REAL ANALYSIS SOLUTIONS TO ROSS §4

PAUL L. BAILEY

Lemma 1. Let F be a complete ordered field. Let $A \subset F$ and $x \in F$. (a) If A is bounded above and $x < \sup A$, then x < a for some $a \in A$. (b) If A is bounded below and $x > \inf A$, then x > a for some $a \in A$. *Proof.* We prove (a); the proof of (b) is analogous. Suppose that $x \geq \sup A$. Then x is an upper bound for A. By definition of supremum, sup $A \leq x$. This is the contrapositive of what we wished to prove. **Exercise 1** (4.5). Let S be a nonempty subset of \mathbb{R} that is bounded above. Show that if $\sup S$ belongs to S, then $\sup S = \max S$. *Proof.* Let $u = \sup S$. Then $u \geq s$ for all $s \in S$. Since $u \in S$, we have u = S $\max S$. **Exercise 2** (4.6). Let S be a nonempty bounded subsets of \mathbb{R} . Show that inf $S \leq$ $\sup S$. What can be said if $\inf S = \sup S$? *Proof.* Since S is nonempty, there exists $s \in S$. Then inf $S \leq s$ and $s \leq \sup S$. By transitivity of order, inf $S \leq \sup S$. If $\inf S = \sup S$, then S contains only one element. **Exercise 3** (4.7.a). Let S and T be nonempty bounded subsets of \mathbb{R} . Show if $S \subset T$, the inf $T \leq \inf S \leq \sup S \leq \sup T$. *Proof.* Let $s \in S$. Then $s \in T$, so inf $T \leq s$. Thus inf T is a lower bound for S, so inf $T \leq \inf S$. Similarly, $\sup S \leq \sup T$. That $\inf S \leq \sup S$ is true is exercise **Exercise 4** (4.7.b). Let S and T be nonempty bounded subsets of \mathbb{R} . Show that $\sup(S \cup T) = \max\{\sup S, \sup T\}.$ *Proof.* Either $\max\{\sup S, \sup T\} = \sup S$ or $\max\{\sup S, \sup T\} = \sup T$. Suppose that $\max\{\sup S, \sup T\} = \sup S$; in this case, $\sup T \leq \sup S$. Since $S \subset S \cup T$, we have $\sup S \leq \sup(S \cup T)$ by part (a). Now let $x \in S \cup T$. Then x is either in S or T. If $x \in S$, then $x \leq \sup S$. If $x \in T$, then $x \leq \sup T \leq \sup S$. Thus $\sup S$ is an upper bound for $S \cup T$. Therefore

Date: January 23, 2019.

 $\sup(S \cup T) \le \sup S$.

S and T reversed.

 $\sup(S \cup T)$.

1

Since $\sup S \leq \sup(S \cup T)$ and $\sup(S \cup T) \leq \sup S$, it follows that $\sup S =$

Finally, if $\max\{\sup S, \sup T\} = \sup T$, the above proof is valid, with the roles of

Exercise 5 (4.8(b)). Let S and T be nonempty subsets of \mathbb{R} such that $s \leq t$ for every $s \in S$ and $t \in T$. Show that $\sup S \leq \inf T$.

Proof. Note that since S and T are nonempty, S is bounded above by an existing element of T and T is bounded below by an existing element of S. Thus $\sup S$ and $\inf T$ exist.

Suppose the conclusion is false; then inf $T < \sup S$. By Lemma 1a, there exists $s \in S$ such that inf T < s, By Lemma 1b, there exists $t \in T$ such that t < s. This is contrary to the assumption on S and T.

Exercise 6 (4.10). Show that if a > 0 then there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < a < n$.

Proof. Let $b = \max\{a, \frac{1}{a}\}$. By the Archimedean property, there exists $n \in \mathbb{N}$ such that n > b. Since $a \le b$, we have a < n. Also since $\frac{1}{a} \le b$, we have $\frac{1}{a} < n$. Thus by Theorem 3.2.(vii), we have $\frac{1}{n} < a$.

Exercise 7 (4.11). Let $a, b \in \mathbb{R}$ such that a < b. Show that there exist infinitely many rational numbers between a and b.

Proof. Suppose not. The the set $S = (a, b) \cap \mathbb{Q}$ is finite, so it has a minimum, say $c = \min S$. But then Theorem 4.7 tells us that there exists $d \in \mathbb{Q}$ such that a < d < c. But then d < b, so $d \in S$. This contradicts that $c = \min S$.

Define $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$. For the purposes of the next exercise, assume that \mathbb{I} is nonempty. We will show this in the appendix.

Exercise 8 (4.12). Let $a, b \in \mathbb{R}$. Show that if a < b, then there exists $x \in \mathbb{I}$ such that a < x < b.

Proof. Since \mathbb{I} is nonempty, let $\alpha \in \mathbb{I}$.

Let $q \in \mathbb{Q}$. Then $q \in \mathbb{R}$, and since $\alpha \in \mathbb{R}$ and \mathbb{R} is a field, $q + \alpha \in \mathbb{R}$. Suppose that $q + \alpha \in \mathbb{Q}$; say $q + \alpha = p \in \mathbb{Q}$. Then $\alpha = p - q$, and since p and q are both in \mathbb{Q} , then so is p - q, because \mathbb{Q} is a field. This contradicts the assumption on α . Thus $q + \alpha$ is irrational.

By the density of \mathbb{Q} in \mathbb{R} , there exists a rational number $q \in \mathbb{Q}$ such that $a - \alpha < q < b - \alpha$. Then $a < q + \alpha < b$, and $q + \alpha$ is irrational. Therefore, there exists an irrational number between any two real numbers.

Exercise 9 (4.14). Let A and B be nonempty bounded subsets of \mathbb{R} and let

$$S = \{x \in \mathbb{R} \mid x = a + b \text{ for some } a \in A, b \in B\}.$$

- (a) Show that $\sup S = \sup A + \sup B$.
- (b) Show that $\inf S = \inf A + \inf B$.

Proof. We prove (a); the proof for (b) is symmetric. It suffices to show that $\sup S \leq \sup A + \sup B$ and that $\sup A + \sup B \leq \sup S$.

Let $s \in S$. Then s = a + b for some $a \in A$ and $b \in B$. Then $a \le \sup A$ and $b \le \sup B$, so $a + b \le \sup A + \sup B$. Thus $\sup A + \sup B$ is an upper bound for S, so $\sup S \le \sup A + \sup B$.

Suppose that $\sup S < \sup A + \sup B$. Then $\sup S - \sup B < \sup A$, so there exists $a \in A$ such that $\sup S - \sup B < a$. From this, $\sup S - a < \sup B$, so there exists $b \in B$ such that $\sup S - a < b$. Let $s = a + b \in S$. We have $\sup S < s$, a contradiction. Therefore $\sup A + \sup B \le \sup S$.

Exercise 10 (4.15). Let $a, b \in \mathbb{R}$. Show that if $a \leq b + \frac{1}{n}$ for all $n \in \mathbb{N}$, then $a \leq b$. *Proof.* We prove the contrapositive.

Suppose that a > b. By exercise 4.10, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < a - b$. Thus $b + \frac{1}{n} < a$.

Exercise 11 (4.16). Show that $\sup\{r \in \mathbb{Q} \mid r < a\} = a$ for each $a \in \mathbb{R}$.

Proof. Let $a \in \mathbb{R}$, $A = \{r \in \mathbb{Q} \mid r < a\}$, and $s = \sup A$. We wish to show that a = s.

Suppose that a < s. Then there exists $r \in A$ such that a < r < s. This contradicts the definition of A.

On the other hand, suppose that s < a. By the density of \mathbb{Q} , there exists $r \in \mathbb{Q}$ such that s < r < a. Then $r \in A$. This contradicts the definition of s.

The only remaining possibility is that a = s.

Department of Mathematics & CSci, BASIS Scottsdale $Email\ address:$ paul.bailey@basised.com