Heavy Neutral Leptons, Searches for

(A) Heavy Neutral Leptons

Stable Neutral Heavy Lepton MASS LIMITS

Note that LEP results in combination with REUSSER 91 exclude a fourth stable neutrino with m < 2400 GeV.

VALUE (GeV)	CL%	DOCUMENT ID 7		TECN	COMMENT
>45.0	95	ABREU	92 B	DLPH	Dirac
>39.5	95	ABREU	92 B	DLPH	Majorana
>44.1	95	ALEXANDER	91F	OPAL	Dirac
>37.2	95	ALEXANDER	91F	OPAL	Majorana
none 3-100	90	SATO	91	KAM2	Kamiokande II
>42.8	95	¹ ADEVA	90 S	L3	Dirac
>34.8	95	¹ ADEVA	90 S	L3	Majorana
>42.7	95	DECAMP	90F	ALEP	Dirac

 $^{^1}$ ADEVA 90S limits for the heavy neutrino apply if the mixing with the charged leptons satisfies $|U_{1j}|^2+|U_{2j}|^2+|U_{3j}|^2>6.2\times 10^{-8}$ at $m_{L^0}=$ 20 GeV and $>5.1\times 10^{-10}$ for $m_{L^0}=$ 40 GeV.

Heavy Neutral Lepton MASS LIMITS —

Limits apply only to heavy lepton type given in comment at right of data Listings.

See the "Quark and Lepton Compositeness, Searches for" Listings for limits on radiatively decaying excited neutral leptons, i.e. $\nu^* \to \nu \gamma$.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>101.3	95	ACHARD	01 B	L3	Dirac coupling to e
>101.5	95	ACHARD	01 B	L3	Dirac coupling to μ
> 90.3	95	ACHARD	01 B	L3	Dirac coupling to $ au$
> 89.5	95	ACHARD	01 B	L3	Majorana coupling to e
> 90.7	95	ACHARD	01 B	L3	Majorana coupling to μ
> 80.5	95	ACHARD	01 B	L3	Majorana coupling to $ au$
• • • We do not use t	ne following	data for average	s, fits,	limits, e	etc. • • •
> 76.0	95	ABBIENDI	001	OPAL	Majorana, coupling to e
> 88.0	95	ABBIENDI	001	OPAL	Dirac, coupling to e
> 76.0	95	ABBIENDI	001	OPAL	Majorana, coupling to μ
> 88.1	95	ABBIENDI	001	OPAL	Dirac, coupling to μ
> 53.8	95	ABBIENDI	001	OPAL	Majorana, coupling to $ au$
> 71.1	95	ABBIENDI	001	OPAL	Dirac, coupling to $ au$
> 76.5	95	ABREU	990	DLPH	Dirac coupling to e
> 79.5	95	ABREU	990	DLPH	Dirac coupling to μ
> 60.5	95	ABREU	990	DLPH	Dirac coupling to $ au$
> 63		^{2,3} BUSKULIC	96 S	ALEP	Dirac
> 54.3	95	^{2,4} BUSKULIC	96 S	ALEP	Majorana

Astrophysical Limits on Neutrino MASS for $m_{ u} > 1$ GeV —

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e follow	ing data for average	s, fits,	limits, e	etc. • • •
none 60-115		⁵ FARGION	95	ASTR	Dirac
none 9.2-2000		⁶ GARCIA	95	COSM	Nucleosynthesis
none 26-4700		⁶ BECK	94	COSM	Dirac
none 6 – hundreds		^{7,8} MORI	92 B	KAM2	Dirac neutrino
none 24 – hundreds		^{7,8} MORI	92 B	KAM2	Majorana neutrino
none 10-2400	90	⁹ REUSSER	91	CNTR	HPGe search
none 3–100	90	SATO	91	KAM2	Kamiokande II
		¹⁰ ENQVIST	89	COSM	
none 12-1400		⁶ CALDWELL	88	COSM	Dirac ν
none 4–16	90	^{6,7} OLIVE	88	COSM	Dirac ν
none 4-35	90	OLIVE	88	COSM	Majorana $ u$
>4.2 to 4.7		SREDNICKI	88	COSM	Dirac ν
>5.3 to 7.4		SREDNICKI	88	COSM	Majorana $ u$
none 20-1000	95	⁶ AHLEN	87	COSM	Dirac ν
>4.1		GRIEST	87	COSM	Dirac ν

 $^{^{5}}$ FARGION 95 bound is sensitive to assumed ν concentration in the Galaxy. See also $^{6}\,\mbox{These}$ results assume that neutrinos make up dark matter in the galactic halo.

(B) Other Bounds from Nuclear and Particle Decays

– Limits on $|U_{e\, x}|^2$ as Function of $m_{ u_x}$ –

Peak and kink search tests

Limits on $|U_{ex}|^2$ as function of m_{ν_i}

VALU	E	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<1	× 10 ⁻⁷	90 1	$^{ m 1}$ BRITTON	92 B	CNTR	50 MeV $< m_{ u_{\chi}} <$ 130 MeV
• • •	• We do not us	e the follow	ing data for aver	ages,	fits, limi	ts, etc. • • •
<5	$\times 10^{-6}$	90	DELEENER	91		$m_{\nu_{\star}}$ =20 MeV
< 5	$\times 10^{-7}$	90	DELEENER	91		$m_{\nu_{\downarrow}} = 40 \text{ MeV}$
<3	\times 10 ⁻⁷	90	DELEENER	91		$m_{\nu_{\downarrow}}$ =60 MeV
<1	\times 10 ⁻⁶	90	DELEENER	91		$m_{\nu_{\chi}}^{\lambda}$ =80 MeV
						^

HTTP://PDG.LBL.GOV

Page 2

 $^{^2}$ BUSKULIC 96S requires the decay length of the heavy lepton to be $< 1\,\mathrm{cm}$, limiting the square of the mixing angle $|U_{\ell\,i}|^2$ to 10^{-10}

³ BUSKULIC 96s limit for mixing with τ . Mass is > 63.6 GeV for mixing with e or μ .

⁴ BUSKULIC 96S limit for mixing with τ . Mass is > 55.2 GeV for mixing with e or μ .

⁷Limits based on annihilations in the sun and are due to an absence of high energy neutrinos detected in underground experiments.

 $^{^8}$ MORI 92B results assume that neutrinos make up dark matter in the galactic halo. Limits based on annihilations in earth are also given.

 $^{^9}$ REUSSER 91 uses existing $\beta\beta$ detector (see FISHER 89) to search for CDM Dirac

 $^{^{10}}$ ENQVIST 89 argue that there is no cosmological upper bound on heavy neutrinos.

