







### ISO/IEC17025Accredited Lab.

Report No: FCC 1108111
File reference No: 2011-11-16

Applicant: Dongguan Jinchi Industrial Co., Ltd

Product: outdoor highspeed coax helicopter

Model No: Radio control(X5)

Trademark: extreme flyers

Test Standards: FCC Part 15 Subpart C, Paragraph 15.247

Test result:

It is herewith confirmed and found to comply with the

requirements set up by ANSI C63.4&FCC Part 15 Subpart C, Paragraph 15.247 regulations for the evaluation of

electromagnetic compatibility

Approved By

# Jack Chung

Jack Chung Manager

Dated: Nov 16,2011

Results appearing herein relate only to the sample tested The technical reports is issued errors and omissions exempt and is subject to withdrawal at

### SHENZHEN TIMEWAY TECHNOLOGY CONSULTING CO LTD

5/F,Block 4, Anhua Industrial Zone.,No.8 TaiRan Rd.CheGongMiao,FuTian District, Shenzhen,CHINA.

Tel (755) 83448688 Fax (755) 83442996

Report No: 1108111
Date: 2011-11-16
Page 2 of 54



### **Special Statement:**

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.

The testing quality system of our laboratory meet with ISO/IEC-17025 requirements, which is approved by CNAL. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

### **CNAL-LAB Code: L2292**

The EMC Laboratory has been assessed and in compliance with CNAL/AC01:2002 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:1999 General Requirements) for the Competence of testing Laboratories.

### FCC-Registration No.: 899988

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 899988.

# IC- Registration No.: IC5205A-01

The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration IC No.: 5205A-01.



Report No: 1108111 Date: 2011-11-16



# Test Report Conclusion Content

| 1.0  | General Details                     | 3  |
|------|-------------------------------------|----|
| 1.1  | Test Lab Details.                   | 3  |
| 1.2  | Applicant Details                   | 3  |
| 1.3  | Description of EUT                  | 3  |
| 1.4  | Submitted Sample                    | 3  |
| 1.5  | Test Duration.                      | 4  |
| 1.6  | Test Uncertainty.                   | 4  |
| 1.7  | Test By                             | 4  |
| 2.0  | List of Measurement Equipment.      | 4  |
| 3.0  | Technical Details                   | 7  |
| 3.1  | Summary of Test Results.            | 7  |
| 3.2  | Test Standards                      | 8  |
| 4.0  | EUT Modification.                   | 8  |
| 5.0  | Power Line Conducted Emission Test. | 8  |
| 5.1  | Schematics of the Test.             | 8  |
| 5.2  | Test Method and Test Procedure      | 8  |
| 5.3  | Configuration of the EUT            | 8  |
| 5.4  | EUT Operating Condition.            | 9  |
| 5.5  | Conducted Emission Limit.           | 9  |
| 5.6  | Test Result.                        | 9  |
| 6.0  | Radiated Emission test.             | 10 |
| 5.1  | Test Method and Test Procedure.     | 10 |
| 6.2  | Configuration of the EUT            | 10 |
| 6.3  | EUT Operation Condition.            | 10 |
| 6.4  | Radiated Emission Limit.            | 11 |
| 7.0  | 20dB Bandwidth Measurement.         | 24 |
| 8.0  | Maximum Peak Output Power.          | 28 |
| 9.0  | Carrier Frequency Separation.       | 29 |
| 10.0 | Number of Hopping Channel.          | 31 |
| 11.0 | Time of Occupancy (Dwell Time).     | 34 |
| 12.0 | Out of Band Measurement.            | 37 |
| 13.0 | Antenna Requirement.                | 40 |
| 14.0 | Maximum Permissible Exposure.       | 41 |
| 15.0 | 99% Occupied Bandwidth              | 43 |
| 16.0 | FCC ID Label.                       | 47 |
| 17.0 | Photo of Test Setup and EUT View.   | 48 |





### 1.0 **General Details**

### Test Lab Details 1.1

Name: SHENZHEN TIMEWAY TECHNOLOGY CONSULTING CO LTD

Address: 5/F,Block 4, Anhua Industrial Zone.,No.8 TaiRan Rd.CheGongMiao,FuTian District,

Shenzhen, CHINA.

Telephone: (755) 83448688 Fax: (755) 83442996

Site on File with the Federal Communications Commission – United Sates

Registration Number: 899988

For 3m & 10 m OATS

Site Listed with Industry Canada of Ottawa, Canada

Registration Number: IC: 5205A-01

For 3m & 10 m OATS

### 1.2 Applicant Details

Applicant: Dongguan Jinchi Industrial Co., Ltd

Address: No.8 (origin), Mumian industrial district, Dongshan Village, Qishi Town, Dongguan city.

