MATH 0450: HOMEWORK 4

TEOH ZHIXIANG

Problem 1. (Ex. 1.3.2) Give an example of each of the following, or state that the request is impossible.

- (a) A set B with inf $B \ge \sup B$.
- (b) A finite set that contains its infimum but not its supremum.
- (c) A bounded subset of $\mathbb Q$ that contains its supremum but not its infimum.

Solution.

- (a) Consider the singleton set $B = \{1\}$. Here, inf $\{1\} = 1 = \sup\{1\}$. So inf $B = \sup B$, and because inf $B \not> \sup B$, inf $B \ge \sup B$ is trivially true and so the statement inf $B \ge \sup B$ is true for this set B.
- (b) Impossible. A finite set always contains both its infimum and supremum, which are respectively its minimum and maximum elements.
- (c) Consider the set defined by:

$$A = \{ q \in \mathbb{Q} \mid 0 < q \le \frac{1}{n} \} \Leftrightarrow q \in (0, \frac{1}{n}]$$

sup $A=1\in A$, if we pick n=1, but inf $A=0\not\in A$, by Archimedean Property, as observable in the half-closed interval above.

Problem 2. (Ex. 1.3.8) Compute, without proofs, the suprema and infima (if they exist) of the following sets:

- (a) $\{m/n : m, n \in \mathbb{N} \text{ with } m < n\}.$
- (b) $\{(-1)^m/n : m, n \in \mathbb{N}\}.$
- (c) $\{n/(3n+1) : n \in \mathbb{N}\}.$
- (d) $\{m/(m+n) : m, n \in \mathbb{N}\}.$

Solution.

(a) Let $A = \{m/n : m, n \in \mathbb{N} \text{ with } m < n\}$. sup A = 1, inf A = 0. Given m < n, we pick, without loss of generality, m = n - 1:

$$\frac{m}{n} = \frac{n-1}{n} = 1 - \frac{1}{n} < 1.$$

So sup A=1, since $\inf \{\frac{1}{n}\}=0$ for all $n\in\mathbb{N}$, by Archimedean property. To find $\inf A$ we set m=1 in an attempt to make the numerator as small as possible:

$$\frac{m}{n} = \frac{1}{n} > 0.$$

Date: February 14, 2020.

But as we see from above, Archimedean Property leads us to find inf A=0.

(b) Let $A = \{(-1)^m/n : m, n \in \mathbb{N}\}$. sup A = 1, inf A = -1. To see this we first pick m to be any element in the subset of even natural numbers. Then

$$\frac{(-1)^m}{n} = \frac{1}{n} < 1$$

for all $n \in \mathbb{N}$, as in part (a), due to the Archimedean Property with real number $\epsilon = 1$. So sup A = 1. A similar argument follows by picking $m \in$ subset of odd natural numbers, which gives the result $\frac{(-1)^m}{n} = -\frac{1}{n} > -1$. The last result is just a flip of the inequality above for $\frac{1}{n}$.

(c) Let $A = \{n/(3n+1) : n \in \mathbb{N}\}$. sup $A = \frac{1}{3}$, inf $A = \frac{1}{4}$. First we rewrite $\frac{n}{3n+1}$ as follows:

$$\frac{n}{3n+1} = \frac{1}{3+\frac{1}{n}} < \frac{1}{3}.$$

An attempt to find the smallest $\frac{1}{n} = \inf\{\frac{1}{n} \mid n \in \mathbb{N}\} = 0$ to obtain the smallest denominator for a largest overall fraction yields the above result. Likewise note that an attempt to find the largest $\frac{1}{n} = \sup\{\frac{1}{n} \mid n \in \mathbb{N}\} = 1$ yields

$$\frac{n}{3n+1} = \frac{1}{3+\frac{1}{n}} > \frac{1}{3+1} = \frac{1}{4}.$$

(d) Let $A = \{m/(m+n) : m, n \in \mathbb{N}\}$. sup A = 1, inf A = 0. Rewrite $\frac{m}{m+n}$ as follows:

$$\frac{m}{m+n} = \frac{1}{1+\frac{n}{m}}.$$

Then we notice that

$$0 < \frac{1}{1 + \frac{n}{m}} < \frac{1}{1 + 0} = 1$$

by picking $n,m\in\mathbb{N}$ without loss of generality. To see why $\frac{1}{1+\frac{n}{m}}>0$: consider n>m such that denominator $1+\frac{n}{m}$ is largest. Then by Archimedean Property $\frac{1}{\epsilon}>0$ where $\epsilon\in\mathbb{R}$, $\epsilon>0$. The derivation of sup A=1 follows simply by picking n=1 and finding smallest $\frac{1}{m}$.

