Estratégia: recursão

3

Estratégia: recursão

Como ordenar a primeira metade do vetor?

3

Estratégia: recursão

Como ordenar a primeira metade do vetor?

ullet usamos uma função ordernar(int *v, int 1, int r)

Estratégia: recursão

Como ordenar a primeira metade do vetor?

- \bullet usamos uma função ordernar(int *v, int 1, int r)
 - poderia ser bubblesort, selectionsort ou insertionsort

Estratégia: recursão

Como ordenar a primeira metade do vetor?

- usamos uma função ordernar(int *v, int 1, int r)
 - poderia ser bubblesort, selectionsort ou insertionsort
 - mas vamos fazer algo melhor do que isso

3

Estratégia: recursão

Como ordenar a primeira metade do vetor?

- usamos uma função ordernar(int *v, int 1, int r)
 - poderia ser bubblesort, selectionsort ou insertionsort
 - mas vamos fazer algo melhor do que isso
- executamos ordenar(v, 0, 4);

3

Estratégia: recursão

Como ordenar a primeira metade do vetor?

- usamos uma função ordernar(int *v, int 1, int r)
 - poderia ser bubblesort, selectionsort ou insertionsort
 - mas vamos fazer algo melhor do que isso
- executamos ordenar(v, 0, 4);

E se quiséssemos ordenar a segunda parte?

Ordenando a segunda parte

Para ordenar a segunda metade:

• executamos ordenar(vetor, 5, 9);

Ordenando a segunda parte

Para ordenar a segunda metade:

• executamos ordenar(vetor, 5, 9);

4

Ordenando todo o vetor

Suponha que temos um vetor com as suas duas metades já ordenadas

5

Ordenando todo o vetor

Suponha que temos um vetor com as suas duas metades já ordenadas

• Como ordernar todo o vetor?

Ordenando todo o vetor

Suponha que temos um vetor com as suas duas metades já ordenadas

Como ordernar todo o vetor?

• Percorremos os dois subvetores

6

Intercalando

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar

6

Intercalando

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar

Intercalando

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar

6

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar

6

Intercalando

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar

6

Intercalando

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar

Intercalando

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar

6

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar

6

Intercalando

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar
- Depois copiamos o restante

6

Intercalando

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar
- Depois copiamos o restante

Intercalando

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar
- Depois copiamos o restante

6

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar
- Depois copiamos o restante
- No final, copiamos do vetor auxiliar para o original

6

Intercalando

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar
- Depois copiamos o restante
- No final, copiamos do vetor auxiliar para o original

6

Divisão e conquista

Observação:

Divisão e conquista

Observação:

 A recursão parte do princípio que é mais fácil resolver problemas menores

7

Divisão e conquista

Observação:

- A recursão parte do princípio que é mais fácil resolver problemas menores
- Para certos problemas, podemos dividi-lo em duas ou mais partes

7

Divisão e conquista

Observação:

- A recursão parte do princípio que é mais fácil resolver problemas menores
- Para certos problemas, podemos dividi-lo em duas ou mais partes

Divisão e conquista:

7

Divisão e conquista

Observação:

- A recursão parte do princípio que é mais fácil resolver problemas menores
- Para certos problemas, podemos dividi-lo em duas ou mais partes

Divisão e conquista:

 Divisão: Quebramos o problema em vários subproblemas menores

Divisão e conquista

Observação:

- A recursão parte do princípio que é mais fácil resolver problemas menores
- Para certos problemas, podemos dividi-lo em duas ou mais partes

Divisão e conquista:

- Divisão: Quebramos o problema em vários subproblemas menores
 - ex: quebramos um vetor a ser ordenado em dois

Divisão e conquista

Observação:

- A recursão parte do princípio que é mais fácil resolver problemas menores
- Para certos problemas, podemos dividi-lo em duas ou mais partes

Divisão e conquista:

- Divisão: Quebramos o problema em vários subproblemas menores
 - ex: quebramos um vetor a ser ordenado em dois
- Conquista: Combinamos a solução dos problemas menores

7

Divisão e conquista

Observação:

- A recursão parte do princípio que é mais fácil resolver problemas menores
- Para certos problemas, podemos dividi-lo em duas ou mais partes

Divisão e conquista:

- Divisão: Quebramos o problema em vários subproblemas menores
 - ex: quebramos um vetor a ser ordenado em dois
- Conquista: Combinamos a solução dos problemas menores
 - ex: intercalamos os dois vetores ordenados

7

Ordenação por intercalação (MergeSort)

Intercalação:

Ordenação por intercalação (MergeSort)

Intercalação:

• Os dois subvetores estão armazenados em v:

Intercalação:

- Os dois subvetores estão armazenados em v:
 - O primeiro nas posições de 1 até m

