PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07D 217/04, A61K 31/435, C07D 401/12, 405/12, 409/12, 413/12, 487/04, 471/04, 495/04

(11) International Publication Number:

WO 98/50364

(43) International Publication Date: 12 November 1998 (12.11.98)

(21) International Application Number:

PCT/EP98/02583

A1

(22) International Filing Date:

27 April 1998 (27.04.98)

(30) Priority Data:

9708976.7 9723294.6 3 May 1997 (03.05.97) GB

4 November 1997 (04.11.97)

(71) Applicant (for all designated States except US): SMITHKLINE BEECHAM PLC [GB/GB]; New Horizons Court, Brentford, Middlesex TW8 9EP (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BRANCH, Clive, Leslie [GB/GB]; SmithKline Beecham Pharmaceuticals, New Frontiers Science Park South, Third Avenue, Harlow, Essex CM19 5AW (GB). JOHNSON, Christopher, Norbert [GB/GB]; SmithKline Beecham Pharmaceuticals, New Frontiers Science Park South, Third Avenue, Harlow, Essex CM19 5AW (GB). STEMP, Geoffrey [GB/GB]; SmithKline Beecham Pharmaceuticals, New Frontiers Science Park South, Third Avenue, Harlow, Essex CM19 5AW (GB).

(74) Agent: GARRETT, Michael; SmithKline Beecham plc, Corporate Intellectual Property, Two New Horizons Court, Brentford, Middlesex TW8 9EP (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: TETRAHYDROISOQUINOLINE DERIVATIVES AS MODULATORS OF DOPAMINE D3 RECEPTORS

$$(R^1)_q$$
 (1) $-Ar$ (a)

$$-Ar^{1}-Y-Ar^{2} \qquad (b) \qquad Ar \qquad (c)$$

(57) Abstract

Compounds of formula (I) wherein: R represents a substituent selected from: a hydrogen or a substituent as defined in the claims; R² represents a hydrogen atom or a C₁₋₄alkyl group; q is 1 or 2; A represents a group of formula (a), (b) or (c) wherein: Ar represents an optionally substituted phenyl ring or an optionally substituted 5- or 6-membered aromatic heterocyclic ring; or an optionally substituted bicyclic ring system; Ar1 and Ar2 each independently represent an optionally substituted phenyl ring or an optionally substituted 5- or 6-membered aromatic heterocyclic ring; and Y represents a bond, -NHCO-, -CONH-, -CH2-, or -(CH2)_mY¹(CH2)_n-, wherein Y¹ represents O, S, SO₂, or CO and m and n each represent zero or 1 such that the sum of m+n is zero or 1; providing that when A represents a group of formula (a), any substituent present in Ar ortho to the carboxamide moiety is necessarily a hydrogen or a methoxy group; and salts thereof. Compounds of formula (I) and their salts have affinity for dopamine receptors, in particular the D₃ receptor, and thus potential in the treatment of conditions wherein modulation of the D3 receptor is beneficial, e.g. as antipsychotic agents.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	freland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Ĭtaly	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

TETRAHYDROISOQUINOLINE DERIVATIVES AS MODULATORS OF DOPAMINE D3 RECEPTORS

The present invention relates to novel tetrahydroisoquinoline derivatives, processes for their preparation, pharmaceutical compositions containing them and their use in therapy, as modulators of dopamine D₃ receptors, in particular as antipsychotic agents.

US Patent No. 5,294,621 describes tetrahydropyridine derivatives of the formula:

$$\begin{array}{c|c}
 & R^1 \\
\hline
 & R^2 \\
\hline
 & X \\
\hline
 & Ar^1
\end{array}$$

10

15

5

wherein is an optionally substituted thienyl or optionally substituted phenyl ring; R¹, R² and R³ are each *inter alia* hydrogen; X is *inter alia* (CH₂)mNR⁷CO; m is 2-4; and Ar¹ is an optionally substituted heterocyclic ring or an optionally substituted phenyl ring. The compounds are said to be useful as antiarrhythmic agents.

EPA 431,580 describes compounds of formula

wherein R is OR³, NR⁴R⁵, or N(OR⁴)R⁵, R⁴ and R⁵ are *inter alia* hydrogen, lower alkyl, aroyl or heteroaroyl; m is zero, 1 or 2; R¹ is hydrogen, aryl or various heteroaryl groups; n is zero or 1-4; and R² is:

$$-N$$
 $-N$ $N-R^7$ or $-N$ R^7

25

The compounds are said to be dopaminergic agents useful as antipsychotics, antihypertensives and also of use in the treatment of hyperprolactinaemia-related conditions and several central nervous system disorders.

WO 95/10513 describes benzothiophene derivatives and related compounds as estrogen agonists.

We have now found a class of tetrahydroisoquinoline derivatives which have affinity for dopamine receptors, in particular the D₃ receptor, and thus potential in the treatment of conditions wherein modulation of the D₃ receptor is beneficial, eg as antipsychotic agents.

In a first aspect the present invention provides compounds of formula (I):

$$(R^1)_q$$

Formula (I)

10 wherein:

15

20

25

30

35

R¹ represents a substituent selected from: a hydrogen or halogen atom; a hydroxy, cyano, nitro, trifluoromethyl, trifluoromethoxy, trifluoromethanesulfonyloxy, pentafluoroethyl, C¹-4alkyl, C¹-4alkoxy, arylC¹-4alkoxy, C¹-4alkylthio, C¹-4alkoxyC¹-4alkyl, C³-6cycloalkylC¹-4alkoxy, C¹-4alkanoyl, C¹-4alkoxycarbonyl, C¹-4alkylsulfonyl, C¹-4alkylsulfonyloxy, C¹-4alkylsulfonylC¹-4alkyl, arylsulfonyl, arylsulfonyloxy, arylsulfonylC¹-4alkyl, C¹-4alkylsulfonamido, C¹-4alkylamido, C¹-4alkylsulfonamidoC¹-4alkyl, C¹-4alkylamidoC¹-4alkyl, arylsulfonamido, arylcarboxamido, arylsulfonamidoC¹-4alkyl, arylcarboxamidoC¹-4alkyl, aroyl, aroylC¹-4alkyl, or arylC¹-4alkanoyl group; a group R³OCO(CH²)p, R³CON(R⁴)(CH²)p, R³R⁴NCO(CH²)p or R³R⁴NSO²(CH²)p where each of R³ and R⁴ independently represents a hydrogen atom or a C¹-4alkyl group or R³R⁴ forms part of a C³-6azacyloalkane or C³-6(2-oxo)azacycloalkane ring and p represents zero or an integer from 1 to 4; or a group Ar³-Z, wherein Ar³ represents an optionally substituted phenyl ring or an optionally substituted 5- or 6- membered aromatic heterocyclic ring and Z represents a bond, O, S, or CH²;

 R^2 represents a hydrogen atom or a C_{1-4} alkyl group; q is 1 or 2;

A represents a group of the formula (a), (b) or (c):

$$-Ar \qquad -Ar^{\frac{1}{2}}Y - Ar^2 \qquad Ar$$
(a) (b) (c)

wherein

Ar represents an optionally substituted phenyl ring or an optionally substituted 5or 6- membered aromatic heterocyclic ring; or an optionally substituted bicyclic ring system;

 Ar^1 and Ar^2 each independently represent an optionally substituted phenyl ring or an optionally substituted 5- or 6- membered aromatic heterocyclic ring; and

Y represents a bond, -NHCO-, -CONH-, -CH₂-, or -(CH₂)_mY¹(CH₂)_n-, wherein Y¹ represents O, S, SO₂, or CO and m and n each represent zero or 1 such that the sum of m+n is zero or 1; providing that when A represents a group of formula (a), any substituent present in Ar *ortho* to the carboxamide moiety is necessarily a hydrogen or a methoxy group;

and salts thereof.

10

15

20

25

30

35

40

In the compounds of formula (I) above an alkyl group or moiety may be straight or branched. Alkyl groups which may be employed include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl and any branched isomers thereof such as isopropyl, t-butyl, secbutyl, and the like.

Examples of compounds of formula (I) include those in which Ar is a bicyclic aromatic or heteroaromatic ring system and in which R¹ is other than pentafluoroethyl.

When R^1 represents an aryl C_{1-4} alkoxy, arylsulfonyl, arylsulfonyloxy, arylsulfonyl C_{1-4} alkyl, arylsulfonamido, arylcarboxamido, arylsulfonamido C_{1-4} alkyl, aroylcarboxamido C_{1-4} alkyl, aroyl, aroyl C_{1-4} alkyl, or aryl C_{1-4} alkanoyl group, the aryl moiety may be selected from an optionally substituted phenyl ring or an optionally substituted 5- or 6-membered heterocyclic ring. In the group R^1 an aryl moiety may be optionally substituted by one or more substituents selected from hydrogen, halogen, amino, cyano, C_{1-4} alkyl, C_{1-4} alkylamino, C_{1-4} dialkylamino, C_{1-4} alkylamido, C_{1-4} alkylamido, C_{1-4} alkanoyl, or R^5 R 6 NCO where each of R^5 and R^6 independently represents a hydrogen atom or C_{1-4} alkyl group.

A halogen atom present in the compounds of formula (I) may be fluorine, chlorine, bromine or iodine.

When q is 2, the substituents R^1 may be the same or different.

An optionally substituted 5- or 6-membered heterocyclic aromatic ring, as defined for any of the groups Ar, Ar¹, Ar² or Ar³ may contain from 1 to 4 heteroatoms selected from O, N or S. When the ring contains 2-4 heteroatoms, one is preferably selected from O, N and S and the remaining heteroatoms are preferably N. Examples of 5 and 6-membered heterocyclic groups include furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, pyridyl, triazolyl, triazinyl, pyridazyl, pyrimidinyl and pyrazolyl.

Examples of bicyclic, for example bicyclic aromatic or heteroaromatic, ring systems for Ar include naphthyl, indazolyl, indolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzimidazolyl, benzoxazolyl, benzisoxazolyl, benzisothiazolyl, quinolinyl, quinoxolinyl, quinazolinyl, cinnolinyl, isoquinolinyl, pyrazolo[1,5-a]pyrimidyl, pyrrolo[3,2-b]pyridyl, pyrrolo[3,2-c]pyridyl, thieno[3,2-b]thiophenyl, 1,2-dihydro-2-oxo-quinolinyl, 2,3-dihydro-3-oxo-4H-benzoxazinyl, 1,2-dihydro-2-oxo-3H-indolyl.

The rings Ar, Ar^1 , or Ar^2 may each independently be optionally substituted by one or more substituents selected from: a hydrogen or halogen atom, or a hydroxy, oxo, cyano, nitro, C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-4} alkylenedioxy, C_{1-4} alkylsulfonyl, C_{1-4} alkylsulfonyl, C_{1-4} alkylsulfinyl, C_{1-4} alkylsulfonyl, $C_$

 R^7R^8N -, R^7R^8N CO-, or $R^7CON(R^8)$ - group wherein each of R^7 and R^8 independently represents a hydrogen atom or a C_{1-4} alkyl group, or R^7R^8 together form a C_{3-6} alkylene chain.

Alternatively, Ar and Ar 2 may be optionally substituted by one or more 5- or 6-membered heterocyclic rings, as defined above, optionally substituted by a C_{1-2} alkyl or R^7R^8N - group; wherein R^7 and R^8 are as defined above.

In the rings Ar and Ar² substituents positioned *ortho* to one another may be linked to form a 5- or 6- membered ring.

5

10

15

20

25

30

35

40

It will be appreciated that for use in medicine the salts of formula (I) should be physiologically acceptable. Suitable physiologically acceptable salts will be apparent to those skilled in the art and include for example acid addition salts formed with inorganic acids eg. hydrochloric, hydrobromic, sulfuric, nitric or phosphoric acid; and organic acids eg. succinic, maleic, acetic, fumaric, citric, tartaric, benzoic, p-toluenesulfonic, methanesulfonic or naphthalenesulfonic acid. Other non-physiologically acceptable salts eg. oxalates, may be used, for example in the isolation of compounds of formula (I) and are included within the scope of this invention. Also included within the scope of the invention are solvates and hydrates of compounds of formula (I).

Certain of the compounds of formula (I) may form acid addition salts with one or more equivalents of the acid. The present invention includes within its scope all possible stoichiometric and non-stoichiometric forms.

The compounds of formula (I) can exist in the form of cis- and trans- isomers with respect to the configuration at the cyclohexyl ring. When A represents a group (c) the compounds may also exist as geometric isomers around the double bond. The present invention includes within its scope all such isomers, including mixtures. Preferably the compounds of the invention are in the trans configuration with respect to the cyclohexyl ring. For compounds of formula (I) where A represents a group (c), trans geometry of the double bond is preferred.

In compounds of formula (I), it is preferred that R^1 represents a substituent selected from: a halogen atom, methyl, cyano, trifluoromethyl, pentafluoroethyl, or trifluoromethoxy group. A cyano group, for example in the 6- or 7-position of the tetrahydroisoquinoline ring, is especially preferred. Preferably q is 1. R^2 is preferably a hydrogen atom.

The group A is preferably a group of formula (a) or (c). With regard to (a), preferred examples of Ar include optionally substituted indolyl, pyrazolo[1,5-a]pyrimidyl, cinnolinyl, quinolinyl, benzo[b]furanyl or pyrrolopyridyl. With regard to (c), preferred examples are optionally substituted phenyl groups.

It is also preferred that the rings Ar, Ar¹, or Ar² are each independently optionally substituted by one or more substituents selected from: a hydrogen or halogen atom, cyano, methoxy, methylenedioxy, acetyl, acetylamino, methylsulfonyl, methylsulfonyloxy, methylaminosulfonyl, methylsulfonylamino, or methylaminocarbonyl group.

Certain of the substituted heteroaromatic ring systems included in compounds of formula (I) may exist in one or more tautomeric forms. The present invention includes within its scope all such tautomeric forms, including mixtures.

Particular compounds according to the invention include those specifically exemplified and named hereinafter. Preferred compounds according to the present invention include the first-mentioned compounds in each of Examples 1-33, the compound of Example 19, namely trans-6-cyano-2-(2-(1-(4-(4-quinolinyl)-carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline, being especially preferred. These compounds may be in the form of their free base or physiologically acceptable salts thereof, particularly the monohydrochloride or monomesylate salts.

The present invention also provides a process for preparing compounds of formula (I) which process comprises:

(a) reacting a compound of formula (II):

$$(R^1)_q$$

Formula (II)

wherein R¹, R² and q are as hereinbefore defined, with a compound of formula (III):

15

20

25

5

10

A-COX

Formula (III)

wherein A is as hereinbefore defined and X is a halogen atom or the residue of an activated ester;

(b) to prepare a compound of formula (I) by reacting a compound of formula (II) with a compound A-Br, or A-I, or A-OSO₂CF₃ in the presence of carbon monoxide and a catalyst such as *trans-bis*-triphenylphosphinepalladium(II)bromide;

(c) to prepare a compound of formula (I) wherein R^1 is Ar^3 -Z and Z is a bond, reacting a compound of formula (IV):

$$(\mathsf{R}^{\mathsf{1a}})_{\mathsf{q}} = \bigcap_{\mathsf{N}} \mathsf{N}$$

30

Formula (IV)

wherein R^2 and A are as hereinbefore defined and one R^{1a} represents a group W wherein W is a halogen atom or a trifluoromethylsulfonyloxy group, or W is a group M selected from a boron derivative e.g. a boronic acid function $B(OH)_2$ or a metal function such as

trialkylstannyl e.g. $SnBu_3$, zinc halide or magnesium halide, and when q is 2 the other R^{1a} is R^1 ; with a compound Ar^3-W^1 , wherein W^1 is a halogen atom or a trifluoromethylsulfonyloxy group when W is a group M or W^1 is a group M when W is a halogen atom or a trifluoromethylsulfonyloxy group;

(d) to prepare a compound of formula (I) wherein R^1 is Ar^3 -Z and Z is O or S, reacting a compound of formula (V):

$$(R^{1b})_q$$

Formula (V)

10

15

20

25

30

5

wherein R^2 and A are as hereinbefore defined and one R^{1b} represents a group ZH and when q is 2 the other R^{1b} represents R^1 ; with a reagent serving to introduce the group Ar^3 ;

(e) to prepare a compound of formula (I) where Y is a bond, reaction of a compound of formula (VI):

Formula (VI)

wherein R^1 , R^2 , Ar^1 , W and q are as hereinbefore defined, with a compound Ar^2 -W¹, wherein W¹ is a halogen atom or a trifluoromethylsulfonyloxy group when W is a group M, or W¹ is a group M when W is a halogen atom or a trifluoromethylsulfonyloxy group.

(f) interconversion of one compound of formula (I) to a different compound of formula (I) e.g. (i) alkylation of a compound (I) wherein R^2 represents hydrogen, (ii) conversion of one R^1 from alkoxy (e.g.methoxy) to hydroxy, or (iii) conversion of R^1 from hydroxy to sulfonyloxy, eg alkylsulfonyloxy or trifluoromethanesulfonyloxy; (iv) conversion of a compound wherein Y represents S to a compound wherein Y is SO_2 or (v) conversion of Y from CO to CH_2 ;

(g) separation of *cis*- and *trans*- isomers of compounds of formula (I) by conventional methods, e.g. chromatography or crystallisation; and optionally thereafter forming a salt of formula (I).

Process (a) may be effected using conventional methods for the formation of an amide bond. When X is the residue of an activated ester this may be formed with e.g. a

carbodiimide such as 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The reaction may be carried out in a solvent such as dichloromethane.

Reaction of a compound of formula (IV) with Ar³W¹, according to process (c) or a compound of formula (VI) with Ar²-W¹ according to process (e) may be effected in the presence of a transition metal eg palladium catalyst such as bistriphenylphosphinepalladium dichloride or tetrakis-triphenylphosphinepalladium (0). When M represents a boronic acid function such as B(OH)₂the reaction may be carried out under basic conditions, for example using aqueous sodium carbonate in a suitable solvent such as dioxane. When M is trialkylstannyl the reaction may be carried out in an inert solvent, such as xylene or dioxane optionally in the presence of LiCl. When M is a zinc or magnesium halide the reaction may be effected in an aprotic solvent such as tetrahydrofuran. The substituent W is preferably a halogen atom such as bromine, or a sulfonyloxy group such as trifluoromethylsulfonyloxy; and W¹ is preferably a goup M, such as trialkylstannyl or B(OH)₂.

10

15

20

25

30

In process (d) the reagent serving to introduce the group Ar^3 is preferably a compound of formula Ar^3 -Hal, wherein Hal is a halogen atom. The reaction may be effected in the presence of a base, such as potassium carbonate, in a solvent such as dimethylformamide.

Interconversion reactions according to process (f) may be effected using methods well known in the art.

Compounds of formula (II) may be prepared by conversion of a compound of formula (VII), wherein R^{1} and q are as hereinbefore defined,

$$(R^1)_q$$

Formula (VII)

into a corresponding ketone, followed by reductive amination. This may be effected by methods well known in the art for (i) conversion of a ketal to a ketone in the presence of aqueous acid; followed by (ii) reductive amination of the ketone with R^2NH_2 or ammonium acetate in the presence of a reducing agent. Suitable reducing agents which may be employed include sodium borohydride, cyanoborohydride or triacetoxyborohydride under acidic conditions, or catalytic hydrogenation. The reaction may conveniently be effected in a solvent such as methanol, ethanol or dichloroethane.

A compound of formula (VII) may itself be prepared by reacting a compound of formula (VIII):

Formula (VIII)

wherein R¹ and q are as hereinbefore defined; with a compound of formula (IX):

Formula (IX)

in the presence of a reducing agent. Suitable reducing agents which may be employed include sodium borohydride, cyanoborohydride or triacetoxyborohydride under acidic conditions, or catalytic hydrogenation. The reaction may conveniently be effected in a solvent such as ethanol or dichloroethane.

The individual cis- and trans- isomers of a compound of formula (II) may be prepared starting from cis- or trans- 4-amino-cyclohexaneacetic acid (T.P. Johnson, et al., J. Med. Chem., 1997, (20), 279-290) followed by functional group interchange and/or protection using methods well known in the art, to give the individual cis- or trans- isomers of a compound of formula (X):

20

25

30

35

15

5

wherein R² is as hereinbefore defined, and P is a protecting group, for example trifluoroacetyl or *tert*-butoxycarbonyl. Subsequent reaction of a compound of formula (X) with a compound of formula (VIII) in the presence of a reducing agent as described above followed by deprotection using standard methodology gives the individual isomers of a compound of formula (II) wherein R² is as hereinbefore defined.

Compounds of formula (III) are known or may be prepared using standard procedures.

Compounds of formula (IV), (V) or (VI) may be prepared by processes analogous to (a), (b), (c) and (d) described above. Compounds Ar^2W^1 , Ar^3W^1 and Ar^3Hal are commercially available or may be prepared by standard methods. Compounds of formula (VIII) are known in the literature or may be prepared by known methods. The compound of formula (IX) is likewise known in the literature.

Compounds of formula (I) have been found to exhibit affinity for dopamine receptors, in particular the D₃ receptor, and are expected to be useful in the treatment of disease states which require modulation of such receptors, such as psychotic conditions. Compounds of formula (I) have also been found to have greater affinity for dopamine D₃

than for D_2 receptors. The therapeutic effect of currently available antipsychotic agents (neuroleptics) is generally believed to be exerted via blockade of D_2 receptors; however this mechanism is also thought to be responsible for undesirable extrapyramidal side effects (eps) associated with many neuroleptic agents. Without wishing to be bound by theory, it has been suggested that blockade of the recently characterised dopamine D_3 receptor may give rise to beneficial antipsychotic activity without significant eps. (see for example Sokoloff et al, Nature, 1990; 347: 146-151; and Schwartz et al, Clinical Neuropharmacology, Vol 16, No. 4, 295-314, 1993). Preferred compounds of the present invention are therefore those which have higher affinity for dopamine D_3 than dopamine D_2 receptors (such affinity can be measured using standard methodology for example using cloned dopamine receptors). Said compounds may advantageously be used as selective modulators of D_3 receptors.

10

15

20

25

30

35

40

We have found that certain compounds of formula (I) are dopamine D₃ receptor antagonists, others may be agonists or partial agonists. The functional activity of compounds of the invention (i.e. whether they are antagonists, agonists or partial agonists) can be readily determined using the test method described hereinafter, which does not require undue experimentation. D₃ antagonists are of potential use as antipsychotic agents for example in the treatment of schizophrenia, schizo-affective disorders, psychotic depression, mania, paranoid and delusional disorders. Conditions which may be treated by dopamine D₃ receptor agonists include dyskinetic disorders such as Parkinson's disease, neuroleptic-induced parkinsonism and tardive dyskinesias; depression; anxiety, memory disorders, sexual dysfunction and drug (eg. cocaine) dependency.

In a further aspect therefore the present invention provides a method of treating conditions which require modulation of dopamine D₃ receptors, for example psychoses such as schizophrenia, which comprises administering to a subject in need thereof an effective amount of a compound of formula (I) or a physiologically acceptable salt thereof.

The invention also provides the use of a compound of formula (I) or a physiologically acceptable salt thereof in the manufacture of a medicament for the treatment of conditions which require modulation of dopamine D₃ receptors, for example psychoses such as schizophrenia.

A preferred use for D₃ antagonists according to the present invention is in the treatment of psychoses such as schizophrenia.

A preferred use for D₃ agonists according to the present invention is in the treatment of dyskinetic disorders such as Parkinson's disease.

For use in medicine, the compounds of the present invention are usually administered as a standard pharmaceutical composition. The present invention therefore provides in a further aspect pharmaceutical compositions comprising a novel compound of formula (I) or a physiologically acceptable salt thereof and a physiologically acceptable carrier.

The compounds of formula (I) may be administered by any convenient method, for example by oral, parenteral, buccal, sublingual, nasal, rectal or transdermal administration and the pharmaceutical compositions adapted accordingly.

The compounds of formula (I) and their physiologically acceptable salts which are active when given orally can be formulated as liquids or solids, for example syrups, suspensions or emulsions, tablets, capsules and lozenges.

A liquid formulation will generally consist of a suspension or solution of the compound or physiologically acceptable salt in a suitable liquid carrier(s) for example an aqueous solvent such as water, ethanol or glycerine, or a non-aqueous solvent, such as polyethylene glycol or an oil. The formulation may also contain a suspending agent, preservative, flavouring or colouring agent.

5

10

15

20

25

30

35

40

A composition in the form of a tablet can be prepared using any suitable pharmaceutical carrier(s) routinely used for preparing solid formulations. Examples of such carriers include magnesium stearate, starch, lactose, sucrose and cellulose.

A composition in the form of a capsule can be prepared using routine encapsulation procedures. For example, pellets containing the active ingredient can be prepared using standard carriers and then filled into a hard gelatin capsule; alternatively, a dispersion or suspension can be prepared using any suitable pharmaceutical carrier(s), for example aqueous gums, celluloses, silicates or oils and the dispersion or suspension then filled into a soft gelatin capsule.

Typical parenteral compositions consist of a solution or suspension of the compound or physiologically acceptable salt in a sterile aqueous carrier or parenterally acceptable oil, for example polyethylene glycol, polyvinyl pyrrolidone, lecithin, arachis oil or sesame oil. Alternatively, the solution can be lyophilised and then reconstituted with a suitable solvent just prior to administration.

Compositions for nasal administration may conveniently be formulated as aerosols, drops, gels and powders. Aerosol formulations typically comprise a solution or fine suspension of the active substance in a physiologically acceptable aqueous or non-aqueous solvent and are usually presented in single or multidose quantities in sterile form in a sealed container, which can take the form of a cartridge or refill for use with an atomising device. Alternatively the sealed container may be a unitary dispensing device such as a single dose nasal inhaler or an aerosol dispenser fitted with a metering valve which is intended for disposal once the contents of the container have been exhausted. Where the dosage form comprises an aerosol dispenser, it will contain a propellant which can be a compressed gas such as compressed air or an organic propellant such as a fluorochlorohydrocarbon. The aerosol dosage forms can also take the form of a pumpatomiser.

Compositions suitable for buccal or sublingual administration include tablets, lozenges and pastilles, wherein the active ingredient is formulated with a carrier such as sugar and acacia, tragacanth, or gelatin and glycerin.

Compositions for rectal administration are conveniently in the form of suppositories containing a conventional suppository base such as cocoa butter.

Compositions suitable for transdermal administration include ointments, gels and patches.

Preferably the composition is in unit dose form such as a tablet, capsule or ampoule.

Each dosage unit for oral administration contains preferably from 1 to 250 mg (and for parenteral administration contains preferably from 0.1 to 25 mg) of a compound of the formula (I) or a physiologically acceptable salt thereof calculated as the free base.

The physiologically acceptable compounds of the invention will normally be administered in a daily dosage regimen (for an adult patient) of, for example, an oral dose of between 1 mg and 500 mg, preferably between 10 mg and 400 mg,e.g. between 10 and 250 mg or an intravenous, subcutaneous, or intramuscular dose of between 0.1 mg and 100 mg, preferably between 0.1 mg and 50 mg, e.g. between 1 and 25 mg of the compound of the formula (I) or a physiologically acceptable salt thereof calculated as the free base, the compound being administered 1 to 4 times per day. Suitably the compounds will be administered for a period of continuous therapy, for example for a week or more.

15 Biological Test Methods

5

10

20

25

The ability of the compounds to bind selectively to human D_3 dopamine receptors can be demonstrated by measuring their binding to cloned receptors. The inhibition constants (K_i) of test compounds for displacement of $[^{125}I]$ iodosulpride binding to human D_3 dopamine receptors expressed in CHO cells were determined as follows. The cell lines were shown to be free from bacterial, fungal and mycoplasmal contaminants, and stocks of each were stored frozen in liquid nitrogen. Cultures were grown as monolayers or in suspension in standard cell culture media. Cells were recovered by scraping (from monolayers) or by centrifugation (from suspension cultures), and were washed two or three times by suspension in phosphate buffered saline followed by collection by centrifugation. Cell pellets were stored frozen at -40°C. Crude cell membranes were prepared by homogenisation followed by high-speed centrifugation, and characterisation of cloned receptors achieved by radioligand binding.

Preparation of CHO cell membranes

Cell pellets were gently thawed at room temperature, and resuspended in about 20 volumes of ice-cold 50 mM Tris salts (pH 7.4 @ 37°C), 20mM EDTA, 0.2 M sucrose. The suspension was homogenised using an Ultra-Turrax at full speed for 15 sec. The homogenate was centrifuged at 18,000 r.p.m for 20 min at 4°C in a Sorvall RC5C centrifuge. The membrane pellet was resuspended in ice-cold 50 mM Tris salts (pH 7.4 @ 37°C), using an Ultra-Turrax, and recentrifuged at 18,000 r.p.m for 15 min at 4°C in a Sorvall RC5C. The membranes were washed two more times with ice-cold 50 mM Tris salts (pH 7.4 @ 37°C). The final pellet was resuspended in 50 mM Tris salts (pH 7.4 @ 37°C), and the protein content determined using bovine serum albumin as a standard (Bradford, M. M. (1976) Anal. Biochem. 72, 248-254).

Binding experiments on cloned dopamine receptors

Crude cell membranes were incubated with 0.1 nM [125I] iodosulpride (~2000 Ci/mmol; Amersham, U. K.), and the test compound in a buffer containing 50 mM Tris salts (pH 7.4 @ 37°C), 120 mM NaCl, 5 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂, 0.1% (w/v) bovine

serum albumin, in a total volume of 1 ml for 30 min at 37°C. Following incubation, samples were filtered using a Brandel Cell Harvester, and washed three times with ice-cold 50 mM Tris salts (pH 7.4 @ 37°C), 120 mM NaCl, 5 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂. The radioactivity on the filters was measured using a Cobra gamma counter (Canberra Packard). Non-specific binding was defined as the radioligand binding remaining after incubation in the presence of 100 µM iodosulpride. For competition curves, 14 concentrations (half-log dilutions) of competing cold drug were used. Competition curves were analysed simultaneously whenever possible using non-linear least-squares fitting procedures, capable of fitting one, two or three site models.

10

5

Compounds of Examples tested according to this method had pKi values in the range 7.0 - 9.1 at the human cloned dopamine D₃ receptor.

Functional Activity at cloned dopamine receptors

The functional activity of compounds at human D2 and human D3 receptors (ie agonism 15 or antagonism) may be determined using a Cytosensor Microphysiometer (McConnell HM et al Science 1992 257 1906-1912) In Microphysiometer experiments, cells (hD2_CHO or hD3_CHO) were seeded into 12mm Transwell inserts (Costar) at 300000 cells/cup in foetal calf serum (FCS)-containing medium. The cells were incubated for 6h at 37°C in 5%CO₂, before changing to FCS-free medium. After a further 16-18h, cups 20 were loaded into the sensor chambers of the Cytosensor Microphysiometer (Molecular Devices) and the chambers perfused with running medium (bicarbonate-free Dulbecco's modified Eagles medium containing 2 mM glutamine and 44 mM NaCl) at a flow rate of 100 ul/min. Each pump cycle lasted 90s. The pump was on for the first 60s and the 25 acidification rate determined between 68 and 88s, using the Cytosoft programme. Test compounds were diluted in running medium. In experiments to determine agonist activity, cells were exposed (4.5 min for hD2, 7.5 min for hD3) to increasing concentrations of putative agonist at half hour intervals. Seven concentrations of the putative agonist were used. Peak acidification rate to each putative agonist concentration 30 was determined and concentration-response curves fitted using Robofit [Tilford, N.S., Bowen, W.P. & Baxter, G.S. Br. J. Pharmacol. (1995) in press]. In experiments to determine antagonist potency, cells were treated at 30 min intervals with five pulses of a submaximal concentration of quinpirole (100 nM for hD2 cells, 30 nM for hD3 cells), before exposure to the lowest concentration of putative antagonist. At the end of the next 35 30 min interval, cells were pulsed again with quinpirole (in the continued presence of the antagonist) before exposure to the next highest antagonist concentration. In all, five concentrations of antagonist were used in each experiment. Peak acidification rate to each agonist concentration was determined and concentration-inhibition curves fitted using Robofit.

40

Compounds of Examples tested according to this method were shown to be antagonists with pKb values within the range 7.0 - 10.0 at the human cloned dopamine D₃ receptor.

Pharmaceutical Formulations

The following represent typical pharmaceutical formulations according to the present invention, which may be prepared using standard methods.

IV Infusion

5	Compound of formula (I)	1-40 mg	
	Buffer	to pH ca 7	
	Solvent/complexing agent	to 100 ml	

Bolus Injection

	Compound of formula (I)	1-40 mg	
10	Buffer	to pH ca 7	
	Co-Solvent	to 5 ml	

Buffer: Suitable buffers include citrate, phosphate, sodium hydroxide/hydrochloric

acid.

15

Solvent: Typically water but may also include cyclodextrins (1-100 mg) and co-solvents such as propylene glycol, polyethylene glycol and alcohol.

Tablet

	Compound	1 - 40 mg
20	Diluent/Filler *	50 - 250 mg
	Binder	5 - 25 mg
	Disentegrant *	5 - 50 mg
	Lubricant	1 - 5 mg
	Cyclodextrin	1 - 100 mg

25

Diluent: e.g. Microcrystalline cellulose, lactose, starch

Binder: e.g. Polyvinylpyrrolidone, hydroxypropymethylcellulose

30 Disintegrant: e.g. Sodium starch glycollate, crospovidone

Lubricant: e.g. Magnesium stearate, sodium stearyl fumarate.

