最优化方法: 第四次作业

时间: 5月23日

- 1. 令 A 是一个 $n \times n$ 的实对称矩阵, 其特征值为 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, λ_i 对应的特征向量为 u_i . A 的特征分解为 $A = U^T \Lambda U$, 其中 U 是正交矩阵, U 的第 i 列为 u_i , $\Lambda = diag(\lambda_1, \ldots, \lambda_n)$ 为对角阵.
 - (a) 对于任意 $x \neq 0$,

$$R(x, A) = \frac{x^T A x}{x^T x}$$

称为 Rayleigh 商. 证明对于任意的 $c \neq 0$, 都有 R(cx, A) = R(x, A).

(b) 证明

$$\max_{x} \frac{x^T A x}{x^T x} = \max_{\|x\|=1} x^T A x$$

- (c) 证明: 对于任一单位向量 x, 都可以表示成 $x = \sum_{i=1}^n w_i u_i$, 其中 u_i 为特征向量, w_i 满足 $\|w\|^2 = \sum_{i=1}^n w_i^2 = 1$.
- (d) 证明

$$\max_{\|x\|=1} x^T A x = \lambda_1$$

并分析取到极大值时, 最优的 x 是多少? (提示, 利用 c 的结论, 将 x 写成特征向量的线性组合).

(e) 证明

$$\min_{\|x\|=1} x^T A x = \lambda_n$$

并分析取到极小值时, 最优的 x 是多少? (提示, 利用 c 的结论, 将 x 写成特征向量的线性组合).

2. 考虑约束优化问题

$$\max f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T Q \mathbf{x}, s.t. \|\mathbf{x}\| = 1.$$

使用固定步长的投影梯度法求解上述问题, 迭代公式为

$$\mathbf{x}_{k+1} = \Pi_{\mathbf{y} \in D}(\mathbf{x}_k + \alpha \nabla f(\mathbf{x}_k))$$

其中, $\alpha > 0$, $\Pi(\mathbf{x}) = \arg\min_{y \in D} \|\mathbf{x} - \mathbf{y}\|$, D 为约束集 $D = \{\mathbf{x} | \|\mathbf{x}\| = 1\}$.

- (a) 对于 $\mathbf{x} \neq 0$, 求出上面投影函数的显示表达式.
- (b) 今 Q = diag(1,2). 写出上面问题的最优性条件.
- (c) $\Diamond Q = diag(1,2)$, 判断临界点类型, 确定最优点.
- 3. 考虑优化问题

$$\min_{(x,y)\in\mathbb{R}^2} f(x) = (x-1)^2 + y - 2$$

s.t. $h(x) = y - x - 1 = 0$
 $g(x) = x + y - 2 \le 0$.

计算满足 KKT 条件的点,并利用二阶条件验证上述点是否是局部极小值点.

4. 考虑优化问题:

$$\min x_1$$
s.t. $16 - (x_1 - 4)^2 - x_2^2 \ge 0$

$$x_1^2 + (x_2 - 2)^2 - 4 = 0$$

- (a) 写出上述问题的最优性条件, 计算 KKT 点.
- (b) 判断上述 KKT 点是否是局部极小点, 鞍点, 或全局极小点.
- 5. 利用增广拉格朗日方法求解以下问题:

$$\min f(x) = 2x_1^2 + x_2^2 - 2x_1x_2$$
s.t. $x_1 + x_2 = 1$.

- (a) 写出上述问题的最优性条件, 计算 KKT 点.
- (b) 写出增广的拉格朗日函数
- (c) $\phi \sigma = 2, \lambda = 1$, 求解上述增广的拉格朗日函数的极小值.
- (d) 计算修正的 λ .