

bq76920, bq76930, bq76940

ZHCSCE2F - OCTOBER 2013-REVISED NOVEMBER 2015

bq769x0 3 节至 15 节串联电池监控系列 用于锂离子和磷酸盐电池应用

1 介绍

1.1 特性

- 模拟前端 (AFE) 监控特性
 - 纯数字接口
 - 内部模数转换器 (ADC) 测量电池电压、芯片温度 和外部热敏电阻
 - 一个单独的、内部 ADC 测量电池组电流(库伦电荷计数器)
 - 直接支持多达三个热敏电阻 (103AT)
- 硬件保护特性
 - 放电过流 (OCD)
 - 放电短路 (SCD)
 - 过压 (OV)
 - 欠压 (UV)

1.2 应用范围

- 轻型电动车辆 (LEV): 电动自行车 (eBike), 电动踏板车 (eScooter), 脚踏电动自行车 (Pedelec) 和踏板辅助自行车
- 电动和园艺工具

- 次级保护器故障检测
- 附加特性
 - 集成电池均衡场效应晶体管 (FET)
 - 充电、放电低侧 NCH FET 驱动器
 - 到主机微控制器的警报中断
 - 2.5V 或 3.3V 输出电压稳压器
 - 无需 EEPROM 编程
 - 高电源电压最大绝对值(高达 108V)
 - 简单 I²C™兼容接口(循环冗余校验 (CRC) 选项)
 - 随机电池连接耐受
- 后备电池和不间断电源 (UPS) 系统
- 无线基站后备系统
- 12V, 18V, 24V, 36V 和 48V 电池组

1.3 说明

bq769x0 系列的稳健耐用型模拟前端 (AFE) 器件通常用作针对下一代高功率系统(例如,轻型电动车辆、电动工具和不间断电源)的完整电池组监控和保护解决方案的一部分。bq769x0 在设计时充分考虑了低功耗要求,不仅可通过使能/禁用集成电路 (IC) 中的子模块来控制整个芯片的电流消耗,而且还可以利用 SHIP 模式将电池组轻松切换至超低功耗状态。

器件信息(1)

HH I I I I I C.					
器件型号	封装	封装尺寸 (标称值)			
bq76920	薄型小外形尺寸封装 (TSSOP) (20)	6.50mm x 4.40mm			
bq76930	TSSOP (30)	7.80mm x 4.40mm			
bq76940	TSSOP (44)	11.00mm x 4.40mm			

(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。

1.4 简化系统图

内	容
1 1	` H

1	介绍		<u>1</u>	7	Detailed Description	<u>19</u>
	1.1	特性	<u>1</u>		7.1 Overview	19
	1.2	应用范围	_		7.2 Functional Block Diagram	<u>19</u>
	1.3	说明	. <u>1</u>		7.3 Feature Description	<u>20</u>
	1.4	简化系统图	_		7.4 Device Functional Modes	
2		历史记录	_		7.5 Register Maps	
3		(继续)		8	Application and Implementation	_
4		ice Comparison Table			8.1 Application Information	_
5		Configuration and Functions			8.2 Typical Applications	_
	5.1	Versions	_	9	Power Supply Recommendations	_
	5.2	bq76920 Pin Diagram	_	10	Layout	_
	5.3	bq76930 Pin Diagram	_		10.1 Layout Guidelines	_
•	5.4	bq76940 Pin Diagram	_	44	10.2 Layout Example	
6		etrical Specifications		11	器件和文档支持	
	6.1	Absolute Maximum Ratings			11.1 文档支持 11.2 相关链接	
	6.2	ESD Ratings			11.2 相关链接 11.3 商标	
	6.3 6.4	Recommended Operating Conditions Thermal Information			11.4 静电放电警告	_
	6.5	Electrical Characteristics			11.5 Glossary	
	6.6	Timing Requirements		12	机械、封装和可订购信息	
	6.7	Typical Characteristics			小品牌 对农油品 的 短目的	<u> </u>
Cha	anges	s from Revision E (November 2014) to Revision	on F		Pa	age
Cha	• C	changed bq7693002 From: Product Preview To Funded bq7693007 device to the Device Comparis	Productionson Table	э	the Device Comparison Table	4/4
Cha	CACC	changed bq7693002 From: Product Preview To Funded bq7693007 device to the <i>Device Comparis</i> changed table note to group ground reference in changed table note to group ground reference in	Productionson Table bq76930	e 9 Pir 9 Pir	the Device Comparison Table Functions	4 7 9
Cha	CACCC	changed bq7693002 From: Product Preview To Funded bq7693007 device to the <i>Device Comparis</i> changed table note to group ground reference in changed table note to group ground reference in changed 10th cell to 11th cell in the Description of	Productions on Table bq76930 bq76940 bf pin 29	e) Pir) Pir 	the Device Comparison Table Functions	4 4 7 9 10
Cha	• C • A • C • C	changed bq7693002 From: Product Preview To Funded bq7693007 device to the <i>Device Comparis</i> changed table note to group ground reference in changed table note to group ground reference in changed 10th cell to 11th cell in the Description of changed table formats for online data sheet	Productions on Table bq76930 bq76940 of pin 29	e) Pir) Pir 	the Device Comparison Table Functions Functions	4 7 9 10 11
Cha	• C • A • C • C • C • C	changed bq7693002 From: Product Preview To Funded bq7693007 device to the <i>Device Comparis</i> changed table note to group ground reference in changed table note to group ground reference in changed 10th cell to 11th cell in the Description of changed table formats for online data sheet	Production Table bq76930 bq76940 of pin 29	e) Pir) Pir 	the Device Comparison Table Functions Functions	4 7 9 10 11 11
Cha	• C • C • C • C • C	changed bq7693002 From: Product Preview To Funded bq7693007 device to the <i>Device Comparis</i> changed table note to group ground reference in changed table note to group ground reference in changed 10th cell to 11th cell in the Description of changed table formats for online data sheet	Production Table bq76930 bq76940 f pin 29	e) Pir) Pir 	the Device Comparison Table Functions Functions	4 7 9 10 11 11 26
Cha	• C A A • C • C • C • C • E • E	Changed bq7693002 From: Product Preview To Pudded bq7693007 device to the <i>Device Comparis</i> changed table note to group ground reference in Changed table note to group ground reference in Changed 10th cell to 11th cell in the Description of Changed table formats for online data sheet	Productionson Table bq76930 bq76940 bf pin 29 subsystem SHUT_B"	e O Pir O Pir m se ' in t	the Device Comparison Table Functions Functions ection he SHIP Mode section	4 7 9 10 11 11 26 29 30
Cha	• C A A • C • C • C • C • E • E • E • E	Changed bq7693002 From: Product Preview To Funded bq7693007 device to the <i>Device Comparis</i> changed table note to group ground reference in changed table note to group ground reference in changed 10th cell to 11th cell in the Description of changed table formats for online data sheet	Productions on Table bq76930 bq76940 bf pin 29 subsystees BHUT_B"	9 7) Pir 7) Pir m se ' in t	the Device Comparison Table Functions Functions ection he SHIP Mode section	4 4 7 9 10 11 11 26 29 30 31
Cha	• C A A • C • C • C • C • E • E • E • E	Changed bq7693002 From: Product Preview To Funded bq7693007 device to the <i>Device Comparis</i> changed table note to group ground reference in changed table note to group ground reference in changed 10th cell to 11th cell in the Description of changed table formats for online data sheet	Productions on Table bq76930 bq76940 bf pin 29 subsystees BHUT_B"	9 7) Pir 7) Pir m se ' in t	the Device Comparison Table Functions Functions ection he SHIP Mode section	4 4 7 9 10 11 11 26 29 30 31
Cha	• C A A • C • C • C • C • E • E • E • E	Changed bq7693002 From: Product Preview To Funded bq7693007 device to the <i>Device Comparis</i> changed table note to group ground reference in changed table note to group ground reference in changed 10th cell to 11th cell in the Description of changed table formats for online data sheet	Productions on Table bq76930 bq76940 bf pin 29 subsystees BHUT_B"	9 7) Pir 7) Pir m se ' in t	the Device Comparison Table Functions Functions ection he SHIP Mode section	4 4 7 9 10 11 11 26 29 30 31
	• C A A • C • C • C • C • C • C • C • C	Changed bq7693002 From: Product Preview To Funded bq7693007 device to the <i>Device Comparis</i> changed table note to group ground reference in changed table note to group ground reference in changed 10th cell to 11th cell in the Description of changed table formats for online data sheet	Productions on Table bq76930 bq76940 bf pin 29 subsystees BHUT_B"	9 7) Pir 7) Pir m se ' in t	the Device Comparison Table Functions Functions ection he SHIP Mode section RL1 (0x04) table	4 4 7 9 10 11 11 26 29 30 31
	• C • A • C • C • C • C • C • C • C • C	Changed bq7693002 From: Product Preview To Funded bq7693007 device to the Device Comparist Changed table note to group ground reference in Changed table note to group ground reference in Changed 10th cell to 11th cell in the Description of Changed table formats for online data sheet	Production Froduction Table bq76930 bq76940 of pin 29 subsystem SHUT_B" the SYS_	9) Pir) Pir m se ' in t	the Device Comparison Table Functions Functions ection he SHIP Mode section RL1 (0x04) table	4 4 7 9 10 11 11 26 29 30 31 35
	• C • C • C • C • C • C • C • C • C • C	Changed bq7693002 From: Product Preview To Funded bq7693007 device to the Device Comparist Changed table note to group ground reference in Changed table note to group ground reference in Changed 10th cell to 11th cell in the Description of Changed table formats for online data sheet	Production Froduction Table bq76930 bq76940 of pin 29 subsystem SHUT_B" the SYS_	e) Pir) Pir) Pir m se ' in t	the Device Comparison Table Functions Functions ection he SHIP Mode section RL1 (0x04) table	4 4 7 9 10 11 11 26 29 30 31 35 11 11 11
	• C • A • C • C • C • C • C • C • C • C	Changed bq7693002 From: Product Preview To Funded bq7693007 device to the Device Comparise changed table note to group ground reference in changed table note to group ground reference in changed 10th cell to 11th cell in the Description of changed table formats for online data sheet	Production Froduction Table bq76930 bq76940 bf pin 29 bf pin 20 bf pin 29 bf pin 20 bf	e) Piri) Pir m se ' in t	the Device Comparison Table	4 4 7 7 9 10 11 11 26 29 30 31 35 11 11 11 16
	• C • C • C • C • C • C • C • C • C • C	changed bq7693002 From: Product Preview To Findded bq7693007 device to the Device Comparist changed table note to group ground reference in changed table note to group ground reference in changed 10th cell to 11th cell in the Description of changed table formats for online data sheet	Production Froduction Table bq76930 bq76940 bf pin 29 bf pin 20 bf pin 29 bf pin 20 bf	e) Piriripi Pirir	the Device Comparison Table	4 4 7 9 10 11 11 26 29 30 31 35 11 11 16 16
	• C • C • C • C • C • C • C • C • C • C	Changed bq7693002 From: Product Preview To Findded bq7693007 device to the Device Comparise changed table note to group ground reference in changed table note to group ground reference in changed 10th cell to 11th cell in the Description of changed table formats for online data sheet	Production Froduction Table bq76930 bq76940 bf pin 29 bf pin 20 bf	9) Pir) Pir m se in t	the Device Comparison Table	4 4 7 9 10 11 11 26 29 30 31 35 11 11 16 16 16 18
	• C • C • C • C • C • C • C • C • C • C	Changed bq7693002 From: Product Preview To Findded bq7693007 device to the Device Comparise changed table note to group ground reference in changed table note to group ground reference in changed 10th cell to 11th cell in the Description of changed table formats for online data sheet	Production Froduction Table bq76930 bq76940 bf pin 29 bf pin 20 bf	e Pir Pir Pir Pir Pir Pir Pir Pir Pir Pir	the Device Comparison Table	4 4 7 9 10 11 11 26 29 30 31 35 11 16 16 16 18 28
	• C A C • C C • C C • C C • C C • C C • C C • C C • C C • C C • C C • C C • C C • C C • C C C • C	changed bq7693002 From: Product Preview To Finded bq7693007 device to the Device Comparise changed table note to group ground reference in changed table note to group ground reference in changed 10th cell to 11th cell in the Description of changed table formats for online data sheet	Production Froduction Table bq76930 bq76940 of pin 29 subsystem SHUT_B" the SYS_	9 9 Pir 10 Pir 11 Pir 12 Pir 13 Pir 14 Pir 14 Pir 16 Pir 16 Pir 16 Pir 16 Pir 16 Pir 16 Pir 16 Pir 17 Pir 17 Pir 18 Pir	the Device Comparison Table	4 4 4 7 9 10 11 11 126 29 30 31 35 11 16 16 16 18 28 29 32
	• C A C C • C C • C C • C C • C C • C C • C C • C C • C C • C C • C C • C C • C C • C C C • C	changed bq7693002 From: Product Preview To Finded bq7693007 device to the Device Comparise changed table note to group ground reference in changed table note to group ground reference in changed 10th cell to 11th cell in the Description of changed table formats for online data sheet	Production Froduction Table bq76930 bq76940 of pin 29 subsystem SHUT_B" the SYS_	ender Map.	the Device Comparison Table	4 4 4 7 9 10 11 11 126 29 30 31 35 11 16 16 18 28 29 32 32 32
	• C A C C • C C • C C • C C • C C • C C • C C • C C • C C • C C • C C • C C • C C • C C • C C C • C C C • C C C C • C	Changed bq7693002 From: Product Preview To Finded bq7693007 device to the Device Comparise changed table note to group ground reference in changed table note to group ground reference in changed 10th cell to 11th cell in the Description of changed table formats for online data sheet	Productions on Table bq76930 bq76940 of pin 29 subsystem SHUT_B" subsystem SHUT_B" subsystem SHUT_B" subsystem SHUT_B" subsystem subsyst	P Pir Pir Pir Pir Pir Pir Pir Pir Pir Pir	the Device Comparison Table	4 4 7 9 10 11 11 26 29 30 31 35 11 11 16 16 16 18 28 29 32 32 37

