(19) 世界知的所有権機関 国際事務局

- 1988 (2 5) (1984) (1984 (1984 (1984 (1984 (1984 (1984 (1984 (1984 (1984 (1984 (1984 (1984 (1984 (1984 (1984

(43) 国際公開日 2001 年10 月11 日 (11.10.2001)

PCT

(10) 国際公開番号 WO 01/74791 A1

(51) 国際特許分類⁷: **C07D 243/08**, 401/04, 401/12, 403/12, 405/12, 409/04, 409/12, 409/14, 471/04, A61K 7/02, 31/551

(21) 国際出願番号:

PCT/JP01/02673

(22) 国際出願日:

2001年3月29日(29.03.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2000-096858 2000年3月31日(31.03.2000)

(71) 出願人 (米国を除く全ての指定国について): 山之内 製薬株式会社 (YAMANOUCHI PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒103-8411 東京都中央区日本橋本 町二丁目3番11号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 平山復志

(HIRAYAMA, Fukushi) [JP/JP]. 古塩裕之 (KOSHIO, Hiroyuki) [JP/JP]. 石原 司 (ISHIHARA, Tsukasa) [JP/JP]. 関 規夫 (SEKI, Norio) [JP/JP]. 八谷俊一郎 (HACHIYA, Shunichiro) [JP/JP]. 菅沢形造 (SUGA-SAWA, Keizo) [JP/JP]. 白木良太 (SHIRAKI, Ryota) [JP/JP]. 古賀祐司 (KOGA, Yuji) [JP/JP]. 松本祐三 (MATSUMOTO, Yuzo) [JP/JP]. 重永健詞 (SHIGE-NAGA, Takeshi) [JP/JP]; 〒305-8585 茨城県つくば市御幸が丘21 山之内製薬株式会社内 [baraki (JP). 川添聡一郎 (KAWAZOE, Souichirou) [JP/JP]; 〒318-0001 茨城県高萩市大字赤浜字松久保160-2 山之内製薬株式会社内 [baraki (JP).

- (74) 代理人: 長井省三, 外(NAGAI, Shozo et al.); 〒174-8612 東京都板橋区蓮根三丁目17番1号 山之内製薬株 式会社 特許部内 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL,

[続葉有]

(54) Title: DIAZEPANE DERIVATIVES OR SALTS THEREOF

(54) 発明の名称: ジアゼパン誘導体又はその塩

(57) Abstract: Compounds exhibiting a blood-anticoagulant effect on the basis of the inhibition of activated blood coagulation factor X and being useful as blood anticoagulants or preventive or therapeutic drugs for diseases caused by thrombus or embolus. As the active ingredient of these drugs are used diazepane derivatives such as 4-[(3-carbamidoylphenylamino)methyl]- 3-[4-(4-methyl-1,4-diazepan-1-yl)benzoylamino]benzoic acid and 3-hydroxy-4'-methoxy-2-{[4-(4-methyl-1,4-diazepan-1-yl)benzoyl]amino}benzoilide or salts of these derivatives.

(57) 要約:

活性化血液凝固第X因子の阻害に基づく抗凝固作用を有し、血液凝固抑制剤又は血栓若しくは塞栓によって引きおこされる疾病の予防・治療剤として有用な化合物を提供する。4-[(3-カルバミミドイルフェニルアミノ)メチル]-3-[4-(4-メチル-1、4-ジアゼパン-1-イル)ベンゾイルアミノ]ベンゾイックアシッド3-ヒドロキシー4'-メトキシー2-{[4-(4-メチル-1,4-ジアゼパン-1-イル)ベンゾイル]アミノ}ベンズアニリド等のジアゼパン誘導体又はその塩を有効成分とする。

VO 01/74791 A1

PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明細書

ジアゼパン誘導体又はその塩

技術分野

本発明は、医薬、特に活性化血液凝固第X因子阻害剤として有用な、新規なジアゼパン誘導体又はその塩及びその医薬に関する。

背景技術

近年、生活習慣の欧米化、人口の高齢化等に伴い、心筋梗塞、脳血栓症、末梢動脈血栓症をはじめとする血栓塞栓性疾患は年々増加し、その治療の社会的重要性は益々高まっている。抗凝固療法は、線溶療法及び抗血小板療法とともに血栓症の治療及び予防における内科的治療法の一端を担っている(総合臨床41:2141-2145,1989)。特に、血栓症の予防においては長期投与に耐えうる安全性と、確実且つ適切な抗凝固活性の発現が必須となる。ワルファリンカリウムは、唯一の経口抗凝固剤として世界中で繁用されているが、その作用機序に基づく特性から抗凝固能のコントロールが難しく(J. Clinical Pharmacology 32,196-209,1992 及び N.Eng.J.Med.324(26)1865-1875,1991)、臨床的には非常に使用しづらい薬剤であり、より有用で使いやすい抗凝固剤の登場が望まれていた。

トロンピンは、凝固の最終段階であるフィブリノーゲンのフィブリンへの転化を司るばかりか、血小板の活性化及び凝集にも深く関与し(松尾 理編,T-PAとPro-UK,学際企画,pp5-40 血液凝固,1986)、その阻害剤は創薬のターゲットとして長い間抗凝固剤研究の中心にあった。しかしながら、経口投与でのバイオアベイラビリティ(Bioavailability)が低く、安全性面でも問題があり(Biomed. Biochim. Acta 44,1201-1210,1985)、現在のところ経口投与可能なトロンビン阻害剤は上市されていない。

活性化血液凝固第X因子は外因系及び内因系凝固カスケード反応の合流点に位置するキーエンザイム(Key Enzyme)であり、トロンビンよりも上流に位置するため本因子の阻害はトロンピン阻害よりも効率的で且つ、特異的に凝固系を阻害できる可能性がある

(THROMBOSIS RESEARCH(19),339-349,1980) 。

活性化血液凝固第X因子阻害作用を示す化合物としては、アミジノナフチルアルキルベンゼン誘導体又はその塩が知られている(特開平5-208946号、Thrombosis Haemostasis 71(3), 314-319,1994 及び Thrombosis Haemostasis 72(3),393-

PCT/JP01/02673

WO 01/74791 396,1994) 。

また、WO96/16940号には、下記一般式で示されるアミジノナフチル誘導体又は その塩が、活性化血液凝固第X因子阻害作用を示す化合物として記載されている(先行技術 1)。

$$H_2N$$
 R^3
 R^2
 $(CH_2)_0$

(式中の記号は公報参照。)

また、WO99/00121号、WO99/00126号、WO99/00127号、WO99/00128号、WO00/39111号、WO00/39117号、及びWO00/39118号には、Xa因子阻害剤として下記一般式で示されるフェニレンジアミド化合物等が記載されている(先行技術2)。

$$A_{||}^{5}$$
 $A_{||}^{6}$ $A_{||}^{1}$ $A_{||}^{2}$ $A_{||}^{2}$

(式中の記号は公報参照。)

更に、WO99/32477号には、抗凝固剤として下記一般式で示される広範な化合物が記載されている(先行技術3)。

$$(R^1)_m$$
 $E \leftarrow C$ $(R^4)_n$ $P \leftarrow C$

(式中の記号は公報参照。)

発明の開示

本発明者等は、下記一般式(I)で示されるジアゼパン誘導体又はその塩を創製し、それらが優れた活性化血液凝固第X因子阻害作用を有し、特に優れた経口活性を有することを見い出した。

すなわち、本発明は、下記一般式(I)で示されるジアゼパン誘導体又はその塩、並びに それらを有効成分とする医薬組成物、特に活性化血液凝固第X因子阻害剤に関する。

(上記式中の記号は、それぞれ以下の意味を有する。

A環、及びB環:同一又は異なって1~3個の置換基をそれぞれ有しても良いアリール、又はヘテロアリール、

 $X^1:-C(=O)-NR^4-$, $-NR^4-C(=O)-$, $-NR^4-CH_2-$, $-O-CH_2-$, $-CH_2-CH_2-$, Z $V_2^2-CH_2-$, Z

 $X^2: -C(=O)-NR^5-$ 、又は-NR⁵-C(=O)-、

 R^1 : 水素原子、低級アルキル、-低級アルキレン-O-低級アルキル、 C_{3-8} シクロアルキル、-7リール、-7リール、-6級アルキレン-7リール、-6級アルキレン-7リール、-7は-7リール、-7は-7とは-7とは-7とは-8のアルキル、-8のアルキル、-9になアルキャル・-9になアルキャル・-9になアルキャル・-9になアルキャル・-9になアルキャル・-9になアル・-

 R^2 : -OH、-O-低級アルキル、-O-低級アルキレン-OH、 $-O-SO_2$ -OH、-O-低級アルキレン-COOH、-COOH、-COOH、-COOH、-COOH、-COOH、-COOH ルキル、又はハロゲン原子、

R3: 水素原子、ハロゲン原子、又は低級アルキル、

R⁴、R⁵、及びR⁶:同一又は異なって水素原子、又は低級アルキル)

本発明化合物(I)は、ジアゼパン-1-イル基を有する点、環状構造を少なくとも4個有する点、ジアゼパンの窒素原子が直接B環と結合する点等において、先行技術1に記載された化合物とは構造を異にする。また、本発明化合物は、ジアゼパン-1-イル基を有する点において先行技術2と構造を異にする。更に、先行技術3にはジアゼパン-1-イル基を有する化合物は具体的に記載されていない。即ち、本発明化合物(I)の化学構造上の特徴は、ジアゼパニルアリール又はジアゼパニルへテロアリールとベンゼン環がアミド結合等を介して結合し、かつ該ベンゼン環がさらにアミド結合等を介してアリール又はヘテロアリールと結合し、かつ該ベンゼン環が一〇H、一〇-低級アルキル、又はハロゲン原子等を有する点にあ

3

る。

以下、本発明化合物(I)につき詳述する。

本明細書中の一般式の定義において「低級」なる用語は、特に断らない限り、炭素数が1~6の直鎖又は分枝状の炭素鎖を意味する。従って、R¹~R6、及び後記置換基に例示される「低級アルキル」としては、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、tert-ペンチル、1-メチルブチル、2-メチルブチル、1,2-ジメチルプロピル、ヘキシル、イソヘキシル、1-メチルペンチル、2-メチルペンチル、3-メチルペンチル、1,1-ジメチルブチル、1,2-ジメチルブチル、2,2-ジメチルブチル、1,3-ジメチルブチル、1,1-ジメチルブチル、3,3-ジメチルブチル、1-エチルブチル、2-エチルブチル、1,1,2-トリメチルプロピル、1,2,2-トリメチルプロピル、1-エチルー1-メチルプロピル、1-エチルー2-メチルプロピル等が挙げられる。これらの中では炭素数1~3のものが好ましく、メチル、エチルが特に好ましい。

「低級アルキレン」としては、上述した「低級アルキル」から任意に水素原子1個を除いた C_{1-6} アルキレンを表すが、メチレン、エチレン、プロピレン、イソプロピレンが好ましい。

「アリール」としては、縮合環を含む芳香族炭化水素環を意味し、好ましくは炭素数が6~14個のアリールが、更に好ましくはフェニル、ナフチル等が挙げられる。

また、「ヘテロアリール」としては、縮合環を含むN、S、Oからなる群より選択された同一又は異なるヘテロ原子を1~4個有する複素環アリールを意味し、具体的にはフリル、チエニル、ピロリル、イミダゾリル、ピラゾリル、イソチアゾリル、イソキサゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、インドリル、インダゾリル、インドリジニル、キノリル、インダゾリル、インドリジニル、キノリル、インダゾリル、オンドリニル、キノリル、インダゾリル、インブリニル、ベンズイミダゾリル、イミダゾピリジル、ベンゾフラニル、ジヒドロベンゾフラニル、ナフチリジニル、1、2~ベンゾイソキサゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、ベンゾチアゾリル、ベンゾチアゾリル、ベンゾチアゾリル、ベンゾチアゾリル、ベンゾチアゾリル、ベンゾチエニル等が挙げられるが、これらに限定されるものではない。

「С3-8シクロアルキル」は炭素数3~8個のシクロアルキルを示すが、特にシクロプロ

ピル、シクロブチルが好ましい。

「 $1 \sim 3$ 個の置換基をそれぞれ有しても良いアリール、又はヘテロアリール」の「置換基」としては、置換基を有しても良い低級アルキル、低級アルケニル、低級アルキニル、C $_{3-8}$ シクロアルキル、 $_{-}$ 〇一置換基を有しても良い低級アルキル、 $_{-}$ ハロゲン原子、 $_{-}$ NH $_{2}$ 、、 $_{-}$ NH-低級アルキル、 $_{-}$ Nー(低級アルキル)。 $_{-}$ C($_{-}$ NH)-NH $_{2}$ 、、 $_{-}$ C($_{-}$ NH)-NH-OH、 $_{-}$ C($_{-}$ NH)-NH-C($_{-}$ O)-O-低級アルキル、 $_{-}$ C($_{-}$ O)-O-置換基を有しても良い低級アルキル、 $_{-}$ C($_{-}$ O)-O-置換基を有しても良い低級アルキル、 $_{-}$ C($_{-}$ O)-O-置換基を有しても良いへテロアリール、 $_{-}$ CN、 $_{-}$ NO $_{2}$ 、 $_{-}$ OH、 $_{-}$ O-CO-置換基を有しても良い低級アルキル、 $_{-}$ O-CO-NH-低級アルキル、 $_{-}$ O-CO-NH-(低級アルキル)。 $_{-}$ SH、 $_{-}$ C($_{-}$ O)-NH-(低級アルキル)、 $_{-}$ C($_{-}$ O)-NH-(低級アルキル)。等が挙げられる。

ここで「置換基を有しても良い低級アルキル、低級アルケニル、低級アルキニル、 C_{3-8} シクロアルキル」、「置換基を有しても良い C_{6-14} アリール」、又は「置換基を有しても良いヘテロアリール」の置換基としては、ハロゲン原子、-COOH、-C(=O)-O-低級アルキル、-OH、 $-NH_2$ 、-NH-低級アルキル、-N-(低級アルキル)。等が挙げられる。

「ハロゲン原子」はフッ素原子、塩素原子、ヨウ素原子、臭素原子が挙げられる。特に塩素原子、及び臭素原子が好ましい。

なお、 R^1 は低級アルキルが好ましく、特にメチルが好ましい。 R^2 は、-OHが特に好ましい。 R^4 ~ R^6 は同一又は異なって水素原子、又は低級アルキルを表すが、水素原子がより好ましい。また、 X^1 は-C(=O)-N R^4 -、-N R^4 -C(=O)-、-N R^4 -C(+)- が好ましく、+C(=O)-N R^4 - 、及び-N R^4 - + 、 + では、+ では、+

A環、及びB環は同一又は異なって、ベンゼン環、ピリジン環、ナフタレン環、チオフェン環、ベンゾフラン環、又はキノリン環が望ましい。ベンゼン環が特に好ましい。

1, 4-ジアゼパン-1-イル)ベンゾイル]アミノ}ベンズアミド、5-クロロ-3-ヒドロキシ-4'ーメトキシ-2-{ [4-(4-メチル-1, 4-ジアゼパン-1-イル)ベンゾイル]アミノ}ベンズアニリド、及び5-ブロモ-N-(5-クロロ-2-ピリジル)-3-ヒドロキシ-2-{ [4-(4-メチル-1, 4-ジアゼパン-1-イル)ベンゾイル]アミノ}ベンズアミド又はその塩である。

また、本発明化合物は、幾何異性体、互変異性体、光学異性体等の各種の異性体の混合物や単離されたものが含まれる。

本発明化合物(I)は、酸付加塩を形成する場合がある。また、置換基の種類によっては 塩基との塩を形成する場合もある。かかる塩としては、具体的には、塩酸、臭化水素酸、ヨ ウ化水素酸、硫酸、硝酸、リン酸等の鉱酸、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン 酸、コハク酸、フマール酸、マイレン酸、乳酸、リンゴ酸、酒石酸、クエン酸、メタンスル ホン酸、エタンスルホン酸等の有機酸、アスパラギン酸、グルタミン酸等の酸性アミノ酸と の酸不加塩、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム等無機塩基、 メチルアミン、エチルアミン、エタノールアミン等の有機塩基、リジン、オルニチン等の塩 基性アミノ酸との塩やアンモニウム塩等が挙げられる。

更に本発明は、化合物(I)の水和物、製薬学的に許容可能な各種溶媒和物や結晶多形等も含まれる。なお、当然のことながら、本発明は後記実施例に記載された化合物に限定されるものでなく、一般式(I)で示されるジアゼパン誘導体又はその製薬学的に許容される塩の全てを包含するものである。

なお、本発明化合物には、生体内において代謝されて前記一般式(I)を有する化合物またはその塩に変換される化合物、いわゆるプロドラッグもすべて含むものである。本発明化合物のプロドラッグを形成する基としては、Prog. Med. 5:2157-2161 (1985) に記載されている基や、広川書店1990年刊「医薬品の開発」第7巻分子設計163~198頁に記載されている基が挙げられる。

(製造法)

以下に本発明化合物の代表的な製造法を説明する。

(式中、A、B、 R^1 、 R^2 、 R^3 、 X^2 は前記の意味を有し、 Q^1 、 W^1 は Q^1 が- NHR^4 を意味する場合、 W^1 は-COOHを意味し、 Q^1 が-COOHを意味する場合 W^1 は- NHR^4 を意味する。 Y^1 は-C(=O)- NR^4 -、又は- NR^4 -C(=O)-を意味する。 R^4 は前記の意味を有する。)

工程A

化合物(IIa)と化合物(IIIa)の組み合わせからなるカルボン酸とアミンを、好ましくは縮合剤の存在下反応させ、化合物(Ia)を合成する反応である。本反応は常法のアシル化反応に従えばよい。

縮合剤としては、N, N-ジシクロヘキシルカルボジイミド(DCC)、1-エチル-3-[3-(N, N-ジメチルアミノ)プロピル]カルボジイミド、カルボニルジイミダゾール、ジフェニルホスホリルアジド(DPPA)やジエチルホスホリルシアニド等を好適に用いることができる。

また、カルボン酸を対応するカルボン酸の活性誘導体に導いた後にアミンと縮合することも可能である。

用いるカルボン酸の活性誘導体としてはp-ニトロフェノール等のフェノール系、1-ヒドロキシスクシンイミド、1-ヒドロキシベンゾトリアゾール等のN-ヒドロキシアミン系の化合物と反応させて得られる活性エステル、炭酸モノアルキルエステル、又は有機酸と反応させて得られる混合酸無水物や塩化ジフェニルホスホリル、N-メチルモルホリンとを反応させて得られるリン酸系混合酸無水物;エステルをヒドラジン、亜硝酸アルキルと反応させて得られる酸アジド;酸クロライド、酸ブロマイド等の酸ハライド、対称型酸無水物等が挙げられる。通常、前記反応は、溶媒中において、冷却~室温下に行うが、アシル化反応の種類により、無水条件下に実施しなければならない場合もある。

溶媒としては、反応に関与しない溶媒、例えば水、エタノール、メタノール、ジメチルホルムアミド、ジオキサン、テトラヒドロフラン、エーテル、ジクロロエタン、ジクロロメタン、クロロホルム、四塩化炭素、ジメトキシメタン、ジメトキシエタン、酢酸エチル、ベン

ゼン、アセトニトリル、ジメチルスルホキシド等やこれらの混合溶媒等を用いることができるが、適用する方法に応じ適宜選択するのが好ましい。

また、適用する方法によっては、炭酸ナトリウム、炭酸カリウム、ナトリウムエトキシド、カリウム t-ブトキシド、1、8-ジアザビシクロ[5.4.0]ウンデス-7-エン(DBU)、N-メチルモルホリン、トリエチルアミン、トリメチルアミン、ピリジン、水素化ナトリウム、ブチルリチウム、ソディウムアミド等の塩基の存在下で又はこれら塩基を溶媒として反応させることにより、反応が円滑に進行する場合がある。

またここに記載の反応以外でも、アミド結合を形成する反応であればいずれの方法も用いることができる。

$$Q^2$$
 Z^2 B N $N-R^1$ Z^2 B N $N-R^1$ Z^2 B N $N-R^1$ Z^2 Z^2

(式中、A、B、R¹、R²、R³、R⁴、X²は前記の意味を有し、Q²は-CHO又は、-CH $_2$ -脱離基を意味する。脱離基としては、ハロゲン原子、-O-(SO $_2$)-アルキル、-O-(SO $_2$)-アリール等が挙げられる。)

工程B

化合物(IIb)と化合物(IIIb)の組み合わせからなるアルデヒドとアミン、又は $-CH_2$ -脱離基を持つ化合物とアミンを、縮合させ化合物(Ib)を合成する反応である。

アルデヒドとアミンの組み合わせの場合、本反応は、還元剤の存在下常法の還元的アミノ化反応に従えばよい。

還元剤としては、例えば水素化ホウ素ナトリウム、水素化シアノホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウム、ボランートリメチルアミン錯体等を好適に用いることができる。また、パラジウムー炭素、酸化白金等の触媒存在下、常圧~加圧下、接触水素添加を行っても良い。本反応は、前記反応に関与しない溶媒中、冷却下~加熱下行われる。また、適用する方法によっては、酢酸、トルエンスルホン酸、硫酸等の酸の存在下又はこれらを溶媒として反応させることにより反応が円滑に進行する場合がある。

-CH₂-脱離基を持つ化合物とアミンの組み合わせの場合、本反応は、常法のN-アルキル 化反応に従えばよい。

本反応は、前記反応に関与しない溶媒中、冷却下~加熱下行われる。また、適用する方法 によっては、前記塩基の存在下、又はこれら塩基を溶媒として反応させることにより、反応 が円滑に進行する場合がある。

またここに記載の反応以外でも、-NR⁴-CH₂-の結合を形成する反応であればいずれの 方法も用いることができる。

(式中、A、B、 R^1 、 R^2 、 R^3 、 X^2 は前記の意味を有し、 Q^3 は、 $-CH_2$ -脱離基を意味する。脱離基としては、ハロゲン原子、-O- (SO_2) -アルキル、-O- (SO_2) -アリール等が挙げられる。)

工程C

化合物(IIc)と化合物(IIIc)の組み合わせからなる-CH₂-脱離基を持つ化合物とアルコールを縮合させ、化合物(Ic)を合成する反応である。本反応は、常法のO-アルキル化反応に従えばよい。

本反応は、前記反応に関与しない溶媒中、冷却下~加熱下行われる。また、適用する方法によっては、前記塩基の存在下、又はこれら塩基を溶媒として反応させることにより、反応が円滑に進行する場合がある。