Oral Suspension

	Compound	1 - 40 mg
35	Suspending Agent	0.1 - 10 mg
-	Diluent	20 - 60 mg
	Preservative	0.01 - 1.0 mg
	Buffer	to pH ca 5 - 8
	Co-solvent	0 - 40 mg
40	Flavour	0.01 - 1.0 mg
	Colourant	0.001 - 0.1 mg

^{*} may also include cyclodextrins

Suspending agent :e.g. Xanthan gum, microcrystalline cellulose

Diluent:

e.g. sorbitol solution, typically water

Preservative:

e.g. sodium benzoate

5 Buffer:

e.g. citrate

Co-solvent:

e.g. alcohol, propylene glycol, polyethylene glycol, cyclodextrin

The invention is further illustrated by the following non-limiting examples:

10 Description 1

7-Bromo-1,2,3,4-tetrahydroisoquinoline

A mixture of 7-bromo-2-trifluoroacetyl-1,2,3,4-tetrahydoisoquinoline (G.E. Stokker, Tetrahedron Letters 1996, 37, 5453) (43.4g, 0.14 mol), potassium carbonate (104.3g, 0.75 mol), methanol (1L) and water (150ml) was heated at reflux for 1h, then cooled and evaporated in vacuo. Residue was partitioned between water (1L) and dichloromethane (4 x 200ml). Combined extracts were dried (Na,SO₄) and evaporated in vacuo to give an oil which was dissolved in hexane. The mixture was filtered and the filtrate evaporated in vacuo to give the title compound as an oil (17.7g, 60%).

¹H NMR (CDCl₃) δ: 1.77 (1H, br s), 2.73 (2H, t, J = 7 Hz), 3.13 (2H, t, J = 7 Hz), 3.98 (2H, s), 6.96 (1H, d, J = 9 Hz), 7.16 (1H, d, J = 2 Hz), 7.26 (1H, dd, J = 9, 2 Hz).

The following compounds were prepared in a similar manner to Description 1

30

(a) 7-Cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 159 (MH*). C₁₀H₁₀N₂ requires 158.

35 (b) 5-Trifluoromethyl-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 202 (MH*). C₁₀H₁₀F₃N requires 201.

(c) 5-Pentafluoroethyl-1,2,3,4-tetrahydroisoquinoline

40

Mass spectrum (API*): Found 252 (MH*). $C_{11}H_{10}F_5N$ requires 251.

(d) 6-Pentafluoroethyl-1,2,3,4-tetrahydroisoguinoline

Mass spectrum (API'): Found 252 (MH'). C₁₁H₁₀F₅N requires 251

(e) 5,6-Difluoro-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API'): Found 170 (MH'). C₀H₀F₂N requires 169.

Description 2

10 7-Cyano-2-trifluoroacetyl-1,2,3,4-tetrahydroisoquinoline

A mixture of 7-bromo-2- trifluoroacetyl -1,2,3,4-tetrahydroisoquinoline (51.7 g, 0.168 mol), copper (I) cyanide (31.8 g, 0.35 mol) and N-methyl-2-pyrrolidinone (620 ml) was heated at reflux for 4h, cooled, then partitioned between dilute aqueous ammonia (1.5 L) and dichloromethane (5 x 300ml). The combined organic extracts were dried (Na₂SO₄) and evaporated *in vacuo* to give the title compound (42.6 g, 100 %) as an oil.

Mass spectrum (API): Found 253 (M-H). C,,H,F,N,O requires 254.

20

15

5

Description 3

2-(8-(1,4-Dioxa)spiro[4.5]decyl)acetaldehyde

- A solution of 8-(2-hydroxyethyl)-1,4-dioxaspiro[4.5]decane (20.7g, 111 mmol) (M.A. Ciufolini, N.E. Byrne, J. Am. Chem. Soc. 113, 8016 (1991)) in dimethylsulfoxide (800ml) was treated with triethylamine (150ml), followed by sulfur trioxide pyridine complex (56.2g, 350 mmol). The resulting mixture was stirred at room temperature for 0.5h, and saturated sodium bicarbonate (1L) was added with stirring. The resultant mixture was extracted with dichloromethane (3x1.5L) and the combined extracts were dried (Na₂SO₄) and evaporated in vacuo to give a yellow oil which was purified by chromatography on silica gel (~300g) with 0-15% ethyl acetate in hexane gradient elution to give the title compound as a yellow oil (17.68g, 87%).
- 35 Mass spectrum (API*): Found 185 (MH*). C₁₀H₁₆O₄ requires 184.

¹H NMR (CDCl₃) δ : 1.34 (2H, m), 1.58 (2H, m), 1.75 (4H, m), 1.96 (1H, m), 2.37 (2H, dd, J = 7, 2 Hz), 3.94 (4H, s), 9.87 (1H, t, J = 2 Hz).

40 Description 4

8-(2-(7-Cyano-1,2,3,4-tetrahydro)isoquinolyl)ethyl)-1,4-dioxaspiro[4.5]decane

A mixture of 2-(8-(1,4-dioxa)spiro[4.5]decyl)acetaldehyde (3.9g. 21.2 mmol), 7-cyano-1,2,3,4-tetrahdyroisoquinoline (3.35g, 21.2 mmol), sodium triacetoxyborohydride (6.8g, 32.1 mmol) and 1,2-dichloroethane (200ml) was stirred at room temperature for 16h. The reaction mixture was partitioned between dichloromethane (200ml), and saturated potassium carbonate (400ml). The organic extract was washed with brine (200ml), dried (Na₂SO₄) and evaporated in vacuo to give an oil, which was purified by filtration through silica gel (~100g) in ethyl acetate to give the title compound as an orange oil (6.11g, 88%).

10 Mass spectrum (API'): Found 327 (MH'). C₂₀H₂₆N₂O₂ requires 326.

¹H NMR (CDCl₃) δ : 1.35 (3H, m), 1.53 (4H, m), 1.72 (4H, m), 2.52 (2H, m), 2.73 (2H, t, J = 7 Hz), 2.94 (2H, m), 3.60 (2H, s), 3.93 (4H, s), 7.18 (1H, d, J = 9 Hz), 7.33 (1H, s), 7.41 (1H, d, J = 9 Hz).

Description 5

7-Cyano-2-(2-(1-(4-oxo)cyclohexyl)ethyl-1,2,3,4-tetrahydroisoguinoline

8-(2-(7-cyano-1,2,3,4-tetrahydro)isoquinolyl)ethyl)-1,4-dioxaspiro[4.5]decane (5.9g, 18.1 mmol) was dissolved in a mixture of tetrahydrofuran (600ml), and water (600ml), then concentrated sulfuric acid (2.65g, 27 mmol) was added and the mixture was stirred at room temperature for 66h. The reaction mixture was evaporated *in vacuo* and the residues partitioned between ethyl acetate (1L) and saturated potassium carbonate (400ml). The organic extract was dried (Na₂SO₄) and evaporated *in vacuo* to give the title compound as a brown oil (5.1g, 100%).

Mass spectrum (API'): Found 283 (MH'). C₁₈H₂₇N₂O requires 282.

¹H NMR (CDCl₃) δ: 1.44 (2H, m), 1.62 (2H, m), 1.85 (1H, m), 2.11 (3H, m), 2.38 (3H, m), 2.61 (2H, m), 2.78 (2H, m), 2.96 (2H, m), 3.64 (2H, s), 7.21 (1H, d, J = 9 Hz), 7.34 (1H, s), 7.43 (1H, d, J = 9 Hz).

Description 6

35

cis and trans-2-(2-(1-(4-Amino)cyclohexyl)ethyl-7-cyano-1,2,3,4-tetrahydroisoquinoline

A mixture of 7-cyano-2-(2-(1-(4-oxo)cyclohexyl)ethyl-1,2,3,4-tetrahydroisoquinoline (4.5g, 15.9 mmol), ammonium acetate (12.5g, 158 mmol) sodium cyanoborohydride (6.9g, 110 mmol) and methanol (225ml) was heated at reflux for 1h, then cooled and acidified to pH2 with 5N hydrochloric acid. The mixture was then basified using 2M sodium hydroxide and extracted with dichloromethane (2x400ml). Combined extracts

were dried (Na₂SO₄) and evaporated in vacuo to give the title compound as a brown oil (4.12g, 92%).

Mass spectrum (API*): Found 284 (MH*). C_{1x}H_{2x}N, requires 283

5

¹H NMR (CDCl₃) δ : 0.92 - 1.19 (3H, m), 1.26 (1H, m), 1.46 - 1.65 (5H, m), 1.72 - 2.03 (5H, m), 2.53 (2H, m), 2.72 (2H, m), 2.94 (2H, t, J = 7 Hz), 3.60 (2H, s), 7.18 (1H, d, J = 8 Hz), 7.32 (1H, s), 7.41 (1H, d, J = 8 Hz).

10 Description 7

6-Cyano-1,2,3,4-tetrahydroisoquinoline

Prepared in a similar manner to that described in H.G. Selnick *et al.*, Synthetic Communications **25** (20) 3255 (1995).

Mass spectrum (API*): Found 159 (MH*). C₁₀H₁₀N₂ requires 158.

¹H NMR (CDCl₃) δ : 2.47 (1H, br s), 2.82 (2H, m), 3.15 (2H, m), 4.05 (2H, s), 7.10 (1H, d, J = 8 Hz), 7.40 (2H, m).

The following compound was prepared in a similar manner to Description 7

(a) 2-t-Butyloxycarbonyl-8-cyano-1,2,3,4-tetrahydroisoquinoline

25

¹H NMR (CDCl₃) δ : 1.51 (9H, s), 2.87 (2H, m), 3.68 (2H, m), 4.76 (2H, s), 7.26 (1H, m), 7.37 (1H, d, J = 7 Hz), 7.52 (1H, d, J = 7 Hz).

Description 8

30

35

40

trans-2-(1-(4-(N-tert-Butyloxycarbonyl)amino)cyclohexyl)acetic acid, methyl ester

A mixture of *trans*-(4-amino)cyclohexylactic acid hydrogen sulfate (T.P. Johnston *et al*; J. Med Chem., 1977, 20 (2), 279-290), (27.0g, 106mmol), conc. H₂SO₄ (3ml), and methanol (300ml) was stirred at reflux for 5h. Resulting solution was filtered and the filtrate evaporated *in vacuo* to give a brown oil (36g). A mixture of this material, triethylamine (36ml; 26.1g, 259 mmol), dichloromethane (600ml) and di-t-butyl dicarbonate (25.5g, 117mmol) was stirred at 20°C for 18h. Resulting solution was partitioned between saturated aqueous NaHCO₃ (500ml) and dichloromethane (3x200ml), and the combined extracts were dried (Na₂SO₄) and evaporated *in vacuo* to give the title compound (24.6g, 86%) as a colourless solid.

¹H NMR (CDCl₃) δ : 1.08 (4H, m), 1.43 (9H, s), 1.76 (3H, m), 2.00 (2H, m), 2.20 (2H, d, J = 7 Hz), 3.37 (1H, m), 3.66 (3H, s), 4.39 (1H, br s).

Description 9

5

trans-2-(1-(4-(N-tert-Butyloxycarbonyl)amino)cyclohexyl)acetaldehyde

To a stirred solution of trans-2-(1-(4-(N-tert-butyloxycarbonyl)amino)cyclohexyl)acetic acid, methyl ester (46.0g, 170 mmol) in dry toluene (920ml) at -78°C under argon was added a solution of di-isobutylaluminium hydride (1M; 285 ml; 285 mmol), dropwise over 0.5h. Resulting solution was stirred for a further 0.3h and quenched with a mixture of methanol (28ml) in toluene (50ml) and then poured into saturated aqueous potassium sodium tartrate (1.2L). The resultant mixture was extracted with ether (4x1L). The combined organic extracts were dried (Na₂SO₄) and evaporated in vacuo to give a waxy solid which was purified using silica gel, eluting with 10-50% ethyl acetate/hexane to give the title compound (21.77g, 53%) as a colourless solid.

¹H NMR (CDCl₃) δ : 1.12 (4H, m), 1.44 (9H, s), 1.78 (3H, m), 2.00 (2H, m), 2.33 (2H, dd, J = 7, 2 Hz), 3.37 (1H, m), 4.40 (1H, m), 9.75 (1H, m).

20

Description 10

trans-2-(2-(1-(4-(N-tert-Butyloxycarbonyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline

25

30

A mixture of *trans*-2-(1-(4-(*N*-*tert*-butyloxycarbonyl)amino)cyclohexyl)acetaldehyde (6.0g, 24.9 mmol), 6-cyano-1,2,3,4-tetrahydroisoquinoline (3.93g, 24.9 mmol), sodium triacetoxyborohydride (7.7g, 36.3 mmol) in 1,2-dichloroethane (270ml) was stirred at 20°C for 16h. Resulting solution was partitioned between aqueous K₂CO₃ (200ml) and dichloromethane (100ml), and the combined extracts were washed with brine (200ml), dried (Na₂SO₄) and evaporated *in vacuo* to a minimum volume and filtered through a pad of silica (100g), washing with ethyl acetate. The filtrate was evaporated *in vacuo* to give the title compound (8.33g, 87%) as a yellow solid.

35 H NMR (CDCl₃) δ: 1.08 (4H, m), 1.28 (1H, m), 1.44 (9H, s), 1.48 (2H, m), 1.78 (2H, m), 1.99 (2H, m), 2.52 (2H, m), 2.72 (2H, t, J = 7 Hz), 2.91 (2H, m), 3.37 (1H, m), 3.63 (2H, m), 4.40 (1H, m), 7.12 (1H, d, J = 8 Hz), 7.39 (2H, m).

The following compounds were prepared in a similar manner to Description 10.

40

(a) trans-2-(2-(1-(4-(N-tert-Butyloxycarbonyl)amino)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline

¹H NMR (CDCl₃) δ : 1.06 (4H, m), 1.28 (1H, m), 1.44 (9H, s), 1.47 (2H, m), 1.77 (2H, m), 1.99 (2H, m), 2.52 (2H, m), 2.72 (2H, t, J = 7 Hz), 2.94 (2H, m), 3.37 (1H, m), 3.60 (2H, s), 4.37 (1H, m), 7.18 (1H, d, J = 8 Hz), 7.32 (1H, s), 7.39 (1H, d, J = 8 Hz).

5 (b) trans-2-(2-(1-(4-(N-tert-Butyloxycarbonyl)amino)cyclohexyl)ethyl)-5-cyano-1,2,3,4-tetrahydroisoquinoline

10

- ¹H NMR (CDCl₃) δ: 1.07 (4H, m), 1.28 (1H, m), 1.45 (9H, s), 1.49 (2H, m), 1.71 (2H, m), 2.01 (2H, m), 2.55 (2H, m), 2.78 (2H, t, J = 7 Hz), 3.07 (2H, t, J = 7 Hz), 3.38 (1H, m), 3.62 (2H, s), 4.39 (1H, m), 7.23 (2H, m), 7.49 (1H, dd, J = 9, 2 Hz).
- (c) trans-2-(2-(1-(4-N-tert-Butyloxycarbonyl)methylamino)cyclohexyl)ethyl-7-cyano-1,2,3,4-tetrahydroisoquinoline
- 15 H NMR (CDCl₃) δ: 1.10 (2H, m), 1.25 (1H, m), 1.40 (2H, m), 1.46 (9H, s), 1.50 (2H, m), 1.68 (2H, m), 1.84 (2H, m), 2.54 (2H, m), 2.73 (5H, m), 2.95 (2H, m), 3.59 (2H, s), 3.90 (1H, m), 7.18 (1H, d, J = 9 Hz), 7.31 (1H, d, J = 1Hz), 7.40 (1H, dd, J = 9, 1 Hz).
- (d) *trans*-6-Bromo-2-(2-(1-(4-*N tert*-Butyloxycarbonyl)amino)cyclohexyl)ethyl-20 1,2,3,4-tetrahydroisoquinoline
 - Mass Spectrum (API+): Found 437 (MH+). C₂₂H₃₃⁷⁹BrN₂O₂ requires 436.
- (e) trans-2-(2-(1-(4-N-tert-Butyloxycarbonyl)amino)cyclohexyl)ethyl-6trifluoromethyl-1,2,3,4-tetrahydroisoquinoline
 - Mass Spectrum (API+): Found 427 (MH+). $C_{23}H_{33}F_3N_2O_2$ requires 426.
- (f) trans-2-(2-(1-(4-N-tert-butyloxycarbonyl)amino)cyclohexyl)ethyl-6trifluoromethoxy-1,2,3,4-tetrahydroisoquinoline
 - Mass Spectrum (API+): Found 443 (MH+). C₂₃H₃₃F₃N₂O₃ requires 442.
- (g) trans-2-(2-(1-(4-(N-t-Butyloxycarbonyl)amino)cyclohexyl)ethyl)-7-cyano-5methyl-1,2,3,4-tetrahydroisoquinoline
 - Mass spectrum (API*): Found 398 (MH*). C₂₄H₃₅N₃O₂ requires 397.
- (h) *trans*-2-(2-(1-(4-(*N-t*-Butyloxycarbonyl)amino)cyclohexyl)ethyl)-7-cyano-6methyl-1,2,3,4-tetrahydroisoquinoline
 - Mass spectrum (API*): Found 398 (MH*). C₂₄H₃₅N₃O₂ requires 397.

- (i) trans-2-(2-(1-(4-(N-t-Butyloxycarbonyl)amino)cyclohexyl)ethyl)-6-trifluoromethyl-1,2,3,4-tetrahydroisoquinoline
- Mass spectrum (API*): Found 427 (MH*). C₂₁H₃₁F₃N₂O₂ requires 426.
- (j) *trans*-2-(2-(1-(4-(*N*-*t*-Butyloxycarbonyl)amino)cyclohexyl)ethyl)-6-trifluoromethoxy-1,2,3,4-tetrahydroisoquinoline
- Mass spectrum (API*): Found 443 (MH*). C₂₁H₃₁F₃N₂O₃ requires 442.
- (k) trans-2-(2-(1-(4-(N-t-Butyloxycarbonyl)amino)cyclohexyl)ethyl)-5-trifluoromethyl-1,2,3,4-tetrahydroisoquinoline
- Mass spectrum (API*): Found 427 (MH*). C₂₂H₃₃F₃N₂O₂ requires 426.
- (l) trans-2-(2-(1-(4-(N-t-Butyloxycarbonyl)amino)cyclohexyl)ethyl)-5-pentafluoroethyl-1,2,3,4-tetrahydroisoquinoline
- Mass spectrum (API*): Found 477 (MH*). C₂₄H₁₁F₅N₂O₂, requires 476.
 - (m) trans-2-(2-(1-(4-(N-t-Butyloxycarbonyl)amino)cyclohexyl)ethyl)-6-pentafluoroethyl-1,2,3,4-tetrahydroisoquinoline
 - Mass spectrum (API*): Found 477 (MH*). $C_{12}H_{33}F_{5}N_{2}O_{2}$ requires 476.
 - (n) trans-2-(2-(1-(4-(N-t-Butyloxycarbonyl)amino)cyclohexyl)ethyl)-8-cyano-1,2,3,4-tetrahydroisoquinoline
- Mass spectrum (API*): Found 384 (MH*). C₂₁H₃₃N₃O₂ requires 383.
- ¹H NMR (CDCl₃) δ: 1.00 1.60 (16H, m), 1.69 2.10 (4H, m), 2.54 2.61 (2H, m), 2.72 (2H, m), 2.92 (2H, m), 3.37 (1H, br s), 3.77 (2H, s), 4.38 (1H, br s), 7.21 (1H, t, J = 7 Hz), 7.33 (1H, d, J = 7 Hz), 7.45 (1H, d, J = 7 Hz).
- 35 (o) *trans-2-*(2-(1-(4-(*N-t*-Butyloxycarbonyl)amino)cyclohexyl)ethyl-5,6-difluoro-1,2,3,4-tetrahydroisoquinoline
 - Mass spectrum (API*): Found 395 (MH*). C₂₂H₃₂F₂N₂O₂ requires 394.
- 40 Description 11

5

10

15

20

25

30

trans-2-(2-(1-(4-Amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline

A mixture of trans-2-(2-(1-(4-(N-tert-butyloxycarbonyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline (8.3g, 21.7 mmol), trifluoroacetic acid (15ml) and dichloromethane (180ml) was stirred at 20°C for 2h. Resulting solution was evaporated in vacuo and the residue partitioned between saturated aqueous K₂CO₃ (200ml) and dichloromethane (2x100ml). The combined organic extracts were washed with brine (100ml), dried (Na₂SO₄) and evaporated in vacuo to give the title compound (4.99g, 81%) as a brown oil.

Mass spectrum (API*): Found 284 (MH*). C₁₈H₂₅N₃ requires 283.

5

10

20

35

40

¹H NMR (CDCl₃) δ: 0.91 - 1.16 (4H, m), 1.22 - 1.40 (3H, m), 1.47 (2H, m), 1.72 - 1.91 (4H, m), 2.52 (2H, m), 2.59 (1H, m), 2.72 (2H, t, J = 7 Hz), 2.92 (2H, m), 3.64 (2H, s), 7.11 (1H, d, J = 8 Hz), 7.39 (2H, m).

- 15 The following compounds were prepared in a similar manner to Description 11
 - (a) trans-2-(2-(1-(4-Amino)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 284 (MH*). C₁₈H₂₅N₃ requires 283.

¹H NMR (CDCl₃) δ: 0.91 - 1.16 (4H, m), 1.18 - 1.40 (3H, m), 1.47 (2H, m), 1.73 - 1.92 (4H, m), 2.53 (2H, m), 2.62 (1H, m), 2.72 (2H, t, J = 7 Hz), 2.94 (2H, m), 3.60 (2H, s), 7.19 (1H, d, J = 8 Hz), 7.32 (1H, s), 7.41 (1H, d, J = 8 Hz).

25 (b) trans-2-(2-(1-(4-Amino)cyclohexyl)ethyl)-5-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 284 (MH*). C₁₈H₂₆N₃ requires 283.

¹H NMR (CDCl₃) δ: 0.92 - 1.18 (4H, m), 1.28 (1H, m), 1.50 (4H, m), 1.84 (4H, m), 30 2.48 - 2.70 (3H, m), 2.79 (2H, t, J = 7 Hz), 3.06 (2H, t, J = 7 Hz), 3.64 (2H, m), 7.24 (2H, m), 7.49 (1H, dd, J = 9, 2 Hz).

(c) trans-7-Cyano-2-(2-(1-(4-methylamino)cyclohexyl)ethyl)1,2,3,4-tetrahydroisoguinoline

Mass spectrum (API*): Found 298 (MH*). C₁₉H₂₇N₃ requires 297.

(d) trans-2-(2-(1-(4-Amino)cyclohexyl)ethyl)-6-bromo-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 337 (MH*). C₁₇H₂₅⁷⁹BrN, requires 336.

(e) trans-2-(2-(1-(4-Amino)cyclohexyl)ethyl)-6-trifluoromethyl-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 327 (MH*). C₁₈H₂₅F₃N₂ requires 326.

(f) trans-2-(2-(1-(4-Amino)cyclohexyl)ethyl)-6-trifluoromethoxy-1,2,3,4tetrahydroisoquinoline

Mass spectrum (API*): Found 343 (MH*). C₁₈H₂₅F₃N₂O requires 342.

(g) trans-2-(2-(1-(4-Amino)cyclohexyl)ethyl)-7-cyano-5-methyl-1,2,3,4tetrahydroisoquinoline

Mass spectrum (API*): Found 298 (MH*). C₁₉H₂₇N, requires 297.

(h) trans-2-(2-(1-(4-Amino)cyclohexyl)ethyl)-7-cyano-6-methyl-1,2,3,4tetrahydroisoquinoline

Mass spectrum (API*): Found 298 (MH*). C₁₉H₂₇N₃ requires 297.

(i) trans-2-(2-(1-(4-Amino)cyclohexyl)ethyl)-6-trifluoromethyl-1,2,3,4-20 tetrahydroisoquinoline

Mass spectrum (API*): Found 327 (MH*). C₁₈H₂₅F₃N₂ requires 326.

(j) trans-2-(2-(1-(4-Amino)cyclohexyl)ethyl)-6-trifluoromethoxy-1,2,3,4tetrahydroisoquinoline

Mass spectrum (API*): Found 343 (MH*). C₁₈H₂₅F₃N₂O requires 342.

(k) trans-2-(2-(1-(4-Amino)cyclohexyl)ethyl)-5-trifluoromethyl-1,2,3,4tetrahydroisoquinoline

Mass spectrum (API*): Found 327 (MH*). C₁₈H₂₅F₃N₂ requires 326.

(l) trans-2-(2-(1-(4-Amino)cyclohexyl)ethyl)-5-pentafluoroethyl-1,2,3,4tetrahydroisoquinoline

Mass spectrum (API*): Found 377 (MH*). C₁₉H₂₅F₅N₂ requires 376.

(m) *trans-2-*(2-(1-(4-Amino)cyclohexyl)ethyl)-6-pentafluoroethyl-1,2,3,4-40 tetrahydroisoquinoline

Mass spectrum (API*): Found 377 (MH*). C₁₀H₂₅F₅N₂ requires 376.

(n) trans-2-(2-(1-(4-Amino)cyclohexyl)ethyl)-8-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API'): Found 284 (MH'). C₁₈H₂₅N₃ requires 283.

¹H NMR (CDCl₃) δ: 0.98 - 1.29 (9H, m), 1.70 - 1.90 (4H, m), 2.50 - 2.65 (3H, m), 2.73 (2H, m), 2.92 (2H, m), 3.78 (2H, s), 7.21 (1H, t, J = 7 Hz), 7.33 (1H, d, J = 7 Hz), 7.45 (1H, d, J = 7 Hz).

(o) trans-2-(2-(1-(4-Amino)cyclohexyl)ethyl)-5,6-difluoro-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 295 (MH*). C₁₇H₂₄F₂N₂ requires 294.

Description 12

10

15 (E)-3-(3-Methylsulfonyl)phenylpropenoic acid

A mixture of methyl phenyl sulfone (15.0g, 96 mmol), water (180ml) and sulfuric acid (98%; 180ml) was treated with N-bromosuccinimide (17.2g, 96.6 mmol) then stirred at 85 - 90°C for 4h. Mixture was cooled, then partitioned between water (200ml) and ether (3 x 150ml). Combined organic extracts were washed with 10% aqueous NaOH (200ml), 20 dried (Na,SO₄) and evaporated in vacuo to give a solid (19.4g). The latter was heated at 140°C with triethylamine (22ml; 0.155 mol), ethyl acrylate (16.8ml; 0.155 mol), tri-(2tolyl)phosphine (3.0g, 10 mmol) and palladium (II) acetate (1.1g, 5 mmol) in acetonitrile (20ml) under argon with stirring for 2h. Mixture was cooled, then partitioned between 25 ether (500ml) and water (3 x 300ml). Organic phase was dried (Na,SO₄) and evaporated in vacuo to give a solid. Chromatography on silica eluting with 20 - 100% ethyl acetate hexane gave a solid (20.2g), which was heated with sodium hydroxide (6.4g, 0.16 mol) and water (500ml) at reflux for 3h. Resultant was cooled, then washed with ethyl acetate (500ml). Aqueous phase was acidified with 10M HCl (16ml) and resulting solid filtered, 30 to give the title compound (15.5g, 71%) as a colourless solid.

Mass spectrum (API'): Found 225 (M-H'). C₁₀H₁₀O₄S requires 226.

¹H NMR (DMSO-d₆) δ: 3.40 (3H, s), 6.845 (1H, d, J = 16 Hz), 7.79 (1H, t, J = 8 Hz), 7.80 (1H, d, J = 16 Hz), 8.05 (1H, d, J = 8 Hz), 8.18 (1H, d, J = 8 Hz), 8.36 (1H, s), 12.75 (1H, br s).

Description 13

40 6-Cyanoindole-2-carboxylic acid

A solution of 4-cyanobenzaldehyde (1.27g, 9.69 mmol) and ethyl azidoacetate (5g, 38.76 mmol) in methanol (6ml) was added dropwise over 0.16h to a stirred solution of sodium methoxide (2.143g, 39.7 mmol) in methanol (24ml) at -8°C. The reaction was stirred

with ice cooling for a further 3h before being poured into ice/water (500ml). The precipitate was filtered, washed with water and dried in vacuo. A sample of the residue (0.55g) was dissolved in xylene (15ml) and added dropwise to refluxing xylene (35ml) over 0.75h. After a further 1.5h reflux the mixture was cooled and the precipitate filtered, washed with a small amount of xylene and dried in vacuo. The residue was dissolved in aqueous methanol (20ml, 1:1) and sodium hydroxide (1 equivalent) added. The mixture was stirred at room temperature for 18h, concentrated to half volume and poured into water (50ml). The resultant solution was washed with ethyl acetate (50ml) and the aqueous layer acidified with 2N HCl. The precipitate was filtered, washed with water and dried in vacuo to afford the title compound as a pale yellow solid (0.209g, 11%).

¹H NMR (DMSO-d₆) δ : 7.25 (1H, d, J = 1 Hz), 7.46 (1H, dd, J = 8, 1 Hz), 7.91 (2H, m), 12.40 (1H, s), 13.40 (1H, br s).

15

Description 14

5-Bromo-2-trifluoroac etyl-1, 2, 3, 4-tetra hydroiso quino line

Prepared using a method similar to that described in G.E. Stokker, Tetrahedron Letters 1996, 37, 5453, in 90% yield.

'H NMR (CDCl₃) δ : 2.97 (2H, m), 3.90 (2H, m), 4.75 and 4.82 (2H, 2 x s), 7.13 (2H, m), 7.52 (1H, m).

25

The following compounds were prepared in a similar manner to Description 14

- (a) 7-Bromo-5-methyl-2-trifluoroacetyl-1,2,3,4-tetrahydroisoquinoline
- 30 ¹H NMR (CDCl₃) δ: 2.25 (3H, s), 2.77 (2H, m), 3.88 (2H, m), 4.70 and 4.76 (2H, 2 x s), 7.15 and 7.24 (1H, 2 x m), 7.24 and 7.43 (1H, 2 x m).
 - (b) 2-Trifluoroacetyl-5-trifluoromethyl-1,2,3,4-tetrahydroisoquinoline
- 35 Mass spectrum (API*): Found 298 (MH*). C₁,H₂F₆NO requires 297.
 - (c) 5,6-Difluoro-2-trifluoroacetyl-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 266 (MH*). C, H,F,NO requires 265.

40

Description 15

5-Cyano-1,2,3,4-tetrahydroisoquinoline

Treatment of 5-bromo-2-trifluoroacetyl-1,2,3,4-tetrahydroisoquinoline in a manner similar to Description 2 gave the title compound (3.95g, 86%) as a solid.

Mass spectrum (API*): Found 159 (MH*). C₁₀H₁₀N₂ requires 158.

5

¹H NMR (DMSO- d_0) δ : 3.15 (2H, m), 3.51 (2H, m), 4.30 (2H, m), 7.45 (1H, t, J = 9 Hz), 7.68 (1H, d, J = 9 Hz), 7.80 (1H, d, J = 9 Hz), 9.87 (2H, br s), (.HCl salt).

The following compound was prepared in a similar manner to Description 15

10

(a) 7-Cyano-5-methyl-1,2,3,4-tetrahydroisoguinoline

Mass spectrum (API*): Found 173 (MH*). C₁₁H₁₂N₁, requires 172.

15 Description 16

2-(1-(4-(N-tert-Butyloxycarbonyl)methylamino)cyclohexyl)ethanol

A mixture of 2-(1-(4-(N-tert-butyloxycarbonyl)amino)cyclohexyl)acetic acid, methyl ester (2.10g, 7.75 mmol), lithium aluminium hydride (0.62g, 16.3 mmol) and ether (100ml) was heated at reflux for 1.5h, cooled, then treated dropwise with ice cooling, with saturated aqueous potassium sodium tartrate. Resulting supernatant solution was decanted off and evaporated in vacuo to give an oil (1.3g). Chromatography on silica eluting with 50% ethyl acetate-hexane gave 2-(1-(4-(N-tert-

butyloxycarbonyl)amino)cyclohexyl)ethanol. Further evaluation with 90:10:1 ethyl acetate-methanol- .880 ammonia gave a solid (0.64g) which was treated with di-r-butyl dicarbonate (0.99g, 4.5 mmol) in dichloromethane (20ml) at 20°C for 3h. Mixture was evaporated in vacuo to give an oil. Chromatography on silica with 25-100% ethyl acetate - hexane gradient elution gave the title compound (0.89g, 45%) as an oil.

30

¹H NMR (CDCl₃) δ : 1.11 (2H, m), 1.25 - 1.54 (6H, m), 1.47 (9H, s), 1.68 (2H, m), 1.84 (2H, m), 2.72 (3H, s), 3.69 (2H, t, J = 6 Hz), 3.95 (1H, br s).

Description 17

35

40

2-(1-(4-(N-tert-Butyloxycarbonyl)methylamino)cyclohexyl)acetaldehyde

To a stirred solution of oxalyl chloride (0.33ml; 3.9 mmol) in dichloromethane (20ml) under argon at -65°C was added dry dimethyl sulfoxide (0.58ml; 82 mmol). Mixture was stirred at -65°C for 0.2 h then a solution of 2-(1-(4-(N-tert-butyloxycarbonyl)methylamino)cyclohexyl)ethanol (0.87g, 3.4 mmol) in dichloromethane (5ml) was added dropwise over 0.1h. Mixture was stirred at -70°C for 1h, then triethylamine (2.5ml; excess) was added dropwise and resultant stirred at -70°C for 2h then at 20°C for 18h. Resulting mixture was evaporated in vacuo and residue

partitioned between ether (80ml) and water (80ml). Organic phase was washed with water (3 x 50 ml), dried (Na₂SO₄) and evaporated *in vacuo* to give the title compound (0.80g, 93%) as an oil.

¹H NMR (CDCl₃) δ: 1.14 (2H, m), 1.43 (1H, m), 1.45 (9H, s), 1.50 (2H, m), 1.68 (2H, m), 1.83 (2H, m), 2.34 (2H, dd, J = 7, 2 Hz), 2.72 (3H, s), 3.95 (1H, m), 9.77 (1H, t, J = 2 Hz).

Description 18

10

(E)-3-(3-Acetyl)phenylpropenoic acid

A mixture of 3-bromoacetophenone (1.99 g, 10 mmol), acrylic acid (0.8 g, 11 mmol), palladium (II) acetate (1.1 mg, 0.005 mmol), triphenylphosphine (0.026 g, 0.1 mmol) and tri-n-butylamine (5 ml, 21 mmol) were heated at 150°C under argon for 2.5 h. After cooling, water (20 ml) was added, followed by NaHCO₃ (2 g). The aqueous layer was separated, washed with dichloromethane and acidified with 5N Hcl. The precipitate was filtered, washed with water and dried to afford the title compound as a pale yellow solid (0.64 g, 34%).

