

Large Systems:

Design +
Implementation +
Administration

2024-2025

Large Systems:

➤ Week4-L8: Introduction to Cloud Computing

Shashikant Ilager shashikantilager.com

21 november 2024

Today's SURF data center visit

- Location: Science park 120
- · Please verify your slot and be at entrance of the data center tower

Papers..

- Make sure your presentation fits within 10 minutes + 5 min QA
- Max 10-12 slides
- Recommended structure*
 - Introduction: Motivation and Problem statement (1-2 slides)
 - Related work: SOTA and research gap (1-slide)
 - Proposed work: Methodology and technique (3-4 slides)
 - Performance evaluation: Experimental setup, results and insights (1-2 slides)
 - Conclusions and future directions (1 slide)

^{*} You can choose your slide structure based on paper type and your own convenience

Trends in Distributed Systems

Distributed systems has been undergoing a period of significant change and this can be traced back to a number of influential trends:

- The emergence of **pervasive networking** technology
 - Pervasive means "diffused throughout every part of."
- The emergence of **ubiquitous computing** coupled with the desire to support user mobility in distributed systems;
 - Ubiquitous means everywhere
- The increasing demand for multimedia services.
- The view of distributed systems as **utility**.

Distributed Computing as Utility

Distributed resources can be viewed as a commodity or utility similar to water or electricity.

Resources are provided by appropriate service suppliers and **rented** rather than **owned** by an end user.

The term **cloud computing** is used to capture this vision.

Cloud Computing Definitions

A report from the *University of California Berkeley* [1] defines cloud as the "data center hardware and software that provide services"

summarized the key characteristics of cloud computing as:

- "(1) the illusion of infinite computing resources;
- (2) the elimination of an up-front commitment by cloud users; and
- (3) the ability to pay for use ... as needed ..."

The National Institute of Standards and Technology (NIST):

"Cloud computing is a model for enabling **ubiquitous**, **convenient**, **on-demand** network access to a **shared pool** of configurable **computing resources** (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction."

^[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, and R. Katz, Above the Clouds: A Berkeley View of Cloud Computing, UC Berkeley Reliable Adaptive Distributed Systems Laboratory White Paper, 2009.

Cloud Computing

An IT paradigm that enables access to **shared pools** of configurable system resources in form of **services** that can be rapidly provisioned with minimal management effort, often over the **Internet**.

Why Clouds?

Every 18 months?

Conventional Computing

- Buy & Own
 - Hardware, System Software,
 Applications
 - Often to meet peak needs.
- Install, Configure, Test, Verify, Evaluate,
 Manage
- ...
- Finally, use it!
- \$\$\$\$....\$(VERY expensive!)

Cloud Computing

- Subscribe
- Use

 \$ - pay for what you use, based on Quality of Service (QoS).

(Courtesy of Rajkumar Buyya, 2012)

Basic Concept

Cloud is the "invisible" backend to many applications

• e.g., Dropbox, Linkedlin, Github, Office 365, Amazon, Office 365, Slack,...

The name comes from the use of a cloudshaped symbol as an abstraction for the complex infrastructure.

The long-held dream of computing as a utility

- The long-held dream of delivering computing as a utility has been realized with the advent of cloud computing
- Over the years, several technologies
 have matured and significantly
 contributed to make cloud computing
 viable
 - Utility & Grid Computing
 - Webservices
 - Virtualization
 - Autonomic Computing

Utility and Grid Computing

- When plugging an electric appliance into an outlet, we care neither how electric power is generated nor how it gets to that outlet.
- Electricity is **virtualized**:
 - that is, it is readily available from a wall socket that hides power generation stations and a huge distribution grid.
- Technologies such as **cluster**, **grid**, and **cloud computing**, have all aimed at allowing access to large amounts of computing power in a fully virtualized manner, by aggregating resources and offering a single system view.
- Utility computing
 - a business model for on-demand delivery of computing power; consumers pay providers based on usage ("pay as-you-go"),
 - Similar to the way in which we currently obtain services from traditional public utility services such as water, electricity, gas, and telephony.

The Electric Revolution

Triennale exhibition palace, Milan

Alessandro Volta in Paris in 1801 inside French National Institute shows the battery while in the presence of Napoleon I

(Zoological Section "La Specula" of National History Museum of Florence University)

What ?!?!
This is a mad
man...

....and in the future,
I imagine a Worldwide
Power (Electrical)
Grid

Web Services

A **Web service** is a software system designed to support interoperable machine-to-machine interaction over a network using HTTP and technologies such as XML, SOAP, WSDL, and UDDI.

Web services are increasingly important in distributed systems.

- They support **interoperability** across the global Internet, including the key area of business to-business integration and also the emergent 'mashup' culture enabling third-party developers to creative innovative software on top of the existing service base.
- A mashup describes a Web application that combines multiple services into a single application.

Many service providers, such as Amazon, Facebook, and Google, make their service APIs publicly accessible using standard protocols such as SOAP and REST.

Hardware Virtualization

Virtualization hides the physical characteristics of a computing platform from the users, presenting instead an abstract computing platform

The software that controlled virtualization is called **hypervisor** or **virtual machine monitor**, e.g., Xen, KVM, VMWare ESXi.

Multi-core chips, paravirtualization, hardware-assisted virtualization, and live migration of VMs—has contributed to an increasing adoption of virtualization

on server systems.

Autonomic Computing

- The increasing complexity of computing systems
 - motivated research on **autonomic computing**.
- Autonomic computing refers to the **self-managing** characteristics of distributed computing resources, adapting to unpredictable changes while hiding intrinsic complexity to operators and users.
- IBM's Autonomic Computing Initiative has contributed to define the four properties of autonomic systems:
 - self-configuration
 - self-optimization
 - self-healing
 - self-protection.
- IBM has also suggested a reference model for autonomic control loops of autonomic managers, called MAPE-K (Monitor Analyse Plan Execute—Knowledge)

Economics of Cloud Users

Risk of over-provisioning: underutilization

Static data center

Slide Credits: Berkeley RAD Lab

Economics of Cloud Users

Heavy penalty for under-provisioning

Slide Credits: Berkeley RAD Lab

Economics of Cloud Users

Pay by use instead of provisioning for peak

Unused resources

Slide Credits: Berkeley RAD Lab

Cloud Deployment Models

Private

• Organization has its own private cloud, might be on-premise or off-premise

Public

• Organizations shares cloud with general public.

Community

• Shared by several entities that have common purpose.

Hybrid

• Any combination of two or more private, community or public clouds.

Cloud Service Models

Software as a Service (SaaS)

- provides applications and software to the customer in utilitybased model which is accessible from a thin client interface such as a Web browser/ Mobile apps
 - Salesforce.com

Platform as a Service (PaaS)

- provides programming languages and tools to deploy application onto the cloud infrastructure
 - Google App Engine

Infrastructure as a Service (IaaS)

- provides capabilities for the customers to provision computational resources such as processing, storage, network, and other fundamental computing resources Virtual Machines(VMs)/Containers
 - Example: Amazon EC2/S3, Azure

Cloud Computing Market Research Report - Global Forecast to 2027

https://www.marketresearchfuture.com/reports/cloud-computing-market-1013

Amazon Web Services (1)

Compute

EC2

Lightsail @

ECR

ECS

EKS

Lambda

Batch

Elastic Beanstalk

Serverless Application Repository

Robotics

AWS RoboMaker

Blockchain

Amazon Managed Blockchain

Satellite

Ground Station

Storage

S3

EFS

FSx

S3 Glacier

Storage Gateway

AWS Backup

Database

RDS

DynamoDB

ElastiCache

Neptune

Amazon Redshift

Amazon QLDB

Amazon DocumentDB

Management & Governance

AWS Organizations

CloudWatch

AWS Auto Scaling

CloudFormation

CloudTrail

Config

OpsWorks

Service Catalog

Systems Manager

Trusted Advisor

Managed Services

Control Tower

AWS License Manager

AWS Well-Architected Tool

Personal Health Dashboard &

AWS Chatbot

Analytics

Athena

EMR

CloudSearch

Elasticsearch Service

Kinesis

QuickSight &

Data Pipeline

AWS Glue

AWS Lake Formation

Security, Identity, & Compliance

Resource Access Manager

MSK

IAM

Cognito

GuardDuty

Inspector

CloudHSM

Secrets Manager

Amazon Macie 2

AWS Single Sign-On

Certificate Manager

Directory Service

WAF & Shield

Security Hub

Artifact

Key Management Service

Business Applications

Alexa for Business

Amazon Chime 2

WorkMail

End User Computing

WorkSpaces

AppStream 2.0

WorkDocs

WorkLink

Internet Of Things

IoT Core

Amazon FreeRTOS

IoT 1-Click

IoT Analytics

IoT Device Defender

IoT Device Management

IoT Events

IoT Greengrass

IoT SiteWise

IoT Things Graph

Game Development

Amazon GameLift

Amazon Web Services (2)

Migration & Transfer

AWS Migration Hub

Application Discovery Service

Database Migration Service

Server Migration Service

AWS Transfer for SFTP

Snowball

DataSync

Networking & Content Delivery

VPC

CloudFront

Route 53

API Gateway

Direct Connect

AWS App Mesh

AWS Cloud Map

Global Accelerator &

Developer Tools

CodeStar

CodeCommit

CodeBuild

CodeDeploy

CodePipeline

Cloud9

X-Ray

Media Services

Elastic Transcoder

Kinesis Video Streams

MediaConnect

MediaConvert

MediaLive

MediaPackage

MediaStore

MediaTailor

Elemental Appliances & Software

Machine Learning

Amazon SageMaker

Amazon Comprehend

AWS DeepLens

Amazon Lex

Machine Learning

Amazon Polly

.....

Rekognition

Amazon Transcribe

Amazon Translate

Amazon Personalize

Amazon Forecast

Amazon Textract

AWS DeepRacer

Mobile

AWS Amplify

Mobile Hub

AWS AppSync

Device Farm

AR & VR

Amazon Sumerian

Application Integration

Step Functions

Amazon EventBridge

Amazon MQ

Simple Notification Service

Simple Queue Service

SWF

AWS Cost Management

AWS Cost Explorer

AWS Budgets

AWS Marketplace Subscriptions

Customer Engagement

Amazon Connect

Pinpoint

Simple Email Service

AWS Academy

- Access to AWS resources for education
- Assignment 4 is based on AWS EC2 services
- Each student gets \$50 credits and can access AWS without credit card details*

^{*} With some restrictions compared to general accounts

Summary

- Cloud computing is all about delivering computing services over the Internet.
- Technologies significantly contributed to make cloud computing viable: Grid computing, web services, virtualization, autonomic computing
- Cloud Deployment Models: private, community, public, hybrid
- Cloud Service Models: IaaS, PaaS, SaaS
- Cloud and distributed computing skills are at the top of the most demanded job skills right now.

In reality, cloud computing looks like this. ...

E.g., Google Data Center, CyrusOne Middenmeer, Netherlands

Cloud computing application models...

Even Driven Architectures and Serverless Computing- To be covered in next weeks AWS guest lecture

References

- Distributed Systems: Concepts and Design, G. Coulouris, J. Dollimore, T. Kindberg, G. Blair,
 5th ed. 2012, ©Pearson Education Chapter 1, Characterization of Distributed Systems
- Cloud Computing: Principles and Paradigms, Rajkumar Buyya, James Bromberg, Andrzej M. Goscinski
 ©John Wiley & Sons, 2010, Chapter 1 Introduction to Cloud Computing