Problem 3. (Ex. 1.3.9)

- (a) If $\sup A < \sup B$, show that there exists an element $b \in B$ that is an upper bound for A.
- (b) Give an example to show that this is not always the case if we only assume $\sup A \leq \sup B$.

Proof.

(a) Given sup $A < \sup B$. Let $(s = \sup A \text{ and } t = \sup B) \Leftrightarrow s < t \Leftrightarrow t - s > 0$.

[Lemma]: Let B be a set bounded above by a $t \in \mathbb{R}$. $t = \sup B$ if and only if for any real number $\epsilon > 0$, there exists a $b_1 \in B$ such that $b_1 > t - \epsilon$.

By definition of supremum, we know for all $a \in A$, $a \le s$, and for all $b \in B$, $b \le t$. Using above Lemma, pick $\epsilon = t - s > 0$. Then we have $b_1 > t - (t - s) = s$, and so $b_1 > \sup A \Rightarrow b_1 > a \Rightarrow b_1 \ge a$ for all $a \in A$.

(b) Consider

$$A = \{r \in \mathbb{R} \mid r^2 \le 2\},\$$

 $B = \{q \in \mathbb{Q} \mid q^2 < 2\}.$

Note sup $A = \sup B = 2$, but $\max(A) = 2$ whereas $\max(B) = \emptyset$. So interestingly this might or might not work depending on which set we pick. If we pick set A, then we find that it is true that there exists an $a \in A = \sup A = \max(A)$ that is an upper bound for B, since $\sup B = \max(A) \notin B$. However if we pick set B, then we find that it is not true because $\max(A)$ is an upper bound of B.

Problem 4. (Ex. 1.3.11) Decide if the following statements about suprema and infimum are true or false. Give a short proof for those that are true. For any that are false, supply an example where the claim in question does not appear to hold.

- (a) If A and B are nonempty, bounded, and satisfy $A \subseteq B$, then sup $A < \sup B$.
- (b) If sup $A < \inf B$ for sets A and B, then there exists a $c \in \mathbb{R}$ satisfying a < c < b for all $a \in A$ and $b \in B$.
- (c) If there exists a $c \in \mathbb{R}$ satisfying a < c < b for all $a \in A$ and $b \in B$, then sup $A < \inf B$.

Proof.

- (a) True. A and B are nonempty and bounded, so by Axiom of Completeness there exists a sup A and sup B. If $A \subseteq B$, then by definition of subset every element $a \in A$ is also an element of B. That is, for all $a \in A$, $a \in B$. Then consider two cases:
 - (1): sup $A \in A$, and
 - (2): sup $A \notin A$.

If (1), then sup $A \in B$ by subset relation, and so sup $B \ge b$ for all $b \in B$ also satisfies sup $B \ge \sup A$. If (2), remember that $A \subseteq B$ and so sup $A \not\ge \sup B$ because that would mean sup $A \not\in B$, and so we will come to a contradiction with the original assumption $A \subseteq B$. That leaves us with sup $A \le \sup B$, and the proof is complete.

(b) True. Let $s = \sup A$ and $t = \inf B$. By definitions of supremum and infimum, $a \le s$ for all $a \in A$, and $t \le b$ for all $b \in B$. If $\sup A < \inf B$ for sets A and B, then s < t. Overall we have $a \le s < t \le b$, for all $a \in A$ and $b \in B$.

[Variation of Lemma 1.3.8]: Let B be a set bounded below by a $t \in \mathbb{R}$. $t = \inf B$ if and only if for any real number $\epsilon > 0$, there exists a $b_1 \in B$ such that $b_1 < t + \epsilon \Leftrightarrow b_1 - \epsilon < t$.

[Lemma 1.3.8]: Let A be a set bounded above by a $s \in \mathbb{R}$. $s = \sup B$ if and only if for any real number $\epsilon > 0$, there exists a $a_1 \in A$ such that $a_1 > s - \epsilon \Leftrightarrow a_1 + \epsilon > s$.

