Лабораторная работа 1 (конъюнктор)

БВТ2102 Обыденков Константин

1. Запускаем Quartus Prime Lite версии 20.1 от имени администратора и создаем новый проект, выбираем для него название и директорию

2. Пропускаем страницы с шаблонами и добавлением файлов

3. Выбираем Cyclone IV E, количество ножек 144,

Частотное ядро

8L и выбрать следующий

ПЛИС

EP4CE6E22C8L по указанию методички.

4. Настраиваем симуляцию VHDL, все остальное выключаем

5. Получаем отчет

6. Coздаем verilog HDL File, Block Diagram/Schematic File, VHDL File И В разделе Verification/Debugging File выбираем University Program VWF

7. Заполняем их кодом

```
entity AndGate is
    Port ( A : in STD_LOGIC;
           B : in STD_LOGIC;
           Y : out STD_LOGIC);
end AndGate;
architecture Behavioral of AndGate is
begin
    Y \le A and B;
end Behavioral;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity AndGate is
    Port ( A : in STD_LOGIC;
           B : in STD_LOGIC;
           Y : out STD_LOGIC);
end AndGate;
architecture Behavioral of AndGate is
begin
    Y \leq A and B;
end Behavioral;
```

8. Компилируем

9. Добавляем наши схемы на Block окно и добавляем к ним входы и выходы и сохраняем под именем Schem_1_1.bpf

10. Отправляем нашу схемы на верхний уровень и запускаем компиляцию проекта

11. Выделяем все найденные нами сигналы

12. Задаем чистоты сигналам 10 МНz для A и 5 МНz для В

После сохраняем его как otchet_1.vwf

13. Сбрасываем настройки по умолчанию и убираем показатель оптимизации -novopt

14. Запускаем модель