20

Mass spectrum (API'): Found 189 (M-H'). C₁₁H₁₀O, requires 190.

¹H NMR (DMSO- d_c) δ : 2.68 (3H, s), 6.73 (1H, d, J = 16 Hz), 7.62 (1H, m), 7.73 (1H, d, J = 16 Hz), 8.01 (2H, m), 8.30 (1H, s), 12.55 (1H, br s).

25

Description 19

(E)-3-(Acetamido)phenylpropenoic acid

Prepared from 3-bromoacetanilide in a similar manner to that of Description 18, to afford the title compound as a colourless solid (1.29 g, 63%).

Mass spectrum (API): Found 204 (M-H). C, H, NO, requires 205.

¹H NMR (DMSO-d₆) δ : 2.21 (3H, s), 6.56 (1H, d, J = 16 Hz), 7.50 (2H, m), 7.67 (1H, d, J = 16 Hz), 7.73 (1H, m), 7.99 (1H, s), 10.20 (1H, s), 12.60 (1H, br s).

Description 20

40 (3-Trifluoromethoxy)phenylethylamine hydrochloride

To a stirred solution of zirconium (IV) chloride (11.8g, 49.5 mmol) in dry tetrahydrofuran (200ml) at 20°C under argon was added, portionwise, sodium

borohydride (7.5g, 0.197 mol). Mixture was stirred for 1h, then 3-trifluoromethoxyphenylacetonitrile (4.2g, 20.9 mmol) was added. Stirring was continued for 24h, then water (110 ml) was added dropwise, keeping the internal temperature below 10°C. The mixture was partitioned between dilute aqueous ammonia (500ml) and ethyl acetate (4x100ml). Organic extracts were dried (Na₂SO₄) and evaporated *in vacuo* to give an oil which was treated with ethereal HCl to give the title compound (2.1g, 50%).

Mass spectrum (API+): Found 206 (MH+). C9H10F3NO requires 205.

- 10 The following compounds were prepared in a similar manner to description 20.
 - (a) (3-Trifluoromethyl)phenethylamine hydrochloride

Mass spectrum (API+): Found 190 (MH+). C9H10F3N requires 189.

15

(b) (3-Bromo)phenethylamine hydrochloride

Mass spectrum (API+): Found 200 (MH+). C₈H₁₀⁷⁹BrN requires 199.

20 (c) (4-Bromo-2-methyl)phenethylamine hydrochloride

NMR (DMSO- d_6) δ : 2.27 (3H, s), 2.88 (4H, m), 7.14 (1H, d, J=8 Hz), 7.34 (1H, dd, J=8, 2 Hz), 7.40 (1H, d, J=2 Hz), 8.20 (3H, br s).

25 (d) (4-Bromo-3-methyl)phenethylamine hydrochloride

Mass spectrum (API*): Found 216 (MH*). C_eH₁, 81 BrN requires 215.

(e) (2-Trifluoromethyl)phenethylamine hydrochloride

30

Mass spectrum (API'): Found 190 (MH'). C₉H₁₀F₃N requires 189.

(f) (2,3-Difluoro)phenethylamine hydrochloride

Mass spectrum (API*): Found 158 (MH*). C₈H₆F₂N requires 157.

35

Description 21

N-(2-(3-Trifluoromethoxyphenyl)ethyl)trifluoroacetamide

To a stirred mixture of (3-trifluoromethoxy)phenethylamine hydrochloride (5.85g, 24.2 mmol) and 2,6-lutidine (5.65ml; 5.19g, 48.6 mmol) in dichloromethane (100ml) at 0°C under argon was added, dropwise, trifluoroacetic anhydride (3.42ml, 5.08g, 24.2 mmol). Resultant was stirred at 20°C for 18h then partitioned between water (100ml) and dichloromethane (2x100ml). Organic phase was washed with 1M hydrochloric acid (100ml), saturated aqueous NaHCO₃ (100ml), dried (Na₂SO₄) then evaporated *in vacuo* to give the title compound (6.14g, 84%) as an oil.

Mass spectrum (API+): Found 302 (MH+). C₁₁H₉F₆NO₂ requires 301.

10

The following compounds were prepared in a similar manner to description 21.

- (a) N-(2-(3-Trifluoromethylphenyl)ethyl)trifluoroacetamide
- 15 Mass spectrum (API⁻): Found 284 (M-H)⁻. C₁₁H₉F₆NO requires 285.
 - (b) N-(2-(3-Bromophenyl)ethyl)trifluoroacetamide

Mass spectrum (API-): Found 294 (M-H)-. C₁₀H₉⁷⁹BrF₃NO requires 295.

20

(c) N-(2-(4-Bromo-2-methylphenyl)ethyl)trifluoroacetamide

¹H NMR (CDCl₃) δ : 2.33 (3H, s), 2.85 (2H, t, J = 7 Hz), 3.55 (2H, q, J = 7 Hz), 6.45 (1H, br s), 6.94 (1H, d, J = 8 Hz), 7.29 (1H, dd, J = 8, 2 Hz), 7.35 (1H, d, J = 2 Hz).

25

(d) N-(2-(4-Bromo-3-methylphenyl)ethyl)trifluoroacetamide

¹H NMR (CDCl₃) δ : 2.41 (3H, s), 2.83 (2H, t, J = 7 Hz), 3.60 (2H, q, J = 7 Hz), 6.30 (1H, br s), 6.89 (1H, dd, J = 8, 2 Hz), 7.09 (1H, d, J = 2 Hz), 7.49 (1H, d, J = 8 Hz).

30

(e) N-(2-(2-Trifluoromethylphenyl)ethyl)trifluoroacetamide

Mass spectrum (API*): Found 284 (M-H). C₁₁H₀F₆NO requires 285.

35 (f) N-(2-(2,3-Difluorophenyl)ethyl)trifluoroacetamide

Mass spectrum (API*): Found 252 (M-H). C₁₀H_zF_zNO requires 253.

Description 22

40

6-Trifluoromethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride

N-(2-(3-Trifluoromethoxyphenyl)ethyl)trifluoroacetamide (6.14g, 19.6mmol) was treated in a manner similar to that described in G.E. Stokker, Tetrahedron Letters 37 5453 1996.

- The resulting product (6.13g) was treated with anhydrous potassium carbonate (15.0g, 0.108mol) in methanol (140ml) containing water (22ml) at reflux for 2 h. The mixture was cooled, evaporated in vacuo, then partitioned between water (200ml) and dichloromethane (4x50ml). Combined organic extracts were dried (Na₂SO₄) and evaporated in vacuo to give an oil (4.14g), which was treated with ethereal HCl.
- Recrystallisation of the resulting solid from ethanol gave the title compound (2.33g, 45%) as a colourless solid.

¹H NMR (DMSO-d₆) δ : 3.07 (2H, t, J = 7 Hz), 3.39 (2H, t, J = 7 Hz), 4.29 (2H, s), 7.27 (1H, d, J = 9 Hz), 7.32 (1H, s), 7.40 (1H, d, J = 9 Hz), 9.81 (2H, br s).

Mass spectrum (API+): Found 218 (MH+). C₁₀H₁₀F₃NO requires 217.

The following compounds were prepared in a similar manner to description 22.

20 (a) 6-Trifluoromethyl-1,2,3,4-tetrahydroisoquinoline hydrochloride

Mass spectrum (API+): Found 202 (MH+). C₁₀H₁₀F₃N requires 201.

(b) 6-Bromo-1,2,3,4-tetrahydroisoquinoline hydrochloride

¹H NMR (DMSO-d₆) δ : 3.08 (2H, t, J = 7Hz), 3.35 (2H, t, J = 7Hz), 4.23 (2H, s), 7.15 (1H, d, J = 9 Hz), 7.36 (1H, d, J = 9 Hz), 7.39 (1H, s).

(c) 7-Bromo-6-methyl-1,2,3,4-tetrahydroisoquinoline hydrochloride

¹H NMR (DMSO-d_e) δ : 2.32 (3H, s), 2.94 (2H, t, J = 6 Hz), 3.33 (2H, t, J = 6 Hz), 4.20 (2H, s), 7.21 (1H, s), 7.50 (1H, s), 9.64 (2H, br s).

Description 23

15

25

30

35

6-Cyano-1,2,3,4-tetrahydroisoguinoline hydrochloride

As an alternative procedure to that contained within Description 7, a solution of 6-bromo-1,2,3,4-tetrahydroisoquinoline hydrochloride (6.0g, 24 mmol) and triethylamine (7.4ml, 5.36g, 53 mmol) in dichloromethane (100ml) was treated with trifluoroacetic anhydride (3.7ml, 5.54g, 26.4 mmol) with ice cooling. Mixture was stirred at 20°C for

1.5h. then partitioned between saturated aqueous NaHCO₃ (250ml) and dichloromethane (3x50ml). Combined organic extracts were dried (Na₂SO₄) and evaporated *in vacuo* to give a solid (8.3g). A mixture of the latter with copper (I) cyanide (5.1g, 56.6 mmol) in 1-methyl-2-pyrrolidinone (100ml) was heated at reflux under argon for 4h, then cooled and partitioned between water (300ml), .880 aqueous ammonia (100ml) and dichloromethane (5x200ml). Combined organic extracts were dried (Na₂SO₄) and evaporated *in vacuo* to give an oil. The latter was dissolved in ether and treated with ethereal HCl to give the title compound (4.47g, 85%) as a colourless solid.

10 Mass spectrum (API+): Found 159 (MH+). C₁₀H₁₀N₂ requires 158.

The following compound was prepared in a similar manner to description 23

(a) 7-Cyano-6-methyl-1,2,3,4-tetrahydroisoquinoline hydrochloride

Mass spectrum (API*): Found 173 (MH*). C, H, N, requires 172.

Description 24

5

15

35

20 8-Cyano-1,2,3,4-tetrahydroisoquinoline

A mixture of 2-t-butyloxycarbonyl-8-cyano-1,2,3,4-tetrahydroisoquinoline (1.4g, 5.4 mmol) and trifluoroacetic acid (2ml) in dichloromethane (20ml) was stirred at 40°C for 16h. Mixture was evaporated in vacuo and the resulting residue partitioned between dichloromethane and saturated potassium carbonate solution. The aqueous layer was extracted with more dichloromethane (2x100ml). The combined organic extracts were dried (Na₂SO₄) and evaporated in vacuo to afford the desired product as an amber oil (0.9g, 100%).

Mass spectrum (API*): Found 159 (MH*). C₁₀H₁₀N, requires 158.

Description 25

2-t-Butoxycarbonyl-8-trifluoromethylsulfonyloxy-1,2,3,4-tetrahydroisoquinoline

A solution of 8-hydroxy-1,2,3,4-tetrahydroisoquinoline (2.55g, 17 mmol) and di-tert-butyl dicarbonate (3.9g, 17.9 mmol) in THF (250ml) was allowed to stir at room temperature. The THF was removed in vacuo and the resulting residue purified by flash silica gel chromatography, eluted with dichloromethane to give an oil. An aliquot of this (3.2g, 13 mmol) was dissolved in dry dichloromethane (50ml). To this solution at -20°C under argon, was added triethylamine (2.1ml), followed by trifluoromethylsulfonic anhydride (2.4ml, 14 mmol) in dichloromethane (2ml) dropwise. The mixture was stirred from -20°C to 0°C over 3hrs. It was poured into cold water and extracted with dichloromethane (3 x 50 ml). The combined organics extracts were washed with water,

then brine and dried (Na₂SO₄). Evaporation in vacuo gave an oil. Flash silica gel chromatography eluting with ethyl acetate and hexane afforded the desired product as an amber oil (4.3g, 91%).

¹H NMR (CDCl₃) δ: 1.49 (9H, s), 2.88 (2H, m), 3.67 (2H, m), 4.64 (2H, br s), 7.15 - 7.27 (3H, m).

Description 26

10 5-Pentafluoroethyl-2-trifluoroacetyl-1,2,3,4-tetrahydroisoguinoline

A mixture of 5-bromo-2-trifluoroacetyl-1,2,3,4-tetrahydroisoquinoline (4.0g, 13 mmol), sodium pentafluoropropionate (4.85g, 26 mmol), copper (I) iodide (5.22g, 27.2 mmol), toluene (70 ml) and dimethylformamide (70ml) was heated under argon with Dean-Stark distillation (70ml distillate collected), then heated at reflux for 18h. The mixture was cooled, then poured into a mixture of water (150ml) and .880 ammonia (150ml). Resulting solution was extracted with dichloromethane (4x100ml) and the combined extracts dried (Na₂SO₄) and evaporated *in vacuo* to give a solid. Chromatography on silica with 10 - 50% ether - hexane gradient elution gave the title compound (2.97g, 66%) as a colourless solid.

Mass spectrum (API*): Found 348 (MH*). C₁₁H₆F₆NO requires 347.

¹H NMR (CDCl₃) δ: 3.16 (2H, m), 3.83 (2H, m), 4.75 and 4.84 (2H, 2 x s), 7.39 (2H, m), 7.55 (1H, m).

Description 27

6-Pentafluoroethyl-2-trifluoroacetyl-1,2,3,4-tetrahydroisoguinoline

30

35

To a mixture of 6-bromo-1,2,3,4-tetrahydroisoquinoline hydrochloride (5.90g, 23.7 mmol), triethylamine (8.3ml; 6g, 59 mmol) and dichloromethane (50ml) at 0°C was added trifluoroacetic anhydride (4.18ml; 6.22g, 29.6 mmol). Mixture was stirred at 20°C for 18h, then partitioned between saturated aqueous NaHCO₃ (200ml) and dichloromethane (4x20ml). Combined extracts were dried (Na₂SO₄ and evaporated in vacuo to give an oil (7.9g). Treatment of an aliquot of the latter (2.3g, 7.5 mmol) with sodium pentafluoropropionate (2.79g, 15 mmol), copper (I) iodide (3.0g, 15.8 mmol), dimethylformamide (40ml) and toluene (40ml) in a similar manner to Description 26 gave the title compound (1.85g, 71%) as a colourless solid.

40

Mass spectrum (API'): Found 346 (M-H)'. C₁₃H₀F₈NO requires 347.

¹H NMR (CDCl₃) δ : 3.04 (2H, m), 3.89 (2H, m), 4.80 and 4.86 (2H, 2 x s), 7.30 (1H, m), 7.45 (2H, m).

Description 28

(4-Bromo-2-methyl)phenylacetonitrile

5

10

15

A mixture of 4-bromo-2-methylbenzyl alcohol (36.6g, 0.18 mol) and triethylamine (33ml; 24g, 0.237 mol) in dichloromethane (300ml) was treated dropwise under argon with methylsulfonyl chloride (16ml; 23.7g, 0.207 mol) with ice cooling. Mixture was stirred at 20°C for 64h then partitioned between saturated aqueous NaHCO₃ (1L) and dichloromethane (3x100ml). Combined extracts were dried (Na₂SO₄) and evaporated in vacuo to give an oil (34.3g). The latter was dissolved in dimethylformamide (150ml) and treated with sodium cyanide (8.13g, 0.166 mol). Mixture was stirred vigorously at 20°C for 18h then partitioned between ether (600ml) and water (4x400ml). Organic phase was dried (Na₂SO₄) and evaporated in vacuo to give the title compound (30.48g, 78%) as an oil.

'H NMR (CDCl₃) δ : 2.35 (3H, s), 3.51 (2H, s), 7.23 (1H, d, J = 8 Hz), 7.38 (2H, m).

The following compound was prepared in a similar manner to Description 28.

20

(a) (4-Bromo-3-methyl)phenylacetonitrile

¹H NMR (CDCl₃) δ : 2.42 (3H, s), 3.68 (2H, s), 7.00 (1H, dd, J = 8, 2 Hz), 7.21 (1H, d, J = 2 Hz), 7.55 (1H, d, J = 8 Hz).

25

Example 1

trans-7-Cyano-2-(2-(1-(4-(2-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoguinoline

30

Alternative name: *trans-N*-[4-[2-(7-Cyano-1,2,3,4-tetrahydroisoquinolin-2-yl) ethyl]cyclohexyl]-1*H*-indole-2-carboxamide

35 te m

A mixture of cis and trans-2-(2-(1-(4-amino)cyclohexyl)ethyl-7-cyano-1,2,3,4-tetrahydroisoquinoline (350mg, 1.24 mmol), indole-2-carboxylic acid (200mg, 1.24 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (238mg, 1.24 mmol), 1-hydroxybenzotriazole (catalytic amount) and dichloromethane (8ml) was shaken for 16h. Saturated sodium bicarbonate (4ml) was then added and the mixture shaken for 0.25h. Chromatography of the organic layer on silica with 50 - 100% ethyl acetate in hexane

and 0 - 10% methanol in ethyl acetate gradient elution gave the title compound as a yellow solid (90mg, 17%).

Mass spectrum (API*): Found 427 (MH*). C₂₇H₃₀N₄O requires 426.

¹H NMR (CDCl₃) δ: 1.08 - 1.36 (4H, m), 1.50 - 1.70 (4H, m), 1.86 (1H, m), 2.12 (2H₂). m), 2.55 (2H, m), 2.73 (2H, t, J = 7 Hz), 2.94 (2H, m), 3.60 (2H, s), 3.95 (1H, m), 5.97(1H, d, J = 8 Hz), 6.81 (1H, m), 7.17 (2H, m), 7.34 (2H, m), 7.42 (2H, t, J = 8 Hz), 7.64(1H, d, J = 8 Hz), 9.22 (1H, br s).

10

5

Example 2

(E)-trans-7-Cyano-2-(2-(1-(4-(3-(6-indolyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

15

Prepared from (E)-3-(6-indolyl)propenoic acid in a similar manner to Example 1. Crystallisation from ethyl acetate gave the title compound (0.19g, 34%) as a yellow solid.

Mass spectrum (API*): Found 453 (MH*). C₂₀H₃₂N₄O requires 452.

20

25

30

 1 H NMR (DMSO-d₆) δ : 1.06 (2H, m), 1.21 (2H, m), 1.30 (1H, m), 1.45 (2H, m), 1.86 (4H, m), 2.51 (2H, m), 2.67 (2H, m), 2.89 (2H, m), 3.58 (2H, s), 3.62 (1H, m), 6.46 (1H, d, J = 3 Hz), 6.56 (1H, d, J = 15 Hz), 7.24 (1H, d, J = 8 Hz), 7.32 (1H, d, J = 8 Hz),7.44 (1H, d, J = 3 Hz), 7.50 (1H, d, J = 15 Hz), 7.56 (4H, m), 7.88 (1H, d, J = 8 Hz),11.34 (1H, m).

Example 3

trans-(E)-6-Cyano-2-(2-(1-(4-(3-(3-methylsulfonyl)phenylpropenoyl) amino)cyclohexyl)ethyl-1,2,3,4-tetrahydroisoguinoline

Alternative name: trans-(E)-N-[4-[2-(6-Cyano-1,2,3,4-tetrahydroisoquinolin-2yl)ethyl]cyclohexyl]-3-[3-(methylsulfonyl)phenyl]-2-propenamide

35

A mixture of trans-2-(2-(1-(4-amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4tetrahydroisoquinoline (0.10g, 0.35 mmol), (E)-3-(3-methylsulfonyl)phenylpropenoic acid (0.079g, 0.35 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.067g, 0.35 mmol), 1-hydroxybenzotriazole (catalytic amount) and

dichloromethane (5ml) was treated in a manner to similar to Example 1 to give the title compound (0.065g, 38%) as an off-white solid.

Mass spectrum (API'): Found 492 (MH'). C₂H₁₁N₁O₃S requires 491.

5

¹H NMR (DMSO-d_s) δ: 0.97 - 1.38 (5H, m), 1.48 (2H, m), 1.84 (4H, m), 2.52 (2H, m), 2.68 (2H, m), 2.87 (2H, m), 3.29 (3H, s), 3.63 (3H, m), 6.81 (1H, d, J = 16 Hz), 7.31(1H, d, J = 8 Hz), 7.52 (1H, d, J = 16 Hz), 7.61 (2H, m), 7.72 (1H, t, J = 8 Hz), 7.93 (2H, t, J = 8 Hz), 7.52 (1H, t, J = 8 Hz), 7.93 (2H, t, J = 8m), 8.02 (2H, m).

10

Example 4

trans-(E)-2-(2-(1-(4-(3-(3-Acetyl)phenylpropenoyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoguinoline

15

20

A mixture of trans-2-(2-(1-(4-amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4tetrahydroisoquinoline (0.10g, 0.35 mmol), (E)-3-(3-acetyl)phenylpropenoic acid (0.066g, 0.35 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.067g, 0.35 mmol), 1-hydroxybenzotriazole (catalytic amount) and dichloromethane (5ml) was treated in a manner similar to Example 1 to give the title compound (0.10g, 63%) as a yellow solid.

Mass spectrum (API'): Found 456 (MH'). C₁₀H₁₁N₁O₂ requires 455.

25 ¹H NMR (DMSO-d_c) δ: 0.83 - 1.24 (5H, m), 1.33 (2H, m), 1.6 - 1.8 (4H, m), 2.36 (2H, m), 2.49 (3H, s), 2.52 (2H, m), 2.69 (2H, m), 3.48 (3H, m), 6.60 (1H, d, J = 16 Hz), 7.14 (1H, d, J = 8 Hz), 7.35 (1H, d, J = 16 Hz), 7.44 (3H, m), 7.68 (1H, d, J = 8 Hz), 7.82(1H, d, J = 8 Hz), 7.90 (1H, d, J = 8 Hz), 8.0 (1H, s).

30 Example 5

> trans-7-Cyano-2-(2-(1-(4-(3-(4,6-dimethyl)pyrazolo[1,5a]pyrimidyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

- 35 A mixture of trans-2-(2-(1-(4-amino)cyclohexyl)ethyl)-7-cyano-1,2,3,4tetrahydroisoquinoline (0.1g, 0.353 mmol), 4,6-dimethylpyrazolo[1,5-a]pyrimidine-3carboxylic acid (0.068g, 0.353 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.067g, 0.353 mmol), 1-hydroxybenzotriazole (catalytic amount) and dichloromethane (4ml) was treated in a manner similar to Example 1 to give the title 40
- compound (0.096g, 60%) as a pale yellow gum.

Mass spectrum (API'): Found 457 (MH'). C₂H₁,N₆O requires 456.

¹H NMR (DMSO-d_s) δ : 0.8 - 1.40 (7H, m), 1.80 (4H, m), 2.37 (3H, s), 2.42 (2H, m), 2.57 (2H, t, J = 5 Hz), 2.71 (3H, s), 2.79 (2H, m), 3.48 (2H, s), 3.61 (1H, m), 6.50 (1H, s), 7.22 (1H, d, J = 5 Hz), 7.47 (2H, m), 8.35 (2H, m).

5 Example 6

trans-7-Cyano-2-(2-(1-(4-(2-(5-fluoro)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

10 A mixture of *trans*-2-(2-(1-(4-amino)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline (0.1g, 0.35 mmol), 5-fluoroindole-2-carboxylic acid (0.07g, 0.35 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.067g, 0.35 mmol), 1-hydroxybenzotriazole (catalytic amount) and dichloromethane (8ml) was treated in a manner similar to Example 1 to give the title compound (0.07g, 45%) as an amber oil.

Mass spectrum (API*): Found 445 (MH*). C₂₇H₂₅FN₄O requires 444.

¹H NMR (CDCl₃) δ: 1.10 - 1.40 (5H, m), 1.45 - 1.55 (2H, m), 1.80 - 1.95 (2H, m), 2.05 - 2.20 (2H, m), 2.56 (2H, m), 2.74 (2H, m), 2.95 (2H, m), 3.62 (2H, s), 3.93 (1H, m), 5.94 (1H, d, J = 8 Hz), 6.75 (1H, m), 7.05 (1H, m), 7.19 (1H, d, J = 8 Hz), 7.22 - 7.42 (4H, m), 9.25 (1H, br s).

Example 7

25

40

trans-7-Cyano-2-(2-(1-(4-(2-(6-cyano)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

A mixture of *trans*-2-(2-(1-(4-amino)cyclohexyl)ethyl)-7-cyano-1,2,3,4tetrahydroisoquinoline (0.1g, 0.352 mmol), 6-cyanoindole-2-carboxylic acid (0.066g, 0.355 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.068g, 0.355 mmol), 1-hydroxybenzotriazole (catalytic amount) and dichloromethane (~10ml) was treated in a manner similar to Example 1 to give the title compound (0.096g, 60%) as a colourless solid.

Mass spectrum (API*): Found 452 (MH*). C₂₈H₂₉N₅O requires 451.

¹H NMR (CDCl₃) δ : 1.1 - 1.35 (5H, m), 1.51 (2H, m), 1.85 (2H, m), 2.05 (2H, m), 2.55 (2H, m), 2.75 (2H, t, J = 6 Hz), 2.95 (2H, t, J = 6 Hz), 3.58 (2H, s), 3.90 (1H, m), 6.97 (1H, s), 7.19 (1H, d, J = 8 Hz), 7.30 (4H, m), 7.4 (1H, dd, J = 1, 8 Hz), 7.68 (1H, d, J = 8 Hz), 7.78 (1H, s).

Example 8

trans-7-Cyano-2-(2-(1-(4-(3,4-methylenedioxy)benzamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Prepared in a similar manner to Example 7, in 43% yield.

5

10

Mass spectrum (API*): Found 432 (MH*). C₂₆H₂₆N₃O₃ requires 431.

'H NMR (CDCl₃) δ: 1.10 - 1.40 (5H, m), 1.45 - 1.60 (2H, m), 1.75 - 1.90 (2H, m), 2.05 - 2.16 (2H, m), 2.50 - 2.60 (2H, m), 2.70 - 2.80 (2H, m), 2.90 - 3.00 (2H, m), 3.65 (2H, s), 3.89 (1H, m), 5.77 (1H, d, J = 8 Hz), 6.01 (2H, s), 6.81 (1H, d, J = 10 Hz), 7.15 - 7.50 (5H, m).

The following compounds were prepared in a similar manner to Example 8.

a) trans-7-Cyano-2-(2-(1-(4-(2-indolyl)-N-methyl-carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API'): Found 441 (MH'). C₂₈H₃₂N₄O requires 440.

- 20 H NMR (CDCl₃+CD₃OD) δ: 1.05 1.48 (5H, m), 1.55 (2H, m), 1.90 (4H, m), 2.55 (2H, t, J = 7 Hz), 2.72 (2H, t, J = 7 Hz), 2.94 (2H, t, J = 7 Hz), 3.20 (3H, br s), 3.60 (2H, s), 4.53 (1H, m), 6.78 (1H, br s), 7.05 7.48 (6H, m), 7.65 (1H, d, J = 9 Hz), 9.44 (1H, br s).
- b) trans-7-Cyano-2-(2-(1-(4-(2-(1-methyl)indolyl)carboxamido)cyclohexyl)ethyl-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API'): Found 441 (MH'). C_xH_yN_yO requires 440.

- ¹H NMR (DMSO- d_6) δ : 0.96 (2H, m), 1.12 1.42 (5H, m), 1.75 (4H, m), 2.41 (2H, m), 2.58 (2H, m), 2.80 (2H, m), 3.49 (2H, m), 3.65 (1H, m), 3.88 (3H, s), 7.00 (2H, m), 7.20 (2H, m), 7.47 (4H, m), 8.17 (1H, d, J = 8 Hz).
- c) trans-7-Cyano-2-(2-(1-(4-(2-(5-nitro)indolyl)carboxamido)cyclohexyl)ethyl)-35 1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 472 (MH*). C₂₇H₂₀N₅O₃ requires 471.

- ¹H NMR (DMSO-d₆) δ: 0.98 (2H, m), 1.13 1.48 (5H, m), 1.76 (4H, m), 2.40 (2H, m), 2.57 (2H, m), 2.79 (2H, m), 3.48 (2H, m), 3.68 (1H, m), 7.21 (1H, d, J = 8 Hz), 7.34(1H, s), 7.46 (3H, m), 7.96 (1H, dd, J = 9, 2 Hz), 8.41 (1H, d, J = 8 Hz), 8.60 (1H, d, J = 2 Hz), 12.22 (1H, br s).
 - d) trans-7-Cyano-2-(2-(1-(4-(2-(5-methylsulfonyl)indolyl)carboxamido)

cyclohexyl)-ethyl-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 505 (MH*). C₂₂H₃₂N₄O₃S requires 504.

¹H NMR (DMSO-d_δ) δ: 0.93 (2H, m), 1.09 - 1.38 (5H, m), 1.71 (4H, m), 2.34 (2H, m), 2.52 (2H, m), 2.74 (2H, m), 3.04 (3H, s), 3.44 (2H, s), 3.64 (1H, m), 7.20 (2H, m), 7.48 (3H, m), 8.11 (2H, d, J = 2 Hz), 8.32 (1H, d, J = 8 Hz), 12.02 (1H, br s).

e) trans-7-Cyano-2-(2-(1-(4-(3-isoquinolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4tetrahydroisoquinoline

Mass spectrum (API*): Found 439 (MH*). C₂₂H₃₀N₄O requires 438.

¹H NMR (CDCl₁) δ: 1.11 - 1.44 (4H, m), 1.56 (2H, m), 1.88 (2H, m), 2.01 (1H, m), 2.14 (2H, m), 2.58 (2H, m), 2.76 (2H, t, J = 7 Hz), 2.97 (2H, m), 3.64 (2H, s), 3.99 (1H, m), 7.19 (1H, d, J = 8 Hz), 7.32 (1H, s), 7.39 (1H, d, J = 8 Hz), 7.73 (2H, m), 8.04 (3H, m), 8.62 (1H, s), 9.15 (1H, s).

f) trans-7-Cyano-2-(2-(1-(4-(2-(5-methoxy)indolyl)carboxamido)cyclohexyl)ethyl)-20 1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 457 (MH*). C₂₂H₃₂N₄O₂ requires 456.

¹H NMR (CDCl₃) δ: 1.15 - 1.40 (5H, m), 1.50 - 1.58 (2H, m), 1.80 - 1.90 (2H, m), 2.10 - 2.20 (2H, m), 2.50 - 2.60 (2H, m), 2.70 - 2.80 (2H, m), 2.90 - 3.00 (2H, m), 3.49 (2H, s), 3.85 (3H, s), 3.95 (1H, m), 5.90 (1H, d, J = 8 Hz), 6.70 (1H, d, J = 2 Hz), 6.96 (1H, dd, J = 2, 8 Hz), 7.05 (1H, d, J = 2 Hz), 7.20 (1H, d, J = 7.5 Hz), 7.30 - 7.37 (2H, m), 7.40 - 7.46 (1H, m), 9.08 (1H, br s).

g) trans-2-(2-(1-(4-(4-(4-Acetyl)phenyl)benzoyl)aminocyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 506 (MH*). C, H, N,O, requires 505.

¹H NMR (DMSO-d₆) δ: 1.10 (2H, m), 1.24 - 1.54 (5H, m), 1.87 (4H, m), 2.52 (2H, m), 2.65 (3H, s), 2.68 (2H, m), 2.87 (2H, m), 3.64 (2H, s), 3.79 (1H, m), 7.31 (1H, d, J = 8Hz), 7.59 (2H, m), 7.91 (4H, m), 8.00 (2H, d, J = 8Hz) 8.08 (2H, d, J = 8Hz), 8.32 (1H, d, J = 8Hz).

h) trans-7-Cyano-2-(2-(1-(4-(2-(7-nitro)indolyl)carboxamido)cyclohexyl)ethyl-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 472 (MH*). C₂₇H₂₉N₃O₃ requires 471.

40

¹H NMR (DMSO-d_e) δ : 1.07 (2H, m), 1.32 (3H, m), 1.60 (2H, m), 1.79 (2H, m), 1.90 (2H, m), 2.80 - 3.25 (6H, m), 3.30 (2H, s), 3.23 (1H, m), 7.28 (1H, t, J = 9 Hz), 7.35 (2H, m), 7.65 (2H, m), 8.15 (2H, m), 8.29 (1H, d, J = 9 Hz), 11.34 (1H, br s).

5

i) trans-7-Cyano-2-(2-(1-(4-(2-(5-methyl)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 441 (MH*). C₂₂H₃₂N₄O requires 440.

10

¹H NMR (CDCl₃+CD₃OD) δ : 1.06 - 1.48 (5H, m), 1.57 (2H, m), 1.89 (2H, m), 2.07 (2H, m), 2.43 (3H, s), 2.61 (2H, m), 2.84 (2H, t, J = 7 Hz), 3.00 (2H, m), 3.66 (2H, s), 3.90 (1H, m), 6.94 (1H, s), 7.11 (1H, d, J = 9 Hz), 7.15 - 7.50 (6H, m).

j) trans-7-Cyano-2-(2-(1-(4-(2-(1H)-pyrrolo[3,2-b]pyridyl)carboxamido) cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 428 (MH*). C₂₆H₂₀N₅O requires 427.

- ¹H NMR (CDCl₃+CD₃OD) δ: 1.06 1.65 (7H, m), 1.90 (2H, m), 2.07 (2H, m), 2.60 (2H, m), 2.75 (2H, m), 2.98 (2H, m), 3.65 (2H, s), 3.94 (1H, m), 7.10 (1H, s), 7.24 (2H, m), 7.30 (1H, s), 7.36 (1H, s), 7.44 (1H, d, J = 9 Hz), 7.83 (1H, d, J = 9 Hz), 8.44 (1H, d, J = 5 Hz).
- k) trans-7-Cyano-2-(2-(1-(4-(3-pyrazolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 378 (MH*). C₂₂H₂₇N₅O requires 377.

- 30 H NMR (CDCl₃+CD₃OD) δ: 1.04 1.45 (5H, m), 1.54 (2H, m), 1.85 (2H, m), 2.05 (2H, m), 2.55 (2H, m), 2.75 (2H, m), 2.98 (2H, m), 3.63 (2H, s), 3.85 (1H, m), 6.49 (1H, m), 7.22 (1H, d, J = 9 Hz), 7.34 (1H, s), 7.43 (1H, d, J = 9 Hz), 7.93 (2H, br s).
- l) trans-7-Cyano-2-(2-(1-(4-(6-(1-methyl)benzimidazolyl)carboxamido)cyclohexyl)-35 ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 442 (MH*). C₂₁H₃₁N₅O requires 441.

