15. Теорема на Рол. Теорема на крайните нараствания. Теорема на Коши. Основна теорема на интегралното смятане

Галина Люцканова 10 септември 2013 г.

Определение 15.1: Казваме, че f(x) има локален максимум в някоя вътрешна точка x_0 от своята дефиниционна област, ако съществува околност $(x_0-\varepsilon,x_0+\varepsilon)$ на точката x_0 (съдържаща се в дефиниционната област), такава че за всички x_0 в тази околност е изпълнено $f(x) \leq f(x_0)$.

Определение 15.2: Казваме, че f(x) има локален минимум в някоя вътрешна точка x_0 от своята дефиниционна област, ако съществува околност $(x_0-\varepsilon,x_0+\varepsilon)$ на точката x_0 (съдържаща се в дефиниционната област), такава че за всички x_0 в тази околност е изпълнено $f(x) \geq f(x_0)$. Локалните максимуми и локалните минимуми ще наричаме локални екстремуми.

Пример 15.1: Да разгледаме функцията $f(x) = x^2 - 2x$ върху \mathbb{R} .

От графиката може да се види, че в точка x_0 имаме локален минимум, защото:

- 1. точката $x_0 \in \mathbb{R}$
- 2. тъй като дефиниционното множество е \mathbb{R} , то тя е вътрешна за множеството
- 3. каквото и $\varepsilon > 0$ да вземем до е изпълнено $f(x) \ge f(x_0)$.

В интерес на истината точката на локален минимум може да се намери със знания от училище. Да представим f(x) в следния вид $f(x) = x^2 - 2x = (x-1)^2 + 1$. От училище ни е известно, че $(x-1)^2 \ge 0$, тогава точката, в която достигаме минималната стойност е решение на уравнението $f(x) = (x-1)^2 = 0$ или това е точката x = 1.

Пример 15.2: Да разгледаме графиката на функцията $f(x) = x^2 - 2x$, но този път не върху \mathbb{R} , а върху $[1, +\infty)$. Сега можете да забележите на графиката, че тогава нямаме локален минимум, защото x_0 не е вътрешна точка за $[1, +\infty)$, а левият край на интервала, в който е дефинирана функцията.

Пример 15.3: Сега просто един чертеж:

На чертежа в точките x_0 и x_2 имаме локален максимум, а в точките x_1 и x_3 имаме локален минимум. Както надявам се, забелязвате от чертежа не можем да твърдим, че най-голямата стойност на функцията е в неиния локален максимум, а най-малката - в нейния локален минимум. То и затова се нарича локален максимум, защото само на локално ниво е максимум.

Надявам се, че забелязвате, че точката x_0 е точка на локален максимум,

а x_1 е точка на локален минимум. В нашия случай $x_1-x_0=2$, но какво се случва, ако това разтояние е много много малко?

Пример 15.5: Да разгледаме, функцията $f(x) = x^3$.

На графиката забелязваме, че точката (0,0) не е локален екстремум.

<u>Пример 15.6:</u> Не е задължително да говорим само за непрекъснати функции. Да начертаем графиката на следната функция

$$f(x) = \begin{cases} x - 1, \text{ ако } x < -1 \\ 1, \text{ ако } x = -1 \\ x - 2, \text{ ако } x > -1 \end{cases}$$

Може с лекота да се докаже, че точката -1 е точка на прекъсване. Ние просто ще го забележим от графиката на функцията. Интересен е фактът, че -1 е точка на локален максимум на функцията.

Сега след много показни примери се надявам, че е станало ясно какво е локален екстремум. Сега ще преминем към формулировката и доказателството на една основополагаща теорема:

Теорема 15.1 (на Ферма) : Нека f(x) е диференцируема в точка x_0 и има локален екстремум в точката x_0 . Тогава $f'(x_0) = 0$.

Доказателство:

Малко разяснения към теоремата. Първо да си спомним какво означава понятието производна? Еми това е тангенса на ъгъла α , който сключва допирателната с абцисата. Нашата теорема ни твърди, че ако функция има локален екстремум в точка x_0 , то $f'(x_0) = \operatorname{tg} \alpha = 0$. Знаем, че в този случай $\alpha = k\pi$, където $k \in \mathbb{N}$. Е, това означава, че $\alpha = 0^\circ$ или $\alpha = 180^\circ$, ако $\alpha \in [0^\circ, 360^\circ)$. Тази наши сметки доведоха до мисълта, че ъгълът между абцисата и допирателната към функцията в точка x_0 е 0° или 180° , което просто си означава, че допирателната е успоредна на абцисата. Да видим дали това наистина изглежда логично като разгледаме следната графика:

Сега да минем към доказателството на теоремата. Забележки:

1. Изискването за диференцируемост е съществено, защото то ни осигурява съществуването на производната т.е. ако функцията не е диференцируема в точка на локален екстремум, то тогава производната и в тази точка може да не е 0.

