

PROBLEM STATEMENT

To predict whether customers will default the payment next month.

DATA DESCRIPTION

	LIMIT_BAL	SEX EDUCAT		IAGE	AGE		PAY_2	PAY_3	PAY_4	\
9	20000	2	2	1	24	2	2	-1	-1	
L	120000	2	2	2	26	-1	2	0	0	
2	90000	2	2	2	34	0	0	0	0	
3	50000	2	2	1	37	0	0	0	0	
1	50000	1	2	1	57	-1	0	-1	0	
29995	220000	1	3	1	39	0	0	0	0	
29996	150000	1	3	2	43	-1	-1	-1	-1	
29997	30000	1	2	2	37	4	3	2	-1	
29998	80000	1	3	1	41	1	-1	0	0	
29999	50000	1	2	1	46	0	0	0	0	
	PAY 5	BILL AMT4	BILL AMT	5 BI	LL AM	T6 PAY	AMT1	PAY AMT2	2 \	
9	-2	- 0	-	Э	_	0	- 0	689	,	
L	0	3272	3455	5	32	61	0	1000)	
2	0	14331	14948	В	155	49	1518	1500)	
3	0	28314	28959		295		2000	2019		
1	0	20940	1914		191		2000	36681		
29995	0	88004	3123		159		8500	20000		
29996	0	8979	5190			0	1837	3526		
29997	0	20878	2058		193		0	6		
29998	0	52774	1185		489		85900	3409		
29999	0	36535	32428		153		2078	1800		
	PAY_AMT3	PAY_AMT4 PA	AY_AMT5 PA	ΔV ΔM	TG d	efault	navment	t nevt mo	n+h	
9	0 PAI_AMIS	0 PA	0 F	~.	0		paymerr	ieac IIIc	1	
Ĺ	1000	1000	ø	20					1	
2	1000	1000	1000	50					ø	
3	1200	1100	1069	10					ø	
1	10000	9000	689		79				9	
	10000								9	
29995	5003	3047	5000	10						
29996	8998	129	0		0				ø	
29997	22000	4200	2000	31					1	
29998	1178	1926	52964	18					1	
	1430	1000	1000	10					1	

- This dataset contains information on default payments, demographic factors, credit data, history of payment, and bill statements of credit card clients in Taiwan from April 2005 to September 2005.
- This data set was extracted from the UCI machine learning Repository
- The data set contains 23 independent variables and 1 dependent variable.
- It has 30000 data points of various customers.
- The variables are limit balance, education, marriage, age, pay, bill amount, pay amount LIMIT_BAL,SEX, EDUCATION, MARRIAGE, AGE, PAY, BILL_AMT, PAY_AMT,default payment next month.
- Numerical Variables: 'Age,'LIMIT_BAL', 'PAY_0','PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT6'
 PAY_AMT5', 'PAY_AMT6'
- Categorical variables: : 'SEX', 'EDUCATION', 'MARRIAGE', 'DEFAULT PAYMENT NEXT MONTH'

VARIABLE DESCRIPTION

- ID: ID of each client
- LIMIT_BAL: Amount of given credit in NT dollars (includes individual and family/supplementary credit
- SEX: Gender (1=male, 2=female)
- EDUCATION: (1=graduate school, 2=university, 3=high school, 4=others, 5=unknown, 6=unknown)
- MARRIAGE: Marital status (1=married, 2=single, 3=others)
- AGE: Age in years
- PAY_0: Repayment status in September, 2005 (-1=pay duly, 1=payment delay for one month, 2=payment delay for two months, ...
- 8=payment delay for eight months, 9=payment delay for nine months and above)
- PAY_2: Repayment status in August, 2005 (scale same as above)
 PAY 3: Repayment status in July, 2005 (scale same as above)
- PAY_4: Repayment status in June, 2005 (scale same as above)
- PAY 5: Repayment status in May, 2005 (scale same as above)
- PAY_5: Repayment status in May, 2005 (scale same as above)
 PAY_6: Repayment status in April, 2005 (scale same as above)
- BILL_AMT1: Amount of bill statement in September, 2005 (NT dollar)
- BILL_ANT I. Amount of bill statement in September, 2003 (N1 dollar)
- BILL_AMT2: Amount of bill statement in August, 2005 (NT dollar)
 BILL_AMT3: Amount of bill statement in July, 2005 (NT dollar)
- DILL_AMT4: Amount of bill statement in June 2005 (NT dollar)
- BILL_AMT4: Amount of bill statement in June, 2005 (NT dollar)
- BILL_AMT5: Amount of bill statement in May, 2005 (NT dollar)
- BILL_AMT6: Amount of bill statement in April, 2005 (NT dollar)

