ĐẠI SỐ TUYẾN TÍNH - HK2 - NĂM 2015-2016

Chương 2

ĐỊNH THỨC

lvluyen@hcmus.edu.vn

http://www.math.hcmus.edu.vn/~luyen/dsb1

FB: fb.com/daisob1

Đại học Khoa Học Tự Nhiên Tp. Hồ Chí Minh

Nội dung

Chương 2. ĐỊNH THỨC

- 1. Định nghĩa và các tính chất
- 2. Định thức và ma trận khả nghịch
- 3. Ứng dụng định thức để giải hệ PTTT

2.1. Định nghĩa và các tính chất

- Định nghĩa
- Quy tắc Sarrus
- 6 Khai triển định thức theo dòng và cột
- Định thức và các phép biến đổi sơ cấp

2.1.1. Định nghĩa

Định nghĩa. Cho A là ma trận vuông cấp n. Ta gọi ma trận A(i|j) là ma trận có được từ A bằng cách $x\acute{o}a$ đi dòng i $v\grave{a}$ cột j của A. Rõ ràng ma trận A(i|j) có cấp là n-1.

Ví dụ. Cho
$$A = \begin{pmatrix} 1 & 2 & 3 & 2 \\ 3 & 4 & 2 & 5 \\ 6 & 7 & 1 & 3 \\ 9 & 2 & 10 & 4 \end{pmatrix}$$
. Tìm ma trận $A(1|2)$ và $A(2|3)$?

Giải.

$$A(1|2) = \begin{pmatrix} 3 & 2 & 5 \\ 6 & 1 & 3 \\ 9 & 10 & 4 \end{pmatrix}; \qquad A(2|3) = \begin{pmatrix} 1 & 2 & 2 \\ 6 & 7 & 3 \\ 9 & 2 & 4 \end{pmatrix}.$$

Định nghĩa. Cho $A = (a_{ij})_{n \times n} \in M_n(\mathbb{R})$. **Định thức** của ma trận A, được ký hiệu là $\det A$ hay |A| là một số thực được xác định bằng quy nạp theo n như sau:

- Nếu n = 1, nghĩa là A = (a), thì |A| = a.
- Nếu n = 2, nghĩa là $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ thì |A| = ad bc.
- Nếu n > 2, nghĩa là $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$, thì

$$|A| \xrightarrow{\frac{\text{dong 1}}{m}} \sum_{j=1}^{n} a_{1j} (-1)^{1+j} |A(1|j)|$$

$$= a_{11} |A(1|1)| - a_{12} |A(1|2)| + \dots + a_{1n} (-1)^{1+n} |A(1|n)|.$$

Ví dụ. Cho
$$A = \begin{pmatrix} 4 & -2 \\ 3 & 5 \end{pmatrix}$$
. Khi đó $|A| = 4.5 - (-2).3 = 26$.

Ví dụ. Tính định thức của ma trận

$$A = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 3 & 0 \\ 3 & 2 & 4 \end{pmatrix}.$$

Giải.

$$|A| \xrightarrow{\frac{\text{dòng 1}}{2}} 1(-1)^{1+1} \begin{vmatrix} 3 & 0 \\ 2 & 4 \end{vmatrix} + 2(-1)^{1+2} \begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix} + (-3)(-1)^{1+3} \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix}$$

$$= 12 - 16 + 15 = 11.$$

2.1.2. Quy tắc Sarrus (n=3)

Cho
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
. Theo định nghĩa của định thức, ta có
$$|A| = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$
$$- a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}.$$

Từ đây ta suy ra công thức Sarrus dựa vào sơ đồ sau:

$$|A| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - (a_{13}a_{22}a_{31} + a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33}).$$

(Tổng ba đường chéo đỏ - tổng ba đường chéo xanh)

Ví dụ.

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 2 & 1 \\ 3 & 1 & 5 \end{vmatrix} = (1.2.5 + 2.1.3 + 3.4.1) - (3.2.3 + 1.1.1 + 2.4.5) = -31.$$

2.1.3. Khai triển định thức theo dòng và cột

Định nghĩa. Cho $A=(a_{ij})_{n\times n}\in M_n(\mathbb{R})$. Với mỗi $i,j\in\overline{1,n}$, ta gọi

$$c_{ij} = (-1)^{i+j} \det A(i|j)$$

là $ph\hat{a}n b\hat{u} dai s\hat{o}$ của hệ số a_{ij} .

