vec{S}}^{(1)} \cdot \hat{\vec{S}}^{(2)} + \hat{\vec{S}}^{(2)} \cdot \hat{\vec{S}}^{(3)} + \hat{\vec{S}}^{(3)} \cdot \hat{\vec{S}}^{(1)} \right]. \tag{7}$$

Write it in terms of $\hat{\vec{S}} = \sum_{i=1}^{3} \hat{\vec{S}}^{(i)}$. Check that $\hat{\vec{S}}^2, \hat{S}_z$ are observables compatible with the Hamiltonian and use part i) to determine the spectrum of the system.

- b) Explicitly construct the eigenstates in the three sectors 1/2, 1/2, 3/2 on the right hand side of Eq. (6). As in the lecture course, start from the highest weight state. For j=1/2, m=1/2 states, choose eigenstates which are have equal probability of being in each of the three states $|\downarrow\uparrow\uparrow\rangle$, $|\uparrow\downarrow\uparrow\rangle$, $|\uparrow\uparrow\downarrow\rangle$ (and analogously for j=1/2, m=-1/2.)
- c) Consider three spin ring-exchange term

$$H_{\text{ring}} = \frac{\tilde{J}}{\hbar^3} \hat{\vec{S}}^{(1)} \cdot (\hat{\vec{S}}^{(2)} \times \hat{\vec{S}}^{(3)}). \tag{8}$$

- i) Convince yourself that \hat{S} commutes with H_{ring} . (It is sufficient to prove it for \hat{S}_z and infer the result for other components of \hat{S} by isotropy arguments.)
- ii) Calculate the energy corrections to first order in \tilde{J} .