Inhaltsverzeichnis

Ι	\mathbf{El}	ementare Zahlentheorie	1	
1	Nat	ürliche, ganze und rationale Zahlen. Teilbarkeit. Primzahlen (28)	8) 1	
	1.1	Aufgabe 1	1	
	1.2	Aufgabe 2	1	
	1.3	Aufgabe 3	2	
	1.4	Aufgabe 4	2	
	1.5	Aufgabe 5	3	
	1.6	Aufgabe 6	4	
${f 2}$	Der	Hauptsatz der elementaren Zahlentheorie (33)	5	
	2.1	Aufgabe 1	5	
	2.2	Aufgabe 2	5	
	2.3	Aufgabe 3	5	
	2.4	Aufgabe 4	6	
3	Anwendung des Hauptsatzes. Zahlentheorie im Körper \mathbb{Q} (53)			
	3.1	Aufgabe 1	8	
	3.2	Aufgabe 2	8	
	3.3	Aufgabe 3	8	
	3.4	Aufgabe 4	8	
	3.5	Aufgabe 5	9	
	3.6	Aufgabe 6	10	
	3.7	Aufgabe 7	10	
4	Grö	ößter gemeinsamer Teiler (70)	11	
	4.1	Aufgabe 1	11	
	4.2	Aufgabe 2	11	
	4.3	Aufgabe 3	11	
	4.4	Aufgabe 4	11	
	4.5	Aufgabe 5	12	
	4.6	Aufgabe 6	13	

	4.7	Aufgabe 7	14
5	Übe	er die Verteilung und Darstellung von Primzahlen (81)	15
	5.1	Aufgabe 1	15
	5.2	Aufgabe 2	15
	5.3	Aufgabe 3	16
6	Zah	lentheoretische Funktionen (92)	17
	6.1	Aufgabe 1	17
	6.2	Aufgabe 2	17
	6.3	Aufgabe 3	17
7	$Int \epsilon$	egritätsringe. Teilbarkeitstheorie in Integritätsringen (110)	18
	7.1	Aufgabe 1	18
т.			10
1	tera	aturverzeichnis	19

Teil I

Elementare Zahlentheorie

Aufgaben aus dem Buch: Reinhold Remmert und Peter Ullrich (2008). Elementare Zahlentheorie. Springer. ISBN: 978-3-7643-7730-4.

1 Natürliche, ganze und rationale Zahlen. Teilbarkeit. Primzahlen (28)

1.1 Aufgabe 1

Seien a, b, c Ziffern aus der Menge $\{0, 1, 2, \dots, 9\}$ und $a \neq 0$. Zeigen Sie: 13 teilt die natürliche Zahl abcabc (Zifferndarstellung).

Beweis. Es werden die Differenzen betrachtet, wenn sich a, b, c um einen Wert verändern:

$$a = 1$$
 nach $a = 2 : \triangle 100100$
 $b = 0$ nach $b = 1 : \triangle 10010$
 $c = 0$ nach $c = 1 : \triangle 1001$

Es ist zu sehen 13 | 1001 mit 1001 = $13 \cdot 77$. Hieraus folgt 13 | 10010, 13 | 100100 und damit auch 13 | $100100 \cdot a + 10010 \cdot b + 1001 \cdot a = abcabc$.

1.2 Aufgabe 2

Sei n eine natürliche Zahl, n > 1. Beweisen Sie: Aus $n \mid (n-1)! + 1$ folgt $n \in \mathbb{P}$.

Lemma 1. Sei $n \in \mathbb{N}$ eine zusammengesetzte Zahl, $n \neq 4$. Dann gilt:

$$n \mid (n-1)!$$

Beweis. Es ist n = ab mit $a, b \ge 2$. Wir können (n-1)! wie folgt aufschreiben:

$$n = ab \mid 1 \cdot 2 \cdots a(a+1)(a+2) \cdots (a+b) \cdots (ab-1) = (ab-1)!$$

Das Produkt b aufeinanderfolgender Terme enthält zwangsweise ein Vielfaches von b. Außerdem enthält (ab-1)! a und somit $ab \mid (ab-1)!$.

Die obige Schreibweise ist korrekt, denn wir haben

$$\begin{aligned} a+b & \leq ab-1 \\ \Leftrightarrow & 0 & \leq ab-a-b-1 \\ \Leftrightarrow & 2 & \leq \underbrace{(a-1)}_{\geq 1} \underbrace{(b-1)}_{\geq 2} \end{aligned}$$

mit $a, b \ge 2$ und niemals a = b = 2, da $n \ne 4$. Also mindestens einer der beiden ≥ 3 .

