1.3 – More Solving and Factoring

Solving Quadratics by Factoring

Solve x = ...

With quadratics there will be two possible solutions for x. These represent the points where the parabola crosses the xaxis. They are also called **roots** or **zeros**.

Ex.1 Solve

b.
$$\frac{m^2}{m} - \frac{7m}{m} = 0$$
 $m(m-7) = 6$
 $m = 7$
 $m = 7$

More Factoring & Special Cases

Ex.2 Factor the following

a.
$$\frac{7m^3n^2 - 14m^2n^3}{7m^n} - \frac{21m^5n}{7m^n}$$

b.
$$6x^2 - xy - 35y^2$$

$$(6x - 15y) (6x + 14y)$$

$$(2x - 5) (3x + 7)$$

c.
$$6a^{2}(x-y) + 13a(x-y) - 5(x-y)$$

$$(x-y) \frac{-30}{(6a^{2}+13a-5)} \frac{-30}{(6a+15)(6a-2)}$$

$$\frac{36}{(6a+5)(3a-1)}$$

$$-(x-y) (2a+5) (3a-1)$$

$$= 2 \times (7x+7y) - 5y(3x+7y)$$

$$= (3x+7)(2x-5y)$$

$$(y-4)$$

$$= (y-4)^2 = 36$$

$$(y-4+6)(y-4-6)$$

$$= (y+2)(y-10)$$

e.
$$27u - 90ut + 75ut^{2}$$
 (5)
$$3u \left(25 + \frac{2}{3} \cdot 30 + 9 \right)$$

$$\frac{(25t + 15)(25t + 15)}{5255}$$

$$34 (5t + 3) (5t + 3)$$

$$3u \left(5t + 3 \right)^{2}$$

f.
$$am - bn + an - bm$$

$$\frac{5 m + (n - bn - bm)}{4 (m + n) - b (n + m)}$$

$$(m+n) (s-b)$$

Solving Quadratics Worksheet

1. Solving quadratic equations by factoring. Solve by factoring and check your solutions.

a.
$$x^{2}-x-2=0$$
 -2 | $x^{2}-x-2=0$ -2 | $x^{2}-2$ |

b.
$$y^2 - 9 = 0$$
 c. $n^2 - 7n = 0$
 $y - 3 = 0$ $n(n-7) = 0$
 $y = 3 y = -3$ $n = 0$

d.
$$6x + 8 = -x^{2}$$
 $x^{2} + 6x + 8 = 0$
 $x^{3} + 2x + 4x + 8$
 $x(x+2) + (x+2)$
 $(x+2) + (x+4)$
 $x=-2$
 $x=-4$

d.
$$6x + 8 = -x^{2}$$
e. $2x^{2} - 5x + 2 = \sqrt{y^{2} + 7}$
f. $2y^{2} + 7y + 3 = 0$
 $x^{2} + 6x + 8 = 0$
 $x^{2} + 6x + 8 = 0$
 $x^{2} + 2x + 4x + 8$
 $2x(x - 2) - 1(x - 2)$
 $2x(x - 2) -$

$$-30$$
g. $15x^{2}-7x-2$ _10 3
$$15x^{2}-10x+3x-2$$

$$5x(3x-2)+1(3x-2)$$

$$(3x-2)(5x+1)$$

$$3x=2$$

$$5x=2$$

$$x=\frac{5x}{3}$$

$$x=\frac{7}{3}$$

$$x=-\frac{1}{5}$$

$$\begin{array}{lll}
3. 15x^{2} - 7x - 2 & -10 & 3 & \text{h. } z^{2} + 12 = -z \\
5x^{2} - 10x + 3x - 2 & 7x^{2} + 12 = -0 \\
x(3x - 2) + 1(3x - 2) & 5^{2} - 4a & c \\
3x = \frac{2}{3} & \frac{5x}{3} = \frac{-1}{5} & = (1)^{2} - 4 & (1) & (12) \\
x = \frac{2}{3} & y = -\frac{1}{5} & = 1 - 48 \\
= -47
\end{array}$$

Solutions

1 a.
$$x = -1$$
, $x = 2$ b. $y = -3$, $y = 3$ c. $n = 0$, $n = 7$

b.
$$y = -3$$
, $y = 3$

$$c n = 0 n = 7$$

d.
$$x = -4$$
, $x = -2$ e. $x = \frac{1}{2}$, $x = 2$

e.
$$x = \frac{1}{2}$$
. $x = 2$

f.
$$y = -3$$
, $y = -\frac{1}{2}$

g.
$$x = \frac{-1}{5}$$
, $x = \frac{2}{3}$ h. No real roots

Special Cases Factoring Worksheet

1. Factor each of the following completely.

a.
$$9x^2y - 6xy^2 + 3xy$$

 $3xy(3x - 2y + 1)$

b.
$$x^{2} + 3xy - 10y^{2} \frac{-10}{5}$$

 $x^{2} + 5xy - 2xy - 10y^{2} \frac{5}{5} - 2$
 $x + 5xy - 2xy - 10y^{2} \frac{5}{5} - 2$
 $x + 5y - 2y(x + 5y)$
 $(x + 5y)(x - 2y)$

c.
$$x^{4} + 7x^{2} + 12 \frac{12}{4+3}$$

 $x^{4} + 4x^{2} + 3x^{2} + 12$
 $x^{2}(x^{2} + 4) 3(x^{2} + 4)$
 $(x^{2} + 4) (x^{2} + 3)$

d.
$$x^{2}y^{2}-6xy-7\frac{-7}{-7}$$

 $x^{2}y^{2}-7xy+1xy-7$
 $x^{2}y^{2}-7xy+1xy-7$
 $x^{2}y^{2}-7xy+1xy-7$
 $x^{2}y^{2}-7xy+1xy-7$
 $x^{2}y^{2}-7xy+1xy-7$

e.
$$9x^{2}-12xy+4y^{2}-6-6$$

 $9x^{2}-6xy-6xy+4y^{2}$
 $9x(3x-2y)-2y(3x-2y)$
 $(3x-2y)(3x-2y)$

f.
$$\frac{5x^2-45}{5}$$

$$5\left(\chi^2-9\right)\left(\chi^2+9\right)$$

g.
$$-x^{2}-x+12\frac{12}{-4+3}$$

 $-x^{2}-4x+3x+12$
 $-1x(x+4)3(x+4)$
 $(x+4)(-1x+3)$
 $=-1(x^{2}+x-1x)$
 $=-1(x+4)(x-3)$

h.
$$\frac{2y^{3} - 40y^{2} + 72y}{2y}$$

$$\frac{7}{2y} = \frac{36}{2y}$$

$$\frac{36}{-18 - 2}$$

$$\frac{3}{2} - 18y - 2y + 36$$

$$\frac{3}{2} - 18y - 2(y - 18)$$

$$\frac{3}{2} - 18y - 2(y - 18)$$

$$\frac{3}{2} - 18y - 2(y - 18)$$

Solutions

- 1 a. 3xy(3x +1 2y) b. (x + 5y)(x 2y)
- c. $(x^2 + 3)(x^2 + 4)$

- d. (xy-7)(xy+1) e. $(3x-2y)^2$ f. 5(x+3)(x-3)

 $2y^{3}-40y^{2}+72y$ 2y(3-20y+36) 2y(y-18)(y-2)

 $9x^{2} - 12xy + 4y^{2-6} - 6$ (9x - 6y) (9x - 6y) 3 = 3 (3x - 2y) (3x - 2y) $= (3x - 2y)^{2}$