3. Feladatlap

Ekvivalenciarelációk

1. Legyen $M=\{1,2,3,4\},\ \rho_1=(M,M,R_1)$ és $\rho_2=(M,M,R_2)$ homogén relációk az M halmazon, valamint π_1 és π_2 partíciók, ahol

$$\Delta_{M} = \{(a, a) \mid a \in M\},\$$

$$R_{1} = \Delta_{M} \cup \{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)\},\$$

$$R_{2} = \Delta_{M} \cup \{(1, 2), (1, 3)\},\$$

$$\pi_{1} = \{\{1\}, \{2\}, \{3, 4\}\},\$$

$$\pi_{2} = \{\{1\}, \{1, 2\}, \{3, 4\}\}.\$$

(a) Ekvivalenciarelációk-e ρ_1 és ρ_2 ? Ha igen, írjuk fel a megfelelő partíciót!

Megoldás. A ρ_1 ekvivalenciareláció, mert

- reflexív: $\Delta_M \subseteq R_1$, vagyis minden $m \in M$ esetén $(m, m) \in R_1 \Leftrightarrow m\rho_1 m$;
- szimmetrikus: a Δ_M elemei szimmetrikusak és az R_1 -ben található többi párok szimmetrikusai is R_1 -ben vannak;
- tranzitív: minden $(a, b), (b, c) \in R_1$ esetén $(a, c) \in R_1$.

A ρ_1 ekvivalenciarelációhoz tartozó partíció:

$$\pi_{\rho_1} = \{\{1, 2, 3\}, \{4\}\},\$$

mivel az 1,2,3 elemnek közül bármely kettő relációban van egymással, illetve a 4 csak önmagával van relációban.

A ρ_2 reláció nem ekvivalenciareláció, mert nem szimmetrikus, például $(1,2) \in R_2$, de $(2,1) \notin R_2$. Mivel ρ_2 nem ekvivalenciareláció, ezért nincs neki megfelelő partíció.

(b) Partíciók-e π_1 és π_2 ? Ha igen, írjuk fel a megfelelő ekvivalenciarelációt!

Megoldás. Emlékeztetünk, hogy a $\pi = \{M_1, \dots, M_k\}$ az M halmaz egy partíciója, ha

- $\emptyset \neq M_1, \ldots, M_k \subseteq M$,
- $M_1 \cup \cdots \cup M_k = M$,
- az M_1, \ldots, M_k részhalmazok páronként diszjunktak, vagyis $M_i \cap M_j = \emptyset$, minden $1 \le i < j \le k$ esetén.

A $\pi_1 = \{\{1\}, \{2\}, \{3,4\}\}$ esetén $M = \{1,2,3,4\} = \{1\} \cup \{2\} \cup \{3,4\}$ és $\{1\} \cap \{2\} = \emptyset$, $\{1\} \cap \{3,4\} = \emptyset$, $\{2\} \cap \{3,4\} = \emptyset$, tehát a π_1 az M halmaz egy partíciója. A hozzátartozó ρ_{π_1} ekvivalenciarelációban, az 1, illetve 2 elemek csak önmagukkal vannak relációban, míg a 3,4 elemek közül mindenki mindenkivel relációban van. Tehát a ρ_{π_1} ekvivalenciareláció grafikonja: $\{(1,1), (2,2), (3,3), (3,4), (4,3), (4,4)\} = \Delta_M \cup \{(3,4), (4,3)\}$.

A $\pi_2 = \{\{1\}, \{1, 2\}, \{3, 4\}\}$ esetén $M = \{1, 2, 3, 4\} = \{1\} \cup \{1, 2\} \cup \{3, 4\}$, de $\{1\} \cap \{1, 2\} = \{1\} \neq \emptyset$, ezért a π_2 nem egy partíciója az M halmaznak. Mivel a π_2 nem partíciója az M halmaznak, ezért nincs hozzárendelt ekvivalenciarelációt.

2. Legyen $n \in \mathbb{N}$. Tekintsük a ρ_n relációt \mathbb{Z} -n (a reláció neve: "kongruencia modulo n"), ahol

$$x \rho_n y \Leftrightarrow n \mid (x - y).$$

Bizonyítsuk be, hogy ρ_n ekvivalenciareláció és határozzuk meg a \mathbb{Z}/ρ_n faktorhalmazt. Tárgyaljuk az n=0 és n=1 eseteket.

