

Nom:		Prénom :	Classe	Date :
Note:	Remarque:			

Evaluation résolution graphique statique plane

ECHELLE DE POMPIER

Présentation

Une échelle de pompier (3), partiellement représentée, est articulée en A (pivot d'axe A_jz) sur une tourelle (2). La tourelle peut pivoter (rotation d'axe D,y) par rapport au châssis du camion (1). Le levage est réalisé par un vérin hydraulique {4+5} articulé en B sur l'échelle et en C sur la tourelle.

L'étude est réalisée dans le plan de symétrie du dispositif, l'ensemble est en équilibre, la tourelle est à l'arrêt et le vérin est bloqué en position. Le poids de l'échelle P_3 (5000 da $\mathbb N$) est schématisé sur le dessin ci-dessous, le poids du vérin est négligé

On cherche à vérifier le dimensionnement du vérin (pression d'alimentation 18 MPa maximum, diamètre du piston 105mm). Rappel 1 bar = 10^5 Pa = 0.1 MPa.

DM coronavirus page 1/3 DM stat plane 2020

Travail demandé:

Toutes les réponses seront données sur le document réponse page 3.

- **Q1.** Compléter <u>en noir</u> les tableaux des actions extérieures sur le vérin (4+5) et des actions extérieures sur l'échelle avec les données disponibles, toutes les cases ne seront peut-être pas remplies.
- Q2. Quel solide va-t-on isoler en premier? Pourquoi?

On isole en 1er le verin car on étudie la dimention du vérin, et de plus, on doit savoir la direction du solide.

Isoler le vérin 4+5

Q3., appliquer le principe fondamental de la statique (PFS) au vérin (4+5), en déduire la direction des deux efforts, compléter les tableaux en rouge.

On isole l'échelle 3.

Q5. Identifier les actions mécaniques qui s'exercent sur l'échelle 3 en tenant comptes des hypothèses. Seules les informations connues à cet instant seront inscrites dans le tableau en bleu. Il faudra tenir compte des informations que vous aurez trouvées à la question 3.

Q6. Le principe fondamental de la statique nous permet d'affirmer que :

- La somme vectorielle est nule
- elles se couppent toutent en 1 point (Y)

Sur le document réponse page 3 :

- Q7. Construire graphiquement les droites directrices des différentes forces connues.
- **Q8.** Choisir une échelle pertinente.
- **Q9.** Identifier le point d'intersection et tracer la troisième droite directrice.
- Q10. Réaliser le triangle des forces à l'échelle choisie.
- Q11. Donner les valeurs des deux forces inconnues (remplir le tableau) en tenant compte de l'échelle choisie.
- Q12. Compléter toutes les cases des tableaux manquantes en vert.
- Q13. Connaissant l'effort de l'échelle sur le vérin en \mathcal{B} , calculer la pression nécessaire dans le vérin afin de maintenir l'équilibre. Rappel $\mathcal{F}=\mathcal{P}_X\mathcal{S}$ avec \mathcal{S} en mm^2 et \mathcal{P} en $\mathcal{P}a$.
- Q14. La pression maximum est-elle suffisante? entourer la bonne réponse et justifier.

DM coronavirus page 2/3 DM stat plane 2020

Document réponse :

forces extérieures sur le vérin	Pt d'application	Direction	Sens	Module
2 sur le verin	С	(BC)	$\mathcal{B} \rightarrow \mathcal{C}$	9500 daN
3 sur le verin	\mathcal{B}	(BC)	$C \rightarrow \mathcal{B}$	5000 daN

forces extérieures sur l'échelle	Pt d'application	Direction	Sens	Module
Verin sur 3	${\mathcal B}$	$(\mathcal{BC}) = (\mathcal{BK})$	$\mathcal{K} \rightarrow \mathcal{B} \stackrel{<==>(\mathcal{C} \rightarrow \mathcal{B})$	5000 daN
2 sur 3	Я	(AK)	$\mathcal{A} \rightarrow \mathcal{K}$	9500 daN
Poid sur 3	${\cal G}$	vertical	Vers le bas	5000 daN

F=P*S

P=

95000 = 18000000*S

 $S = \frac{18000000}{05000} = 186 \text{mm}^2$

105/2=52,5

 π *52,5² = 8659,01mm² \Rightarrow F=18000000*8659,01 F=1,56*10¹¹

P maximum suffisant | Oui | non | Justification : »car la force exercée est inférieur a la faorce maximale du piston.

