

Variabel Kompleks (VARKOM)

Pertemuan 6 : Fungsi kompleks Oleh : Team Dosen Varkom S1-TT

Versi: Agustus 2018

Faculty of Electrical Engineering, Telkom University

Tujuan Perkuliahan

Tujuan dari Kuliah kali ini adalah memaparkan konsep fungsi pada bidang kompleks, daerah asal dan daerah hasil, serta titik singular pada fungsi.

Konsep fungsi berguna sebagai **landasan** pembahasan selanjutnya tentang **limit**, **kontinuitas**, **derivatif**, dan **integral**.

Daftar Isi

- 1 Fungsi kompleks
- 2 Invers Fungsi
- **3** Titik Singular
- 4 Fungsi sepotong-sepotong

Fungsi kompleks f(z) menyatakan **pemetaan** dari bidang kompleks asal z (domain) ke bidang kompleks hasil w (range) dengan suatu pola yang diatur oleh f(z).

• setiap titik $z_0(x_0, y_0)$ pada bidang kompleks asal z dipetakan ke titik $w_0(u_0, v_0)$ pada bidang kompleks w.

Pada umumnya, pemetaan: $z \rightarrow w$ memetakan:

- 1 Titik ke titik
- 2 Lintasan ke lintasan
- Oaerah ke daerah
- 4 dan kemungkinan lainnya (lintasan ke titik, daerah ke garis, daerah ke titik, dsb.)

Pemetaan titik ke titik

- **1 Contoh:** f(z) = 2z + 1 maka:
- 2 setiap titik z = x + iy akan dipetakan ke:

$$w = f(z) = 2z + 1$$

= $2(x + iy) + 1$
= $(2x + 1) + i2y$

- **3** u(x,y) = 2x + 1
- **4** v(x,y) = 2y

- **1** Contoh lain: $f(z) = z^2$
- 2 setiap titik z = x + iy akan dipetakan ke:

$$w = f(z) = z^{2}$$

= $(x + iy)^{2}$
= $(\dots + i(\dots + i(\dots$

$$\mathbf{z} = (\mathbf{x}, \mathbf{y}) \longrightarrow \mathbf{f(z)} \longrightarrow \mathbf{w} = (\mathbf{u}, \mathbf{v})$$

= (.....)

- **1** Contoh lain lagi: f(z) = |z| + 1
- 2 u(x,y)= + i
- **3** v(x,y)= + i

Pemetaan Lintasan ke Lintasan:

- **1** Misal $f(z) = \overline{z}$
- 2 Lintasan $c: z = t + i t^2$, 0 < t < 2 akan dipetakan ke
- **3** lintasan c': $w = f(z) = \overline{z} = t i t^2$, $0 \le t \le 2$

Pemetaan Lintasan ke Lintasan:

- **1** Contoh lain: f(z) = 2z + 1
- 2 Lintasan $c: z = t + it^2$, $0 \le t \le 2$ akan dipetakan ke
- 3 lintasan c': $w = f(z) = \dots + i = 0$

Pemetaan daerah ke daerah:

- **1** Misal f(z) = z + 1
- 2 Daerah D: |z| < 1 akan dipetakan ke
- 3 daerah D':
- 4 yaitu: f(z) = w = z + 1 atau z = w 1 atau |z| = |w 1|; |z| < 1 menjadi |w 1| < 1

- 1 Tidak selalu f(z) memetakan suatu daerah ke daerah.
- 2 Terdapat pemetaan f(z) yang memetakan dari daerah ke garis.
- **3** Contoh: Kemana f(z) = Re(z) memetakan daerah |z| < 2? **Jawab:** w = f(z) = Re(z) = x. Dengan demikian, setiap titik z = x + iy dengan $|x + iy| \le 2$ dipetakan ke w = x dengan |x| < 2.

- Fungsi yang memetakan suatu daerah menjadi garis menunjukkan ada 2 atau lebih titik yang dipetakan ke titik yang sama
- 2 Pada f(z) = Re(z)

```
(1,0) dipetakan ke (1,0)
```

- (1,1) dipetakan ke (......
- Seperti ini tidak memiliki Fungsi pemetaan dari banyak ke satu seperti ini tidak memiliki invers

Invers Fungsi Kompleks

Fungsi f(z) memetakan z ke w. Fungsi invers dari f(z), yaitu $g(z) = f^{-1}(z)$ sebaliknya memetakan w kembali ke z.

