

Matemáticas Avanzadas para Computación

Tema 1. Introducción

Maestría en Sistemas Computacionales Dra. Mildreth Alcaraz, mildreth@iteso.mx
Tel. 3669-3434 xt 3975, Oficina T - 316

Objetivos de la clase

- Conocer los propósitos del curso
- Consejos para el éxito del curso
- Identificar cuáles son las Matemáticas para el área de la Computación
- Conocer algunas aplicaciones relacionadas
- Estudiar los conceptos básicos de:
 - Principios del Conteo
 - Permutaciones

1.1. Introducción

Principales propósitos de MAC

- Emplear métodos de conteo para el análisis combinatorio e identificar la importancia del estudio de estos en el contexto de la implementación de sistemas computacionales.
- Identificar a los grafos como una estructura discreta, conocer sus aplicaciones, y comprender su relevancia en el contexto del desarrollo e implementación de sistemas computacionales.
- Identificar a los árboles como una estructura discreta, conocer sus aplicaciones, y comprender su relevancia en el contexto del desarrollo e implementación de sistemas computacionales.
- Identificar a los autómatas como una estructura discreta, conocer sus aplicaciones, y comprender su relevancia en el contexto del desarrollo e implementación de sistemas computacionales.
- Conocer la existencia de otras estructuras discretas basadas en grafos, y sus aplicaciones en el contexto de los sistemas computacionales.

Comentarios Adicionales

- o Para aprender las matemáticas, hay que practicarlas... es como los deportes... No sólo saber las reglas y tener habilidad:
 - Paciencia...
 - Constancia...
 - Perseverancia...
 - Práctica
 - <u>Disposición</u>
 - Determinación a lograr el objetivo

Consejos para el Éxito del Curso

- Resolver dudas del tema.
- Complementar sus notas con los comentarios en clase.
- Las matemáticas son divertidas, sobre todo si trabajas para comprender lo poderosa que son...

• Leer la Guía de Aprendizaje.

Cuáles son las Matemáticas para Computación?

- Matemáticas discretas
 - Lógica, teoría de conjuntos, conteo, funciones, relaciones, árboles, grafos, autómatas, redes de Petri,...
- Algebra abstracta
 - Grupos, subgrupos, anillos, cuerpos o espacios vectoriales,...
- Combinatoria y Probabilidad Discreta
 - Permutaciones, Combinaciones, con y sin repeticiones,...

1.2. Aplicaciones relacionadas a la Computación

Motivación

• Simplemente, **no existe** sistema computacional sin el uso de las matemáticas...

- Inteligencia Artificial (AI):
 - FOL (first order logic):
 - Proposiciones con cuantificadores, funciones, operadores, etc.
 - Representación de conocimiento que puede ser evaluada.
 - Se dice que es el más general y potente método para describir y analizar información.
 - Si Muy detallado se reduce a problema de computabilidad (computable, se refiere a que una computadora puede resolverlo)
 - Cats are mammals [cat¹, mammal¹]
 - $\forall x, cat(x) \rightarrow mammal(x)$

ITESO Universidad Jesuita

de Guadalajara

Aplicaciones

- Sistemas Expertos (Reglas tipo IF THEN), SE ⊂ FOL
 - Expert System = Knowledge Base + Inference Engine
- Un SE simple para reconocimiento de vehículos:
 - R1: If ?x has wings
 - then?x is a plane
 - R2: If ?x flies
 - then?x is a plane
 - R3: If ?x runs on tracks
 - then?x is a train-or-tram
 - R4: If ?x is a plane
 - ?x can take off vertically
 - ?x has rotors
 - then ?x is a helicopter
 - R5: If ?x is a train-or-tram
 - ?x stays underground
 - then ?x is a subway car
 - R6: If ?x is a helicopter
 - ?x made in South Africa
 - then ?x is a Rooivalk

* Enseguida, se requiere de la generación de conocimiento (deducción y razonamiento)

- Ingeniería de Software:
 - Knowledge-Based Software Assistant:
 - Autómatas y Lenguajes Formales
 - Validación de "correctitud" de especificaciones de software.
 - Transformación de especificaciones en código eficiente en diversas plataformas, y probar la equivalencia entre la implementación y especificación: weapons systems, security systems, real time financial systems, donde las fallas implican costos humanos y/o financieros altos.
 - para chips de CPUs u otros componentes digitales, pues no aceptan modificaciones posteriores, como en VLSI (<u>Very Large</u> <u>Scale Integrated</u>) Design.