またここに記載の反応以外でも、エーテル結合を形成する反応であればいずれの方法も用いることができる。

(式中、A、B、R¹、R²、R³、X²は前記の意味を有し、Q⁴、W⁴はQが~CHOを意味

する場合、 W^4 は $-CH_2-P^+Ph_3Br^-$ 等のホスホニウム塩、 $-CH_2-P$ (=O)(-OEt) $_2$ 等 の亜リン酸ジエステル、又は $-CH_2-P$ (=O)(-Ph) $_2$ 等のホスフィンオキシドを意味し、 W^4 が-CHOを意味する場合 Q^4 は $CH_2-P^+Ph_3Br^-$ 等のホスホニウム塩、 $-CH_2-P$ (=O)(-OEt) $_2$ 等の亜リン酸ジエステル、又は $-CH_2-P$ (=O)(-Ph) $_2$ 等のホスフィンオキシドを意味する。)

工程D

化合物(IId)と化合物(IIId)の組み合わせからなるアルデヒドとホスホニウム塩、亜リン酸ジエステル、またはホスフィンオキシドを、前記塩基の存在下反応させ、化合物(Id)を合成する反応である。本反応は常法のWittig反応、またはWittig-Horner反応に従えばよい。

本反応は、前記反応に関与しない溶媒中、冷却下~加熱下行われる。適用する方法によっては、中間体イリドを単離した後、アルデヒドと反応することもできる。

またここに記載の反応以外でも、炭素と炭素の2重結合を形成する反応であればいずれの 方法も用いることができる。

工程E

化合物(Id)を還元反応により化合物(Ie)を合成する反応である。本反応は触媒を用いる常法の水素添加反応に従えばよい。

本反応は、水素雰囲気下、前記反応に関与しない溶媒中、冷却下~加熱下行われる。適用する方法によっては加圧下行われる。用いられる触媒としては、パラジウム-炭素(Pd-C)、酸化白金、ラネーニッケル、クロロトリフェニルホスフィンロジウム(Wilkinson触媒)、ホウ素化ニッケル等が挙げられる。また、水素雰囲気下で行う代わりに、蟻酸アンモニウム、ホスフィン酸ナトリウム、ヒドラジン等を水素源として用いることもできる。

またここに記載の反応以外でも、2重結合を還元する反応であればいずれの方法も用いる ことができる。

また、化合物(Id)を経由しなくても、 $-CH_2$ - CH_2 -結合を形成する反応であればいずれの方法も用いることができる。

$$W^1$$
 B $N-R^1$ A X^1 Q^1 Q^1 Q^1 Q^2 Q^2 Q^2 Q^2 Q^3 Q^2 Q^3 Q^4 Q^4

(式中、A、B、R¹、R²、R³、X¹、X²、Q¹、W¹は前記の意味を有する。) 工程F

化合物(IVa)と化合物(Va)の組み合わせからなるカルボン酸とアミンを反応させ化合物(I)を合成する反応である。本反応は工程Aと同様な方法で実施される。

本発明化合物(I)中R¹が水素の化合物は、本発明化合物(I)中R¹がベンジルの化合物を用いて、前記水素添加反応等を行うことにより得ることもできる。

また、本発明化合物(I)中 R^1 が水素原子の化合物を用いて、前記常法の還元的アミノ化、 又はN-アルキル化等を行うことにより本発明化合物(I)中 R^1 が水素原子以外の化合物を得ることもできる。

また、本発明化合物(I)中R²が-OHの化合物は、その水酸基をフェノールの保護基で保護した化合物を合成した後、その保護基を切断するのに適した方法で切断することより得ることもできる。ここでフェノールの保護基としては、通常、フェノールの保護に用いられる基であれば特に制限はなく、例えば置換されてもよい低級アルキル、アラルキル、トリ低級アルキルシリル、低級アルキルカルボニル、人の大は置換されてもよい低級アルキル、アラルキル、スルホニル等が挙げられる。「アラルキル」としては前記アルキルの水素原子がアリールに置換された基を意味し、具体的にはベンジル、フェニルエチル等が挙げられる。

本発明化合物(I)中 R^2 が-OHの化合物を用いて前記常法の-O-アルキル化等を行うことにより R^2 が-O-低級アルキル、-O-低級アルキレン-OH、-O-低級アルキレン-OH、-O-低級アルキレン-OOH、-O-低級アルキレン-OOH、-O-低級アルキレン-OOHの化合物を得ることもできる。また、本発明化合物(I)中 R^2 が-OHの化合物をトリメチルアミン-サルファートリオキサイド 錯体等を用い、スルホン酸化することにより R^2 が-O- SO_2 -OHの化合物を得ることができる。更に R^2 にエステル基が存在する場合には、塩酸水溶液等の酸性条件下、又は水酸化ナトリウム水溶液等の塩基性条件下加水分解することにより R^2 にカルボキシル基が存在する化合物を得ることができる。

本発明化合物(I)中A環にニトリル基を有する化合物を用いて本発明化合物(I)中A環にヒドロキシアミジノ基、又はアミジノ基を有する化合物を得ることもできる。

本発明化合物(I)中A環にヒドロキシアミジノ基を有する化合物の合成法としては、本発明化合物(I)中A環にニトリル基を有する化合物とヒドロキシルアミンを反応させることに

より行うことができる。本反応は、前記反応に関与しない溶媒中、冷却下~加熱下行われる。 また、適用する方法によっては、前記塩基の存在下、又はこれら塩基を溶媒として反応させ ることにより、反応が円滑に進行する場合がある。

本発明化合物(I)中A環にアミジノ基を有する化合物の合成法としては以下の(i)~(iv)に示す方法が挙げられる。

(i)ニトリルをイミデートに変換した後、アミンと縮合させる方法:

本発明化合物(I)中A環にニトリル基を有する化合物に塩酸ガス存在下、メタノールやエタノール等のアルコールを-40℃~0℃で作用させ、イミデートに変換した後、アンモニア、炭酸アンモニウム、塩化アンモニウム、酢酸アンモニウム等のアミン又はアミン塩を反応させる。溶媒としては、前記反応に関与しない溶媒を用いることができる。

(ii) ニトリルを、チオアミドを経由してチオイミデートに変換し、アミンと縮合させる方法:

本発明化合物(I)中A環にニトリル基を有する化合物にメチルアミン、トリエチルアミン、 ピリジン、ピコリン等の有機塩基の存在下で硫化水素を作用させ、又は本発明化合物(I)中 A環にニトリル基を有する化合物に塩化水素の存在下でジチオリン酸 0,0-ジエチルを作用 させ、チオアミド体に誘導する。

次いで、前記チオアミド体にヨウ化メチル、ヨウ化エチル等の低級アルキルハロゲン化物 を反応させ、チオイミデート体に変換し、アンモニア、炭酸アンモニウム、塩化アンモニウ ム、酢酸アンモニウム等のアミン又はアミン塩を反応させる。溶媒としては、前記反応に関 与しない溶媒を用いることができる。

(iii)ニトリルにアミン、アミン塩、金属アミド、グルニャール試薬を直接付加させる方法:

本発明化合物(I)中A環にニトリル基を有する化合物にアンモニア、塩化アンモニウムとアンモニア、チオシアン酸アンモニウム、チオシアン酸アルキルアンモニウム、NaNH $_2$ 、(CH $_3$) $_2$ NMgBr等の試薬を付加させる。溶媒としては、前記反応に関与しない溶媒を用いることができる。また、無溶媒で反応を行うこともできる。

(iv)ヒドロキシアミジノ基を還元する方法:

本発明化合物(I)中A環にヒドロキシアミジノ基を有する化合物を用いて、直接前記水素 添加反応を行うか、又は、無水酢酸又は無水トリフルオロ酢酸を、酢酸又はトリフルオロ酢

酸等を溶媒として作用させた後、前記水素添加反応を行うことにより、ヒドロキシアミジノ 基を還元することができる。

また、ここに記載の反応以外でも、アミジノ基を形成する反応であればいずれの方法も用いることができる。

また、一般式(I)で示される化合物は、その他公知のアルキル化、アシル化、酸化、還元、加水分解等、当業者が通常採用し得る工程を任意に組み合わせることにより製造することができる。更に、以下の反応式に示す方法は、一般式(I)で示される化合物を合成する為に特に有効である。

(式中、A、B、R¹、R²、R³、R⁴、及びR⁵は前記の意味を有する)

化合物(VIa)とアミン(IIIb)又は、化合物(VIIa)とアミン(Vb)を反応しアミド結合を形成させ、化合物(If)又は、化合物(Ig)を得る反応であり、前記不活性溶媒中、室温~加温下行われる。また、適用する方法によっては、N-メチルモルホリン、トリエチルアミン、トリメチルアミン、ピリジン、水素化ナトリウム、カリウム-t-プトキシド、プチルリチウム、ソディウムアミド等の塩基の存在下で又はこれら塩基を溶媒として反応することにより、反応が円滑に進行する場合がある。

(原料化合物の製法)

以下、本発明化合物(I)の原料化合物について代表的な製造法を説明する。

(式中、B、R¹、R²、R³、Q¹、W¹、及びX²は前記の意味を有し、Uは-COOH、-N HR^5 、- CH_2 -脱離基、-CHO、- CH_2 -P+P h_3 B r -等のホスホニウム塩、- CH_2 -P (= O) (-OE t) $_2$ 等の亜リン酸ジエステル、又は- CH_2 -P (=O) (-P h) $_2$ 等のホスフィンオキシドを意味する。 R^5 は前記の意味を有する。)

製法1

化合物(VIIIa)と化合物(Va)の組み合わせからなるカルボン酸とアミンを縮合しアミド結合を形成する反応である。本反応は、前記工程Aと同様にして実施される。

また、化合物(IIe)中Uが $-CH_2$ -脱離基を意味する場合は4-メチルモルホリン N-オキシド等を用いる酸化反応によりUが-CHOの化合物を得ることができ、トリフェニルホスフィン等の有機リン化合物と反応させることによりUが $-CH_2$ -P+P h $_3$ B r $^-$ 等のホスホニウム塩の化合物を得ることができる。

また、一般式(IIe)で示される化合物は、その他公知のアルキル化、アシル化、酸化、還元、加水分解等、当業者が通常採用し得る工程を任意に組み合わせることにより製造することができる。例えば、Uに相当する部位に一NO2を有する化合物を得た後、前記水素添加反応等の還元反応を行い、UがNH2の化合物を得ることができる。また、Uに相当する部位にエステル基を有する化合物を得た後、塩酸水溶液等を用いるの酸性条件、水酸化ナトリウム等を用いるアルカリ性条件で加水分解を行い、Uが-COOHの化合物を得ることができる。更に、Uに相当する部位にt-ブトキシカルボニル基やベンジル基等で保護されたアミノ基を有する化合物を用いて、トリフルオロ酢酸等を用いる酸性条件、及び前記水素添加反応等の還元条件など、それぞれの保護基を切断するのに適した方法で切断することによりUが-NHR5の化合物を得ることができる。

Q Z (IIIe) A
$$X^i$$
 Z \mathbb{R}^2 製法 2 \mathbb{R}^2 (IVb)

(式中、A、 R^2 、 R^3 及び X^1 は前記の意味を有する。Zは-COOH、 $-NHR^5$ を意味する。 Q、WはQが Q^1 を意味する場合、Wは W^1 を意味し、Qが Q^2 を意味する場合Wは $-NHR^4$ を意味し、Qが Q^3 を意味する場合Wは-OHを意味し、XQが Q^4 を意味する場合Wは W^4 を意味する。 Q^1 、 Q^2 、 Q^3 、 Q^4 、 W^1 、 W^4 、 R^4 は前記の意味を有する。) 製法 2

QがQ¹を、WがW¹を意味する場合、化合物(VIIIb)と化合物(IIIe)の組み合わせからなるカルボン酸とアミンを反応させ、化合物(IVb)を合成する反応である。本反応は工程Aと同様な方法で実施できる。

Qが Q^2 を、Wが $-NHR^4$ 意味する場合、化合物(VIIIb)と化合物(IIIe)の組み合わせからなるアルデヒドとアミン、又は $-CH_2$ -脱離基を持つ化合物とアミンを、縮合させ化合物 (IVb)を合成する反応である。本反応は工程Bと同様な方法で実施できる。

Qが Q^3 を、Wが-O H意味する場合、化合物(VIIIb)と化合物(IIIe)の組み合わせからなる $-CH_2$ -脱離基を持つ化合物とアルコールを、縮合させ化合物(IVb)を合成する反応である。 本反応は工程C と同様な方法で実施できる。

QがQ⁴を、WがW⁴意味する場合、化合物(VIIIb)と化合物(IIIe)の組み合わせからなるアルデヒドとホスホニウム塩、亜リン酸ジエステル、またはホスフィンオキシドを縮合させ化合物(IVb)を合成する反応である。本反応は工程Dと同様な方法で実施できる。

また、一般式(IVb)で示される化合物は、その他公知のアルキル化、アシル化、酸化、還元、加水分解等、当業者が通常採用し得る工程を任意に組み合わせることにより製造することができる。例えば、乙に相当する部位に-NO₂を有する化合物を得た後、前記水素添加反応等の還元反応を行い、乙が-NH₂の化合物を得ることができる。また、乙に相当する部位にエステル基を有する化合物を得た後、塩酸水溶液等を用いるの酸性条件、水酸化ナトリウム等を用いるアルカリ性条件で加水分解を行い、乙が-COOHの化合物を得ることができる。更に、乙に相当する部位に t-ブトキシカルボニル基やベンジル基等で保護されたアミノ基を有する化合物を用いて、トリフルオロ酢酸等を用いるの酸性条件、及び前記水素添加

反応等の還元条件など、それぞれの保護基を切断するのに適した方法で切断することにより、 Zが-NHR⁵の化合物を得ることができる。

また、以下の反応式に示す方法は、一般式(IIf)、(IVc)で示される化合物を合成する為に特に有効である。

(式中、A、B、R¹、R²、R³、R⁴、及びR⁵は前記の意味を有する)

化合物(IX)とアミン(Vb)、又は化合物(X)とアミン(IIIb)を反応させアミド結合を形成し、 化合物(IIf)、又は化合物(IVc)を得る反応であり、前記不活性溶媒中、室温~加温下行われ る。また、適用する方法によっては、N-メチルモルホリン、トリエチルアミン、トリメチ ルアミン、ピリジン、水素化ナトリウム、カリウム-t-ブトキシド、ブチルリチウム、ソ ディウムアミド等の塩基の存在下又はこれら塩基を溶媒として反応することにより、反応が 円滑に進行する場合がある。

この様にして製造された本発明化合物は、公知の方法、例えば、抽出、沈澱、分画クロマトグラフィー、分別結晶化、再結晶等により単離、精製することができる。また、本発明化合物の塩には、通常の造塩反応により導くことができる。

また、本発明化合物が不斉炭素を有する場合には光学異性体が存在する。これらの光学異性体は適切な塩と再結晶する分別結晶化やカラムクロマトグラフィー等の常法により分割することができる。

産業上の利用可能性

本発明化合物は、活性化血液凝固第X因子を特異的に阻害し、強力な抗凝固作用を有する。

従って、血液凝固抑制剤、又は血栓若しくは塞栓によって引きおこされる疾病の予防・治療 剤として有用である。

上記疾病として脳梗塞、脳血栓、脳塞栓、一過性脳虚血発作(TIA)、くも膜下出血 (血管れん縮)等の脳血管障害における疾病、急性及び慢性心筋梗塞、不安定狭心症、冠動 脈血栓溶解等の虚血性心疾患における疾病、肺梗塞、肺塞栓等の肺血管障害における疾病、 更に末梢動脈閉塞症、深部静脈血栓症、汎発性血管内凝固症候群、人工血管術後及び人工弁 置換後の血栓形成症、冠動脈バイパス術後における再閉塞及び再狭窄、PTCA

(Percutaneous transluminal coronary angioplasty)、又はPTCR(Percutaneous transluminal coronary recanalization)術後における再閉塞及び再狭窄、体外循環時の血栓形成症等の各種血管障害における疾病が挙げられる。

また、活性化血液凝固第X因子阻害作用を有する化合物について、インフルエンザウイルスへの増殖阻害活性に基づく、インフルエンザウイルスの感染予防・治療剤としての可能性が示唆されているので(特開平6-227971号)本発明化合物も同様の効果が期待される。

本発明の化合物の優れた活性化血液凝固第X因子阻害活性は、以下に示す試験方法により確認された。

1)ヒト活性化血液凝固第X因子(human factor Xa)凝固時間測定試験

ヒト血漿 90 μ 1 に薬剤または生理食塩水 10 μ 1 および human factor Xa (Enzyme Research Labs) 50 μ 1 を加え、37 $\mathbb C$ で 3 分間インキュベートした後、予め 3 $7\mathbb C$ に加温した 20 $\mathbb M$ の $\mathbb C$ aCl₂を 100 μ 1 添加して凝固計(Amelung 社: KC10)にて凝固するまでの時間を測定した。 ヒト血漿は健常人(6 人)の肘静脈より 3.8 %の sodium citrate が 5 $\mathbb M$ 入ったシリンジで血液 45 $\mathbb M$ を採血し、 $4\mathbb C$ ・3000 $\mathbb M$ rpm・15 分の遠心により分離した血漿をプールし凍結保存したものを使用した。 human factor Xa は生理食塩水 (コントロール)を添加したときの凝固時間が約 30~40 秒になるような濃度を選択した。 $\mathbb M$ に近くする濃度)は、凝固時間のコントロールに対する相対値 (fold) と薬剤濃度をプロットし、直線回帰することで求めた。この結果を下記表 $\mathbb M$ に示す。

2) ウシトロンビン凝固時間測定試験

ヒト血漿 50 μ 1 に薬剤または生理食塩水 50 μ 1 を加え、37 $\mathbb C$ で 3 分間インキュベートした後、予め 3 7 $\mathbb C$ に加温した thrombin (Thrombin (ウシ由来) 500 μ 1 添加して、凝固計 (Amelung 社: KC10) にて凝固するまでの時間を測定した。ヒト血漿は健常人 (6人) の財静脈より 3.8 %の sodium citrate が 5 m1 入ったシリンジで血液 45 m1 を採血し、 4 $\mathbb C$ ・3000 m1 方の遠心により分離した血漿をプールし凍結保存したものを使用した。 thrombin は生理食塩水 (コントロール) を添加したときの凝固時間が約 20 秒になるような濃度を選択した。 m2 値 (コントロールの凝固時間を 2 倍に延長する濃度)は、凝固時間のコントロールに対する相対値 (fold) と薬剤濃度をプロットし、直線回帰することで求めた。この結果を下記表 1 に示す。

表1

	化合物	ヒト活性化血液凝固第	ウシトロンビン凝固時
		X因子凝固時間	間測定試験
		測定試験(СТ2)	(CT_2) (μM)
		(μM)	
実施例化合物	実施例 5	0.10	>100
	実施例 9	1. 71 .	>100
	実施例11	1. 33	>100
	実施例32	1. 41	>100
	実施例39	1. 53	>100
対照化合物	対照1	17.0	>100
	対照2	11. 3	-

(対照1)

(対照2)

(W099/00121号の実施例42)

(W099/00121号の実施例198)

3) 合成基質法による酵素阻害測定試験

96 穴マイクロプレートに反応緩衝液 (pH 8.4) 80 μ l、化合物溶液 15 μ l、合成基質 S-

2222 (Chromogenix) 2 mM 30 μ 1 を添加し、ヒト活性化血液凝固第X因子(factor Xa Enzyme Research Labs) 0.025U/ml 25 μ 1 を加え、10 分間 37℃で反応させた後、405 nm の吸光度変化を Bio-Rad 社モデル 3550 で測定し、IC₅₀を算出した。実施例 1 の化合物は 10 nM 以下の IC₅₀を示した。

以上1)、2)、及び3)の測定の結果、本発明化合物はヒト活性化血液凝固第X因子を 特異的に阻害し、かつ、強い抗血液凝固作用を示すことが確認された。例えば、本発明の実 施例5、9、11、32、及び39に示される化合物は、WO99/00121号の実施例 42(対照1)、及び同実施例198(対照2)と比較して、明らかに低濃度で凝固時間を 延長し、優れた抗血液凝固作用を示すことが確認された。

4) マウスを用いたex vivoでの凝固時間測定試験(経口投与)

12時間以上絶食した雄性ICRマウス(20~30g、日本SLC社)に対し、0.5%メチルセルロースにて溶解もしくは懸濁した薬剤を経口ゾンデを用いて強制経口投与し(100mg/kg)、30分後および2時間後にジエチルエーテル麻酔下で、下大静脈より3.8%のsodium citrateが100μ1入ったシリンジで0.9ml採血し、3000rpm・10分の遠心処理により血漿を分離した。この血漿を用いて以下a)及びb)の方法に従い、外因系凝固時間(PT)及び内因系凝固時間(APTT)の測定を行った。

a)外因系凝固時間(PT)

オーソ ブレーン トロンボプラスチン(54mg/vial、凍結乾燥製剤、オーソ・クリニカル・ダイアグノスティックス社)をMilli-Qrk2.5mlに溶解し37℃にて予備加温した。上記血漿50μlを37℃にて1分間加温し、上記トロンボプラスチン溶液50μlを添加し凝固時間の測定を行った。凝固時間の測定にはAmelung社KC10Aを使用した。

b)内因系凝固時間(APTT)

上記血漿50μ1にヘモライアンス トロンボシル I (ダイアヤトロン社) 50μ1を加え37℃にて3分間加温し、あらかじめ37℃にて予備加温した20mMのCaCl₂溶液50μ1を添加し凝固時間の測定を行った。凝固時間の測定にはAmelung社KCl0Aを使用した。

なお、抗凝固作用の用量依存性及び経時変化に関しても、投与用量あるいは採血時間を変 更し同様の方法にて検討した。

5) カニクイザルを用いたex vivoでの凝固時間測定法(経口投与)

12時間以上絶食した雄性カニクイザル(体重4 kg前後)に対し、薬剤投与前の採血後、0.5%メチルセルロースに溶解(懸濁)した薬剤(5 mg/ml)を経口ゾンデを用いて2 ml/kg強制 経口投与し(10 mg/kg)、1、2、4、6、8時間後、大腿静脈より3.8%クエン酸ナトリウム 1/10容にて2 ml採血し、3000 rpm 10分の遠心処理により血漿を分離した。この血漿を用いて上記 a)及び b)の方法に従い外因系凝固時間(PT)及び内因系凝固時間(APTT)の測定を行った。実験は無麻酔条件下で行った。

4)、及び5)の試験の結果、本発明化合物は経口投与においても凝固時間の延長作用が 認められた。実施例3に示される化合物は4)5)両方の試験においてPT、APTT共に コントロール(薬剤未投与の血漿)に比べ2倍以上の凝固時間延長作用を示した。

