

## planetmath.org

Math for the people, by the people.

## evaluation homomorphism

Canonical name EvaluationHomomorphism

Date of creation 2013-03-22 14:13:51 Last modified on 2013-03-22 14:13:51 Owner mathcam (2727) Last modified by mathcam (2727)

Numerical id 6

Author mathcam (2727)

Entry type Theorem
Classification msc 13P05
Classification msc 11C08
Classification msc 12E05

Synonym substitution homomorphism

Related topic LectureNotesOnPolynomialInterpolation

Defines evaluation homomorphism

Let R be a commutative ring and let R[X] be the ring of polynomials with coefficients in R.

**Theorem 1.** Let S be a commutative ring, and let  $\psi \colon R \to S$  be a homomorphism. Further, let  $s \in S$ . Then there is a unique homomorphism  $\phi \colon R[X] \to S$  taking X to s and taking every  $r \in R$  to  $\psi(r)$ .

This amounts to saying that polynomial rings are free objects in the category of R-algebras; the theorem then states that they are projective. This is true in much greater generality; in fact, the property of being projective is intended to extract the essential property of being free.

*Proof.* We first prove existence. Let  $f \in R[X]$ . Then by definition there is some finite list of  $a_i$  such that  $f = \sum_i a_i X^i$ . Then define  $\phi(f)$  to be  $\sum_i \psi(a_i) s^i$ . It is clear from the definition of addition and multiplication on polynomials that  $\phi$  is a homomorphism; the definition makes it clear that  $\phi(X) = s$  and  $\phi(r) = \psi(r)$ .

Now, to show uniqueness, suppose  $\gamma$  is any homomorphism satisfying the conditions of the theorem, and let  $f \in R[X]$ . Write  $f = \sum_i a_i X^i$  as before. Then  $\gamma(a_i) = \psi(a_i)$  and  $\gamma(s)$  by assumption. But then since  $\gamma$  is a homomorphism,  $\gamma(a_i X^i) = \psi(a_i) s^i$  and  $\gamma(f) = \sum_i \psi(a_i) s^i = \phi(f)$ .