<1	$\times 10^{-6}$	90	DELEENER	Q1		m −100 MeV
	_	30	DEELENEN	71		$m_{ u_{\chi}} = 100 \; \mathrm{MeV}$
< 5	$\times 10^{-7}$	90	AZUELOS	86	CNTR	$m_{\nu_{\star}}$ =60 MeV
<2	\times 10 ⁻⁷	90	AZUELOS	86	CNTR	$m_{\nu_{\star}}$ =80 MeV
<3	\times 10 ⁻⁷	90	AZUELOS	86	CNTR	$m_{\nu_{x}}$ =100 MeV
<1	\times 10 ⁻⁶	90	AZUELOS	86	CNTR	$m_{\nu_{\star}}$ =120 MeV
<2	$\times 10^{-7}$	90	AZUELOS	86	CNTR	$m_{\nu_{\star}}$ =130 MeV
<1	$\times 10^{-4}$	90	¹² BRYMAN	83 B	CNTR	$m_{\nu_{x}} = 5 \text{ MeV}$
<1.5	5×10^{-6}	90	BRYMAN			$m_{\nu_{\star}} = 53 \text{ MeV}$
<1	$\times 10^{-5}$	90	BRYMAN	83 B	CNTR	$m_{\nu_{\star}}$ =70 MeV
<1	$\times 10^{-4}$	90	BRYMAN	83 B	CNTR	$m_{\nu_{x}}$ =130 MeV
<1	$\times 10^{-4}$	68	¹³ SHROCK	81	THEO	$m_{\nu_{\star}}$ =10 MeV
< 5	$\times 10^{-6}$	68	¹³ SHROCK	81	THEO	$m_{\nu_{\star}}$ =60 MeV
<1	$\times 10^{-5}$	68	¹⁴ SHROCK	80		$m_{\nu_{\star}}$ =80 MeV
<3	\times 10 ⁻⁶	68	¹⁴ SHROCK	80	THEO	$m_{\nu_{x}}$ =160 MeV

 $^{^{11}}$ BRITTON 92B is from a search for additional peaks in the e^+ spectrum from $\pi^+ \to e^+ \nu_e$ decay at TRIUMF. See also BRITTON 92.

Kink search in nuclear β decay

High-sensitivity follow-up experiments show that indications for a neutrino with mass 17 keV (Simpson, Hime, and others) were not valid. Accordingly, we no longer list the experiments by these authors and some others which made positive claims of 17 keV neutrino emission. Complete listings are given in the 1994 edition (Physical Review **D50** 1173 (1994)) and in the 1998 edition (The European Physical Journal **C3** 1 (1998)). We list below only the best limits on $|U_{ex}|^2$ for each m_{ν_χ} . See WIETFELDT 96 for a comprehensive review.

<i>VALUE</i> (units 10 ⁻³)	CL%	$m_{ u_{ ilde{j}}}$ (keV)	ISOTOPE	METHOD	DOCUMENT ID	
• • • We do not	use th	ne following data fo	or average	es, fits, limits, etc.	• • •	
< 4–20	90	700-3500	$^{38m}{ m K}$	Trap	¹⁵ TRINCZEK	03
< 9–116	95	1-0.1	$^{187}\mathrm{Re}$	cryog.	¹⁶ GALEAZZI	01
< 1	95	10-90	35_{S}	Mag spect	¹⁷ HOLZSCHUH	00
< 4	95	14–17	241 Pu	Electrostatic spec	¹⁸ DRAGOUN	99
< 1	95	4-30	⁶³ Ni	Mag spect	¹⁹ HOLZSCHUH	99
< 10–40	90	370-640	^{37}Ar	EC ion recoil	²⁰ HINDI	98
< 10	95	1	^{3}H	SPEC	²¹ HIDDEMANN	95
< 6	95	2	^{3}H	SPEC	²¹ HIDDEMANN	95
< 2	95	3	^{3}H	SPEC	²¹ HIDDEMANN	95
< 0.7	99	16.3-16.6	^{3}H	Prop chamber	²² KALBFLEISCH	93
< 2	95	13-40	35_{S}	Si(Li)	²³ MORTARA	93
< 0.73	95	17	⁶³ Ni	Mag spect	OHSHIMA	93

¹² BRYMAN 83B obtain upper limits from both direct peak search and analysis of B($\pi \to e \nu$)/B($\pi \to \mu \nu$). Latter limits are not listed, except for this entry (i.e. — we list the most stringent limits for given mass).

¹³ Analysis of $(\pi^+ \to e^+ \nu_e)/(\pi^+ \to \mu^+ \nu_\mu)$ and $(K^+ \to e^+ \nu_e)/(K^+ \to \mu^+ \nu_\mu)$ decay ratios.

¹⁴ Analysis of $(K^+ \rightarrow e^+ \nu_e)$ spectrum.

< 1.0	95	10-24	⁶³ Ni	Mag spect	KAWAKAMI	92
< 0.9-2.5	90	1200-6800	20 _F	beta spectrum	²⁴ DEUTSCH	90
< 8	90	80	35_{S}	Mag spect	²⁵ APALIKOV	85
< 1.5	90	60	35_{S}	Mag spect	APALIKOV	85
< 3.0	90	5-50		Mag spect	MARKEY	85
< 0.62	90	48	35 S	Si(Li)	OHI	85
< 0.90	90	30	^{35}S	Si(Li)	OHI	85
< 4	90	140	⁶⁴ Cu	Mag spect	²⁶ SCHRECK	83
< 8	90	440	⁶⁴ Cu	Mag spect	²⁶ SCHRECK	83
<100	90	0.1-3000		THEO	²⁷ SHROCK	80
< 0.1	68	80		THEO	²⁸ SHROCK	80

¹⁵ TRINCZEK 03 is a search for admixture of heavy neutrino to ν_e , in contrast to $\overline{\nu}_e$ used in many other searches. Full kinematic reconstruction of the neutrino momentum by use of a magneto optical trap.

 16 GALEAZZI 01 use an cryogenic microcalorimeter to search for mass 50–1000 eV neutrino admixtures using the 187 Re beta spectrum with 2.4 keV endpoint. They derive limits for the admixture of heavy neutrinos, ranging from 9×10^{-3} for mass 1 keV to 0.116 for mass 100 eV. This is a significant improvement with respect to HIDDEMANN 95, especially for masses below ~ 500 MeV, where the limit is about a factor of ~ 2 higher.

 17 HOLZSCHUH 00 use an iron-free β spectrometer to measure the 35 S β decay spectrum. An analysis of the spectrum in the energy range 56–173 keV is used to derive limits for the admixture of heavy neutrinos. This extends the range of neutrino masses explored in HOLZSCHUH 99.

in HOLZSCHUH 99. 18 DRAGOUN 99 analyze the β decay spectrum of 241 Pu in the energy range 0.2–9.2 keV to derive limits for the admixture of heavy neutrinos. It is not competitive with HOLZSCHUH 99

¹⁹ HOLZSCHUH 99 use an iron-free β spectrometer to measure the ⁶³Ni β decay spectrum. An analysis of the spectrum in the energy rage 33–67.8 keV is used to derive limits for the admixture of heavy neutrinos.

 20 HINDI 98 obtain a limit on heavy neutrino admixture from EC decay of 37 Ar by measuring the time-of-flight distribution of the recoiling ions in coincidence with x-rays or Auger electrons. The authors report upper limit for $|U_{\rm ex}|^2$ of $\approx 3\%$ for $m_{\nu_{\chi}} = 550$ keV, 1% for $m_{\nu_{\chi}} = 550$ keV, 2% for $m_{\nu_{\chi}} = 600$ keV, and 4% for $m_{\chi} = 650$ keV. Their reported limits for $m_{\nu_{\chi}} \leq 450$ keV are inferior to the limits of SCHRECKENBACH 83.

