考察伴随矩阵

1、设
$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$
,计算 $\sum_{i=1}^{4} \sum_{j=1}^{4} A_{ij}$.

2、设A为n阶方阵,且 $n \ge 2$,

分块法计算行列式

则f(x) = 0的根的个数为_____.

$$f(x)$$
 $c_j - c_1$
 $x-2$
 1
 0
 -1
 $c_4 + c_2$
 $x-2$
 1
 0
 0

 $f(x)$
 $\frac{1}{j \ge 2}$
 $3x-3$
 1
 $x-2$
 -2
 $x-2$
 1
 0
 0

 $3x-3$
 1
 $x-2$
 -2
 $x-2$
 1
 0
 0

 $4x$
 -3
 $x-7$
 -3
 $x-7$
 -6

$$= \begin{vmatrix} x-2 & 1 \\ 2x-2 & 1 \end{vmatrix} \cdot \begin{vmatrix} x-2 & -1 \\ x-7 & -6 \end{vmatrix}$$

显然是关于x的二次多项式.

2、计算行列式
$$\begin{vmatrix} \mathbf{C} & \mathbf{A} \\ \mathbf{B} & \mathbf{O} \end{vmatrix}$$
, 其中 $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 2 & 0 \\ 5 & 6 & 3 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} -5 & -4 & -3 & -2 & -1 \\ -5 & -4 & -3 & -2 & 0 \\ -5 & -4 & -3 & 0 & 0 \\ -5 & -4 & 0 & 0 & 0 \\ -5 & 0 & 0 & 0 & 0 \end{bmatrix}$.

答案: 3!.5!

相抵标准形的应用,矩阵的秩

1、**设**A为 $m \times n$ 矩**阵**,证明r(A) = r的充分必要条件是存在 $m \times r$ 矩阵B和 $r \times n$ 矩阵C,使得A = BC,其中r(B) = r(C) = r.

- 2、(秩1矩阵)设A为n阶方阵,
- (1) 证明r(A) = 1的充分必要条件是存在非零列向量 α, β ,使得 $A = \alpha \beta^{T}$;

(3) 设
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ 3 & -6 & 9 \end{bmatrix}$$
, 求 A^m , 其中 m 是正整数.

已知线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots & \dots & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$
(1)

定理3.4.1 (克拉默法则)

设 $n \times n$ 线性方程组的系数矩阵为 A ,则该方程组有唯一解的充分必要条件是它的系数矩阵A 的行列式 $|A| \neq 0$.

且该唯一解可以表示为
$$[x_1, x_2, \dots, x_n]^T = [\frac{D_1}{D}, \frac{D_2}{D}, \dots, \frac{D_n}{D}]^T$$
.

其中
$$D_j = \begin{vmatrix} a_{11} \cdots a_{1,j-1} & b_1 & a_{1,j+1} \cdots a_{1n} \\ \cdots \cdots \cdots \cdots \cdots & \vdots \\ a_{n1} \cdots a_{n,j-1} & b_n & a_{n,j+1} \cdots a_{nn} \end{vmatrix}$$

注 如果非齐次线性方程组无解或有无穷多个解,则它的系数行列式必为零.

例1 用克拉默则解方程组

$$\begin{cases} 2x_1 + x_2 - 5x_3 + x_4 = 8, \\ x_1 - 3x_2 - 6x_4 = 9, \\ 2x_2 - x_3 + 2x_4 = -5, \\ x_1 + 4x_2 - 7x_3 + 6x_4 = 0. \end{cases}$$

$$D =$$
 $\begin{bmatrix} 2 & 1 & -5 & 1 \\ 1 & -3 & 0 & -6 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{bmatrix}$
 $\begin{bmatrix} r_1 - 2r_2 \\ r_4 - r_2 \end{bmatrix}$
 $\begin{bmatrix} 0 & 7 & -5 & 13 \\ 1 & -3 & 0 & -6 \\ 0 & 2 & -1 & 2 \\ 0 & 7 & -7 & 12 \end{bmatrix}$

