Econometrics I - TA section

Eric Schulman

The University of Texas at Austin

November 10, 2020

Gauss-Markov (Theorem 4.4) "OLS" is "BLUE" i.e. best linear unbiased estimator

Gauss-Markov (Theorem 4.4) "OLS" is "BLUE" i.e. best linear unbiased estimator

• (1) unbiased - expected value is "true"

$$E(\hat{\beta}|X) = \beta$$

• (2) best - minimum variance

$$var(\tilde{eta}|X) \geq var(\hat{eta}|X)$$

• Does it matter if there is 1 or 1000 obs for efficiency and unbiased-ness?

- Does it matter if there is 1 or 1000 obs for efficiency and unbiased-ness?
 - No
- Trade-off between bias and variance i.e. is a constant efficient and unbiased

- Does it matter if there is 1 or 1000 obs for efficiency and unbiased-ness?
 - No
- Trade-off between bias and variance i.e. is a constant efficient and unbiased
 - Variance is 0, but super biased
 - There are estimators that have less variance than OLS, but these are biased – Ridge regression

4.1

For some integer k set $\mu_k = E(y^k)$

ullet Construct and estimator $\hat{\mu}_k$ for μ_k

4.1

For some integer k set $\mu_k = E(y^k)$

ullet Construct and estimator $\hat{\mu}_k$ for μ_k

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^k y_i^k$$

4.1

For some integer k set $\mu_k = E(y^k)$

ullet Construct and estimator $\hat{\mu}_k$ for μ_k

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^k y_i^k$$

ullet Show $\hat{\mu}_k$ is unbiased for μ_k

4.1

For some integer k set $\mu_k = E(y^k)$

• Construct and estimator $\hat{\mu}_k$ for μ_k

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^k y_i^k$$

• Show $\hat{\mu}_k$ is unbiased for μ_k

$$E(\hat{\mu}_k) = E\left(\frac{1}{n}\sum_{i=1}^n y_i^k\right) = \frac{1}{n}\sum_{i=1}^n E(y_i^k) = E(y_i^k)$$

4.1

For some integer k set $\mu_k = E(y^k)$

• Construct and estimator $\hat{\mu}_k$ for μ_k

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^k y_i^k$$

• Show $\hat{\mu}_k$ is unbiased for μ_k

$$E(\hat{\mu}_k) = E\left(\frac{1}{n}\sum_{i=1}^n y_i^k\right) = \frac{1}{n}\sum_{i=1}^n E(y_i^k) = E(y_i^k)$$

• Calculate the variance of $\hat{\mu}_k$ say $var(\hat{\mu}_k)$. What assumption is needed for $var(\hat{\mu}_k)$ to be finite?

• Calculate the variance of $\hat{\mu}_k$ say $var(\hat{\mu}_k)$. What assumption is needed for $var(\hat{\mu}_k)$ to be finite?

$$var(\hat{\mu}_k) = var\left(\frac{1}{n}\sum_{i=1}^n y_i^k\right) = \frac{1}{n^2}\sum_{i=1}^n var(y_i^k) = \frac{1}{n}var(y_i^k)$$

• Calculate the variance of $\hat{\mu}_k$ say $var(\hat{\mu}_k)$. What assumption is needed for $var(\hat{\mu}_k)$ to be finite?

$$var(\hat{\mu}_k) = var\left(\frac{1}{n}\sum_{i=1}^n y_i^k\right) = \frac{1}{n^2}\sum_{i=1}^n var(y_i^k) = \frac{1}{n}var(y_i^k)$$

We need $var(y_i^k)$ to be finite

• Calculate the variance of $\hat{\mu}_k$ say $var(\hat{\mu}_k)$. What assumption is needed for $var(\hat{\mu}_k)$ to be finite? $var(\hat{\mu}_k) = var\left(\frac{1}{r}\sum_{k=1}^{n} v_k^k\right) = \frac{1}{r}\sum_{k=1}^{n} var(v_k^k) = \frac{1}{r}var(v_k^k)$

$$var(\hat{\mu}_k) = var\left(\frac{1}{n}\sum_{i=1}^n y_i^k\right) = \frac{1}{n^2}\sum_{i=1}^n var(y_i^k) = \frac{1}{n}var(y_i^k)$$

