Bayesian Statistics III/IV (MATH3361/4071)

Michaelmas term 2021

Homework 2: Conjugate priors and Jeffreys priors

Lecturer: Georgios Karagiannis

georgios.karagiannis@durham.ac.uk

For Formative assessment, submit the solutions of the parts 1, 2, and 3 from the Exercise 1, and the solution of the Exercise 2.

Exercise 1. $(\star\star)$ Let $x=(x_1,...,x_n)$ be observables. Consider a Bayesian model such as

$$\begin{cases} x_i | \lambda & \stackrel{\text{iid}}{\sim} \operatorname{Pn}(\lambda), \ \forall i = 1, ..., n \\ \lambda & \sim \Pi(\lambda) \end{cases}$$

- **Hint-1** Poisson distribution $x \sim \text{Pn}(\lambda)$ has PMF: $\text{Pn}(x|\lambda) = \frac{1}{x!}\lambda^x \exp(-\lambda)1_{\mathbb{N}}(x)$, where $\mathbb{N} = \{0, 1, 2, ...\}$ and $\lambda > 0$.
- **Hint-2** Gamma distribution $x \sim \text{Ga}(a,b)$ has PDF: $\text{Ga}(x|a,b) = \frac{b^a}{\Gamma(a)} x^{a-1} \exp(-bx) 1_{(0,\infty)}(x)$, with a>0 and b>0.
- **Hint-2** Negative Binomial distribution $x \sim \text{Nb}(r,\theta)$ has PMF: $\text{Nb}(x|r,\theta) = {r+x-1 \choose r-1}\theta^r(1-\theta)^x1_{\mathbb{N}}(x)$ with $\theta \in (0,1)$, $r \in \mathbb{N} \{0\}$, and $\mathbb{N} = \{0,1,2,\ldots\}$.
 - 1. Compute the likelihood in the aforesaid Bayesian model.
 - 2. Show that the sampling distribution is a member of the exponential family.
 - 3. Specify the PDF of the conjugate prior distribution $\Pi(\lambda)$ of λ , and identify the parametric family of distributions as $\lambda \sim \text{Ga}(a,b)$, with a>0, and b>0. While you are deriving the conjugate prior distribution of λ , discuss which of the prior hyper-parameters can be considered as the 'strength of the prior information and which can be considered as summarizing the prior information.
 - 4. Compute the PDF of the posterior distribution of λ , identify the posterior distribution as a Gamma distribution $Ga(\tilde{a}, \tilde{b})$, and compute the posterior hyper-parameters \tilde{a} , and \tilde{b} .
 - 5. Compute the PMF of the predictive distribution of a future outcome $y = x_{n+1}$, identify the name of the resulting predictive distribution, and compute its parameters.

Solution.

Exercise 2. $(\star\star)$ Assume observation x sampled from a Maxwell distribution with density

$$f(x|\theta) = \sqrt{\frac{2}{\pi}}\theta^{3/2}x^2 \exp(-\frac{1}{2}\theta x^2).$$

Find the Jeffreys prior density for the parameter θ .

Solution.