$$= -\begin{vmatrix} 7 & -5 & 13 \\ 2 & -1 & 2 \\ 7 & -7 & 12 \end{vmatrix} = \begin{vmatrix} c_1 + 2c_2 \\ \hline c_3 + 2c_2 \end{vmatrix} - \begin{vmatrix} -3 & -5 & 3 \\ 0 & -1 & 0 \\ -7 & -7 & -2 \end{vmatrix}$$

$$=\begin{vmatrix} -3 & 3 \\ -7 & -2 \end{vmatrix} = 27,$$

$$D_{1} = \begin{vmatrix} 8 & 1 & -5 & 1 \\ 9 & -3 & 0 & -6 \\ -5 & 2 & -1 & 2 \\ 0 & 4 & -7 & 6 \end{vmatrix} \qquad D_{2} = \begin{vmatrix} 2 & 8 & -5 & 1 \\ 1 & 9 & 0 & -6 \\ 0 & -5 & -1 & 2 \\ 1 & 0 & -7 & 6 \end{vmatrix} = 81,$$

$$D_4 = \begin{vmatrix} 2 & 1 & -5 & 8 \\ 1 & -3 & 0 & 9 \\ 0 & 2 & -1 & -5 \\ 1 & 4 & -7 & 0 \end{vmatrix}$$

$$=-27,$$

$$= 27,$$

$$\therefore x_1 = \frac{D_1}{D} = \frac{81}{27} = 3,$$

$$\therefore x_1 = \frac{D_1}{D} = \frac{81}{27} = 3, \qquad x_2 = \frac{D_2}{D} = \frac{-108}{27} = -4,$$

$$x_3 = \frac{D_3}{D} = \frac{-27}{27} = -1,$$
 $x_4 = \frac{D_4}{D} = \frac{27}{27} = 1.$

$$x_4 = \frac{D_4}{D} = \frac{27}{27} = 1.$$

齐次线性方程组的相关结论

推论2.4.3

齐次线性方程组(2)只有零解的充分必要条件是它的系数行列式非零.

齐次线性方程组(2)有非零解的充分必要条件是它的系数行列式等于零.

例2 已知

$$\begin{cases} (\lambda - 2)x_1 & +2x_2 & -2x_3 & = 0, \\ 2x_1 & +(\lambda + 1)x_2 & -4x_3 & = 0, \\ -2x_1 & -4x_2 & +(\lambda + 1)x_3 & = 0 \end{cases}$$

有非零解,求λ的值.

$$\begin{vmatrix} \mathbf{A} \\ |\mathbf{A}| = \begin{vmatrix} \lambda - 2 & 2 & -2 \\ 2 & \lambda + 1 & -4 \\ -2 & -4 & \lambda + 1 \end{vmatrix} = \begin{vmatrix} \lambda - 2 & 2 & -2 \\ 2 & \lambda + 1 & -4 \\ 0 & \lambda - 3 & \lambda - 3 \end{vmatrix} = \begin{vmatrix} \lambda - 2 & 4 & -2 \\ 2 & \lambda + 5 & -4 \\ 0 & 0 & \lambda - 3 \end{vmatrix}$$

$$= \begin{vmatrix} \lambda - 2 & 4 & -2 \\ 2 & \lambda + 5 & -4 \\ 0 & 0 & \lambda - 3 \end{vmatrix} = (\lambda - 3) \begin{vmatrix} \lambda - 2 & 4 \\ 2 & \lambda + 5 \end{vmatrix} = (\lambda - 3)^2 (\lambda + 6),$$

因为其次方程组有非零解,所以|A|=0, 从而 $\lambda=3$ 或 $\lambda=-6$.

例3 已知

$$\begin{cases} (\mu - 1)x_1 & +3x_2 & -2x_3 & = 1, \\ x_1 & +(\mu + 1)x_2 & -2x_3 & = 1, \\ 5x_1 & -x_2 & +(\mu - 4)x_3 & = -3 \end{cases}$$

有无穷多解, 求μ的值, 并求通解.

