

Forming Processes

Forming indicates the changing the shape of an existing solid body. The starting material (oftentimes called as workpiece / stock / blank) can be in the shape of a plate, sheet, bar, rod, wire, or tubing of various cross-sections.

For example, an ordinary wire coat hanger is made by forming a straight piece of wire by bending and twisting it into the shape of a hanger. Metallic bodies of various shapes of a car (e.g. hood, roof, trunk, door panel, etc.) is made by pair of large dies from flat cold-**rolled** sheets.

Rolling Process and Products

Rolling is the process of reducing the thickness or changing the cross-section of a long workpiece by compressive force applied through a se of rolls.

Plates of 6 mm or higher thicknesses are used for structural applications e.g. ship hulls, boilers, bridges, machinery, and nuclear vessels. Plates can be as thick as 300 mm for large structural supports, 150 mm for reactor vessels, and 100 to 125 mm for machinery frames and warships.

Sheets are usually thinner than 6 mm thick and are used for appliances, automobile and aircraft bodies, kitchen and office equipments, food and beverage containers. For example, skin thickness of a Boeing 747 fuselage is 1.8 mm and of a Lockheed L1011 is 1.9 mm. Steel sheets used for automobile and appliance bodies are typically about 0.7 mm thick. Aluminum beverage cans are usually around 0.28 mm thick.

Kalpakjian and Schimdt: Manufacturing Engineering and Technology

 h_0 – initial thickness of strip at entry h_f – final thickness of strip at exit V_0 – initial velocity of strip at entry V_f – final velocity of strip at exit L – roll – strip contact length

As the strip enters into the roll gap, it accelerates in the same manner as an incompressible fluid flowing thru' a converging channel, and exits at the highest velocity.

Each roll is powered individually by an electric motor. The surface speed of each roll remains constant. So, there is relative sliding between the roll and the strip along the arc of contact in the roll gap. At one point along the contact length, the velocity of the strip is the same as that of the roll. This point is referred to as the Neutral point or Noslip point.

To the left of the **Neutral Point**, the roll moves faster than the strip. But, the strip moves faster than the roll to the right of the **Neutral Point**. So, there will friction between the roll and the strip.

The friction force helps the rolls to pull the material into the roll gap. The Frictional Force to the left of the **Neutral Point** must be higher than the Frictional Force to the right.

Although friction is necessary for rolling materials (just as it is in driving a car on a road), energy is dissipated in overcoming friction. So, an increase in friction increases the rolling force and the power requirement. High friction damages the surface of the roll and rolled product (or cause sticking). So, an optimum friction is ensured by the proper choice of process parameters and the use of suitable lubricants.

The maximum possible draft is defined as the difference between the initial and final strip thicknesses, or $(h_0 - h_f)$. This quantity can be expressed as a function of the roll radius, R, and the coefficient of friction (μ) between the strip and the roll as $[(h_0 - h_f)] = \mu^2 R$

So, the higher the friction force and the larger the roll radius, the greater will be the maximum possible draft.

For example, large tires (high R) and rough treads (high μ) on farm tractors and off-road earthmoving equipment permit the vehicles to travel over rough terrain without skidding.

The rolls apply pressure on the flat strip to reduce its thickness resulting in a roll force, F. Considering that the arc of contact is very small compared with the roll radius, we can consider that the roll force F applies perpendicular to the plane of the strip. The roll force can be estimated as

$$F = LwY_{avg}$$

where L is the roll-strip contact length, w is the width of the strip, and Y_{avg} is the average true stress of the strip in the roll gap. Remember that the above relation does not consider any friction. The actual roll force will therefore be higher.

The torque on the roll is the product of F and a. The power required per roll can therefore be estimated by assuming that F acts in the middle of the arc of contact i.e. a = L/2. Therefore, the total power (for two rolls), in S.I. units, is

$$P (in kW) = (2\pi FLN) / 60000$$

where F is in N (newtons), L is in meters (m) and N is the revolutions per minute of the roll.

