Pannon Egyetem Mérnöki Kar

SEGÉDLET

Műszaki hőtan feladatgyűjtemény

Műszaki hőtan Műszaki áramlástan és hőtan II. Műszaki áramlás- és hőtan

Tartalomjegyzék

\mathbf{A}	lapadatok	2
	A tárgy adatai	2
	A segédlet célja	2
	Ajánlott szakirodalom	
1.	Levegő állapotváltozásai	3
	K1/9. feladat	3
2 .	Víz és vízgőz állapotváltozásai	5
	K2/1. feladat: Gőzfejlesztés állandó nyomáson	5
3.	Munkát szolgáltató körfolyamatok	7
	K1/5. feladat	7
4.	Hűtőgépek, hűtőkörfolyamatok	8
5.	Hőterjedés álló közegben	9
		g
	K5/2. feladat: Szénacél csőre kifagyó jégréteg	
		14
6.	Hőterjedés áramló közegben	15
		15
		17
7.	Hőcserélők, hőszigetelés	19
	K7/1. feladat	
	K7/2. feladat	

Alapadatok

A tárgy adatai

Név: Műszaki áramlástan és hőtan II. (Műszaki hőtan)

Kód: VEMKGEB242H

Kreditérték: 2 (1 elmélet, 1 gyakorlat)

Követelmény típus: vizsga

Szervezeti egység: Gépészmérnöki Intézet

Előadás látogatása: kötelező Gyakorlat látogatása: kötelező

Számonkérés: a félév végén zárthelyi, írásbeli és szóbeli vizsga

A segédlet célja

A segédlet célja ismertetni a **Műszaki hőtan szemináriumi segédlet és példatár** (Dr. Pleva László, Zsíros László) feladatainak megoldását.

A segédlet kidolgozása még folyamatban van, ezen sorok írásakor az elsődleges célja az ötödik, hatodik és hetedik fejezetben található feladatok megoldásának ismertetése, melyekre a 2016/17-es tanév őszi féléve során nem jutott idő az előadásokon, azonban a számonkérés részét képezik.

Ajánlott szakirodalom

- Dr. Pleva László, Zsíros László: Műszaki hőtan, Pannon Egyetemi Kiadó (ebből kimarad: 59-62; 66-69; 100-104; 114-209; 237-245; 280-309 oldalak)
- M. A. Mihajev: A hőátadás számításának gyakorlati alapjai, Tankönyvkiadó, Budapest, 1990.

Levegő állapotváltozásai

K1/9. feladat: Nedves vízgőz kiterjedése

 $V_1=1,5\,\mathrm{m}^3$ térfogatú, $p_1=16\,\mathrm{bar}$ nyomású és $x_1=0,95$ fajlagos gőztartalmú vízgőz **adiabatikusan** $p_2=0,1\,\mathrm{bar}$ nyomásig terjed ki. Határozza meg a kiterjedés kezdetén és végén a gőz állapotjelzőit, a gőz m tömegét és a gőz által végzett w_t technikai munkát!

Ábrázolja a folyamatot T-s diagramban!

Ismert jellemzők a kezdeti állapotban

$$\begin{split} p_1 &= 16 \, \mathrm{bar}, \quad V_1 = 1.5 \, \mathrm{m}^3, \quad x_1 = 0.95, \quad h_1' = 858.3 \, \frac{\mathrm{kJ}}{\mathrm{kg}}, \quad h_1'' = 2793 \, \frac{\mathrm{kJ}}{\mathrm{kg}} \\ s_1' &= 2.344 \, \frac{\mathrm{kJ}}{\mathrm{kg \, K}}, \quad s_1'' = 6.442 \, \frac{\mathrm{kJ}}{\mathrm{kg \, K}}, \quad v_1' = 0.001 \, 16 \, \frac{\mathrm{m}^3}{\mathrm{kg}}, \quad v_1'' = 0.1238 \, \frac{\mathrm{m}^3}{\mathrm{kg}} \end{split}$$

Ismert jellemzők a végállapotban

$$h_2' = 191, 9 \, \frac{\text{kJ}}{\text{kg}}, \quad h_2'' = 2584 \, \frac{\text{kJ}}{\text{kg}}, \quad s_2' = 0,6492 \, \frac{\text{kJ}}{\text{kg K}}, \quad s_2'' = 8,149 \, \frac{\text{kJ}}{\text{kg K}}$$

Az állapotjelzők a kezdeti állapotban

A kezdeti állapothoz tartozó h_1 hőtartalom, v_1 fajtérfogat és s_1 entrópia a szélsőértékek és az x_1 fajlagos gőztartalom felhasználásával számolható:

$$h_1 = (1 - x_1) h_1' + x_1 h_1'' = 2696,27 \frac{\text{kJ}}{\text{kg}}$$
 (1.1)

$$v_1 = (1 - x_1) v_1' + x_1 v_1'' = 0,1176 \frac{\text{m}^3}{\text{kg}}$$
 (1.2)

$$s_1 = (1 - x_1) s_1' + x_1 s_1'' = 6.237 \frac{\text{kJ}}{\text{kg K}}$$
(1.3)

A kiterjedő gőz tömege az azonos állapotra vonatkozó térfogat és fajtérfogat hányadosa. A kezdeti állapotra mindkét mennyiség ismert:

$$m = \frac{V_1}{v_1} = 12,74 \,\mathrm{kg} \tag{1.4}$$

Az állapotjelzők a végállapotban

A végállapot állapotjelzőinek számolásához szükségünk van az ismert szélsőértékek mellett az x_2 fajlagos gőztartalomra is. Az állapotváltozás adiabatikus jellegű, emiatt $s_1 \approx s_2$ (ha reverzibilisnek tekintjük az állapotváltozást, akkor $s_1 = s_2$):

$$s_2 = (1 - x_2) \, s_2' + x_2 s_2'' \quad \Rightarrow \quad x_2 = \frac{s_2 - s_2'}{s_2'' - s_2'} \approx \frac{s_1 - s_2'}{s_2'' - s_2'} = 0,745 \tag{1.5}$$

A hőtartalom a végállapotban:

$$h_2 = (1 - x_2) h_2' + x_2 h_2'' = 1974 \frac{\text{kJ}}{\text{kg}}$$
 (1.6)

A technikai munka

Az állapotváltozás technikai munkáját az első főtétel átáramlott rendszerek

Víz és vízgőz állapotváltozásai

K2/1. feladat: Gőzfejlesztés állandó nyomáson

Szerző	Fehér Árpád VX12Z6
Szak	Vegyészmérnök alapszak
Félév	2019/2020 II. (tavaszi) félév

Számítsa ki a *vízgőzfejlesztéshez szükséges hőenergiát* (külön-külön a folyadékhőt, párolgáshőt és túlhevítési hőt), illetve a *hőközlés átlagos hőmérsékletét*. Ha 9,81 bar 35 °C-os vízből állítunk elő 400 °C-os túlhevített gőzt, **izobár** körülmények között. A vizsgálat 1 kg vízre vonatkozik. A feladatot gőztáblázat segítségével oldjuk meg.

