Sprawozdanie

Regulator PI przy zastosowaniu logiki rozmytej

Laboratorium komputerowe WFiIS AGH

Amadeusz Filipek

1. Wstęp

Celem ćwiczenia jest wykonanie regulatora PI w oparciu o logikę rozmytą i wykorzystanie go do sterowania układu drugiego rzędu.

Jednym z zastosowań logiki rozmytej jest sterowanie oraz regulacja. Regulator ma za zadnie automatycznie sterować pewnym procesem tak aby ten działał w odpowiedni sposób np. wiatrak chłodzący regulowany tak aby utrzymywać stałą temperaturę w pomieszczeniu. Zastosowanie logiki rozmytej do regulacji zyskuje coraz większą popularność ze względu na możliwość intuicyjnego wprowadzenia reguł i wyrażeń bliskich ludzkiemu rozumowaniu do systemu. Regulator wykorzystujący logikę rozmytą przeprowadza intuicyjne zwroty ludzkie na aparat logiki rozmytej – funkcje przynależności i reguły. Aby zweryfikować jakość działania układu sterującego wykorzystuje się takie parametry jak czas regulacji oraz przeregulowanie.

Czas regulacji t_u to czas mierzony od chwili zadziałania wymuszenia na układ do chwili, gdy wartość bezwzględna uchybu przejściowego zmaleje trwale poniżej $\delta\%$ (w ćwiczeniu przyjęto 2%).

Przeregulowanie k określa wartość bezwzględną stosunku uchybów e_1 oraz e_0 , gdzie e_0 jest największą wartością uchybu przejściowego a e_1 największą wartością uchybu przejściowego o przeciwnym do e_0 znaku. W przypadku sygnału zadanego przeregulowanie wyznaczyć można ze wzoru:

$$k = \frac{y_{max} - y_u}{y_u} \cdot 100\%$$

2. Realizacja ćwiczenia

W ramach ćwiczenia wykonano rozmyty układ wnioskujący typu Mamdani. Układ ten wykorzystano w celu sterowania procesem drugiego rzędu o transmitancji:

$$G(s) = \frac{1}{s^2 + 2s + 2}$$

Wprowadzono dwa wejścia układu wnioskującego: uchyb e oraz zmiana uchybu Δe . Układ wnioskujący na wyjściu daje zmianę sterowania Δu . W układzie sterowania należy zatem wprowadzić opóźnienie sygnału (Z^{-1} rys. 1) tak aby uzyskać sygnał sterowania $u_{i+1} = \Delta u + u_i$. Dodatkowo sygnały wejściowe oraz wyjściowe układu wnioskującego zostały przemnożone o parametry wzmacniające $G_{\Delta e} = 1$, $G_{\Delta e} = 2$ i $G_{u} = 1$ co przedstawiono na rys. 1.

Rysunek 1. Schemat układu regulującego PI przy zastosowaniu logiki rozmytej

Baza reguł układu wnioskującego została skonstruowana przy użyciu następującego wzoru:

$$N_{regul} = Ziarnistość^2$$

W zakresie ćwiczenia przetestowano następujące liczby funkcji przynależności(ziarnistości) układu: 3, 5, 7, 9. Dla każdej ziarnistości przygotowano osobną bazę reguł. Bazy reguł wyglądają następująco:

Tabela 1. Baza reguł dla 3 funkcji przynależności układu rozmytego

Δe/e	NB	ZE	PB
NB	NB	NB	ZE
ZE	NB	ZE	PB
PB	ZE	PB	PB

Tabela 2. Baza reguł dla 5 funkcji przynależności układu rozmytego

Δe/e	NB	NM	ZE	PM	PB
NB	NB	NB	NB	NM	ZE
NM	NB	NB	NM	ZE	PM
ZE	NB	NM	ZE	PM	PB
PM	NM	ZE	PM	PB	PB
PB	ZE	PM	PB	PB	PB

Tabela 3. Baza reguł dla 7 funkcji przynależności układu rozmytego

Δe/e	NB	NM	NS	ZE	PS	PM	PB
NM	NB	NB	NB	NM	NS	NS	ZE
NM	NB	NM	NM	NM	NS	ZE	PS
NS	NB	NM	NS	NS	ZE	PS	PM
ZE	NB	NM	NS	ZE	PS	PM	PB
PS	NM	NS	ZE	PS	PS	PM	PB
PM	NS	ZE	PS	PM	PM	PM	PB
PB	ZE	PS	PS	PM	PB	PB	PB

