MA 205: Complex Analysis

Tutorial Solutions

Aryaman Maithani

https://aryamanmaithani.github.io/tuts/ma-205

Autumn Semester 2020-21

Last update: 2020-08-30 22:06:03+05:30

Contents

0	Notations	2
1	Tutorial 1	3
2	Tutorial 2	11

§0 Notations 2

§0. Notations

1. Given $z \in \mathbb{C}$, $\Re z$ and $\Im z$ will denote the real and imaginary parts of z, respectively.

- 2. Given $z\in\mathbb{C},\ \bar{z}$ will denote the complex conjugate of z.
- 3. Given $z\in\mathbb{C},$ |z| will denote the modulus of z, defined as $\sqrt{z\bar{z}}$ or $\sqrt{(\Re z)^2+(\Im z)^2}.$
- 4. Given $z_0 \in \mathbb{C}$ and $\delta > 0$,

$$B_{\delta}(z_0) := \{ z \in \mathbb{C} : |z - z_0| < \delta \}.$$

5. $\mathbb{C}^{\times} := \mathbb{C} \setminus \{0\}$, the set of nonzero complex numbers.

§1. Tutorial 1

25th August, 2020

Notation: The set $\mathbb{C}[x]$ is the set of all polynomials (with indeterminate x) with complex coefficients. Similarly, $\mathbb{R}[x]$ is defined.

1. Show that complex polynomial of degree n has exactly n roots. (Assuming fundamental theorem of algebra.)

Remark (my own): The above is counting the roots *with* multiplicity. That is, if $f(z) = (z - \iota)^2 (z - 2)$, then ι is counted twice and 2 once.

Solution. Let $f(x) \in \mathbb{C}[x]$ be a polynomial of degree n. We prove this via induction on n.

n=1. Then, $f(x)=a_0+a_1x$ for some $a_0,a_1\in\mathbb{C}$ and $a_1\neq 0.$ Note that

$$f(x) = 0$$

$$\iff a_0 + a_1 x = 0$$

$$\iff a_1 x = -a_0$$

$$\iff x = -\frac{a_0}{a_1}.$$

Thus, f(x) has exactly 1 root.

Let us assume that whenever $g(x) \in \mathbb{C}[x]$ is a polynomial of degree n, then g(x) has exactly n roots. (Counted with multiplicity.)

Let $f(x) \in \mathbb{C}[x]$ be a polynomial of degree n+1. By FTA, there exists a root $x_0 \in \mathbb{C}$. Thus, we can write

$$f(x) = (x - x_0)g(x)$$

for some polynomial $g(x) \in \mathbb{C}[x]$ of degree n. Moreover, note that

$$f(x)=0\iff x=x_0\text{ or }g(x)=0.$$

By induction, the latter is possible for exactly n values of x. Thus, in total, f(x) has n+1 roots. (Both counts are with multiplicity.)

2. Show that a real polynomial that is irreducible has degree at most two. i.e., if

$$f(x) = a_0 + a_1 x + \dots + a_n x^n, \quad a_i \in \mathbb{R}$$

then there are non-constant real polynomials g and h such that f(x) = g(x)h(x) if n > 3.

Remark (my own): $a_n \neq 0$, of course.

Solution. Let $f(x) \in \mathbb{R}[x]$ with degree ≥ 3 as above. If f(x) has a real root, then we are done by factoring as in the earlier question.

Thus, let us assume that f(x) = 0 has no real solution.

We may view $f(x) \in \mathbb{C}[x]$. Now, using FTA, we know that f(x) has a complex root $x_0 \in \mathbb{C}$. By assumption, we must have $x_0 \notin \mathbb{R}$ or that $x_0 \neq \overline{x_0}$.

Claim. $f(\overline{x_0}) = 0$.

