Privacy PreservingPublication

Attack and Prevention Models

C21803 Spring 2019

Akash Yadav

Visiting Assistant Professor Dept. Of CSE, MNNIT Allahabad

• • • Material from the following papers

 Achieving k-Anonymity Privacy Protection Using Generalization and Suppression –
 P. Samarati and L. Sweeney, 1998

 L-Diversity: Privacy beyond K-Anonymity – Ashwin Machanavajjhala et al., 2006 - (Main Paper for this talk)

Outline

- Defining Privacy
- Need for Privacy
- Source of Problem
- K-anonymity
 - Ways of achieving kanonymity
 - Generalization
 - Suppression
 - K-minimalGeneralizations

- L-diversity
 - K-anonymity attack
 - Primary reasons
 - Model and Notation
 - Bayes Optimal Privacy
 - L-diversity Principle
 - Various Flavours
 - Implementation
 - Experiments

• Defining Privacy

- Privacy here means the *logical security* of data
- NOT the traditional security of data e.g. access control, theft, hacking etc.
- Here, adversary uses legitimate methods
- Various databases are published e.g. Census data, Hospital records
 - Allows researchers to effectively study the correlation between various attributes

• Need for Privacy

- Suppose a hospital has some person-specific patient data which it wants to publish
- It wants to publish such that:
 - Information remains practically useful
 - Identity of an individual cannot be determined
- Adversary might *infer* the secret/sensitive data from the published database

• • Need for Privacy

- The data contains:
 - Attribute values which can uniquely identify an individual { zip-code, nationality, age } or/and {name} or/and {SSN}
 - sensitive information corresponding to individuals medical condition, salary, location }

	Noi	n-Sensit	tive Data	Sensitive Data		
#	Zip	Age Nationality		Name	Condition	
1	13053	28	Indian	Kumar	Heart Disease	
2	13067	29	American	Bob	Heart Disease	
3	13053	35	Canadian	Ivan	Viral Infection	
4	13067	36	lapanese	Umeko	Cancer	

• • Need for Privacy

Published Data

	Nor	n-Sensit	Sensitive Data	
#	Zip	Age	Nationality	Condition
1	13053	28	Indian	Heart Disease
2	13067	29	American	Heart Disease
3	13053	35	Canadian	Viral Infection
4	13067	36	Japanese	Cancer

Data leak!

#	Name	Zip	Age	Nationality
1	John	13053	28	American
2	Bob	13067	29	American
3	Chris	13053	23	American

Voter List

• • Source of Problem

- Even if we remove the direct uniquely identifying attributes
 - There are some fields that may still uniquely identify some individual!
 - The attacker can join them with other sources and identify individuals

	Non-Sensitive Data			Sensitive Data
#	Zip	Zip Age Nationality		Condition
			•••	

K-anonymity

- Proposed by Sweeney
- Change data in such a way that for each tuple in the resulting table there are atleast (k-1) other tuples with the same value for the quasiidentifier – K-anonymized table

#	Zip	Age	Nationality	Condition
1	130**	< 40	*	Heart Disease
2	130**	< 40	*	Heart Disease
3	130**	< 40	*	Viral Infection
4	130**	< 40	*	Cancer

4-anonymized

Techniques for anonymization

- Data Swapping
- Randomization
- Generalization
 - Replace the original value by a semantically consistent but less specific value
- Suppression
 - Data not released at all
 - Can be Cell-Level or (more commonly) Tuple-Level

Techniques for anonymization

#	Zip	Age	Nationality	Condition
1	130**	₹40	*	Heart Disease
2	130**	< 40	*	Heart Disease
3	130**	< 40	*	Viral Infection
4	130**	40	*	Cancer

Generalization

Suppression (cell-level)

Generalization Hierarchies

• Generalization Hierarchies: Data owner defines how values

can be generalized

• Table Generalization: A table generalization is created by generalizing all values in a column to a specific level of generalization

K-minimal Generalizations

- There are many k-anonymizations which one to pick?
 - Intuition: The one that does not generalize the data more than needed (decrease in utility of the published dataset!)
- K-minimal generalization: A k-anonymized table that is not a generalization of another kanonymized table

#	Zip	Age	Nat	ionality	Cond	dition
1	13053	< 40		*	Heart I	Disease
2	13053	< 40		*	Viral In	fection
3	13067	< 40		*	Heart I	Disease
4	13067	< 40	#	7in	Age	Nationa

2-minimal Generalizations

#	Zip	Age	Nationality	Condition
1	130**	< 30	American	Heart Disease
2	130**	< 30	American	Viral Infection
3	130**	3*	Asian	Heart Disease
4	130**	3*	Asian	Cancer

#	Zip	Age	Nationality	Condition
1	130**	< 40	*	Heart Disease
2	130**	< 40	*	Viral Infection
3	130**	< 40	*	Heart Disease
4	130**	< 40	*	Cancer

NOT a 2-minimal Generalization

K-minimal Generalizations

- Now, there are many k-minimal generalizations! which one is *preferred* then?
- No clear and "correct" answer. It can be
 - The one that creates min. distortion to data, where distortion

Number of attributes

 The one with min. supression i.e. which contains a greater number of tuples and so on

Complexity & Algorithms

- If we allow for generalization to a different level for each value of an attribute, the search space is exponential
- More often than not, the problem is NP-Hard!
- Many algorithms have been proposed
 - Incognito
 - Multi-dimensional algorithms (Mondrian)

K-Anonymity Drawbacks

• K-anonymity alone does not provide full privacy!

Suppose attacker knows the non-sensitive

attributes of

	Zip	Age	National
Bob	13053	31	American
Umeko →	13068	21	Japanese

 And the fact that Japanese have very low incidence of heart disease

K-Anonymity Attack

		Non-Sens			ve Data	Sensitive Data
		#	ZIP	Age	Nationality	Condition
Original I	⊃ata→	1	13053	28	Russian	Heart Disease
3 3		2	13068	29	American	Heart Disease
		3	13068	21	Japanese	Viral Infection
		4	13053	23	American	Viral Infection
		5	14853	50	Indian	Cancer
		6	14853	55	Russian	Heart Disease
		7	14850	47	American	Viral Infection
		8	14850	49	American	Viral Infection
		9	13053	31	American	Cancer
		10	13053	37	Indian	Cancer
		11	13068	36	lapanese	Cancer

4-anonymized Table

Sensitive Data

Cancer

*

		#	ZIP	Age	Nationality	Condition
I lan alaa		1	130**	< 30	*	Heart Disease
Umeko Matches		2	130**	< 30	*	Heart Disease
here		3	130**	< 30	*	Viral Infection
		4	130**	< 30	*	Viral Infection
		5	1485*	> = 40	*	Cancer
		6	1485*	> = 40	*	Heart Disease
		7	1485*	> = 40	*	Viral Infection
Bob Matches here		8	1485*	> = 40	*	Viral Infection
		9	130**	3*	*	Cancer
11616	1					

3*

Non-Sensitive Data

4-anonymized Table

Umeko Matches here

	٨	Ion-Sensitiv	Sensitive Data	
#	ZIP	Age	Nationality	Condition
1	130**	< 30	*	Heart Disease
2	130**	< 30	*	Heart Disease
3	130**	< 30	*	Viral Infection
4	130**	< 30	*	Viral Infection
5	1485*	> = 40	*	Cancer
6	1485*	> = 40	*	Heart Disease
7	1485*	> = 40	*	Viral Infection
8	Bob has Cancer!			Viral Infection
9				Cancer
10	130**	3*	*	Cancer

Bob Matches here

4-anonymized Table

Umeko Matches here

	٨	lon-Sensitiv	Sensitive Data	
#	ZIP	Age	Nationality	Condition
1	130**	~ 20	*	Heart Disease
2	130 [*] Um	eko has Vi	Heart Disease	
3	130**	< 30	*	Viral Infection
4	130**	< 30	*	Viral Infection
5	1485*	> = 40	*	Cancer
6	1485*	> = 40	*	Heart Disease
7	1485*	> = 40	*	Viral Infection
8	Во	b has Can	Viral Infection	
9	150		Cancer	
10	130**	3*	*	Cancer

Bob Matches here

• • K-Anonymity Drawbacks

- Basic Reasons for leak
 - Sensitive attributes lack diversity in values
 - Homogeneity Attack
 - Attacker has additional background knowledge
 - Background knowledge Attack

 Hence a new solution has been proposed inaddition to k-anonymity — I-diversity

• • L-diversity

- Proposed by Ashwin M. et al. SIGMOD 2006
- Model and notation:

$$T = \{t_1, t_2, ..., t_n\}$$
 $A_1, A_2, ..., A_m$

 Ω = population from which T has been taken

$$t[C] = (t[C_1, C_2, ..., C_p])$$
 where C is a set

S = set of Sensitive attrib ; QI = set of Quasi-identifiers T = A nonymized table

• • | Model and Notation

- As a sanity check to understand all the notation
 here is a simple definition of k-anonymity
- **Definition** (k-Anonymity) A table T satisfies k-anonymity if for every tuple $t \in T$ there exist k-1 other tuples $t_{i_1}, t_{i_2}, \ldots, t_{i_{k-1}} \in T$ such that $t[\mathcal{C}] = t_{i_1}[\mathcal{C}] = t_{i_2}[\mathcal{C}] = \cdots = t_{i_{k-1}}[\mathcal{C}]$ for all $\mathcal{C} \in \mathcal{QI}$.
- Consider only generalization techniques for kanonymity

Model and Notation

- Adversary's Background Knowledge
 - ullet Has access to published table T^* and knows that it is a generalization of some base table T
 - May also know that some individuals are present in the table. E.g. Alice may know Bob has gone to the hospital -> his records will be present
 - May also have partial knowledge about the distribution of sensitive and non-sensitive attribs. in the population

- Ideal Notion of privacy
- Models background knowledge as probability distribution over attributes
- Uses Bayesian Inference techniques
- Assume, T is a simple random sample and only a single sensitive attribute S and a condensed quasi-identifier attribute Q
- Assume worst case, adversary (Alice) knows the complete joint distribution f of Q and S

 Alice has a prior belief of (say) Bob's sensitive attribute (given his Q attributes) i.e.

$$\alpha_{(q,s)} = P_f \left(t[S] = s | t[Q] = q \right)$$

 After T* Alice's belief changes to its posterior value i.e.

$$\beta_{(q,s,T^{\star})} = P_f\left(t[S] = s \mid t[Q] = q \land \exists t^{\star} \in T^{\star}, \ t \xrightarrow{\star} t^{\star}\right)$$

 \circ Given f and T^* we can calculate the posterior

$$\beta_{(q,s,T^{\star})} = \frac{n_{(q^{\star},s)} \frac{f(s|q)}{f(s|q^{\star})}}{\sum_{s' \in S} n_{(q^{\star},s')} \frac{f(s'|q)}{f(s'|q^{\star})}}$$

The proof is involved. See extended paper for proof.

$$n_{(q^\star,s')}$$
 is the number of tuples in T^\star with the $t^\star[Q]=q^\star$ and $t^\star[S]=s'$

Definition (**Positive disclosure**) Publishing the table T^* that was derived from T results in a positive disclosure if the adversary can correctly identify the value of a sensitive attribute with high probability; i.e., given a $\delta > 0$, there is a positive disclosure if $\beta_{(q,s,T^*)} > 1 - \delta$ and there exists $t \in T$ such that t[Q] = q and t[S] = s.

Definition (Negative disclosure) Publishing the table T^* that was derived from T results in a negative disclosure if the adversary can correctly eliminate some possible values of the sensitive attribute (with high probability); i.e., given an $\epsilon > 0$, there is a negative disclosure if $\beta_{(q,s,T^*)} < \epsilon$ and there exists a $t \in T$ such that t[Q] = q but $t[S] \neq s$.

- Note not all p.d.s and n.d.s are bad
 - If Alice already knew Bob has Cancer, there is nothing much one can do!
- Hence, intuitively, there should not be a large difference in the prior and posterior
- Different privacy breach metrics
- Note that diversity and background knowledge are both captured in any definition!

- Limitations in practice
 - Data publisher unlikely to know f
 - Publisher does not know how much the adversary actually knows
 - He may have instance level knowledge
 - No way to model non-probabilistic knowledge
 - Multiple adversaries having different levels of knowledge
- Hence a practical definition is needed

• • L-diversity principle

- Consider p.d.s: Alice wants to determine Bob's sensitive attrib. with high probability
- Using posterior, can happen only when

$$\forall s' \neq s, \quad n_{(q^*,s')} \frac{f(s'|q)}{f(s'|q^*)} \ll n_{(q^*,s)} \frac{f(s|q)}{f(s|q^*)}$$

 Which in turn can occur due to both lack of diversity and/or background knowledge

• • L-diversity principle

Lack of diversity manifests as

$$\forall s' \neq s, \quad n_{(q^*,s')} \ll n_{(q^*,s)}$$

- This can guarded against by requiring "many" sensitive values are "well-represented" in a q* block (a generalization block)
- Background Knowledge

$$\exists s', \quad \frac{f(s'|q)}{f(s'|q^*)} \approx 0$$

L-diversity principle

- Note that Alice has to eliminate other sensitive values to get a p.d.
- But if I values are "well-represented", Alice intuitively needs at least I-1 damaging pieces of information!
- Hence, we get a practical principle:
- **Principle** (ℓ -Diversity Principle) $A q^*$ -block is ℓ -diverse if contains at least ℓ "well-represented" values for the sensitive attribute S. A table is ℓ -diverse if every q^* -block is ℓ -diverse.

3-diverse Table

	٨	Ion-Sensitiv	Sensitive Data	
#	ZIP	Age	Nationality	Condition
1	1305*	<= 40	*	Heart Disease
2	1305*	<= 40	*	Viral Infection
3	1305*	<= 40	*	Cancer
4	1305*	<= 40	*	Cancer
5	1485*	>= 40	*	Cancer
6	1485*	>= 40	*	Heart Disease
7	1485*	>= 40	*	Viral Infection
8	1485*	>= 40	*	Viral Infection
9	1306*	<= 40	*	Heart Disease
10	1306*	<= 40	*	Viral Infection
11	1306*	<= 40	*	Cancer

Some L-diversity Instantiations

Entropy L-Diversity

$$-\sum_{s \in S} p_{(q^*,s)} \log(p_{(q^*,s')}) \ge \log(\ell)$$

where
$$p_{(q^*,s)} = \frac{n_{(q^*,s)}}{\sum\limits_{s' \in S} n_{(q^*,s')}}$$

Some L-diversity Instantiations

- Need the entropy of original table at least log(l)
 - Too restrictive
 - One value of sensitive attr. may be very common
- Recursive (c, I)-Diversity
 - None of the sensitive values should occur too frequently.
 - frequently. Let Γ_i be the i^{th} most frequent sensitive value
- Given const c, satisfies (c, I) diversity if

$$r_1 < c (r_l + r_{l+1} + ... + r_m)$$

Some L-diversity Instantiations

Positive Disclosure-Recursive (c, I)-Diversity

Let Y denote the set of sensitive values for which positive disclosure is allowed. In a given q^* -block, let the most frequent sensitive value not in Y be the y^{th} most frequent sensitive value. Let r_i denote the frequency of the i^{th} most frequent sensitive value in the q^* -block. Such a q^* -block satisfies pd-recursive (c, ℓ) -diversity if one of the following hold:

•
$$y \le \ell - 1$$
 and $r_y < c \sum_{j=\ell}^m r_j$

•
$$y > \ell - 1$$
 and $r_y < c \sum_{j=\ell-1}^{y-1} r_j + c \sum_{j=y+1}^{m} r_j$

Some L-diversity Instantiations

- Negative/Positive Disclosure-Recursive (c_1,c_2,l) Diversity
 - Consider n.d.s also
 - Let W be set of sensitive values for which n.d.s are not allowed
 - Requirement
 - Pd-recursive (c_1, l)
 - Every s in W occurs at least c_2 percent of tuples in every block

• Multiple Sensitive Attributes

- Recall we assumed a single sensitive attribute S
- What if there are 2 sensitive attrib S and V?
 - It may individually be I-diverse
 - But, as a whole, it may violate
 - V may not be well-represented for each value of S
 - Solution
 - Include S in the quasi-identifier set when checking for diversity in V
 - And vice versa! Easy to generalize

• • Implementation

- Most k-anonymization algos search the generalization space
 - Recall, in general it is NP-Hard
 - Can be made more efficient if the Monotonicity condition holds
 - If T^* preserves privacy, then so does every generalization of it
 - If I-diversity also possesses this property
 - We can re-use previous algos directly
 - Whenever we check for k-anon., check for l-diversity instead
 - Fortunately! All flavours except the Bayes Optimal Privacy is monotonic

• • Experiments

Adults

Used Incognito (a popular generalization algorithm)

Adults
Database
Description

	Attribute	Domain	Generalizations	Ht.
		size	type	
1	Age	74	ranges-5,10,20	4
2	Gender	2	Suppression	1
3	Race	5	Suppression	1
4	Marital Status	7	Taxonomy tree	2
5	Education	16	Taxonomy tree	3
6	Native Country	41	Taxonomy tree	2
7	Work Class	7	Taxonomy tree	2
8	Salary class	2	Sensitive att.	
9	Occupation	41	Sensitive att.	

• • Experiments

- Homogeneity Attack
 - Treat first 5 attributes as quasi-identifier,
 Occupation as sensitive attirb.
 - 12 minimal 6-anon. tables generated, one was vulnerable
 - If Salary is sensitive attrib, out of 9 minimal 6-anon., 8 were prone to attack
 - So, homogeneity attack prone k-anonymized datasets are routinely produced

Experiments

- Performance
 - Does I-diversity incur heavy overhead?
 - Comparing time to return 6-diverse Vs 6-anon. tables

• • Experiments

Utility

- Intuitively: "usefulness" of the I-diverse and kanonymized tables
 - No clear metric
 - Used 3 different metrics
 - No. of generalization steps that were performed
 - Average size of q*-blocks generated
 - Discernibility Metric Measures the no. of tuples indistinguishable from each other
- Used *k*, *l* = 2, 4, 6, 8

Experiments

Parameter Values for k,1

Experiments

Parameter Values for k,1

• • Thank You!

Any Questions?