Lecture 1: Welcome

Math 153 Section 57

Monday September 29, 2008

1 Hand out syllabus and survey

A very brief overview of the course, and an inspirational message.

Problem session scheduling.

Grading system for homework.

Final grades.

2 Review

2.1 Numbers

Natural numbers. Integers. Rationals. Reals.

2.2 Sets

The \in symbol.

How to define a set?

2.3 Intervals

Open intervals. Closed intervals. Half-open intervals.

2.4 Bounds

A number b is an **upper bound** of a set A if for all $a \in A$, $a \le b$.

A number b is a **lower bound** of a set A if for all $a \in A$, $b \le a$.

Example: (0,5). $(-\infty,12)$. $(2,\infty)$. [0,5].

Example: $\{0, 1, 2, 3, 4, \ldots\}$.

Example: $\{0, 0.9, 0.99, 0.999, 0.9999, \ldots\}$.

There may be many upper bounds; there may be none.

A set is **bounded above** if it has an upper bound.

A set is **bounded below** if it has a lower bound. A set is **bounded** if it has both a lower bound and an upper bound.

3 Least upper bound axiom

Axiom: every nonempty set of real numbers bounded above has a least upper bound.

Example: [0,3]. (0,3).

Example: $\{0, 0.9, 0.99, 0.999, 0.9999, \ldots\}$.

Example: rational numbers?