Ví dụ. Cho
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 3 & 4 & 0 \end{pmatrix}$$
. Tìm phần bù đại số của a_{12} và a_{31} ?

Giải.

$$c_{12} = (-1)^{1+2} \begin{vmatrix} 2 & 1 \\ 3 & 0 \end{vmatrix} = 3; \quad c_{31} = (-1)^{3+1} \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} = -2.$$

Định lý. Cho $A = (a_{ij})_{n \times n} \in M_n(\mathbb{R})$. Với mỗi $i, j \in \overline{1, n}$, gọi c_{ij} là phần bù đại số của hệ số a_{ij} . Ta có công thức khai triển |A|

- theo dòng i: $|A| = \sum_{k=1}^{n} a_{ik}c_{ik}$.
- theo $c\hat{o}t$ j: $|A| = \sum_{k=1}^{n} a_{kj}c_{kj}$.

Nhận xét.

$$|A| \stackrel{\underline{dong \, i}}{=\!=\!=} \sum_{k=1}^{n} a_{ik} (-1)^{i+k} |A(i|k)|$$

$$\stackrel{\underline{côt \, j}}{=\!=\!=} \sum_{k=1}^{n} a_{kj} (-1)^{k+j} |A(k|j)|$$

Ví dụ. Tính định thức của
$$A = \begin{pmatrix} 3 & -1 & 3 \\ 5 & 2 & 2 \\ 4 & 1 & 0 \end{pmatrix}$$
 theo dòng 2 và cột 3.

$$A = \begin{pmatrix} 3 & -1 & 3 \\ 5 & 2 & 2 \\ 4 & 1 & 0 \end{pmatrix}$$

Giải.

$$|A| \stackrel{\text{doing 2}}{=\!=\!=} 5(-1)^{2+1} \begin{vmatrix} -1 & 3 \\ 1 & 0 \end{vmatrix} + 2(-1)^{2+2} \begin{vmatrix} 3 & 3 \\ 4 & 0 \end{vmatrix} + 2(-1)^{2+3} \begin{vmatrix} 3 & -1 \\ 4 & 1 \end{vmatrix}$$

$$= 15 - 24 - 14 = -23.$$

$$|A| \xrightarrow{\frac{\text{cont } 3}{4}} 3(-1)^{1+3} \begin{vmatrix} 5 & 2 \\ 4 & 1 \end{vmatrix} + 2(-1)^{2+3} \begin{vmatrix} 3 & -1 \\ 4 & 1 \end{vmatrix} + 0(-1)^{3+3} \begin{vmatrix} 3 & -1 \\ 5 & 2 \end{vmatrix}$$

$$= -9 - 14 + 0 = -23.$$

Lưu ý. Trong việc tính định thức của ma trận ta nên chọn dòng hay côt có chứa nhiều số 0 để khai triển.

Ví dụ. Tính định thức của ma trận
$$A = \begin{pmatrix} 2 & -3 & 3 & 2 \\ 3 & 0 & 1 & 4 \\ -2 & 0 & 0 & 2 \\ 4 & 0 & -1 & 5 \end{pmatrix}$$
.

Giải.
$$|A| = \frac{\cot 2}{-3(-1)^{1+2}} \begin{vmatrix} 3 & 1 & 4 \\ -2 & 0 & 2 \\ 4 & -1 & 5 \end{vmatrix} = 3.32 = 96.$$

Ví dụ. (tự làm) Tính định thức của ma trận

$$B = \begin{pmatrix} 1 & 2 & -1 & 10 & 9 \\ 0 & 2 & 3 & -8 & 4 \\ 0 & 0 & -3 & 5 & 4 \\ 0 & 0 & 0 & 2 & 7 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix}.$$

Đáp án.
$$|B| = -48$$

Mệnh đề. Cho $A \in M_n(\mathbb{R})$. Khi đó:

- (i) $|A^{\top}| = |A|$.
- (ii) Nếu A có một dòng hay một cột bằng 0 thì |A| = 0.
- (iii) Nếu A là một ma trận tam giác thì |A| bằng tích các phần tử trên đường chéo, nghĩa là

$$|A|=a_{11}.a_{22}\ldots a_{nn}.$$

Ví dụ. Tính định thức các ma trận sau:

$$a) \begin{pmatrix} -1 & 0 & 4 \\ 3 & 0 & 4 \\ 4 & 0 & -2 \end{pmatrix}; \quad b) \begin{pmatrix} 2 & 3 & 4 \\ 0 & -3 & 9 \\ 0 & 0 & 4 \end{pmatrix}; \quad c) \begin{pmatrix} -2 & 0 & 0 \\ 3 & 3 & 0 \\ 9 & 8 & -5 \end{pmatrix}.$$

Đáp án.
$$|A| = 0$$
; $|B| = 2.(-3).4 = -24$; $|C| = (-2).3.(-5) = 30$.

