

IIC1253 — Matemáticas Discretas — 1' 2020

PAUTA CONTROL 1

Pregunta 1

Pregunta 1.1

Por enunciado se tiene que

$$\varphi_k(p_1, p_2, ..., p_{2^{k-1}}, p_1, p_2, ..., p_{2^{k-1}}) = \varphi_{k-1}(p_1, p_2, ..., p_{2^{k-1}}) \leftrightarrow \varphi_{k-1}(p_1, p_2, ..., p_{2^{k-1}})$$

$$\tag{1}$$

Dado lo anterior dos opciones para demostrar que la fórmula anterior es una tautología son:

• Opción 1: Dado $k \ge 1$, sea $v_1, v_2, ..., v_{2^{k-1}}$ una valuación para las variables $p_1, p_2, ..., p_{2^{k-1}}$. P.D: $\varphi_k(v_1, ..., v_{2^{k-1}}, v_1, ..., v_{2^{k-1}}) = 1$

$$\begin{array}{c} \mathrm{sea} \ b = \varphi_{k-1}(v_1,...,v_{2^{k-1}}) \\ \varphi_k(v_1,...,v_{2^{k-1}},v_1,...,v_{2^{k-1}}) = \varphi_{k-1}(v_1,...,v_{2^{k-1}}) \leftrightarrow \varphi_{k-1}(v_1,...,v_{2^{k-1}}) \quad \text{(por (1))} \\ = b \leftrightarrow b \\ = 1 \\ \end{array}$$
 (definición de bicondicional)

Distribución de puntaje:

- (0.5 Puntos) Por escribir definición (1)
- (0.5 Puntos) Por evaluar φ_k en una valuación cualquiera $v_1,...,v_{2^{k-1}}$
- (0.5 Puntos) Por asignar un valor de verdad (b) a $\varphi_{k-1}(v_1,...,v_{2^{k-1}})$
- (0.5 Puntos) Por notar que $b \leftrightarrow b = 1$
- (1 Puntos) Por concluir
- Opción 2: Dado $k \geq 1$:

$$\varphi_{k}(p_{1},...,p_{2^{k-1}},p_{1},...,p_{2^{k-1}}) \equiv \varphi_{k-1}(p_{1},...,p_{2^{k-1}}) \leftrightarrow \varphi_{k-1}(p_{2},...,p_{2^{k-1}})
\equiv (\varphi_{k-1}(p_{1},...,p_{2^{k-1}}) \to \varphi_{k-1}(p_{1},...,p_{2^{k-1}})) \land \qquad (2)
(\varphi_{k-1}(p_{1},...,p_{2^{k-1}}) \to \varphi_{k-1}(p_{1},...,p_{2^{k-1}})) \qquad (\text{def. de doble implicancia})
\equiv \varphi_{k-1}(p_{1},...,p_{2^{k-1}}) \to \varphi_{k-1}(p_{1},...,p_{2^{k-1}}) \qquad (\text{idempotencia}) \qquad (3)
\equiv \neg \varphi_{k-1}(p_{1},...,p_{2^{k-1}}) \vee \varphi_{k-1}(p_{1},...,p_{2^{k-1}}) \qquad (\text{visto en clases}) \qquad (4)$$

Lo anterior es una tautología $(\neg p \lor p)$ vista en clases, por lo tanto $\varphi_k(p_1,...,p_{2^{k-1}},p_1,...,p_{2^{k-1}})$ es una tautología.

Distribución de puntaje:

- (0.5 Puntos) Por escribir definición (1)
- (0.5 Puntos) Por equivalencia (2)
- (0.5 Puntos) Por equivalencia (3)
- (0.5 Puntos) Por equivalencia (4)
- (1 Punto) Por decir que (4) es una tautología vista en clases y concluir.

Pregunta 1.2

Dado $k \geq 1$, el valor de verdad de la fórmula φ_k depende solo de cláusulas de la forma $C_i = (p_i \leftrightarrow p_{i+1})$, $i \in \{1, 2, ..., 2^k - 1\}$. Dada una valuación $v_1, ..., v_{2^k}$ cualquiera y dado $i \in \{1, 2, ..., 2^k - 1\}$ hay cuatro posibilidades:

1. $v_i = 1$, $v_{i+1} = 0$. Entonces $\bar{v}_i = 0$, $\bar{v}_{i+1} = 1$.

$$C_i(v_i, v_{i+1}) = 1 \leftrightarrow 0 = 0$$

$$C_i(\bar{v}_i, \bar{v}_{i+1}) = 0 \leftrightarrow 1 = 0$$

El valor de verdad de C_i no cambia.

2. $v_i = 0$, $v_{i+1} = 1$. Entonces $\bar{v}_i = 1$, $\bar{v}_{i+1} = 0$.

$$C_i(v_i, v_{i+1}) = 0 \leftrightarrow 1 = 0$$

$$C_i(\bar{v}_i, \bar{v}_{i+1}) = 1 \leftrightarrow 0 = 0$$

El valor de verdad de C_i no cambia.

3. $v_i = 1$, $v_{i+1} = 1$. Entonces $\bar{v}_i = 0$, $\bar{v}_{i+1} = 0$.

$$C_i(v_i, v_{i+1}) = 1 \leftrightarrow 1 = 1$$

$$C_i(\bar{v}_i, \bar{v}_{i+1}) = 0 \leftrightarrow 0 = 1$$

El valor de verdad de C_i no cambia.

