/home/nicole/Jupyter/JG3/Data/0.5/G/8

```
;ls
In [4]:
        Correlation.G5.G.C.txt
        Correlation.G5.G.J.txt
        Correlation.G5.G.JC.txt
        Correlation.G5.G.N.txt
        G0.Genotype.ID
        G0.ID
        G0.noGenotype.ID
        G1.Genotype.ID
        G1.ID
        G1.noGenotype.ID
        G2.Genotype.ID
        G2.ID
        G2.noGenotype.ID
        G3.Genotype.ID
        G3.ID
        G3.noGenotype.ID
        G4.Genotype.ID
        G4.ID
        G4.noGenotype.ID
        G5.Genotype.ID
        G5.ID
        G5.noGenotype.ID
        GenNF.txt
        PedAll.txt
        Phe.txt
        PheAll.txt
        Regression.G5.G.C.txt
        Regression.G5.G.J.txt
        Regression.G5.G.JC.txt
        Regression.G5.G.N.txt
        all.ID
        alphaEstimates
        genotype.ID
        meanOfSNPGAll
        meanOfSNPGG0
        meanOfSNPGG1
        meanOfSNPGG2
        meanOfSNPGG3
        meanOfSNPGG4
        meanOfSNPGG5
        noGenotype.ID
        sim.bv
        sim.phenotype
In [5]: ;awk '{print $1}' PedAll.txt | sort -b > all.ID
In [6]: | ;awk '{print $1}' GenNF.txt | sort -b > genotype.ID
In [7]:
        ;join -v1 all.ID genotype.ID > noGenotype.ID
In [8]: ;awk '{print $1,$2}' Phe.txt > sim.phenotype
```

```
In [9]: ;awk '{print $1,$3}' PheAll.txt > sim.bv
In [10]: ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [11]:
         ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
         ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
         ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [14]:
         ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
         ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [15]:
In [16]:
         ; join G0.ID genotype.ID > G0.Genotype.ID
         ; join G1.ID genotype.ID > G1.Genotype.ID
In [17]:
In [18]:
         ;join G2.ID genotype.ID > G2.Genotype.ID
In [19]:
         ; join G3.ID genotype.ID > G3.Genotype.ID
         ; join G4.ID genotype.ID > G4.Genotype.ID
In [20]:
In [21]:
         ; join G5.ID genotype.ID > G5.Genotype.ID
In [22]:
         ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]:
         ; join -v1 G1.ID genotype.ID > G1.noGenotype.ID
In [24]:
         ; join -v1 G2.ID genotype.ID > G2.noGenotype.ID
In [25]:
         ; join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [26]:
         ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [27]:
         ;join -v1 G5.ID genotype.ID > G5.noGenotype.ID
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc (
In [28]:
              200 1200 GO.Genotype.ID
               200 1200 G1.Genotype.ID
          200
               200 1200 G2.Genotype.ID
          200
          200
               200 1200 G3.Genotype.ID
               200 1200 G4.Genotype.ID
          200
               8000 48000 G5.Genotype.ID
```

```
In [29]:
         ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype
                7800 46800 G0.noGenotype.ID
          7800
                7800 46800 Gl.noGenotype.ID
          7800 7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
In [30]: ped, A Mats, numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreedia
         nothing
         y Vecs = make_yVecs("sim.phenotype",ped,numSSBayes)
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
         nothing
In [31]:
         vRes
                = 0.627
                = 0.627
         aHat3=SSBR.PBLUP(y_Vecs,Z_Mats,A_Mats,numSSBayes,vRes,vG);
In [32]: using DataFrames
In [33]: | df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',head
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [34]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat3[posAi])[1,1]
         reg1 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with (
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n",
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.885
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.973
Out[34]: 0.8852789960492168
In [35]: TBV = a[posAi]
         mean(TBV)
Out[35]: 11.148675645833336
In [36]: EBV = aHat3[posAi]
         mean(EBV)
Out[36]: 1.2292893201885942
```

```
In [37]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header:
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat3[posAi])[1,1]
         reg2 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # |
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3:
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.585
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 0.950
Out[37]: 0.5845546950501601
In [38]: TBV = a[posAi]
         mean(TBV)
Out[38]: 12.260728111111112
In [39]: EBV = aHat3[posAi]
         mean(EBV)
Out[39]: 2.3701174784874044
In [40]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',heade
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat3[posAi])[1,1]
         reg3 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 );
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.867
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.973
Out[40]: 0.8666390021732244
In [41]: TBV = a[posAi]
         mean(TBV)
Out[41]: 10.892048153846154
In [42]: EBV = aHat3[posAi]
         mean(EBV)
Out[42]: 0.9660212836580997
```

```
In [43]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi], aHat3[posAi])[1,1]
         reg4 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with ei
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.695
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.852
Out[43]: 0.6948551607615506
In [44]: TBV = a[posAi]
         mean(TBV)
Out[44]: 9.95114025
In [45]: EBV = aHat3[posAi]
         mean(EBV)
Out[45]: 0.0004186151237607643
In [46]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat3[posAi])[1,1]
         req4 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with ep
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.764
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.981
Out[46]: 0.7639105668648656
In [47]: TBV = a[posAi]
         mean(TBV)
Out[47]: 10.431080124999998
In [48]: EBV = aHat3[posAi]
         mean(EBV)
Out[48]: 0.5259143265459036
```

```
In [49]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat3[posAi])[1,1]
         reg5 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with ei
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.763