- **1** Contoh: w = f(z) = 2z + 1
- 2 Fungsi ini memetakan (1,1) ke (3,2)
- 3 sebaliknya $g(z) = \frac{z-1}{2}$, memetakan kembali (3,2) ke (1,1).
- 4 Fungsi $g(z) = \frac{z-1}{2}$ adalah invers dari f(z) = 2z + 1

Invers Fungsi Kompleks

Untuk mencari fungsi invers dari f(z) = w, maka gantikan $w \to z$ dan $z \to w$, setelah itu selesaikan persamaan dalam w.

- **1** Contoh: tentukan invers dari f(z) = 2z + 1
- **2 Jawab**: f(z) = w = 2z + 1. Gantikan : $w \to z$ dan $z \to w$, kita peroleh z = 2w + 1. Selesaikan dalam w:

$$z = 2w + 1$$

$$\iff 2w = z - 1$$

$$\iff w = \frac{z - 1}{2}$$

3 dengan demikian, $g(z) = f^{-1}(z) = \frac{z-1}{2}$

Invers Fungsi Kompleks

1 Inverse dari fungsi f(z) = 5z + 3 adalah

2 Inverse dari fungsi $f(z) = \frac{1}{2}$ adalah

3 Inverse dari fungsi $f(z) = \frac{z}{z+1}$ adalah

Titik Singular

Titik singular: Pada beberapa fungsi, tidak semua titik dapat dipetakan ke titik lain.

- **1 contoh:** $f(z) = \frac{1}{z+1}$, maka titik asal z = -1 dipetakan ke ∞ (bukan titik).
- 2 Pada fungsi $f(z) = \frac{(z+1)(z+2)}{z+2}$, titik z = -2 tidak dapat dipetakan karena titik petanya berbentuk $\frac{0}{0}$ (bukan titik).
- **3** Titik yang dipetakan ke ∞ , $-\infty$, bentuk $\frac{0}{0}$, bentuk 0^0 disebut titik singular.
- 4 Titik singular dari $f(z) = \frac{z+1}{z^2-1}$ adalah dan
- **6** Adakah titik singular pada fungsi $f(z) = 2z^2 + 1$?

Fungsi sepotong-sepotong

Dimungkinkan untuk melakukan pemetaan dengan fungsi berbeda untuk daerah yang berbeda. Contoh:

$$f(z) = \begin{cases} 1 & \text{untuk} & 0 \le |z| \le 1\\ \frac{1}{z} & \text{untuk} & |z| > 1 \end{cases}$$

- **1** daerah perbatasan adalah daerah transisi antar dua fungsi. (|z| = 1) pada contoh di atas)
- 2 Fungsi sepotong-sepotong dapat digunakan untuk menghapus titik singular.
- 3 Adakah titik singular untuk f(z) di atas?
- Meski fungsi sepotong-sepotong dapat menghapus titik singular, namun ada resiko fungsi tidak memiliki limit dan tidak kontinyu di daerah perbatasan.

Latihan

- 1 Tentukan u(x,y) dan v(x,y) dari fungsi berikut:
 - 1 f(z) = (2z + 1) + i(z 2)
 - 2 $f(z) = -\frac{2i}{z-i}$
 - 3 $f(z) = (r+i)e^{-i\theta}$
 - **4** $f(x) = e^{i\theta} + e^{-i\theta}$
- 2 Suatu fungsi f(z) = 1/z. Sketsa kemanakah lintasan $z = t^2 + it$ dengan 1 < t < 2 dipetakan!
- 3 Suatu fungsi f(z) = 1/z. Sketsa kemana daerah D |z| < 1 dipetakan!
- 4 Tentukan inverse dari fungsi kompleks: $f(z) = \frac{z+1}{z+2}$
- 6 Apakah syarat suatu fungsi kompleks memiliki inverse?