APEX²: Adaptive and Extreme Summarization for Personalized Knowledge Graphs

Zihao Li¹, Dongqi Fu², Mengting Ai¹, Jingrui He¹

¹University of Illinois Urbana-Champaign

²Meta Al

contact: zihaoli5@illinois.edu

paper

Open for U.S.A. internship prev. MSR; now@Amazon

lab page

Vision: Evolving Knowledge Graphs according to Evolving User Interests

Motivations

- KGs are large and even becoming larger
- But each user only cares a small portion of it

We can make KGs more

- efficient (in terms of knowledge retrieval)
- private for users

by creating personalized KG (PKG) for each user

- adaptively, as user's interest shifts over time
- extremely, with less than 0.1% size of original KG.

The entire KG is stored on a cloud server, the PKG is stored on the user's device.

What can be the "users"

human-users of KGs

KG-powered applications/processes

Retrieval-augmented generation systems

Al agents with knowledge access

In a nutshell...

Our solution:

- Model the user interest by heat diffusion
- Incrementally maintain user's interest on entities, relations and triples
- Pick top-k ranked items and construct the PKG.

Adaptive KG summarization with incremental heat diffusion

Theoretical guarantees on both effectiveness and efficiency

THEOREM 4.1 (EFFECTIVENESS OF APEX²). Assume two areas (topics) \mathcal{U} and \mathcal{V} with connectivity c_u and c_v are sub-KGs of \mathcal{G} , and the user initially queries $\mathcal U$ for a times and starts to query \mathcal{V} , then $APEX^2$ takes $\log_{\gamma} \frac{1}{\frac{A}{B}(1-\gamma^a)+1}$ queries to adapt from \mathcal{U} to \mathcal{V} , where $A = \left(\frac{1-(\alpha c_u)^{d+1}}{1-\alpha c_u}\right)^{\frac{|\mathcal{E}_u|+2|\mathcal{T}_u|}{|\mathcal{E}_u|+3|\mathcal{T}_u|}}$ and $B = \left(\frac{1-(\alpha c_v)^{d+1}}{1-\alpha c_v}\right)^{\frac{|\mathcal{E}_v|+2|\mathcal{T}_v|}{|\mathcal{E}_v|+2|\mathcal{T}_v|}}$.

THEOREM 4.2 (TIME COMPLEXITY OF APEX²). The incremental time complexity for APEX²'s adapting phase is $O(c \cdot |Q|^2 \cdot \log_2(c \cdot |Q|))$, where Q is the query log decomposed into sub-queries (each query in Q has only one query entity, one query relation and one answer). $c = \frac{nnz(\sum_{l=0}^{d} (\alpha A)^{l})}{|\mathcal{L}|}$, where nnz is the operator outputting the number of non-zero elements in a matrix, $A \in \mathbb{R}^{n \times n}$ is the adjacency matrix of G, E is the set of entities of G. (Proof in Appendix E.1)

If set a threshold ϵ_{ths} to eliminate small-enough entries to 0, then after $log_Y \epsilon_{ths}$ timestamps, entries introduced by previous queries will be decayed to 0. In this case, the effective number of queries |Q| above can be bounded by a constant $log_Y \epsilon_{ths}$. By this operation, the incremental time complexity is further optimized **to** $O(c \cdot \log_2(c))$, where $c = \frac{nnz(\sum_{l=0}^d (\alpha A)^l)}{|\mathcal{E}|}$ is the average number of neighbors within d-hops. In other words, the time complexity of APEX² updating is only related to the connectivity of KG.

Table 3: Efficiency Comparison (↓) (unit: seconds)

Methods	YAGO	DBPedia	MetaQA	Freebase
GLIMPSE	192.1±27.92	148.4±114.8	1.366±0.089	1.581±0.093
PageRank	22.81±259.7	2.615±0.136	0.032±0.003	0.144±0.011
ParallelPR	1.947±2.061	1.442±0.031	0.016±0.002	0.019±0.002
APEX ²	6.354±5.388	4.655±1.108	0.055±0.035	0.112±0.048
APEX-N ²	2.528±0.502	3.305±0.041	0.018±0.002	0.024±0.003

Demo: previously interested in "Stevan Riley", "The Disappearance of Haruhi Suzumiya", "LOL"; new query: (Chad Michael Murray, movie_to_actor, ?). MetaQA Movie dataset.

