

高压油管压力控制的连续模型

蔡志杰1,2,3

(1. 复旦大学 数学科学学院,上海 200433; 2. 上海市现代应用数学重点实验室,上海 200433; 3. 非线性数学模型与方法教育部重点实验室,上海 200433)

摘要:建立了高压油管压力变化的连续模型,给出使得压力变化稳定的控制模型以及相应的计算方法. 关键词:高压油管,压力,常微分方程组,控制模型

中图分类号: O29

文献标志码:A

文章编号: 2095-3070(2020)03-0053-08

1 问题的提出

2019 年全国大学生数学建模竞赛 A 题对一种简化的柴油机高压共轨管问题进行研究[-2]. 图 1 给出了这种简化的高压燃油系统的工作原理. 燃油经过高压油泵从 A 处进入高压油管,再由喷口 B 喷出. 燃油进入和喷出的间歇性工作过程会导致高压油管内压力的变化,使得所喷出的燃油量出现偏差,从而影响发动机的工作效率.

赛题要求解决以下3个问题:

问题 1 高压油管的内腔长度为 500 mm, 内直径为 10 mm, 供油入口 A 处小孔的直径为 1.4 mm, 通过单向阀开关控制供油时间的长短,单向阀每打开一次后就要关闭 10 ms. 喷油器每秒工作 10 次,每次

图 1 高压油管示意图

工作时喷油时间为 2.4 ms. 只有一个喷油器 B,喷油器工作时从喷油嘴 B 处向外喷油的速率如图 2 所

示. 高压油泵在入口 A 处提供的压力恒为 $160~\mathrm{MPa}$,高压油管内的初始压力为 $100~\mathrm{MPa}$. 如果要将高压油管内的压力尽可能稳定在 $100~\mathrm{MPa}$ 左右,如何设置单向阀每次开启的时长?如果要将高压油管内的压力分别在 $2~\mathrm{s}$ 、 $5~\mathrm{s}$ 和 $10~\mathrm{s}$ 内从 $100~\mathrm{MPa}$ 调整到 $150~\mathrm{MPa}$,单向阀开启的时长应如何调整?

问题 2 在实际工作过程中,高压油管 A 处的燃油来自高压油泵的柱塞腔出口,喷油由喷油嘴的针阀控制.凸轮驱动柱塞上

图 2 喷油速率示意图

下运动,凸轮边缘曲线与角度的关系见表1.柱塞向上运动时压缩柱塞腔内的燃油,当柱塞腔内的压

力大于高压油管内的压力时,柱塞腔与高压油管连接的单向阀开启,燃油进入高压油管内. 柱塞腔内直径为 $5~\mathrm{mm}$,柱塞运动到上止点位置时,残余容积与油管容积之和为 $20~\mathrm{mm}^3$.柱塞运动到下止点时,低压燃油会充满柱塞腔,低压燃油的压力为 $0.5~\mathrm{MPa}$. 喷油器喷嘴结构如图 $3~\mathrm{fm}$ 所示,针阀直径为 $2.5~\mathrm{mm}$,密封座为半角为 9° 的圆锥,最下端喷孔的直径为 $1.4~\mathrm{mm}$. 针阀升程为 $0~\mathrm{fm}$ 针阀关闭;针阀升程大于 $0~\mathrm{fm}$ 时,针阀开启,燃油向喷孔流动,通过喷孔喷出. 在一个喷油周期内针阀升程与时间的关系由表 $2~\mathrm{fm}$ 给出. 在问题 $1~\mathrm{fm}$ 中给出的高

图 3 喷油器喷嘴示意图

收稿日期: 2020-04-24

通讯作者: 蔡志杰, E-mail: zhijiecai@163.com

压油管尺寸和初始压力下,确定凸轮的角速度,使得高压油管内的压力尽量稳定在 100 MPa 左右.