 $Megold\acute{a}s$. Minden $n \in \mathbb{N}$ természetes szám esetén tekintjük a $\rho_n = (\mathbb{Z}, \mathbb{Z}, R_{\rho_n})$ relációt, ahol $x\rho_n y \iff n \mid x-y \iff \exists k \in \mathcal{Z}$ úgy, hogy x-y=kn. Az ρ_n reláció ekvivalenciareláció:

- reflexivitás: minden $n \in \mathbb{N}$ és $x \in \mathbb{Z}$ esetén $x \rho_n x \iff n \mid x x$, mivel $x x = 0 \cdot n$;
- szimmetria: minden $n \in \mathbb{N}$ esetén, ha $x\rho_n y \iff n \mid x-y$, akkor létezik $k \in \mathbb{Z}$ úgy, hogy $x-y=k\cdot n$, ahonnan $y-x=-kn \iff n \mid y-x \iff y\rho_n x$.
- tranzitivitás: minden $n \in \mathbb{N}$ esetén, ha $x\rho_n y$ és $y\rho_n z$, akkor léteznek $k_1, k_2 \in \mathbb{Z}$ úgy, hogy $x y = k_1 n$ és $y z = k_2 n$, ahonnan $x z = (x y) + (y z) = (k_1 + k_2)n$; tehát létezik $k = k_1 + k_2 \in \mathbb{Z}$ úgy, hogy x z = kn, ezért $x\rho_n z$.

Megvizsgáljuk részletesebben az $n=0,\,n=1,\,n\geq 2$ eseteket.

- Az n = 0 esetben $x\rho_0 y \iff 0 \mid x y \iff \exists k \in \mathbb{Z}$ ú.h. $x y = k \cdot 0 \iff x y = 0 \iff x = y$. Tehát a ρ_0 reláció pontosan az egyenlőségi reláció a \mathbb{Z} halmazon, vagyis $\rho_0 = \delta_{\mathbb{Z}}$. Minden elem csak önmagával van relációban, így ezen reláció esetén a faktorhalmaz $\mathbb{Z}/\rho_0 = \{\{x\} \mid x \in \mathbb{Z}\}$ (a \mathbb{Z} egyelemű részhalmazainak halmaza).
- Az n=1 esetben $x\rho_1y\iff 1\mid x-y$, amely minden $x,y\in\mathbb{Z}$ esetén teljesül. Tehát a ρ_1 megegyezik a \mathbb{Z} halmazon értelmezett univerzális relációval, vagyis $\rho_1=u_{\mathbb{Z},\mathbb{Z}}$. Minden elem mindenkivel relációban van, így csak egy ekvivalenciaosztély van és ezen reláció esetén a faktorhalmaz $\mathbb{Z}/\rho_1=\{\mathbb{Z}\}$.
- Az $n \geq 2$ esetben $x\rho_n y \iff n \mid x-y \iff \exists k \in \mathbb{Z}$ ú.h. x-y=kn. A maradékos osztás tétele alapján minden $x \in \mathbb{Z}$ felírható egyértelműen x=qn+r alakba, ahol $q, r \in \mathbb{Z}$ és $0 \leq r < n$. Az r-t nevezzük az x egész szám n-nel való osztási maradékának. Ez alapján $x\rho_n y$ pontosan akkor, ha x-nek és y-nak megegyezik az n-nel való osztási maradéka. Az $x\rho_n y$ relációt úgy is szoktuk jelölni, hogy $x \equiv y \pmod{n}$. Az $x \in \mathbb{Z}$ szám ekvivalenciaosztálya $\rho_n \langle x \rangle = \{y \in \mathbb{Z} \mid x\rho_n y\} = \{x+nk \mid k \in \mathbb{Z}\} = x+n\mathbb{Z}$. Ha az n szám rögzített, akkor használjuk a $\rho_n \langle x \rangle = \widehat{x}$ jelölést.

