INITIATION A LA MECATRONIQUE

Livret étudiant

2020-2021

UBO Open Factory

Version 1.0 Mise à jour 06/01/2020

Responsable de la formation

Mathieu Cariou, directeur adjoint UBO Open Factory, mathieu.cariou@univ-brest.fr

Formateurs

Adamou Amadou Souley, Fablab Manager UBO Open Factory, adamou.amadou.souley@univ-brest.fr

Gwenolé Trenvouez, Enseignant, département mécanique, Gwenole. Trenvouez@univ-brest.fr

Laurent Marchal, Fablab Manager UBO Open Factory, laurent.marchal@univ-brest.fr

Mathieu Cariou, Directeur-adjoint UBO Open Factory, mathieu.cariou@univ-brest.fr

Sara Noll, Fablab manager UBO Open Factory, sarah.noll@univ-brest.fr

Tomi Murovec, Fablab manager UBO Open Factory, tomo.murovec@univ-brest.fr

Bienvenu à l'UBO Open Factory!

L'UBO Open Factory est le laboratoire ouvert d'innovation multidisciplinaire de l'université de Bretagne Occidentale.

LUBO Open Factory propose un espace pour expérimenter, s'inspirer et apprendre pour innover dans un environnement propice à la créativité.

L'UBO Open Factory est un service général de l'UBO avec des missions très transversales : formation, recherche, prestations de service, vulgarisation scientifique et l'entrepreneuriat.

Pour les formations nous appliquons une pédagogie participative centrée sur l'entraide, l'expérimentation et le faire soi-même.

Les projets qui sont développés à l'UBO Open Factory participent à concrétiser des idées allant dans le sens de l'intérêt général en utilisant en tant qu'indicateur les objectifs du développement durable fixés la les Nations Unies

(https://www.un.org/sustainabledevelopment/fr/objectifs-de-developpement-durable/).

Structuration des activités

L'UBO Open Factory qui s'organisent autour de grandes thématiques pouvant s'apparenter à des axes de recherche à l'intérieur desquels sont développés des programmes d'expérimentation, appelés « Labs » et des programmes de formation et d'accompagnement, appelés « Campus ».Il existe à ce jour 8 thématiques différentes : Arts, Santé, Territoires, Mer, Matériaux, Technologie, Éducation, Campus.

Dans chacune de ces thématiques, nous proposons plusieurs programmes d'expérimentation (les "Labs") : Arts : MusicLab, Santé : HandiLab, FoodLab, Territoires : FabCityLab, Mer : OceanLab, Matériaux : RecycLab, Technologie : CadLab, MapLab, Éducation : CreativityLab, KidsLab

Nous proposons également des programmes de formation et d'accompagnement :

- Fab Campus : programme de formation et d'accompagnement au prototypage numérique (formation et accompagnement technique)

Disrupt Campus : programme de formation et d'accompagnement à l'innovation et à la transition numérique (formation et accompagnement méthodologique)Des éléments graphiques représentant les thématiques et les programmes ont ainsi été dessinés pour enrichir le logotype et traduire le plus finement possible l'identité de l'UBO Open Factory.

L'esprit d'ouverture

Explication sur le terme «Open» de l'UBO Open Factory ou sur le terme «ouvert» de laboratoire ouvert d'innovation multi-disciplinaire. Il exprime nos volontés suivantes :

L'inclusion: tout type projet peut trouver sa place dans la limite des valeurs portées par l'UBO Open Factory (les 17 objectifs de développement durable) et des ressources disponibles.

En tant qu'espace d'expérimentation, nous avons une volonté de permettre la possibilité de trouver des solutions quand il n'en existent pas ailleurs.

Le décloisonnement et de diversité : L'UBO Open Factory accueil en même temps ddes publics très diversifiés afin de favoriser les échanges, l'intergénérationnel, l'interculturel, la connaissance du territoire et du milieu socio-économique, le multi-disciplinaire, l'ouverture d'esprit, l'empathie etc.

Des horaires d'ouverture larges : aujourd'hui, l'espace est ouvert de 8h à 18h du lundi au vendredi ainsi que le soir et le week-end sur des activités spécifiques.