Reducing Roll Forces

Roll forces can be reduced by the following means:

- (a) Reducing friction at the roll-workpiece interface
- (b) Using smaller diameter rolls to reduce the contact area
- (c) Taking smaller reductions per pass to reduce the contact area
- (d) Rolling at elevated temperatures to lower the strength of the material
- (e) Applying front and/or back tensions to the strip

Application of a longitudinal tension to the strip during rolling results in reduction of the compressive stress, which is required to plastically deform the material. This becomes important for rolling high-strength metals. Tensions can be applied to the strip at either the entry zone (back tension), the exit zone (front tension), or both.

Arrangement of Rolls

Cambering of Rolls

Roll forces tend to bend the rolls elastically during rolling. The higher the elastic modulus of the roll material, the smaller is the roll deflection.

As a result, rolls undergo changes in shape similar to deflection of a straight beam under a transverse load. The rolled strip tends to be thicker at its center than at its edges (crown). A possible remedy is to grind the rolls in such a way that their diameter at the center is slightly larger than at their edges (camber). So, when the roll bends, the strip being rolled now can have a constant thickness along its width.

Because of the heat generated by plastic deformation during rolling, rolls can become barrel shaped (thermal camber), which can produce strips that are thinner at the center than at the edges.

Roll forces can flatten the rolls elastically, like flattening of automobile tires, resulting a larger roll radius, higher contact area for the same draft, and increasing roll force due to greater contact area

Structure of Rolled Strips

A cast structure is dendritic with coarse and nonuniform grains, quite brittle and may be porous. Hot rolling converts the cast structure to a wrought structure with fine grains and enhanced ductility due to recrystallization and closing up of internal defects. Temperature ranges for hot rolling are about 450 C for Al-alloys, 1250 C for alloy steels, and 1650 C for refractory alloys.

Hot rolling produces a bloom (square x-section >= 150 mm²), or a slab (rectangular x-section) or, a billet (square x-section < 150 mm²). Blooms are processed further by shape rolling into structural shapes such as I-beams and railroad rails. Slabs are rolled into plates and sheets. Billets are further rolled into various shapes, such as round rods and bars, using shaped rolls.

Cold rolling is carried out at room temperature and, compared with hot rolling, produces sheets and strips with a much better surface finish (because of lack of oxide scale), better dimensional tolerances, and enhanced mechanical properties (because of strain hardening).

Defects in Rolled Strips

Wavy edges on sheets are the result of roll bending. Strip is thinner along its edges than at its center. So, the edges elongate more than the center and buckle as they are constrained by the central region from expanding freely in the longitudinal (rolling) direction.

Cracks shown in (b) and (c) are the result of poor material ductility at the rolling temperature. Edges in rolled sheets are usually removed by shearing and slitting.

Alligatoring (d) is caused by nonuniform bulk deformation of the billet during rolling or by the presence of defects in the original cast.

Residual stress forms during cold rolling due to non-uniform plastic deformation of the material in the roll gap. Small diameter rolls or small thickness reductions per pass deform the metal more at its surfaces than in the bulk. This results in compressive residual stresses on the surfaces and tensile stresses in the bulk.

Large diameter rolls or high reductions per pass deform the bulk more than the surfaces. This leads to compressive residual stress on the surface and tensile stress in the bulk.

Rolling Mills

Two-high rolling mill is used for initial breakdown passes (roughing or cogging mills) on cast ingots or in continuous casting with roll diameters ranging from 0.6 to 1.4 m.

Three-high rolling mill (reversing mill) allows reversal of material movement after each pass. Plates are raised repeatedly to the upper roll gap, rolled, then lowered to the lower roll gap, rolled, and so on.

Four-high mills and cluster mills (Sendzimir mill) are based on the principle that small-diameter rolls lower roll forces (due to small roll-strip contact area) and power requirements, and reduce spreading. Also, when worn or broken, small rolls can be replaced at lower cost than can large ones.

