Mineração de Dados

Conhecendo os seus Dados

Sumário

- Objetos e Tipos de Atributos
- Descrições Estatísticas Básicas dos Dados
- Visualização dos Dados
- 4 Medindo Similaridade e Dissimilaridade dos Dados

- Registros
 - Dados relacionais
 - Dados numéricos: matriz com resultado de uma simulação
 - Documentos: textos, vetores de termos frequentes
 - Dados transacionais

Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

- Redes e Grafos
 - World Wide Web
 - Redes sociais ou de informação
 - Estruturas moleculares
- Elementos ordenados
 - Vídeos: sequência de imagens
 - Dados temporais: séries temporais
 - Dados sequenciais: sequência de transações
 - Dados de uma sequência genética
- Dados espaciais: mapas ou seus elementos
- Imagens

- Dimensionalidade
 - Maldição da dimensionalidade
- Espacialidade
 - Apenas a presença conta
- Resolução
 - Padrões dependem de escala
- Distribuição
 - Centralidade e dispersão

Objetos de Dados

- Conjuntos de dados são feitos de objetos de dados
- Um objeto de dados representa uma entidade
- Exemplos de bases de dados
 - vendas: clientes, itens, vendas, . . .
 - médico: pacientes, tratamentos, . . .
 - universitário: estudantes, professores, cursos, ...
- ► Também podem ser referidos como: amostras, exemplos, instâncias, pontos, objetos, tuplas
- Objetos de dados são descritos por atributos
- Linhas do banco de dados: objetos
- Colunas do banco de dados: atributos

Atributos

- Atributo (ou dimensão, característica, variável): um dos campos que representa uma característica das amostras
 - Exemplos: identificador, nome, endereço
- Tipos
 - Nominal
 - Binário
 - Ordinal
 - Numérico: quantitativos discretos ou valores contínuos

Tipos de Atributos

- ▶ Nominal: categorias, estados ou "nomes de coisas"
 - Cores de cabelo = {preto, loiro, castanho, grisalho, ruivo, branco}
 - Estado civil, ocupação, identificadores
- Binário
 - Atributos nominais com apenas 2 estados (0 e 1)
 - ▶ Binário simétrico: ambos valores são igualmente importantes: sexo
 - ▶ Binário assimétrico: possíveis valores não são igualmente importantes: teste médico (positivo vs. negativo)
 - Convenção: atribuir 1 ao valor mais importante (e.g., HIV positivo)
- Ordinal
 - Os valores possuem alguma característica de ordenação (ou classificação)
 - Não há relevância nas diferenças entre os valores
 - ► Tamanho = {pequeno, médio, grande}, graus, classificações

Tipos de Atributos Numéricos

- Quantidades que podem ser valores inteiros ou reais
 - Os valores possuem ordem
 - Valores medidos em uma escala igual de unidades
 - Exemplos: temperatura, data, distância, contagem, quantidade monetária

Atributos Discretos vs. Contínuos

- Atributo Discreto
 - Finito ou contável
 - Exemplos: número de filhos, dias em observação, conjunto de palavras em uma coleção de documentos
 - Atributos binários são um caso particular de atributos discretos
- Atributo Contínuo
 - Valores reais
 - Exemplos: temperatura, peso, altura
 - Na prática, os valores contínuos são representados por uma quantidade finita (*float* e *double*, por exemplo)

Descrições Estatísticas Básicas dos Dados

Tipos de Atributos Numéricos

- Motivação
 - Melhorar o entendimento dos dados
 - Tendência central, variação, espalhamento
- Características de dispersão dos dados
 - mediana, máximo, mínimo, quartis, quantitativos, variância, outliers
- Dimensões numéricas correspondem a intervalos ordenados
 - Dispersão dos dados: analisada com múltiplas granularidades de precisão
 - Boxplots ou análise quantitativa em intervalos ordenados
- Análise de dispersão em medidas computadas
 - Agrupamento de medidas em dimensões calculadas
 - Boxplot ou análise quantitativa em dados transformados (data cube, por exemplo)

Medindo a Tendência Central

- Média
 - Pode ser ponderada (cálculo do Índice de Rendimento Acadêmico, por exemplo)
- Mediana
 - Ponto central de uma amostra de um número ímpar de valores; média dos pontos pontos centrais, caso contrário
- Moda
 - Valor que ocorre com mais frequência