Ce que n'est pas l'UBO Open Factory :

- Un espace de prestations (même si nous en faisons avec parcimonie!)
- Un espace où tout est gratuit.
 - Même si, dans un objectif d'inclusion, il y a une volonté de réaliser un maximum de services gratuits pour les usagers de l'UBO tout a un coût et le modèle économique de l'UBO Open Factory doit être équilibré.
 - Certains services sont donc gratuits et d'autres payants.

Les Fablab Managers de l'UBO Open Factory

Mathieu Cariou, IGR Directeur Adjoint Material Lab, Food Lab

Laurent Marchal, Tec. Fabrication numérique Objets Connectés

Yves Quéré, MC Directeur Fab City Lab, Food Lab Disrupt Campus UBO

Claire Branellec, IGE Coordinatrice
Disrupt Campus UBO

Tomo Murovec, IGR Fabrication numérique Music Lab, Fab City Lab

Sarah Nol, IGE Ingénieur Pédagogique Disrupt Campus UBO

Alexandre Peretjatko, IGE Fabrication numérique Hygiène et Sécurité

Nicolas Decourcelle MC ESIAB, LUBEM Responsable FoodLab

Sonia Jézéquel, Ass. IGE Assistante Administrative

Adamou Anamou Souley, Ass. IGE Fabrication numérique Handi Lab

Laëtitia Innocente, IGE Ingénieur Pédagogique Disrupt Campus UBO

Le Projet

Réalisation d'un bras robotisé ou d'un support rotatif à partir d'un tutoriel

Vous réaliserez un système mécatronique. Dans un premier temps vous aborderez les différentes composants d'un système mécatronique : la partie contrôle et moteur, la partie énergie et la partie mécanique. Dans un second temps vous aller amaliorer le même système mais avec des capacités de robustesse différentes.

Liens:

- https://vimeo.com/307450102/9ac4c59543
- https://vimeo.com/346356031

Le parcours de formation : 7 modules

Présentation	Mini projet Tutoré	Mini projet en autonomie	Créativité	Evaluation	
	(Projet contextualisé par rapport à la formation électronique et mécanique)	(Modification paramétrique du projet tutoré)	et innovation	Quizz	
	2 Formations sécurité				
Découverte de la cu Initiation à la modél découpeuse Laser					
Initiation à la progra	ammation Arduino				
Initiation à l'impress modélisation 3D	sion 3D et à la				

Les objectifs de formations

- Initier au prototypage de systèmes mécatroniques (combinaison de la <u>mécanique</u>, de l'<u>électronique</u>, de l'<u>automatique</u> et de l'<u>informatique</u> en temps réel.).
- Découvrir les enjeux et les potentiels de la Culture Maker et des FabLab et en particulier l'UBO Open Factory.
- Initier à la modélisation 2D et à l'utilisation de la découpeuse Laser.
- Initier à la modélisation 3D et à l'utilisation de l'imprimante 3D.
- Initier aux outils de créativité et d'innovation.

A l'issue de cette formation, les étudiants seront en mesure de développer des projets avec une plus grande autonomie.

Les compétences visées

Compétences	Brique(s) Formation liée(s)	Modalité d'évaluation
Identifier les éléments essentiels constituant l'esprit Maker et les Fablabs de façon générale	Culture Maker	Quizz
Identifier les services et l'accompagnement proposé par l'UBO Open factory	Culture Maker	Quizz
Expliquer les étapes clefs de la fabrication numérique et les machines associées	Culture Maker	Quizz
Identifier des éléments clés pour utiliser la découpeuse laser	Culture Maker et découpe Laser	Quizz
Utiliser l'environnement de développement Arduino	Initiation à l'Arduino	Quizz
Créer des programmes simples en langage Arduino	Initiation à l'Arduino	Quizz
Créer des objets interactifs grâce aux capteurs	Initiation à l'Arduino	Quizz
Utiliser des afficheurs de type Led et des servomoteurs	Initiation à l'Arduino	Quizz

Identifier les éléments essentiels de la fabrication par apport de matière (fabrication additive).	Initiation à l'impression 3D et à la modélisation 3D	Quizz
Prendre en main le logiciel fusion 360		Quizz
Calculer la masse maximum pouvant être soulevé par un servo-moteur un bras de levier	MIni projet tutoriel	Quizz
Modéliser des objets à partir de plan 2D	MIni projet tutoriel	Auto-évaluation
Modéliser des objets en 3D avec Fusion 360	MIni projet tutoriel	Auto-évaluation
Suivre les consignes d'un plan de montage	MIni projet tutoriel	Auto-évaluation
Réaliser un montage électrique Arduino, cablage de potentiomètres	MIni projet tutoriel	Quizz
Compréhension de la résonance mécanique d'un système	MIni projet autonome	Quizz
Réaliser une alimentation électrique. Réaliser un montage Arduino avec potentiomètres et servo- moteurs	MIni projet autonome	Quizz

