DEVOIR À LA MAISON N°10 : CORRIGÉ

Problème 1 – Petites Mines 2009

Partie I - Étude d'une fonction

1. f est dérivable sur \mathbb{R} par opérations arithmétiques sur des fonctions dérivables. Pour tout $x \in \mathbb{R}$,

$$f'(x) = 3(1-2x^2)e^{-2x^2}$$

On en déduit que f est

- ▶ strictement décroissante sur $\left| -\infty, -\frac{1}{\sqrt{2}} \right|$;
- ▶ strictement croissante sur $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$;
- ▶ strictement décroissante sur $\left[\frac{1}{\sqrt{2}}, +\infty\right[$.

Pour tout $x \neq 0$, $xe^{-x^2} = \frac{x^2e^{-x^2}}{x}$. Par croissances comparées,

$$\lim_{x \to +\infty} x^2 e^{-x^2} = \lim_{x \to -\infty} x^2 e^{-x^2} = 0$$

via le changement de variables $X = x^2$. A fortiori

$$\lim_{x \to +\infty} x e^{-x^2} = \lim_{x \to -\infty} x e^{-x^2} = 0$$

Puis, par opérations

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = -1$$

On en déduit le tableau de variations suivant.

En particulier, \mathscr{C}_f admet une asymptote horizontale d'équation y=-1 au voisinage de $+\infty$ et $-\infty$. Puisque f(-x)+f(x)=-2 pour tout $x \in \mathbb{R}$, \mathscr{C}_f est symétrique par rapport au point de coordonnées (0,-1).

2. Puisque f(0) = -1 et f'(0) = 3, \mathcal{C}_f admet au point d'abscisse 0 une tangente d'équation y = 3x - 1. Pour tout $x \in \mathbb{R}$

$$f(x) - (3x - 1) = 3x(e^{-x^2} - 1)$$

Pour tout $x \in \mathbb{R}$, $e^{-x^2} - 1 \le 0$ car $-x^2 \le 0$ et par croissance de exp sur \mathbb{R} . Ainsi $f(x) - (3x - 1) \le 0$ pour $x \ge 0$ et $f(x) - (3x - 1) \ge 0$ pour $x \le 0$. On en déduit que \mathcal{C}_f est au-dessus de sa tangente à gauche de 0 et au-dessous de celle-ci à droite de 0. \mathcal{C}_f admet donc un point d'inflexion au point d'abscisse 0.

3.

- 4. a. f étant de classe \mathscr{C}^{∞} sur \mathbb{R} , elle admet un développement limité à tout ordre en 0.
 - **b.** On sait que $e^u = 1 + u + \frac{u^2}{2} + o(u^2)$. On en déduit que

$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2} + o(x^4)$$

puis que

$$f(x) = -1 + 3x - 3x^3 + \frac{3}{2}x^5 + o(x^5)$$

Partie II - Étude d'une équation différentielle

- 1. L'équation différentielle H_n est $xy' (n-2x^2)y = 0$. Sur \mathbb{R}^* , elle équivaut à $y' \left(\frac{n}{x} 2x\right)y = 0$. Une primitive de $x \mapsto \frac{n}{x} 2x$ sur \mathbb{R}^* est $x \mapsto n \ln(x) x^2$. Les solutions de H_n sur \mathbb{R}^* sont donc les fonctions $x \mapsto \lambda x^n e^{-x^2}$ où λ décrit \mathbb{R} . Une primitive de $x \mapsto \frac{n}{x} 2x$ sur \mathbb{R}^* est $x \mapsto n \ln(-x) x^2$. Les solutions de H_n sur \mathbb{R}^* sont donc les fonctions $x \mapsto \lambda (-x)^n e^{-x^2}$ où λ décrit \mathbb{R} ou, de manière plus simple, les fonctions $x \mapsto \lambda x^n e^{-x^2}$ où λ décrit encore \mathbb{R} .
- 2. La fonction constante égale à -1 étant clairement une solution particulière de E_n sur \mathbb{R} . On en déduit que les solutions de E_n sur \mathbb{R}_+^* et sur \mathbb{R}_+^* sont les fonctions $x \mapsto -1 + \lambda x^n e^{-x^2}$.
- 3. Supposons dans un premier temps n = 1. Soit y une solution de E_1 sur \mathbb{R} . Comme y est solution de E_1 sur \mathbb{R}_+^* et \mathbb{R}_+^* , il existe $(\lambda, \mu) \in \mathbb{R}^2$ tel que

$$y(x) = \begin{cases} -1 + \lambda x e^{-x^2} & \text{si } x > 0\\ -1 + \mu x e^{-x^2} & \text{si } x < 0 \end{cases}$$

