Lecture 5

September 6, 2018

► Recall the least squares estimator defined by $\hat{\beta} = (X^T X)^{-1} X^T Y$.

- ► Recall the least squares estimator defined by $\hat{\beta} = (X^T X)^{-1} X^T Y$.
- ▶ This estimates β in the linear model $Y = X\beta + e$ where $\mathbb{E}(e|X) = 0$.

- ► Recall the least squares estimator defined by $\hat{\beta} = (X^T X)^{-1} X^T Y$.
- ▶ This estimates β in the linear model $Y = X\beta + e$ where $\mathbb{E}(e|X) = 0$.
- We saw in the last class that $\hat{\beta}$ is linear in Y and conditionally unbiased i.e $\mathbb{E}(\hat{\beta}) = \beta$.

- ► Recall the least squares estimator defined by $\hat{\beta} = (X^T X)^{-1} X^T Y$.
- This estimates β in the linear model $Y = X\beta + e$ where $\mathbb{E}(e|X) = 0$.
- We saw in the last class that $\hat{\beta}$ is linear in Y and conditionally unbiased i.e $\mathbb{E}(\hat{\beta}) = \beta$.
- ▶ Under the additional assumption of homoskedasticity i.e., $Cov(e|X) = \sigma^2 I_n$, we also calculated the covariance matrix of $\hat{\beta}$ to be $Cov(\hat{\beta}) = \sigma^2 (X^T X)^{-1}$.

▶ The Gauss-Markov Theorem states that $\hat{\beta}$ is BLUE (Best Linear Unbiased Estimator) under homoskedasticity.

Four key words, cannot delete anyone

- The Gauss-Markov Theorem states that $\hat{\beta}$ is BLUE (Best Linear Unbiased Estimator) under homoskedasticity.
- ► This means that $\hat{\beta}$ is the "best" estimator among all linear and unbiased estimators of β .

- ▶ The Gauss-Markov Theorem states that $\hat{\beta}$ is BLUE (Best Linear Unbiased Estimator) under homoskedasticity.
- ► This means that $\hat{\beta}$ is the "best" estimator among all linear and unbiased estimators of β .
- ▶ Here "best" is in terms of variance. This implies that $\hat{\beta}_i$ has the smallest variance among all linear and unbiased estimators of β_i for every i.

- ▶ The Gauss-Markov Theorem states that $\hat{\beta}$ is BLUE (Best Linear Unbiased Estimator) under homoskedasticity.
- ► This means that $\hat{\beta}$ is the "best" estimator among all linear and unbiased estimators of β .
- ▶ Here "best" is in terms of variance. This implies that $\hat{\beta}_i$ has the smallest variance among all linear and unbiased estimators of β_i for every i.
- ▶ The Gauss-Markov theorem is actually quite simple to prove. Suppose $\tilde{\beta} = AY$ is any other linear unbiased estimator for β .

▶ We get back the least squares estimator if $A = (X^T X)^{-1} X^T$ so let us assume that $B := A - (X^T X)^{-1} X^T \neq 0$.

- ▶ We get back the least squares estimator if $A = (X^T X)^{-1} X^T$ so let us assume that $B := A (X^T X)^{-1} X^T \neq 0$.
- Now the expectation of $\tilde{\beta}$ equals $\beta + BX\beta$.

- ▶ We get back the least squares estimator if $A = (X^T X)^{-1} X^T$ so let us assume that $B := A (X^T X)^{-1} X^T \neq 0$.
- Now the expectation of $\tilde{\beta}$ equals $\beta + BX\beta$.
- ▶ Because $\tilde{\beta}$ is unbiased, this must mean that BX = 0.

- ▶ We get back the least squares estimator if $A = (X^T X)^{-1} X^T$ so let us assume that $B := A (X^T X)^{-1} X^T \neq 0$.
- Now the expectation of $\tilde{\beta}$ equals $\beta + BX\beta$.
- ▶ Because $\tilde{\beta}$ is unbiased, this must mean that BX = 0.
- ▶ The covariance matrix of $\tilde{\beta}$ is

