

Statistics Introduction

Instructor

Lester Leung

CFI Instructor

Data Science Professional

- > Leading a startup fintech data science team
- Holding VP roles in quantitative analysis and strategy at Wells Fargo
- Various data consulting roles in other Fortune500 companies

What is Statistics?

Statistics are applied all around us:

Results

Market **Analysis**

Inventory

Budget Planning

Weather **Forecasting**

Scenario **Exploration**

Election Forecasting

Risk Management

Customer Research

Machine Learning

What is Statistics?

Statistics is a branch of mathematics that deals with the collection, analysis and interpretation, and presentation of data.

What is Statistics

The Statistical Toolbox

Statistical tools can be applied to:

- Make predictions
- Measure uncertainty
- Evaluate claims
- Make improvements to systems
- Inform or educate us about a population

≡ Cα

Course Objectives

Descriptive Statistics

Key statistics used for describing data sets and popular visualizations

Hypothesis Testing

Performing a two-tail and one-tail hypothesis test

Central Limit Theorem and Law of Large Numbers

An overview the central limit theorem and law of large number—two critical statistical principles

Error Estimations

Estimating the possibilities of false positives or false negatives

Constructing a Sample

Populations, samples, and strategies for preventing bias

Effect Size & Power Analysis

Estimating effect sizes and conducting a power analysis to determine a better sample size

Why Use Statistics?

Challenges with Statistics

Statistics requires collecting unbiased samples ,applying mathematical principles to analyze data, and rarely provides perfectly precise answers—often it leaves uncertainty which can be expressed as a margin of error or confidence level.

Finding Good Samples

Applying Complex Principles

Still Being Unsure

Other Approaches to Decision Making

Statistics is a tool, but its one tool of many. Business leaders might at times prefer rely on a conceptual framework like SWOT analysis, or their gut instinct, or experience. These can sometimes reach decisions faster and with less resources spent.

Strengths of Using a Statistical Approach

Statistics are applied math. As math, they can easily be replicated, shared, and critiqued by others.

When used properly, statistics can greatly reduce the influence of bias.

Statistical models are easy to tweak or fine-tune over time as new data becomes available.

Statistic models can be generated and updated using automation for increased speed and scale.

Statistics

Descriptive Statistics

- Describes or summarizes data
- **Examples:** mean or variance

Inferential Statistics

- Infers a characteristic of a population
- **Examples:** probability and confidence measures

Applying Inferential Statistics

Chapter 2: Descriptive Statistics

Scenario

The CEO wants a 10-minute summary of the last 3 years of an acquired company's sales data.

Goals

Keep it quick.

Make it visual.

Select the appropriate summaries.
Don't misrepresent the data.

Descriptive Statistics

Descriptive statistics broadly describe data through single values.

Measures of Central Tendency

- Mean
- Median
- Mode

Measures of Dispersion

- Range
- Variance
- Standard deviation

Shapes of Distribution

- Skewness
- Kurtosis

Course Objectives

Measures of Central Tendency

Explore measures that summarize the central point of our data

Measures of Dispersion

Explore measures that summarize the dispersion of our data.

Shapes of Distribution

Explore measures that summarize the shape of the distribution of our data.

Excel Data Analysis

Find measures through Excel's Data Analysis ToolPak

Visualizations

Learn basic visualizations used commonly in statistics.

Measures of central tendency are single values that attempt to describe the central position of a set of data.

Mean, Median, Mode under skewed distribution

Mean (Average):

- Used a lot (for example, in our t-tests in Chapter 4)
- Is most meaningful when we have data that is relatively normally distributed

Use cases:

- Average performance over three years is a popular measure of company performance
- Expected default rates for loans

Median:

• Diminishes the effect of outliers

Use cases:

- Employee salaries
- S&P Daily Returns

Mode:

- Best used when a curve is apparent
- Shouldn't be applied to small datasets or flat distributions
- With a good dataset, it will describe the most likely outcome

Use cases:

- When dealing with bi-modal distributions
 - Call-center busy hours
 - Restaurant busy hours
 - Marathon organizers
 - Businesses dealing with seasonality
- When dealing with categorical data (e.g., measuring favorite colors)

Measures of Dispersion

Measure of Dispersions

Measures of dispersion describe how much our data is either spread out or squeezed. The two most important dispersions we will cover are variance and standard deviation.

