Lab 6 & 7

- Who has hearing sensitivity?
- Let me know if you are having issues with the sound
- I've uploaded a DEM 2 piece of sample code
 - Should be able to get to work with the LCD library
 - Simply reads the pot
 - Scales the value and generates sound
 - Outputs to the LCD

Lab 5 States & Transitions (PIC18 Explorer Board)

RB0 button push write value to EEPROM at specified address update display

Lab 5 Additional Information

- Have a 16 bit unsigned base address that is added to the 8 bit address read from the POT
 - #define BASE_EEPROM_ADDRESS 0x7F00
 - Allows us to access the full EEPROM address space
- 8MH oscillator should work
- For the POT input
 - Make left justified
 - Just read the high 8 bits (ADRESH)
- When initializing the EEPROM
 - Make sure the port directions are correct

Lab 6 States & Transitions

Lab 6 Additional Information

- I used 250kHz 16,000kHz clock frequencies
- Limit frequency to [20Hz, 800Hz]
- Remember floating point versus integer division
 - I've seen this many times cause unhappiness
- Use CCP1 & Timer6 (I used prescale of 16 for all)
- At the lower oscillator speeds, my code runs pretty slow (16MHz versus 250kHz is 64:1)
- Compute PWM period in seconds
 - 1/frequency (frequency in Hz)
- Determine oscillator frequency
 - Find largest oscillator frequency that has a max period greater than or equal to the PWM period

Lab 6 Additional Information

- Compute the pulse width in seconds
 - Pulse width = period in seconds*(duty cycle/100)
- Compute period and pulse width values for PWM
 - Tuesday slides have the formulas
- Set PR6 and 8 MSBs of CCPR1L
 - Period and pulse width
- Set pulse width 2 LSBs
 - (PW floating point value integer value)/0.25
 - Value should be 00, 01, 10, or 11
 - Set CCP1CONbits.DC1B
- Update the display

Lab 6 Additional Information

- Setting RC2 to input, instead of output, should allow you to exercise your code without generating sound (or pull jumper J9)
- Equations from data sheet
 - 14-1 gives PRx setting (period)
 - 14-2 gives CCPRxL setting (pulse width)
 - 14-3 gives duty cycle

Equation 14-1

$$PWM \ Period = [(PRx) + 1] \bullet 4 \bullet Tosc \bullet$$

$$(TMRx \ Prescale \ Value)$$

Note 1: Tosc = 1/Fosc

- Fosc = 8MHz
- PWM frequency = 20kHz
 - PWM period = 0.00005 seconds (1/20000)
- Prescale 1
- 0.00005 = [PRx + 1]*4*(1/8000000)*1
 - PRx = ((8000000*0.00005)/4) 1 (solve for PRx)
- PRx = 99

Equation 14-2

```
Pulse Width = (CCPRxL:CCPxCON<5:4>) •

TOSC • (TMRx Prescale Value)
```

- Fosc = 8MHz
- Pulse width = 0.000025 seconds (1/2 of period)
- Prescale 1
- 0.000025 = (50*4)*(1/8000000)*1
- CCPxCON = 00 is equivalent to multiplying by 4
 - The ":" in the equation is simulating 2 digit floating point math since the 4 (clock to instruction) factor is missing

Equation 14-3

Duty Cycle Ratio =
$$\frac{(CCPRxL:CCPxCON<5:4>)}{4(PRx+1)}$$

- CCPRxL = 50
- CCPxCON = 00
- PRx = 99
- 0.5 = (50*4)/(4*[99 + 1])

Lab 7 States & Transitions

Lab 7 Additional Information

- Use CCP2 and Timer2 for PWM
- Use Timer0 for 1 second interrupt
 - Compute RPS
 - Toggle between RPS & duty cycle display
- Use Timer1 to get optical interrupter count
- Setup the pins
 - RD7 & RD2 are outputs
 - RC5 and RA0 are inputs
- Set PR6 to 99 (see lab 6 PWM slides)
 - PWM period of approximately 20kHz
- Port B pullups disabled

Lab 7 Additional Information

- Enable interrupts and interrupts for Timer0
- In main loop
 - Get duty cycle from POT
 - If current pot value != last pot value
 - Update CCPR2L
- Timer0 is 8 bit
 - Will need global counter to get 1 second
- ISR
 - Update display
 - If end of 1 second window
 - Compute RPS
 - Toggle output to display

Lab 6 Table

pulse		achieved		oscillator								
	pulse period	pulse period		frequency	1	CCPRxL:			timer			pulse width
(Hz)	(ms)	(ms)	(ms)	(MHz)	PRx	CCPxCON<5:4>	CCPRxL	CCPxCON<5:4>	prescale	([0,100])	(%)	error (%)
20	50.000	49.920	25.000	0.25	194	390	97	2	16	50	0.16	0.16
50										43		
100										30		
257										40		
411	2.433	2.432	0.657	4	151	164	41	0	16	27	0.04	0.14
530										55		
650										60		
722										77		
870										32		
950										25		
1,000										51		
20,000										53		
											< 0.48	< 0.50

Lab 6 & Lab 7

- Same partner for both
- New partner that you have never worked with in this class
- Any volunteers for working alone?
- Filling out the table should validate your math is correct
- We'll figure out next week if we will have a lab 8 or how we will handle it
- Lab 6 & 7 due next Thursday
 - If you are working on lab 6 & no DEM 2 board available, the display and computations should work on the PIC18
 - Lab 8 may help alleviate a hardware shortage