Statistical Inference Project Part 1

Damien Edwards January 19, 2015

This project will investigate the exponential distribution in R and compare it with the Central Limit Theorem. The exponential distribution function is rexp(n,lambda) and lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also 1/lambda. Set lambda = 0.2 for all of the simulations.

The simulation shown below in R used to calculate the mean:

```
lambda = 0.2
n = 40
nsims = 1000
set.seed(240)
## Theoretical values
theo_mean <- 1/lambda
theo_sigma <- 1/lambda /sqrt(n)

simulate_matrix <- matrix(rexp(nsims * n, rate=lambda), nsims, n)
simulate_mean <- rowMeans(simulate_matrix)</pre>
```

The simulation matrix data is shown below for expoloration

Histogram of exponential distribution

Comparison of Sample Mean and Theoretical Mean

```
compare_mean<-mean(simulate_mean)
theo_mean <- 1/lambda

## Mean value to compare
compare_mean

## [1] 5.026972

## Theoretical mean value
theo_mean</pre>
```

[1] 5

The distribution based on the simulations is 5.026972 and the theoretical mean value is 5. The means are close to the same center of distribution.

Comparison of Variance for the sample data and Theoretical variance

```
actual_var <- var(simulate_mean)
theo_var <- (1/lambda)^2/n
## Actual variance
actual_var</pre>
```

[1] 0.5990234

```
## Theoretical variance
theo_var
```

[1] 0.625

The actual variance value is .599 and the theoretical variance is .625. The values are close.

The distribution is approximately normal

The histogram plot of the means of the 1000 simulations of rexp(n, lambda) shown below.

stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.

The variance and mean of the sample data are similar and resemble a normal distribution. Below is the confidence intervals calculated:

```
actual_interval <- round (mean(simulate_mean) + c(-1,1)*1.96*sd(simulate_mean)/sqrt(n),3)
theory_interval <- theo_mean + c(-1,1)*1.96*sqrt(theo_var)/sqrt(n);
##Actual confidence interval
actual_interval</pre>
```

[1] 4.787 5.267

Theoretical confidence interval
theory_interval

[1] 4.755 5.245

Actual 95% confidence interval [4.787, 5.267]. Theoretical 95% confidence interval [4.755, 5.245] This shows the distribution is approximately normal.