

Report No: CCISE190808704

FCC REPORT

Applicant: PAX Technology Limited

Address of Applicant: Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road,

Wanchai, Hong Kong

Equipment Under Test (EUT)

Product Name: Communication Module

Model No.: CM20

Trade mark: PAX

FCC ID: V5PCM204GW

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 23 Aug., 2019

Date of Test: 24 Aug., to 16 Sep., 2019

Date of report issued: 17 Sep., 2019

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	17 Sep., 2019	Original

Mike. DU

Test Engineer Tested by: Date: 17 Sep., 2019

Reviewed by: 17 Sep., 2019 Date:

Project Engineer

3 Contents

		Page
1 C	OVER PAGE	1
2 V	ZERSION	2
3 C	ONTENTS	3
	EST SUMMARY	_
5 G	SENERAL INFORMATION	5
5.1	CLIENT INFORMATION	5
5.2	GENERAL DESCRIPTION OF E.U.T	5
5.3	TEST ENVIRONMENT AND TEST MODE	7
5.4	DESCRIPTION OF SUPPORT UNITS	
5.5	MEASUREMENT UNCERTAINTY	
5.6	RELATED SUBMITTAL(S) / GRANT (S)	
5.7	LABORATORY FACILITY	
5.8	LABORATORY LOCATION	
5.9	TEST INSTRUMENTS LIST	9
6 T	EST RESULTS AND MEASUREMENT DATA	10
6.1	ANTENNA REQUIREMENT	10
6.2	CONDUCTED EMISSION	11
6.3	CONDUCTED OUTPUT POWER	
6.4	OCCUPY BANDWIDTH	
6.5	POWER SPECTRAL DENSITY	
6.6	BAND EDGE	
6.7	Spurious Emission	
•	.7.1 Restricted Band	
•	.7.2 Unwanted Emissions out of the Restricted Bands	
6.8	FREQUENCY STABILITY	
7 T	EST SETUP PHOTO	90
8 F	UT CONSTRUCTIONAL DETAILS	91

4 Test Summary

Test Item	Section in CFR 47	Test Result			
Antenna requirement	15.203 & 15.407 (a)	Pass			
AC Power Line Conducted Emission	15.207	Pass			
Conducted Peak Output Power	15.407 (a) (1) (iv) & (a) (3)	Pass			
26dB Occupied Bandwidth	15.407 (a) (5)	Pass			
6dB Emission Bandwidth	15.407(e)	Pass			
Power Spectral Density	15.407 (a) (1) (iv) & (a) (3)	Pass			
Band Edge	15.407(b)	Pass			
Spurious Emission	15.407 (b) & 15.205 & 15.209	Pass			
Frequency Stability	15.407(g)	Pass			
Pass: The EUT complies with the essential requirements in the standard.					

5 General Information

5.1 Client Information

Applicant:	PAX Technology Limited	
Address:	Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong	
Manufacturer:	PAX Computer Technology (Shenzhen) Co., Ltd.	
Address:	401-402 No.3 Building, Software Park, Nanshandistrict, Shenzhen, Guangdong, P.R.C.	

5.2 General Description of E.U.T.

Product Name:	Communication Module
Model No.:	CM20
Operation Frequency:	Band 1: 5150MHz-5250MHz, Band 4: 5725MHz-5825MHz
Channel numbers:	Band 1: 802.11a/n/ac-HT20: 4, 802.11n/ac-HT40: 2, 802.11ac-HT80: 1 Band 4: 802.11a/n/ac-HT20: 5, 802.11 n/ac-HT40: 2, 802.11 ac-HT80: 1
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz, 802.11ac: 80MHz
Modulation technology (IEEE 802.11a):	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology (IEEE 802.11n):	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology (IEEE 802.11ac):	BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM
Data speed (IEEE 802.11a):	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps, MCS1:13Mbps,MCS2:19.5Mbps, MCS3:26Mbps, MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps, MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
Data speed (IEEE 802.11ac):	Up to 433.3Mbps
Antenna Type:	External Antenna
Antenna gain:	1.0 dBi
AC adapter:	Model: GLH0901000 Input: AC100-240V, 50/60Hz, 0.5A Output: DC 9.0V, 1.0A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
	Band 1						
802.11a/80	02.11n/ac20	80	2.11n/ac40	80)2.11ac80		
Channel	Frequency	Channel	Frequency	Channel	Frequency		
36	5180MHz	38	5190MHz	42	5210MHz		
40	5200MHz	46	5230MHz				
44	5220MHz						
48	5240MHz						
60	5300MHz						
64	5320MHz						
		Е	Band 4				
802.11a/80	02.11n/ac20	802.11n/ac40		802.11ac80			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
149	5745MHz	151	5755MHz	155	5775MHz		
153	5765MHz	159	5795MHz				
157	5785MHz						
161	5805MHz						
165	5825MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

	Band 1						
802.11a/802.11n/ac20		802.11n/ac40		802.11ac80			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
Lowest	5180MHz	Lowest	5190MHz	Middle	5210MHz		
Middle	5200MHz	Highest 5230MHz					
Highest	5240MHz						
		į	Band 4				
802.11a	a/802.11n/ac20	802.11n/ac40		802.	11ac80		
Channel	Frequency	Channel	Frequency	Channel	Frequency		
Lowest	5745MHz	Lowest	5755MHz	Middle	5775MHz		
Middle	5785MHz	Highest	5795MHz				
Highest	5825MHz						

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C	24.0 °C		
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Continuously transmitting mode	Keep the EUT in 100	0% duty cycle transmitting with modulation.		
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:				
Per-scan all kind of data rate, an	d found the follow lis	t were the worst case.		
Mode		Data rate		
802.11a		6 Mbps		
802.11n20 6.5 Mbps				
802.11n40		13 Mbps		
802.11ac		29.3 Mbps		

Report No: CCISE190808704

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
LENOVO	Laptop	SL510	2847A65	DoC

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-10-2018	11-09- 2019
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-18-2019	03-17-2020
Signal Generator	R&S	SMR20	1008100050	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	10-31-2018	10-30-2019
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	09-24-2018	09-23-2019
Simulated Station	Rohde & Schwarz	CMW500	140493	07-16-2018	07-15-2019
				07-16-2019	07-15-2020

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020		
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020		
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020		
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2021		
Cable	HP	10503A	N/A	03-18-2019	03-17-2020		
EMI Test Software	AUDIX	E3	Version: 6.110919b				

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The Wi-Fi antenna is an External antenna which cannot replace by end-user, the best case gain of the antenna is 1.0 dBi.

6.2 Conducted Emission

FCC Part15 C Section 15.2	07					
ANSI C63.10: 2013	ANSI C63.10: 2013					
150kHz to 30MHz						
Class B						
RBW=9kHz, VBW=30kHz						
,	Limit (c	dBuV)				
Frequency range (MHz)	Quasi-peak					
0.15-0.5	66 to 56*	0.15-0.5				
0.5-5	56	0.5-5				
5-30	60	5-30				
 line impedance stabilization network (L.I.S.N.). It provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed 						
Referen	ice Plane					
Test table/Insulation plan Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization	EMI Receiver	— AC power				
	nils					
Passed						
	ANSI C63.10: 2013 150kHz to 30MHz Class B RBW=9kHz, VBW=30kHz Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the logarit 1. The E.U.T and simulate line impedance stabiliz 50ohm/50uH coupling 2. The peripheral devices LISN that provides a 50 termination. (Please rephotographs). 3. Both sides of A.C. line interference. In order to positions of equipment according to ANSI C63 Referent LISN AUX Equipment LISN LISN LISN LISN E.U Test table/Insulation plan Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m Refer to section 5.9 for deta Refer to section 5.3 for deta	Class B RBW=9kHz, VBW=30kHz Frequency range (MHz) Ouasi-peak 0.15-0.5 66 to 56* 0.5-5 5-30 * Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the mine impedance stabilization network (L.I.S.N.). It 50ohm/50uH coupling impedance for the measure. 2. The peripheral devices are also connected to the LISN that provides a 50ohm/50uH coupling impetermination. (Please refer to the block diagram of photographs). 3. Both sides of A.C. line are checked for maximum interference. In order to find the maximum emiss positions of equipment and all of the interface cal according to ANSI C63.10: 2013 on conducted maximum emiss positions of equipment and all of the interface cal according to ANSI C63.10: 2013 on conducted maximum emiss positions of equipment and all of the interface cal according to ANSI C63.10: 2013 on conducted maximum emiss positions of equipment and all of the interface cal according to ANSI C63.10: 2013 on conducted maximum emiss positions of equipment and all of the interface cal according to ANSI C63.10: 2013 on conducted maximum emiss positions of equipment and all of the interface cal according to ANSI C63.10: 2013 on conducted maximum emiss positions of equipment and all of the interface cal according to ANSI C63.10: 2013 on conducted maximum emiss positions of equipment and all of the interface cal according to ANSI C63.10: 2013 on conducted maximum emiss positions of equipment and all of the interface cal according to ANSI C63.10: 2013 on conducted maximum emiss positions of equipment and all of the interface called				

Measurement Data:

Product name:	Communication Module	Product model:	CM20
Test by:	Mike	Test mode:	5G Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%
		•	