Proof. Note that

$$\begin{split} f(\overline{x_0}) &= a_0 + a_1 \overline{x_0} + \dots + a_n (\overline{x_0})^n \\ &= a_0 + a_1 \overline{x_0} + \dots + a_n \overline{x_0^n} \\ &= \overline{a_0} + \overline{a_1} \ \overline{x_0} + \dots + \overline{a_n} \overline{x_0^n} \\ &= \overline{f(x_0)} \\ &= \overline{0} \\ &= 0 \end{split} \qquad \begin{array}{l} \therefore \overline{z^n} = \overline{z}^n \\ \therefore a_i \in \mathbb{R} \text{ and so, } a_i = \overline{a_i} \\ \overline{z_1 z_2 + z_3} = \overline{z_1} \ \overline{z_2} + \overline{z_3} \\ \end{array}$$

Define $g(x)=(x-x_0)(x-\overline{x_0})$. A priori, this is a polynomial in $\mathbb{C}[x]$. However, upon multiplication, we see that the polynomial is actually an element of $\mathbb{R}[x]$. Indeed, we have

$$(x - x_0)(x - \overline{x_0}) = (x^2 - (2\Re x_0)x + |x_0|^2) \in \mathbb{R}[x].$$

By our claim, we see that g(x) divides f(x) in $\mathbb{C}[x]$. (Since x_0 and $\overline{x_0}$ are distinct, the polynomials $x-x_0$ and $x-\overline{x_0}$ are "coprime" and thus, if they individually divide f(x), then their product must too.) Thus,

$$f(x) = q(x)h(x)$$

for some $h(x) \in \mathbb{C}[x]$. However, since f(x) and g(x) are both real polynomials, so is h(x). (Why?)

Thus, we get that

$$f(x) = g(x)h(x)$$

for real polynomials g(x) and h(x). Moreover, note that $\deg g(x)=2$ and $\deg h(x)=n-2\geq 1$. Thus, both are non-constant. \square

3. Show that if U is a path connected open set in \mathbb{C} , so is U minus any finite set.

Solution. We will first prove the following claim:

§**1 Tutorial 1** 5

Claim: Let $U \subset \mathbb{C}$ be open and $w \in U$. Then, $U \setminus \{w\}$ is open.

Proof. Let $z_0 \in U \setminus \{w\}$ be arbitrary. Since U was open, there exists $\delta_1 > 0$

$$B_{\delta_1}(z_0) \subset U$$
.

Since $z_0 \neq w$, we have that $\delta_2 := |z_0 - w| > 0$.

Choose $\delta := \min\{\delta_1, \delta_2\}$. Clearly, $\delta > 0$. Moreover, we have

$$w \notin B_{\delta_2}(z_0) \supset B_{\delta}(z_0)$$

and thus, $w \notin B_{\delta}(z_0)$. Also,

$$B_{\delta}(z_0) \subset B_{\delta_1}(z_0) \subset U$$
.

Thus, we get that

$$B_{\delta}(z_0) \subset U \setminus \{w\}$$

Thus, we get that $B_\delta(z_0)\subset U\setminus\{w\},$ proving that $U\setminus\{w\}$ is open.

By the above proof, we see that removing one point from an open set keeps it open. Thus, if we show that removing one point from an open path-connected set leaves it path-connected, then we are done since we can induct to get any other **finite**¹ set.

Thus, we now show that if U is open and path-connected, so is $U \setminus \{w\}$. (Where $w \in U$ is any arbitrary element.)

Let $z_0, z_1 \in U \setminus \{w\}$. We wish to show that there is a path in $U \setminus \{w\}$ connecting

Since U was path-connected to begin with, there exists a path $\sigma:[0,1]\to U$ such that

$$\sigma(0) = z_0, \quad \sigma(1) = z_1.$$

If $\sigma(x) \neq w$ for any $x \in [0,1]$, then we are done since σ is a path in $U \setminus \{w\}$ as well.

Suppose that this is not the case.

Then, we choose a $\delta > 0$ such that the *closed* ball

$$B := \{ z \in \mathbb{C} : |z - w| < \delta \}$$

has the following properties:

¹Finiteness is important. Induction cannot prove this result for a countably infinite set.

- (a) $z_0 \notin B$,
- (b) $z_1 \notin B$,
- (c) $B \subset U$.

(Why must such a δ exist? There exists a δ_1 for which we get the first two properties since z_0 and z_1 are distinct from w. For the last property, let δ_2 be any such that $B_{\delta_2}(w) \subset U$, which exists since U is open. Then, consider $\delta_2/2$. The closed ball of this radius must again be completely within U. Take the minimum of δ_1 and $\delta_2/2$.)

Note that

$$\sigma^{-1}(B) = \{ x \in [0, 1] : \sigma(x) \in B \}$$

is nonempty since $w\in B$ and $\sigma(c)=w$ for some $c\in [0,1],$ by our assumption. Moreover, $\sigma^{-1}(B)$ must be closed. (Why?)

Since it is a subset of [0,1], it is clearly bounded. Define

$$s := \inf \sigma^{-1}(B), \quad t := \sup \sigma^{-1}(B).$$

Since the set is closed, both s and t are elements of $\sigma^{-1}(B)$. Note that $\sigma(0) \notin B$ and $\sigma(1) \notin B$ and thus,

$$0 < s < t < 1$$
.

(Why is the inequality s < t strict?)

Note that $\sigma(s)$ and $\sigma(t)$ must lie on the circumference of B. (Why?) (This also shows why s < t.)

Now consider the path $\sigma':[0,1]\to U$ defined as follows:

$$\sigma'(x) = \begin{cases} \sigma(x) & \text{if } x \in [0, s] \cup [t, 1] \\ \gamma(x) & \text{if } x \in [s, t], \end{cases}$$

where $\gamma:[s,t]\to B$ is the path which is the arc joining $\sigma(s)$ to $\sigma(t)$. (Note that $\sigma(s)=\sigma(t)$ is possible in which case, it's the constant path.) Clearly, σ' avoids w and is continuous. (Why?)

Moreover, $\sigma'(0) = \sigma(0) = z_0$ and $\sigma'(1) = \sigma(1) = z_1$ and thus, σ' is a path from z_0 to z_1 in $U \setminus \{w\}$, showing that $U \setminus \{w\}$ is path-connected.

- 4. Check for real differentiability and holomorphicity:
 - (a) f(z) = c,
 - (b) f(z) = z,

- (c) $f(z) = z^n, n \in \mathbb{Z}$,
- (d) $f(z) = \Re z$,
- (e) f(z) = |z|,
- (f) $f(z) = |z|^2$,
- (g) $f(z) = \bar{z}$,

$$\text{(h)} \ f(z) = \begin{cases} \frac{z}{\bar{z}} & \text{if } z \neq 0, \\ 0 & \text{if } z = 0. \end{cases}$$

Solution. Not going to do all.

- (a) Real differentiable and holomorphic, both.
- (b) Real differentiable and holomorphic, both.
- (c) For $n \geq 0$:

Real differentiable and holomorphic, both. Let us see why.

As we know, holomorphicity implies real differentiability, so we only check that f is holomorphic on \mathbb{C} .

Let $z_0 \in \mathbb{C}$ be arbitrary. We show that the limit

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists

This is clear because for $z_0 \neq z$, we have

$$\frac{z^n - z_0^n}{z - z_0} = \sum_{k=0}^{n-1} z^k z_0^{n-1-k}.$$

The limit $z \longrightarrow z_0$ of the RHS clearly exists.

n < 0: The function is now defined on $\mathbb{C} \setminus \{0\}$. It is still holomorphic and real differentiable everywhere (in its domain!).

To see this, we just use the quotient rule and appeal to the previous case of $n \ge 0$.

(d) Real differentiable but not holomorphic. Note that f can be written as

$$f(x + \iota y) = x + 0\iota.$$

Thus, u(x,y) = x and v(x,y) = 0.

This is clearly real differentiable everywhere since all the partial derivatives

§1 Tutorial 1 8

exist everywhere and are continuous.

However, we show that f is not complex differentiable at any point. Thus, it is not holomorphic.

This is easy because one sees that $u_x(x_0, y_0) = 1$ and $v_y(x_0, y_0) = 0$ for all $(x_0, y_0) \in \mathbb{R}^2$ and thus, the CR equations don't hold.

