RF TEST REPORT

Report No.: FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0

Supersede Report No.: None

Applicant	٠.	Aerohive Networks, Inc.
Product Name	٠.	Access Point
Model No.	٠.	AP245X
Test Standard	• •	47 CFR 15.407
Test Method	:	ANSI C63.4: 2014 789033 D02 General UNII Test Procedures New Rules v01r02
FCC ID	:	WBV-AP245
IC ID	:	7774A-AP245
Dates of test	• •	06/13/2016 – 06/20/2016
Issue Date	٠.	07/08/2016
Test Result	:	□ Pass □ Fail
Equipment complied with the specification [X] Equipment did not comply with the specification []		

This Test Report is Issued Under the Authority of:		
Radana	Clan Ge	
Rachana Khanduri	Chen Ge	
Test Engineer	Engineer Reviewer	
This test report may be reproduced in full only		
Test result presented in this test report is applicable to the tested sample only		

Issued By: SIEMIC Laboratories 775 Montague Expressway, Milpitas, 95035 CA

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	2 of 44

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

		,
Country/Region	Accreditation Body	Scope
USA	FCC, A2LA	EMC, RF/Wireless, Telecom
Canada	IC, A2LA, NIST	EMC, RF/Wireless, Telecom
Taiwan	BSMI, NCC, NIST	EMC, RF, Telecom, Safety
Hong Kong	OFTA, NIST	RF/Wireless, Telecom
Australia	NATA, NIST	EMC, RF, Telecom, Safety
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom
Mexico	NOM, COFETEL, Caniety	Safety, EMC, RF/Wireless, Telecom
Europe	A2LA, NIST	EMC, RF, Telecom, Safety
Israel	MOC, NIST	EMC, RF, Telecom, Safety

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC, RF, Telecom
Canada	IC FCB, NIST	EMC, RF, Telecom
Singapore	iDA, NIST	EMC, RF, Telecom
EU	NB	EMC & R&TTE Directive
Japan	MIC (RCB 208)	RF, Telecom
Hong Kong	OFTA (US002)	RF, Telecom

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	3 of 44

CONTENTS

1	REP(ORT REVISION HISTORY	4
2		CUTIVE SUMMARY	
3		TOMER INFORMATION	
4		SITE INFORMATION	
5		IFICATION	
6		INFORMATION	
0 6.		UT Description	
6.		adio Description	
6.		UT Photos – External	
6.		UT Photos – Internal	
6.	5 E	UT Test Setup Photos	12
7	SUPI	PORTING EQUIPMENT/SOFTWARE AND CABLING DESCRIPTION	13
7.	.1 S	upporting Equipment	13
7.		abling Description	
7.	3 T	est Software Description	13
8	TES1	SUMMARY	14
9	MEA	SUREMENT UNCERTAINTY	15
10	M	IEASUREMENTS, EXAMINATION AND DERIVED RESULTS	16
10	0.1	Output Power	16
10	0.2	Peak Spectral Density	19
10	0.3	Radiated Spurious Emissions below 1GHz	32
10	0.4	Radiated Spurious Emissions above 1GHz	34
ANN	IEX A.	TEST INSTRUMENT	42
ΔNN	IFX R	SIEMIC ACCREDITATION	43

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	4 of 44

Report Revision History

Report No.	Report Version	Description	Issue Date
FCC_RF_SL16040101-AER-001A1_UNII	None	Original	06/23/2016
FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0	None	Updated Radio Description	07/08/2016

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	5 of 44

2 Executive Summary

The purpose of this test program was to demonstrate compliance of following product

Company: Aerohive Networks, Inc.

<u>Product:</u> Access Point Model: AP245X

against the current Stipulated Standards. The specified model product stated above has demonstrated compliance with the Stipulated Standard listed on 1st page.

3 Customer information

Applicant Name	:	Aerohive Networks, Inc.
Applicant Address	:	1011 McCarthy Blvd, Milpitas, CA 95035, California, United States
Manufacturer Name	:	Aerohive Networks, Inc.
Manufacturer Address	:	1011 McCarthy Blvd, Milpitas, CA 95035, California, United States

4 Test site information

Lab performing tests	SIEMIC Laboratories
Lab Address	775 Montague Expressway, Milpitas, CA 95035
FCC Test Site No.	881796
IC Test Site No.	4842D-2
VCCI Test Site No.	A0133

5 Modification

Index	Item	Description	Note
-	-	-	-

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	6 of 44

EUT Information

EUT Description <u>6.1</u>

Product Name	Access Point
Model No.	AP245X
Trade Name	Aerohive
Serial No.	N/A
Host Model No.	N/A
Input Power	100-240V, 50/60Hz
Power Adapter Manu/Model	Microsemi 9001GR
Power Adapter SN	C15336594000002605
Product Hardware version	1
Product Software version	HIVEOS 7.0r1
Radio Hardware version	1
Radio Software version	HIVEOS 7.0r1
Test Software version	N/A
Date of EUT received	05/07/2016
Equipment Class/ Category	DTS, UNII
Clock Frequencies	N/A
Port/Connectors	PoE, Ethernet

Radio Description 6.2

Radio Type	802.11a	802.11n/ac-20M	802.11n/ac-40M	802.11ac-80M	
Operating Frequency	5260-5320MHz 5500-5700MHz	5240-5320MHz 5500-5700MHz	5270-5310MHz 5510-5670MHz	5290MHz 5530MHZ, 5610MHz	
Modulation	OFDM (BPSK, QPSK, 16QAM, 64QAM)	OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)	OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)	OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)	
Channel Spacing	20MHz	20MHz	40MHz	80MHz	
Number of Channels	15	15	7	3	
Antenna Type	Sector Antenna				
Antenna Gain (Peak)	6 dBi (5GHz)				
Antenna Connector Type	U.FL connector				

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	7 of 44

EUT Power level setting

Mode	Frequency	Power Setting
802.11-a	5260	60
802.11-a	5280	60
802.11-a	5320	60
802.11-n-20	5260	60
802.11-n-20	5280	60
802.11-n-20	5320	60
802.11-n-40	5270	60
802.11-n-40	5310	60
802.11-ac-80	5290	60
802.11-a	5500	60
802.11-a	5580	60
802.11-a	5700	60
802.11-n-20	5500	60
802.11-n-20	5580	60
802.11-n-20	5700	60
802.11-n-40	5510	60
802.11-n-40	5590	60
802.11-n-40	5670	60
802.11-ac-80	5530	60
802.11-ac-80	5610	60

Test report No. FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0 8 of 44 Page

