Renewal theory

Renewal process

A renewal process $(N_t)_{t\geq 0}$ is a counting process for which the times $\tau_j\geq 0$ between successive events, called renewals, are independent and identically-distributed non-negative-real-valued random variables with an arbitrary common distribution function F.

- $\qquad \qquad \textbf{We assume } F(0) < 1.$
- A Poisson process is a renewal process where the τ_i have an exponential distribution.
- ► A renewal process that is not a Poisson process is not Markovian.

A picture of N_t

 $T_n = \sum_{i=1}^n \tau_i$ is time of nth jump.

Counting vs waiting representations

When we looked at the Poisson process, we saw that we could use a counting process description in terms of the number N_t of points in the interval [0,t] or a waiting time description in terms of the time T_n until the nth event. This carries over to the study of renewal processes. Specifically

- $ightharpoonup \{N_t < n\} = \{T_n > t\}$
- $T_{N_t} \leq t < T_{N_t+1}.$

Example

Light bulbs have a lifetime that has distribution function F. If a light bulb burns out, it is immediately replaced. Let N_t be the number of bulbs that have failed by time t. Then $(N_t)_{t\geq 0}$ is a renewal process.

N_t goes to ∞ as $t \to \infty$

For any fixed n,

$$\lim_{t\to\infty} \mathbb{P}(N_t \ge n) = \lim_{t\to\infty} \mathbb{P}(T_n \le t)$$
= 1.

This implies that with probability 1, $N_t \to \infty$ as $t \to \infty$.

Questions

- Can there be an explosion (that is an infinite number of renewals in a finite time)?
- \blacktriangleright What is the distribution of N_t ?
- ▶ What is the average renewal rate? That is, at which rate does $N_t \to \infty$?

Explosion?

For any fixed $t < \infty$, $\mathbb{P}(N_t = \infty) = 0$. To see this, write

$$\mathbb{P}(N_t = \infty) = \lim_{n \to \infty} \mathbb{P}(N_t \ge n) = \lim_{n \to \infty} \mathbb{P}(T_n \le t)$$

$$= \lim_{n \to \infty} \mathbb{P}(\sum_{i=1}^n \tau_i \le t)$$

$$= \lim_{n \to \infty} \mathbb{P}(e^{-\sum_{i=1}^n \tau_i} \ge e^{-t}).$$

Using Markov's inequality $(\mathbb{P}(X \ge a) \le \mathbb{E}[X]/a$ for $X \ge 0$ and a > 0) we have

$$\mathbb{P}(e^{-\sum_{i=1}^n \tau_i} \geq e^{-t}) \leq e^t \mathbb{E}[e^{-\sum_{i=1}^n \tau_i}] = e^t \left(\mathbb{E}[e^{-\tau_1}]\right)^n,$$

which goes to 0 as $n \to \infty$ since $\mathbb{E}[e^{-\tau_1}] < 1$ (why?)

8

Distribution of N_t

$$\mathbb{P}(N_{t} = n) = \mathbb{P}(T_{n} \leq t < T_{n+1})$$

$$= \mathbb{P}(T_{n} \leq t) - \mathbb{P}(T_{n} \leq t, T_{n+1} \leq t)$$

$$= \mathbb{P}(T_{n} \leq t) - \mathbb{P}(T_{n+1} \leq t)$$

$$= F_{T_{n}}(t) - F_{T_{n+1}}(t)$$

where F_{T_n} is the distribution function of T_n .

There are very few F for which this is easy to evaluate (can you name one?)

Distribution of N_t

Above, we saw that $T_{N_t} \leq t < T_{N_t+1}$. It follows that

$$\frac{\textit{N}_t}{\textit{N}_t+1} \cdot \frac{\textit{N}_t+1}{\textit{T}_{\textit{N}_t+1}} = \frac{\textit{N}_t}{\textit{T}_{\textit{N}_t+1}} < \frac{\textit{N}_t}{\textit{t}} \leq \frac{\textit{N}_t}{\textit{T}_{\textit{N}_t}}$$

Since $N_t \to \infty$ as $t \to \infty$, the Law of Large Numbers tells us that, with probability one, both the first and last terms approach μ^{-1} . Therefore, with probability one,

$$\lim_{t \to \infty} \frac{N_t}{t} = \mu^{-1},$$

and we see that, for large t, N_t grows like t/μ .

The LLN for N_t

Example

Jenny uses her smart phone a lot, so she carries a powerful portable charger with her. Whenever her phone gives her a low energy warning she immediately charges her phone for 30 minutes and that charge lasts for a U(30,60) (minutes, independent of previous charges) amount of time before she receives a warning. On average how many times per hour does Jenny charge her phone?

$$\mu = \mathbb{E}[\tau_1] = (45 + 30)/60$$
, so the rate is

$$\lim_{t\to\infty}\frac{N_t}{t}=\frac{1}{\mu}=\frac{60}{75}=\frac{4}{5} \text{ per hour}$$

M/G/1/1 queue

The arrival process is Poisson with parameter λ .

