从零手写 VIO 作业 第二周

purebob

June 22, 2019

1 生成 Allan 方差曲线

1.1 第一组数据

vio_data_simulation 初始设置参数为:

Parameters	Value
gyro_bias_sigma	0.00005
acc_bias_sigma	0.0005
gyro_noise_sigma	0.015
acc_noise_sigma	0.019

表 1: 第一组 IMU 仿真参数设置

通过运行:

 $rosrun\ vio_data_simulation\ vio_data_simulation_node$

来生成对应的 bag 文件. 然后通过 imu_utils 来对数据进行处理:

rosrun imu_utils simuation_imu.launch

修改 imu_utils 里的 Matlab 脚本文件来绘制加速度计 Allan 方差图, 如图 1 所示. 分析图 1, 发现横坐标为 1 的点的纵

图 1: 加速度计 Allan 方差图

坐标约为 0.01955, 这非常接近我们设定的加速度计高斯白噪声的方差值; 分析图像的最低点, 其纵坐标值为 0.003201, 比我们设定的加速度计随机游走高了一个数量级, 符合课堂上老师讲的情况. 第一种参数的 IMU 方差分析完成. 图 2 是针对陀螺仪数据绘制的 Allan 方差曲线图. 同样标出横坐标为 1, 得到 3172. 由于这里的单位为 deg/h, 因此进行换算:

 $1rad/s = \frac{180}{\pi} \times 3600 deg/h$

得到对应的值为 0.015378. 在 imu_utils 输出的 yaml 文件里得到的 gyro_w 值为 8.6873258066918980 × 10^{-4} , 比设定的 5×10^{-5} 低了一个数量级, 符合课上讲到的情况.

图 2: 陀螺仪 Allan 方差图

1.2 第二组数据

设定参数如表 2 所示. 生成 bag 文件后同样利用 imu_utils 来处理数据, 得到图 3 与图 4. 根据图 3 与图 4 得出

Parameters	Value
gyro_bias_sigma	0.0008
acc_bias_sigma	0.005
$gyro_noise_sigma$	0.018
acc_noise_sigma	0.023

表 2: 第二组 IMU 仿真参数设置

预估数据如表 3 所示, 也是符合课上所讲情况.

Parameters	Value
gyro_bias_sigma	0.00414
acc_bias_sigma	0.01218
gyro_noise_sigma	0.0190
acc_noise_sigma	0.002421

表 3: 第二组 IMU Allan 方差图示参数

图 3: 加速度计 Allan 方差图

图 4: 陀螺仪 Allan 方差图

2 IMU 仿真代码欧拉积分改为中值积分

中值积分的代码见附件,midpoint.cpp. 我分别画出了欧拉法和中值法积分的四种轨迹:imu 原始轨迹,imu 加噪声之后的轨迹,IMU 原始数据积分得到的轨迹, 加噪声的 IMU 数据积分得到的轨迹. 得到的图像如图 5,6 所示.

图 5: Tracjectory of Euler Method

图 6: Tracjectory of Midpoint Method

可以看到确实中值积分的效果比欧拉积分的效果好一些,中值积分的导数选取使得其收敛的更快一些.(源文件是

midpoint.png 和 euler.png).