CS 3313 Foundations of Computing:

Simplification of Context Free Grammars

http://gw-cs3313.github.io

1

Context Free Grammars

- A context free grammar is a grammar G=(V,T,P,S) where all production rules are of the form: V → (V U T)*
 - Production rules have exactly one variable on the left and a string consisting of variables and terminals on the right.
- Derivations: $\alpha A\beta => \alpha \gamma \beta$ if A -> γ is a production, =>*
 - Sentential form: α is in sentential form if S =>* α
- Derivation or Parse Trees
 - S is root node, Variables are internal nodes, terminal is leaf node, yield are leaves in pre-order traversal (left to right leaves)
- Equivalence of Parse Trees and Derivations
- If G is a CFG, then L(G), the language of G, is
 L(G) = {w | S => * w and w is a string over set T}.

Simplification and Parsing: Steps to transform grammars to equivalent more efficient grammar

- 1. Simplification rules: transform a grammar such that:
 - Resulting grammar generates the same language
 - and has "more efficient" production rules in a specific format
- 2. Normal Forms: express all CFGs using a standard "format" for Thursday how the production rules are specified
 - Definition of CFGs places no restrictions on RHS of production
 - It is convenient (for parsing algorithms) to restrict to a standard form
 - Chomsky Normal Form (CNF) or Greiback Normal Form (GNF)
- grammar in a standard form (CNF) to check if string w is $\sqrt{e^{x^k}}$ generated by grammar G. 3. Parsing Algorithm: Design a parsing algorithm that takes a

Simplification Rules: Why

- Exhaustive membership (i.e., parsing) algorithm:
 - Input string w of length n.
 - Starting with S, explore all productions for worst case n derivations and determine if it derives string w of length n.
 - How many steps for each of the n derivations:
 - Depends on size of V (set of variables)
 - Depends on size of P (set of productions)
- Question: do we gain anything if we can remove variables and productions that do not play a part in deriving terminal strings?

Simplification Rules: Why

- Exhaustive membership (i.e., parsing) algorithm:
 - Input string w of length n.
 - Starting with S, explore all productions for worst case *n* derivations and determine if it derives string *w* of length *n*.
 - How many steps for each of the n derivations:
 - Depends on size of V (set of variables)
 - Depends on size of P (set of productions)
- Observation: if we can remove variables and productions that do not play a part in deriving terminal strings, then we can improve run-time of the algorithm.

5

Comment: a useful algorithm design technique

- There is a family of algorithms that work *inductively*.
- They start discovering some facts that are obvious
 - the basis
- They discover more facts from what they already have discovered
 - induction
- Eventually, nothing more can be discovered, and we are done.....were called discovery algorithms
- Observation: decision algorithms for Reg. Lang as well as NFA to DFA (RE to NFA) used this process

6

/

CFG Simplification: What is it?

For a CFG G=(V,T,P,S)

- G has variables/productions that are "useless"
 - Variables that cannot derive a terminal string
 - Ex: $B \rightarrow AB$ $S \rightarrow BC$ and $B \rightarrow D$ in the example
 - G has variables that do not appear in any sentential form
 - Variables that cannot be "reached" from start S
- G has λ productions but language does not contain λ
- We can have unit productions that create a chain of derivations without contributing at each step to a terminal derivation
 - Ex: $A \rightarrow B$. B. $\rightarrow C$. $C \rightarrow ab$

CFG Simplification Process

- Lemma 2.1: We derive an equivalent grammar by removing variables that do not derive a terminal string
- Lemma 2.2: We can derive an equivalent grammar by removing variables that do not appear in a sentential form
- **Theorem 2.1**: Combine Lemmas 2.1,2.2 to remove useless variables/productions
- Theorem 2.2: we can derive an equivalent grammar without λ productions and get an equivalent grammar
- **Theorem 2.3**: we can derive an equivalent grammar without Unit Productions
- Note: We would like the proofs to result in procedures
 - using iterative algorithms

a

A Substitution Rule

- If A and B are distinct variables, a production of the form
 A → uBv can be replaced by a set of productions in which
 B is substituted by all strings B derives in one step.
- Consider the grammar

```
V = \{ S, B \}, T = \{ a, b, c \}, and productions

S \rightarrow a \mid aaS \mid abBc \qquad B \rightarrow abbS \mid b
```

 We can replace S → abBc with two productions that replace B (in red), obtaining an equivalent grammar with productions

```
S \rightarrow a \mid aaS \mid ababbSc \mid abbc

B \rightarrow abbS \mid b
```

Useless Variables and Useless Productions

- A variable is *useful* if it occurs in the derivation of at least one string in the language
- A variable is useless if:
 - 1. No terminal strings can be derived from the variable
 - 2. The variable symbol cannot be reached from S
 - the variable and any productions in which it appears is considered *useless*
- Ex: Are all variables useful in the grammar below?

 $S \rightarrow A \mid AC$

 $A \rightarrow aA \mid \lambda$

 $B \rightarrow bA$

 $C \rightarrow DC$

11

Lemma 2.1: Removing variables that do not derive terminal strings

- Lemma 2.1: Given a CFG G=(V,T,P,S) we can find an equivalent grammar G₁=(V', T, P', S) such that for each A in V', there is some w in T* such that A =>* w
 - Every variable in G₁ derives a terminal string
 - L(G₁) = L(G)
- We want to construct a proof that leads itself to a (discovery) algorithm
- Proof by induction.

Testing Whether a Variable Derives Some Terminal String: Proof

- The inductive proof serves as a proof of correctness for the algorithm
- Basis: If there is a production A → w, where w has no variables, then A derives a terminal string.
- Induction: If there is a production A → α, where α consists only of terminals and variables known to derive a terminal string, then A derives a terminal string, i.e., every symbol in α is useful (in Terminals or in V' - useful variables)
- Eventually, we can find no more variables.

13

13

Example: Lemma 2.1 Algorithm to Eliminate Variables that do not derive terminal strings

 $S \rightarrow AB \mid C \quad A \rightarrow aA \mid a \quad B \rightarrow bB \quad C \rightarrow c$

 $V' = \emptyset$ (initialize to empty set)

Basis: V' =

Algorithm to remove variables that do not derive terminal strings: Lemma 2.1

Input: G = (V,T,P,S)

- 1. $V_{init} := \emptyset$ /* initialize V_{init} to empty set
- 2. $V' = \{ A \mid A \rightarrow w \text{ is a production for } w \text{ in } T^* \}$
- 3. While $V_{init} \Leftrightarrow V'$
- 4. $V_{init} = V'$
- 5. $V' = V_{init} \cup \{A \mid A \rightarrow \alpha \text{ for some } \alpha \text{ in } (V_{init} \cup T)^* \}$
- 6. endwhile
- 7. P' = { $X \rightarrow \alpha \mid X \in V'$ and $\alpha \in (V' \cup T)^*$ }

15

Lemma 2.2: Removing variables or terminals that are not reachable from S

- **Lemma 2.2**: Given a CFG G=(V,T,P,S) we can find an equivalent grammar G_1 =(V', T', P', S) such that for each A in V' U T', there exist α , β in (V' U T')* for which $S = > *\alpha A \beta$
 - Every variable or terminal in G₁ appears in a sentential form
 - i.e., is reachable from S through a series of derivations
- We want to construct a proof that leads itself to a (discovery) algorithm
 - A proof by induction on length of derivation or use graph properties by constructing a reachability graph.

Example: Lemma 2.2 Algorithm to Eliminate Variables that are not reachable from S

S -> AB A -> aA | a B
$$\rightarrow$$
 bB A \rightarrow C C \rightarrow c D \rightarrow aEbb | aD E \rightarrow abb

$$V' = \emptyset$$
 (initialize to empty set)

Basis: V' =

17

17

Algorithm to remove variables that are not reachable from S: Lemma 2.2

Input: G = (V,T,P,S); Output G'=(V',T',P',S) with all reachable

- 1. $V_{init} = \emptyset$
- 2. $V' = \{ S \}$
- 3. While $V_{\text{init}}\! <\!\!\!> V\text{'}$ /* repeat loop until you cannot add more
- 4. $V_{init} = V'$
- 5. $V' = V_{init} \cup \{X \mid A \rightarrow \alpha, A \in V_{init} \text{ and } X \text{ appears in } \alpha \}$
- 6. endwhile
- 7. $P' = \{ X \rightarrow \alpha \mid X \in V' \text{ and } \alpha \in (V' \cup T)^* \}$

Simpler approach:

Construct graph, with edge from X to Y where X is LHS of production and Y is on RHS of production V' = all nodes reachable from S

Example: Procedure for Removing Useless Productions

• Consider the grammar:

 $S \rightarrow AB \mid a$

 $A \rightarrow a$

Apply Lemma 2.2:

Apply Lemma 2.1:

19

Theorem 2.1: Removing useless symbols/productions

- Theorem 2.1: Every nonempty context free language is generated by a CFG G with no useless symbols.
- Proof:
- 1. Apply Lemma 2.1 and
- 2. then apply Lemma 2.2
- 3. Prove by contradiction.

Example: Procedure for Removing Useless Productions

• Consider the grammar:

$$S \rightarrow aS \mid A \mid C$$

 $A \rightarrow a$

 $B \rightarrow aa$ $C \rightarrow aCb$

21

λ -Productions

- A production with λ on the right side is called a λ -production
- A variable (symbol) A is called *nullable* if there is a sequence of derivations through which A produces λ : i.e., A =>* λ
- If a grammar generates a language not containing λ , is there any point in keeping λ -productions ?
- Example: S₁ is nullable
 - $S \rightarrow aS_1b$
 - $S_1 \rightarrow aS_1b \mid \lambda$
- Is there a grammar without λ -productions that generates same language above?

λ -Productions

- A production with λ on the right side is called a λ -production
- A variable (symbol) A is called *nullable* if there is a sequence of derivations through which A produces λ
 - A =>* λ
- If a grammar generates a language not containing λ , any λ -productions can be removed
- Example: S₁ is nullable
 - $S \rightarrow aS_1b$
 - $S_1 \rightarrow aS_1b \mid \lambda$
- Since the language is λ -free, we have the equivalent grammar
 - $S \rightarrow aS_1b \mid ab$
 - $S_1 \rightarrow aS_1b \mid ab$

23

Example: Nullable Variables

 $S \rightarrow AB$, $A \rightarrow aA \mid \lambda \quad B \rightarrow bB \mid A$

So how do we transform the grammar into equivalent grammar (minus λ) without any λ productions ?

- 1. find nullable symbols
- 2. replace with set of productions

Theorem 2.2: Removing λ productions

- **Theorem 2.2**: If L = L(G) for some CFG G=(V,T,P,S) then L- $\{\lambda\}$ is generated by a CFG G' with no useless symbols or λ productions.
- 1. First iteratively find *nullable* variables
- 2. Next replace RHS of production with nullable symbols replaced by λ
- 3. Then apply algorithms to remove useless symbols (Thm. 2.1)
- Key Idea: turn each production $A \rightarrow X_1...X_n$ into a set of productions
 - Except, if all X's are nullable (or the body was empty to begin with), do not make a production with λ as the right side
- Proof: formal proof by induction on length of derivation

25

Theorem 2.2: Algorithm to remove λ productions

- 1. $V_N = \emptyset$ /* these are nullable variables
- 2. V_{init} = { A | A \rightarrow λ } /* add A if RHS of prod is λ
- 3. While $V_{init} \Leftrightarrow V_N$ /* repeat loop to add A where A =>*
- 4. $V_{init} = V_N$
- 5. $V_N = V_{init} \cup \{A \mid A \rightarrow \alpha \text{ and } \alpha \text{ is in } V_{init}^* \}$
- 6. endwhile
- 7. Remove all λ productions from P
- 8. For each production in P, $A \rightarrow \alpha$,

For each $X \in \alpha$ and $X \in V_N$ add productions in which nullable symbols are replaced by λ but not all are replaced by λ

Example 1: Removing λ -Productions

 $S \rightarrow ABaC \qquad A \rightarrow BC \qquad \quad B \rightarrow b \mid \lambda \qquad C \rightarrow D \mid \lambda \qquad D \rightarrow d$

- Nullable symbols =
- New set of productions =

27

Example 2: Eliminating λ -Productions

S -> ABC, A -> aA | λ , B -> bB | λ , C -> λ

- A, B, C, and S are all nullable.
- New grammar:

B -> bB | b

Note: C is now useless. Eliminate its productions.

And lastly.....Unit-Productions

- A production of the form A → B (where A and B are variables) is called a *unit-production*
- Unit-productions add unneeded complexity to a grammar and can usually be removed by simple substitution
- - The procedure for eliminating unit-productions assumes that all λ -productions have been previously removed

29

Example: Unit Productions

■ $S \rightarrow ASB$ $A \rightarrow C$ $B \rightarrow b$ $C \rightarrow D$ $D \rightarrow a$

Theorem 2.3: Removing Unit productions

- Theorem 2.3: Every context free language without the empty string is generated by a CFG G=(V,T,P,S) with no useless productions, λ productions, or unit productions.
- Proof:
 - First remove unit productions and then apply Theorem 2.2 and 2.1
- Key idea: If A =>* B by a series of unit productions, and B -> α is a non-unit-production, then add production A -> α .
 - Then, drop all unit productions.
- Formal proof by induction on length of derivation.

