Adder

Half Adder

X	Υ	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

(b)
$$S = x \oplus y$$

 $C = xy$

Full Adder

Truth table:

X	Y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Note:

Z - carry in (to the current position)

C - carry out (to the next position)

 $S = \Sigma m(1,2,4,7)$

 $C = \Sigma m(3,5,6,7)$

Using K-map, simplified SOP form is:

$$C = XY + XZ + YZ$$

$$S = X'Y'Z + X'YZ'+XY'Z'+XYZ$$

Full Adder Circuit

Fig. 4-7 Implementation of Full Adder in Sum of Products

Gate-level Design: Full Adder

Circuit for above formulae:

$$C = XY + (X \oplus Y)Z$$
$$S = X \oplus Y \oplus Z$$

Full Adder made from two Half-Adders (+ OR gate).

4-bit Adder Circuit

Fig. 4-9 4-Bit Adder

But this is slow...

K n-bit adder

Kn-bit numbers can be added by cascading kn-bit adders.

Each *n*-bit adder forms a block, so this is cascading of blocks.

Carries ripple or propagate through blocks, <u>Blocked Ripple Carry Adder</u>

N bit Ripple carry adder

- Straight-forward design
- Simple circuit structure
- Easy to understand
- Most power efficient
- Slowest (too long critical path)

Delays in the ripple carry adder

- This is called a ripple carry adder, because the inputs A_0 , B_0 and CI "ripple" leftwards until CO and S_3 are produced.
- Ripple carry adders are slow!
 - For an n-bit ripple carry adder
 - Carry takes 2n gate delays
 - Sum takes (2n-1) gate delays
 - Imagine a 64-bit adder. The longest path would have 128 gates!

Binary Subtractor

Subtraction is done by using complements

A's 2's Complement = A'+1

• A-B= A + B'+1

n-bit subtractor

- Recall X Y is equivalent to adding 2's complement of Y to X.
- •2's complement is equivalent to 1's complement + 1.
- $\bullet X Y = X + Y + 1$
- •2's complement of positive and negative numbers is computed similarly.

4-bit adder subtractor

Fig. 4-13 4-Bit Adder Subtractor

Carry Lookahead adder

A faster way to compute carry outs

- Instead of waiting for the carry out from all the previous stages, we could compute it directly with a two-level circuit, thus minimizing the delay.
- First we define two functions.
 - The "generate" function g_i produces 1 when there must be a carry out from position i (i.e., when A_i and B_i are both 1).

$$g_i = A_i B_i$$

 The "propagate" function p_i is true when, if there is an incoming carry, it is propagated (i.e, when A_i=1 or B_i=1, but not both).

$$p_i = A_i \oplus B_i$$

Then we can rewrite the carry out function:

$$c_{i+1} = g_i + p_i c_i$$

Ai	Bi	Ci	C_{i+1}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

A Note On Propagation

- We could have defined propagation as A + B instead of A ⊕ B
 - As defined, it captures the case when we propagate but don't generate
 - I.e., propagation and generation are mutually exclusive
 - There is no reason that they need to be mutually exclusive
 - However, if we use \oplus to define propagation, then we can share the XOR gate between the production of the sum bit and the production of the propagation bit

Algebraic carry out

• Let's look at the carry out equations for specific bits, using the general equation from the previous page $c_{i+1} = g_i + p_i c_i$:

$$C_{1} = g_{0} + p_{0}C_{0}$$

$$C_{2} = g_{1} + p_{1}C_{1}$$

$$= g_{1} + p_{1}(g_{0} + p_{0}C_{0})$$

$$= g_{1} + p_{1}g_{0} + p_{1}p_{0}C_{0}$$

$$C_{3} = g_{2} + p_{2}C_{2}$$

$$= g_{2} + p_{2}(g_{1} + p_{1}g_{0} + p_{1}p_{0}C_{0})$$

$$= g_{2} + p_{2}g_{1} + p_{2}p_{1}g_{0} + p_{2}p_{1}p_{0}C_{0}$$

$$C_{4} = g_{3} + p_{3}C_{3}$$

$$= g_{3} + p_{3}(g_{2} + p_{2}g_{1} + p_{2}p_{1}g_{0} + p_{2}p_{1}p_{0}C_{0})$$

$$= g_{3} + p_{3}g_{2} + p_{3}p_{2}g_{1} + p_{3}p_{2}p_{1}g_{0} + p_{3}p_{2}p_{1}p_{0}C_{0}$$

• These expressions are all sums of products, so we can use them to make a circuit with only a two-level delay.

