Dynamic Privacy Choices

Shota Ichihashi

Bank of Canada

CETC 2020

The views expressed are those of the author and do not necessarily reflect the views of the Bank of Canada.

Motivation

This Paper

Info about consumer Consumer uses Platform Dynamic incentives of consumer, platform, and regulator **Platform** monetizes info Impact on consumer (potentially negative)

Roadmap

- 1. Monopoly
 - Model
 - Equilibrium
- 2. Competition
 - Model
 - Equilibrium

Model

Time t = 1, 2, ...

Consumer

- ▶ Choose an activity level $a_t > 0$
- ▶ Type $X \sim \mathcal{N}(0, \sigma_0^2)$, fixed over time, unobservable¹

Platform

- lacksquare Privately observe $s_t = X + arepsilon_t$ with $arepsilon_t \sim \mathcal{N}\left(0, rac{1}{a_t} + \gamma_t
 ight)$
- $\triangleright \gamma_t$: privacy level in period t

All random variables are mutually independent

¹If privately observable, focus on a "pooling" equilib.

Platform Payoffs

Platform's payoff in period t

- More info better
- ▶ Increasing in (a_1, \ldots, a_t) and decreasing in $(\gamma_1, \ldots, \gamma_t)$
- ▶ Take σ_t^2 as a primitive (depends on a_1, \ldots, a_t and $\gamma_1, \ldots, \gamma_t$)
- Discount future payoffs

Consumer Payoffs

Consumer payoff in period t

Consumer myopically chooses a_1, a_2, \ldots

Timing

1. Platform chooses a *privacy policy* $(\gamma_1, \gamma_2, \dots) \in \mathbb{R}_+^{\infty}$

•
$$s_t = X + \varepsilon_t$$
 with $\varepsilon_t \sim \mathcal{N}\left(0, \frac{1}{a_t} + \gamma_t\right)$

- ▶ Higher γ_t → collect less info (for a fixed a_t)
- 2. Consumer (myopically) chooses $a_1, a_2,...$

Equilibrium: Consumer myopic best response + Platform optimality

Roadmap

- 1. Monopoly
 - Model
 - Equilibrium
- 2. Competition
 - Model
 - Equilibrium

Timing

1. Platform chooses a privacy policy $(\gamma_1, \gamma_2, \dots)$

•
$$s_t = X + \varepsilon_t$$
 with $\varepsilon_t \sim \mathcal{N}\left(0, \frac{1}{a_t} + \gamma_t\right)$

2. Consumer (myopically) chooses $a_1, a_2,...$

Static Problem

Since myopic, Consumer chooses a_t to maximize

$$u(a_t) - v\left(\sigma_0^2 - \sigma_t^2\right)$$

$$= u(a_t) - v \left(\sigma_0^2 - \frac{1}{\frac{1}{\sigma_{t-1}^2} + \frac{1}{\frac{1}{a_t} + \gamma_t}} \right)$$

Marginal Privacy Cost

Lemma

 $\frac{\partial C_t}{\partial a_t}$ is increasing in σ_{t-1}^2 .

- ▶ Less privacy (lower σ_{t-1}^2) → Lower marginal cost
- ► E.g. if platform knows *X*, zero marginal cost
- Concave cost of producing info
- ▶ Lower payoff \leftrightarrow Higher incentive to use the same platform

Timing

1. Platform chooses a privacy policy $(\gamma_1, \gamma_2, \dots)$

•
$$s_t = X + \varepsilon_t$$
 with $\varepsilon_t \sim \mathcal{N}(0, \frac{1}{a_t} + \gamma_t)$

2. Consumer (myopically) chooses $a_1, a_2,...$

Timing

1. Platform chooses a privacy policy $(\gamma, \gamma, ...)$

•
$$s_t = X + \varepsilon_t$$
 with $\varepsilon_t \sim \mathcal{N}(0, \frac{1}{a_t} + \gamma)$

2. Consumer (myopically) chooses $a_1, a_2,...$

Stationary Privacy Policy

Reminder:
$$u(a_t) - v \cdot (\sigma_0^2 - \sigma_t^2)$$
, $a^* := \arg \max_{a \ge 0} u(a)$

Proposition

Suppose $\gamma_t = \gamma$ for all t. There is a $v^*(\gamma) > 0$ such that

- 1. $v > v^*(\gamma) \Rightarrow a_t^* = 0$ for all t.
- 2. $v < v^*(\gamma) \Rightarrow a_t^*$ is increasing and converges to a^* , and $\sigma_t^2 \to 0$.

Moreover, $v^*(\gamma)$ is increasing in γ .

