Universidade do Minho Escola de Ciências

Mestrado Integrado em Engenharia Informática

Departamento de Matemática 2019/2020

Exercício 4.1 Determine, caso exista, cada um dos seguintes limites:

a)
$$\lim_{x \to 1} \frac{3}{x+1}$$

b)
$$\lim_{x \to 3} \frac{x-3}{x^2 - 6x + 9}$$

c)
$$\lim_{x \to 0} \left(x + \frac{1}{x} \right)$$

$$d) \quad \lim_{x \to 0^-} \frac{\sqrt{x^2}}{x}$$

e)
$$\lim_{x \to 0} \frac{x}{|x|}$$

f)
$$\lim_{x \to -5^+} \frac{|x+5|}{x+5}$$

g)
$$\lim_{x \to 3} \frac{\sqrt{x} - \sqrt{3}}{x - 3}$$

$$h) \quad \lim_{x \to +\infty} \frac{\sin x}{x}$$

i)
$$\lim_{x \to \pi/4} \frac{\operatorname{tg} x}{1 - \cos x}$$

j)
$$\lim_{x \to 3^+} \frac{\sqrt{(x-3)^2}}{x-3}$$

k)
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x^2 - 16}$$

1)
$$\lim_{x \to 2} \frac{2-x}{(x-2)^3}$$

$$m) \lim_{x \to +\infty} \frac{x - \sin x}{x + \sin x}$$

n)
$$\lim_{x\to 0} \frac{1-\sqrt{1-x^2}}{x^2}$$

o)
$$\lim_{x \to +\infty} (x^2 + x \cos x)$$

$$p) \quad \lim_{x \to +\infty} \frac{\cos x}{e^x}$$

q)
$$\lim_{x\to 0^-} \frac{1}{1+e^{1/x}}$$

$$r) \lim_{x \to +\infty} \frac{1}{1 + e^{1/x}}$$

s)
$$\lim_{x \to 0} e^{-1/x^4}$$

t)
$$\lim_{x \to 0} x^2 \operatorname{sen} \frac{1}{x}$$

u)
$$\lim_{x \to -\infty} x^2 \operatorname{sen} \frac{1}{x}$$

v)
$$\lim_{x \to 0} \frac{\operatorname{tg}(2x)}{\operatorname{sen}(4x)}$$

$$\text{w)} \quad \lim_{x \to 4} f(x) \text{, quando } f(x) = \left\{ \begin{array}{ll} x^2, & x \neq 4 \\ x, & x = 4 \end{array} \right.$$

$$\mathbf{x}) \quad \lim_{x \to 0} f(x) \text{, quando } f(x) = \left\{ \begin{array}{ll} 2x, & x \leq 1 \\ x+1, & x > 1 \end{array} \right.$$

y)
$$\lim_{x \to 1} f(x)$$
, quando $f(x) = \begin{cases} 2x, & x \in \mathbb{Q} \\ 2, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$.

Exercício 4.2 Apresente um exemplo de uma função f tal que:

1.
$$f(1) = 4 e \lim_{x \to 1} f(x) = 2;$$

2.
$$f(1) = 3$$
, $\lim_{x \to 1^{-}} f(x) = 2$ e $\lim_{x \to 1^{+}} f(x) = 4$.

Exercício 4.3 Uma função g satisfaz as condições indicadas; esboce um possível gráfico de g, em cada um dos seguintes casos:

a)
$$\lim_{x \to -\infty} g(x) = 1$$
, $\lim_{x \to +\infty} g(x) = 1$, $\lim_{x \to -1^{-}} g(x) = +\infty$, $\lim_{x \to -1^{+}} g(x) = -\infty$ e $D_g = \mathbb{R}$;

b)
$$\lim_{x\to 2^-} g(x) = 3$$
, $\lim_{x\to 2^+} g(x) = 4$, $D_g = [-1, 4]$;

c)
$$\lim_{x \to 2^{-}} g(x) = 3$$
, $\lim_{x \to 2^{+}} g(x) = 4$, $\lim_{x \to -1} g(x) = +\infty$, $\lim_{x \to 4} g(x) = -\infty$ e $D_g =]-1, 4[$.

Exercício 4.4 Sejam $f: \mathbb{R} \to \mathbb{R}$ e $x_0 \in \mathbb{R}$. Diga, justificando se são verdadeiras ou falsas cada uma das seguintes afirmações:

a)
$$\lim_{x \to 2x_0} f(x) = 2 \lim_{x \to x_0} f(x);$$

b)
$$\lim_{x \to x_0} f(2x) = 2 \lim_{x \to x_0} f(x);$$

c)
$$\lim_{x \to 2x_0} f(x) = 2 \lim_{x \to x_0} f(2x)$$
.

Sendo $f:\mathbb{R} \to \mathbb{R}$ uma função tal que $0 \leq f(x) \leq |x|$ para 0 < |x| < 1, calcule Exercício 4.5 $\lim_{x \to 0} f(x).$

Exercício 4.6 Sendo $f: \mathbb{R} \to \mathbb{R}$ uma função tal que $1 \le f(x) \le (x-3)^2 + 1$, para $x \ne 3$, calcule $\lim_{x\to 3} f(x)$.

