Introduction au filtrage de Kalman Théorie du filtre de Kalman discret & applications

Florent Lafarge

Plan

Filtrage optimal : position du problème

Définition générale

Définition mathématique

Exemples

Plan

Filtrage optimal : position du problème

Définition générale Définition mathématique Exemples

Filtre de Kalman discret

Formulation du filtre de Kalman discret Théorème de Kalman-Bucy

Plan

Filtrage optimal : position du problème

Définition générale Définition mathématique Exemples

Filtre de Kalman discret

Formulation du filtre de Kalman discret Théorème de Kalman-Bucy

Extensions du filtre de Kalman

Filtre de Kalman linéarisé Filtre de Kalman étendu

Définition générale du filtrage

Filtrage

Opération qui consiste à estimer **l'état** d'un système dynamique à partir d'observations partielles et <u>bruitées</u>.

Modèles mathématiques d'évolution utilisés dans de nombreux domaines des sciences et techniques : physique, biologie, écologie, météorologie, économie, ingénierie...

Modèles mathématiques d'évolution utilisés dans de nombreux domaines des sciences et techniques : physique, biologie, écologie, météorologie, économie, ingénierie...

Systèmes qui évoluent dans le temps de facon à la fois :

Modèles mathématiques d'évolution utilisés dans de nombreux domaines des sciences et techniques : physique, biologie, écologie, météorologie, économie, ingénierie...

Systèmes qui évoluent dans le temps de facon à la fois :

→ causale

leur avenir ne dépend que de phénomènes passés ou présents

Modèles mathématiques d'évolution utilisés dans de nombreux domaines des sciences et techniques : physique, biologie, écologie, météorologie, économie, ingénierie...

Systèmes qui évoluent dans le temps de facon à la fois :

→ causale

leur avenir ne dépend que de phénomènes passés ou présents

→ déterministe

à une condition initiale donnée à l'instant présent correspond, à chaque instant ultérieur, un et un seul état futur

Systèmes dynamiques : évolution dans le temps

Systèmes dynamiques : évolution dans le temps

► Evolution continue dans le temps → équations différentielles ordinaires

Systèmes dynamiques : évolution dans le temps

- ► Evolution continue dans le temps → équations différentielles ordinaires
- ► Evolution discontinue dans le temps → équations récurrentes

Systèmes dynamiques stochastiques

Systèmes dynamiques stochastiques

 Prise en compte de perturbations aléatoires dans les équations du système

Systèmes dynamiques stochastiques

- Prise en compte de perturbations aléatoires dans les équations du système
- ► Evolution de phénomènes aléatoires décrits par des processus aléatoires continus et/ou discrets

Notations

```
\begin{array}{llll} \text{Temps}: & t & \in & \mathbb{R} \\ \text{Vecteur d'état}: & X(t) & \in & \mathbb{R}^p \\ \text{Vecteur des mesures}: & Z(t) & \in & \mathbb{R}^m \end{array}
```

Notations

```
\begin{array}{llll} \text{Temps}: & t & \in & \mathbb{R} \\ \text{Vecteur d'état}: & X(t) & \in & \mathbb{R}^p \\ \text{Vecteur des mesures}: & Z(t) & \in & \mathbb{R}^m \end{array}
```

o $\{X(t)\}, \{Z(t)\} \equiv$ processus aléatoires continus.

Notations

```
\begin{array}{llll} \text{Temps}: & t & \in & \mathbb{R} \\ \text{Vecteur d'état}: & X(t) & \in & \mathbb{R}^p \\ \text{Vecteur des mesures}: & Z(t) & \in & \mathbb{R}^m \end{array}
```

o $\{X(t)\}, \{Z(t)\} \equiv$ processus aléatoires continus.

Remarque

L'état X(t) du système dynamique n'est pas observé.

Mesures bruitées disponibles à l'instant t:

$$\{Z(\tau),\,\tau\in[0,t]\}$$

Mesures bruitées disponibles à l'instant t:

$$\{Z(\tau),\,\tau\in[0,t]\}$$

Lien signal/mesures à l'instant t:

$$Z(t) \ = \ h\left(X(t)\right) \ + \ V(t)$$

Mesures bruitées disponibles à l'instant t:

$$\{Z(\tau),\,\tau\in[0,t]\}$$

Lien signal/mesures à l'instant t:

$$Z(t) = h(X(t)) + V(t)$$

Mesures bruitées disponibles à l'instant t:

$$\{Z(\tau),\,\tau\in[0,t]\}$$

Lien signal/mesures à l'instant t:

$$Z(t) \ = \ h\left(X(t)\right) \ + \ V(t)$$

$$ightharpoonup Z(t)
ightharpoonup$$
 observations

Mesures bruitées disponibles à l'instant t:

$$\{Z(\tau),\,\tau\in[0,t]\}$$

Lien signal/mesures à l'instant t:

$$Z(t) \ = \ h\left(X(t)\right) \ + \ V(t)$$

$$ightharpoonup Z(t)
ightharpoonup {
m observations} h\left(X(t)
ight)
ightharpoonup {
m signal fonction de l'état}$$