Dados Simétricos ou Enviesados

Mineração de Dados

Medindo a Dispersão dos Dados

- Quartis: Q_1 =25%, Q_2 =50% (mediana) e Q_3 =75%
- Intervalo interquartil
- Boxplot
- ► Variância: $\sigma^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{x})^2$
- ightharpoonup Desvio padrão σ

Distribuições Normais

- Amostra normalmente distribuída
 - $[\mu \sigma; \mu + \sigma]$: engloba aproximadamente 68% dos elementos $(\mu$: média, σ : desvio padrão)
 - $\blacktriangleright [\mu 2\sigma; \mu + 2\sigma]$: engloba aproximadamente 95% dos elementos
 - ho $[\mu 3\sigma; \mu + 3\sigma]$: engloba aproximadamente 99.7% dos elementos

If Jf

Análise Gráfica: Boxplot

- Limite superior: $\min\{\max\{\mathsf{dados}\}, Q3+1, 5(Q3-Q1)\}$
- Limite inferior: $\max\{\min\{\mathsf{dados}\}, Q1-1, 5(Q3-Q1)\}$

Análise Gráfica: Boxplot

А		В		(D		
75,27	74,93	74,94	74,75	75,93	73,34	75,98	76,75	
75,33	74,72	75,25	74,65	76,95	74,04	75,61	76,78	
74,58	74,53	75,44	74,94	75,47	75	74,2	74,74	
75,01	75,32	74,62	74,92	73,6	76,18	76,44	72,58	
75,71	74,05	75,35	75,46	74,85	75,33	76,84	72,86	

- Produção de peças com valor de referência igual a 75cm
- As equipes A e B foram treinadas para produzir as peças
- É importante treinar os membros das equipes?

Fonte: http://www.portalaction.com.br/estatistica-basica/31-boxplot

If Jf

Análise Gráfica: Boxplot

- Produção de peças com valor de referência igual a 75cm
- ► As equipes A e B foram treinadas para produzir as peças
- É importante treinar os membros das equipes?

ufjf

Análise Gráfica: Histograma

Análise Gráfica: Histograma

Número de pessoas com diabetes	Frequência	Frequência relativa ($f_{ m ri}$)	Frequência percentual	Frequência acumulada
7	1	0,05	5	5
8	2	0,1	10	15
9	5	0,25	25	40
10	8	0,4	40	80
11	3	0,15	15	95
12	1	0,05	5	100

Número de pessoas com diabetes nos grupos

Fonte: http://www.portalaction.com.br/estatistica-basica/16-histograma

Jfjf

Análise Gráfica: Histograma

- Número de pessoas com diabetes nos grupos
- Indicar a que se refere os eixos

Análise Gráfica: Quantitativo/Acumulativo

If Jf

Análise Gráfica: Dispersão

Análise Gráfica: Correlação

Análise Gráfica: Dados Não Correlacionados

Visualização dos Dados

Visualização dos Dados

- ► Por que?
 - Obter insights
 - Prover uma ideia qualitativa de grandes quantidades de dados
 - Possibilitar a busca por padrões, tendências, estruturas, relações, . . .
 - Ajudar a encontrar regiões de interesse
 - Evidenciar visualmente alguma afirmação
- Existem muitos meios de visualização dos dados
- Várias linguagens e bibliotecas estão disponíveis
 - https://scikit-learn.org
 - https://www.scikit-yb.org (Yellowbrick: ML Visualization)
 - https://www.r-graph-gallery.com
- Análise gráfica: gráficos apresentados anteriormente

Visualização Orientada a *Pixel*

- Cria-se m gráficos, um correspondente a cada dimensão
- Os dados são ordenador em relação a uma variável de interesse Valor gasto em compras, por exemplo
- As cores/intensidade dos pixels refletem os valores dos registros

(a) Income

(b) Credit Limit

(c) transaction volume

(d) age

Visualização via Heatmap

- Os dados são apresentados em gráficos bidimensionais
- A intensidade (temperatura) reflete o valor de um terceiro atributo

https://www.r-graph-gallery.com/heatmap

If

Visualização dos Dados em Círculos

Facilita a visualização de relações em dados com muitas dimensões

(a) Representing a data record in circle segment

(b) Laying out pixels in circle segment

Visualização dos Dados em Círculos

https://www.scikit-yb.org/en/latest/api/features/radviz.html

Coordenadas Paralelas

Coordenadas Paralelas

https://www.scikit-yb.org/en/latest/api/features/pcoords.html

Gráficos de Dispersão

Matrix of scatterplots (x-y-diagrams) of the k-dim. data [total of (k2/2-k) scatterplots]

Gráficos de Dispersão

http://www.r-graph-gallery.com/98-basic-scatterplot-matrix

Gráficos de Dispersão

https://www.r-graph-gallery.com/199-correlation-matrix-with-ggally

Paisagem

news articles visualized as a landscape

Used by permission of B. Wright, Visible Decisions Inc.