一般式(I)で示される本発明化合物やその製薬学的に許容される塩の1種又は2種以上を有効成分として含有する医薬組成物は、通常用いられる製剤用の担体や賦形剤、その他の添加剤を用いて、錠剤、散剤、細粒剤、顆粒剤、カプセル剤、丸剤、液剤、注射剤、坐剤、軟膏、貼付剤等に調製され、経口的又は非経口的に投与される。

本発明化合物のヒトに対する臨床投与量は適用される患者の症状、体重、年齢や性別等を考慮して適宜決定されるが、通常成人1日当たり経口で0.1~500mg、非経口で0.01~100mgであり、これを1回あるいは数回に分けて投与する。投与量は種々の条件で変動するので、上記投与量範囲より少ない量で十分な場合もある。

本発明による経口投与のための固体組成物としては、錠剤、散剤、顆粒剤等が用いられる。このような固体組成物においては、一つ又はそれ以上の活性物質が、少なくとも一つの不活性な希釈剤、例えば乳糖、マンニトール、ブドウ糖、ヒドロキシプロピルセルロース、微結晶セルロース、デンプン、ポリビニルピロリドン、メタケイ酸アルミン酸マグネシウムと混合される。組成物は、常法に従って、不活性な希釈剤以外の添加剤、例えばステアリン酸マグネシウムのような潤滑剤や繊維素グリコール酸カルシウムのような崩壊剤、ラクトースのような安定化剤、グルタミン酸又はアスパラギン酸のような可溶化剤又は溶解補助剤を含有していてもよい。錠剤又は丸剤は必要によりショ糖、ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレート等の胃溶性あるいは腸溶性物質のフィルムで被膜してもよい。

経口投与のための液体組成物は、薬剤的に許容される乳濁剤、溶液剤、懸濁剤、シロップ剤、エリキシル剤等を含み、一般的に用いられる不活性な希釈剤、例えば精製水、エチルアルコールを含む。この組成物は不活性な希釈剤以外に可溶化剤、溶解補助剤、湿潤剤、懸濁剤のような補助剤、甘味剤、風味剤、芳香剤、防腐剤を含有していてもよい。

非経口投与のための注射剤としては、無菌の水性又は非水性の溶液剤、懸濁剤、乳濁剤を包含する。水性の溶液剤、懸濁剤の希釈剤としては、例えば注射剤用蒸留水及び生理食塩水が含まれる。非水溶性の溶液剤、懸濁剤の希釈剤としては、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油のような植物油、エチルアルコールのようなアルコール類、ポリソルベート80(商品名)等がある。

このような組成物は、更に等張化剤、防腐剤、湿潤剤、乳化剤、分散剤、安定化剤(例えば、ラクトース)、可溶化剤又は溶解補助剤のような添加剤を含んでもよい。これらは例えばバクテリア保留フィルターを通す濾過、殺菌剤の配合又は照射によって無菌化される。これらは又無菌の固体組成物を製造し、使用前に無菌水又は無菌の注射用溶媒に溶解して使用することもできる。

発明を実施するための最良の形態

以下、本発明化合物の製造例を挙げ、本発明化合物の製造方法を具体的に説明する。なお、本発明化合物の原料化合物には新規な化合物も含まれており、これらの化合物の製造方法を参考例として説明する。

参考例1

エチル 4ープロモメチルー3ーニトロベンゾアート26.00gをアセトニトリル90mlに溶解し、3ーアミノベンゾニトリル7.97g及び、炭酸カリウム12.44gを加え、70℃で3時間攪拌した。室温まで冷却し、濾過後、母液を減圧下濃縮した。得られた残渣に酢酸エチルを加え、1規定塩酸水溶液、飽和炭酸水素ナトリウム水溶液で洗った後、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。得られた残渣を、ヘキサン:酢酸エチル(80:20~75:25)を溶出溶媒とするシリカゲルカラムクロマトグラフィーにて精製し、エチル 4ー[(3ーシアノフェニルアミノ)メチル]ー3ーニトロベンゾアート12.06gを得た。

参考例2

エチル 4- [(3-シアノフェニルアミノ) メチル] -3-ニトロベンゾアート5.7 9gをエタノール50mlに溶解し、精製水50ml、塩化アンモニウム0.96g、鉄粉末4.97gを加え40分間加熱環流した。反応液をセライト濾過し、減圧下濃縮した。得られた残渣に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液と、飽和食塩水で洗い、無水硫酸マグネシウムで乾燥後、減圧下濃縮、乾燥しエチル 3-アミノー4-[(3-シアノフェニルアミノ)メチル] ベンゾアート5.71gを得た。

参考例3

エチル 4ープロモメチルー3ーニトロベンゾアート46.11gをアセトニトリル500mlに溶解し、これに4-メチルモルホリンーNーオキシド20g加え室温にて80分撹拌した。反応液を減圧濃縮し、水を加えクロロホルムにて抽出した。この有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残渣をヘキサン:酢酸エチル(4:1)を溶出溶媒とするシリカゲルカラムクロマトグラフィーにて精製し、エチル 4ーホルミルー3ーニトロベンゾアート10.723g得た。

参考例4

エチル 4-ホルミル-3-ニトロベンゾアート5.81gをトルエン70mlに溶解し、これに 1,8-ジアザビシクロ[5.4.0]ーウンデセー7-エン2.1mlを加え、80度にて1時間攪拌した。これに3-[(1,1,1,-トリフェニルフォスソニオ)メチル]ベンゾニトリルブロミド 2.69gを加え、80度にて24時間攪拌した。不溶物を濾過し、濾液を減圧濃縮した。得られた残渣をヘキサン:酢酸エチル(10:1)を溶出溶媒とするシリカゲルカラムクロマトグラフィーにて精製した。得られた中間体3.1gをエタノール50ml及びテトラヒドロフラン10mlの混合溶媒に溶解し、これに酸化パラジウム硫酸パリウム錯体1gを加え、水素雰囲気下3日間室温で攪拌した。反応液をセライト濾過した後、濾液を減圧濃縮した。得られた残渣をヘキサン:酢酸エチル(2:1)を溶出溶媒とするシリカゲルカラムクロマトグラフィーにて精製し、エチル 3-アミノー4-[2-(3-シアノフェニル)エチル]ベンゾアート2.35g得た。

参考例 5

3-ヒドロキシ-2-二トロベンゾイックアシッド 1.83g を N,N-ジメチルホルムアミド 50ml に溶解し、これに4-メトキシアニリン 1.23g、1-エチル-3-ジメチルアミノプロ ピルカルボジイミド 塩酸塩 2.50g、1-ヒドロキシベンゾトリアゾール 1.35g、及びトリエ

チルアミン 1.81ml を加え室温で 66 時間攪拌した。反応液を減圧濃縮し、水を加え、酢酸エチルで抽出した。この有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残渣にクロロホルムを加え、生じた沈殿を濾取し、3ーヒドロキシー4'ーメトキシー2ーニトロベンズアニリド 2.04g を得た。濾液をクロロホルム:メタノール(98:2)を溶出溶媒とするシリカゲルカラムクロマトグラフィーにて精製し、得られた粗生成物にクロロホルムを加え生じた沈殿を濾取することにより、3ーヒドロキシー4'ーメトキシー2ーニトロベンズアニリド 0.24g をさらに得た。

参考例6

3ーヒドロキシー4'ーメトキシー2ーニトロベンズアニリド1.15gをメタノール50mlに懸濁し、10%パラジウムーカーボン粉末300mgを加え水素雰囲気下、室温で1時間攪拌した。反応液をセライト濾過し、メタノールで洗浄後、濾液を減圧下濃縮し、2ーアミノー3ーヒドロキシー4'ーメトキシベンズアニリド966mgを得た。

参考例7

4-(4-メチル-1,4-ジアゼパン-1-イル)ベンゾニトリル 18.86 gを 12 N塩酸 185 ml に溶解し、80℃で 12 時間攪拌した後、減圧濃縮した。水を加え、室温で攪拌した後、生成した沈殿を 濾過し水で洗った。得られた固体を減圧乾燥し 4-(4-メチル-1,4-ジアゼパン-1-イル)ベンゾイックアシッド 塩酸塩を 18.25 g 得た。

参考例8

4-(4-メチル-1,4-ジアゼパン-1-イル)ベンゾイックアシッド 塩酸塩16.3g、N,N -ジメチルホルムアミド0.88g、チオニルクロリド14.3g及び酢酸エチル160m Lの混合物を<math>40℃にて3時間攪拌後、減圧濃縮した。得られた残渣とアセトニトリル130mlの混合物に、2-アミノ-3-ニトロフェノール8.35g、ピリジン9.52g及びアセトニトリル60mLの溶液を氷冷下にて加えた。5℃以下で終夜攪拌した後、結晶を濾取し、2-アミノ-3-ニトロフェニル 4-(4-メチル-1, 4-ジアゼパン-1-イル)ベンゾアート 塩酸塩21.4gを得た。

参考例9

2-アミノ-3-ニトロフェニル 4-(4-メチル-1, 4-ジアゼパン-1-イル)ベン ゾアート 塩酸塩2.00g、トリエチルアミン995mg及びアセトニトリル20mLの 混合物を70℃にて6時間攪拌した。水酸化ナトリウム197mg及び水2mLの溶液を反

応液に加えた。水 $20 \, \text{mL}$ を加えた後、常圧にてアセトニトリルを加熱留去し、さらに水 $10 \, \text{mL}$ を加え、室温で $14 \, \text{時間撹拌した}$ 。析出した結晶を濾取し、 2' ーヒドロキシー $4 - 4 \, \text{mL}$ の $4 \, \text{mL}$ の 4

参考例10

2'ーヒドロキシー4ー(4ーメチルー1,4ージアゼパン-1ーイル)ー6'ーニトロベンズアニリド2.14g、メタノール43mL及び10%パラジウムー炭素(ウェット率54.2%)467mgの混合物を常圧水素雰囲気下、30℃にて水素の吸収が止むまで攪拌した。触媒を濾去し、濾液を減圧濃縮した。残渣をシリカゲルクロマトグラフィー(クロロホルム:メタノール=20:1~10:1)にて精製し、2'ーアミノー6'ーヒドロキシー4ー(4ーメチルー1,4ージアゼパン-1ーイル)ベンズアニリド1.61gを得た。

参考例11

2-アミノ-3-ニトロフェノール308mgをピリジン10m1に溶解し、4—メトキシベンゾイルクロリド341mgを0℃で加え、室温で18時間攪拌した。反応液を減圧下濃縮し、得られた残査にクロロホルム20m1を加え、再度減圧下濃縮した。この操作を更に3回繰り返しピリジンを除去した残査をクロロホルムを溶出溶媒とするシリカゲルカラムクロマトグラフィーで精製し2'ーヒドロキシー4-メトキシー6'ーニトロベンズアニリドを428mg得た。

参考例6と同様にして参考例12の化合物を合成した。

参考例13

3-ヒドロキシ-2-二トロベンゾイックアシッド 10.5 g を N,N-ジメチルホルムアミド 60 ml に溶解し、ベンジルブロミド 15 ml、炭酸カリウム 19.0 g を 0℃で加え、室温で 1 晩 攪拌した。反応液をセライト濾過したのち、減圧下濃縮した。得られた残渣に水を加え、エーテルで抽出後、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、ベンジル 3-ベンジロキシ-2-二トロベンゾアート 20.7 g を得た。

参考例14

ベンジル 3 - ベンジロキシ-2 - ニトロベンゾアート 20.7 g にエタノール 100 ml および 1N 水酸化ナトリウム水溶液 120 ml を加え、室温で1 晩、60℃で 3 時間、80℃で 5 時間攪拌した。エタノールを減圧下留去したのち、得られた水溶液をエーテルで洗った後、塩酸を

加えた。生じた沈殿を濾取した後、減圧下乾燥し、3 -ベンジロキシ-2 -ニトロベンゾ イックアシッド 15.8 g を得た。

参考例15

3-ベンジロキシー2-ニトロベンゾイックアシッド 5.47~g にチオニルクロリド 20~ml および N,N-ジメチルホルムアミド数滴を加え、80℃で 30~分間攪拌した。反応液を減圧下濃縮し、得られた残渣に0℃でピリジン 3~5 m 1~ および2-アミノー5-クロロピリジン 2.55~ g を加え、室温で 1~ 晩攪拌した。反応液を減圧下濃縮し、得られた残渣に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去し、トルエン共沸を行い3-ベンジロキシ-N-(5-クロロ-2-ピリジル)-2-ニトロベンズアミド 7.44~g を得た。

参考例16

3 ーベンジロキシーNー(5 ークロロー2 ーピリジル) ー 2 ーニトロベンズアミド 7.44 g にトリフルオロ酢酸 40 ml およびペンタメチルベンゼン 3.72 g を加え 40℃で1 晩攪拌した。 反応液を減圧下濃縮し、得られた残渣にアルカリ性にならない程度の飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を1 N水酸化ナトリウム水溶液で抽出したのち、水層に塩酸を加え酸性とし、クロロホルムで抽出した。無水硫酸マグネシウムで乾燥後、溶媒を減圧下留去し得られた残渣にラネーニッケルのエタノール懸濁液 200 ml に加えた。水素雰囲気下 6 時間攪拌したのち、 N,N-ジメチルホルムアミドを加え、不溶物を濾去した。減圧下溶媒を留去し、得られた残査に水を加えた。生じた沈殿を濾取し、減圧下乾燥し、2 ーアミノーNー(5 ークロロー2 ーピリジル) ー 3 ーヒドロキシベンズアミド 4.58 g を得た。

参考例17

2-アミノ-N-(5-クロロ-2-ピリジル) -3-ヒドロキシベンズアミド 3.06 g とN-クロロスキシイミド1.80 gをN,N-ジメチルホルムアミド60 mlに溶解し50℃で8時間、室温で4時間撹拌した後、不溶物を濾去した。減圧下溶媒を留去した後、得られた残査に1N水酸化ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧下留去し、得られた残査をシリカゲルカラムクロマトグラフィーにより精製した。得られた粗精製物にエタノールを加え、生じた沈殿を濾取し、減圧下乾燥し、2-アミノ-5-クロロ-N-(5-クロロ-2-ピリジル) -3-ヒドロキシベンズアミド

767 mgを得た。母液を濃縮し、酢酸エチルーイソプロピルエーテルを加え、生じた沈殿を 濾取した後、減圧下乾燥することにより、上記化合物をさらに942 mg得た。 参考例17と同様にして参考例18、19の化合物を合成した。

参考例20

エチル 2-アミノ-5-クロロ-3-ヒドロキシベンゾアート3.23 gを3規定塩酸水溶液160 mlに溶解し、85℃で3時間、80℃で5日間攪拌した。反応液を室温まで冷却した後、不溶物を濾過し、濾液に1規定水酸化ナトリウム水溶液320mlを加え、室温で1時間攪拌した。生じた沈殿を濾過し精製水で洗った後、減圧下乾燥し、2-アミノ-5-クロロー3-ヒドロキシベンゾイックアシッド1.55 gを得た。

参考例21

2-アミノー5-クロロー3-ヒドロキシベンゾイックアシッド1.12 gをN,N-ジメチルホルムアミド60 mlに溶解し、これに4-メトキシアニリン7.38 g、1-エチルー3-ジメチルアミノプロピルカルボジイミド 塩酸塩1.73 g、1-ヒドロキシベンゾトリアゾール1.21 g、及びトリエチルアミン1.26 mlを加え室温で13時間攪拌した。反応液を減圧濃縮し、得られた残査に酢酸エチルを加え、精製水と飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した後、減圧下濃縮した。得られた残渣にクロロホルムを加え、30分間攪拌した後、生じた沈殿を濾取し、クロロホルムで洗浄した後、減圧下乾燥し2-アミノー5-クロロー3-ヒドロキシー4'-メトキシー2-ベンズアニリド0.96 gを得た。

参考例22

4-(4-メチル-1, 4-ジアゼパン-1-イル)ベンゾイックアシッド 塩酸塩5.09gに チオニルクロリド40m1を加え、60℃で30分間攪拌した。反応液を減圧下濃縮乾固した。得られた残渣に、エチル 3-アミノ-4-[(3-シアノフェニルアミノ)メチル]ベンゾアート5.65gをピリジン50m1に溶解した溶液を加え、室温で5時間攪拌した。反応液を減圧下濃縮した後、得られた残渣に酢酸エチルとクロロホルムをを加え、飽和炭酸水素ナトリウム水溶液と、飽和食塩水で洗い、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。得られた残渣をヘキサン:酢酸エチル(95:5~90:10)を溶出溶媒とするシリカゲルカラムクロマトグラフィーで精製し、エチル 4-[(3-シアノフェニルアミノ)メチル]-3-[4-(4-メチル-1, 4-ジアゼパン-1-イル)ベンゾイルアミノ]ベンゾアートを6.42g得た。

参考例22と同様にして参考例23の化合物を合成した。

実施例1

エチル 4- [(3-シアノフェニルアミノ)メチル] -3- [4-(4-メチル-1,4-ジアゼパン-1-イル)ペンゾイルアミノ]ペンゾアート4.09gをエタノール80mlに溶解し、-20℃以下で塩酸ガスを20分間通導した後、3℃まで昇温し、24時間攪拌した。反応液を減圧下濃縮乾固し、得られた残渣をエタノール80mlに溶解し、酢酸アンモニア6.16gを加え室温で3.5日間攪拌した。反応液を減圧下濃縮し、得られた残渣を0.002規定塩酸水溶液:エタノール(100:0~80:20)を溶出溶媒とするODSカラムクロマトグラフィーで精製し、エチル 4- [(3-カルバミミドイルフェニルアミノ)メチル] -3- [4-(4-メチルー1,4-ジアゼパン-1-イル)ペンゾイルアミノ]ベンゾアート 塩酸塩を3.84g得た。得られた化合物の内、1.70gをエタノール20mlに溶解し、1規定水酸化ナトリウム水溶液30mlを加え室温で1時間攪拌した。反応液を1規定塩酸水溶液で中和した後、減圧下濃縮た。得られた残渣を0.002規定塩酸水溶液:アセトニトリル(100:0~92:8)を溶出溶媒とするODSカラムクロマトグラフィーで精製した後、凍結乾燥し、4- [(3-カルバミミドイルフェニルアミノ)メチル] -3- [4-(4-メチルー1,4-ジアゼパン-1-イル)ベンゾイルアミノ]ペンゾイックアシッド 塩酸塩を1.48g得た。

実施例2

エチル 4- [(3-シアノフェニルアミノ) メチル] -3- [4-(4-メチル-1, 4-ジアゼパン-1-イル)ベンゾイルアミノ] ベンゾアート1. 42gをエタノール30mlに溶解し、ヒドロキシルアミン塩酸塩291mg及び、トリエチルアミン0. 78mlを加え60℃で24時間攪拌した。反応液を減圧下濃縮し、得られた残渣をクロロホルム:メタノール:アンモニア水溶液(100:0:0~92:8:0.8)を溶出溶媒とするシリカゲルカラムクロマトグラフィーで精製し、エチル 4-({[3-(N-ヒドロキシカルバミミドイル)フェニル]アミノ}メチル)-3-[4-(4-メチル-1,4-ジアゼパン-1-イル)ベンゾイルアミノ] ベンゾアートの粗精製物を得た。さらに0.002規定塩酸水溶液:メタノール(100:0~88:12)を溶出溶媒とするODSカラムクロマトグラフィーで精製した後、凍結乾燥し、エチル 4-({[3-(N-ヒドロキシカルバミミドフィーで精製した後、凍結乾燥し、エチル 4-({[3-(N-ヒドロキシカルバミミド

イル)フェニル] アミノ} メチル)-3-[4-(4-メチル-1, 4-ジアゼパン-1-イル)ベンゾイルアミノ] ベンゾアート 塩酸塩を1.03gを得た。

実施例1と同様にして実施例3、5、7、54の化合物を合成した 実施例2と同様にして実施例4、6、8、53の化合物を合成した 実施例9

4ー(4ーメチルー1、4ージアゼパンー1ーイル)ベンゾイックアシッド 塩酸塩812mgをチオニルクロリド8mlに溶解し、60℃で30分攪拌した。反応液を減圧下濃縮 乾固した。得られた残渣に、2ーアミノー4'ーメトキシー3ーヒドロキシベンズアニリド774mgをピリジン15mlに溶解した溶液を0℃で加え、室温で2時間攪拌した。反応液を減圧下濃縮した後、得られた残渣にトルエンを加え再度減圧下濃縮した。得られた残渣に 飽和炭酸水素ナトリウム水溶液と酢酸エチルを加え、得られた沈殿を濾取した。母液の酢酸 エチル層を無水硫酸ナトリウムで乾燥した後、減圧下濃縮した。得られた残渣と濾取した沈 殿を混合しクロロホルム:メタノール(98:2)を溶出溶媒とするシリカゲルカラムクロマトグラフィーで精製し、3ーヒドロキシー4'ーメトキシー2ー{[4ー(4ーメチルー1,4ージアゼパンー1ーイル)ベンゾイル]アミノ}ベンズアニリドを873mg得た。得られた化合物をエタノール10mlに懸濁し、4規定塩酸酢酸エチル溶液0.7mlを加え攪拌した後、生じた沈殿を濾過し、エタノールで洗浄し、減圧下乾燥することにより3ーヒドロキシー4'ーメトキシー2ー{[4ー(4ーメチルー1,4ージアゼパンー1ーイル)ベンゾイル]アミノ}ベンズアニリド塩酸塩を896mg得た。

実施例9と同様にして実施例 $10\sim16$ 、42、51、52の化合物を合成した。 実施例17

2'-アミノー6'-ヒドロキシー4-(4-メチルー1,4-ジアゼパンー1-イル)ベンズアニリド2.03gをピリジン60m1に溶解し、4-メトキシベンゾイルクロリド1.12gを0℃で加え、室温で3日間攪拌した。反応液を減圧下濃縮し、得られた残査にクロロホルム150m1を加え、5%炭酸水素ナトリウム水溶液150m1でアルカリ性とし、クロロホルムで抽出した。得られた有機層を無水硫酸ナトリウムで乾燥した後、減圧下濃縮し、トルエンを加え、再度減圧下濃縮した。得られた残査をクロロホルム:メタノール:飽和アンモニア水(100:10:1)を溶出溶媒とするシリカゲルカラムクロマトグラフィーで精製した。エタノールより再結晶し、3-ヒドロキシーN¹-(4-メトキシベ