- ▶ $a_1 > 0$ → lower marginal cost in t = 2 → $a_2 \ge a_1$...
- High γ may lower the long-run welfare of myopic consumers

Equilibrium

- 1. Platform chooses a privacy policy $(\gamma_1, \gamma_2, \dots)$
- 2. Consumer (myopically) chooses $a_1, a_2,...$

Equilibrium

Reminder: $u(a) - v \cdot (\sigma_0^2 - \sigma_t^2)$, $a^* = \arg \max_{a \ge 0} u(a)$

Proposition

For any $v \in \mathbb{R}$, in any equilibrium, the following holds.

- 1. $\sigma_t^2 \to 0$ and $a_t^* \to a^*$
- **2**. $\forall \tau \in \mathbb{N}, \exists v^* > 0$ *s.t.* $\forall v \geq v^*, \gamma_t^* > 0$ *for* $t = 1, \dots, \tau$
- 3. $\gamma_t^* \to 0$
 - ▶ Early: high marginal cost \rightarrow high γ_t to encourage activity
 - ▶ Later: low marginal cost \rightarrow low γ_t to speed up learning
 - Point 1 holds for, e.g., a patient consumer or heterogeneous v

Implication

Two conditions under which

- consumer privacy is difficult to sustain
- collecting and monetizing consumer data is effective

- Declining marginal privacy cost (concave loss of providing info)
 - Rational addiction: Becker and Murphy (1988)
 - "Privacy paradox"
- 2. Platform's ability to commit to "underuse" data

Equilibrium Privacy Policy (characterized in paper)

Platform's trade-off

▶ Higher γ_t increases activity but reduces the precision of signal

Platform's optimization = static optimization (set γ_t to maximize the period-t profit)

One-period commitment → full commitment outcome

Roadmap

1. Monopoly

- ▶ High a_t , privacy loss, potentially negative payoff in the long-run
- Strong commitment power unnecessary
- Less privacy → lower incentive to protect it

Competition

- Model
- Equilibrium

Incumbent and Entrant

Payoffs

- ▶ Platform k: $\sigma_0^2 \sigma_{k,t}^2$
- ► Consumer before entry: $u(a_t^I) v \cdot (\sigma_0^2 \sigma_{I,t}^2)$
- Consumer after entry

$$u(a_t^I) - v \cdot (\sigma_0^2 - \sigma_{I,t}^2) + u(a_t^E) - v \cdot (\sigma_0^2 - \sigma_{E,t}^2)$$

- Privacy cost does not disappear after switching!
 e.g. technical problem, credibility
- Consumer decision based on marginal cost

Roadmap

1. Monopoly

- ▶ High a_t , privacy loss, potentially negative payoff in the long-run
- Strong commitment power unnecessary
- Less privacy → lower incentive to protect it

Competition

- Model
- Equilibrium

Equilibrium

Proposition

There is an equilibrium such that:

- ▶ Consumer only uses $I: a_t^I > 0$ and $a_t^E = 0$ for all t.
- $ightharpoonup \gamma_t^I o 0$, $\sigma_{I,t}^2 o 0$, and $a_t^I o a^*$.

For a large t_E , in any equilibrium, I chooses a monopoly strategy.

Intuition

- Incumbent obtains data
- Lower marginal privacy cost → cheaper to keep using I
- Switching / entry less likely
- Data as an incumbency advantage
- Market for search engines, Google vs. DuckDuckGo?
- Right to be forgotten (enabling consumer to erase past info)

Literature (not exhaustive!)

Consumer data: Choi et al. (2018), Easley et al. (2018), Acemoglu et al. (2019), Bergemann et al. (2019), Bonatti and Cisternas (2020), Frankel and Kartik (2020), Liang and Madsen (2020)

Competition with data: Cornière and Taylor (2020); Prufer and Schottmüller (2017); Hagiu and Wright (2020)

Switching cost, barrier to entry: Farrell and Shapiro (1988); Klemperer (1995); Fudenberg and Tirole (2000)

Signal-jamming: Holmstrom (1999), Horner and Lambert (2019)

Recap

Less privacy \Rightarrow lower marginal incentive to protect privacy Monopoly

- Long-run: High activity level & low privacy
- High privacy level only in early periods

Competition

- Lower marginal cost prevents successful entry
- Entry less likely when consumer welfare is low

Regulation

"Right to be forgotten" might be effective

Total Welfare

Difficult to compare the sum of payoffs

Different discount factors

For any discount factors, we can calculate long-run welfare

- Without transfer → eqm efficient (platform best)
- ▶ With transfer \rightarrow efficient iff v < 1

Same δ & transfer & compare discounted total surplus

- Inefficiently low activity levels?
- Inefficiently low privacy level?