We need $var(y_i^k)$ to be finite

• Propose an estimator of $var(\hat{\mu}_k)$

• Calculate the variance of $\hat{\mu}_k$ say $var(\hat{\mu}_k)$. What assumption is needed for $var(\hat{\mu}_k)$ to be finite?

$$var(\hat{\mu}_k) = var\left(\frac{1}{n}\sum_{i=1}^n y_i^k\right) = \frac{1}{n^2}\sum_{i=1}^n var(y_i^k) = \frac{1}{n}var(y_i^k)$$

We need $var(y_i^k)$ to be finite

• Propose an estimator of $var(\hat{\mu}_k)$

$$\frac{1}{n^2} \left(\sum_{i=1}^n \left(y_i^k - \hat{\mu}_k \right)^2 \right)$$

• Calculate the variance of $\hat{\mu}_k$ say $var(\hat{\mu}_k)$. What assumption is needed for $var(\hat{\mu}_k)$ to be finite?

$$var(\hat{\mu}_k) = var\left(\frac{1}{n}\sum_{i=1}^n y_i^k\right) = \frac{1}{n^2}\sum_{i=1}^n var(y_i^k) = \frac{1}{n}var(y_i^k)$$

We need $var(y_i^k)$ to be finite

• Propose an estimator of $var(\hat{\mu}_k)$

$$\frac{1}{n^2} \left(\sum_{i=1}^n \left(y_i^k - \hat{\mu}_k \right)^2 \right)$$

4.7

Let $\tilde{\beta}$ be the GLS estimator. Assume that $\Omega=c^2\Sigma$ with Σ known and c^2 unknown. Define the residual vector $\tilde{e}=y-X\tilde{\beta}$ and

$$\tilde{c}^2 = \frac{1}{n-k} \tilde{e}' \Sigma^{-1} \tilde{e}$$

4.7

Let $\tilde{\beta}$ be the GLS estimator. Assume that $\Omega=c^2\Sigma$ with Σ known and c^2 unknown. Define the residual vector $\tilde{e}=y-X\tilde{\beta}$ and

$$\tilde{c}^2 = \frac{1}{n-k} \tilde{e}' \Sigma^{-1} \tilde{e}$$

• Show (4.18) $E(\tilde{\beta}|X) = \beta$

4.7

Let $\tilde{\beta}$ be the GLS estimator. Assume that $\Omega=c^2\Sigma$ with Σ known and c^2 unknown. Define the residual vector $\tilde{e}=y-X\tilde{\beta}$ and

$$\tilde{c}^2 = \frac{1}{n-k} \tilde{e}' \Sigma^{-1} \tilde{e}$$

• Show (4.18)
$$E(\tilde{\beta}|X) = \beta$$

$$E(\tilde{\beta}|X) = E((X'\Sigma^{-1}X)^{-1}(X'\Sigma^{-1}y)|X)$$

$$= E((X'\Sigma^{-1}X)^{-1}(X'\Sigma^{-1}(X\beta + e))|X)$$

$$= \beta + E((X'\Sigma^{-1}X)^{-1}X'\Sigma^{-1}e|X) = \beta$$

4.7

• Show (4.19) $var(\tilde{\beta}|X) = (X'\Omega^{-1}X)^{-1}$

4.7

• Show (4.19)
$$var(\tilde{\beta}|X) = (X'\Omega^{-1}X)^{-1}$$

$$var(\tilde{\beta}|X) = var((X'\Sigma^{-1}X)^{-1}(X'\Sigma^{-1}y)|X)$$

$$= var((X'\Sigma^{-1}X)^{-1}(X'\Sigma^{-1}(X\beta + e))|X)$$

$$= var((X'\Sigma^{-1}X)^{-1}X'\Sigma^{-1}e|X)$$

$$= (X'\Sigma^{-1}X)^{-1}X'\Sigma^{-1}\Omega(X'\Sigma^{-1})'((X'\Sigma^{-1}X)^{-1})'$$

$$= (X'\Omega^{-1}X)^{-1}$$

Note

$$(A^{-1})' = (A')^{-1}$$

 $(AB)' = B'A'$

4.23 Take the linear regression model with $E(y|X) = X\beta$. Define the ridge regression estimator $\hat{\beta} = (X'X + I_k\lambda)^{-1}X'y$ where λ is a fixed constant. Find $E(\hat{\beta}|X)$. Is $\hat{\beta}$ biased for β ?