We need to show there exists a $c \in \mathbb{R}$ such that $s < c < t \Leftrightarrow a < c < b$. Pick $\epsilon = \frac{b_1 - a_1}{2}$. Then we have

$$s < a_1 + \epsilon = a_1 + \frac{b_1 - a_1}{2} = \frac{a_1 + b_1}{2}$$

and

$$b_1 - \epsilon = b_1 - \frac{b_1 - a_1}{2} = \frac{a_1 + b_1}{2} < t.$$

Let $c \in \mathbb{R}$ be $\frac{a_1 + b_1}{2}$. Then we have shown s < c < t, and therefore a < c < b.

(c) False. Consider the sets

$$A = \{ q \in \mathbb{Q} \mid q^2 < 2 \}$$

and

$$B = \{ q \in \mathbb{Q} \mid q^2 > 2 \}$$

There is a $c \in \mathbb{R}$ satisfying $c^2 = 2$ that satisfies the inequality relation a < c < b for all $a \in A$ and $b \in B$, by definitions of A and B, but sup $A = \inf B = c \Rightarrow \sup A \nleq \inf B$.

Problem 5. (Ex. 1.4.8) Give an example of each or state that the request is impossible. When a request is impossible, provide a compelling argument for why this is the case.

- (a) Two sets A and B with $A \cap B = \emptyset$, sup $A = \sup B$, sup $A \notin A$ and sup $B \notin B$.
- (b) A sequence of nested open intervals $J_1 \supseteq J_2 \supseteq J_3 \supseteq \cdots$ with $\bigcap_{n=1}^{\infty} J_n$ nonempty but containing only a finite number of elements.
- (c) A sequence of nested unbounded closed intervals $L_1 \supseteq L_2 \supseteq L_3 \supseteq \cdots$ with $\bigcap_{n=1}^{\infty} L_n = \emptyset$. (An unbounded closed interval has the form $[a, \infty) = \{x \in \mathbb{R} : x \geq a\}$.)
- (d) A sequence of closed bounded (not necessarily nested) intervals I_1, I_2, I_3, \ldots with the property that $\bigcap_{n=1}^{N} I_n \neq \emptyset$ for all $N \in \mathbb{N}$, but $\bigcap_{n=1}^{\infty} I_n = \emptyset$.

Proof. (a) Let

$$A = \mathbb{Q} \cap (0,1)$$

and

$$B = (\mathbb{R} \setminus \mathbb{Q}) \cap (0, 1).$$

 $\mathbb{Q} \cap (\mathbb{R} \setminus \mathbb{Q}) = \emptyset$, so $A \cap B = \emptyset$. sup $A = \sup B = 1$, and $1 \notin A$, $1 \notin B$.

(b) Consider

$$J_n = \{x \in \mathbb{R} \mid -\frac{1}{n} < x < \frac{1}{n} \text{ for } n \in \mathbb{N}\} = (-\frac{1}{n}, \frac{1}{n}).$$

sequence of J_n nested open intervals, since every $J_{n+1} = (-\frac{1}{n+1}, \frac{1}{n+1}) \subseteq (-\frac{1}{n}, \frac{1}{n}) = J_n$. $\bigcap_{n=1}^{\infty} J_n = 0$, finite and nonempty, because there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon$ for all real numbers $\epsilon > 0$, by Archimedean Property, so $0 \in J_n$ for all $n \in \mathbb{N}$.

(c) Consider the sequence of nested unbounded closed intervals given by (as prompted in question):

$$L_n = \{x \in \mathbb{R} \mid n \ge x \text{ for } n \in \mathbb{N}\} = [n, \infty).$$

Note [Unboundedness of \mathbb{N}]: For all real numbers $\epsilon > 0$, there exists an $n \in \mathbb{N}$ such that $n > \epsilon$.

Suppose for contradiction that there exists an element $m \in \bigcap_{n=1}^{\infty} L_n$. Then the element m belongs to L_n for all $n \in \mathbb{N}$. So $m \ge n$ for all $n \in \mathbb{N}$, in other words meaning m is an upper bound of \mathbb{N} . But this contradicts the unboundedness theorem of \mathbb{N} .

(d) Impossible. Suppose for contradiction that that there is such a sequence of closed bounded intervals I_n . That means that there exists two sets in this sequence I_j and I_k such that $I_j \cap I_k = \emptyset$, for some $j, k \in \mathbb{N}$. Now assume, without loss of generality, that j < k. Then $\bigcap_{n=1}^k I_n = \emptyset$, contradicting property that $\bigcap_{n=1}^N I_n \neq \emptyset$.