- ▶ We get back the least squares estimator if $A = (X^T X)^{-1} X^T$ so let us assume that $B := A (X^T X)^{-1} X^T \neq 0$.
- Now the expectation of $\tilde{\beta}$ equals $\beta + BX\beta$.
- ▶ Because $\tilde{\beta}$ is unbiased, this must mean that BX = 0.
- ▶ The covariance matrix of $\tilde{\beta}$ is

$$Cov(\tilde{\beta}) = Cov(AY)$$

- ▶ We get back the least squares estimator if $A = (X^T X)^{-1} X^T$ so let us assume that $B := A (X^T X)^{-1} X^T \neq 0$.
- Now the expectation of $\tilde{\beta}$ equals $\beta + BX\beta$.
- ▶ Because $\tilde{\beta}$ is unbiased, this must mean that BX = 0.
- ▶ The covariance matrix of $\tilde{\beta}$ is

$$Cov(\tilde{\beta}) = Cov(AY)$$

= $ACov(Y)A^T$

- ▶ We get back the least squares estimator if $A = (X^T X)^{-1} X^T$ so let us assume that $B := A (X^T X)^{-1} X^T \neq 0$.
- Now the expectation of $\tilde{\beta}$ equals $\beta + BX\beta$.
- ▶ Because $\tilde{\beta}$ is unbiased, this must mean that BX = 0.
- ▶ The covariance matrix of $\tilde{\beta}$ is

$$Cov(\tilde{\beta}) = Cov(AY)$$

$$= ACov(Y)A^{T}$$

$$= [B + (X^{T}X)^{-1}X^{T}][\sigma^{2}I_{n}][B + (X^{T}X)^{-1}X^{T}]^{T}$$

- ▶ We get back the least squares estimator if $A = (X^T X)^{-1} X^T$ so let us assume that $B := A (X^T X)^{-1} X^T \neq 0$.
- Now the expectation of $\tilde{\beta}$ equals $\beta + BX\beta$.
- ▶ Because $\tilde{\beta}$ is unbiased, this must mean that BX = 0.
- ▶ The covariance matrix of $\tilde{\beta}$ is

$$Cov(\tilde{\beta}) = Cov(AY)$$

$$= ACov(Y)A^{T}$$

$$= [B + (X^{T}X)^{-1}X^{T}][\sigma^{2}I_{n}][B + (X^{T}X)^{-1}X^{T}]^{T}$$

$$= \sigma^{2}[B + (X^{T}X)^{-1}X^{T}][B^{T} + X(X^{T}X)^{-1}]$$

- ▶ We get back the least squares estimator if $A = (X^T X)^{-1} X^T$ so let us assume that $B := A (X^T X)^{-1} X^T \neq 0$.
- Now the expectation of $\tilde{\beta}$ equals $\beta + BX\beta$.
- ▶ Because $\tilde{\beta}$ is unbiased, this must mean that BX = 0.
- ▶ The covariance matrix of $\tilde{\beta}$ is

$$\begin{array}{lll} Cov(\tilde{\beta}) & = & Cov(AY) \\ & = & ACov(Y)A^T \\ & = & [B + (X^TX)^{-1}X^T][\sigma^2I_n][B + (X^TX)^{-1}X^T]^T \\ & = & \sigma^2[B + (X^TX)^{-1}X^T][B^T + X(X^TX)^{-1}] \\ & = & \sigma^2[(X^TX)^{-1} + BX(X^TX)^{-1} + (X^TX)^{-1}X^TB^T + BB^T] \end{array}$$

ightharpoonup Because BX = 0, we deduce from the previous expression that

$$Cov(\tilde{\beta}) = \sigma^2(X^TX)^{-1} + \sigma^2BB^T.$$

ightharpoonup Because BX = 0, we deduce from the previous expression that

$$Cov(\tilde{\beta}) = \sigma^2(X^TX)^{-1} + \sigma^2BB^T.$$

► Recall that $\sigma^2(X^TX)^{-1}$ is the covariance matrix of the least squares estimator $\hat{\beta}$.

ightharpoonup Because BX = 0, we deduce from the previous expression that

$$Cov(\tilde{\beta}) = \sigma^2(X^TX)^{-1} + \sigma^2BB^T.$$

▶ Recall that $\sigma^2(X^TX)^{-1}$ is the covariance matrix of the least squares estimator $\hat{\beta}$. We thus have

$$Cov(\tilde{\beta}) = Cov(\hat{\beta}) + \sigma^2 BB^T.$$

ightharpoonup Because BX = 0, we deduce from the previous expression that

$$Cov(\tilde{\beta}) = \sigma^2(X^TX)^{-1} + \sigma^2BB^T.$$

Recall that $\sigma^2(X^TX)^{-1}$ is the covariance matrix of the least squares estimator $\hat{\beta}$. We thus have

$$Cov(\tilde{\beta}) = Cov(\hat{\beta}) + \sigma^2 BB^T.$$

It is important to note that the Gauss-Markov theorem requires the assumption of homoskedasticity.

