Оглавление

1.	Математика		2
		Математический анализ	
	1.2.	Дискретная математика и математическая логика	7
		Алгебра и теория чисел	
	1.4.	Теория вероятностей	19
2.	Алгоритмы и структуры данных		
	2.1.	Оценка алгоритмов	22
	2.2.	Простейшие алгоритмы	22
	2.3.	Простейшие структуры данных	32
3.	Про	ограммирование	34

1. Математика

1.1. Математический анализ

Предел

Предел последовательности

Число A будем называть **пределом последовательности** $\{x_n\}_{n=1}^{n=\infty}$, если для любого $\varepsilon > 0$ можно найти номер $n_0 = n_0(\varepsilon)$ (зависящий от ε), начиная с которого все члены последовательности будут удовлетворять неравенству $|x_n - A| < \varepsilon$.

Обозначается: $\lim_{n\to\infty} x_n = A$ $\forall \varepsilon > 0, \ \exists n_0 = n_0(\varepsilon), \ \forall n > n_0 : |x_n - A| < \varepsilon$

Предел функции

Определение предела функции по Коши

Число A называется пределом функции f(x) при x, стремящемся к x_0 (или в точке x_0), если для любого $\varepsilon > 0$ можно найти число $\delta = \delta(\varepsilon) > 0$ так, что для всех значений $x \in D(f)$, для которых выполнено неравенство $0 < |x - x_0| < \delta$, справедливо неравенство $|f(x) - A| < \varepsilon$.

Обозначается: $\lim_{x\to x_0} f(x) = A$ $\forall \varepsilon > 0, \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \ 0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \varepsilon$

Определение предела функции по Гейне

Число A называется **пределом функции** f(x) при x, стремящемся к x_0 (или в точке x_0), если для любой последовательности $\{x_n\}$ точек, взятых из области определения функции, сходящейся к x_0 , но не содержащей x_0 в качестве одного из своих элементов, последовательность значений функции $f(x_n)$ будет стремиться к числу A.

Обозначения О() и о()

Пусть f(x) и g(x) — две функции, определенные в некоторой проколотой окрестности точки x_0 , причем в этой окрестности g не обращается в ноль. Говорят, что:

• f является «О» большим от g при $x \to x_0$, если существует такая константа C > 0, что для всех x из некоторой окрестности точки x_0 имеет

место неравенство: $|f(x)| \leq C|g(x)|$;

• f является «о» малым от g при $x \to x_0$, если для любого $\varepsilon > 0$ найдется такая проколотая окрестность U'_{x_0} точки x_0 , что для всех $x \in U'_{x_0}$ имеет место неравенство: $|f(x)| < \varepsilon |g(x)|$.

Иначе говоря, в первом случае отношение $\frac{|f|}{|g|} \le C$ в окрестности точки x_0 (то есть ограничено сверху), а во втором оно стремится к нулю при $x \to x_0$.

Запись $x^2 = o(x)$ означает, что x^2 при $x \to 0$ является бесконечно малой функцией более высокого порядка, по сравнению с функцией x.

Доказательство и применение асимптотических оценок, при необходимости переформулировка в «терминах эпсилон и дельта»

Если $\lim_{x\to a}\frac{f(x)}{g(x)}=0$, то говорят, что f(x)=o(g(x)) при $x\to a$. Например, $x^2=o(x)$ при $x\to 0$, поскольку $\lim_{x\to 0}\frac{x^2}{x}=\lim_{x\to 0}x=0$.

Если предел отношения $\frac{|f(x)|}{|g(x)|}$ при $x \to a$ конечен, то f(x) = O(g(x)) при $x \to a$.

Например, $x+x^2 = O(x)$ при $x \to 0$, поскольку $\lim_{x \to 0} \frac{x+x^2}{x} = \lim_{x \to 0} 1 + x = 0$ 1.

Непрерывность

Непрерывность в точке:

Определение 1: Пусть $x_0 \in D(f)$ - предельная точка области определения функции f(x). (Предельная точка множества — это такая точка, любая проколотая окрестность которой пересекается с этим множеством.) Будем говорить, что функция f(x) непрерывна в точке x_0 , если $\lim_{x\to x_0} f(x) =$ $f(x_0)$.

Если точка x_0 является предельной точкой области D(f), но функция не является непрерывной в этой точке, то точка x_0 называется **точкой разрыва** функции f(x).

Определение 2: Функция f(x) непрерывна в точке x_0 , если $\lim_{x\to x_0^{-0}} f(x) =$ $\lim_{x \to x_0^{+0}} f(x) = f(x_0).$

Если односторонние пределы в точке x_0 существуют и равны между собой, но функция в этой точке не определена или $f(x_0) \neq \lim_{x \to x_0^{-0}} f(x) =$ $\lim_{x \to x_0^{+0}} f(x)$, то точка x_0 называется точкой устранимого разрыва.

Если существуют конечные односторонние пределы, но они не равны между собой, то точка x_0 , называется **точкой разрыва первого рода**.

Если в точке x_0 хотя бы один конечный односторонний предел не существует или существует и бесконечен, то эта точка называется **точкой** разрыва второго рода.

Критерий непрерывности функции в точке:

Функция f(x) будет непрерывной в точке x_0 тогда и только тогда, когда ее приращение в этой точке будет стремиться к нулю, если приращение аргумента стремится к нулю.

Если
$$\triangle x \to 0$$
, то $\triangle f(x_0) \to 0$.

Непрерывность на множестве:

Определение: Будем говорить, что функция f(x) непрерывна на множестве, если она непрерывна в каждой точке этого множества.

Первая теорема Вейерштрасса: Функция, непрерывная на отрезке, ограничена.

Вторая теорема Вейерштрасса: Если функция непрерывна на отрезке, то на этом отрезке она достигает своих наибольшего и наименьшего значений.

Первая теорема Коши о промежуточном значении непрерывной на отрезке функции: Пусть функция f(x) непрерывна на отрезке [a,b] и на концах этого отрезка принимает значения разных знаков. Тогда внутри отрезка найдется, по крайней мере,одна точка, в которой f(x) = 0.

Равномерная непрерывность:

Числовая функция вещественного переменного $f: M \subset \mathbb{R} \to \mathbb{R}$ равномерно непрерывна, если: $\forall \varepsilon > 0, \ \exists \delta = \delta(\varepsilon) > 0 : \forall x_1, x_2 \in M \ (|x_1 - x_2| < \delta) \Rightarrow (|f(x_1) - f(x_2)| < \varepsilon).$

Производная

Пусть функция y = f(x) определена в некоторой окрестности точки x_0 . Допустим, что существует предел отношения приращения функции в этой точке к вызвавшему его приращению аргумента, когда последнее стремится

к нулю: $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$. Тогда этот предел называется **производной** функции в точке x_0 .