La continuité de y en 0 impose y(0) = -1. De plus,

$$\lim_{x \to 0^+} \frac{y(x) - y(0)}{x - 0} = \lambda \qquad \text{et } \lim_{x \to 0^+} \frac{y(x) - y(0)}{x - 0} = \mu$$

La dérivabilité de y en 0 impose donc $\lambda = \mu$. On a donc $y(x) = \lambda x e^{-x^2}$ pour tout $x \in \mathbb{R}$. Réciproquement pour tout $\lambda \in \mathbb{R}$, $x \mapsto -1 + \lambda x e^{-x^2}$ est de classe \mathscr{C}^1 et solution de E_1 sur \mathbb{R} . Les solutions de E_1 sur \mathbb{R} sont donc les fonctions $x \mapsto -1 + \lambda x e^{-x^2}$ où λ décrit \mathbb{R} .

Supposons maintenant $n \ge 2$. Comme précédemment toute solution y de E_n sur \mathbb{R} est nécessairement de la forme

$$y(x) = \begin{cases} -1 + \lambda x^n e^{-x^2} & \text{si } x > 0 \\ -1 + \mu x^n e^{-x^2} & \text{si } x < 0 \\ -1 & \text{si } x = 0 \end{cases}$$

Réciproquement, si y est de la forme précédente, elle est bien solution de E_n sur \mathbb{R}_+^* et \mathbb{R}_-^* , elle est bien de classe \mathscr{C}^1 sur \mathbb{R}_+^* et sur \mathbb{R}^* –, elle est continue en 0 puisque $\lim_{0^+} y = \lim_{0^-} y = 0 = y(0)$ et

$$\lim_{x \to 0^+} y'(x) = \lim_{x \to 0^-} y'(x) = 0$$

donc γ est de classe \mathscr{C}^1 sur \mathbb{R} en vertu du théorème de prolongement \mathscr{C}^1 .

REMARQUE. Si on ne connaît pas encore le théorème de prolongement \mathscr{C}^1 , on procède «à la main». On constate que

$$\lim_{x \to 0^+} \frac{y(x) - y(0)}{x - 0} = \lim_{x \to 0^-} \frac{y(x) - y(0)}{x - 0} = 0$$

donc y est dérivable en 0 et y'(0) = 0. De plus

$$\lim_{x \to 0^+} y'(x) = \lim_{x \to 0^-} y'(x) = 0 = y'(0)$$

donc y' est continue en 0. Puisque y' est continue sur \mathbb{R}_+^* et \mathbb{R}_-^* , y' est continue sur \mathbb{R} i.e. y est de classe \mathscr{C}^1 sur \mathbb{R} .

On vérifie alors que y est encore solution de E_n en 0 donc elle est solution de E_n sur \mathbb{R} .

Les solutions de E_n sur \mathbb{R} sont donc les fonctions $x \mapsto \begin{cases} -1 + \lambda x^n e^{-x^2} & \text{si } x > 0 \\ -1 + \mu x^n e^{-x^2} & \text{si } x < 0 \text{ avec } (\lambda, \mu) \in \mathbb{R}^2. \end{cases}$

