Braidan	Duffy	Final	Exam	Qı	Ø4/2	12/82	
Two waves Ta = Q 5. 9 of each of E, = 1/8 pgt	both Discuss therse u f_i^2 ; E_2	howe a and convers. = 1/8pgH	heigh puree	t of Inthe No	Ha, E,=	E2	
E, ox YT,; The scro	Eza /s	Ti Assu with	miny che on long	eepvater er per ld in d	iod has	1/2) and half of	the specific
			2			2	
	Two waves Ta = QS. of each of E, = 1/8 pgt Both of E, = En, C, The Selo Dower of	Two waves both $T_2 = QS$. Discuss of each of therse of $E_1 = 1/8 pg H_1^2$; E_2 Both of the wave $E_1 = E_1 \cdot C_1$; $E_2 = E_2$ $E_1 = C_1 \cdot C_2$ The Second were over of the first	Two waves both have a $T_2 = QS$. Discuss and con of each of therse waves. $E_1 = \frac{1}{8} pg H_1^2$; $E_2 = \frac{1}{8} pg H$ Both of the waves have $E_1 = \frac{1}{18} pg H_1^2$; $E_2 = \frac{1}{18} pg H$ $E_1 = \frac{1}{18} pg H_1^2$; $E_2 = \frac{1}{18} pg H$ $E_1 = \frac{1}{18} pg H_1^2$; $E_2 = \frac{1}{18} pg H$ The second wave with owner of the first wave	Two waves both have a height $T_2 = 125$. Discuss and compared of each of therse waves. $E_1 = \frac{1}{8} pg H_1^2$; $E_2 = \frac{1}{8} pg H_2^2$ since $E_1 = \frac{1}{8} fg H_1^2$; $E_2 = \frac{1}{8} pg H_2^2$ since $E_1 = \frac{1}{8} fg H_2^2$; $E_2 = \frac{1}{8} fg H_2^2$ since $E_1 = \frac{1}{8} fg H_2^2$; $E_2 = \frac{1}{8} fg H_2^2$ since $E_1 = \frac{1}{8} fg H_2^2$; $E_2 = \frac{1}{8} fg H_2^2$ since $E_1 = \frac{1}{8} fg H_2^2$; $E_2 = \frac{1}{8} fg H_2^2$ since $E_1 = \frac{1}{8} fg H_2^2$; $E_2 = \frac{1}{8} fg H_2^2$ since $E_1 = \frac{1}{8} fg H_2^2$; $E_2 = \frac{1}{8} fg H_2^2$ since $E_1 = \frac{1}{8} fg H_2^2$; $E_2 = \frac{1}{8} fg H_2^2$ since $E_1 = \frac{1}{8} fg H_2^2$; $E_2 = \frac{1}{8} fg H_2^2$ since $E_1 = \frac{1}{8} fg H_2^2$; $E_2 = \frac{1}{8} fg H_2^2$ since $E_1 = \frac{1}{8} fg H_2^2$; $E_2 = \frac{1}{8} fg H_2^2$ since $E_1 = \frac{1}{8} fg H_2^2$; $E_2 = \frac{1}{8} fg H_2^2$ since $E_1 = \frac{1}{8} fg H_2^2$; $E_2 = \frac{1}{8} fg H_2^2$ since $E_1 = \frac{1}{8} fg H_2^2$; $E_2 = \frac{1}{8} fg H_2^2$ since $E_1 = \frac{1}{8} fg H_2^2$; $E_2 = \frac{1}{8} fg H_2^2$ since $E_1 = \frac{1}{8} fg H_2^$	E, = 1/8 pg H,2; E2 = 1/8 pg H22 since H, = 1 Both of the waves have the same & É = En, C, ; É2 = Enzlez since C É, \(\sigma \)/T, Assuming deepwater The second wave with a longer per over of the first wave period in de	Two waves both have a height of Im. However T2 = QS. Discuss and compared the wave energy of each of therse waves. E = 1/8 pg H2; ; E2 = 1/8 pg H2 since H, = 1/2, TE, = Both of the waves have the same energy position of the waves have the same energy position. E = En, C, ; E2 = En, C since C × 1/T., Ex! E = X 1/T; E2 × 1/2T, Assuming deepwater (n, = n, = n, = 1) The second wave with a longer period has power of the first wave period in deepwater.	Breidan Daffy Final Exam Q1 04/27/21 Two waves both have a height of Im. However, T = (Ta = Q5.) Discuss and compared the wave energy and por of each of therse users. E = 1/8 patt2; E2 = 1/8 patt2 since H = H2, E1 = E2 Both of the waves have the same energy per unit of E = En, C, i E2 = Enzlos since (\alpha 1/T, E \alpha 1/T) and The sclond wave with a longer period has half of power of the first wave period in deepwater. The snumber will vary with Kh in intermediate water but, second wave will always have less power per unit of width than the first wave.

