GEL-2003

ÉLECTROTECHNIQUE

EXAMEN FINAL H2021

Problème no. 1 (25 points)

Partie A

a) Un transformateur monophasé 60 Hz, 50 kVA, 2400 V/240 V possède les paramètres suivants:

$$R_1 = 1.2 \Omega$$

$$X_1 = 2.4 \Omega$$

$$R_2 = 0.012 \Omega$$

$$X_2 = 0.024 \Omega$$

$$R_c = 15 \text{ k}\Omega$$

$$X_m = 27 \text{ k}\Omega$$

Une charge inductive est connectée au secondaire.

Le modèle à utiliser est montré dans la figure suivante.

En utilisant ce modèle, calculer les quantités suivantes:

- le courant I_1 (phaseur) au primaire et le courant I_2 (phaseur) au secondaire, (4 points)
- la tension V_2 (phaseur) au secondaire, (2 points)
- les pertes Fer P_{Fer} et les pertes Cuivre P_{Cu}, (4 points)
- la puissance active P₁ absorbée au primaire et la puissance active P₂ délivrée à la charge, (4 points)
- le rendement du transformateur. (2 points)

Partie B

Dans cette partie du problème, on suppose que le transformateur T_1 est idéal.

On utilise les deux enroulements de ce transformateur monophasé pour câbler un autotransformateur suivant le diagramme montré dans la figure suivante.

- **Déterminer** le rapport de transformation de l'autotransformateur $a_{13} = \frac{V_1}{V_3}$. (3.5 points)
- Calculer la valeur efficace du courant I_s débité par la source et la puissance active P_s fournie par la source. (7 points)
- Déterminer la puissance apparente de l'autotransformateur dans ces conditions de fonctionnement. (3.5 points)

Problème no. 2 (25 points)

Partie A

Soit un transformateur triphasé 60 Hz, 50 kVA, 2400V/600V.

Pour déterminer les paramètres du transformateur, on effectue les essais suivants.

Essai à vide:

Le primaire est en circuit ouvert. Le secondaire est alimenté à sa tension nominale.

On mesure au secondaire:

Tension ligne-ligne = 600 V

Courant de ligne = 0.59 A

Puissance active absorbée = 486 W

Essai en court-circuit:

Le secondaire est en court-circuit. Le primaire est alimenté à une tension réduite.

On mesure au primaire:

Tension ligne-ligne = 81.8 V

Courant de ligne = 12.028 A

Puissance active absorbée = 1.386 kW

À partir des résultats de ces deux essais, **calculer** les paramètres $[R_c, X_m, R_{eq}, X_{eq}]$ du transformateur T_1 (par phase Y - ramené au primaire) . (10 points)

Partie B

Dans cette partie du problème, on suppose que les paramètres (par phase Y - ramené au primaire) du transformateur triphasé sont: $R_{eq} = 4.8 \ \Omega \ X_{eq} = 9 \ \Omega, R_c = \infty, X_m = \infty.$

Le primaire du transformateur T_1 est relié à une source triphasée 60 Hz, 2400 V (ligne-ligne). Le secondaire alimente une charge équilibrée composée de trois impédances $Z = (18 + j9) \Omega$ connectées en Δ .

On connecte un ampèremètre, un voltmètre et un wattmètre au système comme montré dans la figure suivante.

Déterminer les quantités suivantes:

- l'indication de l'ampèremètre (5 points)
- l'indication du voltmètre (5 points)
- l'indication du wattmètre (5 points)

Problème no. 3 (25 points)

Considérons le montage de redresseur commandé à thyristors montré dans la figure suivante.

On suppose que:

- la tension en conduction des thyristors est *négligeable* (trop faible par rapport à la tension de la source)
- la charge est $tr\`es$ inductive (les ondulations du courant I_{cc} sont négligeables)

On fixe l'angle α à une valeur entre 10° et 90° .

On mesure la tension V_{cc} et le courant I_{cc} pour deux valeurs de la résistance R:

R	V _{cc}	I_{cc}
∞	655.53 V	0 A
5 Ω	611.5 V	122.3 A

- **Déterminer** l'angle d'amorçage α (en degrés). (3 points)

- **Déterminer** la valeur de l'inductance L_s de la source. (3 points)
- **Déterminer** l'angle de commutation μ (en degrés). (3 points)
- **Tracer** en fonction du temps, dans le même graphique, les formes d'onde théorique et pratique du courant $i_A(t)$ [Bien indiquer l'amplitude du courant $i_A(t)$]. (4 points)

<u>Note</u>: La forme d'onde théorique du courant $i_A(t)$ ne tient pas compte de la commutation. La forme d'onde pratique du courant $i_A(t)$ tient compte de la commutation.

- Déterminer la valeur efficace du courant i_A(t) théorique. (3 points)
- En supposant que la valeur efficace du courant $i_A(t)$ pratique est égale à la valeur efficace du courant $i_A(t)$ théorique, **déterminer** la puissance apparente S_{src} de la source. (3 points)
- **Déterminer** la puissance active P_{src} fournie par la source. (3 points)
- Déterminer le facteur de puissance à l'entrée du convertisseur. (3 points)

Problème no. 4 (25 points)

On utilise un hacheur survolteur (convertisseur boost) pour produire une tension continue de 40 V à partir d'une source continue de 24 V.

La chute de tension en conduction du transistor est $V_{CE}(on) = 1.2$ V. La chute de tension en conduction de la diode est $V_F = 0.5$ V. Les temps de commutation du transistor et de la diode sont de 0.5 μs pour la montée et 0.5 μs pour la descente. La fréquence de hachage est de 25 kHz.

Note: On tient compte de la commutation <u>uniquement</u> dans le calcul des pertes par commutation.

- **Déterminer** le rapport cyclique α du hacheur. (4 points)
- Déterminer l'indication de l'ampèremètre DC connecté à l'entrée du hacheur. (3 points)
- Calculer l'ondulation ΔI (crête-crête) du courant i_L . (3 points)
- **Tracer** en fonction du temps la tension v_L aux bornes de l'inductance, le courant i_L dans l'inductance, le courant i_T dans le transistor, le courants i_D dans la diode D, le courant i_C dans le condensateur C et la tension v_C aux bornes du condensateur C. (6 points)

<u>Notes:</u> - Détacher la feuille graphique à la page 6 de l'énoncé pour tracer les courbes et insérer cette feuille dans votre cahier d'examen

- Ne pas tenir compte de la commutation dans les formes d'onde.
- Calculer l'ondulation ΔV (crête-crête) de la tension v_C . (3 points)
- Calculer les pertes par conduction et les pertes par commutation dans le transistor et dans la diode. (4 points)
- Déduire le rendement du hacheur (2 points).

