STD-Trees: Spatio-temporal Deformable Trees for Multirotors Kinodynamic Planning

Hongkai Ye, Chao Xu and Fei Gao

Problem

0.25x speed

Standalone sampling-based kinodynamic planners converge slowly due to the difficulty of sampling states exactly near the optimal solution

Methodology

Deform the trajectory tree edges spatially and temporally

Improve overall tree quality without adding more samples

Accelerate the convergence

High level Approach

Algorithm 1 Spatio-temporal Deformable Trees

15: **return** \mathcal{T}

```
1: Notation: Tree \mathcal{T}, State x, Deformation Units \mathcal{U}, En-
      vironment \mathcal{E}, Deform Type \mathcal{L} \in \{NODE, TRUNK, \}
      BRANCH, TREE}
 2: Initialize: \mathcal{T} \leftarrow \emptyset \cup \{\mathbf{x}_{start}\}
 3: while Termination condition not met do
           \mathbf{x}_{new} \leftarrow \mathbf{Sampling}(\mathcal{E})
           \mathcal{X}_{backward} \leftarrow \mathbf{BackwardNear}(\mathcal{T}, \mathbf{x}_{new})
 5:
           \mathbf{x}_n \leftarrow \mathbf{ChooseParent}(\mathcal{X}_{backward}, \ \mathbf{x}_{new})
 6:
          \mathcal{T} \leftarrow \mathcal{T} \cup \{\mathbf{x}_n, \mathbf{x}_{new}\}
           if TryConnectGoal(\mathbf{x}_{new}, \mathbf{x}_{qoal}) then
 8:
                 One Solution Found.
 9:
           end if
10:
           \mathcal{U} \leftarrow \mathbf{SelectDeformationUnits}(\mathbf{x}_n, \mathcal{L})
11:
           DeformInOrder(\mathcal{U})
12:
            RewireInCascade(\mathcal{T}, \mathbf{x}_{new})
13:
14: end while
```

$$\min_{u(t)} \mathcal{J} = \int_0^{\tau} (\rho + \frac{1}{2}u(t)^2)dt$$

$$s.t. \quad \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t) - \dot{\mathbf{x}}(t) = \mathbf{0},$$

$$\mathbf{x}(0) = \mathbf{x}_{start}, \ \mathbf{x}(\tau) = \mathbf{x}_{goal},$$

$$\mathcal{G}(\mathbf{x}(t), u(t)) \leq \mathbf{0}, \ \forall t \in [0, \tau],$$

Linear Quadratic Minimum Time (LQMT) problem in the area of optimal control.

Tree Edge Representation

$$\mathbf{d} = \mathbf{A}_f(T)\mathbf{c}, \ \mathbf{c} = \mathbf{A}_b(T)\mathbf{d}$$

By {c, T} as
$$J_s(\mathbf{c}, T) = \rho T + \int_0^T \frac{1}{2} \mathbf{c}^\mathsf{T} \beta^{(s)}(t) \beta^{(s)}(t)^\mathsf{T} \mathbf{c} \ dt$$

= $\rho T + \frac{1}{2} \mathbf{c}^\mathsf{T} \mathbf{Q}(T) \mathbf{c}$,

By {d, T} as
$$J_s(\mathbf{d},T) = J_s(\mathbf{x}(t)|_{t=0}, \ \mathbf{x}(t)|_{t=T}, \ T)$$

$$= \rho T + \frac{1}{2} \mathbf{d}^\mathsf{T} \mathbf{M}(T) \mathbf{d},$$

$$\mathbf{d} = \begin{bmatrix} \mathbf{x}(t)|_{t=0} \\ \mathbf{x}(t)|_{t=T} \end{bmatrix}, \ \mathbf{M}(T) = \mathbf{A}_b^\mathsf{T}(T) \mathbf{Q}(T) \mathbf{A}_b(T)$$

Deformation Unit

Minimize the cost-to-come values of the node and all its descendant node by optimizing the node state and the time duration of the connecting edges.

Objective Design

$$\begin{split} g_n &= c(\mathbf{x}_{p_n}, \mathbf{x}_n) + g_{p_n} \\ g_n &+ \sum_{i \in \mathcal{D}_n} g_i = \sum_{i \in \mathcal{T}_n} \sum_{j \in \mathcal{C}_i} d_j c(\mathbf{x}_i, \mathbf{x}_j) \\ &= d_n c(\mathbf{x}_{p_n}, \mathbf{x}_n) + \sum_{i \in \mathcal{C}_n} d_i c(\mathbf{x}_n, \mathbf{x}_i) + \mathbf{C} \\ &= \sum_{i \in \{n\} \bigcup \mathcal{C}_n} d_i c(\mathbf{x}_{p_i}, \mathbf{x}_i) + \mathbf{C}, \end{split}$$

Minimize the cost-to-come values of the node and all its descendant node by optimizing the node state and the time duration of the connecting edges.

