- 1. High-level languages use compilers to convert code such as C into Assembly language. From there, the code is sent to an Assembler which further converts it into machine code that can be understood by the computer. While the C code and Assembly language can be human readable, the machine language is not usually decipherable by humans.
- $die\ area = 18.9mm \times 13.6mm = 257.04mm^2 = 2.5704cm^2$ 2. $wafer\ diameter = 300mm = 30cm$

(a)
$$\frac{dies}{wafer} = \frac{\pi \left(\frac{wafer\ diameter}{2}\right)^{2}}{die\ area} - \frac{\pi (wafer\ diameter)}{\sqrt{2 \times (die\ area)}} = 233.43 \rightarrow 233 \frac{dies}{wafer}$$
(b)
$$die\ yield = \frac{wafer\ yield}{\left(1 + \frac{defects}{area} \times die\ area\right)^{N}} = \frac{0.99}{\left(1 + \frac{0.02}{1cm} \times 2.5704cm^{2}\right)^{7}} = 0.6970$$

(b)
$$die\ yield = \frac{wafer\ yield}{\left(1 + \frac{defects}{area} \times die\ area\right)^N} = \frac{0.99}{\left(1 + \frac{0.02}{1cm} \times 2.5704cm^2\right)^7} = 0.6970$$

- cost per wafer = \$6500 dies per wafer = 233 dies die yield = 0.697 cost per die = $\frac{cost \ per \ wafer}{dies \ per \ wafer \times die \ yield} = \frac{$6500}{233 \times 0.697} = $40.02 \ per \ die$ (c) $cost\ per\ wafer = \$6500$
- (d) $cost \ per \ die = \$40.02$ $price\ per\ die = 1.5 \times \$40.02 = \$60.03$ wafer yield = die yield × dies per wafer = $233 \times 0.697 = 162$ price per wafer = w afer yield \times price per die = \$9748.93 This is a profit of \$3248.93 per wafer.
- (e) # failed dies × % repackaged = # repackaged dies $= 71 \times 0.65 = 46 \ repackaged \ dies$ $= $60.03 \times 0.60 = $36.02 \ per \ repackaged \ die$ # repackaged dies × \$ per repackaged die = \$ per wafer repackaged $=46 \times \$36.02 = \$1656.92 \ per \ wafer \ repackaged$

This repackaged total, with the total from the quad-core, would result in a gross of \$11405.85, which equates to a net profit of \$4905.85 per wafer. If 15% of these gains go to R&D, that would be \$1710.88, leaving \$9694.97 remaining.

- 3. P1: clk = 1.8GHz, CPI = 0.8 P2: clk = 2.4GHz, CPI = 1.2P3 : clk = 3.2GHz, CPI = 1.6
 - (a) P3 has the highest clk rate: 3.2GHz.

$$P1: \frac{1}{clk} = \frac{1}{1.8GHz} = 0.555ns$$
 $P2: \frac{1}{clk} = \frac{1}{2.4GHz} = 0.41/7ns$

Due: 21 February 2020

$$P3: \frac{1}{clk} = \frac{1}{3.2GHz} = 0.313ns$$

(b)
$$MIPS = \frac{Clk \ Cycles}{CPI \times 10^6}$$

$$P1: \frac{1.8 \times 10^9 \frac{cycles}{sec}}{0.8 \times 10^6 \frac{cycles}{instr}} = 2250 MIPS \qquad P2: \frac{2.4 \times 10^9 \frac{cycles}{sec}}{1.2 \times 10^6 \frac{cycles}{instr}} = 2000 MIPS$$

$$P3: \frac{3.2 \times 10^9 \frac{cycles}{sec}}{1.6 \times 10^6 \frac{cycles}{instr}} = 2000 MIPS$$

P1 has the highest MIPS rate: 2250 MIPS.

(c)
$$t_{exec} = \frac{instr}{MIPS}$$
 Swap thes

P1 has the highest MIPS rate : 2250 MIPS.