6.3 **EUT Photos - External**

EUT - Rear View

EUT - Front View

EUT - Top View

EUT - Bottom View

EUT - Left Side View

EUT - Right Side View

 Test report No.
 FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0

 Page
 9 of 44

Antenna- View 1

Antenna – View 2

Support Equipment Power Supply Bottom View

 Test report No.
 FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0

 Page
 10 of 44

6.4 EUT Photos – Internal

EUT: Cover Off View 1

EUT: Cover Off View 2

EUT: Cover Off View 3

EUT: Cover Off View 4

PCBA Top View

PCBA Bottom View

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	11 of 44

PCBA Front View

PCBA Rear View

PCBA Left-Side View

PCBA Right-Side View

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	12 of 44

6.5 EUT Test Setup Photos

Radiated Emissions (<1GHz) - Front View

Radiated Emissions (>1GHz) - Front View

Radiated Emissions (>1GHz) - Rear View

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	13 of 44

7 Supporting Equipment/Software and cabling Description

7.1 Supporting Equipment

Item	Supporting Equipment Description	Model	Serial Number	Manufacturer	Note
1	Laptop	Latitude 3550	N/A	Dell	-

7.2 Cabling Description

Name	Connection Start		Connection Stop		Length / shielding Info		Note
Name	From	I/O Port	То	I/O Port	Length (m)	Shielding	Note
RJ45	EUT	RJ45	POE	RJ45	2	Unshielded	-
RJ45	EUT	RJ45	Laptop	USB	3	Unshielded	-

7.3 Test Software Description

	Test Item	Software	Description
Γ	RF Testing	Tera Term	Set the EUT to transmit continuously in diferent test mode
Γ			
Γ			

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	14 of 44

Test Summary 8

Test Item	Te	est standard	Test Method/Procedure	Pass / Fail
Restricted Band of Operation	FCC 15.205		ANSI C63.4 – 2014 789033 D02 General UNII Test Procedures New Rules v01r02	⊠ Pass □ N/A
AC Conducted Emissions Voltage	FCC	15.207(a)	ANSI C63.4 – 2014	☐ Pass ☑ N/A

Test It	em	Te	est standard	Test Method/Procedure	Pass / Fail			
26 & 6 dB Emission Bandwidth FCC		FCC	15.407 (a) (2)	789033 D02 General UNII Test Procedures New Rules v01r02	☐ Pass ☒ N/A			
Maximum condi Power		FCC	15.407 (a) (2)	789033 D02 General UNII Test Procedures New Rules v01r02	⊠ Pass □ N/A			
Power red (Antenna Ga		FCC	15.407 (a) (2)	-	□ Pass 図 N/A			
Band Edge and Radiated Spurious Emissions		FCC	15.407(b)(2), 15.407(b)(6)					
Power Spectral Density		FCC	15.407 (a) (2)	789033 D02 General UNII Test Procedures New Rules v01r02	□ Pass □ N/A			
Frequency Stability		FCC	15.407 (g)	-	☐ Pass ☒ N/A			
Transmit Power	Control (TPC)	FCC	15.407 (h)(1)	-	☐ Pass ☒ N/A			
User Ma	anual	FCC	-	-	⊠ Pass □ N/A			
1. All measurement uncertainties are not taken into consideration for all presented test result. 2. The applicant shall ensure frequency stability by showing that an emission is maintained within the band of operation under all normal operating conditions as specified in the user's manual.								
Note	1. Out Plea 2. Tes	Please refer to FCC ID: WBV-AP245 for rest of the items.						

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	15 of 44

Measurement Uncertainty 9

Emissions							
Test Item	Frequency Range	Description	Uncertainty				
Band Edge and Radiated Spurious Emissions	30MHz – 1GHz	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/- 4.5dB				
Band Edge and Radiated Spurious Emissions	1GHz – 40GHz	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+4.3dB/- 4.1dB				

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com; Follow us at:

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	16 of 44

10 Measurements, Examination and Derived Results

10.1 Output Power

Requirement(s):

Spec	Item	Requirement			Applicable					
	a)(1)(i)	For an outdoor access point op conducted output power over the W provided the maximum anter. The maximum e.i.r.p. at any elethe horizon must not exceed 12	e frequency band of nna gain does not exc vation angle above 3	operation shall not exceed 1 ceed 6 dBi.						
	a)(1)(ii)	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.								
§ 15.407	a)(1)(iii)	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.								
	a)(1)(iv)	For mobile and portable client of conducted output power over the	evices in the 5.15-5.2 e frequency band of	25 GHz band, the maximum operation shall not exceed 250						
	a)(2)	mW provided the maximum antenna gain does not exceed 6 dBi. a)(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz.								
	a)(3)	For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.								
Test Setup	Po	ower Meter	E	UT						
Test Procedure	Measurem Measurem adjusted s	02 General UNII Test Procedure nent using a Power Meter (PM) nents may be performed using a vuch that the power is measured of measurement is made only during	videband gated RF po only when the EUT is t	ransmitting at its maximum powe	r control level.					
		 Connect EUT's RF output power to power meter Set EUT to be continuous transmission mode Measurement the average output power using power meter and record the result Repeat above steps for different test channel and other modulation type. 								
Test Date	06/20/201	·	Environmental condition	Temperature Relative Humidity	21°C 40% 1019mbar					
Remark		l Gain = G _{ANT} + 10*log(N _{ANT}) dBi Gain (G _{ANT}) = 6 dBi, N _{ANT} = 3		·						
	7 tillerina C	dair (CANT) - 0 abi, NANT - 3								

Test Data \boxtimes Yes \square N/A Test Plot \square Yes (See below) \boxtimes N/A

Test was done by Rachana Khanduri at RF Test Site.

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	17 of 44

Output Power measurement result for 5.3GHz

For Non-Beamforming

Type Test mode	Toot made	Freq	СН		Limit	Daguit			
	restiniode	(MHz)	5	Chain 1	Chain 2	Chain 3	Combined Power	(dBm)	Result
Output power	802.11a	5260	Low	13.56	10.92	11.29	16.86	24	Pass
Output power	802.11a	5280	Mid	13.46	10.83	11.41	16.82	24	Pass
Output power	802.11a	5320	High	13.30	11.03	11.42	16.81	24	Pass
Output power	802.11n-20M	5260	Low	13.37	11.67	13.14	17.56	24	Pass
Output power	802.11n-20M	5280	Mid	13.44	11.72	13.12	17.59	24	Pass
Output power	802.11n-20M	5320	High	13.20	11.44	13.10	17.42	24	Pass
Output power	802.11n-40M	5270	Low	12.22	11.57	13.84	17.42	24	Pass
Output power	802.11n-40M	5310	High	12.82	11.25	13.57	17.42	24	Pass
Output power	802.11ac-80M	5290	-	12.57	11.89	13.20	17.36	24	Pass

