⑩ 日本国特許庁(JP)

⑩特許出願公開

® 公開特許公報(A) 平2-50841

Int. Cl. 3

識別記号 庁内整理番号

❸公開 平成2年(1990)2月20日

B 41 J 2/045

7513-2C B 41 J 3/04

103 A

審査請求 未請求 請求項の数 1 (全5頁)

会発明の名称

インクジエツトヘッド

②特 願 昭63-202252

20出 願 昭63(1988)8月12日

⑩発明者 米 窪

.,

長野県諏訪市大和3丁目3番5号 セイコーエブソン株式

会社内

⑩発明者 松澤

正 尚

周

長野県諏訪市大和3丁目3番5号 セイコーエプソン株式

会社内

勿出 願 人 セイコーエプソン株式

東京都新宿区西新宿2丁目4番1号

会社

個代 理 人 弁理士 鈴木 喜三郎 外1名

组 報 包

1. 発明の名称

インクジェットヘッド

2. 特許請求の範囲

少なくとも1つ以上のノズル関口を有するノズル形成部材と、前記ノズル関口の各々に対向して配置され一端を自由端とし他端を固定端とすら片 持ち粱状振動子からなる圧電変換器と、 該圧電変換器と前記ノズル形成部材との間 改及び前記圧電変換器の周辺を充すインクとを備え、 印加電圧により前記圧電変換器を変位させてインクを前記ノズル関口から吐出させるインクジェットトへッド。

3. 発明の詳細な説明 (産業上の利用分野) 本発明はインク滴を飛翔させ記録紙等の媒体上にインク像を形成するプリンタ等インクジェット 記録装置に関し、さらに詳細にはインクジェット ブリンタヘッドに関する。

〔従来の技術〕

複数のノズルの各々に対して、 のノズルの名々に対して配置変換器のノズルの名々に対して配置変換器として配変換器とを発います。 のの圧電変換器の一定変換器の一定変換器の一定変換器の一定変換器の一定で変換器の一定で変換器の一定で変換をできまりませる。 では、かがいる。 では、かがいる。 では、ないがいる。 では、ないの、 では、ないの、 では、ないの、 では、ないの、 では、ないの、 では、ないいの、 では、ないいの、 では、ないいの、 では、ないいの、 では、ないいの、 では、ないいが、 では、ないいの、 では、ないの、 では、ないいの、 では、ないの、 では、ないの、 では、ないの、 では、ないの、 では、ないの、 では、ないの、 でいる、 でいる。 でいる、 でい

-1-

また、ノズル形成部材と振動子の間隔は、インク 吐出特性に大きな影響を与えるため微小な間隙を 保つように構成されている。

(発明が解決しようとする課題)

そこで本発明はこのような問題点を解決するもので、その目的とするところは製造上の歩留まりが良く、インク滴の吐出スピード、吐出量、吐出

-3-

ているため、接触の際に振動子の受ける衝撃は軟 構造部材によって吸収され、振動子の自由端はさ らにノズル形成部材倒へ当接状態を続けながら変 位する。

(実施例)

以下本発明の詳細を具体例により図面を参照して説明する。

第1回は本発明におけるインクジェットへッドを搭載したプリンタの斜視図であって、記録媒体1は送りローラー2・3の押圧によりプラテン4に捲き回され、記録の進行に従い矢印5の方向に搬送される。ガイド軸6・7に案内されプラテン4の軸に平行な方向に移動可能なキャリッジ8上には、複数のノズルを有するインクジェットへッド9が搭載されており、矢印10の方向に移動しつつ各々のノズルからインク滴を吐出して記録媒体上にインク像を形成する。

第2図は本発明によるインクジェットヘッドの 断面を示したものであって、複数のノズル13を 列設したノズル形成部材であるノズル坂12とこ 安定性といった諸特性が各ノズル間で揃った性能 の優れたインクジェットヘッドを提供することに ある。

(課題を解決するための手段)

(作用)

本発明の上記構成によれば、片持ち梁状摄動子の自由端がノズル形成部材側に変位した際、片持ち梁状擬動子の自由端の反りのばらつきのためにノズル形成部材に接触するような振動子があっても、振動子の自由端近傍が軟構造部材で構成され

