Introduction to Formal Semantics Lecture 10: Event Semantics

Volha Petukhova & Nicolaie Dominik Dascalu
Spoken Language Systems Group
Saarland Univeristy
04.07.2022

Overview for today

- Recap: tense and aspect
- Why event semantics?
- Verbs as predicates
- Verbs as quantifiers
- Conjunctions
- Negation

Reading:

 Coppock, E., and Champollion, L. (2021). Invitation to formal semantics. Manuscript, Boston University and New York University (Ch.11)

Quizz (Presupposition)

Compute a derivation for the following tree, translating square root as a constant type $\langle e\langle e,t \rangle \rangle$ and four of type e:

Quizz (Aspect)

Compute 'inner' aspect of the following sentences, use Verkuyl's approach:

a. John drank the beer.

$$[+Ts[+SQA] \quad [+Tvp[+ADDTO] \quad [+SQA]]]$$
 (terminative)

b. Ivan drinks beer.

$$[-Ts[+SQA] \quad [-Tvp[+ADDTO] \quad [-SQA]]]$$
 (durative)

c. Students met the teacher.

$$[-Ts[-SQA] \quad [+Tvp[+ADDTO] \quad [+SQA]]]$$
 (durative)

d. Three girls lifted four tables.

$$[+Ts[+SQA] \quad [+Tvp[+ADDTO] \quad [+SQA]]]$$
 (terminative)

e. Judith ate sandwiches.

$$[-Ts[+SQA] \quad [+Tvp[+ADDTO] \quad [-SQA]]]$$
 (durative)

Event Semantics: Motivation

What we did so far:

- We argued that the invented, symbolic language of logic and math is good way to think about natural languages
- We used symbols to represent meaning:
 - connecting terms like ∧ ∨
 - ullet track the order for meaning composition applying λ
 - to separate the actual from possible, ∃ from ◊
 - ullet to visualize how meaning can be narrowed down \cap to nothing \emptyset or expand \cup
- Basic assumption: verbs act as n-place predicates, e.g. travel $\rightsquigarrow T(x,y)$

Example 1

Katarina grieved for many years \rightsquigarrow G(k,m)Katarina grieved \rightsquigarrow G(k)

Example 1

Katarina grieved for many years \rightsquigarrow G(k,m)Katarina grieved \rightsquigarrow G(k)

Are they two different events of grieving?

Example 1

Katarina grieved for many years \rightsquigarrow G(k,m)Katarina grieved \rightsquigarrow G(k)

Are they two different events of grieving?

- (1) Brutus stabbed Caesar. $stab_1(b, c)$
- (2) Brutus stabbed Caesar on the forum $stab_2(b, c, f)$
- (3) Brutus stabbed Caesar at noon $stab_3(b, c, n)$
- (4) Brutus stabbed Caesar at noon on the forum $stab_4(b, c, n, f)$
- (5) Brutus stabbed Caesar on the forum at noon $stab_5(b, c, f, n)$

Example 1

Katarina grieved for many years \rightsquigarrow G(k,m)Katarina grieved \rightsquigarrow G(k)

Are they two different events of grieving?

Example 2

- (1) Brutus stabbed Caesar. $stab_1(b, c)$
- (2) Brutus stabbed Caesar on the forum $stab_2(b, c, f)$
- (3) Brutus stabbed Caesar at noon $stab_3(b, c, n)$
- (4) Brutus stabbed Caesar at noon on the forum $stab_4(b, c, n, f)$
- (5) Brutus stabbed Caesar on the forum at noon $stab_5(b, c, f, n)$

How to explain the systematic logical entailment relations between the different uses of 'stab'

Event Semantics: Diamond Entailment

- (1) Brutus was a famous Roman politician.
- (2) Brutus was a Roman politician.
- (3) Brutus was a famous politician.
- (4) Brutus was a politician.

Event Semantics: Diamond Entailment

- (1) Brutus was a famous Roman politician.
- (2) Brutus was a Roman politician.
- (3) Brutus was a famous politician.
- (4) Brutus was a politician.

Event Semantics: Diamond Entailment (cont.)

- (1) Brutus stabbed Caesar at noon on the forum.
- (2) Brutus stabbed Caesar on the forum.
- (3) Brutus stabbed Caesar at noon.
- (4) Brutus stabbed Caesar.

Event Semantics: Diamond Entailment (cont.)

