МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Севастопольский государственный университет»

ПЛОСКОСТЬ И ПРЯМАЯ В ПРОСТРАНСТВЕ

Методические указания и контрольные задания для самостоятельной работы по дисциплинам «Высшая математика», «Математика» студентов технических и экономических специальностей

Севастополь СевГУ 2015 УДК 514.1 (076) ББК 22.151 Б77

Плоскость и прямая в пространстве. Методические указания и контрольные задания для самостоятельной работы по дисциплинам «Высшая математика», «Математика» студентов технических и экономических специальностей / Сост.: Е.Г. Бойко, Е.Н. Ларионова, С.Ф. Ледяев — Севастополь: СевГУ, 2015-20 с.

Целью методических указаний является оказание помощи студентам технических специальностей в выполнении самостоятельной работы по разделу «Аналитическая геометрия в пространстве. Плоскость и прямая в пространстве».

Разработан комплекс заданий для работы студентов по теме модуля. Каждое практическое задание содержит 30 вариантов. В большинстве практических задач указаны ответы. Приведен пример выполнения задач с достаточно полными пояснениями.

Методические указания рассмотрены и утверждены к переизданию на заседании кафедры «Высшая математика», протокол № 3 от 25.05.2015 г.

Допущено учебно-методическим центром СевГУ в качестве методических указаний.

Рецензент: ст. преподаватель кафедры «Высшая математика» Деркач Н.А.

СОДЕРЖАНИЕ

1.	Задания по теме «Плоскость и прямая в пространстве»	3
2.	Уравнения плоскости в пространстве	12
3.	Уравнения прямой линии в пространстве	14
4.	Указания к выполнению заданий и примеры решения	16

Задания по теме «Плоскость и прямая в пространстве»

Задание №1.

- 1.1. Записать общее уравнение плоскости, параллельной плоскости xOy и содержащей точку A(1;2;-4).
- 1.2. Найти уравнение плоскости, проходящей через точку A(2;1;-1) и образующую на осях Ох и Оz отрезки, равные соответственно 2 и 1.
- 1.3. Найти уравнение плоскости, зная, что точки A(4;0;-3) и B(1;-5;2) симметричны относительно этой плоскости.
- 1.4. Подвижная точка, имеющая начальное положение $A_0(5;-1;2)$, перемещается параллельно оси ординат. Найти координаты точки её встречи с плоскостью x-2y-3z+7=0.
- 1.5. Найти объём пирамиды, ограниченной координатными плоскостями и плоскостью 3x 5y 6z + 4 = 0.
- 1.6. Дана точка A(-3;4;8). Построить плоскость, проходящую через эту точку параллельно плоскости 2x-3y+z=0.
- 1.7. Доказать, что три плоскости 5x + 8y z 7 = 0, x + 2y + 3z 1 = 0, 2x 8y + 2z 9 = 0 имеют единственную общую точку.
- 1.8. Найти уравнения линий пересечения плоскости 3x + 2y 4z + 2 = 0 с координатными плоскостями.
- 1.9. Дана точка $A_0(3;2;6)$. Найти точку её встречи с плоскостью 3x+y-5z+21=0 при движении по прямой, параллельно оси абсписс.
- 1.10. Найти уравнение плоскости, зная, что точки A(2;3;-5) и B(3;4;1) симметричны относительно этой плоскости.
- 1.11. Найти уравнения линий пересечения плоскости 5x + 2y 3z 10 = 0 с координатными плоскостями.
- 1.12. Подвижная точка, имеющая начальное положение $A_0(2;1;3)$, перемещается параллельно оси аппликат. Найти координаты точки её встречи с плоскостью 2x-3y+z-2=0.

- 1.13. Доказать, что три плоскости 5x + 3y + 10z + 30 = 0, 4x 5y + 10z + 20 = 0, 6x + 11y + 30z = 0 имеют единственную общую точку.
- 1.14. Составить уравнения плоскостей, которые проходят через точку $A_0(2;3;1)$ и отсекают на координатных осях отрезки одинаковой длины.
- 1.15. Составить уравнение плоскости, проходящей через точку $M_0(3;-2;7)$ параллельно плоскости 2x-3z+5=0.
- 1.16. Найти уравнения линий пересечения плоскости 5x 6y + 3z 1 = 0 с координатными плоскостями.
- 1.17. Найти уравнение плоскости, проходящей через ось аппликат и через точку $A_0(-3;2;2)$.
- 1.18. Написать уравнение плоскости, отсекающей на осях аппликат и абсцисс отрезки, равные соответственно 3 и 2, если точка C(1;2;-0,6) принадлежит плоскости.
- 1.19. Плоскость проходит через точку C(2;-2;2) и отсекает на оси абсцисс отрезок -2, на оси аппликат отрезок 2. Составить уравнение плоскости.
- 1.20. Найти уравнение плоскости, зная, что точки A(1;0;3) и B(2;1;-4) симметричны относительно этой плоскости.
- 1.21. Найти уравнение плоскости, проходящей через ось абсцисс и через точку $A_0(2;1;-3)$.
- 1.22. Составить уравнения плоскостей, которые проходят через точку $M_0(2;-3;3)$ параллельно координатным плоскостям.
- 1.23. Вычислить площадь треугольника, отсекаемого плоскостью 2x-3y+5z-30=0 от координатного угла xOy.
- 1.24. Найти объём пирамиды, ограниченной координатными плоскостями и плоскостью 2x + 3y 3z + 6 = 0. Построить пирамиду.
- 1.25. Составить уравнения плоскостей, которые проходят через точку $A_0(4;3;2)$ и отсекают на координатных осях отрезки одинаковой длины.

