## Nanyang Technological University School of Electrical & Electronic Engineering E2002 Analog Electronics – Tutorial 5

1. Identify the region of operation for the following circuits. What is the  $V_C$ ,  $V_E$ ,  $I_B$ ,  $I_C$  and  $I_E$  in each case. If active, what is the collector voltage? Assume  $|V_{BE}| = 0.7 \text{ V}$  and  $\beta = 100$ .

(Ans: (a) Saturation,  $V_C = 1.4 \text{ V}$ ,  $V_E = 1.7 \text{ V}$ ,  $I_B = 0.29 \text{ mA}$ ,  $I_C = 0.14 \text{ mA}$ ,  $I_E = 0.43 \text{ mA}$ ; (b) Active,  $V_C = -13.68 \text{ V}$ ,  $V_E = -20.7 \text{ V}$ ,  $I_B = 18.4 \mu\text{A}$ ,  $I_C = 1.86 \text{ mA}$ ,  $I_E = 1.86 \text{ mA}$ )



Figure 1

2. A common-emitter amplifier circuit is shown in Figure 2. Assume that the capacitors have infinite value,  $\beta = 100$ ,  $V_{CC} = V_{EE} = 15$  V,  $R_I = 750$   $\Omega$ ,  $R_1 = R_2 = 200$  k $\Omega$ ,  $R_L = 100$  k $\Omega$ ,  $R_E = 280$  k $\Omega$ , and  $R_C = 100$  k $\Omega$ . Calculate the DC operating point of the amplifier. (Ans:  $I_C = 50$   $\mu A$ ,  $V_{EC} = 10.86$  V).

Calculate the dc power dissipation in each element in the amplifier circuit. Compare the result to the total power delivered by the sources.

(Ans:  $P_{R1} = 1.125$  mW,  $P_{R2} = 1.125$  mW,  $P_{Rc} = 0.25$  mW,  $P_{RE} = 0.71$  mW,  $P_{BJT} = 0.54$  mW.  $P_S = 3.76$  mW)



Figure 2