Article Carpenter et al. (2012) 1 Carpenter et al. (2012) 2		r 0.46 0.56	0.01 0.76 0.14 0.81	n 19 19
Carpenter et al. (2012) 3 Carpenter et al. (2012) 4	-	0.38	-0.09 0.71 0.03 0.77	19 19
Carpenter et al. (2012) 5 Carpenter et al. (2012) 6 Carpenter et al. (2012) 7		0.03 0.18 0.47	-0.43 0.48 -0.30 0.59 0.02 0.76	19 19 19
Carpenter et al. (2012) 8 Carpenter et al. (2012) 9	-	0.40 0.45	-0.07 0.72 -0.01 0.75	19 19
Carpenter et al. (2012) 10 Carpenter et al. (2012) 11 Carpenter et al. (2012) 12		0.46 0.37 0.36	0.01 0.76 -0.10 0.71 -0.11 0.70	19 19 19
Carpenter et al. (2012) 13 Carpenter et al. (2012) 14		0.13 0.13	-0.34 0.55 -0.34 0.55	19 19
Carpenter et al. (2012) 15 Carpenter et al. (2012) 16		0.01	-0.45 0.46 -0.45 0.46	19 19
Carpenter et al. (2012) 17 Carpenter et al. (2012) 18 Carpenter et al. (2012) 19		0.43 0.52 0.30	-0.03 0.74 0.09 0.79 -0.18 0.66	19 19 19
Carpenter et al. (2012) 20 Dawson et al. (2009) 1	-	0.30	-0.18 0.66 0.07 0.66	19 32
Dawson et al. (2009) 2 Dawson et al. (2009) 3 Dawson et al. (2009) 4		0.08 0.09 0.21	-0.43 0.55 -0.42 0.56 -0.32 0.64	16 16 16
Dawson et al. (2009) 5 Dawson et al. (2009) 6 Hussey & Barnes-Holmes (2012) 1		0.18 0.21 0.16	-0.35 0.62 -0.32 0.64 -0.21 0.49	16 16 30
Hussey & Barnes-Holmes (2012) 2 Hussey & Barnes-Holmes (2012) 3		0.15 -0.03	-0.22 0.48 -0.39 0.33	30 30
Hussey & Barnes-Holmes (2012) 4 Hussey & Barnes-Holmes (2012) 5 Hussey & Barnes-Holmes (2012) 6		-0.08 0.05 -0.07	-0.43 0.29 -0.32 0.40 -0.42 0.30	30 30 30
Hussey & Barnes-Holmes (2012) 7 Hussey & Barnes-Holmes (2012) 8		0.04 0.15	-0.32 0.39 -0.22 0.48	30 30
Hussey & Barnes-Holmes (2012) 9 Hussey & Barnes-Holmes (2012) 10 Hussey & Barnes-Holmes (2012) 11		0.39 0.16 -0.19	0.03 0.66 -0.21 0.49 -0.52 0.18	30 30 30
Hussey & Barnes-Holmes (2012) 12 Hussey & Barnes-Holmes (2012) 13		-0.10 0.17	-0.44 0.27 -0.20 0.50	30 30
Hussey & Barnes-Holmes (2012) 14 Hussey & Barnes-Holmes (2012) 15 Hussey & Barnes-Holmes (2012) 16		0.41 0.11 0.29	0.06 0.67 -0.26 0.45 -0.08 0.59	30 30 30
Hussey & Barnes–Holmes (2012) 17 Hussey & Barnes–Holmes (2012) 18		0.18	-0.19 0.51 -0.41 0.31	30 30
Hussey & Barnes-Holmes (2012) 19 Hussey & Barnes-Holmes (2012) 20 Hussey & Barnes-Holmes (2012) 21		0.16 0.16 -0.05	-0.21 0.49 -0.21 0.49 -0.40 0.32	30 30 30
Hussey & Barnes-Holmes (2012) 22 Hussey & Barnes-Holmes (2012) 23		0.08 -0.07	-0.29 0.43 -0.42 0.30	30 30
Hussey & Barnes-Holmes (2012) 24 Hussey & Barnes-Holmes (2012) 25 Hussey & Barnes-Holmes (2012) 26		0.25 0.07 -0.30	-0.12 0.56 -0.30 0.42 -0.60 0.07	30 30 30
Hussey & Barnes-Holmes (2012) 27 Hussey & Barnes-Holmes (2012) 28		-0.08 0.00	-0.43 0.29 -0.36 0.36	30 30
Hussey & Barnes-Holmes (2012) 29 Hussey & Barnes-Holmes (2012) 30 Nicholson & Barnes-Holmes (2012a) 1		0.05 -0.14 0.44	-0.32 0.40 -0.48 0.23 0.09 0.69	30 30 30
Nicholson & Barnes-Holmes (2012a) 2 Nicholson & Barnes-Holmes (2012a) 3	-	0.13 0.41	-0.24 0.47 0.06 0.67	30 30
Nicholson & Barnes-Holmes (2012a) 4 Nicholson & Barnes-Holmes (2012a) 5 Nicholson & Barnes-Holmes (2012a) 6		0.04 0.47 0.04	-0.32 0.39 0.13 0.71 -0.32 0.39	30 30 30
