Inteligencia Artificial Aplicada para la Economía

Profesor Magistral

Camilo Vega Barbosa

Asistente de Docencia

Sergio Julian Zona Moreno

Redes Neuronales Recurrentes (RNN)

Modelado de Series de Tiempo

Introducción a las Series Temporales

Las series temporales son secuencias de datos ordenados en tiempo que presentan desafíos únicos para las redes neuronales tradicionales.

III Características de las Series Temporales

- Dependencia temporal: El orden de los datos importa
- Patrones estacionales: Ciclos que se repiten periódicamente
- Tendencias: Dirección general a largo plazo

¿Por qué necesitamos modelos especiales?

Las redes neuronales tradicionales (feedforward) no pueden capturar estas dependencias temporales.

Limitaciones de las Redes Neuronales Tradicionales

Las redes neuronales feedforward (MLP) tienen limitaciones significativas cuando trabajan con datos secuenciales:

- No mantienen estado interno o "memoria"
- Asumen independencia entre observaciones
- Procesan entradas de longitud fija
- No capturan dependencias temporales

Para analizar series temporales, necesitamos redes que puedan "recordar" información previa y procesar secuencias de longitud variable.

Redes Neuronales Recurrentes (RNN)

Las RNN son redes diseñadas específicamente para procesar datos secuenciales como series temporales.

Y

Idea Clave

A diferencia de las redes tradicionales, las RNN tienen "memoria" a través de conexiones recurrentes que permiten que la información persista.

© Ventajas

- Pueden procesar secuencias de longitud variable
- Mantienen contexto a lo largo del tiempo
- Comparten parámetros en cada paso temporal

Arquitectura RNN: Componentes

***** Elementos Principales

- Entrada (x_(t)): Vector de datos en tiempo t
 - Ejemplo: [precio, volumen, volatilidad]
- Estado oculto (h(t)): La "memoria" de la red
 - Almacena información contextual
- Salida (y_(t)): Predicción en tiempo t
 - Ejemplo: precio futuro, probabilidad

Tomado de: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Funcionamiento de la RNN

Proceso Secuencial

En cada paso temporal, la RNN:

- 1. **Recibe** una nueva entrada $x_{(t)}$
- 2. **Combina** esta entrada con el estado anterior $h_{(t-1)}$
- 3. **Actualiza** el estado oculto h_(t)
- 4. **Genera** una predicción y_(t)

Tomado de: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

La misma función se aplica en cada paso, permitiendo procesar secuencias de cualquier longitud

Matemática de las RNN: Simple pero Potente

Ecuaciones Fundamentales

Estado oculto:

$$h_t = anh(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$

Salida:

$$y_t = W_{hy} h_t + b_y$$

Donde:

- W_{xh} : Pesos entrada-oculta
- W_{hh} : Pesos recurrentes
- W_{hy} : Pesos oculta-salida
- $b_{h_{i}}$ b_{y} : Vectores de sesgo

Matemática de las RNN: Simple pero Potente

Ecuaciones Fundamentales

Estado oculto:

$$h_t = anh(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$

Salida:

$$y_t = W_{hy} h_t + b_y$$

Dato importante:

Los mismos parámetros se reutilizan en cada paso temporal.

Visualizando el Despliegue en el Tiempo

Una RNN puede visualizarse "desplegada" a través del tiempo:

Observaciones Clave

- La misma función se aplica en cada paso temporal
- Los mismos parámetros se comparten en toda la secuencia
- El estado $h_{(t)}$ depende de $h_{(t-1)}$ y $x_{(t)}$

División Train-Test

- Objetivo: Evaluar la capacidad predictiva del modelo
- Método estándar: División cronológica (no aleatoria)
 - 80% datos para entrenamiento
 - 20% datos para prueba

A diferencia de otros problemas de ML, en series temporales la división debe respetar el orden cronológico. División cronológica de datos en series temporales

```
# Ejemplo de código
n = len(datos)
train_size = int(n * 0.8)

train_data = datos[:train_size]
test_data = datos[train_size:]
```


Ventanas Deslizantes: El Corazón del Entrenamiento

🦹 ¿Qué son las ventanas deslizantes?

