Praca domowa 10

Fizyka, semestr letni 2020/21

- 1) (3p.) Izotop aktynu $^{222}_{89}Ac$ ulega rozpadowi α .
 - a) Podaj liczbę protonów i neutronów w jądrze $^{222}_{89}$ Ac.
 - b) Dokończ zapis reakcji rozpadu jądra ²²²₈₉Ac z uwzględnieniem liczb atomowych i masowych produktów rozpadu. Wykorzystaj poniższą tabelę do identyfikacji jądra, które powstało w wyniku emisji cząstki α przez jądro aktynu. W równaniu użyj wybranego z tabeli symbolu.

$_{85}At$	-Rn	$_{\circ}$ Fr	-Ra	$_{\alpha \alpha}Ac$	-Th	Pa
85216	861111	874 /	$_{88}\kappa u$	89210	90^{II}	911 4

$$^{222}_{89}Ac \rightarrow ^{4}_{2}\alpha + \cdots$$

c) Na podstawie wykresu zależności względnej liczby jąder aktynu ²²²₈₉Ac od czasu podaj wartość czasu połowicznego rozpadu tego izotopu.

- 2) (**2p.**) Źródłem energii wysyłanej przez gwiazdy są reakcje termojądrowe zachodzące w ich rdzeniach
 - a) Napisz na czym polega reakcja termojądrowa, która zachodzi w gwiazdach i wyjaśnij, przyczynę wydzielania się energii.
 - b) Warunkiem zajścia reakcji termojądrowej jest wysoka temperatura i duże ciśnienie. Wyjaśnij, dlaczego warunek ten jest konieczny.
- 3) (**3p.**) Z gwiazdy o masie m₁=4·10³⁰ kg, promieniu r₁=106 km i okresie wirowania T₁=105 s w czasie wybuchu supernowej zostaje odrzuconych w przestrzeń kosmiczną 90% masy. Z pozostałej masy powstaje gwiazda neutronowa o promieniu r₂=100 km. Odrzucona masa nie unosi momentu pędu. Moment bezwładności kuli I=0,4mr². Oblicz okres wirowania gwiazdy neutronowej oraz gęstość gwiazdy przed i po wybuchu.
- 4) (**2p.**) Jądro izotopu uranu ²³⁵₉₂*U* w wyniku bombardowania neutronami ulega rozszczepieniu. Podczas rozszczepienia jednego jądra wydziela się energia 200 MeV. Oblicz liczbę jąder uranu, które uległy rozszczepieniu, jeżeli wykorzystując całą wydzieloną energię ogrzano 5 kg wody od temperatury 20°C do temperatury 100°C. W obliczeniach przyjmij, że ciepło właściwe wody wynosi 4200 J/(kg·K), oraz, że 1MeV=1,6·10¹³ J.