Vaje iz mehanike

Matija Zanjkovič 1

Maribor, 2023

¹Mentor: Marko Šterk

Kazalo

1	Vaj	a 1: M	Ierjenje gostote	1
			ota trdne snovi	. 1
		1.1.1	Naloga 1	
		1.1.2	Sistematične napake merilnikov	
		1.1.3	Meritve	
		1.1.4	Računanje gostote	
		1.1.5	Rezultati	
	1.2	Gosto	ota kapljevine	
		1.2.1	Naloga 2	
		1.2.2	Sistematične napake merilnikov	
		1.2.3	Postopek in meritve	
		1.2.4	Računanje gostote	
		1.2.5	Rezultati	
	1.3	Vpraš	anja	
2	Vai	a 2: M	Merjenje sile	9
	2.1		[a	
	2.2		natične napake merilnikov	
	2.3		enje	
	2.4		tati	
3	Vaj	a 3		12
4	Vai	a 4: M	Merjenje frekvence	13
	_		[a	. 13
		_	***	1/

Tabele

1.1	Meritve dimenzije a
	Meritve dimenzije b
1.3	Meritve dimenzije c
	Meritve gostote raztopine NaCl z areometrom
1.5	Meritve gostote etilnega alkohola
2.1	Raztezek vzmeti pri določeni teži
	Nihajni čas
4 1	Merjenje frekvence uporabo elektronskega merilnika frekvence 1
	Mejrenje frekvence z uporabo osciloskopa

Slike

2.1	Graf F(x)									•						•		11	

Vaja 1: Merjenje gostote

1.1 Gostota trdne snovi

1.1.1 Naloga 1

Z merjenjem dimenzij (širine (a), višine (b), dolžine (c)) in mase (m) kvadra določite gostoto (ρ) snovi, iz katere je narejen kvader. Gostoto izračunajte po enačbi $\rho = m/V$, kjer je V prostornina (V = abc). Določite tudi napako gostote snovi.

1.1.2 Sistematične napake merilnikov

Napaka kljunastega merila: $0.05\ mm$

Napaka mikrometra: $\boldsymbol{0.01}~\boldsymbol{mm}$

Napaka tehtnice: 0.1~g

1.1.3 Meritve

Tabela 1.1: Meritve dimenzije a

Meritev	a_{izm} $[mm]$	\overline{a} $[mm]$	$a_{izm} - \overline{a} \ [mm]$	$\Delta a_{sist} \ [mm]$	$\sigma[mm]$	$\Delta a_{sl} \ [mm]$	$a \ [mm]$
1	8.16		0				
2	8.15		-0.01				
3	8.20		0.04				
4	8.18		0.02				
5	8.16	0 16	0.00	0.01	0.02	0.01	8.16 ± 0.02
6	8.15	8.16	-0.01	0.01			=
7	8.16		0.00				$8.16 \cdot (1 \pm 0.002)$
8	8.17		0.01				
9	8.10		-0.06				
10	8.12		-0.04				

Tabela 1.2: Meritve dimenzije b

Meritev	b_{izm} $[mm]$	$\overline{b}~[mm]$	$b_{izm} - \overline{b} \; [mm]$	$\Delta b_{sist} \ [mm]$	$\sigma~[mm]$	$\Delta b_{sl} \ [mm]$	$b\ [mm]$
1	25.25		0.02				
2	25.20		-0.03				
3	25.20		-0.03				
4	25.25		0.02				
5	25.25	25.23	0.02	0.05	0.03	0.01	25.23 ± 0.06
6	25.20	23.23	-0.03				=
7	25.20		-0.03				$25.23 \cdot (1 \pm 0.002)$
8	25.20		-0.03				
9	25.25		0.02				
10	25.25		0.02				

Tabela 1.3: Meritve dimenzije c

Meritev	c_{izm} [mm]	$\bar{c}~[mm]$	$c_{izm} - \overline{c} \ [mm]$	$\Delta c_{sist} \ [mm]$	σ	$\Delta c_{sl} \ [mm]$	c [mm]
1	40.00		-0.02				
2	40.00		-0.02				
3	40.10		0.08				
4	40.00		-0.02				40.02 ± 0.06
5	40.00	40.02	-0.02	0.05	0.02	0.01	_
6	40.00	40.02	-0.02			0.01	=
7	40.00		-0.02				$40.02 \cdot (1 \pm 0.001)$
8	40.05		0.03				
9	40.05		0.03				
10	40.00		-0.02				

