Annex 3A.1 Biomass Default Tables for Section 3.2 Forest Land 程序代与代数 CS编程辅导

Contents

	- <u>53</u> 677 (- → 129 672	
Where to use the	ne trutor cs	3.152
Table 3A.1.1	FARE CONTRACTOR OF THE PROPERTY OF THE PROPERT	3.153
Table 3A.1.2	A k in naturally regenerated forests by broad category	3.157
Table 3A.1.3	Aboveground biomass stock in plantation forests by broad category	3.158
Table 3A.1.4	Average growing stock volume (1) and aboveground biomass (2) covered (matter) in foresting 2000 to 1000.	3.159
Table 3A.1.5	Average annual increment in aboveground biomass in natural regeneration by broad category	
Table 3A.1.6	Average annial increment in above pund highest in plantation and Hell by broad category I men in above pund highest in plantation and Hell	3 .164
Table 3A.1.7	Average Annual above ground net increment in volume in plantations by species	3.167
Table 3A.1.8	A serage belowground to above ground biomass ratio (not-to-shoot ratio, R) in hat rall regeleration by the latest strength of the service of	3.168
Table 3A.1.9-1	Basic wood densities of stemwood for boreal and temperate species	3.171
Table 3A.1.9-2	Basic wood densities (D) of stemwood for tropical tree species	3.172
Table 3A.1.10	Defeallt values of biomass expansion factors (BEFs)	3.178
Table 3A.1.11	Default values for fraction out of total harvest left to decay in the forest, f_{BL}	3.178
Table 3A.1.12	Combustion factor values (proportion of prefire biomass consumed) for files in a range of wegetatto by S. C. O. I.	3.179
Table 3A.1.13	Biomass consumption values for fires in a range of vegetation types	3.180
Table 3A.1.14	Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions	3.184
Table 3A.1.15	Emission ratios for open burning of cleared forests	3.185
Table 3A.1.16	Emission factors applicable to fuels combusted in various types of vegetation fires	3.185

Where to	Use the Tables
Take 序代写	代的CS编码辅导
Table 3A.1.1 Forest Area Change	To be used for verification of 'A' in Equation 3.2.4
Table 3A.1.2 Abovegranaturally regenerated fi	To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in Cropland section and for $L_{conversion}$ in Equation 3.4.13 in Grassland section, etc. Not to be applied for C_{t_2} or C_{t_1} in Forest section Equation 3.2.3
Table 3A.1.3 Abovegraplantation forests by br	To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in equation in Equation 3.3.8 in Cropland section and for $L_{conversion}$ in Equation 3.4.13 in Grassland section, etc. Not to be applied for C_{t_2} or C_{t_1} in Forest section Equation 3.2.3
Table 3A.1.4 Average Growing stock volume (1) and aboveground biomass (2) content (dry matter) in forest in 200 WeChat:	 (1) To be used for V in Equation 3.2.3. (2) To be used for B_w in Equation 3.2.9, for L_{conversion} in Equation 3.3.8 in cropland section and for L_{conversion} in Equation 3.4.13 in grassland section, etc. Not to be applied for C₁ and C₂ in Forest section Equation 3.2.3.
Table 3A.1.5 Average Annual Increment in Aboveground Biomass in Natural Regeneration by broad category	To be used for G _w in Equation 3.2.5
Table 3A.1.6 Annual Average Aboveground Biomass Increment in plantations by broad category	To be used for G_w in Equation 3.2.5. In case of missing values it is preferred to use stemwood volume increment data I_v from Table 3A.1.7
Table 3A.1.7 Annual A retain Nove ground volume Increment in plantations by species	Ologic COM
Table 3A.1.8 Average Belowground to Aboveground Biomass ratio in Natural Regeneration by broad category 493	To be used for R in Equation 3.2.5 89476
Table 3A.1.9 –1 Basic wood densities of stemwood for boreal and temperate species	To be used for D in Equations 3.2.3., 3.25, 3.2.7, 3.2.8
Table 3A.1.9-2 Basic wood densities (D) of stemwood for Tropical reasons.	Tresed to propulations 3.2.3., 3.25, 3.2.7, 3.2.8
Table 3A.1.10 default values of Biomass Expansion Factors (BEFs)	BEF ₂ to be used in connection with growing stock biomass data in Equation 3.2.3; and BEF ₁ to be used in connection with increment data in Equation 3.2.5
Table 3A.1.11 default values for fraction out of total harvest left to decay in the forest	To be used only for f_{BL} in Equation 3.2.7
Table 3A.1.12 Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types	Values in column 'mean' are to be used for $(1-f_{BL})$ in Equation 3.2.9. and for ρ burned on site in Equation 3.3.10
Table 3A.1.13 Biomass consumption values for fires in a range of vegetation types	To be used in Equation 3.2.9. for the part of the equation: ${}^{\circ}B_{W} \bullet (1-f_{BL})^{\circ}$, i.e. an absolute amount
Table 3A.14 Combustion Efficiency(proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions.	To be used in sections 'forest lands converted to cropland', 'converted to grassland', or 'converted to settlements or other lands'
Table 3A.1.15 Emission ratios for open burning of cleared forests	To be applied to Equation 3.2.19
Table 3A.1.16 Emission Factors applicable to fuels combusted in various types of vegetation fires	To be used in connection with Equation 3.2.20

TABLE 3A.1.1 TABLE 3A.1.1 (CONTINUED) FOREST AREA CHANGE FOREST AREA CHANGE (To be used for verification of 'Asin Equation (To be used for verification of A in Equation 3.2.4) a RICA (Contrilled) a. AFRICA **Forest Area Change** Forest Area Change Country **Total Forest Area** Country **Total Forest Area** 1990-2000 1990-2000 ____Change Annual Change 1990 1990 2000 Change Rate Rate 000 ha 000 ha 000 ha /yr 000 ha % / yr 11 727 -0.9 1.3 12 901 -117 Algeria 1879 Madagascar 70 998 .0.2 Malawi 3 2 6 9 2 562 -2.4 Angola -71 Benin 3 349 .2 3 Mali 14 179 13 186 -99 -0.7 13 611 -0.9 -10 -2.7 Botswana Mauritania 415 317 Burkina Faso 7 241 -0.2 Mauritius 17 16 n.s. -0.6 Burundi 241 94 -9.0 Morocco 3 037 3 025 -1 n.s. Cameroon 26 076 23 858 -222 -0.9 Mozambique 31 238 30 601 -64 -0.2 Cape Verde 35 -73 -0.9 Namibia 8 774 8 040 Central African -0.1 22 907 1 945 23 207 1 328 -62 -3.7 Niger Republic 13 509 17 501 13 517 -398 -2.6 Chad 12 692 -82 -0.6 Nigeria 71 307 12 Comoros Reuli 3.9 22 235 22 060 -0.1 Rwanda Congo Côte d'Ivoire 9 766 7 1 1 7 -265 -3.1 Saint Helena 2 2 n.s. n.s. Dem. Rep. of Sao Tome and 140 531 n.s. n.s. the Congo Pri@ipe() 6 655 6 205 -0.7 Djibouti 6 6 n.s. n.s. Senegal -45 52 72 3.3 Seychelles Egypt 2 30 30 n.s. n.s. Equatorial 1 858 75 1 416 1 055 -36 -2.9 Sierra Guinea 8 284 1 639 1 585 7 5 1 5 -77 -1.0 Eritrea -5 -0.3Somalia Ethiopia 4 996 4 593 -40 -0.8 8 997 8 9 1 7 -8 -0.1 South Africa Gabon 21 927 826 /10 Sudan 71 216 61 627 -959 -1.4 4 ' **/**4 Swaziland Gambia 436 464 522 6 1.2 Ghana 7 535 6 3 3 5 -120 -1.7 Togo 719 510 -21 -3.4 Guinea 7 2 7 6 6 9 2 9 -35 -0.5 Tunisia 499 510 0.2 -0.9 Guinea-Bissau 2 403 2 187 -22 Uganda 5 103 4 190 -91 -2.0 United 18 027 17 096 -93 -0.5 Republic of 39 724 38 811 -91 -0.2 Kenva Tanzania Lesotho 14 14 Western Sahara 152 152 31 246 Liberia 4 241 3 481 39 755 -76 -2.0 -851 -2.4 Zambia Libyan Arab 311 1.4 22 239 19 040 -1.5 358 5 Zimbabwe -320 Jamahiriya n.s. - not specified n.s. - not specified Source: FRA 2000 and Working Paper 59, FRA Programme, Source: FRA 2000 and Working Paper 59, FRA Programme, Forestry Department of FAO, Rome 2001, 69p Forestry Department of FAO, Rome 2001, 69p (www.fao.org/forestry/fo/fra/index.jsp) (www.fao.org/forestry/fo/fra/index.jsp)

1 334 3 016 V Q 2 9 335 163 480 A S 2 8 210 2 988 64 113 1 988 7 299	17 17 1806 1806 1806 113 111 11 11	nange Rate o/yr n.s. 1.3 1.3 1.4.9 1.3 n.s0.6 1.2 10.11 n.s0.6 1.2 10.11 10.11 10.11	Republic of Korea Saudi Arabia Singapore Sri Lanka Syrian Arab Republic Tajikistan Turkey Turkmenistan United A ab Emirates Uzbekistan Viet Napr Yemen c. OCEANIA	1990 000 ha 6 299 1 504 2 2 288 461 380 5 15 886 10 005 3 755 C 243 1 923 541	est Area 2000 000 ha 6 248 1 504 2 1 940 461 400 14 762 10 225 3 755 2 3 755 2 9 819 449	Forest Are: 1990-2 Annual Change 000 ha /yr -5 n.s. -35 n.s. 2 -112 22 n.s. 5 5 -9	
9 335 163 480 A S S 8 210 E 10 2 988 64 113 1 98 7 299	-56 1 806 9 N N n.s. 113 n.s. 38	n.s. 1.3 1.3 1.4.9 1.3 n.s. -0.6 1.2 n.s. -0.6 1.2 n.s. -0.6 1.2	Korea Saudi Arabia Singapore Sri Lanka Syrian Arab Republic Tajikistan Turkey Turkmenistan Urited A ab Emirates Uzbekistan Viet Nam Yemen c. OCEANIA	000 ha 6 299 1 504 2 2 288 461 380 S 15 886 10 005 3 755 CC 243 1 923 541	000 ha 6 248 1 504 2 1 940 461 400 14 762 10 225 3 755 X 311 1 969 9 819 449	Change 000 ha /yr -5 n.s. n.s. -35 n.s. 2 -112 22 n.s. 5 5 -9	Rate %/yr -0.1 n.s. n.s1.6 n.s. 0.5 -0.7 0.2 n.s. 0.2
9 335 163 480 A S S 8 210 E 10 2 988 64 113 1 98 7 299	-56 1 806 9 N N n.s. 113 n.s. 38	n.s. 1.3 1.3 1.4.9 1.3 n.s. -0.6 1.2 1.3 n.s. -0.6 1.2 1.3 n.s.	Korea Saudi Arabia Singapore Sri Lanka Syrian Arab Republic Tajikistan Turkey Turkmenistan Urited A ab Emirates Uzbekistan Viet Nam Yemen c. OCEANIA	6 299 1 504 2 2 288 461 380 S 15 886 10 005 3 755 C 243 1 923 541	6 248 1 504 2 1 940 461 400 14 762 10 225 3 755 2 X 31 1 969 9 819 449	-5 n.s. n.s35 n.s. 2 -112 22 15 5 5 52 -9	-0.1 n.s. n.s1.6 n.s. 0.5 -0.7 0.2 n.s. 0.2 0.2
9 335 163 480 A S S 8 210 E 10 2 988 64 113 1 98 7 299	-56 1 806 9 N N n.s. 113 n.s. 38	1.3 1.3 1.4.9 1.3 n.s. -0.6 1.2 1611 n.s. -0.6 1.2	Korea Saudi Arabia Singapore Sri Lanka Syrian Arab Republic Tajikistan Turkey Turkmenistan Urited A ab Emirates Uzbekistan Viet Nam Yemen c. OCEANIA	1 504 2 2 288 461 380 S 15 886 10 005 3 755 C 243 1 923 9 303 541	1 504 2 1 940 461 400 14 762 10 225 3 755 EX 31 1 969 9 819 449	n.s. n.s35 n.s. 2 -112 22 n.s. 5 5 -9	n.s. n.s1.6 n.s. 0.5 -0.7 0.2 n.s. 0.2 0.5
9 335 163 480 A S S 8 210 E 10 2 988 64 113 1 98 7 299	-56 1 806 9 N N n.s. 113 n.s. 38	1.3 1.4.9 1.3 n.s0.6 1.2 16.11 n.s9.6 UTO n.s.	Singapore Sri Lanka Syrian Arab Republic Tajikistan Turkey Turkmenistan Urited A ab Emirates Uzbekistan Viet Narr Yemen c. OCEANIA	2 2 288 461 380 S 15 886 10 005 3 755 CC 243 1 923 9303 541	2 1 940 461 400 14 762 10 225 3 755 X 31 1 969 9 819 0 11 449	n.s35 n.s. 2 -112 22 5 5 52 -9	n.s1.6 n.s. 0.5 -0.7 0.2 n.s. 0.2 0.2
9 335 163 480 A S S 8 210 E 10 2 988 64 113 1 98 7 299	-56 1 806 9 N N n.s. 113 n.s. 38	1.3 n.s0.6 1.2 n.s0.6 1.2 n.s. n.s.	Sri Lanka Syrian Arab Republic Tajikistan Turkey Turkmenistan United A ab Emirates Uzbekistan Viet Nam Yemen c. OCEANIA	2 288 461 380 S 15 886 10 005 3 755 CC 243 1 923 541	1 940 461 400 14 762 10 225 3 755 2 X 31 1 969 9 819 449	-35 n.s. 2 -112 22 n.s. 5 52 -9	-1.6 n.s. 0.5 -0.7 0.2 n.s. 0.2 0.5 -0.5
9 335 163 480 A S S 8 210 E 10 2 988 64 113 1 98 7 299	-56 1 806 9 N N n.s. 113 n.s. 38	1.3 n.s0.6 1.2 n.s0.6 1.2 n.s0.6 uto	Syrian Arab Republic Tajikistan Thailand Turkey Turkmenistan United A ab Emirates Uzbekistan Viet Napr Vest Baur Yemen c. OCEANIA	461 380 S 15 886 10 005 3 755 C 243 1 923 541	461 400 14 762 10 225 3 755 EX 31 1 969 9 819 449	n.s. 2 -112 22 n.s. 5 52 -9	n.s. 0.5 -0.7 0.2 n.s. 0.2 0.2 0.5
9 335 163 480 A S S 8 210 E 10 2 988 64 113 1 98 7 299	-56 1 806 9 N N n.s. 113 n.s. 38	n.s0.6 1.2 10.1 n.s0.6 uto n.s.	Republic Tajikistan Turkey Turkmenistan Urited A ab Emirates Uzbekistan Viet Napr Vest Basic Yemen c. OCEANIA	380 S 15 886 10 005 3 755 CC 243 1 923 9303 541	400 14 762 10 225 3 755 2 X 31 1 969 9 819 0 11 449	2 -112 22 ns 8 5 5 52 -	0.5 -0.7 0.2 n.s. 0.2 0.2 0.5
9 335 163 480 A S S 8 210 E 10 2 988 64 113 1 98 7 299	-56 1 806 2 N N n.s. n.s. 38	-0.6 1.2 1C:11 n.s. -0.6 uto n.s.	Turkey Turkmenistan Urited A ab Emirates Uzbekistan Viet Napr Vest Baur Yemen c. OCEANIA	S 15 886 10 005 3 755 C 243 1 923 541	14 762 10 225 3 755 LX 21 1 969 9 819 449	-112 22 18 5 5 52 9	-0.7 0.2 n.s. 0.2 0.2 0.5
163 480 8 210 507 2 988 64 113 1 98 7 299	n.s. 1 806 9 1 1 1 -3	1.2 1611 n.s. 1060 1000 n.s.	Turkey Turkmenistan United A ab 1 Emirates Uzbekistan Viet Napr Vest Basic Yemen c. OCEANIA	10 005 3 755 C 243 1 923 6 9 303 541	10 225 3 755 2 X 21 1 969 9 819 0 11 449	22 18 5 52 	0.2 n.s. 12k 0.2 0.5
163 480 8 210 507 2 988 64 113 1 98 7 299	n.s. 1 806 9 1 1 1 -3	1.2 1611 n.s. 1060 1000 n.s.	Turkmenistan United A ab Emirates Uzbekistan Viet Napr Vest Bank Yemen c. OCEANIA	3 755 CC 243 1 923 541	3 755 X 21 1 969 9 819 CON 449	5 52 - -9	0.2 0.5
8 210 8 210 507 2 988 64 113 1 980 7 299	n.s. n.s. n.s. 38 -734	n.s. -0.6 uto. n.s.	United A ab Emirates Uzbekistan Viet Napr Vest Bank Yemen c. OCEANIA	1 923 6 9 303 541	1 969 2 9 819 2 0 11 449	5 52 - -9	0.2 0.5
8 210 507 2 988 64 113 1 98 7 299	n.s. 113 n.s. 38 -1/3/2	n.s.	Uzbekistan Viet Napr Vest Baur Yemen c. OCEANIA	1 923 69303 541	1 969 2011 449	5 52 - -9	0.2
2 988 64 113 1 98 7 299	n.s. 38	uto n.s.	Viet Name Vest Bank Yemen c. OCEANIA	6 ⁹ 3 ⁰³ .	9 819 COM 449	529	0.5
2 988 64 113 1 98 7 299	n.s. 38	uto.	Yemen c. OCEANIA	541	20 11 449	-9	-
64 113 1 498 7 299	38		Yemen c. OCEANIA			<u> </u>	-1.9
64 113 1 498 7 299	38		c. OCEANIA			<u> </u>	-1.9
7 299	- 7 3 <u>1</u> 2	0.1 3.8	American	12	12		
7 299	<u> </u>	138	American Samoa	12	12		
	n a				14	n.s.	n.s.
	n.s.	n.s.	Australia	157 359	154 539	-282	-0.2
799	n.s,	n.s.	Cook Islands	22	22	n.s.	n.s.
	5 / /5	1491	CS.CO	832	815	-2	-0.2
24 081	3	n.s.	French Polynesia	105	105	n.s.	n.s.
86	n.s.	n.s.	Guam	21	21	n.s.	n.s.
12 148	239	2.2	Kiribati	28	28	n.s.	n.s.
5	n.s.	3.5	Marshall Islands	n.s.	n.s.	n.s.	n.s.
1 003	23	2.6	Micronesia	24	15	-1	-4.5
12 561	-53	-0.4	Nauru	n.s.	n.s.	n.s.	n.s.
36	n.s.	-0.4	New Caledonia	372	372	n.s.	n.s.
19 292	-237	-1.2	New Zealand	7 556	7 946	39	0.5
10.645	n.s.	n.s.	Niue Northern	6	6	n.s.	n.s.
			Mariana Isl.				n.s.
			Papua New				-0.4
-			Guinea Samoa				-2.1
2 361	-39	-1.5	Solomon	2 580	2 536	-4	-0.2
	-89		 			nç	n.s.
				-			0.1
	36 19 292 1 10 645 34 419 3 900 1 2 361 5 789 1	36 n.s. 19 292 -237 1 n.s. 10 645 -60 34 419 -517 3 900 -78 1 n.s. 2 361 -39 5 789 -89 1 n.s.	36 n.s0.4 19 292 -237 -1.2 1 n.s. n.s. 10 645 -60 -0.5 34 419 -517 -1.4 3 900 -78 -1.8 1 n.s. 5.3 2 361 -39 -1.5 5 789 -89 -1.4 1 n.s. 9.6 ng Paper 59, FRA Programme,	36 n.s. -0.4 New Caledonia 19 292 -237 -1.2 New Zealand 1 n.s. n.s. Niue 10 645 -60 -0.5 Northern Mariana Isl. 34 419 -517 -1.4 Palau Papua New Guinea Samoa Samoa 2 361 -39 -1.5 Solomon Islands 5 789 -89 -1.4 Tonga Vanuatu n.s not specific Source: FRA 200	36 n.s. -0.4 New Caledonia 372 19 292 -237 -1.2 New Zealand 7 556 1 n.s. n.s. Niue 6 10 645 -60 -0.5 Niue 6 34 419 -517 -1.4 Palau 35 3 900 -78 -1.8 Papua New Guinea 31 730 1 n.s. 5.3 Samoa 130 2 361 -39 -1.5 Solomon Islands 2 580 5 789 -89 -1.4 Tonga 4 1 n.s. 9.6 Vanuatu 441 ns not specified Source: FRA 2000 and Working	36 n.s. -0.4 New Caledonia 372 372 19 292 -237 -1.2 New Zealand 7 556 7 946 1 n.s. n.s. n.s. Niue 6 6 10 645 -60 -0.5 Northern Mariana Isl. 14 14 34 419 -517 -1.4 Palau 35 35 Papua New Guinea 31 730 30 601 30 601 1 n.s. 5.3 Samoa 130 105 Solomon Islands 2 580 2 536 5 789 -89 -1.4 Tonga 4 4 Vanuatu 441 447 n.s not specified Source: FRA 2000 and Working Paper 59,	36 n.s. -0.4 New Caledonia 372 372 n.s. 19 292 -237 -1.2 New Zealand 7 556 7 946 39 1 n.s. n.s. Niue 6 6 n.s. 10 645 -60 -0.5 Northern Mariana Isl. 14 14 n.s. 34 419 -517 -1.4 Palau 35 35 n.s. Palau 35 35 n.s. n.s. Papua New Guinea 31 730 30 601 -113 Samoa 130 105 -3 Solomon Islands 2 580 2 536 -4 Tonga 4 4 n.s. Vanuatu 441 447 1 n.s not specified Source: FRA 2000 and Working Paper 59, FRA Programme,

