Name: Adin Aberbach, James Wang

Definition: Two paths f and f', mapping the interval I = [0,1] into X, are said to be **path homotopic** if they have the same initial point x_0 and the same final point x_1 , and if there is a continuous map $F: I \times I \to X$ such that

$$F(s,0) = f(s)$$
 and $F(s,1) = f'(s)$,
 $F(0,t) = x_0$ and $F(1,t) = x_1$.

Definition: If f is a path in X from x_0 to x_1 , and if g is a path in X from x_1 to x_2 , we define the **product** f * g to be the path h given by the equations

$$h(s) = \begin{cases} f(2s) & \text{for } s \in [0, 1/2], \\ g(2s - 1), & \text{for } s \in [1/2, 1]. \end{cases}$$

The product on paths induces a well-defined operation on path-homotopy classes,

$$[f] * [g] = [f * g].$$

To verify this, let F be a path homotopy between f and f' and let G be a path homotopy between g and g'. Define the new path homotopy as

$$H(s,t) = \begin{cases} F(2s,t) & \text{for } s \in [0,1/2], \\ G(2s-1,t), & \text{for } s \in [1/2,1]. \end{cases}$$

Theorem: The operation * has the following properties:

- (1) (Associativity) If [f] * ([g] * [h]) is defined, so is ([f] * [g]) * [h], and they are equal.
- (2) (Right and left identities) Given $x \in X$, let e_x denote the constant path $e_x : I \to X$ carrying all of I to the point x. If f is a path in X from x_0 to x_1 , then

$$[f] * [e_{x_1}] = [f]$$
 and $[e_{x_0}] * [f] = [f]$.

(3) (Inverse) Given the path f in X from x_0 to x_1 , let \bar{f} be the path defined by $\bar{f}(s) = f(1-s)$. It is called the **reverse** of f. Then

$$[f] * [\bar{f}] = [e_{x_0}]$$
 and $[\bar{f}] * [f] = [e_{x_1}].$