Recitation 3 15.093 Optimization Methods

09/24/2021

Recitation 3 09/24/2021 1/13

Agenda

- Summary of simplex algorithm
- True/False
- Exercise on tableau manipulation

Recitation 3 09/24/2021 2 / 13

Simplex algorithm: geometric view

Simplex algorithm: a path on the edges of the polyhedron graph

Edges directed to decrease objective cost: monotone path

Recitation 3 09/24/2021 3 / 13

Simplex algorithm: geometric view

A step corresponds to a change of solution by pivot:

- leave a facet of the polyhedron (entering variable)
- follow the edge: n-1 facets kept active (non-basic variables remain null except for entering variable)
- hit another facet of polyhedron (leaving variable)

Recitation 3 09/24/2021 4 / 13

Simplex algorithm: geometric view

What if we hit at least 2 planes at same time? Degenerate vertex

- we can choose which variable to leave the basis
- several basis will represent the same geometric point

Recitation 3 09/24/2021 5 / 13

Simplex algorithm: algebraic view

- Initial basis \mathbf{B} , and solution \mathbf{x} : $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b}$ and $\mathbf{x}_N = 0$.
- lacksquare compute reduced costs: $ilde{m{c}}^ op = m{c}^ op m{c}_B^ op m{B}^{-1} m{A}$
 - if $\tilde{c} \ge 0$: optimality
 - otherwise select entering variable $\tilde{c}_i < 0$.
- compute basic direction $\mathbf{d}_B = -\mathbf{B}^{-1}\mathbf{A}_i$
 - if $d_B \ge 0$: unbounded problem
 - otherwise select entering variable B(I) in arg min_i $\frac{x_{B(i)}}{-d_{B(i)}}$
- compute solution for new basis

Recitation 3 09/24/2021 6/13

To find initial BFS

Assuming $b \ge 0$, solve the problem

min
$$y_1 + \dots y_m$$

s.t. $\mathbf{A}\mathbf{x} + \mathbf{y} = \mathbf{b}$
 $\mathbf{x}, \mathbf{y} \ge \mathbf{0}$.

- if positive cost: infeasible problem
- otherwise get a BFS by pushing the y_i out of basis

Recitation 3 09/24/2021 7 / 13

Pivot rules and complexity

Which entering variable to choose at each step?

- minimal index: Bland's minimal rule
- most negative reduced cost: Dantzig rule
- most improvement in objective cost
- steepest edge
- shadow vertex rule
- rules on dual
- ...

8 / 13

Recitation 3 09/24/2021

Pivot rules and complexity

- Open question: does there exist a pivot rule for which number of simplex steps is polynomial in m and n?
- Worst case is exponential for all presented pivot rules.

Figure: Klee-Minty cube

Recitation 3 09/24/2021 9 / 13

Exercise 1: True/False

- **1** Every polyhedron $P \subset \mathbb{R}^n$ can be written in standard form $P = \{ \mathbf{x} \in \mathbb{R}^n, \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq 0 \}.$
- 2 Suppose a LP has finite cost. The set of optimal solutions is a polyhedron.
- 3 At an optimal solution of an LP in \mathbb{R}^n there are at least n active constraints
- If there exists a vector $\mathbf{q} \neq 0$ for which $\mathbf{A}\mathbf{q} = 0$, then the polyhedron $\{\mathbf{x}, \mathbf{A}\mathbf{x} \geq \mathbf{b}\}$ doesn't have any vertex.
- Suppose $\{x, Ax \ge b\}$ is non-empty and bounded, then x = 0 is the only vector for which Ax = 0.
- Consider the LP min $c^{\top}x$ s.t. $Ax \leq b$. If we increase some component of b then the optimal cost cannot increase.

Recitation 3 09/24/2021 10 / 13

Simplex tableau

Allows to do the pivots easily "by hand"

$-oldsymbol{c}_B^ op oldsymbol{x}_B$	$\tilde{m{c}} = m{c} - m{c}_B^{ op} m{A}$
$\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b}$	$oldsymbol{B}^{-1}oldsymbol{A}$

Recitation 3 09/24/2021 11 / 13

Exercise 2: Simplex tableau

Consider a LP in standard form with $\mathbf{A} = \begin{bmatrix} \star & \star & 1 & 0 & \star \\ \star & \star & 0 & 1 & \star \end{bmatrix}$. After some iterations we get the tableau

- a) Suppose $\beta > 0$. Find necessary and sufficient condition for current solution to be optimal.
- b) If $\beta \geq 0$ and problem is bounded, what can we say on α ?
- c) Show that $x_5 = 0$ at an optimal solution.
- d) Suppose $\alpha = \beta = \gamma = 1$. If **B** is the current basis matrix, what is **B**⁻¹.
- e) Suppose the current BFS is nondegenerate, does there exist a solution for which $x_2 = x_4 = 0$?

12 / 13

Recitation 3 09/24/2021

Exercise 2: Simplex tableau

Consider a LP in standard form with $\mathbf{A} = \begin{bmatrix} \star & \star & 1 & 0 & \star \\ \star & \star & 0 & 1 & \star \end{bmatrix}$. After some iterations we get the tableau

- f) Suppose $\beta=1$ and that current solution is optimal. Find necessary and sufficient solution for having multiple optimal solutions.
- g) Suppose $\beta=1$. Find necessary and sufficient condition to terminate simplex after 1 additional iteration, with indication that the problem is unbounded.
- h) Suppose $\beta=-1.$ Find necessary and sufficient condition for the problem to be infeasible.

Recitation 3 09/24/2021 13 / 13