Constrained Optimization Approaches to Estimation of Structural Models:

Mathematical programming with equilibrium constraints (MPEC)

Dynamic Programming and Structural Econometrics #7

Bertel Schjerning, University of Copenhagen

MPEC is used in multiple contexts

Single-Agent Dynamic Discrete Choice Models

- Rust (1987): Bus-Engine Replacement Problem
- Nested-Fixed Point Problem (NFXP)
- ► Su and Judd (2012): Constrained Optimization Approach

Random-Coefficients Logit Demand Models

- ▶ BLP (1995): Random-Coefficients Demand Estimation
- Nested-Fixed Point Problem (NFXP)
- ▶ Dube, Fox and Su (2012): Constrained Optimization Approach

Estimating Discrete-Choice Games of Incomplete Information

- Aguirregabiria and Mira (2007): NPL (Recursive 2-Step)
- ▶ Bajari, Benkard and Levin (2007): 2-Step
- Pakes, Ostrovsky and Berry (2007): 2-Step
- Pesendorfer and Schmidt-Dengler (2008): 2-Step
- ▶ Pesendorfer and Schmidt-Dengler (2010): comments on AM (2007)
- Kasahara and Shimotsu (2012): Modified NPL
- ► Su (2013), Egesdal, Lai and Su (2014): Constrained Optimization

Zurcher's Bus Engine Replacement Problem

- ▶ Choice set: Each bus comes in for repair once a month and Zurcher chooses between ordinary maintenance $(d_t = 0)$ and overhaul/engine replacement $(d_t = 1)$
- ► State variables: Harold Zurcher observes:
 - \triangleright x_t : mileage at time t since last engine overhaul
 - $ightharpoonup \varepsilon_t = [\varepsilon_t(d_t = 0), \varepsilon_t(d_t = 1)]$: other state variable
- Utility function:

$$u(x_t, d, \theta_1) + \varepsilon_t(d_t) = \begin{cases} -RC - c(0, \theta_1) + \varepsilon_t(1) & \text{if } d_t = 1\\ -c(x_t, \theta_1) + \varepsilon_t(0) & \text{if } d_t = 0 \end{cases}$$
(1)

 \triangleright State variables process x_t (mileage since last replacement)

$$p(x_{t+1}|x_t, d_t, \theta_2) = \begin{cases} g(x_{t+1} - 0, \theta_2) & \text{if } d_t = 1\\ g(x_{t+1} - x_t, \theta_2) & \text{if } d_t = 0 \end{cases}$$
 (2)

▶ If engine is replaced, state of bus regenerates to $x_t = 0$.

Structural Estimation

Data:
$$(d_{i,t}, x_{i,t})$$
, $t = 1, ..., T_i$ and $i = 1, ..., n$

Likelihood function

$$\ell_i^f(\theta) = \sum_{t=2}^{T_i} log(P(d_{i,t}|x_{i,t},\theta)) + \sum_{t=2}^{T_i} log(p(x_{i,t}|x_{i,t-1},d_{i,t-1},\theta_2))$$

where

$$P(d|x, \theta) = \frac{\exp\{u(x, d, \theta_1) + \beta EV_{\theta}(x, d)\}}{\sum_{d' \in \{0,1\}} \{u(x, d', \theta_1) + \beta EV_{\theta}(x, d')\}}$$

and

$$\begin{aligned} EV_{\theta}(x,d) &= \Gamma_{\theta}(EV_{\theta})(x,d) \\ &= \int_{y} \ln \left[\sum_{d' \in \{0,1\}} \exp[u(y,d';\theta_{1}) + \beta EV_{\theta}(y,d')] \right] p(dy|x,d,\theta_{2}) \end{aligned}$$

The Nested Fixed Point Algorithm

NFXP solves the *unconstrained* optimization problem

$$\max_{\theta} L(\theta, EV_{\theta})$$

Outer loop (Hill-climbing algorithm):

- Likelihood function $L(\theta, EV_{\theta})$ is maximized w.r.t. θ
- Quasi-Newton algorithm: Usually BHHH, BFGS or a combination.
- ► Each evaluation of $L(\theta, EV_{\theta})$ requires solution of EV_{θ}

