Petrochem / hydrocarbon based chemicals (organics)

Sourav Mondal

Department of Chemical Engineering

IIT Kharagpur

Formaldehyde

Catalytic oxidation of methanal:

CH30H + 202 -> He+10 + 1/20

 $\Delta H = -37 \text{ kal}$

Pyrolysis: CH30H -> HCHO + H2

SH=+20 Kcal

Side 1x18: CH36H + = 02 -> 2H20 + CO2

AH= 160 kcal

Catalytic oxidation of CHX or LPG can also produce HeHO, but separation of products is difficult I also the catalyst needed are expensive.

Methanol

Catalytic hydrogenation of co $CO + 2H_2 \rightarrow CH_3 \circ H$ Side $V \times NS$: $CO + 3H_2 \rightarrow CH_4 + H_2O \qquad \Delta H = -50 \text{ kcal}$ $2CO + 2H_2 \rightarrow CH_4 + CO_2 \qquad \Delta H = -60 \text{ kcal}$

x co + yH2 -> higher MWHC organics

question to think: kMnO4 is a strong oxidising agent, so will it not affect/oxidise methanol?

Chloromethanes

Direct thermal methane chlorination CH4 + C12 -> CH3C1 + HC1 BP:-24°C CH3cl + Cl2 -> CH2cl2+ Hcl BP 40°C CH2Cl2 + cl2 -> CHCl3 + HCl BP 61°C BP 77°C CHC13+cl2 -> CC14 + HC1 All orane are exothermic: typically -24 kcal/mole of CH4

For a feed natio of CH4: Cl2= 1.8, pvod not compositions are: CH3U-60%. CH2Cl2-28%. CHcl3-9%. ccl4-3%

Ethylene - Acetylene

Ethylene - Acetylene

Steam cracking / pyrolysis of LPG & naphtha
Dehydration of ethanol — not economically competitive
in the long term

Thermal pyrolypis of ethane/propane - not attractive

Chton+2 +
$$t_{20} + o_2$$
 \longrightarrow c2t4 (10-15%) + C2t+2 (10-13%)
Naphtha feedstock
in Indian context $+ ct_4 + c_2t_6 + c_3t_6 + c_3t_8 + c_4t_{10}$
 $+ ct_4 + c_2t_6 + c_3t_6 + c_3t_8 + c_4t_{10}$
 $+ ct_4 + c_4t_6 + t_6$

Ethylene-dichloride

(1,2-Dichboroethane)

Rxn of cl2 with C2H4 in liq./vap. phase
By-product of direct chlorination of Ethane to
Ethyl chloride

Byproduct of chlorinated HC

94+ d2 -> C1+2C-c 2C1

Vinyl dichloride

Ethylene dichloride thermal pyrolysis: CIH2C. CH2CI -> K2C = CHCI + HCI

Ace tylene - HCl reaction; $HC \equiv CH + HCl \longrightarrow H_2C = CHCl$

Acetone

Catalytic dehydrogenation of isopropanol

$$H_3C$$
 > CH_0H \longrightarrow $CH_3COCH_3 + H_2$
 H_3C + $\frac{1}{2}O_2$ > $CH_3COCH_3 + H_2O$

Iso-propanol

Methods of production:

-> Hydration of propylene via sulponation & hydrolysis

$$H_2C=CH_2+H_2SO_4\longrightarrow (CH_3)_2CH (OSO_3H)$$

isopropyl acid sulfate

$$H_3C-CH_2$$
— CH_3 + H_2O — CH_3 + H_2SO_4 $O-SO_3$ H_3C — CH_3 + H_2SO_4

Side neactions:
$$(CH_3)_2CH + H_2O \rightarrow (CH_3)_2CH + H_2SO_4$$

 $(CH_3)_2CH + CH_3)_2CH + CH_3)_2CH$

Isopropanol by indirect hydration of propylene.

Acetone production by dehydrogenation of Isopropanol.

Cumene (Isopropyl benzene)

Propylene alkylation of Benzene CoHo + Utz·CH = CH2 -> CoHz·C3H7 Cumene

Side axn: Cotto + n ct/3CH = CH2 -> Cotto-n' (C3H7)n

poly-isopropyl benzene

Cumene production by propylene alkylation of benzene.

Acrylonitrile

Possible methods of production:

Propylene - ammonia-air oxidation

Acetylene - hydrogen cyanide Txn

Acetyldehyde - HCN TXN

$$V_2C=CH-CH_3+NH_3+\frac{3}{2}O_2\longrightarrow V_2C=CHCN+3H_2O$$

$$\Delta H \sim -136 \text{ Kcal}$$

Acetonitrile production from propylene ammonia oxidation

Butadiene

Dehydrogenation Dehydration of ethanol

(H3CH2OH -> CH3CHO + H2

(H3CH2OH + CH3CHO -> H2C=CH, CH=CH2 + 2H2O

Butadiene production by dehydrogenation of butane

Aromatics

Hydroalkylation

Method of conventing to hieres & dialkyl benzenes to benzene $C_6H_5 CH_3 + H_2 \longrightarrow C_6H_6 + CH_4$ $C_6H_4 (CH_3)_2 + 2H_2 \longrightarrow C_6H_6 + 2CH_4$

Note - For better heat economy in thermal process, reactor effluent can be used for stripper and fractionator reboiler heat supply.

Purge

Phenol

Several processes are available Cumene peroxidation-hydrolysis Toluene two-stage oxidation Chlorobenzene - caustic hydrolysis Benzene sulfonate-caustic fusion Benzere-direct oxidation (oldest) Peroxidation: 6 CH3 + air ao. emulsion CH3 CH3 CH3 COCH3 + 10 L 09. 42504 Hydrolysis:

