# МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УКРАИНЫ «КИЕВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ»

## КАФЕДРА КЭВА

## Домашнее задание №2

по курсу: «Автоматизация конструкторско-технологического проектирования ЭВА»

Выполнил: студент группы ДК-71 Феськов Д.А.

Проверил: доц. Лескин В.Ф.

#### 1 СХЕМА ЭЛЕКТРИЧЕСКАЯ ПРИНЦИПИАЛЬНАЯ

В качестве исходной схемы взята упрощенная принципиальная схема из домашнего задания №3 по курсу «Физико-технологические основы конструирования электронных аппаратов» (Рисунок 1.1).



Рисунок 1.1 – Исходная принципиальная схема

Составленная матрица связей к исходной принципиальной схеме (Рисунок 1.1) представлена в таблице 1.1. Для удобства обозначения ЭРЭ в таблице 1.1 используются такие же как и на схеме.

Таблица 1.1 – Матрица связей

|     | X1 | X2 | X3 | X4 | DD1 | DD2 | DD3 | DA1 | DA2 | DA3 | DA4 | DA5 |
|-----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| X1  | 0  | 0  | 0  | 0  | 9   | 9   | 1   | 0   | 0   | 1   | 0   | 0   |
| X2  | 0  | 0  | 0  | 0  | 1   | 1   | 0   | 0   | 0   | 0   | 0   | 0   |
| X3  | 0  | 0  | 0  | 0  | 0   | 0   | 1   | 0   | 0   | 1   | 0   | 1   |
| X4  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 1   |
| DD1 | 9  | 1  | 0  | 0  | 0   | 0   | 0   | 8   | 0   | 0   | 0   | 0   |
| DD2 | 9  | 1  | 0  | 0  | 0   | 0   | 0   | 0   | 8   | 0   | 0   | 0   |
| DD3 | 1  | 0  | 1  | 0  | 0   | 0   | 0   | 0   | 0   | 2   | 1   | 1   |
| DA1 | 0  | 0  | 0  | 0  | 8   | 0   | 0   | 0   | 1   | 0   | 1   | 0   |
| DA2 | 0  | 0  | 0  | 0  | 0   | 8   | 0   | 1   | 0   | 1   | 0   | 0   |
| DA3 | 1  | 0  | 1  | 1  | 0   | 0   | 2   | 0   | 1   | 0   | 1   | 2   |
| DA4 | 0  | 0  | 0  | 1  | 0   | 0   | 1   | 1   | 0   | 1   | 0   | 1   |
| DA5 | 0  | 0  | 1  | 1  | 0   | 0   | 1   | 0   | 0   | 2   | 1   | 0   |

Исходная принципиальная схема содержит 12 элементов (вершин). Необходимо сформировать 4 подграфа  $G_1^0$ ,  $G_2^0$ ,  $G_3^0$ ,  $G_4^0$  с количеством вершин  $n_1=n_2=n_3=n_4=3$ .

# 2 ПОСЛЕДОВАТЕЛЬНЫЙ АЛГОРИТМ КОМПОНОВКИ

# 2.1 Формирование подграфа $G_1^0$

|     | Таблица 2.1.1 – Исходная матрица А |    |    |    |     |     |     |     |     |     |     |     |    |
|-----|------------------------------------|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|----|
|     | X1                                 | X2 | X3 | X4 | DD1 | DD2 | DD3 | DA1 | DA2 | DA3 | DA4 | DA5 | ρ  |
| X1  | 0                                  | 0  | 0  | 0  | 9   | 9   | 1   | 0   | 0   | 1   | 0   | 0   | 20 |
| X2  | 0                                  | 0  | 0  | 0  | 1   | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 2  |
| X3  | 0                                  | 0  | 0  | 0  | 0   | 0   | 1   | 0   | 0   | 1   | 0   | 1   | 3  |
| X4  | 0                                  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 1   | 3  |
| DD1 | 9                                  | 1  | 0  | 0  | 0   | 0   | 0   | 8   | 0   | 0   | 0   | 0   | 18 |
| DD2 | 9                                  | 1  | 0  | 0  | 0   | 0   | 0   | 0   | 8   | 0   | 0   | 0   | 18 |
| DD3 | 1                                  | 0  | 1  | 0  | 0   | 0   | 0   | 0   | 0   | 2   | 1   | 1   | 6  |
| DA1 | 0                                  | 0  | 0  | 0  | 8   | 0   | 0   | 0   | 1   | 0   | 1   | 0   | 10 |
| DA2 | 0                                  | 0  | 0  | 0  | 0   | 8   | 0   | 1   | 0   | 1   | 0   | 0   | 10 |
| DA3 | 1                                  | 0  | 1  | 1  | 0   | 0   | 2   | 0   | 1   | 0   | 1   | 2   | 9  |
| DA4 | 0                                  | 0  | 0  | 1  | 0   | 0   | 1   | 1   | 0   | 1   | 0   | 1   | 5  |
| DA5 | 0                                  | 0  | 1  | 1  | 0   | 0   | 1   | 0   | 0   | 2   | 1   | 0   | 6  |

