Low-Rank Bandit Methods for High-Dimensional Dynamic Pricing

Jonas Mueller, Vasilis Syrgkanis, Matt Taddy Amazon Microsoft Research Amazon jonasmueller@csail.mit.edu

Summary

- Dynamic pricing \approx online bandit optimization
- Bandit pricing can handle changing (adversarial) environments
- Number of pricing rounds until standard bandits find optimal prices (vanishing regret) depends on # of products
- Observed product demands provide side information if they evolve in a low-rank fashion based on (latent) product features
- We develop bandit pricing algorithms that exploit this
 assumption, whose regret vanishes at a rate that only depends
 on # of product features instead of # of products

Objective

Choose prices for many products to maximize revenue/profit. Update prices over time to reflect changing demand curves.

Setup

- \mathbf{p}_t = vector of prices for N products sold during time-period t
- $\mathbf{q}_t \in \mathbb{R}^N$ = vector of demands for each product in time-period t
- $R_t(\mathbf{p}_t) = \text{total revenue over period } t = \langle \mathbf{q}_t, \mathbf{p}_t \rangle$
- Regret = $\mathbb{E}\left[\sum_{t=1}^{T} R_t(\mathbf{p}^*) R_t(\mathbf{p}_t)\right]$
- \mathbf{p}^* = optimal price vector (chosen in hindsight)

Standard Demand Model

$$\mathbf{q}_t = \mathbf{c}_t - \mathbf{B}_t \mathbf{p}_t + \boldsymbol{\epsilon}_t$$

- \mathbf{B}_t describes how price of products affects demand for other products in round t (asymmetric, positive definite matrix)
- \bullet Can achieve $O(T^{3/4}N^{1/2})$ regret using standard online bandit method to select prices under this model
- Flaxman, Kalai, McMahan (2005): Online convex optimization in the bandit setting: Gradient descent without a gradient
- Idea: Set price $\mathbf{p} + \delta \boldsymbol{\xi}$ instead of \mathbf{p} with $\boldsymbol{\xi} = \text{random unit}$ vector. For $\tilde{R}(\mathbf{p}) := R(\mathbf{p} + \delta \boldsymbol{\xi})$: $\nabla \tilde{R}(\mathbf{p}) = \mathbb{E}[R(\mathbf{p} + \delta \boldsymbol{\xi})\boldsymbol{\xi}]N/\delta$

Product Features

- Let $\mathbf{u}_i = d$ -dimensional features of product i $(d \ll N)$
- Product similarity = $\langle \mathbf{u}_i, \mathbf{u}_i \rangle_{\mathbf{V}_t}$, effect of p_i on $q_i = \mathbf{u}_i^T \mathbf{V}_t \mathbf{u}_i \cdot p_i$

Low-Rank Demand Model

$$\mathbf{q}_t = \mathbf{U}\mathbf{z}_t - \mathbf{U}\mathbf{V}_t\mathbf{U}^T\mathbf{p}_t + \boldsymbol{\epsilon}_t$$

• $\mathbf{U} = N \times d$ matrix, whose rows = product features

Known Product Features

- Algebra $\Longrightarrow R_t(\mathbf{p}) = f_t(\mathbf{x})$ for convex f_t and $\mathbf{x} := \mathbf{U}^T \mathbf{p} \in \mathbb{R}^d$
- Strategy: use bandit algorithm to optimize \mathbf{x}_t w.r.t. f_t , each time selecting prices \mathbf{p}_t via pseudo-inverse s.t. $\mathbf{x}_t = \mathbf{U}^T \mathbf{p}_t$
- Regret = $O(T^{3/4}d^{1/2})$ (does not depend on N)

Unknown Product Features

- Assume orthonormal product features: $\mathbf{U}\mathbf{x} = \mathbf{p}$ for $\mathbf{x} := \mathbf{U}^T\mathbf{p}$
- Previous strategy does not need known \mathbf{U} , only need span(\mathbf{U})
- If $\epsilon_t = 0$, then span(\mathbf{U}) = span($\mathbf{q}_1, \dots, \mathbf{q}_d$)
- When $\epsilon_t \neq 0$, we can estimate span(**U**) via SVD of [$\mathbf{q}_1, \dots, \mathbf{q}_t$]
- Run bandit algorithm to optimize $\mathbf{x}_t = \widehat{\mathbf{U}}^T \mathbf{p}_t$ w.r.t. f_t where span $(\widehat{\mathbf{U}})$ = current estimate of span (\mathbf{U})
- Regret = $O(T^{3/4}d)$ (does not depend on N)

Algorithm 1 Online Pricing Optimization with Latent Features

Input: $\eta, \delta, \alpha > 0$, rank $d \in [1, N]$, initial prices $\mathbf{p}_0 \in \mathcal{S}$ Output: Prices $\mathbf{p}_1, \dots, \mathbf{p}_T$ to maximize overall revenue

Initialize $\widehat{\mathbf{Q}}$ as $N \times d$ matrix of zeros

Initialize $\widehat{\mathbf{U}}$ as random $N \times d$ orthogonal matrix

Set prices to $\widehat{\mathbf{p}}_0 \in \mathcal{S}$ and observe $\mathbf{q}_0(\mathbf{p}_0), R_0(\mathbf{p}_0)$

Define $\mathbf{x}_1 = \widehat{\mathbf{U}}^T \mathbf{p}_0$

for t = 1, ..., T:

 $\widetilde{\mathbf{x}}_t := \mathbf{x}_t + \delta \boldsymbol{\xi}_t, \quad \boldsymbol{\xi}_t \sim \mathsf{Unif}(\{\mathbf{x} \in \mathbb{R}^d : ||\mathbf{x}||_2 = 1\})$

Set prices: $\mathbf{p}_t = \widehat{\mathbf{U}} \widetilde{\mathbf{x}}_t$ and observe $\mathbf{q}_t(\mathbf{p}_t), R_t(\mathbf{p}_t)$ $\mathbf{x}_{t+1} - \text{PROJECTION}(\mathbf{x}_t - nR_t(\mathbf{p}_t) \mathbf{x}_t) \rightarrow (1 - \alpha) \cdot \widehat{\mathbf{I}}^T$

 $\mathbf{x}_{t+1} = \operatorname{PROJECTION}(\mathbf{x}_t - \eta R_t(\mathbf{p}_t)\boldsymbol{\xi}_t \rightarrow (1 - \alpha) \cdot \widehat{\mathbf{U}}^T \mathcal{S})$

 $\widehat{\mathbf{Q}}_{*,j} \leftarrow \frac{1}{k} \mathbf{q}_t + \frac{k-1}{k} \widehat{\mathbf{Q}}_{*,j}$ with $j = 1 + [(t-1) \mod d]$, $k = \lfloor t/d \rfloor$ Set columns of $\widehat{\mathbf{U}}$ as top d left singular vectors of $\widehat{\mathbf{Q}}$

Stationary Demand Model

Evolving Demand Model