4 bit Carry lookahead adder

Gate Delays 4 bit CLA

 G_i , $P_i = 1$ gate delay $C_i = 3^{rd}$ gate delay $S_i = 4^{th}$ gate delay

Gate Delays 4 bit ripple carry

 $C_i = 8$ gate delay $S_i = 7$ gate delay

16 bit ripple carry adder using 4 bit Carry lookahead adder

Gate Delays for 16 bit

1. Ripple Carry Adder

Sum 31 Carry 32

2. CLA

G,P = 1 gate delay

 $C_4 = 3^{rd}$ gate delay,

 $C_8 = 5^{th}$ gate delay

 $C_{12} = 7^{th}$ gate delay

 $C_{16} = 9^{th}$ gate delay

 $S_{15} = 10^{th}$ gate delay

Gate Delays for 32 bit

1. Ripple Carry Adder

Sum 63 Carry 64

2. CLA

G,P = 1 gate delay

 $C_4 = 3^{rd}$ gate delay,

 $C_8 = 5^{th}$ gate delay

 $C_{12} = 7^{th}$ gate delay

 $C_{32} = 17^{th}$ gate delay

(1 for g,p +2*8 for each 4 bit adder)

 $S_{32} = 18^{th}$ gate delay

High level Generator and Propagator function

4 CLA forms 16bit adder Gate delays

G,P =1
G^I,P^I = 3rd gate delay
C4,C8,C12,C16 =5th gate delay
C12 to C15 = 7th gate delay
S15 = 8th gate delay

$$P_0^I = P_3 P_2 P_1 P_0$$

$$G_0^I = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0$$

$$c_{16} = G_3^I + P_3^I G_2^I + P_3^I P_2^I G_1^I + P_3^I P_2^I P_1^I G_0^I + P_3^I P_2^I P_1^I P_0^I c_0$$

32 bit adder cascading two 16 bit Carry lookahead adder

Gate Delay 32 bit adder

G,P =1 G^{I} ,P I = 3rd gate delay C4,C8,C12,C16 =5th gate delay C12 to C15 = 7th gate delay G^{I} ,P I = 7 th gate delay C20,24,28,32 = 9th gate delay

 $S31 = 10^{th}$ gate delay

64 bit Carry lookahead adder

Gate Delay

G,P=1

 $G^{I},P^{I} = 3rd$ gate delay

 $G^{\parallel},P^{\parallel}=5$ th gate delay

 $C16, C32, C48, C64 = 7^{th}$ gate delay

C52,C56,C60 = 9th gate delay

 $C61,C62,C63 = 11^{th}$ gate delay

 $S63 = 12^{th}$ gate delay

Overflow conditions

Operation	Operand A	Operand B	Result indicating overflow
A + B	≥0	≥ 0	< 0
A + B	< 0	< 0	≥0
A – B	≥ 0	< 0	< 0
A – B	< 0	≥ 0	≥0

Overflow conditions

Sequence of MIPS instructions can discover overflow - signed addition

```
addu $t0, $t1, $t2 # $t0 = sum, but don't trap

xor $t3, $t1, $t2 # Check if signs differ

slt $t3, $t3, $zero # $t3 = 1 if signs differ

bne $t3, $zero, No_overflow # $t1, $t2 signs ≠,

# so no overflow

xor $t3, $t0, $t1 # signs =; sign of sum match too?

# $t3 negative if sum sign different

slt $t3, $t3, $zero # $t3 = 1 if sum sign different

bne $t3, $zero, Overflow # All 3 signs ≠; goto overflow
```

Overflow conditions

Sequence of MIPS instructions can discover overflow - unsigned addition

```
addu $t0, $t1, $t2  # $t0 = sum  
nor $t3, $t1, $zero  # $t3 = NOT $t1  
# (2's comp - 1: 2^{32} - $t1 - 1)  
sltu $t3, $t3, $t2  # (2^{32} - $t1 - 1) < $t2  
# \Rightarrow 2^{32} - 1 < $t1 + $t2  
bne $t3,$zero,0verflow # if(2^{32}-1<$t1+$t2) goto overflow
```