

Soutenance de stage de fin d'études Département informatique

Etude d'un modèle aléatoire conservant les bicliques maximales dans les graphes bipartis

Présenté par **Cécile Pov**

le 12 octobre 2020

<u>Jury</u>: MM. Fabien Tarissan & Lionel Tabourier (ComplexNetworks) - M. Nabil Hassan Mustafa (ESIEE Paris)

Plan

- 1. Contexte du stage
- 2. Un domaine d'étude : les réseaux complexes
- 3. Problématique du stage
- 4. Le modèle triparti
- Résultats
 Comparaison des graphes bipartis générés
- 6. Conclusion

Contexte du stage

LIP6

- Laboratoire de recherche sous tutelle de Sorbonne Université et du CNRS
- ≈ 200 permanents (enseignants chercheurs, etc.)
 ≈ 300 non-permanents (200 doctorants, postdocs, etc.)
- 4 axes transverses : IA et datascience, architecture, sécurité, théorie et outils mathématiques pour l'informatique
- 22 équipes
 - -> ComplexNetworks : 18 membres, 4 permanents Répondre aux questions transverses autour des réseaux complexes

Domaine d'étude : les réseaux complexes

Les réseaux complexes nous entourent :

- Internet
- Interactions sociales
- Interactions protéines-protéines

Nombreux contextes applicatifs et tâches critiques :

- Diffusion (information, virus)
- Prédiction de cyber attaques
- Identifier des personnes "influentes" dans un réseau

[1]

Domaine d'étude : les réseaux complexes

Les réseaux réels ont des propriétés non triviales :

- Densité globale très faible
- Densité locale forte
- Distance moyenne faible
- Distribution de degré hétérogène

On capture ces propriétés dans des modèles de génération de graphe.

A ce jour, aucun modèle de génération de graphe ne permet d'aboutir à un graphe de terrain réaliste.

Biclique (X_n, Y_n) : un sous-graphe de G où tous les noeuds X_n du haut sont reliés à tous les noeuds Y_n du bas

({A,B}, {1,2}) est une biclique ? **OUI** ({A,B}, {1,2}) est une biclique maximale ?

- Structure forte
- Nombreux contextes applicatifs

Biclique (X_n, Y_n) : un sous-graphe de G où tous les noeuds X_n du haut sont reliés à tous les noeuds Y_n du bas

({A,B}, {1,2}) est une biclique ? **OUI** ({A,B}, {1,2}) est une biclique maximale ? **NON**

Biclique (X_n, Y_n) : un sous-graphe de G où tous les noeuds X_n du haut sont reliés à tous les noeuds Y_n du bas

({A,B,C}, {1,2}) est une biclique ? **OUI** ({A,B,C}, {1,2}) est une biclique maximale ? **OUI**

Biclique (X_n, Y_n) : un sous-graphe de G où tous les noeuds X_n du haut sont reliés à tous les noeuds Y_n du bas

({A,B,C}, {1,2}) est une biclique ? **OUI** ({A,B,C}, {1,2}) est une biclique maximale ? **OUI**

Problématique : le configuration model biparti

0 biclique maximale

Problématique : le configuration model biparti

Objectif du stage

Etudier la pertinence du modèle triparti en tant que support pour générer des graphes réalistes :

- Etude statistique
- Etude structurelle

Objectif du stage

Déroulement de l'algorithme

- 1. Enumérer toutes les bicliques maximales
- 2. Encoder les b.m sélectionnées dans un 3ème niveau
- 3. Générer un graphe triparti aléatoire
- 4. Projeter le graphe triparti généré pour récupérer un graphe biparti aléatoire.

3 bicliques maximales non recouvrantes dans G:

- $(\{A,B,C\},\{1,2\})$
- ({C,D,E}, {3,4,5})
- ({F,G},{5,6})

2 arêtes non-impliquées dans ces bicliques maximales :

- (A,E)
- (E,6)

- 1. Enumérer toutes les bicliques maximales
 - > En extraire une séquence de bicliques maximales non recouvrante (via heuristique, etc.)
- 2. Encoder les b.m sélectionnées dans un 3ème niveau
- 3. Générer un graphe triparti aléatoire
- 4. Projeter le graphe triparti généré pour récupérer un graphe biparti aléatoire.

Le noeud α encode la biclique maximale (X_{α}, Y_{α})

- 1. Enumérer toutes les bicliques maximales
- 2. <u>Encoder les b.m sélectionnées dans un</u> 3ème niveau
 - > Chaque noeud dans le 3ème niveau encode une biclique maximale dans G.
 - > Les arêtes sont labellisées selon leur degré vers l'autre ensemble
- 3. Générer un graphe triparti aléatoire
- 4. Projeter le graphe triparti généré pour récupérer un graphe biparti aléatoire.

interlockable pairs	not interlockable pairs
↓2 — ⑥ —	-(-
↓3 -◆-	→ ■
↑3 —	₹ •
↑2 -5/*-	─ □ *─
0	

- 1. Enumérer toutes les bicliques maximales
- 2. Encoder les b.m sélectionnées dans un 3ème niveau
- 3. Générer un graphe triparti aléatoire
 - > Couper les arêtes
 - > Les demi-arêtes provenant d'arêtes ayant le même label sont connectés aléatoirement.
- 4. Projeter le graphe triparti généré pour récupérer un graphe biparti aléatoire.

interlockable pairs	not interlockable pairs
↓2 — ⑥ —	-(-
↓3 -	→ ■
↑3 —	₹ •
↑2 	─ □ *─
0	