Telephone: +86 -0769-82202588 +86 -0769-82206609 Fax:

### 1.3 Description of EUT

Product: outdoor highspeed coax helicopter Manufacturer: Dongguan Jinchi Industrial Co., Ltd

Brand Name: extreme flyers Model Number: Radio control(X5)

Additional Model Name N/A Additional Trade Name N/A

DC6V (4 pcs AA Batteries) Rating:

Power Supply: N/A Type of Modulation **GFSK** 

Frequency range 2403-2478MHz

Number of Channel 76

Air Data Rate 125kbps

PCB Printed antenna Antenna type

### 1.4 Submitted Sample: 3 Sample

### 1.5 Test Duration

2011-08-16 to 2011-11-16

The report refers only to the sample tested and does not apply to the bulk.

Report No: 1108111 Page 5 of 54 Date: 2011-11-16



1.6 Test Uncertainty Conducted Emissions Uncertainty =3.6dB Radiated Emissions Uncertainty =4.7dB

The report verified by

| 1.7 | Test Engineer &verify Eng             | gineer                         |
|-----|---------------------------------------|--------------------------------|
|     | Test Engineer The sample(s) tested by | Brown Lu                       |
|     |                                       | Print Name: Brown Lu/ Engineer |
|     | Verify Engineer                       | Temy Tang                      |

Print Name: Terry Tang/ EMC Manager

Page 6 of 54

Report No: 1108111 Date: 2011-11-16



| 2.0                    | Test Equipments |            |                       |              |            |  |
|------------------------|-----------------|------------|-----------------------|--------------|------------|--|
| Instrument Type        | Manufacturer    | Model      | Serial No.            | Date of Cal. | Due Date   |  |
| ESPI Test<br>Receiver  | ROHDE&SCHWARZ   | ESPI 3     | 100379                | 2011-04-26   | 2012-04-25 |  |
| TWO<br>Line-V-NETW     | ROHDE&SCHWARZ   | EZH3-Z5    | 100294                | 2011-04-26   | 2012-04-25 |  |
| TWO<br>Line-V-NETW     | ROHDE&SCHWARZ   | EZH3-Z5    | 100253                | 2011-04-26   | 2012-04-25 |  |
| Ultra Broadband<br>ANT | ROHDE&SCHWARZ   | HL562      | 100157                | 2011-04-26   | 2012-04-25 |  |
| ESDV Test<br>Receiver  | ROHDE&SCHWARZ   | ESDV       | 100008                | 2011-04-26   | 2012-04-25 |  |
| Impuls-Begrenzer       | ROHDE&SCHWARZ   | ESH3-Z2    | 100281                | 2011-04-26   | 2012-04-25 |  |
| System Controller      | CT              | SC100      | -                     | 2011-04-26   | 2012-04-25 |  |
| Printer                | EPSON           | РНОТО ЕХЗ  | CFNH234850            | 2011-04-26   | 2012-04-25 |  |
| Computer               | IBM             | 8434       | 1S8434KCE99BLX<br>LO* | -            | -          |  |
| Bilog Antenna          | Chase           | CBL6111C   | 2576                  | 2011-04-26   | 2012-04-25 |  |
| Loop Antenna           | EMCO            | 6502       | 00042960              | 2011-04-26   | 2012-04-25 |  |
| ESPI Test<br>Receiver  | ROHDE&SCHWARZ   | ESI26      | 838786/013            | 2011-04-26   | 2012-04-25 |  |
| 3m OATS                |                 |            | N/A                   | 2011-04-26   | 2012-04-25 |  |
| Horn Antenna           | SCHWARZBECK     | BBHA 9170  | BBHA9170265           | 2011-04-26   | 2012-04-25 |  |
| Horn Antenna           | SCHWARZBECK     | BBHA 9120D | 9120D-631             | 2011-04-26   | 2012-04-25 |  |
| Power meter            | Anritsu         | ML2487A    | 6K00003613            | 2011-04-26   | 2012-04-25 |  |
| Power sensor           | Anritsu         | MA2491A    | 32263                 | 2011-04-26   | 2012-04-25 |  |
| Bilog Antenna          | Schwarebeck     | VULB9163   | 9163/340              | 2011-04-26   | 2012-04-25 |  |
| LISN                   | AFJ             | LS16C      | 10010947251           | 2011-04-26   | 2012-04-25 |  |
| LISN (Three Phase)     | Schwarebeck     | NSLK 8126  | 8126453               | 2011-04-26   | 2012-04-25 |  |
| 9*6*6 Anechoic         |                 |            | N/A                   | 2011-04-26   | 2012-04-25 |  |
| EMI Test<br>Receiver   | RS              | ESCS30     | 100139                | 2011-04-26   | 2012-04-25 |  |
| LISN                   | AFJ             | LS16C      | 10010947251           | 2011-04-26   | 2012-04-25 |  |
| LISN (Three Phase)     | Schwarebeck     | NSLK 8126  | 8126453               | 2011-04-26   | 2012-04-25 |  |

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co .,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd vill not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co.,Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Page 7 of 54

