ЛАБОРАТОРНА РОБОТА 6

ДОСЛІДЖЕННЯ РЕКУРЕНТНИХ НЕЙРОННИХ МЕРЕЖ

Мета: використовуючи спеціалізовані бібліотеки та мову програмування Руthon навчитися дослідити деякі типи нейронних мереж.

Хід роботи

Завдання 2.1. Ознайомлення з Рекурентними нейронними мережами

```
import random
import numpy as np
from numpy.random import randn
class RNN:
    # A many-to-one Vanilla Recurrent Neural Network.
    def init (self, input size, output size, hidden size=64):
        # Weights
        self.Whh = np.random.randn(hidden size, hidden size) / 1000
        self.Wxh = np.random.randn(hidden size, input size) / 1000
        self.Why = np.random.randn(output size, hidden size) / 1000
        # Biases
        self.bh = np.zeros((hidden size, 1))
        self.by = np.zeros((output size, 1))
    def forward(self, inputs):
        h = np.zeros((self.Whh.shape[0], 1))
        self.last inputs = inputs
        self.last hs = {0: h}
        # Perform each step of the RNN
        for i, x in enumerate(inputs):
            h = np.tanh(self.Wxh @ x + self.Whh @ h + self.bh)
            self.last hs[i + 1] = h
        # Compute the output
        y = self.Why @ h + self.by
        return y, h
    def backprop(self, d y, learn rate=2e-2):
        n = len(self.last inputs)
```

3мн.	Арк.	№ докум.	Підпис	Дата	ДУ «Житомирська політехі	ніка».22	2.121.14	.000 – Лр6
Розр	00б.	Сірач А.С.				Літ.	Арк.	Аркушів
Пере	евір.	Філіпов В.О.			Звіт з		1	ZZ
Керіс	вник							
Н. контр.					лабораторної роботи	ФІКТ	ФІКТ Гр. ІПЗ-19-3	
328	каф						-	

```
\# Calculate dL/dWhy and dL/dby.
        d_Why = d_y @ self.last hs[n].T
        d by = d y
        # Initialize dL/dWhh, dL/dWxh, and dL/dbh to zero.
        d Whh = np.zeros(self.Whh.shape)
        d Wxh = np.zeros(self.Wxh.shape)
        d bh = np.zeros(self.bh.shape)
        # Calculate dL/dh for the last h.
        \# dL/dh = dL/dy * dy/dh
        dh = self.Why.T @ dy
        # Backpropagate through time.
        for t in reversed(range(n)):
            # An intermediate value: dL/dh * (1 - h^2)
            temp = ((1 - self.last hs[t + 1] ** 2) * d h)
            \# dL/db = dL/dh * (1 - h^2)
            d bh += temp
            \# dL/dWhh = dL/dh * (1 - h^2) * h {t-1}
            d Whh += temp @ self.last hs[t].T
            \# dL/dWxh = dL/dh * (1 - h^2) * x
            d Wxh += temp @ self.last inputs[t].T
            # Next dL/dh = dL/dh * (1 - h^2) * Whh
            dh = self.Whh @ temp
        # Clip to prevent exploding gradients.
        for d in [d Wxh, d Whh, d Why, d bh, d by]:
            np.clip(d, -1, 1, out=d)
        # Update weights and biases using gradient descent.
        self.Whh -= learn rate * d Whh
        self.Wxh -= learn rate * d Wxh
        self.Why -= learn rate * d Why
        self.bh -= learn rate * d bh
        self.by -= learn rate * d by
from data import train data, test data
# Create the vocabulary.
vocab = list(set([w for text in train data.keys() for w in text.split(' ')]))
vocab size = len(vocab)
print('%d unique words found' % vocab size)
# Assign indices to each word.
word to idx = {w: i for i, w in enumerate(vocab)}
idx to word = {i: w for i, w in enumerate(vocab)}
def createInputs(text):
    inputs = []
    for w in text.split(' '):
        v = np.zeros((vocab size, 1))
        v[word to idx[w]] = 1
        inputs.append(v)
    return inputs
```