- 1.26. Плоскость проходит через точку M(6;-10;1) и отсекает на оси абсцисс отрезок -3, на оси аппликат отрезок 2. Составить уравнение плоскости «в отрезках».
- 1.27. Плоскость проходит через точки A(1;2;-1) и B(-3;2;1) и отсекает на оси ординат отрезок, равный трём единицам длины. Найти уравнение плоскости.
- 1.28. Составить уравнение плоскости, проходящей через точку $A_0(3;-1;2)$ параллельно плоскости 2x-y+3z-1=0.
- 1.29. Точка $A_0(2;-1;2)$ основание перпендикуляра, опущенного из начала координат на плоскость. Записать уравнение плоскости.
- 1.30. Даны две точки A(1;3;-2) и B(7;-4;4). Через точку B проходит плоскость, перпендикулярно отрезку AB. Записать уравнение плоскости.

Задание №2.

- 2.1 2.10. Вычислить косинус угла между плоскостями.
- 2.1. 2x y + 2z + 15 = 0, 6x + 2y 3z 1 = 0.
- 2.2. 6x + 2y 4z + 5 = 0, 9x + 3y 6z 2 = 0.
- 2.3. x + 2y z = 0, 2x + y + 4z + 3 = 0.
- 2.4. x + y 1 = 0, $2x y + \sqrt{3}z + 1 = 0$.
- 2.5. 5x-3y+4z-4=0, 3x-4y-2z+5=0.
- 2.6. 5x-3y+5z+5=0, x-2y+3z-5=0.
- 2.7. $x y + \sqrt{2}z 5 = 0$, xOz.
- 2.8. 4x-5y+3z-1=0, x-4y-z+9=0.
- 2.9. 3x y + 2z + 15 = 0, 5x + 9y 3z 1 = 0.
- 2.10. 6x + 2y 4z + 17 = 0, 9x 3y 6z 4 = 0.

- 2.11 2.20. Определить, при каких значениях p, m следующие уравнения будут определять параллельные плоскости.
- 2.11. 2x + py + 3z 5 = 0, mx 6y 6z + 2 = 0.
- 2.12. 3x y + pz 9 = 0, 2x + my + 2z 3 = 0.
- 2.13. mx + 3y 2z 1 = 0, 2x 5y pz 1 = 0.
- 2.14. mx y + 2z + 5 = 0, x + py 6z 1 = 0.
- 2.15. x + py + z 1 = 0, mx 5y z + 3 = 0.
- 2.16. 16x+12y+pz-1=0, 3x+my-6z+5=0.
- 2.17. 8x + py + 3z 5 = 0, mx 6y 9z + 2 = 0.
- 2.18. x y + pz 9 = 0, 2x + my + 5z 3 = 0.
- 2.19. x + my 2z 1 = 0, 2x 5y pz 1 = 0.
- 2.20. 3x y + mz + 5 = 0, x + py 6z 1 = 0.
- 2.21 2.30. Определить, при каком значении m следующие пары уравнений будут определять перпендикулярные плоскости.
- 2.21. 3x 5y + mz 3 = 0, x + 3y + 2z + 5 = 0.
- 2.22 6x + 2y 4z + 5 = 0, mx + 3y 6z 2 = 0.
- 2.23. x + 2y mz = 0, 2x + y + 4z + 3 = 0.
- 2.24. x + y 1 = 0, 2x y + mz + 1 = 0.
- 2.25. mx 3y + 4z 4 = 0, 3x 4y 2z + 5 = 0.
- 2.26. 5x-3y+5z+5=0, x+my+3z-5=0.
- 2.27. x-y+z-5=0, mx-6y-9z+2=0
- 2.28. 4x my + 3z 1 = 0, x 4y z + 9 = 0.
- 2.29. 3x y + 2z + 15 = 0, 5x + my 3z 1 = 0.
- 2.30 3x y + mz + 5 = 0, 6x + 2y 4z + 5 = 0.

Задание №3. Даны координаты точек N, M, P, F. Найти общее уравнение плоскости, проходящей через точки N, M, P. Определить расстояние от точки F до плоскости NMP. Записать уравнение плоскости «в отрезках» и построить плоскость в системе координат.

плоскость в системе координат.				
Вариа	Координаты точек			T
HT	N	M	P	F
3.1	(1; 3; 6)	(2; 2; 1)	(-1; 0; 1)	(-4; 6; -3)
3.2	(1; 3; -7)	(2; -3; 5)	(3; -1; 6)	(4; -1; -3)
3.3	(7; 2; 4)	(7; -1; -2)	(3; 3; 1)	(-4; 2; 1)
3.4	(2; 1; 4)	(-1; 5; -2)	(-7; -3; 2)	(-6; -3; 6)
3.5	(-1; -5; 2)	(-6; 0; -3)	(3; 6; -3)	(-10; 6; 7)
3.6	(0; -1; -1)	(-2; 3; 5)	(1; -5; -9)	(-1; -6; 3)
3.7	(5; 2; 0)	(2; 5; 0)	(1; 2; 4)	(-1; 1; 1)
3.8	(2; -1; -2)	(1; 2; 1)	(5; 0; -6)	(-10; 9; -7)
3.9	(-2; 0; -4)	(-1; 7; 1)	(4; -8; -4)	(1; -4; 6)
3.10	(3; 4; -5)	(0; 7; 9)	(-1; 2; -3)	(7; -2; 0)
3.11	(1; 2; 0)	(3; 0; -3)	(5; 2; 6)	(8; 4; -9)
3.12	(2; -1; 2)	(1; 2; -1)	(3; 2; 1)	(-4; 2; 5)
3.13	(1; 1; 2)	(-1; 1; 3)	(2; -2; 4)	(-1; 0; -2)
3.14	(2; 3; 1)	(4; 1; -2)	(6; 3; 7)	(7; 5; -3)
3.15	(1; 1; -1)	(2; 3; 1)	(3; 2; 1)	(5; 9; -8)
3.16	(1; 5; -7)	(-3; 6; 3)	(-2; 7; 3)	(-4; 8; -12)
3.17	(-3; 4; -7)	(1; 5; -4)	(-5; -2; 0)	(2; 5; 4)
3.18	(-1; 2; -3)	(4; -1; 0)	(2; 1; -2)	(3; 4; 5)
3.19	(4; -1; 3)	(-2; 1; 0)	(0; -5; 1)	(3; 2; -6)
3.20	(1; -1; 1)	(-2; 0; 3)	(2; 1; -1)	(2; -2; -4)
3.21	(1; 2; 0)	(1; -1; 2)	(0; 1; -1)	(-3; 0; 1)
3.22	(1; 0; 2)	(1; 2; -1)	(2; -2; 1)	(2; 1; 0)
3.23	(1; 2; -3)	(1; 0; 1)	(-2; -1; 6)	(0; -5; -4)
3.24	(3; 10; -1)	(-2; 3; -5)	(-6; 0; -3)	(1; -1; 2)
3.25	(-1; 2; 4)	(-1; -2; -4)	(3; 0; -1)	(7; -3; 1)
3.26	(0; -3; 1)	(-4; 1; 2)	(2; -1; 5)	(3; 1; -4)
3.27	(1; 3; 0)	(4; -1; 2)	(3; 0; 1)	(-4; 3; 5)
3.28	(1; 4; -7)	(4; 1; 8)	(2; 3; -4)	(0; 1; 3)
3.29	(1; 2; 5)	(-1; 4; 3)	(-3; 0; 2)	(6; 5; 4)
3.30	(2; 1; -3)	(3; 5; -1)	(4; -7; 5)	(1; -1; 2)

Ответы (расстояние): 3.1) 7,483. 3.2) 3,097. 3.3) 4,196. 3.4) 2,132. 3.5) 12,329. 3.6) 5,516. 3.7) 3,464. 3.8) 14,967. 3.9) 7,071. 3.10) 8,338. 3.11) 7,286. 3.12) 7,036. 3.13) 4,183. 3.14) 5. 3.15) 10,914. 3.16) 7. 3.17) 3,173. 3.18) 7,071. 3.19) 7,603. 3.20) 3,284. 3.21) 3,082. 3.22) 0,798. 3.23) 6,532. 3.24) 7. 3.25) 4. 3.26) 6,964. 3.27) 6,124. 3.28) 2,828. 3.29) 3,556. 3.30) 2,364.

Задание №4. Найти канонические и параметрические уравнения прямой, проходящей через точки N, M. Определить синус угла между прямой NM и заданной плоскостью.

Вари	N	M	Плоскость
ант	2	2	
1	2	3	4
4.1	(-4; 6; -3)	(0; 6; 10)	x + 3y + 2z + 5 = 0
4.2	(4; -1; -3)	(4; 10; 5)	6x + 2y - 4z + 5 = 0
4.3	(-4; 2; 1)	(-4; 10; 1)	2x + y + 4z + 3 = 0
4.4	(-6; -3; 6)	(1; 0; 5)	3x - 4y - 2z + 5 = 0
4.5	(-10; 6; 7)	(-10; 3; 1)	x - 3y + 5z + 5 = 0
4.6	(-1; -6; 3)	(1; 6; 3)	x - y + z - 5 = 0
4.7	(-1; 1; 1)	(2; -7; 0)	x - 4y - z + 9 = 0
4.8	(-10; 9; -7)	(-10; 10; 0)	3x - y + 2z + 15 = 0
4.9	(1; -4; 6)	(2; -7; 5)	6x + 2y - 4z + 5 = 0
4.10	(7; -2; 0)	(10; 1; 2)	6x + 2y - 4z + 17 = 0
4.11	(8; 4; -9)	(8; -4; -10)	9x - 3y - 6z - 4 = 0
4.12	(-4; 2; 5)	(4; 2; 20)	3x - y + 2z + 15 = 0
4.13	(-1; 0; -2)	(3; 5; 0)	5x + 9y - 3z - 1 = 0
4.14	(7; 5; -3)	(0; 10; -7)	4x - 5y + 3z - 1 = 0
4.15	(5; 9; -8)	(1; 9; 0)	x - 4y - z + 9 = 0
4.16	(-4; 8; -12)	(1; 0; -12)	5x - 3y + 5z + 5 = 0
4.17	(2; 5; 4)	(3; 5; -1)	x - 2y + 3z - 5 = 0
4.18	(3; 4; 5)	(0; -1; 10)	5x - 3y + 4z - 4 = 0
4.19	(3; 2; -6)	(0; 10; 15)	3x - 4y - 2z + 5 = 0
4.20	(2; -2; -4)	(4; 3; -1)	x + y - 1 = 0
4.21	(-3; 0; 1)	(3; 5; 1)	x + 2y - z = 0
4.22	(2; 1; 0)	(10; 1; -5)	2x + y + 4z + 3 = 0

1	2	3	4
4.23	(0; -5; -4)	(2; -1; 4)	6x + 2y - 4z + 5 = 0
4.24	(1; -1; 2)	(2; -1; 10)	9x + 3y - 6z - 2 = 0
4.25	(7; -3; 1)	(7; 0; 10)	6x + 2y - 3z - 1 = 0
4.26	(3; 1; -4)	(1; 9; 4)	x - 3y + 2z + 15 = 0
4.27	(-4; 3; 5)	(4; 0; -5)	x - 2y - 4z + 5 = 0
4.28	(0; 1; 3)	(5; 4; 3)	x - 2y - 4z + 17 = 0
4.29	(6; 5; 4)	(12; 0; 4)	2x - 3y - 5z - 4 = 0
4.30	(1; -1; 2)	(10; 10; 11)	5x - 2y + z + 15 = 0

Ответы (синус угла): 4.1) 0,589. 4.2) 0,098. 4.3) 0,218. 4.4) 0,266. 4.5) 0,529. 4.6) 0,475. 4.7) 0,986. 4.8) 0,491. 4.9) 0,161. 4.10) 0,456. 4.11) 0,331. 4.12) 0,849. 4.13) 0,820. 4.14) 0,969. 4.15) 0,316. 4.16) 0,676. 4.17) 0,734. 4.18) 0,368. 4.19) 0,680. 4.20) 0,375. 4.21) 0,836. 4.22) 0,093. 4.23) 0,175. 4.24) 0,431. 4.25) 0,316. 4.26) 0,233. 4.27) 0,896. 4.28) 0,037. 4.29) 0,561. 4.30) 0,347.

Задание №5

Прямая задана как линия пересечения двух непараллельных плоскостей. Написать канонические и параметрические уравнения прямой в пространстве. Определить косинусы углов прямой с координатными осями.

5.1
$$2x+3y+z+6=0$$
, $x-3y-2z+3=0$.

5.2
$$x-2y+z-4=0$$
, $2x+2y-z-8=0$.

5.3
$$x+5y+2z-4=0$$
, $-2x+2y+2z+3=0$.

$$5.4 \quad x - 3y + 2z + 2 = 0$$
, $x + 3y + z + 14 = 0$.

5.5
$$2x - y + 2z - 7 = 0$$
, $x - 2y + 3z + 4 = 0$.

5.6
$$3x - y + 2z - 4 = 0$$
, $2x + 2y - z - 4 = 0$.

5.7
$$6x-7y+z+4=0$$
, $2x+3y-z-8=0$.

5.8
$$2x-2y+z-3=0$$
, $x+3y+z-5=0$.

5.9
$$x + y + z - 2 = 0$$
, $x - y - 2z + 2 = 0$.

5.10
$$3x + y - z - 6 = 0$$
, $3x - y + 2z = 0$.

5.11
$$x-y-z-2=0$$
, $x-2y+z+4=0$.

5.12
$$3x + 3y - 2z - 1 = 0$$
, $2x - 3y + z + 6 = 0$.

5.13
$$4x - y + 5z - 6 = 0$$
, $6x + y - z + 7 = 0$.

5.14
$$5x-4y+6z-1=0$$
, $2x-y-z+2=0$.

5.15
$$2x + y - 3z - 2 = 0$$
, $2x - y + z + 6 = 0$.

5.16
$$3x - y - 3z - 1 = 0$$
, $-x + y + z + 10 = 0$.

5.17
$$4x + y + z + 2 = 0$$
, $2x - y - 3z - 8 = 0$.

5.18
$$3x - y - z + 3 = 0$$
, $2x + y - 3z - 4 = 0$.

5.19
$$2x-3y-3z-9=0$$
, $x-2y+z+3=0$.

5.20
$$x+2y+z-1=0$$
, $x-2y+z+1=0$.

5.21
$$x-y-z-1=0$$
, $x-y+2z+1=0$.

5.22
$$x+2y+z-1=0$$
, $3x-y+4z-10=0$.

5.23
$$4x + y - 6z - 2 = 0$$
, $x + y - 3z + 2 = 0$.

5.24
$$2x - y + z - 4 = 0$$
, $x + 3y - 4z + 4 = 0$.

5.25
$$2x+3y-4z+5=0$$
, $x-y+z=0$.

5.26
$$x-2y-z-1=0$$
, $3x-y+z-2=0$.

5.27
$$2x+3y+2z+8=0$$
, $x-y-z-9=0$.

5.28
$$x-2y+3z-4=0$$
, $2x+3y-4z+6=0$.

5.29
$$x-2y+3z+1=0$$
, $2x+y-4z-8=0$.

5.30
$$3x - y + 2z - 7 = 0$$
, $x + 3y - 2z + 3 = 0$.

Ответы ($\cos\alpha$; $\cos\beta$; $\cos\gamma$): 5.1) (0,28; 0,466; 0,839). 5.2) (0; 0,447; 0,894).

Задание №6. Задано общее уравнение плоскости и точка $M_0(x_0,y_0,z_0)$. Записать уравнение прямой, проходящей через точку $M_0(x_0,y_0,z_0)$ перпендикулярно плоскости. Найти координаты точки пересечения прямой и плоскости.

Вариан	Плоскость	$M_0(x_0, y_0, z_0)$
T		0 \ 0 \ 2 \ 0 \ 0 \
1	2	3
6.1	5x - 2y + z + 15 = 0	(10; 10; 9)
6.2	2x - 3y - 5z - 4 = 0	(12; 5; 4)
6.3	x - 2y - 4z + 17 = 0	(5; 4; 3)
6.4	x - 2y - 4z + 5 = 0	(4; 0; -5)
6.5	x - 3y + 2z + 15 = 0	(1; 9; 4)
6.6	6x + 2y - 3z - 1 = 0	(7; 0; 10)
6.7	9x + 3y - 6z - 2 = 0	(2; -1; 10)
6.8	6x + 2y - 4z + 5 = 0	(2; -1; 4)
6.9	2x + y + 4z + 3 = 0	(10; 1; -5)
6.10	x + 3y - z = 0	(3; 5; 1)
6.11	x + y - 1 = 0	(9; 3; -1)
6.12	3x - 4y - 2z + 5 = 0	(0; 10; 15)
6.13	5x - 3y + 4z - 4 = 0	(0; -1; 10)
6.14	x - 2y + 3z - 5 = 0	(3; 5; -1)
6.15	5x - 3y + 5z + 5 = 0	(2; 4; -12)
6.16	x - 4y - z + 9 = 0	(5; 9; 1)
6.17	4x - 5y - 3z - 1 = 0	(0; 10; -7)
6.18	5x + 9y - 3z - 1 = 0	(3; 5; 0)
6.19	3x - y + 2z + 15 = 0	(4; 2; 20)
6.20	9x - 3y - 6z - 4 = 0	(8; -4; -10)
6.21	6x + 2y - 4z + 17 = 0	(10; 1; 2)
6.22	6x + 2y - 4z + 5 = 0	(2; -7; 5)
6.23	3x - y + 2z + 15 = 0	(-10; 10; 0)

1	2	3
6.24	x - 4y - z + 9 = 0	(2; -7; 0)
6.25	x - y + z - 5 = 0	(1; 6; 3)
6.26	x - 3y + 5z + 5 = 0	(-10; 3; 1)
6.27	3x - 4y - 2z + 5 = 0	(1; 0; 5)
6.28	2x + y + 4z + 3 = 0	(-4; 10; 1)
6.29	6x + 2y - 4z + 5 = 0	(4; 10; 5)
6.30	x + 3y + 2z + 5 = 0	(0; 6; 10)

Ответы (координаты точки пересечения): 6.1) (1,0; 13,6; 7,2). 6.2) (12,789; 3,816; 2,026). 6.3) (4,905; 4,19; 3,381). 6.4) (2,619; 2,762; 0,524). 6.5) (1,214; 8,357; 4,429). 6.6) (5,653; -0,449; 10,673). 6.7) (5,357; 0,119; 7,762). 6.8) (2,107; -,0964; 3,929). 6.9) (9,619; 0,81; -5,762). 6.10) (1,455; 0,364; 2,545). 6.11) (3,5; -2,5; -1). 6.12) (6,724; 1,034; 10,517). 6.13) (-3,9; 1,344; 6,88). 6.14) (4,071; 2,857; 2,214). 6.15) (6,831; 1,102; -7,169). 6.16) (6,278; 3,889; -0,278). 6.17) (2,4; 7,0; 8,8). 6.18) (0,435; 0,383; 1,539). 6.19) (-9,929; 6,643; 10,714). 6.20) (-2,0; -0,667; -3,333). 6.21) (2,393; -1,536; 7,071). 6.22) (3,821; -6,393; 3,786). 6.23) (-4,643; 8,214; 3,571). 6.24) (-0,167; 1,667; 2,167). 6.25) (3,333; 3,667; 5,333). 6.26) (-9,743; 2,229; 2,286). 6.27) (1,207; -0,276; 4,862). 6.28) (-4,857; 9,571; -0,714). 6.29) (0,893; 8,964; 7,071). 6.30) (-3,071; -3,214; 3,857).

Уравнения плоскости в пространстве

В пространстве с заданной декартовой системой координат однозначное расположение плоскости можно задать различными способами, существуют различные уравнения плоскости в пространстве.

