Public Choice 2

Example

- Two individuals (1, 2) and three alternatives (x, y, z)
- No individual is ever indifferent between any two alternatives
- $xP_i y \Longrightarrow i \text{ prefers } x \text{ to } y$
- Individual *i*'s preference ordering is assumed to be complete and transitive
- Given 3 alternatives, there are only six ways individual 1 can order the alternatives

Example

- He can prefer *x* to *y* to *z*, or he can prefer *x* to *z* to *y*, and so on...
- Same for individual 2
- Hence, there are exactly $(6 \times 6 =)36$ different constellations of individual preferences, or *preference profiles*, possible in this small society
- Each cell in this table shows a possible pair of rankings of the three alternatives by individuals 1 and 2

Preference Profiles

						Indiv	iduals					
Choices	1	2	1	2	1	2	1	2	1	2	1	2
1st	x	x	x	x	x	y	x	y	x	z	x	z
2nd	y	y	y	z	y	\boldsymbol{x}	y	2	y	x	y	y
3rd	z	z	z	y	z	z	z	x	z	y	z	x
1st	x	x	x	x	x	y	x	y	x	z	x	z
2nd	z	y	z	z	z	x	z	z	z	x	z	y
3rd	y	z	y	y	y	z	y	\boldsymbol{x}	y	y	y	x
1st	y	x	y	x	y	y	y	y	y	z	y	z
2nd	x	y	x	z	x	x	x	z	x	x	x	y
3rd	z	z	z	y	z	z	z	x	z	y	z	a
1st	y	x	y	x	y	y	y	y	y	z	y	z
2nd	z	y	z	z	z	z	x	z	z	x	z	y
3rd	x	x	x	y	x	\boldsymbol{x}	z	\boldsymbol{x}	\boldsymbol{x}	y	x	x
1st	z	x	z	x	z	y	z	y	z	z	z	z
2nd	x	y	x	z	x	x	x	z	x	x	x	y
3rd	y	z	y	y	y	z	y	x	y	y	y	x
1st	z	x	z	x	z	y	z	y	z	z	z	z
2nd	y	y	y	z	y	x	y	z	y	\boldsymbol{x}	y	y
3rd	x	z	x	y	\dot{x}	z	x	x	x	y	x	a

Arrow social welfare function

- Our concern here is whether or not there is a foolproof rule to transform any cell in the table into a social preference relation.
- Such a rule is called an *Arrow social welfare function*.
- An Arrow social welfare function takes preference profiles and produces social preferences.
- Let R stand for a social preference relation, so xRy means x is socially at least as good as y.
- *P* is the corresponding strict social preference relation: *xPy* means *x* is socially preferred to *y*; i.e., *xRy* and *not yRx*
- *I* is the social indifference relation: *xIy* means *x* and *y* are socially indifferent; i.e., *xRy* and *yRx*

Characteristics

- Completeness and transitivity: either xRy or yRx must hold and xRy and yRz must imply xRz.
 - Majority voting gives non-transitive social rankings.
- **Universality**: An Arrow social welfare function should work no matter what individual preferences happen to be
- **Pareto Consistency**: For any pair of alternatives *x* and *y*, if both individuals prefer *x* to *y*, *x* must be socially preferred to *y*.
- **Non-dictatorship**: if xP_iy implies xPy for all x and y, irrespective of P_i , then, i is said to be a dictator (his wishes prevail).

Characteristics

- **Independence of irrelevant alternatives**: If people's feelings change about some set of irrelevant alternatives, but do not change about the pair of alternatives *x* and *y*, then an Arrow social welfare function must preserve the social ordering of *x* and *y*.
- The social preference between *x* and *y* must be independent of individual orderings on other pairs of alternatives.

- Let's apply the Pareto principal first. It requires that a collective choice rue must respect unanimous opinion if both 1 and 2 prefer one alternative to another, then that should also be followed by the society
- For example, consider this cell

	Individuals				
Choices	1	2			
1st	x	x			
2nd	y	z			
3rd	2	y			

- Pareto requirement says x must be socially preferred to y and x must be socially preferred to z. That is, we must have xPy and xPz.
- Application of Pareto consistency over the entirety of the previous table gives rise to this new table —

$\begin{array}{c} xPy \\ xPz \\ yPz \end{array}$	$xPy \\ xPz$	xPz yPz	yPz	xPy	
$xPy \\ xPz$	xPy xPz zPy	xPz		xPy zPy	zPy
xPz yPz	xPz	xPz yPx yPz	yPx yPz		yPx
yPz		yPx yPz	yPx yPz zPx	zPx	yPx zPx
xPy	$xPy \\ zPy$		zPx	xPy zPx zPy	zPx zPy
	zPy	yPx	yPx zPx	zPx zPy	yPx zPx zPy

- Now let's apply the condition of Independence of irrelevant alternatives
- Suppose that when person 1 prefers *x* to *y* to *z* and person 2 prefers *y* to *x* to *z*, an Arrow social welfare function (or, a collective choice rule) declares *x* is socially preferred to *y*, or *xPy*.
- Then independence requires that xPy hold whenever xP_1y and yP_2x no matter how 1 and 2 rank alternative z.