実施例36

3-ヒドロキシ-N 1 - (4-メトキシベンゾイル)-N $^{2}-$ [4- (4-メチル-1, 4 -ジアゼパン-1-7ル) ベンゾイル]-1, 2-フェニレンジアミン500mgをメタノール11mlに溶解し、室温にて臭化ベンジル215mgを加え5時間攪拌した。室温に て臭化ベンジル215mgを加え16時間攪拌した後、析出物を濾取した。得られた析出物 をN,N-ジメチルホルムアミド11mlに懸濁させ、室温にてブロモ酢酸エチル210m gと炭酸カリウム174mgを加え、100℃にて30分間攪拌した。不溶物を濾過し、減 圧下濃縮した。得られた残渣を酢酸16mlに溶解し、10%パラジウム-カーボン粉末1 00mgを加え、3気圧の水素雰囲気下、室温にて3時間攪拌した。反応液をセライト濾過 し、メタノールで洗浄後、濾液を減圧下濃縮した。得られた残査にクロロホルム50m1を 加え、5%炭酸水素ナトリウム水溶液50m1でアルカリ性とし、クロロホルムで抽出した。 得られた有機層を無水硫酸ナトリウムで乾燥した後、減圧下濃縮した。得られた残渣をクロ ロホルム:メタノール:飽和アンモニア水(100:10:1)を溶出溶媒とするシリカゲ ルカラムクロマトグラフィーで精製し、エチル (3- [(4-メトキシベンゾイル) アミ ノ] -2- { [4-(4-メチル-1, 4-ジアゼパン-1-イル) ベンゾイル] アミノ} フェノキシ)アセタートの粗精製物を580mg得た。その粗精製物を0.001規定塩 酸:メタノール(10:4)を溶出溶媒とするODSカラムクロマトグラフィーで精製し、 エチル $(3-[(4-)++)べンゾイル) アミノ] -2-{[4-(4-)チル-1,$ 4ージアゼパン-1ーイル)ベンゾイル] アミノ} フェノキシ) アセタート 塩酸塩350 mgを得た。

実施例37

エチル (3-[(4-メトキシベンゾイル) アミノ] -2-{[4-(4-メチル-1,4-ジアゼパン-1-イル) ベンゾイル] アミノ} フェノキシ) アセタート塩酸塩350mgをメタノール6mlに溶解し、室温にて1規定水酸化ナトリウム水溶液1.8mlを加え2時間攪拌した。1規定塩酸1.8mlを加え、減圧下濃縮した。得られた残渣を0.001規定塩酸:アセトニトリル(1:1)を溶出溶媒とするODSカラムクロマトグラフィーで精製し、(3-[(4-メトキシベンゾイル) アミノ] -2-{[4-(4-メチル-1,4-ジアゼパン-1-イル) ベンゾイル] アミノ} フェノキシ) アセティック アシッド塩酸塩254mgを得た。

実施例37と同様にして実施例38の化合物を合成した。

実施例39

エチル (3-[(4-メトキシベンゾイル) アミノ] -2-{[4-(4-メチル-1,4-ジアゼパン-1-イル) ベンゾイル] アミノ} フェノキシ) アセタートの粗精製物370mgをテトラヒドロフラン7m1に溶解し、室温にてテトラヒドロホウ酸ナトリウム108mgを加えた。そこへメタノール930mgをテトラヒドロフラン7m1に溶解した溶液を、60℃にて25分間かけて滴加した。60℃にて2時間撹拌した。水1m1を室温にて加え、減圧下濃縮した。得られた残渣に対し上述の操作を再度施した後、得られた残渣をクロロホルム:メタノール:飽和アンモニア水(100:10:1)を溶出溶媒とするシリカゲルカラムクロマトグラフィーで精製した。得られた化合物をエタノール3m1に懸濁し、1規定塩酸0.4m1を加え減圧下濃縮した。得られた残渣にアセトン3m1と蒸留水3m1を加え、生じた沈殿を濾過し、3-(2-ヒドロキエトキシ)-N¹-(4-メトキシベンゾイル)-N²-[4-(4-メチル-1,4-ジアゼパン-1-イル)ベンゾイル]-1,2-フェニレンジアミン塩酸塩107mgを得た。

実施例40

3ーヒドロキシーN¹ー (4ーメトキシベンゾイル) ーN²ー [4ー (4ーメチルー1, 4ージアゼパンー1ーイル) ベンゾイル] ー1, 2ーフェニレンジアミン730mgをテトラヒドロフラン20m1に溶解し、メタノール0.13m1、トリフェニルフォスフィン498mg、ジエチル アゾジカルボキシラート0.23m1を加え、室温で16.5時間攪拌した。反応液を減圧濃縮した後、得られた残渣をクロロホルムに溶解し、0.5規定水酸化ナトリウム水溶液と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。

得られた残査をクロロホルム:メタノール(95:5~93:7)を溶出溶媒とするシリカゲルカラムクロマトグラフィーで精製した。得られた粗精製物をエタノール10m1 に溶解し4規定塩酸酢酸エチル溶液を0.4m1 加えた後、減圧濃縮した。得られた残渣を0.002 N塩酸水溶液:アセトニトリル(97:3~85:15)を溶出溶媒とするODSカラムクロマトグラフィーで精製した後、凍結乾燥し3-メトキシー N^1 —(4-メトキシベンゾイル)-N 2 -[4-(4-メチル-1,4-ジアゼパン-1-イル)ベンゾイル]-1,2-フェニレンジアミン 塩酸塩3.3.5mgを得た

実施例41

3ーヒドロキシーN¹— (4ーメトキシベンゾイル) ーN²ー [4ー (4ーメチルー1, 4ージアゼパンー1ーイル) ベンゾイル] ー1, 2ーフェニレンジアミン474mgをN, Nージメチルホルムアミド15m1に溶解し、トリメチルアミンーサルファートリオキサイド 錯体1.39gを加え60度で79時間攪拌した。さらにトリメチルアミンーサルファートリオキサイド 錯体0.42gを加え60度で38時間攪拌し、さらにトリメチルアミンーサルファートリオキサイド 錯体0.42gを加え60度で23時間攪拌した後、減圧濃縮した。得られた残渣に水を加え、1時間攪拌した後、生じた沈殿を濾取し、水で洗った。得られた粗精製物をエタノールに懸濁、攪拌した後濾過し、エタノールと水で洗った後、減圧乾燥し3ー[(4ーメトキシベンゾイル)アミノ]ー2ー{[4ー(4ーメチルー1, 4ージアゼパンー1ーイル) ベンゾイル]アミノ}フェニル ハイドロゲン サルフェート483mgを得た。

実施例43

N²- [4-(4-ベンジル-1, 4-ジアゼパン-1-イル) ベンゾイル] -3-ヒドロキシ-N¹- (4-メトキシベンゾイル) -1, 2-フェニレンジアミン11. 53gを酢酸250m1に溶解し10%パラジウム-カーボン粉末2. 5gを加え3気圧水素雰囲気下、室温で44時間攪拌した。反応液をセライト濾過し、酢酸で洗浄後、濾液を減圧濃縮した。トルエンを加え再び減圧濃縮し、11. 11gの残渣を得た。その残渣の内、2. 00gをクロロホルム、炭酸水素ナトリウム水溶液、メタノールの混合溶媒に溶解し、12時間攪拌した。有機層を分離後、飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をエタノールに懸濁し3時間攪拌した後、沈殿物を濾過し、エタノールで洗った。得られた固体をエタノールから再結晶し、N²- [4-(1, 4-ジアゼパン-1

実施例44

3ーヒドロキシーN¹— (4ーメトキシベンゾイル) ーN²ー [4ー (1, 4ージアゼバンー1ーイル) ベンゾイル] ー1, 2ーフェニレンジアミン857mgをジクロロエタン20 m1に懸濁し、室温にて酢酸1.2gとシクロプロパンカルバルデヒド261mgとトリアセトキシボロヒドリド789mgを加えた。2時間攪拌した後、室温にてシクロプロパンカルバルデヒド261mgとトリアセトキシボロヒドリド789mgを加え、さらに2時間攪拌した。反応液を減圧下濃縮した後、得られた残査にクロロホルム50m1を加え、5%炭酸水素ナトリウム水溶液50m1でアルカリ性とし、クロロホルムで抽出した。得られた有機層を無水硫酸ナトリウムで乾燥した後、減圧下濃縮した。得られた残渣をクロロホルム:メタノール:飽和アンモニア水(100:10:1)を溶出溶媒とするシリカゲルカラムクロマトグラフィーで精製した。得られた化合物をエタノール13m1に懸濁し、1規定塩酸1.9m1を加え、生じた沈殿を濾過し、3ーヒドロキシー N¹— (4ーメトキシベンゾイル)ーN²ー [4ー (4ーシクロプロピルメチルー1, 4ージアゼパンー1ーイル) ベンゾイル]ー1,2ーフェニレンジアミン塩酸塩656mgを得た。

実施例45

 $N^2-[4-(1,4-i)$ アゼパン-1-イル)ベンゾイル]-3-iヒドロキシ- N^1 -(4-メトキシベンゾイル)-1,2-フェニレンジアミン1.3 gをエタノール2 0 m l に溶解し、エチル アセトイミダート 塩酸塩1.04 gとトリエチルアミン1.5 m l を加え17時間撹拌した。エタノール150 m l、エチル アセトイミダート 塩酸塩1.04 g、トリエチルアミン1.5 m lをさらに加え50 $\mathbb C$ で68時間撹拌した。反応液を減圧 濃縮し、得られた残渣を0.002 N塩酸水溶液:アセトニトリル(95:5~70:30)を溶出溶媒とするODSカラムクロマトグラフィーで精製した後、凍結乾燥し3ーヒドロキシ- $\mathbb N^2$ -{4-[4-(1-イミノエチル)-1,4-ジアゼパン-1-イル]ベンゾイル}- $\mathbb N^1$ -(4-メトキシベンゾイル)-1,2-フェニレンジアミン 塩酸塩515mgを得た

実施例44と同様にして実施例46~48の化合物を合成した。

実施例49

4-(4-メチル-1, 4-ジアゼパン-1-イル) ベンゾイックアシッド 塩酸塩 755 mg をチオニルクリド 2.2 ml に溶解し、60℃で 30 分攪拌した。反応液を減圧下濃縮乾固した。 得られた残渣に、 2-アミノ-5-クロロ-N-(5-クロロ-2-ピリジル) -3-ヒドロキシベンズアミド 891 mg をピリジン 10 ml に溶解した溶液を加え、室温で 13 時間攪拌した。反応液を減圧下濃縮した後、得られた残査に酢酸 20 ml を加え室温で 1 7時間攪拌した。反応液を減圧下濃縮した後、得られた残査に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、無水硫酸ナトリウムで乾燥した後、減圧下濃縮した。 得られた残渣をクロロホルムで抽出し、無水硫酸ナトリウムで乾燥した後、減圧下濃縮した。 得られた残渣をクロロホルム: メタノール: アンモニア水 (97:3:0.3~95:5:0.5) を溶出溶媒とするシリカゲルカラムクロマトグラフィーで精製し、5-クロロ-N-(5-クロロ-2-ピリジル) -3-ヒドロキシー2-{[4-(4-メチル-1,4-ジアゼパン-1-イル) ベンゾイル]アミノ}ベンズアミドの粗精製物を得た。 これをさらにアセトニトリル:0.002規定塩酸水溶液 (2:8~3:7) を溶出溶媒とするODSカラムクロマトグラフィーで精製し、希塩酸水溶液(2:8~3:7) を溶出溶媒とするODSカラムクロマトグラフィーで精製し、希塩酸水溶液(2:8~3:7) を溶出溶媒とするODSカラムクロマトグラフィーで精製し、希塩酸水溶液に懸濁後凍結乾燥し5-クロロ-N-(5-クロロ-2-ピリジル) -3-ヒドロキシー2-{[4-(4-メチル-1,4-ジアゼパン-1-イル) ベンゾイル]アミノ}ベンズアミド 塩酸塩 492 mg を得た。

実施例49と同様にして実施例50の化合物を合成した。

前記参考例化合物及び実施例化合物の構造式と物理化学的性状を、別表2及び3に示す。 表4~6に示される化合物は、前記実施例若しくは製造法に記載の方法とほぼ同様にして、 又はそれらに当業者に自明の若干の変法を適用して容易に製造することができる。なお、表 中の記号は以下の意味を有する。

Rf:参考例番号、Ex:実施例番号、structure:構造式、salt:塩、free:遊離体、DATA:物性データ、NMR:核磁気共鳴スペクトル(TMS内部標準)、FAB-MS:質量分析値、Me:メチル、Et:エチル

表 2

Rf	structure(salt)	DATA
1	NC NO ₂ COOEt (free)	NMR (CDC1 ₃): δ :1.42(3H, t, J = 7.2 Hz), 4.43(2H, q, J = 7.2Hz), 4.63(1H, t, J = 5.7 Hz), 4.81(2H, d, J = 6.0 Hz), 6.72 - 6.78(2H, m), 7.01(1H, dt, J = 1.3 Hz, 7.7 Hz), 7.19 - 7.27(1H, m), 7.69(1H, d, J = 8.1 Hz), 8.24(1H, dd, J = 1.7 Hz, 8.0 Hz), 8.73(1H, d, J = 1.7 Hz)
2	NC NH ₂ COOEt	NMR (CDC1 ₃): δ :1.39 (3H, t, J = 7.1 Hz), 3.96 - 4.16 (3H, m), 4.25 (2H, d, J = 4.2 Hz), 4.36 (2H, q, J = 7.1 Hz), 6.85 - 6.93 (2H, m), 7.05 (1H, dt, J = 1.2 Hz, 7.9 Hz), 7.22 (1H, d, J = 7.7 Hz), 7.27 (1H, t, J = 8.0 Hz), 7.41 (1H, d, J = 1.3 Hz), 7.43 (1H, dd, J = 1.7 Hz, 7.7 Hz)
3	COOEt (free)	NMR (CDC1 ₃): δ: 1.46 (3H, t, J=7.2Hz), 4.48 (2H, q, J=7.2Hz), 8.00 (1H, d, J=8.0Hz), 8.42 (1H, d, J=8.0Hz), 8.75 (1H, s), 10.46 (1H, s)
4	NC NH ₂ COOEt (free)	NMR (CDCl ₃): δ: 1.38 (3H, t, J=7.1Hz), 2.82 (2H, t, J=8.4Hz), 2.96 (2H, t, J=8.4Hz), 4.34 (2H, q, J=7.1Hz), 6.97 (1H, d, J=8.4Hz), 7.33-7.41 (4H, m), 7.44- 7.52 (2H, m)
5	MeO NO ₂ OH (free)	NMR (DMSO- d_6): δ : 3.74 (3H, s), 6.92 (2H, d, J = 8.8 Hz), 7.19 - 7.30 (2H, m), 7.50 (1H, t, J = 8.6 Hz), 7.58 (2H, d, J = 9.3 Hz), 10.46 (1H, s), 11.25 (1H, brs),
6	MeO NH ₂ OH (free)	NMR (DMSO- d_6): δ : 3.74 (3H, s), 5.79 (2H, s), 6.46 (1H, t, J = 7.8 Hz), 6.82 (1H, d, J = 7.8 Hz), 6.90 (2H, d, J = 8.8 Hz), 7.15 (1H, d, J = 7.8 Hz), 7.61 (2H, d, J = 8.8 Hz), 9.56 (1H, s), 9.81 (1H, s),
7	HO₂C NN-Me HCl	NMR (DMSO- d_6): δ :2.06 - 2.24(1H, m), 2.30 - 2.45(1H, m), 2.77(3H, s), 3.00 - 3.24(2H, m), 3.24 - 3.55(4H, m), 3.70 - 4.00(2H, m), 6.81(2H, d, J = 9.1 Hz), 7.78(2H, d, J = 9.1 Hz), 11.06(1H, s), 12.20(1H, s)
8	O ₂ N NH ₂ N-Me	NMR (DMSO- d_6) δ : 2.15 - 2.22(1H, m), 2.34-2.45(1H, m), 2.79(3H, d, J = 5.0Hz), 3.05 - 3.22(2H, m), 3.40 - 3.61(4H, m), 3.79 - 3.88(1H, m), 3.95 - 4.03(1H, m), 6.69 - 6.75(1H, m), 6.93(2H, d, J = 9.0 Hz), 7.05(2H, br), 8.00(2H, d, J = 9.0 Hz), 11.12(1H, br)

表2 (続き)

		,
9		NMR (DMSO-d ₆) $\delta:1.86-1.95$ (2H, m), 2.29 (3H, s), 2.45 - 2.52 (2H,
	AN TOWN	D = 1.86 = 1.85 (2H, M), 2.25 (3H, S), 2.43 = 2.32 (2H, M), 2.65 (2H, t, J = 4.4Hz), 3.51 (2H, t, J = 6.0)
	O ₂ N OH N-Me	Hz), 3. 60 (2H, t, $J = 4.4$ Hz), 6. 76 (2H, d, $J = 9.2$
		Hz), 7. 21-7. 28 (2H, m), 7. 35 (1H, dd, J = 6. 8Hz,
	(free)	2. 4 Hz), 7. 84 (2H, d, J = 9. 2Hz), 9. 53 (1H, br)
10	0	NMR (DMSO-d ₆):
10	ни	1.85-1.94(2H, m), 2.26(3H, s), 2.43(2H, t,
	H ₂ N	J=5.6Hz), 2.61(2H, t, J=4.8Hz), 3.51(2H, t,
	OH N-Me	J=6.0Hz), 3.58(2H, t, J=4.8Hz), 4.68(2H, s),
	<u> </u>	6.16(1H, dd, J=7.6Hz, 1.2Hz), 6.24(1H, dd,
	(free)	J=8.0Hz, 1.2Hz), 6.70-6.81(3H, m), 7.86(1H, d,
		J=8.8Hz), 8.93(1H, br), 8.94(1H, s)
11	MeO	NMR (DMSO-d₀):
	H NO ₂	δ :3.88(3H, s), 6.70(1H, dd, J = 7.7 Hz, 8.7 Hz),
		7.14 (2H, d, J = 8.9 Hz), 7.17 - 7.21 (2H, m),
	HO	7.43 (1H, dd, J = 1.4 Hz, 7.7 Hz), 7.97 (1H, dd, J)
	(free)	= 1.4 Hz, 8.7 Hz), 8.13(2H, d, J = 8.9 Hz)
12	MeO → H ŅH,	NMR (DMSO-d ₆):
	N	$\delta: 3.83 - 3.86$ (2H, m), 3.84 (3H, s), $6.68 - 6.72$
	الله الله	(1H, m), 6.72 - 6.78(1H, m), 7.06(2H, d, J = 8.7)
1	но	Hz , $7.06 - 7.12(2H, m)$, $8.05(2H, d, J = 8.7 Hz)$,
	(free)	9.63 - 9.67(1H, br)
13	O NO ₂	NMR (DMSO-d ₆):
		δ :5.33(4H, s), 7.31 - 7.45 (10H, m), 7.61(1H, dd,
		J = 1.4 Hz, 7.5 Hz, 7.68(1H, t, J = 7.9 Hz),
	(free)	7.74(1H, dd, J = 1.5 Hz, 8.2 Hz)
14	NO NO	NMR (DMSO $-d_6$):
	HOOC	δ :5.32(2H, s), 7.31 - 7.44 (5H, m), 7.56(1H, dd,
		J = 1.7 Hz, 7.3 Hz), 7.64(1H, t, J = 7.9 Hz),
	(free)	7.68(1H, dd, J = 1.7 Hz, 8.3 Hz)
1 5		NMR (CDC1 ₃):
15		$\delta: 5.23 \text{ (2H, s)}, 7.22 - 7.26 \text{ (2H, m)}, 7.31 - 7.39$
	N N N T T T	(5H, m), 7.46 (1H, t, J = 8.3 Hz), 7.69 (1H, dd, J =
		2.7 Hz, 9.1 Hz), 8.03(1H, d, J = 2.9 Hz),
	(free)	8.26(1H, d, J = 8.8 Hz), 9.01(1H, brs)
16	CI O NH.	NMR (DMSO-d ₆):
	L _N L _N L√C ² OH	δ :5.93(2H, s), 6.44(1H, t, J = 7.9Hz), 6.82(1H,
	`` Ĥ ↓	d, $J = 7.7 \text{ Hz}$), $7.27(1\text{H}, d, J = 7.3 \text{ Hz})$, $7.93(1\text{H}, l)$
	(free)	dd, $J = 2.6 Hz$, $9.0 Hz$), $8.14(1H$, d , $J = 8.8 Hz$),
	,== 00,	8.41 (1H, d, J = 2.4 Hz), 9.60 (1H, s), 10.46 (1H,
		s)
17	CI P NH ₂	NMR (DMSO-d ₆):
	N N OH	δ :6.04(2H, brs), 6.80(1H, d, J = 2.4 Hz), 7.36(1H, d, J = 2.0 Hz), 7.93(1H, dd, J = 2.5 Hz,
	H 🕎	7.36(1H, d, J = 2.0 Hz), 7.93(1H, dd, J = 2.5 Hz, 8.8 Hz), 8.11(1H, d, J = 9.3 Hz), 8.42(1H, d, J = 9.3 Hz)
	CI	2.5 Hz), 10.16 (1H, brs), 10.67 (1H, s)
	(free)	2. 0 Hz/, 10. 10 (H, 013/, 10. 01 (H, 5)

表2 (続き)