Ábrázolja a folyamatot T-s diagramban!

Kezdeti és gőztáblázati adatok.

$$p = 9.81 \, \mathrm{bar}, \quad T_a = 35 \, ^{\circ}\mathrm{C}, \quad T_t = 400 \, ^{\circ}\mathrm{C}, \quad s_1 = 0.5035 \, \frac{\mathrm{kJ}}{\mathrm{kg} \, \mathrm{K}}, \quad s_4 = 7.4705 \, \frac{\mathrm{kJ}}{\mathrm{kg} \, \mathrm{K}}$$

$$h_1 = 147.4 \, \frac{\mathrm{kJ}}{\mathrm{kg}}, \quad h_2 = 759.07 \, \frac{\mathrm{kJ}}{\mathrm{kg}}, \quad h_3 = 2777.1 \, \frac{\mathrm{kJ}}{\mathrm{kg}}, \quad h_4 = 3263.6 \, \frac{\mathrm{kJ}}{\mathrm{kg}}$$

a) Határozzuk meg vízgőzfejlesztéshez szűkséges energiát

A vizsgált folyamat p = állandó nyomáson megy végbe, ezért az első főtétel megfelelő alakja alapján azt kapjuk, hogy:

$$\delta q = dh + \delta w_t - v d q \tag{2.1}$$

$$q = h_2 - h_1 (2.2)$$

Ez alapján a folyadékhő:

$$q_{1,2} = h_2 - h_1 = 611,67 \, \frac{\text{kJ}}{\text{kg}} \tag{2.3}$$

A párolgáshő:

$$q_{2,3} = h_3 - h_2 = 2018,03 \frac{\text{kJ}}{\text{kg}}$$
 (2.4)

A túlhevítési hő:

$$q_{3,4} = h_4 - h_3 = 486,5 \,\frac{\text{kJ}}{\text{kg}} \tag{2.5}$$

Az összes hő

$$q_{1,4} = h_4 - h_1 = 3116,2 \, \frac{\text{kJ}}{\text{kg}} \tag{2.6}$$

b) Határozzuk meg a hőközlés átlagos hőmérsékletét

A $T_{k\ddot{o}z}$ átlagos hőmérséklet lényegében az állapotváltozás átlag hőmérséklete. Ezt egy folytonos mennyiség átlagolásával kapjuk meg. Integráljuk az adott mennyiséget és elosztjuk az intervallum nagyságával.

$$q_{1,4} = \int\limits_{1}^{4} T_{k\ddot{o}z} ds = T_{k\ddot{o}z} \int\limits_{1}^{4} ds = T_{k\ddot{o}z} (s_4 - s_1)$$

Az egyenlet átrendezve $T_{k\ddot{o}z}$ -re

$$T_{k\ddot{o}z} = \frac{q_{1,4}}{s_4 - s_1} = 447,28\,\mathrm{K} = 174\,\mathrm{^{\circ}C} \eqno(2.7)$$

c) Az állapotváltozás T-s diagramban

2.1. ábra. Víz-gőzT-s diagram

Munkát szolgáltató körfolyamatok

K1/5. feladat: Levegő Carnot-körfolyamata

Hűtőgépek, hűtőkörfolyamatok

Hőterjedés álló közegben

K5/1. feladat: Hőterjedés sík kazánfalban

Név	Szalay István
Szak	
Félév	2019/2020 II. (tavaszi) félév

Egy kazánban 10 bar nyomású gőzt termelnek. A kazánfal belső felülete 200 °C, külső (tűztér felőli) felülete pedig 395 °C hőmérsékletű. A kazán fala $\delta_1=16\,\mathrm{mm}$ vastagságú.

A kazán falának hővezetési tényezője $\lambda_1=43\,\frac{W}{m\,K}.$ (A kazán falát síkfalnak tekintjük.)

(a) A hőmérséklet-hely függvény az (b) A hőmérséklet-hely függvény (c) A hőmérséklet-hely függvény a az b) esetben. c) esetben.

a) Határozzuk meg a fal közepes hőmérsékletét és a falban kialakuló hőáramsűrűséget!

A fal közepes hőmérséklete a lineáris hőmérsékleteloszlás miatt a falhőmérsékletek átlaga:

$$T_K = \frac{T_1 + T_2}{2} = 297.5 \,^{\circ}\text{C}$$
 (5.1)

Nem lineáris hőmérsékleteloszlás esetén a hőmérséklet-hely függvény határozott integráljának és a falvastagságnak a hányadosa a közepes hőmérséklet.

A hőáramsűrűség a falban

$$\dot{q}_a = \frac{\lambda_1}{\delta_1} (T_1 - T_2) = 524 \,\frac{\text{kW}}{\text{m}^2}$$
 (5.2)

Ebben a feladatban a kazánfal oldalain végbemenő hőátadást tökéletesnek tekintjük, azaz a falhőmérsékletek megegyeznek a közeghőmérsékletekkel.

b) A kazán falára $\delta_2=1.2\,\mathrm{mm}$ vastag kazánkőréteg rakódik. Változatlan gőztermelés és gőznyomás esetén számítsuk ki a kazán falának közepes hőmérsékletét!

A vízkőréteg hővezetési tényezője $\lambda_2=1.6\,\frac{\mathrm{W}}{\mathrm{m\,K}}.$

A "változatlan gőztermelés" kifejezés azt jelenti, hogy a gőzoldali falhőmérséklet és a hőáramsűrűség a falban nem változik. A vízkőréteg miatt a hőáramsűrűség csak úgy maradhat azonos \dot{q}_a -val, hogy a tűztér oldali T_1' falhőmérséklet sokkal nagyobb T_1 -nél, a T_2' falhőmérséklet pedig nem azonos a gőzoldali T_2 hőmérséklettel. A vízkőréteg hővezetési tényezője sokkal kisebb a kazánlemezénél, ezért a kisebb rétegvastagság ellenére nagyobb hőmérséklet esik rajta.

A fal közepes hőmérséklete itt is a két falhőmérséklet átlaga:

$$T_K' = \frac{T_1' + T_2'}{2} \tag{5.3}$$

A T_1^\prime és a T_2^\prime falhőmérséklet a q_b hőáramsűrűség alapján számítható ki:

$$\dot{q}_b = \dot{q}_a = \frac{\lambda_1}{\delta_1} (T_1' - T_2') = \frac{\lambda_2}{\delta_2} (T_2' - T_2) \tag{5.4}$$

$$T_2' = T_2 + \frac{\delta_2}{\lambda_2} \dot{q}_a = 200 \,^{\circ}\text{C} + \frac{1,2 \,\text{mm}}{1,6 \,\frac{\text{W}}{\text{m K}}} 524 \,\frac{\text{kW}}{\text{m}^2} = 593 \,^{\circ}\text{C}$$
 (5.5)

$$T_1' = T_2' + \frac{\delta_1}{\lambda_1} \dot{q}_a = 593 \,^{\circ}\text{C} + \frac{16 \,\text{mm}}{43 \,\frac{\text{W}}{\text{m K}}} 524 \,\frac{\text{kW}}{\text{m}^2} = 788 \,^{\circ}\text{C}$$
 (5.6)

c) Ha szilárdsági okok miatt a fal hőmérséklete nem emelkedhet, de a gőznyomás változatlan, mekkora lesz a hőáramsűrűség?