- Clasificadores Automáticos
 - las definiciones se mapean directamente a teoría de conjuntos y cálculo de predicados
 - Se analiza la información, y a partir de esto, se genera nueva.

```
@prefix : <http://infomesh.net/2001/proofexample/#> .
@prefix p: <http://www.w3.org/2001/07/imaginary-proof-ontology#> .
@prefix log: <http://www.w3.org/2000/10/swap/log#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
p:ProvenTruth rdfs:subClassOf log:Truth .
# Proof
{ <a.n3> p:checksum <md5:blargh>;
           log:resolvesTo [ log:includes { :Joe :loves :MJS } ] }
log:implies
{ :Stepl a p:Success } } a log:Truth .
{ <b.n3> p:checksum <md5:test>;
          log:resolvesTo [ log:includes { :MJS = :Mary } ] }
log:implies
{ :Step2 a p:Success } } a log:Truth .
  { :Step1 a p:Success . :Step2 a p:Success }
log:implies
                                                           [Palmer, 2001]
{ { :Joe :loves :Marv } a p:ProvenTruth } } a log:Truth .
```


- Bases de Datos:
 - Utilizan la mayoría de la matemática computacional denominada discreta, principalmente, conjuntos y relaciones.
 - La verificación de las consultas, se realiza a través de autómatas y lenguajes formales.
 - Recomendación de lectura: DISCRETE MATHEMATICS VIA RELATIONAL DATABASES, Raymond Turner, February 26, 2011.
 - Una Tabla es un conjunto finito de tuplas.

Name	Age	Salary
Jim	34	1200
Peter	23	14000

Aplicaciones

Name	Age	Salary
Jim	34	1200
Peter	23	14000

• Una **relación** define a una tabla, sus atributos y tipos de datos.

Set([name:String, age:N, salary:N]) = { [name:Jim, age:34, salary:1200], [name:Peter, age:23, salary:14000]}.

<Jim, 34, 1200>, <Peter, 23, 14000>

A set of relations R:

• $R(Name, Age, Salary) \subseteq Name X Age X Salary$

 Set Name:
 Set Age:
 Set Salary:

 Jim
 34
 1200

 Peter
 23
 14000

de Guadalajara

Aplicaciones

Name	Age	Salary
Jim	34	1200
Peter	23	14000

• Las **operaciones** toman <u>relaciones</u> como <u>argumentos</u>, y regresan <u>una relación</u> como <u>resultado</u>.

A set of relations R:

<Jim, 34, 1200>, <Peter, 23, 14000>

Name	Title	Year
C1	AA	3
C2	BB	2
C3	CC	1
C8	GG	2
<i>C9</i>	HH	3

R1 R2

de Guadalajara

Aplicaciones

Name	Age	Salary
Jim	34	1200
Peter	23	14000

• Las **operaciones** toman <u>relaciones</u> como <u>argumentos</u>, y regresan <u>una relación</u> como <u>resultado</u>.

A set of relations R:

<Jim, 34, 1200>, <Peter, 23, 14000>

$$\begin{array}{c|cccc} Name & Title & Year \\ \hline C5 & NNN & 4 \\ C6 & NM & 2 \\ C7 & PP & 1 \\ C2 & BB & 2 \\ C8 & GG & 2 \\ \end{array}$$

R1

R2

Aplicaciones

Productos Cartesianos

Name	Title	Year					
C1	AA	3		Name	Title	Year	
C2	BB		\triangle	C5	$NNN \ NM$	4	
C3	CC	1	$\langle \nabla \rangle$	C6	NM	2	=
C8	GG	2					
C9	HH	3					
	R1			-	R2		

Aplicaciones

Productos Cartesianos

$$Set([l_1:T_1,...,l_n:T_n]) \otimes Set([k_1:S_1,...,k_m:S_m])$$

 \Rightarrow
 $Set([l_1:T_1,...,l_n:T_n,k_1:S_1,...,k_m:S_m])$

Aplicaciones

- Intersection
- Natural Join
- Outer Join
- Multisets
- Lógica proposicional y cálculo de predicados

Queries...

 $\{z \in Teacher \cdot \exists x \in Student \cdot z \circ CourseNo = x \circ CourseNo\}$

Todas las tuplas donde los profesores cuentan con un curso donde este curso tiene al menos un estudiante.

Aplicaciones

• Resolución de Problemas

ITESO

Universidad Jesuita de Guadalajara

Aplicaciones

Situation Phenomenon Modelling Mathematical Understanding under model model investigation Mathematical analysis Interpreted Derivations Report from model results Communication Interpretation

> Figure 2. The process of modelling Source: Verschaffel, Greer and De Corte (2000, p. xii)

Resolución de Problemas

[Dindyal, 2010]

Referencias

- 1. Fundamentals of Discrete Mathematical Structures, K. R. Chowdhary, 2da. Edición, PHI Learning Pvt. Ltd., 2011.
- 2. Expert Systems Notes, Wayne Goddard, http://people.cs.clemson.edu/~goddard/texts/cpsc810/chapA7.pdf, Otoño 2014.
- 3. Yannibelli, Virginia, and Analía Amandi. "A knowledge-based evolutionary assistant to software development project scheduling." Expert Systems with Applications 38.7 (2011): 8403-8413.
- 4. Sean B. Palmer, The Semantic Web: An Introduction, http://infomesh.net/2001/swintro/
- 5. Discrete Mathematics Via Relational Databases, Raymond Turner, Class Notes, February 2011, http://www.academia.edu/1739363/DISCRETE_MATHEMATICS_VIA_RELATIONAL_DATABASES
- 6. Mathematical Applications and Modelling: Yearbook 2010, Dindyal, Jaguthsing, Kaur, Berinderjeet, Association of Mathematics Educators. Singapore: World Scientific Publishing; 2010.

1.3. Conceptos básicos: Combinatoria y probabilidad discreta

MAESTRÍA EN SISTEMAS COMPUTACIONALES

- Combinatoria \rightarrow arte de contar
- Responde a preguntas del tipo:
 - De cuántas maneras "esto" puede realizarse?
 - No cuáles, sólo cuántas

- Combinatoria → arte de contar
- Responde a preguntas del tipo:
 - De cuántas maneras "esto" puede realizarse?
 - No cuáles, sólo cuántas
- Ejemplo:
 - El tipo de placa en Jalisco para automóviles consiste en 3 letras y 4 números. Supongamos que no hay restricciones sobre el uso de los elementos:
 - Cuántas placas es posible tener con esta combinación de letras y números?
 - Una forma de encontrar la respuesta en definitiva NO ES enumerando todas las opciones.

Motivación

- Se utiliza casi en todos los casos de análisis de algoritmos
 relacionado con la <u>eficiencia en tiempo</u>:
 - Para grafos, recursividad,...
 - En cómputo paralelo y distribuido
- La encontramos en las bases de datos → útil para analizar la eficiencia en espacio de las consultas a bd.
- Big Data
- Muchas otras aplicaciones...

Principios Fundamentales del Conteo

• Estos principios encuentran su base en:

Set operations	Logic operations
$A\cap B$	$A ext{ AND } B$
$A \cup B$	$A ext{ OR } B$
$oldsymbol{A}'$	COMP(A)
$A\oplus B$	$A ext{ XOR } B$
A-B	A AND (COMP(B))

- Principios fundamentes:
 - 1) Adición,
 - 2) Inclusión-Exclusión y
 - 3) Multiplicación.

Principio de Adición

- Sea A y B dos tareas mutuamente excluyentes.
- Supongamos que la tarea A puede hacerse en m maneras y la tarea B en n maneras.
- Entonces, <u>A y B</u> pueden hacerse en *m* + *n* maneras.

Principio de Adición

- Sea A y B dos tareas mutuamente excluyentes.
- Supongamos que la tarea A puede hacerse en m maneras y la tarea B en n maneras.
- Entonces, <u>A y B</u> pueden hacerse en *m* + *n* maneras.

Principio de Adición

• EJEMPLO:

 Un estudiante ha elegido 4 cursos y necesita uno más para terminar. Hay 15 cursos en inglés, 10 en francés y 6 en alemán. Cuántas maneras de escoger el quinto curso tiene el estudiante?

Principio de Adición

- EJEMPLO:
 - Un estudiante ha elegido 4 cursos y necesita uno más para terminar. Hay 15 cursos en inglés, 10 en francés y 6 en alemán. Cuántas maneras de escoger el quinto curso tiene el estudiante?
- Solución: 15 + 10 + 6 = 31

Principio de Inclusión-Exclusión

- Supongamos que una tarea A puede realizarse en m maneras, la tarea B en n maneras, y ambas (i.e., simultáneamente o comunes) pueden realizarse en k diferentes maneras.
- Entonces la tarea A o la B pueden realizarse en m + n k maneras.

Principio de Inclusión-Exclusión

- Supongamos que una tarea A puede realizarse en m maneras, la tarea B en n maneras, y ambas (i.e., simultáneamente o comunes) pueden realizarse en k diferentes maneras.
- Entonces la tarea A o la B pueden realizarse en m + n k maneras.
 - EJEMPLO: En cuántas maneras puedes seleccionar un rey o una carta negra de un juego estándar de cartas? (26 son rojas y 26 negras).

Principio de Inclusión-Exclusión

- Supongamos que una tarea A puede realizarse en m maneras, la tarea B en n maneras, y ambas (i.e., simultáneamente o comunes) pueden realizarse en k diferentes maneras.
- Entonces la tarea A o la B pueden realizarse en m + n k maneras.
 - EJEMPLO: En cuántas maneras puedes seleccionar un rey o una carta negra de un juego estándar de cartas? (26 son rojas y 26 negras).
 - SOLUCIÓN: Cuántos reyes hay? 4, Cuántas cartas negras? 26, Cuántos reyes negros hay? 2...
 - Entonces, 4 + 26 2 = 28 maneras.

idad Jesuita uadalajara

- Supongamos que una tarea T se compone de dos subtareas: T₁ seguida de T₂. Si la subtarea T₁ puede realizarse en m₁ maneras y la subtarea T₂ en m₂ maneras diferentes de hacerse por cada subtarea T₁, entonces la tarea T puede hacerse en m₁m₂ maneras.
- EJEMPLO: Encuentra el número de palabras de dos letras que comiencen con una vocal.

ITESO

Universidad Jesuita de Guadalajara

Principio de Multiplicación

ITESO

- idad Jesuita uadalajara
- Supongamos que una tarea T se compone de dos subtareas: T₁ seguida de T₂. Si la subtarea T₁ puede realizarse en m₁ maneras y la subtarea T₂ en m₂ maneras diferentes de hacerse por cada subtarea T₁, entonces la tarea T puede hacerse en m₁m₂ maneras.
- EJEMPLO: Encuentra el número de palabras de dos letras que comiencen con una vocal.
- SOLUCIÓN: La tarea T, consiste de dos subtareas: T_1 consiste en seleccionar la primera letra vocal, y T_2 consiste en seleccionar la segunda letra: 5 * 27 = 135

ITESC

- idad Jesuita Jadalajara
- Supongamos que una tarea T se compone de dos subtareas: T₁ seguida de T₂. Si la subtarea T₁ puede realizarse en m₁ maneras y la subtarea T₂ en m₂ maneras diferentes de hacerse por cada subtarea T₁, entonces la tarea T puede hacerse en m₁m₂ maneras.
- Generalizando...
- Supongamos que una tarea T puede ser realizada por n subtareas sucesivas T_1, T_2, \ldots, T_n . Si la subtarea $T_i, 1 \le i \le n$, puede realizarse en m_i maneras después de que T_{i-1} se complete, entonces la tarea T puede hacerse en $m_1m_2\cdots m_n$ maneras.

- Universidad Jesuita
- EJERCICIO: El tipo de placa en Jalisco para automóviles (sin restricciones en el uso de letras) consiste en 3 letras (27 opciones) y 4 números (10 opciones).
 - Cuántas placas es posible tener con esta combinación de letras y números?

- EJERCICIO: El tipo de placa en Jalisco para automóvi esculo (sin restricciones en el uso de letras) consiste en 3 letras (27 opciones) y 4 números (10 opciones).
 - Cuántas placas es posible tener con esta combinación de letras y números?

Qué hemos revisado al momento?

- Curso en Moodle, guía de aprendizaje
- Objetivos del Curso y de la clase
- Importancia de las matemáticas y sus aplicaciones
- Principios fundamentes del conteo:
 - 1) Adición,
 - 2) Inclusión-Exclusión y
 - 3) Multiplicación

ITESO

de Guadalajara

Tarea

- Descripción en Moodle
- Fecha límite de entrega: Lunes, 21/08/2017, 11:55pm
- Incluir:
 - Nombre del estudiante, Fecha, Nombre del curso, Nombre del programa, Nombre del profesor.
- Subir al Moodle el documento en PDF.