В подграф  $G_1^0$  включен элемент (вершина) X2, поскольку последний обладает минимальной локальной степенью  $\rho(X2)=2$ . Таким образом, на данном этапе последовательного алгоритма, подграф  $G_1^0$  имеет вид (2.1.1); количество внешних связей  $m_1^0$  определяется выражением (2.1.2).

$$G_1^1 = \{X2\}. (2.1.1)$$

$$m_1^1 = \rho(X2) = 2. \tag{2.1.2}$$

Подмножество связанных с подграфом  $G_1^1$  вершин имеет вид (2.1.3).

$$x_1^2 = \{DD1, DD2\}. \tag{2.1.3}$$

Для селекции следующей включаемой в подграф  $G_1^0$  из подмножества  $x_1^2$  вершины, необходимо определить относительный вес  $\delta$  для каждой из вершин подмножества  $x_1^2$ . Относительный вес вершины указывает на изменение числа внешних связей при включении этой вершины в формируемый подграф. В подграф включается вершина с наименьшим относительным весом (если таких вершин несколько, то включается вершина с наибольшим количеством кратных ребер).

В общем случае, если условиться, что текущий подграф имеет вид  $G = \{x_i\}$ , а подмножество, связанных с подграфом G вершин,  $x = \{x_i\}$  ( $G \cap x = \emptyset$ ), то относительный вес  $\delta(x_i)$  для каждой из вершин подмножества x определяется выражением (2.1.4).

$$\delta(x_j) = \rho(x_j) - 2\sum_{k=1}^{k=i} a_{ij},$$
 (2.1.4)

где i – номер вершины в подграфе G, j – номер вершины в подмножестве  $x,\ a_{ij}$  – количество связей между вершинами  $x_i$  и  $x_j$ .

Относительные веса вершин подмножества  $x_1^2$  представлены в таблице 2.1.2.

Таблица 2.1.2 – Относительные веса вершин подмножества  $x_1^2$ 

| D       | 0 , ,               |
|---------|---------------------|
| Вершина | Относительный вес δ |
| DD1     | 16                  |
| DD2     | 16                  |

В соответствии с таблицей 2.1.1 и таблицей 2.1.2 вершины DD1 и DD2 имеют одинаковый относительный вес и не содержат кратных ребер. Таким образом, выбор включаемой в подграф  $G_1^0$  из подмножества  $x_1^2$  вершины равнозначен.

В подграф  $G_1^0$  включается вершина DD1. Таким образом, на данном этапе последовательного алгоритма, подграф  $G_1^0$  имеет вид (2.1.5); количество внешних связей  $m_1^0$  определяется выражением (2.1.6).

$$G_1^2 = \{X2, DD1\}. \tag{2.1.5}$$

$$m_1^2 = m_1^1 + \delta(DD1) = 18.$$
 (2.1.6)

Подмножество связанных с подграфом  $G_1^2$  вершин имеет вид (2.1.7).

$$x_1^3 = \{DD2, X1, DA1\}.$$
 (2.1.7)

Таблица 2.1.3 – Относительные веса вершин подмножества $x_1^3$ 

| Вершина | Относительный вес δ |  |  |  |  |  |
|---------|---------------------|--|--|--|--|--|
| DD2     | 16                  |  |  |  |  |  |
| X1      | 2                   |  |  |  |  |  |
| DA1     | -6                  |  |  |  |  |  |