Técnica para convertir series temporales en un formato adecuado para RNNs:

- 1. Ventana de entrada: n valores consecutivos
- 2. **Valor objetivo**: Siguiente valor a predecir
- 3. **Deslizamiento**: Mover la ventana un paso a la vez

Ejemplo con PIB Trimestral

```
Datos: [8.3, 8.6, 8.8, 9.1, 9.4, 9.8, 10.0, 10.3]
# Ventana tamaño 4
X1 = [8.3, 8.6, 8.8, 9.1] \rightarrow Y1 = 9.4
X2 = [8.6, 8.8, 9.1, 9.4] \rightarrow Y2 = 9.8
X3 = [8.8, 9.1, 9.4, 9.8] \rightarrow Y3 = 10.0
X4 = [9.1, 9.4, 9.8, 10.0] \rightarrow Y4 = 10.3
```

Ilustración del proceso de ventana deslizante

Nétricas de Evaluación para Series Temporales

Métricas de Error Comunes

• MSE (Error Cuadrático Medio)

$$MSE = rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2$$

• RMSE (Raíz del Error Cuadrático Medio)

$$RMSE = \sqrt{MSE}$$

MAE (Error Absoluto Medio)

$$MAE = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i|$$

Estas métricas se calculan comparando las predicciones del modelo con los valores reales en el conjunto de prueba.

Proceso de Evaluación

Consideraciones Importantes

- Evaluación en datos no vistos:
 El modelo entrenado con el 80% de los datos genera predicciones sobre el 20% restante
- Conjunto de prueba como referencia:
 Se comparan las predicciones con los valores reales del conjunto de prueba

Estrategias de Predicción

- Horizonte de predicción:
 - One-step: Predecir solo el siguiente valor
 - Multi-step: Predecir varios valores futuros
- Comparación con baseline:
 - Método ingenuo (último valor)
 - Promedio móvil
 - ARIMA

Proceso Completo de Modelado

Flujo de Trabajo

1. Preparación:

- División train-test (80%-20%)
- Creación de ventanas deslizantes
- Normalización de datos

2. Entrenamiento:

- Alimentar ventanas al modelo
- Ajustar pesos para minimizar error
- Validación con datos no vistos.

3. Evaluación:

- Predicción secuencial en test
- Cálculo de métricas (RMSE, MAE)
- Comparación con modelos baseline

4. Producción:

- Uso de toda la serie para entrenamiento final
- Predicciones sobre nuevos datos
- Monitoreo y reentrenamiento

El Problema del Gradiente Desvaneciente

¿Qué ocurre?

Al entrenar RNNs con backpropagation, los gradientes:

- ullet Se multiplican repetidamente por W_{hh}
- ullet Si los valores propios de $W_{hh} < 1$, el gradiente se desvanece
- ullet Si los valores propios de $W_{hh}>1$, el gradiente explota

Consecuencias

- Memoria a corto plazo: La red olvida información pasada
- Dificultad para capturar dependencias a largo plazo
- Entrenamiento inestable

El Problema del Gradiente Desvaneciente

Implicaciones

- En secuencias largas, los gradientes tienden a desvanecerse, limitando la capacidad de aprendizaje.
- A medida que retropropagamos en el tiempo, los gradientes se vuelven tan pequeños que la red deja de aprender efectivamente.

LSTM: La Solución al Gradiente Desvaneciente

Las Long Short-Term Memory (LSTM) son un tipo avanzado de RNN diseñadas para:

- Mantener información por largos períodos de tiempo
- Evitar el problema del gradiente desvaneciente
- Aprender qué información recordar y olvidar

Componente clave

Las LSTM utilizan **compuertas** (gates) para controlar el flujo de información a través del tiempo.

¿Qué son las compuertas?

Las compuertas son mecanismos matemáticos que controlan el flujo de información a través de la red neuronal. Técnicamente, son funciones diferenciables que transforman los datos de entrada mediante pesos entrenables y una activación sigmoide, produciendo valores entre 0 y 1 que determinan cuánta información puede pasar.

Estos componentes se entrenan durante el proceso de backpropagation, NO son hiperparámetros que se configuren manualmente.

La red aprende automáticamente a abrir o cerrar estas "válvulas inteligentes" según el contexto, permitiendo que la LSTM decida qué información recordar, actualizar u olvidar en cada paso temporal.

Q Los tipos de compuertas LSTM

- 1. **Compuerta de olvido** (f_(t)): Decide qué información descartar
- 2. **Compuerta de entrada** (i_(t)):

 Determina qué nueva información almacenar
- 3. Compuerta de salida $(o_{(t)})$: Controla qué información se transmite al siguiente paso
- 4. **Celda de memoria** (c_(t)): Almacena información a largo plazo

Tomado de: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Las compuertas utilizan funciones sigmoides (valores entre 0 y 1) para controlar el flujo de información

Matemática de las LSTM: Ecuaciones Fundamentales

1. Compuerta de olvido:

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

2. Compuerta de entrada:

$$egin{aligned} i_t &= \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) \ & ilde{C}_t &= anh(W_C \cdot [h_{t-1}, x_t] + b_C) \end{aligned}$$

3. Actualización de la celda de memoria:

$$C_t = f_t st C_{t-1} + i_t st ilde{C}_t$$

4. Compuerta de salida y estado oculto:

$$egin{aligned} o_t &= \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) \ h_t &= o_t * anh(C_t) \end{aligned}$$

USTM: Explicación Visual

Tomado de: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Arquitectura de una celda LSTM con sus compuertas de control

Analogía: LSTM como Analista Financiero

- Compuerta de Olvido
 - Como descartar informes obsoletos
 - "El mercado ha cambiado, estos datos ya no son relevantes"
 - Ejemplo: Ignorar patrones prepandemia en análisis actuales
- Compuerta de Entrada
 - Como archivar información crucial
 - "Esta alza de tasas es importante, debo guardarla"

- **3** Celda de Memoria
 - Como una caja fuerte de información
 - "Aquí guardo las tendencias importantes a largo plazo"
 - Ejemplo: Mantener patrones de ciclos económicos
- Compuerta de Salida
 - Como preparar un informe actual
 - "Para la predicción de hoy, selecciono esta información"

★ GRU: La Alternativa Eficiente

Las **Gated Recurrent Unit** (GRU) son una variante más simple de las LSTM, introducidas por Cho et al. en 2014.

Características Principales

- Fusionan las compuertas de olvido y entrada
- Eliminan la celda de memoria separada
- Menos parámetros que LSTM
- Rendimiento similar en muchas tareas
- Entrenamiento más rápido y eficiente

Matemática de las GRU: Simplicidad Efectiva

Las GRU utilizan sólo dos compuertas para controlar el flujo de información:

1. Compuerta de actualización $(z_{(t)})$:

$$z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z)$$

2. Compuerta de reinicio $(r_{(t)})$:

$$r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r)$$

3. Candidato a nuevo estado ($\hat{h}_{(t)}$):

$$ilde{h}_t = anh(W \cdot [r_t * h_{t-1}, x_t] + b)$$

4. Estado oculto final:

$$h_t=(1-z_t)*h_{t-1}+z_t* ilde{h}_t$$

Analogía para entender las compuertas GRU

Primera compuerta

1. Compuerta de Actualización $(z_{(t)})$

- Decide cuánto confiar en información nueva vs. antigua
- "¿Sigo mi estrategia anterior o doy peso al anuncio reciente?"
- Si hay un anuncio importante → prioriza la nueva información
- Si es ruido de mercado → se aferra a su estrategia previa

Tomado de: https://d2l.ai/chapter_recurrent-neural-networks/gru.html

La GRU es como un operador de mercado ágil: sabe cuándo cambiar de estrategia y cuándo ignorar el ruido.

Analogía para entender las compuertas GRU

Segunda compuerta

2. Compuerta de Reinicio (r_(t))

Decide cuándo "empezar de cero" tras un cambio de paradigma
 -- "¿Este cambio en política monetaria invalida mis análisis previos?"

Tomado de: https://d2l.ai/chapter_recurrent-neural-networks/gru.html

La GRU es como un operador de mercado ágil: sabe cuándo cambiar de estrategia y cuándo ignorar el ruido.

II Comparativa de Modelos

Baso en experiencias de predicción de mercados financieros

Desempeño relativo:

Modelo	Precisión	Velocidad	Memoria	Recursos necesarios
RNN	**	****	**	**
LSTM	****	***	****	****
GRU	****	****	****	***

RNN Simple

- Mercados estables sin disrupciones
- Predicciones a muy corto plazo
- Sistemas con recursos limitados
- Procesamiento en tiempo real sencillo
- Alto volumen de datos simples

LSTM/GRU

- Mercados volátiles o con disrupciones
- Predicciones a medio/largo plazo
- Patrones económicos complejos
- Detección de cambios de régimen
- Análisis de crisis financieras

Ejemplo real: Durante la crisis del 2008, los modelos LSTM predijeron correctamente patrones de recuperación basándose en crisis anteriores, mientras que las RNN simples fallaron consistentemente.

Recursos del Curso

- **Plataformas y Enlaces Principales**
- GitHub del curso
- github.com/CamiloVga/IA_Aplicada
- Asistente IA para el curso
- **Obligation** Google Notebook LLM