# Grupo 8: Faraday y el voltímetro loco

Ernesto Atmo

Ignacio Poggi

Maxi Inafuku

### ¿Por qué estudiar qué mide el multímetro?

Si todos sabemos que mide una diferencia de potencial entre dos puntos.

$$V = -\int_{C} \vec{E} \cdot d\vec{l} \qquad V_{R} = I \cdot R$$

$$V_{L} = L \cdot \frac{dI}{dt} \qquad V_{C} = \frac{1}{C} \int I \cdot dt$$

## Primera configuración experimental:



¿Cuánto va a medir el voltímetro en cada caso? Fácil, hay un corto, por lo tanto el V medido es nulo.



# Para ver qué ocurre, recordemos La Ley de Faraday:



Puede variar el campo magnético, la superficie o ambos! En nuestro caso particular variamos el campo magnético.

#### Evaluemos de nuevo el caso extraño:



#### El caso a estudiar en profundidad



$$\int_{C_1} \vec{E} \cdot d\vec{l} = \int_{C_1'} \vec{E} \cdot d\vec{l} = V_1 \qquad i(t) \cdot R_1 = V_1 \qquad -i(t) \cdot R_2 = V_2$$

$$\int_{C_2} \vec{E} \cdot d\vec{l} = \int_{C_2'} \vec{E} \cdot d\vec{l} = V_2 \qquad -\frac{\frac{dB}{dt} \cdot \text{Å} rea \cdot R1}{R1 + R2} = V_1 \qquad \frac{\frac{dB}{dt} \cdot \text{Å} rea \cdot R2}{R1 + R2} = V_2$$

$$\int_{C_1'} \vec{E} \cdot d\vec{l} - \int_{C_2'} \vec{E} \cdot d\vec{l} = -\frac{dB}{dt} \cdot \text{Å} rea = V_1 - V_2 \qquad \frac{|V_1|}{|V_2|} = \frac{R_1}{R_1}$$

#### Nuestro dispositivo experimental

En nuestro caso tenemos un solenoide, entonces:

$$\vec{B}(t) = \mu_o.\frac{N}{l}.I(t)$$

$$\int_{C} \vec{E} \cdot d\vec{l} = -\mu_{o}.\pi.r^{2}.\frac{N}{l}.\frac{dI}{dt}(t)$$



#### Aproximaciones:

- Campo confinado principalmente al solenoide.
- Permitividad magnética del aire similar a la del vacío.

# ¿Como controlamos y monitoreamos la corriente?



#### **Cuidados:**

- Fue necesario monitorear el V de salida del amplificador ya que a voltajes muy altos, notamos una deformación de la señal enviada por el generador.
- El voltaje de la resistencia nos permitía monitorear la intensidad, para cuidar el amplificador que tenía un límite de 4A.

$$I(t) = 3\frac{V_R}{R}$$

#### ¿Cómo era la respuesta de la corriente?





Para una señal de voltaje sinusoidal:

$$I(t) = \frac{Vo.sin(2\pi ft)}{Vo.sin(2\pi ft - atan(2\pi f \frac{L}{R}))} = \frac{\frac{dI}{dt} = \frac{2\pi f. Vo.cos(2\pi ft - atan(2\pi f \frac{L}{R}))}{\sqrt{R^2 + (2\pi fL)^2}}}{Vo.cos(2\pi ft - atan(2\pi f \frac{L}{R}))} = \frac{Vo.sin(2\pi ft - atan(2\pi f \frac{L}{R}))}{\sqrt{R^2 + (2\pi fL)^2}}$$

$$I_{RMS} = \frac{Vo.cos(2\pi ft - atan(2\pi f \frac{L}{R}))}{\sqrt{2}\sqrt{R^2 + (2\pi fL)^2}}$$

#### ¿Y con diferentes tipos de onda?

Modelos de las formas funcionales, en un circuito RL:



Resultados obtenidos:



# ¿Cómo se observa ahora el potencial medido sobre las resistencias en la espira?

Para ello usamos 3 espiras diferentes (relación 1:4 entre resistencias):

-  $33\Omega$  y  $120\Omega$  (No fue posible observar una diferencia de potencial).

- 3.3K
$$\Omega$$
 y 12K $\Omega$   $\frac{|V_1|}{|V_2|} = 3.6 \pm 0.8$ 









## ¿Y con las otras ondas, era mejor la cuadrada?



Usando la espira con las resistencias de  $33K\Omega$  y  $120K\Omega$ .

$$\frac{|V_1|}{|V_2|} = 6 \pm 2$$

$$\frac{|V_1|}{|V_2|} = 5.6 \pm 1.4$$

#### Conclusiones:

- La respuesta a, qué mide un voltímetro?, es la integral de curva del campo E. Pero a diferencia de lo que solemos pensar, no siempre es tan fácil medir, ya que en presencia de campos B variables, la integral se vuelve dependiente de la curva (ya que E deja de ser un campo conservativo).

- Pudimos comprobar experimentalmente la Ley de Faraday, y observar que dada nuestra configuración, los voltajes se invirtieron y su relación fue aproximadamente de 1:4 (en el caso de la cuadrada), cómo se había calculado.

#### Cosas a mejorar:

- Podría haberse hecha una caracterización del equipo más profunda, habiendo medido las resistencias e inductancias y haber hecho algún modelo.
- Trabajar con un solenoide de mayor longitud hubiera permitido que menos campo B escapara. Esto fue una importante fuente de interferencia y el equipo resultó ser ALTAMENTE dependiente de la topología de las superficies formadas por los cables.

# ¿Cómo modelamos la intensidad para una onda no sinusoidal?

Por ejemplo, para la onda triangular, el V(t) entregado por el ampli se puede pensar como un desarrollo de Fourier.

$$V(t) = Vo. \frac{8}{\pi^2} \sum_{n=0}^{\infty} \frac{-1^n}{(2n+1)^2} sin(2\pi f(2n+1)t)$$

Cuándo tenemos múltiples fuentes (ya sea de continua o alterna) el V(t) total se suma. Para resolver el problema puedo hallar I<sub>n</sub>(t) para cada V<sub>n</sub>(t) y luego sumar. Obtengo así, otro desarrollo de Fourier para I(t).



$$I(t) = Vo. \frac{8}{\pi^2} \sum_{n=0}^{\infty} \frac{(-1)^n \sin\left(2\pi f(2n+1)t - atan\left(2\pi f(2n+1)\frac{L}{R}\right)\right)}{(2n+1)^2 \sqrt{R^2 + (2\pi f(2n+1)L)^2}}$$

Y derivando puedo obtener:

$$\frac{dI}{dt}(t) = Vo.\frac{8}{\pi^2} \sum_{n=0}^{\infty} \frac{(-1)^n 2\pi f \cos\left(2\pi f (2n+1)t - a \tan\left(2\pi f (2n+1)\frac{L}{R}\right)\right)}{(2n+1)\sqrt{R^2 + (2\pi f (2n+1)L)^2}}$$

### Fourier triangular



#### Fourier cuadrada