T.o.
$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x}$$
.

Первообразная

Первообразной для данной функции f(x) называют такую функцию F(x), производная которой равна f (на всей области определения f),), то есть F'(x) = f(x).

Дифференциал

Дифференциал функции одной переменной:

Функция f (x) называется **дифференцируемой** в точке x_0 , если существует число A такое, что $\triangle f(x_0) = A \triangle x + o(\triangle x)$ при $\triangle x \to 0$.

Допустим, что функция f(x) дифференцируема в точке x_0 . Тогда выражение $f'(x_0) \triangle x$ будем называть **дифференциалом** этой функции в точке x_0 и обозначать $df(x_0)$ или df.

Дифференциал функции многих переменных:

Пусть есть функция $f(x_1...x_n)$, дифференцируемая в точке $a(x_1...x_n)$, тогда её дифференциалом будет: $df = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + ... + \frac{\partial f}{\partial x_n} dx_n$, где $dx_i = \triangle x_i$.

Нахождение экстремума функции от одной и от многих переменных

Нахождение экстремума функции от одной переменной:

Точка x_0 называется **точкой локального максимума (минимума)** функции f(x), если существует такая окрестность этой точки, что для всех x из этой окрестности выполняется неравенство: $f(x) \leq f(x_0)$ ($f(x) \geq f(x_0)$).

Необходимое условие экстремума: Если функция y = f(x) имеет экстремум в точке x_0 , то ее производная $f'(x_0)$ либо равна нулю, либо не существует.

Первое достаточное условие экстремума: Пусть для функции y = f(x) выполнены следующие условия:

• функция непрерывна в окрестности точки x_0 ;

- $f'(x_0) = 0$ или $f'(x_0)$ не существует;
- производная f'(x) при переходе через точку x_0 меняет свой знак.

Тогда в точке $x = x_0$ функция y = f(x) имеет экстремум, причем это **минимум**, если при переходе через точку x_0 производная меняет свой знак с минуса на плюс; **максимум**, если при переходе через точку x_0 производная меняет свой знак с плюса на минус.

Второе достаточное условие экстремума: Пусть для функции y = f(x) выполнены следующие условия:

- она непрерывна в окрестности точки x_0 ;
- $f'(x_0) = 0$;
- $f''(x_0) \neq 0$.

Тогда в точке x_0 достигается экстремум, причем, если $f''(x_0) > 0$, то в точке $x = x_0$ функция y = f(x) имеет **минимум**; если $f''(x_0) < 0$, то в точке $x = x_0$ функция y = f(x) достигает **максимум**.

Нахождение экстремума функции от многих переменных:

Пусть функция $f(x_1...x_n)$ определена на множестве $E \in \mathbb{R}^n$ и точка $x^0 \in E$. Точка x^0 называется **точкой локального минимума (максимума)** функции $f(x_1...x_n)$ если $\exists U(x^0) : \forall x \in U(x^0) \cap E : f(x) \geq f(x^0)(f(x) \leq f(x^0))$.

Необходимое условие экстремума: Пусть функция $f(x_1...x_n)$ определена в $U(x^0)$ и имеет локальный экстремум в точке x_0 . Если $\exists \frac{\partial f}{\partial x_k}(x^0)$, $1 \le k \le n$, то $\frac{\partial f}{\partial x_k}(x^0) = 0 \ \forall k = 1...n$.

Достаточное условие экстремума: Пусть функция $f(x_1...x_n)$ определена в $U(x^0)$ и имеет в этой окрестности непрерывные частные производные второго порядка. Пусть $df(x^0) = 0$. Если $d^2f(x^0)$ является знакоопределенной квадратичной формой, тогда x^0 - точка локального экстремума, причем если $d^2f(x^0) > 0$, то x^0 - локальный минимум, а если $d^2f(x^0) < 0$, то x^0 - локальный максимум.

Формула Тейлора

Если функция f(x) имеет n+1 производную на отрезке с концами a и x, то для произвольного положительного числа p найдётся точка ξ , лежащая между a и x, такая, что (или пусть действительная функция f определена в неко-

торой окрестности точки
$$a$$
): $f(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k + \left(\frac{x-a}{x-\xi}\right)^p \frac{(x-\xi)^{n+1}}{n!p} f^{(n+1)}(\xi)$.

1.2. Дискретная математика и математическая логика

Отображения и отношения и их свойства

Бинарное отношение на множестве A — любое подмножество $R \subseteq A^2 = A \times A$. Примерами служат равенство, неравенство, эквивалентность

Транзитивное замыкание отношения

Транзитивное замыкание в теории множеств — это операция на бинарных отношениях. Транзитивное замыкание бинарного отношения R на множестве X есть наименьшее транзитивное отношение на множестве X, включающее R.

Пусть множество A представляет собой следующее множество деталей и конструкций: $A = \{$ Болт, Гайка, Двигатель, Автомобиль, Колесо, Ось $\}$, причем некоторые из деталей и конструкций могут использоваться при сборке других конструкций. Взаимосвязь деталей описывается отношением R(«непосредственно используется в») и состоит из следующих кортежей:

Конструкция	Где используется
Болт	Двигатель
Болт	Колесо
Гайка	Двигатель
Гайка	Колесо
Двигатель	Автомобиль
Колесо	Автомобиль
Ось	Колесо

Таблица 1: Отношение R.

Очевидный смысл замыкания R состоит в описании включения деталей друг в друга не только непосредственно, а через использование их в промежуточных деталях, например, болт используется в автомобиле, так как он используется в двигателе, а двигатель используется в автомобиле.

Транзитивное замыкание состоит из кортежей (добавленные кортежи помечены жирным):

Конструкция	Где используется
Болт	Двигатель
Болт	Колесо
Гайка	Двигатель
Гайка	Колесо
Двигатель	Автомобиль
Колесо	Автомобиль
Ось	Колесо
Болт	Автомобиль
Гайка	Автомобиль
Ось	Автомобиль

Таблица 2: Транзитивное замыкание отношения R.

Эквивалентность

Отношение эквивалентности (\sim) на множестве X — это бинарное отношение, для которого выполнены следующие условия:

- рефлексивность: $a \sim a$ для любого a в X;
- симметричность: если $a \sim b$, то $b \sim a$;
- транзитивность: если $a \sim b$ и $b \sim c$, то $a \sim c$.

Запись вида « $a \sim b$ » читается как «a эквивалентно b».

Пример: Сравнение по модулю, $a \equiv b \pmod{n}$.

Отношения порядка

Бинарное отношение R на множестве X называется отношением нестрогого частичного порядка (отношением порядка, отношением рефлексивного порядка), если имеют место:

- Рефлексивность: $\forall x : xRx;$
- Антисимметричность: $\forall x, y : xRy \land yRx \Rightarrow x = y;$
- Транзитивность: $\forall x, y, z : xRy \land yRz \Rightarrow xRz$.

