7		A113 532	DEV	ELOPME	NT OF A	CCELERA	SAN A	L-ENGI	NES QUA	LIFICAT	ANE	CEDURE	ETC(L	"
	UNC	ASSIFIE 1 as 5 As A	D AFL	RL-144	-VOL-2							NL.		
1														
i														
i														
Ī														

DEVELOPMENT OF ACCELERATED FUEL-ENGINES QUALIFICATION PROCEDURES METHODOLOGY VOLUME II

INTERIM REPORT AFLRL No. 144 APPENDICES

A113532

2

Βv

J.A. Russell

J.P. Cuellar, Jr.

J.C. Tyler

J.Erwin

W.K. Knutson

R.A. Alvarez

U.S. Army Fuels and Lubricants Research Laboratory

Southwest Research Institute
San Antonio, Texas

R.L. Stenberg

F.O. Zimmer

U.S. Army Aviation Research and Development Command

St. Louis, Missouri

R.L. Rentz

T.J. Timbario

Mueller Associates, Inc.

Baltimore, Maryland

E. Rodman

S.M. Sokolow

Hamilton Standard Corporation

Windsor Locks, Connecticut

Under Contract to

U.S. Army Mobility Equipment Research and Development Command

Energy and Water Resources Laboratory Fort Belvoir, Virginia

Contract No. DAAK70-81-C-0209

Approved for public release; distribution unlimited

December 1981

82 04 15 048

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DDC Availability Notice

Qualified requestors may obtain copies of this report from Defense Documentation Center, Cameron Station, Alexandria, Virginia 22314.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

INCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

2. GOVY ACCESSION NO. AFLRL NO. 144 4. TITLE (and Subtide) DEVELOPMENT OF ACCELERATED FUEL-ENGINES QUALIFICATION PROCEDURES METHODOLOGY WOLLDE II - APPENDICES 7. AUTHOR(s) J.A. Russell, J.P. Cuellar, Jr., J.C. Tyler, J. Erwin, R.A. Alvarez, W.K. Knutson, et al. 9. PERFORMING ORGANIZATION NAME AND ADDRESSES US Army Fuels & Lubricants Research Lab P.O. Drawer 28510, San Antonio, TX 78284 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Mobility Equipment Research & Development Command, Attn: DRDME-GL, Ft. Belvoir, VA 22060 14. MONITORING AGENCY NAME & ADDRESS (ij' different from Controlling Office) 15. DISTRIBUTION STATEMENT (of this Report)
4. TITLE (and Subtitle) DEVELOPMENT OF ACCELERATED FUEL-ENGINES QUALIFICATION PROCEDURES METHODOLOGY VOLUME II - APPENDICES 7. AUTHOR(s) J.A. Russell, J.P. Cuellar, Jr., J.C. Tyler, J. Erwin, R.A. Alvarez, W.K. Knutson, et al. 9. PERFORMING ORGANIZATION NAME AND ADDRESSES US Army Fuels & Lubricants Research Lab P.O. Drawer 28510, San Antonio, TX 78284 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Mobility Equipment Research & Development Command, Attn: DRDME-GL, Ft. Belvoir, VA 22060 14. MONITORING AGENCY NAME & ADDRESS (ij different from Controlling Office) 5. TYPE OF REPORT & PERIOD COVERED Oct 1980 - Sept 1981 6. PERFORMING ORG. REPORT NUMBER APLEL NO. 144 6. CONTRACT OR GRANT NUMBER(s) DAAK70-80-C-0001 DAAK70-81-C-0209 DAAK70-82-C-0001 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 12. REPORT DATE December 1981 13. NUMBER OF PAGES 434 15. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE
DEVELOPMENT OF ACCELERATED FUEL-ENGINES QUALIFICATION PROCEDURES METHODOLOGY VOLUME II - APPENDICES 7. AUTHOR(s) J.A. Russell, J.P. Cuellar, Jr., J.C. Tyler, J. Erwin, R.A. Alvarez, W.K. Knutson, et al. 9. PERFORMING ORGANIZATION NAME AND ADDRESSES US Army Fuels & Lubricants Research Lab P.O. Drawer 28510, San Antonio, TX 78284 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Mobility Equipment Research & Development Command, Attn: DRDME-GL, Ft. Belvoir, VA 22060 14. MONITORING AGENCY NAME & ADDRESS (ij different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE
QUALIFICATION PROCEDURES METHODOLOGY VOLUME II - APPENDICES 7. AUTHOR(s) J.A. Russell, J.P. Cuellar, Jr., J.C. Tyler, J. Erwin, R.A. Alvarez, W.K. Knutson, et al. 8. CONTRACT OR GRANT NUMBER(s) DAAK(70-80-C-0001 DAAK(70-80-C-0001 DAAK(70-81-C-0209 DAAK(70-82-C-0001 9. PERFORMING ORGANIZATION NAME AND ADDRESSES US Army Fuels & Lubricants Research Lab P.O. Drawer 28510, San Antonio, TX 78284 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Mobility Equipment Research & Development Command, Attn: DRDME-GL, Ft. Belvoir, VA 22060 12. REPORT DATE December 1981 13. NUMBER OF PAGES (ij different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE
VOLUME II - APPENDICES 7. AUTHOR(a) J.A. Russell, J.P. Cuellar, Jr., J.C. Tyler, J. Erwin, R.A. Alvarez, W.K. Knutson, et al. 9. PERFORMING ORGANIZATION NAME AND ADDRESSES US Army Fuels & Lubricants Research Lab P.O. Drawer 28510, San Antonio, TX 78284 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Mobility Equipment Research & Development Command, Attn: DRDME-GL, Ft. Belvoir, VA 22060 14. MONITORING AGENCY NAME & ADDRESS (ij different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE
7. AUTHOR(s) J.A. Russell, J.P. Cuellar, Jr., J.C. Tyler, J. Erwin, R.A. Alvarez, W.K. Knutson, et al. 9. PERFORMING ORGANIZATION NAME AND ADDRESSES US Army Fuels & Lubricants Research Lab P.O. Drawer 28510, San Antonio, TX 78284 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Mobility Equipment Research & Development Command, Attn: DRDME-GL, Pt. Belvoir, VA 22060 14. MONITORING AGENCY NAME & ADDRESS (ij' different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
J.A. Russell, J.P. Cuellar, Jr., J.C. Tyler, J. Erwin, R.A. Alvarez, W.K. Knutson, et al. PERFORMING ORGANIZATION NAME AND ADDRESSES US Army Fuels & Lubricants Research Lab P.O. Drawer 28510, San Antonio, TX 78284 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Mobility Equipment Research & Development Command, Attn: DRDME-GL, Ft. Belvoir, VA 22060 14. MONITORING AGENCY NAME & ADDRESS (ij different from Controlling Office) 15. DECLASSIFICATION/DOWNGRADING SCHEDULE
J. Erwin, R.A. Alvarez, W.K. Knutson, et al. DAAK70-81-C-0209 DAAK70-82-C-0001 PERFORMING ORGANIZATION NAME AND ADDRESSES US Army Fuels & Lubricants Research Lab P.O. Drawer 28510, San Antonio, TX 78284 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Mobility Equipment Research & Development Command, Attn: DRDME-GL, Ft. Belvoir, VA 22060 12. REPORT DATE December 1981 13. NUMBER OF PAGES (ij different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE
DAAK70-82-C-0001 9. PERFORMING ORGANIZATION NAME AND ADDRESSES US Army Fuels & Lubricants Research Lab P.O. Drawer 28510, San Antonio, TX 78284 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Mobility Equipment Research & Development Command, Attn: DRDME-GL, Ft. Belvoir, VA 22060 14. MONITORING AGENCY NAME & ADDRESS (ij different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE
9. PERFORMING ORGANIZATION NAME AND ADDRESSES US Army Fuels & Lubricants Research Lab P.O. Drawer 28510, San Antonio, TX 78284 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Mobility Equipment Research & Development Command, Attn: DRDME-GL, Ft. Belvoir, VA 22060 14. MONITORING AGENCY NAME & ADDRESS (ij different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE
US Army Fuels & Lubricants Research Lab P.O. Drawer 28510, San Antonio, TX 78284 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Mobility Equipment Research & Development Command, Attn: DRDME-GL, Ft. Belvoir, VA 22060 14. MONITORING AGENCY NAME & ADDRESS (ij different from Controlling Office) 12. REPORT DATE December 1981 13. NUMBER OF PAGES 434 15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Mobility Equipment Research & December 1981 Development Command, Attn: DRDME-GL, Ft. Belvoir, VA 22060 14. MONITORING AGENCY NAME & ADDRESS (ij different from Controlling Office) Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE
US Army Mobility Equipment Research & December 1981 Development Command, Attn: DRDME-GL, Ft. Belvoir, VA 22060 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) Unclassified 15. Declassification/Downgrading Schedule
US Army Mobility Equipment Research & December 1981 Development Command, Attn: DRDME-GL, Ft. Belvoir, VA 22060 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) Unclassified 15. December 1981 13. NUMBER OF PAGES 434 15. SECURITY CLASS. (of this report) Unclassified 15. Declassified 15. Declassification/Downgrading Schedule
Development Command, Attn: DRDME-GL, Pt. Belvoir, VA 22060 14. MONITORING AGENCY NAME & ADDRESS (ij different from Controlling Office) Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE
Pt. Belvoir, VA 22060 434 14. MONITORING AGENCY NAME & ADDRESS (ij different from Controlling Office) Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE
14. MONITORING AGENCY NAME & ADDRESS (ij different from Controlling Office) Unclassified 15. SECURITY CLASS. (of this report) Unclassified SCHEDULE
(ij different from Controlling Office) Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
18. SUPPLEMENTARY NOTES
Because of the large number of pages, the appendices (Volume II) have been
bound under a separate cover and have not been included with all s shown
on the distribution list at the end of this report. A limited non-
conies of Volume II are available, and requests may be placed through OVER) 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Alternate Fuels Test methodology Elastomer
Synthetic Fuels Army equipments compatibility
Shale Fuels Fuels, Lubricity, Corrosion
Coal Fuels Qualification procedures
Fuel Systems Components Thermal stability 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
Activities and findings are reported for a 12-month program aimed at the
development of procedures for accelerating the qualification of new fuels
on Army equipment, emphasizing those derived from oil shale and coal.
Principal activities were identification of key tactical and combat sur-
face and air vehicles, powerplants, and fuels systems components; identifi-
cation of critical properties peculiar to new fuels anticipated to have
significant impact upon Army materiel; laboratory evaluations of materials

DD FORM 1473

EDITION OF 1 NOV 65 IS OBSOLETE

20. ABSTRACT (cont'd)

compatibility and fuels characteristics (including lubricity, elastomer compatibility, thermal stability, and corrosion); full-scale fuel systems component testing, and an overall review and evaluation of existing engine/fuel system qualification procedures. Conclusions and recommendations are presented in terms of methodology and criteria which will realistically address key peculiarities of alternative fuels and thus serve to accelerate their qualification for field Army use.

18. SUPPLEMENTARY NOTES (cont'd)

US Army Mobility Equipment Research and Development Command, ATTN: DRDME-GL, Fort Belvoir, VA 22060.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dam Entered)

TABLE OF CONTENTS

Appendix		Page
A	AVRADCOM AIRCRAFT/ENGINE COMPONENT LISTINGS,	A-1
В	AFLRL ELASTOMER SWELL AND HARDNESS DATA,	B-1
C	AFLRL ELASTOMER RETENTION PROPERTIES,	C-1
D-1	JFC 78 500-HOUR SHALE OIL PLAN OF TEST, APRIL 20, 1981	D-3
D-2	JFC 78 SHALE OIL FUEL PLAN OF TEST, REVISED JULY 30, 1981.	D-8
D-3	PRE AND POST TEST DEFINITION DATA	D-14
D-4	SPOT CALIBRATION	D-17
D-5	FLOW TEST	D-18
D-6	FUEL CHARACTERISTICS AND LUBRICITY AND INTERFACIAL TENSION,	D-19
D7	DETAILED COMPONENT TEST RESULTS	D-23
D-8	SUMMARY OF PRE AND POST CALIBRATION TEST RESULTS	D-26
D-9	PLOTTED DEFINITION DATA RESULTS	D-35
D-10	DISASSEMBLY AND INSPECTION RESULTS	D-55
E-1	IDENTIFICATION OF CRITICAL FUEL SYSTEM COMPONENTS,	E-3
E-2	EXISTING ENGINE QUALIFICATION PROCEDURES	E-67
E-3	NATO STANDARD ENGINE LABORATORY TEST-EDITION JUNE 80	E-141
E-4	FUEL SYSTEM COMPONENTS QUALIFICATION PROCEDURES	E-155
E-5	ENVIRONMENTAL PROTECTION AGENCY HEAVY-DUTY DIESEL ENGINE EXHAUST EMISSIONS CERTIFICATION AND TEST PROCEDURES	E-181

APPENDIX A

AVRADCOM AIRCRAFT/ENGINE COMPONENT LISTINGS

ARMY AIRCRAFT FUEL SYSTEM COMPONENT SURVEY Al. AIRCRAFT: AH-1G/S (Bell Helicopter Textron)

	COMPONENT	MANUFACTURER	BELL PART NO. (MFGR. PART NO.)	COMMENTS
	Self Sealing Hose	Aeroquip Stratoflex	209-060-668-1 (AE1007402J0264) (156672-10-0264)	Stratoflex 156 and Aeroquip 235 Buna-N compound could be affected by increase in aromatics and peroxide.
	Manifold Valve	Circle Seal Control Ronson Hydraulic Units Corporation	205-060-611-3 (P13-389) (42C42603)	
A-3	Self-Sealing Valve, Breakaway	Aeroquip Wiggins	205-063-601-15 (AE96056M) (CW118/15)	
	Defuel/Sump Drain Valve (Manual)	Auto-Valve, Inc. Shaw Aero Devices, Inc.	209-060-655-5 (96C-5) (A-440-2)	
	Filter Drain Valve	Auto-Valve, Inc.	209-060-656-1 (375C-62S)	
	Check Valve (Bleed)	Stellar Hyd. Co. Circle Seal Controls	209-060-657-1 (69250) (2632T-4TT-5)	
	Shut Off Valve	III General Controls	(AV16B1748D)	
	Sump Drain Valve, Crashworthy	Auto-Valve, Inc. Shaw Aero Devices, Inc.	209-060-661-1 (96c-4) (A-470)	
	Check Valve	Auto-Valve, Inc. Shaw Aero Devices, Inc.	209-060-670 (96C-4) (A-470)	

_	
(Continued)	
S	1
AF-1G/S	
AIRCRAFT:	
Al.	

	COMPONENT	AL ALKCKAFT: AF- MANUAFACTURER	AF-1G/S (Continued) BELL PART NO. (MFGR. PART NO.)	COMMENTS
	Fuel Gage, Tank Unit (Transmitter)	Simmonds Gull	209-060-602-3 (393008-032) (200-040-005)	
	Crashworthy/Self-Sealing Fuel Tank	Uniroyal	209-060-652-1/3 (FCR-56293) (FCR-56294)	
	Cap and Adapter	Shaw Aero Devices, Inc.	206-062-660-1 (G) 206-062-650-1 (S) (416-635)	
	Closed Circuit Receiver	Hydraulic Research	209-060-694-3 (745000-3)	
A- 4	Inter-Tank Fuel Crossover	Goodyear Uniroyal Firestone	209-060-653-1 (AFA8000362) (FCE-55262) (50051)	
	Boost Pump (Electric)	Lear-Siegler Globe	205-060-606-3 (RG12240D2) (164A168-1)	Lear-Siegler pump is centrifugal type, submerged motor. It has Buna-N elastomers and one stationery shaft of silicone. Globe pump is a centrifugal with a submerged motor which is sealed and
	Fuel Filter Low Level Float Switch Pressure Switch Quick Disconnect Coupling	Michigan Dynamic Fram Revere Corp. of America Custom Component, Inc. Aeroquip	204040-760-5 (100103) (165516) (F74356) 204-062-542-3 (7G44) 209-060-692-1 (AE96385J)	completely dry. Seal is a stain- less steel or dyallphthilate diaphragm.
			\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

AF-1G/S (Continued)	BELL PART NO.
AIRCRAFT:	
A1.	

O

COMPONENT	MANUFACTURER	(MFGR. PART NO.)	COMMENTS
Self-Sealing Coupling	Aeroquip	209-060-654-1 (AE96312J)	-
	A2. AIRCRAFT: UH-1D/H	UH-lD/H (Bell Helicopter Textron)	extron)
COMPONENT	MANUFACTURER	(MFGR. PART NO.)	COMMENTS
1. Main Fuel System			
Self Sealing Hose	;	205-062-650-9	Stratoflex 156 and Aeroquip 235
	Stratoflex Aeroquip	(B6671-10-0336) (AE1007399J0336)	Buna-N compound could be sensitive to increases in
Check Valve (self		205-063-601-11	aromatics and peroxide.
sealing)	Aeroquip Corp.	(AE 96311J)	
Sump Drain Valve	E. b. wiggins, inc. Auto Valve, Inc.	(CW 118/11) (967B12)	
(Manual)		206 062 656 1	
Digin valve (Manual)	Auto Valve, Inc.	203-062-036-1 (967B-5)	
	Shaw Aero Devices, Inc.	(A 470-1)	
Fuel Shutoff Valve		205-060-612-3	
(Motorized) Siphon Breaker Valve	III General Controls	(AV 16B1667D) 204-061-689-1	
	Circle Seal Controls	P13-262-1	relief valve
	Ronson Hydraulic Units	42C42604	check valve
	Corp.		
Fuel Quantity Gage		205-061-633-13	
(Capacitance)	Simmonds Precision	(39 3004-01699)	
cravity/ con morepracie	E.B. Wiggins	(CCR101/5)	
	Hydraulics Research	(744000-5)	
Crashworthy Self- Sealing Fuel Cell	Goodyear	205-062-635-7 (2F1637014)	Nitrite rubber innerliner

.;

A2. AIRCRAFT: UH-1D/H (Continued)

	COMPONENT	MANUFACTURER	AIRFRAME P/N (MFGR. PART NO.)	COMMENTS
	Boost Pump - Electrical	il Globe Lear-Siegler	205-060-606-3 (164A168-2) (RG 12240D2)	Lear-Siegler is centrifugal type, submerged motor. Has Buna-N elastomers and one stationary shaft seal made of silicon.
	Boost Pump - Air Motor Driven	Hydro-Aire Div. (Crane Co.) Lear-Siegler	205-060-607-5 (60-3515) (RG 12470)	
	Ejector Pump	Arkwin Industries Allen Aircraft Products	205-061-634-1 (13A006-1) (610E100)	
	Flapper Valve	Allen Aircraft Products	205-060-666-1 (24C156)	
	<pre>.iller Cap - Gravity CCR Shav</pre>	CR Shaw Aero Devices, Inc.	209-060-651-5 (FC 3500-30) (PC 3500-159)	
	Fuel Filter	Mich. Dynamics Fram	204-040-760 (100103) (165516)	·
2.	Auxiliary Fuel System			
	Crashworthy Fuel Cells	Uniroyal	205-061-621-3/4 (FCB-55121)	Fabric inner liner.
	Vent Valve	Ronson Hydraulic Unit Corp. Circle Seal Controls	204-061-689 (42C42604) (P13-262-1)	

A2. AIRCRAFT: UH-1D/H (Continued)

COMPONENT	MANUFACTURER	AIRFRAME P/N (MFGR. PART NO.	COMMENTS
Transfer Pump- Blectric	Lear-Siegler Globe Industries	205-061-626-3 (RR 125802) (164A166)	Lear-Siegler pump is centrifugal type, submerged motor has Buna-N elastomers and one stationary shaft seal of silicon.
Float Switch - Shutoff	Revere Corp. of America	204-060-654-5 (F-74070-2)	Includes a check valve: (205-062-655-1) Aeroquip AE 95318G Wiggins CW 118/09
Check Valve	Vinson Mfg. Co. James Pond & Clark	205-061-623 (A-62083) (869A-12BB-54)	
	Army Aircraft Fuel System Component A3. AIRCRAFT: OH-6A (Hughes Helicopters)		Survey - Crashworthy
COMPONENT	MANUFACTURER	Hughes P/N (Vendor P/N)	COMMENTS
Self Sealing Hose	Aeroquip Corp. Stratoflex	369A8486 (AE1008247J0132) (156755EEF0132)	Aeroquip Hose (AE 235), Buna Hose will be sensitive to increases in Aromatics and Peroxides, but less sensitive than AE 502.
Breakaway Fuel Valve, In-Line	E.B. Wiggins Aeroquip	369A8468 (CW108/01) (AE 97124H)	
Breakaway Valve, Fuel	E.B. Wiggins Aeroquip	369A8467 (CW 107/01) (AE 97122J)	
Emergency Shutoff Valve, Fuel Vent Line	ve, Hydraulics Research	3 69A8 420 (701100-1)	

A3. AIRCRAFT: OH-6A (Continued)

Valve Assembly - Fuel Shut-off (Grash Resistant Fuel System) Fuel Quantity - Transmitter Fuel Drain Valve - Gravity Valve, Breakaway Closed Circuit Rec. Assy. Fuel Cell - Self Sealing Electric Boost Pump	ANUFACTURER Allen Aircraft Prod. ITT General Controls Parker Hannifan Dukes Astronautics Co. PNEU Draulics Inc. E.B. Wiggins Hydraulics Research Hydraulics Research Goodyear	Hughes P/N (Vendor P/N) 369A8469 (8D146) (AV24D1128) (2720031) (4571-00) (3212) 369A4520-3 369A4520-3 369A8470 (773100-3) 369A8471 (744100-1) 369A8465 (AJA8000758) 369A8143 (1C3-40)	COMMENTS Nitrile rubber inner liner.
Gravity Filler Cap	Shaw Aero Devices, Inc.	(35001-2)	
CCR Filler Cap	Shaw Aero Devices, Inc.	(416–50)	

Army Alfcraft Fuel System Component Survey A4. AIRCRAFT: CH-47 C (Boeing Vertol)

(;

COMPONENT	MANUFACTURER	Airframe P/N (MFGR'S P/N)	COMMENTS
Main Fuel System:			
Self-Sealing Hose	Aeroquip	114PS466 (AE 502)	Buna Compound sensitive to aromatics and peroxides
Check Valve- Thermal Relief	Hydraulic Research	114PS456-1 (314400-1)	
Drain Valve, Fuel Tank	k Hydraulic Research Wiggins	114PS465-1 (772500-1) (B7V)	
Check Valve	Hydraulic Research	114PS454-1/2 (220400-1)	
Fuel Probe (tank unit)	Gull Airborne Simmonds Precision	114PS471-2/3 114PS472-1 (012-003-004) (010-017-005) (391057-148)	
Fuel Cells (Main) - self-sealing	Goodyear Un1royal	114PS458-1 114PS448-15 (AJA8000705) (FCR56562)	Goodyear cell has a nitrile liner. Uniroyal cell has a fabric inner liner.
Fuel Cells (Auxiliary)) - Goodyear Unfroyal	114PS459-1 (AJA8000704) (FCR-56563)	Goodyear cells have nitrile inner liners, Uniroyal cells have fabric inner liners.
Boost Pump - motor operated	Lear-Siegler	114P4111-3 (RG12200E)	A.C. motor drive, centrifugal pump, motor is wet. Elsatomeric material is Buna-N. (Potting compound Shell Epon 828, activator General Mills Versamid 125).

A4. AIRCRAFT: CH-47 C (Continued)

COMPONENT	MANUFACTURER	AIRFRAME P/N (MFGR'S P/N)	COMMENTS
Cap, Filler Opening	Shaw Aero Devices, Inc.	(416–50)	
Motor Driven Pump -		114P4010-1	ei ei
auxillary power	Lear-Siegler	(RG 15150G)	is elastomeric material. Has a diaphram of DuPont fairoprene.
Motor driven gate valve	ITT General Controls	114PS401-2 (AV 16B1832D)	
Fuel Selector Valve	Valcor Engineering	114PS402-2 (V36100-05)	
(Solenoid Valve)	Corporation	(V3400-02)	
Adapter, Fuel Tank	Shaw Aero Devices, Inc.	(416–736)	
Vent Valve	Hydraulic Research Purolator	114PS457-1/2 (760300-1) (7542049)	
Pressure Actuated		11425407-1	
SWILCH	Hydra-Electric Inc.	(1129)	
Breakaway Fitting	Hydraulic Research	114PS462-5/6/4 (780100-4/5/6)	
Strainer Element Sediment		114PS4258-1	
Quick Disconnect Coupling	Wiggins	375201-6/16	

A4. AIRCRAFT: CH-47C (Continued)

	At. AINCHAIL:	מון	
COMPONENT	MANUFACTURER	AIRFRAME P/N (MFGR'S P/N)	COMMENTS
Cock, Poppet Drain	Auto-Valve, Inc.	114P4015-1 (475C-73N)	
Fuel Line Drain Valve	Hydraulic Research Wiggins	114PS464-1 (772700-1) CW 105/01	
	A4. AIRCRAFT:	CH-47D (ECP 714)	
COMPONENT	MANUFACTURER	AIRFRAME P/N (MFGR'S P/N)	COMMENTS
Pressure Fuel Adapter (Manifold Assembly)	Hydraulic Research	114PS412 (714300-1)	
Motor - Operated		114PS494	
Valve	Whittaker Controls	(233454/233455)	
Pressure Fueling		114PS409-1	
Shutoff	Hydraulic Research	(787800)	
Break Away Fitting		114PS408	
(2 in.)	Hydraulic Research	(711800)	
Float Valve (Condensate Drain)	Derogene, Inc.	114PS419-2 (79001601-101)	
Break Away Fitting (1 in.)	Hydraulic Research	114PS414 (711900)	

A4. AIRCRAFT: CH-47D (Continued)

COMPONENT	MANUFACTURER	AIRFRAME P/N (MFGR'S P/N)	COMMENTS
Thermistor (Tank Empty - Pump Shutoff)	Simmonds Precision	(473344)	
Two-Way Check Välve	Hydraulic Research	114PS415 (32800)	
Tank Sump & Vent Condensate Drain	Hydraulic Research	114PS509 (777300)	
Quick Disconnect Coupling	Symetrics, Inc.	114PS491 (BV 15016-3)	
Manifold Scavenge Ejector Pump	Hydraulic Research	114PS413 (710800-1)	
Fuel Level Control Assembly	Hydraulic Research	114PS478 (776600)	
	Army Aircraft Fuel A5. AIRCRAFT: OH-58C	System Component (Bell Helicopter	Survey Textron)
COMPONENT	MANUFACTURER	BELL PART NO. (MFGR. PART NO.)	COMMENTS
Self-Sealing Hose		206-062-610-7	Stratoflex hose is 156 type, Buna-N
	Stratoflex		aromatics or peroxi
Fuel, Check Valve,		206-062-604-1	
B/A	E. B. Wiggins	(CW 101/01)	
	Hydraulic Research	(780300-1)	
Shutoff Valve, Manual	Shaw Aero Devices, Inc.	206-062-603 (A-870-1)	

A5. AIRCRAFT: OH-58C (Bell Helicopter Textron) (Continued)

COMPONENT	MANUFACTURER	BELL PART NO. (MFGR. PART NO.)	COMPLENTS
. Quantity Transmitter (Capacitance)	Simmonds Precision	(391087-001)	
Quantity Transmitter (Capacitance) Low Fuel		206-062-605-1	
Warning	Simmonds Precision	(391057–129)	
Crashworthy Fuel Tank	Firestone	206-062-602-1/3 (37945)	Firestone cell has a fabric inner-
	Goodyear	(AJA8000566)	<pre>Liner. Goodyear fuel cells have nitrile inner liners, sensitive to aroma- tics and peroxides.</pre>
Pressure Switch	Custom Component Inc.	204-062-542-3 (7G44)	
Closed Circuit/Gravity		209-060-651-9	
ruel Neceptacie	E. B. Wiggins Hydraulic Research	(CCR 101-09) (744000-9)	
Sump Drain Valve		206-062-640-1	
(Foppet)	Auto-Valve, Inc.	(96c-16)	
Boost Pump (Electric)	Lear-Siegler, Inc.	206-062-628-1/3 (RR-12240L)	Lear-Siegler is DC motor driven,
	(Airborne Div) Globe Industries	(2C27-1) (164A137)	centifiugal type, submerged pump, Buna-N elastomers, one silicon stationary shaft seal,

A5. AIRCRAFT: OH-58C (Bell Helicopter Textron) (Continued)

COMPONENT	MANUFACTURER	BELL PART NO. (MFGR. PART NO.)	COMMENTS
Low Level Switch (Float)	Revere Corp. of America	(F 8300-114)	
Cap and Adapter Assembly	bly	206-062-660-1	
	Shaw Aero Devices, Inc.	(416–50)	
	A6. AIRCRAFT: UH-(UH-60A (Sikorsky Aircraft)	t)
COMPONENT	MANUFACTURER	SIKORSKY P/N (VENDOR P/N)	COMMENTS
1. Main Fuel System			
Self Sealing Hose			
	Aeroquip	(AE502)	creases in aromatics and peroxides.
Inlet Check Valve		65307-08007-101	
(non B/A)	Allen A/C Products	(8C157)	
Manual Valve		65317-03006-112	
(ruel selector)	Allen A/C Products	(16BS106-12)	
Self-Sealing		70307-03002-103	
breakaway valve	Aeroquip	(AE80606G, typical)	
Vent Valve	Parker-Hannifin	70307-03007-103 (2750088-102)	

A6. AIRCRAFT: UH-60A (Sikorsky Aircraft) (Continued)

16

		(continued)	
COMPONENT	MANUFACTURER	SIKORSKY P/N (VENDOR P/N) COMME	COMMENTS
Prime Shutoff Valve		70307-03024-101	
	Valcor	(V5000-114)	
Low Level Shutoff		70307-03025-101	
a Tre	Parker-Hannifin	(1323-585285)	
Fuel/Defuel Valve	Parker-Hannifin	70307-03026-101 (2770052-101)	
High Level Shutoff		70307-03012-103	
ATAC	Parker-Hannifin	(2770076–106)	
Check Valve (Crossfeed)	d)	70307-03043-101	
	Parker-Hannifin	(2770057–101)	
Fuel Inlet Valve (Main)	(u	70307-03045-101	
	Parker-Hannifin	(2770006–101)	
Level Sensor		70307-03004-108	
(capacitance)	Simmonds Precision	(391057–289)	
Low Level Warning		70307-03004-110	
(rapacitance)	Simmonds Precision	(472580-010)	

A6. AIRCRAFT: UH-60A (Sikorsky Aircraft) (Continued)

COMPONENT	MANUFACTURER	SIKORSKY P/N (VENDOR P/N)	COMMENTS
Sump Drain Probe		70307-03018-102	
(Fuel Sampling)	Auto Valve, Inc.	(971C-21)	
Sump Drain Valve		70307-03018-103	
(Manual Drain)	Auto Valve, Inc.	(971D-22)	
Refueling Receptacle		70307-03011-101	
(CCR & SPP)	Parker-Hannifin	(2730535)	
Nozzle and Receiver Assembly	Wiggins	(CCN 101/01) (CCR 101/03)	
Crashworthy Self- Sealing Fuel Tank		70307-63003-102	
	Goodyear	(2F1-6-42416)	Nitrile innerliner
Prime Pump		70307-03005-102	D.C. motor, positive displacement
	Lear-Siegler	(RR36680B)	vane type pump, lully wet. Vicon elastomers, also uses a 3M Scotch cast 9 potting compound.

65307-03065-103	(AV 16B2059D) (AV 16B2067D)
	IIT General Controls
Shutoff Valve (Motorized)	

3

A6. AIRCRAFT: UH-60A (Sikorsky Aircraft) (Continued)

COMPONENT	MANUFACTURER	SIKORSKY P/N (VENDOR P/N)	COMMENTS
Self-Sealing Breakaway Valves		70070-30103-103/104 70070-30802-102	
	Aeroquip	(AE 80614M/5P/6P)	
Pressure Relief Valve		70070-30901-102	
	Wiggins	(RVS21K)	
Fuel Quantity Gage		70070-30102-101/102	
(capacitance)	Simmonds Precision	(391057-246/247)	
Crashworthy/Non		70070–30101	
Sell-Sealing Lank	Goodyear	(2F1-C-42523)	Nitrile inner liner
Transfer Pump		61300-63188-101	
(MOLOIIZEG, EIECUILC)	Lear-Siegler	(RR 36260)	Vane type pump. Buna-N elast- omers. Has a lip seal of Sir- vine (Chicago Rawhide).

Army Aircraft Fuel System Component Survey A7. AIRCRAFT: YAH-64 (Hughes Hellcopter)

COMMENTS	-	Alomatics and refoxides
AIRFRAME P/N (MFGR, PART NO.)	7-211642021-22/23	(AE705219-3)
COMPONENT MANUFACTURER	dose, Self Sealing	Aeroquip

A7. AIRCRAFT: YAH-64 (Hughes Helicopter) (Continued)

COMPONENT	MANUFACTURER	AIRFRAME P/N (MFGR. PART NO.)	COMMENTS
Breakaway Valve		Typical 7-211642041	
	Aeroquip	(AE81358K)	
Level Control		7~21164202	
110-011	Hydraulic Research	(736300)	
Fuel Pilot Valve		7~211642003	
	Hydraulic Research	(743900)	
Crossfeed and Firewall		7-211642045	
aviso i valve	ITT General Controls	(AV16E1291)	
APU Shutoff Valve		7-211642059	
	ITT General Controls	(AV24B1291AR)	
Check Valve		7-211642032	
TIAN DAY	Parker-Hannifin	(2770103)	
Check Valve		7-211642033	
ALL VEIL	Parker-Hannifin	(2770104)	
Aux. Fuel Check		7-117420063	
	Lord Industries	(L81400-8CC)	
Shutoff Transfer		7-211642004	
) 	IIT General Controls	(AV24B1293)	

A7. AIRCRAFT: YAH-64 (Hughes Hellcopter)
(Continued)

C

Ċ,

C

COMPONENT	MANUFACTURER	AIRFRAME P/N (MFGR. PART NO.)	COMMENTS
Fuel Quantity Sensor		Typical 7-211642075	
	Simmonds Precision	(391 001-372)	
Fwd Fuel Tank		7-2 1164 1001	Fabric innerliner,
	Firestone	(37832)	
Aft Fuel Tank		7-211641002	Fabric innerliner.
	Firestone	(37833)	
Boost Pump,		7-211642078	
Alf Driven	Pneu-Devices	(2307)	
APU Boost Pump,		7-211642062	P
Electric Driven	Lear-Siegler	(RG36810)	Motor dry. Buna-N elastomers. Diaphram of DuPont fairoprene.
Transfer Pump,		7-211642052	
Air Motor Driven	Pneu-Devices	(2284–5)	
Fuel Pressure Switch		7-211642074	
	Hydra-Electric, Inc.	(9111)	
Breakaway Coupling		7-117420069	
	Aeroquip	(AE98102H)	
Pullaway Coupling		7-267100011	
	Aeroquip	(XAE80861H)	

A7. AIRCRAFT: YAH-64 (Hughes Helicopter) (Continued)

COMPONENT	MANUFACTURER	AIRFRAME P/N (MFGR. PART NO.)	COMMENTS
Fuel Drop Tank-Metal	Sargent-Fletcher	7-211642081	
Check Valve		7-117420021	
Controliable Filler	Shaw Aero Devices, Inc.	(457-264) (457-780 Prod)	
	Army Aircraft Fue. AB. AIRCRAFT: O	Army Aircraft Fuel System Component Survey AB. AIRCRAFT: OV-1B/C (Grumman Aerospace)	e)
COMPONENT	VENDOR	AIRFRAME MFGR. P/N (VENDOR'S PART NO.)	COMMENTS
Mainfuel System			
Self-Sealing Hose	Aeroquip	(AE502-12)	Buna Compound, sensitive to Aromatics and Peroxides.
Check Valve	Circle Seal Controls	(8869A-4TT-56)	
Plug Valve	Janitrol Aero.	(52-0504-1)	
Ploat Valve	Parker-Bannifin	(1321-517310) (1323-585905)	
Motorized Gate Valve	III General Controls	(AV16B1295D)	
Rotary Valve - (Drop Tank)		134 <i>SCP112-</i> 3	
Solenoid Actuated	Parker-Hannifin	(19–758–51)	

A8. AIRCRAFT: OV-1B/C (Grumman Aerospace) (Continued)

COMPONENT	VENDOR	AIRFRAME MFGR. P/N (VENDOR'S PART NO.)	COMMENTS
Check Valve - Cylinder (Drop Tank)	Parker-Hannifin	(1111–548189–1)	
Fuel Gage - quantity	Honeywell, Inc.	134SCP114-1/3/5 (FG200A-50)	
Adapter & Cap -		134SCP125-1	
Pressure Fueling	J.C. Carter Co. Parker-Hannifin	(6450) (23-758-1)	
Fuel Tank - Fuselage		134SCP103-7	Uniroyal cells have fabric inner
	Uniroyal Goodyear	(FCR-46312) (2F1-6-26903)	Goodyear tank has nitrile rubber inner liner.
Sediment Strainer	Western Electric Co., Inc.	(52-2309-002)	
Valve	Parker-Hannifin	(1111–527919)	
Swing Check Valve	Parker-Hannifin	(1111–548390)	
Flexible Coupling	Wiggins	(3605-16D/20D)	
Ejector Pump	Allen Aircraft Products, Inc.	(612E501)	
Centrifugal Pump (Electrical)	Lear-Siegler, Inc.	134SCP115-7 (RR11970A)	Centrifugal pump, dry motor, Buna-Nelastomers, two silicone shaft seals.
Pressure Switch	Consolidated Controls Corporation	(R6607-1-46/47)	

A8. AIRCRAFT: 0V-1B/C (Grumman Aerospace) (Continued)

COMPONENT	VENDOR	AIRFRAME MFGR. P/N (VENDOR'S PART NO.)	COMMENTS
Gravity Fueling Filler Cap		(15600V1-156-1)	
Sump Drain	Auto Valve, Inc.	(1100B52ZG) (1100B52Z1)	
2 Range Extension and Drop Tank			
Aluminum Drop Tank	Sargent-Fletcher	134P10150-1	
Rotary Pump -		134SCP123-3	Vane type pump, line mounted. Buna-N
Electric	Lear-Siegler, Inc.	(RG16550A)	erastomers, araphram or rarroprene, gasket material - velamoid.
Fuel Quantity Probe	Sargent-Fletcher	(50179)	•
Fuel Cap and Adapter	Sargent-Fletcher	(50251)	
Pressure/Vacuum Relief Valve	Sargent-Fletcher	(50233)	

Army Aircraft Fuel System Component Survey A9. AIRCRAFT: RU/U-21 (Beech Aircraft Co.)

COMPONENT	MANUFACTURER	AIRFRAME P/N (MFGR. P/N)	COMMENTS
Check Valve	Dukes Inc.	(2375-00/367-00/ 3124-00/3298-00)	

A9. AIRCRAFT: RU/U-21 (Beech Aircraft Co.) (Continued)

COMPONENT	MANUFACTURER	AIRFRAME P/N (MFGR. P/N)	COMMENTS
Non Self- Sealing Hose	Aeroquip Corp.	(701012-1200170)	Lightweight, approaches a thermal plastic (less sensitive to aromatics
Check Valve	Circle Seal Controls	(8869A-12BT-2)	
Solenoid Actuated Transfer Feed Valve	ITT General Controls	50-389095 (AV1B1602)	
Solenoid Avtuated Shutoff Valve	Dukes Inc.	(3153-00-9)	
Gate Valve - Motorized	ITT General Controls	(AV16B1700B)	
Check Valve	Parker Hannifin	(1111–595272)	
Swing Check Valve	Dukes Inc.	(3298–00)	
Check Valve - Safety Relief	Circle Seal Controls	(5132A-4TT-55)	
Fuel Quantity - Transmitter	Simmonds Precision Products, Inc.	(B1239-3636)	
Fuel Flow - Transmitter	Bendix Corporation	(9133-2581)	
Fuel Cap (Adapter)	H & E Aircraft Co.	96-380036-11 (HE651-11)	
Electric Boost Pump	Delaval Turbine	50-389053-5 (72443)	

A9. AIRCRAFT: RU/U-21 (Beech Aircraft Co.) (Continued)

COMPONENT	MANUFACTURER	AIRFRAME P/N (MFGR. PART NO.)	COMMENTS
Pressure Switch	Aircraft Controls Co.	50-389055-1/2 (GP-8000-50-1)	
Fuel Filter (Heated)	Airmaze Division of North American Rockwell	(02W05847)	
Fuel Drain Valve	Janitrol Aero	НЕ 751-1-300	
Gravity Filler Cap	Koehler-Dayton, Inc.	(37810-1)	
Sump Drain	Curtis Dyna Products Corporation	(cca3400)	
Fuel Drain Valve (Nacelle)	Ruska Precision Corp.	91~380001 (8634~1)	
Coupling	Wiggins	(3605–12D)	
2 Range Extension Kit			
Ferry Fuel Pump - Electiic	Dukes Astronautics Co.	(1132-00-1)	The ferry fuel tanks are fabricated from aluminum - no liners.
Ferry Fuel Pump - Manual	Christen Industries	(30264)	The ferry fuel tanks are fabricated from aluminum - no liners.
Manual Selector Valve	Auto Valve, Inc.	(73C-881)	
Main Fuel Tanks (Non Self-Sealing)	Goodyear	50-380135/380140/ 380141/380142 (2F1-6-34055/2F1-6-36211)	-36211)

Army Aircraft Fuel System Component Survey A10. T53-L-13B/703/7A/15/701A (AVCO-LYCOMING)

COMPONENT	VENDOR'S PART NO. (ENGINE CO. P/N)	VENDOR	BRIEF DESCRIPTION (UNIQUE FEATURES)	COMMENTS (SENSITIVITY TO FUEL CHANGES)
Starting Solenoid Valve	AV1F1155-1 AF56C-39A (1-300-191-02)	ITT General Conts (Aerospace Prods) Eckel Valve Corp	Internal Rubber Contaminan Packing Conforms corrosion. on MIL-P-5315 Two Position Electrically Opened, Spring-Loaded Closed Valve with an Internal 100 Mesh Filter	Contaminants and corrosion. Tically and Internal
Starting Fuel Manifold Assembly	(1-170-430/420-01)	Kreisler Industrial Corp		Corrosion.
Starting Fuel Nozzle	6660042 24143 (1-300-405)	Parker Hannifan Delavan	Atomizing Nozzle, Con Incorporates a the Starting Fuel and Purge System to Help Eliminate Clogging of Start Fuel Nozzle Due to Coking	Contaminants, thermal stability and viscosity. Fuel
Igniter Plug	10-390045-1 5611387 FHE 211-2 (1-300-348)	Bendix AC Chámpion		May require change if viscosity causes starting problems.
Combustor Drain Valve	(1-160-220-03)	Foremost Precision Reb Ind		Contamination, thermal stability.
Main Manifold Assembly	(1-160-160-09/10)	Lycoming	Two-Section, Dual-Channeled Assembly	Corrosion

AlO. T53-L-13B/703/7A/15/701A (AVCO-LYCOMING) (Continued)

COMMENTS (SENSITIVITY TO FUEL CHANGES)	Particulates or Contamination Can Accumulate in Swirl Chamber and Change Flow Characteristics, Thermal Stability and Viscosity.	Low Lubricity and Contaminants Will Affect the Gear Pump, Buna-N O-rings and Seals in Pump and Control Will Be Affected by Increased Level of Aromatics or Peroxides. Contaminants Could Also Create Problems in Close Tolerance Parts in the Control	Particulates Could Cause Stickage, Also Could be Affected by Low Lubricity and by a Decrease in Thermal Stability.
BRIEF DESCRIPTION (UNIQUE FEATURES)	Atomizing Dual Orifice Nozzle	Consists of a Power I Turbine Governor and a Computer Assembly Plus High Pressure Pump (87352/7E820/85034) Which Is a Rotary Gear (-701A uses a vane for better protection against contamina- Ition).	Controls Flow to the Engine Nozzles According to a Pre- Determined Schedule I of Primary vs secondary Air
VENDOR	Parker Hannifin Delavan	Chandler-Evans	Arkwin Industries, Inc. Lycoming Processer Industries, Inc.
VENDOR'S PART.NO. (ENGINE CO. P/N)	26518 6660001 (1-300-347)	84200A7A/100770A4	(1-180-190-03)
COMPONENT	Main Fuel Injector	Fuel Control with Integral Pump	Flow Divider (Linear Directional Valve)

A10. T53-L-13B/703/7A/15/701A (AVCO-LYCOMING) (Continued)

COMPONENT	VENDOR'S PART NO. (ENGINE CO. P/N)	VENDOR	BRIEF DESCRIPTION (UNIQUE FEATURES)	COMMENTS (SENSITIVITY TO FUEL CHANGES)
7A/15/701A (ONLY)				
Fuel Filter	045468	Bendix Filter Corp.	Incorporates an Impending Bypass 10m Nominal	Could Be Affected by Viscosity Changes. An Increase in Par- ticulates (Less than 10 Micron Size) May Require a Change in Element Filtration. Moisture Absorbancy.
Fuel Heater	5A470-001 VAS267586	Tavitrol United A/C Products		Thermal Stability and Corrosion.
	Army Aircraí All. T63-A-700	Army Aircraft Fuel System Component Survey . T63-A-700/720 (Detroit Diesel Allison)	Survey 11son)	
COMPONENT	VENDOR'S PART NO. (ENGINE CO. P/N)	VENDOR	BRIEF DESCRIPTION (UNIQUE FEATURES)	COMMENTS (SENSITIVITY TO FUEL CHANGES)
Fuel Pump and Filter	685492 (5A/700) 23003114 (720) 386500-5 (TRW)	Sundstrand TRW (alternate vendor)	Gear Dual element on -700, single element on -720.	Low lubricity and contamination. Moisture absorbancy.
Gas Producer Fuel Control	6871111 (5A/700) 6895672 (720)	Bendix	Pneumatic communication with power turbine governor (Model DP-D3)	Lubricity and contamination (nonrotating metering valve). Aromatics and peroxides.

All. T63-A-700/720 (Detroit Diesel Allison) (Continued)

COMPONENT	VENDOR'S PART NO. (ENGINE CO. P/N)	VENDOR	BRIEF DESCRIPTION (UNIQUE FEATURES)	COMMENTS (SENSITIVITY TO FUEL CHANGES)
Fuel Nozzle	6852020 (5A/700) 5233333 (720)	DED Diesel Equipment Division GM	Dual orifice atomizing with built in metering valve	Contamination (fluted metering valve), thermal stability.
Igniter	FHE-161-9 5611071	Champion AC		Will require change if viscosity increases and causes starting problems.
Combustor* Drain Valve (Plug and Check)	6854255 (CV) MS9015-03 (Plug)			Contaminants and Corrosion
Check Valve	252402-1	Bendix		Contaminants and Corrosion

*Two ports for different applications OH-58 (Engine sits horizontally), OH-6 (Engine is at a 45° Angle)

Army Aircraft Fuel System Component Survey Al2. T55-L-11ASA/11D/712 (AVCO-LYCOMING)

COMPONENT	VENDOR'S PART NO. (ENGINE CO. P/N)	VENDOR	BRIEF DESCRIPTION (UNIQUE FEATURES)	COMMENTS (SENSITIVITY TO FUEL CHANGES)
Start Fuel Nozzle	6660039 (2-300-216-02)	Parker-Hannifin Delavan		Contamination, thermal stability, viscosity
In-Line Filter	21350 (2-300-311-01)	Mectron	712 Engine has an impending bypass	Particulates, vis- cosity and moisture absorbancy

Al2. T55-L-11ASA/11D/712 (AVCO-LYCOMING) (Continued)

COMPONENT	VENDOR'S PART NO. (ENGINE CO. P/N)	VENDOR	BRIEF DESCRIPTION (UNIQUE FEATURES)	COMMENTS (SENSITIVITY TO FUEL CHANGES)
Flow Divider	(2-161-390-01)	Arkwin Ind. Inc.		Contaminants, lub- ricity and thermal stability
Start Fuel Solenoid	AVIF11 55-1 (1-800-191-06)	ITT Genl Controls Aerospace Products		Contaminants and Corrosion
Main Manifold Assembly	2-160-950-14/15	Lycoming		Corrosion
Boost Pump	025028-107 (2-160-790-04)	Chandler Evans	Centrifugal	Contamination
Main or Static Fuel Filter	048757-01 (2-300-277-01)	Facet Enterprises, Inc. Filter Products Div.	.*	Particulates, vis- cosity and moisture absorbancy
Oil Cooler Assembly	2-160-750-02	Lycoming		Thermal stability could cause fuel breakdown and deposition all along the line.
Fuel Control	739222-6 (2-161-620-11) (2-161-620-39*)	Hamilton Standard	Contains Buna-N O-rings and seals	Particulates, increase in aromatics and peroxides.
High Pressure Pump		Sundstrand	Gear pump	Low lubricity fuel will affect gear wear
Igniters	2-300-217-02			May require change if viscosity increases and causes starting problems

A12. T55-L-11ASA/11D/712 (AVCO-LYCOMING) (Continued)

COMPONENT	VENDOR'S PART. NO. (ENGINE CO. P/N)	VENDOR	BRIEF DESCRIPTION (UNIQUE FEATURES)	COMMENTS (SENSITIVITY TO FUEL CHANGES)
Main Fuel Injectors	2-300-677-03 (712) 2-300-216 (11D)	Delavan	Dual orifice atomizing on the 11D and airblast on the 712.	Contamination, thermal stability and viscosity.

*Preferred for T55-L-11D (without inlet guide vane controller)

Army Aircraft Fuel System Component Survey Al3. T-700-GE-700 (General Electric)

COMPONENT	VENDOR'S (ENGINE CO.) PART NO.	VENDOR	BRIEF DESCRIPTION	COMMENTS (SENSITIVITY TO FIEL CHANGES)
Boost Pump (centrifugal, mixed flow)	RR 53150E1 (P/N 3033T33G02)	Lear-Siegler	Anodized Al housing, fluorosilicone O-ring (static), carbon in stainless steel case (dynamic)	Extremely sensitive to contaminants (no filter ahead of it). Fuel vapor pressure (cavitation)
Fuel Filter (10u nominal, 30u absolute) (impending bypass pop-up)	AD-9985-55 (P/N 5035T76P07)	Aircraft Porous Media, Inc.	Viton and fluorosi- licone O-rings. Adhesive: Epoxy-ISO Chem. 130819546 (APMS-PM-0010).	Affected by viscosity changes. Increase in fine contaminants may require change in element filtration.
Hydromechanical Unit (HMU)	763700-3 (P/N 6038T62P04)	Hamilton-Standard	Many critical parts- spool valves, cam followers, flapper valves, bearings, gears, & seals. Sliding seals -	Corrosion, contaminants, lubricity, aromatics. Viscosity could affect scheduling.

graphite filled teflon.

Al3. T-700-GE-700 (General Electric) (Continued)

COMPONENT	VENDOR'S (ENGINE CO.) PART NO.	VENDOR	BRIEF DESCRIPTION (UNIQUE FEATURES)	COMMENTS (SENSITIVITY TO FUEL CHANGES)
Fuel-Oil Cooler	(P/N 4046T25601)	United Aircraft Products		Thermal stability, coking, (no problems to this date)
Sequence Valve*	0212021 (P/N 3033T32G01)	Arkwin Industries	O-rings: nichols 6072 compound tef- lon impregnated fluorosilicone	Contaminants, lub- ricity, thermal stability
Primer Nozzles (atomizing)	Primer (P/N 4046T78P05)	Parker-Hannifin	Primer nozzle has insulating tube to help prevent coking.	Contamination, thermal stability, viscosity.
<pre>Fuel Injectors (airblast)</pre>	Injector (P/N 6035T64602)	Parker-Hannifin		Contamination, thermal stability, viscosity.
High Pressure Fuel Pump** (vane type)	PF4-038-6B	Vickers	Adhesive wafer (3M, AF-31) on end plate	Lubricity and contamination (due to rubbing of vanes on cam ring and rotor on end plates)

* This valve is being redesigned; to be called pressurizing and overspeed unit (POU) ** Installed in HMU

Army Aircraft Fuel System Component Survey Al4. PT6A-20/21/27/28/38/41 and T74-CP-700/702 (Pratt & Whitney Canada)

COMPONENT T74-GP-700/PT6A-20/21	(ENGINE MFGR. NO.) (VENDOR PART NO.)	VENDOR	BRIEF DESCRIPTION (UNIQUE FEATURES)	COMMENTS (SENSITIVITY TO FUEL CHANGES)
Main Fuel Control Unit	2524245-3 2524546-1	Bendix	Same Basic Control as in T63 (Model No. DP-F2. Incor- porates starting Fuel Function	Lubricity and contamination (non-rotating metering value) Aromatics and peroxides.
Fuel Pump	(4V146R100)	Vickers	Vane type pump	Lubricity and contamination (due to rubbing of vanes on cam ring and rotor on end plates).
Oil to Fuel Heater	84268	Southwind Div. of Stewartwarner Corporation		Reduced thermal sta- bility could cause fuel breakdown and deposition.
Fuel Nozzles	3013635	*	Pressure Atomizing Simplex	Contamination, thermal stability, viccosity.
Igniters	3014054	*		May require change if viscosity increases and causes starting problems.
Automatic Dump Valve	DV 1003-40	Lucas Rotox, Ltd.		Contaminants
Compressor Drain Valve	3007009	*		Contaminants

A14. PT6A-20/21/27/28/38/41 and T74-CP-700/702 (Pratt & Whitney Canada) (Continued)

) COMPONENT T74-GP-700/PT6A-20/21	(ENGINE MFGR. NO.) (VENDOR 1 PART NO.)	VENDOR	BRIEF DESCRIPTION (UNIQUE FEATURES)	COMMENTS (SENSITIVITY TO FUEL CHANGES)
Transfer Tube	3010146	*		Stainless steel, seals could be affected by aromatics or peroxides.
Fuel Manifold (Adapter Assy.)	3011098 3011099	*		Stainless steel, seals could be affected by aromatics or peroxides.
Flow Divider				Contaminants, lub- ricity and thermal stability.
Main Fuel Control Unit	2524389-1 2524547-1	Bendix	Same Basic Control as in T63 (Model No. DP-F2)	Lubricity and contamination (non-rotating metering value) Aromatics and peroxides.
Fuel Pump	0 24800-104-01	Sundstrand	Gear type pump	Lubricity and contamination
Starting Fuel Control	11011563	Lucas Rotax, Ltd.	Incorporates Flow Division Function	Lubricity, contamination, Aromatics and Peroxides.
Oil to Puel Heater	VA 525193-6	United Aircraft Product		Reduced thermal stability could cause fuel breakdown and deposition.

A14. PT6A-20/21/27/28/38/41 and T74-CP-700/702 (Pratt & Whitney Canada) (Continued)

E COMPONENT 174-CP-702/PT6A-27/28	ENGINE MFGR. NO. (VENDOR PART NO.)	VENDOR	BRIEF DESCRIPTION (UNIQUE FEATURES	COMMENTS (SENSITIVITY TO FUEL CHANGES)
Fuel Nozzle	3010036	*	Pressure Atomizing	Contamination, thermal stability, viscosity.
Igniter	3014054	*		May require change if viscosity in- creases and causes starting problems.
Transfer Tube	3011155	*		Stainless steel, seals could be affected by aromatics or peroxides.
Primary Adapter	3014704	*		Stainless steel, seals could be affected by aromatics or peroxides.
Secondary Adapter	3014705	*		Stainless steel, seals could be affected by aromatics or peroxides.
Adapter Drain Valve	3011071	*		Contaminants.

*Vendor information is not available.

Army Aircraft Fuel System Component Survey Al5. T-62T-241 (SOLAR)

COMPONENT	VENDOR'S PART NUMBER	VENDOR	BRIEF DESCRIPTION (UNIQUE FEATURES)	COMMENTS (SENSITIVITY TO FUEL CHANGES)
Fuel Control	100829-100	Solar		Corrosion, contaminants, lubricity, aromatics and peroxides.
Fuel Pump (Gear Type)	102-203-1	DeLaval		Low lubricity and contaminants.
Fuel Filter	2250–4005 75 75486	Carborundum Corp Purolator Products		Contaminants, viscosity and moisture absorbancy.
Start Fuel Solenoid Valve	37695-100	Solar		Contaminants and corrosion.
Main Fuel Solenoid Valve	37696-100	Solar		Contaminants and corrosion:
Start Fuel Nozzle	28022-4	Delavan Mfg Co		Contamination, thermal stability and viscosity.
Main Fuel Injectors	19050	Delavan Jay Craft Engr		Contamination, thermal stability and viscosity.

Army Aircraft Fuel System Component Survey A16. GTCP 36-55(H) (GARRETT Airesearch)

COMPONENT	ENGINE MFGR. P/N (VENDOR'S PART NUMBER)	VENDOR	BRIEF DESCRIPTION (UNIQUE FEATURES)	COMMENTS (SENSITIVITY TO FUEL CHANGES
Gear Pump Fuel Control	3882660-1	Garrett AiResearch design made by Aero Hydraulics Division	Control contains integral gear pump and 3 micron filter (electronic torque motor made by Servotronics)	Will be sensitive to increase in level of contaminants and low lubricity fuel. Uses only fluorosilicone seals and O-rings so relatively insensitive to increase in aromatics or peroxides.
Fuel shutoff solenoid	692545-6	Valcor		Contaminants and corrosion.
Piloted air blast atomizer	3830061-2	Delavan	Start fuel is supplied through primary (simple pressure atomizing), run fuel through a secondary air blast orifice.	Contamination, thermal stability, viscosity.
High energy igniter plug	: 369964-5	Champion		
Fuel Manifold			Stainless steel tube running to the single atomizer.	4

APPENDIX B AFLRL ELASTOMER SWELL AND HARDNESS DATA

SHORE A HARDNESS WITH PETROLEUM DF2 (SOAK TEMP = 75°F TIME = 24HR)

SHORE A HARDNESS WITH PETROLEUM DF2 (SOAK TEMP = 75°F TIME = 72HR)

SHORE A HARDNESS WITH PETROLEUM DF2 (SOAK TEMP = 150°F TOFT: TENSION)

SHORE A HARDNESS WITH PETROLEUM DF2 (SOAK TEMP = 150°F TOFT: COMPRESSION)

SHORE A HARDNESS WITH PETROLEUM DF2 (SOAK TEMP = 150°F TOFT: FREE)

FUEL PETR.DF2		ER ENVIRO FREE	N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)		т)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		-2.7 -7.2 -5.0	-2.4 -1.4 -1.9	-3.0 -3.0 -3.0		2.0 0.0 1.0
FUEL PETR.DF2		ER ENVIRON FREE	N SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE:	Τ)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	i.773	-1.9 -5.2 -3.5	-0.5 -1.6 -1.0	-2.0 1.0 -0.5		1.0 1.0 1.0
			<u> </u>			
FUEL PETR.DF2	ELASTOME SR	ER ENVIRO FREE	N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	т)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.252 1.255 1.254	-2.4 -2.1 -2.3	-2.i -1.8 -1.9	2.0 2.0 2.0		5.0 7.0 6.0
	-,					
FUEL PETR.DF2	ELASTOME SR	R ENVIRON FREE	SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HAR DNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WE)	г>	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.251 1.259 1.255	2.3 1.8 2.0	3.9 4.2 4.0	1.0 0.0 0.5		1.0 3.0 2.0

	ELASTOME NITRILE	ER ENVIRO	N SOAK 24HR		TEMP 75F	DRY TIME 7DAY
WEIGHT &	HAR DNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	(T)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		4.8 3.2 4.0	1.8 0.8 1.3	-3.0 -2.0 -2.9	İ	3.0 0.0 1.5
	ELASTOME NITRILE	ER ENVIRON FREE	N SOAK 72HR		TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC (WE	Τ)	HC(DRY)
	1.269	-0.5 -1.0 -0.7	1.5 1.2 1.3	-2.0 -1.0 -1.5		1.0 0.0 0.5
	ELASTOME A700	ER ENVIRO	N SOAK 24HR		TEMP 75F	DRY TIME 7DAY
PETR.DF2		FREE DATA	24HR		75F	
PETR.DF2 WEIGHT & SAMPLE 1	A700 HARDNESS SG 1.310 1.319	FREE DATA %VS(WET) 6.4	24HR		75F (T)	7DAY
PETR.DF2 WEIGHT & SAMPLE 1 SAMPLE 2	A700 HARDNESS SG 1.310 1.319	FREE DATA ZVS(WET) 6.4 7.1 6.7	24HR %VS(DRY) 3.4 4.0 3.7	HC(WE -3.0 -2.0	75F	7DAY HC(DRY) 1.0 2.0
PETR.DF2 WEIGHT & SAMPLE 1 SAMPLE 2 AVERAGE FUEL PETR.DF2	A700 HARDNESS SG 1.310 1.319 1.315	FREE DATA ZVS(WET) 6.4 7.1 6.7	24HR %VS(DRY) 3.4 4.0 3.7	HC(WE -3.0 -2.0 -2.9	75F (T) TEMP 75F	7DAY HC(DRY) 1.0 2.0 1.5 DRY TIME

FUEL	ELASTOME	ER ENVIRON	N SOAK	TIME	TEMP	DRY TIME
PETR.DF2	N674-7	FREE	24HR		75F	7DAY
WEIGHT &	HAR DNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	ET)	HC (DRY)
SAMPLE 1	1.277	3.4	2.0	1.0	1	1.0
SAMPLE 2	1.255	1.9	0.6	0.0		-3.0
AVERAGE	1.266	2.7	1.3	0.5		-1.0
FUEL	ELASTOME	ER ENVIROI	N SDAK	TIME	TEMP	DRY TIME
PETR.DF2	N674-7	FREE	72HR		75F	7DAY
WEIGHT &	HARDNESS SG	DATA ZVS(WET)	%VS(DRY)	HC (WE	ET)	HC (DRY)
SAMPLE 1	1.278	4.8	i.0	7.0)	-2.0
SAMPLE 2	1.283	5.1	i.7	2.0		3.0
AVERAGE	1.280	4.9	i.3	4.9		0.5
FUEL	ELASTOME	ER ENVIRON	N SOAK	TIME	TEMP	DRY TIME
PETR.DF2	BUNA 70	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS SG	DATA ZVS(WET)	%VS(DRY)	HC (WE	T)	HC(DRY)
SAMPLE 1	1.265	-3 . 4	5.8	1.0)	7.0
SAMPLE 2	1.236	-6 . 5	3.8	1.0		6.0
AVERAGE	1.250	-5 . 0	4.8	1.0		6.5
FUEL	ELASTOME	ER ENVIRON	N SOAK	TIME	TEMP	DRY TIME
PETR.DF2	BUNA 70	FREE	72HR		75F	7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	ET)	HC(DRY)
SAMPLE 1	1.237	2.4	7.3	6.0	}	8.0
SAMPLE 2	1.228	2.0	5.5	4.0		5.0
AVERAGE	1.232	2.2	6.4	5.0		6.5
FUEL	ELASTOMI	ER ENVIRO	N SOAK	TIME	TEMP	DRY TIME
PETR.DF2	BUNA 90	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS SG	DATA XVS(WET)	%VS(DRY)	HC (WE	ET)	HC (DRY)
SAMPLE 1	1.288	3.2	2.1	0.(3	1.0
SAMPLE 2	1.290	4.7	3.1	-6.(0.0
AVERAGE	1.289	3.9	2.6	-3.(0.5

FUEL PETR.DFF2	ELASTOMER BUNA 90	ENVIRON FREE	SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS D		%VS(DRY)	HC (WE	r)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.276 1.278 1.277	6.4 6.4 6.4	4.2 5.6 4.9	0.0 -1.0 -0.5		1.0 1.0 1.0
FUEL PETR.DF2	ELASTOMER SILICONE		SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS D	OATA (VS(WET)	ZVS(DRY)	HC (WE	Γ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		51.2 50.9 51.0	48.3 47.3 47.8	-4.0 -6.0 -5.0		-1.0 -2.0 -1.5
FUEL PETR.DF2		ENVIRON FREE	SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS I		%VS(DRY)	HC (WE	r)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		50.2 46.7 48.4	45.8 41.7 43.8	-11.0 -10.0 -10.5		-3.0 -5.0 -4.0
FUEL PETR.DF2	ELASTOMER EPR	ENVIRON FREE	50AK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS D		ZVS(DRY)	HC (WET	Γ)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.209 1.218 1.213	121.2	118.9 113.3 116.1	-4.0 -3.0 -3.5		-2.0 -4.0 -3.0
FUEL PETR.DF2	ELASTOMER EPR	ENVIRON FREE	SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS II		%VS(DRY)	HC (WE	r>	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.221		117.3 116.3 116.8	-4.0 -6.0 -5.0		-5.0 -4.0 -4.5

FUEL PETR.DF2	ELASTOME SR	ER ENVIRON COMP	SOAK TI 2.5HR	IME TEMP 150F	DRY TIME 7DAY
WEIGHT &	HAR DNESS SG	DATA %VS(WET)	ZVS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.247 1.248 1.249 1.250 1.250 1.249	3.2 3.3 4.4 4.9 3.6 3.9	2.0 2.1 2.3 2.5 2.6 2.3	0.0 -1.0 0.0 1.0 -1.0	-1.0 0.0 -1.0 1.0 0.0
FUEL PETR.DF2	ELASTOMI SR	ER ENVIRON FREE	N SOAK T 2.5HR	IME TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.245 1.248 1.248 1.264 1.251 1.251	5.9 7.8 6.8 14.0 8.1 8.5	2.9 3.4 5.0 9.7 4.0 5.0	2.0 1.0 1.0 2.0 0.0 1.2	1.0 2.0 3.0 1.0 0.0 1.4
FUEL PETR.DF2	ELASTOMI SR	ER ENVIRON TENSION		IME TEMP 150F	DRY TIME 7DAY
PETR.DF2		TENSION			
PETR.DF2	SR HARDNESS	TENSION DATA	4 2.5HR	150F	7DAY
PETR.DF2 WEIGHT & SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5	SR HARDNESS SG 1.245 1.248 1.245 1.247 1.247 1.246	TENSION DATA ZVS(WET) 5.6 6.9 5.9 5.7 5.1 5.8	2.5HR %VS(DRY) 3.3 5.0 3.7 1.4 0.2 2.7	150F HC(WET) 1.0 1.0 0.0 1.0 0.6	7DAY HC(DRY) 2.0 2.0 0.0 -1.0 0.0
PETR.DF2 WEIGHT & SAMPLE 1 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE FUEL PETR.DF2	SR HARDNESS SG 1.245 1.248 1.245 1.247 1.247 1.246	TENSION DATA ZVS(WET) 5.6 6.9 5.7 5.1 5.8 ER ENVIRON COMP	2.5HR %VS(DRY) 3.3 5.0 3.7 1.4 0.2 2.7	150F HC(WET) 1.0 1.0 0.0 1.0 0.0 1.0	7DAY HC(DRY) 2.0 2.0 0.0 -1.0 0.0 0.6

FUEL PETR.DF2		ER ENVIRON FREE	90AK T 2.5HR	IME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA (WET)	%VS(DRY)	HC(WET	`)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.252 1.248 1.247	6.4 9.5 7.0 4.8 4.7 6.5	4.6 7.5 3.9 3.3 3.2 4.5	-2.0 -1.0 -1.0 -1.0 -1.2		2.0 2.0 2.0 1.0 1.6
	ELASTOMI N219-7	ER ENVIRON TENSION			TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	ZVS(DRY)	HC(WET)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.250 1.249	4.7 5.6 5.4 5.9 5.5 5.4	3.3 3.5 3.4 3.7 3.4 3.4	-4.0 -2.0 0.0 -2.0 -1.0 -1.8		-2.0 2.0 3.0 0.0 2.0 1.0
FUEL PETR.DF2	ELASTOME EPR	ER ENVIRON COMP	SOAK T 2.5HR		TEMP 150F	DRY TIME 7DAY
WEIGHT &	HAR DNESS SG		%VS(DRY)	HC (WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.195 1.199	43.6 40.4 45.6 41.3 45.8 43.4	42.4 39.5 43.7 38.8 44.6 41.8	-1.0 0.0 -3.0 -4.0 -5.0 -2.6		2.0 0.0 4.0 -2.0 0.0 -0.8
FUEL PETR.DF2	ELASTOME EPR	ER ENVIRON FREE	SOAK T 2.5HR		TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC(WET	>	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.189 1.187 1.191 1.187 1.187	90.7 84.3 87.6 81.4 61.1 81.0	85.9 81.3 82.1 80.5 61.7 78.3	-10.0 -8.0 -6.0 -7.0 -5.0		-3.0 -7.0 -11.0 -5.0 -3.0 -5.8

