Applications of group actions!

Spencer Bagley

With many thanks to Matthew Macauley, http://www.math.clemson.edu/~macaule/

14 Apr 2025

Overview

Intuitively, a group action occurs when a group G "naturally permutes" a set S of states.

Formal definition

A group G acts on a set S if there is a homomorphism $\phi\colon G\to \mathsf{Perm}(S)$. We'll use right group actions,

and we'll write s $\phi(g)$ to denote "where pushing the g-button sends state s."

Definition

A set S with a (right) action by G is called a (right) G-set.

Big ideas

- An action ϕ : $G \to \text{Perm}(S)$ endows S with an algebraic structure.
- Action graphs are to G-sets, like how Cayley graphs are to groups.

Notation

Throughout, we'll denote identity elements by $1 \in G$ and $e \in Perm(S)$.

Five features of every group action

Every group action has five fundamental features that we will always try to understand.

	local (about an s or a g)	global (about the whole action ϕ)
subsets of S	orb(s) fix(g)	$Fix(\phi) = \bigcap_{g \in G} fix(g)$
subgroups of <i>G</i>	stab(s)	$Ker(\phi) = \bigcap_{s \in S} stab(s)$

"Duality:" columns vs. rows in the fixed-point table:

- \blacksquare the stablizers can be read off the columns: group elements that fix $s \in S$
- the kernel is the rows with a check in every column
- lacktriangle the fixators can be read off the rows: set elements fixed by $g \in G$
- the fixed points are the columns with a check in every row

Fixed-point tables

Here is the fixed-point table for $G = D_4$ acting on S the list of 7 "binary squares."

	0 0	0 1 1 0	1 0 0 1	0 0	0 1 0 1	1 1 0 0	1 0 1 0
1	✓	✓	✓	√	✓	✓	✓
r	✓						
r^2	✓	✓	\checkmark				
r^3	✓						
f	✓			\checkmark		\checkmark	
rf	✓	✓	\checkmark				
r^2f	✓				✓		✓
r^3f	✓	✓	\checkmark				

 $Ker(\phi) = \{1\} \text{ and } Fix(\phi) = \{ \text{ the 0 0 0 0 one} \}.$

Two big theorems

Orbit-stabilizer theorem

For any group action $\phi \colon G \to \mathsf{Perm}(S)$, and any $s \in S$,

$$|\operatorname{orb}(s)| \cdot |\operatorname{stab}(s)| = |G|$$

Equivalently, the size of the orbit containing s is $|\operatorname{orb}(s)| = [G : \operatorname{stab}(s)]$.

Proof: Put elements $s.\phi(g)$ of orb(s) in correspondence with cosets of the stabilizer.

Orbit-counting theorem

Let a finite group G act on a set S via $\phi: G \to Perm(S)$.

Then the number of orbits is the average size of the fixators:

$$|\operatorname{Orb}(\phi)| = \frac{1}{|G|} \sum_{g \in G} |\operatorname{fix}(g)|.$$

Equivalently, the number of orbits is the average size of the stabilizers:

$$|\operatorname{Orb}(\phi)| = \frac{1}{|G|} \sum_{s \in S} |\operatorname{stab}(s)|.$$

Proof: Count checkmarks in the fixed point table.

Groups acting on themselves!

Groups acting on "themselves"

It is frequently of interest to analyze the action of a group G on its elements, subgroups, or cosets of some fixed $H \leq G$.

Often, the orbits, stabilizers, and fixed points of these actions are familiar algebraic objects.

A number of deep theorems have a slick proof via a clever group action.

Here are common examples of group actions:

- *G* acts on itself (i.e., its set of elements) by multiplication.
- *G* acts on itself by conjugation.
- G acts on its subgroups by conjugation.
- G acts on the cosets of a fixed subgroup $H \leq G$ by multiplication.

(Please put the word "right" in a salt shaker and shake it all over those bullet points.)

Any group G acts on its set S of subgroups, $S = \{H \mid H \leq G\}$ by **right-conjugation**:

 $\phi \colon G \longrightarrow \operatorname{Perm}(S)$, $\phi(g) = \operatorname{the permutation that sends each } H \operatorname{ to } g^{-1}Hg$.

This is a **right action**, but there is an associated left action: $H \mapsto gHg^{-1}$.

Let $H \leq G$ be an element of S.

■ The orbit of *H* consists of all conjugate subgroups:

$$orb(H) = \{g^{-1}Hg \mid g \in G\} = cl_G(H).$$

■ The stabilizer of H is the normalizer of H in G:

$$stab(H) = \{ g \in G \mid g^{-1}Hg = H \} = N_G(H).$$

■ The fixator of g are the subgroups that g normalizes:

$$fix(g) = \{H \mid g^{-1}Hg = H\} = \{H \mid g \in N_G(H)\},\$$

■ The fixed points of ϕ are precisely the normal subgroups of G:

$$Fix(\phi) = \{ H \le G \mid g^{-1}Hg = H \text{ for all } g \in G \}.$$

■ The kernel of this action is the set of elements that normalize every subgroup:

$$\operatorname{\mathsf{Ker}}(\phi) = \left\{g \in G \mid g^{-1}Hg = H \text{ for all } H \leq G\right\} = \bigcap_{H \leq G} N_G(H).$$

Let's apply our two theorems:

1. Orbit-stabilizer theorem. "the size of an orbit is the index of the stabilizer":

$$\left|\operatorname{cl}_{G}(H)\right| = \left[G : N_{G}(H)\right] = \frac{|G|}{|N_{G}(H)|}.$$

2. **Orbit-counting theorem**. "the number of orbits is the average number of elements fixed by a group element":

#conjugacy classes of subgroups of $G = \mathbb{E}[\# \text{ subgroups } g \text{ normalizes}].$

Here is an example of $G=D_3$ acting on its subgroups by a homomorphism $\tau:D_3\to \mathsf{Perm}(S)\cong S_6$.

$$\tau(1) = \langle 1 \rangle \quad \langle r \rangle \quad \langle f \rangle \quad \langle rf \rangle \quad \langle r^2 f \rangle \quad D_3$$

$$\tau(r) = \langle 1 \rangle \qquad \langle r \rangle \qquad \langle f \rangle \qquad \langle rf \rangle \qquad \langle r^2 f \rangle \qquad D_3$$

$$\tau(r^2) = \langle 1 \rangle \quad \langle r \rangle \quad \langle f \rangle \quad \langle rf \rangle \quad \langle r^2 f \rangle \quad D_3$$

$$\tau(f) = \langle 1 \rangle \quad \langle r \rangle \quad \langle f \rangle \quad \langle rf \rangle \quad \langle r^2 f \rangle \quad D_3$$

$$\tau(rf) = \langle 1 \rangle \quad \langle r \rangle \quad \langle f \rangle \quad \langle rf \rangle \quad \langle r^2 f \rangle \quad D_3$$

$$\tau(r^2f) = \langle 1 \rangle \quad \langle r \rangle \quad \langle f \rangle \quad \langle rf \rangle \quad \langle r^2f \rangle \quad D_3$$

Observations

Do you see how to read stabilizers and fixed points off of the permutation diagram?

- $Ker(\phi) = \langle 1 \rangle$ consists of the row(s) with only fixed points.
- Fix(ϕ) = { $\langle 1 \rangle$, $\langle r \rangle$, D_3 } consists of the column(s) with only fixed points.
- By the orbit-counting theorem, there are $|Orb(\phi)| = 24/|D_3| = 4$ conjugacy classes.

Here is an example of $G = A_4 = \langle (123), (12)(34) \rangle$ acting on its subgroups.

Let's take a moment to revisit our "three favorite examples" from Chapter 3.

$$N = \langle (12)(34), (13)(24) \rangle, \qquad H = \langle (123) \rangle, \qquad K = \langle (12)(34) \rangle.$$

Here is the "fixed point table" of the action of A_4 on its subgroups.

	(e)	⟨(123) ⟩	⟨(124)⟩	((134))	((234))	⟨(12)(34)⟩	⟨(13)(24)⟩	⟨ (14)(23) ⟩	((12)(34). (13)(24))	A_4
e	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
(123)	✓	✓							✓	✓
(132)	✓	✓							✓	✓
(124)	✓		✓						✓	✓
(142)	✓		✓						✓	✓
(134)	✓			✓					✓	✓
(143)	✓			✓					✓	✓
(234)	✓				✓				✓	✓
(243)	✓				✓				✓	✓
(12)(34)	✓					✓	✓	✓	✓	✓
(13)(24)	✓					✓	✓	✓	✓	✓
(14)(23)	✓					✓	✓	✓	✓	✓

By the **orbit-counting theorem**, there are $|\operatorname{Orb}(\phi)| = 60/|A_4| = 5$ conjugacy classes.

