

AS1056 - Chapter 10, Tutorial 2. 08-02-2024. Notes.

Exercise 10.10

- Two(n): "n is equal to two".
- Even(n): "n is equal to an even number".
- Prime(n): "n is equal to a prime number".

"If n is a prime number and $n \neq 2$, then n is odd". In logical notation:

$$\forall n \ [[\operatorname{Prime}(n) \land \neg \operatorname{Two}(n)] \implies \neg \operatorname{Even}(n)]$$

The contrapositive of this statement is:

$$\forall n \ [\text{Even}(n) \implies \neg[\text{Prime}(n) \land \neg \text{Two}(n)] = [\neg \text{Prime}(n) \lor \text{Two}(n)]]$$

Putting this in words: "If n is an even number, then either n is not prime or n is equal to two". Indeed, the only even prime number is 2.

Exercise 10.7

W.t.s. that $\forall n \in \mathbb{Z}$, $\exists k \in \mathbb{Z}$ s.t. $n^2 + n = 2k$. Let us recall that, by definition, an even number is an integer of the form n = 2k, $k \in \mathbb{Z}$. Therefore, given the definition of even number, to prove the latter statement we only need to show that $n^2 + n$ is even.

 $n \in \mathbb{Z}$, we don't know if even or odd. To show that $n^2 + n$ is even let us consider the case where n is even and the case where n is odd, and try to say something about the evenness/oddness of $n^2 + n$

- 1. Assume n is even and consider the following predicates,
 - P: Even(n)
 - Q: $\forall n \text{ [Even}(n) \Longrightarrow \text{Even}(n^2)$]

 Proof: If n is even, then by definition of even number, there exists $k \in \mathbb{Z}$ s.t. n = 2k; thus, $n^2 = 4k^2 = 2\underbrace{(2k^2)}_{k'} = 2k'$, and therefore, by definition, n^2 is also even.
 - R: $\forall n, \forall m \ [\text{Even}(n) \land \text{Even}(m) \implies \text{Even}(n+m)]$ Proof: Also using the definition of even number, take,

$$n = 2k$$

 $m = 2k'$ then, $n + m = 2k + 2k' = 2(k + k') = 2k''$; thus, $n + m$ is also even.

Therefore,
$$\frac{P; Q; R}{\therefore \text{Even}(n^2 + n)}$$
.

- 2. Assume n is odd and consider the following predicates,
 - P': $\neg \text{Even}(n)$
 - Q': ∀n [¬Even(n) ⇒ ¬Even(n²)]
 Proof: By complementarity of statement Q. You can also use the definition of odd number.
 - R': $\forall n, \forall m [\neg \text{Even}(n) \land \neg \text{Even}(m) \implies \text{Even}(n+m)]$ Proof: Using the definition of odd number, take,

Therefore,
$$\frac{P'; Q'; R'}{\therefore \text{Even}(n^2 + n)}$$
.

We conclude that $n^2 + n$ is always even. And then, by the definition of even number, $\exists k \in \mathbb{Z} \text{ s.t. } n^2 + n = 2k$.

Exercise 10.12

The proof goes wrong in point 5, by making the implicit assumption that the two groups of n people —Group A={Person 1, ..., Person n} and Group B={Person 2, ..., Person n+1}— to which the induction hypothesis is applied have a common element. This is not true for n=1, in which case there is no overlap between the groups (i.e., Group A \cap Group B = \emptyset). The inductive step presented would indeed have worked if we assume $n \geq 2$ (i.e., if $n \geq 2$, $S(n) \implies S(n+1)$); however, in such circumstances it would be the base case the one failing in this proof by mathematical induction.