

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Name:	Digital Design Laboratory	Semester:	III
Date of Performance:	24_/_07_/_2023	Batch No:	B-2
Faculty Name:		Roll No:	16010122151
Faculty Sign & Date:		Grade/Marks:	/25

Experiment No: 2

Title: Binary Adders and Subtractors

Aim and Objective of the Experiment:	
To implement half and full adder–subtractor using gates and IC 7483	
COs to be achieved:	
CO2 : Use different minimization technique and solve combinational circuits.	
Tools used:	
Trainer kits	

Adder: The addition of two binary digits is the most basic operation performed by the digital computer. There are two types of adder:

- Half adder
- Full adder

Half Adder: Half adder is a combinational logic circuit with two inputs and two outputs. It is the basic building block for the addition of two single-bit numbers.

Full adder: A half adder has a provision not to add a carry coming from the lower order bits when multi-bit addition is performed. for this purpose, a third input terminal is added and this circuit is to add A, B, and C where A and B are the nth order bits of the number A and B respectively and C is the carry generated from the addition of (n-1) order bits. This circuit is referred to as full adder.

Subtractor: Subtraction of two binary digits is one of the most basic operations performed by digital computer .there are two types of subtractors:

Semester: III

• Half subtractor

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Full subtractor

Half subtractor: Logic circuit for the subtraction of B from A where A,B are 1 bit numbers is referred to as half subtract or .the subtract or process has two input and difference and borrow are the two outputs.

Full subtractor: As in the case of the addition using logic gates, a full subtractor is made by combining two half-sub tractors and an additional OR-gate. A full subtractor has the borrow in capability (denoted as BOR_{IN}) and so allows cascading which results in the possibility of multi-bit subtraction.

IC 7483

For subtraction of one binary number from another, we do so by adding 2's complement of the former to the latter number using a full adder circuit.

IC 7483 is a 16 pin, 4-bit full adder. This IC has a provision to add the carry output to transfer and end around carry output using Co and C4 respectively.

2's complement: 2's complement of any binary no. can be obtained by adding 1 in 1's complement of that no. e.g. 2's complement of $+(10)_{10} = 1010$ is

1C of 1010 0101
$$+$$
 1 $-$ (10)10 0110

In 2's complement subtraction using IC 7483, we are representing negative number in 2's complement form and then adding it with 1st number.

Semester: III

Implementation Details: Half Adder Block Diagram

Block Diagram of Half Adder

Half Adder Circuit

Academic Year: 2023-24 Roll No:____

${\bf K.\,J.\,Somaiya\,\, College\,\, of\,\, Engineering,\, Mumbai-77}$

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Truth Table for Half Adder

Ir	puts	Outputs		
A	В	S	С	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

From the truth table (with steps):

Semester: III Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University)

Inj	puts			Outputs	
A	В	$\mathbf{A} \oplus \mathbf{B}$	A . B	S	C
0	0	0	0	0	0
0	1	1	0	1	0
1	0	1	0	1	0
1	1	0	1	0	1

Full Adder Block Diagram

Full Adder Circuit

Semester: III

Digital Design Laboratory

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Truth Table for Full Adder

Sr. No	A	В	Cin	S	Cout
1.	0	0	0	0	0
2.	0	0	1	1	0
3.	0	1	0	1	0
4.	0	1	1	0	1
5.	1	0	0	1	0
6.	1	0	1	0	1
7.	1	1	0	0	1
8.	1	1	1	1	1

From the truth table (with steps):

S = A'B'Cin + A'BCin' + AB'Cin' + ABCinCout = ACin + AB + BCin

	Inputs			Operations					Ouputs	
A	В	Cin	$A \oplus B$	D ⊕ Cin	D . Cin	A . B =	F + G =	S	С	
			= D	= E	= F	G	Н			
0	0	0	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	1	0	
0	1	0	1	1	0	0	0	1	0	
0	1	1	1	0	1	0	1	0	1	
1	0	0	1	1	0	0	0	1	0	
1	0	1	1	1	1	0	1	0	1	
1	1	0	0	0	0	1	1	0	1	
1	1	1	0	1	0	1	1	1	1	

