Fórmulas para Avaliação de Desempenho de Processadores

8/2020

Sumário

1	Fundamentos				
	1.1 Taxa e período do $clock$				
	1.2 Tempo de execução				
	1.3 Prefixos do SI e IEC				
2	Speedup 2.1 Speedup calculado com modelo de referência				
	2.1 Speedup calculado com modelo de referência				
3	Ciclos por Instrução (CPI)				
	3.1 Cálculo do CPI Médio				
	3.2 Instruções por ciclo (IPC)				
4	Equação de Desempenho do Processador				
5	Lei de Amdahl				

Essa obra tem a licença Creative Commons "CC0 1.0 Universal".

1 Fundamentos

1.1 Taxa e período do *clock*

$$taxa\ do\ clock = \frac{1}{período\ do\ clock}$$

1.2 Tempo de execução

Em sistemas modernos, processadores geralmente trabalham em várias tarefas simultaneamente. Isso faz com que o tempo aparente de execução de um programa não necessariamente reflita o seu custo computacional ou o desempenho do processador para aquela tarefa. Portanto, considere duas definições:

Tempo real ou decorrido. O tempo total para executar a tarefa específica, de início a fim.

Tempo de CPU. Apenas o tempo em que o processador computa, excluindo tempo de execução de outras tarefas ou espera por recursos, eventos externos e interação do usuário.

O tempo de execução a ser tratado nas próximas seções pode ser um destes, a depender do contexto. Em geral, o tempo de CPU é usado, com exceção de casos em que haja interesse em analisar o desempenho multitarefas do processador.

1.3 Prefixos do Sistema Internacional de Unidades (SI) e *International Electrotechnical Commission* (IEC)

A comunidade científica, por meio do Sistemas Internacional, criou prefixos (constantes numéricas) para facilitar a representação de magnitudes muito grandes ou muito pequenas.

Era comum usar-se os prefixos do SI para potências de 2, dada a proximidade entre $10^3 = 1000$ e $2^{10} = 1024$. No entanto, essa diferença cresce exponencialmente conforme as potências aumentam, tornando os prefixos do SI inconvenientes e imprecisos nesse contexto. Por exemplo, existe um erro de apenas 2,4% entre 2^{10} e 10^3 , porém o erro sobe para 15.3% entre 2^{60} e 10^{18} .

Por esse motivo, houve um esforço (atual padrão IEC 80000-13) pela *International Electrotechnical Commission* para convencionar constantes úteis no contexto da tecnologia da informação. A tabela 1 mostra os prefixos mais usados.

Há situações em que é preferível usar um conjunto de prefixos ao outro, devido à natureza dos valores tratados. Por exemplo:

SI

IEC

- Grandezas das ciências da natureza
- Capacidade de armazenamento

- Largura de banda
- Taxa de transferência
- Tempo

Caso esteja curioso: a letra i em Ki, Mi etc. vem de binary.

Quer um conselho? Não precisa pronunciar os nomes como a IEC definiu, apenas use os símbolos corretos.

Tabela 1: Prefixos do SI vs. IEC.

	SI			IEC	
Nome	Símbolo	Valor	Nome	Símbolo	Valor
yocto	у	10^{-24}	_	_	_
zepto	${f Z}$	10^{-21}			
atto	a	10^{-18}	_		
femto	\mathbf{f}	10^{-15}	_		
pico	p	10^{-12}			
nano	n	10^{-9}	_		
micro	μ	10^{-6}			
mili	m	10^{-3}	_		
kilo	k	10^{3}	kibi	Ki	2^{10}
mega	Μ	10^{6}	mebi	Mi	2^{20}
giga	G	10^{9}	gibi	Gi	2^{30}
tera	${ m T}$	10^{12}	tebi	Ti	2^{40}
peta	Р	10^{15}	pebi	Pi	2^{50}
exa	${ m E}$	10^{18}	exbi	Ei	2^{60}
zetta	${ m Z}$	10^{21}	zebi	Zi	2^{70}
yotta	Y	10^{24}	yobi	Yi	2^{80}

2 Speedup

Lembre-se: speedup é uma medida que varia de acordo com o programa executado.

$$speedup_{A/B} = \frac{tempo \ de \ execução_B}{tempo \ de \ execução_A} \tag{1}$$

Lê-se speedup de A com relação a B. Alternativamente:

$$tempo \ de \ execução_A = \frac{tempo \ de \ execução_B}{speedup_{A/B}}$$

Dada a natureza do cálculo do *speedup*, existe também a seguinte propriedade.

$$speedup_{A/B} = \frac{1}{speedup_{B/A}}$$

2.1 Speedup calculado com modelo de referência

Considere dois processadores, A e B, e um programa P. Deseja-se saber o valor de $speedup_{A/B}$ para P, mas não se sabe os tempos de execução do programa em ambos os processadores.

