CC0303- Tópicos Especiais em Probabilidade

Convergência - 10/10/2023

Prof. Maurício Mota

Vamos enunciar os principais resultados sobre convergência estocástica usando o livro do Barry James.

Sejam Y, Y_1, Y_2, \ldots , variáveis aleatórias definidas em um mesmo espaço de probabilidade $(\Omega, \mathfrak{A}, P)$.

1. Convergência em Probabilidade.

Definição: Y_n converge para Y em probabilidade se para todo $\epsilon > 0$,

$$P(|Y_n - Y| \ge \epsilon) \to 0$$
, quando $n \to \infty$.

Notação: $Y_n \stackrel{P}{\to} Y$.

2. Convergência Quase Certa.

Definição: Y_n converge para Y quase certamente se $P(Y_n \to Y \text{ quando } n \to \infty) = 1$, isto é, se o evento

$$A_0 = \{w : Y_n(w) \to Y(w)\},\$$

é de probabilidade 1.

Notação: $Y_n \stackrel{qc}{\to} Y$.

3. Convergência em Distribuição.

Sejam Y, Y_1, Y_2, \ldots variáveis aleatórias com, respectivamente, funções de distribuição F, F_1, F_2, \ldots Dizemos que Y_n converge em distribuição para Y se quando $n \to \infty$

$$F_n(y) \to F(y)$$
,

para todo y ponto de continuidade de F.

Notação: $Y_n \stackrel{D}{\to} Y$ ou $Y_n \stackrel{D}{\to} F$.

Obs. 1: Também dizemos que Y_n converge em lei para Y e escrevemos $L(Y_n) \to L(Y)$.

Obs.2: Uma maneira alternativa de se estudar convergência em distribuição é usar o seguinte resultado:

$$Y_n \stackrel{D}{\to} Y$$

se e somente se :

$$\varphi_{Y_n}(t) \to \varphi_Y(t)$$
, para todo $t \in \mathbf{R}$.

Podemos usar a função geradora de momentos ou a função geradora de probabilidades.

4. Convergência em Média Quadrática (livro do Roussas).

Dizemos que Y_n converge em média quadrática para Y quando $n \to \infty$ se:

$$\lim_{n \to \infty} E[(Y_n - Y)^2] = 0.$$

Notação: $Y_n \stackrel{mq}{\to} Y$ ou $Y_n \stackrel{L^2}{\to} Y$.

- 5. Relação entre os tipos de convergência.
 - a. $X_n \stackrel{qc}{\to} X$ então $X_n \stackrel{P}{\to} X$.
 - b. $X_n \stackrel{mq}{\to} X$ então $X_n \stackrel{P}{\to} X$.
 - c. $X_n \stackrel{P}{\to} X$ então $X_n \stackrel{D}{\to} X$.
- 6. Teorema do Limite Central

Sejam X_1, X_2, \dots, X_n variáveis aleatórias independentes e idênticamente distribuídas com média μ e variância σ^2 . Sejam

$$G_n(x) = P(\frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \le x), \ e \ \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt.$$

Então $G_n(x) \to \Phi(x)$ quando $n \to \infty$.

7. Sejam Y, Y_1, Y_2, \ldots variáveis aleatórias tais que

$$\sqrt{n} (Y_n - \mu) \stackrel{D}{\to} N(0, \sigma^2).$$

Se g(y) é uma função derivável no ponto μ , então:

$$\sqrt{n} \ (g(Y_n) - g(\mu)) \stackrel{D}{\to} \ N(0, \ \sigma^2 \ [g'(\mu)]^2).$$

8. Teorema de Slutsky:

Sejam X, X_1, X_2, \ldots e Y, Y_1, Y_2, \ldots tais que:

$$X_n \stackrel{D}{\to} X \in Y_n \stackrel{D}{\to} c$$
,

onde c é uma constante.

a.
$$X_n + Y_n \stackrel{D}{\to} X + c$$
.

b.
$$X_n - Y_n \stackrel{D}{\to} X - c$$
.

c.
$$X_n Y_n \stackrel{D}{\to} cX$$
.

d. Se
$$c \neq 0$$
 e $P(Y_n \neq 0) = 1$ então $\frac{X_n}{Y_n} \xrightarrow{D} \frac{X}{c}$.

9. Fato Importante.

Sejam X, X_1, X_2, \ldots variáveis aleatórias e g uma função real de variável real contínua. Então:

a.
$$X_n \stackrel{qc}{\to} X$$
 então $g(X_n) \stackrel{qc}{\to} g(X)$.

b.
$$X_n \stackrel{P}{\to} X$$
 então $g(X_n) \stackrel{P}{\to} g(X)$.

c.
$$X_n \stackrel{D}{\to} X$$
 então $g(X_n) \stackrel{D}{\to} g(X)$.

10. Lema de Borel-Cantelli

Sejam A_1, A_2, \ldots eventos aleatórios em um espaço de probabilidade $(\Omega, \mathfrak{A}, P)$.

a. Se
$$\sum_{n=1}^{\infty} P(A_n) < \infty$$
 então $P(A_n infinitas vezes) = 0$.

b. Se
$$\sum_{n=1}^{\infty} P(A_n) = \infty$$
 e os A_n são independentes então $P(A_n infinitas vezes) = 1$.

11. Lei Fraca dos Grandes Números

Sejam X_1, X_2, \ldots variáveis aleatórias em $(\Omega, \mathfrak{A}, P)$ e S_1, S_2, \ldots as somas parciais, definidas por $S_n = X_1 + X_2 + \ldots + X_n$ que também são variáveis aleatórias em $(\Omega, \mathfrak{A}, P)$. Dizemos X_1, X_2, \ldots satisfazem a lei fraca dos grandes números se

$$\frac{S_n - E(S_n)}{n} \stackrel{P}{\to} 0.$$

Se as variáveis são identicamente distribuídas com $E(X_n) = \mu$ então:

$$\bar{X} \stackrel{P}{\to} \mu$$
.

12. Lei Forte dos Grandes Números

Sejam X_1, X_2, \ldots variáveis aleatórias em $(\Omega, \mathfrak{A}, P)$ e S_1, S_2, \ldots as somas parciais, definidas por $S_n = X_1 + X_2 + \ldots + X_n$ que também são variáveis aleatórias em $(\Omega, \mathfrak{A}, P)$. Dizemos X_1, X_2, \ldots satisfazem a lei forte dos grandes números se

$$\frac{S_n - E(S_n)}{n} \stackrel{qc}{\to} 0.$$

Se as variáveis são identicamente distribuídas com $E(X_n) = \mu$ então:

$$\bar{X} \stackrel{qc}{\to} \mu$$
.

Com esses resultados na cabeça podemos resolver vários exercícios sobre convergência.