TABLE 3A.1.1 (CONTINUED) THE REST AREA CONTINUED) THE REST AREA CONTINUED THE REST AREA CONTI TABLE 3A.1.1 (CONTINUED) (To be used for verification of A) in Equation 3-4) d. EUROPE d. EUROPE Forest Area Change Forest Area Change Country Total F Country **Total Forest Area** 1990-2000 Annual Change hange 1990 1990 2000 Change Rate 000 ha 000 ha 000 ha 000 ha /yr % / yr Albania 1 069 Liechtenstein 1.2 6 n.s. Andorra Lithuania 1 946 1 994 5 0.2 3 809 0.2 Austria Malta n.s. n.s. n.s. n.s. 375 6 840 3.2 Netherlands 365 1 0.3 Belarus Belgium & 8 558 741 728 -0.2Norway 8 868 31 0.4 Luxembourg Bosnia & 2 2 7 3 8 872 9 047 18 0.2 Herzegovina 3 096 Bulgaria 3 486 3 690 20 0.6 Portugal 3 666 57 1.7 Republic of Croatia 1 763 1 783 2 0.1 318 325 0.2 Moldova 631 Romani 02 Czech Republic 2 627 Russian Denmark 445 455 0.2 850 039 851 392 135 1 n.s Federation Estonia 1 935 2 060 13 0.6 San Marine Słowaka 2193 1996 2 1 77 Finland 21 855 8 18 0.9 62 0.4 1 085 2 France 14 725 15 341 Slovenia 1 107 0.2 10 740 10 740 13 510 14 370 Germany n.s n.s. Spain 86 0.6 sweden 🔘 3 5 9 09 Greece 3 299 27 128 27 134 1 n.s. 1 768 1 840 7 0.4 1 156 1 199 4 0.4 Hungary Switzerland The FYR of 25 31 2.2 906 906 Iceland n.s. n.s. Macedonia 489 Ukrame 9 2 7 4 Ireland 9 584 0.3 31 United Italy 8 737 1 10 003 30 0.3 2 624 2 794 17 0.6 Kingdom 2 796 2 923 13 0.4 Yugoslavia 2 901 2 887 -1 -0.1 Latvia

n.s. - not specified

Source: FRA 2000 and Working Paper 59, FRA Programme,

Forestry Department of FAO, Rome 2001, 69p

(www.fao.org/forestry/fo/fra/index.jsp)

n.s. - not specified

Source: FRA 2000 and Working Paper 59, FRA Programme, Forestry Department of FAO, Rome 2001, 69p

(www.fao.org/forestry/fo/fra/index.jsp)

¹ The value for Italy was provided by Italy and is referred to in their Third National Communication to the UNFCCC.

TABLE 3A.1.1 (CONTINUED) TABLE 3A.1.1 (CONTINUED) FOREST AREA CHANGE FOREST AREA CHANGE (To be used for verification of 'As in Equation (To be used for verification of 'A' in Equation 3.2.4) e. NORTH AND CENTRAL AMERICA A SOUTH A Forest Area Change Forest Area Change **Total Forest Area** Country Country **Total Forest Area** 1990-2000 1990-2000 <u>Ann</u>ual <u>C</u>hange Annual Change 1990 1990 2000 Rate Rate Change 000 ha 000 ha 000 ha 000 ha /yr % / yr Antigua and 37 499 Argentina 34 648 -285 -0.8Barbuda Rahamas 842 Bolivia 54 679 53 068 -161 -0.3 543 905 -2 309 Barbados 2 Brazil 566 998 -0.4 Belize Chile -0.1 1 704 15 739 15 536 -20 49 601 -0.4 Colombia 51 506 -190 Bermuda British Virgin 3 3 Ecuador 11 929 10 557 -137 -1.2 n.s n.s. n.s. Canada 244 571 Cayman 13 13 French Guiana 7 926 7 9 2 6 n.s. n.s. n.s. n.s. Islands Costa Rica 2 126 1 968 -16 -0.8 Guyana 17 365 16 879 -49 -0.3 Cuba 2 071 **1**3 4 60 -0.7 0.4 65 215 -269 Dominica 50 46 67 903 n.s. Dominican 1 376 1 376 14 113 14 113 n.s n.s. Suriname n.s. n.s. Republic El Salvador 193 <u>-</u>7 Oruguay (791 50 5.0 1292 51 681 49 506 -218 -0.4 Greenland Venezuela Grenada 5 5 n.s. 0.9 n.s. - not specified Source: FRA 2000 and Working Paper 59, FRA Programme, Forestry Jopartment of FAO, Rome 2001, 69p (www.rao.org/forestry/fo/fra/index.jsp) Guadeloupe 67 J.7C -54 3 387 Guatemala -7 -5.7 Haiti 158 88 5 972 5 383 -59 -1.0 Honduras \$ 16 rcs.com Jamaica 379 47 Martinique 47 n.s. n.s. 61 511 55 205 -631 -1.1 Mexico 3 Montserrat 3 n.s. n.s. Netherlands 1 1 n.s. n.s. Antilles Nicaragua 4 450 3 2 7 8 -117 -3.0 Panama 3 3 9 5 2 876 -52 -1.6 Puerto Rico 234 229 -1 -0.2 Saint Kitts and 4 4 n.s. -0.6 Nevis 14 9 -4.9 Santa Lucia -1 Saint Pierre & Miquelon Saint Vincent 7 6 -1.4 n.s. & Grenadines Trinidad and 281 259 -2 -0.8 Tobago 225 993 United States 222 113 388 0.2 US Virgin 14 n.s. n.s. Islands n.s. - not specified Source: FRA 2000 and Working Paper 59, FRA Programme, Forestry Department of FAO, Rome 2001, 69p

(www.fao.org/forestry/fo/fra/index.jsp)

ABOVEGROUND BIOMASS TIPCK IN ATTACK LLY SEMERITED TRESTS BY RESTS BY RESTS

(To be used for Bw in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in Cropland section and for $L_{conversion}$ in Equation 3.4.13. in Grassland section, etc. Not to be applied for C_{t_2} or C_{t_1} in Forest section Equation 3.2.3)

		4.	opical Forests ¹				
			Moist with Long Dry Season	Dry	Montane Moist	Montane Dry	
Africa		utor CS	123 (120 - 130)	72 (16 - 195)	191	40	
Asia & Oceania:	IS NOT						
Continental	(123 - 683)	(10 – 562)	127 (100 - 155)	60	222 (81 - 310)	50	
Insular	348 (280-520)	290	160	70	362 (330 - 505)	50	
America	(118 - 860)	(212 - 278)	(202-406)	S 78 (45 - 90)	234 (48 - 348)	60	
		Tei	mperate Forests				
Age Class	∆ Copife	^r የቻከተነገብ	11 DBroadlea	oct F	Mixed Breadlaf	Ceniferou	
Eurasia & Oceani	a A A S S J	Simile			Aum	CIP	
≤20 years	100 (17 - 183)		17		40		
>20 years	Em. 8	ul: tut	Orcs (42)	63.0	20m 128 (20-330))	
America							
≤20 years	O(1) ⁵²		894766		49 (19-89)	
>20 years	126 (41-275) 132 (53-205)			140 (68-218	3)		
	http	g•// taat	Boreal Forests	m			
Age Class	Mixed Broade	n-Coniferous	OI Coniferou	s I I	Forest-Tu	ndra	
Eurasia							
≤20 years	12		10		4		
. 20	50		50 60 (12.3-131))	20 (21- 81)	
>20 years					-		
>20 years America							
·	15		7		3		

Note: Data are given in mean value and as range of possible values (in parentheses).

¹ The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the *IPCC Guidelines* (1996).

TABLE 3A.1.3 ABOVEGROUND BINNASS FEOCK INPLANTATION FORESTS BY BROAD CAZE ORY Connected in Mater/ha) (To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in equation in Equation 3.3.8 in Croptant section and for $L_{conversion}$ Equation 3.4.13. in Grassland section, etc. Not to be applied for C_{t_2} or C_{t_1} in Forest section Equation 3.2.3) n equation in Equation 3.3.8 in Cropland section and for L_{conversion} in and sub-tropical Forests with Moist with Dry Montane Montane Long Dry Moist Dry eason Season R>1000 2000>R>1000 R<1000 R<1000 Africa Broadleaf spp 30 20 100 40 150 70 20 150 60 60 20 15 Pinus sp ≤20 years 40 40 10 >20 years 200 120 60 20 100 30 Asia: Broadleaf 90 40 150 40 100 All 130 60 30 80 25 other species America Pinus 200 140 110 60 Eucalyptus All 120 30 Tectona All 120 50 130 30 other broadleaved 80 30 **Temperate Forests** Age class Pine Other coniferous **Broadleaf**

Eurasia	1)()• 7/49	13X9 <u>4</u> 776				
Maritime	≤20 years	389476	40	30		
	>20 years	150	250	200		
Continental	≤20 years	25	30	15		
	1ttp8years/tu	lorgs.co	200	200		
Mediterranean & steppe	≤20 years	17	20	10		
	>20 years	100	120	80		
S. America	All	100	120	90		
N America	All	175 (50–275)	300	-		
Boreal Forests						
	Age class	Pine	Other coniferous	Broadleaf		
Eurasia	≤20 years	5	5	5		
	>20 years	40	40	25		

50

40

All

N. America

25

TABLE 3A.1.4 AVERAGE GROWING STOCK VOLUME (1) AND ABOVEGROUND BIOMASS CONTENT (2) (DRY MATTER) IN FOREST IN 2000 (Spurge FRA 2000)

(1) To be used for V in Equation 3.2.3.

(2) To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in creation Equation 3.4.13. in ξ applied for C_{t_2} or C

a. AFRICA			<u> </u>
Country	Volu (abovegi m³/	Tutor CS	for- ation urce
Algeria	44	SWAD	I NI
Angola	39	54	NI
Benin	140	195	PI
Botswana	45	e(63ha	t NCS
Burkina Faso	10	16	NI
Burundi	110	187	ES
Cameroon	135	131	PI
Cape Verde	83)21 ⁸ 111	11211
Central African Republic	85	113	PI/EX
Chad	11 🔽	n 241.	tu ^{ES} O1
Comoros	60	11a ₁ 1.	LUESOI
Congo	132	213	EX
Côte d'Ivoire	133	130	
Dem. Rep. of the Congo	133	2^{225}	938
Djibouti	21	46	ES
Egypt	108	106	ES
Equatorial Guinea	93		LUeOI
Eritrea	23	32	NI
Ethiopia	56	79	PI
Gabon	128	137	ES
Gambia	13	22	NI
Ghana	49	88	ES
Guinea	117	114	PI
Guinea-Bissau	19	20	NI
Kenya	35	48	ES
Lesotho	34	34	ES
Liberia	201	196	ES
Libyan Arab Jamahiriya	14	20	ES

Information source: NI = National inventory; PI = Partial inventory; ES = Estimate; EX = External data (from other regions)

Table 3A.1.4 (Continued) Average growing stock volume (1) and aboveground big assection (2) (by matter) in forms 2 are 100% (out 12) (by matter).

- (1) To be used for V in Equation 3.2.3.
- (2) To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in cropland section and for $L_{conversion}$ in Equation 3.4.13. in grassland section, etc. Not to be applied for C $_{t_2}$ or C $_{t_1}$ in Forest section Equation 3.2.3.

a. AFRICA (Continued)						
Country	Volume (aboveground)	Biomass (aboveground)	Infor- mation			
-	m ³ / ha	t / ha	Source			
Madagascar	114	194	NI			
Malawi	103	143	NI			
Mali	22	31	PI			
Mutimarcs	4	6	ES			
Mauritius	88	95	ES			
Morocco	27	41	NI			
No ambigue Namibia	et Ex	am ₂ H	elp			
Niger	3	4	PI			
Nigeria 1	53 82 ₀ 0	184	ES			
Kéunion		160	ES			
Rwanda	110	187	ES			
Saint Helena						
Say Tome and Principe	108	116	NI			
Senegal	31	30	NI			
Seychelles	29	49	ES			
Siera Cole II.	143	139	ES			
Somalia	18	26	ES			
South Africa	49	81	EX			
Sudan	9	12	ES			
Swaziland	39	115	NI			
Togo	92	155	PI			
Tunisia	18	27	NI			
Uganda	133	163	NI			
United Republic of Tanzania	43	60	NI			
Western Sahara	18	59	NI			
Zambia	43	104	ES			
Zimbabwe	40	56	NI			

Information source: NI = National inventory; PI = Partial inventory;

ES = Estimate; EX = External data (from other regions)

TABLE 3A.1.4

AVERAGE GROWING STOCK VOLUME (1) AND ABOVEGROUND BIOMASS CONTENT (2) (DRY MATTER) IN FOREST IN 2000 (STURGE FRA 2000)

- (1) To be used for V in Equation 3.2.3
- (2) To be used for B_w in Equation 3.2.9, for L_{conversion} in Equation 3.3.8 in creation Equation 3.4.13. in gapplied for C_t, or C_t and Gapplied for C_t, or C_t and Gapplied for C_t and Gap

	<u> </u>		76)C
b. ASIA			<u> </u>
Country	Volu (abovegi	Tutor CS	ifor- ation
Afghanistan	m ³ /		urce AO
_	128	66	FAO
Armenia	-	105	FAO
Azerbaijan	136	P(14h2	4
Bahrain	14		TFACS
Bangladesh	23	39	FAO
Bhutan	163	178	FAO
Brunei Darussalam	119	ssi ² 611	ment
Cambodia	40	69	FAO
China	52	61	NI
Cyprus	43	2^{2} 1.	F49
Dem People's Rep. of Korea	41	25	ES
East Timor	79	136	FAO
Gaza Strip		$0 \cdot 74$	9380
Georgia	145	97	FAO
India	43	73	NI
Indonesia	79	1056//	utor
Iran, Islamic Rep.	86	149	FAO
Iraq	29	28	FAO
Israel	49	-	FAO
Japan	145	88	FAO
Jordan	38	37	FAO
Kazakhstan	35	18	FAO
Kuwait	21	21	FAO
Kyrgyzstan	32	-	FAO
Lao People's Dem. Rep	29	31	NI
Lebanon	23	22	FAO
Malaysia	119	205	ES
Maldives	-	-	-
Mongolia	128	80	NI
Myanmar	33	57	NI
Nepal	100	109	PI
Oman	17	17	FAO
Pakistan	22	27	FAO
Philippines	66	114	NI

Information source: NI = National inventory; PI = Partial inventory; ES = Estimate; EX = External data (from other regions)

Table 3A.1.4 (Continued) Average growing stock volume (1) and BOVEGBOUND BIGMASS CONTINUE2) (DRY MATTER) IN FOR STATE 000. SOUTH FREE 2000)

- (1) To be used for V in Equation 3.2.3.
- (2) To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in cropland section and for $L_{conversion}$ in Equation 3.4.13. in grassland section, etc. Not to be applied for C $_{t_2}$ or C $_{t_1}$ in Forest section Equation 3.2.3.

b. ASIA (Contin	ued)		
Country	Volume (aboveground)	Biomass (aboveground)	Infor- mation
-	m ³ / ha	t / ha	Source
Qatar	13	12	FAO
Republic of Korea	58	36	NI
Saudi Arabia	12	12	FAO
Shipamer CS	119	205	FAO
Sri Lanka	34	59	FAO
Syrian Arab Rep.	29	28	FAO
Projec	ct Exa	am ¹⁰ H	elm
Thailand	17	29	ΝI
Turkey	136	74	FAO
Turkmeniman (3 to 01	3	FAO
United Arab Emirates		n '	-
Uzbekistan	6		FAO
V et Nar	38	66	ES

TABLE 3A.1.4 (CONTINUED) AVERAGE GROWING STOCK VOLUME (1) AND ABOVEGROUND BIOMASS CONTENT (2) (DRY MATTER) IN FOREST IN 2000. (SOURCE FRA 2000)

19

FAO

(1) To be used for V in Equation 3.2.3.