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 1.000
Out[49]: 0.7631273618378297
In [50]: TBV = a[posAi]
         mean(TBV)
Out[50]: 10.91770075
In [51]: EBV = aHat3[posAi]
         mean(EBV)
Out[51]: 1.0049259070072696
In [52]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat3[posAi])[1,1]
         reg6 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with ep
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.758
         SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = 0.964
Out[52]: 0.7581573226743771
In [53]: TBV = a[posAi]
         mean(TBV)
Out[53]: 11.4120105
In [54]: EBV = aHat3[posAi]
         mean(EBV)
Out[54]: 1.484810127433449
```

```
In [55]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat3[posAi])[1,1]
         reg7 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with ei
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation = 0.730
         SSBRJC from Gibbs - G4.ID: regression of TBV on GEBV = 0.942
Out[55]: 0.729541744141655
In [56]: TBV = a[posAi]
         mean(TBV)
Out[56]: 11.870548749999998
In [57]: EBV = aHat3[posAi]
         mean(EBV)
Out[57]: 1.9392963153380136
In [58]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat3[posAi])[1,1]
         reg8 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with ep
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.427
         SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = 0.909
Out[58]: 0.4269961369055309
In [59]: TBV = a[posAi]
         mean(TBV)
Out[59]: 12.309573500000003
In [60]: EBV = aHat3[posAi]
         mean(EBV)
Out[60]: 2.420370629683169
```

```
In [61]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat3[posAi])[1,1]
         reg9 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.898
         SSBRJC from Gibbs - G0.Genotype.ID: regression of TBV on GEBV = 1.024
Out[61]: 0.8982990510534513
In [62]: TBV = a[posAi]
         mean(TBV)
Out[62]: 10.929179999999999
In [63]: EBV = aHat3[posAi]
         mean(EBV)
Out[63]: 1.0706481227502649
In [64]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat3[posAi])[1,1]
         reg9 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.896
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 1.037
Out[64]: 0.8961724370595586
In [65]: TBV = a[posAi]
         mean(TBV)
Out[65]: 11.441160000000002
In [66]: EBV = aHat3[posAi]
         mean(EBV)
Out[66]: 1.4933356014252204
```

```
In [67]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat3[posAi])[1,1]
         reg10 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.886
         SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = 0.971
Out[67]: 0.886128038713789
In [68]: TBV = a[posAi]
         mean(TBV)
Out[68]: 11.918410000000002
In [69]: EBV = aHat3[posAi]
         mean(EBV)
Out[69]: 1.9772448160123155
In [70]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat3[posAi])[1,1]
         reg11 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.878
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 1.005
Out[70]: 0.8779199770204263
In [71]: TBV = a[posAi]
         mean(TBV)
Out[71]: 12.322235
In [72]: EBV = aHat3[posAi]
         mean(EBV)
Out[72]: 2.3994011164423013
```

```
In [73]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat3[posAi])[1,1]
         reg12 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.407
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 0.761
Out[73]: 0.4074166895334488
In [74]: TBV = a[posAi]
         mean(TBV)
Out[74]: 12.738839999999998
In [75]: EBV = aHat3[posAi]
         mean(EBV)
Out[75]: 2.899831687976332
In [76]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat3[posAi])[1,1]
         reg13 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.427
         SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = 0.909
Out[76]: 0.4269961369055309
In [77]: writedlm("Correlation.G5.G.PBLUP.txt",cor13)
In [78]: | writedlm("Regression.G5.G.PBLUP.txt",reg13)
In [79]: TBV = a[posAi]
         mean(TBV)
Out[79]: 12.309573500000003
In [80]: | EBV = aHat3[posAi]
         mean(EBV)
Out[80]: 2.420370629683169
```

```
In [81]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat3[posAi])[1,1]
         reg14 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.676
         SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = 0.844
Out[81]: 0.6761222578211046
In [82]: TBV = a[posAi]
         mean(TBV)
Out[82]: 9.92606230769231
In [83]: EBV = aHat3[posAi]
         mean(EBV)
Out[83]: -0.02702316712307266
In [84]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat3[posAi])[1,1]
         reg14 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.748
         SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = 0.975
Out[84]: 0.7478735281760618
In [85]: TBV = a[posAi]
         mean(TBV)
Out[85]: 10.40518064102564
In [86]: EBV = aHat3[posAi]
         mean(EBV)
Out[86]: 0.5011086528310496
```

```
In [87]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat3[posAi])[1,1]
         reg15 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor1!
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.746
         SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = 0.998
Out[87]: 0.7461480186887891
In [88]: TBV = a[posAi]
         mean(TBV)
Out[88]: 10.89204153846154
In [89]: EBV = aHat3[posAi]
         mean(EBV)
Out[89]: 0.9799946529302173
In [90]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat3[posAi])[1,1]
         reg16 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.743
         SSBRJC from Gibbs - G3.noGenotype.ID: regression of TBV on GEBV = 0.961
Out[90]: 0.7429270888197289
In [91]: TBV = a[posAi]
         mean(TBV)
Out[91]: 11.38867141025641
In [92]: EBV = aHat3[posAi]
         mean(EBV)
Out[92]: 1.4613590764332223
```

```
In [93]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat3[posAi])[1,1]
         reg17 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.718
         SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = 0.947
Out[93]: 0.7184700340351611
In [94]: TBV = a[posAi]
         mean(TBV)
Out[94]: 11.848284871794874
In [95]: EBV = aHat3[posAi]
         mean(EBV)
Out[95]: 1.9146672032190821
In [96]: numSSBayes
Out[96]: SSBR.NumSSBayes(54971,45971,9000,40000,39000,1000,0)
```