Пусть точки $N(x_1, y_1, z_1)$, $M(x_2, y_2, z_2)$, $P(x_3, y_3, z_3)$ не лежат на одной прямой. Тогда через них можно провести плоскость, причем только одну. Пусть в этой же плоскости лежит точка G(x, y, z) с текущими координатами. Уравнение плоскости, проходящей через три точки:

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$$
 (1)

Уравнение плоскости, проходящей через заданную точку $M_0(x_0, y_0, z_0)$ перпендикулярно заданному вектору $\bar{N}(A,B,C)$

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0. (2)$$

Если в уравнении (2) раскрыть скобки и обозначить свободный член через D, получим общее уравнение плоскости:

$$Ax + By + Cz + D = 0. ag{3}$$

Примечание. Если в общем уравнении (3) один из коэффициентов $A,\ B,\ C$ равен нулю, то плоскость проходит параллельно соответствующей оси. Если два коэффициента из $A,\ B,\ C$ равны нулю, плоскость параллельна одной из координатных плоскостей. Например, плоскость 4x-5z-1=0 проходит параллельно оси Oy, плоскость y+3=0 проходит параллельно координатной плоскости xOz через точку y=-3 на оси Oy. Коэффициенты $A,\ B,\ C$ в общем уравнении являются одновременно координатами вектора $\vec{N}(A,B,C)$, перпендикулярного плоскости.

Уравнение плоскости в отрезках:

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1. \tag{4}$$

Здесь a,b,c - отрезки, отсекаемые плоскостью на осях координат.

Нормальное уравнение плоскости

Пусть задан радиус-вектор единичной длины $\vec{n}(\cos\alpha,\cos\beta,\cos\gamma)$, где α,β,γ - углы между вектором \vec{n} и положительными полуосями координат. Задано также расстояние OD=p от начала координат до плоскости.

В произвольную точку плоскости M(x, y, z) проведем радиусвектор, координаты которого совпадают с координатами точки M.

Векторное уравнение плоскости:

$$\vec{OM} \cdot \vec{n} - p = 0. \tag{5}$$

Координатная форма уравнения (5) называется нормальным уравнением плоскости:

$$x \cdot \cos \alpha + y \cdot \cos \beta + z \cdot \cos \gamma - p = 0. \tag{6}$$

Формула нормирующего множителя для перехода от общего уравнения к нормальному:

$$\mu = \frac{-\operatorname{sgn}(D)}{\sqrt{A^2 + B^2 + C^2}} \,. \tag{7}$$

Формула для определения расстояния ρ от точки $M_0(x_0, y_0, z_0)$ до плоскости, заданной уравнением (3):

$$\rho = \frac{\left| Ax_0 + By_0 + Cz_0 + D \right|}{\sqrt{A^2 + B^2 + C^2}}.$$
 (8)

Две плоскости перпендикулярны (параллельны) друг другу, если перпендикулярны (параллельны) их векторы нормали. Поэтому, если даны две плоскости

$$A_1x + B_1y + C_1z + D_1 = 0,$$

 $A_2x + B_2y + C_2z + D_2 = 0,$

то условие перпендикулярности плоскостей:

$$A_1 A_2 + B_1 B_2 + C_1 C_2 = 0, (9)$$

условие параллельности плоскостей:

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}. (10)$$

Угол между плоскостями можно определить по формуле

$$\cos \alpha = \frac{\left| A_1 A_2 + B_1 B_2 + C_1 C_2 \right|}{\sqrt{A_1^2 + B_1^2 + C_1^2} \cdot \sqrt{A_2^2 + B_2^2 + C_2^2}}$$
 (11)

Уравнения прямой линии в пространстве

Уравнения прямой, проходящей через заданную точку $M_0(x_0,y_0,z_0)$ параллельно заданному вектору $\vec{S}(n,m,p)$, где M(x,y,z) принадлежащая прямой линии точка с переменными координатами, имеют вид:

$$\frac{x - x_0}{n} = \frac{y - y_0}{m} = \frac{z - z_0}{p} \,. \tag{12}$$

Уравнения (12) называются каноническими уравнениями прямой в пространстве.

Уравнения прямой, проходящей через две точки $M_1(x_1, y_1, z_1)$ и $M_2(x_2, y_2, z_2)$:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}.$$
 (13)

Параметрические уравнения прямой:

$$\begin{cases} x = x_0 + nt, \\ y = y_0 + mt, \ t \in (-\infty, \infty). \end{cases}$$

$$z = z_0 + pt, \tag{14}$$

Прямая в пространстве может задана как линия пересечения двух плоскостей:

$$\begin{cases}
Ax + By + Cz + D = 0, \\
A_1x + B_1y + C_1z + D_1 = 0.
\end{cases}$$
(15)

Условия перпендикулярности и параллельности двух прямых

Две прямые линии в пространстве, заданные каноническими

$$\frac{x-x_1}{n_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{p_1}$$
 и $\frac{x-x_2}{n_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{p_2}$ будут параллельны, если

соответствующие направляющие векторы коллинеарны: $\frac{n_1}{n_2} = \frac{m_1}{m_2} = \frac{p_1}{p_2}$.

