

Cálculo II Ayudantía Nº7 - Pauta Primer Semestre 2017

1. Determine si las siguientes afirmaciones son verdaderas o falsas y justifique su respuesta:

a) El valor de
$$\int_0^{\pi} f(x) dx, \text{ para } f(x) = \begin{cases} \sin x & \text{si} \quad 0 \le x < \frac{\pi}{2} \\ & \text{es } 2\pi \end{cases}$$
 es 2π

$$\int_0^{\pi} f(x)dx = \int_0^{\frac{\pi}{2}} \sin(x)dx + \int_{\frac{\pi}{2}}^{\pi} \cos(x)dx$$
$$= -\cos(x)|_0^{\frac{\pi}{2}} + \sin(x)|_{\frac{\pi}{2}}^{\pi}$$
$$= -(0-1) + (0-1) = 0$$
$$0 \neq 2\pi$$

Por lo tanto la afirmación en FALSA.

b) El área limitada por las curvas $y=\frac{x}{\sqrt{2x^2+1}}; \ x=0; \ x=2; \ y=0$ es 1.

Debemos calcular la siguiente integral $\int_0^2 \frac{x}{\sqrt{2x^2+1}} dx$.

Para esto aplicamos la sustitución $u=2x^2+1$ y du=4xdx obteniendo lo siguiente:

$$\int_0^2 \frac{x}{\sqrt{2x^2 + 1}} dx = \frac{1}{4} \int_1^9 \frac{1}{\sqrt{u}} du$$
$$= \frac{2}{4} \sqrt{u} \Big|_1^9$$
$$= \frac{3}{2} - \frac{1}{2} = 1$$

Por lo tanto la afirmación en <u>VERDADERA</u>.

udp Instituto de Ciencias Básicas

FACULTAD DE INGENIERÍA

c) El valor de $c \in R$, tal que el área acotada por $y = x^2 + c; x = 0; x = 3; y = 0$ sea 12, es c = 1.

$$\int_0^3 (x^2 + 1)dx = \left(\frac{x^3}{3} + x\right)\Big|_0^3$$
= 9 + 3
= 12

Por lo tanto la afirmación en VERDADERA.

udp Instituto de Ciencias Básicas

FACULTAD DE INGENIERÍA

2. Grafique la región limitada por las curvas y calcule su área

$$y = \frac{1}{x}$$
; $y = \frac{1}{x^2}$; $x = 1$; $x = 2$

$$lackbox{1}{y} = rac{1}{x}$$
 $lackbox{1}{y} = rac{1}{x^2}$
 $lackbox{1}{x} = 1$
 $lackbox{1}{x} = 2$

$$\int_{1}^{2} \left(\frac{1}{x} - \frac{1}{x^{2}}\right) dx = \left(\ln(x) + \frac{1}{x}\right) \Big|_{1}^{2}$$

$$= \ln 2 + \frac{1}{2} - (\ln 1 + 1)$$

$$= \ln 2 - \frac{1}{2}$$

3. Grafique la región limitada por las curvas y calcule su área

$$y = e^x$$
 ; $y = e^{-x}$; $x = -2$; $x = 1$; $y = 0$

$$\int_{-2}^{0} e^{x} dx + \int_{0}^{1} e^{-x} dx = e^{x} \Big|_{-2}^{0} - e^{-x} \Big|_{0}^{1}$$
$$= 1 - e^{-2} - e^{-1} + 1$$
$$= 2 - e^{-2} - e^{-1}$$

FACULTAD DE INGENIERÍA

4. Calcule el área de la región limitada por la curva $y = x^4 - 2x^3 + x^2 + 3$, el eje X y las rectas x = a; x = b donde a y b son las abscisas de los puntos mínimos de la función.

Calculamos los mínimos de la función $y = x^4 - 2x^3 + x^2 + 3$:

$$y = x^{4} - 2x^{3} + x^{2} + 3$$
$$y' = 4x^{3} - 6x^{2} + 2x = 0$$
$$0 = 4x(x - 1)(x - \frac{1}{2})$$

Los candidatos máximo o mínimo son $0, \frac{1}{2}y1$.

$$f''(x) = 12x^{2} - 12x + 2$$

$$f''(0) = 12x^{2} - 12x + 2 = 2$$

$$f''(\frac{1}{2}) = 12x^{2} - 12x + 2 = -1$$

$$f''(1) = 12x^{2} - 12x + 2 = 2$$

Por lo tanto los mínimos ocurren cuando x = 0, 1, luego calculamos la región solicitada.

$$\int_0^1 (x^4 - 2x^3 + x^2 + 3) dx = \left(\frac{x^5}{5} - \frac{x^4}{2} + \frac{x^3}{3} + 3x\right)\Big|_0^1$$
$$= \frac{1}{5} - \frac{1}{2} + \frac{1}{3} + 3$$
$$= \frac{91}{30}$$

FACULTAD DE INGENIERÍA

5. Calcule el área de la región limitada por la parábola $y = x^2 - 2x + 2$, su tangente en el punto (3,5) y el eje Y.

Primero calculamos la pendiente que toma la recta en el punto (3,5) derivando la función $y=x^2-2x+2$.

$$f(x) = x^2 - 2x + 2$$

$$f'(x) = 2x - 2$$

$$f'(3) = 4$$

Formamos la recta con la pendiente obtenida y el punto (3,5).

$$(y - 5) = 4(x - 3)$$

$$y = 4x - 7$$

Como referencia graficamos las funciones:

$$y = x^2 - 2x + 2$$

Finalmente calculamos la integral

$$\int_0^3 ((x^2 - 2x + 2) - (4x - 7))dx = \int_0^3 (x^2 - 6x + 9)dx$$
$$= \left(\frac{x^3}{3} + \frac{6x^2}{2} + 9x\right)\Big|_0^3$$
$$= 9 - 27 + 27 = 9$$