极角/rad	0.00	0.01	0.02	0.03	0.04	0.05		
极径/mm	7.239 0	7.238 9	7.238 5	7.237 9	7.237 1	7.236 0		
极角/rad	•••	6.23	6.24	6.25	6.26	6.27		
极径/mm		7.235 6	7.236 8	7.237 7	7.238 4	7.238 8		

表1 凸轮边缘曲线

表 2 针阀运动曲线

时间/ms	0.00	0.01	0.02	0.03	0.04
距离/mm	0	$1.233\ 7\times10^{-6}$	$1.973 \ 9 \times 10^{-5}$	9.992 8×10 ⁻⁵	3.158 1 ×10 ⁻⁴
时间/ms	•••	0.42	0.43	0.44	[0.45, 2]
距离/mm	•••	1.932 1	1.972 0	1.995 0	2.000 0
时间/ms	2.01	2.02	2.03	2.04	2.05
距离/mm	1.994 2	1.970 4	1.929 6	1.873 9	1.805 2
时间/ms	•••	2.43	2.44	2.45	[2.46, 100]
距离/mm		1.780 1 ×10 ⁻⁵	1.000 5 ×10 ⁻⁶	0	0

问题 3 在问题 2 的基础上,再增加一个喷油嘴 C,每个喷嘴喷油规律相同,喷油和供油策略应如何调整?为了更有效地控制高压油管的压力,现计划在 D 处安装一个单向减压阀. 单向减压阀出口为直径为 1. 4 mm 的圆,打开后高压油管内的燃油可以在压力下回流到外部低压油路中,从而使得高压油管内燃油的压力减小. 请给出高压油泵和减压阀的控制方案.

赛题还给出了两个经验公式.

1)燃油的压力变化量与密度变化量成正比,比例系数为 E/ρ ,其中, ρ 为燃油的密度,当压力为 $100~\mathrm{MPa}$ 时,燃油的密度为 $0.~850~\mathrm{mg/mm^3}$. E 为弹性模量,其与压力的关系见表 $3.~\mathrm{l}$ 根据这一描述,压力与密度满足如下方程:

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{E}{\rho} \frac{\mathrm{d}\rho}{\mathrm{d}t},\tag{1}$$

其中, P = P(t) 为压力.

表 3 弹性模量与压力

压力/MPa	0	0.5	1.0	1.5	2.0	2.5
弹性模量/MPa	1 538.4	1 540.8	1 543.3	1 545.7	1 548.2	1 550.6
压力/MPa	•••	198.0	198.5	199.0	199.5	200.0
弹性模量/Mpa	•••	3 357.4	3 366.4	3 375.3	3 384.3	3 393.4

2)进出高压油管的流量为

$$Q = CA \sqrt{\frac{2\Delta P}{\rho}}, \qquad (2)$$

其中: Q 为单位时间流过小孔的燃油量 (mm^3/ms) ; C=0.85 为流量系数; A 为小孔的面积 (mm^2) ; ΔP 为小孔两边的压力差(MPa); ρ 为高压侧燃油的密度 (mg/mm^3) .

2 单向阀控制模型

2.1 高压油管压力变化模型

如图 4 所示,记高压油泵入口处的压力为 $P_{\rm pump}(=160~{
m MPa})$,燃油密度为 $\rho_{\rm pump}$,对方程(1)采用分离变量法可得

• 54 •

$$\rho(P) = \rho_0 \exp\left\{ \int_{P_0}^{P} \frac{\mathrm{d}P}{E(P)} \right\},\tag{3}$$

其中: P_0 =100 MPa; ρ_0 =0. 850 mg/mm³. 由表 3 燃油弹性模量 E 与压力 P 关系的实验数据,对式(3)采用数值积分即可得到 P=160 MPa 时燃油的密度为 ρ_{pump} = $\rho(160)$ \approx 0. 871 $1(mg/mm^3)$.