解 该线性方程组的系数行列式

$$|A| = \begin{vmatrix} \mu - 1 & 3 & -2 \\ 1 & \mu + 1 & -2 \\ 5 & -1 & \mu - 4 \end{vmatrix} \stackrel{\underline{r_1 - r_2}}{=} \begin{vmatrix} \mu - 2 & -\mu + 2 & 0 \\ 1 & \mu + 1 & -2 \\ 5 & -1 & \mu - 4 \end{vmatrix}$$

$$\frac{c_2 + c_1}{5} \begin{vmatrix} \mu - 2 & 0 & 0 \\ 1 & \mu + 2 & -2 \\ 5 & 4 & \mu - 4 \end{vmatrix} = (\mu - 2) \begin{vmatrix} \mu + 2 & -2 \\ 4 & \mu - 4 \end{vmatrix} = \mu(\mu - 2)^2.$$

由于方程组有无穷多解, 故 |A|=0, 即 $\mu=0$ 或 $\mu=2$.

当 $\mu = 0$ 时, 对方程组的增广矩阵 \tilde{A} 作初等行变换后化为行阶梯形矩阵,

$$\tilde{A} = \begin{bmatrix} -1 & 3 & -2 & 1 \\ 1 & 1 & -2 & 1 \\ 5 & -1 & -4 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -2 & 1 \\ 0 & 4 & -4 & 2 \\ 0 & 0 & 0 & -5 \end{bmatrix}.$$

此时 $r(A) \neq r(\tilde{A})$, 方程组无解, 即 $\mu = 0$ 不满足题设条件, 舍去.

当 $\mu = 2$ 时,对方程组的增广矩阵 \tilde{A} 作初等行变换后化为行阶梯形矩阵,

$$\tilde{A} = \begin{bmatrix} 1 & 3 & -2 & 1 \\ 1 & 3 & -2 & 1 \\ 5 & -1 & -2 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & -2 & 1 \\ 0 & -2 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

此时 $r(A) = r(\tilde{A}) = 2 < 3$, 方程组有无穷多解. 原方程组的同解方程组为

$$\begin{cases} x_1 = \frac{1}{2}x_3 - \frac{1}{2}, \\ x_2 = \frac{1}{2}x_3 + \frac{1}{2}, \end{cases}$$

取 x_3 为自由变量,则该方程组的通解为

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix} + k \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 1 \end{bmatrix},$$

其中 k 为任意常数.

例4(插值多项式唯一性定理)

设 x_1, x_2, \dots, x_{n+1} 是数域 \mathbb{P} 中n+1个互不相同的数,而 b_1, b_2, \dots, b_{n+1} 是 \mathbb{P} 中任意给定的n+1个数,证明在数域 \mathbb{P} 上存在唯一的n次多项式(函数)

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

使得

$$f(x_i) = b_i$$
, $i = 1, 2, \dots, n+1$.

解: 根据题设构造方程组

$$\begin{cases} a_0 + a_1 x_1 + \dots + a_n x_1^n = b_1, \\ a_0 + a_1 x_2 + \dots + a_n x_2^n = b_2, \\ \dots \\ a_0 + a_1 x_{n+1} + \dots + a_n x_{n+1}^n = b_{n+1}. \end{cases}$$

是以 a_0, a_1, \dots, a_n 为未知量的 $(n+1) \times (n+1)$ 非齐次线性方程组. 其系数行列式

$$\begin{vmatrix} 1 & x_1 & \cdots & x_1^n \\ 1 & x_2 & \cdots & x_2^n \\ \vdots & \vdots & & \vdots \\ 1 & x_{n+1} & \cdots & x_{n+1}^n \end{vmatrix} = \prod_{1 \le i < j \le n+1} (x_j - x_i) \ne 0$$

所以由克拉默法则可知该方程组的解唯一存在,即 a_0, a_1, \dots, a_n 存在且取值唯一. 从而问题得证。

小结

- 1. 用克拉默法则解方程组的两个条件
- (1)方程个数等于未知量个数;
- (2)系数行列式不等于零.
- 2. 克拉默法则建立了线性方程组的解和已知的系数与常数项之间的关系. 它主要用于理论推导.

二、线性方程组的应用

• 在光合作用下,植物利用太阳光的辐射能量把二氧化碳(CO_2)和水(H_2O)转化成氧气(O_2)和葡萄糖($C_6H_{12}O_6$). 试建立该反应的化学平衡方程式.

$$x_1 \operatorname{CO}_2 + x_2 \operatorname{H}_2 \operatorname{O} \xrightarrow{\text{km} \times} x_3 \operatorname{O}_2 + x_4 \operatorname{C}_6 \operatorname{H}_{12} \operatorname{O}_6$$

其中 x₁, x₂, x₃, x₄ 是尽可能小的正整数.