A summary

Thus far, we have seen four important (right) actions of a group G, acting:

- on itself by multiplication
- on itself by conjugation.
- on its subgroups by conjugation.
- lacksquare on the cosets of a fixed subgroup $H \leq G$ by multiplication.

set $S =$	G		subgroups of <i>G</i>	right cosets of H
operation	multiplication	conjugation	conjugation	right multiplication
orb(s)	G	$cl_G(g)$	$cl_{G}(H)$	all right cosets
stab(s)	$\langle 1 \rangle$	$C_G(g)$	$N_G(H)$	$x^{-1}Hx$
fix(g)	G or ∅	$C_G(g)$	$\{H\mid g\in N_G(H)\}$	$\left\{ Hx\mid xgx^{-1}\in H\right\}$
$Ker(\phi)$	$\langle 1 \rangle$	<i>Z</i> (<i>G</i>)	$\bigcap_{H\leq G}N_G(H)$	largest norm. subgp. $N \leq H$
$Fix(\phi)$	Ø	Z(G)	normal subgroups	none

More applications of group actions!

A creative application of a group action

Cauchy's theorem

If p is a prime dividing |G|, then G has an element (and hence a subgroup) of order p.

Proof

Let P be the set of ordered p-tuples of elements from G whose product is e:

$$(x_1, x_2, \ldots, x_p) \in P$$
 iff $x_1 x_2 \cdots x_p = e$.

Observe that $|P| = |G|^{p-1}$. (We can choose x_1, \ldots, x_{p-1} freely; then x_p is forced.)

The group \mathbb{Z}_p acts on P by cyclic shift:

$$\phi: \mathbb{Z}_p \longrightarrow \text{Perm}(P), \qquad (x_1, x_2, \dots, x_p) \stackrel{\phi(1)}{\longmapsto} (x_2, x_3, \dots, x_p, x_1).$$

The set P is partitioned into orbits, each of size $|\operatorname{orb}(s)| = [\mathbb{Z}_p : \operatorname{stab}(s)] = 1$ or p.

The only way that the orbit of (x_1, x_2, \dots, x_p) can have size 1 is if $x_1 = \dots = x_p$.

Clearly, $(e, \ldots, e) \in P$ is a fixed point.

The $|G|^{p-1}-1$ other elements in P sit in orbits of size 1 or p.

Since $p \nmid |G|^{p-1} - 1$, there must be other orbits of size 1. Thus, some $(x, ..., x) \in P$, with $x \neq e$ satisfies $x^p = e$.

Classification of groups of order 6

By Cauchy's theorem, every group of order 6 must have:

- an element a of order 3
- an element b of order 2.

Clearly, $G = \langle a, b \rangle$, and so G must have the following "partial Cayley graph":

It is now easy to see that up to isomorphism, there are only 2 groups of order 6:

Exercise. Suppose that |G| = pq, where p < q are primes and p doesn't divide q - 1. Prove that G is cyclic.

p-groups and the Sylow theorems!

p-groups and the Sylow theorems

Definition

A p-group is a group whose order is a power of a prime p. A p-group that is a subgroup of a group G is a p-subgroup of G.

Can you tell me some examples of 2-groups?

Notational convention

Throughout, G will be a group of order $|G| = p^n \cdot m$, with $p \nmid m$. That is, p^n is the *highest power* of p dividing |G|. (We are isolating all the p.)

There are three Sylow theorems, and loosely speaking, they describe the following about a group's *p*-subgroups:

- 1. Existence: In every group, p-subgroups of all possible sizes exist.
- 2. **Relationship**: All maximal *p*-subgroups are conjugate.
- 3. Number: Strong restrictions on the number of p-subgroups a group can have.

Together, these place strong restrictions on the structure of a group G with a fixed order.

Groups of order $12 = 2^2 \cdot 3^1$

Sylow theorems:

p-subgroups come in "towers."

2-subgroups blue; 3-subgroups red.

The tops of the towers are conjugate; there are restrictions on the size of their conjugacy classes.

