Machine Learning HW7 Report

學號: B05502145 系級: 電機三 姓名: 林禹丞

1. PCA of color faces:

a. 請畫出所有臉的平均。

b. 請畫出前五個 Eigenfaces,也就是對應到前五大 Eigenvalues 的 Eigenvectors。

c. 請從數據集中挑出任意五張圖片,並用前五大 Eigenfaces 進行 reconstruction,並畫出結果。

d. 請寫出前五大 Eigenfaces 各自所佔的比重,請用百分比表示並四捨五入

到小數點後一位。

	第一大	第二大	第三大	第四大	第五大
比率	4.1	2.9	2.4	2.2	2.1

2. Image clustering:

a. 請實作兩種不同的方法,並比較其結果(reconstruction loss, accuracy)。 (不同的降維方法或不同的 cluster 方法都可以算是不同的方法)

		731E(A) 3777E 1 1 37737E()			
方法	說明	Reconstruction loss	Accuracy(public/private)		
PCA + Kmeans	利用 PCA 把原圖 降到 400 維,再 用 Kmeans 分成 2 個 cluster	0.21385(MSE)	0.95605/0.95563		
Autoencoder(VAE) + Kmeans	利用 autoencoder 把原圖降到 400 維,再用 Kmeans 分成 2 個 cluster	0.01295(MSE)	0.90075/0.90070		

其中 PCA 使用 sklearn 的套件 PCA, 其中 whiten=True 使用 4 層 conv(3,60,120,120,120) + flatten + dense(400)的 autoencoder

b. 預測 visualization.npy 中的 label,在二維平面上視覺化 label 的分佈。 (用 PCA, t-SNE 等工具把你抽出來的 feature 投影到二維,或簡單的取前兩維 2 的 feature)

其中 visualization.npy 中前 2500 個 images 來自 dataset A,後 2500 個 images 來自 dataset B,比較和自己預測的 label 之間有何不同。

由圖可知 PCA 可以很有效的用 2 維就把資料分的很清楚。而 VAE 的部分則需要再用 PCA 再做降維才會有更好的效果。

c. 請介紹你的 model 架構(encoder, decoder, loss function...),並選出任意 32 張圖片,比較原圖片以及用 decoder reconstruct 的結果。

Encoder 架構:

Layer (type)	Output Shape Pa	aram #
input_1 (InputLayer)	(None, 32, 32, 3)	0
conv2d_1 (Conv2D)	(None, 32, 32, 3)	39
conv2d_2 (Conv2D)	(None, 16, 16, 60)	780
conv2d_3 (Conv2D)	(None, 16, 16, 120)	64920
conv2d_4 (Conv2D)	(None, 16, 16, 120)	129720
conv2d_5 (Conv2D)	(None, 16, 16, 120)	129720
flatten_1 (Flatten)	(None, 30720) 0)
dense_1 (Dense)	(None, 400)	12288400

Total params: 12,613,579 Trainable params: 12,613,579

Non-trainable params: 0

Decoder 架構無法和 encoder 部分分開,因為我們的 vae autoencoder 在中間有一層接到兩層 layer,最後再併起來,而 encoder 只是其中一邊。所以我們列出整個 vae 的架構(其中紅色的就是上一小題的 encoder 部分):

Layer (type)	Output Shape	Param #	Connected to
input_1 (InputLayer)	(None, 32, 32	, 3) 0	=======================================
conv2d_1 (Conv2D)	(None, 32, 3	32, 3) 39	input_1[0][0]
conv2d_2 (Conv2D)	(None, 16, 1	16, 60) 780	conv2d_1[0][0]
conv2d_3 (Conv2D)	(None, 16, 1	6, 120) 649	20 conv2d_2[0][0]

conv2d_4 (Conv2D)	(None, 16, 16,	120) 129720) conv	2d_3[0][0]	
conv2d_5 (Conv2D)	(None, 16, 16,	120) 129720) conv	2d_4[0][0]	
flatten_1 (Flatten)	(None, 30720)	0 con	v2d_5[0][0]	
dense_1 (Dense)	(None, 400)	12288400	flatten_	1[0][0]	
dense_2 (Dense)	(None, 400)	12288400	flatten_	1[0][0]	
lambda_1 (Lambda)	(/	0 d nse_2[0][0]	lense_1[0	[[0]	
dense_3 (Dense)	(None, 30720)	12318720) lambda	a_1[0][0]	
reshape_1 (Reshape)	(None, 16, 16	, 120) 0	dense_:	3[0][0]	
conv2d_transpose_1 (C	onv2DTrans (None,	16, 16, 120)	129720	reshape_1[0][0]
conv2d_transpose_2 (C	onv2DTrans (None,	16, 16, 120)	129720	conv2d_tran	spose_1[0][0]
conv2d_transpose_3 (C	onv2DTrans (None,	33, 33, 60)	64860	conv2d_trans	pose_2[0][0]
conv2d_6 (Conv2D)	(None, 32, 32,	3) 723	conv2d_	transpose_3[0]	[0]
Total params: 37,545,72	======================================	=======			=======

Total params: 37,545,722 Trainable params: 37,545,722 Non-trainable params: 0

Loss function:

我們的 vae 中 dense1 之後分成一邊平均層(z_mean)和變異層(z_log_var)。除了原圖和復原圖的 binary cross entropy 外還有這兩層的 loss。

```
xent_loss = img_rows * img_cols * metrics.binary_crossentropy(
    K.flatten(x),
    K.flatten(x_decoded_mean_squash))
kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var),
axis=-1)
vae_loss = K.mean(xent_loss + kl_loss)
```

左側 32 張為原圖(標號 1~32),右側 32 張為 reconstruct 圖。

