Problem 1.

(a) Exercise Set 5.2, Problem 11 $1^{3} + 2^{3} + \dots + n^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$, for all integers $n \ge 1$. Let property P(n) be $\sum_{i=1}^{n} i^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$.

$$P(1): \left(\sum_{i=1}^{1} i^3 = 1\right) = \left(\left[\frac{n(n+1)}{2}\right]^2 = 1\right)$$
 is true.

Assume
$$P(k): \sum_{i=1}^k i^3 = \left[\frac{k(k+1)}{2}\right]^2$$
 for $k \geq 1 \in \mathbb{Z}$ is true.

Prove
$$P(k+1): \sum_{i=1}^{k+1} i^3 = \left[\frac{(k+1)(k+2)}{2}\right]^2$$
:

$$\sum_{i=1}^{k+1} i^3 \stackrel{?}{=} \left[\frac{(k+1)(k+2)}{2} \right]^2$$

$$\left(\sum_{i=1}^{k} i^{3}\right) + (k+1)^{3} \stackrel{?}{=} \left[\frac{k^{2} + 3k + 2}{2}\right]^{2}$$

$$\left[\frac{k(k+1)}{2}\right]^2 + k^3 + 3k^2 + 3k + 1 \stackrel{?}{=} \left[\frac{k^2 + 3k + 2}{2}\right]^2$$

$$\left[\frac{k^2+k}{2}\right]^2 + k^3 + 3k^2 + 3k + 1 \stackrel{?}{=} \left[\frac{k^2+3k+2}{2}\right]^2$$

$$\frac{k^4 + 2k^3 + k^2}{4} + \frac{4k^3 + 12k^2 + 12k + 4}{4} \stackrel{?}{=} \frac{k^4 + 3k^3 + 2k^2 + 3k^3 + 9k^2 + 6k + 2k^2 + 6k + 4}{4}$$
$$\frac{k^4 + 6k^3 + 13k^2 + 12k + 4}{4} = \frac{k^4 + 6k^3 + 13k^2 + 12k + 4}{4}$$

$$\frac{k^4 + 6k^3 + 13k^2 + 12k + 4}{4} = \frac{k^4 + 6k^3 + 13k^2 + 12k + 4}{4}$$

(b) Exercise Set 5.2, Problem 14

$$\sum_{i=1}^{n+1} i \cdot 2^i = n \cdot 2^{n+2} + 2, \text{ for all integers } n \ge 0.$$

Let property
$$P(n)$$
 be $\sum_{i=1}^{n+1} i \cdot 2^i = n \cdot 2^{n+2} + 2$.

Basis:

$$P(0): \left(\sum_{i=1}^{1} i \cdot 2^{i} = 2\right) = \left(0 \cdot 2^{2} + 2 = 2\right)$$
 is true.

Inductive hypothesis

Assume
$$P(k): \sum_{i=1}^{k+1} i \cdot 2^i = k \cdot 2^{k+2} + 2$$
 for $k \ge 0 \in \mathbb{Z}$ is true.

Prove
$$P(k+1)$$
: $\sum_{i=1}^{k+2} i \cdot 2^i = (k+1) \cdot 2^{k+3} + 2$: $\sum_{i=1}^{k+2} i \cdot 2^i \stackrel{?}{=} (k+1) \cdot 2^{k+3} + 2$

$$\left(\sum_{i=1}^{k+1} i \cdot 2^i\right) + (k+2) \cdot 2^{k+2} \stackrel{?}{=} (k+1) \cdot 2^{k+3} + 2$$

$$k \cdot 2^{k+2} + 2 + (k+2) \cdot 2^{k+2} \stackrel{?}{=} (k+1) \cdot 2^{k+3} + 2$$

$$k \cdot 2^{k+2} + 2 + k \cdot 2^{k+2} + 2^{k+3} \stackrel{?}{=} (k+1) \cdot 2^{k+3} + 2$$

$$2k \cdot 2^{k+2} + 2 + 2^{k+3} \stackrel{?}{=} (k+1) \cdot 2^{k+3} + 2$$

$$k \cdot 2^{k+3} + 2 + 2^{k+3} \stackrel{?}{=} (k+1) \cdot 2^{k+3} + 2$$

$$(k+1) \cdot 2^{k+3} + 2 = (k+1) \cdot 2^{k+3} + 2$$

$$\prod_{i=0}^{n} \left(\frac{1}{2i+1} \cdot \frac{1}{2i+2} \right) = \frac{1}{(2n+2)!}, \text{ for all integers } n \ge 0.$$

Let property
$$P(n)$$
 be $\prod_{i=0}^{n} \left(\frac{1}{2i+1} \cdot \frac{1}{2i+2} \right)$.

Basis:

Basis:
$$P(0): \left(\prod_{i=0}^{0} \left(\frac{1}{2i+1} \cdot \frac{1}{2i+2}\right) = \frac{1}{2}\right) = \left(\frac{1}{(0+2)!} = \frac{1}{2}\right) \text{ is true.}$$
Inductive Hypothesis:

Assume
$$P(k): \prod_{i=0}^k \left(\frac{1}{2i+1} \cdot \frac{1}{2i+2}\right) = \frac{1}{(2k+2)!}$$
 for $k \ge 0 \in \mathbb{Z}$ is true.