Inner loop (fixed point algorithm):

The implicit function EV_{θ} defined by $EV_{\theta} = \Gamma(EV_{\theta})$ is solved by:

- Successive Approximations (SA)
- ► Newton-Kantorovich (NK) Iterations

Mathematical Programming with Equilibrium Constraints

MPEC solves the *constrained* optimization problem

Could impose restrictions on some of the structural params

$$\max_{\theta, EV} L(\theta, EV)$$
 subject to $EV = \Gamma_{\theta}(EV)$

10 constraints, needs to hold for every bellman equation over 10 params

using general-purpose constrained optimization solvers such as KNITRO

Actually more constraints because maximizing likelihood function has constraints as well

Su and Judd (Ecta 2012) considers two such implementations:

MPEC/AMPL:

- AMPL formulates problems and pass it to KNITRO.
- Automatic differentiation (Jacobian and Hessian)
- Sparsity patterns for Jacobian and Hessian

MPEC/MATLAB:

- User need to supply Jacobians, Hessian, and Sparsity Patterns
- Su and Judd do not supply analytical derivatives.
- ktrlink provides link between MATLAB and KNITRO solvers.

Sparsity patterns for MPEC

Two key factors in efficient implementations:

- Provide analytic-derivatives (huge improvement in speed)
- Exploit sparsity pattern in constraint Jacobian (huge saving in memory requirement)

Zurcher's Bus Engine Replacement Problem

Discretize the mileage state space x into n grid points

$$\hat{X} = \{\hat{x}_1, ..., \hat{x}_n\}$$
 with $\hat{x}_1 = 0$

Mileage transition probability: for j = 1, ..., J

$$p(x'|\hat{x}_k, d, \theta_2) = \begin{cases} Pr\{x' = \hat{x}_{k+j} | \theta_2\} = \theta_{2j} \text{ if } d = 0\\ Pr\{x' = \hat{x}_{1+j} | \theta_2\} = \theta_{2j} \text{ if } d = 1 \end{cases}$$

Mileage in the next period x' can move up at most J grid points. J is determined by the distribution of mileage.

Choice-specific expected value function for $\hat{x} \in \hat{X}$

$$EV_{\theta}(\hat{x}, d) = \hat{\Gamma}_{\theta}(EV_{\theta})(\hat{x}, d)$$

$$= \sum_{j}^{J} \ln \left[\sum_{d' \in D(y)} \exp[u(x', d'; \theta_1) + \beta EV_{\theta}(x', d')] \right] p(x'|\hat{x}, d, \theta_2)$$

Bellman equation in matrix form

The choice specific expected value function can be found as fixed point on the Bellman operator

$$EV(d) = \hat{\Gamma}(EV) = \Pi(d) * \ln \left[\sum_{d' \in D(y)} \exp[u(d') + \beta EV(d')] \right]$$

where

$$EV(d) = [EV(1, d), ..., EV(n, d)]$$
 and $u(d) = [u(1, d), ..., u(n, d)]$

 $\Pi(d)$ is a $n \times n$ state transition matrix conditional on decision d

Transition matrix for mileage is sparse

Transition matrix conditional on keeping engine

$$\Pi(d = \text{keep})_{n \times n} = \begin{pmatrix} \pi_0 & \pi_1 & \pi_2 & 0 & \cdot & \cdot & \cdot & 0 \\ 0 & \pi_0 & \pi_1 & \pi_2 & 0 & \cdot & \cdot & 0 \\ 0 & 0 & \pi_0 & \pi_1 & \pi_2 & 0 & \cdot & 0 \\ \cdot & \cdot \\ 0 & & & \pi_0 & \pi_1 & \pi_2 & 0 \\ 0 & & & & \pi_0 & \pi_1 & \pi_2 \\ 0 & & & & & \pi_0 & 1 - \pi_0 \\ 0 & 0 & & & & 1 \end{pmatrix}$$