For Beamforming

For Beamformin	lg	_	СН						
Туре	Test mode	Freq (MHz)		Chain 1	Chain 2	Chain 3	Combined Power	Limit (dBm)	Result
Output power	802.11a	5260	Low	13.56	10.92	11.29	16.86	19.23	Pass
Output power	802.11a	5280	Mid	13.46	10.83	11.41	16.82	19.23	Pass
Output power	802.11a	5320	High	13.30	11.03	11.42	16.81	19.23	Pass
Output power	802.11n-20M	5260	Low	13.37	11.67	13.14	17.56	19.23	Pass
Output power	802.11n-20M	5280	Mid	13.44	11.72	13.12	17.59	19.23	Pass
Output power	802.11n-20M	5320	High	13.20	11.44	13.10	17.42	19.23	Pass
Output power	802.11n-40M	5270	Low	12.22	11.57	13.84	17.42	19.23	Pass
Output power	802.11n-40M	5310	High	12.82	11.25	13.57	17.42	19.23	Pass
Output power	802.11ac-80M	5290	1	12.57	11.89	13.20	17.36	19.23	Pass
Note	Directional Gain = 6 + 10* log(3) = 10.77dBi Directional Gain is greater than 6dBi. So, Limit = 24 - 4.77 = 19.23 dBm								

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	18 of 44

Output Power measurement result for 5.5GHz

For Non-Beamforming

Туре	Test mode	Freq (MHz)	СН		Limit	Result			
туре	restillode			Chain 1	Chain 2	Chain 3	Combined Power	(dBm)	Result
Output power	802.11a	5500	Low	13.04	11.76	12.28	17.16	24	Pass
Output power	802.11a	5580	Mid	13.08	12.05	12.56	17.35	24	Pass
Output power	802.11a	5700	High	13.26	12.39	12.73	17.58	24	Pass
Output power	802.11n-20M	5500	Low	12.89	12.79	12.99	17.66	24	Pass
Output power	802.11n-20M	5580	Mid	13.07	12.66	12.97	17.67	24	Pass
Output power	802.11n-20M	5700	High	13.13	12.19	13.23	17.65	24	Pass
Output power	802.11n-40M	5510	Low	12.80	12.24	12.69	17.35	24	Pass
Output power	802.11n-40M	5550	Mid	12.81	12.13	12.68	17.32	24	Pass
Output power	802.11n-40M	5670	High	12.86	12.12	13.53	17.65	24	Pass
Output power	802.11ac-80M	5530	Low	13.27	12.80	13.23	17.88	24	Pass
Output power	802.11ac-80M	5610	High	13.70	12.36	13.4	17.96	24	Pass

For Beamforming

Time	Turns Took mode		OII.		Limit	Desult			
Туре	Test mode	(MHz)	СН	Chain 1	Chain 2	Chain 3	Combined Power	(dBm)	Result
Output power	802.11a	5500	Low	13.04	11.76	12.28	17.16	19.23	Pass
Output power	802.11a	5580	Mid	13.08	12.05	12.56	17.35	19.23	Pass
Output power	802.11a	5700	High	13.26	12.39	12.73	17.58	19.23	Pass
Output power	802.11n-20M	5500	Low	12.89	12.79	12.99	17.66	19.23	Pass
Output power	802.11n-20M	5580	Mid	13.07	12.66	12.97	17.67	19.23	Pass
Output power	802.11n-20M	5700	High	13.13	12.19	13.23	17.65	19.23	Pass
Output power	802.11n-40M	5510	Low	12.80	12.24	12.69	17.35	19.23	Pass
Output power	802.11n-40M	5550	Mid	12.81	12.13	12.68	17.32	19.23	Pass
Output power	802.11n-40M	5670	High	12.86	12.12	13.53	17.65	19.23	Pass
Output power	802.11ac-80M	5530	Low	13.27	12.80	13.23	17.88	19.23	Pass
Output power	802.11ac-80M	5610	High	13.70	12.36	13.40	17.96	19.23	Pass
Note	Directional Gain Directional Gain So, Limit = 24-4	is greater	than 6dBi.						

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	19 of 44

10.2 Peak Spectral Density

Requirement(s):

Spec	Item	Requirement			Applicable
	a)(1)(i)	For an outdoor access point opera power spectral density shall not ex			
0.45.407	a)(1)(ii)	For an indoor access point operation power spectral density shall not expected the state of the			
§ 15.407	a)(2)	For the 5.25-5.35 GHz and 5.47-5 density shall not exceed 11 dBm is	.725 GHz bands, the	maximum power spectral	\boxtimes
	a)(3)	For the band 5.725-5.85 GHz, the exceed 30 dBm in any 500-kHz ba	maximum power sp		\boxtimes
Test Setup			-	EUT	
		Spectrum Analyzer			
Test Procedure		D02 General UNII Test Procedures m spectral density measurement procedures Set span to encompass the entire of bandwidth) of the signal. Set RBW = 1 MHz Set VBW ≥ 3 MHz Detector = RMS. Sweep time = auto couple. Trace mode = max hold. Trace average at least 100 traces in Use the peak marker function to de Apply correction to the result if difference.	ocedure emission bandwidth (I n power averaging termine the maximun	EBW) (or, alternatively, the ending the end the e	BW.
Test Date	06/16//20	016	Environmental condition	Temperature Relative Humidity Atmospheric Pressure	22°C 42% 1020mbar
		al Gain = G _{ANT} + 10*log(N _{ANT}) dBi Gain (G _{ANT}) = 6 dBi			
Remark	$N_{ANT} = 3$	3			

Test Data	⊠ Yes	□ N/A
Test Plot		□ N/A

Test was done by Rachana Khanduri at RF Test Site.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	20 of 44

PSD measurement result for 5.3GHz

For Non-Beamforming

Tumo	Toot made	Freq	CII	С	onducted F	PSD (dBm/	MHz)	Limit	Dogult
Туре	Test mode	(MHz)	СН	Chain 1	Chain 2	Chain 3	Combined	(dBm)	Result
PSD	802.11a	5260	Low	1.70	0.13	1.25	5.85	11	Pass
PSD	802.11a	5280	Mid	1.75	0.08	1.02	5.77	11	Pass
PSD	802.11a	5320	High	1.64	-0.33	0.87	5.57	11	Pass
PSD	802.11n-20	5260	Low	1.73	-0.24	0.98	5.67	11	Pass
PSD	802.11n-20	5280	Mid	1.31	-0.13	1.04	5.55	11	Pass
PSD	802.11n-20	5320	High	1.35	-0.64	0.48	5.24	11	Pass
PSD	802.11n-40	5270	Low	-2.36	-3.34	-1.77	2.33	11	Pass
PSD	802.11n-40	5310	High	-2.09	-3.66	-1.37	2.50	11	Pass
PSD	802.11ac-80	5290	High	-5.32	-6.31	-5.04	-0.75	11	Pass