¹H NMR (CDCl₃) δ: 1.03 - 1.47 (5H, m), 1.55 (2H, m), 1.87 (2H, m), 2.16 (2H, m), 40 2.56 (2H, m), 2.75 (2H, t, J = 7 Hz), 2.96 (2H, m), 3.64 (2H, s), 3.91 (3H, s), 4.00 (1H, m), 6.04 (1H, d, J = 10 Hz), 7.18 (1H, d, J = 8 Hz), 7.34 (1H, s), 7.41 (1H, d, J = 8 Hz), 7.56 (1H, dd, J = 9,2 Hz), 7.79 (1H, d, J = 9 Hz), 7.96 (1H, s), 8.03 (1H, d, J = 2 Hz).

m) trans-7-Cyano-2-(2-(1-(4-(5-(1,2-dihydro)benzofuranyl)carboxamido)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 430 (MH*). C_nH₁₁N₂O, requires 429.

5

10

¹H NMR (CDCl₃) δ: 1.05 - 1.45 (5H, m), 1.53 (2H, m), 1.85 (2H, m), 2.09 (2H, m), 2.54 (2H, m), 2.72 (2H, t, J = 7 Hz), 2.95 (2H, m), 3.22 (2H, t, J = 10 Hz), 3.62 (2H, s), 3.90 (1H, m), 4.63 (2H, t, J = 10 Hz), 5.83 (1H, d, J = 10 Hz), 6.26 (1H, d, J = 9 Hz), 7.20 (1H, d, J = 9 Hz), 7.33 (1H, s), 7.39 (1H, d, J = 9 Hz), 7.52 (1H, dd, J = 9, 2 Hz, 7.66 (1H, d, J = 2 Hz).

n) trans-7-Cyano-2-(2-(1-(4-(2-thieno[3,2-b]thiophenyl)carboxamido)cyclohexyl)ethyl-1,2,3,4-tetrahydroisoguinoline

15 Mass spectrum (API*): Found 450 (MH*). C₃,H₂N₂OS, requires 449.

¹H NMR (CDCl₃) δ : 1.03 - 1.47 (5H, m), 1.55 (2H, m), 1.85 (2H, m), 2.13 (2H, m), 2.53 (2H, m), 2.75 (2H, m), 2.95 (2H, m), 3.63 (2H, s), 3.94 (1H, m), 5.85 (1H, m), 7.12 - 7.48 (4H, m), 7.51 (1H, d, J = 5 Hz), 7.70 (1H, s).

20

o) trans-7-Cyano-2-(2-(1-(4-(4-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 427 (MH*). C₂₇H₃₀N₄O requires 426.

25

¹H NMR (CDCl₃) δ : 1.15 - 1.21 (5H, m), 1.55 (2H, m), 1.85 (2H, m), 2.2 (2H, m), 2.55 (2H, t, J = 6 Hz), 2.75 (2H, t, J = 6 Hz), 2.95 (2H, m), 3.62 (2H, s), 4.05 (1H, m), 6.05 (1H, d, J = 8 Hz), 6.9 (1H, m), 7.15 - 7.22 (1H, m), 7.25 (1H, s), 7.32 (2H, m), 7.40 (1H, m), 7.50 (2H, m), 8.40 (1H, br s).

30

p) trans-7-Cyano-2-(2-(1-(4-(2-(6-methoxy)indolyl)carboxamido)cyclohexyl)ethyl-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 457 (MH*). C₂₈H₃₂N₄O₂ requires 456.

35

40

¹H NMR (CDCl₃) δ: 1.15 - 1.30 (5H, m), 1.55 (2H, m), 1.85 (2H, m), 2.10 (2H, m), 2.55 (2H, m), 2.75 (2H, t, J = 6 Hz), 2.94 (2H, t, J = 6 Hz), 3.62 (2H, s), 3.85 (3H, s), 3.92 (1H, m), 5.85 (1H, d, J = 8 Hz), 6.70 (1H, d, J = 1 Hz), 6.80 (1H, dd, J = 8, 1 Hz), 6.85 (1H, br s), 7.2 (1H, d, J = 8 Hz), 7.30 (1H, s), 7.40 (1H, d, J = 8 Hz), 7.50 (1H, d, J = 8 Hz), 8.90 (1H, s).

q) trans-7-Cyano-2-(2-(1-(4-(2-(6-chloro)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 461 (MH*). C₂₇H₂₀³⁵ClN₄O requires 460.

¹H NMR (CDCl₃) δ: 1.10 - 1.32 (5H, m), 1.48 - 1.60 (2H, m), 1.85 (2H, m), 2.08 (2H, m), 2.60 (2H, m), 2.74 (2H, m), 2.95 (2H, m), 3.62 (2H, s), 3.88 (1H, s), 6.62 (1H, m), 6.85 (1H, s), 7.05 (1H, dd, J = 8, 1 Hz), 7.20 (1H, d, J = 8 Hz), 7.30 (1H, m), 7.40 (2H, m), 7.52 (1H, d, J = 8 Hz), 10.22 (1H, s).

r) trans-7-Cyano-2-(2-(1-(4-(2-(6-fluoro)indolyl)carboxamido)cyclohexyl)ethyl-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 445 (MH*). C₂H₂FN₄O requires 444.

10

20

25

35

¹H NMR (CDCl₃) δ: 1.09 - 1.35 (5H, m), 1.50 - 1.60 (2H, m), 1.88 (2H, m), 2.09 (2H, m), 2.54 - 2.62 (2H, m), 2.76 (2H, t, J = 6 Hz), 2.96 (2H, t, J = 6 Hz), 3.63 (2H, s), 3.88 (1H, m), 6.66 (1H, d, J = 8 Hz), 6.90 (2H, m), 7.10 (1H, dd, J = 8, 2 Hz), 7.22 (1H, d, J = 8 Hz), 7.32 (2H, m), 7.42 (1H, dd, J = 8, 2 Hz), 7.5 (1H, m).

s) trans-7-Cyano-2-(2-(1-(4-(2-(6-methyl)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 441 (MH*). C₂₂H₃₂N₄O requires 440.

'H NMR (CDCl₃) δ: 1.10 - 1.35 (5H, m), 1.53 (2H, m), 1.87 (2H, m), 2.09 (2H, m), 2.46 (3H, s), 2.59 (2H, m), 2.78 (2H, m), 3.0 (2H, m), 3.66 (2H, s), 3.95 (1H, s), 6.95 (2H, m), 7.24 (2H, m), 7.34 (1H, m), 7.45 (2H, m), 7.51 (1H, m), 7.98 (1H, m).

- t) trans-2-(2-(1-(4-(2-(5-Chloro)benzofuranyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline
- 30 Mass spectrum (API'): Found 462 (MH'). C₂₇H₂₈ Cl N₂O₃ requires 461.

¹H NMR (DMSO- d_c) δ : 0.91 - 1.36 (7H, m), 1.72 4H, m), 2.37 (2H, m), 2.56 (2H, t, J = 6 Hz), 2.76 (2H, t, J = 6 Hz), 3.47 (2H, s), 3.63 (1H, m), 7.21 (1H, d, J = 8 Hz), 7.36 (1H, dd, J = 8, 2 Hz), 7.42 (1H, s), 7.44 (2H, m), 7.60 (1H, d, J = 8 Hz), 7.77 (1H, d, J = 2 Hz), 8.48 (1H, d, J = 8 Hz).

- u) trans-2-(2-(1-(4-(2-(3-Amino)naphthyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline
- Mass spectrum (API*): Found 453 (MH*). C₂₀H₃₂N₄O requires 452.

¹H NMR (DMSO-d₆) δ : 0.8 - 1.40 (7H, m), 1.65 (4H, m), 2.28 (2H, m), 2.45 (2H, t, J = 6 Hz), 2.67 (2H, t, J = 6 Hz), 3.36 (2H, s), 3.55 (1H, m), 5.83 (2H, br s), 6.73 (1H, s),

6.92 (1H, m), 7.10 (2H, m), 7.29 (1H, d, J = 8 Hz), 7.32 (2H, m), 7.48 (1H, d, J = 8 Hz), 7.75 (1H, s), 8.14 (1H, d, J = 8 Hz).

v) trans-7-Cyano-2-(2-(1-(4-(2-thienyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4tetrahydroisoquinoline

Mass spectrum (API*): Found 394 (MH*). C,H,,N,OS requires 393.

¹H NMR (DMSO-d₆) δ: 1.00 - 1.60 (7H, m), 1.87 (4H, m), 2.52 (2H, m), 2.71 (2H, t, J = 6 Hz), 2.91 (2H, t, J = 6 Hz), 3.62 (2H, s), 3.73 (1H, m), 7.17 (1H, m), 7.35 (1H, d, J = 8 Hz), 7.62 (2H, m), 7.77 (1H, m), 7.83 (1H, m), 8.26 (1H, d, J = 7 Hz).

w) trans-7-Cyano-2-(2-(1-(4-(2-naphthyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 438 (MH*). C₂₀H₃₁N₃O requires 437.

15

30

35

40

¹H NMR (DMSO- d_6) δ : 1.10 - 1.70 (7H, m), 2.07 (4H, m), 2.63 (2H, m), 2.82 (2H, t, J = 6 Hz), 3.30 (2H, t, J = 6 Hz), 3.73 (2H, s), 3.97 (1H, m), 7.64 (1H, d, J = 8 Hz), 7.75 (4H, m), 8.10 (4H, m), 8.53 (1H, d, J = 8 Hz), 8.58 (1H, s).

- $x) \ \textit{trans-7-Cyano-2-(2-(1-(4-(3-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline} \\$
- 25 Mass spectrum (API'): Found 427 (MH'). C, H_wN_sO requires 426.

¹H NMR (DMSO- d_c) δ : 0.9 - 1.55 (7H, m), 1.82 (4H, m), 2.46 (2H, m), 2.64 (2H, t, J = 6 Hz), 2.84 (2H, t, J = 6 Hz), 3.55 (2H, s), 3.71 (1H, m), 7.08 (2H, m), 7.28 (1H, d, J = 8 Hz), 7.37 (1H, m), 7.56 (3H, m), 8.00 (1H, d, J = 2 Hz), 8.11 (1H, m), 11.5 (1H, br s).

y) *trans-(E)-7-*Cyano-2-(2-(1-(4-(3-phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 414 (MH*). C₂₇H₃₁N₃O requires 413.

¹H NMR (DMSO-d_c) δ : 1.00 - 1.60 (7H, m), 1.90 (4H, m), 2.54 (2H, m), 2.74 (2H, t, J = 6 Hz), 2.95 (2H, t, J = 6 Hz), 3.65 (2H, s), 3.67 (1H, m), 6.69 (1H, d, J = 16 Hz), 7.38 (1H, d, J = 8 Hz), 7.46 (4H, m), 7.65 (4H, m), 8.07 (1H, d, J = 8 Hz).

z) trans-6-Cyano-2-(2-(1-(4-(1-naphthyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 438 (MH*). C₂₉H₃₁N₃O requires 437.

¹H NMR (DMSO- d_o) δ : 1.08 (2H, m), 1.30 (3H, m), 1.47 (2H, m), 1.83 (2H, m), 1.97 (2H, m), 2.52 (2H, m), 2.67 (2H, m), 2.86 (2H, m), 3.63 (2H, s), 3.81 (1H, m), 7.30 (1H, d, J = 8 Hz), 7.54 (6H, m), 7.99 (2H, m), 8.17 (1H, m), 8.42 (1H, d, J = 8 Hz).

5

- a1) trans-2-(2-(1-(4-(2-Benzo[b]thienyl)carboxamido)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline
- Mass spectrum (API*): Found 444 (MH*). C₂₇H₂₆N₃OS requires 443.

10

- ¹H NMR (DMSO- d_c) δ : 0.85 (2H, m), 0.99 1.33 (5H, m), 1.66 (4H, m), 2.28 (2H, m), 2.47 (2H, m), 2.66 (2H, m), 3.43 (2H, s), 3.64 (1H, m), 7.09 (1H, d, J = 8 Hz), 7.26 (2H, m), 7.39 (2H, m), 7.74 (1H, m), 7.84 (1H, m), 7.94 (1H, s), 8.35 (1H, d, J = 8 Hz).
- b1) trans-6-Cyano-2-(2-(1-(4-(5-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline
 - Mass spectrum (API*): Found 427 (MH*). C₂₇H₃₀N₄O requires 426.
- ¹H NMR (DMSO-d_e) δ: 0.85 (2H, m), 1.01 1.29 (5H, m), 1.58 (4H, m), 2.27 (2H, m), 2.44 (2H, m), 2.63 (2H, m), 3.40 (2H, s), 3.54 (1H, m), 6.30 (1H, d, J = 3 Hz), 7.08 (1H, d, J = 8 Hz), 7.18 (2H, m), 7.38 (3H, m), 7.82 (1H, d, J = 8 Hz), 7.90 (1H, s), 11.11 (1H, br s).
- 25 c1) trans-6-Cyano-2-(2-(1-(4-(6-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline
 - Mass spectrum (API*): Found 427 (MH*). C, H, N, O requires 426.
- 30 H NMR (DMSO-d_c) δ: 0.87 (2H, m), 1.02 1.31 (5H, m), 1.63 (4H, m), 2.27 (2H, m), 2.45 (2H, m), 2.64 (2H, m), 3.41 (2H, s), 3.57 (1H, m), 6.26 (1H, d, J = 3 Hz), 7.08 (1H, d, J = 8 Hz), 7.33 (5H, m), 7.73 (1H, s), 7.88 (1H, d, J = 8 Hz), 11.16 (1H, br s).
- d1) trans-6-Cyano-2-(2-(1-(4-(2-thieno[3,2-b]thiophenyl)carboxamido)cyclohexyl)ethyl-1,2,3,4-tetrahydroisoquinoline
 - Mass spectrum (API*): Found 450 (MH*). C₂₅H₂₇N₃OS₂ requires 449.
- ¹H NMR (DMSO-d_c) δ: 0.88 (2H, m), 1.06 1.34 (5H, m), 1.67 (4H, m), 2.34 (2H, m), 40 (2H, m), 2.68 (2H, m), 3.45 (2H, s), 2.56 (1H, m), 7.12 (1H, d, J = 8 Hz), 7.32 (1H, d, J = 5 Hz), 7.41 (2H, m), 7.67 (1H, d, J = 5 Hz), 7.95 (1H, s), 8.20 (1H, d, J = 8 Hz).
 - e1) trans-6-Cyano-2-(2-(1-(4-(3,4-methylenedioxy)benzamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoguinoline

Mass spectrum (API*): Found 432 (MH*). C_xH_xN₃O₃ requires 431.

¹H NMR (DMSO-d₆) δ: 1.00 (2H, m), 1.08 - 1.47 (5H, m), 1.78 (4H, m), 2.47 (2H, m), 2.62 (2H, m), 2.81 (2H, m), 3.57 (2H, s), 3.68 (1H, m), 6.05 (2H, s), 6.94 (1H, d, J = 8 Hz), 7.25 (1H, d, J = 8 Hz), 7.38 (2H, m), 7.56 (2H, m), 7.99 (1H, d, J = 8 Hz).

f1) trans-2-(2-(1-(4-(2-Benzofuranyl)carboxamido)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API'): Found 428 (MH'). C₂₇H₂₉N₃O₂ requires 427.

10

25

30

¹H NMR (DMSO-d_s) δ: 0.84 (2H, m), 1.02 - 1.32 (5H, m), 1.61 (4H, m), 2.30 (2H, m), 2.46 (2H, m), 2.63 (2H, m), 3.42 (2H, s), 3.55 (1H, m), 7.11 (2H, m), 7.26 (1H, m), 7.39 (4H, m), 7.56 (1H, d, J = 8 Hz), 8.30 (1H, d, J = 8 Hz).

- g1) trans-(E)-6-Cyano-2-(2-(1-(4-(3-(5-(1,2-dihydro-2-oxo)-(3H)-indolyl)propenoyl)amino)cyclohexyl)ethyl-1,2,3,4-tetrahydroisoquinoline
- 20 Mass spectrum (API*): Found 469 (MH*). C₂₉H₃₂N₄O₃ requires 468.

¹H NMR (DMSO- d_c) δ : 0.83 - 1.18 (5H, m), 1.33 (2H, m), 1.68 (4H, m), 2.38 (2H, m), 2.53 (2H, m), 2.73 (2H, m), 3.40 (2H, s), 3.49 (3H, m), 6.33 (1H, d, J = 16 Hz), 6.66 (2H, m), 7.21 (4H, m), 7.48 (2H, m), 7.75 (1H, m).

h1) trans-(E)-6-Cyano-2-(2-(1-(4-(3-phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 414 (MH*). C₂₇H₃₁N₃O requires 413.

¹H NMR (DMSO-d_e) δ : 0.83 - 1.22 (5H, m), 1.34 (2H, m), 1.70 (4H, m), 2.38 (2H, m), 2.54 (2H, m), 2.73 (2H, m), 3.50 (3H, m), 6.49 (1H, d, J = 16 Hz), 7.17 (1H, d, J = 8 Hz), 7.29 (4H, m), 7.45 (4H, m), 7.88 (1H, d, J = 8 Hz).

35 i1) trans-(E)-6-Cyano-2-(2-(1-(4-(3-(4-ethylsulfonyl)phenylpropenoyl)-amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 492 (MH*). C₂₈H₃₃N₃O₃S requires 491.

¹H NMR (DMSO-d_e) δ: 0.86 - 1.26 (5H, m), 1.37 (2H, m), 1.73 (4H, m), 2.40 (2H, m), 2.56 (2H, m), 2.76 (2H, m), 3.16 (3H, s), 3.52 (3H, m), 6.68 (1H, d, J = 16 Hz), 7.20 (1H, d, J = 8 Hz), 7.40 (1H, d, J = 16 Hz), 7.49 (2H, m), 7.72 (2H, d, J = 8 Hz), 7.87 (2H, d, J = 8 Hz), 8.04 (1H, d, J = 8 Hz).

j1) trans-(E)-2-(2-(1-(4-(3-(4-Acetyl)phenylpropenoyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 456 (MH*). C₂H₃₁N₄O₃ requires 455.

5

¹H NMR (DMSO- d_6) δ : 0.90 - 1.28 (5H, m), 1.39 (2H, m), 1.76 (4H, m), 2.42 (2H, m), 2.53 (3H, s), 2.59 (2H, m), 2.78 (2H, m), 3.54 (3H, m), 6.67 (1H, d, J = 16 Hz), 7.22 (1H, d, J = 8 Hz), 7.40 (1H, d, J = 16 Hz), 7.52 (2H, m), 7.62 (2H, d, J = 8 Hz), 7.92 (2H, d, J = 8 Hz), 8.01 (1H, d, J = 8 Hz).

10

k1) *trans-(E)-6-*Cyano-2-(2-(1-(4-(3-(3,4-methylenedioxy)phenylpropenoyl)-amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 458 (MH*). C₂₈H₃₁N₃O₃ requires 457.

15

40

¹H NMR (DMSO- d_6) δ : 0.94 - 1.26 (5H, m), 1.44 (2H, m), 1.81 (4H, m), 2.49 (2H, m), 2.65 (2H, m), 2.85 (2H, m), 3.61 (3H, m), 6.07 (2H, s), 6.44 (1H, d, J = 16 Hz), 6.95 (1H, d, J = 8 Hz), 7.09 (2H, m), 7.31 (2H, m), 7.58 (2H, m), 7.87 (1H, d, J = 8 Hz).

20 l1) trans-(E)-6-Cyano-2-(2-(1-(4-(3-(3-thienyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 420 (MH*). C₂₅H₂₅N₃OS requires 419.

- ¹H NMR (DMSO- d_c) δ : 0.92 1.25 (5H, m), 1.42 (2H, m), 1.80 (4H, m), 2.48 (2H, m), 2.64 (2H, m), 2.83 (2H, m), 3.59 (3H, m), 6.40 (1H, d, J = 16 Hz), 7.29 (2H, m), 7.39 (1H, d, J = 16 Hz), 7.50 (3H, m), 7.77 (1H, d, J = 3 Hz), 7.91 (1H, d, J = 8 Hz).
- m1) trans-(E)-6-Cyano-2-(2-(1-(4-(3-(2-thienyl)propenoyl)amino)cyclohexyl)ethyl)-30 1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 420 (MH*). C₂₅H₂₉N₃OS requires 419.

- ¹H NMR (DMSO-d_c) δ: 0.83 1.16 (5H, m), 1.31 (2H, m), 1.69 (4H, m), 2.37 (2H, m), 2.53 (2H, m), 2.73 (2H, m), 3.49 (3H, m), 6.24 (1H, d, J = 16 Hz), 6.99 (1H, m), 7.17 (1H, d, J = 8 Hz), 7.25 (1H, d, J = 3 Hz), 7.44 (4H, m), 7.87 (1H, d, J = 8 Hz).
 - n1) trans-(E)-2-(2-(1-(4-(3-(2-Acetyl)phenylpropenoyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 471 (MH*). C₂₀H₁₁N₄O₂ requires 470.

¹H NMR (DMSO- d_e) δ : 0.79 - 1.14 (5H, m), 1.30 (2H, m), 1.64 (4H, m), 1.92 (3H, s), 2.31 (2H, m), 2.50 (2H, m), 2.69 (2H, m), 3.45 (3H, m) 6.39 (1H, d, J = 16 Hz), 7.03 - 7.30 (4H, m), 7.42 (4H, m), 7.87 (1H, d, J = 8 Hz), 9.61 (1H, s).

- 5 o1) trans-(E)-2-(2-(1-(4-(3-(4-Acetyl)phenylpropenoyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoguinoline
 - Mass spectrum (API*): Found 471 (MH*). C₂₆H₁₄N₂O₂ requires 470.
- ¹H NMR (DMSO-d₆) δ: 0.82 (5H, m), 1.33 (2H, m), 1.69 (4H, m), 1.95 (3H, s), 2.37 (2H, m), 2.54 (2H, m), 2.73 (2H, m), 3.49 (3H, m), 6.37 (1H, d, J = 16 Hz), 7.20 (2H, m), 7.36 (2H, m), 7.48 (4H, m), 7.83 (1H, d, J = 8 Hz), 10.02 (1H, s).
- p1) trans-(E)-6-Cyano-2-(2-(1-(4-(3-(4-methoxy)phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline
 - Mass spectrum (API*): Found 444 (MH*). C₂H₁₁N₂O₃, requires 443.
- ¹H NMR (DMSO-d₆) δ: 1.12 1.43 (5H, m), 1.61 (2H, m), 1.98 (4H, m), 2.67 (2H, m), 2.71 (2H, m), 3.02 (2H, m), 3.78 (3H, m), 3.96 (3H, s), 6.62 (1H, d, J = 16 Hz), 7.14 (2H, d, J = 8 Hz), 7.50 (2H, m), 7.67 (2H, d, J = 8 Hz), 7.75 (2H, m), 8.07 (1H, d, J = 8 Hz).
- q1) trans-(E)-2-(2-(1-(4-(3-(4-Chloro)phenylpropenoyl)amino)cyclohexyl)ethyl)-6cyano-1,2,3,4-tetrahydroisoquinoline
 - Mass spectrum (API'): Found 448 (MH'). C₂₇H₃₀ClN₃O requires 447.
- ¹H NMR (DMSO-d₆) δ: 0.76 1.09 (5H, m), 1.26 (2H, m), 1.63 (4H, m), 2.30 (2H, m), 2.46 (2H, m), 2.66 (2H, m), 3.42 (3H, m), 6.43 (1H, d, J = 16 Hz), 7.09 (1H, d, J = 8 Hz), 7.2 (1H, d, J = 16 Hz), 7.29 (2H, m), 7.37 (4H, m), 7.82 (1H, d, J = 8 Hz).
 - r1) trans-(E)-6-Cyano-2-(2-(1-(4-(3-(3-methylaminocarbonyl)phenylpropenoyl)-amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline
 - Mass spectrum (API*): Found 471 (MH*). C₂₉H_wN₄O₂ requires 470.

35

- ¹H NMR (DMSO-d_c) δ: 1.09 1.38 (5H, m), 1.58 (2H, m), 1.96 (4H, m), 2.64 (2H, m), 2.79 (2H, m), 2.97 (5H, m), 3.75 (3H, m), 6.85 (1H, d, J = 16 Hz), 7.43 (1H, d, J = 8 Hz), 7.58 (1H, d, J = 16 Hz), 7.69 (3H, m), 7.82 (1H, m), 7.95 (1H, m), 8.20 (2H, m), 8.71 (1H, m).
 - s1) trans-(E)-6-Cyano-2-(2-(1-(4-(3-(4-methylaminocarbonyl)phenylpropenoyl)-amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoguinoline

Mass spectrum (API'): Found 471 (MH'). C₂H₄N₄O₃ requires 470.

'H NMR (DMSO- d_c) δ : 0.79 - 1.10 (5H, m), 1.25 (2H, m), 1.62 (4H, m), 2.28 (2H, m), 2.45 (2H, m), 2.61 (5H, m), 3.40 (3H, m), 6.49 (1H, d, J = 16 Hz), 7.08 (1H, d, J = 8 Hz), 7.23 (1H, d, J = 16 Hz), 7.40 (4H, m), 7.67 (2H, d, J = 8 Hz), 7.85 (1H, m), 8.29 (1H, m).

t1) trans-7-Cyano-2-(2-(1-(4-(6-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-10 tetrahydroisoquinoline

Mass spectrum (API*): Found 427.2 (MH*). C₂H₂N₄O requires 426.

¹H NMR (CDCl₃ + DMSO-d₆) δ: 1.00 - 1.40 (5H, m), 1.40 - 1.60 (2H, m), 1.85 (2H, m), 2.06 (2H, m), 2.58 (2H, m), 2.74 (2H, t, J = 6 Hz), 2.95 (2H, m), 3.62 (2H, s), 3.91 (1H, m), 6.49 (1H, s), 6.95 (1H, d, J = 5.5 Hz), 7.22 (1H, d, J = 8 Hz), 7.31 (2H, m), 7.40 (1H, d, J = 8Hz), 7.47 (1H, d, J = 8 Hz), 7.58 (1H, d, J = 8 Hz), 7.99 (1H, s), 10.64 (1H, s).

u1) trans-2-(2-(1-(4-(2-(5-Chloro)indolyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 461.2 (MH*). C₂₁H₂₀N₄35ClO requires 460.

¹H NMR (CDCl₃ + DMSO-d_c) δ: 1.12 (2H, m), 1.37 (3H, m), 1.51 (2H, m), 1.88 (2H, m), 2.01 (2H, m), 2.58 (2H, m, partially obscured by DMSO), 2.75 (2H, t, J = 6 Hz), 2.96 (2H, t, J = 6 Hz), 3.63 (2H, s), 3.91 (1H, m), 7.06 (1H, d, J = 2 Hz), 7.11 (1H, dd, J = 9 and 2 Hz), 7.24 (1H, d, J = 8 Hz), 7.40 (2H, m), 7.55 (1H, d, J = 2 Hz), 7.76 (2H, m).

v1) trans-7-Cyano-2-(2-(1-(4-(3-thienyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-30 tetrahydroisoquinoline

Mass spectrum (API*): Found 394 (MH*). C₂₃H₂₇N₃OS requires 393.

¹H NMR (CDCl₃) δ: 1.10 - 1.40 (5H, m), 1.53 (2H, m), 1.86 (2H, m), 2.08 (2H, m), 2.55 (2H, t, J = 8 Hz), 2.73 (2H, J = 6 Hz), 2.95 (2H, t, J = 6 Hz), 3.62 (2H, s), 3.92 (1H, m), 5.73 (1H, d, J = 8 Hz), 7.19 (1H, d, J = 8 Hz), 7.34 (3H, m), 7.40 (1H, dd, J = 8, 1.5 Hz), 7.82 (1H, dd, J = 3, 1.5 Hz).

w1) trans-2-(2-(1-(4-(2-(3-Chloro)benzo[b]thienyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 478 (MH*). C₂₇H₂₈N₃ ClOS requires 477.

¹H NMR (CDCl₃) δ: 1.10 - 1.40 (5H, m), 1.5 - 1.7 (2H, m), 1.87 (2H, m), 2.18 (2H, m), 2.56 (2H, m), 2.74 (2H, t, J = 6 Hz), 2.94 (2H, t, J = 6 Hz), 3.62 (2H, s), 3.96 (1H, m), 6.97 (1H, d, J = 8 Hz), 7.19 (1H, d, J = 8 Hz), 7.33 (1H, s), 7.40 (1H, d, J = 8 Hz), 7.50 (2H, m), 7.85 (2H, m).

5

x1) trans-7-Cyano-2-(2-(1-(4-(6-quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 439 (MH*). C₂₂H₃₀N₄O requires 438.

10

¹H NMR (DMSO-d_s) δ : 1.10 - 1.30 (2H, m), 1.30 - 1.60 (5H, m), 1.80 - 2.00 (4H, m), 2.60 (2H, m), 2.75 (2H, m), 2.96 (2H, m), 3.66 (2H, s), 3.89 (1H, m), 7.39 (1H, d, J = 8 Hz), 7.6 (3H, m), 8.15 (1H, d, J = 8 Hz), 8.26 (1H, dd, J = 8, 2 Hz), 8.6 (3H, m), 9.1 (1H, m).

15

y1) trans-(E)-7-Cyano-2-(2-(1-(4-(3-(2-(3,4-dimethyl)thieno[2,3-b]thiophenyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 504 (MH*). C₂₀H₃₃N₃OS₂ requires 503.

20

25

35

¹H NMR (CDCl₃) δ : 1.10 - 1.40 (5H, m), 1.45 - 1.55 (2H, m), 1.84 (2H, m), 2.04 (2H, m), 2.48 (3H, s), 2.54 (3H, s), 2.40 - 2.60 (2H, m), 2.73 (2H, t, J = 6 Hz), 2.93 (2H, t, J = 6 Hz), 3.61 (2H, s), 3.86 (1H, m), 5.36 (1H, d, J = 8 Hz), 6.04 (1H, d, J = 15 Hz), 6.87 (1H, s), 7.19 (1H, d, J = 8 Hz), 7.33 (1H, s), 7.39 (1H, d, J = 8 Hz), 7.88 (1H, d, J = 15 Hz).

- z1) trans-(E)-7-Cyano-2-(2-(1-(4-(3-(3-methylaminocarbonyl)phenylpropenoyl)amino)cyclohexyl)ethyl-1,2,3,4-tetrahydroisoquinoline
- 30 Mass spectrum (API*): Found 471 (MH*). C₂H_uN₄O₃, requires 470.

¹H NMR (CDCl₃) δ : 1.20 (5H, m), 1.50 (2H, m), 1.70 (2H, m), 2.04 (2H, m), 2.51 (2H, m), 2.73 (2H, t, J = 6 Hz), 2.95 (2H, t, J = 6 Hz), 3.02 (3H, d, J = 5 Hz), 3.61 (2H, s), 3.86 (1H, m), 5.75 (1H, d, J = 8 Hz), 6.41 (1H, d, J = 16 Hz), 6.44 (1H, m), 7.18 (1H, d, J = 8 Hz), 7.40 (3H, m), 7.55 (2H, m), 7.67 (1H, d, J = 8 Hz), 7.91 (1H, s).

- a2) trans-(E)-7-Cyano-2-(2-(1-(4-(3-(3-methoxy)phenylpropenoyl)amino)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline
- 40 Mass spectrum (API*): Found 444 (MH*). C₂₈H₃₃N₃O₂ requires 443.

¹H NMR (CDCl₃) δ : 1.00 - 1.40 (5H, m), 1.50 (2H, m), 1.84 (2H, m), 2.05 (2H, m), 2.54 (2H, m), 2.73 (2H, t, J = 6 Hz), 2.95 (2H, t, J = 6 Hz), 3.61 (2H, s), 3.82 (3H, s), 3.85 (1H, m), 5.49 (1H, d, J = 8 Hz), 6.34 (1H, d, J = 16 Hz), 6.89 (1H, dd, J = 8, 2 Hz),

7.01 (1H, m), 7.08 (1H, d, J = 8 Hz), 7.19 (1H, d, J = 8 Hz), 7.28 (2H, m), 7.40 (1H, m), 7.57 (1H, d, J = 15 Hz).

b2) *trans-(E)-2-(2-(1-(4-(3-(3-Acetyl)phenylpropenoyl)amino)cyclohexyl)ethyl)-7-* cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 456 (MH*). C₂₆H₁₁N₂O₃ requires 455.

¹H NMR (CDCl₃) δ: 1.20 (5H, m), 1.51 (2H, m), 1.86 (2H, m), 2.05 (2H, m), 2.54 (2H, m), 2.62 (3H, s), 2.73 (2H, t, J = 6 Hz), 2.93 (2H, t, J = 6 Hz), 3.61 (2H, s), 3.88 (1H, m), 5.51 (1H, d, J = 8 Hz), 6.44 (1H, d, J = 16 Hz), 7.18 (1H, d, J = 8 Hz), 7.32 (1H, s), 7.43 (2H, m), 7.64 (2H, m), 7.91 (1H, d, J = 8 Hz), 8.09 (1H, s).

c2) trans-(E)-2-(2-(1-(4-(3-(3-Chloro)phenylpropenoyl)amino)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 448 (MH*). C₂₇H₁₀³⁵ClN₃O requires 447.

¹H NMR (CDCl₃) δ: 1.15 (5H, m), 1.50 (2H, m), 1.85 (2H, m), 2.05 (2H, m), 2.53 (2H, m), 2.73 (2H, t, J = 6 Hz), 2.95 (2H, t, J = 6 Hz), 3.61 (2H, s), 4.10 (1H, m), 5.53 (1H, d, J = 8 Hz), 6.36 (1H, d, J = 16 Hz), 7.18 (1H, d, J = 8 Hz), 7.35 (5H, m), 7.48 (1H, s), 7.54 (1H, d, J = 16 Hz).

d2) *trans-(E)-7-*Cyano-2-(2-(1-(4-(3-(3-thienyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 420 (MH*). C₂₅H₂₆N₃OS requires 419.