Note first that X^TX is not invertible if and only if there exists a column of X that can be written as the linear combination of all the other columns.

- Note first that X^TX is not invertible if and only if there exists a column of X that can be written as the linear combination of all the other columns.
- ▶ To see this, just note that X^TX is non-invertible if and only if there exists a non-zero vector w for which $X^TXw = 0$ which is equivalent to Xw = 0.

- Note first that X^TX is not invertible if and only if there exists a column of X that can be written as the linear combination of all the other columns.
- ▶ To see this, just note that X^TX is non-invertible if and only if there exists a non-zero vector w for which $X^TXw = 0$ which is equivalent to Xw = 0.
- This is because

$$X^TXw = 0 \Rightarrow w^TX^TXw = 0 \Rightarrow ||Xw||_2^2 = 0 \rightarrow Xw = 0.$$

- Note first that X^TX is not invertible if and only if there exists a column of X that can be written as the linear combination of all the other columns.
- ▶ To see this, just note that X^TX is non-invertible if and only if there exists a non-zero vector w for which $X^TXw = 0$ which is equivalent to Xw = 0.
- This is because

$$X^TXw = 0 \Rightarrow w^TX^TXw = 0 \Rightarrow ||Xw||_2^2 = 0 \rightarrow Xw = 0.$$

In the case when X^TX is not invertible, we obviously cannot solve the normal equations $X^TXb = X^TY$ as $b = (X^TX)^{-1}X^TY$.

- Note first that X^TX is not invertible if and only if there exists a column of X that can be written as the linear combination of all the other columns.
- ▶ To see this, just note that X^TX is non-invertible if and only if there exists a non-zero vector w for which $X^TXw = 0$ which is equivalent to Xw = 0.
- This is because

$$X^TXw = 0 \Rightarrow w^TX^TXw = 0 \Rightarrow ||Xw||_2^2 = 0 \rightarrow Xw = 0.$$

- In the case when X^TX is not invertible, we obviously cannot solve the normal equations $X^TXb = X^TY$ as $b = (X^TX)^{-1}X^TY$.
- ▶ So how do we estimate β here?

- Note first that X^TX is not invertible if and only if there exists a column of X that can be written as the linear combination of all the other columns.
- ▶ To see this, just note that X^TX is non-invertible if and only if there exists a non-zero vector w for which $X^TXw = 0$ which is equivalent to Xw = 0.
- This is because

$$X^TXw = 0 \Rightarrow w^TX^TXw = 0 \Rightarrow ||Xw||_2^2 = 0 \rightarrow Xw = 0.$$

- In the case when X^TX is not invertible, we obviously cannot solve the normal equations $X^TXb = X^TY$ as $b = (X^TX)^{-1}X^TY$.
- ▶ So how do we estimate β here?
- It turns out that even when X^TX is non-invertible, the normal equations have a solution.

▶ This is because the column space of X^TX (denoted by $\mathcal{C}(X^TX)$) always equals the column space of X^T (denoted by $\mathcal{C}(X^T)$).

- ▶ This is because the column space of X^TX (denoted by $\mathcal{C}(X^TX)$) always equals the column space of X^T (denoted by $\mathcal{C}(X^T)$).
- ▶ To see why $\mathcal{C}(X^TX) = \mathcal{C}(X^T)$, note that it is enough to prove that $\mathcal{C}(X^TX)^{\perp} = \mathcal{C}(X^T)^{\perp}$ where $\mathcal{C}(X^TX)^{\perp}$ denotes the orthogonal complement of $\mathcal{C}(X^TX)$ (similarly $\mathcal{C}(X^T)^{\perp}$ denotes the orthogonal complement of $\mathcal{C}(X^T)$).

- ▶ This is because the column space of X^TX (denoted by $\mathcal{C}(X^TX)$) always equals the column space of X^T (denoted by $\mathcal{C}(X^T)$).
- ▶ To see why $\mathcal{C}(X^TX) = \mathcal{C}(X^T)$, note that it is enough to prove that $\mathcal{C}(X^TX)^{\perp} = \mathcal{C}(X^T)^{\perp}$ where $\mathcal{C}(X^TX)^{\perp}$ denotes the orthogonal complement of $\mathcal{C}(X^TX)$ (similarly $\mathcal{C}(X^T)^{\perp}$ denotes the orthogonal complement of $\mathcal{C}(X^T)$).
- Now a vector $u \in \mathcal{C}(X^TX)^{\perp}$ if and only if $u^TX^TX = 0$