В подграф  $G_1^0$  включен элемент DA1. Таким образом, подграф  $G_1^0$  имеет вид (2.1.8); количество внешних связей  $m_1^0$  определяется выражением (2.1.9).

$$G_1^0 = \{X2, DD1, DA1\}.$$
 (2.1.8)

$$m_1^0 = m_1^3 = m_1^2 + \delta(DA1) = 12.$$
 (2.1.9)

Путем вычеркивания в исходной матрице A (Таблица 2.1.1) строк и столбцов, соответствующих вершинам подграфа  $G_1^0$  получена матрица  $|A_1|$  (Таблица 2.2.1).

#### 2.2 Формирование подграфа $G_2^0$

| T-6     | 2  | 2  | 1 1   | N /  |      |      | I 4 I |  |
|---------|----|----|-------|------|------|------|-------|--|
| Таблица | Ζ. | Ζ. | I — I | IVI. | атои | ma 1 | $H_1$ |  |

|     | X1 | X3 | X4 | DD2 | DD3 | DA2 | DA3 | DA4 | DA5 | ρ  |
|-----|----|----|----|-----|-----|-----|-----|-----|-----|----|
| X1  | 0  | 0  | 0  | 9   | 1   | 0   | 1   | 0   | 0   | 20 |
| X3  | 0  | 0  | 0  | 0   | 1   | 0   | 1   | 0   | 1   | 3  |
| X4  | 0  | 0  | 0  | 0   | 0   | 0   | 1   | 1   | 1   | 3  |
| DD2 | 9  | 0  | 0  | 0   | 0   | 8   | 0   | 0   | 0   | 18 |
| DD3 | 1  | 1  | 0  | 0   | 0   | 0   | 2   | 1   | 1   | 6  |
| DA2 | 0  | 0  | 0  | 8   | 0   | 0   | 1   | 0   | 0   | 10 |
| DA3 | 1  | 1  | 1  | 0   | 2   | 1   | 0   | 1   | 2   | 9  |
| DA4 | 0  | 0  | 1  | 0   | 1   | 0   | 1   | 0   | 1   | 5  |
| DA5 | 0  | 1  | 1  | 0   | 1   | 0   | 2   | 1   | 0   | 6  |

В соответствии с таблицей 2.1.1 вершины X3 и X4 имеют одинаковый и минимальный относительный вес и не содержат кратных ребер. Таким образом, выбор включаемой в подграф  $G_2^0$  вершины равнозначен.

В подграф  $G_2^0$  включен элемент (вершина) X3. Таким образом, на данном этапе последовательного алгоритма, подграф  $G_2^0$  имеет вид (2.2.1); количество внешних связей  $m_2^0$  определяется выражением (2.2.2).

$$G_2^1 = \{X3\}. (2.1.1)$$

$$m_2^1 = \rho(X3) = 3. (2.1.2)$$

Подмножество связанных с подграфом  $G_2^1$  вершин имеет вид (2.1.3).

$$x_2^2 = \{DD3, DA3, DA5\}.$$
 (2.1.3)

Таблица 2.2.2 – Относительные веса вершин подмножества  $\chi_2^2$ 

| Вершина | Относительный вес δ |
|---------|---------------------|
| DD3     | 4                   |
| DA3     | 7                   |
| DA5     | 4                   |

В соответствии с таблицей 2.2.1 и таблицей 2.2.2 вершины DD3 и DA5 имеют одинаковый относительный вес и содержат по два кратных ребра. Таким образом, выбор включаемой в подграф  $G_2^0$  из подмножества  $x_2^2$  вершины равнозначен.