Paisagem

http://www.brasil.gov.br/governo/2013/06/divulgados-dados-sob

Tree-Map

https://www.r-graph-gallery.com/236-custom-your-treemap

Tree-Map

Ack.: http://www.cs.umd.edu/hcil/treemaphistory/all102001.jpg

Visualização de Dados e Relações Complexas

- Visualização de dados não numéricos: textos e redes
- Exemplo: Nuvem de tag (tag cloud), em que a importância de uma tag (ou palavra) é representada pelo tamanho ou cor da fonte

Grafo de Ligações

- Ligações (arestas)
- Quantidade de ligações (raio dos círculos)
- Cor pode representar o valor de algum atributo

Gráfico Circular de Ligações

http://mkweb.bcgsc.ca/tableviewer

Gráfico Circular de Ligações

http://mkweb.bcgsc.ca/tableviewer

Medindo Similaridade e Dissimilaridade dos Dados

Similaridade e Dissimilaridade

- Similaridade
 - Medida numérica de quão parecidas duas instâncias são
 - $lackbox{ O valor \'e frequentemente normalizado em } [0;1], onde 1 indica um alto grau de similaridade$
- Dissimilaridade
 - Valor que indica o quão diferentes são duas instâncias
 - O menor valor (indicando menor dissimilaridade) é frequentemente 0
 - O limite superior pode variar
- Proximidade
 - Se referente tanto a similaridade quanto a dissimilaridade

If If

Matriz de Dados e de Dissimilaridade

Matriz de dados

Matriz de dissimilaridade

$$\begin{bmatrix} 0 & & & & & \\ 0 & d(2,1) & 0 & & & \\ 0 & d(3,1) & d(3,2) & 0 & & \\ 0 & \vdots & \vdots & \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

A similaridade pode frequentemente ser avaliada em função da dissimilaridade: sim(i,j) = 1 - d(i,j)

Medida de Proximidade para Atributos Nominais

- ▶ Podem assumir 2 ou mais estados/valores
- Uso de uma larga quantidade de atributos binários
 - Cria-se um atributo binário para cada estado possível
- Correspondência simples
 - $ightharpoonup d(i,j) = \frac{p-m}{p}$
 - lacktriangledown m é o número de correspondências e p é o número de variáveis
 - $ightharpoonup {
 m sim}(i,j) = 1 d(i,j) = 1 rac{p-m}{p} = rac{p-p+m}{p} = rac{m}{p}$

sum

Medidas de Proximidade para Atributos Binários

A contingency table for binary data

iata				(50)500
Ohie	$ect_{i=0}^{1}$	q	r	q +
Obje	0	S	t	s +
С	sum	q+s	r+t	p

Object i

- Distance measure for symmetric binary variables:
- Distance measure for asymmetric binary variables:
- Jaccard coefficient (similarity measure for asymmetric binary variables):

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

$$d(i,j) = \frac{r+s}{q+r+s}$$

$$sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$$

Exemplo: Dissimilaridade em Atributos Binários

- Gênero é um atributo simétrico
- Os demais atributos são assimétricos
- ▶ Valores Y e P são assumidos como 1 e N como 0

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

Distância em Dados Numéricos

Distância de Minkowski

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

- Propriedades
 - ightharpoonup d(i,j) > 0 se $i \neq j$ e 0, caso contrário
 - ightharpoonup d(i,j) = d(j,i) (simetria)
 - ▶ $d(i,j) \le d(i,k) + d(k,j)$ (designaldade triangular)
- Todas as distâncias que satisfazem essas propriedades são métricas
- Exemplos: Norma-1, Norma-2 e Norma infinito (máximo)

Exemplo

Data Matrix

point	attribute1	attribute2
x1	1	2
х2	3	5
х3	2	0
x4	4	5

Dissimilarity Matrix

(with Euclidean Distance)

	x1	x2	х3	x4
x1	0			
x2	3.61	0		
х3	5.1	5.1	0	
x4	4.24	1	5.39	0

Exemplo

Exemplo

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x3	2	0
x4	4	5

Manhattan (L₁)

L	x1	x2	x3	x4
x1	0			
x2	5	0		
х3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