Nicholson & Barnes–Holmes (2012b) 1 Nicholson & Barnes–Holmes (2012b) 2		-0.09 0.05	-0.46 0.31 -0.34 0.43	26 26
Nicholson & Barnes-Holmes (2012b) 3 Nicholson & Barnes-Holmes (2012b) 4 Nicholson & Barnes-Holmes (2012b) 5		0.40 0.41 0.23	0.01 0.68 0.03 0.69 -0.17 0.57	26 26 26
Nicholson & Barnes-Holmes (2012b) 6 Nicholson & Barnes-Holmes (2012b) 7 Nicholson & Barnes Holmes (2012b) 8		0.47	0.10 0.73 -0.16 0.57	26 26
Nicholson & Barnes-Holmes (2012b) 8 Nicholson & Barnes-Holmes (2012b) 9 Nicholson & Barnes-Holmes (2012b) 10		0.41 0.45 0.27	0.03 0.69 0.08 0.71 -0.13 0.60	26 26 26
Nicholson, Dempsey et al. (2014) 1 Nicholson, Dempsey et al. (2014) 2	├	0.43	0.08 0.69 0.09 0.69	29 29
Nicholson, Dempsey et al. (2014) 3 Nicholson, Dempsey et al. (2014) 4 Nicholson, Dempsey et al. (2014) 5		0.28 0.14 0.27	-0.10 0.59 -0.24 0.48 -0.11 0.58	29 29 29
Nicholson, Dempsey et al. (2014) 6 Nicholson, Dempsey et al. (2014) 7 Nicholson, Dempsey et al. (2014) 8		0.38 0.23 0.21	0.02 0.66 -0.15 0.55 -0.17 0.54	29 29 29
Nicholson, Dempsey et al. (2014) 8 Nicholson, Dempsey et al. (2014) 9 Nicholson, Dempsey et al. (2014) 10	-	0.21 0.12 0.42	-0.17 0.54 -0.26 0.47 0.06 0.68	29 29 29
Nicholson, Dempsey et al. (2014) 11 Nicholson, Dempsey et al. (2014) 12 Nicholson, Dempsey et al. (2014) 13		0.31 0.09 0.28	-0.06 0.61 -0.29 0.44 -0.10 0.59	29 29 29
Nicholson, Dempsey et al. (2014) 14 Nicholson, Dempsey et al. (2014) 15		0.28 0.08 0.20	-0.10 0.59 -0.30 0.43 -0.18 0.53	29 29 29
Nicholson, Dempsey et al. (2014) 16 Nicholson, Dempsey et al. (2014) 17 Nicholson, Dempsey et al. (2014) 18		0.00 -0.07 0.06	-0.37 0.37 -0.43 0.30 -0.31 0.42	29 29 29
Nicholson, Dempsey et al. (2014) 19 Nicholson, Dempsey et al. (2014) 20		-0.04 -0.04	-0.40 0.33 -0.40 0.33	29 29
Nicholson, Dempsey et al. (2014) 21 Nicholson, Dempsey et al. (2014) 22 Nicholson, McCourt et al. (2013) 1		0.21 0.19 0.56	-0.17 0.54 -0.19 0.52 0.23 0.78	29 29 27
Nicholson, McCourt et al. (2013) 2 Nicholson, McCourt et al. (2013) 3		0.43 0.18	0.06 0.70 -0.21 0.52	27 27
Nicholson, McCourt et al. (2013) 4 Nicholson, McCourt et al. (2013) 5 Nicholson, McCourt et al. (2013) 6		0.17 0.03 -0.01	-0.22 0.52 -0.35 0.41 -0.39 0.37	27 27 27
Nicholson, McCourt et al. (2013) 7 Nicholson, McCourt et al. (2013) 8		0.50	0.15	27 27
Nicholson, McCourt et al. (2013) 9 Nicholson, McCourt et al. (2013) 10 Parling et al. (2012) 1		0.25 0.16 0.43	-0.14 0.58 -0.23 0.51 0.07 0.69	27 27 28
Parling et al. (2012) 2 Parling et al. (2012) 3		0.47 0.24 0.11	0.12 0.72 -0.15 0.56 -0.27 0.46	28 28 28
Parling et al. (2012) 4 Parling et al. (2012) 5 Parling et al. (2012) 6		0.05 0.30	-0.27 0.46 -0.35 0.44 -0.11 0.62	25 25
Parling et al. (2012) 7 Parling et al. (2012) 8 Parling et al. (2012) 9		0.05 0.31 0.37	-0.35 0.44 -0.10 0.63 0.01 0.64	25 25 30
Parling et al. (2012) 10 Parling et al. (2012) 11		0.06 0.27	-0.31 0.41 -0.10 0.57	30 30
Parling et al. (2012) 12 Parling et al. (2012) 13 Parling et al. (2012) 14		0.02 0.12 0.20	-0.34 0.38 -0.27 0.48 -0.19 0.54	30 27 27
