CAL STATE LONG BEACH

Quiz #10

Throughout assume $g, h \in G$, an abelian group, and that the order of g is 300. Do the following with reasons.

- \bigcirc The order of g^{720} .
- (2) The smallest n such that S_n has an element of the same order as g.
- \bigcirc The number of subgroups of $\langle g \rangle$ of order 30.
- (4) The number of elements of $\langle g \rangle$ of order 30.
- (5) Given that h is of order 400, the largest possible order of an element in G (as far as you know).

Bonus. An element of that largest order as in (5).

Solution.

$$\boxed{1} \left| g^{720} = \frac{300}{\gcd(300, 720)} \right| = 5.$$

- (2) $300 = 4 \cdot 3 \cdot 25$, so that n = 4 + 3 + 25 = 32.
- \bigcirc There is only 1 subgroup of $\langle g \rangle$ of order 30.
- (4) The number of elements of $\langle g \rangle$ of order 30 is

$$\phi(30) = \phi(2 \cdot 3 \cdot 5) = \phi(2)\phi(3)\phi(5) = 8.$$

(5) The largest possible order is lcm(400, 300) = 1200.

Bonus. Since $\gcd(|g^{240}|,|h|)=1$ it follows that the $|g^{240}h|=|g^{240}|\cdot|h|=1200$.