A Multivariate Analysis on U.S Presidential Election Results From 1992

Jared Thacker

Objective

- Is there a difference in census information between counties that Bill Clinton lost and won?
- 2. Can we predict the results of an election using *only* census information ignoring the temporal structure? Baseline model?
- 3. Which variables are the most important?

Democratic Candidate: Bill Clinton

Republican Candidate: George H. W. Bush

Data-Sourcing

- Two Sources
 - Ufl.edu census variables by county
 - ► Wikipedia election results by county

An example of a Wikipedia table that was scraped

Exploratory Data Analysis (EDA)

More EDA

- Moderately strong correlation between variables
- PCA might be appropriate

More EDA

- Appearance: small difference between different census measure
- ► Large sample size -> more power

Question 1: MANOVA

- Use Wilk's test
- ► F test statistic: 11.493
- P-value < 0.00001
- Important variables (ANOVA)
 - ► Mean Savings: *p* < 0.001
 - ► PC Income: *p* < 0.0001
 - % Female: p < 0.0001</p>
 - ▶ Population Dens.: *p* < 0.005
 - % in poverty: p < 0.0001</p>

Question 2: Predictive Modeling

- Three Models
 - KNN, Random Forest, Dense Deep-Learning Neural Network (DLNN)
 - ► Train test split: 80%/20%
- KNN
 - ► K=5
- Random Forest
 - # of Trees: 150
 - variables at each split: 1

- DLNN (All were similarly bad)
 - # of hidden layers: 5
 - # of hidden units:
 - **32**
 - **64**
 - **128**
 - **64**
 - **32**
 - Dropout rate: 10%
 - Activation function: Sigmoid
 - Loss function = "binary cross entropy"
 - Optimizer = "RMSprop"

Question 2: Predictive Modeling

- Random forest highest performer
- Neural Network
 - Not enough data (inconclusive)
- ► There are more ML models
 - ▶ I chose just three
- I should've considered statistical models
 - ▶ ML offers no advantage sometimes
- We're ignoring the temporal and cyclical nature of election cycles this is the future of this study (Time series models, RNNs)

Question 3: Variable Importance

- Random forest highest performer: Population Density
- Random forest importance is the same as ANOVA results

Variable Importance Plot from Random Forest

Conclusion

- There are differences in census measurement that voted for democratic vs. republican
- Modeling elections is difficult, but possible
 - ▶ Current baseline: random forest
 - ► Future: Time-series model, RNN
- Population density, % female, PC income, % in poverty same as individual ANOVA results

Future Work:

- Add interaction effects between important variables
- Time-series models
- Optimize Parameters (grid search)
- Use cross-validation

Grouped raw QQ - plots

Grouped transformed QQ - plots

Subpopulation heatmap

Residual Plot - MANOVA

Scatterplot matrix

My R Package VIP List

- Rvest
- Dplyr
- Stringr
- ggplot2
- Keras