Before we introduce the Sylow theorems, we need to better understand p-groups.

p-group Lemma

If a p-group G acts on a set S via $\phi: G \to Perm(S)$, then

$$|\operatorname{Fix}(\phi)| \equiv_p |S|$$
.

Proof (sketch) Suppose $|G| = p^n$. By the orbit-stabilizer theorem, the only possible orbit sizes are $1, p, p^2, \ldots, p^n$.

A lot of proofs about p-groups go like this: two things are equal mod p; set up some action of G on S; one of the things is the number of fixed points; the other thing is the size of S.

Normalizer lemma, Part 1

If H is a p-subgroup of G, then

$$[N_G(H): H] \equiv_p [G: H]$$

Approach:

■ Let H (not G!) act on the (right) cosets of H by (right) multiplication.

S is the set of cosets of H in G

Cosets of H in $N_G(H)$ are the fixed points

■ Apply our lemma: $|\operatorname{Fix}(\phi)| \equiv_p |S|$.

Normalizer lemma, Part 1

If H is a p-subgroup of G, then

$$[N_G(H)\colon H]\equiv_p [G\colon H].$$

Proof

Let $S = H \setminus G = \{Hx \mid x \in G\}$. The group H acts on S by **right-multiplication**, via $\phi \colon H \to \mathsf{Perm}(S)$, where

 $\phi(h)$ = the permutation sending each Hx to Hxh.

The fixed points of ϕ are the cosets Hx in the normalizer $N_G(H)$:

$$Hxh = Hx$$
, $\forall h \in H$ \iff $Hxhx^{-1} = H$, $\forall h \in H$ \iff $xhx^{-1} \in H$, $\forall h \in H$ \iff $x \in N_G(H)$.

Therefore, $|\operatorname{Fix}(\phi)| = [N_G(H): H]$, and |S| = [G: H]. By our *p*-group Lemma,

$$|\operatorname{Fix}(\phi)| \equiv_{p} |S| \implies [N_{G}(H): H] \equiv_{p} [G: H].$$

Here is a picture of the action of the p-subgroup H (for p=2) on the set $S=H\setminus G$, from the proof of the normalizer lemma.

The fixed points are the cosets in $N_G(H)$

Cosets not in $N_G(H)$ are in orbits of order p^i , for various i > 1

p-subgroups

Recall that $H \leq N_G(H)$ (always), and H is fully unnormal if $H = N_G(H)$.

Normalizer lemma, Part 2

Suppose $|G| = p^n m$, and $H \le G$ with $|H| = p^i < p^n$. Then $H \le N_G(H)$, and the index $[N_G(H):H]$ is a multiple of p.

H is not "fully unnormal": $H \le N_G(H) \le G$

 $[N_G(H):H] > 1$ cosets of H (a multiple of p)

Important corollaries

- p-groups cannot have any fully unnormal subgroups (i.e., $H \leq N_G(H)$).
- In any finite group, the only fully unnormal p-subgroups are maximal.

Normalizers of *p*-subgroups

Let H be properly contained in a maximal p-subgroup $P \leq G$.

- The normalizer of H must grow in P (and hence in G)
- The normalizer of *P need not* grow in *G*.

 $H \leq N_P(H) \leq N_G(H)$

_	$\overline{}$				
			Hb		
Н	На	Р	Нс		хP
			:		
		уP			zP

it may happen that $P = N_G(P)$

Proof of the normalizer lemma

Normalizer lemma, Part 2

Suppose $|G| = p^n m$, and $H \le G$ with $|H| = p^i < p^n$. Then $H \le N_G(H)$, and the index $[N_G(H):H]$ is a multiple of p.

Proof

Since $H \subseteq N_G(H)$, we can create the quotient map

$$\pi: N_G(H) \longrightarrow N_G(H)/H$$
, $\pi: g \longmapsto gH$.

The size of the quotient group is $[N_G(H): H]$, the number of cosets of H in $N_G(H)$.

By the normalizer lemma Part 1, $[N_G(H): H] \equiv_p [G: H]$. By Lagrange's theorem,

$$[N_G(H)\colon H] \equiv_p [G\colon H] = \frac{|G|}{|H|} = \frac{p^n m}{p^i} = p^{n-i} m \equiv_p 0.$$

Therefore, $[N_G(H): H]$ is a multiple of p, so $N_G(H)$ must be strictly larger than H.

The Sylow theorems

Recall the following question that we asked earlier in this course.