Prove
$$P(k+1)$$
: $\prod_{i=0}^{k+1} \left(\frac{1}{2i+1} \cdot \frac{1}{2i+2} \right) = \frac{1}{(2(k+1)+2)!}$:

$$\prod_{i=0}^{k+1} \left(\frac{1}{2i+1} \cdot \frac{1}{2i+2} \right) \stackrel{?}{=} \frac{1}{(2(k+1)+2)!}$$

$$\prod_{i=0}^{k} \left(\frac{1}{2i+1} \cdot \frac{1}{2i+2} \right) \left(\frac{1}{2(k+1)+1} \cdot \frac{1}{2(2k+1)+2} \right) \stackrel{?}{=} \frac{1}{(2k+4)!}$$

$$\frac{1}{(2k+2)!} \left(\frac{1}{2k+3} \cdot \frac{1}{2k+4} \right) \stackrel{?}{=} \frac{1}{(2k+4)!}$$

$$\frac{1}{(2k+2)!(2k+3)(2k+4)} \stackrel{?}{=} \frac{1}{(2k+4)(2k+3)!}$$

$$\frac{1}{(2k+4)(2k+3)(2k+2)!} = \frac{1}{(2k+4)(2k+3)(2k+2)!}$$

Basis and inductive hypothesis proven, therefore original statement is true.

(d) Exercise Set 5.3, Problem 10

 $n^3 - 7n + 3$ is divisible by 3, for each integer $n \ge 0$.

Let property P(n) be $n^3 - 7n + 3$ is divisible by 3.

Basis:

 $P(0): (0^3 - 7 \cdot 0 + 3 = 0)$ is divisible by 3 is true.

Inductive Hypothesis:

Assume $P(k): k^3 - 7k + 3$ is divisible by 3 where $k \ge 0 \in \mathbb{Z}$ is true.

Prove $P(k+1): (k+1)^3 - 7(k+1) + 3$ is divisible by 3:

$$(k+1)^3 - 7(k+1) + 3$$

$$=k^3+3k^2+3k+1-7k-7+3$$

$$= \underbrace{\left(k^3 - 7k + 3\right)}_{} + 3k^2 + 3k + 1 - 7$$

P(k) is true, therefore m is a multiple of 3 and m = 3a for some integer a.

$$= 3a + 3k^2 + 3k - 6$$

$$=3(a+k^2+k-2)$$

Expression is a multiple of 3, therefore $(k+1)^3 - 7(k+1) + 3$ is divisible by 3.

(e) Exercise Set 5.3, Problem 17

$$1+3n \le 4^n$$
, for every integer $n \ge 0$.

Let property P(n) be $1 + 3n \le 4^n$.

Basis:

$$P(0): (1+3\cdot 0=1) \le (4^0=1)$$
 is true.

Inductive hypothesis:

Assume $P(k): 1+3k \le 4^k$ for $k \ge 0 \in \mathbb{Z}$ is true. Prove $P(k+1): 1+3(k+1) \le 4^{k+1}$: $1+3(k+1) \stackrel{?}{\le} 4^{k+1}$

Prove
$$P(k+1): 1+3(k+1) < 4^{k+1}$$
:

$$1+3(k+1) \stackrel{?}{\leq} 4^{k+1}$$

$$4 + 3k \stackrel{?}{\leq} 4^{k+1}$$

$$(1+3k) + 3 \stackrel{?}{\leq} 4^{k+1}$$

$$4^k + 3 \stackrel{?}{\leq} 4^{k+1} \qquad P(k) \text{ is true}$$

$$3 \stackrel{?}{\leq} 4^{k+1} - 4^k$$

$$3 \stackrel{?}{\leq} 4^k (4-1)$$

$$3\stackrel{?}{\leq} 3\cdot 4^k$$

$$1 < 4^{k}$$

 $1 \leq 4^k$ Last inequality holds true for all $k \geq 0 \in \mathbb{Z}$.

(f) Exercise Set 5.3, Problem 21
$$\sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}, \text{ for all integers } n \geq 2.$$

Let property
$$P(n)$$
 be $\sqrt{n} < \sum_{i=1}^{n} \frac{1}{\sqrt{i}}$.

$$P(2): (\sqrt{2}) < \left(\sum_{i=1}^{2} \frac{1}{\sqrt{i}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} = 1 + \frac{\sqrt{2}}{2}\right)$$
 is true.

Assume
$$P(k): \sqrt{k} < \sum_{i=1}^{k} \frac{1}{\sqrt{i}}$$
 for $k \ge 2 \in \mathbb{Z}$ is true.