Dịnh lý. Nếu $A, B \in M_n(\mathbb{R})$ thì |AB| = |A||B|.

2.1.4. Định thức và các phép biến đổi sơ cấp

Định lý. Cho $A, A' \in M_n(\mathbb{R})$. Khi đó

(i)
$$N\acute{e}u \ A \xrightarrow[i \neq j]{d_i \leftrightarrow d_j} A' \ thì \ |A'| = -|A|;$$

(ii)
$$N\acute{e}u \ A \xrightarrow{\alpha d_i} A' \ thi \ |A'| = \alpha |A|;$$

(iii)
$$N\hat{e}u \ A \xrightarrow[i\neq j]{d_i+\beta d_j} A' \ thi \ |A'| = |A|.$$

Lưu ý. Vì $|A^{\top}| = |A|$ nên trong quá trình tính định thức ta có thể sử dụng các phép biến đổi sơ cấp trên cột.

Ví dụ. Tính định thức của ma trận
$$A = \begin{pmatrix} 1 & 3 & 7 \\ 2 & 6 & -8 \\ 5 & -12 & 4 \end{pmatrix}$$
.

Giải.
$$\begin{vmatrix} 1 & 3 & 7 \\ 2 & 6 & -8 \\ 5 & -12 & 4 \end{vmatrix} = \frac{\frac{1}{2}d_2}{2} = 2 \begin{vmatrix} 1 & 3 & 7 \\ 1 & 3 & -4 \\ 5 & -12 & 4 \end{vmatrix}$$

$$\frac{\text{dong 2}}{\text{dong 2}} 6(-11)(-1)^{2+3} \begin{vmatrix} 1 & 1 \\ 5 & -4 \end{vmatrix} = -594.$$

Ví dụ.

$$\begin{vmatrix} 2 & 3 & -4 & 5 \\ 3 & -5 & 2 & 4 \\ 5 & 4 & 3 & -2 \\ -4 & 2 & 5 & 3 \end{vmatrix} = \begin{vmatrix} d_2 - d_1 \\ d_4 + 2d_1 \\ \hline d_1 - 2d_2 \\ d_3 - 5d_2 \end{vmatrix} \begin{vmatrix} 0 & 19 & -16 & 7 \\ 1 & -8 & 6 & -1 \\ 0 & 44 & -27 & 3 \\ 0 & 8 & -3 & 13 \end{vmatrix}$$

$$\frac{ \stackrel{\text{cột 1}}{=} 1.(-1)^{2+1} \begin{vmatrix} 19 & -16 & 7 \\ 44 & -27 & 3 \\ 8 & -3 & 13 \end{vmatrix}$$

$$\frac{d_3 - 4d_2}{d_2 - 3d_3} - \begin{vmatrix}
1195 & -751 & 0 \\
548 & -342 & 0 \\
-168 & 105 & 1
\end{vmatrix}$$

$$\frac{\text{cot 1}}{548} - \begin{vmatrix} 1195 & -751 \\ 548 & -342 \end{vmatrix} = -2858.$$

Ví dụ.

$$\begin{vmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{vmatrix} = \underbrace{\begin{vmatrix} \frac{6d_1}{12d_2} & \frac{1}{60} \frac{1}{12} \cdot \frac{1}{60} & \frac{6}{3} & \frac{2}{6} \\ \frac{6}{6} & \frac{4}{4} & \frac{3}{3} \\ \frac{20}{20} & \frac{15}{12} & \frac{1}{2} \end{vmatrix}}_{=\frac{1}{2160}}$$
$$\underbrace{\begin{vmatrix} \frac{c_1 - 2c_2}{c_2 - c_3} & \frac{1}{4320} & \frac{0}{-2} & \frac{1}{1} \\ -10 & \frac{3}{6} & \frac{6}{2} \end{vmatrix}}_{=\frac{1}{2160}}.$$

Nhận xét. Trong quá trình tính định thức, phép biến đổi sơ cấp loại 3 được khuyến khích dùng bởi vì nó không làm thay đổi giá trị định thức.

