$$\chi_{b1}(1P)$$

$$I^G(J^{PC}) = 0^+(1^{++})$$

J needs confirmation.

Observed in radiative decay of the $\Upsilon(2S)$, therefore C=+. Branching ratio requires E1 transition, M1 is strongly disfavored, therefore P=+. J=1 from SKWARNICKI 87.

$\chi_{b1}(1P)$ MASS

VALUE (MeV) DOCUMENT ID

9892.78 \pm 0.26 \pm 0.31 OUR EVALUATION From average γ energy below, using $\Upsilon(2S)$ mass $= 10023.26 \pm 0.31$ MeV

γ ENERGY IN \varUpsilon (2S) DECAY

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
129.63±0.33 OUR AVERAGE	Error includes scale	factor	of 1.3.	See the ideogram below.
$129.58\!\pm\!0.09\!\pm\!0.29$	ARTUSO	05	CLEO	$\Upsilon(2S) \rightarrow \gamma X$
$128.8 \pm 0.4 \pm 0.6$	EDWARDS	99	CLE2	$\Upsilon(2S) ightarrow \gamma \chi(1P)$
$131.7 \pm 0.9 \pm 1.3$	WALK	86	CBAL	$\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$
$131.7 \pm 0.3 \pm 1.1$	ALBRECHT	85E	ARG	$\Upsilon(2S) ightarrow {\sf conv.} \gamma {\sf X}$
$130.6 \pm 0.8 \pm 2.4$	NERNST	85	CBAL	$\Upsilon(2S) ightarrow \gamma X$
129 $\pm 0.8 \pm 1$	HAAS	84	CLEO	$\Upsilon(2S) ightarrow {\sf conv.} \gamma {\sf X}$
$128.1 \pm 0.4 \pm 3.0$	KLOPFEN			$\Upsilon(2S) ightarrow \gamma X$
130.6 ± 3.0	PAUSS	83	CUSB	$\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$

WEIGHTED AVERAGE 129.63±0.33 (Error scaled by 1.3)

$\chi_{b1}(1P)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
$\overline{\Gamma_1}$	$\gamma \Upsilon(1S)$	(35.0±2.1) %	
Γ_2	$D^0 X$	$(12.6\pm2.2)~\%$	
Γ_3	$\pi^+\pi^-$ K $^+$ K $^-\pi^0$	$(2.0\pm0.6)\times10^{-4}$	ŀ
Γ_4	$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	$(1.3\pm0.5)\times10^{-4}$	ŀ
Γ_5	$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}$ $2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	$< 6 \times 10^{-4}$	90%
Γ_6	$2\pi^{+}2\pi^{-}2\pi^{0}$	$(8.0\pm2.5)\times10^{-4}$	1
Γ ₇	$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	$(1.5\pm0.5)\times10^{-4}$	ŀ
Γ ₈	$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	$(3.5\pm1.2)\times10^{-4}$	ŀ
Γ_9	$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	$(8.6\pm3.2)\times10^{-4}$	ŀ
Γ_{10}	$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	$(9.3\pm3.3)\times10^{-4}$	ŀ
	$3\pi^{+}3\pi^{-}$	$(1.9\pm0.6)\times10^{-4}$	1
	$3\pi^{+}3\pi^{-}2\pi^{0}$	$(1.7\pm0.5)\times10^{-3}$	}
	$3\pi^{+}3\pi^{-}K^{+}K^{-}$	$(2.6\pm0.8)\times10^{-4}$	ŀ
17	$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	$(7.5\pm2.6)\times10^{-4}$	ŀ
Γ_{15}	$4\pi^+4\pi^-$	$(2.6\pm0.9)\times10^{-4}$	ŀ
	$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.4\pm0.6)\times10^{-3}$	}
Γ_{17}	$J/\psiJ/\psi$	$< 2.7 \times 10^{-5}$	90%
Γ_{18}	$J/\psi\psi(2S)$	$< 1.7 \times 10^{-5}$	90%
Γ ₁₉	$\psi(2S)\psi(2S)$	$< 6 \times 10^{-5}$	90%