图 4 高压油管示意图

记 t 时刻高压油管内的压力为 P(t),由式(2),单位时间流过小孔进入高压油管的燃油量为

$$Q_{\rm in}(t) = CA_{\rm in}\sqrt{\frac{2\Delta P}{\rho_{\rm pump}}} = CA_{\rm in}\sqrt{\frac{2(P_{\rm pump} - P(t))}{\rho_{\rm pump}}},$$
(4)

单位为 $\mathrm{mm}^3/\mathrm{ms}$,其中:C 为流量系数; A_{in} 为小孔的面积; $\Delta P = P_{\mathrm{pump}} - P(t)$ 为小孔两边的压力差;t为一个进油周期中的时间。

记单向阀开启后的进油时间为 $t_{\rm in}$,单位为 ms,然后关闭 $S_{\rm in}$,则一个进油周期为 $T_{\rm in}=t_{\rm in}+S_{\rm in}$. 在一个进油周期中,当 $0 < t < t_{\rm in}$ 时,进油量由式 (4) 给出;当 $t_{\rm in} < t < T_{\rm in}$ 时,进油量为 (0, 1) 是一方面,在某些参数情况下,高压油泵的燃油压力可能小于油管中的燃油压力,此时的进油量应为 (0, 1) 。因此,进油量函数可写为

$$Q_{\text{in}}(t) = \begin{cases} CA_{\text{in}} \sqrt{\frac{2\max\{P_{\text{pump}} - P(t), 0\}}{\rho_{\text{pump}}}}, & 0 \leqslant t - \left[\frac{t}{T_{\text{in}}}\right] T_{\text{in}} \leqslant t_{\text{in}}, \\ 0, & t_{\text{in}} \leqslant t - \left[\frac{t}{T_{\text{in}}}\right] T_{\text{in}} \leqslant T_{\text{in}}. \end{cases}$$
(5)

喷油器每秒工作 10 次,则喷油周期为 $T_{\text{out}}=100~\text{ms}$. 记每次喷油时间为 t_{out} ,类似于进油周期的处理方法,由图 2 可以得到整个工作过程中喷油速率为

由图 2 可以得到整个工作过程中喷油速率为
$$Q_{\text{out}}(t) = \begin{cases} 100\left(t - \left[\frac{t}{T_{\text{out}}}\right]T_{\text{out}}\right), & 0 \leqslant t - \left[\frac{t}{T_{\text{out}}}\right]T_{\text{out}} \leqslant 0.2, \\ 20, & 0.2 \leqslant t - \left[\frac{t}{T_{\text{out}}}\right]T_{\text{out}} \leqslant t_{\text{out}} - 0.2, \\ 100\left(t_{\text{out}} - t + \left[\frac{t}{T_{\text{out}}}\right]T_{\text{out}}\right), & t_{\text{out}} - 0.2 \leqslant t - \left[\frac{t}{T_{\text{out}}}\right]T_{\text{out}} \leqslant t_{\text{out}}, \\ 0, & t_{\text{out}} \leqslant t - \left[\frac{t}{T_{\text{out}}}\right]T_{\text{out}} \leqslant T_{\text{out}}. \end{cases}$$
 (6)

下面建立高压油管中燃油密度和压力的微分方程模型. 记 t 时刻高压油管中燃油的质量为 m(t),由质量守恒定律得到

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \rho_{\mathrm{pump}}Q_{\mathrm{in}}(t) - \rho(t)Q_{\mathrm{out}}(t)$$
,

其中, $Q_{in}(t)$ 和 $Q_{out}(t)$ 分别由式(5)和式(6)给出.

而燃油的密度为 $\rho(t) = m(t)/V$, 其中, V 为高压油管的体积. 因此

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \frac{\rho_{\text{pump}}Q_{\text{in}}(t) - \rho(t)Q_{\text{out}}(t)}{V}.$$
(7)

将式(7)代入式(1),有

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{E(P)\rho_{\mathrm{pump}}Q_{\mathrm{in}}(t) - \rho(t)Q_{\mathrm{out}}(t)}{V}.$$
(8)

记初始时刻高压油管内的压力和燃油密度为

$$t=0: P=P_0, \rho=\rho_0,$$
 (9)

就得到了高压油管内压力变化的常微分方程模型(7)-(9).

