Final Project Part3 Model 072220

July 24, 2020

1 File Information

Name: Amie Davis

Course: DSC630 - Predictive Analytics

Assignment Number: Final Project Part 3

Purpose: Build model(s)

Usage: Python 3.7.6

Developed using Jupter Notebook 6.0.3

2 Data Source

Uniform Crime Reporting Program Data: National Incident-Based Reporting System, [United States], 2016; United States Federal Bureau of Investigation; Interuniversity Consortium for Political and Social Research (ICPSR), University of Michigan; https://www.icpsr.umich.edu/icpsrweb/NACJD/NIBRS/

Geodetic Data for US Cities: https://simplemaps.com/data/us-cities

3 Part 3

In Part 3, I will build a decision tree classification model to predict the type of offenses committed, given location information.

3.1 Import required packages

```
[1]: # Suppress Warnings
#import warnings
#warnings.filterwarnings('ignore')

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
```

4 Prepare Data

```
[2]: # Load data into dataframe
    data_file = "Data\crime_offenses_top6.csv"
                                               # Data from Top 6 States
     #data file = "Data\crime offenses all.csv"
                                                  # Data from All States
    df = pd.read_csv(data_file)
    C:\Users\amomu\Anaconda3\lib\site-
    packages\IPython\core\interactiveshell.py:3063: DtypeWarning: Columns
    (7,11,14,15,16,17,18,19,41,42,44,46,51,52,53,54,56) have mixed types. Specify
    dtype option on import or set low memory=False.
      interactivity=interactivity, compiler=compiler, result=result)
    4.1 Eliminate features
[3]: print(df.columns)
    Index(['Unnamed: 0', 'X1', 'ORI', 'INC_NUM', 'VIC_INC_DATE', 'VICTIM_TYPE',
           'ACT_TYPE_OFFC', 'ASSG_TYPE_OFFC', 'AGE_OF_VICTIM', 'SEX_OF_VICTIM',
           'RACE_OF_VICTIM', 'ETHNIC_OF_VIC', 'VIC_RESIDENT', 'ASSAULT_CIRC1',
           'ASSAULT_CIRC2', 'JUST_HOM_CIRC', 'INJURY_TYPE1', 'INJURY_TYPE2',
           'INJURY_TYPE3', 'INJURY_TYPE4', 'INJURY_TYPE5', 'NUM_RECS_PER_VICTIM',
           'VIC_INC_YEAR', 'VIC_INC_MONTH', 'VIC_INC_DAY', 'VIC_INC_DOW',
           'NUM_STATE_CODE', 'CITY', 'STATE', 'POP_GROUP', 'CTRY_DIVISION',
           'CTRY REGION', 'AGENCY IND', 'CORE CITY', 'FBI OFFICE', 'JUDICIAL DIST',
           'CURRENT_POP1', 'UCR_COUNTY_CD1', 'MSA_CD1', 'LAST_POP1',
           'FIPS_COUNTY1', 'city_ascii', 'state_name', 'county_fips',
           'county_name', 'county_fips_all', 'county_name_all', 'lat', 'lng',
           'population', 'density', 'source', 'military', 'incorporated',
           'timezone', 'ranking', 'zips', 'id', 'OFF_CODE'],
          dtype='object')
[4]: # Remove irrelevant and redundant fields
     # Drop unneeded columns
    df.drop(['X1','id', 'county_fips', 'county_fips_all', 'Unnamed: 0',
              'ORI', 'INC NUM', 'NUM RECS PER VICTIM', 'VIC INC DATE', I
     'ASSAULT_CIRC1', 'ASSAULT_CIRC2', 'JUST_HOM_CIRC',
              'INJURY_TYPE1', 'INJURY_TYPE2', 'INJURY_TYPE3',
              'INJURY_TYPE4', 'INJURY_TYPE5', 'NUM_RECS_PER_VICTIM',
              'FBI_OFFICE', 'JUDICIAL_DIST', 'FIPS_COUNTY1',
              'LAST_POP1', 'UCR_COUNTY_CD1', 'MSA_CD1', 'city_ascii', 'CITY',
     'state name', 'county name', 'county name all', 'population', 'zips',
              'source'],
            axis=1, inplace = True)
```

```
[6]: # Find null records
#count_nan_in_df = df.isnull().sum()
#print (count_nan_in_df)
```