FUEL PETR.DF2	ELASTOME EPR	R ENVIRON TENSION		IME TEMP	
WEIGHT &	HARDNESS SG	-	ZVS(DRY)	HC(WET)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE		64.5 55.7 57.1 58.6 44.4 56.1	63.3 55.5 53.8 56.6 44.9 54.8	-8.0 -9.0 -6.0 -5.0 -8.0 -7.2	-4.0 -4.0 -3.0 -2.0 -2.0 -3.0
FUEL PETR.DF2	ELASTOME VITON	R ENVIRON COMP	SJAK T 2.5HR	IME TEMP	
WEIGHT &	HARDNESS SG		%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.690 1.658 1.652 1.655 1.649 1.661	-7.0 -7.0 -6.9 -7.1 -7.5 -7.1	-3.5 -5.1 -5.5 -5.8 -6.3 -5.2	-1.0 -1.0 0.0 -1.0 -1.0 -0.8	0.0 -2.0 -2.0 0.0 -1.0 -1.0
FUEL PETR.DF2	ELASTOME VITON	R ENVIRON FREE	90AK 1 2.5HR	IME TEMP	
WEIGHT &	HARDNESS SG		%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.652 1.649 1.658 1.651 1.655	-6.1 -7.3 -6.6 -6.7 -7.0 -6.7	-6.0 -5.4 -4.8 -5.6 -5.5	-2.0 0.0 0.0 -1.0 -2.0 -1.0	-2.0 1.0 0.0 -2.0 -2.0 -1.0
FUEL PETR.DF2	ELASTOME VITON	R ENVIRON TENSION		IME TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		ZVS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.651 1.644 1.655 1.621 1.658 1.645	-6.9 -10.3 -5.8 -6.6 -6.5 -7.2	-5.6 -5.5 -5.5 -6.2 -5.2 -5.6	-3.0 0.0 -2.0 -1.0 -2.0 -1.6	-2.0 i.0 -3.0 -i.0 -i.0 -i.2

FUEL PETR.DF2		ENVIRON COMP	SOAK T 2.5HR		TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS I	OATA (VS(WET)	ZUS(DRY)	HC (WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	-	4.7 4.6 4.7 4.8 4.3 4.6	2.9 3.8 4.3 5.0 4.2 4.0	3.0 0.0 -2.0 -1.0 -1.0 -0.2		1.0 -1.0 -1.0 0.0 -1.0 -0.4
FUEL PETR.DF2	ELASTOMER A700	R ENVIRON FREE	SOAK T 2.5HR	IME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS S		%US(DRY)	HC (WET	``	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE		5.1 4.9 5.0 5.6 4.8 5.1	5.7 5.6 5.2 5.4 4.8 5.3	-2.0 -2.0 0.0 -1.0 -1.0		1.0 0.0 0.0 0.0 1.0 0.4
PETR.DF2		R ENVIRON TENSION		IME	TEMP 150F	DRY TIME 7DAY
		%VS(WET)	%VS(DRY)	HC (WE)	(1)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.249 1.251 1.252 1.256 1.255 1.253	4.7 5.2 5.4 4.8 4.5 4.9	4.0 5.3 5.2 4.7 4.9 4.8	-2.0 -1.0 0.0 0.0 1.0 -0.4		-2.0 1.0 0.0 1.0 1.0

SHORE A HARDNESS WITH MTG GASOLINE (SOAK TEMP = 75°F TIME = 24HR)

SHORE A HARDNESS WITH MTG GASOLINE (SOAK TEMP = 75°F TIME = 72HR)

SHORE A HARDNESS - MTG GASOLINE (SOAK TEMP = 150°F TOFT - TENSION)

SHORE A HARDNESS - MTG GASOLINE (SOAK TEMP = 150°F TOFT - COMPRESSION)

SHORE A HARDNESS - MTG GASOLINE (SOAK TEMP = 150°F TOFT - FREE)

FUEL MTG	ELASTOMER VITON	ENVIRON FREE	SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS DA		(VS(DRY)	HC (WE	т)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		3.1 7.7 5.4	-2.2 -2.2 -2.2	-2.0 -4.0 -3.0	····	1.0 -2.0 -0.5
FUEL MTG	ELASTOMER VITON	ENVIRON FREE	SOAK 72HR	TIME.	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS DO		(US(DRY)	HC (WE	т)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.764 1.763 1.763	3.1 2.8 3.0	~2.0 ~2.5 ~2.3	-2.0 -1.0 -1.5		1.0 -4.0 -1.5
FUEL. MTG	ELASTOMER SR	ENVIRON FREE	SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS D		LVS(DRY)	HC (WE	т)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		14.5 9.3 11.9	-11.4 -13.2 -12.3	-1.0 1.0 0.0		4.0 5.0 4.5
FUEL MTG	ELASTOMER SR	ENVIRON FREE	SDAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS D		(VS(DRY)	HC(WE	т)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		23.1 27.3 25.2	-14.8 -15.7 -15.2	-3.0 -1.0 -2.0		2.0 2.0 2.0
FUEL MTG	ELASTOMER NITRILE	ENVIRON FREE	SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS D		LVS(DRY)	HC (WE	т)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		28.2 27.9 28.1	-12.0 -11.4 -11.7	-1.0 -1.0 -1.0		6.0 5.0 5.5

FUEL MTG	ELASTOMER NITRILE	R ENVIRON	N SDAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS I	DATA KVS(WET)	%VS(DRY)	HC (WE:	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		24.2 22.0 23.1	-8.3 -8.5 -8.4	4.0 4.0 4.0		4 . 0 4 . 0 4 . 0
FUEL MTG	ELASTOMER A700	R ENVIRON FREE	N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS I	ATA (VS(WET)	%VS(DRY)	HC (WE	τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1,269 1,267 1,268	58.4 58.7 58.5	-9.7 -9.6 -9.6	-4.0 -4.0 -4.0		2.0 2.0 2.0
FUEL MTG	ELASTOMER A700	R ENVIRON FREE	N SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS I	DATA (VS(WET)	%VS(DRY)	HC(WE	Τ)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		44.1 41.5 42.8	1.5 -2.4 -0.5	-1.0 -3.0 -2.0		-1.0 -1.0 -1.0
FUEL MTG	ELASTOMER N674-N	R ENVIRON FREE	N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS I	DATA KVS(WET)	%VS(DRY)	HC (ME.	τ>	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.264 1.287 1.275	31.3 35.3 33.3	-12.1 -11.7 -11.9	1.0 0.0 0.5		6.0 2.0 4.0
TUEL MTG	ELASTOMER N674-N	R ENVIRO	N SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS I	DATA KVS(WET)	%VS(DRY)	HC (WE.	т>	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.281 1.280 1.281	32.2 29.7 30.9	-8.9 -9.0 -8.9	-3.0 0.0 -1.5		-1.0 3.0 1.0

FUEL MTG	ELASTOMEI BUNA 70	R ENVIRON FREE	SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS I	DATA KVS(WET)	%VS(DRY)	HC (WE	Т)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		35.6 35.9 35.8	-7.7 -6.3 -7.0	-3.0 -2.0 -2.5		5.0 3.0 4.0
FUEL MTG	ELASTOMEI BUNA 70	R ENVIRON FREE	SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS S		%VS(DRY)	HC (WE	т)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.231	31.9 29.0 30.5	-9.0 -7.6 -8.3	0.0 1.0 0.5		0.0 3.0 1.5
FUEL MTG	ELASTOMER BUNA 90	ENVIRON FREE	SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS I		%VS(DRY)	HC CUE	Γ)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		44.5 44.8 44.7	-1.1 -1.5 -1.3	0.0 0.0 0.0		4.0 3.0 3.5
FUEL MTG	ELASTOMER BUNA 90	ENVIRON FREE	SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS I	OATA (VS(WET) :	%VS(DRY)	HC (WE)	Γ)	HC (DRY)
	1.281 1.278 1.280		4.0 4.0 4.0	-1.0 1.0 0.0		3.0 5.0 4.0

FUEL. MTG	ELASTOMER SILICONE		SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS DA	TA S(WET)	%VS(DRY)	HC (WE	Τ)	HC (DRY)
	1.389 1	17.4 14.4 15.9	-1.3 -3.5 -2.4	-11.0 -11.0 -11.0		2.0 -1.0 0.5
FUEL MTG	ELASTOMER SILICONE		SOAK 72HR	TIME.	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS DAT	FA S(WET) :	ZUS(DRY)	HC (WE	Γ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1,289 8 1,363 6 1,326 5	32.7 58.6 75.6	-1.9 -4.3 -3.1	-6.0 -5.0 -5.5		0.0 -1.0 -0.5
		- *		·	والمائد والمراج الاستنان المراج والمائد	
FUEL. MTG	ELASTOMER EPR	ENVIRON FREE	SDAK 24HR		TEMP 75F	DRY TIME 7Day
WEIGHT &	HARDNESS DAT	A (WET) 2	(VS(DRY)	HC(WET	•	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1,253 12		-2.2 -0.5 -1.3	-2.0 -3.0 -2.5		3.0 2.0 2.5
FUEL MTG	ELASTOMER EPR	ENVIRON FREE	SOAK 72HR		TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS DAT	A (WET) %	VS(DRY)	HC (WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.219 7	9.9 5.6 7.7	2.6 -10.8 -4.1	-1.0 0.0 -0.5		-1.0 3.0 1.0

FUEL MTG	ELASTOMER SR	R ENVIRON COMP.	SOAK TI 2.5HR		TEMP 150F	DRY TIME 7Day
WEIGHT &	HARDNESS I		KUS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.254 1.252 1.255	12.8 15.7 15.9 15.4 15.3 15.0	1.5 1.7 2.8 2.2 2.2 2.1	0.0 -2.0 -3.0 -14.0 -1.0 -4.0		2.0 0.0 -1.0 0.0 1.0 0.4
FUEL MTG	ELASTOMER SR	R ENVIRON FREE	SOAK TI 2.5HR		TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS I		ĽVS(DRY)	HC(WET	>	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.252 1.246 1.255	21.1 21.1 21.1 22.6 22.3 21.6	2.0 1.9 1.9 2.1 2.4 2.0	-4.0 -4.0 -5.0 -1.0 0		0.0 -2.0 0.0 2.0 0.0
FUEL. MTG	ELASTOMER SR	ENVIRON TENSION	SOAK TI 2.5HR		TEMP 150F	DRY TIME 7DAY
MTG	SR HARDNESS I	TENSION DATA			150F	
MTG	SR HARDNESS I SG 2	TENSION DATA	2.5HR	:	150F	7DAY
MTG WEIGHT & SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5	SR HARDNESS I SG 2 1.248 1.250 1.250 1.250 1.342	TENSION DATA VS(WET) 7 18.7 21.8 14.2 20.4 9.3 16.9	2.5HR 2VS(DRY) 1.8 0.3 0.4 0.1 21.3 4.8	HC(WET) -4.0 -4.0 -6.0 -3.0 0.0 -3.4	150F	7DAY HC(DRY) 1.0 1.0 -2.0 -1.0 4.0
MTG WEIGHT & SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE FUEL MTG	SR HARDNESS I SG 2 1.248 1.250 1.250 1.250 1.342 1.268 ELASTOMER N219-7 HARDNESS I	TENSION DATA (VS(WET) 7 18.7 21.8 14.2 20.4 9.3 16.9 R ENVIRON COMP.	2.5HR 2VS(DRY) 1.8 0.3 0.4 0.1 21.3 4.8	HC(WET) -4.0 -4.0 -6.0 -3.0 0.0 -3.4	150F) TEMP 150F	7DAY HC(DRY) 1.0 1.0 -2.0 -1.0 4.0 0.6 DRY TIME

FUEL MTG	ELASTOMEI N219-7	R ENVIRON FREE	SOAK T 2.5HR	IME TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS I		%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.249	20.2 23.2 20.8 20.4 20.9 21.1	3.2 1.3 1.7 1.8 0.7 1.7	-1.0 -3.0 -3.0 0.0 -1.0	1.0 -1.0 0.0 0.0 -1.0 -0.2
FUEL MTG	ELASTOME N219-7	R ENVIRON TENSION		IME TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.245 1.246 1.249	24.1 17.8 18.5 21.6 21.8 20.8	2.6 0.8 1.7 1.1 1.5	-1.0 -2.0 -2.0 0.0 -1.0 -1.2	2.0 2.0 1.0 1.0 1.0
FUEL MTG	ELASTOMER EPR	ENVIRON COMP.	SOAK TI 2.5HR	IME TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS I		%VS(DRY)	U0 / U0 * \	1 10°
	SG %	ivalwei/ .	WASCREEL	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.198 1.203 1.203 1.210 1.185 1.200	33.8 37.0 31.9 39.1 33.1 35.0	5.0 0.6 0.9 3.9 2.0 2.5	-2.0 -5.0 -4.0 -3.0 -4.0 -3.6	1.0 0.0 1.0 -1.0 -3.0 -0.4
SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5	1.198 1.203 1.203 1.210 1.185	33.8 37.0 31.9 39.1 33.1 35.0	5.0 0.6 0.9 3.9 2.0 2.5	-2.0 -5.0 -4.0 -3.0 -4.0 -3.6	i.0 0.0 i.0 -i.0 -3.0
SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE FUEL MTG	1.198 1.203 1.203 1.210 1.185 1.200 ELASTOMER EPR	33.8 37.0 31.9 39.1 33.1 35.0 ENVIRON FREE	5.0 0.6 0.9 3.9 2.0 2.5	-2.0 -5.0 -4.0 -3.0 -4.0 -3.6	1.0 0.0 1.0 -1.0 -3.0 -0.4

FUEL MTG	ELASTOME EPR	R ENVIRON TENSION		TIME TEMP	
WEIGHT &	HARDNESS SG		ZVS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.191 1.193 1.190	71.2 64.2 71.9 67.3 65.1 68.0	1.4 4.9 2.0 ~4.8 3.9 1.5	-6.0 -5.0 -5.0 -5.0 -4.0 -5.0	2.0 i.0 i.0 2.0 6.0 2.4
FUEL. MTG	ELASTOME VITON	R ENVIRON COMP.	SOAK T 2.5HR	IME TEMP	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.838 1.822 1.801 1.803 1.804 1.814	4.7 3.9 2.7 3.0 3.1 3.5	0.7 -0.0 -0.6 -0.5 -1.1 -0.3	-1.0 0.0 -1.0 0.0 -1.0 -0.6	2.0 -1.0 0.0 -2.0 0.0 -0.2
FUEL MTG	ELASTOME VITON	R ENVIRON FREE	SOAK T 2.5HR	IME TEMP	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1,810 1,808 1,811 1,817 1,819 1,813	3.3 3.1 3.7 3.7 3.9 3.5	-1.0 1.0 -1.7 1.0 0.8 -0.0	-1.0 0.0 0.0 1.0 -1.0 -0.2	i.0 i.0 0.0 2.0 -3.0 0.2
FUEL MTG	ELASTOME VITON	R ENVIRON TENSION	SOAK T 2.5HR	IME TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		ZVS(DRY)	HC(WET)	HC (DRY)
SAMPLE 2 SAMPLE 3	1.808 1.825	3.5 3.2 4.5			0.0 -1.0 0.0 1.0

FUEL MTG	ELASTOME A700	R ENVIROI COMP.	N SOAK T 2.5HR	IME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WET	7)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.263 1.265 1.255 1.255 1.256 1.259	16.8 19.1 16.2 17.9 16.0 17.2	i.3 i.i 0.i 2.8 3.8 i.8	2.0 -1.0 0.0 2.0 -1.0 0.4		4.0 3.0 2.0 4.0 2.0 3.0
FUEL MTG	ELASTOME A700	R ENVIRO	N SOAK T 2.5HR	IME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WET	7)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.257 1.256 1.251 1.245 1.249 1.252	24.2 24.1 21.2 19.5 24.5 22.7	4.5 0.3 3.8 1.8 2.8 2.6	0.0 -1.0 -1.0 0.0 -2.0 -0.8		4.0 1.0 1.0 1.0 1.0
FUEL MTG	ELASTOME A700	TENSIO		IME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA ZVS(WET)	%VS(DRY)	HC(WET	Γ)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.249 1.254 1.250 1.250 1.254 1.251	19.7 18.3 18.6 18.0 19.1 18.7	2.3 2.4 -0.5 1.6 2.0 1.5	-4.0 2.0 1.0 0.0 -2.0 -0.6		1.0 4.0 5.0 2.0 1.0 2.6

SHORE A HARDNESS WITH PARAHO DFM (SOAK TEMP = 75°F TIME = 24HR)

SHORE A HARDNESS WITH PARAHO DFM (SOAK TEMP = 75°F TIME = 72HR)

SHORE A HARDNESS WITH PARAHO DFM (SOAK TEMP = 150°F TOFT - FREE)

SHORE A HARDNESS WITH PARAHO DFM (SOAK TEMP = 150°F TOFT - TENSION)

SHORE A HARDNESS WITH PARAHO DFM (SOAK TEMP = 150°F TOFT ~ COMPRESSION)

FUEL DFM	ELASTOMER VITON	ENVIRON FREE	SDAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS DA SG %V	TA S(WET)	XVS(DRY)	HC (WE	т)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.725	3.1 -1.2 1.0	i.3 0.i 0.7	-2.0 -1.0 -1.5		0 . 0 0 . 0 0 . 0
FUEL DFM	ELASTOMER VITON	ENVIRON FREE	SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS DA	TA B(WET)	%VS(DRY)	HC (WE	Τ)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	i.717	3.4 -1.3 1.0	-0.6 -2.8 -1.7	1.0 1.0 1.0		1.0 1.0 1.0
FUEL DFM	ELASTOMER SR	ENVIRON FREE	SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS DA		%VS(DRY)	HC (WET	()	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1 . 266 1 . 278 1 . 272	5.1 4.8 4.9	1.0 0.7 0.8	-9.0 -9.0 -9.0		-5.0 -5.0 -5.0
FUEL DFM	ELASTOMER SR	ENVIRON FREE	SOAK 72HR		TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS DA		%VS(DRY)	HC (WE)	7)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.275 1.247 1.261	3.9 3.6 3.8	-0.7 -0.3 -0.5	-1.0 0.0 -0.5		0.0 1.0 0.5

FUEL	ELASTOMER	ENVIROI	N SOAK	TIME	TEMP	DRY TIME
DFM	NITRILE	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS D	ATA VS(WET)	%VS(DRY)	HC (WE	ET)	HC(DRY)
SAMPLE 1	1.233	-i.i	-5.9	2.0	3	0.0
SAMPLE 2	1.269	3.i	-2.0	5.0		3.0
AVERAGE	1.251	i.0	-3.9	3.9		1.5
FUEL	ELASTOMER	ENVIROI	N SOAK	TIME	TEMP	DRY TIME
DFM	NITRILE	FREE	72HR		75F	7DAY
WEIGHT &	HARDNESS D	ATA (VS(WET)	%VS(DRY)	HC (WE	ET)	HC (DRY)
SAMPLE 1	1.180	-3.0	-1.2	0 . (3	0.0
SAMPLE 2	1.233	-3.6	-0.3	0 . (0.0
AVERAGE	1.206	-3.3	-0.8	0 . (0.0
FUEL	ELASTOMER	ENVIROI	N SOAK	TIME	TEMP	DRY TIME
DFM	A700	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS D	ATA (VS(WET)	%VS(DRY)	HC (WE	ET)	HC (DRY)
SAMPLE 1	1.367	13.5	5.3	Q. ()	0 . 0
SAMPLE 2	1.336	6.8	3.3	0. (0 . 0
AVERAGE	1.351	10.2	4.3	0. (0 . 0
FUEL	ELASTOMER	ENVIROI	N SOAK	TIME	TEMP	DRY TIME
DFM	A700	FREE	72HR		75F	7DAY
WEIGHT &	HARDNESS D	ATA VS(NET)	ZVS(DRY)	HC (WE	ET)	HC (DRY)
SAMPLE 1	1.334	13.3	4.9	1.0)	1.0
SAMPLE 2	1.309	7.9	3.2	0.0		0.0
AVERAGE	1.321	10.6	4.1	0.9		0.5

1:

FUEL	ELASTOME	R ENVIRON	SOAK	TIME	TEMP	DRY TIME
DFM	N674-7	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS SG		ZVS(DRY)	HC (WE:	r)	HC(DRY)
SAMPLE 1	1.271	2.1	-1.8	-2.0		1.0
SAMPLE 2	1.275	3.4	-1.6	-1.0		2.0
AVERAGE	1.273	2.8	-1.7	-1.5		1.5
FUEL.	ELASTOME	R ENVIRON	SOAK	TIME	TEMP	DRY TIME
DFM	N674-7	FREE	72HR		75F	7DAY
WEIGHT &	HARDNESS SG		%US(DRY)	HC (WE	τ)	HC(DRY)
SAMPLE 1	1.294	1.5	4.2	1.0		1.0
SAMPLE 2	1.290	5.6	3.3	0.0		0.0
AVERAGE	1.292	3.6	3.8	0.5		0.5
FUEL.	ELASTOME	R ENVIRON	SOAK	TIME	TEMP	DRY TIME
DFM	BUNA 70	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC (WET	Γ)	HC (DRY)
SAMPLE 1	1.264	4.9	2.2	-2.0		-1.0
SAMPLE 2	1.259	5.0	3.3	-1.0		0.0
AVERAGE	1.262	5.0	2.7	-1.5		-0.5
FUEL	ELASTOME	R ENVIRON	SOAK	TIME	TEMP	DRY TIME
DFM	BUNA 70	FREE	72HR		75F	7DAY
WEIGHT &	HARDNESS S		%US(DRY)	HC (WET	Γ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		2.7 6.5 4.6	-6.2 -2.9 -4.5	-1.0 -2.0 -1.5		i.0 -i.0 0.0
FUEL	ELASTOME	R ENVIRON	50AK	TIME	TEMP	DRY TIME
DFM	BUNA 90	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC (ME.	τ)	HC(DRY)
SAMPLE 1	1 388	13.9	8.6	-1.0		1.0
SAMPLE 2	1.321	6.4	3.1	0.0		0.0
AVERAGE	1.355	10.1	5.9	-0.5		0.5

FUEL	ELASTOMER	ENVIRON	N SOAK	TIME	TEMP	DRY TIME
DFM	BUNA 90	FREE	72HR		75F	7DAY
WEIGHT &	HARDNESS I	ATA (VS(WET)	%VS(DRY)	HC (WE	т)	HC(DRY)
SAMPLE 1	1.326	11.7	4.9	-1.0		0.0
SAMPLE 2	1.308	9.3	3.0	-1.0		0.0
AVERAGE	1.317	10.5	4.0	-1.0		0.0
FUEL	ELASTOMER	ENVIRON	N SDAK	TIME.	TEMP	DRY TIME
DFM	SILICONE	FREE	24HR		75F	7DAY
WEIGHT &		ATA (VS(WET)	%VS(DRY)	HC (WE.	Τ)	HC (DRY)
SAMPLE 1	1.208	55.3	49.5	-6.0		0.0
SAMPLE 2	1.316	46.4	44.3	-5.0		-1.0
AVERAGE	1.262	50.8	46.9	-5.5		-0.5
FUEL	ELASTOMER	ENVIRON	N SOAK	TIME	TEMP	DRY TIME
DFM	SILICONE	FREE	72HR		75F	7DAY
WEIGHT &	HARDNESS D	ATA (VS(WET)	%VS(DRY)	HC (WE	τ)	HC(DRY)
SAMPLE 1	1.368	58.1	59.5	-5.0		-1.0
SAMPLE 2	1.400	60.6	57.5	-4.0		-1.0
AVERAGE	1.384	59.3	58.5	-4.5		-1.0
FUEL	ELASTOMER	ENVIRON	N SOAK	TIME	TEMP	DRY TIME
DFM	EPR	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS D SG %	ATA VS(WET)	%VS(DRY)	HC (WET	Γ)	HC (DRY)
SAMPLE 1	1.238	128.7	119.6	-4.0		-2.0
SAMPLE 2	1.226	124.4	119.4	-7.0		-4.0
AVERAGE	1.232	126.5	119.5	-5.5		-3.0
FUEL	ELASTOMER	ENVIRON	SOAK	TIME	TEMP	DRY TIME
DFM	EPR	FREE	72HR		75F	7DAY
WEIGHT &	HARDNESS D	ATA VS(WET)	%US(DRY)	HC (WE	Γ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		127.7 125.5 126.6	125.3 124.6 125.0	-6.0 -5.0 -5.5		-1.0 -2.0 -1.5

FUEL DFM	ELASTOMER SR	ENVIRON COMP	SOAK TIM 2.5HR	E TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS DA		VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	i.241 i.242 i.235	3.5 3.0 3.1 2.3 2.2 2.8	0.2 0.0 1.1 0.2 0.3 0.4	3.0 4.0 3.0 4.0 4.0 3.6	0.0 0.0 0.0 0.0 0.0
FUEL DFM	ELASTOMER SR	ENVIRON FREE	SOAK TIM 2.5HR	E TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS DA		VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.244 1.247 1.248	2.8 3.2 3.3 4.1 4.4 3.6	0.5 1.2 1.6 2.1 2.2 1.5	5.0 5.0 4.0 6.0 4.0	0.0 2.0 -2.0 0.0 0.0 0.0
FUEL DFM	ELASTOMER SR	ENVIRON TENSION	SOAK TIM 2.5HR	E TEMP 150F	DRY TIME 7DAY
DFM	SR HARDNESS DA	TENSION TA	2.5HR		
DFM	SR HARDNESS DA SG %V 1.250 1.248 1.252 1.256	TENSION TA	2.5HR	150F	7DAY
DFM WEIGHT & SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5	SR HARDNESS DA SG %V 1.250 1.248 1.252 1.256 1.256	TENSION TA S(WET) % 3.7 3.2 3.5 3.8 4.0	2.5HR VS(DRY) I 1.8 1.1 1.2 1.1	150F HC(WET) 5.0 4.0 5.0 7.0 8.0 5.8	7DAY HC(DRY) 1.0 0.0 1.0 2.0 2.0
DFM WEIGHT & SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE FUEL DFM	SR HARDNESS DA	TENSION TA S(WET) % 3.7 3.2 3.5 3.8 4.0 3.6 ENVIRON COMP	2.5HR VS(DRY) 1.8 1.1 1.2 1.1 1.7 1.4 SDAK TIME 2.5HR	150F HC(WET) 5.0 4.0 5.0 7.0 8.0 5.8	7DAY HC(DRY) 1.0 0.0 1.0 2.0 2.0 1.2 DRY TIME

FUEL DFM	ELASTOMER NITRILE	ENVIRON FREE	N SOAK T 2.5HR	IME TEMF	
WEIGHT &	HARDNESS D	ATA (VS(WET)	%VS(DRY)	HC(WET)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 . 254 1 . 254 1 . 255	5.8 5.4 4.9 6.6 5.2 5.6	2.3 1.8 2.0 2.3 1.7 2.0	2.0 0.0 -2.0 3.0 2.0 1.0	10.0 11.0 8.0 11.0 13.0 10.6
FUEL DFM	ELASTOMER NITRILE	ENVIRON TENSION		IME TEMP 150F	
WEIGHT &	HARDNESS D	ATA VS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.254 1.257 1.258	6.9 5.2 6.8 6.0 5.9 6.2	1.6 1.5 2.5 1.8 2.0 1.9	1.0 2.0 2.0 -2.0 -2.0 0.2	8.0 10.0 11.0 9.0 8.0 9.2
FUEL DFM	ELASTOMER N219-7	ENVIRON COMP	SOAK T 2.5HR	IME TEMP 150F	
DFM	N219-7 HARDNESS D				
DFM	N219-7 HARDNESS D SG % 1.271 1.268 1.273 1.271	COMP	2.5HR	150F	7DAY
DFM WEIGHT & SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5	N219-7 HARDNESS D SG % 1.271 1.268 1.273 1.271 1.271	COMP OATA (VS(WET) 3.9 6.4 6.7 6.8 7.3 6.2	2.5HR %VS(DRY) 1.2 1.2 1.4 1.2 1.0	150F HC(WET) 0.0 0.0 -1.0 0.0 0.0	7DAY HC(DRY) -1.0 0.0 -1.0 1.0 0.0 -2 DRY TIME
DFM WEIGHT & SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE FUEL DFM	N219-7 HARDNESS D SG % 1.271 1.268 1.273 1.271 1.271 1.271 ELASTOMER N219-7 HARDNESS D	COMP OATA SVS(WET) 3.9 6.4 6.7 6.8 7.3 6.2 ENVIRON FREE	2.5HR %VS(DRY) 1.2 1.4 1.2 1.0 1.2	150F HC(WET) 0.0 0.0 -1.0 0.0 0.0 -0.2	7DAY HC(DRY) -1.0 0.0 -1.0 1.0 0.0 -2 DRY TIME

FUEL DFM	ELASTOME N219-7	R ENVIRON TENSION		IME TEMP 150F	
WEIGHT &	HARDNESS SG		%VS(DRY)	HC(WET)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.288 1.288 1.279 1.280 1.280 1.283	7.2 7.5 6.1 6.2 5.7 6.5	1.7 2.3 2.1 2.9 2.6 2.3	1.0 2.0 -26.1 0.0 0.0 -4.6	0.0 1.0 1.4 0.0 0.0
FUEL DFM	ELASTOME BUNA 70	R ENVIRON COMP	SOAK T 2.5HR	IME TEMP 150F	
WEIGHT &	HARDNESS SG		%VS(DRY)	HC(WET)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.204	5.3 11.1 7.5 6.1 8.2 7.7	8.8 11.4 9.7 6.8 3.0 7.9	0.0 0.0 0.0 0.0 0.0 0.0	7.0 4.0 7.0 8.0 9.0 7.0
FUEL DFM	ELASTOMEI BUNA 70	R ENVIRON FREE	SOAK TI 2.5HR	IME TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS S		%VS(DRY)	HC(WET)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.208 1.206 1.212 1.208 1.209 1.209	8.9 9.2 10.0 8.5 8.9 9.1	5.5 3.5 10.2 6.1 7.5 6.5	0.0 0.0 -1.0 0.0 0.0	7.0 6.0 5.0 6.0 8.0 6.4
FUEL			SOAK TI	ME TEMP	DRY TIME
DFM	ELASTOMER BUNA 70	R ENVIRON TENSION		150F	7DAY
	BUNA 70 HARDNESS I	TENSION DATA			7DAY HC(DRY)

FUEL DFM	ELASTOME BUNA 90		N SOAK T 2.5HR		
WEIGHT &	HARDNESS SG	DATA XVS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.295 1.304 1.304 1.305	1.0 -2.7 1.0 1.1 1.3 0.3	1.8 -2.2 1.9 2.1 2.3 1.2		-1.0 -2.0 0.0 -2.0 6.0 0.2
		R ENVIRON		IME TEMP 150F	
WEIGHT &	HARDNESS SG		%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.305 1.309	1.3	2.0 1.9 2.0 2.6 2.4 2.2	4.0 0.0 -1.0 1.0 2.0 1.2	2.0 0.0 -1.0 1.0 1.0
FUEL DFM	ELASTOME BUNA 90	R ENVIRON TENSION	90AK T 2.5HR	IME TEMP 150F	
WEIGHT &	HARDNE35 SG	DATA %VS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.304 1.308 1.313 1.321		2.2 2.5 2.6 3.0 3.4 2.7	0.0 1.0 1.0 0.0 1.0	2.0 i.0 -2.0 -i.0 -1.0 -0.2
FUEL DFM	ELASTOMEI SILICONE		SOAK TI 2.5HR	IME TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS S		%VS(DRY)	HC(WET)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3	1.516 1.547	36.7 42.7 41.1	35.6 41.8 39.3	-14.0 -12.0 -12.0	-1.4.0 -14.0 -14.0

FUEL DFM	ELASTOME SILICONE		SDAK TI 2.5HR	IME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	ZVS(DRY)	HC(WET	r)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.512 1.525 1.529	48.5 47.6 45.7 49.6 49.4 48.2	37.4 45.6 44.0 47.8 46.9 44.4	-15.0 -12.0 -12.0 -15.0 -14.0 -13.6	·	-14.0 -14.0 -15.0 -17.0 -14.0 -14.8
FUEL DFM	ELASTOME SILICONE			IME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC(WET	•	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.559 1.529 1.536	38.6 50.4 38.3 38.1 37.3 40.5	37.4 47.4 35.5 36.5 35.8 38.5	-13.0 -13.0 -13.0 -13.0 -11.0 -12.6		-13.0 -15.0 -16.0 -13.0 -12.0 -13.8
FUEL DFM	ELASTOME! EPR	R ENVIRON COMP	SDAK TI 2.5HR		TEMP 150F	DRY TIME 7DAY
DFM	EPR HARDNESS	COMP			150F	
DFM	EPR HARDNESS SG 5	COMP	2.5HR		150F	7DAY
DFM WEIGHT & SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5	EPR HARDNESS 5	COMP DATA XVS(WET) 37.6 41.0 47.1 36.9 50.7 42.7	2.5HR %VS(DRY) 37.6 39.5 45.0 35.1 48.6 41.2	HC(WET -19.0 -19.0 -14.0 -20.0 -17.0 -17.8	150F	7DAY HC(DRY) -19.0 -15.0 -13.0 -16.0 -11.0
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE FUEL DFM	EPR HARDNESS SG	COMP DATA ZVS(WET) 37.6 41.0 47.1 36.9 50.7 42.7 R ENVIRON FREE	2.SHR %VS(DRY) 37.6 39.5 45.0 35.1 48.6 41.2	HC(WET -19.0 -19.0 -14.0 -20.0 -17.0 -17.8	150F) TEMP 150F	7DAY HC(DRY) -19.0 -15.0 -13.0 -16.0 -11.0 -14.8 DRY TIME

FUEL DFM	ELASTOME EPR	R ENVIRON TENSION	SOAK T 2.5HR	IME TEMP 150F	DRY TIME 7Day
WEIGHT &	HARDNESS SG		LVS(DRY)	HC(WET)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.190 1.195 1.193	38.9 34.9 70.3 64.3 72.9 56.3	64.5 63.9 68.2 62.7 70.5 66.0	-21.0 -16.0 -15.0 -19.0 -18.0 -17.8	-16.0 -13.0 -14.0 -16.0 -15.0 -14.8
FUEL DFM	ELASTOME VITON	R ENVIRON	SOAK T 2.5HR	IME TEMP 150F	DRY TIME 7Day
WEIGHT &	HARDNESS SG		(VS(DRY)	HC(WET)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.863 1.866 1.856 1.846 1.853 1.857	3.2 3.7 4.2 2.9 3.5 3.5	1.0 3.3 2.8 2.6 2.3 2.4	2.0 -1.0 2.0 2.0 0.0 1.0	5.0 1.0 5.0 4.0 4.0 3.8
FUEL DFM	ELASTOME VITON	R ENVIRON FREE	SOAK T 2.5HR	IME TEMP 150F	DRY TIME 7DAY
DFM		FREE DATA			
DFM	VITON HARDNESS SG 1.841 1.849 1.852 1.843	FREE DATA	2.5HR	150F	7DAY
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	VITON HARDNESS SG 1.841 1.849 1.852 1.843 1.847 1.846	FREE DATA %VS(WET) 2.7 4.0 4.1 3.5 3.7 3.6	2.5HR %VS(DRY) 1.5 1.5 2.3 2.0 2.0 1.9	150F HC(WET) 3.0 1.0 3.0 4.0 5.0	7DAY HC(DRY) 4.0 5.0 5.0 6.0 6.0 5.2 DRY TIME
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE FUEL DFM	VITON HARDNESS SG 1.841 1.849 1.852 1.843 1.847 1.846 ELASTOME VITON HARDNESS	FREE DATA XVS(WET) 2.7 4.0 4.1 3.5 3.7 3.6 R ENVIRON TENSION DATA	2.5HR 2.5HR 2.5 1.5 2.3 2.0 2.0 1.9 SOAK T 2.5HR	150F HC(WET) 3.0 1.0 3.0 4.0 5.0 3.2	7DAY HC(DRY) 4.0 5.0 5.0 6.0 6.0 5.2 DRY TIME 7DAY

FUEL DFM	ELASTOME A700	ER ENVIRON COMP	90AK 3 2.5HR	TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HAR DNESS SG	DATA XVS(WET)	%VS(DRY)	HC(WET	``	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.262 1.267 1.269	4.5 5.8 5.4 6.3 6.2 5.7	3.7 3.7 4.4 4.8 4.8 4.3	1.0 7.0 5.0 5.0 7.0 5.0		11.0 10.0 11.0 13.0 11.0
FUEL DFM	ELASTOME A700	ER ENVIRON FREE	90AK 2.5HR	TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WET	.,	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.269 1.267 1.274	6.8 6.2 6.2 7.4 5.9 6.5	5.6 5.2 4.9 6.0 5.2 5.4	3.0 2.0 6.0 1.0 3.0 3.0		10.0 9.0 7.0 9.0 7.0 8.4
FUEL DFM	ELASTOME A700	R ENVIRON TENSION		TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WET	`)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.265 1.266	5.3 6.5 6.5 6.4 6.7 6.3	5.1 4.8 5.5 5.6 5.6 5.3	3.0 4.0 2.0 4.0 4.0 3.4		9.0 9.0 10.0 11.0 12.0 10.2

SHORE A HARDNESS WITH 50% AROMATICS DFM (SOAK TEMP = 75°F TIME = 24HR)

SHORE A HARDNESS WITH 50% AROMATICS DFM (SOAK TEMP = 75°F TIME = 72HR)

SHORE A HARDNESS - 50% AROMATICS DFM (SOAK TEMP = 150°F TOFT - FREE)

SHORE A HARDNESS - 50% AROMATICS DFM (SOAK TEMP = 150°F TOFT - TENSION)

SHORE A HARDNESS - 50% AROMATICS DFM (SOAK TEMP = 150°F TOFT - COMPRESSION)

FUEL 50%AROM	ELASTOME VITON	ER ENVIROI FREE	N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	ZVS(DRY)	HC (WE	т)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.788 1.827 1.808	4.3 5.8 5.0	1.2 2.5 1.9	-2.0 0.0 -1.0		-5.0 0.0 -2.5
FUEL 50%AROM	ELASTOME VITON	ER ENVIRON FREE	N 50AK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	Т)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.814 1.814 1.814	6.2 4.3 5.2	3.7 0.8 2.2	-3.0 -3.0 -3.0		0.0 0.0 0.0
FUEL 50%AROM	ELASTOME SR	ER ENVIRON FREE	N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WE	Т)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.249 1.253 1.251	10.0 9.9 9.9	4.0 3.3 3.7	-3.0 -2.0 -2.5		-1.0 -4.0 -2.5
FUEL 50%AROM	ELASTOME SR	ER ENVIRO FREE	N 50AK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	Т)	HC(DRY)
	1.250 1.248 1.249		3.3 0.0 1.7	-3.0 -3.0 -3.0		0.0 -1.0 -0.5

FUEL 50%AROM	ELASTOMI NITRILE	ER ENVIRO FREE	IN SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	(T)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.282 1.277 1.279	11.8 11.4 11.6	4.8 5.8 5.3	-1.0 0.0 -0.5	l	5.0 3.0 4.0
FUEL 50%AROM	ELASTOMI NITRILE	ER ENVIRO FREE	IN SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA XVS(WET)	%VS(DRY)	HC (WE	(T)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.290 1.300 1.295	12.4 13.2 12.8	1.8 0.3 1.1	-2.0 -2.0 -2.0	1	1.0 0.0 0.5
FUEL	ELASTOME	ER ENVIRO	N SOAK	TTME	TEMP	NOV TIME
50%AROM	A700	FREE	24HR	CALINE.	75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	T)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.294 1.301 1.298	16.1 11.9 14.0	9.1 7.7 8.4	-3.0 -3.0 -3.0		-3.0 0.0 -1.5
					· <u>-</u>	
FUEL 50%AROM	ELASTOME A700	ER ENVIRO FREE	N SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	Т)	HC(DRY)
SAMPLE 1 SAMPLE 2	1.302 1.302	13.0 13.9	i.8 2.8	-2.0 -3.0		0.0 0.0
AVERAGE	1.302	13.4	2.3	-2.5	- ·	0.0

FUEL 50%AROM	ELASTOMER N674-7	R ENVIRON FREE	N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS I	ATA (VS(WET)	%VS(DRY)	HC (WE	(T)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		12.1 11.3 11.7	5.6 4.1 4.8	1.0 -1.0 0.0)	3.0 -1.0 1.0
FUEL 50%AROM	ELASTOMER N674-7	R ENVIRON FREE	N SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS I	ATA (VS(WET)	%VS(DRY)	HC (WE	Τ)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.288 1.285 1.286	13.6 13.3 13.4	3.4 2.7 3.0	-2.0 -2.0 -2.0	l	0.0 -1.0 -0.5
FUEL 50%AROM	ELASTOMER BUNA 70	ENVIRON FREE	SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS I	ATA VS(WET)	ZVS(DRY)	HC (WE	Т)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.255 1.252 1.253	14.5 13.9 14.2	8.3 8.5 8.4	1.0 2.0 1.5		4.0 3.0 3.5
FUEL 50%AROM	ELASTOMER BUNA 70	ENVIRON FREE	SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS D		%VS(DRY)	HC (WE	т)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.249 1.248 1.249	16.0 17.5 16.8	7.3 6.1 6.7	1.0 2.0 1.5		0 . 0 0 . 0 0 . 0

FUEL	ELASTOMEI	R ENVIRO	N SOAK	TIME	TEMP	DRY TIME
50%AROM	BUNA 90	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS I	DATA XVS(WET)	%VS(DRY)	HC (WE	(T)	HC (DRY)
SAMPLE 1	1.297	8.7	8.1	1.0		1.0
SAMPLE 2	1.296	7.9	7.3	-1.0		-1.0
AVERAGE	1.296	8.3	7.7	0.0		0.0
FUEL	ELASTOMER	R ENVIRO	N SOAK	TIME	TEMP	DRY TIME
50%AROM	BUNA 90	FREE	72HR		75F	7DAY
WEIGHT &	HARDNESS I	DATA %VS(WET)	%VS(DRY)	HC (WE	Т)	HC(DRY)
SAMPLE 1	1.301	10.3	6.7	0.0		-3.0
SAMPLE 2	1.283	10.9	4.1	1.0		0.0
AVERAGE	1.292	10.6	5.4	0.5		-1.5
FUCL	ELASTOMER	ENVIRON	N SOAK	TIME	TEMP	DRY TIME
50%AROM	SILICONE	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS I)ATA (VS(WET)	%VS(DRY)	HC (ME.	T)	HC (DRY)
SAMPLE 1	1.396	70.8	52.2	-2.0		-4.0
SHMPLE 2	1.409	76.5	54.7	-2.0		i.0
AVERAGE	1.402	73.7	53.4	-2.0		-1.5
FUEL	ELASTOMER	ENVIRON	N SOAK	TIME	TEMP	DRY TIME
SOZAROM	SILICONE	FREE	72HR		75F	7DAY
WEIGHT &	HARDNESS D	ATA (VS(WET)	%VS(DRY)	HC (WE.	т)	HC (DRY)
SAMPLE 1	1.326	89.5	75.3	-5.0		-2.0
SAMPLE 2	1.402	71.7	57.9	-5.0		-2.0
AVERAGE	1.364	80.6	66.6	-5.0		-2.0
FUEL	ELASTOMER	ENVIROI	N SOAK	TIME	TEMP	DRY TIME
50%AROM	EPR	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS I	ATA (VS(WET)	%VS(DRY)	HC (WE.	т)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		128.9 128.9 128.9	105.8 110.9 108.3	-4.0 -5.0 -4.5		1.0 -2.0 1.5

FUEL 50%AROM	ELASTOMI EPR	ER ENVIRO FREE	N SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE:	Τ)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.231 1.232 1.232	132.1 129.4 130.8	109.0 110.6 109.8	-5.0 -5.0 -5.0		725.0 -3.0 361.0
FUEL 50%AROM	ELASTOME SR	R ENVIRON COMP	N 50AK 2.5HR		TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WET	`)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.274 1.274 1.273 1.279 1.279 1.276	8.7 8.4 7.9 8.9 8.9	4.9 4.7 4.1 4.8 4.8	-2.0 1.0 0.0 -2.0 -3.0 -1.2		-1.0 1.0 0.0 0.0 -2.0 -0.4
FUEL 50%AROM	ELASTOME SR	R ENVIRO	N SOAK 2.5HR		TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WET	-)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.281 1.277 1.279 1.304 1.305 1.289	11.2 12.5 10.9 13.7 13.0 12.2	7.3 6.4 6.6 8.7 8.7 7.6	1.0 1.0 0.0 0.0 -2.0 0.0		5.0 4.0 1.0 2.0 0.0 2.4
FUEL 50%AROM	ELASTOME SR	R ENVIRON TENSION		TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WET	·)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.262 1.265 1.270 1.262 1.266 1.265	9.9 7.7 6.2 11.6 9.3 8.9	5.3 2.7 2.5 5.8 4.2 4.1	-2.0 -2.0 -1.0 -3.0 -3.0 -2.2		0.0 -1.0 -1.0 -1.0 1.0 -0.4

FUEL 50%AROM	ELASTOME NITRILE	R ENVIRO	N SOAK 1 2.5HR	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WET)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.246 1.245 1.244	5.7 5.1 5.9 4.4 5.9 5.4	1.2 -2.6 2.0 0.8 2.0 0.7	0.0 0.0 0.0 8.8 0.0	5.0 4.0 4.0 2.0 4.0 3.8
FUEL 50%AROM	ELASTOME NITRILE	R ENVIRON FREE	1 SOAK T 2.5HR	IME TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.246 1.247 1.245 1.249 1.247	6.9 6.9 6.2 6.6 6.5 6.6	2.3 2.3 2.0 2.7 2.5 2.4	-2.0 -3.0 -1.0 -1.0 -1.0 -1.6	-1.0 2.0 0.0 5.0 3.0 1.8
FUEL 50%AROM	ELASTOME NITRILE	R ENVIRON TENSION		IME TEMP	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WET)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE				HC(WET) -1.0 0.0 -1.0 -2.0 -1.0 -1.0	HC(DRY) 2.0 3.0 3.0 0.0 2.0 2.0
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5	5G 1.248 1.248 1.251 1.252 1.246	7.9 9.0 6.8 3.2 7.2 6.8	%VS(DRY) 3.9 3.9 2.8 0.4 2.4 2.7	-i.0 0.0 -i.0 -2.0 -i.0 -i.0	2.0 3.0 3.0 0.0 2.0
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE FUEL 50%AROM	SG 1.248 1.248 1.251 1.252 1.246 1.249 ELASTOMEI N219-7	7.9 9.0 6.8 3.2 7.2 6.8 R ENVIRON	%VS(DRY) 3.9 3.9 2.8 0.4 2.4 2.7	-i.0 0.0 -i.0 -2.0 -i.0 -i.0	2.0 3.0 3.0 0.0 2.0 2.0

FUEL 50%AROM	ELASTOMER N219-7	ENVIRON FREE	SOAK TI 2.5HR	ME TEMP 150F	
WEIGHT &	HARDNESS DA		ZVS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.244 1.246 1.246 1.245 1.248 1.246	8.6 8.4 11.1 8.3 8.0 8.9	5.8 6.7 7.5 5.9 6.3 6.4	-2.0 -1.0 -1.0 -1.0 -2.0 -1.4	-6.0 -5.0 -5.0 -7.0 -7.0 -6.0
FUEL 50%AROM	ELASTOMER N219-7	ENVIRON TENSION		ME TEMP 150F	
WEIGHT &	HARDNESS DA		%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.248 1.249 1.247 1.246 1.245 1.247	8.3 10.0 8.5 9.1 8.0 8.8	6.6 7.7 6.2 6.8 6.8 6.8	-2.0 -i.0 -i.0 -i.0 -i.0 -i.2	-6.0 -4.0 -5.0 -5.0 -5.0
FUEL 50%AROM	ELASTOMER BUNA 70	ENVIRON COMP	SOAK TI 2.5HR	TEMP 150F	
50%AROM	BUNA 70 HARDNESS DA	COMP			
50%AROM	BUNA 70 HARDNESS DA SG %V	COMP	2.5HR	150F	7DAY
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5	BUNA 70 HARDNESS DA SG ZV 1.217 1.215 1.212 1.217 1.220	COMP TA S(WET) 9.3 9.4 8.2 8.8 9.8	2.5HR %VS(DRY) 7.4 6.5 6.0 6.5 6.7 6.6	150F HC(WET) 8.0 7.0 9.0 6.0 6.0 7.2	7DAY HC(DRY) 12.0 9.0 11.0 12.0 12.0 12.0 11.2
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE FUEL 50%AROM	BUNA 70 HARDNESS DA SG %V 1.217 1.215 1.212 1.217 1.220 1.216 ELASTOMER BUNA 70 HARDNESS DA	COMP TA S(WET) 9.3 9.4 8.2 8.8 9.8 9.1 ENVIRON FREE	2.5HR %VS(DRY) 7.4 6.5 6.0 6.5 6.7 6.6	150F HC(WET) 8.0 7.0 9.0 6.0 7.2	7DAY HC(DRY) 12.0 9.0 11.0 12.0 12.0 12.0 11.2 DRY TIME

FUEL 50%AROM	ELASTOMEI BUNA 70	R ENVIRON TENSION		TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS I	DATA %VS(WET)	%VS(DRY)	HC (WET	Γ)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE		12.1 11.8 12.2 13.6 12.8 12.5	9.2 10.1 9.2 10.1 10.2 9.8	7.0 7.0 5.0 5.0 6.0		11.0 11.0 7.0 10.0 9.0 9.6
FUEL 50%AROM	ELASTOMER BUNA 90	R ENVIRON COMP	8 SOAK 1 2.5HR	TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS I	OATA (VS(WET)	%VS(DRY)	HC(WET	.)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.317 1.319 1.321 1.317 1.321 1.319	7.1 9.0 8.1 9.9 10.3 8.9	4.9 6.1 5.8 7.2 7.4 6.3	-2.0 -1.0 -2.0 -2.0 -1.0 -1.6		-1.0 -1.0 -1.0 -1.0 -1.0 -1.0
FUEL 50%AROM	ELASTOMER BUNA 90	R ENVIRON FREE	1 SOAK 1 2.5HR	TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS I	DATA (VS(WET)	%VS(DRY)	HC(WET	`)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.319 1.321 1.318 1.318 1.323 1.320	10.5 10.8 12.6 11.8 10.8 11.3	7.1 7.2 8.6 8.3 7.2 7.7	-3.0 -2.0 -2.0 0.0 0.0		1.0 -1.0 1.0 0.0 1.0 0.4
FUEL 50%AROM	ELASTOMER BUNA 90	ENVIRON TENSION		TME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS I	ATA (VS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.318 1.319 1.330 1.324 1.324	12.5 11.1 13.7 11.8 11.7	6.6 5.5 7.7 7.1 6.5 6.7	-1.0 -2.0 -1.0 -2.0 -3.0 -1.8		1.0 1.0 1.0 2.0 3.0 1.6

FUEL 50%AROM	ELASTOMER SILICONE	R ENVIRON COMP	8 SOAK T 2.5HR	IME TEMP	
WEIGHT &	HARDNESS I		%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.522 1.523 1.527 1.525 1.528 1.525	30.9 41.6 35.5 42.0 37.3 37.5	27.9 35.6 25.7 35.1 30.2 30.9	-4.0 -7.0 -7.0 -6.0 -6.0 -6.0	1.0 1.0 -3.0 0.0 -1.0 -0.4
FUEL 50%AROM	ELASTOMER SILICONE	ENVIRON FREE	SDAK T 2.5HR	IME TEMP 150F	
WEIGHT &	HARDNESS I	• • • • •	%VS(DRY)	HC(WET)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.530 1.531 1.536 1.531 1.536 1.533	59.0 57.0 68.9 60.3 68.6 62.8	48.9 48.8 57.8 50.2 57.6 52.7	-5.0 -5.0 -4.0 -6.0 -6.0 -5.2	-2.0 -1.0 1.0 1.0 1.0
FUEL 50%AROM	ELASTOMER SILICONE	ENVIRON TENSION		IME TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS D		%VS(DRY)	HC(WET)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE			%VS(DRY) 41.0 42.9 39.9 39.0 37.5 40.0	HC(WET) -6.0 -6.0 -4.0 -4.0 -6.0 -5.2	HC(DRY) 2.0 1.0 3.0 3.0 -3.0 1.2
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5	SG % 1.536 1.534 1.536 1.538 1.537	49.7 49.9 50.4 49.2 49.5 49.7	41.0 42.9 39.9 39.0 37.5 40.0	-6.0 -6.0 -4.0 -4.0 -6.0 -5.2	2.0 1.0 3.0 3.0 -3.0 1.2
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE FUEL 50%AROM	SG % 1.536 1.534 1.536 1.538 1.537 1.536 ELASTOMER EPR HARDNESS D	49.7 49.9 50.4 49.2 49.5 49.7 ENVIRON COMP	41.0 42.9 39.9 39.0 37.5 40.0	-6.0 -6.0 -4.0 -4.0 -6.0 -5.2	2.0 1.0 3.0 3.0 -3.0 1.2

FUEL 50%AROM	ELASTOME EPR	ER ENVIRO	N SOAK 1 2.5HR	TIME TEM	
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WET)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.207 1.206 1.208 1.205 1.207 1.207	83.8 74.8 87.1 92.0 106.6 88.9	74.7 68.0 79.3 80.8 99.8 80.5	-3.0 -3.0 -3.0 -2.0 -3.0 -2.8	-8.0 -8.0 -8.0 -6.0 -8.0 -7.6
FUEL 50%AROM	ELASTOME EPR	ER ENVIRON TENSION		IME TEM 150	
WEIGHT &	HARDNESS SG	DATA ZVS(WET)	%VS(DRY)	HC(WET)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.205 1.210 1.212 1.205 1.205 1.207	84.1 93.2 90.5 87.1 84.3 87.8	76.0 86.6 82.9 79.8 77.2 80.5	-3.0 -1.0 -6.0 -1.0 -5.0 -3.2	-7.0 -6.0 -10.0 -7.0 -10.0 -8.0
FUEL 50%AROM	ELASTOME VITON	ER ENVIRON	N SOAK 1 2.5HR	TEM 150	
50%AROM		COMP			
50%AROM	VITON HARDNESS	COMP	2.5HR	150	F 7DAY
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5	VITON HARDNESS SG 1.832 1.817 1.820 1.816 1.822	COMP DATA ZVS(WET) 2.2 3.2 2.2 3.4 1.4 2.5	2.5HR %VS(DRY) -1.0 -5.2 -1.7 -1.3 -1.8 -2.2	150 HC(WET) 2.0 1.0 0.0 2.0 2.0 1.4	F 7DAY HC(DRY) 4.0 3.0 1.0 3.0 2.0 2.6 P DRY TIME
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE FUEL 50%AROM	VITON HARDNESS SG 1.832 1.817 1.820 1.816 1.822 1.821 ELASTOME	COMP DATA ZVS(WET) 2.2 3.2 2.2 3.4 1.4 2.5 ER ENVIROR 2.5HR	2.5HR %VS(DRY) -1.0 -5.2 -1.7 -1.3 -1.8 -2.2	150 HC(WET) 2.0 1.0 0.0 2.0 2.0 1.4	F 7DAY HC(DRY) 4.0 3.0 1.0 3.0 2.0 2.6 P DRY TIME Y 0%AROM

FUEL 50%AROM	ELASTOME VITON	R ENVIRON TENSION			TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WET	>	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.832 1.832 1.836 1.836 1.837 1.835	1.7 2.0 2.7 1.5 3.0 2.2	-0.4 -0.6 -0.5 -0.8 -0.4 -0.5	1.0 0.0 0.0 -2.0 0.0 -0.2		5.0 3.0 3.0 1.0 1.0
FUEL 50%AROM	ELASTOME A700	R ENVIRON	N SOAK T 2.5HR		TEMP L50F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WET))	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.272 1.267 1.269 1.272 1.267 1.269	15.6 15.6 10.9 15.3 15.7 14.6	4.1 4.3 3.6 3.9 3.3 3.8	-8.0 -9.0 -10.0 -7.0 -8.0 -8.4	· .	6.0 3.0 5.0 10.0 5.0 5.8
FUEL 50%AROM	ELASTOME A700	R ENVIROI FREE	N SOAK T 2.SHR		TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.261 1.263 1.265 1.265 1.266	16.4 16.9 18.3 16.9 16.8	22.1 23.2 5.3 4.2 3.9	-8.0 -10.0 -8.0 -8.0 -10.0		6.0 5.0 3.0 4.0 4.0
	1.264	17.1	11.7	-8.8		4.4
FUEL 50%AROM			11.7 N SOAK T	-8.8	TEMP 150F	DRY TIME 7DAY
50%AROM	1.264 ELASTOME	ER ENVIRON TENSION	11.7 N SOAK T	-8.8	150F	DRY TIME

SHORE A HARDNESS - 10% AROMATICS DFM (SOAK TEMP = 75°F TIME = 24HR)

SHORE A HARDNESS - 10% AROMATICS DFM (SOAK TEMP = 75°F TIME = 72HR)

SHORE A HARDNESS - 10% AROMATICS DFM (SOAK TEMP = 150°F TOFT -FREE)

SHORE A HARDNESS - 10% AROMATICS DFM (SOAK TEMP = 150°F TOFT - TENSION)

SHORE A HARDNESS - 10% AROMATICS DFM (SOAK TEMP = 150°F TOFT - COMPRESSION)

FUEL	ELASTOME	ER ENVIRO	N SOAK	TIME	TEMP	DRY TIME
10%AROM	VITON	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (W	ET)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		-4.8 -3.8 -4.3	-5.i -i.5 -3.3	5. 5. 5.	0	3.0 3.0 3.0
FUEL	ELASTOME	R ENVIRO	N SOAK	TIME	TEMP	DRY TIME
10%AROM	VITON	FREE	72HR		75F	7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WI	E T)	HC(DRY)
SAMPLE 1	1.759	1.1	-0.8	0.	0	0.0
SAMPLE 2	1.743	1.6	-1.3	0.		6.0
AVERAGE	1.751	1.3	-1.0	0.		0.0
FUEL 10%AROM		R ENVIRO	N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	ET)	HC(DRY)
SAMPLE 1	1.175	-9.0	-6.0	-3.0)	0 . 0
SAMPLE 2	1.205	-8.1	-7.0	-3.0		0 . 0
AVERAGE	1.190	-8.6	-6.5	-3.0		0 . 0
FUEL	ELASTOME	R ENVIRON	90AK	TIME	TEMP	DRY TIME
10%AROM	SR	FREE	72HR		75F	7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	T)	HC (DRY)
SAMPLE 1	1.217	-5.7	-4.6	-2.0		0 . 0
SAMPLE 2	1.229	-0.2	-4.6	-2.0		0 . 0
AVERAGE	1.223	-2.9	-4.6	-2.0		0 . 0
FUEL	ELASTOME	R ENVIRON	N 50AK	TIME	TEMP	DRY TIME
10%AROM	NITRILE	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	Τ)	HC(DRY)
SAMPLE 1	1.229	-5.5	-8.3	1.0	1	7.0
SAMPLE 2	1.230	-5.7	-6.2	1.0		7.0
AVERAGE	1.229	-5.6	-7.2	1.0		7.0

FUEL 10%AROM		R ENVIRON FREE	I SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	Т)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.231 1.262 1.247	-3.5 1.1 -1.2	-6.3 -3.9 -5.1	2.0 1.0 1.5		1.0 1.0 1.0
FUEL 10%AROM	ELASTOME A700	R ENVIRON FREE	SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HUKWET	т)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		-5.5 -5.8 -5.6	-7.3 -6.9 -7.1	1.0 0.0 0.5		1.0 1.0 1.0
	ELASTOME A700	R ENVIRON FREE	1 SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%US(DRY)	HC (WE	T)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.249 1.231 1.240	-4.3 -5.2 -4.8	~5.9 ~8.2 ~7.0	0 . 0 0 . 0 0 . 0		0 . 0 0 . 0 0 . 0
FUEL 10%AROM	ELASTOME N674-7	R ENVIRON FREE	U SOAK 24HR	TIME.	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HAR DNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	т)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.232 1.230 1.231	-5.7 -6.0 -5.8	-7.0 -9.6 -8.3	0 . 0 0 . 0 0 . 0		0 . 0 0 . 0 0 . 0
FUEL 10%AROM	ELASTOME N674-7	R ENUTRON FREE	1 SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	т)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		-2.8 -2.5 -2.7	-7.6 -6.8 -7.2	-1.0 -1.0 -1.0		i.0 i.0 i.0

FUEL 10%AROM	ELASTOMEI BUNA 70	R ENVIRON FREE	N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS S	DATA %VS(WET)	%VS(DRY)	HC (WE	T)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.205 1.200 1.202	0.6 -1.1 -0.2	-3.0 -3.2 -3.1	1.0 0.0 0.5		0.0 0.0 0.0
FUEL 10%AROM	ELASTOMEI BUNA 70	R ENVIRON FREE	90AK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS I	DATA %VS(WET)	%US(DRY)	HC (WE	т)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.205 1.200 1.202	0.6 -1.1 -0.2	-3.0 -3.2 -3.1	1.0 0.0 0.5		0.0 0.0 0.0
FUEL 10%AROM	ELASTOME BUNA 90	R ENVIRON FREE	N SOAK 24HR	TIME	TEMP 75F	DRY TIME
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	T)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		0 . 0 -2 . 9 -1 . 4	-2.4 -2.7 -2.5	4.0 2.0 3.0		4.0 1.0 2.5
FUEL 10%AROM	ELASTOME BUNA 90	R ENVIRON FREE	N SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS S	DATA %VS(WET)	%VS(DRY)	HC (WE	Τ)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.268 1.264 1.266	1.8 1.5 1.6	-0.6 -1.2 -0.9	0.0 1.0 0.5		0.0 1.0 0.5
FUEL 10%AROM	ELASTOME SILICONE		N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	T >	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.382 1.378 1.380	61.3 66.0 63.6	63.0 63.2 63.1	-4.0 -7.0 -5.5		-6.0 -6.0 -6.0

FUEL 10%AROM	ELASTOME SILICONE		SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC (WE,	т)	HC (DRY)
SAMPLE 1	1.256	80.9	77.1	-13.0		-6.0
SAMPLE 2	1.275	84.5	77.4	-12.0		-7.0
AVERAGE	1.266	82.7	77.2	-12.5		-6.5
FUEL	ELASTOME:	R ENVIRON	SDAK	TIME	TEMP	DRY TIME
10%AROM	EPR	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC (WE.	т>	HC(DRY)
SAMPLE 1	1.203	116.8	112.3	-9.0		9.0
SAMPLE 2	1.194	113.5	109.6	-9.0		-9.0
AVERAGE	1.198	115.2	111.0	-9.0		9.0
FUEL	ELASTOME	R ENVIRON	50AK	TIME	TEMP	DRY TIME
10%AROM	EPR	FREE	72HR		75F	7DAY
WEIGHT &	HAR DNESS SG		%VS(DRY)	HC (WE)	τ)	HC(DRY)
SAMPLE 1	1.194	117.6	110.3	-5.0		-4.0
SAMPLE 2	1.220	118.6	122.5	-6.0		-5.0
AVERAGE	1.207	118.1	116.4	-5.5		-4.5
FUEL	ELAST OM E	R ENVIRON	SOAK	TIME	TEMP	DRY TIME
DFM 10%AF	SR	COMP	2 . SH		150F	7DAY
WEIGHT &	HARDNESS SG	DATA ZVS(WET)	%VS(DRY)	HC (WE	r)	HC (DRY)
SAMPLE 1	1.262	3.2	0.9	-3.0		6.0
SAMPLE 2	1.248	1.6	-0.0	-2.0		-7.0
SAMPLE 3	1.246	1.2	-0.4	-2.0		7.0
SAMPLE 4	1.245	1.0	-0.1	-3.0		6.0
SAMPLE 5	1.246	1.8	0.2	-4.0		8.0
AVERAGE	1.249	1.8	0.1	-2.8		6.8
FUEL	ELASTOME	R ENVIRON	SOAK	TIME	TEMP	DRY TIME
DFM 10%AF	SR	FREE	2.5HI		150F	7DAY
WEIGHT &		DATA %VS(WET)	%VS(DRY)	HC (WE:	Т)	HC(DRY)
SAMPLE 123 SAMPLE 34 SAMPLE 54 SAMPLE 54 SAMPL	1 248 1 250 1 255 1 251 1 251	1.8 1.6 2.6 2.1 1.9	-0.3 0.0 -0.1 0.7 0.8 0.2	-1.0 -5.0 -3.0 -2.0 -1.0 -2.4		4.0 -9.0 8.0 -6.0 6.6

FUEL DFM 10%AR	ELASTOMER SR	ENVIRO TENSIO	N SOAK T N 2.5HR	IME	TEMP 150F	DRY TIME 7DAY
WEIGHT & I	HARDNESS DA SG %V	TA S(WET)	%VS(DRY)	HC (WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 . 251 1 . 251 1 . 2554 1 . 255 1 . 253	002142 2022222	0.42565 0.000 0.000	0.0 -2.0 0.0 -3.0 -2.0 -1.4		-5.0 -7.0 -5.0 -7.0 -7.0 -6.2
FUEL DFM 10%AR	ELASTOMER NITRILE	ENVIRON COMP	90AK T	IME ;	TEMP 150F	DRY TIME 7DAY
WEIGHT & F		TA S(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 272 1 260 1 262 1 264 1 262 1 264	5.221757 5.333333	338855	5.0 8.0 4.0 4.0 5.0		-2.0 -3.0 -4.0 -3.0 -3.0
FUEL DFM 10%AR	ELASTOMER NITRILE	ENVIRON FREE	SOAK T	IME	TEMP 150F	DRY TIME
WEIGHT & F	HARDNESS DA	TA S(WET)	%VS(DRY)	HC (WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.260 1.264 1.263 1.262 1.259 1.261	3.33.27.3 3.33.27.3	22.53 12.60	5.0 7.0 7.0 3.0 5.0 5.4		-3.0 -3.0 -1.0 -3.0 -2.0 -2.4
FUEL DFM 10%AR	ELASTOMER NITRILE	ENVIRON TENSION	SOAK T 2.5HR	TME :	TEMP L50F	DRY TIME 7DAY
WEIGHT & F	HARDNESS DA SG %V	TA S(WET)	%US(DRY)	HC (WET))	HC (DRY)
SAMPLE 1 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 . 260 1 . 255 1 . 258 1 . 260 1 . 261 1 . 259	5-000000000000000000000000000000000000	ดากของเลย	7.0 5.0 7.0 7.0 4.0 6.0		350 to . 6