高压油泵通过单向阀开关对供油时间的长短进行控制. 进油时间 $t_{\rm in}$ 越长,高压油管内燃油的质量越大,燃油密度就越大,相应的压力也越大,即压力 P 是进油时间 $t_{\rm in}$ 的递增函数. 图 S 给出了进油时

间对高压油管压力和燃油密度的影响.

图 5 进油时间对高压油管压力和燃油密度的影响

2.2 单向阀控制模型

如果要将高压油管内的压力尽可能稳定在 P^* ($=100~\mathrm{MPa}$),需要调节单向阀每次开启的进油时间 t_in .首先要确定如何描述这里所谓的"稳定". 因为初始压力就是 $100~\mathrm{MPa}$,记

$$P_{\max} = \max_{0 \le t \le T} P(t), \ P_{\min} = \min_{0 \le t \le T} P(t)$$
 (10)

分别为考察时间段内压力的最大值和最小值,则

$$\Delta P_{\text{max}} = P_{\text{max}} - P^*, \ \Delta P_{\text{min}} = P^* - P_{\text{min}}$$
 (11)

分别表示高压油管内的压力 P(t)与要求达到的稳定压力 P^* 之间的最大上偏差和最大下偏差. 如果这两个偏差较小,就表示压力稳定在 P^* . 但是这个稳定概念中有两个指标,将它们综合成一个指标以便于使用

$$\max\{\Delta P_{\max}, \Delta P_{\min}\}\tag{12}$$

表示最大上下偏差. 显然,高压油管内的压力与进油时间 $t_{\rm in}$ 有关,因此单向阀控制模型就归结为. 确定 $t_{\rm in}$,使得式(12)达到最小.

记

$$\max P = \Delta P_{\max} - \Delta P_{\min}. \tag{13}$$

由单调性,即压力 P(t)是进油时间 t_{in} 的递增函数,只要使得 $|\max P|$ 最小就可以了. 这样,稳定就可以用 $|\max P|$ 最小来描述. 当 $\max P>0$ 时,表示上偏差较大,当 $\max P<0$ 时,表示下偏差较大. 因此,可以用二分法来计算单向阀每次开启的最优进油时间 t_{in} . 图 6 给出了最优进油时间的压力变化图.

从图 6 可以看到,开始时压力有明显的下移. 为了避免这个系统偏差,开始时不喷油,也就是进油周期与喷油周期的开始时间不必同步,可以有一个相位差. 记喷油开始时间为 t_{needle} ,则模型归结为:确定 t_{needle} 和 t_{in} ,使得 $|\max P|$ 最小.

图 7 给出了最优进油时间和喷油开始时间时的压力变化图,可以看到开始时的压力偏差明显减小,整体压力偏差也相应减小.

图 6 最优进油时间的压力变化图 ($P^* = 100 \text{ MPa}$)

图 7 最优进油时间和喷油开始时间的 压力变化图 (*P**=100 MPa)

2.3 压力调整控制模型

如果要将高压油管内的压力在 T_0 ms 内从 P_0 (=100 MPa) 调整到 P^* (=150 MPa),只要修改一下稳定指标,2.2 节中的方法仍可以使用. 因为压力从 P_0 调整到 P^* 需要时间,因此稳定在 P^* 应从 T_0 时刻以后算起,所以只要将式(10)修改为 $P_{\max} = \max_{T_0 \leqslant t \leqslant T} P(t)$, $P_{\min} = \min_{T_0 \leqslant t \leqslant T} P(t)$,稳定指标(13)仍可以使用,其中使用到的式(11)中 $P^* = 150$ MPa. 图 8 给出了将压力调整到 150 MPa 的最优进油时间的压力变化图.

图 8 最优进油时间的压力变化图 ($P^* = 150 \text{ MPa}$)

2.4 两阶段压力调整控制模型

为了进一步减小 T_0 后压力的波动,可以采用两阶段调整控制方案. 首先利用 2.2 节的方法计算得到初始压力 $P_0=150$ MPa 时,最优进油时间和开始进油时间,将其作为 T_0 后的压力调整方案,相应的压力变化图见图 9.