•	L添加 Design Requirements	45
•	已添加 the Detailed Design Procedure	46
•	已更改 the Layout Guidelines	50
•	已更改 the Layout Example	
•	已添加 a Caution	_
•	已更改 the Good Layout figure	
•	已更改 the Weak Layout figure	
	山文以 the Weak Layout ligure	<u>52</u>
Change	es from Revision C (May 2014) to Revision D	age
•	已更改 table reference in <i>Integrated Hardware Protections</i>	25
	已更改 paragraph 4 verbiage of <i>Integrated Hardware Protections</i>	
Change	es from Revision B (April 2014) to Revision C	age
•	已更改 文档格式	. 1
	Changed some devices from Product Preview to Production Data	
	已更改 a bit name in the PROTECT1 register	
	已更改 a bit name in the ADCGAIN2 register	
	L史以 a bit fiame in the ADCGAINZ register	41
Change	es from Revision A (December 2013) to Revision B	age
•	Changed Ordering Information table to	1
	Changed some devices to Product Preview	
	Changed R _f max value in the <i>Recommended Operating Conditions</i> table	
•	已更改 verbiage in <i>mmunications Subsystem</i>	
	已更改 SYS_STAT D6 bit name in the <i>Register Map</i>	
•	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	<u>32</u>
Change	es from Original (October 2013) to Revision A	age
•	已更改 数据手册的标题	1
	Changed some devices from Product Preview to Production Data	
-		
•	已更改 the t _{INDCELL} test condition in <i>Electrical Characteristics</i>	
•	已删除 duplicate CELLBAL3 table	
•	已更改 bq76940 with bq783xx Companion Controller IC Schematic	45

3 说明(继续)

bq76920 器件支持多达 5 节串联电池或者典型值为 18V 的电池组; bq76930 可处理多达 10 节串联电池或者典型值为 36V 的电池组; 而 bq76940 支持多达 15 节串联电池或者典型值为 48V 的电池组。这些 AFE 可用于管理各种电池化学成分,例如锂离子、磷酸铁锂,等等。

通过 I^2C ,主机控制器可以使用 bq769x0 来执行很多电池组管理功能,诸如监视(电池电压、电池组电流、电池组温度),保护(控制充电/放电 FET),以及均衡功能。集成模数 (A/D) 转换器可实现对关键系统参数的纯数字读取,这些参数的校准在 TI 制造过程中处理。

4 Device Comparison Table

TUBE	TAPE & REEL	CELLS	I ² C ADDRESS (7-Bit)	LDO (V)	CRC	PACKAGE	
bq7692000PW	bq7692000PWR			2.5	No		
bq7692001PW ⁽¹⁾	bq7692001PWR ⁽¹⁾		000	2.5	Yes		
bq7692002PW ⁽¹⁾	bq7692002PWR ⁽¹⁾	3–5	3–5 0x08		No	20-TSSOP (PW)	
bq7692003PW	bq7692003PWR			3.3	Yes		
bq7692006PW	bq7692006PWR		0x18		No		
bq7693000DBT	bq7693000DBTR	0.40		2.5	No		
bq7693001DBT	bq7693001DBTR		6–10	000	2.5	Yes	
bq7693002DBT	bq7693002DBTR			0x08		No	20 TOCOD (DDT)
bq7693003DBT	bq7693003DBTR	6-10		2.2	Yes	30-TSSOP (DBT)	
bq7693006DBT	bq7693006DBTR		0.40	3.3	No		
bq7693007DBT	bq7693007DBTR		0x18		Yes		
bq7694000DBT	bq7694000DBTR			2.5	No		
bq7694001DBT	bq7694001DBTR	1	000	2.5	Yes		
bq7694002DBT	bq7694002DBTR	9–15	80x0		No	44-TSSOP (DBT)	
bq7694003DBT	bq7694003DBTR			3.3	Yes		
bq7694006DBT	bq7694006DBTR		0x18		No		

(1) Product Preview only

Texas Instruments pre-configures the bq769x0 devices for a specific l²C address, LDO voltage, and more. These settings are permanently stored in EEPROM and cannot be further modified.

Contact Texas Instruments for other options not listed above, as well as any options noted as "Product Preview only."

5 Pin Configuration and Functions

5.1 Versions

Figure 5-1. Pin Versions

bq76920: 3-5 Series Cells (20-TSSOP)

6.5 mm x 4.4 mm x 1.2 mm

bq76930: 6-10 Series Cells (30-TSSOP)

7.8 mm x 4.4 mm x 1.2 mm

bq76940: 9-15 Series Cells (44-TSSOP)

• 11.3 mm x 4.4 mm x 1.2 mm

5.2 bq76920 Pin Diagram

5.2.1 bq76920 Pin Map

bq76920 Pin Functions

PIN	NAME	TYPE	DESCRIPTION
1	DSG	0	Discharge FET driver
2	CHG	0	Charge FET driver
3	VSS	_	Chip VSS
4	SDA	I/O	I ² C communication to the host controller
5	SCL	1	I ² C communication to the host controller
6	TS1	1	Thermistor #1 positive terminal ⁽¹⁾
7	CAP1	0	Capacitor to VSS
8	REGOUT	Р	Output LDO
9	REGSRC	1	Input source for output LDO
10	BAT	Р	Battery (top-most) terminal
11	NC	_	No connect
12	VC5	1	Sense voltage for 5th cell positive terminal
13	VC4	1	Sense voltage for 4th cell positive terminal
14	VC3	1	Sense voltage for 3rd cell positive terminal
15	VC2	1	Sense voltage for 2nd cell positive terminal
16	VC1	1	Sense voltage for 1st cell positive terminal
17	VC0	I	Sense voltage for 1st cell negative terminal
18	SRP	I	Negative current sense (nearest VSS)
19	SRN	I	Positive current sense
20	ALERT	I/O	Alert output and override input

⁽¹⁾ If not used, pull down to VSS with a 10-k Ω nominal resistor.

5.3 bq76930 Pin Diagram

5.3.1 bq76930 Pin Map

bq76930 Pin Functions

PIN	NAME	TYPE	DESCRIPTION
1	DSG	0	Discharge FET driver
2	CHG	0	Charge FET driver
3	VSS	_	Chip VSS
4	SDA	I/O	I ² C communication to the host controller
5	SCL	I	I ² C communication to the host controller
6	TS1	I	Thermistor #1 positive terminal ⁽¹⁾
7	CAP1	0	Capacitor to VSS
8	REGOUT	Р	Output LDO
9	REGSRC	1	Input source for output LDO
10	VC5X	Р	Thermistor #2 negative terminal
11	NC	_	No connect (short to CAP2)
12	NC	_	No connect (short to CAP2)
13	TS2	I	Thermistor #2 positive terminal ⁽¹⁾
14	CAP2	0	Capacitor to VC5X
15	BAT	Р	Battery (top-most) terminal
16	VC10	I	Sense voltage for 10th cell positive terminal
17	VC9	I	Sense voltage for 9th cell positive terminal
18	VC8	1	Sense voltage for 8th cell positive terminal
19	VC7	1	Sense voltage for 7th cell positive terminal
20	VC6	I	Sense voltage for 6th cell positive terminal
21	VC5B	ı	Sense voltage for 6th cell negative terminal
22	VC5	ı	Sense voltage for 5th cell positive terminal
23	VC4	ı	Sense voltage for 4th cell positive terminal

If not used, pull down to group ground reference (VSS for TS1 and VC5X for TS2) with a 10-kΩ nominal resistor.

bq76930 Pin Functions (continued)

PIN	NAME	TYPE	DESCRIPTION	
24	VC3	I	Sense voltage for 3rd cell positive terminal	
25	VC2	1	Sense voltage for 2nd cell positive terminal	
26	VC1	1	Sense voltage for 1st cell positive terminal	
27	VC0	1	Sense voltage for 1st cell negative terminal	
28	SRP	1	Negative current sense (nearest VSS)	
29	SRN	Ī	Positive current sense	
30	ALERT	I/O	Alert output and override input	

5.4 bq76940 Pin Diagram

5.4.1 bq76940 Pin Map

bq76940 Pin Functions

PIN	NAME	TYPE	DESCRIPTION
1	DSG	0	Discharge FET driver
2	CHG	0	Charge FET driver
3	VSS	_	Chip VSS
4	SDA	I/O	I ² C communication to the host controller
5	SCL	I	I ² C communication to the host controller
6	TS1	I	Thermistor #1 positive terminal ⁽¹⁾
7	CAP1	0	Capacitor to VSS
8	REGOUT	Р	Output LDO
9	REGSRC	I	Input source for output LDO
10	VC5X	Р	Thermistor #2 negative terminal
11	NC	_	No connect (short to CAP2)
12	NC	_	No connect (short to CAP2)
13	TS2	I	Thermistor #2 positive terminal ⁽¹⁾
14	CAP2	0	Capacitor to VC5X
15	VC10X	Р	Thermistor #3 negative terminal

If not used, pull down to group ground reference (VSS for TS1, VC5X for TS2, and VC10X for TS3) with a 10-kΩ nominal resistor.

bq76940 Pin Functions (continued)

PIN	NAME	TYPE	DESCRIPTION
16	NC	_	No connect (short to CAP3)
17	NC	_	No connect (short to CAP3)
18	TS3	I	Thermistor #3 positive terminal ⁽¹⁾
19	CAP3	0	Capacitor to VC10X
20	BAT	Р	Battery (top-most) terminal
21	NC	_	No connect
22	NC	_	No connect
23	NC	_	No connect
24	VC15	I	Sense voltage for 15th cell positive terminal
25	VC14	I	Sense voltage for 14th cell positive terminal
26	VC13	I	Sense voltage for 13th cell positive terminal
27	VC12	I	Sense voltage for 12th cell positive terminal
28	VC11	I	Sense voltage for 11th cell positive terminal
29	VC10B	I	Sense voltage for 11th cell negative terminal
30	VC10	I	Sense voltage for 10th cell positive terminal
31	VC9	I	Sense voltage for 9th cell positive terminal
32	VC8	I	Sense voltage for 8th cell positive terminal
33	VC7	I	Sense voltage for 7th cell positive terminal
34	VC6	I	Sense voltage for 6th cell positive terminal
35	VC5B	I	Sense voltage for 6th cell negative terminal
36	VC5	I	Sense voltage for 5th cell positive terminal
37	VC4	I	Sense voltage for 4th cell positive terminal
38	VC3	I	Sense voltage for 3rd cell positive terminal
39	VC2	I	Sense voltage for 2nd cell positive terminal
40	VC1	I	Sense voltage for 1st cell positive terminal
41	VC0	I	Sense voltage for 1st cell negative terminal
42	SRP	I	Negative current sense (nearest VSS)
43	SRN	I	Positive current sense
44	ALERT	I/O	Alert output and override input

6 Electrical Specifications

6.1 Absolute Maximum Ratings

Over-operating free-air temperature range (unless otherwise noted)

	-			MIN	MAX	UNIT	
		(BAT-VSS)	bq76920				
V_{BAT}	Supply voltage range	(BAT-VC5x), (VC5x-VSS)	bq76930	-0.3	36	V	
	range	(BAT-VC10x), (VC10x-VC5x), (VC5x-VSS)	bq76940				
		(VCn-VSS) where n = 15	bq76920				
		(VCn–VSS) where $n = 15$, (VCn-VC5x) where $n = 610$	bq76930	−0.3 (n × 7.2		V	
		(VCn-VSS) where n = 15, $(VCn-VC5x)$ where n = 610, $(VCn-VC10x)$ where n = 1115	bq76940		9		
		Cell input pins, differential (VCn–VCn–1) where n = 1 (bq76940/bq76930/bq76920, respectively)	15/10/5	-0.3		V	
V_{I}	Input voltage range	SRN, SRP, SCL, SDA					
	range	(VC0-VSS), (CAP1-VSS), (TS1-VSS) ⁽¹⁾	bq76920				
		(VC0-VSS), (VC5b-VC5x), (CAP2-VC5x), (CAP1-VSS), (TS2-VC5x), (TS1-VSS) ⁽¹⁾	bq76930	-0.3	3.6	V	
		(VC0-VSS), (VC5b-VC5x), (VC10b-VC10x), (CAP3-VC10x), (CAP2-VC5x), (CAP1-VSS), (TS3-VC10x), (TS2-VC5x), (TS1-VSS) ⁽¹⁾	bq76940			V	
		REGSRC		-0.3	36		
		REGOUT, ALERT		-0.3	3.6		
Vo	Output voltage range	DSG		-0.3	20	V	
	range	CHG		-0.3 \	/ _{CHGCLAMP}		
			bq76920	70		mA	
I _{CB}	Cell balancing current (per cell)		bq76930, bq76940	5		mA	
I _{DSG}	Discharge pin inp	out current when disabled (measured into terminal) 7				mA	
_	Storage temperat	ure range		-65	150	°C	
T _{STG}	Lead temperature	(soldering, 10 s)			300	<u>.</u>	

⁽¹⁾ The Absolute Maximum Ratings for (TS1–VSS) apply after the device completes POR and should be observed after t_{BOOTREADY} (10 ms), following the application of the boot signal on TS1. Prior to completion of POR, TS1 should not exceed 5 V.

6.2 ESD Ratings

			VALUE	UNIT
.,	Electrostatic	Human body model (HBM) ESD stress voltage ⁽¹⁾	±2	kV
V(ESD)	discharge	Charged device model (CDM) ESD stress voltage (2)	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

Over-operating free-air temperature range (unless otherwise noted). See † 8.1.1 for more information on cell configurations. All voltages are relative to VSS, except "Cell input differential."

				MIN	TYP	MAX	UNIT
	(BAT-VSS)	bq76920					
V_{BAT}	Supply voltage	(BAT-VC5x), (VC5x-VSS)	bq76930	6		25	V
VBAI	range	(BAT-VC10x), (VC10x-VC5x), (VC5x-VSS)	bq76940			23	V

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions (continued)

Over-operating free-air temperature range (unless otherwise noted). See † 8.1.1 for more information on cell configurations. All voltages are relative to VSS, except "Cell input differential."

	<u> </u>	50, oxoopt Con input amoronia		MIN	TYP	MAX	UNIT
		Cell input pins, differential (VCn–Vi 115/10/5 (bq76940/bq76930/bq76 in-use cells only		2		5	V
		(VCn-VSS) where n = 15	bq76920				
		(VCn–VSS) where n = 15, (VCn–VC5x) where n = 610	bq76930	0		5 × n	V
		(VCn–VSS) where n = 15, (VCn–VC5x) where n = 610, (VCn–VC10x) where n = 1115	bq76940	Ü		0	·
		SRP					
\/	Innut voltage range	(VC0-VSS)	bq76920				
V _{IN}	Input voltage range	(VC0-VSS), (VC5b-VC5x)	bq76930	-10		10	mV
		(VC0-VSS), (VC5b-VC5x), (VC10b-VC10x)	bq76940				
		SRN		-200		200	mV
		SCL, SDA					
		(TS1-VSS)	bq76920	0			
		(TS1-VSS), (TS2-VC5x)	bq76930			3.6	V
		(TS1-VSS), (TS2-VC5x), (TS3-VC10x)	bq76940				
		REGSRC		6 25		25	
		CHG, DSG		0		16	V
		REGOUT, ALERT					
V _{OUT}	Output voltage	(CAP1-VSS)	bq76920	0			
¥001	range	(CAP1-VSS), (CAP2-VC5x)	bq76930			3.6	V
		(CAP1-VSS), (CAP2-VC5x), (CAP3-VC10x)	bq76940				
	Cell balancing	bq76920		0		50	mA
I _{CB}	current (internal, per cell)	bq76930, bq7694	0	0		5	mA
	External cell input	bq76920		40	100	1K	Ω
R _C	resistance	bq76930, bq76940		500	1K	1K	Ω
C _C	External cell input cap	pacitance		0.1	1	10	μF
R _f	External supply filter i	External supply filter resistance		40	100	1K	Ω
C _f	External supply filter capacitance		1	10	40	μF	
R _{FILT}	Sense resistor filter resistance		100	1K		Ω	
R _{ALERT}	ALERT pin to VSS resistor			1M		Ω	
C _L	REGOUT loading capacitance		1	4.7		μF	
C _{CAP}	REGSRC, CAP1, CA	P2, and CAP3 output capacitance		1			μF
R _{TS}		ominal resistance (103AT) at 25°C		10K			Ω
T _{OPR}	Operating free-air ten	nperature		-40		85	°C

6.4 Thermal Information

Over-operating free-air temperature range (unless otherwise noted)

			TSSOP				
THERMAL METRIC ⁽¹⁾		bq76920xy 20 PINS (PW)	bq76930xy 30 PINS (DBT)	bq76940xy 44 PINS (DBT)	UNIT		
R _{0JA, High K}	Junction-to-ambient thermal resistance (2)	93.7	86.5	70.1			
$R_{\theta JC(top)}$	Junction-to-case(top) thermal resistance (3)	28.7	19.4	17.5			
$R_{\theta JB}$	Junction-to-board thermal resistance (4)	44.6	41.3	33.9	°C/W		
Ψ_{JT}	Junction-to-top characterization parameter ⁽⁵⁾	1.3	0.5	0.5	*C/VV		
ΨЈВ	Junction-to-board characterization parameter ⁽⁶⁾	44.1	40.6	33.4			
R ₀ JC(bottom)	Junction-to-case(bottom) thermal resistance ⁽⁷⁾	n/a	n/a	n/a			

- (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953).
- (2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
- (3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
- (4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
- (5) The junction-to-top characterization parameter, ψ_{JT}, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining R_{θJA}, using a procedure described in JESD51-2a (sections 6 and 7).
- (6) The junction-to-board characterization parameter, ψ_{JB}, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining R_{θJA}, using a procedure described in JESD51-2a (sections 6 and 7).
- (7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

6.5 Electrical Characteristics

PARAMETER	DESCRIPTION	TEST CONDITION	MIN	TYP	MAX	UNIT
SUPPLY CURRI	ENTS				•	
	NORMAL mode: ADC off, CC off			40	60	
	NORMAL mode: ADC on, CC off	Sum of ICC_BAT and ICC_REGSRC		60	90	
IDD	NORMAL mode: ADC off, CC on	currents		110	165	
	NORMAL mode: ADC on, CC on			130	195	μΑ
	NORMAL mode: ADC off	Late DAT air		30	45	
ICC_BAT	NORMAL mode: ADC on	Into BAT pin		50	75	
	NORMAL mode: CC off	Lata DECCEDO alla		10	15	
ICC_REGSRC	NORMAL mode: CC on	Into REGSRC pin		80	120	
I _{SHIP}	SHIP/SHUTDOWN mode	Device in full shutdown, only VSTUP/BG and BOOT detector on		0.6	1.8	

PARAMETER	DESCRIPTION	different voltage or temperature range TEST CONDITION	MIN	TYP	MAX	UNIT
	OFFSET CURRENTS	1231 CONDITION	IAIIIA	111	IVIAA	OIALL
LEAKAGE AND						
dI _{NOM}	NORMAL mode supply current offset	Measured into VC5x (bq76930,	- 5	±2.5	5	
dl _{SHIP}	SHIP mode supply current offset	bq76940) and VC10x (bq76940)	-1.0	±0.1	1.0	
dl _{ALERT}	Supply current when ALERT active	Measured into VC5x (bq76930, bq76940) or added to BAT (bq76920)		15	25	μΑ
dl _{CELL}	Cell measurement input	Measured into VC0–VC15 except VC5, VC10, VC15	-0.3	±0.1	0.3	
0222	current	Measured into VC5, VC10, VC15			0.5	
I _{LKG}	Terminal input leakage				1	
	VER CONTROL (STARTUP	and SHUTDOWN)				
V _{PORA}	Analog POR threshold	See Note ⁽¹⁾	4		5	V
V _{SHUT}	Shutdown voltage	See Note ⁽¹⁾			3.6	V
t _{I2CSTARTUP}	Time delay after boot signal on TS1 before I ² C communications allowed	Delay after boot sequence when I ² C communication is allowed		1		ms
t _{BOOTREADY}	Device boot startup delay	Delay after boot signal when device has completed full boot-up sequence			10	ms
T _{SHUTD}	Thermal shutdown voltage			100	150	°C
MEASUREMEN	T SCHEDULE					
t _{VCELL}	Cell voltage measurement interval	bq76920, bq76930, bq76940		250		
	Individual cell	Per cell, balancing off		50		
t _{INDCELL}	measurement time	Per cell, balancing on		12.5		
t _{CB_RELAX}	Cell balancing relaxation time before cell voltage measured	. 3		12.5		ms
t _{TEMP_DEC}	Temperature measurement decimation time	Measurement duration for temperature reading		12.5		
t _{BAT}	Pack voltage calculation interval			250		
t _{TEMP}	Temperature measurement interval	Period of measurement of either TS1/TS2/TS3 or internal die temp		2		s
14-BIT ADC FO	R CELL VOLTAGE AND TE	MPERATURE MEASUREMENT				
	ADC measurement	V _{CELL} measurements	2		5	V
ADC _{RANGE}	recommend operation range	TS/Temp measurements	0.3		3	V
ADC _{LSB}	ADC LSB value			382		μV
ADC _{25A}		V _{CELL} = 3.6 – 4.3 V	-40	±10	40	
ADC _{25B}	ADC cell voltage	V _{CELL} = 3.2 – 4.6 V	-40	±15	40	
ADC _{25C}	accuracy	V _{CELL} = 2.0 – 5.0 V	-50	±25	50	
ADC ₆₀	ADC cell voltage accuracy temperature drift adder from 25°C	$T_A = 0^{\circ}C \text{ to } 60^{\circ}C$	-10		10	mV
ADC _{TS}	ADC thermistor measurement accuracy	Input from 0.3 to 3.0 V, BAT > 7 V	-35		35	

⁽¹⁾ Measured at BAT pin, rising.

PARAMETER	DESCRIPTION	TEST CONDITION	MIN	TYP	MAX	UNIT
16-BIT CC FOR	PACK CURRENT MEASUR	EMENT				
CC _{RANGE}	CC input voltage range		-200		200	mV
CC _{FSR}	CC full scale range		-270		270	mV
CC _{LSB}	CC LSB value	CC running constantly		8.44		μV
tCC _{READ}	Conversion time	Single conversion		250		ms
CC _{INL}	Integral nonlinearity	16-bit, best fit over input voltage range ± 200 mV		± 2	± 40	LSB
CC _{OFFSET}	Offset error			± 1	± 3	LSB
CC _{GAIN}	Gain error	Over input voltage range		± 0.5%	± 1.5%	FSR
CC _{GAINDRIFT}	Gain error drift	Over input voltage range			150	PPM / °C
CC _{RIN}	Effective input resistance			2.5		ΜΩ
THERMISTOR E	BIAS					
R _{TS}	Pull-up resistance	T _A = 25°C	9.85	10	10.15	kΩ
R _{TSDRIFT}	Pull-up resistance across temp	T _A = -40°C to 85°C	9.7		10.3	kΩ
DIETEMP						
V _{DIETEMP25}	Die temperature voltage	T _A = 25°C		1.20		V
V _{DIETEMPDRIFT}	Die temperature voltage drift			-4.2		mV/°C
INTEGRATED H	ARDWARE PROTECTIONS	•				
OV _{RANGE}	OV threshold range		0x2008		0x2FF8	ADC
UV _{RANGE}	UV threshold range		0x1000		0x1FF0	ADC
OV _{UVSTEP}	OV and UV threshold step size			16		LSB
UV _{MINQUAL}	UV minimum value to qualify	Below UV _{MINQUAL} , cell is shorted (unused)		0x0518		ADC
		OV delay = 1 s	0.7	1	1.75	
01/	OV dolov timor options	OV delay = 2 s	1.6	2	2.75	
OV _{DELAY}	OV delay timer options	OV delay = 4 s	3.5	4	5	
		OV delay = 8 s	7	8	10	_
		UV delay = 1 s	0.7	1	1.75	S
111/	LIV dalay timer entions	UV delay = 4 s	3.5	4	5	
UV _{DELAY}	UV delay timer options	UV delay = 8 s	7	8	10	
		UV delay = 16 s	14	16	20	
OCD _{RANGE}	OCD threshold options	Measured across (SRP-SRN) ⁽²⁾	8		100	mV
	OCD threshold step size	RSNS = 0		2.78		mV
OCD _{STEP}	OCD threshold step size	RSNS = 1		5.56		mV
OCD _{DELAY}	OCD delay options	See Note (3)	8		1280	ms
SCD _{RANGE}	SCD threshold options	Measured across (SRP-SRN) ⁽²⁾	22		200	mV
	CCD throubald stee size	RSNS = 0		11.1		mV
SCD _{STEP}	SCD threshold step size	RSNS = 1		22.2		mV
			35	70	105	μs
SCD.	CCD delay anti-		50	100	150	μs
SCD _{DELAY}	SCD delay options		140	200	260	μs
			280	400	520	μs

²⁾ Values indicate nominal thresholds only. For Min and Max variation, apply OCOFFSET and OCSCALERR.

⁽³⁾ Values indicate nominal thresholds only. For Min and Max variation, apply t_{PROTACC}.

PARAMETER	DESCRIPTION	TEST CONDITION	MIN	TYP	MAX	UNIT
t _{PROTACC}	Delay accuracy for OCD		-20%		20%	
OC _{OFFSET}	OCD and SCD voltage offset		-2.5		2.5	mV
OC _{SCALEERR}	OCD and SCD scale accuracy		-10%		10%	
CHARGE AND D	DISCHARGE DRIVERS					
	0.10	REGSRC \geq 12 V with load resistance of 10 M Ω	10	12	14	V
V _{FETON}	CHG and DSG on	REGSRC < 12 V with load resistance of 10 $M\Omega$	REGSRC -2	REGSRC -1	REGSRC	V
t _{FET_ON}	CHG and DSG ON rise time	CHG/DSG driving an equivalent load capacitance of 10 nF, measured from 10% to 90% of V _{FETON}		200	250	μs
t _{DSG_OFF}	DSG pull-down OFF fall time	DSG driving an equivalent load capacitance of 10 nF, measured from 90% to 10%		60	90	μs
R _{CHG_OFF}	CHG pull-down OFF resistance to VSS	When CHG disabled, CHG held at 12 V	750	1000	1250	kΩ
R _{DSG_OFF}	DSG pull-down OFF resistance to VSS	When DSG disabled, DSG held at 12 V	1.75	2.50	4.25	kΩ
V _{LOAD_DETECT}	Load detection threshold		0.4	0.7	1.0	V
V _{CHG_CLAMP}	CHG clamp voltage	If the CHG pin externally pulled high (through PACK-, if load applied), 500 µA max sink current into CHG pin. With CHG_ON bit cleared.	18	20	22	V
ALERT PIN						
V _{ALERT_OH}	ALERT output voltage high	I _{OL} = 1 mA	REGOUT x 0.75			V
V _{ALERT_OL}	ALERT output voltage low	Unloaded			REGOUT x 0.25	V
V _{ALERT_IH}	ALERT input high	ALERT externally forced high when internally driven low. See note ⁽⁴⁾ .	1		1.5	V
R _{ALERT_PD}	ALERT pin weak pulldown resistance when driven low	Measured into ALERT pin with ALERT = REGOUT	0.8	2.5	8	МΩ
CELL BALANCI	NG DRIVER				· ·	
R _{DSFET}	Internal cell balancing driver resistance	V _{CELL} = 3.6 V	1	5	10	Ω
X _{BAL}	Cell balancing duty cycle when enabled	Every 250 ms		70%		
EXTERNAL REC	GULATOR					
V _{EXTLDO}	External LDO voltage options	Nominal values, TI factory programmed, unloaded, across temp	2.45 3.20	2.50 3.30	2.55 3.40	V
V _{EXTLDO_LN}	Line regulation	REGSRC pin stepped from 6 to 25 V, with 10 mA load, in 100 µs			100	mV
V _{EXTLDO_LD}	Load regulation	I _{REGOUT} = 0 mA to 10 mA	-4%		4%	
LATEDO_ED		REGOUT = 10 mA DC, 2.5-V version	2.4		.,,	V
	External LDO minimum	REGOUT = 20 mA DC, 2.5-V version	2.3			V
V _{EXTLDO_DC}	voltage under DC load	REGOUT = 10 mA DC, 3.3-V version	3.15			V
	•	,				

⁽⁴⁾ MIN specifies the threshold below which the device will never register that an external alert has occurred. MAX specifies the minimum threshold above which the device will always register that an external alert has occurred.

Typical conditions are measured at 25°C with nominal BAT voltages of 18 V (bq76920), 36 V (bq76930), or 48 V (bq76940) with $V_{CELL} = 4$ V. Min and max values include full recommended operating condition temperature range from -40°C to +85°C. Certain characteristics may be shown at different voltage or temperature ranges, as clarified in the Test Condition sections.