включаемой в подграф  $G_2^0$  из подмножества  $x_2^2$  вершины равнозначен. В подграф  $G_2^0$  включен элемент DD3. Таким образом, на данном этапе последовательного алгоритма, подграф  $G_2^0$  имеет вид (2.1.4); количество внешних связей  $m_2^0$  определяется выражением (2.1.5).

$$G_2^2 = \{X3, DD3\}.$$
 (2.1.4)

$$m_2^2 = m_2^1 + \delta(DD3) = 7.$$
 (2.1.5)

Подмножество связанных с подграфом  $G_2^1$  вершин имеет вид (2.1.6).

$$x_2^3 = \{DA3, DA5, X1, DA4\}.$$
 (2.1.6)

Таблица 2.2.3 – Относительные веса вершин подмножества  $x_2^3$ 

| Вершина | Относительный вес δ |
|---------|---------------------|
| DA3     | 3                   |
| DA5     | 2                   |
| X1      | 18                  |
| DA4     | 3                   |

В подграф  $G_2^0$  включен элемент DA5. Таким образом, подграф  $G_2^0$  имеет вид (2.2.7); количество внешних связей  $m_1^0$  определяется выражением (2.2.8).

$$G_2^0 = \{X3, DD3, DA5\}.$$
 (2.2.7)

$$m_2^0 = m_2^3 = m_2^2 + \delta(DA5) = 9.$$
 (2.2.8)

Путем вычеркивания в матрице  $|A_1|$  (Таблица 2.2.1) строк и столбцов, соответствующих вершинам подграфа  $G_2^0$  получена матрица  $|A_2|$  (Таблица 2.3.1).

## 2.3 Формирование подграфа $G_3^0$

Таблица 2.3.1 — Матрица  $|A_2|$ 

|     | X1 | X4 | DD2 | DA2 | DA3 | DA4 | ρ  |
|-----|----|----|-----|-----|-----|-----|----|
| X1  | 0  | 0  | 9   | 0   | 1   | 0   | 20 |
| X4  | 0  | 0  | 0   | 0   | 1   | 1   | 3  |
| DD2 | 9  | 0  | 0   | 8   | 0   | 0   | 18 |
| DA2 | 0  | 0  | 8   | 0   | 1   | 0   | 10 |
| DA3 | 1  | 1  | 0   | 1   | 0   | 1   | 9  |
| DA4 | 0  | 1  | 0   | 0   | 1   | 0   | 5  |

В подграф  $G_3^0$  включен элемент X4, поскольку последний обладает минимальной локальной степенью  $\rho(X2)=3$ . Таким образом, на данном этапе последовательного алгоритма, подграф  $G_2^0$  имеет вид (2.3.1); количество внешних связей  $m_2^0$  определяется выражением (2.3.2).

$$G_3^1 = \{X4\}. \tag{2.3.1}$$

$$m_3^1 = \rho(X4) = 3. \tag{2.3.2}$$

Подмножество связанных с подграфом  $G_3^1$  вершин имеет вид (2.3.3).

$$x_3^2 = \{DA3, DA4\}. \tag{2.3.3}$$

Таблица 2.3.2 – Относительные веса вершин подмножества  $x_3^2$ 

| Вершина | Относительный вес δ |
|---------|---------------------|
| DA3     | 7                   |
| DA4     | 3                   |

В подграф  $G_3^0$  включен элемент DA4. Таким образом, на данном этапе последовательного алгоритма, подграф  $G_3^0$  имеет вид (2.3.4); количество внешних связей  $m_2^0$  определяется выражением (2.3.5).

$$G_3^2 = \{X4, DA4\}. \tag{2.3.4}$$

$$m_3^2 = m_2^2 + \delta(DA4) = 6.$$
 (2.3.5)

Подмножество связанных с подграфом  $G_3^2$  вершин имеет вид (2.3.6).

$$x_3^3 = \{DA3\}. \tag{2.3.6}$$

В подграф  $G_3^0$  включен элемент DA3, поскольку это единственная вершина в подмножестве  $x_3^2$ . Таким образом, подграф  $G_3^0$  имеет вид (2.3.7); количество внешних связей  $m_3^0$  определяется выражением (2.3.8).

$$G_3^0 = \{X4, DA4, DA3\}.$$
 (2.3.7)

$$m_3^0 = m_3^3 = m_3^2 + \delta(DA5) = 11.$$
 (2.3.8)

Путем вычеркивания в матрице  $|A_2|$  (Таблица 2.3.1) строк и столбцов, соответствующих вершинам подграфа  $G_3^0$  получена матрица  $|A_3|$  (Таблица 2.4.1).