而在 T_0 前,再次使用 2.2 节的方法,计算使得压力在 T_0 时达到 150 MPa 的最优进油时间和开始进油时间,由此得到两阶段压力调整控制模型. 图 10 给出了两阶段最优进油时间的压力变化图.

图 9 最优进油时间和喷油开始时间的压力 变化图 (P₀=150 MPa, P*=150 MPa)

图 10 两阶段最优进油时间的压力变化图 ($P^* = 150 \text{ MPa}$)

3 实际高压油泵和喷油嘴

3.1 高压油泵模型

问题 2 考虑的是由高压油泵通过柱塞的上下运动来供油,由喷油嘴通过针阀的上下运动来喷油的情形. 由式(3),采用数值积分,得到高压油泵中低压燃油的密度为 $\rho_{\text{pump}}^0 \approx 0$. $804\ 5(\text{mg/mm}^3)$. 记 t 时刻高压油泵中燃油的质量为 $m_{\text{pump}}(t)$,由质量守恒定律

$$\frac{\mathrm{d}m_{\mathrm{pump}}}{\mathrm{d}t} = -\rho_{\mathrm{pump}}Q_{\mathrm{in}}(t).$$

而油泵中燃油的密度为

$$ho_{ ext{ iny pump}}(t)\!=\!\!rac{m_{ ext{ iny pump}}(t)}{V_{ ext{ iny pump}}(t)},$$

其中, $V_{\text{pump}}(t)$ 为 t 时刻油泵中燃油的体积

$$V_{\text{pump}}(t) = 20 + \frac{1}{4} \pi d_{\text{pump}}^2 h_{\text{pump}}(t)$$
,

而 d_{pump} 为柱塞腔直径, $h_{\text{pump}}(t)$ 为 t 时刻柱塞腔到上止点的高度. 因此

$$\frac{\mathrm{d}\rho_{\mathrm{pump}}}{\mathrm{d}t} = \frac{1}{V_{\mathrm{pump}}(t)} \frac{\mathrm{d}m_{\mathrm{pump}}(t)}{\mathrm{d}t} - \frac{m_{\mathrm{pump}}(t)}{V_{\mathrm{pump}}^2(t)} \frac{\mathrm{d}V_{\mathrm{pump}}(t)}{\mathrm{d}t} = -\frac{\rho_{\mathrm{pump}}(t)}{V_{\mathrm{pump}}(t)} \Big(Q_{\mathrm{in}}(t) + \frac{1}{4}\pi d_{\mathrm{pump}}^2 \frac{\mathrm{d}h_{\mathrm{pump}}(t)}{\mathrm{d}t}\Big).$$

由式(1),油泵中压力的变化满足

$$\frac{\mathrm{d}P_{\text{pump}}}{\mathrm{d}t} = \frac{E\left(P_{\text{pump}}\right)}{\rho_{\text{pump}}} \frac{\mathrm{d}\rho_{\text{pump}}}{\mathrm{d}t} = -\frac{E\left(P_{\text{pump}}\right)}{V_{\text{pump}}\left(t\right)} \Big(Q_{\text{in}}\left(t\right) + \frac{1}{4}\pi d_{\text{pump}}^{2} \frac{\mathrm{d}h_{\text{pump}}\left(t\right)}{\mathrm{d}t}\Big).$$

由图 11 可知初始角度为 $\theta_0 = -90^\circ = -\frac{\pi}{2}$ rad

(图 11),记凸轮旋转的角速度为 ω (rad/ms),则 t 时刻凸轮的角度为 $\theta(t) = \theta_0 + \omega t$.

记极径 r 与极角 φ 的关系为 $r = r(\varphi)$,当凸轮的 旋转角度为 $\theta = \theta(t)$ 时,凸轮最高处的 γ 坐标为

$$y(\theta) = \max_{0 \le \alpha \le 2\pi} r(\varphi) \sin(\varphi + \theta).$$

记
$$y_{\max} = \max_{0 \leqslant \theta < 2\pi} y(\theta) = \max_{0 \leqslant \varphi < 2\pi} r(\varphi)$$
表示上止点凸

图 11 凸轮曲线示意图

轮最高处的高度,即上止点油泵下端的高度,则 $h_{\text{pump}}(t) = y_{\text{max}} - y(\theta(t))$ 表示旋转角度为 $\theta = \theta(t)$ 时,从柱塞腔底部到上止点的高度.