Open-ended question

What group structural properties are possible, what are impossible, and how does this depend on |G|?

One approach is to decompose large groups into "building block subgroups." For example:

given a group of order $72=2^3\cdot 3^2$, what can we say about its 2-subgroups and 3-subgroups?.

This is the idea behind the Sylow theorems, developed by Norwegian mathematician Peter Sylow (1832–1918).

The Sylow theorems address the following questions of a finite group G:

- 1. How big are its *p*-subgroups?
- 2. How are the *p*-subgroups related?
- 3. How many p-subgroups are there?
- 4. Are any of them normal?

The Sylow theorems

Notational convention

Througout, G will be a group of order $|G| = p^n \cdot m$, with $p \nmid m$.

That is, p^n is the *highest power* of p dividing |G|.

A subgroup of order p^n is called a Sylow p-subgroup.

Let $Syl_p(G)$ denote the set of Sylow *p*-subgroups, and $n_p := |Syl_p(G)|$.

There are three Sylow theorems, and loosely speaking, they describe the following about a group's p-subgroups:

- 1. Existence: In every group, p-subgroups of all possible sizes exist, and they're "nested".
- 2. **Relationship**: All maximal *p*-subgroups are conjugate.
- 3. **Number**: There are strong restrictions on n_p , the number of Sylow p-subgroups.

Together, these place strong restrictions on the structure of a group G with a fixed order.

Our unknown group of order 12

Throughout, we will have a running example, a "mystery group" G of order $12 = 2^2 \cdot 3$.

We already know a little bit about G. By Cauchy's theorem, it must have:

- an element a of order 2, and
- an element b of order 3.

Using only the fact that |G|=12, we will unconver as much about its structure as we can.

The 1^{st} Sylow theorem: existence of p-subgroups

First Sylow theorem

G has a subgroup of order p^k , for each p^k dividing |G|.

Also, every non-Sylow *p*-subgroup sits inside a larger *p*-subgroup.

Proof

Take any $H \leq G$ with $|H| = p^i < p^n$. We know $H \leq N_G(H)$ and p divides $|N_G(H)/H|$.

Find an element aH of order p. The union of cosets in $\langle aH \rangle$ is a subgroup of order p^{i+1} .

Our unknown group of order 12

By the first Sylow theorem, $\langle a \rangle$ is contained in a subgroup of order 4, which could be V_4 or C_4 , or possibly both.

The 2^{nd} Sylow theorem: relationship among p-subgroups

Second Sylow theorem

Any two Sylow *p*-subgroups are conjugate (and hence isomorphic).

We'll actually prove a stronger version, which easily implies the 2nd Sylow theorem.

Strong second Sylow theorem

Let $H \in Syl(G)$, and $K \leq G$ any p-subgroup. Then K is conjugate to a subgroup of H.

The 2^{nd} Sylow theorem: All Sylow *p*-subgroups are conjugate

Strong second Sylow theorem

Let H be a Sylow p-subgroup, and $K \leq G$ any p-subgroup. Then K is conjugate to some subgroup of H.

Proof

Let $S = H \setminus G = \{Hg \mid g \in G\}$, the set of right cosets of H.

The group K acts on S by right-multiplication, via $\phi: K \to Perm(S)$, where

$$\phi(k)=$$
 the permutation sending each Hg to Hgk .

A fixed point of ϕ is a coset $Hg \in S$ such that

$$\begin{array}{lll} Hgk = Hg\,, & \forall k \in K & \iff & Hgkg^{-1} = H\,, & \forall k \in K \\ & \iff & gkg^{-1} \in H\,, & \forall k \in K \\ & \iff & gKg^{-1} \subseteq H\,. \end{array}$$

Thus, if we can show that ϕ has a fixed point Hg, we're done!

All we need to do is show that $|\operatorname{Fix}(\phi)| \not\equiv_p 0$. By the p-group Lemma,

$$|\operatorname{Fix}(\phi)| \equiv_p |S| = [G:H] = m \not\equiv_p 0.$$

Our unknown group of order 12

By the second Sylow theorem, all Sylow p-subgroups are conjugate, and hence isomorphic.

This eliminates the following subgroup lattice of a group of order 12.