12.4	がらこ 7	
18	CI NH2 OH	NMR (DMSO- d_8): δ :6.06(2H, brs), 6.90(1H, d, J = 2.2 Hz), 7.47(1H, d, J = 2.2 Hz), 7.93(1H, dd, J = 2.8 Hz,
	Br	9.0 Hz), 8.10(1H, d, J = 9.0 Hz), 8.42(1H, d, J = 2.2 Hz), 10.15(1H, brs), 10.69(1H, s)
	(free)	2. 2 Hz/, 10. 15 (Hz, 515), 10. 05 (H, 5)
19	EtOOC NH ₂ OH	NMR (CDC1 ₃): δ : 1.38(3H, t, J = 7.3 Hz), 4.33(2H, q, J = 7.3
		Hz), $5.00 - 6.30$ (3H br), 6.81 (1H, d, $J = 2.0$ Hz),
	Či	7. 48 (1H, d, J = 2. 4 Hz)
	(free)	
20	HOOC OH	NMR (DMSO-d ₆):
	ноос	$\delta: 3.37(1.5H, brs), 6.78(1H, d, J = 2.4 Hz),$
		7.17(1H, d, $J = 2.5 \text{ Hz}$), 8.34(1.5H, brs),
	GI (franci)	10.19(1H, s)
	(free)	Num (nvgo 1)
21	MeO NH ₂ OH	NMR (DMSO- d_6):
	THE J.	δ:3.74(3H, s), 5.93(2H, brs), 6.78(1H, d, J = 1.9 Hz), 6.91(2H, d, J = 9.3 Hz), 7.23(1H, d, J = 1.9 Hz)
	ČI	$\begin{bmatrix} 1.5 & \text{Hz} \end{pmatrix}$, $\begin{bmatrix} 0.5 & \text{Yz} \end{bmatrix}$, $\begin{bmatrix} 0.5 & Y$
	(free)	10.09(1H, brs)
22	Q	NMR (CDC1 ₃):
""	HM HW	$\delta:1.39(3H, t, J = 7.4 Hz), 1.97 - 2.06(2H, m),$
	NC NO	2.38(3H, s), 2.53 - 2.59(2H, m), 2.68 -
	н Стиме	2.73(2H, m), 3.51(2H, t, J = 6.4 Hz), 3.57 -
	COOEt	3.63(2H, m), 4.34 - 4.42(5H, m), 6.58(2H, d, J
	(free)	= 8.8 Hz, $6.96 - 7.01(2H, m)$, $7.12(1H, d, J = 1.00)$
]		7.8 Hz), 7.31 (1H, t, $J = 7.8$ Hz), 7.40 (1H, d, $J = 9.2$ Hg), 7.65 (9H, d, $J = 9.7$ Hg), 7.81 (1H
		= 8.3 Hz), 7.65 (2H, d, J = 8.7 Hz), 7.81 (1H, dd, J = 1.5 Hz, 7.8 Hz), 8.67 (1H, d, J = 2.0
		Hz), 8.85(1H, s),
		FAB-MS (m/z): 512 (M+H) ⁺
23	P	NMR (CDC1 ₃):
	HN HN	δ: 1.37(3H, t, J=7.1Hz), 2.43-2.54(2H, br),
	NC N-Me	2.76(3H, s), 2.93-3.01(4H, m), 3.14-3.22(2H,
	COOEt	br), 3.23-3.29(2H, br), 3.59(2H, t, J=6.4Hz),
		3. 89-3. 95 (2H, m), 4. 33 (2H, q, J=7. 1Hz),
	(free)	6.72(2H, d, J=8.9Hz), 7.20(1H, d, J=7.3Hz),
		7.27-7.35(3H, m), 7.41(1H, d, J=7.3Hz), 7.68- 7.73(1H, m), 7.75(2H, d, J=8.3Hz), 7.85(1H, dd,
		J=1. 8Hz, 8. 3Hz), 8. 23 (1H, s)
		FAB-MS (m/z): 511 (M+H) +

表3

Ex	structure (salt)	DATA
	311401416 (3411)	
1	HN COOH HC1	NMR (DMSO- d_6): $\delta: 2.16-2.26$ (2H, br), 2.67 (3H, s), 2.95 - 3.49 (5H, br), 3.54 (2H, t, J = 6.3 Hz), 3.73- 3.86 (2H, br), 4.44 (2H, d, J = 5.3 Hz), 6.79 - 6.87 (4H, m), 6.94 (1H, d, J = 7.3 Hz), 6.98 (1H, s), 7.26 (1H, t, J = 8.3 Hz), 7.44 (1H, d, J = 7.8 Hz), 7.75 (1H, dd, J = 2.0 Hz, 7.8 Hz), 7.94 (2H, d, J = 9.2 Hz), 7.98 (1H, d, J = 1.9 Hz), 9.07 (2H, s), 9.22 (2H, s), 9.98 (2H, s) FAB-MS (m/z): 501 (M+H) ⁺
2	HC1	NMR (DMSO- d_6): δ :1.31 (3H, t, J = 7.3 Hz), 2.79 (3H, d, J = 4.4 Hz), 4.31 (2H, q, J = 7.3 Hz), 4.43 (2H, s), 6.76 - 6.91 (6H, m), 7.25 (1H, t, J = 8.4 Hz), 7.46 (1H, d, J = 8.3 Hz), 7.77 (1H, dd, J = 8.3, 1.4 Hz), 7.96 (2H, d, J = 8.8 Hz), 8.01 (1H, d, J = 1.4 Hz), FAB-MS (m/z): 545 (M+H) +
3	H ₂ N HO COOH HC1	NMR (DMSO- d_6): δ : 2.02 - 2.09 (2H, m), 2.76 - 2.84 (2H, m), 2.87 - 2.98 (2H, m), 3.32 (3H, br s), 3.51 - 3.55 (2H, m), 3.68 - 3.73 (2H, m), 5.31 (2H, s), 6.81 (2H, d, J = 8.8 Hz), 7.31 (1H, dd, J = 2.4 Hz, 8.4 Hz), 7.40 (1H, d, J = 8.0 Hz), 7.46 - 7.49 (1H, m), 7.50 - 7.54 (1H, m), 7.62 (1H, d, J = 8.4 Hz), 7.82 (1H, dd, J = 2.0 Hz, 8.0 Hz), 7.89 (2H, d, J = 8.8 Hz), 8.03 (1H, d, J = 1.6 Hz), 9.33 (4H, br s), 9.90 (1H, s) FAB-MS (m/z): 502 (M+H) [†]
4	H ₂ N HO N-Me	NMR (DMSO- d_6): δ : 1.33 (3H, t, J = 7.4 Hz), 2.79 (3H, s), 4.32 (2H, q, J = 7.3 Hz), 5.26 (2H, s), 6.86 (2H, d, J = 8.8 Hz), 7.03 - 7.08 (1H, m), 7.26 - 7.37 (3H, m), 7.67 (1H, d, J = 8.4 Hz), 7.84 (1H, dd, J = 1.6 Hz, 8.4 Hz), 7.91 (2H, d, J = 8.8 Hz), 8.10 (1H, d, J = 1.6 Hz), FAB-MS (m/z): 546 (M+H) [†]
5	HN NH ₂ COOH N-Me	NMR (DMSO-d ₆): δ: 2.12-2.24(1H, m), 2.38-2.49(1H, m), 2.79(3H, d, J=4.9Hz), 3.92-3.99(2H, m), 3.01-3.20(4H, m), 3.39-3.58(4H, m), 3.76-3.85(1H, m), 3.90-4.03(1H, m), 6.86(2H, d, J=9.3Hz), 7.41(1H, d, J=8.3Hz), 7.43-7.49(2H, m), 7.61-7.67(1H, m), 7.75(2H, dd, J=1.5Hz, 9.3Hz), 7.88(1H, d, J=1.5Hz), 7.98(2H, d, J=9.3Hz), 9.35(2H, s), 9.45(2H, s), 9.91(1H, s), 11.37(1H, s) FAB-MS (m/z): 500 (M+H) [†]

表3 (続き)

交る	(配さ)	
6	Ŷ	NMR (DMSO $-d_6$):
	₩ HŴ	δ: 1.32(3H, t, J=7.0Hz), 2.78(3H, s), 4.31(2H,
ŀ	HO.N.	q, J=7.0Hz), 6.86(2H, d, J=8.8Hz), 7.40-
	NH, N-Me	7.46(3H, m), 7.53(1H, dt, J=1.9Hz, 7.1Hz),
	COOEt	7.62(1H, s), 7.76(1H, dd, J=1.9Hz, 7.1Hz),
	HC1	
	1101	7.90(1H, d, J=1.4Hz), 7.96(2H, d, J=8.8Hz)
		FAB-MS (m/z): 544 (M+H)+
7	N-Me	NMR (DMSO-d ₆):
	HN N'''E	δ : 2.79(3H, d, J = 4.8 Hz), 6.87(2H, d, J =
	H ₂ N	8.8 Hz), $7.43(1H, d, J = 16.0 Hz)$, $7.53(1H, d)$
	йн 🖳 соон	d, $J = 16.0 \text{ Hz}$), $7.60 - 7.64(1\text{H}, \text{m})$, $7.73(1\text{H}, \text{m})$
		d, $J = 8.0 \text{ Hz}$), $7.83(1\text{H}, dd, J = 1.6 \text{ Hz}, 8.4)$
		Hz), 7.89(1H, d, J = 7.6 Hz),
	HC1	
<u> </u>	1101	FAB-MS (m/z): 498 (M+H) ⁺
8	N-Me	NMR (DMSO-d ₆):
	HN L 'Y 'Y	δ : 1.33(3H, t, J = 7.2 Hz), 2.80(3H, d, J =
	HO.N	4.8 Hz), 4.34 (2H, q, J = 7.2 Hz), 6.88 (2H, d,
1	NH COOEt	J = 9.2 Hz, $7.42 - 7.51 (2H, m)$, $7.58 -$
	HC1	7.65(2H, m), 7.84 - 7.87(2H, m), 7.90(1H, s),
ļ l		7.96 - 8.01 (4H, m)
		FAB-MS(m/z): 542 (M+H)+
9	0	NMR (DMSO-d _s):
,	MeO	$\delta: 2.10 - 2.41 (2H, m), 2.78 (3H, s), 3.02 -$
	NAME NAME	3.22(2H, m), 3.35 - 3.57(4H, m), 3.67 -
	L TOH Y "	3.81 (4H, m), 3.87 - 3.99 (1H, m), 6.80 -
	🗸 🔾	
	HC1	6.95 (4H, m), 7.11 (1H, d, $J = 7.3 \text{ Hz}$), 7.17 -
		7. 28 (2H, m), 7. 57 (2H, d, J = 8. 8 Hz), 7. 85
1		(2H, d, J = 8.8 Hz), 10.02(1H, s), 10.19(1H,
		s), 10.41(1H, s), 10.64(1H, brs)
		FAB-MS (m/z): 475 (M+H) ⁺
10	Q	NMR (DMSO-d ₆):
	CI O HN	δ : 2.78(3H, s), 6.84(2H, d, J = 9.3 Hz),
	N-Me	7.10 - 7.13(1H, m), 7.15 - 7.18(1H, m), 7.22
	H JOH 'E J'	- 7. 26 (1H, m), 7. 36 (2H, d, J = 8.8 Hz), 7. 71
	-	(2H, d, J = 8.7 Hz), 7.85 (2H, d, J = 8.8 Hz)
	HC1	FAB-MS (m/z): 479 (M+H)+
1 1		
11	F	NMR (DMSO-d ₆):
	. L J & HM L J	δ:2.10 - 2.22(1H, m), 2.28 - 2.41(1H, m),
	OH N N-Me	2.77 (3H, d, $J = 4.9 \text{ Hz}$), 3.02 - 3.21 (2H, m),
ļ	H U On U	3.38 - 3.57(4H, m), 3.75(1H, dd, J = 9.7 Hz,
	Ť	16.1 Hz), 3.93(1H, dd, $J = 2.9$ Hz, 16.6 Hz),
		6.85(2H, d, J = 8.8 Hz), 7.09 - 7.27(5H, m),
	HC1	7.69(2H, dd, J = 5.1 Hz, 9.1 Hz), 7.85(2H,
		d, $J = 8.8 \text{ Hz}$), $9.75 - 10.10(1\text{H}, \text{ br})$,
	·	10.14(1H, s), 10.36(1H, s), 10.86(1H, brs)
		FAB-MS (m/z): 463 (M+H) ⁺
	L	1110 ms (m, s) + 100 (m) 11/

表3 (続き)

300	(NYL) C 7	
12	Q	NMR (DMSO $-d_6$):
	O HN	δ:2.11 - 2.40(2H, m), 2.27(3H, s), 2.78(3H,
}	We Now Walle	s), 3.01 - 3.22(2H, m), 3.38 - 3.55(4H, m),
1	H Won C	3.73(1H, dd, J = 9.7 Hz, 16.1 Hz), 3.93(1H,)
		d, $J = 15.1 \text{ Hz}$), $6.83 - 6.91(3\text{H}, m)$, $7.11(1\text{H}, 1\text{H})$
l		
	TIOL	dd, $J = 1.4 \text{ Hz}$, 8.3 Hz), $7.15 - 7.20(2H, m)$,
	HC1	7.24 (1H, t, $J = 7.8 \text{ Hz}$), 7.44(1H, d, $J = 8.3$
		Hz), $7.49(1H, s)$, $7.86(2H, d, J = 8.8 Hz)$,
1		9.96(1H, s), 10.14(1H, s), 10.17(1H, s),
	<u> </u>	10.54(1H, brs)
	·	FAB-MS (m/z): 459 (M+H) +
13	_	NMR (DMSO-d ₆):
	Br O HM	δ :2.79(3H, d, J = 2.4 Hz), 6.84(2H, d, J =
Í		9.3 Hz), 7.11(1H, dd, J = 1.3 Hz, 8.1 Hz),
	N-Me	
	H S. O. O. M. M.	7.16(1H, d. $J = 6.8$ Hz), 7.24 (1H, t, $J = 7.8$
		H2), $7.48(2H, d, J = 8.8 Hz)$, $7.65(2H, d, J = 1)$
		8.8 Hz), 7.84(2H, d, J = 8.8 Hz), 9.95(1H,
}	1701	s), 9.97(1H, s), 10.39(1H, s), 10.48 -
	HC1	
		10.65(1H, br)
	,	FAB-MS (m/z): 523 (M+H) +
14	Q	NMR (DMSO-d ₆):
1 **	CI O HN	$\delta: 2.12 - 2.20 (1H, m), 2.32 - 2.43 (1H, m),$
1		
ļ	N N N-Me	2. 78 (3H, d, $J = 4.8 \text{ Hz}$), 3. 05 - 3. 20 (2H, m),
1	" 🗸 🔾	3.39 - 3.56(4H, m), 3.73 - 3.82(1H, m), 3.91 -
	ČI	3.97(1H, m), $6.90(2H, d, J = 8.7 Hz)$, $7.65(1H, J = 8.7 Hz)$
1	HC1	dd, $J = 2.4 Hz$, $8.8 Hz$), $7.79(2H$, d , $J = 8.8$
]	1101	
		Hz , $7.99 - 8.02(2H, m)$, $8.11(1H, d, J = 8.8)$
1		Hz), 8.43(1H, d, $J = 8.8$ Hz), 8.48(1H, d, $J =$
1		2.5 Hz), 10.94(1H, br s), 11.23(1H, s),
		11.29(1H, s)
1		
<u></u>		FAB-MS (m/z): 498 (M)+
15	W-0 P	NMR (DMSO-d ₆):
	МеО Д РИЙ Д	δ :2.25(3H, s), 3.75(3H, s), 6.79(2H, d, J =
1		8.8 Hz), $6.91 - 7.01(3H, m)$, $7.24(1H, d, J = 1)$
	H N-Me	2.5 Hz), 7.61 (2H, d. J = 8.8 Hz), 7.69 (2H,
	Y	
	ŎН	d, $J = 8.8 \text{ Hz}$), $8.28(1\text{H}, d, J = 8.8 \text{ Hz})$,
	(free)	FAB-MS (m/z): 475 (M+H) +
16	Q	NMR (DMSO-d ₆):
10	MeO. ALA	
	THE TYPE	δ:2.25 (3H, s), 3.76 (3H, s), 6.55 (1H, dd, J
1	~ h~ ~ h~	= 8.8, 2.4 Hz), 6.82 (2H, d, J = 9.3 Hz), 6.95
	H J _{OH} VN-Me	(2H, d, J = 8.8 Hz), 7.57 (2H, d, J = 8.8 Hz),
	0.11	7.74 (2H, d, $J = 9.3Hz$), 7.84 (1H, d, $J = 8.8$
i	(free)	Hz), 8.27 (1H, d, J = 2.4 Hz),
		l de la companya del companya de la companya del companya de la co
L		FAB-MS (m/z): 475 (M+H) ⁺

表3 (続き)

NMR (DMSO-d _e):	,
δ: 2. 11 - 2. 20 (2H, m), 2. 83 (3H, s), 3. 20 - 3. 45 (4H, m), 3. 52 (2H, t, J = 6.0 Hz), 3. 72 - 3. 88 (5H, m), 6. 03 (2H, s), 6. 80 (1H, d, J = 8.0 Hz), 6. 85 (2H, d, J = 8.8 Hz), 7. 04 (2H, d, J = 8.8 Hz), 7. 14 (1H, t, J = 8.0 Hz), 7. 24 (1H, d, E = 8.0 Hz), 7. 85 (2H, d, J = 8.8 Hz), 7. 91 (2H, d, J = 8.8 Hz), 9. 47 (1H, s), 9. 67 (1H, s), 9. 77 (1H s) NMR (DMSO-d _θ): δ: 2. 79 (3H, s), 6. 82 - 6. 86 (3H, m), 7. 13 - 7. 17 (1H, m), 7. 22 (1H, d, J = 8.3 Hz), 7. 58 (2H, d, J = 8.3 Hz), 7. 89 - 7. 93 (4H, m), FAB-MS (m/z): 479 (M+H) ⁺ NMR (DMSO-d _θ): δ: 2. 79 (3H, s), 6. 82 - 6. 86 (3H, m), 7. 13 - 7. 17 (1H, m), 7. 22 (1H, d, J = 7.8 Hz), 7. 72 (2H, d, J = 8.3 Hz), 7. 83 (2H, d, J = 8.3 Hz), 7. 72 (2H, d, J = 8.3 Hz), 7. 83 (2H, d, J = 8.3 Hz),	,
3. 45 (4H, m), 3. 52 (2H, t, J = 6.0 Hz), 3. 72 - 3. 88 (5H, m), 6. 03 (2H, s), 6. 80 (1H, d, J = 8.0 Hz), 6. 85 (2H, d, J = 8.8 Hz), 7. 04 (2H, d, J = 8.0 Hz), 7. 14 (1H, t, J = 8.0 Hz), 7. 24 (1H, d, = 8.0 Hz), 7. 85 (2H, d, J = 8.8 Hz), 7. 91 (2H, d, J = 8.8 Hz), 7. 14 (1H, s), 9. 67 (1H, s), 9. 77 (1H, s) 18 CI HHN HC1 NMR (DMSO-d ₆): 6:2. 79 (3H, s), 6. 82 - 6. 86 (3H, m), 7. 13 - 7. 17 (1H, m), 7. 22 (1H, d, J = 8.3 Hz), 7. 58 (2H, d, J = 8.3 Hz), 7. 89 - 7. 93 (4H, m), FAB-MS (m/z): 479 (M+H) ⁺ NMR (DMSO-d ₆): 6:2. 79 (3H, s), 6. 82 - 6. 86 (3H, m), 7. 13 - 7. 17 (1H, m), 7. 22 (1H, d, J = 7.8 Hz), 7. 72 (2H, d, J = 8.3 Hz), 7. 83 (2H, d, J = 8.3 Hz), 7. 72 (2H, d, J = 8.3 Hz), 7. 83 (2H, d, J = 8.3 Hz), 7. 72 (2H, d, J = 8.3 Hz), 7. 83 (2H, d, J = 8.3 Hz),	,
3. 88 (5H, m), 6. 03 (2H, s), 6. 80 (1H, d, J = 8.0 Hz), 6. 85 (2H, d, J = 8.8 Hz), 7. 04 (2H, d, J = 8.8 Hz), 7. 14 (1H, t, J = 8.0 Hz), 7. 24 (1H, d, J = 8.0 Hz), 7. 85 (2H, d, J = 8.8 Hz), 7. 91 (2H, d, J = 8.8 Hz), 9. 47 (1H, s), 9. 67 (1H, s), 9. 77 (1H s) 18 CI HNN (DMSO-d ₆): 6: 2. 79 (3H, s), 6. 82 - 6. 86 (3H, m), 7. 13 - 7. 17 (1H, m), 7. 22 (1H, d, J = 8.3 Hz), 7. 58 (2H, d, J = 8.3 Hz), 7. 89 - 7. 93 (4H, m), FAB-MS (m/z): 479 (M+H) ⁺ 19 NMR (DMSO-d ₆): 6: 2. 79 (3H, s), 6. 82 - 6. 86 (3H, m), 7. 13 - 7. 17 (1H, m), 7. 22 (1H, d, J = 7.8 Hz), 7. 72 (2H, d, J = 8.3 Hz), 7. 83 (2H, d, J = 8.3 Hz), 7. 72 (2H, d, J = 8.3 Hz), 7. 83 (2H, d, J = 8.3 Hz), 7. 72 (2H, d, J = 8.3 Hz), 7. 83 (2H, d, J = 8.3 Hz),	,
Hz), 6.85 (2H, d, J = 8.8 Hz), 7.04 (2H, d, J = 8.8 Hz), 7.14 (1H, t, J = 8.0 Hz), 7.24 (1H, d, = 8.0 Hz), 7.85 (2H, d, J = 8.8 Hz), 7.91 (2H, d, J = 8.8 Hz), 9.47 (1H, s), 9.67 (1H, s), 9.77 (1H s), 9.77 (1H s), 9.67 (1H, s), 9.77 (1H s), 9.7	,
8.8 Hz), 7.14(1H, t, J = 8.0 Hz), 7.24(1H, d, = 8.0 Hz), 7.85(2H, d, J = 8.8 Hz), 7.91(2H, d, J = 8.8 Hz), 9.47(1H, s), 9.67(1H, s), 9.77(1H s) 18 CI HNN (DMSO-d ₆): δ:2.79(3H, s), 6.82 - 6.86(3H, m), 7.13 - 7.17(1H, m), 7.22(1H, d, J = 8.3 Hz), 7.58(2H, d, J = 8.3 Hz), 7.89 - 7.93(4H, m), FAB-MS (m/z): 479 (M+H) ⁺ 19 NMR (DMSO-d ₆): δ:2.79(3H, s), 6.82 - 6.86(3H, m), 7.13 - 7.17(1H, m), 7.22(1H, d, J = 7.8 Hz), 7.72(2H, d, J = 8.3 Hz), 7.83(2H, d, J = 8.3 Hz), 7.72(2H, d, J = 8.3 Hz), 7.83(2H, d, J = 8.3 Hz), 7.72(2H, d, J = 8.3 Hz), 7.83(2H, d, J = 8.3 Hz), 7.72(2H, d, J = 8.3 Hz), 7.83(2H, d, J = 8.3 Hz), 7.72(2H, d, J = 8.3 Hz), 7.83(2H, d, J = 8.3 Hz), 7.72(2H, d, J = 8.3 Hz), 7.83(2H, d, J = 8.3 Hz), 7.83(2H, d, J = 8.3 Hz), 7.83(2H, d, J = 8.3 Hz),	,
Br HN NMR (DMSO-d ₆): Solution Coordinate C	,
Br HN NMR (DMSO-d ₆): Solution Coordinate C	,
J = 8.8 Hz), 9.47(1H, s), 9.67(1H, s), 9.77(1H s) FAB-MS (m/z): 475 (M+H)+ NMR (DMSO-d _e): δ:2.79(3H, s), 6.82 - 6.86(3H, m), 7.13 - 7.17(1H, m), 7.22(1H, d, J = 8.3 Hz), 7.58(2H, d, J = 8.3 Hz), 7.89 - 7.93(4H, m), FAB-MS (m/z): 479 (M+H)+ NMR (DMSO-d _e): δ:2.79(3H, s), 6.82 - 6.86(3H, m), 7.13 - 7.17(1H, m), 7.22(1H, d, J = 7.8 Hz), 7.72(2H, d, J = 8.3 Hz), 7.83(2H, d, J = 8.3 Hz),	
S FAB-MS (m/z): 475 (M+H) ⁺	•
FAB-MS (m/z): 475 (M+H) ⁺ NMR (DMSO-d ₆): δ:2.79 (3H, s), 6.82 - 6.86 (3H, m), 7.13 - 7.17 (1H, m), 7.22 (1H, d, J = 8.3 Hz), 7.58 (2H, d, J = 8.3 Hz), 7.89 - 7.93 (4H, m), FAB-MS (m/z): 479 (M+H) ⁺ NMR (DMSO-d ₆): δ:2.79 (3H, s), 6.82 - 6.86 (3H, m), 7.13 - 7.17 (1H, m), 7.22 (1H, d, J = 7.8 Hz), 7.72 (2H, d, J = 8.3 Hz), 7.83 (2H, d, J = 8.3 Hz),	
NMR (DMSO-d ₆): δ : 2. 79 (3H, s), 6. 82 - 6. 86 (3H, m), 7. 13 - 7. 17 (1H, m), 7. 22 (1H, d, J = 8. 3 Hz), 7. 58 (2H, d, J = 8. 3 Hz), 7. 89 - 7. 93 (4H, m), FAB-MS (m/z): 479 (M+H) ⁺ NMR (DMSO-d ₆): δ : 2. 79 (3H, s), 6. 82 - 6. 86 (3H, m), 7. 13 - 7. 17 (1H, m), 7. 22 (1H, d, J = 7.8 Hz), 7. 72 (2H, d, J = 8. 3 Hz), 7. 83 (2H, d, J = 8. 3 Hz),	
δ:2.79(3H, s), 6.82 - 6.86(3H, m), 7.13 - 7.17(1H, m), 7.22(1H, d, J = 8.3 Hz), 7.58(2H, d, J = 8.3 Hz), 7.89 - 7.93(4H, m), FAB-MS (m/z): 479 (M+H)+ 19 NMR (DMSO-d6): δ:2.79(3H, s), 6.82 - 6.86(3H, m), 7.13 - 7.17(1H, m), 7.22(1H, d, J = 7.8 Hz), 7.72(2H, d, J = 8.3 Hz), 7.83(2H, d, J = 8.3 Hz),	į
7.17(1H, m), 7.22(1H, d, J = 8.3 Hz), 7.58(2H, d, J = 8.3 Hz), 7.58(2H, d, J = 8.3 Hz), 7.89 - 7.93(4H, m), FAB-MS(m/z): 479 (M+H) ⁺ 19 NMR (DMSO-d ₆): δ:2.79(3H, s), 6.82 - 6.86(3H, m), 7.13 - 7.17(1H, m), 7.22(1H, d, J = 7.8 Hz), 7.72(2H, d, J = 8.3 Hz), 7.83(2H, d, J = 8.3 Hz),	
7. 17 (1H, m), 7. 22 (1H, d, J = 8. 3 Hz), 7. 58 (2H, d, J = 8. 3 Hz), 7. 58 (2H, d, J = 8. 3 Hz), 7. 89 - 7. 93 (4H, m), FAB-MS (m/z): 479 (M+H) ⁺ NMR (DMSO-d ₆): δ:2. 79 (3H, s), 6. 82 - 6. 86 (3H, m), 7. 13 - 7. 17 (1H, m), 7. 22 (1H, d, J = 7.8 Hz), 7. 72 (2H, d, J = 8. 3 Hz), 7. 83 (2H, d, J = 8. 3 Hz),	
HC1 FAB-MS (m/z): 479 (M+H) ⁺ NMR (DMSO-d ₆): δ : 2. 79 (3H, s), 6. 82 - 6. 86 (3H, m), 7. 13 - 7. 17 (1H, m), 7. 22 (1H, d, J = 7.8 Hz), 7. 72 (2H, d, J = 8.3 Hz), 7. 83 (2H, d, J = 8.3 Hz),	
HC1 FAB-MS (m/z): 479 (M+H) ⁺ NMR (DMSO-d ₆): δ :2.79 (3H, s), 6.82 - 6.86 (3H, m), 7.13 - 7.17 (1H, m), 7.22 (1H, d, J = 7.8 Hz), 7.72 (2H, d, J = 8.3 Hz), 7.83 (2H, d, J = 8.3 Hz),	Ì
19 NMR (DMSO-d ₆): δ : 2. 79 (3H, s), 6. 82 - 6. 86 (3H, m), 7. 13 - 7. 17 (1H, m), 7. 22 (1H, d, J = 7.8 Hz), 7. 72 (2H, d, J = 8.3 Hz), 7. 83 (2H, d, J = 8.3 Hz),	
Br HN NMe $\delta: 2.79 (3H, s), 6.82 - 6.86 (3H, m), 7.13 - 7.17 (1H, m), 7.22 (1H, d, J = 7.8 Hz), 7.72 (2H, d, J = 8.3 Hz), 7.83 (2H, d, J = 8.3 Hz),$	
Br HN NMe $\delta: 2.79 \text{ (3H, s)}, \ 6.82 - 6.86 \text{ (3H, m)}, \ 7.13 - 7.17 \text{ (1H, m)}, \ 7.22 \text{ (1H, d, J = 7.8 Hz)}, \ 7.72 \text{ (2H, d, J = 8.3 Hz)},$	
OH NMe $7.17(1H, m)$, $7.22(1H, d, J = 7.8 Hz)$, $7.72(2H, d, J = 8.3 Hz)$, $7.83(2H, d, J = 8.3 Hz)$,	
d, $J = 8.3 \text{ Hz}$), $7.83(2\text{H}, d, J = 8.3 \text{ Hz})$,	
1 1 • • • • • • • • • • • • • • • • • •	
[7 09/9U A I = 0 9 Un]	
HC1 $7.92 (2H, d, J = 8.8 Hz)$	
FAD-MS (M/Z). 525 , 525 (MTH)	
$\begin{array}{c c} 20 & \text{NMR (DMSO-d}_6): \end{array}$	
$\delta: 2.79 \text{ (3H, s)}, 6.82 \text{ (1H, d, J = 8.3 Hz)},$	
Me N·Me 6.86(2H, d, J = 8.8 Hz), 7.13 - 7.17(1H, m),	
$\ddot{0}$	
7.64 - 7.68(2H, m), $7.95(2H, d, J = 8.3 Hz)$,	
9.56(1H, s)	
HCl FAB-MS (m/z): 459 (M+H) ⁺	
21 NMR (DMSO-d ₆):	\neg
CINN (Me m), 7.14(1H, dd, J = 7.8, 8.3Hz), 7.22(1H, d,	
= 7.8 Hz), $7.27 (1H, d, J = 8.8 Hz)$, $7.88 (1H, dd,$	
= 2.0, 8.3Hz, $7.93(2H, d, J = 8.8)$, $7.95(1H, d)$	
$\mathbf{d}, \mathbf{J} = 2.0 \mathrm{Hz})$	
HC1 G, 5 = 2: 0112/ FAB-MS m/z: 509 (M ⁺)	
22 NMR (DMSO-d ₆):	
δ:2.80(3H, d, J = 3.9 Hz), 6.79 - 6.88(3H, m),	
NMe 7.10 - 7.18(2H, m), 7.24(1H, d, J = 3.9Hz),	
7. 72 (1H, d, J = 3. 9Hz), 7. 95 (2H, d, J = 8. 8Hz)	
(1.12 (111, d, j = 0.5112), 1.50 (211, d, j = 8.6112)	•
HC1 FAB-MS m/z: 485 (M ⁺)	
δ:2.78(3H, s), 6.82 - 6.85(3H, m), 7.13 -	
N-Me 7.17(1H, m), 7.22(1H, d, $J = 7.8 \text{ Hz}$), 7.32 -	
7. 37 (2H, m), 7. 93 (2H, d, J = 8. 8 Hz), 7. 95 -	
7. 99 (2H, m)	
HC1 FAB-MS (m/z): 463 (M+H) +	

