Лекция 6. Методы решения матричных игр в смешанных стратегиях

Пазников Алексей Александрович

Ассистент Кафедры вычислительных систем Сибирский государственный университет телекоммуникаций и информатики

http://cpct.sibsutis.ru/~apaznikov

Решение матричных игр

Методы решения матричных игр:

- Поиск седловой точки (решение в чистых стратегиях)
- Составление системы уравнений (если n=m)
- Графический метод (если $n \le 2$ или $m \le 2$)
- Сведение матричной игры к задаче линейного программирования
- Метод Брауна
- и др.

Графический метод

Хотя бы один игрок имеет две чистые стратегии

Рассмотрим игру $2 \times n$, в которой игрок A имеет две стратегии.

$$y_1$$
 y_2 ... y_n
 B_1 B_2 ... B_n

$$x_1$$
: A_1 a_{11} a_{12} ... a_{1n} $1-x_1$: A_2 a_{21} a_{22} ... a_{2n}

Графический метод

Игрок A выбирает стратегии A_1 и A_2 с вероятностями x_1 и $1-x_1$.

Игрок B выбирает стратегии B_1, B_2, \ldots, B_n с вероятностями y_1, y_2, \ldots, y_n , где $y_j \geq 0, j=1, 2, \ldots, n, y_1+y_2+\ldots+y_n=1$

Ожидаемый выигрыш игрока A, соответствующий j-й стратегии игрока B:

$$x_1 a_{1j} + (1-x_1)a_{2j}, j = 1, 2, ..., n$$

 $(a_{1j} - a_{2j})x_1 + a_{2j}, j = 1, 2, ..., n$

Следовательно, игрок A ищёт величину x_1 , которая максимизирует минимум ожидаемого выигрыша

$$\max_{x_1} \min_{j} \{ (a_{1j} - a_{2j})x_1 + a_{2j} \}$$

Рассмотрим игру 2×4 между ВЦ (A) и диспетчером (B), в которой платежи выплачиваются вычислительному центру.

	B_1	B_2	B_3	B_4
A_1	2	2	3	<i>-1</i>
A_2	4	3	2	6

Чистые стратегии B	Ожидаемые выигрыши A
1	$-2x_1 + 4$
2	$-x_1 + 3$
3	$x_1 + 2$
4	$-7x_1 + 6$

$$v = \begin{cases} \frac{1}{2} + 2 = \frac{5}{2} & \text{из уравнения прямой 3,} \\ -7\left(\frac{1}{2}\right) + 6 = \frac{5}{2} & \text{из уравнения прямой 4.} \end{cases}$$

Оптимальная смешанная стратегия игрока B определяется двумя стратегиями B_3 и B_4 , формирующими нижнюю огибающую графика \Rightarrow

$$y_1 = y_2 = 0$$
 и $y_4 = 1 - y_3$

Ожидаемые платежи игрока В:

Чистые стратегии A	Ожидаемые выигрыши $\it B$
1	$4y_3 - 1$
2	$-4y_3 + 6$

Оптимальные стратегии игрока В?

Наилучшее решение из наихудших для игрока В – точка минимум *верхней* огибающей заданных двух прямых:

Чистые стратегии ${\cal A}$	Ожидаемые платежи B
1	$3y_3 - 1(1 - y_3) = 4y_3 - 1$
2	$2y_3 + 6(1 - y_3) = -4y_3 + 6$

$$4y_3 - 1 = -4y_3 + 6 \implies y_3 = 7/8$$

Цена игры: $v = 4 \times (7/8) - 1 = 5/2$

Оптимальные стратегии игрока В:

$$y_1 = 0$$
, $y_2 = 0$, $y_3 = 7/8$, $y_4 = 1/8$

Оптимальные значения вероятностей $x_i, i = 1, 2, ..., m$ игрока A:

$$\max_{x_i} \left\{ \min \left(\sum_{i=1}^m a_{i1} x_i, \sum_{i=1}^m a_{i2} x_i, \dots, \sum_{i=1}^m a_{im} x_i \right) \right\}$$

$$x_1 + x_2 + \dots + x_m = 1$$

$$x_i \ge 0, \quad i = 1, 2, \dots, m$$

Чтобы сформулировать в виде задачи линейного программирования:

$$v = \min\left(\sum_{i=1}^{m} a_{i1} x_i, \sum_{i=1}^{m} a_{i2} x_i, \dots, \sum_{i=1}^{m} a_{im} x_i\right)$$

Отсюда следует, что:

$$\sum_{i=1}^{m} a_{ij} x_i \ge v, \quad j = 1, 2, ..., n$$

Задача игрока A может быть записана в виде:

$$z = v \rightarrow \max$$

при ограничениях

$$v - \sum_{i=1}^{m} a_{ij} x_i \le 0, \quad j = 1, 2, ..., n$$
$$x_1 + x_2 + ... + x_m = 1$$
$$x_i \ge 0, \quad i = 1, 2, ..., m$$

v не ограничена в знаке!