¹H NMR (CDCl₃) δ: 1.15 (5H, m), 1.50 (2H, m), 1.84 (2H, m), 2.05 (2H, m), 2.53 (2H, m), 2.72 (2H, t, J = 6 Hz), 2.95 (2H, t, J = 6 Hz), 3.61 (2H, s), 4.12 (1H, m), 5.47 (1H, d, J = 8 Hz), 6.19 (1H, d, J = 16 Hz), 7.19 (1H, d, J = 6 Hz), 7.28 (3H, m), 7.36 (2H, m), 7.59 (1H, d, J = 16 Hz).

e2) trans-(E)-2-(2-(1-(4-(3-(2-Acetamido)phenylpropenoyl)amino)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 471 (MH*). C₂₀H₄₄N₄O₅ requires 470.

¹H NMR (CDCl₃) δ: 1.00 - 1.40 (5H, m), 1.52 (2H, m), 1.85 (4H, m), 2.04 (2H, m), 2.23 (3H, s), 2.54 (2H, m), 2.74 (2H, m), 2.95 (2H, m), 3.61 (2H, s), 3.82 (1H, m), 5.65 (1H, d, J = 6 Hz), 6.28 (1H, d, J = 16 Hz), 7.21 (2H, m), 7.35 (3H, m), 7.77 (2H, m).

f2) trans-2-(2-(1-(4-Benzamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 388 (MH*). C₂₁H₂₀N₃O requires 387.

¹H NMR (CDCl₃) δ : 1.00 - 1.45 (5H, m), 1.55 (2H, m), 1.85 (2H, m), 2.10 (2H, m), 2.55 (2H, m), 2.74 (2H, t, J = 6 Hz), 2.95 (2H, t, J = 6 Hz), 3.61 (2H, s), 4.11 (1H, m), 5.93 (1H, d, J = 8 Hz), 7.19 (1H, d, J = 8 Hz), 7.33 (1H, s), 7.40 (4H, m), 7.75 (2H, m).

g2) trans-(E)-7-Cyano-2-(2-(1-(4-(3-(2-naphthyl)propenoyl)amino)cyclohexyl)-ethyl)-1,2,3,4-tetrahydroisoquinoline

10

Mass spectrum (API*): Found 464 (MH*). C₃₁H₃₃N₃O requires 463.

¹H NMR (CDCl₃) δ: 1.10 - 1.40 (5H, m), 1.50 (2H, m), 1.86 (2H, m), 2.08 (2H, m), 2.54 (2H, m), 2.74 (2H, t, J = 6 Hz), 2.94 (2H, t, J = 6 Hz), 3.62 (2H, s), 3.91 (1H, m), 5.51 (1H, d, J = 8 Hz), 6.47 (1H, d, J = 16 Hz), 7.18 (1H, d, J = 8 Hz), 7.32 (1H, s), 7.40 (1H, d, J = 8 Hz), 7.50 (2H, m), 7.36 (1H, d, J = 8 Hz), 7.80 (5H, m).

h2) trans-6-Cyano-2-(2-(1-(4-(2-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

20

Mass spectrum (API*): Found 427 (MH*). C₂₇H₃₀N₄O requires 426.

¹H NMR (DMSO-d_e) δ: 0.88 (2H, m), 1.03 - 1.32 (5H, m), 1.60 (4H, m), 2.29 (2H, m), 2.46 (2H, m), 2.65 (2H, m), 3.42 (2H, m), 3.56 (1H, m), 6.82 (1H, m), 6.95 (2H, m), 7.09 (1H, d, J = 8 Hz), 7.23 (1H, d, J = 8 Hz), 7.38 (3H, m), 8.01 (1H, d, J = 8 Hz), 11.34 (1H, s).

i2) trans-(E)-7-Cyano-2-(2-(1-(4-(3-(2-thienyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoguinoline

30

Mass spectrum (API*): Found 420 (MH*). C₂₅H₂₆N₃OS requires 419.

¹H NMR (CDCl₃) δ: 1.04 - 1.44 (5H, m), 1.54 (2H, m), 1.84 (2H, m), 2.06 (2H, m), 2.54 (2H, m), 2.74 (2H, m), 2.94 (2H, m), 3.63 (3H, s), 3.86 (1H, m), 5.38 (1H, d, J = 10 Hz), 6.15 (1H, d, J = 16 Hz), 7.04 (1H, m), 7.20 (2H, m), 7.30 (2H, m), 7.41 (1H, dd, J = 9, 1 Hz), 7.75 (1H, d, J = 16 Hz).

j2) trans-2-(2-(1-(4-(2-Benzo[b]thienyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline

40

Mass spectrum (API*): Found 444 (MH*). C₂₇H₂₆N₃OS requires 443.

¹H NMR (CDCl₃) δ : 1.05 - 1.50 (5H, m), 1.53 (2H, m), 1.85 (2H, m), 2.04 (2H, m), 2.55 (2H, m), 2.75 (2H, m), 2.96 (2H, m), 3.64 (2H, s), 3.95 (1H, m), 5.94 (1H, d, J = 10 Hz), 7.13 - 7.52 (6H, m), 7.84 (2H, m).

5 k2) trans-7-Cyano-2-(2-(1-(4-(6-(pyrrolo[3,2-c]pyridyl)carboxamido)cyclohexyl)-ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API'): Found 428 (MH'). C₂₆H₂₆N₄O requires 427.

- ¹H NMR (CDCl₃ + CD₃OD) δ: 1.04 1.55 (5H, m), 1.56 (2H, m), 1.89 (2H, m), 2.11 (2H, m), 2.59 (2H, m), 2.78 (2H, t, J = 7 Hz), 2.97 (2H, m), 3.65 (2H, s), 3.90 (1H, m), 7.09 (1H, s), 7.25 (1H, d, J = 9 Hz), 7.40 (3H, m), 8.25 (1H, d, J = 6 Hz), 8.86 (1H, s).
- 12) trans-(E)-2-(2-(1-(4-(3-(4-Chloro)phenylpropenoyl)amino)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API'): Found 448 (MH'). C₂₇H₃₀SCIN₃O requires 447.

- ¹H NMR (CDCl₃ + CD₃OD) δ: 1.05 1.43 (5H, m), 1.53 (2H, m), 1.83 (2H, m), 2.05 (2H, m), 2.55 (2H, m), 2.75 (2H, t, J = 7 Hz), 2.98 (2H, m), 3.64 (2H, s), 3.84 (1H, m), 6.13 (1H, m), 6.38 (1H, d, J = 16 Hz), 7.24 (1H, d, J = 9 Hz), 7.34 (4H, m), 7.42 (3H, m), 7.55 (1H, d, J = 16 Hz).
- m2) trans-(E)-7-Cyano-2-(2-(1-(4-(3-(3,4-methylenedioxy)phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 458 (MH*). C₂₂H₃₁N₃O₃ requires 457.

- ¹H NMR (CDCl₃) δ: 1.04 1.42 (5H, m), 1.51 (2H, m), 1.85 (2H, m), 2.09 (2H, m), 2.55 (2H, m), 2.75 (2H, m), 2.96 (2H, m), 3.62 (2H, s), 3.85 (1H, m), 5.50 (1H, d, J = 10 Hz), 5.99 (2H, s), 6.19 (1H, d, J = 16 Hz), 6.79 (1H, d, J = 9 Hz), 6.98 (2H, m), 7.20 (1H, d, J = 9 Hz), 7.34 (1H, s), 7.41 (1H, d, J = 9 Hz), 7.54 (1H, d, J = 16 Hz).
- n2) trans-(E)-7-Cyano-2-(2-(1-(4-(3-(5-(1,2-dihydro-2-oxo)-(3H)-indolyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 469 (MH*). $C_{20}H_{32}N_4O_2$ requires 468.

- ¹H NMR (DMSO-d_c) δ: 0.90 1.38 (5H, m), 1.42 (2H, m), 1.82 (4H, m), 2.47 (2H, m), 40 2.65 (2H, m), 2.86 (2H, m), 3.45 3.71 (5H, m), 6.46 (1H, d, J = 16 Hz), 6.85 (1H, d, J = 10 Hz), 7.25 7.47 (3H, m), 7.59 (2H, m), 7.87 (2H, d, J = 9 Hz), 10.61 (1H, s).
 - o2) trans-(E)-2-(2-(1-(4-(3-(3-Acetamido)phenylpropenoyl)amino)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API'): Found 471 (MH'). C₂₂H₂₄N₄O₂ requires 470.

¹H NMR (CDCl₃ + CD₃OD) δ: 1.04 - 1.45 (5H, m), 1.56 (2H, m), 1.85 (2H, m), 2.06 (2H, m), 2.18 (3H, s), 2.59 (2H, m), 2.81 (2H, m), 2.99 (2H, m), 3.66 (2H, s), 3.80 (1H, m), 6.47 (1H, d, J = 16 Hz), 6.95 (1H, m), 7.15 - 7.60 (7H, m), 7.80 (1H, s), 9.24 (1H, br s).

p2) trans-2-(2-(1-(4-(2-Benzo[b]furanyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 428 (MH*). C₂₇H₂₉N₃O₂ requires 427.

¹H NMR (CDCl₃) δ: 1.05 - 1.46 (5H, m), 1.55 (2H, m), 1.89 (2H, m), 2.14 (2H, m), 2.57 (2H, m), 2.75 (2H, t, J = 7 Hz), 2.95 (2H, m), 3.63 (2H, s), 2.95 (1H, m), 6.45 (1H, d, J = 10 Hz), 7.20 (1H, d, J = 9 Hz), 7.25 - 7.55 (6H, m), 7.67 (1H, d, J = 9 Hz).

q2) trans-(E)-2-(2-(1-(4-(3-(4-Acetyl)phenylpropenoyl)amino)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 456 (MH*). C₂₅H₃₃N₃O₂ requires 455.

20

30

40

¹H NMR (DMSO-d₆) δ: 1.00 - 1.40 (5H, m), 1.50 - 1.60 (2H, m), 1.92 (4H, m), 2.60 (2H, m), 2.69 (3H, s), 2.75 (2H, m), 2.97 (2H, m), 3.66 (2H, s), 3.72 (1H, m), 6.83 (1H, d, J = 16 Hz), 7.40 (1H, d, J = 8 Hz), 7.55 (1H, d, J = 16 Hz), 7.66 (2H, m), 7.95 (2H, d, J = 8 Hz), 8.07 (2H, d, J = 8 Hz), 8.17 (1H, d, J = 8 Hz).

r2) trans-(E)-7-Cyano-2-(2-(1-(4-(3-(4-methylsulfonyl)phenylpropenoyl)amino)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 492 (MH*). C₂₈H₃₃N₃O₃S requires 491.

¹H NMR (DMSO-d_s) δ: 1.00 - 1.40 (5H, m), 1.50 - 1.60 (2H, m), 1.90 (4H, m), 2.60 (2H, m), 2.73 (2H, m), 2.95 (2H, m), 3.32 (3H, s), 3.66 (2H, s), 3.72 (1H, m), 6.84 (1H, d, J = 16 Hz), 7.39 (1H, d, J = 8 Hz), 7.56 (1H, d, J = 16 Hz), 7.66 (2H, m), 7.86 (2H, d, J = 8 Hz), 8.03 (2H, d, J = 8 Hz), 8.19 (1H, d, J = 8 Hz).

s2) trans-(E)-7-Cyano-2-(2-(1-(4-(4-(4-methoxy)phenylpropenoyl)amino)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 444 (MH*). C₂₂H₃₃N₃O₂ requires 443.

¹H NMR (DMSO-d_e) δ : 1.00 - 1.30 (5H, m), 1.50 (2H, m), 1.80 (4H, m), 2.60 (2H, m), 2.73 (2H, m), 2.94 (2H, m), 3.62 (2H, s), 3.68 (1H, m), 3.85 (3H, s), 6.51 (1H, d, J = 16

Hz), 7.04 (2H, d, J = 9 Hz), 7.38 (2H, m), 7.56 (2H, d, J = 9 Hz), 7.63 (2H, m) and 7.95 (1H, d, J = 8 Hz).

t2) trans-(E)-7-Cyano-2-(2-(1-(4-(3-(4-methylaminocarbonyl)phenylpropenoyl)-amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API'): Found 469 (MH'). C₂₀H₂₄N₄O₂ requires 470.

¹H NMR (CDCl₃ + DMSO-d₆) δ: 1.10 - 1.40 (5H, m), 1.60 (2H, m), 1.93 (4H, m), 2.63 (2H, m), 2.77 (2H, m), 2.90 (3H, s), 2.99 (2H, m), 3.68 (2H, s), 3.73 (1H, m), 6.79 (1H, d, J = 16 Hz), 7.43 (1H, d, J = 8 Hz, 7.48 (1H, d, J = 16 Hz), 7.68 (2H, m), 7.74 (2H, d, J = 8 Hz), 7.97 (2H, d, J = 8 Hz), 8.14 (1H, d, J = 8 Hz), 8.60 (1H, m).

u2) trans-7-Cyano-2-(2-(1-(4-(3-quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4tetrahydroisoquinoline

Mass spectrum (API*): Found 439 (MH*). C₂₂H₃₀N₄O requires 438.

¹H NMR (DMSO-d_c) δ: 1.10 - 1.30 (3H, m), 1.30 - 1.60 (4H, m), 1.80 - 2.10 (4H, m), 2.60 (2H, m), 2.72 (2H, m), 2.94 (2H, m), 3.63 (2H, s), 3.85 (1H, m), 7.37 (1H, d, J = 8 Hz), 7.62 (2H, m), 7.74 (1H, t, J = 7 Hz), 7.92 (1H, t, J = 7 Hz), 8.14 (2H, m), 8.65 (1H, m), 8.86 (1H, s), 9.31 (1H, d, J = 2 Hz).

v2) trans-2-(2-(1-(4-(5-Benzimidazolyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 428 (MH*). C₂₆H₃₉N₅O requires 427.

¹H NMR (DMSO-d_c) δ: 1.00 - 1.20 (2H, m), 1.30 - 1.60 (5H, m), 1.80 - 2.00 (4H, m), 2:60 (2H, m), 2.73 (2H, m), 2.95 (2H, m), 3.64 (2H, s), 3.84 (1H, m), 7.38 (1H, d, J = 8 Hz), 7.65 (3H, m), 7.79 (1H, dd, J = 8, 1.5 Hz), 8.21 (1H, s), 8.23 (1H, d, J = 9 Hz), 8.37 (1H, s).

w2) trans-7-Cyano-2-(2-(1-(4-(2-(3-methyl)indolyl)carboxamido)cyclohexyl)ethyl)-5 1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 441 (MH*). C₂₂H₃₂N₄O requires 440.

³H NMR (DMSO-d_c) δ: 1.15 - 1.35 (2H, m), 1.35 - 1.65 (5H, m), 1.96 (2H, m), 2.05 (2H, m), 2.60 (5H, m), 2.81 (2H, m), 3.11 (2H, m), 3.69 (2H, s), 3.88 (1H, m), 7.05 (1H, t, J = 7 Hz), 7.31 (1H, dt, J = 7, 1 Hz), 7.43 (1H, d, J = 8 Hz), 7.54 (1H, d, J = 8 Hz), 7.69 (3H, m), 7.82 (1H, d, J = 8 Hz), 11.20 (1H, s).

x2) trans-7-Cyano-2-(2-(1-(4-(5-(2-methyl)benzimidazoyl)carboxamido)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API'): Found 442 (MH'). C₁₇H₁₁N₅O requires 441.

¹H NMR (CDCl₃) δ: 1.13 - 1.30 (5H, m), 1.52 (2H, m), 1.88 (2H, m), 2.15 (2H, m), 2.56 (2H, m), 2.62 (3H, s), 2.74 (2H, m), 2.95 (2H, m), 3.61 (2H, s), 3.97 (1H, br s), 6.13 (1H, m), 7.19 (1H, d, J = 8 Hz), 7.26 (1H, s), 7.33 (1H, s), 7.40 (1H, d, J = 8 Hz), 7.68

(2H, br s), 8.06 (1H, s).

y2) trans-6-Cyano-2-(2-(1-(4-(5-(2-methyl)benzimidazolyl)carboxamido)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 442 (MH*). C₂₁H₃₁N₅O requires 441.

 $z2) \ \textit{trans-2-} (2-(1-(4-(2-(5-Acetyl)indolyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline$

Mass spectrum (API*): Found 469 (MH*). C₂₂H₃₂N₄O₂ requires 468.

20

¹H NMR (DMSO- d_e) δ : 1.10 - 1.30 (2H, m), 1.30 - 1.70 (5H, m), 2.10 (4H, m), 2.55 (2H, m), 2.74 (3H, s), 2.81 (2H, m), 3.01 (2H, m), 3.71 (2H, s), 3.89 (1H, m), 7.43 (2H, m), 7.60 (1H, d, J = 8 Hz), 7.69 (2H, m), 7.93 (1H, dd, J = 2, 8 Hz), 8.49 (2H, m), 12.03 (1H, br s).

25

5

10

15

a3) trans-2-(2-(1-(4-(2-(6-Acetyl)indolyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 469 (MH*). C₂₅H₃₂N₄O₃ requires 468.

30

35

¹H NMR (CDCl₃): δ : 1.10 - 1.40 (5H, m), 1.55 (2H, m), 1.90 (2H, m), 2.20 (2H, m), 2.55 (2H, m), 2.67 (3H, s), 2.75 (2H, t, J = 6 Hz), 2.96 (2H, t, J = 6 Hz), 3.62 (2H, s), 4.05 (1H, m), 6.13 (1H, d, J = 8 Hz), 6.86 (1H, d, J = 2 Hz), 7.19 (1H, d, J = 8 Hz), 7.33 (1H, s), 7.40 (1H, dd, J = 2, 8 Hz), 7.67 (1H, m), 7.74 (1H, m), 8.13 (1H, s), 10.20 (1H, br s).

- b3) trans-2-(2-(1-(4-(2-(6-Acetyl)indolyl)carboxamido)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline
- 40 Mass spectrum (API*): Found 469 (MH*). C₂₉H₃₂N₄O₂ requires 468.

¹H NMR (DMSO- d_c) δ : 0.80 - 1.50 (7H, m), 1.78 (4H, m), 2.44 (2H, m), 2.53 (3H, s), 2.58 (2H, t, J = 6 Hz), 2.76 (2H, m), 3.54 (2H, s), 3.69 (1H, m), 6.00 - 8.00 (1H, br s),

7.14 (1H, s), 7.21 (1H, d, J = 8 Hz), 7.40 - 7.70 (4H, m), 7.99 (1H, s), 8.31 (1H, d, J = 8 Hz).

c3) trans-7-Cyano-2-(2-(1-(4-(2-(6-methylsulfonyl)indolyl)carboxamido)-cyclohexyl)ethyl-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 505 (MH*). C₂H₁,N₄O₅S requires 504.

¹H NMR (DMSO- d_6) δ : 1.05 - 1.65 (7H, m), 1.90 (4H, m), 2.55 (2H, m), 2.75 (2H, t, J = 6 Hz), 2.97 (2H, t, J = 6 Hz), 3.29 (3H, s), 3.66 (2H, s), 3.86 (1H, m), 7.40 (2H, m), 7.65 (3H, m), 7.96 (1H, d, J = 8 Hz), 8.08 (1H, s), 8.55 (1H, d, J = 8 Hz), 12.32 (1H, br s).

- d3) trans-7-Cyano-2-(2-(1-(4-(5-(1,2-dihydro-2-oxo)-(3H)-
- 15 indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API'): Found 443 (MH'). C₂₇H₃₆N₄O, requires 442.

¹H NMR (CDCl₃) δ: 1.13 - 1.31 (5H, m), 1.52 (2H, m), 1.84 (2H, m), 2.19 (2H, m), 2.00 (2H, m), 2.72 (2H, m), 2.95 (2H, m), 3.56 (2H, s), 3.61 (2H, s), 3.90 (1H, m), 5.78 (1H, d, J = 8 Hz), 6.87 (1H, m), 7.18 (1H, m), 7.23 (1H, m), 7.33 (1H, s), 7.40 (1H, m), 7.61 (2H, m).

e3) trans-6-Cyano-2-(2-(1-(4-(5-(1,2-dihydro-2-oxo)-(3H)-indolyl)-carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 443 (MH*). C₂₇H₃₀N₄O₂ requires 442.

¹H NMR (CD₃OD) δ: 1.00 - 1.50 (5H, m), 1.59 (2H, m), 1.78 - 2.12 (4H, m), 2.63 (2H, m), 2.83 (2H, m), 2.98 (2H, m), 3.34 (2H, m), 3.74 (2H, m), 3.86 (1H, m), 4.80 (2H, m), 6.94 (1H, m), 7.28 (1H, m), 7.52 (2H, m), 7.74 (2H, m).

(3) trans-6-Cyano-2-(2-(1-(4-(2-(4-methylthio)indolyl)carboxamido)cyclohexyl)-ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 473 (MH*). C₂₈H₃₂N₄OS requires 472.

35

¹H NMR (CDCl₃) δ: 1.09 - 1.35 (5H, m), 1.5 (2H, m), 1.85 (2H, m), 2.09 (2H, m), 2.52 (2H, m), 2.56 (3H, s), 2.72 (2H, m), 2.91 (2H, m), 3.62 (2H, s), 3.94 (1H, m), 6.02 (1H, d, J = 8 Hz), 6.91 (1H, m), 6.97 (1H, m), 7.12 - 7.26 (3H, m), 7.33 (1H, s), 7.36 (1H, m), 9.47 (1H, s).

g3) trans-6-Cyano-2-(2-(1-(4-(2-(5-methoxy)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 457 (MH*). C₂₁H₃,N₄O₃, requires 456.

¹H NMR (DMSO-d₆) δ: 1.04 (2H, m), 1.22 - 1.55 (5H, m), 1.83 (4H, m), 2.49 (2H, m), 2.60 (2H, m), 2.89 (2H, m), 3.75 (6H, m), 6.82 (1H, dd, J = 9, 2 Hz), 7.03 (2H, m), 7.30 (2H, d, J = 8 Hz), 7.58 (2H, m), 8.16 (1H, d, J = 8 Hz), 11.37 (1H, br s).

h3) trans-6-Cyano-2-(2-(1-(4-(2-(5-methylsulfonyl)indolyl)carboxamido)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 505 (MH*). C₂₂H₃₂N₄O₃S requires 504.

10

15

25

35

¹H NMR (DMSO- d_6) δ : 1.30 (2H, m), 1.47 - 1.76 (5H, m), 2.08 (4H, m), 2.74 (2H, m), 2.89 (2H, m), 3.06 (2H, m), 3.40 (3H, s), 3.84 (2H, s), 3.99 (1H, m), 7.52 (2H, m), 7.82 (4H, m), 8.45 (1H, s), 8.65 (1H, d, J = 8 Hz), 12.34 (1H, br s).

- i3) trans-(E)-6-Cyano-2-(2-(1-(4-(3-(2-indolyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline
- 20 Mass spectrum (API*): Found 453 (MH*). C₂₀H₃₂N₄O requires 452.

¹H NMR (DMSO- d_6) δ : 0.80 - 1.13 (5H, m), 1.29 (2H, m), 1.68 (4H, m), 2.32 (2H, m), 2.48 (2H, m), 2.67 (2H, m), 3.43 (2H, s), 3.51 (1H, m), 5.71 (1H, d, J = 13 Hz), 6.56 (1H, s), 6.68 (1H, d, J = 13 Hz), 6.83 (1H, t, J = 7 Hz), 7.00 (1H, t, J = 7 Hz), 7.11 (1H, d, J = 8 Hz), 7.38 (4H, m), 8.31 (1H, d, J = 8 Hz), 12.91 (1H, br s).

- j3) trans-(E)-7-Cyano-2-(2-(1-(4-(3-(2-indolyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoguinoline
- 30 Mass spectrum (API*): Found 453 (MH*). C_∞H₁,N₂O requires 452.

¹H NMR (CDCl₃) δ: 1.10 - 1.39 (5H, m), 1.52 (2H, m), 1.85 (2H, m), 2.10 (2H, m), 2.54 (2H, m), 2.73 (2H, t, J = 6 Hz), 2.95 (2H, m), 3.61 (2H, s), 3.83 (1H, m), 5.56 (2H, m), 6.69 (1H, s), 6.77 (1H, d, J = 13 Hz), 7.06 (1H, t, J = 7 Hz), 7.20 (2H, m), 7.33 (1H, s), 7.43 (2H, m), 7.60 (1H, d, J = 8 Hz), 12.51 (1H, br s).

- k3) trans-(E)-7-Cyano-2-(2-(1-(4-(3-(3-indolyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline
- 40 Mass spectrum (API'): Found 453 (MH'). C₂₆H₁₂N₄O requires 452.

¹H NMR (DMSO- d_c) δ : 0.85 - 1.50 (7H, m), 1.80 (4H, m), 2.35 (2H, m), 2.61 (2H, m), 2.84 (2H, m), 3.52 (3H, m), 6.56 (1H, d, J = 16 Hz), 7.13 (2H, m), 7.27 (1H, d, J = 8 Hz), 7.41 (1H, d, J = 8 Hz), 7.52 (3H, m), 7.69 (2H, m), 7.84 (1H, m), 11.50 (1H, br s).

- l3) trans-2-(2-(1-(4-(2-(7-Acetyl)indolyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline
- 5 Mass spectrum (API'): Found 469 (MH'). C₂₆H₁₂N₄O₂ requires 468.

¹H NMR (DMSO- d_s) δ : 0.90 - 1.50 (7H, m), 1.85 (4H, m), 2.46 (2H, m), 2.65 (2H, m), 2.69 (3H, s), 2.87 (2H, m), 3.56 (2H, s), 3.74 (1H, m), 7.22 (1H, d, J = 8 Hz), 7.29 (2H, m), 7.55 (2H, m), 8.00 (2H, m), 8.60 (1H, d, J = 8 Hz), 10.90 (1H, s).

10

m3) trans-7-Cyano-2-(2-1-(4-(3-pyridyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 389 (MH*). C₂₄H₂₂N₄O requires 388.

15

- ¹H NMR (DMSO-d_c) δ : 0.93 1.68 (7H, m), 1.88 (4H, m), 2.53 (2H, m), 2.70 (2H, t, J = 6 Hz), 2.92 (2H, t, J = 6 Hz), 3.61 (2H, s), 4.08 (1H, m), 7.35 (1H, d, J = 8 Hz), 7.55 (3H, m), 8.21 (1H, m), 8.45 (1H, d, J = 8 Hz), 8.73 (1H, m), 9.03 (1H, d, J = 2 Hz).
- n3) trans-6-Cyano-2-(2-(1-(4-(2-(6-fluoro)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 445 (MH*). C₂₇H₂₅FN₄O requires 444.

- ¹H NMR (DMSO-d_c) δ : 1.08 (2H, m), 1.42 (5H, m), 1.84 (4H, m), 2.50 (2H, m), 2.66 (2H, t, J = 6 Hz), 2.84 (2H, m), 3.61 (2H, s), 3.73 (1H, m), 6.90 (1H, m), 7.15 (2H, m), 7.27 (1H, d, J = 8 Hz), 7.61 (3H, m), 8.21 (1H, d, J = 8 Hz), 11.6 (1H, s).
- o3) trans-6-Cyano-2-(2-(1-(4-(2-(6-methoxy)indolyl)carboxamido)cyclohexyl)ethyl)-30 1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 457 (MH*). C₂₂H₃₂N₄O₂ requires 456.

- ¹H NMR (DMSO-d_s) δ: 1.11 (2H, m), 1.37 (5H, m), 1.85 (4H, m), 2.54 (2H, m), 2.69 (2H, t, J = 6 Hz), 2.88 (2H, t, J = 6 Hz), 3.65 (2H, s), 3.80 (3H, s), 3.75 3.90 (1H, m), 6.72 (1H, dd, J = 2, 8Hz), 6.94 (1H, d, J = 2 Hz), 7.11 (1H, m), 7.32 (1H, d, J = 8 Hz), 7.49 (1H, d, J = 8 Hz), 7.62 (2H, m), 8.10 (1H, d, J = 8 Hz), 11.35 (1H, s).
- p3) *trans*-6-Cyano-2-(2-(1-(4-(2-(6-methyl)indolyl)carboxamido)cyclohexyl)ethyl)-40 1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 441 (MH*). C₂₂H₃₂N₄O requires 440.

¹H NMR (DMSO-d₆) δ : 1.13 (2H, m), 1.42 (5H, m), 1.90 (4H, m), 2.43 (3H, s), 2.54 (2H, m), 2.70 (2H, t, J = 6 Hz), 2.90 (2H, t, J = 6 Hz), 3.65 (2H, s), 3.80 (1H, m), 6.90 (1H, m), 7.12 (1H, m), 7.25 (1H, s), 7.33 (1H, d, J = 8 Hz), 7.52 (1H, d, J = 8 Hz), 7.63 (2H, m), 8.20 (1H, d, J = 8 Hz), 11.4 (1H, s).

5

q3) trans-2-(2-(1-(4-(2-(7-Acetyl)indolyl)carboxamido)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API'): Found 469 (MH'). C₂H₃₂N₄O₃ requires 468.

10

¹H NMR (DMSO-d_c) δ : 1.10 (2H, m), 1.39 (5H, m), 1.87 (4H, m), 2.50 (2H, m), 2.67 (2H, t, J = 6 Hz), 2.71 (3H, s), 2.86 (2H, t, J = 6 Hz), 3.63 (2H, s), 3.77 (1H, m), 7.29 (3H, m), 7.59 (2H, m), 8.00 (2H, m), 8.63 (1H, d, J = 8 Hz), 10.93 (1H, s).

15 r3) trans-7-Cyano-2-(2-(1-(4-(2-(5-cyano)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 452 (MH*). C₂₂H₂₆N₄O requires 451.

¹H NMR (DMSO-d_s) δ : 1.10 (2H, m), 1.39 (5H, m), 1.85 (4H, m), 2.51 (2H, m), 2.67 (2H, t, J = 6 Hz), 2.85 (2H, m), 3.65 (2H, s), 3.77 (1H, m), 7.28 (2H, m), 7.53 (4H, m), 8.25 (1H, m), 8.45 (1H, d, J = 8 Hz), 12.14 (1H, s).

s3) *trans*-6-Cyano-2-(2-(1-(4-(2-(5-cyano)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API'): Found 452 (MH'). C₂₂H₂₀N₅O requires 451.

¹H NMR (DMSO- d_6) δ : 1.12 (2H, m), 1.41 (5H, m), 1.89 (4H, m), 2.51 (2H, m), 2.70 (2H, t, J = 6 Hz), 2.92 (2H, m), 3.61 (2H, s), 3.82 (1H, m), 7.35 (2H, m), 7.55 (4H, m), (8.28 (1H, m), 8.47 (1H, d, J = 8 Hz), 12.17 (1H, s).

t3) trans-7-Cyano-2-(2-(1-(4-(2-(7-cyano)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

35

25

Mass spectrum (API*): Found 452 (MH*). C₂₈H₂₉N₅O requires 451.

¹H NMR (DMSO-d_s) δ: 1.08 (2H, m), 1.36 (5H, m), 1.86 (4H, m), 2.47 (2H, m), 2.65 (2H, t, J = 6 Hz), 2.84 (2H, m), 3.61 (2H, s), 3.74 (1H, m), 7.23 (3H, m), 7.57 (2H, m), 7.71 (1H, d, J = 8 Hz), 8.00 (1H, d, J = 8 Hz), 8.33 (1H, d, J = 8 Hz), 12.28 (1H, s).

u3) trans-6-Cyano-2-(2-(1-(4-(2-(7-cyano)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoguinoline

Mass spectrum (API'): Found 452 (MH'). C₂₂H₂₀N₃O requires 451.

¹H NMR (DMSO- d_6) δ : 1.00 - 1.55 (7 H, m), 1.70 - 2.05 (4H, m), 2.50 (2H, m), 2.68 (2H, t, J = 6 Hz), 2.90 (2H, t, J = 6 Hz), 3.59 (2H, s), 3.76 (1H, m), 7.28 (3H, m), 7.58 (2H, m), 7.73 (1H, d, J = 8 Hz), 8.01 (1H, d, J = 8 Hz), 8.35 (1H, d, J = 8 Hz), 12.24 (1H, s).

v3) trans-5-Cyano-2-(2-(1-(4-(2-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

10

Mass spectrum (API*): Found 427 (MH*). C₂₇H₁₀N₄O requires 426.

'H NMR (DMSO- d_6 + TFA) δ : 1.14 (2H, m), 1.39 (3H, m), 1.70 (2H, m), 1.89 (4H, m), 3.00 - 3.55 (5H, m), 3.80 (2H, m), 4.38 (1H, m), 4.70 (1H, m), 7.03 (1H, t, J = 9 Hz), 7.17 (2H, m), 7.37 - 7.64 (4H, m), 7.85 (1H, dd, J = 9, 1 Hz), 8.24 (1H, d, J = 9 Hz), 10.30 (1H, br s), 11.53 (1H, br s).

w3) trans-(E)-5-Cyano-2-(2-(1-(4-(3-phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

20

Mass spectrum (API*): Found 414 (MH*). C₂₇H₃₁N₃O requires 413.

¹H NMR (CDCl₃) δ: 1.03 - 1.42 (5H, m), 1.52 (2H, m), 1.82 (2H, m), 2.07 (2H, m), 2.54 (2H, m), 2.75 (2H, t, J = 7 Hz), 3.05 (2H, m), 3.60 (2H, s), 3.87 (1H, m), 5.55 (1H, d, J = 10 Hz), 6.35 (1H, d, J = 16 Hz), 7.21 (2H, m), 7.33 (3H, m), 7.47 (3H, m), 7.61 (1H, d, J = 16 Hz).

x3) trans-7-Cyano-2-(2-(1-(4-(2-(4-methylsulfonyl)indolyl)carboxamido)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoguinoline

30

Mass spectrum (API*): Found 505 (MH*). C₂₈H₃₂N₄O₃S requires 504.

¹H NMR (CDCl₃) δ: 1.06 - 1.35 (5H, m), 1.48 (2H, m), 1.80 (2H, m), 1.98 (2H, m), 2.50 (2H, m), 2.71 (2H, m), 2.91 (2H, m), 3.10 (3H, s), 3.58 (2H, s), 3.84 (1H, br s), 6.10 (1H, d, J = 8 Hz), 7.18 (1H, d, J = 8 Hz), 7.26 - 7.40 (5H, m), 7.70 (2H, d, J = 8 Hz).