Множество X, на котором введено отношение частичного порядка, называется частично упорядоченным.

Пример: На множестве вещественных чисел отношения «больше» и «меньше» являются отношениями строгого порядка, а «больше или равно» и «меньше или равно» — нестрогого.

Логика высказываний

1

Кванторы

Квантор — общее название для логических операций, ограничивающих область истинности какого-либо предиката и создающих высказывание. Чаще всего упоминают:

- Квантор всеобщности (обозначение: ∀, читается: «для любого...», «для каждого...», «для всех...» или «каждый...», «любой...», «все...»).
- Квантор существования (обозначение: \exists , читается: «существует...» или «найдётся...»).

Метод математической индукции

1

Основные понятия теории графов

Ориентированные графы

Ориентированным графом G называется пара G = (V, E), где V — множество вершин, а $E \subset V \times V$ — множество рёбер.

Ребром ориентированного графа называют упорядоченную пару вершин $(v,u) \in E$.

В графе ребро, концы которого совпадают, то есть e=(v,v), называется **петлей**.

Два ребра, имеющие общую концевую вершину, то есть $e_1 = (v, u_1)$ и $e_2 = (v, u_2)$, называются **смежными**.

Если имеется ребро $(v, u) \in E$, то говорят:

v - предок u;

- u и v смежные;
- Вершина u инцидентна ребру (v, u);
- Вершина v инцидентна ребру (v, u).

Кратные рёбра - это два и более рёбер, инцидентных одним и тем же двум вершинам.

Неориентированные графы

Неориентированным графом G называется пара G = (V, E), где V — множество вершин, а $E \subset \{\{v, u\} : v, u \in V\}$ — множество рёбер.

Ребром в неориентированном графе называют неупорядоченную пару вершин $\{v,u\} \in E$.

Простым графом G называется граф, в котором нет петель и кратных рёбер.

Степенью вершины $degv_i$ в неориентированном графе называют число рёбер, инцидентных v_i .

Изолированной вершиной в неориентированном графе называют вершину степени 0.

Часто используемые графы

Полный граф — граф, в котором каждая пара различных вершин смежна.

Регулярный граф — граф, степени всех вершин которого равны, то есть каждая вершина имеет одинаковое количество соседей.

Плана́рный граф — граф, который может быть изображён на плоскости без пересечения рёбер. Иначе говоря, граф планарен, если он изоморфен некоторому плоскому графу, то есть графу, изображённому на плоскости так, что его вершины — это точки плоскости, а рёбра — непересекающиеся кривые на ней.

Ещё полезные определения:

Маршрут — чередующаяся последовательность вершин и рёбер $v_0, e_1, v_1, e_2, v_2, ..., e_k, v_k$, в которой любые два соседних элемента инцидентны. Если $v_0 = v_k$, то маршрут замкнут, иначе открыт.

Путь — последовательность рёбер (в неориентированном графе) и/или дуг (в ориентированном графе), такая, что конец одной дуги (ребра) является началом другой дуги (ребра).

Простой (вершинно-простой) путь — путь, в котором каждая из вершин графа встречается не более одного раза.

Рёберно-простой путь — путь, в котором каждое из рёбер графа встречается не более одного раза.

Цикл - замкнутый маршрут, все рёбра которого различны.

Эйлеровым путем в графе называется путь, который проходит по каждому ребру, причем ровно один раз.

Эйлеров цикл — замкнутый эйлеров путь.

Граф называется эйлеровым, если он содержит эйлеров цикл.

Гамильтоновым путём называется простой путь, проходящий через каждую вершину графа ровно один раз.(и дальше по аналогии со всем эйлеровым)

Лемма о рукопожатиях

Неориентированный граф

Лемма: Сумма степеней всех вершин графа — чётное число, равное удвоенному числу рёбер: $\sum_{v \in V(G)} degv = 2*|E(G)|$

Следствие: Число рёбер в полном графе $\frac{n*(n-1)}{2}$.

Ориентированный граф

Лемма: Сумма входящих и исходящих степеней всех вершин ориентированного графа — чётное число, равное удвоенному числу рёбер: $\sum_{v \in V(G)} deg^-v + \sum_{v \in V(G)} deg^+v = 2*|E(G)|$

Критерий двудольности

Двудольный граф — граф, множество вершин которого можно разбить на две части таким образом, что каждое ребро графа соединяет какую-то вершину из одной части с какой-то вершиной другой части, то есть не существует ребра, соединяющего две вершины из одной и той же части.

Двудольный граф с n вершинами в одной доле и m во второй обозначается $K_{n,m}$.

Критерий двудольности Граф является **двудольным** тогда и только тогда, когда он содержит более одной вершины и все его циклы имеют

четную длину.

Оценки числа ребер

- Число рёбер в **полном графе** $\frac{n*(n-1)}{2}$.
- Максимальное число ребер на n вершинах можно построить именно в случае, когда граф связный.
- Любое дерево с n вершинами содержит n-1 ребро.
- Не забываем про лемму о рукопожатиях.
- Если речь идет о двудольных графах, полезно помнить, что число ребер в полном двудольном графе с n_1 и n_2 вершинами в соответствующих долях равно $n_1 * n_2$.

Характеризация деревьев

Дерево — связный ациклический граф. Связность означает наличие путей между любой парой вершин, ацикличность — отсутствие циклов и то, что между парами вершин имеется только по одному пути.

 $\mathbf{\Pi ec}$ — граф, являющийся набором непересекающихся деревьев.

Остовное дерево — ациклический связный подграф данного связного неориентированного графа, в который входят все его вершины.

N-арные деревья:

- N-арное дерево (неориентированное) это дерево (обычное, неориентированное), в котором степени вершин не превосходят N+1.
- N-арное дерево ориентированное) это ориентированное дерево, в котором исходящие степени вершин (число исходящих рёбер) не превосходят N.