Tabela 4. Baza reguł dla 9 funkcji przynależności układu rozmytego

Δe/e	NB	NM	NS	NVS	ZE	PVS	PS	PM	PB
NB	NB	NB	NB	NB	NB	NM	NS	NVS	ZE
NM	NB	NB	NB	NB	NM	NS	NVS	ZE	PVS
NS	NB	NB	NB	NM	NS	NVS	ZE	PVS	PS
NVS	NB	NB	NM	NS	NVS	ZE	PVS	PS	PM
ZE	NB	NM	NS	NVS	ZE	PVS	PS	PM	PB
PVS	NM	NS	NVS	ZE	PVS	PS	PM	PB	PB
PS	NS	NVS	ZE	PVS	PS	PM	PB	PB	PB
PM	NVS	ZE	PVS	PS	PM	PB	PB	PB	PB
PB	ZE	PVS	PS	PM	PB	PB	PB	PB	PB

Skróty w tabelach tworzące wyrazenia lingwistyczne oznaczają: N – negative, P – positive, B – big, M – medium, S – small, V – very, ZE – zero. Bazy reguł tworzone są symetrycznie. Funkcje przynależności są postaci trójkątnej oraz trapezowej na brzegach. Przykładowe funkcje przynależności układu rozmytego dla ziarnistości równej 5 przedstawione są na poniższym wykresie. Pozostałe wejścia i wyjście mają taką samą postać.

Wykres 1. Funkcje przynależności wejścia Δe dla ziarnistości równej 5

Dla tak wykonanych układów sterujących zbadano odpowiedź na wymuszenie w postaci funkcji skokowej Heavyside'a. Uzyskane przebiegi przedstawione są na poniższych wykresach.

Wykres 2. Odpowiedź sterowanego procesu (fioletowy) na tle wymuszenia skokowego(zółty) dla ziarnistości 3

Wykres 3. Odpowiedź sterowanego procesu (fioletowy) na tle wymuszenia skokowego(zółty) dla ziarnistości 5

Wykres 4. Odpowiedź sterowanego procesu (fioletowy) na tle wymuszenia skokowego(zółty) dla ziarnistości 7

Wykres 5. Odpowiedź sterowanego procesu(fioletowy) na tle wymuszenia skokowego(żółty) dla ziarnistości 9

Wszystkie przebiegi mają podobny kształt jednak różnią się zarówno czasem regulacji jak i przeregulowaniem. Na każdym przebiegu widać charakterystyczny pik po krótym odpowiedź lekko opada. W układach klasycznych typu PID nie obserwuje się takiej odpowiedzi. W poniższej tabeli zestawiono uzyskane wartości czasów regulacji i przeregulowania dla badanych ziarnistości układu rozmytego.

Tabela 5. Uzyskane wartości czasu regulacji i przeregulowania dla badanych ziarnistości układu

Ziarnistość	Czas regulacji	Przeregulowanie [%]
3	7	5
5	5.7	4.3
7	7.85	9.5
9	7.2	6

Na podstawie powyższej tabeli widać, że najlepszy rezultat uzyskał układ o ziarnistości 5. Okazuje się, że zwiększenie liczby funkcji przynależności oraz reguł nie prowadzi do lepszego działania układu. Ponadto, układ o ziarnistości 3 uzyskał lepszy wynik niż układy o ziarnistości 7 oraz 9.

3. Podsumowanie

W zakresie ćwiczenia wykonano regulator procesu drugiego rzędu przy wykorzystaniu rozmytego układu wnioskującego. Zbadano cztery konfiguracje układu wnioskującego przy różnej ilości funkcji przynależności oraz ilości reguł. Dla każdej konfiguracji zmierzono odpowiedź procesu regulowanego w odpowiedzi na skok jednostkowy. Najlepszy rezultat, o najniższym czasie regulacji oraz przeregulowaniu, uzyskano dla konfiguracji o pięciu funkcjach przynależnosci. Zaobserwowano, że wszystkie uzyskane przebiegi posiadają charakterystyczny pik na zboczu narastania odpowiedzi. Z tego względu uzyskane przebiegi znacznie różnią się od odpowiedzi klasycznego regulatora PID. Układy wykorzystujące logikę rozmytą dobrze mogą być z powodzeniem wykorzystywane do regulacji wielu procesów.