8

Ordenação por intercalação (MergeSort)

Intercalação:

- Os dois subvetores estão armazenados em v:
 - O primeiro nas posições de 1 até m
 - O segundo nas posições de m + 1 até r

8

Ordenação por intercalação (MergeSort)

Intercalação:

- Os dois subvetores estão armazenados em v:
 - O primeiro nas posições de 1 até m
 - O segundo nas posições de m + 1 até r
- Precisamos de um vetor auxiliar do tamanho do vetor

Ordenação por intercalação (MergeSort)

Intercalação:

- Os dois subvetores estão armazenados em v:
 - O primeiro nas posições de 1 até m
 - O segundo nas posições de m + 1 até r
- Precisamos de um vetor auxiliar do tamanho do vetor
- Vamos considerar que o maior vetor tem tamanho MAX

Intercalação:

- Os dois subvetores estão armazenados em v:
 - O primeiro nas posições de 1 até m
 - O segundo nas posições de m + 1 até r
- Precisamos de um vetor auxiliar do tamanho do vetor
- Vamos considerar que o maior vetor tem tamanho MAX
 - Exemplo #define MAX 100

8

Ordenação por intercalação (MergeSort)

```
1 void merge(int *v, int 1, int m, int r) {
```

Ordenação por intercalação (MergeSort)

```
1 void merge(int *v, int 1, int m, int r) {
2   int aux[MAX];
3   int i = 1, j = m + 1, k = 0;
```

Ordenação por intercalação (MergeSort)

```
1 void merge(int *v, int l, int m, int r) {
2   int aux[MAX];
3   int i = 1, j = m + 1, k = 0;
4   //intercala
5   while(i <= m && j <= r)
6   if (v[i] <= v[j])
7    aux[k++] = v[i++];
8   else
9   aux[k++] = v[j++];</pre>
```

```
1 void merge(int *v, int 1, int m, int r) {
2    int aux[MAX];
3    int i = 1, j = m + 1, k = 0;
4    //intercala
5    while(i <= m && j <= r)
6    if (v[i] <= v[j])
7        aux[k++] = v[i++];
8    else
9        aux[k++] = v[j++];
10    //copia o resto do subvetor que não terminou
11    while (i <= m)
12    aux[k++] = v[i++];</pre>
```

9

Ordenação por intercalação (MergeSort)

```
1 void merge(int *v, int l, int m, int r) {
2    int aux[MAX];
3    int i = l, j = m + 1, k = 0;
4    //intercala
5    while(i <= m && j <= r)
6    if (v[i] <= v[j])
7        aux[k++] = v[i++];
8    else
9        aux[k++] = v[j++];
10    //copia o resto do subvetor que não terminou
11    while (i <= m)
12        aux[k++] = v[i++];
13    while (j <= r)
14    aux[k++] = v[j++];</pre>
```

9

Ordenação por intercalação (MergeSort)

```
1 void merge(int *v, int 1, int m, int r) {
2 int aux[MAX];
3 int i = 1, j = m + 1, k = 0;
4 //intercala
5 while(i <= m && j <= r)</pre>
    if (v[i] <= v[i])</pre>
       aux[k++] = v[i++];
      else
        aux[k++] = v[j++];
10 //copia o resto do subvetor que não terminou
11 while (i <= m)
12 aux[k++] = v[i++];
13 while (j <= r)
    aux[k++] = v[j++];
15 //copia de volta para v
   for (i = 1, k=0; i <= r; i++, k++)
        v[i] = aux[k];
17
18 }
```

Ordenação por intercalação (MergeSort)

```
1 void merge(int *v, int 1, int m, int r) {
2 int aux[MAX];
3 int i = 1, j = m + 1, k = 0;
4 //intercala
5 while(i <= m && j <= r)</pre>
    if (v[i] <= v[i])</pre>
       aux[k++] = v[i++];
    else
        aux[k++] = v[i++];
10 //copia o resto do Subvetor que não terminou
11 while (i <= m)
12 aux[k++] = v[i++];
13 while (j <= r)
14 aux[k++] = v[j++];
15 //copia de volta para v
16 for (i = 1, k=0; i <= r; i++, k++)
       v[i] = aux[k];
18 }
```

Quantas comparações são feitas?

```
1 void merge(int *v, int 1, int m, int r) {
2 int aux[MAX];
3 int i = 1, i = m + 1, k = 0;
4 //intercala
5 while(i <= m && j <= r)
   if (v[i] <= v[i])</pre>
      aux[k++] = v[i++];
       aux[k++] = v[j++];
10 //copia o resto do subvetor que não terminou
11 while (i <= m)
12 aux[k++] = v[i++];
13 while (j <= r)
14 aux[k++] = v[j++];
15 //copia de volta para v
16 for (i = 1, k=0; i <= r; i++, k++)
       v[i] = aux[k];
18 }
```

Quantas comparações são feitas?