- y3) (\pm)-trans-7-Cyano-2-(2-(1-(4-(2-(4-methylsulfinyl)indolyl)carboxamido)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline
- 40 Mass spectrum (API*): Found 489 (MH*). C₂₂H₃₂N₄O₂S requires 488.

¹H NMR (CDCl₃) δ: 1.09 - 1.38 (5H, m), 1.49 - 1.59 (2H, m), 1.69 - 1.96 (2H, m), 2.1 (2H, m), 2.57 (2H, m), 2.75 (2H, s), 2.90 (3H, s), 2.98 (2H, m), 3.60 (2H, m), 3.95 (1H,

m), 6.36 (1H, d, J = 8 Hz), 7.20 (1H, d, J = 8 Hz), 7.25 - 7.50 (4H, m), 7.42 (1H, s), 7.59 (1H, d, J = 8 Hz), 10.14 (1H, s).

z3) trans-7-Cyano-2-(2-(1-(4-(4-pyridyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4tetrahydroisoquinoline

Mass spectrum (API*): Found 389 (MH*). C₂₄H₂₂N₄O requires 388.

¹H NMR (CDCl₃) δ: 1.13 - 1.34 (5H, m), 1.52 (2H, m), 1.85 (2H, m), 2.09 (2H, m), 2.55 (2H, m), 2.74 (2H, t, J = 6 Hz), 2.95 (2H, t, J = 6 Hz), 3.62 (2H, s), 3.87 (1H, m), 6.06 (1H, m), 7.19 (1H, d, J = 8 Hz), 7.34 (1H, d, J = 1 Hz), 7.39 (1H, dd, J = 1, 8 Hz), 7.6 (2H, d, J = 6 Hz), 8.72 (2H, d, J = 6 Hz).

a4) trans-7-Cyano-2-(2-(1-(4-(4-quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 439 (MH*). C₂₂H₁₀N₄O requires 438.

¹H NMR (CDCl₃) δ: 1.18 - 1.32 (5H, m), 1.55 (2H, m), 1.90 (2H, m), 2.20 (2H, m), 2.56 (2H, m), 2.74 (2H, t, J = 6 Hz), 2.96 (2H, t, J = 6 Hz), 3.62 (2H, s), 4.10 (1H, m), 5.88 (1H, d, J = 8 Hz), 7.20 (1H, d, J = 8 Hz), 7.33 (1H, s), 7.40 (2H, m), 7.61 (1H, m), 7.77 (1H, m), 8.15 (2H, m), 8.93 (1H, d, J = 4 Hz).

b4) trans-6-Cyano-2-(2-(1-(4-(4-quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4tetrahydroisoquinoline

Mass spectrum (API*): Found 439 (MH*). C₂₂H₃₀N₄O requires 438.

¹H NMR (CDCl₃) δ: 1.17 - 1.32 (5H, m), 1.55 (2H, m), 1.89 (2H, m), 2.19 (2H, m), 2.56 (2H, m), 2.74 (2H, t, J = 6 Hz), 2.93 (2H, t, J = 6 Hz), 3.66 (2H, s), 4.10 (1H, m), 5.95 (1H, m), 7.13 (1H, d, J = 8 Hz), 7.39 (3H, m), 7.61 (1H, m), 7.76 (1H, m), 8.12 - 8.21 (2H, m), 8.92 (1H, m).

c4) trans-(E)-6-Cyano-2-(2-(1-(4-(3-(2-fluoro)phenylpropenoyl)amino)

35 cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 432 (MH*). C₂₇H₃₀FN₃O requires 431.

¹H NMR (CDCl₃) δ: 1.00 - 1.45 (5H, m), 1.50 (2H, m), 1.80 (2H, m), 2.05 (2H, m), 2.55 (2H, m), 2.72 (2H, t, J = 6 Hz), 2.92 (2H, t, J = 6 Hz), 3.61 (2H, s), 3.69 (1H, m), 5.53 (1H, d, J = 8 Hz), 6.50 (1H, d, J = 16 Hz), 7.00 - 7.20 (3H, m), 7.25 - 7.55 (4H, m), 7.66 (1H, d, J = 16 Hz).

- d4) trans-(E)-6-Cyano-2-(2-(1-(4-(3-(2-methoxy)phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline
- 5 Mass spectrum (API*): Found 444 (MH*). C₂₂H₃₃N₃O₂ requires 443.

10

20

30

¹H NMR (CDCl₃) δ : 1.05 - 1.40 (5H, m), 1.50 (2H, m), 1.80 (2H, m), 2.05 (2H, m), 2.54 (2H, m), 2.72 (2H, t, J = 6 Hz), 2.92 (2H, t, J = 6 Hz), 3.64 (2H, s), 3.75 - 4.0 (1H, m), 3.87 (3H, s), 5.46 (1H, d, J = 8 Hz), 6.48 (1H, d, J = 16 Hz), 6.91 (2H, m), 7.11 (1H, d, J = 8 Hz), 7.25 - 7.40 (3H, m), 7.45 (1H, dd, J = 8, 2 Hz), 7.83 (1H, d, J = 16 Hz).

- e4) trans-(E)-2-(2-(1-(4-(3-(2-Chloro)phenylpropenoyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline
- Mass spectrum (API*): Found 448 (MH*). $C_pH_{30}^{35}ClN_3O$ requires 447.

¹H NMR (CDCl₃) δ : 1.05 - 1.45 (5H, m), 1.50 (2H, m), 1.80 (2H, m), 2.05 (2H, m), 2.54 (2H, m), 2.72 (2H, t, J = 6 Hz), 2.90 (2H, t, J = 6 Hz), 3.64 (2H, s), 3.89 (1H, m), 5.53 (1H, d, J = 8 Hz), 6.36 (1H, d, J = 16 Hz), 7.11 (1H, d, J = 8 Hz), 7.25 (2H, m), 7.40 (3H, m), 7.55 (1H, m), 7.95 (1H, d, J = 16 Hz).

- f4) trans-(E)-6-Cyano-2-(2-(1-(4-(3-(2-methyl)phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline
- 25 Mass spectrum (API*): Found 428 (MH*). C₂₈H₃₃N₃O requires 427.

¹H NMR (CDCl₃) δ : 1.05 - 1.45 (5H, m), 1.53 (2H, m), 1.85 (2H, m), 2.10 (2H, m), 2.43 (3H, s), 2.53 (2H, m), 2.73 (2H, t, J = 6 Hz), 2.92 (2H, t, J = 6 Hz), 3.61 (2H, s), 3.89 (1H, m), 5.48 (1H, d, J = 8 Hz), 6.25 (1H, d, J = 16 Hz), 7.05 - 7.30 (4H, m), 7.38 (2H, m), 7.48 (1H, m), 7.89(1H, d, J = 16 Hz).

- 35 Mass spectrum (API*): Found 432 (MH*). C₂₇H₃₀FN₃O requires 431.

¹H NMR (CDCl₂) δ : 1.05 - 1.45 (5H, m), 1.50 (2H, m), 1.81 (2H, m), 2.05 (2H, m), 2.54 (2H, m), 2.73 (2H, t, J = 6 Hz), 2.92 (2H, t, J = 6 Hz), 3.64 (2H, s), 3.87 (1H, m), 5.56 (1H, d, J = 8 Hz), 6.35 (1H, d, J = 16 Hz), 6.95 - 7.45 (7H, m), 7.56 (1H, d, J = 16 Hz).

5 h4) trans-(E)-6-Cyano-2-(2-(1-(4-(3-(2,6-difluoro)phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 450 (MH*). C₂₁H₂₅F₂N₃O requires 449.

- ¹H NMR (CDCl₃ + CD₃OD) δ: 1.03 1.42 (5H, m), 1.53 (2H, m), 1.82 (2H, m), 2.05 (2H, m), 2.55 (2H, m), 2.75 (2H, t, J = 6 Hz), 2.94 (2H, t, J = 6 Hz), 3.66 (2H, s), 3.84 (1H, m), 6.19 (1H, br s), 6.70 (1H, d, J = 16 Hz), 6.93 (2H, t, J = 8 Hz), 7.14 (1H, d, J = 8 Hz), 7.28 (1H, m), 7.40 (2H, m), 7.69 (1H, d, J = 16 Hz).
- i4) trans-(E)-6-Cyano-2-(2-(1-(4-(3-(2,3-methylenedioxy)phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 458 (MH*). C₂₂H₃₁N₃O₃ requires 457.

20

25

30

35

40

¹H NMR (CDCl₃ + CD₃OD) δ: 1.02 - 1.42 (5H, m), 1.52 (2H, m), 1.83 (2H, m), 2.02 (2H, m), 2.56 (2H, m), 2.77 (2H, t, J = 6 Hz), 2.94 (2H, t, J = 6 Hz), 3.69 (2H, s), 3.91 (1H, m), 6.14 (2H, s), 6.68 (1H, d, J = 16 Hz), 6.83 (2H, m), 6.93 (1H, m), 7.16 (1H, d, J = 8 Hz), 7.40 (1H, d, J = 8 Hz), 7.44 (1H, s), 7.49 (1H, d, J = 16 Hz).

j4) trans-(E)-6-Cyano-2-(2-(1-(4-(3-(2,3-difluoro)phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 450 (MH*). C, H, F, N, O requires 449.

¹H NMR (CDCl₃) δ: 1.05 - 1.45 (5H, m), 1.52 (2H, m), 1.80 (2H, m), 2.05 (2H, m), 2.54 (2H, m), 2.73 (2H, t, J = 6 Hz), 2.92 (2H, t, J = 6 Hz), 3.64 (2H, s), 3.87 (1H, m), 5.56 (1H, d, J = 8 Hz), 6.52 (1H, d, J = 16 Hz), 6.95 - 7.30 (4H, m), 7.39 (2H, m), 7.63 (1H, d, J = 16 Hz).

k4) trans-2-(2-(1-(4-(4-Quinolinyl)carboxamido)cyclohexyl)ethyl)-6-trifluoromethyl-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 482 (MH*). $C_{28}H_{30}F_3N_3O$ requires 481.

¹H NMR (CDCl₃) δ : 1.10 - 1.43 (5H, m), 1.54 (2H, m), 1.89 (2H, m), 2.20 (2H, m), 2.56 (2H, m), 2.75 (2H, t, J = 6 Hz), 2.95 (2H, m), 3.66 (2H, s), 4.06 (1H, m), 5.88 (1H, d, J = 8 Hz), 7.13 (1H, d, J = 8 Hz), 7.36 (2H, m), 7.41 (1H, m), 7.61 (1H, m), 7.77 (1H, m), 8.17 (2H, m), 8.92 (1H, d, J = 4 Hz).

5

14) trans-2-(2-(1-(4-(4-Quinolinyl)carboxamido)cyclohexyl)ethyl)-6-trifluoromethoxy)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API'): Found 498 (MH'). C₂₂H₃₀F₃N₃O₃ requires 497.

10

¹H NMR (CDCl₃) δ : 1.09 - 1.37 (5H, m), 1.54 (2H, m), 1.89 (2H, m), 2.20 (2H, m), 2.55 (2H, m), 2.72 (2H, t, J = 6 Hz), 2.92 (2H, m), 3.60 (2H, s), 4.04 (1H, m), 5.87 (1H, d, J = 8 Hz), 7.01 (3H, m), 7.41 (1H, d, J = 4 Hz), 7.61 (1H, m), 7.76 (1H, m), 8.15 (2H, m), 8.93 (1H, d, J = 4 Hz).

15

25

m4) trans-(E)-6-Cyano-2-(2-(1-(4-(3-(3-methylsulfonyloxy)phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

20 Mass spectrum (API'): Found 508 (MH'). C₂₈H₃₁N₃O₄S requires 507.

¹H NMR (CDCl₃) δ : 1.00 - 1.40 (5H, m), 1.52 (2H, m), 1.53 (2H, m), 2.05 (2H, m), 2.55 (2H, m), 2.73 (2H, t, J = 6 Hz), 2.92 (2H, t, J = 6 Hz), 3.17 (3H, s), 3.64 (2H, s), 3.85 (1H, m), 5.75 (1H, m), 6.39 (1H, d, J = 16 Hz), 7.12 (1H, d, J = 8 Hz), 7.25 (1H, m), 7.4 (5H, m), 7.56 (1H, d, J = 16 Hz).

n4) trans-(E)-2-(2-(1-(4-(3-(7-Benzo[b]furanyl)propenoyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline

30 Mass spectrum (API*): Found 454 (MH*). C₂₉H₃₁N₃O₂ requires 453.

¹H NMR (CDCl₃) δ: 1.09 - 1.30 (5H, m), 1.51 (2H, m), 1.85 (2H, m), 2.09 (2H, m), 2.55 (2H, m), 2.73 (2H, t, J = 6 Hz), 2.92 (2H, m), 3.65 (2H, s), 3.90 (1H, m), 5.52 (1H, d, J = 8 Hz), 6.82 (1H, d, J = 2 Hz), 7.00 (1H, d, J = 16 Hz), 7.11 (1H, d, J = 8 Hz), 7.26 (1H, m), 7.39 (3H, m), 7.59 (1H, dd, J = 8, 2 Hz), 7.69 (1H, d, J = 2 Hz), 7.76 (1H, d, J = 16 Hz).

o4) trans-6-Cyano-2-(2-(1-(4-(4-(6-

methoxy)quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

40

35

Mass spectrum (API*): Found 469 (MH*). C₂₉H₃₂N₄O₂ requires 468.

¹H NMR (CDCl₃) δ : 1.10 - 1.40 (5H, m), 1.50 - 1.60 (2H, m), 1.80 - 1.90 (2H, m), 2.10 - 2.20 (2H, m), 2.56 (2H, t, J = 8 Hz), 2.74 (2H, t, J = 6 Hz), 2.93 (2H, t, J = 6 Hz), 3.65

(2H, s), 3.93 (3H, s), 4.00 - 4.10 (1H, m), 5.95 (1H, d, J = 8 Hz), 7.10 (1H, d, J = 8 Hz), 7.30 - 7.40 (4H, m), 7.50 (1H, d, J = 2.5 Hz), 8.00 (1H, d, J = 5 Hz), 8.75 (1H, d, J = 5 Hz).

5 p4) trans-(E)-6-Cyano-2-(2-(1-(4-(3-(1-naphthyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoqinoline

Mass spectrum (API⁺): Found 464 (MH⁺). C₃₁H₃₃N₃O requires 463.

- ¹⁰ H NMR (CDCl₃) δ: 1.10 1.45 (5H, m), 1.53 (2H, m), 1.85 (2H, m), 2.07 (2H, m), 2.55 (2H, m), 2.75 (2H, t, J = 6 Hz), 2.93 (2H, t, J = 6 Hz), 3.65 (2H, s), 3.90 (1H, m), 5.49 (1H, d, J = 8 Hz), 6.42 (1H, d, J = 15 Hz), 7.11 (1H, d, J = 8 Hz), 7.35 7.65 (5H, m), 7.67 (1H, d, J = 7 Hz), 7.86 (2H, m), 8.21 (1H, m), 8.43 (1H, d, J = 15 Hz).
- q4) trans-2-(2-(1-(4-(4-Quinolinyl)carboxamido)cyclohexyl)ethyl)-5-trifluoromethyl-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 482 (MH*). C₂₁H₃₀F₃N₃O requires 481.

- ¹H NMR (DMSO-d_c) δ: 1.10 1.42 (5H, m), 1.50 (2H, m), 1.85 (2H, m), 1.99 (2H, m), 2.52 (2H, m), 2.71 (2H, m), 2.95 (2H, m), 3.65 (2H, s), 3.83 (1H, m), 7.38 (2H, m), 7.54 (2H, m), 7.69 (1H, m), 7.83 (1H, m), 8.11 (2H, m), 8.68 (1H, d, J = 8 Hz), 8.98 (1H, d, J = 4 Hz).
- r4) trans-(E)-2-(2-(1-(4-(3-(3-Cyano)phenylpropenoyl)amino)cyclohexyl)ethyl)-5-trifluoromethyl-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 482 (MH*). C₂₄H₃₀F₄N₃O requires 481.

- ¹H NMR (DMSO-d_c) δ: 0.99 1.37 (5H, m), 1.51 (2H, m), 1.88 (4H, m), 2.56 (2H, m), 2.72 (2H, m), 2.99 (2H, m), 3.68 (3H, m), 6.78 (1H, d, J = 16 Hz), 7.41 (2H, m), 7.51 (1H, d, J = 15 Hz), 7.59 (1H, m), 7.69 (1H, t, J = 8 Hz), 7.90 (2H, m), 8.09 (2H, m).
- s4) *trans-(E)-2-(2-(1-(4-(3-Phenylpropenoyl)amino)cyclohexyl)ethyl)-5*trifluoromethyl-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 457 (MH*). C₂₇H₃₁F₄N₂O requires 456.

- ¹H NMR (DMSO-d_c) δ: 1.00 1.34 (5H, m), 1.49 (2H, m), 1.88 (4H, m), 2.52 (2H, m), 40 2.73 (2H, m), 2.98 (2H, m), 3.67 (3H, m), 6.68 (1H, d, J = 16 Hz), 7.44 (6H, m), 7.60 (3H, m), 8.06 (1H, d, J = 8 Hz).
 - t4) trans-(E)-2-(2-(1-(4-(3-(3-Acetamido)phenylpropenoyl)amino)cyclohexyl)ethyl)-5-trifluoromethyl-1,2,3,4-tetrahydrosioquinoline

Mass spectrum (API*): Found 514 (MH*). C₂₀H₂₄F₃N₃O₂ requires 513.

¹H NMR (DMSO-d₆) δ : 1.00 - 1.30 (5H, m), 1.47 (2H, m), 1.83 (4H, m), 2.08 (3H, s), 2.51 (2H, m), 2.69 (2H, m), 2.94 (2H, m), 3.63 (3H, m), 6.58 (1H, d, J = 16 Hz), 7.22 (1H, m), 7.37 (4H, m), 7.50 (2H, m), 7.95 (1H, m), 8.11 (1H, d, J = 8 Hz), 10.11 (1H, br s).

u4) trans-(E)-6-Cyano-2-(2-(1-(4-(3-(4-

10 quinolinyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 465 (MH*). C₃₀H₃₂N₄O requires 464.

¹H NMR (DMSO-d₆) δ: 1.00 - 1.35 (5H, m), 1.45 (2H, m), 1.85 (4H, m), 2.54 (2H, m), 2.65 (2H, m), 2.85 (2H, m), 3.60 (2H, s), 3.65 (1H, m), 6.85 (1H, d, J = 16 Hz), 7.30 (1H, d, J = 8 Hz), 7.60 (2H, m), 7.70 (2H, m), 7.85 (1H, m), 8.08 (1H, m), 8.15 (1H, d, J = 16 Hz), 8.25 (2H, m), 8.95 (1H, d, J = 4 Hz).

v4) *trans*-5,6-Difluoro-2-(2-(1-(4-(4-quinolinyl)carboxamido)cyclohexyl)ethyl-20 1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 450 (MH*). C₂₇H₂₈F₂N₃O requires 449.

¹H NMR (CDCl₃) δ: 1.12 - 1.36 (5H, m), 1.54 (2H, m), 1.89 (2H, m), 2.18 (2H, m), 2.52 (2H, m), 2.69 (2H, t, J = 8 Hz), 2.86 (2H, m), 3.56 (2H, s), 4.05 (1H, m), 5.92 (1H, d, J = 8 Hz), 6.75 (1H, m), 6.93 (1H, m), 7.40 (1H, d, J = 4 Hz), 7.59 (1H, m), 7.75 (1H, m), 8.15 (2H, m), 8.91 (1H, d, J = 4 Hz).

w4) *trans-(E)-5,6-Difluoro-2-(2-(1-(4-(3-phenylpropenoyl)amino)cyclohexyl)ethyl)-* 1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 425 (MH*). C₂₆H₃₀F₂N₂O requires 424.

³H NMR (CDCl₃) δ: 1.08 - 1.42 (5H, m), 1.51 (2H, m), 1.81 (2H, m), 2.06 (2H, m), 2.53 (2H, m), 2.71 (2H, m), 2.86 (2H, m), 3.55 (2H, s), 3.89 (1H, m), 5.44 (1H, m), 6.35 (1H, d, J = 16 Hz), 6.75 (1H, m), 6.92 (1H, m), 7.45 (3H, m), 7.49 (2H, m), 7.62 (1H, d, J = 16 Hz).

x4) trans-(E)-5,6-Difluoro-2-(2-(1-(4-(3-(3-methylsulfonamido)phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

40

Mass spectrum (API*): Found 518 (MH*). C₂₇H₃₃F₂N₃O₃S requires 517.

³H NMR (CDCl₃) δ : 1.05 - 1.38 (5H, m), 1.51 (2H, m), 1.82 (2H, m), 2.05 (2H, m), 2.53 (2H, m), 2.71 (2H, m), 2.88 (2H, m), 3.01 (3H, s), 3.55 (2H, s), 3.93 (1H, m), 5.63 (1H, d, J = 8 Hz), 6.40 (1H, d, J = 16 Hz), 6.74 (1H, m), 6.93 (1H, m), 7.30 (4H, m), 7.48 (1H, s), 7.60 (1H, d, J = 16 Hz).

5

y4) trans-(E)-6-Cyano-2-(2-(1-(4-(3-(1-(4-fluoro)naphthyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 482 (MH*). C₃₁H₃₂FN₃O requires 481.

10

35

¹H NMR (DMSO-d_c) δ : 1.05 - 1.45 (5H, m), 1.50 (2H, m), 1.90 (4H, m), 2.55 (2H, m), 2.70 (2H, m), 2.90 (2H, m), 3.66 (2H, s), 3.70 (1H, m), 6.72 (1H, d, J = 16 Hz), 7.35 (1H, d, J = 8 Hz), 7.45 (1H, m), 7.64 (2H, m), 7.81 (3H, m), 8.16 (3H, m), 8.29 (1H, m).

z4) trans-(E)-2-(2-(1-(4-(3-(4-Benzo[b]furanyl)propenoyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 454 (MH*). C₂₆H₁₁N₁O₂, requires 453.

¹H NMR (DMSO-d₆) δ: 1.00 - 1.32 (5H, m), 1.47 (2H, m), 1.85 (4H, m), 2.52 (2H, m), 2.68 (2H, m), 2.86 (2H, m), 3.62 (3H, s), 6.84 (1H, d, J = 16 Hz), 7.34 (3H, m), 7.48 (1H, m), 7.63 (4H, m), 8.07 (1H, m), 8.17 (1H, m).

a5) trans-(E)-2-(2-(1-(4-(3-(2-Cyano)phenylpropenoyl)amino)cyclohexyl)ethyl)-5trifluoromethyl-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 482 (MH*). C₂H₃₀F₃N₃O requires 481.

¹H NMR (CDCl₃) δ: 1.06 - 1.30 (5H, m), 1.52 (2H, m), 1.84 (2H, m), 2.06 (2H, m), 2.53 (2H, m), 2.73 (2H, t, J = 6 Hz), 3.07 (2H, m), 3.66 (2H, s), 3.87 (1H, m), 5.54 (1H, d, J = 8 Hz), 6.66 (1H, d, J = 16 Hz), 7.21 (2H, m), 7.45 (2H, m), 7.61 (2H, m), 7.70 (1H, d, J = 8 Hz), 7.78 (1H, d, J = 16 Hz).

b5) trans-(E)-2-(2-(1-(4-(3-(4-Cyano)phenylpropenoyl)amino)cyclohexyl)ethyl)-5-trifluoromethyl-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 482 (MH*). C₂₈H₃₀F₃N₃O requires 481.

¹H NMR (CDCl₂) δ: 1.08 - 1.30 (5H, m), 1.54 (2H, m), 1.85 (2H, m), 2.06 (2H, m), 2.53 (2H, m), 2.73 (2H, t, J = 6 Hz), 3.07 (2H, m), 3.66 (2H, s), 3.88 (1H, m), 5.54 (1H,d, J = 8 Hz), 6.42 (1H, d, J = 16 Hz), 7.20 (2H, m), 7.47 (1H, m), 7.62 (5H, m).

c5) trans-6-Pentafluoroethyl-2-(2-(1-(4-(4-quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API'): Found 532 (MH'). C_xH_wF_xN_xO requires 531.

¹H NMR (CDCl₃) δ: 1.10 - 1.49 (5H, m), 1.57 (2H, m), 1.91 (2H, m), 2.20 (2H, m), 2.56 (2H, t, J = 7 Hz), 2.75 (2H, t, J = 6 Hz), 2.96 (2H, t, J = 6 Hz), 3.65 (2H, s), 4.05 (1H, m), 5.95 (1H, d, J = 8 Hz), 7.15 (1H, d, J = 8 Hz), 7.33 (2H, m), 7.40 (1H, d, J = 4 Hz), 7.60 (1H, dt, J = 8, 2 Hz), 7.75 (1H, dt, J = 8, 2 Hz), 8.15 (1H, d, J = 8 Hz), 8.21 (1H, d, J = 8 Hz), 8.91 (1H, d, J = 4 Hz).

d5) *trans*-6-Cyano-2-(2-(1-(4-(4-(6-fluoro)quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 457 (MH*). C₂₂H₂₀FN₄O requires 456.

- ¹H NMR (CDCl₃) δ: 1.05 1.45 (5H, m), 1.55 (2H, m), 1.90 (2H, m), 2.19 (2H, m), 2.56 (2H, m), 2.74 (2H, t, J = 6Hz), 2.93 (2H, t, J = 6Hz), 3.66 (2H, s), 4.04 (1H, m), 5.97 (1H, d, J = 8Hz), 7.11 (1H, d, J = 8Hz), 7.41 (3H, m), 7.52(1H, m), 7.87 (1H, m), 8.12 (1H, m), 8.87 (1H, d, J = 4Hz).
- e5) trans-6-Cyano-2-(2-(1-(4-(1-isoquinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4 tetrahydroisoquinoline

Mass spectrum (API*): Found 439 (MH*). C₂₈H₃₀N₄O requires 438.

- ¹H NMR (CDCl₃) δ: 1.10 1.45 (5H, m), 1.55 (2H, m), 1.88 (2H, m), 2.16 (2H, m), 2.57 (2H, m), 2.75 (2H, t, J = 6Hz), 2.93 (2H, t, J = 6Hz), 3.66 (2H, s), 3.97 (1H, m), 7.10 (1H, d, J = 8Hz), 7.40 (2H, m), 7.68 (2H, m), 7.83 (2H, m), 8.05 (1H, d, J = 8Hz), 8.45 (1H, d, J = 6Hz), 9.60 (1H, m).
- f5) trans-(E)-2-(2-(1-(4-(3-(3-Acetamido)phenylpropenoyl)amino)cyclohexyl)-ethyl)-5-pentafluoroethyl-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 564 (MH*). C₃₀H₃₁F₅, N₃O₂ requires 563.

- 35 H NMR (CDCl₃) δ: 1.00 1.40 (5H, m), 1.54 (2H, m), 1.83 (2H, m), 2.05 (2H, m), 2.19 (3H, s), 2.54 (2H, m), 2.76 (2H, ι, J = 7Hz), 1.97 (2H, m), 3.65 (2 H, s), 3.82 (1H, m), 5.98 (1H, d, J = 8Hz), 6.39 (1H, d, J = 16 Hz), 7.19 (2H, m), 7.20 7.48 (4H, m) 7.41 (1H, d, J = 8Hz), 7.53 (1H, d, J = 16Hz), 7.80 (1H, br s).
- g5) trans-6-Cyano-2-(2-(1-(4-(4-(3-fluoro)quinolinyl)carboxamido)-cyclohexyl)ethyl)-1,2,3,4 tetrahydroisoquinoline

Mass spectrum (API*): Found 457 (MH*)· C, H, FN, O requires 456.

'H NMR (CDCl₂) δ: 1.11 - 1.38 (5H, m), 1.55 (2H, m), 1.89 (2H, m), 2.22 (2H, m), 2.56 (2H, m) 2.74 (2H, t, J = 6Hz), 2.92 (2H, m), 3.65 (2H, s) 4.10 (1H, m), 5.98 (1H, m), 7.11 (1H, d, J = 8Hz), 7.39 (2H, m) 7.67 (2H, m) 8.08 (2H, m), 8.82 (1H, s).

5 h5) trans-6-Cyano-2-(2-(1-(4-(5-isoquinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 439 (MH*). C₂₂H₃₀N₄O requires 438.

- 10 'H NMR (CDCl₁) δ: 1.10 1.80 (7H, m), 1.80 2.00 (2H, m), 2.10 2.30 (2H, m), 2.50 2.65 (2H, m), 2.70 2.80 (2H, m), 2.85-2.95 (2H, m), 3.66 (2H,s), 3.95 4.12 (1H, m), 5.88 (1H, d, J = 8 Hz), 7.12 (1H, d, J = 8 Hz), 7.38 7.45 (2H,m), 7.55 7.65 (1H, m), 7.82 (1H, dd, J = 6, 1Hz), 8.04 (1H, d, J = 8 Hz), 8.17 (1H, d, J = 7Hz), 8.58 (1H, d J = 6 Hz), 9.27 (1H, s).
 - i5) *trans*-6-Cyano-2-(2-(1-(4-(4-(7-fluoro)quinolinyl)carboxamido)cyclohexyl)-ethyl)-1,2,3,4-tetrahydroisoquinoline.

Mass spectrum (API'): Found 457 (MH'). C₂₂H₂₀FN₄O requires 456.

20

15

¹H NMR (DMSO-d_g) δ: 1.06 - 1.44 (5H, m), 1.50 (2H, m), 1.88 (2H, m), 2.05 (2H, m), 2.54 (2H, m), 2.72 (2H, t, J = 6Hz), 2.91 (2H, m), 3.68 (2H, s), 3.88 (1H, m), 7.34 (1H, d, J = 8Hz), 7.57 (1H, d, J = 4Hz), 7.71 (3H, m), 7.90 (1H, dd, J = 10, 2Hz), 8.25 (1H, m) 8.76 (1H, d, J = 8Hz), 9.05 (1H, d, J = 4Hz).

j5) trans-6-Cyano-2-(2-(1-(4-(5-(1,2-dihydro-2-oxo)quinolinyl)carboxamido)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 455 (MH*). C₂₈H₃₀N₄O₂ requires 454.

¹H NMR (CDCl₃) δ: 1.10 - 1.40 (5H, m), 1.55 (2H, m), 1.88 (2H, m), 2.15 (2H, m), 2.55 (2H, m), 2.74 (2H, t, J = 6Hz), 2.92 (2H, t, J = 6Hz), 3.65 (2H, s), 3.98 (1H, m), 6.00 and 6.35 (1H, 2 x d, J = 8Hz), 6.73 (1H, m), 7.11 (1H, d, J = 8Hz), 7.26 (1H, m), 7.40 (3H, m), 7.60 and 7.71 (1H, 2 x s), 7.81 and 8.30 (1H, 2 x d, J = 8Hz), 11.95 and 12.21 (1H, 2 x br s).

35

- k5) trans-6-Cyano-2-(2-(1-(4-(5-(2,3-dihydro-3-oxo)-4H-benzoxazinyl)-carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline
- Mass spectrum (API*): Found 459 (MH*). C, H, N,O, requires 458.

40

¹H NMR (CDCl₁) δ : 1.10 - 1.45 (5H, m), 1.55 (2H, m), 1.87 (2H, m), 2.09 (2H, m), 2.54 (2H, m), 2.73 (2H, t, J = 6Hz), 2.92 (2H t, J = 6Hz), 3.65 (2H, s), 3.90 (1H, m), 4.61

(2H, s), 6.00 (1H, d, J = 8Hz), 6.94 (1H, m), 7.10 (3H, m), 7.40 (2H, m), 10.74 (1H, brs).

15) trans-(E)-8-Cyano-2-(2-(1-(4-(3-phenylpropenoyl)amino)cyclohexyl)ethyl) 1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API'): Found 414 (MH'). C21H31N3O requires 413.

¹H NMR (CDCl₃) δ: 1.10 - 1.65 (7H, m), 1.80 - 1.95 (2H, m), 2.08 - 2.15 (2H, m), 2.55 - 2.65 (2H, m), 2.70 - 2.77 (2H, m), 2.89 - 2.95 (2H, m), 3.79 (2H, s), 3.85 - 4.00 (1H, m), 5.39 (1H, d, J = 8Hz), 6.34 (1H, d, J = 16Hz), 7.20 - 7.25 (1H, m), 7.28 - 7.42 (4H, m), 7.43 - 7.54 (3H, m) 7.60 (1H, d, J = 16Hz).

m5) *trans*-8-Cyano-2-(2-(1-(4-(2-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4tetrahydroisoquinoline.

Mass spectrum (API*): Found 427 (MH*). C₂₇H₃₀N₄O requires 426.

'H NMR (CDCl₃) δ: 1.45 - 1.64 (7H, m), 1.80 - 1.95 (2H, m), 2.10 - 2.18 (2H, m), 2.55 - 2.66 (2H, m), 2.70 - 2.80 (2H, m), 2.90 - 2.97 (2H, m), 3.80 (2H, s), 3.90 - 4.00 (1H, m), 5.93 (1H, d, J = 8Hz), 6.79 (1H, m), 7.10 - 7.45 (6H, m), 7.64 (1H, d J = 8Hz), 9.11 (1H, br s).

n5) *trans-*7-Cyano-2-(2-(1-(4-(2-indolyl)carboxamido)cyclohexyl)ethyl)-6-methyl-25 1,2,3,4-tetrahydroisoquinoline.

Mass spectrum (API*): Found 441 (MH*). C₂₈H₃₂N₄O requires 440.

¹H NMR (DMSO-d₆+ TFA) δ: 1.15 (2H, m), 1.40 (3H, m), 1.60 - 2.05 (6H, m), 2.55 (3H, s), 3.15 (2H, m), 3.26 (3H, m), 3.76 (2H, m), 4.32 (1H, m), 4.63 (1H, m), 7.05 (1H, t, J = 8Hz), 7.20 (2H, m), 7.42 (2H, m), 7.61 (1H, d, J = 8Hz), 7.71 (1H, s), 8.25 (1H, d, J = 8Hz), 10.26 (1H, br, s), 11.54 (1H, br s).

o5) trans-6-Cyano-2-(2-(1-(4-(2-naphthyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 438 (MH*). C₂₉H₃₁N₃O requires 437.

