

# Semi-supervised Modelling



- ▶ We have focussed on supervised methods from 570 through 572. This includes taking known (labeled) responses and fitting a model you might then predict for some unknown (unlabeled) responses using that fitted model.
- ► The bulk of 573 has been focussed on unsupervised methods. This includes taking unlabeled responses and fitting a model.
- Let's motivate an alternative through some examples...

#### Supervised vs Unsupervised



► Suppose that 25% of cases have labeled response from the following data



## Supervised estimation



► Let's calculate the means from each group in a supervised manner



## Supervised estimation



Let's calculate the means from each group in a supervised manner



#### Unsupervised estimation



► Let's calculate the means for estimated groups in an unsupervised manner (using mclust)



### Unsupervised estimation



► Let's calculate the means for estimated groups in an unsupervised manner (using mclust)



# Supervised vs Unsupervised



► Here are the group means on the same plot



#### Comments



- ► And that was with 25% randomly selected to have known labels.
- ► Suppose instead that your labeling process was biased...
- ▶ One natural bias that can happen in realistic scenarios is that clear cases are labeled, and less clear cases might be left for an algorithm to sort out.

#### Bias Supervised



► Suppose that the following cases have been hand-labeled



### Bias Supervised



▶ We then estimate the means...



## Bias Supervised



▶ We then estimate the means...



#### Bias Supervised vs Unsupervised



► And again compare to unsupervised...



# Side by side







#### Comments



- Of course, if the group structure is less clear, unsupervised methods can fail horribly on this type of estimation example.
- ► In which case supervised methods will outperform.
- Furthermore, it seems like there should be some way to take advantage of labeled responses to improve on (blind) unsupervised methods.

# Semi-supervised Machine Learning



16/24

- ► There is a third option...or rather, a third set of options<sup>1</sup>.
- Semi-supervised methods use both labeled and unlabeled observations in tandem during the model fitting process.
- ► While such an approach is usable in several classification models, we will focus on mixture models (surprise, surprise).

Jeffrey L. Andrews Lecture 7

<sup>&</sup>lt;sup>1</sup>Vrbik, I., & McNicholas, P. D. (2015). Fractionally-supervised classification. Journal of Classification, 32(3), 359-381.

DATA 573

Semi-supervised Modelling

# Semi-supervised Modelling: Specifics



Suppose  $X_u$  contains all the predictors with unlabeled response (unobserved  $y_u$ ), and  $X_l$  contains all predictors with labeled response (observed  $y_l$ ).

| Paradigm        | Avail. Data     | Estimate $\hat{f}$ with | Provides                |
|-----------------|-----------------|-------------------------|-------------------------|
| Supervised      | $y_I, X_I, X_u$ | $y_l, X_l$              | ŷı, ŷu                  |
| Unsupervised    | $y_I, X_I, X_u$ | $X_{l}, X_{u}$          | ŷı, ŷu                  |
| Semi-supervised | $y_I, X_I, X_u$ | $y_l, X_l, X_u$         | $\hat{y}_I,\;\hat{y}_u$ |

- ► For mixture models:
  - Supervised = Discriminant Analysis (Gaussian unconstrained = QDA)
  - Unsupervised = Model-based clustering (Gaussian unconstrained = Mclust 'VVV' model)
  - ► Semi-supervised = sometimes referred to as Model-based classification

DATA 573 Semi-supervised Modelling 17 / 24

Jeffrey L. Andrews Lecture 7

# Semi-supervised Modelling: Specifics



- One reason to focus on mixture models (beyond my affinity for them), is that implementing semi-supervised modelling is relatively trivial.
- ▶ The basic idea is to take your labeled cases  $(y_I)$  and both pre-determine group membership, as well as not allow that group membership to change during the model-fitting process.
- ► This is easy to implement in the EM algorithm…let's quickly review

# Recall: EM Algorithm for Clustering



- 1. Start the algorithm with random values for  $\hat{z}_{ig}$ . (there are alternative starting options)
- 2. Assuming those  $\hat{z}$  are correct, estimate parameters  $\mu_g$  and  $\sigma_g$  (via MLEs hence, this is the maximization of EM)
- 3. Assuming those parameters are correct, find the expected value of group memberships

$$\hat{z}_{\textit{ig}} = \frac{\pi_{\textit{g}} \phi(\mathbf{x}_{\textit{i}} \mid \boldsymbol{\mu}_{\textit{g}}, \boldsymbol{\sigma}_{\textit{g}})}{\sum_{\textit{g}=1}^{\textit{G}} \pi_{\textit{g}} \phi(\mathbf{x}_{\textit{i}} \mid \boldsymbol{\mu}_{\textit{g}}, \boldsymbol{\sigma}_{\textit{g}})}$$

(this is the expectation of EM)

4. Repeat 2. and 3. until 'changes' are minimal. (The log-likelihood of the model is monitored for convergence)

DATA 573 Semi-supervised Modelling 1

Jeffrey L. Andrews Lecture 7

#### EM Algorithm for Semi-supervised Classification



- 1. Start the algorithm with random values for  $\hat{z}_{ig}$  where  $i \in X_u$ . For  $j \in X_l$ , set  $\hat{z}_{ig} = 1$  if  $y_l = g$ , otherwise 0
- 2. Assuming those  $\hat{z}_{ig}$  are correct, estimate parameters  $\mu_g$  and  $\sigma_g$
- 3. Assuming those parameters are correct, find the expected value of group memberships for  $i \in X_u$

$$\hat{z}_{ig} = rac{\pi_{oldsymbol{g}}\phi(\mathbf{x}_i \mid oldsymbol{\mu}_{oldsymbol{g}}, oldsymbol{\sigma}_{oldsymbol{g}})}{\sum_{oldsymbol{g}=1}^G \pi_{oldsymbol{g}}\phi(\mathbf{x}_i \mid oldsymbol{\mu}_{oldsymbol{g}}, oldsymbol{\sigma}_{oldsymbol{g}})}$$

(aka, update unlabeled estimates, leave labeled estimates as initialized)

4. Repeat 2. and 3. until 'changes' are minimal. (The log-likelihood of the model is monitored for convergence)

DATA 573 Semi-supervised Modelling 20 / 24

Jeffrey L. Andrews Lecture 7

# 25% Supervised vs Unsupervised vs Semi-Supervised

We can reanalyze those same simulations from before using this paradigm.



DATA 573 Semi-supervised Modelling 21/24

Jeffrey L. Andrews Lecture 7

# Bias Supervised vs Unsupervised vs Semi-Supervised





#### Comments



- More recent versions of MCLUST can run supervised classification through MclustDA() and semi-supervised through MclustSSC().
- ► tEIGEN can be used semi-supervised by inputting NA's for the unlabeled observations in the "known" vector.