Transition matrix for mileage is sparse

Transition matrix conditional on replacing engine

$$\Pi(d = \mathsf{replace})_{n \times n} = \begin{pmatrix} \pi_0 & \pi_1 & \pi_2 & 0 & \cdots & 0 \\ \pi_0 & \pi_1 & \pi_2 & 0 & \cdots & 0 \\ \pi_0 & \pi_1 & \pi_2 & 0 & \cdots & 0 \\ \pi_0 & \pi_1 & \pi_2 & 0 & \cdots & 0 \\ \pi_0 & \pi_1 & \pi_2 & 0 & \cdots & 0 \\ \pi_0 & \pi_1 & \pi_2 & 0 & \cdots & 0 \\ \pi_0 & \pi_1 & \pi_2 & 0 & \cdots & 0 \end{pmatrix}$$

Transition matrix is sparse

Monte Carlo: Rust's Table X - Group 1,2, 3

- Fixed point dimension: n = 175
- Maintenance cost function: $c(x, \theta_1) = 0 : 001 * \theta_1 * x$
- ightharpoonup Mileage transition: stay or move up at most J=4 grid points
- ► True parameter values:
 - $\theta_1 = 2:457$
 - RC = 11.726
 - $\bullet (\theta_{21}, \theta_{22}, \theta_{23}, \theta_{24}) = (0.0937, 0.4475, 0.4459, 0.0127)$
- ► Solve for EV at the true parameter values
- ► Simulate 250 datasets of monthly data for 10 years and 50 buses

Is NFXP a dinosaur method?

Su and Judd (Econometrica, 2012)

 $\label{table II} \mbox{Numerical Performance of NFXP and MPEC in the Monte Carlo Experiments}^a$

β	Implementation	Runs Converged (out of 1250 runs)	CPU Time (in sec.)	# of Major Iter.	# of Func. Eval.	# of Contraction Mapping Iter.
0.975	MPEC/AMPL	1240	0.13	12.8	17.6	=
	MPEC/MATLAB	1247	7.90	53.0	62.0	_
	NFXP	998	24.60	55.9	189.4	134,748
0.980	MPEC/AMPL	1236	0.15	14.5	21.8	_
	MPEC/MATLAB	1241	8.10	57.4	70.6	_
	NFXP	1000	27.90	55.0	183.8	162,505
0.985	MPEC/AMPL	1235	0.13	13.2	19.7	_
	MPEC/MATLAB	1250	7.50	55.0	62.3	_
	NFXP	952	43.20	61.7	227.3	265,827
0.990	MPEC/AMPL	1161	0.19	18.3	42.2	_
	MPEC/MATLAB	1248	7.50	56.5	65.8	_
	NFXP	935	70.10	66.9	253.8	452,347
0.995	MPEC/AMPL	965	0.14	13.4	21.3	_
	MPEC/MATLAB	1246	7.90	59.6	70.7	_
	NFXP	950	111.60	58.8	214.7	748,487

^aFor each β , we use five starting points for each of the 250 replications. CPU time, number of major iterations, number of function evaluations and number of contraction mapping iterations are the averages for each run.

NFXP survival kit

- Step 1: Read NFXP manual and print out NFXP pocket guide
- Step 2: Solve for fixed point using Newton Iterations
- Step 3: Recenter Bellman equation
- Step 4: Provide analytical gradients of Bellman operator
- Step 5: Provide analytical gradients of likelihood
- Step 6: Use BHHH (outer product of gradients as hessian approx.)

STEP 1: NFXP documentation

References

Rust (1987): "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher" *Econometrica* 55-5, pp 999-1033.

Rust (2000): "Nested Fixed Point Algorithm Documentation Manual: Version 6" https://editorialexpress.com/jrust/nfxp.html

Iskhakov, F. , J. Rust, B. Schjerning, L. Jinhyuk, and K. Seo (2015): "Constrained Optimization Approaches to Estimation of Structural Models: Comment." *Econometrica* 84-1, pp. 365-370.