Mesures bruitées disponibles à l'instant t:

$$\{Z(\tau),\,\tau\in[0,t]\}$$

Lien signal/mesures à l'instant t:

$$Z(t) = h(X(t)) + V(t)$$

0

 $\begin{array}{c} \blacktriangleright & Z(t) \to \text{observations} \\ & h\left(X(t)\right) \to \text{signal fonction de l'état} \\ & V(t) \to \text{bruit additif supposé connu} \\ \end{array}$

Filtrage

Détermination d'un estimateur optimal $\hat{X}(t)$ du vecteur d'état X(t) à partir de toutes les mesures disponibles

$$\{Z(\tau),\,\tau\in[0,t]\}$$

Formulation mathématique : cas discret

Processus aléatoires discrets

Formulation mathématique : cas discret

Processus aléatoires discrets

```
Temps : k \in \mathbb{Z} Vecteur d'état : X_k \in \mathbb{R}^p Vecteur des mesures : Z_k \in \mathbb{R}^m
```

o $\{X_k\}, \{Z_k\} \equiv$ processus aléatoires discrets.

Formulation mathématique : cas discret

Processus aléatoires discrets

o $\{X_k\}, \{Z_k\} \equiv$ processus aléatoires discrets.

Remarque

L'état X_k du système dynamique n'est pas observé.

Mesures bruitées disponibles à l'instant k:

$$Z_{0:k} = \{Z_l, l = 0, 1, 2, \dots, k\}$$

Mesures bruitées disponibles à l'instant k:

$$Z_{0:k} = \{Z_l, l = 0, 1, 2, \dots, k\}$$

Lien signal/mesures à l'instant k:

$$Z_k = h(X_k) + V_k$$

Mesures bruitées disponibles à l'instant k:

$$Z_{0:k} = \{Z_l, l = 0, 1, 2, \dots, k\}$$

Lien signal/mesures à l'instant k:

$$Z_k = h(X_k) + V_k$$

Mesures bruitées disponibles à l'instant k:

$$Z_{0:k} = \{Z_l, l = 0, 1, 2, \dots, k\}$$

Lien signal/mesures à l'instant k:

$$Z_k = h(X_k) + V_k$$

$$ightharpoonup Z_k
ightharpoonup$$
 observations

Mesures bruitées disponibles à l'instant k:

$$Z_{0:k} = \{Z_l, l = 0, 1, 2, \dots, k\}$$

Lien signal/mesures à l'instant k:

$$Z_k = h(X_k) + V_k$$

0

 $lackbox{} Z_k
ightarrow ext{observations} \ h\left(X_k
ight)
ightarrow ext{signal fonction de l'état}$

Mesures bruitées disponibles à l'instant k:

$$Z_{0:k} = \{Z_l, l = 0, 1, 2, \dots, k\}$$

Lien signal/mesures à l'instant k:

$$Z_k = h(X_k) + V_k$$

0

 $lackbox{$lackbox{\triangleright}$} Z_k
ightarrow ext{observations} \ h\left(X_k
ight)
ightarrow ext{signal fonction de l'état} \ V_k
ightarrow ext{bruit additif supposé connu}$

Filtrage

Détermination d'un estimateur optimal \hat{X}_k du vecteur d'état X_k à partir de toutes les mesures disponibles

$$Z_{0:k} = \{Z_l, l = 0, 1, 2, \dots, k\}$$

• Mobile en mouvement le long d'un axe (0x) avec une accélération constante γ

- Mobile en mouvement le long d'un axe (0x) avec une accélération constante γ
- Filtrage : estimer la vitesse v(t) et la position x(t) du mobile à l'instant t à partir de mesures de position

Conditions initiales

 $\begin{array}{llll} \text{Vitesse}: & v(t_0) & = & v_0 \\ \text{Position}: & x(t_0) & = & x_0 \end{array}$

Modélisation physique

```
Vitesse : v(t) = v_0 + \gamma (t - t_0)
Position : x(t) = x_0 + v_0 (t - t_0) + \frac{1}{2} \gamma (t - t_0)^2
```

Vecteur d'état

$$X(t) = \left[\begin{array}{c} v(t) \\ x(t) \end{array} \right]$$

Equation dynamique d'évolution de l'état

$$\frac{dX}{dt} = \begin{bmatrix} \frac{dv}{dt} \\ \frac{dx}{dt} \end{bmatrix} = \begin{bmatrix} \gamma \\ v(t) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v \\ x \end{bmatrix} + \begin{bmatrix} \gamma \\ 0 \end{bmatrix}$$

Equation dynamique d'évolution de l'état

$$\frac{dX}{dt} = \begin{bmatrix} \frac{dv}{dt} \\ \frac{dx}{dt} \end{bmatrix} = \begin{bmatrix} \gamma \\ v(t) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v \\ x \end{bmatrix} + \begin{bmatrix} \gamma \\ 0 \end{bmatrix}$$

 \rightarrow système d'équations différentielles.

