

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings of claims in the application:

LISTING OF CLAIMS:

1. (original) Process for determining the mechanical resistance of a bone from a digitized two dimensional image, obtained by imaging, characterized in that there is carried out a correlation between the bone mineral density determined from this two dimensional image by any means suitable to this type of image and a structural parameter obtained from the same two dimensional image.

2. (original) Process for determining the mechanical resistance of a bone according to claim 1, characterized in that one has recourse to a correlation of the exponential type.

3. (currently amended) Process for determination according to claim 1 ~~or 2~~, characterized in that the correlation associating the bone mineral density and said structural parameter is used to determine the ultimate stress C_u of the bone.

4. (original) Process for determining the mechanical resistance of a bone according to any one of the preceding claims, characterized in that there is determined the structural parameter α obtained by the series of the following steps:

- a) choosing at random a pixel of the two dimensional image which is at the gray level $h(0)$,
- b) choosing a straight line from this point having a direction also determined at random,

- c) moving a distance r along this straight line, $h(r)$ being the gray level of this new point,
- d) computing the variance of the gray levels with the formula: $V(r) = [h(r) - h(0)]^2$,
- e) tracing the curve associated with $V(r)$ on a log-log scale, and
- f) determining the slope of this log-log curve which represents said parameter α .

5. (original) Process for determining the mechanical resistance of a bone according to claim 4, characterized in that steps a) to d) are repeated a number of times sufficiently great to make the mean variance function $V(r)$ converge over the assembly of the repetitions.

6. (currently amended): Process for determining the mechanical resistance of a bone according to claim 4 ~~or 5~~, characterized in that there is carried out a correlation between the bone mineral density obtained from this two dimensional image and said parameter α evaluated from the same two dimensional image according to the mathematical model:

$$C_u' = b_0 + b_1 * \exp(b_2 * DMO) * \alpha$$

- wherein b_0 , b_1 , b_2 are coefficients obtained by nonlinear regression and C_u' the prediction of the ultimate stress C_u of the bone.

7. (currently amended): Process for determining the mechanical resistance of a bone according to ~~any one of claims 4, 5 or 6~~ claim 4, characterized in that there is determined a correlation between the parameter α and a three dimensional parameter of the trabecular network of the bone.

8. (original): Process for determining the mechanical resistance of a bone according to claim 7, characterized in that

the three dimensional parameter of the trabecular network of the bone is the connectivity density χ_v

9. (new): Process for determining the mechanical resistance of a bone according to claim 5, characterized in that there is carried out a correlation between the bone mineral density obtained from this two dimensional image and said parameter α evaluated from the same two dimensional image according to the mathematical model:

$$C_u' = b_0 + b_1 * \exp(b_2 * DMO) * \alpha$$

wherein b_0 , b_1 , b_2 are coefficients obtained by nonlinear regression and C_u' the prediction of the ultimate stress C_u of the bone.

10. (new): Process for determining the mechanical resistance of a bone according to claim 5, characterized in that there is determined a correlation between the parameter α and a three dimensional parameter of the trabecular network of the bone.

11. (new): Process for determining the mechanical resistance of a bone according to claim 6, characterized in that there is determined a correlation between the parameter α and a three dimensional parameter of the trabecular network of the bone.

12. (new): Process for determination according to claim 3, characterized in that the correlation associating the bone mineral density and said structural parameter is used to determine the ultimate stress C_u of the bone.