14

(2) To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in cropland section and for $L_{conversion}$ in Equation 3.4.13. in grassland section, etc. Not to be applied for C $_{t_2}$ or C $_{t_1}$ in Forest section Equation 3.2.3.

c. OCEANIA

West Bank

Yemen

Country	Volume (aboveground) m³/ha	Biomass (aboveground) t / ha	Infor- mation Source
American Samoa			
Australia	55	57	FAO
Cook Islands	=	=	ı
Fiji	-	=	-
French Polynesia	=	-	=
Guam	-	-	-

Information source: NI = National inventory; PI = Partial inventory; ES = Estimate; EX = External data (from other regions)

TABLE 3A.1.4 (CONTINUED)

AVERAGE GROWING STOCK VOLUME (1) AND ABOVEGROUND BIOMASS CONTENT (DRIMATER) IN FOREST IN 2000: STURGE FRA 2000) (1) To be used for V in Equation 3.2.3.

(2) To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in cropland section and for L Equation 3.4.13. in § be be applied for C_{t2} or C

c.OCEANIA (Continued Country Kiribati Marshall Islands Micronesia Nauru New Caledonia New Zealand 321 217 FAO Niue Northern Mariana Isl Palau Papua New Guinea 34 NI Samoa Solomon Islands Tonga Vanuatu Information source: NI = National invertory; PI = Partial inventor ES = Estimate; EX = External data (from other regions)

Table 3A had Gonzinued Average growing stock volume (1) and ABOVEGROUND BIOMASS CONTENT (2) (DRY MATTER) IN FOREST IN 2000. (SOURCE FRA 2000)

(1) To be used for V in Equation 3.2.3.

(2) To be used for $B_{\rm w}$ in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in cropland section and for $L_{conversion}$ in Equation 3.4.13. in grassland section, etc. Not to be applied for C_{t2} or C_{t1} in Forest section Equation 3.2.3.

d. EUROPE

Country	Volume (aboveground) m³ / ha	Biomass (aboveground) t / ha	Infor- mation Source
Albania	81	58	FAO
Andorra	0	0	FAO
Austria	286	250	FAO
Belarus	153	80	FAO
Belgium & Luxembourg	218	101	FAO
Bosnia & Herzegovina	110	-	FAO
Bulgaria	130	76	FAO

Information source: NI = National inventory; PI = Partial inventory; ES = Estimate; EX = External data (from other regions)

TABLE 3A.1.4 (CONTINUED) AVERAGE GROWING STOCK VOLUME (1) AND ABOVEGROUSD PRODASS (ENTRANCE) (A) ARTER) IN FOREST 17000 (1) To be used for V in Equation 3.2.3.

(2) To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in cropland section and for $L_{\text{conversion}}$ in Equation 3.4.13. in grassland section, etc. Not to be applied for C_{t_2} or C_{t_1} in Forest section Equation 3.2.3.

d. EUROPE (Continued)

Country	Volume (aboveground)	Biomass (aboveground)	Infor- mation
·	m ³ / ha	t / ha	Source
Croatia	201	107	FAO
Czech Republic	260	125	FAO
Denmark	124	58	FAO
Estopia	156	85	FAO
utores	89	50	NI
France	191	92	FAO
Germany	268	134	FAO
Per 01e	ct Ex	ams H	ep
Hungary	174	112	FAO
Iceland	27	17	FAO
Treand (a)	3 m	11 25	FAO
Italy	145	74	FAO
Latvia	174	93	FAO
Litchunstein	254	119	FAO
Lithuania	183	99	FAO
Malta	232		FAO
Netherlands	160	107	FAO
Norway	89	49	FAO
Poland	213	94	FAO
Portugal	82	33	FAO
Republic of Moldova	128	64	FAO
Romania	213	124	FAO
Russian Federation	105	56	FAO
San Marino	0	0	FAO
Slovakia	253	142	FAO
Slovenia	283	178	FAO
Spain	44	24	FAO
Sweden	107	63	NI
Switzerland	337	165	FAO
The FYR of Macedonia	70	-	FAO
Ukraine	179	-	FAO
United Kingdom	128	76	FAO
Yugoslavia	111	23	FAO

Information source: NI = National inventory; PI = Partial inventory; ES = Estimate; EX = External data (from other regions)

AVERAGE GROWING STOCK VOLUME (1) AND ABOVEGROUND BIOMASS CONTENT (2) (DRY MATTER) IN FOREST IN 2000. (SOURCE FRA 2000)

TABLE 3A.144 CONTINUED)

(1) To be used for V in Control of the used for Bw in Equation 3.3.8 in crossing Equation 3.4.13. in applied for Ct, or Control of the used for Ct, or Control of the used for U in the used for Ct.

e. NORTH ANI	D CENTR		ŧΙ
Country	Volui (aboveground)	(anoveground)	nfor- mation
	m ³ / ha	t / ha	Source
Antigua and Barbuda	116	e C hai	ES CS
Bahamas	-	-	-

Barbados

Dominica

Dominican

Republic El Salvador

Belize	202 A	SS199NT	nen	
Bermuda	-	٠ . (
British Virgin Islands	-	!1.	- 4 -	
Canada	120	nal.	UFA6)	
Cayman Islands	-	-	-	
Costa Rica	211	220	ES	
Cuba	71	• 114 🖊	9318	
I		\smile \cdot	<i>-</i>	

29

166

ES

ES

Greenland	- 110	P5.//C	-
Grenada	83	150	PI
Guadeloupe	-	-	-
Guatemala	355	371	ES
Haiti	28	101	ES
Honduras	58	105	ES
Jamaica	82	171	ES
Martinique	5	5	ES
Mexico	52	54	NI
Montserrat	-	-	-
Netherlands Antilles	-	-	-
Nicaragua	154	161	ES
Panama	308	322	ES
Puerto Rico	-	-	-
Saint Kitts and Nevis	-	-	-
Saint Lucia	190	198	ES
Saint Pierre &			

Information source: NI = National inventory; PI = Partial inventory;

ES = Estimate; EX = External data (from other regions)

做 CS編輯编

AVERAGE GROWING STOCK VOLUME (1) AND ABOVEGROUND BIOMASS CONTENT (2) (DRY MATTER) IN FOREST IN 2000. (SOURCE FRA 2000)

- (1) To be used for V in Equation 3.2.3.
- (2) To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in cropland section and for $L_{conversion}$ in Equation 3.4.13. in grassland section, etc. Not to be applied for $C_{\,t_2}$ or $C_{\,t_1}$ in Forest section Equation 3.2.3.

e. NORTH AND CENTRAL AMERICA (Continued)

Country	Volume (aboveground)	Biomass (aboveground)	Infor- mation	
	m³ / ha	t / ha	Source	
Saint Vincent and	166	173	NI	
Trinidad and Tobago	71	129	ES	
United States US Virgin slands	ct Exa	m-He	FAO	

TABLE 3A.1.4 (CONTINUED)

A PERIOD GROWING STOCK VOLUME (1) AND

LOVEROLIN DIOMASS CONTENT (2) (DRY MATTER) IN

FOREST IN 2000. (SOURCE FRA 2000)

(1) To be used for V in Equation 3.2.3.

2) To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in cropland section and for $L_{conversion}$ in Equation 3.4.13. in grassland section, etc. Not to be applied for C_{t_2} or C_{t_1} in Forest section Equation 3.2.3.

GOUTH AMERICA

(aboveground)	(aboveground)	Infor- mation
m ³ / ha	t / ha	Source
25	68	ES
114	183	PI
131	209	ES
160	268	ES
108	196	NI
121	151	ES
-	-	-
145	253	ES
145	253	ES
34	59	ES
158	245	NI
145	253	ES
-	-	-
134	233	ES
	m³ / ha 25 114 131 160 108 121 - 145 145 34 158 145	m³ / ha t / ha 25 68 114 183 131 209 160 268 108 196 121 151 - - 145 253 34 59 158 245 145 253 - -

Miquelon

程序任写描述 CS编程编号 AVERAGE ANNUAL INCREMENT IN ABOVE GROUND BIOMASS IN NATURAL REGENERATION BY BROAD CATEGORY (tonnes dry matter/ha/year)								
		`	for G_W in Equation	,				
			nd Sub-Tropical	Forests				
Age Class			Moist with Long Dry Season	Dry	Montane Moist	Montane Dry		
	R	T.3. 5	R>1000	R<1000	R>1000	R<1000		
Africa								
≤20 years	□□□ □ □□ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□	5.3	2.4 (2.3 – 2.5)	$ \begin{array}{c} 1.2 \\ (0.8 - 1.5) \end{array} $	5.0	2.0 $(1.0 - 3.0)$		
>20 years	3.1.(2.3 -3.8)	1.3	1.8 (0.6 – 3.0)	0.9 (0.2 – 1.6)	1.0	1. 5 (0.5 – 4.5)		
Asia & Oceania Continental	** C C	nat.	cstuto.	108				
≤20 years	(3.0 A 1 5 8 S 1 2	nme	nt Pro	ject F	zam i	Help		
>20 years	2.2 (1.3 – 3.0)	2.0	1.5	1.3 $(1.0 - 2.2)$	1.0	0.5		
Insular ≤20 years	Emai	liatut	ores@	163.0	com	3.0		
>20 years	3.4	3.0	2.0	1.0	3.0	1.0		
America		7.400	00474					
≤20 years	10)()	/493	894/6	4.0	5.0	1.8		
>20 years	1.9 (1.2 – 2.6)	2.0	1.0	1.0	1.4 (1.0 – 2.0)	0.4		
	 https:	//t11f	mperate Forests	om 		n c		
Age (lass		3.0		Broa 4.			
≤20 y	rears	(0.5 - 6.0)			(0.5 - 8.0)			
>20 y	vears	3.0 (0.5 – 6.0)			4.0 (0.5 – 7.5)			
			Boreal forests					
Age Class	Mixed Broadleaf Coniferous	- (Coniferous	Forest-Tun	dra B	Broadleaf		
Eurasia								
≤20 years	1.0	1.5		0.4 $(0.2 - 0.5)$	5) (1.5 1.0 – 2.0)		
>20 years	1.5	2.5		0.4 $(0.2 - 0.5)$	5)	1.5		
America								
≤20 years	$ \begin{array}{c} 1.1 \\ (0.7 - 1.5) \end{array} $		0.8 (0.5 – 1.0)				5) (1.5 (1.0 – 2.0)
>20 years	1.1 (0.7 — 1.5)		$ \begin{array}{c} 1.5 \\ (0.5 - 2.5) \end{array} $	0.4 $(0.2 - 0.1)$	5) (1.3 (1.0 – 1.5)		
Note: R= annual rainfall in mm/yr Note: Data are given as mean value and as the range of possible values.								

Table 3A.1.6 Annual average above ground by mast territory in Placing by Property of the Prop

(To be used for G_W in Equation 3.2.5.

In case of missing values it is preferred to use stemwood volume increment data I_V from Table 3A.1.7)

	[=].7		and sub-tr	ropical Forests	S		
	Age		oist with ort Dry Season	Moist with Long Dry Season	Dry	Montane Moist	Montane Dry
	7.54	Tutor CS	2000>F	R>1000	R<1000	R>1000	R<1000
Africa	in in the		1 .				
Eucalyptus spp	≤2(📜 📭		20.0	12.6	5.1 (3.0-7.0)	-	-
	>20 years	-	25.0	-	8.0 (4.9-13.6)	-	-
Pinus sp	≤20 years	Cha	t: esti	atore	3.3 (0.5-6.0)	-	-
	>20 years		15.0	11.0	2.5	-	-
others	≤20 years	6.5 (5.0-8.0)	9.0 (3.0-15.0)	10.0 D(4.0-16.0)	15.0 Ct F v	am F	Ieln
	>20 years	orgin	HOHU.	rroje		all I	icip
Asia							
Eucalyptus spp	En	13 ^{5.0}	utorc	S ⁽⁵ (20)0)	63.cc	$\mathbf{m}^{3.1}$	-
other species	-	5.2 (2.4-8.0)	7.8 (2.0-13.5)	7.1 (1.6-12.6)	6.45 (1.2-11.7)	5.0 (1.3-10.0)	-
America	Ω	7/1	0380	176	-	-	-
Pinus	QC	18.0	(5.0 - 19.0)	(4.0 - 10.3)	5.0	14.0	-
Eucalyptus	htt [.]	21.0 (6.4 - 38/.4)	16.0 (6.4 - 32.0)	16.0 C ^{(6.4} - 32.0)	16.0	13.0 (8.5 - 17.5)	-
Tectona		15.0	8.0 (3.8 - 11.5)	8.0 (3.8 - 11.5)	-	2.2	-
other broadleaved	-	17.0 (5.0 - 35.0)	18.0 (8.0 – 40.0)	10.5 (3.2 - 11.8)	-	4.0	-

Note 1: R= annual rainfall in mm/yr

Note 2: Data are given as mean value and as the range of possible values.

Note 3: Some Boreal data were calculated from original values in Zakharov *et al.* (1962), Zagreev *et al.* (1993), Isaev *et al.* (1993) using 0.23 as belowground/aboveground biomass ratio and assuming a linear increase in annual increment from 0 to 20 years.

Note 4: For plantations in temperate and boreal zones, it is good practice to use stemwood volume increment data (I_v in Equation 3.2.5) instead of above ground biomass increment as given in above table.

References for Tables 3A.1.2, 3A.1.3, 3A.1.4, 3A.1.5, and 3A.1.6

Tropical and subtropical

Brown, S. (1996). A primer for estimating biomass and biomass change of tropical forest. FAO, Rome, Italy. 55 pp.

Budowski, G. (1985). The place of Agroforestry in managing tropical forest. In La conservación como instrumento para el desarrollo. Antología. San José, Costa Rica. EUNED. 19 pp.

Burrows, W. H.; Henry, B. K.; Back, P. V., et al. (2002) Growth and carbon stock change in eucalypt woodlands in northeast Australia: ecological and greenhouse sink implications. Global Change Biology 8 (8): 769-784 2002

Chudnoff, M. (1980). Tropical Timbers of the World. US Department of Agriculture, Forest Service, Forest Products Laboratory. Madison, W1. 831 pp.

Clarke et al. (2001) NPP in tropical forests: an evaluation and synthesis of existing field data. Ecol. Applic. 11:371-384

Evans, J. (1982). Plantation forestry in the tropics. Oxford.

Favrichon, V. (1997). Réaction de peuplements forestiers tropicaux a des interventions sylvicoles. Bois et des forets des tropiques 254: 5-24

- FBDS: FUNDACAO BRASILERA PARA O DESEMVOLVIMENTO SUSTENTAVEL. (1997). Avaliacao das emissoes de gases de efeito estufa devido as mudancas no estoques de florestas plantadas. Rio de Janeiro (Brasil). 44 pp.
- Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90(1): 59-87. FIA: Fundación para la Innovación agralia. (2001) Pote ten I de proyec de Grestales en el Mecanismo de Desarrollo Limpio, realizado 06-07 la Innovación de Posarrollo Limpio, realizado 06-07 de diciembre de 2001. Santiago de Chile. 26 pp.
- GASTON G., BROWN S., LORENZINI M. & SING. (1998). State and change in carbon pools in the forests of tropical Africa. Global Change Biology 4 (1), 97-11
- Gower S.T., Gholz H.L, Nakai
- 43:115-135 (data converted 1 $erfall = 2 \times L(-38)C$ foliage annual production) Grace J., Malhi Y., Higuchi N. of tropical Rain Forests in "Terrestrial Global productivity" Roy J, Saugier B.,

duction and carbon allocation patterns of pine forests Ecological bulletins

- Press, San Diego, 401-426 & Mooney H.Eds, Physiolog Intations of balsam poplars, aspen and willows on former arable land in the Hofmann-Schielle, C., A. Jug, Forest Ecology and Management 121(1/2): 41-55. Federal Republic of German
- IBDF. (1983). Potencial mad tuto Brasileiro de Desenvolvimento Florestal, Brasilia, DF, Brazil. 134 pp. tal. 1983, 1987. IPCC Guidelines (1996). Worl
- Klinge, H.; Rodrigues, W.A. (1973). Biomass estimation in a central Amazonian rain forest. Acta Científica Venezolana 24:225-237
- Laclau, J. P., J. P. Bouillet, et al. (2000). Dynamics of biomass and nutrient accumulation in a clonal plantation of Eucalyptus in Congo. Forest Ecology and Management 128(3): 181-196
- Lamprecht, H. (1990). Silvicul uje jh the ropics. GTZ 4Rossdorf Deutsch
- Rossdoxt Apartichet 133 pa (1951-1999); and Thesis from National High School of Forestry (ENFI); and Mandouri T. et al. in "Annales de la recherch Hassan II Agronomic Institut(IAVHII)
- MDSP/PNCC: MINISTERIO DE DESARROLLO SOSTENIBLE Y PLANIFICACION; PROGRAMA NACIONAL DE CAMBIOS CLIMATICOS. (2002). Inventariación de Emisiones de Gases de Efecto Invernadero, Bolivia, 1990, 1994, 1998 y 2000. La Paz (Bolivia).
- MINISTERIO DE MEDIOAMBIENTE Y REDRSOS NATURALES. (2000). Taller Regional Centro Americano sobre el Cambio Climático, 24-26 de junio de 2000. Ciudad de Panamá, Panamá.
- Montagnini, F. (2000). Accumulation in above-ground biomass and soil storage of mineral nutrients in pure and mixed plantations in a humid tropical lowland. Forest Ecology and Management 134(1/3): 257-270
- Moreno, H. (2001). Estado de la Investigación sobre di lá pica del carbono en p rovecto Farestales de Clombil. Universidad Nacional de Colombia, Sede Medellín, Departamento de Ciencias Forestales. Medellín, Colombia.
- Norgrove, L. and S. Hauser (2002). Measured growth and tree biomass estimates of Terminalia ivorensis in the 3 years after thinning to different stand densities in an agrisilvicultural system in southern Cameroon. Forest Ecology and Management 166(1/3): 261-270.
- PAC-NK: NOEL KEMPFF CLANTIE ACTION PROJECT SOLD North Kemp Folimate Action Project: project case carbon inventory and offset benefits. Winrock Drive. Actington, U.S.A. 45 pp. Pandey, D (1982).
- Parrotta, J. A. (1999). Productivity, nutrient cycling, and succession in single- and mixed-species plantations of Casuarina equisetifolia, Eucalyptus robusta, and Leucaena leucocephala in Puerto Rico. Forest Ecology and Management 124(1): 45-77
- Peters, R. (1977). Fortalecimi no al se turno esta Guaren la inventory estudos der dipmétricos en bosques de coniferas. FO:DP/GUA/72/006, Informe Técnico 2, FAO, Rome, Italy.
- Ramírez, P.; Chacón, R. (1996). National Inventory of Sources and Sinks of Greenhouse Gases in Costa Rica. U.S. Contry Studies Program. Kluwer Academic Publishers. Boston, U.K. 357-365.
- Russell, C.E. (1983). Nutrient cycling and productivity of native and plantation forest at Jari Florestal, Pará, Brazil. Ph.D. dissertation in ecology, University of Georgia, Athens, Georgia, U.S.A. 133 pp
- Saldarriaga, C.A.; Escobar, J.G.; Orrego, S. A.; Del Valle, I. (2001). Proyectos de Reforestación como parte del Mecanismo de Desarrollo Limpio: una aproximación preliminar para el análisis financiero y ambiental. Universidad Nacional de Colombia, Departamento de Ciencias Forestales. Medellín (Colombia). 61 pp.
- Wadsworth, F.H. (1997). Forest production for tropical America. USDA Forest Service Agriculture Handbook 710. Washington, DC, USDA Forest Service
- Webb, D.B., Wood, P.J., Smith, J.P. & Henman, G.S. (1984). A guide to species selection for tropical and subtropical plantations. Tropical Forestry Papers No. 15 Oxford, UK, Commonwealth Forestry Institute.