$\chi_{b1}(1P)$ BRANCHING RATIOS

$\Gamma(\gamma \Upsilon(1S))/\Gamma_{total}$						Γ_1/Γ
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
0.350 ± 0.021 OUR AVE	RAGE					
$0.364 \pm 0.017 \pm 0.019$		1,2,3 LEES			$\Upsilon(2S) ightarrow$	
$0.331\!\pm\!0.018\!\pm\!0.017$	3222	^{3,4} KORNICER	11	CLEO	$e^+e^- \rightarrow$	$\gamma\gamma\ell^+\ell^-$
$0.350 \pm 0.023 \pm 0.018$	13k	⁵ LEES	11J	BABR	$\Upsilon(2S) ightarrow$	$X\gamma$
$0.34 \pm 0.07 \pm 0.02$	53	3,6,7 WALK			$\Upsilon(2S) ightarrow$	
$0.47\ \pm0.18$		KLOPFEN	83	CUSB	$\Upsilon(2S) ightarrow$	$\gamma\gamma\ell^+\ell^-$
1 LEES 1/M quotes F	(x - (1	$P) \rightarrow \sim \Upsilon(1S))/\Gamma$. ~	$\Gamma(\Upsilon(2))$	$S) \rightarrow \alpha \alpha \alpha \alpha$	(1 <i>P</i>))/Γ .

¹ LEES 14M quotes $\Gamma(\chi_{b1}(1P) \to \gamma \Upsilon(1S))/\Gamma_{total} \times \Gamma(\Upsilon(2S) \to \gamma \chi_{b1}(1P))/\Gamma_{total} = (2.51 \pm 0.12)$ % combining the results from samples of $\Upsilon(2S) \to \gamma \gamma \mu^+ \mu^-$ with and without converted photons.

²LEES 14M reports $[\Gamma(\chi_{b1}(1P) \to \gamma \Upsilon(1S))/\Gamma_{total}] \times [B(\Upsilon(2S) \to \gamma \chi_{b1}(1P))] = (2.51 \pm 0.12) \times 10^{-2}$ which we divide by our best value $B(\Upsilon(2S) \to \gamma \chi_{b1}(1P)) = (6.9 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ Assuming B($\Upsilon(1S) \to (mu + mu)^-$) = (2.48 ± 0.05)%.

⁴ KORNICER 11 reports $[\Gamma(\chi_{b1}(1P) \to \gamma \Upsilon(1S))/\Gamma_{total}] \times [B(\Upsilon(2S) \to \gamma \chi_{b1}(1P))]$ = $(22.8 \pm 0.4 \pm 1.2) \times 10^{-3}$ which we divide by our best value $B(\Upsilon(2S) \to \gamma \chi_{b1}(1P))$ = $(6.9 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁵ LEES 11J reports $[\Gamma(\chi_{b1}(1P) \to \gamma \Upsilon(1S))/\Gamma_{total}] \times [B(\Upsilon(2S) \to \gamma \chi_{b1}(1P))] = (24.1 \pm 0.6 \pm 1.5) \times 10^{-3}$ which we divide by our best value $B(\Upsilon(2S) \to \gamma \chi_{b1}(1P)) = (6.9 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁶ WALK 86 quotes B($\varUpsilon(2S) \rightarrow \gamma \chi_{b1}(1P)$)×B($\chi_{b1}(1P) \rightarrow \gamma \varUpsilon(1S)$) × B($\varUpsilon(1S) \rightarrow \ell^+\ell^-$) = (5.8 \pm 0.9 \pm 0.7) %.