Minimum, Maximum, and Range

The simplest measures of dispersion are the **minimum**, **maximum**, and **range**.

Range (Monte Carlo)

Quartiles

Quartiles are another way of dividing distributions. Whereas median is just the middle of our data, quartiles take the middle of that middle—dividing the data into four quartiles.

Variance

Variance is a measure of how spread-out all our data points are. A high variance suggests a high volatility, while a low variance suggests a low volatility.

Standard Deviation

Standard deviation (σ) is our last measure of spread. It's very commonly used in statistics. The standard deviation describes the average distance we can expect an individual data point—or sample—to fall from the mean.

Standard Deviation and the Empirical Rule

Standard Deviation Applied to a Bucket of Apples

Calculating Variance and Standard Deviation

Calculating Variance | Step 1

Find the deviation from the mean [Sample – Mean] for each data point

Samples	Deviation	Deviation ²
0	0 – 13.57 =	
1	1 – 13.57 =	
1	1 – 13.57 =	
1	1 – 13.57 =	
4	4 – 13.57 =	
5	5 – 13.57 =	
6	6 – 13.57 =	
6	6 – 13.57 =	
7	7 – 13.57 =	
10	10 – 13.57 =	
10	10 – 13.57 =	
27	27 – 13.57 =	
42	42 – 13.57 =	
70	70 – 13.57 =	

Calculating Variance | Step 1

Find the deviation from the mean [Sample - Mean] for each data point

Samples	Deviation	Deviation ²
0	-13.57	
1	-12.57	
1	-12.57	
1	-12.57	
4	-9.57	
5	-8.57	
6	-7.57	
6	-7.57	
7	-6.57	
10	-3.57	
10	-3.57	
27	13.43	
42	28.43	
70	56.43	
SUM	0	

Calculating Variance | Step 2

- Find the deviation from the mean [Sample Mean] for each data point
- 2 Square the deviations

Samples	Deviation	Deviation ²
0	-13.57	184.17
1	-12.57	158
1	-12.57	158
1	-12.57	158
4	-9.57	91.58
5	-8.57	73.44
6	-7.57	57.3
6	-7.57	57.3
7	-6.57	43.16
10	-3.57	12.74
10	-3.57	12.74
27	13.43	180.36
42	28.43	808.26
70	56.43	3,184.34

Calculating Variance | Step 3

	Find the deviation from the
(1)	mean [Sample – Mean] for
	each data point

2 Square the deviations

3 Sum the squared deviations

Samples	Deviation	Deviation ²
0	-13.57	184.17
1	-12.57	158
1	-12.57	158
1	-12.57	158
4	-9.57	91.58
5	-8.57	73.44
6	-7.57	57.3
6	-7.57	57.3
7	-6.57	43.16
10	-3.57	12.74
10	-3.57	12.74
27	13.43	180.36
42	28.43	808.26
70	56.43	3,184.34
	SUM	5,179.43

Calculating Variance | Step 4

- Find the deviation from the mean [Sample Mean] for each data point
- 2 Square the deviations
- 3 Sum the squared deviations
- Divide sum by the number of data points (n) 1

$$\frac{5,179.43}{14-1} = Variance(\sigma^2) = 398.42$$

Calculating Standard Deviation

The standard deviation equals the square root of our variance and is represented by a lowercase sigma. Sometimes it is even referred as the 'sigma'.

Often you'll see the variance written simply as the standard deviation squared. If we square our standard deviation, we get right back to our variance.

Standard Deviation (
$$\sigma$$
) = $\sqrt{\sigma^2}$ = $\sqrt{398.42}$ = 19.96

Variance
$$(\sigma^2) = 19.96^2$$

Shapes of Distribution

Normal (Gaussian) Distribution

Normal (Gaussian) Distribution

- (1) Symmetrical
- 2 The mean, median, mode are the same.
- 3 Has tails that approach the x-axis.
- Distribution follows the Empirical Rule.

