Survey Analysis week 5 "Stratified and cluster sampling"

© Peter Lugtig

What have we done so far

- Basics of survey error (TSE, bias, error)
- Mean, variance, standard error, proportions
 - SRS sampling with and without replacement
 - n-1
 - Fpc
- R survey and sampling packages
- Sample size calculations for mean
 - For simple random sample
 - Given CV, margin of error, Confidence interval
 - Given alpha, Beta, population variance

What will we do today

- Discuss THE week 3 in groups
 - Questions, issues?
- Lecture on stratification and clustering
 - Stratification and clustering: why?
 - Variance estimation, design effects
- 2 short class exercises
 - Set up svydesign objects

Stratified Random Sampling

- Population exists of pre-defined groups
- Use this information to optimize sampling design
- Idea take a SRS from each group (stratum) and combine these for the final sample

Stratified sample design – why?

A population of companies in provice of Utrecht

Sector/size (employees)	1-4	5-49	50+
Manufacturing	7000	1.800	335
Trade	14.000	3.000	250
Business	20.000	3.335	335
Government/education	1.600	282	79
Healthcare	1.100	625	224
Agriculture	682	118	3

Stratified sample design – why?

- 1. Increase precision in total (< s.e.)
- 2. Ensure precision in subgroups
- 3. More practical when sampling frames are only available per subgroup 4. + to limit other surveys errors (later)

Sector/size (employees)	1-4	5-49	50+
Manufacturing	7000	1.800	335
Trade	14.000	3.000	250
Business	20.000	3.335	335
Government/education	1.600	282	79
Healthcare	1.100	625	224
Agriculture	682	118	3

An example: student grades at UU

- Total: 20000 students
 - 14000 BA, 6000 MA
- Interested in mean grade at UU

Why stratify on degree?

Mean BA: 6.69

Mean MA: 7.41

Var(BA): 1.49

Var(MA): 2.36

Var(total): 2.20

Code of example on BB!

Simple Random sample

- Draw 10000 samples (replications)
 - -n=1000

Histogram of errorWO

Simple Random sample

- Size=1000 out of 20000
 - Draw 10000 samples (replications)
 - Roughly 700 BA students, 300 Ma students

	Bias	Variance (s.e)
Simple random sample	026	.0021

- MSE = $-.026^2 + .0021 = .0027$
- How can we improve?

Stratification with equal probabilities

- Size=1000, 10000 replications
 - Exactly 700 BA students,300 Ma students
 - Proportional to Size (PPS)
 - Error compared to population mean

Comparison of standard errors

SRS

Stratification pps

Slightly fewer extreme samples: stratification reduces s.e.

Stratification with equal probabilities

- Size=10000
 - Exactly 700 BA students, 300 Ma students
 - Proportional to Size (PPS)

	Bias	Var(mean)	Var(mean) Bachelor	Var(mean) Master
Simple random sample	-,026	,0021		
Stratification equal probabilities	-,031	,001966	,0031	,0047

Formulas

1. Mean with SRS in every stratum (pps)

$$\overline{y_h} = \frac{1}{n_h} \sum y_{hj}$$

• 2. Combining means (pp2):

$$\overline{y}_{str} = \sum \frac{N_h}{N} \overline{y}_h$$
Size of stratum in population

Formulas

1. Mean with SRS in every stratum (pps)

$$\overline{y_h} = \frac{1}{n_h} \sum y_{hj}$$

• 2. Combining means (pps):

$$\bar{y}_{\rm str} = \sum \frac{N_h}{N} \bar{y}_h$$

• 3. Variance (pps):

Variance in stratum

in population)²

• $\hat{V}(\bar{y}_{str}) = \sum (1 - \frac{n_h}{N_h}) \bar{y}_h (\frac{N_h}{N})^2 \frac{s_h^2}{n_h}$ [Size of stratum]

Design effect

- If we have a measure of the bias in standard (SRS) estimates of the sampling variance this can be used to adjust the variances or standard errors from SRS
- D_{eff} = <u>Variance under specific design</u>
 Variance under SRS
- D_{eff}= inflation factor for variance
 - Can be used for estimating effective sample size
 - $n_{eff} = N/D_{eff}$
- $D_{eff} = V_{Deff} = inflation for standard error$

Design effect (3)

- $D_{eft} = .00197/.0021 = .9523$
 - $-D_{eff} = .952^{2}$. We need .906 as many respondents for same precision
 - $-N_{\rm eff} = 1000/.906 = 1103$
- Stratified sample: $D_{eff} < 1$
- Cluster sample: D_{eff} >1
- R produces Design effect as well
 - For one sample against same sample under SRS
 - (Pooled) d_{eft} in R: .951
 - Rounding error in manual computation above

Design effect (3)

R produces Design effect as well

– Note this is skewed (why?)

Unequal probabilities

Why?

- Increase precision for small group in population (Ma students
- Optimize the precision for the total mean grade?