Ví dụ.(tự làm) Tính định thức các ma trận sau

$$A = \begin{pmatrix} 1 & 1 & 2 & -1 \\ 2 & 3 & 5 & 0 \\ 3 & 2 & 6 & -2 \\ -2 & 1 & 3 & 1 \end{pmatrix}; \quad B = \begin{pmatrix} 3 & 2 & -1 & 1 \\ 2 & 3 & -2 & 0 \\ -3 & 1 & 4 & -2 \\ 4 & 1 & 3 & 1 \end{pmatrix}.$$

Đáp án. $|A| = -19; \quad |B| = -30.$

Ví dụ.(tự làm) Tính định thức các ma trận sau

$$C = \begin{pmatrix} 13 & 18 & 6 & -1 & 7 \\ 4 & 7 & 3 & 4 & 1 \\ 7 & 9 & 3 & -1 & 4 \\ 6 & 9 & 3 & -2 & 3 \\ 6 & 3 & 1 & -2 & 3 \end{pmatrix}; \quad D = \begin{pmatrix} 3 & 4 & 2 & 1 & 3 \\ 2 & -3 & 5 & 1 & 8 \\ -4 & -7 & 2 & -2 & 4 \\ 3 & -5 & 4 & 3 & 5 \\ 8 & 6 & -4 & 1 & 2 \end{pmatrix}$$

Đáp án. |C| = 24; |D| = -174.

Ví dụ.(tự làm) Tính định thức các ma trận sau

a)
$$A = \begin{pmatrix} 2 & 5 \\ 3 & -6 \end{pmatrix}$$
;

b)
$$B = \begin{pmatrix} 2 & 3 & 2 \\ 3 & 2 & 5 \\ 2 & -1 & 2 \end{pmatrix};$$

c)
$$C = \begin{pmatrix} 3 & 2 & 3 & 4 \\ 2 & 1 & 3 & 2 \\ 1 & 2 & 1 & 2 \\ -3 & 4 & 2 & 1 \end{pmatrix}; D = \begin{pmatrix} 1 & 1 & 2 & -1 \\ 2 & 3 & 5 & 0 \\ 3 & 2 & 6 & -2 \\ -2 & 1 & 3 & 1 \end{pmatrix}.$$

d) C^2D^{\top}

Đáp án.
$$|A| = -27$$
; $|B| = 16$; $|C| = -18$; $|D| = -19$;

$$|C^2D^{\top}| = |C^2||D^{\top}| = |C|^2|D| = -6156.$$

2.2. Định thức và ma trận khả nghịch

- Ma trận phụ hợp
- Nhận diện ma trận khả nghịch

2.2.1. Ma trận phụ hợp

Định nghĩa. Cho
$$A=(a_{ij})\in M_n(\mathbb{R})$$
. Đặt $C=(c_{ij})$ với

$$c_{ij} = (-1)^{i+j} |A(i|j)|$$

là phần bù đại số của a_{ij} . Ta gọi ma trận chuyển vị C^{\top} của C là ma trận phụ hợp của A, ký hiệu là adj(A).

Ví dụ. Cho
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 2 & -1 & 2 \\ 3 & 4 & -2 \end{pmatrix}$$
. Tìm ma trận phụ hợp của A ?

Giải. Ta có
$$C = \begin{pmatrix} -6 & 10 & 11 \\ 10 & -7 & 1 \\ 7 & -2 & -8 \end{pmatrix} \Rightarrow \operatorname{adj}(A) = \begin{pmatrix} -6 & 10 & 7 \\ 10 & -7 & -2 \\ 11 & 1 & -8 \end{pmatrix}.$$

2.2.2. Nhận diện ma trận khả nghịch

Định lý. Ma trận vuông A khả nghịch khi và chỉ khi $|A| \neq 0$. Hơn nữa,

$$A^{-1} = \frac{1}{|A|} \operatorname{adj}(A).$$

Ví dụ. Cho $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 3 & 4 & 0 \end{pmatrix}$. Hỏi A có khả nghịch hay không? Nếu có,

hãy tìm ma trận nghịch đảo của A.

