

Appendix for the Report

Dosimetric Assessment of the Portable Device Q Digital Q-DT8 (FCC ID: UDDQDBP)

According to the FCC Requirements

Calibration Data

January 25, 2011

IMST GmbH Carl-Friedrich-Gauß-Str. 2 D-47475 Kamp-Lintfort

Customer

TRaC

Unit E, South Orbital Trading Park, Hedon Road, Hull HU9 1NJ, UK

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

IMST

Accreditation No.: SCS 108

Certificate No: ET3-1579_Jan10

CALIBRATION CERTIFICATE

Object ET3DV6R - SN:1579

Calibration procedure(s) QA CAL-01.v6, QA CAL-12.v6, QA CAL-23.v3 and QA CAL-25.v2

Calibration procedure for dosimetric E-field probes

Calibration date: January 20, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10
Reference Probe ES3DV2	SN: 3013	30-Dec-09 (No. ES3-3013_Dec09)	Dec-10
DAE4	SN: 660	29-Sep-09 (No. DAE4-660_Sep09)	Sep-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-09)	In house check: Oct10
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	iv. Valu
Approved by:	Katja Pokovic	Technical Manager	20 110

Issued: January 20, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1579_Jan10

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura

S **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL sensitivity in free space NORMx,y,z

sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point

crest factor (1/duty_cycle) of the RF signal CF modulation dependent linearization parameters A, B, C

φ rotation around probe axis Polarization o

9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\theta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x, y, z = NORMx, y, z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1579_Jan10 Page 2 of 11

Probe ET3DV6R

SN:1579

Manufactured:

May 7, 2001

Last calibrated:

January 23, 2008

Recalibrated:

January 20, 2010

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6R SN:1579

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.93	1.82	1.66	± 10.1%
DCP (mV) ^B	92.0	92.2	91.7	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc [€] (k=2)
10000 CW	cw	0.00	X	0.00	0.00	1.00	300	± 1.5%
			Υ	0.00	0.00	1.00	300	
			Z	0.00	0.00	1.00	300	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

DASY - Parameters of Probe: ET3DV6R SN:1579

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvF Y	ConvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	$43.5 \pm 5\%$	$0.87 \pm 5\%$	7.21	7.21	7.21	0.28	1.89 ± 13.3%
900	± 50 / ± 100	41.5 ± 5%	$0.97 \pm 5\%$	6.34	6.34	6.34	0.43	2.21 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	1.37 ± 5%	5.47	5.47	5.47	0.48	2.70 ± 11.0%
1900	± 50 / ± 100	$40.0 \pm 5\%$	$1.40 \pm 5\%$	5.25	5.25	5.25	0.64	2.23 ± 11.0%
1950	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	5.09	5.09	5.09	0.71	2.11 ± 11.0%

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

DASY - Parameters of Probe: ET3DV6R SN:1579

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	56.7 ± 5%	$0.94 \pm 5\%$	7.71	7.71	7.71	0.19	1.94 ± 13.3%
900	± 50 / ± 100	55.0 ± 5%	$1.05 \pm 5\%$	6.21	6.21	6.21	0.35	2.66 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	$1.49 \pm 5\%$	4.96	4.96	4.96	0.64	2.99 ± 11.0%
1900	± 50 / ± 100	$53.3 \pm 5\%$	$1.52 \pm 5\%$	4.70	4.70	4.70	0.84	2.44 ± 11.0%
1950	± 50 / ± 100	53.3 ± 5%	$1.52 \pm 5\%$	4.59	4.59	4.59	0.50	2.50 ± 11.0%

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

DAT-P-152/98-01

Calibration Certificate

Certificate No: Cal_D1900V2_SN5d051_0909

Object: D1900V2 SN: 5d051

Date of Calibration: September 09, 2009

Next Calibration: September 2011

Object Condition: In Tolerance

Calibration Equipment used:

			•	
Test Equipment	Serial Number	Last calibration	Calibrated by	Next calibration
Powermeter E4416A	GB41050414	Dec 08	Agilent Techn. (ISO/IEC 17025, 1-1784162174-1)	Dec 10
Power Sensor E9301H	US40010212	Dec 08	Agilent Techn. (ISO/IEC 17025, 1-1784041195-1)	Dec 10
Powermeter E4417A	GB41050441	Dec 08	Agilent Techn. (ISO/IEC 17025, 1-1674038198-1)	Dec 10
Power Sensor E9301A	MY41495584	Dec 08	Agilent Techn. (ISO/IEC 17025, 1-1784041307-1)	Dec 10
Network Analyzer E5071C	MY46103220	Aug 09	Rohde& Schwarz (14967-DKD-00201- 2009-08)	Aug 10
Reference Probe ET3DV6	SN 1669	Feb 09	SPEAG, No ET3- 1669_Feb09	Feb 10
DAE3	SN 335	Feb 09	SPEAG, No DAE3- 335_Feb09	Feb 10