Ha gőznyomás nem változik, akkor a gőz hőmérséklete sem változik, mivel a kazánban a nedves gőzmezőbe eső állapotú a víz, és ott T-s diagram szerint az izotermák és az izobár vonalak egybeesnek. Tehát a gőzoldali hőmérséklet T_2 . Ha szilárdsági okok miatt a fal hőmérséklete nem emelkedhet, akkor a tűztér oldali hőmérséklet az eredeti T_1 .

A \dot{q}_c hőáramsűrűség azonos a kazánfalban és a vízkőrétegben:

$$\dot{q}_c = \frac{\lambda_1}{\delta_1} (T_1 - T_2'') = \frac{\lambda_2}{\delta_2} (T_2'' - T_2) \tag{5.7}$$

Kifejezve a két hőmérsékletkülönbséget, és összeadva a két egyenletet:

$$\frac{\dot{q}_c \frac{\delta_1}{\lambda_1} = (T_1 - T_2'')}{\dot{q}_c \frac{\delta_2}{\lambda_2} = (T_2'' - T_2)} \Rightarrow \dot{q}_c \left(\frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2}\right) = (T_1 - T_2) \Rightarrow \dot{q}_c = 173,78 \frac{\text{kW}}{\text{m}^2}$$
(5.8)

A fenti két egyenletet kétismeretlenes egyenletrendszernek is tekinthetjük, ahol a hőáramsűrűség mellett a másik ismeretlen a T_2'' falhőmérséklet. A hőáramsűrűséget visszahelyettesítve megkaphatjuk az értékét:

$$T_2'' = T_1 - \dot{q}_c \frac{\delta_1}{\lambda_1} = 330,34 \,^{\circ}\text{C}$$
 (5.9)

K5/2. feladat: Szénacél csőre kifagyó jégréteg

Név	Szalay István
Szak	
Félév	2019/2020 II. (tavaszi) félév

Egy NÁ125-ös szénacél csőben (a külső átmérő $d_2=133\,\mathrm{mm}$, a belső átmérő $d_1=125\,\mathrm{mm}$, a falvastagság $s=4\,\mathrm{mm}$) ammóniát szállítanak, amelynek nyomása $p=2.9\,\mathrm{bar}$, hőmérséklete $T_1=-10\,\mathrm{^{\circ}C}$.

A környezet levegője ($T_4 = 10\,^{\circ}$ C) melegíti a csövet, ammónia forrásban van a cső belsejében, így belülről hőelvonás van, és a cső hideg külső felületére kifagy a levegő nedvességtartalma. A kifagyott jégréteg szigetelőként működik, beáll az egyensúlyi állapot.

Meghatározandó a csőre fagyott jégréteg külső d_3 átmérője! A jégréteg felületének hőmérséklete $T_3=0\,^{\circ}\mathrm{C}$ (olvadó jég), a csőfal belső hőmérséklete pedig a forrásban lévő ammónia jó hőátadási tényezője miatt $T_1=-10\,^{\circ}\mathrm{C}$ -nak vehető (a hőátadás termikus ellenállása elhanyagolható).

5.2. ábra. A hőmérséklet-hely függvény **nem méretarányos** vázlata.

Vizsgálat többrétegű hengeres falként

A csőfal és a rárakódó jégréteg hengeres alakú, ezért lineáris a hőáramsűrűségeket tudjuk felírni. A csőfalban és a jégrétegben állandósult a hőmérsékleteloszlás és csak hővezetés történik. A hengeres falakra a \dot{q}_{lin} vezetéses lineáris hőáramsűrűség vonatkozik.

$$\dot{q}_{lin} = \frac{T_3 - T_1}{\frac{\ln \frac{d_2}{d_1}}{2\pi\lambda_1} + \frac{\ln \frac{d_3}{d_2}}{2\pi\lambda_2}}$$
(5.10)

A levegőből a jégrétegbe **átadódó** $\dot{q}_{\acute{a}t}$ lineáris hőáramsűrűség:

$$\dot{q}_{\acute{a}t} = \alpha d_3 \pi (T_4 - T_3) \tag{5.11}$$

A két lineáris hőáramsűrűséget az ábrán úgy vettük fel, hogy a hőmérsékletcsökkenés irányába pozitívak, ezért a felírásuknál a nagyobb hőmérsékletből vonjuk ki a kisebbet.

Az energiamegmaradás miatt a két lineáris hőáramsűrűség egyenlő:

$$\dot{q}_{lin} = \dot{q}_{\acute{a}t} = \dot{q} \tag{5.12}$$

A fentiekből az alábbi kétismeretlenes egyenletrendszert kapjuk, amiben a jégréteg d_3 átmérője a a \dot{q} lineáris hőáramsűrűség az ismeretlenek. Az egyenletrendszer nem lineáris, átrendezéssel nem oldható meg (transzcendens), csak numerikus közelítő megoldása lehetséges:

Innen a jégréteg vastagsága $\frac{1}{2}\left(d_{3}-d_{2}\right)=124{,}3\,\mathrm{mm}.$

A méretarányos ábra és a hőmérséklet hely függvény

A lineáris hőáramsűrűség és a jég külső átmérőjének numerikus közelítő megoldását felhasználva megrajzolható méretarányosan a T(r) hőmérséklet-hely függvény. A hőmérséklet a d_1 átmérőn belül állandó T_1 érték. A csőfalban és a jégrétegben $T(r) = T_0 + \frac{\dot{q}}{2\pi\lambda} \ln\frac{r}{r_0}$ alakban írható fel, ahol a T_0 a belső r_0 sugárhoz tartozó hőmérséklet.

A csőfal esetén $T_0 = T_1$ és $r_0 = \frac{d_1}{2}$:

$$T(r) = T_1 + \frac{\dot{q}}{2\pi\lambda_1} \ln \frac{2r}{d_1}$$
 (5.14)

Innen megkaphatjuk a csőfal és a jégréteg határfelületének hőmértékletét, T_2 -t:

$$T_2 = T\left(\frac{d_2}{2}\right) = T_1 + \frac{\dot{q}}{2\pi\lambda_1} \ln\frac{d_2}{d_1} = -9.96\,^{\circ}\text{C}$$
 (5.15)

A jégréteg esetén $T_0 = T_2$ és $r_0 = \frac{d_2}{2}$:

$$T(r) = T_2 + \frac{\dot{q}}{2\pi\lambda_2} \ln\frac{2r}{d_2}$$
 (5.16)

Vizsgálat többrétegű síkfalként

A hengeres falon keresztül történő hőterjedés mindig közelíthető a hengeres fal kiterítésével kapott síkfalon át történő hőterjedéssel. A közelítés hibája a a hengeres fal vastagságától függ, minél vékonyabb, annál kisebb a síkfallal történő közelítés hibája.

A többrétegű hengeres falat többrétegű síkfallal közelíthetjük. A közelítő síkfal vastagsága és hossza megegyezik a hengeres réteg vastagságával és hosszával, a szélessége a hengeres réteg közepes átmérőjéhez tartozó kerülettel közelíthető:

$$\dot{q}_{lin} = \frac{\lambda_1}{\frac{d_2 - d_1}{2}} \frac{d_1 + d_2}{2} \pi (T_2 - T_1)$$

$$\dot{q}_{lin} = \frac{\lambda_2}{\frac{d_3 - d_2}{2}} \frac{d_2 + d_3}{2} \pi (T_3 - T_2)$$

$$\Rightarrow \dot{q}_{lin} = \frac{T_3 - T_1}{\frac{d_2 - d_1}{\lambda_1 (d_1 + d_2) \pi} + \frac{d_3 - d_2}{\lambda_2 (d_2 + d_3) \pi}$$

$$(5.17)$$

A falbeli lineáris hőáram és a hőátadást jellemző lineáris hőáram most is egyenlő.

$$\dot{q}_{lin} = \frac{T_3 - T_1}{\frac{d_2 - d_1}{\lambda_1 (d_1 + d_2) \, \pi} + \frac{d_3 - d_2}{\lambda_2 (d_2 + d_3) \, \pi}} = \alpha d_3 \, \pi (T_4 - T_3) = \dot{q}_{\acute{a}t} \tag{5.18}$$

5.3. ábra. A hőmérséklet-hely függvény méretarányosan ábrázolva.

Egyszerűsítve, és kifejezve a hőmérsékletkülönbségek hányadosát:

$$\underbrace{\frac{T_3 - T_1}{T_4 - T_3}}_{\text{állandó}} = \underbrace{\frac{(d_2 - d_1) \alpha}{\lambda_1 (d_1 + d_2)}}_{C} d_3 + \underbrace{\frac{(d_3 - d_2) \alpha d_3}{\lambda_2 (d_2 + d_3)}}_{C}$$
(5.19)

Vezessük be a T és C állandókat, hogy gyorsabb és átláthatóbb legyen az egyenlet átrendezése:

$$T = Cd_3 + \frac{(d_3 - d_2) \alpha d_3}{\lambda_2 (d_2 + d_3)}$$
 (5.20)

Megszüntetve a törtet d_3 -ra másodfokú egyenletet kapunk:

$$T\lambda_{2}\left(d_{2}+d_{3}\right)=Cd_{3}\lambda_{2}\left(d_{2}+d_{3}\right)+\left(d_{3}-d_{2}\right)\alpha d_{3} \tag{5.21}$$

$$0\,\mathbf{W} = \left(C\lambda_2 + \alpha\right)d_3^2 + \left(C\lambda_2d_2 - d_2\alpha - T\lambda_2\right)d_3 - T\lambda_2d_2 \tag{5.22}$$

Innen a d_3 közelítő értéke:

$$d_{3,1} = 0.4008 \,\mathrm{m}, \qquad \underbrace{\left(d_{3,2} = -0.0668 \,\mathrm{m}\right)}_{\text{a másodfokú egyenletnek megoldása,}} \tag{5.23}$$

A d_3 közelítő megoldással nyert értéke tehát 400,8 mm. A nemlineáris egyenlet közelítő numerikus megoldásától ez 5 %-kal tér el.

K5/4. feladat: Hengeres fal közelítése síkfallal

Név	Szalay István
Szak	
Félév	2019/2020 II. (tavaszi) félév

Gyakorlati számítások során szokás a hengeres falon vezetéssel átjutó hőáramot közelítő módon síkfalra vonatkozó összefüggésekkel számolni. Határozza meg egy hengeres fal külső d_2 és belső d_1 átmérőjének hányadosa függvényében, hogy a lineáris hőáramsűrűség számításakor hány %-os hibát vétünk az alábbi közelítő összefüggéseket használva:

$$\dot{q}_{lin} = \frac{\lambda}{\delta} d_K \pi \left(T_1 - T_2 \right), \quad \delta = \frac{d_2 - d_1}{2}, \quad \text{\'es} \quad d_K = \frac{d_1 + d_2}{2}$$
 (5.24)

ahol δ a falvastagság és d_K a közepes átmérő.

5.4. ábra. Hengeres fal kiterítése és közelítése síkfallal.

A hőáramra vonatkozó valós és a közelítő összefüggés:

$$\dot{Q}_{val\'os} = \frac{2\pi\lambda L}{\ln\frac{d_2}{d_*}} \left(T_1 - T_2\right) \quad \text{\'es} \quad \dot{Q}_{k\"ozel\'at\~o} = \frac{2\lambda}{d_2 - d_1} \frac{d_1 + d_2}{2} \pi L \left(T_1 - T_2\right) \tag{5.25}$$

A vizsgálatot a $\varphi=\frac{d_2}{d_1}\in[1,3]$ intervallumban, 0,5-es lépésekben végezzük el. A vizsgálat az ε relatív hiba értékének kiszámítását jelenti a φ átmérőhányados különböző értékei mellett. A relatív hiba, behelyettesítve a hőáramokat:

$$\varepsilon = \frac{\dot{Q}_{valós} - \dot{Q}_{k\ddot{o}zel\acute{t}l\ddot{o}}}{\dot{Q}_{val\acute{o}s}} = 1 - \frac{\dot{Q}_{k\ddot{o}zel\acute{t}l\ddot{o}}}{\dot{Q}_{val\acute{o}s}} = 1 - \frac{\frac{2\lambda}{d_2 - d_1} \frac{d_1 + d_2}{2} \pi \lambda (T_1 - T_2)}{\frac{2\pi \lambda \lambda}{\ln \frac{d_2}{d_1}} (T_1 - T_2)}$$

$$(5.26)$$

Kifejezve d_2 -t φd_1 alakban:

$$\varepsilon = 1 - \frac{d_1 + d_2}{d_2 - d_1} \frac{1}{2} \ln \frac{d_2}{d_1} = 1 - \frac{d_1 + \varphi d_1}{\varphi d_1 - d_1} \frac{1}{2} \ln \varphi = 1 - \frac{1 + \varphi}{\varphi - 1} \frac{1}{2} \ln \varphi$$
 (5.27)

A relatív hiba értékei a vizsgált intervallumban:

φ	1	1,5	2	2,5	3
$\varepsilon(\varphi)$	$\lim_{\varphi \to 1+} \varepsilon(\varphi) = 0$	0,0134	0,0382	0,0645	0,0897

Hőterjedés áramló közegben

K6/1. feladat: Ellenáramú hőcserélő számítása

Név	Szalay István
Szak	
Félév	2019/2020 II. (tavaszi) félév

Egy ellenáramú hőcserélőnél veszteségmentes hőcserét feltételezve a következő adatokat ismerjük: a közegek kezdeti hőmérsékletei $T_{1k}=140\,^{\circ}\mathrm{C}$ és $T_{2k}=15\,^{\circ}\mathrm{C}$, a két közeg konvektív vízértéke egyenlő $\dot{w}=\dot{w}_1=\dot{w}_2=58\,000\,\mathrm{\frac{W}{K}}$, a hőátszármaztatási tényező $\kappa=220\,\mathrm{\frac{W}{m^2\,\mathrm{K}}}$, a teljes hőátadó felület $A_{\tilde{O}}=100\,\mathrm{m}^2$.