4. $v_i = 0$, $v_{i+1} = 0$. Entonces $\bar{v}_i = 1$, $\bar{v}_{i+1} = 1$.

$$C_i(v_i, v_{i+1}) = 0 \leftrightarrow 0 = 1$$

$$C_i(\bar{v}_i, \bar{v}_{i+1}) = 1 \leftrightarrow 1 = 1$$

El valor de verdad de C_i no cambia.

Como los valores de todos los C_i no cambian al evaluar en la inversa, entonces el valor de φ_k también se mantiene, en otras palabras, $\varphi_k(v_1,...v_{2^k}) = \varphi_k(\bar{v}_1,...,\bar{v}_{2^k})$

Distribución de puntaje:

- (1 Punto) Por notar que el valor de φ_k depende solo de formulas bicondicionales $p_i \leftrightarrow p_{i+1}$
- (0.75 Puntos) Por ver que el valor de verdad de C_i no cambia cuando $v_i \neq v_{i+1}$
- (0.75 Puntos) Por ver que el valor de verdad de C_i no cambia cuando $v_i = v_{i+1}$
- (0.5 Puntos) Por concluir que el valor de φ_k evaluado en la inversa no cambia.

Pregunta 2

Pregunta 2.1

Sea $\mathcal I$ una interpretación cualquiera y α una fórmula universal:

$$\alpha := \forall x_1 \ \forall x_2... \forall x_k. \ \beta(x_1, x_2, x_3,..., x_k)$$

Sea $\mathcal{I}' \subseteq \mathcal{I} \ y \ \mathcal{I} \vDash \alpha$.

Como $\mathcal{I} \vDash \alpha$ entonces, por definición $\forall a_1, a_2, ..., a_k \in \mathcal{I}(dom)$;

$$\mathcal{I} \vDash \beta(a_1, a_2, a_3, ..., a_k)$$

En particular, si lo anterior se cumple, tenemos que $\forall a_1, a_2, ..., a_k \in \mathcal{I}'(dom)$;

$$\mathcal{I} \vDash \beta(a_1, a_2, a_3, ..., a_k)$$

Como $\mathcal{I} \vDash E(a, b)$ si, y solo si $\mathcal{I}' \vDash E(a, b) \ \forall \ a, b \in \mathcal{I}'(dom)$, entonces;

$$\mathcal{I} \vDash \gamma(a_1, a_2, a_3, ..., a_k)$$
 si, y solo si $\mathcal{I}' \vDash \gamma(a_1, a_2, a_3, ..., a_k) \ \forall \ \gamma$ (sin cuantificadores)

Entonces, como $\mathcal{I} \models \beta(a_1, a_2, ..., a_n)$, por lo anterior tenemos que $\mathcal{I}' \models \beta(a_1, a_2, ..., a_n)$.

Como $a_1, a_2, a_3, ..., a_n \in \mathcal{I}'(dom)$ es cualquiera, entonces por definición;

$$\mathcal{I}' \vDash \forall x_1 \ \forall x_2... \forall x_k. \ \beta(x_1, x_2, x_3,..., x_k)$$

Dado lo anterior el puntaje asignado es el siguiente:

- (0.5 Puntos) Por definir un caso generalizado.
- (1 Punto) Por aplicar la definición sobre *I*.
- (1 Punto) Por ver que se debía cumplir para β .
- (0.5 Puntos) Por volver a la definición y concluir.

Pregunta 2.2

Sea \mathcal{I} interpretación cualquiera tal que $\mathcal{I} \models \alpha$ y α está definido como una fórmula existencial;

$$\alpha := \exists x_1 \exists x_2... \exists x_k. \beta(x_1, x_2, x_3,..., x_k)$$

Por definición existe $a_1, a_2, ..., a_k \in \mathcal{I}$ tal que;

$$\mathcal{I} \vDash \beta(a_1, a_2, a_3, ..., a_k)$$

Sea \mathcal{I}' tal que $\mathcal{I}'(dom) = \{ a_1, a_2, a_3, ..., a_k \}$ y $\forall a, b \in \mathcal{I}'(dom)$ tenemos que;

- Si
$$\mathcal{I} \models E(a,b)$$
 entonces, $\mathcal{I}' \models E(a,b)$

- Si
$$\mathcal{I} \nvDash E(a,b)$$
 entonces, $\mathcal{I}' \nvDash E(a,b)$

Como $\mathcal{I} \vDash E(a,b)$ si, y solo si $\mathcal{I}' \vDash E(a,b) \ \forall \ a,b \in \mathcal{I}'(dom)$. Entonces;

$$\mathcal{I} \vDash \gamma(a_1, a_2, a_3, ..., a_k)$$
 si, y solo si $\mathcal{I}' \vDash \gamma(a_1, a_2, a_3, ..., a_k) \ \forall \ \gamma$ (sin cuantificadores)

Como $\mathcal{I}' \models \beta(a_1, a_2, a_3, ..., a_k)$ para $a_1, a_2, a_3, ..., a_k$. Entonces, por definición de existe ;

$$\mathcal{I}' \vDash \exists \ x_1 \ \exists \ x_2... \exists \ x_k. \ \beta(x_1, \ x_2, \ x_3,..., \ x_k) \ y \ \mathcal{I}'$$
 tiene dominio finito.

Dado lo anterior el puntaje asignado es el siguiente:

- \blacksquare $({\bf 0.5~Puntos})$ Por definir un caso generalizado y aplicar la definición.
- (1.5 Puntos) Por definir un $\mathcal{I}'(dom)$ y aplicar la definición.
- (0.5 Puntos) Por ver que se debía cumplir para β .
- (0.5 Puntos) Por volver a la definición y concluir.