 DAY AMT4
- PAY_AMT1: Amount of previous payment in September, 2005 (NT dollar)
- PAY_AMT2: Amount of previous payment in August, 2005 (NT dollar)
- PAY AMT3: Amount of previous payment in July, 2005 (NT dollar)
- PAY_AMT4: Amount of previous payment in June, 2005 (NT dollar)
- PAY AMT5: Amount of previous payment in May, 2005 (NT dollar)
- PAY_AMT6: Amount of previous payment in May, 2005 (NT dollar)
 PAY_AMT6: Amount of previous payment in April, 2005 (NT dollar)
- default.payment.next.month: Default payment (1=yes, 0=no)

DATA PREPROCESSING

Out[5]:	LIMIT_BAL	0
	SEX	0
	EDUCATION	0
	MARRIAGE	0
	AGE	0
	PAY_0	0
	PAY_2	0
	PAY_3	0
	PAY_4	0
	PAY_5	0
	PAY_6	0
	BILL_AMT1	0
	BILL_AMT2	0
	BILL_AMT3	0
	BILL_AMT4	0
	BILL_AMT5	0
	BILL_AMT6	0
	PAY_AMT1	0
	PAY_AMT2	0
	PAY_AMT3	0
	PAY_AMT4	0
	PAY_AMT5	0
	PAY_AMT6	0
	default payment next month	0
	dtype: int64	

As we can see that there is no missing data, hence no preprocessing wrt Missing value analysis needs to be done

DATA VISUALIZATION

The graphs show the count plot of the Variables SEX, EDUCATION, MARRIAGE & DEFAULT PAYMENT NEXT MONTH

DESCRIPTIVE STATISTICS

	AGE	LIMIT_BAL	PAY_0	PAY_2	PAY_3	PAY_4	PAY_5	PAY_6	BILL_AMT1	BILL_AMT2	BILL_AMT3	BILL_AMT4	BILL_AMT5
count	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	3.000000e+04	30000.000000	30000.000000
mean	35.485500	167484.322667	-0.016700	-0.133767	-0.166200	-0.220667	-0.266200	-0.291100	51223.330900	49179.075167	4.701315e+04	43262.948967	40311.400967
std	9.217904	129747.661567	1.123802	1.197186	1.196868	1.169139	1.133187	1.149988	73635.860576	71173.768783	6.934939e+04	64332.856134	60797.155770
min	21.000000	10000.000000	-2.000000	-2.000000	-2.000000	-2.000000	-2.000000	-2.000000	-165580.000000	-69777.000000	-1.572640e+05	-170000.000000	-81334.000000
25%	28.000000	50000.000000	-1.000000	-1.000000	-1.000000	-1.000000	-1.000000	-1.000000	3558.750000	2984.750000	2.666250e+03	2326.750000	1763.000000
50%	34.000000	140000.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	22381.500000	21200.000000	2.008850e+04	19052.000000	18104.500000
75%	41.000000	240000.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	67091.000000	64006.250000	6.016475e+04	54506.000000	50190.500000
max	79.000000	1000000.000000	8.000000	8.000000	8.000000	8.000000	8.000000	8.000000	964511.000000	983931.000000	1.664089e+06	891586.000000	927171.000000

The above figure shows the descriptive statistics of the Numerical variables

HISTOGRAMS OF VARIABLES

Histogram of Bill Amounts & Payment is Highly skewed. Age is skewed on the right hand side

HEAT-MAP & CORRELATION

The heatmap shows that features are correlated with each other, such us like PAY_0,2,3,4,5,6 and BILL_AMT1,2,3,4,5,6. In those cases, the correlation is positive.