 21 In the beta spectrum from tritium β decay nonvanishing or mixed $m_{\overline{\nu}_1}$ state in the mass region 0.01–4 keV. For $m_{\nu_{\tau}}$ <1 keV, their upper limit on $|U_{ex}|^2$ becomes less

²² KALBFLEISCH 93 extends the 17 keV neutrino search of BAHRAN 92, using an improved proportional chamber to which a small amount of 3 H is added. Systematics are significantly reduced, allowing for an improved upper limit. The authors give a 99% confidence limit on $|U_{e_X}|^2$ as a function of m_{ν_X} in the range from 13.5 keV to 17.5 keV. See also the related papers BAHRAN 93, BAHRAN 93B, and BAHRAN 95 on theoretical aspects of beta spectra and fitting methods for heavy neutrinos.

²³ MORTARA 93 limit is from study using a high-resolution solid-state detector with a superconducting solenoid. The authors note that "The sensitivity to neutrino mass is verified by measurement with a mixed source of ³⁵S and ¹⁴C, which artificially produces a distortion in the beta spectrum similar to that expected from the massive neutrino."

²⁴ DEUTSCH 90 search for emission of heavy $\overline{\nu}_e$ in super-allowed beta decay of ²⁰F by spectral analysis of the electrons.

spectral analysis of the electrons. 25 This limit was taken from the figure 3 of APALIKOV 85; the text gives a more restrictive limit of 1.7×10^{-3} at CL = 90%.

²⁶ SCHRECKENBACH 83 is a combined measurement of the β^+ and β^- spectrum.

²⁷ SHROCK 80 was a retroactive analysis of data on several superallowed β decays to search for kinks in the Kurie plot.

Created: 5/30/2017 17:23

 28 Application of test to search for kinks in β decay Kurie plots.

Searches for Decays of Massive ν Limits on $|{\it U_{e\, x}}|^2$ as function of ${\it m_{\nu_{\rm X}}}$

1 6 % 1	CL %	JII (DOCUMENT ID		TECN	COMMENT
• • • We do not use the	CL% followin	м d		fite		<u>COMMENT</u>
$<1.6 \times 10^{-4}$	90		BACK			
$<1.0 \times 10$ $<4.5 \times 10^{-5}$	90		BACK			$m_{\nu_{\chi}} = 4 \text{ MeV}$
$< 4.5 \times 10^{-5}$	90		BACK			$m_{\nu_{\chi}} = 7 \text{ MeV}$
$< 3.8 \times 10^{-3}$				03A		$m_{\nu_{\chi}} = 10 \text{ MeV}$
$<1.5 \times 10^{-2}$	95 05		ACHARD	01	L3	$m_{\nu_{\chi}} = 80 \text{ GeV}$
	95 95		ACHARD ACHARD	01	L3	$m_{\nu_{\chi}} = 175 \text{ GeV}$
<0.3 $<4 \times 10^{-3}$	95 95		ACCIARRI	01 99K	L3 L3	$m_{\nu_{\chi}} = 200 \text{ GeV}$
$<$ \times 10 $<$ \times 10 $<$ \times 10 $-$ 2	95 95		ACCIARRI		L3	$m_{\nu_{\chi}} = 80 \text{ GeV}$
$< 3 \times 10$ $< 2 \times 10^{-5}$	95 95	30	ABREU			$m_{\nu_{\chi}} = 175 \text{ GeV}$
_	95 95		ABREU	971		$m_{\nu_{\chi}} = 6 \text{ GeV}$
$<3 \times 10^{-5}$ $<1.8 \times 10^{-3}$			HAGNER	97I		$m_{\nu_{\chi}} = 50 \text{ GeV}$
$< 1.8 \times 10^{-4}$	90			95 or		$m_{\nu_h} = 1.5 \text{ MeV}$
	90		HAGNER	95		$m_{\nu_h} = 4 \text{ MeV}$
$<4.2 \times 10^{-3}$	90		HAGNER BARANOV	95	MWPC	$m_{\nu_h} = 9 \text{ MeV}$
$<1 \times 10^{-5}$	90			93		$m_{\nu_{\chi}}$ =100 MeV
$<1 \times 10^{-6}$	90		BARANOV	93		$m_{\nu_{\chi}} = 200 \text{ MeV}$
$< 3 \times 10^{-7}$	90		BARANOV	93		$m_{\nu_{\chi}} = 300 \text{ MeV}$
$<2 \times 10^{-7}$	90	J2	BARANOV	93		$m_{\nu_{\chi}}$ =400 MeV
$<6.2 \times 10^{-8}$	95		ADEVA	90s	L3	$m_{\nu_{\chi}}$ =20 GeV
$< 5.1 \times 10^{-10}$	95	22	ADEVA	90s	L3	$m_{\nu_{\chi}} = 40 \text{ GeV}$
all values ruled out	95		BURCHAT	90	MRK2	$m_{\nu_X}^{}$ < 19.6 GeV
$<1 \times 10^{-10}$	95		BURCHAT	90	MRK2	$m_{\nu_{\chi}} = 22 \text{ GeV}$
<1 × 10 ⁻¹¹	95	33	BURCHAT	90		$m_{\nu_{\chi}} = 41 \text{ GeV}$
all values ruled out	95		DECAMP	90F	ALEP	$m_{\nu_{\chi}} = 25.0 - 42.7 \text{ GeV}$
$<1 \times 10^{-13}$	95		DECAMP	90F	ALEP	$m_{\nu_{\chi}} = 42.7 - 45.7 \text{ GeV}$
$< 5 \times 10^{-3}$	90		AKERLOF	88	HRS	$m_{\nu_\chi} = 1.8 \text{ GeV}$
$< 2 \times 10^{-5}$	90		AKERLOF	88	HRS	$m_{\nu_{\chi}} = 4 \text{ GeV}$
$< 3 \times 10^{-6}$	90		AKERLOF	88		$m_{\nu_{\chi}}=$ 6 GeV
$<1.2 \times 10^{-7}$	90		BERNARDI	88		$m_{ u_\chi} = 100 \text{ MeV}$
$<1 \times 10^{-8}$	90		BERNARDI	88		$m_{ u_{\chi}}$ =200 MeV
$< 2.4 \times 10^{-9}$	90		BERNARDI	88	CNTR	$m_{ u_{\chi}}$ =300 MeV
$< 2.1 \times 10^{-9}$	90	٠.	BERNARDI	88	CNTR	$m_{ u_{\chi}}$ =400 MeV
$< 2 \times 10^{-2}$	68		OBERAUER	87		$m_{ u_\chi} = 1.5 \; \mathrm{MeV}$
$< 8 \times 10^{-4}$	68	34	OBERAUER	87		$m_{ u_{\chi}}$ =4.0 MeV
$< 8 \times 10^{-3}$	90		BADIER	86	CNTR	$m_{ u_\chi} = 400 \; \mathrm{MeV}$
$< 8 \times 10^{-5}$	90		BADIER	86		$m_{\nu_{\chi}} = 1.7 \text{ GeV}$
$< 8 \times 10^{-8}$	90		BERNARDI	86	CNTR	$m_{\nu_{\chi}} = 100 \text{ MeV}$
$<4 \times 10^{-8}$	90		BERNARDI	86		$m_{\nu_{\chi}}$ =200 MeV