Example: A_5 has no nontrival proper normal subgroups

The normalizer of the normalizer

Notice how in A_5 :

- all Sylow *p*-subgroups are moderately unnormal
- the normalizer of each Sylow *p*-subgroup is fully unnormal. That is:

$$N_G(N_G(P)) = N_G(P)$$

Proposition

Let P be a non-normal Sylow p-subgroup of G. Then its normalizer is fully unnormal.

Proof

We'll verify the equivalent statement of $N_G(N_G(P)) = N_G(P)$.

Note that P is a normal Sylow p-subgroup of $N_G(P)$.

By the 2nd Sylow theorem, P is the unique Sylow p-subgroup of $N_G(P)$.

Take an element x that normalizes $N_G(P)$ (i.e., $x \in N_G(N_G(P))$). We'll show that it also normalizes P. By definition, $xN_G(P)x^{-1} = N_G(P)$, and so

$$P \le N_G(P) \implies xPx^{-1} \le xN_G(P)x^{-1} = N_G(P).$$

But xPx^{-1} is also a Sylow p-subgroup of $N_G(P)$, and by uniqueness, $xPx^{-1} = P$.

The 3^{rd} Sylow theorem: number of p-subgroups

Third Sylow theorem

Let n_p be the number of Sylow p-subgroups of G. Then

$$n_p$$
 divides $|G|$ and $n_p \equiv_p 1$.

(Note that together, these imply that $n_p \mid m$, where $|G| = p^n \cdot m$.)

Proof

Take $H \in \operatorname{Syl}_p(G)$. By the 2nd Sylow theorem, $n_p = |\operatorname{cl}_G(H)| = [G : N_G(H)] | |G|$.

The subgroup H acts on $S = \operatorname{Syl}_p(G)$ by conjugation, via $\phi \colon G \to \operatorname{Perm}(S)$, where

 $\phi(h)=$ the permutation sending each K to h^{-1} Kh

Goal: show that H is the unique fixed point.

 $|\operatorname{Fix}(\phi)| = 1$ other Sylow p-subgroups are

∩ H

total # Sylow p-subgroups $= n_p = |S| \equiv_p |\operatorname{Fix}(\phi)|$

The 3^{rd} Sylow theorem: number of p-subgroups

Proof (cont.)

Goal: show that H is the unique fixed point.

Let $K \in Fix(\phi)$. Then $K \leq G$ is a Sylow p-subgroup satisfying

$$h^{-1}Kh = K$$
, $\forall h \in H \iff H \leq N_G(K) \leq G$.

- H and K are p-Sylow in G, and in $N_G(K)$.
- H and K are conjugate in $N_G(K)$. (2nd Sylow thm.)
- $K \leq N_G(K)$, thus is only conjugate to itself in $N_G(K)$.

Thus, K = H That is, $Fix(\phi) = \{H\}$

By the *p*-group Lemma, $n_p := |S| \equiv_p |\operatorname{Fix}(\phi)| = 1$.

$$\bigcap_{H=K}$$

 $|\operatorname{Fix}(\phi)| = 1$

total # Sylow p-subgroups = $n_p = |S| \equiv_p |\operatorname{Fix}(\phi)| = 1$

Summary of the proofs of the Sylow theorems

For the 1st Sylow theorem, we started with $H = \{e\}$, and inductively created larger subgroups of size p, p^2, \dots, p^n .

For the $2^{\rm nd}$ and $3^{\rm rd}$ Sylow theorems, we used a clever group action and then applied one or both of the following:

- (i) orbit-stabilizer theorem. If G acts on S, then $|\operatorname{orb}(s)| \cdot |\operatorname{stab}(s)| = |G|$.
- (ii) *p-group lemma*. If a *p*-group acts on *S*, then $|S| \equiv_p |\operatorname{Fix}(\phi)|$.

To summarize, we used:

- S2 The action of $K \in \operatorname{Syl}_p(G)$ on $S = H \setminus G$ by right multiplication for some other $H \in \operatorname{Syl}_p(G)$.
- S3a The action of G on $S = Syl_p(G)$, by conjugation.
- S3b The action of $H \in Syl_p(G)$ on $S = Syl_p(G)$, by conjugation.

Our mystery group order 12

By the 3rd Sylow theorem, every group G of order $12 = 2^2 \cdot 3$ must have:

 \blacksquare n_3 Sylow 3-subgroups, each of order 3.

$$n_3 \mid 4$$
, $n_3 \equiv 1 \pmod{3}$ \Longrightarrow $n_3 = 1 \text{ or } 4$.

