Introduction to Data Science

Data Science Essentials

Goals for today

- Review last session coding tasks
- Intro to Machine Learning
- A look ahead

Review last session coding tasks

week4_review notebook

Supervised Learning

You *supervise* your computer as it learns by giving it known outcomes for a sample of explanatory variables. This involves creating **labeled training data**.

Some common supervised learning algorithms are linear regression, logistic regression, classification, support vector machines, and decision trees.

							target variable	
		pre	edictor variable	S				
	name	hair	cold-blooded	land/sea	flies	class		
0	dog	Υ	N	land	N	mammal		
1	snake	Ν	Υ	land	N	reptile		
2	trout	Ν	Υ	sea	N	fish		
499	dove	Ν	N	land	Υ	bird		

Unsupervised Learning

Your computer makes predictions *based on anomalies, patterns, and relationships it finds in data*.

Some unsupervised machine learning algorithms are k-means clustering, principal component analysis (PCA).

	name	hair	cold-blooded	land/sea	flies	class
0	dog	Υ	N	land	N	mammal
1	snake	N	Υ	land	N	reptile
2	trout	N	Υ	sea	Ν	fish
•••						
499	dove	Ν	N	land	Υ	bird

Choose Explanatory Variables

- What variables do you think might predict some target given your exploratory data analysis?
- Choose variables that *represent the variance in the data* (not highly correlated variables!)
- A pairplot will let you see if any of your predictors are highly correlated with one another

```
sns.set(style = 'ticks', color_codes = True)
sns.pairplot(tn_ha_costs2);
```


Scale variables if needed

- by hand variables on same scale with same proportion within the column (look at range divide by a factor to get values between 0 and 1)
- with standard scaler from scikit-learn

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

Variable 1	Variable 2	Variable 3	Variable 4
123	2.7	190	.092
614	3.9	84	.245

V1_scaled	V2_scaled	V3_scaled	Variable 4
.123	.27	.190	.092
.614	.39	.084	.245

Transform categorical predictor variables

recent_5year_trend

- falling
- rising
- stable

If we encode these as numerical values, say,

Falling = 1

Rising = 2

Stable= 3

Higher numbers will be weighted more!

pd.get_dummies()

```
In [79]: one_hot_encoded_X = pd.get_dummies(X)
In [100]: one_hot_encoded_X.head()
```

Out[100]:

:014	percent_pop_over_50_2017	avg_annual_count	recent_5year_trend_falling	recent_5year_trend_rising	recent_5year_trend_stable
751	0.412762	195	1	0	0
325	0.339755	92	1	0	0
955	0.464281	59	0	0	1
271	0.410546	31	1	0	0
860	0.414311	283	1	0	0

Still may need to scale avg_annual_count!

Scikit-learn

Basic Recipe for Building a Model

- Standardize/scale/normalize and encode data as needed
- Split into train and test
- Construct model
- Fit model with training data
- Use fitted model to predict target for test data
- Compare predictions to actual target values in the test data to evaluate performance
- Iterate the model building process to improve performance

Today we will look at these modules from scikit-learn

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import LinearRegression
from sklearn import metrics
```


Model building and evaluation

Model_evaluation notebook

Next Steps:

Your turn! Build a logistic regression model to predict whether a county's costincome ratio is above or below the mean for TN (hint: first create a label for the data that answers that).

- October 7 random forest classifier example
- October 14 data storytelling and presentation; work in teams to create a 7-10 minute presentation of your findings
- October 21 Team presentations + panel with data scientists who have walked in your shoes

Questions?