- ▶ This is because the column space of X^TX (denoted by $\mathcal{C}(X^TX)$) always equals the column space of X^T (denoted by $\mathcal{C}(X^T)$).
- ▶ To see why $\mathcal{C}(X^TX) = \mathcal{C}(X^T)$, note that it is enough to prove that $\mathcal{C}(X^TX)^{\perp} = \mathcal{C}(X^T)^{\perp}$ where $\mathcal{C}(X^TX)^{\perp}$ denotes the orthogonal complement of $\mathcal{C}(X^TX)$ (similarly $\mathcal{C}(X^T)^{\perp}$ denotes the orthogonal complement of $\mathcal{C}(X^T)$).
- Now a vector $u \in \mathcal{C}(X^TX)^{\perp}$ if and only if $u^TX^TX = 0$

- ▶ This is because the column space of X^TX (denoted by $\mathcal{C}(X^TX)$) always equals the column space of X^T (denoted by $\mathcal{C}(X^T)$).
- ▶ To see why $\mathcal{C}(X^TX) = \mathcal{C}(X^T)$, note that it is enough to prove that $\mathcal{C}(X^TX)^{\perp} = \mathcal{C}(X^T)^{\perp}$ where $\mathcal{C}(X^TX)^{\perp}$ denotes the orthogonal complement of $\mathcal{C}(X^TX)$ (similarly $\mathcal{C}(X^T)^{\perp}$ denotes the orthogonal complement of $\mathcal{C}(X^T)$).
- Now a vector $u \in \mathcal{C}(X^TX)^{\perp}$ if and only if $u^TX^TX = 0$ which is the same as $u^TX^T = 0$ i.e., $u \in \mathcal{C}(X^T)$.

- ▶ This is because the column space of X^TX (denoted by $\mathcal{C}(X^TX)$) always equals the column space of X^T (denoted by $\mathcal{C}(X^T)$).
- ▶ To see why $\mathcal{C}(X^TX) = \mathcal{C}(X^T)$, note that it is enough to prove that $\mathcal{C}(X^TX)^{\perp} = \mathcal{C}(X^T)^{\perp}$ where $\mathcal{C}(X^TX)^{\perp}$ denotes the orthogonal complement of $\mathcal{C}(X^TX)$ (similarly $\mathcal{C}(X^T)^{\perp}$ denotes the orthogonal complement of $\mathcal{C}(X^T)$).
- Now a vector $u \in \mathcal{C}(X^TX)^{\perp}$ if and only if $u^TX^TX = 0$ which is the same as $u^TX^T = 0$ i.e., $u \in \mathcal{C}(X^T)$.
- ▶ Because $C(X^TX) = C(X^T)$, the normal equations $X^TXb = X^TY$ always have a solution

- ▶ This is because the column space of X^TX (denoted by $\mathcal{C}(X^TX)$) always equals the column space of X^T (denoted by $\mathcal{C}(X^T)$).
- ▶ To see why $\mathcal{C}(X^TX) = \mathcal{C}(X^T)$, note that it is enough to prove that $\mathcal{C}(X^TX)^{\perp} = \mathcal{C}(X^T)^{\perp}$ where $\mathcal{C}(X^TX)^{\perp}$ denotes the orthogonal complement of $\mathcal{C}(X^TX)$ (similarly $\mathcal{C}(X^T)^{\perp}$ denotes the orthogonal complement of $\mathcal{C}(X^T)$).
- Now a vector $u \in \mathcal{C}(X^TX)^{\perp}$ if and only if $u^TX^TX = 0$ which is the same as $u^TX^T = 0$ i.e., $u \in \mathcal{C}(X^T)$.
- ▶ Because $\mathcal{C}(X^TX) = \mathcal{C}(X^T)$, the normal equations $X^TXb = X^TY$ always have a solution (because $X^TY \in \mathcal{C}(X^T) = \mathcal{C}(X^TX)$, we can always write X^TY as X^TXb for some b).

► However, when X^TX is non-invertible, the normal equations will have infinitely many solutions.

▶ However, when X^TX is non-invertible, the normal equations will have infinitely many solutions. In this case, we shall call any solution of $X^TXb = X^TY$ a least squares estimator of β .

- ► However, when X^TX is non-invertible, the normal equations will have infinitely many solutions. In this case, we shall call any solution of $X^TXb = X^TY$ a least squares estimator of β.
- ▶ When X^TX is non-invertible, there will be infinitely many least squares estimators for β .