Check for Data Balance

From the below result we can see that data is **imbalanced**.

```
# The classes are heavily skewed we need to solve this issue later.

print('No default', round(data['default payment next month'].value_counts()[0]/len(data) * 100,2), '% of the dataset')

print('default', round(data['default payment next month'].value_counts()[1]/len(data) * 100,2), '% of the dataset')
```

No default 77.88 % of the dataset default 22.12 % of the dataset

OUTLIER Detection and Removal

Using Z scores to remove outliers

```
from scipy import stats

z = np.abs(stats.zscore(data[['LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_print(z)

[[1.13672015 0.81016074 0.18582826 ... 0.30806256 0.31413612 0.29338206]
[[0.3659805 0.81016074 0.18582826 ... 0.24422965 0.31413612 0.18087821]
[[0.59720239 0.81016074 0.18582826 ... 0.24422965 0.24868274 0.01212243]
...
[1.05964618 1.23432296 0.18582826 ... 0.03996431 0.18322937 0.11900109]
[[0.67427636 1.23432296 1.45111372 ... 0.18512036 3.15253642 0.19190359]
[[0.90549825 1.23432296 0.18582826 ... 0.24422965 0.24868274 0.23713013]]

threshold = 3

print(np.where(z > 3))
```

data.shape

(array([6, 6, 6, ..., 29997, 29998, 29998], dtype=int64), array([11, 12, 13, ..., 5, 17, 21], dtype=int64))

(30000, 24)

Feature Engineering

Feature engineering can be done using two methods:

- 1) Logistic Regression
- 2) PCA (Principle component Analysis)

As there are many features in the data, it impacts the accuracy thus insignificant features needs to be removed.

Feature Engineering-Logistic Regression

Logit Regression Results

Dep. Variab	le: defaul	t payment	next m	onth N	lo. Observ	ations:	26429
Model:	Logit				Df Resid		26406
Method:	MLE				Df Mod	lel:	22
Date:	Mon, 1	2 Oct 202	20		Pseudo R	-squ.:	0.1248
Time:	13:27:	52			Log-Likeli	hood:	-12320.
converged	: True				LL-Nu	H:	-14077.
Covariance T	ype: nonrol	oust			LLR p-va	alue:	0.000
	coef	std err	Z	P> z	[0.025	0.975]
LIMIT_BAL	-5.038e-07	1.7e-07	-2.972	0.003	-8.36e-07	-1.72e-	07
SEX	-0.1708	0.028	-5.997	0.000	-0.227	-0.115	
EDUCATION	-0.1149	0.023	-4.962	0.000	-0.160	-0.070	
MARRIAGE	-0.2416	0.024	-9.977	0.000	-0.289	-0.194	
AGE	0.0016	0.001	1.083	0.279	-0.001	0.004	
PAY_0	0.5749	0.019	30.688	0.000	0.538	0.612	
PAY_2	0.1238	0.022	5.714	0.000	0.081	0.166	
PAY_3	0.0596	0.025	2.423	0.015	0.011	0.108	
PAY_4	0.0626	0.027	2.329	0.020	0.010	0.115	
PAY_5	0.0217	0.029	0.749	0.454	-0.035	0.078	
PAY_6	0.0003	0.024	0.014	0.989	-0.047	0.047	
BILL_AMT1	-9.71e-06	1.65e-06	-5.872	0.000	-1.3e-05	-6.47e-	06
BILL_AMT2	2.205e-06	2.29e-06	0.963	0.336	-2.28e-06	6.69e-0	16
BILL_AMT3	2.426e-06	2.1e-06	1.154	0.248	-1.69e-06	6.55e-0	16
BILL_AMT4	2.271e-06	2.08e-06	1.093	0.274	-1.8e-06	6.34e-0	16
BILL_AMT5	-4.452e-06	2.7e-06	-1.652	0.099	-9.74e-06	8.31e-0	17
BILL_AMT6							
PAY_AMT1							
PAY_AMT2							
PAY_AMT3							
PAY_AMT4							
PAY_AMT5							
PAY_AMT6	-9.29e-06	3.85e-06	-2.413	0.016	-1.68e-05	-1.74e-	06

The logistic regression result shows that variables like AGE, PAY_5, PAY_6, BILL_AMT2, BILL_AMT3, BILL_AMT4 and BILL_AMT5 have **p value** greater than 0.05. Hence they are insignificant and are dropped.

```
#Removing values having p value greater than 0.05

X.drop(['AGE',"PAY_5","PAY_6","BILL_AMT2","BILL_AMT3","BILL_AMT4","BILL_AMT5"],1,inplace=
True)

res = sm.Logit(y,X).fit()

res.summary()
```


Optimization terminated successfully.