		Сірач А.С.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
def softmax(xs):
    # Applies the Softmax Function to the input array.
    return np.exp(xs) / sum(np.exp(xs))
# Initialize our RNN!
rnn = RNN(vocab size, 2)
def processData(data, backprop=True):
    items = list(data.items())
   random.shuffle(items)
    loss = 0
   num correct = 0
    for x, y in items:
        inputs = createInputs(x)
        target = int(y)
        # Forward
        out, _ = rnn.forward(inputs)
        probs = softmax(out)
        # Calculate loss / accuracy
        loss -= np.log(probs[target])
        num correct += int(np.argmax(probs) == target)
        if backprop:
            # Build dL/dy
            d L d y = probs
            d L d y[target] -= 1
            # Backward
            rnn.backprop(d_L_d_y)
    return loss / len(data), num_correct / len(data)
# Training loop
for epoch in range (1000):
    train loss, train acc = processData(train data)
    if epoch % 100 == 99:
       print('--- Epoch %d' % (epoch + 1))
       print('Train:\tLoss %.3f | Accuracy: %.3f' % (train loss, train acc))
        test loss, test acc = processData(test data, backprop=False)
        print('Test:\tLoss %.3f | Accuracy: %.3f' % (test loss, test acc))
import numpy as np
from numpy.random import randn
class RNN:
    # A many-to-one Vanilla Recurrent Neural Network.
    def init (self, input size, output size, hidden size=64):
        # Weights
        self.Whh = randn(hidden size, hidden size) / 1000
        self.Wxh = randn(hidden_size, input_size) / 1000
        self.Why = randn(output size, hidden size) / 1000
```

		Сірач А.С.		
	·	Філіпов В.О.		·
Змн.	Арк.	№ докум.	Підпис	Дата

```
# Biases
    self.bh = np.zeros((hidden size, 1))
    self.by = np.zeros((output size, 1))
def forward(self, inputs):
   h = np.zeros((self.Whh.shape[0], 1))
   self.last_inputs = inputs
   self.last hs = \{0: h\}
    # Perform each step of the RNN
   for i, x in enumerate(inputs):
        h = np.tanh(self.Wxh @ x + self.Whh @ h + self.bh)
        self.last hs[i + 1] = h
    # Compute the output
    y = self.Why @ h + self.by
   return y, h
def backprop(self, d y, learn rate=2e-2):
   n = len(self.last inputs)
    # Calculate dL/dWhy and dL/dby.
    d Why = d y @ self.last hs[n].T
    d by = d y
    # Initialize dL/dWhh, dL/dWxh, and dL/dbh to zero.
    d Whh = np.zeros(self.Whh.shape)
    d Wxh = np.zeros(self.Wxh.shape)
    d bh = np.zeros(self.bh.shape)
    # Calculate dL/dh for the last h.
    \# dL/dh = dL/dy * dy/dh
    dh = self.Why.T @ dy
    # Backpropagate through time.
    for t in reversed(range(n)):
        # An intermediate value: dL/dh * (1 - h^2)
        temp = ((1 - self.last hs[t + 1] ** 2) * d h)
        \# dL/db = dL/dh * (1 - h^2)
        d bh += temp
        \# dL/dWhh = dL/dh * (1 - h^2) * h {t-1}
        d Whh += temp @ self.last hs[t].T
        \# dL/dWxh = dL/dh * (1 - h^2) * x
        d Wxh += temp @ self.last inputs[t].T
        \# Next dL/dh = dL/dh * (1 - h^2) * Whh
        d h = self.Whh @ temp
    # Clip to prevent exploding gradients.
    for d in [d_Wxh, d_Whh, d_Why, d_bh, d_by]:
        np.clip(d, -1, 1, out=d)
    # Update weights and biases using gradient descent.
    self.Whh -= learn rate * d Whh
    self.Wxh -= learn_rate * d_Wxh
    self.Why -= learn_rate * d_Why
```

		Сірач А.С.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
self.bh -= learn_rate * d_bh
self.by -= learn rate * d by
```

```
LR_6_task_1 ×
18 unique words found
--- Epoch 100
Train: Loss 0.688 | Accuracy: 0.552
Test:
       Loss 0.696 | Accuracy: 0.500
--- Epoch 200
Train: Loss 0.668 | Accuracy: 0.621
Test: Loss 0.725 | Accuracy: 0.550
--- Epoch 300
Train: Loss 0.163 | Accuracy: 0.931
Test: Loss 0.109 | Accuracy: 1.000
--- Epoch 400
Train: Loss 0.009 | Accuracy: 1.000
Test: Loss 0.020 | Accuracy: 1.000
--- Epoch 500
Train: Loss 0.006 | Accuracy: 1.000
Test: Loss 0.007 | Accuracy: 1.000
--- Epoch 600
Train: Loss 0.002 | Accuracy: 1.000
Test: Loss 0.002 | Accuracy: 1.000
--- Epoch 700
Train: Loss 0.002 | Accuracy: 1.000
Test: Loss 0.002 | Accuracy: 1.000
--- Epoch 800
Train: Loss 0.001 | Accuracy: 1.000
Test: Loss 0.001 | Accuracy: 1.000
--- Epoch 900
Train: Loss 0.001 | Accuracy: 1.000
Test: Loss 0.001 | Accuracy: 1.000
--- Epoch 1000
Train: Loss 0.001 | Accuracy: 1.000
Test: Loss 0.001 | Accuracy: 1.000
```