4.2 Encoding

```
[7]: # Change DOW to numeric value
     def f dow(df):
         if df['VIC_INC_DOW'] == 'Sunday':
             val = 1
         elif df['VIC_INC_DOW'] == 'Monday':
             val = 2
         elif df['VIC_INC_DOW'] == 'Tuesday':
             val = 3
         elif df['VIC_INC_DOW'] == 'Wednesday':
         elif df['VIC_INC_DOW'] == 'Thursday':
             val = 5
         elif df['VIC_INC_DOW'] == 'Friday':
             val = 6
         elif df['VIC_INC_DOW'] == 'Saturday':
             val = 7
         else:
             val=0
```

```
return val
# Change Timezone to numeric value
def f_tz(df):
    if df['timezone'] == 'America/New_York':
        val = 1
    elif df['timezone'] == 'America/Detroit':
        val = 2
    elif df['timezone'] == 'America/Chicago':
        val = 2
    elif df['timezone'] == 'America/Denver':
    elif df['timezone'] == 'America/Los_Angeles':
        val = 4
    else:
        val=0
    return val
# Convert simple categorical features to numeric to limit dummy features
df['VIC_INC_DOW'] = df.apply(f_dow, axis=1)
df['timezone'] = df.apply(f_tz, axis=1)
df['SEX_OF_VICTIM'] = df['SEX_OF_VICTIM'].map({'M': 2, 'F': 1, 'U': 0})
df['ETHNIC OF VIC'] = df['ETHNIC OF VIC'].map({'H': 2, 'N': 1, 'U': 0})
df['VIC_RESIDENT'] = df['VIC_RESIDENT'].map({'R': 2, 'N': 1, 'U': 0})
\#df['CORE\ CITY'] = df['CORE\ CITY'].map(\{'Y': 1, 'N': 0\})
df['military'] = df['military'].map({True: 1, False: 0})
df['incorporated'] = df['incorporated'].map({True: 1, False: 0})
# Change target feature to easily translated numeric values
def f_off(df):
    if df['OFF_CODE'] == '09A':
        val = 91
    elif df['OFF_CODE'] == '09B':
        val = 92
    elif df['OFF_CODE'] == '09C':
        val = 93
    elif df['OFF_CODE'] == '100':
        val = 100
    elif df['OFF_CODE'] == '11A':
        val = 111
    elif df['OFF_CODE'] == '11B':
        val = 112
    elif df['OFF_CODE'] == '11C':
        val = 113
    elif df['OFF_CODE'] == '11D':
        val = 114
```

```
elif df['OFF_CODE'] == '120':
    val = 120
elif df['OFF_CODE'] == '13A':
    val = 131
elif df['OFF_CODE'] == '13B':
    val = 132
elif df['OFF_CODE'] == '13C':
    val = 133
elif df['OFF_CODE'] == '200':
   val = 200
elif df['OFF_CODE'] == '210':
   val = 210
elif df['OFF_CODE'] == '220':
    val = 220
elif df['OFF_CODE'] == '23A':
    val = 231
elif df['OFF_CODE'] == '23B':
    val = 232
elif df['OFF_CODE'] == '23C':
    val = 233
elif df['OFF_CODE'] == '23D':
    val = 234
elif df['OFF_CODE'] == '23E':
   val = 235
elif df['OFF_CODE'] == '23F':
   val = 236
elif df['OFF_CODE'] == '23G':
   val = 237
elif df['OFF_CODE'] == '23H':
    val = 238
elif df['OFF_CODE'] == '240':
    val = 240
elif df['OFF_CODE'] == '250':
    val = 250
elif df['OFF_CODE'] == '26A':
    val = 261
elif df['OFF_CODE'] == '26B':
    val = 262
elif df['OFF CODE'] == '26C':
   val = 263
elif df['OFF CODE'] == '26D':
   val = 264
elif df['OFF_CODE'] == '26E':
   val = 265
elif df['OFF_CODE'] == '26F':
    val = 266
elif df['OFF_CODE'] == '26G':
```

```
val = 267
    elif df['OFF_CODE'] == '270':
        val = 270
    elif df['OFF_CODE'] == '280':
        val = 280
    elif df['OFF_CODE'] == '290':
        val = 290
    elif df['OFF_CODE'] == '35A':
        val = 351
    elif df['OFF_CODE'] == '35B':
        val = 352
    elif df['OFF_CODE'] == '36A':
        val = 361
    elif df['OFF_CODE'] == '36B':
        val = 362
    elif df['OFF_CODE'] == '370':
        val = 370
    elif df['OFF_CODE'] == '39A':
       val = 391
    elif df['OFF_CODE'] == '39B':
        val = 392
    elif df['OFF_CODE'] == '39C':
        val = 393
    elif df['OFF CODE'] == '39D':
        val = 394
    elif df['OFF_CODE'] == '40A':
        val = 401
    elif df['OFF_CODE'] == '40B':
        val = 402
    elif df['OFF_CODE'] == '40C':
        val = 403
    elif df['OFF_CODE'] == '510':
       val = 510
    elif df['OFF_CODE'] == '520':
       val = 520
    elif df['OFF_CODE'] == '64A':
       val = 641
    elif df['OFF_CODE'] == '64B':
        val = 642
    elif df['OFF_CODE'] == '720':
        val = 720
    else:
        val=0
    return val
df['OFF_CODE'] = df.apply(f_off, axis=1)
# Convert population group to easily translated numeric values
```

```
def f_pop(df):
    if df['POP_GROUP'] == '1A':
        val = 11
    elif df['POP_GROUP'] == '1B':
        val = 12
    elif df['POP_GROUP'] == '1C':
        val = 13
    elif df['POP_GROUP'] == '8A':
        val = 81
    elif df['POP_GROUP'] == '8B':
        val = 82
    elif df['POP_GROUP'] == '8C':
        val = 83
    elif df['POP_GROUP'] == '8D':
        val = 84
    elif df['POP_GROUP'] == '8E':
        val = 85
    elif df['POP_GROUP'] == '9A':
       val = 91
    elif df['POP_GROUP'] == '9B':
        val = 92
    elif df['POP_GROUP'] == '9C':
        val = 93
    elif df['POP_GROUP'] == '9D':
        val = 94
    elif df['POP GROUP'] == '9E':
        val = 95
    else:
        val=df['POP_GROUP']
    return val
df['POP_GROUP'] = df.apply(f_pop, axis=1)
# Convert victim type
def f_vt(df):
    if df['VICTIM_TYPE'] == 'I':
        val = 1
    if df['VICTIM_TYPE'] == 'B':
        val = 2
    if df['VICTIM_TYPE'] == 'F':
        val = 3
    if df['VICTIM TYPE'] == 'G':
        val = 4
    if df['VICTIM_TYPE'] == 'L':
       val = 5
    if df['VICTIM_TYPE'] == 'R':
        val = 6
    if df['VICTIM_TYPE'] == 'S':
```

```
if df['VICTIM_TYPE'] == '0':
            val = 8
         else:
            val = 0
         return val
     df['VICTIM_TYPE'] = df.apply(f_vt, axis=1)
     # Convert race
     def f race(df):
         if df['RACE_OF_VICTIM'] == 'W':
            val = 1
         if df['RACE_OF_VICTIM'] == 'B':
            val = 2
         if df['RACE_OF_VICTIM'] == 'I':
            val = 3
         if df['RACE_OF_VICTIM'] == 'A':
            val = 4
         if df['RACE_OF_VICTIM'] == 'P':
            val = 5
         else:
            val = 0
         return val
     df['RACE_OF_VICTIM'] = df.apply(f_race, axis=1)
     df.head()
[7]:
         VICTIM_TYPE AGE_OF_VICTIM SEX_OF_VICTIM RACE_OF_VICTIM ETHNIC_OF_VIC \
     0
                   0
                                 27
                                                 1
                                                                 0
     1
                   0
                                 25
                                                 1
                                                                 0
                                                                                1
    2
                   0
                                 51
                                                 2
                                                                 0
                                                                                1
     4
                   0
                                 50
                                                 2
                                                                 0
                                                                                0
     21
                   0
                                 30
                                                 1
                                                                                2
         VIC RESIDENT VIC INC MONTH VIC INC DOW NUM STATE CODE POP GROUP ... \
     0
                    1
                                   1
                                                6
                                                               20
                                                                         4.0 ...
                                                                         4.0 ...
                    2
                                   1
                                                6
                                                               20
     1
                    2
                                                                         4.0 ...
     2
                                   1
                                                6
                                                               20
                                                7
     4
                                   1
                                                               20
                                                                         4.0 ...
                    1
     21
                                   1
                                                               20
                                                                         4.0 ...
         AGENCY_IND CURRENT_POP1
                                       lat
                                                lng density military \
     0
                  1
                          43974.0 41.6722 -70.3599
                                                       284.0
     1
                  1
                         43974.0 41.6722 -70.3599
                                                       284.0
                                                                     0
                  1
                         43974.0 41.6722 -70.3599
     2
                                                       284.0
                                                                     0
     4
                  1
                         43974.0 41.6722 -70.3599
                                                       284.0
                                                                     0
    21
                  1
                         43974.0 41.6722 -70.3599
                                                       284.0
```

val = 7

	incorporated	timezone	ranking	OFF_CODE
0	1	1	2.0	261
1	1	1	2.0	237
2	1	1	2.0	133
4	1	1	2.0	290
21	1	1	2.0	114

