18.3 **Exercises**

Exercise 18.1

Graph the function and describe how the graph can be obtained from one of the basic graphs $y = \sin(x)$, $y = \cos(x)$, or $y = \tan(x)$.

a)
$$f(x) = \sin(x) + 2$$

b)
$$f(x) = \cos(x - \pi)$$

a)
$$f(x) = \sin(x) + 2$$
 b) $f(x) = \cos(x - \pi)$ c) $f(x) = \tan(x) - 4$

d)
$$f(x) = 5 \cdot \sin(x)$$

e)
$$f(x) = \cos(2 \cdot x)$$

d)
$$f(x) = 5 \cdot \sin(x)$$
 e) $f(x) = \cos(2 \cdot x)$ f) $f(x) = \sin(x - 2) - 5$

xercise 18.2

Identify the formulas with the graphs.

$$f(x) = \sin(x) + 2$$
, $g(x) = \tan(x - 1)$, $h(x) = 3\sin(x)$
 $i(x) = 3\cos(x)$, $j(x) = \cos(x - \pi)$, $k(x) = \tan(x) - 1$

330

Exercise 18.3

Find the formula of a function whose graph is the one displayed below.

Evercise 184

e)

Find the amplitude, period, and phase shift of the function.

(a)
$$f(x) = 5\sin(2x + \pi)$$
 (b) $f(x) = 3\sin(4x - \frac{\pi}{2})$ (c) $f(x) = 4\sin(6x)$ (d) $f(x) = 2\cos(7x + \frac{\pi}{4})$ (e) $f(x) = 8\cos(2x - 3\pi)$ f) $f(x) = 3\sin(\frac{x}{4})$ g) $f(x) = -4\cos(5x + \frac{\pi}{3})$ h) $f(x) = 7\sin(\frac{1}{2}x - \frac{6\pi}{5})$ i) $f(x) = \cos(-2x)$ j) $f(x) = 6\cos(\pi x - \pi)$

f)

Exercise 18.5

Find the amplitude, period, and phase shift of the function. Use this information to graph the function over a full period. Label all roots, maxima, and minima of the function.

a)
$$y = 5\cos(2x)$$
 b) $y = -4\sin(\pi x)$ c) $y = 4\sin(5x - \pi)$ d) $y = 6\cos(2x - \pi)$ de) $y = 5\sin(2x - \frac{\pi}{2})$ f) $y = 7\cos(3x - \frac{\pi}{2})$ g) $y = 5\sin(3x - \frac{\pi}{4})$ de) $y = 3\sin(4x + \pi)$ d) $y = 2\cos(5x + \pi)$ g) $y = 4\sin(2x + \frac{\pi}{2})$ k) $y = 3\cos(6x + \frac{\pi}{2})$ l) $y = 3\cos(2x + \frac{\pi}{4})$ m) $y = 7\sin(\frac{1}{4}x + \frac{\pi}{4})$ n) $y = -2\sin(\frac{1}{5}x - \frac{\pi}{10})$ o) $y = \frac{1}{3}\cos(\frac{14}{5}x - \frac{6\pi}{5})$