Рис. 6.1 Виконання файлу LR_6_task_1.py

Висновок: На рисунку 6.1 зверху можна побачити виведенне повідомлення "18 unique words found" це означає, що зміна vocab тепер буде мати перелік всіх слів, які вживаються щонайменше в одному навчальному тексті. Рекурентна нейронна мережа не розрізняє слів — лише числа. Тому у словнику 18 унікальних слів, кожне буде 18-мірним унітарним вектором. І далі відбувається тренування мережі.

		Сірач А.С.			
		Філіпов В.О.			ДУ «Житомирська політехніка».22.121.14.0
Змн.	Арк.	№ докум.	Підпис	Дата	

.000 – Лр6

Завдання 2.2. Дослідження рекурентної нейронної мережі Елмана (Elman

Лістинг програми:

Recurrent network (newelm))

```
import neurolab as nl
import numpy as np
i1 = np.sin(np.arange(0, 20))
i2 = np.sin(np.arange(0, 20)) * 2
t1 = np.ones([1, 20])
t2 = np.ones([1, 20]) * 2
input = np.array([i1, i2, i1, i2]).reshape(20 * 4, 1)
net.layers[0].initf = nl.init.InitRand([-0.1, 0.1], 'wb')
net.layers[1].initf = nl.init.InitRand([-0.1, 0.1], 'wb')
net.init()
# Тренування мережі
error = net.train(input, target, epochs=500, show=100, goal=0.01)
# Запустіть мережу
output = net.sim(input)
# Побудова графіків
import pylab as pl
pl.subplot(211)
pl.plot(error)
pl.xlabel('Epoch number')
pl.ylabel('Train error (default MSE)')
pl.subplot(212)
pl.plot(target.reshape(80))
pl.plot(output.reshape(80))
pl.legend(['train target', 'net output'])
pl.show()
```


Рис. 6. 2 Виконання програми

ı			Сірач А.С.			
ı			Філіпов В.О.			ДУ «Ж
ı	Змн.	$Ap\kappa$.	№ докум.	Підпис	Дата	

```
Epoch: 100; Error: 0.25183930006424604;

Epoch: 200; Error: 0.06368298617167414;

Epoch: 300; Error: 0.26187672375580323;

Epoch: 400; Error: 0.10895572106802684;

Epoch: 500; Error: 0.06428923243796886;

The maximum number of train epochs is reached
```

Рис. 6. 3 Виконання програми

Висновок: Під час виконання 2 завдання було імпортовано бібліотеки neurolab та numpy, створено модель сигналу для навчання мережі та мережу з двома прошарками. В результаті виконання програмного коду було отримано результати, які можна побачити на рис. 2-3

Завдання 2.3. Дослідження нейронної мережі Хемінга (Hemming Recurrent network)

```
import numpy as np
import neurolab as nl
target = [[-1, 1, -1, -1, 1, -1, -1, 1, -1],
          [1, 1, 1, 1, -1, 1, 1, -1, 1],
          [1, -1, 1, 1, 1, 1, 1, -1, 1],
          [1, 1, 1, 1, -1, -1, 1, -1, -1],
[-1, -1, -1, -1, 1, -1, -1, -1, -1]]
input = [[-1, -1, 1, 1, 1, 1, 1, -1, 1],
         [-1, -1, 1, -1, 1, -1, -1, -1, -1],
         [-1, -1, -1, -1, 1, -1, -1, 1, -1]
# Створення та тренування нейромережі
net = nl.net.newhem(target)
output = net.sim(target)
print("Test on train samples (must be [0, 1, 2, 3, 4])")
print(np.argmax(output, axis=0))
output = net.sim([input[0]])
print("Outputs on recurent cycle:")
print(np.array(net.layers[1].outs))
output = net.sim(input)
print("Outputs on test sample:")
print(output)
```

