

ALGEBRA Chapter 13

HELICO MOTIVATING

- En el campo de la economía usan las ecuaciones cuadráticas para representar modelos económicos de oferta y demanda
- En el campo de la física para determinar el movimiento parabólico.
- En el ámbito militar lo utilizan en la artillería de cañones para hallar las trayectorias de las balas

En el ámbito militar lo utilizan en la artillería de cañones para hallar las trayectorias de las balas

En el campo de la física para determinar el movimiento parabólico.

En el campo de la economía usan las ecuaciones cuadráticas para representar modelos económicos de oferta y demanda

HELICO THEORY CHAPTHER 13

ECUACIÓN CUADRÁTICA

DEFINICIÓ

Denominada también Ecuación de Segundo Grado; es aquella ecuación cuya forma general es:

 $ax^2 + bx + c = 0$ con $a \ne 0$ y $a,b,c \in R$

*
$$2x^2 + 7x + 6 = 0$$

$$a=2$$

$$a=2$$
 $b=7$ $c=6$

$$*x^2 - 9x + 8 = 0$$

$$a = 1$$

$$a = 1$$
 $b = -9$ $c = 8$

A) Discriminante (Δ)

" h^2 -4ac" Se llama así a la expresión:

→ Se cumplirá: $\triangle = b^2$ -4ac

Ejemplo:

* Calcule la discriminante de: $x^2 - 4x + 2 = 0$

Resolución

$$a=1$$

$$a=1$$
 $b=-4$ $c=2$

$$\Delta = (-4)^2 - 4(1)(2)$$

$$\Delta = b^2$$
-4ac

B) NATURALEZA DE LAS RAÍCES

La naturaleza de las raíces " x_1 " y " x_2 " de $ax^2 + bx + c = 0$ viene caracterizada por el valor que asume la discriminante (Δ)

- * $\Delta > 0$ La ecuación presenta raíces reales y diferentes
- * $\Delta = 0$ La ecuación presenta raíces reales e iguales (raíz única)
- * Δ<0
 La ecuación presenta raíces imaginarias y conjugadas

C) TEOREMA DE CARDANO VIETE

Sean " x_1 " y " x_2 " las raíces de la ecuación $ax^2 + bx + c = 0$, entonces se cumplirá:

$$ax^2 + bx + c = 0,$$

Suma de Raíces

$$x_1 + x_2 = \frac{-b}{a}$$

Producto de Raíces

$$x_1.x_2=\frac{c}{a}$$

Ejemplo

Sea
$$2x^2 + 5x + 1 = 0$$

$$\begin{cases} x_1 + x_2 = \frac{-5}{2} \\ x_1 \cdot x_2 = \frac{1}{2} \end{cases}$$

D) FORMACIÓN DE UNA ECUACIÓN CUADRÁTICA A PARTIR DE SUS RAÍCES

Si conocemos las raíces " x_1 " y " x_2 ", entonces podemos conocer su ecuación cuadrática reemplazando en:

$$x^2 - Sx + P = 0$$

Donde:
$$S = X_1 + X_2$$
 y $P = X_1 \cdot X_2$

Ejemplo:

Forme la ecuación cuadrática cuyas raíces son 7 y 3

$$S = X_1 + X_2 = 10$$

$$S = X_1 + X_2 = 10$$
 $P = X_1 \cdot X_2 = 21$

$$x^2 - 10x + 21 = 0$$

PROPIEDADES AUXILIARES

Si $ax^2 + bx + c = 0$, ésta ecuación tendrá:

Raíces Simétricas

b = 0

Raíces Recíprocas

$$a = c$$

HELICO PRACTICE

CHAPTHER 13

Resuelva $(x+3)^2+(x+2)^2=x^2+4$, indique la mayor raíz.

Resolución

sabemos:
$$(a + b)^2 = a^2 + 2ab + b^2$$

$$x^2 + 6x + 9 + x^2 + 4x + 4 = x^2 + 4$$

$$x^2 + 10x + 9 = 0$$

$$(x+9)(x+1)=0$$

$$x + 9 = 0$$
 V $x + 1 = 0$

$$x = -9$$
 V $x = -1$

la mayor raíz es -1

Calcule el valor de m en la ecuación: $7x^2 - mx + 5 = 0$, si sus raíces son $x_1 \ y \ x_2$, que cumplen: $\frac{1}{x_1} + \frac{1}{x_2} = 4$

