

Mixed Integer Stochastic Optimization of relative Position of two Wind Turbines using using Neural Network based Constraint Learning

Simon Schmetz –
 Universidad Carlos III de Madrid
 Master Thesis Defense
 Madrid the 14th of July 2025

Supervisor: Carlos Ruiz Mora

➤ The Problem: Maximize Power

Required Components:

- Objective Function
- Constraints
- Solver

Problem Definition: General Two Turbine Problem

$$\max_{\mathbf{x},\mathbf{y}} f_{Power,NN}(\Delta x, \Delta y)$$

s.t.
$$0 \le \Delta x \le X_{\text{max}}$$

 $0 \le \Delta y \le Y_{\text{max}}$
 $\sqrt{(\Delta x)^2 + (\Delta y)^2} \ge d_{\text{min}}$

Objective Function: Physical Reality

Objective Function: Data to Surrogate Model

Objective Function: Constraint Learning (CL)

CL-Approach: Neural Network Decomposition

$$egin{aligned} v_i^\ell &= \max(0, ilde{v}_i^\ell) \ v_i^\ell &\geq ilde{v}_i^\ell \ v_i^\ell &\leq ilde{v}_i^\ell - M^{ ext{low}}(1-j_i) \ v_i^\ell &\leq M^{ ext{up}} j_i \end{aligned}$$

$$j_i = egin{cases} 0 & ext{if } ilde{v}_i^\ell < 0 \ 1 & ext{if } ilde{v}_i^\ell > 0 \end{cases}$$

Steps to Solving the Two Turbine Problem

Approach: Wind condition Independent Neural Network

$$\max_{\mathbf{x},\mathbf{y}} \sum_{i=1}^{n} f_{Power,NN}(\Delta x, \Delta y, \text{ wind condition}) \cdot p_{n,\text{wind condition combination}}$$
s.t. $\Delta x < X_{\text{max}}$

$$\Delta y \le Y_{\text{max}}$$

$$\sqrt{(\Delta x)^2 + (\Delta y)^2} \ge d_{\text{min}}$$

Modeling Process

Parameter Grid

Variable	Const/Variable	Value	Steplength
$\Delta x_{ m turb_2}$	Variable	[o, 5000] m	50 m
$\Delta y_{ m turb_2}$	Variable	[o, 500] m	50 m
wind_speed	Constant	8 m/s	-
wind_direction	Variable	[180°, 270°]	10°
turbulence_intensity	Constant	0.06	-

Generate Data Using FLORIS

Modeling (Using NN: $5 - 50^{\times 3} - 1$)

Modeling (Expectation)

Optimization

With two scenarios from a discretized $N(270^{\circ}, 5^{\circ})$ as wind direction distribution

Wind Expectation Neural Network

 $\max_{\mathbf{x},\mathbf{y}} \mathbb{E}[f_{Power}(\Delta x, \Delta y) \mid \text{wind condition distribution}]_{NN}$

s.t.
$$0 \le \Delta x \le X_{\text{max}}$$

 $0 \le \Delta y \le Y_{\text{max}}$
 $\sqrt{(\Delta x)^2 + (\Delta y)^2} \ge d_{\text{min}}$

Modeling Process

 $\max_{\mathbf{x},\mathbf{y}} \mathbb{E}[f_{Power}(\Delta x, \Delta y) \mid \text{wind condition distribution}]_{NN}$ -Probabilities-**Define Wind** Calculate Generate Parameter Condition Data **Expected** Grid **Parameter Parameter** Distribution (Simulation) Farm Power grid Data **Space** Expectation Data for x and y Training Hyperparam. Model Final Model Tuning

Parameter Grid

Variable	Const/Variable	Value	Steplength
$\Delta x_{\mathrm{turb}_2}$	Variable	[o, 5000] m	50 m
$\Delta y_{ m turb_2}$	Variable	[o, 500] m	50 m
wind_speed	Constant	8 m/s	-
wind_direction	Variable	[180°, 270°]	35 Quantiles
turbulence_intensity	Constant	0.06	-

With wind direction distribution as $N(270^{\circ}, 10^{\circ})$

Generate Data Using FLORIS

Modeling (Using NN: $5 - 20^{\times 2} - 1$)

Optimization

Comparison

Wind Distribution independent Approach

- Delivers generally applicable solution independent of location/wind condition distribution
- Has limitations due to model complexity and number of possible scenarios

Direct Expectation Modeling Approach

- Delivers a Model conditional on a specific location/wind condition distribution
- Allows for a large number of scenarios using a small neural Network

Conclusion

Wind Distribution independent Approach

- Delivers generally applicable solution independent of location/wind condition distribution
- Has limitations due to model complexity and number of possible scenarios

Direct Expectation Modeling Approach

- Delivers a Model conditional on a specific location/wind condition distribution
- Allows for a large number of scenarios using a small neural Network

Questions?

Expectation Maximization

$$\mathbb{E}[X] = \sum_{i} x_i \cdot \mathbb{P}(X = x_i) = \sum_{i} x_i p_i$$

Probability density function discretization

Appendix: Wind Condition indip NN

Appendix: Wind Condition indip NN

Appendix: Expectation Neural Network

Appendix: Expectation Neural Network

