Module 1

September 25, 2023

You are currently looking at **version 1.0** of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the Jupyter Notebook FAQ course resource.

0.1 Applied Machine Learning, Module 1: A simple classification task

0.1.1 Import required modules and load data file

```
[2]: fruits.head()
```

```
[2]:
        fruit_label fruit_name fruit_subtype
                                               mass
                                                      width
                                                             height
                                                                      color_score
     0
                  1
                          apple granny_smith
                                                 192
                                                        8.4
                                                                 7.3
                                                                             0.55
     1
                  1
                          apple granny_smith
                                                 180
                                                        8.0
                                                                 6.8
                                                                             0.59
     2
                  1
                          apple granny_smith
                                                 176
                                                        7.4
                                                                 7.2
                                                                             0.60
                                     mandarin
     3
                  2
                      mandarin
                                                  86
                                                        6.2
                                                                 4.7
                                                                             0.80
                      mandarin
                                     mandarin
                                                        6.0
                                                                 4.6
                                                                             0.79
                                                  84
```

```
[3]: {1: 'apple', 2: 'mandarin', 3: 'orange', 4: 'lemon'}
```

```
[17]: lookup_fruit_name[1]
```

[17]: 'apple'

The file contains the mass, height, and width of a selection of oranges, lemons and apples. The heights were measured along the core of the fruit. The widths were the widest width perpendicular to the height.

0.1.2 Examining the data

```
[4]: pd.__version__
 [4]: '1.5.2'
      # !jupyter lab --version
      # !pip install --upgrade jupyterlab
 [9]:  # !ipython --version
[10]: # !pip install --upgrade ipython
[11]: # from IPython.display import display, Javascript
      # display(Javascript("window.IPython = window.IPython | | {}"))
[12]: # def execute_javascript(js_code):
            from IPython.display import display, Javascript
            wrapped_code = f"""
      #
      #
            (function() {{
      #
                window.IPython = window.IPython |/ {{}};
      #
                {js_code}
      #
            }})();
             11 11 11
      #
            display(Javascript(wrapped_code))
[13]:
      # execute_javascript("console.log('Hello, world!')")
[14]: # def is_running_in_ipython():
      #
            try:
      #
                 _IPYTHON__
      #
                return True
      #
            except NameError:
      #
                return False
[15]: # is_running_in_ipython()
```



```
[7]: # plotting a 3D scatter plot
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()
ax = fig.add_subplot(111, projection = '3d')
ax.scatter(X_train['width'], X_train['height'], X_train['color_score'], c = y_train, marker = 'o', s=100)
ax.set_xlabel('width')
ax.set_ylabel('height')
ax.set_zlabel('color_score')
plt.show()
```


0.1.3 Create train-test split

0.1.4 Create classifier object

```
[9]: from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors = 5)
```

0.1.5 Train the classifier (fit the estimator) using the training data

```
[10]: knn.fit(X_train, y_train)
```

[10]: KNeighborsClassifier()

0.1.6 Estimate the accuracy of the classifier on future data, using the test data

```
[11]: knn.score(X_test, y_test)
```

[11]: 0.53333333333333333

0.1.7 Use the trained k-NN classifier model to classify new, previously unseen objects

```
[20]: # first example: a small fruit with mass 20g, width 4.3 cm, height 5.5 cm fruit_prediction = knn.predict([[20, 4.3, 5.5]]) lookup_fruit_name[fruit_prediction[0]]
```

[20]: 'mandarin'

```
[21]: # second example: a larger, elongated fruit with mass 100g, width 6.3 cm, height 8.5 cm
fruit_prediction = knn.predict([[100, 6.3, 8.5]])
lookup_fruit_name[fruit_prediction[0]]
```

[21]: 'lemon'

0.1.8 Plot the decision boundaries of the k-NN classifier

```
[22]: from adspy_shared_utilities import plot_fruit_knn plot_fruit_knn(X_train, y_train, 5, 'uniform') # we choose 5 nearest neighbors
```


0.1.9 How sensitive is k-NN classification accuracy to the choice of the 'k' parameter?

```
[23]: k_range = range(1,20)
scores = []

for k in k_range:
    knn = KNeighborsClassifier(n_neighbors = k)
    knn.fit(X_train, y_train)
    scores.append(knn.score(X_test, y_test))

plt.figure()
plt.xlabel('k')
plt.ylabel('accuracy')
plt.scatter(k_range, scores)
plt.xticks([0,5,10,15,20]);
```


0.1.10 How sensitive is k-NN classification accuracy to the train/test split proportion?

```
[28]: t = [0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2]
knn = KNeighborsClassifier(n_neighbors = 5)
plt.figure()
```