1.3. Алгебра и теория чисел

Группы

Непустое множество G с заданной на нём бинарной операцией $*: G \times G \to G$ называется группой (G,*), если выполнены следующие аксиомы:

1. ассоциативность:

$$\forall (a, b, c \in G): (a * b) * c = a * (b * c);$$

2. наличие нейтрального элемента:

$$\exists e \in G \quad \forall a \in G : (e * a = a * e = a);$$

3. наличие обратного элемента:

$$\forall a \in G \quad \exists a^{-1} \in G : (a * a^{-1} = a^{-1} * a = e).$$

Поля

Множество F с введёнными на нём алгебраическими операциями сложения + и умножения * (+: $F \times F \to F$, *: $F \times F \to F$, $F \mapsto F \to F$, $F \mapsto F \mapsto F$, $F \mapsto F$

1. Коммутативность сложения:

$$\forall a, b \in F \quad a+b=b+a.$$

2. Ассоциативность сложения:

$$\forall a, b, c \in F \quad (a+b) + c = a + (b+c).$$

3. Существование нулевого элемента:

$$\exists 0 \in F : \forall a \in F \quad a+0 = 0+a = a.$$

4. Существование противоположного элемента:

$$\forall a \in F \ \exists (-a) \in F : a + (-a) = 0.$$

5. Коммутативность умножения:

$$\forall a, b \in F \quad a * b = b * a.$$

6. Ассоциативность умножения:

$$\forall a, b, c \in F \quad (a * b) * c = a * (b * c).$$

7. Существование единичного элемента:

$$\exists e \in F \setminus \{0\} : \forall a \in F \quad a * e = a.$$

8. Существование обратного элемента для ненулевых элементов:

$$\forall a \in F: a \neq 0) \ \exists a^{-1} \in F: a * a^{-1} = e.$$

9. Дистрибутивность умножения относительно сложения:

$$\forall a, b, c \in F \quad (a+b) * c = (a*c) + (b*c).$$

Кольца

Множество R, на котором заданы две бинарные операции: + и * (называемые сложение и умножение), со следующими свойствами, выполняющимися для любых $a,b,c\in R$:

1. Коммутативность сложения:

$$a+b=b+a$$
.

2. Ассоциативность сложения:

$$(a+b) + c = a + (b+c).$$

3. Существование нулевого элемента:

$$\exists 0 \in R: a + 0 = 0 + a = a.$$

4. Существование противоположного элемента:

$$\forall a \in R \ \exists (-a) \in R : a + (-a) = 0.$$

5. Ассоциативность умножения:

$$(a * b) * c = a * (b * c).$$

6. Дистрибутивность:

$$a * (b + c) = (a * b) + (a * c)$$

$$(b+c)*a = (b*a) + (c*a).$$

Факторизация

Факторизацией натурального числа называется его разложение в произведение простых множителей. Может быть выполнена, например, **перебором возможных делителей**. Способ заключается в том, чтобы последовательно делить факторизуемое число n на натуральные числа от 1 до $\lfloor \sqrt{n} \rfloor$. Формально достаточно делить только на простые числа в этом интервале, однако, для этого необходимо знать их множество. На практике составляется таблица простых чисел и производится проверка небольших чисел (например, до 2^{16}). Для очень больших чисел алгоритм не используется в силу низкой скорости работы.

Идеал

Для кольца R идеалом называется подкольцо, замкнутое относительно умножения на элементы из R.

Идеалом кольца R называется такое подкольцо (подкольцо кольца (K, +, *) рассматривается как подмножество $R \subset K$, замкнутое относительно операций + и * из основного кольца) I кольца R, что

- 1. $\forall i \in I \ \forall r \in R$ произведение $ir \in I$ (условие на правые идеалы);
- 2. $\forall i \in I \ \forall r \in R$ произведение $ri \in I$ (условие на левые идеалы);

Сравнения

Если два целых числа a и b при делении на m дают одинаковые остатки, то они называются сравнимыми (или равноостаточными) по модулю числа m.

Сравнимость чисел a и b записывается в виде формулы (сравнения):

$$a \equiv b \pmod{m}$$

. Число m называется модулем сравнения.

Алгоритм Евклида

Алгоритм Евклида – эффективный алгоритм для нахождения наибольшего общего делителя двух целых чисел.

Пусть a и b — целые числа, не равные одновременно нулю, и последовательность чисел $a>b>r_1>r_2>r_3>r_4>\ldots>r_n$ определена тем, что каждое r_k — это остаток от деления предпредыдущего числа на предыдущее, а предпоследнее делится на последнее нацело, то есть:

```
a = bq_0 + r_1,
b = r_1q_1 + r_2,
r_1 = r_2q_2 + r_3,
...
r_{k-2} = r_{k-1}q_{k-1} + r_k,
...
r_{n-2} = r_{n-1}q_{n-1} + r_n,
r_{n-1} = r_nq_n.
```

Тогда HOД(a,b), наибольший общий делитель a и b, равен r_n , последнему ненулевому члену этой последовательности.

Теоремы Эйлера и Ферма

Теорема Эйлера: если a и m взаимно просты, то $a^{\varphi(m)} \equiv 1 \pmod{m}$, где $\varphi(m)$ — функция Эйлера (количество натуральных чисел, меньших m и взаимно простых с ним).

Малая теорема Ферма: если a не делится на простое число p, то $a^{p-1} \equiv 1 \pmod{p}$.

Кольцо многочленов

Многочлен от x с коэффициентами в поле k — это выражение вида $p=p_mx^m+p_{m-1}x^{m-1}+\ldots+p_1x+p_0$, где p_0,\ldots,p_m — элементы k, коэффициенты p,a,x,x^2,\ldots — формальные символы («степени х»). Такие выражения можно складывать и перемножать по обычным правилам действий с алгебраическими выражениями (коммутативность сложения, дистрибутивность, приведение подобных членов и т. д.). Члены p_kx^k с нулевым коэффициентом p_k при записи обычно опускаются. Используя символ суммы, многочлены записывают в более компактном виде:

$$p = p_m x^m + p_{m-1} x^{m-1} + \ldots + p_1 x + p_0 = \sum_{k=0}^m p_k x^k.$$

Множество всех многочленов с коэффициентами в k образует коммутативное кольцо, обозначаемое k[x] и называемое **кольцом многочленов** над k.

Число корней многочлена

Корень многочлена (не равного тождественно нулю) $a_0 + a_1 x + \ldots + a_n x^n$ над полем K — это элемент $c \in K$ (либо элемент расширения поля K), такой, что выполняются два следующих равносильных условия:

- данный многочлен делится на многочлен x-c;
- подстановка элемента с вместо х обращает уравнение $a_0 + a_1 x + \ldots + a_n x^n = 0$ в тождество.

Число корней многочлена степени n не превышает n даже в том случае, если кратные корни учитывать кратное количество раз.