Système dynamique continu

$$\frac{dX}{dt} = F(t)X(t) + f(t)$$

o
$$X(t) \in \mathbb{R}^2$$
, $F(t) \in \mathbb{R}^{2 \times 2}$ et $f(t) \in \mathbb{R}^2$.

Système dynamique continu

$$\frac{dX}{dt} = F(t)X(t) + f(t)$$

- o $X(t) \in \mathbb{R}^2$, $F(t) \in \mathbb{R}^{2 \times 2}$ et $f(t) \in \mathbb{R}^2$.
- → équation d'évolution de l'état ou équation d'état

Mesure

$$Z(t) = x(t) + V(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} v \\ x \end{bmatrix} + V(t)$$

o V(t) représente le **bruit de mesure**

Equation d'observation

$$Z(t)\,=\,H(t)\,X(t)\,+\,V(t)$$
 o $Z(t)\in\mathbb{R},\,X(t)\in\mathbb{R}^2,\,H(t)\in\mathbb{R}^{1\times 2}$ et $V(t)\in\mathbb{R}.$

Discrétisation

$$\forall t \in [t_k, t_{k+1}], \ \gamma(t) = \mathsf{cste} = \gamma_k, \ k \in \mathbb{N}$$

Conditions initiales

```
\begin{array}{llll} \mbox{Vitesse}: & v(t_k) & = & v_k \\ \mbox{Position}: & x(t_k) & = & x_k \end{array}, \, k \in \mathbb{N}
```

Modélisation physique

Vitesse:
$$v(t)=v_k+\gamma(t-t_k)$$

Position: $x(t)=x_k+v_k(t-t_k)+\frac{1}{2}\gamma(t-t_k)^2$, $t\in[t_k,t_{k+1}],\ k\in\mathbb{N}$

Vecteur d'état

$$X_k = X(t_k) = \begin{bmatrix} v(t_k) \\ x(t_k) \end{bmatrix} = \begin{bmatrix} v_k \\ x_k \end{bmatrix}$$

Equation dynamique d'évolution de l'état

$$X_{k+1} = \begin{bmatrix} v(t_{k+1}) \\ x(t_{k+1}) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \Delta t & 1 \end{bmatrix} \begin{bmatrix} v_k \\ x_k \end{bmatrix} + \begin{bmatrix} \Delta t \\ (\Delta t)^2 \\ 2 \end{bmatrix} \gamma_k$$

o

$$\Delta t = t_{k+1} - t_k$$

Equation dynamique d'évolution de l'état

$$X_{k+1} = \begin{bmatrix} v(t_{k+1}) \\ x(t_{k+1}) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \Delta t & 1 \end{bmatrix} \begin{bmatrix} v_k \\ x_k \end{bmatrix} + \begin{bmatrix} \Delta t \\ (\Delta t)^2 \\ 2 \end{bmatrix} \gamma_k$$

0

$$\Delta t = t_{k+1} - t_k$$

 \rightarrow système d'équations récurrentes.

Système dynamique discret

$$X_{k+1} = F_k X_k + f_k$$

o
$$X_k \in \mathbb{R}^2$$
, $F_k \in \mathbb{R}^{2 \times 2}$ et $f_k \in \mathbb{R}^2$.

Système dynamique discret

$$X_{k+1} = F_k X_k + f_k$$

- o $X_k \in \mathbb{R}^2$, $F_k \in \mathbb{R}^{2 \times 2}$ et $f_k \in \mathbb{R}^2$.
- \rightarrow équation d'évolution de l'état ou équation d'état

Supposons que l'accélération γ_k subisse des perturbations aléatoires ; alors l'équation d'évolution de l'état X_k peut être complétée par Système dynamique discret

$$X_{k+1} = F_k X_k + f_k + W_k$$

o $W_k \in \mathbb{R}^2$ représente un bruit qui affecte le modèle accélération constante

Supposons que l'accélération γ_k subisse des perturbations aléatoires ; alors l'équation d'évolution de l'état X_k peut être complétée par Système dynamique discret

$$X_{k+1} = F_k X_k + f_k + W_k$$

o $W_k \in \mathbb{R}^2$ représente un bruit qui affecte le modèle accélération constante

→ bruit de modèle

Mesure

$$Z_k = x_k + V_k = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} v_k \\ x_k \end{bmatrix} + V_k$$

o V_k représente le **bruit de mesure**

Equation d'observation

$$Z_k = H_k X_k + V_k$$

o
$$Z_k \in \mathbb{R}$$
, $X_k \in \mathbb{R}^2$, $H_k \in \mathbb{R}^{1 \times 2}$ et $V_k \in \mathbb{R}$

Le problème du filtrage se ramène à la résolution d'un système linéaire stochastique récursif de la forme

$$\begin{cases} X_{k+1} = F_k X_k + f_k + W_k \\ Z_k = H_k X_k + V_k \end{cases}$$

o
$$Z_k\in\mathbb{R}$$
, $X_k\in\mathbb{R}^2$, $F_k\in\mathbb{R}^{2 imes 2}$ $H_k\in\mathbb{R}^{1 imes 2}$, $W_k\in\mathbb{R}^2$ et $V_k\in\mathbb{R}$