(c)
$$t_{exec} = \frac{instr}{MIPS}$$

$$P1 : \frac{22 \times 10^6 \ instr}{2000 \times 10^6 \frac{instr}{sec}} = 11.0ms$$

$$P2 : \frac{19 \times 10^6 \ instr}{2250 \times 10^6 \frac{instr}{sec}} = 8.44ms$$

$$P3 : \frac{22 \times 10^6 \ instr}{2000 \times 10^6 \frac{instr}{sec}} = 11.0ms$$

$$P3: \frac{22 \times 10^6 \ instr}{2000 \times 10^6 \frac{instr}{sec}} = 11.0 m/s$$

P2 has the fastest execution time: 8.4ms.

(d)
$$speedup = \frac{reference\ time}{processor\ time}$$

(d)
$$speedup = \frac{reference\ time}{processor\ time}$$

$$P1: \frac{35ms}{11ms} = 3.1818 \times P2: \frac{35ms}{8.44ms} = 4.1448 \times$$

$$P3: \frac{35ms}{11ms} = 3.1818 \times$$

4.

(a) The system is 1/0 bound.

(b)
$$speedup_{overall} = \frac{1}{\frac{affected}{speedup_{affected}} + unaffected} = \frac{1}{\frac{0.4}{20 \times} + 0.6} = 1.6129 \times$$
(c) $speedup_{overall} = \frac{1}{\frac{affected}{speedup_{affected}} + unaffected} = \frac{1}{\frac{0.6}{3 \times} + 0.4} = 1.667 \times$

(c)
$$speedup_{overall} = \frac{1}{\frac{affected}{speedup_{affected}} + unaffected} = \frac{1}{\frac{0.6}{3 \times} + 0.4} = 1.667 \times 10^{-10}$$

(d) We could improve the I/O by increasing performance of the disk access. This can be done by swapping out an older, platter-style HDD with a faster SSD drive, or by choosing a drive that has a faster RPM rating.

5.
$$t_{exec} = 1000s$$

(a)
$$speedup_{overall} = \frac{1}{\frac{affected}{speedup_{affected}} + unaffected} = \frac{1}{\frac{0.8}{4 \times} + 0.2} = 2.5 \times \frac{1}{1}$$

(b)
$$speedup_{overall} = \frac{1}{\frac{affected}{speedup_{affected}} + unaffected} = \frac{1}{\frac{0.8}{8 \times} + 0.2} = 3.3 \times$$

(c)
$$speedup_{overall} = \frac{1}{\frac{affected}{speedup_{affected}} + unaffected} = \frac{1}{\frac{0.\%}{\infty} + 0.2} = 5 \times$$

(d)
$$speedup_{overall} = \frac{1}{\frac{affected}{speedup_{affected}} + unaffected} = \frac{1}{\frac{0.9}{\infty} + 0.1} = 10$$

6.
$$t_{exec} = 2s$$

(a)
$$speedup_{overall} = \frac{1}{\frac{affected}{speedup_{affected}} + unaffected} = \frac{1}{\frac{0.95}{\infty} + 0.05} = 20 \times$$
(b) $speedup_{overall} = \frac{1}{\frac{affected}{speedup_{affected}} + unaffected} = \frac{1}{\frac{0.95}{50 \times} + 0.05} = 14.4927 \times$