3. Adjuk meg az $M = \{1, 2, 3\}$ halmazon felírható összes ekvivalenciarelációt, illetve partíciót!

Megoldás. Előbb a partíciókat írjuk fel, majd a hozzájuk tartozó ekvivalenciarelációkat:

- a $\pi_1 = \{\{1\}, \{2\}, \{3\}\}$ partícióhoz tartozó ekvivalenciareláció (M, M, R_1) , amelynek grafikonja $R_1 = \{(1, 1), (2, 2), (3, 3)\} = \Delta_M$.
- a $\pi_2 = \{\{1\}, \{2,3\}\}$ partícióhoz tartozó ekvivalenciareláció (M, M, R_2) , amelynek grafikonja $R_2 = \Delta_M \cup \{(2,3), (3,2)\}$.
- a $\pi_3 = \{\{2\}, \{1,3\}\}$ partícióhoz tartozó ekvivalenciareláció (M, M, R_3) , amelynek grafikonja $R_3 = \Delta_M \cup \{(1,3), (3,1)\}$.
- a $\pi_4 = \{\{3\}, \{1,2\}\}$ partícióhoz tartozó ekvivalenciareláció (M, M, R_4) , amelynek grafikonja $R_4 = \Delta_M \cup \{(1,2), (2,1)\}$.
- a $\pi_5 = \{\{1, 2, 3\}\}$ partícióhoz tartozó ekvivalenciareláció (M, M, R_5) , amelynek grafikonja $R_5 = M \times M = \{(a, b) | 1 \le a, b \le 3\}$ (univerzális reláció).

4. Legyen a következő két reláció a komplex számok C halmazán:

$$z_1 r z_2 \iff |z_1| = |z_2|$$

 $z_1 s z_2 \iff \arg z_1 = \arg z_2 \text{ vagy } z_1 = z_2 = 0.$

Bizonyítsuk be, hogy r és s ekvivalenciarelációk \mathbb{C} -n és határozzuk meg a \mathbb{C}/r és \mathbb{C}/s faktorhalmazokat (partíciókat), illetve ezek mértani jelentését!

Megoldás. Az r ekvivalenciareláció, mivel

- reflexív: minden $z \in \mathbb{C}$ esetén $zrz \Leftrightarrow |z| = |z|$ fennáll;
- szimmetrikus: ha $z_1rz_2 \Leftrightarrow |z_1| = |z_2|$, akkor $|z_2| = |z_1| \Leftrightarrow z_2rz_1$;
- tranzitív: ha $z_1rz_2 \Leftrightarrow |z_1| = |z_2|$ és $z_2rz_3 \Leftrightarrow |z_2| = |z_3|$, akkor $|z_1| = |z_3| \Leftrightarrow z_1rz_3$.

Azok a komplex számok lesznek egymással r relációban, amelyek modulusa megegyezik, vagyis a 0-tól vett távolságuk ugyanaz. Tehát a z-vel r relációban lévő komplex számok halmaza $\mathbb{C}\langle z\rangle=\{w\in\mathbb{C}\,|\,|w|=|z|\}=C(0;|z|)$ a 0 középpontú |z| sugarú kör a komplex számok síkjában. Ez alapján az r-hez tartozó faktorhalmaz

$$\mathbb{C}/r = \{\{0\}, C(0,R) \mid R > 0\} = \{C(0,R) \mid R \ge 0\}$$

(a 0-t tartalmazó halmaz, illetve a 0 középpontú R sugarú (koncentrikus) körökből áll).

Az s egy ekvivalenciareláció, mivel

- reflexív: minden $z \in \mathbb{C}$ esetén $zsz \Leftrightarrow \arg z = \arg z \text{ vagy } z = z = 0$, ami teljesül;
- szimmetrikus: ha $z_1sz_2 \Leftrightarrow (\arg z_1 = \arg z_2 \text{ vagy } z_1 = z_2 = 0)$, akkor $z_2sz_1 \Leftrightarrow (\arg z_2 = \arg z_1 \text{ vagy } z_2 = z_1 = 0)$;
- tranzitív: ha $z_1sz_2 \Leftrightarrow (\arg z_1 = \arg z_2 \text{ vagy } z_1 = z_2 = 0)$ és $z_2sz_3 \Leftrightarrow (\arg z_2 = \arg z_3 \text{ vagy } z_2 = z_3 = 0)$, akkor $(z_1 = z_2 = z_3 \text{ vagy arg } z_1 = \arg z_2 = \arg z_3) \Rightarrow z_1sz_3$.