Pour le résoudre, il faut préciser la nature des bruits de modèle $\{W_k\}$ et de mesure $\{V_k\}$

Soit le système linéaire gaussien suivant

$$\begin{cases} X_{k+1} = F_k X_k + f_k + W_k \\ Z_k = H_k X_k + h_k + V_k \end{cases}$$

o, pour tout $k \in \mathbb{N}$, $X_k, f_k, W_k \in \mathbb{R}^p$, $Z_k, h_k, V_k \in \mathbb{R}^m$, $F_k \in \mathbb{R}^{p \times p}$, $H_k \in \mathbb{R}^{m \times p}$, et,

Soit le système linéaire gaussien suivant

$$\begin{cases} X_{k+1} = F_k X_k + f_k + W_k \\ Z_k = H_k X_k + h_k + V_k \end{cases}$$

o, pour tout $k\in\mathbb{N}$, $X_k,f_k,W_k\in\mathbb{R}^p$, $Z_k,h_k,V_k\in\mathbb{R}^m$, $F_k\in\mathbb{R}^{p\times p}$, $H_k\in\mathbb{R}^{m\times p}$, et,

lacktriangle le bruit $\{W_k\}$ est un bruit blanc gaussien de matrice de covariance Q_k^W

Soit le système linéaire gaussien suivant

$$\begin{cases} X_{k+1} = F_k X_k + f_k + W_k \\ Z_k = H_k X_k + h_k + V_k \end{cases}$$

o, pour tout $k\in\mathbb{N}$, $X_k,f_k,W_k\in\mathbb{R}^p$, $Z_k,h_k,V_k\in\mathbb{R}^m$, $F_k\in\mathbb{R}^{p\times p}$, $H_k\in\mathbb{R}^{m\times p}$, et,

- lacktriangle le bruit $\{W_k\}$ est un bruit blanc gaussien de matrice de covariance Q_k^W
- La condition initiale X_0 est gaussienne, de moyenne \bar{X}_0 , de matrice de covariance Q_0^X

Soit le système linéaire gaussien suivant

$$\begin{cases} X_{k+1} = F_k X_k + f_k + W_k \\ Z_k = H_k X_k + h_k + V_k \end{cases}$$

o, pour tout $k\in\mathbb{N}$, $X_k,f_k,W_k\in\mathbb{R}^p$, $Z_k,h_k,V_k\in\mathbb{R}^m$, $F_k\in\mathbb{R}^{p\times p}$, $H_k\in\mathbb{R}^{m\times p}$, et,

- lacktriangle le bruit $\{W_k\}$ est un bruit blanc gaussien de matrice de covariance Q_k^W
- La condition initiale X_0 est gaussienne, de moyenne \bar{X}_0 , de matrice de covariance Q_0^X
- lacktriangle le bruit $\{V_k\}$ est un bruit blanc gaussien de matrice de covariance Q_k^V

Soit le système linéaire gaussien suivant

$$\begin{cases} X_{k+1} = F_k X_k + f_k + W_k \\ Z_k = H_k X_k + h_k + V_k \end{cases}$$

o, pour tout $k\in\mathbb{N}$, $X_k,f_k,W_k\in\mathbb{R}^p$, $Z_k,h_k,V_k\in\mathbb{R}^m$, $F_k\in\mathbb{R}^{p\times p}$, $H_k\in\mathbb{R}^{m\times p}$, et,

- lacktriangle le bruit $\{W_k\}$ est un bruit blanc gaussien de matrice de covariance Q_k^W
- La condition initiale X_0 est gaussienne, de moyenne \bar{X}_0 , de matrice de covariance Q_0^X
- lacktriangle le bruit $\{V_k\}$ est un bruit blanc gaussien de matrice de covariance Q_k^V
- Les bruits $\{W_k\}$, $\{V_k\}$ et la condition initiale X_0 sont mutuellement indépendants

A l'instant k, les observations suivantes sont disponibles

$$Z_{0:k} \stackrel{\triangle}{=} (Z_0, Z_1, \dots, Z_k)$$

A l'instant k, les observations suivantes sont disponibles

$$Z_{0:k} \stackrel{\triangle}{=} (Z_0, Z_1, \dots, Z_k)$$

Filtrage

Estimation du vecteur aléatoire X_k à partir des observations $Z_{0:k}$ de facon **optimale**, **récursive**

▶ Critère d'optimalité : minimum de variance \Rightarrow loi conditionnelle de X_k sachant $Z_{0:k}$ (prop. P3)