• a cada passo, aumentamos um em i ou em j

9

Ordenação por intercalação (MergeSort)

Ordenação:

Ordenação por intercalação (MergeSort)

```
1 void merge(int *v, int 1, int m, int r) {
2 int aux[MAX];
3 int i = 1, i = m + 1, k = 0;
4 //intercala
5 while(i <= m && j <= r)
    if (v[i] <= v[j])</pre>
      aux[k++] = v[i++];
       aux[k++] = v[j++];
10 //copia o resto do subvetor que não terminou
11 while (i <= m)
12 aux[k++] = v[i++];
13 while (j <= r)
14 aux[k++] = v[j++];
15 //copia de volta para v
16 for (i = 1, k=0; i <= r; i++, k++)
    v[i] = aux[k];
18 }
```

Quantas comparações são feitas?

- a cada passo, aumentamos um em i ou em j
- no máximo n := r l + 1

9

Ordenação por intercalação (MergeSort)

Ordenação:

• Recebemos um vetor de tamanho n com limites:

10

Ordenação:

- Recebemos um vetor de tamanho n com limites:
 - O vetor começa na posição vetor [1]

Ordenação por intercalação (MergeSort)

Ordenação:

- Recebemos um vetor de tamanho n com limites:
 - O vetor começa na posição vetor [1]
 - O vetor termina na posição vetor [r]
- Dividimos o vetor em dois subvetores de tamanho n/2

Ordenação por intercalação (MergeSort)

Ordenação:

- Recebemos um vetor de tamanho n com limites:
 - O vetor começa na posição vetor[1]
 - O vetor termina na posição vetor [r]

Ordenação por intercalação (MergeSort)

Ordenação:

- Recebemos um vetor de tamanho n com limites:
 - O vetor começa na posição vetor[1]
 - O vetor termina na posição vetor [r]
- Dividimos o vetor em dois subvetores de tamanho n/2
- O caso base é um vetor de tamanho 0 ou 1

Ordenação:

- Recebemos um vetor de tamanho n com limites:
 - O vetor começa na posição vetor [1]
 - O vetor termina na posição vetor [r]
- Dividimos o vetor em dois subvetores de tamanho n/2
- O caso base é um vetor de tamanho 0 ou 1

10

Ordenação por intercalação (MergeSort)

Ordenação:

- Recebemos um vetor de tamanho n com limites:
 - O vetor começa na posição vetor[1]
 - O vetor termina na posição vetor [r]
- Dividimos o vetor em dois subvetores de tamanho n/2
- O caso base é um vetor de tamanho 0 ou 1

```
1 void mergesort(int *v, int 1, int r) {
2    int m = (1 + r) / 2;;
3    if (1 < r) {
4         //divisão
5         mergesort(v, 1, m);
6         mergesort(v, m + 1, r);
7         //conquista
8         merge(v, 1, m, r);
9    }
10 }</pre>
```

10

Simulação

```
4 8 2 7 6 3 5 1 9 10
```

Simulação

11

Tempo de execução para $n=2^l$

12

Tempo de execução para $n=2^l\,$

• No primeiro nível fazemos um merge com *n* elementos

12

Tempo de execução para $n=2^l$

- No primeiro nível fazemos um merge com n elementos
- ullet No segundo fazemos dois merge com n/2 elementos

Tempo de execução para $n=2^l$

- No primeiro nível fazemos um merge com n elementos
- No segundo fazemos dois merge com n/2 elementos
- No k-ésimo fazemos 2^k merge com $n/2^k$ elementos

1

Tempo de execução para $n=2^l$

- No primeiro nível fazemos um merge com n elementos
- No segundo fazemos dois merge com n/2 elementos
- No k-ésimo fazemos 2^k merge com $n/2^k$ elementos
- No último gastamos tempo constante n vezes

12

Tempo de execução para $n=2^l$

• No nível k gastamos tempo $\leq c \cdot n$

13

Tempo de execução para $n=2^l$

- No nível k gastamos tempo $< c \cdot n$
- Quantos níveis temos?

Tempo de execução para $n=2^l$

- No nível k gastamos tempo $< c \cdot n$
- Quantos níveis temos?
 - Dividimos n por 2 até que fique menor igual a 1

13

Tempo de execução para $n=2^l$

- No nível k gastamos tempo $\leq c \cdot n$
- Quantos níveis temos?
 - Dividimos n por 2 até que fique menor igual a 1
 - Ou seja, $l = \log_2 n$

13

Tempo de execução para $n=2^l$

- No nível k gastamos tempo $\leq c \cdot n$
- Quantos níveis temos?
 - Dividimos n por 2 até que fique menor igual a 1
 - Ou seja, $l = \log_2 n$
- Como $\log_2 n$ é muito comum, escrevemos $\lg n$

13

Tempo de execução para $n=2^l$

- No nível k gastamos tempo $< c \cdot n$
- Quantos níveis temos?
 - Dividimos n por 2 até que fique menor igual a 1
 - Ou seja, $l = \log_2 n$
- $\bullet \;$ Como $\log_2 n$ é muito comum, escrevemos $\lg n$
- Tempo total: $cn \lg n = O(n \lg n)$

Tempo de execução para n qualquer

Tempo de execução para n qualquer

Qual o tempo de execução para n que não é potência de 2?