PARAMETER	DESCRIPTION	TEST CONDITION	MIN	TYP MAX	UNIT		
I _{EXTLDO_LIMIT}	External LDO current limit	REGOUT = 0 V	30	38 45	mA		
BOOT DETECTO	BOOT DETECTOR						
V _{BOOT}	Boot threshold voltage	Measured at TS1 pin with device in SHIP mode. Below MIN, device will not boot up. Above MAX, device will be guaranteed to boot up.	300	1000	mV		
t _{BOOT_max}	Boot threshold application time	Measured at TS1 pin. Below MIN, device will not boot up. Above MAX, device will be guaranteed to boot up.	10	2000	μs		

6.6 Timing Requirements

I ² C COMP	ATIBLE INTERFACE	MIN	TYP MAX	UNIT
V _{IL}	Input Low Logic Threshold		REGOUT x 0.25	V
V _{IH}	Input High Logic Threshold	REGOUT x 0.75		V
V _{OL}	Output Low Logic Drive		0.20	V
t _f	SCL, SDA Fall Time		0.40	
V _{OH}	Output High Logic Drive (Not applicable due to open-drain outputs)	N/A	N/A	V
t _{HIGH}	SCL Pulse Width High	4.0		μs
t_{LOW}	SCL Pulse Width Low	4.7		μs
t _{SU;STA}	Setup time for START condition	4.7		μs
t _{HD;STA}	START condition hold time after which first clock pulse is generated	4.0		μs
t _{SU;DAT}	Data setup time	250		ns
t _{HD;DAT}	Data hold time	0		μs
t _{SU;STO}	Setup time for STOP condition	4.0		μs
t _{BUF}	Time the bus must be free before new transmission can start	4.7		μs
t _{VD;DAT}	Clock Low to Data Out Valid		900	ns
t _{HD;DAT}	Data Out Hold Time After Clock Low	0		ns
f _{SCL}	Clock Frequency	0	100	kHz

图 6-1. I²C Timing

6.7 Typical Characteristics

7 Detailed Description

7.1 Overview

In the bq769x0 family of analog front-end (AFE) devices, the bq76920 device supports up to 5-series cells, the bq76930 device supports up to 10-series cells, and the bq76940 device supports up to 15-series cells. Via I²C, a host controller can use the bq769x0 to implement battery pack management functions, such as monitoring (cell voltages, pack current, pack temperatures), protection (controlling charge/discharge FETs), and balancing. Integrated A/D converters enable a purely digital readout of critical system parameters including cell voltages and internal or external temperature, with calibration handled in TI's manufacturing process. For an additional degree of pack reliability, the bq769x0 includes hardware protections for voltage (OV, UV) and current (OCD, SCD).

The bq769x0 provides two low-side FET drivers, charge (CHG) and discharge (DSG), which may be used to directly manipulate low-side power NCH FETs, or as signals that control an external circuit that enables high-side PCH or NCH FETs. A dedicated ALERT input/output pin serves as an interrupt signal to the host microcontroller, quickly informing the microcontroller of an updated status in the AFE. This may include a fault event or that a coulomb counter sample is available for reading. An available ALERT pin may also be driven externally by a secondary protector to provide a redundant means of disabling the CHG and DSG signals and higher system visibility.

7.2 Functional Block Diagram

图 7-1. Functional Block Diagram

7.3 Feature Description

7.3.1 Subsystems

bq769x0 consists of three major subsystems: Measurement, Protection, and Control. These work together to ensure that the fundamental battery pack parameters—voltage, current and temperature—are accurately captured and easily available to a host controller, while ensuring a baseline or secondary level of hardware protection in the event that a host controller is unable or unavailable to manage certain fault conditions.

注

The bq769x0 is intended to serve as an analog front-end (AFE) as part of a chipset system solution: A companion microcontroller is required to oversee and control this AFE.

- The Measurement subsystem's core responsibility is to digitize the cell voltages, pack current (integrated into a passed charge calculation), external thermistor temperature, and internal die temperature. It also performs an automatic calculation of the total battery stack voltage, by simply adding up all measured cell voltages.
- The Protection subsystem provides a baseline or secondary level of hardware protections to better support a battery pack's FMEA requirements in the event of a loss of host control or simply if a host is unable to respond to a certain fault event in time. Integrated protections include pack-level faults such as OV, UV, OCD, SCD, detection of an external secondary protector fault, and internal logic "watchdog"-style device fault (XREADY). Protection events will trigger toggling of the ALERT pin, as well as automatic disabling of the DSG and/or CHG FET driver (depending on the fault). Recovery from a fault event must be handled by the host microcontroller.
- The Control subsystem implements a suite of useful pack features, including direct low-side NCH FET drivers, cell balancing drivers, the ALERT digital output, an external LDO and more.

The following sections describe each subsystem in greater detail, as well as explaining the various power states that are available.

7.3.1.1 Measurement Subsystem Overview

The monitoring subsystem ensures that all cell voltages, temperatures, and pack current may be easily measured by the host. All ADCs are trimmed by TI.

ADC and CC data are always returned as atomic values if both high and low registers are read in the same transaction (using address auto-increment).

7.3.1.1.1 Data Transfer to the Host Controller

The bq769x0 has a fully digital interface: All information is transferred through I²C, simply by reading and/or writing to the appropriate register(s) storing the relevant data. Block reads and writes, buffered by an 8-bit CRC code per byte, ensure a fast and robust transmission of data.

7.3.1.1.2 14-Bit ADC

Each bq769x0 device measures cell voltages and temperatures using a 14-bit ADC. This ADC measures all differential cell voltages, thermistors and/or die temperature with a nominal full-scale unsigned range of 0-6.275 V and LSB of 382 μ V.

To enable the ADC, the [ADC_EN] bit in the SYS_CTRL1 register must be set. This bit is set automatically whenever the device enters NORMAL mode. When enabled, the ADC ensures that the integrated OV and UV protections are functional.

For each contiguous set of five cells (VC1 to VC5, VC6 to VC10), when no cells in that particular set are being balanced, each cell is measured over a 50-ms decimation window and a complete update is available every 250 ms. In the bq76930 and bq76940, every set of five cells above the primary five cells is measured in parallel. The 50-ms decimation greatly assists with removing the aliasing effects present in a noisy motor environment.

When any cells in a contiguous set of 5 cells are being balanced, those affected cells are measured in a reduced 12.5-ms decimation period, to allow the cell balancing to function properly without affecting the integrated OV and UV protections. Since cell balancing is typically only performed during pack charge or idle periods, the shortened decimation periods should not impact accuracy as the system noise during these times is greatly reduced. This reduced decimation period is only applied to sets where one of the cells is being balanced. The following summarizes this for the bq76920–bq76940 devices:

- VC1 to VC5 measurements are each taken in a 50-ms decimation period when all bits in CELLBAL1 register are 0, and a 12.5-ms decimation period when any bits in CELLBAL1 register are 1.
- VC6 to VC10 measurements are each taken in a 50-ms decimation period when all bits in CELLBAL2 register are 0, and a 12.5-ms decimation period when any bits in CELLBAL2 register are 1.
- VC11 to VC15 measurements are each taken in a 50-ms decimation period when all bits in CELLBAL3
 register are 0, and a 12.5-ms decimation period when any bits in CELLBAL3 register are 1.
- Total update interval is 250 ms.

Each differential cell input is factory-trimmed for gain and/or offset, such that the resulting reading via I²C is always consistent from part-to-part and requires no additional calibration or correction factor application.

The ADC is required to be enabled in order for the integrated OV and UV protections to be operating.

The following shows how to convert the 14-bit ADC reading into an analog voltage. Each device is factory calibrated, with a GAIN and OFFSET stored into EEPROM.

The ADC transfer function is a linear equation defined as follows:

(1)

GAIN is stored in units of μ V/LSB, while OFFSET is stored in mV units.

Some example cell voltage calculations are provided in the table below. For illustration purposes, the example uses a hypothetical GAIN of 380 μ V/LSB (ADCGAIN<4:0> = 0x0F) and OFFSET of 30 mV (ADCOFFSET<7:0> = 0x1E).

14-Bit ADC Result	ADC Result in Decimal	GAIN (μV/LSB)	OFFSET (mV)	Cell Voltage (mV)
0x1800	6144	380	30	2365
0x1F10	7952	380	30	3052

注

When entering NORMAL mode from SHIP mode, please allow for the following times before reading out initial cell voltage data:

bq76920: 250 ms bq76930: 400 ms bq76940: 800 ms

7.3.1.1.2.1 Optional Real-time Calibration Using the Host Microcontroller

The performance of the cell voltage values measured by the 14-bit ADC has a factory-calibrated accuracy, as follows:

- +/- 10 mV TYP, +/- 40 mV MIN and MAX from 3.6 to 4.3 V,
- +/- 15 mV TYP, +/- 40 mV MIN and MAX from 3.2 to 4.6 V, and
- +/- 50 mV MIN and MAX from 2.0 to 5.0 V

While this is suitable for the majority of pack protection and basic monitoring applications the bq769x0 AFE family is intended to support, certain systems may require a higher accuracy performance.

To achieve this, use an available ADC channel and general purpose output terminal on the host microcontroller paired with the bq769x0. A simple external circuit consisting of two precision resistors and a small-signal FET is activated by the host microcontroller to determine the total stack voltage, V_{STACK}. This is then compared against the sum of the individual cell voltages as measured by the internal ADC of the bq769x0. The resulting transfer function coefficient, GAIN₂, is simply applied to each cell voltage ADC value for improved accuracy.

图 7-2. External Real-Time Calibration Circuit to Host Microcontroller

The process is as follows:

- 1. Periodically measure V_{STACK}.
 - (a) $V_{STACK} = V_{AD} \times (R1 + R2) / R1$
- 2. Read out all V_{CFII} ADC readings from the bq769x0 and apply the standard GAIN and OFFSET values stored in the bq769x0.
 - (a) $V(1) = GAIN \times ADC_1 + OFFSET$, $V(2) = GAIN \times ADC_2 + OFFSET$, and so on
- 3. Sum up all V_{CELL} values, V_{SUM}.
 - (a) $V_{SUM} = V(1) + V(2) + V(3) \dots$
- 4. Calculate GAIN₂.
 - (a) $GAIN_2 = V_{STACK} / V_{SUM}$

As a general recommendation, a new GAIN₂ function should be generated when the cell voltages increase or decrease by more than 100 mV. With GAIN₂, each cell voltage calculation becomes:

$$V(cell) = GAIN_2 \times (GAIN \times ADC(cell) + OFFSET)$$

(2)

For systems that do not require this additional in-use calibration function, GAIN2 is simply "1".

7.3.1.1.3 16-Bit CC

A 16-bit integrating ADC, commonly referred to as the coulomb counter (CC), provides measurements of accumulated charge across the current sense resistor. The integration period for this reading is 250 ms.

The CC may be operated in one of two modes: ALWAYS ON and 1-SHOT.

- In ALWAYS ON mode, the CC runs at 100%, gathering a fresh reading every 250 ms. The conclusion
 of each reading sets the CC_READY bit, which toggles the ALERT pin high to inform the
 microcontroller that a new reading is available. To enable Always On mode, set [CC_EN] = 1.
- In 1-SHOT mode, the CC performs a single 250-ms reading, and similarly sets the CC_READY bit when completed. This mode is intended for non-gauging usages, where the host simply desires to check the pack current.

To enable a 1-SHOT reading, ensure [CC_EN] = 0 and set [CC_ONESHOT] = 1.

The full scale range of the CC is \pm 270 mV, with a max recommended input range of \pm 200 mV, thus yielding an LSB of approximately 8.44 μ V.

The following equation shows how to convert the 16-bit CC reading into an analog voltage if no board-level calibration is performed:

CC Reading (in
$$\mu$$
V) = [16-bit 2's Complement Value] × (8.44 μ V/LSB)

(3)

16-Bit CC Result	ADC Result in Decimal	CC Reading (in μV)
0x0001	1	8.44
0x2710	10000	84,400
0x7D00	32000	270,080
0x8300	-32000	-270,080
0xC350	-15536	-131,123.84
0xFFFF	-1	-8.44

7.3.1.1.4 External Thermistor

One (bq76920), two (bq76930), or three (bq76940) 10 k Ω NTC 103AT thermistors may be measured by the device. These are measured by applying a factory-trimmed internal 10k pull-up resistance to an internal regulator value of nominally 3.3 V, the result of which can be read out from the TSx (TS1, TS2, TS3) registers.

To select thermistor measurement mode, set [TEMP SEL] = 1.

Thermistor TS1 is connected between TS1 and VSS; TS2 is connected between TS2 and VC5x (bq76930 and bq76940 only); and TS3 is connected between TS3 and VC10x (bq76940 only). These thermistors may be placed in various areas in the battery pack to measure such things as localized cell temperature, FET heating, etc.

The thermistor impedance may be calculated using the 14-bit ADC reading in the TS1/TS2/TS3 registers and 10k internal pull-up resistance as follows:

The following equations show how to use the 14-bit ADC readings in TS1, TS2, and TS3 to determine the resistance of the external 103AT thermistor:

$$V_{TSX} = (ADC \text{ in Decimal}) \times 382 \,\mu\text{V/LSB} \tag{4}$$

$$R_{TS} = (10,000 \times VTSX) \div (3.3 - VTSX)$$
 (5)

To convert the thermistor resistance into temperature, please refer to the thermistor component manufacturer's datasheet.

7.3.1.1.5 Die Temperature Monitor

注

When switching between external and internal temperature monitoring, a 2-s latency may be incurred due to the natural scheduler update interval.

A die temperature block generates a voltage that is proportional to the die temperature, and provides a way of reducing component count if pack thermistors are not used or ensuring that the die power dissipation requirements are observed. The die is measured using the same on-board 14-bit ADC as the cell voltages.

To select internal die temperature measurement mode, set [TEMP SEL] = 0.

For bq76930 and bq76940, multiple die temperature measurements are available. These are stored in TS2 and TS3.

To convert a DIETEMP reading into temperature, refer to the following equation box. If more accurate temperature readings are needed from DIETEMP, the DIETEMP at room temperature value should be stored during production calibration.

