파이썬 프로그래밍 팀'우리'최종 프로젝트

소 프 트 웨 어 학 20214152 우 진 멀 티 미 디 어 학 20172543 우 정 호 1. 프로젝트 구상

2. 개발환경 구축

4. 순서도/코드

5.하드웨어

6. 프로그램 시연

01 프로젝트 구상

프로젝트 주제 및 개발 환경 선정

프로젝트 주제 선정

박물관 방문 시, 유물의 일정거리 이내로 접근하는 경우 경고등의 점등과 함께 경보음을 출력하는 시스템.

개발환경구상

파이썬과 범용성이 넓고 진입 장벽이 낮은 라즈 베리파이를 이용해 프로젝트를 진행함.

01 프로젝트 구상

프로젝트 개발 단계별 주요 내용

1. 프로젝트 아이디어 구상

파이썬을 이용한 프로젝트의 아이디어 구상 및 구체적 방향성과 툴을 결정.

2 라즈베리파이학습

기본적인 라즈베리파이 OS와 센서 등의 기초 활용 능력을 배양.

4 프로젝트 완성

완성된 센서 설계와 코드로 하드웨어적 요소까 지 완성시켜 하나의 프로젝트로 완성

3 센서의 구현

프로젝트에서 사용되는 센서와 코드를 유기적 으로 연결 및 구현.

02 개발환경 구축

라즈베리파이 사용을 위한 OS 설치부터 GPIO 라이브러리 설정까지.

개발환경 구축 - 라즈베리파이 OS 설치 및 연결

- 1. 라즈베리파이 이미저 설치 (Raspberry Pi imager)
- 2. 컴퓨터에 sd카드 연결
- 3. 이미저 실행 후, 라즈베리파이 os를 sd카드에 설치

개발환경 구축 _ 라즈베리파이 원격 접속 환경 구축

라즈베리파이 '원격 접속' 환경 설정하기

1. 원격 로그인을 위해 'ssh'가능 켜기

2 puTTY로 원격접속 설정하기

3. 라즈베리파이 OS에 연결

개발환경 구역 – 라즈베리파이 원격 코딩 환경 구축

2 원격 영역 연결 확인

3.가상환경구축

02 개발환경 구역 - GPIO 라이브러리 설치

1. GPIO 라이브러리 설치

2 GPIO 핀표시

3.LED 점등시켜서 GPIO 체크

불빛이들어왔다니가는 LED

초음파센서를 감자하는 HC-SRO4

소리를내는부저Buzzer

순서도/코드 - 순서도

살 순서도/코드 - 코드

```
jimport RPi.GPIO as GPIO #라즈베리파이 GPIO 삽입
import time #시간 모듈 삽입
led = 5 #LED핀을 GPIO 5번핀으로 설정
buzzer = 11 #부저핀을 GPIO 11번핀으로 설정
trig = 3 #TRIG핀을 GPIO 3번핀으로 설정
echo = 2 #ECHO핀을 GPIO 2번 핀으로 설정
print('start') #'start' 문구 출력
GPIO.setmode(GPIO.BCM) #핀 입출력 모드를 BCM방식으로 지정(핀 번호를 GPIO모듈 번호로 사용)
GPIO.setwarnings(False)
GPIO.setup(buzzer,GPIO.OUT) #부저핀을 출력으로 설정
GPIO.setup(led,GPIO.OUT) #LED핀을 출력으로 설정
GPIO.setup(trig,GPIO.OUT) #TRIG핀을 출력으로 설정
GPIO.setup(echo, GPIO.IN) #ECHO핀을 출력으로 설정
```

선서도/코드 - 코드

```
#try문 수행
GPIO.output(buzzer, False) #부저를 출력하지 않는다고 선언
GPIO.output(led, False) #LED를 출력하지 않는다고 선언
while(True): #while문 무한루프 수행
   GPIO.output(trig, False) #TRIG을 출력하지 않는다고 선언
   time.sleep(0.5) #0.5초간 대기
                          #TRIG 출력
   GPIO.output(trig, True)
   time.sleep(0.00001) #0.00001초 대기
   GPIO.output(trig, False)
                          #TRIG 출력 종료
   while GPIO.input(echo) == 0:
                              #ECHO가 0일 경우
      pulse_start = time.time()
                              #pulse_start에 시간을 저장
   while GPI0.input(echo) == 1:
                              #ECHO가 1일 경우
      pulse_end = time.time()
                             #pulse_end에 시간을 저장
```

소서도/코드 - 코드

```
pulse_duration = pulse_end - pulse_start #pulse_end와 pulse_start의 차를 이용해 물체까지의 도달 시간(pulse_duration)을 계산
      distance = pulse_duration * 17000 #거리(distance)는 도달 시간 * 17000
      distance = round(distance, 2) #소수점 둘째 자리까지 출력을 위한 ROUND함수 사용
      print('Distance : ', distance,'cm') #거리를 출력(단위: cm)
      if distance <= 10: #거리가 10cm 이하일 경우
          GPIO.output(led, True) #LED 실행
          GPIO.output(buzzer, True) #부저 실행
          time.sleep(0.5) #0.5초 간 대기
          GPIO.output(buzzer, False) #부저 종료
      else:
          GPIO.output(buzzer, False) #부저 출력하지 않음
          time.sleep(0.3) #0.3초 간 대기
          GPIO.output(led, False) #LED 출력하지 않음
except:
   GPIO.cleanup()
                  #모듈 간 충돌 방지를 위해 GPIO핀을 초기화
```


정면

05 하드웨어

후면

윗면

06 프로그램 시연


```
WWW.BANDICAM.COM
pythanproject.py ×
project1 > pythonproject.py >
                      pulse_end = time.time()
                  pulse_duration = pulse_end - pulse_start
                 distance = pulse_duration * 17000
                 distance = round(distance, 2)
Distance: 99.34 cm
Distance : 99.3 cm
Distance : 99.32 cm
Distance : 98 L1 cm
Distance : 97.63 cm
Distance : 97.77 cm
Distance: 98.49 cm
Distance : 98.53 cm
Distance: 99.78 cm
Distance: 98.47 cm
Distance : 98.54 cm
Distance : 99.81 cm
Distance : 99.32 cm
Distance : 98.51 cm
Distance: 99.30 cm
Distance : 98.07 cm
Distance: 99.78 cm
Distance: 98.49 cm
Distance : 99.84 cm
```

팀 우리 최종 프로젝트 **발표를 들어주셔서 감사합니다.**

소 프 트 웨 어 학 20214152 우 진 멀 티 미 디 어 학 20172543 우 정 호