FUEL ELASTOMER ENVIRON SOAK TIME TEMP DFM 10%AR N219-7 COMP 2.5HR 150F	DRY TIME 7DAY
WEIGHT & HARDNESS DATA SG %VS(WET) %VS(DRY) HC(WEI)	HC (DRY)
SAMPLE 1 1.246 1.1 -2.1 -8.0 SAMPLE 2 1.225 2.2 -5.7 -9.0 SAMPLE 3 1.271 2.1 -2.8 -7.0 SAMPLE 4 1.251 2.1 -6.3 -6.0 SAMPLE 5 1.246 1.9 -3.6 -5.0 AVERAGE 1.248 1.9 -4.1 -7.0	-4.0 -5.0 -1.0 -2.0 -1.0 -2.6
FUEL ELASTOMER ENVIRON SOAK TIME TEMP 150F	DRY TIME 7DAY
WEIGHT & HARDNESS DATA SG %VS(WET) %VS(DRY) HC(WET)	HC(DRY)
SAMPLE 1 1.254 1.9 -3.0 -7.0 SAMPLE 2 1.254 2.6 -3.6 -8.0 SAMPLE 3 1.256 2.3 -0.4 -5.0 SAMPLE 4 1.248 1.7 -0.8 -4.0 SAMPLE 5 1.251 1.9 -3.9 -5.0 AVERAGE 1.252 2.1 -2.3 -5.8	1.0 -1.0 0.0 1.0 -2.0 -0.6
FUEL ELASTOMER ENVIRON SOAK TIME TEMP DFM 10%ARN219-7 TENSION 2.5HR 150F	DRY TIME
WEIGHT & HARDNESS DATA SG %VS(WET) %VS(DRY) HC(WET)	HC(DRY)
SAMPLE 1 1.254 2.1 -4.6 -10.0 SAMPLE 2 1.250 2.5 -2.8 -6.0 SAMPLE 3 1.254 2.5 -2.2 -6.0 SAMPLE 4 1.252 2.4 -2.8 -10.0 SAMPLE 5 1.256 2.7 -1.3 -7.0 AVERAGE 1.253 2.4 -2.8 -7.8	-4.0 -3.0 -4.0 -2.0 -2.6
FUEL ELASTOMER ENVIRON SOAK TIME TEMP DFM 10%AR BUNA 70 COMP 2.5HR 150F	DRY TIME 7DAY
WEIGHT & HARDNESS DATA SG %VS(WET) %VS(DRY) HC(WET)	HC (DRY)
SAMPLE 1 1.212 4.5 2.0 -5.0 SAMPLE 2 1.210 4.6 2.4 -6.0 SAMPLE 3 1.204 4.4 2.2 -5.0 SAMPLE 4 1.207 4.0 1.8 -4.0 SAMPLE 5 1.208 3.9 1.7 -3.0 AVERAGE 1.208 4.3 2.0 -4.6	2000 2000 2000 2000 2000 2000 2000 200

FUEL ELASTO DFM 10%AR BUNA 7	MER ENVIRON	N SOAK 1 2.5HR	TIME TEMP 150F	
WEIGHT & HARDNES SG	S DATA %VS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 1.205 SAMPLE 2 1.207 SAMPLE 3 1.209 SAMPLE 4 1.211 SAMPLE 5 1.209 AVERAGE 1.208	34.50 4.50 4.3	823319 121221	-7.0 -5.0 -5.0 -7.0 -6.0	1 . 0 0 . 0 1 . 0 2 . 0 1 . 2
FUEL DFM 10%AR BUNA 7	0 TENSIO	N SOAK 1 N 2.5HR	TIME TEMP	DRY TIME 7DAY
WEIGHT & HARDNES	%VS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 1.210 SAMPLE 2 1.212 SAMPLE 3 1.206 SAMPLE 4 1.208 SAMPLE 5 1.205 AVERAGE 1.208	4.8 4.1 3.9	2150089 212211	-5.0 -4.0 -7.0 -8.0 -7.0 -6.2	1.0 0.0 -1.0 0.0 1.0 0.2
FUEL ELASTO DFM 10%AR BUNA 9	MER ENVIRON O COMP	N SOAK 1 2.5HR	TIME TEMP	DRY TIME 7DAY
WEIGHT & HARDNES	S DATA %VS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 1.319 SAMPLE 2 1.320 SAMPLE 3 1.318 SAMPLE 4 1.319 SAMPLE 5 1.317 AVERAGE 1.319	2.8 3.1 3.1	3.0	4.0 5.0 4.0 5.0 4.4	-1.0 1.0 0.0 -2.0 1.0 -0.2
FUEL ELASTO DFM 10%AR BUNA 9		N SOAK 1 2.5HR	TIME TEMP 150F	DRY TIME 7DAY
WEIGHT & HARDNES	S DATA %VS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 1.318 SAMPLE 2 1.320 SAMPLE 3 1.322 SAMPLE 4 1.322 SAMPLE 5 1.322 AVERAGE 1.321	2.9 2.0 4.0 89 6	2004472	7.0 3.0 5.0 6.0 4.0 5.0	-1.0 0.0 0.0 -1.0 0.0 -0.4

FUEL ELAS DFM 10%AR BUNA	TOMER ENVIRON 90 TENSION	SOAK TI 2.5HR	ME	TEMP 150F	DRY TIME 7DAY
WEIGHT & HARDN	ESS DATA G ZVS(WET)	%VS(DRY)	HC (WE	Τ)	HC (DRY)
SAMPLE 1 1.3 SAMPLE 2 1.3 SAMPLE 3 1.3 SAMPLE 4 1.3 SAMPLE 5 1.3 AVERAGE 1.3	3.9 16 4.6 17 2.9	1.9 2.4 1.6 1.9	4.0 3.0 4.0 5.0 4.0 4.0		0 · 0 0 · 0 0 · 0 -1 · 0 1 · 0 0 · 0
FUEL ELAS DFM 10%AR SILI	TOMER ENVIRON	SOAK TI 2.5HR	ME	TEMP 150F	DRY TIME 7DAY
WEIGHT & HARDN S	ESS DATA G %VS(WET)	%VS(DRY)	HC (WE)	Γ)	HC (DRY)
SAMPLE 1 1.5 SAMPLE 3 1.5 SAMPLE 4 1.5 SAMPLE 5 1.5 AVERAGE 1.5	05 29.1 10 32.8 10 31.8	28 . 9 25 . 4 27 . 8 27 . 6	-12.0 -12.0 -13.0 -13.0 -11.0 -12.2		-4.0 -7.0 -7.0 -6.0 -4.0 -5.6
FUEL ELAS DFM 10%AR SILI	TOMER ENVIRON	SOAK TI 2.5HR	ME	TEMP 150F	DRY TIME 7DAY
WEIGHT & HARDN	ESS DATA G %VS(WET)	%VS(DRY)	HC (WET	Γ)	HC (DRY)
SAMPLE 1 1.5 SAMPLE 2 1.4 SAMPLE 3 1.5 SAMPLE 4 1.5 SAMPLE 5 1.5 AVERAGE 1.5	99 48.5 07 49.1 08 64.7 89 45.5	45.4 44.0 43.6 40.9 46.7	-10.0 -11.0 -13.0 -11.0 -13.0 -11.6		-3.0 -5.0 -7.0 -7.0 -8.0 -6.0
FUEL ELAS	TOMER ENVIRON	SOAK TII 2.SHR	ME	TEMP 150F	DRY TIME 7DAY
WEIGHT & HARDN	ESS DATA G %VS(WET) ;	%VS(DRY)	HC(WET	.)	HC (DRY)
SAMPLE 1 1.5 SAMPLE 2 1.5 SAMPLE 3 1.4 SAMPLE 4 1.5 SAMPLE 5 1.5 AVERAGE 1.5	05 38.5 93 36.0 07 39.7 09 41.7	35.8 34.7 28.3 34.6 34.2 33.5	-10.0 -11.0 -10.0 -11.0 -12.0 -10.8		- 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5
FUEL ELAST DFM 10%AR EPR	TOMER ENVIRON COMP	SOAK TIM 2.5HR	1E	TEMP 150F	DRY TIME
WEIGHT & HARDNE		WUS(DRY)	HCCWET)	HC (DRY)
SAMPLE 1 1.20 SAMPLE 2 1.15 SAMPLE 3 1.15 SAMPLE 4 1.15 SAMPLE 5 1.20 AVERAGE 1.15	79 43 1 76 43 1 75 42 3 11 52 1	36.3 42.4 43.4 42.3 51.0 43.1	1.0 -1.0 -2.0 -1.0 -1.0		-9.0 -11.0 -11.0 -11.0 -12.0 -10.8

FUEL ELASTOM DFM 10%AR EPR	ER ENVIRON FREE	SOAK 1 2.5HR	TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT & HARDNESS SG	DATA ZVS(WET)	%VS(DRY)	HC (WE	т)	HC (DRY)
SAMPLE 1 1.200 SAMPLE 2 1.198 SAMPLE 3 1.199 SAMPLE 4 1.200 SAMPLE 5 1.200 AVERAGE 1.199	79.1 84.1 73.5 85.2 76.0 79.6	77 . 4 80 . 9 69 . 7 81 . 0 73 . 1 76 . 4	-4.0 -1.0 -2.0 -4.0 -1.0		-13.0 -11.0 -12.0 -13.0 -10.0 -11.8
FUEL ELASTOM DFM 10%AR EPR	ER ENVIRON TENSION	SOAK T 2.5HR	IME	TEMP 150F	DRY TIME 7DAY
WEIGHT & HARDNESS SG	DATA %VS(WET) %	(US(DRY)	HC (WE)	Γ)	HC(DRY)
SAMPLE 1 1.201 SAMPLE 2 1.201 SAMPLE 3 1.206 SAMPLE 4 1.202 SAMPLE 5 1.202 AVERAGE 1.202	69 1 75 0 98 5 74 7 64 6 76 4	67.1 73.6 95.1 70.5 63.2 73.9	-2.0 -3.0 -6.0 -5.0 -9.0 -5.0		-12.0 -13.0 -10.0 -11.0 -15.0 -12.2
FUEL ELASTOM DFM 10%AR VITON	ER ENVIRON COMP	SOAK T 2.5HR	IME	TEMP 150F	DRY TIME 7DAY
WEIGHT & HARDNESS SG	DATA %VS(WET) %	(VS(DRY)	HC (WET	T)	HC (DRY)
SAMPLE 1 1.851 SAMPLE 2 1.850 SAMPLE 3 1.849 SAMPLE 4 1.849 SAMPLE 5 1.848 AVERAGE 1.849	4.3 6.8 6.6 2.8 3.6 4.8	0 6 0 9 0 9 0 9 1 0	2.0 1.0 4.0 2.0 4.0 2.6		
FUEL ELASTOM DFM 10%AR VITON	ER ENVIRON FREE	SOAK T 2.5HR	IME	TEMP 150F	DRY TIME 7DAY
WEIGHT & HARDNESS SG	DATA ZVS(WET) %	(VS(DRY)	HC (WET	T)	HC (DRY)
SAMPLE 1 1 845 SAMPLE 2 1 844 SAMPLE 3 1 845 SAMPLE 4 1 851 SAMPLE 5 1 848 AVERAGE 1 847	2.7 2.18 2.8 2.2 2.5	-0.7 0.0 0.0 0.5 0.2 0.0	1.0 0.0 0.0 0.0 2.0		-7.0 -8.0 -8.0 -8.0 -5.0 -7.2

FUEL DFM 10%AR	ELASTOME!	R ENVIRON TENSION		TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS S	DATA ZVS(WET)	%VS(DRY)	HC(WET)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.837 1.830 1.834 1.776 1.847 1.825	1.633520 1.3520 1.32	-0.3 -0.6 -0.4 -0.2 -0.5	3.0 1.0 1.0 5.0 -1.0 1.8	7.0 -8.0 9.0 -4.0 9.0 7.4
FUEL DFM 10%AR		COMP	SOAK 1 2.5HR	TIME TEMP	DRY TIME 7DAY
WEIGHT A	HARDNESS J SG 7	DATA 4VS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 .266 1 .262 1 .265 1 .265 1 .265 1 .264	4,2 3,9 4,0 5,9 4,4 4,1	4.6 0.8 0.9 0.2 0.5 1.4	-3.0 0.0 0.0 -1.0 1.0	0 : 0 0 : 0 1 : 0 1 : 0 0 : 6
FUEL DFM 10%AR	ELASTOMEI AZOO	R ENVIRON FREE	SOAK 1 2.5HR	TME TEMP	DRY TIME 7DAY
WEIGHT A	HARDNESS)	DATA ZVS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 266 1 269 1 270 1 270 1 269 1 269	4 : 8 1 : 3 4 : 8 4 : 7 4 : 8 4 : 1	0.5 0.9 0.1 0.3 0.0	0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0	2:0 -1:0 2:0 0:0 0:0
FUEL DFM 10%AR	ELASTOME! AZOO	R ENVIRON TENSION		THE TEMP	DRY TIME 7DAY
WEIGHT &	HARDNESS)		%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.274 1.274 1.275 1.277 1.277 1.275	5 - 2 5 - 4 5 - 7 5 - 7 5 - 7 5 - 7 5 - 7 5 - 7	0.9 1.1 1.7 0.8 1.1	0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0	1 0 0 0 • 1 0 22 0 0 0

SHORE A HARDNESS WITH BYCYCLIC DFM (SOAK TEMP = 75°F TIME = 24HR)

SHORE A HARDNESS WITH BYCYCLIC DFM (SOAK TEMP = 75°F TIME = 72HR)

SHORE A HARDNESS - BYCYCLIC DFM (SOAK TEMP = 150°F TOFT - FREE)

SHORE A HARDNESS - BYCYCLIC DFM (SOAK TEMP = 150°F TOFT - TENSION)

SHORE A HARDNESS - BYCYCLIC DFM
'(SOAK TEMP = 150°F TOFT - COMPRESSION)

FUEL BYCYCLIC		ER ENVIRON FREE	I SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (W	ET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.765	3.3 -0.5 1.4	0.0 -3.1 -1.5	6. 7. 6.	0	-2.0 -5.0 -3.5
FUEL BYCYCLIC	ELASTOMI VITON	IR ENVIRON FREE	N SOAK ZZHR	TIME	TEMP 750	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC CW	ET)	RC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		1 8 3 . 0 2 . 4	-6.1 -8.4 -7.2	3 4 3.	0	2 . 0 -1 . 0 0 . %
PUTL BYO76LIS		R ENVIRON FREE	SOAK 24HR	TIME	TEMP 75F	ORY TIME "DAY
WEIGHT &	HARDNESS SG	DATA ZVS(WET)	%VS(DRY)	HCCW	ET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		5.3 4.9 5.1	0 3 1 . 6 0 . 9	-3. 0 -1.	0	~3 0 -1 0 2.0
FUEL BYCYCLIC		TR ENVIRON FREE	SOAK TEHR	TIME	TEMF 75F	DRY TIME ZDAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (W	ET)	BC (DF))
SAMPLE 1 SAMPLE 2 AVERAGE		6.8 7.4 7.1	-5.4 -8.0 -6.7	1. 0. 0.	0	4 0 3 0 3 5
EUEL BYCYCLIC	FLASTOME NITRILE	R ENVIRON FREE	SOAK 24HR	TIME	7 FMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		%US(DRY)	HC (W	ET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.214 1.222 1.218	1 : 3 1 : 3 1 : 3	-3 0 -2 0 -2.5	1 0 0	0	1.0 2.0 2.0 2.5

	ELAST OME NITRILE	R ENVIRON FREE	SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HAR DNESS SG	DATA %VS(WET)	XVS (DRY)	HC (WE	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.208 1.219 1.214	8 : 5 8 : 1 8 : 3	-7.2 -7.3 -7.3	1 . 0 2 . 0 1 . 9)	3 · 0 - i · 0 - i · 0
BACACLTI UNEI		ENUTRON FREE	90AK 24HR	TTMI	TEMP ZUF	DRY TIME
WILLIAM A	HARDNESS :	0ATA &95(WET) ;	XVS(DRY)	HC (WE	T)	PU (ֆႼŸ)
SAMP.L 1 GAMPLE 2 AVERAGE	1 264 1 247 1 256	4 1 3 (i 3 5	-1 0 -0 3 -0 6	~1.0 ~2.0 ~1.5		1 () 1 () 1 ()
	1 '. a.a. (amii f ea.200	FRUIRON FRUIRON	90 AK 72HR	TIME	Salt. LUMb	ORY TIME "PAY
130 14.111 2	HARDMESS 1 SG :	DATA KUS(WET) :	ZVS (DRY)	HC (WE	γ)	Hr. (DKA)
SAMPLE 1 SAMPLE 2 AULRAGI		8.2 9.7 8.9	-4.7 -3.9 -4.3	-2 0 -2 0 -2 0		(P = 0 1 = 0 1 = 5
Fin E	FL 3% f ()hE) N674-7	COVIRON FREE	50AK 24HR	TIME	75mi 75F	984-11mb 2064
WETCHT A	HOPONESS :	DATA XVS(WET)	%VS(DRY)	нс сме	ľ)	HC (DRY)
SAMPLE 2	1 236 1 224 1 230	3.1 3.9 2.5	-2 0 -2 8 -2 4	-2 0 1 0 -0 5		+ 2 . 0 • 0 • 0 • 0
CUEL RYCYCLIU		R ENVIRON FREE	50∆ K ∀2 M R	TIME	TEMP TSF	DRY TIME PDAY
WEIGHT &	HARDNESS 1	DATA ZVS(WET)	%VS CDRY)	HC (WE	1)	HC (DRY)
CAMPLE 1 CAMPLE C AVERAGE	1 235 1 232 1 233	7.9 6.6 7.3	-6 0 -5,5 -5,8	0 0 0 0 0 0		i 0 0 0 0 °5

	ELASTOME BUNA 70	ER ENVIRON FREE	N SOAK 24HR		TEMP 25F	
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (W	JET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		5.3 6.4 5.8	0 . 2 1 . 5 0 . 8		0	···10 0.0 ···0.5
	FLASTOME BUNA 70	R ENVIRON FREE	N SOAK 72HR	TIME.	TEMP 256	DRY TIME TDAY
WEIGHT &	HARDNESS SG	DATA %US(WET)	%VS (DRY)	HC (W	ET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1 182	1.6 2	-0.3 -2.9 -1.6	2 . 1 . 1	0	3 N 2 0 2 %
TULL BYCYCLEU	ELASTOME BUNA 90	R ENUTRON FREE	N SOAK 24HR	TIME	TEMP 256	DRY TIME ZDAY
WEIGHT A	HARDNESS SG	DATA %VS(WFT)	%VS (DRY)	HC CW	ET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1 247 1 245 1 246	2.7 i 6 2.2	0 . 6 -0 . 6 0 . 0	6 7 . 6 .	0	~ % ; 0 ~4 ; 0 ~4 ; %
	ELASTOME JUUAN 90	R ENVIRON FREE	90AK 72HR		TEMP 25F	
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (W	ET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	i 27 4 i 265 i 276		4.7 1.3 3.0	-6. 0 -3.	0	0 0 1 0 0 5
FUFL BYCYCLIC	ELASTOME S.H. TCONE		N SOAK 24HR	TIME	TEMP 25F	DRY LIME ZDAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (W	E.T.)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1 339 1 377 1 358	46 : 3 48 : 2 47 : 5	35.5 39.1 37.3	-2. -2.	0	0 : 0 -1 : 0 -0 -5

FUEL BYCYCLIC	ELASTOMER SILICONE		SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS DA SG %V	TA S(WET)	ZVS(DRY)	HC (WE	Т)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.251	54.0 65.0 59.5	37.2 46.6 41.9	0.0 1.0 0.5		2 . 0 1 . 0 1 . 5
FUEL BYCYCL TO	A. C. C. C. C. C. S. C.	ENVIRON FREE	S0AK 9H85	TIME	TEMP 75F	DET TIME 2DAY
WETCHT &	HAPDNESS DA 86 %V		% V S (DRY)	HC (WE	1)	PC (DR4)
SAMPLE : SAMPLE : AUERAGI	i 378 i	11 8 18 3 15 0	93 5 i01 7 97 6	1 0 .7 0 -1 5		u fi - 3 - 9 - 1 - 5
GACACL IC	ELACTOMER EDR	EPUIRON CREE	50Ak 22.24程	TIMIT	ordi Lown	647 Y († † 341) 1077 T
em (em) &	HAPPNESS DA SG %V		%VS(DRY)	HC (WE	1)	MC+DKY+
SAMPLE 1 SAMPLE 2 AVERAGE	1 164 1	12.4 15.3 13.9	91 4 93 6 92 5	-1.0 -2.0 -1.5		1,7 11 1 0 1 5
FUEL BYCYCLIC	ELASTOMER SR	ENVIRON COMP	SOAK 2.5HR		TEMP 1500	DRY TIME
WEIGHT &	HARDNESS DA SG %V	TA S(WET)	%VS(DRY)	HC (WE	r)	Ht (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 260 1 255 1 260 1 265 1 269 1 262	7.7 7.9 8.5 11.3 9.3 8.9	5.0 5.5 4.7 4.9 6.6 5.3	0 . 0 0 . 0 0 . 0 0 . 0 0 . 0		2 0 3 0 0 0 0 0 1 0 1 . 2

FUEL BYCYCLIC	ELASTOMER SR	ENVIRON FREE	N SOAK T 2.5HR	IME TEMP 150F	
WEIGHT &	HARDNESS D SG %		%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.249 1.255 1.254	11.3 9.4 9.5 10.6 10.9	8.8 7.6 6.6 6.8 7.6 7.5	0 : 0 0 : 0 0 : 0 0 : 0 0 : 0	1.0 i.0 i.0 2.0 i.0 0.8
FUCL BYCYCL FC		EMVIRON TENSION	V 50AK T V 2 SHR	JME TEMP 150F	
WEIGHT &	HARTMESS D		%US(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 3 SAMPLE 5 AVERAGE	1.257 1.257 1.250	9.7 11.3 10.3 13.3 13.8 11.7	6.9 8.8 6.7 6.8 6.7 7.2	0 0 0 0 0 0 0 0 0 0 0 0	1.0 3.0 1.0 1.0 0.0 1.2
FUL) BYUYCLIC	LLASTOMER N219-7	ENVIRON COMP		IME TEMP	DRY TIME PDAY
WEIGHT &	HARDNESS D SG %		%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	i . 252 i . 246	6.5 8.8 5.6 7.6 6.5 7.0	2 7 3.9 4.4 5.6 4.8 4.3	-4 0 -1:0 -2:0 -2:0 0:0 -1:8	
BACACTIO ERF	ELASTOMER N219-7	ENVIRON FREE	U 50AK T: 2∵SHR	EME TEME 150F	DRY TIMI ZDAY
WEIGHT &		ATA VS(WET)	%VS (DRY)	HC (WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 244 1 246 1 245 1 250 1 248 1 247	8.9 10.3 10.3 8.5 9.2 2.4	7 2 7 8 8 0 6 4 7 3 7 3	-2.0 -3.0 -6.0 -1.0 -3.0	1

FUEL BYCYCLIC	ELASTOME N219-7	ER ENVIRON TENSION		TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WET	•	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.251 1.252 1.249 1.253 1.254 1.252	8.5 9.7 9.7 8.8 8.9 9.1	6.8 8.3 7.4 3.2 7.3 6.6	-1.0 -3.0 -4.0 -4.0 -2.0 -2.8		0.0 0.0 0.0 0.0 i.0
FUEL BYCYCLIC	ELASTOME EPR	ER ENVIRON COMP	N SOAK T 2.5HR	TME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA ZVS(WET)	%US(DRY)	HC (WET	`}	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.182 1.193 1.194	40.1 35.9 43.6 39.5 42.1 40.2	36.8 30.6 36.9 35.7 39.4 35.9	-8.0 -8.0 -13.0 -6.0 -6.0 -8.2		-10.0 -6.0 -12.0 -9.0 -8.0 -9.0
FUEL BYCYCLIC	ELASTOME EPR	ER ENVIRON FREE	N SOAK 1 2.5HR		TEMP 150F	DRY TEME VDAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC (WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 188 1 192 1 190 1 189 1 194 1 190	64.8 67.1 64.1 64.4 99.9 72.1	57.3 60.3 58.0 58.8 91.7 65.2	-9.0 -8.0 -12.0 -10.0 -11.0 -10.0		-10 0 -7.0 -13.0 -10.0 -8.0 -9.6
FUEL BYCYCL IC	ELASTOME EPR	R ENVIRON TENSION			TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		ZVS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.191 1.185 1.189 1.192 1.185 1.188	67.6 55.6 61.4 61.9 72.5 63.8	61.6 53.6 57.3 56.2 64.9 58.7	-12.0 -9.0 -8.0 -11.0 -9.0 -9.8		-1.3.1/ -8.0 -7.0 -8.0 -8.0 -8.8

FUEL BYCYCLIC	ELASTOMER VITON	ENVIROM COMP	N SOAK T 2.5HR		TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS DA	ATA VS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.831 1.819 1.824 1.814 1.824 1.822	3.8 5.5 2.4 2.0 3.0 3.4	1.8 1.5 1.9 1.2 2.0 1.7	1.0 0.0 1.0 1.0 0.0		4.0 -1.0 -3.0 1.0 -1.0 1.2
FUEL BYCYCLIC	ELASTOMER VITON	ENVIRO) FREE	N SOAK T 2.5HR		TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS DA	ATA VS(WET)	ZUS (DRY)	HCCWET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.822 1.824 1.827 1.834 1.816 1.824	2:8 0:3 1:7 1:3 0:8 1:4	1.8 2.1 2.2 2.2 1.6 2.0	0.0 0.0 1.0 1.0 1.0		0.0 2.0 2.0 2.0 2.0 1.0
FUEL BYCYCLIC WEIGHT &	ELASTOMER VITON HARDNESS DA	ENVIRON TENSION			TEMP 150F	DRY TIME 7DAY
		VS(WET)	%VS(DRY)	HC (WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.822 1.818 1.820 1.815 1.820 1.819	3.1 0.5 5.1 0.6 1.1 2.1	1.8 1.6 2.3 1.6 1.8	0.0 0.0 1.0 -1.0 1.0		0.0 -2.0 1.0 -2.0 2.0 -0.2

BACACTIC EAET	ELASTOMER A700	ENVIRON COMP	SOAK T 2.5HR	IME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS DA		(VS(DRY)	HC (WE)	Γ)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.258 1.255 1.252 1.253 1.248 1.253	5.6 6.3 6.0 6.6 7.4 6.4	3.0 3.2 3.4 3.3 3.9 3.4	-1.0 -2.0 -1.0 0.0 -1.0 -1.0		0 : 0 -2 : 0 -1 : 0 0 : 0 -1 : 0 -0 : 8
FUEL BYCYCLIC	ELASTOMER A200	ENVIRON FREE	SOAK T 2.5HR	IME:	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS DA		(VS(DRY)	HC(WE)	r)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.250 1.248 1.247 1.248 1.247 1.248	10.2 8.8 8.3 8.2 9.1 8.9	6.1 5.9 5.7 4.8 6.1 5.7	0.0 -2.0 -1.0 0.0 1.0 -0.4		0.0 -2.0 -2.0 0.0 0.0 -0.8
FUEL BYCYCLIC	ELASTOMER AZOO	ENVIRON TENSION	SOAK T 2.5HR	IME	TEMP 150F	DRY TIME
WISJUHII &	HARDNESS DA		(US (DRY)	HC (WET	Γ)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.250 1.248 1.248 1.252 1.250 1.250	7.5 8.7 8.4 9.0 10.1 8.7	5.1 5.3 4.2 5.3 5.5	0.0 1.0 -1.0 0.0 -1.0 -0.2		1.0 0.0 -1.0 -1.0 0.0 -0.2

SHORE A HARDNESS - 400 PPM NITROGEN DFM (SOAK TEMP = 75°F SOAK TIME - 24 HR)

SHORE A HARDNESS - 400 PPM NITROGEN DFM (SOAK TEMP = 75°F SOAK TIME = 72 HR)

SHORE A HARDNESS - 400 PPM NITROGEN DFM (SOAK TEMP = 150°F TOFT - FREE)

SHORE A HARDNESS - 400 PPM NITROGEN DFM (SOAK TEMP = 150°F TOFT - TENSION)

SHORE A HARDNESS - 400 PPM NITROGEN DFM (SOAK TEMP = 150°F TOFT - COMPRESSION)

FUEL	ELASTOME	ER ENVIRO	N SOAK	TIME	TEMP	DRY TIME
NITR.DFM	VITON	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	ET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.783 1.796 1.790	-2.3 -3.0 -2.6	-2.3 -2.6 -2.5	-2.(-1.(-1.5	כ	0 . 0 0 0 0 . 0
FUEL	ELASTOME	ER ENVIRO	N SOAK	TIME	TEMP	DRY TIME
NITR.DFM	VITON	FREE	72HR		75F	7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	ET)	HC (DRY)
SAMPLE 1	i.780	1 . 8	0.5	-2.()	-1.0
SAMPLE 2	i.791	2 . 0	1.2	-2.(0.0
AVERAGE	i.785	1 . 9	0.8	-2.(-0.5
FUEL	ELASTOME	ER ENVIRO	N SOAK	TIME	TEMP	DRY TIME
NITR.DFM	SR	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WE	77)	HC (DRY)
SAMPLE 1	1.240	-0.2	-0.6	0 . 0)	0 . 0
SAMPLE 2	1.249	-4.7	2.4	0 . 0		0 . 0
AVERAGE	1.244	-2.4	0.9	0 . 0		0 . 0
FUEL	ELASTOME	ER ENVIRO	N SOAK	TIME	TEMP	DRY TIME
NITR DFM	SR	FREE	72HR		75F	7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	T)	HC (DRY)
SAMPLE 1	1.231	1 . 1	-1.0	0.0	1	0 . 0
SAMPLE 2	1.232	1 . 4	-2.4	0.0		0 . 0
AVERAGE	1.232	1 . 3	-1.7	0.0		0 . 0

FUEL NITR.DFM	ELASTOMI NITRILE	ER ENVIRO	ON SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HCCI	JET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.221 1.225 1.223	-6.0 -7.2 -6.6	-5.4 -5.3 -5.3	0 0 0	. 0	0 . 0 0 . 0 0 . 0
FUEL NITR.DFM	ELASTOME NITRILE	ER ENVIRO FREE	N SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	ZUS (DRY)	HC(L	JET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.212 1.215 1.213	-2.4 -0.3 -1.3	-4,9 -2,2 -3,5	0. 0. 0.	0	0 . 0 0 . 0 0 . 0
FUEL NITR.DFM	ELASTOME A700	R ENVIRO	N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (W	ET)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.242 1.223 1.232	-5.6 -7.5 -6.6	-2.1 -4.7 -3.4	3. 2. 2.	0	0.0 0.0 0.0
FUEL NITR.DFM	ELASTOME A700	R ENVIRON FREE	N SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &		DATA %VS(WET)	%VS(DRY)	HC(W	ET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.223 1.212 1.217	-0.9 0.6 -0.2	-4 1 -3 6 -3 8	2. 3. 2.	0	0 . 0 0 . 0 0 . 0

FUEL NITR.DFM	ELASTOME N674-7	ER ENVIRON FREE	N SOAK 24HR	TIME	TEMP 75F	DRY TOME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		-3.2 -5.8 -4.5	-1.9 -3.3 -2.6	4.0 3.0 3.5		0 : 0 3 : 0 i : 5
FUEL NTTR.DFM	ELASTOMI N674-7	ER ENVIRON FREE	N SOAK 72HR	TIME	TEMP 75F	DRY TIME ZDAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%US(DRY)	HC (WE	Τ)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		2 : 1 3 : 2 2 : 7	-2.6 -2.3 -2.4	2.0 3.0 2.9		0 0 0 0 0 0
FUEL NITR.DFM	ELASTOME BUNA 70	ER ENVIRON FREE	N SOAK 24HR	TIME	TEMP 25F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WE	T)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1 211 1 198 1 205	1.7 1.6 0.1	0.8 1.9 1.3	79.0 -1.0 39.0		80 0 0 0 40 0
FUEL NITR.DFM	ELASTOME BUNA 70	ENVIRON FREE	SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	т)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.201 1.218 1.210	4.3 5.5 4.9	2.6 2.2 2.4	-1.0 -1.0 -1.0		0 0 -1 0 -0:5

FUEL NITR.DFM	ELASTOM BUNA 90	R ENVIRON	N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HAR DNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	T)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.230 1.239 1.235	-5.7 -5.7 -5.7	-3.5 -3.5 -3.5	0 . 0 0 . 0 0 . 0		0 . 0 0 . 0 0 . 0
FUEL NITR.DFM	ELASTOMI BUNA 90	ER ENVIRON FREE	N SOAK 72HR	TIME	TEMP 25F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC (WE	Τ)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.232 1.250 1.241	1.7 3.3 2.5	-0.5 -0.5 -0.5	0 . 0 0 . 0 0 . 0		0 . 0 0 . 0 0 . 0
FUEL	ELASTOME			TIME	TEMP	DRY TIME
WEIGHT &	SILICON HARDNESS SG		24HR %VS(DRY)	HC (WE	75F T)	7DAY HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	i. 354 i. 259 i. 307	65.8 57.9 61.9	50.2 57.6 53.9	-7.0 -7.0 -7.0		-7.0 -7.0 -7.0
FUEL NITR.DFN	ELASTOME SILICONE		V SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WE	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.333 1.395 1.364	53.2 62.2 57.7	48.3 57.8 53.1	-8.0 -9.0 -8.5		8.0 -9.0 -8.5

FUEL NITR.DFM	ELASTOME EPR	R ENVIRON FREE	N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%US(DRY)	HC (WE	т)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.176 1.163 1.170	113.9 109.2 111.6	112.3 110.5 111.4	-4.0 -5.0 -4.5	·	-4.0 -5.0 -4.5
TUEL NITE DEM	ELASTOME EPR	R ENVIRO FREE	N SOAK 72HR	TIME	TEMP 25F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	т)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1 189 1 168 1 179	119.2 117.3 118.3	113.0 111.8 112.4	-5.0 -5.0 -5.0		-5.0 -5.0 -5.0
FUEL NUTE DEM	ELASTOMI SR	ER ENVIRO COMP	N SOAK 2 SHF	TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA ZVS(WET)	%US(DRY)	HC (WE	т)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.279 1.266 1.269 1.272 1.272	5.1 4.3 4.0 5.7 4.9	3.6 1.7 1.5 3.4 3.7 2.8	1.0 -3.0 0.0 2.0 0.0		-1 0 -2 0 -1 0 0 0 0 0 -3 3
FUEL NITR.DFM	FLASTOM SR	ER ENVIRO FREE	N SOAK 2 SHF	TIME ?	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%US(DRY)	HC (WE	т)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 275 1 270 1 261 1 262 1 264 1 266	655136 6555555	35221223	-2 0 0 0 -2 0 1 0 -1 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FUEL NITR.DFM	ELASTOMER SR	R ENVIRON TENSION	SOAK T 2.5HR	IME TE	MP DRY TIME OF 7DAY
WEIGHT &	HARDNESS I	DATA LVS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 . 260 1 . 261 1 . 268 1 . 262 1 . 265 1 . 263	905759 266585	00000100 00000100	0.0 -1.0 0.0 1.0 1.0	9 : 0 -1 : 0 2 : 0 0 : 0 0 : 6
FUEL NITR.DFM	ELASTOMER N219-7	R ENVIRON COMP	SOAK T 2.5HR	IME TEI	
WEIGHT &	HARDNESS I	ATA (VS(WET)	ZVS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.274 1.267 1.273 1.272 1.273 1.272	9.7 4.5 6.0 55.8	1236078	-1.0 2.0 2.0 1.0 0.0	2.0 3.0 2.0 2.0 -1.6
FUEL NITR.DFM	ELASTOMER N219-7	R ENVIRON FREE	SOAK T 2.5HR	IME TEN	MP DRY TIME DF 7DAY
WEIGHT &		DATA 4VS(WET)	ZVS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.277 1.271 1.274 1.283 1.279 1.277	7.42857 65555555	2.7 1.1 3.4 4.3 3.8 3.1	0.0 0.0 -1.0 1.0 -2.0 -0.4	3.0 1.0 1.0 2.0 -2.0 1.0
FUEL NITR.DFM	ELASTOMER N219-7	R ENVIRON TENSION	SOAK T 2.5HR	IME TEI	
WEIGHT &)ATA 2VS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 277 1 276 1 271 1 272 1 275 1 274	8502904 55558725	3334287 264287	0.0 -3.0 -2.0 -1.0 -2.0 0.0	1 · 0 1 · 0 3 · 0 1 · 0 4 · 0 2 · 0

FUEL NITR.DFM	ELASTOME EPR	R ENVIRON	SOAK 2.5HR	TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HAR DNESS SG	DATA %VS(WET) 7	(VS(DRY)	HC (WE"	Γ)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 199 1 190 1 203 1 207 1 203 1 200	45.9 41.1 46.6 54.4 45.2 46.6	41.9 37.3 42.7 48.0 39.8 42.0	-4.0 -7.0 -7.0 -7.0 -6.0 -6.2		-3.0 -4.0 -3.0 -6.0 -1.0 -3.4
FUEL NITR.DFM	ELASTOME EPR	R ENVIRON FREE	50 A K 2 . SHR	TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	Τ')	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 5 AVERAGE	1 207 1 202 1 205 1 206 1 208 1 206	75 8 76 6 74 8 87 4 76 3 78 2	71.7 72.3 67.5 82.8 75.0 73.8	-6.0 -7.0 -11.0 -6.0 -8.0 -7.6		5.0 -3.0 6.0 -3.0 -6.0 -4.6
FUEL NITR DFM	ELASTOME EPR	R ENVIRON TENSION			TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA ZVS(WET)	%VS(DRY)	HC (WE	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 5 AVERAGE	1.323 1.309 1.323 1.329 1.329 1.325	1.55.6 1.43.6 1.61.8 1.61.0 1.52.9 1.55.0	154.2 140.8 158.3 158.9 150.8 152.6	-6.0 -8 0 -7.0 -6.0 -6.0		-5.0 -7.0 -5.0 -3.0 -4.0 -4.8
FUEL NITR DEM	ELASTOME VITON	R ENVIRON COMP	SOAK 2.5HR	TIME	TEMP 150F	DRY TIME ZDAY
WEIGHT &	HARDNESS SG	DATA ZVS(WET)	%VS(DRY)	HC (WE	T)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1,834 1,831 1,826 1,834 1,830 1,831	4.2 1.7 1.0 2.0 2.0 2.2	0.5 0.4 -0.0 1.0 0.7 0.5	5.0 5.0 7.0 4.0 6.0 5.4		4 0 2 0 4 0 2 0 4 0 3 2
FUEL NITE DEM	ELASTOME VITON	R ENVIRON FREE	50AK 2.5HR	TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	ZVS(DRY)	HC (WE)	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 . 835 1 . 833 1 . 827 1 . 829 1 . 831 1 . 831	1.8 1.6 1.6 1.9 1.5 1.7	0.5 0.8 0.6 0.4 0.9 0.6	0 : 0 0 : 0 6 : 0 4 : 0 4 : 0 2 : 8		3 0 3 0 6 0 5 0 3 0 4 0

FUEL NITR.DFM	ELASTOME VITON	ER ENVIRON TENSION	SOAK 2.5HR	TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA ZVS(WET)	%VS(DRY)	HC (WE	ET)	HC (DRY)
SAMPLE 1 SAMPLE 3 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.835	1.4 1.5 1.3 2.1 1.6	0.8 -0.1 -0.4 -0.4 -0.6 -0.2	4.0 25.0 15.0 3.4)))))	6.0 4.0 5.0 5.0 4.0 4.8
FUEL NITR.DFM	ELASTOME A700	R ENVIRON COMP	90AK 1 2.5HR	TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET) :	ZVS(DRY)	HC (WE	1)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 . 263 1 . 265 1 . 263 1 . 263 1 . 269 1 . 265	4 . 5 4 . 4 3 . 9 4 . 4 4 . 3	1.7 1.7 1.7 1.7 2.3 1.9	3.0 3.0 -1.0 1.0 3.0 1.8		7 0 8 0 2 0 5 0 5 0 5 4
FUEL NITR.DFM	ELASTOME A700	R ENVIRON FREE	SOAK 1	TME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA ZVS(WET)	ZVS(DRY)	HC (WE	Т)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 . 264 1 . 272 1 . 271 1 . 266 1 . 272 1 . 269	5 . 4 6 . 5 6 . 6 6 . 6 6 . 2	35.0 6.0 6.5 5.5	1 0 2 0 -2 0 0 0 -1 0 0 0		7 . 0 5 . 0 3 . 0 6 . 0 7 . 0 5 . 6
FUEL NITR.DFM	ELASTOME AZOO	R ENVIRON TENSION	SOAK T 2 SHR	TME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA ZVS(WET)	ZUS (DRY)	HC (WE	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 .271 1 .264 1 .266 1 .265 1 .267 1 .266	5 . 8 6 . 7 6 . 5 6 . 3 6 . 4	35552 35552 35552 35552 35552	1 . 0 0 . 0 1 . 0 2 . 0 0 . 0 0 . 8		55 : 0 55 : 0 53 : 0 6 : 0 4 : 0

SHORE A HARDNESS - HIGH PEROXIDE DFM (SOAK TEMP = 75°F SOAK TIME = 24 HR)

SHORE A HAPDNESS - HIGH PEROXIDE DFM (SOAK TEMP = 75° F SOAK TIME = 72 HR)

SHORE A HARDNESS - HIGH PEROXIDE DFM (SOAK TEMP = 150°F TOFT - FREE)

SHORE A HARDNESS - HIGH PEROXIDE DFM (SOAK TEMP = 150°F TOFT - TENSION)

SHORE A HARDNESS - HIGH PEROXIDE DFM (SOAK TEMP = 150°F TOFT - COMPRESSION)

FUEL PEROX.DFM	ELASTOME VITON	ER ENVIROI FREE	N SDAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT & I	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	Т)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.949 1.871 1.910	8.5 5.8 7.2	5.7 2.3 4.0	12.0 11.0 11.5		18.0 17.0 17.5
FUEL PEROX DFM		ER ENVIRON FREE	N SOAK 72HR	TIME	TEMP 25F	DRY TIME 7DAY
WEIGHT & (HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	т)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.896 1.885 1.890	7.4 7.0 7.2	3.9 2.8 3.3	3.0 11.0 7.0		7.0 10.0 8.5
FUEL PEROX.DFM	ELAST OM E SR	FR ENVIRON FREE	₹ \$0AK 24HR	TIME	TEMP 75F	DRY TIME ZDAY
WEIGHT & 4	HARDNESS SG	DATA %VS(WET)	%US(DRY)	HC (WE	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1 273 1 289 1 281	2.9 4.1 3.5	0 . 3 0 . 3 0 . 3	6.0 2.0 4.0		11:0 12:0 11:5
FUEL PEROX.DEM	ELASTOME SR	ER ENVIRON	N SOAK 72HR		TEMP 75F	DRY TIME 7DAY
WEIGHT &)	HAR DNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WE	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.290 1.289 1.289	7 0 2 : 5 4 : 8	0.2 -0.7 -0.3	7.0 6.0 6.5		9:0 10:0 9:5

FUEL PEROX.DFM	ELASTOMI NITRILE	ER ENVIRON FREE	N SOAK 24HR	TIME	TEMP 25F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC (WE	T)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.334 1.325 1.330	9.0 5.2 7.1	3.3 3.1 3.2	6.0 6.0 6.0		14.0 12.0 15.5
FUEL Perox dem		ER ENVIRON	90AK 72HR	TIME	TEMP 25F	ORY TIME 7DAY
WEIGHT &	HAK ONESS SG	DATA %VS(WET)	%US (DRY)	HC (WF	Т)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1 324 1 313 1 319	12.9 8.5 10.7	1.3 1.4 1.3	11.0 8.0 9.5		1.2.0 8.0 1.0.0
FUEL PEROX DEM	ELASTOME A700	ER ENVIRON FREE	SOAK 24HR	TIME	TEMP 756	DRY TIME ZDAY
METCHT &	HARDNESS SG		%VS(DRY)	HCCWE	r)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1 . 41.1 1 . 37.4 1 . 39.2	15.0 11.7 13.4	9. 1 7.3 8.2	4 : 0 4 : 0 4 : 0		1.2 0 10 0 11.0
TUEL PEROX DEM	ELASTOME A200		4 SOAK 72HR		TEMP 75F	DRY TIME 7DAY
WETCHE &)	HARDNESS SG	DATA %VS(WFT)	%VS(DRY)	HC (WE	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1 350 1 356 1 353	13.5 13.6 13.5	4.9 4.9 4.9	11.0 13.0 12.0		1.4 0 1.0 0 1.0 S

FUEL PEROX.DFM	ELASTOME N674-7	ER ENVIRON FREE	SOAK 2 4HR	TIME	TEMP 25E	DRY TIME ZDAY
WEIGHT & H	ARDNESS SG		%VS(DRY)	HC (WE:	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.304 1.299 1.301	4,2 6.0 5. i	-0.7 -1.0 -0.8	7.0 5.0 6.0		11.0 13.0 12.0
FUEL PEROX DEM	ELASTOMI N674-7	ER ENVIRON FREE	SOAK 72HR	TIME	TEMP 75E	DRY TIME 7DAY
WEIGHT & I	HARDNESS SG		%VS(DRY)	HC (WE	τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.309 1.323 1.316	8.4 10.5 9.5	2.9 4.5 3.7	11.0 12.0 11.5		7 0 8.0 7.5
FUEL PEROX DEM	ELASTOM BUNA 70		90AK 24HR	TIME	TEMP 25F	DRY TIME ZDAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%US(DRY)	HC (WE	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.288 1.289 1.289	7.8 7.5 7.6	4.7 4.0 4.3	-1.0 4.0 1.5		7.0 14.0 10.5
	ELASTOM BUNA 70	ER ENVIRON FREE	N SOAK 72HR	TIME	TEMP 75F	DRY TIME "DAY
WEIGHT A	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	(T)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1 289 1 279 1 284	10.9 13.8 12.3	4 3 4 1 4 2	10.0 9.0 9.5		1.2.0 6.0 9.0

FUEL. Perox.dfm	ELASTOME BUNA 90	ER ENVIRON FREE	SOAK 24HR		TEMP DRY TIME 75F 7DAY
WEIGHT & F	HARDNESS SG		%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.330 1.351 1.340	8 4 10 4 9 4	5.0 5.0 5.0	3.0 0.0 1.5	7 : 0 7 : 0 7 : 0
FUEL PEROX.OFM		TR ENVIRON FREE	! 50AK 72HR		TEMP DRY TIME 25F ZDAY
WEIGHT A F		DATA		HC(WET)	
SAMPLE 1 SAMPLE 2 AVERAGE	1 375 1 369 1 372	14.5 14.3 14.4	9.9 9.2 9.5	4.0 3.0 3.5	4 : 0 5 : 0 5 : 0
FUEL PEROX DEM		ER ENVIRON E FREE	1 SOAK 24HR		TEMP DRY TIME. 25F 2DAY
WEIGHT & I	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WET)	HC CORY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.441 1.362 1.401	61.4 68.4 64.9	55.4 60.4 57.9	4.0 2.0 3.0	9 0 10 0 9 5
FUEL PEROX DEM	ELASTOMI STLICONI		√ 50AK 72HR		TEMP DRY TIME. 750 7DAY
WETCH! &	HAR DNESS SG	DATA %VS(WCT)	%US (DRY)	HC (WET)) HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1 428 1 414 1 421	61.6 59.1 60.4	51.6 50.3 51.0	8 0 17 0 10 0	1.1 0 3 0 9 5

FUEL PEROX.DFM	ELASTOM EPR	ER ENVIRO FREE	N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	ZVS(DRY)	HC (WE	ΞΤ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.257 1.262 1.260	129.7 131.4 130.5	121.1 119.5 120.3	4.(6.(5.()	0 : 0 1 : 0 0 : 5
FUEL PEROX DEM	ELASTOMI EPR	ER ENVIRO FREE	N SOAK 72HR	TIME	TEMP 25F	DRY TIME 2DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HCCWE	T)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.248 5.251 1.250	123.3 123.3 123.3	113.6 116.7 115.2	i0 .0 ii.0.0 i0 .9)	i.0.0 9.0 9.5
FUEL PEROK OFM	ELASTOM SR	ERVIRON COMP	Y SOAK 2 SHR	TIME	TEMP	pry Timi Zbay
WEIGHT & F	HARDNESS SG	DATA %VS(WET)	%US(DRY)	HC (WE	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 277 1 265 1 266 1 269 1 269 1 269	\$. 5 4 . 7 6 . 5 6 . 4	5 . 5 22 . 1 23 . 1 3 . 0 3 . 2	4 0 4 0 1 0 0 0 3 0 2 4		8 0 4 0 4 0 5 0 5 0
FUEL PUPDX: DEM	TLASTOME SR	ER ENUTRON	V SOAK 2∵SHR		TEMP 150F	DRY TIME 7DAY
₩8.16HY & 1	HAR DNESS SG	DATA %VS(WET)	%VS(DRY)	HOCWE	T)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 262 1 261 1 261 1 261 1 257 1 257	5 6 5 4 9 8 5 6 6	300 67 80 9 70 0	1.0 2.0 2.0 1.0 1.0		5 : 0 4 : 0 4 : 0 4 : 0 2 : 0 3 : 8

FUEL PEROX.DFM	ELASTOME SR	R ENVIRON TENSION	SOAK 2.5HR	TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT & I	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	ET)	HC (DRY)
SAMPLE 1 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 . 259 1 . 264 1 . 262 1 . 263 1 . 217 1 . 253	6.1 6.9 6.0 2.1 5.2	3.0 23.1 3.4 -0.2 2.4	1.0 -1.0 -1.0 2.0 1.0	}))	3.0 4.0 3.0 4.0 4.0 3.6
FUEL PEROX.DFM	ELASTOME N219-7	R ENVIRON COMP	SOAK 2.SHR	TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT & I	SG	%VS(WET)	%VS(DRY)	HC (WE	ET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 292 1 285 1 282 1 278 1 274 1 282	6.2 7.5 5.6 5.1 6.0	4.9 4.4 3.3 3.8 3.5 4.0	4 . (22 . (4 . (3 . ()) })	6.0 5.0 2.0 2.0 5.0 5.0
FUEL PEROX.DEM	ELASTOME N219-7	R ENVIRON FREE	SOAK 2.5HR	TIME	TEMP 150F	DRY TIME ZDAY
WEIGHT & 3	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	(T)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 273 1 267 1 273 1 268 1 268 1 270	5.3 5.5 5.6 4.8 5.3	3.9 3.6 4.2 4.4 3.5 3.9	3.0 2.0 4.0 2.0 2.6		7 0 6 0 8 0 6 0 7 0 6 8
FUEL PEROX.DFM	ELASTOME N219-7	R ENVIRON TENSION	SOAK 2. SHR	TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT & F		DATA %VS(WET)	%VS(DRY)	HC (WE	(T)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 . 275 1 . 271 1 . 268 1 . 272 1 . 274 1 . 272	5 · 1 6 · 0 4 · 4 5 · 2 5 · 2	4 . 1 4 . 2 3 . 1 3 . 6 3 . 8 3 . 8	4.0 3.0 4.0 3.0 3.4		6 : 0 7 : 0 7 : 0 8 : 0 7 : 0 7 : 0

FUEL PEROX.DFM	ELASTOMER SILICONE	ENVIRON COMP	SOAK TI 2.5HR	IME TE	
WEIGHT &	HARDNESS D SG %	ATA VS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 . 526 1 . 526 1 . 522 1 . 535 1 . 528	29 . 9 31 . 1 31 . 2 29 . 1 31 . 5 30 . 6	28 . 3 29 . 6 29 . 7 20 . 7 20 . 7 20 . 7	2.0 -4.0 -4.0 -5.0 -8	3 . 0 0 . 0 1 . 0 1 . 0 -1 . 0 0 . 8
FUEL PEROX.DFM	ELASTOMER SILICONE	ENVIRON FREE	SOAK TI 2.5HR	TME TE	
WEIGHT &	HARDNESS D SG %	ATA VS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1:527 1:526 1:527 1:530 1:532 1:532	47 0 45:5 46:1 47:1 55:6 48:3	45 0 41 9 44 0 45 0 53 5 45 9	-6.0 -8.0 -6.0 -6.0 -6.4	-2.0 -2.0 -2.0 -2.0 1.0 -0.6
FUEL PEROX.DFM	ELASTOMER SILICONE	ENVIRON TENSION	SOAK TO 2.5HR	TME TEN	MP DRY TIME OF TDAY
WEIGHT &	HARDNESS D SG %	ATA VS(WET)	%VS(DRY)	HC (WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.528 1.540 1.526 1.529 1.537 1.532	38.4 31.6 36.7 31.0 30.8 33.7	37 . 4 30 . 9 36 . 0 30 . 0 29 . 7 32 . 8	-6.0 -6.0 -5.0 -4.0 -7.0 -5.4	1 : 0 -1 : 0 -2 : 0 1 : 0 0 : 3
FUEL PEROX DEM	ELASTOMER EPR	ENVIRON COMP	SOAK TI 2 SHR	TME TE	
WEIGHT &	HAPDNESS D SG %	ATA VS(WET)	408(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 205 1 206 1 208 1 204 1 216 1 208	39.5 39.5 42.5 37.0 42.0 40.3	36.8 37.0 38.3 35.2 39.2 7.3	3 . 0 3 . 0 2 . 0 2 . 0 2 . 6	1 : 0 6 : 0 2 : 0 4 : 0 6 : 0 3 : 8

FUEL PEROX.DFM	ELASTOMER EPR	ENVIROI FREE	N SOAK T 2.5HR	IME	TEMP 150F	DRY TIME 7DAY
WEIGHT & F	HARDNESS DA	ATA VS(WET)	ZUS(DRY)	HC (WET	r)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.209 1.210 1.211 1.212 1.212 1.211	84.0 78.7 81.8 93.5 80.4 83.7	79 7 74 0 77 5 88 7 76 2 79 2	0.0 -3.0 -2.0 4.0 1.0		2 0 -4 0 -2 0 1 0 -1 0 -0 8
CUEL PEROX.DEM	ELASTOMER EPR	ENUTRON TENSION		IME	TEMP 150F	DRY TIME 7DAY
WEIGHT & F	HARDNESS DA	ATA VS(WET)	MVS(DRY)	HC (WET	r>	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.212 1.208 1.209 1.213 1.213 1.211	62.5 74.1 20.5 72.8 65.6 69.1	57 9 69 9 66 6 69 4 62 7 55 2	-2.0 -2.0 1.0 -3.0 2.0 -0.8		25.0 55.0 6.0 6.0 8.0 8.0
FUEL PEROX.DFM	LLASTOMER VITON	ENVIRON COMP	V SOAK T 2∵SHR	TME	TEMP 150F	DRY TIME 7DAY
WEIGHT & F		ATA VS(WET)	%VS(DRY)	HC (WET	`)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.847 1.845 1.842 1.839 1.838 1.842	2.89 2.98 1.7 2.6	0 · 1 0 · 8 0 · 6 0 · 7 0 · 7 0 · 7	-5.0 -5.0 -7.0 -2.0 -4.0 -4.6		0 : 0 -1 : 0 -1 : 0 0 : 0 0 : 0 -0 : 4
FUEL PEROX.DEM	ELASTOMER VITON	ENVIRON FREE	N SOAK T 2.5HR	IME	TEMP 150F	DRY TIME 7DAY
WEIGHT & F	HARDNESS D	ATA US(WET)	%VS(DRY)	HC CWET	۲)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 5 AVERAGE	1.843 1.841 1.838 1.840 1.833 1.839	1.9 1.6 3.0 1.7 1	0 . 4 0 . 5 0 . 1 0 . 0 8 . 3	-7.0 -7.0 -5.0 -5.0 -7.0 -6.2		-1.0 -1.0 -1.0 -1.0 -2.0 -1.0

FUEL PEROX.DFM	ELASTOME VITON	ER ENVIRON TENSION	SOAK 2.5HR	TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT & I	HARDNESS SG		ZVS(DRY)	HCCWE	Τ)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.846 1.843 1.845 1.832 1.838 1.841	32.27 0 8 1.9 3.3	0.9 0.1 0.4 -0.1 0.2 0.3	-5.0 -1.0 -5.0 -3.0 -5.0		0 : 0 -6 : 0 0 : 0 -1 : 0 0 : 0 -1 : 4
FUEL PEROX.DFM	ELASTOME AZOO	ER ENVIRON COMP	SOAK 2.5HR	TIME	TEMP 150F	DRY TOME ZDAY
WEIGHT &	HAR DNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	т)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.261 1.257 1.257 1.257 1.255 1.255	3 5 4 0 3 9 4 6 4 1	1.7 22.4 2.0 1.8	1.0 1.0 2.0 -1.0 0.0		4 : 0 4 : 0 6 : 0 4 : 0 3 : 0 4 : 2
FUEL PEROX.DEM	ELASTOME A700	ER ENVIRON FREE	SOAK 2.5HR	TIME	TEMP 150F	DRY TIME ZDAY
WEIGHT & I	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HCKWE	Т)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 254 1 253 1 254 1 254 1 257 1 254	5 . 2 5 . 3 4 . 2 3 . 3 4 . 5	2013019 2013019 2013019	-1.0 -1.0 -1.0 -1.0 -1.0 -1.0		2 0 3 0 3 0 3 0 5 0 5 2
FUEL PEROX.DEM	ELASTOME AZ00	R ENVIRON TENSION	SOAK 2.5HR	TIME	TEMP 150F	DRY TIME 7DAY
WEIGHT & I	IARDNESS SG	DATA ZVS(WET)	ZVS(DRY)	HC (WE:	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 . 252 1 . 260 1 . 268 1 . 258 1 . 258	3 2 4 7 4 1 3 8 4 3 4 0	2.57 23.1 22.7 22.7	-1 0 -3 0 -3 0 0 0 0 0 -0 6		3 0 5 0 4 0 4 0 4 0 4 0

SHORE A HARDNESS - 0.5% SULFUR DFM (SOAK TEMP = 75°F SOAK TIME = 24 HR)

SHORE A HARDNESS - 0.5% SULFUR DFM (SOAK TEMP = 75°F SOAK TIME = 72 HR)

SHORE A HARDNESS - 0.5% SULFUR DFM (SOAK TEMP = 150°F TOFT - FREE)

SHORE A HARDNESS - 0.5% SULFUR DFM (SOAK TEMP = 150°F TOFT - TENSION)

SHORE A HARDNESS - 0.5% SULFUR DFM (SOAK TEMP = 150°F TOFT - COMPRESSION)

FUEL	ELASTOME	R ENVIRON	SOAK	TIME	TEMP	DRY TIME
SULF.DFM	VITON	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC (WE	т)	HC (DRY)
SAMPLE 1	1.836	8.4	-0.8	-4.0		-9.0
SAMPLE 2	1.846	4.5	0.2	-4.0		-8.0
AVERAGE	1.841	6.4	-0.3	-4.0		-8.5
FUEL	ELASTOME	R ENVIRON	SOAK	TIME	TEMP	DRY TIME
SULF DFM	VITON	FREE	72HR		75F	ZDAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC (WE	٣)	HC(DRY)
SAMPLE 1	1.842	2.5	1.9	-1.0		-8.0
SAMPLE 2	1.833	2.1	1.1	0.0		-8.0
AVERAGE	1.837	2.3	1.5	-0.5		-8.0
FUEL	ELASTOME	R ENVIRON	50AK	TIME	TEMP	DRY TIME.
SULF.DFM	SR	FREE	24H R		75F	7DAY
WEIGHT &	HARDNESS SG		ZVS(DRY)	HC (ME.	Τ)	HC (DRY)
SAMPLE 1	1.294	2.3	-0.5	9.0		0 : 0
SAMPLE 2	1.284	2.0	-1.5	1.0		-1 : 0
AVERAGE	1.289	2.2	-1.0	5.0		-0 : 5
FUEL	ELAST OME I	R ENVIRON	SOAK	TIME	TEMP	DRY TIME
SULF.DFM	SR	FREE	72HR		75F	7DAY
WEIGHT &		DATA %VS(WET) :	%VS(DRY)	HC (WE	г)	HC (DRY)
SAMPLE 1	1 : 283	1 : 5	-2.6	4.0		-5.0
SAMPLE 2	1 : 281	0 : 5	-1.1	8.0		-2.0
AVERAGE	1 : 282	1 : 0	-1.9	6.0		-3.5

FUEL	ELASTOMER	R ENVIRON	SOAK	TIME	TEMP	DRY TIME
SULF.DFM	NITRILE	FREE	24HR		25F	7DAY
WEIGHT &	HARDNESS I		ZVS(DRY)	HC (WE	(T)	HC(DRY)
SAMPLE 1	1.343	7.0	i.6	-2.0	1	-7.0
SAMPLE 2	1.309	6.9	-i.8	-1.0		-6.0
AVERAGE	1.326	6.9	-0.i	-1.5		-6.5
FUEL	ELASTOMER	R ENVIRON	SOAK	TIME	TEMP	DRY TIME
SULF.DFM	NITRILE	FREE	72HR		75F	7DAY
WEIGHT &	HARDNESS I		%VS(DRY)	HC (WE	(T)	HC (DRY)
SAMPLE 1	1.297	2.1	-0.5	-1.0		-7.0
SAMPLE 2	1.290	2.0	0.3	-2.0		-7.0
AVERAGE	1.293	2.1	-0.1	-1.5		-7.0
FUEL	ELASTOMER	R ENVIRON	50AK	TIME	TEMP	DRY TIME
SULF.DFM	AZOO	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS I		XUS(DRY)	HCKWE	T)	HC (DRY)
SAMPLE 1	1.254	4 . 0	-4.4	5 . 0		-1.0
SAMPLE 2	1.283	4 . 1	-2.1	3 . 0		-1.0
AVERAGE	1.268	4 . i	-3.3	4 . 0		-1.0
FUEL	ELASTOMER	ENVIRON	SOAK	TIME	TEMP	DRY TIME
SULF.DFM	AZOO	FREE	72HR		250	ZDAY
WEIGHT &	HARDNESS I		LUS (DRY)	HC (WE	r)	HC (DRY)
SAMPLE 1	1 317	4 : 0	2 . 4	1 . 0		-6.0
SAMPLE 2	1 292	2 : 3	1 . 3	1 . 0		-3.0
AVERAGE	1 304	3 : 2	1 . 8	0 . 0		-4.5

FUEL SULF.DFM	ELASTOMI N674-7	ER ENVIRON FREE	N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WE	Т)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		6.0 5.8 5.9	-0.7 -0.8 -0.7	-1.0 -1.0 -1.0		-5.0 -5.0 -5.0
FUEL SULF DFM	ELASTOME N674-7	ER ENVIRON FREE	√ 50AK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	Т)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		4.3 3.5 3.9	0.8 1.2 1.0	4.0 4.0 4.0		-6.0 -5.0 -5.5
FUEL SULF.DFM	ELASTOME BUNA 70	R ENVIRON FREE	SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC(WE	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.282 1.252 1.267	6.3 3.6 4.9	3.3 -1.0 1.2	2.0 4.0 3.0		-2.0 -2.0 -2.0
FUEL SULF.DFM	ELASTOME BUNA 70	R ENVIRON FREE	SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC (WE)	Γ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.250 1.247 1.248	4 1 4 3 4 2	3 2 3 3 3 2	5.0 3.0 4.0		-2.0 -5.0 -3.5

FUEL SULF.DFM	ELASTOME BUNA 90	R ENVIRON FREE	SOAK 24HR	TIME	TEMP 75F	DR/ TIME 7DAY
WEIGHT &	HARDNESS SG		ZVS(DRY)	HC (WE	T)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.305 1.307 1.306	6.1 6.4 6.2	0.5 1.2 0.9	4.0 2.0 3.0		22.0 0.0 1.0
FUEL SULF.DFM	ELASTOME BUNA 90	R ENVIRON FREE	50AK 72HR	TIME	TEMP 75F	DRY TIME ZDAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HCKWE	T)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1 308 1 306 1 307	4 , 4 4 , 8 4 , 6	4.6 2.7 3.6	-6.0 0.0 -3.0		-3.0 -3.0 -3.0
FUEL SULF.DFM	ELASTOME SILICONE		SDAK 24HR	TIME	TEMP 25F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		%US(DRY)	HC (WE	T)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1 . 437 1 . 336 1 . 386	62 . 1 67 . 9 65 . 0	51.8 55.3 53.5	-6.0 -6.0 -6.0	1	-8.0 -6.0 -7.0
FUEL SULF.DFM	ELASTOME SILICONE		SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC CWE	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.446 1.388 1.417	59.2 59.6 59.4	53.5 54.3 53.9	0 . 0 0 . 0 0 . 0		9 0 -9 0 -9 0

FUEL SULF.DFM	ELASTOME EPR	ER ENVIRON FREE	N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HAR DNESS SG	DATA %VS(WET)	%US(DRY)	HC (WE	Τ)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.226 1.261 1.243	125.0 131.0 128.0	114.1 119.0 116.5	-3.0 1.0 -1.0		-7.0 -5.0 -6.0
FUEL SULF.DFM	ELASTOME EPR	R ENVIRON FREE	N SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	ZVS(DRY)	HC (WE	τ)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.259 1.250 1.255	130.2 128.4 129.3	123.1 120.8 122.0	1.0 3.0 2.0		-7.0 -6.0 -6.5
				•		
FUEL SULF.DFM	ELASTOME SR	ER ENVIRON COMP.	V 50AK 2.5HR		TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA ZVS(WET)	%VS(DRY)	HC (WE	τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.266 1.260 1.261 1.259 1.259 1.261	4.6 4.9 3.9 3.9 4.4 4.3	1.5 3.2 1.8 3.6 3.8 2.8	-6.0 -6.0 -4.0 -2.0 -6.0 -4.8		1.0 1.0 3.0 2.0 2.0 1.8
TUEL SULF DFM	ELASTOME SR	ER ENVIRON FREE	4 SOAK 2.5HF		TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%US(DRY)	HC (WE:	Γ)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.254 1.254 1.258 1.262 1.265 1.259	5.8 4.9 5.0 5.4 5.2 5.3	4.8 4.0 4.2 5.0 4.6 4.5	-5.0 -4.0 -4.0 -7.0 -6.0 -5.2		0.0 2.0 2.0 1.0 1.0

FUEL SULF.DFM	ELASTOME SR	R ENVIRON TENSION		IME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WET	T)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.255 1.256 1.254 1.254 1.255 1.255	5.3 4.9 4.9 4.6 5.0	4.1 3.7 4.0 3.8 3.8 3.8	-6.0 -8.0 -5.0 -5.0 -4.0 -5.6		0 : 0 1 : 0 3 : 0 1 : 0 3 : 0 1 : 6
FUEL SULF.DFM	ELASTOME N219-7	R ENVIRON COMP.	L SOAK T 2.5HR	TME	TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WET	`)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.255 1.257 1.259 1.255 1.250 1.255	2.4 2.2 2.3 2.7 1.6 2.2	2.4 2.1 1.9 2.5 1.2 2.0	-4 0 -5 0 -3 0 -4 0 -3 0 -3 8		3 0 1 0 2 0 5 0 2 0 2 6
FUEL SULF.DFM	ELASTOME N219-7	R ENVIRON FREE	SOAK T 2.5HR		TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		%US(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.253 1.245 1.253 1.259 1.257 1.253	3.7 3.4 4.3 4.0 5.4 4.1	2.0 1.7 2.6 2.4 3.6 2.4	-2.0 -4.0 -5.0 -7.0 -2.0 -4.0		3.0 3.0 -1.0 -1.0 1.0 1.1
FUEL SUF .DFM	ELASTOME N219-7	R ENVIRON TENSION			TEMP 150F	DRY IIME 7DAY
WEIGHT &		DATA %VS(WET)	%VS(DRY)	HOCWET	>	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1. 253 1. 225 1. 269 1. 266 1. 258 1. 254	4 0 0 . 9 4 . 7 4 . 8 3 . 2 3 . 9	3.2 0.4 4.6 4.7 3.6 3.3	-4 0 -2 0 -3 0 -3 0 -5 0 -3 4		1 0 2 0 2 0 5 0 0 0

