

Bibliografia básica:

Arango HG. Bioestatística: teórica e computacional. 3ªed. Rio de Janeiro: Guanabara Koogan; 2011.

SPIEGEL, Murray Ralph; FARIA, Alfredo Alves De Probabilidade e estatística. São Paulo, SP: McGraw-Hill, 1978.

TESTES PARA DADOS CATEGORIZADOS

→ Amostras independentes

- → n > 40 → Teste χ^2 Clássico.
- ⇒ 20 < n < 40 → Teste χ^2 com Correção de Yates.
- \rightarrow n < 20 \rightarrow Teste Exato de Fisher

→ Amostras pareadas

→ Teste McNemar

TESTES PARA DADOS AMOSTRAIS

Testes de Normalidade:

TESTES PARAMÉTRICOS → Teste de Student (t)

- → Amostras Independentes → Populações Homocedásticas e Populações Heterocedásticas
- → Amostras Pareadas

Teste de Fisher

TESTES NÃO PARAMÉTRICOS

- → Amostras pareadas → Testes dos sinais OBS: Também utilizado na comparação dos resultados de uma amostra com a mediana de uma população e na comparação de dados qualitativos
- → Amostras independentes → Teste de wilcoxon-mann-whitney

- → TESTE DE KOLMOGOROV-SMIRNOV (K-S)

 Média e desvio padrão populacional conhecidos.
- → TESTE LILLIEFORS

 Média e desvio padrão estimados.
- → TESTE DE SHAPIRO-WILKS

→ Conceito e finalidade

Os testes baseados na comparação de valores (<u>variáveis quantitativas</u>) podem ser divididos em dois grandes grupos:

- Testes Paramétricos
- Testes Não-paramétricos

- Os testes paramétricos baseiam-se na hipótese de que as variáveis que representam os grupos, que estão sendo comparados, apresentam uma distribuição mais ou menos bem-comportada.
- Um exemplo de distribuição bem-comportada seria a distribuição Normal.
- Os testes paramétricos baseiam sua decisão na comparação de parâmetros:
 média e desvio padrão.

- A filosofia dos testes não-paramétricos é justamente evitar a utilização de parâmetros na comparação de grupos ou situações. Dessa forma, pode-se dizer que eles funcionam onde os testes paramétricos falham.
- Assim, antes de decidir entre os testes paramétricos ou não-paramétricos deve-se investigar a distribuição das variáveis que estão sendo comparadas.
- A prova de que uma variável possui determinada função de probabilidade é denominada prova de aderência.
- Quando a distribuição é a Normal, a prova da variável é denominada: Teste de Normalidade.

O que você pode dizer a respeito desse histograma referente a um conjunto de dados com 1000 valores (amostras)?

O que você pode dizer a respeito desse histograma, referente aos seus dados, visualmente falando?

https://fr.wikipedia.org/wiki/Fichier:Normality_histogram.png

Utiliza os parâmetros da população

Dois testes bastante empregados para provar (ou rejeitar) a normalidade de uma distribuição são:

- O teste de Kolmogorov-Smirnov, ou teste K-S (tem uma variante deste teste chamado <u>Lilliefors</u>).
- O teste de Shapiro-Wilks, ou teste S-W.

Utiliza os parâmetros amostrais.

TESTE KS

$$D = \sup_{x} |\hat{F}_X(x) - F_X(x)|$$

em que $\hat{F}_X(\cdot)$ e $F_X(\cdot)$ são as CDFs das distribuições empíricas e teóricas

https://pt.wikipedia.org/wiki/Teste_Kolmogorov-Smirnov#/media/Ficheiro:KS_Example.png

HIPÓTESES

H₀: as amostras apresentam normalidade em suas distribuições

H₁: as amostras não apresentam normalidade em suas distribuições

Ou

H₀: a amostra provém de uma população Normal

H₁: a amostra não provém de uma população Normal

Na prática, se for provado que o valor do teste K-S ou do teste S-W é significante (p < 0,01), a hipótese de normalidade da distribuição deve ser rejeitada.

Exemplo: Peso, altura e idade

®									BioEstat 5.0 - [Dados 1]
Arqui	ivo Editar	Estatística	as Gráficos	Sugest	tões Conf	igurar Aju	ıda		
		* P	+.00			Escolh	a um teste		▼ ?
h 25									
1.75									
	- 1-	- 2 -	- 3-	- 4 -	- 5 -	- 6 -	- 7-	- 8 -	
	Peso	Altura	ldade						
1	56	1.65	17						
2	63	1.53	18						
3	54	1.62	18						
4	60	1.54	19						
5	48	1.60	19						
6	75	1.70	19						
7	74	1.91	19						
8	74	1.70	20						
9	62	1.63	20						
10	50	1.68	20						
11	65	1.76	20						
12	67	1.80	21						
13	57	1.68	24						
14	60	1.58	16						
15	58	1.66	17						
16	69	1.72	18						
17	48	1.56	18						
18	46	1.63	18						
19	67	1.64	19						
20	52	1.60	19						
21	67	1.80	19						
22	50	1.56	19						
23	60	1.66	20						
24	47	1.68	20						
25	48	1.58	21						
26	43	1.56	22						
27	55	1.71	23						

TESTE SHAPIRO-WILK

CONCLUSÃO

Peso:

Aceita H₀ → aceita a normalidade

Altura:

Rejeita H₀ → rejeita a normalidade

Idade:

Rejeita H₀ → rejeita a normalidade

Ao nível de significância de 5%

EXERCÍCIO 1

Você e o seu sócio tem um provedor de acesso à Internet. Para auxiliar na configuração de equipamentos, o conhecimento do comportamento dos tempos de acesso de seus clientes é importante, mas vocês têm divergência a esse respeito. Você crê que o tempo de acesso segue uma distribuição Normal com média de 16 minutos e desvio padrão de 4 minutos, enquanto seu sócio, suspeita que o tempo de acesso segue uma distribuição Exponencial com média de 16 minutos. Para diminuir a dúvida, vocês coletaram uma amostra de tempos de acesso em minutos. Carregue o arquivo Aula8_E1_Aluno_L1.csv no BioEstat, faça o teste K-S e conclua se a distribuição é normal ou não.

EXERCÍCIO 2

Carregue o arquivo **Aula8_E2_Aluno_L1.csv** no BioEstat e verifique se as variáveis Peso, Altura e Idade têm aderência a uma distribuição normal. Aplique o teste S-W e conclua se as amostras apresentam uma distribuição normal ou não.

Rosimara Salgado

Professora Coordenadora do NEaD

rosimara@inatel.br