解 由碳原子、氢原子、氧原子分别平衡,有

$$\begin{cases} x_1 = 6x_4, \\ 2x_2 = 12x_4, \\ 2x_1 + x_2 = 2x_3 + 6x_4, \end{cases}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & -6 \\ 0 & 2 & 0 & -12 \\ 2 & 1 & -2 & -6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -6 \\ 0 & 2 & 0 & -12 \\ 0 & 1 & -2 & 6 \end{bmatrix}$$

$$\begin{cases} x_1 = 6x_4, \\ x_2 = 6x_4, \\ x_3 = 6x_4, \end{cases}$$
 其中 x_4 为自由变量.

由题意,应取 $x_4 = 1$, $x_1 = x_2 = x_3 = 6$ 反应的化学平衡方程式为

$$6CO_2+6H_2O$$
 $\xrightarrow{\text{太阳光}} 6O_2+C_6H_{12}O_6$

作业:

第9题要求利用克拉默法则求解得到的线性方程组。

9. 给定平面上的三个点 (1,1),(2,-1),(3,1). 求过这三个点且对称轴与 y 轴平行的抛物线的方程.

10. 设有齐次线性方程组
$$\begin{cases} (1+a)x_1+&x_2+\cdots+&x_n=0,\\ 2x_1+(2+a)x_2+\cdots+&2x_n=0,\\ &\cdots\\ nx_1+&nx_2+\cdots+(n+a)x_n=0 \end{cases}$$
 值时, 该方程组有非零解?

第10题要求用两种方法求解:方法一是直接用高斯消元法;方法二是结合克拉默法则+高斯消元法求解。

6. 计算下列各行列式. ₽

(5)
$$\begin{vmatrix} 2 & 2^2 & 2^3 & \cdots & 2^n \\ 3 & 3^2 & 3^3 & \cdots & 3^n \\ \vdots & \vdots & \vdots & & \vdots \\ n & n^2 & n^3 & \cdots & n^n \end{vmatrix}$$

$$\begin{vmatrix}
a & a+h & a+2h & \cdots & a+nh \\
-a & a & & & \\
& -a & a & & \\
& & \ddots & \ddots & \\
& & -a & a
\end{vmatrix};$$

(6)
$$\begin{vmatrix} 2a & 1 \\ a^2 & 2a & 1 \\ & \ddots & \ddots & \ddots \\ & & a^2 & 2a & 1 \\ & & & & a^2 & 2a \end{vmatrix}$$

.(本题要求用三角化方法做)。

$$\underbrace{\frac{r_i-r_1}{(i\geq 2)}}_{|0\ 0\ 0\ 0\ \cdots\ n-2}^{\left|1\ 0\ 0\ \cdots\ 0\ 0\ \cdots\ n-2\right|_n}^{\left|1\ 0\ 0\ \cdots\ n-2\right|_n}\underbrace{\frac{2\ 2\ 2\ \cdots\ 2}{3n}\cdots\ 2}_{\left|0\ 1\ 0\ \cdots\ n-2\right|_{n-1}}^{\left|2\ 2\ 2\ \cdots\ 2\ \cdots\ 0\ n-2\right|_{n-1}}_{\left|0\ 0\ 0\ \cdots\ n-2\right|_{n-1}}^{\left|2\ 2\ 2\ \cdots\ n-2\right|_{n-1}}=-2(n-2)!.$$

$$= \left[(n+1)a + \frac{n(n+1)}{2}h \right] \begin{vmatrix} a \\ -a & a \\ & \ddots & \ddots \\ & -a & a \end{vmatrix}_{(n \nmid n)} = \frac{(n+1)(2a+nh)}{2}a^n$$