FUEL SULF.DFM	ELASTOME EPR	R ENVIRON COMP.	SOAK 1 2.5HR	TIME TEMP 150F	
WEIGHT &	HARDNESS SG		%VS(DRY)	HC(WET)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.202 1.216 1.214 1.211 1.210 1.210	35.6 46.0 39.0 38.4 37.6 39.3	33.0 43.0 33.2 35.0 36.4 36.1	-5.0 -4.0 -7.0 -4.0 -4.0 -4.8	-6.0 -5.0 -3.0 -2.0 -3.0 -3.8
FUEL	ELASTOME	ER ENVIRON	SOAK 1	TIME TEMP	DRY TIME
SULF DEM		FREE	2.5HR	1.50F	
WEIGHT &	HARDNESS SG		%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4	1.203 1.210 1.206 1.212	84.7 84.5 71.9 87.2 77.0	77.6 79.7 64.9 83.4 74.5	-5.0 -8.0 -5.0 -6.0 -5.0	-3.0 -8.0 -3.0 -6.0
SAMPLE 5 AVERAGE	1.215 1.209	81.1	74.5 76.0	-5.8	-4.8
FUEL SULF.DFM	ELASTOME EPR	ER ENVIRON TENSION	SOAK 1 2.5HR	TIME TEMF 150F	
WEIGHT &	HAR DNESS SG		%VS(DRY)	HC(WET)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	i.319 i.211 i.210	57.6 150.2 79.8 64.2 66.4 83.6	56.3 1.46.6 74.7 66.5 64.1 81.6	-5.0 -6.0 -6.0 -4.0 -8.0 -5.8	-5.0 -3.0 -3.0 -3.0 -4.0 -3.6
FUEL SULF.DFM	ELASTOME VITON	ER ENVIRON COMP.	SOAK 1 2.5HR	TIME TEMP 150F	
WEIGHT A	HARDNESS SG		%VS(DRY)	HC (WE'T)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 .853 1 845 1 868 1 852 1 844 1 852	3.0 4.0 5.0 3.7 3.5 3.8	0.6 0.8 2.3 1.5 1.0	-3 0 -2 0 -4 0 -2 0 -2 0 -2 6	-2.0 -2.0 -4.0 -2.0 -3.0 -2.6

FUEL BULF.DFM	ELASTOME VITON	R ENVIRON FREE	SOAK T 2.5HR		TEMP LSOF	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		%US(DRY)	HC(WET))	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.849 1.849 1.843 1.839 1.845 1.845	2.8 4.4 3.1 3.6 3.4 3.5	1.3 1.6 0.5 1.2 1.3	-1.0 -2.0 -1.0 -1.0 -0.8		-1.0 -2.0 -1.0 1.0 0.0
FUEL SULF.DFM	ELASTOME VITON	R ENVIRON TENSION			TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		ZVS(PRY)	HC(WCT))	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.837 1.833 1.839 1.845 1.847 1.840	2.9 2.3 3.3 3.2 4.0	1.0 0.6 0.4 1.3 1.8 1.0	-2.0 -1.0 0.0 -2.0 -1.0 -1.2		-3.0 -2.0 -1.0 -2.0 -1.0 -1.8
FUEL SULF.DFM	ELASTOME AZOO	R ENVIRON COMP	50AK T 2. 5 HR		TEMP LSOF	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC(WET)	>	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.259 1.264 1.265 1.259 1.260 1.262	5.5 4.5 3.8 2.5 3.2 3.9	2.3 2.3 2.8 2.8 3.2 2.7	3.0 1.0 3.0 3.0 0.0 2.0		2 0 0 0 0 3 0 1 0 1 0 1 0
FUEL SULF DFM	ELASTOME A700	R ENVIRON FREE	SOAK T 2.SHR		EMP SOF	ORY TIME 7DAY
WEIGHT &	HARDNESS SG		ZVS(DRY)	HC (WET)		HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.262 1.263 1.262 1.264 1.258 1.262	4 . 5 4 . 4 5 . 2 4 . 2 4 . 8 4 . 6	2 . 2 3 . 2 4 . 2 3 . 6 3 . 6 3 . 4	-3.0 1.0 1.0 0.0 -1.0		-2.0 0.0 1.0 -2.0 -1.0 -0.8

FUEL SULF.DFM	ELASTOME A700	ER ENVIRO		TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%US(DRY)	HC(WET)	HC(DRY)
SAMPLE 1	1.260	4.6	4.0	0.0	i .0
SAMPLE 2	1.261	4.7	4.6	0.0	0.0
SAMPLE 3	1.278	6.8	4.7	0.0	2.0
SAMPLE 4	1.265	5.3	3.8	0.0	-1.0
SAMPLE 5	1.262	5.0	1.5	0.0	0.0
AVERAGE	1.265	5.3	3.7	0.0	0.4

SHORE A HARDNESS - 0.1 TAN DFM (SOAK TEMP = 75°F SOAK TIME - 24 HR)

SHORE A HARDNESS - 0.1 TAN DFM (SOAK TEMP = 75°F SOAK TIME - 72 HR)

SHORE A HARDNESS - 0.1 TAN DFM (SOAK TEMP 150°F TOFT - FREE)

SHORE A HARDNESS - 0.1 TAN DFM (SOAK TEMP = 150°F TOFT - TENSION)

SHORE A HARDNESS - 0.1 TAN DFM (SOAK TEMP = 150°F TOFT - COMPRESSION)

FUEL .1TAN DFM		R ENVIRON FREE	l SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT & H	HARDNESS SG	DATA ZVS(WET)	%VS(DRY)	HC (WET	·)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		7.6 8.3 7.9	4.1 3.8 4.0	2.0 1.0 1.5		6 : 0 4 : 0 5 : 0
FUEL .1TAN DFM		ER ENVIRON FREE	SOAK 72HR		TEMP 75F	DRY TIME 7DAY
WEIGHT & 1		DATA %VS(WET)	%VS(DRY)	HC(WET	.)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	i 881 i 875 i 878	7.7 6.6 7.2	5.9 5.8 5.8	3.0 2.0 2.5	<u> </u>	5 . 0 5 . 0 5 . 0
TUEL ,1TAN DEM	ELASTOME SR	ER ENVIRON FREE	I SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT & 1	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WET	•)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1 263 1 284 1 273	2 : 6 4 : 5 3 : 5	-6.3 -0.5 -3.4	2.0 -1.0 0.5		6 . 0 4 . 0 5 . 0
TUEL .itan Dem	ELASTOME SR			TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT & F	HARDNESS SG		%VS(DRY)	HC (WET	`)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.287 1.282 1.285	2.5 1.2 1.8	0.5 -0.7 -0.1	1.0 3.0 2.0	. <u></u>	5 : 0 4 : 0 4 : 5

FUEL .1TAN DFM	ELASTOME NITRILE	ER ENVIRON FREE	N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT & H	HARDNESS SG	DATA %VS(WET)	ZUS(DRY)	HC (WE	Γ)	HE (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.311 1.309 1.310	7.7 6.5 7.1	5.1 5.2 5.1	5.0 5.0 5.0	<u>-</u>	5.0 7.0 6.0
FUEL .1TAN DFM		ER ENVIRON FREE	4 50AK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT & F	HARDNESS SG	DATA %VS(WET)	%US(DRY)	HC (WE	r)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1:312 1:315 1:313	3.5 5.5 4.5	2.2 5.2 3.7	4.0 5.0 4.5		6 . 0 6 . 0 6 . 0
FUEL .1TAN DFM	ELASTOM A700	ER ENVIROI FREE	N SOAK 24HR	TIME	TEMP 75F	DRY TIME ZDAY
WEIGHT & I	HARDNESS SG	DATA %VS(WET)	ZVS(DRY)	HC (WE	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.332 1.320 1.326	9.3 8.7 9.0	6.7 4.6 5.7	2.0 2.0 2.0		4 : 0 2 : 0 3 : 0
FUEL .1TAN DFM		ER ENVIRON FREE	N SOAK 72HR	TIME	TEMP 25E	DRY TIME 7DAY
WEIGHT & F	HARDNESS SG	DATA %VS(WET)	ZVS(DRY)	HO(WE)	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 - AVERAGE	1.323 -1.315 1.319	6 6 4 2 5 4	1.6 1.5 1.5	2.0 1.0 1.5		4 : 0 4 : 0 4 : 0

FUEL .1TAN DFM			N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT & I	HARDNESS SG	DATA ZVS(WET)	%VS(DRY)	HC (WE	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.289 1.290 1.289	6.1 5.5 5.8	2.6 3.8 3.2	0.0 -1.0 -0.5		3.0 2.0 2.5
FUEL .1TAN DEM	ELASTOME N674-7	R ENVIRON FREE	N SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT & I		DATA %VS(WET)	%VS(DRY)	HC (WE)	Τ)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		6	5.3 4.4 4.8	3.0 2.0 2.5		5.0 5.0 5.0
FUEL .1TAN DEM		R ENVIRON FREE	1 SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT & I	HARDNESS SG		%US(DRY)	HC (WE	Τ)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		11.2 9.2 10.2	8.8 6.2 6.5	1.0 0.5		6 : 0 6 : 0 6 : 0
FUEL .1TAN DEM	ELASTOME BUNA 70	R ENVIRON FREE	1 SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT & I	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE:	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.280 1.278 1.279	7.9 9.2 8.5	-1.1 8.4 3.6	2.0 2.0 2.0		6.0 7.0 6.5

FUEL .1TAN DFM	ELASTOMER BUNA 90	ENVIRON FREE	SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT & F			%VS(DRY)	HC (WET	.)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.338 1.342 1.340	9.6 9.5 9.6	7.5 8.0 7.8	-3.0 0.0 -1.5		-2.0 0.0 -1.0
FUEL .1TAN DEM	ELASTOMER BUNA 90	ENVIRON FREE	50AK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT & F			%VS(DRY)	HC (WET	-)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1:339 1:333 1:336	8.0 7.2 7.6	4.9 7.6 6.2	1.0 0.0 0.5		0.0 1.0 0.5
FUEL .1TAN DEM	ELASTOMER SILICONE		SOAK 24HR	TIME	TEMP 75F	DRY TIME ZDAY
WEIGHT & I			%VS(DRY)	HC (WET	Γ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	i.45i i.320 i.385	60.6 71.0 65.8	54.4 62.9 58.7	-2.0 -1.0 -1.5		2.0 3.0 2.5
FUEL .1TAN DFM	ELASTOMER SILICONE		SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT & I			%VS(DRY)	HC(WET	Γ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.314 1.314 1.314	65.8 65.8 65.8	61.6 55.8 58.7	-1.0 1.0 0.0		1 0 4 0 2 5

FUEL .1TAN DFM		ER ENVIRON FREE	N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA ZVS(WET)	%VS(DRY)	HC (WE)	Γ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.262 1.245 1.253	127.8 125.9 126.8	117.0 118.5 117.8	0.0 -1.0 -0.5		4 : 0 4 : 0 4 : 0
FUEL .1TAN DFM		ER ENVIRON FREE	N SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	ZUS(DRY)	HCKWET	·)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.247 1.240 1.243	128.3 126.0 127.1	122.8 118.5 120.7	2.0 4.0 3.0		4 0 6 0 5 0
	SYN, RUB	ER ENVIRO BER COMP. DATA ZVS(WET)	N 50AK 2.5HI %VS(DRY)	र	TEMP 150F	DRY TIME ZDAY HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.273 1.267 1.273 1.271 1.268 1.270	5.2 4.4 5.5 5.3 5.0 5.1	3.0 2.1 2.5 3.2 3.3 2.8	0.0 0.0 0.0 0.0 0.0		0 : 0 -1 : 0 1 : 0 -4 : 0 -2 : 0 -0 : 4
TUEL .1TAN DEM WEIGHT &		BER FREE	N SMAK 2.5HM %VS(DRY)	TIME TIME	TEMP 150F	DRY TIME 2DAY HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.276 1.268 1.273 1.263 1.262	7 . 6 6 . 6 7 . 0 6 . 0 6 . 3 6 . 7	5.2 4.1 4.9 3.5 4.0 4.3	0 0 0 0 0 0 0 0 0 0		-1. 0 1 0 -2 0 0 0 -1 0 0 6

WEIGHT & HARDNESS DATA SG	11.
SAMPLE 1 1.269 7.3 4.6 0.0 -3.0 SAMPLE 2 1.273 5.7 4.1 0.0 0.0 SAMPLE 3 1.265 6.1 3.4 0.0 1.0 SAMPLE 4 1.263 6.9 3.8 0.0 0.0 SAMPLE 5 1.267 6.6 4.6 0.0 0.0 AVERAGE 1.267 6.5 4.1 0.0 -0.4	11.
SAMPLE 2 1.273 5.7 4.1 0.0 0.0 SAMPLE 3 1.265 6.1 3.4 0.0 1.0 SAMPLE 4 1.263 6.9 3.8 0.0 0.0 SAMPLE 5 1.267 6.6 4.6 0.0 0.0 AVERAGE 1.267 6.5 4.1 0.0 -0.4 FUEL ELASTOMER ENVIRON SOAK TIME TEMP DRY TIME TEMP DRY TIME 1TAN DEM N-219-7 COMP 2.5HR 150F 7DAY	
SAMPLE 3 1.265 6.1 3.4 0.0 1.0 SAMPLE 4 1.263 6.9 3.8 0.0 0.0 SAMPLE 5 1.267 6.6 4.6 0.0 0.0 AVERAGE 1.267 6.5 4.1 0.0 -0.4	
SAMPLE 4 1.263 6.9 3.8 0.0 0.0 SAMPLE 5 1.267 6.6 4.6 0.0 0.0 AVERAGE 1.267 6.5 4.1 0.0 -0.4 FUEL ELASTOMER ENVIRON SOAK TIME TEMP DRY TIME 1TAN DFM N-219-7 COMP. 2.5HR 150F 7DAY	
SAMPLE 5 1.267 6.6 4.6 0.0 0.0 0.0 AVERAGE 1.267 6.5 4.1 0.0 -0.4 FUEL ELASTOMER ENVIRON SOAK TIME TEMP DRY TIME 1.1 TAN DEM N-219-7 COMP. 2.5HR 1.50F 7DAY	
AVERAGE 1.267 6.5 4.1 0.0 -0.4 FUEL ELASTOMER ENVIRON SOAK TIME TEMP DRY TEMP .1TAN DFM N-219-7 COMP. 2.5HR 150F 7DAY	
.1TAN DEM N-219-7 COMP. 2.5HR 150F 7DAY	
.1TAN DEM N-219-7 COMP. 2.5HR 150F 7DAY	
WEIGHT & HARDNESS DATA	1
	1
SG ZVS(WET) ZVS(DRY) HC(WET) HC(DRY)	
SAMPLE 1 1.286 13.7 14.4 1.0 0.0	
SAMPLE 2 1.283 13.1 13.6 -1.0 -1.0	
SAMPLE 3 1.287 14.1 15.0 -1.0 0.0	
SAMPLE 4 1.291 14.3 14.4 1.0 -1.0 SAMPLE 5 1.290 14.3 14.3 2.0 0.0	
SAMPLE 5 1.290 14.3 14.3 2.0 0.0 AVERAGE 1.287 13.9 14.3 0.4 -0.4	
TUEL ELASTOMER ENVIRON SOAK TIME TEMP DRY TIME.1TAN DFM N-219-7 FREE 2.5HR 150F 7DAY	16
WEIGHT & HARDNESS DATA	
SG %VS(WET) %VS(DRY) HC(WET) HC(DRY)	
SAMPLE 1 1.295 16.2 15.9 -1.0 -1.0	
SAMPLE 2 1.291 16.4 15.5 -2.0 -3.0	
SAMPLE 3 1.300 16.3 15.8 0.0 -1.0	
SAMPLE 4 1.298 15.5 16.6 -3.0 -1.0	
SAMPLE 5 1.294 14.8 16.1 -2.0 0 0 - AVERAGE 1.295 15.8 16.0 -1.6 -1.2	
TO. 0 1.6.73 25.0 10.0 1.6.0	-
FUEL ELASTOMER ENVIRON SOAK TIME TEMP DRY TIM 1TAN DFM N-219-7 TENSION 2.5HR 150F 2DAY	1E
.1TAN DFM N-219-7 TENSION 2.5HR 150F 7DAY	
WEIGHT & HARDNESS DATA	
SG ZVS(WET) ZVS(DRY) HC(WET) HC(DRY)	
SAMPLE 1 1.296 15.3 15.8 0.0 0.0	
SAMPLE 2 1.291 14.8 14.9 -2.0 -2.0	
SAMPLE 3 1 293 14.1 15.9 0.0 -2.0	
SAMPLE 4 1.294 15.1 16.2 0.0 -1.0	
- SAMPLE 5 1.296 14.4 15.3 0 0 2 0 - AVERAGE 1.294 14.8 15.6 0.4 -0.5	

FUEL .1TAN DFM	ELASTOME BUNA 70	ER ENVIRON COMP.	N SOAK T 2.5HR	IME TEMP 150F	DRY TIME 7DAY
WEIGHT &	HAR PNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WET)	HC(DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.267 1.265 1.265 1.268 1.266 1.266	1.0 -0.0 0.7 1.0 0.9 0.7	1.8 1.6 1.3 2.3 1.7	1.0 -1.0 0.0 -2.0 0.0 -0.4	1.0 1.0 1.0 -1.0 1.0 0.6
TUEL .1.TAN DEM	FLASTOME BUNA 70	TR ENVIRON FREE	I SOAK T 2.5HR	IME TEMP 150F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1 261 1 259 1 259 1 263 1 261 1 261	0 3 -0 1 1 0 0 9 1 0 0 6	1.8 1.9 2.2 2.5 2.3 2.2	-1.0 1.0 0.0 2.0 0.0	-1.0 1.0 -1.0 3.0 0.0
FUEL .1TAN DEM		ER ENVIRON TENSION		TME TEMP	DRY TIME 7DAY
WEIGH: &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 JAMPLE 5 AVERAGE	1.267 1.268 1.259 1.263 1.265	1.3 1.2 2.1 0.8 -0.3 1.0	3 . 1 3 . 3 1 . 5 2 . 2 2 . 6 2 . 6	-i.0 -2.0 -i.0 2.0 0.0 -0.4	-2 0 1 0 0 0 2 0 -2 0 -0 2
FUEL 1 TAN DEN	ELASTON	ER ENVIRON	N SOAK T 2 SHR	TME TEMP	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1. 202 1.195 1.194 1.191 1.194 1.195	42.7 41.4 42.3 41.2 40.8 41.7	41 2 40 5 40 9 40 2 39 4 40 5	-2.0 -3.0 -2.0 -5.0 -3.0 -3.0	-5 0 -3 0 -5 0 -7 0 -6 0 -5 2

TUEL ELASTO	MER ENVIROI FREE	N SOAK T 2.5HR	TME TEM	
WEIGHT & HARDNES SG	S DATA %VS(WET)	%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 1.197 SAMPLE 2 1.193 SAMPLE 3 1.193 SAMPLE 4 1.192 SAMPLE 5 1.193 AVERAGE 1.194	63.0 88.1 96.0 63.8	87.2 60.9 85.5 93.3 62.9 78.0	-4 0 -1 0 -3 0 -6 0 -4 0 -3 6	-5.0 -5.0 -6.0 -5.0 -3.0 -4.0
.17AN DEM EPR	TENSION	N SOAK T N 2.5HR	IME TEME 150F	P DRY TIME TODAY
WEIGHT & HARDNES SG	B DATA %VS(WET)	%VS(DRY)	HC(WET)	HCCDRY)
SAMPLE 1 1.187 SAMPLE 2 1.191 SAMPLE 3 1.190 SAMPLE 4 1.188 SAMPLE 5 1.194 AVERAGE 1.190	61.5 52.5 52.0 59.9 62.0 53.6	67.4 51.6 56.2 59.0 61.6 59.2	-3 0 -5 0 -3 0 -5 0 -2 0 -4 6	- 3 0 -5 0 -3 0 -6 0 -2 0 -4 0
FUFL ELASTO		v SOAK 1 2 SHR	TME (I'M	
WEJOHT & HARDNES		%VS(DRY)	HC (WET)	HC (148)
SAMPLE 1 1 324 SAMPLE 2 1.319 SAMPLE 3 1.322 SAMPLE 4 1.325 SAMPLE 5 1.325 AVERAGE 1.323	-26.3 -25.6 -25.3 -26.1	-27 1 -28.4 -26.7 -28.3 -28.7 -28.2	-1.0 -1.0 -2.0 1.0 0.0 -0.6	1
FUEL FLASTO	MFR ENVIRON FREE	√ 50AK 1 2 SHR	TMF TUM 150	
WEICHT & HARDNES SG	S DATA %VS(MIT)	%US(DRY)	ዘሮ፡፡ዛየ ነን	ili e for _i s
SAMPLE 1 1 308 SAMPLE 2 1 322 SAMPLE 3 1 308 SAMPLE 4 1 331 SAMPLE 5 1 319 AVERAG: 1 318	~24 7 ~27 8 ~23 4 ~2 6 9	-30.0 -27.0 -29.5 -25.9 -28.4 -28.1	-4 0 0 0 2 0 -2 0 -2 0 -1 2	1 0 1 0 1 0 2 0 1 0 0 0

FUEL EL	LASTOMER ITON	ENVIRON TENSION		ME	TEMP 150F	DRY TIME 7DAY
WEIGHT & HA			%VS(DRY)	HC (WE)	Γ)	HC (DRY)
SAMPLE 2 : SAMPLE 3 SAMPLE 4 SAMPLE 5	1:323 - 1:317 - 1:318 - 1:319 -	-25.7 -26.5 -26.5 -26.6 -26.9 -26.4	-27.5 -27.9 -28.3 -28.5 -28.0 -28.0	0.0 -1.0 2.0 -1.0 0.0 0.0		4 : 0 1 : 0 0 : 0 2 : 0 0 : 0 1 : 4
FUEL E	LASTOMER 700	ENVIRON COMP	SOAK TI 2.5HR	ME	TEMP 150F	ORY TIME 7DAY
WEIGHT & HA			%VS(DRY)	HC (WE)	()	HC (JRY)
SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5	1.267 1.265 1.265 1.268 1.266 1.266	1.0 -0.0 0.7 1.0 0.9	1 . 8 1 . 6 1 . 3 2 . 3 1 . 7	1.0 -1.0 0.0 -2.0 0.0 -0.4		1 0 1 0 1 0 -1 0 1 0 0 5
FUEL E	LASTOMER 700	ENVIRON FREE	U SOAK TI 2.5HR	ME	TEMP 150F	DRY TIME 7DAY
WEIGHT & HA			%VS(DRY)	HC (WE:	Τ)	HC (DRY)
SAMPLE 2 SAMPLE 3	1.261 1.259 1.259 1.263 1.261 1.261	0.3 -0.1 1.0 0.9 1.0 0.6	1.8 1.9 2.2 2.5 2.3 2.2	-1.0 i.0 0.0 2.0 0.0		-1.0 1.0 -1.0 3.0 0.0
FUEL E	LASTOMER 200	ENVIRON TENSION		ME	TEMP 150F	DRY TIME ZDAY
WEIGHT & HA		ATA VS(WET)	%US(DRY)	HC (WE)	Τ)	нс (реу)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.267 1.268 1.259 1.263 1.265 1.265	1.3 1.2 2.1 0.8 -0.3 1.0	3 1 3 3 1 5 2 2 2 6 2 6	1.0 2.0 1.0 2.0 0.0 1.4		22 0 1 0 0 0 2 0 2 0 2 0

SHORE A HARDNESS - COMPOSITE DFM (SOAK TEMP = 75° F SOAK TIME = 24 HR)

SHORE A HARDNESS - COMPOSITE DFM (SOAK TEMP = 75°F SOAK TIME = 72 HR)

SHORE A HARDNESS - COMPOSITE DFM (SOAK TEMP = 150°F TOFT - FREE)

SHORE A HARDNESS - COMPOSITE DFM (SOAK TEMP = 150°F TOFT - TENSION)

SHORE A HARDNESS - COMPOSITE DFM (SOAK TEMP = 150°F TOFT - COMPRESSION)

FUEL COMP.DFM	ELASTOME VITON	R ENVIRON FREE	50AK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC (WE	ET)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.882 1.887 1.884	9.5 8.9 9.2	3.0 3.3 3.1	0.(-1.(-0.5)	-1.0 0.0 -0.5
FUEL COMP.DFM	ELASTOME VITON	R ENVIRON FREE	SOAK 72HR	TIME	TEMP 25F	DRY TIME 7DAY
WETGHT &	HARDNESS SG		%VS(DRY)	HC (WE	ET)	HC(DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.884 1.888 1.886	8.4 10.9 9.6	1.6 2.1 1.9	1.0 0.0 0.9)	-1.0 -1.0 -1.0
TUEL. COMP.DFM	ELASTOME SR	ER ENVIRON FREE	l SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC (WI	ET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		14.6 15.8 15.2	6.4 7.8 7.1	-1.1 0.1 -0.1	0	-3.0 0.0 -1.5
FUEL COMP.DEM	ELASTOME SR	ER ENVIRON FREE	SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (W	ET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERGGE	1.327 1.314 1.320	18.8 17.0 17.9	5.7 4.4 5.1	0 . 1 . 0 .	0	1 0 1 0 1 0

FUEL COMP.DFM	ELASTOME NITRILE	ER ENVIRO	N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC(W	ET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.316 1.321 1.318	13.2 13.5 13.4	4.9 6.1 5.5	1 . 0 . 0 .	0	0 · 0 0 · 0 0 · 0
FUEL COMP.DFM	ELASTOME NITRILE	ER ENVIRO FREE	N SOAK 72HR	TIME	TEMP 75F	DRY TIME ZDAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (W	ET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.318 1.315 1.317	17.6 17.1 17.4	3.7 4.7 4.2	1. 2. 1.	0	1.0 4.0 2.5
FUEL COMP.DFM	ELASTOME A700	ER ENVIRO FREE	N SOAK 24HR	TIME	TEMP 75F	DRY TIME ZDAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (W	ET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.286 1.311 1.298	1.0.0 8.7 9.3	4,9 8,3 6,6	-1. 0. -0.	0	-1.0 -1.0 -1.0
FUEL COMP.DFM	ELASTOME A700	ER ENVIRO FREE	N SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (W	ET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1 : 339 1 : 311 1 : 325	20.0 18.7 19.3	7 : 1 5 : 2 6 : 1	4. 1. 2.	0	2:0 1:0 1:5

FUEL	ELASTOME	R ENVIRON	90AK	TIME	TEMP	DRY TIME
COMP.DFM	N674-7	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS SG		%VS(DRY)	HC (WE	Т)	HC (DRY)
SAMPLE 1	1.342	16.7	9.3	0.0	·····	0 . 0
SAMPLE 2	1.335	14.1	4.6	1.0		1 . 0
AVERAGE	1.338	15.4	6.9	0.5		0 . 5
FUEL	ELASTOME	R ENVIRON	I SOAK	TIME	TEMP	DRY TIME
COMP.DFM	N674-7	FREE	72HR		75F	7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	Т)	HC (DRY)
SAMPLE 1	1.342	21.9	7.4	1.0		1.0
SAMPLE 2	1.375	23.0	9.1	1.0		-1.0
AVERAGE	1.358	22.4	8.2	1.0		0.0
FUEL	ELASTOME	ER ENVIROI	N SOAK	TIME	TEMP	DRY TIME
COMP.DFM	BUNA 70	FREE	24HR		75F	7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	T)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		16.5 15.1 15.8	7.6 6.8 7.2	0 . 0 0 . 0 0 . 0		1 0 0 0 0 5
FUEL	ELASTOME	ER ENVIRON	N SOAK	TIME	TEMP	DRY TIME
COMP.DEM	BUNA 70	FREE	72HR		75F	7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	Τ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE		24 / 6 24 / 5 24 / 5	12.9 12.8 12.8	1.0 2.0 1.5		1 : 0 2 : 0 1 : 5

FUEL COMP.DFM	ELASTOMER BUNA 90	R ENVIRON FREE	90AK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS I		ZVS(DRY)	HC (WI	ET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.431 1.358 1.394	18.9 10.0 14.4	15.2 10.7 12.9	-2.0 -1.0 -1.0	0	-2.0 -1.0 -1.5
FUEL COMP.DFM	ELASTOMER BUNA 90	ENVIRON FREE	SOAK 22HR	TIME	TEMP 25F	ORY TIME 7DAY
WEIGHT &	HARDNESS D SG %		(US (DRY)	HC (WE	ET)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.367 1.362 1.364	25.8 22.7 24.3	14.9 12.7 13.8	-2 (-1 (-1 ()	-1.0 -1.0 -1.0
FUEL.	ELASTOMER	e ENVTRON	SOAK	TIME	TEMP	DRY TEMI
COMP.DEM		FREE	24HR		75F	BAY
WEIGHT &	HARDNESS D		(YS(DRY)	HC (WE	ET)	HC (DMY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.498 1.445 1.472	69.4 70.3 69.9	57.0 58.2 57.6	-2 (-1 (-1 ()	- 1 () -1 () 1 ()
FUEL COMP.DFM	ELASTOMER SILICONE	ENVIRON FREE	SOAK 72HR	TIME	TEMP 75F	DRY TIME VDAY
MEIGHT &	HARDNESS D		(VS(DRY)	HCCWE	ET)	MC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.482 1.423 1.452	69.6 68.5 69.1	52.9 52.0 52.4	-3.0 -3.0 -3.0)	-4 0 -2 0 3 0

FUEL COMP.DFM	ELASTOME EPR	R ENVIRO FREE	N SOAK 24HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE	()	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.257 1.250 1.254	128.1 127.4 127.8	112.4 110.4 111.4	-3.0 -2.0 -2.5		-3.0 -2.0 -2.5
FUEL COMP.DFM	ELASTOME EPR	ER ENVIRO FREE	N SOAK 72HR	TIME	TEMP 75F	DRY TIME 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE)	ſ)	HC (DRY)
SAMPLE 1 SAMPLE 2 AVERAGE	1.254 1.247 1.251	135.6 130.9 133.3	114.7 110.6 112.7	-2.0 -2.0 -2.0		-2 0 -1 0 -1 5
FUEL COMP.DEM	ELASTOME VTTON	ER ENVIRO COMP.	N SOAK 2.5HI	TIME ?	TEMP 150F	DRY TIME. 7DAY
WEIGHT &	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE:	1')	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.849 1.839 1.814 1.807 1.807 1.825	4.9 4.4 2.6 2.2 2.1 3.2	1.7 0.4 -1.2 -1.3 -1.0 -0.3	-3.0 -2.0 -1.0 -2.0 -3.0 -2.2		1 0 2 0 0 0 2 0 2 0 3 0 0 4
FUEL COMP.DEM	FLASTOM VITON	ER ENVIRO FREE	N SOAK 2.5HI	TIME R	TEMP 150F	DRY TIME 7DAY
WEIGHT A	HARDNESS SG	DATA %VS(WET)	%VS(DRY)	HC (WE)	T)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.846 1.821 1.842 1.824 1.829 1.832	3.4 1.7 3.3 2.6 2.2 2.6	-0 0 -1 3 -0 2 0 4 0 3 -0 2	-1.0 -3.0 -1.0 -1.0 -1.0 -1.4		# 0 3 0 1 0 1 0 2 0 2 0

FUEL COMP.DFM	ELASTOME VITON	R ENVIRON TENSION		TEME TEME	
WEIGHT &	HARDNESS SG		%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.832 1.850 1.841 1.819 1.822 1.833	2,2 0,6 3,3 2,3 2,2 2,1	1.0 1.8 0.7 0.3 -0.2 0.7	1.0 0.0 1.0 0.0 0.0 0.4	1 0 1 0 3 0 2 0 2 0 1 8
FUEL COMP.DEM	ELASTOME AZOO	R ENVIRAN COMP.	SOAK 1 2.5HR	TEME TEME	
WEIGHT A	HARDNESS SG		%VS(DRY)	HC(WET)	HC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.255 1.253 1.253 1.255 1.252 1.254	6.3 6.1 6.1 5.5 c.2 6.0	3.4 2.6 3.0 2.8 3.5 3.1	-2.0 -3.0 -2.0 -1.0 -1.8	-2.0 -3.0 -2.0 -0.0 -1.0
FUEL JOMP , DEM	ELASTOMEI A200	R ENVIRON FREE	SOAK T 2.5HR	IME TEMP 150F	
WEIGHT &	HARDNESS S		%VS(DRY)	HC(WET)	MC (DRY)
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 AVERAGE	1.253 1.250 1.251 1.250 1.255 1.252	8.6 8.3 7.6 2.9 9.3 8.3	4.7 5.0 4.8 4.3 6.4 5.1	-3.0 -2.0 -3.0 -1.0 -3.0 -2.4	-2.0 -2.0 -2.0 -2.0 -3.0 -2.2
FUEL COMP DEM	ELASTOME AZOO	K ENATEUN 164210		1MF TEME (50)	
WEIGHT A	HARDNESS SG		%US (DRY)	HC CWETY	[# + 64°¥ x
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 DAMPLE 5 AVERAGE	1 255 1 253 1 254 1 253 1 250 1 253	7 4 8 3 7 1 7 7 6 6 7 4	4 9 6 0 4 4 5 7 4 9 5 2	-1 0 -1 0 -1 0 -3 0 -1 0 1 4	6 8 1 0 1 0 3 0 2 0 1 4

APPENDIX C

AFLRL ELASTOMER RETENTION PROPERTIES

Retention Properties of Viton #V2224

Original Properties		After 72 hours at room temp in AL-10666-SP
Tensile, PSI	1323	Tensile Retained, % 97
100 % Modulus, PSI	715	100% Modulus Retained, % 109
200% Modulus, PS1	1312	200% Moduls Retained, %
Elongation, %	203	Elongation Retained, % 87
After 72 hours at room	temp in AL-10150-SP	After 72 hours at room temp. in AL-10684-SP
Tensile Retained, %	94	Tensile Retained, % 105
100% Modulus Retained,	z 99	100% Modulus Retained, % 109
200% Modulus Retained,		200% Modulus Retained, %
Elongation Retained, %	89	Elongation Retained, % 87
After 72 hours at room Tensile Retained, %	temp. in AL-10635-SP	After 72 hours at room temp in AL-10731-SP Tensile Retained, %
100% Modulus Retained,	% 98	100% Modulus Retained, % 103
200% Modulus Retained,		200% Modulus Retained, %
Elongation Retained, %	84	Elongation Retained, % 90
,	-	Diongarion Recarries, 2
After 72 hours at room	temp. in AL-10636-SP	After 72 hours at room temp in AL-10732-SP
Tensile Retained, 7	102	Tensile Retained, % 99
100% Modulus Retained,	7 114	100% Modulus Retained, % 108
200% Modulus Retained,	z	200% Modulus Retained, %
Elongation Retained, %	85	Elongation Retained, 2 85
After 72 hours at room	•	After 72 hours at room temp in AL-10746-SP
Tensile Retained, %	93	Tensile Retained, % 94
10% Modulus Retained,		100% Modulus Retained, % 103
200% Modulus Retained,	7	200% Modulus Retained, %
Elongation Retained, 7	87	Elongation Retained, % 89
•		· · · · · · · · · · · · · · · · · · ·

Retention Properties of Buna N #2260

Original			After /2 hours at room	tensp	ın	AL-10000-25
Tensile, PSI		2030	Tensile Retained, %			90
100% Modulus, PSI		282	100% Modulus Retained,	Z		95
200% Modulus, PSI		733	200% Modulus Retained,	z		99
Elongation, X		473	Elongation Retained, X			93
After 72 hours at room	temn in	AL-10150-SP	After 72 hours at room	temp	in	AL-10684-SP
Tensile, Retained, 7	camp 1	90	Tensile Retained, %			93
100% Modulus Retained.	7	95	100% Modulus Retained,	7		95
200% Modulus Retained,		96	200% Modulus Retained,			98
Elongation Retained, %		93	Elongation Retained, %			96
After 72 hours at room	temo in	AL-10635-SP	After 72 hours at room	temp	ia	AL-10731-SP
Tensile Retained, %		96	Tensile Retained, %			84
100% Modulus Retained.	7.	95	100% Modulus Retained,	Z.		91
200% Modulus Retained,		97	200% Modulus Retained,	7,		99
Elongation Retained, %		101	Elongation Retained, 2			84
After 72 hours at room	temp in	AL-10636-SP	After 72 hours at room	temp	ín	AL-10732-SP
Tensile Retained, %	•	90	Tensile Retained, %	•		91
100% Modulus Retained.	7.	100	100% Modulus Retained,	%		99
200% Modulus Retained,	X	102	200% Modulus Retained,	%		107
Elongation Retained, X		93	Elongation Retained, %			93
After 72 hours at room	temp in	AL-10637-SP	After 72 hours at room	temp	in	AL-10746-SP
Tensile Retained, %	•	92	Tensile Retained, %			74
100% Modulus Retained,	X	98	100% Moduls Retained, %	;		9
200% Modulus Retained,	X	98	200% Modulus Retained,	*		104
Elongation Retained, X		94	Elongation Retained, %			73

Retention Properties of Buna N #2061

Original Tensile, PSI 100% Modulus, PSI 200% Modulus, PSI Elongation, %	1775 450 1187 310	After 72 hours at room Tensile Retained, % 100% Modulus Retained, 200% Modulus Retained, Elongation Retained, %	z 86 102
Elongation, A	3.0	_	
After 72 hours at room temp	in AL-10150-SP	After 72 hours at room	
Tensile Retained, %	85	Tensile Retained, 7	84
100% Modulus, %	89	100% Modulus Retained,	
200% Modulus, %	93	200% Modulus Retained,	84
Elongation Retained, %	87	Elongation Retained, 7	84
	4- AT-10435-CD	After 72 hours at room	temp in AI -10731-SP
After 72 hours at room temp	92	Tensile Retained, %	69
Tensile Retained, %	102	100% Modulus Retained,	
100% Modulus Retained, %	102	200% Modulus Retained,	•
200% Modulus Retained, % Elongation Retained, %	86	Elongation Retained, %	69
siongarion necarios, is			
After 72 hours at room temp	in AL-10636-SP	After 72 hours at room	temp in AL-10732-SP
Tensile Retained, %	72	Tensile Retained, %	86
100% Modulus Retained, %	98	100% Modulus Retained,	
200% Modulus Retained, %	101	200% Modulus Retained,	
Elongation Retained, %	71	Elongation Retained, %	81
70.1	4 - A1 -10627-CD	After 72 hours at year	to in At-107/4-CD
After 72 hours at room tem	9 1n AL-1063/-SP	After 72 hours at room Tensile Retained, %	64
Tensile Retained, %	101	100% Modulus Retained,	-
100% Modulus Retained, %	102	200% Modulus Retained,	
2007 Modulus Retained, 7	77	Elongation Retained, 7	65
Elongation Retained, 7	,,		65

Retention Properties of Nitrile #2107

Original	2720	After 72 hours at room	
Tensile, PSI	673	Tensile Retained, % 100% Modulus Retained,	70 7 109
100% Modulus, PSI	2200	200% Modulus Retained,	
200% Modulus, PSI	250	Elongation Retained, %	
Elongation, %	250	brongation Retained, &	
After 72 hours at room temp i	n AL-10150-SP	After 72 hours at room	temp. in AL-10684-SP
Tensile Retained, %	84	Tensile Retained, %	81
100% Modulus Retained, %	93	100% Modulus Retained,	
200% Modulus Retained, %	98	200% Modulus Retained,	ፕ 98
Elongation Retained, %	86	Elongation Retained, %	82
After 72 hours at room temp 1	n AL-10635-SP	After 72 hours at room	temp in AL-10731-SP
Tensile Retained, %	84	Tensile Retained, %	67
100% Modulus Retained, %	107	100% Modulus Retained,	7 98
200% Modulus Retained, %	101	200% Modulus Retained,	7
Elongation Retained, %	84	Elongation Retained, %	73
After 72 hours at room temp i	n AL-10636-SP	AFter 72 hours at room	temp in AL-10732-SP
Tensile Retained, %	71	Tensile Retained, %	61
100% Modulus Retained, %	111	100% Modulus Retained,	
200% Modulus Retained, %		200% Modulus Retained,	
Elongation Retained, %	72	Elongation Retained, %	68
A. Ler 72 hours at room temp 1	n AL-10637-SP	After 72 hours at room	•
Tensile Retained, %	61	Tensile Retained, %	60
100% Modulus Retained, %	98	100% Modulus Retained,	
'200% Modulus Retained, %	 .	200% Modulus Retained,	
Elongation Retained, %	68	Elongation Retained, %	67

ORIGINAL PROPERTIES OF ELASTOMERS ELONGATION

ORIGINAL PROPERTIES OF ELASTOMERS POUNDS/SQUARE INCH

RETENTION PROPERTIES OF BUNA-N #2260 AFTER 72 HR AT ROOM TEMPERATURE

RETENTION PROPERTIES OF BUNA-N #2061 AFTER 72 HR AT ROOM TEMPERATURE

RETENTION PROPERTIES OF VITON #2224 AFTER 72 HR AT ROOM TEMPERATURE

RETENTION PROPERTIES OF NITRILE #2107 AFTER 72 HR AT ROOM TEMPERATURE

- No. 1 JFC 78 500-Hour Shale Oil Plan of Test, April 20, 1981
- No. 2 JFC 78 Shale Oil Fuel Plan of Test, Revised July 30, 1981
- No. 3 Pre and Post Test Definition Data
- No. 4 Spot Calibration
- No. 5 Flow Test
- No. 6 Fuel Characteristics and Lubricity and Interfacial Tension
- No. 7 Detailed Component Test Results
- No. 8 Summary of Pre and Post Calibration Test Results
- No. 9 Plotted Definition Data Results
- No. 10 Disassembly and Inspection Results

JFC 78 500-HOUR SHALE OIL

PLAN OF TEST

APRIL 20, 1981

PURPOSE OF TEST

The purpose of this test plan is to define the test procedures required to run a JFC 78 500-hour mission cycle endurance test. This program covers the necessary effort to perform the test using fuel derived from shale oil. The work will be performed under contract with Southwest Research Institute. The shale oil fuel has low lubricity and high aromatic content. The test is to determine if the shale oil fuel has a detrimental effect on the control.

DISCUSSION

Test Setup

The following test rigs and test equipment will be used:

- (1) Control calibration plus pre and post test definition data will be performed on Rig 52, 53, 18, 100, 101, or C-3 using MIL-7024.
- (2) Mission cycle testing and spot calibration Rig B-3B per Figure 2.
- (3) A JFC 78-4 control, P/N 763700, S/N 93747 will be used for the test.
- (4) S/N 86088 will be used to test out the Rig B-3B, to make sure all the functions operate before S/N 93747 is used.

The following instrumentation will be required on B-3B Rig (set as shown in Figure 2).

Speed Readout Sensor	<u>Range</u>	Reg Accuracy
Magnetic Pick-up/Tooth Wheel	0 - 11,000 rpm	±3 rpm
Temperature		
Fuel Control Inlet Fuel Control Outlet T ₂ Sensor	+80 to 180°F +80 to 200°F +20 to 120°F	±40

Position (LVDT)	Range	Rig Accuracy
LDS PAS Linear Stroke VG Position	0 - 70 ⁰ 0 - 118 ⁰ 0 - 1.7 in	±1% ±1% ±1%
Fuel Flow	Range	Rig Accuracy
Turbine Meter	50 - 900 pph	3% at Calibrated Temp.
Pressure		
Control Body (PB) Regulated Pressure (PR - PB	0 - 300 psia 0 - 100 psig 0 - 50 psia 0 - 100 psig 0 - 160 psig 0 - 200 psi 0 - 1000 psig 0 - 50 psi 0 - 5 psi	±1% +1%
Torque Motor Suitcase Tester	0 - 100 ma	

Rig Setup and Precautions

- (1) IMPORTANT: No Vaseline to be used in rig setup.
- (2) Use Iso for setup with a second JFC 78 control.

 CAUTION: The JFC 78 vane pump can be damaged by sustained operation at speeds above 11,000 rpm and high fuel temperatures. At no time is the control to be operated in overspeed or manual shut-off for a period in excess of 20 seconds.
- (3) Flush rig with freon and blow out with N2 prior to filling with shale oil where possible.

 CAUTION: When filling with shale oil, make sure all pumps and plumbing have been cleaned (NO DETERGENT). Fuel should be kept sealed when possible to maintain aromatic content.
- (4) Fuel supply is limited, check carefully for leaks prior to start-up. After 500 hour test, shale oil may be returned to SWRI.
- (5) Ground all plumbing to prevent arcing.

- (6) Containers which have been subjected to special cleaning will be used for fuel samples.
- (7) Rig must be a closed loop system to maintain the aromatic content.

Hardware Inspection and Test

All hardware will be visually examined for nicks, scratches, blemishes, etc. All discrepancies will be recorded on the experimental inspection report. Any questionable components will be replaced. The throttle valve, VG pilot valve and pump will be flow tested per Appendix A-III.

Assembly

When assembling unit S/N 93747, no vaseline is to be used. The only lubricant that may be used is calibrating fluid MIL-7024.

Calibration

After assembly and calibration, an acceptance test shall be run per HS 7666. Special definition data will be run per Appendix A-1. After completion of the definition data, an audit test shall be run per HS 7666.

Testing

The following tests shall be run in the order listed.

Control Installation on Cyclic Rig

After the control has been drained of MIL-7024 as completely as possible, the unit will be installed on the test rig. Iso-octane will then circulate through the test rig and control S/N 93747. Every hour, a sample of Iso-octane will be taken and an interfacial tension test will be run per ASTM D971-50. The circulating of Iso-octane will continue until the interfacial tension test levels off or 8 hours. The Iso-octane will then be drained from the control rig completely. The rig should be flushed with freon and blown out with N2, also the clay and 5µ filter should be replaced prior to filling with shale oil. When filling with shale oil, make sure all pumps and plumbing have been cleaned (NO DETERGENT). Photos should be taken of the rig and setup.

Spot Calibration

After the rig is filled, a spot calibration shall be made per Appendix A-II.

Special Data

Automatic data will be taken by the Portable Acquisition Terminal hourly or once per shift if data must be taken manually. The data will consist of Wf, Speed, P3, T2, T.V. Δ P, PR, at two of the pinball conditions. These two conditions will be idle and the mid-point P3 position. The special data will be taken at random temperatures from +20°F to +120°F. Fuel samples, in specially cleaned containers will be taken for SWRI and P&WA Lab at the start of the test and after 50 hours, 250 hours, 300 hours and finish. Also, at various times, samples should be taken to the Chemical Lab for an interfacial tension test per ASTM D971-50.

Hot Temperature

Upon completion of the spot calibration, the subject hardware shall be operated as specified below. Components shall be operated according to the test cycle shown on Figure 2 for 50 hours. Each cycle consists of a 75 minute mission at a control fuel inlet temperature of $1570F \pm 200F$.

Spot Calibration

After completion of the 50 hours hot temperature test, a spot calibration shall be made per Appendix A-II.

Room Temperature

Upon completion of the spot calibration, the subject hardware will be operated at a fuel inlet temperature of $\pm 85^{\circ}$ F $\pm 20^{\circ}$ F for the same cycle as the hot temperature test for 200 hours.

Spot Calibration

After completion of the 200 hours room temperature test, a spot calibration shall be made per Appendix A-II.

Hot Temperature

Same as above hot temperature test for 50 hours.

Spot Calibration

After hot temperature test, a spot calibration per Appendix A-II shall be run.

Room Temperature

Same as above room temperature test for 200 hours.

Spot Calibration

After room temperature test, a spot calibration per Appendix A [] shall be run.

Post Test Calibration

After completion of the spot calibration, the unit will be taken to a production certified rig to run an "as is" acceptance calibration and definition data per Appendix A-I.

Tear Down and Inspection

After analysis of the above data, the control shall be disassembled and examined. Hardware condition shall be inspected and recorded on the experimental inspection report. The throttle valve, VG pilot valve and pump will be flow tested per Appendix A-III.

JFC 78 - SHALE OIL FUEL

PLAN OF TEST

Revised 7/30/81

PURPOSE OF TEST

The purpose of this test plan is to define the test procedures required to run a JFC 78 mission cycle endurance test. This program covers the necessary effort to perform the test using fuel derived from shale oil. The work will be performed under contract with Southwest Research Institute. The shale oil fuel has low libricity and high aromatic content. The test is to determine if the shale oil fuel has a detrimental effect on the control. The target test time will be 300 hours total (200 hours with room temperature fuel and 100 hours with a fuel inlet temperature of 1570F ± 200 F.

DISCUSSION

Test Setup

The following test rigs and test equipment will be used:

- (1) Control calibration plus pre and post test definition data will be performed on Rig 52, 53, 18, 100, 101, or C-3 using MIL-7024.
- (2) Mission cycle testing and spot calibration Rig B-3B per Figure 2.
- (3) A JFC 78-4 control, P/N 763700, S/N 93747 2ill be used for the test.

The following instrumentation will be required on B-3B Rig (set as shown in Figure 2).

Speed Readout Sensor	Range	Rig Accuracy
Magnetic Pick-up/Tooth Wheel	0 - 11,000 rpm	±3 rpm
Temperature		
Fuel Control Inlet Fuel Control Outlet T ₂ Sensor	+80 to 180°F +80 to 200°F +20 to 120°F	±40

	Range	Rig Accuracy
Position (LVDT)		
LDS PAS Linear Stroke VG Position	0 - 70 ⁰ 0 - 118 ⁰ 0 - 1.7 in	±1% ±1% ±1%
Fuel Flow		
Turbine Meter	50 - 900 pph	3% at Calibrated Temp.
Pressure		
P3 (P3) Boost Pressure Engine Clay Filter ΔP Control Inlet (Pin) Control Body (PB) Regulated Pressure (PR - PB) Control Discharge (Pout) Throttle Valve P(T.V. ΔP) 5μ Filter ΔP	0 - 300 psia 0 - 100 psig 0 - 50 psia 0 - 100 psig 0 - 160 psig 0 - 200 psig 0 - 1000 psig 0 - 50 psi 0 - 5 psi	±1%
Power Supply		
Torque Motor Suitcase Tester	0 - 100 ma	

Rig Setup and Precautions

(1) IMPORTANT: No Vaseline to be used in rig setup.

CAUTION: The JFC 78 vane pump can be damaged by sustained operation at speeds above 11,000 rpm and high fuel temperatures. At no time is the control to be operated in overspeed or manual shutoff for a period in excess of 20 seconds.

CAUTION: When filling with shale oil, make sure all pumps and plumbing have been cleaned (NO DETERGENT). Fuel should be kept sealed when possible to maintain aromatic content.

- (2) Fuel supply is limited, check carefully for leaks prior to start-up. After the test, the shale oil may be returned to SWRI.
- (3) Ground all plumbing to prevent arcing.
- (4) Containers which have been subjected to special cleaning will be used for fuel samples.

- (5) Rig must be closed loop system to maintain the aromatic content.
- (6) CAUTION: The maximum fuel temperature safety device is to be set for 140°F during the room temperature phase.

Hardware Inspection and Test

All hardware will be visually examined for nicks, scratches, blemishes, etc. All discrepancies will be recorded on the experimental inspection report. Any questionable components will be replaced. The throttle valve, VG pilot valve and pump will be flow tested per Appendix A-III.

Assembly

When assembling unit S/N 93747, no vaseline is to be used. The only lubricant that may used is calibrating fluid MIL-7024.

Calibration

After assembly and calibration, an acceptance test shall be run per HS 7666. Special definition data will be run per Appendix A-I. After completion of the definition data, an audit test shall be run per HS 7666.

Testing

Control Installation on Cyclic Rig - After the control has been drained of MIL-7024 as completely as possible, the control will be flushed with shale oil fuel and then installed on the rig. The rig should be purged with N2, also the clay and other rig filters should be replaced prior to filling with shale oil. When filling the rig with shale oil, make sure all pumps and plumbing have been cleaned (NO DETERGENT).

<u>Spot Calibration</u> - After the rig is filled, a spot calibration shall be made per Appendix A-II.

Special Data

Automatic data will be taken by the Portable Acquisition Terminal twice per 75 minute cycle. The data will consist of Wf, speed, P3, T2, T.V. ΔP , PR, fuel inlet and outlet temperature, LDS, PAS, and VG position, fuel inlet and outlet pressure, body pressure, clay filter ΔP and 5 micron filter ΔP , at two of the pinball conditions. These two conditions will be idle and the midpoint P3 position. The special data will be taken at random temperatures from $+20^{\circ}F$ fuel samples, in specially cleaned containers will be taken for SWRI and HS Lab at the start of the test and after 50 hours, 200 hours, and finish. Also, at various times, samples should be taken to the Chemical Lab for an interfacial tension test per ASTM D971-50.

Room Temperature

Upon completion of the spot calibration, the subject hardware will be operated at a fuel inlet temperature of $+85^{\circ}F$ $\pm20^{\circ}F$ for the cycle shown in Figure 18 a target of 200 hours (160 cycles).

Spot Calibration

After completion of the room temperature test, a spot calibration shall be made per Appendix A-II.

Hot Temperature

After completion of the room temperature test and the spot calibration, remove the clay filter. Reset the maximum fuel temperature safety device for 190°F. Continue cycling per Figure 18 for 100 hours (80 cycles), with a fuel inlet temperature of 157°F $^{\pm}20°F$.

Spot Calibration

After hot temperature test, a spot calibration per Appendix A-II shall be run.

Post Test Calibration

After completion of the spot calibration, the unit will be taken to a production certified rig to run an "as is" acceptance calibration and definition data per Appendix A-I.

Teardown and Inspection

After analysis of the above data, the control shall be disassembled and examined. Hardware condition shall be inspected and recorded on the experimental inspection report. The throttle valve, VG pilot valve and pump will be flow tested per Appendix A-III.

ACTUAL PLUMBIUG SCHEMATIC @ Tyear Sigur Tues 4.S.KIG 8.38

FIGURE 2

PRE & POST TEST DEFINITION DATA

1. ACCEPTANCE CALIBRATION PER HS

2. NG SERVO DISPLACEMENT

Set PAS = 118° , P₃ = 100 psia. T₂ = 60° . Record Ng servo displacement at 500 rpm increments from 1000 to 7000 rpm and 200 rpm increments from 7000 to 10,800 rpm. Run hysteresis in the same increments.

3. MAXIMUM LINE

Set PAS 118° . Ng = 9600 rpm, T2 = 60° and record Wf, Pr and ΔP at 10 psi increments from 200 to 20 to 200 psia.

4. MINIMUM LINE

Set PAS = 26° , LDS = 0° , Ng = 7600 rpm, T_2 = 60° F and record Wf, Pr and ΔP at 10 psi increments from 200 to 40 to 200 psia.

5. ACCEL LINES (BACK MIL DROOP OUT OF THE WAY)

 T_2 = +140°F. Set PAS = 118°, P3 = 100 psia. Record Wf at speeds of 3000, 3600, 4000, 4500, 5000, 5500, 6000, 6200, 6500, 6700, 7000, 7500, 8000, 8500, 9000, 9400, 9600, 9800, 10,000, 10,200, 10,300, 10,400, 10,500. T2 = +60°F, PAS = 118°, P3 = 100 psia. Record Wf at speeds of 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 8000, 8500, 9000, 9100, 9200, 9300, 9400, 9500, 9600, 9700, 9800, 9900, 10,000, 10,100, 10,200, 10,300, 10,400, 10,500. T2 = 20°F, PAS = 118°, P3 = 100 psia. Record Wf at speeds of 3000, 3600, 4000, 4500, 4800, 5000, 5200, 5500, 6000, 6500, 6800, 7000, 7200, 7400, 7600, 8000, 8400, 8600, 8800, 9000, 9100, 9200, 9400, 9600, 9800, 10,000.

6. VARIABLE MIN RATIO

Set PAS = 26° , $T_2 = 60^{\circ}$, $P_3 = 200$ psia. Set Ng 10,400, 10,200, 10,000, 9800, 9600, 9400, 9200, 9000 rpm and record Wf.

7. MIN FLOW SPEED

Set PAS = 118° , P₃ = 5 psia. Record fuel flow and T.V. ΔP at 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, and 1700 rpm.

8. MIL DROOP

Set PAS = 117.5, P3 = 200 psia, LDS = 70° . T2 = $+60^{\circ}$ F. Set Ng from 9800 to 10,800 to 9800. Record Wf at 100 rpm increments. T2 = $+60^{\circ}$ F. Set Ng from 10,000 to 10, 200 to 10,000 rpm. Record Wf at 20 rpm increments. T2 = -20° F. Set Ng from 9000 to 10,000, to 9000 rpm. Record Wf at 100 rpm increments. T2 = $+140^{\circ}$ F. Set Ng from 9800 to 10,800 to 9800 rpm. Record Wf at 100 rpm increments.

9. IDLE DROOP

Set PAS = 26° F, P₃ = 60 psia. LDS = 0° . T₂ = $+60^{\circ}$ F. Ng 6000 to 7000 to 6000 rpm in 100 rpm increments. Record Wf. T₂ = $+60^{\circ}$ F. Ng 6500 to 6700 to 6500 rpm. Record Wf at 20 rpm increments. T₂ = -20° F. Ng 6000 to 6800 to 6000 rpm in 100 rpm increments. Record Wf. T₂ = $+140^{\circ}$ F. Ng 6200 to 7400 to 6200 rpm in 100 rpm increments. Record Wf.

10. VG STROKE

Set PAS = 118° , P₃ = 150 psia (load to oppose motion). T₂ = $+60^{\circ}$ F. Set Ng from 7700 to 10,100 to 7700 rpm in 200 rpm increments. Record VG displacement. T₂ = -20° F. Set Ng from 7100 to 9500 to 7100 in 200 rpm increments. Record VG displacement. T₂ = $+140^{\circ}$ F. Set Ng from 8200 to 10,600 to 8200 in 200 rpm increments. Record VG displacement.

11. VG T2 HYSTERESIS

Set PAS = 118°F, P3 = 120 psia, Ng = 8600 rpm. Vary T2 from -65°F to +160°F to -65°F. Record VG displacement at approximately 20° increments.

12. TOPPING HYSTERESIS

Set PAS = 118° F, P3 = 200 psia, Ng = 10,200 rpm. Vary T2 from -65°F to +160°F to -65°F. Record Wf at approximately 20° increments.

13. Np SERVO CALIBRATION

Set Ng = 10,200, PAS = 118° , LDS = 90° , P₃ = 200 psia, T₂ = 60° F. a) Vary Np piston from end to end with the electrical test box in closed loop position. Record Vr and Wf every 0.005 V/V in the range when fuel flow changes.

b) Repeate "a" at Ng = 9012, PAS - 1180, LDS = 30° , P₃ = 152 psia.

14. MAX UPTRIM

Set PAS = 117.5, P_3 = 200 psia, T_2 = 60°F, LDS = 15.0°. Set Np servo to maximum position. Record Vr. Set speed 9400 to 10,400 to 9400 in 200 rpm increments. Record Wf.

AD-A113 532 SOUTHWEST RESEARCH INST SAN ANTONIO TX ARMY FUELS AN--ETC F/6 15/F DEVELOPMENT OF ACCELERATED FUEL-ENGINES QUALIFICATION PROCEDURE--F DEC 81 JA RUSSELL, J P CUELLAR, J C TYLER DAKK70-80-C-0001 UNCLASSIFIED AFERL-194-VOL-2 3 or 5 AD A ř

15. MAX DOWN TRIM

Set PAS = 117.5°, LDS = 50.0° , P₃ = 70 psia, T₂ = 60° F. Set Np servo to minimum position. Record Vr. Set speed from 6500 to 7900 to 6500 rpm in 200 rpm increments. Record Wf.

16. Np SERVO NULL POINT

Set PAS = 117.5° , P3 = 152 psia, T₂ = 60° F, LDS = 90° , Speed = 9012 rpm. With test box set in closed loop, adjust LVDT voltage ratio adjustment to obtain Wf = 380 ± 2 pph. Record Wf, T.M. current and voltage ratio.

SPOT CALIBRATION

1. MINIMUM FLOW SPEED

Set PAS = 118° , P₃ = 5 psia. Record fuel flow and T.V. ΔP at 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600 and 1700 rpm.

2. MAXIMUM RATIO

Set PAS = 118° , LDS = 90° , Ng = 9600 rpm, T_2 = $+120^{\circ}$ F. Record Wf and ΔP at 20 psi increments 20 to 200 to 20 psia.

3. MINIMUM RATIO

Set PAS = 25° , LDS = 0° , T_2 = $+120^{\circ}$ F, Ng = 7600 rpm. Record Wf and ΔP at 20 psi increments 200 to 40 to 200 psia.

4. <u>VG</u>

Set PAS = 118° , LDS = 90° , T_2 = $+120^{\circ}$ F, P_3 = 150 psia. Record Vg position at 7700, 8000, 8300, 8600, 9000, 9400, 9700, 10,000 rpm.

5. MAXIMUM DROOP

Set PAS = 118° , LDS = 90° , T_2 = 120° F, P_3 = 200 psia. Record Wf and ΔP at 10,000, 10,200, 10,400, 10,600 rpm.

6. IDLE DROOP

Set PAS = 26° , LDS = 0° , T_2 = +120°F, P_3 = 60 psia. Record Wf and ΔP at 6200, 6400, 6600, 6800, 7000 rpm.

FLOW TEST

- 1. Throttle Valve Flow test per Note 17 of drawing 763617.
- 2. Vg Pilot Valve Flow test per Note 12 of drawing 737890.
- 3. Pump Calibration New Vickers pump S/N MX-329517 with test data from Vickers test record 7419. Pump will be returned to Vickers to run the above test data from Vickers test record 7419 after the 500 hours test.

TABLE I

FUEL CHARACTERISTICS

		STANDARD	TEST FLUID
PROPERTY	SAMPLE NO.	MIL-T-5624L	AL-10596-SP-T
	FUEL TYPE	GRADE JP-4	JP-4
	SOURCE	MIL SPEC	PARAHO/PETR
Distillation,			
°C(°F)		D86	D86
10%, max			99(211)
20%, max		145(293)	121(249)
50%, max		190(374)	175(347)
90%, max		245(473)	220(428)
EP, max		270(518)	243(470)
Residue, vol	. max	1.5	1.0
Loss, vol%, max		1.5	0
Vapor Pressur			· ·
100°F, kPa	. •	14-21	17.5
Freezing Poin	nt.		27.03
°C(°F) max	•••	-58(-72)	< - 60
Water Reaction	5 70	30(-72)	100
interface rat		1b	1
Water Separat	•	85	100
mofified, mir	•	63	100
TAN, mg KOH/g,		0.015	0.01
Aromatics,	, wax	0.013	0.01
vol%, max		25.0	21.9
Olefins,		23.0	21.9
vol%, max		5.0	0.4
-		3.0	0.4
Mercaptan Sul	itur,	0.001	0.000
Doctor Test		0.001	
Sulfur,			Positive, "Sour"
wt%, max		0.40	.004
	_	U-4U	2
Nitrogen, ppm			2
Copper strip 2 hr @212°F,		15	25
Density,	ma X	1b	2 b
kg/1, win (15	\$ * C\	0.751	0.7849
Density,	, ,	0.731	U • / 047
kg/1, max (15	\$ * C\	0.902	0.7849
Kg/1, Max (13	, .,	0.802	U./049

HAMILTON STANDARD TEST FUEL (CONT'D)

API Gravity,		
max (15°C)	57.0	48.7
API Gravity,		
min (15°C)	45.0	48.7
Thermal Stability (JFTOT)		
P, mm Hg, max	25	0
deposit code, max	3	1
Existent Gum,		
mg/dl, max	7.0	1.5
Particulate Matter,		
mg/l, max	1.0	0.1
Filtration Time,		
minutes, max	15	n/a
Aniline Point, °C		44.8
Heating Value		
Aniline-Grav-		
ity, min	5250	5503
LHV, MG/kg, min	42.8	44.4
LHV, Btu/lb, min	18400	19100
Hydrogen Content		
wt7, min	13.6	13.6
or Smoke Point,		
mm, min	20.0	N/A
Fuel System Icing		
Inhibitor, vol%	0.10-0.15	N/A
Fuel Electrical		
Conductivity, pS/m	200–600	0
Viscosity, cSt		
40 °C		0.84
-20 °C		2.05
Saybolt Color		+28

TABLE 2 LUBRICITY AND INTERFACIAL TENSION

- Ball on cylinder method (BOCM) using a 1000 gram load was used to check lubricity
 Interfacial tension tests were run per ASTM D971-50

TEST TIME	WSD ∼ mm	INTERFACIAL TENSION TEST RESULTS ~ DYNES/cm
After approx. 10 hours of control calibration and rig check out. Prior to initiation of cycle test.	. 624	38.5
After 58 hours of cycling with room temperature fuel	.569	38.0
After 205 hours of cycling with room temperature fuel	.659	39.3
After 106 hours of cyclic testing with hot fuel (1570+200F)	.431	37.0

Pump Component Calibration P/N 751056-7 S/N MX 329517

	Limits	1/26/79 Pre Test	9/18/81 Post Test
Flow at 9947 RPM 700 PSID	6.40 GPM Min	6.88 GPM	6.65 GPM
Flow at 9947 RPM 100 PSID	7.43 GPM Max	7.13 GPM	7.01 GPM
Flow at 1291 RPM 250 PSID	.63 GPM Min	*.825 GPM	.627 GPM
Leakage at 10,400 RPM 700 PSIG	5 Drops/10 Min Max	None	None

^{*} This data point appears to be in error. Typical values for flow at at 1290 RPM vary from 0.63 to 0.70 GPM.