There is no "queue": when an arriving customer finds the server busy, s/he does not enter. Service times are independent and identically-distributed with distribution function G (with mean μ_G).

- ▶ What is the rate at which customers actually enter the system?
- What proportion of potential customers actually receive service?

M/G/1/1 queue

Let N_t be the number of customers who have been admitted by t. Then the times between successive entries of customers are made up of:

- a service time, and then
- a waiting time from the end of service until the next arrival.

M/G/1/1 queue

The mean time between renewals is $\mu = \frac{1}{\lambda} + \mu_G$. So the rate at which customers actually enter the system is

$$\frac{1}{\mu} = \frac{1}{\frac{1}{\lambda} + \mu_G} = \frac{\lambda}{1 + \lambda \mu_G}.$$

Customers arrive at rate λ , and so the *proportion* that actually enter the system is

$$\frac{\text{entry rate}}{\text{arrival rate}} = \frac{\frac{\lambda}{1 + \lambda \mu_{\textit{G}}}}{\lambda} = \frac{1}{1 + \lambda \mu_{\textit{G}}}.$$

If $\lambda=10$ per hour and $\mu_{\rm G}=0.2$ hours, then on average only 1 out of 3 customers will actually get served!

G/G/n/m queue

In the very general setting of the G/G/n/m queue, the beginnings of busy periods (i.e. times at which a customer arrives to find the system empty) constitute renewal times.

The time of the first "renewal" will typically have a different distribution though

The Renewal Central Limit Theorem

If
$$\mathbb{E}[au_j] = \mu$$
, $\mathsf{Var}(au_j) = \sigma^2 < \infty$, then

$$rac{N_t - rac{t}{\mu}}{\sqrt{t\sigma^2/\mu^3}} \stackrel{d}{ o} \mathcal{N}(0,1) ext{ as } t o \infty.$$

So for each x,

$$\lim_{t\to\infty}\mathbb{P}\left(\frac{N_t-\frac{t}{\mu}}{\sqrt{t\sigma^2/\mu^3}}\leq x\right)=\Phi(x),$$

where Φ is the standard normal cdf.

Residual lifetime

The residual lifetime R_t at time t is the amount of time until the next renewal time.

Since $T_{N_t} \le t < T_{N_t+1}$, the residual lifetime at time t is $R_t = T_{N_t+1} - t > 0$.

If τ_i are exponential(δ) then what is the distribution of R_t ?

Let F be the c.d.f. of τ_1 . We will study the large t behaviour of R_t assuming that F is non-lattice (that is, it does not concentrate its mass at multiples of a fixed amount), and has finite mean μ .

Residual lifetime for large t

Theorem: If F is non-lattice with finite mean μ and $x \ge 0$ then

$$\lim_{t\to\infty} \mathbb{P}(R_t \le x) = \frac{1}{\mu} \int_0^x (1 - F(y)) dy.$$

Recall that for $Z \geq 0$,

$$\mathbb{E}[Z] = \int_0^\infty (1 - F_Z(z)) dz,$$

so $\frac{1-F(y)}{\mu}$, $y \ge 0$, is a probability density function.

Example

A computer receives packets of information whose sizes are uniformly distributed between 1 and 5 GB. It saves them on hard drives of total size 700GB, until the a hard drive is full.

▶ For the first file for which there is not enough space on a hard drive, find the approximate distribution and the mean of the length of the residual part that the hard drive does not have space for.

▶ Give a (symmetric) interval to which, the total number of saved files belongs with probability ≈ 0.95 .

Example solution

Here, "time" is measured in GB! We are looking for the residual lifetime at time t=700, where t is considered to be large (compared to the size of a packet).

▶ The limiting distribution of the residual part has density

$$\frac{1}{\mu}(1 - F(x)) = \begin{cases} \frac{1}{3} & \text{if } x \in [0, 1) \\ \frac{5 - x}{12} & \text{if } x \in [1, 5]. \end{cases}$$

- ▶ The mean of the residual part is 31/18, which is greater than half of the mean interval length, which is 3/2.
- We have

$$rac{ extit{N}_t - rac{t}{\mu}}{\sqrt{rac{t}{\mu} imes rac{\sigma^2}{\mu^2}}} \overset{d}{pprox} \mathcal{N}(0,1).$$

With t = 700, $\mu = 3$, $\sigma^2 = 4/3$, the desired (symmetric) interval is $233.33 \pm 5.88 \times 1.96 = (221.81, 244.85)$.

Age

The age of the renewal process at time t is the time since the most recent renewal, i.e. $A_t = t - T_{N_t}$.

Theorem: If F is non-lattice with finite mean μ and $x \ge 0$ then

$$\lim_{t\to\infty} \mathbb{P}(A_t \le x) = \frac{1}{\mu} \int_0^x (1 - F(y)) dy.$$

Age - some intuition

- Consider the process after it has been in operation for a long time.
- ▶ When we look backwards in time, the times between successive renewals are still independent and identically-distributed with distribution *F*.
- ▶ Looking backwards, the residual lifetime at *t* is exactly the age at *t* of the original process.

Example

Suppose $(N_t)_{t\geq 0}$ is a Poisson process with rate λ , find the (approximate) distributions of R_t , A_t and (R_t, A_t) when t is large. What is the expected duration of the inter-event time $T_{N_t+1}-T_{N_t}$?

Renewal CLT - sketch proof

Recall that
$$T_n = \sum_{i=1}^n \tau_i$$
.
Let $Z = \frac{T_n - n\mu}{\sqrt{n\sigma^2}} \overset{d}{pprox} \mathcal{N}(0,1)$. Then
$$\mathbb{P}(N_t \geq n) = \mathbb{P}(T_n \leq t) \\ \approx \mathbb{P}\left(Z \leq \frac{t - n\mu}{\sqrt{n\sigma^2}}\right) \\ = \mathbb{P}\left(Z \geq \frac{n\mu - t}{\sqrt{n\sigma^2}}\right)$$
.

Renewal CLT - sketch proof

Now, we choose n=n(x,t) such that $\frac{n\mu-t}{\sqrt{n\sigma^2}}\approx x$. That is, we put $n(x,t)\approx \frac{t}{\mu}+x\sqrt{\frac{t}{\mu}\cdot\frac{\sigma^2}{\mu^2}}$.

Then, reversing the above argument, we have

$$\begin{split} \mathbb{P}\left(Z \geq x\right) &\approx \mathbb{P}(N_t \geq n(x,t)) \\ &\approx \mathbb{P}\left(\frac{N_t - \frac{t}{\mu}}{\sqrt{t\sigma^2/\mu^3}} \geq x\right). \end{split}$$

Residual lifetime for large *t* - sketch of proof

Consider a period of n renewals. The proportion of time that the residual lifetime is greater than x is, by the strong Law of Large Numbers,

$$\frac{\sum_{i=1}^{n} (\tau_i - x) \mathbb{1}_{\{\tau_i > x\}}}{\sum_{i=1}^{n} \tau_i} = \frac{\frac{1}{n} \sum_{i=1}^{n} (\tau_i - x) \mathbb{1}_{\{\tau_i > x\}}}{\frac{1}{n} \sum_{i=1}^{n} \tau_i}$$

$$\rightarrow \frac{\mathbb{E} \left[(\tau_1 - x) \mathbb{1}_{\{\tau_1 > x\}} \right]}{\mathbb{E} [\tau_1]}.$$

as n approaches infinity.

Residual lifetime for large *t* - sketch of proof

Under the stated conditions, it can also be shown that

$$\frac{\sum_{i=1}^{n} (\tau_{i} - x) \mathbb{1}_{\{\tau_{i} > x\}}}{\sum_{i=1}^{n} \tau_{i}} = \frac{\int_{0}^{T_{n}} \mathbb{1}_{\{R_{s} > x\}} ds}{T_{n}} \to \lim_{t \to \infty} \mathbb{P}(R_{t} > x).$$

Hence

$$\lim_{t \to \infty} \mathbb{P}(R_t > x) = \frac{\mathbb{E}\left[(\tau_1 - x)\mathbb{1}_{\{\tau_1 > x\}}\right]}{\mathbb{E}[\tau_1]}$$

$$= \frac{1}{\mu} \int_0^\infty \mathbb{P}((\tau_1 - x)\mathbb{1}_{\{\tau_1 > x\}} > y) dy$$

$$= \frac{1}{\mu} \int_x^\infty \mathbb{P}(\tau_1 > u) du.$$

Age proof

For $x,y \geq 0$ the events $\{R_t > x, A_t > y\}$ and $\{R_{t-y} > x+y\}$ are equal so

$$\lim_{t\to\infty} \mathbb{P}(R_t > x, A_t > y) = \lim_{t\to\infty} \mathbb{P}(R_{t-y} > x + y)$$

$$= \frac{1}{\mu} \int_{x+y}^{\infty} [1 - F(z)] dz.$$

Setting x = 0 we get

$$\lim_{t\to\infty} \mathbb{P}(A_t \le y) = \frac{1}{\mu} \int_0^y [1 - F(z)] dz$$
$$= \lim_{t\to\infty} \mathbb{P}(R_t \le y).$$

Example

For large t, find the joint probability density function of (R_t, A_t) in the computer packets example.

First,

$$\mathbb{P}(A_t \leq x, R_t \leq y) = \mathbb{P}(A_t \leq x) - \mathbb{P}(R_t > y) + \mathbb{P}(A_t > x, R_t > y),$$

so

$$\frac{\partial^2 \mathbb{P}(A_t \leq x, R_t \leq y)}{\partial x \partial y} = \frac{\partial^2 \mathbb{P}(A_t > x, R_t > y)}{\partial x \partial y}.$$

- ▶ When t is large, $\mathbb{P}(A_t > y, R_t > x) \approx \int_{x+y}^{\infty} \frac{1 F(z)}{\mu} dz$.
- ▶ Hence, the joint pdf is 1/12 if 1 < x + y < 5 and 0 otherwise.