Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _*ИУК «Информатика и управление»*_____

КАФЕДРА __ИУК2 «Информационные системы и сети»

ЛАБОРАТОРНАЯ РАБОТА №5

«Исследование режимов работы биполярного транзистора в схема с общим эмиттером»

ДИСЦИПЛИНА: «Основы электроники»

Выполнил: студент гр. ИУК4-32Б	(Подпись)	_ (Зудин Д.В) (Ф.И.О.)
Проверил:	(Подпись)	_ (Козеева О.О) (Ф.И.О.)
Дата сдачи (защиты):		
Результаты сдачи (защиты):		
- Балльна	ая оценка:	
- Оценка	:	

Калуга, 2022 г.

Цель: формирование практических навыков расчета параметров биполярных транзисторов и других элементов, при включении транзистора в схеме с общим эмиттером (ОЭ).

Задачи:

- 1. Расчет параметров транзистора и требуемых элементов схемы.
- 2. Моделирование схемы, для подтверждения результатов расчета параметров биполярных транзисторов.

Вариант 1

No	α	β	R _K (кОм)	R _E (KOM)	R _B (кОм)	V _K (B)	$V_B(B)$
3	?	80	2	1	?	15	10

$$U_{6-3} = 0.7 \text{ B}; I_6 = 40 \text{ MKA}; I_{\kappa 60} = 0 \text{ A}.$$

$$\alpha = \frac{\beta}{1+\beta} = \frac{80}{81} = 0.99$$

$$I_{\kappa} = a I_{\mathfrak{I}} + I_{\kappa 60}$$

$$I_{\scriptscriptstyle 9} = I_{\scriptscriptstyle K} + I_{\scriptscriptstyle 6}$$

Отсюда:

$$I_{\scriptscriptstyle 9} = \text{a } I_{\scriptscriptstyle 9} + I_{\scriptscriptstyle K60} + I_{\scriptscriptstyle 6}$$

$$I_{3} * (1-a) = I_{\kappa 60} + I_{6}$$

$$I_9 = \frac{I\kappa60 + I6}{1 - \alpha} = \frac{0 + 40*10^{-6}}{1 - 0.99} = 0.004 \text{ (A)}$$

$$I_K = 0.99*0.004 + 0 = 0.00396 \text{ (A)}$$

Правило Кирхгофа для левого контура:

$$V_{\kappa} \equiv U_{\kappa^{-_{\mathfrak{I}}}} + R_{\kappa}I_{\kappa} + R_{\mathfrak{I}}I_{\mathfrak{I}}$$

$$R_B = \frac{V_b - U_{b-e} - R_e I_e}{I_b} = \frac{10 - 0.7 - 10^3 * -0.004}{40 * 10^{-6}} = 132500$$

$$V_{\kappa} = U_{\kappa^{-3}} + R_{\kappa}I_{\kappa} + R_{3}I_{3}$$

$$U_{\mbox{\tiny K-9}} = V_{\mbox{\tiny K}}$$
 - $R_{\mbox{\tiny K}}I_{\mbox{\tiny K}}$ - $R_{\mbox{\tiny 9}}I_{\mbox{\tiny 9}} = 15 - 3000^*0,\!00396\text{-}1000^*0,\!004 = -0,\!88(B)$

Схема с биполярным транзистором

Вывод: в ходе выполнения лабораторной работы был произведён расчёт параметров биполярных транзисторов и других элементов, при включении транзистора в схему с ОЭ.