¹H NMR (DMSO-d_e) δ: 1.10 (2H, m), 1.24 - 1.53 (5H, m), 1.88 (4H, m), 2.52 (2H, m), 2.67 (2H, m), 2.86 (2H, m), 3.63 (2H, m), 3.82 (1H, m), 7.30 (1H, d, J = 8 Hz), 7.61 (4H, m), 8.00 (4H, m), 8.42 (2H, m).

p5) trans-2-(2-(1-(4-(4-(4-(4-Acetyl)phenyl)benzoyl)aminocyclohexyl)ethyl)-5-cyano-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API'): Found 506 (MH'). C₃₁H₃₅N₃O₂ requires 505.

5

¹H NMR (DMSO-d₆ + TFA) δ: 0.85 - 1.10 (2H, m), 1.12 - 1.40 (3H, m), 1.58 (2H, m), 1.62 - 1.89 (4H, m), 2.50 (3H, m), 3.00 - 3.43 (5H, m), 3.69 (2H, m), 4.25 (1H, m), 4.57 (1H, m), 4.39 (1H, t, J = 9 Hz), 4.49 (1H, d, J = 9 Hz), 4.49 (2H, d, J = 9 H

10

q5) trans -(E)-7-Cyano-6-methyl-2-(2-(1-(4-(3-phenylpropenoyl)amino)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Mass spectrum (API*): Found 428 (MH*). C₂₂H₃₃N₃O requires 427.

15

¹H NMR (CDCl₃) δ : 1.05 - 1.43 (5H, m), 1.51 (2H, m), 1.87 (2H, m), 2.08 (2H, m), 2.46 (3H, s), 2.54 (2H, m), 2.71 (2H, t, J = 7Hz), 2.90 (2H, t, J = 7Hz), 3.56 (2H, s), 3.87 (1H, m), 5.51 (1H, d, J = 8Hz), 6.36 (1H, d, J = 16Hz), 7.07 (1H, s), 7.29 (1H, s), 7.35 (3H, m), 7.50 (2H, m), 7.61 (1H, d, J = 16 Hz).

20

25

35

Example 9

trans-(E)-2-(2-(1-(4-(3-(3-Acetamido)phenylpropenoyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline

Prepared in a similar manner to Example 3, using (E)-3-(3-acetamido)phenylpropenoic acid instead of (E)-3-(3-methylsulfonyl)phenylpropenoic acid, in 86% yield.

Mass spectrum (API*): Found 471 (MH*). $C_{29}H_{34}N_4O_2$ requires 470.

¹H NMR (DMSO-d₆) δ : 0.88 - 1.17 (5H, m), 1.33 (2H, m), 1.70 (4H, m), 1.96 (3H, s), 2.39 (2H, m), 2.54 (2H, m), 2.74 (2H, m), 3.50 (3H, m), 6.46 (1H, d, J = 16 Hz), 7.09 (1H, m), 7.22 (3H, m), 7.36 (1H, m), 7.48 (2H, m), 7.81 (1H, m), 7.97 (1H, d, J = 8 Hz), 9.97 (1H, br s).

Example 10

trans-(E)-6-Cyano-2-(2-(1-(4-(3-(3-methoxy)phenylpropenoyl)amino)cyclohexyl)-40 ethyl)-1,2,3,4-tetrahydroisoquinoline

Prepared in a similar manner to Example 3, using (E)-3-(3-methoxy)phenylpropenoic acid instead of (E)-3-(3-methylsulfonyl)phenylpropenoic acid, in 24% yield.

Mass spectrum (API'): Found 444 (MH'). C₂H₂N₂O₃ requires 443.

¹H NMR (DMSO- d_o) δ : 0.92 - 1.25 (5H, m), 1.42 (2H, m), 1.79 (4H, m), 2.46 (2H, m), 2.63 (2H, m), 2.83 (2H, m), 3.59 (3H, m), 3.77 (3H, s), 6.59 (1H, d, J = 16 Hz), 6.93 (1H, m), 7.10 (2H, m), 7.32 (3H, m), 7.58 (2H, m), 7.96 (1H, d, J = 8 Hz).

Example 11

5

trans-(E)-2-(2-(1-(4-(3-(3-Chloro)phenylpropenoyl)amino)cyclohexyl)ethyl)-6-cyano-10 1,2,3,4-tetrahydroisoquinoline

Prepared in a similar manner to Example 3, using (E)-3-(3-chloro)phenylpropenoic acid instead of (E)-3-(3-methylsulfonyl)phenylpropenoic acid, in 72% yield.

15 Mass spectrum (API'): Found 448 (MH'). C₂₇H₁₀ ClN₂O requires 447.

¹H NMR (DMSO- d_c) δ : 0.88 - 1.22 (5H, m), 1.39 (2H, m), 1.76 (4H, m), 2.43 (2H, m), 2.59 (2H, m), 2.79 (2H, m), 3.55 (3H, m), 6.60 (1H, d, J = 16 Hz), 7.22 (1H, d, J = 8 Hz), 7.33 (3H, m), 7.50 (4H, m), 7.94 (1H, d, J = 8 Hz).

Example 12

20

25

30

35

trans-2-(2-(1-(4-(4-Cinnolinyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline

Prepared in a similar manner to Example 7, using cinnoline-4-carboxylic acid instead of 6-cyanoindole-2-carboxylic acid.

Mass spectrum (API'): Found 440 (MH'). C₂₇H₂₈N₅O requires 439.

¹H NMR (CDCl₃) δ : 1.10 - 1.50 (5H, m), 1.50 - 1.70 (2H, m), 1.85 (2H, m), 2.25 (2H, m), 2.57 (2H, t, J = 8 Hz), 2.74 (2H, t, J = 6 Hz), 2.96 (2H, t, J = 6 Hz), 3.62 (2H, s), 4.05 (1H, m), 6.08 (1H, br s), 7.20 (1H, d, J = 8 Hz), 7.33 (1H, s), 7.40 (1H, d, J = 8 Hz), 7.80 - 8.00 (2H, m), 8.31 (1H, d, J = 8 Hz), 8.57 (1H, d, J = 8 Hz), 9.28 (1H, s).

Example 13

Alternative name: trans-(E)-N-[4-[2-(6-Cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-3-(4-fluorophenyl)-2-propenamide

Prepared in a similar manner to Example 3, using (E)-3-(4-fluoro)phenylpropenoic acid instead of (E)-3-(3-methanesulfonyl)phenylpropenoic acid, in 66% yield.

Mass spectrum (API*): Found 432 (MH*). C₂₇H₂₆FN₃O requires 431.

¹⁰ H NMR (CDCl₃ + CD₃OD) δ: 1.03 - 1.40 (5H, m), 1.54 (2H, m), 1.84 (2H, m), 2.05 (2H, m), 2.55 (2H, m), 2.75 (2H, t, J = 7 Hz), 2.94 (2H, m), 3.66 (2H, s), 3.82 (1H, m), 5.90 - 6.15 (1H, m), 6.30 (1H, d, J = 16 Hz), 6.97 - 7.17 (3H, m), 7.35 - 7.61 (5H, m).

Example 14

trans-(E)-6-Cyano-2-(2-(1-(4-(3-(2,5-difluoro)phenylpropenoyl)amino)cyclohexyl)-ethyl)-1,2,3,4-tetrahydroisoquinoline

Prepared in a similar manner to Example 3, using (E)-3-(2,5-difluoro)phenylpropenoic acid instead of (E)-3-(3-methanesulfonyl)phenylpropenoic acid, in 51% yield.

Mass spectrum (API⁻): Found 448 (MH⁻). $C_{27}H_{29}F_2N_3O$ requires 449.

¹H NMR (CDCl₃) δ: 1.25 (5H, m), 1.53 (2H, m), 1.86 (2H, m), 2.06 (2H, m), 2.55 (2H, m), 2.73 (2H, t, J = 6 Hz), 2.92 (2H, t, J = 6 Hz), 3.65 (2H, s), 3.88 (1H, m), 5.45 (1H, d, J = * Hz), 6.45 (1H, d, J = 16 Hz), 6.90 - 7 20 (4H, m), 7.39 (2H, m), 7.62 (1H, d, J = 16 Hz).

Example 15

30

35

15

trans-6-Cyano-2-(2-(1-(4-(5-quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Alternative name: *trans-N*-[4-[2-(6-Cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-5-quinolinecarboxamide

Prepared in a similar manner to Example 7, using quinoline-5-carboxylic acid instead of 6-cyanoindole-2-carboxylic acid, in 89% yield.

5 Mass spectrum (API'): Found 439 (MH'). C₂₂H₃₀N₄O requires 438.

¹H NMR ((CD₃)₂SO) δ : 1.10 - 1.30 (2H, m), 1.30 - 1.50 (3H, m), 1.50 - 1.60 (2H, m), 1.93 (2H, m), 2.07 (2H, m), 2.60 (2H, m), 2.76 (2H, t, J = 6 Hz), 2.95 (2H, t, J = 6 Hz), 3.72 (2H, s), 3.90 (1H, m), 7.39 (1H, d, J = 8 Hz), 7.60 - 7.70 (3H, m), 7.78 (1H, d, J = 6 Hz), 7.89 (1H, t, J = 7 Hz), 8.20 (1H, d, J = 8 Hz), 8.61 (1H, d, J = 8 Hz), 8.69 (1H, d, J = 8 Hz), 9.05 (1H, m).

Example 16

10

20

trans-(E)-6-Bromo-2-(2-(1-(4-(3-(3-methylsulfonyl)phenylpropenoyl)amino)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Prepared in a similar manner to Example 3, using trans-2-(2-(1-(4-amino)cyclohexyl)ethyl)-6-bromo-1,2,3,4-tetrahydroisoquinoline instead of trans-2-(2-(1-(4-amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline, in 50% yield.

Mass spectrum (API+): Found 545 (MH+). $C_{27}H_{33}^{79}Br_2N_2O_3S$ requires 544.

¹H NMR (CDCl₃) δ: 1.13 (5H, m), 1.51 (2H, m), 1.82 (2H, m), 2.05 (2H, m), 2.52 (2H, m), 2.69 (2H, t, J = 6 Hz), 2.87 (2H, m), 3.07 (3H, s), 3.54 (2H, s), 3.86 (1H, m), 5.62 (1H, d, J = 8 Hz), 6.49 (1H, d, J = 15 Hz), 6.89 (1H, d, J = 8 Hz), 7.24 (2H, m), 7.63 (3H, m), 7.90 (1H, m), 8.10 (1H, m).

Example 17

30

40

trans-(E)-2-(2-(1-(4-(3-(3-Methylsulfonyl)phenylpropenoyl)amino)-cyclohexyl)ethyl)-6-trifluoromethyl-1,2,3,4-tetrahydroisoguinoline

Prepared in a similar manner to Example 3, using *trans*-2-(2-(1-(4-35 amino)cyclohexyl)ethyl)-6-trifluoromethyl-1,2,3,4-tetrahydroisoquinoline instead of *trans*-2-(2-(1-(4-amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline, in 50% yield.

Mass spectrum (API+): Found 535 (MH+). C₂₂H₃₃F₃N₂O₃S requires 534.

¹H NMR (CDCl₁) δ : 1.17 (5H, m), 1.52 (2H, m), 1.83 (2H, m), 2.06 (2H, m), 2.55 (2H, m), 2.74 (2H, t, J = 6 Hz), 2.95 (2H, m), 3.07 (3H, s), 3.65 (2H, s), 3.86 (1H, m), 5.52 (1H, d, J = 8 Hz), 6.48 (1H, d, J = 15 Hz), 7.12 (1H, d, J = 8 Hz), 7.36 (2H, m), 7.63 (3H, m), 7.90 (1H, m), 8.09 (1H, m).

Example 18

trans-(E)-2-(2-(1-(4-(3-(3-Methylsulfonyl)phenylpropenoyl)amino)-cyclohexyl)ethyl)-6-trifluoromethoxy-1,2,3,4-tetrahydroisoguinoline

Prepared in a similar manner to Example 3, using trans-2-(2-(1-(4-amino)cyclohexyl)ethyl)-6-trifluoromethoxy-1,2,3,4-tetrahydroisoquinoline instead of trans-2-(2-(1-(4-amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline, in 50% yield.

Mass spectrum (API+): Found 551 (MH+). $C_{22}H_{33}F_3N_2O_4S$ requires 550.

¹H NMR (CDCl₃) δ: 1.15 (5H, m), 1.52 (2H, m), 1.84 (2H, m), 2.06 (2H, m), 2.53 (2H, m), 2.71 (2H, t, J = 6 Hz), 2.91 (2H, m), 3.07 (3H, s), 3.59 (2H, s), 3.85 (1H, m), 5.76 (1H, d, J = 8 Hz), 6.51 (1H, d, J = 15 Hz), 6.99 (3H, m), 7.62 (3H, m), 7.89 (1H, m), 8.10 (1H, m).

Example 19

20

25

30

35

5

10

trans-6-Cyano-2-(2-(1-(4-(4-quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Alternative name: *trans-N*-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxamide

A mixture of *trans*-2-(2-(1-(4-amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline (4g, 14.1 mmol), quinoline-4-carboxylic acid (2.45g, 14.1 mmol) 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (2.71g, 14.1 mmol), 1-hydroxybenzotriazole (0.251g, 1.86 mmol) and dichloromethane (150ml) was stirred at room temperature for 3h. Further dichloromethane (50ml) was added and stirring continued for 17h. Dichloromethane (200ml) was added and the mixture washed with saturated aqueous sodium hydrogen carbonate (500ml). The aqueous phase was extracted with dichloromethane (2x250ml). Combined organic extracts were dried (Na₂SO₄) and evaporated *in vacuo*. The residue was purified by chromatography on silica gel (350ml) using 10 - 100% ethyl acetate-hexane then 1-5% methanol-ethyl acetate gradient elution to give the title compound (3.06g, 49.4%) as a colourless solid. A sample recrystallised from ethyl acetate-dichloromethane, m.p. 207 - 210 °C

Mass spectrum (API*): Found 439 (MH*). C_xH_wN₄O requires 438.

¹H NMR (CDCl₃) δ : 1.17 - 1.45 (5H, m), 1.53 (2H, m), 1.89 (2H, m), 2.20 (2H, m), 2.55 (2H, m), 2.73 (2H, t, J = 6Hz), 2.91 (2H, t, J = 6Hz), 3.65 (2H, s), 4.07 (1H, m), 5.83 (1H, d, J = 8Hz), 7.10 (1H, d, J = 8Hz), 7.38 (3H, m), 7.60 (1H, m), 7.76 (1H, m), 8.12 (1H, m), 8.19 (1H, m), 8.90 (1H, d, J = 4Hz): this is a more detailed interpretation of the spectrum for this compound compared to that of Example 8b4...

Treatment of a solution of the free base (1.54 g, 3.52 mmol) in ethanol (10 ml) and dichloromethane (10 ml) with a solution of methanesulfonic acid (0.316 g, 3.3 mmol) in ethanol (2 ml), followed by evaporation in vacuo, gave a solid. An aliquot (0.60 g) was recrystallised from 1% aqueous isopropanol to give trans-6-cyano-2-(2-(1-(4-(4-quinolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline monomesylate (0.16 g) as an off white solid, m.p. 255 - 259 °C dec.

15

20

35

5

¹H NMR (DMSO- d_6) δ : 1.05 - 1.23 (2H, m), 1.25 - 1.45 (3H, m), 1.69 (2H, m), 1.84 (2H, m), 2.02 (2H, m), 2.30 (3H, s), 3.15 (2H, m), 3.19 - 3.42 (3H, m), 3.65 - 3.95 (2H, m), 4.39 (1H, m), 4.70 (1H, m), 7.45 (1H, d, J = 8 Hz), 7.51 (1H, d, J = 4 Hz), 7.66 (1H, dt, J = 8, 2 Hz), 7.71 - 7.86 (3H, m), 8.09 (2H, m), 8.70 (1H, d, J = 8 Hz), 8.98 (1H, d, J = 4 Hz), 9.84 (1H, br s).

Treatment of a solution of the free base (1.84 g, 4.3 mmol) in methanol (40 ml) and dichloromethane (20 ml) with hydrochloric acid (2M; 2.15 ml), followed by evaporation in vacuo gave a solid. Recrystallisation from ethanol (250 ml) gave trans-6-cyano-2-(2-(1-(4-(4-quinolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline monohydrochloride (0.86 g) as an off-white solid, m.p. 216 - 219 °C.

Found C, 69.59; H, 6.49; N, 11.61; Cl, 7.47. C₂₂H₃₀N₄O. HCl. 0.2 H₂O requires C, 70.33; H, 6.73; N, 11.72; Cl, 7.41%.

¹H NMR (DMSO-d₆) δ : 1.03 - 1.25 (2H, m), 1.25 - 1.45 (3H, m), 1.67 - 1.90 (4H, m), 2.01 (2H, m), 3.09 (1H, m), 3.26 (4H, m), 3.72 (1H, m), 3.82 (1H, m), 4.37 (1H, m), 4.65 (1H, m), 7.45 (1H, d, J = 8 Hz), 7.51 (1H, d, J = 4 Hz), 7.64 - 7.87 (4H, m), 8.10 (2H, m), 8.70 (1H, d, J = 8 Hz), 8.97 (1H, d, J = 4 Hz), 11.01 (1H, br s).

Example 20

trans-(E)-6-Cyano-2-(2-(1-(4-(3-(2,4-difluoro)phenylpropenoyl)amino)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline.

Alternative name: trans-(E)-N-[4-[2-(6-Cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-3-(2, 4-difluorophenyl)-2-propenamide

A mixture of trans-2-(2-(1-(4-amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline (0.1g, 0.353 mmol), (E)-3-(2,4-difluoro)phenylpropenoic acid (0.065 g, 0.353 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.069 g, 0.353 mmol), 1-hydroxybenzotriazole (catalytic amount) and dichloromethane (4ml) was treated in a manner similar to Example 1 to give the title compound (0.131 g, 82%) as a colorless solid.

Mass spectrum (API*): Found 450 (MH*). C₂₇H₂₅F₂N₃O requires 449.

 1 H NMR (CDCl₃) δ: 1.05 - 1.45 (5H, m), 1.51 (2H, m), 1.80 (2H, m), 2.04 (2H,m), 2.54 (2H, m), 2.73 (2H, t, J = 6Hz), 2.92 (2H, t, J = 6Hz,), 3.64 (2H, s), 3.88 (1H, m), 5.48 (1H, d, J = 8Hz), 6.43 (1H, d, J = 16Hz), 6.86 (2H, m), 7.11 (1H, d, J = 8Hz), 7.42 (3H, m), 7.61 (1H, d, J = 16Hz).

Example 21

10

15

20

25

trans-2-(2-(1-(4-(3-Benzo[b]furanyl)carboxamido)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline

Alternative name: *trans-N*-{4-{2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl}-3-benzofurancarboxamide

A mixture of mans-2-(2-(1-(4-amino)cyclohexyl)ethyl-6-cyano-1,2,3,4tetrahydroisoquinoline (0.1g, 0.353 mmol), benzo[b]furan-3-carboxylic acid (0.052 g, 0.353 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.067 g, 0.353 mmol), 1-hydroxybenzotriazole (catalytic amount) and dichloromethane (4.5 ml ml) was treated in a manner similar to Example 1 to give the title compound (0.076g 51%) as a colourless solid.

Mass spectrum (API'): Found 428 (MH'). C, H, N,O, requires 427.

¹H NMR (CDCl₃) δ: 1.10 - 1.80 (7H, m), 1.87 (2H, m), 2.15 (2H, m), 2.55 (2H, m), 2.75 (2H, t, J = 5.5Hz), 2.93 (2H, t, J = 5.5 Hz), 3.65 (2H, s), 4.00 (1H, m), 5.83 (1H, d, J = 8Hz), 7.11 (1H, d, J = 8Hz), 7.39 (4H, m), 7.50 (1H, m), 7.87 (1H, m), 8.09 (1H, s).

Example 22

trans-6-Cyano-2-(2-(1-(4-(7-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

10 Prepared in a similar manner to Example 19, using indole-7-carboxylic acid.

Mass spectrum (API*): Found 427 (MH*). C_nH₁₀N₄O requires 426.

¹H NMR (DMSO-d_g) δ: 1.00 - 1.20 (2H, m), 1.30 - 1.60 (5H, m), 1.80 - 2.00 (4H, m), 2.50 (2H, m), 2.70 (2H, t, J = 5 Hz), 2.90 (2H, t, J = 5 Hz), 3.66 (2H, s), 3.86 (1H, m), 6.53 (1H, t, J = 2 Hz), 7.10 (1H, t, J = 8 Hz), 7.33 (1H, d, J = 8 Hz), 7.39 (1H, t, J = 3 Hz), 7.62 (1H, d, J = 8 Hz), 7.65 (1H, s), 7.69 (1H, d, J = 8 Hz), 7.75 (1H, d, J = 8 Hz), 8.31 (1H, d, J = 8 Hz), 11.19 (1H, s).

Example 23

trans-6-Cyano-2-(2-(1-(4-(4-(8-fluoro)quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Prepared in a similar manner to Example 19, using 8-fluoro-quinoline-4-carboxylic acid (prepared according to the methods of McKittrik, et al., J. Het Chem., 1990, 27(7), 2151; and Senear, et al., J. Amer. Chem. Soc., 1946, 68, 2695).

Mass spectrum (API*): Found 457 (MH*). C₁₈H₂₉N₄OF requires 456.

¹H NMR (CDCl₃) δ : 1.10 - 1.45 (5H, m), 1.65 (2H, m), 1.85 (2H, m), 2.19 (2H, m), 2.56 (2H, m), 2.71 (2H, t, J = 6 Hz), 2.92 (2H, t, J = 6 Hz), 3.65 (2H, s), 4.05 (1H, m), 6.10 (1H, d, J = 8 Hz), 7.11 (1H, d, J = 8 Hz), 7.30 - 7.65 (5H, m), 7.97 (1H, d, J = 8 Hz), 8.95 (1H, d, J = 4 Hz).

Example 24

30

trans-6-Cyano-2-(2-(1-(4-(4-(8-bromo)quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Prepared in a similar manner to Example 19, using 8-bromo-quinoline-4-carboxylic acid (prepared according to the methods of Holt, et al., Proc. Roy. Soc., 1958, 148, 481; and Senear, et al., J. Amer. Chem. Soc., 1946, 68, 2695).

Mass spectrum (API*): Found 519 (MH*). C_nH_nN_sO^{s1}Br requires 518.

¹H NMR (CDCl₃) δ: 1.10 - 1.45 (5H, m), 1.55 (2H, m), 1.85 (2H, m), 2.20 (2H, m), 2.55 (2H, m), 2.73 (2H, t, J = 6 Hz), 2.91 (2H, t, J = 6 Hz), 3.65 (2H, s), 4.03 (1H, m), 5.85 (1H, d, J = 8 Hz), 7.10 (1H, d, J = 8 Hz), 7.25 - 7.47 (4H, m), 8.10 (1H, dd, J = 8, 2 Hz), 8.20 (1H, dd, J = 8, 2 Hz), 9.05 (1H, d, J = 4 Hz).

Example 25

trans-6-Cyano-2-(2-(1-(4-(4-(8-cyano)quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Prepared in a similar manner to Example 19, using 8-cyano-quinoline-4-carboxylic acid (prepared from 8-bromo-quinoline-4-carboxylic acid methyl ester by standard methods).

Mass spectrum (API*): Found 464 (MH*). C₂₀H₂₀N₅O requires 463.

¹H NMR (CDCl₃) δ: 1.10 - 1.45 (5H, m), 1.55 (2H, m), 1.90 (2H, m), 2.19 (2H, m), 2.56 (2H, m), 2.74 (2H, t, J = 6 Hz), 2.92 (2H, t, J = 6 Hz), 3.66 (2H, s), 4.05 (1H, m), 6.10 (1H, d, J = 8 Hz), 7.11 (1H, d, J = 8 Hz), 7.40 (2H, m), 7.55 (1H, h, J = 4 Hz), 7.66 (1H, m), 8.11 (1H, dd, J = 8, 1 Hz), 8.50 (1H, dd, J = 8, 1 Hz), 9.06 (1H, d, J = 4 Hz).

Example 26

15

trans-6-Cyano-2-(2-(1-(4-(5-(8-fluoro)quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Prepared in a similar manner to Example 19, using 8-fluoro-quinoline-5-carboxylic acid (prepared from 3-amino-4-fluorobenzoic acid according to the method of Bradford, et al., J. Chem. Soc., 1947, 437).

Mass spectrum (API*): Found 457 (MH*). C₂₇H₂₀N₄OF requires 456.

¹H NMR (CDCl₃) δ: 1.10 - 1.45 (5H, m), 1.56 (2H, m), 1.89 (2H, m), 2.18 (2H, m), 2.56 (2H, m), 2.73 (2H, t, J = 6 Hz), 2.92 (2H, t, J = 6 Hz), 3.65 (2H, s), 4.05 (1H, m), 5.85 (1H, d, J = 8 Hz), 7.10 (1H, d, J = 8 Hz), 7.35 (3H, m), 7.54 (1H, m), 7.60 (1H, m), 8.85 (1H, d, J = 7 Hz), 9.05 (1H, m).

Example 27

35

30 *trans*-6-Cyano-2-(2-(1-(4-(4-(7-cyano)quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Prepared in a similar manner to Example 19, using 7-cyano-quinoline-4-carboxylic acid (prepared from 7-bromo-quinoline-4-carboxylic acid methyl ester by standard methods). Mass spectrum (API*): Found 464 (MH*). C₂₀H₂₀N₄O requires 463.

¹H NMR (DMSO-d_c) δ : 1.00 - 1.20 (2H, m), 1.20 - 1.40 (3H, m), 1.40 - 1.50 (2H, m), 1.80 - 1.90 (2H, m), 1.90 - 2.00 (2H, m), 2.50 (2H, m), 2.65 (2H, t, J = 8 Hz), 2.84 (2H,

m), 3.61 (2H, s), 3.80 (1H, m), 7.08 (1H, d, J = 8 Hz), 7.56 (1H, d, J = 8 Hz), 7.58 (1H, s), 7.69 (1H, d, J = 4 Hz), 7.97 (1H, dd, J = 9, 2 Hz), 8.27 (1H, d, J = 9 Hz), 8.67 (1H, d, J = 2 Hz), 8.77 (1H, d, J = 8 Hz), 9.12 (1H, d, J = 4 Hz).

5 Example 28

trans-2-(2-(1-(4-(3-(7-Fluoro)benzo[b]furanyl)carboxamido)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline

Prepared in a similar manner to Example 21, using 7-fluoro-benzo[b]furan-3-carboxylic acid (prepared from 3-bromo-7-fluoro-benzo[b]furan by standard methods).

Mass spectrum (API*): Found 446 (MH*). C₂₇H₂₈N₃O₃ requires 445.

¹H NMR (CDCl₃) δ: 1.10 - 1.45 (5H, m), 1.55 (2H, m), 1.86 (2H, m), 2.14 (2H, m), 2.56 (2H, m), 2.73 (2H, t, J = 6 Hz), 2.94 (2H, t, J = 6 Hz), 3.65 (2H, s), 3.98 (1H, m), 5.80 (1H, d, J = 8 Hz), 7.10 (2H, m), 7.30 (1H, m), 7.40 (2H, m), 7.67 (1H, d, J = 8 Hz), 8.09 (1H, s).

Example 29

25

30

trans-2-(2-(1-(4-(3-(5-Cyano)benzo[b]furanyl)carboxamido)cyclohexyl)ethyl)-6cyano-1,2,3,4-tetrahydroisoquinoline

A mixture of trans-2-(2-(1-(4-amino)cyclohexyl)ethyl-6-cyano-1,2,3,4-tetrahydroisoquinoline (0.283g, 1.0 mmol), 3-bromo-5-cyano-benzo[b]furan (0.212g, 1.0 mmol) [prepared from 5-bromo-benzo[b]furan using standard methods], tri-n-butylamine (0.26 ml) and trans-bis-triphenylphosphinepalladium(II)bromide (0.04g) in dimethylacetamide (5 ml) were heated at 100°C under a CO atmosphere at 30 psi for 18h. After cooling, the mixture was partitioned between water and ethyl acetate and the organic phase dried and evaporated in vacuo. The residue was chromatographed (Si gel, eluting with 30-100% EtOAc in hexane) to afford the title compound as an off-white solid (0.085g, 20%).

Mass spectrum (API'): Found 453 (MH'). C₂₂H₂₂N₄O₂ requires 452.

³H NMR (CDCl₃) δ: 1.10 - 1.40 (5H, m), 1.52 (2H, m), 1.85 (2H, m), 2.15 (2H, m), 2.55 (2H, m), 2.73 (2H, t, J = 6 Hz), 2.92 (2H, t, J = 6 Hz), 3.65 (2H, s), 3.95 (1H, m), 5.85 (1H, d, J = 8 Hz), 7.11 (2H, m), 7.35 - 7.65 (4H, m), 8.40 (1H, s).

Example 30

trans-6-Cyano-2-(2-(1-(4-(4-(3-methoxy)quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Prepared in a similar manner to Example 19, using 3-methoxy-quinoline-4-carboxylic acid.

Mass spectrum (API*): Found 469 (MH*). C_xH_xN₄O₃ requires 468.

5 H NMR (CDCl₃) δ: 1.12 - 1.41 (5H, m), 1.55 (2H, m), 1.89 (2H, m), 2.22 (2H, m), 2.56 (2H, m), 2.74 (2H, t, J = 6 Hz), 2.92 (2H, m), 3.65 (2H, s), 4.06 (3H, s), 4.10 (1H, m), 5.93 (1H, d, J = 8 Hz), 7.12 (1H, d, J = 8 Hz), 7.39 (2H, m), 7.57 (2H, m), 7.93 (1H, dd, J = 8, 1 Hz), 8.04 (1H, dd, J = 8, 1 Hz), 8.80 (1H, s).

Example 31

10 trans-6-Cyano-2-(2-(1-(4-(5-(8-chloro)quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

Prepared in a similar manner to Example 19, using 8-chloro-quinoline-5-carboxylic acid (prepared from 3-amino-4-chlorobenzoic acid according to the method of Bradford, et al., J. Chem. Soc., 1947, 437).

15 Mass spectrum (API'): Found 473 (MH'). C₂₂H₂₉N₄O²⁵Cl requires 472.

¹H NMR (CDCl₃) δ : 1.10 - 1.45 (5H, m), 1.55 (2H, m), 1.90 (2H, m), 2.20 (2H, m), 2.58 (2H, m), 2.74 (2H, t, J = 6 Hz), 2.93 (2H, t, J = 6 Hz), 3.66 (2H, s), 4.00 (1H, m), 5.93 (1H, d, J = 8 Hz), 7.11 (1H, d, J = 8 Hz), 7.40 (2H, m), 7.55 (2H, m), 7.83 (1H, d, J = 9 Hz), 8.75 (1H, dd, J = 9, 2 Hz), 9.05 (1H, m).

Example 32

20

25

30

35

40

 $\it trans-6-Cyano-2-(2-(1-(4-(3-pyrrolo[2,3-b]pyridyl)carboxamido)cyclohexyl) ethyl)-1,2,3,4-tetrahydroisoquinoline$

Prepared in a similar manner to Example 19, using pyrrolo[2,3-b]pyridine-3-carboxylic acid [M.M. Robison, B.L. Robison, J. Am. Chem. Soc. 1956, 78, 1247], in 27% yield.

Mass spectrum (API'): Found 426 (M-H). C₂₆H₂₅N₅O requires 427.

¹H NMR (DMSO- d_c) δ : 0.89 - 1.12 (2H, m), 1.13 - 1.50 (5H, m), 1.60 - 1.90 (4H, m), 2.43 (2H, m), 2.60 (2H, m), 2.77 (2H, m), 3.54 (2H, s), 3.69 (1H, m), 7.09 (1H, dd, J = 8, 5 Hz), 7.23 (1H, d, J = 9 Hz), 7.51 (2H, m), 7.69 (1H, d, J = 9 Hz), 8.09 (1H, d, J = 3 Hz), 8.18 (1H, m), 8.37 (1H, dd, J = 9, 2 Hz), 11.98 (1H, br s).

Example 33

 $trans\hbox{-}2\hbox{-}(2\hbox{-}(4\hbox{-}(3\hbox{-}(7\hbox{-}Cyano)benzo[b]furanyl)carboxamido)cyclohexyl)ethyl)\hbox{-}6\hbox{-}cyano-1,2,3,4\hbox{-}tetrahydroisoquinoline}$

Prepared from 3-bromo-7-cyanobenzo[b]furan (0.318g, 1.5 mmol) [itself prepared from 7-bromobenzo[b]furan using standard methods] using a procedure similar to that of Example 29, in 18% yield.

5 Mass spectrum (API*): Found 453 (MH*). C₂₂H₂₂N₄O₂ requires 452.

10

'H NMR (CDCl₃) δ : 1.02 - 1.43 (5H, m), 1.54 (2H, m), 1.89 (2H, m), 2.15 (2H, m), 2.56 (2H, t, J = 7 Hz), 2.74 (2H, m), 2.92 (2H, m), 3.65 (2H, s), 3.96 (1H, m), 5.90 (1H, d, J = 9 Hz), 7.15 (1H, d, J = 9 Hz), 7.34 - 7.52 (3H, m), 7.68 (1H, d, J = 9 Hz), 8.17 (1H, s), 8.34 (1H, d, J = 9 Hz).