Vg Pilot Valve Component Calibration

P/N 737890-5

	<u>Pre Test</u>	<u>Post Test</u>
Valve Gain	71.25 PPH/.001 Inch	71.25 PPH/.001 Inch
Valve Lap	.00095 Overlap	.00085 Overlap
Null Leakage	'80.7 PPH	90 PPH

FIGURE 22

TABLE 3

SUMMARY OF PRE AND POST SHALE OIL UNIT CALIBRATION 93747

TEST NG POINT RPM	Mini	1290	Star	3000	4000	2000	2800	6500	0029	_8069	6700	Acce	6700
P3 PSIA	Minimum Flow	15	Start and Idle	19	25	34	45	09	09	09	09	Acceleration Schedule 60 ^O F T2	62
72 OF				09							- 09	Schedule	9
PAS			Droop 60°F T2	26							- 56	60°F T2	117.5
LDS Dr7				0									70
NEW PART Wf LIMITS		57.5 - 62.5		61 - 67	98 - 08	115 - 126	162 - 178	+23 to +33 of 9	135 - 145	-23 to -33 of 9	135 - 145		220 - 236
PRE		60.4		63.5	82	117.5	170	+29	142	-29	140		225
POST		59.7		64.5	83.5	120	171	+29.5	137.5	-28.5	137		230
NEW PART Vg LIMITS													
PRE TEST													
POST													

			S	MARY OF	PRE AND	POST SHALE OI	L UNIT C.	ALIBRATIO	SUMMARY OF PRE AND POST SHALE OIL UNIT CALIBRATION (cont.) S/N	93747	
TEST	NG RPM	P3 PSIA	72 OF	PAS	LDS	NEW PART Wf LIMITS	PRE TEST	POST TEST	NEW PART Vg LIMITS	PRE TEST	POST
	Minim	Minimum Ratio									
13	1600	20	0-	5 6	0-	92 - 69	71.5	73.5			
14	7600	100			-	141 - 149	145	. 148			
15	1600	150				211 - 224	219	222	* .		
16	2600	200	- 09	- 9 2	- 0	283 - 297	293	295			
	Varia	Variable Min	Ratio								
17	0096	150	09	26	0	225 - 261	257	255			
18	10146	204	09	56		411 - 444	438	438			
	Accel	Acceleration	and V.G.		Schedule 60 ^O F	, T2					
19	8000	100	09-	117.5	0_	333 - 351	344	(352)	.155235	.197	.220
20	8800	152				540 - 566	553	564	.836886	.867	.870
21	9300	200				717 - 757	724	730	1.253 - 1.303	1.274	1.280
22	0096	25				96 - 98	16	88			
23	0096	20	_			176 - 189	185	181			
24	0096	100		·		352 - 374	368	370			
25	0096	150				529 - 559	554	549			

TABLE 3

SUMMARY OF PRE AND POST SHALE OIL UNIT CALIBRATION (cont.) S/N 93747

TEST	NG RPM	P3 PSIA	042 F	PAS DEG	LDS	NEW PART Wf LIMITS	PRE TEST	POST TEST	NEW PART Vg LIMITS	PRE TEST	POST TEST
	Acce1	Acceleration ar	and V	.G. Sched	ule 60	nd V.G. Schedule 60°F T2 (cont.)					
56	0096	200	9-	117.5	0 ⁻	672 - 969	720	722	1.487 - 1.567	1.519	1.522
27	0096	270		· · · · · · · · · · · · · · · · · · ·		770 - 800	191	797			
28	0096	100				352 - 374	365	369			
29	0066	200	- 09	117.5	-0	685 - 730	702	707	1.686 - 1.714	1.701	1.703
	Max D	roop Sci	hedule	Max Droop Schedule at 60°F T2	172						
30	10150	200	9	117.5	02	+20 to +30 of 31	+22	+20			
31	10200	200			·	578 - 621	613	290			
32	10250	200	-			-20 to -30 of 31	-21	-23			
33	10200	200	09	117.5	70	578 - 621	613	591			
	V.G.	V.G. Hysteresis	818								
34	8800	152	09	117.5	70				±.020 of 20	± .010	*
	Idle	Idle Repeatabil	bility								
35	6620	9	09	26	0	135 - 145	140	137			

TABLE 3

SUMMARY OF PRE AND POST SHALE OIL UNIT CALIBRATION (cont.) S/N 93747

TEST	NG	P3 PSIA	0 112 0 F	PAS	LDS	NEW PART Wf LIMITS	PRE	POST	NEW PART Vg LIMITS	PRE TEST	POST TEST
	Start	and Idle	Droop	Start and Idle Droop at -20 ^O F	12						
36	4000	76	-20	26	-	87 - 93	(82)	68			
37	2000	40	. 			139 - 151	139	143			
38	2800	54				182 - 196	185	187.5			
39	6463	63				129 - 147	135	132			
0.4	6563	63	-50	- 5	-0	-20 to -28 of 39	-26	-26			
	Accele	ration	chedule	Acceleration Schedule at -20 ^O F T2	F T2						
41	6563	70	-20	117.5	8-	220 - 237	225	230			
42	7261	06	.			273 - 291	281	284	.035164	.150	.154
43	8094	152				493 ~ 519	503	513	.812908	968.	906*
4	8800	210				719 - 765	720	737	1.430 - 1.570	1.536	1.547
45	9300	220	<u>.</u>			612 - 680	643	642	1.686 - 1.714	1.701	1.703
46	9400	220	-20	117.5	70	-44 to -65 of 45	-50	-50			
	Start	and Idle	broop	Start and Idle Droop at +140 ^O F T2	F T2						
47	4000	23	+140	56	0	73 - 81	75	73.5			
8	2000	30				105 - 113	107	107			

TABLE

SUMMARY OF PRE AND POST SHALE OIL UNIT CALIBRATION (CONt.) S/N 93747

TEST	NG RPM	P3 PSIA	1.2 OF	PAS	DEG TDS	NEW PART Wf LIMITS	PRE	POST	NEW PART Vg LIMITS	PRETEST	POST
49	5800	38	+140	5 6	0-	146 - 156	144	149			
20	6089	20		•		119 - 136	127	127			
51	7009	20	+140	-5 2	-0	-15 to -23 of 50	-20	-22			
	Accele	ration S	Acceleration Schedule at +140 ^O F T2	at +140	OF T2						
52	7107	09	+140	117.5	۷ <u>۰</u> ۲۰۰۰	234 - 246	236	240			
53	8800	105				377 - 401	391	397	.297413	.381	(.415)
54	9452	140	· · · · · · · · ·			483 - 511	200	505	.812908	.886	(-927)
55	9850	170	<u> </u>			571 - 603	586	592			
26	10145	200	·			601 - 663	640	638	1.339 - 1.455	1.425	(1.467)
57	10245	200	+140	117.5	- 02	-40 to -60 of 56	-45	-45			
	LDS Sch	edule -	LDS Schedule - Lower Range	ange							
28	7749	76	09+	117.5	-10	-247 to -193 of 61	-211	-214			
59	1966	93			0	-197 to -153 of 61	-170	-165			
09	8515	121			15	-123 to -83 of 61	96-	86-			
19	9012	152	194	117.5	30	268 - 390	380	381			

TABLE 3

SUMMARY OF PRE AND POST SHALE OIL UNIT CALIBRATION (cont.) S/N 93747

TEST	NG RPM	P3 PSIA	T2 0F	PAS	LDS	NEW PART Wf LIMITS	PRE TEST	POST	NEW PART Vg LIMITS	PRE TEST	POST
	LDS SC	۱۱ ۱		Lower Range (cont.)	ont.)						
62	9529	192	9	117.5	20	+160 to +206 of 61	+187	+166			
63	9828	216			09	+268 to +340 of 61	+291	(+261)			
64	9012	152	- 09	117.5	30	370 - 390	+378	+375			
	LDS Sc	LDS Schedule -	- Upper Range	ange							
65	9028	152	09-	117.5	09	384 - 388	386	385			
99	9435	185			70	+79 to +131 of 65	96+	88+			
29	9845	228	09	117.5	80	+132 to +201 of 65	+144	+132			
	Np Ser	Np Servo Reset	Schedule	e - Uptrim	rim						
TEST POINT	P3 PSIA	9.72	PAS DEG	LDS	ACCE Wf L	ACCEPTANCE AC Wf LIMITS RP	ACCEPTANCE RPM LIMITS	PRE	POST		
89	200	09	117.5	15	595 -	605	9443 - 9887	9956	9559		
	Np Ser	Np Servo Reset Schedule	Schedul		- Downstream						
69	70	09	117.5	20	172	172 - 178 74	7472 max	7190	6917		

TABLE 3

SUMMARY OF PRE AND POST SHALE OIL TEST CALIBRATION (cont.) S/N 93747

TEST POINT					
	High Pressure Relief Valve				
70	POUT New Part Limits	PRE TEST	POST TEST		
	880 - 905	905	(206)		
	Np Servo Hysteresis				
	Torque Motor Current - New Part Limits	PRE TEST	POST TEST		
11	10 M.A. Max	8.3	5.4		
	Ng Overspeed Shutoff RPM New Parts Limits	PRE TEST	POST TEST		
72	10,800 - 11,090	10,968	10,952		
TEST	PAS TOROUE (IN. LBS)				
	PAS RANGE	NEW PART LIMITS	MITS	PRE TEST	POST TEST
73	0 to 23.5 Degrees	25 Max 0	- 0 Min.	6	7.2
74	23.5 to 120 Degrees	15 Max. ~ 0	0 Min.	2	5.7
75	120 to 130 Degrees	25 Max 0 Min.	Mín.	9	15.7
	LDS TORQUE	NEW PART LIMITS	MITS	PRE TEST	POST TEST
76	-10° to 80° to -10°	15 Max 0 Min.	Min.	9	S

TABLE 3

SUMMARY OF PRE AND POST SHALE OIL UNIT CALIBRATION (CONt.) S/N 93747

TEST

	EXTERNAL LEAKAGE			
	NEW PART LIMITS WE		PRE TEST	POST TEST
7.7	External	0	0	0
78	Overboard Drain	7.55 cc/5 min.	0	0
	INSULATION RESISTANCE			
	NEW PART LIMIT		PRE TEST	POST TEST
79	10 Megohm Min.		*	1000 +
	ELECTRICAL CONTINUITY			
	NEW PART LIMIT		PRE TEST	POST TEST
80	No Shorts		OK	ÖK
	TORQUE MOTOR LOCKOUT			
	PAS RANGE	NEW PART LIMIT	PRE TEST	POST TEST
81	1270 to 410	Locked out No Wf	0	0
82	28.5° to 117.5°	T.M. Functioning OK	OK	OK

TABLE 3

SUMMARY OF PRE AND POST SHALE OIL TEST CALIBRATION (CONt.) S/N 93747

* These points not run.

SPEED SERVO CALIBRATION

PUMP SPEED TO PRODUCE MIN FLOW

25

יוען זכן פנורמטרר פרנים

ACCELERATION SCHEDULE (60°F)

MILITARY GOVERNOR DROOP (-20°F)

D-42

MILITARY GOVERNOR DROOP (60°F)

•

IDLE GOVERNOR DROOP (+600F)

101010

•

VANE ACTUATOR DISPLACEMENT (-200F)

VANE ACTUATOR DISPLACEMENT (60°F)

1)-49

VANE ACTUATOR DISPLACEMENT (140°F)

IGURE 38

TEMPERATURE BIAS OF VANE SCHEDULE WITH HYSTERISIS

TEMPERATURE BIAS OF TOPPING SCHEDULE WITH HYSTERISIS

FIGURE 40

CEECINICAL DOMINING

;

LECIRICAL UPININ

APPENDIX D-10

DISASSEMBLY AND INSPECTION REPORT

After completion of the post-test definition data the fuel control was disassembled and hardware examined. Pre and post test experimental inspection reports are included as figures 43 and 44. All hardware was in good condition and the fuel control will be reassembled without replacement or rework. Wear appeared consistant with endurance tests run in JP4 and iso octane. No direct comparison is possible since no endurance tests of this length (300 hours) have been run in clean fuel using the JFC 78. Control qualification tests have been considered which consist of 420 hours of accelerated cyclic endurance (1 minute cycles). These tests were run with iso-octane containing military specification contamination. Addition control hardware has been examined after long term engine endurance tests of 1250 hours and 1900 hours. Hardware from all these tests exhibited similar, but more severe, wear than that observed in this test.

Photographs of the hardware showing signs of wear are included in figures 45 to 46. This wear is not considered excessive and did not result in significant shifts in fuel control performance. A varnish type deposit was observed on some of the hardware. Quantities were not sufficient to be analyzed and did not effect control performance, however, increased quantities of this deposit might cause fuel control shifts and increased hysteresis. These deposits were found on the following hardware: pressure regulating valve, flyweight toes, flyweight wear pad, and the pilot valve lever. In addition the AMS 7445 cam follower balls and the carbide flyweight toe wear pad were discolored by a deposit or surface distress which had no apparent depth with 20x magnification. These deposits have been noted on other JFC 78 controls. This discoloration had no apparent adverse effects on performance or durability.

HS F-182E 7/81

HAMILTON STANDARD

EXPERIMENTAL INSPECTION REPORT

COPIES:	Pre ENDURANCE	
1. Engineer Roy Mainelli	Anter	Test No.
2. Government	Fuel Control Assembly	Sheet No.
3. Exp. Assy	Parts List	Test Date
(sign to verify inspection)	Experimental No. ——————	No. of Pages 1
	Assy Record No. S/N 93747	Page No 1
	Insp. Date <u>4/10/81</u>	

JFC 78-4 500 Hrs. Shale Oil Test

Part No.	Part Name	Qty	Condition of Part	Dispositi
763700-3	Fuel Control	1	The parts for this test have been visually	
			inpsected and are acceptable, some parts	
			have slight wear from previous testing as	
			listed below.	
767124-1	Latching Valve	1	Nicks on flat face.	
	Piston			
766313-20	P2 Regulator Valve		HATTO HILL OF THE	
			977 V32 4 V 181 8 10 1 30 20 1	
737897-4	Seat Check Valve	1	Light scoring on half ball	
751176-2	Injector Tube	1	Nick on lip of the retaining pin slot	
			anodize missing on two spots on O.D. of	
			tube.	
738021-3	Idle Reset Lever	1		
765452-1	Speed Servo Piston	1		
755242-1	Power Spindle (PAS)	1	Electrofilm worn off on shutoff cam	
738045-14	Lever	1	Worn spot - no depth	
				
				
	1			
		<u> </u>	<u> </u>	

IS F-182E 7/81

HAMILTON STANDARD EXPERIMENTAL INSPECTION PEPORT

OPIES:	Pro POST TEST ENDURANCE	
1. Engineer Roy Mainelli	vice. 1	Test No
2. Government	Fuel Control Assembly	Sheet No
3. Exp. Assy	Parts List	Test Date
(sign to verify inspection)	Experimental No. —————	No. of Pages 1
	Assy Record No. S/N 93747	Page No1
	Insp. Date9/2/81	

JFC 78 500 Hrs. Shale Oil Test

Part No.	Part Name	Qty	Condition of Part	Dispositic
738039-1	Lever, Pilot Valve		Slight Wear and Some Deposit	
765428-1	Sleeve, Lockout		Dent in Ball Seat Area	
755242-1	Spindle and Insert,		Slight Wear on Shut-Off Cam	
	Power			
764462-1	Flyweight, Speed		Deposit on Flyweight Toes	
	Governor	ļ		
757697-2	Gear, Speed Governor		Light Wear on Teeth	
755218-2	Cam, Decel		Slight Wear Flat	
737998-10	Governor Rod and		Slight Wear and Discolored	
	Bearing			
766380-1	Valve and Sleeve,		Cut Seal	
	Shutoff Ball		Discolored	
732994-2	Lever and Roller,		Corrosion on Roller	
	Droop			
738001-1	Lever, Idle Reset		Blight Wear on Pad	
751056-7	Cam Ring, Pump (Shaft Spline)		Slight Deposits	
1				
				
		<u> </u>		

Figure

Figure

APPENDIX E

- No. 1 Identification of Critical Fuel System Components
- No. 2 Existing Engine Qualification Procedures
- No. 3 NATO Standard Engine Laboratory Test-Edition June 80
- No. 4 Fuel System Components Qualification Procedures
- No. 5 Environmental Protection Agency Heavy-Duty Diesel Engine Exhaust Emissions Certification and Test Procedures

APPENDIX E-1

IDENTIFICATION OF CRITICAL FUEL SYSTEM COMPONENTS

A. INTRODUCTION

This appendix presents a compilation of the critical diesel engine fuel system components which could be adversely affected by an alternative fuel (e.g., a coal or shale-derived diesel fuel) whose physical and/or chemical characteristics differ from the engine's intended fuel. Specifically, engine-mounted "fuel-wetted" components are identified. Non-fuel-wetted components such as valves, pistons, piston rings, etc., are not addressed nor are components which could be indirectly affected by a fuel change (e.g., electrical system components). Vehicle-related fuel-wetted components such as fuel tanks, fuel supply lines, and ancillary equipment are not addressed,

Any identification of "critical" fuel system components involves a number of assumptions to define the meaning of the term critical. The approach was to highlight components which are generally considered to be sensitive to changes in fuel parameters such as lubricity, aromaticity, sulfur content, gum content, impurities, and related parameters and characteristics. In this respect, the components of concern are those involving close tolerances, are known to contain elastomeric (or similarly sensitive) materials which contact fuel, operate in a high temperature environment, or are a particularly necessary unit to engine operation. Components which were found to belong to these categories include fuel injection equipment, fuel pumps, fuel filters and strainers, non-metallic fuel lines (e.g., hoses), fuel solenoid valves, and manifold heaters (which are a collection of these components).

The approach utilized to present this information is to describe for each engine model, its operating characteristics, the vehicles in which it is used, and to list the specific fuel critical components (complete with its part number and/or model designation and manufacturer or source of supply).

The information was obtained from the various engine manufacturers and/or the applicable engine Army technical manual. Where TACOM or a similar entity is listed as the manufacturer, they are the controlling source of supply for the item within the military system.

B. ARMY DESIGNED ENGINES

1. AVDS-1790 Series

a. Powerplant characteristics

The AVDS-1790 Series engines are 12-cylinder, 90 degree, V-type, four-stroke cycle, air-cooled, and turbosuper-charged. Selected engine characteristics and performance data are shown in Table A-1.

TABLE A-1, SELECTED AVDS-1790 SERIES ENGINE CHARACTERISTICS AND PERFORMANCE DATA

Displacement	1790 in ³
Weight, dry (with accessories)	
Model 2A Models 2C&2D Model 2DR	4685 lb 4876 lb 4925 lb
Compression ratio	16:1
Horsepower, net	642 bhp at 2400 rpm
Torque, net	1585 lb-ft at 1800 rpm
Speed Governed, full load Governed, no load Idle	2400 rpm 2640 rpm 700 rpm
Bore	5.750 in
Stroke	5.750 in
Fuel	VV-F-800, Grade DF-2

b. Engine/Vehicle Matches

Table A-2 shows the M-Series vehicles which contain the AVDS-1790 Series engines under consideration, per the appropriate technical manuals.

TABLE A-2, APPARENT AVDS-1790 SERIES ENGINE/VEHICLE MATCHES

Engine Model	M-Series Vehicle Designation
AVDS-1790-2A	M48A3,M60,M60A1,M728
AVDS-1790-2C	M48A5,M60,M60A1,M60A1(RISE), M60A2,M60A3,M48A2AVLB,M60A1AVLB, M48A5AVLB,M728
AVDS-1790-2D	M48A5,M60,M60A1,M60A1(RISE), M60A2,M60A3,M48A2AVLB,M60A1AVLB, M48A5AVLB,M728
AVDS-1790-2DR	M88A1

Table A-3 shows the M-Series vehicles in current use (confirmed by TACOM) which contain Teledyne-Continental-Motors-built AVDS-1790 series engines. The 1790-2 is no longer built and the 2A is built only on special order. The 2C, 2D, and 2DR models are current production items. Vehicles with the 2A engine are being converted to 2C's or 2D's when in for overhaul. The M48A5 vehicles are being retrofitted with 2C's or 2D's; most will be retrofitted with 2D's (if the electrical system can handle the amperage, a 2C is used, otherwise a 2D is used).

TABLE A-3, THE AVDS-1790 SERIES ENGINES MATCHED TO IN-SERVICE M-SERIES VEHICLES

Engine Model	M-Series Vehicle Designation	
AVDS-1790-2		
AVDS-1790-2A	M48A5, M60Al, M60A2, M728	
AVDS-1790-2C	M60A3, M60AlRISE, M48A5*	
AVDS-1790-2D	M48A5*, M60A1*, M60A2*, M728	
AVDS-1790-2DR	M88A1	

^{*}Vehicles being retrofitted with listed engine.

The major distinctions between models are as follows:

•	AVDS-1790-2: (Army No. 8725265)	<pre>supplied with air-cooled and associated accessory</pre>	J
•	AVDS-1790-2A: (Army No. 10912450)	<pre>supplied with air-cooled and associated accessory</pre>	
•	AVDS-1790-2C: (Army No. 11682700)	<pre>supplied with oil-cooled and associated accessory</pre>	
•	AVDS-1790-2D: (Army No. 11684000)	<pre>supplied with air-cooled and associated accessory</pre>	2
•	AVDS-1790-2DR: (Army No. 11684150)	supplied with air-cooled and associated accessory an auxiliary power take-o	drive and

c. Fuel System Components Identification

Figure A-1 shows a schematic of the main fuel system. Figure A-2 shows a schematic of the manifold air induction heater system. Figure A-3 shows a schematic of the smoke generating system. Table A-4 lists the vendor or source of supply for the primary fuel system components and their respective part and/or model designation; differences between models are so noted. Table A-5 identifies fuel system hoses and tubes for the 1790-2A model while Table A-6 lists similar data for the other engine models.

TABLE A-4, IDENTIFICATION OF AVDS-1790 SERIES PRIMARY FUEL SYSTEM COMPONENTS

Component	Vendor/Source	Part Number (model number)
Fuel Injection Pump • Model 2A • Models 2C,2D, & 2DR	American Bosch	• 10912447 (PSB-12BT) • 11684129-1 (PSB- 12BT)
Fuel Nozzle & Holder Assembly	American Bosch	10912452

FIGURE A-1, THE AVDS-1790 SERIES PRIMARY FUEL SYSTEM
Source TM9-2815-220-34

FIGURE A-2, THE AVDS-1790 SERIES FLAME HEATER FUEL SYSTEM Source: TM9-2815-220-34

FIGURE A-3, THE AVDS-1790 SERIES SMOKE GENERATING FUEL SYSTEM
Source: TM9-2815-220-34

TABLE A-4, IDENTIFICATION OF AVDS-1790 SERIES PRIMARY FUEL SYSTEM COMPONENTS (Cont.)

Component	Vendor/Source	Part Number (model number)
Fuel Supply Pump • Model 2A	Viking	• 10882763 (FV492)
• Models 2C&2D	VIXING	• 10882763-1 (FV492- 4C
● Model 2DR		• 8761431-1 (FV492- 4D
Primary Fuel Filter		
• Model 2A	• Fram or Purolator	• 8395476 (2949 or 664479)
● Models 2C,2D& 2DR	• Bendix Filter Div.	• 11668617 (054615-02)
Primary Fuel Filter Parts Kit	TACOM	
Model 2A		• 5702757
• Models 2C,2D& 2DR		• 5704487
Fuel/Water Separator Filter		
• Model 2A	• Keene Corp. Filtration Div.	• 11602063
● Models 2C,2D& 2DR	• Facet Filter Products	• 11602063
Fuel/Water Separator Filter Parts Kit	TACOM	5702738
Secondary Fuel Filter (Model 2A only)*	Fram	8764641 (FBM1126)
Secondary Fuel Filter Parts Kit (Model 2A only)*	TACOM	5702690
Water Separator Solenoid Valve	Skinner Elec- tric Valve Div	11668627

TABLE A-4, IDENTIFICATION OF AVDS-1790 SERIES PRIMARY FUEL SYSTEM COMPONENTS (Cont.)

Component	Vendor/Source	Part Number (model number)
Manifold Air Heater Nozzle Assembly • Model 2A	TACOM	733555512254278
• Models 2C,2D& 2DR		
Flame Heater Solenoid Valve	Skinner Elec- tric Valve Div	7062194
Flame Heater Fuel Filter		
Model 2A	Military Standard	• 51085-1
• Models 2C,2D& 2DR	Bendix Filter Div	• 11668619
Smoke Generator Solenoid Valve	Skinner Elec- tric Valve Div	11668627

TABLE A-5, IDENTIFICATION OF AVDS-1790-2A FUEL SYSTEM HOSES AND PLASTIC TUBES

Hose/Tube Description	Vendor/Source	Part Number
Hose Assembly-Fuel Return, Cylinders 5&6	TACOM	10951341-2
Hose Assembly-Fuel Return, Cylinders 1-2, 2-3,3-4,4-5	TACOM	10951341-1
Tube Assembly-Fuel Injection Pump To Bulkhead Elbow	TACOM	8761510
Hose Assembly Teflon- Fuel Injection Return	TACOM	10882940

TABLE A-5, IDENTIFICATION OF AVDS-1790-2A FUEL SYSTEM HOSES AND PLASTIC TUBES (Cont.)

	,	
Hose/Tube Description	Vendor/Source	Part Number
Hose Assembly-Water Separator Fuel Filter Outlet Elbow To Bulk- Head Elbow	Military Standard	28741-8-0300
Hose Assembly-Fuel Pump Gutlet To Water Separator Fuel Filter Inlet	Military Standard	28741-8-0134
Hose Assembly, Rubber- Primary Fuel Filter Outlet To Check Valve Inlet	Military Standard	28741-8-0204
Hose Assembly, Rubber- Fuel Pump Outlet Adapter To Secondary Fuel Filter Inlet	Military Standard	28741-8-0260
Hose Assembly, Rubber- Secondary Fuel Filter Outlet Elbow To Bulk- Head Elbow	Military Standard	28741-8-0340
Plastic Tubing-7.125", Part Of Check Valve To Flame Heater Fuel Filter Tube Assembly	TACOM	7017826
Plastic Tubing-75", Part Of Right Bank Solenoid Valve Tee To Flame Heater Nozzle Tube Assembly	The Polymer Corp	(NS4H)

TABLE A-6, IDENTIFICATION OF AVDS-1790-2C,-2D, AND-2DR FUEL SYSTEM HOSES AND PLASTIC TUBES

	,	
Hose Description	Vendor/Source	Part Number
Hose Assembly-10 Intercylinder Connector And 1 Fuel Return Connecting No. 6 Cylinder, Left Bank, And Elbow Tube	Military Standard	MS52104C4-0074
Hose Assembly-Fuel Return Connecting No. 6 Cylinder, Right Bank, And Elbow Tube	Military Standard	MS5104C4-0090
Hose Assembly-Fuel Injection Pump Check Valve To Tee	Military Standard	MS8005H120A
Hose Assembly-Injection Pump Overflow Tee To Tube Nipple	Military Standard	MS8005H520A
Hose Assembly-Injection Pump Overflow Tee To Tube Cross	Military Standard	MS8005H060A
Hose Assembly-Fuel Injection Pump Check Valve To Bulkhead Cross Tee	TACOM	10882940
Hose Assembly-Water Separator Fuel Filter Outlet Elbow To Bulk- Head Elbow	Military Standard	MS28741-8-0300
Tube Assembly-Fuel Injection Pump Inlet To Bulkhead Elbow	TACOM	8761510
Hose Assembly-Primary Fuel Filter Outlet To Fuel Back Flow Valve Inlet	Military Standard	MS28741-8-0124

TABLE A-6, IDENTIFICATION OF AVDS-1790-2C,-2D, AND -2DR FUEL SYSTEM HOSES AND PLASTIC TUBES (Cont.)

		
Hose Description	Vendor/Source	Part Number
Hose Assembly-Primary Fuel Filter Outlet To Fuel Back Flow Valve Inlet**	TACOM	11684294
Hose Assembly-Fuel Back Flow Valve Out- let To Fuel Pump Inlet**	Military Standard	MS28741-8-0240
Hose Assembly-Fuel Pump Outlet To Water Separator Fuel Filter Inlet**	Military Standard	MS28741-8-0330
Hose Assembly-Fuel Pump Outlet To Water Separator Fuel Filter Inlet*	Military Standard	MS28741-8-0134
Hose Assembly-Flame Heater Solenoid Valve Outlet To Cross Tee	Military Standard	MS8005E086E180
Plastic Tube-60", Part Of Tube Assembly For Flame Heater (Part No. 10882779)	The Polymer Corp	(NS4H)
Plastic Tube-75', Part Of Tube Assembly (Part No. 10882780) For Flame Heater	The Polymer Corp	(NS4H)
Plastic Tube-7.12" Or 10.44", Check Valve To Flame Heater Filter Inlet, Part Of Tube Assembly (Part No. 10865122)	TACOM	7017826

^{*}Models 2C and 2D only **Model 2DR only

- 2. The LD-465-1, LD-465-1C, LDT-465-1C, LDS-465-1, LDS-465-1A, LDS-465-2 Multi-Fuel Engines
 - a. Powerplant Characteristics

The LD-465, LDT-465, and LDS-465 model "multi-fuel" engines are all four-stroke cycle, in-line, six-cylinder, and liquid cooled. The LD-465 models are naturally aspirated, and the LDS-465 and LDT-465 models are turbocharged. Selected engine characteristics and performance data are shown in Table A-7.

TABLE A-7, SELECTED LD-465-1, LD-465-1C, LDT-465-1C, LDS-465-1, LDS-465-1A, AND LDS-465-2 ENGINE CHARACTERISTICS AND PERFORMANCE DATA

Model Charac- teristic	LD-465-1	LD-465-1C	LDT-465-1C	LDS-465-1	LDS-465-1A	LDS-465-2
Displacement	478 in ³	478 in ³	478 in ³	478 in ³	478 in ³	478 in ³
Weight	1614 lb	1614 lb	1650 lb	1561 lb	1650 lb	1633 lb
Compression Ratio	22:1	22:1	22:1	22:1	22:1	22:1
Gross Horse- power, Min (All Fuels)	126 hp at 2600 rpm	126 hp at 2600 rpm	130 hp at 2600 rpm	175 hp	175 hp at 2600 rpm	195 hp at 2800 rpm
Gross Torque, Min (All Fuels)	300 lb-ft at 1400 rpm	300 lb-ft at 1400 rpm	305 lb-ft at 1500 rpm	425 lb-ft at 2000 rpm	425 lb-ft at 2000 rpm	425 lb-ft at 2000 rpm
Speed (rpm) Governed, Full Load Governed, No Load Idle	2600–2650 2850–2900 650–700	2600-2650	2600-2650 2850-2900 *	2600-2650 2850-2900 650-770	2600-2650 2850-2900 650-700	2800-2850 3050-3100 650-700
Bore	4.56 in	4.56 in	4.56 in	4.56 in	4.56 in	4.56 in

^{*}Early production models are 650-700 rpm; late production models are 800-350 rpm.

TABLE A-7, SELECTED LD-465-1, LD-465-1C, LDT-465-1C, LDS-465-1, LDS-465-1A, AND LDS-465-2 ENGINE CHARACTERISTICS AND PERFORMANCE DATA (CONT.)

Model Charac- teristics	LD-465-1	LD-465-1C	LDT-465-1C	LDS-465-1	LDS-465-1A	LDS-465-2
Stroke	4.87 in	4.87 in	4.87 in	4.87 in	4.87 in	4.87 in
Fuel*	_	te I Fuel G f G t J c c	V-F-800, G F-2; MIL-T s: MIL-F-1 commercial rades 1-D uel-kerose rade JP-7; urbine fue tet A-1; MI commercial or unleaded nock index	-5624, Gr 6884; MIL diesel fu and 2-D; ne type; commerci l (ASTM D L-G-5572, gasoline) with RO L 85; an	ade JP-5 -F-24397; el (ASTM D aviation t MIL-T-3821 al aviatio 1655)-Jet AVGAS 80/ (leaded, 1 N L 89 or y mixture	975), urbine 9, n A and 87; cw-lead, anti- of

^{*}There is a list of Alternate II fuels that may be used when blended with diesel fuel as well as emergency fuels that may be used.

TM9-2815-210-34 contains additional information.

b. Engine/Vehicle Matches

Table A-8 shows the M-Series vehicles (as indicated by TACOM) which contain the subject multi-fuel engines. Although White Motors Inc. has built most of the models, Teledyne Continental Motors has built some.

TABLE A-8, THE LD-465-1, LD-465-1C, LDT-465-1C, LDS-465-1, LDS-465-1A, AND LDS-465-2 ENGINES MATCHED TO M-SERIES VEHICLES

Engine Model	M-Series Vehicle Designation
LD-465-1* LD-465-1C* LDT-465-1C*	M35A2,M35A2C,M36A2,M44A2,M45A2,M45A2C, M46A2,M46A2C,M49A2C,M50A2,M50A3,M109A2, M185A3,M275A2,M292A2,M292A5,M342A2,M751A2, M756A2,M763,M764

^{*}The engine model used depended on the build date of the truck. The vehicles are collectively known as the M44A2 series $(2-1/2-ton\ trucks)$.

TABLE A-8, THE LD-465-1, LD-465-1C, LDT-465-1C, LDS-465-1, LDS-465-1A, AND LDS-465-2 ENGINES MATCHED TO M-SERIES VEHICLES (Cont.)

Engine Model	M-Series Vehicle Designation
LDS-465-1* LDS-465-1A*	M40A2C, M51A2, M52A2, M54A2, M54A2C, M55A2, M61A2, M63A2, M63A2C, M246A2, M291A2, M291A2C, M291A2D, M328E2, M543A2, M738E2, M748A2
LDS-465-2**	M656,M757,M791

- * The engine model used depended on the build date of the truck. The vehicles are collectively known as the M39A2 series (5-ton trucks).
 - **The vehicles are collectively known as the M656 series (8x8 5-ton trucks).
 - c. Fuel System Components Identification

The main fuel system is similar to that of the LDS-427-2 (see Figure A-7) consisting of a fuel injection pump assembly, fuel injector nozzle and holder assembly, fuel transfer pump, fuel filter(s), and fuel hoses/tubes. There have been three different manifold air heater systems used (see Figures A-3, A-4, A-5, and A-6). The side mounted solenoid controlled unit was used on the LDS-465-1. The top mounted, uncovered unit was used on the LD-465-1 and early production models of the LDS-465-1A and LD-465-1C. The top mounted, covered unit was used on the LDT-465-1C, LDS-465-2 and late production models of the LD-465-1C and LDS-465-1A.

Table A-9 identifies the fuel injection pump assemblies used on the subject multi-fuel engines. Table A-10 illustrates the differences between the models (note that Table A-10 also lists the fuel pump model used on the previously discussed LDS-427-2 engine.)

FIGURE A-4, THE FLAME HEATER FUEL SYSTEM FOR THE LDS-465-1 ENGINE - SIDE MOUNTED, SOLENOID CONTROLLED Source: TM9-2815-210-34

FIGURE A-5, THE FLAME HEATER FUEL SYSTEM FOR
THE LD-465-1, LD-465-1C AND LDS-465-1A
ENGINES - TOP MOUNTED, UNCOVERED
Source: TM9-2815-210-34

FIGURE A-6, THE FLAME HEATER FUEL SYSTEM FOR THE LDT-465-1C, LDS-465-2, LD-465-1C AND LDS-465-1A ENGINES - TOP MOUNTED, COVERED Source: TM9-2815-210-34

TABLE A-9, IDENTIFICATION OF LD-465-1, LD-465-1C, LDT-465-1C, LDS-465-1, LDS-465-1A, AND LDS-465-2 FUEL INJECTION PUMP ASSEMBLIES

Engine Model	Vendor/Source	Part Number (Model Number)
LD-465-1 LD-465-1C LDT-465-1C	American Bosch	10935261* (PSB6A90EH5337A)
LDS-465-1	American Bosch	10935270 (PSB6A90EH5327B)
LDS-465-1A	American Bosch	1095116 (PSB6A90EH5828A)
LDS-465-2	American Bosch	11641906 (PSB6A90EH5371G)

^{*}Some engine models had been assigned different part numbers to retain engine identity.

TABLE A-10, DIFFERENCES BETWEEN FUEL INJECTION PUMP ASSEMBLY MODELS FOR THE MULTI-FUEL ENGINES

Engine Mode Port Description	LDS-465-2	LDS-465- 1A	LD-465-1 & LD-465-1C	LDT-465- 1C	LDS- 465-1	LDS- 427-2
Fuel Supply Pump With Fuel Pressure Relief Valve. Engine Mounted Fuel Filters After Fuel Supply Pump:	х				х	
• 2 Filters • 1 Filter Fuel Density Compensator	x	x	x	x	х	х
Type: Diaphragm Piston Fuel Line Type:	x	х	×	x	х	
 Hose Plastic Tubing Oil Filter In Pump Housing Throttle Operating Lever 	х	х	x	x	x x x	x x x
Type: • 1 Piece • 2 Piece	x	x	x	×	x	х

TABLE A-10, DIFFERENCES BETWEEN FUEL INJECTION PUMP ASSEMBLY MODELS FOR THE MULTI-FUEL ENGINES (Cont.)

	<u> </u>	<u> </u>			[
Engine			LD-465-1		}	
Port Mode	ļ	LDS-465-	<u>ھ</u> ا	LDT-465-	LDS-	LDS-
Description	LDS-465-2	1A	LD-465-1C	1C	465-1	427-2
Overflow Valve Body Orifice						
At Fuel Inlet Seal, Inside						
Diameter:				,		
• 0.280 (approx)	x	х	х	х	1	х
• 0.085 (approx)]]		х	
Fulcrum Lever Assembled With	x	x		x	х	х
Low Speed Fuel Adjusting	į į				1	
Setscrew (Droop Screw).]			
Governor Equipped With	x				<u> </u>	
Torque Control Link For	1			•		
Automatic Transmission	!		1		1	i
Application.]		}			1
Governor Housing Oil Drail	†				(x	
To Oil Pan By External	1				1	
Hose.	,)			
Fuel Shutoff Type:	!					ľ
Manual	1	×	X	х	Х	X
Electrical	х	}				1
Throttle Lever Mounting	,					
Position:	[[
● Up	X				}	Х
• Down]	х	X	х	X	
Governor Speed Range:	1					
• 700-2600		х	х	х	х	
• 700-2800	×		}	İ		
• 600-2800]			٠		Х
• 800-2600	1		[х	į l	
Timing Device Spring Rates:	!	,,	1	ı	x	
• 69.0 lbs/in. (SP9041).	1	X			X	х
• 55.1 lbs/in. (SP9043). • 102.5 lbs/in. (SP857-3).	1		Х			
\$ 102.3 1D3/111. (3F03/-3/	<u> </u>					

Table A-11 identifies the fuel supply pumps used on the subject multi-fuel engines.

TABLE A-11, IDENTIFICATION OF LD-465-1, LD-465-1C, LDT-465-1C, LDS-465-1, LDS-465-1A, AND LDS-465-2 FUEL SUPPLY PUMPS*

Engine Model	Vendor/Source	Part Number (Model Number)
LD-465-1 LD-465-1C LDT-465-1C LDS-465-1A	American Bosch	10947558 (SGB25C25)*
LDS-465-1 LDS-465-2	American Bosch	10947153 (SGB25C23)

^{*}The fuel supply pumps are part of the fuel injection pump assembly.

Table A-12 identifies the fuel injector nozzle and holder assemblies for the subject multi-fuel engines.

TABLE A-12, IDENTIFICATION OF LD-465-1, LD-465-1C, LDT-465-1C, LDS-465-1, LDS-465-1A, AND LDS-465-2 FUEL INJECTOR NOZZLE AND HOLDER ASSEMBLIES

Engine Model	Vendor/ Source	Nozzle and Holder Assembly Part Number	Nozzle Assembly Part Number
LD-465-1 LD-465-1C LDT-465-1C LDS-465-1	American Bosch	7748863	7748882
LDS-465-1A	American Bosch	10935284	10935272
LDS-465-2	American Bosch	11641806	11641889

Table A-13 identifies the primary fuel system fuel filters used on the multi-fuel engines.

TABLE A-13, IDENTIFICATION OF LD-465-1, LD-465-1C, LDT-465-1C, LDS-465-1, LDS-465-1A, AND LDS-465-2 PRIMARY FUEL SYSTEM FUEL FILTERS

Engine Model	Vendor/ Source	Part Number (Model Number)	Replacement Kit Part Number
LD-465-1 LD-465-1C LDT-465-1C LDS-465-1A	Purolator	11609954 (PR-161-4) 11610298*	5702776
LDS-465-1	Purolator	10935266 33435*	5702684
LDS-465-2	TACOM	11610297** 11610298*	5702776

^{*}Element only.

Table A-14 identifies the plastic fuel tubes and hoses used on the multi-fuel engines primary fuel system:

TABLE A-14, IDENTIFICATION OF HOSES AND PLASTIC TUBES FOR THE MULTI-FUEL ENGINES PRIMARY FUEL SYSTEM BY ENGINE MODEL

Engine Model	Tube Location	Part Number
LD-465-1 LD-465-1C LDT-465-1C LDS-465-1 LDS-465-1A LDS-465-2	No. 1 Cylinder Injector Nozzle Fuel Return Tee To Injection Pump Over- Flow Valve	11609976-9*
	Fuel Injector Nozzle Fuel Return, Cylinder No's. 1-2, 2-3, 4-5, and 5-6	11609976-1*
	Fuel Injector Nozzle Fuel Return, Cylinders 3 and 4	11609976-16*

^{*}The plastic tubes are fabricated from tubing part number 11609976 (source is TACOM).

^{**}Unit contains two identical fuel filters (primary and secondary).

^{**}The plastic tubes are fabricated from tubing part number 10861278 (source is TACOM).

TABLE A-14, IDENTIFICATION OF HOSES AND PLASTIC TUBES FOR THE MULTI-FUEL ENGINES PRIMARY FUEL SYSTEM BY ENGINE MODEL (Cont.)

Engine Model	Tube Location	Part Number
	_	
LDS-465-1 LDS-465-1A	Fuel Supply Pump To Filter Inlet	10951185-6**
	Final Filter To Compensator	10951185-2**
LDS-465-1	Fuel Injector Nozzle Fuel Return, Cylinders No. 3 and 4	11609976-2*
	Fuel Filter Outlet To Compensator Inlet	10951185-11**
LDS-465-2	Primary Fuel Filter Outlet To Final Fuel Filter Inlet	10951185-6**
	Final Fuel Filter To Compensator	10951185-14**
	Fuel Supply Pump To Primary Fuel Filter	10951185-4**
LDS-465-1	Hose Assembly-Fuel Firter Outlet Elbow To Fuel Control Housing Inlet Tee	10935237-1
	Hose Assembly-Fuel Injection Supply Pump Outlet Elbow To Fuel Filter Inlet Elbow	10935237-2

^{*}The plastic tubes are fabricated from tubing part number 11609976 (source is TACOM).

^{**}The plastic tubes are fabricated from tubing part number 10861278 (source is TACOM).

Table A-15 identifies the critical fuel system components within the flame heater (cold-start) system for the subject multi-fuel engines.

TABLE A-15, IDENTIFICATION OF CRITICAL FLAME HEATER COMPONENTS FOR THE MULTI-FUEL ENGINES BY ENGINE MODEL

Engine Model	Component	Vendor/Source	Part Number
LD-465-1 LD-465-1C	Fuel Pump-Electric	Bendix-Scintilla Div.	10951192
LDT-465-1C LDS-465-1 LDS-465-1A	Fuel Filter Assembly	TACOM	10935646
	Flow Control Nozzle And Valve	TACOM	11641827
	Nozzle Supply & Return Filters(2)	TACOM	11610365
	Plastic Tube-Flame Heater Nozzle Fuel Return	TACOM	11609976-8*
	Plastic Tube-Fuel Injector Supply Pump To Flame Heater Filter	TACOM	11609976-17*
	Plastic Tube-Flame Heater Fuel Pump To Flame Heater Nozzle	TACOM	11609977-4**
LD-465-1C LDT-365-1C	Fuel Pump-Electric	Bendix-Scintilla Div.	10951192
LDS-465-1 LDS-465-1A LDS-465-2	Fuel Filter Assembly	TACOM	10935646
LD5-463-2	Flow Control Nozzle And Valve	TACOM	11641827
	Nozzle Supply & Return Filters(2)	TACOM	11610365
	Plastic Tube-Flame Heater Fuel Pump To Flame Heater Nozzle	TACOM	11609977-7**
	Plastic Tube-Flame Heater Fuel Pump To Flame Heater Nozzle	TACOM	11609977-6**

^{*}The plastic tubes are fabricated from tubing part number 11609976 (source is TACOM).

^{**}The plastic tubes are fabricated from tubing part number 11609977.

TABLE A-15, IDENTIFICATION OF CRITICAL FLAME HEATER COMPONENTS FOR THE MULTI-FUEL ENGINES BY ENGINE MODEL (Cont.)

Engine Model	Component	Vendor/Source	Part Number
(Cont LD-465-1C LDT-465-1C LDS-465-1 LDS-465-1A LDS-465-2	Plastic Tube-Flame Heater Fuel Nozzle Fuel Return To Cylinder Nos. 3&4 Injector Nozzle Fuel Return Tee	TACOM	11609976-7*
	Plastic Tube-Flame Heater Fuel Nozzle Return To Cylinder Nos. 3&4 Injector Nozzle Fuel Return Tee	TACOM	11609976-24*
	Plastic Tube-Flame Heater Fuel Filter To Flame Heater Pump	TACOM	11609976-23*
	Plastic Tube-Flame Heater Fuel Filter To Flame Heater Pump	TACOM	11609976-25*
	Plastic Tube-Fuel Injector Supply Pump To Flame Heater Fuel Filter	TACOM	11609976-26
	Plastic Tube-Fuel Injector Supply Pump To Flame Heater Fuel Filter	TACOM	11609976-5
	Plastic Tube-Fuel Injector Supply Pump To Flame Heater Fuel Filter	TACOM	11609976-6
LDS-465-1	Fuel Pump-Electric	Bendix-Scintilla Div.	7748874
	Fuel Filter Assembly • Element	Military Standard Bendix-Filter Div.	MS51085-1 A26422

^{*}The plastic tubes are fabricated from tubing part number 11609976 (source is TACOM).

^{**}The plastic tubes are fabricated from tubing part number 11609977.

TABLE A-15, IDENTIFICATION OF CRITICAL FLAME HEATER COMPONENTS FOR THE MULTI-FUEL ENGINES BY ENGINE MODEL (Cont.)

Engine Model	Component	Vendor/Source	Part Number
(Cont.	Flow Control Nozzle	TACOM	11641827
LDS-465-1)	and Valve ● Nozzle Supply & Return Filters(2)	TACOM	11610365
	Solenoid Valves (2)	TACOM	7062194
	Plastic Tube-Flame Heater Fuel Return To Solenoid Valve	TACOM	11609976-9*
	Plastic Tube-Flame Heater Fuel Supply Solenoid Valve To Flame Heater Fuel Supply Pump	TACOM	11609976-3*
	Plastic Tube-Flame Heater Fuel Return Solenoid Valve To Fuel Injector Nozzle Return Tube Tee	TACOM	11609976-11*
	Plastic Tube-Fuel Injector Pump To Flame Heater Fuel Filter	TACOM	11609976-14*
	Plastic Tube-Flame Heater Fuel Filter To Solenoid Valve	TACOM	11609976-4*
	Plastic Tube-Flame Heater Fuel Pump To Flame Heater Nozzle	TACOM	11609977-3**

^{*}The plastic tubes are fabricated from tubing part number 11609976 (source is TACOM).

^{**}The plastic tubes are fabricated from tubing part number 11609977.

3. The LDS-427-2 Multi-Fuel Engine

a. Powerplant Characteristics

The LDS-427-2 "Multi-fuel" engines are four-stroke cycle, in-line, six-cylinder, overhead valve, turbosupercharged, and liquid cooled. Selected engine characteristics and performance data are shown in Table A-16.

TABLE A-16, SELECTED LDS-427-2 ENGINE CHARACTERISTICS AND PERFORMANCE DATA

Displacement	427 in ³	
Weight, Dry (With Accessories)	1500 lb	
Compression Ratio	20:1	
Horsepower, Net (Less Accessories) Diesel Fuel (VV-F-800) CI Fuel (MIL-F-45121) Gasoline (MIL-G-3056)	130 hp at 2600 rpm 118 hp at 2600 rpm 103 hp at 2600 rpm	
Torque, Net (Less Accessories) Diesel Fuel (VV-F-800) CI Fuel (MIL-F-45121) Gasoline (MIL-G-3056)	340 lb-ft at 1400 rpm 310 lb-ft at 1400 rpm 290 lb-ft at 1400 rpm	
Speed Governed, Full Load Governed, No Load Idle	2600 to 2650 rpm 2750 to 2850 rpm 650 to 700 rpm	
Bore	4.31 in	
Stroke	4.87 in	
Fuel	Diesel Fuel (VV-F-800) Compression Ignition (MIL-F-46005) Gasoline*(MIL-G-3056)	

^{*}High octane gasoline is not usable.

b. Engine/Vehicle Matches

Table A-17 shows the M-Series vehicles (as indicated by TACOM) which contain Teledyne-Continental-Motors-built LDS-427-2 "multi-fuel" engines. The LDS-427-2 is no longer built, but vehicles with these engines are suspected to still be in the current fleet.

TABLE A-17, THE IDS-427-2 ENGINE MATCHED TO 1:-SERIES VEHICLES*

Engine Model	M-Series Vehicle Designation	
LDS-427-2	M35A1,M44A1,M45A1,M46A1, M46A1C,M49A1C,M50A1,M109A2, M185A2,M275A1,M292A1, M292A4	

^{*}The listed vehicles are all 2-1/2 ton trucks known collectively as the M44Al series.

c. Fuel System Components Identification

Figure A-7 shows a schematic of the main fuel system. Figure A-8 shows a schematic of the manifold air induction heater system. Table A-18 lists the vendor(s) or source of supply for the primary fuel system components and their respective part or model designation. Table A-19 identifies the fuel system hoses and plastic lines.

TABLE A-18, IDENTIFICATION OF LDS-427-2 PRIMARY FUEL SYSTEM COMPONENTS

Component	Vendor/Source	Part Number (Model Number)
Fuel Injection Pump Assembly Early Model(G) Late Model(G) Rebuild Model(G)	American Bosch	 7748899 (PSB-6A) 10935295 (PSB6A85EH5250D) 11640900
Fuel Supply Pump*		7748851 (SGB25C15)
Fuel Injector Nozzle Assembly		7748863 (KT-7824)
Primary Fuel Filter/ Secondary Fuel Filter (Units Are Identical)	Purolator	11609954(PR-161-4)
Primary & Secondary Fuel Filter Parts Kit	TACOM	5702776
Flame Heater Assembly (Sparkplug, Nozzle, etc.)	Bendix-Scintilla Div.	7748871(10-187565-6)

^{*}An integral component of the fuel injection pump assembly.

FIGURE A-7, THE LDS-427-2 PRIMARY FUEL SYSTEM

Source: TM9-2815-204-35

FIGURE A-8, THE LDS-427-2 FLAME HEATER FUEL SYSTEM
Source: TM9-2815-204-35

TABLE A-18, IDENTIFICATION OF LSD-427-2 PRIMARY FUEL SYSTEM COMPONENTS (Cont.)

Component	Vendor/Source	Part Number (Model Number)
Flame Heater Fuel Pump (Electric)	Bendix-Scintilla Div.	10951192(10-207317)
Flame Heater Solenoid Valves(2)	TACOM	7062194
Flame Heater Fuel Filter Assembly	Military Standard	MS51085-1

*An integral component of the fuel injection pump assembly.

TABLE A-19, IDENTIFICATION OF LDS-427-2 FUEL SYSTEM HOSES AND PLASTIC TUBES

Hose/Tube Location	Vendor/Source	Part Number
Hose Assembly-Fuel Pump To Fuel Filter Inlet	TACOM	10912422
Hose Assembly-Fuel Injection Supply To Filter Outlet And Pump Overflow And Fuel Return To Filter Outlet	TACOM	10912422-1
Plastic Tube-Fuel Return To Injection Pump Over- flow Valve (27")	TACOM	11609976*
Plastic Tube-Fuel Return, 4 Lines (5")	TACOM	11609976*
Plastic Tube-Fuel Return (5-3/8")	TACOM	11609976*
Plastic Tube-Injection Overflow To Filter Inlet Tee (3")	TACOM	10861278*
Plastic Tube-Fuel Supply Pump To Filter Inlet (26")	TACOM	10861278*

*The plastic tubes described are fabricated from tubing of the listed part number.

TABLE A-19, IDENTIFICATION OF LDS-427-2 FUEL SYSTEM HOSES AND PLASTIC TUBES (Cont.)

Hose/Tube Location	Vendor/Source	Part Number
Plastic Tube-Final To Compensator (27-1/2")	TACOM	10861278*
Plastic Tube-Flame Heater Pump To Nozzle (27")	TACOM	11609977*
Plastic Tube-Flame Heater Solenoid To Pump (6-3/4")	TACOM	11609976*
Plastic Tube-Flame Heater Filter To Valve (7-1/2")	ТАСОМ	11609976*
Plastic Tube-Flame Heater Fuel Return To Valve (27")	TACOM	11609976*
Plastic Tube-Flame Heater Nozzle Fuel Return (23")	TACOM	11609976*
Plastic Tube-Flame Heater Pump Supply To Filter (48-1/2")	TACOM	11609976*
Plastic Tube-Flame Heater Pump To Heater Nozzle (23")	TACOM	11609977*

^{*}The plastic tubes described are fabricated from tubing of the listed part number.

C. COMMERCIALLY DESIGNED ENGINES

- 1. The 3-53: Detroit Diesel Allison (DDA)
 - a. Powerplant Characteristics

The DDA 3-53 engines are three-cylinder, in-line, two-stroke cycle, and water cooled. Air for scavenging and combustion is supplied through an air cleaner by a blower. Selected engine characteristics and performance data are shown in Table A-20.

TABLE A-20, SELECTED DDA 3-53 ENGINE CHARACTERISTICS
AND PERFORMANCE DATA

Displacement	159 in ³		
Compression ratio	21:1		
Horsepower, gross	90 to 98 bhp at 2800 rpm		
Torque, gross	190 lb-ft at 1750 rpm (min)		
Speed Governed, full load	2785 to 2835 rpm		
Governed, no load Idle	2940 to 2990 rpm 575 to 625 rpm		
Bore	3.875 in.		
Stroke	4.5 in.		
Fuel	VV-F-800, Grade DF-2		

b. Engine/Vehicle Matches

Table A-21 shows the M-Series vehicles which contain the DDA-3-53 engine.

TABLE A-21, THE DDA 3-53 ENGINE MATCHED TO M-SERIES VEHICLES

Engine Model	M-Series Vehicle Designation
3-53	M561, M792

c. Fuel System Component Identification

Figure A-9 shows a schematic of the primary fuel system. The schematic is also typical of the primary fuel systems for the

DDA designed engines to be discussed subsequently. Table A-22 lists the vendor or source of supply for the primary fuel system components and their respective part numbers and/or model designations. Table A-23 identifies the fuel system hoses.

TABLE 22, IDENTIFICATION OF DDA 3-53 FUEL SYSTEM COMPONENTS

		
Component	Vendor/Source	Part Number (Model Number)
Fuel Injector Assembly	Detroit Diesel Allison	5228783 (N31)
Filter element within fuel injector body assembly (also part of parts kit Part No. 5228701)	TACOM	5247880
Fuel Supply Pump Assembly	Detroit Diesel Allison	5199560
Primary Fuel Filter • filter element	Detroit Diesel Allison	5575824 • 5575032
Secondary Fuel Filter • filter element	Detroit Diesel Allison	5574533 • 5574508
Fuel Filter Assembly • filter element	Military Standard • TACOM	MS51085-1 • 8328647
Flame Heater Fuel Pump Assembly	Detroit Diesel Allison	5142748
Flame Heater Fuel Nozzle Assembly	Detroit Diesel Allison	5232519
Flame Heater Fuel Filter Assembly	Detroit Diesel Allison	5140410
Flame Heater Fuel Solenoid Valve, Supply Pump Shut- off	TACOM	7062194
Fuel Pump - Fuel Tank, Electric	Military Standard	MS51321-2

TABLE A-23, IDENTIFICATION OF DDA 3-53 FUEL SYSTEM HOSES

Hose Description	Vendor/Source	Part Number
Hose Assembly - Filter to Pump Bracket	TACOM	11595166-1
Hose Assembly - Tractor to Carrier Ambulance, Fuel Line	TACOM	11660051-1
Hose - Flame Heater	Detroit Diesel Allison	5120970
Hose - Flame Heater Pump	Detroit Diesel Allison	5145666

- 2. THE 6V-53 AND 6V-53T: DETROIT DIESEL ALLISON (DDA)
 - a. Powerplant Characteristics

The 6V-53 and 6V-53T engines are six-cylinder, V-type, 2-stroke cycle and liquid cooled. The 6V-53 incorporates a blower to provide scavenging air and the 6V-53T is turbocharged. Table A-24 presents selected engine characteristics and performance data.

TABLE A-24, SELECTED DDA 6V-53 AND 6V-53T ENGINE CHARACTERISTICS AND PERFORMANCE DATA

Displacement	318 in ³
Compression ratio	
6V53	21:1
6V53T	17.5:1
Horsepower, Gross	
6V53	210 hp at 2800 rpm
6V53T	300 hp at 2800 rpm
Torque, Gross	
6V53	420 lb-ft at 1600 rpm (min)
6V53T	556 lb-ft at 2200 rpm (min)
Speed	
Governed, full load	2800 rpm
Governed, no load	2950 to 3000 rpm
Idle	550 to 600 rpm

TABLE A-24, SELECTED DDA 6V-53 AND 6V-53T ENGINE CHARACTERISTICS AND PERFORMANCE DATA (CONT.)

Bore	3.875 in.
Stroke	4.5 in.
Fuel	VV-F-800

b. Engine/Vehicle Matches

Table A-25 shows the M-Series vehicles which contain the DDA 6V-53 or 6V-53T engines.

TABLE A-25, THE DDA 6V-53 AND 6V-53T ENGINES MATCHED TO M-SERIES VEHICLES

Engine Model	M-Series Vehicle Designation
6V-53	M106A1, M113A1, M125A1, M132A1, M548, M577A1, M667, XM727, M730, M741, XM806E1
6V-53T	M551, M551Al

c. Fuel System Component Identification

The fuel system for each engine is similar to that shown for the DDA 3-53 (Figure A-9). Table A-26 lists, for each engine, the vendor or source of supply for the primary fuel system components and their respective part number and/or model designation. Differences between engine models are noted. Table A-27 identifies the fuel system components for the flame heater unit equipped with an accumulator, and Table A-28 presents similar information for the flame heater unit equipped with an air pump. The primary difference between the accumulator and air pump configurations is that the air pump replaces the accumulator, hand pump, and pressure gage. Figures A-10 and A-11 illustrate the two systems.

FIGURE A-9, A TYPICAL DETROIT DIESEL ALLISON
PRIMARY FUEL SYSTEM SCHEMATIC
Source: Detroit Diesel Allison, Engineering
Bulletin No. 21

TABLE A-26, IDENTIFICATION OF DDA 6V-53 AND 6V-53T FUEL SYSTEM COMPONENTS

Component	Vendor/Source	Part Number (Model Number)
Fuel Injector Assembly • 6V53 • 6V53T	Detroit Diesel Allison	• 5228774 (M50) • 5228770 (N70)
Filter Element within Fuel Injector Body Assembly (Also Part of Parts Kit Part No. 5228701)	Detroit Deisel Allison	5228587
Fuel Supply Pump Assembly	Detroit Diesel Allison	5198876
Primary Fuel Filter • Filter Element	AC Div. of GMC	5575824 • 5575032
Secondary Fuel Filter • Filter Element	AC Div. of GMC	5574533 • 5574508

TABLE A-27, IDENTIFICATION OF COMPONENTS FOR THE

ACCUMULATOR TYPE FLAME HEATER FUEL SYSTEM:

6V-53 AND 6V-53T ENGINES

Component	Vendor/Source	Part Number
Accumulator	Detroit Diesel Allison	5132524
Hand Pump	Detroit Diesel Allison	5110760
Fuel Nozzle • Filter Strainer Element*	Detroit Diesel Allison	5232195 • 5228373
Fuel Solenoid Valve	Honeywell, Inc Skinner Valve Div.	5132525

^{*}Within Air Box Assembly

FIGURE A-10, THE ACCUMULATOR-TYPE FLAME HEATER FUEL SYSTEM FOR THE DDA 6V-53 AND 6V-53T ENGINES Source: TM9-2815-205-34

FIGURE A-11, THE AIR-PUMP-TYPE FLAME
HEATER FUEL SYSTEM FOR THE
6V-53 AND 6V-53T ENGINES
Source: TM9-2815-205-34

TABLE A-28, IDENTIFICATION OF COMPONENTS FOR THE
AIR PUMP-TYPE FLAME HEATER FUEL SYSTEM:
6V-53 AND 6V-53T ENGINES

Component	Vendor/Source	Part Number
Fuel Pump Assembly	Detroit Diesel Allison	5142748
Fuel Nozzle	Detroit Diesel Allison	5232650
Fuel Solenoid Valve	Honeywell, Inc Skinner Valve Div.	5132525

Table A-29 identifies the fuel system hoses used on the 6V-53 and 6V-53T engines.

TABLE A-29, IDENTIFICATION OF 6V-53 AND 6V-53T FUEL SYSTEM HOSES

,	· · · · · · · · · · · · · · · · · · ·	
Hose Description	Vendor/Source	Part Number
Hose Assembly - Fuel Inlet	Detroit Diesel Allison	5131375
Hose Assembly - Fuel Inlet, Cylinder Head, Left Bank	Detroit Diesel Allison	5131517
Hose Assembly - Fuel Pump to Filter	Detroit Diesel Allison	5131507 (Fabricate From 5131311)
Hose Assembly - Fuel Strainer to Pump	Detroit Diesel Allison	5142003
Hose Assembly Fuel Filter to Cylinder Head, Right Bank	Detroit Diesel Allison	5131576
Hose Assembly - Valve to Fuel Pump, Return Tube (Flame Heater)	Detroit Diesel Allison	5147883
Hose - Accumulator to Valve (Flame Heater w/Accumulator)	Detroit Diesel Allison	5132614

TABLE A-29, IDENTIFICATION OF 6V-53 AND 6V-53T FUEL SYSTEM HOSES (CONT.)

Hose Description	Vendor/Source	Part Number
Hose Assembly - Pump Inlet (Flame Heater w/Accumulator)	Detroit Diesel Allison	5132612
Hose Assembly - Pump to Accumulator (Flame Heater w/Accumulator)	Detroit Diesel Allison	5132599

3. The 8V-71T: Detroit Diesel Allison (DDA)

a. Powerplant Characteristics

The 8V-71T engines are eight cylinder, V-type, two-stroke cycle, liquid cooled, and turbocharged. Table A-30 presents selected engine characteristics and performance data. Two models are in use, 7083-7398 and 7083-7399; the differences are slight and will be noted where appropriate.

TABLE A-30, SELECTED 8V-71T ENGINE CHARACTERISTICS AND PERFORMANCE DATA

Displacement	567.4 in ³	
Compression ratio	17:1	
Horsepower, Net	345 bhp at 2300 rpm	
Speed		
Idle:		
Dual Range Governor Single Range Governer	550 to 600 rpm 550 to 600 rpm	
Full Load:	į	
Dual Range Governor Single Range Governor	1200 to 2300 rpm 2300 rpm	
Bore	4.25 in.	
Stroke	5.0 in.	
Fuel	VV-F-800, Grade 2-D	

b. Engine/Vehicle Matches

Table A-31 shows the M-Series vehicles which contain the DDA 8V-71T engine.

TABLE A-31, THE 8V-71T ENGINE MATCHED TO M-SERIES VEHICLES

Engine Model	M-Series Vehicle Designation
8V-71T	M108, M109, M109A1, M109A2, M109A3, M110, M110A1, M110A2, M578

c. Fuel System Component Identification

The fuel system for the 8V-71T is similar to that shown for the 3-53 (Figure A-9). Table A-32 lists the vendor or source of supply for the fuel system components (including the flame heater system) and their respective part numbers and/or model designations. The flame heater fuel system is shown in Figure A-12. Table A-33 identifies the 8V-71T fuel system hoses.

TABLE A-32, IDENTIFICATION OF 8V-71T FUEL SYSTEM COMPONENTS

Component	Vendor/Source	Part Number (Model Number)
Fuel Injector Assembly	Diesel Equipment Division of GMC	5228524 (S80)
Filter Element Within Fuel Injector Body Assembly (Part of Parts Kit)	Detroit Diesel Engine Division of GMC	5228587
Fuel Supply Pump Assembly	Detroit Diesel (Engine Division of GMC)	5100305
Primary Fuel Filter • Filter Element	AC Division of GMC	5575824 • 5575032
Secondary Fuel Filter • Filter Element	AC Division of GMC • AC Division of GMC	5574533 • 5574508
Flame Heater Fuel Pump	John S. Barnes	10921624

FIGURE A-12, THE FLAME HEATER FUEL
(AND ELECTRICAL) SYSTEM
FOR THE 8V-71T ENGINE
Source: TM9-2815-202-34

TABLE A-32, IDENTIFICATION OF 8V-71T FUEL SYSTEM COMPONENTS (CONT.)

Component	Vendor/Source	Part Number (Model Number)
Flame Heater Fuel Nozzle	Detroit Diesel Engine Division of GMC	5232195
• Filter Element (Within Air Box Assembly)	● TACOM	5247880
Flame Heater Fuel Solenoid Valve	General Controls	10914604

TABLE A-33, IDENTIFICATION OF 8V-71T FUEL SYSTEM HOSES

Hose Description	Vendor/Source	Part Number
Hose Assembly, Rubber- Fuel Drain Crossover*	Detroit Diesel Engine Division	5130695
Hose Assembly, Rubber- Fuel Drain Crossover*	Detroit Diesel Engine Division	5130696
Hose Assembly - Fuel Drain Crossover*	Detroit Diesel Engine Division	5130691
Hose Assembly - Fuel Drain Crossover*	Detroit Diesel Engine Division	5130688
Hose Assembly, Rubber- Strainer to Fuel Pump**	Detroit Diesel Engine Division	5130687
Hose Assembly - Filter to Cylinder Head**	Detroit Diesel Engine Division	5130689
Hose Assembly - Fuel Pump to Filter*	Detroit Diesel Engine Division	5130690
Hose Assembly, Rubber- Flame Heater Pump Inlet	Detroit Diesel Engine Division	5131576

^{* 8}V-71T Model 7083-7399

^{** 8}V-71T Model 7083-7398

4. The 12V-71T: Detroit Diesel Allison (DDA)

a. Powerplant Characteristics

The 12V-71T engines are twelve cylinder, V-type, two-stroke cycle, liquid cooled and turbocharged. Table A-34 presents selected engine characteristics and performance data.

TABLE A-34, SELECTED 12V-71T ENGINE CHARACTERISTICS
AND PERFORMANCE DATA

Displacement	852 in. ³	
Compression ratio	17:1.	
Horsepower, Gross	600 bhp at 2500 rpm	
Torque, Gross	1470 lb-ft at 1600 rpm	
Speed full load w/apply pressure* no load w/apply pressure* full load without no load without	2475 to 2525 rpm 2650 to 2700 rpm 1500 rpm 1700 rpm	
Bore	4.25 in	
Stroke	5.0 in	
Fuel	VV-F-800, Grade 2-D	

^{*}With a hydraulic pressure of 200 psi applied to the governor.

b. Engine/Vehicle Matches

 $$\mathsf{Table}$$ A-35 shows the M-Series vehicles which contain the 12V-71T engine.

TABLE A-35, THE 12V-71T ENGINE MATCHED TO M-SERIES VEHICLES

Engine Model	M-Series Vehicle Designation
12V-71T	M746

c. Fuel System Component Identification

Table A-36 lists the vendor or source of supply for the fuel system components. Table A-37 identifies the fuel system hoses.

TABLE A-36, IDENTIFICATION OF 12V-71T FUEL SYSTEM COMPONENTS

Component	Vendor/Source	Part Number (Model Number)
Fuel Injector Assembly	Detroit Diesel Engine Division	5228780 (N80)
Filter Element Within Fuel Injector Body Assembly (Also Part of Parts Kit, Part No. 5228701)	Detroit Diesel Engine Division	5228587
Fuel Supply Pump Assembly	Detroit Diesel Engine Division	5146699
Fuel Filter • Filter Element	AC Division of GMC • GMC	6436947 (T75) • 6436719
Fuel Strainer • Filter Element	AC Division of GMC • Detroit Diesel Engine Division	6438799 • 5574980

TABLE A-37, IDENTIFICATION OF 12V-71T FUEL SYSTEM HOSES

Hose Description	Vendor/Source	Part Number
Hose - Filter Outlet to Right Bank Head	Detroit Diesel Engine Division	5136633
Hose - Pump Outlet to Filter Inlet	Detroit Diesel Engine Division	5143620
Hose - Fuel Strainer to Pump Inlet	Detroit Diesel Engine Division	5134436
Hose - Crossover	Detroit Diesel Engine Division	5133168
Hose - Front Filter Outlet to Left Bank Fuel Inlet	Detroit Diesel Engine Division	5143623

5. The 8V-92 and 8V-92TA: Detroit Deisel Allison (DDA)

a. Powerplant Characteristics

The 8V-92T and 8V-92TA engines are eight cylinder, V-type, two-stroke cycle, liquid cooled and turbocharged. The TA model has an aftercooler. Table A-38 presents selected engine characteristics and performance data.

TABLE A-38, SELECTED 8V-92T AND 8V-92TA ENGINE CHARACTERISTICS
AND PERFORMANCE DATA*

Displacement	736 in ³
Compression, Ratio	17:1
Horsepower	430 hp at 2100 rpm
Speed Full Load Idle	2100 rpm 600 rpm
Bore	4.84 in
Stroke	5.0 in
Weight, day	2,345 lb.

^{*}There is a slight change in performance between models because the aftercooler allows for a slightly greater quantity of fuel to be consumed.

b. Engine/Vehicle Matches

Table A-39 shows the M-Series vehicles which contain the 8V-92T engine. The first 100 M911 vehicles built had the 8V-92T, the rest incorporate the 8V-92TA. Differences between models are slight.

TABLE A-39, THE 8V-92T AND 8V-92TA ENGINES MATCHED TO M-SERIES VEHICLES

Engine Model	M-Series Vehicle Designation
8V-92	M911*
8V-92TA	M911, M977**, M985**, M978**, M983**, M984

*The first 100 vehicles produced had the noted engine.

**Vehicles are not yet built; scheduled for early 1982 introduction.

c. Fuel System Component Identification

Table A-40 lists the vendor or source of supply and the corresponding part or model designations for the fuel system components. Future versions of the 8V-9TA may incorporate a flame heater system (a development program is under way).