Unequal probabilities

- Population: 14000 BA, 6000 MA
 - We can oversample MA students
 - Because there is more nonresponse, or we want increased precision in this group
 - Imagine we sample 500 students from each group
 - $\pi(BA) = 500/14000 = .035714$
 - $\pi(MA) = 500/6000 = .083333$

Stratification with unequal probabilities

- Size=1000
 - 500 BA students, 500 Ma students

	Bias	Var(mean)	Var(mean) Bachelor	Var(mean) Master
Simple random sample	-,026	,0021		
Stratification PPS	-,031	,001966	,0031	,0047
500 in each	,023	,0025	,0047	,0027

 #\$%&: wasn't stratified sampling supposed to decrease the variance?

Optimal allocation

- How large should samples within strata be so that s.e. for population is minimized?
- Neyman allocation:

$$n_h$$
, $Neyman = \frac{N_h S_h}{\sum N_l S_l}$

- $-N_h$ = sample size stratum
- $-S_h$ = standard deviation in stratum
- Needed?
 - $-N_1$ = Population size
 - $-S_1$ = Standard deviation in population (!)
- Often costs are included (more complicated)

Optimal allocation: example

Neyman allocation:

$$n_h$$
, $Neyman = \frac{N_h S_h}{\sum N_l S_l}$

- $-N_h$ = sample size stratum
- $-S_h$ = standard deviation in stratum

- Population variance: 2,20
- Stratum variances: 2,36 and 1,49
 - See slide 7
- Stratum standard deviations = $\sqrt{2,36}$ and $\sqrt{1,49}$

Optimal allocation: example

Neyman allocation:

- n_h , $Neyman = \frac{N_h S_h}{\sum N_i S_i}$ n
- $-N_h$ = sample size stratum
- $-S_h$ = standard deviation in stratum

$$N_{MA} = \frac{(6000*\sqrt{1.49})}{(6000*\sqrt{1.49})+(20000*\sqrt{2.20})}$$

$$= \frac{7324}{28831} = 0.254*1000$$
• $N_{BA} = \frac{(6000*\sqrt{1.49})}{(6000*\sqrt{1.49})+(20000*\sqrt{2.20})}$

$$= \frac{21507}{28831} = 0.746*1000$$

Optimal allocation to strata

- Size=1000
 - 746 BA students, 254 Ma students

	Bias	Var(mean)	Var(mean) Bachelor	Var(mean) Master
Simple random sample	-,026	,0021		
Stratification equal probabilities	-,031	,001966	,0031	,0047
500 in each	,023	,0025	,0047	,0027
Neyman	,04	,001962	,0029	,0055

Optimal allocation to strata

- Unequal selection probabilities
 - 746 BA students, 254 Ma students
 - $-D_{eff} = .01962 / .0021 = .934$
 - $n_{eff} = 1000/.93^2 = 1145$
- In words: we optimize stratification when:
 - The stratum accounts for a large part of the population
 - BA = 0.7, MA= 0.3
 - The variance within the stratum is large; we sample more heavily to compensate
 - variance BA:2.36, Variance MA: 1.49
 - -> leads to 746 BA students

2 ways to deal with unequal selection

- 1. We can combine means from n_h strata
 - If we know the population sizes (see earlier slides)
- 2. We can use sampling weights
 - With SRS, sampling weights are equal for all i
 - In Neyman allocation example:

•
$$\pi_{ba} = \frac{746}{14000} = .053$$
. Sampling weight $w_{ba} = \frac{1}{.053} = 18.76$

•
$$\pi_{MA} = \frac{254}{6000} = .042$$
. Sampling weight $w_{ma} = \frac{1}{.042} = 23.61$

$$-\overline{y}_{w} = \frac{\sum w_{i}y_{i}}{\sum w_{i}}$$

Bringing Nonresponse in

(more in week 9-11)

- We often oversample from specific groups
 - Nonresponse
 - Imagine:
 - Response rate of 50% among BA students
 - And 20% among Ma students
 - Achieved sample = 399 BA , 40 MA students
 - We can correct by using Nonresponse weights, but this is inefficient

Should we actually stratify on Ba/MA?

- What variable to stratify on?
 - BA/MA, Faculties, Programme
 - Social science, humanities, etc.
 - Gender, Age, living in Utrecht
 - Member of student union
 - Etc.
- We can stratify on multiple variables
- Survey mode:
 - E-mail: stratification easy
 - Face-to-face: costs!
 - Cluster sampling?

Class exercise 1

- Draw and analyse a stratified sample from a simplified dataset
 - Understand the basic R code for specifying stratified survey design object
 - Which variable to stratify on?
- See Class exercise document (Blackboard)

Adding in clusters

- What if we don't use e-mail?
 - Cost per case: € 0,50
- But face-to-face
 - Costs per programme: € 50,-
 - Costs per case: €10,-
- Households, businesses
- Hospitals, schools
- Towns!