Report No: 1108111 Date: 2011-11-16



### 3.0 Technical Details

### 3.1 Summary of test results

| The EUT has | been teste | d according | to the f | following | specifications:                         |
|-------------|------------|-------------|----------|-----------|-----------------------------------------|
|             | ~~~~       |             | ,        |           | 000000000000000000000000000000000000000 |

| Standard                       | Test Type                    | Result | Notes    |
|--------------------------------|------------------------------|--------|----------|
| Antenna Requirement            | 15.203, 15.247(b)(4)         | PASS   | Complies |
| Maximum Peak Out Power         | 15.247 (b)(1), (4)           | PASS   | Complies |
| Carrier Frequency Separation   | 15.247(a)(1)                 | PASS   | Complies |
| 20dB Channel Bandwidth         | 15.247 (a)(1)                | PASS   | Complies |
| Number of Hopping Channels     | 15.247(a)(iii), 15.247(b)(1) | PASS   | Complies |
| Time of Occupancy (Dwell Time) | 15.247(a)(iii)               | PASS   | Complies |
| Spurious Emission, Band Edge,  | 15.247(d),15.205(a),         | PASS   | Complies |
| and Restricted bands           | 15.209 (a),15.109            |        |          |
| Conducted Emissions            | 15.207(a), 15.107            | PASS   | Complies |
| RF Exposure                    | 15.247(i), 1.1307(b)(1)      | PASS   | Complies |

### 3.2 Test Standards

FCC Part 15 Subpart & Subpart C, Paragraph 15.247

### 4.0 EUT Modification

No modification by Shenzhen Timeway Technology Consulting Co.,Ltd

Page 8 of 54

Report No: 1108111 Date: 2011-11-16



### 5. Power Line Conducted Emission Test

### 5.1 Schematics of the test



**EUT: Equipment Under Test** 

### 5.2 Test Method and test Procedure

The EUT was tested according to ANSI C63.4-2009. The Frequency spectrum From 0.15MHz to 30MHz was investigated. The LISN used was 50ohm/50uH as specified by section 5.1 of ANSI C63.4 –2009.

### Block diagram of Test setup



### 5.3 Configuration of The EUT

The EUT was configured according to ANSI C63.4-2003. All interface ports were connected to the appropriate peripherals. All peripherals and cables are listed below.

### A. EUT

| Device                 | Manufacturer                        | Model             | FCC ID  |
|------------------------|-------------------------------------|-------------------|---------|
| outdoor highspeed coax | Dongguan Jinchi Industrial Co., Ltd | Radio control(X5) | ZYOX350 |
| helicopter             |                                     |                   |         |

### B. Internal Device

| Device | Manufacturer | Model | FCC ID/DOC |
|--------|--------------|-------|------------|
| N/A    |              |       |            |

The report refers only to the sample tested and does not apply to the bulk.

Report No: 1108111 Page 9 of 54



### C. Peripherals

Date: 2011-11-16

| Device | Manufacturer | Model | FCC ID/DOC | Cable |
|--------|--------------|-------|------------|-------|
| N/A    |              |       |            |       |

### 5.4 EUT Operating Condition

Operating condition is according to ANSI C63.4 -2009.

- A Setup the EUT and simulators as shown on follow
- B Enable AF signal and confirm EUT active to normal condition

5.5 Power line conducted Emission Limit according to Paragraph 15.207

|           | <u> </u>     |                  |               |                                 |               |
|-----------|--------------|------------------|---------------|---------------------------------|---------------|
| Frequency |              | Class A Lim      | its (dB µ V)  | Class B Limits (dB \( \mu \) V) |               |
|           | (MHz)        | Quasi-peak Level | Average Level | Quasi-peak Level                | Average Level |
|           | 0.15 ~ 0.50  | 79.0             | 66.0          | 66.0 ~ 56.0*                    | 56.0 ~ 46.0*  |
| •         | 0.50 ~ 5.00  | 73.0             | 60.0          | 56.0                            | 46.0          |
|           | 5.00 ~ 30.00 | 73.0             | 60.0          | 60.0                            | 50.0          |

Notes:

- 1. \*Decreasing linearly with logarithm of frequency.
- 2. The tighter limit shall apply at the transition frequencies

### 5.6 Test Results

The frequency spectrum from 0.15MHz to 30MHz was investigated. All reading are quasi-peak values with a resolution bandwidth of 9kHz.

Note: Owing to DC operation of EUT, this test item is not performed

Report No: 1108111 Page 10 of 54

Date: 2011-11-16



### 6 Radiated Emission Test

- 6.1 Test Method and test Procedure:
- (1) The EUT was tested according to ANSI C63.4 –2009. The radiated test was performed at Timeway Laboratory. This site is on file with the FCC laboratory division, Registration No.899988
- (2) The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high 0.8 m. All set up is according to ANSI C63.4-2009.
- (3) The frequency spectrum from 30 MHz to 1 GHz was investigated. All readings from 30 MHz to 1 GHz are quasi-peak values with a resolution bandwidth of 120 kHz. All readings are above 1 GHz, peak values with a resolution bandwidth of 1 MHz. Measurements were made at 3 meters.
- (4) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (5) Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB of specification limit), and are distinguished with a "QP" in the data table.
- (6) The antenna polarization: Vertical polarization and Horizontal polarization.