TABLE A-40, IDENTIFICATION OF 8V-92T AND 8V-92TA FUEL SYSTEM COMPONENTS

Component	Vendor/Source	Part Number (Model Number)
Fuel Injector Assembly	Detroit Diesel Engine Division	5229400 (9280)
Filter Element Within Fuel Injector Body Assembly (Also Part of Parts Kit Part No. 5228701)	Detroit Diesel Engine Division	5228587
Fuel Supply Pump Assembly • Pump Repair Kit	Detroit Diesel Engine Division	5199735 • 5199560
Fuel Filter Assembly • Filter Element	AC Division of GMC	6436957 (T75) • 6436719
Fuel Strainer Assembly	AC Division of GMC	6438799
• Filter Element		5574980

TABLE A-40, IDENTIFICATION OF 8V-92T AND 8V-92TA FUEL SYSTEM COMPONENTS (CONT.)

Component	Vendor/Source	Part Number (Model Number)
Spin-On Fuel Filter Assembly*	AC Division of GMC	25010778
Spin-On Fuel Strainer Assembly*	AC Division of GMC	25010776

^{*}Is found on some engines in place of the "replaceable" type units.

6. The V8-300: Cummins Engine Company

a. Powerplant Characteristics

The V8-300 engines are eight cylinder, four-stroke cycle, V-type and liquid cooled. Table A-41 presents selected engine characteristics and performance data.

TABLE A-41, SELECTED V8-300 ENGINE CHARACTERISTICS AND PERFORMANCE DATA

Displacement	785 in ³
Weight, dry	2250 lb.
Compression ratio	17:1
Horsepower, Gross	300 hp at 3000 rpm
Speed Governed, no load	3000 - 3300 rpm 650 rpm

b. Engine/Vehicle Matches

Table A-42 shows the M-Series vehicles which contain the V8-300 engine.

TABLE A-42, THE V-8-300 ENGINE MATCHED TO M-SERIES VEHICLES

Engine Model	M-Series Vehicle Designation
V8-300	M123A1C, M123E2

c. Fuel System Component Identification $\hbox{ Table A-43 lists the vendor or source of supply for the fuel system components.}$

TABLE A-43, IDENTIFICATION OF V8-300 FUEL SYSTEM COMPONENTS

Components	Vendor/Source	Part Number (Model Number)
Fuel Injector Assembly	Cummins Engine Company Defense Products	BM97421 (PTC)
Plunger Body Screen	Cummins Engine Company	• 136042
Fuel Pump Assembly	Cummins Engine Company Defense Products	BM97400 AR50828 (PTG)
• Filter Element Within Pump Assembly	• Cummins Engine Com- pany	• 146483
Fuel Supply Pump*	Cummins Engine Company Defense Products	AR50101
Fuel Solenoid Valve*	Cummins Engine Company Defense Products	ВМ69979
Triple Stage Fuel Filter	TACOM	10947525
• Filter Element (2) • Fuel Strainer (1)	GMCCummins EngineCompany	● 5577945 ● BM49891
Hose Assembly - Filter to Pump	TACOM	10946173-2

^{*}Integral with fuel pump assembly

SOUTHWEST RESEARCH INST SAN ANTONIO TX ARMY FUELS AN-ETC F/6 15/*
DEVELOPMENT OF ACCELERATED FUEL-ENGINES QUALIFICATION PROCEDURE--F*
DEC 81 JA RUSSELL, JP CUELLAR, JC TYLER DAAK70-80-C-0001
AFIRL-144-VOL-2
NL AD-A113 532 UNCLASSIFIED 4 or 5 A0 A -- 45 8 2 in the last

7. The NTC-400: Cummins Engine Company

a. Powerplant Characteristics

The NTC-400 engines are six cylinder, in-line, four-stroke cycle, liquid cooled, and turbocharged. Table A-44 presents selected engine characteristics and performance data.

TABLE A-44, SELECTED NTC-400 ENGINE CHARACTERISTICS
AND PERFORMANCE DATA

Displacement	855 in ³
Weight, dry	2600 lbs.
Compression ratio	13.5:1
Horsepower	400 hp at 2100 rpm
Torque, max	1150 lb-ft at 1500 rpm
Speed	
Governed, Full Load Governed, No Load Governed, idle	2100 rpm 2400 rpm 600 rpm
Bore	5.5 in
Stroke	6.0 in

b. Engine/Vehicle Matches

Table A-45 shows the M-Series vehicles which contain the NTC-400 engine. The vehicles are not considered to be tactical vehicles, but are listed due to the availability of information.

TABLE A-45, THE NTC-400 ENGINE MATCHED TO M-SERIES VEHICLES

Engine Model	M-Series Vehicle Designation
NTC-400	M915, M916, M917, M918, M919, M920

c. Fuel System Component Identification

Table A-46 lists the vendor or source of supply for the fuel system components. The fuel supply system is illustrated by Figure A-13.

TABLE A-46, IDENTIFICATION OF NTC-400 FUEL SYSTEM COMPONENTS

Components	Vendor/Source	Part Number (Model Number)
Fuel Injector Assembly	Cummins Engine Company Defense Products	3013738 (PTD)
 Fuel Strainer Ele- ment Within Injector Assembly 	Cummins Engine Company	■ 3008706
Fuel Pump Assembly	Cummins Engine Company Defense Products	30041883257 (PTG-AFC)
• Filter Screen Assembly Within Pump Assembly	• Cummins Engine Company	• 146483
Fuel Supply Pump*	Cummins Engine Company Defense Products	вм97502
Fuel Solenoid Valve*	Cummins Engine Company Defense Products	BM69985
Fuel Filter	Cummins Engine Company Defense Products	156172

^{*}Integral With Fuel Pump Assembly

FIGURE A-13, THE TYPICAL CUMMINS FUEL SUPPLY SYSTEM
Source: Cummins Fngine Co. Bulletin 952580

8. The NHC-250: Cummins Engine Company

a. Powerplant Characteristics

The NHC-250 engines are six cylinder, in-line, and naturally aspirated. Table A-47 presents selected engine characteristics and performance data.

TABLE A-47, SELECTED NHC-250 ENGINE CHARACTERISTICS AND PERFORMANCE DATA

Dianlagement	855 in ³	
Displacement	655 111	
Weight, Dry	2500 lb.	
Compression Ratio	15.8:1	
Horsepower, Gross	240 hp at 2100 rpm	
Torque, Peak	658 lb-ft at	
	1500 rpm	
Speed		
Governed, Full Load	2100 rpm	
Governed, No Load	2400 rpm	
Idle	600 rpm	
Bore	5.5 in	
Stroke	6.0 in	
Fuel	VV-F-800	

b. Engine/Vehicle Matches

Table A-48 shows the M-Series vehicles which contain the NHC-250 engines.

TABLE A-48, THE NHC-250 ENGINE MATCHED TO M-SERIES VEHICLES

Engine Model	M-Series Vehicle Designation	
NHC-250*	M813, M813A1, M814, M815, M816, M817, M818, M819, M820, M821	

^{*}The listed vehicles are collectively referred to as the M809 series.

c. Fuel System Component Identification

Table A-49 lists the vendor or source of supply and corresponding part or model designation for the fuel system components. The fuel supply system is similar to the NTC-400 (see Figure A-13).

TABLE A-49, IDENTIFICATION OF NHC-250 FUEL SYSTEM COMPONENTS

Component	Vendor/Source	Part Number (Model Number)
Fuel Pump Assembly	Cummins Engine Company Defense Products	AR-51322-3096 (PTG)
• Filter Element Within Pump	Cummins Engine Com- pany	• 146483
Fuel Injector Assembly	Cummins Engine Company Defense Products	AR-40126 (PTD)
Plunger Body Screen	 Cummins Engine Com- pany 	• 174298
Fuel Supply Pump*	Cummins Engine Company Defense Products	AR-51306
Fuel Solenoid Valve*	Cummins Engine Company	AR-51328
Fuel Filter/Water Separator Assembly	Cummins Engine Company Fleetguard	256-546
Fuel Hoses	Wire Braid Seamless Rubber (Butyl N Rubber) Wire Fabric Reinforced or Extruded Nylon or Teflon With at Least One Braid Cover**	

^{*} Integral with pump assembly

9. The VTA-903T: Cummins Engine Company

a. Powerplant Characteristics

The VTA-903-T engines are eight-cylinder, V-type, four-stroke cycle, liquid cooled, and turbocharged (with aftercooling). Table A-50 presents selected engine characteristics and performance data.

^{**} Source unavailable. Hoses are cut from one piece as needed.

TABLE A-50, SELECTED VTA-930-T ENGINE CHARACTERISTICS AND PERFORMANCE DATA

Displacement	903 in ³
Weight, Dry	2450 lb.
Compression Ratio	15.5:1
Horsepower, Net	500 bhp at 2600 rpm
Torque, Net	963 lb-ft at 1800 rpm
Speed	
Governed, Full Load Governed, No Load	2600 rpm 2960 rpm
Idle	600 rpm
Bore	5.5 in
Stroke	4.75 in
Fuel	VV-F-800

b. Engine/Vehicle Matches

The VTA-903-T engines will be incorporated into the M2 and M3 Infantry Fighting Vehicles, currently in production.

c. Fuel System Component Identification

Table A-51 lists the vendor or source of supply and the corresponding part or model designation for the fuel system components.

TABLE A-51, IDENTIFICATION OF VTA-903-T PRIMARY FUEL SYSTEM COMPONENTS

Components	Vendor/Source	Part Number (Model Number)
Fuel Pump Assembly	Cummins Engine Company Defense Products	(PTG-AFC)
• Filter Element Within Pump Assembly	 Cummins Engine Com- pany 	■ 146483
Fuel Injector Assembly	Cummins Engine Company Defense Products	(PTD)
Plunger Body Screen		

TABLE A-51, IDENTIFICATION OF VTA-903-T PRIMARY FUEL SYSTEM COMPONENTS (CONT.)

Component	Vendor/Source	Part Number (Model Number)
Fuel Supply Pump*	Cummins Engine Company Defense Products	AR-51306
Fuel Solenoid Valve	Cummins Engine Company Defense Products	AR-51328
Fuel/Water Separator	Cummins Engine Company Fleetguard	11664680

^{*}Integral with fuel pump assembly

- 10. The D333C and 3306: Caterpillar Tractor Company
 - a. Powerplant Characteristics

The D333C and 3306 engines are six cylinder, in-line, four-stroke cycle, liquid cooled and turbocharged. Table A-52 presents selected engine characteristics and performance data for the 3306 engine which is or will replace the D333C engines when an overhaul is required.

TABLE A-52, SELECTED 3306 ENGINE CHARACTERISTICS AND PERFORMANCE DATA

Displacement	638 in ³	
Weight, Dry	1900 lb.	
Compression Ratio	17.5:1	
Horsepower	218 hp at 2200 rpm	
Torque, Net	578 lb-ft at 1550 rpm	
Speed Governed, Full Load Governed, No Load Idle	2200 rpm 2355 rpm 750 rpm	
Bore	4.75 in	
Stroke	6.0 in	
Fuel	VV-F-800	

b. Engine/Vehicle Matches

 $$\mathsf{Table}$$ A-53 shows the M-Series vehicles which contain the D333C engine.

TABLE A-53, THE D333C AND 3306 ENGINES MATCHED TO M-SERIES VEHICLES

Engine Model	M-Series Vehicle Designation
D333C	M520, M553, M559, M877
and	
3306	

c. Fuel System Component Identification

The fuel supply system is illustrated in Figure A-14. Table A-54 lists the vendor or source of supply for the fuel system components for the D333C and 3306 engines.

TABLE A-54, IDENTIFICATION OF D333C AND 3306 FUEL SYSTEM COMPONENTS

Component	Vendor/Source	Part Number (Model Number)
Fuel Injection Pump Assembly		
• D333C	• Caterpillar Tractor	559076
• 3306	Company Caterpillar Tractor Company	• 8N8336
Fuel Injector Nozzle Assembly		
D333C parts kit	 Caterpillar Tractor Company 	• 758722 -759891
• 3306	Caterpillar Tractor Company	• 8N4698
Fuel Transfer Pump		
• D333C	Caterpillar Tractor Company	• 4N4878 or 7L543
◆ 3306	Caterpillar Tractor Company	• 4N4878

FIGURE A-14, THE D333C PRIMARY FUEL SYSTEM Source: TM9-2320-233-34

TABLE A-54, IDENTIFICATION OF D333C AND 3306 FUEL SYSTEM COMPONENTS (CONT.)

Component	Vendor/Source	Part Number (Model Number)
Primary Fuel Filter		
• D333C	• TACOM	• 11634237-1
- Filter Element	- TACOM	-11634639-1
3306	 Michigan Dynamics, Inc. or Beaden Screens or Purolator or Ohio Fabricators 	● 9M2341
Secondary Fuel Filter		
• D333C	• Caterpillar Tractor Company	• 1P2299
• 3306	 Fram or Champion Labs, Inc. or Purolator or Auto- motive Products, Ltd. 	• 1P2299
Fuel Solenoid Valve		
• D333C	 Caterpillar Tractor Company 	• 5R1762
● 3306	● Delco-Remy	• 2N2385
Fuel Priming Pump		
• D333C	● TACOM	11634233 (9H2256)
Fuel Return Hose		
• D333C	 Caterpillar Tractor Company 	• 989339
• 3360		• *

^{*}Part number unknown, but is a fabric reinforced rubber.

11. The ENDT-673: Mack Trucks, Inc.

a. Powerplant Characteristics

The ENDT-673 engines are six-cylinder, in-line, four-stroke cycle, liquid cooled and turbocharged. Table A-55 presents selected engine characteristics and performance data.

TABLE A-55, SELECTED ENDT-673 ENGINE CHARACTERISTICS AND PERFORMANCE DATA

Displacement	672 in ³
Compression Ratio	16.59:1
Horsepower	205 bhp at 2100 rpm
Speed Governed, Full Load Governed, No Load Governed, Idle	2100 rpm 2200 rpm 550 to 575 rpm
Bore	4.875 in
Stroke	6.0 in
Fuel	VV-F-800

b. Engine/Vehicle Matches

Table A-56 shows the M-Series vehicles which contain the ENDT-673. The ENDT-673 is no longer built and only limited numbers are in the active fleet (approximately 500 vehicles in 1974).

TABLE A-56, THE ENDT-673 ENGINE MATCHED TO M-SERIES VEHICLES

Engine Model	M-Series Designation
ENDT-673	M51A1, M52A1, M54A1, M54A1C, M55A1, M291A1, M543A1, M748A1

c. Fuel System Component Identification
 Figure A-15 illustrates the fuel supply system.

 Table A-57 identifies the primary fuel system components by vendor

or source and part or model designation. Table A-58 lists similar information for the flame heater fuel system.

TABLE A-57, IDENTIFICATION OF ENDT-673 FUEL SYSTEM COMPONENTS

Component	Vendor/Source	Part Number (Model Number)
Fuel Injection Pump Nozzle Assembly	Mack Truck Engine Division	736GB221
Fuel Injection Pump	American Bosch	313GC-4127* (APE-6BB90Q)
Hand Primer Pump : Assembly	Mack Truck - Diesel Engine Division	3125B18
Fuel Transfer Pump	Mack Truck - Diesel Engine Division	319GC110
Primary Fuel Filter	Mack Truck - Diesel Engine Division	483GBA334
• Fuel Filter Element	• Mack Truck	• 237GB16
Secondary Fuel Filter	Mack Truck - Diesel Engine Division	483GB319A
• Fuel Filter Element	Mack Truck	• 237GB13
Hoses (3)		
• Fuel Filter Air	Mack Truck - Diesel	• 36RUA3117P12
Ble Filter to Fuel Emer-	Engine Division (all components)	• 36RUA3132P9
gency Shut-Off Valve Filter to Primer Pump		• 36RUA3132P44

FIGURE A-15, THE ENDT-673 PRIMARY FUEL SYSTEM Source: TM9-2815-207-35

TABLE A-58, IDENTIFICATION OF ENDT-673 FLAME HEATER FUEL SYSTEM COMPONENTS

Component	Vendor/Source	Part Number
Fuel Nozzle	Mack Truck - Diesel Engine Division	115GC16
Fuel Pump Assembly	Lear Siegler, Inc. Power Equipment Division	RG16705-3
Fuel Solenoid Valve	Mack Truck - Diesel Engine Division	689GC21
Hose Assembly, Rubber- Fuel Supply	Mack Truck - Diesel Engine Division	36RUA3117P29
Hose Assembly, Rubber- Fuel Supply Inlet	Mack Truck - Diesel Engine Division	36RUA3117P8
Hose Assembly, Rubber- Heater Pump Outlet	Mack Truck - Diesel Engine Division	36RUA3117P18
Hose Assembly, Rubber- Overflow Solenoid Outlet	Mack Truck - Diesel Engine Division	36RUA3117P10

APPENDIX E-2

EXISTING ENGINE QUALIFICATION PROCEDURES

A. INTRODUCTION

This appendix contains information in some detail regarding the tests and test procedures currently or recently used at the direction of the Army to qualify production diesel engines for use in existing Army M-Series combat and tactical vehicles. information is presented in two sections. The first section discusses the qualification tests and test procedures associated with Army designed engines (i.e., the AVDS-1790 series of engines and the multi-fuel engines). The second section presents similar information for engines of commercial design. This approach was primarily utilized as a matter of convenience. That is, the Army designed engines tend to be qualified similarly amongst models while the commercially designed engines display a mild variance. For this reason, detailed test procedures are presented for all commercially designed engines where the information was available. For the Army designed engines, detailed information is presented for each engine type or where the procedures differed to an appreciable degree.

Also presented in this appendix is information concerning some diesel engined vehicles which are currently in the procurement process. Their status regarding engine qualification testing (endurance type tests) is stated.

B. ARMY DESIGNED ENGINES

1. AVDS-1790 Series

MIL-E-62177 (AT), 9 March 1977, establishes the performance, design, test manufacture and acceptance requirements for the AVDS-1790 series engines. The engine qualification steps described are design, pre-production, and initial production qualification. The specific procurement document can waive any or all of the qualification steps. In the absence of a waiver, the various required qualification inspections are as shown in Table B-1. The fuels to be used during all engine testing must be in accordance with Grade DF-2 of Federal Specifications VV-F-800. Engine lubricating oil used for the various tests must be in accordance with the seasonal requirements of MIL-L-2104 (for -10°F to 115°F) and MIL-L-46167 (for -65°F to 0°F).

As Table B-l shows, regardless of whether the procuring activity calls for design qualification, pre-production, or only initial production qualification testing, an engine break-in test must be conducted. The engine break-in test is conducted according to the schedule shown in Table B-2. During the engine break-in test, torque and horsepower curves are produced for the 1800 to 2400 rpm engine speeds at the full power control arm setting. The following data are recorded during the runs:

- full power control arm setting governed speed
- minimum power control arm setting governed speed
- speed range
- gross horsepower
- gross torque
- fuel consumption
- exhaust smoke density
- oil pressure
- oil temperature
- oil consumption

Also, during break-in period 8 the oil consumption is measured (during the initial production test only, the time is extended to 120 minutes to verify stable oil consumption data).

TABLE B-1, AVDS-1790 SERIES QUALIFICATION INSPECTIONS

Requirement Description	Design Qualification Sample	Preproduction Sample	Initial Production Sample
Speed Ranges	х	х	х
Governor	x	х	x
Gross Horsepower	x	х	x
Torque	х	х	х
Fuel Consumption	x	x	x
Exhaust Smoke Density	х	х	x
Oil Consumption	x	х	х
Oil Pressure	x	х	x
Air Pressure	x	x	x
Air Leakage	x	x	x
Submergence	x	х	x
Water Contamination	х	х	х
Flame Heater	x	х	x
Cycle Endurance	х		
NATO Endurance			x
Break-In	х	x	x
Weight	x	x	x
Starting at Extreme Temperatures		x	
High Temperature Operation	x		
Humidity Conditions			4
Elevation		x	•
Grades and Slopes		x	
Materials			
Greases			
Oil Seals			
Product Marking	x	x	x
Name Plates	x	x	x
Workmanship	x	x	x
Interchangeability of Parts			
Protective Coatings	1		

TABLE B-2, AVDS-1790 SERIES ENGINE BREAK-IN TEST SCHEDULE

RUN NO.	TIME (MIN.)	RPM	TORQUE (LB-FT)
1	10	700	warm-up
2	15	1000	85
3	15	1400	440
4	20	1800	837
5	20	2200	1024
6	20	2400	1092
7	30	2400	1202
8*	30	2400	Full
9	5	2400	Power
10	5	2200	Control Arm
11	5	2000	Setting
12**	5	1800	

^{*}After run no. 8, check for low idle at 675-725 rpm and adjust if necessary. Visually inspect for air, exhaust, oil and fuel leaks. Check governor high idle speed. This shall not exceed 2640 rpm (no load-water off). If adjustment is required, recheck horsepower at 2400 rpm and full power control arm setting. Governor must be resealed after adjustment.

^{**}Borescope inspect cylinders, pistons, and valves after completion of test.

The following performance tests (see Table B-1) can be run as part of the break-in test or separately:

- speed ranges
- governor
- gross horsepower
- torque
- fuel consumption
- exhaust smoke density
- oil pressure and temperature
- engine leakage check
- engine pressure drop
- submersion
- water contamination
- flame heater

Regarding endurance related qualification tests, Table B-1 shows two of interest. There is a cycle endurance test conducted as part of the design qualification process and the NATO 400-hour endurance test conducted as part of the initial production qualification process.

The engine selected for the cycle endurance test (during the design qualification process only) is put through 20 cycles as shown in Table B-3. The following data is recorded during the test at the end of each 10-minute or longer period and just prior to stopping:

- Engine speed
- Engine power
- Intake manifold pressure
- Exhaust manifold pressure
- Lubricating oil pressure, gallery
- Crankcase pressure
- Lubricating oil temperature, sump
- Blowby
- Fuel flow
- Fuel pressure after secondary filters
- Fuel temperature at secondary fuel filter
- Air temperature at air cleaner inlet

TABLE B-3, AVDS-1790 SERIES CYCLE ENDURANCE TEST SCHEDULE

Period No. Minutes HP RPM No. Minutes HP RPM No. Minutes HP No. Minutes HP RPM No. Minutes HP No. Minutes HP No. Minutes HP RPM No. Minutes HP RPM No. Minutes HP No. Minutes HP RPM No. Minutes HP No. Minutes HP RPM No. Minutes HP No. Minutes HP No. Minutes HP RPM No. Minutes HP RPM No. Minutes HP No. Minutes Minutes HP No. Min		Length of				Length of		
No. Minutes HP RPM No. Minutes HP RPM RPM 1	Period		Gross		Period	Period	Gross	Ì
1 Start 0 0 0 47 30 300 1600 20 55 300 1600 49 300 750 2400 40 120 600 2000 50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				RPM	No.	Minutes	HP	RPM
Table Tabl	l		l	L	A 7	30	300	1600
3			١ ٠				300	
120] 2		ا ممم				750	
5 5 300 1600 51 5 Stop Idle 52 5 Stop Idle 1600 1600 52 5 Stop Idle 1600 1600 55 5 Stop Idle 5 1600 55 5 Stop Idle 5 5 1600 55 5 5 1600 550 1900 11 5 1600 550 1600 550 1900 1600 550 1900 1600	3						730	
S	4					5		
S	5	5	300			5		
S	6	5				15	460	
9 5 300 1600 55 5 5 1900 110 25 720 2200 56 30 550 1900 111 5 1dle 57 5 5 1dle 12 50 650 2100 58 35 460 1800 13 5 1dle 59 5 1dle 14 5 Stop 60 20 550 1900 15 5 1dle 61 5 1dle 16 15 200 1400 62 15 200 1400 17 5 1dle 63 5 1dle 18 5 Stop 64 5 300 1600 19 5 200 1400 65 5 5 1dle 20 5 1dle 66 5 Stop 21 30 200 1400 65 5 5 1dle 22 5 1dle 68 5 1dle 23 25 600 2000 69 20 460 1800 24 5 1dle 70 5 1dle 25 5 Stop 71 10 200 1400 26 100 600 2000 72 5 1dle 27 5 Stop 74 5 300 1600 29 5 Stop 74 5 300 1600 29 5 Stop 74 5 300 1600 29 5 Stop 74 5 300 1600 31 5 750 2400 76 30 300 1600 31 5 750 2400 76 30 300 1600 33 5 1dle 77 5 5 1dle 34 5 300 1600 80 5 5 5 50 1900 35 5 1dle 83 25 550 1900 36 5 Stop 82 5 5 50 1900 37 5 1dle 83 25 550 1900 38 5 300 1600 80 5 5 550 1900 38 5 300 1600 80 5 5 550 1900 38 5 300 1600 80 5 5 550 1900 38 5 300 1600 80 5 5 550 1900 38 5 300 1600 80 5 5 550 1900 39 5 1dle 85 15 300 1600 40 30 750 2400 86 5 1dle 37 750 2400 86 5 1dle 39 5 1dle 85 15 300 1600 40 30 750 2400 86 5 1dle 41 5 460 1800 87 70 750 2400 42 60 750 2400 88 5 1dle 43 5 1dle 89 5 200 1400 44 5 Stop 90 30 1dle 45 5 300 1600 87 70 750 2400 44 5 Stop 90 30 1dle 45 5 300 1600 91	7	5				12	400	
10	8	5	200			5		
11						20	550	
12		25	720			30	330	
13	11					ב סר	460	
14			650				400	
16 15 200 1400 62 15 200 1400 17 1400		5	ľ				550	
16 15 200 1400 62 15 200 1400 17 1400		5	ļ				330	
Total		5	200			15	200	
21		12	200				200	
21		5	1			2	300	
21		} 5	1			5	300	
21		5	200] 2		
Table Tabl		5					200	
23	21		200			40	300	
Table Tabl		5					460	
Stop		25	600			20	400	
100		5	ł				200	
27							200	
30			600]]	ł	
30		5	İ] 2	300	
30		5	ł	Stop) 5	300	
31		1 5	350			30	300	
32		15) /50			30	300	
33 5 300 Idle 79 5 Idle Stop 35 5 1dle 81 10 750 2400 36 5 Stop 82 5 Idle 37 5 Idle 83 25 550 1900 38 5 300 1600 84 5 Idle 39 5 Idle 85 15 300 1600 40 30 750 2400 86 5 Idle 41 5 460 1800 87 70 750 2400 42 60 750 2400 88 5 Idle 43 5 Idle 89 5 200 1400 44 5 Stop 90 30 Idle 45 5 300 1600 91 Stop		1 ,5	650			1 15	750	
34 5 300 1600 80 5 Stop 2400 35 5 1dle 81 10 750 2400 36 5 Stop 82 5 Idle 37 5 Idle 83 25 550 1900 38 5 300 1600 84 5 Idle 39 5 Idle 85 15 300 1600 40 30 750 2400 86 5 Idle 41 5 460 1800 87 70 750 2400 42 60 750 2400 88 5 Idle 43 5 Idle 89 5 200 1400 44 5 Stop 90 30 Idle Stop 45 5 300 1600 91 Stop 5 200 1400		1 15	טכסן			15	'50	
37 5 300 Idle 83 25 550 1900 38 5 300 1600 84 5 Idle 39 5 Idle 85 15 300 1600 40 30 750 2400 86 5 Idle 41 5 460 1800 87 70 750 2400 42 60 750 2400 88 5 Idle 43 5 Idle 89 5 200 1400 44 5 Stop 90 30 Idle Stop 45 5 300 1600 91 Stop 5 5]	200			5	1	
37 5 300 Idle 83 25 550 1900 38 5 300 1600 84 5 Idle 39 5 Idle 85 15 300 1600 40 30 750 2400 86 5 Idle 41 5 460 1800 87 70 750 2400 42 60 750 2400 88 5 Idle 43 5 Idle 89 5 200 1400 44 5 Stop 90 30 Idle Stop 45 5 300 1600 91 Stop 5 5		}	300				750	
37 5 300 Idle 83 25 550 1900 38 5 300 1600 84 5 Idle 39 5 Idle 85 15 300 1600 40 30 750 2400 86 5 Idle 41 5 460 1800 87 70 750 2400 42 60 750 2400 88 5 Idle 43 5 Idle 89 5 200 1400 44 5 Stop 90 30 Idle Stop 45 5 300 1600 91 Stop 5 5]	1			1 2	'30	
38 5 300 1600 84 5 1dle 39 5 Idle 85 15 300 1600 40 30 750 2400 86 5 Idle 41 5 460 1800 87 70 750 2400 42 60 750 2400 88 5 Idle 43 5 Idle 89 5 200 1400 44 5 Stop 90 30 Idle 45 5 300 1600 91 Stop		3	{		1		550	
39 5 Idle 85 15 300 1600 40 30 750 2400 86 5 Idle 41 5 460 1800 87 70 750 2400 42 60 750 2400 88 5 Idle 43 5 Idle 89 5 200 1400 44 5 Stop 90 30 Idle 45 5 300 1600 91 Stop		2	200			"5	750	
40 30 750 2400 86 5 Idle 41 5 460 1800 87 70 750 2400 42 60 750 2400 88 5 Idle 43 5 Idle 89 5 200 1400 44 5 Stop 90 30 Idle 45 5 300 1600 91 Stop) 2	300				300	
41 5 460 1800 87 70 750 2400 42 60 750 2400 88 5 Idle 43 5 Idle 89 5 200 1400 44 5 Stop 90 30 Idle 45 5 300 1600 91 Stop			750				300	
42 60 750 2400 88 5 43 5 Idle 89 5 44 5 Stop 90 30 45 5 300 1600 91 Idle Stop		30					750	
43 5 Idle 89 5 200 1400 44 5 Stop 90 30 Idle 45 5 300 1600 91 Stop		5					''	
44 5 Stop 90 30 Idle 45 5 300 1600 91 Stop			/ 20				200	
45 5 300 1600 91 Stop) 5 E	1				-00	
46 5 Idle 51]	300			1	1	
] 5	300]	ļ	1	
	1 40			1016	ŀ		-	

- Test cell ambient air temperature
- Specific oil consumption at periods No's. 42 and 87
- Barometric pressure of test cell once each 4 hour period
- Exhaust smoke density once each 50 hour period, plus or minus 5 hours
- Generator/Alternator, volts and amps

After completion of the cycle endurance test, the engine must be capable of producing 90 percent of its original power.

One of the first ten engines produced is selected for the 400-hour NATO endurance test (see Table B-1). The engine selected is first broken-in (see Table B-2), then put through a pre-test performance run from which a corrected performance test curve (torque, horsepower, BSFC, and smoke number vs. engine speed) is plotted from a minimum of seven speed settings in both ascending and descending order. The speeds to be run include 1200, 1400, 1600, 1800, 2000, 2200, and 2400 rpm. Data are recorded at 85, 70, 50, and 25 percent of the full power control arm setting. The endurance test consists of four 100-hour periods. Each 100-hour period consists of twenty 5-hour cycles where each cycle consists of the schedule shown in Table B-4.

TABLE B-4, AVDS-1790 SERIES 5-HOUR ENDURANCE TEST SCHEDULE

Period	Engine Speed (rpm)	Power*	Endurance Hours
1	Idle	0	0.5
2	2000	100	1.0
3	2400	0	0.5
4	1800	85	1.0
5	2400	50	0.5
6	2400	100	1.0
7	1200	25	0.5
	Total Endurance		

^{*}In percent of full power control arm setting gross horsepower at respective speed.

The following data are recorded at the end of test periods 2, 3, 4, and 6 (see Table B-4):

- Engine speed
- Engine power
- Intake manifold pressure
- Exhaust manifold pressure
- Lubricating oil pressure, gallery
- Crankcase pressure
- Lubricating oil temperature, sump
- Blowby
- Fuel flow
- Fuel pressure after secondary filters
- Fuel temperature at secondary fuel filter
- Air temperature at air cleaner inlet
- Test cell ambient air temperature
- Oil consumption
- Barometric pressure of test cell once each 4 hour period
- Exhaust smoke density once each 100 hour period,
 plus or minus 5 hours
- Generator/Alternator, volts and amps

At completion of each 100-hour period, the engine is operated at 2400 rpm and full power control arm setting; the fuel flow is checked and adjusted to within 2 lb/hr of that observed during the pre-test performance check. At the end of the endurance run the engine is subjected to a post-test performance test (following the same procedure used for the pre-test performance check) and the engine must develop 90 percent of its original power. The engine is then disassembled and inspected.

During engine production, various quality control measures are conducted. A specific requirement is a 50-hour quality control test. The procedure is as shown in Table B-5. Also, every production engine is given a break-in test per the schedule shown in Table B-2.

TABLE B-5, AVDS-1790 SERIES 50-HOUR QUALITY CONTROL TEST SCHEDULE

Run No.	Time (Min.)	Control Arm Power Setting*	Engine Speed (rpm)
1	60	1/2**	2000
2	30	Minimum	700
3	40	Full	2400
4	30	Minimum	700
5	120	1/2**	2000
6	30	Minimum	700
7	120	Full	2400
8	60	Minimum	700
9	300	Full	2400
10	60	Minimum	700
11	300	Full	2400
12	60	Minimum	700
13	300	Full	2400
14	60	Minimum	700
15	300	Full	2400
16	60	Minimum	700
17	300	Full	2400
18	60	Minimum	700
19	300	Full	2400
20	60	Minimum	700
21	300	Full	2400

^{*}For the AVDS-1790-2C engine, the even numbered runs use a control arm power setting of "As Required" in place of "Minimum" and an engine speed of 900-925 rpm in place of 700 rpm.

^{**}One-half of the full power control arm setting gross horsepower at 2000 rpm.

2. LD-465-1 and LD-465-1C

MIL-E-62106 (AT) describes the tests and test procedures used to qualify the LD-465-l and LD-465-lC multi-fuel engines. The range of the various requires tests is illustrated in Table B-6.

TABLE B-6, LD-465-1 AND LD-465-1C QUALIFICATION INSPECTIONS

	Initial		
Test	Engine	Acceptance	Control
Operational test	х		
Performance tests	x		
Temperature tests	X		
Cold starting test	X		
High temperature starting test	X		
Oil cooling test	X		
Electromagnetic compatibility test	X		
Grades and slope test	X		
Speed range & governor test	X	Х	Х
Brake horsepower & torque test	X	Х	X
Exhaust smoke density test	X	X	X
Fuel consumption, oil con-	X		
sumption, and oil pressure			
check	İ		
Fuel consumption and oil		Х	Х
pressure check	1		
Power check	X		
Coolant temperature rise test	X	X	X
Manifold heater check	X	Х	X
Starter check	l X	Х	X
Generator and alternator test	X	X	X
Air compressor test	X	Х	X
Submersion requirements &	X		
contamination test			i
Steam & water jet cleaning	Х		
test			
Production engine break-in run	X	X	X
Corrections and reassembly	Х	Х	X
Fifty hour quality control			х
test	1		
Selection of test sample			X
Control test failure &			x
correction			
Disposition of engine			X
Control test conditions)		x
Atmospheric conditions			x
Pre-test warm-up		ı	X
Temperatures			X
Engine cooling	i	į	X
Operating temperatures	ł		x
Accessories			X
	<u> </u>		

The engine must perform as specified using fuels conforming to VV-F-800, MIL-G-3056 referee grade, VV-6-76 with a maximum octane rating of 83 MON and 91 RON, MIL-F-45121, and MIL-F-46005. During the production break-in run, diesel fuel grade DF-1 of VV-F-800 and VV-6-76 (gasoline) with a maximum octane rating of 83 MON and 91 RON are used as indicated in the test procedure. During the 50-hour quality control test grade DF-1 of VV-F-800 and VV-6-76 with a maximum octane rating of 83 MON and 91 RON are used. For the 500-hour endurance test, compression ignition fuel conforming to MIL-F-45121 is used. For the power run, the following fuels are used when performed in conjunction with the 500-hour endurance run:

- diesel fuel: grade DF-1 of VV-F-800
- compression ignition fuel: MIL-F-45121
- referee grade gasoline: MIL-G-3056 (with exceptions as noted in Table B-7)

TABLE B-7, EXCEPTIONS TO MIL-G-3056: REFEREE GRADE GASOLINE

Test/Property	Test/Limit
Distillation:	ASTM D216
10% Evaporated	140-158°F.
50% Evaporated	194-239°F.
90% Evaporated	275-356°F.
Residue % Maximum	2.0
Reid Vapor Pressure	6-8
Octane No. Motor Method	83-85
Octane No. Research Method	91-93
Gum, mg/100 ml, Unwashed residue Max	4
Sulfur, percent	0.10-0.15(1)
Corrosiveness (122°F) maximum	ASTM No. 1
Tetraethyl lead ml/gal	2.5-3.00
Oxidation Inhibitor lbs/1000 bbls.(2)	30

- (1) This sulfur level may be obtained by the addition of ditertiary butyl disulfide.
- (2) Oxidation inhibitor shall be composed of 50% N, N¹ disecondary butyl-paraphenylenediamine and 50% N, n butyl-p-aminophenol. (Dupont No. 22 or No. 5, UOP No. 4 or Tenamene No. 1 meets this requirements.)

When performed in conjunction with the 50-hour quality control test, the power run fuels are grade DF-1 of VV-F-800 and gasoline grade I of MIL-G-46015.

Engine lubricating oil must be in accordance with the seasonal requirements of MIL-L-2104 (for -10°F to 115°F) and MIL-L-10295 (for -65°F to 20°F). Lube oil used during engine build-up and during the production break-in run is left to the engine manufacturer. The referee grade lube oil used during the 500-hour endurance run is Cities Service Oil Company grade OE-30, CDL-139 (government designation MB-901). Lube oil conforming to grade 2 of MIL-L-21260 can be used during the 50-hour run.

Every engine produced is broken-in according to the schedule shown in Table B-8. During each test period, the following data is recorded:

- Coolant temperatures
- Oil sump temperature
- Gallery oil pressure
- Observed brake horsepower
- Engine speed
- Period duration
- Starter cranking speed and terminal voltage
- Air compressor delivery
- Generator or alternator output

Also, the following data is recorded during periods 8 through 15 (in addition to the above):

- Intake air temperature before turbo-supercharger
- Torque (observed corrected)
- Brake horsepower (observed; corrected)
- Fuel consumption
- Specific fuel consumption
- Air pressure at inlet to engine
- Exhaust smoke density (diesel fuel only)
- Governed speed, full load and no load rpm (period 8 and 9 only)
- Fuel temperature at primary fuel filter inlet
- Fuel temperature at fuel flow measuring instrument
- Correction factor

TABLE B-8, LD-465-1 AND LD-465-1C PRODUCTION ENGINE BREAK-IN SCHEDULE

Period	Duration	Engine Speed	BHP (except as noted)	Fuel	-	Eng. lant mp. OUT
l Prelube	l min.	Prelube	Idle	Diesel	130	160
2	30	1000	15			
3 Re-torque heads & set valve lash immediately after period three	15	1200	15	Diesel	130	160
14	15	1600	33	Diesel	130	160
5	30	2000	64	Diesel	130	160
6	30	2400	110	Diesel	130	160
1 7	15	2600	125-135	Diesel	130	160
8 Adjust full power posi-						
tion and set Governor 9 Set unloaded Governor	As Req'd	2600	126-131	Diesel		200
speed	As Req'd	2850-2900	No load		İ	200
10 Power Check	As Req'd	1400	300-330	Diesel		200
11 Set idle speed and	-	650-700	Idle	Diesel	130	160
check manifold heater	As Req'd					
12 Run as required to convert fuel system to	_					
gasoline (see Note 2)	As Req'd			Gasoline	130	160
13 Power Check	As Req'd	2600	126-136	Gasoline		200
14 Power Check	As Req'd	1400	300 lb- ft min.	Gasoline		200
15 Record idle after						į
stabilization	5	650-700	Idle	Gasoline	רי	160
16 Re-torque heads & set valve lash immed.						
17 Run as req'd to convert fuel system						
to diesel (see Note 2)	As Req'd			Diesel	130	160
18 Same as 15	•	650-700	Idle	Diesel	130	160

NOTE: (1) For fuel, 3.2.3.9.1 for lubricating oil, 3.2.2.7

⁽²⁾ Time and method to purge fuel system to be approved by Government inspector. A maximum of 3 percent residual fuel after purging is permissible.

⁽³⁾ Re-torque cylinder head studs and re-set valve lash per drawing 10935504 a detail of engineering parts list, immediately following periods 3 and 15.

Periods 8 through 15 of the engine break-in test procedure must be run without stopping the engine. If engine adjustments are required during the power-check portion, then periods 8 through 15 must be re-run after stable operating conditions are obtained. The power-check test indicated in Table B-8 is performed according to the schedule shown in Table B-9.

Every engine produced is inspected for defects as shown in Table B-10.

TABLE B-9, LD-465-1 AND LD-465-1C POWER CHECK TEST SCHEDULE

Period	Engine Speed	Load	Fuel	Minimum Coolant Outlet Temperature
1	2600	Full Power	VV-F-800 DF-1	200°F
2	2400	Full Power	VV-F-800 DF-1	200°F
3	2200	Full Power	VV-F-800 DF-1	200°F
4	2000	Full Power	VV-F-800 DF-1	200°F
5	1800	Full Power	VV-F-800 DF-1	200°F
5 6	1600	Full Power	VV-F-800 DF-1	200°F
7	1400	Full Power	VV-F-800 DF-1	200°F
8	1200	Full Power	VV-F-800 DF-1	200°F
Switch fu	el to comp	-	ion fuel MIL-T-451	
10	2400	Full Power	MIL-F-45121	200°F
11	2200	Full Power Full Power	MIL-F-45121 MIL-F-45121	200°F 200°F
12	2000	Full Power	MIL-F-45121 MIL-F-45121	200°F
13	1800	Full Power	MIL-F-45121 MIL-F-45121	200°F
14	1600	Full Power	MIL-F-45121	200°F
15	1400	Full Power	MIL-F-45121	200°F
16	1200	Full Power	MIL-F-45121	200°F
Switch fuel to gasoline, MIL-G-3056 Referee Grade				
17	2600	Full Power	Gasoline	200°F
18	2400	Full Power	Gasoline	200°F
19	2200	Full Power	Gasoline	200°F
20	2000	Full Power	Gasoline	200°F
21	1800	Full Power	Gasoline	200°F
22	1600	Full Power	Gasoline	200°F
23	1400	Full Power	Gasoline	200°F
24	1200	Full Power	Gasoline	200°F

TABLE B-10, LD-465-1 AND LD-465-1C REQUIRED EXAMINATIONS

Characteristics	Defects	
Valve tappet clearance, each	Intake and exhaust valves improperly adjusted	
*Oil sump, fuel and oil filters	Dirt, chips and foreign parti- cles, due to production	
Fuel, oil, and coolant leaks	Leakage	
Fuel lines	Damaged, rubbing or improperly supported	
Governor	Malfunction, not sealed	
Torque on cylinder heat bolts, intake and exhaust manifold flange bolts	Improper torque	
Crankshaft	Excessive or restrictive end play	
Engine	Malfunction	
Fuel system components	Malfunction - damage or leaks, etc.	
Fuel injection system, timing and components	Malfunction, improper adjust- ment	
Injection pump support bracket	Improperly installed	
Linkage	Improper adjusted	
Minor assemblies	Omitted	
Engine	Improper adjustment or instal- lation of components	
Fuel lines, hose vents, shut-off valve	<pre>Improperly assembled or installed</pre>	
Painting	Spots missed, sags or runs	
Workmanship	Not following good practice, improper installation or adjustment of components	

^{*}Do not remove or inspect secondary fuel filter.

One of the initial production engines is furnished for a 500-hour endurance run (not to exceed 575 hours) to be conducted on compression ignition fuel (MIL-F-45121) and consisting of four 125-hour cycles. The 125-hour cycle schedule is shown in Table B-11. (Note: periods 1 and 2 are deleted during cycle 2, 3, and 4.)

TABLE B-11, LD-465 AND LD-465~1C 125-HOUR ENDURANCE SCHEDULE

Period	Length (hrs)	Engine Speed (rpm)	Percent Load	Period	Length (hrs)	Engine Speed (rpm)	Percent Load
1* 2** 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	251515122122122133251515122	650 1400 650 2000 650 2200 650 2600 2000 2200 22	0 75 0 75 0 75 0 75 0 75 100 75 100 75 0 75	34 35 36 37 38 39 40 42 43 44 45 47 48 49 51 55 55 55 56 61 62 63 64 65	1 2 4 1 4 1 2. 4 1 5 4 1 5 7 5 5 5 5 5 5 7 5 5 7 5 7 5 7 5 7 5	650 2000 2000 650 2200 650 2600 650 2600 650 2600 650 2600 650 2600 650 2600 650 2600 650 2600 650 2600 650 2600 260	0 50 100 0 75 100 0 75 100 0 100 100 100 0 100 0 100 0 100 0 100 0 100 0
33	2	1800	100	66**			

^{*}Break-in Run

Prior to the endurance run, the engine is broken-in by running periods 1 through 7 of the schedule shown in Table B-8. The endurance test is conducted by completing four 125-hour cycles. The final 125 hours are run with an intake air temperature of 140°F at an ambient air temperature of 115°F (+ 5°F). At the conclusion

^{**}Power-Check

of the endurance run, the engine must meet all performance requirements except the engine can develop not less than 95 percent of its power output at period 66 (of Table B-11). Also, there can be no evidence of abnormal wear of internal engine components.

During engine production, the first ten engines produced, every second engine of the next 100 produced, and every twentieth engine of the next 200 produced are dismantled and inspected after the break-in and acceptance tests are conducted (see Table B-12). The engines are then reassembled and subjected to another break-in test.

Fifty-hour quality control tests are also conducted during engine production at the rate of one per month when production is 100 units or less and two per month when production is greater than 100 units per month. The 50-hour quality control test schedule is shown in Table B-13. The engine is examined for defects per Table B-10 and acceptance tests are conducted. The following data are recorded at the end of each operation:

- Engine speed
- Observed brake horsepower
- Observed torque
- Air pressure at inlet to engine
- Fuel pressure at primary filter inlet
- Fuel supply pressure at inlet to engine driven supply pump
- Lubricating oil pressure, main gallery and piston cooling gallery
- Coolant pressure at cylinder block drain cock, water pump inlet and engine coolant outlet
- Lubricating oil temperature in oil sump
- Fuel temperature at primary filter inlet
- Coolant temperature rise inlet to outlet
- Air temperature at air cleaner inlet
- Cell ambient air temperature
- Fuel temp at fuel measuring device
- Exhaust temperature port and manifold outlet
- Fuel flow
- Brake specific fuel consumption
- Oil consumption

- Exhaust smoke density (during period 1 and 7 only)
- Generator output
- Air delivery
- Crankcase blowby

TABLE B-12, LD-465-1 AND LD-465-1C ENGINE DISASSEMBLY INSPECTIONS

- Oil contamination.
- Dirt, chips or foreign matter in the engine block, oil passages, oil pan, filters, and secondary drive case.

 NOTE: Do not remove or inspect the secondary fuel filter.
- Main bearing bolt torque.
- Connecting rod bolt torque.
- Vibration damper bolt torque.
- Fuel injectors and nozzles for dribbling, improper spray pattern, plugged nozzles or other malfunction.
- Cylinder compression pressure (maximum of 25 psi variation between cylinders).
- Scuffing, scoring, or galling of bearings, pistons, cylinders, cam lobes, tappets or other components.
- Burning of pistons or valves, broken piston rings and valve seats, or worn valve faces.
- Leakage of gaskets or seals.
- Casting flash and obstructions in cylinder block and cylinder head water jacket passages (removal of core plugs and necessary assemblies required for visual inspection).
- Any defects having no bearing on function, safety, interchangeability or life, but which are considered departure from good workmanship will be noted in writing.
- Valve tappet clearance, each valve.
- Governor adjustment.
- Torque on cylinder head nuts, intake and exhaust manifold bolts.
- Crankshaft end play.
- Injection pump timing and adjustment.

TABLE B-13, LD-465-1 AND LD-465-1C 50-HOUR QUALITY CONTROL TEST SCHEDULE

Period	Time (hrs)	LDS-465 Speed (rpm)	Power Position (% of full power)	Fuel
1* 2 3 4 5 6 7**	5 5 5 5 30	1400 1400 2600 1400 2600	50 75 75 100 100	Diesel fuel, VV-F-800 Grade F-1 shall be used during periods 1 through 6

^{*}Break-in schedule

^{**}Periods 1 through 8 and 9 through 16 of the power-check test are conducted on diesel fuel and gasoline respectively.

3. LDT-465-1C

ATPD-2046, 17 February 1972, describes the tests and test procedures used to qualify the LDT-465-1C engines. The tests required and procedures used are nearly identical to those described for the LD-465-1 and LD-465-1C multi-fuel engines (see previous section, B.2). The primary differences arise because the LDT-465-1C engine is turbocharged whereas the LD-465-1 and LD-465-1C engines are not, and engine characteristics between the LD and LDT engines differ slightly. Thus, the primary difference in the procedures will be the engine settings (e.g., speed and load) at which test periods are run, performance tests are conducted, and/or data is recorded. In some cases, the required fuel for a test procedure is different from that described for the LD engines.

Fuels required for qualification of the LDT-465-1C are varied. During the production break-in run, diesel fuel conforming to grade DF-1 of VV-F-800 and gasoline conforming to VV-G-76 (with a maximum octane rating of 83 MON and 91 RON) are used. During the 50-hour quality control test grade DF-1 of VV-F-800 and gasoline conforming to MIL-G-46015 or VV-G-76 (with a maximum octane rating of 83 MON and 91 RON) is used. For the 500-hour endurance test, grade DF-1 of VV-F-800 is used. For the power run, the following fuels are used when performed in conjunction with the 500-hour endurance run:

- Grade DF-1 of VV-F-800
- Referee grade gasoline conforming to grade 1 of ML -G-46015 (with exceptions as noted in Table B-14).

When performed in conjunction with the 50-hour quality control test, grade DF-1 of VV-F-800 and gasoline conforming to grade 1 of MIL-G-46015 are used.

TABLE B-14, EXCEPTIONS TO MIL-G-46015: REFEREE TO GRADE GASOLINE

Test/Property	Test/Limit
Distillation:	ASTM D216
10% Evaporated	140-158°F
50% Evaporated	194-239°F

TABLE B-14, EXCEPTIONS TO MIL-G-46015:
REFEREE TO GRADE GASOLINE (CONT.)

Test/Property	Test/Limit
90% Evaporated	275-356°F
Residue % Maximum	2.0
Reid Vapor Pressure	6-8
Octane No. Motor Method	83-85
Octane No. Research Method	91-93
Gum, mg/100ml, Unwashed residue Max	4
Sulfur, percent	0.10-0.15(1)
Corrosiveness (122°F) maximum	ASTM No. 1
Tetraethyl lead ml/gal	2.5-3.00
Oxidation Inhibitor lbs/1000 bbls.(2)	30

- (1) This sulfur level may be obtained by the addition of di-tertiary butyl disulfide.
- (2) Oxidation inhibitor shall be composed of 50% N, N¹ disecondary butyl-paraphenylenediamine and 50% N, n butyl, p-aminophenol. (Dupont No. 22 or No. 5, UOP No. 4 or Tenamene No. 1 meets this requirement.)

Engine lubricating oil must conform to the seasonal requirements of MIL-L-2104 (for -10°F to 115°F) and MIL-L-10295 (for -65°F to 20°F). Lube oil used during engine assembly and production break-in runs are left to the discretion of the engine manufacturer. The referee grade lube oil used for the 500-hour endurance and 50-hour quality control runs is Humble Oil and Refining Company grade OE/HDO-30 (government designation MC-23).

The range of the various required qualification tests are described in Table B-15 (for production engines.

TABLE B-15, LDT-465-1C QUALIFICATION INSPECTIONS

	Initial		<u> </u>
Test	Engine	Acceptance	Control
Operational tests	х		
Performance tests	l x		
Temperature tests	x		
Cold starting tests	l x		
High temperature starting	X		
tests			:
Oil cooling test) x		
Electromagnetic compatibility	x		j :
tests			
Grades and slope tests	x	 -	
Speed range & governor test	x l	X	x
Brake horsepower & torque test	x	X	x
Exhaust smoke density test	x	X	x
Fuel consumption, oil consump-	X	Λ	x
tion, and oil pressure check	Α .		^
Fuel consumption and oil	!	х	x
pressure check	,	Λ	. A.
		V	
Supercharging check		Х	X
Power check and supercharger test	X		i
Coolant temperature rise test	x	X	x
Manifold heater check	x	X	, X
Starter check	x	Х	X
Alternator test	l x	X	x
Air compressor test	x !	X	X
Submersion requirements and	х	-	
contamination test	1		
Steam and water jet cleaning	x		
test			;
Fifty hour quality control			· X
test			••
Selection of test sample	1		х
Control test failure and			. X
correction			Α
Disposition of engine	!		х
Control test conditions	!	i	X
Atmospheric conditions	1		x
Pre-test warm-up			X
Temperatures		1	x
Operating temperatures			x
Accessories			X
			^
	<u> </u>		

Every engine produced is subjected to a break-in test procedure according to the schedule shown in Table B-16. One notable addition to the procedure for this break-in test (from that for the LD engines) is that during the pre-lubrication step (period 1 of

Table B-16), lube oil must also be delivered to the turbocharger unit. During each period of the break-in schedule, the following data are recorded:

- Coolant temperature (at engine inlet and outlet)
- Oil sump temperature
- Gallery oil pressure
- Observed brake horsepower
- Engine speed
- Period duration
- Starter cranking speed and terminal voltage (after completion of break-in run)
- Air compressor delivery (record once at 1500 and 2600 rpm)
- Alternator output (record once at 1500 and 2600 rpm engine speed)

During the power check portion of the break-in schedule (periods 10, 14, and 15 of Table B-16), the following data are recorded:

- Coolant temperature
- Oil sump temperature
- Gallery oil pressure
- Observed brake horsepower
- Engine speed
- Period duration
- Intake air temperature before turbo supercharger
- Torque (observed)
- Fuel consumption
- Specific fuel consumption
- Intake manifold pressure after turbo supercharger
- Exhaust smoke density (diesel fuel only)
- Governed speed, full load and no load RPM (period 8 and 9 only)
- Fuel temperature at transfer pump inlet
- Fuel temperature at fuel flow measuring instrument
- Intake air pressure depression across the air cleaner and intake air hose (intake air pick up to be within 2 inches of turbo inlet)

TABLE B-16, LDT-465-1C PRODUCTION ENGINE BREAK-IN SCHEDULE

Pe	riod	Duration	Engine Speed	BHP (except as noted)	Fuel	Min. Cool Temp In	ant
1	Prelube	1 min.	Prelube	Idle	Diesel	-	
2 3 4 5 6	Re-torque	minimum 30 15 15 30 30	1000 1200 1600 2000 2400	15 15 33 64 110	Diesel Diesel Diesel Diesel		160 160 160
	set valve lash im- mediately after period 6						3.50
7 8	Set gov- ernor and full power po- sition	15 As Req'd	2600 2600	125-135 64.0 1bs/hr max. (130 to 140 bhp)	Diesel Diesel	130	160 200
9	Set un- loaded governor speed	As Req'd	2850-2900	No load	Diesel		200
10 i	Power check (see Note 4)	As Req'd	1500	37.5 lbs/ max. (305 to 355 lbs- ft)	Diesel		200
11	Set droop screw(see Note 5)	As Req'd	1200	29.0 to 30.0 1bs/hr	Diesel	130	160
12	Set idle and check manifold heater	As Req'd	650-700	Idle	Diesel	130	160
13	Run as required to con- vert fuel	As Req'd			Gaso- line	130	160
	system to gaso- line system	! ! !					
<u> </u>	(see Notes 1 and 2)	· i					

TABLE B-16, LDT-465-1C PRODUCTION ENGINE BREAK-IN SCHEDULE (CONT.)

Per	iod	Duration	Engine Speed	BHP (except as noted)	Fuel	Min. Cool Temp In	
14	Power Check	As Req'd	2600	130 to 145	Gaso- line		200
15	Power Check	As Req'd	1500	305 lb-ft	Gaso- line		200
16	Record idle after stabilization Retorque heads & set valve lash immediately after period 16. (see Notes 2 & 3)	5	600	Idle	Gaso- line		160
17	Run as req'd to convert fuel sys- tem to diesel (see Note 12)	As Req'd			Diesel	130	160
18	Same as	5	650-700	Idle	Diesel	130	160

NOTE: (1) Time and method to purge fuel system to be approved by Government inspector. A maximum of 3 percent diesel fuel in the gasoline after purging is permissible.

(2) Periods 13 through 18 required only for engines selected

for the 50 hour control test.
(3) Re-torque cylinder head studs and re-set valve lash per Drawing 10935504 immediately following periods 6 and 16. If periods 13 through 18 are not run, re-torque immediately following period 12.

(4) Specified fuel rate to be obtained by adjustment of

smoke limiting cam only.

(5) Specified fuel rate to be obtained by adjustment of droop screw only.

Periods 8 through 16 are made without stopping the engine. If adjustments are required during the power check periods, then periods 8 through 15 must be re-run after stable operating conditions are obtained.

The power check test indicated in Table B-16 is performed according to the schedule shown in Table B-17.

TABLE B-17, LDT-465-1C POWER CHECK TEST SCHEDULE

Period	Engine Speed	Load	Fuel	Minimum Coolant Outlet Temperature
1 2 3 4	2600 2400 2200 2000	Full Power Full Power Full Power Full Power	VV-F-800 DF-1 VV-F-300 DF-1 VV-F-800 DF-1 VV-F-800 DF-1	200°F 200°F 200°F 200°F
4 5 6 7 8	1800 1600 1400 1200	Full Power Full Power Full Power Full Power	VV-F-800 DF-1 VV-F-800 DF-1 VV-F-800 DF-1 VV-F-800 DF-1	200°F 200°F 200°F 200°F
Switch	fuel to ga	soline, MIL-G-	46015	
9 10 11 12 13 14 15 16	2600 2400 2200 2000 1800 1600 1400	Full Power Full Power Full Power Full Power Full Power Full Power Full Power Full Power	MIL-G-46015 MIL-G-46015 MIL-G-46015 MIL-G-46015 MIL-G-46015 MIL-G-46015 MIL-G-46015	200°F 200°F 200°F 200°F 200°F 200°F 200°F

Every production engine is also checked for defects as shown in Table B-18.

TABLE B-18, LDT-465-1C REQUIRED EXAMINATIONS

·
Intake and exhaust valves im- properly adjusted Dirt, chips and foreign particles, due to production
Leakage
Damaged, rubbing or improperly supported
Malfunction, not sealed

TABLE B-18, LDT-465-1C REQUIRED EXAMINATIONS (CONT.)

Torque on cylinder head bolts, intake and exhaust manifold flange bolts Crankshaft

Engine
Fuel system components

Fuel injection system,
timing and components
Injection pump support bracket
Linkage
Minor assemblies
Engine

Fuel lines, hose, vents,
 shut-off valve
Painting
Workmanship

Improper torque

Excessive or restrictive end play Malfunction Malfunction - damage or leaks, Malfunction - improper adjustment Improperly installed Improperly adjusted Omitted Improper adjustment or installation of components Improperly assembled or installed Spots missed, sags or runs Not following good practice, improper installation or adjustment of components

*Do not remove or inspect secondary fuel filter.

One of the initial engines produced is furnished for a 500-hour endurance run (not to exceed 575 hours) to be conducted on grade DF-1 of VV-F-800 (except during the power test portion when both DF-1 and gasoline conforming to MIL-G-46015 are used). The 500-hour endurance test consists of four 125-hour cycles. The schedule for the 125-hour cycle is shown in Table B-19 (Note: periods 1 and 2 are deleted during cycles 2, 3, and 4). The final cycle is run with an intake air temperature of 140°F at an ambient air temperature of 115°F (+5°F). At the conclusion of the endurance run, the engine must meet all performance requirements except the engine can develop not less than 95 percent of its power output at period 66 (Table B-18). Also, there can be no evidence of abnormal wear of internal engine components.

During engine production, the first ten engines produced, and every second engine of the next 100 produced, and every twentieth engine of the enxt 200 produced are dismantled and inspected after the break-in and acceptance tests have been conducted (see Table B-20). The engines are then reassembled and subjected to another break-in test.

TABLE B-19, LDT-465-1C 125-HOUR ENDURANCE SCHEDULE (CONT.)

Period	Time (hrs)	Engine Speed (rpm)	Percent Load
47	.25	650	0
48	.75	2600	100
49	.25	650	0
50	.75	2600	100
51	.25	650	0
52	.75	2600	100
53	.25	650	0
54	.75	2600	100
55	.25	650	0
56	2	1800	50
57	2	1800	100
58	1	650	0
59	2	2000	50
60	1	650	. 0
61	2	2600	100
62	1	650	0
63	4	2600	75
64	· 2	2600	. 100
; 65	.5	2850	0
66**			

^{*} Break-in run

4. The Remaining Multi-Fuel Engines

The military specification or purchase description document which describes the tests and test procedures used to qualify the remaining multi-fuel engines are as follows:

• MIL-E-46778: LDS-427-2

• DAPD-292F: LDS-465-1 and LDS-465-1A

• ATPD-2024A: LDS-465-2

It is notable that ATPD-2024A (for the LDS-465-2 engine) has been cancelled. Also, the LDS-427-2 engine has not been produced for a number of years.

The qualification tests and test procedures described in these above mentioned military specifications and purchase description documents are nearly identical to those already described for the LD-465-1 and LD-465-1C [MIL-E-62106(AT)] and LDT-465-1C (ATPD-2046) engines. Therefore, they will not be repeated here. The primary difference in the procedures (from those already described) will be minor changes in the engine settings (e.g., speed and load) at

^{**} Power check

TABLE B-19, LDT-465-1C 125-HOUR ENDURANCE SCHEDULE

Period	Time (hrs)	Engine Speed (rpm)	Percent Load
1*			
2**			
3	2	650	0
4	5	1400	75
5	1	650	0
3 4 5 6 7 8	5	2000	75
7	1	650	0
8	5	2200	75
9	1_	650	0
10	5	2600	75
11	1	650	0
12	2	1800	50
13	. 2	1800	100
14	2 5 1 5 1 5 1 5 1 2 2	650	0
15	2	2000	50
16	2	2000	75
17	1 2 2 1 3 3 2 5 1 5	650 2200	. 0
18 19	2	2200	75 100
20	1	650	0
20	7	2600	÷ 75
22	3	2600	100
23	2	650	0
24	5	1400	75
25	i	650	, ,
26	5	2000	75
27	i	650	, , , , , , , , , , , , , , , , , , , ,
28	5	2200	75
29	ĺ	650	Ö
30	5	2600	75
31	1	650	. 0
32	2	1800	50
33	2	1800	100
34	5 1 5 1 2 2 1 2	650	0
35	2	2000	50
36	4	2000	100
37	1	650	_0
38	4	2200	75
39	4	2200	100
40	1	650	_0
41	2.5	2600	75
42	4	2600	100
43	1 75	650	0
44	.75	2600	100
45	.25	650	0
46	.75	2600	100

^{*} Break-in run ** Power check

TABLE B-20, LDT-465-1C ENGINE DISASSEMBLY INSPECTIONS

- Oil contamination
- Dirt, chips or foreign matter in the engine block, oil passages, oil pan, filters, and secondary drive case.
 NOTE: Do not remove or inspect the secondary fuel filter.
- Main bearing bolt torque
- Connecting rod bolt torque
- Vibration damper bolt torque
- Fuel injectors and nozzles for dribbling, improper spray pattern, plugged nozzles or other malfunction
- Cylinder compression pressure (maximum of 25 psi variation between cylinders)
- Scuffing, scoring, or galling of bearings, pistons, cylinders cam lobes, tappets or other components
- Burning of pistons or valves, broken piston rings and valve seats, or worn valve faces.
- Leakage of gaskets or seals
- Casting flash and obstructions in cylinder block and cylinder head water jacket passages (removal of core plugs and necessary assemblies required for visual inspection)
- Any defects having no bearing on function, safety, interchangeability or life, but which are considered departure from good workmanship will be noted in writing.
- Valve tappet clearance, each valve
- Governor adjustment
- Torque on cylinder heat nuts, intake and exhaust manifold bolts, and turbocharger mounting bolts
- Crankshaft end play
- Injection pump timing and adjustment

which test periods are run, performance tests are conducted, and/or data is recorded. In some cases, the required fuel for a specific test procedure is different. If the reader is specifically interested in a test or test procedure, then consult the above stated military specification or purchase document for the engine of interest.

Fifty hour quality control tests are also conducted during engine production at the rate of one per month when production is 100 units or less per month and two per month when production is greater than 100 units per month. The 50-hour quality control test schedule is shown in Table B-21. The engine is examined for defects per Table B-18 and submitted to acceptance tests.

man n 31	TDM 465 10	50 HOHD	O	COMMENT	m=0m	OCCUPATION OF
TABLE B-21.	LDT-465-1C	50-HOUR	OUALITY	CONTROL	TEST	SCHEDULE

Period	Time (hrs)	LDS-465 Speed (rpm)	Power Position (% of full power)	Fuel
1* 2 3 4 5 6 7**	5 5 5 30	1400 1400 2600 1400 2600	50 75 75 100 100	Diesel fuel, VV-F-800 Grade F-1 shall be used during periods 1 through 6

^{*}Break-in schedule

The following data are recorded:

- Engine speed
- Observed brake horsepower
- Observed torque
- Air pressure at inlet to engine
- Fuel pressure at primary filter inlet
- Fuel supply pressure at inlet to engine driven supply pump
- Lubricating oil pressure, main gallery and piston cooling gallery
- Coolant pressure at cylinder block drain cock, water pump inlet and engine coolant outlet
- Lubricating oil temperature in oil sump
- Fuel temperature at primary filter inlet
- Coolant temperature rise inlet to outlet
- Air temperature at air cleaner inlet
- Cell ambient air temperature
- Fuel temperature at fuel measuring device

^{**}Periods 1 through 8 and 9 through 16 of the power-check test are conducted on diesel fuel and gasoline respectively.

C. COMMERCIALLY DESIGNED ENGINES

1. Detroit Diesel Allison 3-53

MIL-E-62045B(AT), 14 May 1973, describes the reliability, endurance, and performance tests used to qualify the DDA 3-53 engine. The engine is also required to comply with the applicable Health, Education, and Welfare Regulations governing control of exhaust emissions from new motor vehicle engines in effect on the date of manufacture. The range of the various required qualification inspections as well as the location for the test is shown in Table B-22. All testing is conducted using fuel conforming to grade DF-2 of Federal specification VV-F-800. Engine lubricating oil used for the various tests must be in accordance with the seasonal requirements of MIL-L-2104 (for -10°F to 115°F) and MIL-L-10295 (for -65° F to 0° F). Type II lube oil of MIL-L-21260 can be used during engine assembly and during the production break-in runs. Referee lube oil grade MB901 of MIL-L-2104 is used during the engine endurance test. In addition to the engine specific tests listed in Table B-22, a vehicle reliability test is required in which the 3-53 engine must demonstrate its durability in 20,000 miles of wheeled vehicle operation without overhaul or major failure. Major failure is defined as:

- Main bearing and connecting rod bolt broken, stripped threads, scored, and damage that may cause subsequent failure
- Broken, scuffed, and burned pistons
- Cylinder bore scuffed, scored, and galling

The first engine produced is subjected to a variety of examinations (see Table B-23) as well as performance tests such as:

- Oil consumption
- Cold starting
- High temperature starting
- Humidity conditions and coolant temperatures
- Elevation
- Grades and slopes
- Steam and water jet cleaning

- Exhaust temperature port and manifold outlet
- Fuel flow
- Brake specific fuel consumption
- Oil consumption
- Exhaust smoke density (during period 1 and 7 only)
- Alternator output
- Air delivery
- Crankcase blowby

TABLE B-22, DDA 3-53 QUALIFICATION INSPECTIONS AND TEST LOCATION

Test Requirement Description	Place of Manufacture	Government Laboratory
First production inspection and testing Endurance test Failure Power check Engine shutdown Engine warm-up period Test hours Data Warning and shutdown	х	X X X X X X X X
Servicing Test temperature Performance test Oil consumption test Cold starting High temperature starting Humidity conditions and coolant temperatures Elevation test Grades and slopes test	x x x x	x x x x x x x
Steam and water jet cleaning test Examinations Production engine test Tear-down inspection Corrections and reassembly Speed range check Governor check Brake horsepower check Oil pressure check Airbox heater check Fifty-hour control test Temperatures	x x x x x x x x x	X
Torque and brake horsepower check Exhaust smoke density check Fuel consumption check Radio noise suppression test Inspection for preparation of delivery	x x x x	

TABLE B-23, REQUIRED EXAMINATIONS OF DDA 3-53 ENGINE DURING ENDURANCE TEST

		
Characteristic	Major Defect	Method of Inspection
Valve tappet clearance each valve	Exhaust valves improperly adjusted	Gage
Oil sump, fuel and oil filters	Dirt, chips, and foreign particles, due to production	Visual and functional
Fuel, oil, and coolant leaks	Leakage	Visual
Fuel lines	Damaged	Visual and functional
Governor	Malfunction	Visual and functional
Torque on cylinder head bolts, exhaust manifold flange bolts, vibration damper	Improper torque	Torque wrench
Crankshaft	Excessive or restrictive play	Gage and functional
Engine	Malfunction	Functional
Fuel system components	Malfunction, damage or leaks, etc.	Visual and functional
Fuel, injection system, timing and components	Malfunction, improper adjustment	Gage
Coolant system	Malfunction non- conformance	Functional
Airbox pressure	Less than limits	Gage
Crankcase pressure	Exceeds limits	Gage
Linkage	Improperly adjusted	Visual
Minor assemblies	Omitted	Visual

TABLE B-23, REQUIRED EXAMINATIONS OF DDA 3-53 ENGINE DURING ENDURANCE TEST - (CONT.)