[5 rows x 22 columns]

4.3 Determine Target Variable

Use offense code as the target variable. The goal is to be able to predict offense code based on varying features.

For the first model, I will select Justifiable Homicide as the target variable. A second model will predict Suspicious Activity.

4.4 Split Datasets

data model X

```
[8]: # Split data into two sets: Training and Testing.
     # Split out target variable
     data_model_y = df.OFF_CODE
     # Remove target variable from feature list
     data_model_X = df.drop(['OFF_CODE'], axis=1, inplace = False)
     # Split the data into training and validation datasets
     # Save 30% for validation
     X_train, X_val, y_train, y_val = train_test_split(data_model_X, data_model_y,_
     →test_size =0.3, random_state=7)
     # Check details of the datasets
     print("No. of samples in original set1: ", data_model_X.shape[0])
     print("No. of samples in training set1: ", X_train.shape[0])
     print("No. of samples in validation set1: ", X_val.shape[0])
     print("No. of features: ", X_train.shape[1])
    No. of samples in original set1: 1126927
    No. of samples in training set1:
                                      788848
    No. of samples in validation set1: 338079
    No. of features: 21
[9]: \#data\_model\_y
```

```
[9]:
                              AGE_OF_VICTIM SEX_OF_VICTIM RACE_OF_VICTIM \
               VICTIM_TYPE
     0
                           0
                                          27
     1
                           0
                                          25
                                                            1
                                                                               0
     2
                           0
                                          51
                                                            2
                                                                               0
     4
                           0
                                                             2
                                                                               0
                                          50
     21
                           0
                                          30
                                                             1
                                                                               0
                                          31
     3945578
                           0
                                                            1
                                                                               0
     3945579
                           0
                                           23
                                                             2
                                                                               0
                           0
                                          58
                                                             2
                                                                               0
     3945583
     3945584
                           0
                                           59
                                                             1
                                                                               0
     3945593
                           0
                                           51
                                                             1
                                                                               0
                                VIC_RESIDENT
                                                VIC_INC_MONTH
                                                                 VIC_INC_DOW
               ETHNIC_OF_VIC
     0
                                             1
                                                              1
                                             2
                             1
                                                              1
                                                                            6
     1
     2
                             1
                                             2
                                                              1
                                                                            6
     4
                             0
                                                                            7
                                             1
                                                              1
     21
                             2
                                             2
                                                              1
                                                                            6
                                                                            2
     3945578
                                             2
                             1
                                                             12
                                             2
     3945579
                             1
                                                             11
                                                                            4
                                             2
                                                                            5
                             1
     3945583
                                                              5
                                             2
                                                              5
                                                                            5
     3945584
                             1
     3945593
                             2
                                             2
                                                             10
                                                                            4
               NUM_STATE_CODE
                                 POP_GROUP
                                                 CTRY_REGION
                                                                AGENCY_IND
     0
                             20
                                        4.0
                                                            1
                                                                          1
     1
                             20
                                        4.0
                                                             1
                                                                          1
     2
                             20
                                        4.0
                                                             1
                                                                          1
     4
                             20
                                        4.0
                                                             1
                                                                          1
     21
                             20
                                        4.0
                                                             1
                                                                          1
     3945578
                             46
                                        3.0
                                                                          1
                                                             4
     3945579
                             46
                                        3.0
                                                             4
                                                                          1
                                                             4
                                                                          1
     3945583
                             46
                                        5.0
                                                                          1
     3945584
                             46
                                        5.0
                                                             4
     3945593
                             46
                                        3.0
               CURRENT_POP1
                                   lat
                                                     density
                                                              military
                                                                          incorporated
                                               lng
     0
                     43974.0 41.6722 -70.3599
                                                       284.0
                                                                       0
                                                                                       1
     1
                     43974.0 41.6722 -70.3599
                                                       284.0
                                                                       0
                                                                                       1
     2
                     43974.0
                               41.6722
                                         -70.3599
                                                       284.0
                                                                       0
                                                                                       1
     4
                                                                       0
                                                                                       1
                     43974.0
                               41.6722
                                         -70.3599
                                                       284.0
                     43974.0
                               41.6722
                                         -70.3599
                                                       284.0
                                                                       0
                                                                                       1
     21
     3945578
                     86005.0 48.7543 -122.4687
                                                      1241.0
                                                                       0
                                                                                       1
```

3945579	86005.0	48.7543 -122.4687	1241.0	0	1
3945583	13338.0	48.8525 -122.5893	775.0	0	1
3945584	13338.0	48.8525 -122.5893	775.0	0	1
3945593	94111.0	46.5923 -120.5496	1302.0	0	1

	timezone	ranking
0	1	2.0
1	1	2.0
2	1	2.0
4	1	2.0
21	1	2.0
•••	•••	•••
3945578	4	2.0
3945579	4	2.0
3945583	4	3.0
3945584	4	3.0
3945593	4	2.0

[1126927 rows x 21 columns]

