Academy of Engineering (An Autonomous Institute)			COURSE SYLLABUS		
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING			W.E.F.	:	2022-23
			COURSE NAME	:	APPLIED MECHANICS
FY BTECH			COURSE CODE	:	CV103
			COURSE CREDITS	:	03
RELEASE DATE	:	01/11/2022	REVISION NO.	:	2.0

TEACHING	SCHEME:		EVALUATION SCHEME :					
LEOTUDE		THEORY				PRESENTATION/	TOTAL	
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATIO N	TOTAL	
02	01	20	40	15	50	00	125	
PRF-REQUISITE: 10+2 Physics and Mathematics								

COURSE OBJECTIVES:

CV103.CEO.1: - To define fundamental concepts and laws of rigid body mechanics.

CV103.CEO.2: - To state conditions of equilibrium for engineering structures.

CV103.CEO.3: - To describe kinematic parameters of rectilinear and curvilinear motion.

CV103.CEO.4: - To explain energy and momentum methods of kinetics.

COURSE OUTCOMES:

The students after completion of the course will be able to

CV103.CO.1: - Determine the resultant of system of forces acting on bodies(L2).

CV103.CO.2: - Calculate the support-reactions and member forces for simple structures(L2).

CV103.CO.3: - Analyse bodies in rectilinear and curvilinear motion (L4).

CV103.CO.4: - Apply energy and momentum methods for kinetics problems(L3).

THEORY:		
Unit I	Basics of Statics	7 Hours
Fundamenta	Concepts and Principles in mechanics, Force and force systems, Resolution,	Resultant,

and Moment of a force system; Equilibrium of a particle systems. Free body diagram(FBD). Equilibrium of rigid bodies.

Format No.: MITAOE/ACAD/ 001 Rev. No.: 4.0 Rev. Date: 1/6/2018 **Self-study/further study**: Observe the Static objects things around you, draw the free body diagram and find the resultant.

Unit II Applications of Statics

7 Hours

Types of supports and their reactions. Beam reactions, Analysis of cables, Analysis of trusses, and Analysis of frames. Centroid of plane laminas. Engineering applications of friction. Belt Friction, Wedge friction.

Self-study/further study: Understanding following questions are expected from the students.

- 1. What does it mean for a design of members to be "Statically indeterminable"?
- 2. What is a "Two force Member"?
- 3. Which forces are allowed on a member?

Unit III Kinematics of particle

7 Hours

Basic concepts in kinematics- Position, velocity, acceleration, jerk. Rectilinear motion with constant and variable acceleration. Connected body motions. Relative motion. Curvilinear motion in Cartesian coordinates and path coordinates.

Self-study/further study: Study of gyroscopic motion

Unit IV Kinetics of particle

7 Hours

Kinetics- Equation of motion. Concept of work done, energy and power. Principle of work and energy. Conservation of energy. Principle of impulse and momentum. Conservation of momentum. Collisions-Direct central impact. Coefficient of restitution.

Self-study/further study: Study of vehicle dynamics

PRACTICAL:				
Practical No. 1	Parallelogram Law	2 Hours		
To verify parallelog	gram law of force addition.	-		
Practical No. 2 Law of moments		2 Hours		
To verify law of mo	oments for parallel forces.			
Practical No. 3	Block Friction	2 Hours		
To determine coef	ficient of static friction for a block on a plane.	,		
Activity No 1	Truss model	2 Hours		
To develop truss n	nodel			
Practical No. 4	Belt Friction	2 Hours		
To determine coef	ficient of static friction for a flat belt on a drum.	<u> </u>		

Format No.: MITAOE/ACAD/ 001 Rev. No.: 4.0 Rev. Date: 1/6/2018

Practical No. 5	Centroid 1D	2 Hours	
To determine cent	roid of composite wire object.	'	
Practical No. 6	Centroid 2D 2 Hour		
To determine cent	roid of composite plane lamina.		
Activity No 2	Model making for Centroid	2 Hours	
To develop the mo	odel for centroid	,	
Practical No. 7	Projectile Motion	2 Hours	
To analyze project	tile motion in Cartesian coordinates.	,	
Activity No 3	Model making for Projectile	2 Hours	
To develop the mo	odel for projectile		
Practical No. 8	Compound Pendulum	2 Hours	
To determine mas	s moment of Inertia of compound pendulum.	,	
Practical No. 9	Fly Wheel	2 Hours	
To analyse rotation	nal motion of a flywheel about a fixed axis.	·	
Activity No 4	Model of parachute	2 Hours	
To develop the pa	rachute model.		
Practical No. 10	Direct Central Impact	2 Hours	
To determine coef	ficient of restitution for direct central impact.	-	

TEXT BOOKS:

- 1. Nelason, A. (2009). Engineering Mechanics: Statics and Dynamics. 2nd Edition, Tata McGraw-Hill Education.
- 2. Anil Kumar D. (2015). Engineering Mechanics: Statics & Dynamics", 1st edition, Tata McGraw-Hill Education.

REFERENCE Books:

- 1. Hibbeler, R. C. (2009). Gupta Ashok Engineering Mechanics: Statics & Dynamics.", 14th Edition, Pearson Education Inc., Prentice Hall.
- 2. Beer, F. P., Johnston, E. R., Eisenberg, E. R., Mazurek, D. F., Clausen, W. E., & Cornwell, P. J. (1977). Vector mechanics for engineers (Vol. 4). New York: McGraw-Hill.", 11th Edition, McGraw-Companies, Inc., New York.

Format No.: MITAOE/ACAD/ 001 Rev. No.: 4.0 Rev. Date: 1/6/2018