Prove
$$P(k+1): \sqrt{k+1} < \sum_{i=1}^{k+1} \frac{1}{\sqrt{i}}$$
:

$$\sqrt{k+1} \stackrel{?}{<} \sum_{i=1}^{k+1} \frac{1}{\sqrt{i}}$$

$$\sqrt{k+1} \stackrel{?}{<} \sum_{i=1}^{k} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{k+1}}$$

$$\sqrt{k+1} \stackrel{?}{<} \sqrt{k} + \frac{1}{\sqrt{k+1}}$$
 $P(k)$ is true

$$\frac{k+1}{\sqrt{k+1}} \stackrel{?}{<} \frac{\sqrt{k}\sqrt{k+1}+1}{\sqrt{k+1}}$$

$$k+1 \stackrel{?}{<} \sqrt{k}\sqrt{k+1} + 1$$

$$\sqrt{k}\sqrt{k} \stackrel{?}{<} \sqrt{k}\sqrt{k+1}$$

$$k\stackrel{?}{<} k+1$$

(g) Exercise Set 5.3, Problem 22

 $1 + nx \le (1 + x)^n$, for all real numbers x > -1 and integers $n \ge 2$. Let property P(n) be $1 + nx \le (1 + x)^n$ for all $x > -1 \in \mathbb{R}$.

Basis:

$$P(2):$$
 $1+2x \le (1+x)^2$ is true.
 $\Rightarrow 1+2x \le 1+2x+x^2$
 $\Rightarrow 0 < x^2$

Inductive hypothesis:

Assume $P(k): 1 + kx \le (1+x)^k$ for $k \ge 2 \in \mathbb{Z}$ and $x > -1 \in \mathbb{R}$ is true. Prove $P(k+1): 1 + (k+1)x \le (1+x)^{k+1}$:

$$1 + (k+1)x \stackrel{?}{\leq} (1+x)^{k+1}$$

$$1 + kx + x \stackrel{?}{\leq} (1+x)^{k+1}$$

$$(1+x)^k + x \stackrel{?}{\leq} (1+x)^{k+1}$$

$$x \stackrel{?}{\leq} (1+x)^k ((1+x) - 1)$$

$$x \stackrel{?}{\leq} (1+x)^k x$$

Case 1: x = 0

Prove $x \leq (1+x)^k x$:

$$0 \le (1+0)^k \cdot 0$$

0 < 0

Proof done.

Case 2: x > 0

Prove $x \leq (1+x)^k x$:

$$\begin{array}{c|c} x > 0 & & x \leq (1+x)^k x \\ 1 < 1+x & ? & 1 \leq (1+x)^k \\ 1 < (1+x)^k & 1 \leq (1+x)^k \end{array}$$

$$1 < (1+x)^k$$

$$\therefore 1 \le (1+x)^k$$

$$\therefore x \le (1+x)^k x$$

Proof done.

 $\overline{P(k+1)}$ is true in all cases. Basis and inductive hypothesis proven, therefore original statement is true.

Case 3: -1 < x < 0

Prove $x \leq (1+x)^k x$:

$$1 > (1+x)^{x}$$

$$\therefore 1 \ge (1+x)^k$$

$$\therefore x \le (1+x)^k x$$

Proof done.

(h) Exercise Set 5.3, Problem 29

As each of a group of businesspeople arrives at a meeting, each shakes hands with all the other people present. Use mathematical induction to show that if n people come to the meeting then [n(n-1)]/2handshakes occur.

If the set of businesspeople has size n, then the number of handshakes is $\binom{n}{2}$.

For a set of 0 and 1 businesspeople, no handshakes occur.

$$\binom{n}{2} = \frac{n!}{2!(n-2)!} = \frac{n!}{2(n-2)!}$$
Let property $P(n)$ be
$$\begin{cases} 0 = \frac{n(n-1)}{2} & \text{if } n = 0, n = 1\\ \frac{n!}{2(n-2)!} = \frac{n(n-1)}{2} & \text{if } n \ge 2 \end{cases}$$
.

Pasis:

$$P(0): 0 = \left(\frac{0(0-1)}{2} = 0\right) \text{ is true.}$$

$$P(1): 0 = \left(\frac{1(1-1)}{2} = 0\right) \text{ is true.}$$

$$P(2): \left(\frac{2!}{2(2-2)!} = \frac{2}{2 \cdot 1} = 1\right) = \left(\frac{2(2-1)}{2} = 1\right) \text{ is true.}$$

Assume
$$P(k)$$
: $\frac{k!}{2(k-2)!} = \frac{k(k-1)}{2}$ for $k \ge 2 \in \mathbb{Z}$ to be true.

Prove $P(k+1)$: $\frac{(k+1)!}{2((k+1)-2)!} = \frac{(k+1)((k+1)-1)}{2}$:
$$\frac{(k+1)!}{2((k+1)-2)!} \stackrel{?}{=} \frac{(k+1)((k+1)-1)}{2}$$

$$\frac{(k+1)k!}{2(k-1)!} \stackrel{?}{=} \frac{(k+1)k}{2}$$

$$\frac{(k+1)k(k-1)!}{2(k-1)!} \stackrel{?}{=} \frac{(k+1)k}{2}$$

$$\frac{(k+1)k}{2} = \frac{(k+1)k}{2}$$
Basis and inductive hypothesis proven, therefore original statement is true.

