

Big Data File Formats

> VegasPy 11/14/2023

https://github.com/kishstats/big-data-file-formats

Why Big Data File Formats?

- Benefits
 - ↓Storage
 - ↓Costs
 - ↑ Better Performance
 - Analyze faster
 - Train models faster

Query performance is a function of how the data is stored.

Train Model

The Parquet Format and Performance Optimization Opportunities

CSV Files

- Benefits
 - Simplicity
 - Human readable
 - Mutable
 - Compact
 - Headers only written once
- Drawbacks
 - Does NOT support complex data structures
 - No universal method
 - No schema
 - Data types must be inferred

JSON Files

Benefits

- Hierarchical structures
- Supports Arrays/Objects
- Human readable
- De-facto standard for REST API's
- Similar structure to many NoSQL DB's

Drawbacks

- NOT compact
 - Repeated keys --> more memory
- No Support for Streaming/Splitting
 - Fully received, then parsed
- No Schema enforcement

Parquet

- Columnar Storage
 - Column Subsets (Column Pruning)
- Compression
- Metadata
 - Schema
 - File Footer
- Use cases
 - WORM (<u>W</u>rite <u>Once Read Many</u>)
- Predicate Pushdown
 - Filtering
- Platforms
 - Spark
- *Does NOT natively support ACID transactions

```
df = pd.read_parquet(
   '/file',
   columns=['ticker', 'company_name', 'closing_price'])
```

Column Subsets Example

*Delta Lake, an open-source storage layer supports ACID transactions and uses Parquet as its file format.

Row vs Columnar Format

- Columnar Format
 - Storing data column by column
 - Read optimized
- Row Format
 - Storing data row by row
 - Write optimized for transactions
 - Streaming
 - Similar to traditional DB

- Online Analytical Processing
- Queries for subsets of columns
- OLTP
 - Online Transaction Processing
 - Executing transactions for entire rows

Parquet

- Predicate Pushdown filtering
 - Row subsets
 - Similar to WHERE clause
 - Reduces the amount of data read from the file
 - Recommended:
 - Sort data before writing to file

```
df = pd.read_parquet(
  'path/to/file',
 filters=[[('sector', '=', 'Information Technology')]])
```


Parquet Example Case

Use case: find the <u>average</u> market cap of all <u>NASDAQ</u> stocks from the 'stocks' table.

Ticker	Name	Price	Change	Change Pct	Market Cap	P/E	Exchange
AAPL	Apple Inc	\$186.40	4.23	2.32%	\$2,899 B	30.39	NASDAQ
OLO	Olo Inc	\$4.72	0.22	5.01%	\$1 B	-	NYSE
LULU	Lululemon Athletica Inc	\$413.67	7.09	1.74%	\$52 B	52.39	NASDAQ
BLZE	Backblaze Inc	\$5.75	0.18	3.23%	\$215 M	-	NASDAQ
BROS	Dutch Bros Inc	\$27.53	0.43	1.59%	\$5 B	709.72	NYSE

Column Pruning:

- system only needs to read the "exchange" and "market_cap" columns
 - not the entire dataset

Predicate Pushdown:

- (exchange = 'NASDAQ')
- skip over all the rows where the "exchange" is not "NASDAQ"

Parquet

- Splitting into Multiple Files
- Root directory
 - Contains a collection of files
 - Can also contain subdirectories
- Partitioning
 - Parquet (Part) Files
 - Metadata Files
 - metadata
 - quickly understand the structure and statistics of the data without scanning all the files (Spark)
 - SUCCESS
 - successful completion of the write operation
 - Partition Directories
 - directory structure that reflects the partitioning scheme
 - i.e. partition by a column named 'date'

```
/path/to/output/folder/
   part-00000-uuid.c000.snappy.parquet
   part-00001-uuid.c000.snappy.parquet
   SUCCESS
   _common_metadata (optional)
   _metadata
   .part-00000-uuid.c000.snappy.parquet.crc (optional)
   /date=2021-01-01/
       part-00000-uuid.c000.snappy.parquet
   /date=2021-01-02/
       part-00000-uuid.c000.snappy.parquet
```


Parquet Partitioning

```
df.write.partitionBy("date").parquet(...)
./example_parquet_file/date=2019-10-15/...
./example parquet file/date=2019-10-16/...
./example parquet file/date=2019-10-17/part-00000-...-475b15e2874d.c000.snappy.parquet
```

Spark dataframe partitioning by date column

useful if you know ahead of time what your predicates will be

Parquet File Structure

- Row-groups
- Column chunks
- Pages
 - Metadata
 - Min
 - Max
 - Count
 - Rep/def levels
 - **Encoded values**

See "The Parquet Format and Performance Optimization Opportunities" video

Parquet File Encoding

- PLAIN
- RLE_DICTIONARY
- Others
 - https://parquet.apache.org/docs/file-format/data-pages/encodings/

See "The Parquet Format and Performance Optimization Opportunities" video

Parquet File Compression

- Things to consider:
 - Trade-offs between storage space, I/O bandwidth, and CPU usage
- **Compression Formats**
 - Snappy
 - Most common
 - Generally the default
 - Good balance between compression ratio and speed
 - GZip
 - better compression ratios at the expense of speed and CPU
 - LZO
 - Others
 - Can have 'None'
- Some codecs may require additional dependencies to be installed
- **Parquet compression definitions**

Using Parquet with Python

Pandas

- data structures and data analysis tools
- 'read parquet' method
- `to parquet` dataframe method

pyarrow

- Read metadata
- Properties to inspect schema and metadata
- Create Parquet files

pyspark

- Python for Apache Spark
- Big data and analytics processing

"A cross-language development platform for in-memory analytics"

Apache ORC

- Optimized Row Columnar (ORC)
- Steaming Writes
- ACID Transactions
- Platforms
 - Apache Hive
 - Hadoop

Apache ORC vs Parquet

- Many Similarities
- Apache ORC better for:
 - Write-heavy workloads
 - ACID transactions
- Parquet better for:
 - Read-heavy workloads
 - Queries for aggregate data
 - Community support
- Platform Choice
 - Spark vs Hive

Using Apache ORC with Python

Pandas

- data structures and data analysis tools
- 'read orc' method
- `to orc` dataframe method

pyarrow

- Read metadata
- Properties to inspect schema and metadata
- Create ORC files

"A cross-language development platform for in-memory analytics"

- Row-oriented
- Schema based
 - dynamic schema evolution
 - written in JSON
- Serialization
 - JSON (metadata)
 - Binary (data)
- Splitting
 - Data into subsets
 - Parallel Processing
- Steaming
- Platforms
 - Kafka

Using Avro with Python

- fastavro
 - Better performance for CPython
- avro
 - Officially supported module
- Pandas (with pandavro)
 - pandavro is an interface between AVRO and Pandas
 - `read_avro` pandavro method
 - `to_avro` pandavro method

fastavro Example

```
from fastavro import reader, writer, parse_schema
# Reading an Avro file
with open('path/to/file.avro', 'rb') as f:
    avro_reader = reader(f)
    for record in avro_reader:
        print(record)
# Writing to an Avro file
schema = {...} # Define your Avro schema here
parsed_schema = parse_schema(schema)
records = [...] # Your data records
with open('path/to/output.avro', 'wb') as f:
    writer(f, parsed_schema, records)
```


References

- Parquet
 - The Parquet Format and Performance Optimization Opportunities Boudewijn **Braams (Databricks)**

- Netflix Dataset Performance Test
- Parquet Performance Tests (using Netflix Dataset)
- Why Parquet vs. ORC: An In-depth Comparison of File Formats