表3 (続き)

表 3	(続き)	•
24	HC1	NMR (DMSO- d_6): δ :2.76 (3H, s), 6.83 - 6.87 (3H, m), 7.16 - 7.20 (1H, m), 7.31 (1H, d, J = 8.3 Hz), 7.59 - 7.66 (2H, m), 7.94 - 8.04 (6H, m), 8.50 (1H, s), FAB-MS (m/z): 495 (M+H) [†]
25	Br S H HN OH N-Me	NMR (DMSO- d_6): δ :2.80 (3H, d, J = 4.3 Hz), 6.81 - 6.86 (3H, m), 7.11 - 7.17 (2H, m), 7.33 (1H, d, J = 3.9Hz), 7.66 (1H, d, J = 4.4Hz), 7.94 (2H, d, J = 8.8Hz) FAB-MS (m/z): 529, 531 (M+H) ⁺
26	HC1	NMR (DMSO- d_6): δ :2.75 (3H, s), 6.84 - 6.88 (3H, m), 7.15 - 7.19 (1H, m), 7.33 - 7.37 (2H, m), 7.47 - 7.51 (1H, m), 7.57 (1H, d, J = 8.3 Hz), 7.67 (1H, s), 7.80 (1H, d, J = 7.8 Hz), 8.00 (2H, d, J = 8.3 Hz) FAB-MS (m/z): 485 (M+H) +
27	HC1	NMR (DMSO- d_6): δ : 2.75 (3H, d, J = 4.9 Hz), 6.83 (2H, d, J = 9.3 Hz), 6.88 (1H, d, J = 7.8Hz), 7.17 - 7.21 (1H, m), 7.29 (1H, d, J = 7.8 Hz), 7.79 - 7.82 (1H, m), 7.98 - 8.01 (3H, m), 8.17 - 8.20 (2H, m), 9.16 (1H, s), 9.44 (1H, d, J = 1.9 Hz) FAB-MS (m/z): 496 (M+H) ⁺
28	MeO S H HN OH N Me	NMR (DMSO- d_6): δ : 2.80 (3H, d, J = 2.4 Hz), 6.40 (1H, d, J = 3.9 Hz), 6.80 (1H, dd, J = 1.5Hz, 7.8Hz), 6.86 (2H, d, J = 8.8 Hz), 7.10 - 7.18 (2H, m), 7.53 (1H, d, J = 3.9 Hz), 7.94 (2H, d, J = 8.8Hz) FAB-MS (m/z): 481 (M+H) ⁺
29	MeO H HN N N Me	NMR (DMSO- d_6): δ :2.79 (3H, d, J = 5.9 Hz), 3.81 (3H, s), 6.80 (1H, d, J = 8.3 Hz), 6.85 (1H, d, J = 8.8 Hz), 7.03 (2H, d, J = 8.8 Hz), 7.12 - 7.17 (1H, m), 7.24-7.27 (1H, m), 7.86 (2H, d, J = 8.8 Hz), 8.18 (1H, d, J = 8.7 Hz), 8.79 (1H, s) FAB-MS (m/z): 476 (M+H) ⁺
30	MeO HOLON Me	NMR (DMSO- d_6): δ :2.79(3H, s), 6.82 - 6.86(3H, m), 7.12 - 7.16(1H, m), 7.22(1H, d, J = 7.8 Hz), 7.27 - 7.31(1H, m), 7.72 - 7.77(2H, m), 7.94(2H, d, J = 8.3 Hz), FAB-MS (m/z): 493 (M+H) ⁺
31	MeO HHN N-Me	NMR (DMSO- d_6): $\delta:2.79(3H, d, J = 5.9 Hz), 3.05 - 3.21(2H, m),$ 3.82(3H, s), 6.85(2H, d, J = 9.3 Hz), 7.03(2H, d, J = 8.8 Hz), 7.13 - 7.18(1H, m), 7.31 - 7.37(1H, m), 7.55 - 7.59(1H, m), 7.89(2H, d, J = 8.8 Hz), 7.94(2H, d, J = 8.7 Hz) FAB-MS (m/z): 477 (M+H) +

表3 (続き)

_交3	(舵さ)	
32	φ	NMR (DMSO $-d_6$):
-	MeO H HN _ N	δ:1.82 - 2.01(2H, m), 3.46 - 3.89(11H, m),
	N N N N N N N N N N N N N N N N N N N	6. 80 (1H, d, $J = 7.8 \text{ Hz}$), 6. 86 (2H, d, $J = 8.8$
	ö 🔰 UH 🔾	Hz), $6.97 - 7.21(5H, m)$, $7.25(1H, d, J = 8.3)$
	HC1	
	ner	Hz), 7.78 - 7.94 (4H, m), 8.18 (2H, s), 9.51 (1H,
		s), 9.66(1H, brs), 9.82(1H, s), 13.46(1H, brs),
		FAB-MS (m/z): 538 (M+H) +
33	P .	NMR (DMSO $-d_6$):
	WeO H HN We	δ:2.24(1.5H, s), 2.26(1.5H, s), 2.84 - 2.95(3H,
} i	OH N N Me	m), $6.81(1H, d, J = 7.8 Hz)$, $6.84 - 6.93(2H, m)$,
		7.04(2H, d, $J = 8.8 \text{ Hz}$), 7.14(1H, t, $J = 8.3$
	!	Hz), $7.24(1H, d, J = 8.3 Hz)$, $7.87(2H, d, J =$
		8.8 Hz), $7.91 (2H, d, J = 8.9 Hz)$
	HC1	FAB-MS (m/z): 516 (M+H) +
34	0	NMR (DMSO-d ₆):
34	MeO H HN	δ :6.80 (1H, dd, J = 0.9 Hz, 8.3 Hz), 6.85 (2H,
	N N N N N N N N N N N N N N N N N N N	d, $J = 8.7 \text{ Hz}$), $7.03 \text{ (2H, d, } J = 8.7 \text{ Hz)}$,
	ö Voh V	7. 14 (1H, t, $J = 8.3 \text{ Hz}$), 7. 24 (1H, d, $J = 7.8$
}		
]		Hz), 7.43 - 7.51 (3H, m), 7.54 - 7.61 (2H, m),
	HC1	7. 86 (2H, d, $J = 8.7 \text{ Hz}$), 7. 91 (2H, d, $J = 8.7 \text{ Hz}$)
	1101	FAB-MS (m/z): 551 (M+H) +
35	MeO	NMR (DMSO $-d_{\theta}$):
	ר די	δ : 1.14(3H, t, J = 6.8 Hz), 2.80(3H, d, J =
1	N-Me	4.4 Hz), $3.83(3H, s)$, $4.16(2H, q, J = 7.2 Hz)$,
1	COOEt	6.86(2H, d, $J = 8.8 \text{ Hz}$), 7.06(2H, d, $J = 8.8$
	HC1	Hz), $7.39 - 7.43(1H, m)$, $7.68(1H, dd, J = 1.5$
1		Hz , 7.8 Hz), 7.86 - 7.88(3H, m), 7.94(2H, d, J
		= 8.7 Hz)
		FAB-MS(m/z): 531(M+H) ⁺
36	Q	NMR (DMSO-d ₆):
	MeO H HN	δ : 1.21 (3H, t, J = 7.3 Hz), 2.78 (3H, d, J = 4.9
	N-Me	Hz), $4.17(2H, q, J = 7.3 Hz)$, $4.83(2H, s)$,
1 1	ال الم	6. 86 (2H, d, $J = 9.3 \text{ Hz}$), 6. 92 (1H, d, $J = 7.3$
	COOEt	Hz), 7.04(2H, d, J = 8.8 Hz), 7.25 - 7.29(1H,
	HC1	m), 7.49 (1H, d, $J = 7.8 \text{ Hz}$), 7.86 (2H, d, $J = 8.8$
}		Hz), $7.93(2H, d, J = 8.8 Hz)$
]		FAB-MS (m/z): 561 (M+H)+
977	0	
37	MeO LIN	NMR (DMSO- d_{g}):
	H HN N-Me	δ: 2.78(3H, s), 4.75(2H, s), 6.86(2H, d, J =
	L. L. Joan M. Marine	9.3 Hz), 6.94(1H, d, J = 7.3 Hz), 7.04(2H, d, J
	СООН	= 8.8 Hz), $7.25 - 7.30(1H, m)$, $7.50(1H, d$, $J =$
]	HC1	7. 9 Hz), 7. 85 (2H, d, $J = 8.8 \text{ Hz}$), 7. 95 (2H, d, J
	noi	= 8.8 Hz)
	· · · · · · · · · · · · · · · · · · ·	FAB-MS (m/z): 533 (M+H) +
38	Was P	NMR (DMSO-d ₆):
	MeO H HŅ	δ : 2.77(3H, d, J = 4.4 Hz), 6.87(2H, d, J = 8.7
	N-Me	Hz), $7.05(2H, d, J = 8.8 Hz)$, $7.38 - 7.42(1H, Hz)$
) !	ا ا ا	m), 7.75(1H, d, J = 7.3 Hz), 7.88 - 7.94(5H, m)
	COOH	FAB-MS (m/z): 503 (M+H)+
	HC1	

表3 (続き)

衣(3	(舵さ)	
39	HC1	NMR (DMSO- d_6): δ : 2.12 - 2.22(1H, m), 2.26 - 2.39(1H, m), 2.79(3H, d, J = 3.9 Hz), 3.05 - 3.21(2H, m), 3.39 - 3.55(4H, m), 3.66 - 3.79(3H, m), 3.81(3H, s), 3.90 - 3.97(1H, m), 4.11(2H, t, J = 4.9 Hz), 4.86(1H, br s), 6.86(2H, d, J = 8.8 Hz), 6.97(1H, d, J = 7.4 Hz), 7.04(2H, d, J = 8.8 Hz), 7.25 - 7.29(1H, m), 7.42(1H, d, J = 8.3 Hz), 7.86(2H, d, J = 8.7 Hz), 7.92(2H, d, J = 8.8 Hz), 9.55(1H, s), 9.89(1H, s), 10.67(1H, br s)
40	MeO HHN OMe N-Me	FAB-MS (m/z): 519 (M+H) [†] NMR (DMSO-d ₆): δ : 2.79 (3H, d, J = 4.9 Hz), 6.85 (2H, d, J = 8.8 Hz), 6.95 (1H, d, J = 8.3 Hz), 7.02 (2H, d, J = 8.7 Hz), 7.29 (1H, t, J = 8.3 Hz), 7.42 (1H, d, J = 8.3 Hz), 7.84 (2H, d, J = 8.8 Hz), 7.92 (2H, d, J = 8.8 Hz)
41	MeO HN N-Me	FAB-MS (m/z): 489 (M+H) ⁺ NMR (DMS0-d ₅): δ :2.08 - 2.23 (2H, m), 2.84 (3H, s), 3.10 - 4.05 (11H, m), 6.93 (2H, d, J = 9.3 Hz), 6.95 (1H, d, 8.3 Hz), 7.01-7.08 (3H, m), 7.28 (1H, t, J =
49	(free)	8.3 Hz), 7.7(1H, dd, J = 1.4 Hz, 8.3 Hz), 7.83(2H, d, J = 8.8 Hz), 7.92(2H, d, J = 9.2Hz), 9.4(1H, brs), 9.91(1H, s), 10.37(1H, s) FAB-MS(m/z): 553 (M-H) ⁺ NMR(DMSO-d _s):
42	HC1	δ :2.79(3H, d = 4.9 Hz), 6.78(1H, d, J = 7.8 Hz), 6.82(2H, d, J = 8.8 Hz), 7.06(2H, d, J = 8.8 Hz), 7.13(1H, t, J = 7.8 Hz), 7.30(1H, d, J = 7.8 Hz), 7.75(2H, d, J = 8.8 Hz), 8.01(2H, d, J = 8.8 Hz), FAB-MS(m/z): 475(M+H) [†]
43	MeO H HN NH HC1	NMR (DMSO- d_6): δ : 6.81 (1H, dd, J = 1.5, 8.3 Hz), 6.86 (2H, d, J = 8.8 Hz), 7.03 (2H, d, J = 8.7 Hz), 7.13 (1H, t, J = 8.3 Hz), 7.25 (1H, d, J = 8.3 Hz), 7.87 (2H, d, J = 8.8 Hz), 7.93 (2H, d, J = 8.8 Hz), FAB-MS (m/z): 461 (M+H) †
44	MeO HC1	NMR (DMSO- d_8): δ : 0.35 - 0.43 (2H, m), 0.61 - 0.67 (2H, m), 1.08 - 1.15 (1H, m) 6.81 (1H, dd, J = 1.0 Hz, 8.8 Hz), 6.86 (2H, d, J = 8.8 Hz), 7.03 (2H, d, J = 8.3 Hz), 7.11 - 7.16 (1H, m), 7.24 (1H, dd, J = 1.0 Hz, 7.9 Hz), 7.87 (2H, d, J = 8.8 Hz), 7.93 (2H, d, J = 8.8 Hz), fAB-MS (m/z): 515 (M+H) +

表3 (続き)

