

主題: All-pairs Shortest Paths

- 基礎
- 應用
- 作業與自我挑戰

基礎

- The all-pairs shortest paths problem
- Floyd-Warshall's algorithm
- Transitive closure

2

NTHU-CS

NTHU-CS

1

The all-pairs shortest paths problem

- 給一個 directed weighted graph,對所有 pair (u, v),求
 u 到 v 的 shortest path
- Input: the weighted adjacency-matrix W

$$w[i, j] = \begin{cases} 0 & \text{if } i = j; \\ \text{length of } (i, j) & \text{if edge } (i, j) \text{ exists;} \\ \infty & \text{otherwise.} \end{cases}$$

- 可以用 graph 中的每一個 vertex 當起始點來算 singlesource shortest paths
 - $O(n^3)$

Floyd-Warshall's algorithm

■ 注意: 此方法適用於 negative edges,但不可以有 negative cycles

```
D ← W

for k = 1 ~ n

for i = 1 ~ n

for j = 1 ~ n

D[i, j] = min{D[i, j], D[i, k] + D[k, j]};
```

- 注意 ∞ 的處理
- $O(n^3)$

4

Floyd-Warshall vs. Dijkstra

- Floyd-Warshall algorithm 雖然一樣可以做 backtracking 建出 shortest paths,但是 backtrack 的步驟比較麻煩(這裏省略),所以若需要建 shortest paths,建議使用 Dijkstra's algorithm n 次
- 由於 Floyd-Warshall algorithm 極易寫,所以當n在300以下而且不需 backtrack 時,即使是 single-source shortest paths problem,也可以考慮寫 Floyd-Warshall's all-pairs algorithm

只需距離且 n ≤ 300 (???) ⇒ Floyd-Warshall!!!

5

4

Transitive Closure

■ 給一個 directed graph G 的 adjacency-matrix A,計算 G 的 transitive closure A* a 有 edge 到 b

NTHU-CS

Transitive Closure (cont.)

 $A^*[i, j] = \begin{cases} 1 & \text{if } (i = j) \text{ or (there is a path from i to j);} \\ 0 & \text{otherwise} \end{cases}$

NTHU-CS

Method 1. Floyd-Warshall

將每條 edge 的 length 設為 1,沒有 edge 的部分則設為 ∞

$$w[i, j] = \begin{cases} 0 & \text{if } i = j; \\ 1 & A[i, j] = 1; \\ \infty & \text{otherwise.} \end{cases}$$

- 用這組 W 去執行 Floyd-Warshall's algorithm , 則:
 - $D[u, v] \neq \infty \implies A^*[u, v] = 1$
 - $D[u, v] = \infty \implies A^*[u, v] = 0$

NTHU-CS NTHU-CS

Method 2. DFS

- For a directed graph G
 - A*可以跑n次DFS來計算

 $O(n \times (n+m)) = O(n^3)$

每次算一個 row (row i: 由 i 出發 DFS)

- For an undirected graph G
 - A*可以只跑 一次 DFS 來計算
 - $O(n+m) = O(n^2)$

A*[i, j] = 1 iff i, j are in the same tree

• may be faster but slightly complicated

9

- 應用一: A.247 Calling Circles
- 應用二: AT2003D The Geodetic Set Problem
- 應用三: AT2001E Hinge Node Problem

10

NTHU-CS

應用一: A.247 Calling Circles

- 電話公司對 users 撥打電話有完整的紀錄,用 A → B 表示 A 曾打電話給 B
- 如果存在一條由 X 到 Y 的 call path ,同時存在一條由 Y 到 X 的 call path ,則我們說 X, Y 在同一個 *calling circle* 上
- 給 users 撥打電話的完整紀錄,請將所有的 calling circles 找出來
- $n \le 25$ users

NTHU-CS

Example

Sample input

57)

Ben Alex Merry Dolly John Alex Alex John Dolly Ben Dolly Merry Ben Merry 5 users and 7 calls

共兩個 calling circles (strongly connected components)

NTHU-CS NTHU-CS

Strongly connected components

- Let G be a directed graph
- Let A* be the transitive closure of G.
- Two vertices i, j are of the same strongly connected component iff (A*[i, j] = 1)&(A*[j, i] = 1)

4

Solution

- Step 1: Computing A*
- Step 2: Output circles (strongly connected component)

共兩個 calling circles

14

NTHU-CS

13

15

Pseudo code for Step 2

NTHU-CS

- $O(n^3) /* n \le 25 */$
- 註: strongly connected components 用 DFS 有 O(n+m) time 的作法 (course of Algorithms)