Backing bearing

intermediate roll Driven roll

Driven roll Second

Housing

Driven roll

Work roll

Bearing shaft

intermediate roll

Various Rolling Processes and Mills

Shape Rolling - Straight and long structural shapes (such as channels, I-beams, railroad rails, and solid bars) are formed at elevated temperatures by shape rolling. The stock goes through a set of specially designed rolls as its cross section is reduced non-uniformly. The design of the series of rolls (roll-pass design) is very critical to avoid external and internal defects, hold dimensional tolerances, and reduce roll wear.

Roll Forging (also called cross rolling) is used to shape the cross section of a round bar by passing it through a pair of rolls with profiled grooves. Roll forging typically is used to produce tapered shafts and leaf springs, table knives, and hand tools.

Kalpakjian and Schimdt: Manufacturing Engineering and Technology

In ring rolling, a thick ring is expanded into a thin ring but with higher diameter. The ring is placed between two roll and its thickness is reduced by bringing the rolls closer together as they rotate. Large rings for rockets and turbines, jet engine cases, gearwheel rims, ball-bearing and roller-bearing races, flanges, and reinforcing rings for pipes are produced by ring rolling.

Various Rolling Processes and Mills

Thread Rolling is a cold-forming process by which straight or tapered threads are formed on round rods or wire by each stroke of a pair of flat reciprocating dies or rotary dies at a high production rate. The thread-rolling process is capable of generating other shapes such as grooves and various gear forms.

Rotary Tube Piercing (Mannesmann process) is a hot-working process for making long, thick-walled seamless pipe and tubing. When a round bar is subjected to radial compressive forces, tensile stresses develop at the center of the bar. When it is subjected continuously to a cyclic compressive stress, the bar develops a small central cavity that is allowed to grow. So, it is carried out using an arrangement of rotating rolls with the axes of the rolls skewed in order to pull the round bar through the rolls by the axial component of the rotary motion. An internal mandrel assists the operation by expanding the hole and sizing the inside diameter of the tube. It may be a floating or fixed mandrel.

Kalpakjian and Schimdt: Manufacturing Engineering and Technology

Various Rolling Processes and Mills

Tube Rolling is used to reduce the diameter and thickness of pipes and tubing by a set of shaped rolls and a fixed mandrel (a) or a floating mandrel (b), or without a mandrel (c) or with a set of pilger roll and a mandrel (d). In the pilger mill, the tube and an internal mandrel undergo a reciprocating motion; the rolls are specially shaped and are rotated continuously.

Forging

Steps to produce a knife by Forging

Forging is a basic process in which the workpiece is shaped by compressive forces applied through various dies and tooling to produce jewelry, coins, turbine rotors, gears, bolts, rivets, cutlery, hand tools, components for machinery, aircraft landing gear and railroads, and so on.

In Forging, metal flows in a die and the material's grain structure can be controlled. So, forged parts have good strength and toughness, and are very reliable for highly stressed and critical applications.

Open Die Forging with and w/o Friction

Cogging (reducing thickness of a slab or diameter of a bar / disc) is an example of open die forging

Impression Die Forging

In impression-die forging, the workpiece takes the shape of the die cavity as it is forged between two shaped dies. It is mostly carried out at elevated temperatures to lower the required forces and ensure good plastic flow of the workpiece.

Forging of an automotive connecting rod is shown on the left. In fullering, material is distributed away from an area. In edging, it is gathered into a localized area. The part then is formed into the rough shape by blocking using blocker dies. The final operation is the finishing of the forging in impression dies that give the forging its final shape. The flash is removed later by a trimming operation.

Closed Die Forging

1. Start of stroke

Closed-die forging is almost similar to impression die forging with very little or no flash. Closed-die forging is also referred to as flashless forging.