Meritev mase: $m=22.8~\pm~0.1~g~=~22.8\cdot(1~\pm~0.004)~g$

1.1.4 Računanje gostote

Gostota se računa po enačbi:

$$\rho = \frac{m}{V} \tag{1.1}$$

Vendar najprej rabimo volumen telesa. Ker gre za kvader lahko uporabimo enačbo:

$$V = abc (1.2)$$

Tako torej dobimo:

$$V = 8.16 \ (1 \pm 0.002) \ mm \cdot 25.23 \ (1 \pm 0.002) \ mm \cdot 40.02 \ (1 \pm 0.001) \ mm$$

$$V = 8.16 \cdot 25.23 \cdot 40.02 \ (1 \pm (0.002 + 0.002 + 0.001)) \ mm^3$$

$$V = 8240 \ (1 \pm 0.005) \ mm^3$$
 (1.3)

Sedaj lahko izračunamo gostoto telesa:

$$\rho = \frac{22.8 \cdot (1 \pm 0.004) g}{8240 \cdot (1 \pm 0.005) mm^3}$$

$$\rho = 2.77 \cdot 10^{-3} \cdot (1 \pm 0.009) \frac{g}{mm^3}$$

$$\rho = 2770 \cdot (1 \pm 0.009) \frac{kg}{m^3}$$
(1.4)

1.1.5 Rezultati

Prišli smo do rezultata, da je gostota telesa $\rho=2770\cdot(1~\pm~0.009)~\frac{kg}{m^3}$ oz. $\rho=(2770~\pm~20)~\frac{kg}{m^3}.$

S tega bi lahko sklepali, da je telo verjetno iz zlitine, ki vsebuje veliko aluminija, saj je njegova gostota: $\rho_{Al}=2710~\frac{kg}{m^3}$.

1.2 Gostota kapljevine

1.2.1 Naloga 2

- a) Z menzuro in tehtnico izmerite gostoto 20 % raztopine kuhinjske soli v vodi. Gostoto izmerite tudi z areometrom.
- b) Z areometrom izmerite gostoto etilnega alkohola.

1.2.2 Sistematične napake merilnikov

Napaka areometra za raztopino NaCl
: 0.01 $\left[\frac{g}{mL}\right]$ Napaka areometra za etilni alkohol
: 0.005 $\left[\frac{g}{mL}\right]$ Merilno območje termometra: od
 $-199.9~^{\circ}C$ do $199.9~^{\circ}C$

Napaka tehtnice: 1 \boldsymbol{g} Napaka menzure: 2 mL

1.2.3 Postopek in meritve

Najprej smo pripravili 20 % raztopino NaCl. Skupna masa raztopine je bila:

$$m = (620 \pm 1) g \tag{1.5}$$

Nato smo izmerili volumen naše raztopine. Ker je menzura bila premajhna za celotno meritev volumna, smo to morali narediti trikrat.

$$V = (250 \ mL \ \pm \ 2 \ mL) + (250 \ mL \ \pm \ 2 \ mL) + (51 \ mL \ \pm \ 2 \ mL)$$

$$V = (553 \ \pm \ 6) \ mL$$

$$V = 553 \cdot (1 \ \pm \ 0.01) \ mL$$
 (1.6)

Nato smo gostoto raztopine NaCl izmerili še z areometrom.

Tabela 1.4: Meritve gostote raztopine NaCl z areometrom

Meritev	$ ho_{izm}\left[rac{g}{mL} ight]$	$\overline{ ho} \ \left[rac{g}{mL} ight]$	$ ho_{izm} - \overline{ ho} \left[rac{g}{mL} ight]$	$\Delta \rho_{sist} \left[\frac{g}{mL} \right]$	$\Delta \rho_{sl} \left[\frac{g}{mL} \right]$	$\rho \ \left[rac{g}{mL} ight]$	$T \ [^{\circ}C]$
1	1.14		0				
2	1.14		0			1.14 ± 0.01	
3	1.15	1.14	0.01	0.01	0	=	19.6
4	1.14		0			$1.14 \cdot (1 \pm 0.01)$	
5	1.15		0.01				

Nato smo še opravili meritve gostote etilnega alkohola, s pomočjo areometra.

Tabela 1.5: Meritve gostote etilnega alkohola

Meritev	$ ho_{izm}\left[rac{g}{mL} ight]$	$\overline{ ho} \ \left[rac{g}{mL} ight]$	$ ho_{izm} - \overline{ ho} \left[rac{g}{mL} ight]$	$\Delta \rho_{sist} \left[\frac{g}{mL} \right]$	$\Delta \rho_{sl} \left[\frac{g}{mL} \right]$	$\rho \left[\frac{g}{mL} \right]$	$T \ [^{\circ}C]$
1	0.805		0				
2	0.805		0			0.805 ± 0.005	
3	0.805	0.805	0	0.005	0	=	21.5
4	0.805		0			$0.805 \cdot (1 \pm 0.006)$	
5	0.805		0				