- (1) Brutus stabbed Caesar at noon on the forum.
- (2) Brutus stabbed Caesar on the forum.
- (3) Brutus stabbed Caesar at noon.
- (4) Brutus stabbed Caesar.

Davidson (1967) proposed a new view - event semantics.

Davidson (1967) proposed a new view - event semantics. Events are entities with locations in time and space. G(e)

Davidson (1967) proposed a new view - event semantics.

Events are entities with locations in time and space. G(e)

Events have participants - entities that are related to events by relations as thematic (or semantic) roles

Davidson (1967) proposed a new view - event semantics.

Events are entities with locations in time and space. G(e)

Events have participants - entities that are related to events by relations as thematic (or semantic) roles

Example

```
Katarina grieved \rightsquigarrow \exists e.[G(e) \land agent(k, e)]
```

Katarina grieved for many years $\rightsquigarrow \exists e.[G(e) \land agent(k,e) \land time(e,many_years)]$

Event Semantics: Events and Participants

Eventuality: event, state, process or action which is being referred to by a verbal, adjectival or nominal predicate argument structure.

NOTE: Eventualities can also be described as "something that can be said to obtain or hold true, to happen or to occur"

Participant in an eventuality: entity involved in the eventuality

Semantic (themantic, theta) role: type of involvement of a participant in an eventuality.

Event Semantics: Semantic Roles

PropBank (Palmer, et. al., 2005): Arg_1 , Arg_2 , Arg_n , Arg_{MOD} FrameNet (Fillmore 1976, Fillmore 1985, Fillmore & Baker 2010): Byer, Seller, Thing-To-Sell, Selling-Time, ... VerbNet (Dang et al., 1998; Kipper et al, 2000; Kipper Schuler, 2005; Kipper et. al., 2008): Agent, Theme, Patient, ... ISO 24617-5

Event Semantics: Approaches to Verbal Denotation

Example

Brutus stabbed Caesar.

Approach	Verbal denotation	Example
Traditional	$\lambda x \lambda y[stab(x,y)]$	stab(b,c)
Classical Davidsonian	$\lambda e \lambda x \lambda y [stab(e, x, y)]$	$\exists e[stab(e, b, c)]$
Neo-Davidsonian	$\lambda e[stab(e)]$	$\exists e[stab(e) \land agent(e,b) \land theme(e,c)]$
Landman (1996)	$\lambda e \lambda x \lambda y[stab(e) \wedge agent(e, x) \wedge theme(e, y)]$	$\exists e[stab(e, b, c)]$
Kratzer (2000)	$\lambda e \lambda y[stab(e,y)]$	$\exists e[agent(e,b) \land stab(e,c)]$

Event Semantics: Advantages

Capturing diamond entailments, classical Davidsonian style:

- (1) Brutus stabbed Caesar on the forum at noon.
- $\exists e[stabbing(e, brutus, caesar) \land loc(e) = forum \land time(e) = noon]$
- (2) Brutus stabbed Caesar on the forum.
- $\exists e[stabbing(e, brutus, caesar) \land loc(e) = forum]$
- (3) Brutus stabbed Caesar at noon.
- $\exists e[stabbing(e, brutus, caesar) \land time(e) = noon]$
- (4) Brutus stabbed Caesar.
- $\exists e[stabbing(e, brutus, caesar)]$

Event Semantics: Advantages (cont.)

Capturing the same entailments, Neo-Davidsonian style:

- (1) Brutus stabbed Caesar on the forum at noon.
- $\exists e [\mathit{agent}(e) = \mathit{brutus} \land \mathit{stabbing}(e) \land \mathit{theme}(e) = \mathit{caesar} \land \mathit{loc}(e) = \mathit{forum} \land \mathit{time}(e) = \mathit{noon}]$
- (2) Brutus stabbed Caesar on the forum.
- $\exists e[\mathit{agent}(e) = \mathit{brutus} \land \mathit{stabbing}(e) \land \mathit{theme}(e) = \mathit{caesar} \land \mathit{loc}(e) = \mathit{forum}]$
- (3) Brutus stabbed Caesar at noon.
- $\exists e[agent(e) = brutus \land stabbing(e) \land theme(e) = caesar \land time(e) = noon]$
- (4) Brutus stabbed Caesar.
- $\exists e[agent(e) = brutus \land stabbing(e) \land theme(e) = caesar]$

