

Who Am I Amir Masood Soltani

Interested in: Statistical machine learning, Geometric deep learning

Deep Learning

Image source: https://karmaadvisory.com/wp-content/uploads/2018/11/Screen-Shot-2018-11-04-at-2.38.34-PM-768x499.png

Goal

What is the one true architecture?

As in times past, this makes it difficult to understand the relations between various methods, inevitably resulting in the reinvention and re-branding of the same concepts in different application domains[1]

We could consider Graphs as a starting point

Go Back in Time

Erlangen Programme, Klein proposed approaching geometry as the study of invariants, i.e. properties unchanged under some class of transformations, called the symmetries of the geometry[1]

Image sources:

https://en.wikipedia.org/wiki/File:Scuola_di_atene_23.jpg https://en.wikipedia.org/wiki/File:Lobachevsky_03_crop.jpg https://en.wikipedia.org/wiki/File:Georg_Friedrich_Bernhard_Riemann.jpeg https://en.wikipedia.org/wiki/File:Felix_Klein,_ante_1897_-_Accademia_delle_Scienze_di_Torino_0078_B.jpg

Why we're interested in geometry?

*Almost everything is curve fitting

We've got high dimensional data

- Curse of dimensionality/ dimensionality reduction

We need to restrict the definition of our function under certain assumptions -> Inductive Biases

https://en.wikipedia.org/wiki/File:Overfitting.svg

Inductive biases

- Shifts do not affect image processing
- Rotations do not affect spherical data
- Graphs does not have order

https://en.wikipedia.org/wiki/Graph_isomorphism

5G

Grids / Groups / Graphs / Geodesic & Gauges

Image sources:

https://en.wikipedia.org/wiki/File:BoysSurfaceTopView.PNG https://en.wikipedia.org/wiki/File:6n-graf.svg https://en.wikipedia.org/wiki/Sphere#/media/File:Sphere_wireframe_10deg_6r.svg

Invariance & Equivariance

Considering graphs with no edges:

Permutation invariance: f(PX) = f(X)Permutation equivariance: f(PX) = Pf(X)

Considering normal graphs:

Permutation invariance: $f(PX, PAP^t) = f(X, A)$ Permutation equivariance: $f(PX, PAP^t) = Pf(X, A)$

Graphs in action

Node Classification / Graph Classification / Link prediction

Convolutional GNN

Domains & Symmetry group

Architecture	Domain	Symmetry Group
CNN	Grid	Translation
Spherical CNN	Sphere/SO(3)	Relation SO(3)
Intrinsic/Mesh CNN	Manifold	Isometry Iso/Gauge symmetry SO(2)
GNN	Graph	Permutation
Deep Sets	Set	Permutation
Transformer	Complete Graph	Permutation
LSTM	1D Grid	Time wrapping

References

- [1] Bronstein, Michael M., et al. "Geometric deep learning: Grids, groups, graphs, geodesics, and gauges." *arXiv preprint arXiv:2104.13478* (2021).
- [2] Bronstein, Michael M., et al. "Geometric deep learning: going beyond euclidean data." *IEEE Signal Processing Magazine* 34.4 (2017): 18-42.