- ▶ Critère d'optimalité : minimum de variance \Rightarrow loi conditionnelle de X_k sachant $Z_{0:k}$ (prop. P3)
- ► Cas gaussien \Rightarrow Seules la moyenne \widehat{X}_k et la matrice de covariance P_k sont nécessaires à la définition de cette loi (prop. P7)

d'o

- ▶ Critère d'optimalité : minimum de variance \Rightarrow loi conditionnelle de X_k sachant $Z_{0:k}$ (prop. P3)
- ► Cas gaussien \Rightarrow Seules la moyenne \widehat{X}_k et la matrice de covariance P_k sont nécessaires à la définition de cette loi (prop. P7)

d'o

Espérance et matrice de covariance conditionnelles

$$\widehat{X}_k \stackrel{\triangle}{=} \mathbb{E}\left[X_k | Z_{0:k}\right]$$

$$P_k \stackrel{\triangle}{=} \mathbb{E}\left[\left(X_k - \widehat{X}_k\right)\left(X_k - \widehat{X}_k\right)^T \mid Z_{0:k}\right]$$

Formulation du filtre de Kalman discret

Espérance et matrice de covariance conditionnelles antérieures

$$\widehat{X}_{k}^{-} \stackrel{\triangle}{=} \mathbb{E}\left[X_{k}|Z_{0:k-1}\right]$$

$$P_k^- \stackrel{\triangle}{=} \mathbb{E}\left[\left(X_k - \widehat{X}_k^-\right) \left(X_k - \widehat{X}_k^-\right)^T \mid Z_{0:k-1}\right]$$

Formulation du filtre de Kalman discret

Les matrices de covariances conditionnelles P_k et P_k^- ne dépendent pas des observations (prop. P11)

Conséquence

$$P_k^- = \mathbb{E}\left[\left(X_k - \widehat{X}_k^-\right) \left(X_k - \widehat{X}_k^-\right)^T\right]$$

$$P_k = \mathbb{E}\left[\left(X_k - \widehat{X}_k\right)\left(X_k - \widehat{X}_k\right)^T\right]$$

Supposons connue la loi conditionnelle du vecteur aléatoire X_{k-1} sachant $Z_{0:k-1}$.

Supposons connue la loi conditionnelle du vecteur aléatoire X_{k-1} sachant $Z_{0:k-1}$.

Comment déterminer la loi conditionnelle de X_k sachant $Z_{0:k}$?

Supposons connue la loi conditionnelle du vecteur aléatoire X_{k-1} sachant $Z_{0:k-1}$.

Comment déterminer la loi conditionnelle de X_k sachant $Z_{0:k}$?

Deux étapes sont nécessaires :

Supposons connue la loi conditionnelle du vecteur aléatoire X_{k-1} sachant $Z_{0:k-1}$.

Comment déterminer la loi conditionnelle de X_k sachant $Z_{0:k}$?

Deux étapes sont nécessaires :

1. La prédiction

Supposons connue la loi conditionnelle du vecteur aléatoire X_{k-1} sachant $Z_{0:k-1}.$

Comment déterminer la loi conditionnelle de X_k sachant $Z_{0:k}$?

Deux étapes sont nécessaires :

1. La prédiction

la loi conditionnelle de X_k est calculée sachant les observations passées $Z_{0:k-1}$

Supposons connue la loi conditionnelle du vecteur aléatoire X_{k-1} sachant $Z_{0:k-1}$.

Comment déterminer la loi conditionnelle de X_k sachant $Z_{0:k}$?

Deux étapes sont nécessaires :

1. La prédiction

la loi conditionnelle de X_k est calculée sachant les observations passées $Z_{0:k-1}$

2. La correction

Supposons connue la loi conditionnelle du vecteur aléatoire X_{k-1} sachant $Z_{0:k-1}$.

Comment déterminer la loi conditionnelle de X_k sachant $Z_{0:k}$?

Deux étapes sont nécessaires :

1. La prédiction

la loi conditionnelle de X_k est calculée sachant les observations passées $Z_{0:k-1}$

2. La correction

l'observation Z_k est utilisée pour apporter une information nouvelle par rapport aux observations passées $Z_{0:k-1}$

La quantité

$$I_k = Z_k - \mathbb{E}[Z_k | Z_{0:k-1}] = Z_k - (H_k \widehat{X}_k^- + h_k)$$

est appelée innovation

Lemme

Le processus $\{I_k\}$ est un processus gaussien à valeurs dans \mathbb{R}^m ; en particulier I_k est un vecteur aléatoire gaussien

indépendant de $Z_{0:k-1}$

La quantité

$$I_k = Z_k - \mathbb{E}[Z_k | Z_{0:k-1}] = Z_k - (H_k \widehat{X}_k^- + h_k)$$

est appelée innovation

Lemme

Le processus $\{I_k\}$ est un processus gaussien à valeurs dans \mathbb{R}^m ; en particulier I_k est un vecteur aléatoire gaussien

▶ de moyenne nulle

indépendant de $Z_{0:k-1}$

La quantité

$$I_k = Z_k - \mathbb{E}[Z_k | Z_{0:k-1}] = Z_k - (H_k \widehat{X}_k^- + h_k)$$

est appelée innovation

Lemme

Le processus $\{I_k\}$ est un processus gaussien à valeurs dans \mathbb{R}^m ; en particulier I_k est un vecteur aléatoire gaussien