Оптимальные стратегии $y_1,\ y_2,\ ...,\ y_n$ игрока B определяются путём решения задачи

$$\min_{y_i} \left\{ \max \left(\sum_{j=1}^n a_{1j} y_j, \sum_{j=1}^n a_{2j} y_j, \dots, \sum_{j=1}^n a_{nj} y_j \right) \right\}$$

$$y_1 + y_2 + \ldots + y_n = 1$$

$$y_{j} \ge 0, \quad j = 1, 2, ..., m$$

Используя описанную процедуру, запишем задачу для игрока *В* в виде:

$$\omega = v \rightarrow \min$$

при ограничениях

$$v - \sum_{j=1}^{n} a_{ij} y_{j} \le 0, \quad i = 1, 2, ..., m$$
$$y_{1} + y_{2} + ... + y_{n} = 1$$
$$y_{j} \ge 0, \quad i = 1, 2, ..., n$$

v не ограничена в знаке

v – цена игры

Имеется игра между ВЦ (игрока A) и диспетчером (B)

$$B_1$$
 B_2 B_3 Минимумы строк $A_1 \begin{bmatrix} 3 & -1 & -3 & -3 \ A_2 & -2 & -4 & -1 & -2 \ A_2 & -5 & -6 & 2 & -6 \end{bmatrix}$ — Амаксимумы $A_1 \begin{bmatrix} 3 & 4 & 2 \end{bmatrix}$ — Амаксимумы $A_2 \begin{bmatrix} 3 & 4 & 2 \end{bmatrix}$

Сведение к задаче <u>линейного</u> программирования. <mark>Пример</mark>

Значение цены игры находится между –2 и 2.

Задача линейного программирования для А:

$$z = v \rightarrow \max$$

при ограничениях

$$v - 3x_1 + 2x_2 + 5x_3 \le 0$$

$$v + x_1 - 4x_2 + 6x_3 \le 0$$

$$v + 3x_1 + x_2 - 2x_3 \le 0$$

$$x_1 + x_2 + x_3 = 1$$

$$x_1, x_2, x_3 \ge 0$$

Оптимальное решение:

$$x_1 = 0.39$$
, $x_2 = 0.31$, $x_3 = 0.29$ и $v = -0.91$

Пусть $C = \|c_{ij}\|$ есть $(n \times m)$ -матрица; $C_{i\cdot}$ означает i-ю строку, $C_{\cdot j} - j$ -й столбец.

Рассмотрим последовательности векторов:

где

$$X(l) = \{x_0(1), x_1(1), \dots, x_n(l)\}$$

$$Y(l) = \{y_0(1), y_1(1), ..., y_n(l)\}$$

 $x_i(l), \ i \in E$ – относительная оценка выигрыша ВЦ, если он на І-й итерации выбирает і-ю строку матрицы

 $x_i(l),\ i\in E$ — относительная оценка выигрыша ВЦ, если он на l-й итерации выбирает i-ю строку матрицы $y_j(l),\ i\in E$ — относительная оценка выигрыша диспетчера, если он в l-й итерации выбирает j-й столбец матрицы C.

В l-й итерации ВЦ и диспетчер выбирают соответственно строку i и столбец j, для которых

$$x_i(l) = \max_{0 \le i \le n} x_i(l) = \max X(l)$$

$$y_j(l) = \min_{0 \le j \le m} y_i(l) = \min Y(l)$$

Учитывая найденные i и j, игроки пересматривают свои оценки значений строк и столбцов для (l+1)-й итерации:

$$X(l+1) = X(l) + C_{i}, \quad Y(l+1) = Y(l) + C_{i}.$$

Очевидно, что

$$X(l) = X(0) + \sum_{j=0}^{n} l\pi_{j}(l)C_{\cdot j}$$

$$Y(l) = Y(0) + \sum_{i=0}^{n} l p_i(l) C_{i}.$$

где $l\pi_j(l)$ – число выборов столбца j,

 $lp_i(l)$ – число выборов строки i.

Тогда

$$P(l) = \{p_0(l), p_1(l), ..., p_n(l)\},\$$

$$\Pi(l) = \{\pi_0(l), \, \pi_1(l), \dots, \, \pi_n(l)\}$$

— оценки смешанных стратегий ВЦ и диспетчера, которые сходятся к оптимальным стратегиям P^* и Π^* . Практически можно положить

$$X(0) = Y(0) = 0$$

 $l^{-1}X(l)$ – среднее взвешенное столбцов,

 $l^{-1}Y(l)$ – среднее взвешенное строк матрицы C.

$$\Rightarrow l^{-1} \min Y(l) \le V \le l^{-1} \max X(l)$$

Доказано, что

$$\lim_{l \to \infty} \frac{\min Y(l)}{l} = \lim_{l \to \infty} \frac{\min X(l)}{l} = V$$

Итак, при больших I:

$$P^* \approx P(l), \Pi^* \approx \Pi(l),$$

$$V \approx (2l)^{-1} [\max X(l) - \min V(l)] \le V(l)$$

В качестве меры близости $\mathit{V}(\mathit{l})$ к V можно взять

$$l^{-1}[\max X(l) - \min Y(l)] \le l$$

где l > 0

Скорость сходимости итеративного процесса:

$$V(l) - V < \delta l^{-1/2(n-1)}$$

где V – истинное значение цены игры,

V(l) – значение цены игры после l-й итерации,

 δ - некоторый постоянный масштабный коэффициент.

Скоро зима!