5 Model Evaluation and Selection

5.1 1) Decision Tree Model

5.1.1 Build Model

[10]: X_train.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 788848 entries, 1816890 to 2238547
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	VICTIM_TYPE	788848 non-null	int64
1	AGE_OF_VICTIM	788848 non-null	int64
2	SEX_OF_VICTIM	788848 non-null	int64
3	RACE_OF_VICTIM	788848 non-null	int64
4	ETHNIC_OF_VIC	788848 non-null	int64
5	VIC_RESIDENT	788848 non-null	int64
6	VIC_INC_MONTH	788848 non-null	int64
7	VIC_INC_DOW	788848 non-null	int64
8	NUM_STATE_CODE	788848 non-null	int64
9	POP_GROUP	788848 non-null	float64
10	CTRY_DIVISION	788848 non-null	int64
11	CTRY_REGION	788848 non-null	int64
12	AGENCY_IND	788848 non-null	int64
13	CURRENT_POP1	788848 non-null	float64

```
      14
      lat
      788848 non-null float64

      15
      lng
      788848 non-null float64

      16
      density
      788848 non-null float64

      17
      military
      788848 non-null int64

      18
      incorporated
      788848 non-null int64

      19
      timezone
      788848 non-null int64

      20
      ranking
      788848 non-null float64
```

dtypes: float64(6), int64(15)

memory usage: 132.4 MB

```
[11]: # Create decision tree classifer object
from sklearn.tree import DecisionTreeClassifier
#decisiontree = DecisionTreeClassifier(random_state=0, class_weight="balanced")
decisiontree = DecisionTreeClassifier(random_state=0)

# Train model
tree = decisiontree.fit(X_train, y_train)
```

5.1.2 Model Evaluation

```
[12]: # Predict values
y_pred_tree = tree.predict(X_val)
```

```
[13]: # Create classification report
print(classification_report(y_val, y_pred_tree))
```

C:\Users\amomu\Anaconda3\lib\site-

packages\sklearn\metrics_classification.py:1272: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\amomu\Anaconda3\lib\site-

packages\sklearn\metrics_classification.py:1272: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

	precision	recall	f1-score	support
91	0.16	0.21	0.18	262
92	0.09	0.09	0.09	11
93	0.08	0.10	0.09	10
100	0.19	0.29	0.23	1322
111	0.13	0.14	0.13	1843
112	0.41	0.42	0.41	505
113	0.14	0.15	0.15	133
114	0.40	0.37	0.38	2104
120	0.41	0.50	0.45	7490

	131	0.41	0.51	0.45	23283
	132	0.45	0.48	0.46	59003
	133	0.39	0.41	0.40	18873
	200	0.44	0.54	0.48	965
	210	0.10	0.10	0.10	153
	220	0.37	0.40	0.38	32217
	231	0.13	0.12	0.12	433
	232	0.11	0.10	0.10	372
	233	0.19	0.20	0.19	838
	234	0.24	0.22	0.23	13036
	235	0.17	0.23	0.19	43
	236	0.46	0.48	0.47	37920
	237	0.10	0.09	0.09	3776
	238	0.39	0.36	0.37	37307
	240	0.17	0.15	0.16	11164
	250	0.32	0.34	0.33	4031
	261	0.29	0.28	0.29	6937
	262	0.34	0.32	0.33	6765
	263	0.38	0.35	0.36	5825
	264	0.11	0.17	0.14	23
	265	0.13	0.12	0.12	355
	266	0.29	0.25	0.27	2840
	267	0.33	0.21	0.26	28
	270	0.75	0.73	0.74	742
	280	0.50	0.52	0.51	7260
	290	0.34	0.30	0.32	44837
	351	0.00	0.00	0.00	2127
	352	0.00	0.00	0.00	988
	361	0.16	0.23	0.19	26
	362	0.25	0.21	0.23	236
	370	0.00	0.00	0.00	62
	393	0.00	0.00	0.00	3
	401	0.00	0.00	0.00	17
	402	0.00	0.00	0.00	6
	403	0.00	0.00	0.00	1
	510	0.00	0.00	0.00	7
	520	0.01	0.00	0.00	1863
	641	0.56	0.82	0.67	33
	642	0.00	0.00	0.00	0
	720	0.00	0.00	0.00	4
	. 20	0.00	0.00	0.00	-
accur	acv			0.38	338079
macro	-	0.22	0.23	0.23	338079
weighted	_	0.37	0.38	0.38	338079
. U 	S				

