INDIAN INSTITUTE OF TECHNOLOGY, KANPUR DEPARTMENT OF MATHEMATICS & STATISTICS

MSO 202/A COMPLEX ANALYSIS ASSIGNMENT 5

Q1. Expand the given function in a Laurant series that converge for 0 < |z| < R and determine the precise region of convergence.

(i) $1/(z^4-z^5)$

(ii) e^{-z}/z^3

- (iii) $z^{-3}e^{1/z^2}$.
- Q2. Expand the given function in a Laurant series that converge for $0 < |z z_0| < R$ and determine the precise region of convergence.

(i) $e^z/(z-1)$, $z_0=1$

- (ii) $1/z^2 + 1$, $z_0 = i$ (iii) $(z^2 4)/(z 1)$, $z_0 = 1$...
- Q3. Find all Taylor and Laurant series with center $z=z_0$ and determine the precise region of convergence.

- (i) $1/(1-z^3)$, $z_0=0$, (ii) $(z^3-2iz^2)/((z-i)^2, z_0=i$ (iii) $\sin z/(z+\frac{\pi}{2})$, $z_0=-\pi/2$.
- **Q4.** Does tan(1/z) have a Laurant series that converges in a region 0 < |z| < R.
- **Q5.** Expand the following in a Laurant series that converges for |z| > 0:

$$\frac{1}{z^2} \int_0^z \frac{e^t - 1}{t} dt.$$

Q6. Determine the location and kind of singularities of the functions:

(i) $\frac{\sin 3z}{(z^4-1)^4}$

- (ii) $\cosh\left(\frac{1}{z^2+1}\right)$
- Q7. Show that the points at which a nonconstant analytic function f(z) has a given value k are isolated.
- **Q8.** Let $f_j(z)$, j=1,2 are analytic in a domain $D\subseteq\mathbb{C}$ and $f_1(z_n)=f_2(z_n)$ for a sequence $\{z_n\}_{n=1}^{\infty} \subset D$ then $f_1(z) \equiv f_2(z)$ in D.

1