(e) |z| is real differentiable everywhere except 0 and complex differentiable nowhere. Breaking the function as earlier, we have

$$u(x,y) = \sqrt{x^2 + y^2}, \quad v(x,y) = 0.$$

On $\mathbb{R}^2 \setminus \{(0,0)\}$, all partial derivatives exist and are continuous. At (0,0), u_x and u_y fail to exist.

This clearly shows that f is not complex differentiable at $0 \in \mathbb{C}$ since it is not even real differentiable there.

However, we see that $v_y=0=v_x$ everywhere else but at least one of u_x or u_y is nonzero on $\mathbb{R}^2\setminus\{(0,0)\}$ and thus, the CR equations prevent f from being complex differentiable anywhere else.

(f) Real differentiable everywhere.

Complex differentiable precisely at 0.

Holomorphic nowhere.

Same steps as above.

- (g) Real differentiable everywhere. Complex differentiable nowhere. Use CR equations again.
- (h) f is real differentiable precisely on $\mathbb{R}^2 \setminus \{(0,0)\}$. However, it is not complex differentiable anywhere.

Breaking as earlier, we get

$$u(x,y) = \frac{x^2 - y^2}{x^2 + y^2}, \quad v(x,y) = \frac{2xy}{x^2 + y^2},$$

for $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ and

$$u(0,0) = 0 = v(0,0).$$

Note that u and v aren't even continuous at (0,0). Thus, neither if f. Hence, f is neither real nor complex differentiable at (0,0).

However, at all other points, all partial derivatives exist and are continuous. Thus, f is real differentiable at all those points. However, computing u_x, u_y, v_x, v_y explicitly shows that the CR equations are not satisfied anywhere. Thus, f is not complex differentiable anywhere. \square

5. Show that the CR equations take the form

$$u_r = \frac{1}{r}v_\theta, \quad v_r = -\frac{1}{r}u_\theta$$

in polar coordinates.

Solution. We shall follow the same idea as in the slides. We first write

$$f(r,\theta) = f(re^{i\theta}) = u(r,\theta) + \iota v(r,\theta).$$

Suppose that f is differentiable at $z_0=r_0e^{i\theta_0}\neq 0$. (Note that it wouldn't make sense to talk at 0 since there's a r^{-1} factor in the question anyway.) Thus, we know that the limit

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists. We shall calculate it in two ways:

(a) Fix $\theta = \theta_0$ and let $r \to r_0$. Then, we get

$$f'(z_0) = \lim_{r \to r_0} \left\{ \frac{u(r, \theta_0) - u(r_0, \theta_0)}{e^{\iota \theta_0} (r - r_0)} + \iota \frac{v(r, \theta_0) - v(r_0, \theta_0)}{e^{\iota \theta_0} (r - r_0)} \right\}$$

$$= e^{-\iota \theta_0} \lim_{r \to r_0} \left\{ \frac{u(r, \theta_0) - u(r_0, \theta_0)}{r - r_0} + \iota \frac{v(r, \theta_0) - v(r_0, \theta_0)}{r - r_0} \right\}$$

$$= e^{-\iota \theta_0} \left(u_r(r_0, \theta_0) + \iota v_r(r_0, \theta_0) \right). \tag{*}$$

(b) Fix $r = r_0$ and let $\theta \to \theta_0$. Then, we get

$$f'(z_0) = \lim_{\theta \to \theta_0} \left\{ \frac{u(r_0, \theta) - u(r_0, \theta_0)}{r_0(e^{\iota\theta} - e^{\iota\theta_0})} + \iota \frac{v(r_0, \theta) - v(r_0, \theta_0)}{r_0(e^{\iota\theta} - e^{\iota\theta_0})} \right\}$$

$$= \frac{1}{r_0} \lim_{\theta \to \theta_0} \left\{ \frac{u(r_0, \theta) - u(r_0, \theta_0)}{e^{\iota\theta} - e^{\iota\theta_0}} + \iota \frac{v(r_0, \theta) - v(r_0, \theta_0)}{e^{\iota\theta} - e^{\iota\theta_0}} \right\} \quad (**)$$