- ▶ However, when X^TX is non-invertible, the normal equations will have infinitely many solutions. In this case, we shall call any solution of $X^TXb = X^TY$ a least squares estimator of β .
- ▶ When X^TX is non-invertible, there will be infinitely many least squares estimators for β .
- It might seem strange to have infinitely many least squares estimators. It turns out however that when X^TX is non-invertible, estimation of β is not a well-defined problem.

- ▶ However, when X^TX is non-invertible, the normal equations will have infinitely many solutions. In this case, we shall call any solution of $X^TXb = X^TY$ a least squares estimator of β .
- ▶ When X^TX is non-invertible, there will be infinitely many least squares estimators for β .
- It might seem strange to have infinitely many least squares estimators. It turns out however that when X^TX is non-invertible, estimation of β is not a well-defined problem.
- ▶ To see this, note first that if X_{i^*} denotes the ith row of X, then the ith observation Y_i can be written as $Y_i = X_{i^*}\beta + e_i$. We therefore only have data on the linear combinations $X_{1^*}\beta, \ldots, X_{n^*}\beta$.

- ▶ However, when X^TX is non-invertible, the normal equations will have infinitely many solutions. In this case, we shall call any solution of $X^TXb = X^TY$ a least squares estimator of β .
- ▶ When X^TX is non-invertible, there will be infinitely many least squares estimators for β .
- It might seem strange to have infinitely many least squares estimators. It turns out however that when X^TX is non-invertible, estimation of β is not a well-defined problem.
- To see this, note first that if X_{i^*} denotes the ith row of X, then the ith observation Y_i can be written as $Y_i = X_{i^*}\beta + e_i$. We therefore only have data on the linear combinations $X_{1^*}\beta, \ldots, X_{n^*}\beta$.
- Therefore, we can only estimate a linear function $\lambda^T \beta$ if the vector λ can be written as a linear combination of the rows of X.

The previous discussion motivates the following definition of estimability:

The previous discussion motivates the following definition of estimability:

Definition

The previous discussion motivates the following definition of estimability:

Definition

A linear function $\lambda^T \beta$ of β is said to be estimable if the vector λ is a linear combination of the rows of X.

▶ Equivalently, we say that $\lambda^T \beta$ is estimable if and only if $\lambda \in C(X^T)$.

The previous discussion motivates the following definition of estimability:

Definition

- ▶ Equivalently, we say that $\lambda^T \beta$ is estimable if and only if $\lambda \in C(X^T)$.
- ▶ Because $C(X^T) = C(X^TX)$, estimability of $\lambda^T \beta$ is further equivalent to $\lambda \in C(X^TX)$.

The previous discussion motivates the following definition of estimability:

Definition

- ▶ Equivalently, we say that $\lambda^T \beta$ is estimable if and only if $\lambda \in C(X^T)$.
- ▶ Because $C(X^T) = C(X^TX)$, estimability of $\lambda^T \beta$ is further equivalent to $\lambda \in C(X^TX)$.
- It therefore only makes sense to estimate $\lambda \beta$ if $\lambda \in C(X^T X)$.

The previous discussion motivates the following definition of estimability:

Definition

- ▶ Equivalently, we say that $\lambda^T \beta$ is estimable if and only if $\lambda \in C(X^T)$.
- ▶ Because $C(X^T) = C(X^TX)$, estimability of $\lambda^T \beta$ is further equivalent to $\lambda \in C(X^TX)$.
- ▶ It therefore only makes sense to estimate $\lambda\beta$ if $\lambda \in C(X^TX)$.
- ▶ If X^TX is invertible, then every $\lambda^T\beta$ is estimable.

The previous discussion motivates the following definition of estimability:

Definition

- ▶ Equivalently, we say that $\lambda^T \beta$ is estimable if and only if $\lambda \in C(X^T)$.
- ▶ Because $C(X^T) = C(X^TX)$, estimability of $\lambda^T \beta$ is further equivalent to $\lambda \in C(X^TX)$.
- ▶ It therefore only makes sense to estimate $\lambda\beta$ if $\lambda \in C(X^TX)$.
- ▶ If X^TX is invertible, then every $\lambda^T\beta$ is estimable.
- ▶ If X^TX is non-invertible, then not every $\lambda^T\beta$ is estimable.

▶ **Result:** If $\lambda^T \beta$ is estimable, then $\lambda^T \hat{\beta}_{ls}$ is the same for every solution $\hat{\beta}_{ls}$ of the normal equations. In other words, the least squares estimate of $\lambda^T \beta$ is unique.