# Block diagram of Test setup Distance = 3m Computer Pre -Amplifier EUT Turn-table Receiver

- 6.2 Configuration of The EUT
  Same as section 5.3 of this report
- 6.3 EUT Operating Condition
  Same as section 5.4 of this report.

Report No: 1108111 Page 11 of 54 Date: 2011-11-16



### 6.4 Radiated Emission Limit

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below:

### Frequencies in restricted band are complied to limit on Paragraph 15.209

|                       | 1            | <b>8</b> 1                    |
|-----------------------|--------------|-------------------------------|
| Frequency Range (MHz) | Distance (m) | Field strength (dB $\mu$ V/m) |
| 30-88                 | 3            | 40.0                          |
| 88-216                | 3            | 43.5                          |
| 216-960               | 3            | 46.0                          |
| Above 960             | 3            | 54.0                          |

Note:

- 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)
- 2. In the Above Table, the higher limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the EUT

Page 12 of 54

Report No: 1108111 Date: 2011-11-16

### General Radiated Emission Data and Harmonics Radiated Emission Data

### Radiated Emission In Horizontal (0.009MHz----30MHz)

**EUT set Condition:** Transmitting (Low CH)

### **Results: Pass**

Please refer to following diagram for individual



| Frequency (MHz) | Level@3m (dB $\mu$ V/m) | Limit@3m (dB $\mu$ V/m) |
|-----------------|-------------------------|-------------------------|
|                 | 1                       |                         |

<sup>-</sup>The test data shows much less than the limit, no necessary take down the records.

Report No: 1108111 Page 13 of 54



### Test result

Date: 2011-11-16

### General Radiated Emission Data and Harmonics Radiated Emission Data

### Radiated Emission In Horizontal (30MHz----1000MHz)

**EUT set Condition:** Tx under transmitting mode

**Results: Pass** 

| Frequency (MHz) | Level@3m (dB $\mu$ V/m) | Antenna Polarity | Limit@3m (dB µ V/m) |
|-----------------|-------------------------|------------------|---------------------|
| 53.325          | 25.83                   | V                | 40.00               |
| 103.532         | 20.54                   | V                | 43.50               |
| 191.342         | 22.97                   | V                | 46.00               |
| 191.342         | 20.43                   | Н                | 43.50               |
| 319.341         | 23.32                   | Н                | 46.00               |

Report No: 1108111 Date: 2011-11-16



Test Figure: transmitting mode

# Vertical



# Horizontal



The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No: 1108111 Page 15 of 54

Date: 2011-11-16



### **Operation Mode: Transmitting under Low Channel**

| Frequency (MHz) | Level@3m (dB \mu V/m)      | Antenna Polarity | Limit@3m (dB µ V/m)   |
|-----------------|----------------------------|------------------|-----------------------|
| 2403.00         | 104.2 ( PK ) /85.3 ( AV )  | Н                | Fundamental Frequency |
| 2430.00         | 109.5 ( PK ) /88.8 ( AV )  | V                | Fundamental Frequency |
| 1608.136        | 40.78 ( PK ) /41.13 ( PK ) | H/V              | 74(Peak)/ 54(AV)      |
| 4806.00         | 50.18 ( PK ) /53.21 ( PK ) | H/V              | 74(Peak)/ 54(AV)      |
| 7209            |                            | H/V              | 74(Peak)/ 54(AV)      |
| 9612            |                            | H/V              | 74(Peak)/ 54(AV)      |
| 12015           |                            | H/V              | 74(Peak)/ 54(AV)      |
| 14418           |                            | H/V              | 74(Peak)/ 54(AV)      |
| 16821           |                            | H/V              | 74(Peak)/ 54(AV)      |
| 19224           |                            | H/V              | 74(Peak)/ 54(AV)      |
| 21627           |                            | H/V              | 74(Peak)/ 54(AV)      |
| 24030           |                            | H/V              | 74(Peak)/ 54(AV)      |

### **Operation Mode: Transmitting under CH Mid**

| Frequency (MHz) | Level@3m (dB \(\mu\) V/m)  | Antenna Polarity | Limit@3m (dB \(\mu\) V/m) |
|-----------------|----------------------------|------------------|---------------------------|
| 1 1             | <u> </u>                   |                  | Emittee 5 in (dB p 17 in) |
| 2450.00         | 105.2 ( PK ) /83.7 ( AV )  | Н                | Fundamental Frequency     |
| 2450.00         | 108.6 ( PK ) /86.5 ( AV )  | V                | T undamental Frequency    |
| 1608.136        | 43.44 ( PK ) /44.23 ( PK ) | H/V              | 74(Peak)/ 54(AV)          |
| 4900.00         | 52.33 ( PK ) /51.79 ( PK ) | H/V              | 74(Peak)/ 54(AV)          |
| 7350.00         | ( PK ) /46.95 ( PK )       | H/V              | 74(Peak)/ 54(AV)          |
| 9800.00         |                            | H/V              | 74(Peak)/ 54(AV)          |
| 12250           |                            | H/V              | 74(Peak)/ 54(AV)          |
| 14700           |                            | H/V              | 74(Peak)/ 54(AV)          |
| 17150           |                            | H/V              | 74(Peak)/ 54(AV)          |
| 19600           |                            | H/V              | 74(Peak)/ 54(AV)          |
| 22050           |                            | H/V              | 74(Peak)/ 54(AV)          |
| 24500           |                            | H/V              | 74(Peak)/ 54(AV)          |