Giải. Ta có $|A| = -2 \neq 0$. Suy ra A khả nghịch.

$$c_{11} = (-1)^{1+1} \begin{vmatrix} 3 & 1 \\ 4 & 0 \end{vmatrix} = -4; \quad c_{12} = (-1)^{1+2} \begin{vmatrix} 2 & 1 \\ 3 & 0 \end{vmatrix} = 3;$$

$$c_{13} = (-1)^{1+3} \begin{vmatrix} 2 & 3 \\ 3 & 4 \end{vmatrix} = -1;$$
 $c_{21} = (-1)^{2+1} \begin{vmatrix} 1 & 1 \\ 4 & 0 \end{vmatrix} = 4;$ $c_{22} = -3;$ $c_{23} = -1;$ $c_{31} = -2;$ $c_{32} = 1;$ $c_{33} = 1.$

Suy ra

$$C = \begin{pmatrix} -4 & 3 & -1 \\ 4 & -3 & -1 \\ -2 & 1 & 1 \end{pmatrix}.$$

Do đó

$$adj(A) = C^{\top} = \begin{pmatrix} -4 & 4 & -2 \\ 3 & -3 & 1 \\ -1 & -1 & 1 \end{pmatrix}.$$

Như vậy

$$A^{-1} = \frac{1}{|A|} \operatorname{adj}(A) = \frac{1}{-2} \begin{pmatrix} -4 & 4 & -2 \\ 3 & -3 & 1 \\ -1 & -1 & 1 \end{pmatrix}.$$

Hệ quả. Ma trận
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 khả nghịch khi và chỉ khi $ad - bc \neq 0$. Khi đó
$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Ví dụ. Cho
$$A = \begin{pmatrix} 2 & 4 \\ 3 & 5 \end{pmatrix}$$
. Suy ra $A^{-1} = \frac{1}{-2} \begin{pmatrix} 5 & -4 \\ -3 & 2 \end{pmatrix}$.

Ví dụ. (tự làm) Cho
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & -1 \\ 3 & 5 & 2 \end{pmatrix}$$
. Hỏi A có khả nghịch hay

không? Nếu có, hãy tìm ma trận nghịch đảo của A bằng phương pháp đinh thức.

Đáp án.
$$A^{-1} = -\frac{1}{2} \begin{pmatrix} 11 & 1 & -5 \\ -7 & -1 & 3 \\ 1 & 1 & -1 \end{pmatrix}$$
.

 \mathbf{V} í dụ. Tìm tất cả các giá trị của m để ma trận sau khả nghịch

$$a)A = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 2 & 1 & 5 & 3 \\ 5 & 0 & 7 & m \\ -1 & 2 & 3 & -3 \end{pmatrix}; \quad b)B = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & m \\ 3 & 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 5 & 7 & 5 \end{pmatrix}.$$

Hướng dẫn. a) Ta có |A| = 8m - 72. Do đó A khả nghịch khi

$$8m - 72 \neq 0 \Leftrightarrow m \neq 9.$$

b) Ta có |B|=(4m-4)(0)=0. Do đó B không khả nghịch với mọi m.

Ví dụ. (tự làm) Cho
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 3 & 3 & 5 \end{pmatrix}$$
. Tính $|A^{-1}|$; $|3A|$; $|adj(A)|$.

Đáp án.
$$|A^{-1}| = \frac{1}{2}$$
; $|3A| = 54$; $|adj(A)| = 4$.

Mệnh đề. Cho $A \in M_n(\mathbb{R})$ và A khả nghịch. Khi đó

(i)
$$|A^{-1}| = \frac{1}{|A|}$$
;

- (ii) $|\alpha A| = \alpha^n |A|$;
- (iii) $|adj(A)| = |A|^{n-1}$.

Ví dụ. Cho $A, B \in M_3(\mathbb{R})$ và |A| = 3, |B| = -2. Tính $|(2AB)^{-1}| \text{ và } |\operatorname{adj}(AB)|?$

Giải.

