LC21

Cinétique homogène

L'eau oxygenée

•
$$H_2O_{2(aq)} = H_2O_{(I)} + \frac{1}{2}O_{(g)}$$

K°(25°C)=3,9.10¹⁸

À utiliser les 30 jours après son ouverture

Manipulation introductive

•
$$2 I_{(aq)}^{-} + S_2 O_8^{2-}_{(aq)} = I_{2(aq)} + 2 SO_4^{2-}_{(aq)}$$

• $Ag^{+}_{(aq)} + I^{-}_{(aq)} = AgI_{(s)}$

Réactions thermodynamiquem ent favorables

Comment et à quelles vitesses se déroulent ces réactions ?

Manipulation introductive

•
$$2 I_{(aq)}^{-} + S_2 O_8^{2-}_{(aq)} = I_{2(aq)}^{-} + 2 SO_4^{2-}_{(aq)}$$

Réactions thermodynamiquem ent favorables

•
$$Ag^{+}_{(aq)} + I^{-}_{(aq)} = AgI_{(s)}$$

Expérience:

•
$$2 I_{(aq)}^{-} + S_2 O_8^{2-}_{(aq)} = I_{2(aq)}^{-} + 2 SO_4^{2-}_{(aq)}$$

Réaction lente

•
$$Ag^{+}_{(aq)} + I^{-}_{(aq)} = AgI_{(s)}$$

Réaction rapide

Oxydation des ions iodure par le peroxodisulfate

	2 I- _(aq)	+ S ₂ O ₈ ²⁻ (aq	₁₎ = I _{2(aq)}	+ 2 SO ₄ ²⁻ (aq)
Etat initial	C_0	C ₀ '	0	0
A l'instant t Avancement = x(t)	C ₀ -2x	C ₀ '-x	X	2x

Suivie spectrophotométrique

	2 I ⁻ (aq)	+ S ₂ O ₈ ²⁻ (aq	= I _{2(aq)}	+ 2 SO ₄ ²⁻ (aq)
Etat initial	C_0	C ₀ '	0	0
A l'instant t Avancement = x(t)	C ₀ -2x	C ₀ '-x	X	2x

Conditions initiales:

$$C_0 = 0.75 \text{ mol. L}^{-1}$$

 $C_0' = 2.5.10^{-4} \text{ mol. L}^{-1}$

Absorbance : $A = b \times [I_2]$

Expérience avec deux concentrations de peroxodisulfate différentes

Méthodes de suivie cinétique

	Méthode de suivi chimique	Méthode de suivi physique
Avantages	accès direct à la concentration	 Suivi continu d'une grandeur directement proportionnel à la concentration.
Inconvénients	 Long nécessite de réaliser plusieurs titrages avec trempe préalable des différents échantillon 	 Ne donne pas accès directement aux concentrations.

Absorbance en fonction du temps

$$[I_2] = \frac{A}{4360} \text{ mol.L}^{-1}$$

Vitesse d'apparition de diode

$$v_{app} = \frac{d[I_2]}{dt} \, \text{mol. L}^{-1}.s^{-1}$$

Jacques MESPLÈDE et Jérôme RANDON. 100 manipulations de chimie générale et analytique. Bréal, 2004

Exploitation du suivie spectroscopique

	2 I- _(aq) +	S ₂ O ₈ ²⁻ (aq)	= I _{2(aq)} -	+ 2 SO ₄ ²⁻ (aq)
Etat initial	C ₀ =excès	C_0	0	0
A l'instant t Avancement = x(t)	C_0 -2x = excès	C ₀ '-x	X	2x
A l'instant final	excès	C_0 '-x = 0	C _o '	2C ₀ '

Conditions initiales:

$$C_0 = 0.75 \text{ mol. L}^{-1}$$

 $C_0' = 2.5.10^{-4} \text{ mol. L}^{-1}$

Absorbance : $A = b \times [I_2]$

Concentration et vitesse de disparition des ions peroxosulfate

Jacques MESPLÈDE et Jérôme RANDON. 100 manipulations de chimie générale et analytique. Bréal, 2004

Méthode intégrale

Réaction : $\alpha A \rightarrow \cdots$

Loi de vitesse : $v = k \times [A]^p$

Ordre o	Ordre 1	Ordre 2
$-\frac{1}{\alpha} \frac{d[A]}{dt} = k$ $\Rightarrow [A] = [A]_0 - \alpha kt$	$-\frac{1}{\alpha} \frac{d[A]}{dt} = k[A] \Rightarrow [A] = [A]_0 e^{-\alpha kt}$ $\Rightarrow \boxed{\ln \frac{[A]}{[A]_0} = -\alpha kt}$	$-\frac{1}{\alpha} \frac{d[A]}{dt} = k[A]^2 \Rightarrow \frac{d[A]}{[A]^2} = -\alpha k dt$ $\Rightarrow \frac{1}{[A]} - \frac{1}{[A]_0} = \alpha kt$

Courbes obtenues pour ordres 1 et 2

Méthode intégrale

Réaction : $\alpha A \rightarrow \cdots$

Loi de vitesse :
$$v = k \times [A]^p$$

Ordre o	Ordre 1	Ordre 2	
1 d[A]	$-\frac{1}{\alpha}\frac{d[A]}{dt} = k[A] \Longrightarrow [A] = [A]_0 e^{-\alpha kt}$	$-\frac{1}{\alpha}\frac{d[A]}{dt} = k[A]^2 \Longrightarrow \frac{d[A]}{[A]^2} = -\alpha k dt$	
$-\frac{1}{\alpha}\frac{d[A]}{dt} = k \Longrightarrow [A] = [A]_0 - \alpha kt$	$\Rightarrow \boxed{\ln \frac{[A]}{[A]_0} = -\alpha kt}$	$\Rightarrow \boxed{\frac{1}{[A]} - \frac{1}{[A]_0} = \alpha kt}$	
$[\mathbf{A}]_{\mathbf{t}_{1/2}} = \frac{[\mathbf{A}]_0}{2} \Longrightarrow \boxed{\mathbf{t}_{1/2} = \frac{[\mathbf{A}]_0}{2\alpha\mathbf{k}}}$	$[A]_{t_{1/2}} = \frac{[A]_0}{2} \Longrightarrow \boxed{t_{1/2} = \frac{\ln 2}{\alpha k}}$	$[\mathbf{A}]_{\mathfrak{t}_{1/2}} = \frac{[\mathbf{A}]_0}{2} \Longrightarrow \boxed{\mathfrak{t}_{1/2} = \frac{1}{\alpha \mathbf{k}[\mathbf{A}]_0}}$	