⁷ WALK 86 reports $[\Gamma(\chi_{b1}(1P) \rightarrow \gamma \Upsilon(1S))/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P))] = (23.4 \pm 3.63 \pm 2.82) \times 10^{-3}$ which we divide by our best value $B(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P)) = (6.9 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(D^0X)/\Gamma_{\text{total}}$ Γ_2/Γ

VALUE (units 10^{-2})EVTSDOCUMENT IDTECNCOMMENT12.6±1.9±1.123108 BRIERE08CLEO $\Upsilon(2S) \rightarrow \gamma D^0 X$ 8 For $\rho_{D0} > 2.5$ GeV/c.

$\Gamma(\pi^+\pi^-K^+K^-\pi^0)/\Gamma_{\text{total}}$

 Γ_3/Γ

$\Gamma(2\pi^+\pi^-K^-K_S^0)/\Gamma_{\text{total}}$

 Γ_4/Γ

VALUE (units 10^{-4})EVTSDOCUMENT IDTECNCOMMENT1.3±0.5±0.11110 ASNER08ACLEO $\Upsilon(2S) \rightarrow \gamma 2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$

¹⁰ ASNER 08A reports $[\Gamma(\chi_{b1}(1P) \rightarrow 2\pi^+\pi^-K^-K_S^0)/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \gamma\chi_{b1}(1P))] = (9 \pm 3 \pm 2) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(2S) \rightarrow \gamma\chi_{b1}(1P)) = (6.9 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2\pi^+\pi^-K^-K^0_S2\pi^0)/\Gamma_{ ext{total}}$

 Γ_5/Γ

TASNER 08A reports [I $(\chi_{b1}(1P) \rightarrow 2\pi^+\pi^-K^-K_5^02\pi^0)/I_{total}$] \times [B($T(2S) \rightarrow \gamma\chi_{b1}(1P)$)] $< 42 \times 10^{-6}$ which we divide by our best value B($T(2S) \rightarrow \gamma\chi_{b1}(1P)$) $= 6.9 \times 10^{-2}$.

$\Gamma(2\pi^+2\pi^-2\pi^0)/\Gamma_{\text{total}}$

16/1

Created: 5/30/2017 17:21

VALUE (units 10^{-4})EVTSDOCUMENT IDTECNCOMMENT8.0±2.4±0.44612 ASNER08ACLEO $\Upsilon(2S) \rightarrow \gamma 2\pi^+ 2\pi^- 2\pi^0$

¹² ASNER 08A reports $[\Gamma(\chi_{b1}(1P) \to 2\pi^+ 2\pi^- 2\pi^0)/\Gamma_{total}] \times [B(\Upsilon(2S) \to \gamma\chi_{b1}(1P))]$ = (55 ± 9 ± 14) × 10⁻⁶ which we divide by our best value $B(\Upsilon(2S) \to \gamma\chi_{b1}(1P))$ = (6.9 ± 0.4) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2\pi^+2\pi^-K^+K^-)/\Gamma_{\text{total}}$

 $13 \frac{ ext{DOCUMENT ID}}{ ext{ASNER}}$ 08A $\frac{ ext{TECN}}{ ext{CLEO}}$ $\frac{ ext{COMMENT}}{ ext{$arphi(2S)$}}
ightarrow \gamma 2\pi^+ 2\pi^- \kappa^+ \kappa^-$ VALUE (units 10^{-4}) EVTS $1.5\pm0.5\pm0.1$ ¹³ ASNER 08A reports $[\Gamma(\chi_{b1}(1P) \rightarrow 2\pi^{+}2\pi^{-}K^{+}K^{-})/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow 2\pi^{+}2\pi^{-}K^{-}K^{-})/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow 2\pi^{-}K^{+}K^{-})/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow 2\pi^{-}K^{+}K^{-})/\Gamma_{tota$ $\gamma \chi_{h1}(1P))] = (10 \pm 3 \pm 2) \times 10^{-6}$ which we divide by our best value B($\Upsilon(2S) \rightarrow$ $\gamma \chi_{b1}(1P))=(6.9\pm0.4)\times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2\pi^+2\pi^-K^+K^-\pi^0)/\Gamma_{\text{total}}$