т	·		011	С	onducted F	PSD (dBm/l	MHz)	Limit	D
Туре	Test mode	Freq (MHz)	СН	Chain 1	Chain 2	Chain 3	Combined	(dBm)	Result
PSD	802.11a	5260	Low	1.70	0.13	1.25	5.85	6.23	Pass
PSD	802.11a	5280	Mid	1.75	0.08	1.02	5.77	6.23	Pass
PSD	802.11a	5320	High	1.64	-0.33	0.87	5.57	6.23	Pass
PSD	802.11n-20	5260	Low	1.73	-0.24	0.98	5.67	6.23	Pass
PSD	802.11n-20	5280	Mid	1.31	-0.13	1.04	5.55	6.23	Pass
PSD	802.11n-20	5320	High	1.35	-0.64	0.48	5.24	6.23	Pass
PSD	802.11n-40	5270	Low	-2.36	-3.34	-1.77	2.33	6.23	Pass
PSD	802.11n-40	5310	High	-2.09	-3.66	-1.37	2.50	6.23	Pass
PSD	802.11ac-80	5290	High	-5.32	-6.31	-5.04	-0.75	6.23	Pass
	Directional Gain =	6 + 10* log(3) = 10.77dE	Bi					

Directional Gain is greater than 6dBi. So, Limit = 11- 4.77 = 6.23dBm Note

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	21 of 44

PSD measurement result for 5.5GHz

For Non-Beamforming

Tuno	Test mode	Freq	Freq	Freq	СН		Conducted PSD	(dBm/MHz)		Limit	Result
Туре	restilloue	(MHz)	5	Chain 1	Chain 2	Chain 3	Combined PSD	(dBm/MHz)	Resuit		
PSD	802.11a	5500	Low	1.03	0.71	1.18	5.75	11	Pass		
PSD	802.11a	5580	Mid	1.26	0.62	0.69	5.64	11	Pass		
PSD	802.11a	5700	High	0.97	0.23	0.93	5.49	11	Pass		
PSD	802.11n-20	5500	Low	0.65	0.59	0.91	5.49	11	Pass		
PSD	802.11n-20	5580	Mid	1.07	0.09	0.35	5.29	11	Pass		
PSD	802.11n-20	5700	High	0.69	-0.24	0.61	5.14	11	Pass		
PSD	802.11n-40	5510	Low	-2.17	-3.18	-2.75	2.09	11	Pass		
PSD	802.11n-40	5550	Mid	-2.24	-3.13	-2.76	2.08	11	Pass		
PSD	802.11n-40	5670	High	-2.53	-3.11	-2.56	2.05	11	Pass		
PSD	802.11ac-80	5530	Low	-5.14	-5.56	-5.02	-0.46	11	Pass		
PSD	802.11ac-80	5610	High	-4.79	-6.03	-5.00	-0.47	11	Pass		

For Beamforming

T	Taskmanda	Freq	Freq	Freq	Freq	CII		Conducted PSD	(dBm/MHz)		Limit	Decult
Туре	Test mode	(MHz)		Chain 1	Chain 2	Chain 3	Combined PSD	(dBm/MHz)	Result			
PSD	802.11a	5500	Low	1.03	0.71	1.18	5.75	6.23	Pass			
PSD	802.11a	5580	Mid	1.26	0.62	0.69	5.64	6.23	Pass			
PSD	802.11a	5700	High	0.97	0.23	0.93	5.49	6.23	Pass			
PSD	802.11n-20	5500	Low	0.65	0.59	0.91	5.49	6.23	Pass			
PSD	802.11n-20	5580	Mid	1.07	0.09	0.35	5.29	6.23	Pass			
PSD	802.11n-20	5700	High	0.69	-0.24	0.61	5.14	6.23	Pass			
PSD	802.11n-40	5510	Low	-2.17	-3.18	-2.75	2.09	6.23	Pass			
PSD	802.11n-40	5550	Mid	-2.24	-3.13	-2.76	2.08	6.23	Pass			
PSD	802.11n-40	5670	High	-2.53	-3.11	-2.56	2.05	6.23	Pass			
PSD	802.11ac-80	5530	Low	-5.14	-5.56	-5.02	-0.46	6.23	Pass			
PSD	802.11ac-80	5610	High	-4.79	-6.03	-5.00	-0.47	6.23	Pass			

Note Directional Gain = 6 + 10* log(3) = 10.77dBi Directional Gain is greater than 6dBi. So, Limit = 11- 4.77 = 6.23dBm

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	22 of 44

Test Plots

PSD-802.11a-5260M-chain1

PSD-802.11a-5260M-chain2

PSD-802.11a-5260M-chain3

PSD-802.11a-5280M-chain1

PSD-802.11a-5280M-chain2

PSD-802.11a-5280M-chain3

FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0 Test report No. Page 23 of 44

PSD-802.11a-5320M-chain1

Avg Type: RMS Avg/Hold:>100/100

PSD-802.11a-5320M-chain2

PSD-802.11a-5320M-chain3

PSD-802.11n-20M -5260M-chain1

PSD-802.11n-20M -5260M-chain2

PSD-802.11n-20M -5260M-chain3

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	24 of 44

PSD-802.11n-20M-5280M-chain1

Avg Type: RMS Avg/Hold:>100/100

PSD-802.11n-20M-5280M-chain2

PSD-802.11n-20M-5280M-chain3

PSD-802.11n-20M-5320M-chain1

PSD-802.11n-20M-5320M-chain2

PSD-802.11n-20M-5320M-chain3

FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0 Test report No. Page 25 of 44

PSD-802.11n-40M-5270M-chain1

Avg Type: RMS Avg(Hold:>100/100 enter Freg 5.270000000 GHz

PSD-802.11n-40M-5270M-chain2

PSD-802.11n-40M-5270M-chain3

PSD-802.11n-40M-5310M-chain1

PSD-802.11n-40M-5310M-chain2

PSD-802.11n-40M-5310M-chain3

FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0 Test report No. Page 26 of 44

PSD-802.11ac-80M-5290M-chain1

Avg Type: RMS Avg/Hold:>100/100

PSD-802.11ac-80M-5290M-chain2

PSD-802.11ac-80M-5290M-chain3

PSD-802.11a-5500M-chain1

PSD-802.11a-5500M-chain2

PSD-802.11a-5500M-chain3

FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0 Test report No. Page 27 of 44