Az s-hez tartozó faktorhalmaz:

$$\mathbb{C}/s = \{\{0\}, \ell_{\alpha} \mid \alpha \in [0, 2\pi)\},\$$

ahol $\ell_{\alpha} = \{r(\cos \alpha + i \sin \alpha) \mid r > 0\}$ azon 0 kezdőpontú nyílt félegyenesek a komplex számsíkban, amelyek α szöget zárak be az (Ox féltengellyel.

5. Az $M = \{(a, b) \mid a \in \mathbb{Z}, b \in \mathbb{Z}^*\}$ halmazon bevezetjük a következő homogén relációt:

$$(a,b) \sim (c,d) \Leftrightarrow a \cdot d = b \cdot c.$$

Igazoljuk, hogy "~" egy ekvivalenciareláció! Mutassuk meg, hogy az

$$f: M/\sim \to \mathbb{Q}, \quad f([a,b]) = \frac{a}{b}$$

egy bijektív függvény, ahol $[a,b]=\{(c,d)\,|\,(c,d)\in M,\;(c,d)\sim(a,b)\}$ az (a,b) ekvivalencia-osztálya.

Megoldás. A \sim egy ekvivalenciareláció az M halmazon:

- reflexív: minden $(a,b) \in M$ esetén $(a,b) \sim (a,b) \Leftrightarrow a \cdot b = b \cdot a$, ami teljesül;
- szimmetrikus: ha $(a,b) \sim (c,d) \Leftrightarrow a \cdot d = b \cdot c$, akkor $c \cdot b = d \cdot a \Leftrightarrow (c,d) \sim (a,b)$;
- tranzitív: ha $(a,b) \sim (c,d)$ és $(c,d) \sim (e,f)$, akkor $a \cdot d = b \cdot c$ és $c \cdot f = d \cdot e$, ahonnan $(a \cdot d) \cdot f = (b \cdot c) \cdot f = b \cdot (c \cdot f) = b \cdot (d \cdot e)$, vagyis $a \cdot d \cdot f = b \cdot d \cdot e$. Mindkét oldalt osztva $d \in \mathbb{Z}^*$ -vel kapjuk, hogy $a \cdot f = b \cdot e \Leftrightarrow (a,b) \sim (e,f)$.

 $\text{Az } f: M/\sim \to \mathbb{Q}, \ f([a,b]) = \frac{a}{b} \text{ függvény jól értelmezett, mert } b \neq 0 \text{ és ha } [a,b] = [c,d] \Leftrightarrow (a,b) \sim (c,d) \Leftrightarrow a \cdot d = b \cdot c \Leftrightarrow \frac{a}{b} = \frac{c}{d}.$

Az f függvény injektív, mert ha $f([a,b]) = f([c,d]) \Leftrightarrow \frac{a}{b} = \frac{c}{d} \Leftrightarrow a \cdot d = b \cdot c \Leftrightarrow [a,b] = [c,d].$ Az f függvény szürjektív, mert minden $q \in \mathbb{Q}$ felírható $q = \frac{a}{b}$ alakba, ahol $a \in \mathbb{Z}, b \in \mathbb{Z}^*$. Ekkor $(a,b) \in M$ és $f([a,b]) = \frac{a}{b} = q$.

Tehát az f függvény bijektív.

6. A $\mathbb{Z}^2 = \{(a,b) \mid a,b \in \mathbb{Z}\}$ halmazon bevezetjük a következő homogén relációt:

$$(a,b) \sim (c,d) \Leftrightarrow a \cdot d = b \cdot c.$$

Ekvivalenciareláció-e a "~" reláció?

Megoldás. Ez a reláció nem ekvivalenciareláció, mert reflexív és szimmetrikus, de nem tranzitív. Valóban, $(1,1) \sim (0,0)$ és $(0,0) \sim (1,2)$, vagyis $1 \cdot 0 = 1 \cdot 0$ és $0 \cdot 2 = 0 \cdot 1$, de $1 \cdot 2 \neq 1 \cdot 1$, vagyis $(1,1) \not\sim (1,2).$

7. A $\mathbb{C}^2 = \{(A,B) \, | \, A,B \in \mathbb{C} \}$ halmazon bevezetjük a következő relációt:

$$(A,B) \sim (C,D) \Leftrightarrow \frac{A+D}{2} = \frac{B+C}{2}$$

(az A, B, C, D pontok a komplex számsíkban paralelogrammát alkotnak, mivel az átlók felezik egymást).

Igazoljuk, hogy "~" egy ekvivalenciareláció és az $f: \mathbb{C}^2/\sim \to \mathbb{C}, f(\overrightarrow{AB}) = B - A$ egy bijekció, ahol $\overrightarrow{AB}=\{(C,D)\,|\,(C,D)\in\mathbb{C}^2,\;(C,D)\sim(A,B)\}$ az (A,B) ekvivalenciaosztálya.

 $Megold\acute{a}s.$ A "~" egy ekvivalencia reláció az \mathbb{C}^2 halmazon:

- reflexív: minden $(A,B) \in M$ esetén $(A,B) \sim (A,B) \Leftrightarrow \frac{A+B}{2} = \frac{B+A}{2}$, ami teljesül; szimmetrikus: ha $(A,B) \sim (C,D) \Leftrightarrow \frac{A+D}{2} = \frac{B+C}{2}$, akkor $\frac{C+B}{2} = \frac{D+A}{2} \Leftrightarrow (C,D) \sim$
- tranzit'iv: ha $(A,B) \sim (C,D)$ és $(C,D) \sim (E,F)$, akkor $\frac{A+D}{2} = \frac{B+C}{2}$ és $\frac{C+F}{2} = \frac{D+E}{2}$, ahonnan $\frac{A+D+F}{2} = \frac{B+C+F}{2} = \frac{B+D+E}{2}$, vagyis $\frac{A+D+F}{2} = \frac{B+D+E}{2}$. Mindkét oldalból kivonva $\frac{D}{2}$ -t kapjuk, hogy $\frac{A+F}{2} = \frac{B+E}{2} \Leftrightarrow (A,B) \sim (E,F)$.

 $\text{Az } f: \mathbb{C}^2/\sim \to \mathbb{C}, \ f(\overrightarrow{AB}) = B-A \text{ függvény jól értelmezett, mert ha } \overrightarrow{AB} = \overrightarrow{CD} \Leftrightarrow (A,B) \sim (C,D) \Leftrightarrow \frac{A+D}{2} = \frac{B+C}{2} \Leftrightarrow B-A = D-C.$

Az f függvény injektív, mert ha $f(\overrightarrow{AB}) = f(\overrightarrow{CD}) \Leftrightarrow B - A = D - C \Leftrightarrow \frac{A + D}{2} = \frac{B + C}{2} \Leftrightarrow$ $\overrightarrow{AB} = \overrightarrow{CD}$.

Az f függvény szürjektív, mert minden $Z \in \mathbb{C}$ felírható Z = Z - 0 alakba. Ekkor $(0, Z) \in \mathbb{C}^2$ és $f(\overrightarrow{0Z}) = Z - 0 = Z.$

Tehát az f függvény bijektív.

Rendezési relációk

8. Igazoljuk, hogy $= (\mathbb{N}, \mathbb{N}, R)$ egy rendezési reláció, ahol $x \mid y$ pontosan akkor, ha létezik $k \in \mathbb{N}$ úgy, hogy y = kz. Határozzuk meg a legkisebb, legnagyobb, minimális és maximális elemeket ha léteznek. Teljes rendezés ez a reláció?

Megoldás. Az "|" oszthatósági reláció egy rendezési reláció, mivel reflexív, antiszimmetrikus és tranzitív.

Az $1 \in \mathbb{N}$ a legkisebb elem, mert minden $n \in \mathbb{N}$ esetén $n = n \cdot 1 \iff 1 \mid n$. Mivel létezik legkisebb elem, ezért 1 egyben az egyetlen minimális elem.

Az $0 \in \mathbb{N}$ a legnagyobb elem, mert minden $n \in \mathbb{N}$ esetén $0 = 0 \cdot n \iff n \mid 0$. Mivel létezik legnagyobb elem, ezért 0 egyben az egyetlen maximális elem.

A "|" oszthatósági reláció nem teljes rendezés, mert például a 2 és 3 elemek nem hasonlítható össze az oszthatósági reláció segítségével, vagyis $2 \nmid 3$ és $3 \nmid 2$. **9.** Legyen $A = \mathbb{N} \setminus \{0, 1\}$. Igazoljuk, hogy |= (A, A, R) egy rendezési reláció, ahol $x \mid y$ pontosan akkor, ha létezik $k \in \mathbb{N}$ úgy, hogy y = kz. Határozzuk meg a legkisebb, legnagyobb, minimális és maximális elemeket ha léteznek. Teljes rendezés ez a reláció?

Megoldás. Az A halmazon is rendezési reláció a "|" oszthatósági reláció, mert reflexív, antiszimmetrikus és tranzitív.

A prímszámok minimális elemek, mivel csak két osztójuk van, önmaguk és 1, de $1 \notin A$. Mivel nem csak egyetlen minimális elem van, ezért nincs legkisebb elem.

Nincs maximális elem, sem legnagyobb elem, mivel minden $n \in A$ esetén $n < 2n \in A$ és $n \mid 2n$, vagyis minden A-beli elemnél van egy szigorúan nagyobb elem.

A "|" oszthatósági reláció nem teljes rendezés az A halmazon, mert például a 2 és 3 elemek nem hasonlítható össze az oszthatósági reláció segítségével, vagyis $2 \nmid 3$ és $3 \nmid 2$.

10. Legyen $A = [0,1] \times [2,3]$. Igazoljuk, hogy $\prec = (A,A,R)$ egy rendezési reláció, ahol $(x_1,y_1) \prec (x_2,y_2)$ pontosan akkor, ha $x_1 < x_2$ vagy $x_1 = x_2$ és $y_1 \le y_2$. Határozzuk meg a legkisebb, legnagyobb, minimális és maximális elemeket, ha léteznek. Teljes rendezés ez a reláció?

Megoldás. A "≺" rendezési reláció, mert

- reflexív: minden $(x, y) \in A$ esetén $(x, y) \prec (x, y)$, mivel x = x és $y \leq y$;
- antiszimmetrikus: tetszőleges $(x_1, y_1), (x_2, y_2) \in A$ esetén, ha $(x_1, y_1) \prec (x_2, y_2)$ és $(x_2, y_2) \prec (x_1, y_1)$, akkor $x_1 < x_2$ vagy $x_1 = x_2$ és $y_1 \le y_2$, illetve $x_2 < x_1$ vagy $x_2 = x_1$ és $y_2 \le y_1$, ahonnan következik, hogy $x_1 = x_2$ és $y_1 = y_2$, tehát $(x_1, y_1) = (x_2, y_2)$;
- tranzitív: minden $(x_1, y_1) \prec (x_2, y_2)$ és $(x_2, y_2) \prec (x_3, y_3)$ esetén $x_1 < x_2$ vagy $x_1 = x_2$ és $y_1 \leq y_2$, illetve $x_2 < x_3$ vagy $x_2 = x_3$ és $y_2 \leq y_3$, ahonnan következik, hogy $x_1 < x_3$, vagy abban az esetben, ha $x_1 = x_2 = x_3$, akkor $y_1 \leq y_2 \leq y_3$, tehát teljesül, hogy $x_1 = x_3$ és $y_1 \leq y_3$, vagyis $(x_1, y_1) \prec (x_3, y_3)$.
- A $(0,2) \in A$ a legkisebb elem, mert minden $(x,y) \in A = [0,1] \times [2,3]$ esetén $0 \le x \le 1$ és $2 \le y \le 3$, ahonnan 0 < x vagy 0 = x és $2 \le y$, vagyis $(0,2) \prec (x,y)$, minden $(x,y) \in A$ esetén. Mivel létezik legkisebb elem, ezért (0,2) az egyetlen minimális elem.
- Az $(1,3) \in A$ a legnagyobb elem, mert minden $(x,y) \in A = [0,1] \times [2,3]$ esetén $0 \le x \le 1$ és $2 \le y \le 3$, ahonnan x < 1 vagy x = 1 és $y \le 3$, vagyis $(x,y) \prec (1,3)$, minden $(x,y) \in A$ esetén. Mivel létezik legnagyobb elem, ezért (1,3) az egyetlen maximális elem.

Ez a reláció teljes rendezés, mert minden $(x_1, y_1), (x_2, y_2) \in A$ esetén $x_1 < x_2, x_1 > x_2$ vagy $x_1 = x_2$. Az $x_1 < x_2$ esetben $(x_1, y_1) \prec (x_2, y_2)$, míg az $x_2 < x_1$ esetben $(x_2, y_2) \prec (x_1, y_1)$. Az $x_1 = x_2$ esetben $y_1 \leq y_2$ vagy $y_2 \leq y_1$, ahonnan következik, hogy $(x_1, y_1) \prec (x_2, y_2)$ vagy $(x_2, y_2) \prec (x_1, y_1)$. Ezzel beláttuk, hogy $(x_1, y_1), (x_2, y_2) \in A$ esetén $(x_1, y_1) \prec (x_2, y_2)$ vagy $(x_2, y_2) \prec (x_1, y_1)$, ezért a "reláció teljes rendezés.

11. Legyen $A = [0, 1] \times [2, 3]$. Igazoljuk, hogy $\prec = (A, A, R)$ egy rendezési reláció, ahol $(x_1, y_1) \prec (x_2, y_2)$ pontosan akkor, ha $x_1 \leq x_2$ és $y_1 \leq y_2$. Határozzuk meg a legkisebb, legnagyobb, minimális és maximális elemeket, ha léteznek. Teljes rendezés ez a reláció?

Megoldás. A "<" rendezési reláció, mert

- reflexív: minden $(x, y) \in A$ esetén $(x, y) \prec (x, y)$, mivel $x \le x$ és $y \le y$;
- antiszimmetrikus: tetszőleges $(x_1, y_1), (x_2, y_2) \in A$ esetén, ha $(x_1, y_1) \prec (x_2, y_2)$ és $(x_2, y_2) \prec (x_1, y_1)$, akkor $x_1 \leq x_2$ és $y_1 \leq y_2$, illetve $x_2 \leq x_1$ és $y_2 \leq y_1$, ahonnan következik, hogy $x_1 = x_2$ és $y_1 = y_2$, tehát $(x_1, y_1) = (x_2, y_2)$;
- tranzitív: minden $(x_1, y_1) \prec (x_2, y_2)$ és $(x_2, y_2) \prec (x_3, y_3)$ esetén $x_1 \leq x_2$ és $y_1 \leq y_2$, illetve $x_2 \leq x_3$ és $y_2 \leq y_3$, ahonnan következik, hogy $x_1 \leq x_3$ és $y_1 \leq y_3$, tehát teljesül, hogy $(x_1, y_1) \prec (x_3, y_3)$.

A $(0,2) \in A$ a legkisebb elem, mert minden $(x,y) \in A = [0,1] \times [2,3]$ esetén $0 \le x \le 1$ és $2 \le y \le 3$, ahonnan $(0,2) \prec (x,y)$, minden $(x,y) \in A$ esetén. Mivel létezik legkisebb elem, ezért (0,2) az egyetlen minimális elem.

Az $(1,3) \in A$ a legnagyobb elem, mert minden $(x,y) \in A = [0,1] \times [2,3]$ esetén $0 \le x \le 1$ és $2 \le y \le 3$, ahonnan $(x,y) \prec (1,3)$, minden $(x,y) \in A$ esetén. Mivel létezik legnagyobb elem, ezért (1,3) az egyetlen maximális elem.

Ez a reláció nem teljes rendezés, mert például $(0,3) \not\prec (1,2)$ (mivel 3>2) és $(1,2) \not\prec (0,3)$ (mivel 1>0).

12. Legyen $M = \{2, 3, 4, 5, 6, 7, 10, 11, 14, 16, 18\}$. Rajzoljuk fel az (M, |) rendezett halmaz Hasse diagramját, ahol x | y pontosan, akkor ha létezik $k \in \mathbb{N}$ úgy, hogy y = kx.

Megold'as.

13. Legyen $X = \{a, b, c, d\}$ és $M = \mathcal{P}(X) \setminus \{\emptyset, X\}$. Rajzoljuk fel az (M, \subseteq) rendezett halmaz Hasse diagramját.

Megoldás.

14. Legyen $A = \{1, 2, 3\} \times \{1, 2, 3\}$ és $(x_1, y_1) \prec (x_2, y_2)$, minden $(x_1, y_1), (x_2, y_2) \in A$ esetén, ahol $x_1 \leq x_2$ és $y_1 \leq y_2$. Rajzoljuk fel az (A, \prec) rendezett halmaz Hasse diagramját!

Megoldás.

További feladatok

15. Legyen $\rho = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid x^2 + y^2 = 1\}, X = \left[-1, \frac{1}{2}\right]$ és $Y = \left[-\frac{1}{2}, 1\right]$. Határozzuk meg a következő metszeteket: $\rho\langle X \cap Y \rangle$ és $\rho\langle X \rangle \cap \rho\langle Y \rangle$.

Megoldás. $X \cap Y = \left[-1, \frac{1}{2}\right] \cap \left[-\frac{1}{2}, 1\right] = \left[-\frac{1}{2}, \frac{1}{2}\right].$

$$\begin{split} \rho\langle X\cap Y\rangle &= \rho\left\langle \left[-\frac{1}{2},\frac{1}{2}\right]\right\rangle \\ &= \left\{x\left|\,\exists y\in\left[-\frac{1}{2},\frac{1}{2}\right]\right. \text{ \'u.h. } (x,y)\in\rho\right\} \\ &= \left\{x\left|\,\exists y\in\left[-\frac{1}{2},\frac{1}{2}\right]\right. \text{ \'u.h. } x^2+y^2=1\right\} \\ &= \left\{\sqrt{1-y^2},\,-\sqrt{1-y^2}\,\middle|\,y\in\left[-\frac{1}{2},\frac{1}{2}\right]\right\} \\ &= \left[\sqrt{\frac{3}{4}},1\right]\cup\left[-1,-\sqrt{\frac{3}{4}}\right] \end{split}$$

$$\rho \langle X \rangle = \rho \left\langle \left[-1, \frac{1}{2} \right] \right\rangle$$

$$= \left\{ x \left| \exists y \in \left[-1, \frac{1}{2} \right] \right. \text{ ú.h. } (x, y) \in \rho \right\}$$

$$= \left\{ x \left| \exists y \in \left[-1, \frac{1}{2} \right] \right. \text{ ú.h. } x^2 + y^2 = 1 \right\}$$

$$= \left\{ \sqrt{1 - y^2}, -\sqrt{1 - y^2} \left| y \in \left[-1, \frac{1}{2} \right] \right. \right\}$$

$$= \left[0, 1 \right] \cup \left[-1, 0 \right] = \left[-1, 1 \right].$$

$$\begin{split} \rho\langle Y\rangle &= \rho\left\langle \left[-\frac{1}{2},1\right]\right\rangle \\ &= \left\{x\left|\,\exists y\in\left[-\frac{1}{2},1\right]\right. \text{ ú.h. } (x,y)\in\rho\right\} \\ &= \left\{x\left|\,\exists y\in\left[-\frac{1}{2},1\right]\right. \text{ ú.h. } x^2+y^2=1\right\} \\ &= \left\{\sqrt{1-y^2},\, -\sqrt{1-y^2}\,\middle|\, y\in\left[-\frac{1}{2},1\right]\right\} \\ &= \left[0,1\right]\cup\left[-1,0\right]=\left[-1,1\right]. \\ \rho\langle X\rangle\cap\rho\langle Y\rangle &= \left[-1,1\right]\cap\left[-1,1\right]=\left[-1,1\right]\neq\rho\langle X\cap Y\rangle. \end{split}$$