La formation sécurité

Déroulement

- Module 1 : formation à l'utilisation de l'espace open space et de l'espace show room déroulement : auto-formation avec le livret.
- Module 2 : formation à l'utilisation de l'espace Atelier

Obligations

- Pour l'UBO Open Factory : former les utilisateurs de l'UBO Open Factory.
- Pour les étudiants : participer aux modules de formations.

Il n'y a pas de possibilité d'utiliser les espaces si les formations sécurité n'ont pas été suivies

Seule les absences justifiées donnent le droit à la participation à une nouvelle formation sécurité

Pour les absences justifiées

 Possibilité de planifier une nouvelle formation sur présentation d'un justificatif valable (certificat médical...).

Agenda de la formation sécurité :

Groupe 1:

```
Module 1 : Sécurité dans l'espace Open Space et Show Room :
```

jeudi 28 janvier - 8h00 - 12h00

```
Module 2 : Sécurité dans l'espace atelier :
```

Vendredi 12 février – 8h00 - 12h00

Groupe 2:

```
Module 1 : Sécurité dans l'espace Open Space et Show Room :
```

Vendredi 29 janvier – 8h00 – 12h00

```
Module 2 : Sécurité dans l'espace atelier :
```

Vendredi 29 janvier – 13h30 - 17h30

Utilisation de la plateforme Moodle

Emplacement:

Sciences et Techniques→ Sciences pour l'ingénieur → Initiation à la mécatronique

Communication

Transmissions/demandes d'informations à destination des formateurs

- Informations générales : mathieu.cariou@univ-brest.fr
- Informations concernant un module de formation particulier : Formateur du module en particulier.
- Dans tous les cas, tous es autres formateurs peuvent être mis en copie.
- Possible contact via la plateforme Moodle

Transmissions/demandes d'informations à destination des étudiants

- · Adresse mail étudiant
- Et plateforme Moodle

Ressources

Ordinateurs

Pour les formations Culture Maker/Laser, Arduino, Modelisation/Impression
 3D, :

Utilisation des ordinateurs fournis par l'UBO Open Factory

· Pour les modules de projet tutoré

Des ordinateurs peuvent être prêté par l'UBO Open Factory. Important : exporter les documents de travail hors de l'ordinateur entre chaque séance.

Possibilité d'utiliser son ordinateur personnel

Le matériel de prototypage

Fournis par l'UBO Open Factory

Les espaces de travail

- Espace Open Space pour travailler en groupe
- Espace Showroom pour ranger les projets
- Espace Atelier pour prototyper

Les formateurs de l'initiation à la mécatronique

Mathieu Cariou
UBO Open Factory
Responsable de l'UE
Mécatronique
Formation Culture Maker et
projet tutoré

UBO Open Factory

Formation Impression 3D / modélisation 3D et projet tutoré

Laurent Marchal
UBO Open Factory

Formation Arduino et projet tutoré

Sarah Noll UBO Open Factory

Formation Créativité et innovation

Adamou Amadou Souley UBO Open Factory

Projet tutoré

Gwenolé Trenvouez Département de mécanique

Projet tutoré

Rôles:

- Accompagner sur la méthodologie de projet.
- Accompagner sur l'utilisation des machines.

Les formateurs de sont pas les mêmes d'une séance sur l'autre. Au début de chaque séance, les formateurs seront identifiés sur le tableau de communication.

Les Fablab Managers de l'UBO Open Factory travaillent sur projet. Seul les Formateurs identifiés pour la séance peuvent être sollicités.