(b)
$$speedup_{overall} = \frac{1}{\frac{affected}{speedup_{affected}} + unaffected} = \frac{1}{\frac{0.95}{50 \times} + 0.05} = 14.4927 \times 10^{-10}$$

$$t'_{exec} = \frac{t_{exec}}{14.4927 \times} = 0.138s$$

(c)
$$Energy = Power \times t_{exec} = 2P$$

Energy = Power
$$\times t_{exec} = 2P$$

Energy' = $2 \times Power \times t'_{exec} = 0.276P$
Energy $2P$

$$\frac{Energy}{Energy'} = \frac{2\cancel{P}}{0.276\cancel{P}} = 7.2464$$

(d) Please see plot below for speedup of the overall cryptographic operation as the coprocessor speedup varies.


```
MATLAB Drive > ECE438_HW01_P06.m
 1 figure(1); clf
 2 coprocessor=1:1:50;
 3 a1=0.95; a2=0.90; a3=0.85; a4=0.80;
 4 overall1=1 ./ ((a1 ./ coprocessor) + (1-a1));
 5 overall2=1 ./ ((a2 ./ coprocessor) + (1-a2));
 6 overall3=1 ./ ((a3 ./ coprocessor) + (,1-a3));
 7 overall4=1 ./ ((a4 ./ coprocessor) + (1-a4));
                                                              Very nice!
 8 hold
 9 plot(coprocessor, overall1, 'g', 'LineWidth',3)
10 plot(coprocessor, overall2, 'r', 'LineWidth',3)
11 plot(coprocessor, overall3, 'y', 'LineWidth',3)
12 plot(coprocessor, overall4, 'b', 'LineWidth',3)
13 xlabel('Coprocessor Speedup')
14 ylabel('Overall Speedup')
15 title('Overall Cryptographic Speedup vs. Coprocessor Speedup')
16 legend('a1 = 95%', 'a2 = 90%', 'a3 = 85%', 'a4 = 80%')
```

7.
$$90nm$$
 $f = 500MHz$ $V = 1.2V$ $P_D = 1.0W$ $P_S = 0.2W$ $P_D \propto \frac{1}{2}CV^2f$ \rightarrow $C = \frac{2P_D}{V^2f} = \frac{2W}{(1.2V)^2 \times 500MHz} = 2.778nF$ $P_S \propto VI_{leakage}$ \rightarrow $I_{leakage} = \frac{P_S}{V} = \frac{0.2W}{1.2V} = 166.7mA$

(a)
$$E = P_{total} \times t_{exec} = (P_D + P_S) \times t_{exec} = 1.2W \times 1s = 1.2Y$$

(b)
$$f = 250MHz$$
 $V = 1.2V$ $t_{exec} = 2s$
$$P_{total} = P_D + P_S = \frac{1}{2}CV^2f + VI_{leakage} = 500mW + 200mW = 700mW$$
 $E = P_{total} \times t_{exec} = (P_D + P_S) \times t_{exec} = 700mW \times 2s = 1.4J$

(c)
$$f = 250MHz$$
 $V = 1.2V$ $t_{exec} = 2s$
$$P_{total} = P_D + P_S = \frac{1}{2}CV^2f + VI_{leakage} = 281.25mW + 150mW = 431.25mW$$
 $E = P_{total} \times t_{exec} = (P_D + P_S) \times t_{exec} = 431.25mW \times 2s = 862.5mJ$

(d)
$$f = 650MHz$$
 $V = 1.4V$ $t_{exec} = \frac{500MHz}{650MHz} = 0.769s$
$$P_{total} = P_D + P_S = \frac{1}{2}CV^2f + VI_{leakage} = 1.7694W + 233.33mW = 2.0028W$$
 $E = P_{total} \times t_{exec} = (P_D + P_S) \times t_{exec} = 2.0028W \times 0.769s = 1.5406J$

(e) Other ways to reduce energy could be to increase the size of the die which will decrease the leakage current through the device and decrease the static power consumption.

(f)
$$\frac{C'}{C} = \frac{130nm}{90nm} = 1.444$$

(f)
$$\frac{1}{C} = \frac{1}{90nm} = 1.444$$

$$130nm: P_D \propto \frac{1}{2}CV^2f = 1.5031W \quad P_S \propto VI_{leakage} = 250mW \quad P_{total} = 1.7531W$$
Proof $P_D \propto \frac{1}{2}CV^2f = 1.0406W \quad P_S \propto VI_{leakage} = 250mW \quad P_{total} = 1.2906W$

8. (a) & (b) Please see table below for the SPECratio for Machines A and B as well as the geometric means of the SPECratios for both machines. Also shown are the results when libquantum was removed from the calculations.

