REDUCED SVD

- · Reduced SVD is applicable when $m\gg n$. E.g. $A\in\mathbb{R}^{10^6 imes3}$
- · Recall that the SVD $A\vec{v}_i = \vec{u}_i\sigma_i$
- Recall that directly estimating U requires eigen calculations of $B = AA^{\mathsf{T}} \in \mathbb{R}^{10^6 \times 10^6}$
- For such large matrices B, we may not have required memory and CPU cycles. Therefore, direct method of estimating U is not practical.
- Recall that when $m \gg n$, eigen calculations of $C = A^T A \in \mathbb{R}^{3\times 3}$ is feasible
- · Key Idea: Estimate $\{v_i, \sigma_i\}_{i=1}^n$ first. Then estimate $\{u_i\}_{i=1}^m$ from $\overrightarrow{AV}_i = \overrightarrow{u}_i \sigma_i$

REDUCED SVD ALGORITHM

```
Input: A \in \mathbb{R}^{m \times n}, m \gg n

Output: U \in \mathbb{R}^{m \times n}; \Sigma \in \mathbb{R}^{n \times n}; V \in \mathbb{R}^{n \times n}

1 C \leftarrow A^T A;

2 [v_i, \sigma_i] \leftarrow \text{Eigen}(C);

3 foreach right singular vector v_i do u_i \leftarrow \frac{A \vec{v}_i}{\sigma_i};
```

Algorithm 0: Reduced SVD Algorithm for $A = U\Sigma V^{T}$