(i) Prove that in an n-sided regular polygon, where $n \geq 3$, the number of diagonals is n(n-3)/2. The number of possible vertex pairs in an *n*-sided regular polygon is $\binom{n}{2}$, and *n* of these vertex pairs

are the edges of the polygon. The number of diagonals is $\binom{n}{2} - n$.

$$\binom{n}{2} - n = \frac{n!}{2!(n-2)!} - n = \frac{n!}{2(n-2)!} - n$$

Let property $P(n)$ be $\frac{n!}{2(n-2)!} - n = \frac{n(n-3)}{2}$.

Basis:
$$P(3): \left(\frac{3!}{2(3-2)!} - 3 = \frac{6}{2} - 3 = 0\right) = \left(\frac{3(3-3)}{2} = 0\right)$$
 is true. Inductive hypothesis:

Assume $P(k): \frac{k!}{2(k-2)!} - k = \frac{k(k-3)}{2}$ for $k \geq 3 \in \mathbb{Z}$ to be true.

Prove
$$P(k+1)$$
: $\frac{(k+1)!}{2((k+1)-2)!} - (k+1) = \frac{(k+1)((k+1)-3)}{2}$: $\frac{(k+1)!}{2((k+1)-2)!} - (k+1) \stackrel{?}{=} \frac{(k+1)((k+1)-3)}{2}$

$$\frac{(k+1)k!}{2(k-1)!} - k - 1 \stackrel{?}{=} \frac{(k+1)(k-2)}{2}$$

$$\frac{(k+1)k(k-1)!}{2(k-1)!} - k - 1 \stackrel{?}{=} \frac{(k+1)(k-2)}{2}$$
$$\frac{(k+1)k}{2} - \frac{2k+2}{2} \stackrel{?}{=} \frac{(k+1)(k-2)}{2}$$
$$\frac{k^2 + k - 2k - 2}{2} \stackrel{?}{=} \frac{k^2 - k - 2}{2}$$

$$\frac{k^2 + k - 2k - 2}{2} \stackrel{?}{=} \frac{k^2 - k - 2}{2}$$
$$\frac{k^2 - k - 2}{2} = \frac{k^2 - k - 2}{2}$$

 $\frac{k^2-k-2}{2}=\frac{k^2-k-2}{2}$ Basis and inductive hypothesis proven, therefore original statement is true.

(j) Prove that the number of permutations of the set $\{1, 2, ..., n\}$ with n elements is n!, for natural number $n \geq 1$.

A set of n = 1 elements has 1! = 1 permutation.

Let property P(n) be $\{1, 2, ..., n\}$ has n! permutations.

Basis:

 $P(1): \{1\}$ has 1! = 1 permutation is true.

Inductive hypothesis:

Assume $P(k): \{1, 2, ..., k\}$ has k! permutations for $k \ge 1 \in \mathbb{Z}$ to be true.

In order to create a permuted set B_p of size k+1, one can insert k+1 into A_p , an arbitrary permutation of set A of k elements.

This action is equivalent to permuting a set of size k + 1.

There are k+1 positions to insert such an element into A_p : k positions before each element and one position after the last element of A_p .

There are k! possible A_p made from A.

(k+1) ways to insert into A_p × (k!) possible A_p = (k+1)k! = (k+1)! ways to create B_p . P(k+1) is true.

Problem 2.

(a) Exercise Set 5.4, Problem 8

Suppose that h_0, h_1, h_2, \ldots is a sequence defined as follows:

$$h_0 = 1, h_1 = 2, h_2 = 3,$$

 $h_k = h_{k-1} + h_{k-2} + h_{k-3}$ for all integers $k \ge 3$.

(a) Prove that $h_n \leq 3^n$ for all integers $n \geq 0$.

Let property P(n) be $h_n \leq 3^n$.

Basis:

$$P(0): (h_0 = 1) \le (3^0 = 1)$$
 is true.

$$P(1): (h_1 = 2) \le (3^1 = 3)$$
 is true.

$$P(2): (h_2 = 3) \le (3^2 = 9)$$
 is true.

Inductive hypothesis:

Let
$$k \geq 2$$
.

Assume $P(i): h_i = h_{i-1} + h_{i-2} + h_{i-3} \le 3^i$ for $0 \le i \le k$ and $i \in \mathbb{Z}$ is true.

Prove
$$P(k+1): h_{k+1} = h_k + h_{k-1} + h_{k-2} \le 3^{k+1}$$
:

$$h_{k+1} = h_k + h_{k-1} + h_{k-2}$$

$$\leq 3^k + 3^{k-1} + 3^{k-2}$$
 $P(i)$ is true

$$\leq 3^{k-2} \left(3^2 + 3 + 1 \right)$$

$$\leq 13 \cdot 3^{k-2}$$
 $\leq (3^3 \cdot 3^{k-2} = 3^{k+1})$

$$\leq 3^{k+1}$$

Basis and inductive hypothesis proven, therefore original statement is true.

