Alexander Afanasyev Vertex Cover

Topics:

- 1. Greedy algorithms
 - 4.5 The Minimum Spanning Tree Problem
 - 4.6 Implementing Kruskal's Algorithm: The Union-Find Data Structure
 - 4.8 Huffman Codes and Data Compression
- 2. Divide and conquer
 - 5.1 A First Recurrence: The Mergesort Algorithm
 - 5.2 Further Recurrence Relations
 - 5.3 Counting inversions
 - 5.4 Finding the Closest Pair of Points
- 3. Dynamic programming
 - 6.1 Weighted Interval Scheduling: A Recursive Procedure
 - 6.2 Principles of Dynamic Programming: Memorization or Iteration over Subproblems
 - 6.3 Segmented Least Squares: Multi-Way Choices
 - 6.4 Subset Sums and Knapsacks: Adding a Variable
 - 6.5 RNA Secondary Structure: Dynamic Programming over Intervals
 - 6.6 Sequence Alignment
 - 6.8 Shortest Paths in a Graph
- 4. Network flow
 - 7.1 The Maximum-Flow Problem and the Ford-Fulkerson Algorithm
 - 7.2 Maximum Flows and Minimum Cuts in a Network
- 5. NP
 - 8.1 Polynomial-Time Reductions
 - 8.4 NP-Complete Problems
 - 8.10 A Partial Taxonomy of Hard Problems

Vertex Cover

On a graph G = (V, E), a vertex cover $C \subseteq V$ is a subset of the vertices such that for all $e = (u, v) \in E$, $u \in C$ or $v \in C$. That is, it is a set of vertices such that every edge has at least one of its endpoints in the vertex cover. The cost of a vertex cover is the size of set C.

Suppose you are given a bipartite graph $G = ((L \cup R), E)$ and wish to find a vertex cover of smallest cost.

- 1. Set up a min-cut in $G \cup \{s,t\}$ that does not cut any edges of E.
- 2. Show how to use this min-cut to get a vertex cover of minimum size for G. That is, show how to select a subset $l \subseteq L$ and a subset $r \subseteq R$, based on the cut, such that every edge is incident to some element of $l \cup r$.

Alexander Afanasyev PAGE 505, Ex.1

page 505, Ex.1

For each of the two questions below, decide whether the answer is (i) "Yes," (ii) "No," or (iii) "Unknown, because it would resolve the question of whether $\mathcal{P} = \mathcal{NP}$." Give a brief explanation of your answer.

• Let's define the decision version of the Interval Scheduling Problem from Chapter 4 as follows: Given a collection of intervals on a time-line, and a bound k, does the collection contain a subset of non-overlapping intervals of size at least k?

Question: Is it the case that Interval Scheduling $\leq p$ Vertex Cover?

• Question: Is it the case that Independent Set $\leq p$ Interval Scheduling?

page 505, Ex.2

A store trying to analyze the behavior of its customers will often maintain a two-dimensional array A, where the rows correspond to its customers and the columns correspond to the products it sels. The entry A[i,j] specifies the quantity of product j that has been purchased by customer i.

		liquid detergent	beer	diapers	cat litter
Example:	Raj	0	6	0	3
	Alanis	2	3	0	0
	Chelsea	0	0	0	7

One thing that a store might want to do with this data is the following. Let us say that a subset S of the customers is *diverse* is no two of the customers in S have ever bought the same product (i.e., for each product, at most one of the customers in S has ever bought it). A diverse set of customers can be useful, for example, as a target pool for market research.

We can now define the Diverse Subset Problem as follows: Given an $m \times n$ array A as defined above, and a number $k \leq m$, is there a subset of at least k of customers that is *diverse*?

Show that Diverse Subset is NP-complete.

page 505, Ex.3

Suppose you're helping to organize a summer sports camp, and the following problem comes up. The camp is supposed to have at least one counselor who's skilled at each of the n sports covered by the camp (baseball, volleyball, and so on). They have received job applications from m potential counselors. For each of the n sports, there is some subset of the m applicants qualified in that sport. The question is: For a given number k < m, is it possible to hire at most k of the counselors and have at least one counselor qualified in each of the n sports? We'll call this the Efficient Recruiting Problem.

Show that Efficient Recruiting is NP-complete.

Proof The Efficient Recruiting problem is exactly the Set Covering problem, but formulated in different terms. Formally, we can prove that Efficient Recruiting is \leq_p that Set Covering by providing an algorithm for Set Covering, which uses Efficient Recruiting as a subroutine.

Let set U of n elements represent some distinct virtual sport types

Let a collection S_1, \ldots, S_m represent applicants, whereby each subset S represents proficiency of an applicant in each of virtual sports

return Run Efficient_Recruiting(n sports, m applicants, k positions)

N-ary Huffman Codes

While binary coding dominates, there are cases where more than two coding symbols are preferable. In the context of electromechanical devices, one often has a channel that allows for more than two voltage values: It would be a waste not to use this possibility to our advantage!

Closest pair of points problem

- 1-D version
- 2-D version

Projects

We're running a lab with P people working for us. We have a set of possible projects 1, 2, ..., n each of which requires some number of people $p_1, p_2, ..., p_n$. Our goal is to determine the maximum number of projects we can work on simultaneously; in other words, the size of the largest set $S \subseteq \{1, 2, ..., n\}$ such that $\Sigma_{x \in S} p_x \leq P$.

- 1. Show that a simple greedy algorithm solves this problem in $O(n \log n)$ time.
- 2. Now suppose that we additionally have C computers for our lab. Now each project i requires p_i people and c_i computers. Give an example to show that the greedy algorithm no longer works.
- 3. Design a dynamic programming algorithm to find the maximum number of projects we can work on simultaneously; in other words the size of the largest set $S \subseteq \{1, 2, ..., n\}$ such that $\Sigma_{x \in S} p_x \leq P$ and $\Sigma_{x \in S} c_x \leq C$. Your algorithm should run in time O(nPC).

Distance-vector algorithm

Find shortest paths in a graph with negative edges, but without negative cycles.

Vertex cover

On a graph G = (V, E), a vertex cover $C \subseteq V$ is a subset of the vertices such that for all $e = (u, v) \in E$, $u \in C$ or $v \in C$. That is, it is a set of vertices such that every edge has at least one of its endpoints in the vertex cover. The cost of a vertex cover is the size of set C.

Suppose you are given a bipartite graph $G = ((L \cup R), E)$ and wish to find a vertex cover of smallest cost.

- 1. Set up a min-cut in $G \cup \{s,t\}$ that does not cut any edges of E.
- 2. Show how to use this min-cut to get a vertex cover of minimum size for G. That is, show how to select a subset $l \subseteq L$ and a subset $r \subseteq R$, based on the cut, such that every edge is incident to some element of $l \cup r$.