<6	\times 10 ⁻⁹	90	BERNARDI	86	CNTR	$m_{\nu_{\star}}$ =400 MeV
<3	$\times 10^{-5}$	90	DORENBOS	86	CNTR	$m_{\nu_{\star}}$ =150 MeV
<1	\times 10 ⁻⁶	90	DORENBOS	86	CNTR	$m_{\nu_{\star}}$ =500 MeV
<1	\times 10 ⁻⁷	90	DORENBOS	86	CNTR	$m_{\nu_{\downarrow}}$ =1.6 GeV
<7	$\times 10^{-7}$	90 3	³⁵ COOPER	85	HLBC	$m_{\nu_{\downarrow}} = 0.4 \text{ GeV}$
<8	$\times 10^{-8}$		³⁵ COOPER			
<1	\times 10 ⁻²		³⁶ BERGSMA			
<1	$\times 10^{-5}$	90	³⁶ BERGSMA			$m_{\nu_{x}}^{^{\lambda}}$ =110 MeV
<6	\times 10 ⁻⁷	90 3	³⁶ BERGSMA			$m_{\nu_{\star}}^{\lambda}$ =410 MeV
<1	$\times 10^{-5}$	90	GRONAU	83		$m_{\nu_{\star}}$ =160 MeV
<1	\times 10 ⁻⁶	90	GRONAU			$m_{\nu_{\star}}^{2}$ =480 MeV

- 29 BACK 03A searched for heavy neutrinos emitted from $^8{\rm B}$ decay in the Sun using the decay $\nu_h \to \nu_e \, e^+ \, e^-$ in the Counting Test Facility (the prototype of the Borexino detector) and obtained limits on heavy neutrino admixture for the ν_h mass range 1.1–12 MeV
- ABREU 971 long-lived ν_{χ} analysis. Short-lived analysis extends limit to lower masses with decreasing sensitivity except at 3.5 GeV, where the limit is the same as at 6 GeV.
- ³¹ HAGNER 95 obtain limits on heavy neutrino admixture from the decay $\nu_h \rightarrow \nu_e \, e^+ \, e^-$ at a nuclear reactor for the ν_h mass range 2–9 MeV.
- 32 BARANOV 93 is a search for neutrino decays into $e^+\,e^-\,\nu_e$ using a beam dump experiment at the 70 GeV Serpukhov proton synchrotron. The limits are not as good as those achieved earlier by BERGSMA 83 and BERNARDI 86, BERNARDI 88.
- 33 BURCHAT 90 includes the analyses reported in JUNG 90, ABRAMS 89C, and WENDT 87.
- 34 OBERAUER 87 bounds from search for $\nu \rightarrow \nu' e e$ decay mode using reactor (anti)neutrinos.
- 35 COOPER-SARKAR 85 also give limits based on model-dependent assumptions for $\nu_{\mathcal{T}}$ flux. We do not list these. Note that for this bound to be nontrivial, x is not equal to 3, i.e. ν_{χ} cannot be the dominant mass eigenstate in $\nu_{\mathcal{T}}$ since m_{ν_3} <70 MeV (ALBRECHT 85I). Also, of course, x is not equal to 1 or 2, so a fourth generation would be required for this bound to be nontrivial.
- 36 BERGSMA 83B also quote limits on $|U_{e3}|^2$ where the index 3 refers to the mass eigenstate dominantly coupled to the $\tau.$ Those limits were based on assumptions about the D_{S} mass and $D_{S} \rightarrow ~\tau \nu_{\tau}$ branching ratio which are no longer valid. See COOPERSARKAR 85.

- Limits on Coupling of μ to $u_{_{\!oldsymbol{\mathcal{X}}}}$ as Function of $m_{ u_{_{\!oldsymbol{\mathcal{X}}}}}$

Peak search test

• • • We do not use the following data for averages, fits, limits, etc. • •								
		³⁷ ASTIER	02	NOMD $\pi \rightarrow \mu X$ for m_X =33.9				
$< 6.0 \times 10^{-10}$	95	³⁸ DAUM	00	CNTR $\pi \to \mu X$ for m_{χ} =33.9				
		³⁹ FORMAGGIO	00	CNTR $\pi \to \mu X$ for m_{χ} =33.9				
< 0.22	90	⁴⁰ ASSAMAGAN	98	SILI $m_{\nu_{\star}} = 0.53 \text{ MeV}$				
< 0.029	90	⁴⁰ ASSAMAGAN	98	SILI $m_{\nu_{\star}} = 0.75 \text{ MeV}$				
< 0.016	90	⁴⁰ ASSAMAGAN	98	SILI $m_{\nu_{\chi}} = 1.0 \text{ MeV}$				

HTTP://PDG.LBL.GOV

Page 6

< 4-6	$\times 10^{-5}$		⁴¹ BRYMAN	96	CNTR	$m_{\nu_x} = 3033.91 \text{ MeV}$
$\sim 1 \times 1$	10^{-16}		42 ARMBRUSTE	R95		$m_{\nu_{\chi}}^{}} = 33.9 \text{ MeV}$
<4	\times 10 ⁻⁷	95	⁴³ BILGER	95	LEPS	$m_{\overline{\nu}_{\nu}}^{\lambda} = 33.9 \text{ MeV}$
<7	$\times 10^{-8}$	95	⁴³ BILGER	95	LEPS	$m_{\nu_{\times}}^{\lambda} = 33.9 \text{ MeV}$
< 2.6	$\times 10^{-8}$	95	⁴³ DAUM	95 B	TOF	$m_{\nu_{\times}}^{} = 33.9 \text{ MeV}$
<2	\times 10 ⁻²	90	DAUM	87		$m_{\nu_{v}} = 1 \text{ MeV}$
<1	$\times 10^{-3}$	90	DAUM	87		$m_{\nu_{x}} = 2 \text{ MeV}$
<6	$\times 10^{-5}$	90	DAUM	87		$3~{ m MeV} < m_{ u_{ m x}} < 19.5~{ m MeV}$
<3	\times 10 ⁻²	90	⁴⁴ MINEHART	84		$m_{\nu_{x}} = 2 \text{ MeV}^{}$
<1	$\times 10^{-3}$	90	⁴⁴ MINEHART	84		m_{ν_x} =4 MeV
<3	$\times 10^{-4}$	90	⁴⁴ MINEHART	84		$m_{\nu_{x}} = 10 \text{ GeV}$
<5	\times 10 ⁻⁶	90	⁴⁵ HAYANO	82		$m_{\nu_{x}} = 330 \text{ MeV}$
<1	$\times 10^{-4}$	90	⁴⁵ HAYANO	82		$m_{\nu_x} = 70 \text{ MeV}$
<9	\times 10 ⁻⁷	90	⁴⁵ HAYANO	82		$m_{\nu_{x}} = 250 \text{ MeV}$
<1	$\times 10^{-1}$	90	⁴⁴ ABELA	81		$m_{\nu_{x}} = 4 \text{ MeV}$
<7	$\times 10^{-5}$	90	⁴⁴ ABELA	81		$m_{\nu_{x}} = 10.5 \text{ MeV}$
<2	$\times 10^{-4}$	90	⁴⁴ ABELA	81		$m_{\nu_{x}} = 11.5 \text{ MeV}$
<2	\times 10 ⁻⁵	90	⁴⁴ ABELA	81		$m_{\nu_{\chi}}^{} = 16-30 \text{ MeV}$

³⁷ ASTIER 02 search for anomalous pion decay into a 33.9 MeV neutral particle. No evidence was found and the sensitivity to the branching ratio $B(\pi \to \mu X) \cdot B(X \to \nu e^+ e^-)$ is as low as 3.7×10^{-15} , depending on the X lifetime.