(5)
$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 2 & 2^{2} & 2^{3} & \cdots & 2^{n} \\ 3 & 3^{2} & 3^{3} & \cdots & 3^{n} \\ \vdots & \vdots & \vdots & & \vdots \\ n & n^{2} & n^{3} & \cdots & n^{n} \end{vmatrix} \xrightarrow{r_{i}/i} n!V(1, 2, ..., n) = \prod_{i=1}^{n} i!$$

$$\frac{r_i / i}{1 \le i \le n} n! V(1, 2, ..., n) = \prod_{i=1}^n i!$$

(6)
$$\begin{vmatrix} 2a & 1 & & & & \\ a^{2} & 2a & 1 & & & \\ & \ddots & \ddots & \ddots & \\ & & a^{2} & 2a & 1 \\ & & & a^{2} & 2a \end{vmatrix} . \qquad D_{n} = \begin{vmatrix} 2a & 1 & & & & \\ 0 & \frac{3}{2}a & 1 & & & \\ & 0 & \frac{4}{3}a & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & 0 & \frac{n}{n-1}a & 1 \\ & & & 0 & \frac{n+1}{n}a \end{vmatrix} = (n+1)a^{n}$$

7. 已知行列式↓

$$D = \begin{vmatrix} 3 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 1 & 1 & 2 & 2 \\ 4 & 5 & 3 & 7 \end{vmatrix}, \quad \mathbb{A}$$

 M_{ij} 和 A_{ij} 分别是 D 中 (i,j) 元 a_{ij} 的余子式和代数余子式,试求:

(1)
$$A_{14} + 2A_{24} + A_{34} + 5A_{44}$$
; (2) $4M_{42} + 2M_{43} + 2M_{44}$.

(1)
$$A_{14} + 2A_{24} + A_{34} + 5A_{44} = \begin{vmatrix} 3 & 1 & 0 & 1 \\ 0 & 2 & 0 & 2 \\ 1 & 1 & 2 & 1 \\ 4 & 5 & 3 & 5 \end{vmatrix} = 0.$$
(得到的行列式第2,4列成比例)

$$(2) 4M_{42} + 2M_{43} + 2M_{44} = 4A_{42} - 2A_{43} + 2A_{44} = \begin{vmatrix} 3 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 1 & 1 & 2 & 2 \\ 0 & 4 & -2 & 2 \end{vmatrix} = \begin{vmatrix} 3 & 1 & 2 & 2 \\ 0 & 2 & -2 & 2 \end{vmatrix} = 48.$$

第二周第1次课作业

4. 利用行列式的定义确定行列式
$$f(x) = \begin{vmatrix} 2x & x & 1 & 2 \\ 1 & x & 1 & -1 \\ 3 & 2 & x & 1 \\ 1 & 1 & 1 & x \end{vmatrix}$$
 中 x^3 和 x^4 的系数. x^4

$$x^3$$
项为 $-a_{12}a_{21}a_{33}a_{44}$,其系数为 -1 . x^4 项为 $a_{11}a_{22}a_{33}a_{44}$,其系数为2.

. . . .

5. 计算下列行列式. (提示: 2), 3) 小题可利用性质化简出多个零元素后, 2) 可用行列式定义,

3) 可用对角线法; 其他题目可考虑三角化)

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 7 & 10 \\
3 & 5 & 11 & 16 \\
2 & -7 & 7 & 7
\end{pmatrix};$$

$$(2) \begin{vmatrix} 1+a & 1 & 1 & 1 \\ 1 & 1-a & 1 & 1 \\ 1 & 1 & 1+b & 1 \\ 1 & 1 & 1 & 1-b \end{vmatrix}$$

$$\begin{vmatrix}
-ab & ac & ae \\
bd & -cd & de \\
bf & cf & -ef
\end{vmatrix}$$

(6)
$$\begin{vmatrix} a & b & c & d \\ a & b+a & c+b+a & d+c+b+a \\ a & b+2a & c+2b+3a & d+2c+3b+4a \\ a & b+3a & c+3b+6a & d+3c+6b+10a \end{vmatrix};$$

A.

$$\begin{vmatrix} 1+a & 1 & 1 & 1 \\ 1 & 1-a & 1 & 1 \\ 1 & 1 & 1+b & 1 \\ 1 & 1 & 1-b \end{vmatrix} = \begin{vmatrix} r_1-r_2 \\ r_3-r_4 \end{vmatrix} \begin{vmatrix} a & a & 0 & 0 \\ 1 & 1-a & 1 & 1 \\ 0 & 0 & b & b \\ 1 & 1 & 1-b \end{vmatrix} = \begin{vmatrix} a & 0 & 0 & 0 \\ 1 & -a & 1 & 0 \\ 0 & 0 & b & 0 \\ 1 & 0 & 1 & -b \end{vmatrix} = a^2b^2.$$