Partie III – Étude de deux suites

- **1.** On a $f_n(0) = -1 < 0$ et $f_n(1) = \frac{3}{\rho} 1 > 0$.
- **2.** f_n est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$

$$f'_n(x) = 3(nx^{n-1} - 2x^{n+1})e^{-x^2} = 3x^{n-1}(n-2x^2)e^{-x^2}$$

On en déduit que f_n est strictement croissante sur $\left[0,\sqrt{\frac{n}{2}}\right]$ et strictement décroissante sur $\left[\sqrt{\frac{n}{2}},+\infty\right[$. Pour tout $x \in \mathbb{R}_+^*$

$$f_n(x) = (x^2)^{\frac{n}{2}} e^{-x^2} - 1$$

donc, par croissances comparées, $\lim_{x\to+\infty} f_n(x) = -1$. Remarquons que puisque $n \ge 2$, $1 \in \left[0, \sqrt{\frac{n}{2}}\right]$ et puisque f_n est strictement croissante sur cet intervalle, $f_n\left(\sqrt{\frac{n}{2}}\right) \ge 1$ $f_n(1) > 0$

f est strictement monotone et continue sur chacun des deux intervalles $\left[0,\sqrt{\frac{n}{2}}\right]$ et $\left[\sqrt{\frac{n}{2}},+\infty\right]$. De plus, $f_n(0)<0$, $f_n\left(\sqrt{\frac{n}{2}}\right) > 0$ et $\lim_{\infty} f < 0$ donc, d'après le corollaire du théorème des valeurs intermédiaires, f_n s'annule une unique fois sur chacun des deux intervalles $\left[0,\sqrt{\frac{n}{2}}\right]$ et $\left[\sqrt{\frac{n}{2}},+\infty\right]$ en deux réels notés respectivement u_n et v_n . Puisque $f_n(1) > 0$ et que 1 appartient à l'intervalle $\left[0, \sqrt{\frac{n}{2}}\right]$ sur lequel f_n est strictement croissante, $u_n > 1$. Par ailleurs $v_n > \sqrt{\frac{n}{2}} \ge 1$ puisque $n \ge 2$.

3. D'après la question précédente, $v_n \ge \sqrt{\frac{n}{2}}$ pour tout $n \ge 2$. Or $\lim_{n \to +\infty} \sqrt{\frac{n}{2}} = +\infty$ donc $\lim_{n \to +\infty} v_n = +\infty$ par théorème de minoration.

- **a.** Par définition, $f_n(u_n) = 0$ pour tout $n \ge 2$ donc $e^{-u_n^2} = \frac{1}{3u_n^n}$.
 - **b.** $f_{n+1}(u_n) = 3u_n^{n+1}e^{-u_n^2} 1 = u_n 1 < 0.$
 - **c.** On sait également que $f_{n+1}(u_{n+1}) = 0$ et que f_{n+1} est strictement croissante sur l'intervalle [0,1] contenant u_n et u_{n+1} . D'où $u_n < u_{n+1}$. Ceci étant valable pour tout $n \ge 2$, la suite $(u_n)_{n \ge 2}$ est strictement croissante.
 - **d.** La suite $(u_n)_{n\geqslant 2}$ est également majorée par 1 donc elle converge en vertu du théorème de la limite monotone.
- a. Évident. 5.
 - **b.** Supposons $l \neq 1$. On a en fait l < 1 puisque (u_n) est majorée par 1. Pour tout $n \geq 2$, $f_n(u_n) = 0$ et donc $g_n(u_n) = 0$ d'après la question précédente. Ainsi pour tout $n \in \ge 2$.

$$0 = \ln 3 + n \ln(u_n) - u_n^2$$

Puisque l < 1, le membre de droite diverge vers $-\infty$, ce qui est absurde. On en déduit que l = 1.

c. Pour tout $n \ge 2$, $g_n(u_n) = 0$ et donc

$$n\ln(1+w_n) = u_n^2 - \ln 3$$

Puisque (w_n) converge vers 0, $n\ln(1+w_n) \sim nw_n$. Par ailleurs, $\lim_{n\to+\infty} u_n^2 - \ln 3 = 1 - \ln 3$ donc

$$w_n \underset{n \to +\infty}{\sim} \frac{1 - \ln 3}{n}$$

SOLUTION 1.

- **a.** L'application f^{n-1} n'étant pas constamment nulle, il existe $x \in E$ tel que $f^{n-1}(x) \neq 0$.
 - **b.** Soit $(\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{R}^n$ tel que

$$\sum_{i=0}^{n-1} \lambda_i f^i(x) = 0$$

On montre alors que $\lambda_i = 0$ pour tout $i \in [0, n-1]$ par récurrence.