•
$$|(2AB)^{-1}| = \frac{1}{|2AB|} = \frac{1}{2^3|AB|} = \frac{1}{8|A||B|} = \frac{1}{8.(3).(-2)} = -\frac{1}{48};$$

•
$$|\operatorname{adj}(AB)| = |AB|^{3-1} = (|A||B|)^2 = (3.(-2))^2 = 36.$$

2.3. Ứng dụng định thức để giải hệ PTTT

- Quy tắc Cramer
- Biện luận và giải hệ PTTT bằng Cramer

2.3.1. Quy tắc Cramer

Định lý. Cho hệ phương trình tuyến tính AX = B (*) gồm n ẩn và n phương trình. Đặt

$$\Delta = \det A; \qquad \Delta_i = \det(A_i), \ \forall i \in \overline{1, n},$$

trong đó A_i là ma trận có từ A bằng cách thay cột i bằng cột B. Khi đó:

(i) $N\acute{e}u \ \Delta \neq 0 \ thì \ (*) \ c\'o \ một \ nghiệm \ duy \ nhất \ là:$

$$x_i = \frac{\Delta_i}{\Delta}, i \in \overline{1, n}.$$

- (ii) $N\acute{e}u \ \Delta = 0 \ và \ \Delta_i \neq 0 \ với một i nào đó thì (*) vô nghiệm.$
- (iii) $N\acute{e}u \ \Delta = 0 \ và \ \Delta_i = 0 \ \forall \in \overline{1,n} \ thì \ hệ vô nghiệm hoặc vô số nghiệm. Trong trường hợp này ta phải dùng phương pháp Gauss hoặc Gauss-Jordan để giải (*).$

Ví dụ. Giải phương trình sau bằng quy tắc Cramer

$$\begin{cases} x - y - 2z = -3; \\ 2x - y + z = 1; \\ x + y + z = 4. \end{cases}$$
 (1)

Giải. Ta có

$$\Delta = |A| = \begin{vmatrix} 1 & -1 & -2 \\ 2 & -1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7; \ \Delta_1 = |A_1| = \begin{vmatrix} -3 & -1 & -2 \\ 1 & -1 & 1 \\ 4 & 1 & 1 \end{vmatrix} = -7;$$

$$\Delta_2 = |A_2| = \begin{vmatrix} 1 & -3 & -2 \\ 2 & 1 & 1 \\ 1 & 4 & 1 \end{vmatrix} = -14; \Delta_3 = |A_3| = \begin{vmatrix} 1 & -1 & -3 \\ 2 & -1 & 1 \\ 1 & 1 & 4 \end{vmatrix} = -7. \text{ Vi}$$

 $\Delta \neq 0$ nên hệ (1) có nghiệm duy nhất

$$x = \frac{\Delta_1}{\Delta} = 1; y = \frac{\Delta_2}{\Delta} = 2; z = \frac{\Delta_3}{\Delta} = 1.$$

Ví dụ. Giải hệ phương trình sau bằng quy tắc Cramer

$$\begin{cases} x + y - 2z = 4; \\ 2x + 3y + 3z = 3; \\ 5x + 7y + 4z = 5. \end{cases}$$
 (2)

Giải. Ta có

$$\Delta = |A| = \begin{vmatrix} 1 & 1 & -2 \\ 2 & 3 & 3 \\ 5 & 7 & 4 \end{vmatrix} = 0; \quad \Delta_1 = |A_1| = \begin{vmatrix} \mathbf{4} & 1 & -2 \\ \mathbf{3} & 3 & 3 \\ \mathbf{5} & 7 & 4 \end{vmatrix} = -45.$$

Vì $\Delta = 0$ và có $\Delta_1 \neq 0$ nên hệ phương trình vô nghiệm.

Ví dụ. Giải hệ phương trình sau bằng quy tắc Cramer

$$\begin{cases} x + y - 2z = 4; \\ 2x + 3y + 3z = 3; \\ 5x + 7y + 4z = 10. \end{cases}$$
 (3)

Giải. Ta có

$$\Delta = |A| = \begin{vmatrix} 1 & 1 & -2 \\ 2 & 3 & 3 \\ 5 & 7 & 4 \end{vmatrix} = 0; \quad \Delta_1 = |A_1| = \begin{vmatrix} \mathbf{4} & 1 & -2 \\ \mathbf{3} & 3 & 3 \\ \mathbf{10} & 7 & 4 \end{vmatrix} = 0;$$

$$\Delta_2 = |A_2| = \begin{vmatrix} 1 & \mathbf{4} & -2 \\ 2 & \mathbf{3} & 3 \\ 5 & \mathbf{10} & 4 \end{vmatrix} = 0; \quad \Delta_3 = |A_3| = \begin{vmatrix} 1 & 1 & \mathbf{4} \\ 2 & 3 & \mathbf{3} \\ 5 & 7 & \mathbf{10} \end{vmatrix} = 0.$$

Vì $\Delta = \Delta_1 = \Delta_2 = \Delta_3 = 0$ nên không kết luận được nghiệm của hệ. Do đó ta phải dùng Gauss hoặc Gauss-Jordan để giải.

