# EXP NO: 13 SIMULATION OF OPTICAL COMMUNICATION SYSTEM (USING OPTILUX)

#### 13.1 OBJECTIVE

To simulate and study the performance of Optical communication system using an open source OptiLux Toolbox (for Matlab and Octave)

The Link for OptiLux : "http://optilux.sourceforge.net"

## 13.2 SCHEMATIC BLOCK DIAGRAM



## 13.3 PRELAB QUESTIONS

- 1. What are the major components of an optical communication system?
- 2. Define minimum detectable optical power.
- 3. What is meant by error rate?
- 4. What are the error sources of optical receiver?

#### 13.4 OPTILUX

Optilux is an open source collection of tools that provide advanced techniques to design, simulate, and analyze optical communication systems. Optilux is implemented as a Matlab/Octave toolbox and efficiently exploits the MEX inter face to speed up computation. Optilux was created by Prof. Paolo Serena and it was primarily intended as a replacement for the old Fortran code he used for his

simulations. Optilux is released under the GNU General Public License, version 3.

Optilux is a collection of .m files, each representing a specific block of an optical system. The top-to-bottom flow on a .m file corresponds to moving over the distance of the optical system. Each block of an optical system is realized using Optilux toolbox functions. All the toolbox functions are M-files that implement specialized Optilux algorithms.

## 13.4.1 OPTILUX TOOLBOX FUNCTIONS

| RESET_ALL(NSYMB,NT,NCH)                                             | AMPLIFLAT(X,ATYPE)                    | E=AVG_POWER(ICH,FLAG)                   |
|---------------------------------------------------------------------|---------------------------------------|-----------------------------------------|
| CREATE_FIELD(FTYPE,SIGX)                                            | OPTFILTER(ICH,FTYPE,BW)               | HF=MYFILTER(FTYPE,F,BW)                 |
| PB=BER_KL(ICH,X,PAT)                                                | [EO, TS]=EVAL_EYE(ICH,X,PAT)          | Y=EVALDELAY(FTYPE,BW)                   |
| PAT=PAT_DECODER(PAT,MODFORMA<br>T)                                  | PAT=PATTERN(PTYPE,NSEED,OPTIONS)      | DELAY=CORRDELAY(IRIC,PAT,N<br>T, NSYMB) |
| ELEC=ELECTRICSOURCE(PAT,<br>FORMAT, SYMBRATE, PTYPE,<br>DUTY, ROLL) | PHI=POW2PHI(PWR,L,ALPHA,GAM,G,NS PAN) | EOUT=LPFILTER(EIN,FTYPE,B<br>W,OR D)    |
| E=LASERSOURCE(PTX,LAM)                                              | [BSP,BPOST]=BEST_SP(ICH,X,PAT)        | POLARIZER(ANG1,ANG2,ANGTYP<br>E)        |
| E=LINEAR_MODULATOR(E,MODSIG,E<br>XRA TIO)                           | [COND,OUT]=MC_ESTIMATE(S,X)           | PLOTFIELD(POL,ICH,FLAG)                 |
| E=MZ_MODULATOR(E,MODSIG)                                            | POLAR(PHASES,AMPLITUDES)              | PLOTFILE(FILE)                          |
| E=PHASE_MODULATOR(E,MODSIG)                                         | Y=FASTSHIFT(X,N)                      | PRINTFIELD(POL,ICH,NAME,FLAG )          |
| FIBER(X,FLAG)                                                       | [BEYE,BPOST]=BEST_EYE(ICH,X,PAT)      | Q=BER2Q(BER)                            |

#### 13.4.2 STEPS TO BE FOLLOWED FOR SIMULATION

- Open MATLAB simulator window and create a new document.
- Click Save As, give the file name as 'Optical\_exp1' and save it in '.../Optilux v0.1/Optilux files' folder.
- On completion of the code, after clicking the 'Run' button, click on the 'Change Folder' button.

#### 13.5 PROGRAM

#### 13.5.1 FOR OPTICAL TRANSMITTER



```
clear all
clc
%%%%%%%%%%%%%%%%%% Field parameters
Nsymb = 64;  % number of symbols
Nt = 128;  % points x symbol
Nch = 1;  % number of channels

reset_all(Nsymb,Nt,Nch);

%%
Ppeak = 10;  %Power Peak *(1:Nch);
lam = 1550;% central wavelength [nm]
spac = 0.8;  % channel spacing [nm]

E=lasersource(Ppeak, lam, spac);
%%
```

```
pat=pattern('debruijn',4); % note the
different de Bruijn seeds
%%
symbrate = 10; % baudrate [Gbaud] (10Gb/s)
duty = 1; % duty cycle
roll = 0.2; % pulse roll-off

elec=electricsource(pat,'ook',symbrate,'co
sroll',duty,roll);
%%
   exratio = 10; % extinction ratio [dB]

Eopt=mz_modulator(E,elec,struct('exratio', exratio));
```

```
create_field('unique',Eopt);

   figure(1)
   plotfield('x',1,'p---','r-');

   figure(2)
   plotfield('x',1,'--p-','r-');

   figure(3)
   plotfield('x',1,'-a--','r-');

   figure(4)
   plotfield('x',1,'---a','r-');

   figure(5)
   plotfield('x',1,'papa','r-');
```



