2 20270	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Tipo de Prova Exame Época Normal Ano letivo 2019/2020		Data 31-01-2020
P.PORTO		^{Curso} Licenciaturas em Engenharia Informática Informática em Redes de Computadores	Hora 14h30	
		Unidade Curricular Sistemas Operativos	Duração 02h10	

Observações

- Com consulta de documentação própria.
- O tempo previsto para responder a cada questão é apresentado entre parêntesis retos.
- A cotação atribuída a cada pergunta é apresentada entre parêntesis curvos.

PARTE I (Teórica) [70 min]

Questão 1 [10 min] [2.0 valores]

Para cada uma das seguintes afirmações deverá indicar se as considera verdadeiras ou falsas. Caso considere alguma afirmação como falsa deverá rescreve-la, transformando-a numa afirmação verdadeira. À simples negação não será atribuída nenhuma cotação.

- a) Sistemas paralelos são exemplos de sistemas mono-programados [0.5 valores];
- b) Embora consumam mais recursos físicos, as soluções de hardware são as mais adequadas em termos de portabilidade entre sistemas para tratar de situações de competição [0.5 valores];
- c) Problemas de míngua e impasse ficam completamente resolvidos quando são utilizados semáforos [0.5 valores]:
- d) Na comunicação direta entre dois processos, independentemente do tipo de endereçamento escolhido, o emissor da mensagem tem sempre que indicar o recetor da mensagem [0.5 valores];

Questão 2 [10 min] [2.0 valores]

"A estratégia de prevenção para lidar com situações de impasse é mais eficiente em termos de utilização de recursos do que a estratégia de evitar."

Comente a afirmação, indicando também se **concorda ou não** com a mesma. Fundamente a sua resposta com um exemplo concreto.

Questão 3 [10 min] [2.0 valores]

Assuma um sistema com **8KBytes** de memória virtual por **paging** com páginas de **512Bytes**. Indique, recorrendo à técnica MMU e à tabela seguinte:

a) a que endereço físico corresponde o endereço virtual **2990**; [1.0 valores]

b) a que endereço virtual corresponde o endereço físico **290**; [1.0 valores]

110	1
011	0
010	1
000	1
100	0
001	1

Questão 4 [10 min] [2.0 valores]

Considere que um sistema operativo, num dado instante de tempo, dispõe da seguinte lista de partições de memória:

[p1|70K] - [h|56K] - [p3|45K] - [h|120K] - [p2|51K] - [h|82K]

ESTG-PR05-Mod013V2 Página 1 de4

P.PORTO	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Tipo de Prova Exame Época Normal	Data 31-01-2020
		^{Curso} Licenciaturas em Engenharia Informática Informática em Redes de Computadores	Hora 14h30
		Unidade Curricular Sistemas Operativos	Duração 02h10

Apresente a lista resultante da aplicação do **worst-fit** para cada um dos seguintes eventos (nota: espaços livres contíquos devem estar juntos):

- 1. Novo processo (P4) com 100K de tamanho;
- 2. Novo processo (P5) com 10K de tamanho;
- 3. Término dos processos (P1 e P3) e libertação dos recursos associados;
- 4. Novo processo (P6) com 154K de tamanho:
- 5. Novo processo (P7) com 20K de tamanho;
- 6. Término (P2 e P5) e libertação dos recursos associados;
- 7. Novo processo (P8) com 151K de tamanho;

Questão 5 [10 min] [2.0 valores]

Considere o seguinte conjunto de processos. Assuma o instante de chegada e duração de cada processo aqueles indicados na tabela sequinte:

Processo	Instante de chegada	Duração		
P1	0.1	0.5		
P2	0.3	0.7		
P3	0.7	0.9		
P4	0.9	0.4		
P5	1.2	0.3		

Calcule o tempo médio de turnaround, considerando que o algoritmo de escalonamento é o **RR** (Round-Robin, com quantum de 0.5). Fundamente a sua resposta com todos os cálculos que sentir necessidade de efetuar.

Questão 6 [10 min] [2.0 valores]

Assuma um sistema com os tipos de recursos (A, B, ...), processos (P1, P2, ...) e caracterização como apresentada nas tabelas sequintes:

Alocado				Necessidades máximas				Disponibilidade								
	А	В	С	D	Е		А	В	С	D	Е	А	В	С	D	Е
P1	1	0	1	1	0	P1	1	0	1	2	2	2	1	0	1	2
P2	0	0	0	0	0	P2	0	3	2	1	0					
P3	1	0	1	1	0	РЗ	1	2	1	2	1					
P4	0	1	0	1	1	P4	2	1	1	2	1					
P5	1	1	0	0	1	P5	5	1	1	0	2					

Aplique o algoritmo do banqueiro, de forma a garantir uma sequência de execução que mantenha o sistema num estado seguro. Justifique a sua resposta com todos os cálculos que sentir necessidade de efetuar.

ESTG-PR05-Mod013V2 Página $2 \, \mathrm{de} 4$

220250	ESCOLA	Tipo de Prova Exame Época Normal	Ano letivo 2019/2020	Data 31-01-2020
P.PORTO	E GESTÃO	DE TECNOLOGIA CUI SU	ı / Segurança	Hora 14h30
		Unidade Curricular Sistemas Operativos		Duração 02h10

PARTE II (Prática) [60 min]

Questão 7 [30 min] [4.0 valores]

Considere o seguinte excerto de código:

```
1 class Tempo {
 2
     static void sleep(long millis){
 3
       try { Thread.sleep(millis); } catch ( InterruptedException ie ) {}
 4
 5 }
 6
 7 public class EpocaNormal implements Runnable {
     Sinal s;
 9
     int i;
10
11
     public EpocaNormal(Sinal s, inti){
12
       this.s = s;
13
       this.i = i;
14
     }
15
     public void run() {
16
17
       int i = 0;
18
19
       do {
20
         s.doWait();
21
         s.setNumber(s.getNumber()+1);
22
       } while ( i++ < this.i );
23
24
       Tempo.sleep(100);
25
       System.out.println(Thread.currentThread().getName() + ": " + s.getNumber());
26
27
       s.doRun();
28
     }
29
30
     public static void main(String args[]) {
31
       final Sinal s = new Sinal();
32
33
       for (int i = 0; i < 5; i++) {
34
         (new Thread(new EpocaNormal(s,i), "Th" +i)).start();
35
36
37
       Tempo.sleep(100);
38
       s.doRun();
39
40
       System.out.println("Todas as threads terminaram");
41
     }
42 }
43
44
```

ESTG-PR05-Mod013V2 Página 3 de4

			Ano letivo 2019/2020	Data
2 20270	ESCOLA	Exame Época Normal	31-01-2020	
P.PORTO	SUPERIOR DE TECNOLOGIA		11	
	E GESTÃO	Licenciaturas em Engenharia Informática	Hora 14h30	
		Informática em Redes de Computadores	141150	
		Unidade Curricular	Duração	
		Sistemas Operativos	02h10	

```
45 class Sinal {
46
     private int number = 0;
47
48
     protected synchronized void doRun() {
49
       this.notifyAll();
50
51
52
     protected synchronized void doWait() {
53
       try { this.wait(); } catch ( InterruptedException ie) {}
54
55
56
     protected void setNumber(int number) {
57
       this.number = number;
58
59
     protected int getNumber() {
60
61
       return this.number;
62
     }
63 }
```

- a) [5 min] Qual será o resultado esperado da sua execução? [1.0 valores]
- b) [5 min] Existe a possibilidade de surgir outro resultado diferente daquele que indicou na alínea anterior? Justifique a sua resposta. [1.0 valores]
- c) [15 min] Mantendo a estrutura base e **recorrendo a semáforos**, altere o código apresentado de forma a: 1) eliminar possíveis *race conditions*; 2) garantir que a linha 40 só é executada quando todos os (chilld) threads já terminaram. [2.0 valores]

Questão 8 [30 min] [4.0 valores]

Escreva três classes, **Printer** e **Desktop**, que partilham um **Job** para leitura e escrita de trabalhos de impressão entre elas (Desktop <u>regista/escreve</u> trabalho de impressão em Job, enquanto Printer <u>lê</u> trabalho de impressão de Job). Job pode conter até 5 trabalhos de impressão. Um trabalho de impressão é uma string (qualquer). **Em cada instante estão em execução uma Printer (i.e., um thread Printer) e vários Desktops (i.e., vários threads Desktop)**. Pretende-se que o seguinte funcionamento seja implementado (em ciclo):

- Printer está adormecida, sendo acordada quando um Desktop regista um pedido (i.e., escreve um trabalho de impressão em Job);
- quando acordada, Printer imprime o trabalho, ou seja, imprime a string (pode ser um número, para facilitar a implementação), e volta a adormecer se não houver mais pedidos;
- Printer atende os pedidos de impressão por ordem de chegada (o mais antigo primeiro e o mais recente em último);
- apenas um Desktop de cada vez pode fazer registar um trabalho de impressão em Job num determinado momento;
- um Desktop só regista o seu trabalho de impressão se houver menos de 5 trabalhos por imprimir registados até ao momento;

Nota: o código deve garantir a não existência de situações de competição (race conditions).

ESTG-PR05-Mod013V2 Página 4 de4