PSD-802.11a-5580M-chain1

Avg Type: RMS Avg/Hold:>100/100

PSD-802.11a-5580M-chain2

PSD-802.11a-5580M-chain3

PSD-802.11a-5700M-chain1

PSD-802.11a-5700M-chain2

PSD-802.11a-5700M-chain3

FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0 Test report No. Page 28 of 44

PSD-802.11n-20-5500M-chain1

Avg Type: RMS Avg/Hold:>100/100

PSD-802.11n-20-5500M-chain2

PSD-802.11n-20-5500M-chain3

PSD-802.11n-20-5580M-chain1

PSD-802.11n-20-5580M-chain2

PSD-802.11n-20-5580M-chain3

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0 Test report No. Page 29 of 44

PSD-802.11n-20-5700M-chain1

Avg Type: RMS Avg/Hold:>100/100 enter Freg 5,700000000 GHz

PSD-802.11n-20-5700M-chain2

PSD-802.11n-20-5700M-chain3

PSD-802.11n-40-5510M-chain1

PSD-802.11n-40-5510M-chain2

PSD-802.11n-40-5510M-chain3

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0 Test report No. Page 30 of 44

PSD-802.11n-40-5550M-chain1

Avg Type: RMS Avg/Hold:>100/100

PSD-802.11n-40-5550M-chain2

PSD-802.11n-40-5550M-chain3

PSD-802.11n-40-5670M-chain1

PSD-802.11n-40-5670M-chain2

PSD-802.11n-40-5670M-chain3

FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0 Test report No. Page 31 of 44

PSD-802.11ac-80-5530M-chain1

Avg Type: RMS Avg(Hold:>100/100

PSD-802.11ac-80-5530M-chain2

PSD-802.11ac-80-5530M-chain3

PSD-802.11ac-80-5610M-chain1

PSD-802.11ac-80-5610M-chain2

PSD-802.11ac-80-5610M-chain3

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	32 of 44

10.3 Radiated Spurious Emissions below 1GHz

Requirement(s):

Spec	Requirement	Applicable
47CFR§	Except higher limit as specified elsewhere in other section, the emissions from the low-power radio-frequency devices shall not exceed the field strength levels specified in the following table and the level of any unwanted emissions shall not exceed the level of the fundamental emission. The tighter limit applies at the band edges	
15.407(b) 15.209 (a)	Frequency range (MHz) Field Strength (uV/m) 30 - 88 100 88 - 216 150 216 960 200 Above 960 500	
Test Setup	Radio Absorbing Material But But But But But But But Bu	Spectrum Analyzer
Procedure	 The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT of Maximization of the emissions, was carried out by rotating the EUT, changing the and adjusting the antenna height in the following manner: Vertical or horizontal polarisation (whichever gave the higher emission is rotation of the EUT) was chosen. The EUT was then rotated to the direction that gave the maximum emistic. Finally, the antenna height was adjusted to the height that gave the maximum as A Quasi-peak measurement was then made for that frequency point. Steps 2 and 3 were repeated for the next frequency point, until all selected freque measured. 	characterisation. antenna polarizatio evel over a full sion. kimum emission. ncy points were
Remark	The EUT was scanned up to 1GHz. Both horizontal and vertical polarities were investigated only the worst case.	ed. The results sho
	⊠ Pass □ Fail	

Test was done by Rachana Khanduri at 10m Chamber.

Test Plot

□ N/A

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	33 of 44

Radiated Emission Test Results (Below 1GHz)

Test specification	Below 1GHz			
	Temp (°C):	26		
Environmental Conditions:	Humidity (%)	47		
	Atmospheric (mbar):	1020		
Mains Power:	120VAC, 60Hz		Result	Pass
Tested by:	Rachana Khanduri			
Test Date:	06/14/2016			
Remarks:	802.11n HT40, 5550MHz			

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
36.02	55.31	0.87	-20.79	35.39	Quasi Max	V	119	254	40.00	-4.61	Pass
47.47	49.77	1.04	-28.62	22.18	Quasi Max	V	100	139	40.00	-17.82	Pass
59.40	53.37	1.18	-31.12	23.43	Quasi Max	V	113	77	40.00	-16.57	Pass
71.03	35.69	1.26	-30.92	6.03	Quasi Max	V	358	16	40.00	-33.97	Pass
801.83	32.77	4.54	-17.39	19.92	Quasi Max	V	100	357	46.02	-26.10	Pass
239.86	35.23	2.33	-27.59	9.97	Quasi Max	Н	148	240	46.02	-36.05	Pass

Note: Both horizontal and vertical polarities were investigated. The results above show only the worst case.

Visit us at: www.siemic.com; Follow us at:

(1) 100 320 100 Tuestime (11) 100 320 100

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	34 of 44

10.4 Radiated Spurious Emissions above 1GHz

Requirement(s):

Spec	Item	Requirement	Applicable				
	(1)	For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.					
47CFR§	(2)	For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band.					
15.407(b)(2),	(3)	(3) For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz.					
15.407(b)(6)	(4)	For transmitters operating in the 5.725-5.825 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27 dBm/MHz.					
	(5)	Restricted band, emission must also comply with the radiated emission limits specified in 15.209	\boxtimes				
Test Setup		Radio Absorbing Material 3m FUT 1.5m Antenna 1-4m Ground Plane	pectrum Analyzer				
	1. 2.	The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT charamaximization of the emissions, was carried out by rotating the EUT, changing the and adjusting the antenna height in the following manner:	enna polarizatio				
Procedure	3. 4.	 a. Vertical or horizontal polarisation (whichever gave the higher emission level rotation of the EUT) was chosen. b. The EUT was then rotated to the direction that gave the maximum emission c. Finally, the antenna height was adjusted to the height that gave the maximum. An average measurement was then made for that frequency point. Steps 2 and 3 were repeated for the next frequency point, until all selected frequency measured. 	ı. ım emission.				
Procedure Remark	4.	rotation of the EUT) was chosen. b. The EUT was then rotated to the direction that gave the maximum emission c. Finally, the antenna height was adjusted to the height that gave the maximu. An average measurement was then made for that frequency point. Steps 2 and 3 were repeated for the next frequency point, until all selected frequency	n. Im emission. points were				

Test was done by Rachana Khanduri at 3m Chamber.

