Art Unit: 2800

Clmpto 08/09/2005 PY Page 2

Art Unit: 2800

Page :	3
--------	---

I	 A fabrication method of forming a trenched DMOS device and a
2	termination structure thereof, the method comprising:
3	forming an N- epitaxial layer on an N+ silicon substrate;
4	forming an oxide layer on the N- epitaxial layer;
5	patterning the oxide layer to form a termination oxide layer therein to define
6	an exposed active area of the DMOS device;
7	implanting P-type ions into the active area by using the termination oxide
8	layer as a mask to form a P body in the N- epitaxial layer,
9	recessing the N- epitaxial layer to form a plurality of DMOS trenches in the
0	body by patterning and etching, the DMOS trenches having bottoms which extend beneath a
1	bottom of the P body;
2	forming a gate oxide layer over exposed surfaces of the P body;
3	depositing a polysilicon layer over exposed surfaces and also filling the
4	DMOS trenches;
5	recessing the polysilicon layer to form a plurality of polysilicon gates and a
6	polysilicon plate by patterning and etching, wherein the polysilicon gates are positioned in
7	the DMOS trenches and the polysilicon plate is positioned over the termination oxide layer
8	and a portion of the gate oxide layer disposed adjacent the termination oxide layer;
9	implanting N-type ions into the P body by using the polysilicon plate and the
0:	termination oxide layer as a mask to form a plurality of N+ diffused regions;
21	forming an isolation layer over exposed surfaces after implanting the N-type
22	ions;
23	patterning and anisotropically etching the isolation layer and the gate oxide
4	layer to form a plurality of body contact windows over the N+ diffused regions, and a first
:5	contact window over the polysilicon plate;
6	implanting P-type ions through the body contact windows to form a plurality
7	of P+ diffused regions; and
8	forming a source metal contact layer disposed over the isolation layer, and
9	filling the body contact windows and the first contact window.
1	2. The method of claim 1, wherein the oxide layer on the N- epitaxial
2	torre to Consend break among a seldation

Art Unit: 2800

3. The method of claim 1, wherein the gate oxide layer is formed over the
 exposed surfaces of the P body by thermal oxidation.

Page 4

- 1 4. The method of claim 1, further comprising forming a drain metal 2 contact layer on a back surface of the N+ silicon substrate.
- 1 5. The method of claim 4, further comprising removing unnecessary
 2 layers formed on the back surface of the N+ silicon substrate prior to forming the drain metal
 3 contact layer.
- 1 6. The method of claim 5, wherein the unnecessary layers formed o the 2 back surface of the N+ silicon substrate are removed by chemical mechanical polishing.
- 1 7. The method of claim 1, further comprising forming a sacrificial oxide 2 layer on the active area after forming the termination oxide layer.
- 1 8. The method of claim 6, further comprising removing the sacrificial
 2 oxide layer by etching after forming the DMOS trenches but before forming the gate oxide
 3 layer.
- 1 9. The method of claim 1, wherein the polysilicon plate comprises a portion extending toward one of the DMOS trenches disposed closest to the polysilicon plate.
- 1 10. The method of claim 1, wherein anisotropically etching the isolation
 2 layer to form the body contact windows and the first contact window includes a two-step
 3 etching process which comprises:
- removing portions of the isolation layer and the gate oxide layer by etching to
 form the body contact windows and the first contact window; and
- 6 removing an exposed portion of the polysilicon plate at the first contact
 7 window, and removing an exposed portion of the N+ diffused regions at the body contact
 8 windows.
- 1 11. The method of claim 1, wherein patterning and anisotropically etching
 2 to form the body contact windows and the first contact window comprises removing the
 3 isolation layer and the gate oxide layer by etching while using the polysilicon plate and the
 4 N+ diffused regions as etch stop layers.

Page 5

Art Unit: 2800

1

	· · · · · · · · · · · · · · · · · · ·
1	12. The method of claim 1, wherein implanting P-type ions through the
2	body contact windows to form the plurality of P+ diffused regions comprises providing a
3	sufficient dose of the P-type ions to change an electric polarity of the N+ diffused region
4	exposed by the body contact windows to the P+ diffused regions.
1	13. The method of claim 1, wherein the isolation layer comprises doped
2	silicate glass.
1	14. The method of claim 1, wherein the source metal contact layer
· 2	comprises a stack of Ti, TiN, and AlSiCu alloy layers.
1	15. A method of forming a trenched DMOS device and a termination
2	structure thereof, the method comprising:
3	providing an N+ silicon substrate, an N- epitaxial layer on the N+ silicon
4	substrate, a termination oxide layer on the N- epitaxial layer, a P body in the N- epitaxial
5	layer, a plurality of DMOS trenches extending through the P body into the N-epitaxial layer
6	and a gate oxide layer over exposed surfaces of the P body;
7	forming a trenched DMOS device having a plurality of polysilicon gates
8	disposed in the DMOS trenches, and a polysilicon plate disposed over the termination oxide
9	layer and over a portion of the gate oxide layer disposed adjacent the termination oxide layer
10	implanting N-type ions into a portion of the P body not covered by the
11	polysilicon plate and termination oxide layer to form a plurality of N+ diffused regions;
12	forming an isolation layer over exposed surfaces after implanting the N-type
13	ions;
14	patterning and etching the isolation layer and the gate oxide layer to form a
15	plurality of body contact windows over the N+ diffused regions, and a first contact window
16	over the polysilicon plate;
17	implanting P-type ions through the body contact windows to form a plurality
18	of P+ diffused regions; and
19	forming a source metal contact layer over the isolation layer, and filling the
20	body contact windows and the first contact window.

The method of claim 15, further comprising forming a drain metal 16. contact layer on a back surface of the N+ silicon substrate. 2

Art Unit: 2800

1	17. The method of claim 15, wherein the polysilictype are comprises a
2	portion extending toward one of the DMOS trenches disposed closest to the polysilicon plate
1	23. A method of forming a trenched DMOS device and a termination
2	structure thereof simultaneously, the method comprising:
3	providing a silicon substrate with an epitaxial layer formed thereon, and a
4	body region defined by doping the epitaxial layer;
5	selectively etching the body region to form a plurality of DMOS trenches
6	therein;
7	forming a gate oxide layer over exposed surfaces in the body region and a
8	termination oxide layer to cover the body region;
9	depositing a polysilicon layer over exposed surfaces;
10	selectively etch the polysilicon layer to form a plurality of polysilicon gates in
11	the DMOS trenches and a polysilicon plate having an extending portion toward the body
12	region over the termination oxide layer;
13	forming sources in the body region by using the polysilicon plate as a mask;
14	and
15	forming an isolation layer and then a source metal contact layer over exposed
16	surfaces, the isolation layer protecting the polysilicon gates, the source metal contact layer
17	grounding the body region and the polysilicon plate.