Tempo de execução para n qualquer

Qual o tempo de execução para n que não é potência de 2?

• Seja 2^k a próxima potência de 2 depois de n

Tempo de execução para n qualquer

Qual o tempo de execução para n que não é potência de 2?

- Seja 2^k a próxima potência de 2 depois de n
 - Ex: Se n = 3000, a próxima potência é 4096

Tempo de execução para n qualquer

Qual o tempo de execução para n que não é potência de 2?

- Seja 2^{k} a próxima potência de $\frac{1}{2}$ depois de $\frac{1}{2}$
- Ex: Se n=3000, a próxima potência é 4096 Temos que $2^{k-1} < n < 2^k$

Tempo de execução para n qualquer

Qual o tempo de execução para n que não é potência de 2?

- Seja 2^k a próxima potência de 2 depois de n
 - Ex: Se n = 3000, a próxima potência é 4096
- Temos que $2^{k-1} < n < 2^k$
 - Ou seja, $2^k < 2n$

14

Tempo de execução para n qualquer

Qual o tempo de execução para n que não é potência de 2?

- ullet Seja $2^{\dot{k}}$ a próxima potência de 2 depois de n
 - Ex: Se n = 3000, a próxima potência é 4096
- $\bullet \ \ \text{Temos que} \ 2^{k-1} < n < 2^k$
 - Ou seja, $2^k < 2n$
- O tempo de execução para n é menor do que

14

Tempo de execução para n qualquer

Qual o tempo de execução para n que não é potência de 2?

- Seja 2^k a próxima potência de 2 depois de n
 - Ex: Se n = 3000, a próxima potência é 4096
- Temos que $2^{k-1} < n < 2^k$
 - Ou seja, $2^k < 2n$
- O tempo de execução para n é menor do que

$$c 2^k \lg 2^k$$

Tempo de execução para n qualquer

Qual o tempo de execução para n que não é potência de 2?

- Seja 2^k a próxima potência de 2 depois de n
 - Ex: Se n = 3000, a próxima potência é 4096
- $\bullet \ \ \text{Temos que } 2^{k-1} < n < 2^k$
 - Ou seja, $2^k < 2n$
- O tempo de execução para n é menor do que

$$c 2^k \lg 2^k$$

Tempo de execução para n qualquer

Qual o tempo de execução para n que não é potência de 2?

- Seja 2^k a próxima potência de 2 depois de n
 - Ex: Se n=3000, a próxima potência é 4096
- Temos que $2^{k-1} < n < 2^k$ - Ou seja, $2^k < 2n$
- O tempo de execução para n é menor do que

$$c \, 2^k \, \lg 2^k \le 2cn \, \lg(2n)$$

14

Tempo de execução para n qualquer

Qual o tempo de execução para n que não é potência de 2?

- Seja 2^k a próxima potência de 2 depois de n
 - Ex: Se n=3000, a próxima potência é 4096
- Temos que $2^{k-1} < n < 2^k$ - Ou seja, $2^k < 2n$
- O tempo de execução para n é menor do que

$$c \, 2^k \, \lg 2^k \le 2cn \, \lg(2n) = 2cn(\lg 2 + \lg n)$$

14

Tempo de execução para n qualquer

Qual o tempo de execução para n que não é potência de 2?

- Seja 2^k a próxima potência de 2 depois de n
 - Ex: Se n = 3000, a próxima potência é 4096
- Temos que $2^{k-1} < n < 2^k$ - Ou seja, $2^k < 2n$
- O tempo de execução para n é menor do que

$$c 2^k \lg 2^k \le 2cn \lg(2n) = 2cn(\lg 2 + \lg n) = 2cn + 2cn \lg n$$

Tempo de execução para n qualquer

Qual o tempo de execução para n que não é potência de 2?

- Seja 2^k a próxima potência de 2 depois de n
 - Ex: Se n = 3000, a próxima potência é 4096
- $\bullet \ \ \text{Temos que } 2^{k-1} < n < 2^k$
 - Ou seja, $2^k < 2n$
- O tempo de execução para n é menor do que

$$c 2^k \lg 2^k \le 2cn \lg(2n) = 2cn(\lg 2 + \lg n) = 2cn + 2cn \lg n = O(n \lg n)$$