We concentrate on the first term of the limit. Note that

$$\lim_{\theta \to \theta_0} \frac{u(r_0, \theta) - u(r_0, \theta_0)}{e^{i\theta} - e^{i\theta_0}}$$

$$= \lim_{\theta \to \theta_0} \frac{u(r_0, \theta) - u(r_0, \theta_0)}{\theta - \theta_0} \frac{\theta - \theta_0}{e^{i\theta} - e^{i\theta_0}}.$$

In the product, the first term is clearly $u_{\theta}(r_0, \theta_0)$, after taking the limit. The second term can be calculated to be

$$\frac{1}{\iota e^{\iota \theta_0}}$$
.

(How? Write $e^{\imath \theta}$ in terms of \cos and \sin and differentiate those and put it back.)

Of course, a similar argument goes through for the v term as well.

Thus, we get that (**) transforms to

$$f'(z_0) = \frac{e^{-\iota\theta_0}}{r_0} \left(\iota u_{\theta}(r_0, \theta_0) + v_{\theta}(r_0, \theta_0)\right).$$

Equating the above with (*), cancelling $e^{-\imath\theta_0}$, and comparing the real and imaginary parts, we get

$$u_r(r_0, \theta_0) = \frac{1}{r_0} v_\theta(r_0, \theta_0), \quad v_r(r_0, \theta_0) = -\frac{1}{r_0} u_\theta(r_0, \theta_0),$$

as desired. \Box

§2. Tutorial 2

1st September, 2020

1. If u(X,Y) and v(X,Y) are harmonic conjugates of each other, show that they are constant functions.

Remark (my own): This is true iff u and v are defined on domains, that is, open and path-connected sets.

Solution. Since v is a harmonic conjugate of u, we get that

$$u_X = v_Y, \quad u_Y = -v_X.$$

On the other hand, since u is a harmonic conjugate of v, we get that

$$v_X = u_Y, \quad v_Y = -u_X.$$

(Note that the equalities mean that they're true for every (X_0, Y_0) in the domain.) Thus, we get that

$$u_X = u_Y = v_X = v_Y \equiv 0,$$

identically.

Since the domain is connected, this implies that u and v are constant. \square

2. Show that $u = XY - 3X^2Y - Y^3$ is harmonic and find its harmonic conjugate.

Solution.

Smart way: If we can show that the above function is the real (or imaginary) part of a holomorphic function f, then we have shown that u is harmonic. Writing Z=X+iY, it is not too tough to see that the above is the **imaginary** part of $\frac{1}{2}Z^2+Z^3$. Since

$$f(Z) = \frac{1}{2}Z^2 + Z^3$$

is holomorphic on \mathbb{C} , this gives us that u is harmonic.

This also shows a harmonic conjugate of u is

$$v(X,Y) = -\Re f(Z) = \frac{1}{2}(Y^2 - X^2) + 3XY^2 - X^3.$$

(Note the negative sign! If we had gotten u as the real part of a holomorphic function, then for finding harmonic conjugate, we would've simply taken the imaginary part without the negative sign.)

......

Laborious way: This is the way to do it if observing is difficult. First, we show that u is harmonic by manual calculation. Note that

$$u_{XX}(X_0, Y_0) = 6Y_0$$
 and $u_{YY}(X_0, Y_0) = -6Y_0$.

Thus, $u_{XX} + u_{YY} \equiv 0$ and u is indeed harmonic.

