B 1	Име:	ф.н.:	група:

Зад. 1.

Да се напише програма, която проверява дали е в сила релацията:

$$fib(1) + fib(3) + ... + fib(2n - 1) = fib(2n)$$

за всяко цяло число п от интервала [1; 40].

Зад. 2.

Да се напише функция, която отстранява всички елементи от едномерен масив от цели числа, които са по-малки едновременно от двата си съседа, без да се използва помощен масив. За отстраняване на елемент от масива да се използва отместване наляво. След края на програмата в масива не трябва да има такива елементи.

Зад. 3.

Дадена е квадратна матрица $An \times n$ от символи, $n \in [1;9]$. Да напише функция, която сортира редовете на матрицата във възходящ ред според числата, които могат да се прочетат в тях. Числото е последователност от цифри, възможно е да има водещ знак. Ако не може да бъде прочетено число, да се подразбира 0.

Пример:

	Bx	одн	а ма	атри	ца			Изх	одн	а ма	три	ца	
	S	+	1	2	(0)			-	2	f	i		
Δ =	+	3	f	0	(3)	•	A =	S	+	1	2		
A =	1	t	h	3	(1)	•	A –	1	t	h	3		
	_	2	f	i	(-2)			+	3	f	0		

Зад. 4.

Дадена е мрежа от m \times n квадратчета ($m \in [1;10]$, $n \in [1;20]$). Във всяко квадратче е записана цифра от 0 до 9. Съседни за всяко квадратче на мрежата са клетките, с които то има обща стена. Две съседни квадратчета са свързани, ако в тях са записани равни цифри. Между две квадратчета има път, ако е възможно да се осъществи придвижване от едното до другото, минавайки само през свързани квадратчета. Множество от квадратчета образува област, ако между всеки две квадратчета от множеството има път и това множество е максималното по включване с това свойство. Да се напише програма, която намира броя на областите в правоъгълна матрица, които съдържат дадена цифра.

В 2 Име:	ф.н.:	група:

Зад. 1.

Да се напише програма, която проверява дали е в сила релацията: $fib^2(1) + fib^2(2) + ... + fib^2(n) = fib(n).fib(n+1)$ за всяко цяло число n от интервала [1; 40].

Зад. 2.

Да се напише функция, която отстранява всички елементи от едномерен масив от цели числа, които са по-големи едновременно от двата си съседа, без да се използва помощен масив. За отстраняване на елемент от масива да се използва отместване наляво. След края на програмата в масива не трябва да има такива елементи.

Зад. 3.

Дадена е квадратна матрица Anxn от символи, $n \in [1;9]$. Да напише функция, която сортира колоните на матрицата във възходящ ред според числата, които могат да се прочетат в тях. Числото е последователност от цифри, възможно е да има водещ знак. Ако не може да бъде прочетено число, да се подразбира 0.

Пример:

I	Входна матрица						Изходна матрица				
	s - 1		1	2			-	1	2		
7 —	+	3	f	a	A =	2	S	Ŧ	2		
A = }	1	t	h	3		ر +	1	h	a 3		
	-	2	f	i		2		£	5		
	(0)	(-3)	(1)	(2)					Т	I	

Зад. 4.

Дадена е мрежа от $m \times n$ квадратчета ($m \in [1; 10]$, $n \in [1; 20]$). Във всяко квадратче е записана цифра от 0 до 9. Съседни за всяко квадратче на мрежата са клетките, с които то има обща стена. Две съседни квадратчета са свързани, ако в тях са записани равни цифри. Между две квадратчета има път, ако е възможно да се осъществи придвижване от едното до другото, минавайки само през свързани квадратчета. Множество от квадратчета образува област, ако между всеки две квадратчета от множеството има път и това множество е максималното по включване с това свойство. Да се напише програма, която намира броя на областите в правоъгълна матрица, които не съдържат дадена цифра.