Terminology

- Primary sampling units (psu)
- Clusters
- Secondary sampling units (ssu)
- Intra-Cluster(Class) Correlation Coefficient (ICC)
 One-stage sample: whole cluster interviewed
- Two-stage sample: further sampling within clusters
- Ratio estimation (week 8)

Example – 150 programmes (Ba/MA)

simulated data

- Student grades (y)
- 200 programmes (x)
 - 50 BA, n=280 each
 - 150 MA, n=40 each

Population mean: 6.52

Master

R-code is available on Blackboard

Cluster sampling – why and how

How?

- One-stage: ask everyone in cluster
 - Educational surveys: ask every pupil at school (or class)
- Two stage: do a sample within every cluster
- Multi-stage: e.g.
 - 1. stratify on income in neighboorhood
 - 2. neighbourhoods (PSU)
 - 3. households (SSU)
 - 4. individual in hh

Why not do a cluster sample

- It is inefficient from a statistical perspective
 - ICC: measure of relative variance between clusters

$$ICC = \frac{s_b^2}{(s_b^2 + s_w^2)}$$

- S²_b: Variance between clusters
- S²_w: Variance within clusters

One-stage cluster sampling

Clusters of equal size:

- Selection probabilities equal for all i -> SRS of clusters
- Rarely the case

Clusters of unequal size:

- 1. draw clusters with unequal selection probabilities
 - Proportional to Size (PPS)
 - Self-adjusting sample
- 2. Or, draw SRS of clusters
 - Use weights to correct for unequal probabilities
- Example: draw 7 clusters out of 150 with SRS
 - Average cluster size = 133, expected sample size = 933

1 draw for One-stage cluster sample

Results from R (1 sample)

- n=1240
- mean: 5.79 (!) (population = 6.52)
- s.e. SRS .045624
- s.e. cluster .17397
- D_{eft} = .17397 /.045624 = 3.81
- Why are results so bad?

Problems in 1-stage cluster sampling

In our example:

- Bad luck: Clusters selected:
 - 1,3,13,39,56,102,187
- Small no. of clusters sampled
- Large difference between cluster means (large ICC)
 - ICC population:
 - For Ba/MA: .18
 - For Programme: .21

<u>In general:</u>

- hard to control sample size
- Design effect could be large if variance differs across clusters

Were we unlucky? a simulation

Histogram of result10[, 4]

- 10000 replications
- 10 clusters
 - n=1000 on average
 - but large variation
- Bias
 - ,0005 on average
 - Long tail
 - when we sample only MA or BA

a simulation for 1-stage cluster (2)

- 10000 replications
- 10 clusters
 - n=1000 on average
 - but large variation
- Design effect (D_{eff}):
 - − 23 (!) on average
 - We would need sample of 23.000!

Histogram of result10[, 3]

Better: A 2-stage cluster sample

- Double the clusters, sample half
 - 1. Sample 20 clusters (instead of 10) using SRS
 - 2. Sample ½ of i within every cluster > expected sample size= 1000
 - Or do 50 clusters and sample $\frac{1}{5}$ of individuals, etc.
- Optimal allocation given ICC and costs
 - But need good estimates for:
 - Costs?
 - population total?, cluster sizes? (~fpc),
 - Often: use of "pseudoclusters"

Two-stage cluster simulation

- 10000 replications
- 20/50 clusters
 - Second stage sample $\frac{1}{2}$ or $\frac{1}{5}$
 - n=1000 on average (but less variation)
- Bias
 - 20 clusters: -.0034
 - 50 clusters: -.0322

Two-stage cluster simulation

- 10000 replications
- 20/50 clusters
 - Second stage sample $\frac{1}{2}$ or $\frac{1}{5}$
 - n=1000 on average (but less variation)
- Design effect (deft)
 - 20 clusters: 16
 - 50 clusters: 6.8

Two-stage cluster estimation

- Uncertainty now at 2 levels
 - Sampling of clusters
 - Sampling of individuals in clusters
- Ok for Means, regression coefficients
 - Imagine we do SRS for selection of clusters and individuals
- Complex for variances
 - Rely on R for variance estimation

Analysis of cluster samples

- 1. Use the survey package
- 2. Do multilevel analysis (in semester 2)

Equation for Level 1

$$y_{ij} = \beta_{0j} + \varepsilon_{ij}$$

Equation for Level 2

$$\beta_{0j} = \gamma_{00} + \mu_{0j}$$

- 3. Economists use Huber-White "robust" standard errors
 - 1. Pretend your dataset is SRS,
 - 2. estimate deft and
 - 3. multiply your s.e. with deft

Class exercise 2

- Analyse a cluster sample for the "boys" dataset
- See Class exercise document (Blackboard)

 If unfinished, finish at home before practical next week

Next week:

- Finish: Class exercises different sampling designs
 - discussion about problems in class next week.
- Take Home Exercise:
 - Obtain the data: you often need to register at the data archive
- Next week: practical (in class time)
 - Mix SRS, stratified and cluster sampling
 - Design weights
 - Hurvitz-Thompson estimator
 - Multistage sampling

• ...