☐ Yes (See below)

Test Data

Test Plot

f E in 🕄

□ N/A

 \boxtimes N/A

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	35 of 44

Radiated Emission Test Results (Above 1GHz)

Above 1GHz- 802.11a - 5260MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
12478.75	42.69	8.97	-7.36	44.30	Peak Max	V	143	0	74	-29.70	Pass
9585.03	42.52	7.88	-10.44	39.97	Peak Max	٧	160	102	74	-34.04	Pass
7315.20	40.69	7.34	-11.52	36.51	Peak Max	٧	219	59	74	-37.49	Pass
12478.75	30.74	8.97	-7.36	32.35	Average Max	٧	143	0	54	-21.65	Pass
9585.03	30.03	7.88	-10.44	27.47	Average Max	V	160	102	54	-26.53	Pass
7315.20	28.81	7.34	-11.52	24.63	Average Max	٧	219	59	54	-29.37	Pass

Above 1GHz-802.11a - 5280MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
8463.97	43.62	7.55	-10.89	40.28	Peak Max	٧	123	139	74	-33.72	Pass
7241.60	41.16	7.36	-11.55	36.96	Peak Max	V	197	44	74	-37.04	Pass
1945.17	44.49	4.76	-27.85	21.40	Peak Max	V	245	258	74	-52.60	Pass
8463.97	30.56	7.55	-10.89	27.22	Average Max	V	123	139	54	-26.78	Pass
7241.60	29.33	7.36	-11.55	25.13	Average Max	٧	197	44	54	-28.87	Pass
1945.17	32.29	4.76	-27.85	9.20	Average Max	٧	245	258	54	-44.80	Pass

Above 1GHz - 802.11a - 5320MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
12322.43	42.49	8.89	-7.27	44.11	Peak Max	V	177	80	74	-29.89	Pass
7662.62	41.16	7.31	-11.51	36.96	Peak Max	V	213	124	74	-37.04	Pass
1946.26	41.19	4.76	-27.83	18.12	Peak Max	V	221	175	74	-55.88	Pass
12322.43	30.71	8.89	-7.27	32.33	Average Max	V	177	80	54	-21.67	Pass
7662.62	29.69	7.31	-11.51	25.49	Average Max	V	213	124	54	-28.51	Pass
1946.26	26.89	4.76	-27.83	3.82	Average Max	٧	221	175	54	-50.19	Pass

Above 1GHz- 802.11n-20M - 5260MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
12347.25	42.51	8.90	-7.24	44.18	Peak Max	٧	236	85	74	-29.82	Pass
8465.85	42.33	7.55	-10.90	38.98	Peak Max	٧	100	220	74	-35.02	Pass
1739.73	39.24	4.76	-28.52	15.48	Peak Max	V	102	189	74	-58.52	Pass
12347.25	30.15	8.90	-7.24	31.82	Average Max	٧	236	85	54	-22.18	Pass
8465.85	30.26	7.55	-10.90	26.92	Average Max	V	100	220	54	-27.08	Pass
1739.73	26.67	4.76	-28.52	2.92	Average Max	V	102	189	54	-51.08	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	36 of 44

Above 1GHz- 802.11n-20M - 5280MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
12415.30	42.50	8.94	-7.20	44.23	Peak Max	Η	174	13	74	-29.77	Pass
9783.05	42.57	7.96	-10.37	40.17	Peak Max	٧	153	360	74	-33.83	Pass
8488.57	43.08	7.56	-10.98	39.67	Peak Max	٧	232	70	74	-34.33	Pass
12415.30	30.57	8.94	-7.20	32.31	Average Max	Н	174	13	54	-21.69	Pass
9783.05	30.20	7.96	-10.37	27.80	Average Max	٧	153	360	54	-26.20	Pass
8488.57	30.51	7.56	-10.98	27.10	Average Max	٧	232	70	54	-26.90	Pass

Above 1GHz- 802.11n-20M - 5320MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
12327.86	42.74	8.90	-7.26	44.38	Peak Max	V	157	37	74	-29.62	Pass
8381.26	43.41	7.51	-10.67	40.24	Peak Max	٧	100	255	74	-33.76	Pass
1944.20	39.51	4.76	-27.86	16.41	Peak Max	٧	136	132	74	-57.59	Pass
12327.86	30.61	8.90	-7.26	32.24	Average Max	٧	157	37	54	-21.76	Pass
8381.26	30.49	7.51	-10.67	27.33	Average Max	V	100	255	54	-26.67	Pass
1944.20	29.12	4.76	-27.86	6.02	Average Max	V	136	132	54	-47.98	Pass

Above 1GHz- 802.11n-40M - 5270MHz

Frequency	Raw	Cable	AF	Level	Measurement	Pol	Hgt	Azt	Limit	Margin	Pass
MHz	dBuV	Loss	dB	dBuV/m	Туре		cm	Deg	dBuV/m	dB	/Fail
12324.62	43.54	8.89	-7.27	45.17	Peak Max	Н	223	190	74	-28.84	Pass
8688.21	41.44	7.62	-10.84	38.22	Peak Max	٧	111	142	74	-35.78	Pass
1752.38	36.84	4.76	-28.63	12.98	Peak Max	Н	247	237	74	-61.02	Pass
12324.62	30.74	8.89	-7.27	32.36	Average Max	Н	223	190	54	-21.64	Pass
8688.21	30.20	7.62	-10.84	26.98	Average Max	V	111	142	54	-27.02	Pass
1752.38	26.50	4.76	-28.63	2.64	Average Max	Н	247	237	54	-51.37	Pass

Above 1GHz- 802.11n-40M - 5310MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
12103.55	40.97	8.78	-7.21	42.55	Peak Max	Н	174	180	74	-31.45	Pass
9532.03	41.45	7.85	-10.39	38.92	Peak Max	V	196	228	74	-35.09	Pass
7583.80	40.83	7.31	-10.86	37.27	Peak Max	V	125	263	74	-36.73	Pass
12103.55	29.49	8.78	-7.21	31.07	Average Max	Н	174	180	54	-22.94	Pass
9532.03	30.00	7.85	-10.39	27.47	Average Max	V	196	228	54	-26.53	Pass
7583.80	29.2	7.31	-10.86	25.64	Average Max	V	125	263	54	-28.36	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	37 of 44

Above 1GHz- 802.11ac-80M - 5290MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
17916.05	39.80	9.46	-3.10	46.16	Peak Max	٧	132	0	74	-27.84	Pass
8513.27	42.16	7.57	-11.00	38.73	Peak Max	٧	211	12	74	-35.27	Pass
1948.46	37.90	4.76	-27.80	14.87	Peak Max	٧	136	272	74	-59.13	Pass
17916.05	28.16	9.46	-3.10	34.52	Average Max	٧	132	0	54	-19.48	Pass
8513.27	30.46	7.57	-11.00	27.04	Average Max	V	211	12	54	-26.96	Pass
1948.46	25.86	4.76	-27.80	2.82	Average Max	٧	136	272	54	-51.18	Pass

