$$P(A_4|R_3) = \frac{P(A_4 \text{ and } R_3)}{P(R_3)} = \frac{36/1164}{320/1164} = \frac{0.031}{0.275}$$

= 0.1125

 $P(R_3) = \frac{320}{1164}$ $P(A_2) = \frac{402}{1164}$ $P(A_1 \text{ and } R_2)$ $= \frac{70}{1164}$

		Rank					
		Full professor R ₁	Associate professor R ₂	Assistant professor R ₃	Instructor R ₄	Total	
Age (yr)	Under 30	Al and RI	3	57	Al and R4	68	
	30-39 A ₂	52	170	163	17	402	
	40–49 A ₃	156	125	61	6	348	
	50-59 A ₄	145	68	A4 and R3 36.	4	253	
	60 & over A ₅	75	15	3	0	93	
	Total	430	381	(320)	33	1164	

320

}	CI	CZ	Total	
R.	(3)	X=7	10	
R ₂	Z=8	7	y=15	
Total	a=11	b=14	25	

$$10+y=25$$

 $y=15$

Z = 8

$$P(R_2) = \frac{15}{25} = \frac{3}{5} = 0.6$$

$$P(CI) = \frac{11}{25}$$

$$P(R, and C_i) = \frac{3}{25}$$