DSCI 572: Supervised Learning II

Muhammad Abdul-Mageed

muhammad.mageed@ubc.ca

Deep Learning & NLP Lab

The University of British Columbia

Table of Contents

1 Problems With Gradients

2 Long-Short Term Memory Networks (LSTMs)

Vanishing and Exploding Gradients

Figure: A very long sequence, modelled with an RNN. Gradients can vanish and we will not know which gender a pronoun should be (male or female, e.g., in an MT task), or to which entity the pronoun refers (boy or girl)

Gradient Problems

- Gradients can **explode**, in which case we can clip them.
- Gadients can also vanish, which is a more serious problem.

Solving Long-Term Dependencies

Solutions For Gradient Problems

- Long-Short Term Memory (LSTM) networks introduced to solve the problem of long-term dependencies
- Some notation modified from Andrew Ng, for pedagogical simplicity

Introducing a Memory Cell

Figure: We will augment the network with a memory cell

Gradient Problems

- The memory cell will help us retain information over long sequences
- For example, we can still know we need pronoun she, maintaining the female gender (and retaining the correct reference to "the girl")

LSTM Gates

Notation

- Γ_u : Update state (sometimes called *input gate* f_i)
- Γ_r : Relevance state (reset gate)
- \tilde{C}_t : New candidate memory cell state
- C_t: Final LSTM memory cell
- a_t : LSTM hidden state (final) (you may see it elsewhere as h_t)

LSTM: Update and Forget Gates

Notes

- We will use **two gates** to control cell content: Γ_u (update gate), sometimes called *input gate* f_i , and Γ_f (forget gate)
- Forget gate will give the new memory cell C_t the option to keep or forget the old cell (C_{t-1}) , but just add to it via update gate (Γ_u)

1: LSTM

$$\Gamma_{u} = \sigma(W_{u}.[a_{t-1}, x_{t}])$$

$$\Gamma_{f} = \sigma(W_{f}.[a_{t-1}, x_{t}])$$

$$C_{t} = \Gamma_{u} * \tilde{C}_{t} + \Gamma_{f} * C_{t-1}$$

LSTM: Output Gate

Output Gate

- We will use an output gate (Γ_o)
- Output gate will enable us to update our a_t via element-wise multiplication by Γ_o

2: Output Gate

$$\Gamma_o = \sigma(W_o.[a_{t-1}, x_t])$$
 $a_t = \Gamma_o * tanh(C_t)$

LSTM: Putting it All Together

3: LSTM

$$\Gamma_{u} = \sigma(W_{u}.[a_{t-1}, x_{t}])$$

$$\Gamma_{f} = \sigma(W_{f}.[a_{t-1}, x_{t}])$$

$$\Gamma_{o} = \sigma(W_{o}.[a_{t-1}, x_{t}])$$

$$\tilde{C}_{t} = tanh(W_{c}.[a_{t-1}, x_{t}])$$

$$C_{t} = \Gamma_{u} * \tilde{C}_{t} + \Gamma_{f} * C_{t-1}$$

$$a_{t} = \Gamma_{o} * tanh(C_{t})$$

LSTM: Putting it All Together, With Bias

4: LSTM

$$\Gamma_{u} = \sigma(W_{u}.[a_{t-1}, x_{t}] + b_{u})$$

$$\Gamma_{f} = \sigma(W_{f}.[a_{t-1}, x_{t}] + b_{f})$$

$$\Gamma_{o} = \sigma(W_{o}.[a_{t-1}, x_{t}] + b_{o})$$

$$\tilde{C}_{t} = tanh(W_{c}.[a_{t-1}, x_{t}] + b_{c})$$

$$C_{t} = \Gamma_{u} * \tilde{C}_{t} + \Gamma_{f} * C_{t-1}$$

$$a_{t} = \Gamma_{o} * tanh(C_{t})$$

LSTM Schematic Illustrated

Figure: LSTM cell. [Inspired by Chris Olah]

Stacking LSTM Cells

Figure: LSTM cell.s stacked. Note: Each cell will need new-indexing (not shown in the Figure)