1.2.4 Računanje gostote

Računanje gostote 20 % raztopine NaCl s pomočjo mase in volumna:

$$\rho = \frac{620 \cdot (1 \pm 0.002) \ g}{553 \cdot (1 \pm 0.01) \ mL}$$

$$\rho = 1.12 \cdot (1 \pm 0.01) \frac{g}{mL}$$

$$\rho = 1120 \cdot (1 \pm 0.01) \frac{kg}{m^3}$$
(1.7)

1.2.5 Rezultati

Prišli smo do rezultatov, da je gostota

1.3 Vprašanja

a) Razložite, kako temperatura vpliva na merjenje gostote kapljevine. Za koliko odstotkov se spremeni gostota vode, če se temperatura spremeni za 1 K? Temperaturni koeficient prostorninskega razteska vode je $2.06 \cdot 10^{-6} K^{-1}$.

Relativno povečanje volumna vode je sorazmerno spremembi temperature:

$$\frac{\Delta V}{V} = \beta \Delta T \tag{1.8}$$

Če torej v enačbo vstavimo podatke dobimo:

$$\frac{\Delta V}{V} = 2.06 \cdot 10^{-6} K^{-1} \cdot 1 \ K$$

$$\frac{\Delta V}{V} = 2.06 \cdot 10^{-4} \%$$
(1.9)

Torej bi se voda razteznila za $2.06 \cdot 10^{-4}$ %.

b) Razložite fizikalni princip meritve gostote tekočin z areometrom.

Areometer deluje na podlagi vzgona tekočine, v katero je potopljen. Ima obliko ozke cevi z utežjo na dnu, ki je dovolj težka, da se areometer potopi v tekočino. Ko je areometer potopljen v tekočino, se potopi do ravni, kjer je vzgon enak teži areometra. Ta raven potopljenosti je odvisna od gostote tekočine.

Vaja 2: Merjenje sile

2.1 Naloga

- a) Izvedite eksperiment, pri katerem boste merili silo v vzmeti in raztezek vzmeti. Izmerjene podatke prikažite z odvisnostjo sile vzmeti od raztezka. Iz diagrama določite prožnostni koeficient vzmeti.
- b) Sestavite vzmetno nihalo in izmerite silo v vzmeti v odvisnosti od časa. Meritev izvedite z računalniškim merilnim sistemom Vernier. Meritev opravite s tremi različnimi utežmi. Iz diagrama sile v odvisnosti od časa v vseh treh primerih odčitajte nihajni čas nihala in v vsakem primeru izračunajte konstanto vzmeti.

2.2 Sistematične napake merilnikov

Napaka ravnila: **0.01** *cm* Napaka tehtnice: **0.1** *a*

Napaka tehtnice: 0.1~g Napaka za čas: $\frac{0.01}{15}~s = \textbf{0.001}~s$

2.3 Merjenje

Za določanje koeficienta vzmeti sem najprej izmeril raztezke pri različnih masah uteži.

Tabela 2.1: Raztezek vzmeti pri določeni teži

Meritev	m[g]	$\Delta m [g]$	F[N]	ΔF [N]	x [cm]	$\Delta x [cm]$
1	50.9		0.499		6.8	
2	100.9		0.990		13.5	
3	148.9		1.461		19.8	
4	199.4	0.1	1.956	0.001	26.6	0.1
5	148.9		1.461		19.8	
6	100.9		0.990		13.4	
7	50.9		0.499		6.6	

Nato sem za uteži z masami 50.9 g, 100.9 g in 148.9 g izmeril čas nihanja za 15 nihajev.

Tabela 2.2: Nihajni čas

Meritev	m~[g]	$t_{izm}[s]$	$t_{en\ nihaj}[s]$	\bar{t} $[s]$	$t_{en\ nihaj}\ -\ ar{t}\ [s]$	σ [s]	$\Delta t_{sl} [s]$	Δt_{sist}	t[s]
1		8.26	0.551		0				
2		8.26	0.551		0				0.551 ± 0.001
3	50.9	8.24	0.549	0.551	-0.001	0	0	0.001	=
4		8.26	0.551		0				$0.551 \cdot (1 \pm 0.002)$
5		8.28	0.552		0.001				
1	50.9		0.499		6.8				
2	100.9		0.990		13.5				
3	148.9		1.461		19.8				
4	199.4	0.1	1.956	0.001	26.6	0.1			
5	148.9		1.461		19.8				
1	50.9		0.499		6.8				
2	100.9		0.990		13.5				
3	148.9		1.461		19.8				
4	199.4	0.1	1.956	0.001	26.6	0.1			
5	148.9		1.461		19.8				

2.4 Rezultati

x [cm]

Vaja 3

Vaja 4: Merjenje frekvence

4.1 Naloga

Izmerite frekvenco vrtenja plošče, ki je pritrjena na elektromotor na dva načina:

- a) z elektronskim merilnikom frekvence,
- b) z modelom merilnika frekvence.