(b) Suppose that s is any real number such that $s^3 \ge s^2 + s + 1$. (This implies that 2 > s > 1.83.) Prove that $h_n \le s^n$ for all $n \ge 2$.

Let property P(n) be $h_n \leq s^n$.

Basis:

$$P(2): (h_2 = 2) \le (3.34 < s^2 < 4)$$
 is true.

$$P(3): (h_3 = 6) \le (6.12 < s^3 < 8)$$
 is true.

$$P(4): (h_4 = 11) \le (11.21 < s^4 < 16)$$
 is true.

Inductive hypothesis:

Let
$$k > 4$$
.

Assume
$$P(i): h_i = h_{i-1} + h_{i-2} + h_{i-3} \le s^i \text{ for } 2 \le i \le k \text{ and } i \in \mathbb{Z}.$$

Prove
$$P(k+1): h_{k+1} = h_k + h_{k-1} + h_{k-2} \le s^{k+1}$$
:

$$h_{k+1} = h_k + h_{k-1} + h_{k-2}$$

$$< s^k + s^{k-1} + s^{k-2}$$

$$\geq s + s + s$$

$$\leq s^{k-2} (s^2 + s + 1)$$

 $\leq s^{k-2} s^3$ $s^2 + s + 1 \leq s^3$

$$< s^{k+1}$$

(b) Exercise Set 5.4, Problem 9

Define a sequence a_1, a_2, a_3, \ldots as follows: $a_1 = 1, a_2 = 3$, and $a_k = a_{k-1} + a_{k-2}$ for all integers $k \ge 3$. Use strong mathematical induction to prove that $a_n \leq \left(\frac{7}{4}\right)^n$ for all integers $n \geq 1$.

Let property P(n) be $a_n \leq \left(\frac{7}{4}\right)^n$.

Basis:

$$P(1): 1 \le \frac{7}{4}$$
 is true.
 $P(2): 3 \le \frac{49}{16}$ is true.

$$P(2): 3 \le \frac{49}{16}$$
 is true.

Inductive hypothesis:

Let $k \geq 2$.

Assume
$$P(i): a_i = a_{i-1} + a_{i-2} \le \left(\frac{7}{4}\right)^i$$
 for $1 \le i \le k$ and $i \in \mathbb{Z}$ is true.

Prove
$$P(k+1): a_k + a_{k-1} \le \left(\frac{7}{4}\right)^i$$
:

$$a_{k+1} = a_k + a_{k-1}$$

$$\leq \left(\frac{7}{4}\right)^{k} + \left(\frac{7}{4}\right)^{k-1} \\
\leq \left(\frac{7}{4}\right)^{k-1} \left(1 + \frac{7}{4}\right) \\
\leq \left(\frac{11}{4} \left(\frac{7}{4}\right)^{k-1} = \frac{44}{16} \left(\frac{7}{4}\right)^{k-1}\right) \leq \left(\frac{49}{16} \left(\frac{7}{4}\right)^{k-1} = \left(\frac{7}{4}\right)^{2} \left(\frac{7}{4}\right)^{k-1} = \left(\frac{7}{4}\right)^{k+1}\right) \\
\leq \left(\frac{7}{4}\right)^{k+1} \\
\leq \left(\frac{7}{4}\right)^{k+1}$$

Basis and inductive hypothesis proven, therefore original statement is true.

(c) Exercise Set 5.4, Problem 25(b)

Use mathematical induction to prove that for all integers $n \geq 1$, given any set of 2^n people arranged in a circle and numbered consecutively 1 through 2^n , if one starts from person #1 and goes repeatedly around the circle successively eliminating every second person, eventually only person #1 will remain. Let property P(n) be 2^n people eliminated as given above will eventually leave only person #1. Eliminating halves the number of people, so after one round there are $2^{n}/2 = 2^{n-1}$ people.

Basis:

P(1):

Inductive hypothesis:

Assume $P(k): 2^k$ people eliminated as given above will eventually leave only person #1 for $k \geq 1$ is

Prove $P(k+1): 2^{k+1}$ people eliminated as given above will eventually leave only person #1:

After round 1 there are 2^k people.

Because P(k) is true, by round 2, when there are 2^k people left, carrying out eliminations as given above must leave only person #1.

(d) Exercise Set 5.4, Problem 30

It is a fact that every integer $n \geq 1$ can be written in the form

$$c_r \cdot 3^r + c_{r-1} \cdot 3^{r-1} + \dots + c_2 \cdot 3^2 + c_1 \cdot 3 + c_0$$

where $c_r = 1$ or 2 and $c_i = 0, 1$, or 2 for all integers $i = 0, 1, 2, \dots, r - 1$. Sketch a proof of this fact.

Let property P(n) be the property given above.

