BellmanFord.h

Description: Calculates shortest paths from s in a graph that might have negative edge weights. Unreachable nodes get dist = inf; nodes reachable through negative-weight cycles get dist = -inf. Assumes $V^2 \max |w_i| < \sim 2^{63}$. **Time:** $\mathcal{O}(VE)$

830a8f, 23 lines

```
const ll inf = LLONG MAX;
struct Ed { int a, b, w, s() { return a < b ? a : -a; }};
struct Node { ll dist = inf; int prev = -1; };
void bellmanFord(vector<Node>& nodes, vector<Ed>& eds, int s) {
 nodes[s].dist = 0;
  sort(all(eds), [](Ed a, Ed b) { return a.s() < b.s(); });</pre>
  int lim = sz(nodes) / 2 + 2; // /3+100 with shuffled vertices
  rep(i,0,lim) for (Ed ed : eds) {
   Node cur = nodes[ed.a], &dest = nodes[ed.b];
   if (abs(cur.dist) == inf) continue;
   11 d = cur.dist + ed.w;
   if (d < dest.dist) {</pre>
     dest.prev = ed.a;
     dest.dist = (i < lim-1 ? d : -inf);
 rep(i,0,lim) for (Ed e : eds) {
   if (nodes[e.a].dist == -inf)
     nodes[e.b].dist = -inf;
```

FlovdWarshall.h

Description: Calculates all-pairs shortest path in a directed graph that might have negative edge weights. Input is an distance matrix m, where $m[i][j] = \inf$ if i and j are not adjacent. As output, m[i][j] is set to the shortest distance between i and j, inf if no path, or -inf if the path goes through a negative-weight cycle.

Time: $\mathcal{O}(N^3)$

531245, 12 lines

```
const ll inf = lLL << 62;
void floydWarshall(vector<vector<1l>>& m) {
  int n = sz(m);
  rep(i,0,n) m[i][i] = min(m[i][i], 0LL);
  rep(k,0,n) rep(i,0,n) rep(j,0,n)
  if (m[i][k] != inf && m[k][j] != inf) {
    auto newDist = max(m[i][k] + m[k][j], -inf);
    m[i][j] = min(m[i][j], newDist);
  }
  rep(k,0,n) if (m[k][k] < 0) rep(i,0,n) rep(j,0,n)
  if (m[i][k] != inf && m[k][j] != inf) m[i][j] = -inf;
}</pre>
```

6.2 Network flow

MinCut.h

Description: After running max-flow, the left side of a min-cut from s to t is given by all vertices reachable from s, only traversing edges with positive residual capacity.

GlobalMinCut.h

Description: Find a global minimum cut in an undirected graph, as represented by an adjacency matrix.

Time: $\mathcal{O}\left(V^3\right)$

8b0e19, 21 lines

```
pair<int, vi> globalMinCut(vector<vi> mat) {
  pair<int, vi> best = {INT_MAX, {}};
  int n = sz(mat);
  vector<vi> co(n);
  rep(i,0,n) co[i] = {i};
  rep(ph,1,n) {
```

```
vi w = mat[0];
size_t s = 0, t = 0;
rep(it,0,n-ph) { // O(V^2) -> O(E log V) with prio. queue
    w[t] = INT_MIN;
    s = t, t = max_element(all(w)) - w.begin();
    rep(i,0,n) w[i] += mat[t][i];
}
best = min(best, {w[t] - mat[t][t], co[t]});
co[s].insert(co[s].end(), all(co[t]));
rep(i,0,n) mat[s][i] += mat[t][i];
rep(i,0,n) mat[s][i] += mat[t][i];
mat[0][t] = INT_MIN;
}
return best;
}
```

GomorvHu.h

Description: Given a list of edges representing an undirected flow graph, returns edges of the Gomory-Hu tree. The max flow between any pair of vertices is given by minimum edge weight along the Gomory-Hu tree path. **Time:** $\mathcal{O}(V)$ Flow Computations

6.3 Matching

hopcroftKarp.h

Time: $\mathcal{O}\left(\sqrt{V}E\right)$

Description: Fast bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i] will be the match for vertex i on the right side, or -1 if it's not matched. Usage: vi btoa (m, -1); hoperoftKarp(q, btoa);

```
bool dfs(int a, int L, vector<vi>& g, vi& btoa, vi& A, vi& B) {
   if (A[a] != L) return 0;
   A[a] = -1;
   for (int b : g[a]) if (B[b] == L + 1) {
      B[b] = 0;
   if (btoa[b] == -1 || dfs(btoa[b], L + 1, g, btoa, A, B))
      return btoa[b] = a, 1;
}
```

```
if (btoa[b] == -1 || dfs(btoa[b], L + 1, g, btoa, A, B))
    return btoa[b] = a, 1;
}
return 0;
}
int hopcroftKarp(vector<vi>& g, vi& btoa) {
    int res = 0;
    vi A(g.size()), B(btoa.size()), cur, next;
    for (;;) {
        fill(all(A), 0);
        fill(all(B), 0);
        cur.clear();
        for (int a : btoa) if(a != -1) A[a] = -1;
        rep(a,0,sz(g)) if(A[a] == 0) cur.push_back(a);
        for (int lay = 1;; lay++) {
            bool islast = 0;
            next.clear();
            rept.clear();
            rept.clear();
            rept.clear();
            rept.clear();
            rept.clear();
            rept.clear();
            rept.clear();
```

```
for (int a : cur) for (int b : g[a]) {
    if (btoa[b] == -1) {
        B[b] = lay;
        islast = 1;
    }
    else if (btoa[b] != a && !B[b]) {
        B[b] = lay;
        next.push_back(btoa[b]);
    }
    if (islast) break;
    if (next.empty()) return res;
    for (int a : next) A[a] = lay;
    cur.swap(next);
}
rep(a,0,sz(g))
res += dfs(a, 0, g, btoa, A, B);
}
```

DFSMatching.h

Description: Simple bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i] will be the match for vertex i on the right side, or -1 if it's not matched.

Usage: vi btoa(m, -1); dfsMatching(g, btoa); Time: $\mathcal{O}(VE)$

```
522b98, 22 lines
bool find(int j, vector<vi>& g, vi& btoa, vi& vis) {
 if (btoa[j] == -1) return 1;
  vis[j] = 1; int di = btoa[j];
  for (int e : q[di])
    if (!vis[e] && find(e, g, btoa, vis)) {
      btoa[e] = di;
      return 1;
  return 0;
int dfsMatching(vector<vi>& g, vi& btoa) {
  rep(i, 0, sz(g)) {
    vis.assign(sz(btoa), 0);
    for (int j : g[i])
      if (find(j, g, btoa, vis)) {
        btoa[j] = i;
        break;
  return sz(btoa) - (int)count(all(btoa), -1);
```

MinimumVertexCover.h

Description: Finds a minimum vertex cover in a bipartite graph. The size is the same as the size of a maximum matching, and the complement is a maximum independent set.