31

Algorithm for Removing Unit Productions

- Draw a dependency graph with an edge from A to B corresponding to every A → B production in the grammar
- 2. Construct a new grammar that includes all the productions from the original grammar, except for the unit-productions
- 3. Whenever there is a path from A to B in the dependency graph, replace $A \rightarrow B$ with $A \rightarrow \alpha$ using the substitution rule from Lemma 2.0 (but using only the non-unit productions $B \rightarrow \alpha$ in the new grammar)

Example: Procedure for Removing Unit- Productions

 $S \rightarrow Aa \mid B \quad A \rightarrow a \mid bc \mid B \quad B \rightarrow A \mid bb$

- Find all pairs X,Y such that X =>* Y using only unit prod
- Substitute/add new productions

33

Putting it all together: Cleaning Up a Grammar

- Theorem 2.4: if L is a CFL, then there is a CFG for L $\{\lambda\}$ that has:
 - 1. No useless variables (and productions).
 - 2. No λ -productions.
 - 3. No unit productions.
- Theorem 2.4 implies: every string on RHS of prodution is either a single terminal or has length > 2.

Cleaning Up CFGs

- Proof: Start with a CFG for L.
- Perform the following steps in order:
 - 1. Leliminate λ-productions. (Theorem 2.3)
 - 2. | Eliminate unit productions. (Theorem 2.2)
 - 3. | Eliminate variables that derive no terminal string. (Lemma 2.1)
 - 4. Eliminate variables not reached from the start symbol. (Lemma 2.2)

Must be first. This step can create unit productions or useless variables.

35

35

Next: Procedure to transform any CFG to Chomsky Normal Form

- A CFG is said to be in *Chomsky Normal Form* if every production is of one of these two forms:
 - 1. $A \rightarrow BC$ (body is two variables).
 - 2. A \rightarrow a (body is a single terminal).
- Theorem: If L is a CFL, then L $\{\lambda\}$ has a CFG in CNF.
 - Note: Theorem 2.4 implies every string on RHS of prodution is either a single terminal or has length ≥ 2 .
 - This is our starting point when converting to CNF form
- Question: property of parse trees for CNF grammars?

Time to test out the algorithms: Exercise

- Given grammar G=(V,T,P,S), find an equivalent grammar G' with no unit productions, λ productions or useless variables/productions.
 - i.e, clean up the grammar

```
S \rightarrow aA \mid AC \mid aBB

A \rightarrow aaA \mid \lambda

B \rightarrow bB \mid bbC

C \rightarrow B
```

37

Normal Forms for Context Free Grammars

- Any context free grammar can be converted to an equivalent grammar in a "normal form"
- Why is this useful?
- Design a parsing algorithm that assumes a "standard form" for specifying a grammar
 - Becomes part of the program specifications

Normal Forms for Context Free Grammars

- Any context free grammar can be converted to an equivalent grammar in a "normal form"
- Chomsky Normal Form (CNF):

All productions are of the form $A \rightarrow a$ or $A \rightarrow BC$ where a is a terminal symbol and A,B,C are variables

• Greibach Normal Form (GNF):

All productions are of the form $A \rightarrow a\alpha$ where a is a terminal and α is a string of variables (possibly empty)

39

Chomsky Normal Form

- **Def**: A CFG G = (V, T, P, S) is in Chomsky Normal Form (CNF) if all productions are of the form
 - \circ $A \rightarrow BC$, or
 - $\circ A \to a,$
- where $A, B, C \in V$, and $a \in T$.
- **Benefit**: Parsing tree for $w \in G$ becomes a binary tree.

CNF

- G_1 with production rules:
 - $\circ S \to AS \mid a$
 - $\circ A \rightarrow SA \mid b$
- Is G_1 in CNF?
- G_2 with production rules:
 - $\circ \: S \to AS \mid AAS$
 - $\circ A \rightarrow SA \mid aa$
- Is G_2 in CNF?

