MC.1

1. At time $t \ge 0$, a particle moving in the xy-plane has velocity vector given by $v(t) = \langle t^2, 5t \rangle$. What is the acceleration vector of the particle at time t = 3?

(A)
$$\left\langle 9, \frac{45}{2} \right\rangle$$

(B)
$$\langle 6,5 \rangle$$

(B)
$$\langle 6,5 \rangle$$
 (C) $\langle 2,0 \rangle$ (D) $\sqrt{306}$ (E) $\sqrt{61}$

(D)
$$\sqrt{306}$$

(E)
$$\sqrt{61}$$

MC.2

Which of the following gives the length of the path described by the parametric equations $x = \sin(t^3)$ and $y = e^{5t}$ from t = 0 to $t = \pi$?

(A)
$$\int_0^{\pi} \sqrt{\sin^2(t^3) + e^{10t}} dt$$

(B)
$$\int_0^{\pi} \sqrt{\cos^2(t^3) + e^{10t}} dt$$

(C)
$$\int_0^{\pi} \sqrt{9t^4 \cos^2(t^3) + 25e^{10t}} dt$$

(D)
$$\int_0^{\pi} \sqrt{3t^2 \cos(t^3) + 5e^{5t}} dt$$

(E)
$$\int_0^{\pi} \sqrt{\cos^2(3t^2) + e^{10t}} dt$$

MC.3

28. In the xy-plane, a particle moves along the parabola $y = x^2 - x$ with a constant speed of $2\sqrt{10}$ units per second. If $\frac{dx}{dt} > 0$, what is the value of $\frac{dy}{dt}$ when the particle is at the point (2,2)?

(A)
$$\frac{2}{3}$$

(A)
$$\frac{2}{3}$$
 (B) $\frac{2\sqrt{10}}{3}$ (C) 3 (D) 6 (E) $6\sqrt{10}$

(E)
$$6\sqrt{10}$$

MC.4

The position of a particle moving in the xy-plane is given by the vector $\langle 4t^3, y(2t) \rangle$, where y is a twice-differentiable function of t. At time $t = \frac{1}{2}$, what is the acceleration vector of the particle?

(A)
$$\langle 3, 2y''(1) \rangle$$

(B)
$$\langle 6, 4y''(1) \rangle$$

(C)
$$\langle 12, 2y''(1) \rangle$$

(D)
$$\langle 12, 4y''(1) \rangle$$

MC.5

If $x(t) = t^2 + 4$ and $y(t) = t^4 + 3$, for t > 0, then in terms of t, $\frac{d^2y}{dx^2} = \frac{1}{2}$

- (A) $\frac{1}{2}$

- (B) 2 (C) 4t (D) $6t^2$ (E) $12t^2$

MC.6

A particle moves in the xy-plane with position given by $(x(t), y(t)) = (5 - 2t, t^2 - 3)$ at time t. In which direction is the particle moving as it passes through the point (3, -2)?

- (A) Up and to the left
- (B) Down and to the left
- (C) Up and to the right
- (D) Down and to the right
- (E) Straight up

MC.7

A particle moves in the xy-plane so that its position for $t \ge 0$ is given by the parametric equations $x = \ln(t+1)$ and $y = kt^2$, where k is a positive constant. The line tangent to the particle's path at the point where t = 3 has slope 8. What is the value of k?

- (A) $\frac{1}{102}$ (B) $\frac{1}{3}$ (C) $\frac{4}{3}$ (D) $\frac{16}{3}$

MC.9 (calculator)

The velocity vector of a particle moving in the xy-plane has components given by $\frac{dx}{dt} = \sin(t^2)$ and $\frac{dy}{dt} = e^{\cos t}$. At time t = 4, the position of the particle is (2, 1). What is the y-coordinate of the position vector at time t = 3?

- (A) 0.410
- (B) 0.590 (C) 0.851
- (D) 1.410

MC.10 (calculator)

The position of an object moving along a path in the xy-plane is given by the parametric equations $x(t) = 5\sin(\pi t)$ and $y(t) = (2t - 1)^2$. The speed of the particle at time t = 0 is

- (A) 3.422
- (B) 11.708
- (C) 15.580
- (D) 16.209