$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} \xrightarrow{r_1+r_2+r_3} \begin{vmatrix} a+b+c & a+b+c & a+b+c \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}$$

$$\frac{c_2 - c_1}{\overline{c_3 - c_1}} \begin{vmatrix} a+b+c & 0 & 0 \\ 2b & -(a+b+c) & 0 \\ 2c & 0 & -(a+b+c) \end{vmatrix} = (a+b+c)^3$$

5 (6)

$$\begin{vmatrix} a & b & c & d \\ a & b+a & c+b+a & d+c+b+a \\ a & b+2a & c+2b+3a & d+2c+3b+4a \\ a & b+3a & c+3b+6a & d+3c+6b+10a \end{vmatrix} = \begin{vmatrix} r_4-r_3 \\ r_2-r_1 \\ r_2-r_1 \end{vmatrix} \begin{vmatrix} a & b & c & d \\ 0 & a & b+a & c+b+a \\ 0 & a & b+2a & c+2b+3a \\ 0 & a & b+3a & c+3b+6a \end{vmatrix}$$

$$\frac{r_4 - r_3}{r_3 - r_2} \begin{vmatrix} a & b & c & d \\ 0 & a & b + a & c + b + a \\ 0 & 0 & a & b + 2a \\ 0 & 0 & a & b + 3a \end{vmatrix} = \frac{r_4 - r_3}{a} \begin{vmatrix} a & b & c & d \\ 0 & a & b + a & c + b + a \\ 0 & 0 & a & b + 2a \\ 0 & 0 & 0 & a \end{vmatrix} = a^4.$$

-

6. 计算下列各行列式. (提示: 三角化) ↓

 ω

$$\begin{vmatrix}
a & a & \cdots & a & b \\
a & a & \cdots & b & a \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a & b & \cdots & a & a \\
b & a & \cdots & a & a
\end{vmatrix}
\begin{vmatrix}
(n-1)a+b & a & \cdots & a & b \\
(n-1)a+b & a & \cdots & b & a \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
(n-1)a+b & b & \cdots & a & a \\
(n-1)a+b & a & \cdots & a & a
\end{vmatrix}$$

$$\frac{r_{i}-r_{n}}{(1 \leq i \leq n-1)} \begin{vmatrix} 0 & 0 & \cdots & 0 & b-a \\ 0 & 0 & \cdots & b-a & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & b-a & \cdots & 0 & 0 \\ (n-1)a+b & a & \cdots & a & a \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} [(n-1)a+b](b-a)^{n-1}.$$

$$\begin{vmatrix} \lambda + a_1 & a_2 & a_3 & \cdots & a_n \\ a_1 & \lambda + a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 & \lambda + a_3 & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & \lambda + a_n \end{vmatrix} = (\lambda + \sum_{k=1}^n a_k) \begin{vmatrix} 1 & a_2 & a_3 & \cdots & a_n \\ 1 & \lambda + a_2 & a_3 & \cdots & a_n \\ 1 & a_2 & \lambda + a_3 & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_2 & a_3 & \cdots & \lambda + a_n \end{vmatrix}$$

$$\frac{r_{i}-r_{1}}{(i \geq 2)}(\lambda + \sum_{k=1}^{n} a_{k})\begin{vmatrix} 1 & a_{2} & a_{3} & \cdots & a_{n} \\ 0 & \lambda & 0 & \cdots & 0 \\ 0 & 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & \lambda \end{vmatrix} = \lambda^{n-1}(\lambda + \sum_{k=1}^{n} a_{k}).$$

第三章 行列式及其应用

Σ

§第3.1节 对称群与行列式定义

一、对称群

设X是一个有限集, |X|=n.

$$\diamondsuit S(X) = \{ \sigma : X \to X \mid \sigma$$
是双射 $\}.$

映射的合成定义了S(X)上的一个乘法:

$$\forall \sigma, \tau \in S(X), \quad \sigma \cdot \tau \colon X \xrightarrow{\tau} X \xrightarrow{\sigma} X.$$

可以证明S(X)关于上述乘法构成一个群.