³⁸ DAUM 00 search for anomalous pion decay into a 33.9 MeV neutral particle that might be responsible for the time-distribution anomaly observed by the KARMEN Collaboration.

 $^{^{39}}$ FORMAGGIO 00 search for anomalous pion decay into a 33.9 MeV neutral particle Q^0 that might be responsible for the time-distribution anomaly observed by the KARMEN Collaboration. In the E815 (NuTeV) experiment at Fermilab no evidence was found, with sensitivity for the pion branching ratio ${\rm B}(\pi\to\mu\,Q^0)\cdot{\rm B}(Q^0\to{\rm visible})$ as low as 10^{-13} .

 $^{^{40}}$ ASSAMAGAN 98 obtain a limit on heavy neutrino admixture from π^+ decay essentially at rest, by measuring with good resolution the momentum distribution of the muons. However, the search uses an ad hoc shape correction. The authors report upper limit for $|U_{\mu x}|^2$ of 0.22 for $m_{\nu}=$ 0.53 MeV, 0.029 for $m_{\nu}=$ 0.75 MeV, and 0.016 for $m_{\nu}=$ 1.0 MeV at 90%CL.

⁴¹ BRYMAN 96 search for massive unconventional neutrinos of mass $m_{
u_{\chi}}$ in π^+ decay.

⁴² ARMBRUSTER 95 study the reactions 12 C(ν_e, e^-) 12 N and 12 C(ν, ν') $^{\hat{}12}$ C* induced by neutrinos from π^+ and μ^+ decay at the ISIS neutron spallation source at the Rutherford-Appleton laboratory. An anomaly in the time distribution can be interpreted as the decay $\pi^+ \to \mu^+ \nu_X$, where ν_X is a neutral weakly interacting particle with mass ≈ 33.9 MeV and spin 1/2. The lower limit to the branching ratio is a function of the lifetime of the new massive neutral particle, and reaches a minimum of a few \times 10⁻¹⁶ for $\tau_X \sim$ 5 s.

 $^{^{43}}$ From experiments of π^+ and π^- decay in flight at PSI, to check the claim of the KARMEN Collaboration quoted above (ARMBRUSTER 95).

 $^{^{44}\}pi^+
ightarrow \ \mu^+
u_{\mu}$ peak search experiment.

 $^{^{45}}$ K $^{+}$ \rightarrow $\mu^{+}\nu_{\mu}$ peak search experiment.

Peak search test

Limits on $|U_{\mu,x}|^2$ as function of $m_{\nu,x}$

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
\bullet \bullet We do not use the	followin	g data for averages	, fits,	limits, e	etc. • • •
$< 1 10 \times 10^{-4}$		⁴⁶ BRYMAN	96	CNTR	$m_{\nu_{\nu}} = 30-33.91 \text{ MeV}$
$< 2 \times 10^{-5}$	95	⁴⁷ ASANO	81		$m_{\nu_{\nu}}^{x}$ =70 MeV
$< 3 \times 10^{-6}$	95	⁴⁷ ASANO	81		$m_{\nu_{\chi}}^{\lambda}$ =210 MeV
$< 3 \times 10^{-6}$	95	⁴⁷ ASANO	81		$m_{\nu_{\nu}}^{\lambda}$ =230 MeV
$< 6 \times 10^{-6}$	95	⁴⁸ ASANO	81		$m_{\nu_{\nu}}^{2}$ =240 MeV
$< 5 \times 10^{-7}$	95	⁴⁸ ASANO	81		$m_{\nu_{\nu}}^{\lambda}$ =280 MeV
$< 6 \times 10^{-6}$	95	⁴⁸ ASANO	81		$m_{\nu_{\nu}}$ =300 MeV
$< 1 \times 10^{-2}$	95	CALAPRICE	81		$m_{\nu_{\downarrow}}^{\lambda}$ =7 MeV
$< 3 \times 10^{-3}$	95	⁴⁹ CALAPRICE	81		$m_{\nu_{\nu}} = 33 \text{ MeV}$
$< 1 \times 10^{-4}$	68	⁵⁰ SHROCK	81	THEO	$m_{\nu_{\nu}} = 13 \text{ MeV}$
$< 3 \times 10^{-5}$	68	⁵⁰ SHROCK	81	THEO	$m_{\nu_{\nu}}^{3}$ =33 MeV
$< 6 \times 10^{-3}$	68	⁵¹ SHROCK	81	THEO	$m_{\nu_{\downarrow}}$ =80 MeV
$< 5 \times 10^{-3}$	68	⁵¹ SHROCK	81		$m_{ u_{\chi}}$ =120 MeV

 $^{^{46}}$ BRYMAN 96 search for massive unconventional neutrinos of mass m_{ν_χ} in π^+ decay. They interpret the result as an upper limit for the admixture of a heavy sterile or otherwise 47 $K^+\to~\mu^+\nu_\mu$ peak search experiment.

Peak Search in Muon Capture

Limits on $|U_{\mu_X}|^2$ as function of $m_{\nu_{\star}}$

VALUE	DOCUMENT ID		COMMENT
• • • We do not use the following	g data for average	es, fits,	limits, etc. • • •
$< 1 \times 10^{-1}$	DEUTSCH	83	$m_{\nu_{\star}}$ =45 MeV
$< 7 \times 10^{-3}$	DEUTSCH	83	$m_{\nu_{\star}} = 70 \text{ MeV}$
$<1\times10^{-1}$	DEUTSCH		$m_{\nu_{\chi}}^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{$

Searches for Decays of Massive ν Limits on $|U_{\mu_X}|^2$ as function of $m_{\nu_{\star}}$

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	e followir	ng data for averages	s, fits,	limits, e	etc. • • •
$< 5 \times 10^{-7}$	90	⁵² VAITAITIS	99	CCFR	$m_{\nu_x} = 0.28 \text{ GeV}$
$< 8 \times 10^{-8}$	90	⁵² VAITAITIS			$m_{\nu_{x}}^{} = 0.37 \text{ GeV}$
$< 5 \times 10^{-7}$	90	⁵² VAITAITIS	99	CCFR	$m_{\nu_{\mathbf{v}}} = 0.50 \text{ GeV}$
$< 6 \times 10^{-8}$	90	⁵² VAITAITIS	99	CCFR	$m_{ u_{ m y}}$ = 1.50 GeV
$< 2 \times 10^{-5}$	95	⁵³ ABREU	971	DLPH	$m_{\nu_x}^{}=6 \text{ GeV}$
					~

HTTP://PDG.LBL.GOV

Page 8

⁴⁸ Analysis of experiment on $K^+ \to \ \mu^+ \, \nu_\mu \, \nu_\chi \, \overline{\nu}_\chi$ decay.

