Secondo Appello Autunnale del corso di Fisica del 19.09.2022

Corso di Laurea in Informatica

A.A. 2021-2022

(Prof. Paolo Camarri)

Cognome:

Matricola:

Anno di immatricolazione:

primo cilindro.

Nome:

Proble	ma n.1
con att	ssa di legno avente massa $m=30~{\rm kg}$ viene legata a una corda e trascinata su un piano orizzontale rito applicando una forza costante \vec{F} che forma un angolo θ con la direzione orizzontale (FIGURA 1). iciente di attrito dinamico tra la cassa e il piano orizzontale è $\mu_d=0.3$
a)	Se $\theta=30^\circ$, si calcolino il modulo N della reazione normale del piano e il modulo F della forza applicata se la cassa si muove di moto rettilineo uniforme sul piano orizzontale.
b)	Fissato $\theta=30^\circ$ e senza fare richieste sul moto della cassa, si determini il valore massimo F_M del modulo della forza \vec{F} applicata tale che la cassa non si sollevi dal piano orizzontale.
c)	Fissato il valore della massa della cassa ($m=30~{\rm kg}$) e fissato il valore del coefficiente di attrito dinamico tra la cassa e il piano orizzontale ($\mu_d=0.3$), si calcoli il valore $\bar{\theta}$ dell'angolo θ che rende minimo il modulo della forza applicata nel caso in cui la cassa si muova di moto rettilineo uniforme.
Proble	ma n.2
ruotare	ndro omogeneo avente massa $M=1$ kg, raggio di base $R=0.2$ m e altezza $H=0.4$ m è vincolato a e attorno al proprio asse senza poter scivolare lungo l'asse, e inizialmente ruota con velocità angolare rad s ⁻¹ . Un secondo cilindro omogeneo realizzato con lo stesso materiale del primo cilindro, avente

raggio di base r=R/2 e altezza h=H/2, con asse coincidente con l'asse del primo cilindro, inizialmente non ruota, e viene messo in contatto con il primo cilindro lungo l'asse (FIGURA 2). Al momento del contatto la velocità del secondo cilindro lungo l'asse è trascurabile, e nel contatto il secondo cilindro resta incollato al

a) Si calcoli la velocità angolare ω_f del sistema dei due cilindri dopo il contatto.

c) Si calcoli il lavoro W svolto dalle forze impulsive durante il contatto tra i due cilindri.

b) Si calcoli l'energia cinetica K_f del sistema dei due cilindri dopo il contatto.

Problema n.3

Si consideri il circuito schematizzato nella FIGURA 3. Valori dei parametri circuitali: $C_1=20~\rm nF$, $C_2=18~\rm nF$, $R_1=50~\Omega$, $R_2=100~\Omega$, $\mathcal{E}=150~V$

- a) Con l'interruttore T chiuso, si calcolino la corrente i a regime che scorre nel circuito e la differenza di potenziale V_2 a regime ai capi del resistore R_2
- b) Si calcoli l'energia potenziale elettrostatica U immagazzinata a regime nel sistema dei due condensatori.
- c) Con il circuito in condizioni di regime, a un certo istante l'interruttore T viene aperto e il sistema di condensatori inizia a scaricarsi. Si calcoli la costante di tempo di scarica τ .

FIGURA 1

FIGURA 2

FIGURA 3

L'esonero scritto prevede la risoluzione in TRE ore, a partire dall'ora comunicata dal docente all'inizio dello svolgimento della prova, dei tre esercizi sopra riportati, potendo consultare solo un formulario personale composto al massimo da 4 facciate di foglio protocollo. I fogli su cui svolgere i calcoli per la risoluzione dei problemi sono forniti dal docente.

<u>Si richiede in ogni caso la consegna di tutti i fogli manoscritti su cui sono stati svolti i calcoli.</u>

Un libro di testo è a disposizione sulla cattedra, portato dal docente.

Lo studente, oltre al foglio di carta, alla penna e a eventuali strumenti per disegno (matite, riga, squadra, compasso), può tenere sul tavolo solo una calcolatrice tascabile non programmabile.