	(形にこ)	
45	9	$NMR (DMSO-d_6)$:
	MeO H HŅ NH	δ :6.81(1H, d, J = 8.3 Hz), 6.84 - 6.93(2H, m),
	N N Me	7.03(2H, d, $J = 9.3$ Hz), 7.13(1H, t, $J = 8.3$
1	o On O	Hz), 7.25(1H, d, $J = 8.3$ Hz), 7.88(2H, d, $J =$
	HC1	8. 2 Hz), 7. 92 (2H, d, J = 8. 3 Hz)
1	1101	
		FAB-MS (m/z): 502 (M+H) +
46	P	NMR (DMSO- d_6):
	MeO H HN	δ : 6.80 - 6.86(3H, m), 7.03(2H, d, J = 8.8 Hz),
1	N N N N N N N N N N N N N N N N N N N	7.11 - 7.16(1H, m), $7.24(1H, dd, J = 1.0 Hz$,
	ö Von	7.8 Hz), $7.87 (2H, d, J = 8.8 Hz)$, $7.93 (2H, d, J)$
	1101	= 8.8 Hz)
	HC1	FAB-MS (m/z): 515 (M+H)+
<u> </u>		
47	MeO	NMR (DMSO-d ₆):
	"" Me	$\delta:1.21-1.28(6H, m)$, $6.80(1H, d, J=7.9 Hz)$,
	Me N Me	6.85(2H, d, J = 8.8 Hz), 7.03(2H, d, J = 8.8
	0 0	Hz), $7.14(1H, t, J = 7.9 Hz)$, $7.24(1H, d, J =$
	HC1	7.8 Hz), 7.86 (2H, d, $J = 8.3$ Hz), 7.92 (2H, d, J
	1101	= 8.8 Hz)
		FAB-MS (m/z): 503 (M+H) +
10		
48	MeO LINE	NMR (DMSO-d ₆):
1	CARLA CANOMO	$\delta:6.73-6.88(3H, m), 7.03(2H, d, J=8.8 Hz),$
1	TOH (7.14(1H, t, $J = 8.3 \text{ Hz}$), 7.24(1H, dd, $J = 1.4$
	~ • • • • • • • • • • • • • • • • • • •	Hz, 8.3 Hz), 7.87(2H, d, J = 8.8 Hz), 7.93(2H,
[d, J = 8.8 Hz),
	1101	FAB-MS (m/z): 519 (M+H) +
	HC1	
49	Q	NMR (DMSO-d ₆):
	1	
	CI O HN	
	CI O HN N-Me	δ:2.10 - 2.21(1H, m), 2.23 - 2.37(1H, m),
		$\delta: 2.10 - 2.21 (1H, m), 2.23 - 2.37 (1H, m), 2.79 (3H, d, J = 4.9 Hz), 3.02 - 3.21 (2H, m),$
		δ:2.10 - 2.21(1H, m), 2.23 - 2.37(1H, m), 2.79(3H, d, J = 4.9 Hz), 3.02 - 3.21(2H, m), 3.37 - 3.56(4H, m), 3.66 - 3.95(2H, m), 6.81(2H,
	OH N-Me	δ:2.10 - 2.21(1H, m), 2.23 - 2.37(1H, m), 2.79(3H, d, J = 4.9 Hz), 3.02 - 3.21(2H, m), 3.37 - 3.56(4H, m), 3.66 - 3.95(2H, m), 6.81(2H, d, J = 8.8 Hz), 7.15(2H, s), 7.82(2H, d, J = 8.8
		δ:2.10 - 2.21(1H, m), 2.23 - 2.37(1H, m), 2.79(3H, d, J = 4.9 Hz), 3.02 - 3.21(2H, m), 3.37 - 3.56(4H, m), 3.66 - 3.95(2H, m), 6.81(2H, d, J = 8.8 Hz), 7.15(2H, s), 7.82(2H, d, J = 8.8 Hz), 7.89(1H, dd, J = 2.5, 8.8 Hz), 8.08(1H, d,
	OH N-Me	δ:2.10 - 2.21(1H, m), 2.23 - 2.37(1H, m), 2.79(3H, d, J = 4.9 Hz), 3.02 - 3.21(2H, m), 3.37 - 3.56(4H, m), 3.66 - 3.95(2H, m), 6.81(2H, d, J = 8.8 Hz), 7.15(2H, s), 7.82(2H, d, J = 8.8 Hz), 7.89(1H, dd, J = 2.5, 8.8 Hz), 8.08(1H, d, J = 8.8 Hz), 8.36(1H, d, J = 2.4 Hz), 9.51(1H,
	OH N-Me	δ:2.10 - 2.21(1H, m), 2.23 - 2.37(1H, m), 2.79(3H, d, J = 4.9 Hz), 3.02 - 3.21(2H, m), 3.37 - 3.56(4H, m), 3.66 - 3.95(2H, m), 6.81(2H, d, J = 8.8 Hz), 7.15(2H, s), 7.82(2H, d, J = 8.8 Hz), 7.89(1H, dd, J = 2.5, 8.8 Hz), 8.08(1H, d, J = 8.8 Hz), 8.36(1H, d, J = 2.4 Hz), 9.51(1H, s), 10.33 - 10.63(2H, br), 10.68(1H, s)
	OH N-Me	$\delta: 2.10 - 2.21 (1H, m), 2.23 - 2.37 (1H, m), 2.79 (3H, d, J = 4.9 Hz), 3.02 - 3.21 (2H, m), 3.37 - 3.56 (4H, m), 3.66 - 3.95 (2H, m), 6.81 (2H, d, J = 8.8 Hz), 7.15 (2H, s), 7.82 (2H, d, J = 8.8 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 8.8 Hz), 8.36 (1H, d, J = 2.4 Hz), 9.51 (1H, s), 10.33 - 10.63 (2H, br), 10.68 (1H, s) FAB-MS (m/z): 514 (M+H) +$
50	OH N-Me	$\delta: 2.10 - 2.21 (1H, m), 2.23 - 2.37 (1H, m), 2.79 (3H, d, J = 4.9 Hz), 3.02 - 3.21 (2H, m), 3.37 - 3.56 (4H, m), 3.66 - 3.95 (2H, m), 6.81 (2H, d, J = 8.8 Hz), 7.15 (2H, s), 7.82 (2H, d, J = 8.8 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 8.8 Hz), 8.36 (1H, d, J = 2.4 Hz), 9.51 (1H, s), 10.33 - 10.63 (2H, br), 10.68 (1H, s) FAB-MS (m/z): 514 (M+H) + NMR (DMSO-d6):$
	OH N-Me	$\delta: 2.10 - 2.21 (1H, m), 2.23 - 2.37 (1H, m), 2.79 (3H, d, J = 4.9 Hz), 3.02 - 3.21 (2H, m), 3.37 - 3.56 (4H, m), 3.66 - 3.95 (2H, m), 6.81 (2H, d, J = 8.8 Hz), 7.15 (2H, s), 7.82 (2H, d, J = 8.8 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 8.8 Hz), 8.36 (1H, d, J = 2.4 Hz), 9.51 (1H, s), 10.33 - 10.63 (2H, br), 10.68 (1H, s) FAB-MS (m/z): 514 (M+H) +$
	CI OH N N-Me	$\delta: 2.10 - 2.21 (1H, m), 2.23 - 2.37 (1H, m), 2.79 (3H, d, J = 4.9 Hz), 3.02 - 3.21 (2H, m), 3.37 - 3.56 (4H, m), 3.66 - 3.95 (2H, m), 6.81 (2H, d, J = 8.8 Hz), 7.15 (2H, s), 7.82 (2H, d, J = 8.8 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 8.8 Hz), 8.36 (1H, d, J = 2.4 Hz), 9.51 (1H, s), 10.33 - 10.63 (2H, br), 10.68 (1H, s) FAB-MS (m/z): 514 (M+H) + NMR (DMSO-d6): \delta: 2.10 - 2.33 (2H, m), 2.79 (3H, s), 3.01 -$
	CI HC1	$\delta: 2.10 - 2.21 (1H, m), 2.23 - 2.37 (1H, m), 2.79 (3H, d, J = 4.9 Hz), 3.02 - 3.21 (2H, m), 3.37 - 3.56 (4H, m), 3.66 - 3.95 (2H, m), 6.81 (2H, d, J = 8.8 Hz), 7.15 (2H, s), 7.82 (2H, d, J = 8.8 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 8.8 Hz), 8.36 (1H, d, J = 2.4 Hz), 9.51 (1H, s), 10.33 - 10.63 (2H, br), 10.68 (1H, s) FAB-MS (m/z): 514 (M+H) † NMR (DMSO-d6): \delta: 2.10 - 2.33 (2H, m), 2.79 (3H, s), 3.01 - 3.22 (2H, m), 3.35 - 3.51 (4H, m), 3.65 - 3.79 (1H, d)$
	CI OH N N-Me	$\delta: 2.10 - 2.21 (1H, m), 2.23 - 2.37 (1H, m), 2.79 (3H, d, J = 4.9 Hz), 3.02 - 3.21 (2H, m), 3.37 - 3.56 (4H, m), 3.66 - 3.95 (2H, m), 6.81 (2H, d, J = 8.8 Hz), 7.15 (2H, s), 7.82 (2H, d, J = 8.8 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 8.8 Hz), 8.36 (1H, d, J = 2.4 Hz), 9.51 (1H, s), 10.33 - 10.63 (2H, br), 10.68 (1H, s) FAB-MS (m/z): 514 (M+H) + NMR (DMSO-d6): \delta: 2.10 - 2.33 (2H, m), 2.79 (3H, s), 3.01 - 3.22 (2H, m), 3.35 - 3.51 (4H, m), 3.65 - 3.79 (1H, m), 3.85 - 3.98 (1H, m), 6.81 (2H, d, J = 8.8 Hz),$
	CI HC1	$\delta: 2.10 - 2.21 (1H, m), 2.23 - 2.37 (1H, m), 2.79 (3H, d, J = 4.9 Hz), 3.02 - 3.21 (2H, m), 3.37 - 3.56 (4H, m), 3.66 - 3.95 (2H, m), 6.81 (2H, d, J = 8.8 Hz), 7.15 (2H, s), 7.82 (2H, d, J = 8.8 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 8.8 Hz), 8.36 (1H, d, J = 2.4 Hz), 9.51 (1H, s), 10.33 - 10.63 (2H, br), 10.68 (1H, s) FAB-MS (m/z): 514 (M+H) + NMR (DMSO-d6): \delta: 2.10 - 2.33 (2H, m), 2.79 (3H, s), 3.01 - 3.22 (2H, m), 3.35 - 3.51 (4H, m), 3.65 - 3.79 (1H, m), 3.85 - 3.98 (1H, m), 6.81 (2H, d, J = 8.8 Hz), 7.27 (2H, s), 7.82 (2H, d, J = 9.3 Hz), 7.89 (1H,$
	CI HC1	$\delta: 2.10 - 2.21 (1H, m), 2.23 - 2.37 (1H, m), 2.79 (3H, d, J = 4.9 Hz), 3.02 - 3.21 (2H, m), 3.37 - 3.56 (4H, m), 3.66 - 3.95 (2H, m), 6.81 (2H, d, J = 8.8 Hz), 7.15 (2H, s), 7.82 (2H, d, J = 8.8 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 8.8 Hz), 8.36 (1H, d, J = 2.4 Hz), 9.51 (1H, s), 10.33 - 10.63 (2H, br), 10.68 (1H, s) FAB-MS (m/z): 514 (M+H) + NMR (DMSO-d6): \delta: 2.10 - 2.33 (2H, m), 2.79 (3H, s), 3.01 - 3.22 (2H, m), 3.35 - 3.51 (4H, m), 3.65 - 3.79 (1H, m), 3.85 - 3.98 (1H, m), 6.81 (2H, d, J = 8.8 Hz), 7.27 (2H, s), 7.82 (2H, d, J = 9.3 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 9.2 Hz),$
	CI HC1	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	CI HC1	$\delta: 2.10 - 2.21 (1H, m), 2.23 - 2.37 (1H, m), 2.79 (3H, d, J = 4.9 Hz), 3.02 - 3.21 (2H, m), 3.37 - 3.56 (4H, m), 3.66 - 3.95 (2H, m), 6.81 (2H, d, J = 8.8 Hz), 7.15 (2H, s), 7.82 (2H, d, J = 8.8 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 8.8 Hz), 8.36 (1H, d, J = 2.4 Hz), 9.51 (1H, s), 10.33 - 10.63 (2H, br), 10.68 (1H, s) FAB-MS (m/z): 514 (M+H)+ NMR (DMSO-d6): \delta: 2.10 - 2.33 (2H, m), 2.79 (3H, s), 3.01 - 3.22 (2H, m), 3.35 - 3.51 (4H, m), 3.65 - 3.79 (1H, m), 3.85 - 3.98 (1H, m), 6.81 (2H, d, J = 8.8 Hz), 7.27 (2H, s), 7.82 (2H, d, J = 9.3 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 9.2 Hz), 8.36 (1H, d, J = 2.9 Hz), 9.50 (1H, s), 10.37 (1H, brs), 10.44 (1H, s), 10.69 (1H, s)$
50	CI HC1	$\delta: 2.10 - 2.21 (1H, m), 2.23 - 2.37 (1H, m), 2.79 (3H, d, J = 4.9 Hz), 3.02 - 3.21 (2H, m), 3.37 - 3.56 (4H, m), 3.66 - 3.95 (2H, m), 6.81 (2H, d, J = 8.8 Hz), 7.15 (2H, s), 7.82 (2H, d, J = 8.8 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 8.8 Hz), 8.36 (1H, d, J = 2.4 Hz), 9.51 (1H, s), 10.33 - 10.63 (2H, br), 10.68 (1H, s) FAB-MS (m/z): 514 (M+H) † NMR (DMSO-d6): \delta: 2.10 - 2.33 (2H, m), 2.79 (3H, s), 3.01 - 3.22 (2H, m), 3.35 - 3.51 (4H, m), 3.65 - 3.79 (1H, m), 3.85 - 3.98 (1H, m), 6.81 (2H, d, J = 8.8 Hz), 7.27 (2H, s), 7.82 (2H, d, J = 9.3 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 9.2 Hz), 8.36 (1H, d, J = 2.9 Hz), 9.50 (1H, s), 10.37 (1H, brs), 10.44 (1H, s), 10.69 (1H, s) FAB-MS (m/z): 558, 560 (M+H) †$
	CI HC1	$\delta: 2.10 - 2.21 (1H, m), 2.23 - 2.37 (1H, m), 2.79 (3H, d, J = 4.9 Hz), 3.02 - 3.21 (2H, m), 3.37 - 3.56 (4H, m), 3.66 - 3.95 (2H, m), 6.81 (2H, d, J = 8.8 Hz), 7.15 (2H, s), 7.82 (2H, d, J = 8.8 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 8.8 Hz), 8.36 (1H, d, J = 2.4 Hz), 9.51 (1H, s), 10.33 - 10.63 (2H, br), 10.68 (1H, s) FAB-MS (m/z): 514 (M+H)+ NMR (DMSO-d6): \delta: 2.10 - 2.33 (2H, m), 2.79 (3H, s), 3.01 - 3.22 (2H, m), 3.35 - 3.51 (4H, m), 3.65 - 3.79 (1H, m), 3.85 - 3.98 (1H, m), 6.81 (2H, d, J = 8.8 Hz), 7.27 (2H, s), 7.82 (2H, d, J = 9.3 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 9.2 Hz), 8.36 (1H, d, J = 2.9 Hz), 9.50 (1H, s), 10.37 (1H, brs), 10.44 (1H, s), 10.69 (1H, s) FAB-MS (m/z): 558, 560 (M+H)+ NMR (DMSO-d6):$
50	CI HC1 CI HC1 CI HC1 CI HC1	$\delta: 2.10 - 2.21 (1H, m), 2.23 - 2.37 (1H, m), 2.79 (3H, d, J = 4.9 Hz), 3.02 - 3.21 (2H, m), 3.37 - 3.56 (4H, m), 3.66 - 3.95 (2H, m), 6.81 (2H, d, J = 8.8 Hz), 7.15 (2H, s), 7.82 (2H, d, J = 8.8 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 8.8 Hz), 8.36 (1H, d, J = 2.4 Hz), 9.51 (1H, s), 10.33 - 10.63 (2H, br), 10.68 (1H, s) FAB-MS (m/z): 514 (M+H)+ NMR (DMSO-d6): \delta: 2.10 - 2.33 (2H, m), 2.79 (3H, s), 3.01 - 3.22 (2H, m), 3.35 - 3.51 (4H, m), 3.65 - 3.79 (1H, m), 3.85 - 3.98 (1H, m), 6.81 (2H, d, J = 8.8 Hz), 7.27 (2H, s), 7.82 (2H, d, J = 9.3 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 9.2 Hz), 8.36 (1H, d, J = 2.9 Hz), 9.50 (1H, s), 10.37 (1H, brs), 10.44 (1H, s), 10.69 (1H, s) FAB-MS (m/z): 558, 560 (M+H)+ NMR (DMSO-d6):$
50	CI HC1	$\delta: 2.10 - 2.21$ (1H, m), 2.23 - 2.37 (1H, m), 2.79 (3H, d, J = 4.9 Hz), 3.02 - 3.21 (2H, m), 3.37 - 3.56 (4H, m), 3.66 - 3.95 (2H, m), 6.81 (2H, d, J = 8.8 Hz), 7.15 (2H, s), 7.82 (2H, d, J = 8.8 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 8.8 Hz), 8.36 (1H, d, J = 2.4 Hz), 9.51 (1H, s), 10.33 - 10.63 (2H, br), 10.68 (1H, s) FAB-MS (m/z): 514 (M+H) + NMR (DMSO-d ₆): $\delta: 2.10 - 2.33$ (2H, m), 2.79 (3H, s), 3.01 - 3.22 (2H, m), 3.35 - 3.51 (4H, m), 3.65 - 3.79 (1H, m), 3.85 - 3.98 (1H, m), 6.81 (2H, d, J = 8.8 Hz), 7.27 (2H, s), 7.82 (2H, d, J = 9.3 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 9.2 Hz), 8.36 (1H, d, J = 2.9 Hz), 8.36 (1H, d, J = 9.2 Hz), 8.36 (1H, d, J = 2.9 Hz), 9.50 (1H, s), 10.37 (1H, brs), 10.44 (1H, s), 10.69 (1H, s) FAB-MS (m/z): 558, 560 (M+H) + NMR (DMSO-d ₆): $\delta: 2.22$ (2H, brs), 2.74 (3H, s), 3.00 - 3.60 (6H,
50	CI HC1 CI HC1 CI HC1 CI HC1 CI PHIN N-Me HC1	$\begin{array}{llllllllllllllllllllllllllllllllllll$
50	CI HC1 CI HC1 CI HC1 CI HC1 CI PHIN N-Me HC1	$\delta: 2.10 - 2.21 (1H, m), 2.23 - 2.37 (1H, m), 2.79 (3H, d, J = 4.9 Hz), 3.02 - 3.21 (2H, m), 3.37 - 3.56 (4H, m), 3.66 - 3.95 (2H, m), 6.81 (2H, d, J = 8.8 Hz), 7.15 (2H, s), 7.82 (2H, d, J = 8.8 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 8.8 Hz), 8.36 (1H, d, J = 2.4 Hz), 9.51 (1H, s), 10.33 - 10.63 (2H, br), 10.68 (1H, s) FAB-MS (m/z): 514 (M+H) + NMR (DMSO-d6): \delta: 2.10 - 2.33 (2H, m), 2.79 (3H, s), 3.01 - 3.22 (2H, m), 3.35 - 3.51 (4H, m), 3.65 - 3.79 (1H, m), 3.85 - 3.98 (1H, m), 6.81 (2H, d, J = 8.8 Hz), 7.27 (2H, s), 7.82 (2H, d, J = 9.3 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 9.2 Hz), 8.36 (1H, d, J = 2.9 Hz), 9.50 (1H, s), 10.37 (1H, brs), 10.44 (1H, s), 10.69 (1H, s) FAB-MS (m/z): 558, 560 (M+H) + NMR (DMSO-d6): \delta: 2.22 (2H, brs), 2.74 (3H, s), 3.00 - 3.60 (6H, m), 3.81 (2H, brs), 6.82 (2H, d, J = 9.3 Hz), 7.10 - 7.25 (3H, m), 7.83 (2H, d, J = 8.8 Hz), 7.90 (1H,$
50	CI HC1 CI HC1 CI HC1 CI HC1 CI PHIN N-Me HC1	$\delta: 2.10 - 2.21 (1H, m), 2.23 - 2.37 (1H, m), 2.79 (3H, d, J = 4.9 Hz), 3.02 - 3.21 (2H, m), 3.37 - 3.56 (4H, m), 3.66 - 3.95 (2H, m), 6.81 (2H, d, J = 8.8 Hz), 7.15 (2H, s), 7.82 (2H, d, J = 8.8 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 8.8 Hz), 8.36 (1H, d, J = 2.4 Hz), 9.51 (1H, s), 10.33 - 10.63 (2H, br), 10.68 (1H, s) FAB-MS (m/z): 514 (M+H) + NMR (DMSO-d6): \delta: 2.10 - 2.33 (2H, m), 2.79 (3H, s), 3.01 - 3.22 (2H, m), 3.35 - 3.51 (4H, m), 3.65 - 3.79 (1H, m), 3.85 - 3.98 (1H, m), 6.81 (2H, d, J = 8.8 Hz), 7.27 (2H, s), 7.82 (2H, d, J = 9.3 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 9.2 Hz), 8.36 (1H, d, J = 2.9 Hz), 9.50 (1H, s), 10.37 (1H, brs), 10.44 (1H, s), 10.69 (1H, s) FAB-MS (m/z): 558, 560 (M+H) + NMR (DMSO-d6): \delta: 2.22 (2H, brs), 2.74 (3H, s), 3.00 - 3.60 (6H, m), 3.81 (2H, brs), 6.82 (2H, d, J = 9.3 Hz), 7.10 - 7.25 (3H, m), 7.83 (2H, d, J = 8.8 Hz), 7.90 (1H, dd, J = 2.8 Hz, 9.1 Hz), 8.13 (1H, d, J = 8.7)$
50	CI HC1 CI HC1 CI N N N N Me HC1 CI N N Me HC1 CI N N Me HC1	$\begin{array}{llllllllllllllllllllllllllllllllllll$
50	CI HC1 CI HC1 CI HC1 CI HC1 CI PHIN N-Me HC1	$\delta: 2.10 - 2.21 (1H, m), 2.23 - 2.37 (1H, m), 2.79 (3H, d, J = 4.9 Hz), 3.02 - 3.21 (2H, m), 3.37 - 3.56 (4H, m), 3.66 - 3.95 (2H, m), 6.81 (2H, d, J = 8.8 Hz), 7.15 (2H, s), 7.82 (2H, d, J = 8.8 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 8.8 Hz), 8.36 (1H, d, J = 2.4 Hz), 9.51 (1H, s), 10.33 - 10.63 (2H, br), 10.68 (1H, s) FAB-MS (m/z): 514 (M+H) + NMR (DMSO-d6): \delta: 2.10 - 2.33 (2H, m), 2.79 (3H, s), 3.01 - 3.22 (2H, m), 3.35 - 3.51 (4H, m), 3.65 - 3.79 (1H, m), 3.85 - 3.98 (1H, m), 6.81 (2H, d, J = 8.8 Hz), 7.27 (2H, s), 7.82 (2H, d, J = 9.3 Hz), 7.89 (1H, dd, J = 2.5, 8.8 Hz), 8.08 (1H, d, J = 9.2 Hz), 8.36 (1H, d, J = 2.9 Hz), 9.50 (1H, s), 10.37 (1H, brs), 10.44 (1H, s), 10.69 (1H, s) FAB-MS (m/z): 558, 560 (M+H) + NMR (DMSO-d6): \delta: 2.22 (2H, brs), 2.74 (3H, s), 3.00 - 3.60 (6H, m), 3.81 (2H, brs), 6.82 (2H, d, J = 9.3 Hz), 7.10 - 7.25 (3H, m), 7.83 (2H, d, J = 8.8 Hz), 7.90 (1H, dd, J = 2.8 Hz, 9.1 Hz), 8.13 (1H, d, J = 8.7)$

表3 (続き)