От изображението виждаме, че 0 е точка на локален екстремум. Вече сме доказали, че не съществува производна в 0 (защото $f'_+(0)=1\neq -1=f'_-(0)$), което както се сещате е проблем.

2. Обратното твърдение не е вярно т.е Ако f(x) е диференцируема в точка x_0 и $f'(x_0) = 0$. Тогава има локален екстремум в точката x_0 .

<u>Пример 15.8:</u> Да разгледаме функцията $f(x) = x^3$ отново. В предишен пример обсъдихме, че точката 0 не е точка на локален екстремум за функцията. Сега да сметнем производната и $f'(x) = 3x^2$, тогава f'(0) = 0.

Теорема 15.2 (на Рол) : Нека f(x) е непрекъсната в затворения интервал [a,b], е диференцируема в (a,b) и f(a)=f(b). Тогава съществува $\xi \in (a,b)$, такава че $f'(\xi)=0$.

Доказателство:

Малко разяснения по теоремата, както обикновено преди да пристъпим към доказателството на теоремата. Да вземем две точки (a, f(a)) и (b, f(b)) (или точката (b, f(a)), защото f(a) = f(b)). Сега трябва да ги свържем с непрекъсната линия, която е и гладка. Например

Разбира се има много начини, по които можем да ги свържем. Но да не забравяме, че тръгваме от едно ниво и трябва да се върнем на него. Това означава, че или ще се движим само направо, или ще се отклоним например нагоре и после ще трябва да се върнем в обратна посока до това ниво. Това означава, че ще имаме локален екстремум, което означава, че производната в тази точка ще е 0.

Сега да минем към доказателството.

Забележки:

1. Защо е необходимо функцията да е непрекъсната?

Пример 15.9: Да разгледаме функцията

$$f(x) = \begin{cases} x + 10, & \text{ако } x \le 0, \\ x + 5, & \text{ако } x > 0 \end{cases}$$

в интервала [-3, 2].

Тя няма локален екстремум в интервала [-3, 2].

2. Добре, а защо трябва да е непрекъсната в затворения интервал? Не може ли да е непрекъсната в отворения интервал?

Пример 15.10: Да разгледаме пак същата функцията

$$f(x) = \begin{cases} x + 10, & \text{ако } x \le 0, \\ x + 5, & \text{ако } x > 0 \end{cases}$$

само че в интервала (0,5).

Тя е непрекъсната в интервала (0,5), но е прекъсната в интервала [0,5]. Функцията няма локален екстремум в интервала [0,5].

3. Защо искаме функцията да е диференцируема в отворения интервал (a,b), а не в затворения?

Теорема 15.3 (за крайните нараствания) : Нека f(x) е непрекъсната в [a,b] и диференцируема в (a,b). Тогава съществува точка $\xi \in (a,b)$, такава че $\frac{f(b)-f(a)}{b-a}=f'(\xi)$. (Теоремата е още известна с наименованието теорема на Лагранж)

Доказателство:

Теорема 15.4 (на Коши) : Нека f(x) и g(x)) са непрекъснати в $[a, \overline{b}]$ и диференцируеми в (a, b). Ако $g'(x) \neq 0$, то съществува точка $\xi \in (a, b)$, такава че $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$. Забележка:

- 1. Не може ли тогава g(b)-g(a)=0? Да допуснем, че е възможно т.е. g(b)=g(a). Тогава по теоремата на Рол следва, че съществува точка x_0 , за която е изпълнено $g'(x_0)=0$. Противоречие.
- 2. Ако g(x) = x, то $g'(\xi) = 1$ и получаваме теремата на Лагранж за крайните нараствания.

Доказателство:

Теорема 15.5 (основна терема на интегралното смятане) : Не-ка f'(x)=0 за всяко $x\in(a,b)$. Тогава f(x)=c за всяко $x\in(a,b)$ (където с е константа).

Доказателство:

Твърдение 15.1: Нека f'(x) > 0 за всяко x в интервал \triangle . Тогава f(x) е строго растяща в \triangle .

Доказателство:

Теорема 15.6 (на Дарбу) : Нека f(x) приема положителни и отрицателни стойности. Тогава съществува ξ , такова че f'(xi) = 0.

Доказателство: