Total No. of Pages: 2

Seat	
Seat No.	

T.E. (CSE) (Part-III) (Semester - V) (Revised) Examination, November - 2019 COMPUTER ALGORITHM

Sub. Code: 66296

Day and Date : Friday, 29 - 11 - 2019 Total Marks : 100

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Questions 4 and 8 are compulsory

- 2) Attempt any four questions from remaining questions
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data wherever necessary.
- Q1) a) Illustrate recursive algorithm for Tower of Hanoi with its analysis. [8]
 - b) Define Job Sequencing with deadline problem using Greedy approach. Solve following instance, [8] n=7, (p1,p2,p3,p4,p5,p6,p7) = (3,5,20,18,1,6,30) and (d1,d2,d3,d4,d5,d6,d7) = (1,3,4,3,2,1,2)
- Q2) a) Illustrate recursive and iterative binary search algorithm with example and complexity. [8]
 - Apply dynamic programming method to find minimum cost of path from S-T is the multistage graph of following figure.

Q3) a) Define Spanning Tree. Explain prim's and Kruskal's Algorithm to find minimum Spanning Tree with suitable example. [8]

P.T.O.

b) Discuss Travelling Sales Person problem with dynamic programming. Construct an optimal trevelling sales person tour using Dynamic Programming for following instance.
181

Q4)	Solve	the	fol	lowing
4.1	CHILL	unc	1471	MAN HIE

[18]

- Write an algorithm for matrix transpose and find the time complexity of the algorithm using step count method
- b) Solve 0/1 knapsack problem using dynamic programming foe following source instance using n=3, (w1, w2, w3) = (2,3,4) and (p1,p2,p3) = (1,2,5) and capacity of knapsack is 6.
- Build the set of optimal Huffman code for 7 messages with relative Frequencies (3,5,9,13,21,25,30).
- Q5) a) What is AND/OR graph decision problem? Show that CNF satisfiability is reducible to AND/OR graph decision problem. [8]
 - With respect to parallel algorithms define what is speedup, work done, efficiency of an algorithm. Explain Amdahl's law and mention when parallel algorithm is said to be work Optimal.
- Q6) a) Explain with necessary example and steps the Prefix Computation on MESH [8]
 - Explain in general what backtracking method is.
- Q7) a) Write an algorithm to convert non bi-connected graph into bi-connected graph and explain the method with an example [8]
 - Explain binary tree traversal techniques using suitable example. [8]

Q8) Write short note on:

[18]

- a) Broadcasting on MESH
- Hamiltonian cycle
- Hypercube computational model