 $^{^{49}\}pi^+
ightarrow \; \mu^+ \,
u_{\mu}$ peak search experiment.

⁵⁰ Analysis of magnetic spectrometer experiment, bubble chamber experiment, and emulsion experiment on $\pi^+ \to \ \mu^+ \ \nu_\mu$ decay.

 $^{^{51}\,\}mathrm{Analysis}$ of magnetic spectrometer experiment on $K\to~\mu$, ν_{μ} decay.

$< 3 \times 10^{-5}$	95	⁵³ ABREU	971	DLPH	$m_{\nu_{\scriptscriptstyle Y}} = 50 \; \text{GeV}$
$< 3 \times 10^{-6}$	90	GALLAS	95		$m_{ u_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{}}}}}}}}}$
$< 3 \times 10^{-5}$	90	⁵⁴ VILAIN	95 C		$m_{\nu_{\star}}^{\lambda} = 2 \text{ GeV}$
$<6.2 \times 10^{-8}$	95	ADEVA	90 S	L3	$m_{\nu_x}^{\lambda}$ =20 GeV
$< 5.1 \times 10^{-10}$	95	ADEVA	90 S	L3	$m_{\nu_{x}} = 40 \text{ GeV}$
all values ruled out	95	⁵⁵ BURCHAT	90	MRK2	$m_{ u_\chi}^{^{}} < 19.6 \text{ GeV}$
$< 1 \times 10^{-10}$	95	⁵⁵ BURCHAT	90	MRK2	$m_{\nu_x} = 22 \text{ GeV}$
$< 1 \times 10^{-11}$	95	⁵⁵ BURCHAT	90	MRK2	$m_{ u_{_{X}}}$ = 41 GeV
all values ruled out	95	DECAMP	90F	ALEP	$m_{\nu_x} = 25.0 - 42.7 \text{ GeV}$
$< 1 \times 10^{-13}$	95	DECAMP	90F	ALEP	$m_{\nu_{x}} = 42.7 - 45.7 \text{ GeV}$
$< 5 \times 10^{-3}$	90	AKERLOF	88	HRS	m_{ν_x} =1.8 GeV
$< 2 \times 10^{-5}$	90	AKERLOF	88	HRS	m_{ν_x} =4 GeV
$< 3 \times 10^{-6}$	90	AKERLOF	88	HRS	$m_{\nu_x} = 6 \text{ GeV}$
$< 1 \times 10^{-7}$	90	BERNARDI	88	CNTR	m_{ν_x} =200 MeV
$< 3 \times 10^{-9}$	90	BERNARDI	88	CNTR	m_{ν_x} =300 MeV
$< 4 \times 10^{-4}$	90	⁵⁶ MISHRA	87		$m_{\nu_{x}}$ =1.5 GeV
$< 4 \times 10^{-3}$	90	⁵⁶ MISHRA	87		m_{ν_x} =2.5 GeV
$< 0.9 \times 10^{-2}$	90	⁵⁶ MISHRA	87		$m_{\nu_{\star}} = 5 \text{ GeV}$
< 0.1	90	⁵⁶ MISHRA	87		$m_{\nu_x}^{}=10 \text{ GeV}$
$< 8 \times 10^{-4}$	90	BADIER	86		m_{ν_x} =600 MeV
$< 1.2 \times 10^{-5}$	90	BADIER	86	CNTR	$m_{\nu_x} = 1.7 \text{ GeV}$
$< 3 \times 10^{-8}$	90	BERNARDI	86	CNTR	m_{ν_x} =200 MeV
$< 6 \times 10^{-9}$	90	BERNARDI	86	CNTR	m_{ν_x} =350 MeV
$< 1 \times 10^{-6}$	90	DORENBOS	86		$m_{\nu_{x}} = 500 \; MeV$
$< 1 \times 10^{-7}$	90	DORENBOS	86	CNTR	m_{ν_x} =1600 MeV
$< 0.8 \times 10^{-5}$	90	⁵⁷ COOPER	85		$m_{\nu_{\scriptscriptstyle X}}$ =0.4 GeV
$<1.0 \times 10^{-7}$	90	⁵⁷ COOPER	85		$m_{\nu_{\chi}}^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{$
					^

 $^{^{52}\,\}text{VAITAITIS}$ 99 search for $L^0_\mu\to~\mu X.$ See paper for rather complicated limit as function of $m_{\nu_\nu}.$

 $^{^{53}}$ ABREU 971 long-lived $\nu_{\rm X}$ analysis. Short-lived analysis extends limit to lower masses with decreasing sensitivity except at 3.5 GeV, where the limit is the same as at 6 GeV.

⁵⁴ VILAIN 95C is a search for the decays of heavy isosinglet neutrinos produced by neutral current neutrino interactions. Limits were quoted for masses in the range from 0.3 to 24 GeV. The best limit is listed above.

⁵⁵ BURCHAT 90 includes the analyses reported in JUNG 90, ABRAMS 89C, and WENDT 87.

 $^{^{56}}$ See also limits on $|U_{3x}|$ from WENDT 87.

 $^{^{57}}$ COOPER-SARKAR 85 also give limits based on model-dependent assumptions for ν_{τ} flux. We do not list these. Note that for this bound to be nontrivial, x is not equal to 3, i.e. ν_{χ} cannot be the dominant mass eigenstate in ν_{τ} since m_{ν_3} $\,$ <70 MeV (ALBRECHT 85I). Also, of course, x is not equal to 1 or 2, so a fourth generation would be required for this bound to be nontrivial.

Limits on $|U_{ au x}|^2$ as a Function of $m_{ u_x}$

<u>VALUE</u>		CL%	DOCUMENT ID		TECN	COMMENT
• • • \	We do not use the	e followir	g data for averages	s, fits,	limits, e	etc. • • •
<1	\times 10 ⁻²	90	⁵⁸ ORLOFF	02	CHRM	$m_{\nu_{\star}}$ =45 MeV
<1.4	\times 10 ⁻⁴	90	⁵⁸ ORLOFF	02		$m_{\nu_{\downarrow}}^{\lambda}$ =180 MeV
< 0.025	5	90	ASTIER	01		$m_{\nu_{\downarrow}}^{\lambda}$ =45 MeV
< 0.002	2	90	ASTIER	01		$m_{\nu_{\downarrow}}$ =140 MeV
<2	\times 10 ⁻⁵	95	⁵⁹ ABREU	971	DLPH	$m_{\nu_{\downarrow}}$ =6 GeV
<3	\times 10 ⁻⁵	95	⁵⁹ ABREU	971	DLPH	$m_{\nu_{\star}}^{}=50 \text{ GeV}$
< 6.2	\times 10 ⁻⁸	95	ADEVA	90 S	L3	$m_{\nu_{\star}}^{}=20 \text{ GeV}$
< 5.1	\times 10 ⁻¹⁰	95	ADEVA	90 s	L3	$m_{\nu_{\chi}}^{\lambda}$ =40 GeV
all valu	es ruled out	95	⁶⁰ BURCHAT	90	MRK2	$m_{\nu_{\times}}^{^{\lambda}}$ < 19.6 GeV
<1	\times 10 ⁻¹⁰	95	⁶⁰ BURCHAT	90	MRK2	$m_{\nu_{\times}}^{\lambda} = 22 \text{ GeV}$
<1	\times 10 ⁻¹¹	95	⁶⁰ BURCHAT	90	MRK2	$m_{\nu_{\times}}^{\lambda} = 41 \text{ GeV}$
all valu	es ruled out	95	DECAMP	90F	ALEP	$m_{\nu_{\nu}}^{\lambda} = 25.0 - 42.7 \text{ GeV}$
<1	$\times 10^{-13}$	95	DECAMP	90F	ALEP	$m_{\nu_{\nu}} = 42.7 - 45.7 \text{ GeV}$
<5	\times 10 ⁻²	80	AKERLOF	88	HRS	$m_{\nu_{\scriptscriptstyle Y}}^{}=2.5~{\rm GeV}$
<9	$\times 10^{-5}$	80	AKERLOF	88	HRS	$m_{\nu_{\chi}}^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{$