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∀	₫B	dB	dBu₹	dBu∀	<u>dB</u>	
1	0.154	39.44	-0.45	10.78	49.77	65.78	-16.01	QP
2	0.162	24.00	-0.44	10.77	34.33	55.34	-21.01	Average
3	0.461	30.08	-0.38	10.74	40.44	46.67	-6.23	Average
4	0.544	39.52	-0.39	10.76	49.89	56.00	-6.11	QP
1 2 3 4 5 6 7 8 9	0.595	30.66	-0.38	10.77	41.05	46.00	-4.95	Average
6	0.675	40.18	-0.38	10.77	50.57	56.00	-5.43	QP
7	0.697	28.42	-0.38	10.77	38.81	46.00	-7.19	Average
8	1.000	34.89	-0.38	10.87	45.38	56.00	-10.62	QP
9	1.610	34.21	-0.40	10.93	44.74	56.00	-11.26	QP
10	1.628	26.24	-0.40	10.93	36.77	46.00	-9.23	Average
11	2.435	24.57	-0.42	10.94	35.09	46.00	-10.91	Average
12	2.474	34.72	-0.43	10.94	45.23	56.00	-10.77	QP

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Communication Module	Product model:	CM20
Test by:	Mike	Test mode:	5G Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	₫B	₫B	dBu₹	dBu∀	<u>d</u> B	
1	0.182	37.35	-0.69	10.77	47.43	64.42	-16.99	QP
2	0.449	41.12	-0.65	10.74	51.21	56.89	-5.68	QP
1 2 3 4 5 6 7 8 9 10	0.481	31.76	-0.65	10.75	41.86	46.32	-4.46	Average
4	0.535	32.25	-0.65	10.76	42.36	46.00	-3.64	Average
5	0.614	31.55	-0.64	10.77	41.68	46.00	-4.32	Average
6	0.686	41.51	-0.64	10.77	51.64	56.00	-4.36	QP
7	0.994	36.47	-0.63	10.87	46.71	56.00	-9.29	QP
8	1.662	26.91	-0.66	10.94	37.19	46.00	-8.81	Average
9	2.448	26.59	-0.67	10.94	36.86	46.00	-9.14	Average
10	2.487	35.86	-0.67	10.94	46.13	56.00	-9.87	QP
11	7.368	38.14	-0.76	10.82	48.20	60.00	-11.80	QP
12	7.486	27.21	-0.76	10.83	37.28			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv) & (a) (3)				
Test Method:	ANSI C63.10: 2013, KDB789033				
Limit:	Band 1: 24dBm Band 4: 30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Band 1							
Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result			
	Lowest	9.71					
802.11a	Middle	9.98	24.00	Pass			
	Highest	9.35					
	Lowest	11.82					
802.11n20	Middle	11.77	24.00	Pass			
	Highest	11.58					
802.11n40	Lowest	11.28	24.00	Door			
002.111140	Highest	10.94	24.00	Pass			
	Lowest	9.14					
802.11ac20	Middle	9.21	24.00	Pass			
	Highest	8.95					
902 110010	Lowest	11.27	24.00	Door			
802.11ac40	Highest	11.07	24.00	Pass			
802.11ac80	Middle	11.30	24.00	Pass			

Band 4							
Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result			
	Lowest	13.11					
802.11a	Middle	12.82	30.00	Pass			
	Highest	12.63					
	Lowest	12.89					
802.11n20	Middle	12.65	30.00	Pass			
	Highest	12.48					
802.11n40	Lowest	12.40	30.00	Pass			
002.111140	Highest	12.16	30.00	Pa55			
	Lowest	12.95					
802.11ac20	Middle	12.66	30.00	Pass			
	Highest	12.54					
902 110010	Lowest	12.19	20.00	Door			
802.11ac40	Highest	12.18	30.00	Pass			
802.11ac80	Middle	12.40	30.00	Pass			

Test plot as follows:

Band 1:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)				
Test Method:	ANSI C63.10:2013 and KDB 789033				
Limit:	Band 1/2/3/4: N/A (26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz (6dB Bandwidth)				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Band 1:

T .	26dB Emission Bandwidth (MHz)							
Test Channel	802.11a	802.11n (HT20)	802.11n (HT40)	802.11ac (HT20)	802.11ac (HT40)	802.11ac (HT80)	Limit	Result
Lowest	20.56	20.98	40.31	20.49	40.21	-		
Middle	19.74	20.78		20.65		79.50	N/A	PASS
Highest	19.30	19.33	39.23	19.14	39.74	-		
.		99	9% Occupy Ba	andwidth (MHz)			
Test Channel	802.11a	802.11n (HT20)	802.11n (HT40)	802.11ac (HT20)	802.11ac (HT40)	802.11ac (HT80)	Limit	Result
Lowest	16.90	17.91	36.50	17.94	36.47			
Middle	16.84	17.96		17.91		75.58	N/A	PASS
Highest	16.87	17.95	36.54	17.94	36.53			

Band 4:

_								
Test Channel	802.11a	802.11n (HT20)	802.11n (HT40)	802.11ac (HT20)	802.11ac (HT40)	802.11ac (HT80)	Limit	Result
Lowest	20.16	20.26	40.60	20.19	40.46			
Middle	20.44	20.38		20.25		80.74	N/A	PASS
Highest	20.16	20.27	39.98	20.33	40.49			
	99% Occupy Bandwidth (MHz)							
Test Channel	802.11a	802.11n (HT20)	802.11n (HT40)	802.11ac (HT20)	802.11ac (HT40)	802.11ac (HT80)	Limit	Result
Lowest	16.89	17.98	36.46	17.96	36.47			
Middle	16.93	17.93		17.93		75.58	N/A	PASS
Highest	16.90	17.95	36.47	18.02	36.52			
- .		6d	B Emission B	andwidth (MH:	<u>z</u>)			
Test Channel	802.11a	802.11n (HT20)	802.11n (HT40)	802.11ac (HT20)	802.11ac (HT40)	802.11ac (HT80)	Limit	Result
Lowest	16.48	17.76	36.48	17.76	36.48			
Middle	16.48	17.76		17.76		75.84	>500kHz	PASS
Highest	16.48	17.84	36.64	17.76	36.32			

Test plot as follows:

Band 1:

Band 4:

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv) & (a)(3)				
Test Method:	ANSI C63.10:2013, KDB 789033				
Limit:	Band 1: 11 dBm/MHz Band 4: 30 dBm/500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

		Band 1			
Mode	Test CH	PSD (dBm)	Limit (dBm)	Result	
	Lowest	2.37			
802.11a	Middle	2.40	11.00	Pass	
	Highest	1.84			
	Lowest	1.48			
802.11n(HT20)	Middle	1.48	11.00	Pass	
	Highest	1.23			
000 44~(UT40)	Lowest	-2.12	14.00	Descri	
802.11n(HT40)	Highest	-2.38	11.00	Pass	
	Lowest	1.82			
802.11ac(HT20)	Middle	1.57	11.00	Pass	
	Highest	1.40			
000 44 00 (UT40)	Lowest	-1.84	44.00	Door	
802.11ac(HT40)	Highest	-2.34	11.00	Pass	
802.11ac(HT80)	Middle	-5.18	11.00	Pass	

		Band 4			
Mode	Test CH	PSD (dBm)	Limit (dBm)	Result	
	Lowest	5.59			
802.11a	Middle	5.68	30.00	Pass	
	Highest	5.71			
	Lowest	5.03			
802.11n20	Middle	6.21	30.00	Pass	
	Highest	5.70			
802.11n40	Lowest	2.90	30.00	Door	
602.11H40	Highest	1.92	30.00	Pass	
	Lowest	5.85			
802.11ac20	Middle	5.09	30.00	Pass	
	Highest	5.82			
902 110010	Lowest	2.31	20.00	Pass	
802.11ac40	Highest	1.48	30.00		
802.11ac80	Middle	-1.57	30.00	Pass	

Test plot as follows:

6.6 Band Edge

Test Requirement:	FCC Part 15 E Sec	tion 15.407 (b)						
Test Method:	ANSI C63.10:2013	` ,						
Receiver setup:	Detector	RBW	VBW	Remark				
Receiver setup.	Quasi-peak	120kHz	300kHz	Quasi-peak Value				
	RMS	1MHz	3MHz	Average Value				
Limit:	Band		ıV/m @3m)	Remark				
			3.20	Peak Value				
	Band 1/2/3	54	1.00	Average Value				
	Band 4	78	3.20	Peak Value				
	Danu 4	54	1.00	Average Value				
	Band 4 limit: For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz of more above or below the band edge increasinglinearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Remark: 1. Band 1/2/3 limit: E[dBμV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. 2. Band 4 limit: E[dBμV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. E[dBμV/m] = EIRP[dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. E[dBμV/m] = EIRP[dBm] + 95.2=110.8 dBuV/m, for EIPR[dBm]=15.6dBm. E[dBμV/m] = EIRP[dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=27dBm.							
Test Procedure:	the ground at a to determine the continuous antenna, which tower. 3. The antenna has the ground to a Both horizontal make the mea. 4. For each suspicase and then meters and the to find the max. 5. The test-received Specified Band. 6. If the emission the limit specified the EUT wo have 10dB max.	a 3 meter camber ne position of the set 3 meters award was mounted or eight is varied from the mall and vertical polar surement. The antenna was errotatable was to the antenna was errotatable was to the waste of the EUT ied, then testing ould be reported. Or gin would be re-	r. The table was highest radiation by from the interior of the top of a value of the EUT was arrest uned to height a value of the value of value of the value o	ference-receiving ariable-height antenna of four meters above the field strength. It antenna are set to ranged to its worst ts from 1 meter to 4 grees to 360 degrees are the ference and				