Unconstrained Formulation

$$J_f(\mathbf{c}_i, T_i, k_i) = \frac{T_i}{k_i} \sum_{j=0}^{k_i} \omega_j \mathcal{X}^\mathsf{T} max[\mathcal{G}(\mathbf{c}_i, T_i, t), \mathbf{0}]$$

$$\mathcal{G}(p^{[s]}(t)) \in \mathbb{R}^{s+1} \leq \mathbf{0}$$

Are the functional-type constraints that consider obstacle avoidance and dynamical limitations.

$$\min_{\mathbf{x}_n, \mathbf{T}_n} \sum_{i \in \{n\} \bigcup \mathcal{C}_n} d_i (J_s(\mathbf{c}_i, T_i) + J_f(\mathbf{c}_i, T_i, k_i))$$

$$\mathbf{c}_i = \begin{cases} \mathbf{A}_b(T_i) \begin{bmatrix} \mathbf{x}_{p_n}^\mathsf{T}, \ \mathbf{x}_n^\mathsf{T} \end{bmatrix}^\mathsf{T}, & i = n \\ \mathbf{A}_b(T_i) \begin{bmatrix} \mathbf{x}_{n}^\mathsf{T}, \ \mathbf{x}_n^\mathsf{T} \end{bmatrix}^\mathsf{T}, & i \in \mathcal{C}_n \end{cases}$$

Spatio-temporal Optimization

For one edge in the deformation unit, we derive the gradient of the decoupled objective w.r.t. {**x**, **T**}:

$$\frac{\partial J_s}{\partial \mathbf{x}_n} = \frac{\partial J_s}{\partial \mathbf{c}_i} \frac{\partial \mathbf{c}_i}{\partial \mathbf{x}_n} = \mathbf{Q}(T) \mathbf{c}_i, \frac{\partial J_f}{\partial \mathbf{x}_n} = \frac{\partial J_f}{\partial \mathcal{G}} \frac{\partial \mathcal{G}}{\partial \mathbf{c}_i} \frac{\partial \mathbf{c}_i}{\partial \mathbf{x}_n},$$

$$\frac{\partial J_s}{\partial T_i} = \rho + \frac{1}{2} \mathbf{c}_i^\mathsf{T} \dot{\mathbf{Q}}(T_i) \mathbf{c}_i, \frac{\partial J_f}{\partial T_i} = \frac{J_f}{T_i} + \frac{\partial J_f}{\partial \mathcal{G}} \frac{\partial \mathcal{G}}{\partial t} \frac{j}{k_i},$$

$$\frac{\partial J_f}{\partial \mathcal{G}} = \frac{T_i}{k_i} \sum_{j=0}^{k_i} \omega_j \mathcal{X} \odot max[Sign[\mathcal{G}(\mathbf{c}_i, T_i, \frac{j}{k_i})], \mathbf{0}],$$

$$\frac{\partial \mathbf{c}_i}{\partial \mathbf{x}_n} = \begin{cases} \begin{bmatrix} \mathbf{A}_b^{01}(T_i)^\mathsf{T} & \mathbf{A}_b^{11}(T_i)^\mathsf{T} \end{bmatrix}^\mathsf{T}, & i = n \\ \begin{bmatrix} \mathbf{A}_b^{00}(T_i)^\mathsf{T} & \mathbf{A}_b^{10}(T_i)^\mathsf{T} \end{bmatrix}^\mathsf{T}, & i \in \mathcal{C}_n, \end{cases}$$

Adopt Limited Memory Bundle Method (LMBM) to address the non-smoothness introduced by the interpolation of the distance fields.

Deform One Unit

Green: before deforming Re

Red: after deforming

Visualization of deforming one deformation unit each time.

Deformation Variants

Different variants to balance optimization level and computation burden

BRANCH Deformation

Green: before deforming Red: after deforming

Visualization of deforming by variant BRANCH.

Convergence Comparison

Different variants to balance optimization level and computation burden

Variant BRANCH outperforms others

A new sample brings potential improvements mostly on the subtree while other tree parts are less likely influenced.

Convergence Comparison

Integrate deformation on RRT-family kinodynamic planners

No Deformation

Slow Convergence

Spatial-only Deformation

Fast Convergence

Spatio-temporal Deformation

Faster Convergence

No Deformation

Spatial-only Deformation

Smoother

Spatio-temporal Deformation Smoother & Shorter

Thanks for Watching!