 $^{^{58}}$ ORLOFF 02 use the negative result of a search for neutral particles decaying into two electrons performed by CHARM to get these limits for a mostly isosinglet heavy neutrino.

Limits on $|U_{ax}|^2$ Where a = e, μ from ρ parameter in μ decay.

<u>VALUE</u>	CL%	DOCUMENT ID		<u>TECN COMMENT</u>
• • • We do not use the	following o	data for averages	s, fits,	, limits, etc. • • •
$< 1 \times 10^{-2}$	68	SHROCK	81 B	THEO $m_{\nu_{\star}} = 10 \text{ GeV}$
$< 2 \times 10^{-3}$	68	SHROCK	81 B	THEO $m_{\nu_x} = 40 \text{ MeV}$
$< 4 \times 10^{-2}$	68	SHROCK	81 B	THEO $m_{\nu_x} = 70 \text{ MeV}$

Limits on $\left|U_{1j}\! imes\!U_{2j}\right|$ as Function of $m_{ u_j}$

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	e followir	ng data for averages	, fits,	limits, et	C. • • •
$< 3 \times 10^{-5}$	90	⁶¹ BARANOV	93		$m_{ u_i}^{}=$ 80 MeV
$< 3 \times 10^{-6}$	90	⁶¹ BARANOV	93		$m_{ u_i}^{\ \ j}$ $=$ 160 MeV
$< 6 \times 10^{-7}$	90	⁶¹ BARANOV	93		$m_{\nu_i}^{\ \ j}$ = 240 MeV
$< 2 \times 10^{-7}$	90	⁶¹ BARANOV	93		$m_{\nu_i} = 320 \text{ MeV}$
$<9 \times 10^{-5}$	90	BERNARDI	86		$m_{\nu_i}^{J}$ =25 MeV
$< 3.6 \times 10^{-7}$	90	BERNARDI	86		$m_{ u_i}^{\ \ j}$ =100 MeV

 $^{^{59}}$ ABREU 971 long-lived $\nu_{\rm X}$ analysis. Short-lived analysis extends limit to lower masses with decreasing sensitivity.

 $^{^{60}\,\}mathrm{BURCHAT}$ 90 includes the analyses reported in JUNG 90, ABRAMS 89C, and WENDT 87.

<3	\times 10 ⁻⁸	90	BERNARDI	86	CNTR	$m_{ u_i}$ =200 MeV
<6	$\times 10^{-9}$	90	BERNARDI	86	CNTR	$m_{\nu_{i}}^{J} = 350 \text{ MeV}$
<1	$\times 10^{-2}$	90	BERGSMA	83 B	CNTR	$m_{ u_j}^{J}$ =10 MeV
<1	$\times 10^{-5}$	90	BERGSMA	83 B	CNTR	$m_{\nu_j}^{J}$ =140 MeV
<7	\times 10 ⁻⁷	90	BERGSMA	83 B	CNTR	$m_{\nu_{j}}^{J} = 370 \text{ MeV}$

 $^{^{61}\, \}rm BARANOV$ 93 is a search for neutrino decays into $e^+\,e^-\,\nu_e$ using a beam dump experiment at the 70 GeV Serpukhov proton synchrotron.

REFERENCES FOR Heavy Neutral Leptons, Searches for

BACK	03A	JETPL 78 261	H.O. Back et al.	(Borexino Collab.)
		Translated from	ZETFP 78 707.	,
TRINCZEK	03	PRL 90 012501	M. Trinczek <i>et al.</i>	
ASTIER	02	PL B527 23	P. Astier <i>et al.</i>	(NOMAD Collab.)
ORLOFF	02	PL B550 8	J. Orloff <i>et al.</i>	
ACHARD	01	PL B517 67	P. Achard et al.	(L3 Collab.)
ACHARD	01B	PL B517 75	P. Achard et al.	(L3 Collab.)
ASTIER	01	PL B506 27	P. Astier et al.	(NOMAD Collab.)
GALEAZZI	01	PRL 86 1978	M. Galeazzi <i>et al.</i>	
ABBIENDI	001	EPJ C14 73	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
DAUM	00	PRL 85 1815	M. Daum <i>et al.</i>	
FORMAGGIO	00	PRL 84 4043	J.A. Formaggio <i>et al.</i>	
HOLZSCHUH	00	PL B482 1	E. Holzschuh <i>et al.</i>	
ABREU	990	EPJ C8 41	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	99K	PL B461 397	M. Acciarri et al.	` (L3 Collab.)
DRAGOUN	99	JP G25 1839	O. Dragoun et al.	,
HOLZSCHUH	99	PL B451 247	E. Holzschuh <i>et al.</i>	
VAITAITIS	99	PRL 83 4943	A. Vaitaitis et al.	(CCFR Collab.)
ASSAMAGAN	98	PL B434 158	K. Assamagan et al.	(=====,
HINDI	98	PR C58 2512	M.M. Hindi et al.	
PDG	98	EPJ C3 1	C. Caso et al.	(PDG Collab.)
ABREU	97I	ZPHY C74 57	P. Abreu <i>et al.</i>	(DELPHI Collab.)
Also	51.		(erratum)P. Abreu et al.	(DELPHI Collab.)
BRYMAN	96	PR D53 558	D.A. Bryman, T. Numao	(TRIU)
BUSKULIC	96S	PL B384 439	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
WIETFELDT	96	PRPL 273 149	F.E. Wietfeldt, E.B. Norman	(LBL)
ARMBRUSTER		PL B348 19	B. Armbruster <i>et al.</i>	(KARMEN Collab.)
BAHRAN	95	PL B354 481	M.Y. Bahran, G.R. Kalbfleisch	
BILGER	95 95	PL B363 41	R. Bilger <i>et al.</i>	(TUBIN, KARLE, PSI)
DAUM	95B	PL B361 179	M. Daum <i>et al.</i>	(PSI, UVA)
FARGION	95B	PR D52 1828	D. Fargion <i>et al.</i>	(ROMA, KIAM, MPEI)
	95 95		S .	,
GALLAS		PR D52 6		(MSU, FNAL, MIT, FLOR)
GARCIA	95 95	PR D51 1458	E. Garcia <i>et al.</i>	(ZARA, SCUC, PNL)
HAGNER		PR D52 1343	C. Hagner <i>et al.</i>	(MUNT, LAPP, CPPM)
HIDDEMANN	95 05 C	JP G21 639	K.H. Hiddemann, H. Daniel, C	
VILAIN	95C	PL B351 387	P. Vilain <i>et al.</i>	(CHARM II Collab.)
Also	0.4	PL B343 453	P. Vilain et al.	(CHARM II Collab.)
BECK	94	PL B336 141	M. Beck et al.	(MPIH, KIAE, SASSO)
KONOPLICH	94	PAN 57 425	R.V. Konoplich, M.Y. Khlopov	
PDG	94	PR D50 1173	L. Montanet <i>et al.</i>	(CERN, LBL, BOST+)
BAHRAN	93	PR D47 R754	M. Bahran, G.R. Kalbfleisch	(OKLA)
BAHRAN	93B	PR D47 R759	M. Bahran, G.R. Kalbfleisch	(OKLA)
BARANOV	93	PL B302 336	S.A. Baranov <i>et al.</i>	(JINR, SERP, BUDA)
KALBFLEISCH		PL B303 355	G.R. Kalbfleisch, M.Y. Bahran	
MORTARA	93	PRL 70 394	J.L. Mortara <i>et al.</i>	(ANL, LBL, UCB)
OHSHIMA	93	PR D47 4840	T. Ohshima <i>et al.</i>	(KEK, TUAT, RIKEN+)
ABREU	92B	PL B274 230	P. Abreu <i>et al.</i>	(DELPHI Collab.)
BAHRAN	92	PL B291 336	M.Y. Bahran, G.R. Kalbfleisch	(OKLA)
BRITTON	92	PRL 68 3000	D.I. Britton et al.	(TRIU, CARL)
Also		PR D49 28	D.I. Britton et al.	(TRIU, CARL)
BRITTON	92B	PR D46 R885	D.I. Britton et al.	(TRIU, CARL)
KAWAKAMI	92	PL B287 45	H. Kawakami <i>et al.</i>	(INUS, ŘEK, ŠCUC+)
MORI	92B	PL B289 463	M. Mori <i>et al.</i>	` (KAM2 Collab.)
ALEXANDER	91F	ZPHY C52 175	G. Alexander et al.	(OPAL Collab.)
				` ,