Report No: 1108111 Page 16 of 54

Date: 2011-11-16



### Operation Mode: Transmitting under CH High

| Frequency (MHz) | Level@3m (dB $\mu$ V/m)  | Antenna Polarity | Limit@3m (dB $\mu$ V/m) |  |
|-----------------|--------------------------|------------------|-------------------------|--|
| 2478.00         | 92.1 ( PK ) /76.3 ( AV ) | Н                | Fundamental Frequency   |  |
| 2478.00         | 95.3 ( PK ) /81.6 ( AV ) | V                | Fundamental Frequency   |  |
| 1608.136        | 44.00 ( PK )             | V                | 74(Peak)/ 54(AV)        |  |
| 1608.136        | 39.47 ( PK )             | Н                |                         |  |
| 4956            | 50.83 ( PK )             | V                | 74(Peak)/ 54(AV)        |  |
| 4956            | 49.26 ( PK )             | Н                |                         |  |
| 4734            |                          | H/V              | 74(Peak)/ 54(AV)        |  |
| 9912            |                          | H/V              | 74(Peak)/ 54(AV)        |  |
| 12390           |                          | H/V              | 74(Peak)/ 54(AV)        |  |
| 14868           |                          | H/V              | 74(Peak)/ 54(AV)        |  |
| 17346           |                          | H/V              | 74(Peak)/ 54(AV)        |  |
| 19824           |                          | H/V              | 74(Peak)/ 54(AV)        |  |
| 22302           |                          | H/V              | 74(Peak)/ 54(AV)        |  |
| 24780           |                          | H/V              | 74(Peak)/ 54(AV)        |  |

Note: 1. Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level - Limit

- 2. Remark "---" means that the emissions level is too low to be measured
- 3. Margin=Emission-Limits
- 4.According to section 15.35(b), the peak limit is 20dB higher than the average limit Please refer to the following test plots for details:

Page 17 of 54

Report No: 1108111 Date: 2011-11-16



### **Low Channel: Vertical**



Page 18 of 54

Report No: 1108111 Date: 2011-11-16



### **Low Channel: Horizontal**



Page 19 of 54

Report No: 1108111 Date: 2011-11-16



### **Middle Channel: Horizontal**



Page 20 of 54

Report No: 1108111 Date: 2011-11-16



### **Middle Channel: Vertical**



Page 21 of 54

Report No: 1108111 Date: 2011-11-16



### **High Channel: Horizontal**



Page 22 of 54

Report No: 1108111 Date: 2011-11-16



### **High Channel: Vertical**



Report No: 1108111 Date: 2011-11-16



### 18-25G

### **CH High Horizontal**



# 18-25G CH High Vertical



The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No: 1108111 Page 24 of 54

TIMEWAY PROPERTY AND A PROPERTY AND

### 7.0 20dB Bandwidth Measurement

### 7.1 Regulation

Date: 2011-11-16

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

### 7.2 Limits of 20dB Bandwidth Measurement

N/A

### 7.3 Test Procedure.

- 1. Check the calibration of the measuring instrument (spectrum analyzer) using either an internal calibrator or a known signal from an external generator.
- 2. Set the spectrum analyzer as follows: Span =5MHz, VBW = RBW=100kHz, Sweep = auto Detector function = peak, Trace = max hold
- 3. Measure the highest amplitude appearing on spectral display and record the level to calculate results. 6. Repeat above procedures until all frequencies measured were complete.

### 7.4 Test Result

| EUT      |     | outdoor highspe       | ed coax helicopter     | Model         |                        | Radio contr  | ol(X5)        |  |
|----------|-----|-----------------------|------------------------|---------------|------------------------|--------------|---------------|--|
| Mode     |     | Keep Transmi          | itting                 | Input Voltage |                        | oltage DC 6V |               |  |
| Temperat | ure | 24                    | 24 deg. C, Humidity 50 |               | Humidity               |              | 56% RH        |  |
| Channel  |     | el Frequency<br>(MHz) | 20 dB Bandw<br>(MHz)   | idth          | Minimum Limit<br>(MHz) |              | Pass/<br>Fail |  |
| Low      |     | 2403                  | 0.763                  | 0.763         |                        |              | Pass          |  |
| Mid      |     | 2450                  | 1.038                  |               |                        |              | Pass          |  |
| High     |     | 2478                  | 0.788                  |               |                        |              | Pass          |  |

Page 25 of 54

Report No: 1108111 Date: 2011-11-16



### **Test Plots:**

### 1. CH Low



Date: 06.NOV.2011 16:31:28

Page 26 of 54

Report No: 1108111 Date: 2011-11-16



### 2. CH Mid



Date: 16.NOV.2011 10:30:55

Report No: 1108111 Page 27 of 54

Date: 2011-11-16



### 3. CH High



Date: 06.NOV.2011 15:51:30

Report No: 1108111 Page 28 of 54

Date: 2011-11-16



### 8. Maximum Peak Output Power

### 8.1 Test Setup



### 8.2 Limits of Maximum Peak Output Power

The Maximum Peak Output Power Measurement is 30dBm.