- ▶ de moyenne nulle
- lacktriangle de matrice de covariance $Q_k^I = H_k \, P_k^- H_k^T \, + \, Q_k^V$

indépendant de $Z_{0:k-1}$

Théorème

Si la matrice de covariance Q_k^V est inversible pour tout $k\in\mathbb{N}$ alors les processus $\{\widehat{X}\}$ et $\{P_k\}$ sont définis par les équations suivantes

Théorème

Si la matrice de covariance Q_k^V est inversible pour tout $k\in\mathbb{N}$ alors les processus $\{\widehat{X}\}$ et $\{P_k\}$ sont définis par les équations suivantes

Prédiction

$$\begin{array}{rcl} \widehat{X}_{k}^{-} & = & F_{k} \, \widehat{X}_{k-1} + f_{k} \\ P_{k}^{-} & = & F_{k} \, P_{k-1} \, F_{k}^{T} + Q_{k}^{W} \end{array}$$

Théorème

Si la matrice de covariance Q_k^V est inversible pour tout $k\in\mathbb{N}$ alors les processus $\{\widehat{X}\}$ et $\{P_k\}$ sont définis par les équations suivantes

Prédiction

$$\begin{array}{rcl} \widehat{X}_{k}^{-} & = & F_{k} \, \widehat{X}_{k-1} \, + f_{k} \\ P_{k}^{-} & = & F_{k} \, P_{k-1} \, F_{k}^{T} \, + \, Q_{k}^{W} \end{array}$$

Correction

$$\hat{X}_{k} = \hat{X}_{k}^{-} + K_{k} [Z_{k} - (H_{k} \hat{X}_{k}^{-} + h_{k})]
P_{k} = [I - K_{k} H_{k}] P_{k}^{-}$$

o la matrice $K_k \,=\, P_k^-\, H_k^T\, [H_k P_k^- H_k^T\,+\,Q_k^V]^{-1}$ est le gain de Kalman,

Théorème

Si la matrice de covariance Q_k^V est inversible pour tout $k\in\mathbb{N}$ alors les processus $\{\widehat{X}\}$ et $\{P_k\}$ sont définis par les équations suivantes

Prédiction

$$\begin{array}{rcl} \widehat{X}_{k}^{-} & = & F_{k} \, \widehat{X}_{k-1} \, + f_{k} \\ P_{k}^{-} & = & F_{k} \, P_{k-1} \, F_{k}^{T} \, + \, Q_{k}^{W} \end{array}$$

Correction

$$\begin{array}{rcl} \widehat{X}_{k} & = & \widehat{X}_{k}^{-} + K_{k} \left[Z_{k} - (H_{k} \, \widehat{X}_{k}^{-} + h_{k}) \right] \\ P_{k} & = & \left[I - K_{k} \, H_{k} \right] \, P_{k}^{-} \end{array}$$

o la matrice $K_k=P_k^-\,H_k^T\,[H_kP_k^-H_k^T\,+\,Q_k^V]^{-1}$ est le gain de Kalman, et avec les initialisations

$$\hat{X}_{0}^{-} = \bar{X}_{0} = \mathbb{E}[X_{0}], \quad P_{0}^{-} = Q_{0}^{X}$$

Filtre de Kalman-Bucy : remarques

Filtre de Kalman-Bucy : remarques

▶ La suite $\{P_k\}$ ne dépend pas ni des observations $\{Z_k\}$, ni des coefficients $\{f_k\}$ et $\{h_k\}$

Filtre de Kalman-Bucy : remarques

- ▶ La suite $\{P_k\}$ ne dépend pas ni des observations $\{Z_k\}$, ni des coefficients $\{f_k\}$ et $\{h_k\}$
- ▶ Si pour tout $k \in \mathbb{N}$, $F_k = F$, $G_k = G$, $H_k = H$, $Q_k^W = Q^W$, et $Q_k^V = Q^V$ alors la suite $\{P_k\}$ peut être pré-calculée

Soit le système non linéaire suivant

$$\begin{cases} X_k = f_k(X_{k-1}) + g_k(X_{k-1})W_k \\ Z_k = h_k(X_k) + V_k \end{cases}$$

Soit le système non linéaire suivant

$$\begin{cases} X_k = f_k(X_{k-1}) + g_k(X_{k-1})W_k \\ Z_k = h_k(X_k) + V_k \end{cases}$$

- o, pour tout $k \in \mathbb{N}$, $X_k \in \mathbb{R}^p$, $W_k \in \mathbb{R}^d$, $Z_k, V_k \in \mathbb{R}^m$, et o les fonctions f_k , g_k , h_k définies sur \mathbb{R}^p sont à valeurs dans \mathbb{R}^p , $\mathbb{R}^{p \times d}$, \mathbb{R}^m respectivement ; de plus
 - les fonctions f_k et g_k sont supposées dérivables

Soit le système non linéaire suivant

$$\begin{cases} X_k = f_k(X_{k-1}) + g_k(X_{k-1})W_k \\ Z_k = h_k(X_k) + V_k \end{cases}$$