Normal (Gaussian) Distribution

- (1) Symmetrical
- 2 The mean, median, mode are the same.
- 3 Has tails that approach the x-axis.
- Distribution follows the Empirical Rule.

Example: S&P 500 (riskier; big swings)

Platykurtic

Example: Bonds (stable; few swings)

Basic Data Visualizations

Common Visualizations

Independent Variable

Bar Chart Example

Tesla - Model 3 Production

Bar Chart Example

Histogram Example

Box and Whisker Plot Example

Box and Whisker Anatomy

Conclusion

Chapter 3: Sampling

Course Objectives

Samples and populations and learn their importance for inferential statistics

Controlling for Bias

Discover the two basic methods for controlling for bias

Sample Sizes (and the Law of Large Numbers)

Discuss the theory and what it tells us about our sample size

Central Limit Theorem

Explore how samples from non-normally distributed data become normally distributed as our sample size increases

Samples & Populations

In statistics, our population is what we want to analyze and learn about.

Samples & Populations

Complete Sample

Prior Data

Population (Projected Returns for Y1 + Y2)

Sample Size & Law of Large Numbers

Law of Large Numbers

Law of Large Numbers:

As our sample size grows, its mean tends towards the average of the whole population.

Law of Large Numbers

Law of Large Numbers (Average after 1 roll)

Number of samples (n) = 1

Law of Large Numbers (Average after 10 rolls)

Number of samples (n) = 10

Law of Large Numbers (Simulated with Dice Rolls)

Simulation #2 (n = 100)

Note: 'µ' stands for 'sample mean'

Law of Large Number (1-1000 dice rolls; mean over time)

Central Limit Theorem

200 samples: Sample size (n) = 1

As we increase our sample size, the distribution of the **mean of our samples** changes.

Distribution of sample means (n = 1) after 200 rolls

200 samples: Sample size (n) = 2

Distribution of sample means (n = 2) after 200 rolls

200 samples: Sample size (n) = 6

Distribution of sample means (n = 6) after 200 rolls

Sampled Means of Other Distributions

Services Company Customer NPS Responses

US Treasury Bond (2014-2019) Daily Price Change %

(1,510 samples; n = 12)

University Mid-term Exam Scores

(1,090 samples; n = 25)

Central Limit Theorem

Dice Rolls (200 samples; n = 40)

Central Limit Theorem:

The distribution of **sample means** approaches the normal distribution as the sample size gets larger—regardless of the shape of the population distribution.

Central Limit Theorem

Dice Rolls

Determining a Sample Size

Large Samples vs Resource Limitations

Budget
= Number of samples (you can afford)
Cost per Sample

Rules-of-Thumb and Tables

Rule of Thumb Recommendations:

A general rule for determining sample sizes is that, under most conditions, a sample of **30+** is sufficient. If you can push it, **100+** is even better.

Sample Size Recommendation Tables:

Acceptable Margin of Error	Size of Population			
	Large	5000	1000	200
±20%	24	24	23	22
±10%	96	94	88	65
±5%	384	357	278	132
±3%	1067	880	516	169

Beyond Rules of Thumb

There are a few factors that may require you to use larger samples than is typically recommended:

- (1) Wanting a high degree of confidence.
- When measuring variables with a high variance.
- When measuring for variables that occur very infrequently in the population

Controlling for Bias

Scenario

- We're not capturing private or home school students.
- We may not capture shy or busy students who ignore us.

Sampling bias occurs when our data is collected in a way that certain members of our population are either overrepresented or underrepresented.

Bias samples won't be representative of our population.

Representative vs. Random Sample

Economists and researchers seek to reduce sampling bias when employing statistical analysis.

Representative Sample

- A group or set chosen from a larger population
- Should adequately replicate the chosen characteristic or quality of the larger group

Random Sample

- A group or set chosen from a larger population randomly
- Should be an unbiased representation of the larger population

Representative vs. Random Sample Example

Population

Representative Sample

Random Sample

All the daily stock prices of AAPL since IPO

A period which well represents all phases of AAPL stock—with phases of upward, downward, and stagnant trends.

