Hypervelocity Impact of Composite Overwrapped Pressure Vessel (COPV) and Comparison to a Numerical Model

Matthew Garcia¹; Bruce Alan Davis²; Joshua Miller, PhD¹ ¹CASSMAR, University of Texas at El Paso, 500 W. University Ave, El Paso, TX, 79912 ²Jacobs, NASA Johnson Space Center JETS contract, 2224 Bay Area Blvd., Houston, TX, 77058

Composite Overwrap

Composite Overwrap

Objectives

- Expose COPV to hypervelocity impact (HVI) testing in pressurized and unpressurized condition.
- Assess overall COPV damage incurred by HVI.
- Identify impact conditions likely to result in catastrophic rupture.
- Broaden the conclusions made from experiment by numerical analysis.

Hypervelocity Impact

Facility (WSTF) Remote Hypervelocity Test

Model

CAD model based on CT scan

	Material	Mod	del
	Aluminum 6061-T6, COPV liner	Mie-Gruneis	en analytic
EOS	Composite overwrap	Mie-Gruneisen, user option	
	Aluminum projectile	Sesame tabulated	
	Aluminum 6061-T6, COPV liner	Elastic perfectly pl	astic, user option
Elastic-plastic	Composite overwrap	Elastic perfectly pl	astic, user option
	Aluminum projectile	Johnson-Cook	
EOS	Parameter	Value	Units

	Sound speed	2.34e05	cm/s
	Hugoniot linear coeff.	1.5	-
	Gruneisen parameter	2.0	-
	Specific heat	1.98e-2	J/(kg-k)
Elastic-plastic model	Parameter	Value	Units
Aluminum 6061-T6	Yield strength	2.55e09	MPa
	Poisson's ratio	0.35	

2.21e09

0.36

Density

Yield strength

Poisson's ratio

g/cm³

MPa

\oplus V, km/s

Conclusions

- Experiments demonstrate COPV has capacity to withstand hypervelocity impact.
- Failure mode appears to be related to impact energy.
- A numerical model was designed to broaden the scope of this effort.
- Pressurizing of COPV in numerical impact simulations will be the next effort.

Experimental and Modeling Results

HITF16163, Pressurized test, Pass

HITF16169, Pressurized test, Venting failure

HITF 16394, Unpressurized test,, Perforation

Density at 1e-05 seconds

Y (cm)

CTH simulation of HITF16212; Result: Fail

Test Matrix

Testing

HITF16160	Cylinder	28.8	35	Al 2017-T4	1.52	0.00510	45	7.06	Vent
HITF16274	Cylinder	0	-	Al 2017-T4	1.51	0.00505	45	7.00	Perforation
HITF16161	Cylinder	27.7	41.7	Al 2017-T4	2.38	0.01975	45	7.08	Rupture
HITF16178	Cylinder	0	-	Al 2017-T4	2.38	0.01974	45	7.09	Perforation
HITF16162	Cylinder	29.1	29.4	Al 2017-T4	2.01	0.01191	45	7.01	Rupture
HITF16211	Cylinder	0	-	Al 2017-T4	2.01	0.01196	45	7.00	Perforation
HITF16163	Shoulder	29.0	38.9	Al 2017-T4	1.52	0.00514	45	7.04	Pass*
HITF16212	Shoulder	0	-	Al 2017-T4	1.52	0.00509	45	6.86	Crater*
HITF16164	Shoulder	29.1	50.5	Al 2017-T4	2.01	0.01190	45	7.19	Vent
HITF16327	Shoulder	0	-	Al 2017-T4	2.01	0.01191	45	7.05	Perforation
HITF16165	Cylinder	29.1	35.5	Al 2017-T4	1.72	0.00741	45	7.23	Vent
HITF16275	Cylinder	0	-	Al 2017-T4	1.71	0.00736	45	6.53	Perforation
HITF16331	Cylinder	0	-	Al 2017-T4	1.72	0.00746	45	7.10	Perforation
HITF16166	Cylinder	28.1	29.4	Al 2017-T4	1.51	0.00505	0	7.24	Vent
HITF16328	Cylinder	0	-	Al 2017-T4	1.51	0.00505	0	6.65	Perforation
HITF16332	Cylinder	0	-	Al 2017-T4	1.51	0.00506	0	7.32	Perforation
HITF16167	Cylinder	29.1	44.4	Al 2017-T4	1.72	0.00741	0	7.01	Rupture
HITF16329	Cylinder	0	-	Al 2017-T4	1.72	0.00740	0	7.11	Perforation
HITF16168	Cylinder	29.1	42.7	Al 2017-T4	2.31	0.01176	60	7.03	Rupture
HITF16393	Cylinder	0	-	Al 2017-T4	2.31	0.01175	60	7.20	Perforation
HITF16169	Cylinder	29.1	42.7	Al 2017-T4	2.01	0.01191	60	7.08	Vent
HITF16394	Cylinder	0	-	Al 2017-T4	2.01	0.01196	60	7.01	Perforation
HITF16170	Cylinder	29.1	40.5	Al 2017-T4	2.50	0.02290	45	4.07	Rupture
HITF16395	Cylinder	0	-	Al 2017-T4	2.50	0.02289	45	4.11	Perforation
HITF16171	Cylinder	29.4	44.4	Al 2017-T4	2.01	0.01194	45	4.08	Pass*
HITF16504	Cylinder	28.8	20	440C SS	1.09	0.00525	45	7.10	Vent
HITF16513	Cylinder	0	_	440C SS	1.09	0.00528	45	7.03	Perforation