- les fonctions f_k et g_k sont supposées dérivables
- lacktriangle le bruit $\{W_k\}$ est un bruit blanc gaussien de matrice de covariance Q_k^W

Soit le système non linéaire suivant

$$\begin{cases} X_k = f_k(X_{k-1}) + g_k(X_{k-1})W_k \\ Z_k = h_k(X_k) + V_k \end{cases}$$

- les fonctions f_k et g_k sont supposées dérivables
- lacktriangle le bruit $\{W_k\}$ est un bruit blanc gaussien de matrice de covariance Q_k^W
- lacktriangle le bruit $\{V_k\}$ est un bruit blanc gaussien de matrice de covariance Q_k^V

Soit le système non linéaire suivant

$$\begin{cases} X_k = f_k(X_{k-1}) + g_k(X_{k-1})W_k \\ Z_k = h_k(X_k) + V_k \end{cases}$$

- les fonctions f_k et g_k sont supposées dérivables
- lacktriangle le bruit $\{W_k\}$ est un bruit blanc gaussien de matrice de covariance Q_k^W
- lacktriangle le bruit $\{V_k\}$ est un bruit blanc gaussien de matrice de covariance Q_k^V
- Les bruits $\{W_k\}$, $\{V_k\}$ et la condition initiale X_0 sont mutuellement indépendants

Soit une suite déterministe $\{\bar{x}_k\}$ dans \mathbb{R}^p , solution approchée du système, appelée **trajectoire nominale**.

La linéarisation consiste à

lacktriangle linéariser f_k et g_k autour de $ar{x}_{k-1}$ i.e

$$f_k(x) \simeq f_k(\bar{x}_{k-1}) + f'_k(\bar{x}_{k-1})(x - \bar{x}_{k-1})$$
 et $g_k(x) \simeq g_k(\bar{x}_{k-1})$

linéariser h_k autour de \bar{x}_k i.e

$$h_k(x) \simeq h_k(\bar{x}_{k-1}) + h'_k(\bar{x}_{k-1})(x - \bar{x}_{k-1})$$

Le système linéarisé obtenu est de la forme

$$\begin{cases} X_k = F_k(X_{k-1} - \bar{x}_{k-1}) + f_k + G_k W_k \\ Z_k = H_k(X_k - \bar{x}_k) + h_k + V_k \end{cases}$$

o
$$F_k \stackrel{\triangle}{=} f_k'(\bar{x}_{k-1})$$
, $f_k \stackrel{\triangle}{=} f_k(\bar{x}_{k-1})$, $G_k \stackrel{\triangle}{=} g_k(\bar{x}_{k-1})$, $H_k \stackrel{\triangle}{=} h_k'(\bar{x}_k)$ et $h_k \stackrel{\triangle}{=} h_k(\bar{x}_k)$

Théorème

Prédiction

$$\begin{array}{rcl} \widehat{X}_{k}^{-} & = & f_{k}(\widehat{X}_{k-1}) \\ P_{k}^{-} & = & F_{k} P_{k-1} F_{k}^{T} + G_{k} Q_{k}^{W} G_{k}^{T} \end{array}$$

Correction

$$\hat{X}_{k} = \hat{X}_{k}^{-} + K_{k} [Z_{k} - h_{k}(\hat{X}_{k}^{-})]
P_{k} = [I - K_{k} H_{k}] P_{k}^{-}$$

o la matrice $K_k = P_k^- H_k^T \left[H_k P_k^- H_k^T + Q_k^V \right]^{-1}$ est le gain de Kalman,

Théorème

Prédiction

$$\begin{array}{rcl} \widehat{X}_{k}^{-} & = & f_{k}(\widehat{X}_{k-1}) \\ P_{k}^{-} & = & F_{k} P_{k-1} F_{k}^{T} + G_{k} Q_{k}^{W} G_{k}^{T} \end{array}$$

Correction

$$\hat{X}_{k} = \hat{X}_{k}^{-} + K_{k} [Z_{k} - h_{k}(\hat{X}_{k}^{-})]
P_{k} = [I - K_{k} H_{k}] P_{k}^{-}$$

o la matrice $K_k = P_k^- H_k^T \left[H_k P_k^- H_k^T + Q_k^V \right]^{-1}$ est le **gain de Kalman**, et avec les initialisations telle que la loi gaussienne de moyenne \widehat{X}_0^- et de matrice de covariance P_0^- soit une bonne approximation de celle de X_0

Filtre de Kalman étendu ("Extended Kalman filter")

La trajectoire nominale est ici remplacée par l'estimateur courant de X_k compte-tenu des observations disponibles à l'instant k-1.