4.23 Take the linear regression model with $E(y|X) = X\beta$. Define the ridge regression estimator $\hat{\beta} = (X'X + I_k\lambda)^{-1}X'y$ where λ is a fixed constant. Find $E(\hat{\beta}|X)$. Is $\hat{\beta}$ biased for β ?

$$E(X'X + I_k\lambda)^{-1}X'y|X) = E((X'X)^{-1}X'y + I_k\lambda^{-1}X'y|X)$$

$$= E((X'X)^{-1}X'X\beta + I_k\lambda^{-1}X'X\beta|X) = \beta + \lambda I_kX'X\beta$$
why it is bissed.

Clearly it is biased.

- Asymptotic analysis. Now *n* comes into play.
- Consistency kind of like being unbiased.
- Asymptotic normality Normal "approximates" the true distribution.
- Allows us to make statements about how likely our estimator is.

Consistency/LLN

• Consistency

$$\hat{\theta} \to \theta$$

• Weak LLN (1) x_i are i.i.d. (2) and $E|x_i| < \infty$. Then as $n \to \infty$

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}\stackrel{p}{\to}\mu$$

- As the sample gets large, variance gets small...
- Then apply Markov's inequality

Asymptotic Normality/CLT Lindbergh-Levy CLT: (1) x_i i.i.d. and (2) $E(x_i^2) < \infty$ then

$$\sqrt{n}(\bar{x}-\mu) \xrightarrow{d} \mathcal{N}(0,\sigma^2)$$

Asymptotic Normality/CLT Lindbergh-Levy CLT: (1) x_i i.i.d. and (2) $E(x_i^2) < \infty$ then

$$\sqrt{n}(\bar{x}-\mu) \xrightarrow{d} \mathcal{N}(0,\sigma^2)$$

• Do we know μ ? i.e. the population mean?

Asymptotic Normality/CLT Lindbergh-Levy CLT: (1) x_i i.i.d. and (2) $E(x_i^2) < \infty$ then

$$\sqrt{n}(\bar{x}-\mu) \xrightarrow{d} \mathcal{N}(0,\sigma^2)$$

- Do we know μ ? i.e. the population mean?
- No! We usually need to choose it

Summarizing - "4 properties" you'll be asked about

- Does not depend on n
 - Unbiased
 - Efficient
- Depends on *n*
 - Consistent
 - Asymptotically normal

7.9 Take the model

$$y_i = x_i \beta + e_i$$
$$E(e_i|x_i) = 0$$

Consider two estimators

$$\hat{\beta} = \sum_{i=1}^{n} \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

$$\tilde{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{x_i}$$

7.9

• Under stated assumptions, are both estimators consistent for β ?

7.9

• Under stated assumptions, are both estimators consistent for β ?

First compute
$$E(\hat{\beta}|X) = E\left(\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}} \mid X\right) = E\left(\frac{\sum_{i=1}^{n} x_{i} (\beta x_{i} + e_{i})}{\sum_{i=1}^{n} x_{i}^{2}} \mid X\right) = E\left(\beta \frac{\sum_{i=1}^{n} x_{i}^{2}}{\sum_{i=1}^{n} x_{i}^{2}} \mid X\right) = \beta$$

This establishes unbiasedness i.e.

$$E(\hat{\beta}) = E(E(\hat{\beta}|X)) = E(\beta) = \beta$$
. Now can apply the weak LLN.

7.9

• Under stated assumptions, are both estimators consistent for β ?

7.9

 Under stated assumptions, are both estimators consistent for β ?

$$E(\tilde{\beta}|X) = E\left(\frac{1}{n}\sum_{i=1}^{n} \frac{y_i}{x_i} \mid X\right) = E\left(\frac{1}{n}\sum_{i=1}^{n} \frac{x_i\beta + e_i}{x_i} \mid X\right) = \beta$$
Similarly, can apply the weak LLN

Similarly, can apply the weak LLN.