Measurement Data (worst case):

Band 1:

Danu i.										
			Ва	nd 1 – 802.11	a					
			Test cha	nnel: Lowest o	hannel					
			Dete	ector: Peak Val	ue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	52.36	36.23	7.05	41.93	53.71	68.20	-14.49	Horizontal		
5150.00	49.74	36.23	7.05	41.93	51.09	68.20	-17.11	Vertical		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	42.58	36.23	7.05	41.93	43.93	54.00	-10.07	Horizontal		
5150.00	39.43	36.23	7.05	41.93	40.78	54.00	-13.22	Vertical		
			Test cha	nnel: Highest o	channel					
			Dete	ector: Peak Val	ue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	49.32	35.37	7.11	41.89	49.91	68.20	-18.29	Horizontal		
5350.00	48.64	35.37	7.11	41.89	49.23	68.20	-18.97	Vertical		
			Detec	tor: Average V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	39.23	35.37	7.11	41.89	39.82	54.00	-14.18	Horizontal		
5350.00	39.06	35.37	7.11	41.89	39.65	54.00	-14.35	Vertical		

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band	1 - 802.11n(F	IT20)					
			Test cha	annel: Lowest	channel					
Detector: Peak										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	52.41	36.23	7.05	41.93	53.76	68.20	-14.44	Horizontal		
5150.00	49.83	36.23	7.05	41.93	51.18	68.20	-17.02	Vertical		
Detector: Average										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	41.96	36.23	7.05	41.93	43.31	54.00	-10.69	Horizontal		
5150.00	39.57	36.23	7.05	41.93	40.92	54.00	-13.08	Vertical		
				annel: Highest						
	1		Det	ector: Peak Va	lue			1		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	49.34	35.37	7.11	41.89	49.93	68.20	-18.27	Horizontal		
5350.00	48.76	35.37	7.11	41.89	49.35	68.20	-18.85	Vertical		
			Detec	ctor: Average \	/alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	39.68	35.37	7.11	41.89	40.27	54.00	-13.73	Horizontal		
5350.00	39.23	35.37	7.11	41.89	39.82	54.00	-14.18	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band	1 – 802.11n(H	T40)					
			Test cha	nnel: Lowest o	hannel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	52.83	34.98	7.05	41.93	52.93	68.20	-15.27	Horizontal		
5150.00	49.36	34.98	7.05	41.93	49.46	68.20	-18.74	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	41.84	34.98	7.05	41.93	41.94	54.00	-12.06	Horizontal		
5150.00	39.76	34.98	7.05	41.93	39.86	54.00	-14.14	Vertical		
				nnel: Highest o						
			Dete	ector: Peak Val	ue	T	T			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	49.38	35.37	35.37	7.11	41.89	68.20	-26.31	Horizontal		
5350.00	49.26	35.37	35.37	7.11	41.89	68.20	-26.31	Vertical		
			Detec	tor: Average V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	39.82	35.37	7.11	41.89	40.41	54.00	-13.59	Horizontal		
5350.00	39.43	35.37	7.11	41.89	40.02	54.00	-13.98	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band	1 - 802.11ac(HT20)					
			Test ch	annel: Lowest	channel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	51.37	36.23	7.05	41.93	52.72	68.20	-15.48	Horizontal		
5150.00	49.83	36.23	7.05	41.93	51.18	68.20	-17.02	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	40.92	36.23	7.05	41.93	42.27	54.00	-11.73	Horizontal		
5150.00	39.84	36.23	7.05	41.93	41.19	54.00	-12.81	Vertical		
			Test cha	annel: Highest	channel					
			Det	ector: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	49.37	35.37	7.11	41.89	49.96	68.20	-18.24	Horizontal		
5350.00	49.53	35.37	7.11	41.89	50.12	68.20	-18.08	Vertical		
			Dete	ctor: Average \	/alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	39.24	35.37	7.11	41.89	39.83	54.00	-14.17	Horizontal		
5350.00	39.38	35.37	7.11	41.89	39.97	54.00	-14.03	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band	1 - 802.11ac(HT40)						
			Test ch	annel: Lowest	channel						
	Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	49.46	34.98	7.05	41.93	49.56	68.20	-18.64	Horizontal			
5150.00	54.43	34.98	7.05	41.93	54.53	68.20	-13.67	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	40.63	34.98	7.05	41.93	40.73	54.00	-13.27	Horizontal			
5150.00	42.29	34.98	7.05	41.93	42.39	54.00	-11.61	Vertical			
			Test cha	annel: Highest	channel						
			Det	ector: Peak Va	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	49.37	35.37	35.37	7.11	41.89	68.20	-26.31	Horizontal			
5350.00	49.76	35.37	35.37	7.11	41.89	68.20	-26.31	Vertical			
			Dete	ctor: Average	√alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	39.24	35.37	7.11	41.89	39.83	54.00	-14.17	Horizontal			
5350.00	39.83	35.37	7.11	41.89	40.42	54.00	-13.58	Vertical			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band	1 - 802.11ac(HT80)					
			Test cha	annel: Lowest	channel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	51.78	36.23	7.05	41.93	53.13	68.20	-15.07	Horizontal		
5150.00	49.82	36.23	7.05	41.93	51.17	68.20	-17.03	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	41.26	36.23	7.05	41.93	42.61	54.00	-11.39	Horizontal		
5150.00	39.53	36.23	7.05	41.93	40.88	54.00	-13.12	Vertical		
			Test cha	annel: Highest	channel					
		ı	Det	ector: Peak Va	llue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	49.74	35.37	7.11	41.89	50.33	68.20	-17.87	Horizontal		
5350.00	49.83	35.37	7.11	41.89	50.42	68.20	-17.78	Vertical		
			Detec	ctor: Average \	/alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	39.25	35.37	7.11	41.89	39.84	54.00	-14.16	Horizontal		
5350.00	39.57	35.37	7.11	41.89	40.16	54.00	-13.84	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

			Ra	nd 4 – 802.1	12			
				nnel: Lowest				
	<u> </u>	A .		ector: Peak Va	alue	,		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5650.00	49.91	32.68	7.45	41.85	48.19	68.20	-20.01	Horizontal
5700.00	50.34	32.77	7.60	41.90	48.81	105.20	-56.39	Horizontal
5720.00	53.47	32.81	7.64	41.92	52.00	110.80	-58.80	Horizontal
5725.00	54.38	32.81	7.69	41.94	52.94	122.20	-69.26	Horizontal
5650.00	49.73	32.68	7.45	41.85	48.01	68.20	-20.19	Vertical
5700.00	50.36	32.77	7.60	41.90	48.83	105.20	-56.37	Vertical
5720.00	57.43	32.81	7.64	41.92	55.96	110.80	-54.84	Vertical
5725.00	58.67	32.81	7.69	41.94	57.23	122.20	-64.97	Vertical
			Test char	nnel: Highest	channel			
			Dete	ector: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	49.21	33.04	7.45	41.85	47.85	122.20	-74.35	Horizontal
5855.00	49.15	33.05	7.60	41.90	47.90	110.80	-62.90	Horizontal
5875.00	49.04	33.08	7.64	41.92	47.84	105.20	-57.36	Horizontal
5925.00	48.89	33.17	7.69	41.94	47.81	68.20	-20.39	Horizontal
5850.00	49.34	33.04	7.45	41.85	47.98	122.20	-74.22	Vertical
5855.00	49.26	33.05	7.60	41.90	48.01	110.80	-62.79	Vertical
5875.00	48.83	33.08	7.64	41.92	47.63	105.20	-57.57	Vertical
5925.00	48.05	33.17	7.69	41.94	46.97	68.20	-21.23	Vertical

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band	4 – 802.11n(l	HT20)			
			Test cha	nnel: Lowest	channel			
			Dete	ector: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5650.00	48.93	32.68	7.45	41.85	47.21	68.20	-20.99	Horizontal
5700.00	49.74	32.77	7.60	41.90	48.21	105.20	-56.99	Horizontal
5720.00	53.34	32.81	7.64	41.92	51.87	110.80	-58.93	Horizontal
5725.00	54.12	32.81	7.69	41.94	52.68	122.20	-69.52	Horizontal
5650.00	49.64	32.68	7.45	41.85	47.92	68.20	-20.28	Vertical
5700.00	50.06	32.77	7.60	41.90	48.53	105.20	-56.67	Vertical
5720.00	57.21	32.81	7.64	41.92	55.74	110.80	-55.06	Vertical
5725.00	58.06	32.81	7.69	41.94	56.62	122.20	-65.58	Vertical
			Test cha	nnel: Highest	channel			
			Dete	ector: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	49.76	33.04	7.45	41.85	48.40	122.20	-73.80	Horizontal
5855.00	49.34	33.05	7.60	41.90	48.09	110.80	-62.71	Horizontal
5875.00	48.96	33.08	7.64	41.92	47.76	105.20	-57.44	Horizontal
5925.00	48.64	33.17	7.69	41.94	47.56	68.20	-20.64	Horizontal
5850.00	49.87	33.04	7.45	41.85	48.51	122.20	-73.69	Vertical
5855.00	49.56	33.05	7.60	41.90	48.31	110.80	-62.49	Vertical
5875.00	48.64	33.08	7.64	41.92	47.44	105.20	-57.76	Vertical
5925.00	48.37	33.17	7.69	41.94	47.29	68.20	-20.91	Vertical