3.2 喷油模型

如图 12 所示,记针阀的直径为 $d_{\rm needle}$,半径为 $r_{\rm needle}$,密封座的半角为 α ,喷孔的直径为 $d_{\rm out}$ (=1. 4 mm),半径为 $r_{\rm out}=\frac{d_{\rm out}}{2}$,则当针阀升程为 $h_{\rm needle}$ 时,密封座对应位置的半径为 $r=h_{\rm needle}$ tan $\alpha+r_{\rm needle}$,燃油流入小孔的面积 $S=\pi h_{\rm needle}$ tan $\alpha(h_{\rm needle}$ tan $\alpha+d_{\rm needle}$),而小孔的面积为 $\frac{1}{4}\pi d_{\rm out}^2$. 因此 $S_{\rm out}=\frac{1}{4}\pi d_{\rm out}^2$

$$Q_{\text{out}} = CS_{\text{out}} \sqrt{\frac{2P(t)}{\rho(t)}}.$$

图 12 燃油流入小孔的面积

3.3 实际情形的最终模型

高压油管内压力和密度的变化仍可用式(7)和式(8)来描述,这样,对问题 2,整个数学模型可以归结为

$$\frac{\mathrm{d}P_{\mathrm{pump}}}{\mathrm{d}t} = -\frac{E(P_{\mathrm{pump}})}{V_{\mathrm{pump}}(t)} \left(Q_{\mathrm{in}}(t) + \frac{1}{4}\pi d_{\mathrm{pump}}^2 \frac{\mathrm{d}h_{\mathrm{pump}}(t)}{\mathrm{d}t}\right),\tag{14}$$

$$\frac{\mathrm{d}\rho_{\mathrm{pump}}}{\mathrm{d}t} = -\frac{\rho_{\mathrm{pump}}(t)}{V_{\mathrm{nump}}(t)} \left(Q_{\mathrm{in}}(t) + \frac{1}{4} \pi d_{\mathrm{pump}}^2 \frac{\mathrm{d}h_{\mathrm{pump}}(t)}{\mathrm{d}t} \right), \tag{15}$$

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{E(P)}{\rho} \frac{\rho_{\mathrm{pump}} Q_{\mathrm{in}}(t) - \rho(t) Q_{\mathrm{out}}(t)}{V}, \tag{16}$$

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \frac{\rho_{\text{pump}}Q_{\text{in}}(t) - \rho(t)Q_{\text{out}}(t)}{V}.$$
(17)

图 13 给出了凸轮的旋转角度对高压油管压力的影响图.

3.4 实际情形的控制模型

凸轮的旋转角度与针阀升程之间存在相位差. 凸轮的初始角度为 $-\frac{\pi}{2}$,相应的针阀升程对应的初始时间记为 $t_{\rm needle}$,则针阀的实际升程与 $t_{\rm needle}$ 有关,t 时刻针阀的实际升程为 $h_{\rm needle}$ ($t+t_{\rm needle}$). 因此,喷油量 $S_{\rm out}$ 也与 $t_{\rm needle}$ 有关

$$S_{\text{out}}(t) = \min \left\{ \pi h_{\text{needle}}(t + t_{\text{needle}}) \tan \alpha (h_{\text{needle}}(t + t_{\text{needle}}) \tan \alpha + d_{\text{needle}}), \frac{1}{4} \pi d_{\text{out}}^2 \right\}.$$

这样,控制模型归结为:确定凸轮旋转的角速度 ω 和针阀升程的初始时间 t_{needle} ,使得 $|\max P|$ 达到最小. 图 14 给出了最优凸轮角速度和喷油开始时间的压力变化图.