a) A véghőmérsékletek meghatározása

A hőcserélőben történő hőterjedést a következő hőáramokkal jellemezhetjük:

- Az ①-es közeg belépő hőszállításos hőárama \dot{w}_1T_{1k} , a kilépő hőszállításos hőáram \dot{w}_1T_{1v} , a kettő különbsége az ①-es közeg által **leadott** $\Delta \dot{Q}_1 = \dot{w}_1 \left(T_{1v} T_{1k} \right)$; negatív, mert az ①-es közeg hőmérséklete csökken.
- Az átszármaztatott hőáram $\Delta \dot{Q}_{\acute{a}tsz} = \kappa A_{\ddot{O}} \Delta T_{k\ddot{o}z,ln}$, értéke pozitív, a számításánál figyelembe kell venni, hogy a $\dot{w}_1 = \dot{w}_2$ egyenlőség miatt a két közeg közötti hőmérsékletkülönbség állandó $\Delta T = \Delta T_N = \Delta T_K$, és ezzel egyenlő a logaritmikus közepes hőmérsékletkülönbség is.

$$\dot{w}_1 = \dot{w}_2 \quad \Rightarrow \quad \Delta T_{k\ddot{o}z,ln} = \lim_{\Delta T_N \to \Delta T_K} \frac{\Delta T_N - \Delta T_K}{\ln \frac{\Delta T_N}{\Delta T_K}} = \Delta T_N = \Delta T_K = \Delta T \tag{6.1}$$

A ΔT hőmérsékletkülönbség felírható a megfelelő vég- és kezdeti hőmérsékletek különbségeként, például $\Delta T = T_{1v} - T_{2k}$.

• A ②-es közeg belépő hőszállításos hőárama \dot{w}_2T_{2k} , a kilépő hőszállításos hőáram \dot{w}_2T_{2v} , a kettő különbsége a ②-es közeg által **felvett** $\Delta\dot{Q}_2=\dot{w}_2\left(T_{2v}-T_{2k}\right)$; pozitív, mert a ②-es közeg hőmérséklete növekszik.

A három hőáram az energiamegmaradás miatt egyenlő, ez alapján a két ismeretlen véghőmérsékletre egy kétismeretlenes egyenletrendszert tudunk felírni (behelyettesítve ΔT -t és a közös \dot{w} -t):

$$-\Delta \dot{Q}_{1} = \Delta \dot{Q}_{\acute{a}tsz} = \Delta \dot{Q}_{2} \quad \Rightarrow \qquad I. \quad -\dot{w} \left(\frac{\mathbf{T}_{1v}}{\mathbf{T}_{1v}} - T_{1k} \right) = \kappa A_{\ddot{O}} \left(\frac{\mathbf{T}_{1v}}{\mathbf{T}_{1v}} - T_{2k} \right)$$

$$II. \quad -\dot{w} \left(\frac{\mathbf{T}_{1v}}{\mathbf{T}_{1v}} - T_{1k} \right) = \dot{w} \left(\frac{\mathbf{T}_{2v}}{\mathbf{T}_{2v}} - T_{2k} \right)$$

$$(6.2)$$

Az egyenletrendszer lineáris, a véghőmérsékletek átrendezéssel kifejezhetők:

$$\frac{T_{1v}}{\kappa A_{\ddot{O}} + \dot{w}} = \frac{\kappa A_{\ddot{O}} T_{2k} + \dot{w} T_{1k}}{\kappa A_{\ddot{O}} + \dot{w}} = 105,625 \,^{\circ}\text{C}$$
(6.3)

$$T_{2v} = T_{2k} + T_{1k} - T_{1v} = 49,375 \,^{\circ}\text{C}$$
 (6.4)

b) Mekkora kellene legyen a hőátszármaztatási tényező, hogy a két véghőmérséklet egyenlő legyen?

A feltétel egyenlet alakban $T_{1v} = T_{2v}$. Mivel a konvektív vízértékek továbbra is egyenlők, a T(A) hőmérséklet-hely függvények lineárisak és azonos meredekségűek, ezért a két véghőmérséklet úgy lehet egyenlő, ha a kezdeti hőmérsékletek átlagával is egyenlők:

$$T_{1v} = T_{2v} = \frac{T_{1k} + T_{2k}}{2} = 77.5 \,^{\circ}\text{C}$$
 (6.5)

A módosított κ^* hőátszármaztatási tényező az átszármaztatott és az egyik szállításos hőáram egyenlőségéből kifejezhető:

$$-\Delta \dot{Q}_1 = \Delta \dot{Q}_{\acute{a}tsz} \quad \Rightarrow \quad -\dot{w} \left(T_{1v} - T_{1k} \right) = \kappa^* A_{\ddot{O}} \left(T_{1v} - T_{2k} \right) \tag{6.6}$$

Kifejezve a hőátszármaztatási tényező:

$$\kappa^* = \frac{\dot{w} (T_{1k} - T_{1v})}{A_{\ddot{O}} (T_{1v} - T_{2k})} = \frac{\dot{w} \Delta T}{A_{\ddot{O}} \Delta T} = \frac{\dot{w}}{A_{\ddot{O}}} = 580 \, \frac{W}{m^2 \, K}$$
(6.7)

c) A léptékhelyes hőmérséklet-hely függvények

Hőcserélőknél a hőmérséklet-hely függvény a T(A) függvény, amit közegenként különböző, és a helyet az A érintett hőátadó felület jelenti. Az a) és b) részben a konvektív vízértékek egyenlők, ezért lineárisak a T(A) függvények.

- (a) A hőmérséklet-hely függvények az a) esetben.
- (b) A hőmérséklet-hely függvények a b) esetben.

A kézzel történő feladatmegoldást gyakran lehet az ábrák közelítő felrajzolásával kezdeni, azonban az görbék jelleghelyes rajzolása általában csak a számítások elvégzése után lehetséges.

K6/4. feladat: Hőátadás és lecsapódás függőleges csőfalon

Név	Szalay István
Szak	
Félév	2019/2020 II. (tavaszi) félév

Határozza meg, hogy száraz telített vízgőzből mennyi csapódik le óránként egy $d=40\,\mathrm{mm}$ átmérőjű, $L=1\,\mathrm{m}$ magas, függőleges cső külső falára $p=1,01\,\mathrm{bar}$ gőznyomás esetén, ha a csőfelület középhőmérséklete $T_F=60\,\mathrm{^{\circ}C!}$ A p nyomáshoz tartozó forráspont $T_S=100\,\mathrm{^{\circ}C}$.