-4-

れらのノズル 1 3 に 1 対 1 に対向する複数の振動子 1 4を有する圧電変換器 1 1 は、スペーサ 1 9を介してフレーム 2 0 とサブフレーム 2 1 の間に一体的に取付けられている。またフレーム 2 0 とノズル板 1 2 およびサブフレーム 2 1 によって形成されるインク室 2 3 にはインク(図示せず)がサブフレーム 2 1 の智後に配置されているインクリザーバ(図示を省略)から供給され、ノズル近傍を充たしている。 2 2 は圧電変換器 1 1 への駆動信号を供給するための配線である。

第3回は圧電空換器11の構成を説明するための針視回であり、この圧電空換器11はPZTよりなる圧電業子17の一面にNi層よりなるバターン電極18を接着し、他面にAu層よりなるバターン電極16を蒸着したものとして構成され、しかも切り込み30によって支持基体31の一側に積数の振動子14が描盤状に突出したものとして構成されている。さらに、振動子14の先端部分には軟構造部材である弾性ゴム15が接合されている。

-6-

第4図(a)、(b)はともにインク滴の吐出原理を説明するためのヘッド断面図である。振動子14が形成されている圧電変換器の共通電をとパターン電極16の間に電圧を印加すると圧電効果により圧電電が発生を印加する。大変化が規制され、結果として場合でで、第4図(2のでではははのででははは、第4図(2のではは変したがよりに電圧を解すれば、第4図(2のではよりに変変した。メル近ののイングを押圧して、クを押圧して、クを増出さる。

ところで、振動子14の自由端には軟構造部材である弾性ゴム15が接合されており、振動子の反りのはらつきがあっても、電圧解除時には第4図(b)の如く弾性ゴム15がノズル板12に押圧・当接することにより、振動子とノズルとの問

の際に振動子の受ける衝撃は軟構造部材である弾性ゴム15の変形によって吸収され、振動子の自由端は、さらにノズル板倒へ当接状態を続けながら変位する。これらにより、振動子の反りのばらつきに対してノズル近傍のインクに発生する圧力及びインクの流れはほぼ一定となる。

隔を高精度に保つことが可能になる。また、接触

なお上記突施例では、軟構造部材として弾性ゴ

-8-

-9-

する さよ

ムが使われているが、軟構造部材が弾性変形する 材料でありさえすれば、どんな材質であってもよ いことは発明の主旨上明白である。

また上記実施例では待機時に信号電極に電圧を 印加しているが、待機時には非電圧印加状態にし ておいて、選択的に電圧を印加し解除することで ノズル近傍のインクを押圧しノズルから吐出させ ることも可能である。

〔発明の効果〕

以上述べたように本発明の上記構成によれば、片持ち紫状振動子の自由端がノズルを倒りのばらた際、片持ち紫状振動子の自由端の反りのばらかな振動子の自由端のをが弾性変形が変性変形が変性変形があるために、振動子の自由端近のがが、振動子の自いながら滑らかに変位があっても、は軟糖を続けながら滑らかに変位があっても、出動子自由端の反りのばらいまま、でこのばられたをとノズル板との押圧・当接によってこのばら

を矯正できるため、振動子とノズル板とのギャップマージンが大きくなりヘッド製造における歩留まりが向上するとともに、インク滴の吐出スピード・吐出量・吐出安定性といった諸特性が各ノズル関で揃った性能の優れたインクジェットヘッドが実現できる。

さらに本発明の上記構成によれば、振動子の自由端がノズル板側に変位した際、ノズル板に接触する振動子の受ける衝撃は軟構造部材によって吸収されるため、振動子に衝撃による応力集中が及ぶことなく耐久性に優れたインクジェットヘッドが実現できる。

4. 図面の簡単な説明

第1図は本発明による一実施例を示すインクジェットへッドを搭載したプリンタの斜視図。

第2図は本発明による一実施例におけるインク ジェットヘッドの断面図。

第3図は第2図に示された圧電変換器の樹成を 説明するための斜視図。

-9-

1: 記錄媒体

第4図(a). (b)はインク滴の吐出原理を 説明するための第2図に示されたヘッドの街面拡 大図。

第5図は本発明におけるインクジェットヘッド に用いられる圧電変換器の他の実施例を説明する ためのヘッド断面拡大図。

1…記錄媒体

9…インクジェットヘッド

11…圧電変換器

12…ノズル板

13…ノズル

1 4 …振動子

15…弾性ゴム

以上

出願人 セイコーエプソン株式会社 代理人弁理士 鈴木署三郎 他1名

-11-

第 1 図

第 2 図

13 /ズル 14 振動子

THIS PAGE BLANK (USPTO)