Temperate

- Data includes values compiled by DR. JIM SMITH, USDA FOREST SERVICE, DURHAM NH USA 03824. jsmith11@fs.fed.us, Lheath@fs.fed.us
- Botkin D.B., Simpson L.G. (1990) Biomass of North American Boreal Forest. Biogeochemistry, 9: 161-174.
- Brown S., Schroeder P., Kern J.S. (1999) Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management, 123:81-90
- Burrows, W. H.; Henry, B. K.; Back, P. V., et al. (2002) Growth and carbon stock change in eucalypt woodlands in northeast Australia: ecological and greenhouse sink implications. Global Change Biology 8 (8): 769-784 2002
- Fang, S., X. Xu, et al. (1999). Growth dynamics and biomass production in short-rotation poplar plantations: 6-year results for three clones at four spacings. Biomass and Bioenergy 17(5): 415-425.
- Götz S, D'Angelo SA, Teixeira W G, l Haag and Lieberei R (2002) Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stocks after 7 years, For. Ecol. Manage 163 Pages 131-150

- Gower S.T., Gholz H.L, Nakane K.,Baldwin V.C. (1994) Production and carbon allocation patterns of pine forests Ecological bulletins 43:115-135 (data converted from aNPP values assuming litterfall =2 x foliage annual production)
- Grierson, P. F., M. A. Adams, et al. (1992). Estimates of carbon storage in the above-ground biomass of Victoria's forests. Australian Journal of Botany 40(4/5): 631-640.
- Hall GMJ, Wiser SK, Allen RB, Bets PN and Coulding C 2001). Stategies to estimate national follower arrival tooks from inventory data: the 1990 New Zealand baseline. Global Change Biology, 7:389-403.
- Hofmann-Schielle, C., A. Jug, *et al.* (1999). Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of German Forest Ecology and Management 121(1/2): 41-55.
- Santa Regina, I. and T. Tarazo natural beech forest and adjacent planted pine in northern Spain. Forestry (Oxford) 74(1): 11-28
- Shan, J Morris L A. & Hendric Journal of Applied Ecology:
- Smith and Heath. Data includes vandes complete by D.C. shot SMITH, USDA FOREST SERVICE, DURHAM NH USA 03824. jsmith11@fs.fed.us, Lheath@fs.fed.us
- Son YH; Hwang JW; Kim ZS; Lee WK; Kim JS (2001) Allometry and biomass of Korean pine (Pinus koraiensis) in central Korea. Bioresource Technology 78 (3):251-255 2001
- Turnbull, C.R.A., McLeod, D.E. Byade, C.L., Harkovsky, D.C., Synhrely I.O. In Bis. T. (1993). Comparative growth of Eucalyptus species of the subgenera Monocalyptus and Symphyomyrtus in intensively managed plantations in southern Tasmania. Aust. For. 56, pp. 276–286.
- U'soltsev and Van Clay. (1995). Stand Biomass Dynamics of Pine plantations and natural forests on dry steppe in Kazakhstan Scan J For Res, 10, 305-312
- Vogt K (1991). Carbon budgets of temperate forest ecosystems. Tree Physiology, 9:69-86.
- Zhou, G., Y. Wang, et al. (2002). Estimating blomass at direct triming production for sain and or sain

Boreal

- Finnish Forest Research Institute (2002) Finnish Statistical Yearbook of Forestry SVT Agriculture and Forestry, Helsinki, Finland.
- Isaev, A.S., Korovin, G.N., Utkin A.I., Pryazhnikov A.A., and D.G. Zamolodchikov (1993) *Estimation of Carbon Pool and Its Annual Deposition in Phytomass of Forest Ecosystems in Russia*, Forestry (*Lesovedenie*), 5: 3-10 (In Russian).
- Kajimoto, T., Y. Matsuura, et al. (1999). Above- and belowground biomass and net primary productivity of a Larix gmelinii stand near Tura, central Siberia. Tree Physiology 19(12) \$6-822.
- central Siberia. Tree Physiology 19(12) 8-824. / tutores. Com Koivisto, 1959; Koivisto, P., (1959) Growth and Yield Tables. Commun. Inst. For. Fenn. Vol 51 no. 51.8: 1-49 (In Finnish with headings in English).
- Kurz, W.A. and M.J. Apps. (1993): Contribution of northern forests to the global C cycle: Canada as a case study. Water, Air, and Soil Pollution, 70, 163-176.
- Nilsson S., Shvidenko A., Stolbovoi V., Glick M., Jonas M., Obersteiner M. (2000). Full carbon account for Russia. Interim Report IR -00-021 Int Inst Appl Anal, 181 pages.
- UN-ECE/FAO (2000). Forest Resources of Europe, CIS, North America, Australia, Japan and new Zealand (industrialized temperate / boreal countries.UN-ECE/FAO contribution to th Global Forest Resources Assessment 2000, United Nations, New-Ypork and Geneva, geneva Timber and Forest Study papers, No 17.446 p.
- Vuokila, Y. and Väliaho, H. (1980). Growth and yield models for conifers cultures in Finland. Commun. Inst. For. Fenn. 99(2):1-271
- Wirth C., E.-D. Schulze, W. Schulze, D. von Stünzner-Karbe, W. Ziegler, I. M. Miljukova, A. Sogatchev, A. B. Varlagin, M. Panvyorov, S. Grigoriev, W. Kusnetzova, M. Siry, G. Hardes, R. Zimmermann, N. N. Vygodskaya (1999). Above-ground biomass and structure of pristine Siberian Scots pine forests as controlled by competition and fire. Oecologia 121: 66-80
- Zakharov, V.K., Trull, O.A., Miroshnikov, V.S., and V.E. Ermakov (1962) The Reference Book on Forest Inventory. Belarus State Publishing, Minsk, p. 368. (In Russian).
- Zagreev, V.V., Sukhikh, B.I., Shvidenko, A.Z., Gusev, N.N., and A.G. Moshkalev (1993) *The All-Union Standards for Forest Inventory. Kolos*, Moscow, p. 495. (In Russian).

TA AVERAGE ANNUAL ABOVE GROUND NET IN	ABLE 3A.1.7	DI ANTATIONS DV SPECIES					
	m ³ /ha/yr) or 1, in F50ation 3.2.5	岛程铺具	•				
I _V Species							
	Range	Mean*					
E. deglupi	14 - 50	32					
E. globult	10 - 40	25					
E. grandis	15 - 50	32.5					
E. saligna	10 - 55	32.5					
E. camald	15 - 30	22.5					
E. urophy	20 - 60	40					
E. robusta	10 - 40	25					
Pinus caribaea var. caribaea	10 - 28	19					
Pinus caribaea var. hondurensis	20 - 50	35					
Pinus patula C C C Pinus patula C C	Stutores	24					
Pinus radiata	12 - 35	23.5					
Pinus oocarpa	10 - 40	25					
Araucaria angustifelia onne	nt Praiec	t Fyam I	Help				
A. cunninghamii	10-18						
Gmelina arborea	12 - 50	31					
Swietenia macrophylla	7,30 1	18.5					
Tectona grandi)1C&@ 10	5.COIII					
Casuarina equisetifolia	6 - 20	13					
C. junghuhniana	7 - 11	9					
Cupressus lustranic • 7403	<u> </u>	24					
Cordia alliadora	10 - 20	15					
Leucaena leucocephala	30 - 55	42.5					
Acacia auriculiformis	6 - 20	13					
Acacia mearadii DS.// LULC)1CS ₁₄ CD111	19.5					
Terminalia superba	10 - 14	12					
Terminalia ivorensis	8 - 17	12.5					
Dalbergia sissoo	5 - 8	6.5					

^{*} For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%

Source: Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001)

Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM

AVERAG	GE BELOWGROUND TO ABOVE	GROUND BIOMASS		от-ѕноот			AL REGENERATION BY
	程際	CATEGORY (to nn (To be used f		τ		程有	#异
	Vegetation type	Aboveground biomass (t/ha)	Mean	SD	lower range	upper range	References
/sub-	Secondary tropic 1/ forest		0.42	0.22	0.14	0.83	5, 7, 13, 25, 28, 31, 48, 71
Tropical/sub- tropical forest	Primary tropical/ moist forest	44.12	0.24	0.03	0.22	0.33	33, 57, 63, 67, 69
T	Tropical/sub-trop		0.27	0.01	0.27	0.28	65
u u	Conifer forest/pla	or CS	0.46	0.21	0.21	1.06	2, 8, 43, 44, 54, 61, 75
Conifer forest/ plantation	Conifer forest/pla		0.32	0.08	0.24	0.50	6, 36, 54, 55, 58, 61
Co foi plan	Conifer forest/pla		0.23	0.09	0.12	0.49	1, 6, 20, 40, 53, 61, 67, 77, 79
t/	Oak forest	>70	0.35	0.25	0.20	1.16	15, 60, 64, 67
ores	Eucalypt plantation	<50	0.45	0.15	0.29	0.81	9, 51, 59
eaf i n	Eucalypt plantation (1 8-150 C	Stati	OFC	S 0.15	0.81	4, 9, 59, 66, 76
te broadlea plantation	Eucalypt forest/plantation	>150	0.20	0.08	0.10	0.33	4, 9, 16, 66
te bı plan	Other broadleaf forest	<75	0.43	0.24	0.12	0.93	30, 45, 46, 62
Temperate broadleaf forest/ plantation	Other broadleaf forest SS1	gnmei	1t.26P	roje	Ct ³ I	Exa	30, 36 45 46, 62, 77, 78, 81 C
I	Other broadleaf forest	>150	0.24	0.05	0.17	0.30	3, 26, 30, 37, 67, 78, 81
p	Steppe/tundra/prairie grassland	NS	3.95	2.97	1.92	10.51	50, 56, 70, 72
Grassland	Temperate/sub-tropical/tropical grassland	il: tuto	ores	1	63.	con	22, 23, 32, 52
9	Semi-arid grassland	NS	2.80	1.33	1.43	4.92	17-19, 34
,	Woodland/savanna	74 ^{NS} 29	048	0.19	0.26	1.01	10-12, 21, 27, 49, 65, 73, 74
Other	Shrubland	1433	2.83	2.04	0.34	6.49	14, 29, 35, 38, 41, 42, 47, 67
	Tidal marsh	NS	1.04	0.21	0.74	1.23	24, 39, 68, 80
NS = Not	specified https	:://tutc	orcs	.cor	n		

References for Table 3A.1.8

- Alban, D., D. Perala, and B. Schlaegel (1978) Biomass and nutrient distribution in aspen, pine, and spruce stands on the same soil type in Minnesota. Canadian Journal of Forest Research 8: 290-299.
- Albaugh, T., H. Allen, P. Dougherty, L. Kress, and J. King (1998) Leaf area and above- and below-ground growth responses of loblolly pine to nutrient and water additions. Forest Science 44(2): 317-328.
- 3. Anderson, F. (1971) Methods and Preliminary results of estimation of biomass and primary production in a south Sweedish mixed deciduous woodland. In: *Productivity of forest ecosystems. Proceedings of the Brussels symposium, 1969, ecology and conservation 4.* UNESCO, Paris.
- 4. Applegate, G. (1982) Biomass of Blackbutt (Eucalyptus pilularis Sm.) Forests on Fraser Island. Masters Thesis. University of New England, Armidale.
- 5. Bartholomew, W., J. Meyer, and H. Laudelout (1953) Mineral nutrient immobilization under forest and grass fallow in the Yangambi (Belgian Congo) region. *Publications de l'Institut National Pour l'Etude Agronomique du Congo Belge Serie scientifique* 57: 27pp total.
- 6. Baskerville, G. (1966) Dry-matter production in immature balsam fir stands: roots, lesser vegetation, and total stand. Forest Science 12: 49-53.
- 7. Berish, C. (1982) Root biomass and surface area in three successional tropicl forests. Canadian Journal of Forest Research 12: 699-704.
- 8. Braekke, F. (1992) Root biomass changes after drainage and fertilisation of a low-shrub pine bog. Plant and Soil 143: 33-43.
- 9. Brand, B. (1999) *Quantifying biomass and carbon sequestration of plantation blue gums in south west Western Australia*. Honours Thesis. Curtin University of Technology,
- 10. Burrows, W. (1976) Aspects of nutrient cycling in semi-arid mallee and mulga communities. PhD Thesis. Australian National University, Canberra.
- 11. Burrows, W., M. Hoffmann, J. Compton, P. Back, and L. Tait (2000) Allometric relationships and community biomass estimates for some dominant eucalypts in Central Queensland woodlands. *Australian Journal of Botany* 48: 707-714.
- 12. Burrows, W., M. Hoffmann, J. Compton, and P. Back (2001) *Allometric relationships and community biomass stocks in white cypress pine (Callitris glaucophylla) and associated eucalypts of the Carnarvon area south central Queensland*. National Carbon Accounting System Technical Report No. 33. Australian Greenhouse Office, Canberra. 16 p.

- Buschbacher, R., C. Uhl, and E. Serrao (1988) Abandoned pastures in eastern Amazonia. II. Nutrient stocks in the soil and vegetation. Journal of Ecology 76: 682-701.
- 14. Caldwell, M. and L. Camp (1974) Belowground productivity of two cool desert communities. Oecologia 17: 123-130
- Canadell, J. and F. Roda (1993) of Qu ne Medite Research 21(12): 1771-1778
- Chilcott, C. (1998) The initial impacts of reforestation and deforestation on herbaceous species, litter decomposition, soil biota and nutrients in native temperate pastures on the Northern Tablelands, NSW. PhD Thesis. University of New England, Armidale.
- Christie, E. (1978) Ecos sslands. I. Primary production and water use of two communities possessing different photosynthetic Agricultural Research **29**: 773-787.
- 18. Christie, E. (1979) Eco arid grasses Aristida leptopoda and Astrebla lappacea. Australian Journal of Ecology 4: 223-228.
- Christie, E. (1981) Biom semi-arid Australian grassland community. Journal of Applied Ecology 18: 907-918.
- Cole, D., S. Gessel, and cycling of nitrogen, phosphorus, potassium, and calcium in a second-growth Letivity and mineral cycling in natural ecosystems. American Association for the Douglas-fir ecosystem. In Advancement of Science rk City, December 27, 1967: University of Maine Press.
- Root-shoot ratios and root distribution for woodland communities across a 21. Compton, J., L. Tait, M. rainfall gradient in central Queensland. In: Proceedings of the VI International Rangeland Congress. Townsville, Australia.
- Cooksley, D., K. Butler, J. Prinsen, and C. Paton (1988) Influence of soil type on Heteropogon contortus Bothrichloa bladhii dominant native pasture in south-eastern Queensland. Australian Journal of Experimental Agriculture 28: 587-591
- De Castro, E.A. and J.B. Klant mart 1998) Edecy tem structure in the Brazillah Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. *Journal of Tropical Ecology* 14(3): 263-283.
- De la Cruz, A. and C. Hackney (1977) Energy value, elemental composition, and productivity of belowground biomass of a Juncus tidal marsh. Ecology 58: 1165-1170.
- Drew, W., S. Aksornkoae, and W. Kaitpraned Drew, W., S. Aksornkoae, and W. Kaiipraneat (1978) An assessment of productivity in successional stage (Rai) to dry evergreen forest in nonlineastern I hail and Lovest Bullet a 56, 3 Uptil
- Dylis, N. (1971) Primary production of mixed forests. In: Productivity of forest ecosystems. Proceedings of the Brussels symposium, 1969. Paris: UNESCO.
- 27. Eamus, D., X. Chen, G. Kelley, and L. Hutley (2002) Root biomass and root fractal analyses of an open Eucalyptus forest in a savanna of north Australia. Australian Johnna of Borany 51: 31-41 OTCS (U)
 Ewel, J. (1971) Biomass changes in early tropical succession. Turrialba 21: 110-112
- 29. Forrest, G. (1971) Structure and production of North Pennine blanket bog vegetation. Journal of Ecology 59: 453-479.
- 30. Garkoti, S. and S. Singh (1995) Variation in net primary productivity and biomass of forests in the high mountains of Central Himalaya. Journal of Vegetation Science (2328. 7403 80476
 31. Golley, F., H. Odum, and R. Vilson (962) The structure and metabolism of a Puerto Rican red mangrove forest in May. *Ecology* **43**(1): 9-19. Journal of Vegetation Science 6 23 28.
- 32. Graham, T. (1987) The effect of renovation practices on nitrogen cycling and productivity of rundown buffel grass pasture. PhD Thesis. University of Queensland,
- 33. Greenland, D. and J. Kowal (1960) Nutrient content of the moist tropical forest of Ghana. Plant and Soil 12: 154-173.
- Grouzis, M. and L. Akpo 1197. In the gree of tree cover of the description and below-ground phytomas in the Sahelian zone of Senegal. Journal of Arid Environments 35: 285-296.
- Groves, R. and R. Specht (1965) Growth of heath vegetation. 1. Annual growth curves of two heath ecosystems in Australia. Australian Journal of Botany 13: 261-280.
- Harris, W., R. Kinerson, and N. Edwards (1977) Comparison of belowground biomass of natural deciduous forest and loblolly pine plantations. Pedobiologica 17: 369-381.
- 37. Hart, P., P. Clinton, R. Allen, A. Nordmeyer, and G. Evans (2003) Biomass and macro-nutrients (above- and below-ground) in a New Zealand beech (Nothofagus) forest ecosystem: implications for carbon storage and sustainable forest management. Forest Ecology and Management 174: 281-294.
- 38. Hoffmann, M. and J. Kummerow (1978) Root studies in the Chilean matorral. Oecologia 32: 57-69.
- Hussey, A. and S. Long (1982) Seasonal changes in weight of above- and below-ground vegetation and dead plant material in a salt marsh at Colne Point, Essex. Journal of Ecology 70: 757-771.
- Johnstone, W. (1971) Total standing crop and tree component distributions in three stands of 100-year-old lodgepole pine. In: Forest biomass studies. 15th IUFRO Congress (Ed. ^Eds. H. Young). University of Maine Press, Orono. p. 81-89.
- Jones, R. (1968) Estimating productivity and apparent photosynthesis from differences in consecutive measurements of total living plant parts of an Australian heathland. Australian Journal of Botany 16: 589-602.
- Kummerow, J., D. Krause, and W. Jow (1977) Root systems of chaparral shrubs. Oecologia 29: 163-177.
- Linder, S. and B. Axelsson (1982) Changes in carbon uptake and allocation patterns as a result of irrigation and fertilisation in a young Pinus sylvestris stand. In: Carbon Uptake and Allocation: Key to Management of Subalpine Forest Ecosystems (Ed. ^Eds. R. Waring). Forest Research Laboratory, Oregon State University, Corvallis, Oregon. p. 38-44.
- 44. Litton, C., M. Ryan, D. Tinker, and D. Knight (2003) Belowground and aboveground biomass in young postfire lodgepole pine forests of contrasting tree density. Canadian Journal of Forest Research 33(2): 351-363.
- 45. Lodhiyal, L. and N. Lodhiyal (1997) Variation in biomass and net primary productivity in short rotation high density central Himalayan poplar plantations. Forest Ecology and Management 98: 167-179.
- Lodhiyal, N., L. Lodhiyal, and P. Pangtey (2002) Structure and function of Shisham forests in central Himalaya, India: dry matter dynamics. Annals of Botany 89: 41-54.
- 47. Low, A. and B. Lamont (1990) Aerial and belowground phytomass of Banksia scrub-heath at Eneabba, South-Western Australia. Australian Journal of Botany 38: 351-359.

