Walkability vs. Subjective Well-Being

Group 15: Robert Jiang, Josna John, Collin Jun, Justin Kane-starr, and Ziyan Zhou

Walkability Dataset Introduction

Data Collection Method

- Environmental Protection Agency
 - GTFS data
- Core Based Statistical Areas
 - CBSA
- Over 100 features and 220,000 points

The ranked scores were then weighted by the following formula:16

Final National Walkability Index score = $\binom{w}{3} + \binom{x}{3} + \binom{y}{6} + \binom{z}{6}$

Where w = block group's ranked score for intersection density

x = block group's ranked score for proximity to transit stops

y =block group's ranked score for employment mix

z = block group's ranked score for employment and household mix

The block groups are assigned their final National Walkability Index scores on a scale of 1 to 20 (Figure 3). The scores are categorized as follows:

1-5.75	Least walkable	
5.76 - 10.5	Below average walkable	
10.51 - 15.25	Above average walkable	
15.26 - 20	Most walkable	

Motivation for dimensionality reduction

- Related features examples
 - Population of area, housing units
 - Households that own 1 car, 2 cars
- Correlation matrix indicating correlations between variables
- Red squares indicate high correlation

Walkability vs. Geospatial Metrics

- Graph displays correlation of variables with the current walkability index
 - Few variables have higher than
 0.8 correlation coefficient
- Weights could be adjusted to simplify and/or improve walkability index

Dimensionality Reduction

- Principal Component Analysis
 - Most of variance is captured in a few components
 - Can represent most information with a very low dimension from over 100

Dimensionality Reduction

Methodology for New Walkability Index

- Several ways to create a new walkability index algorithm:
 - A PCA-inspired index where the top PCA components are used to define the new index algorithm
 - Out-source the data to define a happiness-based walkability index algorithm

Happiness Index Dataset Introduction

Data collection method:

- Information collected at the 182 largest cities in the United States
- Top weighted components include
 - Life-satisfaction index
 - Depression rate
 - Suicide rate

Overall Rank +	City	Total Score	Emotional & Physical Well- Being Rank ≑	Income & Employment Rank \$	Community & Environment Rank \$
1	Fremont, CA	74.16	1	85	3
2	Overland Park, KS	69.78	6	36	6
3	San Jose, CA	69.54	2	33	37
4	Madison, WI	68.99	7	17	9
5	Irvine, CA	68.22	4	26	24

Walkability vs. Happiness Correlation

- Correlation between Happiness and walkability is quite reasonable (0.56)
- Index algorithm can be improved to show correlation between walkability and happiness

New Walkability Index - Linear Regression

- Using a linear regression model, we were able to create a new walkability index
- The correlation coefficients greatly differ when compared to the first
 - Higher correlation between the new walkability and total happiness score

New Walkability Index - Gradient Boost Regression

- Using a gradient boost regression model, we were able to achieve very similar results to that of the linear regression model
 - Have tried other models such as random tree regression and random forest regression and the results were very similar
- The walkability index has been improved and the correlation coefficient to the happiness index has been optimized.

Conclusions

- Using dimensionality reduction, the top components were identified and used to help define the new index algorithm.
- The original walkability index and the happiness index was shown to have a positive correlation, showing that walkability has a positive impact on the happiness within a community.
 - The happiness index and its variables were used to define the new walkability index.
- Walkability index was changed/improved using a PCA-inspired index and now displays a stronger correlation with the happiness index.
 - Can possibly be further improved, but major improvements were made
- Improving this walkability dataset can enhance the effectiveness of urban planning decisions.

Future Scope

- Recommender System
 - An algorithm to determine a person's ideal city to live in based on an individual's weighted preferences (e.g., walkability, income)
- More visualization based on geographic data

References

- https://catalog.data.gov/dataset/walkability-index1
- https://wallethub.com/edu/happiest-places-to-live/32619
- https://en.wikipedia.org/wiki/Core-based statistical area
- https://www.epa.gov/smartgrowth/smart-location-mapping#Trans45

Code Repository

https://github.com/zhou-ziyan/ECE143Project