Current function value: 0.466389

Iterations 7

Logit Regression Results

Dep. Variable: default payment next month No. Observations: 26429 Model: Loait Df Residuals: 26413 Method: MLE 15 Df Model: Date: Mon. 12 Oct 2020 Pseudo R-squ.: 0.1244 Time: 13:27:56 Log-Likelihood: -12326. LL-Null: converged: True -14077. 0.000 Covariance Type: nonrobust LLR p-value: P>|z| [0.025 coef std err Z 0.9751 LIMIT BAL -4.838e-07 1.59e-07 -3.034 0.002 -7.96e-07 -1.71e-07 SEX -0.1630-5.970 0.000 -0.217 0.027 -0.110EDUCATION -0.1004 0.019 -5.222 0.000 -0.138 -0.063-9.962 0.000 -0.286 MARRIAGE -0.2390 0.024 -0.192PAY 0 0.5779 0.615 30.911 0.000 0.541 0.019 PAY 2 0.1231 0.165 0.021 5.749 0.000 0.081 PAY 3 0.0640 0.024 2.620 0.009 0.016 0.112 0.122 PAY 4 0.0782 0.022 3.534 0.000 0.035 BILL AMT1 -6.421e-06 6.67e-07 -9.624 0.000 -7.73e-06 -5.11e-06 BILL AMT6 4.608e-06 8.32e-07 5.538 0.000 2.98e-06 6.24e-06 PAY_AMT1 -2.134e-05 4.4e-06 -4.853 0.000 -3e-05 -1.27e-05 PAY AMT2 -2.726e-05 4.27e-06 -6.387 0.000 -3.56e-05 -1.89e-05 PAY AMT3 -1.614e-05 4.04e-06 -3.998 0.000 -2.41e-05 -8.23e-06 PAY AMT4 -1.292e-05 4.02e-06 -3.210 0.001 -2.08e-05 -5.03e-06 PAY AMT5 -2.042e-05 4.48e-06 -4.560 0.000 -2.92e-05 -1.16e-05 PAY_AMT6 -9.578e-06 3.84e-06 -2.492 0.013 -1.71e-05 -2.05e-06

Removing variables with P value greater than 0.05

Feature Engineering- PCA

```
from sklearn.decomposition import PCA
x = df.drop(['default payment next month'],1)
y = df['default payment next month']
from sklearn.model_selection import train_test_split
X= preprocessing.StandardScaler().fit(X).transform(X)
x train, x test, y train, y test = train test split(x,y,test size=0.2,random state=1)
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n estimators = 50)
classifier.fit(x train, y train)
RandomForestClassifier(n estimators=50)
X_train_PCA = pca.fit_transform(x train)
X train PCA = pd.DataFrame(data=X train PCA, index=x train.index)
X train PCA inverse = pca.inverse transform(X train PCA)
X train PCA inverse = pd.DataFrame(data=X train PCA inverse, \
                    index=x train.index)
```

Features importance 0.08 0.02

Removed components using PCA

```
import statsmodels.api as sm
#Removing values less than 25%
x.drop(["SEX","PAY_4","PAY_6","EDUCATION","MARRIAGE"],1,inplace=True)
print(x)
```

Handling Imbalance Data set (SMOTE)

[] from imblearn.over_sampling import SMOTE from imblearn.under_sampling import RandomUnderSampler from imblearn.pipeline import Pipeline from collections import Counter

```
#The numbers before SMOTE
num before = dict(Counter(y))
#Performing SMOTE
#Define pipeline
over = SMOTE(sampling_strategy=0.8)
under = RandomUnderSampler(sampling strategy=0.8)
steps = [('o', over), ('u', under)]
pipeline = Pipeline(steps=steps)
#Transforming the dataset
X smote, y smote = pipeline.fit resample(X,y)
#Tthe numbers after SMOTE
num after = dict(Counter(y smote))
```

- print(num before, num after)
- {1: 5935, 0: 20494} {0: 20493, 1: 16395}

- As we have observed above that our data set was imbalanced. In an imbalanced dataset generally the class is not uniformly distributed.
- There are two sampling namely -Undersampling and Oversampling.
- Here we use **SMOTE** (Synthetic Minority Oversampling Technique) for Over sampling

Before balancing the minority and majority class had huge gap. We reduced the gap between the two as seen above