Above 1GHz- 802.11a - 5500MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
11945.29	42.17	8.71	-7.21	43.67	Peak Max	Η	242	360	74	-30.33	Pass
7338.76	40.62	7.34	-11.56	36.40	Peak Max	٧	145	139	74	-37.60	Pass
2130.47	38.60	5.09	-25.48	18.22	Peak Max	V	213	114	74	-55.78	Pass
11945.29	30.66	8.71	-7.21	32.16	Average Max	Н	242	360	54	-21.84	Pass
7338.76	29.10	7.34	-11.56	24.88	Average Max	V	145	139	54	-29.13	Pass
2130.47	27.10	5.09	-25.48	6.72	Average Max	V	213	114	54	-47.29	Pass

Above 1GHz- 802.11a – 5580MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
11976.58	42.23	8.72	-7.25	43.70	Peak Max	٧	125	274	74	-30.30	Pass
8867.52	41.69	7.66	-10.87	38.49	Peak Max	٧	223	182	74	-35.52	Pass
1942.39	35.83	4.76	-27.89	12.70	Peak Max	٧	101	349	74	-61.30	Pass
11976.58	30.53	8.72	-7.25	32.00	Average Max	٧	125	274	54	-22.00	Pass
8867.52	29.77	7.66	-10.87	26.57	Average Max	V	223	182	54	-27.43	Pass
1942.39	25.22	4.76	-27.89	2.09	Average Max	V	101	349	54	-51.91	Pass

Above 1GHz- 802.11a – 5700MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
11925.09	42.64	8.70	-7.18	44.16	Peak Max	Η	109	226	74	-29.84	Pass
8575.35	42.07	7.59	-10.90	38.76	Peak Max	٧	234	360	74	-35.24	Pass
1951.49	42.68	4.76	-27.75	19.69	Peak Max	٧	100	103	74	-54.31	Pass
11925.09	30.24	8.70	-7.18	31.76	Average Max	Н	109	226	54	-22.24	Pass
8575.35	30.37	7.59	-10.90	27.07	Average Max	٧	234	360	54	-26.93	Pass
1951.49	30.08	4.76	-27.75	7.09	Average Max	V	100	103	54	-46.91	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	38 of 44

Above 1GHz- 802.11n-20M - 5500MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
12491.49	42.15	8.98	-7.39	43.73	Peak Max	٧	204	161	74	-30.27	Pass
9502.07	42.07	7.84	-10.36	39.55	Peak Max	٧	234	137	74	-34.45	Pass
7640.36	41.52	7.31	-11.26	37.56	Peak Max	٧	183	77	74	-36.44	Pass
12491.49	30.26	8.98	-7.39	31.84	Average Max	V	204	161	54	-22.16	Pass
9502.07	30.17	7.84	-10.36	27.65	Average Max	V	234	137	54	-26.35	Pass
7640.35	29.42	7.31	-11.26	25.46	Average Max	٧	183	77	54	-28.54	Pass

Above 1GHz- 802.11n-20M - 5580MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
12566.87	41.94	8.96	-7.39	43.51	Peak Max	Н	184	276	74	-30.49	Pass
9193.48	41.17	7.75	-10.44	38.48	Peak Max	٧	119	215	74	-35.52	Pass
6256.94	41.19	7.21	-14.8	33.59	Peak Max	٧	117	194	74	-40.41	Pass
12566.87	30.12	8.96	-7.39	31.69	Average Max	Н	184	276	54	-22.31	Pass
9193.48	30.01	7.75	-10.44	27.32	Average Max	V	119	215	54	-26.68	Pass
6256.94	28.86	7.21	-14.8	21.27	Average Max	V	117	194	54	-32.73	Pass

Above 1GHz- 802.11n-20M - 5700MHz

7 DOVE TOTIZ	002.1111		7 OOIVII IZ								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
7220.69	41.19	7.36	-11.57	36.98	Peak Max	V	167	344	74	-37.02	Pass
8155.19	41.39	7.39	-11.30	37.47	Peak Max	V	130	0	74	-36.53	Pass
1950.95	39.67	4.76	-27.76	16.67	Peak Max	V	101	243	74	-57.33	Pass
7220.69	29.48	7.36	-11.57	25.27	Average Max	V	167	344	54	-28.73	Pass
8155.19	29.35	7.39	-11.30	25.43	Average Max	V	130	0	54	-28.57	Pass
1950.95	29.00	4.76	-27.76	6.00	Average Max	٧	101	243	54	-48.00	Pass

Above 1GHz- 802.11n-40M - 5510MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
12409.38	43.74	8.94	-7.19	45.49	Peak Max	Н	244	118	74	-28.51	Pass
6122.09	47.48	7.18	-15.10	39.57	Peak Max	٧	158	292	74	-34.44	Pass
1755.08	39.22	4.76	-28.65	15.33	Peak Max	٧	132	97	74	-58.67	Pass
12409.35	30.69	8.94	-7.19	32.44	Average Max	Н	244	118	54	-21.56	Pass
6122.09	41.70	7.18	-15.10	33.79	Average Max	V	158	292	54	-20.21	Pass
1755.08	27.44	4.76	-28.65	3.55	Average Max	V	132	97	54	-50.45	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	39 of 44

Above 1GHz- 802.11n-40M - 5550MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
9844.08	42.17	7.99	-10.34	39.81	Peak Max	Н	191	184	74	-34.19	Pass
17650.34	40.19	9.43	-3.30	46.31	Peak Max	V	122	213	74	-27.69	Pass
6167.07	40.78	7.19	-15.01	32.96	Peak Max	Н	133	40	74	-41.04	Pass
9844.08	30.10	7.99	-10.34	27.75	Average Max	Н	191	184	54	-26.26	Pass
17650.34	28.03	9.43	-3.30	34.16	Average Max	V	122	213	54	-19.84	Pass
6167.07	29.08	7.19	-15.01	21.26	Average Max	Н	133	40	54	-32.74	Pass

Above 1GHz- 802.11n-40M - 5670MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
9652.78	41.41	7.91	-10.22	39.10	Peak Max	٧	112	297	74	-34.91	Pass
17595.00	39.38	9.42	-3.55	45.25	Peak Max	٧	193	39	74	-28.75	Pass
1752.88	36.20	4.76	-28.63	12.33	Peak Max	Н	101	167	74	-61.67	Pass
9652.78	29.74	7.91	-10.22	27.42	Average Max	٧	112	297	54	-26.58	Pass
17595.00	27.53	9.42	-3.55	33.40	Average Max	V	193	39	54	-20.60	Pass
1752.88	25.08	4.76	-28.63	1.21	Average Max	Н	101	167	54	-52.79	Pass