7.9

• Under stated assumptions, are both estimators consistent for β ?

$$E(\tilde{\beta}|X) = E\left(\frac{1}{n}\sum_{i=1}^{n} \frac{y_i}{x_i} \mid X\right) = E\left(\frac{1}{n}\sum_{i=1}^{n} \frac{x_i\beta + e_i}{x_i} \mid X\right) = \beta$$
Similarly, can easily the year LLN

Similarly, can apply the weak LLN.

Are there conditions under which either estimator is efficient?
 Yes Guass-Markov, (1) is the OLS estimator

7.14

Take the model

$$y_i = x_{1i}\beta_1 + x_{2i}\beta_2 + e_i$$

$$E(x_ie_i)=0$$

Where β_1 and β_2 are scalars. Define $\theta=\beta_1\beta_2$

7.14

 \bullet What is the appropriate estimator $\hat{\theta}$ for θ

7.14

• What is the appropriate estimator $\hat{\theta}$ for θ $\begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = (X'X)^{-1}X'y$ Then $\hat{\beta}_1\hat{\beta}_2 = \hat{\theta}$. Can show consistency using Slutsky's theorem i.e. $\hat{\beta}_1$ and $\hat{\beta}_2$ converge to a constant in probability. Their product also converges.

7.14

- What is the appropriate estimator $\hat{\theta}$ for θ $\begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = (X'X)^{-1}X'y$ Then
 - $\hat{\beta}_1\hat{\beta}_2=\hat{\theta}$. Can show consistency using Slutsky's theorem i.e. $\hat{\beta}_1$ and $\hat{\beta}_2$ converge to a constant in probability. Their product also converges.
- Note, convergence in probability is stronger than convergence in distribution. As a result, the conditions for Slutsky's theorem (as written in the textbook) apply.

7.14

• Find the asymptotic distribution of $\hat{\theta}$ under standard regularity conditions.

7.14

• Find the asymptotic distribution of $\hat{\theta}$ under standard regularity conditions.

$$egin{bmatrix} \hat{eta}_1 \ \hat{eta}_2 \end{bmatrix} o \mathcal{N}(0, \Sigma)$$

Need to compute a change of variable for $\hat{\theta} = \hat{\beta}_1 \hat{\beta}_2$. Similar to 4.8 on previous homework.

7.14

• Find the asymptotic distribution of $\hat{\theta}$ under standard regularity conditions.

$$egin{bmatrix} \hat{eta}_1 \ \hat{eta}_2 \end{bmatrix} o \mathcal{N}(0, \Sigma)$$

Need to compute a change of variable for $\hat{\theta} = \hat{\beta}_1 \hat{\beta}_2$. Similar to 4.8 on previous homework.

 Show how to calculate an asymptotic 95% confidence interval for θ

7.14

• Find the asymptotic distribution of $\hat{\theta}$ under standard regularity conditions.

$$egin{bmatrix} \hat{eta}_1 \ \hat{eta}_2 \end{bmatrix} o \mathcal{N}(0, \Sigma)$$

Need to compute a change of variable for $\hat{\theta} = \hat{\beta}_1 \hat{\beta}_2$. Similar to 4.8 on previous homework.

 Show how to calculate an asymptotic 95% confidence interval for θ

Need to solve for θ where $Pr(|\hat{\beta}_1\hat{\beta}_2| \leq \theta) = .95$

7.14

• Find the asymptotic distribution of $\hat{\theta}$ under standard regularity conditions.

$$egin{bmatrix} \hat{eta}_1 \ \hat{eta}_2 \end{bmatrix} o \mathcal{N}(0, \Sigma)$$

Need to compute a change of variable for $\hat{\theta} = \hat{\beta}_1 \hat{\beta}_2$. Similar to 4.8 on previous homework.

 Show how to calculate an asymptotic 95% confidence interval for θ

Need to solve for θ where $Pr(|\hat{\beta}_1\hat{\beta}_2| \leq \theta) = .95$