### **8.3 Test Procedure**

The RF power output was measured with a Power meter connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate centre frequency.

### **8.4Test Results**

| EUT         |    | outdoor highspeed co  | oax helicopter        | Model    |                              | Radio control(X5) |                     |  |  |
|-------------|----|-----------------------|-----------------------|----------|------------------------------|-------------------|---------------------|--|--|
| Mode        |    | Keep Transmitting     | g Input Voltage DC 6V |          | Input Voltage                |                   | Input Voltage DC 6V |  |  |
| Temperature | e  | 24 deg                | g. C,                 | Humidity |                              | 56% RI            |                     |  |  |
| Channel     | Ch | annel Frequency (MHz) | Peak Power (dBm)      | Output   | Peak Power<br>Limit<br>(dBm) |                   | Pass/ Fail          |  |  |
| Low         |    | 2403                  | 12.1                  |          | 30                           |                   | Pass                |  |  |
| Mid         |    | 2450                  | 15.2                  |          | 30                           |                   | Pass                |  |  |
| High        |    | 2478                  | 13.5                  |          | 30                           | )                 | Pass                |  |  |

Note: 1. At finial test to get the worst-case emission for CH Low, CH Mid and CH High

2. The result basic equation calculation as follow:

Peak Power Output = Peak Power Reading + Cable loss + Attenuator

Report No: 1108111 Page 29 of 54



### 9. Carrier Frequency Separation

### 9.1 Regulation

Date: 2011-11-16

According to §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

### 9.2 Limits of Carrier Frequency Separation

The Maximum Power Spectral Density Measurement is 25kHz or two-thirds of the 20dB bandwidth of the hopping Channel which is great.

### 9.3 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Set the spectrum analyzer as follows: Span = wide enough to capture the peaks of two adjacent channels: Resolution (or IF) Bandwidth (RBW) 1% of the span; Video (or Average) Bandwidth (VBW) RBW; Sweep = auto; Detector function = peak; Trace = max hold
- 3. Measure the separation between the peaks of the adjacent channels using the marker-delta function.
- 4. Repeat above procedures until all frequencies measured were complete.

### 9.4Test Result

| EUT         | outdoor highspeed coax helicopter Model |                       |                             | Radio control(X5) |               |        |            |
|-------------|-----------------------------------------|-----------------------|-----------------------------|-------------------|---------------|--------|------------|
| Mode        |                                         | Keep Transmitting     | g Input Volta               |                   | Input Voltage |        |            |
| Temperature | e                                       | 24 deg                | g. C,                       | Humidity          |               | 56% RH |            |
| Channel     | Ch                                      | annel Frequency (MHz) | Carrier Frequ<br>Separation | -                 | Limit         |        | Pass/ Fail |
| Middle      |                                         | 2450                  | 1MHz                        |                   | 25 kHz or 20  |        | Pass       |
|             |                                         |                       |                             |                   | dB band       | dwidth |            |

Page 30 of 54

Report No: 1108111 Date: 2011-11-16



### **Test Plot:**



Date: 2.NOV.2011 08:53:37

Report No: 1108111 Page 31 of 54

Date: 2011-11-16

### 10. Number of Hopping Channels

### 10.1 Regulation

According to §15.247(a)(1)(iii), frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. According to §15.247(b)(1), for frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

### 10.2 Limits of Number of Hopping Channels

The frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

### 10.3 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Set the spectrum analyzer as follows: Span = the frequency band of operation; RBW 1% of the span; **VBW** RBW; Sweep = auto; Detector function = peak; Trace = max hold
- 3. Record the number of hopping channels.

### 10.4Test Result

| EUT             | outdoor                                            | highspeed coax helicopter | Model |                  | Radio control(X5) |        |  |
|-----------------|----------------------------------------------------|---------------------------|-------|------------------|-------------------|--------|--|
| Mode            | Keep T                                             | Keep Transmitting         |       | Input Voltage DC |                   |        |  |
| Temperature     |                                                    | 24 deg. C,                |       | Humidity         |                   | 56% RH |  |
| Operating Frequ | perating Frequency  Number of hopping channels  Li |                           | Lin   | nit              | Pass/ Fail        |        |  |
| 2403-2478MHz    |                                                    | 76                        |       | ≥ 1              | .5                | Pass   |  |

Page 32 of 54

Report No: 1108111 Date: 2011-11-16



### **Test Plots**



Date: 06.NOV.2011 16:16:04

Page 33 of 54

Report No: 1108111 Date: 2011-11-16





Date: 2011-11-16

Report No: 1108111 Page 34 of 54

### 11. Time of Occupancy (Dewell Time)

### 11.1 Regulation

According to §15.247(a)(1)(iii), frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