Beweis. Lemma 1 zeigt, dass $n \mid (n-1)!$ für alle n zusammengesetzt. Man kann also schließen, wegen $n \neq 1$, dass alle Zahlen mit der Eigenschaft $n \mid (n-1)! + 1$ nicht zusammengesetzt und daher Prim sind.

1.3 Aufgabe 3

Sei p_n die n-te Primzahl, d. h. $p_1=2,\,p_2=3$ usw. Zeigen Sie: $p_n\leq 2^{2^{n-1}}$ für alle $n\geq 1$.

1.4 Aufgabe 4

Sei p eine Primzahl. Beweisen Sie: p ist ein Teiler von $\binom{p}{v}$ für $1 \le v < p$.

Beweis. Per Definition gilt:

$$\binom{p}{v} = \frac{p(p-1)\cdot\ldots\cdot(p-v+1)}{v!}$$

Es gilt außerdem:

$$\binom{n}{v} \in \mathbb{N}$$
 für alle $n, v \in \mathbb{N}$

Die Primzerlegung des Nenners muss vollständig in der des Zählers vorhanden sein. Wegen p > v ist p jedoch niemals Teil dieser Zerlegung und kann im Zähler nicht gekürzt werden. Es folgt $p \mid \binom{p}{v}$.

Die eben beschriebene Teilbarkeit lässt sich ganz wesentlich verallgemeinern. Der Beweis des folgenden Lemmas wir in der nächsten Aufgabe hilfreich sein.

Lemma 2. Sei p eine Primzahl. Dann gilt

$$p \mid \binom{p^n}{v}$$
 für alle $n \in \mathbb{N}$ mit $1 \le v < p^n$

Beweis. Die folgende Identität ist korrekt:

$$\binom{p^n}{v} = \frac{p^n}{v} \binom{p^n - 1}{v - 1}$$
$$v \binom{p^n}{v} = p^n \binom{p^n - 1}{v - 1}$$

Es ist somit zu sehen, dass $p^n \mid v\binom{p^n}{v}$.

- 1. Sind p und v teilerfremd, gilt $p^n \mid \binom{p^n}{v}$ und es bleibt nichts mehr zu zeigen (Remmert und Ullrich 2008, S. 64).
- 2. Anderenfalls ist $v = p^{n-a}q$ mit $a \in \mathbb{N}$ und $0 < a \le n$. Die Zahlen p und q sind teilerfremd und es gilt a > 0 wegen $v < p^n$.

Wir haben daher

$$p^{n-a}q \binom{p^n}{v} = p^n \binom{p^n - 1}{v - 1}$$
$$q \binom{p^n}{v} = p^a \binom{p^n - 1}{v - 1}$$

und somit $p^a \mid {p^n \choose v}$ aufgrund der Teilerfremdheit von p und q. Außerdem gilt $p \mid p^a$ und durch die Transitivität der Teilbarkeit $p \mid {p^n \choose v}$.

1.5 Aufgabe 5

Seien $p \in \mathbb{P}$, $n \in \mathbb{N}^{\times}$ und $a, b \in \mathbb{Z}$. Zeigen Sie durch Induktion nach n: p ist ein Teiler von $((a+b)^{p^n}-(a^{p^n}+b^{p^n}))$.

Beweis. Es ist B die Menge aller Zahlen $n \in \mathbb{N}^{\times}$, sodass für alle $a, b \in \mathbb{Z}$ die behauptete

Teilbarkeit richtig ist. Es ist $1 \in B$, denn es gilt:

$$(a+b)^p - (a^p + b^p) = \underbrace{\left[a^p + \binom{p}{1}a^{p-1}b + \dots + \binom{p}{p-1}ab^{p-1} + b^p\right]}_{\text{Binomischer Lehrsatz (Remmert und Ullrich 2008, S. 19)} - (a^p + b^p)$$

$$= \binom{p}{1}a^{p-1}b + \dots + \binom{p}{p-1}ab^{p-1}$$

Primzahl p teilt die Summe, da jeder Summand als ein Vielfaches von $\binom{p}{1}, \ldots, \binom{p}{p-1}$ durch p teilbar ist. Sei $n \in B$. Um $n+1 \in B$ zu verifizieren, rechnen wir wie folgt:

$$(a+b)^{p^{n+1}} - (a^{p^{n+1}} + b^{p^{n+1}}) = \binom{p^{n+1}}{1} a^{p^{n+1}-1} b + \dots + \binom{p^{n+1}}{p^{n+1}-1} a b^{p^{n+1}-1}$$

Nach Lemma 2 gilt die obige Eigenschaft auch in diesem Fall.

1.6 Aufgabe 6

Sei $n \geq 2$ eine natürliche Zahl. Zeigen Sie: $n^4 + 4^n$ ist keine Primzahl.

Beweis. Wir formen um:

$$n^{4} + 4^{n} = (n^{2})^{2} + (2^{n})^{2}$$

$$= (n^{2} + 2^{n})^{2} - (22^{n}n^{2})$$

$$= (n^{2} + 2^{n})^{2} - (2^{n+1}n^{2})$$

$$= (n^{2} + 2^{n})^{2} - (2^{\frac{n+1}{2}}n)^{2} \quad \text{bemerke } a^{2} - b^{2} = (a+b)(a-b)$$

$$= (n^{2} + 2^{n} + 2^{\frac{n+1}{2}}n)(n^{2} + 2^{n} - 2^{\frac{n+1}{2}}n)$$

Es ist zu erkennen, dass für ungerade n immer ein Faktor entsteht. Für n gerade, ist die Zahl offensichtlich keine Primzahl, da $2 \mid n^4 + 4^n \ge 32$.

2 Der Hauptsatz der elementaren Zahlentheorie (33)

2.1 Aufgabe 1

Folgern Sie aus der Eindeutigkeit der Primzerlegung das Fundamentallemma 1.4 (Remmert und Ullrich 2008, S. 26).

Beweis. Die Primzahl p teilt das Produkt zweier Zahlen a und b

$$p \mid (X_1^{m_1} X_2^{m_2} \cdots X_r^{m_r}) (Y_1^{m_1} Y_2^{m_2} \cdots Y_s^{m_s})$$

2.2 Aufgabe 2

Führen Sie für die Menge $E := \{4k+1 : k \in \mathbb{N}\}$ entsprechende Betrachtungen durch wie für die Menge D aus der Bemerkung in Abschnitt 2. Zeigen Sie insbesondere, dass in E die Zerlegung in in E unzerlegbare Elemente nicht eindeutig bis auf Reihenfolge ist.

2.3 Aufgabe 3

Seien a und b positive natürliche Zahlen mit der Eigenschaft, dass es keine Primzahl gibt, die zugleich a und b teilt. Beweisen Sie: Gibt es ein $c \in \mathbb{N}$ mit $ab = c^2$, so existieren $x, y \in \mathbb{N}$ mit $a = x^2$ und $b = y^2$.

Beweis. Es ist c eine beliebige zusammengesetzte Zahl und $c^2 = p_1^{2m_1} p_2^{2m_2} \cdots p_r^{2m_r}$ mit $p_1, \ldots, p_r \in \mathbb{P}$ und $m_1, \ldots, m_r \in \mathbb{N}^\times$ ihre Primzerlegung. Man überlege jetzt, wie diese Faktoren zwischen a und b verteilt sein können. Damit keine Primzahl in a oder b gemeinsam vorkommt, müssen die Primpotenzen $2m_1, \ldots, 2m_r$ vollständig zwischen a und b verteilt sein. Somit sind es immer Quadratzahlen.

Beispiel 1:
$$20^2 = 2^4 5^2 \qquad 1) \quad ab = (2^4)(5^2) = 4^2 \cdot 5^2$$

Beispiel 2:
$$210^2 = 2^2 3^2 5^2 7^2 \qquad 1) \quad ab = (2^2 3^2 5^2)(7^2) = 30^2 \cdot 7^2$$

2)
$$ab = (2^23^2)(5^27^2) = 6^2 \cdot 35^2$$

3)
$$ab = (2^2)(3^25^27^2) = 2^2 \cdot 105^2$$

2.4 Aufgabe 4

Es seien a,b natürliche Zahlen, für die gilt: $a\mid b^2,b^2\mid a^3,a^3\mid b^4,b^4\mid a^5,\dots$. Zeigen sie: a=b.

Beweis. Es sind $a = X_1^{m_1} X_2^{m_2} \cdots X_r^{m_r}$, $b = Y_1^{n_1} Y_2^{n_2} \cdots Y_s^{n_s}$ mit $X_1, \ldots, X_r, Y_1, \ldots, Y_r, \in \mathbb{P}$ und $m_1, \ldots, m_r, n_1, \ldots, n_r, \in \mathbb{N}^{\times}$ die Primzerlegungen von a und b. Es ist direkt festzuhalten, dass r = s und $X_i = Y_i$ für alle $i = 1, \ldots, r$. Hätte a mehr Primfaktoren wie b, verletzt dies das Teilbarkeitskriterium (Remmert und Ullrich 2008, S. 33) in $a \mid b^2$; hätte a weniger, verletzt dies $b^2 \mid a^3$. Es bleibt zu zeigen, dass auch die Primpotenzen nicht verschieden sind. Angenommen $a \neq b$ und es werden zwei Fälle unterschieden:

1) Es gilt 0 < a < b und a hat somit mindestens einen Primfaktoren der Form $X_i^{m_i-s_i}$ mit $0 < s_i < m_i$. Für diesen Beweis reicht es genau einen dieser Faktoren zu untersuchen und wir schreiben X^{m-s} ohne den Index i. Es werden die folgenden Fakten aufgeschrieben:

Es lassen sich die folgenden Ungleichungen ableiten oder direkt ablesen:

$$2km \ge 2km - m - 2ks + s$$

$$\Leftrightarrow \qquad 0 \ge -m - 2ks + s \tag{1}$$

$$\Leftrightarrow \qquad m + (2k - 1)s \ge 0$$

$$2km + m - 2ks - s \ge 2km$$

$$\Leftrightarrow m - (2k+1)s > 0$$
(2)

Es ist zu sehen, dass Ungleichung 1 für alle k, m, s wahr ist. In 2 wird k = m gewählt und man führt die ursprüngliche Behauptung mit $(1 - 2s)m - s \ge 0$ zum Widerspruch. Der Term 1 - 2s ist wegen s > 0 immer negativ.

2) Es gilt a>b und a hat somit mindestens einen Primfaktoren der Form $X_i^{m_i+s_i}$ mit $s_i>0$. Es wird nach demselben Prinzip wie zuvor aufgeschrieben

$$X^{(2k-1)m+(2k-1)s} \mid X^{2km} \qquad X^{2km} = X^{(2k-1)m+(2k-1)s} \cdot X^{m-(2k-1)s}$$
$$X^{2km} \mid X^{(2k+1)m+(2k+1)s} \quad X^{(2k+1)m+(2k+1)s} = X^{2km} \cdot X^{m+(2k+1)s}$$

und die folgenden Ungleichungen abgelesen:

$$m - (2k - 1)s \ge 0 \tag{3}$$

$$m + (2k+1)s \ge 0 \tag{4}$$

Es ist zu sehen, dass Ungleichung 4 für alle k, m, s wahr ist. In 3 wird k = m + 1 gewählt und man führt die ursprüngliche Behauptung mit $(1 - 2s)m - s \ge 0$ zum Widerspruch.

Es folgt
$$a = b$$
.

3 Anwendung des Hauptsatzes. Zahlentheorie im Körper \mathbb{Q} (53)

3.1 Aufgabe 1

Sei p eine Primzahl, a, b seien von Null verschiedene rationale Zahlen, $a + b \neq 0$. Zeigen Sie: $w_p()a + b \geq \min(w_p(a), w_p(b))$

Beweis. Sei $m = \min(w_p(a), w_p(b))$. Es gilt $p^m \mid a, p^m \mid b$ und damit auch $p^m \mid a + b$. Wir schreiben $a + b = p^m v$ mit $v \in \mathbb{Z}$ und zeigen durch umformen:

$$w_p(a+b) = w_p(p^m v)$$

$$= w_p(p^m) + w_p(v)$$

$$= m + w_p(v)$$

$$= \min(w_p(a), w_p(b)) + w_p(v)$$

Es ist zu sehen $w_p(a+b) \ge \min(w_p(a), w_p(b))$.

3.2 Aufgabe 2

Für x reell bezeichne $\lfloor x \rfloor$ die größte ganze Zahl m mit $m \leq x$. Zeigen Sie, dass für p eine Primzahl und $n \in \mathbb{N}$ beliebig gilt:

$$w_p(n!) = \sum_{i=0}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor$$

3.3 Aufgabe 3

Seien $n \in \mathbb{N}^{\times}$, $a_1, \ldots, a_n \in \mathbb{Z}$. Die reelle Zahl x erfülle $x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n = 0$. Zeigen Sie: x ist entweder irrational oder ganz.

3.4 Aufgabe 4

Seien q_1, \ldots, q_s Primzahlen, $b := q_1 \cdot q_2 \cdots q_s \in \mathbb{N}$ sowie $m_1, \ldots, m_k \in \mathbb{N}^{\times}$ derart, dass gilt: $\frac{1}{b} = \frac{1}{m_1} + \frac{1}{m_2} + \cdots + \frac{1}{m_k}$. Zeigen Sie: Jede Zahl $q_i, 1 \leq i \leq s$, teilt wenigstens eine der

Zahlen m_1, \ldots, m_k .

Beweis. Durch Hauptnennerdarstellung entsteht mit $v := \frac{m_1 \cdots m_r}{m_1} + \frac{m_1 \cdots m_r}{m_2} + \cdots + \frac{m_1 \cdots m_r}{m_r}$ die folgende Gleichung:

$$\frac{1}{b} = \frac{v}{m_1 m_2 \cdots m_k}$$
$$bv = m_1 m_2 \cdots m_k$$

Es ist zu sehen $b \mid m_1 m_2 \cdots m_k$ und damit die zu zeigende Aussage.

3.5 Aufgabe 5

Berechnen Sie die Fibonaccidarstellung des Bruches $\frac{21}{23}$.

Beweis. $n_1 = \min \{ w \in \mathbb{N} : w \ge \frac{23}{21} \} = 2$. Der größte in $\frac{21}{23}$ enthaltene Stammbruch ist $\frac{1}{2}$.

Es ist
$$\frac{21}{23} = \frac{1}{2} + \frac{a_1}{b_1}$$
 mit $\frac{a_1}{b_1} = \frac{21}{23} - \frac{1}{2} = \frac{2 \cdot 21 - 23}{2 \cdot 23} = \frac{19}{46}$.

 $n_2 = \min \{ w \in \mathbb{N} : w \ge \frac{46}{19} \} = 3$. Der größte in $\frac{19}{46}$ enthaltene Stammbruch ist $\frac{1}{3}$.

Es ist
$$\frac{19}{46} = \frac{1}{3} + \frac{a_2}{b_2}$$
 mit $\frac{a_2}{b_2} = \frac{3 \cdot 19 - 46}{3 \cdot 46} = \frac{11}{138}$.

 $n_3 = \min \{ w \in \mathbb{N} : w \ge \frac{138}{11} \} = 13$. Der größte in $\frac{11}{138}$ enthaltene Stammbruch ist $\frac{1}{13}$.

Es ist
$$\frac{11}{148} = \frac{1}{13} + \frac{a_3}{b_3}$$
 mit $\frac{a_3}{b_3} = \frac{13 \cdot 11 - 138}{13 \cdot 138} = \frac{5}{1794}$.

 $n_4 = \min \{ w \in \mathbb{N} : w \ge \frac{1794}{5} \} = 359$. Der größte in $\frac{5}{1794}$ enthaltene Stammbruch ist $\frac{1}{359}$.

Es ist
$$\frac{5}{1794} = \frac{1}{359} + \frac{a_4}{b_4}$$
 mit $\frac{a_4}{b_4} = \frac{359 \cdot 5 - 1794}{359 \cdot 1794} = \frac{1}{644046}$.

Die Fibonaccidarstellung des Bruches $\frac{21}{23}$ lautet:

$$\frac{21}{23} = \frac{1}{2} + \frac{1}{3} + \frac{1}{13} + \frac{1}{359} + \frac{1}{644046}$$

3.6 Aufgabe 6

Zeigen Sie: Es gibt keine ägyptische Bruchdarstellung $\frac{21}{23} = \frac{1}{n_1} + \frac{1}{n_2} + \dots + \frac{1}{n_k}$, $1 < n_1 < n_2 < \dots < n_k$, mit höchstens 3 Stammbrüchen (d. h. notwendig $k \ge 4$).

3.7 Aufgabe 7

Beweisen Sie die angegebene Eindeutigkeitsaussage für die Fibonaccidarstellung (Remmert und Ullrich 2008, S. 53).

4 Größter gemeinsamer Teiler (70)

4.1 Aufgabe 1

Seinen $a, m, n \in \mathbb{N}^{\times}$. Bestimmen Sie den größten gemeinsamen Teiler von $a^m - 1$ und $a^n - 1$.

4.2 Aufgabe 2

Seien $a, b \in \mathbb{N}^{\times}$ teilerfremd und $c \in \mathbb{N}$ so, dass gilt: $a \mid c$ und $b \mid c$. Zeigen Sie: $ab \mid c$.

Das Kriterium für paarweise Teilerfremdheit (Remmert und Ullrich 2008, S. 65) enthält als einfache

Folgerung 1. Seien $a, b \in \mathbb{Z}$ zwei teilerfremde Zahlen, dann ist $\min(w_p(a), w_p(b)) = 0$ für alle $p \in \mathbb{P}$.

Beweis. Wäre p eine Primzahl für die gilt $w_p(a) > 0$ und $w_p(b) > 0$. Dann wäre gerade dieses p ein gemeinsamer Teiler von a und b.

Beweis. Es gilt $w_p(a) \leq w_p(c)$, $w_p(b) \leq w_p(c)$ für alle $p \in \mathbb{P}$ nach dem Teilbarkeitskriterium (ebd., S. 50). Es ist $ab = \sum_p p^{w_p(a) + w_p(b)}$ die Primzerlegung von ab. Da a und b teilerfremd sind, gilt nach Folgerung 1 mindestens $w_p(a) = 0$ oder $w_p(b) = 0$ und dadurch $w_p(a) + w_p(b) \leq w_p(c)$. Es folgt $ab \mid c$.