Initialisation: En composant par f^{n-1} , on obtient

$$\sum_{i=0}^{n-1} \lambda_i f^{n-1+i}(x) = 0_{\mathcal{E}}$$

Or pour $i \ge 1$, $n-1+i \ge n$ donc $f^{n-1+i}(x)=0$. On en déduit que $\lambda_0 f^{n-1}(x)=0$. Comme $f^{n-1}(x)\ne 0$, $\lambda_0=0$. **Hérédité**: Supposons qu'il existe $k \in [0, n-2]$ tel que $\lambda_i = 0$ pour tout $i \in [0, k]$. On a alors

$$\sum_{i=k+1}^{n-1} \lambda_i f^i(x) = 0$$

En composant par f^{n-k-2} , on obtient ensuite

$$\sum_{i=k+1}^{n-1} \lambda_i f^{n-k-2+i}(x) = 0$$

Or pour $i \ge k+2$, $n-k-2+i \ge n$ donc $\lambda_i = 0$. Il reste finalement $\lambda_{k+1} f^{n-1}(x) = 0$ puis $\lambda_{k+1} = 0$ puisque

Conclusion: Par récurrence, $\lambda_i = 0$ pour tout $i \in [0, n-1]$.

Par conséquent, la famille $(f^{n-1}(x), f^{n-2}(x), \dots, f(x), x)$ est libre. Puisqu'elle comporte n éléments et que $n = \dim E$, c'est une base de E.

- **a.** La famille $(f^{n-1}(x), f^{n-2}(x), \dots, f^{n-k}(x))$ est une sous-famille de la famille libre $(f^{n-1}(x), f^{n-2}(x), \dots, f(x), x)$. 2. Elle est donc également libre. On en déduit dim $F_k = k$.
 - **b.** Pour $1 \le i \le k$, $f^k(f^{n-i}(x)) = f^{n+k-i}(x) = 0$ car $n+k-i \ge n$ et donc $f^{n-i}(x) \in \text{Ker } f^k$. Comme $(f^{n-i}(x))_{1 \le i \le k}$ engendre F_k , $F_k \subset \operatorname{Ker} f^k$. Donc $\dim \operatorname{Ker} f^k \ge \dim F_k = k$.

Pour $1 \le i \le n-k$, $f^{n-i}(x) \in \operatorname{Im} f^k$ car $n-i \ge k$. Comme $(f^{n-i}(x))_{1 \le i \le n-k}$ engendre F_{n-k} , $F_{n-k} \subset \operatorname{Im} f^k$. D'où dim $\operatorname{Im} f^k \ge \dim F_{n-k} = n-k$. Par le théorème du rang, on a donc dim $\operatorname{Ker} f^k = n-\dim \operatorname{Im} f^k \le k$. On en déduit que dim $\operatorname{Ker} f^k = k = \dim F_k$ et, comme $F_k \subset \operatorname{Ker} f^k$, $F_k = \operatorname{Ker} f^k$. Quitte à remplacer k par n-k, on a également $F_k \subset \operatorname{Im} f^{n-k}$. Et comme $f^k \circ f^{n-k} = \mathbf{0}$, on a aussi $\operatorname{Im} f^{n-k} \subset \operatorname{Im} f^{n-k}$.

 $\operatorname{Ker} f^k$. On en déduit que $\operatorname{F}_k = \operatorname{Ker} f^k = \operatorname{Im} f^{n-k}$.