The following equation shows how to use the 14-bit ADC readings in TS1, TS2, and TS3 when [TEMPSEL] = 0 to determine the internal die temperature:

$$V_{25} = 1.200 \text{ V (nominal)}$$
 (6)

$$V_{TSX} = (ADC \text{ in Decimal}) \times 382 \,\mu\text{V/LSB}$$
 (7)

$$TEMP_{DIE} = 25^{\circ} - ((V_{TSX} - V_{25}) \div 0.0042)$$
 (8)

7.3.1.1.6 16-Bit Pack Voltage

Once converted to digital form, each cell voltage is added up and the summation result stored in the BAT registers. This 16-bit value has a nominal LSB of 1.532 mV.

The following shows how to convert the 16-bit pack voltage ADC reading into an analog voltage. This value also uses the GAIN and OFFSET stored into EEPROM.

The ADC transfer function is a linear equation defined as follows:

$$V_{(BAT)} = 4 \times GAIN \times ADC(cell) + (\#Cells \times OFFSET)$$
 (9)

GAIN is stored in units of µV/LSB, while OFFSET is stored in mV units.

7.3.1.1.7 System Scheduler

A master scheduler oversees the monitoring intervals, creating a full update every 250 ms. Temperature measurements are taken every 2 seconds. Pack voltage is calculated every 250 ms.

7.3.1.2 Protection Subsystem

7.3.1.2.1 Integrated Hardware Protections

Integrated hardware protections are provided as an extra degree of safety and are meant to supplement the standard protection feature set that would be incorporated into the host controller firmware. They should not be used as the sole means of protecting a battery pack, but are useful for FMEA purposes; for example, in the event that a host microcontroller is unable to react to any of the below protection situations. All hardware protection thresholds and delays should be loaded into the AFE by the host microcontroller during system startup. The AFE will also default to pre-defined threshold and delay settings, in case the host microcontroller is unable to or does not wish to program the protection settings.

24

Overcurrent in Discharge (OCD) and Short Circuit in Discharge (SCD) are implemented using sampled analog comparators that run at 32 kHz, and that continuously monitor the voltage across (SRP-SRN) while the device is in NORMAL mode. Upon detection of a voltage that exceeds the programmed OCD or SCD threshold, a counter begins to count up to a programmed delay setting. If the counter reaches its target value, the SYS_STAT register is updated to indicate the fault condition, the FET state(s) are updated as shown in

表 7-1, and the ALERT pin is driven high to interrupt the host.

The protection fault threshold and delay settings for OCD and SCD protections are configured via the PROTECT1 and PROTECT2 registers. See 节 7.5 for details about supported values.

Overvoltage (OV) and Undervoltage (UV) protections are handled digitally, by comparing the cell voltage readings against the 8-bit programmed thresholds in the OV and UV registers.

The OV threshold is stored in the OV_TRIP register and is a direct mapping of 8 bits of the 14-bit ADC reading, with the upper 2 MSB preset to "10" and lower 4 LSB preset to "1000". In other words, the corresponding OV trip level is mapped to "10-XXXX-XXXX-1000". The programmable range of OV thresholds is approximately 3.15 to 4.7 V, but this is subject to variation due to the (GAIN, OFFSET) linear equation used to map the ADC values.

The UV threshold is stored in the UV_TRIP register and is a direct mapping of 8 bits of the 14-bit ADC reading, with the upper 2 MSB preset to "01" and lower 4 LSB preset to "0000". In other words, the corresponding OV trip level is mapped to "01-XXXX-XXXX-0000". The programmable range of UV thresholds is approximately 1.58 to 3.1 V, but this is subject to variation due to the (GAIN, OFFSET) linear equation used to map the ADC values.

Protection	Upper 2 MSB	Middle 8 Bits	Lower 4 LSB
OV	10	Set in OV_TRIP Register	1000
UV	01	Set in UV_TRIP Register	0000

注

To support flexible cell configurations within bq76920, bq76930, and bq76940, UV is ignored on any cells that have a reading under $UV_{MINQUAL}$. This allows cell pins to be shorted in implementations where not all cells are needed (for example, 6-series cells using the bq76930).

Default protection thresholds and delays are shown in the register description at the end of this datasheet. These are loaded into the digital register (RAM) of the device when the device enters NORMAL mode. These RAM values may then be overwritten by the host controller to any other values, which they will retain until a POR event. It is recommended that the host controller reload these values during its standard power-up and/or re-initialization sequence.

To calculate the correct OV_TRIP and UV_TRIP register values for a device, use the following procedure:

- 1. Determine desired OV.
- 2. Read out [ADCGAIN] and [ADCOFFSET] from their corresponding registers. Note that ADCGAIN is stored in units of μ V/LSB, while ADCOFFSET is stored in mV.
- 3. Calculate the full 14-bit ADC value needed to meet the desired OV and UV trip thresholds as follows:
 - (a) OV_TRIP_FULL = (OV ADCOFFSET) ÷ ADCGAIN
 - (b) UV_TRIP_FULL = (UV ADCOFFSET) ÷ ADCGAIN
- 4. Remove the upper 2 MSB and lower 4 LSB from the full 14-bit value, retaining only the remaining middle 8 bits. This can be done by shifting the OV_TRIP_FULL and UV_TRIP_FULL binary values 4 bits to the right and removing the upper 2 MSB.
- 5. Write OV TRIP and UV TRIP to their corresponding registers.

Both OV and UV protections require the ADC to be enabled. Ensure that the [ADC_EN] bit is set to 1 if OV and UV protections are needed.

7.3.1.2.2 Reduced Test Time

A special debug and test configuration bit is provided in the SYS_CTRL2 register, called [DELAY_DIS]. Setting [DELAY_DIS] bypasses the OV/UV protection fault timers and allows a fault condition to be registered within 200 ms after application of such a fault condition.

7.3.1.3 Control Subsystem

7.3.1.3.1 FET Driving (CHG AND DSG)

Each bq769x0 device provides two low-side FET drivers, CHG and DSG, which control NCH power FETs or may be used as a signal to enable various other circuits such as a high-side NCH charge pump circuit.

Both DSG and CHG drivers have a fast pull-up to nominally 12 V when enabled. DSG uses a fast pull-down to VSS when disabled, while CHG utilizes a high impedance (nominally 1 $M\Omega$) pull-down path when disabled.

An additional internal clamp circuit ensures that the CHG pin does not exceed a maximum of 20 V.

图 7-3. CHG and DSG FET Circuit

The power path for the CHG and DSG pull-up circuit originates from the REGSRC pin, instead of BAT.

To enable the CHG fet, set the [CHG_ON] register bit to 1; to disable, set [CHG_ON] = 0. The discharge FET may be similarly controlled via the [DSG_ON] register bit.

Certain fault conditions or power state transitions will clear the state of the CHG/DSG FET controls. 表 7-1 shows what action, if any, to take to [CHG_ON] and [DSG_ON] in response to various system events:

表 7-1. CHG, DSG Response Under Various System Events

EVENT	[CHG_ON]	[DSG_ON]
OV Fault	Set to 0	_
UV Fault		Set to 0
OCD Fault		Set to 0
SCD Fault		Set to 0

表 7-1. CHG, DSG Response Under Various System Events (continued)

EVENT	[CHG_ON]	[DSG_ON]
ALERT Override	Set to 0	Set to 0
DEVICE_XREADY is set	Set to 0	Set to 0
Enter SHIP mode from NORMAL	Set to 0	Set to 0

注

All protection recovery must be initiated by the host microcontroller. In order to resume FET operation after a fault condition has occurred, the host microcontroller must first clear the corresponding status bit in the SYS_STAT register, which will clear the ALERT pin, and then manually re-enable the CHG and/or DSG bit. Certain faults, such as OV or UV, may immediately re-toggle if such a condition still persists. Refer to 表 7-3 for details on clearing status bits.

There are no conditions under which the bq769x0 automatically sets either [CHG_ON] or [DSG_ON] to 1.

7.3.1.3.2 Load Detection

A load detection circuit is present on the CHG pin and activated whenever the CHG FET is disabled ([CHG_ON] = 0). This circuit detects if the CHG pin is externally pulled high when the high impedance (approximately 1 M Ω) pull-down path should actually be holding the CHG pin to VSS, and is useful for determining if the PACK- pin (outside of the AFE) is being held at a high voltage—for example, if the load is present while the power FETs are off. The state of the load detection circuit is read from the [LOAD_PRESENT] bit of the SYS_CTRL1 register.

After an OCD or SCD fault has occurred, the DSG FET will be disabled ([DSG_ON] cleared), and the CHG FET must similarly be explicitly disabled to activate the load detection circuit. The host microcontroller may periodically poll the [LOAD_PRESENT] bit to determine the state of the PACK- pin and determine when the load is removed ([LOAD_PRESENT] = 0).

7.3.1.3.3 Cell Balancing

Both internal and external passive cell balancing options are fully supported by the bq76920, while external cell balancing is recommended for bq76930 and bq76940. It is left to the host controller to determine the exact balancing algorithm to be used in any given system. Each bq769x0 device provides the cell voltages and balancing drivers to enable this. If using the internal cell balance drivers, up to 50 mA may be balanced per cell. If using external cell balancing, much higher balancing currents may be employed.

To activate a particular cell balancing channel, simply set the corresponding bit for that cell in the CELLBAL1, CELLBAL2, or CELLBAL3 register. For example, VC1–VC0 is enabled by setting [CB1], while VC12–VC11 is set via [CB12].

Multiple cells may be simultaneously balanced. It is left to the user's discretion to determine the ideal number of cells to concurrently balance. Adjacent cells should not be balanced simultaneously. This may cause cell pins to exceed their absolute maximum conditions and is also not recommended for external balancing implementations. Additionally, if internal balancing is used, care should be taken to avoid exceeding package power dissipation ratings.

注

The host controller must ensure that no two adjacent cells are balanced simultaneously within each set of the following:

- VC1-VC5
- VC6-VC10
- VC11–VC15

Detailed Description

The total duty cycle devoted to balancing is approximately 70% per 250 ms. This is because a portion of the 250 ms is allotted for normal cell voltage measurements via the ADC.

If [ADC_EN] =1, OV and UV protections are not affected by cell balancing, since the cell balancing is temporarily suspended for a small slice of time every 250 ms during which the cell voltage readings are taken. This ensures that the OV and UV protections do not accidentally trigger, or miss an actual OV/UV condition on the cells while balancing is enabled.

注

All cell balancing control bits in CELLBAL1, CELLBAL2, and CELLBAL3 are automatically cleared under the following events, and must be explicitly re-written by the host microcontroller following clearing of the event:

- · DEVICE XREADY is set
- · Enters NORMAL mode from SHIP mode

7.3.1.3.4 Alert

The ALERT pin serves as an active high digital interrupt signal that can be connected to a GPIO port of the host microcontroller. This signal is an OR of all bits in the SYS_STAT register.

In order to clear the ALERT signal, the source bit in the SYS_STAT register must first be cleared by writing a "1" to that bit. This will cause an automatic clear of the ALERT pin once all bits are cleared.

The ALERT pin may also be driven by an external source; for example, the pack may include a secondary overvoltage protector IC. When the ALERT pin is forced high externally while low, the device will recognize this as an OVRD_ALERT fault and set the [OVRD_ALERT] bit. This triggers automatic disabling of both CHG and DSG FET drivers. The device cannot recognize the ALERT signal input high when it is already forcing the ALERT signal high from another condition.

The ALERT pin has no internal debounce support so care should be taken to protect the pin from noise or other parasitic transients.

注

It is highly recommended to place an external 500 k Ω –1 M Ω pull-down resistor from ALERT to VSS as close to the IC as possible. Additional recommendations are:

- a) To keep all traces between the IC and components connected to the ALERT pin very short.
- b) To include a guard ring around the components connected to the ALERT pin and the pin itself.

7.3.1.3.5 Output LDO

An adjustable output voltage regulator LDO is provided as a simple way to provide power to additional components in the battery pack, such as the host microcontroller or LEDs. The LDO is configured in EEPROM by TI during the production test process, and can support 2.5-V or 3.3-V options.

A cascode small-signal FET must be added in the external path between BAT and REGSRC with the bq76930 and bq76940. This helps drop most of the power dissipation outside of the package and cuts down on package power dissipation.

7.3.1.4 Communications Subsystem

The AFE implements a standard 100-kHz I^2C interface and acts as a slave device. The I^2C device address is 7-bits and is factory programmed. Consult the Device Comparison Table (Section 4) of this datasheet for more information.

A write transaction is shown in **2** 7-4. Block writes are allowed by sending additional data bytes before the Stop. The I²C block will auto-increment the register address after each data byte.

When enabled, the CRC is calculated as follows:

- In a single-byte write transaction, the CRC is calculated over the slave address, register address, and data.
- In a block write transaction, the CRC for the first data byte is calculated over the slave address, register address, and data. The CRC for subsequent data bytes is calculated over the data byte only.

The CRC polynomial is x8 + x2 + x + 1, and the initial value is 0.

When the slave detects a bad CRC, the I²C slave will NACK the CRC, which causes the I²C slave to go to an idle state.

图 7-5. I²C Read with Repeated Start

₹ 7-6 shows a read transaction where a Repeated Start is not used, for example if not available in hardware. For a block read, the master ACK's each data byte except the last and continues to clock the interface. The I²C block will auto-increment the register address after each data byte.

When enabled, the CRC for a read transaction is calculated as follows:

- In a single-byte read transaction, the CRC is calculated after the second start and uses the slave address and data byte.
- In a block read transaction, the CRC for the first data byte is calculated after the second start and uses
 the slave address and data byte. The CRC for subsequent data bytes is calculated over the data byte
 only.

The CRC polynomial is x8 + x2 + x + 1, and the initial value is 0.

When the master detects a bad CRC, the I²C master will NACK the CRC, which causes the I²C slave to go to an idle state.

图 7-6. I²C Read Without Repeated Start

7.4 Device Functional Modes

Each bq769x0 device supports the following modes of operation.

表 7-2. Supported Power Modes

Mode	Description
NORMAL	Fully operational state. Both ADC and CC may be on, or disabled by host microcontroller. OV and UV protection enabled if ADC is on. OCD and SCD enabled. ADC and CC may be disabled to reduce power consumption, and CC may be operated in a "1-SHOT" mode for flexible power savings.
SHIP	Lowest possible power state, intended for pack assembly and/or long term pack storage. Must see a BOOT signal (> 1 VBOOT) on TS1 pin to boot from SHIP → NORMAL. Note that the device always enters SHIP mode upon POR.

7.4.1 NORMAL Mode

NORMAL mode represents the fully operational mode where all blocks are enabled and the device sees its highest current consumption. In this mode, certain blocks/functions may be disabled to save power—these include the ADC and CC. OV and UV are running continuously as long as the ADC is enabled. The OCD and SCD comparators may not be disabled in this mode.

Transitioning from NORMAL to SHIP mode is also initiated by the host, and requires consecutive writes to two bits in the SYS_CTRL1 register.

7.4.2 SHIP Mode

SHIP mode is the basic and lowest power mode that bq769x0 supports. SHIP mode is automatically entered during initial pack assembly and after every POR event. When the device is in NORMAL mode, it may enter SHIP by the host controller via a specific sequence of I²C commands.

In SHIP mode, only a minimum of blocks are turned on, including the VSTUP power supply and primal boot detector. Waking from SHIP mode to NORMAL mode requires pulling the TS1 pin greater than VBOOT, which triggers the device boot-up sequence.

To enter SHIP mode from NORMAL mode, the [SHUT_A] and [SHUT_B] bits in the SYS_CTRL1 register must be written with specific patterns across two consecutive writes:

- Write #1: [SHUT_A] = 0, [SHUT_B] = 1
- Write #2: [SHUT_A] = 1, [SHUT_B] = 0

Note that [SHUT_A] and [SHUT_B] should each be in a 0 state prior to executing the shutdown command above. If this specific sequence is entered into the device, the device transitions into SHIP mode. If any other sequence is written to the [SHUT_A] and [SHUT_B] bits or if either of the two patterns is not correctly entered, the device will not enter SHIP mode.

RUMENTS

CAUTION

DO NOT OPERATE THE DEVICE BELOW POR. When designing with the bq76940, the intermediate voltages (BAT-VC10x), (VC10x-VC5x), and (VC5x-VSS) must each never fall below V_{SHUT}. When this occurs, a full device reset must be initiated by powering down all three intermediate voltages (BAT-VC10x), (VC10x-VC5x), and (VC5x-VSS) below V_{SHUT} and rebooting by applying the appropriate VBOOT signal to the TS1 pin. When designing with the bq76930, the intermediate voltages (BAT-VC5x) and (VC5x-VSS) must each never fall below V_{SHUT}. If this occurs, a full device reset must be initiated by powering down both intermediate voltages (BAT-VC5x) and (VC5x-VSS) below V_{SHUT} and rebooting by applying the appropriate VBOOT signal to the

The device will also enter SHIP mode during a POR event; however, this is not a recommended method of SHIP mode entry. If any of the supply-side voltages below fall below V_{SHUT} and then back up above VPORA, the device defaults into the SHIP mode state. This is similar to an initial pack assembly condition. In order to exit SHIP mode into NORMAL mode, the device must follow the standard boot sequence by applying a voltage greater than the VBOOT threshold on the TS1 pin.

Register Maps 7.5

Name	Addr	D7	D6	D5	D4	D3	D2	D1	D0
SYS_STAT	0x00	CC_READY	RSVD	DEVICE_ XREADY	OVRD_ ALERT	UV	OV	SCD	OCD
CELLBAL1	0x01	RSVD	RSVD	RSVD			CB<5:1>		
CELLBAL2 ⁽¹⁾	0x02	RSVD	RSVD	RSVD			CB<10:6>		
CELLBAL3 ⁽²⁾	0x03	RSVD	RSVD	RSVD			CB<15:11>		
SYS_CTRL1	0x04	LOAD_ PRESENT	RSVD	RSVD	ADC_EN TEMP_SEL RSVD SHUT_A SH				
SYS_CTRL2	0x05	DELAY_DIS	CC_EN	CC_ ONESHOT		RSVD		DSG_ON	CHG_ON
PROTECT1	0x06	RSNS	RSVD	RSVD	SCD_	DELAY		SCD_THRESH	
PROTECT2	0x07	RSVD		OCD_DELAY			OCD_1	THRESH	
PROTECT3	80x0	UV_D	ELAY	OV_D	ELAY		RS	OVD	
OV_TRIP	0x09				OV_TI	HRESH			
UV_TRIP	0x0A				UV_TI	HRESH			
CC_CFG	0x0B	RSVD	RSVD			Must be progra	ammed to 0x19		
VC1_HI	0x0C	RSVD	RSVD			<13	3:8>		
VC1_LO	0x0D				<7	' :0>			
VC2_HI	0x0E	RSVD	RSVD			<13	3:8>		
VC2_LO	0x0F				<7	' :0>			
VC3_HI	0x10	RSVD	RSVD			<13	3:8>		
VC3 LO	0x11				<7	' :0>			
VC4_HI	0x12	RSVD	RSVD				3:8>		
VC4 LO	0x13				<7	':0>			
VC5_HI	0x14	RSVD	RSVD				3:8>		
VC5_LO	0x15	NOVE	NOVE		-7	':0>	,.0>		
VC6_HI ⁽¹⁾	0x15 0x16	RSVD	RSVD		<1		3:8>		
VC6_HI(*)		KSVD	KOVD		.7		0.0>		
VC6_LO(7) VC7_HI ⁽¹⁾	0x17	DC)/D	DC//D		<1	':0>	2.0.		
VC7_HI ⁽¹⁾ VC7_LO ⁽¹⁾	0x18	RSVD	RSVD				3:8>		
	0x19	D0//D	D0)/D		</td <td>':0></td> <td></td> <td></td> <td></td>	' :0>			
VC8_HI ⁽¹⁾	0x1A	RSVD	RSVD				3:8>		
VC8_LO ⁽¹⁾	0x1B	50/5	201/2		</td <td>':0></td> <td></td> <td></td> <td></td>	' :0>			
VC9_HI ⁽¹⁾	0x1C	RSVD	RSVD				3:8>		
VC9_LO ⁽¹⁾	0x1D				</td <td>':0></td> <td></td> <td></td> <td></td>	':0>			
VC10_HI ⁽¹⁾	0x1E	RSVD	RSVD				3:8>		
VC10_LO ⁽¹⁾	0x1F				<7	':0>			
VC11_HI ⁽²⁾	0x20	RSVD	RSVD				3:8>		
VC11_LO ⁽²⁾	0x21				<7	' :0>			
VC12_HI ⁽²⁾	0x22	RSVD	RSVD				3:8>		
VC12_LO ⁽²⁾	0x23				<7	' :0>			
VC13_HI ⁽²⁾	0x24	RSVD	RSVD			<13	3:8>		
VC13_LO ⁽²⁾	0x25				<7	' :0>			
VC14_HI ⁽²⁾	0x26	RSVD	RSVD			<13	3:8>		
VC14_LO ⁽²⁾	0x27				<7	' :0>			
VC15_HI ⁽²⁾	0x28	RSVD	RSVD	<13:8>					
VC15_LO ⁽²⁾	0x29				<7	' :0>			
BAT_HI	0x2A			<15:8>					
BAT_LO	0x2B			<7:0>					
TS1_HI	0x2C	RSVD	RSVD			<13	3:8>		
TS1_LO	0x2D			•	<7	' :0>			
TS2_HI ⁽¹⁾	0x2E	RSVD	RSVD			<13	3:8>		
TS2_LO ⁽¹⁾	0x2F			L	<7	' :0>			

These registers are only valid for bq76930 and bq76940. These registers are only valid for bq76940.

⁽²⁾

Name	Addr	D7	D6	D5	D4	D3	D2	D1	D0	
TS3_HI ⁽²⁾	0x30	RSVD	RSVD	<13:8>						
TS3_LO ⁽²⁾	0x31		<7:0>							
CC_HI	0x32		<15:8>							
CC_LO	0x33				<7	:0>				
ADCGAIN1	0x50		RS	VD		ADCGA	AIN<4:3>	RS	VD	
ADCOFFSET	0x51		ADCOFFSET<7:0>							
ADCGAIN2	0x59		ADCGAIN<2:0>				RSVD			

7.5.1 Register Details

表 7-3. SYS STAT (0x00)

BIT	7	6	5	4	3	2	1	0
NAME	CC_READY	RSVD	DEVICE_ XREADY	OVRD_ ALERT	UV	OV	SCD	OCD
RESET	0	0	0	0	0	0	0	0
ACCESS	RW	RW	RW	RW	RW	RW	RW	RW

注

Bits in SYS_STAT may be cleared by writing a "1" to the corresponding bit.

Writing a "0" does not change the state of the corresponding bit.

CC_READY (Bit 7): Indicates that a fresh coulomb counter reading is available. Note that if this bit is not cleared between two adjacent CC readings becoming available, the bit remains latched to 1. This bit may only be cleared (and not set) by the host.

- 0 = Fresh CC reading not yet available or bit is cleared by host microcontroller.
- 1 = Fresh CC reading is available. Remains latched high until cleared by host.

RSVD (Bit 6): Reserved. Do not use.

DEVICE_XREADY (Bit 5): Internal chip fault indicator. When this bit is set to 1, it should be cleared by the host. May be set due to excessive system transients. This bit may only be cleared (and not set) by the host.

- 0 = Device is OK.
- 1 = Internal chip fault detected, recommend that host microcontroller clear this bit after waiting a few seconds. Remains latched high until cleared by the host.

OVRD_ALERT (Bit 4): External pull-up on the ALERT pin indicator. Only active when ALERT pin is not already being driven high by the AFE itself.

- 0 = No external override detected
- 1 = External override detected. Remains latched high until cleared by the host.

UV (Bit 3): Undervoltage fault event indicator.

- 0 = No UV fault is detected.
- 1 = UV fault is detected. Remains latched high until cleared by the host.

OV (Bit 2): Overvoltage fault event indicator.

- 0 = No OV fault is detected.
- 1 = OV fault is detected. Remains latched high until cleared by the host.

Detailed Description

SCD (Bit 1): Short circuit in discharge fault event indicator.

0 = No SCD fault is detected.

1 = SCD fault is detected. Remains latched high until cleared by the host.

OCD (Bit 0): Over current in discharge fault event indicator.

0 = No OCD fault is detected.

1 = OCD fault is detected. Remains latched high until cleared by the host.

表 7-4. CELLBAL1 (0x01) for bq76920, bq76930, and bq76940

BIT	7	6	5	4	3	2	1	0
NAME	_	_	_	CB5	CB4	CB3	CB2	CB1
RESET	0	0	0	0	0	0	0	0
ACCESS	R	R	R	RW	RW	RW	RW	RW

CBx (Bits 4-0):

0 = Cell balancing on Cell "x" is disabled.

1 = Cell balancing on Cell "x" is enabled.

表 7-5. CELLBAL2 (0x02) for bq76930 and bq76940

BIT	7	6	5	4	3	2	1	0
NAME	_	_	_	CB10	CB9	CB8	CB7	CB6
RESET	0	0	0	0	0	0	0	0
ACCESS	R	R	R	RW	RW	RW	RW	RW

CBx (Bits 4-0):

0 = Cell balancing on Cell "x" is disabled.

1 = Cell balancing on Cell "x" is enabled.

表 7-6. CELLBAL3 (0x03) for bq76940

BIT	7	6	5	4	3	2	1	0
NAME	_	_	_	CB15	CB14	CB13	CB12	CB11
RESET	0	0	0	0	0	0	0	0
ACCESS	R	R	R	RW	RW	RW	RW	RW

CBx (Bits 4-0):

0 = Cell balancing on Cell "x" is disabled.

1 = Cell balancing on Cell "x" is enabled.

表 7-7. SYS_CTRL1 (0x04)

BIT	7	6	5	4	3	2	1	0
NAME	LOAD_ PRESENT	ĺ	ĺ	ADC_EN	TEMP_SEL	RSVD	SHUT_A	SHUT_B
RESET	0	0	0	0	0	0	0	0
ACCESS	R	R	R	RW	RW	RW	RW	RW

LOAD_PRESENT (Bit 7): Valid only when [CHG_ON] = 0. Is high if CHG pin is detected to exceed VLOAD_DETECT while CHG_ON = 0, which suggests that external load is present. Note this bit is read-only and automatically clears when load is removed.

- 0 = CHG pin < VLOAD_DETECT or [CHG_ON] = 1.
- 1 = CHG pin >VLOAD_DETECT, while [CHG_ON] = 0.

ADC EN (Bit 4): ADC enable command

- 0 = Disable voltage and temperature ADC readings (also disables OV protection)
- 1 = Enable voltage and temperature ADC readings (also enables OV protection)

TEMP_SEL (Bit 3): TSx_HI and TSx_LO temperature source

- 0 = Store internal die temperature voltage reading in TSx_HI and TSx_LO
- 1 = Store thermistor reading in TSx_HI and TSx_LO (all thermistor ports)

RSVD (Bit 2): Reserved, do not set to 1.

SHUT_A, SHUT_B (Bits 1–0): Shutdown command from host microcontroller. Must be written in a specific sequence, shown below:

Starting from: $[SHUT_A] = 0$, $[SHUT_B] = 0$

Write #1: [SHUT_A] = 0, [SHUT_B] = 1

Write #2: [SHUT_A] = 1, [SHUT_B] = 0

Other writes cause the command to be ignored.

表 7-8. SYS_CTRL2 (0x05)

BIT	7	6	5	4	3	2	1	0
NAME	DELAY_DIS	CC_EN	CC_ ONESHOT	RSVD	RSVD	RSVD	DSG_ON	CHG_ON
RESET	0	0	0	0	0	0	0	0
ACCESS	RW	RW	RW	RW	RW	RW	RW	RW

DELAY_DIS (Bit 7): Disable OV, UV, OCD, and SCD delays for faster customer production testing.

- 0 = Normal delay settings
- 1 = OV, UV, OCD, and SCD delay circuit is bypassed, creating zero delay (approximately 250 ms).

CC_EN (Bit 6): Coulomb counter continuous operation enable command. If set high, [CC_ONESHOT] bit is ignored.

- 0 = Disable CC continuous readings
- 1 = Enable CC continuous readings and ignore [CC ONESHOT] state

CC_ONESHOT (Bit 5): Coulomb counter single 250-ms reading trigger command. If set to 1, the coulomb counter will be activated for a single 250-ms reading, and then turned back off. [CC_ONESHOT] will also be cleared at the conclusion of this reading, while [CC_READY] bit will be set to 1.

- 0 = No action
- 1 = Enable single CC reading (only valid if [CC_EN] = 0), and [CC_READY] = 0)

RSVD (Bit 4-2): Reserved. Do not use.

DSG_ON (Bit 1): Discharge FET driver (low side NCH) or discharge signal control

0 = DSG is off.

1 = DSG is on.

CHG_ON (Bit 0): Discharge FET driver (low side NCH) or discharge signal control

0 = CHG is off.

1 = CHG is on.

表 7-9. PROTECT1 (0x06)

BIT	7	6	5	4	3	2	1	0
NAME	RSNS	_	RSVD	SCD_D1	SCD_D0	SCD_T2	SCD_T1	SCD_T0
RESET	0	0	0	0	0	0	0	0
ACCESS	RW	R	RW	RW	RW	RW	RW	RW

RSNS (Bit 7): Allows for doubling the OCD and SCD thresholds simultaneously

0 = OCD and SCD thresholds at lower input range

1 = OCD and SCD thresholds at upper input range

RSVD (Bit 5): Reserved, do not set to 1.

SCD_D1:0 (Bits 4-3):

Short circuit in discharge delay setting. A 400- μ s setting is recommended only in systems using maximum cell measurement input resistance, Rc, of 1 k Ω (which corresponds to minimum internal cell balancing current or external cell balancing configuration).

Code	(in µs)
0x0	70
0x1	100
0x2	200
0x3	400

SCD_T2:0 (Bits 2-0): Short circuit in discharge threshold setting

Code	RSNS = 1 (in mV)	RSNS = 0 (in mV)	
0x0	44	22	
0x1	67	33	
0x2	89	44	
0x3	111	56	
0x4	133	67	
0x5	155	78	
0x6	178	89	
0x7	200	100	

表 7-10. PROTECT2 (0x07)

BIT	7	6	5	4	3	2	1	0
NAME	_	OCD_D2	OCD_D1	OCD_D0	OCD_T3	OCD_T2	OCD_T1	OCD_T0
RESET	0	0	0	0	0	0	0	0
ACCESS	R	RW						

www.ti.com.cn

OCD_D2:0 (Bits 6-4): Overcurrent in discharge delay setting

Code	(in ms)
0x0	8
0x1	20
0x2	40
0x3	80
0x4	160
0x5	320
0x6	640
0x7	1280

OCD_T3:0 (Bits 3-0): Overcurrent in discharge threshold setting.

Code	RSNS = 1 (in mV)	(RSNS = 0 (in mV)
0x0	17	8
0x1	22	11
0x2	28	14
0x3	33	17
0x4	39	19
0x5	44	22
0x6	50	25
0x7	56	28
0x8	61	31
0x9	67	33
0xA	72	36
0xB	78	39
0xC	83	42
0xD	89	44
0xE	94	47
0xF	100	50

表 7-11. PROTECT3 (0x08)

BIT	7	6	5	4	3	2	1	0
NAME	UV_D1	UV_D0	OV_D1	OV_D0	RSVD	RSVD	RSVD	RSVD
RESET	0	0	0	0	0	0	0	0
ACCESS	RW	RW	RW	RW	RW	RW	RW	RW

UV_D1:0 (Bits 7-6): Undervoltage delay setting

Code	(in s)
0x0	1
0x1	4
0x2	8
0x3	16

OV_D1:0 (Bits 5-4): Overvoltage delay setting

Code	(in s)
0x0	1
0x1	2
0x2	4
0x3	8

RSVD (Bits 3–0): These bits are for TI internal debug use only and must be configured to the default settings indicated.

表 7-12. OV_TRIP (0x09)

BIT	7	6	5	4	3	2	1	0
NAME	OV_T7	OV_T6	OV_T5	OV_T4	OV_T3	OV_T2	OV_T1	OV_T0
RESET	1	0	1	0	1	1	0	0
ACCESS	RW							

OV_T7:0 (Bits 7–0): Middle 8 bits of the direct ADC mapping of the desired OV protection threshold, with upper 2 MSB set to 10 and lower 2 LSB set to 1000. The equivalent OV threshold is mapped to: 10-OV_T<7:0>1000.

By default, OV_TRIP is configured to a 0xAC setting.

Note that OV_TRIP is based on the ADC voltage, which requires back-calculation using the GAIN and OFFSET values stored in ADCGAIN<4:0>and ADCOFFSET<7:0>.

表 7-13. UV_TRIP (0x0A)

BIT	7	6	5	4	3	2	1	0
NAME	UV_T7	UV_T6	UV_T5	UV_T4	UV_T3	UV_T2	UV_T1	UV_T0
RESET	1	0	0	1	0	1	1	1
ACCESS	RW							

UV_T7:0 (Bits 7–0): Middle 8 bits of the direct ADC mapping of the desired UV protection threshold, with upper 2 MSB set to 01 and lower 4 LSB set to 0000. In other words, the equivalent OV threshold is mapped to: 01-UV_T<7:0>–0000.

By default, UV_TRIP is configured to a 0x97 setting. .

Note that UV_TRIP is based on the ADC voltage, which requires back-calculation using the GAIN and OFFSET values stored in ADCGAIN<4:0>and ADCOFFSET<7:0>.

表 7-14. CC_CFG REGISTER (0x0B)

BIT	7	6	5	4	3	2	1	0
NAME	_	_	CC_CFG5	CC_CFG4	CC_CFG3	CC_CFG2	CC_CFG1	CC_CFG0
RESET	0	0	0	0	0	0	0	0
ACCESS	R	R	RW	RW	RW	RW	RW	RW

CC_CFG5:0 (Bits 5–0): For optimal performance, these bits should be programmed to 0x19 upon device startup.

7.5.2 Read-Only Registers

表 7-15. CELL VOLTAGE REGISTERS

VC1_HI, _LO (0x0C-0x0D), VC2_HI, _LO (0x0E-0x0F), VC3_HI, _LO (0x10-0x11), VC4_HI, _LO (0x12-0x13), VC5_HI, _LO (0x14-0x15) / bq76930, bq76940: VC6_HI, _LO (0x16-0x17), VC7_HI, _LO (0x18-0x19), VC8_HI, _LO (0x1A-0x1B), VC9_HI, _LO (0x1C-0x1D), VC10_HI, _LO (0x1E-0x1F) / bq76940: VC11_HI, _LO (0x20-0x21), VC12_HI, _LO (0x22-0x23), VC13_HI, _LO (0x24-0x25), VC14_HI, _LO (0x26-0x27), VC15_HI, _LO (0x28-0x29)

BIT 7 6 5 4 3 2 1 0

BIT	7	6	5	4	3	2	1	0
NAME	_	_	D13	D12	D11	D10	D9	D8
RESET	0	0	0	0	0	0	0	0
NAME	D7	D6	D5	D4	D3	D2	D1	D0
RESET	0	0	0	0	0	0	0	0

D11:8 (Bits 3–0): Cell "x" ADC reading, upper 6 MSB. Always returned as an atomic value if both high and low registers are read in the same transaction (using address auto-increment).

D7:0 (Bits 7-0): Cell "x" ADC reading, lower 8 LSB.

表 7-16. BAT_HI (0x2A) and BAT_LO (0x2B)

BIT	7	6	5	4	3	2	1	0
NAME	D15	D14	D13	D12	D11	D10	D9	D8
RESET	0	0	0	0	0	0	0	0
NAME	D7	D6	D5	D4	D3	D2	D1	D0
RESET	0	0	0	0	0	0	0	0

D15:8 (Bits 7–0): BAT calculation based on adding up Cells 1–15, upper 8 MSB. Always returned as an atomic value if both high and low registers are read in the same transaction (using address autoincrement).

D7:0 (Bits 7-0): BAT calculation based on adding up Cells 1-15, lower 8 LSB

表 7-17. TS1_HI (0x2C) and TS1_LO (0x2D)

BIT	7	6	5	4	3	2	1	0
NAME		_	D13	D12	D11	D10	D9	D8
RESET	0	0	0	0	0	0	0	0
NAME	D7	D6	D5	D4	D3	D2	D1	D0
RESET	0	0	0	0	0	0	0	0

D11:8 (Bits 3–0): TS1 or DIETEMP ADC reading, upper 6 MSB. Always returned as an atomic value if both high and low registers are read in the same transaction (using address auto-increment).

D7:0 (Bits 7-0): TS1 or DIETEMP ADC reading, lower 8 LSB

表 7-18. TS2_HI (0x2E) and TS2_LO (0x2F)

BIT	7	6	5	4	3	2	1	0
NAME	_	_	D13	D12	D11	D10	D9	D8
RESET	0	0	0	0	0	0	0	0
NAME	D7	D6	D5	D4	D3	D2	D1	D0
RESET	0	0	0	0	0	0	0	0

D11:8 (Bits 3–0): TS2 ADC reading, upper 6 MSB. Always returned as an atomic value if both high and low registers are read in the same transaction (using address auto-increment).

D7:0 (Bits 7-0): TS2 ADC reading, lower 8 LSB

表 7-19. TS3_HI (0x30) and TS3_LO (0x31)

BIT	7	6	5	4	3	2	1	0
NAME		_	D13	D12	D11	D10	D9	D8
RESET	0	0	0	0	0	0	0	0
NAME	D7	D6	D5	D4	D3	D2	D1	D0
RESET	0	0	0	0	0	0	0	0

D11:8 (Bits 3–0): TS3 ADC reading, upper 6 MSB. Always returned as an atomic value if both high and low registers are read in the same transaction (using address auto-increment).

D7:0 (Bits 7-0): TS3 ADC reading, lower 8 LSB

表 7-20. CC_HI (0x32) and CC_LO (0x33)

BIT	7	6	5	4	3	2	1	0
NAME	CC15	CC14	CC13	CC12	CC11	CC10	CC9	CC8
RESET	0	0	0	0	0	0	0	0
NAME	CC7	CC6	CC5	CC4	CC3	CC2	CC1	CC0
RESET	0	0	0	0	0	0	0	0

CC15:8 (Bits 7–0): Coulomb counter upper 8 MSB. Always returned as an atomic value if both high and low registers are read in the same transaction (using address auto-increment).

CC7:0 (Bits 7-0): Coulomb counter lower 8 LSB

表 7-21. ADCGAIN1 (0x50)

BIT	7	6	5	4	3	2	1	0
NAME	_	_	_	_	ADCGAIN4	ADCGAIN3		_
RESET	_	_	_	_	_	_	_	_
ACCESS	R	R	R	R	R	R	R	R

表 7-22. ADCGAIN2 (0x59)

BIT	7	6	5	4	3	2	1	0
NAME	ADCGAIN2	ADCGAIN1	ADCGAIN0		_			_
RESET	_	_	_	_	_	_	_	_
ACCESS	R	R	R	R	R	R	R	R

ADCGAIN4:3 (Bits 3-2, address 0x50):

ADC GAIN offset upper 2 MSB

www.ti.com.cn

ADCGAIN2:0 (Bits 7-5, address 0x59):

ADC GAIN offset lower 3 LSB

ADCGAIN<4:0> is a production-trimmed value for the ADC transfer function, in units of μ V/LSB. The range is 365 μ V/LSB to 396 μ V/LSB, in steps of 1 μ V/LSB, and may be calculated as follows:

GAIN = 365 μ V/LSB + (ADCGAIN<4:0>in decimal) × (1 μ V/LSB)

Alternately, a conversion table is provided below:

ADC GAIN	Gain (µV/LSB)	ADC GAIN	Gain (µV/LSB)
0x00	365	0x10	381
0x01	366	0x11	382
0x02	367	0x12	383
0x03	368	0x13	384
0x04	369	0x14	385
0x05	370	0x15	386
0x06	371	0x16	387
0x07	372	0x17	388
0x08	373	0x18	389
0x09	374	0x19	390
0x0A	375	0x1A	391
0x0B	376	0x1B	392
0x0C	377	0x1C	393
0x0D	378	0x1D	394
0x0E	379	0x1E	395
0x0F	380	0x1F	396

表 7-23. ADCOFFSET (0x51)

BIT	7	6	5	4	3	2	1	0
NAME	ADC OFFSET7	ADC OFFSET6	ADC OFFSET5	ADC OFFSET4	ADC OFFSET3	ADC OFFSET2	ADC OFFSET1	ADC OFFSET0
RESET	_	_	_	_	_	_	_	_
ACCESS	R	R	R	R	R	R	R	R

ADCOFFSET7:0 (Bits 7-0):

ADC offset, stored in 2's complement format in mV units. Positive full-scale range corresponds to 0x7F and negative full-scale corresponds to 0x80. The full-scale input range is -128 mV to 127 mV, with an LSB of 1 mV.

The table below shows example offsets.

ADCOFFSET	Offset (mV)
0x00	0
0x01	1
0x7F	127
0x80	-128
0x81	-127
0xFF	-1

8 Application and Implementation

注

Information in the following application section is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The bq769x0 family of battery monitoring AFEs enabling cell parametric measurement and protection is a variety of 3-series to 15-series Li-Ion/Li Polymer battery packs.

To evaluate the performance and configurations of the device users need the bq76940/bq76930/bq76920 Evaluation Software, (SLUCC539) tool to configure the internal registers for a specific battery pack and application. The Evaluation Software tool is a graphical user-interface tool installed on a PC during development. This can be used in conjunction with the bq76920EVM, bq76930EVM or bq76940EVM.

The bq769x0 devices are expected to be implemented in a system with a microcontroller that can perform additional functions based on the data made collected. The bq78350 is one example of a companion to the bq769x0 family.

8.1.1 Configuring Alternative Cell Counts

Each bq769x0 family of IC's support a variety of cell counts. The following tables provide guidance on which device and which input pins to use, depending on the number of cells in the pack.