Claims:

1. A compound of formula (I):

$$(R^1)_q$$

Formula (I)

wherein:

5

10

15

20

25

35

R¹ represents a substituent selected from: a hydrogen or halogen atom; a hydroxy, cyano, nitro, trifluoromethyl, trifluoromethoxy, trifluoromethanesulfonyloxy, pentafluoroethyl, C₁₋₄alkyl, C₁₋₄alkoxy, arylC₁₋₄alkoxy, C₁₋₄alkylthio, C₁₋₄alkoxyC₁₋₄alkyl, C₃₋₆cycloalkylC₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkoxycarbonyl, C₁₋₄alkylsulfonyl, C₁₋₄alkylsulfonyloxy, arylsulfonyloxy, C₁₋₄alkylsulfonylC₁₋₄alkyl, arylsulfonyl, arylsulfonyloxy, arylsulfonylC₁₋₄alkyl, C₁₋₄alkylsulfonamido, C₁₋₄alkylsulfonamido, arylcarboxamido, arylsulfonamidoC₁₋₄alkyl, arylcarboxamidoC₁₋₄alkyl, aroyl, aroylC₁₋₄alkyl, or arylC₁₋₄alkanoyl group; a group R³OCO(CH₂)_p, R³CON(R⁴)(CH₂)_p, R³R⁴NCO(CH₂)_p or R³R⁴NSO₂(CH₂)_p where each of R³ and R⁴ independently represents a hydrogen atom or a C₁₋₄alkyl group or R³R⁴ forms part of a C₃₋₆azacyloalkane or C₃₋₆(2-oxo)azacycloalkane ring and p represents zero or an integer from 1 to 4; or a group Ar³-Z, wherein Ar³ represents an optionally substituted phenyl ring or an optionally substituted 5- or 6- membered aromatic heterocyclic ring and Z represents a bond, O, S, or CH₂;

 R^2 represents a hydrogen atom or a C_{1-4} alkyl group; q is 1 or 2;

A represents a group of the formula (a), (b) or (c):

 $-Ar \qquad -Ar \frac{1}{2} Y - Ar^2 \qquad Ar$ (a) (b) (c)

wherein

Ar represents an optionally substituted phenyl ring or an optionally substituted 5or 6- membered aromatic heterocyclic ring; or an optionally substituted bicyclic ring system;

 ${\rm Ar}^1$ and ${\rm Ar}^2$ each independently represent an optionally substituted phenyl ring or an optionally substituted 5- or 6- membered aromatic heterocyclic ring; and

Y represents a bond, -NHCO-, -CONH-, -CH₂-, or -(CH₂)_mY¹(CH₂)_n-, wherein Y¹ represents O, S, SO₂, or CO and m and n each represent zero or 1 such that the sum

of m+n is zero or 1; providing that when A represents a group of formula (a), any substituent present in Ar ortho to the carboxamide moiety is necessarily a hydrogen or a methoxy group; and salts thereof.

5

10

15

20

- 2. A compound according to claim 1 wherein q represents 1.
- 3. A compound according to claim 1 or claim 2 wherein A is a group of formula (a) and Ar represents an optionally substituted indolyl, pyrazolo[1,5-a]pyrimidyl, cinnolinyl, quinolinyl, benzo[b]furanyl, or pyrrolopyridyl group.
- 4. A compound according to claim 1 or claim 2 wherein A is a group of formula (c) and Ar represents an optionally substituted phenyl group.
- 5. A compound according to any of the preceding claims wherein rings Ar, Ar¹, or Ar² are each independently optionally substituted by one or more substituents selected from: a hydrogen or halogen atom, cyano, methoxy, methylenedioxy, acetyl, acetylamino, methylsulfonyl, methylsulfonyloxy, methylsulfonyl, methylsulfonylamino, or methylaminocarbonyl group.
- 6. A compound of formula (I) which is: trans-7-Cyano-2-(2-(1-(4-(2-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline
- (E)-trans-7-Cyano-2-(2-(1-(4-(3-(6-indolyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline
- trans-(E)-6-Cyano-2-(2-(1-(4-(3-(3-methylsulfonyl)phenylpropenoyl) amino)cyclohexyl)ethyl-1,2,3,4-tetrahydroisoguinoline;
- 30 mans-(E)-2-(2-(1-(4-(3-(3-Acetyl)phenylpropenoyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline;
 - mans-7-Cyano-2-(2-(1-(4-(3-(4,6-dimethyl)pyrazolo[1,5-
 - a]pyrimidyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - tetra hydroisoguinoline
- 35 tetrahydroisoquinoline;
 - trans-7-Cyano-2-(2-(1-(4-(2-(6-cyano)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-7-Cyano-2-(2-(1-(4-(3,4-methylenedioxy)benzamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- 40 trans-7-Cyano-2-(2-(1-(4-(2-indolyl)-N-methyl-carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 trans-7-Cyano-2-(2-(1-(4-(2-(1-methyl)indolyl)carboxamido)cyclohexyl)ethyl-1,2,3,4
 - tetrahydroisoquinoline;

trans-7-Cyano-2-(2-(1-(4-(2-(5-nitro)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;

- trans-7-Cyano-2-(2-(1-(4-(2-(5-methylsulfonyl)indolyl)carboxamido) cyclohexyl)-ethyl-1,2,3,4-tetrahydroisoquinoline;
- 5 trans-7-Cyano-2-(2-(1-(4-(3-isoquinolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-7-Cyano-2-(2-(1-(4-(2-(5-methoxy)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-2-(2-(1-(4-(4-(4-Acetyl)phenyl)benzoyl)aminocyclohexyl)ethyl)-6-cyano-1,2,3,4-
- 10 tetrahydroisoquinoline;
 - trans-7-Cyano-2-(2-(1-(4-(2-(7-nitro)indolyl)carboxamido)cyclohexyl)ethyl-1,2,3,4-tetrahydroisoquinoline;
 - trans-7-Cyano-2-(2-(1-(4-(2-(5-methyl)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- trans-7-Cyano-2-(2-(1-(4-(2-(1H)-pyrrolo[3,2-b]pyridyl)carboxamido) cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline; trans-7-Cyano-2-(2-(1-(4-(3-pyrazolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-7-Cyano-2-(2-(1-(4-(6-(1-methyl)benzimidazolyl)carboxamido)cyclohexyl)-ethyl)-
- 20 1,2,3,4-tetrahydroisoquinoline;
 - trans-7-Cyano-2-(2-(1-(4-(5-(1,2-dihydro)benzofuranyl)carboxamido)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline
 - trans-7-Cyano-2-(2-(1-(4-(2-thieno[3,2-b]thiophenyl)carboxamido)cyclohexyl)ethyl-1,2,3,4-tetrahydroisoquinoline
- 25 trans-7-Cyano-2-(2-(1-(4-(4-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline trans-7-Cyano-2-(2-(1-(4-(2-(6-methoxy)indolyl)carboxamido)cyclohexyl)ethyl-1,2,3,4-tetrahydroisoquinoline
 - trans-7-Cyano-2-(2-(1-(4-(2-(6-chloro)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-
- 30 tetrahydroisoquinoline
 - trans-7-Cyano-2-(2-(1-(4-(2-(6-fluoro)indolyl)carboxamido)cyclohexyl)ethyl-1,2,3,4-tetrahydroisoquinoline
 - $\it trans-7-Cyano-2-(2-(1-(4-(2-(6-methyl)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline$
- 35 trans-2-(2-(1-(4-(2-(5-Chloro)benzofuranyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline
 - trans-2-(2-(1-(4-(2-(3-Amino)naphthyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline
 - trans-7-Cyano-2-(2-(1-(4-(2-thienyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-
- 40 tetrahydroisoquinoline
 - trans-7-Cyano-2-(2-(1-(4-(2-naphthyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline
 - *trans*-7-Cyano-2-(2-(1-(4-(3-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

trans-(E)-7-Cyano-2-(2-(1-(4-(3-phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline

- trans-6-Cyano-2-(2-(1-(4-(1-naphthyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- 5 trans-2-(2-(1-(4-(2-Benzo[b]thienyl)carboxamido)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline;
 - trans-6-Cyano-2-(2-(1-(4-(5-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-6-Cyano-2-(2-(1-(4-(6-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-
- 10 tetrahydroisoquinoline;
 - trans-6-Cyano-2-(2-(1-(4-(2-thieno[3,2-b]thiophenyl)carboxamido)cyclohexyl)-ethyl-1,2,3,4-tetrahydroisoquinoline;
 - trans-6-Cyano-2-(2-(1-(4-(3,4-methylenedioxy)benzamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- trans-2-(2-(1-(4-(2-Benzofuranyl)carboxamido)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline;
 - rrans-(E)-6-Cyano-2-(2-(1-(4-(3-(5-(1,2-dihydro-2-oxo)-(3H)-
 - indolyl)propenoyl)amino)cyclohexyl)ethyl-1,2,3,4-tetrahydroisoquinoline;
 - trans-(E)-6-Cyano-2-(2-(1-(4-(3-phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-
- 20 tetrahydroisoquinoline;
 - trans-(E)-6-Cyano-2-(2-(1-(4-(3-(4-ethylsulfonyl)phenylpropenoyl)-
 - amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-(E)-2-(2-(1-(4-(3-(4-Acetyl)phenylpropenoyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline;
- trans-(E)-6-Cyano-2-(2-(1-(4-(3-(3,4-methylenedioxy)phenylpropenoyl)-amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 trans-(E)-6-Cyano-2-(2-(1-(4-(3-(3-thienyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - mans-(E)-6-Cyano-2-(2-(1-(4-(3-(2-thienyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-
- 30 tetrahydroisoquinoline;
 - trans-(E)-2-(2-(1-(4-(3-(2-Acetyl)phenylpropenoyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline;
 - trans-(E)-2-(2-(1-(4-(3-(4-Acetyl)phenylpropenoyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline;
- 35 trans-(E)-6-Cyano-2-(2-(1-(4-(3-(4-methoxy)phenylpropenoyl)amino)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 trans-(E)-2-(2-(1-(4-(3-(4-Chloro)phenylpropenoyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline:
 - trans-(E)-6-Cyano-2-(2-(1-(4-(3-(3-methylaminocarbonyl)phenylpropenoyl)
- amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline; nrans-(E)-6-Cyano-2-(2-(1-(4-(3-(4-methylaminocarbonyl)phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-7-Cyano-2-(2-(1-(4-(6-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;

trans-2-(2-(1-(4-(2-(5-Chloro)indolyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline;

- trans-7-Cyano-2-(2-(1-(4-(3-thienyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- 5 trans-2-(2-(1-(4-(2-(3-Chloro)benzo[b]thienyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline;
 - trans-7-Cyano-2-(2-(1-(4-(6-quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-(E)-7-Cyano-2-(2-(1-(4-(3-(2-(3,4-dimethyl)thieno[2,3-
- b]thiophenyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline; trans-(E)-7-Cyano-2-(2-(1-(4-(3-(3-methylaminocarbonyl)phenylpropenoyl)-amino)cyclohexyl)ethyl-1,2,3,4-tetrahydroisoquinoline; trans-(E)-7-Cyano-2-(2-(1-(4-(3-(3-methoxy)phenylpropenoyl)amino)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- trans-(E)-2-(2-(1-(4-(3-(3-Acetyl)phenylpropenoyl)amino)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline;
 - trans-(E)-2-(2-(1-(4-(3-(3-Chloro)phenylpropenoyl)amino)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline;
- trans-(E)-7-Cyano-2-(2-(1-(4-(3-(3-thienyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- trans-(E)-2-(2-(1-(4-(3-(2-Acetamido)phenylpropenoyl)amino)cyclohexyl)ethyl)-7-cvano-1.2.3.4-tetrahydroisoquinoline;
 - trans-2-(2-(1-(4-Benzamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline; trans-(E)-7-Cyano-2-(2-(1-(4-(3-(2-naphthyl)propenoyl)amino)cyclohexyl)-ethyl)-
- 25 1,2,3,4-tetrahydroisoquinoline;
 - trans-6-Cyano-2-(2-(1-(4-(2-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoguinoline:
 - trans-(E)-7-Cyano-2-(2-(1-(4-(3-(2-thienyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- 30 *trans-2-(2-(1-(4-(2-Benzo[b]thienyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline*;
 - *trans*-7-Cyano-2-(2-(1-(4-(6-(pyrrolo[3,2-c]pyridyl)carboxamido)cyclohexyl)-ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-(E)-2-(2-(1-(4-(3-(4-Chloro)phenylpropenoyl)amino)cyclohexyl)ethyl)-7-cyano-
- 35 1,2,3,4-tetrahydroisoquinoline;
 - trans-(E)-7-Cyano-2-(2-(1-(4-(3-(3,4-methylenedioxy)phenylpropenoyl)amino)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-(E)-7-Cyano-2-(2-(1-(4-(3-(5-(1,2-dihydro-2-oxo)-(3H)-
 - indolyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- trans-(E)-2-(2-(1-(4-(3-(3-Acetamido)phenylpropenoyl)amino)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline;
 trans-2-(2-(1-(4-(2-Benzo[b]furanyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4
 - tetrahydroisoquinoline;

PCT/EP98/02583 WO 98/50364

trans-(E)-2-(2-(1-(4-(3-(4-Acetyl)phenylpropenoyl)amino)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoguinoline:

- trans-(E)-7-Cyano-2-(2-(1-(4-(3-(4-methylsulfonyl)phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- 5 trans-(E)-7-Cyano-2-(2-(1-(4-(3-(4-methoxy)phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoguinoline: trans-(E)-7-Cyano-2-(2-(1-(4-(3-(4-methylaminocarbonyl)phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoguinoline: trans-7-Cyano-2-(2-(1-(4-(3-quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-
- 10 tetrahydroisoguinoline; trans-2-(2-(1-(4-(5-Benzimidazolyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4tetrahydroisoguinoline:
 - trans-7-Cyano-2-(2-(1-(4-(2-(3-methyl)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4tetrahydroisoguinoline:
- 15 trans-7-Cyano-2-(2-(1-(4-(5-(2-methyl)benzimidazoyl)carboxamido)-cyclohexyl)ethyl)-1.2.3,4-tetrahydroisoquinoline;
 - trans-6-Cyano-2-(2-(1-(4-(5-(2-methyl)benzimidazolyl)carboxamido)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoguinoline:
 - trans-2-(2-(1-(4-(2-(5-Acetyl)indolyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-
- 20 tetrahydroisoguinoline: trans-2-(2-(1-(4-(2-(6-Acetyl)indolyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4
 - tetrahydroisoguinoline: trans-2-(2-(1-(4-(2-(6-Acetyl)indolyl)carboxamido)cyclohexyl)ethyl)-6-cyano-1,2,3,4-
- tetrahydroisoguinoline: 25 trans-7-Cyano-2-(2-(1-(4-(2-(6-methylsulfonyl)indolyl)carboxamido)-cyclohexyl)ethyl-1,2,3,4-tetrahydroisoguinoline;
 - mans-7-Cyano-2-(2-(1-(4-(5-(1,2-dihydro-2-oxo)-(3H)-

- indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- trans-6-Cyano-2-(2-(1-(4-(5-(1,2-dihydro-2-oxo)-(3H)-indolyl)-
- carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline; trans-6-Cyano-2-(2-(1-(4-(2-(4-methylthio)indolyl)carboxamido)cyclohexyl)-ethyl)-1,2,3,4-tetrahydroisoguinoline:
 - trans-6-Cyano-2-(2-(1-(4-(2-(5-methoxy)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4tetrahydroisoguinoline:
- trans-6-Cyano-2-(2-(1-(4-(2-(5-methylsulfonyl)indolyl)carboxamido)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-(E)-6-Cyano-2-(2-(1-(4-(3-(2-indolyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4tetrahydroisoquinoline;
 - trans-(E)-7-Cyano-2-(2-(1-(4-(3-(2-indolyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-
- tetrahydroisoquinoline; trans-(E)-7-Cyano-2-(2-(1-(4-(3-(3-indolyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4tetrahydroisoguinoline;
 - trans-2-(2-(1-(4-(2-(7-Acetyl)indolyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4tetrahydroisoguinoline:

trans-7-Cyano-2-(2-1-(4-(3-pyridyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;

- trans-6-Cyano-2-(2-(1-(4-(2-(6-fluoro)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- 5 trans-6-Cyano-2-(2-(1-(4-(2-(6-methoxy)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-6-Cyano-2-(2-(1-(4-(2-(6-methyl)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-2-(2-(1-(4-(2-(7-Acetyl)indolyl)carboxamido)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline;
 - trans-7-Cyano-2-(2-(1-(4-(2-(5-cyano)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-6-Cyano-2-(2-(1-(4-(2-(5-cyano)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- 15 *trans*-7-Cyano-2-(2-(1-(4-(2-(7-cyano)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-6-Cyano-2-(2-(1-(4-(2-(7-cyano)indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - rrans-5-Cyano-2-(2-(1-(4-(2-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-
- 20 tetrahydroisoquinoline;

- trans-(E)-5-Cyano-2-(2-(1-(4-(3-phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- trans-7-Cyano-2-(2-(1-(4-(2-(4-methylsulfonyl)indolyl)carboxamido)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- 25 (±)-trans-7-Cyano-2-(2-(1-(4-(2-(4-methylsulfinyl)indolyl)carboxamido)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline; trans-7-Cyano-2-(2-(1-(4-(4-pyridyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-7-Cyano-2-(2-(1-(4-(4-quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-
- 30 tetrahydroisoguinoline:
 - trans-6-Cyano-2-(2-(1-(4-(4-quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-(E)-6-Cyano-2-(2-(1-(4-(3-(2-fluoro)phenylpropenoyl)amino)
 - cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- 35 mans-(E)-6-Cyano-2-(2-(1-(4-(3-(2-methoxy)phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-(E)-2-(2-(1-(4-(3-(2-Chloro)phenylpropenoyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline;
 - trans-(E)-6-Cyano-2-(2-(1-(4-(3-(2-methyl)phenylpropenoyl)amino)cyclohexyl)ethyl)-
- 40 1,2,3,4-tetrahydroisoquinoline;
 - trans-(E)-6-Cyano-2-(2-(1-(4-(3-(3-fluoro)phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;

trans-(E)-6-Cyano-2-(2-(1-(4-(3-(2,6-difluoro)phenylpropenoyl)amino) cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline; trans-(E)-6-Cyano-2-(2-(1-(4-(3-(2,3-methylenedioxy)phenylpropenoyl) amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoguinoline: trans-(E)-6-Cyano-2-(2-(1-(4-(3-(2,3-difluoro)phenylpropenoyl)amino) cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline; trans-2-(2-(1-(4-(4-Quinolinyl)carboxamido)cyclohexyl)ethyl)-6-trifluoromethyl-1,2,3,4tetrahydroisoquinoline; trans-2-(2-(1-(4-(4-Quinolinyl)carboxamido)cyclohexyl)ethyl)-6-trifluoromethoxy)-10 1,2,3,4-tetrahydroisoguinoline; trans-(E)-6-Cyano-2-(2-(1-(4-(3-(3-methylsulfonyloxy)phenylpropenoyl) amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoguinoline: trans-(E)-2-(2-(1-(4-(3-(7-Benzo[b]furanyl)propenoyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoguinoline: 15 trans-6-Cyano-2-(2-(1-(4-(6-methoxy)quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline; trans-(E)-6-Cyano-2-(2-(1-(4-(3-(1-naphthyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoginoline; trans-2-(2-(1-(4-(4-Quinolinyl)carboxamido)cyclohexyl)ethyl)-5-trifluoromethyl-1,2,3,4-20 tetrahydroisoquinoline; trans-(E)-2-(2-(1-(4-(3-(3-Cyano)phenylpropenoyl)amino)cyclohexyl)ethyl)-5trifluoromethyl-1,2,3,4-tetrahydroisoquinoline; trans-(E)-2-(2-(1-(4-(3-Phenylpropenoyl)amino)cyclohexyl)ethyl)-5-trifluoromethyl-1,2,3,4-tetrahydroisoguinoline: 25 trans-(E)-2-(2-(1-(4-(3-(3-Acetamido)phenylpropenoyl)amino)cyclohexyl)ethyl)-5trifluoromethyl-1,2,3,4-tetrahydrosioquinoline; trans-(E)-6-Cyano-2-(2-(1-(4-(3-(4-quinolinyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoguinoline; rrans-5,6-Difluoro-2-(2-(1-(4-(4-quinolinyl)carboxamido)cyclohexyl)ethyl-1,2,3,4-30 tetrahydroisoquinoline; trans-(E)-5,6-Difluoro-2-(2-(1-(4-(3-phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4tetrahydroisoquinoline; trans-(E)-5,6-Difluoro-2-(2-(1-(4-(3-(3-methylsulfonamido)phenylpropenoyl)amino) cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline; 35 trans-(E)-6-Cyano-2-(2-(1-(4-(3-(1-(4fluoro)naphthyl)propenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline; nrans-(E)-2-(2-(1-(4-(3-(4-Benzo[b]furanyl)propenoyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoguinoline:

trans-(E)-2-(2-(1-(4-(3-(2-Cyano)phenylpropenoyl)amino)cyclohexyl)ethyl)-5-

trans-(E)-2-(2-(1-(4-(3-(4-Cyano)phenylpropenoyl)amino)cyclohexyl)ethyl)-5-

trifluoromethyl-1,2,3,4-tetrahydroisoquinoline;

trifluoromethyl-1,2,3,4-tetrahydroisoquinoline;

trans-6-Pentafluoroethyl-2-(2-(1-(4-(4-quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;

- trans-6-Cyano-2-(2-(1-(4-(4-(6-fluoro)quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- 5 trans-6-Cyano-2-(2-(1-(4-(1-isoquinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4 tetrahydroisoquinoline;
 - trans-(E)-2-(2-(1-(4-(3-(3-Acetamido)phenylpropenoyl)amino)cyclohexyl)-ethyl)-5-pentafluoroethyl-1,2,3,4-tetrahydroisoquinoline;
 - trans-6-Cyano-2-(2-(1-(4-(4-(4-(3-fluoro)quinolinyl)carboxamido)-cyclohexyl)ethyl)-
- 10 1,2,3,4 tetrahydroisoquinoline;
 - trans-6-Cyano-2-(2-(1-(4-(5-isoquinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-6-Cyano-2-(2-(1-(4-(4-(7-fluoro)quinolinyl)carboxamido)cyclohexyl)-ethyl)-1,2,3,4-tetrahydroisoquinoline;
- trans-6-Cyano-2-(2-(1-(4-(5-(1,2-dihydro-2-oxo)quinolinyl)carboxamido)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 trans-6-Cyano-2-(2-(1-(4-(5-(2,3-dihydro-3-oxo)-4H-benzoxazinyl)-carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 trans-(E)-8-Cyano-2-(2-(1-(4-(3-phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-
- tetrahydroisoquinoline; trans-8-Cyano-2-(2-(1-(4-(2-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-7-Cyano-2-(2-(1-(4-(2-indolyl)carboxamido)cyclohexyl)ethyl)-6-methyl-1,2,3,4-tetrahydroisoquinoline;
- 25 trans-6-Cyano-2-(2-(1-(4-(2-naphthyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans -(E)-7-Cyano-6-methyl-2-(2-(1-(4-(3-phenylpropenoyl)amino)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-2-(2-(1-(4-(4-(4-Acetyl)phenyl)benzoyl)aminocyclohexyl)ethyl)-5-cyano-1,2,3,4-
- 30 tetrahydroisoquinoline;
 - *trans-(E)-2-(2-(1-(4-(3-(3-Acetamido)phenylpropenoyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline;*
 - trans-(E)-6-Cyano-2-(2-(1-(4-(3-(3-methoxy)phenylpropenoyl)amino)cyclohexyl)-ethyl)-1,2,3,4-tetrahydroisoquinoline;
- 35 trans-(E)-2-(2-(1-(4-(3-(3-Chloro)phenylpropenoyl)amino)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline;
 - trans-2-(2-(1-(4-(4-Cinnolinyl)carboxamido)cyclohexyl)ethyl)-7-cyano-1,2,3,4-tetrahydroisoquinoline;
 - trans-(E)-6-Cyano-2-(2-(1-(4-(3-(4-fluoro)phenylpropenoyl)amino)cyclohexyl)ethyl)-
- 1,2,3,4-tetrahydroisoquinoline; trans-(E)-6-Cyano-2-(2-(1-(4-(3-(2,5-difluoro)phenylpropenoyl)amino)cyclohexyl)-ethyl)-1,2,3,4-tetrahydroisoquinoline;

trans-6-Cyano-2-(2-(1-(4-(5-quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;

- trans-(E)-6-Bromo-2-(2-(1-(4-(3-(3-methylsulfonyl)phenylpropenoyl)amino)-cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- 5 trans-(E)-2-(2-(1-(4-(3-(3-Methylsulfonyl)phenylpropenoyl)amino)-cyclohexyl)ethyl)-6-trifluoromethyl-1,2,3,4-tetrahydroisoquinoline; trans-(E)-2-(2-(1-(4-(3-(3-Methylsulfonyl)phenylpropenoyl)amino)-cyclohexyl)ethyl)-6-trifluoromethoxy-1,2,3,4-tetrahydroisoquinoline;
- trans-(E)-6-Cyano-2-(2-(1-(4-(3-(2,4-difluoro)phenylpropenoyl)amino)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;

 trans-2-(2-(1-(4-(3-Benzo[b]furanyl)carboxamido)cyclohexyl)ethyl)-6-cyano-1,2,3,4tetrahydroisoquinoline;
 - trans-6-Cyano-2-(2-(1-(4-(7-indolyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- 15 *trans*-6-Cyano-2-(2-(1-(4-(8-fluoro)quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-6-Cyano-2-(2-(1-(4-(4-(8-bromo)quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-6-Cyano-2-(2-(1-(4-(8-cyano)quinolinyl)carboxamido)cyclohexyl)ethyl)-
- 20 1,2,3,4-tetrahydroisoguinoline;
 - trans-6-Cyano-2-(2-(1-(4-(5-(8-fluoro)quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - trans-6-Cyano-2-(2-(1-(4-(4-(7-cyano)quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- 25 *trans*-2-(2-(1-(4-(3-(7-Fluoro)benzo[b]furanyl)carboxamido)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline;
 - trans-2-(2-(1-(4-(3-(5-Cyano)benzo[b]furanyl)carboxamido)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline;
 - trans-6-Cyano-2-(2-(1-(4-(4-(3-methoxy)quinolinyl)carboxamido)cyclohexyl)ethyl)-
- 30 1,2,3,4-tetrahydroisoguinoline;
 - trans-6-Cyano-2-(2-(1-(4-(5-(8-chloro)quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
 - *trans*-6-Cyano-2-(2-(1-(4-(3-pyrrolo[2,3-b]pyridyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline;
- 35 trans-2-(2-(4-(3-(7-Cyano)benzo[b]furanyl)carboxamido)cyclohexyl)ethyl)-6-cyano-1,2,3,4-tetrahydroisoquinoline;
 - or a salt thereof.

7. *trans*-6-Cyano-2-(2-(1-(4-(4-quinolinyl)carboxamido)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline or a salt thereof.

- 8. A salt according to claim 7 which is the mono hydrochloride or monomesylate salt
- 9 A process for preparing compounds of formula (I) which process comprises:
 - (a) reacting a compound of formula(II):

5

10

15

25

$$(\mathsf{R}^1)_q + \bigvee_{\mathsf{N}} \mathsf{R}^2$$

Formula (II)

wherein R^1 , R^2 , and q are as hereinbefore defined, with a compound of formula (III):

A-COX

Formula (III)

wherein A is as hereinbefore defined and X is a halogen atom or the residue of an activated ester;

(b) to prepare a compound of formula (I) by reacting a compound of formula (II) with a compound A-Br, or A-I, or A-OSO₂CF₃ in the presence of carbon monoxide and a catalyst;

(c) to prepare a compound of formula (I) wherein \mathbb{R}^1 is Ar^3 -Z and Z is a bond, reacting a compound of formula (IV):

$$(R^{1a})_q$$

30 Formula (IV)

wherein A, R², and q are as hereinbefore defined, one R^{1a} represents a group W wherein W is a halogen atom or a trifluoromethylsulfonyloxy group, or W is a group M selected

from a boron derivativeor a metal function, and when q is 2 the other R^{1a} is R^1 ; with a compound Ar^3 - W^1 , wherein W^1 is a halogen atom or a trifluoromethylsulfonyloxy group when W is a group M or W^1 is a group M when W is a halogen atom or a trifluoromethylsulfonyloxy group;

(d) to prepare a compound of formula (I) wherein \mathbb{R}^1 is Ar^3 -Z and Z is O or S, reacting a compound of formula (V):

5

15

20

25

30

$$(R^{1b})_q$$
 N

Formula (V)

wherein A, R², and q are as hereinbefore defined, one R^{1b} represents a group ZH and when q is 2 the other R^{1b} represents R¹; with a reagent serving to introduce the group Ar³;

(e) to prepare a compound of formula (I) where Y is a bond, reaction of a compound of formula (VI):

$$(R^1)_q$$
 N O Ar^1-W

Formula (VI)

wherein R^1 , R^2 , q, Ar^1 and W are as hereinbefore defined, with a compound Ar^2-W^1 , wherein W^1 is a halogen atom or a trifluoromethylsulfonyloxy group when W is a group M, or W^1 is a group M when W is a halogen atom or a trifluoromethylsulfonyloxy group.

- (f) interconversion of one compound of formula (I) to a different compound of formula (I) e.g. (i) alkylation of a compound (I) wherein \mathbb{R}^2 represents hydrogen, (ii) conversion of one \mathbb{R}^1 from alkoxy (e.g.methoxy) to hydroxy, or (iii) conversion of \mathbb{R}^1 from hydroxy to sulfonyloxy, eg alkylsulfonyloxy or trifluoromethanesulfonyloxy; (iv) conversion of a compound wherein Y represents S to a compound wherein Y is SO₂ or (v) conversion of Y from CO to CH₂;
- (g) separation of cis- and trans- isomers of compounds of formula (I) by conventional methods,; and optionally thereafter forming a salt of formula (I).
- 10. A pharmaceutical composition comprising a compound of formula (I) as claimed in any of claims 1 to 7 or a physiologically acceptable salt thereof and a physiologically acceptable carrier therefor.

11. The use of a compound of formula (I) as claimed in any of claims 1 to 7or a physiologically acceptable salt thereof in the manufacture of a medicament for the treatment of a condition which requires modulation of a dopamine receptor.

- 12. Use according to claim 11 wherein the dopamine receptor is a dopamine D_3 receptor.
- 13. Use according to claim 11 or claim 12 wherein a dopamine antagonist is 10 required.
 - 14. Use according to any of claims 11 to 13 wherein the condition is a psychotic condition.
- 15 Use according to claim 14 wherein the psychotic condition is schizophrenia.
- 16. A method of treating a condition which requires modulation of a dopamine receptor which comprises administering to a subject in need thereof an effective amount of a compound of formula (I) as claimed in claim 1 or a physiologically acceptable salt thereof.

INTERNATIONAL SEARCH REPORT

i. Ional Application No PCT/EP 98/02583

A. CLASS IPC 6			C07D405/12 C07D495/04	C07D409/12		
According t	o International Patent Classification(IPC) or to both national classi	eification and l	:DC			
	SEARCHED	SINCE IN COLOR				
Minimum d	ocumentation searched (classification system followed by classific	cation symbol	9)			
IPC 6	C07D A61K					
Documenta	tion searched other than minimum documentation to the extent the	at such docun	nents are included in th	e fields searched		
		····				
Electronic o	lata base consulted during the International search (name of data	a base and, w	here practical, search to	erms used)		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT					
Category °	Citation of document, with Indication, where appropriate, of the	relevant pass	sages	Relevant to claim No.		
A	EP 0 431 580 A (WARNER LAMBERT 1991 cited in the application see claim 1	1-16				
Α	US 4 220 778 A (ELLEFSON CHARLE 2 September 1980 see column 5, line 17 - line 22	1–16				
A	FR 2 706 895 A (SYNTHELABO) 30 1994 see abstract	Decembe	er	1-16		
Ρ,Υ	WO 97 43262 A (SMITHKLINE BEECH ;STEMP GEOFFREY (GB); JOHNS AMA 20 November 1997 see claim 1	1-16				
		,				
		-/				
χ Furti	ner documents are listed in the continuation of box C.	X	Patent family members	are listed in annex.		
° Special ca	legorles of cited documents :	"T" later o	document published aft	er the international filing date		
"A" docume consid	ent defining the general state of the art which is not ered to be of particular relevance	or pr	riority date and not in co I to understand the prin	onflict with the application but ciple or theory underlying the		
	ocument but published on or after the international	"X" docur	ntion ment of particular releva	unce; the claimed invention		
"L" docume	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another	canr invol	not be considered nove live an inventive step wi	or cannot be considered to nen the document is taken alone		
citation	or other special reason (as specified)	canr	not be considered to Inv	ince; the claimed invention olve an inventive step when the		
other n		men	iment is combined with its, such combination be e art.	one or more other such docu- sing obvious to a person skilled		
later th	nt published prior to the international filling date but an the priority date claimed		nent member of the sai	ne patent family		
Date of the	actual completion of theinternational search	Date	of mailing of the interna	tional search report		
7	September 1998		14/09/1998			
Name and m	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Autho	nized officer			
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016		Steendijk, M			

INTERNATIONAL SEARCH REPORT

I. Ional Application No PCT/EP 98/02583

ategory *	tion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication where appropriate, of the relevant passages	Delayant to state to
	Cineman or accument, with municipal writere appropriate, or the relevant passages	Relevant to claim No.
, Ү	WO 98 06699 A (NASH DAVID JOHN ;STEMP GEOFFREY (GB); SMITHKLINE BEECHAM PLC (GB)) 19 February 1998 see claim 1	1-16
-		
	-	

INTERNATIONAL SEARCH REPORT

Information on patent family members

CONSTRUCTION NO PCT/EP 98/02583

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
EP 0431580	A	12-06-1991	US	4957921 A	18-09-1990
			US	5047406 A	
			AT	119522 1	15-03-1995
			AU	628694 8	
			AU	6770290 A	13-06-1991
			CA	2031588 A	
			DE	69017606 D	
			DE	69017606 T	
			DK	431580 T	
			ES	2070253 T	
			FI	905958 A	
			ΙE	66740 B	
			JP	3251568 A	
			NO	178262 B	
			PT 	96085 <i>A</i>	30-09-1991
US 4220778	Α	02-09-1980	NONE		
FR 2706895	Α	30-12-1994	NONE		
WO 9743262	Α	20-11-1997	AU	2897497 A	05-12-1997
WO 9806699	 А	19-02-1998	 AU	4204697 A	06-03-1998