Сведение к простым МDР

16 декабря 2018 г.

Ключевой вопрос

1.1 MDP

Рассмотрим MDP (S, A, T, r), где:

- ullet \mathcal{S} произвольное множество состояний
- A **конечное** (и небольшое) множество действий
- \mathcal{T} transition probability, а то есть вероятностные распределения $p(s'\mid s,a)$, где $s,s'\in\mathcal{S},a\in\mathcal{A}$, и которое нам неизвестно (из которого можем только сэмплировать в ходе интерактирования).
- $r: \mathcal{S} \to \mathbb{R}$ функция награды, считаем, что детерминированная по состояниям.

1.2 Аппроксимация МDР

Попробуем *приблизить* этот MDP другим, более простым: (S_*, A, T_*, r_*) , где:

- S_* конечное множество из фиксированного числа элементов, ну там, 20.
- ullet \mathcal{A} совпадает с \mathcal{A} из предыдущего MDP
- \mathcal{T}_* распределения $p_*(s'_* \mid s_*, a)$, где $s_*, s'_* \in \mathcal{S}_*, a \in \mathcal{A}$. Для хранения этого распределения нам нужно хранить $|\mathcal{S}_*|^2 |\mathcal{A}|$ чисел, что подъёмно при небольшом $|\mathcal{A}|$.
- $r_*: \mathcal{S}_* \to \mathbb{R}$ аналогично детерминированная функция награды. Для её хранения требуется $|\mathcal{S}_*|$ чисел.

1.3 Эквивалентность двух MDP

Попробуем задать *эквивалентность* этих двух MDP. Назовём их эквивалентными, если существует такая функция $f: \mathcal{S} \to \mathcal{S}^*$, что:

• для любых $s \in \mathcal{S}, a \in \mathcal{A}, s'_* \in \mathcal{S}_*$ верно:

$$\sum_{s': \ f(s') = s'_*} p(s' \mid s, a) = p(s'_* \mid f(s), a)$$

• для любых $s \in \mathcal{S}, a \in \mathcal{A}$ верно:

$$\sum_{s'} r(s')p(s' \mid s, a) = \sum_{s'_*} r_*(s'_*)p(s'_* \mid f(s), a)$$

1.4 Мягкая эквивалентность двух MDP

Нам в дальнейшем будет неудобно искать функцию f, выдающую дискретный выход вида «число от 1 до 20». Поэтому хочется, чтобы f могло выдавать вероятность каждого из 20 состояний. Назовём MDP мягко эквивалентными, если существует такое вероятностное распределение $f(s_* \mid s), s \in \mathcal{S}, s_* \in \mathcal{S}^*$, что:

• для любых $s \in \mathcal{S}, a \in \mathcal{A}, s'_* \in \mathcal{S}_*$ верно:

$$\sum_{s'} f(s'_* \mid s') p(s' \mid s, a) = \sum_{s_*} p(s'_* \mid s_*, a) f(s_* \mid s)$$

ullet для любых $s \in \mathcal{S}, a \in \mathcal{A}$ верно:

$$\sum_{s'} r(s')p(s' \mid s, a) = \sum_{s'} \left[r_*(s'_*) \sum_{s_*} p(s'_* \mid s_*, a) f(s_* \mid s) \right]$$

1.5 План

Будем обучать: $f_{\theta}(s)$ — нейросеть, которая по входу $s \in \mathcal{S}$ выдаёт вероятностное распределение на домене \mathcal{S}_* , табличку $|\mathcal{S}_*| \times |\mathcal{S}_*| \times |\mathcal{A}|$ чисел, моделирующую \mathcal{T}_* , а также функцию r_* .

Для этого нам бы хотелось ввести не эквивалентность, а условно метрику, которая была бы ноль при эквивалентности. В случае мягкой эквивалентности первое условие утверждает равенство двух распределений на домене \mathcal{S}_* , что наводит на мысль минимизировать дивергенцию между правой и левой частью.