Cell Input 3 Cells 4 Cells 5 Cells VC5-VC4 CELL 3 CELL 4 CELL 5 VC4-VC3 short short CELL 4 VC3-VC2 short CELL 3 CELL 3 VC2-VC1 CELL 2 CELL 2 CELL 2 VC1-VC0 CELL 1 CELL 1 CELL 1

表 8-1. Cell Connections for bq76920

表 8-2. Cell Connections for bq76930

Cell Input	6 Cells	7 Cells	8 Cells	9 Cells	10 Cells
VC10-VC9	CELL 6	CELL 7	CELL 8	CELL 9	CELL 10
VC9-VC8	short	short	short	short	CELL 9
VC8-VC7	short	short	CELL 7	CELL 8	CELL 8
VC7-VC6	CELL 5	CELL 6	CELL 6	CELL 7	CELL 7
VC6-VC5b	CELL 4	CELL 5	CELL 5	CELL 6	CELL 6
VC5-VC4	CELL 3	CELL 4	CELL 4	CELL 5	CELL 5
VC4-VC3	short	short	short	CELL 4	CELL 4
VC3-VC2	short	CELL 3	CELL 3	CELL 3	CELL 3
VC2-VC1	CELL 2				
VC1-VC0	CELL 1				

42

耒	8-3	Cell	Connections	for	ha76940
10	U-J.	CEII	COMPCHICA	101	DU/ 0340

Cell Input	9 Cells	10 Cells	11 Cells	12 Cells	13 Cells	14 Cells	15 Cells
VC15-VC14	CELL 9	CELL 10	CELL 11	CELL 12	CELL 13	CELL 14	CELL 15
VC14-VC13	short	short	short	short	short	short	CELL 14
VC13-VC12	short	short	short	CELL 11	CELL 12	CELL 13	CELL 13
VC12-VC11	CELL 8	CELL 9	CELL 10	CELL 10	CELL 11	CELL 12	CELL 12
VC11-VC10b	CELL 7	CELL 8	CELL 9	CELL 9	CELL 10	CELL 11	CELL 11
VC10-VC9	CELL 6	CELL 7	CELL 8	CELL 8	CELL 9	CELL 10	CELL 10
VC9-VC8	short	short	short	short	short	CELL 9	CELL 9
VC8-VC7	short	short	CELL 7	CELL 7	CELL 8	CELL 8	CELL 8
VC7-VC6	CELL 5	CELL 6	CELL 6	CELL 6	CELL 7	CELL 7	CELL 7
VC6-VC5b	CELL 4	CELL 5	CELL 5	CELL 5	CELL 6	CELL 6	CELL 6
VC5-VC4	CELL 3	CELL 4	CELL 4	CELL 4	CELL 5	CELL 5	CELL 5
VC4-VC3	short	short	short	short	CELL 4	CELL 4	CELL 4
VC3-VC2	short	CELL 3					
VC2-VC1	CELL 2	CELL 2	CELL 2	CELL 2	CELL 2	CELL 2	CELL 2
VC1-VC0	CELL 1	CELL 1	CELL 1	CELL 1	CELL 1	CELL 1	CELL 1

8.2 Typical Applications

CAUTION

The external circuitries in the following schematics show minimum requirements to ensure device robustness during cell connection to the PCB and normal operation.

图 8-1. bq76920 with bq78350 Companion Controller IC

图 8-2. bq76930 with bq78350 Companion Controller IC

图 8-3. bq76940 with bq78350 Companion Controller IC

8.2.1 Design Requirements

表 8-4. bq769x0 Design Requirements

DESIGN PARAMETER	EXAMPLE VALUE at TA = 25°C			
Minimum system operating voltage	24 V			
Cell minimum operating voltage	3.0 V			
Series Cell Count	8			
Charge Voltage	33.6 V			
Maximum Charge Current	3.0 A			
Peak Discharge Current	10.0 A			
OV Protection Threshold	4.30 V			
OV Protection Delay	2s			
UV Protection Threshold	2.5 V			

表 8-4. bq769x0 Design Requirements (continued)

DESIGN PARAMETER	EXAMPLE VALUE at TA = 25°C			
UV Protection Delay	4s			
OCD Protection Threshold Max	15 A			
OCD Protection Delay Time	320 ms			
SCD Protection Threshold Max	25 A			
SCD Protection Delay Time	100 μs			

8.2.2 Detailed Design Procedure

To begin the design process, there are some key steps required for component selection and protection configuration.

8.2.2.1 Step-by-Step Design Procedure

- Determine the number of series cells.
 - This value depends on the cell chemistry and the load requirements of the system. For example, to support a minimum battery voltage of 24 V using Li-CO2 type cells with a cell minimum voltage of 3.0 V, there needs to be at least 8-series cells.
- Select the correct bq769x0 device.
 - For 8-series cells, the bq76930 is needed.
 - For the correct cell connections, see 表 8-2.
- Select the correct protection FETs.
 - The bq76930 uses a low-side drive suitable for N-CH FETs.
 - These FETs should be rated for the maximum:
 - Voltage, which should be approximately 5 V (DC) 10 V (peak) per series cell: for example, 40 V.
 - Current, which should be calculated based on both the maximum DC current and the maximum transient current with some margin: for example, 30 A.
 - Power Dissipation, which can be a factor of the RDS(ON) rating of the FET, the FET package, and the PCB design: for example, 5 W, assuming 5 m Ω RDS(ON).
- Select the correct sense resistor.
 - The resistance value should be selected to maximize the input bandwidth use of the coulomb counter range, CC_{RANGE}, but not exceed the absolute maximum ratings.
 - Using the normal max discharge current, RSNS = 200 mV / 10.0 A = 20 m Ω .
 - However, considering I_{SCD} of 25 A and Abs Max SRP-SRN input of -300 mV, RSNS = 300 mV $/ 25 A = 7.5 m\Omega$
 - The maximum operating current of the system should also be considered as this should be below the maximum OCD Threshold, which with a RSNS of 7.5 mΩ gives a max OCD current setting of 13.3 A.
 - Further tolerance analysis (value tolerance, temperature variation, and so on) and PCB design margin should also be considered, so RSNS of 5 mΩ would be suitable with a 75-ppm temperature coefficient and power rating of 5 W.
- The bg76930 is chosen, and so the REGSRC pin needs to be powered through a source follower circuit where the FET is used to provide current for REGSRC from the battery positive terminal while reducing the voltage to a suitable value for the IC.
 - The FET also dissipates the power resulting from the load current and dropped voltage external to the IC and care should be taken to ensure the correct dissipation ratings are specified by the chosen FET.

46

www.ti.com.cn

- Configure the Current-based protection settings through PROTECT1 and PROTECT2:
 - Ideal SCD Threshold = 25 A \times 5 m Ω = 125 mV.
 - However, the closest options are 111 mV (0x03) and 133 mV (0x04) providing 22.2 A and 26.6 A, respectively. Both options have the RSNS bit = 1.
 - 0x03 (22.2 A) will be used in this example.
 - The SCD delay threshold setting for a 100 μs delay is 0x01.
 - Therefore, PROTECT1 should be programmed with 0x8C.
 - Ideal OCD Threshold = 15 A \times 5 m Ω = 75 mV.
 - However, the closest options are 72 mV (0x0A) and 78 mV (0x0B), providing 14.4 A and 15.6 A, respectively. Both options have the RSNS bit = 1.
 - 0x0A (14,4A) will be used in this example.
 - The OCD delay threshold setting for a 320-ms delay is 0x05.
 - Therefore, PROTECT2 should be programmed with 0x5B.

注

Care should be taken when determining the setting of OV_TRIP and UV_TRIP as these are ADC value outputs and correlation to cell voltage also requires consideration of the ADC GAIN and ADC OFFSET registers. More specific details can be found in 节 7.3.1.2.

- Configure the Voltage-based protection settings through OV_TRIP, UV_TRIP and PROTECT3:
 - The selected OV Threshold is 4.30 V.
 - Therefore, OV_TRIP should be programmed with 0xC9.
 - The selected UV Threshold is 2.5 V.
 - Therefore, UV_TRIP should be programmed with 0x1A.
 - The selected OV Delay is 2 s and the selected UV Delay is 4 s.
 - Therefore, PROTECT3 should be programmed with 0x50.

8.2.3 Application Curves

www.ti.com.cn

9 Power Supply Recommendations

The bq769x0 devices are powered through the BAT and REGSRC pins but the bq76930 and bq76940 have additional 'Power' pins to provide the power to the entire device in the higher cell configurations.

The use of Rf and Cf connected to the BAT pin, noted in the typical application diagrams, are required to filter system transients from disturbing the device power supply. These components should be placed as close as to the IC as possible.

Additionally, for the bq76930 and bq76940 there are additional requirements to ensure a stable power supply to the device. The REGSRC pin is powered through a source follower circuit where the FET is used to provide current for REGSRC from the battery positive terminal while reducing the voltage to a suitable value for the IC. The FET also dissipates the power resulting from the load current and dropped voltage external to the IC and care should be taken to ensure the correct dissipation ratings are specified by the chosen FET.

The bq76920 does not use a FET because the battery voltage is within the REGSRC range.

10 Layout

10.1 Layout Guidelines

It is strongly recommended for best measurement performance to keep high current signals from interfering with the measurement system inputs and ground.

A second key recommendation is to ensure that the bq769x0 input filtering capacitors and power capacitors are connected to a common ground with as little parasitic resistance between the connections as possible.

10.2 Layout Example

图 10-1 shows a guideline of how to place key components compared to respective ground zones, based on the bq76920/30/40 EVMs.

图 10-1. System Component Placement Layout vs. Ground Zone Guide

CAUTION

Care should be taken when placing key power pin capacitors to minimize PCB trace impedances. These impedances could result in device resets or other unexpected operations when the device is at peak power consumption.

Although not shown in the diagrams, this caution also applies to the resistor and capacitor network surrounding the current sense resistor.

50

图 10-2. Good Layout: Input Capacitor Grounding with Low Parasitic PCB Impedance

图 10-3. Weak Layout: Input Capacitor Grounding with High Parasitic PCB Impedance

52

11 器件和文档支持

11.1 文档支持

11.1.1 相关文档

相关文档如下: 《*bq76920* 评估模块用户指南》(文献编号: SLVU924)和《bq76920、bq76930、bq76940 AFE FAQ》(文献编号: SLUUB41)。

11.2 相关链接

下面的表格列出了快速访问链接。范围包括技术文档、支持和社区资源、工具和软件,以及样片或购买的快速访问。

表 11-1. 相关链接

器件	产品文件夹	样片与购买	技术文档	工具与软件	支持与社区
bq76920	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
bq76930	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
bq76940	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处

11.2.1 社区资源

下列链接提供到 TI 社区资源的连接。 链接的内容由各个分销商"按照原样"提供。 这些内容并不构成 TI 技术规范和标准且不一定反映 TI 的观点;请见 TI 的使用条款。

TI E2E™ 在线社区 TI 工程师对工程师 (E2E) 社区。 此社区的创建目的是为了促进工程师之间协作。 在 e2e.ti.com 中,您可以咨询问题、共享知识、探索思路,在同领域工程师的帮助下解决问题。

德州仪器 (TI) 嵌入式处理器维基网站 德州仪器 (TI) 嵌入式处理器维基网站。 此网站的建立是为了帮助开发人员从德州仪器 (TI) 的嵌入式处理器入门并且也为了促进与这些器件相关的硬件和软件的总体知识的创新和增长。

11.3 商标

E2E is a trademark of Texas Instruments.

I²C is a trademark of NXP B.V. Corporation.

All other trademarks are the property of their respective owners.

11.4 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

11.5 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III (或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP®产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP应用处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2016, 德州仪器半导体技术(上海)有限公司

26-Aug-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
BQ7692000PW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7692000	Samples
BQ7692000PWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7692000	Samples
BQ7692003PW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7692003	Samples
BQ7692003PWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7692003	Samples
BQ7692006PW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7692006	Samples
BQ7692006PWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7692006	Samples
BQ7693000DBT	ACTIVE	TSSOP	DBT	30	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7693000	Samples
BQ7693000DBTR	ACTIVE	TSSOP	DBT	30	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7693000	Samples
BQ7693001DBT	ACTIVE	TSSOP	DBT	30	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7693001	Samples
BQ7693001DBTR	ACTIVE	TSSOP	DBT	30	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7693001	Samples
BQ7693002DBT	ACTIVE	TSSOP	DBT	30	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7693002	Samples
BQ7693002DBTR	ACTIVE	TSSOP	DBT	30	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7693002	Samples
BQ7693003DBT	ACTIVE	TSSOP	DBT	30	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7693003	Samples
BQ7693003DBTR	ACTIVE	TSSOP	DBT	30	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7693003	Samples
BQ7693006DBT	ACTIVE	TSSOP	DBT	30	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7693006	Samples
BQ7693006DBTR	ACTIVE	TSSOP	DBT	30	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7693006	Samples
BQ7693007DBT	ACTIVE	TSSOP	DBT	30	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7693007	Samples

PACKAGE OPTION ADDENDUM

26-Aug-2016

Orderable Device	Status	Package Type		Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
BQ7693007DBTR	ACTIVE	TSSOP	DBT	30	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7693007	Samples
BQ7694000DBT	ACTIVE	TSSOP	DBT	44	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7694000	Samples
BQ7694000DBTR	ACTIVE	TSSOP	DBT	44	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7694000	Samples
BQ7694001DBT	ACTIVE	TSSOP	DBT	44	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7694001	Samples
BQ7694001DBTR	ACTIVE	TSSOP	DBT	44	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7694001	Samples
BQ7694002DBT	ACTIVE	TSSOP	DBT	44	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7694002	Samples
BQ7694002DBTR	ACTIVE	TSSOP	DBT	44	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7694002	Samples
BQ7694003DBT	ACTIVE	TSSOP	DBT	44	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7694003	Samples
BQ7694003DBTR	ACTIVE	TSSOP	DBT	44	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7694003	Samples
BQ7694006DBT	ACTIVE	TSSOP	DBT	44	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7694006	Samples
BQ7694006DBTR	ACTIVE	TSSOP	DBT	44	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ7694006	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

26-Aug-2016

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Jan-2016

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter	Reel Width	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ7692000PWR	TSSOP	PW	20	2000	(mm) 330.0	W1 (mm) 16.4	6.95	7.1	1.6	8.0	16.0	Q1
BQ7692003PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
BQ7692006PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

www.ti.com 18-Jan-2016

*All dimensions are nominal

7 till diffrierierierie die Frierrinia							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ7692000PWR	TSSOP	PW	20	2000	367.0	367.0	38.0
BQ7692003PWR	TSSOP	PW	20	2000	367.0	367.0	38.0
BQ7692006PWR	TSSOP	PW	20	2000	367.0	367.0	38.0

DBT (R-PDSO-G30)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-153.

DBT (R-PDSO-G44)

PLASTIC SMALL OUTLINE

All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. This drawing is subject to change without notice. NOTES:

C. Body dimensions do not include mold flash or protrusion.

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使 用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III (或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

は田

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

立 口

	产品		巡用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP应用处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated