

First-Order Logic

Jihoon Yang

Machine Learning Research Laboratory
Department of Computer Science
Sogang University

Pros and Cons of Propositional Logic

- Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- Propositional logic is **compositional**: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power (unlike natural language)
 - E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

First-order Logic

Whereas propositional logic assumes world contains **facts**, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries . . .
- Relations: red, round, bogus, prime, multistoried ..., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- Functions: father of, best friend, third inning of, one more than, end of ...

FOL: objects with relations between them that hold or do not hold

Syntax of FOL: Basic Elements

```
\begin{array}{lll} {\sf Constants} & KingJohn,\ 2,\ UCB,\dots\\ {\sf Predicates} & Brother,\ >,\dots\\ {\sf Functions} & Sqrt,\ LeftLegOf,\dots\\ {\sf Variables} & x,\ y,\ a,\ b,\dots\\ {\sf Connectives} & \land\ \lor\ \neg\ \Rightarrow\ \Leftrightarrow\\ {\sf Equality} & = \\ {\sf Quantifiers} & \forall\ \exists \end{array}
```

Atomic Sentences

```
\begin{aligned} \mathsf{Term} &= function(term_1, \dots, term_n) \\ &\quad \mathsf{or} \ constant \ \mathsf{or} \ variable \end{aligned} \begin{aligned} \mathsf{E.g.,} \ Brother(KingJohn, RichardTheLionheart) \\ &\quad > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn))) \end{aligned}
```

Atomic sentence = $predicate(term_1, ..., term_n)$

or $term_1 = term_2$

Complex Sentences

Complex sentences are made from atomic sentences using connectives

$$\neg S$$
, $S_1 \wedge S_2$, $S_1 \vee S_2$, $S_1 \Rightarrow S_2$, $S_1 \Leftrightarrow S_2$

E.g. $Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)$ $>(1,2) \lor <(1,2)$ $>(1,2) \land \neg >(1,2)$

Quantifiers

Universal quantification

$$\forall$$
 < variables > < sentence >

E.g. Everyone at Sogang is smart: $\forall x At(x, Sogang) \Rightarrow Smart(x)$

- Existential quantification
 - \exists < variables > < sentence >
 - E.g. Someone at Sogang is smart: $\exists x At(x, Sogang) \land Smart(x)$

Truth in First-order Logic

- Sentences are true with respect to a model
- Model contains objects (called domain elements) and an interpretation of symbols
- Interpretation specifies referents for
 - constant symbol → object in domain D
 - ullet predicate symbol o relation
 - ullet function symbol o functional relation
- Each predicate symbol of arity k is mapped to a relation $\{< object_1, \cdots, object_k > \}$, a set of k-tuples over D^k which are true or, equivalently, a function from D^k to $\{true, false\}$
- Each <u>function symbol</u> of arity k is mapped to a function from D^k to D+1 (domain + an invisible object) P^k to the state of the state

Truth in First-order Logic

An atomic sentence $predicate(term_1, \dots, term_n)$ is true iff the objects referred to by $term_1, \dots, term_n$ are in the relation referred to by predicate

- term₁ = term₂ is true under a given interpretation if and only if term₁
 and term₂ refer to the same object
- The semantics of sentences formed with logical connectives is identical to that in PL

Models for FOL: Example

Models for FOL: Example

- The intended interpretation
 - Constant Richard → Richard the Lionheart
 - Constant John → King John
 - Predicate Brother → the brotherhood relation {< Richard the Lionheart, King John >,
 King John, Richard the Lionheart >}
 - Predicates OnHead, Person, King, Crown, · · ·
 - Function LeftLeg
 - < Richard the Lionheart $>\rightarrow$ Richard's left leg
 - < King John $> \rightarrow$ John's left leg
- Another interpretation
 - Constant $Richard \rightarrow the crown$
 - ullet Constant John
 ightarrow King John's left leg
 - Predicate Brother →
 {< Richard the Lionheart, the crown >}
 - ...

Models for FOL

- Entailment can be defined
- We can enumerate the models for a given KB vocabulary:

```
For each number of domain elements n from 1 to \infty

For each k-ary predicate P_k in the vocabulary

For each possible k-ary relation on n objects

For each constant symbol C in the vocabulary

For each choice of referent for C from n objects . . . .
```

- Computing entailment by enumerating the models will not be easy!!
 - The number of possible models may be unbounded or very large

Quantifiers

 Allows us to express properties of collections of objects instead of enumerating objects by name

Universal: "for all" ∀

Existential: "there exists" ∃

Universal Quantification

```
\forall \langle variables \rangle \langle sentence \rangle
```

Everyone at Berkeley is smart:

```
\forall x \ At(x, Berkeley) \Rightarrow Smart(x)
```

 $\forall x \ P$ is true in a model m iff P is true with x being **each** possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

```
 \begin{array}{l} (At(KingJohn, Berkeley) \Rightarrow Smart(KingJohn)) \\ \wedge \ (At(Richard, Berkeley) \Rightarrow Smart(Richard)) \\ \wedge \ (At(Berkeley, Berkeley) \Rightarrow Smart(Berkeley)) \\ \wedge \ \dots \end{array}
```

A Common Mistake to Avoid

Typically, \Rightarrow is the main connective with \forall

Common mistake: using \land as the main connective with \forall :

$$\forall \, x \;\; At(x, Berkeley) \land Smart(x)$$

means "Everyone is at Berkeley and everyone is smart"

Existential Quantification

```
\exists \langle variables \rangle \langle sentence \rangle
```

Someone at Stanford is smart:

```
\exists x \ At(x, Stanford) \land Smart(x)
```

 $\exists x \ P$ is true in a model m iff P is true with x being some possible object in the model

 ${f Roughly}$ speaking, equivalent to the disjunction of instantiations of P

```
(At(KingJohn, Stanford) \land Smart(KingJohn)) \lor (At(Richard, Stanford) \land Smart(Richard)) \lor (At(Stanford, Stanford) \land Smart(Stanford)) \lor \dots
```

Another Common Mistake to Avoid

Typically, \wedge is the main connective with \exists

Common mistake: using \Rightarrow as the main connective with \exists :

$$\exists \, x \; \, At(x, Stanford) \, \Rightarrow \, Smart(x)$$

is true if there is anyone who is not at Stanford!

Properties of Quantifiers

$$\forall x \ \forall y$$
 is the same as $\forall y \ \forall x$ (why??) $\exists x \ \exists y$ is the same as $\exists y \ \exists x$ (why??) $\exists x \ \exists x \ \forall y$ is **not** the same as $\forall y \ \exists x$ $\exists x \ \forall y \ Loves(x,y)$ "There is a person who loves everyone in the world" $\forall y \ \exists x \ Loves(x,y)$ "Everyone in the world is loved by at least one person" Quantifier duality: each can be expressed using the other $\forall x \ Likes(x,IceCream)$ $\neg \exists x \ \neg Likes(x,IceCream)$ $\exists x \ Likes(x,Broccoli)$

Using FOL

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

 $\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)).$

A first cousin is a child of a parent's sibling

 $\forall x,y \; FirstCousin(x,y) \Leftrightarrow \exists p,ps \; Parent(p,x) \land Sibling(ps,p) \land Parent(ps,y)$

Example Knowledge for Wumpus World

• Use list term to represent the square objects (or Square(x, y)) instead of naming each square

$$\forall x, y, a, b \; Adjacent([x, y], [a, b]) \Leftrightarrow$$
$$(x = a \land (y = b - 1 \lor y = b + 1)) \lor (y = b \land (x = a - 1 \lor x = a + 1))$$

- Constant Wumpus
- Function Home(Wumpus) to name the one square with wumpus
- Unary predicate Pit(), Breezy(), Smelly()

Example Knowledge for Wumpus World

- Squares are breezy near a pit:
 - Diagnostic rule: infer cause from effect

$$\forall s \; Breezy(s) \Rightarrow \exists r \; Adjacent(r,s) \land Pit(r)$$

Causal rule: infer effect from cause

$$\forall r, s \ \textit{Pit}(r) \land \textit{Adjacent}(r, s) \Rightarrow \textit{Breezy}(s)$$

 Neither of these is complete – e.g. the causal rule doesn't say whether squares far away from pits can be breezy; Definition for the Breezy predicate:

$$\forall s \; Breezy(s) \Leftrightarrow \exists r \; Adjacent(r,s) \land Pit(r)$$

Example Knowledge for Wumpus World

- Typical percept sentence:
 Percept([Stench, Breeze, Glitter, None, None], 5)
- Actions: Turn(Right), Turn(Left), Forward, Shoot, Grab
- Perception: $\forall b, g, t, m, c \ Percept([Stench, b, g, m, c], t) \Rightarrow Stench(t) \ \forall s, b, t, m, c \ Percept([s, b, Glitter, m, c], t) \Rightarrow Glitter(t)$
- Properties of locations: $\forall s, t \ At(Agent, s, t) \land Stench(t) \Rightarrow Smelly(s)$
 - $\forall s, t \ At(Agent, s, t) \land Breeze(t) \Rightarrow Breezy(s)$
- Reflex behavior: $\forall t \; Glitter(t) \Rightarrow BestAction(Grab, t)$

Knowledge Engineering in FOL

- Identify the task (what will the KB be used for)
- Assemble the relevant knowledge
 - Knowledge acquisition
- Decide on a vocabulary of predicates, functions, and constants
 - Translate domain-level knowledge into logic-level names (ontology)
- Incode general knowledge about the domain
 - Define axioms
- Encode a description of the specific problem instance
- Open Pose queries to the inference procedure and get answers
- Debug the knowledge base

One-bit full adder

Identify the task

Does the circuit actually add properly? (circuit verification)

2. Assemble the relevant knowledge

- Composed of wires and gates;
- Types of gates (AND, OR, XOR, NOT)
- Connections between terminals
- Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary

- Constants: X1, X2, ..., AND, OR, ..., 1, 0
- Functions: Type(X1), In(2,X1), Out(1,X1), Signal(Out(1,X1))
- Alternatives:
 Type(X₁) = XOR (encode that a gate can have one type)
 Type(X₁, XOR)
 XOR(X₁)
- Predicates: Connected(Out(1,X1), In(2,X2))

```
Encode general knowledge of the domain
           \forall t_1, t_2 \; Connected(t_1, t_2) \Rightarrow Signal(t_1) = Signal(t_2)
                    Signal(t) = 1 \lor Signal(t) = 0
           \forall t_1, t_2 \; Connected(t_1, t_2) \Rightarrow Connected(t_2, t_1)
           \forall q \text{ Type}(q) = OR \Rightarrow [Signal(Out(1,q)) = 1 \Leftrightarrow \exists n \text{ Signal}(In(n,q)) = 1]
           \forall g \text{ Type}(g) = AND \Rightarrow [Signal(Out(1,g)) = 0 \Leftrightarrow \exists n \text{ Signal}(In(n,g)) = 0]
                                                                                                       01 35 50
           \forall g \text{ Type}(g) = XOR \Rightarrow [Signal(Out(1,g)) \neq 1] \Leftrightarrow Signal(In(1,g)) \neq 1
           Signal(In(2,g))]
                                                                                                      21012
           \forall q \text{ Type}(q) = \text{NOT} \Rightarrow \text{Signal}(\text{Out}(1,q)) \neq \text{Signal}(\text{In}(1,q))
                                                                                                      1+02
                                                                                                       Enzyol MEL
5. Encode the specific problem instance
    Type(X_1) = XOR
                                     Type(X_2) = XOR
    Type(A_1) = AND
                                     Type(A_2) = AND
    Type(O_1) = OR
    Connected(Out(1,X_1),In(1,X_2))
                                              Connected(In(1,C_1),In(1,X_1))
    Connected(Out(1,X_1),In(2,A_2))
                                              Connected(In(1,C_1),In(1,A_1))
    Connected(Out(1,A_2),In(1,O_1))
                                              Connected(In(2,C_1),In(2,X_1))
    Connected(Out(1,A_1),In(2,O_1))
                                              Connected(In(2,C_1),In(2,A_1))
    Connected(Out(1,X_2),Out(1,C_1))
                                              Connected(In(3,C_1),In(2,X_2))
    Connected(Out(1,O<sub>1</sub>),Out(2,C<sub>1</sub>)) Connected(In(3,C<sub>1</sub>),In(1,A<sub>2</sub>))
```

6. Pose queries to the inference procedure

What are the possible sets of values of all the terminals for the adder circuit?

$$\begin{array}{l} \exists \ i_1,i_2,i_3,o_1,o_2 \ \ Signal(In(1,C_1)) = i_1 \land Signal(In(2,C_1)) = i_2 \land Signal(In(3,C_1)) = i_3 \land Signal(Out(1,C_1)) = o_1 \land \\ Signal(Out(2,C_1)) = o_2 \end{array}$$

 Debug the knowledge base May have omitted assertions like 1 ≠ 0

Summary

- First-order logic:
 - Objects and relations are semantic primitives
 - Syntax: constants, functions, predicates, equality, quantifiers
- Increased expressive power: sufficient to define wumpus world