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band	4 – 802.11n(HT40)			
			Test cha	nnel: Lowest	channel			
			Dete	ector: Peak V	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5650.00	49.82	32.68	7.45	41.85	48.10	68.20	-20.10	Horizontal
5700.00	50.37	32.77	7.60	41.90	48.84	105.20	-56.36	Horizontal
5720.00	51.43	32.81	7.64	41.92	49.96	110.80	-60.84	Horizontal
5725.00	53.39	32.81	7.69	41.94	51.95	122.20	-70.25	Horizontal
5650.00	49.32	32.68	7.45	41.85	47.60	68.20	-20.60	Vertical
5700.00	51.37	32.77	7.60	41.90	49.84	105.20	-55.36	Vertical
5720.00	52.76	32.81	7.64	41.92	51.29	110.80	-59.51	Vertical
5725.00	54.12	32.81	7.69	41.94	52.68	122.20	-69.52	Vertical
			Test cha	nnel: Highest	channel			
			Dete	ector: Peak V	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	48.91	33.04	7.45	41.85	47.55	122.20	-74.65	Horizontal
5855.00	49.03	33.05	7.60	41.90	47.78	110.80	-63.02	Horizontal
5875.00	49.21	33.08	7.64	41.92	48.01	105.20	-57.19	Horizontal
5925.00	49.34	33.17	7.69	41.94	48.26	68.20	-19.94	Horizontal
5850.00	48.83	33.04	7.45	41.85	47.47	122.20	-74.73	Vertical
5855.00	49.34	33.05	7.60	41.90	48.09	110.80	-62.71	Vertical
5875.00	49.62	33.08	7.64	41.92	48.42	105.20	-56.78	Vertical
5925.00	49.87	33.17	7.69	41.94	48.79	68.20	-19.41	Vertical

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4	1 - 802.11ac((HT20)			
			Test cha	nnel: Lowest	channel			
			Dete	ector: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5650.00	48.35	32.68	7.45	41.85	46.63	68.20	-21.57	Horizontal
5700.00	48.87	32.77	7.60	41.90	47.34	105.20	-57.86	Horizontal
5720.00	52.87	32.81	7.64	41.92	51.40	110.80	-59.40	Horizontal
5725.00	53.36	32.81	7.69	41.94	51.92	122.20	-70.28	Horizontal
5650.00	48.96	32.68	7.45	41.85	47.24	68.20	-20.96	Vertical
5700.00	49.34	32.77	7.60	41.90	47.81	105.20	-57.39	Vertical
5720.00	52.46	32.81	7.64	41.92	50.99	110.80	-59.81	Vertical
5725.00	53.48	32.81	7.69	41.94	52.04	122.20	-70.16	Vertical
			Test cha	nnel: Highest	channel			
			Dete	ector: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	50.38	33.04	7.45	41.85	49.02	122.20	-73.18	Horizontal
5855.00	49.53	33.05	7.60	41.90	48.28	110.80	-62.52	Horizontal
5875.00	48.64	33.08	7.64	41.92	47.44	105.20	-57.76	Horizontal
5925.00	48.23	33.17	7.69	41.94	47.15	68.20	-21.05	Horizontal
5850.00	50.76	33.04	7.45	41.85	49.40	122.20	-72.80	Vertical
5855.00	49.83	33.05	7.60	41.90	48.58	110.80	-62.22	Vertical
5875.00	49.26	33.08	7.64	41.92	48.06	105.20	-57.14	Vertical
5925.00	48.67	33.17	7.69	41.94	47.59	68.20	-20.61	Vertical

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT40)										
			Test cha	nnel: Lowest	channel						
			Dete	ector: Peak Va	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5650.00	48.43	32.68	7.45	41.85	46.71	68.20	-21.49	Horizontal			
5700.00	48.97	32.77	7.60	41.90	47.44	105.20	-57.76	Horizontal			
5720.00	52.76	32.81	7.64	41.92	51.29	110.80	-59.51	Horizontal			
5725.00	53.47	32.81	7.69	41.94	52.03	122.20	-70.17	Horizontal			
5650.00	48.94	32.68	7.45	41.85	47.22	68.20	-20.98	Vertical			
5700.00	49.23	32.77	7.60	41.90	47.70	105.20	-57.50	Vertical			
5720.00	52.48	32.81	7.64	41.92	51.01	110.80	-59.79	Vertical			
5725.00	53.64	32.81	7.69	41.94	52.20	122.20	-70.00	Vertical			
			Test cha	nnel: Highest	channel						
			Dete	ector: Peak Va	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	50.47	33.04	7.45	41.85	49.11	122.20	-73.09	Horizontal			
5855.00	49.83	33.05	7.60	41.90	48.58	110.80	-62.22	Horizontal			
5875.00	48.67	33.08	7.64	41.92	47.47	105.20	-57.73	Horizontal			
5925.00	48.41	33.17	7.69	41.94	47.33	68.20	-20.87	Horizontal			
5850.00	50.83	33.04	7.45	41.85	49.47	122.20	-72.73	Vertical			
5855.00	49.37	33.05	7.60	41.90	48.12	110.80	-62.68	Vertical			
5875.00	48.76	33.08	7.64	41.92	47.56	105.20	-57.64	Vertical			
5925.00	48.39	33.17	7.69	41.94	47.31	68.20	-20.89	Vertical			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4	l – 802.11ac(HT80)			
			Test cha	nnel: Middle	channel			
			Dete	ector: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5650.00	49.30	32.68	7.45	41.85	47.58	68.20	-20.62	Horizontal
5700.00	50.33	32.77	7.60	41.90	48.80	105.20	-56.40	Horizontal
5720.00	56.71	32.81	7.64	41.92	55.24	110.80	-55.56	Horizontal
5725.00	58.52	32.81	7.69	41.94	57.08	122.20	-65.12	Horizontal
5650.00	49.38	32.68	7.45	41.85	47.66	68.20	-20.54	Vertical
5700.00	51.46	32.77	7.60	41.90	49.93	105.20	-55.27	Vertical
5720.00	59.39	32.81	7.64	41.92	57.92	110.80	-52.88	Vertical
5725.00	59.62	32.81	7.69	41.94	58.18	122.20	-64.02	Vertical
			Test cha	nnel: Middle	channel			
			Dete	ector: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	48.95	33.04	7.45	41.85	47.59	122.20	-74.61	Horizontal
5855.00	47.96	33.05	7.60	41.90	46.71	110.80	-64.09	Horizontal
5875.00	49.09	33.08	7.64	41.92	47.89	105.20	-57.31	Horizontal
5925.00	48.81	33.17	7.69	41.94	47.73	68.20	-20.47	Horizontal
5850.00	48.44	33.04	7.45	41.85	47.08	122.20	-75.12	Vertical
5855.00	49.73	33.05	7.60	41.90	48.48	110.80	-62.32	Vertical
5875.00	48.70	33.08	7.64	41.92	47.50	105.20	-57.70	Vertical
5925.00	49.53	33.17	7.69	41.94	48.45	68.20	-19.75	Vertical