New Data frame after using SMOTE

	LIMIT_BAL	SEX	EDUCATION	MARRIAGE	PAY_0	PAY_2	PAY_3	PAY_4	BILL_AMT1	BILL_AMT6	PAY_AMT1	PAY_AMT2	PAY_AMT3	PAY_AMT4	PAY_AMT5	PAY_AMT6	paym r mc
0	170000	1	1	2	0	0	0	0	129848	0	5115	2500	0	0	0	0	
1	20000	1	2	1	0	0	0	0	16621	18893	1200	10000	1301	662	700	1000	
2	70000	2	2	3	0	0	0	0	70820	67818	2500	2507	2428	2594	2602	2500	
3	210000	2	2	1	0	0	0	0	128553	64108	3762	3808	4177	2594	2442	2319	
4	170000	2	2	2	0	0	0	0	71752	25140	2687	2671	3100	3286	1100	1000	

- [] #FINDING THE NUMBER OF OUTLIERS
 default = new_data[new_data['default payment next month']==1]
 no_default = new_data[new_data['default payment next month']==0]
 outlier_fraction = len(default)/float(len(no_default))
- [] print(outlier_fraction)
 print("Fraud Cases : {}".format(len(default)))
 print("Valid Cases : {}".format(len(no_default)))
- O.8000292782901478 Fraud Cases : 16395 Valid Cases : 20493

Anomaly Detection using LOF and Isolation Forest

After applying Isolation forest and LOF we observe that:

Isolation Forest provides an accuracy of **0.503** While LOF provides accuracy of **0.483**

```
Isolation Forest: 18314
Accuracy Score:
0.5035241813055736
Classification Report:
       precision recall f1-score support
          0.65
                  0.23
                         0.34
                                20493
                  0.84
                         0.60
                               16395
                         0.50 36888
  accuracy
              0.56
                      0.54
                                    36888
 macro ava
weighted ava
               0.57
                       0.50
                              0.46
                                     36888
Local Outlier Factor: 19063
Accuracy Score:
0.48321947516807634
Classification Report:
       precision recall f1-score support
                         0.62
                                20493
          0.32
                  0.14
                         0.20
                               16395
  accuracy
               0.42
 macro ava
                      0.45
                                    36888
weighted avg
               0.43
                              0.43
                                    36888
                       0.48
```

Model Building

We use the below models and compare the results:

- Logistic Regression
- Random Forest
- KNN Algorithm
- SVM
- Before applying the model we split the data into train and test. We use 80:20 ratio for splitting.

```
[] from sklearn.model_selection import train_test_split 
    x_train, x_test, y_train, y_test = train_test_split(X_new,y_new,test_size=0.2,random_state=0)
```

Logistic Regression

Using Logistic Regression

```
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(random_state = 0)
lr.fit(x_train, y_train)
```

LogisticRegression(random_state=0)

```
print(cm)
print(acc)
print(pre)
print(recall)
print(f1)
```

```
[[3222 863]
[1177 2116]]
0.7235023041474654
0.7103054716347768
0.642575159429092
0.6747448979591837
```

Using PCA

```
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(random_state = 0)
lr.fit(x_train, y_train)
```

LogisticRegression(random_state=0)

```
print(cm)
print(acc)
print(pre)
print(recall)
print(f1)
```

```
[[3162 923]
[1453 1840]]
0.6779615071835186
0.6659428157799493
0.5587610081992105
0.6076618229854689
```

Random Forest

CODE

```
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 50)
classifier.fit(x_train, y_train)
```

RandomForestClassifier(n_estimators=50)

```
y_predRF= classifier.predict(x_test)
```

Random Forest

Using Logistic Regression

```
Confusion Matrix:
[[3552 533]
 [ 819 2474]]
Classification Report:
              precision
                          recall f1-score
                   0.81
                             0.87
                                       0.84
                                                 4085
           1
                   0.82
                             0.75
                                       0.79
                                                 3293
                                       0.82
                                                 7378
    accuracy
                   0.82
                             0.81
                                       0.81
                                                 7378
   macro avo
weighted avg
                   0.82
                             0.82
                                       0.82
                                                 7378
```

Accuracy: 0.8167525074545947

```
print(cm)
print(acc)
print(pre)
print(recall)
print(f1)
```

```
[[3552 533]
[819 2474]]
0.8167525074545947
0.8227469238443631
0.7512906164591557
0.7853968253968253
```

Using PCA

```
Confusion Matrix:
[[3625 460]
 [ 826 246711
Classification Report:
             precision
                          recall f1-score
                                              support
                   0.81
                             0.89
                                       0.85
                                                 4085
                                       0.79
                   0.84
                             0.75
                                                 3293
                                      0.83
                                                 7378
    accuracy
                                      0.82
                                                 7378
                   0.83
                             0.82
  macro avg
weighted avg
                   0.83
                             0.83
                                       0.82
                                                 7378
```

Accuracy: 0.8256980211439414

```
print(cm)
print(acc)
print(pre)
print(recall)
print(f1)
```

```
[[3625 460]
[826 2467]]
0.8256980211439414
0.8428425008541168
0.749164895232311
0.7932475884244373
```

KNN Algorithm

CODE

```
knnclassifier = KNeighborsClassifier(n_neighbors=5)
knnclassifier.fit(x_train,y_train)
```

KNeighborsClassifier()

```
y_predKNN= knnclassifier.predict(x_test)
```

KNN Algorithm

Using Logistic Regression

	precision	recall	f1-score	support
0	0.75 0.75	0.82 0.67	0.79 0.71	4085 3293
accuracy macro avg weighted avg	0.75 0.75	0.74 0.75	0.75 0.75 0.75	7378 7378 7378

2]: 0.7527785307671455

```
print(cm)
print(acc)
print(pre)
print(recall)
print(f1)

([3122 963]
[879 2414]]
0.7503388452155055
0.7148356529464022
0.7330701488004859
0.7853968253968253
```

Using PCA

```
Confusion Matrix:
[[3081 1004]
[ 899 2394]]
Classification Report:
              precision
                           recall f1-score
                                              support
                   0.77
                             0.75
                                       0.76
                                                  4085
                   0.70
                             0.73
                                       0.72
                                                  3293
                                       0.74
                                                  7378
    accuracy
                   0.74
                             0.74
                                       0.74
                                                  7378
  macro avg
                   0.74
                             0.74
                                        0.74
                                                  7378
weighted avg
```

Accuracy: 0.74207102195717

```
print(cm)
print(acc)
print(pre)
print(recall)
print(f1)

([3081 1004]
[899 2394]]
0.74207102195717
0.7045320776927605
0.7269966595809293
0.7932475884244373
```

SVM (Support Vector Machine)

CODE

```
from sklearn import svm
#SVC (Support Vector Classifier) is to fit to the data you pr
clf = svm.SVC()
clf.fit(x train, y train)
SVC()
predictions = clf.predict(x test)
print("Size of training set: ", x test.shape)
print(predictions.shape)
Size of training set: (7378, 18)
(7378,)
from sklearn.metrics import classification report, confusion m
print(confusion matrix(y test,predictions))
[[3404 681]
 [1293 2000]]
```

SVM (Support Vector Machine)

Using Logistic Regression

	precision	recall	f1-score	support	
0	0.75	0.82	0.79	4085	
1	0.75	0.67	0.71	3293	
accuracy			0.75	7378	
macro avg	0.75	0.74	0.75	7378	
weighted avg	0.75	0.75	0.75	7378	

: 0.7527785307671455

```
print(cm)
print(acc)
print(pre)
print(recall)
print(f1)

[[3350 735]
[1089 2204]]
0.7527785307671455
0.7499149370534195
0.6692985119951412
0.70731707318
```

Using PCA

		precision	recall	f1-score	support	
	0	0.72	0.83	0.78	4085	
	1	0.75	0.61	0.67	3293	
accura	асу			0.73	7378	
macro a	avg	0.74	0.72	0.72	7378	
weighted a	avg	0.73	0.73	0.73	7378	

0.7324478178368121

```
print(acc)
print(pre)
print(recall)
print(f1)

[[3404 681]
[1293 2000]]
0.7324478178368121
0.7459903021260723
0.6073489219556635
0.6695681285570806
```

Comparison of all Models

	Logistic Regressi	on	Random	Forest	KNN Algo	orithm	SVM Model		
	Log Reg	PCA	Log Reg	PCA	Log Reg	PCA	Log Reg	PCA	
Accuracy	0.724	0.678	0.817	0.826	0.750	0.742	0.753	0.732	
Precision Score	0.710	0.666	0.823	0.843	0.715	0.705	0.750	0.746	
Recall Score	0.643	0.559	0.751	0.749	0.733	0.727	0.669	0.607	
F1 Score	0.675	0.608	0.785	0.793	0.785	0.793	0.707	0.670	

Conclusion: From the above comparison table using Logistic Regression and PCA we find that **Random Forest** is the best model with high accuracy and F1 score that predicts the payment default status of the customers.

THANK YOU