Линейные пространства и операторы

Линейное пространство V(F) над полем F — это упорядоченная четвёрка $(V, F, +, \cdot)$, где

- \bullet V непустое множество элементов произвольной природы, которые называются векторами;
- F поле, элементы которого называются скалярами;
- Определена операция сложения векторов $V \times V \to V$, сопоставляющая каждой паре элементов \mathbf{x}, \mathbf{y} множества V единственный элемент множества V, называемый их суммой и обозначаемый $\mathbf{x} + \mathbf{y}$;
- Определена операция умножения векторов на скаляры $F \times V \to V$, сопоставляющая каждому элементу λ поля F и каждому элементу \mathbf{x} множества V единственный элемент множества V, обозначаемый $\lambda \cdot \mathbf{x}$ или $\lambda \mathbf{x}$;

причём заданные операции удовлетворяют следующим аксиомам — аксиомам линейного (векторного) пространства:

- $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$, для любых $\mathbf{x}, \mathbf{y} \in V$ (коммутативность сложения);
- $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$, для любых $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ (ассоциативность сложения);
- существует такой элемент $\mathbf{0} \in V$, что $\mathbf{x} + \mathbf{0} = \mathbf{0} + \mathbf{x} = \mathbf{x}$ для любого $\mathbf{x} \in V$ (существование нейтрального элемента относительно сложения), называемый нулевым вектором или просто нулём пространства V;
- для любого $\mathbf{x} \in V$ существует такой элемент $-\mathbf{x} \in V$, что $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$, называемый вектором, противоположным вектору \mathbf{x} ;
- $\alpha(\beta \mathbf{x}) = (\alpha \beta) \mathbf{x}$ (ассоциативность умножения на скаляр);
- $1 \cdot \mathbf{x} = \mathbf{x}$ (унитарность: умножение на нейтральный (по умножению) элемент поля F сохраняет вектор).
- $(\alpha + \beta)$ **x** = α **x** + β **x** (дистрибутивность умножения вектора на скаляр относительно сложения скаляров);
- $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$ (дистрибутивность умножения вектора на скаляр относительно сложения векторов).

Линейным отображением (оператором) векторного пространства L_K над полем K в векторное пространство M_K над тем же полем K (ли-

нейным оператором из L_K в M_K) называется отображение $f: L_K \to M_K$, удовлетворяющее условию линейности:

- f(x+y) = f(x) + f(y),
- $f(\alpha x) = \alpha f(x)$.

для всех $x, y \in L_K$ и $\alpha \in K$.

Базис, размерность, ранг

Рангом системы строк (столбцов) матрицы A с m строк и n столбцов называется максимальное число линейно независимых строк.

Число столбцов и строк задают размерность матрицы.

Векторы $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ называются линейно зависимыми, если существует их нетривиальная линейная комбинация, значение которой равно нулю; то есть $\alpha_1\mathbf{x}_1 + \alpha_2\mathbf{x}_2 + \dots + \alpha_n\mathbf{x}_n = \mathbf{0}$ при некоторых коэффициентах $\alpha_1, \alpha_2, \dots, \alpha_n \in F$, причём хотя бы один из коэффициентов α_i отличен от нуля.

В противном случае эти векторы называются линейно независимыми.

Число элементов (мощность) максимального линейно независимого множества элементов векторного пространства не зависит от выбора этого множества. Данное число называется рангом, или размерностью, пространства, а само это множество — базисом. Элементы базиса именуют базисными векторами. Размерность пространства чаще всего обозначается символом dim.

Собственные числа и собственные векторы

Пусть L — линейное пространство над полем $K,\ A{:}\ L\to L$ — линейное преобразование.

Собственным вектором линейного преобразования A называется такой ненулевой вектор $x \in L$, что для некоторого $\lambda \in K$ $Ax = \lambda x$.

Собственным значением (собственным числом) линейного преобразования A называется такое число $\lambda \in K$, для которого существует собственный вектор, то есть уравнение $Ax = \lambda x$ имеет ненулевое решение $x \in L$.

Упрощённо говоря, собственный вектор — любой ненулевой вектор x, который отображается в коллинеарный ему вектор λx оператором A, а соответствующий скаляр λ называется собственным значением оператора.

Характеристический многочлен

Для данной матрицы $A, \chi(\lambda) = \det(A - \lambda E)$, где E — единичная матрица, является многочленом от λ , который называется характеристическим многочленом матрицы A.

1.4. Теория вероятностей

Зависимые и независимые события

Два события называются **независимыми**, если появление одного из них не изменяет вероятность появления другого. Например, если в цехе работают две автоматические линии, по условиям производства не взаимосвязанные, то остановки этих линий являются независимыми событиями.

События называются **зависимыми**, если одно из них влияет на вероятность появления другого. Например, две производственные установки связаны единым технологическим циклом. Тогда вероятность выхода из строя одной из них зависит от того, в каком состоянии находится другая.

Условные вероятности

Вероятность одного события B, вычисленная в предположении осуществления другого события A, называется условной вероятностью события B и обозначается $P\{B|A\}$.

Формула полной вероятности

Если событие A наступает только при условии появления одного из событий $B_1, B_2, \dots B_n$, образующих полную группу несовместных событий, то вероятность события A равна сумме произведений вероятностей каждого из

событий $B_1,B_2,\dots B_n$ на соответствующую условную вероятность события $B_1,B_2,\dots B_n$: $P\{A\}=\sum\limits_{i=1}^n P\{B_i\}P\{A|B_i\}.$ При этом события $B_i,\ i=1,\dots,n$ называются гипотезами, а вероятности

При этом события $B_i,\ i=1,\ldots,n$ называются гипотезами, а вероятности $P\{B_i\}$ — априорными.

Математическое ожидание

Математическое ожидание дискретной случайной величины X вычисляется как сумма произведений значений x_i , которые принимает случайная величина X, на соответствующие вероятности p_i : $M[X] = \sum_{i=1}^{\infty} x_i \, p_i$.

Задание. Вероятность попадания в цель при одном выстреле равна 0,8 и уменьшается с каждым выстрелом на 0,1. Составить закон распределения числа попаданий в цель, если сделано три выстрела. Найти математическое ожидание, этой случайной величины.

Решение. Введем дискретную случайную величину X = (Число попаданий в цель). X может принимать значения 0, 1, 2 и 3. Найдем соответствующие вероятности. Вероятность не попасть 3 раза: 0, 2*0, 3*0, 4. Вероятность не попасть 2 раза: 0, 2*0, 3*0, 6+0, 2*0, 7*0, 4+0, 8*0, 3*0, 4. И т.д. Мат. ожидание будет 0*0, 2*0, 3*0, 4+1*0, 2*0, 3*0, 6+0, 2*0, 7*0, 4+0, 8*0, 3*0, 4 и т.д.

Второй момент

Начальным моментом s-го порядка прерывной случайной величины называется сумма вида: $\alpha_s[X] = \sum_{i=1}^\infty x_i^s \, p_i.$

Математическое ожидание – первый начальный момент случайной величины.

Неравенства Маркова и Чебышёва

Неравенство Маркова дает вероятностную оценку того, что значение неотрицательной случайной величины превзойдет некоторую константу через известное математическое ожидание. Когда никаких других данных о

распределении нет, неравенство дает некоторую информацию, хотя зачастую оценка груба или тривиальна.

Пусть X - случайная величина, принимающая неотрицательные значения, M(X) - ее конечное математическое ожидание, то для любых a>0 выполняется: $P(X\geq a)\leq \frac{M(X)}{a}$.