- **c.** On a $F_k = \operatorname{Im} f^{n-k}$ d'après la question précédente. Donc $f(F_k) = \operatorname{Im} f^{n-k+1} \subset \operatorname{Im} f^{n-k} = F_k$. F_k est donc stable par f.
- **a.** On considère $A = \{k \in \mathbb{N}^* \mid \tilde{f}^k = \tilde{\mathbf{0}}\}$. A est une partie non vide de \mathbb{N}^* puisque $n \in A$. Elle admet donc un plus petit élément $p \ge 1$. Si p = 1, alors p 1 = 0 mais $\tilde{f}^{p-1} = \operatorname{Id}_F \ne \tilde{\mathbf{0}}$ car $F \ne \{0_E\}$. Si $p \ge 2$, alors $p 1 \in \mathbb{N}^*$ et on ne peut avoir $\tilde{f}^{p-1} = \tilde{\mathbf{0}}$ sinon $p 1 \in A$, ce qui contredit la minimalité de p. On a donc dans tous les cas $\tilde{f}^{p-1} \ne \tilde{\mathbf{0}}$ et $\tilde{f}^p = \tilde{\mathbf{0}}$.
 - **b.** On prouve comme à la question **1.b** que la famille $(y, \tilde{f}(y), \dots, \tilde{f}^{p-1}(y))$ est libre. Comme $k = \dim F$ et que la famille précédente est de cardinal p, on en déduit $p \le k$. Ainsi $\tilde{f}^k = \tilde{\mathbf{0}}$.
 - **c.** La question précédente prouve que $F \subset \operatorname{Ker} f^k$. Or on a vu à la question **2.b** que dim $\operatorname{Ker} f^k = k$. Comme $\dim F = k$, on a donc $F = \operatorname{Ker} f^k$.
 - **d.** On vient de voir que tous les sous-espaces stables de dimension k avec $1 \le k \le n-1$ était de la forme $\ker f^k$. Réciproquement, on a vu à la question $\mathbf 2$ que les sous-espaces $\ker f^k$ avec $1 \le k \le n-1$ étaient stables par f. Il reste à remarquer que le seul sous-espace de dimension $\mathbf 0$ i.e. le sous-espace nul et que le seul sous-espace de dimension n i.e. E tout entier sont évidemment stables par f. Enfin, comme $f^0 = \operatorname{Id}_E$ et $f^n = \mathbf 0$, on a $\{0\} = \ker f^0$ et $E = \ker f^n$.

Les sous-espaces stables par f sont donc exactement les sous-espaces $\operatorname{Ker} f^k$ avec $0 \le k \le n$.

4. a. La famille $(x, f(x), ..., f^{n-2}(x), f^{n-1}(x))$ étant une base de E, il existe un unique n-uplet $(\alpha_0, ..., \alpha_{n-1})$ de réels tel que :

$$g(x) = \alpha_0 x + \alpha_1 f(x) + \dots + \alpha_{n-1} f^{n-1}(x)$$

Ce sont les coordonnées de g(x) dans la base $(x, f(x), ..., f^{n-2}(x), f^{n-1}(x))$.

b. Si g commute avec f, g commute avec f^i pour $0 \le i \le n-1$. Par conséquent,

$$g(f^{i}(x)) = f^{i}(g(x)) = \sum_{k=0}^{n-1} \alpha_{k} f^{k+i}(x) = \left(\sum_{k=0}^{n-1} \alpha_{k} f^{k}\right) (f^{i}(x))$$

On en déduit que les endomorphismes g et $\sum_{k=0}^{n-1} \alpha_k f^k$ coı̈ncident sur la base $(x, f(x), \dots, f^{n-2}(x), f^{n-1}(x))$. Ceci prouve que

$$g = \sum_{k=0}^{n-1} \alpha_k f^k = \alpha_0 \operatorname{Id}_E + \alpha_1 f + \dots + \alpha_{n-1} f^{n-1}$$

c. Notons $\mathscr C$ le sous-espace vectoriel de $\mathscr L(E)$ engendré par la famille $(\mathrm{Id}_E,f,\ldots,f^{n-1})$ et $\mathscr C'$ l'ensemble des endomorphismes commutant avec f. La question précédente montre que $\mathscr C'\subset \mathscr C$. Mais comme toute puissance de f commute avec f, il est clair que $\mathscr C\subset \mathscr C'$. Ainsi $\mathscr C=\mathscr C'$. Comme la famille $(x,f(x),\ldots,f^{n-2}(x),f^{n-1}(x))$ est une famille libre de $\mathscr L(E)$. On en déduit que $\dim \mathscr C=n$.