- 48. Lugo, A. (1992) Comparison of tropical tree plantations with secondary forests of similar age. Ecological Monographs 62: 1-41.
- 49. Menaut, J. and J. Cesar (1982) The structure and dynamics of a west African savanna. In: *Ecology of Tropical Savannas* (Ed.^Eds. B. Huntley and B. Walker). Springer-Verlag, Betlin. p. 80-100.
- 50. Milchunas, D. and W. Lauforgh (1987) Three dimeter and lits ribut of plant biomass, clariforgo golden and prography in the shortgrass steppe. Oikos 55, 82-86.
- 51. Misra, R., C. Turnbull, R. Cromer, A. Gibbons, and A. LaSala (1998) Below- and above-ground growth of *Eucalyptus nitens* in a young plantation. I. Biomass. *Forest Ecology and Management* **106**: 283-293.
- 52. Nepstad, D. (1989) Fore. Dissertation. Yale Unive
- 53. Nihlgård, B. (1972) Plan State of the st
- 55. Ovington, J. and H. Mad Tours Science Science St. 344-355.
- 56. Ovington, J. (1963) Plant Frairie, savanna, oakwood, and maize field ecosystems in central Minnesota. *Ecology* **44**(1): 52-63.
- 57. Ovington, J. and J. Olson (1970) Biomass and chemical content of El Verde lower montane rain forest plants. In: *A tropical rain forest. A study of irradiation and ecology at El Verde, Puerto Rico (Division of Technical Information TID 24270)* (Ed.^Eds. H. Odum and R. Pigeon). US Atomic Energy Commission, Washington DC. p. 53-77.
- 58. Pearson, J., T. Fahey, and Dikinght (1984) Biomass and leaf area in contrasting lodgepole pine forests. Canadian Journal of Forest Research 14: 259-265. CSTUTOTCS
- 59. Prasad, R., A. Sah, A. Bhandari, and O. Choubey (1984) Dry matter production by *Eucalyptus camaldulensis* Dehn plantationin Jabalpur. *Indian Forester* 110: 868-878.
- 60. Rawat, Y. and J. Singh (1988) Structure and function of oak forests in Central Himalaya. I. Dry matter dynamics. *Annals of Botany* 62: 397-411.
- 61. Ritson, P. and S. Sochack (2003) Measurement and prediction of biomass and carbon content of *Pinas pinaster* trees in familia estry plantations, south-western Australia. *Forest Ecology and Management* 175: 103-117.
- 62. Ruark, G. and J. Bockheim (1988) Biomass, net primary production, and nutrient distribution for an age sequence of *Populus tremuloides*. Canadian Journal of Forest Research 18: 435-443.
- 63. Shanmughavel, P., Z. Zheng, Shiqing and C. Min 200 Files Constitution of the property of the control of the
- 64. Simonovic, V. (1980) Root productivity studies in deciduous forest ecosystem. In: *Environment and root behaviour* (Ed.^Eds. N. David). Geobios International, Jodhour, India. p. 213-230.
- 65. Singh, K. and R. Misra (1979) Structure and Fut cloying Quatural, Modified and Silvicultural Ecosystems in Eastern Uttar Pradesh. Final Technical Report (1975) 178 MAB research project Bands in India University, Varanasi. 160 p.
- Singh, R. and V. Sharma (1976) Biomass estimation in five different aged plantations of Eucalyptus tereticornix Smith in western Uttar Pradesh. In: Oslo Biomass Studies (Ed. Eds. University of Maine, Orono. p. 143-161.
- 68. Suzuki, E. and H. Tagawa (1983) Biomass of a mangrove forest and a sedge marsh on Ishigaki Island, south Japan. *Japanese Journal of Ecology* 33: 231-234.
- Tanner, E. (1980) Studies on the biomass and productivity in a series of montane rain forests in Jamaica. *Journal of Ecology* 68: 573-588.
- 70. Titlyanova, A., G. Rusch, and E. van der Maarel (1988) Biomass structure of limestone grasslands on Öland in relation to grazing intensity. *Acta phytogeographica suecica* **76**: 125-134.
- 71. Uhl, C. (1987) Factors controlling succession following slash-and-burn agriculture in Amazonia. Journal of Ecology 75: 377-407.
- 72. van Wijk, M., M. Williams, L. Gough, S. Hobbie, and G. Shaver (2003) Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow growing arctic vegetation? *Journal of Ecology* **91**: 664-676.
- 73. Werner, P.A. (1986) Population dynamics and productivity of selected forest trees in Kakadu National Park. Final report to the Australian National Parks and Wildlife Service. CSIRO Darwin, Tropical Ecosystems Research Centre, p.
- 74. Werner, P.A. and P.G. Murphy (2001) Size-specific biomass allocation and water content of above- and below-ground components of three *Eucalyptus* species in a northern Australian savanna. *Australian Journal of Botany* **49**(2): 155-167.
- Westman, E. and R. Whitaker (1975) The pygmy forest region of northern California: studies on biomass and primary productivity. *Journal of Ecology* 63: 493-520.
- 76. Westman, W. and R. Rogers (1977) Biomass and structure of a subtropical eucalypt forest, North Stradbroke Island. *Australian Journal of Botany* **25**: 171-191.
- 77. Whittaker, R. and G. Woodwell (1971) Measurement of net primary production in forests. In: *Productivity of Forest Ecosystems* (Eds.) Paris: UNESCO. p. 159-175.
- Whittaker, R., F. Borman, G. Likens, and T. Siccama (1974) The Hubbard Brook ecosystem study: forest biomass and production. *Ecological Monographs* 44: 233-252.
- 79. Will, G. (1966) Root growth and dry-matter production in a high-producing stand of *Pinus radiata*. New Zealand Forestry Research Notes 44: 1-15.
- 80. Windham, L. (2001) Comparison of biomass production and decomposition between *Phragmites australis* (common reed) and *Spartina patens* (salt hay grass) in brackish tidal marshes of New Jersey, USA. *Wetlands* **21**(2): 179-188.
- 81. Zavitkovski, J. and R. Stevens (1972) Primary productivity of red alder ecosystems. *Ecology* **53**: 235-242.

BASIC PODDESIZATION OF STATISTICS OF THE STATISTICS OF STATISTICS OF THE STATISTICS

(To be used for D in Equations 3.2.3., 3.2.5, 3.2.7, 3.2.8)

回题等形式间	Basic wood density m_0/V_{wet}	Source	
Abies	0.40	1	
Acer	0.52	1	
Alnus	0.45	1	
Betula Tutor CS	0.51	1	
Carpinus	0.63	3	
Castanea:	0.48	3	
Fagus sylvatica	0.58	1	
Fraxinus	0.57	1	
Juglans We hat c	stutercs	3	
Larix decidua	0.46	1	
Larix kaempferi	0.49	3	
Picea abies	0.40	\mathbf{L}^{-1}	T_1_
Picea sitchensis SISIIIIE	n Projec	ı Exam r	Help
Pinus pinaster	0.44	5	
Pinus strobus	0.32	1	
Pinus sylvestism 21 • 1111	orcs@16	3.com	
Populus	0.35	1	
Prunus	0.49	1	
Pseudotsuga menziesii 7/02	2019 ⁴ 5	1	
Quercus QQ. 74930	D 7 4 (.5k)	1	
Salix	0.45	1	
Thuja plicata	0.31	4	
Tilia https://tutc	rcs.com	1	
Tsuga	0.42	4	

Source:

- 1. Dietz, P. 1975: Dichte und Rindengehalt von Industrieholz. Holz Roh- Werkstoff 33: 135-141
- 2. Knigge, W.; Schulz, H. 1966: Grundriss der Forstbenutzung. Verlag Paul Parey, Hamburg, Berlin
- 3. EN 350-2 (1994): Durability of wood and wood products Natural durability of solid wood Part 2: Guide to the natural durability and treatability of selected wood species of importance in Europe
- 4. Forest Products Laboratory: Handbook of wood and wood-based materials. Hemisphere Publishing Corporation, New York, London
- 5. Rijsdijk, J.F.; Laming, P.B. 1994: Physical and related properties of 145 timbers. Kluwer Academic Publishers, Dordrecht, Boston, London
- Kollmann, F.F.P.; Coté, W.A. 1968: Principles of wood science and technology. Springer Verlag, Berlin, New York

TABLE 3A.1.9-2 BASIC WOOD DENSITIES (D) OF STEMWOOD (tonnes dry matter/m³ fresh volume) FOR TROPICAL TREE SPECIES (To be used for D in Equations 3, 2, 3, 3, 2, 5, 3, 2, 7, 3, 2, 8)					
TROPICAL ASIA	和市	TROPICAL AMERICAL		FRO PAL TRICA	D
Acacia leucophloea	0.76	Albizia spp.	0.52	Afzelia spp.	0.67
Adina cordifolia	0.58, 0.59+	Alcornea spp.	0.34	Aidia ochroleuca	0.78*
Aegle marmelo		lora	0.6	Albizia spp.	0.52
Agathis spp.		nea	0.38	Allanblackia floribunda	0.63*
Aglaia llanosiana	200	xcelsum	0.41	Allophyllus africanus f. acuminatus	0.45
Alangium longiflorum	1	a macrocarpa	0.86	Alstonia congensis	0.33
Albizzia amara	Tuto	r CS	0.67	Amphimas pterocarpoides	0.63*
Albizzia falcataria	Tiestys	lduckei	0.62	Anisophyllea obtusifolia	0.63*
Aleurites trisperma		ına	0.38	Annonidium mannii	0.29*
Alnus japonica	┼ ┖═ ┩ <u>╏</u> ┋┰╺┢	Paperoa cermata	0.36	Anopyxis klaineana	0.74*
Alphitonia zizyphoides	0.5	Artocarpus comunis	0.7	Anthocleista keniensis	0.50*
Alphonsea arborea	TT ^{0,69}	Aspidosperma spp.	0.75	Anthonotha macrophylla	0.78*
Alseodaphne longipes	W.42	Astronum lecontes UU	tores	Anthostemma aubryanum	0.32*
Alstonia spp.	0.37	Bagassa guianensis	0.68,0.69+	Antiaris spp.	0.38
Amoora spp.	0.6	Banara guianensis	0.61	Antrocaryon klaineanum	0.50*
Anisophyllea zeylanica	▲ 0.46*	Basiloxylon exelsum	0.58	Auci umea klaineana	T 0387
Anisoptera spp,		Religible Cont	TQ1ec	utranella olgolenkis	1610
Anogeissus latifolia	0.78, 0.79+	Berthollettia excelsa	0.59, 0.63+	Baillonella toxisperma	0.71
Anthocephalus chinensis	0.36,0.33+	Bixa arborea	0.32	Balanites aegyptiaca	0.63*
Antidesma pleuricum	E 959 0	Bombacopsis sepium	~ (B39) (Baphia kirkii	0.93*
Aphanamiris perrottetiana	Ema	Borojoa parinor	S (4)521 O	Beilschmiedia louisii	0.70*
Araucaria bidwillii	0.43	Bowdichia spp.	0.74	Beilschmiedia nitida	0.50*
Artocarpus spp.	0.58	Brosimum spp. (alicastrum	0.64_0.66+	Berlinia spp.	0.58
Azadirachta spp.	0.52	Brosin um utile 0	0.10.46+	Blighia welwitschii	0.74*
Balanocarpus spp.	0.76	Brysenia adenophylla	0.54	Bombax spp.	0.4
Barringtonia edulis *	0.48	Buchenauia capitata	0.61, 0.63+	Brachystegia spp.	0.52
Bauhinia spp.	1_067_	Bugʻida buceras	0.93	Bridelia micrantha	0.47*
Beilschmiedia tawa	nttos	Bulmes a trooped C	com	Calpocalyx klainei	0.63*
Berrya cordifolia	0.78*	Bursera simaruba	0.29, 0.34+	Canarium schweinfurthii	0.40*
Bischofia javanica	0.54,0.58,0.62+	Byrsonima coriacea	0.64	Canthium rubrocostratum	0.63*
Bleasdalea vitiensis	0.43	Cabralea cangerana	0.55	Carapa procera	0.59
Bombax ceiba	0.33	Caesalpinia spp.	1.05	Casearia battiscombei	0.5
Bombycidendron vidalianum	0.53	Calophyllum sp.	0.65	Cassipourea euryoides	0.70*
Boswellia serrata	0.5	Campnosperma panamensis	0.33,0.50+	Cassipourea malosana	0.59*
Bridelia squamosa	0.5	Carapa sp.	0.47	Ceiba pentandra	0.26
Buchanania latifolia	0.45	Caryocar spp.	0.69, 0.72+	Celtis spp.	0.59
Bursera serrata	0.59	Casearia sp.	0.62	Chlorophora ercelsa	0.55
Butea monosperma	0.48	Cassia moschata	0.71	Chrysophyllum albidum	0.56*
Calophyllum spp.	0.53	Casuarina equisetifolia	0.81	Cleistanthus mildbraedii	0.87*
Calycarpa arborea	0.53	Catostemma spp.	0.55	Cleistopholis patens	0.36*
Cananga odorata	0.29	Cecropia spp.	0.36	Coelocaryon preussii	0.56"
Canarium spp.	0.44	Cedrela spp.	0.40, 0.46+	Cola sp.	0.70"
Canthium monstrosum	0.42	Cedrelinga catenaeformis	0.41, 0.53+	Combretodendron macrocarpum	0.7
Carallia calycina	0.66*	Ceiba pentandra	0.23,0.24,0.25, 0.29+	Conopharyngia holstii	0.50*

⁺ The wood densities specified pertain to more than one bibliographic source.

* Wood density value is derived from the regression equation in Reyes *et al.* (1992).

Source: Reyes, Gisel; Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

TABLE 3A.1.9-2 (CONTINUED) BASIC WOOD DENSITIES (D) OF STEMWOOD (tonnes dry matter/m³ fresh volume) FOR TROPICAL TREE SPECIES (To be used for D in Equations 3,2,3,,3,2,5,3,2,7,3,2,8)						
TROPICAL ASIA	和户	TROPICAL AMERICA	استاست المسارة	FRO FEAL RICA	D	
Cassia javanica	0.69	Centrolobium spp.	0.65	Copaifera religiosa .	0.50"	
Castanopsis philippensis	0.51	Cespedesia macrophylla	0.63	Cordia millenii	0.34	
Casuarina equisetifolia			0.8	Cordia platythyrsa	0.36"	
Casuarina nodiflora		inctoria	0.71,0.75+	Corynanthe pachyceras	0.63"	
Cedrela odorata		nosa	0.53,0.57+	Coda edulis	0.78*	
Cedrela spp.			0.67	Croton megalocarpus	0.57	
Cedrela toona	Tuto	cs and m	0.26	Cryptosepalum staudtii	0.70*	
Ceiba pentandra			0.46, 0.55+	Ctenolophon englerianus	0.78*	
Celtis luzonica		gerascanthus	0.74	Cylicodiscus gabonensis	0.8	
Chisocheton pentandrus	0.52	Cordia spp. (alliodora group)	0.48	Cynometra alexandri	0.74	
Chloroxylon swietenia	0. 6.0.79.0.80+	Couepia sp	4 0 270 0	Dacryodes spp.	0.61	
Chukrassia tabularis	VV .5	Courta macrocarpa	Usings S	Daniellia ogea	0.40*	
Citrus grandis	0.59	Couratari spp.	0.5	Desbordesia pierreana	0.87"	
Cleidion speciflorum	0.5	Croton xanthochloros	0.48	Detarium senegalensis	0.63*	
Cleistanthus eollinus	∆ 0&8 C 1	Cupressus lusitanica	10,43 0,44+	Diali m excelsum	<u></u>	
Cleistocalyx spp.	1 10.7801	Syriha racemiliora	10300	Didelotia africana	0.78	
Cochlospermum gossypium+religiosum	0.27	Dactyodes colombiana	0.51	Didelotia letouzeyi	0.5	
Cocos nucifera	0.5	Dacryodes excelsa	9.52, 0.53+	Diospyros spp.	0.82	
Colona serratifolia		Dalberga e uta.	5 W.891 O	Discoglypte na caloneura	0.32*	
Combretodendron quadrialatum	0.57	Dalbergia stevensonii	0.82	Distemonanthus benthamianus	0.58	
Cordia spp.	0.53	Declinanona calycina	0.47	Drypetes sp.	0.63*	
Cotylelobium spp.),69	Dalium galanonsk 9/2	. / (0)87	Ehretia acuminata	0.51*	
Crataeva religiosa	0.53*	Dialyanthera spp.	0.36, 0.48+	Enantia chlorantha	0.42"	
Cratoxylon arborescens	0.4	Dicorynia paraensis	0.6	Endodesmia calophylloides	0.66"	
Cryptocarya spp.	0.59	Didymopanax sp.	0.74	Entandrophragma utile	0.53	
Cubilia cubili	nteps	Dimor han ir 110 a	. co m	Eribroma oblongum	0.60*	
Cullenia excelsa	0.53	Diplotropis purpurea	0.76, 0.77, 0.78+	Eriocoelum microspermum	0.50"	
Cynometra spp.	0.8	Dipterix odorata	0.81,0.86,0.89+	Erismadelphus ensul	0.56*	
Dacrycarpus imbricatus	0.45, 0.47+	Drypetes variabilis	0.69	Erythrina vogelii	0.25"	
Dacrydium spp.	0.46	Dussia lehmannii	0.59	Erythrophleum ivorense	0.72	
Dacryodes spp.	0.61	Ecclinusa guianensis	0.63	Erythroxylum mannii	0.5	
Dalbergia paniculata	0.64	Endlicheria cocvirey	0.39	Fagara macrophylla	0.69	
Decussocarpus vitiensis	0.37	Enterolobium schomburgkii	0.82	Ficus iteophylla	0.40"	
Degeneria vitiensis	0.35	Eperua spp.	0.78	Fumtumia latifolia	0.45*	
Dehaasia triandra	0.64	Eriotheca sp.	0.4	Gambeya spp.	0.56*	
Dialium spp.	0.8	Erisma uncinatum	0.42, 0.48+	Garcinia punctata	0.78"	
Dillenia spp.	0.59	Erythrina sp.	0.23	Gilletiodendron mildbraedii	0.87"	
Diospyros spp.	0.7	Eschweilera spp.	0.71,0.79,0.95+	Gossweilerodendron balsamiferum	0.4	
Diplodiscus paniculatus	0.63	Eucalyptus robusta	0.51	Guarea thompsonii	0.55"	
Dipterocarpus caudatus	0.61	Eugenia stahlii	0.73	Guibourtia spp.	0.72	
Dipterocarpus eurynchus	0.56	Euxylophora paraensis	0.68,0.70+	Hannoa klaineana	0.28"	
Dipterocarpus gracilis	0.61	Fagara spp.	0.69	Harungana madagascariensis	0.45"	
Dipterocarpus grandiflorus	0.62	Ficus sp.	0.32	Hexalobus crispiflorus	0.48"	
Dipterocarpus kerrii	0.56	Genipa spp.	0.75	Holoptelea grandis	0.59"	

+ The wood densities specified pertain to more than one bibliographic source.