L2	x1	x2	x3	x4
x1	0			
x2	3.61	0		
x3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum

L _∞	x1	x2	х3	x4
x1	0			
x2	3	0		
х3	2	5	0	
x4	3	1	5	0

Normalização de Dados Numéricos

- Ajustar a escala dos valores de cada atributo de forma a mapeá-los em intervalos pré-definidos
 - ▶ Normalmente, o valor padronizado $x' \in [0;1]$ ou $x' \in [-1;1]$
- Linear: $x_i' = \frac{x_i \min\{x\}}{\max\{x\} \min\{x\}}$
 - x é o conjunto de dados a serem normalizados
 - lacktriangledown x representa o conjunto de valores observados para um atributo
- **E**score-Z (padronização): $x_i' = \frac{x_i \mu}{\sigma}$
 - $\blacktriangleright \mu$: média
 - $ightharpoonup \sigma$: desvio padrão
- Soma: $x_i' = \frac{x_i}{\sum_j x_j}$
- Máximo: $x_i' = \frac{x_i}{\max\{x\}}$

Variáveis Ordinárias

- Podem ser discretas ou contínuas
- Independente do tipo, requer que os dados possam ser ordenados
- Podem ser tratadas como valores num intervalo
 - lacktriangle Substituir x_i pela sua posição numa lista ordenada (iniciando em 1)
 - Mapear a variável em [0;1]: $x_i' = \frac{x_i-1}{|x|-1}$
 - ▶ | · | é o operador de cardinalidade de conjunto
- A dissimilaridade pode ser calculada como definido para valores numéricos

 Um documento pode ser representado por diversos atributos, onde cada um representa a frequência de uma palavra (palavras-chaves) ou frase

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Outros vetores: características gênicas em micro-arrays
- Aplicações: recuperação de informação, taxonomia biológica, ...
- ▶ Cosseno: $\cos(\mathbf{d_1}, \mathbf{d_2}) = \frac{\mathbf{d_1} \cdot \mathbf{d_2}}{\|\mathbf{d_1}\| \|\mathbf{d_2}\|}$ onde $\mathbf{d_1}$ e $\mathbf{d_2}$ são vetores.

Exemplo: Cosseno

 $d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$


```
d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)
d_1 \bullet d_2 = 5 * 3 + 0 * 0 + 3 * 2 + 0 * 0 + 2 * 1 + 0 * 1 + 0 * 1 + 2 * 1 + 0 * 0 + 0 * 1 = 25
||d_1|| = (5 * 5 + 0 * 0 + 3 * 3 + 0 * 0 + 2 * 2 + 0 * 0 + 0 * 0 + 2 * 2 + 0 * 0 + 0 * 0) \circ .5 = (42) \circ .5 = 6.481
||d_2|| = (3 * 3 + 0 * 0 + 2 * 2 + 0 * 0 + 1 * 1 + 1 * 1 + 0 * 0 + 1 * 1 + 0 * 0 + 1 * 1) \circ .5 = (17) \circ .5 = 4.12
\cos(d_1, d_2) = 0.94
```

Atributos de Tipos Mistos

- Um banco de dados pode conter atributos de diversos tipos
- Uma alternativa para combinar os efeitos desses atributos é usar uma soma ponderada

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- p é o número de atributos
- $lackbox{$\delta^{(f)}_{ij}=0$ se o valor de f para alguma das instâncias i ou j não está disponível, ou $x_{if}=x_{jf}=0$ e f é um atributo binário assimétrico$
- ightharpoonup caso contrário, $\delta_{ij}^{(f)}=1$
- $\blacktriangleright \ d_{ij}^{(f)}$ é a distância (padronizada em [0;1]) entre as instâncias i e j , em relação ao atributo f

Table 2.2 A Sample Data Table Containing Attributes of Mixed Type

Object	test-l	test-2	test-3
ldentifier	(nominal)	(ordinal)	(numeric)
1	code A	excellent	45
2	code B	fair	22
3	code C	good	64
4	code A	excellent	28

$$\begin{bmatrix} 0 & & & \\ 1 & 0 & & \\ 1 & 1 & 0 & \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & & & \\ 1.0 & 0 & & \\ 0.5 & 0.5 & 0 & \\ 0 & 1.0 & 0.5 & 0 \end{bmatrix} \begin{bmatrix} 0 & & & \\ 0.55 & 0 & & \\ 0.45 & 1.00 & 0 & \\ 0.40 & 0.14 & 0.86 & 0 \end{bmatrix}$$
test-1 test-2 test-3