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

Test Requirement: FCC Part15 E Section 15.407(b) Test Method: ANSI C63.10: 2013 Test Frequency Range: 4.5 GHz to 5.15 GHz and 5.35GHz to 5.46GHz Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Remark Above 1GHz RMS 1MHz 3MHz Peak Value Limit: Frequency Limit (dBuV/m @3m) Remark Above 1GHz Frequency Limit (dBuV/m @3m) Remark Above 1GHz F.4.00 Peak Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground at determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotat table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified shandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup:	6.7.1 Restricted Band								
Test Frequency Range: Test site: Measurement Distance: 3m Receiver setup: Frequency Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz Above 1GHz RMS 1MHz Above 1GHz Frequency Limit: Frequency Limit (dBuV/m @3m) Remark Above 1GHZ Above 1GHZ Above 1GHZ Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test setup: Test Instruments: Refer to section 5.9 for details Refer to section 5.3 for details	Test Requirement:	FCC Part15 E Se	ection 15.407	(b)					
Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Average Value RMS 1MHz 3MHz Average Value RMS 1MHz 3MHz Average Value RMS 1MHz Maximum Remark Above 1GHz 74.00 Peak Value Above 1GHz 54.00 Average Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Test Instruments: Refer to section 5.9 for details Refer to section 5.3 for details Refer t	Test Method:	ANSI C63.10: 20)13						
Receiver setup: Frequency Detector RBW VBW Remark	Test Frequency Range:	4.5 GHz to 5.15	GHz and 5.3	5GHz to 5.46G	Hz				
Limit: Frequency Limit (dBuV/m @3m) Remark	Test site:	Measurement Di	stance: 3m						
Limit: Frequency Limit (dBuV/m @3m) Remark Above 1GHz 54.00 Peak Value Above 1GHz 54.00 Average Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was sel 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak value of the EUT mesison level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak value of the EUT meak mode was 10dB nargin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test setup: Test setup: Refer to section 5.9 for details Refer to section 5.3 for details	Receiver setup:	Frequency							
Limit: Frequency		Above 1GHz							
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test setup: Test Instruments: Refer to section 5.9 for details Refer to section 5.3 for details	Limit:	Frequency							
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test setup: Test Instruments: Refer to section 5.9 for details Refer to section 5.3 for details				74.00					
the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test setup: Test Instruments: Refer to section 5.9 for details Refer to section 5.3 for details									
Test Instruments: Refer to section 5.9 for details Test mode: Refer to section 5.3 for details	Test Procedure:	the ground a to determine 2. The EUT was antenna, wh tower. 3. The antenna the ground the ground the Both horizon make the m 4. For each su case and the meters and to find the m 5. The test-reconstruction Specified Bath the limit specified Ba	at a 3 meter of the position as set 3 meter of the position as set 3 meter of the position as set 3 meter of the and vertice as a second the and the rota table of the could be reparagin would be reparagin would be the position of the posi	camber. The tage of the highest of the highest of the highest on the top of the maximum of the was turned from the was turned from the was set to Perform Maximum Howe EUT in peak of the could be orted. Otherwise of the the tested of the maximum of the tested of the tes	ble was radiation, he interfer to fa variumeter to favalue of the sof the a was arrango heights om 0 degrade Detect Id Mode, mode was stopped se the emone by one	rotated 360 degrees a. erence-receiving riable-height antenna four meters above the field strength. antenna are set to anged to its worst a from 1 meter to 4 grees to 360 degrees at Function and as 10dB lower than and the peak values hissions that did not he using peak, quasi-			
Test mode: Refer to section 5.3 for details	Test setup:		(Turntable)	Ground Reference Plane		Tower			
	Test Instruments:	Refer to section 5.9 for details							
	Test mode:	Refer to section	5.3 for details	3					
Test results: Passed	Test results:	Passed							

Measurement Data (worst case):

Band 1:

Danu i.								
			Ва	nd 1 – 802.11	а			
			Test cha	nnel: Lowest o	hannel			
			Dete	ector: Peak Va	lue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	48.97	34.50	6.80	42.05	48.22	74.00	-25.78	Horizontal
4500.00	49.35	34.50	6.80	42.05	48.60	74.00	-25.40	Vertical
			Detec	tor: Average V	'alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	38.46	34.50	6.80	42.05	37.71	54.00	-16.29	Horizontal
4500.00	39.34	34.50	6.80	42.05	38.59	54.00	-15.41	Vertical
			Test cha	nnel: Highest	channel			
			Dete	ector: Peak Va	lue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	49.28	34.90	7.18	41.85	49.51	74.00	-24.49	Horizontal
5460.00	48.86	34.90	7.18	41.85	49.09	74.00	-24.91	Vertical
			Detec	tor: Average V	'alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	39.74	34.90	7.18	41.85	39.97	54.00	-14.03	Horizontal
5460.00	39.38	34.90	7.18	41.85	39.61	54.00	-14.39	Vertical

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 - 802.11n(HT20)									
				nnel: Lowest o	<u> </u>				
			Dete	ector: Peak Val	ue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	49.06	34.50	6.80	42.05	48.31	74.00	-25.69	Horizontal	
4500.00	49.24	34.50	6.80	42.05	48.49	74.00	-25.51	Vertical	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	38.76	34.50	6.80	42.05	38.01	54.00	-15.99	Horizontal	
4500.00	38.67	34.50	6.80	42.05	37.92	54.00	-16.08	Vertical	
			Test cha	nnel: Highest o	hannel				
			Dete	ector: Peak Val	ue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	49.53	34.90	7.18	41.85	49.76	74.00	-24.24	Horizontal	
5460.00	48.71	34.90	7.18	41.85	48.94	74.00	-25.06	Vertical	
			Detec	tor: Average V	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	38.56	34.90	7.18	41.85	38.79	54.00	-15.21	Horizontal	
5460.00	38.62	34.90	7.18	41.85	38.85	54.00	-15.15	Vertical	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11n(HT40)										
			Test cha	annel: Lowest o	hannel						
			Dete	ector: Peak Va	lue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	49.86	34.50	6.80	42.05	49.11	74.00	-24.89	Horizontal			
4500.00	49.37	34.50	6.80	42.05	48.62	74.00	-25.38	Vertical			
	Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	38.48	34.50	6.80	42.05	37.73	54.00	-16.27	Horizontal			
4500.00	38.31	34.50	6.80	42.05	37.56	54.00	-16.44	Vertical			
			Tost cha	nnel: Highest o	channol						
				ector: Peak Va							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	49.57	34.90	7.18	41.85	49.80	74.00	-24.20	Horizontal			
5460.00	49.83	34.90	7.18	41.85	50.06	74.00	-23.94	Vertical			
			Detec	tor: Average V	'alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	49.25	34.90	7.18	41.85	49.48	54.00	-4.52	Horizontal			
5460.00	49.83	34.90	7.18	41.85	50.06	54.00	-3.94	Vertical			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 - 802.11ac(HT20)										
			Test cha	nnel: Lowest o	hannel					
			Dete	ector: Peak Va	lue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	49.37	34.50	6.80	42.05	48.62	74.00	-25.38	Horizontal		
4500.00	49.64	34.50	6.80	42.05	48.89	74.00	-25.11	Vertical		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	38.89	34.50	6.80	42.05	38.14	54.00	-15.86	Horizontal		
4500.00	38.74	34.50	6.80	42.05	37.99	54.00	-16.01	Vertical		
			Test cha	nnel: Highest o	channel					
				ector: Peak Va						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	49.54	34.90	7.18	41.85	49.77	74.00	-24.23	Horizontal		
5460.00	49.37	34.90	7.18	41.85	49.60	74.00	-24.40	Vertical		
			Detec	tor: Average V	'alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	39.37	34.90	7.18	41.85	39.60	54.00	-14.40	Horizontal		
5460.00	39.26	34.90	7.18	41.85	39.49	54.00	-14.51	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band '	1 - 802.11ac(F	IT40)					
			Test cha	nnel: Lowest o	hannel					
			Dete	ector: Peak Val	lue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	49.75	34.50	6.80	42.05	49.00	74.00	-25.00	Horizontal		
4500.00	49.82	34.50	6.80	42.05	49.07	74.00	-24.93	Vertical		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	38.94	34.50	6.80	42.05	38.19	54.00	-15.81	Horizontal		
4500.00	38.49	34.50	6.80	42.05	37.74	54.00	-16.26	Vertical		
				nnel: Highest o						
	T	T	Dete	ector: Peak Val	ue		T			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	49.71	34.90	7.18	41.85	49.94	74.00	-24.06	Horizontal		
5460.00	49.53	34.90	7.18	41.85	49.76	74.00	-24.24	Vertical		
			Detec	tor: Average V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	39.31	34.90	7.18	41.85	39.54	54.00	-14.46	Horizontal		
5460.00	39.42	34.90	7.18	41.85	39.65	54.00	-14.35	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 1	I - 802.11ac(F	IT80)				
			Test cha	nnel: Lowest c	hannel				
			Dete	ector: Peak Val	ue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	49.23	34.50	6.80	42.05	48.48	74.00	-25.52	Horizontal	
4500.00	49.36	34.50	6.80	42.05	48.61	74.00	-25.39	Vertical	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	38.25	34.50	6.80	42.05	37.50	54.00	-16.50	Horizontal	
4500.00	38.43	34.50	6.80	42.05	37.68	54.00	-16.32	Vertical	
			Test cha	nnel: Highest o	hannel				
			Dete	ector: Peak Val	ue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	49.12	34.90	7.18	41.85	49.35	74.00	-24.65	Horizontal	
5460.00	49.47	34.90	7.18	41.85	49.70	74.00	-24.30	Vertical	
			Detec	tor: Average V	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	38.86	34.90	7.18	41.85	39.09	54.00	-14.91	Horizontal	
5460.00	39.31	34.90	7.18	41.85	39.54	54.00	-14.46	Vertical	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