Event Semantics: Advantages of the Neo-Davidsonian approach

- Makes it easier to state generalizations across the categories of nouns and verbs, and to place constraints on thematic roles
- Good for formulating analyses without committing to an argument/adjunct distinction
- Lends itself to a natural compositional process in terms of intersection with an existential quantifier at the end

```
a. [[agent]] = \lambda x \lambda e[agent(e) = x]

b. [[theme]] = \lambda y \lambda e[agent(e) = y]

c. [stab] = \lambda e[stab(e)]

d. [[agent]Brutus] = \lambda e[agent(e) = brutus]

e. [[theme]Caesar] = \lambda e[agent(e) = caesar]

f. [Brutus stab Caesar] = (c) \cap (d) \cap (e) (sentence radical)

g. [Brutus stab Caesar] = \exists e \ e \in (c) \cap (d) \cap (e) (full sentence)
```

Event Semantics: Advantages (cont.)

Antecedents for anaphoric expressions like pronouns, and referents for definite descriptions and the like

Example

Jones did it slowly, deliberately, in the bathroom, with a knife, at midnight. What he did was butter a piece of toast. (Davidson, 1967)

Perceptual reports (Higginbotham, 1983), as an alternative to situation semantics

Example

John saw Mary leave.

Semantic relations between gerunds and verbs (Parsons, 1990)

Example

They sang the song.

The singing of the song

Event Semantics: Advantages (cont.)

Various semantic relations between causatives and their intransitive counterparts (Parsons, 1990)

Example

Marry felled the tree.

The tree fell.

Aspectual phenomena and measurement (Krifka, 1998; Champollion, 2010)

Example

- a. three litres of water
- b. three hours of running
- c. run for three hours

and many more

Predicates

stab $\rightsquigarrow \lambda e.Stab(e)$ butter $\rightsquigarrow \lambda e.Butter(e)$

Predicates

stab $\rightsquigarrow \lambda e.Stab(e)$ butter $\rightsquigarrow \lambda e.Butter(e)$

Syntax

 $\mathsf{DP} \to \theta \; \mathsf{DP}$

Predicates

```
stab \rightsquigarrow \lambda e.Stab(e)
butter \rightsquigarrow \lambda e.Butter(e)
```

Syntax

 $\mathsf{DP} \to \theta \; \mathsf{DP}$

Lexicon

 θ : [agent], [theme], [instrument], [recipient], [goal], [location], [time], ...

Predicates

```
stab \rightsquigarrow \lambda e.Stab(e)
butter \rightsquigarrow \lambda e.Butter(e)
```

Syntax

 $\mathsf{DP} \to \theta \; \mathsf{DP}$

Lexicon

 $\theta{:}~[\mathsf{agent}],~[\mathsf{theme}],~[\mathsf{instrument}],~[\mathsf{recipient}],~[\mathsf{goal}],~[\mathsf{location}],~[\mathsf{time}],~\dots$

theta Mapping

```
[agent] \rightsquigarrow \lambda x \lambda e.agent(e) = x
[theme] \rightsquigarrow \lambda x \lambda e.theme(e) = x
[instrument] \rightsquigarrow \lambda x \lambda e.instrument(e) = x
```

We need to introduce an operation that existentially binds the event variable – *existintial closure* as a type-shifting rule

Type-Shifting Rule 5: Existential Closure

if $\alpha \leadsto \alpha'$, where α' is of a category $\langle v, t \rangle$, then:

 $\alpha \rightsquigarrow \exists e.\alpha'(e)$

as well (as long as) e does not occur in α' ; in that case, use a different variable of the same type

 ν stands for the type of event, so $\langle \nu, t \rangle$ is the type of an event predicate

Event Semantics: Composition (cont.)

ŝ

Event Semantics: Quantification

Generalization: the event quantifier always takes lowest possible scope with respect to other quantifiers

Scope: example 1

No dog barks.

