CALCOLO NUMERICO E MATLAB

Docenti: C. Canuto, S. Falletta, S. Pieraccini

Esercitazione

Argomento: Equazioni differenziali ordinarie

1. Implementare in due *m-file* di tipo *function*, denominati eulero_esp.m e heun.m, il metodo di Eulero esplicito e il metodo di Heun, rispettivamente, per risolvere il problema. di Cauchy

$$\begin{cases} y'(x) = -y(x) + x + 1, & x \ge 0, \\ y(0) = 1, & \end{cases}$$

la cui soluzione è $y(x) = x + e^{-x}$.

Strutturare le function in modo tale che, ricevendo in input la funzione f(x,y) (definita mediante un'altra function), i valori x_0 ed y_0 della condizione iniziale, il punto x_N fino al quale si vuole integrare il problema ed il valore N con il quale si controlla l'ampiezza del passo d'integrazione $(h = (x_N - x_0)/N)$, restituisca in output i vettori x ed y contenenti rispettivamente i nodi dell'intervallo di integrazione (equidistanti con passo h) e le corrispondenti approssimazioni della funzione incognita y(x).

Approssimare la soluzione nel punto $x = x_N = 1$, scegliendo $N = 10^k$ con k = 1, 2, 3. Indicata con y_N la soluzione approssimata fornita dal metodo in x_N , calcolare per ciascun valore di k l'errore assoluto $|y(x) - y_N|$ e disegnare all'interno della medesima finestra grafica la curva soluzione e le curve approssimanti.

2. Modificare le *function* eulero_esp e heun.m in modo tale che possano integrare il seguente problema di Cauchy

$$\begin{cases} y'_1(x) = f_1(x, y_1(x), \dots, y_m(x)), & x \ge x_0, \\ \vdots & \\ y'_m(x) = f_m(x, y_1(x), \dots, y_m(x)), \\ y_1(x_0) = y_{1,0}, \\ \vdots & \\ y_m(x_0) = y_{m,0}, \end{cases}$$

costituito da un sistema di m equazioni differenziali del primo ordine nelle incognite $y_1(x)$, $y_2(x),...,y_m(x)$ e da m condizioni iniziali nel punto x_0 .

3. Trasformare il seguente problema

$$y'' - 3y' + 2y = 0$$
, $y(0) = 1$, $y'(0) = 1$,

la cui soluzione è $y(x) = e^x$, in un sistema di due equazioni differenziali del primo ordine ed applicare ad esso il metodo di Eulero esplicito. In particolare, approssimare la soluzione

nel punto $x=x_N=1$, scegliendo $N=10^k$ con k=1,2,3. Indicata con y_N la soluzione approssimata fornita dal metodo in x_N , calcolare per ciascun valore di k l'errore assoluto $|y(x)-y_N|$.

4. Risolvere il problema

$$y'' = 0.1(1 - y^2)y' - y$$
, $y(0) = 1$, $y'(0) = 1$,

utilizzando il metodo di Eulero esplicito e il metodo di Heun.

- 5. Risolvere i problemi di Cauchy degli esercizi 1 e 3 mediante le function di MATLAB ode45 e ode23. Utilizzare fra le opzioni possibili stats=on per ricevere informazioni sul costo computazionale dell'esecuzione, e AbsTol=tolla, RelTol=tollb per imporre i valori tolla e tollb alla tolleranza assoluta e relativa, rispettivamente.
- 6. Applicare i metodi di Eulero esplicito e implicito all'equazione

$$y' = -10^3 y,$$

con condizione iniziale y(0)=1 e passo di integrazione $h=10^{-1},10^{-2},10^{-3}$. Confrontare i risultati.

7. Applicare il metodo di Heun al problema

$$\begin{cases} y'(x) = -10^3(y(x) - \cos(x)) - \sin(x), & x \ge 0, \\ y(0) = 2, & \end{cases}$$

la cui soluzione è $y(x) = e^{-10^3 x} + \cos(x)$. Approssimare la soluzione nel punto $x_N = 1$, scegliendo $N = 10^k$ con k = 1, 2, 3, 4. Indicata con y_N la soluzione approssimata in x_N , calcolare per ciascun valore di k l'errore assoluto $|y(x_N) - y_N|$. Commentare i risultati.