定理 1.1.1 设 $S(X) \times S(X) \to S(X), (\sigma, \pi) \mapsto \sigma \cdot \pi$ 是映射合成定义的乘法,则:

- $(1) \forall \sigma, \pi, \tau \in S(X), \quad (\sigma \cdot \pi) \cdot \tau = \sigma \cdot (\pi \cdot \tau) \quad (结 合 律).$
- (2)如果 $e: X \to X$ 表示恒等映射,则 $\forall \sigma \in S(X)$,有

$$e \cdot \sigma = \sigma \cdot e = \sigma$$
 (单位元的存在性).

(3)∀ $\sigma \in S(X)$,存在(逆映射) $\sigma^{-1} \in S(X)$,使

$$\sigma \cdot \sigma^{-1} = \sigma^{-1} \cdot \sigma = e$$
 (每个元素均可逆).

如果|X| = n, 无妨设 $X = \{1,2,3,...,n\}$ (将1,2,3,...,n分别理解为元素1,元素2,元素3,...,元素n等).则一个双射 $\sigma: X \to X$ 等价于"给1,2,3,...,n一个排列 $\sigma(1),\sigma(2),...,\sigma(n)$ ". 我们可将双射 $\sigma: X \to X$ 表示为:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ & & & & \\ i_1 & i_2 & i_3 & \dots & i_n \end{pmatrix},$$

其中 $i_1 = \sigma(1), i_2 = \sigma(2), ..., i_n = \sigma(n)$,且用 S_n 表示S(X).

定义 $1.1.1 \, S_n$ 和映射的合成运算一起称为n阶对称群(也成n 阶置换群).

例 1.1.1 (对换) $\sigma: X \to X$, 将i映到j, 将j映到i. 但将其他元素保持不动. 即:

$$\sigma(i) = j$$
, $\sigma(j) = i$, $U = \sigma(k) = k$, $U = k$

这样的双射记为 $\sigma = (ij)$, 称为一个对换.

例 1.1.2 (r-循 环) 设 $i_1, i_2, ..., i_r \in X$ 是 两 两 不 同 的 元 素. 双 射 $\sigma: X \to X$ 定 义 为: $\sigma(i_1) = i_2, \sigma(i_2) = i_3, ..., \sigma(i_{r-1}) = i_r, \sigma(i_r) = i_1, \sigma(j) = j$ 如 果 $j \notin \{i_1, i_2, ..., i_r\}$,则 称 这样的双射 σ 为r- 循环,记为 $\sigma = (i_1, i_2, ..., i_r)$.

显然,对换就是一个2-循环.

对任意 $\sigma \in S_n$ 和 $m \in \mathbb{Z}$, 如果m > 0, 我们约定:

$$\sigma^m = \overbrace{\sigma \cdot \sigma \cdots \sigma}^m.$$

如果m=0,则约定 $\sigma^m=e$ ($e\in S_n$ 是单位元).如果m<0,则约定 $\sigma^m=(\sigma^{-1})^{-m}$.不难看出,对任意整数 $m,l\in\mathbb{Z}$,有 $\sigma^m\cdot\sigma^l=\sigma^{m+l}$.

引理 1.1.1 对任意 $\sigma \in S_n$, 存在m > 0 使

$$\sigma^m = e$$
.

定义 1.1.2 对 $\sigma \in S_n$, 使 $\sigma^m = e$ 的最小正整数m称为 σ 的阶.

例 1.1.3 如 果 $\sigma = (i_1, i_2, ..., i_r)$ 是 一 个r-循 环,则 σ 的 阶 是r. σ 可 表 示 为 $\sigma = (i_1, \sigma(i_1), \sigma^2(i_1), ..., \sigma^{r-1}(i_1))$.

