Problem Set 1 Answer Key

Tufts University
Fall 2025
Math 065
Prof. George McNinch

Due: September 8, 2025

Questions

1. (Warm up; this question will not be graded.)

Let $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5\}$. Determine the following sets:

- $A \cup B = \{1, 2, 3, 4, 5\}.$
- $A \cap B = \{3, 4\}.$
- $A B = \{1, 2\}.$
- $B A = \{5\}.$

$$\bullet \ A \times B = \left\{ \begin{array}{ccc} (1,3) & (1,4) & (1,5) \\ (2,3) & (2,4) & (2,5) \\ (3,3) & (3,4) & (3,5) \\ (4,3) & (4,4) & (4,5) \end{array} \right\}.$$

2. For a natural number n > 0, consider the following intervals in the real line:

$$I_n = \left(-\frac{1}{n}, \frac{1}{n}\right) = \{x \in \mathbb{R} \mid -\frac{1}{n} < x < \frac{1}{n}\}$$

and

$$J_n = \left(n - \frac{1}{2}, n + \frac{1}{2}\right] = \left\{x \in \mathbb{R} \mid n - \frac{1}{2} < x \le n + \frac{1}{2}\right\}.$$

• Find $\bigcap_{n=1}^{\infty} I_n$.

First note that $0 \in I_n$ for all $n \ge 1$, so $0 \in \bigcap_{n=1}^{\infty} I_n$.

For all $x \neq 0$, there exists n such that $|x| > \frac{1}{n}$, and so $x \notin I_n$. Thus, $x \notin \bigcap_{n=1}^{\infty} I_n$.

Therefore, $\bigcap_{n=1}^{\infty} I_n = \{0\}.$

• Find $\bigcup_{n=1}^{\infty} J_n$.

First note that for all $n \ge 1$ and all $x \in J_n$, $x > \frac{1}{2}$. Thus, $\frac{1}{2}$ is a lower bound on $\bigcup_{n=1}^{\infty} J_n$.

Now consider any $x > \frac{1}{2}$. There exists $n \ge 1$ such that $n - \frac{1}{2} < x \le n + \frac{1}{2}$. Thus, $x \in J_n$, and so $x \in \bigcup_{n=1}^{\infty} J_n$.

Therefore, $\bigcup_{n=1}^{\infty} J_n = (\frac{1}{2}, \infty)$.

3. Prove or disprove: if U is a set with subsets $A, B \subseteq U$, then $A \cup B = A \cap B$ if and only if A = B.

Note: To disprove the statement, you need to provide explicitly two subsets A, B such that $A \cup B = A \cap B$ and $A \neq B$.

To prove the statement, you need to show two things: first, you must argue that if A = B, then $A \cup B = A \cap B$; second, you must argue that if $A \cup B = A \cap B$, then A = B.

- (⇒) Let $A \cup B = A \cap B$. Then for all $x \in A$, $x \in A \cup B = A \cap B$, which implies $x \in B$. Thus $A \subseteq B$. The same argument for all $x \in B$ shows $B \subseteq A$. Therefore, A = B.
- (\Leftarrow) Let A = B. Then

$$A \cup B = A \cup A = A = A \cap A = A \cap B$$
.

Thus, $A \cup B = A \cap B$.

4. Let

$$A = \{x \in \mathbb{R} \mid x^3 + 2x^2 - 3x \ge 0\}$$
 and $B = \{x \in \mathbb{R} \mid 2 - |x| < 0\}.$

• Describe A as a union of intervals on the real line.

Note $f(x) = x^3 + 2x^2 - 3x = x(x+3)(x-1)$ has roots at x = -3, 0, and 1. Now we must test a value in each of these intervals to determine the sign of f(x):

$$f(-4) = -64 + 32 + 12 < 0 \Rightarrow f(x) < 0 \text{ for all } x < -3.$$

$$f(-1) = -1 + 2 + 3 > 0 \Rightarrow f(x) \ge 0 \text{ for all } x \in [-3, 0].$$

$$f(0.5) = 0.5^3 + 0.5 - 1.5 < 0 \Rightarrow f(x) < 0 \text{ for all } x \in (0, 1).$$

$$f(2) = 8 + 8 - 6 > 0 \Rightarrow f(x) \ge 0 \text{ for all } x \ge 1.$$

Thus,
$$f(x) \geq 0$$
 for all $x \in [-3, 0] \cup [1, \infty) = A$

 \bullet Describe B as a union of intervals on the real line.

$$g(x) = 2 - |x|$$
 has roots at 2 and -2. $g(0) = 2 > 0$, but $g(\pm 3) = -1 < 0$.

Thus,
$$g(x) < 0$$
 for all $x \in (-\infty, -2) \cup (2, \infty) = B$.

• Determine $A \cap B$. Write it as a union of disjoint intervals in the real line.

$$A \cap B = ([-3,0] \cup [1,\infty)) \cap ((-\infty,-2) \cup (2,\infty))$$
$$= ([-3,0] \cap (-\infty,-2)) \cup ([1,\infty) \cap (2,\infty))$$
$$= [-3,-2) \cup (2,\infty)$$

• Determine $A \cup B$. Write it as a union of disjoint intervals in the real line.

$$A \cup B = ([-3,0] \cup [1,\infty)) \bigcup ((-\infty,-2) \cup (2,\infty))$$
$$= [-3,0] \cup (-\infty,-2) \bigcup [1,\infty) \cup (2,\infty)$$
$$= (-\infty,0] \cup [1,\infty)$$