912.1: What is a function?

In single variables, we study R-valued functions of I variable

$$f: X = \mathbb{R} \longrightarrow Y = \mathbb{R}$$

Functions assign one element of X to exactly one element of Y. Here, X,Y= sets in general.

They can be visually represented by a graph:

Consider a particle moving in a plane.

Fix: view C as the graph of $f: \mathbb{R} \to \mathbb{R}^2$, where each coordinate is a function of t. $f: \mathbb{R} \to \mathbb{R}^2$, where each coordinate is a function of t. $f: \mathbb{R} \to \mathbb{R}^2$, where each coordinate is a function of t.

E.g. $f(+) = (+^2, sin(+)).$

Such curves are called parametric curves. (We'll study these later.)

> Multivariable functions:

Consider $f: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$.

Z =
$$f(x, y)$$

dependant independant variables

variable

can be represented graphically, algebraically or numerically.

	7/6	20	IS	10	5	
Example: (Numerical) $f(\omega,T) = wind chill temp. (°C)$	5	19	13	7	1	- f(w,T)-values
$f(\omega,T) = \omega ind chill remp. () \omega = \omega ind speed (km/h)$	16	15	9	3	-4	
T = temp. (°C)	IS	13	6	0	٦-	
a) Find and interpret f(20,5).	30	n	4	-a	۱-۹	f(w,T)-values

When the wind speed is 20 km/h and the temperature is 5°C, the wind chill is -9°C.

b) How fast does the wind have to blow for it to feel like 9°C when the actual temp. is 15°C?

Example: (Algebraic)

h =
$$\pi r^2 h$$

Surface area $h = g(r,h)$ = $\pi r^2 + 2\pi r$