			Ва	nd 4 – 802.11	а					
			Test cha	nnel: Lowest	channel					
			Dete	ector: Peak Va	lue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	49.52	35.37	7.11	41.89	50.11	74.00	-23.89	Horizontal		
5350.00	49.48	35.37	7.11	41.89	50.07	74.00	-23.93	Vertical		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	38.91	35.37	7.11	41.89	39.50	54.00	-14.50	Horizontal		
5350.00	39.86	35.37	7.11	41.89	40.45	54.00	-13.55	Vertical		
			Test cha	nnel: Lowest o	channel					
			Dete	ector: Peak Va	lue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	49.59	34.90	7.18	41.85	49.82	74.00	-24.18	Horizontal		
5460.00	49.37	34.90	7.18	41.85	49.60	74.00	-24.40	Vertical		
			Detec	tor: Average V	'alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	38.75	34.90	7.18	41.85	38.98	54.00	-15.02	Horizontal		
5460.00	38.43	34.90	7.18	41.85	38.66	54.00	-15.34	Vertical		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4 – 802.11n(HT20)										
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	49.42	35.37	7.11	41.89	50.01	74.00	-23.99	Horizontal		
5350.00	49.38	35.37	7.11	41.89	49.97	74.00	-24.03	Vertical		
			Detec	tor: Average V	'alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	39.47	35.37	7.11	41.89	40.06	54.00	-13.94	Horizontal		
5350.00	39.56	35.37	7.11	41.89	40.15	54.00	-13.85	Vertical		
			Test cha	nnel: Lowest o	channel					
			Dete	ector: Peak Va	lue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	49.21	34.90	7.18	41.85	49.44	74.00	-24.56	Horizontal		
5460.00	49.83	34.90	7.18	41.85	50.06	74.00	-23.94	Vertical		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	38.58	34.90	7.18	41.85	38.81	54.00	-15.19	Horizontal		
5460.00	38.96	34.90	7.18	41.85	39.19	54.00	-14.81	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4 – 802.11n(HT40)										
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	49.57	35.37	7.11	41.89	50.16	74.00	-23.84	Horizontal		
5350.00	49.86	35.37	7.11	41.89	50.45	74.00	-23.55	Vertical		
			Detec	tor: Average V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	39.78	35.37	7.11	41.89	40.37	54.00	-13.63	Horizontal		
5350.00	39.64	35.37	7.11	41.89	40.23	54.00	-13.77	Vertical		
			Test cha	annel: Lowest o	hannel					
			Dete	ector: Peak Va	ue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	49.76	34.90	7.18	41.85	49.99	74.00	-24.01	Horizontal		
5460.00	49.38	34.90	7.18	41.85	49.61	74.00	-24.39	Vertical		
			Detec	tor: Average V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	39.34	34.90	7.18	41.85	39.57	54.00	-14.43	Horizontal		
5460.00	39.56	34.90	7.18	41.85	39.79	54.00	-14.21	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4 – 802.11ac(HT20)										
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	49.35	35.37	7.11	41.89	49.94	74.00	-24.06	Horizontal		
5350.00	49.56	35.37	7.11	41.89	50.15	74.00	-23.85	Vertical		
			Detec	tor: Average V	'alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	38.79	35.37	7.11	41.89	39.38	54.00	-14.62	Horizontal		
5350.00	39.14	35.37	7.11	41.89	39.73	54.00	-14.27	Vertical		
			Test cha	innel: Lowest o	channel					
			Dete	ector: Peak Va	lue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	49.52	34.90	7.18	41.85	49.75	74.00	-24.25	Horizontal		
5460.00	49.37	34.90	7.18	41.85	49.60	74.00	-24.40	Vertical		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	38.96	34.90	7.18	41.85	39.19	54.00	-14.81	Horizontal		
5460.00	39.58	34.90	7.18	41.85	39.81	54.00	-14.19	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4 – 802.11ac(HT40)										
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	49.25	35.37	7.11	41.89	49.84	74.00	-24.16	Horizontal		
5350.00	49.37	35.37	7.11	41.89	49.96	74.00	-24.04	Vertical		
			Detec	tor: Average V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	38.96	35.37	7.11	41.89	39.55	54.00	-14.45	Horizontal		
5350.00	39.05	35.37	7.11	41.89	39.64	54.00	-14.36	Vertical		
				nnel: Lowest c						
	I	T		ector: Peak Val						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	49.27	34.90	7.18	41.85	49.50	74.00	-24.50	Horizontal		
5460.00	49.39	34.90	7.18	41.85	49.62	74.00	-24.38	Vertical		
			Detec	tor: Average V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	38.34	34.90	7.18	41.85	38.57	54.00	-15.43	Horizontal		
5460.00	39.29	34.90	7.18	41.85	39.52	54.00	-14.48	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4 – 802.11ac(HT80)										
Test channel: Middle channel										
Detector: Peak Value										
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over Limit	Polarizatio		
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	n		
5350.00	49.35	35.37	7.11	41.89	49.94	74.00	-24.06	Horizontal		
5350.00	49.53	35.37	7.11	41.89	50.12	74.00	-23.88	Vertical		
			Detec	tor: Average V	alue					
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over Limit	Polarizatio		
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	n		
5350.00	39.06	35.37	7.11	41.89	39.65	54.00	-14.35	Horizontal		
5350.00	39.23	35.37	7.11	41.89	39.82	54.00	-14.18	Vertical		
			Test cha	annel: Middle c	hannel					
			Dete	ector: Peak Val	ue					
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over Limit	Polarizatio		
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	n		
5460.00	38.64	34.90	7.18	41.85	38.87	74.00	-35.13	Horizontal		
5460.00	39.53	34.90	7.18	41.85	39.76	74.00	-34.24	Vertical		
			Detec	tor: Average V	alue					
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over Limit	Polarizatio		
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	n		
5460.00	38.64	34.90	7.18	41.85	38.87	54.00	-15.13	Horizontal		
5460.00	38.92	34.90	7.18	41.85	39.15	54.00	-14.85	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions out of the Restricted Bands

Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2013								
Test Frequency Range:	30MHz to 40GHz								
Test site:	Measurement Di	Measurement Distance: 3m							
Receiver setup:	Frequency Detector RBW VBV					Remark			
	30MHz-1GHz	Quasi-peak			Hz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	ЗМН	Ηz	Peak Value			
		RMS	1MHz	3MH	Ηz	Average Value			
Limit:	Frequency		nit (dBuV/m @3	Bm)	Remark				
	30MHz-88MI		40.0		Quasi-peak Value				
	88MHz-216M		43.5			uasi-peak Value			
	216MHz-960N		46.0			uasi-peak Value			
	960MHz-1GI	HZ	54.0		QI	uasi-peak Value			
	Above 1GH	z	68.20 54.00			Peak Value Average Value			
	Remark:		54.00			Average value			
	Above 1GHz limit:								
	$E[dB\mu V/m] = EIRF$	P[dBm] + 95.2=68	3.2 dBuV/m, for	EIPR[dE	3m]=-2	27dBm.			
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 								
Test setup:	Below 1GHz	Table	lim	RF 1	Search Antenna Test eiver				

Measurement Data (worst case):

Below 1GHz

Product Name:	Communication Module	Product Model:	CM20
Test By:	Mike	Test mode:	5G Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor				Limit Line		
	MHz	dBu∜	dB/m	dB	<u>ab</u>	dBuV/m	dBu∜/m	<u>d</u> B	
1	41.567	52.03	12.37	1.24	29.89	35.75	40.00	-4.25	QP
1 2 3 4 5 6	46.016	51.26	12.26	1.28	29.85	34.95	40.00	-5.05	QP
3	53.318	53.07	11.76	1.32	29.81	36.34	40.00	-3.66	QP
4	59.441	54.36	11.42	1.38	29.77	37.39	40.00	-2.61	QP
5	98.142	48.85	12.04	1.97	29.54	33.32	43.50	-10.18	QP
6	130.379	49.44	10.14	2.29	29.33	32.54	43.50	-10.96	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Communication Module	Product Model:	CM20
Test By:	Mike	Test mode:	5G Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

			Antenna				Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	$-\overline{dB}/\overline{m}$	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
1	58.407	47.32	11.46	1.37	29.78	30.37	40.00	-9.63	QP
1 2 3	99.528	50.66	12.41	1.95	29.53	35.49	43.50	-8.01	QP
3	140.342	50.11	9.50	2.41	29.27	32.75	43.50	-10.75	QP
4	178.758	45.08	9.93	2.72	28.98	28.75	43.50	-14.75	QP
5	261.058	42.88	12.91	2.84	28.52	30.11	46.00	-15.89	QP
4 5 6	851.035	34.19	22.59	4.18	28.00	32.96	46.00	-13.04	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz: Band 1:

Danu I.								
			Ban	nd 1 – 802.11a	l			
			Test chan	nel: Lowest ch	nannel			
		<u>, </u>	Detec	ctor: Peak Valu	ıe			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10360.00	49.83	40.10	9.82	41.97	57.78	68.20	-10.42	Vertical
10360.00	49.64	40.10	9.82	41.97	57.59	68.20	-10.61	Horizontal
		<u>, </u>	Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10360.00	40.16	40.10	9.82	41.97	48.11	54.00	-5.89	Vertical
10360.00	39.87	40.10	9.82	41.97	47.82	54.00	-6.18	Horizontal
			Test char	nnel: Middle ch	annel			
			Detec	ctor: Peak Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10400.00	48.89	40.00	9.85	41.95	56.79	68.20	-11.41	Vertical
10400.00	48.67	40.00	9.85	41.95	56.57	68.20	-11.63	Horizontal
		<u>, </u>	Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10400.00	38.64	40.00	9.85	41.95	46.54	54.00	-7.46	Vertical
10400.00	38.26	40.00	9.85	41.95	46.16	54.00	-7.84	Horizontal
			Test chan	nel: Highest cl	nannel			
			Detec	ctor: Peak Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10480.00	48.96	39.70	9.96	41.88	56.74	68.20	-11.46	Vertical
10480.00	49.87	39.70	9.96	41.88	57.65	68.20	-10.55	Horizontal
			Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10480.00	38.64	39.70	9.96	41.88	46.42	54.00	-7.58	Vertical
10480.00	38.59	39.70	9.96	41.88	46.37	54.00	-7.63	Horizontal
Pomark:						-	·	

