

### Department of Mathematics and Computer Science Coding Theory and Cryptology Group

# Secure Sessions for Ad Hoc Multiparty Computation in MPyC

Master thesis

#### **Emil Nikolov**

 $\begin{array}{c} {\rm Id~nr:~0972305} \\ {\rm emil.e.nikolov@gmail.com} \end{array}$ 

Supervisor: Dr. ir. L.A.M. (Berry) Schoenmakers

## Contents

| C  | Contents                            |     |  |  |
|----|-------------------------------------|-----|--|--|
| Li | ist of Figures                      | vii |  |  |
|    | Testing methodology 1.1 Performance | 1   |  |  |
| 2  | Wireguard                           | 3   |  |  |

## List of Abbreviations

 $E^3$  Extensible Evaluation Environment. 1

# List of Figures

### Chapter 1

## Testing methodology

During the preparation phase of the project we developed the Extensible Evaluation Environment  $(E^3)$  framework which simplifies and automates the process of deploying machines in different georgraphical regions, connecting them in an overlay network and executing MPC computations between them, where each machine represents a different party. During the thesis assignment we will look at a number of solutions for ad hoc MPC sessions and compare them in terms of performance, security and usability.

#### 1.1 Performance

Each solution will be deployed using the  $E^3$  framework and the performance will be quantitatively measured in terms of the speed of execution of a number of pre-selected MPyC demos of different round complexities and message sizes: - Secret santa - high round complexity - Convolutional Neural Network (CNN) MNIST classifier - low round complexity, large message size

#### 1.2 Security

We will analyze aspects such as - key distribution - trust model - are there any trusted third parties and what would be the consequences if they are corrupted or breached -

#### 1.3 Usability

Each solution will be analyzed in terms of the actions that need to be taken by the parties in order to perform a multiparty computation.

| CHAPTER 1. | TESTING METHODOLOGY |
|------------|---------------------|
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |
|            |                     |

## Chapter 2

# Wireguard

Wireguard is a simple VPN protocol built with the Noise Protocol Framework.