Loss and Cost Function

24	Ne	23	0	ułput	æм €
-	-	-		. Escela	ozhoa()
-	-	ersi/Foo	o <i>i</i>	levder	
-	_	_		0	(V)
_	4.3	AM _ TOTAL	-/	Special Control	13.01.4

$$loss = (y-\hat{y})^{2}$$

$$lost = \frac{1}{n} \sum_{i=1}^{2} (y_{i}-\hat{y}_{i})^{2}$$

-> Regression Cost Function

> Mean Squared Error (MSE)

Loss function =
$$(y-\hat{y})^2$$
.

Cost function = $\frac{1}{n} \stackrel{?}{\underset{i=1}{\sum}} (y_i - \hat{y_i})^2$

Advantages .

- 1) MSE is differentiable
- @ MSE has one local or global minima
- 3 M3E converges faster

Disadvantages

1 Not robust to outliers

> Mean Absolute Error CMAE)

Loss function = 14-91

Advantages

1) MAE is robust to outliers

Disadvantages

1 MAE converges slower

> Huber Loss amound for mother Albertage

Combination of MAE and MSE

Cost Punction =
$$\begin{cases} \frac{1}{n} \stackrel{?}{\underset{i=1}{2}} (y_i - \hat{y}_i)^2 & \text{if } |y - \hat{y}| \leq 3 \end{cases}$$
hyperparameter
$$\begin{cases} 3|y - \hat{y}| - \frac{1}{2} \cdot 3^2, & \text{otherwise} \end{cases}$$

> Root Mean Squared Error (RMSE)

Advantages

- 1) Measure of error is in the same unit as the target variable
- @ Easier to interpret and compare

1s of usin

Disadvantages 1 RMSE is sensitive to outliers Larrover ind Look of

-> Classification Cost Function

> Binary Cross Entropy To reflocitions

It is used for binary classification

1053 = - 4109 9 - (1-4) 109 (1-9)

 $1088 = \begin{cases} -109(1-\hat{y}) & \text{if } y=0 \\ -109\hat{y} & \text{if } y=1 \end{cases}$

> Categorical Cross Entropy

H is used for multiclass classification

Contract of the same and the source of the same and the same of th

- - Haray ismal sail

- magnes to ter Bad of verent (6)

_ _ Neutral

one hot encoding

fi fz f3 Good Bad Neutral

_ 1 0 0

_ 0 1 0

_ _ 0 0 1

$$L(xi,yi) = - \underbrace{\sum_{j=1}^{N} y_{ij} \log(\hat{y}_{ij})}_{\text{togain}}$$

$$\frac{L(xi,yi) = -\sum_{j=1}^{N} y_{ij} \log(\hat{y}_{ij})}{\log(y_{ij})}$$

C = no of categories

> Sparse Categorical Cross Entropy

Suppose,

output of categorical cross entropy [0.2, 0.3, 0.5]

By using sparse categorical cross entropy

$$[0.2,0.3,0.5] = \frac{2^{nd} \text{ Index}}{\text{Final output}}$$

-> Which Loss Function to Use When

	Hidden layer	output layer	problem statement	loss function
0	ReLU	Sigmoid	Binary classification	Binary Cross Entropy
(e)	ReLU	SoAmax	Multiclass Classification	Categorical or Sparse Categorical Entropy
3	Relu	Linear	Regression	MISE, MAE, Huber loss or RMSE