4.3 Aufgabe 3

Seien $a, b \in \mathbb{N}^{\times}$. Zeigen Sie: $ggT(a + b, a - b) \ge ggT(a, b)$.

4.4 Aufgabe 4

Seien $a, b, m \in \mathbb{Z}$. Zeigen Sie die Äquivalenz folgender Aussagen:

- i) Es gibt eine ganze Zahl x mit $m \mid (ax b)$
- ii) $ggT(a,m) \mid b$

Beweis. i) \Rightarrow ii): Sei t = ggT(a, m). Es gilt $t \mid a, t \mid m$ und aus letzterem $t \mid ax - b$. Weiter gilt nach den Rechenregeln zur Teilbarkeit $t \mid b$ und dies erledigt die Beweisrichtung.

ii) \Rightarrow i): ggT(a, m) liefert die Gleichung t = ra + sm mit $r, s \in \mathbb{Z}$. Aus $ggT(a, m) \mid b$ folgt mit $v \in \mathbb{Z}$:

$$b = tv = rva + svm$$
$$svm = b - rva \qquad x := rv$$
$$(-sv)m = ax - b$$

Daher $m \mid (ax - b)$.

4.5 Aufgabe 5

Seien $m, n \in \mathbb{Z}$ teilerfremd, k := mn sowie $a, b \in \mathbb{Z}$ beliebig. Zeigen Sie (unter Verwendung von Unterabschnitt 4.4):

- a) Es gibt eine ganze Zahl u mit $m \mid (u-a)$ und $n \mid (u-b)$
- b) Für eine ganze Zahl x sind äquivalent:
 - i) $m \mid (x-a) \text{ und } n \mid (x-b)$
 - ii) $k \mid (x-u)$

Beweis. a) Es ist pm = u - a und qn = u - b mit $p, q \in \mathbb{Z}$. D. h. u ist die Lösung der Gleichung pm - qn = b - a. Nach Voraussetzung existiert rm + sn = 1 mit $r, s \in \mathbb{Z}$. Bemerke die Terme rm und sn haben zwangsweise unterschiedliche Vorzeichen. Nach Multiplikation mit b - a entsteht daher

$$(br - ar)m + (bs - as)n = b - a. (1)$$

Also, es existiert ein u mit

$$u = (br - ar)m + a = (bs - as)n + b.$$

b) Gleichung 1 gibt eine Lösung für u. Es ist leicht hierdurch alle anderen Lösungen anzugeben. Mit dem Wissen des Vorzeichenverhaltens von (1), rechne man mit $v \in \mathbb{Z}$ wie folgt:

$$(br - ar + vn)m + (bs - as + vm)n = b - a + (vmn - vmn)$$

Sind also $x = (br - ar + v_1 n)m + a$ und $u = (br - ar + v_2 n)m + a$ mit $v_1 \neq v_2 \in \mathbb{Z}$

zwei Lösungen der Teilbarkeit, dann ist $x - u = v_1 mn - v_2 mn = (v_1 - v_2) mn$. Mit k := mn gilt also $k \mid x - u$.

4.6 Aufgabe 6

- a) Seien $\mathfrak{a},\mathfrak{b}$ zwei Ideale in \mathbb{Z} . Zeigen Sie: $\mathfrak{a} \cap \mathfrak{b}$ ist wieder ein Ideal in \mathbb{Z} .
- b) Zeigen Sie: Für ganze Zahlen a, b, v sind folgende Aussagen äquivalent:
 - i) $v \ge 0$ und $\mathbb{Z}v = \mathbb{Z}a \cap \mathbb{Z}b$
 - ii) v = kgV(a, b)

Lemma 3. Es seien $a, b \in \mathbb{Z}$ zwei Zahlen derart, dass für das von ihnen erzeugte Hauptideal $\mathbb{Z}a, \mathbb{Z}b$ gilt: $\mathbb{Z}a \subseteq \mathbb{Z}b$. Dann ist notwendigerweise $b \mid a$.

Beweis. Es wird o. B. d. A. angenommen $a, b \ge 0$. Der Fall für b = a und a = 0 ist klar. Ist b = 0, so muss a als einzige Teilmenge ebenfalls 0 sein. Es kann niemals gelten b > a, denn dann wäre $a \notin \mathbb{Z}b$. Es muss also sein b < a. Es ist $a \in \mathbb{Z}b$ und es gilt somit die Gleichung bx = a mit $x \in \mathbb{Z}$. Es folgt $b \mid a$.