 $\frac{VALUE \text{ (units }10^{-4})}{3.5\pm1.2\pm0.2} \stackrel{EVTS}{=} \frac{DOCUMENT \text{ ID}}{14 \text{ ASNER}} \qquad \frac{TECN}{08A} \stackrel{COMMENT}{=} \frac{COMMENT}{14 \text{ CLEO}} \qquad \frac{COMMENT}{(2S)} \rightarrow \gamma 2\pi^{+} 2\pi^{-} K^{+} K^{-} \pi^{0}$ ¹⁴ ASNER 08A reports $[\Gamma(\chi_{b1}(1P) \rightarrow 2\pi^+ 2\pi^- K^+ K^- \pi^0)/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow 2\pi^+ 2\pi^- K^+ K^- \pi^0)/\Gamma_{total}]$ $\gamma \chi_{h1}(1P))] = (24 \pm 6 \pm 6) \times 10^{-6}$ which we divide by our best value B($\Upsilon(2S) \rightarrow$ $\gamma \chi_{b1}^{-1}(1P))=(6.9\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2\pi^+2\pi^-K^+K^-2\pi^0)/\Gamma_{\text{total}}$

 Γ_0/Γ

VALUE (units 10⁻⁴) EVTS DOCUMENT ID TECN COMMENT 26 15 ASNER 08A CLEO $\Upsilon(2S) \rightarrow \gamma 2\pi^{+} 2\pi^{-} K^{+} K^{-} 2\pi^{0}$ $8.6\pm3.2\pm0.4$ 15 ASNER 08A reports $[\Gamma(\chi_{b1}(1P) \rightarrow 2\pi^+2\pi^-K^+K^-2\pi^0)/\Gamma_{ ext{total}}] \times [\mathrm{B}(\varUpsilon(2S) \rightarrow 2\pi^+2\pi^-K^+K^-2\pi^0)/\Gamma_{ ext{total}}] \times [\mathrm{B}(\varUpsilon(2S) \rightarrow 2\pi^+2\pi^-K^+K^-2\pi^0)]$ $\gamma \chi_{h1}(1P))] = (59 \pm 14 \pm 17) \times 10^{-6}$ which we divide by our best value B($\Upsilon(2S) \rightarrow$ $\gamma \chi_{h1}(1P)) = (6.9 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(3\pi^+2\pi^-K^-K^0_S\pi^0)/\Gamma_{ ext{total}}$

 Γ_{10}/Γ

VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT

9.3±3.3±0.5 21 16 ASNER 08A CLEO $\Upsilon(2S) \rightarrow \gamma 3\pi^{+} 2\pi^{-} K^{-} K_{S}^{0} \pi^{0}$ $^{16}\,{\rm ASNER}$ 08A reports $[\Gamma(\chi_{b1}(1P)\ \rightarrow\ 3\pi^+\,2\pi^-\,K^-\,K^0_S\,\pi^0)/\Gamma_{\rm total}]\ \times\ [{\rm B}(\varUpsilon(2S)\ \rightarrow\ T_{constraints})$ $\gamma \chi_{h1}(1P))] = (64 \pm 16 \pm 16) \times 10^{-6}$ which we divide by our best value B($\Upsilon(2S) \rightarrow$ $\gamma\chi_{b1}(1P))=(6.9\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(3\pi^+3\pi^-)/\Gamma_{\text{total}}$

VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT

1.9 \pm 0.6 \pm 0.1 25 17 ASNER 08A CLEO $\Upsilon(2S) \rightarrow \gamma 3\pi^{+} 3\pi^{-}$ 17 ASNER 08A reports $[\Gamma(\chi_{b1}(1P)\to~3\pi^+\,3\pi^-)/\Gamma_{\rm total}]\times [{\rm B}(\varUpsilon(2S)\to~\gamma\chi_{b1}(1P))]=(13\pm3\pm3)\times10^{-6}$ which we divide by our best value ${\rm B}(\varUpsilon(2S)\to~\gamma\chi_{b1}(1P))=$ $(6.9 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(3\pi^+3\pi^-2\pi^0)/\Gamma_{\rm total}$

 $rac{DOCUMENT\ ID}{18\ \mathsf{ASNER}}$ 08A CLEO $rac{COMMENT}{7(2S)}
ightarrow \gamma 3\pi^{+} 3\pi^{-} 2\pi^{0}$ VALUE (units 10⁻⁴) EVTS 17±5±1 18 ASNER 08A reports $[\Gamma(\chi_{b1}(1P)\to 3\pi^+\,3\pi^-\,2\pi^0)/\Gamma_{\rm total}]\times [{\rm B}(\varUpsilon(2S)\to \gamma\chi_{b1}(1P))] = (119\pm 18\pm 32)\times 10^{-6}$ which we divide by our best value ${\rm B}(\varUpsilon(2S)\to \gamma\chi_{b1}(1P))$ $= (6.9 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

HTTP://PDG.LBL.GOV

Page 4

$\Gamma(3\pi^+3\pi^-K^+K^-)/\Gamma_{\text{total}}$

 Γ_{13}/Γ_{13}

$\Gamma(3\pi^+3\pi^-K^+K^-\pi^0)/\Gamma_{\text{total}}$

 Γ_{14}/Γ

7.5±2.6±0.4 28 20 ASNER 08A CLEO $T(2S) \rightarrow \gamma 3\pi^+ 3\pi^- K^+ K^- \pi^0$ 20 ASNER 08A reports $[\Gamma(\chi_{b1}(1P) \rightarrow 3\pi^+ 3\pi^- K^+ K^- \pi^0)/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P))] = (52 \pm 11 \pm 14) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P)) = (6.9 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(4\pi^+4\pi^-)/\Gamma_{\text{total}}$

 Γ_{15}/Γ

<i>VALUE</i> (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
2.6±0.9±0.1	24	²¹ ASNER	08A	CLEO	$\gamma(2S) \rightarrow \gamma 4\pi^+ 4\pi^-$

²¹ ASNER 08A reports $[\Gamma(\chi_{b1}(1P) \rightarrow 4\pi^+ 4\pi^-)/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \gamma\chi_{b1}(1P))]$ = $(18 \pm 4 \pm 5) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(2S) \rightarrow \gamma\chi_{b1}(1P)) = (6.9 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(4\pi^+4\pi^-2\pi^0)/\Gamma_{\text{total}}$

 Γ_{16}/Γ

<i>VALUE</i> (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
14±5±1	26	²² ASNER	08A	CLEO	$\gamma(2S) \rightarrow \gamma 4\pi^{+} 4\pi^{-} 2\pi^{0}$

²² ASNER 08A reports $[\Gamma(\chi_{b1}(1P) \to 4\pi^+ 4\pi^- 2\pi^0)/\Gamma_{total}] \times [B(\Upsilon(2S) \to \gamma\chi_{b1}(1P))]$ = $(96 \pm 24 \pm 29) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(2S) \to \gamma\chi_{b1}(1P))$ = $(6.9 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(J/\psi J/\psi)/\Gamma_{\text{total}}$

 Γ_{17}/Γ

<i>VALUE</i> (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT
<2.7	90	²³ SHEN	12	BELL	$\Upsilon(2S) \rightarrow \gamma \psi X$