Nested Fixed Point Algorithm

NFXP Documentation Manual version 6, (Rust 2000, page 18):

Formally, one can view the nested fixed point algorithm as solving the following constrained optimization problem:

$$\max_{\theta, EV} L(\theta, EV) \text{ subject to } EV = \Gamma_{\theta}(EV)$$
 (3)

Since the contraction mapping Γ always has a unique fixed point, the constraint $EV = \Gamma_{\theta}(EV)$ implies that the fixed point EV_{θ} is an implicit function of θ . Thus, the constrained optimization problem (3) reduces to the unconstrained optimization problem

$$\max_{\theta} L(\theta, EV_{\theta}) \tag{4}$$

where EV_{θ} is the implicit function defined by $EV_{\theta} = \Gamma(EV_{\theta})$.

NFXP pocket guide

STEP 2: Newton-Kantorovich Iterations

Problem: Find fixed point of the contraction mapping

$$EV = \Gamma(EV)$$

- ► Error bound on successive contraction iterations: $||EV_{k+1} EV|| \le \beta ||EV_k EV||$ linear convergence \rightarrow slow when β close to 1
- Newton-Kantorovich: Solve $F = [I \Gamma](EV_{\theta}) = 0$ using Newtons method $||EV_{k+1} EV|| \le A||EV_k EV||^2$ quadratic convergence around fixed point, EV

STEP 2: Newton-Kantorovich Iterations

Convert the problem of finding a fixed point $EV_{\theta} = \Gamma(EV_{\theta})$ into the problem of finding a zero of the nonlinear operator $F_{\theta}(EV_{\theta})$

$$F_{\theta}(EV_{\theta}) = (I - \Gamma_{\theta})(EV_{\theta}) = 0$$

where I is the identity operator on B, and 0 is the zero element of B (i.e. the zero function).

Newton-Kantorovich iteration:

$$EV_{k+1} = EV_k - (I - \Gamma')^{-1}(I - \Gamma)(EV_k)$$

The nonlinear operator $F_{\theta} = I - \Gamma_{\theta}$ has a Fréchet derivative $I - \Gamma'_{\theta}$ which is a bounded linear operator on B with a bounded inverse.

The Fixed Point (poly) Algorithm

- Successive contraction iterations (until EV is in domain of attraction)
- 2. Newton-Kantorovich (until convergence)

STEP 2: Newton-Kantorovich Iterations, $\beta = 0.9999$

Successive Approximations, VERY Slow

```
Begin contraction iterations
                tol tol(j)/tol(j-1)
           0.24310300 0.24310300
           0.24307590 0.99988851
            0.24304810 0.99988564
   : : : : : : 9998 0.08185935 0.99990000
   9999 0.08185116 0.99990000
   10000 0.08184298 0.99990000
   Elapsed time: 1.44752 (seconds)
11
   Begin Newton-Kantorovich iterations
12
    nwt
                t o 1
13
            9.09494702e-13
14
   Elapsed time: 1.44843 (seconds)
15
16
   Convergence achieved!
17
```

STEP 2: Newton-Kantorovich Iterations

Successive Approximations, VERY Slow

STEP 2: Newton-Kantorovich Iterations

Successive Approximations, Linear convergence

STEP 2: Newton-Kantorovich Iterations, $\beta = 0.9999$

Quadratic convergence!

```
Begin contraction iterations
                 tol tol(j)/tol(j-1)
              0.21854635 0.21854635
3
            0.21852208 0.99988895
   Elapsed time: 0.00056 (seconds)
6
   Begin Newton-Kantorovich iterations
     nwt
                 to1
         1.03744352e-02
           4.40564315e-04
10
          8.45941486e-07
11
            3.63797881e-12
12
   Elapsed time: 0.00326 (seconds)
13
14
   Convergence achieved!
15
```

STEP 2: Newton-Kantorovich Iterations

NR: Quadratic convergence!

STEP 2: When to switch to Newton-Kantorovich

Observations:

- $ightharpoonup tol_k = ||EV_{k+1} EV_k|| < \beta ||EV_k EV||$
- ightharpoonup tol_k quickly slow down and declines very slowly for β close to 1
- ▶ Relative tolerance tol_{k+1}/tol_k approach β

When to switch to Newton-Kantorovich?