- Beweis. a) Wir zeigen, dass $\mathfrak{a} \cap \mathfrak{b}$ die Bedingungen der Definition eines Ideals in \mathbb{Z} erfüllt (Remmert und Ullrich 2008, S. 60).
 - ad 1): Angenommen $a, b \in \mathfrak{a} \cap \mathfrak{b}$. Es wird gezeigt, dass auch $a b \in \mathfrak{a} \cap \mathfrak{b}$. Per Annahme wissen wir $a, b \in \mathfrak{a}$ und $a, b \in \mathfrak{b}$. Nach Idealdefinition ist somit ebenfalls $a b \in \mathfrak{a}$ und $a b \in \mathfrak{b}$. Es folgt $a b \in \mathfrak{a} \cap \mathfrak{b}$.
 - ad 2): Angenommen $a \in \mathfrak{a} \cap \mathfrak{b}$. Es wird gezeigt, dass auch $xa \in \mathfrak{a} \cap \mathfrak{b}$ mit $x \in \mathbb{Z}$. Per Annahme wissen wir $a \in \mathfrak{a}$ und $a \in \mathfrak{b}$. Nach Idealdefinition ist somit ebenfalls $xa \in \mathfrak{a}$ und $xa \in \mathfrak{b}$. Es folgt $xa \in \mathfrak{a} \cap \mathfrak{b}$.
- b) Aus $\mathbb{Z}v = \mathbb{Z}a \cap \mathbb{Z}b$ folgt $\mathbb{Z}v \subseteq \mathbb{Z}a$, $\mathbb{Z}v \subseteq \mathbb{Z}b$ und nach Lemma 3 also a|v und b|v. Die Zahl v ist somit ein gemeinsames Vielfaches von a und b. Angenommen c ist ein weiteres gemeinsames Vielfaches von a und b, dann gilt a|c und b|c. Wieder nach Lemma 3 ist also $\mathbb{Z}c \subseteq \mathbb{Z}a$ und $\mathbb{Z}c \subseteq \mathbb{Z}b$. Es folgt die logische Schlussfolgerung

$$(\mathbb{Z}c \subseteq \mathbb{Z}a) \wedge (\mathbb{Z}c \subseteq \mathbb{Z}a) \wedge (\mathbb{Z}a \cap \mathbb{Z}b = \mathbb{Z}v) \Rightarrow \mathbb{Z}c \subseteq \mathbb{Z}v.$$

Es gilt also $v \mid c$, sowie $a \mid v$ und $b \mid v$. Die Zahl v erfüllt somit alle Eingenschaften des kleinsten gemeinsamen Vielfaches von a und b.

4.7 Aufgabe 7

Seien $a,b,c\in\mathbb{N}^{\times}$. Zeigen Sie: Es gilt $a^2+b^2=c^2$ genau dann, wenn es $s,u,v\in\mathbb{N}^{\times}$ mit u>v gibt, sodass entweder $a=2suv,\,b=s(u^2-v^2),\,c=s(u^2+v^2)$ oder $a=s(u^2+r^2),\,b=2suv,\,c=s(u^2+v^2)$.

5 Über die Verteilung und Darstellung von Primzahlen (81)

5.1 Aufgabe 1

Zeigen Sie mit Hilfe des Kriterium von Lucas-Lehmer (Remmert und Ullrich 2008, S. 78), dass die Zahlen $M_p = 2^p - 1$ für p = 3, p = 5 und p = 7 Primzahlen sind.

5.2 Aufgabe 2

Zeigen Sie direkt: Es gibt unendliche Primzahlen der Form:

- a) $6k + 5, k \in \mathbb{N}$
- b) $4k+3, k \in \mathbb{N}$

Lemma 4. Sind a_1, \ldots, a_k Zahlen der Form $a_v = qb_v + 1$, $q, b_v \in \mathbb{Z}$, $1 \le v \le k$. Dann ist auch ihr Produkt $a_1a_2 \cdots a_k$ von der Form qb + 1, $b \in \mathbb{Z}$.

Beweis. Der Beweis ergibt sich unmittelbar durch Induktion, da (qm+1)(qn+1) = q(qmn+m+n)+1 für alle $m,n\in\mathbb{Z}$.

Beweis. a) Angenommen es gäbe nur endlich viele Primzahlen der Form 6k + 5, etwa p_1, p_2, \ldots, p_s mit $p_1 := 2$. Man betrachte die Zahl $a := (2 \cdot 3)(p_1p_2 \cdots p_s) - 1 \in \mathbb{N}^{\times}$. Diese Zahl ist von der Form 6k + 5. Sei $a = q_1^{m_1}q_2^{m_2}\cdots q_t^{m_t}$ die Primzerlegung von a. Jede Primzahl q_i ist von allen Primzahlen $2, 3, p_1, \ldots, p_s$ verschieden, da 1 nicht durch q_i teilbar ist, $i = 1, 2, \ldots, t$. Nun muss aber mindestens eine Primzahl q_i von der Form 6k + 5 sein; denn alle anderen Möglichkeiten können wie folgt ausgeschlossen werden:

(a) Die Primzahlen q_i können nicht gerade oder sonstig teilbar sein, denn dann wären es keine Primzahlen. D. h. die folgenden Formen fallen weg:

$$6k + 0$$
, $6k + 2 = 2(3k + 1)$, $6k + 3 = 3(2k + 1)$, $6k + 4 = 2(3k + 2)$

(b) Zusätzlich können sie nicht alle in der Form 6k+1 sein; denn so wäre nach dem eingangs bewiesenen auch die Zahl $a=q_1^{m1}q_2^{m2}\cdots q_t^{m_t}$ von der Form 6k+1, was nicht möglich ist.