To find its harmonic conjugate, we perform the procedure as given in slides. Note that $u_X = v_Y$. Here, we get $u_X = Y + 6XY = v_Y$. Integrating with respect to Y gives us

$$v = \frac{1}{2}Y^2 + 3XY^2 + g(X)$$

for some function g. Then, we need $v_X=-u_Y$. Computing each individually, we get

$$3Y^2 + g'(X) = -X - 3X^2 + 3Y^2.$$

Thus, up to a constant, we get

$$g(X) = -\frac{1}{2}X^2 - X^3.$$

Finally, this gives

$$v = \frac{1}{2}Y^2 + 3XY^2 - \frac{1}{2}X^2 - X^3.$$

3. Find the radius of convergence of the following power series:

(a)
$$\sum_{n=0}^{\infty} nz^n,$$

(b)
$$\sum_{p \text{ prime}} z^p$$
,

(c)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n.$$

Solution. We shall be using the root test in the first two cases and ratio test in the third.

One thing to recall is that if the limit $\lim_{n\to\infty} a_n$ exists, then $\limsup_{n\to\infty} a_n$ is equal

to that limit. This will be helpful in the first and third parts since the limits will themselves exist.

Moreover, we recall that if

$$\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|},$$

then the radius of convergence R is given by

$$R = \alpha^{-1}$$
.

(The case $\alpha=0$ corresponds to $R=\infty$ and vice-versa.) Similar analysis holds for

$$\alpha = \lim_{n \to \infty} \left| \frac{a_{i+1}}{a_i} \right|.$$

(Here, however, note that I need the existence of α . In the case of \limsup , that was always guaranteed.)

(a) Note that we have

$$\lim_{n\to\infty}\sqrt[n]{n}=1.$$

(MA 105 Tutorial Sheet 1, Question 2 (iv))

Thus, we also have

$$\alpha = \limsup_{n \to \infty} \sqrt[n]{n} = 1$$

and thus,

$$R = \alpha^{-1} = \boxed{1.}$$

(b) Note that first we can rewrite the series in the form

$$\sum_{n=1}^{\infty} a_n z^n,$$

where

$$a_n := \begin{cases} 0 & n \text{ is not a prime,} \\ 1 & n \text{ is a prime.} \end{cases}$$

For this, we clearly have

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} 1 = 1.$$

(To see this, note that there are infinitely many primes and thus, given any n, there exists $m \ge n$ such that $a_m = 1$.)

Thus, as before, the radius of convergence is 1.

(c) Here, we have

$$a_n = \frac{n!}{n^n}.$$

Thus, we get

$$\alpha = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} (n+1) \frac{n^n}{(n+1)^{n+1}}$$
$$= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{-n}$$
$$= e^{-1}$$

Thus, the limit actually exists and we get

$$R = \alpha^{-1} = \boxed{e.}$$

4. Show that L>1 in the ratio test (Lecture 3 slides) does not necessarily imply that the series is divergent.

Solution. Consider the sequence

$$\frac{1}{1^3}$$
, $\frac{1}{1^2}$, $\frac{1}{2^3}$, $\frac{1}{2^2}$, ..., $\frac{1}{n^3}$, $\frac{1}{n^2}$,

That is, let (a_n) be the sequence defined by

$$a_{2n} = \frac{1}{n^2}, \quad a_{2n-1} = \frac{1}{n^3}.$$

Note that $\sum a_n$ converges, since $\sum n^{-2}$ and $\sum n^{-3}$ converge. (This can be checked via the integral test.)

On the other hand, note that that

$$L = \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \ge \limsup_{n \to \infty} \left| \frac{a_{2n}}{a_{2n-1}} \right| = \limsup_{n \to \infty} n = \infty.$$

Thus, $L = \infty$, clearly > 1.

(So, not only did we show that L>1 doesn't imply divergence but also that even $L=\infty$ is not good enough to conclude divergence.)

5. Construct a infinitely differentiable function $f: \mathbb{R} \to \mathbb{R}$ which is non-zero but vanishes outside a bounded set. Show that there are no holomorphic functions which satisfy this property.