- Suppose that $EV_0 = EV + k$. (Initial EV_0 equals fixed point EV plus an arbitrary constant)
- ► Another successive approximation does not solve this:

$$tol_{0} = \|EV_{0} - \Gamma(EV_{0})\| = \|EV + k - \Gamma(EV + k)\|$$

$$= \|EV + k - (EV + \beta k)\| = (1 - \beta)k$$

$$tol_{1} = \|EV_{1} - \Gamma(EV_{1})\| = \|EV + \beta k - \Gamma(EV + \beta k)\|$$

$$= \|EV + \beta k - (EV + \beta^{2}k)\| = \beta(1 - \beta)k$$

$$tol_{1}/tol_{0} = \beta$$

- Newton will immediately "strip away" the irrelevant constant k
- Switch to Newton whenever tol_1/tol_0 is sufficiently close to β

STEP 3: Recenter to ensure numerical stability

Logit formulas must be reentered.

$$P_{i} = \frac{\exp(V_{i})}{\sum_{j \in D(y)} \exp(V_{j})}$$
$$= \frac{\exp(V_{i} - V_{0})}{\sum_{j \in D(y)} \exp(V_{j} - V_{0})}$$

and "log-sum" must be recenteret too

$$EV_{\theta} = \int_{y} \ln \sum_{j' \in D(y)} \exp(V_{j}) p(dy|x, d, \theta_{2})$$

$$= \int_{y} \left(V_{0} + \ln \sum_{j' \in D(y)} \exp(V_{j} - V_{0})\right) p(dy|x, d, \theta_{2})$$

If V_0 is chosen to be $V_0 = \max_j V_j$ we can avoid numerical instability due to overflow/underflow

STEP 4: Analytical Fréchet derivative of Bellman operator

Fréchet derivative

 \triangleright For NK iteration we need Γ'

$$EV_{k+1} = EV_k - (I - \Gamma')^{-1}(I - \Gamma)(EV_k)$$

- In terms of its finite-dimensional approximation, Γ'_{θ} takes the form of an $N \times N$ matrix equal to the partial derivatives of the $N \times 1$ vector $\Gamma_{\theta}(EV_{\theta})$ with respect to the $N \times 1$ vector EV_{θ}
- $ightharpoonup \Gamma'_{\theta}$ is simply β times the transition probability matrix for the controlled process $\{d_t, x_t\}$
- Two lines of code in MATLAB

STEP 1-4: MATLAB implementation of Γ_{θ} and Γ'_{θ}

```
function [ev1, pk, dbellman_dev]=bellman_ev(ev, mp, u, P)
1
       vK= u(:,1) + mp.beta*ev; % Value off keep
2
       vR= u(:,2) + mp.beta*ev(1); % Value of replacing
3
5
       % Need to recenter logsum by subtracting max(vK, vR)
6
       maxV=max(vK, vR);
       V = (maxV + log(exp(vK-maxV)) + exp(vR-maxV)));
7
       ev1=P{1}*V;
9
       if nargout>1 % If requested, also compute choice probability
10
         pk=1./(1+exp((vR-vK)));
11
12
       end
13
       if nargout>2 % compute Frechet derivative
         dbellman_dev=mp.beta*(P{1}.*pk');
14
         % Add additional term for derivative wrt Ev(1), since Ev(1) enter logsum f
15
         dbellman_dev(:, 1) = dbellman_dev(:, 1) + mp.beta*P{1}*(1-pk);
16
       end
17
     end % end of zurcher.bellman ev
18
```

Bellman operator can also be written in terms of the smoothed value function

Define the smoothed value function $V_{\sigma}(x) = \int V(x, \epsilon)g(\epsilon|x)d\epsilon$ where σ represents parameters that index the distribution of the $\epsilon's$.

Under our assumptions so far, the smoothed value function, V_{σ} is a fixed point on the mapping

$$V_{\sigma} = \hat{\Gamma}_{\sigma}(V_{\sigma}) = \operatorname{In}\left[\sum_{d' \in D(y)} \exp[u(d') + \beta \Pi(d') * V_{\sigma}]
ight]$$

where
$$V_{\sigma} = [V_{\sigma}(1),..,V_{\sigma}(n)]$$
 and $u(d) = [u(1,d),..,u(n,d)]$

Easy to implement to implement Fréchet derivative.