Characteristic	Major Defect	Method of Inspection
Engine	Improper adjustment or installation of components	Visual and Functional
Fuel lines, hose, vents, shut-off valve	Improper assembly or installation	Visual
Painting	Improper application	Visual
Workmanship	Not following good practice, improper installation or adjustment of components	Visual and functional

The first production engine is also subjected to a 400 hour endurance test whose schedule consists of four periods of 100 hours each where each 100 hour period consists of 20, 5 hour schedules. Table B-24 describes the 5 hour schedule.

TABLE B-24, DDA 3-53 5 HOUR ENDURANCE TEST SCHEDULE

Period	Percent Rate Speed	Percent Load	Endurance Hours
1	Idle	0	0.5
2	Max. Torque	100	1.0
3	100	0	0.5
4	75	85	1.0
5	100	50	J.5
6	100	100	1.0
7	50	25	0.5
	Total Endurance		5.0

Before the start of the endurance run and after 100 hours of endurance time, power checks are conducted at full load and various engine speeds in both ascending and descending order after the engine has stabilized for a sufficient time (about 20 minutes). The engine can be shut down after completion of any period in the 5 hour schedule, but a cool-down run is required after periods 2, 4, and 5. A 1/2 hour warm-up is required following any shutdown and prior to continuation of the endurance run; during the period, the loads and speeds are progressively increased to the values shown in period 5. The following data are recorded during the last 5 minutes of each schedule period and during power checks:

- Engine speed
- Observed brake horsepower and/or torque
- Fuel flow
- Test cell ambient temperature and barometric pressure
- Engine oil gallery and sump temperatures and pressure
- Fuel secondary filter out and spill back temperatures and pressures
- Air cleaner inlet temperature
- Air inlet pressure
- Air cleaner restriction
- Coolant engine inlet and outlet temperatures and pressures
- Exhaust port temperatures
- Exhaust manifold pressure
- Crankcase pressure
- Fuel, transfer pump, inlet pressure
- Oil consumption
- Exhaust smoke density

After the final performance test, the engine is completely dismantled and inspected. The engine must conform to all performance requirements with the exception that the power and torque be not less than 95% of initial readings without readjustment of the injection system. Also, there can be no evidence of abnormal wear of internal engine components.

Every production engine is given a break-in run (MIL-E-62045B(AT) does not describe the break-in schedule) and the engines are checked for speed range, governor operation, maximum brake horsepower, minimum oil pressure and oil pressure limits, and airbox heater operability. The first ten production engines and every other engine of the next ten are then completely dismantled and inspected. These tests are known as acceptance tests.

During engine production, 50-hour quality control testing is performed. One engine per month when production is less than 100 and two engines per month when production is greater than 100 are selected for the 50-hour tests. The tests follow the schedule shown in Table B-25, after the normal break-in and performance check tests (as described for the endurance test procedure) are conducted. Additional performance check testing is conducted after the 50-hour test schedule is completed.

TABLE B-25, DDA 3-53 60-HOUR QUALITY CONTROL TEST SCHEDULE

Period	Time (Hours)	Engine Speed (rpm)	Horsepower (bhp)
1	5	1600	30
2	5	2000	58
3	5	2800	73
4	5	2400	84
5	30	2800	90

2. Detroit Diesel Allison 6V-53

MIL-E-62140(AT), 27 August 1971, describes the endurance and performance tests used to qualify the DDA 6V53 engine. The range of the various required qualification inspections as well as the location for the test is shown in Table B-26.

TABLE B-26, DDA 6V QUALIFICATION INSPECTIONS AND TEST LOCATION

Requirement	Place of	Government
Description	Manufacture	Laboratory
First production engine test Endurance test Cold starting High temperature starting Slope test Power check test Servicing Elevation test High temperature operational test Steam and water jet cleaning test Radio noise suppression test Examination: Production break-in run Tear down inspection Corrections and reassembly Acceptance tests: 50-hour control test Selection of test sample Control test failure Performance Corrections Disposition of engine		x x x x x x x x

Fuel for testing, except endurance testing, is grade DF-2 of Federal specification VV-F-800. Endurance testing is conducted using referee grade diesel fuel. The referee grade diesel fuel has properties as shown in Table B-27 (using method No. 340-T of Federal Test Method Standard No. 791). The various testing is conducted using lubricating oil conforming to the seasonal requirements of MIL-L-2104 (for -10°F to 115°F) and MIL-L-10295 (for -65°F to 0°F); the engine manufacturer can use oil of his own selection for engine assembly and during the break in test, or oil conforming to grade 2 of MIL-L-21260.

TABLE B-27, PROPERTIES OF REFEREE GRADE DIESEL FUEL

Parameter	Specification
Flash point, minimum, OF	100 or legal
Pour point, maximum, OF	20
Water and sediment, by volume, maximum percent	0.05
Distillation, 50% evaporated, minimum, OF 90% evaporated, OF end point, OF	500 600 - 640 650 - 690
Kinematic viscosity, centistokes, at 100°F	1.6 to 4.5
Sulfur*, percent	0.95 - 1.05
Corrosion	pass
Alkali and mineral acids	none
Cetane number	40 to 45

*Must be natural sulfur

Each engine selected for testing must meet the examination requirements of Table B-28 as well as performance tests (following a break-in run) such as:

- speed range
- governor setting
- brake horsepower
- torque
- oil pressure

The first production engine (after break-in and examination) must successfully complete the 500 hour endurance test described in Table B-29, operating on the referee diesel fuel described in Table B-27. During the endurance test, power check tests are conducted (as noted in Table B-29) following the schedule shown in Table B-30. The following data are recorded after each hour of

operation and at the completion of each period prior to stopping the engine:

- Engine speed
- Observed brake horsepower
- Observed torque
- Air box pressure
- Fuel pressure after secondary filter
- Fuel supply pressure at inlet to engine driven supply pump
- Lubricating oil pressure
- Lubricating oil temperature in oil sump
- Fuel temperature after secondary filter
- Coolant temperature Engine inlet and outlet
- Air temperature at air inlet
- Cell ambient air temperature
- Exhaust temperature
- Fuel flow
- Brake specific fuel consumption
- Specific oil consumption
- Exhaust smoke density

TABLE B-28, REQUIRED EXAMINATIONS OF DDA 6V-53 ENGINE

Characteristic	Defect	Method of Inspection
Valve tappet clearance, each valve	Exhaust valves improp-	Gage
Oil sump, fuel and oil filters	erly adjusted Dirt, chips and foreign particles, due to production	Visual & functional
Fuel, oil, and coolant leaks	Leakage	Visual
Fuel lines	Damaged	Visual & functional
Governor	Malfunction	Visual & functional
Torque on cylinder head bolts, intake and exhaust manifold flange bolts, vibration damper	Improper torque	Torque wench
Crankshaft	Excessive or restrictive end play	Gage & functional

TABLE E-28, REQUIRED EXAMINATIONS OF DDA 6V-53 ENGINE (CONT.)

Characteristics	Defect	Method of Inspection
Engine Fuel System Components	Malfunction Malfunction - damage or	Functional Visual &
Fuel Injection System, Timing and Components	leaks, etc. Malfunction, improper adjustment	Functional Gage
Air Cleaner Air Box Pressure Crankcase Pressure	Malfunction Exceeds Limits Exceeds Limits	Functional Gage Gage
Linkage Minor Assemblies Engine	Improperly Adjusted Omitted Improper Adjustment or Installation of Com-	Visual Visual Visual & Functional
Fuel Lines, Hose, Vents, Shut-Off Valve	ponents Improper Assembly or Installation	Visual
Painting Workmanship	Improper Application Not Following Good Practice, Improper Installation or Adjustment of Components	Visual Visual & Functional

TABLE B-29, DDA 6V-53 500-HOUR ENDURANCE TEST SCHEDULE

Test Period No.	Time (Hours)	Engine Speed or Percent of Max. Rated Speed (rpm)	Percent of Full Rack Load at Indicated Speed	Test Period No.	Time (Hours)	Engine Speed or Percent of Max. Rated Speed (rpm)	Percent of Full Rack Load at Indicated Speed
1				45	1	500 xpm	0
2	2	500 rpm	0	46	5	75 pct	75
3	5	50 pct	75	47	1	500 rpm	0
4	1	500 rpm	0	48	5	85 pct	75
5	5	75 pct	75	49	1	500 rpm	0 [
6	1	500 rpm	0	50	5	100 pct	75
7	5	85 pct	75	51	2	500 rpm	0
8	1	500 xpm	0	52	5	50 pct	75
9	5	100 pct	75	53	1	500 rpm	0
10	2	500 rpm	0	54	5	75 pct	75
11	5	50 pct	75	55	1	500 rpm	_0
12	1	500 rpm	0	56	5	85 pct	75
13	5	75 pct	75	57	1	500 xpm	0
14	1	500 rpm	0	58	5	100 pct	75
15	5	85 pct	75	59	2	500 xpm	0
16	1	500 rpm	0	60	5	50 pct	75
17	5	100 pct	75	61	1	500 xpm	0
18	2	500 rpm	0	62	5	75 pct	75
19	5	50 pct	75	63	1	500 xpm	0
20	1	500 rpm	0	64	5	85 pct	75
21	5	75 pct	75	65	1	500 xpm	0
22	1	500 rpm	0	66	5	100 pct	75
23	5	85 pct	75	67		(powertest)	50
24	1	500 rpm	0	68	2	50 pct	50
25	5	100 pct	75	69	1	500 rpm	100
26	2	500 rpm	0	70	2	58.4 pct	50
27	5	50 pct	75	71	2	58.4 pct	1 30
28	1	500 rpm	0	72	1	500 rpm	100
29	5	75 pct	75	73	2	58.4 pct	50
30	1 1	500 rpm	75	74	2	500 xpm	0
31	5	85 pct	1 6	75	1 2	58.4 pct	100
32	1	500 rpm	75	76	2	58.4 pct	50
33	5	100 pct (powertest)	/	78	i	500 xpm	
34		500 rpm	0	79	2	58.4 pct	100
35	5	50 pct	75	80	2	58.4 pct	50
36 37	1	500 rpm	0	81	ì	500 xpm	0
38	5	75 pct	75	82	2	58.4 pct	100
39	li	500 rpm	0	83	2	58.4 pct	50
40	5	85 pct	75	84	l	500 rpm	1 0
41	li	500 rpm	0	85	2	58.4 pct	100
42	5	100 pct	75	86	2	58.4 pct	50
43	2	500 rpm	0	87	1 i	500 rpm	0
44	5	50 pct	75	88	2	58.4 pct	100

TABLE B-29, DDA 6V-53 500-HOUR ENDURANCE TEST SCHEDULE (CONT.)

89 90 91 92 93 94 95	2 1 2	58.4 pct		l	(Hours)	Rated Speed (rpm)	Indicated Speed
90 91 92 93 94	1 2	30.4 pcc	50	133	1	500 rpm	0
91 92 93 94	2	500 rpm	0	134	4	85 pct	100
92 93 94		58.4 pct	100	135	1	500 rpm	0
93 94	2	58.4 pct	50	136	4	85 pct	75
94	ī	500 rpm	0	137	1	500 rpm	0
	2	58.4 pct	100	138	4	85 pct	100
1	2	58.4 pct	50	139	1	500 rpm	0 1
96 I	i	500 rpm	0	140	4	85 pct	75
97	2	58.4 pct	100	141] 1	500 xpm	0
98	2	58.4 pct	50	142	4	85 pct	100
9 9	i	500 rpm	0	143	1	500 rpm	75
100	2	58.4 pct	100	144	4	500 rpm	1 1
101	2	58.4 pct	50	145	1	500 xpm	0
102	1	500 rpm	0	146	4	100 pct	100
103	2	58.4 pct	100	147	1	500 rpm	0
104	2	75 pct	50	148	4	100 pct	100
105	1	500 rpm	0	149	1	500 rpm	0
106	2	75 pct	100	150	4	100 pct	100
107	1 4	75 pct	50	151	1	500 xpm	75
108	1	500 xpm) 0	152	4	100 pct	/5
109	4	75 pct	50	153	1	500 rpm	100
110	1	500 rpm	(0	154	1 4	100 pct	100
111	4	75 pct	50	155	1 1	500 rpm	75
112	1	500 rpm	(0	156	4	100 pct	1 0
113	4	75 pct	100	157	1 1	500 rpm 100 pct	100
114	1	500 rpm	0	158	1 1	500 rpm	0
115	4	75 pct	50	159	4	100 pct	75
116	1	500 rpm	0	160	1 1	1 -	0
117	4	75 pct	100	161	1	500 rpm (powertest)	1
118	1	500 rpm	0	162	1.	100 pct	100
119	4	75 pct	50	163	4	500 rpm	1 0
120	1	500 rpm	1 0	164	1	100 pct	75
121	}	(powertest)	1	165	1	500 rpm	1 0
122	1 4	75 pct	100	166		100 pct	75
123	1	500 rpm	0	167	3 1	500 rpm	0
124	4	75 pct	50	168	3	100 pct	100
125	1 1	500 rpm	0	170	3	100 pct	75
126	14	85 pct	100	171	li	500 rpm	} 0
127	1	500 rpm	75	172	3	105 pct	100
128	14	85 pct	0	173	3	100 pct	75
129	1 1	500 rpm	100	174	li	500 rpm	(0
130	14	85 pct	100	175	3	100 pct	100
131	1 4	500 rpm 85 pct	75	176	3	100 pct	75

TABLE B-29, DDA 6V-53 500-HOUR ENDURANCE TEST SCHEDULE (CONT.)

Test Period No.	Time (Hours)	Engine Speed or Percent of Max. Rated Speed (rpm)	Percent of Full Rack Load at Indicated Speed	Test Period No.	Time (Hours)	Engine Speed or Percent of Max. Rated Speed (rpm)	Percent of Full Rack Load at Indicated Speed
177	1	500 rpm	0	213	0.25	500 xpm	0
178	3	100 pct	100	214	0.25	100 pct	75
179	3	100 pct	75	215	0.25	500 rpm	0
180	1	500 rpm	0	216	0.75	100 pct	100
181	2	100 pct	100	217	0.25	500 rpm	0
182	2	75 pct	75	218	0.75	100 pct	100
183	1	500 rpm	0	219	0.25	500 rpm	0]
184	2	85 pct	100	220	0.75	100 pct	100
185	2	100 pct	100	221	0.25	500 rpm	0
186	1	500 rpm	0	222	0.75	100 pct	100
187	2	75 pct	75	223	0.25	500 rpm	0
188	2.75	75 pct	100	224	0.75	100 pct	100
189	2.75	85 pct	75	225	0.25	500 x pm	0
190	2.5	85 pct	100	226	0.75	100 pct	100
191	2.5	85 pct	75	227	0.25	500 rpm	0
192	2.5	100 pct	100	228	0.75	100 pct	100
193	2.5	100 pct	75	229	0.25	500 xpm	0
194	2.5	100 pct	100	230	0.75	100 pct	100
195	2.5	100 pct	75	231	0.25	500 xpm	0
196	0.75	100 pct	100	232	0.75	100 pct	100
197	0.25	500 rpm	0	233	0.25	500 rpm	0
198	0.75	100 pct	100	234	0.75	100 pct	100
199	0.25	500 rpm	0	235	0.25	200 xDw	0
200	0.75	100 pct	100	236	0.75	100 pct	100
201	0.25	500 rpm	0	237	0.25	500 xpm	0
202	0.75	100 pct	75	238	0.75	100 pct	100
203	0.25	500 rpm	0	239	0.25	5 0 xpm	0
204	0.75	500 rpm	100	240	0.75	100 pct	100
205	0.24	500 rpm	0	241	0.25	500 rpm	100
206	0.75	100 pct	100	242	0.75	100 pct	100
207	0.25	500 rpm	0	243	0.25	500 rpm	100
208	0.75	100 pct	100	244	0.75	100 pct	100
209	0.25	500 rpm	0	245	0.25	500 rpm	
210	0.75	100 pct	100	246	0.50	110 pct	1 ×
211	0.25	500 rpm	0	247	I	(powertest)	i
212	0.75	100 pct	75	1		<u> </u>	

Note 1 - Cylinder head temperatures are allowed to vary with load except for test period numbers 147, 166, 203, and 239 where they may not exceed limits recommended by the engine manufacturer.

Note 2 - Coolant temperature is to be maintained at 180°F for test periods 1 through 204 (except during power tests) and at 210°F for test periods 205 through 246.

TABLE B-30, DDA 6V-53 POWER CHECK TEST SCHEDULE

Period	Engine Speed (rpm)	Rack Position
1	1600	Full
2	2000	Full
3	2400	Full
4	2800	Full

At the conclusion of the endurance run, the engine must develop no less than 90 percent of its rated power. The engine is then dismantled and inspected.

The first ten production engines and every second engine of the next ten (after break-in) are dismantled and inspected to the extent necessary to verify the following:

- Oil contamination
- Dirt, chips or foreign matter in the engine block, oil pan, filters and accessory drive case
- Main bearing bolt torque
- Connecting rod bolt torque
- Cylinder bore scuffing, scoring, galling, etc.
- Piston scuffing and burning

The engines are then reassembled and put through the previously described power check test.

During engine production, a 50-hour quality control test is performed. One engine per month when production is less than 100 units and two engines per month when production is greater than 100 units are selected for the 50-hour tests. The test schedule is as shown in Table B-31, after the normal break-in is conducted. Additional power check testing is conducted after the 50-hour test schedule is complete. Finally, the engine is reinspected (per Table B-28) after the performance requirements for the following are verified:

- Speed range
- Governor setting
- Brake horsepower
- Torque

TABLE B-31, DDA 6V-53 50-HOUR QUALITY CONTROL TEST SCHEDULE

Test Period	Time (Hours)	Engine Speed (rpm)	Rack Position (% of full rack)
1	5	1600	50
2	5	2000	75
3	5	2800	75
4	5	2400	100
5	30	2800	100

- Exhaust smoke density
- Fuel consumption
- Oil consumption
- Oil pressure
- Limiting operating temperatures
- 3. Detroit Diesel Allison 6V-53T

MIL-E-52395A, 10 March 1976, describes the tests used to qualify the DDA 6V-53T engine. Fuel for all testing conforms to grade DF-2 of Federal specification VV-F-800, except for endurance testing. Endurance test fuel has properties as shown in Table B-32 (using method No. 340.3 of Federal Test Method Standard No. 791).

Engine lubricating oil used for the various tests must be in accordance with the seasonal requirements of MIL-L-2104 (for -10°F to 115°F) and MIL-L-46167 (for -65°F to 0°F). The engine manufacturer may use oil of his own selection for the engine assembly and break-in runs, or oil conforming to grade 2 of MIL-L-21260 can be used.

The first production engine is subjected to an engine break-in (schedule not defined) and is then checked for the following (this test is called an acceptance test)

- Speed range
- Governor setting
- Brake Horsepower

- Torque
- Exhaust smoke density
- Oil pressure

TABLE B-32, PROPERTIES OF REFEREE GRADE DIESEL FUEL

Parameter	Specification
Flash point, minimum, OF	100 or legal
Pour point, maximum, OF	20
Water and sediment, by volume, maximum percent	0.05
Distillation, 50% evaporated, minimum, OF 90% evaporated, OF end point, OF	500 600 - 640 650 - 690
Kinematic viscosity, centistokes, at $100^{\circ}F$	1.6 to 4.5
Sulfur*, percent	0.95 - 1.05
Corrosion	pass
Alkali and mineral acids	none
Cetane number	40 to 45

^{*}Must be natural sulfur

The engine must also be the examination requirements shown in Table B-33. The following tests are then conducted:

- Starting tests (hot and cold soak)
- Slope
- 400 hour endurance
- Power check
- Elevation
- High temperature
- Steam and water cleaning
- Electromagnetic compatibility
- Teardown

The endurance test is the 400 hour NATO cycle procedure which consists of four periods of 100 hours each where each 100 hour period is made up of twenty 5-hour schedules as shown in Table B-34. After the endurance run, a power check test is conducted (also with the referee diesel fuel) per the schedule in Table B-35. Subsequent to the endurance run, the engine must conform to all performance requirements except it must develop no less than 90 percent of its initial power output with a maximum smoke density not to exceed a No. 3 (light gray using a Robert Bosch EFAW 68 smoke meter or equivalent) without an engine tune-up and 95 percent of its initial power output after an engine tune-up. Also, there must be no evidence of abnormal wear of internal engine components.

TABLE B-33, REQUIRED EXAMINATIONS OF DDA 6V-53T

Characteristic	Defect	Method of Inspection
Valve tappet clearance, each valve	Exhaust valves improp- erly adjusted	Gage
Oil sump, fuel and oil filters	Dirt, chips and foreign particles, due to production	Visual & functional
Fuel, oil, and coolant leaks	Leakage	Visual
Fuel lines	Damaged	Visual & functional
Governor	Malfunction	Visual & functional
Torque on cylinder head bolts, intake and exhaust manifold flange bolts, vibration damper	Improper torque	Torque wench
Crankshaft	Excessive or restrictive end play	Gage & functional
Engine Fuel System Components	Malfunction Malfunction - damage or leaks, etc.	Functional Visual & Functional
Fuel Injection System, Timing and Components	Malfunction, improper adjustment	Gage
Air Cleaner Air Box Pressure Crankcase Pressure	Malfunction Exceeds Limits Exceeds Limits	Functional Gage Gage
Linkage Minor Assemblies	Improperly Adjusted Omitted	Visual Visual

TABLE B-33, REQUIRED EXAMINATIONS OF DDA 6V-53T ENGINE (CONT.)

Characteristics	Defect	Method of Inspection
Engine	Improper Adjustment or Installation of Com- ponents	Visual & Functional
Fuel Lines, Hose, Vents, Shut-Off Valve Painting Workmanship	Improper Assembly or Installation Improper Application Not Following Good Practice, Improper Installation or Adjustment of Components	Visual Visual Visual & Functional

TABLE B-34, DDA 6V-53T 5-HOUR ENDURANCE SCHEDULE

Period	Percent Rated Speed	Percent Load	Endurance Hours
1	Idle	0	0.5
2	Max Torque	100	1.0
3	100	0	0.5
4	75	85	1.0
5	100	50	0.5
6	100	100	1.0
7	50	25	0.5
Total E	ndurance		5.0

TABLE B-35, DDA 6V-53T POWER CHECK TEST SCHEDULE

Period	Engine Speed	Rack Position
1	1800	Full
2	2000	Full
3	2400	Full
4	2600	Full
5	2800	Full

During engine production, the first ten engines produced and every second engine of the next ten (after the break-in run) are disassembled and inspected to the extent necessary to determine the following:

- Oil contamination
- Dirt, chips or foreign matter in the engine block, oil pan, filters, and accessory drive case
- Main bearing bolt torque
- Connecting rod bolt torque
- Cylinder bore scuffing, scoring, galling, etc.
- Piston scuffing and burning

They are then reassembled and once again put through a break-in run.

During engine production, an additional quality control test is performed, called a 50-hour control test. One engine per month is selected when production is less than 100 units per month, and two units per month are selected when production is greater than 100 units per month. The selected engines are broken-in, examined, and acceptance tested and then put through the 50-hour control test per the schedule shown in Table B-36. During the 50-hour quality control test, the engine is evaluated for adherence to the following performance requirements:

- Limiting operating temperature
- Speed range

TABLE B-36, DDA 6V-53T 50-HOUR QUALITY CONTROL TEST SCHEDULE

PERIOD	TIME (HRS.)	ENGINE SPEED (RPM)	% OF RACK POSITION	
1	5	1000	50	
2	5	2300	75	
3	5	2800	75	
4	5	2500	100	
5	30	2800	100	

- Governor setting
- Brake horsepower
- Torque
- Exhaust smoke density
- Fuel consumption
- Oil consumption
- Oil pressure
- Turbocharging

Additionally, the following data are required to be recorded:

- Engine speed
- Observed brake horsepower
- Observed torque
- Air box pressure
- Fuel pressure after secondary filter
- Lubricating oil pressure
- Lubricating oil temperature in oil sump
- Fuel temperature after secondary filter
- Coolant temperature engine outlet
- Air temperature at turbocharger
- Cell ambient air temperature
- Exhaust temperature (after turbocharger)
- Fuel flow
- Brake specific fuel consumption
- Specific oil consumption
- Exhaust smoke density
- Barometer pressure during power check test

Finally, the engine is disassembled and inspected, reassembled, and shipped as a production engine (pending a successful inspection).

4. Detroit Diesel Allison 8V-71T

MIL-E-46796(MO), as amended 6 December 1973, describes the tests used to qualify the DDA 8V-71T engine. Three general tests are conducted, first production, acceptance, and 50-hour quality control testing. Table B-37 lists the tests required. All testing, except endurance testing, is conducted

TABLE B-37, ENGINE TESTS REQUIRED FOR QUALIFYING THE 8V-71T

CONTROL
CONTROL
X

using fuel conforming to grade 2 of Federal specification VV-F-800. Endurance test fuel is of a referee grade (using method No. 340-T of Federal Test Method Standard No. 791 having properties as shown in Table B-38.

TABLE B-38, PROPERTIES OF REFEREE GRADE DIESEL FUEL

Parameter	Specification
Flash point, minimum, OF	100 or legal
Pour point, maximum, OF	20
Water and sediment, by volume, maximum percent	0.05

TABLE B-38, PROPERTIES OF REFEREE GRADE DIESEL FUEL (CONT.)

Parameter	Specification
Distillation, 50% evaporated, minimum, OF 90% evaporated, F end point, F	500 600-640 650-690
Kinematic viscosity, centistokes, at 100°F	1.6 to 4.5
Sulfur*, percent	0.95-1.05
Corrosion	pass
Alkali and mir.eral acids	none
Cetane number	40 to 45

^{*}Must be natural sulfur

Engine lubricating oil used for the various tests must be in accordance with the seasonal requirements of MIL-L-2104 (for $-10^{\circ} F$ to $115^{\circ} F$) and MIL-L-10295 (for $-65^{\circ} F$ to $0^{\circ} F$). The engine manufacturer may use oil of his own selection during engine assembly and break-in,or oil conforming to grade 2 of MIL-L-21260. During the endurance test, the lube oil must be Cities Service Oil Company designation as shown in Table B-39.

TABLE B-39, REFEREE GRADE LUBE OIL DESIGNATION

GRADE	GOVERNMENT DESIGNATION	MANUFACTURER'S DESIGNATION
10	MB 2	CHL-140
30	MB 1	CHL-139
50	None	None

Engines are selected for examination in accordance with inspection level II of MIL-STD-105. Table B-40 describes the required examinations.

TABLE B-40 REQUIRED EXAMINATIONS OF DDA 8V-71T ENGINES

CATEGORIES	DEFECTS	GAGE OR OTHER METHOD OF INSPECTION
Valve tappet clearance, each valve	Intake and exhaust valves improperly ad- justed.	Gage
Oil sump, fuel and oil filters	Dirt, chips and foreign particles, due to production.	Visual and functional
Fuel, oil and coolant leaks	Leakage	Visual
Fuel lines	Damaged	Visual and functional
Governor	Malfunction	Visual and functional
Torque on cylinder head bolts, intake and ex- haust manifold flange bolts, vibration damper	Improper torque	Torque wrench
Crankshaft	Excessive or restrictive end play	Gage and functional
Engine	Malfunction	Functional
Fuel system components	Malfunction - damage or leaks, etc.	Visual and functional
Fuel injection system, timing and components	Malfunction, improper adjustment	Visual and functional
Air Cleaner	Malfunction	Functional
Linkage	Improperly adjusted	Visual
Minor assemblies	Omitted	Visual
Engine	Improper adjustment or installation of components	Visual and functional
Fuel lines, hose, vents, shutoff valve	Improper assembly or installation	Visual
Painting	Improper application	Visual
Workmanship	Not following good practice, improper installation or adjustment of components	Visual

The first production engine is submitted to the tests indicated in Table B-37. The endurance test is conducted in accordance with Table B-41. The power check tests indicated in Table B-41 are conducted according to the schedule shown in Table B-42. During the power check test, compliance with the following

TABLE B-41 DDA 8V-71T 500-HOUR ENDURANCE TEST SCHEDULE

Test Period No.	Time (Hours)	Engine Speed or Percent of Max. Rated Speed (rpm)	Percent of Full Rack Load at Indicated Speed	Test Period No.	Time (Hours)	Engine Speed or Percent of Max. Rated Speed (rpm)	Percent of Pull Rack Load at Indicated Speed
1				45	1	500 zp m	0
2	2	500 rpm	0	46	5	75 pct	75
3	5	50 pct	75	47	1	500 xpm	0
4	li	500 rpm	0	4 B	5	85 pct	75
5	5	75 pct	75	49	1	500 rpm	0
6	1	500 rpm	0	50	5	100 pct	75
7	5	85 pct	75	51	2	500 rpm	0
8	1	500 rpm	0	52	5	50 pct	75
9	5	100 pct	75	53	1	500 rpm	0
10	2	500 rpm	0	54	5	75 pct	75
11	5	50 pct	75	55	1	500 rpm	0 75
12	1	500 rpm	0	56	5	85 pct	
13	5	75 pct	75	57	1	500 rpm	75
14	1	500 rpm	0	58	5	100 pct	73
15	5	85 pct	75	59	2	500 rpm	75
16	1	500 rpm		60	5	50 pct	1 70
17	5	100 pct	75	61	1	500 rpm	75
18	2	500 rpm	0	62	5	75 pct	1 0
19	5	50 pct	75	63	1 1	500 rpm	75
20	1	500 rpm	0	64	5	85 pct 500 rpm	1 6
21	5	75 pct	75	65 66	5	100 pct	75
22	1	500 xpm	0	67	"	(powertest)	1
23	5	85 pct	75	68	2	50 pct	50
24	1	500 xpm	0	69	li	500 rpm	1 6
25	5	100 pct	75	70	2	58.4 pct	100
26	2	500 rpm	75	71	2	58.4 pct	50
27	5	50 pct		72	i	500 rpm	1 0
28	1	500 rpm	75	73	2	58.4 pct	100
29	5	75 pct	/3	74	2	58.4 pct	50
30	1	500 rpm	75	75	li	500 rpm	0
31	5	85 pct	1 70	76	2	58.4 pct	100
32	1 5	500 rpm 100 pct	75	77	2	58.4 pct	50
33] *	(powertest)	,,,	78	li	500 rpm	0
34 35	,	500 rpm	0	79	2	58.4 pct	100
3 6	5	50 pct	75	80	2	58.4 pct	50
37	li	500 rpm	0	81	1	500 rpm	0
38	5	75 pct	75	82	2	58.4 pct	100
39	li	500 rpm	1 0	83	2	58.4 pct	50
40	5	85 pct	75	84	1	500 rpm	0
41	li	500 rpm	0	85	2	58.4 pct	100
42	5	100 pct	75	86	2	58.4 pct	50
43] 2	500 zpm	0	87	1	500 rpm	0
44	5	50 pct	75	88	2	58.4 pct	100

7 RLE Be41 DDA 8V-71T500-HOUR ENDURANCE TEST SCHEDULE (Continued)

		Engine Speed	Percent of	Ì	1	Engine Speed	Percent of
		or Percent	Full Rack			or Percent	Full Rack
Test	1	of Max.	Load at	Test	i	of Max.	Load at
Period	Time	Rated Speed	Indicated	Period	Time	Rated Speed	Indicated
No.	(Hours)		Speed	No.	(Hours)	(rpm)	Speed .
	,		<u> </u>				
89	2	58.4 pct	5 0	133]]	500 rpm	0
90	lı	500 rpm	0	134	4	85 pct	100
91	2	58.4 pct	100	135	1	500 rpm	0
92	2	58.4 pct	50	136	4	85 pct	75
93	1	500 rpm	0	137	1	500 rpm	0
94	2	58.4 pct	100	138	4	85 pct	100
95	2	58.4 pct	50	139]]	500 rpm	0
96	1	500 rpm	0	140	4	85 pct	75
97	2	58.4 pct	100	141	1	500 rpm	0
98	2	58.4 pct	5 0	142	4	85 pct	100
99	1	500 rpm	0	143]]	500 rpm	0 1
100	2	58.4 pct	100	144	4	500 rpm	75
101	2	58.4 pct	50	145	1	500 xpm	0 (
102	ī	500 rpm	0	146	4	100 pct	100
103	2	58.4 pct	100	147	1	500 rpm	0
104	2	75 pct	50	148	4	100 pct	100
75	li	500 rpm	0	149	1	500 rpm	0
_36	2	75 pct	100	150	4	100 pct	100
107	1 4	75 pct	50	151	1	500 rpm	1 0 1
108	li	500 xpm	0	152	4	100 pct	75
109	1 4	75 pct	50	153	1	500 rpm	0
110	li	500 rpm	0	154	4	100 pct	100
111	14	75 pct	50	155	1	500 rpm	0
112	li	500 xpm	1 0	156	4	100 pct	75
113	14	75 pct	100	157	1	500 rpm	0
114	li	500 xpm	1 0	158	4	100 pct	100
115	1 4	75 pct	50	159	1	500 rpm	0
116	! i	500 xpm	1 0	160	4	100 pct	75
117	14	75 pct	100	161	1	500 rpm	0
118	li	500 rpm	0	162		(powertest)	1
119	14	75 pct	50	163	4	100 pct	100
120	li	, -	1 0	164	1	500 rpm	0
121	1 *	500 rpm (powertest)	1	165	14	100 pct	75
122	14	T ==	100	166	li	500 rpm	0
123	li	75 pct 500 rpm	100	167	3	100 pct	75
124	4	75 pct	50	168	li	500 rpm	
125	li	500 rpm	0	169	3	100 pct	100
126	1 2	85 pct	100	170	3	100 pct	75
127	i	500 rpm	1 0	171	li	500 rpm	0
128	14	85 pct	75	172	3	105 pct	100
129	li	500 rpm	1 6	173	3	100 pct	75
130	1 4	1	100	174	li	500 rpm	0
	1 -	85 pct	1 200	175	1 3	100 pct	100
.31 132	1 4	500 rpm 85 pct	75	176	3	100 pct	75
¥34	1	65 pcc					

TABLE B-41 DDA 8V-71T500-HOUR ENDURANCE TEST SCHEDULE (Continued)

Test Period No.	Time (Hours)	Engine Speed or Percent of Max. Rated Speed (rpm)	Percent of Full Rack Load at Indicated Speed	Test Period	Time (Hours)	Engine Speed or Percent of Max. Rated Speed (rpm)	Percent of Full Rack Load at Indicated Speed
177	1	500 rpm	0	213	0.25	500 xpm	0
178	3	100 pct	100	214	0.25	100 pct	75
179	3	100 pct	75	215	0.25	500 rpm	0
180	ĺ	500 rpm	0	216	0.75	100 pct	100
181	2	100 pct	100	217	0.25	500 rpm	0
182	2	75 pct	75	218	0.75	100 pct	100
183	1	500 rpm	0	219	0.25	500 rpm	0
184	2	85 pct	100	220	0.75	100 pct	100
185	2	100 pct	100	221	0.25	500 rpm	0
186	1	500 rpm	0	222	0.75	100 pct	100
187	2	75 pct	75	223	0.25	500 rpm	0
188	2.75	75 pct	100	224	0.75	100 pct	100
189	2.75	85 pct	75	225	0.25	500 xpm	0
190	2.5	85 pct	100	226	0.75	100 pct	100
191	2.5	85 pct	75	227	0.25	500 rpm	0
192	2.5	100 pct	100	228	0.75	100 pct	100
193	2.5	100 pct	75	229	0.25	500 xpm	0
14	2.5	100 pct	100	230	0.75	100 pct	100
195	2.5	100 pct	75	231	0.25	500 xpm	0
196	0.75	100 pct	100	232	0.75	100 pct	100
197	0.25	500 rpm	0	233	0.25	500 zpm	0
198	0.75	100 pct	100	234	0.75	100 pct	100
199	0.25	500 rpm) 0	235	0.25	200 xDw	0
200	0.75	100 pct	100	236	0.75	100 pct	100
201	0.25	500 rpm	0	237	0.25	500 rpm	0
202	0.75	100 pct	75	238	0.75	100 pct	100
203	0.25	500 rpm	0	239	0.25	500 xpm	0
204	0.75	500 rpm	100	240	0.75	100 pct	100
205	0.24	500 rpm	0	241	0.25	500 rpm	100
206	0.75	100 pct	100	242	0.75	100 pct	100
207	0.25	500 rpm	0	243	0.25	500 rpm	100
208	0.75	100 pct	100	244	0.75	100 pct	100
209	0.25	500 rpm	0	245	0.25	500 rpm	
210	0.75	100 pct	100	246	0.50	110 pct	۱ ۲
211	0.25	500 xpm	0	247	1	(powertest)	
212	0.75	100 pct	75	1	1		<u> </u>

Note 1 - Cylinder head temperatures are allowed to vary with load except for test period numbers 147, 166, 203, and 239 where they may not exceed limits recommended by the engine manufacturer.

F 'e 2 - Coolant temperature is to be maintained at 180°F for test periods 1 through 204 (except during power tests) and at 210°F for test periods 205 through 246.

TABLE B-42, DDA 8V-71T POWER CHECK TEST SCHEDULE

PERIOD	ENGINE SPEED	RACK POSITION	
1	1200	Full	
2	1400	Full	
3	1800	Full	
4	2100	Full	
5	2300	Full	

performance requirements are established:

- Speed range
- Governor speeds
- Brake horsepower
- Torque
- Exhaust smoke density
- Fuel consumption
- Oil consumption
- Oil pressure
- Supercharging
- Engine life

Through the course of the endurance test, the following data are recorded at the end of each hour of operation, at the completion of each period, and just prior to stopping the engine:

- Engine speed
- Observed brake horsepower
- Observed torque
- Intake manifold pressure, .fter turbocharger
- Exhaust manifold pressure, before turbocharger
- Fuel pressure after secondary filter
- Fuel supply pressure at transfer pump
- Lubrication oil pressure, gallery
- Crankcase pressure
- Lubricating oil temperature (sump)
- Lubricating oil temperature inlet, gallery
- Fuel temperature after secondary filter
- Air temperature at air cleaner inlet
- Air temperature at air box
- Coolant temperature inlet and outlet
- Exhaust temperature before and after turbocharger
- Test cell ambient air temperature
- Blowby

- Fuel flow
- Specific fuel consumption
- Specific oil consumption (at power check'
- Barometric pressure of test cell once each 4-hour period.
- Exhaust smoke density

During the endurance test, compliance is established with the same performance requirements as listed above for the power check test. At the conclusion of the endurance test, the engine must comply with all performance requirements except the engine need develop only 90 percent of its initial power output with a maximum smoke density as shown in Table B-43.

TABLE B-43, MAXIMUM ALLOWABLE EXHAUST SMOKE DENSITY, 8V-71T

ENGINE SPEED	VISUAL NO.	METER NO.*
(rpm)		
1000	3	6
1400	3	5
2600	1	4
	1	

*The meter reading has precedence over the visual reading.

The first ten engines and every second of the next ten are submitted to a power-check test (see Table B-42) then disassembled and inspected. All engines are submitted for acceptance testing (which includes a power-check test) and must be in compliance with the following:

- Speed range
- Governor setting
- Brake horsepower
- Torque
- Exhaust smoke density
- Oil pressure

During engine production, 50-hour quality control testing is performed (the engines selected are also examined per Table B-40). After the engine is broken in, it is tested under the schedule shown in Table B-44.

TABLE B-44, 8V-71T 50-HOUR QUALITY CONTROL TEST SCHEDULE

PERIOD	TIME (HRS.)	SPEED (RPM)	RACK POSITION (% OF FULL)
1	5	1400	50
j 2	5	1800	75
] 3	5	2300	75
4	5	2100	100
5	30	2300	100

The following data are recorded during the test with the engine stabilized:

- Engine speed
- Observed brake horsepower
- Observed torque
- Intake manifold pressure, after turbocharger
- Fuel pressure after secondary filter
- Fuel supply pressure at inlet to engine driven supply pump
- Lubricating oil pressure
- Lubricating oil temperature in oil sump
- Fuel temperature after secondary filter
- Coolant temperature -- Engine inlet and outlet
- Air temperature at air inlet
- Cell ambient air temperature
- Exhaust temperature, after turbocharger
- Fuel flow
- Brake specific fuel consumption
- Specific oil consumption
- Exhaust smoke density

Subsequent to the 50-hour quality control tesc, a power check test is performed per the schedule shown in Table B-42.

5. Detroit Diesel Allison 12V71T

MIL-E-62146(AT), 31 July 1972, describes the tests used to qualify the DDA 12V71T engine. The engine is also re-

quired to comply with the applicable exhaust emissions and smoke regulations set forth by the U.S. Environmental Protection Agency. The range of the various required tests are summarized in Table B-45.

TABLE B-45, ENGINE TESTS REQUIRED FOR QUALIFYING THE 12V-71T

TEST	INITIAL PRODUCTION	ACCEPTANCE	CONTROL
Initial Production			
(Endurance)	x		
Speed Range	x	ì	+
Governor	X	x	x
Brake Horsepower	X	x	x
Torque	X	X	x
Exhaust Smoke Density	x	x	x
Engine Emission	X		x
Fuel Consumption	X	ĺ	x
Oil Consumption	X	•	X
Oil Pressure	X	l x	x
Air Box Pressure	x	X	x
Air Induction	ļ		X
Restriction	X		x
Exhaust Back Pressure	x		x
Operating Temperature	X	ļ	x
Oil Cooling Temperature	X	<u> </u>	x
Rise)	
Starting	X		ļ
Elevation Conditions	Х	j	,
Grades and Slopes	Х	1	ļ
Leakage	X	l X) X
Submersion	Х)
Steam & Water Jet Cleaning	Х)
Production Break-in	X	X	
Fifty-Hour Run	}	}	X
	1	1	1

Testing, including endurance testing, is conducted using fuel conforming to grade DF-2 of Federal specification VV-F-800. However, the engine is also required to operate at reduced output on fuel conforming to grade 2 of MIL-T-5161. Engine lubricating oil must be in accordance with the seasonal requirements of MIL-L-2104 (for -10° F to 125° F) and MIL-L-10295 (for -65° F to 10° F). The engine manufacturer may use his own lube oil during engine assembly and break-in.

One of the first ten engines produced is subjected to a

variety of tests (see Table B-45) and in addition is inspected for defects per Table B-46.

TABLE B-46, REQUIRED EXAMINATIONS OF DDA 12V71T ENGINES

CHARACTERISTIC	DEFECT METHOD	OF INSPECTION
Valve clearance, each valve	Intake and exhaust valves improperly adjusted	Gage
Oil sump, fuel and oil filters	Dirt, chips and foreign particles, due to production	Visual
Fuel, oil and coolant leaks	Leakage	Visual
Fuel lines	Damaged, rubbing or improperly supported	Visual
Governor	Malfunction	Visual & Functional
Torque on cylinder head bolts, intake and exhaust manifold flange bolts	Improper torque	Gage
Crankshaft	Excessive or restrictive	Gage & Functional
Fuel system components	Malfunction - damage or leaks, etc.	Visual & Functional
Fuel injection system, timing and components	Malfunction, improper adjustment	Visual & Functional
Injection pump support bracket	Improperly installed	Visual
Linkage	Improper adjustment	Visual
Minor assemblies	Omitted	Visual
Engine	Improper adjustment or installation of com-ponents	Visual & Functional
Fuel lines, hose, vents shut-off valve	Improperly assembled or installed	Visual
Painting	Spots missed, sags or runs	Visual
Workmanship	Not following good practice, improper installation or adjustment of components	Visual, Gage & Functional

Included in the test is a 400-hour endurance test which consists of four periods of 100 hours each. Each 100-hour period consists of twenty 5-hour schedules as shown in Table

TABLE B-47, DDA GV-53-T 5-HOUR ENDURANCE SCHEDULE

Period	Percent Rated Speed	Percent Ioad	Endurance Hours
1 2 3 4 5 6 7	Idle Max Torque 100 75 100 100 50	0 100 0 85 50 100 25	0.5 1.0 0.5 1.0 0.5 1.0
Total Endurance			5.0

To ensure compliance with the various performance specifications, the engine is submitted to a power check test before each 100-hour test cycle. The power checks are performed at full load and engine speeds of 1400, 1600, 1800, 2100, 2300, and 2500 rpm, in both ascending and descending order. Data for the following are obtained for each engine speed (after engine stabilization):

- Speed range & governor
- Brake horsepower and torque
- Exhaust smoke density
- Fuel consumption
- Oil consumption & oil
- Pressure
- Air box pressure

Also, following the pre-endurance test power check, part load data is obtained at each of the speeds above plus 85, 70, 50, and 25 percent of full load for each speed. During the endurance test the engine can be shut down after completion of any period in the 5-hour schedule (see Table B-47), but a cool down is required after periods 2, 4, and 5. A one-half hour warm-up is required following any shut-down and prior to continuation of the endurance run. At the conclusion of the endurance run

and associated tests, the engine is disassembled to the extent required to perform the following inspections:

- Oil contamination
- Dirt, chips or foreign matter in the engine block, oil pan, filters, and accessory drive case
- Main bearings bolt torque
- Connecting rod bolt torque
- Cylinder bore scuffing, scoring, and galling
- Piston scuffing, scoring, and burning
- Excessive wear

Every production engine is inspected for defect per Table B-46, given a break-in run, and the following tests are conducted (see Table B-45).

- Governor
- Brake horsepower
- Torque
- Exhaust smoke density
- Oil pressure
- Air box pressure
- Leakage

During engine production, 50-hour quality control testing is conducted. One engine per month when production is less than 100 and two engines per month when production is greater than 100 are selected for the 50-hour tests. The engines are examined for defects per Table B-46, and tested in accordance with the schedule shown in Table B-48 (Table B-45 indicates other, specific tests which are conducted).

TABLE B-48 , 12V-71T 50-HOUR QUALITY CONTROL TEST SCHEDULE

			
PERIOD	TIME (HRS.)	ENGINE SPEED (RPM)	POWER LEVEL
1	1	2000	0.5 load
2	0.5	600	Idle
2	1.5	2500	Full load
	0.5	600	Idle
4 5	2	2000	0.5 load
6	0.5	600	Idle
7	2	2500	Full load
8		600	Idle
9	1 5	2500	Full load
10		600	Idle
11	1 5 1 5	2500	Full load
12	1 1	600	Idle
13	5	2500	Full load
14	1	600	Idle
15	5	2500	Full load
16	1	600	Idle
17	5	2500	Full load
18		600	Idle
19	1 5	2500	Full load
20	1 5	600	Idle
21	5	2500	Full load
1	1		

6. Detroit Diesel Allison 8V-92T and 8V-92TA for M911 Vehicles MIL-PD-T-911 is the purchase description document which is used for procuring the M911 vehicles. A copy of the subject document was not obtained through the course of this research effort, however, the contents of the document were revealed through discussions with Detroit Diesel Allison and TACOM personnel. The required tests, in fact, are similar to those called out in MIL-T-PD-977, (M977, M978, M983, M984, and M985 vehicles which will contain the 8V-92TA) which will be discussed next.

MIL-PD-T-911 specifically requires that the engine selected be a commercially proven item and conform to U.S. Environmental Protection Agency emission standards. Further, the engine is required to pass the 400-hour NATO endurance test (see sections of this appendix for a description of the procedures, e.g., section B.5). Various vehicle durability tests are required, examples of which are similar to MIL-T-PD-977 to be described next.

 Detroit Diesel Allison 8V-92TA For M977, M978, M983, M984, and M985 Vehicles

M-T-PD-977 is the purchase description document which is used to procure the M977, M978, M983, M984, and M985 vehicles (which will enter the fleet in early 1982).

The purchase description document specifies that the engine selected be a commercially proven item and conform to Federal (U.S.) emission standards (the &V-92TA has been selected). The engine specific qualification requirements contained in MIL-T-PD-977 are summarized as follows:

- The engine must be a commercially proven item.
- The engine must meet U.S. E.P.A. emissions regulations
- The engine must meet the 400-hour NATO test which includes operation with high sulfur diesel fuel (1+ .05%).

The 400-hour NATO test for the 8V-92TA engine for this procurement is reportedly in progress. Appendix C of this report contains an official description of the NATO test procedure being used. Briefly, the endurance test consists of four 100-hour cycles where each 100-hour cycle is composed of ten 10-hour schedules. The 10-hour schedule is shown in Table B-49.

TABLE B-49, DDA 8V-92TA 10-HOUR ENDURANCE TEST CYCLE

Period	Percent Rated Speed	Percent Load	Endurance Hours
1	Idle	0	0.5
2	100	100	2.0
3	*	0	0.5
4	75	100	1.0
5	Idle to 100	0-100	
		(4-6 min.)	2.0
6	60	100	0.5
7	Idle	0	0.5
8	**	70	0.5
9 1	Max Torque	100	2.0
10	60	50	0.5
Total Endurance			10

^{*}Governed speed at full throttle and minimum load

^{**}Full throttle and 70% load

Various vehicle tests will be conducted among which are initial production and acceptance testing.

The initial protection test includes a detailed inspection of the vehicle (including its engine), and durability tests at selected Army Proving Grounds. MIL-T-PD-977 contains details of the number of vehicles, terrain, and courses involved.

8. Caterpillar Tracter Company 333C and 3306 Engines MIL-E-6113B(AT), 23 April 1976, describes the tests used to qualify the CAT 3306 engine. A previous version of the specification, MIL-E-62133A(AT), 15 January 1971, was used to qualify the Cat 333C engine. Since the 3306 specification was esentially unchanged from the 333C specification, and the engines are similar (the 3306 is a replacement engine for existing GOER vehicles containing a 333C engine in need of replacement), the remaining discussion will be specific to the 3306 engine and MIL-E-62133B(AT). The engine is also required to comply with the U.S. Environmental Protection Agency regulations governing control of exhaust emissions from new motor vehicle engines in effect on the date of manufacture. In addition to the engine specific tests, a vehicle test is called for (at the time of vehicle procurement and as part of the vehicle qualification testing) to determine mean time between failures (MTBF), durability and maintainability factors for the engine.

With respect to engine qualification testing, the range of the various required qualification inspections as well as the location of the test is shown in Table B-50. All testing is conducted using fuel conforming to grade 2 of Federal specification VV-F-800. Engine lubricating oil used for the various tests must be in accordance with the seasonal requirements of MIL-L-2104 (for -10° F to 125° F) and MIL-L-46167 (for -65° F to 10° F). The engine manufacturer may use lube oil of his own selection during engine assembly and break-in.

TABLE B-50, 3306 QUALIFICATION INSPECTIONS AND TEST LOCATION

TEST REQUIREMENT DESCRIPTION	INITIAL PRODUCTION	ACCEPTANCE	CONTROL
Break-in	X	x	
Acceptance	X	X	
Initial production (endurance)	X	••	
Speed range & governor	Х	l x	х
Brake horsepower & torque	X	х	Х
Exhaust smoke density	X	X	х
Fuel consumption	X	X	Х
Oil consumption	X		X
Oil pressure	Х	X	X
Supercharging	X		X
Air restriction	X		X
Exhaust back pressure	X		X
Operating temperatures	X		X
Cooling system	Х		X
Environment	X		
Cold starting	X		
Elevation	X		
Leakage	X	X	X
Grades & Slope	Х	}	
Steam & jet cleaning	X	Ì	
Air pollution	X		1
Radio interference suppression	X		

One of the first ten engines produced is subjected to a variety of examinations (see Table B-51) as well as tests (see Table B-50) including a 400-hour endurance test. The endurance test consists of a total of 400-hours divided into four periods of 100-hours each. Each 100-hour period consists of twenty 5-hour endurance schedules (see Table B-52).

TABLE B-51, REQUIRED EXAMINATIONS OF 3306 ENGINES

CHARACTERISTIC: DEFECT	METHOD OF INSPECTION
Valve tappet clearance (each valve): intake and exhaust valves improperly adjusted.	Visual and functional
Fuel, oil and coolant leaks: leakage	Visual
Governor: malfunction; not sealed	Visual and functional
Torque on accessible cylinder head bolts, intake and exhaust manifold flange bolts that can be reached without breaking seals or removing cover: improper torque.	Visual and functional
Crankshaft: excessive or restrictive end play.	Visual and functional
Fuel system components: malfunction; damage; leaks	Visual and functional
Fuel injection system timing and components: malfunction; improper adjustment.	Visual and functional
Fuel lines: damaged; rubbing; improper support.	Visual
Injection pump support bracket: improperly installed.	Visual
Linkage: improper adjustment	Visual and functional
Minor assemblies: omitted.	Visual
Engine: improper adjustment or installa- tion of components.	Visual and functional
Fuel lines, hose, vents, shut-off valve: improperly assembled or installed.	Visual and functional
Oil sump, fuel and oil filters: dirt, chips, and foreign particles, due to production.	Visual
Painting: spots missed; sags or runs	Visual

TABLE B-52, 3306 5-HOUR ENDURANCE TEST SCHEDULE

Period	Percent Rated Speed	Percent Load	Endurance Hours
1 2 3 4 5 6 7	Idle Max Torque 100 75 100 100 50	0 100 0 85 50 100 25	0.5 1.0 0.5 1.0 0.5 1.0
Total End	lurance		5.0

During the endurance test, power-check tests are conducted to assure conformance to the following performance parameters:

- Speed range
- Brake horsepower
- Torque
- Exhaust smoke density
- Fuel consumption
- Oil pressure
- Supercharger pressure

The power check tests are performed at full-load and engine speeds of 1550. 1700, 1800, 1900, 2000, 2100, and 2200 rpm in both ascending and descending order. Data is recorded at each engine setting. In addition, following the pre-endurance run power-check test, part load data is obtained at each of the above listed engine speeds at 85, 70, 50, and 25% of full load. During the endurance run, the engine can be shut-down after completion of any period in the 5-hour schedule (see Table B-52), but a cooldown run is required after periods 2, 4, and 5. A one-half hour warm-up is required following any shut-down and prior to continuation of the endurance run. The following data is recorded during the last five minutes of each schedule period and power-check tests:

- Engine speed
- Observed brake horsepower and/or torque

- Fuel flow
- Test cell ambient temperature and barometric pressure
- Engine oil gallery and sump temperature and pressure
- Fuel secondary filter out and spill back temperature and pressures
- Air cleaner inlet temperature
- Air intake manifold pressure
- Air cleaner restriction
- Coolant engine inlet and outlet temperatures and pressures
- Exhaust port temperatures
- Exhaust manifold pressure
- Crankcase pressure
- Fuel, transfer pump, inlet pressure
- Oil consumption will be calculated on basis of oil added to the engine as necessary during the endurance run.
- Exhaust smoke density (power-check only)

At the conclusion of the endurance run, the engine must conform to all performance requirements except that power and torque can not be less than 95 percent of initial readings without readjustment of the injection system. A compression check is made of all cylinders (variation between cylinders can not be more than 50 psi at 4000 rpm). Also, there can be no abnormal wear of internal engine components.

Every production engine is given a break-in run and the engines are tested per Table B-50, and examined per Table B-51. These tests are known as acceptance tests.

During engine production, 50-hour quality control testing is performed. Engines are selected at the rate of one per month when production is less than 100 and two per month when production is greater than 100. The tests follow the schedules shown in Table B-53.

TABLE B-53, 3306 50-HOUR QUALITY CONTROL TEST SCHEDULE

Peri	od	Time (hrs)		Speed (rpm)		Full Rack Load At ted Speed
1	(Engi	ne must	have	completed	l acceptance &	inspection tests)
2		5		1550	50	į
3		5		1800	75	
4		5		2000	75	
5		5		2100	100	
6		30		2200	100	

After the 50-hour quality control test, the engine is given a compression check (variation between cylinders can be no more than 50 psi at 4000 rpm) and disassembled to the extent necessary to determine the following:

- Oil contamination
- Dirt, chips or foreign matter in the engine block, oil pan, filters and accessory drive case.
- Main bearings bolt torque, head bolt torque, intake and exhaust manifold flange bolts, and vibrator damper.
- Connecting rod bolt torque.
- Cylinder bore scuffing, scoring, and galling.
- Piston scuffing, scoring and burning.
- Excessive wear.
- 9. Cummins Engine Company NHC-250

ATPD-2023B has been used, in part, to qualify the Cummins NHC-250 which was specified as a commercially proven engine. The purchase description refers primarily to vehicle tests (from a druability or endurance perspective), but some engine specific tests are described. Also, the purchase description requires various fuels to be tested, while only VV-F-800 fuel was used in qualifying the NHC-250. The document was originally intended for procuring a replacement engine for the M39 series trucks with multi-fuel engines.

Sources at TACOM state that the NHC-250 did successfully pass a 500-hour enduranct test. A description of the 500-hour endurance procedure and associated tests has been described previously (see, for example, Table B-29 and Section B.2).

TACOM is presently in the process of writing a specification for the NHC-250. Also, a new procurement is in progress to replace the M809 series; the new series will be called the M939.

10. Cummins Engine Company V8-300

MIL-E-52396 (MO) describes the procedures used to qualify the V8-300 engine. The specification has been cancelled as of 15 July 1975. The engine was, however, qualified via the 500-hour endurance procedure and related tests. Section B.2 presents a good discussion of the various test procedures associated with the 500-hour endurance test.

11. Cummins Engine Company VTA-903T

The VTA-903-T is the engine selected to go in the M2 and M3 vehicles. The engine has recently completed the NATO 400-hour endurance test.

12. Cummins Engine Company NTC-400

MIL-T-PD-9156 is the purchase description used to procure M915 Series vehicles. These vehicles are not considered combat or tactical. An engine draability (i.e., NATO 400-hour test) test was not required.

APPENDIX E-3

NATO STANDARD ENGINE LABORATORY TEST-EDITION JUNE 80

CHAPTER 1

PURPOSE AND APPLICABILITY

SECTION 1-1 - PURPOSE

The purpose of this document is to define a test method and standard conditions to enable all NATO countries to conduct tests using an identical method or to analyse the tests conducted in the laboratories of other NATO countries on the basis of this method.

The method described below is independent of existing national test methods, which may be used for supplementary testing.

When an engine has met the requirer no of the tests under the present code, its power rating should be indiced as follows: "Power rating Kw (... metric HP) at r.p.m., in accordance with NATO code AEP 5. Edition June 1980".

SECTION 1-2 - APPLICABILITY

These test conditions apply to all service vehicle (combat and transport) propulsion Diesel and gasoline engines.

NOTE: SI units will be used.

CHAPTER 2

TEST REQUIREMENTS

SECTION 2-1 - GENERAL COMPOSITION AND ORDER OF TEST

2.1.1. Engine reception.

Running-in in accordance with manufacturer's instructions.

Performance test, complete (full and part loads).

Performance test, complete (full and part loads).

Disassembly, inspection and measurement.

Report.

- NOTES: (1) Engine measurements may be carried out before running-in.
 - (2) The manufacturer is responsible for defining the runningin programme and the engine should have been run-in before it is submitted for testing.

- (3) In so far as possible, the manufacturer's drawings and technical data will be supplied with the engine, to assist inspection and measurement of components.
- (4) It is normal practice for the engine to be given a preliminary performance test immediately after receipt, to check acceptability.
- (5) The initial, if accomplished, and final inspection of the engine should be carried out by the same inspection team using the same gauges.
- 2.1.2. During performance and durability testing, the following variables will be monitored:
 - a Main values
 Speed
 Torque (engine output shaft)
 - Ambient conditions
 Temperature of ambient air
 Atmospheric pressure
 Humidity
 - c Air and gases
 Inlet air temperature
 Induction or cylinder inlet depression
 Inlet air flow (performance test only)
 Air temperature and pressure in the inlet manifold
 Exhaust temperature
 Exhaust back-pressure
 Gas temperatures at points influencing fuel control (if required)
 - d Lubrication and cooling
 Oil temperatures and pressures
 Temperatures into and out of external coolers
 Flow rates of fluids to cooling devices external to the engine
 (for heat rejection calculations)(خرمري نودانده منها)
 Oil consumption (during endurance tests only)
 - e Fuel Fuel temperature Fuel consumption
 - f Miscellaneous Blow-by Smoke density
- 2.1.3. Regulated parameters

Outlet liquid coolant temperatures : 96°C + 3°C

Induction depression at rated power: 12,5 ± 2,5 mbar

Exhaust back pressure at rated power: 40 mbar + 5

First temperature at injection pump inlet: 30°C + 3°C

2.1.4. TEST CONDITIONS

Measuring is to be done in normal and stable operating conditions.

The temperature of the air entering the engine (ambient air) is to be measured at a maximum distance of 0.15 m from the air filter inlet or, if there is no filter, 0.15 m from the air inlet nozzle. The thermometer or thermocouple must be protected against heat radiation and be located directly in the air jet. Testing must be carried out in an adequate number of positions to give a representative inlet temperature.

Once an output speed has been selected for measurement purposes, its value must not vary by more than $\pm 1 \%$ or ± 10 r.p.m. (whichever of these limits is the higher) during measurement.

The readings for brake load, fuel consumption and inlet air temperature are to be taken simultaneously, the value recorded being the average of two stabilized results, obtained in succession with brake load and fuel consumption differing by less than 2 %.

When a device fitted with an automatic starting system is used for measuring speed and consumption, the duration of measurement must be at least 30 seconds; if the measuring device is manually operated, the duration must be at least 60 seconds.

The exhaust gas outlet temperature must be measured at a point downstream and less than 100 mm from the flange (a) of the exhaust manifold (s).

Lubricant temperature is to be measured at the inlet and outlet of the heat exchanger if there is one. Otherwise it must be take preferably in the lubrication system, or, failing this, in the crank case. The measuring point will be specified in the test report.

Fuel temperature must be read at the injection pump inlet, or carburettor inlet.

Cooling condition for air cooled engine will be in accordance with manufacturers specification.

Auxiliary power take-offs may be loaded and mesured if desired

2.1.5. MEASUREMENT ACCURACY

- TORQUE

The torque must be accurate within ± 0.5 % of the highest value to be measured.

- OUTPUT SPEED

Measurement must be accurate to within ± 0.5 %.

- FUEL CONSUMPTION

+ 1 % for all apparatus used.

- TEMPERATURES
 Intake air + 1°C.
- PRESSURE

Atmospheric pressure + 0,7 mbar
Air and gas pressure + 50 mbar
Induction and exhaust pressure and depression + 0,250 mbar
Pressure of other fluids + 250 mbar

SECTION 2-2 - DEFINITION OF ENGINE

Engines will be equipped only with such auxiliary equipment as is strictly essential to their operation (see table of auxiliary equipment at Annex A).

SECTION 2-3 - PERFORMANCE TEST

The performance test maximum load curve will be plotted from measurements taken at a minimum of five speed settings, the fifth setting being the rated speed.

For each setting, the engine should be run for a sufficient time to allow the operating parameters to stabilize.

Part-load data is to be recorded at the same pre-selected speed as was used for the full-load test. The part loads for each speed point are to be calculated at least for 85 %, 70 %, 50 % and 25 % of the full load at the given speed.

During this test, the smoke emission as measured on the Robert BOSCH Scale (or equivalent) shall not exceed 1.5.

No correction factor will be applied and the test results must include air temperature and atmospheric pressure.

The inlet air temperature shall be maintained as close as possible to 25°C .

SECTION 2-4 - ENDURANCE TEST

2.4.1. The endurance test duration is 400 hours, divided into four periods of 100 hours each. At the completion of each period, the engine shall be submitted to a full-load performance check.

- 2.4.2. Normal maintenance and adjustment will be permissible after each 100 hour test period.
- 2.4.3. Engine oil and filters shall be changed after each 100 hour period.
- 2.4.4. The coolant outlet temperature is to be held at 96°C + 3°C or a higher temperature if proposed by the manufacturer. The coolant is to be water plus antifreeze in egal volume.

4

- 2.4.5. The engine oil temperature is to be measured in the lubrication system. The temperature measurement location shall be specified.
- 2.4.6. The four 100 hour periods which make up the endurance test are to be carried out with the reference fuel defined in Chapter 3.
- 2.4.7. Each 100 hour period is to comprise ten 10 hour cycles. Each 10 hour cycle will be carried out in accordance with the programme (section 2-5).
- 2.4.8. Data will be recorded during the last five minutes of each of the sub-cycles included in the basic 10 hours cycle, with the exception of sub-cycle 5.
- 2.4.9. No interruptions are permitted during any of the sub-cycles, but the engine may be switched off on completion of any sub-cycle.

SECTION 2-5 - PROGRAMME OF 10 HOUR CYCLE

Sub Cycle	% Rated Speed	% Load (3)	Duration in hours
1	IDLE	0	
2	100	100	2
3	governed speed (1)	. 0	ŧ
4	75	100	1
5	1DLE 100	0 ← 100 4 MIN 6 MIN	2
6	60	100	•
7	IDLE	0	ł
8	governed speed (2)	70 (3)	1
9	Max torque speed	100	2
10	60	50 (3)	ł
	L	<u> </u>	
		Total	10

NOTES :

- (1) The speed shall be that attained with the engine at full throttle and with minimum load (residual brake load).
- (2) The speed shall be the steady speed of the engine at full throttle and 70 % load.
- (3) Part loads (70 and 50 %) shall be taken from the initial performance test.

GRAPHICAL PRESENTATION OF 10 HOUR CYCLE

CHAPTER 3

FUELS AND LUBRICANTS AND ANTIFREEZES

301 Engines are to be tested on Reference Fuels and Lubricants and antifreezes as specified by the relevant NATO Authority.

CHAPTER 4

DEFINITION OF TEST FAILURE

A major failure is a failure of any part or component of the engine assembly that leads to a final stoppage of the test or that brings about as loss of power which cannot be rectified to give at least 95 % of rated power.

Any major failure will lead to termination of the test and any retest must start at $\, 0 \,$ hour.

Major failures and corrective action are to be reported to the proper National Authority.

- A minor failure is a defect which leads to a loss of power or degradation of the operation of the engine and which it is possible to remedy within the scope of normal maintenance and adjustment. If 95 % of the rated power cannot be obtained after normal maintenance then the test will be terminated. The minor failures and the measures taken to overcome them must be included in the report.
- The suitability of an engine for NATO AEP5 Approval is to be the responsibility of the National Authorities after completion of the 400 hours test and consideration of the final condition of the engine.

ANNEXE A

DETAILS OF PRODUCTION AUXILIARY EQUIPMENT

(To be included as applicable)

	
Inlet system Inlet manifold	Yes Optional
Exhaust system Manifold Piping Silencer Exhaust pipes	Yes Test bench equipment
Fuel feed pump	Yes
Carburettor	Yes (details of ad- justment will be specified)
Ignition system Distributor	Yes Yes Yes Yes
Fuel injection equipment Prefilter Filter Pumo High-pressure pipes Injector Regulator	Yes or test bench equipment Yes Yes Yes Yes

SOUTHWEST RESEARCH INST SAN ANTONIO TX ARMY FUELS AN—ETC F/6 15/7 DEVELOPMENT OF ACCELERATED FUEL-EMGINES QUALIFICATION PROCEDURE—FF DEC 01 JA RVSSELL, JP CUELLAR, JC TYLER DAAK70-80-C-0001 UNCLASSIFIED AFLRL-144-VOL-2 NL 5 or 5 AD A 11 (5.42 END

AD-A113 532

DATE **0**5-82 DTIC

Liquid cooling equipment Radiator	No Yes Yeş
Air cooling equipment Streamlining Blower Temperature regulating device	Yes Yes Yes
Electrical equipment	If necessary
Supercharging equipment Compressor driven directly or indirectly by the engine and/or exhaust gas Charge cooler Cooling pump or fan (engine driven) Device for regulating flow of cooling fluid	Yes Yes Yes

ANNEX B

IN TEST REPORT

A complete report covering all the tests, servicing, maintenance, rectification of faults and the condition of the engine at the strip examination including the measurements of the principal wearing parts will be compiled.

The report will also include the following :

- A statement of the build standard of the engine, with drawings and a parts list.
- 2. Photographs of the engine from four different views.
- 3. Photographs of the test installation at least four different views.
- 4. A list of equipment fitted to the engine.
- Sample test sheets and a summary with a list of faults and the remedial action taken.
 Full load performance data will be show in the format indicated.
- 6. An engine condition report at end of test with photographs of the condition of major parts such as pistons, bearings, valves, camshafts, crankshafts, cylinder bores together with any other components of interest.
- A history chart of lubricating oil used during the endurance tests.
- 8. Analysis of new and used lubricating oil, the latter to be taken at approximately 100 hours intervals.
- 9. Fuel analysis.
- 10. Any other relevant data.

[N'				Mace	date			
ENGINE Type FULL CHARGE INITIAL D				PERFORMANCES			Reference							
FU	EL :				OIL	type				BRA	KE type			
Vol	ume	wsss		4g/4m²	g	rade								
AMBI- ENT	90	•(•Mr			7		}			_		}	7	
Durgen O	┝╾╌┥				\exists									
THE BUT THE	,	1. 11											-	
FUEL	ac	1/1 - h												
OIL	••	••/•][_][_							
	••	<u>"</u>][_][_	\dashv			၂		_			닉	
Name of the last	1.	<u>ټ</u>			\exists			\exists		\exists				
1	p0 · p1	a ber		}			1			 				
NLET	9.2	er ber		 	\exists		 		<u></u>					
	97 97	•••		上						\exists			╛	
E XXX	91)°												
r A U S T	94-98	• (1			_			 	
BLOW	- BY	Baren m²/con												
									•					

DEFINITION OF SHORTS

. t0	s ambient temperature s ambient pressure	. 11	eair temperature after filter (or compressor inlet)
. n	s engine apeed	. p0 - p1 . t2	s inlet depression_ s compressor discharge tempera-
. M	s engine torque s output power	. p 2	ture
	p: brake mean effective pressure c specific fuel consumption	. 121	sair temperature after charge cooler
. Qc . qm.	s wolume of fuel par injection s mass fuel flow per hour	. p2 - p2	s pressure of across charge cooler
. te	s oil temperature s oil pressure	. t3	s exhaust gaz temperature (turbine inlet)
. te	s coolant temperature into engine	. p3	e exhaust gaz pressure (turbine inlet)
. to	s coolant temperature out of engine	. t4 . p4 - p0	: turbine discharge temperature : Exhaust back pressure

APPENDIX E-4

FUEL SYSTEM COMPONENTS QUALIFICATION PROCEDURES

A. INTRODUCTION

The use of an alternative fuel (instead of the specified) fuel) in an existing diesel engine as in the present fleet of M-Series vehicles can quickly result in problems with critical fuel system components. The types of critically affected components include (not necessarily in order of importance) fuel injection equipment, fuel metering and supply pumps, fuel filters, fuel hoses as well as other components.

It is important to remember that the long term use of an alternative fuel can affect other engine components as well. Examples include pistons, piston rings, cylinder liners, valves, bearings and others. These types of engine-related components were considered to be beyond the scope of this project and thus were not explicitly addressed. However, it should be recognized that these components are indeed affected by changes in fuels and fuel characteristics.

The following describes the types of tests, as related by fuel system component manufacturers, to either quality check their products or certify their applicability to a given fuel. In some cases military or other specifications govern the procedure or lend guidance.

PHECEDING PAGE BLANK-NOT FILMED

B. FUEL INJECTION EQUIPMENT

1. In-Line Fuel Pumps/Injectors/Nozzles

Most test procedures for inline injection type pumps (e.g., American Bosch and Caterpillar, see Figure D-1) are fairly similar and involve test stand operation of the fuel supply system (pump, injectors and nozzles). test involves operation using the lightest grade fuel anticipated. The pump must be mounted exactly as on the engine (same side load on input shaft, if any) and the pump will be calibrated at various times during the testing. The duration of the testing is from 1000 to 2500 hours at an injection line pressure up to 33% over maximum design operation pressure at rated pump speed. The pump is typically cycled between 90 percent of full discharge and 10 percent no discharge at the rate of nine seconds on and one second off. The fuel temperature is maintained at 170°F and is checked every 100 hours for signs of oxidation(the fuel should be changed every 500 hours). Special attention is drawn to signs of leakage during operation at the idle condition. respect to materials, immersion tests are conducted with fuel temperature maintained at 200°F to 300°F. The injection pump must be operational at the end of the test and be within ± 2 percent of its rated fuel delivery. A test of 1000 hours duration is considered sufficient to predict wear likely to be encountered in 10,000 hours of engine operation.

2. Unit Injectors and Supply Pumps

For engine/fuel systems which rely on unit injectors (see Figure D-2), the flow capacity of the fuel pump is important to satisfactory operation. If the physical properties of a new fuel are such that the pump cannot maintain its rated capacity at rated pressure, engine performance will suffer. In many cases where unit injectors are used, the fuel pump is of a gear type (see Figure D-3), driven directly by the engine. A fuel regulator maintains system pressure and the amount of fuel which is returned to the tank.

For a new fuel, Detroit Diesel Allison (DDA) suggests that a

FIGURE D-1 CATERPILLAR INLINE FUEL INJECTION PUMP AS ON THE D333C ENGINE SOURCE: TM9-2320-233-34P

FIGURE D-2, DETROIT DIESEL ALLISON UNIT INJECTOR AS ON THE 6V-53 AND 6V-53T ENGINES SOURCE: TM9-2815-205-34P

Figure B-24. Puel pump assembly details.

FIGURE D-3, FUEL SUPPLY PUMP AS ON THE DETROIT DIESEL ALLISON 12V-71T ENGINES SOURCE: TM9-2815-217-34

FIGURE D-4, THE CUMMINS PTG TYPE FUEL PUMP ASSEMBLY AS ON THE CUMMINS BUILT ENGINES SOURCE: CUMMINS ENGINE COMPANY

1000 hour bench test of the pump (operating at rated capacity and pressure with the fuel in question) can be used to predict this operating lifetime of the pump. The seals used in the pump should then be checked for dimensional changes (swelling or shrinkage). Visual observation of the interior of the pump should reveal no corrosion or pitting.

DDA also suggests that unit fuel injector/nozzle assemblies can be bench tested. They should be placed in a mock-up of the fuel system and cycled for 1000 hours. The fuel can be heated (typically to 176°F) during the 100 hour test. If the fuel is heated, it should be checked for oxidation every 100 hours and changed every 500 hours. The injectors should be cycled from 100% delivery to zero delivery for time periods of 9 seconds and 1 second, respectively. At the end of the test the injectors are evaluated according to standard repair shop test procedures. The factors most critical are fuel retention, pop-off pressure, leakage and dribble. The internal components of the injector can be evaluated for compatibility by immersion in the test fuel. The fuel can be heated and the test duration should be at least 200 hours. Typical adverse results are corrosion, rusting, or deposit formation. After the fuel injector/nozzle assembly is bench-tested, the nozzles must be in good working condition. They should have valve opening pressures within specifications, not leak, and retain their rated flow capacity (measured at 10,000 psi live pressure). The fuel-passages in the nozzles should be clean and show no sign of corrosion, erosion or cavitation.

3. The Cummins PT Fuel System

Engineers at Cummins Engine Company feel that the best (and quickest) way to test their fuel system (see Figure D-4) is to conduct an engine endurance test. The test should be at least 500 hours at rated speed and load. Their opinion is that an engine durability test is most realistic and will discover problems in the fuel system which may not be uncovered in a bench-type fuel system test. This is particularly so in the case of the injectors. That is, many injector problems are

combustion related and are thus best revealed by monitoring changes in engine operation such as smoke, fuel consumption and power output.

Cummins does, however, suggest a procedure for bench testing their pump on a new fuel, if such an approach is desired. They suggest a 500 hour bench test at constant speed and with fuel output near maximum. The internal parts should be measured before and after the test. The fuel pump bearings are especially critical and any leakage from the seals at the pump driveshaft is an indication of bearing wear. A good measure of pump deterioration due to wear is to check the calibration curve at intervals during the test and subsequent to the test. Pump elastomers can be tested separately by immersion in the test fuel at an elevated ambient temperature (the exact temperature depends on the fuel). The Cummins personnel contacted feel confident that a 500 hour test can provide reliable wear data for their fuel injection pump.

With respect to the Cummins fuel injectors, it is again Cummins' opinion that an engine operational test is more realistic for evaluating a new fuel. An important indicator of injector wear is the clearance between the plunger and barrel. This is measured using an air leakage test developed by Cummins for this purpose (the amount of leaking air can be correlated with plunger and barrel wear). No-load operation is considered to be the worst condition for operation of the injectors; this is the condition under which injector leakage is best observed. Scuffing and scoring of the plunger and barrel can be observed by visual inspection. Cummins suggests that the type of tests conducted and factors to be concerned about should be dependent on the fuel being used. For example, attention should be given to signs of increased clearances, scoring and scuffing if the fuel has low lubricity and/or viscosity. High fuel sulfur content or acidity is likely to cause corrosion and thus the test procedure should reflect the worst operating conditions for which these fuel properties are a problem. Also, fuels with low hydrogen content or high viscosity can cause injector nozzle

Coking and some fuels deteriorate rapidly at elevated temperatures (thus they should be tested at those temperatures).

C. FUEL SUPPLY PUMPS

1. Gear Pumps

Gear type fuel pumps, as made by Viking, Inc. are durability tested with anticipated fuels via 1000 to 2000 hour tests. The pumps are operated at the flow and pressure specified for a given pump speed and test fuel viscosity. The Facet personnel contacted feel that such a durability test provides enough data to judge critical wear rates and gives a good indication of pump life. Viking notes that it is necessary to determine flow capacity and pressure at a given pump speed for a standard fuel which matches the viscosity of the test fuel (in order to establish a baseline since the pump will naturally have different output characteristics). Heating, cooling or blending may be necessary to achieve the proper fuel physical properties.

Viking tests pump seals by immersion in the test fuel using standard SAE tests.

2. Solenoid Pumps

Solenoid operated electric transfer pumps, as made by Facet, are typically tested for a new fuel via the following:

- Output tests are conducted to establish the maximum flowrate for a given head.
- The pump is tested for resistance to vibration/shock and salt spray (MIL-P-45328).
- A calibration curve is established.
- Dielectric strength is established.
- A 3300 hour endurance test is conducted. The pump is stopped for 10 minutes, four times per 24 hours.
- Immersion tests are conducted for fuel sensitive materials.

D. FUEL FILTERS AND FUEL/WATER SEPARATORS

Facet-Type Filters

Facet Enterprises, Inc. fuel filters (see Figure D-5) are typically tested by performing 100 hour immersion tests with materials compatibility the prime concern. Tests are also conducted for filtering efficiency, clean pressure drop, and capacity (maximum flowrate at maximum allowable pressure drop), as well as a proof pressure test at 90 psi (for unit integrity). The various tests are followed by disassembling the unit for inspection. A joint SAE/ASTM effort is currently under way to develop a new procedure.

2. AC Type Filters

Fuel filters from the AC Corporation (see Figure D-6) are tested in a variety of ways to measure a number of different fuel filter parameters. The most basic tests are called filter performance tests and are summarized as follows:

- Single Pass Efficiency This test establishes the micron rating of the filter as measured by the percentage removal of a given class of test beads. The test beads are assumed to have a normal distribution within a class and are grouped according to size range.
- Leakage Under Pressure In this test, the filter is subjected to the highest pressure anticipated during operation while on an engine. The pressure is constant and is maintained for a sufficient time to observe any leaks.
- Differential Pressure at Rated Flow In this test, the pressure drop across the filter element is measured at rated flow (of the filter unit) to establish a clean filter pressure drop. The magnitude of the pressure drop is dependent on the fuel used, the temperature of the fuel and the configuration of the filter housing.

 Monitoring of the pressure drop during operation gives an indication of the contaminant loading of the filter element.

The life of a filter is defined by AC as its capacity to hold a contaminant. Life determination is made using tests

FIGURE D-5, PRIMARY AND WATER SEPARATOR FUEL FILTERS AS ON THE AVDS-1790-2D ENGINES SOURCE: TM-9-2815-220-34P

FIGURE D-6, AC CORPORATION PRIMARY AND SECONDARY FUEL FILTERS AS ON THE 6V-53 AND 6V-53T ENGINES

SOURCE: TM9-2815-205-34P

conforming to SAE Recommended Practice J905-- Fuel Filter Test Method. The contaminant used to determine filter life in SAE J905 is AC Fine Test Dust (Table D-l gives the size distribution).

A number of tests are conducted to measure the structural integrity of the unit and evaluate the materials compatibility of the fuel filter element. The following is a description of these tests:

- Temperature Cycling A filter is immersed in test fluid while the temperature is varied from 65°C to -35°C at a rate of 15°C/hr. The filter is maintained at the temperature extremes for 6 hours during each cycle. A total of 5 cycles are completed, after which the filter is subjected to the performance tests described previously.
- Chemical Exposure The filter is typically immersed in materials such as water, unleaded gasoline, Gasohol, 10% MTBE, in gasoline (methyl tertiary butyl ether), 10% isopropyl alcohol in gasoline, and 100% Stoddard's Solvent. After contact with the filter element for 100 hours, inspection of the filter is conducted. Items of particular concern include deterioration of the element, corrosion of the housing and separation of the element from the housing due to deterioration of the binder.
- Low Pressure Testing This test procedure evaluates whether any physical damage has occurred to a filter element after being exposed to certain test fluids or after non-destructive tests. The filter is submerged approximately 1 inch below the surface of a test fluid and air under 2-4 inches of water pressure is introduced to one side of the filter. (This pressure is low enough to prevent forcing the air through the filter element). If bubbles are observed rising in the fluid, some damage has occured to the filter element or perhaps the element has loosened from the housing. Separation of the paper at folded seams, tears, and holes are

all common failures.

- Destructive Testing Disassembly of the filter may sometimes yield pertinent information. Examination of a sample of the filter element under a microscope after disassembly is a good method to identify contaminants held by the element. However, it is not used very often as the other techniques are generally more effective.
- 3. Fleetguard (Cummins) Type Filter

Fleetguard (Cummins) fuel/water separators are not endurance tested per se, but are pressure and vibration tested. Tests are coordinated with SAE filter tests (J905). Immersion tests of the filtering elements are conducted as are contaminant removal tests using a test dust such as AC Fine Test Dust (see Tables D-1 and D-2) in calibration fluid. The dust test is used to estimate the half-life pressure drop of the separator (a typical test will add dust to a 28 liter system at the rate of 8 grams every 5 minutes). A common test routine is as follows:

- conduct clean filter water removal test
- add dust to create half-life pressure drop
- conduct water removal test

The Fleetguard unit was tested by MERADCOM in 1970. Internally, Cummins presently follows some of the tests described in MIL-F-8901E.

TABLE D-1. SIZE DISTRIBUTION OF AC TEST DUST

AC (COARSE	AC FINE				
Size Distribution (Microns)	Percent By Weight	Size Distribution (Microns)	Percent By Weight			
0-5	12	0-5	39			
5-10	12	5-10	18			
10-20	14	10-20	16			
20-40	23	20-40	18			
40-80	30	40-80	9			
80-200	9					

TABLE D-2 SIZE DISTRIBUTION OF BLACK IRON OXIDE

Size Distribution (Microns)	Percent By Weight
025	47.8
.2550	29.9
.50-1.0	16.4
1-2	3
2-3	0.8
3-4	0.3
4-5	0.7
5-7.5	0.8
7.5-10	0.3

Facet fuel/water spearators are tested similarly to the Fleetguard unit.

E. MANIFOLD (FLAME) AIR HEATERS

1. System Description

Engine flame heaters (see Figure D-7) are sometimes used as a cold-start aid to heat the air in the intake manifold just prior to and during engine cranking. The principle behind their operation is that an open flame in the intake manifold will provide enough heat to raise the intake air temperature sufficiently to facilitate engine starting. This procedure works despite dilution of the air with combustion gases from the flame. The fuel used is that carried by the vehicle though an auxiliary fuel could be used. Ignition is usually accomplished by spraying the fuel past an open, continuous electrical spark.

Flame heaters are usually specified by the engine manufacturer as a collection of components rather than a single unit. The components of flame heaters which come into contact with the fuel are as follows:

- Fuel lines
- Fuel filter
- Fuel pump
- Solenoid valve
- Flame heater housing
- Ignition electrodes

Of these components, the fuel lines and filters are the same type as covered in sections D and F respectively, of this appendix. Therefore, they will not be discussed any further in this section.

2. Fuel Pumps

The fuel pumps are typically small electric pumps using vane or solenoid type construction. Three performance specifications are indicated for these pumps:

- Maximum pressure determined by restricting the output and measuring the pressure between the pump and the restriction.
- Inlet suction determined by restricting the inlet line and measuring the amount of vacuum the pump can generate.

FIGURE D-7, FLAME HEATER SYSTEM AS ON THE LD-465-1 ENGINES SOURCE: TM9-2815-210-34

 Maximum flow - determined by measuring the volumetric flow rate of the pump under conditions of no restriction.

These performance specifications are the measures by which it is determined whether or not a pump is satisfactory for use. A typical test for such fuel pumps is to measure the performance specifications of the pump. Also, 1000 to 2000 hour durability tests are conducted at flow rates and output pressures typical of ordinary operation. During this time, the pump can run almost continuously (it is not cycled). Fuel heating should be avoided as it makes the test less appropriate for this application. At the end of the test, the three performance specifications indicated above are measured again to determine whether the pump has deteriorated. Past and current experience indicates that the 1000 to 2000 hour time periol is sufficient to predict pump life. It also indicates compatibility of pump seals and gaskets. Visual inspection of the interior of the pump is made to detect any corrosion which may have occurred. The pump is also subjected to salt-spray and vibration-shock tests which may uncover a weakness created by the fuel.

3. Solenoid Valves

Testing of the solenoid valve typically involves circulation of test fuel for up to 1000 hours at flow rates and pressure drops used for current fuels typical of use. A quick determination with good confidence can be made after 70 hours. At the end of the test, the solenoid is pressure tested at the maximum specified operating pressure to check for leaks. The seals are checked for deterioration, swelling or shrinking. Visual checks of the interior of the housing are made for indications of corrosion.

4. Housing Unit

The flame heater housing contains the fuel spray nozzle and the ignition electrodes. The problems which are likely to develop with this unit are corrosion of the fuel passage, coking of the nozzle, and fouling of the electrodes. The units are tested by cycling the flame heater at an ambient temperature of $0^{\circ}F$ (-18 $^{\circ}C$). Time is allowed between ignitions for the

nozzle and electrodes to return to ambient temperature. The number of repetitions should be at least 200 to 300 and more if abnormal deposits exist or a fuel-related malfunction occurs.

F. FUEL LINES/HOSES

1. Generic Type Tests

Fuel lines and hoses can be tested two ways to determine their compatibility with a new fuel. The assembled hose can be subjected to a variety of tests after exposure to a fuel, or it can be disassembled and its component parts tested individually for their tolerance to a given fuel. This section will be divided into two parts reflecting these two distinctions.

2. Whole Hose Tests

a. Conditioning

The hose assembly is immersed in the test fuel for 70 hours or longer. The temperature during the test is ambient up to 300° F, depending on the fuel. The majority of any dimensional changes due to swelling or shrinking will have occurred by the end of 70 hours. There are a variety of physical tests which the hose assembly is put through which are described in the remainder of this section.

b. High Temperature Circulation

An alternative to conditioning is a high temperature circulation test. Fuel is circulated through the hose for 50 hours at 50 to 75 psi pressure. The temperature can be as high as 300° F, depending on the fuel used.

c. Dimensional Changes

Immediately after the hose has been removed from the fuel, it is dried; and changes in wall thickness, overall diameter, and length are measured and compared to the original valves.

d. Length Change Under Pressure

Two lines are marked on the hose exactly 10 inches apart. The hose is then pressurized to 50 percent of its burst pressure. The rate of increase of pressure is 1000 psi-per minute. A linear measurement check is made 2 minutes after the final pressure has been reached. The average change in length, expressed in percent, is calculated from three test specimens. This average should not be more than + 4 percent.

e. Proof Pressure

The hose is subjected to its proof pressure (typically

twice the operating pressure) for at least 30 seconds. No leakage, rupture or detachment from fittings is allowed.

f. Leakage

The hose is subjected to a pressure of 70% of the minimum burst pressure (typically 4 times operating pressure) for 5 minutes, followed by 5 minutes at no pressure, and then 5 minutes at the 70% burst pressure. Any leakage, rupture or detachment from its fittings is a failure.

g. Minimum Burst Pressure

The hose is subjected to increasing pressure at a rate of 5000 to 10000 psi per minute tillit fails. Any leakage, rupture or detachment from a fitting is considered a failure. Average burst pressure from three specimens is calculated and compared to the minimum burst pressure for that hose.

h. Cold Flex

The hose and test mandrel is conditioned for 70 hours at $-67^{\circ}F$, \pm 3.6°F ambient air temperature. Each test specimen is tested by bending it around a mandrel until the full length of hose is in contact with the mandrel circumference, then straightening the hose and bending it in the reverse direction about the mandrel circumference. Each bend is accomplished at a substantially uniform rate in 12 ± 3 seconds. The mandrel radius is specified for each hose. The hose is then subjected to the proof pressure test (part e, above).

i. Fire

The hose has 200°F oil circulating through it while bent. The hose is subjected to a temperature of 2000°F. The hose must last from 5 to 15 minutes depending on its application.

j. Stress Degradation

The hose is subjected to 400°F ambient air for 24 hours. Four cycles of the Leakage Test (part f) are performed. Any leakage, rupture or detachment from fittings is a failure.

k. Permeation

A hose is capped at both ends and weighed. The hose is then subjected to a temperature applicable with its application (up to 300° F). The weight of the hose assembly is checked

after 24, 70, and 168 hours to determine weight lost with time.

3. Hose Component Tests

a. Conditioning

Various test

ment and outer coating are immersed in the test fuel at temperatures up to $300^{\circ}F$ for 70 hours. The most commonly used temperature is $212^{\circ}F$.

b. Volume Increase

Within 5 minutes of removal of the specimen from the fuel, it is dried and measured for volume increase. The volume change must be done in accordance with Federal Test Method Standard No. 601, method 6211.

c. Elongation

Elongation must also be measured within 5 minutes of removing the sample from the test fuel. The measurements must be done in accordance with Federal Test Method Standard No. 601, method 4121.

d. Tensile Strength

Tensile strength is determined within 5 minutes of removal of the specimen from the test fuel and conducted in accordance with Federal Test Method Standard No. 601, method 4111.

e. Aging

The test specimens are immersed in the test fuel at ambient temperature from as little as 168 hours to as long as 1000 hours. This test can serve as conditioning for the specimen. Physical property tests (such as parts b,c, and d above) are then conducted.

G. OTHER COMPONENTS

1. Personnel Heaters

Personnel heaters, as made by the Southwind division of Stewart-Warner, are subjected to vibration, shock, salt spray, cold start, and endurance tests. The endurance test is typically composed of an 800 hour endurance run at temperatures ranging from -55°F to 90°F. The test schedule is composed of 200 hours at ambient temperatures on No. 2 diesel fuel, 100 hours at -25°F on No. 1 diesel fuel, and 100 hours at -65°F on arctic grade diesel fuel. The test is repeated for a total of 800 hours and the entire test is conducted under conditions of 20 minutes on and 10 minutes off.

2. Valves

Ball valves, such as those made by Dynaquip Controls, must typically conform to MSS (Manufacturers Standards Society) and ANSI (American National Standards Institute) requirements. The primary test for final acceptance is for shell and seat leakage. The test procedure (as used by Dunaquip) using clean dry air or gaseous nitrogen is as follows:

- Clamp the valve to be tested in the fixture.
- Position the handle to approximately 45° or the 1/2 open position. Apply 80.0 psig minimum pressure to both end connections.
- Submerge the pressurized valve under water. Air bubbles adhering to the exterior of the valve should be mechanically removed.
- Observe the valve for 15 seconds. Any bubbles coming from any area of the valve during this time shall be cause for rejection. If the source of the bubble is unknown and may be the result of air entrapped on the valve exterior, the observation period must be repeated.
- Close the valve.
- Apply 80.0 psig minimum to one end connection and vent the other to atmosphere.
- Observe the tubing end for 15 seconds. Any bubbles exiting the tubing shall be cause for rejection.

- Repeat the two previous steps with pressure and yenting to test valve reversed.
- Shut off the air pressure, raise the test valve from the water and remove from the test fixture.
- Each valve shall be thoroughly dried with clean dry air and then opened for packaging.

APPENDIX E-5

ENVIRONMENTAL PROTECTION AGENCY HEAVY-DUTY DIESEL ENGINE EXHAUST EMISSIONS CERTIFICATION AND TEST PROCEDURES

A. INTRODUCTION

All heavy-duty vehicles and heavy-duty engines intended for use in heavy-duty vehicles must meet exhaust emission standards as outlined in the Federal Code of Regulations, Title 40, Part 86 - Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines: Certification and Test Procedures. The following is a collection of selected excerpts from the Federal Code of Regulations which describe the testing required in order for heavy-duty engine or vehicle to obtain Environmental Protection Agency (EPA) certification.

B. EPA HEAVY DUTY DIESEL ENGINE DURABILITY TESTING REQUIREMENTS AND PROCEDURES

For any engine family which is undergoing EPA exhaust emissions certification, some engines must undergo durability testing. This test is basically a 1000 hour test run at rated speed and load. Exhaust emissions and smoke are measured at 125 hour intervals. Engine operating conditions are the same as specified for exhaust emissions testing. The following outlines how engines are selected and how the test is conducted.

- (i) One engine from each engine-system combination shall be tested. At each test point, either the complete gaseous emission test or the complete smoke test may be conducted first. Within each combination, the engine which features the highest fuel feed per stroke, primarily at rated speed and secondarily at the speed of maximum rated torque, will usually be selected for durability testing. In the case where more than one engine in an engine-system combination has the highest fuel feed per stroke, the engine with the highest maximum rated horsepower will usually be selected for durability testing. If an engine-system combination includes both military and nonmilitary engines, then the nonmilitary engine with the highest maximum rated horsepower will usually be selected for durability testing.
- (ii) A manufacturer may elect to operate and test additional engines to represent any engine-system combination. The additional engines must be of the same model and fuel system as the engine selected in accordance with the provisions of paragraph (i) of this section. Notice of an intent to test additional engines shall be given to the EPA Administrator not later than 30 days following notification of the test fleet selection. Deterioration factors calculated for each engine-system combination shall be applied separately to military and nonmilitary engines within the same engine-system combination.

Any manufacturer whose projected sales for the model year in which certification is sought is less than

- (1) 2000 gasoline-fueled light-duty vehicles, or
- (2) 2000 Diesel light-duty vehicles, or

- (3) 2000 gasoline-fueled light-duty trucks, or
- (4) 2000 Diesel light-duty trucks, or
- (5) 700 gasoline-fueled heavy-duty engines, or
- (6) 200 Diesel heavy-duty engines, may request a reduction in the number of test vehicles (or engines) determined in accordance with the foregoing provisions of this section. The EPA Administrator may agree to such lesser number as he determines would meet the objectives of this procedure.

Durability-data engines. Durability-data engines shall be operated and tested as follows: Each durability-data engine shall be operated, with all emission control systems installed and operating, for 1,000 hours. Emission tests shall be conducted at zero hours and at each 125-hour interval.

A break-in procedure, not to exceed 20 hours, may be run if approved in writing in advance by the Administrator. This procedure would be run after the zero-hour test, and the hours accumulated would not be counted as part of the service accumulation.

Before service accumulation can begin, the following criteria must be met. Failure to comply with these requirements shall invalidate all test data submitted for an engine.

- (i) Each engine shall produce at least 95 percent of the maximum horsepower, corrected to rating conditions, at 95 to 100 percent of the rated speed.
- (ii) The fuel rate at maximum horsepower shall be within manufacturer's specifications.
- (iii) The zero-hour test data shall be provided to the Administrator (except for those engines for which the zero-hour test requirement has been waived) and the engine shall be made available for such testing as the EPA Administrator may require.

During service accumulation, hours can be credited toward the required service accumulation hours when the following criteria are met. If these criteria cannot be met, engine operation shall be discontinued and the EPA Administrator shall be notified immediately.

(i) Each engine shall produce at least 95 percent of the maximum horsepower, at 95 to 100 percent of the rated speed,

observed during zero-hour testing. Horsepower values shall be corrected to the rating conditions.

(ii) The engine shall be operated at 75 percent of the inlet and exhaust restrictions specified except that the tolerance will be \pm 3 inches of water and \pm 0.5 inches of Hg, respectively.

The results of each emission test shall be air posted to the Administrator within 72 hours of test completion (or delivered within 5 working days). The manufacturer shall furnish to the Administrator an explanation for voiding any test. The Administrator will determine if voiding the test was appropriate based upon the explanation given by the manufacturer for the voided tests. If a manufacturer conducts multiple tests (not to exceed three valid tests) at any test point, the number of tests must be the same at each point. The data obtained from all valid tests shall be used in the calculation of the deterioration factor. Tests between test points may be conducted as required by the Administrator. Data from all tests (including voided tests) shall be air posted to the Administrator within 72 hours (or delivered within 5 working days). In addition, all test data shall be compiled and provided to the Administrator. Where the Administrator conducts a test on a durability-data engine at a prescribed test point, the results of that test will be used in the calculation of the deterioration factor.

The results of all emission tests shall be recorded and reported to the Administrator using two places to the right of the decimal point. These numbers shall be rounded in accordance with the "Rounding Off Method" specified in ASTM E29-67.

Once a manufacturer begins to operate an emission-data or durability-data engine, he shall continue to run the engine to 125 hours or 1,000 hours respectively. Discontinuation of an engine shall be allowed only with the prior written consent of the Administrator.

The Administrator may elect to operate and test any test engine during all or any part of the service accumulation and testing procedure. In such cases, the manufacturer shall provide the engine(s) to the Administrator with all information necessary to conduct the testing.

C. EMISSION STANDARDS FOR 1977 AND LATER DIESEL HEAVY-DUTY ENGINES

The opacity of smoke emissions from new 1977 and later model year Diesel heavy-duty engines shall not exceed:

- (i) 20 percent during the engine acceleration mode.
- (ii) 15 percent during the engine lugging mode.
- (iii) 50 percent during the peaks in either mode.

Exhaust gaseous emissions from new 1977 and later model year Diesel heavy-duty engines shall not exceed:

- (i) Hydrocarbons plus oxides of nitrogen (as NO₂). 16 grams per brake horsepower hour.
 - (ii) Carbon monoxide. 40 grams per brake horsepower hour.

D. TEST PROCEDURE TO MEASURE SMOKE EMISSIONS OPACITY

The test consists of a prescribed sequence of engine operating conditions of an engine dynamometer with continuous examination of the exhaust gases. The test is applicable equally to controlled engines equipped with means for preventing, controlling, or eliminating smoke emissions and to uncontrolled engines.

The test is designed to determine the opacity of smoke in exhaust emissions during those engine operating conditions which tend to promote smoke from diesel-powered vehicles.

The test procedure begins with a warm engine which is then run through preloading and preconditioning operations. After an idling period, the engine is operated through acceleration and lugging modes during which smoke emission measurements are made to compare with the standards. The engine is then returned to the idle condition and the acceleration and lugging modes are repeated. Three sequences of acceleration and lugging constitute the full set of operating conditions for smoke emission measurement.

1. Diesel Fuel Specifications

The Diesel fuels employed shall be clean and bright, with pour and cloud points adequate for operability. The fuels may contain nonmetallic additives as follows: Cetane improper, metal deactivator, antioxidant, dehazer, antirust, pour depressant, dye, and dispersant.

Fuel meeting the following specifications, or substantially equivalent specifications, shall be used in exhaust emission testing. The grade of fuel recommended by the engine manufacturer, commercially designated as "Type 1-D" or "Type 2-D" shall be used.

Item	ASTM Test Meth	nod No.	Type 1-D	Type 2-D
Cetane	D613		48-54	42-50
Distillation Range	D86			
IBP, °F	• • • • • • • • • • • • • • • • • • • •		330-390	340-400
10 percent point, °F			370-430	400-460
50 percent point, °F			410-480	470-540
90 percent point, °F			460-520	550-610
EP, °F			500-560	580-660
Gravity, °API			40-44	33-37
Total sulfur, percent			0.05-0.20	0.2-0.5
Hydrocarbon composition	D1139			
Aromatics, percent				27 (Min.)
Paraffins, Naphthenes, Olefins.				Remainder
Flash point, of (Min.)			120	
Viscosity, centistokes				2.0-3.2

- 2. Dynamometer Operation Cycle for Smoke Emission Tests
- (a) The following sequence of operations shall be performed during engine dynamometer testing of smoke emissions, starting with the dynamometer preloading determined and the engine preconditioned.
- (1) Idle mode. The engine is caused to idle for 5 to 5.5 minutes at the manufacturer's recommended low idle speed. The dynamometer controls shall be set to provide minimum load by turning the load switch to the "off" position or by adjusting the controls to the minimum load position.
 - (2) Acceleration mode.
- (i) The engine speed shall be increased to 200 ± 50 r.p.m. above the manufacturer's recommended low idle speed within 3 seconds.
- (ii) Immediately upon completion of the mode specified in paragraph (a)(2)(i) of this section, the throttle shall be moved rapidly to, and held in, the fully-open position. The inertia of the engine and the dynamometer, or alternately a preselected dynamometer load, shall be used to control the acceleration of the engine so that the speed increases to 85 percent of the rated speed in 5 ± 1.5 seconds. This acceleration shall be linear within 100 r.p.m.

(iii) After the engine reaches the speed required in paragraph (a)(2)(ii) of this section, the throttle shall be moved rapidly to, and held in, the fully-closed position. Immediately after the throttle is closed, the preselected load required to perform the acceleration in paragraph (a)(2)(iv) of this section shall be applied.

(iv) When the engine decelerates to the maximum torque speed or 60 percent of rated speed (within 50 r.p.m.), whichever is higher, the throttle shall be moved rapidly to, and held in, the fully-open position. The preselected dynamometer load which was applied during the preceding transition period shall be used to control the acceleration of the engine so that the speed increases to at least 95 percent of the rated speed in 10 + 2 seconds.

(3) Lugging mode.

(i) Immediately upon completion of the preceding acceleration mode, the dynamometer controls shall be adjusted to permit the engine to develop maximum horsepower at rated speed. This transition period shall be 50 to 60 seconds in duration. During the last ten seconds of this period, the engine speed shall be maintained within 50 r.p.m. of the rated speed, and the power (corrected, if necessary, to rating conditions) shall be no less than 95 percent of the maximum horsepower developed during zero-hour testing.

(ii) With the throttle remaining in the fully-open position, the dynamometer controls shall be adjusted gradually so that the engine speed is reduced to the maximum torque speed or to 60 percent of the rated speed (within 50 r.p.m.), whichever is higher. This lugging operation shall be performed smoothly over a period of 35 ± 5 seconds. The rate of slowing of the engine shall be linear, within 100 r.p.m.

(4) Engine unloading. Immediately after completion of the preceding lugging mode, the dynamometer and engine controls shall be returned to the idle position described in paragraph (a)(1) of this section. The engine must be at the low idle condition within one minute after completion of the lugging mode.

- (b) The procedures described in paragraphs (a)(1) through (a)(4) of this section shall be repeated until three consecutive valid cycles have been completed. If three valid cycles have not been completed after a total of six consecutive cycles have been run, the engine shall be preconditioned by operation at maximum horsepower at rated speed for 10 minutes before the test sequence is repeated.
 - 3. Dynamometer and Engine Equipment

The following equipment shall be used for smoke emission testing of engines on engine dynamometers.

- (a) An engine dynamometer with adequate characteristics to perform the test cycle.
- (b) An engine cooling system having sufficient capacity to maintain the engine at normal operating temperatures during conduct of the prescribed engine tests.
- (c) A noninsulated exhaust system extending 15 ± 5 feet from the exhaust manifold, or the crossover junction in the case of Vee engines, and presenting an exhaust back pressure within ± 0.2 inch Hg. of the upper limit at maximum rated horsepower, as established by the engine manufacturer in his sales and service literature for vehicle application. A conventional automotive muffler of a size and type commonly used with the engine being tested shall be employed in the exhaust system during smoke emission testing. The terminal 2 feet of the exhaust pipe shall be circular cross section and be free of elbows and bends. The end of the pipe shall be cut off squarely. The terminal 2 feet of the exhaust pipe shall have a diameter in accordance with the engine being tested, as specified below.

Maximum Rated Horsepower	Exhaust Pipe Diameter (Inches)
Less than 101	2
101 to 200	3
201 to 300	4
301 or more	5

(d) An engine air inlet system presenting an air inlet restriction within + 1 inch of water of the upper limit for the engine operating condition which results in maximum air flow, as established by the engine manufacturer in his sales and service literature, for the engine being tested.

4. Smoke Measurement

- (a) Equipment. The following equipment shall be used in the system:
- (1) Adapter the smokemeter optical unit may be mounted on a fixed or movable frame. The normal unrestricted shape of the exhaust plume shall not be modified by the adapter, the meter, or any ventilator system used to remove the exhaust from the test site.
- (2) Smokemeter (light extinction meter) continuous recording, full-flow light obscuration meter. It shall be positioned near the end of the exhaust pipe so that a built-in light beam traverses the exhaust smoke plume which issues from the pipe at right angles to the axis of the plume.
- (3) Recorder a continuous recorder, with variable chart speed over a minimal range of 0.5 to 8.0 inches per minute (or equivalent) and an automatic marker indicating 1-second intervals shall be used for continuously recording the exhaust gas opacity, engine r.p.m. and throttle position.

5. Information to be Recorded

The following information shall be recorded with respect to each test:

- (a) Test number
- (b) Date and time of day.
- (c) Instrument operator.
- (d) Engine operator.
- (e) Engine Identification numbers Date of manufacture Number of hours of operation accumulated on engine Engine family Exhaust pipe diameter Fuel injector type Maximum measured fuel rate at maximum measured torque and horsepower Air aspiration system Low idle r.p.m. Maximum governed r.p.m. Maximum measured horsepower at r.p.m. Maximum measured torque at r.p.m. Exhaust system back pressure Air inlet restriction.

- (f) Smokemeter: Number Zero control setting Calibration control setting Gain.
- (g) Recorder chart: Identify zero traces Calibration traces - Idle traces - Closed throttle trace, open throttle trace - Acceleration and lugdown test traces - Start and finish of each test.
 - (h) Ambient temperature in dynamometer testing room.
 - (i) Engine intake air temperature and humidity.
 - (j) Barometric pressure.
- (k) Observed engine torque and speed during the steady-state test conditions.

6. Test Run

- (a) The temperature of the air supplied to the engine shall be between 68°F. and 86°F. The observed barometric pressure shall be between 28.5 inches and 31 inches Hg. Higher air temperature or lower barometric pressure may be used, if desired, but no allowance will be made for possible increased smoke emissions because of such conditions.
- (b) The governor and fuel system shall have been adjusted to provide engine performance at the levels specified by the engine manufacturer for maximum rated horsepower and maximum rated torque.
 - (c) The following steps shall be taken for each test:
 - (1) Start cooling system.
- (2) Starting with a warmed engine, determine by experimentation the dynamometer inertia and dynamometer load required to perform the acceleration in the dynamometer cycle for smoke emission tests. In a manner appropriate for the dynamometer and controls being used, arrange to conduct the acceleration mode.
- (3) Install smokemeter optical unit and connect it to the recorder. Connect the engine r.p.m. and torque sensing devices to the recorder.
- (4) Turn on purge air to the optical unit of the smokemeter, if purge air is used.

- (5) Check and record zero and span settings of the smokemeter recorder at a chart speed of approximately 1 inch per minute. (The optical unit shall be retracted from its position about the exhaust stream if the engine is left running.)
- (6) Precondition the engine by operating it for 10 minutes at maximum rated horsepower.
- (7) Proceed with the sequence of smoke emission measurements on the engine dynamometer.
- (8) During the test sequence, continuously record smoke measurements, engine r.p.m., and throttle position at a minimum chart speed of 1 inch per minute during the idle mode and transitional periods and 8 inches per minute during the acceleration and lugging modes. The smokemeter zero and full scale recorder deflections may be rechecked during the idle mode of each test sequence. If either zero or full scale drift is in excess of 2 percent opacity, the smokemeter controls must be readjusted and the test must be repeated.
 - (9) Turn off engine.
- (10) Check zero and reset if necessary and check span of the smokemeter recorder by inserting neutral density filters. If either zero or span drift is in excess of 2 percent opacity, the test results shall be invalidated.

E. TEST PROCEDURE TO MEASURE GASEOUS EXHAUST EMISSIONS

The test procedure begins with a warm engine and consists of a prescribed sequence of engine operating conditions on an engine dynamometer with continuous examination of the exhaust gases.

The test is designed to determine the brake-specific emissions of hydrocarbons, carbon monoxide and oxides of nitrogen when an engine is operated through a cycle which consists of three idle modes and five power modes at each of two speeds which span the typical operating range of Diesel engines. The procedure requires the determination of the concentration of each pollutant, the exhaust flow and the power output during each mode. The measured values are weighted and used to calculate the grams of each pollutant emitted per brake-horsepower hour.

When an engine is tested for exhaust emissions or is operated for durability testing on an engine dynamometer, the complete engine shall be tested with all standard accessories which might reasonably be expected to influence emissions to the atmosphere installed and functioning.

Except in cases of component malfunction or failure, all emission control systems installed on or incorporated in a new motor vehicle engine shall be functioning during all procedures in this subpart.

All emission control systems installed on or incorporated in a new motor vehicle engine shall be functioning during all test procedures in this subpart.

The grade of Diesel Fuel Specifications fuel used should be that recommended by the manufacturer. The properties of the fuel should lie within those indicated for commercial grades "Type 1-D" and "Type 2-D" presented previously in section C.

1. Dynamometer Procedure

(a) The following 13 mode cycle shall be followed in dynamometer operation tests of heavy-duty Diesel engines:

Mode No.	Engine Speed	Percent Load
1	Low idle	0
2	Intermediate	2
3	do	25
4	do	50
5	do	75
6	do	100
7	Low idle	0
8	Rated	100
9	do	75
10	do	50
11	do	25
12	do	2
13	Low idle	0

- (b) During each mode the specified speed shall be held to within 50 r.p.m. and the specified torque shall be held to within 2 percent of the maximum torque at the test speed. For example, the torque for mode 4 shall be between 48 and 52 percent of the maximum torque measured at the intermediate speed.
 - 2. Sampling and Analytical Methods
- (a) The determination of the carbon monoxide and nitric oxide concentrations shall be accomplished using sampling and analysis components as specified in sections 2.1 and 2.2 of the SAE Recommended Practice No. J177 titled "Measurement of Carbon Dioxide, Carbon Monoxide and Oxides of Nitrogen in Diesel Exhaust," dated June 1970. Other sampling and analysis components may be used if shown to yield equivalent results and if approved in advance by the Administrator.
- (b) The determination of the hydrocarbon concentrations shall be accomplished using sampling and analysis components as specified in sections 2.1 and 2.2 of SAE Recommended Practice No. J215 titled, "Continuous Hydrocarbon Analysis of Diesel Exhaust," dated November 1970.
- (c) The determination of the intake airflow or exhaust flow shall be accomplished using SAE Recommended Practice No. J244 titled, "The Measurement of Intake or Exhaust Flow in Diesel Engines," dated May 1971.

- 3. Information to be Recorded
 The following information shall be recorded:
 - (a) Test number.
 - (b) Date and time of day.
 - (c) Instrument operator.
 - (d) Engine operator.
- (e) Engine identification numbers date of manufacture number of hours of operation accumulated on engine engine family exhaust pipe diameter fuel injector type low idle r.p.m., governed speed, maximum power and torque speeds maximum horsepower and torque fuel consumption at maximum power and torque air aspiration system exhaust system back pressure air inlet restriction.
- (f) All pertinent instrument information such as tuning gain - serial numbers - detector numbers - range.
- (g) Recorder chart. Identify zero traces calibration or span traces emission concentration traces for each test mode start and finish of each test.
 - (h) Ambient temperature in dynamometer testing room.
- (i) Engine intake air temperature and humidity for each mode.
 - (j) Barometric pressure.
 - (k) Observed engine torque for each mode.
 - (1) Intake airflow or exhaust flow for each mode.
 - (m) Fuel flow and temperature for each mode.
 - 4. Calibration and Instrument Checks

Calibration and instrument checks shall be performed according to section 2.3.1 of SAE Recommended Practice No. J177, dated November 1970, except that the instrument zeros need not be checked after each analysis but as necessary to maintain test validity. Calibration and checks of other instruments used for the test shall be performed as necessary according to good practice.

5. Test Run

(a) The temperature of the air supplied to the engine shall be between 68°F and 86°F. The fuel temperature at the p mp

inlet shall be 100°F ± 10°F. The observed barometric pressure shall be between 28.5 inches and 31 inches Hg. Higher air temperature or lower barometric pressure may be used, if desired, but no allowance shall be made for increased emissions because of such conditions.

- (b) The governor and fuel system shall have been adjusted to provide engine performance at the levels specified by the engine manufacturer for maximum rated horsepower and maximum rated torque.
 - (c) The following steps shall be taken for each test.
- (1) Install instrumentation and sample probes as required.
 - (2) Start cooling system.
- (3) Start the engine, warm it up and precondition it by running it at rated speed and maximum horsepower for 10 minutes or until all temperatures and pressures have reached equilibrium.
- (4) Determine by experimentation the maximum torque at rated speed and intermediate speed to calculate the torque values for the specified test modes.
- (5) Zero and span the emission analyzers on each range used during the test run.
- mode, completing engine speed and load changes in the first minute. If a delay of more than 10 minutes occurs between the end of one mode and the start of the next mode, discontinue the sequence and repeat the test from Mode No. 1. Record the response of the analyzers on a strip chart recorder for the full 10 minutes with exhaust gas flowing through the analyzers at least during the last 5 minutes. Record the engine speed and load, intake air temperature and restriction, exhaust back pressure, fuel flow and air or exhaust flow during the last 5 minutes of each mode, making certain that the speed and load requirements are met during the last minute of each mode. Fuel flow during idle or 2 percent load conditions may be determined just prior to or immediately following the dynamometer sequence, if longer times are required for accurate measurements.

F. EMISSION STANDARDS FOR 1984 AND LATER DIESEL HEAVY DUTY ENGINES

The emission standards which heavy-duty diesel engines must meet in 1984 reflect a change in the test procedures. While the smoke emissions opacity standards are retained as before (along with the procedures used to measure them), new more stringent hydrocarbon (HC) and carbon monoxide (CO) standards will go into effect as well as a separate oxides of nitrogen (NOx) standard. A new transient test procedure is specified to measure these exhaust emissions.

1984 Heavy Duty Diesel Engine Emission Standards
The opacity of smoke emissions from new 1984 and later
model year diesel heavy-duty engines shall not exceed:

- (i) 20 percent during the engine acceleration mode.
- (ii) 15 percent during the engine lugging mode.
- (iii) 50 percent during the peaks in either mode.

No crankcase emissions shall be discharged into the ambient atmosphere from any new 1984 model year naturally-aspirated diesel heavy duty engine. This provision does not apply to turbocharged engines.

Exhaust emissions from new 1984 model year diesel heavy-duty engines using the transient text procedure shall not exceed the following:

- (i) Hydrocarbons 1.3 grams per brake horsepower hour.
- (ii) Carbon Monoxide 15.5 grams per brake horsepower hour.
- (iii) Oxides of Nitrogen 10.7 grams per brake horsepower hour.

G. TRANSIENT TEST PROCEDURE TO MEASURE 1984 MODEL YEAR HEAVY DUTY DIESEL ENGINE EMISSIONS

The transient test procedure is conducted in two halves - a cold-start portion and a hot-start portion. Each is identical and takes exactly 20 minutes to run. A 20 minute soak period separates the cold-start and hot-start portions. The engine oil must be at ambient temperature before a cold-start portion can be begun.

Emissions during the transient test are analyzed directly and integrated over the cold-start and hot-start portions. This allows weighting of the emissions according to the number of cold-starts vs. hot-starts found in the field. A ratio of 1:7 is used for the number of cold-starts to hot-starts. Accordingly, the mass of a pollutant emitted over each of the two cycle segments and the work done by the engine during the two segments are calculated; the hot/cold weighting is applied to the resulting grams and the BHP·hrs; and a final calculation yields a weighted g/BHP·hr emission result for that pollutant.

The fuels acceptable for testing and the equipment required for testing are the same as before with the exception that the engine dynamometer must be capable of duplicating the load requirements of the transient cycle.

H. FUTURE HEAVY DUTY DIESEL ENGINE EMISSIONS TESTS AND STANDARDS
By the 1985 model year, EPA hopes to propose and promulgate
regulations governing particulate emissions from heavy-duty
diesel engines. The transient test procedure may be changed to
be completely compatible with measurement of particulates. The
promulgation of particulate regulations will only require the addition of some new equipment and no replacement of newly-purchased
equipment necessary for conducting the transient test procedure.

Another change being incorporated into the revised test procedures being introduced for the 1984 model year heavy-duty engines is a redefinition of "useful life." The new definition of "useful life" for heavy-duty diesel engines is 10 years, 100,000 miles or 3000 hours of operation, whichever occurs first. This definition is felt to be (by EPA) more representative for heavy-duty engines and vehicles than the light-duty, 5 years or 50,000 mile definition previously used.

DEPARTMENT OF DEFENSE		CDR	
		U.S. ARMY MOBILITY EQUIPMENT	
DEFENSE DOCUMENTATION CTR		R&D COMMAND	
CAMERON STATION	12	Attn: DRDME-GL	10
ALEXANDRIA VA 22314		FORT BELVOIR VA 22060	
DEPT OF DEFENSE		CDR	
ATTN: DASD(MRAL)-LM(MR DYCKMAN)	1	US ARMY MATERIEL DEVELGREADINESS	
WASHINGTON DC 20301	_	COMMAND	
		ATTN: DRCLD (MR BENDER)	1
COMMANDER			ī
DEFENSE LOGISTICS AGY			1
ATTN DLA-SME (MRS P MCLAIN)	1	· · · · · · · · · · · · · · · · · · ·	i
CAMERON STATION	-		ì
ALEXANDRIA VA 22314			i
ALEANIDRIA VA 22314		5001 EISENHOWER AVE	•
COMMANDER		ALEXANDRIA VA 22333	
DEFENSE FUEL SUPPLY CTR		ALLMANDALA VA 22333	
ATTN: DFSC-T (MR. MARTIN)	1	CDR	
CAMERON STA	•	US ARMY TANK-AUTOMOTIVE CMD	
ALEXANDRIA VA 22314			1
ALEARIDRIA VA 22314			1
COMMANDER			1
DEFENSE GENERAL SUPPLY CTR		•	ì
ATTN: DGSC-SSA	1	·	1
RICHMOND VA 23297	•		1
RICHMOND VA 23237		WARREN MI 48090	•
DOD		WARREN MI 40090	
OFC OF SEC OF DEF		DIRECTOR	
ATTN USD (R&E)	1	US ARMY MATERIEL SYSTEMS	
WASHINGTON, DC 20301	•	ANALYSIS AGENCY	
midifination, be 20001			1
DOD			i
ATTN OASD (MRA&L)-TD	1		1
PENTAGON, 3C841	-	ABERDEEN PROVING GROUND MD 21005	_
WASHINGTON DC 20301			
		DIRECTOR	
DEFENSE ADVANCED RES PROJ AGENCY		APPLIED TECHNOLOGY LAB	
DEFENSE SCIENCES OFC	1	U.S. ARMY R&T LAB (AVRADCOM)	
1400 WILSON BLVD	_		1
ARLINGTON VA 22209		DAVDL-ATL-ASV (MR CARPER)	
		FORT EUSTIS VA 23604	
DEPARTMENT OF THE ARMY			
		HQ, 172D INFANTRY BRIGADE (ALASKA	.)
HQ, DEPT OF ARMY			1
ATTN: DALO-TSE (COL ARNAUD)			1
DALO-AV	ī	DIRECTORATE OF INDUSTRIAL	
DALO-SMZ-E	1	OPERATIONS	
DAMA-CSS-P (DR BRYALT)	1	FT RICHARDSON AK 99505	
DAMA-ARZ (DR CHURCH)	1		
DAMA-SMZ	1		
WASHINGTON DC 20310			

12/81 AFLRL No. 144 Page 1 of 6

CDR		MICHIGAN ARMY MISSILE PLANT
US ARMY GENERAL MATERIAL &		OFC OF PROJ MGR, ABRAMS TANK SYS
PETROLEUM ACTIVITY	1	ATTN DRCPM-GCM-S 1
ATTN STSGP-F (MR SPRIGGS) STSGP-PE (MR MCKNIGHT),	1	WARREN MI 48090
BLDG 85-3	1	MICHIGAN ARMY MISSILE PLANT
STSGP (COL CLIFTON)	i	PROG MGR, FIGHTING VEHICLE SYS
NEW CUMBERLAND ARMY DEPOT		ATTN DRCPM-FVS-SE 1
NEW CUMBERLAND PA 17070		WARREN MI 48090
CDR		PROJ MGR, M60 TANK DEVELOPMENT
US ARMY MATERIEL ARMAMEMT		USMC-LNO, MAJ. VARELLA 1
READINESS CMD	1	US ARMY TANK-AUTOMOTIVE CMD (TACOM) WARREN MI 48090
ATTN DRSAR-LEM (MR MENKE) ROCK ISLAND ARSENAL IL 61299	1	WARREN MI 40090
ROCK ISLAND ARSENAL IS 01277		PROG MGR, M113/M113A1 FAMILY
CDR		OF VEHICLES
US ARMY COLD REGION TEST CENTER		ATTN DRCPM-M113
ATTN STECR-TA	1	WARREN MI 48090
APO SEATTLE 98733		
		PROJ MGR, MOBILE ELECTRIC POWER
HQ, DEPT. OF ARMY	•	ATTN DRCPM-MEP-TM 1
ATTN: DAEN-RDZ-B	1	7500 BACKLICK ROAD
WASHINGTON, DC 20310		SPRINGFIELD VA 22150
CDR		OFC OF PROJ MGR, IMPROVED TOW
US ARMY RES & STDZN GROUP		VEHICLE
(EUROPE)		US ARMY TANK-AUTOMOTIVE R&D CMD
ATTN DRXSN-UK-RA	1	ATTN DRCPM-ITV-T 1
BOX 65		WARREN MI 48090
FPO NEW YORK 09510		
		CDR
HQ, US ARMY AVIATION R&D CMD	•	US ARMY EUROPE & SEVENTH ARMY
ATTN DRDAV-GT (MR R LEWIS) DRDAV-D (MR CRAWFORD)	1	ATTN AEAGC-FMD 1
DRDAV-D (MR CRAWFORD) DRDAV-N (MR BORGMAN)	1	APO NY 09403
DRDAV-E (MR LONG)	ì	PROJ MGR, PATRIOT PROJ OFC
4300 GOODFELLOW BLVD	_	ATTN DRCPM-MD-T-G
ST LOUIS MO 63120		US ARMY DARCOM
		REDSTONE ARSENAL AL 35809
CDR		
US ARMY FORCES COMMAND	•	CDR
ATTN AFLG-REG	1	THEATER ARMY MATERIAL MGMT
AFLG-POP FORT MCPHERSON GA 30330	1	CENTER (200TH) DIRECTORATE FOR PETROL MGMT
FORT MCFREASON GA 30330		ATTN AEAGD-MM-PT-Q (MR PINZOLA) 1
CDR		ZWEIBRUCKEN
US ARMY ABERDEEN PROVING GROUND		APO NY 09052
ATTN: STEAP-MT-U (MR DEAVER)	1	
ABERDEEN PROVING GROUND MD 21005		CDR
		US ARMY RESEARCH OFC
CDR		ATTN DRXRO-ZC 1
US ARMY YUMA PROVING GROUND	1	DRXRO-EG (DR SINGLETON) 1
ATTN STEYP-MT (MR DOEBBLER) YUMA AZ 85364	•	DRXRO-CB (DR GHIRARDELLI) 1 P O BOX 12211
IVER RE COST		RSCH TRIANGLE PARK NC 27709
		HOOR INTRODUCTION HO 21107

12/81 AFLRL No. 144 Page 2 of 6

DIR		ny, us armi ide commanu
US ARMY R&T LAB (AVRADCOM)		ATTN DRSTE-TO-O
ATTN DAVDL-AS (MR D WILSTED)	1	ABERDEEN PROVING GROUND, MD 21005
NASA/AMES RSCH CTR		
MAIL STP 207-5		HQ, US ARMY ARMAMENT R&D CMD
		ATTN DRDAR-LC
MOFFIT FIELD CA 94035		_
		DRDAR-SC 1
CDR		DRDAR-AC I
TOBYHANNA ARMY DEPOT		DRDAR-QA 1
ATTN SDSTO-TP-S	1	DOVER NJ 07801
	•	33.21. 113 37.002
TOBYHANNA PA 18466		NO NO ADMI MOOOD CHEDDODE C
		HQ, US ARMY TROOP SUPPORT &
DIR		AVIATION MATERIAL READINESS
US ARMY MATERIALS & MECHANICS		COMMAND
RSCH CTR		ATTN DRSTS-MEG (2)
	1	DRCPO-PDE (LTC FOSTER) 1
ATTN DRXMR-EM		4300 GOODFELLOW BLVD
DRXMR-R	1	
DR XMR-T	1 .	ST LOUIS MO 63120
WATERTOWN MA 02172		
		DEPARTMENT OF THE ARMY
CDR		CONSTRUCTION ENG RSCH LAB
		ATTN CERL-EM 1
US ARMY DEPOT SYSTEMS CMD		CERL-ZT 1
ATTN DRSDS	1	
CHAMBERSBURG PA 17201		CERL-EH 1
		P O BOX 4005
CDR		CHAMPAIGN IL 61820
US ARMY WATERVLIET ARSENAL		
ATTN SARWY-RDD	1	DIR
-	1	US ARMY ARMAMENT R&D CMD
WATERVLIET NY 12189		
		BALLISTIC RESEARCH LAB
CDR		ATTN DRDAR-BLV 1
US ARMY LEA		DRDAR-BLP 1
ATTN DALO-LEP	1	ABERDEEN PROVING GROUND, MD 21005
NEW CUMBERLAND ARMY DEPOT	•	·
		HQ
NEW CUMBERLAND PA 17070		•
		US ARMY TRAINING & DOCTRINE CMD
CDR		ATTN ATDO-5 (COL MILLS) 1
US ARMY GENERAL MATERIAL &		FORT MONROE VA 23651
PETROLEUM ACTIVITY		
ATTN STSGP-PW (MR PRICE)	1	DIRECTOR
		US ARMY RSCH & TECH LAB (AVRADCOM)
SHARPE ARMY DEPOT		
LATHROP CA 95330		PROPULSION LABORATORY
		ATTN DAVDL-PL-D (MR ACURIO) 1
CDR		21000 BROOKPARK ROAD
US ARMY FOREIGN SCIENCE & TECH		CLEVELAND OH 44135
CENTER		
	1	CDR
ATTN DRXST-MT1	1	US ARMY NATICK RES & DEV CMD
FEDERAL BLDG		
CHARLOTTESVILLE VA 22901		ATTN DRDNA-YEP (DR KAPLAN) 1
		NATICK MA 01760
CDR		
DARCOM MATERIEL READINESS		CDR
SUPPORT ACTIVITY (MRSA)		US ARMY TRANSPORTATION SCHOOL
The state of the s	1	ATTN ATSP-CD-MS 1
ATTN DRXMD-MD	1	
LEXINGTON KY 40511		FORT EUSTIS VA 23604

12/81 AFLRL No. 144 Page 3 of 6

CDR		MAJOR L E GUNNIN, SSTR US ARMY LOGISTIC ASSISTANCE OFFI	1
US ARMY QUARTERMASTER SCHOOL	1	LAO-K (TSARCOM)	LCE
ATTN ATSM-CD (COL VOLPE)	1	APO SAN FRANCISCO 96202	
ATSM-CDM	I	ATO DAN TRANSCOOD 70202	
ATSM-TNG-PT	1	CRD	
FORT LEE VA 23801		US ARMY AVIATION CTR	
NO NO ABAN ABAND CENTED		ATTN ATZQ-D	1
HQ, US ARMY ARMOR CENTER ATTN ATZK-CD-SB	1	FORT RUCKER AL 36362	•
	•	10M2 MONEN 12 00002	
FORT KNOX KY 40121		PROJ MGR M60 TANK DEVELOP.	
CDR		ATTN DRCPM-M60-E (MR WESAK)	1
US ARMY LOGISTICS CTR		WARREN MI 48090	•
ATTN ATCL-MS (MR A MARSHALL)	1	MINICOL III 10070	
FORT LEE VA 23801	1	CDR	
FORT LEE VA 23001		US ARMY INFANTRY BOARD	
CDR		ATTN ATZB-1B-PR-T	1
		FORT BENNING, GA 31905	•
US ARMY FIELD ARTILLERY SCHOOL	1	TORT BURNING, OR 31703	
ATTN ATSF-CD	1	CDR	
FORT SILL OK 73503		US ARMY FIELD ARTILLERY BOARD	
CDR		ATTN ATZR-BDPR	1
		FORT SILL OK 73503	4
US ARMY ORDNANCE CTR & SCHOOL	•	TORT BILL OR 75505	
ATTN ATSL-CTD-MS	1	CDR	
ABERDEEN PROVING GROUND MD 21005		US ARMY ARMOR & ENGINEER BOARD	
CDD		ATTN ATZK-AE-PD	1
CDR		ATZK-AE-CV	1
US ARMY ENGINEER SCHOOL	•	FORT KNOX, KY 40121	1
ATTN ATSE-CDM	1	FORT KNOX, RI 40121	
FORT BELVOIR VA 22060		CDR	
CDD		US ARMY CHEMICAL SCHOOL	
CDR		ATTN ATZN-CM-CS	1
US ARMY INFANTRY SCHOOL	1	FORT MCCLELLAN, AL 36205	1
ATTN ATSH-CD-MS-M	1	FORT MCCLEBLAN, AL 30203	
FORT BENNING GA 31905		DEPARTMENT OF THE NAVY	
CDR		DEPARTMENT OF THE NAVI	
		CDR	
US ARMY AVIATION BOARD	1	NAVAL AIR PROPULSION CENTER	
ATTN ATZQ-OT-C	1	ATTN PE-71 (MR WAGNER)	ı
ATZQ-OT-A	1	PE-72 (MR D'ORAZIO)	1
FORT KUCKER AL 36362		P O BOX 7176	
CDR		TRENTON NJ 06828	
		IRENION NJ 00020	
US ARMY MISSILE CMD ATTN DRSMI-O	1	CDR	
	1 1	NAVAL SEA SYSTEMS CMD	
DRSMI-RK DRSMI-D	1	CODE 05D4 (MR R LAYNE)	1
	1	WASHINGTON DC 20362	
REDSTONE ARSENAL, AL 35809		WASHINGTON DC 20302	
CHIEF		CDR	
US ARMY LOGISTIC ASSISTANCE		DAVID TAYLOR NAVAL SHIP R&D CTR	
OFFICE (TSARCOM)		CODE 2830 (MR G BOSMAJIAN)	1
ATTN STSFS-OE		CODE 2831	1 1
(LTC BRYANDS, SSTR)	1	ANNAPOLIS MD 21402	
P.O. BOX 2221	•	120111111 VEAV 110 ~ 17V6	
APO NY 09403			
*** V 111 U24UJ			

12/81 AFLRL No. 144 Page 4 of 6

	CDR	
1	NAVY PETROLEUM OFC	
-		
	CAMERON STATION	
	ALEXANDRIA VA 22314	
	225	
	CDR	
	MARINE CORPS LOGISTICS SUPPORT	
1	BASE ATLANTIC	
•		٠
	ALBANI GA 31/04	
	DEPARTMENT OF THE AIR FORCE	
1	NO NOTE	
1	ATTN LEYSF (MAJ LENZ)	1
	WASHINGTON DC 20330	
	UO AID FORCE CYCTEMS CMD	
		4
1	ANDREWS AFB MD 20334	
	CDD	
	US AIR FORCE WRIGHT AERONAUTICAL	
	LAB	
1	ATTN AFWAL/POSF (MR CHURCHILL)	1
		1
		1
1		,
		1
	WRIGHT-PATTERSON AFB OH 45433	
	CDR	
1	USAF SAN ANTONIO AIR LOGISTICS	
1	*	
		1
		J
	KELLY AIR FORCE BASE, TX 78241	
1	CDR	
-		
		1
		•
•	RUBINS AFB GA 31090	
1		
1		
1		
	1	ATTN CODE 40 CAMERON STATION ALEXANDRIA VA 22314 CDR MARINE CORPS LOGISTICS SUPPORT BASE ATLANTIC 1 ATTN CODE P841 ALBANY GA 31704 DEPARTMENT OF THE AIR FORCE 1 HQ, USAF 1 ATTN LEYSF (MAJ LENZ) WASHINGTON DC 20330 HQ AIR FORCE SYSTEMS CMD ATTN AFSC/DLF (LTC RADLOF) ANDREWS AFB MD 20334 CDR US AIR FORCE WRIGHT AERONAUTICAL LAB 1 ATTN AFWAL/POSF (MR CHURCHILL) 1 AFWAL/MLSE (MR MORRIS) AFWAL-MLBT WRIGHT-PATTERSON AFB OH 45433 CDR 1 USAF SAN ANTONIO AIR LOGISTICS CTR ATTN SAALC/SFQ (MR MAKRIS) SAALC/MMPRR KELLY AIR FORCE BASE, TX 78241 1 CDR USAF WARNER ROBINS AIR LOGISTIC CTR ATTN WR-ALC/MMIRAB-1 (MR GRAHAM) ROBINS AFB GA 31098

OTHER GOVERNMENT AGENCIES

US DEPARTMENT OF TRANSPORTATION ATTN AIRCRAFT DESIGN CRITERIA 2 **BRANCH** FEDERAL AVIATION ADMIN 2100 2ND ST SW WASHINGTON DC 20590 US DEPARTMENT OF ENERGY DIV OF TRANS ENERGY CONSERV ALTERNATIVE FUELS UTILIZATION BRANCH 20 MASSACHUSETTS AVENUE WASHINGTON DC 20545 DIRECTOR NATL MAINTENANCE TECH SUPPORT 2 CTR US POSTAL SERVICE NORMAN OK 73069

US DEPARTMENT OF ENERGY
BARTLESVILLE ENERGY RSCH CTR
DIV OF PROCESSING & THERMO RES 1 DIV OF UTILIZATION RES 1
BOX 1398
BARTLESVILLE OK 74003

SCI & TECH INFO FACILITY
ATTN NASA REP (SAK/DL) 1
P O BOX 8757
BALTIMORE/WASH INT AIRPORT MD 21240

12/81 AFLRL No. 144 Page 6 of 6

