

De-identification of DICOM files

for Data Scientists

Visual NLP Team, John Snow Labs

Agenda

Main topic	Introduced Concepts	
Introduction	Overview of the DICOM file format. Transfer Syntaxes. De-identification Challenges.	
De-identification Targets	Burned-in text. Metadata. Overlay Annotation data. Encapsulated Documents.	
Visual NLP Primer	Intro to Visual Language Models. Pipelines and Dataframes. Batch Mode vs. Streaming Mode.	
Metadata De-identification	Metadata Deidentification Pipelines. User Defined Metadata Removal.	
Burned-in Text Removal	Basic Pipelines for Text Removal. Text Detectors. NLP assisted Text Removal. Customized Pipelines. Dealing with big files.	
Getting Started	Resources to start de-identifying yourself!	

Presenter today

Alberto

Introduction

Visual NLP Team, John Snow Labs

The Dicom Format

- Digital Imaging and Communications in Medicine (DICOM)
- It turned 30 years old last year!
- Metadata is as important as image data.
- First developed for radiology and then cardiology.
- DICOM does not limit its action to images and associated information originating directly from medical devices.
- The standard is reviewed 5 times a year.

Transfer Syntaxes

- Compression: Uncompressed, JPEG, JPEG Lossless, JPEG 2000, RLE Lossless.
- 2. Byte Ordering (Endianness): Little Endian or Big Endian.
- 3. Photometric Interpretation and Color Spaces.
- 4. Binary Encoding Rules: Explicit VR (Value Representation) or Implicit VR.

Transfer Syntax UID	Transfer Syntax name
1.2.840.10008.1.2	Implicit VR Endian: Default Transfer Syntax for DICOM
1.2.840.10008.1.2. 1	Explicit VR Little Endian
1.2.840.10008.1.2. 1.99	Deflated Explicit VR Little Endian
1.2.840.10008.1.2.	Explicit VR Big Endian

Metadata

DICOM Metadata					
PATIENT	STUDY	SERIES	IMAGE		
Patient ID	Study ID	Modality	Rows		
Patient Name	Study Date/Time	Manufacturer	Columns		
Patient BirthDate	Study Description	Model Name/SW Version	Pixel Size		
Patient Sex	Institution Name	Patient Position	Photometric Interpretation		
Patient Weight	Referring Physician	Body Part Examined	Planar Configuration		
		+	Samples per Pixel		
		Modality-Specific Attributes			

- How important is this?: "the image can never be separated from this information".
- (0008, 0060) -> Two hexa numbers, (**Group, Element**).
- Can also include manufacturer-specific attributes known as private data elements.

Challenges

- Dealing with multiple Transfer Syntaxes or even different versions of the standard.
- Custom Tags in Metadata.
- Volume of dataset and size of individual files.

De-identification Targets

```
Field: content
               Path: file:/Users/nmelnik/IdeaProjects/spar
k-ocr/workshop/jupyter/data/dicom/deidentify-medical-2.dcm
               Width: 985 px
               Height: 914 px
               Metadata:
               Dataset.file meta --
(0002, 0000) File Meta Information Group Length UL: 196
(0002, 0001) File Meta Information Version OB: b'\x00\x01'
(0002, 0002) Media Storage SOP Class UID
                                         UI: 2.25.316618858989
175958452362820380094875916
099325554244939980269110548
(0002, 0010) Transfer Syntax UID
                                      UI: Explicit VR Littl
e Endian
(0002, 0012) Implementation Class UID
                                         UI: 1.3.6.1.4.1.30071
(0002, 0013) Implementation Version Name
                                           SH: 'fo-dicom 4.0.0'
(0008, 0020) Study Date
                                    DA: '19990316'
(0008, 0050) Accession Number
                                      SH: '95555556'
(0008, 0080) Institution Name
                                     10. "
(0008, 1030) Study Description
                                     LO: 'Study Descriptio
(0010, 0010) Patient's Name
                                     PN: 'Larisa KorsKi'
(0010, 0020) Patient ID
                                   LO: 'MF-59888888'
                                     DA: '19280802'
(0010, 0030) Patient's Birth Date
(0010, 0040) Patient's Sex
                                   CS: 'M'
(0010, 1000) Other Patient IDs
                                     LO: 'MF-5988889'
(0010, 1010) Patient's Age
                                    AS: '075Y'
(0010, 1030) Patient's Weight
                                     DS: '75.0'
(0020, 000d) Study Instance UID
                                      UI: "
(0028, 0002) Samples per Pixel
                                     US: 1
(0028, 0004) Photometric Interpretation
                                       CS: 'MONOCHROME2'
```

(0028, 0008) Number of Frames

(0028, 0103) Pixel Representation

(0028, 0010) Rows

(0028, 0011) Columns

(0028, 0102) High Bit

(0028, 0100) Bits Allocated

(0028, 0101) Bits Stored

IS: '1'

US: 0

US: 985

US: 8

US: 7

US: 914

US: 8

Field: dicom_cleaned	
Id: 0	
	nmelnik/IdeaProjects/spar
k-ocr/workshop/jupyter/data/dicor	m/deidentify-medical-2.dcm
Width: 985 px	
Height: 914 px	
Metadata:	
Dataset.file_met	ta
(0002, 0000) File Meta Information	n Group Length UL: 196
(0002, 0001) File Meta Informatio	n Version OB: b'\x00\x01'
(0002, 0002) Media Storage SOP	
175958452362820380094875916	
	Instance UID
099325554244939980269110548	
(0002, 0010) Transfer Syntax UID	UI: Explicit VR Littl
e Endian	
(0002, 0012) Implementation Clas	ss UID UI: 1.3.6.1.4.1.30071
.8	
(0002, 0013) Implementation Ver	sion Name SH: 'fo-dicom 4.0.0'
(0008, 0020) Study Date	DA: "
(0008, 0050) Accession Number	SH: "
(0008, 0080) Institution Name	LO: "
(0008, 1030) Study Description	LO: 'Study Descriptio
n'	, ,
(0010, 0010) Patient's Name	PN: "
(0010, 0020) Patient ID	LO: "
(0010, 0030) Patient's Birth Date	DA: "
(0010, 0040) Patient's Sex	CS: 'M'
(0010, 1000) Other Patient IDs	LO: "
(0010, 1010) Patient's Age	AS: "
(0010, 1030) Patient's Weight	DS: '75.0'
(0020, 000d) Study Instance UID	UI: "
(0028, 0002) Samples per Pixel	US: 1
(0028, 0004) Photometric Interpre	
(0028, 0008) Number of Frames	IS: '1'
(0028, 0010) Rows	US: 985
(0028, 0011) Columns	US: 914
(0028, 0100) Bits Allocated	US: 8
(0028, 0101) Bits Stored	US: 8

(0028, 0102) High Bit

US: 7

metadata

pixels

Visual NLP Primer

- Visual NLP is a Visual Document Understanding library built on top of Apache Spark.
- It's not an API.
- Curated list of features -> only useful things that work.
- Optimized for performance and accuracy.
- Created by industry practitioners.
- Actively developed.
- Security minded.

Visual Document **Table Detection** Visual Doc Visual **DocVQA** Understanding Doc NER & Recognition Classification OCR Text Detection & Recognition Visual NI P Skew Adaptive Image **Image** Image Preprocessing **Thresholding** Correction Denoising Enhancement Data Ingestion **DOC**x PPTx Scanned/Digital PDF Dicom Images **Apache Spark Distributed Processing** Spark Distributed File System

Streaming

Data stream as an unbounded table

- Sources and Sinks.
- Streaming Dataframe.
- Unbounded Table.
- Details: <u>Streaming Query</u>.

Engagement Models

Software Licensing

- Internal data science team needs to become self-sufficient with NLP and OCR
- Need partner to provide state of the art software in AI, NLP, OCR and LLM
- Want simplicity in architecture, integration, security, and scaling

Professional Services

- Data Science team is small, at capacity, or not familiar with NLP & OCR
- Time-to-market is key, and the team doesn't have enough bandwidth or experience to build a solution
- A partner can help get to market fast and skill up the internal team to become self-sufficient over time
- NLP, OCR is not a core business and it's preferred to outsource it

Managed Services

- NLP & OCR is used across the enterprise, and a robust and trusted solution is needed for scale, reproducibility and speed
- The Data Science team needs to deliver value to the broader organization
- Enterprise projects are a top focus;
 State-of-the-art models are a priority to not be surpassed by competitors
- Data Science team is growing rapidly and can use domain-specific experts
- Deploying, monitoring, and updating models in production is required

Getting Started

- Check <u>Library Documentation</u>.
- Get your trial license <u>here</u>.
- Check <u>Visual NLP Workshop repo</u>.
- Contact me or Enes: <u>alberto@johnsnowlabs.com</u>, <u>enes@johnsnowlabs.com</u>

Questions and Answers

Contact Us!

Contact us on Slack!

Emails: alberto@johnsnowlabs.com,

enes@johnsnowlabs.com