The workpiece completely fills the die cavity. The forging pressure is very high, and accurate control of the blank volume and proper die design are essential to producing a forging with the desired dimensional tolerances.

Undersized blanks prevent the complete filling of the die cavity and in contrast, oversized blanks generate excessive pressures and may cause dies to fail prematurely or the machine to jam.

2. End of stroke

Coining is a closed-die forging process that is used for minting of coins, medallions, and jewelry. The blank or slug is coined in a completely closed die cavity. In order to produce fine details (for example, the detail on newly minted coins), the pressures required can be as high as five or six times the strength of the material.

Closed Die Forging

Heading is a closed-die forging that is performed on the end of a round rod or wire in order to increase the cross-section. Typical products are nails, bolt heads, screws, rivets, and various other fasteners. It is also known as upset forging.

Piercing is a closed-die forging process that is used for indenting (but not breaking through) the surface of a workpiece with a punch in order to produce a cavity or an impression. A common example of piercing is the indentation of the hexagonal cavity in bolt heads.

The piercing force depends on (a) the cross-sectional area and the tip geometry of the punch, (b) the strength of the material, and (c) the magnitude of friction at the sliding interfaces. The pressure may range from three to five times the strength of the material

Rotary Swaging

Kalpakjian and Schimdt: Manufacturing Engineering and Technology

Rotary Swaging is a process in which a solid rod or tube is subjected to radial impact forces by a set of reciprocating dies of the machine.

The workpiece is stationary and the dies rotate (while moving radially in their slots), striking the workpiece at rates as high as 20 strokes per second.

Rotary Swaging is also used for operations such as pointing (tapering the tip of a cylindrical part) and sizing (finalizing the dimensions of a part).

Tube Swaging is a process in which the internal diameter and / or the thickness of the tube is reduced with or without the use of internal mandrels.

For small-diameter tubing, high-strength wire is used as a mandrel. Mandrels can have longitudinal grooves, to allow swaging of internally shaped tubes (e.g. the rifling in gun barrels requires internal spiral grooves to give gyroscopic effect to bullets and can be produced by swaging a tube over a mandrel with spiral grooves).

Defects in Forging, Die Design

Forgeability is defined as the capability of a material to undergo deformation without cracking. In general, alloys are tested using an "upsetting test" and / or "hot twist test" to realize its forgeability at room temperature and elevated temperatures.

Defects in forging occurs primarily due to improper material flow. There can be surface cracks. If there is insufficient volume of material to completely fill the die cavity, the web may buckle and develop laps. If the web is too thick, the excess material flows past the already formed portions of the forging and develops internal cracks.

Most forging operations are carried out at elevated temperatures. So, die materials must have

- (a) strength and toughness at elevated temperatures
- (b) hardenability and ability to harden uniformly
- (c) resistance to mechanical and thermal shock
- (d) resistance to abrasive wear, because of the presence of scale in hot forging.

Common die materials are tool and die steels containing chromium, nickel, molybdenum, and vanadium.

At the instant shown in the above figure (top – left), the thickness of the workpiece is h and the width is 2l. Let us consider an element of width dx at a distance x from the origin. The length of the workpiece is assumed to be unity in the z-direction.

The figure (top - right) shows the same element with all the stresses acting on it. Considering the equilibrium of the element in the x-direction, we can write,

$$hd\sigma_{x} + 2\tau dx = 0$$

where τ is the frictional stress. To make the analysis simpler, let us consider (-p) and σ_x as principal stresses.

Assumptions:

- (a) The forging force F attains its maximum value at the end of the operation.
- (b) The coefficient of friction μ between the working and the die platens is constant,
- (c) The thickness of the workpiece is small as compared with its other dimensions, and the variation of the stress field along the y-direction is negligible,
- (d) The length of the strip is much more than the width and plane strain approximation holds,
- (e) The entire workpiece is in the plastic state during the process.

