CS641 Modern Cryptology Lecture 1

Instructor

• Manindra Agrawal, Professor, Dept of CSE

Contact: manindra@iitk.ac.in

Manindra Agrawal CS641: Lecture 1 3/21

CONTENTS

CLASSICAL CIPHERS: substitution and permutation ciphers, frequency	
analysis	[2
MODERN CRYPTANALYSIS: Known and chosen plaintext attacks,	
weakness of ciphers based on linear operations	[1]
PRIVATE-KEY ENCRYPTION: DES, AES	[7
Public-key Encryption: RSA, ECC, Lattice-based	[5]
DIGITIAL SIGNATURES: signatures based on RSA and ECC	[1
Hashing: MD5, SHA-3	[1]
PROTOCOLS: PKL secret sharing, bitcoin and blockchain, etc.	[3

Reference Books

- Applied Cryptography, by Bruce Schneier.
- Introduction to Modern Cryptography, by Katz and Lindell

Manindra Agrawal CS641: Lecture 1 5/21

GRADING

The course will have

- Midsem, weightage 25%
- Endsem, weightage 25%
- Assignments, weightage 50%
- 80+% marks \Rightarrow A grade
- 20+% marks \Rightarrow D or higher grade

EXAMS

- Exams will be take-home.
- Discussion is encouraged, but no copying.
- All students should form a group of size up to three. Each group needs to submit only one answer in examinations and assignments.

Manindra Agrawal CS641: Lecture 1 7/21

Copying Policy

- Any group caught copying in an assignment will get zero in that assignment.
- Any group caught copying in exams will get zero in that exam.

8/21

SCHEDULE

- Discussion hour once a week. Date and time to be decided.
- Midsem during Feb 21-26, 2022
- Endsem during Apr 25-May 4, 2022

TAs

- Neelabjo Shubhashis Choudhury, neelabjo@cse.iitk.ac.in
- Mohammad Haseeb Qureshi, haseebq@cse.iitk.ac.in
- Harsika Diksha, mahesr@cse.iitk.ac.in
- P J Leo Evenss, leoevenss@cse.iitk.ac.in
- Prashant Shivhare, prashantsh@cse.iitk.ac.in
- Sharvari Ajay Oka, okasharvar@cse.iitk.ac.in
- Shashwat Vaibhav, shashwatv@cse.iitk.ac.in

Basic Structure

• What if the channel is insecure and message sensitive?

Manindra Agrawal CS641: Lecture 1 12/21

BASIC STRUCTURE: INSECURE CHANNEL

• How to stop Ela from reading message?

BASIC STRUCTURE: ENCODING-DECODING

- Operation *E* is called encryption and *D* is called decryption.
- What if Ela learns about *D*?

BASIC STRUCTURE: KEYS

• k_D and k_E must be kept secure.

KEY MANAGEMENT

- If k_D and k_E never change, security is lost for ever in case of any leakage.
- Therefore, it is better to change keys at regular interval.
- Since k_E and k_D are "dual" of each other, both need to be changed simultaneously.
- How do Anubha and Braj get the new keys?
 - ► They can physically meet once a while.
 - ► They can agree on a large set of keys at the start and change the usage by simply sending the key number.
- We will discuss secure methods of key exchange later.

KEY SIZE

- Let $s = |k_D|$.
- If s is small, Ela can run through all the 2^s possible values of k_D , decrypt the ciphertext, and choose the value that results in sensible plaintext.
- Therefore, to ensure security, s must be chosen large.

17/21

KEY SIZE

- How large?
 - ▶ Fastest supercomputer at present (Fugaku) runs at \approx 415 petaflops.
 - Assuming that one value of k_D can be checked in one operation (very generous assumption), this computer can check $< 10^{18}$ values in a second.
 - ▶ This translates to $< 10^{23}$ values in a day, $< 10^{26}$ values in a year, and $< 10^{36}$ values in 10 billion years (life of the universe).
 - As $10^{36} < 2^{120}$, s = 128 suffices.

Manindra Agrawal CS641: Lecture 1 18/21

Caeser Cipher

For every letter ℓ of message m, replace ℓ by third letter from ℓ in the alphabet.

- Example: m = Cryptography becomes c = E(m) = Fubswrjudskb.
- One of the earliest known use of encryption (around 50 bce).
- Very simple to apply.
- Very easy to decipher once the algorithm is known.
- Even making shift amount as key does not help since the possible values are very small (= 26).

SUBSTITUTION CIPHER

$$k_E: [a-z] \mapsto [a-z], k_E \text{ a permutation.}$$
 $E(\ell_1\ell_2\cdots\ell_n) = k_E(\ell_1)k_E(\ell_2)\cdots k_E(\ell_n).$ $k_D = k_E^{-1}, \text{ and } D = E.$

- Number of possible keys equals $26! \approx 10^{26}$, a sufficiently large number.
- A generalization of Caeser Cipher.
- Used for a long time.
- Can be broken by frequency analysis.