STEP 1-4: MATLAB implementation based on smoothed value function

```
function [V1, pk, dBellman dV]=bellman iv(V0, mp, u, P)
1
       vK= u(:,1) + mp.beta*P{1}*V0; % Value of keeping
3
       vR= u(:,2) + mp.beta*P{2}*V0; % Value of replacing
       maxV=max(vK, vR);
       V1 = (maxV + log(exp(vK-maxV) + exp(vR-maxV)));
7
       % If requested, also compute choice probability from ev (initial input)
       if nargout>1
9
         pk=1./(1+exp((vR-vK)));
10
       end
11
12
       if nargout>2 % compute Frechet derivative
13
         dBellman dV=mp.beta*(P\{1\}.*pk + P\{2\}.*(1-pk));
14
       end
15
     end % end of zurcher.bellman iv
16
```

STEP 5: Provide analytical gradients of likelihood

Gradient similar to the gradient for the conventional logit

$$\partial \ell_i^1(\theta)/\partial \theta = \sum_{j \in J} (y_{it}^j - P(j|x_{it}, \theta))\partial(v_{it}^j)/\partial \theta$$

for binary replacement choice

$$\partial \ell_i^1(\theta)/\partial \theta = [d_{it} - P(d_{it}|x_{it},\theta)] \times \partial (v_{repl.} - v_{keep})/\partial \theta$$

- ▶ Only thing that differs is the inner derivative of the choice specific value function that besides derivatives of current utility also includes $\partial EV_{\theta}/\partial \theta$ wrt. θ
- By the implicit function theorem we obtain

$$\partial EV_{\theta}/\partial \theta = [I - \Gamma'_{\theta}]^{-1}\partial \Gamma/\partial \theta'$$

▶ By-product of the N-K algorithm: $[I - \Gamma'_{\theta}]^{-1}$

STEP 5: MATLAB implementation of scores

```
1 cost=0.001*mp.c*mp.grid;
   dc=0.001*mp.grid;
3
   % step 1: compute derivative of contraction operator wrt. parameters
   dbellman_dmp=zeros(mp.n,2);
   dbellman\_dmp(:, 1) = (1-pk) * (-1); % Derivative wrt. RC
   dbellman dmp(:, 2)=pk.*(-dc); % Derivative wrt. c
8
   % step 2: compute derivative of ev wrt. parameters
   devdmp=F\dbellman dmp;
10
11
   % step 3: compute derivative of log-likelihood wrt. parameters
12
   score=bsxfun(@times, (data.d-pxR), ...
13
        [-ones(N,1) dc(data.x,:)] + (devdmp(ones(N,1),:)-devdmp(data.x,:)));
14
```

► Recall Newton-Raphson

$$\theta^{g+1} = \theta^g - \lambda \left(\Sigma_i H_i \left(\theta^g \right) \right)^{-1} \Sigma_i s_i \left(\theta^g \right)$$

▶ Berndt, Hall, Hall, and Hausman, (1974): Use *outer product of scores* as approx. to Hessian

$$\theta^{g+1} = \theta^g + \lambda \left(\sum_i s_i s_i' \right)^{-1} \sum_i s_i$$

▶ Why is this valid? Information identity:

$$-E[H_i(\theta)] = E[s_i(\theta)s_i(\theta)']$$

(valid for MLE and CMLE)

Some times linesearch may not help Newtons Method

Advantages

- Σ_is_is_i is always positive definite
 I.e. it always moves uphill for λ small enough
- Does not rely on second derivatives

Disadvantages

- Only a good approximation
 - ► At the true parameters
 - for large N
 - ▶ for well specified models (in principle only valid for MLE)
- Only superlinear convergent not quadratic

We can always use BHHH for first iterations and the switch to BFGS to update to get an even more accurate approximation to the hessian matrix as the iterations start to converge.

Convergence!