Задача: Среднее количество вызовов, поступающих на коммутатор завода в течение часа, равно 300. Оценить вероятность того, что в течение следующего часа число вызовов на коммутатор превысит 400. **Решение**: По условию M(X)=300. Воспользуемся формулой (неравенством Маркова): $P(X \ge 400) \le \frac{300}{400} = 0,75$, т.е. вероятность того, что число вызовов превысит 400, будет не более 0,75.

Неравенство Чёбышева показывает, что случайная величина принимает значения близкие к среднему (математическому ожиданию) и дает оценку вероятности больших отклонений.

$$P(|X - M(X)| \ge a) \le \frac{D(X)}{a^2}, a > 0$$

2. Алгоритмы и структуры данных

Нужно уметь написать код для перечисленных ниже элементарных алгоритмов.

2.1. Оценка алгоритмов

Мы рассчитываем, что вы понимаете, какое количество операций и объём дополнительной памяти необходимы для обсуждаемых алгоритмов и из каких соображений это получается.

2.2. Простейшие алгоритмы

Поиск заданного элемента

В отсортированном массиве:

Бинарный поиск:

- 1. Определение значения элемента в середине структуры данных. Полученное значение сравнивается с ключом.
- 2. Если ключ меньше значения середины, то поиск осуществляется в первой половине элементов, иначе во второй.
- 3. Поиск сводится к тому, что вновь определяется значение серединного элемента в выбранной половине и сравнивается с ключом.
- 4. Процесс продолжается до тех пор, пока не будет найден элемент со значением ключа или не станет пустым интервал для поиска.

```
public static int binarySearch(int arr[], int elementToSearch) {
   int firstIndex = 0;
   int lastIndex = arr.length - 1;

   while(firstIndex <= lastIndex) {
      int middleIndex = (firstIndex + lastIndex) / 2;

   if (arr[middleIndex] == elementToSearch) {
      return middleIndex;
   }
}</pre>
```

```
}
        else if (arr[middleIndex] < elementToSearch)</pre>
            firstIndex = middleIndex + 1;
        else if (arr[middleIndex] > elementToSearch)
        lastIndex = middleIndex - 1;
    }
    return -1;
}
  Сложность: O(\log n).
  В неупорядоченном массиве:
  Линейный поиск:
public static int linearSearch(int arr[], int elementToSearch) {
    for (int index = 0; index < arr.length; index++) {</pre>
        if (arr[index] == elementToSearch)
            return index:
    }
    return -1;
}
   Сложность: O(n).
Поиск наибольшего элемента
   Линейный поиск:
public static int linearSearch(int arr[]) {
    int maxElement = arr[0];
    for (int index = 1; index < arr.length; index++) {</pre>
```

```
if (arr[index] > maxElement){
          maxElement = arr[index]
    }
}
return maxElement;
}
```

Сортировка вставкой

Общая суть сортировок вставками такова:

- Перебираются элементы в неотсортированной части массива.
- Каждый элемент вставляется в отсортированную часть массива на то место, где он должен находиться.

То есть, сортировки вставками всегда делят массив на 2 части — отсортированную и неотсортированную. Из неотсортированной части извлекается любой элемент. Поскольку другая часть массива отсортирована, то в ней достаточно быстро можно найти своё место для этого извлечённого элемента. Элемент вставляется куда нужно, в результате чего отсортированная часть массива увеличивается, а неотсортированная уменьшается.

```
Пример:
6 5 3 1 8 7
6 5 3 1 8 7
5 6 3 1 8 7
3 5 6 1 8 7
1 3 5 6 8 7
1 3 5 6 8
1 3 5 6 7 8

public static void insertIntoSort(int[] arr) {
    int temp, j;
    for(int i = 0; i < arr.length - 1; i++){
```

```
if (arr[i] > arr[i + 1]) {
    temp = arr[i + 1];
    arr[i + 1] = arr[i];
    j = i;
    while (j > 0 && temp < arr[j - 1]) {
        arr[j] = arr[j - 1];
        j--;
    }
    arr[j] = temp;
}</pre>
```

Вычислительная сложность: $O(n^2)$.

Сортировка пузырьком

Расположим массив сверху вниз, от нулевого элемента - к последнему. Идея метода: шаг сортировки состоит в проходе снизу вверх по массиву. По пути просматриваются пары соседних элементов. Если элементы некоторой пары находятся в неправильном порядке, то меняем их местами. После нулевого прохода по массиву "вверху" оказывается самый "легкий" элемент - отсюда аналогия с пузырьком. Следующий проход делается до второго сверху элемента, таким образом второй по величине элемент поднимается на правильную позицию... Делаем проходы по все уменьшающейся нижней части массива до тех пор, пока в ней не останется только один элемент. На этом сортировка заканчивается, так как последовательность упорядочена по возрастанию.

```
Пример:
```

```
3 3 3 3 3 | 6 6 7 9
public int[] Sort(int[] array) {
    int i = 0;
    int goodPairsCounter = 0;
    while (true) {
        if (array[i] > array[i + 1]) {
            int q = array[i];
            array[i] = array[i + 1];
            array[i + 1] = q;
            goodPairsCounter = 0;
        } else {
            goodPairsCounter++;
        }
        i++;
        if (i == array.length - 1) {
            i = 0;
        }
        if (goodPairsCounter == array.length - 1) break;
    }
    return array;
}
```

Вычислительная сложность: $O(n^2)$.

Быстрая сортировка

Пошаговое описание работы алгоритма быстрой сортировки:

- 1. Выбрать опорный элемент из массива. Обычно опорным элементом является средний элемент.
- 2. Разделить массив на два подмассива: элементы, меньше опорного и элементы, больше опорного.
- 3. Рекурсивно применить сортировку к двум подмассивам. Пример:

```
4976238
   4 9* 7 6 2 3* 8
   4 3 7* 6 2* 9 8
   4 3 2 6 7 9 8
   Дальше вызываем от двух половинок.
public static void quickSort(int[] source, int leftBorder, int rightBorder) {
    int leftMarker = leftBorder;
    int rightMarker = rightBorder;
    int pivot = source[(leftMarker + rightMarker) / 2];
    do {
        // Двигаем левый маркер слева направо пока элемент меньше, чем pivot
        while (source[leftMarker] < pivot) {</pre>
            leftMarker++:
        }
        // Двигаем правый маркер, пока элемент больше, чем pivot
        while (source[rightMarker] > pivot) {
            rightMarker--;
        // Проверим, не нужно обменять местами элементы,
        // на которые указывают маркеры
        if (leftMarker <= rightMarker) {</pre>
            // Левый маркер будет меньше правого
            // только если мы должны выполнить swap
            if (leftMarker < rightMarker) {</pre>
                int tmp = source[leftMarker];
                source[leftMarker] = source[rightMarker];
                source[rightMarker] = tmp;
            }
            // Сдвигаем маркеры, чтобы получить новые границы
            leftMarker++;
            rightMarker--;
        }
```

```
} while (leftMarker <= rightMarker);

// Выполняем рекурсивно для частей
if (leftMarker < rightBorder) {
    quickSort(source, leftMarker, rightBorder);
}

if (leftBorder < rightMarker) {
    quickSort(source, leftBorder, rightMarker);
}</pre>
```

Вычислительная сложность: O(nlogn).