So, we write

$$\sigma_1 = \sigma_x$$
 and $\sigma_3 = -p$

Considering plane strain

$$\varepsilon_2 = \frac{1}{E} [\sigma_2 - \upsilon(\sigma_1 + \sigma_3)] = 0 \qquad \Rightarrow \sigma_2 = \frac{1}{2} (\sigma_1 + \sigma_3)$$

Applying Von Mise's Yield Criteria

$$[\sigma_{x} - \frac{1}{2}(\sigma_{x} - p)]^{2} + [\frac{1}{2}(\sigma_{x} - p) + p]^{2} + [-p - \sigma_{x}]^{2} = 2\sigma_{y}^{2} = 2(\sqrt{3}\tau_{y})^{2}$$
or, $(p + \sigma_{x}) = 2\tau_{y} \implies d\sigma_{x} = -dp$

We can therefore write as:

$$hd\sigma_x + 2\tau dx = 0$$
 \longrightarrow $-hdp + 2\tau dx = 0$ \Longrightarrow $dp = \frac{2\tau}{h} dx$

A sliding between the dies and the workpiece must take place to allow the required expansion of the workpiece. This is true when x is small and also at the free ends. However, there will be no sliding between the workpiece and the dies beyond a certain value of x, say, x_s (in the region $0 \le x \le l$). This is due to increasing frictional stress, which reaches the maximum value, equal to the shear yield stress, at $x = x_s$ of and remains so in the rest of the zone, $x_s \le x \le l$). So,

$$\begin{array}{lll} 0 \leq x \leq x_s & \tau = \mu p & \Longrightarrow & \text{sliding zone} \\ x_s \leq x \leq 1 & \tau = \tau_Y & \Longrightarrow & \text{sticking zone} \end{array}$$

For the region: $0 \le x \le x_s$

We can write:

$$\int \frac{dp}{p} = \frac{2\mu}{h} \int dx + C_1 \quad \Longrightarrow \quad \ln p = \frac{2\mu x}{h} + \ln C_1$$

But, at
$$x = 0$$
, $\sigma_x = 0$ $\Rightarrow p = 2\tau_y$ $\Rightarrow C_1 = 2\tau_y$

So,
$$p = 2\tau_Y e^{\frac{2\mu x}{h}}$$

For the region: $x_s \le x \le x_1$

We can write:

$$\int dp = \frac{2\tau_Y}{h} \int dx + C_2 \implies p = \frac{2\tau_Y x}{h} + C_2$$

But, at
$$x = x_s$$
, $p = p_s$ $\Rightarrow C_2 = p_s - \frac{2\tau_Y x_s}{h}$

So,
$$p - p_s = \frac{2\tau_Y}{h}(x - x_s)$$

But,
$$p_s = 2\tau_Y e^{\frac{2\mu x_s}{h}}$$

So,
$$p = 2\tau_{Y} \left[exp \left(\frac{2\mu x_{s}}{h} \right) + \frac{x - x_{s}}{h} \right]$$

We should note that

at
$$x = x_s$$
, $\tau = \mu p_s = \tau_Y$

So,

$$\tau_{\rm Y} = 2\mu\tau_{\rm Y} \exp\left(\frac{2\mu x_{\rm s}}{h}\right) \implies x_{\rm s} = \frac{h}{2\mu} \ln\left(\frac{1}{2\mu}\right)$$

We can therefore write: $p = 2\tau_y \left| \frac{1}{2\mu} \left\{ 1 - \ln \left(\frac{1}{2\mu} \right) \right\} + \frac{x}{h} \right|$ for the region: $x_s \le x \le x_1$

So, the net forging force can be written as

$$F = 2 \left[\int_{0}^{x_{s}} p_{\text{sticking}} dx + \int_{x_{s}}^{1} p_{\text{sliding}} dx \right]$$

A strip of an alloy with initial dimensions 24 mm x 24 mm x 150 mm is forged between two flat dies to a final size of 6 mm x 96 mm x 150 mm. If the coefficient of friction between the workpiece and the dies is 0.25, determine the maximum forging force. The average yield stress of the alloy is 10 N/mm²...