Semester: III Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Half Subtractor Block Diagram

Half Subtractor Circuit

Truth Table for Half Subtractor

A	В	DIFFERENCE(D)	BORROW(Bo)
0	0	0	0
1	0	1	0
0	1	1	1
1	1	0	0

Semester: III Academic Year: 2023-24
Roll No:_____

Digital Design Laboratory

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

From the truth table (with steps):

Difference (D) = A'B + AB'

Borrow(B) = A'B

Inp	outs				Outputs		
A	В	~A = C	$A \oplus B = E$	B . C = F	D	Borrow	
0	0	1	0	0	0	0	
0	1	1	1	1	1	1	
1	0	0	1	0	1	0	
1	1	0	0	0	0	0	

Full Subtractor Block Diagram

Semester: III Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Full Subtractor Circuit

Truth Table for Full subtractor

A	В	BIN	D	BOROUT
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	. 0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	. 0	0
1	1	1	1	1

Semester: III

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University)

From the truth table (with steps):

Difference = A'B'Bin + A'BBin' + AB'Bin' + ABBin

Borrow out= A'B + A'Bin + BBin

	Input									Out	tput
A	В	Bin	$A \oplus B =$	~A = E	$\mathbf{E.B} = \mathbf{F}$	Bin ⊕ C	~C = F	F.Bin =	F + H = I	D	Borrout
			С			= G		Н			
0	0	0	0	1	0	0	1	0	1	0	0
0	0	1	0	1	0	1	1	1	1	1	1
0	1	0	1	1	1	1	0	0	0	1	1
0	1	1	1	1	1	0	0	0	0	0	1
1	0	0	1	0	0	1	0	0	0	1	0
1	0	1	1	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	1	0	1	0	0
1	1	1	0	0	0	1	1	1	1	1	1

Example:

1)
$$710-210 = 510$$
7
0111
2
0010
1'C of 2
1101
+ 1
2'C of 2
1110

0111 + 1110 1 0101

Semester: III Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Pin Diagram IC7483

Adder

Digital Design Laboratory

Semester: III Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Somanja TRUST

Subtractor

Implementation Details

Procedure:

- 1) Locate the IC 7483 and 4-not gates block on trainer kit.
- 2) Connect 1st input no. to A4-A1 input slot and 2nd (negative) no. to B4-B1 through 4-not gates (1C of 2nd no.)
- 3) Connect high input to Co so that it will get added with 1C of 2nd no. to get 2C.
- 4) Connect 4-bit output to the output indicators.
- 5) Switch ON the power supply and monitor the output for various input combinations.

Semester: III

Post Lab Subjective/Objective type Questions:

1. Design a full adder using two half adders.

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Semester: III

1. Perform the following Binary subtraction with the help of appropriate ICs:

a. 6-4

Digital Design Laboratory

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

	Dota
	Page
-,-	S California et allocated as .
(9)	7-9
	$(7)_{10} = (0111)_{2}$
(4.7)	2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4	$(9)_{10} = (1001)_{2}$
	10 (10)2
	in analysis
	7 - 9 = 7 + (-9)
	1's complement of 9 => 0110
	13 00119721112 86 3
	2's complement of 9 = 0110
v - 03	23 complement of 3 9 0110
100	1 Long to 10 1111 5
	7+(-9) => 0111
	7 1 3 4 1 2 1 3 1 3
	01110 No is regat
-	01110
	1'5 -> 10001
-	13 - 10001
	2 2 2 10001
	2 5 complement => 10001
	Carry <10010
7.27	
2.0	· · (0010) = (2)
2	· (0010) ₂ = (2) ₁₀ ,
	-1-9=-2
0,700	

Conclusion:

Circuits of binary adder and sub tractors were studied on the IC kit usingConnectors and tested using sample values.

Digital Design Laboratory

Semester: III

Academic Year: 2023-24 Roll No:_____

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Signature of faculty	in-charge	with	Date:

Digital Design Laboratory Academic Year: 2023-24 Semester: III