Две прямые перпендикулярны, если перпендикулярны направляющие векторы: $n_1n_2 + m_1m_2 + p_1p_2 = 0$.

Условия перпендикулярности и параллельности прямой и плоскости

Пусть задана плоскость (р) Ax + By + Cz + D = 0, нормальный вектор

Рисунок 1 – Прямая и плоскость

которой $\vec{N}(A,B,C)$, и прямая L в $\vec{N}(A,B,C)$ L пространстве $\frac{x-x_0}{n} = \frac{y-y_0}{m} = \frac{z-z_0}{p},$ направляющий вектор которой $\vec{S}(n,m,p)$ (см. рисунок 1). Обозначим $\angle \alpha$ - угол межлу прямой и вектором \vec{N} , $\angle \beta$ - угол между прямой и плоскостью.

Если прямая перпендикулярна плоскости, то векторы \vec{N} и \vec{S} коллинеарны:

$$\frac{A}{n} = \frac{B}{m} = \frac{C}{p} \cdot$$

Если прямая параллельна плоскости, то векторы \vec{N} и \vec{S} перпендикулярны между собой:

$$A \cdot n + B \cdot m + C \cdot p = 0$$
.

Угол β между прямой и плоскостью можно определить по формуле:

$$\cos \alpha = \sin \beta = \frac{|An + Bm + Cp|}{\sqrt{A^2 + B^2 + C^2} \cdot \sqrt{n^2 + m^2 + p^2}}.$$
 (16)

Указания к выполнению заданий и примеры решения

Задание №1. При выполнении вариантов задания следует использовать уравнения плоскости (2) — (4) и примечания к уравнению (3). Если три плоскости имеют единственную общую точку, это означает, что система линейных алгебраических уравнений, составленная из уравнений плоскостей, имеет единственное решение (нужно применить правило Крамера).

Задание №2.

В вариантах 2.1 - 2.10. вычислить косинус угла между заданными плоскостями поможет формула (11).

В вариантах 2.11-2.20. определить, при каких значениях p, m заданные уравнения будут определять параллельные плоскости, помогут условия параллельности плоскостей (10).

В вариантах 2.21-2.30. определить, при каком значении m заданные пары уравнений будут определять перпендикулярные плоскости, помогут условия перпендикулярности плоскостей (9).

Задание №3. Даны координаты точек N, M, P, F. Найти общее уравнение плоскости, проходящей через точки N, M, P. Определить расстояние от точки F до плоскости NMP. Записать уравнение плоскости «в отрезках» и построить плоскость в системе координат.

Дано:
$$N(-2;1;5)$$
, $M(3;6;-2)$, $P(5;-8;3)$, $F(10;-4;6)$

Решение. Используем уравнение плоскости, проходящей через три точки (1):

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$$

Считая точки N, M, P первой, второй и третьей точкой, подставим их координаты в уравнение (1):

$$\begin{vmatrix} x+2 & y-1 & z-5 \\ 3+2 & 6-1 & -2-5 \\ 5+2 & -8-1 & 3-5 \end{vmatrix} = 0,$$
 $\begin{vmatrix} x+2 & y-1 & z-5 \\ 5 & 5 & -7 \\ 7 & -9 & -2 \end{vmatrix} = 0;$ раскрывая

определитель, получим общее уравнение плоскости:

$$-73x-39y-80z+293=0$$
.

Расстояние от точки F до плоскости определяем по формуле (8):

$$\rho = \frac{\left|Ax_0 + By_0 + Cz_0 + D\right|}{\sqrt{A^2 + B^2 + C^2}}, \ \text{где}\left(x_0, y_0, z_0\right) \text{- координаты точки } F \ .$$

$$\rho = \frac{\left| -73 \cdot 10 - 39 \cdot (-4) - 80 \cdot 6 + 293 \right|}{\sqrt{(-73)^2 + (-39)^2 + 80^2}} = 6,611.$$

Запишем уравнение плоскости -73x - 39y - 80z + 293 = 0 «в отрезках».

$$-73x-39y-80z=-293$$
, разделим на -293. Запишем в виде:

$$\frac{x}{293/73} + \frac{y}{293/39} + \frac{z}{293/80} = 1$$
 или $\frac{x}{4.0143} + \frac{y}{7.513} + \frac{z}{3.663} = 1$.

Рисуем декартову систему координат в пространстве, на оси Ох ставим точку 4,0143, на оси Оу ставим точку 7,513, на оси Оz ставим точку 3,663. Каждая пара точек определяет линию пересечения заданной плоскости и координатной плоскости. Соединяем точки отрезками прямых. Полученный треугольник принадлежит плоскости (см. рисунок 2).

Рисунок 2 — плоскость в задании №3

Задание №4. Найти канонические и параметрические уравнения прямой, проходящей через точки N, M. Определить синус угла между прямой NM и заданной плоскостью.

Дано: N(2;-3;4), M(9;12;7), 3x-2y-2z+10=0.