# 2.4 Формирование подграфа $G_4^0$

Таблица 2.3.1 -Матрица  $|A_3|$ 

|     |    |     |     | 1  |
|-----|----|-----|-----|----|
|     | X1 | DD2 | DA2 | ρ  |
| X1  | 0  | 9   | 0   | 20 |
| DD2 | 9  | 0   | 8   | 18 |
| DA2 | 0  | 8   | 0   | 10 |

Оставшиеся вершины X1, DD2 и DA2 включены в подграф  $G_4^0$ . Таким образом, подграф  $G_4^0$  имеет вид (2.4.1); количество внешних связей  $m_4^0$  определяется выражением (2.4.2).

$$G_4^0 = \{DA2, DD2, X1\}.$$
 (2.4.1)

$$m_4^0 = 10 + (18 - 2 \cdot 8) + (20 - 2 \cdot [9 + 0]) = 14.$$
 (2.4.2)

#### 2.5 Определение качества компоновки

Качество компоновки  $\Delta G$  исходной задачи определяется выражением (2.5.1). Расчет значения  $\Delta G$  представлено в (2.5.2).

$$\Delta G = \frac{V_{11} + V_{22} + V_{33} + V_{44}}{V_{12} + V_{13} + V_{14} + V_{23} + V_{24} + V_{34}},$$
(2.5.1)

где  $V_{ij}$  – количество связей между -тым и j-тым подграфами (Таблица 2.5.1).

Таблица 2.5.1 – Матрица сформированных подграфов

|     |    | 1   | 1   |    |     | нци <b>2</b> .5 |    |     |     | рованных подграфов |     |    |
|-----|----|-----|-----|----|-----|-----------------|----|-----|-----|--------------------|-----|----|
|     | X2 | DD1 | DA1 | X3 | DD3 | DA5             | X4 | DA4 | DA3 | DA2                | DD2 | X1 |
| X2  | 0  | 1   | 0   | 0  | 0   | 0               | 0  | 0   | 0   | 0                  | 1   | 0  |
| DD1 | 1  | 0   | 8   | 0  | 0   | 0               | 0  | 0   | 0   | 0                  | 0   | 9  |
| DA1 | 0  | 8   | 0   | 0  | 0   | 0               | 0  | 1   | 0   | 1                  | 0   | 0  |
| Σ   |    | 18  |     |    | 0   |                 |    | 1   |     |                    | 11  |    |
| X3  | 0  | 0   | 0   | 0  | 1   | 1               | 0  | 0   | 1   | 0                  | 0   | 0  |
| DD3 | 0  | 0   | 0   | 1  | 0   | 1               | 0  | 1   | 2   | 0                  | 0   | 1  |
| DA5 | 0  | 0   | 0   | 1  | 1   | 0               | 1  | 1   | 2   | 0                  | 0   | 0  |
| Σ   |    | 0   |     |    | 6   |                 |    | 8   |     |                    | 1   |    |
| X4  | 0  | 0   | 0   | 0  | 0   | 1               | 0  | 1   | 1   | 0                  | 0   | 0  |
| DA4 | 0  | 0   | 1   | 0  | 1   | 1               | 1  | 0   | 1   | 0                  | 0   | 0  |
| DA3 | 0  | 0   | 0   | 1  | 2   | 2               | 1  | 1   | 0   | 1                  | 0   | 1  |
| Σ   |    | 1   |     |    | 8   |                 |    | 6   |     | 2                  |     |    |
| DA2 | 0  | 0   | 1   | 0  | 0   | 0               | 0  | 0   | 1   | 0                  | 8   | 0  |
| DD2 | 1  | 0   | 0   | 0  | 0   | 0               | 0  | 0   | 0   | 8                  | 0   | 9  |
| X1  | 0  | 9   | 0   | 0  | 1   | 0               | 0  | 0   | 1   | 0                  | 9   | 0  |
| Σ   |    | 11  |     |    | 1   |                 |    | 2   |     |                    | 34  |    |

$$\Delta G = \frac{18 + 6 + 6 + 34}{0 + 1 + 11 + 8 + 1 + 2} = \frac{32}{23}.$$
 (2.5.2)