* Wood density value is derived from the regression equation in Reyes *et al.* (1992).

Source: Reyes, Gisel; Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

TABLE 3A.1.9-2 (CONTINUED) BASIC WOOD DENSITIES (D) OF STEMWOOD (tonnes dry matter/m³ fresh volume) FOR TROPICAL TREE SPECIES (To be used for D in Equations 3, 2, 3, 3, 2, 5, 3, 2, 7, 3, 2, 8)						
TROPICAL ASIA	程序	TROPICAL AMERICA	ض ف ا	FRO I CAL SERICA	D	
Dipterocarpus kunstlerii	0.57	Goupia glabra	0.67, 0.72+	Homalium spp.	0.7	
Dipterocarpus spp.	0.61	Guarea chalde	0.52	Hylodendron gabonense.	0.78"	
Dipterocarpus warburgii			0.52	Hymenostegia pellegrini	0.78"	
Dracontomelon spp.			0.36	Irvingia grandifolia	0.78"	
Dryobalanops spp.	300 KIN	nifolia	0.52, 0.50+	Julbernardia globiflora	0.78	
Dtypetes bordenii		bra	0.65	Khaya ivorensis	0.44	
Durio spp.		sipae	0.95, 1.25+	Klainedoxa gabonensis	0.87	
Dyera costulata	Tuto		0.56	Lannea welwitschii	0.45"'	
Dysoxylum quercifolium	1251(16)	omentosa	0.68, 0.72+	Lecomtedoxa klainenna	0.78"	
Elaeocarpus serratus		nora	0.29	Letestua durissima	0.87"	
Emblica officinalis	0.8	Hevea brasiliense	0.49	Lophira alata	0.87"	
Endiandra laxiflora	0.54	Himatanthus articulata	0.40,0.54+	Lovoa trichilioides	0.45"	
Endospermum spp.	W ³ 8	Hirtella davisii	torcs	Macaranga kilimandscharica	0.40*	
Enterolobium cyclocarpum	0.35	Humiria balsamifera	0.66,0.67+	Maesopsis eminii	0.41	
Epicharis cumingiana	0.73	Humiriastrum procera	0.7	Malacantha sp. aff. alnifolia	0.45"	
Erythrina subumbrans	A024S1	Diracement	0.16(0)31, (2.2) (+	Mam nea a ricala	- (2)	
Erythrophloeum densiflorum	0.65	Hyeronima alchorneoides	0.60,0.64+	Manilkara lacera	0.78"	
Eucalyptus citriodora	0.64	Hyeronima laxiflora	0.59	Markhamia platycalyx	0.45*	
Eucalyptus deglupta	E 934	Hymendea davisii	0 (0)67 6	Memecylon-capitellatum	0.77"	
Eugenia spp.	0.65	Hymenolobium sp.	0.64	Microbelinia brazzavillensis	0.7	
Fagraea spp.	0.73	Inga sp.	0.49,0.52,0.58, 0.64+	Microcos coriaceus	0.42"	
Ficus benjamina	0 65	Ir/yantnesa/spp	046	Milletia spp.	0.72	
Ficus spp.	0.39	Jacaranda sp.	0.55	Mitragyna stipulosa	0.47	
Ganua obovatifolia	0.59	Joannesia heveoides	0.39	Monopetalanthus pellegrinii	0.47"	
Garcinia myrtifolia	https	Lachmellea speciosa	CP3m	Musanga cecropioides	0.23	
Garcinia spp.	116.5	Laetia procera	0.68111	Nauclea diderrichii	0.63	
Gardenia turgida	0.64	Lecythis spp.	0.77	Neopoutonia macrocalyx	0.32"	
Garuga pinnata	0.51	Licania spp.	0.78	Nesogordonia papaverifera	0.65	
Gluta spp.	0.63	Licaria spp.	0.82	Ochtocosmus africanus	0.78	
Gmelina arborea	0.41,0.45+	Lindackeria sp.	0.41	Odyendea spp.	0.32	
Gmelina vitiensis	0.54	Linociera domingensis	0.81	Oldfieldia africana	0.78*	
Gonocaryum calleryanum	0.64	Lonchocarpus spp.	0.69	Ongokea gore	0.72	
Gonystylus punctatus	0.57	Loxopterygium sagotii	0.56	Oxystigma oxyphyllum	0.53	
Grewia tiliaefolia	0.68	Lucuma spp.	0.79	Pachyelasma tessmannii	0.70"	
Hardwickia binata	0.73	Luehea spp.	0.5	Pachypodanthium staudtii	0.58"	
Harpullia arborea	0.62	Lueheopsis duckeana	0.64	Paraberlinia bifoliolata	0.56"	
Heritiera spp.	0.56	Mabea piriri	0.59	Parinari glabra	0.87"	
Hevea brasiliensis	0.53	Machaerium spp.	0.7	Parkia bicolor	0.36"	
Hibiscus tiliaceus	0.57	Macoubea guianensis	0.40*	Pausinystalia brachythyrsa	0.56"	
Homalanthus populneus	0.38	Magnolia spp.	0.52	Pausinystalia cf. talbotii	0.56"	
Homalium spp.	0.76	Maguira sclerophylla	0.57	Pentaclethra macrophylla	0.78"	
Hopea acuminata	0.62	Mammea americana	0.62	Pentadesma butyracea	0.78"	
Hopea spp.	0.64	Mangifera indica	0.55	Phyllanthus discoideus	0.76"	
Intsia palembanica	0.68	Manilkara sp.	0.89	Pierreodendron africanum	0.70;"	
Kayea garciae	0.53	Marila sp.	0.63	Piptadeniastrum africanum	0.56	

⁺ The wood densities specified pertain to more than one bibliographic source.

^{*} Wood density value is derived from the regression equation in Reyes *et al.* (1992).

Source: Reyes, Gisel; Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

BASIC WOOD DENS	ITIES (D) OF STE	TABLE 3A.1.9-2 (Comwood (tonnes dry masused for Din Equations 3	tter/m³ fresh vo	lume) FOR TROPICAL TR	EE SPECIES
TROPICAL ASIA	程序	TROPICAL AMENICA	F/T-/	PROPERTY INCA	D
Kingiodendron alternifolium	0.48	Marmaroxylon racemosum	0.78*	Plagiostyles africana	0.70"
Kleinhovia hospita	0.36	Matavba domingensis	0.7	Poga oleosa	0.36
Knema spp.			0.61	Polyalthia suaveolens	0.66"
Koompassia excelsa	بيخنابك	A QUE	0.71	Premna angolensis	0.63"
Koordersiodendron pinnatum		ndaviana	0.68	Pteleopsis hylodendron	0.63*
Kydia calycina		spp.	0.61	Pterocarpus soyauxii	0.61
Lagerstroemia spp.	Tuto	iianensis	0.76,0.79+	Pterygota spp.	0.52
Lannea grandis			0.71	Pycnanthus angolensis	0.4
Leucaena leucocephala		roxylon	0.88	Randia cladantha	0.78*
Litchi chinensis ssp. philippinensis		wyrerana noribunda	0.73	Rauwolfia macrophylla	0.47*
Lithocarpus soleriana	0.63	Myristica spp.	0.46	Ricinodendron heudelotii	0.2
Litsea spp.	0.4	Myroxylon balsamum	0.74, 0.76, 0.78+	Saccoglottis gabonensis	0.74"
Lophopetalum spp.	₩.4 ₽	letarda spp.	TOPES	Santiria trimera	0.53*
Macaranga denticulata	0.53	O c o t e a spp.	0.51	Sapium ellipticum	0.50*
Madhuca oblongifolia	0.53	Onychopetalum amazonicum	0.64	Schrebera arborea	0.63*
Mallotus philippensis	1 0,64 € 1	Prinsiaspiaspiaspiaspiaspiaspiaspiaspiaspias	Pro Pac	cloudophloeus zenkeri	1 2 . 1 8 *
Mangifera spp.		Ouratea sp.	rojec	Scottellia coriacea	lego
Maniltoa minor	0.76	Pachira acuatica	0.43	Scyphocephalium ochocoa	0.48
Mastixia philippinensis	0.47	Paratecoma peroba	0.6	Scytopetalum tieghemii	0.56"
Melanorrhea spp.	Lma	Parmari spp. 1010	$S(\omega)^{68}$	Sindoropsis letes ti	0.56*
Melia dubia	0.4	Parkia spp.	0.39	Staudtia stipitata	0.75
Melicope triphylla	0.37	Peltogyne spp.	0.79	Stemonocoleus micranthus	0.56"
Meliosma macrophylla	0.27	Pentaclethra macroloba	0.65,0.68+	Sterculia rhinopetala	0.64
Melochia umbellata	0.25	Perizslaser ta	065	Strephonema pseudocola	0.56*
Me&a ferrea	0.83,0.85+	Peru schomburgkiana	0.59	Strombosiopsis tetrandra	0.63"
Metrosideros collina	0.70,0.76+	Persea spp.	0.40, 0.47, 0.52+	Swartzia fistuloides	0.82
Michelia spp.	0.43	Petitia domingensis	0.66	Symphonia globulifera	0.58"
Microcos stylocarpa	nto40S	Pinys dar blen OTCS	.com	Syzygium cordatum	0.59*
Micromelum compressum	0.64	Pinus oocarpa	0.55	Terminalia superba	0.45
Milliusa velutina	0.63		0.45	Tessmania africana	0.43
	0.03	Pinus patula			
Mimusops elengi		Piptadenia sp.	0.58	Testulea gabonensis	0.6
Mitragyna parviflora	0.56	Piranhea longepedunculata	0.9	Tetraberlinia tubmaniana	0.60"
Myristica spp.	0.53	Piratinera guianensis	0.96	Tetrapleura tetraptera	0.50"
Neesia spp.	0.53	Pithecellobium guachapele (syn. Pseudosamea)	0.56	Tieghemella heckelii	0.55"
Neonauclea bernardoi	0.62	Platonia insignis	0.70'	Trema sp.	0.40*
Neotrewia cumingii	0.55	Platymiscium spp.	0.71, 0.84+	Trichilia prieureana	0.63"
Ochna foxworthyi	0.86	Podocarpus spp.	0.46	Trichoscypha arborea	0.59"
Ochroma pyramidale	0.3	Pourouma aff. melinonii	0.32	Triplochiton scleroxylon.	0.32
Octomeles sumatrana	0.27, 0.32+	Pouteria spp.	0.64, 0.67+	Uapaca spp.	0.6
Oroxylon indicum	0.32	Prioria copaifera	0.40,0.41+	Vepris undulata	0.70"
Ougenia dalbergiodes	0.7	Protium spp.	0.53,0.64+	Vitex doniana	0.4
Palaquium spp.	0.55	Pseudolmedia laevigata	0.64	Xylopia staudtii	0.36*
Pangium edule	0.5	Pterocarpus spp.	0.44		
Parashorea malaanonan	0.51	Pterogyne nitens	0.66		
Parashorea stellata	0.59	Qualea albiflora Qualea cf. lancifolia	0.5		
Paratrophis glabra	0.77		0.58		
Parinari spp.	0.68	Qualea dinizii	0.58		L

⁺ The wood densities specified pertain to more than one bibliographic source.

* Wood density value is derived from the regression equation in Reyes *et al.* (1992).

Source: Reyes, Gisel; Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

		TABLE 3A.1.9-2 (Co	ONTINUED)		
BASIC WOOD DENS		EMWOOD (tonnes dry mate used for D in Equations 3			REE SPECIES
TROPICAL ASIA	程序	TROPIC AMERICA		FRO FALL RICA	D
Parkia roxburghii	0.34	Qualea spp.	0.55	110 125 1111	
Payena spp.	0.55	Quararibaea guianensis	0.54		
Peltophorum pterocarpum			0.71		
Pentace spp.		ricensis	0.61		
Phaeanthus ebracteolatus	- 300 (1) (1)	niaefolia	0.67		
Phyllocladus hypophyllus			0.7		
Pinus caribaea		<u> </u>	0.55		
Pinus insularis	Tuto	or CS	0.72		
Pinus merkusii	1651		0.36		
Pisonia umbellifera		ydonioides	0.72		
Pittosporum pentandrum	0.51	Sapium ssp.	0.47,0.72+		
Planchonia spp.	0.59	Schinopsis spp.	1		
Podocarpus spp.	0.53 TT0:#3	Sclerobium spp.	0.47		
Polyalthia flava	W.5 e (Scligia spp. CSU	torcs		
Polyscias nodosa	0.38	Simaba multiflora	0.51		
Pometia spp.	0.54	Simarouba amara	0.32, 0.34,0.38+		
Pouteria villamilii	0.34	Sloanea guianensis	0.79		T 1
Premna tomentosa		Spandis marbin	TOTEC	t Exam	Heln
Pterocarpus marsupium	0.67	Sterculia spp.	0.55		1015
Pterocymbium tinctorium	0.07	Stylogyne spp.	0.69		
Pyge'um vulgare	0.20	Swartziatspp + 0 100	~ (A)951 6		
	-Ema	II. LULUI C	S _{0.420,45} 40	3.com	
Quercus spp.	${0.7}$	Swietenia macrophylla	0.54+		
Radermachera pinnata	0.51	Symphonia globulifera	0.68		
Salmalia malabarica	0.32,0.33+	Tabebyia spp. (lapacho gruun)	7 (591		
Samanea saman	0.45, 0.46+	Tabebuia spp. (roble)	0.52		
Sandoricum vidalii	0.43	Tabebuia spp. (white cedar)	0.57		
Sapindus saponaria	0.58	Tabebuia stenocalyx	0.55,0.57+		
Sapium luzontcum	https	Tachigalia rhyrnecophylla	com		
Schleichera oleosa	0.96	Talisia sp.	0.84		
Schrebera swietenoides	0.82	Tapirira guianensis	0.47*		
Semicarpus anacardium	0.64	Terminalia sp.	0.50, 0.51, 0.58+		
Serialbizia acle	0.57	Tetragastris altisima	0.61		
Serianthes melanesica	0.48	Toluifera balsamum	0.74		
Sesbania grandiflora	0.4	Torrubia sp.	0.52		
Shorea assamica forma philippinensis	0.41	Toulicia pulvinata	0.63		
Shorea astylosa	0.73	Tovomita guianensis	0.6		
Shorea ciliata	0.75	Trattinickia sp.	0.38		
Shorea contorta	0.73	Trichilia propingua	0.58		
Shorea gisok	0.76	Trichosperma mexicanum	0.38		
Shorea guiso	0.70	Triplaris spp.	0.41		
Shorea hopeifolia	0.68	Trophis sp.	0.54		
•					
Shorea malibato	0.78	Vatairea spp.	0.6 0.40, 0.44,		
Shorea negrosensis	0.44	Virola spp.	0.48+		
Shorea palosapis	0.39	Vismia spp.	0.41		
Shorea plagata	0.7	Vitex spp.	0.52,0.56, 0.57+		

+ The wood densities specified pertain to more than one bibliographic source.

* Wood density value is derived from the regression equation in Reyes *et al.* (1992).