440C SS 1.29 0.00861

Perforation

HITF 16212, Unpressurized test, Pass

-0.5 0 0.5 1

CTH simulation of HITF 16394, Result: Fail

References

Environments." Space Policy 30.1

[1] Kezirian, M.T., K. L. Johnson, and S. L. Phoenix. "Composite Overwrapped Pressure Vessels (COPV): Flight Rationale for the Space Shuttle Program." AIAA SPACE 2011 Conference & Exposition (2011). [2] Vasiliev, V.V., and Robert Jones. "Composite Pressure Vessels: Analysis, Design, and Manufacturing.",

[3] Thesken, J.C., et al. "A Theoretical Investigation of Composite Overwrapped Pressure Vessel (COPV) Mechanics Applied to NASA Full

[4] Raju, I. S., D. S. Dawicke, and R. W. Hampton. "Some Observations on Damage Tolerance Analyses in

AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2017)

[5] Murthy, P.L.N., et al. "Stress Rupture Life Reliability Measures for Composite Overwrapped Pressure

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2007). [6] Kessler, D.J. "Orbital Debris Issues." Advances in Space Research 5.2 (1985): 3-10. [7] Percy, T. K., and B. D. Landrom. "Investigation of National Policy Shifts to Impact Orbital Debris

[8] Christiansen, E.L.; "Handbook for Designing MMOD Protection." (2009) [9] Yew, C. H., and R. B. Kendrick. "A Study of Damage in Composite Panels Produced by Hypervelocity Impact." International Journal of

Impact Engineering 5.1-4 (1987): 729-38. [10] Tennyson, R.C., and C. Lamontange. "Hypervelocity Impact Damage to Composites". Composites Part A: Applied Science and

Manufacturing 31.8 (2000): 785-94. [11] Alexander, C. S., C. T. Key, and S. C. Schumacher. "Dynamic Response and Modeling of a Carbon fiber-

epoxy Composite Subject to

Shock Loading." Journal of Applied Physics 114.22 (2013) [12] Cherniaev, A., Tellichev, I. "Numerical Simulation of Impact Damage Induced by Orbital Debris on

Shielded Wall of Composite Overwrapped Pressure Vessel." *Applied Composite Materials* 2.6 (2014): 861-84.

[13] Bhol, W., and K. Deighton. "CEV MMOD Analysis Report." (2015).

[14] Squire, M. D., et al. "Joint Polar Satellite System (JPSS) Micrometeoroid and Orbital Debris (MMOD) Assessment." (2015). [15] McLaughlan, P. B., S. C. Forth, and L. R. Grimes-Ledesma. "Composite Overwrapped Pressure Vessels: A

[16] Chang, J.B., and R.W. Seibold. "Operational Guidelines for Spaceflight Pressure Vessels." DOT-VNTSC-

FAA-05-01 Vol. The Aerospace Corporation, 2005.

[17] Mespoulet, J. et al. "Numerical Investigations of Hypervelocity Impacts on Pressurized Aluminum-Coposite Vessels." *Procedia Engineering*

103. The 13th Hypervelocity Impact Soymposium (2015): 373-80. [18] Héreil, P., Mespoulet, J. and Plassard, F. "Hypervelocity Impact of Aluminum Projectiles Against Pressurized Aluminum-Composite

Vessel." Procedia Engineering 103. The 13th Hypervelocity Impact Symposium (2015): 181-8.