	Braidon Darry F	ind Exan	Q2 04/27/	121
Α	A 200- Second record be seen in the attack	l of wind u verl document compose the relood and	voues was capture It Surface elevate A do it on the pr	ion into
В	b) Record the wave 3 c) Find H, Hmax, H From MATIAB: H, Hm Hm	, heights are inin, Hrms, a	d runk order th	
С	d) Using Hrms = 0.56 m	= 0.78m] what is F		P(H>2m)]
D		2		2

	Braiden	Duffy	Final	Exam	Q3	04/27/2	1
Α	e) what Lo = gI	is ho; Ho = 2.81(10) = 2π	, Lo? -1156.13	From = Lo	marlf ho=	$\begin{array}{ccc} 10: & \text{Cy}_{10} = 8. \\ \text{Lo} = 156.13 \\ \text{2} & \text{2} \end{array}$	07 m/s =[78.07m=h
						1)10 = 3.16 m 3 breaking s	
В	d) What	is homeonous $\frac{12}{2\pi}\left(\frac{11}{10}\right) = \frac{1}{2\pi}$, Hshallow	, Lshallo	,w ,7		
	Law = 5	gh = Low2	= gh Lsi	u2 = h =	49.052 9.81(10)	=(2.45 m=	
						16 (15613 2(49.05)	
С							
D							
	1			2		3	3

	Braiden Duffy 1	Firel Exam	Q4	04/27/21
Α	3. There are no impers	neable Surface z=-h; P=[Ac	es. Assum cosh(ICL) d	ne! nrz))+Bsinhlk(hrz))]eis =k(hrz), \Q=kx-ot 8/2=k \\ 21/2t=-o
В	# = \$\frac{1}{2} \cosh (\gamma(z)) = = Ae in sinh(\gamma(z)) K = Ae in sinh(\gamma(z)) K = 3\frac{1}{2} \cosh(\gamma(z)) = = 13 ke in cosh(\gamma(z)) + 13 cosh = [Asinh(\gamma(z)) + 13 cosh	=Be ¹ 12 cosh(xl	z))· ³ // ₂	2
С	Asinh $(y) = Q - Bc$ $A = Q - Bc coshx$	Oshy =Q-Bkcos Ksinh(onstant (B)	h(K(hrz)	z) = A
D	20 - 2 [Acosh x +13sin	hyJein(t) =	-oėi	12[Acosy+Bsinhy] 7g(Acoshy+Bsinhy)=a

Ç	Braidan Duffy	Final Exam	QH	04/27/21
Α	c) Apply KFSBC Show it reduce	and determine s to the important lag location (as lio coshkh)	lineur	dispersion relation. e 1313C when Q=0 e) - Q Sinh(k(hrz))] ein K
В	do = Qeink cook do = Qeink cook	x = Qeia coshx		
С	dy = -aioeis2. -{[t-Qforhich]-{ag ksinh; = raio io-coshkh			shylein = aiveix which =>102 = gkitanhikh
D	1	2		3