Calibration is performed according the following standards:

IEEE 1528-2003

"IEEE Recommended Practice for Determining the Peak Spatial - Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Technique", December 2003

IEC 62209-1

"Procedure to measure the Specific Absorption Rate (SAR) for hand - held devices used in close proximity to the ear (frequency range of 300 MHz to 3GHz)", February 2005

Federal Communications Commission Office of Engineering & Technologies (FCCOET)

"Evaluating Compliance wit FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation: DASY 4 System Handbook

prepared by:

reviewed by:

André van den Bosch quality assurance engineer

a.d. Box

Alexander Rahn test engineer

Measurement Conditions

DASY Version: Dasy 4; V4.7

Phantom: SAM Phantom 1340

Distance Dipole Center – TSL: 10mm With spacer

Zoom Scan res. dx, dy, dz = 5mm

Frequency: 1900 MHz ± 1MHz

	Head TSL Paramete	rs	
	Temperature	Permittivity	Conductivity
Nominal Head TSL Parameters	22.0	40.0	1.40
Measured Head TSL Parameters	22.0	40.3 ± 6%	1.45 S/m ± 6%

	SAR result with Head TSL					
over	SAR measured	250mW input power	9.10 mW/g			
ed ov	SAR normalized	normalized to 1W	36.40 mW/g			
Averaged of	SAR for nominal Head TSL parameters	normalized to 1W	35.90 mW/g ± 16.5 % (k=2)			
over	SAR measured	250mW input power	4.76 mW/g			
ed ov	SAR normalized	normalized to 1W	19.04 mW/g			
Averaged 10g	SAR for nominal Head TSL parameters	normalized to 1W	18.96 mW/g ± 16.5 % (k=2)			

Body TSL Parameters					
	Temperature	Permittivity	Conductivity		
Nominal Body TSL Parameters	22.0	53.30	1.52		
Measured Body TSL Parameters	22.0	52.90 ± 6%	1.54 S/m ± 6%		

	SAR result with Body TSL					
over	SAR measured	250mW input power	9.42 mW/g			
ed ov	SAR normalized	normalized to 1W	37.68 mW/g			
Averaged of 19	SAR for nominal Body TSL parameters	normalized to 1W	37.28 mW/g ± 16.5 % (k=2)			
er	SAR measured	250mW input power	4.97 mW/g			
o pa	SAR normalized	normalized to 1W	19.88 mW/g			
Averaged over 10g	SAR for nominal Body TSL parameters	normalized to 1W	19.77 mW/g ± 16.5 % (k=2)			

General Antenna Parmeters				
Antenna Parameters with Head	Impedance, transformed to feed point	48.2 jΩ - 1.3 jΩ		
TSL	Return Loss	-33.0 dB		
Antenna Parameter with Body	Impedance, transformed to feed point	53.9 jΩ - 0.4 jΩ		
TSL	Return Loss	-28.3 dB		

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semigrid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC signals.

Additional EUT Data	
Manufactured by:	SPEAG
Manufactured on:	January 15, 1998

SAR result with Head TSL

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: <u>090909_b_1669.da4</u>

DUT: Dipole 1900 MHz SN: 5d051; Type: D1900V2; Serial: D1900V2 - SN5d051

Program Name: System Performance Check at 1900 MHz

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.45 \text{ mho/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6R SN1669; ConvF(5.11, 5.11, 5.11); Calibrated: 10.02.2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 09.02.2009
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 10.4 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.3 V/m; Power Drift = -0.152 dB

Peak SAR (extrapolated) = 15.9 W/kg

SAR(1 g) = 9.1 mW/g; SAR(10 g) = 4.76 mW/gMaximum value of SAR (measured) = 10.3 mW/g

SAR result with Body TSL

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: 090909_b_1669.da4

DUT: Dipole 1900 MHz SN: 5d051; Type: D1900V2; Serial: D1900V2 - SN5d051

Program Name: System Performance Check at 1900 MHz

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.54 mho/m; ε_r = 52.9; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6R - SN1669; ConvF(4.69, 4.69, 4.69); Calibrated: 10.02.2009

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 09.02.2009
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 10.1 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.1 V/m; Power Drift = -0.064 dB

Peak SAR (extrapolated) = 16.5 W/kg

SAR(1 g) = 9.42 mW/g; SAR(10 g) = 4.97 mW/g Maximum value of SAR (measured) = 10.7 mW/g