Remark:

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.
 The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 1	- 802.11n(HT	⁻ 20)			
			Test chan	nel: Lowest ch	iannel			
			Detec	tor: Peak Valu	ie			
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10360.00	49.89	40.10	9.82	41.97	57.84	68.20	-10.36	Vertical
10360.00	48.96	40.10	9.82	41.97	56.91	68.20	-11.29	Horizontal
			Detecto	or: Average Va	lue			
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10360.00	39.64	40.10	9.82	41.97	47.59	54.00	-6.41	Vertical
10360.00	39.58	40.10	9.82	41.97	47.53	54.00	-6.47	Horizontal
			Test char	nel: Middle ch	annel			
			Detec	ctor: Peak Valu	ie		T	
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10400.00	49.58	40.00	9.85	41.95	57.48	68.20	-10.72	Vertical
10400.00	49.96	40.00	9.85	41.95	57.86	68.20	-10.34	Horizontal
			Detecto	or: Average Va	lue			
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10400.00	39.37	40.00	9.85	41.95	47.27	54.00	-6.73	Vertical
10400.00	39.56	40.00	9.85	41.95	47.46	54.00	-6.54	Horizontal
				nel: Highest ch				
	T			ctor: Peak Valu	ie I	T	T	
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10480.00	50.37	39.70	9.96	41.88	58.15	68.20	-10.05	Vertical
10480.00	49.98	39.70	9.96	41.88	57.76	68.20	-10.44	Horizontal
			Detecto	or: Average Va	lue		ı	
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10480.00	40.67	39.70	9.96	41.88	48.45	54.00	-5.55	Vertical
10480.00	39.58	39.70	9.96	41.88	47.36	54.00	-6.64	Horizontal
Romark.	· · · · · · · · · · · · · · · · · · ·	-	-				•	-

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 1	– 802.11n(HT	40)			
			Test chan	nel: Lowest ch	annel			
			Detec	tor: Peak Valu	е			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
10380.00	49.68	40.00	9.85	41.95	57.58	68.20	-10.62	Vertical
10380.00	49.53	40.00	9.85	41.95	57.43	68.20	-10.77	Horizontal
			Detecto	r: Average Va	ue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
10380.00	40.52	40.00	9.85	41.95	48.42	54.00	-5.58	Vertical
10380.00	39.86	40.00	9.85	41.95	47.76	54.00	-6.24	Horizontal
			Test chann	nel: Highest ch	annel			
			Detec	tor: Peak Valu	е			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
10460.00	50.16	39.80	9.92	41.90	57.98	68.20	-10.22	Vertical
10460.00	49.68	39.80	9.92	41.90	57.50	68.20	-10.70	Horizontal
			Detecto	r: Average Va	ue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
10460.00	40.74	39.80	9.92	41.90	48.56	54.00	-5.44	Vertical
10460.00	39.58	39.80	9.92	41.90	47.40	54.00	-6.60	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				- 802.11ac(H				
			Test chan	inel: Lowest ch	annel			
	l		Detec	ctor: Peak Valu	е		T	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10360.00	50.48	40.10	9.82	41.97	58.43	68.20	-9.77	Vertical
10360.00	49.86	40.10	9.82	41.97	57.81	68.20	-10.39	Horizontal
			Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10360.00	40.13	40.10	9.82	41.97	48.08	54.00	-5.92	Vertical
10360.00	49.85	40.10	9.82	41.97	57.80	54.00	3.80	Horizontal
			Test char	nnel: Middle ch	annel	_		
			Detec	ctor: Peak Valu	е			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10400.00	50.52	40.00	9.85	41.95	58.42	68.20	-9.78	Vertical
10400.00	49.96	40.00	9.85	41.95	57.86	68.20	-10.34	Horizontal
			Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10400.00	40.85	40.00	9.85	41.95	48.75	54.00	-5.25	Vertical
10400.00	39.93	40.00	9.85	41.95	47.83	54.00	-6.17	Horizontal
			Test chan	nel: Highest ch	nannel			
			Detec	ctor: Peak Valu	е			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10480.00	50.47	39.70	9.96	41.88	58.25	68.20	-9.95	Vertical
10480.00	49.89	39.70	9.96	41.88	57.67	68.20	-10.53	Horizontal
			Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10480.00	40.36	39.70	9.96	41.88	48.14	54.00	-5.86	Vertical
10480.00 Remark:	39.85	39.70	9.96	41.88	47.63	54.00	-6.37	Horizontal

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.
 The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 1	– 802.11ac(H	Γ40)			
			Test chan	nel: Lowest ch	annel			
			Detec	ctor: Peak Valu	ie			
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10380.00	49.38	40.00	9.85	41.95	57.28	68.20	-10.92	Vertical
10380.00	48.95	40.00	9.85	41.95	56.85	68.20	-11.35	Horizontal
			Detecto	or: Average Va	lue			
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10380.00	39.46	40.00	9.85	41.95	47.36	54.00	-6.64	Vertical
10380.00	38.64	40.00	9.85	41.95	46.54	54.00	-7.46	Horizontal
				nel: Highest ch				
			1	ctor: Peak Valu		<u> </u>	l .	
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10460.00	50.34	39.80	9.92	41.90	58.16	68.20	-10.04	Vertical
10460.00	49.58	39.80	9.92	41.90	57.40	68.20	-10.80	Horizontal
			Detecto	or: Average Va	lue			
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10460.00	40.36	39.80	9.92	41.90	48.18	54.00	-5.82	Vertical
10460.00	39.58	39.80	9.92	41.90	47.40	54.00	-6.60	Horizontal

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 1	– 802.11ac(H	Г80)			
			Test char	nel: Middle ch	annel			
			Detec	ctor: Peak Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10420.00	47.16	40.10	9.82	41.97	55.11	68.20	-13.09	Vertical
10420.00	48.52	40.10	9.82	41.97	56.47	68.20	-11.73	Horizontal
			Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10420.00	39.85	40.10	9.82	41.97	47.80	54.00	-6.20	Vertical
10420.00	39.15	40.10	9.82	41.97	47.10	54.00	-6.90	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

			Ban	nd 4 – 802.11a	l			
			Test chan	nel: Lowest ch	nannel			
			Detec	ctor: Peak Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11490.00	49.89	41.50	10.81	42.29	59.91	74.00	-14.09	Vertical
11490.00	48.97	41.50	10.81	42.29	58.99	74.00	-15.01	Horizontal
			Detecto	or: Average Va	llue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11490.00	39.56	41.50	10.81	42.29	49.58	54.00	-4.42	Vertical
11490.00	38.95	41.50	10.81	42.29	48.97	54.00	-5.03	Horizontal

Detector: Peak Value Frequency (MHz) Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) Limit Line (dBuV/m) Over Limit (dB) Polarization 11570.00 49.58 41.38 10.78 42.27 59.47 74.00 -14.53 Vertical
(MHz) (dBuV) Factor (dB/m) Loss (dB) Factor (dB) (dBuV/m) (dBuV/m) (dB)
11570 00 40 50 41 20 40 70 42 27 50 47 74 00 14 52 Vertical
11570.00 49.58 41.38 10.78 42.27 59.47 74.00 -14.53 Vertical
11570.00 48.96 41.38 10.78 42.27 58.85 74.00 -15.15 Horizonta
Detector: Average Value
Frequency (MHz) Read Level Antenna Cable Preamp Level Limit Line Over Limit (MHz) (dBuV) Factor (dB/m) Loss (dB) Factor (dB) (dBuV/m) (dBuV/m) (dB) Polarization
11570.00 39.37 41.38 10.78 42.27 49.26 54.00 -4.74 Vertical
11570.00 38.46 41.38 10.78 42.27 48.35 54.00 -5.65 Horizonta