 $^{23}\,\mathrm{SHEN}\,12\,\mathrm{reports} < 2.7\times10^{-5}\,\mathrm{from}\,\mathrm{a}$ measurement of $[\Gamma\big(\chi_{b1}(1P)\to J/\psi\,J/\psi\big)/\Gamma_{\mathrm{total}}]$ \times [B($\Upsilon(2S)\to ~\gamma\chi_{b1}(1P))]$ assuming B($\Upsilon(2S)\to ~\gamma\chi_{b1}(1P))=(6.9\pm0.4)\times10^{-2}.$

$\Gamma(J/\psi\psi(2S))/\Gamma_{\text{total}}$

 Γ_{10}/I

VALUE (units
$$10^{-5}$$
)CL%DOCUMENT IDTECNCOMMENT<1.79024 SHEN12BELL $\Upsilon(2S) \rightarrow \gamma \psi X$

 $^{^{24}\,\}mathrm{SHEN}$ 12 reports < 1.7 \times 10^{-5} from a measurement of $[\Gamma\big(\chi_{b1}(1P)\to\ J/\psi\psi(2S)\big)/\Gamma_{\mathrm{total}}]\times[\mathrm{B}(\ \varUpsilon(2S)\to\ \gamma\chi_{b1}(1P))]$ assuming $\mathrm{B}(\ \varUpsilon(2S)\to\ \gamma\chi_{b1}(1P))=(6.9\pm0.4)\times10^{-2}.$

$\Gamma(\psi(2S)\psi(2S))/\Gamma_{\text{total}}$

 Γ_{19}/Γ

VALUE (units 10 ⁻⁵)	CL%	DOCUMENT II)	TECN	COMMENT
<6	90	²⁵ SHEN	12	BELL	$\Upsilon(2S) \rightarrow \gamma \psi X$
²⁵ SHEN 12 reports $< \Gamma_{total} \times [B(\Upsilon(2S))]$	$5.2 \times 10^{\circ}$ $\rightarrow \gamma \chi_b$	$^{-5}$ from a measuı $_1(1P))]$ assuming	rement of $B(\Upsilon(2))$	of $[\Gamma(\chi_b)] \rightarrow \gamma$	$\chi_{b1}(1P) \rightarrow \psi(2S)\psi(2S))/\chi_{b1}(1P) = (6.9 \pm 0.4) \times$
10^{-2} .		_			_

$\chi_{b1}(1P)$ Cross-Particle Branching Ratios

$$\Gamma(\chi_{b1}(1P) \to \gamma \Upsilon(1S))/\Gamma_{total} \times \Gamma(\Upsilon(2S) \to \gamma \chi_{b1}(1P))/\Gamma_{total} \Gamma_1/\Gamma \times \Gamma_{47}^{\Upsilon(2S)}/\Gamma^{\Upsilon(2S)}$$

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
24.1±0.6±1.5	13k	LEES	11J	BABR	$\Upsilon(2S) \rightarrow X\gamma$

$\mathsf{B}(\chi_{b1}(1P) \to \gamma \, \varUpsilon(1S)) \times \mathsf{B}(\varUpsilon(2S) \to \gamma \chi_{b1}(1P)) \times \mathsf{B}(\varUpsilon(1S) \to \ell^+\ell^-)$

VALUE (units 10⁻⁴) EVTS DOCUMENT ID TECN COMMENT

5.90\pm0.34 OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below.

$6.86^{+0.47}_{-0.45}^{+0.44}_{-0.35}$		²⁶ LEES	14M	BABR	$\Upsilon(2S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}$
$5.65\!\pm\!0.11\!\pm\!0.27$	3222	KORNICER	11	CLEO	$e^+e^- \rightarrow \gamma\gamma\ell^+\ell^-$
$5.8 \pm 0.9 \pm 0.7$	53	WALK	86	CBAL	$\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$

²⁶ From a sample of $\Upsilon(2S) \rightarrow \gamma \gamma \mu^+ \mu^-$ with one converted photon.