La linéarisation consiste à

- ▶ linéariser f_k et g_k autour de \widehat{X}_{k-1} i.e $f_k(x) \simeq f_k(\widehat{X}_{k-1}) + f_k'(\widehat{X}_{k-1})(x \widehat{X}_{k-1}) \text{ et }$ $g_k(x) \simeq g_k(\widehat{X}_{k-1})$
- Inéariser h_k autour de \widehat{X}_k^- i.e $h_k(x) \, \simeq \, h_k(\widehat{X}_k^-) \, + \, h_k'(\widehat{X}_k^-)(x \widehat{X}_k^-)$

Filtre de Kalman étendu

Le système linéarisé obtenu est de la forme

$$\begin{cases} X_k = F_k(X_{k-1} - \hat{X}_{k-1}) + f_k + G_k W_k \\ Z_k = H_k(X_k - \hat{X}_{k-1}) + h_k + V_k \end{cases}$$

o
$$F_k \stackrel{\triangle}{=} f_k'(\widehat{X}_{k-1})$$
, $f_k \stackrel{\triangle}{=} f_k(\widehat{X}_{k-1})$, $G_k \stackrel{\triangle}{=} g_k(\widehat{X}_{k-1})$, $H_k \stackrel{\triangle}{=} h_k'(\widehat{X}_k^-)$ et $h_k \stackrel{\triangle}{=} h_k(\widehat{X}_k^-)$

Filtre de Kalman étendu

Théorème

Prédiction

$$\begin{array}{rcl} \widehat{X}_{k}^{-} & = & f_{k}(\widehat{X}_{k-1}) \\ P_{k}^{-} & = & F_{k} P_{k-1} F_{k}^{T} + G_{k} Q_{k}^{W} G_{k}^{T} \end{array}$$

Correction

$$\begin{array}{rcl} \widehat{X}_{k} & = & \widehat{X}_{k}^{-} + K_{k} \left[Z_{k} - h_{k}(\widehat{X}_{k}^{-}) \right] \\ P_{k} & = & \left[I - K_{k} H_{k} \right] P_{k}^{-} \end{array}$$

o la matrice $K_k = P_k^- H_k^T [H_k P_k^- H_k^T + Q_k^V]^{-1}$ et avec $F_k \stackrel{\triangle}{=} f_k'(\widehat{X}_{k-1})$, $G_k \stackrel{\triangle}{=} g_k(\widehat{X}_{k-1})$, et $H_k \stackrel{\triangle}{=} h_k'(\widehat{X}_k^-)$

Présentation

Cette présentation a été réalisée à l'aide de la classe beamer complétée par le laboratoire de mathématiques appliqués de l'université de technologie de Compiègne

http://www.lmac.utc.fr/outils

- J.-Y. OuvrardProbabilités.(2 tomes) Cassini, 2004
- G. Blanchet and M. Charbit
 Signaux et images sous MatLab.
 2nd édition, Hermès, 2001

- J.-Y. OuvrardProbabilités.(2 tomes) Cassini, 2004
- G. Blanchet and M. Charbit
 Signaux et images sous MatLab.
 2nd édition, Hermès, 2001
- M. Labarrère and J.-P. Krief and B. Gimonet Le filtrage et ses applications.
 3e édition, Cépaduès éditions, 1995

- J.-Y. OuvrardProbabilités.(2 tomes) Cassini, 2004
- G. Blanchet and M. Charbit
 Signaux et images sous MatLab.
 2nd édition, Hermès, 2001
- M. Labarrère and J.-P. Krief and B. Gimonet Le filtrage et ses applications.
 3e édition, Cépaduès éditions, 1995

Bibliographie (suite)

Bibliographie (suite)

- A. Papoulis and S. Unnikrishna Pillai Probability, Random Variables and Stochastic Processes. 4th edition, Mac Graw Hill, 2002
- P. S. Maybeck Stochastic Models, Estimation and Control. Volume 141-1, Mathematics in Science and Engineering, reprint

Bibliographie (suite)

- A. Papoulis and S. Unnikrishna Pillai Probability, Random Variables and Stochastic Processes. 4th edition, Mac Graw Hill, 2002
- P. S. Maybeck Stochastic Models, Estimation and Control. Volume 141-1, Mathematics in Science and Engineering, reprint

F. LeGland

Introduction au Filtrage en Temps Discret.

Polycopié de cours ; Master recherche Signal, Télecommunication, Images

Université de Rennes I ; 2005-06.

http://www.irisa.fr/aspi/legland/ens.hml

F. LeGland

Introduction au Filtrage en Temps Discret.

Polycopié de cours ; Master recherche Signal, Télecommunication, Images

Université de Rennes I ; 2005-06.

http://www.irisa.fr/aspi/legland/ens.hml

D. Alazard

Introduction au Filtrage de Kalman.

Polycopié de cours ; Ecole Nationale Supérieure de l'Aéronautique et de l'Espace ; 2005. http://personnel.supaero.fr/alazard-daniel/

D. Alazard

Introduction au Filtrage de Kalman.

Polycopié de cours ; Ecole Nationale Supérieure de l'Aéronautique et de l'Espace ; 2005. http://personnel.supaero.fr/alazard-daniel/

G Welch and G. Bishop The Kalman Filter.

http://www.cs.unc.edu/~welch/kalman

G Welch and G. Bishop The Kalman Filter.

http://www.cs.unc.edu/~welch/kalman