A víz anyagjellemzői a közepes $T_K = \frac{T_S + T_F}{2}$ hőmérsékleten: a párolgáshő $r = 2257,3 \, \frac{\text{kJ}}{\text{kg}}$, a sűrűség $\varrho_{80} = 971,6 \, \frac{\text{kg}}{\text{m}^3}$, a hővezetési tényező $\lambda_{80} = 0,67 \, \frac{\text{W}}{\text{m K}}$, a dinamikai viszkozitás $\eta_{80} = 351 \cdot 10^{-6} \, \frac{\text{kg}}{\text{m s}}$.

Nusselt folyadékréteg elmélete szerint a gőz és a lecsapódó folyadékréteg által befolyt csőfal közötti hőátadási tényező az alábbi alakban számolható, ha a folyadék áramlása réteges/lamináris:

$$\alpha = c \left(\frac{r \varrho^2 \lambda^3 g}{\eta H \Delta T} \right)^{\frac{1}{4}} \tag{6.8}$$

A c értéke, illetve a H jelentése a cső elhelyezkedésétől függ: függőleges fal vagy cső esetén $c_1=0.943$, és H=L (az L a magasság vagy függőleges hossz), vízszintes cső esetén $c_2=0.726$, és H=d (a d a külső átmérő).

a) Függőleges cső vizsgálata

A gőz lecsapódása során a rejtett hőt adja le átadással a csőnek. Ezt a két hőáram egyenlőségével írhatjuk le, azaz $\dot{Q}_{rejtett} = \dot{Q}_{\acute{a}tad\acute{a}s}$. Kifejtve a két hőáram:

$$\dot{Q}_{rejtett} = \dot{m}r \quad \text{és} \quad \dot{Q}_{\acute{a}tad\acute{a}s} = \alpha A \left(T_S - T_F \right) = \alpha d\pi L \left(T_S - T_F \right) \tag{6.9}$$

A hőátadási tényező függőleges csőnél:

$$\alpha_{\text{függ\"oleges}} = 0.943 \left(\frac{r \varrho_{80}^2 \lambda_{80}^3 g}{\eta_{80} L \left(T_S - T_F \right)} \right)^{\frac{1}{4}} = 4.338 \, \frac{\text{W}}{\text{m}^2 \, \text{K}}$$
 (6.10)

A lecsapódás tömegárama a függőleges helyzetű csövön:

$$\dot{m}_{\text{f\"{u}}\text{gg\'{o}leges}} = \frac{\alpha_{\text{f\"{u}}\text{gg\'{o}leges}} d\pi L \left(T_S - T_F\right)}{r} = 9.65 \cdot 10^{-3} \, \frac{\text{kg}}{\text{s}} = 34,775 \, \frac{\text{kg}}{\text{h}} \tag{6.11}$$

b) Vizsgáljuk meg a lecsapódott gőzmennyiséget akkor is, ha a cső vízszintes helyzetű!

A hőátadási tényező vízszintes csőnél:

$$\alpha_{vizszintes} = 0.943 \left(\frac{r \varrho_{80}^2 \lambda_{80}^3 g}{\eta_{80} L \left(T_S - T_F \right)} \right)^{\frac{1}{4}} = 7.468 \frac{W}{m^2 K}$$
 (6.12)

A lecsapódás tömegárama a vízszintes helyzetű csövön:

$$\dot{m}_{\textit{vizszintes}} = \frac{\alpha_{\textit{vizszintes}} d\pi L \left(T_S - T_F\right)}{r} = 16.6 \cdot 10^{-3} \, \frac{\text{kg}}{\text{s}} = 59.86 \, \frac{\text{kg}}{\text{h}} \tag{6.13}$$

c) A vízszintes vagy a függőleges elrendezést célszerű választani? Mikor nagyobb a hőátadási tényező?

A kérdés arra vonatkozik, hogy a d és az L viszonya alapján melyik elrendezést célszerű választani. A feladatot az alábbi egyenlőtlenség alakban célszerű megfogalmazni:

$$\alpha_{\text{függ\"{o}leges}} < \alpha_{\text{v\'{i}zszintes}} \quad \Rightarrow \quad c_1 \left(\frac{r \varrho^2 \lambda^3 g}{\eta L \Delta T} \right)^{\frac{1}{4}} < c_2 \left(\frac{r \varrho^2 \lambda^3 g}{\eta d \Delta T} \right)^{\frac{1}{4}} \quad \Rightarrow \quad \frac{c_1^4}{c_2^4} d < L \tag{6.14}$$

Azaz, ha 2,846d < L,akkor $\alpha_{\mathit{függ\"{o}leges}} < \alpha_{\mathit{v\'{i}zszintes}}.$

Hőcserélők, hőszigetelés

K7/1. feladat

Név	Szalay István
Szak	
Félév	2019/2020 II. (tavaszi) félév

Egy $A_{\ddot{O}}=15\,\mathrm{m}^2$ hőátadó felületű csőköteges hőcserélőben $\dot{m}_a=820\,\mathrm{\frac{kg}{h}}$ tömegáramú cseppfolyós ammóniát kell vízzel lehűtenünk. Az ammónia belépési hőmérséklete $T_{ak}=25\,\mathrm{^{\circ}C}$, a rendelkezésre álló hűtővíz hőmérséklete $T_{vk} = 12 \,^{\circ}\text{C}$.

Ha az ellenáramú hőcserélőn $\dot{m}_v = 1130 \, \frac{\mathrm{kg}}{\mathrm{h}}$ tömegáramú vizet áramoltatunk keresztül és a hőátszármaztatási tényező $\kappa=160\,\frac{\mathrm{W}}{\mathrm{m}^2\,\mathrm{K}}$, akkor mekkorák lesznek a kilépési hőmérsékletek? A víz fajhője $c_v=4.18\,\frac{\mathrm{kJ}}{\mathrm{kg}\,\mathrm{K}}$, az ammónia fajhője $c_a=4.6\,\frac{\mathrm{kJ}}{\mathrm{kg}\,\mathrm{K}}$.

A víz fajhője
$$c_v=4.18\,\frac{\text{kJ}}{\text{kg K}}$$
, az ammónia fajhője $c_a=4.6\,\frac{\text{kJ}}{\text{kg K}}$.

a) A hőcserét leíró egyenletek

Az ammónia a hűtött közeg, ezért ez lesz az ①-es közeg, a víz pedig a ②-es. A meghatározandó ismeretlenek a T_{av} és T_{vv} véghőmérsékletek, emiatt két független egyenletet kell felírnunk. A hőcserélőben a leadott, az átszármaztatott és a felvett hőáram az energiamegmaradás miatt egyenlő. A leadott és a felvett hőáram egyenlőségéből a véghőmérsékletekre lineáris egyenletet kapunk, az átszármaztatott hőáram viszont csak akkor ad lineáris egyenletet, ha a konvektív vízértékek egyenlők. A konvektív vízértékek:

$$\dot{w}_a = \dot{m}_a c_a = 1047 \frac{W}{K} \quad \text{és} \quad \dot{w}_v = \dot{m}_v c_v = 1312 \frac{W}{K}$$
 (7.1)

Később a számítási eredmények ellenőrzésére lesz használható az a tény, hogy a nagyobb konvektív vízértékű közeg hőmérséklete változik kevesebbet.