5.1.3 Confusion Matrix

```
[14]: # Use Confusion Matrix to evaluate the model
       from sklearn.metrics import confusion_matrix
       tree_cm = confusion_matrix(y_val, y_pred_tree)
       # Output confusion matrix array
       # Note that print options need to be modified to accommodate large array
       with np.printoptions(threshold=np.inf):
            print(tree_cm)
      ]]
            54
                            0
                                   4
                                           3
                                                  0
                                                         0
                                                                 0
                     0
                                                                       19
                                                                              52
                                                                                      26
                                                                                              4
             6
                     0
                           16
                                   0
                                           0
                                                  0
                                                         5
                                                                 0
                                                                       22
                                                                                1
                                                                                       9
                                                                                              7
             0
                     2
                            3
                                    4
                                           0
                                                                                3
                                                  0
                                                          1
                                                                 0
                                                                        0
                                                                                      17
                                                                                              1
             0
                            0
                                   0
                                           0
                                                          0
                                                                 0
                                                                        0
                                                                                3
                                                                                       0
                                                  0
                                                                                              0
             0]
       0
                                   0
                                           0
                                                  0
                                                         0
                                                                 0
                                                                                              0
                     1
                            0
                                                                        1
                                                                                1
                                                                                       5
                                           0
                                                         0
                                                                 0
             0
                     0
                            0
                                   0
                                                  0
                                                                        1
                                                                                0
                                                                                       0
                                                                                              0
             0
                     0
                            0
                                   0
                                           0
                                                  0
                                                         0
                                                                 0
                                                                        0
                                                                                0
                                                                                       0
                                                                                              2
             0
                            0
                                   0
                                           0
                                                  0
                                                         0
                                                                 0
                                                                                              0
                     0
                                                                        0
                                                                                0
                                                                                       0
             0]
       2
             0
                     0
                            1
                                   0
                                           0
                                                  0
                                                         0
                                                                 0
                                                                        0
                                                                                       1
                                                                                              0
                                                                        3
             0
                     0
                            1
                                    0
                                           0
                                                  0
                                                          0
                                                                 0
                                                                                0
                                                                                       0
                                                                                              1
             0
                     0
                            1
                                    0
                                           0
                                                  0
                                                         0
                                                                 0
                                                                        0
                                                                                0
                                                                                       0
                                                                                              0
             0
                            0
                                           0
                                                         0
                                                                 0
                                                                        0
                                                                                              0
                     0
                                   0
                                                  0
                                                                                0
                                                                                       0
             0]
       2
                     0
                            0
                                 387
                                          49
                                                  3
                                                         3
                                                                23
                                                                      135
                                                                                     231
                                                                                             55
                                                                             183
             3
                           79
                                                  2
                     0
                                                        15
                                                                 0
                                                                       19
                                                                                      43
                                                                                             14
                                    1
                                           1
                                                                                1
             0
                     3
                            4
                                    2
                                           0
                                                  1
                                                          3
                                                                 0
                                                                        0
                                                                                7
                                                                                      38
                                                                                              6
             0
                     0
                            0
                                   1
                                           0
                                                  0
                                                          1
                                                                 0
                                                                        0
                                                                                6
                                                                                              0
                                                                                       1
             0]
       Г
             2
                     0
                            0
                                        250
                                                 33
                                                         7
                                                                95
                                                                       42
                                                                                    438
                                                                                            136
                                  60
                                                                             115
                                                                 0
             0
                     0
                          109
                                   6
                                           2
                                                  4
                                                        51
                                                                      108
                                                                                9
                                                                                    155
                                                                                             34
             8
                    12
                           15
                                  14
                                           0
                                                  1
                                                          2
                                                                 0
                                                                        0
                                                                              10
                                                                                     104
                                                                                              1
             1
                     2
                            8
                                    4
                                                  1
                                                          1
                                                                 0
                                                                                2
                                                                                              0
                                           0
                                                                        0
                                                                                       1
             0]
       Г
             0
                                                         3
                                                                23
                                                                                             16
                     0
                            0
                                   5
                                          33
                                                214
                                                                        6
                                                                              21
                                                                                      88
             4
                           16
                                   0
                                           0
                                                        10
                                                                 0
                                                                                      22
                     1
                                                  0
                                                                       13
                                                                                1
                                                                                              3
             2
                     2
                            2
                                   2
                                           0
                                                  0
                                                          2
                                                                 0
                                                                        0
                                                                                0
                                                                                      11
                                                                                              1
                                   0
                                           0
                                                         0
             1
                     1
                            1
                                                  1
                                                                 0
                                                                        0
                                                                                0
                                                                                       0
                                                                                              0
             0]
       0
                     0
                            0
                                   4
                                          12
                                                  3
                                                        20
                                                                 9
                                                                        2
                                                                               11
                                                                                      26
                                                                                              4
             3
                            5
                                   0
                                           0
                                                  0
                                                         5
                                                                 0
                                                                        9
                                                                                              2
                     0
                                                                                1
                                                                                       6
             1
                     2
                                           0
                                                                 0
                                                                                0
                            0
                                   0
                                                  0
                                                         1
                                                                        0
                                                                                       4
                                                                                              0
             0
                            1
                                   0
                                           0
                                                  0
                                                         0
                                                                 0
                                                                        0
                                                                                1
                                                                                       0
                                                                                              0
                     1
             0]
       1
                     0
                            0
                                  27
                                          95
                                                 24
                                                         8
                                                              777
                                                                       23
                                                                             152
                                                                                    440
                                                                                            124
```

	5	6	16	3	0	1	1	0	1	8	50	3
	1 0]	7	21	3	0	0	1	0	0	1	0	0
[10	1	1	178	25	9	3	22	3721	430	707	172
	11	5	479	3	6	15	118	1	344	41	309	184
	31	63	50	39	0	5	22	0	2	39	353	30
	6	0	1	0	0	1	0	0	0	53	0	0
	0]											
[61	0	1	234	97	16	4	86	448	11779	3162	704
	49	12	1204	17	3	33	374	0	835	124	891	368
	54	154	121	111	1	7	36	0	3	125	1786	120
	25	1	11	1	2	0	0	0	0	222	0	1
	0]											
[43	1	4	385	446	105	38	395	981	4077	28172	2806
	109	15	3342	67	55	198	1589	9	3180	410	3669	1251
	205	598	533	401	4	48	203	1	18	219	4925	260
	78	8	47	8	0	2	0	0	0	90	6	1
	1]											
[10	0	1	125	129	21	6	94	252	953	3117	7660
	29	11	1088	16	22	49	514	1	875	124	1153	341
	67	217	161	135	3	9	72	1	5	100	1353	62
	27	2	22	9	0	0	0	0	0	35	1	1
	0]											
[1	0	0	3	6	1	0	4	7	43	92	22
	517	1	38	0	2	0	19	0	54	3	35	13
	5	11	3	5	0	0	3	0	2	10	63	2
	0	0	0	0	0	0	0	0	0	0	0	0
	0]											
[1	0	0	3	0	0	0	1	2	10	23	15
	0	16	13	0	0	0	5	0	8	3	18	3
	2	2	1	3	0	0	3	0	0	1	14	2
	0	0	1	3	0	0	0	0	0	0	0	0
	0]											
[20	1	0	155	87	15	8	66	536	1578	3465	1028
	89	7	12801	20	29	31	1205	6	1798	236	2309	828
	127	396	292	231	3	28	124	4	17	264	4298	58
	18	1	3	0	0	1	0	0	0	34	0	0
	0]											
[0	0	0	3	3	1	1	2	8	33	77	26
	0	1	47	51	1	4	12	0	26	4	38	12
	2	13	9	6	0	1	3	0	1	6	39	0
	0	0	1	0	0	2	0	0	0	0	0	0
	0]											
[0	0	0	2	6	1	0	3	4	16	62	21
	0	0	24	3	38	2	20	0	36	3	48	14
	6	7	11	5	0	0	1	0	0	5	32	1
	0	0	1	0	0	0	0	0	0	0	0	0
	0]											

