Chapter 10

Mass Storage & Disk Structures

Disks

Storage:

18-73GB

Form factor:

 $.4-.7" \times 2.7" \times 3.9"$

Storage:

4-27GB

Form factor:

 $.2-.4" \times 2.1" \times 3.4"$

Storage:

170MB-1GB

Old mainframe disks

Hard Disk Drives

Read/Write Head Side View

Western Digital Drive

http://www.storagereview.com/guide/IBM/Hitachi Microdrive

Solid State Drives

Flash storage technology

- Semiconductor technology
- No moving parts
- No spin-up time or noise
- Very low power consumption
- Low random access times
- Very light-weight
- Unaffected by magnetic fields
- Shock and vibration resistant
- Ability to handle extremes of temperature

Same interface and form factors as Existing hard disks.

SSD technology

- Uses semiconductor flash storage technology
 - NOR technology (mostly used in embedded systems)
 - NAND technology (thumb drives, SS Drives)
- Major difference from flash drives is the sophisticated controller on SSD's.
- With all flash storage, each bit can be written only a finite number of times.

SSD Controller

- Every SSD contains an internal embedded processor (controller) that functions as a bridge between its NAND flash memory and a host (such as a computer).
- Controller responsible for the SSD's performance and its features:
 - reading and writing
 - Erasing
 - Encryption
 - error checking and correction (ECC),
 - Bad block mapping
 - garbage collection
 - wear-leveling
- The Controller and its NAND non-volatile memory are the two primary components of all SSDs.
- The Controller is not to be confused with the actual I/O controller interface, which is typically a SATA interface used to physically attach the SSD to the host.

Disk Technology Trends

- Disks are getting smaller for similar capacity
 - Spin faster, less rotational delay, higher bandwidth
 - Less distance for head to travel (faster seeks)
 - Lighter weight (for portables)
- Disk data is getting denser
 - More bits/square inch
 - Tracks are closer together
 - Doubles density every 18 months
- Disks are getting cheaper (\$/MB)
 - Factor of ≈ 2 per year since 1991
 - Head close to surface

Disk Technology Trends

• From the paper: E. Growchowski. *Emerging Trends in Data Storage on Magnetic Hard Disk Drives*. In Datatech, pages 11-16. ICG Publishing, September 1998.

Disk Technology Trends

Figure 7. Projection of average price per megabyte for HDDs and DRAMs.

Disk Organization

Disk surface

Circular disk coated with magnetic material

Tracks

 Concentric rings around disk surface, bits laid out serially along each track

Sectors

 Each track is split into arc of track (min unit of transfer)

More on Disks

- CD's and floppies come individually, but magnetic disks come organized in a disk pack
- Cylinder
 - Certain track of the platter
- Disk arm
 - Seek the right cylinder

seek a cylinder

Disk Organization As Fiction

- Fixed arc implies inefficiency
 - short inner sectors,
 long outer sectors
- Reality
 - More sectors on outer tracks
 - Disks map transparently

Disk Hardware

- To hide the complexity of the physical geometry, most modern disks present a virtual view of the disk to the OS.
- Controller maps virtual address to physical address.

Disk Formatting

- Cylinder skew is used to improve performance:
 - Sector 0 in each cylinder is offset
 - Allows disk to read multiple tracks in one continuous operation
 - By allowing time for the R/W head to change tracks.

- Parallel I/O
- RAID: Redundant Array of Independent Disks
- Relies on redundancy
- Collection of disks arranged in a specific way to obtain more speed and/or reliability

The rest of the computer should not be able to tell the difference

RAID structures

- Redundancy is achieved via duplication of data
- Parallelism is achieved via striping
- Striping can be at the bit level or block level
 - Bit level: bits of a byte distributed across multiple physical disks
 - Block level: blocks are distributed across multiple physical disks

- Redundant Array of Inexpensive (Independent) Disks
 - Use multiple smaller disks (c.f. one large disk)
 - Parallelism improves performance
 - Plus extra disk(s) for redundant data storage
- Provides fault tolerant storage system
 - Especially if failed disks can be "hot swapped"

- RAID 0
 - No redundancy ("AID"?)
 - Just stripe data over multiple disks
 - But it does improve performance (parallel access)

 RAID levels 0 through 5.
 Backup and parity drives are shown shaded.

1 parity bit disk Can utilize disk controller ability to detect damaged sectors

RAID 1 & 2

- RAID 1: Mirroring
 - N + N disks, replicate data
 - Write data to both data disk and mirror disk
 - On disk failure, read from mirror

RAID 1 & 2

- RAID 2: Error correcting code (ECC)
 - -N + E disks (e.g., 10 + 4)
 - Split data at bit level across N disks
 - Generate E-bit ECC
 - Too complex, not used in practice

RAID 3: Bit-Interleaved Parity

- N + 1 disks
 - Data striped across N disks at byte level
 - Redundant disk stores parity
 - Read access
 - Read all disks
 - Write access

- Generate new parity and update all disks
- On failure
 - Use parity to reconstruct missing data
- Not widely used

RAID 4: Block-Interleaved Parity

- N + 1 disks
 - Data striped across N disks at block level
 - Redundant disk stores parity for a group of blocks
 - Read access
 - Read only the disk holding the required block
 - Write access
 - Just read disk containing modified block, and parity disk
 - Calculate new parity, update data disk and parity disk
 - On failure
 - Use parity to reconstruct missing data
- Not widely used