Иерархические сортировки

Пирамидальная сортировка или сортировка кучей:

Сортировка пирамидой использует бинарное сортирующее дерево. Сортирующее дерево — это такое дерево, у которого выполнены условия:

- 1. Каждый лист имеет глубину либо d, либо $d-1,\ d$ максимальная глубина дерева.
- 2. Значение в любой вершине не меньше (другой вариант не больше) значения её потомков.

Удобная структура данных для сортирующего дерева — такой массив arr, что arr[0] - элемент в корне, а потомки элемента arr[i] являются arr[2i+1] и arr[2i+2].

Алгоритм сортировки будет состоять из двух основных шагов:

- 1. Выстраиваем элементы массива в виде сортирующего дерева: $arr[i] \ge arr[2i+1], \ arr[i] \ge arr[2i+2]$ при $0 \le i \le \frac{n}{2}$.
- 2. Будем удалять элементы из корня по одному за раз и перестраивать дерево. То есть на первом шаге обмениваем arr[0] и arr[n-1], преобразовываем arr[0], arr[1], ..., arr[n-2] в сортирующее дерево. Затем переставляем arr[0] и arr[n-2], преобразовываем arr[0], arr[1], ..., arr[n-3] в

сортирующее дерево. Процесс продолжается до тех пор, пока в сортирующем дереве не останется один элемент. Тогда arr - — упорядоченная последовательность.

```
Пример:
  5 3 4 1 2 - Строим кучу из исходного массива
  2 3 4 1 5 - Меняем местами первый и последний элементы
  4 3 2 1 5 - Строим кучу из первых четырёх элементов
  1 3 2 4 5 - Меняем местами первый и четвёртый элементы
  З 1 2 4 5 - Строим кучу из первых трёх элементов
  2 1 3 4 5 - Меняем местами первый и третий элементы
  2 1 3 4 5 - Строим кучу из двух элементов
  \underline{1}\ \underline{2}\ 3\ 4\ 5 - Меняем местами первый и второй элементы
 * Класс для сортировки массива целых чисел с помощью кучи.
 * Методы в классе написаны в порядке их использования. Для сортировки
 * вызывается статический метод sort(int[] a)
 */
class HeapSort {
    /*
     * Размер кучи. Изначально равен размеру сортируемого массива
    private static int heapSize;
    /*
     * Сортировка с помощью кучи.
     * Сначала формируется куча:
     * Теперь максимальный элемент массива находится в корне кучи. Его нужно
     * поменять местами с последним элементом и убрать из кучи (уменьшить
     * размер кучи на 1). Теперь в корне кучи находится элемент, который раньше
     * был последним в массиве. Нужно переупорядочить кучу так, чтобы
     * выполнялось основное условие кучи - a[parent] >= a[child].
     * После этого в корне окажется максимальный из оставшихся элементов.
```

```
* Повторить до тех пор, пока в куче не останется 1 элемент
public static void sort(int[] a) {
    buildHeap(a);
    while (heapSize > 1) {
        swap(a, 0, heapSize - 1);
        heapSize--;
        heapify(a, 0);
}
 * Построение кучи. Поскольку элементы с номерами начиная с a.length / 2 + 1
 * это листья, то нужно переупорядочить поддеревья с корнями в индексах
 * om 0 до a.length / 2 (метод heapify вызывать в порядке убывания индексов)
private static void buildHeap(int[] a) {
    heapSize = a.length;
    for (int i = a.length / 2; i >= 0; i--) {
        heapify(a, i);
    }
}
/*
 * Переупорядочивает поддерево кучи начиная с узла і так, чтобы выполнялось
 * основное свойство кучи - a[parent] >= a[child].
private static void heapify(int[] a, int i) {
    int 1 = left(i);
    int r = right(i);
    int largest = i;
    if (1 < heapSize \&\& a[i] < a[1]) {
        largest = 1;
```

```
}
    if (r < heapSize && a[largest] < a[r]) {</pre>
        largest = r;
    if (i != largest) {
        swap(a, i, largest);
        heapify(a, largest);
    }
}
 * Возвращает индекс правого потомка текущего узла
 */
private static int right(int i) {
    return 2 * i + 2;
}
/*
 * Возвращает индекс левого потомка текущего узла
 */
private static int left(int i) {
    return 2 * i + 1;
}
 * Меняет местами два элемента в массиве
private static void swap(int[] a, int i, int j) {
    int temp = a[i];
    a[i] = a[j];
    a[j] = temp;
}
```

}

Сложность: O(nlogn).

КТО ТУТ У НАС НЕ РАБОТАЕТ

В ТЕЛЕФОНЧИКЕ СИДИТ

2.3. Простейшие структуры данных

Массив

Массив — структура данных, хранящая набор значений (элементов мас-

сива), идентифицируемых по индексу или набору индексов, принимающих

целые (или приводимые к целым) значения из некоторого заданного непре-

рывного диапазона.

Особенностью массива как структуры данных (в отличие, например, от

связного списка) является константная вычислительная сложность доступа

к элементу массива по индексу. Имеет константную длину.

Список

Связный список — базовая динамическая структура данных, состоящая

из узлов, каждый из которых содержит как собственно данные, так и од-

ну или две ссылки («связки») на следующий и/или предыдущий узел спис-

ка. Принципиальным преимуществом перед массивом является структурная

гибкость: порядок элементов связного списка может не совпадать с поряд-

ком расположения элементов данных в памяти компьютера, а порядок об-

хода списка всегда явно задаётся его внутренними связями.

Стек

Стек — абстрактный тип данных, представляющий собой список элемен-

тов, организованных по принципу LIFO (англ. last in — first out, «последним

пришёл — первым вышел»).

Чаще всего принцип работы стека сравнивают со стопкой тарелок: чтобы

взять вторую сверху, нужно снять верхнюю.

32

Зачастую стек реализуется в виде однонаправленного списка (каждый элемент в списке содержит помимо хранимой информации в стеке указатель на следующий элемент стека).

Очередь

Очередь — абстрактный тип данных с дисциплиной доступа к элементам «первый пришёл — первый вышел» (FIFO, англ. first in, first out). Добавление элемента (принято обозначать словом enqueue — поставить в очередь) возможно лишь в конец очереди, выборка — только из начала очереди (что принято называть словом dequeue — убрать из очереди), при этом выбранный элемент из очереди удаляется.

