

SPECIALIST 2016

mbers

	YEAR 12 MATHEMATICS S SEMESTER ONE 2 TEST 1: Complex Nu
WESLEY COLLEGE	
By daring & by doing	

	Name	Name:		
Thursday 3 rd March				
Time: 55 minutes	N	I ark	/45 =	%
Answer all questions neatly in tYou are permitted to use the FoYou are permitted one A4 page	ormula Sheet in both se	ections of the	test.	
Calculator free section	Suggested ti	me: 30 minu	ites	/25
1. [7 marks]				
A complex polynomial $P(z)$ is de	fined by $P(z) = z^{3} - 2iz$	2 - 9z + k.		
When $P(z)$ is divided by $(z-1)$,				
a) Show that $k = 18i$				[2]
b) Use synthetic substitution to e	valuate $P(2i)$			[2]
c) Determine all solutions to $P(z)$	z) = 0			[2]
d) Write $P(z)$ as a product of lir	near factors			

2. [6 marks – 1 each]

 ω

A complex number is defined by the vector shown.

Add these vectors to the diagram:

b)
$$\overline{\omega^2}$$

c)
$$\sqrt{\omega}$$

d)
$$i\omega$$

3. [4 marks – 2 each]

- a) Sketch the region which satisfies the inequality $|z+2| \le |z-2-2i|$
- b) This region can also be represented by an inequality of the form $a \operatorname{Re}(z) + b \operatorname{Im}(z) \le 2$. What are the values of a and b?

4. [4 marks]

Determine all solutions to $z^4 = 2 - 2\sqrt{3}i$.

5. [4 marks]

Write inequalities needed to define the shaded region:

Name: ______

6. [8 marks]

$$\mu$$
 and ν
$$\mu = -\sqrt{2} - \sqrt{2}i \qquad \nu = 2\mathrm{cis}\left(\frac{5\pi}{6}\right)$$
 are defined by and

Complex numbers are defined by

a) Write ^{,ll} in polar (cis) form

[1]

b) Convert $^{\nu}$ to rectangular form

[1]

c) Calculate v^2 in polar form

[2]

d) Calculate $\mu \times \nu$ in both polar and rectangular forms

[2]

e) Show clearly how to use your result in (d) to find an exact value for

[2]

7. [5 marks]

$$2|z-3| = |z+3i|$$

Identify the centre and the radius of the circle in the complex plane with equation

8. [7 marks]

z and
$$\omega$$
 $z = r \operatorname{cis}\theta$ $\omega = \operatorname{cis}\left(\frac{2\pi}{3}\right)$

Two complex numbers

are defined by

$$\omega z \qquad \frac{-}{\omega z}$$

On this Argand diagram, *P* represents *z*, *Q* is the product

, R is and M the mid-point of QR

a) Write $^{\omega_Z}$ and $^{-}_{\omega_Z}$ in polar form

[2]

b) Evaluate $\omega + \overline{\omega}$ and hence, or otherwise, show that *M* represents the complex number

[3]