Parling et al. (2012) 15 Parling et al. (2012) 16	-	0.08	-0.31 0.45 -0.05 0.64	27 27
Timko et al. (2010; Study 1) 1 Timko et al. (2010; Study 1) 2 Timko et al. (2010; Study 1) 3		-0.09 0.15 0.16	-0.36 0.19 -0.13 0.41 -0.12 0.42	50 50 50
Timko et al. (2010; Study 1) 4 Timko et al. (2010; Study 1) 5 Timko et al. (2010; Study 1) 6		0.24	-0.04 0.49 0.01 0.53 -0.08 0.45	50 50
Timko et al. (2010; Study 1) 6 Timko et al. (2010; Study 1) 7 Timko et al. (2010; Study 1) 8		0.20 0.29 0.32	0.01 0.53 0.05 0.55	50 50 50
Timko et al. (2010; Study 1) 9 Timko et al. (2010; Study 1) 10 Timko et al. (2010; Study 1) 11		-0.03 0.11 0.15	-0.31 0.25 -0.17 0.38 -0.13 0.41	50 50 50
Timko et al. (2010; Study 1) 12 Timko et al. (2010; Study 1) 13		0.16 -0.01	-0.12 0.42 -0.29 0.27	50 50
Timko et al. (2010; Study 1) 14 Timko et al. (2010; Study 1) 15 Timko et al. (2010; Study 1) 16		-0.17 -0.01 0.15	-0.43 0.11 -0.29 0.27 -0.13 0.41	50 50 50
Timko et al. (2010; Study 1) 17 Timko et al. (2010; Study 1) 18	<u> </u>	0.20 0.02	-0.08 0.45 -0.26 0.30	50 50
Timko et al. (2010; Study 1) 19 Timko et al. (2010; Study 1) 20 Timko et al. (2010; Study 1) 21		0.23 0.10 0.05	-0.05 0.48 -0.18 0.37 -0.23 0.32	50 50 50
Timko et al. (2010; Study 1) 22 Timko et al. (2010; Study 1) 23 Timko et al. (2010; Study 1) 24		-0.21 0.16 0.43	-0.46 0.07 -0.12 0.42 0.17 0.63	50 50 50
Timko et al. (2010; Study 1) 25 Timko et al. (2010; Study 1) 26		0.08 -0.10	-0.20 0.35 -0.37 0.18	50 50
Timko et al. (2010; Study 1) 27 Timko et al. (2010; Study 1) 28 Timko et al. (2010; Study 1) 29		0.14 0.10 -0.02	-0.14 0.40 -0.18 0.37 -0.30 0.26	50 50 50
Timko et al. (2010; Study 1) 30 Timko et al. (2010; Study 1) 31	<u> </u>	0.17 0.24	-0.11 0.43 -0.04 0.49	50 50
Timko et al. (2010; Study 1) 32 Timko et al. (2010; Study 2) 1 Timko et al. (2010; Study 2) 2		0.24 0.12 0.22	-0.04 0.49 -0.09 0.32 0.02 0.41	50 93 93
Timko et al. (2010; Study 2) 3 Timko et al. (2010; Study 2) 4		0.21 -0.04	0.01 0.40 -0.24 0.17	93 93
Timko et al. (2010; Study 2) 5 Timko et al. (2010; Study 2) 6 Timko et al. (2010; Study 2) 7		0.08 0.06 -0.02	-0.13 0.28 -0.15 0.26 -0.22 0.18	93 93 93
Timko et al. (2010; Study 2) 8 Timko et al. (2010; Study 2) 9		-0.14 -0.04	-0.33 0.07 -0.24 0.17	93 93
Timko et al. (2010; Study 2) 10 Timko et al. (2010; Study 2) 11 Timko et al. (2010; Study 2) 12		0.08 -0.08 -0.05	-0.13 0.28 -0.28 0.13 -0.25 0.16	93 93 93
Vahey et al. (2009) 1 Vahey et al. (2009) 2 Vahey et al. (2009) 3		0.62 0.46 0.04	0.37 0.79 0.12 0.70 -0.42 0.49	37 30 19
Vahey et al. (2010) 1 Vahey et al. (2010) 2	<u> </u>	0.89 0.55	0.04 0.99 -0.25 0.90	5 8
Vahey et al. (2010) 3 Vahey et al. (2010) 4 Meta-analysis (3-level RE confidence interval)	•	0.21 0.26 0.22	-0.39 0.68 -0.34 0.71 0.15 0.29	13 13 416
Meta-analysis (3-level RE credibility interval) Meta-analysis (3-level RE prediction interval)	; <u> </u>	0.22	0.22 0.22 -0.01 0.42	416 416
-	-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1			