Agrégation de modèles - Partie 1

Mathieu Pigeon

UQAM

Introduction

Bagging

Forêts aléatoires (random forests)

Avantages des arbres de décision

- Simplicité d'interprétation → représentation graphique.
- Le fonctionnement est simple à comprendre et semble « naturel ».
- Permet d'inclure des variables explicatives catégorielles sans créer un grand nombre de variables indicatrices.

Inconvénients des arbres de décision

- Si la relation que l'on tente de modéliser est linéaire (ou presque), alors un modèle de régression linéaire classique sera nettement meilleur (→ biais et variance faibles) qu'un arbre de décision.
- Le pouvoir prédictif est généralement plus faible que pour d'autres catégories de modèles.
- Les arbres de décision sont généralement peu robustes : un petit changement dans la base de données peut avoir un énorme impact sur l'arbre final obtenu.

Exemple 1 : Préparation des données

```
data(freaggnumber)
```

library(CASdatasets)

dataAGG <- freaggnumber head(dataAGG)

DriverAge	LicenceAge	VehAge	Exposure	${\tt ClaimNumber}$
39	18	3	1356.402	192
35	18	3	1243.948	172
37	18	1	1263.064	172
38	18	3	1328.589	171
39	18	2	1346.795	170
40	18	3	1263.537	165

dataAGG\$Y <- dataAGG\$ClaimNumber/dataAGG\$Exposure</pre>

Exemple 1A: Trois arbres

Exemple 1A: Trois arbres

```
round(head(dataAGG[, c(5, 7, 8, 9, 10)]), 0)
```

	ClaimNumber	pred1	pred2	pred3	pred4
1	192	238	212	162	141
2	172	219	195	149	130
3	172	222	198	151	132
4	171	234	208	159	138
5	170	237	211	161	140
6	165	140	198	151	132

Exemple 1B: Division de la base

```
n <- length(dataAGG$Y)</pre>
indice \leftarrow sample(1:n, round(0.5*n,0), replace = FALSE)
dataA <- dataAGG[indice,]</pre>
dataB <- dataAGG[-indice,]</pre>
arbreA <- rpart(Y ~ VehAge + LicenceAge + DriverAge,
                 data = dataA)
arbreB <- rpart(Y ~ VehAge + LicenceAge + DriverAge,
                 data = dataB)
dataAGG$predA <- predict(arbreA, newdata = dataAGG)</pre>
                   *dataAGG$Exposure
dataAGG$predB <- predict(arbreB, newdata = dataAGG)</pre>
                   *dataAGG$Exposure
```

Exemple 1B: Division de la base

round(head(dataAGG[c(5, 11, 12)]), 0)

	ClaimNumber	${\tt predA}$	predB
1	192	145	160
2	172	199	147
3	172	202	149
4	171	212	157
5	170	144	159
6	165	135	149

Principe

- L'approche présentée au dernier cours pour construire des arbres de décision conduit à des prédictions ayant une grande variance.
- Le bagging, ou Bootstrap AGGregatING est un ensemble de (méta-)algorithmes conçus pour améliorer la stabilité et la précision d'un modèle (ou d'un algorithme) utilisé. Il permet également de réduire la variance et d'éviter le surajustement.
- Particulièrement utile pour les arbres de décision.

Algorithme Bagging

- Générer B bases de données d'entrainement différentes.
- ② À partir de chacune des bases de données d'entrainement, construire un modèle $\widehat{f_b}$, $b=1,\ldots,B$.
- Pour une nouvelle observation X, la prédiction agrégée (bagging) sera

$$\widehat{f}_{ag}(\mathbf{X}) = \frac{1}{B} \sum_{b=1}^{B} \widehat{f}_{b}(\mathbf{X}).$$

- (1) Générer les B bases de données.
 - En pratique, on n'a pas accès à B bases de données différentes.
 - Si on divise la base de données initiale en B bases indépendantes (comme pour de la validation croisée), on perd de l'information et les bases ainsi créées sont trop petites (il faut que B soit grand pour que le Bagging soit intéressant).
 - On va plutôt utiliser du bootstrap pour générer ces B bases de données.

- La base de données b, b = 1, ..., B, de taille n est obtenue en pigeant au hasard **avec remise** n observations de la base de données initiale.
- Les B bases de données sont créées à partir de la même base initiale \rightarrow les prédictions obtenues $\widehat{f_b}$ ne sont pas indépendantes.

