Computational Genomic Approaches in Evolution Population Genetics

Talk 1: Overview and introduction

Outline

- 1. Gene genealogies and coalescent theory (this presentation).
- 2. Practical: Simulating genealogies in R.
- 3. Natural selection, population structure, detecting selection (next presentation).
- 4. Practical: Using PCAdapt to detect selection in North American wolves
- Project: population structure and selection in wild boar and domestic pigs.

Genealogies and the Wright-Fisher Model

The properties of genealogies can be quite easily understood from an idealised, clonal, model of reproduction where each individual in a fixed population of size 2N 'chooses' its parent at random (the Wright-Fisher model).

What is the advantage in taking a genealogical approach?

- ▶ Most of the genetic variation is selectively neutral.
- ▶ Neutral mutations have no effect on the shape of a genealogy.
- ► Therefore neutral mutations can be considered as adding marks to the DNA as it is copied from generation to generation.
- All the 'interesting stuff' therefore depends on the genealogy and where in the genealogy a mutation happened.
- ► The mutation rate per nucleotide site is typically so low compared to the population size that to a very good approximation in any particular genealogy, for any length of sequence, we can assume that no mutation hits the same site twice (the 'infinite sites approximation').
- ▶ It is orders of magnitude faster to simulate genetic data by simulating from the coalescent rather than from the Wright-Fisher model. Theoretical modelling is much easier too.

Simulated Genealogies (Constant Population Size)

Simulated Genealogies (Increasing Population Size)

Simulated Genealogies (Decreasing Population Size)

Simulated Genealogies (Two populations, with migration)

Running Example Simulations in R

- Aims:
 - Remind you how to use R.
 - Allow you to become more familiar with population genetic concepts.
- ➤ These simulations are introduced, explained, and made available in the following GitHub webpage: https://ritarasteiro.github.io/FieldCourse/and we can continue the practical from there ...