		Сірач А.С.		
		Філіпов В.О.		
Змн.	$Ap\kappa$.	№ докум.	Підпис	Дата

```
Test on train samples (must be [0, 1, 2, 3, 4])
[0 1 2 3 4]
Outputs on recurent cycle:
                                           ]
[[0.
          0.24
                           0.
                   0.48
                                    0.
 [0.
          0.144
                   0.432
                           0.
                                    0.
 [0.
          0.0576 0.4032
                           0.
                                    0.
                                           ]
 [0.
          0.
                   0.39168 0.
                                           ]]
                                    0.
Outputs on test sample:
[[0.
             0.
                         0.39168
                                     0.
                                                0.
 Γ0.
             0.
                         0.
                                     0.
                                                0.39168
 [0.07516193 0.
                         0.
                                     0.
                                                0.07516193]]
```

Рис. 6. 4 Виконання програми

Завдання 2.4. Дослідження рекурентної нейронної мережі Хопфілда Hopfield Recurrent network (newhop)

```
import numpy as np
import neurolab as nl
target = [[1,0,0,0,1,
           1,1,0,0,1,
           1,0,1,0,1,
           1,0,0,1,1,
           1,0,0,0,1],
           [1,1,1,1,1,
           1,0,0,0,0,
           1, 1, 1, 1, 1,
           1,0,0,0,0,
           1,1,1,1,1],
           [1,1,1,1,0,
           1,0,0,0,1,
           1,1,1,1,0,
           1,0,0,1,0,
           1,0,0,0,1],
           [0, 1, 1, 1, 0,
           1,0,0,0,1,
           1,0,0,0,1,
           1,0,0,0,1,
           0,1,1,1,0]]
chars = ['N', 'E', 'R', 'O']
target = np.asfarray(target)
target[target == 0] = -1
net = nl.net.newhop(target)
output = net.sim(target)
print("Test on train samples:")
for i in range(len(target)):
    print(chars[i], (output[i] == target[i]).all())
print("\nTest on defaced E:")
test =np.asfarray(
```

		Сірач А.С.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
)
test[test==0] = -1
out = net.sim([test])
print ((out[0] == target[1]).all(), 'Sim. steps',len(net.layers[0].outs))

Test on train samples:
    N True
    E True
    R True
    O True

Test on defaced E:
False Sim. steps 3
```

Рис. 6. 5 Виконання програми

Висновок: Під час виконання 4 завдання було імпортовано бібліотеки neurolab та numpy, було внесено вхідні дані у вигляді складного списку та подання їх в такій формі, яка сприймається функцією з бібліотеки. Було створенно та навчено нейронну мережу Хопфілда розпізнавати літери. В результаті викоання коду було отримано результат True, що означає позитивний результат навчання мережі. Якщо навчання пройшло правильно то мережа при невеликій кількості помилок буде вгадувати букву правильно.

Завдання 2.5. Дослідження рекурентної нейронної мережі Хопфілда для ваших персональних даних

		Сірач А.С.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
1, 1, 1, 1, 1,
            1, 0, 0, 0, 1],
           [1, 1, 1, 1, 1,
            1, 0, 0, 0, 0,
            1, 0, 0, 0, 0,
            1, 0, 0, 0, 0,
            1, 1, 1, 1, 1]
chars = ['C', 'A', 'C']
target = np.asfarray(target)
target[target == 0] = -1
net = nl.net.newhop(target)
output = net.sim(target)
print("Test on train samples:")
for i in range(len(target)):
    print(chars[i], (output[i] == target[i]).all())
print("\nTest on defaced C:")
test =np.asfarray([1, 1, 1, 1, 1,
                    1, 0, 0, 0, 0,
                    1, 0, 0, 0, 0,
                    1, 0, 0, 0, 0,
                    1, 1, 1, 1, 1])
test[test==0] = -1
out = net.sim([test])
print ((out[0] == target[0]).all(), 'Sim. steps',len(net.layers[0].outs))
                            Test on train samples:
                            C True
                            A True
                            C True
                            Test on defaced C:
                            True Sim. steps 1
```

Рис. 6. 6 Виконання програми

Висновок: під час виконання лабараторної роботи, використовуючи спеціалізовані бібліотеки та мову програмування Python навчився досліджувати деякі типи нейронних мереж.

Посилання на GitHub: https://github.com/annasirach/AI IPZ193 Sirach

		Сірач А.С.		
		Філіпов В.О.		
Змн.	$Ap\kappa$.	№ докум.	Підпис	Дата