

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02026 - INFERÊNCIA B - 2019/2

Plano Aula 35

Markus Stein
16 December 2019

	continuação	Trabalho	Final
--	-------------	----------	-------

- Dúvidas?
- Códigos?

Andamento	\mathbf{dos}	traba	lhos.		
-----------	----------------	-------	-------	--	--

Tarefa: Preparar apresentação para a próxima aula.

TRV Bootstrap

Lembrando resultado TRV assintótico que diz: sob certas condições de regularidade, e sob H_0 , $-2 \log \lambda(\mathbf{X}) \to \chi^2_{(a.l.)}$.

Como podemos verificar a distribuição de $-2 \log \lambda(X)$ usando bootstrap?

- 1. Escreva a função de verossimilh
naça $\ell(\boldsymbol{\theta})$, com base na distribuição conjunta $f(\boldsymbol{x};\boldsymbol{\theta})$ para o problema;
- 2. Encontre $\hat{\theta}_0$ e $\hat{\theta}_{EMV}$, os EMVs restrito sob H_0 e irrestrito;
- 3. Calcule $-2 \log \lambda(x)$, para a amostra observada X = x;
- 4. Gere n_{boot} amostras de $f\left(\boldsymbol{x}; \hat{\boldsymbol{\theta}}_{\mathbf{0}}\right)$ e calcule a $-2 \log \lambda(x_{boot_i})$, para $i = 1, \ldots, n_{boot}$;
- 5. Compare $-2 \log \lambda(x)$ da amostra observada com a distribuição gerada no passo (4), use valor p ou IC.