A konvektív vízértékek nem egyenlők, emiatt célszerű keresni egy másik egyenletet, ami lineáris. Ez lehet a $\Delta T(A)$ hőmérsékletkkülönbség-hely függvény a teljes $A_{\ddot{O}}$ hőátadó felületre.

$$\Delta T(A_{\ddot{O}}) = \Delta T_N e^{-\kappa \overline{m} A_{\ddot{O}}} = \Delta T_K$$
 (7.2)

Ennél az egyenletnél a ΔT_N és a ΔT_K hőmérsékletkülönbségek helyes felírására kell odafigyelni, mivel ellenáramú hőcserénél a nagyobb konvektív vízértékű közeg belépésénél van a kisebb hőmérsékletkülönbség. Azaz vizsgált esetben $\Delta T_N = T_{ak} - T_{vv}$ az ammónia belépésénél és $\Delta T_K = T_{ak} - T_{vv}$ $T_{av} - T_{vk}$ a víz belépésénél.

Ezek alapján a két ismeretlen véghőmérsékletre az alábbi kétismeretlenes egyenletrendszert tudjuk felírni:

$$-\Delta \dot{Q}_{a} = \Delta \dot{Q}_{v} \qquad I. - \dot{w}_{a} \left(\mathbf{T}_{av} - T_{ak} \right) = \dot{w}_{v} \left(\mathbf{T}_{vv} - T_{vk} \right)
\Rightarrow \qquad \Delta T(A_{\ddot{O}}) = \Delta T_{K} \qquad II. \left(T_{ak} - \mathbf{T}_{vv} \right) e^{-\kappa \overline{m} A_{\ddot{O}}} = \mathbf{T}_{av} - T_{vk}$$

$$(7.3)$$

A fenti egyenletrendszer megoldható egyszerű átrendezéssel, azonban mivel gyakran előfordul, kialakult egy mátrixos megoldási módszer is.

Mindkét a módszernél célszerű a (7.3) egyenletrendszerbe az alábbi mennyiségeket behelyettesíteni:

$$\varphi = \frac{\dot{w}_1}{\dot{w}_2} = \frac{\dot{w}_a}{\dot{w}_v} \quad \text{és} \quad \eta = e^{-\kappa \overline{m} A_{\tilde{O}}}$$
 (7.4)

A φ a konvektív vízértékek hányadosa, az η az exponenciális függvény értéke.

b) Megoldás átrendezéssel

A (7.3) egyenletrendszer átrendezéssel megoldható. A (7.4) szerinti behelyettesítéssel rövidebbek az egyenletek. Az I. egyenlet átrendezése, φ és η behelyettesítése után:

$$I. \varphi \left(T_{ak} - \frac{T_{av}}{T_{av}} \right) = \frac{T_{vv}}{T_{vk}} - T_{vk}$$

$$II. \left(T_{ak} - \frac{T_{vv}}{T_{vv}} \right) \eta = \frac{T_{av}}{T_{av}} - T_{vk}$$

$$(7.5)$$

Fejezzük ki $\frac{T_{vv}}{}$ t az I.egyenletből és helyettesítsük be a II.-ba:

$$I. \frac{T_{vv}}{T_{vv}} = \varphi T_{ak} + T_{vk} - \varphi \frac{T_{av}}{T_{av}}$$

$$(7.6)$$

II.
$$T_{av} + \eta \left(\varphi T_{ak} + T_{vk} - \varphi T_{av} \right) = \eta T_{ak} + T_{vk}$$
 (7.7)

II.
$$T_{av} = \frac{\eta T_{ak} + T_{vk} - \eta \left(\varphi T_{ak} + T_{vk}\right)}{1 - \eta \varphi} = 15,32 \,^{\circ}\text{C}$$
 (7.8)

Visszahelyettesítve az I. egyenletbe, megkapjuk a víz véghőmérsékletét:

I.
$$T_{vv} = \varphi T_{ak} + T_{vk} - 15{,}32 \,^{\circ}\text{C} = 19{,}72 \,^{\circ}\text{C}$$
 (7.9)

c) Megoldás mátrix alakban

A (7.5) egyenletrendszer átrendezéses megoldást paraméteresen elvégezve mindkét ismeretlen hőmérsékletre az $\underline{\underline{T}}_v = c\underline{\underline{A}}\,\underline{\underline{T}}_k$ mátrix alakra hozható. A (7.8) egyenlet jobb oldalát alakítsuk a kezdeti hőmérsékletes lineáris kombinációjává:

$$\frac{T_{av}}{1 - \eta \varphi} = \frac{\eta \left(1 - \varphi\right) T_{ak} + \left(1 - \eta\right) T_{vk}}{1 - \eta \varphi} = \frac{1}{1 - \eta \varphi} \left[\eta \left(1 - \varphi\right) - 1 - \eta \right] \begin{bmatrix} T_{ak} \\ T_{vk} \end{bmatrix}$$
(7.10)

A II. egyenletből kifejezve T_{av} és behelyettesítve az I. egyenletbe:

$$II. \ \, \frac{\mathbf{T_{av}}}{\mathbf{T_{av}}} = \left(T_{ak} - \frac{\mathbf{T_{vv}}}{\mathbf{T_{vv}}}\right)\eta + T_{vk} \tag{7.11}$$

$$I. \varphi \left(T_{ak} - \left(T_{ak} - \frac{T_{vv}}{T_{vv}} \right) \eta + T_{vk} \right) = \frac{T_{vv}}{T_{vv}} - T_{vk}$$

$$(7.12)$$

$$\frac{T_{vv}}{T_{vv}} = \frac{\varphi \left(T_{ak} - T_{ak}\eta + T_{vk}\right) + T_{vk}}{1 - \eta\varphi} \tag{7.13}$$

Innen a mátrixos alak:

$$\frac{T_{vv}}{T_{vv}} = \frac{\varphi(1-\eta)T_{ak} + T_{vk}(1+\varphi)}{1-\eta\varphi} = \frac{1}{1-\eta\varphi} \left[\varphi(1-\eta) \qquad 1+\varphi \right] \begin{bmatrix} T_{ak} \\ T_{vk} \end{bmatrix}$$
(7.14)

Összevonva két mátrixos egyenlet:

$$\begin{bmatrix} T_{av} \\ T_{vv} \end{bmatrix} = \frac{1}{1 - \eta \varphi} \begin{bmatrix} \eta (1 - \varphi) & 1 - \eta \\ \varphi (1 - \eta) & 1 - \varphi \end{bmatrix} \begin{bmatrix} T_{ak} \\ T_{vk} \end{bmatrix}$$
(7.15)

Itt a c állandót és az $\underline{\underline{A}}$ mátrix elemeit kell kiszámolni, és képezni velük a kezdeti hőmérsékletek lineáris kombinációit.

d) A léptékhelyes hőmérséklet-hely függvények

A véghőmérsékletek megrajzolása után megrajzolhatók a hőmérséklet-hely függvények.

7.1. ábra. A hőmérséklet-hely függvények.