WEIGHTED AVERAGE 5.90±0.34 (Error scaled by 1.3)

 $\mathsf{B}(\chi_{b1}(1P) o \gamma \, \varUpsilon(1S)) imes \mathsf{B}(\, \varUpsilon(2S) o \, \gamma \, \chi_{b1}(1P)) imes \mathsf{B}(\, \varUpsilon(1S) o \, \ell^+ \, \ell^-)$ (units 10^{-4})

```
B(\chi_{b1}(1P) \rightarrow \gamma \Upsilon(1S)) \times B(\Upsilon(3S) \rightarrow \gamma \chi_{b1}(1P)) \times B(\Upsilon(1S) \rightarrow \ell^+\ell^-)
                             ____EVTS DOCUMENT ID ____TECN COMMENT
VALUE (units 10<sup>-5</sup>)
1.30±0.34 OUR AVERAGE
1.16 ^{\,+\, 0.78 \,+\, 0.14}_{\,-\, 0.67 \,-\, 0.16}
                                                         14M BABR \Upsilon(3S) 
ightarrow \gamma\gamma\mu^+\mu^-
                                           <sup>27</sup> LEES
                                   50 KORNICER 11 CLEO e^+e^- \rightarrow \gamma\gamma\ell^+\ell^-
1.33 \pm 0.30 \pm 0.23
 <sup>27</sup> From a sample of \Upsilon(3S) \rightarrow \gamma \gamma \mu^{+} \mu^{-} with converted photons.
B(\chi_{b2}(1P) \rightarrow pX + \overline{p}X)/B(\chi_{b1}(1P) \rightarrow pX + \overline{p}X)
                                                DOCUMENT ID TECN COMMENT
                                                             07 CLEO \Upsilon(2S) 
ightarrow \gamma \chi_{b,I}(1P)
1.068 \pm 0.010 \pm 0.040
                                                BRIERE
B(\chi_{b0}(1P) \rightarrow pX + \overline{p}X)/B(\chi_{b1}(1P) \rightarrow pX + \overline{p}X)
```

VALUE	DOCUMENT ID		TECN	COMMENT
1.11±0.15±0.20	BRIERE	07	CLEO	$ \gamma(2S) \rightarrow \gamma \chi_{bJ}(1P) $

$\chi_{b1}(1P)$ REFERENCES

LEES	14M	PR D90 112010	J.P. Lees <i>et al.</i>	(BABAR Collab.)
SHEN	12	PR D85 071102	C.P. Shen <i>et al.</i>	(BELLE Collab.)
KORNICER	11	PR D83 054003	M. Kornicer et al.	(CLEO Collab.)
LEES	11J	PR D84 072002	J.P. Lees <i>et al.</i>	(BABAR Collab.)
ASNER	08A	PR D78 091103	D.M. Asner et al.	` (CLEO Collab.)
BRIERE	80	PR D78 092007	R.A. Briere et al.	(CLEO Collab.)
BRIERE	07	PR D76 012005	R.A. Briere et al.	(CLEO Collab.)
ARTUSO	05	PRL 94 032001	M. Artuso et al.	(CLEO Collab.)
EDWARDS	99	PR D59 032003	K.W. Edwards et al.	(CLEO Collab.)
SKWARNICKI	87	PRL 58 972	T. Skwarnicki et al.	(Crystal Ball Collab.) J
WALK	86	PR D34 2611	W.S. Walk et al.	(Crystal Ball Collab.)
ALBRECHT	85E	PL 160B 331	H. Albrecht et al.	` (ARGUS Collab.)
NERNST	85	PRL 54 2195	R. Nernst <i>et al.</i>	(Crystal Ball Collab.)
HAAS	84	PRL 52 799	J. Haas <i>et al.</i>	(CLEO Collab.)
KLOPFEN	83	PRL 51 160	C. Klopfenstein et al.	(CUSB Collab.)
PAUSS	83	PL 130B 439	F. Pauss <i>et al.</i>	(MPIM, COLU, CORN, LSU+)