[0 2 5 1 0]	0 0 14 0	0 21 6 0	2 1 35 0	0 0 0	0 166 0	0 15 5 0	0 0 0	21 29 0 0	76 3 34 1	235 54 48 0	48 10 6 0
[10 35 154 10 0]	1 7 308 0	0 1589 337 6	36 24 143 1	61 22 3 0	4 21 9 0	6 2853 67 0	56 2 0 0	214 933 12 0	618 153 122 17	1981 904 1311 2	595 368 41 0
[0 1 0 0 0	0 0 3 0	0 3 2 0	0 0 0	0 0 0	0 2 0 0	0 3 0 0	0 10 0 0	1 3 0 0	2 0 0 0	2 3 4 0	3 1 0 0
[18 56 187 13 0]	2 16 414 2	1 2191 515 3	64 36 262 0	127 26 2 1	7 48 38 0	4 907 138 0	43 0 1 0	458 18046 17 0	1130 437 372 25	3443 2616 4089 0	1077 1028 60 0
[3 12 35 1 0]	0 5 77 0	0 324 67 0	5 8 52 0	15 4 0 0	1 8 1 0	0 172 43 0	6 0 0	65 534 3 0	239 322 54 2	559 325 450 0	156 220 8 0
[19 62 482 20	0 12 641 2	1 3158 689 3	91 49 532 0	152 43 8 0	19 46 40 1	7 1016 194 0	88 7 2 0	498 3252 30 0	1419 354 611 36	4520 13276 3325 3	1400 1134 65 0
[0] 16 26 97 12 0]	2 11 180 0	1 1265 149 0	47 12 125 0	44 14 1 0	11 29 9 0	3 399 50 0	19 2 0 0	1389		1608 1166 1174 2	1627
[3 2 1376 7 0]	0 1 389 0	0 165 96 0	3 3 90 0	3 4 0 0	2 12 6 0	0 161 119 0	5 0 0		65 23 277 3	487	76 63 19 0
[_	1 10 1954 0	0 467 137 0	8 7 140 1	17 11 1 0	2 24 11 0	3 300 146 0	14 2 1 0	11	268 80 103 10	644	166 30
[5 4 108	3		8 16 142	15 12 1	4 8 8	0 370 123	9 2 2		59	702	215 146 7

	2	0	1	0	0	0	0	0	0	8	0	0
[0] 3	0	0	12	14	1	3	8	57	179	520	158
_	7	3	342	10	4	43	174	2	390	47	522	130
	136	174	210	2011	2	10	42	0	12	137	368	60
	21	0	5	0	0	0	0	0	0	8	0	0
	0]	O	O	O	Ū	Ŭ	O	O	· ·	O	V	O
[0	0	0	0	0	0	0	0	0	1	0	2
L	0	0	0	0	0	0	1	0	1	0	0	1
	0	6	0	0	4	0	0	0	0	3	3	1
	0	0	0	0	0	0	0	0	0	0	0	0
	0]	V	V	O	V	Ŭ	O	O	· ·	Ü	V	Ū
[0	0	0	0	1	0	0	0	7	17	49	22
-	1	0	26	0	0	0	16	0	38	8	43	3
	6	15	13	16	0	42	8	0	0	4	20	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0]			· ·	· ·			•				•
[3	0	0	2	8	2	0	2	25	69	272	77
-	7	2	166	3	3	5	79	0	180	22	227	69
	263	134	170	56	0	18	712	0	3	84	171	3
	0	0	0	0	0	0	0	0	0	2	1	0
	0]											
[0	0	0	0	0	0	0	0	0	2	2	2
	0	0	0	0	0	0	0	0	5	1	5	0
	0	0	1	1	0	0	0	6	0	0	3	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0]											
[0	0	0	1	0	0	0	0	2	4	18	6
	0	0	16	0	0	0	9	0	13	4	23	4
	42	17	5	18	0	1	1	0	540	3	14	1
	0	0	0	0	0	0	0	0	0	0	0	0
	0]											
[3	0	0	10	12	2	1	2	70	147	240	88
	6	0	308	3	6	53	117	0	483	40	482	161
	298	89	112	172	0	1	110	0	2	3765	164	198
	50	1	0	0	0	0	0	0	0	64	0	0
	0]											
[29	0	1	135	117	18	7	84	682	2907	6837	1814
	99	16	4894	47	41	59	1253	16	5270	465	3449	1110
	232	515	433	326	0	29	174	0	17	279	13292	61
	23	2	3	0	0	1	0	0	0	100	0	0
	0]											
[2	1	0	15	11	2	0	5	65	273	453	123
	3	0	123	1	3	18	43	0	121	12		50
	29	53	17	75	2	1	12	0	0	272		4
	53	0	1	0	0	1	0	0	0	26	0	0
	0]											
[1	0	0	6	3	0	0	0	22	98	189	77

	3	0	51	0	0	6	22	0	45	8	66	26
	27	28	1	51	0	0	3	0	0	151	28	67
	0	0	0	0	0	0	0	0	0	9	0	0
	0]											
[0	0	0	0	1	1	1	0	0	2	5	1
_	0	0	1	0	0	0	0	0	1	0	1	0
	0	0	0	0	0	0	0	0	0	0	1	0
	0	6	3	1	0	0	0	0	0	0	1	0
	0]											
[0	0	0	0	17	3	1	15	2	25	55	21
_	0	0	4	0	0	0	5	0	5	0	20	0
	0	2	1	1	0	0	0	0	0	0	3	0
	1	1	49	3	0	0	1	0	0	0	1	0
	0]											
[0	0	0	1	8	1	1	2	0	4	11	16
-	0	4	0	0	0	0	0	0	1	0	4	0
	0	1	0	0	0	0	0	0	0	1	1	0
	0	1	5	0	0	0	0	0	0	0	0	0
	0]											
[0	0	0	0	0	0	0	0	0	1	0	0
_	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	2	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0]											
[0	0	0	1	2	0	0	0	4	1	4	0
	0	0	0	0	0	0	0	0	1	0	0	0
	1	0	0	0	0	0	0	0	0	1	0	0
	0	0	1	0	0	0	0	0	0	1	0	0
	0]											
[0	0	0	0	1	0	0	2	0	1	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	2	0
	0]											
[0	0	0	1	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0]											
[0	0	0	0	0	0	0	0	2	2	1	0
	0	0	0	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0]											
[8	0	0	36	6	1	0	4	184	732	187	81
	5	0	94	0	3	2	11	0	57	5	52	22
	7	11	4	22	0	0	1	0	0	125	170	24
	4	0	1	0	0	0	0	0	0	4	0	0

0] Γ 0] 0] 0]]

5.2 2) Keras Neural Network Model

5.2.1 Build Model

```
[17]: from keras.wrappers.scikit_learn import KerasClassifier
      from keras.models import Sequential
      from keras.layers import Dense
      from keras import metrics
      import keras.backend as K
      from sklearn.preprocessing import StandardScaler
      # Create standardizer
      standardizer = StandardScaler()
      # Standardize features
      feat std = standardizer.fit transform(X train)
      # This function returns a compiled neural network
      num_features = feat_std.shape[1]
      def build_network():
          # Define the keras model
          nn = Sequential()
          nn.add(Dense(400, activation='relu', input_dim=num_features))
          nn.add(Dense(400, activation='relu'))
          nn.add(Dense(400, activation='relu'))
          nn.add(Dense(400, activation='relu'))
          nn.add(Dense(400, activation='relu'))
```

```
# Use number of output classes in output layer
nn.add(Dense(49, activation='softmax'))

# Compile the keras model
nn.compile(loss='categorical_crossentropy', optimizer='rmsprop',
metrics=['accuracy'])

return nn

# Compile Keras neural network
clf = KerasClassifier(build_fn=build_network, epochs=7, batch_size=1000,
verbose=0)

# Fit the keras model on the dataset
history = clf.fit(feat_std,y_train)
```

WARNING:tensorflow:From C:\Users\amomu\Anaconda3\lib\sitepackages\keras\backend\tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.