	Ultra 5	Machine A	Machine A	Machine B	Machine B
Benchmark	Time (sec)	Time (sec)	SPEC ratio	Time (sec)	SPEC ratio
perlbench	9,770	454	21.520	253	38.617
bzip2	9,650	520	18.558	438	22.032
gcc	8,050	461	17.462	234	34.402
mcf	9,120	268	34.030	150	60.800
gobmk	10,490	429	24.452	383	27.389
hmmer	9,330	197	47.360	135	69.111/
sjeng	12,100	529	22.873	362	33. 42 5
libquantum	20,720	91	227.692	7	2960.0
h264ref	22,130	599	36.945	427	51.827
omnetpp	6,250	305	20.492	163	38.344
astar	7,020	327	21.468	234	30.000,
xalancbmk	6,900	253	27.273	117	58.97 <mark>4</mark>
Geometric mean			30.446		56. 9 82

	Ultra 5	Machine A	Machine A	Machine B	Machine B
Benchmark	Time (sec)	Time (sec)	SPEC ratio	Time (sec)	SPEC ratio
perlbench	9,770	454	21.520	253	38.617
bzip2	9,650	520	18.558	438	22.032
gcc	8,050	461	17.462	234	34.402
mcf	9,120	268	34.030	150	60.800
gobmk	10,490	429	24.452	383	27.389
hmmer	9,330	197	47.360	135	69.111
sjeng	12,100	529	22.873	362	33.425
h264ref	22,130	599	36.945	427	51.827
omnetpp	6,250	305	20.492	163	38.344
astar	7,020	327	21.468	234	30.000 /
xalancbmk	6,900	253	27.2 7 3	117	58.974
Geometric mean			25. <mark>3</mark> 57		39.790

- (c) From the results we can see that Machine B is faster (by about 26.5s) than Machine A based off of the geometric mean of the SPECratios of the two machines compared to a Speedup - & Bover A? - 1 relative machine.
- (d) With libquantum removed from the results, Machine B is still faster than Machine A, but this time by a much smaller margin (14.4s).

9.

(a)
$$Compiler_A$$
: $\#instr = 8 \times 10^8$ $t_{exec} = 1.1s$ $clk = 1ns \rightarrow 1GHz$ $Compiler_B$: $\#instr = 1.2 \times 10^9$ $t_{exec} = 1.6s$ $CPI_A = \frac{t_{exec} \times f}{\#instr} = \frac{1.1s \times 1GHz}{8 \times 10^8} = 1.375$ cycles per instruction $CPI_B = \frac{t_{exec} \times f}{\#instr} = \frac{1.6s \times 1GHz}{1.2 \times 10^9} = 1.333$ cycles per instruction

Due: 21 February 2020

(b) $Clock \ rate_A = CPI_A \times \#instr_A = 1.1 \text{ GHz}$

Clock
$$rate_A = CPI_A \times \#instr_A = 1.1 \text{ GHz}$$

Clock $rate_B = CPI_B \times \#instr_B = 1.2 \text{ GHz}$

Compiler_C: $\#instr = 7.5 \times 10^8$ $CPI = 1.3$

- (c) $Compiler_C$: $\#instr = 7.5 \times 10^8$ CPI = 1.3

$$t_{exec} = \frac{CPI_C \times \#instr}{f} = \frac{7.5 \times 10^8 \times 1.3}{1GHz} = 0.975s$$

$$f = 1GHz$$
 $speedup_{\frac{A}{C}} = \frac{1.1s}{0.975s} = 1.1282 \times speedup_{\frac{B}{C}} = \frac{1.6s}{0.975s} = 1.641 \times speedup_$