Exercício 4.7 Mostre, por definição, que:

- a) toda a função constante é contínua;
- b) a função identidade, $id: \mathbb{R} \to \mathbb{R} \atop x \mapsto x$, é contínua.

Exercício 4.8 Determine $a,b\in\mathbb{R}$ para os quais a função $f:\mathbb{R}\to\mathbb{R}$, definida por

$$f(x) = \begin{cases} 5 & \text{se } x < -1\\ ax + b & \text{se } -1 \le x \le 1\\ \log x & \text{se } x > 1 \end{cases},$$

é contínua.

Estude a continuidade, em todos os pontos do domínio, de cada uma das funções $f: \mathbb{R} \to \mathbb{R}$ definidas por:

a)
$$f(x) = \begin{cases} 2e^x + 1 & \text{se } x < 0 \\ 1 & \text{se } 0 \le x \le 2 \\ \text{sen } x & \text{se } x > 2 \end{cases}$$

a)
$$f(x) = \begin{cases} 1 & \text{se } 0 \le x \le \\ \text{sen } x & \text{se } x > 2 \end{cases}$$

b)
$$f(x) = \frac{1}{x}$$
;

c)
$$f(x) = \begin{cases} \frac{1}{x} & \text{se } x < 0 \\ x & \text{se } x \ge 0 \end{cases}$$
;

$$d) \quad f(x) = \log|x|.$$

e)
$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

f)
$$f(x) = \begin{cases} 2x, & x \in \mathbb{Z} \\ x^2, & x \in \mathbb{R} \setminus \mathbb{Z} \end{cases}$$

g)
$$f(x) = \begin{cases} 2x, & x \in \mathbb{Q} \\ 2, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

h)
$$f(x) = \begin{cases} x^2 + 5, & x > 2\\ x^3, & x \le 2 \end{cases}$$

i)
$$f(x) = \begin{cases} 1, & x \in \mathbb{Z}, \\ 0, & x \in \mathbb{R} \setminus \mathbb{Z} \end{cases}$$

$$j) \quad f(x) = \begin{cases} |x|, & x \in \mathbb{Q}, \\ 1, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Defina, ou justifique que não existem, funções $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ tais que: Exercício 4.10

- a) f contínua, g descontínua, $g \circ f$ contínua;
- b) f descontínua, g contínua, $g \circ f$ contínua;
- c) $f \in g$ descontínuas, $g \circ f \in f \circ g$ contínuas.

Exercício 4.11 Apresente um exemplo, ou justifique que não existe, de uma função f tal que:

- a) f é contínua em 0, mas |f| é descontínua em 0;
- b) |f| é contínua em 0, mas f é descontínua em 0;
- c) f tem domínio \mathbb{R} , é contínua em 1 e descontínua em todos os pontos de $\mathbb{R} \setminus \{1\}$;
- d) $f:[0,1] \to [0,1]$ contínua tal que $f(x) \neq x$ para todo $x \in [0,1]$.

Exercício 4.12 Considere a função contínua $f:[0,1]\cup[2,3]\longrightarrow[1,3]$ definida por

$$f(x) = \begin{cases} x+1, & 0 \le x < 1 \\ x, & 2 \le x \le 3 \end{cases}$$

- a) A função f é bijetiva. Justifique.
- b) Determine a função inversa de f. A função f^{-1} é contínua?
- c) Porque é que não se pode aplicar o teorema da continuidade da função inversa à função *f*?

Exercício 4.13 Sejam $a, b \in \mathbb{R}$ com a < b e f e g funções contínuas em [a, b] tais que f(a) < bg(a) e f(b) > g(b). Mostre que existe $x \in]a,b[$ tal que f(x) = g(x).

Dada $f:D\to\mathbb{R}$ uma função, $D\subset\mathbb{R}$, diz-se que $x\in D$ é uma raíz de f se for Exercício 4.14 solução da equação:

$$f(x) = 0$$
.

Mostre que cada uma das funções que se segue possui pelo menos uma raíz:

$$f(x) = x^5 + 3x^2 - 3x + 1;$$
 $g(x) = \operatorname{sen}^3 x + \cos^3 x;$ $h(x) = \operatorname{tg} x + x - 1.$

Exercício 4.15 Considere a função $g:]-1,1[\longrightarrow \mathbb{R}$ definida por g(x)=|x|. Verifique que gpossui mínimo mas não possuí máximo. Qual o motivo pelo qual não se pode aplicar o teorema de Weierstrass à função g?

Mostre que cada uma das seguintes equações possui pelo menos uma solução Exercício 4.16 no intervalo indicado:

3

a)
$$x^3 - x + 3 = 0$$
, $] - 2, -1[$

a)
$$x^3 - x + 3 = 0$$
, $] - 2, -1[$ c) $x - 1 = -\ln(x + 1)$, $] 0, 1[$ b) $x = \cos x$, $[0, \pi/2]$ d) $2 + x = e^x$, $] 0, 2[$.

b)
$$x = \cos x$$
, $[0, \pi/2]$

d)
$$2 + x = e^x$$
, $]0, 2[$