- (2) Construction du modèle b, b = 1, ..., B.
 - En pratique, quand la technique du *bagging* est utilisée pour des arbres de décision, ces derniers **ne sont pas** élagués.
 - Chacun des arbres b, b = 1, ..., B, a donc un faible biais mais une grande variance.
 - La réduction de la variance se fait à l'étape 3 en agrégeant les différents arbres obtenus.

(3) Agrégation des modèles

$$\begin{split} \operatorname{Var}\left[\widehat{f}_{ag}(\mathbf{X})\right] &= \operatorname{Var}\left[\frac{1}{B}\sum_{b=1}^{B}\widehat{f}_{b}(\mathbf{X})\right] \\ &= \frac{1}{B^{2}}\operatorname{Var}\left[\sum_{b=1}^{B}\widehat{f}_{b}(\mathbf{X})\right] \\ &= \frac{1}{B^{2}}\sum_{b_{1}=1}^{B}\sum_{b_{2}=1}^{B}\operatorname{Cov}\left[\widehat{f}_{b_{1}}(\mathbf{X}),\widehat{f}_{b_{2}}(\mathbf{X})\right] \\ &< \frac{1}{B^{2}}B^{2}\operatorname{Var}\left[\widehat{f}_{b}(\mathbf{X})\right] = \operatorname{Var}\left[\widehat{f}_{b}(\mathbf{X})\right] \end{split}$$

puisque lorsque $b_1 \neq b_2$, on a Corr $\left[\widehat{f}_{b_1}(\mathbf{X}), \widehat{f}_{b_2}(\mathbf{X})\right] < 1$.

Algorithme Bagging

- Empiriquement, on observe qu'agréger des centaines, voire des milliers d'arbres ($B=100,1\,000,10\,000,\ldots$) augmente beaucoup le pouvoir prédictif des arbres de décision.
- Par contre, les résultats sont plus difficiles à interpréter : pas de graphique simple, etc.
- Les logiciels qui offrent ce type de méta-algorithme proposent généralement des méthodes permettant de mesurer l'importance des variables explicatives dans le modèle.

Exemple 2 : Préparation des données

```
library(data.table)
library(rpart)
library(ggplot2)

indice <- sample(1:length(dataAGG$Y), 200, replace = FALSE)
EX2 <- dataAGG[indice, c(1, 6)]
head(EX2)</pre>
```

	DriverAge	Y			
1027	43	0.10064863			
503	52	0.11572296			
8590	61	0.19823609			
12485	54	5.53409091			
8966	68	0.10157119			
3376	35	0.07114336			

Exemple 2 : Préparation des données

Exemple 2 : Modèle sans Bagging

Exemple 2 : Modèle avec Bagging

```
n_model <- 100
bagged_models <- list()</pre>
for (i in 1:n model)
{
new_sample <- sample(1:length(data_test$DriverAge),</pre>
                      size = length(data_test$Y),
                      replace = TRUE)
  bagged_models <- c(bagged_models, list(rpart(Y~DriverAge,
                      data = data_test[new_sample,],
                      control = rpart.control(minsplit = 6))))
```

Exemple 2 : Modèle avec Bagging

```
bagged_result <- NULL
i <- 0
for (j in bagged_models)
  if (is.null(bagged_result))
    bagged_result <- predict(j, EX2)</pre>
  else
    bagged_result <- (i*bagged_result + predict(j, EX2))</pre>
                       /(i + 1)
  i < -i + 1
```

Exemple 2 : Graphique (avec ggplot)

```
gg <- ggplot(data_test, aes(DriverAge,Y), ylim = c(0,2)) +
             geom_point(aes()) +
             coord_cartesian(ylim = c(0, 2))
for (k in bagged_models[1:n_model])
{
  prediction <- predict(k, EX2)</pre>
  data_plot <- data.table(DriverAge=EX2$DriverAge,
                           Y = prediction)
  gg = gg + geom_line(data = data_plot[order(DriverAge)],
       aes(x = DriverAge, y = Y), alpha = 0.2)
```

Exemple 2 : Graphique (avec ggplot)