Solution. Recall the function $g: \mathbb{R} \to \mathbb{R}$ from the lectures given as

$$g(x) := \begin{cases} 0 & x \le 0, \\ e^{-1/x} & x > 0. \end{cases}$$

As we saw, this is an infinitely differentiable function. Now, consider $f: \mathbb{R} \to \mathbb{R}$ defined as

$$f(x) := g(x)g(1-x).$$

Clearly, f is infinitely differentiable, being the product of two such functions. Moreover, f(x)=0 if $x\leq 0$ or $x\geq 1$. In other words, f is 0 outside the bounded set

However, f is non-zero since

everywhere, as desired.

$$f\left(\frac{1}{2}\right) = \left(g\left(\frac{1}{2}\right)\right)^2 = e^{-4} \neq 0.$$

On the other hand, let $f:\mathbb{C}\to\mathbb{C}$ be a holomorphic function which is zero outside some bounded set K. We show that g is zero everywhere. Since K is bounded, there exists M>0 such that

$$|z| < M$$
 for all $z \in K$.

Thus, choosing the point $z_0=M+43$, we see that f is zero in the neighbourhood of z_0 of radius 42. (Why?) However, since $\mathbb C$ is (open and) path-connected, this implies that f is zero

Some more elaboration on the last part: In the lectures, we had seen the result that if Ω is a domain and $f:\Omega\to\mathbb{C}$ is analytic, then f has the following property:

Either f is identically zero or the zeroes of f form a discrete set.

Since any open disc is not discrete, we get that

f is zero on a neighbourhood $\implies f$ is zero everywhere on Ω .

However, note that we had proved the result for analytic functions. As we shall see later in the course, holomorphic functions are indeed analytic.

6. Show that $\exp: \mathbb{C} \to \mathbb{C}^{\times}$ is onto.

Solution. Let $z_0\in\mathbb{C}^{\times}$. We show that $\exp(z)=z_0$ for some $z\in\mathbb{C}$. Note that $r=|z_0|\neq 0$.

Then,

$$w = \frac{z_0}{r}$$

has modulus 1. In other words,

$$w = x_0 + \iota y_0$$

for some $(x_0, y_0) \in \mathbb{R}^2$ such that $x_0^2 + y_0^2 = 1$. Thus, $x_0 = \cos \theta$ and $y_0 = \sin \theta$ for some $\theta \in [0, 2\pi)$.

Define $z=\log(r)+\iota\theta.$ Note that this \log is the real-valued \log . Thus, we get

$$\exp(z) = \exp(\log(r) + \exp(\iota\theta)) = \exp(\log(r)) \cdot \exp(\iota\theta)$$
$$= r \cdot (\cos \theta + \iota \sin \theta)$$
$$= rw = z_0.$$

Thus, exp is surjective.

7. Show that $\sin, \cos : \mathbb{C} \to \mathbb{C}$ are surjective. (In particular, note the difference with real sine and cosine which were bounded by 1).

Solution. We show this for \cos . The method works the same for \sin . Recall that

$$\cos(z) = \frac{1}{2} \left(e^{\iota z} + e^{-\iota z} \right).$$

Let $z_0 \in \mathbb{C}$. We show that $\cos(z) = z_0$ for some $z \in \mathbb{C}$. Consider the quadratic equation

$$\frac{1}{2}\left(t+\frac{1}{t}\right) = z_0. \quad (*)$$

Rearranging this gives

$$t^2 - 2z_0t + 1 = 0.$$

Note that the above has complex solutions t_1 and t_2 . (Since every complex number has a square root in $\mathbb{C}!$)

Moreover, note that $t_1 \neq 0$. Thus, by the previous part, there exists $z \in \mathbb{C}$ such

that $e^z = t_1$.

Plugging $t_1=e^z$ in (st) shows that

$$\cos(z) = z_0,$$

as desired. \Box

8. Show that for any complex number $z,\,\sin^2(z)+\cos^2(z)=1.$

Solution. Recall the definitions

$$\iota \sin(z) = \frac{1}{2} (e^{\iota z} - e^{-\iota z}), \quad \cos(z) = \frac{1}{2} (e^{\iota z} + e^{-\iota z}).$$

Squaring and subtracting gives

$$(\cos(z))^2 - (\iota \sin(z))^2 = \frac{1}{4} (4e^{\iota z}e^{-\iota z}) = 1$$

or

$$\sin^2(z) + \cos^2(z) = 1.$$