### 11.2 Limits of Carrier Frequency Separation

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed

### 11.3 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an
- 2. Set the spectrum analyzer as follows: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold
- 3. Measure the dwell time using the marker-delta function.
- 4. Repeat above procedures until all frequencies measured were complete.
- 5. Repeat this test for different modes of operation (e.g., data rate, modulation format, etc.), if applicable.

| EUT         |   | outdoor highspeed coax helicopter | Model         |       | Radio control(X5) |
|-------------|---|-----------------------------------|---------------|-------|-------------------|
| Mode        |   | Keep Transmitting                 | Input Voltage |       | DC 6V             |
| Temperature | e | 24 deg. C,                        | Humidity      |       | 56% RH            |
| Channel     |   | Actual                            |               | Limit |                   |
| Middle      |   | 0.015s                            |               | 0.4s  |                   |

Actual =  $(0.4 \times 76 / 5) \times 0.631 \times 4 = 15 \text{ms}$ 

Page 35 of 54

Report No: 1108111 Date: 2011-11-16



### **Test Plots**



Date: 06.NOV.2011 16:42:03

Page 36 of 54

Report No: 1108111 Date: 2011-11-16





Date: 00.Nov.2011 10.00.01

Report No: 1108111

Date: 2011-11-16

Page 37 of 54



## 12 Out of Band Measurement

# 12.1 Test Setup



### 12.2 Limits of Out of Band Emissions Measurement

- 1. Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209

### 12.3 Test Procedure

For signals in the restricted bands above and below the 2.4-2.483GHz allocated band a measurement was made of the amplitude of the spurious emissions with respect to the intentional signals. The relative amplitude, in dBc, was applied to the average and peak filed strength of the intentional signal made on the OATS to calculate the field strength of the unintentional signals.

The spectrum plots (Peak RBW=VBW=1MHz; Average RBW=1MHz, VBW=10Hz) are attached on the following pages.

Page 38 of 54

Report No: 1108111 Date: 2011-11-16



## 12.4Test Result

CH Low

### **12.4** Out of Band Test Result

| Product:       | outdoor highspeed | d coax helicopter | Test Mode:    | CH Low          |
|----------------|-------------------|-------------------|---------------|-----------------|
| Mode           | Keep Tran         | nsmitting         | Input Voltage | DC 6V           |
| Temperature    | 24 deg. C,        |                   | Humidity      | 56% RH          |
| Test Result:   | Pass              |                   | Detector      | PK              |
| The Max. FS in | PK (dBµV/m)       | 44.1(V)/40.2(H)   | Limit         | $74(dB\mu V/m)$ |
| Restrict Band  | AV(dBμV/m)        | 32.9(V)/30.6(H)   | Pittiff       | 54(dBμV/m)      |

# **Test Figure:**



Note: 1. The Max. FS in Restrict Band are measured in conventional method.

2. Final Level = Reading + AF + Cable - Preamp

The report refers only to the sample tested and does not apply to the bulk.

Page 39 of 54

Report No: 1108111 Date: 2011-11-16



## CH High

## 12.4 Out of Band Test Result

| Product:       | outdoor highspeed coax helicopter |                 | Test Mode:    | CH High    |
|----------------|-----------------------------------|-----------------|---------------|------------|
| Mode           | Keep Transmitting                 |                 | Input Voltage | DC 6V      |
| Temperature    | 24 deg. C,                        |                 | Humidity      | 56% RH     |
| Test Result:   | Pass                              |                 | Detector      | PK         |
| The Max. FS in | PK (dBμV/m)                       | 57.5(V)/53.2(H) | Limit         | 74(dBµV/m) |
| Restrict Band  | $AV(dB\mu V/m)$                   | 46.7(V)/41.8(H) | Lillit        | 54(dBµV/m) |

# **Test Figure:**



Note: 1. The Max. FS in Restrict Band are measured in conventional method.

2. Final Level = Reading + AF + Cable - Preamp

Report No: 1108111 Page 40 of 54

TIMEWAY I

# 13.0 Antenna Requirement

## 13.1 Standard Applicable

Date: 2011-11-16

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitter antennas of directional gain greater than 6 dBi

are used, the power shall be reduced by the mount in dB that the directional gain of the antenna exceeds 6 dBi.