定义 1.1.3 对任意r-循环 $\sigma = (i_1, i_2, \dots, i_r)$, 子集合 $\{i_1, i_2, \dots, i_r\} \subset X$ 称为 σ 的支撑集(support set). 两个循环 $\sigma = (i_1, i_2, \dots, i_r)$ 和 $\tau = (j_1, j_2, \dots, j_l)$ 称为不相交. 如果它们的支撑集不相交. (*i.e.* $\{i_1, i_2, \dots, i_r\} \cap \{j_1, j_2, \dots, j_l\} = \emptyset$)

引理 1.1.2 如果 $\sigma, \tau \in S_n$ 是不相交循环,则 $\sigma \cdot \tau = \tau \cdot \sigma$.

引理 $1.1.3 S_n$ 中的每个元素都可写成不相交循环的乘积.

例 1.1.4 将
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ & & & & & & \\ 5 & 4 & 1 & 7 & 3 & 6 & 2 \end{pmatrix} \in S_7$$
分解成不相交循环的乘积.

定理 $1.1.2 S_n$ 中每个元素可唯一分解成不相交循环的乘积, 即: $\forall \pi \in S_n, \pi \neq e$,则

 $(1)\pi = \pi_1 \cdot \pi_2 \cdots \pi_t$, 其中 π_i 是 r_i -循环 $(r_i \geq 2)$.

(2)如果 $\pi = \pi_1 \cdot \pi_2 \cdots \pi_t = \sigma_1 \cdot \sigma_2 \cdots \sigma_s$, 其中 π_i , σ_i 都是长度大于1的循环.(r-循环 σ 的长度 $l(\sigma)$ 定义为r).则t = s, 且适当排序后, $\pi_i = \sigma_i$ ($i = 1, \dots, t$).

引理 $1.1.4 S_n$ 中每个元素可写成有限个对换的乘积.

 $注: S_n$ 中元素的对换分解没有唯一性. 1

例如,
$$e = (12) \cdot (12) = (23) \cdot (23) = (ij) \cdot (ij)$$
.

$$(3\ 2) = (1\ 3)(1\ 2)(1\ 3) = (2\ 4)(3\ 4)(2\ 4).$$

定理 1.1.3 对任意 $\pi \in S_n$,如果

$$\pi = \pi_1 \cdot \pi_2 \cdots \pi_s = \sigma_1 \cdots \sigma_t$$

是两个对换分解($i.e.\pi_i$, σ_i 是对换), 则s+t是偶数.(i.e.s., t有相同奇偶性).

(定理证明过于繁琐,省略).

定义 1.1.4 对任意 $\pi \in S_n$, 如果 $\pi = \pi_1 \cdot \pi_2 \cdots \pi_s$ 是一个对换分解($\pi_1, \pi_2, \cdots, \pi_s$ 中可以有相同的对换). 则

$$\varepsilon_{\pi} = (-1)^{s}$$

称为 π 的符号. 如果 $\varepsilon_{\pi} = 1$, 则称 π 为偶置换. 否则 π 称为奇置换. (i.e. $\varepsilon_{\pi} = -1$).

引理 1.1.5 对任意 π , $\sigma \in S_n$, $\varepsilon_{\pi \cdot \sigma} = \varepsilon_{\pi} \cdot \varepsilon_{\sigma}$. 如果 $\pi = \pi_1 \cdot \pi_2 \cdots \pi_s$ 是 π 的不相交循环分解.则

$$\varepsilon_{\pi}=(-1)^{\sum_{i=1}^{s}(l(\pi_{i})-1)}.$$

其中 $l(\pi_i)$ 是 π_i 的长度 $(i.e. \pi_i \ \pm l(\pi_i)$ -循环).

定义 $1.1.5 |A| = \sum_{\pi \in S_n} \varepsilon_{\pi} a_{1\pi(1)} \cdot a_{2\pi(2)} \cdots a_{n\pi(n)} \in \mathbb{R}$ 称 为矩 阵 $A \in M_n(\mathbb{R})$ 的 行列 式. (有时也用 $\det(A)$ 表示A的行列式), 其中 ε_{π} 是置换 π 的符号.

 $a_{11}a_{22}a_{33} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} + a_{13}a_{21}a_{32} + a_{12}a_{23}a_{31}$

引理 1.1.6 设 $A = (a_{ij})_{n \times n} \in M_n(\mathbb{R}), ^t A$ 表示A的转置矩阵, 则 $|A| = |^t A|$.

