PROJET 5ÈME ANNÉE

Clément CRONIER

Adrien TIRLEMONT

Théophile CHENE

1

Contexte

Simple d'utilisation

Peu d'interactions

Moins intrusif que d'autres systèmes (Iris, empreintes digitales)

Problématique

Comment l'authentification basée sur la reconnaissance faciale peut-elle s'intégrer dans l'évolution des systèmes d'authentification, tels que la biométrie et l'authentification multifactorielle, pour offrir une sécurité accrue et une expérience utilisateur plus fluide ?

Notre démarche

- Etude de l'état de l'art pour la détection de visage et choix de la méthode finale
- Choix de la méthode de reconnaissance faciale
- Choix du dataset dans les deux cas
- Création des modèles dans les deux cas
- Etude des résultats obtenus dans les deux cas
- Création de l'application

Détection de visage

Implémentation Rapidité d'exécution Intérêt Knowledge-based face detection Template matching Feature-based face detection Appearance-based face detection

Haar Feature Selection

Modèles pré-existants.

S'appuie sur des propriétés similaires des visages humains pour former des correspondances à partir des traits du visage.

38 couches de classificateurs en cascade pour obtenir le nombre total de 6061 caractéristiques de chaque face frontale.

Détection de visage

- ➤Type:
 - ➤ Haarcascade classifier
 - -> Avantages
 - Rapide
 - Facile à implémenter
 - Bonne précision
 - modèle pré-entrainé

Détection de l'un de nos visages Avec Haarcascade

Notre base de données "appearance-based model"

<u>1er dataset : Kerimelbiler dataset</u>

- 31 personnes, nombre d'images : 2562

Problème de performance, trop peu d'images ne permettant pas au modèle de généraliser correctement.

<u>2ème dataset : Pins Face dataset</u>

- 105 personnes, 100-200 images/personne
- De multiples images correspondant à tous types de visages
- Images de tailles variables
- Images de qualités variables
- Individus variables

Notre base de données "marques du visage"

<u>Dataset</u>: Facial Key Point Detection Dataset

- 70 000 images avec 68 landmarks/image Conservation de 7674 images.
- De multiples images correspondant à tous types de visages
- Images de tailles variables
- Individus variables

Nos modèles (CNN)

- Capacité à extraire les caractéristiques pertinentes : les bords, les textures et les motifs.
- Réduction de la complexité des données en réduisant leur dimensionnalité.
 - une gestion plus efficace des données d'image
 - une amélioration de la vitesse de traitement.
- Amélioration de la précision : capacité à généraliser les caractéristiques d'image pour des images inconnues.

Réseau de neurones convolutif

Notre "Appearance based model"

7 Bloc composé de :

- Dropout
- Conv2D
- MaxPooling
- BatchNormalization

Nombre de couches au total:

30 couches pour
1 700 000 paramètres

Notre modèle "Transfer Learning"

-> VGG16

Modèle des marques du visage (landmarks)

ReLU

ReLU

ReLU

Evolution des modèles

Recherche automatique des hyperparamètres.

-> module scikit-optimize, méthode Bayésienne afin d'étudier les paramètres les plus importants. Recherche empirique des hyperparamètres.

Apparence Based: Les différents entrainements

Affichage de la perte et de la précision des modèles entrainés

<u>Précision des modèles en fonction des</u> <u>paramètres</u>

Nos résultats (Appearance based)

Statistiques du meilleur modèle :

Précision

87,64%

Perte

0,5431

Nombre de cycle d'entrainement 940

Nombre de paramètres 1 708 775 paramètres

Temps de prédiction

-CPU: 20,6s/100 images -GPU: 7s/100 images

Nos résultats (Transfer Learning)

Statistiques du meilleur modèle :

Précision

89,07%

Perte

0,7532

Nombre de cycle d'entrainement 50

Nombre de paramètres 15 000 000 paramètres

Nos résultats (marques du visage)

Statistiques du meilleur modèle :

Perte (MSE)

1,714

Nombre de cycle d'entrainement 128

Nombre de paramètres 4 280 460 paramètres

Temps de prédiction

-CPÜ: 21,6s/100 images -GPU: 4,3s/100 images

Difficultés rencontrées

Overfitting

Optimisation des modèles

Choix du dataset

Implémentation sur mobile

Axes d'amélioration

Améliorations possibles :

- Continuer à améliorer la précision de nos modèles
- Pour les facial landmarks: Optimisation du modèle
- Améliorer le temps de traitement dans le cadre de l'application

Conclusion (

Merci de votre écoute

OPERATION		DATA	DIMEN	SIONS	WEIGHTS(N)	WEIGHTS(%)
Input		224				
BatchNormalization		224		1	4	0.0%
Conv2D	\ /				1664	0.1%
relu MaxPooling2D			220	64	0	0.0%
		110				
Dropout		24			0	0.0%
Conv2D		24			717056	42.0%
	#####	20	20	256		42.0%
MaxPooling2D		10		256	0	0.0%
BatchNormalization					1024	0.1%
Dropout		10		256	0	0.0%
	#####	10	10	256		0.0%
Conv2D	\ / #####				165960	9.7%
MaxPooling2D					0	0.0%
BatchNormalization	##### ula	_	4	72	288	0.0%
Baccino maiizacion	#####	4	4	72		
Dropout		4		72	0	0.0%
	\ /				83072	4.9%
relu MaxPooling2D			2	128	9	0.0%
	#####	1	1	128		
BatchNormalization	μ σ #####	1	1	128	512	0.0%
Flatten					0	0.0%
Dropout	#####		128		0	0.0%
·	#####		128			4 00/
Dense relu	XXXXX		256		33024	1.9%
Dense	XXXXX				26985	1.6%
softmax	#####		105			

\underline{A}	p	parence Based Model	

OPERATION		DATA I	DIMEN	SIONS	WEIGHTS(N)	WEIGHTS(%)
Input		96	96	1		
BatchNormalization	μ σ #####	96			4	0.0%
Dropout	1.11				0	0.0%
Conv2D	##### \ /	96		1	1660	0.0%
relu		94				
Conv2D	\ /				248170	6.0%
relu		92				
BatchNormalization					664	0.0%
Dropout	#####	92			0	0.0%
ы оройс		92			0	0.0%
Conv2D					382720	9.3%
relu	#####					
Conv2D	\ /				590080	14.4%
	#####			256		
BatchNormalization					1024	0.0%
Dropout	#####		88		0	0.0%
bropout	#####			256	9	0.0%
Conv2D					590080	14.4%
	#####		86			
Conv2D	\ /				590080	14.4%
relu		84				
BatchNormalization					1024	0.0%
	#####	84			_	0/
Dropout	#####	84			0	0.0%
Conv2D					590080	14.4%
	#####			256	350080	14.4%
	\ /				590080	14.4%
relu	#####	80	80	256		
BatchNormalization	μ σ				1024	0.0%
	#####		80			
Conv2D	111				228195	5.6%
reiu BatchNormalization	##### μ σ	/8			396	0.0%
Dattinorilatization	μ 0 #####		78		390	0.0%
Conv2D			-		121312	3.0%
	#####		76			
BatchNormalization	μ σ				544	0.0%
	#####	76	76	136		
Conv2D	117				166600	4.1%
	#####	74	74	136		