DELEENER		PR D43 3611	N. de Leener-Rosier et al.	(LOUV, ZURI+)
REUSSER	91	PL B255 143	D. Reusser et al.	(NEUC, CIT, PSI)
SATO	91	PR D44 2220	N. Sato <i>et al.</i>	(Kamiokande Collab.)
ADEVA	90S	PL B251 321	B. Adeva <i>et al.</i>	(L3 Collab.)
BURCHAT	90	PR D41 3542	P.R. Burchat et al.	(Mark II Collab.)
DECAMP	90F	PL B236 511	D. Decamp et al.	(ALEPH Collab.)
DEUTSCH	90	NP A518 149	J. Deutsch, M. Lebrun, R.	Prieels
JUNG	90	PRL 64 1091	C. Jung <i>et al.</i>	(Mark II Collab.)
ABRAMS	89C	PRL 63 2447	G.S. Abrams et al.	(Mark II Collab.)
ENQVIST	89	NP B317 647	K. Enqvist, K. Kainulainen,	J. Maalampi (HELS)
FISHER	89	PL B218 257	P.H. Fisher et al.	(CIT, NEUČ, PSI)
AKERLOF	88	PR D37 577	C.W. Akerlof et al.	` (HRS Collab.)
BERNARDI	88	PL B203 332	G. Bernardi et al.	(PARIN, CÈRN, INFN+)
CALDWELL	88	PRL 61 510	D.O. Caldwell et al.	` (UCSB, UCB, LBL)
OLIVE	88	PL B205 553	K.A. Olive, M. Srednicki	` (MINN, UCSB)
SREDNICKI	88	NP B310 693	M. Srednicki, R. Watkins, I	
AHLEN	87	PL B195 603	S.P. Ahlen et al.	(BOST, SCUC, HARV+)
DAUM	87	PR D36 2624	M. Daum et al.	(SIN, UVA)
GRIEST	87	NP B283 681	K. Griest, D. Seckel	(UCSC, CERN)
Also		NP B296 1034	(erratum) K. Griest, D. Seckel	(UCSC, CERN)
MISHRA	87	PRL 59 1397	S.R. Mishra et al.	(COLU, CIT, FNAL+)
OBERAUER	87	PL B198 113	L.F. Oberauer, F. von Feilit	
WENDT	87	PRL 58 1810	C. Wendt <i>et al.</i>	(Mark II Collab.)
AZUELOS	86	PRL 56 2241	G. Azuelos et al.	` (TRIU, CNRC)
BADIER	86	ZPHY C31 21	J. Badier <i>et al.</i>	`(NA3 ['] Collab.)
BERNARDI	86	PL 166B 479	G. Bernardi et al.	(CURIN, INFN, CDEF $+$)
DORENBOS	86	PL 166B 473	J. Dorenbosch et al.	` (CHARM Collab.)
ALBRECHT	85I	PL 163B 404	H. Albrecht et al.	(ARGUS Collab.)
APALIKOV	85	JETPL 42 289	A.M. Apalikov et al.	` (ITEP)
		Translated from	ZETFP 42 233.	,
COOPER	85	PL 160B 207	A.M. Cooper-Sarkar <i>et al.</i>	(CERN, LOIC+)
MARKEY	85	PR C32 2215	J. Markey, F. Boehm	(CIT)
OHI	85	PL 160B 322	T. Ohi <i>et al.</i>	(TOKY, INUS, KEK)
MINEHART	84	PRL 52 804	R.C. Minehart et al.	(UVA, SIN)
BERGSMA	83	PL 122B 465	F. Bergsma <i>et al.</i>	(CHARM Collab.)
BERGSMA	83B	PL 128B 361	F. Bergsma <i>et al.</i>	(CHARM Collab.)
BRYMAN	83B	PRL 50 1546	D.A. Bryman et al.	(TRIU, CNRC)
DEUTSCH	83	PR D27 1644	J.P. Deutsch, M. Lebrun, R	R. Prieels (LOUV)
GRONAU	83	PR D28 2762	M. Gronau	(HAIF)
SCHRECK	83	PL 129B 265	K. Schreckenbach et al.	(ISNG, ILLG)
HAYANO	82	PRL 49 1305	R.S. Hayano et al.	(TOKY, KEK, TSUK)
ABELA	81	PL 105B 263	R. Abela <i>et al.</i>	(SIN)
ASANO	81	PL 104B 84	Y. Asano <i>et al.</i>	(KEK, TOKY, INUS, OSAK)
CALAPRICE	81	PL 106B 175	F.P. Calaprice <i>et al.</i>	(PRIN, IND)
SHROCK	81	PR D24 1232	R.E. Shrock	(STON)
SHROCK	81B	PR D24 1275	R.E. Shrock	(STON)
SHROCK	80	PL 96B 159	R.E. Shrock	(STON)