Statistics and Machine Learning

Linear regression and beyond: bootstrapping and model complexity

Contents of Week 4

Random data set and statistical meaning

- Random data set
- Interpretation of linear model
- Is 'newspaper' irrelevant to 'sales'?
- Bootstrapping data set
- Normal distribution: one sigma, two sigma, three sigma,...,

Review of linear regression

Finding the line which causes the minimum quadratic loss

Application to (radio, sales) and (newspaper, sales)

TV', 'Radio', and 'Newspaper' versus 'Sales'

Which one is the least relevant?

Observation: if the model parameter of slope is close to zero, it means the x input is not relevant to the output!

Before we jump to conclusion,

The caveats are

'Sales' is the result of all three attributes 'tv', 'radio', and 'newspaper'. Every time we consider one attribute and neglect the other two. It might be problematic!

We do not know what does the unit for every attribute mean? So it might lead to comparing apple and orange.

Do we have a way out? yes.

Different data led to different conclusions

Example: sales versus newspaper

200 data split into 100 + 100 data

Different data led to different conclusions

Example: sales versus newspaper

200 data split into 100 + 100 data

For (tv, sales), different data sets lead to almost identical linear model

Standardized data

Length-for-age BOYS

Birth to 2 years (percentiles)

Standardized data

Length-for-age BOYS

Birth to 2 years (percentiles)

Elder brother is 23 months old and 87 cm tall Younger brother is 8 month and 74 cm tall

WHO Child Growth Standards

Standardized data

Length-for-age BOYS

Birth to 2 years (percentiles)

Elder brother is 23 months old and 87 cm tall Younger brother is 8 month and 74 cm tall

Compare elder brother with his peer, he is at average.

Standardized data

Length-for-age BOYS

Birth to 2 years (percentiles)

Elder brother is 23 months old and 87 cm tall Younger brother is 8 month and 74 cm tall

Compare elder brother with his peer, he is at average.

As for younger brother, he is 1 sigma taller than his average peer.

Bootstrapping data set

Please read the textbook from p.187 — p.190

Menu of dunking donut

Customer 1:

Flower

Customer 2:

Oreo Riv

Customer 3:

Нарру

Нарру

Нарру

Hann

Customer 4:

Simulation on bootstrapping data sets

Collecting all model parameters

Original data set

Data set 1

Data set 2

•••••

Data set (N-1)

$$f(x) = a^{(1)}x + b^{(1)}$$

$$f(x) = a^{(2)}x + b^{(2)}$$

$$f(x) = a^{(N-1)}x + b^{(N-1)}$$

Data set N

$$f(x) = a^{(N)}x + b^{(N)}$$

0.00

print(np.mean(m_list), np.std(m_list))

0.00

print(np.mean(m_list), np.std(m_list))

 $\mathbf{0.00}$

print(np.mean(m_list), np.std(m_list))

You can try the same simulation to (radio, sales) and (newspaper, sales)

It would be the next homework

Beyond linear regression model

How to choose which one would work best?

