Лабораторная работа 5

Модель эпидемии (SIR)

Абу Сувейлим Мухаммед Мунифович

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы 4.1 Реализация модели в xcos	7 7 10
5	Вывод	16
6	Библиография	17

Список иллюстраций

4.1	Схема модели в Xcos	7
4.2	Папаметры интеграла 1	8
		8
		9
4.5	Константы модели 1	9
4.6	График первой модели в xcos	0
4.7	График первой модели в modelica	0
4.8	Схема второй модели в хсоз	1
4.9	Константы	2
	График второй модели в xcos	2
4.11	Код второй модели в modelica	3
	Папаметры моделирования второй модели в modelica	4
	График второй модели в modelica	4
4 14	График второй молели в OpenModelica	5

1 Цель работы

• Приобретение навыков математического моделирования в хсоз.

2 Задание

В дополнение к предположениям, которые были сделаны для модели SIR (5.1), предположим, что учитываются демографические процессы, в частности, что смертность в популяции полностью уравновешивает рождаемость, а все рожденные индивидуумы появляются на свет абсолютно здоровыми. Тогда получим следующую систему уравнений:

$$\begin{cases} \dot{s} = -\beta s(t)i(t) + \mu(N-s(t)); \\ \dot{i} = \beta s(t)i(t) - vi(t) - \mu i(t); \\ \dot{r} = vi(t) - \mu r(t), \end{cases}$$

где μ — константа, которая равна коэффициенту смертности и рождаемости.

Требуется: - реализовать модель SIR с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica; - построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр μ); - сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

3 Теоретическое введение

Модель SIR (модель Кермака Маккедрика) — одна из простейших компартментных моделей, в которых с помощью систем дифференциальных уравнений описывается динамика групп восприимчивых, инфицированных и выздоровевших индивидов. Многие модели являются производными от этой базовой формы. Модель состоит из трех «ячеек». S: количество лиц, восприимчивые к инфекции, то есть, те люди, которые не имеют иммунитета к данному вирусу и потенциально могут заразиться. I: число инфицированных в некоторый момент времени. Это инфицированные люди, способные заразить восприимчивых людей. R: количество людей, которые переболели, имеют иммунитет, или число умерших лиц [1].

4 Выполнение лабораторной работы

4.1 Реализация модели в хсоѕ

- 1. Во-первых, я открыл scilab.
- 2. Далее, я открыл, через инструменты, Визуальное моделирование Хсоз.
- 3. В Xcos я добавыл регистратор CSCOPE, мультиплексер MUX, три блока интегрирования, GAINBLK_f в данном случае позволяет задать значения коэффициентов ⋈ и ⋈; SUMMATION блок суммирования, PROD_f поэлементное произведение двух векторов на входе блока, и запуск часов модельного времени CLOCK с. Ниже на рис. 1 показано модели:

Рис. 4.1: Схема модели в Хсоѕ

4. Ниже папаметры интегралов:

Рис. 4.2: Папаметры интеграла 1

Рис. 4.3: Папаметры интеграла 2

5. Папаметры моделирования:

Рис. 4.4: Папаметры моделирования

6. Константы модели 1:

Рис. 4.5: Константы модели 1

7. Получаем следующей график в xcos:

Рис. 4.6: График первой модели в хсоѕ

8. Получаем следующей график в modelica:

Рис. 4.7: График первой модели в modelica

4.2 Реализация задания в xcos, modelica и OpenModelica

9. Ниже на рис. 7 показано схема модели:

Рис. 4.8: Схема второй модели в хсоѕ

10. Константы по мимо N=10:

Рис. 4.9: Константы

11. Получаем следующей график в хсоз:

Рис. 4.10: График второй модели в хсоѕ

12. Код второй модели в modelica:

Рис. 4.11: Код второй модели в modelica

13. Папаметры моделирования:

Рис. 4.12: Папаметры моделирования второй модели в modelica

14. Получаем следующей график в modelica:

Рис. 4.13: График второй модели в modelica

15. Код модели 2 в OpenModelica:

model SIR_model_02

```
Real beta = 1, nu = 0.3, mu = 0.004, N=10;
Real s(start=0.999), i(start=.001), r(start=0.0);
equation

der(s)= -beta*s*i + mu*(N - s);
der(i)= beta*s*i-nu*i - nu*i - mu*i;
der(r)= nu*i - mu*r;
end SIR_model_02;
```

16. Получаем следующей график в OpenModelica:

Рис. 4.14: График второй модели в OpenModelica

5 Вывод

• Изучали как работать с хосs, modelica и OpenModelica. [2]

6 Библиография

- 1. Жумартова Б. О. Ж.Б.О. ПРИМЕНЕНИЕ SIR МОДЕЛИ В МОДЕЛИРОВАНИИ ЭПИДЕМИЙ // Международный журнал гуманитарных и естественных наук. 2021. Т. 63, \mathbb{N}^{2} 12-2. С. 6–9.
- 2. Korolkova A., Kulyabov D. Моделирование информационных процессов. 2014.