图 13 凸轮的旋转角度对高压油管压力的影响图

图 14 最优凸轮角速度和喷油开始时间的压力变化图

3.5 喷油模型的改进

上面的燃油流入面积是大多数参赛队采用的模型,有参赛队给出了更合理的模型,参见图 15. 燃油流入小孔的最小面积是圆台的侧面积. 圆台的侧面积公式为

$$S = \pi l (R + r)$$
.

其中: l 为圆台母线长度; r 为上底的半径; R 为下底的半径.

圆台母线长度为 $l=h_{\mathrm{needle}}\sin\alpha$,上底的半径为 $r=r_{\mathrm{needle}}$,下底的半径为 $R=r_{\mathrm{needle}}+h_{\mathrm{needle}}\sin\alpha\cos\alpha$,因此

$$S = \pi h_{\text{needle}} \sin \alpha (h_{\text{needle}} \sin \alpha \cos \alpha + d_{\text{needle}})$$
.

图 16 给出了针阀面积用圆台侧面积计算时,最优凸轮角速度和喷油开始时间下的高压油管压力变化图.

图 15 燃油流入小孔的面积 (圆台侧面积)

图 16 最优凸轮角速度和喷油开始时间的压力变化图 (圆台侧面积)

4 两个喷油嘴和带减压阀的情形

对两个喷油嘴的情形,模型仍由式(14)一式(17) 给出,只需对喷口面积 S_{out} 进行修改 $S_{\text{out}} = S_{\text{out}}^1 + S_{\text{out}}^2$,

其中,

$$S_{\text{out}}^{i}(t) = \min \left\{ \pi h_{\text{needle}}(t + t_{\text{needle}}^{i}) \tan \alpha (h_{\text{needle}}(t + t_{\text{needle}}^{i}) \tan \alpha + d_{\text{needle}}), \frac{1}{4} \pi d_{\text{out}}^{2} \right\},$$
(18)

而 t_{needle}^i 分别为两个喷嘴相应针阀升程对应的初始时间.

图 17 给出了两个喷油嘴时最优凸轮角速度和喷油开始时间的压力变化图.

如果增加了一个减压阀,与上面类似,只需修 改喷口的面积 S_{out}

$$S_{\text{out}} = S_{\text{out}}^1 + S_{\text{out}}^2 + S_{\text{valve}}$$

其中, S_{out}^{i} 由式(18)给出,

$$S_{\text{valve}} = \frac{1}{4} \pi d_{\text{valve}}^2$$
,

而 d_{valve} 为减压阀的直径.

图 17 最优凸轮角速度和喷油开始时间时的 压力变化图 (两个喷油嘴的情形)

5 总结

本文针对几种不同情形,建立了高压油管中压力和密度变化的常微分方程模型,考察了进油时间对压力变化的影响,给出了使得压力稳定的控制策略.为了进一步减小压力的变化幅度,在控制模型中增加了一个控制变量(进油与喷油的相位差),使得压力的变化更加平稳.

参考文献

- [1]全国大学生数学建模竞赛组委会. 2019 年高教社杯全国大学生数学建模竞赛赛题[EB/OL]. (2019-09-12). http://www.mcm.edu.cn/html_cn/node/b0ae8510b9ec0cc0deb2266d2de19ecb.html.
- [2]周义仓, 陈磊. 柴油机供喷油过程的压力变化与控制[J]. 数学建模及其应用, 2020, 9(1): 33-39.

Continuous Models for Pressure Control of High Pressure Fuel Tubing

CAI Zhijie^{1, 2, 3}

- (1. School of Mathematical Sciences, Fudan University, Shanghai 200433, China;
- 2. Shanghai Key Laboratory of Contemporary Applied Mathematics, Shanghai 200433, China;
- 3. Key Laboratory of Nonlinear Mathematical Models and Methods of Ministry of Education, Shanghai 200433, China)

Abstract: In this paper, the continuous models for the pressure of high pressure tubing are established, and the control models stabilized the pressure and the corresponding computation methods are given.

Key words: high pressure tubing; pressure; ordinary differential equations; control model

作者简介

蔡志杰(1968-),男,博士,教授,博士生导师,应用数学专业,主要研究方向是工业应用数学和 应用偏微分方程.