POVa Road segmentation

Marek Mudroň Tomáš Dubský Filip Osvald

Data

- DeepGlobe Road Extraction Dataset
- 7334 instances

- Massachusetts Roads Dataset
- 1108 instances

> 1024x1024

Models

• Encoder: ResNet18

• Backbone: UNet

Model	Enc. layers	Dataset	Enc. pretrained	Data augmented
1.	3	combined	no	no
2.	5	combined	no	no
3.	5	combined	yes	no
4.	5	DeepGlobe	yes	no
5.	5	DeepGlobe	yes	yes

Validation IoU

Experiments

- 1. Does number of encoder layers affect model accuracy?
- 2. How does transfer learning contribute to model training?
- 3. Can data augmentation compensate for distinctive features of different dataset?

1. Experiment

Does number of encoder layers affect model accuracy?

Tested on combined dataset

1.
$$IoU = 0.449$$

2.
$$IoU = 0.484$$

Model	Enc. layers	Dataset	Enc. pretrained	Data augmented
1.	3	combined	no	no
2.	5	combined	no	no
3.				
4.	5	DeepGlobe	yes	no
5.				

2. Experiment

How does transfer learning contribute to model training?

Tested on combined dataset

$$2. \text{ IoU} = 0.484$$

$$3. \text{ IoU} = 0.526$$

Model	Enc. layers	Dataset	Enc. pretrained	Data augmented
1.				
2.	5	combined	no	no
3.	5	combined	yes	no
4.	5	DeepGlobe	yes	no
5.				

3. Experiment

Can data augmentation compensate for distinctive features of different dataset?

 Tested on Massachusetts dataset

4.
$$IoU = 0.430$$

$$5. \text{ IoU} = 0.439$$

Model	Enc. layers	Dataset	Enc. pretrained	Data augmented
1.				
2.	5	combined	no	no
3.				
4.	5	DeepGlobe	yes	no
5.	5	DeepGlobe	yes	yes

Augmentations

- Random flip (horizontal/vertical/both)
- Gaussian Blur
- Hue, saturation, value

I Faulty instances

Quality assessment