P(n) says that any positive integer can be written as the sum of multiples of powers of 3.

$$P(1): (c_{r=0} = 1) \cdot 3^{r=0} = 1$$
 is true.

$$P(2): (c_{r=0}=1) \cdot 3^{r=0} + (c_0=1) = 2$$
 is true.

$$P(3): (c_{r=1}=1) \cdot 3^{r=1}=3$$
 is true.

$$P(4): (c_{r=1} = 1) \cdot 3^{r=1} + (c_{r=0} = 1) \cdot 3^{r=0} = 4$$
 is true.

Inductive hypothesis:

Let k > 4.

Assume P(i) for $1 \le i \le k$ and $i \in \mathbb{Z}$ to be true.

Prove P(k+1) can be written as the sum of multiples of powers of 3:

Case 1:
$$k+1 \mod 3 = 0$$

$$\begin{vmatrix}
1 \le (k+1)/3 \le k \\
2 \le k \le 3k - 1 \\
k \ge 2 \\
\frac{k+1}{3} = c_r \cdot 3^r + c_{r-1} \cdot 3^{r-1} + \dots + c_2 \cdot 3^2 + c_1 \cdot 3 + c_0 \text{ because } P(i) \\
k+1 = c_r \cdot 3^{r+1} + c_{r-1} \cdot 3^r + \dots + c_2 \cdot 3^3 + c_1 \cdot 3^2 + c_0 \cdot 3
\end{vmatrix}$$

k+1 is the sum of multiples of powers of 3.

Proof done.

Case 2: $k + 1 \mod 3 = 1$

$$k \bmod 3 = 0$$

$$1 \le k/3 \le k$$

$$3 \le k \le 3k$$

$$k \ge 3$$
is true.
$$k \ge 3$$

$$k = c_r \cdot 3^r + c_{r-1} \cdot 3^{r-1} + \dots + c_2 \cdot 3^2 + c_1 \cdot 3 + c_0 \text{ because } P(i)$$

$$k = c_r \cdot 3^{r+1} + c_{r-1} \cdot 3^r + \dots + c_2 \cdot 3^3 + c_1 \cdot 3^2 + c_0 \cdot 3$$

$$k + 1 = c_r \cdot 3^{r+1} + c_{r-1} \cdot 3^r + \dots + c_2 \cdot 3^3 + c_1 \cdot 3^2 + c_0 \cdot 3 + (1 \cdot 3^0 = 1)$$

$$k + 1 \text{ is the sum of multiples of powers of } 3.$$

Proof done.

Case 3: $k + 1 \mod 3 = 2$

P(k+1) is true in all cases.

(e) Exercise Set 5.5, Problem 30

 F_0, F_1, F_2, \ldots is the Fibonacci sequence.

Use mathematical induction to prove that for all integers $n \ge 0$, $F_{n+2}F_n - F_{n+1}^2 = (-1)^n$ Let property P(n) be $F_{n+2}F_n - F_{n+1}^2 = (-1)^n$.

$$F_0 = 1, F_1 = 1, F_2 = 2$$

$$P(0): (F_2F_0 - F_1^2 = 2 \cdot 1 - 1^2 = 1) = ((-1)^0 = 1)$$
 is true.

Inductive hypothesis:

Assume $P(k): F_{k+2}F_k - F_{k+1}^2 = (-1)^k$ for $k \ge 0 \in \mathbb{Z}$ to be true. Prove $P(k+1): F_{k+3}F_{k+1} - F_{k+2}^2 = (-1)^{k+1}$:

Prove
$$P(k+1): F_{k+3}F_{k+1} - F_{k+2}^2 = (-1)^{k+1}$$
:

Figure 1 (k+1):
$$F_{k+3}F_{k+1} - F_{k+2} = (F_k)F_{k+1} - (F_k)F_{k+1} - (F_{k+1} + F_k)^2$$

$$= (2F_{k+1} + F_k)F_{k+1} - (F_{k+1}^2 + 2F_{k+1}F_k + F_k^2)$$

$$= 2F_{k+1}^2 + F_kF_{k+1} - (F_{k+1}^2 + 2F_{k+1}F_k + F_k^2)$$

$$= F_{k+1}^2 - F_kF_{k+1} - F_k^2$$

$$= F_{k+1}^2 - F_k(F_{k+1} + F_k)$$

$$= F_{k+1}^2 - F_kF_{k+2} = -(F_{k+2}F_k - F_{k+1}^2) = -(-1)^k = (-1)^{k+1}$$
Basis and inductive hypothesis proven, therefore original statement is true.

(f) Let f be a function on whole numbers satisfying

$$f(n) = \begin{cases} 0 & \text{if } n = 0\\ 4f(n/2) & \text{if } n > 0 \text{ and even} \end{cases}$$

$$f(n-1) + 2n - 1 & \text{if } n > 0 \text{ and odd} \end{cases}$$
Prove that $f(n) = n^2$ for all $n \ge 0$.

Let property P(n) be f(n) = n

Basis:

 $P(0): (f(0) = 0) = (0^2 = 0)$ is true.