5.2.2 Model Evaluation

```
[18]: # Predict values
val_std = standardizer.fit_transform(X_val)
y_pred_nn = clf.predict(val_std)
```

```
[19]: # Create classification report
print(classification_report(y_val, y_pred_nn))
```

C:\Users\amomu\Anaconda3\lib\site-

packages\sklearn\metrics_classification.py:1272: UndefinedMetricWarning:
Precision and F-score are ill-defined and being set to 0.0 in labels with no
predicted samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, msg_start, len(result))

	precision	recall	f1-score	support
91	0.00	0.00	0.00	262
92	0.00	0.00	0.00	11
93	0.00	0.00	0.00	10
100	0.53	0.05	0.10	1322
111	0.37	0.01	0.03	1843
112	0.84	0.23	0.36	505
113	0.00	0.00	0.00	133
114	0.36	0.22	0.27	2104
120	0.35	0.06	0.11	7490
131	0.32	0.20	0.24	23283

	132	0.27	0.70	0.39	59003
	133	0.37	0.19	0.25	18873
	200	0.59	0.24	0.34	965
	210	0.00	0.00	0.00	153
	220	0.23	0.16	0.19	32217
	231	0.32	0.03	0.05	433
	232	0.00	0.00	0.00	372
	233	0.40	0.09	0.15	838
	234	0.34	0.06	0.10	13036
	235	0.00	0.00	0.00	43
	236	0.39	0.36	0.37	37920
	237	0.20	0.01	0.02	3776
	238	0.36	0.32	0.34	37307
	240	0.22	0.03	0.05	11164
	250	0.54	0.15	0.23	4031
	261	0.35	0.15	0.21	6937
	262	0.54	0.16	0.25	6765
	263	0.57	0.23	0.33	5825
	264	0.00	0.00	0.00	23
	265	0.00	0.00	0.00	355
	266	0.26	0.33	0.29	2840
	267	0.00	0.00	0.00	28
	270	0.88	0.61	0.72	742
	280	0.60	0.41	0.48	7260
	290	0.27	0.27	0.27	44837
	351	0.05	0.00	0.00	2127
	352	0.00	0.00	0.00	988
	361	0.00	0.00	0.00	26
	362	0.44	0.05	0.08	236
	370	0.00	0.00	0.00	62
	393	0.00	0.00	0.00	3
	401	0.00	0.00	0.00	17
	402	0.00	0.00	0.00	6
	403	0.00	0.00	0.00	1
	510	0.00	0.00	0.00	7
	520	0.07	0.00	0.00	1863
	641	0.86	0.73	0.79	33
	720	0.00	0.00	0.00	4
accui	racy			0.31	338079
macro	avg	0.25	0.13	0.15	338079
weighted	avg	0.32	0.31	0.28	338079

5.3 3) Random Forest Classifer

5.3.1 Build Model

5.3.2 Model Evaluation

```
[47]: # Predict values
y_pred_forest = forest.predict(X_val)
```

```
[48]: # Create classification report print(classification_report(y_val, y_pred_forest))
```

C:\Users\amomu\Anaconda3\lib\site-

packages\sklearn\metrics_classification.py:1272: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\amomu\Anaconda3\lib\site-

packages\sklearn\metrics_classification.py:1272: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

	precision	recall	f1-score	support
91	0.23	0.16	0.19	262
92	0.17	0.09	0.12	11
93	0.09	0.10	0.10	10
100	0.30	0.23	0.26	1322
111	0.24	0.13	0.17	1843
112	0.62	0.42	0.50	505
113	0.29	0.14	0.18	133
114	0.54	0.36	0.43	2104
120	0.51	0.45	0.48	7490
131	0.48	0.47	0.47	23283
132	0.42	0.57	0.48	59003
133	0.45	0.41	0.43	18873
200	0.64	0.50	0.56	965
210	0.14	0.08	0.10	153

	220	0.39	0.39	0.39	32217
	231	0.22	0.11	0.15	433
	232	0.20	0.11	0.15	372
	233	0.25	0.18	0.21	838
	234	0.28	0.21	0.24	13036
	235	0.26	0.23	0.24	43
	236	0.48	0.48	0.48	37920
	237	0.16	0.08	0.11	3776
	238	0.40	0.38	0.39	37307
	240	0.20	0.15	0.17	11164
	250	0.38	0.32	0.35	4031
	261	0.34	0.28	0.31	6937
	262	0.41	0.32	0.36	6765
	263	0.45	0.35	0.39	5825
	264	0.14	0.13	0.13	23
	265	0.21	0.10	0.14	355
	266	0.32	0.28	0.30	2840
	267	0.33	0.21	0.26	28
	270	0.82	0.73	0.77	742
	280	0.55	0.53	0.54	7260
	290	0.32	0.34	0.33	44837
	351	0.01	0.00	0.00	2127
	352	0.00	0.00	0.00	988
	361	0.30	0.23	0.26	26
	362	0.36	0.25	0.29	236
	370	0.00	0.00	0.00	62
	393	0.00	0.00	0.00	3
	401	0.00	0.00	0.00	17
	402	0.00	0.00	0.00	6
	403	0.00	0.00	0.00	1
	510	0.00	0.00	0.00	7
	520	0.01	0.00	0.00	1863
	641	0.84	0.82	0.83	33
	642	0.00	0.00	0.00	0
	720	0.00	0.00	0.00	4
accuracy				0.40	338079
macro	avg	0.28	0.23	0.25	338079
weighted	avg	0.39	0.40	0.39	338079