# 13.5.2 PROGRAM TO DESIGN OPTICAL CHANNEL (OPTICAL FIBER)



```
%%
%%%%%%%%%%%%%%%%%%%%%% Link parameters
%%%% Fiber 1 (Tx) Corning® LEAF®
Optical %Fiber Product Information

tx.length = 4e4;  % length [m]
tx.alphadB = 0.2;  % attenuation [dB/km]
tx.aeff = 72;  % effective area [um^2]
tx.n2 = 2.7e-20;  % nonlinear index
tx.lambda = 1550;  % \ [nm] @ dispersion
tx.disp = 16.75;  % dispersion[ps/nm/km]@\lambda
tx.slope = 0.075;  % slope [ps/nm^2/km]@\lambda
tx.dphimax = 3E-3;  % maximum nonlinear phase
rotation per step
tx.dzmax = 2E4;  % maximum SSFM step

%%%%%%%%%%%%% Optical link
fiber(tx,'g-sx');  % Tx fiber
%%
```

```
figure(1)
plotfield('x',1,'p---','g-');
figure(2)
plotfield('x',1,'--p-','g-');
figure(3)
plotfield('x',1,'-a--','g-');
figure(4)
plotfield('x',1,'---a','g-');
figure(5)
plotfield('x',1,'papa','g-');
%%
```



## 13.5.3 PROGRAM FOR OPTICAL FILTER & RECEIVER



```
%%%%%%%%%%%%%%%% Receiver parameters
oftype = 'butt6'; % optical filter type
     = 2.5;
                 % optical filter bandwidth
obw
optfilter(1,oftype,obw);
    figure (6)
    plotfield('x',1,'p---','m-');
    figure (7)
    plotfield('x',1,'--p-','m-');
    figure (8)
    plotfield('x',1,'-a--','m-');
    figure (9)
    plotfield('x',1,'---a','m-');
    figure (10)
    plotfield('x',1,'papa','m-');
```



## **Optical Receiver**

```
응응
x.oftype = 'gauss'; % optical filter type
      = 2.5; % optical filter bandwidth
x.obw
x.eftype = 'bessel5'; % electrical filter type
                  % electrical filter BW
        = 0.65;
x.ebw
                  % receiver type
x.rec
        = 'ook';
x.plot = 'ploteye'; % type of plot
x.color = 'r-'; % color of plot
x.slopez =0; %post-fiber cumulated slope [ps/nm^2]
x.lambda = lam; % post-fiber central wavelength [nm]
x.dpost = -670; % post-fiber cumulated dispersion [ps/nm]
```

```
figure(11)
pat_rx = pat_decoder(pat,'ook'); % pattern decoding

[eo,ts]=eval_eye(Nch,x,pat_rx);

fprintf('\n\n====== Results =====\n\n');
fprintf('Normalized Eye opening = %.4f\n',eo);
fprintf('Best sampling time = %f\n',ts);
fprintf('Post fiber dispersion = %.2f [ps/nm]\n',x.dpost);
```