Source: Reyes, Gisel; Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

TABLE 3A.1.9-2 (CONTINUED) BASIC WOOD DENSITIES (D) OF STEMWOOD (tonnes dry matter/m³ fresh volume) FOR TROPICAL TREE SPECIES (To be used for D in Equations 3, 2, 3, 3, 2, 5, 3, 2, 7, 3, 2, 8)							
TROPICAL ASIA	程序	TROPIC AS AMERICA		FRO IGAL ARICA	D		
Shorea polita	0.47	Vitex stahelii	0.6	1			
Shorea polysperma	0.47	Vochysia spp.	0.40,0.47, 0.79+				
Shorea robusta		ımericana	0.79				
Shorea spp. balau group		coccinea	0.56				
Shorea spp. dark red meranti		martinicensis	0.46				
Shorea spp. light red meranti	Tutor	cs spp.	0.44				
Shorea spp. white meranti	+legy@	cens	0 64"				
Shorea spp. yellow meranti							
Shorea virescens	0.42						
Sloanea javanica	0.53						
Soymida febrifuga	T T 0 7 97	Late activ	40400				
Spathodea campanulata	V V _{1.2}	hat: estu	tores				
Stemonurus luzoniensis	0.37						
Sterculia vitiensis	0.31						
Stereospermum	A SS1	onment F	rojec	t Evam	Haln		
suaveolens		giiiiiciit i	10150	LAam	11c1h		
Strombosia philippinensis	0.71		_		_		
Strychnos potatorum	0.88						
Swietenia macrophylla	0.49,0.53+	11. tutoro	(a) 16	2 com			
Swintonia foxworthyi	Lilla	ii. tutore	<u> </u>	J.COIII			
Swintonia spp.	0.61						
Sycopsis dunni	0.63						
Syzygium spp.	0.69, 0.74	<u>749389</u> 2	<u> 176 —</u>				
Tamarindus indica	0.75	117307	70				
Tectona grandis	0.50,0.55+						
Teijsmanniodendron ahernianum	0.9	11.					
Terminalia citrina	https	://tutores	.com				
Terminalia copelandii	0.46	,,, , , , , , , , , , , , , , , , , ,					
Terminalia foetidissima	0.55						
Terminalia microcarpa	0.53						
Terminalia nitens	0.58						
Terminalia pterocarpa	0.48						
Terminalia tomentosa	0.73,0.76, 0.77+						
Ternstroemia megacarpa	0.53						
Tetrameles nudiflora	0.3						
Tetramerista glabra	0.61						
Thespesia populnea	0.52						
Toona calantas	0.29						
Trema orientalis	0.31						
L	1	L.,	I.	I	I.		

+ The wood densities specified pertain to more than one bibliographic source.

* Wood density value is derived from the regression equation in Reyes *et al.* (1992).

Source: Reyes, Gisel; Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

BASIC WOOD DENSI	TIES (D) OF STE	TABLE 3A.1.9-2 (C MWOOD (tonnes dry ma used for D me Equations)	tter/m³ fresh vo	lume) FOR TROPICAL TREE	E SPECIES
TROPICAL ASIA	压力	TROPICAL AMERICA	X PO	TROPICAL ALPICA	D
Trichospermum richii	0.32				
Tristania spp.	0.80				
Turpinia ovalifolia					
Vateria indica					
Vatica spp.	100 A	/ 460 18			
Vitex spp.					
Wallaceodendron celebicum	Tutor				
Weinmannia luzoniensis	12510.63	24 094 T			
Wrightia tinctorea		19 22 (
Xanthophyllum excelsum	0.63	. ——			
Xanthostemon verdugonianus	1.04				
Xylia xylocarpa	0,13,0,81+	hat: cstu	torce		
Zanthoxylum rhetsa	0.33	mat. Cott	TOTOS		
Zizyphus spp.	0.76				

+ The wood densities specified pertain to more than one bibliographic source.

Source: Reyes, Gisel; Brown, Sandra; Chapmar, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Lep SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

Email: tutorcs@163.com

DEFAULT VALUES OF BIOMASS EXPANSION FACTORS (BEFS)

(BEF ₂ to be used in connection with growing stock biomass data in Equation 3.2.3; and BEF ₁ to be used in connection with increment data in Equation 3.2.5)

and BEF 1 to be used in connection with increment data in Equation 5.2.5)								
Climatic zone	Forest type	Minimum goh (cm)	to be used in connection to growing stock biomass data (Equation 3.2.3)	BEF ₁ (overbark) to be used in connection to increment data (Equation 3.2.5)				
Boreal	Conifers	0-8.0	1.35 (1.15-3.8)	1.15 (1-1.3)				
Boleai	Broakeaf	C • 9-8/4114	orcs.com	1.1 (1-1.3)				
	Conifers: Spruce-fir	0-12.5	1.3 (1.15-4.2)	1.15 (1-1.3)				
Temperate	Pines	0-12.5	1.3 (1.15-3.4)	1.05 (1-1.2)				
	Broadleaf	0-12.5	1.4 (1.15-3.2)	1.2 (1.1-1.3)				
Tropical	Pines	10.0	1.3 (1.2-4.0)	1.2 (1.1-1.3)				
Порісаі	Broadleaf	10.0	3.4 (2.0-9.0)	1.5 (1.3-1.7)				

Note: BEF₂s given here represent averages for average growing stock or age, the upper limit of the range represents young forests or forests with low growing stock; lower limits of the range approximate mature forests or those with high growing stock. The values apply to growing stock biomass (dry weight) including bark and for given minimum diameter at breast height; Minimum top diameters and treatment of branches is unspecified. Result is above-ground tree biomass.

Sources: Isaev et al., 1993; Brown, 1997; Brown and Schroeder, 1999; Schoene, 1999; ECE/FAO TBFRA, 2000; Lowe et al., 2000; please also refer to FRA Working Paper 68 and 69 for average values for developing countries (http://www.fao.org/forestry/index.jsp)

Table 3A.1.11 $ \begin{tabular}{ll} \textbf{DEFAULT VALUES FOR FRACTION OUT OF TOTAL HARVEST LEFT TO DECAY IN THE FOREST, } f_{BL} \\ (To be used only for f_{BL} in Equation 3.2.7) \\ \end{tabular} $						
Region f _{BL}						
Boreal intensively managed	0.07					
Temperate intensively managed	0.1					
Temperate semi natural forests	0.15					
Tropical plantation 0.25						
Tropical selective logging in primary forests 0.4						

^{*} Wood density value is derive Afrom the regression equation in Reves Project Exam Help

Table 3A.1.12 Combustion factor values (proportion of prefire biomass consumed) for fires							
(Values in column mean are to be used to) -f _B) it Equation 3.29 and of the decrease are to be used to)							
Vegetation Type	Sub-category	Mean	SD	No. m ¹	Range	No. r ²	References
<u> </u>	Primary tropical forest	0.32	0.12	14	0.20 - 0.62	17	7, 8, 15, 56, 66, 3, 16, 53, 17, 45,
Primary Tropical Forest (slash and	Prir	0.45	0.09	3	0.36 - 0.54	3	21
burn)	Prir	0.50	0.03	2	0.39 - 0.54	2	37, 73
	Prir	Ţ	-	0	0.78 - 0.95	1	66
All primary tropical f	orest:	0.36	0.13	19	0.19 - 0.95	23	
	You fore	0.46	-	1	0.43 - 0.52	1	61
Secondary tropical forest (slash and burn)	Inte tropical forest (6-10 yrs)	0.67	0.21	2	0.46 - 0.90	2	61, 35
,	Advanced secondary tropical forest (14-17 yrs)	0.50	0.10	2	0.36 - 0.79	2	61, 73
All secondary tropica	I forest We Chat	0 53 S	tue0	18 S	0.36 - 0.90	9	56, 66, 34, 30
All Tertiary tropical f	orest	0.59	-	1	0.47 - 0.88	2	66, 30
	Wildfire (general)	0.40	0.06	2	0.36 - 0.45	2	33
	Crown fire Cionn	വ മ ⁴³വ	Pro	132	0.18 0.76	am	65.41.64,63
Boreal Forest	surface fire	0.15	0.08	\int_3	0.05 - 0.73	11311	64, 63
	Post logging slash burn	0.33	0.13	4	0.20 - 0.58	4	49, 40, 18
	Land elearing fire	0.59		n 1	20 50 – 0.70	1	67
All Boreal Forest	Eman. t	uwi	C057 (C		1015-0.16	6	45, 47
	Wildfire	-	-	0	-	0	
	Prescribed fire – (surface)	0.61	0.11	6	0.50 - 0.77*	6	72, 54, 60, 9
Eucalyptus forests	Post logging slash burn	38	414	5	0.49 - 0.82	5	25, 58, 46
	Felled and burned (land- clearing fire)	0.49	-	1	-	1	62
All Eucalyptus Forest	s 1	0.63	0.13	12	0.49 - 0.82	12	
Other temperate	Post logging last our /	1062 T	C 512 C	OM.	0.48 - 0.84	7	55, 19, 27, 14
forests	Felled and burned (land- clearing fire)	0.51	-	1	0.16 - 0.58	3	53, 24, 71
All "other" temperate	forests	0.45	0.16	19	0.16 - 0.84	17	53, 56
	Shrubland (general)	0.95	-	1	-	1	44
Shrublands	Calluna heath	0.71	0.30	4	0.27 - 0.98	4	26, 56, 39
	Fynbos	0.61	0.16	2	0.50 - 0.87	2	70, 44
All Shrublands	^	0.72	0.25	7	0.27 – 0.98	7	
Savanna Woodlands	Savanna woodland [@]	0.22	-	1	0.01 - 0.47	1	28
(early dry season burns)*	Savanna parkland	0.73	-	1	0.44 – 0.87	1	57
	Other savanna woodlands	0.37	0.19	4	0.14 - 0.63	4	22, 29
All savanna woodland	ls (early dry season burns)	0.40	0.22	6	0.01 - 0.87	6	66.55
Savanna Woodlands	Savanna woodland @	0.72	- 0.07	1	0.71 – 0.88	2	66, 57
(mid/late dry season	Savanna parkland	0.82	0.07	6	0.49 – 0.96	6	57, 6, 51
burns)*	Tropical savanna#	0.73	0.04	3	0.63 – 0.94	5	52, 73, 66, 12
	Other savanna woodlands	0.68	0.19	7	0.38 – 0.96	7	22, 29, 44, 31, 57
All savanna woodland	Is (mid/late dry season burns)*	0.74	0.14	17	0.29 - 0.96	20	

¹ No. m = the number of observations for the mean
² No. r = the number of observations for the range
* Surface layer combustion only, * campo cerrado, cerrado sensu stricto, * campo sujo, campo limpo, dambo, * miombo
 derived from slashed tropical forest (includes unburned woody material)

TABLE 3A.1.12 (CONTINUED) COMBUSTION FACTOR VALUES (PROPORTION OF PREFIRE BIOMASS CONSUMED) FOR FIRES IN A RANGE OF VEGETATION TYPES (Values in column megh, fe to be used 1-fg.) in Edition 3.29 and is n 3.3. 0) Vegetation Type Mean SD No.r2 References No.m1 Range **Sub-category** Savanna Grasslands / 0.44 - 0.981 1 0.74 Pastures (early dry season burns)* 0 0.18 - 0.781 48 1 0.18 - 0.982 All savanna grasslands (ea 0.11 7 0.71 - 1.008 44, 73, 66, 12, 57 Savanna Grasslands / 0.21 6 0.19 - 0.817 4, 23, 38, 66 Pastures (mid/late dry season burns)* 53, 5, 56, 42, 50, 0.12 16 0.44 - 1.0023 6, 45, 13, 44, 65, All savanna grasslands (mid/late dry season 0.77 0.26 29 0.19 - 1.0038 burns)* Peatland utc 0.50 0.50 - 0.682 20, 44 Other Vegetation Types 0.70 44 Tropical Wetlands

derived from slashed tropical forest (includes unburned woody material)

B i (To	BIOMASS CONTUNCTION (t/ha) VILUS OR FURS (RANGE) ELECTATION PES (To be used in Equation 3.2.9. for the part of the equation: 'B _W • (1- f _{BL})', i.e., an absolute amount)								
Vegetation Type	Sub-category	Mean	SE	No. m ¹	Range	No. r ²	References		
D: T : 1	Primary repic l forest	380)4587	5 6	10 – 228	9	7, 15, 66, 3, 16, 17, 45		
Primary Tropical Forest (slash and	Primary open tropical forest	163.6	52.1	3	109.9 – 214	3	21,		
burn)	Primary tropical moist forest	160.4	11.8	2	115.7 – 216.6	2	37, 73		
	Primary tropical dry forest	itor		O_0	57 – 70	1	66		
All primary tropical f	orests IIII S.//II	13.61	50.7	UH.	10 – 228	15			
	Young secondary tropical forest (3-5 yrs)	8.1	-	1	7.2 – 9.4	1	61		
Secondary tropical forest (slash and burn)	Intermediate secondary tropical forest (6-10 yrs)	41.1	27.4	2	18.8 – 66	2	61, 35		
ouin)	Advanced secondary tropical forest (14-17 yrs)	46.4	8.0	2	29.1 – 63.2	2	61,73		
All secondary tropica	l forests	42.2	23.6	5	7.2 - 93.6	5	66, 30		
All Tertiary tropical f	forest	54.1	-	1	4.5 – 53	2	66, 30		
	Wildfire (general)	52.8	48.4	6	18 – 149	6	2, 33, 66		
	Crown fire	25.1	7.9	10	15 – 43	10	11, 43, 66, 41, 63, 64		
Boreal Forest	Surface fire	21.6	25.1	12	1.0 – 148	13	43, 69, 66, 63, 64,		
	Post logging slash burn	69.6	44.8	7	7 – 202	9	49, 40, 66, 18		
	Land clearing fire	87.5	35.0	3	48 – 136	3	10, 67		
All Boreal Forest		41.0	36.5	44	1.0 - 202	49	43, 45, 69, 47		
	Wildfire	53.0	53.6	8	20 – 179	8	66, 32, 9		
	Prescribed fire – (surface)	16.0	13.7	8	4.2 – 17	8	66, 72, 54, 60, 9		
Eucalypt forests	Post logging slash burn	168.4	168.8	5	34 – 453	5	25, 58, 46		
	Felled and burned (land-clearing fire)	132.6	-	1	50 – 133	2	62, 9		
All Eucalypt Forests		69.4	100.8	22	4.2 – 453	23			

¹ No. m = the number of observations for the mean

² No. r = the number of observations for the range * Surface layer combustion only Sapple Certain terral constraints strict. Campo succept lirpo Ama Thombell p

B (To	TAI IOMASS CONSUMETION (t/ha) be used in Equation 3.2.2.1 for the	BLE 3A.1.1. VALUES FOR BOTTOM	R FIRES IN	A PANCE	OF SECRETATIO		异
Vegetation Type	Sub-category	Mean	SE	No. m ¹	Range	No. r ²	References
	Wildfire	19.8	6.3	4	11 - 25	4	32, 66
Other temperate forests	Pos	77.5	65.0	7	15 – 220	8	55, 19, 14, 27, 66
	Fell clea	48.4	62.7	2	3 – 130	3	53, 24, 71
All "other" temperate	e fore	50.4	53.7	15	3 – 220	18	43, 56
	Shr	26.7	4.2	3	22 - 30	3	43
Shrublands	Cal	T 11.5	4.3	3	6.5 - 21	3	26, 39
Sinuolanas	Sag	5.7	3.8	3	1.1 - 18	4	66
	Fynbos	12.9	0.1	2	5.9 - 23	2	70, 66
All Shrublands		14.3	9.0	11	1.1 – 30	12	
Savanna Woodlands (early dry season	Savalna voodland	· ZS	tuto	res	0.1 - 5.3	1	28
burns)*	Savanna parkland	2.7	-	1	1.4 – 3.9	1	57
All savanna woodland	ds (early dry season burns)	2.6	0.1	2	0.07 - 3.9	2	
Savanna Woodlands	Savanna woodland @ Savanna parktand	n <mark>ent</mark>	Pro)je	2t ₁ ^{3.2} F.3	am	Help
(mid/late dry season burns)*	Tropical savanna [#]	6	1.8	2	3.7 – 8.4	2	52, 73
,	Other savanna woodlands	5.3	1.7	3	3.7 – 7.6	3	59, 57, 31
All savanna woodland	ds (mid late lr/ season b rms)*	utoi	CSC	v_1	0.00	<u> </u>	
Savanna Grasslands / Pastures (early dry	Tropical/sub-tropical grassland [§]	2.1	-	1	1.4 – 3.1	1	28
season burns)*	Grassland	200	177		1.2 - 11	1	48
All savanna grassland	ls (early dry season burns)**	73.0	74/(1	1.2 – 11	2	
	Tropical/sub-tropical grassland ^s	5.2	1.7	6	2.5 – 7.1	6	9, 73, 12, 57
Savanna Grasslands / Pastures (mid/late dry season burns)*	Grassland Tropical pasture S	utor	C\$3.1	0 n	1.5 – 10 4.7 – 45	6 7	43, 9 4, 23, 38, 66
dry season burns)**	Savanna	7.0	2.7	6	0.5 – 18	10	42, 50, 6, 45, 13, 65
All savanna grassland burns)*	ls (mid/late dry season	10.0	10.1	24	0.5 – 45	29	
Other Vegetation	Peatland	41	1.4	2	40 – 42	2	68, 33
Types	Tundra	10	-	1	-	-	33

 $^{^{1}}$ No. m = the number of observations for the mean

References to Tables 3A.1.12 and 3A.1.13

- 1. Alexander, M., Calculating and interpreting forest fire intensities. CANADIAN JOURNAL OF BOTANY, 1978. 60: p. 349-357.
- Amiro, B., J. Todd, and B. Wotton, Direct carbon emissions from Canadian forest fires, 1959-1999. CANADIAN JOURNAL OF FOREST RESEARCH, 2001. 31: p. 512-525.
- 3. Araújo, T., J. Carvalho, N. Higuchi, A. Brasil, and A. Mesquita, *A tropical rainforest clearing experiment by biomass burning in the state of Pará, Brazil.* ATMOSPHERIC ENVIRONMENT, 1999. **33**: p. 1991-1998.
- 4. Barbosa, R. and P. Fearnside, *Pasture burning in Amazonia: Dynamics of residual biomass and the storage and release of aboveground carbon.* JOURNAL OF GEOPHYSICAL RESEARCH, 1996. **101**(D20): p. 25847-25857.
- 5. Bilbao, B. and E. Medina, Types of grassland fires and nitrogen volatilization in tropical savannas of calabozo, in Biomass Burning and Global Change: Volume 2. Biomass burning in South America, Southeast Asia, and temperate and boreal ecosystems, and the oil fires of Kuwait, J. Levine, Editor. 1996, MIT Press: Cambridge. p. 569-574.