 Stock prices from 100 random days over the period since IPO

All the customers living in the state of California

100 selected from different parts of California. The number selected from each area is proportionate to the number from our population who live in those areas.

 100 randomly selected customers who live in California

Chapter 4: Hypothesis Testing

Session Outline

Hypothesis

Determine the null and alternative hypothesis for a test

Determine the p-value for your test and accept or reject the null hypothesis based on that data

Select an appropriate confidence level

Select an appropriate test to apply

Vacuums that last a lifetime!

Hypothesis Testing

Which warranty sells our vacuums better?

	5-Year (Full)	7-Year (Limited)
Sample Size	750	750
Total Revenue	\$42,222	\$47,631
Mean Per-visitor	\$56.30	\$63.51

Hypothesis Test

Hypothesis tests attempt to provide an answer to questions such as "How likely is an observation just random chance?"

Assumption 1: Our population mean and variance is the same as sample 1 (the 5-year sample).

Assumption 2: The difference observed in our second sample is the result of random chance. There is no real difference between sample 1 and sample 2.

What the test tells us:

Our test will tell us how improbable it is to see a difference this extreme, if our assumptions are true.

If it is highly improbable, it is likely our assumptions aren't true. There is a high probability it is more than random chance.

Hypothesis Test Explained

Likelihood of a result this extreme, given our assumptions ≈ **0.62**

Hypothesis Test Explained

Likelihood of a result this extreme, given our assumptions ≈ **0.003**

Steps for Conducting a Hypothesis Test

The 5 Steps for Conducting a Hypothesis Test

- (1) State the hypotheses.
- 2 State the significance level.
- **3** Select a statistical test.
- 4 Apply the test and calculate the p-value.
- 5 Draw a conclusion about the null hypothesis.

Stating the Hypotheses

Null Hypothesis (H₀) vs Alternative Hypothesis (H_a)

Null Hypothesis (H₀)

• States that there is no difference between two parameters

Alternative Hypothesis (H_a)

- There is a difference between the two parameters
- Sometimes, we may declare which direction that difference leans

Setting Your Confidence Level and Alpha

Confidence Levels

Our **confidence level** sets the probability of our test correctly failing to reject the null hypothesis—assuming the null hypothesis is true.

Confidence level = 95%

If there is no difference between the populations, our test will correctly conclude this 19 out of 20 times.

Confidence Levels

Confidence level = 90%

Confidence Levels

Confidence level = 99%

Common Confidence Levels

90%

$$\alpha = 0.1$$

- Cheap and quick
- 1 in 10 results are expected to be Type I Errors

95%

$$\alpha = 0.05$$

- Commonly used
- 1 in 20 results are expected to be Type I Errors

99%

$$\alpha = 0.01$$

- Provides higher confidence
- 1 in 100 results are expected to be Type I Errors

1 – confidence level = alpha value

1 - 0.95 = 0.05

Selecting Your T-test

H_a = mean of 7-year warranty ≠ mean of 5-year warranty

Confidence level = 95%

Alpha value = 5%

Two-Tail

Selecting Your T-test

Two-Tail

- H_0 is 5-year full = 7-year limited
- H_a is 5-year full ≠ 7-year full

• The null hypothesis is rejected if the sample falls outside a range greater or less than a certain value.

One-Tail

- H_0 is no warranty ≤ 5 -year full
- H_a is no warranty × 5-year full

 The null hypothesis is rejected if the result is greater than or less than a certain value, but not both.

Drawing Our Conclusion

If P-value \leq Alpha (α), we **reject** the null hypothesis.

If P-value > Alpha (α), we **fail to reject** the null hypothesis.

Reject the Null Hypothesis

The null hypothesis is unlikely. There is sufficient evidence that there is a meaningful difference between the samples.

Fail to Reject the Null Hypothesis

The sample did not provide sufficient evidence to confidently conclude the alternative hypothesis.