 $P(1): (f(0) + 2 \cdot 1 - 1 = 1) = (1^2 = 1)$ is true.

Inductive hypothesis:

Let k > 1.

Assume $P(i): f(i) = i^2$ for 0 < i < k and $i \in \mathbb{Z}$ to be true.

Prove $P(k+1): f(k+1) = (k+1)^2$:

Case 1: k+1 is even Proof done.

Case 1:
$$k + 1$$
 is even

 $0 \le (k + 1)/2 \le k$
 $0 \le k + 1 \le 2k$
 $-k \le 1 \le k$
 $k \ge 1$

is true.

 $f(k + 1) = 4f((k + 1)/2)$
 $= 4\left(\frac{k+1}{2}\right)^2$
 $Proof done.$

Case 2: $k + 1$ is odd

 $0 \le k/2 \le k$
 $0 \le k \le 2k$
 $0 \le k \le 2k$
 $0 \le k \le 0 \le k$
 $0 \le k \le 0$
 $0 \le$

Problem 3.

- (a) Exercise Set 5.5, Problems 28, 29 F_0, F_1, F_2, \ldots is the Fibonacci sequence. $F_0 = 1, F_1 = 1, F_2 = 2, F_3 = 3$
 - 28. Prove that $F_{k+1}^2 F_k^2 F_{k-1}^2 = 2F_kF_{k-1}$, for all integers $k \ge 1$. Let property P(n) be $F_{n+1}^2 F_n^2 F_{n-1}^2 = 2F_nF_{n-1}$. $P(1): (F_2^2 - F_1^2 - F_0^2 = 2^2 - 1^2 - 1^2 = 2) = (2F_1F_0 = 2 \cdot 1 \cdot 1 = 2)$ is true.

Inductive hypothesis:

Assume $P(k): F_{k+1}^2 - F_k^2 - F_{k-1}^2 = 2F_k F_{k-1}$ for $k \ge 1$ to be true. Prove $P(k+1): F_{k+2}^2 - F_{k+1}^2 - F_k^2 = 2F_{k+1} F_k$: $F_{k+2}^2 - F_{k+1}^2 - F_k^2 = (F_{k+1} + F_k)^2 - (F_k + F_{k-1})^2 - F_k^2$

$$= (2F_k + F_{k-1})^2 - (F_k + F_{k-1})^2 - F_k^2$$

$$= 4F_k^2 + 4F_kF_{k-1} + F_{k-1}^2 - (F_k^2 + 2F_kF_{k-1} + F_{k-1}^2) - F_k^2$$

$$= 2F_k^2 + 2F_kF_{k-1}$$

$$= 2F_k(F_k + F_{k-1})$$

$$= 2F_kF_{k+1}$$

Basis and inductive hypothesis proven, therefore original statement is true.

29. Prove that $F_{k+1}^2 - F_k^2 = F_{k-1}F_{k+2}$, for all integers $k \ge 1$. Let property P(n) be $F_{n+1}^2 - F_n^2 = F_{n-1}F_{n+2}$.

$$P(1): (F_2^2 - F_1^1 = 3) = (F_0F_3 = 3)$$
 is true.

Inductive hypothesis:

Assume
$$P(k): F_{k+1}^2 - F_k^2 = F_{k-1}F_{k+2}$$
 for $k \ge 1 \in \mathbb{Z}$ to be true.
Prove $P(k+1): F_{k+2}^2 - F_{k+1}^2 = F_k F_{k+3}$:

$$F_{k+2}^2 - F_{k+1}^2 = (F_{k+1} + F_k)^2 - (F_k + F_{k-1})^2$$

$$= (2F_k + F_{k-1})^2 - (F_k^2 + 2F_k F_{k-1} + F_{k-1}^2)$$

$$= 4F_k^2 + 4F_k F_{k-1} + F_{k-1}^2 - (F_k^2 + 2F_k F_{k-1} + F_{k-1}^2)$$

$$= 3F_k^2 + 2F_k F_{k-1}$$

$$= F_k(3F_k + 2F_{k-1})$$

$$= F_k(F_{k+1} + 2F_k + F_{k-1})$$

$$= F_k(F_{k+2} + F_k + F_{k-1})$$

$$= F_k(F_{k+2} + F_{k+1})$$

= $F_k F_{k+3}$

(b) Exercise Set 5.6, Problem 2(b,d)

$$1 + r + r^2 + \dots + r^n = \frac{r^{n+1} - 1}{r - 1}$$

 $1+r+r^2+\cdots+r^n=\frac{r^{n+1}-1}{r-1}$ is true for all real numbers r except for r=1 and for all integers $n\geq 0$.

(b) If n is an integer and $n \ge 1$, find a formula for the expression $3^{n-1} + 3^{n-2} + \cdots + 3^2 + 3 + 1$.

$$\sum_{i=0}^{n-1} 3^i = \frac{3^n - 1}{2}$$

$$x^{n} - 2^{n-1} + 2^{n-2} - 2^{n-3} + \dots + (-1)^{n-1} \cdot 2 + (-1)^{n}$$
.