Ma trận hóa hệ phương trình tuyến tính, ta có

$$\tilde{A} = \begin{pmatrix} 1 & 1 & -2 & | & 4 \\ 2 & 3 & & 3 & | & 3 \\ 5 & 7 & & 4 & | & 10 \end{pmatrix}$$

$$\tilde{A} \xrightarrow{d_2 - 2d_1} \begin{pmatrix} 1 & 1 & -2 & 4 \\ 0 & 1 & 7 & -5 \\ 0 & 2 & 14 & -10 \end{pmatrix} \xrightarrow{d_1 - d_2} \begin{pmatrix} 1 & 0 & -9 & 9 \\ 0 & 1 & 7 & -5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Ta có z là ẩn tự do. Như vậy nghiệm của hệ (3) là

$$\left\{ \begin{array}{lll} x & = & 9+9t; \\ y & = & -5-7t; \\ z & = & t \in \mathbb{R}. \end{array} \right.$$

2.3.2. Biện luận và giải hệ PTTT bằng Cramer

Ví dụ. Giải và biện luận hệ phương trình sau theo tham số $m \in \mathbb{R}$:

$$\begin{cases} x_1 + 2x_2 + 2x_3 = 0; \\ -2x_1 + (m-2)x_2 + (m-5)x_3 = 2; \\ mx_1 + x_2 + (m+1)x_3 = -2. \end{cases}$$

Giải. Ta có

$$\Delta = |A| = \begin{vmatrix} 1 & 2 & 2 \\ -2 & m-2 & m-5 \\ m & 1 & m+1 \end{vmatrix} = m^2 - 4m + 3 = (m-1)(m-3);$$

$$\Delta_1 = |A_1| = \begin{vmatrix} \mathbf{0} & 2 & 2 \\ \mathbf{2} & m-2 & m-5 \\ -\mathbf{2} & 1 & m+1 \end{vmatrix} = -4m+12;$$

$$\Delta_2 = |A_2| = \begin{vmatrix} 1 & \mathbf{0} & 2 \\ -2 & \mathbf{2} & m - 5 \\ m & -\mathbf{2} & m + 1 \end{vmatrix} = 0;$$

$$\Delta_3 = |A_3| = \begin{vmatrix} 1 & 2 & \mathbf{0} \\ -2 & m - 2 & \mathbf{2} \\ m & 1 & -\mathbf{2} \end{vmatrix} = 2m - 6 = 2(m - 3).$$

Biên luân:

ightharpoonup Nếu $\Delta \neq 0 \Leftrightarrow \left\{ egin{array}{l} m \neq 1; \\ m \neq 3. \end{array}
ight.$ Khi đó hệ có nghiệm duy nhất là

$$(x_1, x_2, x_3) = \left(\frac{-4}{m-1}, 0, \frac{2}{m-1}\right).$$

$$\triangleright \text{ N\'eu } \Delta = 0 \Leftrightarrow \begin{bmatrix} m = 1 \\ m = 3 \end{bmatrix}$$

• Với m=1, ta có $\Delta_1=8\neq 0$ nên hệ vô nghiệm.

• Với m=3, ta có $\Delta_1=\Delta_2=\Delta_3=0$. Khi đó hệ phương trình là:

$$\tilde{A} = \begin{pmatrix} 1 & 2 & 2 & 0 \\ -2 & 1 & -2 & 2 \\ 3 & 1 & 4 & -2 \end{pmatrix} \xrightarrow{d_2 + 2d_1} \begin{pmatrix} 1 & 2 & 2 & 0 \\ 0 & 5 & 2 & 2 \\ 0 & -5 & -2 & -2 \end{pmatrix}$$

$$\xrightarrow{d_3 + d_2} \xrightarrow{d_1 - 2d_2} \begin{pmatrix} 1 & 0 & 6/5 & -4/5 \\ 0 & 1 & 2/5 & 2/5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Ta có x_3 là ẩn tự do. Suy ra nghiệm của hệ là

$$(x_1,x_2,x_3)=\left(-rac{6}{5}t-rac{4}{5},-rac{2}{5}t+rac{2}{5},t
ight)$$
 với $t\in\mathbb{R}.$

