Dovious

Structure Theorem for the Indefinite Case

Grothendiecl Group

Integral Quadratic Forms

Ajay Prajapati

Indian Institute of Technology, Kanpur

January 31, 2024

Overview

Dovious

Structure Theorem for the Indefinite Case

Grothendiec Group

1 Review

2 Structure Theorem for the Indefinite Case

3 Grothendieck Group

Overview

Review

Structure Theorem for the Indefinite Case

Grothendiecl Group

1 Review

2 Structure Theorem for the Indefinite Case

3 Grothendieck Group

Structure Theorem for the Indefinite Case

Grothendiecl Group

Classification over finite fields

Let $a \in \mathbb{F}_q^* - (\mathbb{F}_q^*)^2$. Then every nondegenerate quadratic form of rank n over \mathbb{F}_q is equivalent to

$$X_1^2 + \ldots + X_{n-1}^2 + X_n^2$$
 or $X_1^2 + \ldots + X_{n-1}^2 + aX_n^2$

depending on whether its discriminant is a square or not.

Structure Theorem for the Indefinite Case

Grothendiec Group

Classification over finite fields

Let $a \in \mathbb{F}_q^* - (\mathbb{F}_q^*)^2$. Then every nondegenerate quadratic form of rank n over \mathbb{F}_q is equivalent to

$$X_1^2 + \ldots + X_{n-1}^2 + X_n^2$$
 or $X_1^2 + \ldots + X_{n-1}^2 + aX_n^2$

depending on whether its discriminant is a square or not.

Theorem

Two quadratic forms over $k=\mathbb{Q}_p$ are equivalent \iff they have the same rank, same discriminant, and same invariant ε .

Structure Theorem for the Indefinite Case

Grothendiec

Classification over finite fields

Let $a \in \mathbb{F}_q^* - (\mathbb{F}_q^*)^2$. Then every nondegenerate quadratic form of rank n over \mathbb{F}_q is equivalent to

$$X_1^2 + \ldots + X_{n-1}^2 + X_n^2$$
 or $X_1^2 + \ldots + X_{n-1}^2 + aX_n^2$

depending on whether its discriminant is a square or not.

Theorem

Two quadratic forms over $k = \mathbb{Q}_p$ are equivalent \iff they have the same rank, same discriminant, and same invariant ε .

Theorem

Two quadratic forms over \mathbb{Q} are equivalent \iff they are equivalent over each \mathbb{Q}_v .

Structure Theorem for the Indefinite Case

Grothendiec

Classification over finite fields

Let $a \in \mathbb{F}_q^* - (\mathbb{F}_q^*)^2$. Then every nondegenerate quadratic form of rank n over \mathbb{F}_q is equivalent to

$$X_1^2 + \ldots + X_{n-1}^2 + X_n^2$$
 or $X_1^2 + \ldots + X_{n-1}^2 + aX_n^2$

depending on whether its discriminant is a square or not.

Theorem

Two quadratic forms over $k = \mathbb{Q}_p$ are equivalent \iff they have the same rank, same discriminant, and same invariant ε .

Theorem

Two quadratic forms over \mathbb{Q} are equivalent \iff they are equivalent over each \mathbb{Q}_v .

Want to classify quadratic forms over Z.

Structure Theorem for the Indefinite Case

Grothendieck Group

Definition

For $n \geq 1$, define a category S_n which consists of

1 Objects: Free abelian group E of rank n together with symmetric bilinear form $E \times E \longrightarrow \mathbb{Z}$, $(x,y) \longmapsto x \cdot y$ such that $E \longrightarrow \operatorname{Hom}(E,\mathbb{Z}), \quad (x \longmapsto (y \longmapsto x \cdot y))$ is an isomorphism.

Structure Theorem for the Indefinite Case

Grothendiecl Group

Definition

For $n \geq 1$, define a category S_n which consists of

- **Objects:** Free abelian group E of rank n together with symmetric bilinear form $E \times E \longrightarrow \mathbb{Z}$, $(x,y) \longmapsto x \cdot y$ such that $E \longrightarrow \operatorname{Hom}(E,\mathbb{Z}), \quad (x \longmapsto (y \longmapsto x \cdot y))$ is an isomorphism.
- **2 Morphisms:** Isomorphism of free abelian groups $f: E \longrightarrow E'$ such that the following diagram commutes:

$$E \times E \xrightarrow{(\cdot,\cdot)} E' \times E'$$

We let $S := \cup_n S_n$.

Structure Theorem for the Indefinite Case

Grothendiec Group

Definition

For $n \ge 1$, define a category S_n which consists of

- **Objects:** Free abelian group E of rank n together with symmetric bilinear form $E \times E \longrightarrow \mathbb{Z}$, $(x,y) \longmapsto x \cdot y$ such that $E \longrightarrow \operatorname{Hom}(E,\mathbb{Z}), \quad (x \longmapsto (y \longmapsto x \cdot y))$ is an isomorphism
 - is an isomorphism.
- **2 Morphisms:** Isomorphism of free abelian groups $f: E \longrightarrow E'$ such that the following diagram commutes:

We let $S := \cup_n S_n$.

If $E, E' \in S$, then $E \oplus E'$ denotes the direct sum of E and E' together with bilinear form which is direct sum of those on E and E'. i.e. $(x,y)\cdot(x',y'):=(x\cdot x',y\cdot y')$.

4 - 1 - 4 - 4 - 5 - 4 - 5 - 5

Review

Structure Theorem for the Indefinite Case

Grothendieck Group If $E \in S$ with (\cdot, \cdot) the bilinear form then (E, f) is a quadratic \mathbb{Z} -module with f(x) = (x, x).

Definition

If $E \in S_n$ then n is called the rank of E.

Review

Structure Theorem for the Indefinite Case

Grothendieck Group If $E \in S$ with (\cdot, \cdot) the bilinear form then (E, f) is a quadratic \mathbb{Z} -module with f(x) = (x, x).

Definition

- If $E \in S_n$ then n is called the rank of E.
- **2** Let $E \in S$ and let $V := E \otimes \mathbb{R}$. Then quadratic \mathbb{R} -module V has a well-defined signature (r,s). Then

$$\tau(E) := r - s \tag{1}$$

is called the index of E.

Review

Structure Theorem for the Indefinite Case

Grothendiecl

If $E \in S$ with (\cdot, \cdot) the bilinear form then (E, f) is a quadratic \mathbb{Z} -module with f(x) = (x, x).

Definition

- If $E \in S_n$ then n is called the rank of E.
- 2 Let $E\in S$ and let $V:=E\otimes \mathbb{R}$. Then quadratic \mathbb{R} -module V has a well-defined signature (r,s). Then

$$\tau(E) := r - s \tag{1}$$

is called the index of E.

- **1** The discriminant of (E, f), denoted by d(E) is the disc. of f.
- Let $(E, f) \in S$. Then we say E is even (or of type II) if f only takes even values. Otherwise, it is called odd (or of type I).

Review

Structure Theorem for the Indefinite Case

Grothendiec

If $E \in S$ with (\cdot, \cdot) the bilinear form then (E, f) is a quadratic \mathbb{Z} -module with f(x) = (x, x).

Definition

- 1 If $E \in S_n$ then n is called the rank of E.
- 2 Let $E\in S$ and let $V:=E\otimes \mathbb{R}.$ Then quadratic \mathbb{R} -module V has a well-defined signature (r,s). Then

$$\tau(E) := r - s \tag{1}$$

is called the index of E.

- **3** The discriminant of (E, f), denoted by d(E) is the disc. of f.
- Let $(E, f) \in S$. Then we say E is even (or of type II) if f only takes even values. Otherwise, it is called odd (or of type I).

 I_{-} rank 1 \mathbb{Z} -module with quadratic form $x \longmapsto -x^2$.

 I_{+} - rank 1 \mathbb{Z} -module with quadratic form $x \longmapsto x^2$.

U- rank 2 \mathbb{Z} -module with quadratic form $(x,y) \longmapsto 2xy$.

Finally, we defined the group Γ_{8n} for $n \in \mathbb{Z}_{>1}$.

Overview

Dovious

Structure Theorem for the Indefinite Case

Grothendieck Group

1 Review

2 Structure Theorem for the Indefinite Case

3 Grothendieck Group

D

Structure Theorem for the Indefinite Case

Grothendieck Group

Theorem

If $E \in S$ is indefinite and of type I, E is isomorphic to $sI_- \oplus tI_+$ where $s,t \in \mathbb{Z}_{\geq 1}.$

Theorem

If $E \in S$ is indefinite of type II, then E is isomorphic to $pU \oplus q\Gamma_8$ where $p,q \in \mathbb{Z}_{\geq 1}.$

D

Structure Theorem for the Indefinite Case

Grothendieck Group

Theorem

If $E \in S$ is indefinite and of type I, E is isomorphic to $sI_- \oplus tI_+$ where $s,t \in \mathbb{Z}_{\geq 1}$.

Theorem

If $E \in S$ is indefinite of type II, then E is isomorphic to $pU \oplus q\Gamma_8$ where $p,q \in \mathbb{Z}_{\geq 1}.$

Definition

Let $E \in S$. One says that E represents zero if there exists $x \in E$, $x \neq 0$, such that $x \cdot x = 0$.

Structure Theorem for the Indefinite Case

Grothendieck Group

Theorem

If $E \in S$ is indefinite and of type I, E is isomorphic to $sI_- \oplus tI_+$ where $s,t \in \mathbb{Z}_{\geq 1}.$

Theorem

If $E\in S$ is indefinite of type II, then E is isomorphic to $pU\oplus q\Gamma_8$ where $p,q\in\mathbb{Z}_{>1}.$

Definition

Let $E \in S$. One says that E represents zero if there exists $x \in E$, $x \neq 0$, such that $x \cdot x = 0$.

Theorem

If $(E, f) \in S$ is indefinite, (E, f) represents zero.

D

Structure Theorem for the Indefinite Case

Grothendiecl

Let f be a quadratic form over \mathbb{Q} .

Hasse Minkowski Therorem

Then f represents 0 over $\mathbb{Q} \iff f$ represents 0 over \mathbb{Q}_v for each v.

Review

Structure Theorem for the Indefinite Case

Grothendied Group Let f be a quadratic form over \mathbb{Q} .

Hasse Minkowski Therorem

Then f represents 0 over $\mathbb{Q} \iff f$ represents 0 over \mathbb{Q}_v for each v.

Theorem

For f to represent 0 over $k = \mathbb{Q}_p$ it is necessary and sufficient that:

$$n = 2$$
 and $d = -1$ (in k^*/k^{*2}),

3
$$n=4$$
 and either $d \neq 1$ or $d=1$ and $\varepsilon=(-1,-1)$.

4
$$n \ge 5$$
. In particular, all forms in at least 5 variables represent 0

Review

Structure Theorem for the Indefinite Case

Grothendied Group Let f be a quadratic form over \mathbb{Q} .

Hasse Minkowski Therorem

Then f represents 0 over $\mathbb{Q} \iff f$ represents 0 over \mathbb{Q}_v for each v.

Theorem

For f to represent 0 over $k = \mathbb{Q}_p$ it is necessary and sufficient that:

$$n = 2$$
 and $d = -1$ (in k^*/k^{*2}),

3
$$n=4$$
 and either $d \neq 1$ or $d=1$ and $\varepsilon=(-1,-1)$.

$$1 \le 5$$
. In particular, all forms in at least 5 variables represent 0

Let n be the rank of f. Suppose that n=3 or n=4 and d(f)=1. If f represents 0 in all the \mathbb{Q}_n except at most one, then f represents 0.

Reviev

Structure Theorem for the Indefinite Case

Grothendied Group Let f be a quadratic form over \mathbb{Q} .

Hasse Minkowski Therorem

Then f represents 0 over $\mathbb{Q} \iff f$ represents 0 over \mathbb{Q}_v for each v.

Theorem

For f to represent 0 over $k=\mathbb{Q}_p$ it is necessary and sufficient that:

$$n = 2$$
 and $d = -1$ (in k^*/k^{*2}),

$$n=3$$
 and $(-1,-d)=\varepsilon$,

3
$$n=4$$
 and either $d \neq 1$ or $d=1$ and $\varepsilon=(-1,-1)$.

$$n \ge 5$$
. In particular, all forms in at least 5 variables represent 0

Let n be the rank of f. Suppose that n=3 or n=4 and d(f)=1. If f represents 0 in all the \mathbb{Q}_n except at most one, then f represents 0.

Corollary (Meyer)

If f is of rank ≥ 5 then f represents 0 over $\mathbb{Q} \iff f$ is indefinite.

Review

Structure Theorem for the Indefinite Case

Grothendiecl Group Let $(E, f) \in S$ and let $F \subset E$ be a submodule. Let $F' = \{x \in E : (x, y) = 0 \forall y \in F\}.$

Lemma

$$(F, f|_F) \in S \iff E = F \oplus F'.$$

Review

Structure Theorem for the Indefinite Case

Grothendiec Group Let $(E, f) \in S$ and let $F \subset E$ be a submodule. Let $F' = \{x \in E : (x, y) = 0 \forall y \in F\}.$

Lemma

$$(F, f|_F) \in S \iff E = F \oplus F'.$$

Proof

 $\begin{tabular}{l} \blacksquare & (\Longleftrightarrow) \mbox{ If } E = F \oplus F', \mbox{ then we have } d(E) = d(F) \cdot d(F') \mbox{ from which } d(F') = \pm 1. \end{tabular}$

Review

Structure Theorem for the Indefinite Case

Grothendied Group Let $(E, f) \in S$ and let $F \subset E$ be a submodule. Let $F' = \{x \in E : (x, y) = 0 \forall y \in F\}.$

Lemma

$$(F, f|_F) \in S \iff E = F \oplus F'.$$

Proof

- $\begin{tabular}{l} \blacksquare & (\Longleftarrow) \mbox{ If } E = F \oplus F' \mbox{, then we have } d(E) = d(F) \cdot d(F') \mbox{ from } \\ & \mbox{which } d(F') = \pm 1. \end{tabular}$
- 2 (\Longrightarrow) If $d(F)=\pm 1$ then $F\cap F'=\{0\}$. Also we have $F\cong \operatorname{Hom}(F,\mathbb{Z})$. Therefore for $x\in E$, the map

$$F \longrightarrow \mathbb{Z}, \quad y \longmapsto x \cdot y$$

is defined by $x_0 \in F$. Then $x = x_0 + (x - x_0)$ and $E = F \oplus F'$.

Reviev

Structure Theorem for the Indefinite Case

Grothendied Group Let $(E,f)\in S$ and let $F\subset E$ be a submodule. Let $F'=\{x\in E: (x,y)=0 \forall y\in F\}.$

Lemma

$$(F, f|_F) \in S \iff E = F \oplus F'.$$

Proof

- $\begin{tabular}{l} \blacksquare & (\Longleftarrow) \mbox{ If } E = F \oplus F' \mbox{, then we have } d(E) = d(F) \cdot d(F') \mbox{ from } \\ & \mbox{which } d(F') = \pm 1. \end{tabular}$
- 2 (\Longrightarrow) If $d(F)=\pm 1$ then $F\cap F'=\{0\}$. Also we have $F\cong \operatorname{Hom}(F,\mathbb{Z})$. Therefore for $x\in E$, the map $F\longrightarrow \mathbb{Z},\quad y\longmapsto x\cdot y$

is defined by $x_0 \in F$. Then $x = x_0 + (x - x_0)$ and $E = F \oplus F'$.

Lemma

Let $x \in E$ be such that $x \cdot x = \pm 1$ and let X be the orthogonal complement of x in E. If $D = \mathbb{Z}x$, one has $E = D \oplus X$.

Dovious

Structure Theorem for the Indefinite Case

Group Group

Definition

An element $x \in E$ is called indivisible if $x \notin nE$ for all $n \ge 2$.

D

Structure Theorem for the Indefinite Case

Group

Definition

An element $x \in E$ is called indivisible if $x \notin nE$ for all $n \geq 2$.

Every nonzero element of E can be written in a unique way in the form mx with $m \ge 1$ and x indivisible.

D

Structure Theorem for the Indefinite Case

Group Group

Definition

An element $x \in E$ is called indivisible if $x \notin nE$ for all $n \ge 2$.

Every nonzero element of E can be written in a unique way in the form mx with $m \geq 1$ and x indivisible.

Lemma

If x is an indivisible element of E there exists $y \in E$ s.t. $x \cdot y = 1$.

Dovious

Structure Theorem for the Indefinite Case

Grothendiec Group

Definition

An element $x \in E$ is called indivisible if $x \notin nE$ for all $n \ge 2$.

Every nonzero element of E can be written in a unique way in the form mx with $m \ge 1$ and x indivisible.

Lemma

If x is an indivisible element of E there exists $y \in E$ s.t. $x \cdot y = 1$.

Proof

1 Let $f_x \in \text{Hom}(E, \mathbb{Z})$ be the linear form $y \mapsto x.y$ defined by x.

Davian

Structure Theorem for the Indefinite Case

Grothendiec Group

Definition

An element $x \in E$ is called indivisible if $x \notin nE$ for all $n \ge 2$.

Every nonzero element of E can be written in a unique way in the form mx with $m \geq 1$ and x indivisible.

Lemma

If x is an indivisible element of E there exists $y \in E$ s.t. $x \cdot y = 1$.

Proof

- **1** Let $f_x \in \operatorname{Hom}(E, \mathbb{Z})$ be the linear form $y \mapsto x.y$ defined by x.
- 2 f_x is indivisible since x is.

Dovious

Structure Theorem for the Indefinite Case

Group Group

Definition

An element $x \in E$ is called indivisible if $x \notin nE$ for all $n \ge 2$.

Every nonzero element of E can be written in a unique way in the form mx with $m \geq 1$ and x indivisible.

Lemma

If x is an indivisible element of E there exists $y \in E$ s.t. $x \cdot y = 1$.

Proof

- **1** Let $f_x \in \text{Hom}(E, \mathbb{Z})$ be the linear form $y \mapsto x.y$ defined by x.
- 2 f_x is indivisible since x is.
- 3 f_x is surjective.

D

Structure Theorem for the Indefinite Case

Grothendieck

Theorem

If $E \in S$ is indefinite and of type I, E is isomorphic to $sI_- \oplus tI_+$ where $s,t \in \mathbb{Z}_{\geq 1}$.

D

Structure Theorem for the Indefinite Case

Grothendiecl Group

Theorem

If $E \in S$ is indefinite and of type I, E is isomorphic to $sI_- \oplus tI_+$ where $s,t \in \mathbb{Z}_{\geq 1}.$

Corollary

Let E and E' be two elements of S with the same rank and index. Then either $E \oplus I_+ \simeq E' \oplus I_+$ or $E \oplus I_- \simeq E' \oplus I_-$.

D

Structure Theorem for the Indefinite Case

Grothendiecl Group

Theorem

If $E \in S$ is indefinite and of type I, E is isomorphic to $sI_- \oplus tI_+$ where $s,t \in \mathbb{Z}_{\geq 1}.$

Corollary

Let E and E' be two elements of S with the same rank and index. Then either $E \oplus I_+ \simeq E' \oplus I_+$ or $E \oplus I_- \simeq E' \oplus I_-$.

1 This is clear if E=0. Otherwise, one of $E\oplus I_+$ or $E\oplus I_-$ is indefinite and of Type I. Suppose that the first is.

Doviou

Structure Theorem for the Indefinite Case

Grothendiecl Group

Theorem

If $E \in S$ is indefinite and of type I, E is isomorphic to $sI_- \oplus tI_+$ where $s,t \in \mathbb{Z}_{\geq 1}.$

Corollary

Let E and E' be two elements of S with the same rank and index. Then either $E \oplus I_+ \simeq E' \oplus I_+$ or $E \oplus I_- \simeq E' \oplus I_-$.

- **1** This is clear if E=0. Otherwise, one of $E\oplus I_+$ or $E\oplus I_-$ is indefinite and of Type I. Suppose that the first is.
- **2** $E' \oplus I_+$ is also indefinite.

D

Structure Theorem for the Indefinite Case

Grothendiecl Group

Theorem

If $E \in S$ is indefinite and of type I, E is isomorphic to $sI_- \oplus tI_+$ where $s,t \in \mathbb{Z}_{\geq 1}.$

Corollary

Let E and E' be two elements of S with the same rank and index. Then either $E \oplus I_+ \simeq E' \oplus I_+$ or $E \oplus I_- \simeq E' \oplus I_-$.

- **1** This is clear if E=0. Otherwise, one of $E\oplus I_+$ or $E\oplus I_-$ is indefinite and of Type I. Suppose that the first is.
- $E' \oplus I_+$ is also indefinite.
- $E \oplus I_+ \cong sI_+ \oplus tI_-$ and $E' \oplus I_+ \cong s'I_+ \oplus t'I_-$.

Review

Structure Theorem for the Indefinite Case

Grothendiec Group

Theorem

If $E \in S$ is indefinite and of type I, E is isomorphic to $sI_- \oplus tI_+$ where $s,t \in \mathbb{Z}_{\geq 1}.$

Corollary

Let E and E' be two elements of S with the same rank and index. Then either $E \oplus I_+ \simeq E' \oplus I_+$ or $E \oplus I_- \simeq E' \oplus I_-$.

- **1** This is clear if E=0. Otherwise, one of $E\oplus I_+$ or $E\oplus I_-$ is indefinite and of Type I. Suppose that the first is.
- **2** $E' \oplus I_+$ is also indefinite.
- $E \oplus I_+ \cong sI_+ \oplus tI_-$ and $E' \oplus I_+ \cong s'I_+ \oplus t'I_-$.

Lemma

Let $E \in S_n$. Suppose E is indefinite and of type I. There exists $F \in S_{n-2}$ such that $E \cong I_+ \oplus I_- \oplus F$.

Review

Structure Theorem for the Indefinite Case

Grothendieck Group

Proof

In there exists indivisible $x \in E, x \neq 0$ such that $x \cdot x = 0$. There exists thus $y \in E$ such that $x \cdot y = 1$.

D

Structure Theorem for the Indefinite Case

Grothendieck Group

Proof

- **1** there exists indivisible $x \in E, x \neq 0$ such that $x \cdot x = 0$. There exists thus $y \in E$ such that $x \cdot y = 1$.
- **2** We can choose y such that $y \cdot y$ is odd.
- Suppose $y\cdot y$ is even. Then choose $t\in E$ such that $t\cdot t$ is odd and Put y'=t+ky with $k=1-x\cdot t$.

D .

Structure Theorem for the Indefinite Case

Grothendieck Group

Proof

- 1 there exists indivisible $x \in E, x \neq 0$ such that $x \cdot x = 0$. There exists thus $y \in E$ such that $x \cdot y = 1$.
- **2** We can choose y such that $y \cdot y$ is odd.
- Suppose $y \cdot y$ is even. Then choose $t \in E$ such that $t \cdot t$ is odd and Put y' = t + ky with $k = 1 x \cdot t$.
- 4 Let $y \cdot y = 2m+1$. Put then $e_1 = y mx$, $e_2 = y (m+1)x$. We check that $e_1 \cdot e_1 = 1, e_1 \cdot e_2 = 0, e_2 \cdot e_2 = -1$.

Review

Structure Theorem for the Indefinite Case

Grothendieck Group

Proof

- 1 there exists indivisible $x \in E, x \neq 0$ such that $x \cdot x = 0$. There exists thus $y \in E$ such that $x \cdot y = 1$.
- **2** We can choose y such that $y \cdot y$ is odd.
- Suppose $y \cdot y$ is even. Then choose $t \in E$ such that $t \cdot t$ is odd and Put y' = t + ky with $k = 1 x \cdot t$.
- 4 Let $y \cdot y = 2m+1$. Put then $e_1 = y mx$, $e_2 = y (m+1)x$. We check that $e_1 \cdot e_1 = 1, e_1 \cdot e_2 = 0, e_2 \cdot e_2 = -1$.
- 5 Thus $\mathbb{Z}e_1 \oplus \mathbb{Z}e_2 \cong I_+ \oplus I_-$.

Proof of Theorem

- **1** Induction on n. Let $E \in S_n$ with E indefinite and of type I.
- 2 By lemma $4, E \simeq I_+ \oplus I_- \oplus F$. If n=2, we have F=0 and the theorem is proved.

Doviou

Structure Theorem for the Indefinite Case

Grothendieck Group

Proof

- 1 there exists indivisible $x \in E, x \neq 0$ such that $x \cdot x = 0$. There exists thus $y \in E$ such that $x \cdot y = 1$.
- **2** We can choose y such that $y \cdot y$ is odd.
- Suppose $y \cdot y$ is even. Then choose $t \in E$ such that $t \cdot t$ is odd and Put y' = t + ky with $k = 1 x \cdot t$.
- 4 Let $y \cdot y = 2m+1$. Put then $e_1 = y mx$, $e_2 = y (m+1)x$. We check that $e_1 \cdot e_1 = 1, e_1 \cdot e_2 = 0, e_2 \cdot e_2 = -1$.
- 5 Thus $\mathbb{Z}e_1 \oplus \mathbb{Z}e_2 \cong I_+ \oplus I_-$.

Proof of Theorem

- **1** Induction on n. Let $E \in S_n$ with E indefinite and of type I.
- 2 By lemma $4, E \simeq I_+ \oplus I_- \oplus F$. If n=2, we have F=0 and the theorem is proved.
- If n > 2, we have $F \neq 0$ and one of the modules $I_+ \oplus F$, $I_- \oplus F$, is indefinite.

D

Structure Theorem for the Indefinite Case

Grothendieck Group

Theorem

If $E \in S$ is indefinite of type II, and if $\tau(E) \ge 0$, then E is isomorphic to $pU \oplus q\Gamma_8$ where $p, q \in \mathbb{Z}_{>1}$.

р .

Structure Theorem for the Indefinite Case

Grothendieck Group

Theorem

If $E \in S$ is indefinite of type II, and if $\tau(E) \geq 0$, then E is isomorphic to $pU \oplus q\Gamma_8$ where $p, q \in \mathbb{Z}_{\geq 1}$.

When $\tau(E) \leq 0$, we get the corresponding result by applying the theorem to the module -E := (E, -f).

р.

Structure Theorem for the Indefinite Case

Grothendieck Group

Theorem

If $E \in S$ is indefinite of type II, and if $\tau(E) \geq 0$, then E is isomorphic to $pU \oplus q\Gamma_8$ where $p, q \in \mathbb{Z}_{\geq 1}$.

When $\tau(E) \leq 0$, we get the corresponding result by applying the theorem to the module -E := (E, -f).

Lemma

Let $E \in S$. Suppose E is indefinite and of type II. There exists $F \in S$ such that $E \simeq U \oplus F$.

Povious

Structure Theorem for the Indefinite Case

Grothendieck Group

Theorem

If $E \in S$ is indefinite of type II, and if $\tau(E) \geq 0$, then E is isomorphic to $pU \oplus q\Gamma_8$ where $p, q \in \mathbb{Z}_{\geq 1}$.

When $\tau(E) \leq 0$, we get the corresponding result by applying the theorem to the module -E := (E, -f).

Lemma

Let $E \in S$. Suppose E is indefinite and of type II. There exists $F \in S$ such that $E \simeq U \oplus F$.

Proof

Choose first $x \in E, x \neq 0, x$ indivisible such that $x \cdot x = 0$; choose next $y \in E$ such that $x \cdot y = 1$.

D

Structure Theorem for the Indefinite Case

Grothendieck Group

Theorem

If $E \in S$ is indefinite of type II, and if $\tau(E) \geq 0$, then E is isomorphic to $pU \oplus q\Gamma_8$ where $p,q \in \mathbb{Z}_{\geq 1}$.

When $\tau(E) \leq 0$, we get the corresponding result by applying the theorem to the module -E := (E, -f).

Lemma

Let $E \in S$. Suppose E is indefinite and of type II. There exists $F \in S$ such that $E \simeq U \oplus F$.

Proof

- **1** Choose first $x \in E, x \neq 0, x$ indivisible such that $x \cdot x = 0$; choose next $y \in E$ such that $x \cdot y = 1$.
- 2 If $y \cdot y = 2m$, replace y by y mx to obtain a y s.t. $y \cdot y = 0$.

Structure Theorem for the Indefinite Case

Grothendieck Group

Lemma

Let $F_1, F_2 \in S$. Suppose that F_1 and F_2 are of type II and that $I_+ \oplus I_- \oplus F_1 \simeq I_+ \oplus I_- \oplus F_2$. Then $U \oplus F_1 \simeq U \oplus F_2$.

Structure Theorem for the Indefinite Case

Grothendieck Group

Lemma

Let $F_1, F_2 \in S$. Suppose that F_1 and F_2 are of type II and that $I_+ \oplus I_- \oplus F_1 \simeq I_+ \oplus I_- \oplus F_2$. Then $U \oplus F_1 \simeq U \oplus F_2$.

■ To simplify the notations, we put $W = I_+ \oplus I_-$, $E_i = W \oplus F_i$, and $V_i = E_i \otimes \mathbb{Q}$. Let $E_i^0 := \{x \in E : x \cdot x \equiv 0 \pmod 2\}$ and $W^0 := \{x = (x_1, x_2) \in W : x_1 \equiv x_2 \pmod 2\}$

Structure Theorem for the Indefinite Case

Grothendiecl Group

Lemma

Let $F_1, F_2 \in S$. Suppose that F_1 and F_2 are of type II and that $I_+ \oplus I_- \oplus F_1 \simeq I_+ \oplus I_- \oplus F_2$. Then $U \oplus F_1 \simeq U \oplus F_2$.

- **1** To simplify the notations, we put $W=I_+\oplus I_-$, $E_i=W\oplus F_i$, and $V_i=E_i\otimes \mathbb{Q}$. Let $E_i^0:=\{x\in E:x\cdot x\equiv 0\pmod 2\}$ and $W^0:=\{x=(x_1,x_2)\in W:x_1\equiv x_2\pmod 2\}$
- **2** Then E_i^0 is of index 2 in E_i and $E_i^0 = W^0 \oplus F_i$.

Structure Theorem for the Indefinite Case

Grothendiecl Group

Lemma

Let $F_1, F_2 \in S$. Suppose that F_1 and F_2 are of type II and that $I_+ \oplus I_- \oplus F_1 \simeq I_+ \oplus I_- \oplus F_2$. Then $U \oplus F_1 \simeq U \oplus F_2$.

- To simplify the notations, we put $W = I_+ \oplus I_-$, $E_i = W \oplus F_i$, and $V_i = E_i \otimes \mathbb{Q}$. Let $E_i^0 := \{x \in E : x \cdot x \equiv 0 \pmod{2}\}$ and $W^0 := \{x = (x_1, x_2) \in W : x_1 \equiv x_2 \pmod{2}\}$
- **2** Then E_i^0 is of index 2 in E_i and $E_i^0 = W^0 \oplus F_i$.
- Let E_i^+ be the "dual" of E_i^0 in V_i , i.e. $E_i^+ \cdot \{v_i \in V_i : f_i \in \operatorname{Hom}(E^0, \mathbb{Z})\}$

$$E_i^+:=\{y\in V_i: f_x\in \operatorname{Hom}(E_i^0,\mathbb{Z})\}$$
 and

$$W^+ := \{(x_1, x_2) \in W : 2x_1 \in \mathbb{Z}, 2x_2 \in \mathbb{Z}, x_1 - x_2 \in \mathbb{Z}\}.$$

Then
$$E_i^+ = W^+ \oplus F_i$$
.

Structure Theorem for the Indefinite Case

Grothendiecl Group

Lemma

Let $F_1, F_2 \in S$. Suppose that F_1 and F_2 are of type II and that $I_+ \oplus I_- \oplus F_1 \simeq I_+ \oplus I_- \oplus F_2$. Then $U \oplus F_1 \simeq U \oplus F_2$.

- To simplify the notations, we put $W = I_+ \oplus I_-$, $E_i = W \oplus F_i$, and $V_i = E_i \otimes \mathbb{Q}$. Let $E_i^0 := \{x \in E : x \cdot x \equiv 0 \pmod{2}\}$ and $W^0 := \{x = (x_1, x_2) \in W : x_1 \equiv x_2 \pmod{2}\}$
- **2** Then E_i^0 is of index 2 in E_i and $E_i^0 = W^0 \oplus F_i$.
- $\begin{array}{l} \textbf{3} \ \ \text{Let} \ E_i^+ \text{be the "dual" of} \ E_i^0 \ \ \text{in} \ V_i, \ \text{i.e.} \\ E_i^+ := \{y \in V_i : f_x \in \operatorname{Hom}(E_i^0, \mathbb{Z})\} \quad \text{and} \\ W^+ := \{(x_1, x_2) \in W : 2x_1 \in \mathbb{Z}, 2x_2 \in \mathbb{Z}, x_1 x_2 \in \mathbb{Z}\}. \end{array}$

Then $E_i^+ = W^+ \oplus F_i$.

One has $E_i^0 \subset E_i \subset E_i^+$ and the quotient E_i^+/E_i^0 is isomorphic to W^+/W_0 ; it is a group of type (2,2).

Structure Theorem for the Indefinite Case

Grothendiec Group

Lemma

Let $F_1, F_2 \in S$. Suppose that F_1 and F_2 are of type II and that $I_+ \oplus I_- \oplus F_1 \simeq I_+ \oplus I_- \oplus F_2$. Then $U \oplus F_1 \simeq U \oplus F_2$.

- To simplify the notations, we put $W = I_+ \oplus I_-$, $E_i = W \oplus F_i$, and $V_i = E_i \otimes \mathbb{Q}$. Let $E_i^0 := \{x \in E : x \cdot x \equiv 0 \pmod 2\}$ and $W^0 := \{x = (x_1, x_2) \in W : x_1 \equiv x_2 \pmod 2\}$
- **2** Then E_i^0 is of index 2 in E_i and $E_i^0 = W^0 \oplus F_i$.
- 3 Let E_i^+ be the "dual" of E_i^0 in V_i , i.e.

$$\begin{split} E_i^+ :&= \{y \in V_i : f_x \in \mathrm{Hom}(E_i^0, \mathbb{Z})\} \quad \text{and} \\ W^+ :&= \{(x_1, x_2) \in W : 2x_1 \in \mathbb{Z}, 2x_2 \in \mathbb{Z}, x_1 - x_2 \in \mathbb{Z}\}. \end{split}$$

Then $E_i^+ = W^+ \oplus F_i$.

- One has $E_i^0 \subset E_i \subset E_i^+$ and the quotient E_i^+/E_i^0 is isomorphic to W^+/W_0 ; it is a group of type (2,2).
- **5** Let E'_i and E''_i . be the two others subgroups strictly between E_1^0 and E_i^+ . Here again we have:

$$E_i' = W' \oplus F_i$$
 and $E_i'' = W'' \oplus F_i$

One checks that W' and W'' are isomorphic to U.

Daviou

Structure Theorem for the Indefinite Case

Grothendieck

Let then $f:W\oplus F_1\to W\oplus F_2$ be an isomorphism. It extends to an isomorphism of V_1 onto V_2 , which carries E_1 onto E_2 , thus also E_1^0 onto E_2^0 and E_1^+ onto E_2^+ .

Daviou

Structure Theorem for the Indefinite Case

Grothendieck Group

- Let then $f:W\oplus F_1\to W\oplus F_2$ be an isomorphism. It extends to an isomorphism of V_1 onto V_2 , which carries E_1 onto E_2 , thus also E_1^0 onto E_2^0 and E_1^+ onto E_2^+ .
- ${\bf 2}$ Thus it carries also (E_1',E_1'') onto either (E_2',E_2'') or (E_2'',E_2') .

Structure Theorem for the Indefinite Case

Grothendiec Group

- Let then $f:W\oplus F_1\to W\oplus F_2$ be an isomorphism. It extends to an isomorphism of V_1 onto V_2 , which carries E_1 onto E_2 , thus also E_1^0 onto E_2^0 and E_1^+ onto E_2^+ .
- **2** Thus it carries also (E_1', E_1'') onto either (E_2', E_2'') or (E_2'', E_2') .

Proof of Theorem

- We first prove that if $E_1, E_2 \in S$ are indefinite of type II and have the same rank and same index, they are isomorphic.
- **2** We have $E_1 = U \oplus F_1, E_2 = U \oplus F_2$; And F_1 and F_2 are of type II and same rank and same index.

Structure Theorem for the Indefinite Case

Grothendiec Group

- Let then $f: W \oplus F_1 \to W \oplus F_2$ be an isomorphism. It extends to an isomorphism of V_1 onto V_2 , which carries E_1 onto E_2 , thus also E_1^0 onto E_2^0 and E_1^+ onto E_2^+ .
- $\ \ \,$ Thus it carries also (E_1',E_1'') onto either (E_2',E_2'') or (E_2'',E_2') .

Proof of Theorem

- We first prove that if $E_1, E_2 \in S$ are indefinite of type II and have the same rank and same index, they are isomorphic.
- 2 We have $E_1 = U \oplus F_1, E_2 = U \oplus F_2$; And F_1 and F_2 are of type II and same rank and same index.
- **I** The modules $I_+ \oplus I_- \oplus F_1$ and $I_+ \oplus I_- \oplus F_2$ are indefinite, of type I, of same rank and index.

Structure Theorem for the Indefinite Case

Grothendiec Group

- Let then $f: W \oplus F_1 \to W \oplus F_2$ be an isomorphism. It extends to an isomorphism of V_1 onto V_2 , which carries E_1 onto E_2 , thus also E_1^0 onto E_2^0 and E_1^+ onto E_2^+ .
- $\ \ \,$ Thus it carries also (E_1',E_1'') onto either (E_2',E_2'') or (E_2'',E_2') .

Proof of Theorem

- We first prove that if $E_1, E_2 \in S$ are indefinite of type II and have the same rank and same index, they are isomorphic.
- 2 We have $E_1 = U \oplus F_1, E_2 = U \oplus F_2$; And F_1 and F_2 are of type II and same rank and same index.
- **I** The modules $I_+ \oplus I_- \oplus F_1$ and $I_+ \oplus I_- \oplus F_2$ are indefinite, of type I, of same rank and index.
- **Theorem 5 is now clear:** if E is indefinite, of type II, and if $\tau(E) \geq 0$, let $p = \frac{1}{2}(r(E) \tau(E))$ and $q = \frac{1}{8}\tau(E)$ be the integers. Apply above to E and $pU \oplus q\Gamma + 8$.

16 / 21

Structure Theorem for the Indefinite Case

Grothendiec Group

- Let then $f: W \oplus F_1 \to W \oplus F_2$ be an isomorphism. It extends to an isomorphism of V_1 onto V_2 , which carries E_1 onto E_2 , thus also E_1^0 onto E_2^0 and E_1^+ onto E_2^+ .
- $\ \ \,$ Thus it carries also (E_1',E_1'') onto either (E_2',E_2'') or (E_2'',E_2') .

Proof of Theorem

- We first prove that if $E_1, E_2 \in S$ are indefinite of type II and have the same rank and same index, they are isomorphic.
- 2 We have $E_1 = U \oplus F_1, E_2 = U \oplus F_2$; And F_1 and F_2 are of type II and same rank and same index.
- **I** The modules $I_+ \oplus I_- \oplus F_1$ and $I_+ \oplus I_- \oplus F_2$ are indefinite, of type I, of same rank and index.
- **Theorem 5 is now clear:** if E is indefinite, of type II, and if $\tau(E) \geq 0$, let $p = \frac{1}{2}(r(E) \tau(E))$ and $q = \frac{1}{8}\tau(E)$ be the integers. Apply above to E and $pU \oplus q\Gamma + 8$.

16 / 21

Overview

Review

Structure Theorem for the Indefinite Case

Grothendieck Group

1 Review

2 Structure Theorem for the Indefinite Case

3 Grothendieck Group

Structure Theorem for the Indefinite Case

Grothendieck Group

Theorem

If $E, E' \in S$ are indefinite, and have same rank, index, and type, they are isomorphic.

Definition

Let $E, E' \in S$. We say that E and E' are stably isomorphic if there exists $F \in S$ such that $E \oplus F \simeq E' \oplus F$.

We denote by $K_+(S)$ the quotient of S by this relation and if $E \in S$, we denote by (E) the class of E in $K_+(S)$.

The operation \oplus defines a composition law + on $K_+(S)$. This law is commutative, associative, and has an identity element. We have

$$(E \oplus E') = (E) + (E') \tag{2}$$

This forms a cancellative monoid. Thus we can define a group K(S) from the semi-group $K_{+}(S)$

$$K(S) = \{(x,y) : x,y \in K_{+}(S) \text{ with } (x,y) = (x',y') \iff x+y' = y+x$$

The composition law of K(S) is defined by

$$(x,y) + (x',y') := (x+x',y+y')$$
(3)
It makes $K(S)$ into a compare to Address group with neutral element $(0,0)$

Determination of the Grothendieck Group

Povious

Structure Theorem for the Indefinite Case

Grothendieck Group

Universal property of K(S)

Let A be a commutative group and let $f:S\to A$ be a function s.t. $f(E)=f\left(E_1\right)+f\left(E_2\right)$ if $E\simeq E_1\oplus E_2$. Then there exists a unique group homomorphism $g:K(S)\to A$ such that following diagram commutes:

The invariants r, τ, d, σ define homomorphisms

$$r:K(S)\to\mathbb{Z},\quad \tau:K(S)\to\mathbb{Z},\quad d:K(S)\to\{\pm 1\},\sigma:K(S)\to\mathbb{Z}/8\mathbb{Z}$$
 We have again $\tau\equiv r\bmod 2$ and $d=(-1)^{(r-t)/2}$

Theorem

The group K(S) is a free abelian group with basis (I_+) and (I_-) .

Structure
Theorem for the
Indefinite Case

Grothendieck Group

One has r(f) = s + t, $\tau(f) = s - t$, which shows that s and t re determined by r and τ . From this follows:

Corollary

The pair (r, τ) defines an isomorphism of K(S) onto the subgroup of $\mathbb{Z} \times \mathbb{Z}$ formed of elements (a, b) such that $a \equiv b \pmod{2}$.

Corollary

For two elements E and E' of S to be stably isomorphic is necessary and sufficient that they have same rank and same index.

Note that this does not imply $E \simeq E'$.

Structure
Theorem for the
Indefinite Case

Grothendieck Group Let $E \in S, E \neq 0$. Then $E \oplus I_+$ or $E \oplus I_-$ is indefinite and of type 1. Applying theorem 4 , we see that the image of E in K(S) is a linear combination of (I_+) and of (I_-) . This implies that (I_+) and (I_-) generate K(S). Since their images by the homomorphism $(r,\tau):K(S) \to \mathbb{Z} \times \mathbb{Z}$ (4)

are linearly independent, (I_+) and (I_-) form a basis of K(S).

Theorem

One has $\sigma(E) \equiv \tau(E) \pmod 8$ for every $E \in S$. Indeed τ reduced mod8, and σ , are homomorphisms of K(S) in $\mathbb{Z}/8\mathbb{Z}$ /hich are equal on the generators I_+ and I_- of K(S); hence they coincide.

Corollary

If E is of type II, one has $\tau(E) \equiv 0 \pmod{8}$.

1. Indeed $\sigma(E)=0$ Note that this implies that $r(E)\equiv 0(\bmod 2)$ and $d(E)=(-1)^{r(E)/2})$

Corollary

If F is definite and of type II one has $e(F) \equiv 0 \pmod{2}$ Indeed we Ajay Prajapati