RAID 3 vs RAID 4

RAID 5: Distributed Parity

- N + 1 disks
 - Like RAID 4, but parity blocks distributed across disks
 - Avoids parity disk being a bottleneck
- Widely used

RAID 4 RAID 5

RAID Summary

- RAID can improve performance and availability
 - High availability requires hot swapping
- Assumes independent disk failures
 - Too bad if the building burns down!
- See "Hard Disk Performance, Quality and Reliability"
 - http://www.pcguide.com/ref/hdd/perf/index.htm

Disk Hardware

Parameter	IBM 360-KB floppy disk	WD 18300 hard disk
Number of cylinders	40	10601
Tracks per cylinder	2	12
Sectors per track	9	281 (avg)
Sectors per disk	720	35742000
Bytes per sector	512	512
Disk capacity	360 KB	18.3 GB
Seek time (adjacent cylinders)	6 msec	0.8 msec
Seek time (average case)	77 msec	6.9 msec
Rotation time	200 msec	8.33 msec
Motor stop/start time	250 msec	20 sec
Time to transfer 1 sector	22 msec	17 μsec

Disk parameters for the original IBM PC floppy disk and a Western Digital WD 18300 hard disk

Disk Examples (Summarized Specs)

	Seagate Barracuda	IBM Ultrastar 72ZX
Capacity, Interface & Configuration		
Formatted Gbytes	28	73.4
Interface	Ultra ATA/66	Ultra160 SCSI
Platters / Heads	4/8	11/22
Bytes per sector	512	512-528
Performance		
Max Internal transfer rate (Mbytes/sec)	40	53
Max external transfer rate (Mbytes/sec)	66.6	160
Avg Transfer rate(Mbytes/sec)	> 15	22.1-37.4
Multisegmented cache (Kbytes)	512	16,384
Average seek, read/write (msec)	8	5.3
Average rotational latency (msec)	4.16	2.99
Spindle speed (RPM)	7,200	10,000

Disk Performance

- Seek
 - Position heads over cylinder, typically 5.3 8 ms
- Rotational delay
 - Wait for a sector to rotate underneath the heads
 - Typically 8.3 6.0 ms (7,200 10,000RPM) or ½ rotation takes 4.15-3ms
- Transfer bytes
 - Average transfer bandwidth (15-37 Mbytes/sec)
- Performance of transfer 1 Kbytes
 - Seek (5.3 ms) + half rotational delay (3ms) + transfer (0.04 ms)
 - Total time is 8.34ms or 120 Kbytes/sec!
- What block size can get 90% of the disk transfer bandwidth?

Disk Behaviors

- There are more sectors on outer tracks than inner tracks
 - Read outer tracks: 37.4MB/sec
 - Read inner tracks: 22MB/sec
- Seek time and rotational latency dominates the cost of small reads
 - A lot of disk transfer bandwidth are wasted
 - Need algorithms to reduce seek time!

Block Size (Kbytes)	% of Disk Transfer Bandwidth
1Kbytes	0.5%
8Kbytes	3.7%
256Kbytes	55%
1Mbytes	83%
2Mbytes	90%

Disk Arm Scheduling Algorithms

- Time required to read or write a disk block determined by 3 factors
 - Seek time
 - Rotational delay
 - 3. Actual transfer time
- Seek time dominates
- Error checking is done by controllers
- Peak bandwidth high, but rarely achieved
- Need to mitigate disk performance impact
 - Do extra calculations to speed up disk access
 - Schedule requests to shorten seeks
 - Move some disk data into main memory file system caching

Disk Arm Scheduling

- Which disk request is serviced first?
 - FCFS
 - Shortest seek time first
 - Elevator (SCAN)
 - C-SCAN (Circular SCAN)
- Look familiar?

FIFO (FCFS) order

Method

First come first serve

Pros

- Fairness among requests
- In the order applications expect

Cons

- Arrival may be on random spots on the disk (long seeks)
- Wild swing can happen

98, 183, 37, 122, 14, 124, 65, 67

SSTF (Shortest Seek Time First)

Method

- Pick the one closest to current head position on disk
- Pros
 - Try to minimize seek time
- Cons
 - Starvation

98, 183, 37, 122, 14, 124, 65, 67 (65, 67, 37, 14, 98, 122, 124, 183)

Elevator (SCAN)

Method

- Take the closest request in the current direction of travel
- Real implementations do not go to the end (called LOOK)

Pros

Bounded time for each request

Cons

Request at the other end will take a while

98, 183, 37, 122, 14, 124, 65, 67 (37, 14, 65, 67, 98, 122, 124, 183)

C-SCAN (Circular SCAN)

Method

- Like SCAN
- But, wrap around
- Real implementation doesn't go to the end (C-LOOK)

Pros

Uniform service time

Cons

Do nothing on the return

98, 183, 37, 122, 14, 124, 65, 67 (65, 67, 98, 122, 124, 183, 14, 37)

Disk Versus Memory

Memory

- Latency in 10's of processor cycles
- Transfer rate 300+MB/s

Disk

- Latency in milliseconds (millions of processor cycles)
- Transfer rate 5-50MB/s

On-Disk Caching

Method

- Put RAM on disk controller to cache blocks
 - Seagate ATA disk has 0.5MB, IBM Ultra160 SCSI has 16MB
 - Some of the RAM space stores "firmware" (an OS)
- Blocks are replaced usually in LRU order
- Pros
 - Good for reads if you have locality
- Cons
 - Expensive
 - Need to deal with reliable writes