Ví du. Giải và biện luận hệ phương trình sau theo tham số $m \in \mathbb{R}$:

$$\begin{cases} (m-7)x + 12y - 6z = m; \\ -10x + (m+19)y - 10z = 2m; \\ -12x + 24y + (m-13)z = 0. \end{cases}$$

Giải.
$$\Delta = \begin{vmatrix} m-7 & 12 & -6 \\ -10 & m+19 & -10 \\ -12 & 24 & m-13 \end{vmatrix} = (m-1)^2(m+1);$$

$$\Delta_1 = \begin{vmatrix} m & 12 & -6 \\ 2m & m+19 & -10 \\ 0 & 24 & m-13 \end{vmatrix} = m(m-1)(m-17);$$

$$\Delta_2 = 2m(m-1)(m-14); \quad \Delta_3 = -36m(m-1).$$

Biện luận:

 \triangleright Nếu $\Delta \neq 0 \Leftrightarrow m \neq -1$ và $m \neq 1.$ Khi đó hệ có nghiệm duy nhất là

$$\begin{cases} x = \frac{\Delta_1}{\Delta} = \frac{m(m^2 - 18m + 17)}{(m-1)(m^2 - 1)} = \frac{m(m-17)}{m^2 - 1}; \\ y = \frac{\Delta_2}{\Delta} = \frac{m(m^2 - 15m + 14)}{(m-1)(m^2 - 1)} = \frac{m(m-14)}{m^2 - 1}; \\ z = \frac{\Delta_3}{\Delta} = \frac{-36m(m-1)}{(m-1)(m^2 - 1)} = \frac{-36m}{m^2 - 1}. \end{cases}$$

$$\triangleright$$
 Nếu $\Delta = 0 \Leftrightarrow \begin{bmatrix} m = -1; \\ m = 1. \end{bmatrix}$

- Với m=-1, ta có $\Delta_1=-36\neq 0$ nên hệ vô nghiệm.
- Với m=1, ta có $\Delta_1=\Delta_2=\Delta_3=0$. Hệ trở thành

$$\begin{cases}
-6x + 12y - 6z = 1; \\
-10x + 20y - 10z = 2; \\
-12x + 24y - 12z = 0.
\end{cases}$$

Ma trận hóa hệ phương trình ta có

$$\tilde{A} = \begin{pmatrix} -6 & 12 & -6 & 1 \\ -10 & 20 & -10 & 2 \\ -12 & 24 & -12 & 0 \end{pmatrix} \xrightarrow{d_3 - 2d_1} \begin{pmatrix} -6 & 12 & -6 & 1 \\ -10 & 20 & -10 & 2 \\ 0 & 0 & 0 & -2 \end{pmatrix}.$$

Suy ra hê vô nghiêm.

Ví dụ.(tự làm) Giải và biện luận hệ phương trình sau

$$\begin{cases} mx_1 + x_2 + x_3 = 1; \\ x_1 + mx_2 + x_3 = 1; \\ x_1 + x_2 + mx_3 = 1. \end{cases}$$

Hướng dẫn.

$$\Delta = m^3 - 3m + 2 = (m-1)^2(m+2);$$

$$\Delta_1 = \Delta_2 = \Delta_3 = m^2 - 2m + 1 = (m-1)^2.$$

Biện luận:

ightharpoonup Nếu $\Delta \neq 0 \Leftrightarrow \left\{ egin{array}{l} m \neq 1 \\ m \neq -2. \end{array}
ight.$ Khi đó hệ có nghiệm duy nhất là

$$(x_1, x_2, x_3) = \left(\frac{1}{m+2}, \frac{1}{m+2}, \frac{1}{m+2}\right).$$

$$ightharpoonup N \hat{\text{eu}} \ \Delta = 0 \Leftrightarrow \left[\begin{array}{c} m = 1 \\ m = -2 \end{array} \right]$$

• Với m=1, ta có $\Delta_1=\Delta_2=\Delta_3=0$. Hệ trở thành

$$\begin{cases} x + y + z = 1; \\ x + y + z = 1; \\ x + y + z = 1. \end{cases}$$

Giải hệ bằng Gauss hoặc Gauss-Jordan, ta có hệ vô số nghiệm

$$(x_1, x_2, x_3) = (1 - t - s, t, s) \text{ v\'oi } t, s \in \mathbb{R}$$

• m=-2, ta có $\Delta_1=9\neq 0$. Suy ra hệ vô nghiệm.