- Similarly, if yPx (or xIy) holds when person 1 prefers y to x to z and person 2 prefers x to y to z, then yPx (or xIy) must hold whenever yP_1x and xP_2y
- In short, the independence requirement forces an Arrow social welfare function to give rise to social preferences that agree over certain preference profiles
- Independence requires that all the cells in the table where xP_1y and yP_2x must yield identical social rankings of x and y.
- Similarly, all the cells where yP_1x and xP_2y must yield identical social rankings of x and y.

• Let's consider the cells again such that we can indicate them in terms of the following preferences —

if $xPy(xP_1y)$ and yP_2x , cell is marked with \times if $yPx(yP_1x)$ and xP_2y , cell is marked with 0

• Similarly we can indicate the social rankings over x-z and y-z

• The crossed cells all produce the same x-y social rankings. The circled cells all produce the same x-y social rankings (which need not be the same as in the crossed cells).

		X	X		X
		X	X		X
0	0			0	
0	0			0	
		X	X		X
0	0			0	

• The crossed cells all produce the same x-z social rankings. The circled cells all produce the same x-z social rankings (which need not be the same as in the crossed cells).

			X	X	X
			X	X	X
			X	X	X
0	0	0			
0	0	0			
0	0	0			

• The crossed cells all produce the same y-z social rankings. The circled cells all produce the same y-z social rankings (which need not be the same as in the crossed cells).

	X			X	X
0		0	0		
	X			X	X
	X			X	X
0		0	0		
0		0	0		

Arrow's Impossibility Theorem

- Does there exist a foolproof rule for discovering, or for defining, social preferences?
- Arrow showed that, if foolproof means consistent with the five requirements above, the answer is No.
- **Statement**: Any Arrow social welfare function which is consistent with the requirements of (1) completeness and transitivity, (2) universality, (3) Pareto consistency, and (5) independence of irrelevant alternatives, makes one person a dictator. Therefore, there is no rule which satisfies all five requirements.

Arrow's Impossibility Theorem

- We start by looking at the preference profile of the first row, second column cell of the first table
- For these preferences Pareto consistency requires xPy and xPz
- There are three and only three complete and transitive social preference orderings which satisfy xPy and xPz.
 - 1. xPy, xPz and yPz
 - 2. xPy, xPz and zPy
 - 3. xPy, xPz and yIz

• If *yPz* holds in the first row, second column cell, then independence requires that y be socially preferred to z whenever individual preferences about y and z are the same as they are in that cell.

• Therefore *yPz* holds in all the cells indicated in

1.		$\overline{2.}$	
$\begin{array}{c c} 1. \\ yPz \end{array}$		yPz	yPz
yPz		yPz	yPz
yPz		yPz	yPz

- Now consider the first row, fifth column cell, or cell number 2 in the last table.
- Pareto consistency requires that xPy here, but xPy and yPz implies xPz, by transitivity.
- So in this cell we must also have xPz.
- But if xPz holds in cell number 2, then independence requires that x be socially preferred to z whenever individual preferences about x and z are the same as they are in that cell.
- Therefore, xPz holds in all the cells indicated in the following table

		2.	
	xPz	xPz	xPz
			3.
	xPz	xPz	xPz
	xPz	xPz	xPz

- Now we have xPz in cell 3.
- We again invoke Pareto consistency and transitivity to conclude that xPy must hold in cell 3 as well.
- But this allows us to use independence again to fill in eight more bits of information
- When done, the result is the pattern of social preferences will be like -

x	x	x	x	x	x
y	y	y	y	y	y
z	z	z	z	z	z
x	x	x	x	x	x
z	z	z	z	z	z
y	y	y	y	y	y
y	y	y	y	y	y
x	x	x	x	x	x
z	z	z	z	z	z
y	y	y	y	y	y
z	z	z	z	z	z
x	x	x	x	x	x
z	z	z	z	z	z
x	x	x	x	x	x
y	y	y	y	y	y
z	z	z	z	z	z
y	y	y	y	y	y
x	x	x	x	x	x

- But the social preferences shown in the last table are identical to person 1's preferences.
- Therefore, in Case 1, 1 is a dictator.
- He gets his way, no matter how 2 feels.
- When you calculate the other 2 cases you will find
- Either 1 or 2 is a dictator