Above 1GHz- 802.11ac-80M - 5530MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
17913.68	39.97	9.46	-3.10	46.34	Peak Max	V	134	132	74	-27.66	Pass
6206.25	46.63	7.20	-14.93	38.89	Peak Max	٧	151	40	74	-35.11	Pass
9434.88	41.57	7.82	-10.24	39.15	Peak Max	٧	239	121	74	-34.85	Pass
17913.68	27.87	9.46	-3.10	34.23	Average Max	٧	134	132	54	-19.77	Pass
6206.25	33.31	7.20	-14.93	25.58	Average Max	٧	151	40	54	-28.42	Pass
9434.88	30.26	7.82	-10.24	27.83	Average Max	٧	239	121	54	-26.17	Pass

Above 1GHz- 802.11ac-80M - 5610MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
12007.91	41.26	8.73	-7.27	42.72	Peak Max	V	201	65	74	-31.28	Pass
9367.25	42.73	7.80	-10.31	40.22	Peak Max	V	140	195	74	-33.78	Pass
7222.78	42.45	7.36	-11.57	38.24	Peak Max	V	151	24	74	-35.76	Pass
12007.91	29.79	8.73	-7.27	31.25	Average Max	V	201	65	54	-22.75	Pass
9367.25	30.72	7.80	-10.31	28.21	Average Max	V	140	195	54	-25.79	Pass
7222.78	29.84	7.36	-11.57	25.63	Average Max	V	151	24	54	-28.37	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	40 of 44

Radiated Restricted band Measurement Plots:

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) $408\ 526\ 1188\ \bullet$ Facsimile (+1) $408\ 526\ 1088$

Test report No. FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page 41 of 44

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	42 of 44

Annex A. TEST INSTRUMENT

Instrument	Model	Manufacturer	Serial #	Cal Date	Cal Cycle	Cal Due	In use
Conducted Emissions							
R & S Receiver	ESIB 40	Rohde & Schwarz	100179	06/08/2016	1 Year	06/08/2017	~
CHASE LISN (9k-30MHz)	MN2050B	Chase	1018	08/07/2015	1 Year	08/07/2016	V
Radiated Emissions					ı.	,	
R & S Receiver	ESIB 40	Rohde & Schwarz	100179	06/08/2016	1 Year	06/08/2017	~
Spectrum Analyzer	N9010A	Keysight	10SL0219	08/20/2015	1 Year	08/20/2016	~
Pre-Amplifier (1-26.5GHz)	8449B	Hewlett Packard	3008A00715	03/30/2016	1 Year	03/30/2017	V
Preamplifier (100KHz-7GHz)	LPA-6-30	RF Bay, Inc.	11140711	02/10/2016	1 Year	02/10/2017	V
ETS-Lingren Loop Antenna	6512	ETS-Lingren	00049120	05/12/2015	1 Year	05/12/2016	
Bi-Log antenna (30MHz~2GHz)	JB1	Sunol Sciences	A030702	08/15/2015	1 Year	08/15/2016	~
Horn Antenna (1-26.5GHz)	3115	EMCO	10SL0059	08/25/2015	1 Year	08/25/2016	~
3 Meters SAC	3M	ETS-Lingren	N/A	06/09/2016	1 Year	06/09/2017	~
10 Meters SAC	10M	ETS-Lingren	N/A	09/05/2015	1 Year	09/05/2016	V
RF Conducted Measurement							
Spectrum Analyzer	N9010A	Keysight	10SL0219	08/20/2015	1 Year	08/20/2016	~
USB RF Power Sensor	7002-006	ETS-Lingren	10SL0190	09/03/2015	1 Year	09/03/2016	V

Test Software Version

Test Item	Vendor	Software	Version
Radiated Emission	EMISoft	EMISoft Vasona	V5.0

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0
Page	43 of 44

Annex B. SIEMIC Accreditation

Accreditations	Document	Scope / Remark
ISO 17025 (A2LA)	7	Please see the documents for the detailed scope
ISO Guide 65 (A2LA)	Z	Please see the documents for the detailed scope
TCB Designation		A1, A2, A3, A4, B1, B2, B3, B4, C
FCC DoC Accreditation	7	FCC Declaration of Conformity Accreditation
FCC Site Registration	Z	3 meter site
FCC Site Registration	7	10 meter site
IC Site Registration	Z	3 meter site
IC Site Registration	Z	10 meter site
		Radio & Telecommunications Terminal Equipment: EN45001 – EN ISO/IEC 17025
EU NB		Electromagnetic Compatibility: EN45001 – EN ISO/IEC 17025
Singapore iDA CB(Certification Body)	包包	Phase I, Phase II
Vietnam MIC CAB Accreditation		Please see the document for the detailed scope
	7	(Phase II) OFCA Foreign Certification Body for Radio and Telecom
Hong Kong OFCA	Z	(Phase I) Conformity Assessment Body for Radio and Telecom
	Z	Radio: Scope A – All Radio Standard Specification in Category I
Industry Canada CAB	Z	Telecom: CS-03 Part I, II, V, VI, VII, VIII

 Test report No.
 FCC_RF_SL16040101-AER-001A1_UNII_Rev 1.0

 Page
 44 of 44

Japan Recognized Certification Body Designation		Radio: A1. Terminal equipment for purpose of calling Telecom: B1. Specified radio equipment specified in Article 38-2, Paragraph 1, Item 1 of the Radio Law
		EMI: KCC Notice 2008-39, RRL Notice 2008-3: CA Procedures for EMI KN22: Test Method for EMI EMS: KCC Notice 2008-38, RRL Notice 2008-4: CA Procedures for EMS KN24, KN61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11: Test Method for EMS
Korea CAB Accreditation		Radio: RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10, RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-21, RRL Notice 2007-80, RRL Notice 2004-68
		Telecom: President Notice 20664, RRL Notice 2007-30, RRL Notice 2008-7 with attachments 1, 3, 5, 6; President Notice 20664, RRL Notice 2008-7 with attachment 4
Taiwan NCC CAB Recognition		LP0002, PSTN01, ADSL01, ID0002, IS6100, CNS14336, PLMN07, PLMN01, PLMN08
Taiwan BSMI CAB Recognition	7	CNS 13438
Japan VCCI		R-3083: Radiation 3 meter site C-3421: Main Ports Conducted Interference Measurement T-1597: Telecommunication Ports Conducted Interference Measurement
Australia CAB Recognition		EMC: AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR22, AS/NZS 61000.6.3, AS/NZS 61000.6.4
		Radio communications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS 4769.2, AS/NZS 4770, AS/NZS 4771
		Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06 AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/ACIF S60950.1
Australia NATA Recognition	₽	AS/ACIF S002, AS/ACIF S003, AS/ACIF S004, AS/ACIF S006, AS/ACIF S016, AS/ACIF S031, AS/ACIF S038, AS/ACIF S040, AS/ACIF S041, AS/ACIF S043.2