Considering the equilibrium of the element in the radial direction, we can write,`

$$(\sigma_{r} + d\sigma_{r})h(r + dr) d\theta - \sigma_{r}hr d\theta - 2\sigma_{r}h dr sin\left(\frac{d\theta}{2}\right) - 2\tau r d\theta dr = 0$$

Neglecting higher order terms and assuming σ_{θ} = σ_{r} , we can write: $\implies h d\sigma_{r} - 2\tau dr = 0$

We also assume: $\sigma_1 = \sigma_r$ and $\sigma_2 = \sigma_\theta (= \sigma_r)$ and $\sigma_3 = -p$

Considering Von Mise's Yield criteria: \implies $(p + \sigma_r) = \sqrt{3}\tau_y \implies d\sigma_r = -dp$

We can therefore write,
$$hd\sigma_r - 2\tau dr = 0$$
 \implies $hdp + 2\tau dr = 0$ \implies $dp = -\frac{2\tau}{h}dr$

For sticking zone (i.e. $0 \le r \le r_s$), $\tau = \tau_v$ For sliding zone (i.e. $r_s \le r \le R$), $\tau = \mu p$

So

$$\frac{dp}{p} + \frac{2\mu}{h} dr = 0 \qquad \qquad (r_s \le r \le R) \qquad \Longrightarrow \text{ sliding zone}$$

$$dp + \frac{2\tau_y}{h} dr = 0 \qquad \qquad (0 \le r \le r_s) \qquad \Longrightarrow \text{ sticking zone}$$

Integrating those two expressions,

$$p = C_1 \exp \left(-\frac{2\mu r}{h} \right) \qquad (r_s \le r \le R) \implies \text{ sliding zone}$$

$$p = C_2 - \frac{2\tau_y}{h} r \qquad (0 \le r \le r_s) \implies \text{ sticking zone}$$

At
$$r = R$$
, $\sigma_r = 0$; and so: $(p + \sigma_r) = \sqrt{3}\tau_y \Rightarrow p = \sqrt{3}\tau_y \implies C_1 = \sqrt{3}\tau_y \exp\left(-\frac{2\mu R}{h}\right)$
So, $p = \sqrt{3}\tau_y \exp\left[\frac{2\mu}{h}(R - r)\right] \qquad (r_s \le r \le R) \implies \text{sliding zone}$

at
$$r = r_s$$
, $\tau = \mu p = \tau_y$ $\Rightarrow p = \frac{\tau_y}{\mu}$

Please also remember, $0 \le r \le r_s$ $\tau = \tau_y$

$$\frac{\tau_{y}}{\mu} = \sqrt{3}\tau_{y} \exp\left[\frac{2\mu}{h}(R - r_{s})\right] \qquad \Rightarrow r_{s} = \left(R - \frac{h}{2\mu} \ln \frac{1}{\sqrt{3}\mu}\right)$$

$$\Rightarrow r_{s} = \left(R - \frac{h}{2\mu} \ln \frac{1}{\sqrt{3\mu}}\right)$$

$$p = \frac{\tau_y}{\mu} = C_2 - \frac{2\tau_y}{h}r_s = C_2 - \frac{2\tau_y}{h}\left(R - \frac{h}{2\mu}\ln\frac{1}{\sqrt{3}\mu}\right) \quad \Rightarrow C_2 = \tau_y\left[\frac{2\tau_y}{h} + \frac{1}{\mu}\left(1 + \ln\sqrt{3}\mu\right)\right]$$

So, the net forging force can be written as
$$F = 2\pi \left[\int\limits_0^{r_s} p_{sticking} r dr + \int\limits_{r_s}^R p_{sliding} r dr \right]$$