Informed Search

Murray Shanahan

Overview

- Greedy best-first search
- The A* algorithm

Tree with Costs and Estimates

Greedy Best-first Search

Greedy Best-first 2

Greedy Best-first 4

Properties of Greedy Best-first

- Not guaranteed to find optimal solution
- Not guaranteed to find a solution if one exists, because it can get stuck in a loop
- Suppose A is the initial state and E is the goal
- Greedy best-first will go to node B, then oscillate forever between nodes B and D
- It will never try C

The A* Algorithm

The A* Heuristic

 The A* algorithm uses a heuristic (an evaluation function) that combines the cost of the path to a node with the estimated cost from that node to the goal

A* Algorithm 2

A* Algorithm 4

A* Algorithm 7

Properties of A*

- Guaranteed to find a solution if one exists, as long as there are only finitely many nodes n with f(n) ≤ f(goal)
- Guaranteed to find the optimal solution
- But must use an admissible heuristic
- h(n) is admissible iff for all nodes n, h(n) ≤ h*(n), where h*(n) is the true cost to the goal from n
- Example: distance as crow flies is an admissible heuristic, because it is always less-than-or-equal to the true distance travelled

Optimality of A*

- Goal node G found by A* is guaranteed to have the lowest path cost C
- Proof (by contradiction):
 - Suppose A* selects some goal node G2 such that g(G2) > C
 - Let n be an unexpanded node on a lowest cost path to a goal node
 - h is admissible, so $f(n) = g(n) + h(n) \le C$
 - But the path to G2 is sub-optimal, so f(G2) = g(G2)+0 > C
 - So f(n) < f(G2)
 - Therefore A* must select n before G2

The Proof in a Picture