(a)
$$\neg \exists x [Dog(x) \land \exists e [Bark(e) \land agent(e, x)]]$$

There is no barking event that is done by a dog

(b)
$$*\exists e \neg [Bark(e) \exists x [Dog(x) \land \land agent(e, x)]]$$

There is an event that is not a barking by a dog

Scope: example 2

Every dog barks.

a.
$$\forall x[Dog(x) \rightarrow \exists e[Bark(e) \land agent(e) = x]]$$

For every dog there is a barking event that it did

b.
$$*\exists e \forall x [Dog(x) \rightarrow [Bark(e) \land agent(e) = x]]$$

There is a barking event that was done by every dog

Event Semantics: Quantification

Verbs denote generalized quantifiers over events; introduce CONTINUATION VARIABLE (Barker & Shan, 2014)

Verbs denote generalized quantifiers over events; introduce CONTINUATION VARIABLE (Barker & Shan, 2014)

```
New representation for Verbs \langle\langle v,t\rangle,t\rangle
```

```
barks \rightsquigarrow \lambda f \exists e.Bark(e) \land f(e)
butter \rightsquigarrow \lambda f \exists e.Butter(e) \land f(e)
```

Verbs denote generalized quantifiers over events; introduce CONTINUATION VARIABLE (Barker & Shan, 2014)

New representation for Verbs $\langle \langle v, t \rangle, t \rangle$

```
barks \rightsquigarrow \lambda f \exists e. Bark(e) \land f(e)
butter \rightsquigarrow \lambda f \exists e. Butter(e) \land f(e)
```

New representation for θ of $\langle e, \langle \langle \langle v, t \rangle, t \rangle, \langle \langle v, t \rangle, t \rangle \rangle$

```
[agent] \rightsquigarrow \lambda x \lambda V \lambda f . V(\lambda e. agent(e) = x \wedge f(e)
[theme] \rightsquigarrow \lambda x \lambda V \lambda f. V(\lambda e. theme(e) = x \wedge f(e)
```

a. $\lambda f \exists e. [Barks(e) \land agent(e) = s \land f(e)](\lambda e. true)$

- a. $\lambda f \exists e.[Barks(e) \land agent(e) = s \land f(e)](\lambda e.true)$
- b. $\exists e.[Barks(e) \land agent(e) = s \land (\lambda e.true)(e)]$

- a. $\lambda f \exists e.[Barks(e) \land agent(e) = s \land f(e)](\lambda e.true)$
- b. $\exists e.[Barks(e) \land agent(e) = s \land (\lambda e.true)(e)]$
- c. $\exists e.[Barks(e) \land agent(e) = s \land true]$

- a. $\lambda f \exists e.[Barks(e) \land agent(e) = s \land f(e)](\lambda e.true)$
- b. $\exists e.[Barks(e) \land agent(e) = s \land (\lambda e.true)(e)]$
- c. $\exists e.[Barks(e) \land agent(e) = s \land true]$
- d. $\exists e.[Barks(e) \land agent(e) = s]$

- a. $\lambda f \exists e.[Barks(e) \land agent(e) = s \land f(e)](\lambda e.true)$
- b. $\exists e.[Barks(e) \land agent(e) = s \land (\lambda e.true)(e)]$
- c. $\exists e.[Barks(e) \land agent(e) = s \land true]$
- d. $\exists e.[Barks(e) \land agent(e) = s]$

Type-Shifting Rule 6: Quantifier Closure

if $\alpha \rightsquigarrow \alpha'$, where α' is of a category $\langle \langle v, t \rangle, t \rangle$, then:

$$\alpha \rightsquigarrow \alpha'(\lambda e, true)$$

as well.

Event Semantics: Quantificational Noun Phrase

Event Semantics: Quantificational Noun Phrase

S DΡ ĎΡ AdvP **Johns** buttered the toast

Event Semantics: Negation

Example

Spot didn't bark.

a.
$$\exists e. \neg [Bark(e) \land agent(e) = s]$$

There is an event that is not a barking by Spot

b.
$$\neg [\exists e. Bark(e) \land agent(e) = s]$$

There is no barking event that is done by Spot

not

 $\langle\langle v,t\rangle,t\rangle$ $\lambda f \neg \exists e. Bark(e) \land f(e)$ ĎΡ Aux $\langle\langle\langle v,t\rangle,t\rangle,\langle\langle v,t\rangle,t\rangle\rangle$ $\begin{array}{c} \langle \langle v, t \rangle, t \rangle \\ \lambda V \lambda f \neg \exists e. Bark(e) \land f(e) \end{array}$ $\lambda V \lambda f. V(f)$ [agent] Spot did Neg VΡ $\langle \langle \langle v, t \rangle, t \rangle, \langle \langle v, t \rangle, t \rangle \rangle$ $\langle\langle v, t \rangle, t \rangle$

S

 $\lambda f \exists e. Bark(e) \land f(e)$

 $\lambda V \lambda f. \neg V(f)$

not

Quizz for Today

TBA