■ n_2 Sylow 2-subgroups of order $2^2 = 4$.

$$n_2 \mid 3, \qquad n_2 \equiv 1 \pmod{2} \implies$$

$$\implies$$
 $n_2 = 1 \text{ or } 3.$

But both are not possible! (There aren't enough elements.)

The five groups of order 12

With a little work and the Sylow theorems, we can classify all groups of order 12.

We've already seen them all. Here are their subgroup lattices.

Note that *all* of these decompose as a direct or semidirect product of Sylow subgroups.

 C_2 C_2 C_2

Simple groups and the Sylow theorems

Definition

A group G is simple if its only normal subgroups are G and $\langle e \rangle$.

Simple groups are to groups what primes are to integers, and are essential to understand.

The Sylow theorems are very useful for establishing statements like:

"There are no simple groups of order k (for some k)."

Since all Sylow *p*-subgroups are conjugate, the following result is immediate.

Remark

A Sylow p-subgroup is normal in G iff it's the unique Sylow p-subgroup (that is, if $n_p = 1$).

Thus, if we can show that $n_p = 1$ for some p dividing |G|, then G cannot be simple.

For some |G|, this is harder than for others, and sometimes it's not possible.

Tip

When trying to show that $n_p = 1$, it's usually helpful to analyze the largest primes first.

An easy example

We'll see three examples of showing that groups of a certain size cannot be simple, in successive order of difficulty.

Proposition

There are no simple groups of order 84.

Proof

Since $|G| = 84 = 2^2 \cdot 3 \cdot 7$, the third Sylow theorem tells us:

- n_7 divides $2^2 \cdot 3 = 12$ (so $n_7 \in \{1, 2, 3, 4, 6, 12\}$)
- \blacksquare $n_7 \equiv_7 1$.

The only possibility is that $n_7 = 1$, so the Sylow 7-subgroup must be normal.

Observe why it is beneficial to use the largest prime first:

- n_3 divides $2^2 \cdot 7 = 28$ and $n_3 \equiv_3 1$. Thus $n_3 \in \{1, 2, 4, 7, 14, 28\}$.
- n_2 divides $3 \cdot 7 = 21$ and $n_2 \equiv_2 1$. Thus $n_2 \in \{1, 3, 7, 21\}$.

A harder example

Proposition

There are no simple groups of order 351.

Proof

Since $|G| = 351 = 3^3 \cdot 13$, the third Sylow theorem tells us:

- n_{13} divides $3^3 = 27$ (so $n_{13} \in \{1, 3, 9, 27\}$)
- $n_{13} \equiv_{13} 1$.

The only possibilies are $n_{13} = 1$ or 27.

A Sylow 13-subgroup P has order 13, and a Sylow 3-subgroup Q has order $3^3=27$. Therefore, $P\cap Q=\{e\}$.

Suppose $n_{13} = 27$. Every Sylow 13-subgroup contains 12 non-identity elements, and so G must contain $27 \cdot 12 = 324$ elements of order 13.

This leaves 351 - 324 = 27 elements in G not of order 13. Thus, G contains only one Sylow 3-subgroup (i.e., $n_3 = 1$) and so G cannot be simple.

The hardest example

Proposition

There are no simple groups of order $24 = 2^3 \cdot 3$.

From the 3rd Sylow theorem, we can only conclude that $n_2 \in \{1,3\}$ and $n_3 = \{1,4\}$.

Let H be a Sylow 2-subgroup, which has relatively "small" index: [G:H] = 3.

Lemma

If G has a subgroup of index [G:H] = n, and |G| does not divide n!, then G is not simple.

Proof

Let G act on the right cosets of H (i.e., $S = H \setminus G$) by right-multiplication:

$$\phi\colon G\longrightarrow \mathsf{Perm}(S)\cong S_n$$
 , $\phi(g)=$ the permutation that sends each Hx to Hxg .

Recall that $Ker(\phi) \leq G$, and is the intersection of all conjugate subgroups of H:

$$\langle e \rangle \leq \operatorname{Ker}(\phi) = \bigcap_{x \in G} x^{-1} Hx \lneq G$$

If $\mathsf{Ker}(\phi) = \langle e \rangle$ then $\phi \colon G \hookrightarrow S_n$ is an embedding, which is impossible because $|G| \nmid n!$. \square