Primerjajte rezultata obeh meritev pri različnih frekvencah vrtenja plošče.

Te meritve sem opravil pri napetostih: $\mathbf{5}$ $\mathbf{V},$ $\mathbf{6}$ $\mathbf{V},$ $\mathbf{7}$ $\mathbf{V},$ $\mathbf{9}$ \mathbf{V} in $\mathbf{12}$ $\mathbf{V},$ za vsako napetost 5-krat.

4.2 Meritve

Tabela 4.1: Merjenje frekvence uporabo elektronskega merilnika frekvence

Meritev	Napetost	$\nu_{izm} \ [\mathrm{min}^{\text{-}1}]$	$\overline{ u}$	$ u_{izm}$ - $\overline{\nu}$ [min ⁻¹]	$\Delta \nu_{sist} \ [\mathrm{min}^{\text{-}1}]$	σ	$\Delta \nu_{slu} \ [\mathrm{min}^{\text{-}1}]$	$\nu \ [\mathrm{Hz}]$
1 2 3 4 5	5.0 V	654.4 670.5 665.3 657.0 647.4	658.9	-4.5 11.6 6.4 -1.9 -11.5	0.1	6.5	2.9	$ \begin{array}{r} 10.98 \pm 0.05 \\ = \\ 10.98 \cdot (1 \pm 0.005) \end{array} $
6 7 8 9 10	6.0 V	1058 1054 1037 1053 1062	1053	5 1 -16 0 9	1	6	3	$ \begin{array}{r} 17.55 \pm 0.07 \\ = \\ 17.55 \cdot (1 \pm 0.004) \end{array} $
11 12 13 14 15	7.0 V	1576 1575 1532 1567 1565	1563	13 12 -31 4 2	1	13	6	$ \begin{array}{c} 26.05 \pm 0.12 \\ = \\ 26.05 \cdot (1 \pm 0.005) \end{array} $
16 17 18 19 20	9.0 V	2351 2354 2449 2469 2444	2413	-62 -59 36 56 31	1	57	25	$40.22 \pm 0.22 = 40.22 \cdot (1 \pm 0.005)$
21 22 23 24 25	12.0 V	3917 3972 3963 3905 3926	3937	-20 35 26 -32 -11	1	27	12	$65.61 \pm 0.45 = 65.61 \cdot (1 \pm 0.007)$

Tabela 4.2: Mejrenje frekvence z uporabo osciloskopa

Tabela 4.2. Mejrenje nekvence z uporabo oschoskopa								
Meritev	Napetost	$t_{izm}[s]$	\overline{t} $[s]$	t_{izm} - \overline{t} $[s]$	t_{sist} [s]	σ	$\Delta t_{slu}[s]$	$ u \ [\mathrm{Hz}]$
1 2 3 4 5	5.0 V	-0.080 0.096 0.088 0.088 0.088	0.088	-0.008 0.008 0 0	0.004	0	0	$ \begin{array}{cccc} 11 \cdot (1 & \pm & 0.05) \\ & & = \\ 11 & \pm & 1 \end{array} $
6 7 8 9 10	6.0 V	$\begin{array}{c} 0.052 \\ 0.052 \\ 0.050 \\ 0.052 \\ 0.052 \\ 0.052 \end{array}$	0.052	0 0 -0.02 0 0	0.002	0	0	$ \begin{array}{ccc} 19 \cdot (1 \pm 0.05) \\ $
11 12 13 14 15	7.0 V	0.036 0.038 0.038 0.039 0.038	0.038	-0.002 0 0 0.001 0	0.001	0	0	$ \begin{array}{ccc} 26 \cdot (1 & \pm & 0.03) \\ & = \\ 26 & \pm & 1 \end{array} $
16 17 18 19 20	9.0 V	0.024 0.023 0.022 0.023 0.023	0.023	0.001 0 -0.001 0	0.001	0	0	$ 43 \cdot (1 \pm 0.04) \\ = \\ 43 \pm 2 $
21 22 23 24 25	12.0 V	0.0152 0.0152 0.0148 0.0148 0.0148	0.0150	0.0002 0.0002 -0.0002 -0.0002 -0.0002	0.0004	0.0002	0.0001	$ \begin{array}{ccc} 66.7 \cdot (1 \pm 0.03) \\ &= \\ 66.7 \pm 2.0 \end{array} $