Week - 3

Pixel transformation

Outline

- Histograms
- Intensity transformations
- Thresholding and Simple Segmentation

 Biểu đồ đếm số lần xuất hiện của pixel và đây là công cụ hữu ích để hiểu và xử lý hình ảnh.

• Hầu hết các ảnh đều có tối đa 256 mức độ biểu thị cho 256 mức xám

import cv2

goldhill = cv2.imread("goldhill.bmp")

TDM Daveloner

```
goldhill = cv2.imread("goldhill.bmp")
hist = cv2.calcHist([goldhill],[0],None,[256],[0,255])
```

goldhill = cv2.imread("goldhill.bmp")

hist = cv2.calcHist([goldhill],[0],None,[256],[0,255])

goldhill = cv2.imread("goldhill.bmp")

hist = cv2.calcHist([goldhill],[0],None,[256],[0,255])

34	1		 94	0
0	1	2	 254	255

Intensity Transformations

f[i,j]

$$g[i,j] = T\{f[i,j]\}$$

i, j 0 1 2

$$g[i,j] = 2f[i,j] + 1$$

0	2	2
1	1	1
1	1	2

$$g[i,j] = 2f[i,j] + 1$$

0	2	2
1	1	1
1	1	2

_		200
Λ		1
	-	
v	- 1	_

1	

$$g[i,j] = 2f[i,j] + 1$$

0	2	2
1	1	1
1	1	2

$$2(1) + 1$$

1	
3	

$$g[i,j] = 2f[i,j] + 1$$

0	2	2
1	1	1
1	1	2

1	5	5
3	3	3
3	3	5

r	h_r	s = 2r + 1	S	h_s
0	1	= 2(0) + 1	0	0
1	5	= 1	1	1
2	3		2	0
3	0		3	5
4	0		4	0
5	0		5	3
6	0		6	0

r	h_r	s = 2r + 1	S	h_s
0	1	= 2(2) + 1	0	0
1	5	= 3	1	1
2	3		2	0
3	0		3	5
4	0		4	0
5	0		5	3
6	0		6	0

Image negative

Ảnh âm bản

image= cv2.imread("mammogram.png",cv2.IMREAD_GRAYSCALE)

$$g[i,j] = -1f[i,j] + 255$$

Jian, Wushuai, Xueyan Sun, and Shuqian Luo. "Computer-aided diagnosis of breast microcalcifications based on dual-tree complex wavelet transform." Biomedical engineering online 11.1 (2012): 1-12.

img_neg=-1* image+255

$$g[i,j] = -1f[i,j] + 255$$

Brightness and Contrast

Ánh sáng và độ tương phản

$$g[i,j] = \alpha f[i,j] + \beta$$

alpha = 1 # Simple contrast control beta = 100 # Simple brightness control g[i,j] = 1f[i,j] + 100

new_image = cv2.convertScaleAbs(goldhill, alpha=alpha, beta=beta)

alpha = 1 beta = 100 # Simple brightness control

$$g[i,j] = \alpha f[i,j] + \beta$$
$$g[i,j] = 1f[i,j] + 100$$

new_image = cv2.convertScaleAbs(goldhill, alpha=alpha, beta=beta)

$$g[i,j] = \alpha f[i,j] + \beta$$

alpha = 2 # Simple contrast control beta = 0 # Simple contrast control

$$g[i,j] = 2f[i,j]$$

new_image = cv2.convertScaleAbs(goldhill, alpha=alpha, beta=beta)

Histogram Equalization

Cân bằng histogram

zelda= cv2.imread("zelda.png",cv2.IMREAD_GRAYSCALE)
new_image= cv2.equalizeHist(zelda)

Histogram Equalization zelda= cv2.imread("zelda.png",cv2.IMREAD_GRAYSCALE)

new_image= cv2.equalizeHist(zelda)

Histogram Equalization