Выберем КL-дивергенцию, но надо подумать, прямую или обратную.

$$\mathrm{KL}\left(\sum_{s'} f_{\theta}(s'_{*} \mid s') p(s' \mid s, a), \sum_{s_{*}} \mathcal{T}_{*}(s'_{*}, s_{*}, a) f_{\theta}(s_{*} \mid s)\right) \to \min_{\theta, \mathcal{T}_{*}}$$

Пользоваться нужно тем, что первая вероятность тут мат.ожидание — это важно, поскольку пользоваться мы сможем только сэмплами:

$$\operatorname{KL}\left(\mathbb{E}_{s' \sim p(s \mid s, a)} f_{\theta}(s'_{*} \mid s'), \sum_{s_{*}} \mathcal{T}_{*}(s'_{*}, s_{*}, a) f_{\theta}(s_{*} \mid s)\right) \to \min_{\theta, \mathcal{T}_{*}}$$

Раскроем определение:

$$\sum_{s'} \left(\mathbb{E}_{s' \sim p(s'|s,a)} f_{\theta}(s'_* \mid s') \log \frac{\mathbb{E}_{s' \sim p(s'|s,a)} f_{\theta}(s'_* \mid s')}{\sum_{s_*} \mathcal{T}_*(s'_*, s_*, a) f_{\theta}(s_* \mid s)} \right) \to \min_{\theta, \mathcal{T}_*}$$

Дело плохо: логарифм от мат.ожидания.

1.6 Попытки обойти. Вариант 1

У нас проблемы только с одним слагаемым, с энтропией:

$$\sum_{s'} \left(\mathbb{E}_{s' \sim p(s'\mid s, a)} f_{\theta}(s'_* \mid s') \log \mathbb{E}_{s' \sim p(s'\mid s, a)} f_{\theta}(s'_* \mid s') \right)$$

Вроде как (гугл) энтропию свёртки можно сверху оценить так:

$$\sum_{s'_{*}} \left(\mathbb{E}_{s' \sim p(s' \mid s, a)} f_{\theta}(s'_{*} \mid s') \log \mathbb{E}_{s' \sim p(s' \mid s, a)} f_{\theta}(s'_{*} \mid s') \right) \leq$$

$$\leq \sum_{s'_{*}} f_{\theta}(s'_{*} \mid s') \log f_{\theta}(s'_{*} \mid s') + \sum_{s'_{*}} p(s' \mid s, a) \log p(s' \mid s, a)$$

Второе от параметров не зависит, оставляем первое и минимизируем верхнюю оценку. Вроде чем разреженнее f, тем лучше оценка.

1.7 Попытки обойти. Вариант 2

Рассмотрим другую KL-дивергенцию.

$$\mathrm{KL}\left(\sum_{s_*} \mathcal{T}_*(s'_*, s_*, a) f_{\theta}(s_* \mid s), \sum_{s'} f_{\theta}(s'_* \mid s') p(s' \mid s, a)\right) \to \min_{\theta, \mathcal{T}_*}$$

Обозначим первое распределение за $q(s_*^\prime)$ и распишем эту дивергенцию:

$$\sum_{s'_{*}} q(s'_{*}) \log q(s'_{*}) - \sum_{s'_{*}} \left(q(s'_{*}) \log \sum_{s'} f_{\theta}(s'_{*} \mid s') p(s' \mid s, a) \right) \to \min_{\theta, \mathcal{T}_{*}}$$

Оставляем первое слагаемое. Второе оценим сверху, заменив содержимое логарифма на оценку снизу.

$$\sum_{s'_{*}} q(s'_{*}) \log q(s'_{*}) - \sum_{s'_{*}} \left(q(s'_{*}) \log \prod_{s'} f_{\theta}(s'_{*} \mid s')^{p(s'\mid s, a)} \right) \to \min_{\theta, \mathcal{T}_{*}}$$

$$\sum_{s'_{*}} q(s'_{*}) \log q(s'_{*}) - \mathbb{E}_{s' \sim p(s'\mid s, a)} \sum_{s'_{*}} q(s'_{*}) \log f_{\theta}(s'_{*} \mid s') \to \min_{\theta, \mathcal{T}_{*}}$$

1.8 **EMD**

Воспользуемся тем, что домен - условно 20 наших никак не различаемых состояний, то есть кажется, что Earth Moving Distance тут имеет простой вид:

$$\operatorname{EMD}\left(\mathbb{E}_{s' \sim p(s \mid s, a)} f_{\theta}(s'_{*} \mid s'), \sum_{s_{*}} \mathcal{T}_{*}(s'_{*}, s_{*}, a) f_{\theta}(s_{*} \mid s)\right) \to \min_{\theta, \mathcal{T}_{*}}$$

$$\sum_{s'} |\mathbb{E}_{s' \sim p(s \mid s, a)} f_{\theta}(s'_{*} \mid s') - \sum_{s_{*}} \mathcal{T}_{*}(s'_{*}, s_{*}, a) f_{\theta}(s_{*} \mid s)| \to \min_{\theta, \mathcal{T}_{*}}$$

Но тут модуль мешается.