41

CNF Construction-1

- **Theorem 6.6**: Any CFG G = (V, T, S, P) with $\lambda \notin L(G)$ has an equivalent grammar $\hat{G} = (\hat{V}, \hat{T}, S, \hat{P})$ in CNF.
- *Proof* by constructing \hat{G} for arbitrary G that has no λ or unit productions [from the simplification algorithms].
 - Note: After simplication all productions are of the form A \rightarrow a or A \rightarrow α where $\mid \alpha \mid$ >= 2
- **Step 1**: Constructing $G_1 = (V_1, T, S, P_1)$ from G by considering all productions P in the form

$$A \rightarrow x_1 x_2 \dots x_n$$

where each x_i is either in V or T.

CNF Construction-2

- $A \rightarrow x_1 x_2 \dots x_n$
- If n = 1, then x_1 must already be a terminal, since we do not have unit productions.
 - \circ In this case, let *P* be P_1 .
- Otherwise, in V_1 , we introduce new variables B_a for each $a \in T$, and $B_a \to a$ is put into P_1 .
- Then, for each A, we put into P_1 the production

$$A \rightarrow C_1 C_2 \dots C_n$$

where $C_i = x_i$ if $x_i \in V$, and $C_i = B_a$ if $x_i = a$.

43

CNF Construction-3

- Part 1 of the algorithm removes all terminals from productions whose RHS has length greater than one, replacing them with newly introduced variables.
- At the end of this step, we have a grammar G_1 with all its productions in the form of either

$$\circ A \rightarrow a$$

 $\circ \text{ or } A \to C_1C_2 \dots C_n \text{, where } C_i \in V_1.$

✓ It is easy to see that $L(G_1) = L(G)$.

CNF Construction-4

- Step 2: Constructing \widehat{G} by reducing lengths of the RHS of rules in G_1 when necessary.
- First, from P_1 , we put all productions in the form of $A \to a$ or $A \to C_1 C_2$ into \hat{P} .
- For rules with $A \to C_1 \dots C_n$, n > 2, we introduce new variables D_1, D_2, \dots and put into \hat{P} the productions
 - $A \rightarrow C_1D_1$
 - $D_1 \rightarrow C_2 D_2 \dots \dots$
 - $D_{n-1} \to C_{n-1}C_n$, where each A, D_1, \dots, D_{n-1} is in CNF.
- It is easy to see that \hat{G} is in CNF, and $L(\hat{G}) = L(G)$.

45

Summary: Conversion to CNF

- **Theorem 6.6**: Any CFG G = (V, T, S, P) with $\lambda \notin L(G)$ has an equivalent grammar $\hat{G} = (\hat{V}, \hat{T}, S, \hat{P})$ in CNF.
- Step 1: Constructing $G_1 = (V_1, T, S, P_1)$ from G by considering all productions P in the form

 $A \rightarrow x_1 x_2 \dots x_n$ where each x_i is either in V or T.

- Add variable V_a and production $V_a \rightarrow a$ for each terminal a
- If x_i is a terminal a, replace with V_a
- **Step 2:** For rules with $A \to C_1 \dots C_n$, n > 2, we introduce new variables D_1, D_2, \dots and put into \widehat{P} the productions
 - $\circ \ A \to C_1D_1$
 - $\circ\ D_1\to C_2D_2\;...\;...$
 - $\circ D_{n-1} \to C_{n-1}C_n$, where each A, D_1, \dots, D_{n-1} is in CNF.

CNF Construction-Example

• Consider *G* with production rules:

$$S \rightarrow ABa \ A \rightarrow aab \ B \rightarrow Ac$$

- First of all, no λ or unit or useless productions.
- **Step 1**: For G_1 , we add $S \to ABB_a$ $A \to B_aB_aB_b$ $B \to AB_c$ and $B_a \to a$ $B_b \to b$ $B_c \to c$ into P_1 .
- **Step 2**: For \widehat{G} , we add $S \to AD_1$ $D_1 \to BB_a$ $A \to B_aD_2$ $D_2 \to B_aB_b$ $B \to AB_c$ and $B_a \to a$ $B_b \to b$ $B_c \to c$ into \widehat{P} .

47

Example

- $P: S \rightarrow ABa \ A \rightarrow aab \ B \rightarrow Ac$
- Step 1:

Example

- $\bullet \quad P_1 \colon S \to ABB_a \quad A \to B_aB_aB_b \quad B \to AB_c \quad B_a \to a \quad B_b \to b \quad B_c \to c$
- Step 2:

49

Exercise: CNF Conversion

 $S \rightarrow PSQ \qquad P \rightarrow aPS \mid a \mid \lambda$

 $Q \rightarrow SbS \mid P \mid bb$