## Repeat the experiment by varying the following and observe the results

- 1. Change symbrate and observe the change
- 2. Change roll and observe the change
- 3. Increase exratio and see the change in EYE
- 4. Increase tx.length and observe the change
- 5. Change of type and observe the change
- 6. Change obw and observe the change
- 7. Change x.oftype and see the change in EYE
- 8. Change x.obw and see the change in EYE
- 9. Change x.ebw and see the change in EYE

```
clear all
  clc
```

```
Nsymb = 64; % number of symbols
      = 128;
              % points x symbol
              % number of channels
Nch
     = 1;
reset all(Nsymb, Nt, Nch);
Ppeak = 10;
              %Power Peak *(1:Nch); [mW]
lam = 1550; % central wavelength [nm]
       = 0.8; % channel spacing [nm]
spac
 Ε
     = lasersource(Ppeak, lam, spac);
pat=pattern('debruijn',4); % note the different de Bruijn seeds
symbrate = 10;
                  % baudrate [Gbaud] (10Gb/s)
                  % duty cycle
duty
     = 1;
       = 0.2;
roll
                 % pulse roll-off
 elec=electricsource(pat,'ook',symbrate,'cosroll',duty,roll);
        = 10;
                % extinction ratio [dB]
exratio
   Eopt=mz modulator(E, elec, struct('exratio', exratio));
create_field('unique',Eopt);
    figure(1)
    plotfield('x',1,'p---','r-');
    figure(2)
    plotfield('x',1,'--p-','r-');
    figure(3)
    plotfield('x',1,'-a--','r-');
    figure (4)
    plotfield('x',1,'---a','r-');
    figure (5)
    plotfield('x',1,'papa','r-');
응응
```

```
%%%%%%%%%%%%%%% Link parameters
   %%%% Fiber 1 (Tx) Corning® LEAF® Optical Fiber Product Information
  tx.length = 4e4;
  length [m] tx.alphadB = 0.2;
  attenuation [dB/km]
  tx.aeff = 72;
                       응
  effective area [um^2] tx.n2 =
  2.7e-20; % nonlinear index
  tx.lambda = 1550;
                       % wavelength [nm] @ dispersion
  tx.disp = 16.75;
                        % dispersion [ps/nm/km] @
  wavelength tx.slope = 0.075; % slope
  [ps/nm^2/km] @ wavelength tx.dphimax = 3E-3; %
  maximum nonlinear phase rotation per step tx.dzmax
            = 2E4; % maximum SSFM step
%%%%%%%%%% Optical link
  fiber(tx,'g-sx');
                         % Tx fiber
  %% figure(1)
       plotfield('x',1,'
       p---', 'g-');
       figure(2)
       plotfield('x',1,'
       --p-','g-');
       figure(3)
       plotfield('x',1,'
       -a--','g-');
       figure(4)
       plotfield('x',
       1,'---a','g-
       '); figure(5)
       plotfield('x',
       1, 'papa', 'g-
       ');
       figure (6)
       plotfield('x',1,'
       p---', 'g-');
       figure(7)
       plotfield('x',1,'
       --p-', 'g-');
       figure(8)
       plotfield('x',1,'
       -a--', 'g-');
       figure(9)
       plotfield('x',
       1,'---a','g-
       '); figure(10)
       plotfield('x',
       1, 'papa', 'g-
       ');
  응응응응응응응응응응응응응응응
  Receiver parameters of
  type = 'butt6'; %
```

optical filter type

```
obw = 2.5; % optical filter bandwidth
optfilter(1,oftype,obw);
%% figure(6)
    plotfield('x',1,'
    p---', 'm-');
     figure (7)
     plotfield('x',1,'
    --p-','m-');
     figure(8)
     plotfield('x',1,'
     -a--','m-');
     figure (9)
     plotfield('x',
     1,'---a','m-
    '); figure(10)
     plotfield('x',
     1, 'papa', 'm-
     ');
응응
x.oftype = 'gauss'; % optical
filter type x.obw = 2.5;
       % optical filter
bandwidth x.eftype = 'bessel5'; %
electrical filter type
x.ebw = 0.75; % electrical
filter bandwidth x.rec = 'ook';
        % receiver type
x.plot = 'ploteye';
% type of plot x.color
= 'r-'; % color of
plot
x.slopez = 0;
                     % post-fiber cumulated
slope [ps/nm^2] x.lambda = lam; % post-fiber
central wavelength [nm] x.dpost = -670; % post-
fiber cumulated dispersion [ps/nm]
figure (11)
pat rx = pat decoder(pat, 'ook'); %
pattern decoding
[eo,ts]=eval eye(Nch,x,pat rx);
fprintf('\n\n======= Results
======\n\n');
fprintf('Normalized Eye opening =
%.4f\n',eo); fprintf('Best sampling
time = f(n', ts);
fprintf('Post fiber dispersion =%.2f [ps/nm]\n',x.dpost);
%%%%%% now search for the optimal
post compensation dpostini =
x.dpost;
x.dpost = [-1500 \ 1500]; % range for the search
```

```
[be,bpost] = best eye(Nch,x,pat rx);
% During the search of the best post you will see the following
warning:
% Warning: Plot or print turned off during the search of the optimal
fprintf('\nBest Eye closure penalty = %.4f
[dB]\n',be); fprintf('Best post cumulated dispersion
= %.2f [ps/nm]\n\n',bpost); fprintf('\nOther details
into the summary file simul out\n');
figure(11) % Re-plot the best eye, just
for comparison hold on
title(['RED: post = ',num2str(dpostini),' ps/nm, BLUE: best post =
    ',... num2str(bpost), 'ps/nm']);
x.dpost = bpost; % use
the best post x.color
= 'b-'; %
change color
[eo2,ts2]=eval eye(Nch
,x,pat rx);
% The blue eye is better than the red one... it is the best eye!
```

# 13.6 POST LAB QUESTIONS

- 1. How is an electrical signal converted into an optical signal
- 2. Why do we need modulation in optical communication?
- 3. What is the significance of an eye diagram in optical communication system?

#### 13.7 RESULT

Thus the Optical communication system is simulated and its performance is studied