(d) If
$$n$$
 is an integer and $n \ge 1$, find a formula for the expression
$$2^n - 2^{n-1} + 2^{n-2} - 2^{n-3} + \dots + (-1)^{n-1} \cdot 2 + (-1)^n.$$
$$(-1)^0 2^n + (-1)^1 2^{n-1} + (-1)^2 2^{n-2} + (-1)^3 2^{n-3} + \dots + (-1)^{n-1} \cdot 2^1 + (-1)^n 2^0.$$

$$\sum_{i=0}^{n} (-1)^{i} 2^{n-i} = \sum_{i=0}^{n} (-1)^{i} \frac{2^{n}}{2^{i}}$$

$$=2^n\sum_{i=0}^n\frac{(-1)^i}{2^i}$$

$$=2^n\sum_{i=0}^n\left(-\frac{1}{2}\right)^i$$

$$=2^{n}\frac{\left(-\frac{1}{2}\right)^{n+1}-1}{-\frac{1}{2}-1}$$

$$=2^n\frac{2((-\frac{1}{2})^{n+1}-1)}{2}$$

$$= 2^{n} \frac{2((-\frac{1}{2})^{n+1} - 1)}{3}$$
$$= -\frac{2^{n+1}((-\frac{1}{2})^{n+1} - 1)}{3}$$

$$= -\frac{(-1)^{n+1} - 2^{n+1}}{3}$$

$$=\frac{2^{n+1}-(-1)^{n+1}}{3}$$

9. $g_k = \frac{g_{k-1}}{g_{k-1}+2}$ for all integers $k \ge 2$ $g_1 = 1$

$$a_1 = 1$$

$$g_2 = \frac{1}{1+2} = \frac{1}{1+2^1}$$

$$g_3 = \frac{\frac{1}{1+2}}{\frac{1}{1+2}+2} = \frac{1}{1+2} \cdot \frac{1+2}{1+2(1+2)} = \frac{1}{1+2(1+2)} = \frac{1}{1+2^1+2^2}$$

$$g_4 = \frac{\frac{1}{1+2+4}}{\frac{1}{1+2+4}+2} = \frac{1}{1+2+4} \cdot \frac{1+2+4}{1+2(1+2+4)} = \frac{1}{1+2(1+2+4)} = \frac{1}{1+2^1+2^2+2^3}$$

$$g_k = \frac{1}{\sum_{k=1}^{k-1} 2^i}$$

$$\sum_{i=0}^{\infty} 2^i$$

$$g_k = \frac{1}{\frac{2^{(k-1)+1} - 1}{2 - 1}}$$
$$g_k = \frac{1}{2^k - 1}$$

$$g_k = \frac{1}{2^k - 1}$$

$$\begin{aligned} &14. & x_{k} = 3x_{k-1} + k, \text{ for all integers } k \geq 2 \\ & x_{1} = 1 \\ & x_{2} = 3 \cdot 1 + 2 \\ & x_{3} = 3(3 \cdot 1 + 2) + 3 = 3^{2} \cdot 1 + 3 \cdot 2 + 3 \\ & x_{4} = 3(3^{2} \cdot 1 + 3 \cdot 2 + 3) + 4 = 3^{3} \cdot 1 + 3^{2} \cdot 2 + 3 \cdot 3 + 4 \\ & x_{k} = \sum_{i=0}^{k-1} 3^{i}(k-i) = \sum_{i=0}^{k-1} k^{3i} - \sum_{i=0}^{k-1} i3^{i} = k \cdot \frac{3^{k} - 1}{2} - \sum_{i=1}^{k-1} i3^{i} \\ & \text{Let } S = \sum_{i=1}^{k-1} i3^{i} = 1 \cdot 3 + 2 \cdot 3^{2} + \dots + (k-2)3^{k-2} + (k-1)3^{k-1} \\ & S = 3 + 3^{2} + \dots + 3^{k-2} + 3^{k-1} \\ & + 3^{2} + \dots + 3^{k-2} + 3^{k-1} \\ & + 3^{k-2} + 3^{k-1} \\ & + 3^{k-1} + 3^$$

15.
$$y_k = y_{k-1} + k^2$$
, for all integers $k \ge 2$

$$y_1 = 1$$

$$y_2 = 1 + 2^2 = 5$$

$$y_3 = (1 + 2^2) + 3^2 = 14$$

$$y_4 = (1 + 2^2 + 3^2) + 4^2 = 30$$

$$y_k = \sum_{i=1}^k i^2$$

$$y_k = 1 + 2 + 3 + 4 + \dots + (k-1) + k$$

$$+ 2 + 3 + 4 + \dots + (k-1) + k$$

$$+ 3 + 4 + \dots + (k-1) + k$$

$$+ 4 + \dots + (k-1) + k$$

$$+ (k-1) + k$$

$$+ (k-1) + k$$

$$+ k$$

$$+ (k-1) + k$$

$$+ k$$

$$+$$