Exemple 2 : Résultats

Exemple 1C : Bagging

Exemple 1C: Bagging

```
round(head(dataAGG[, c(5, 7:13)]), 0)
```

	${\tt ClaimNumber}$	pred1	pred2	pred3	pred4	predA	predB	predBAG
1	192	238	212	162	141	145	160	155
2	172	219	195	149	130	199	147	153
3	172	222	198	151	132	202	149	150
4	171	234	208	159	138	212	157	154
5	170	237	211	161	140	144	159	154
6	165	140	198	151	132	135	149	144

Exemple 1C: Bagging

```
library(microbenchmark)
FUN <- function(x)
  mean(microbenchmark(arbre4bagging <- bagging(Y ~ VehAge</pre>
       + LicenceAge + DriverAge, data = dataAGG, nbagg = x),
       unit = "ms", times = 20)$time)/1000000
Temps \leftarrow sapply((1:20)*5, function(y) FUN(y))
```

Exemple 1C: Temps de calcul

Principe

- Il s'agit d'un autre (méta-)algorithme qui permet d'améliorer les performances des arbres de décision.
- Dans une situation où une des variables explicatives du modèle a un impact très fort sur la variable réponse, pratiquement tous les arbres impliqués dans une procédure de Bagging se verront divisés au même endroit (±) lors du premier stage de la construction → les prédictions obtenues seront très semblables.
- Les arbres obtenus lors d'une procédure de Bagging sont très fortement corrélés, ce qui limite la diminution de la variabilité des prédictions.

Algorithme

- On génère B bases de données par un double processus d'échantillonnage :
 - la base de données b, b = 1, ..., B, de taille n est obtenue en pigeant au hasard **avec remise**, n observations de la base de données initiale (bootstrap);
 - opour la base de données $b, b=1,\ldots,B$, on conserve uniquement $m \leq p$ variables explicatives (on prend souvent $m \approx \sqrt{p}$). Les variables conservées ne sont pas nécessairement les mêmes d'un échantillon à l'autre.
- ② À partir de chacune des bases de données, construire un modèle $\widehat{f}_b(\mathbf{X}^*)$, $b=1,\ldots,B$.
- O Pour une nouvelle observation X, la prédiction sera

$$\widehat{f}_{rf}(\mathbf{X}) = \frac{1}{B} \sum_{b=1}^{B} \widehat{f}_{b}(\mathbf{X}^{*}).$$

Forêts aléatoires

- La procédure permet de « décorréler » les arbres obtenus → plus grande réduction de la variance possible.
- On a

$$\mathsf{Corr}\left[\widehat{f}_{b_1}(\mathbf{X}),\widehat{f}_{b_2}(\mathbf{X})\right]<<<1\approx 0.$$

 Comme pour le Bagging, les résultats sont plus difficiles à interpréter : pas de graphique simple, etc.

Exemple 3 : Boston

```
### medv: valeur médiane des maisons en 1000$
library(MASS)
data(Boston)
```

head(Boston)

```
dis
                    ptratio black 1stat
                                         medv
          rad
               tax
   4.0900
                       15.3 396.90
                                   4.98 24.0
               296
... 4.9671
                                   9.14 21.6
               242
                      17.8 396.90
... 4.9671
               242
                      17.8 392.83
                                   4.03 34.7
... 6.0622
            3
               222
                      18.7 394.63
                                   2.94
                                         33.4
```

Exemple 3 : Boston

```
train <- sample(1:nrow(Boston), 300)
Boston.rf <- randomForest(medv ~ ., data = Boston,</pre>
                           subset = train)
Boston rf
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 4
Mean of squared residuals: 12.6529
% Var explained: 84.2
plot(Boston.rf)
```

Exemple 3 : Boston

Exemple 3: Boston

```
oob.err <- double(13)
test.err <- double(13)
for(mtry in 1:13)
  rf <- randomForest(medv ~ ., data = Boston, subset = train,
                       mtry = mtry, ntree = 400)
  oob.err[mtry] <- rf$mse[400]
  pred <- predict(rf, Boston[-train,])</pre>
  test.err[mtry] <- with(Boston[-train,],</pre>
                     mean((medv - pred)^2))
```

Exemple 3: Boston

Exemple 3: Temps de calcul (nombre d'arbres)

Exemple 3 : Temps de calcul (nombre d'arbres)

Exemple 3 : Temps de calcul (nombre de variables explicatives)

Exemple 3 : Temps de calcul (nombre de variables explicatives)