Resolución

Piden:
$$\frac{x_2 + x_1}{x_1 x_2} = 4$$
 $\Rightarrow x_1.x_2 = \frac{5}{7}$

Sea:
$$7x^2 - mx + 5 = 0$$

$$x_1 + x_2 = \frac{\pi}{7}$$

$$x_1.x_2 = \frac{5}{7}$$

$$\frac{m}{5} = 4$$

$$\rightarrow$$
 $m=20$

Si x_1 y x_2 son las raíces de la ecuación $x^2 - 3x + 4 = 0$, halle el valor de: $T = (x_1^2 + x_2^2) + (x_1^3 + x_2^3)$

$$x^2 - 3x + 4 = 0$$

$$\Rightarrow x_1 + x_2 = \frac{3}{1} = 3$$

$$x_1.x_2 = \frac{4}{1} = 4$$

$$\begin{vmatrix} x_1^2 - x_2^2 - 3x + 4 = 0 \end{vmatrix} x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2$$

$$x_1^2 + x_2^2 = 3^2 - 2(4) = 1$$

$$x_1 \cdot x_2 = \frac{4}{1} = 4$$
 $x_1^3 + x_2^3 = 3^3 - 3(4)(3) = -9$

$$T = 1 - 9 = -8$$

Sean x_1, x_2 las raíces de la ecuación: $3x^2 + 7x + 2k = 0$ Calcule k, si $(x_1 + 3)(x_2 + 3) = 6$

Resolución

Recordar

$$3x^{2} + 7x + 2k = 0$$

$$x_{1} + x_{2} = -\frac{b}{a} = \frac{-7}{3}$$

$$x_{1} \cdot x_{2} = \frac{c}{a} = \frac{2k}{3}$$

$$x_{1} \cdot x_{2} = \frac{c}{a} = \frac{2k}{3}$$

$$\frac{2k - 21}{3} = -3$$

$$2k - 21 = -9$$

$$x_{1}x_{2} + 3x_{1} + 3x_{2} + 9 = 6$$

$$x_{1}x_{2} + 3x_{1} + 3x_{2} + 9 = 6$$

$$x_{2}x = 0$$

$$\frac{2k}{3} + 3(x_{1} + x_{2}) = -3$$

$$\frac{2k - 21}{3} = -3$$

$$2k - 21 = -9$$

$$x_{1}x_{2} + 3x_{1} + 3x_{2} + 9 = 6$$

$$x_{1}x_{2} + 3(x_{1}+x_{2}) = -3$$

$$\frac{2k}{3} + 3(\frac{-7}{3}) = -3$$

$$\frac{2k-21}{3} = -3$$

$$2k - 21 = -9$$

$$2k = 12$$

$$k = 6$$

01

PROBLEMA 5

Si la ecuación: $(2m-5)x^2 + (2m-8)x + 3m - 4 = 0$, para qué valores de m las raíces de la ecuación son recíprocas y simétricas respectivamente.

Resolución

Recordar:

Si:
$$ax^2 + bx + c = 0$$

Raíces simétricas

$$b = 0$$

Raíces recíprocas

$$a = c$$

$$(2m-5)x^2 + (2m-8)x + 3m-4 = 0$$
a
b
c

Raíces simétricas

$$b = 0$$

$$2m - 8 = 0$$

$$2m = 8$$

$$m = 4$$

Raíces reciprocas

$$a = c$$

$$2m - 5 = 3m - 4$$

$$-1 = m$$

Valores de $m=\{-1,4\}$

Rpta:

Valores de $m=\{-1,4\}$

El número de viajes a Europa que realiza Juan está dado por 4k, donde k está dado por la ecuación $(k + 3)x^2 - 12x + 9 = 0$, cuyas raíces son iguales. ¿ Cuántos viajes realiza Juan?

Resolución

Recordar:

$$ax^2 + bx + c = 0$$

$$lack \Delta = 0$$

Raíces iguales se cumple:

$$(k+3)x^{2} - 12x + 9 = 0$$

$$\Delta = 0$$

$$b^{2} - 4ac = 0$$

$$b^{2} = 4ac$$

$$-12)^{2} - 4(k+3)(9)$$

36 9
$$144 = 36(k+3)$$

$$4 = k+3$$

$$k = 1$$

piden:4k= 4 viajes

Rpta 4 viajes

PROBLEMA 7 Un departamento tiene como medida de largo 8 m más que la medida del ancho. Determine una ecuación que tenga como raíces las dimensiones de dicho departamento si su área es de 65 u².

Si:
Área =
$$(8 + n)n = 65$$

Área = $(8 + n)n = (8 + 7)7$
 $n = 7$
Sea:
 $x_1 = 8 + n = 15$
 $x_1 = 15$
 $x_2 = n = 7$
 $x_2 = 7$

$$S = x_1 + x_2$$

 $x_1 + x_2 = 22$

$$P = x_1 \cdot x_2$$

$$x_1 \cdot x_2 = 105$$
remplazando en:

$$x^2 - Sx + P = 0$$

Rpta:
$$x^2 - 22x + 105 = 0$$