Doble Grado en Informática-Matemáticas

Variable Compleja I

(Curso 2014-2015) Examen Final

9-Julio-2015

1.

(i) Definir los conceptos de dominio y de conjunto convexo en C. ¿Qué relación existe entre estos conceptos? Justificar de manera razonada que los conjuntos

$$F = \{z \in \mathbb{C} : |\mathrm{Im}(z)| < \frac{\pi}{4}\}, \quad G = \{z \in \mathbb{C} : |\mathrm{Im}(z)| < \frac{\pi}{2}\},$$

$$S = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\} \quad y \quad \Delta = \{z \in \mathbb{C} : |z| < 1\}$$

son dominios.

(ii) Definir el concepto de función holomorfa en un abierto de $\mathbb C.$ Se consideran las funciones f,g y h dadas por

$$f(z) = 2z, \quad g(z) = e^z \quad y \quad h(z) = \frac{z-1}{z+1}.$$

Probar, calculando su inversa, que f es biholomorfa de F en G, g es biholomorfa de G en S y h es biholomorfa de S en Δ .

(iii) Probar que la función tangente hiperbólica

$$\tanh(z) := \frac{e^{2z} - 1}{e^{2z} + 1}$$

es biholomorfa de F en Δ , y calcular su inversa \tanh^{-1} .

(iv) Calcular el desarrollo de Taylor de tanh⁻¹ centrado en 0.

(4 Puntos)

2.

- (i) Enunciar el principio de identidad.
- (ii) Dado un dominio Ω de \mathbb{C} , probar que el anillo $\mathcal{H}(\Omega)$ de las funciones holomorfas en Ω es un dominio de integridad (esto es, no tiene divisores de cero).
- (iii) Dados un dominio Ω de \mathbb{C} , un número natural $n \geq 2$ y un número complejo w, determinar todas las funciones holomorfas $f: \Omega \to \mathbb{C}$ que verifican la condición $f(z)^n = w$ para todo $z \in \Omega$.

(3 Puntos)

3. Se consideran el disco unidad abierto $\Delta=\{z\in\mathbb{C}:|z|<1\}$ y una función holomorfa $f:\Delta\to\Delta$ tal que f(0)=0. A partir de f se define la función auxiliar $h:\Delta\to\mathbb{C}$ por

$$h(z) := \frac{f(z)}{z}$$
 si $z \neq 0$ y $h(0) := f'(0)$.

- (i) Probar que h es holomorfa.
- (ii) Probar que, para cada r con 0 < r < 1, se verifica que $\max_{|z| \le r} |h(z)| < \frac{1}{r}$.
- (iii) Deducir que $|h(z)| \le 1$ para todo $z \in \Delta$.
- (iv) Probar que si existe un $z_0 \in \Delta$ tal que $|h(z_0)| = 1$, entonces existe un $\theta \in \mathbb{R}$ tal que $h(z) = e^{i\theta}$ para todo $z \in \Delta$.
- (v) Enunciar el Lema de Schwarz, esto es, enunciar los apartados (iii) y (iv) en términos de la función inicial f (sin aludir a la función auxiliar h).

(3 Puntos)