Market Basket Analysis with Python & AWS

1. Launch an EC2 Instance Running Windows

Sign in to AWS Management Console:

• Go to AWS Management Console.

Launch an EC2 Instance:

- Navigate to the EC2 dashboard.
- Click on "Launch Instance."

Choose an Amazon Machine Image (AMI):

Select a Windows Server AMI, such as "Microsoft Windows Server 2019 Base."

Choose an Instance Type:

 Select an instance type suitable for your needs, such as t2.micro (eligible for the free tier).

Configure Instance Details:

Adjust settings as needed, but the default settings are often fine for initial setup.

Add Storage:

You can keep the default storage or adjust based on your requirements.

Add Tags:

Optionally, add tags to help identify your instance.

Configure Security Group:

Add rules to allow RDP (Remote Desktop Protocol) access on port 3389.

Review and Launch:

- Review your configuration and click "Launch."
- Select or create a new key pair for SSH access and download the key file.

Connect to Your Instance:

 Use Remote Desktop to connect to your Windows instance. You'll need the instance's public DNS and the Administrator password, which you can obtain using the key pair

EC2 WINDOWS INSTANCE

2.Install Python and an IDE

Download Python:

- Go to the Python Downloads page.
- Download and install the latest version of Python for Windows.

Install Python:

- Run the installer.
- Ensure the option to "Add Python to PATH" is checked.
- Select "Install Now" to install Python.

Verify Python Installation:

Open Command Prompt and type:

```
python --version
pip --version
```

Install an IDE:

- You can use an IDE like PyCharm or Visual Studio Code.
- For Visual Studio Code:
 - Download from <u>Visual Studio Code website</u>.
 - o Install and open Visual Studio Code.
- For PyCharm:
 - Download from <u>PyCharm website</u>.
 - Install and open PyCharm

3. Install Required Libraries

Open Command Prompt or the integrated terminal in your IDE and run the following commands to install the required libraries:

pip install pandas numpy scikit-learn mlxtend matplotlib seaborn

```
user@ip-172-31-6-92 ~]$ pip install pandas
efaulting to user installation because normal site-packages is not writeable
ollecting pandas
 Downloading pandas-2.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.
whl (13.1 MB)
                                     | 13.1 MB 5.0 MB/s
ollecting tzdata>=2022.
 Downloading tzdata-2024.1-py2.py3-none-any.whl (345 kB)
                                     | 345 kB 49.2 MB/s
equirement already satisfied: pytz>=2020.1 in /usr/lib/python3.9/site-packages
ollecting python-dateutil>=2.8.2
 Downloading python_dateutil-2.9.0.post0-py2.py3-none-any.whl (229 kB)
                                     | 229 kB 53.0 MB/s
ollecting numpy>=1.22.4
 Downloading numpy-2.0.1-cp39-cp39-manylinux 2 17 x86 64.manylinux2014 x86 64.w
l (19.5 MB)
                                     | 19.5 MB 32.2 MB/s
equirement already satisfied: six>=1.5 in /usr/lib/python3.9/site-packages (fro
 python-dateutil>=2.8.2->pandas) (1.15.0)
nstalling collected packages: tzdata, python-dateutil, numpy, pandas
Successfully installed numpy-2.0.1 pandas-2.2.2 python-dateutil-2.9.0.post0 tzda
a-2024.1
ec2-user@ip-172-31-6-92 ~]$ pip install mlxtend
ip install mlxtend
efaulting to user installation because normal site-packages is not writeable
 Downloading mlxtend-0.23.1-py3-none-any.whl (1.4 MB)
                                      | 1.4 MB 4.8 MB/s
ollecting joblib>=0.13.2
 Downloading joblib-1.4.2-py3-none-any.whl (301 kB)
                                      301 kB 48.0 MB/s
equirement already satisfied: numpy>=1.16.2 in ./.local/lib/python3.9/site-pack
ges (from mlxtend) (2.0.1)
 Downloading scikit_learn-1.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x
6_64.whl (13.4 MB)
                                     | 13.4 MB 42.9 MB/s
equirement already satisfied: pandas>=0.24.2 in ./.local/lib/python3.9/site-pac
ages (from mlxtend) (2.2.2)
ollecting scipy>=1.2.1
 Downloading scipy-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.
hl (38.6 MB)
                                      | 38.6 MB 219 kB/s
```

4. Create and Run Your Python Code

Create a Python Script:

o Open your IDE and create a new Python file, e.g., analysis.py.

Add the Following Code:

```
import pandas as pd
from mlxtend.frequent patterns import apriori, association rules
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import OneHotEncoder
# Create the dataset
data = {'TransactionID': [1, 1, 1, 2, 2, 3, 3, 4, 4, 4],
     'Item': ['Ferrari', 'Lamborghini', 'Porsche', 'Ferrari', 'Rolls-Royce', 'Ferrari', 'Lamborghini',
'Porsche', 'Rolls-Royce', 'Bugatti']}
df = pd.DataFrame(data)
# One-hot encode the dataset
encoder = OneHotEncoder(sparse=False)
df_encoded = pd.DataFrame(encoder.fit_transform(df[['Item']]),
columns=encoder.get_feature_names_out())
# Add TransactionID back to the encoded DataFrame
df_encoded['TransactionID'] = df['TransactionID']
# Pivot the DataFrame to the format required by apriori
df pivot = df encoded.groupby('TransactionID').sum()
# Apply the Apriori algorithm
frequent itemsets = apriori(df pivot, min support=0.1, use colnames=True)
# Generate the association rules
rules = association rules(frequent itemsets, metric='lift', min threshold=1)
# Print the results
print("Frequent Itemsets:")
print(frequent itemsets)
print("\nAssociation Rules:")
print(rules)
# Plot results
```

```
plt.figure(figsize=(10, 6))
sns.scatterplot(data=rules, x='support', y='confidence', hue='lift')
plt.title('Association Rules')
plt.xlabel('Support')
plt.ylabel('Confidence')
plt.show()
```

5. Dataset Used

6.Run the Script:

• In your IDE, use the run button or open Command Prompt and navigate to the directory where analysis.py is saved

One-hot encode the dataset

One-Hot Encoded Basket:								
Item	Bugatti	Ferrari	Lamborghini	Porsche	Rolls-Royce			
TransactionID								
1	0	1	1	1	0			
2	0	1	0	0	1			
3	0	1	1	0	0			
4	1	0	0	1	1			

Confidence vs Lift

Visualization