Les autres Fablabs Manager de l'UBO Open Factory ne peuvent pas être sollicités, sauf pour des raisons de sécurité

Création des groupes et équipes

Mode d'emploi :

A voir

Responsabilités:

- Une personne dans l'équipe est désignée (par l'équipe ou le cas échéant par un formateur) pour être responsable atelier.
 Cette personne est désignée au début de chaque séance.
 - Le nom du responsable d'atelier est inscrite sur le tableau de communication.
- Rôle du responsable atelier : s'assurer qu'à a fin de l'activité, tous les outils/ les matériaux soient rangés à leurs places, l'atelier propre. Les tables projets propres.
- Le responsable atelier reste jusqu'à la fin ce que les équipements et espaces utilisés par les étudiants de l'UE mécatronique soient rangés et propres avant de quitter l'UBO Open Factory.

Groupe 1

Equipe 11

Equipe 12

Equipe 13

Equipe 14

Equipe 15

Equipe 16

Groupe 2

Equipe 21

Equipe 22

Equipe 23

Equipe 24

Equipe 25

Equipe 26

Groupe 3

Equipe 3.1

Equipe 3.2

Equipe 3.3

Groupe 4

Equipe 4.1

Equipe 4.2

Equipe 4.3

Agenda du groupe 1

Semaine	₹	Groupe Etudiant	Υİ	Nbr Heure étudiant	Ŧ	Crénneau Etudiant	÷	Module =	Date =
2		G1		1,5		10h30		0_Presentation Ue	mercredi 13 janvier 2021
2		G1		3		9h-12h00		_Culture Maker / Lase	e jeudi 14 janvier 2021
2		G1		3		14h-17h00		1_Model 3D / imp 3D	vendredi 15 janvier 2021
3		G1		3		9h-12h00		1_Arduino	jeudi 21 janvier 2021
4		G1		4		8h-12h00		2_Projet Tutoré	jeudi 28 janvier 2021
6		G1		4		8h-12h00		2_Projet Tutoré	vendredi 12 février 2021
6		G1		4		13h30-17h30		2_Projet Tutoré	vendredi 12 février 2021
7		G1		4		8h-12h00		2_Projet Tutoré	jeudi 18 février 2021
11		G1		4		8h-12h00		2_Projet Tutoré	vendredi 19 mars 2021
11		G1		4		13h30-17h30		2_Projet Tutoré	vendredi 19 mars 2021
12		G1		4		8h-12h00		3_Projet Autonome	jeudi 25 mars 2021
13		G1		4		8h-12h00		3_Projet Autonome	vendredi 2 avril 2021
13		G1		3		13h30-16h30		3_Projet Autonome	vendredi 2 avril 2021
15		G1		4		8h-12h00		4_Créativité	jeudi 15 avril 2021
15		G1		4		13h30-17h30		4_Créativité	jeudi 15 avril 2021
19		G1		1,5		10h30-12h00		5_Evaluation	mercredi 12 mai 2021

Agenda du groupe 2

Semaine	÷	Groupe Etudiant	Nbr Heure étudiant 😑	Crénneau Etudiant =	Module =	Date =
2		G2	1,5	10h30	0_Presentation Ue	mercredi 13 janvier 2021
2		G2	3	9h-12h00	_Culture Maker / Lase	vendredi 15 janvier 2021
3		G2	3	9h-12h00	1_Model 3D / imp 3D	vendredi 22 janvier 2021
3		G2	3	14h00-17h00	1_Arduino	vendredi 22 janvier 2021
4		G2	4	8h-12h00	2_Projet Tutoré	vendredi 29 janvier 2021
4		G2	4	13h30-17h30	2_Projet Tutoré	vendredi 29 janvier 2021
6		G2	4	8h-12h00	2_Projet Tutoré	jeudi 11 février 2021
7		G2	4	8h-12h00	2_Projet Tutoré	vendredi 19 février 2021
7		G2	4	13h30-17h30	2_Projet Tutoré	vendredi 19 février 2021
11		G2	4	8h-12h00	2_Projet Tutoré	jeudi 18 mars 2021
12		G2	4	8h-12h00	3_Projet Autonome	vendredi 26 mars 2021
12		G2	3	13h30-16h30	3_Projet Autonome	vendredi 26 mars 2021
13		G2	4	8h-12h00	3_Projet Autonome	jeudi 1 avril 2021
15		G2	4	8h-12h00	4_Créativité	vendredi 16 avril 2021
15		G2	4	13h30-17h30	4_Créativité	vendredi 16 avril 2021
19		G2	1,5	10h30-12h00	5_Evaluation	mercredi 12 mai 2021