Решение. Используем уравнения прямой, проходящей через две точки: $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$. Считая точку N первой, а точку

M - второй, подставим их координаты в уравнения.

$$\frac{x-2}{9-2} = \frac{y+3}{12+3} = \frac{z-4}{7-4}, \quad \frac{x-2}{7} = \frac{y+3}{15} = \frac{z-4}{3}.$$
 Последние уравнения – канонические. В знаменателях дробей расположены координаты направляющего вектора: $\vec{S}(7;15;3)$. Приравнивая каждую дробь параметру t и выражая переменные, получим параметрические уравнения прямой (14):

$$\begin{cases} x = 2 + 7t, \\ y = -3 + 15t, \ t \in (-\infty; \infty). \\ z = 4 + 3t, \end{cases}$$

Синус угла между прямой NM и заданной плоскостью определяем по формуле (16). Здесь A=3, B=-2, C=-2 - коэффициенты при переменных в уравнении плоскости (координаты нормального вектора к плоскости), n,m,p - координаты направляющего вектора $\vec{S}(7;15;3)$.

$$\cos \alpha = \sin \beta = \frac{|3 \cdot 7 - 2 \cdot 15 - 2 \cdot 3|}{\sqrt{3^2 + (-2)^2 + (-2)^2} \cdot \sqrt{7^2 + 15^2 + 3^2}} = \frac{15}{\sqrt{17}\sqrt{283}} = 0.216$$

Задание №5. Прямая задана как линия пересечения двух непараллельных плоскостей. Написать канонические и параметрические уравнения прямой в пространстве. Определить косинусы углов прямой с координатными осями.

Дано:
$$5x-3y+z+6=0$$
, $-x+3y-2z+3=0$.

Решение. Вначале определяем координаты одной из точек пересечения плоскостей. Для этого одну из координат точки задаем произвольно. Пусть $x_0=0$. Подставим эту координату в уравнения плоскостей. Полученные два уравнения составляют систему. Решаем

систему:
$$\begin{cases} -3y_0 + z_0 = -6, \\ 3y_0 - 2z_0 = -3, \end{cases}$$
 откуда $z_0 = 9$, $y_0 = 5$.

Нашли точку пересечения $M_0(0;9;5)$.

Направляющий вектор прямой перпендикулярен нормальным векторам плоскостей, поэтому его определяем как векторное произведение $\vec{S} = \vec{N}_1 \times \vec{N}_2$.

$$\vec{S} = \vec{N}_1 \times \vec{N}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 5 & -3 & 1 \\ -1 & 3 & -2 \end{vmatrix} = \vec{i} \begin{vmatrix} -3 & 1 \\ 3 & -2 \end{vmatrix} - \vec{j} \begin{vmatrix} 5 & 1 \\ -1 & -2 \end{vmatrix} + \vec{k} \begin{vmatrix} 5 & -3 \\ -1 & 3 \end{vmatrix} =$$

$$= 3\vec{i} + 9\vec{i} + 12\vec{k} .$$

Канонические уравнения прямой:
$$\frac{x}{3} = \frac{y-9}{9} = \frac{z-5}{12}$$
.

Параметрические уравнения прямой:
$$\begin{cases} x = 3t, \\ y = 9 + 9t, & t \in (-\infty, \infty). \\ z = 5 + 12t, \end{cases}$$

Обозначим углы между прямой и координатными осями Ох, Оу, Оz соответственно α, β, γ . Косинусы углов между прямой и координатными осями определяем как модули косинусов углов между

направляющим вектором
$$\vec{S}$$
 и ортами \vec{i} , \vec{j} , \vec{k} : $\cos \alpha = \frac{|n|}{|\vec{S}|}$,

$$\cos \beta = \frac{|m|}{|\vec{S}|}, \quad \cos \gamma = \frac{|p|}{|\vec{S}|}. \quad \cos \alpha = \frac{|3|}{\sqrt{3^2 + 9^2 + 12^2}} = \frac{3}{\sqrt{234}} = 0,196,$$
$$\cos \beta = \frac{9}{\sqrt{234}} = 0,588, \quad \cos \gamma = \frac{12}{\sqrt{234}} = 0,784.$$

Задание №6. Задано общее уравнение плоскости и точка $M_0(x_0,y_0,z_0)$. Записать уравнение прямой, проходящей через точку $M_0(x_0,y_0,z_0)$ перпендикулярно плоскости. Найти координаты точки пересечения прямой и плоскости.

Дано:
$$M_0(3,-5,7)$$
, $7x-2y-4z+10=0$.

Решение. Нормальный вектор плоскости $\vec{N}(7;-2;-4)$ является направляющим для искомой прямой. Запишем канонические и параметрические уравнения прямой:

$$\frac{x-3}{7} = \frac{y+5}{-2} = \frac{z-7}{-4}; \begin{cases} x = 3+7t, \\ y = -5-2t, \\ z = 7-4t. \end{cases}$$

В точке пересечения прямой и плоскости координаты совпадают, поэтому в уравнение плоскости подставим координаты точки прямой, выраженные через параметр.

$$7(3+7t)-2(-5-2t)-4(7-4t)+10=0$$
, $t=-\frac{13}{69}$. Вычисляем

координаты точки пересечения: $x = 3 - 7 \cdot \frac{13}{69} = 1,681$,

$$y = -5 - 2\left(-\frac{13}{69}\right) = -4,623, \quad z = 7 - 4\cdot\left(-\frac{13}{69}\right) = 7,754.$$

Ответ: (1,681; -4,623; 7,754).