## 13.2 Antenna Connected construction

The antenna is PCB Print antenna. The maximum Gain of this antenna is 4.0dBi



Date: 2011-11-16



# 14.0 Maximum Permissible Exposure

## **Applicable Standard**

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

## (a) Limits for Occupational / Controlled Exposure

| Frequency Range (MHz) | Electric Field<br>Strength (E)<br>(V/m) | Magnetic Field<br>Strength (H)<br>(A/m) | Power Density (S) (mW/cm <sup>2</sup> ) | Averaging Times   E   2 ,   H   2 or S (minutes) |
|-----------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------------|
| 0.3-3.0               | 614                                     | 1.63                                    | (100)*                                  | 6                                                |
| 3.0-30                | 1842/f                                  | 4.89/f                                  | (900/f)*                                | 6                                                |
| 30-300                | 61.4                                    | 0.163                                   | 1.0                                     | 6                                                |
| 300-1500              |                                         |                                         | F/300                                   | 6                                                |
| 1500-100000           |                                         |                                         | 5                                       | 6                                                |

## (b) Limits for General Population / Uncontrolled Exposure

| Frequency Range (MHz) | Electric Field<br>Strength (E)<br>(V/m) | Magnetic Field<br>Strength (H)<br>(A/m) | Power Density (S) (mW/cm <sup>2</sup> ) | Averaging Times   E   2 ,   H   2 or S (minutes) |
|-----------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------------|
| 0.3-1.34              | 614                                     | 1.63                                    | (100)*                                  | 30                                               |
| 1.34-30               | 824/f                                   | 2.19/f                                  | (180/f)*                                | 30                                               |
| 30-300                | 27.5                                    | 0.073                                   | 0.2                                     | 30                                               |
| 300-1500              |                                         |                                         | F/1500                                  | 30                                               |
| 1500-100000           |                                         |                                         | 1.0                                     | 30                                               |

Note: f=frequency in MHz; \*Plane-wave equivalent power density

### **MPE Calculation Method**

 $E (V/m) = (30*P*G)^{0.5}/d$  Power Density: Pd  $(W/m^2) = E^2/377$ 

 $\mathbf{E} = \text{Electric Field (V/m)}$ 

 $\mathbf{P}$  = Peak RF output Power (W)

**G** = EUT Antenna numeric gain (numeric)

**d** = Separation distance between radiator and human body (m)

The formula can be changed to

 $Pd = (30*P*G) / (377*d^2)$ 

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

The report refers only to the sample tested and does not apply to the bulk.

Report No: 1108111 Page 42 of 54

Date: 2011-11-16



## **Calculated Result and Limit**

| Antenna<br>Gain<br>(Numeric) | Peak Output<br>Power (dBm) | Peak Output<br>Power (mW) | Power Density (S) (mW/cm²) | Limit of Power Density (S) (mW/cm²) | Test<br>Result |
|------------------------------|----------------------------|---------------------------|----------------------------|-------------------------------------|----------------|
| 2.512                        | 15.20                      | 33.11                     | 0.165                      | 1                                   | Compiles       |

Report No: 1108111 Page 43 of 54

Date: 2011-11-16



# 15. 99% Bandwidth Measurement Test Setup



## **Test Procedure**

The transmitter output was connected to the spectrum analyzer through an attenuator.

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 kHz RBW and 300 kHz VBW. Then use the 99% Occupied Bandwidth function of the analyzer to measure. The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

# **Test Result**

| EUT outdoor highspe |  | ed coax helicopter Model |                     |          | Radio control(X5)      |        |               |
|---------------------|--|--------------------------|---------------------|----------|------------------------|--------|---------------|
| Mode Keep Transmi   |  | itting                   | Input Voltage       |          | DC 6V                  |        |               |
| Temperature         |  | 24                       | 4 deg. C,           | Humidity |                        | 56% RH |               |
| Channel             |  | el Frequency<br>(MHz)    | 99% Bandwi<br>(MHz) | dth      | Minimum Limit<br>(MHz) |        | Pass/<br>Fail |
| Low                 |  | 2403                     | 697                 |          |                        |        | Pass          |
| Mid                 |  | 2450                     | 679                 |          |                        |        | Pass          |
| High                |  | 2478                     | 709                 |          |                        |        | Pass          |

Page 44 of 54

Date: 2011-11-16

Report No: 1108111



### **Test Plots**

### 1.CH Low



Date: 06.NOV.2011 16:39:28

Page 45 of 54

Report No: 1108111 Date: 2011-11-16



## 1.CH Mid



Date: 04.SEP.2011 12:26:24

Page 46 of 54

Report No: 1108111 Date: 2011-11-16



# 1.CH High



Date: 06.NOV.2011 15:59:50

Report No: 1108111 Page 47 of 54

Date: 2011-11-16



### 16.0 FCC ID Label

## FCC ID: ZYOX350

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label must not be a stick-on paper label. The label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

### Mark Location:



Page 48 of 54

Report No: 1108111 Date: 2011-11-16



# 17.0 Photo of testing

## 17.1 Emission Radiated test View--





The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it. or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No: 1108111 Date: 2011-11-16



## Photo for the EUT

## Outside View





The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co .,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to

Page 50 of 54

Report No: 1108111 Date: 2011-11-16



Interior View





The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co .,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to

Page 51 of 54

Report No: 1108111 Date: 2011-11-16



## Interior View





The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co .,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to

Page 52 of 54

Report No: 1108111 Date: 2011-11-16



## Interior View





The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co .,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to

Page 53 of 54

Report No: 1108111 Date: 2011-11-16



Interior View





The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co .,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to

Report No: 1108111 Page 54 of 54

Date: 2011-11-16



Interior View



**End of the report**