Test channel: Highest channel								
Detector: Peak Value								
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
49.89	41.26	10.76	42.26	59.65	74.00	-14.35	Vertical	
49.34	41.26	10.76	42.26	59.10	74.00	-14.90	Horizontal	
		Detecto	or: Average Va	llue				
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
39.57	41.26	10.76	42.26	49.33	54.00	-4.67	Vertical	
39.34	41.26	10.76	42.26	49.10	54.00	-4.90	Horizontal	
	(dBuV) 49.89 49.34 Read Level (dBuV) 39.57	(dBuV) Factor (dB/m) 49.89 41.26 49.34 41.26 Read Level (dBuV) Antenna Factor (dB/m) 39.57 41.26	Detect Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) 49.89 41.26 10.76 49.34 41.26 10.76 Detector Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) 39.57 41.26 10.76	Detector: Peak Value Read Level (dBuV) Factor (dB/m) Loss (dB) Factor (dB) 49.89 41.26 10.76 42.26 49.34 41.26 10.76 42.26 Detector: Average Value Read Level (dBuV) Factor (dB/m) Loss (dB) Factor (dB) 39.57 41.26 10.76 42.26 Detector: Average Value Preamp Loss (dB) Factor (dB) 39.57 41.26 10.76 42.26	Detector: Peak Value Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) 49.89 41.26 10.76 42.26 59.65 49.34 41.26 10.76 42.26 59.10 Detector: Average Value Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dBuV/m) Level (dBuV/m) 39.57 41.26 10.76 42.26 49.33	Detector: Peak Value Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) Limit Line (dBuV/m) 49.89 41.26 10.76 42.26 59.65 74.00 49.34 41.26 10.76 42.26 59.10 74.00 Detector: Average Value Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB (dBuV/m) Limit Line (dBuV/m) 39.57 41.26 10.76 42.26 49.33 54.00	Detector: Peak Value Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) Limit Line (dBuV/m) Over Limit (dB) 49.89 41.26 10.76 42.26 59.65 74.00 -14.35 49.34 41.26 10.76 42.26 59.10 74.00 -14.90 Detector: Average Value Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) Limit Line (dBuV/m) Over Limit (dBuV/m) 39.57 41.26 10.76 42.26 49.33 54.00 -4.67	

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 - 802.11n(HT20)								
	Test channel: Lowest channel								
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
11490.00	49.83	41.50	10.81	42.29	59.85	74.00	-14.15	Vertical	
11490.00	49.35	41.50	10.81	42.29	59.37	74.00	-14.63	Horizontal	
			Detecto	or: Average Va	lue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
11490.00	39.26	41.50	10.81	42.29	49.28	54.00	-4.72	Vertical	
11490.00	38.94	41.50	10.81	42.29	48.96	54.00	-5.04	Horizontal	
				nel: Middle ch					
	I			tor: Peak Valu	1				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
11570.00	49.57	41.38	10.78	42.27	59.46	74.00	-14.54	Vertical	
11570.00	49.86	41.38	10.78	42.27	59.75	74.00	-14.25	Horizontal	
	Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
11570.00	39.56	41.38	10.78	42.27	49.45	54.00	-4.55	Vertical	
11570.00	39.47	41.38	10.78	42.27	49.36	54.00	-4.64	Horizontal	
			Test chan	nel: Highest cl	nannel				
	l		Detec	tor: Peak Valu	ie				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
11650.00	49.89	41.26	10.76	42.26	59.65	74.00	-14.35	Vertical	
11650.00	49.67	41.26	10.76	42.26	59.43	74.00	-14.57	Horizontal	
			Detecto	r: Average Va	lue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
11650.00	39.64	41.26	10.76	42.26	49.40	54.00	-4.60	Vertical	
11650.00	39.43	41.26	10.76	42.26	49.19	54.00	-4.81	Horizontal	
Remark:									

Remark.

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 - 802.11n(HT40)									
	Test channel: Lowest channel									
	Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
11510.00	49.96	41.50	10.81	42.29	59.98	74.00	-14.02	Vertical		
11510.00	49.25	41.50	10.81	42.29	59.27	74.00	-14.73	Horizontal		
			Detecto	or: Average Va	llue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
11510.00	39.47	41.50	10.81	42.29	49.49	54.00	-4.51	Vertical		
11510.00	38.96	41.50	10.81	42.29	48.98	54.00	-5.02	Horizontal		
			Test chan	nel: Highest ch	nannel					
				tor: Peak Valu						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
11590.00	49.78	41.32	10.77	42.27	59.60	74.00	-14.40	Vertical		
11590.00	49.36	41.32	10.77	42.27	59.18	74.00	-14.82	Horizontal		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
11590.00	39.84	41.32	10.77	42.27	49.66	54.00	-4.34	Vertical		
11590.00	39.23	41.32	10.77	42.27	49.05	54.00	-4.95	Horizontal		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT20)							
	Test channel: Lowest channel							
	Detector: Peak Value							
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11490.00	49.87	41.50	10.81	42.29	59.89	74.00	-14.11	Vertical
11490.00	49.56	41.50	10.81	42.29	59.58	74.00	-14.42	Horizontal
			Detecto	or: Average Va	alue			
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11490.00	39.56	41.50	10.81	42.29	49.58	54.00	-4.42	Vertical
11490.00	38.64	41.50	10.81	42.29	48.66	54.00	-5.34	Horizontal
				nnel: Middle ch				
	T		I	ctor: Peak Valu	ıe		T	
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11570.00	49.98	41.38	10.78	42.27	59.87	74.00	-14.13	Vertical
11570.00	49.47	41.38	10.78	42.27	59.36	74.00	-14.64	Horizontal
			Detecto	or: Average Va	alue			
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11570.00	39.53	41.38	10.78	42.27	49.42	54.00	-4.58	Vertical
11570.00	39.64	41.38	10.78	42.27	49.53	54.00	-4.47	Horizontal
				nel: Highest c				
	T		I	ctor: Peak Valu			I	
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11650.00	49.59	41.26	10.76	42.26	59.35	74.00	-14.65	Vertical
11650.00	49.68	41.26	10.76	42.26	59.44	74.00	-14.56	Horizontal
			Detecto	or: Average Va	alue			
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11650.00	39.52	41.26	10.76	42.26	49.28	54.00	-4.72	Vertical
11650.00 Remark:	39.74	41.26	10.76	42.26	49.50	54.00	-4.50	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			5 14	202.44 (11)	- 10\			
	Band 4 – 802.11ac(HT40)							
	Test channel: Lowest channel							
			Detec	ctor: Peak Valu	ıe			
Frequenc	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over Limit	polarization
y (MHz)	(dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	polarization
11510.00	50.12	41.50	10.81	42.29	60.14	74.00	-13.86	Vertical
11510.00	49.87	41.50	10.81	42.29	59.89	74.00	-14.11	Horizontal
			Detecto	or: Average Va	alue			
Frequenc	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over Limit	
y (MHz)	(dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	polarization
11510.00	40.34	41.50	10.81	42.29	50.36	54.00	-3.64	Vertical
11510.00	39.58	41.50	10.81	42.29	49.60	54.00	-4.40	Horizontal
			Test chan	nel: Highest cl	nannel			
			Detec	ctor: Peak Valu	ıe			
Frequenc	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over Limit	
y (MHz)	(dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	polarization
11590.00	49.87	41.32	10.77	42.27	59.69	74.00	-14.31	Vertical
11590.00	49.53	41.32	10.77	42.27	59.35	74.00	-14.65	Horizontal
	Detector: Average Value							
Frequenc	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over Limit	
y (MHz)	(dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	polarization
11590.00	39.67	41.32	10.77	42.27	49.49	54.00	-4.51	Vertical
11590.00	39.52	41.32	10.77	42.27	49.34	54.00	-4.66	Horizontal
Domork:	L		1	l .			ı.	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT80)								
	Test channel: Middle channel								
			Detec	tor: Peak Valu	ıe				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
11550.00	49.58	41.50	10.81	42.29	59.60	74.00	-14.40	Vertical	
11550.00	49.52	41.50	10.81	42.29	59.54	74.00	-14.46	Horizontal	
			Detecto	or: Average Va	lue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11550.00	39.51	41.50	10.81	42.29	49.53	54.00	-4.47	Vertical	
11550.00	39.56	41.50	10.81	42.29	49.58	54.00	-4.42	Horizontal	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)				
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.				
Test setup:	Spectrum analyzer EUT Att.				
	Variable Power Supply				
	Note: Measurement setup for testing on Antenna connector				
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data (the worst channel):

Band 1:

Voltage vs. Frequency Stability (Lowest channel=5180MHz)

Test c	onditions	F	May Davistian (nnm)		
Temp(°C)	Voltage(ac)	Frequency(MHz)	Max. Deviation (ppm)		
	102V	5180.020643	3.99		
20	120V	5180.019965	3.85		
	138V	5180.014673	2.83		

Temperature vs. Frequency Stability (Lowest channel=5180MHz)

Test co	onditions	Francisco (MIII-)	May Deviation (num)
Voltage(ac)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
	-20	5180.017893	3.45
	-10	5180.018349	3.54
	0	5180.014735	2.84
120V	10	5180.015678	3.03
1200	20	5180.014537	2.81
	30	5180.013442	2.56
	40	5180.014763	2.85
	50	5180.016642	3.21

Band 4: Voltage vs. Frequency Stability (Lowest channel=5745MHz)

Test conditions		F(MIII-)	May Deviation (mmm)	
Temp(°C)	Voltage(ac)	Frequency(MHz)	Max. Deviation (ppm)	
	102V	5745.015864	2.76	
20	120V	5745.014624	2.55	
	138V	5745.013894	2.42	

Temperature vs. Frequency Stability (Lowest channel=5745MHz)

Test co	onditions	Francisco (MIII-)	May Deviation (page)
Voltage(ac)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
	-20	5745.013466	2.34
	-10	5745.013499	2.35
	0	5745.014034	2.44
120V	10	5745.013166	2.29
1200	20	5745.013843	2.41
	30	5745.012864	2.24
	40	5745.013832	2.41
	50	5745.012834	2.23

7 Test Setup Photo

8 EUT Constructional Details

Reference to the test report No.: CCISE190808701

-----End of report-----