Homework #5 COMP 582 GRADUATE DESIGN AND ANALYSIS OF ALGORITHMS Fall 2023

Due on: Saturday, September 30th, 8pm Late submissions: will NOT be accepted Format: Please start each problem on a new page. Where to submit: Gradescope.

Please type your answers; handwritten assignments will not be accepted.

To get full credit, your answers must be explained clearly,

with enough details and rigorous proofs.

September 22, 2023

Problem 1

There are n coins given by a list $P=\{p_1,\ldots,p_n\}$ where $p_i\in\{1,\ldots,K\}$ is the price of the coin i. Design an algorithm that checks if it is possible to break the set of all items P into two parts P_A and P_B such that $P_A\cup P_B=P$, $P_A\cap P_B=\emptyset$ and $\sum_{i\in P_A}p_i=\sum_{i\in P_B}p_i$?

Problem 2

Assume you want to spend exactly A dollars. There are t items where each of them has unlimited supply and they are worth $C_1, C_2, ..., C_t$ dollars accordingly. Design a dynamic programming algorithm to compute the number of ways to spend exactly A dollars.

For example, when A=4 and $C=\{1,2\}$, you have three ways: $\{1,1,1,1\}$, $\{1,1,2\}$, $\{2,2\}$.

Problem 3

You are given an array A[1..n], which consists of n randomly permutted distinct integers. An ith element of this array, A[i], is said to be a $local \ spike$, if it is larger than all of its preceding elements (in other words, for all j < i, A[i] > A[j]). Show that the expected number of local spikes in A is $O(\log n)$. Hint #1: any array A has at least one local spike, since the first element of A trivially satisfies A[1] > A[j] for all j < 1, because no such index j exists. Hint #2: a review of CLRS Appendix C and the related material will be helpful.