Teoremi di De L'Hospital

Terrema 1- (1º teorema chi De L'Hospital: 0/0) Le f, q sono obre fruzioni derivabili e se CER 3'

1) $\lim_{x\to c} f(x) = 0$

) from f(x) - 0

2) $\lim_{x \to c} g(x) = 0$

3) $\exists \lim_{x \to c} \frac{f'(x)}{g'(x)} = \lambda \in \widehat{R}$

allerov

 $\exists \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$

Terrema 2 - (I teor. ohi De l'Hospital: &)

Se f, g sons due funzioni derivabeli e se CER (finito o infinito) 3

1) hm f(x)= ± 00

2) $\lim_{x \to c} g(x) = \pm \infty$

3) $\exists \lim_{x \to c} \frac{f'(x)}{g'(x)} = \lambda \in \widehat{R}$

alloren

 $\frac{1}{2}\lim_{x\to c}\frac{f(x)}{g(x)}=\lim_{x\to c}\frac{f'(x)}{g'(x)}.$

Note

I teorem I e II di de L'Hospital si possono afferare solo se le forme indeterminate sono: $\frac{0}{0}$ e $\frac{\infty}{\infty}$.

A queste s' frances ricondurre, però, le altre forme moleterminate trasformando:

1)
$$\infty - \infty$$
: $f - g = \frac{f^{0} - f^{0}}{f \cdot g} \cdot \frac{1}{2}$

2) $0 \cdot \infty$: $f \cdot g = \frac{f^{0} - g^{0}}{f^{0}} \cdot \frac{1}{2}$

3) 0^{0} , 0^{0} , 1^{∞} : $f^{0} = e^{-\frac{f^{0}}{f^{0}}} \cdot \frac{1}{2}$

Semprio: $e^{-\frac{f^{0}}{f^{0}}} \cdot \frac{1}{2}$
 $e^{-\frac{f^{0}}{$