- ▶ **Result:** If $\lambda^T \beta$ is estimable, then $\lambda^T \hat{\beta}_{ls}$ is the same for every solution $\hat{\beta}_{ls}$ of the normal equations. In other words, the least squares estimate of $\lambda^T \beta$ is unique.
- ▶ **Proof.** Since $\lambda^T \beta$ is estimable, the vector λ lies in the column space of $X^T X$ and hence $\lambda = X^T X u$ for some vector u.

- ▶ **Result:** If $\lambda^T \beta$ is estimable, then $\lambda^T \hat{\beta}_{ls}$ is the same for every solution $\hat{\beta}_{ls}$ of the normal equations. In other words, the least squares estimate of $\lambda^T \beta$ is unique.
- ▶ **Proof.** Since $\lambda^T \beta$ is estimable, the vector λ lies in the column space of $X^T X$ and hence $\lambda = X^T X u$ for some vector u. Therefore,

$$\lambda^T \hat{\beta}_{ls} = u^T X^T X \hat{\beta}_{ls}$$

- ▶ **Result:** If $\lambda^T \beta$ is estimable, then $\lambda^T \hat{\beta}_{ls}$ is the same for every solution $\hat{\beta}_{ls}$ of the normal equations. In other words, the least squares estimate of $\lambda^T \beta$ is unique.
- ▶ **Proof.** Since $\lambda^T \beta$ is estimable, the vector λ lies in the column space of $X^T X$ and hence $\lambda = X^T X u$ for some vector u. Therefore,

$$\lambda^T \hat{\beta}_{ls} = u^T X^T X \hat{\beta}_{ls} = u^T X^T Y,$$

- ▶ **Result:** If $\lambda^T \beta$ is estimable, then $\lambda^T \hat{\beta}_{ls}$ is the same for every solution $\hat{\beta}_{ls}$ of the normal equations. In other words, the least squares estimate of $\lambda^T \beta$ is unique.
- ▶ **Proof.** Since $\lambda^T \beta$ is estimable, the vector λ lies in the column space of $X^T X$ and hence $\lambda = X^T X u$ for some vector u. Therefore,

$$\lambda^T \hat{\beta}_{ls} = u^T X^T X \hat{\beta}_{ls} = u^T X^T Y,$$

where the last equality follows from the fact that $\hat{\beta}_{ls}$ satisfies the normal equations.

- ▶ **Result:** If $\lambda^T \beta$ is estimable, then $\lambda^T \hat{\beta}_{ls}$ is the same for every solution $\hat{\beta}_{ls}$ of the normal equations. In other words, the least squares estimate of $\lambda^T \beta$ is unique.
- ▶ **Proof.** Since $\lambda^T \beta$ is estimable, the vector λ lies in the column space of $X^T X$ and hence $\lambda = X^T X u$ for some vector u. Therefore,

$$\lambda^T \hat{\beta}_{ls} = u^T X^T X \hat{\beta}_{ls} = u^T X^T Y,$$

where the last equality follows from the fact that $\hat{\beta}_{ls}$ satisfies the normal equations. Since u only depends on λ , this proves that $\lambda^T \hat{\beta}_{ls}$ does not depend on the particular choice of the solution $\hat{\beta}_{ls}$ of the normal equations.

The situation when X^TX is non-invertible can be summarized as follows:

The situation when X^TX is non-invertible can be summarized as follows:

There are infinitely many solutions of the normal equations $X^TXb = X^TY$.

The situation when X^TX is non-invertible can be summarized as follows:

- There are infinitely many solutions of the normal equations $X^TXb = X^TY$.
- Not every linear combination $\lambda^T \beta$ can be estimated from regression data. We say that $\lambda^T \beta$ is estimable if and only if $\lambda \in \mathcal{C}(X^T) = \mathcal{C}(X^T X)$.

The situation when X^TX is non-invertible can be summarized as follows:

- There are infinitely many solutions of the normal equations $X^TXb = X^TY$.
- Not every linear combination $\lambda^T \beta$ can be estimated from regression data. We say that $\lambda^T \beta$ is estimable if and only if $\lambda \in \mathcal{C}(X^T) = \mathcal{C}(X^T X)$.
- ▶ When $\lambda^T \beta$ is estimable, the value $\lambda^T \hat{\beta}_{ls}$ is the same for every solution $\hat{\beta}_{ls}$ of the normal equations $X^T Xb = X^T Y$.