16

應用二: AT2003D The Geodetic Set Problem

- 給一個 unweighted graph G (n ≤ 40)
 - 給兩個 nodes x, y , I(x, y) = {z | x, y 有一條 shortest path 通過 z}
 - For a vertex-set S , $I(S) = \bigcup_{x,y \in S} I(x, y)$
 - If I(S)=V(G), S is called a *geodetic set* (測量點集合)
- 給 G 和 (S₁, S₂, ..., S_a),請判斷每一個 S_i 是否為 geodetic set

Example

- $I(2,3) = \{1,2,3\}$
- $S_1 = \{3, 4, 5\} \implies \text{No, since } 1, 2 \notin I(\{3, 4, 5\})$
- $S_2 = \{1, 3, 4\} \implies Yes$

18

NTHU-CS

NTHU-CS

17

Solution

- Step 1. 計算 D[i, j] (all-pairs shortest paths)
- Step 2. 暴力檢查 all v, x, y, 看 v 是否在 x-y shortest path 上

for each $v \in V$

 $O(n \times |S_i|^2)$

- for all $x, y \in S_i$
 - check whether $v \in I(x, y) \mid How ???$
- Step 3. If there is a vertex $v \notin I(x, y)$ for all $x, y \in S_i$, S_i is not a geodetic set
- $O(n \times |S_i|^2) = O(n^3)$ for check an S_i , where n = 40 \Rightarrow O(q × n³) (good for q < 10³)

應用三: AT2001E

Hinge Node Problem

- 給一個 graph G (3 ≤ n ≤ 100)
 - all edges have unit length (unweighted)
 - 給一個 node g,如果拿掉 g 後有某兩個 vertices x, y 的 shortest path 變長,則稱 g 為 hinge node (關鍵點)
- 找出 G 的所有 hinge nodes
- q<6組測資

19

NTHU-CS

Example

- 2 is a hinge node, since $d_{G-\{2\}}(8, 9) = 3 > d_G(8, 9) = 2$
- 9 is a not a hinge node, since d_{G-{9}} (x, y) = d_G(x, y) for all x, y

Solution 1

- Step 1. 計算 D[x, y] (all-pairs shortest paths)
- Step 2. For each v ∈ V, 拔掉 v 看有無 x, y 的 distance 增加
 - Compute $D_{G-\{y\}}[x, y]$

How???

• Compare D[x, y] and $D_{G-\{y\}}[x, y]$

- O(n³) for checking a node v
 - $O(n \times (n + m))$ if using adjacency-lists and BFS
- $O(n^4) \approx 10^8$ for a graph (n = 100)
- $O(q \times n^4) \approx 5 \times 10^8$ in total (Pass ???)

22

21

NTHU-CS

Solution 2

- 固定一個 node s , 找出所有 s-v shortest paths 上的 hinge nodes
 - Step 1. 利用 BFS (或 single-source shortest paths) 計算 所有 d(s, v)
 - Step 2. for each u with $d(s, u) = k \ge 2$
 - if u has only one neighbor g with d(s, g) = k-1, mark g as a hinge node

NTHU-CS

Example

2 計算所有 d(s, v) 2 2 2 3 15 6 2 4 1

- 6 marks 4 as a hinge node
- 7 marks 3
- 9 marks 2
- 1, 10 do not mark any node

Correctness

- 假設 g 是 s-v shortest path 上的 hinge node
- 令 u 為 g 的下一個 vertex, depth 是 k
- g的 depth 是 k-1
- g 是 u 的 neighbors 中, 唯一 depth = k 1 的 node
- g 必然也是 s-u shortest path 上的 hinge node
- 如何推廣到 weighted graph ???

Analysis

- $O(n^2)$ for checking a node s
- $O(n^3) \approx 10^6$ for a graph (n = 100)
- $O(q \times n^3) \approx 5 \times 10^6$ in total

26

25

NTHU-CS

Solution 3

- modify Solution 2,用 all-pairs shortest paths 取代 n 次 BFS
 - Step 1. 利用 BFS 計算所有 d(s, v) (single-source)

 ⇒ 計算 D[x, y] (all-pairs shortest paths)
 - Step 2. for each node s
 - 找出所有 s-v shortest paths 上的 hinge nodes (⇒ row s of D, D[s, ·], stores all shortest s-v paths)
- $O(n^3) \approx 10^6$ for a graph
- $O(q \times n^3) \approx 5 \times 10^6$ in total

作業與自我挑戰

- 作業
 - 練習題
 - A.247 Calling Circles http://uva.onlinejudge.org/external/2/247.html
 - 挑戰題
 - A. 10269 Adventure of Super Mario http://uva.onlinejudge.org/external/102/10269.html
 - A.718 Skyscraper Floors http://uva.onlinejudge.org/external/7/718.html
- 自我挑戰
 - A.10113 Exchange Rates
- 其它有趣題目:
 - A.334 Identifying Concurrent Events
 - A.869 Airline Comparison
 - A.273 Jack Straws
 - A.10331 The Flyover Construction

NTHU-CS