- 1. Enumérer toutes les bicliques maximales
- 2. Encoder les b.m sélectionnées dans un 3ème niveau
- 3. Générer un graphe triparti aléatoire
 - > Couper les arêtes
 - > Les demi-arêtes provenant d'arêtes ayant le même label sont connectés aléatoirement.
- 4. Projeter le graphe triparti généré pour récupérer un graphe biparti aléatoire.

interlockable pairs	not interlockable pairs
↓2 — ⑥ —	-(-
↓3 -◆-	→ ■
↑3 —	₹ •
↑2 -5/*-	─ □ *─
0	

- 1. Enumérer toutes les bicliques maximales
- 2. Encoder les b.m sélectionnées dans un 3ème niveau
- 3. Générer un graphe triparti aléatoire
 - > Couper les arêtes
 - > Les demi-arêtes provenant d'arêtes ayant le même label sont connectés aléatoirement.
- 4. Projeter le graphe triparti généré pour récupérer un graphe biparti aléatoire.

- 1. Enumérer toutes les bicliques maximales
- 2. Encoder les b.m sélectionnées dans un 3ème niveau
- 3. Générer un graphe triparti aléatoire
- 4. Projeter le graphe triparti généré pour récupérer un graphe biparti aléatoire.

 Les noeuds de X et Y reliés à un même noeud dans W forment une biclique maximale dans le graphe biparti projeté.

Résultats

Résultats

Test sur 6 datasets

Figures présentés dans la suite :

- Dataset de co-authoring (auteur article) :
 - o nombre de noeuds top: 38741
 - o nombre de noeuds bottom : 16726
 - o nombre d'arêtes : 58595

	real	configuration model	random	maxtop	maxbottom	maxnodes	naive_tri
nb_vertices	16726	16726	16726	16726	16726	16726	16726
nb_edges	58595	58577	58587	58586	58584	58579	58586
density	0.000159129	0.00015908	0.000159107	0.000159105	0.000159099	0.000159086	0.000159105
cc_bullet_set	0.370592	0.198609	0.255805	0.265567	0.246961	0.253785	0.253337
nb_connected_components	1188	747	1437	1490	1454	1450	1441
degree_avg	3.50323	3.50215	3.50275	3.50269	3.50257	3.50227	3.50269
degree_sum	58595	58577	58587	58586	58584	58579	58586
degree_min	1	1	1	1	1	1	1
degree_max	116	116	116	115	116	116	87

Degré: Distribution cumulative inverse (ICDF)

Redondance: Distribution cumulative inverse (ICDF)

Fraction de voisins de A qui sont liés ensemble dans la projection, même si on supprime A dans le graphe biparti.

Figure: Matthieu Latapy, Clémence Magnien, and Nathalie Del Vecchio. Basic Notions for the Analysis of Large Two-mode Networks. volume 30, pages 31–48. Elsevier, January 2008.

Redondance: Distribution cumulative inverse (ICDF)

Clustering coefficient biparti: distribution cumulative inverse (ICDF)

<u>Taille des bicliques : Distribution cumulative inverse (ICDF)</u>

Corrélation redondance -coefficient de clustering

Autres résultats : Confère code.

Conclusion

Résultats prometteurs pour les métriques mesurées en biparti.

Améliorations:

- Algorithme d'énumération de bicliques plus efficace
- Etendre l'étude à d'autres métriques (monopoly coefficient, dispersion coefficient, diffusion, etc.)
- Faire une étude qualitative des résultats obtenus

Sources principales

- [1] Fabien Tarissan and Lionel Tabourier. A random model that relies on maximal bicliques to preserve the overlaps in bipartite networks. In 8th International Conference on Complex Networks and their Applications, Lisbonne, Portugal, December 2019.
- [2] Émilie Coupechoux and Fabien Tarissan. Un modèle pour les graphes bipartis aléatoires avec redondance. In 4ème Journées Modèles et l'Analyse des Réseaux : Approches Mathématiques et Informatique (MARAMI'13), Saint-Etienne, France, October 2013.
- [3] Matthieu Latapy, Clémence Magnien, and Nathalie Del Vecchio. Basic Notions for the Analysis of Large Two-mode Networks. volume 30, pages 31–48. Elsevier, January 2008.
- [4] Enver Kayaaslan. On enumerating all maximal bicliques of bipartite graphs. pages 105-108, 01 2010.
- [5] Peter Damaschke. Enumerating maximal bicliques in bipartite graphs with favorable degree sequences. Information Processing Letters, 114:317–321, June 2014.

Questions

	real	configuration model	random	maxtop	maxbottom	maxnodes	naive_tri
nb_vertices	22015	292	292	292	292	292	292
nb_edges	226873	3129	2013	2501	1449	2381	2483
density	0.000936257	0.0736478	0.0473803	0.0588665	0.0341054	0.056042	0.0584428
clustering_coeff	0.804555	0.414234	0.506564	0.488632	0.47663	0.491209	0.496199
nb_connected_components	1188	9	13	17	23	17	22
diameter	17	5	5	6	5	5	5
Assortativity	0.70699	-0.0654871	0.0498075	-0.0399532	-0.015579	-0.0347291	-0.00481483
degree_avg	20.6108	21.4315	13.7877	17.1301	9.92466	16.3082	17.0068
degree_sum	453746	6258	4026	5002	2898	4762	4966
degree_min	0	0	0	0	0	0	0
degree_max	176	124	90	106	61	92	85

Projeté d'un graphe

Projeté d'un graphe

Liens multiples

ICDF

degree	distribution	CDF	ICDF
1	1	1	8
2	4	5	7
3	1	6	3
4	2	8	2