 $\beta = 0.9999$

```
Convergence Achieved
10
11
12
   Number of iterations: 9
13
   grad*direc
             0.00003
   Log-likelihood -276.74524
15
16
                      Estimates
      Param.
                                  s.e.
17
    RC.
                        11.1525 0.9167 12.1655
                        2.3298
                                0.3288
20
22
   Time to convergence is 0 min and 0.07 seconds
```

MPEC versus NFXP-NK: sample size 6,000

	Converged	CPU Time	# of Major	# of Func.	# of Bellm.	# of N-K
β	(out of 1250)	(in sec.)	Iter.	Eval.	Iter.	Iter.
		N	ЛРЕС-Matla	ab		
0.975	1247	1.677	60.9	69.9		
0.985	1249	1.648	62.9	70.1		
0.995	1249	1.783	67.4	74.0		
0.999	1249	1.849	72.2	78.4		
0.9995	1250	1.967	74.8	81.5		
0.9999	1248	2.117	79.7	87.5		
			MPEC-AMP	,r		
0.975	1246	0.054	9.3	12.1		
0.985	1217	0.078	16.1	44.1		
0.995	1206	0.080	17.4	49.3		
0.999	1248	0.055	9.9	12.6		
0.9995	1250	0.056	9.9	11.2		
0.9999	1249	0.060	11.1	13.1		
			NFXP-NK			
0.975	1250	0.068	11.4	13.9	155.7	51.3
0.985	1250	0.066	10.5	12.9	146.7	50.9
0.995	1250	0.069	9.9	12.6	145.5	55.1
0.999	1250	0.069	9.4	12.5	141.9	57.1
0.9995	1250	0.078	9.4	12.5	142.6	57.5
0.9999	1250	0.070	9.4	12.6	142.4	57.7

MPEC versus NFXP-NK: sample size 60,000

	Converged	CPU Time	# of Major	# of Func.	# of Bellm.	# of N-K
β	(out of 1250)	(in sec.)	Iter.	Eval.	Iter.	Iter.
		N	ИРЕС-АМР	² L		
0.975	1247	0.53	9.2	11.7		
0.985	1226	0.76	13.9	32.6		
0.995	1219	0.74	14.2	30.7		
0.999	1249	0.56	9.5	11.1		
0.9995	1250	0.59	9.9	11.2		
0.9999	1250	0.63	11.0	12.7		
			NFXP-NK			
0.975	1250	0.15	8.2	11.3	113.7	43.7
0.985	1250	0.16	8.4	11.4	124.1	46.2
0.995	1250	0.16	9.4	12.1	133.6	52.7
0.999	1250	0.17	9.5	12.2	133.6	55.2
0.9995	1250	0.17	9.5	12.2	132.3	55.2
0.9999	1250	0.17	9.5	12.2	131.7	55.4

CPU time is linear sample size

$$T_{NFXP} = 0.001 + 0.13x \ (R^2 = 0.991), \ T_{MPEC} = -0.025 + 1.02x \ (R^2 = 0.988).$$

CPU time is linear sample size

$$T_{NFXP} = 0.129 + 1.07 x \; (R^2 = 0.926) \; , \; T_{MPEC} = -1.760 + 17.51 x \; (R^2 = 0.554).$$

Summary remarks

Su and Judd (Econometrica, 2012) used an inefficient version of NFXP

that solely relies on the method of successive approximations to solve the fixed point problem.

Using the efficient version of NFXP proposed by Rust (1987) we find:

- MPEC and NFXP-NK are similar in performance when the sample size is relatively small.
- ▶ NFXP does not slow down as $\beta \to 1$

Desirable features of MPEC

- Ease of use by people who are not interested in devoting time to the special-purpose programming necessary to implement NFXP-NK.
- Can easily be implemented in the intuitive AMPL language.

Inference

- ▶ NFXP: Trivial to compute standard errors by inverting the Hessian from the unstrained likelihood (which is a by-product of NFXP).
- ▶ MPEC: Standard errors can be computed inverting the *bordered Hessian* Reich and Judd (2019): Develop simple and efficient approach to compute confidence intervals.

MPEC does not seem appropriate when estimating life cycle models