- b) Angenommen es gäbe nur endlich viele Primzahlen der Form 4k+3, etwa p_1, p_2, \ldots, p_s mit $p_1 := 2$. Man betrachte die Zahl $a := (2 \cdot 2)(p_1p_2 \cdots p_s) 1 \in \mathbb{N}^{\times}$. Diese Zahl ist von der Form 4k+3. Sei $a = q_1^{m_1}q_2^{m_2}\cdots q_t^{m_t}$ die Primzerlegung von a. Jede Primzahl q_i ist von allen Primzahlen $2, p_1, \ldots, p_s$ verschieden, da 1 nicht durch q_i teilbar ist, $i = 1, 2, \ldots, t$. Nun muss aber mindestens eine Primzahl q_i von der Form 4k+3 sein; denn alle anderen Möglichkeiten können wie folgt ausgeschlossen werden:
 - (a) Die Primzahlen q_i können nicht gerade oder sonstig teilbar sein, denn dann wären es keine Primzahlen. D. h. die folgenden Formen fallen weg:

$$4k + 0$$
, $4k + 2 = 2(2k + 1)$

(b) Zusätzlich können sie nicht alle in der Form 4k+1 sein; denn so wäre nach dem eingangs bewiesenen auch die Zahl $a=q_1^{m1}q_2^{m2}\cdots q_t^{m_t}$ von der Form 4k+1, was nicht möglich ist.

5.3 Aufgabe 3

Zeigen Sie: Für alle natürlichen Zahlen $n \geq 2$ gilt: $n < 2^{\Pi(n)} \cdot \sqrt{n}.$

6 Zahlentheoretische Funktionen (92)

6.1 Aufgabe 1

Zeigen Sie: Für jedes $n \in \mathbb{N}^{\times}$ gibt es unendlich viele $a \in \mathbb{N}^{\times}$ mit $n \mid \varphi(a)$.

6.2 Aufgabe 2

Bestimmen Sie alle $n \in \mathbb{N}^{\times}$, für die $\varphi(n)$ eine Potenz von 2 ist.

6.3 Aufgabe 3

Beweisen Sie für $n \geq 2$:

a)
$$\varphi_1(n) = \frac{1}{2}n\varphi(n)$$

b)
$$\varphi_2(n) = \frac{1}{3}n^2\varphi(n) + \frac{n}{6}\prod_{p|n}(1-p)$$

7 Integritätsringe. Teilbarkeitstheorie in Integritätsringen (110)

7.1 Aufgabe 1

Sei R ein Integritätsring, seien $a, b, c, d \in R$. Zeigen Sie:

- a) Aus $a \sim b$ und $c \sim d$ folgt: $ac \sim bd$.
- b) Aus $a \sim b$ und $ac \sim bd$ und $a \neq 0$ folgt: $c \sim d$.

Beweis. a) Es folgt direkt aus Rechenregel 3) der Teilbarkeit (Remmert und Ullrich 2008, S. 23): Aus $a \mid b$ und $c \mid d$ folgt $ac \mid bd$; aus $b \mid a$ und $d \mid c$ folgt $bd \mid ac$.

b) Wir zeigen $c \mid d$ aus dem Gegebenen:

Es gilt
$$b \mid a \underset{\text{mit } c \in R}{\Rightarrow} bc \mid ac$$

Es gilt $ac \mid bd \underset{\text{transitiv}}{\Rightarrow} bc \mid bd \underset{\text{kürzen}}{\Rightarrow} c \mid d$

Wir zeigen $d \mid c$ aus dem Gegebenen:

Es gilt
$$a \mid b \underset{\text{mit } d \in R}{\Rightarrow} ad \mid bd$$

Es gilt $bd \mid ac \underset{\text{transitiv}}{\Rightarrow} ad \mid ac \underset{\text{kürzen}}{\Rightarrow} d \mid c$

Literaturverzeichnis

Remmert, Reinhold und Peter Ullrich (2008). *Elementare Zahlentheorie*. Springer. ISBN: 978-3-7643-7730-4.