5.4 4) Bagging

```
[36]: # https://machinelearningmastery.com/bagging-ensemble-with-python/
from numpy import mean
from numpy import std
from sklearn.model_selection import cross_val_score
```

```
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.ensemble import BaggingClassifier
# define the model
model = BaggingClassifier()
# evaluate the model
cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=3, random_state=1)
n_scores = cross_val_score(model, data_model_X, data_model_y,__
 →scoring='accuracy', cv=cv, n_jobs=-1, error_score='raise')
# report performance
print('Accuracy: %.3f (%.3f)' % (mean(n_scores), std(n_scores)))
C:\Users\amomu\Anaconda3\lib\site-
packages\sklearn\model selection\ split.py:667: UserWarning: The least populated
class in y has only 1 members, which is less than n_splits=5.
  % (min_groups, self.n_splits)), UserWarning)
C:\Users\amomu\Anaconda3\lib\site-
packages\sklearn\model selection\ split.py:667: UserWarning: The least populated
class in y has only 1 members, which is less than n_splits=5.
  % (min_groups, self.n_splits)), UserWarning)
C:\Users\amomu\Anaconda3\lib\site-
packages\sklearn\model_selection\_split.py:667: UserWarning: The least populated
class in y has only 1 members, which is less than n_splits=5.
 % (min_groups, self.n_splits)), UserWarning)
Accuracy: 0.396 (0.001)
```

5.5 5) Boosting

```
[37]: # https://towardsdatascience.com/
      \rightarrow machine-learning-part-18-boosting-algorithms-gradient-boosting-in-python-ef5ae6965be4
      from sklearn.ensemble import GradientBoostingRegressor
      from sklearn.metrics import mean_squared_error
      from sklearn.metrics import mean_absolute_error
      regressor = GradientBoostingRegressor(
          max_depth=10,
                          #leaves
         n_estimators=10,
                              #trees
          learning rate=1.0 # scales the contribution of each tree. If you set it,
      →to a low value, you will need more trees in the ensemble to fit the training
      ⇒set, but the overall variance will be lower.
      regressor.fit(X_train, y_train)
      errors = [mean_squared_error(y_val, y_pred) for y_pred in regressor.
      →staged_predict(X_val)]
      best_n_estimators = np.argmin(errors)
```

```
best_regressor = GradientBoostingRegressor(
    max_depth=2,
    n_estimators=best_n_estimators,
    learning_rate=1.0
)
best_regressor.fit(X_train, y_train)

y_pred_boost = best_regressor.predict(X_val)
mean_absolute_error(y_val, y_pred_boost)
```

[37]: 49.737743430882

6 Model Selection Conclusion

The Boosting model resulted in better accuracy than the other Python models, resulting in 50% accuracy.

As expected, it performed better than the bagging ensemble model, which performed better than the random forest ensemble. After adjusting hyperparameters for random forests, I was able to improve accuracy to 40%.

I increased the neural network accuracy by adjusting hyperparameters and adding hidden layers, up to 31%.

Unexpectedly, the decision tree model provided better accuracy than the random forest ensemble model. After adjusting hyperparameters for decision trees and random forests, I was able to improve to 28%.

7 Model Visualization

```
[38]: # Find most important features in Random Forest model
import matplotlib.pyplot as plt

# Calculate feature importances
importances = forest.feature_importances_

# Sort feature importances in descending order
indices = np.argsort(importances)[::-1]

# Rearrange feature names so they match the sorted feature importances
names = [X_train.columns[i] for i in indices]

# Create plot
plt.figure()

# Create plot title
plt.title("Feature Importance")
```

```
# Add bars
plt.bar(range(X_train.shape[1]), importances[indices])

# Add feature names as x-axis labels
plt.xticks(range(X_train.shape[1]), names, rotation=90)

# Show plot
plt.show()
```



```
[39]: # Re-run random forest, limiting to important features

# Drop features w/ little importance
data_model_X.drop(['RACE_OF_VICTIM', 'AGENCY_IND', 'military', 'incorporated',
→'VICTIM_TYPE'],

axis=1, inplace = True)

# Split the data into training and validation datasets
```

```
# Save 30% for validation

X_train, X_val, y_train, y_val = train_test_split(data_model_X, data_model_y, use test_size =0.3, random_state=7)
```

C:\Users\amomu\Anaconda3\lib\site-

packages\sklearn\metrics_classification.py:1272: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\amomu\Anaconda3\lib\site-

packages\sklearn\metrics_classification.py:1272: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

	precision	recall	f1-score	support
91	0.16	0.21	0.18	262
92	0.09	0.09	0.09	11
93	0.08	0.10	0.09	10
100	0.19	0.29	0.23	1322
111	0.13	0.14	0.13	1843
112	0.41	0.42	0.41	505
113	0.14	0.15	0.15	133
114	0.40	0.37	0.38	2104
120	0.41	0.50	0.45	7490
131	0.41	0.51	0.45	23283
132	0.45	0.48	0.46	59003
133	0.39	0.41	0.40	18873
200	0.44	0.54	0.48	965
210	0.10	0.10	0.10	153
220	0.37	0.40	0.38	32217

	231	0.13	0.12	0.12	433
	232	0.11	0.10	0.10	372
	233	0.19	0.20	0.19	838
	234	0.24	0.22	0.23	13036
	235	0.17	0.23	0.19	43
	236	0.46	0.48	0.47	37920
	237	0.10	0.09	0.09	3776
	238	0.39	0.36	0.37	37307
	240	0.17	0.15	0.16	11164
	250	0.32	0.34	0.33	4031
	261	0.29	0.28	0.29	6937
	262	0.34	0.32	0.33	6765
	263	0.38	0.35	0.36	5825
	264	0.11	0.17	0.14	23
	265	0.13	0.12	0.12	355
	266	0.29	0.25	0.27	2840
	267	0.33	0.21	0.26	28
	270	0.75	0.73	0.74	742
	280	0.50	0.52	0.51	7260
	290	0.34	0.30	0.32	44837
	351	0.00	0.00	0.00	2127
	352	0.00	0.00	0.00	988
	361	0.16	0.23	0.19	26
	362	0.25	0.21	0.23	236
	370	0.00	0.00	0.00	62
	393	0.00	0.00	0.00	3
	401	0.00	0.00	0.00	17
	402	0.00	0.00	0.00	6
	403	0.00	0.00	0.00	1
	510	0.00	0.00	0.00	7
	520	0.01	0.00	0.00	1863
	641	0.56	0.82	0.67	33
	642	0.00	0.00	0.00	0
	720	0.00	0.00	0.00	4
accur	acy			0.38	338079
macro	avg	0.22	0.23	0.23	338079
weighted	avg	0.37	0.38	0.38	338079

[]:[