 $^{^{2}}$ No. r = the number of observations for the range

^{*} Surface layer combustion only, # campo cerrado, cerrado sensu stricto, \$ campo sujo, campo limpo, dambo,

[@] miombo derived from slashed tropical forest (includes unburned woody material)

- 6. Cachier, H., C. Liousse, M. Pertusiot, A. Gaudichet, F. Echalar, and J. Lacaux, *African fire Particulate emissions and atmospheric influence*, in *Biomass Burning and Global Change: Volume 1. Remote Sensing, Modeling and Inventory Development, and Biomass Burning in Africa*, J. Levine, Editor. 1996, MIT Press: Cambridge. p. 428-440.
- 7. Carvalho, J., N. Higuchi, Torqujo and J. Aartos, Chimyushon completeess in a rough for sleating experiment annous, Brazin JOURNAL OF GEOPHYSICAL RESEARCH, 1998. 13(D11). 13195.
- 8. Carvalho, J., F. Costa, C. Veras, et al., Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in northern Mato Grosso, Brazil. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001. 106(D16): p. 17877-17887.
- 9. Cheyney, N., R. Raison, In Carbon Dioxide and Climate: Australian Research Land Climate: Australian Resea
- 10. Cofer, W., J. Levine, E. The Source of t
- 11. Cofer, W., E. Winstead, L. Cahoon, Crown fire emissions of CO₂, CO, H₂, CH₄, and TNMHC from a dense jack pine boreal fo
- 12. De Castro, E.A. and J.B. The first of the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. Journal of Tropical Ecology, 1998. 14(3): p. 263-283.
- Delmas, R., On the emission of carbon, nitrogen and sulfur in the atmosphere during bushfires in intertropical savannah zones. GEOPHYSICAL RESEARCH LETTERS, 1982. 9(7): p. 761-764.
- 14. Einfeld, W., D. Ward, and V. Janty. Effects of the behaviour on prescribed it emoke characteristics: A case study, in Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, J. Levine, Editor. 1991, MIT Press: Massechusetts. p. 412-419.
- 15. Fearnside, P., N. Filho, and F. Fernandes, Rainforest burning and the global carbon budget: biomass, combustion efficiency and charcoal formation in the Brazilian Amazon. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1993. 98(D9): p. 16733-16743.
- Fearnside, P., P. Graca, N. Filho, J. Rodigues, and J. Robinson, Tropical forest purning in Brazilian Amazonia: measurement of biomass loading, burning efficiency and charcoal formation at Altamira, Para. FOREST ECOLOGY AND MANAGEMENT, 1999. 123: p. 65-79.
- 17. Fearnside, P., P. Graca, at II. Rodrigues, B traingtof Amazonian rainforce is puring efficiency and chargoal formation in forest cleared for cattle pasture tear Marais Arazii, FORESTIECOLOGY, NO MANAGE JENT, 2001, 46 p. 115-128.
- 18. Feller, M. The influence of fire severity, not fire intensity, on understory vegetation biomass in British Columbia. in 13th Fire and Forest Meteorology Conference. 1998. Lorne, Australia: IAWF.
- 19. Flinn, D., P. Hopmans, P. Farell and J. James, Au final Design the burning of Pinus radiata logging residue. AUSTRALIAN FOREST RESEARCH, 1799 p. 7-23.
- 20. Garnett, M., P. Ineson, and A. Stevenson, *Effects of burning and grazing on carbon sequestration in a Pennine blanket bog, UK.* HOLOCENE, 2000. **10**(6): p. 729-736.
- 21. Graca, P., P. Fearnside, and C. Gerri. Burning of Amazonian forest in Ariquemes. Rondonia, Brazil: biomass, charcoal formation and burning efficiency. FOREST LCO OS AND NANA LIMEN (1899, 20 p) 179 191.
- 22. Griffin, G. and M. Friedel, Effects of fire on central Australian rangelands. I Fire and fuel characteristics and changes in herbage and nutrients. AUSTRALIAN JOURNAL OF ECOLOGY, 1984. 9: p. 381-393.
- Guild, L., J. Kauffman, L. Ellingson, and D. Cummings, Dynamics associated with total aboveground biomass, C, nutrient pools, and biomass burning of primary forest and pasture in Rondonia, Brazil during SCAR-B. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998. 103(D24): p. 32091-32100.
- 24. Gupta, P., V. Prasad, C. Sharma, A. Sarkar, Y. Kant, K. Badarinath, and A. Mitra, CH4 emissions from biomass burning of shifting cultivation areas of tropical deciduous forests experimental results from ground based measurements. CHEMOSPHERE GLOBAL CHANGE SCIENCE, 2001. 3; p. 133-143.
- 25. Harwood, C. and W. Jackson, Atmospheric losses of four plant nutrients during a forest fire. AUSTRALIAN FORESTRY, 1975. **38**(2): p. 92-99.
- 26. Hobbs, P. and C. Gimingham, Studies on fire in Scottish heathland communities. JOURNAL OF ECOLOGY, 1984. 72: p. 223-240.
- 27. Hobbs, P., J. Reid, J. Herring, et al., Particle and trace-gas measurements from prescribed burns of forest products in the Pacific Northwest, in Biomass Burning and Global Change: Volume 2. Biomass burning in South America, Southeast Asia, and temperate and boreal ecosystems, and the oil fires of Kuwait, J. Levine, Editor. 1996, MIT Press: Cambridge. p. 697-715.
- 28. Hoffa, E., D. Ward, W. Hao, R. Susott, and R. Wakimoto, Seasonality of carbon emissions from biomass burning in a Zambian savanna. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999. 104(D11): p. 13841-13853.
- 29. Hopkins, B., Observations on savanna burning in the Olokemeji forest reserve, Nigeria. JOURNAL OF APPLIED ECOLOGY, 1965. 2(2): p. 367-381.
- 30. Hughes, R., J. Kauffman, and D. Cummings, Fire in the Brazilian Amazon 3. Dynamics of biomass, C, and nutrient pools in regenerating forests. OECOLOGIA, 2000. 124(4): p. 574-588.
- 31. Hurst, D., W. Griffith, and G. Cook, *Trace gas emissions from biomass burning in tropical Australian savannas*. JOURNAL OF GEOPHYSICAL RESEARCH, 1994. **99**(D8): p. 16441-16456.
- 32. Jackson, W., Nutrient stocks in Tasmanian vegetation and approximate losses due to fire. Papers and proceedings of the Royal Society of Tasmania, 2000. 134: p. 1-18.

- Kasischke, E., N. French, L. Bourgeau-Chavez, and N. Christensen, Estimating release of carbon from 1990 and 1991 forest fires in Alaska. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1995. 100(D2): p. 2941-2951.
- 34. Kauffman, J. and C. Uhl, 8 interactions of anthropogenic activities, fine, and rain forests in the America fine in Fire in the Tropica Biota: Ecosystem Processes and Globia Changes, J. Goldan mar, Editor 1990, Springer Gardag Berlin, 1997-1397.
- 35. Kauffman, J., R. Sanford, D. Cummings, I. Salcedo, and E. Sampaio, Biomass and nutrient dynamics associated with slash fires in neotropical dry forests. ECOLOGY, 1993. 74(1): p. 140-151.
- 36. Kauffman, J., D. Cummi service of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado. JOUR 2. p. 519-531.
- 37. Kauffman, J., D. Cummi The Committee of the Committee of the Brazilian Amazon: 1. Biomass, nutrient pools, and losses in slashed primary forests. OECOL
- 38. Kauffman, J., D. Cummi Prazilian Amazon: 2. Biomass, nutrient pools and losses in cattle pastures. OECOLOGIA, 1998. 11.
- 39. Kayll, A., Some characte 1. L. 1. L. 1. Some characte 1. Some characte 1. L. 1. Some characte 1. L. 1. Some characte 1. Some character 1. Some characte
- 40. Kiil, A., Fuel consumptic ce-fir logging slash in Alberta. THE FORESTRY CHRONICLE, 1969: p. 100-102.
- 41. Kiil, A., Fire spread in a black spruce stand. CANADIAN FORESTRY SERVICE BI-MONTHLY RESEARCH NOTES, 1975. **31**(1): p. 2-3.
- 42. Lacaux, J., H. Cachier, and A. Deiner, Biomaschapmen in Africa in two view of in Amospheric chemistry, in Fire in the Environment: The Ecological, Atmospheric, and Camatic Importance of Vegeration Fires, P. Crutzen and J. Goldammer, Editors. 1993, John Wiley & Sons: Chichester. p. 159-191.
- 43. Lavoue, D., C. Liousse, H. Cachier, B. Stocks, and J. Goldammer, *Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes.* JOURNAL OF GEOPHYSISAL RESEARCH-ATMOSPHERES, 2000. 105(1922): p. 26871-26890.

 ASSIGNMENT Project LX and Help
- 44. Levine, J., Global biomass burning: a case study of the gaseous and particulate emissions released to the atmosphere during the 1997 fires in Kalimantan and Sumatra, Indonesia, in Biomass Burning and its Inter-relationships with the Climate System, J. Innes, M. Beniston, and M. Verstraete, Editors. 2000, Kluwer Academic Publishers: Dordrecht. p. 15-31.
- 45. Levine, J. and W. Cofer, proceed for Spire emissions and the Pentist Sopulating spire on Free Chynus Change and Carbon Cycling in the Boreal Forest, E. Kasischke and B. Stocks, Editors. 2000, Springer-Verlag: New York. p. 31-48.
- 46. Marsdon-Smedley, J. and A. Slijepcevic, Fuel characteristics and low intensity burning in Eucalyptus obliqua wet forest at the Warra LTER site. TASFORESTS, 2001. 13(2): p. 261-279.
- 47. Mazurek, M., W. Cofer, and J. Leville, Carlonareon acropols from preserved burning of a boreal forest ecosystem, in Global Biomass Burning: Atmosphesic, Carlonareon acropols from preserved burning of a boreal forest ecosystem, in Global Biomass Burning: Atmosphesic, Carlonareon acropols from preserved burning of a boreal forest ecosystem, in Global Biomass Burning: Atmosphesic, Carlonareon acropols from preserved burning of a boreal forest ecosystem, in Global Biomass Burning: Atmosphesic, Carlonareon acropols from preserved burning of a boreal forest ecosystem, in Global Biomass Burning: Atmosphesic, Carlonareon acropols from preserved burning of a boreal forest ecosystem, in Global Biomass Burning: Atmosphesic, Carlonareon acropols from preserved burning of a boreal forest ecosystem, in Global Biomass Burning: Atmosphesic, Carlonareon acropols from preserved burning of a boreal forest ecosystem acropols from the preserved burning of a boreal forest ecosystem acropols from the preserved burning of a boreal forest ecosystem acropols from the preserved burning of a boreal forest ecosystem acropols from the preserved burning of a boreal forest ecosystem acropols from the preserved burning of a boreal forest ecosystem acropols from the preserved burning of a boreal forest ecosystem acropols from the preserved burning of a boreal forest ecosystem acropols from the preserved burning acropols from the preserved burning of a boreal forest ecosystem acropols from the preserved burning acropols from the preserved burning
- 48. McNaughton, S., N. Stronach, and N. Georgiadis, *Combustion in natural fires and global emissions budgets*. ECOLOGICAL APPLICATIONS, 1998. **8**(2): p. 464-468.
- 49. McRae, D. and B. Stocks 2 Programmed and English of the Conference on Fire and Forest Metearology. 1987. San Diego, California: American Meteological Society.
- 50. Moula, M., J. Brustet, H. Eva, J. Lacaux, J. Gregoire, and J. Fontan, Contribution of the Spread-Fire Model in the study of savanna fires, in Biomass Burning and Global Change: Volume 1. Remote Sensing, Modeling and Inventory Development, and Biomass Burning in Africa, J. Levine, Editor. 1996, MIT Press: Cambridge. p. 270-277.
- 51. Neil, R., N. Stronach, and S. McNaughton, *Grassland fire dynamics in the Serengeti ecosystem, and a potential method of retrospectively estimating fire energy.* JOURNAL OF APPLIED ECOLOGY, 1989. **26**: p. 1025-1033.
- 52. Pivello, V. and L. Coutinho, *Transfer of macro-nutrients to the atmosphere during experimental burnings in an open cerrado (Brazilian savanna).* JOURNAL OF TROPICAL ECOLOGY, 1992. **8**: p. 487-497.
- 53. Prasad, V., Y. Kant, P. Gupta, C. Sharma, A. Mitra, and K. Badarinath, *Biomass and combustion characteristics of secondary mixed deciduous forests in Eastern Ghats of India*. ATMOSPHERIC ENVIRONMENT, 2001. 35(18): p. 3085-3095.
- 54. Raison, R., P. Khana, and P. Woods, *Transfer of elements to the atmosphere during low intensity prescribed fires in three Australian subalpine eucalypt forests.* CANADIAN JOURNAL OF FOREST RESEARCH, 1985. **15**: p. 657-664.
- 55. Robertson, K., Loss of organic matter and carbon during slash burns in New Zealand exotic forests. NEW ZEALAND JOURNAL OF FORESTRY SCIENCE, 1998. 28(2): p. 221-241.
- 56. Robinson, J., On uncertainty in the computation of global emissions from biomass burning. CLIMATIC CHANGE, 1989. 14: p. 243-262.
- 57. Shea, R., B. Shea, J. Kauffman, D. Ward, C. Haskins, and M. Scholes, *Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia.* JOURNAL OF GEOPHYSICAL RESEARCH, 1996. **101**(D19): p. 23551-23568.
- Slijepcevic, A., Loss of carbon during controlled regeneration burns in Eucalyptus obliqua forest. TASFORESTS, 2001. 13(2): p. 281-289.
- Smith, D. and T. James, Characteristics of prescribed burns andresultant short-term environmental changes in Populus tremuloides woodland in southern Ontario. CANADIAN JOURNAL OF BOTANY, 1978. 56: p. 1782-1791.
- 60. Soares, R. and G. Ribeiro. Fire behaviour and tree stumps sprouting in Eucalyptus prescribed burnings in southern Brazil. in III International Conference on Forest Fire Research / 14th Conference on Fire and Forest Meteorology. 1998. Luso.

- Sorrensen, C., Linking smallholder land use and fire activity: examining biomass burning in the Brazilian Lower Amazon. FOREST ECOLOGY AND MANAGEMENT, 2000. 128(1-2): p. 11-25.
- 63. Stocks, B., Fire behaviour in immature jack pine. CANADIAN JOURNAL OF FOREST RESEARCH, 1987. 17: p. 80-86.
- 64. Stocks, B., Fire behaviour in mature jack pine. CANADIAN JOURNAL OF FOREST RESEARCH, 1989. 19: p. 783-790.
- 65. Stocks, B., B. van Wilgel alason, F. Weirich, and A. Potgieter, Fuels and fire behaviour dynamics on large-scale savanna fires 23541-23550.
- 66. Stocks, B. and J. Kauffm Schaper of wildland fires in boreal, temperate, and tropical ecosystems: parameters necessary to Change, J. Clark, et al., 1 Berlin. p. 169-188.
- 67. Susott, R., D. Ward, R. F. And Anti-American assurement of trace emissions and combustion characteristics for a mass fire, in Global Biomass Burning iospheric Implications, J. Levine, Editor. 1991, MIT Press: Massechusetts. p. 245-257.
- 68. Turetsky, M. and R. Wieder, A direct approach to quantifying organic matter lost as a result of peatland wildfire. CANADIAN JOURNAL OF FOREST RESEARCH, 2001. 31(2): p. 363-366.
- 69. Van Wagner, C., Duff consumption by fire in eastern pine stands, CANADIAN JOURNAL OF FOREST RESEARCH, 1972. 2: p. 34-39.
- van Wilgen, B., D. Le Maitre, and F. Kruger, Fire behaviour in South African fynbos (macchia) vegetation and predictions from Rothermel's fire model. JOURNAL OF APPLIED ECOLOGY, 1985. 22: p. 207-216.
- 71. Vose, J. and W. Swank, Site preparation burning to improve southers appalachian pine-hard rood stands: aboveground biomass, forest floor mass, and nitrogen and Salbarpha's CANAD AN JOURNALO FOR STRESEARCH 1913 21: p. 22 52262
- 72. Walker, J., Fuel dynamics in Australian vegetation, in Fire and the Australian Biota, A. Gill, R. Groves, and I. Noble, Editors. 1981, Australian Academy of Science: Canberra. p. 101-127.
- 73. Ward, D., R. Susott, J. Kanffman, et al., Smoke and fire characteristics for Certaelo and deforestation burns in Brazil: BASE-B Experiment. JOURNAL OF GLOPI SALAL RESEARCH, 1912 (7) (3) 11 (4) 17161).

00: 7493<u>8947</u>6

COMBUSTION EFFICIENCY (PROPORTION OF AVAILABLE FUEL ACTUALLY BURNT) RELEVANT TO LAND-CLEARING BURNS, AND BURNS IN HEAVY LOGGING SLASH FOR A RANGE OF VEGETATION TYPES AND BURNING CONDITIONS

(To be used in sections 'forest lands converted to cropland', 'converted to grassland', or 'converted to settlements or other lands')

(the de creptuite ;		, , , ,			, ,	
https:/	Broadcast Windrow Windrow+Stoking						
Forest Types	Broa	Broadcast		Windrow		w+Stoking	
	<6	>6	<6	>6	<6	>6	
Tropical moist							
- primary ^a	0.15-0.3	~0.30					
- secondary ^b		0.40					
Tropical dry							
- Mixed species ^c		>0.9					
- Acacia ^d			-	0.8	-	~0.95	
Temperate Eucalyptus ^e	0.3	0.5-0.6					
Boreal forest ^f	0.	25					

Note: The combustion efficiency or fraction of biomass combusted, is a critical number in the calculation of emissions, that is highly variable depending on fuel arrangement (e.g. broadcast v heaped), vegetation type affecting the (size of fuel components and flammability) and burning conditions (especially fuel moisture).

Sources: ^aFearnside (1990), Wei Min Hao *et. al* (1990); ^bWei Min Hao *et. al* (1990); ^cKauffmann and Uhl; *et. al* (1990); ^dWilliams *et. al* (1970), Cheney (pers. comm. 2002); ^eMcArthur (1969), Harwood & Jackson (1975), Slijepcevic (2001), Stewart & Flinn (1985); and ^fFrench *et. al* (2000)

WeChat: cstutorcs

TABLE 3A.1.16 EMISSION FACTORS (G/KG DRY MATTER COMBUSTED) APPLICATELY OF DETACLISH TO THE PROPERTY OF THE P										
	CO ₂ CO CH ₄ NO _x N ₂ O* NMHC ² Source									
Moist/infertile broad- leaved savanna	Emai	1:92tu	itor	cs^{6}	163	.con	1995)			
Arid fertile fine- leaved savanna	1 524	73	2	5	0.11	-	Scholes (1995)			
Moist- infertile grassland	O (9).	749	389	476	0.10	-	Scholes (1995)			
Arid-fertile grassland	1 540-	97	3	7	0.11	-	Scholes (1995)			
Wetland	1 554	58	2	4	0.11	-	Scholes (1995)			
All vegetation types ¹	1 403 -1 503	67-120	4-7	0.5-0.8	0.10	-	IPCC (1994)			
Forest fires		.//1 <u>LU</u>	(DI	0.6-0.8		8-12	Kaufman et al. (1992)			
Savanna fires	1 612	152	10.8	-	0.11	-	Ward et al. (1992)			
Forest fires	1 580	130	9	0.7	0.11	10	Delmas et al. (1995)			
Savanna fires	1 640	65	2.4	3.1	0.15	3.1	Delmas et al. (1995)			

¹ Assuming 41-45% C content, 85-100% combustion completeness.

² NMHC non methane hydrocarbons.

^{*} Calculated from data of Crutzen and Andreae (1990) assuming an N/C ratio of 0.01, except for savanna fires.

程序代写代做 CS编程辅导

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com