0.423 > 0.05

Fail to Reject the Null Hypothesis

The sample did not provide sufficient evidence to confidently conclude the alternative hypothesis.

Fail to Reject
the Null
Hypothesis

All flamingos are pink.

Proving this statement requires observing ALL the flamingos in the world.

Rejecting it requires observing one flamingo that isn't pink.

Reporting Our Results

Failed to reject the null hypothesis.

- Despite a \$7 difference between means, our test wasn't sensitive.
- We aren't confident this difference isn't simply random chance.

Reporting Our Results

Normally a sample sizes over 100 would be quite good, but:

- Populations with a low rate of positive cases can require a larger sample size. Our population has a low rate of positive cases (~10%).
- Populations with a higher variance also generally require higher sample sizes. Our population has a large variance. The average variation between orders is over \$174.
- Together, a high variance and low rate of positive cases will really hurt the sensitivity of the test.

As a best practice always **record and report** findings. **DO NOT** do any of the following when you are unhappy with the results:

- Pull a new sample of the same size to see if our answer changes.
- Go back and remove outliers to see if it becomes significant.
- Change up the variables, like looking at only results from the US.
- Add a few more samples in to see if it becomes significant.

These are examples of p-hacking. Each of these actions dramatically increase the chance of a false positive.

One-tail T-test Example

Do Warranties Sell Vacuums Better?

Test #2

Sample size = 750 visitors

H₀ = No Difference

H_a = Warranty > No warranty

	А	В	С
1	Subject ID _▼	Sample Group	Order Value 🗨
2	1	5-year full	0
3	2	none	0
4	3	7-year limited	0
5	4	5-year full	0
6	5	none	593
7	6	none	0
8	7	7-vear limited	O

Confidence interval (95% of expected samples)

Chapter 5: Errors and Estimations

Two-tail T-test Results

Failed to reject the null hypothesis.

Even though we failed to reject the null, the null hypothesis is **NOT** proven.

A more sensitive test might still lead us to conclude the **alternative hypothesis**.

One-tail T-test Results

Rejected the null hypothesis.

It is unlikely the measured difference between these samples was not random.

Type I Error vs Type II Error

Scenario: Type I Error vs Type II Error

Imagine you're in a courtroom and you've been asked to run a hypothesis test. The results will be used to decide if an alleged bank robber is guilty.

Type I Error = an innocent person is punished.

Power Analysis: Effect Size

Running a Power Analysis

Determining Effect Size

To run a **Power Analysis**, we need to know the distance between our means and the overlap of our samples distributions. This is expressed by the **Effect Size**.

The **Effect size** describes the distance between the means of our samples in standard deviations.

Effect size = distance between means in standard deviations

Effect size (cohen's d) =
$$\frac{Mean \ 2 - Mean \ 1}{Standard \ deviation} = \frac{63.51 - 56.3}{174.3} = \textbf{0.041}$$

Effect size = 0.041

Relative size	Effect size	% of sample 1 below the mean of sample 2
	0.0	50%
Small	0.2	58%
Medium	0.5	69%
Large	0.8	79%
Huge	1.4	92%

Power Analysis: Statistical Power

Statistical Power

Statistical power, or just **power**, is the chance that our statistical test correctly rejects the null hypothesis if the difference is real.

Power = $1 - beta(\beta)$

8.0

$$\beta = 0.2$$

- Commonly used
- 1 in 5 results are expected to be Type II Errors

0.9

$$\beta = 0.1$$

- Gives test a higher chance of finding a difference if it exists
- 1 in 10 results are expected to be Type II Errors

Elements for Our Power Analysis

Mean 1 (
$$\mu$$
) = 56.296

Mean 2 (
$$\vec{x}$$
) = 63.508

Standard Deviation (
$$\sigma$$
)* = 174.3

Effect size (Cohen's d) =
$$\frac{Mean \ 2 - Mean \ 1}{Standard \ deviation}$$
 = 0.042

Power
$$(1 - \beta) = 0.8$$

Alpha (
$$\alpha$$
) = 0.05

*Our standard deviation is based on the pooled variance (the average between both samples)

Power Analysis: Solution