No entanto, existe um processador, X, tal que $speedup_{A/X}$ e $speedup_{B/X}$ para P são conhecidos. Nesta situação, pode-se aproveitar a seguinte propriedade.

$$\begin{split} speedup_{A/B} &= \frac{tempo~de~execução_B}{tempo~de~execução_A} \\ &= \frac{tempo~de~execução_X}{speedup_{B/X}} \times \frac{speedup_{A/X}}{tempo~de~execução_X} \\ &= \frac{speedup_{A/X}}{speedup_{B/X}} \end{split}$$

Isso significa que o *speedup* de um processador com relação a outro pode ser obtido com apenas os respectivos *speedups* destes com relação a um terceiro processador qualquer.

3 Ciclos por Instrução (CPI)

Lembre-se: o CPI varia de acordo com o tipo de instrução executada.

$$n^{\varrho}$$
 de ciclos gastos = n^{ϱ} de instruções executadas × CPI (2)

3.1 Cálculo do CPI Médio

Lembre-se: o CPI médio varia de acordo com o código executado. Considere:

- C_i : n^0 de instruções do tipo i executadas
- \bullet CPI_i : nº de ciclos gastos com uma instrução do tipo i
- n^{ϱ} de ciclos gastos = $\sum_{\forall i} (C_i \times CPI_i)$
- n^{ϱ} de instruções executadas = $\sum_{\forall i} C_i$

$$CPI = \frac{n^{\varrho} \ de \ ciclos \ gastos}{n^{\varrho} \ de \ instruções \ executadas} = \frac{\sum_{\forall i} (C_i \times CPI_i)}{\sum_{\forall i} C_i}$$

Note que a equação acima é apenas a média ponderada dos CPI de cada tipo de instrução, onde os pesos são as proporções (%) de cada tipo de instrução no código executado.

3.2 Instruções por ciclo (IPC)

Além do CPI, pode-se também analisar o desempenho considerando a razão IPC. A escolha é meramente arbitrária, e por vezes uma alternativa pode ser mais intuitiva que a outra.

As equações mudam um pouco com IPC, mas basta lembrar que este é o inverso do CPI.

$$IPC = \frac{1}{CPI}$$

4 Equação de Desempenho do Processador

Lembre-se: o processador executa vários trechos de código ao mesmo tempo, sejam do seu programa ou não. Portanto, o tempo de CPU não inclui a execução de outros programas nem a espera por dispositivos de entrada e saída.

$$tempo_{CPU} = n^{o} \ de \ ciclos \ gastos \times período \ do \ clock$$

$$= \frac{n^{o} \ de \ ciclos \ gastos}{taxa \ do \ clock}$$
(3)

Substituindo a equação 2 em 3, obtemos

$$tempo_{CPU} = n^{\varrho} \ de \ instruções \ executadas \times CPI \times período \ do \ clock$$

$$= \frac{n^{\varrho} \ de \ instruções \ executadas \times CPI}{taxa \ do \ clock}$$
 (4)

5 Lei de Amdahl

Considere:

- $f \in [0,1]$: fração do tempo de execução original afetada pela melhoria
- p: proporção da melhoria em comparação com o mesmo trecho da execução original

tempo com melhoria = tempo sem melhoria
$$_{\tilde{nao}}$$
 afetado + $\frac{tempo sem melhoria}{proporção da melhoria}$ (5)
$$= tempo sem melhoria \times (1 - f) + \frac{tempo sem melhoria \times f}{p}$$

Manipulando-se a equação 5 com o tempo de execução original, encontra-se uma nova equação.

$$speedup = \frac{1}{(1-f) + \frac{f}{p}} \tag{6}$$