3. Программирование

Нужно знать базовые принципы одного из «традиционных» (C, C++, Java, Python и др.) языков программирования.

Основы синтаксиса

- Язык Java различает прописные и строчные буквы.
- Каждая команда (оператор) в языке Java должна заканчиваться точкой с запятой.
- Программа на Java состоит из одного или нескольких классов. Абсолютно вся функциональная часть программы (т.е. то, что она делает) должна быть помещена в методы тех или иных классов.
- Хотя бы в одном из классов должен существовать метод main(). Именно этот метод и будет выполняться первым.
- В простейшем случае программа может состоять из одного (или даже ни одного) пакета, одного класса внутри пакета и единственного метода main() внутри класса. Команды программы будут записываться между строчкой

```
public static void main(String[] args) { } и закрывающей фигурной скобкой, обозначающей окончание тела метода.
```

Переменные

- Целочисленные (к ним относятся byte, short, int, long).
- С плавающей точкой (к ним относятся float, double).
- Символы (char).
- Логические (boolean).

Условные выражения

• Условный оператор if. Если логическое выражение в скобках правдиво, то выполняется блок кода в фигурных скобках после if. Если логическое выражение принимает значение false, то ничего не происходит.

- Условный оператор if-else. Конструкция if-else отличается от предыдущей тем, что если логическое выражение в круглых скобках принимает значение false, то выполняется блок кода, находящийся в фигурных скобках после ключевого слова else.
- Условный оператор switch case. Условный оператор switch case удобен в тех случаях, когда количество вариантов очень много и писать для каждого if-else очень долго. Конструкция имеет следующий вид:

```
switch (expression) {
   case value1:
      //6λοκ κο∂α 1;
   break;
   case value2:
      //6λοκ κο∂α 2;
   break;
   ...
   case valueN:
      //6λοκ κο∂α N;
   break;
   default:
      //6λοκ N+1;
}
```

Циклы

• Цикл for.

```
for (int i = 1; i < 9; i++)
{
// действия
}
```

• **Цикл do** сначала выполняет код цикла, а потом проверяет условие в инструкции while. И пока это условие истинно,цикл повторяется. Например:

```
int j = 7;
do{
     System.out.println(j);
     j--;
}
while (j > 0);
```

• Цикл while сразу проверяет истинность некоторого условия, и если условие истинно, то код цикла выполняется. Например:

- Оператор **break** позволяет выйти из цикла в любой его момент, даже если цикл не закончил свою работу.
- Чтобы цикл не завершался, а просто переходил к следующей итерации, используем оператор **continue**.

Массивы

```
// Объявление массива.
int[] myArray;

// Создание, то есть, выделение памяти
// для массива на 10 элементов типа int.
myArray = new int[10];
```

Функции

Метод — это именованный блок кода, который объявляется внутри класса и может быть использован многократно.

Хорошо написанный метод решает одну практическую задачу: находит

квадратный корень из числа (как штатный метод sqrt() в Java), преобразует число в строку (метод toString()), присваивает значения полям объекта и так далее.

Новый метод сначала объявляют и определяют, затем вызывают для нужного объекта или класса.

Методы могут возвращать или не возвращать значения, могут вызываться с указанием параметров или без. Тип возвращаемых данных указывают при объявлении метода — перед его именем.

В примере ниже метод должен найти большее из двух целых чисел, поэтому тип возвращаемого значения — int:

```
// Заголовок метода.
public static int maxFinder(int a, int b) {
    // Ниже - тело метода.
    int max;
    if (a < b)
        max = b;
    else
        max = a;
    return max;
}
Рекурсия
private int factorial(int n) {
    int result = 1;
    if (n == 1 || n == 0) {
        return result;
    result = n * factorial(n-1);
    return result;
}
```

Динамическая память

Динамическое распределение памяти — способ выделения оперативной памяти компьютера для объектов в программе, при котором выделение памяти под объект осуществляется во время выполнения программы.

Куча — это хранилище памяти, также расположенное в ОЗУ, которое допускает динамическое выделение памяти и не работает по принципу стека: это просто склад для ваших переменных. Когда вы выделяете в куче участок памяти для хранения переменной, к ней можно обратиться не только в потоке, но и во всем приложении. Именно так определяются глобальные переменные. По завершении приложения все выделенные участки памяти освобождаются. Размер кучи задаётся при запуске приложения, но, в отличие от стека, он ограничен лишь физически, и это позволяет создавать динамические переменные.

Вы взаимодействуете с кучей посредством ссылок, обычно называемых указателями — это переменные, чьи значения являются адресами других переменных. Создавая указатель, вы указываете на местоположение памяти в куче, что задаёт начальное значение переменной и говорит программе, где получить доступ к этому значению. Из-за динамической природы кучи ЦП не принимает участия в контроле над ней; в языках без сборщика мусора (C, C++) разработчику нужно вручную освобождать участки памяти, которые больше не нужны. Если этого не делать, могут возникнуть утечки и фрагментация памяти, что существенно замедлит работу кучи.

В сравнении со стеком, куча работает медленнее, поскольку переменные разбросаны по памяти, а не сидят на верхушке стека. Некорректное управление памятью в куче приводит к замедлению её работы; тем не менее, это не уменьшает её важности — если вам нужно работать с динамическими или глобальными переменными, пользуйтесь кучей.

Стек

 ${f Cтек}$ — это область оперативной памяти, которая создаётся для каждого потока. Он работает в порядке LIFO (Last In, First Out), то есть последний добавленный в стек кусок памяти будет первым в очереди на вывод из стека.

Каждый раз, когда функция объявляет новую переменную, она добавляется в стек, а когда эта переменная пропадает из области видимости (например, когда функция заканчивается), она автоматически удаляется из стека. Когда стековая переменная освобождается, эта область памяти становится доступной для других стековых переменных.

Из-за такой природы стека управление памятью оказывается весьма логичным и простым для выполнения на ЦП; это приводит к высокой скорости, в особенности потому, что время цикла обновления байта стека очень мало, т.е. этот байт скорее всего привязан к кэшу процессора. Тем не менее, у такой строгой формы управления есть и недостатки. Размер стека — это фиксированная величина, и превышение лимита выделенной на стеке памяти приведёт к переполнению стека. Размер задаётся при создании потока, и у каждой переменной есть максимальный размер, зависящий от типа данных. Это позволяет ограничивать размер некоторых переменных (например, целочисленных), и вынуждает заранее объявлять размер более сложных типов данных (например, массивов), поскольку стек не позволит им изменить его. Кроме того, переменные, расположенные на стеке, всегда являются локальными.

В итоге стек позволяет управлять памятью наиболее эффективным образом — но если вам нужно использовать динамические структуры данных или глобальные переменные, то стоит обратить внимание на кучу.