A kézzel történő feladatmegoldást gyakran lehet az ábrák közelítő felrajzolásával kezdeni, azonban az görbék jelleghelyes rajzolása általában csak a számítások elvégzése után lehetséges.

K7/2. feladat: Olajipari hűtő

Név	Szalay István
Szak	
Félév	2019/2020 II. (tavaszi) félév

Egy olajipari hűtőnél mérés útján határozzuk meg a hőátszármaztatási tényezőt, a környezeti hatást, és rajzoljuk le axonometrikusan a hőcserélőt!

A hőcserélő 1-4-es (azaz köpenyoldalon 1-szeres, csőoldalon 4-szeres) átfutású, a csőkötegben hűtővíz, a köpenyoldalon benzin áramlik. Hőszigetelés nincs, a "hőveszteség", a benzinből a környezetbe távozó hő valójában nyereség, ennyivel kevesebb hűtővíz szükséges. A benzin a hűtött közeg, ezért ez lesz az ①-es közeg, a víz pedig a ②-es.

A benzin tömegárama $\dot{m}_B=66\,000\,\frac{\mathrm{kg}}{\mathrm{h}}$, sűrűsége $\varrho_B=740\,\frac{\mathrm{kg}}{\mathrm{m}^2}$, fajhője $c_B=2{,}26\,\frac{\mathrm{kJ}}{\mathrm{kg}\,\mathrm{K}}$. A benzin kezdeti hőmérséklete $T_{1k}=68\,^{\circ}\mathrm{C}$, véghőmérséklete $T_{1v}=47\,^{\circ}\mathrm{C}$ (a változás 21 °C).

kezdeti hőmérséklete $T_{1k}=68\,^{\circ}\mathrm{C}$, véghőmérséklete $T_{1v}=47\,^{\circ}\mathrm{C}$ (a változás 21 °C). A víz tömegárama $\dot{m}_V=45\,400\,\mathrm{\frac{kg}{h}}$, sűrűsége $\varrho_V=997\,\mathrm{\frac{kg}{m^2}}$ (23 °C hőmérsékletes), fajhője $c_V=4,179\,\mathrm{\frac{kJ}{kg\,K}}$. A víz kezdeti hőmérséklete $T_{2k}=15\,^{\circ}\mathrm{C}$, véghőmérséklete $T_{2v}=31\,^{\circ}\mathrm{C}$ (a változás 16 °C). A névleges hőátadó felület $A_{\ddot{O}}=100\,\mathrm{m^2}$.

a) Készítse el a hőcserélő mérési vázlatát és rajzolja meg a hőmérséklet-hely függvényt!

A mérési vázlat a hőcserélő főbb jellemzőit ábrázolja, nem feltétlenül a térbeli elhelyezkedésük szerint, hanem a lehető legegyszerűbben. A négyszeres köpenyoldali átfutást például elegendő kiterítve, egyegy Asőöbbjadőinis. csőoldali átfutás miatt a hőcserélő vegyesáramú, de a hőmérséklet-hely függvény helyettesíthető egy ellenáramúval.

c) A vegyesáramú hőcserélő átszármaztatott hőárama

A vegyesáramú hőcserélő átszármaztatott hőáram az alábbi összefüggéssel számolható:

$$\dot{Q}_{\acute{a}tsz} = \kappa A_{\ddot{O}} \Delta T_{k\ddot{o}z.ln} F_t \tag{7.16}$$

ahol F_t a logaritmikus közepes hőmérsékletkülönbség vegyesáram esetén szükséges helyesbítő tényezője.

d) A logaritmikus közepes hőmérsékletkülönbség (LMTD)

A logaritmikus közepes hőmérsékletkülönbség (LMTD: logarithmic mean temperature difference) számításához szükség van a kisebb és nagyobb hőmérsékletkülönbségre. Ezek leolvasásához a $T_2(A)$ hőmérséklet-hely függvényt a megfelelő ellenáramúval kell helyettesíteni (lásd 7.2. ábra).

$$\Delta T_{k\ddot{o}z,ln} = \frac{\Delta T_N - \Delta T_K}{\ln \frac{\Delta T_N}{\Delta T_K}} = \frac{37\,^{\circ}\text{C} - 33\,^{\circ}\text{C}}{\ln \frac{37\,^{\circ}\text{C}}{33\,^{\circ}\text{C}}} = 34,44\,^{\circ}\text{C} = 34,44\,\text{K}$$
(7.17)

A logaritmikus közepes hőmérsékletkülönbség egy hőmérsékletkülönbség, ezért Celsius-fokban és kelvinben azonos az értéke.

e) Az F_t helyesbítő tényező

Az F_t leolvasásához ki kell számítani a hőmérsékletviszonyokat jellemző R és S hányadosokat. Az R a meleg és hideg közeg hőmérsékletváltozásának hányadosa:

$$R = \frac{\Delta T_1}{\Delta T_2} = \frac{T_{1k} - T_{1v}}{T_{2v} - T_{2k}} = 1,31 \tag{7.18}$$

7.2. ábra. A hőcserélő mérési vázlata és a hőmérséklet-hely függvények.

Az S a hidegebb közeg hőmérsékletváltozásának és a legnagyobb hőmérsékletkülönbségnek (általában a belépő hőmérsékletek különbségének) hányadosa:

$$S = \frac{\Delta T_2}{\Delta T_{max}} = \frac{T_{2v} - T_{2k}}{T_{1k} - T_{2k}} = 0,3 \tag{7.19}$$

Az F_t leolvasható értéke 0,95.

f) Az átszármaztatott hőáram és a hőátszármaztatási tényező

Az átszármaztatott hőáramot a hűtővíz által felvett hőárammal tekinthetjük azonosnak, a benzin által leadott hőáram ennél több, mivel a benzin hőjének egy része a környezetbe távozik.

$$\dot{Q}_{\acute{a}tsz} = \Delta \dot{Q}_{V} = \dot{m}_{V} c_{V} \Delta T_{2} = \dot{m}_{V} c_{V} \left(T_{2v} - T_{2k} \right) = 843,23 \, \mathrm{kW} \tag{7.20}$$

Innen a hőátszármaztatási tényező:

$$\kappa = \frac{\dot{Q}_{\acute{a}tsz}}{A_{\ddot{O}}\Delta T_{k\ddot{O}z} l_{n} F_{t}} = 257,73 \,\frac{\mathrm{W}}{\mathrm{m}^{2}\,\mathrm{K}} \tag{7.21}$$

g) A környezeti hatás

A "hasznos hőveszteségként" megnyilvánuló környezeti hatást a benzin által leadott és a víz által felvett hőáramok különbségeként tudjuk számolni. A benzin által leadott hőáram:

$$\Delta \dot{Q}_B = \dot{m}_B c_B \Delta T_1 = \dot{m}_B c_B \left(T_{1k} - T_{1v} \right) = 870,1 \,\text{kW} \tag{7.22}$$

A környezeti hatás:

$$\Delta \dot{Q}_B - \Delta \dot{Q}_V = 26.9 \, \mathrm{kW} \tag{7.23}$$