20	(hyu C)	
52	9	NMR (DMSO-d ₆):
	MeO Q HŅ	δ:2.10 - 2.34(2H, m), 2.81(3H, s), 3.01 -
	N N-Me	3.25(2H, m), 3.35 - 3.60(4H, m), 3.62 - 3.79(4H,
	H CON	m), $3.82 - 4.00(1H, m)$, $6.84(2H, d, J = 9.3 Hz)$,
	ĊI	6.88(2H, d, $J = 8.8 \text{ Hz}$), 7.12(1H, d, $J = 2.5$
1		Hz), $7.18(1H, d, J = 2.4 Hz)$, $7.54(2H, d, J =$
]	HC1	9.3 Hz), $7.84(2H, d, J = 8.8 Hz)$, $9.86(1H, brs)$,
	1101	9.96(1H, s), 10.16(1H, s), 10.43(1H,s)
		FAB-MS (m/z): 509 (M+H) +
53	P	NMR (DMSO-d ₆):
	H HŅ	δ : 1.35(3H, t, J = 7.3 Hz), 2.79(3H, d, J =
1	H ₂ N	4.9 Hz), 4.35(2H, q, J = 7.3 Hz), 6.85(2H, d,
	HO'N Ö	J = 9.3 Hz), $7.68 - 7.74(1 H, m)$, $7.82 -$
	COOEt	7.88(2H, m), 7.92 - 7.98(3H, m), 8.19 -
	HC1	8.24(1H, m), 8.27(1H, s), 8.38 (1H, s)
		FAB-MS(m/z): 559 (M+H) +
54	ዋ	NMR (DMSO-d ₅):
	HHN	δ : 2.79(3H, d, J = 4.9 Hz), 6.85(2H, d, J =
	H ₂ N N	9.3 Hz), 7.76 - 7.84(3H, m), 7.98(2H, d, J =
	NH Ö N·Me	8.8 Hz), 8.03(1H, d, $J = 7.8$ Hz), 8.25(1H,
	COOH	s), $8.31(1H, d, J = 7.8 Hz)$, $8.53(1H, s)$,
	HC1	FAB-MS(m/z): 515 (M+H)+

夷4

CI D HN N N·Me	CI N N N Me	CI O HIN SI NO N-Me
CI O HIN S N N-Me	MeO OH N N-Me	MeO HN N N·Me
CI OHN N-Me	CI N H OHN N N·Me	MeO HN S N N·Me
CI O HN N-Me	MeO HN S N-Me	CI OHN S N-Me
CI OHN N·MB	CI O HN N-Me	CI O HN OH N-Me
CI NHO HON N-Me	MeO HN N-Me	MeO OH HN N-Me

A H HN N·Me							
No.	A	R ²	R ³	No.	A	R ²	R ³
1		ОН	C1	32		OH	Cl
2		OH	Н	33	MeO-{\bigcirc}-	Н	Cl
3		Н	Cl	34	IVIEC	ОН	Br
4	HN	OH	Br	35		Н	Br
5	NH ₂	H	Br	36		ОН	Cl
6		OH	F	37	Br—	Н	Cl
7		Н	F	38		OH.	Br
8		ОН	Cl	39		H	Br
9		ОН	H	40		OH	Cl
10	N.O.	Н	Cl	41	F-(T)	H	Cl
11	HO NH ₂	ОН	Br	42	. 💆	OH	Br
12		Н	Br	43		Н	Br
13]	OH	F	44		ОН	Cl
14		Н	F	45		H	C1
15		ОН	Cl	46	CI—(N	OH	Br
16	CI—()—	<u>H</u>	Cl	47		H	Br
17		OH	Br	48		ОН	H
18		Н	Br	49		ОН	CI
19		OH	Cl	50		Н	C1
20		H	Cl	51	N N	ОН	Br
21	Br-_N	OH	Br	52	H	H	Br
22		H	Br	53		OH	H
23		ОН	H	54		OH	Cl
24		OH	Cl	55		H	Cl
25	MeO-()_	H	Cl	56	F—	OH	Br
26	~N	OH	Br	57		Н	Br
27		ОН	Н	58		OH	H
28		OH	C1	59		OH	Cl
29		ОН	Н	60	_ _ _	ОН	H
30	H ₂ N	Н	C1	61	H₂N ✓	Н	Cl
31	4	OH	Br	62		OH	Br

表5 (続き)

A HN R ² N N-Me								
No.	A	R ²	R ³	No.	A	R ²	R ³	
63		OH	Cl	92		ОН	Cl	
64		ОН	Н	93	NI	ОН	Н	
65	I—(H	Cl	94	CI-N-	Н	Cl	
66		OH	Br	95	IN-	OH _	Br	
67		Н	Br	96]	Н	Br	
68	_	OH	Cl	97		OH	Cl	
69	H ₂ N	OH	H	98	/≔N	OH	Н	
70	EtOOC.N	H	C1	99	CI-\(\sigma_N\)	H	Cl	
71		OH	Br	100	,,	OH	Br	
72		H	Br	101		Н	Br	
73		OH	C1	102	NH ₂	OH	Cl	
74		OH	H	103		OH	H	
75	MeOS	H	Cl	104		H	Cl	
76		OH	Br	105		OH	Br	
77		H	Br	106		H	Br	
78		OH	C1	107		OH	Cl	
79	Me	H	·C1	108		OH	· H	
80	MIC 2	OH	Br	109	NH ₂	H	Cl	
81		H	Br	110	2	OH	Br	
82		OH	C1	111		<u>H</u>	Br	
83		OH	H	112		OH	Cl	
84	MeO-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	Cl	113	cı s	H	Cl	
85		ОН	Br	114	Ci S	ОН	Br	
86		H	Br	115		H	Br	
87		ОН	Cl	116		OH	C1	
88		ОН	H	117		H	C1	
89	N NH ₂	Н	Cl	118	Br S	ОН	Br	
90	NП ₂	OH	Br	119		H	Br	
91		Н	Br	120		ОН	F	

表5 (続き)

表 5	(脱さ)						-	
A N HN N-Me								
R ³								
No.	Α	R ²	R ³	No.	A	R ²	R³	
121		ОН	C1	151		Н	Cl	
122		ОН	Н	152	1400	ОН	Br	
123		Н	Cl	153	MeO-(Н	Br	
124	HN	ОН	Br	154		ОН	F	
125	ЙН ₂	Н	Br	155		OH	Cl	
126		OH	F	156	P	Н	Cl	
127		Н	F	157	DI —	OH	Br	
128		ОН	Cl	158		Н	Br	
129	N. C	ОН	H	159		0Н -	C1	
130	HO NH ₂	H	C1	160		Н	C1	
131	<u>-</u>	OH	Br	161		ОН	Br	
132		Н	Br	162		Н	Br	
133		OH	C1	163	CI-\(\bigci_N\)	Н	Br	
134		Н	· C1	164		ОН	F	
135	G. L	OH	Br	165		OH	Cl	
136		H	Br	166		H	Cl	
137		OH	Cl	167	H ₂ N	OH	Br	
138		H	Cl	168		· H	Br	
139	Br-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	HO	Br	169		OH	H	
140		H	Br	170		OH	CI	
141		OH	H	171		H	Cl	
142		OH	Cl	172	F-	OH	Br	
143	_	H	C1	173	' _Ń	H	Br	
144	MeO-	ОН	Br	174		ОН	H_	
145	N	H	Br	175		OH	F	
146		ОН	H	176		ОН	C1	
147		OH	Cl	177	æN	Н	CI	
148	NH ₂	ОН	Н	178	CI—(N)	ОН	Br	
149		OH	Br	179	13	Н	Br	
150		Н	Cl	180		ОН	Н	

表5 (続き)

表 5	(続き)							
A N HN N-Me								
No.	A	R ²	R ³	No.	A	R ²	R ³	
181	n	OH	Cl	211	A	OH	Cl	
182	•	ОН	Н	212		OH	Н	
183		H	CI	213	CI-N-	H	Cl	
184		OH	Br	214	· N-2	ОН	Br	
185	•	H	Br	215		Н	Br	
186		OH	Cl	216		ОН	Cl	
187	HN C	ОН	Н	217		ОН	Н	
188	H₂N H₂N EtOOC.N	H	Cl	218	CI—N—	Н	Cl	
189	1.000	ОН	Br	219	N-	ОН	Br	
190		Н	Br	220		Н	Br	
191		ОН -	Cl	221	N NH ₂	OH	Cl	
192		OH	H	222		ОН	Н	
193		H	Cl	223		H	Cl	
194	H	OH	Br	224		ОН	Br	
195		H	Br	225		H	Br	
196		OH	Cl	226		OH	Cl	
197	<i>(</i>	OH	H	227		ОН	Н	
198	Me	Н	Cl	228	N NH ₂	H	Cl	
199		OH	Br	229	2	ОН	Br	
200		H	Br	230		Н	Br	
201		OH	Cl	231		OH	Cl	
202		OH	Н	232	CI S	H	Cl	
203	MeO-(N-)	H	C1	233	0, 5	OH	Br	
204		OH	Br	234		H	Br	
205		H	Br	235		OH	H	
206		OH	Cl	236	/ _\	OH	Cl	
207		OH	H	237		H	C1	
208	NH ₂	H	C1	238	Br	OH	Br	
209	- 141 12	OH	Br	239		H	Br	
210		H	Br	240		OH	H	

表6

表 6									
A X1 HN N-Me									
R° .									
\vdash	A			No	A				
$\frac{1}{2}$		$-CH_2-CH_2-$	<u>H</u>	32		-CH ₂ -CH ₂ -	H		
2		$-CH_2-CH_2-$	Cl	33		$-CH_2-CH_2-$	Cl		
3	HN	-NH-CH ₂ -	H	34	ни 🕥	-NH-CH ₂ -	H		
4	NH ₂	$-NH-CH_2-$	C1	35	H₂N HO.N	-NH-CH ₂ -	Cl		
5		-O-CH ₂ -	H	36	но	-O-CH ₂ -	H		
6		-O-CH ₂ -	Cl	37		-O-CH ₂ -	Cl		
7	ļ	(E) -CH=CH-	H	38		(E) -CH=CH-	H		
8		(E) -CH=CH-	CI	39		(E) -CH=CH-	Cl		
9		$-CH_2-CH_2-$	<u>H</u>	40		$-CH_2-CH_2-$	H		
10		$-CH_2-CH_2-$	Cl	41	Cl. 🚓	$-CH_2-CH_2-$	Cl		
11	Cl	$-NH-CH_2-$	H	42		-NH-CH ₂ -	Н		
12		-NH-CH ₂ -	C1	43		-NH-CH ₂ -	Cl		
13	N'	-O-CH ₂ -	H	44	·	-O-CH ₂ -	Н		
14		-O-CH ₂ -	Cl	45		-O-CH ₂ -	Cl		
15		(E) -CH=CH-	C1	46		(E) -CH=CH-	Cl		
16		$-CH_2-CH_2-$	Н	47		$-CH_2-CH_2-$	Н		
17		$-CH_2-CH_2-$	CI	48		$-CH_2-CH_2-$	Cl		
18		$-NH-CH_2-$	H	49		$-NH-CH_2-$	Н		
19		-NH-CH ₂ -	Cl	50	H ₂ N, C	-NH-CH ₂ -	Cl		
20	NH ₂	-O-CH ₂ -	Н	51	EtOOCN	-O-CH ₂ -	Н		
21	٠	-O-CH ₂ -	Cl	52		-O-CH ₂ -	Cl		
22		(E) -CH=CH-	Н	53		(E) -CH=CH-	Н		
23		(E) -CH=CH-	Cl	54		(E) -CH=CH-	Cl		
24		$-CH_2-CH_2-$	Н	55		$-CH_2-CH_2-$	Н		
25		-CH2-CH2-	Cl	56		$-CH_2-CH_2-$	Cl		
26	·	-NH-CH ₂ -	Н	57		-NH-CH ₂ -	Н		
27		-NH-CH ₂ -	Cl	58	H ₂ N^\	-NH-CH ₂ -	Cl		
28	H ₂ N	-O-CH ₂ -	H	59		-O-CH ₂ -	Н		
29		-O-CH ₂ -	Cl	60		-O-CH ₂ -	Cl		
30		(E) -CH=CH-	Н	61		(E) -CH=CH-	Н		
31		(E) -CH=CH-	Cl	62		(E) -CH=CH-	Cl		

請求の範囲

1. 下記一般式(I)で示されるジアゼパン誘導体又はその塩。

(上記式中の記号は、それぞれ以下の意味を有する。

A環、及びB環:同一又は異なって1~3個の置換基をそれぞれ有しても良いアリール、又はヘテロアリール、

 $X^1:-C(=O)-NR^4-$ 、 $-NR^4-C(=O)-$ 、 $-NR^4-CH_2-$ 、 $-O-CH_2-$ 、 $-CH_2-$ CH $_2-$ 、又は-CH=CH-、

 $X^{2}: -C(=O)-NR^{5}-$ 、又は $-NR^{5}-C(=O)-$ 、

 R^1 : 水素原子、低級アルキル、-低級アルキレン-O-低級アルキル、 C_{3-8} シクロアルキル、アリール、ヘテロアリール、-低級アルキレン- C_{3-8} シクロアルキル、-低級アルキレン-アリール、-低級アルキレン-ヘテロアリール、又は-C(=N R 6)-低級アルキル、

 $R^2: -OH、 -O-低級アルキル、 -O-低級アルキレン-OH、 -O-SO_2-OH、 -O-低級アルキレン-COO-低級アルキル、 -COOH、 -COO-低級アルキル、又はハロゲン原子、$

R3:水素原子、ハロゲン原子、又は低級アルキル、

R⁴、R⁵、及びR6:同一又は異なって水素原子、又は低級アルキル)

- 2. R²が-OHである請求の範囲1記載のジアゼパン誘導体又はその塩。
- 3. A環、及びB環が同一又は異なって1~3個の置換基をそれぞれ有しても良いベンゼン環、ピリジン環、ナフタレン環、チオフェン環、ベンゾフラン環、又はキノリン環である請求の範囲1記載のジアゼパン誘導体又はその塩。

4. $1 \sim 3$ 個の置換基をそれぞれ有しても良いアリール、又はヘテロアリールの置換基が、置換基を有しても良い低級アルキル、低級アルケニル、低級アルキニル、 C_{3-8} シクロアルキル、-O-置換基を有しても良い低級アルキル、Nロゲン原子、 $-NH_2$ 、-NH-低級アルキル、-N-(低級アルキル) $_2$ 、 $-C(=NH)-NH_2$ 、 $-C(=N-OH)-NH_2$ 、-C(=NH)-NH-OH、-C(=NH)-NH-C(=O)-O-低級アルキル、-COOH、-C(=O)-O-置換基を有しても良い低級アルキル、-C(=O)-O-置換基を有しても良い-COOH、-C(=O)-O-置換基を有しても良い低級アルキル、-C(=O)-O-のである。-O-のののでは、-O-のののでは、-O-のののでは、-O-のののでは、-O-ののでは、-O-のののでは、-O-のののでは、-O-ののでは、-O-のののでは、-O-のののでは、-O-のののでは、-O-のののでは、-O-のののでは、-O-のののでは、-O-ののでは、-O-ののでは、-O-のののでは、-O-のののでは、-O-のののでは、-O-のののでは、-O-のののでは、-O-のののでは、-O-のののでは、-O-ののでは、-O

- 6. 請求の範囲1に記載されるジアゼパン誘導体又はその塩を有効成分とする医薬組成物。
- 7. 請求の範囲1に記載されるジアゼパン誘導体又はその塩を有効成分とする活性 化血液凝固第X因子阻害剤。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/02673

A.	Int.	EFICATION OF SUBJECT MATTER C1 ⁷ C07D243/08, C07D401/04, 0409/04, C07D409/12, C07D409/14,	C07D401/12, C07D403/12 C07D471/04 104, A61K7/0	2, C07D405/12, 2, A61K31/551					
Acc	According to International Patent Classification (IPC) or to both national classification and IPC								
B.	B. FIELDS SEARCHED								
Min	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07D243/08, C07D401/04, C07D401/12, C07D403/12, C07D405/12, C07D409/04, C07D409/12, C07D409/14, C07D471/04 104, A61K7/02, A61K31/551								
Doc	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched								
Elec		ata base consulted during the international search (nam	e of data base and, where practicable, sea	rch terms used)					
	CA (S	TN), REGISTRY (STN), WPIDS (STN)	·						
				·					
C.	DOCU	MENTS CONSIDERED TO BE RELEVANT		·					
· Cat	egory*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.					
	A	WO, 99/37643, A (YAMANOUCHI PHA	RMACEUTICAL CO., LTD.),	1-7					
		29 July, 1999 (29.07.99), the whole document							
	•	& AU, 9920746, A							
			•						
			·						
		,							
			,						
		,		•					
		,							
				: , , , ,					
				·					
		· .							
,									
		·							
	Furthe	r documents are listed in the continuation of Box C.	See patent family annex.						
* "A"		categories of cited documents: ent defining the general state of the art which is not	"T" later document published after the inte priority date and not in conflict with the						
	considered to be of particular relevance understand the principle or theory underlying the invention								
_	"E" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive								
"L"	cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be								
"O"	special	special reason (as specified) document referring to an oral disclosure, use, exhibition or other considered to involve an inventive step when the document is combined with one or more other such documents, such							
_	means combination being obvious to a person skilled in the art								
"P"	"P" document published prior to the international filing date but later "&" document member of the same patent family than the priority date claimed								
Date	Date of the actual completion of the international search 24 April, 2001 (24.04.01) Date of mailing of the international search report 15 May, 2001 (15.05.01)								
Nan	Name and mailing address of the ISA/ Authorized officer								
		nese Patent Office							
Fac	simile N	in.	Telephone No.						

Int C C07D40	属する分野の分類(国際特許分類(IPC)) : 1 ⁷ CO7D243/08, CO7D401 5/12, CO7D409/04, CO7D4 A61K7/02, A61K31/551	/04, C07D401/12, C077 09/12, C07D409/14, C	D403/12; 07D471/0							
B. 調査を行った分野										
周重を行った現外 関査を行った最小限資料(国際特許分類(IPC)) Int cl ⁷ C07D243/08, C07D401/04, C07D401/12, C07D403/12, C07D405/12, C07D409/04, C07D409/12, C07D409/14, C07D471/0 4 104, A61K7/02, A61K31/551										
最小限資料以外	トの資料で調査を行った分野に含まれるもの	1								
	取小MXXMがMXでVV以下で調査を11つに万町で占まするもvV									
国際調査で使用	目した電子データベース(データベースの名称、	調査に使用した用箋)								
	りした電子グラグスクラットスの名称の	州直(で灰州 じた川田)								
CA (S	TN), REGISTRY (STN), WPI	DS (SȚN)								
	ると認められる文献		<u> </u>							
引用文献の カテゴリー*	、 引用文献名 及び一部の箇所が関連する。	ときは、その関連する箇所の表示	関連する 請求の範囲の番号							
A .	1 – 7									
□ C欄の続き	さにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。							
もの 「E」国際出題 以後に2 「L」優先権3 ・ 日若しく 文献(選 「O」口頭によ	のカテゴリー 車のある文献ではなく、一般的技術水準を示す 負目前の出願または特許であるが、国際出願日 公表されたもの 三張に疑義を提起する文献又は他の文献の発行 は他の特別な理由を確立するために引用する 理由を付す) こる開示、使用、展示等に言及する文献 負目前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献								
国際調査を完了	「した日 24.04.01	国際調査報告の発送日 15.05.0	3							
日本日	D名称及びあて先 国特許庁(ISA/JP) B便番号100-8915 B千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 内藤 伸一 電話番号 03-3581-1101	4P 8615 内線 3492							

Page 1 of 2

[10] Patent/Publication Number: WO0174791A1

[43] Publication Date: Oct. 11, 2001

[54] DIAZEPANE DERIVATIVES OR SALTS THEREOF

[72, 75] Inventor(s):

HIRAYAMA; Fukushi, c/o Yamanouchi Pharmaceutical Co., Ltd., 21, Miyukigaoka, Tsukuba-shi Ibaraki 305-8585 JP JP JP

KOSHIO; Hiroyuki, c/o Yamanouchi Pharmaceutical Co., Ltd., 21, Miyukigaoka, Tsukubashi Ibaraki 305-8585 JP JP JP

ISHIHARA; Tsukasa, c/o Yamanouchi Pharmaceutical Co., Ltd., 21, Miyukigaoka, Tsukuba-shi Ibaraki 305-8585 JP JP JP

SEKI; Norio, c/o Yamanouchi Pharmaceutical Co., Ltd., 21, Miyukigaoka, Tsukuba-shi Ibaraki 305-8585 JP JP JP

HACHIYA; Shunichiro, c/o Yamanouchi Pharmaceutical Co., Ltd., 21, Miyukigaoka, Tsukuba-shi Ibaraki 305-8585 JP JP JP

SUGASAWA; Keizo, c/o Yamanouchi Pharmaceutical Co., Ltd., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585 JP JP, JP

SHIRAKI; Ryota, c/o Yamanouchi Pharmaceutical Co., Ltd., 21, Miyukigaoka, Tsukuba-shi Ibaraki 305-8585 JP JP JP

KOGA; Yuji, c/o Yamanouchi Pharmaceutical Co., Ltd., 21, Miyukigaoka, Tsukuba-shi Ibaraki 305-8585 JP JP JP

MATSUMOTO; Yuzo, c/o Yamanouchi Pharmaceutical Co., Ltd., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585 JP JP, JP

SHIGENAGA; Takeshi, c/o Yamanouchi Pharmaceutical Co., Ltd., 21, Miyukigaoka, Tsukuba-shi Ibaraki 305-8585 JP JP JP

KAWAZOE; Souichirou, c/o Yamanouchi Pharmaceutical Co., Ltd., 160-2, Aza Matsukubo, Oaza Akahama, Takahagi-shi Ibaraki 318-0001 JP JP JP

[71] Assignee/Applicant:

YAMANOUCHI PHARMACEUTICAL CO.; LTD., ·3-11, Nihonbashi-Honcho 2-chome, Chuo-ku Tokyo 103-8411 JP JP JP

[30] Priority:

JP Mar. 31, 2000 2000-096858

- [21] Application Number: JP0102673 JP
- [22] Application Date: Mar. 29, 2001
- [51] Int. Cl.⁷: A61K031551 C07D24308 C07D40104 C07D40112 C07D40312 C07D40512 C07D40904 C07D40912 C07D4710

[56] References Cited:

U.S. PATENT DOCUMENTS

9937643 /NCIT WO [0]

OTHER PUBLICATIONS:

Page 2 of 2

MicroPatent HTML record

See also references of EP 1273575A1

Attorney, Agent, or Firm - NAGAI, Shozo

[57] ABSTRACT

Compounds exhibiting a blood-anticoagulant effect on the basis of the inhibition of activated blood coagulation factor X and being useful as blood anticoagulants or preventive or therapeutic drugs for diseases caused by thrombus or embolus. As the active ingredient of these drugs are used diazepane derivatives such as 4-[(3-carbamidoylphenylamino)methyl]-3-[4-(4-methyl-1,4-diazepan-1-yl) benzoylamino]benzoic acid and 3-hydroxy-4'-methoxy-2-{[4-(4-methyl-1,4-diazepan-1-yl)benzoyl] amino}benzanilide or salts of these derivatives.

* * * * *