Introduction to Computer Graphics 5. Clipping

I-Chen Lin National Chiao Tung University

Textbook: E.Angel, D. Shreiner Interactive Computer Graphics, 6th Ed., Pearson Ref: D.D. Hearn, M. P. Baker, W. Carithers, Computer Graphics with OpenGL, 4th Ed., Pearson

Objectives

► Introduce basic implementation strategies

- ▶ 2D Clipping
 - Lines
 - Polygons
- ► Clipping in 3D

Clipping

- ▶ 2D against clipping window
- ▶ 3D against clipping volume
- Easy for line segments polygons
- Hard for curves and text
 - Convert to lines or polygons first

Clipping 2D Line Segments

- Brute force approach: compute intersections with all sides of clipping window
 - ► Inefficient: one division per intersection

Cohen-Sutherland Algorithm

- Idea: eliminate as many cases as possible without computing intersections
- Start with four lines that determine the sides of the clipping window

- Case 1: both endpoints of a line segment inside all four lines
 - Draw (accept) the line segment as is

	$y = y_{max}$	
$x = x_{min}$		$x = x_{max}$
	$y = y_{min}$	

- Case 2: both endpoints outside all lines and on same side of a line
 - Discard (reject) the line segment

- One endpoint inside, one outside
 - Must do at least one intersection

- Both outside
 - ► May have part inside
 - Must do at least one intersection

Defining Outcodes

- ► For each endpoint, define an outcode
 - ▶ [b0 b1 b2 b3]
- Outcodes divide space into 9 regions
- Computation of outcode requires at most 4 subtractions

1001	1000	1010	
			b0 = 1 if y > ymax, 0 otherwise
0001	0000	0010	b1 = 1 if y < ymin, 0 otherwise
			b2 = 1 if $x > xmax$, 0 otherwise
0101	0100	0110	b3 = 1 if $x < xmin, 0$ otherwise

► AB: outcode(A) = outcode(B) = 0

Accept the line segment

- ightharpoonup CD: outcode (C) = 0, outcode (D) \neq 0
 - Compute intersection
 - ► Location of 1 in outcode(D) determines which edge to intersect with
 - Note if there were a segment from C to a point in a region with 2 ones in outcode, we might have to do two interesections

- EF: outcode(E) logically ANDed with outcode(F) (bitwise) ≠ 0
 - Both outcodes have a 1 bit in the same place
 - ► The line segment is outside of corresponding side of clipping window
 - reject

- GH and IJ: same outcodes, neither zero but logical AND yields zero
 - Shorten line segment by intersecting with one of sides of window
 - Compute outcode of intersection (newendpoint of shortened line segment)
 - Re-execute algorithm

Efficiency

In many applications, the clipping window is small relative to the size of the entire data base

- Most line segments can be eliminated based on their outcodes.
- Inefficiency when code has to be re-executed for line segments that must be shortened in more than one step

Polygon Clipping

- Not as simple as line segment clipping
 - Clipping a line segment yields at most one line segment
 - Clipping a polygon can yield multiple polygons

However, clipping a convex polygon can yield at most one other polygon

Tessellation and Convexity

 One strategy is to replace nonconvex (concave) polygons with a set of triangular polygons (a tessellation)

Also makes fill easier

Clipping as a Black Box

Consider line segment clipping as a process that takes in two vertices and produces either no vertices or the vertices of a clipped line segment.

Pipeline Clipping of Line Segments

- Clipping against each side of window is independent of other sides
 - ► Can use four independent clippers in a pipeline

Pipeline Clipping of Polygons

- Sutherland-Hodgman algorithm
- Strategy used in SGI Geometry Engine
- Small increase in latency

Cohen-Sutherland Method in 3D

- ► Use 6-bit outcodes
 - ▶ When needed, clip line segments against planes

Cohen-Sutherland Method in 3D

Check for outcodes:

$$-1 \le x_p \le 1$$
, $-1 \le y_p \le 1$, $-1 \le z_p \le 1$

Since

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \Rightarrow \cdots \Rightarrow \begin{bmatrix} x_h \\ y_h \\ z_h \\ h \end{bmatrix} \Rightarrow \cdots \Rightarrow \begin{bmatrix} x_h / h \\ y_h / h \\ z_h / h \\ 1 \end{bmatrix} = \begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix}$$

To avoid unnecessary float division, We can check

$$-h \le x_h \le h$$
, $-h \le y_h \le h$, $-h \le z_h \le h$

Cohen-Sutherland Method in 3D

- ▶ If outcode(A)==outcode(B)==0
 - Accept the whole line segment.
- If(outcode(A) and outcode(B))!=0
 - Reject the line segment.
- Other cases
 - Calculate an intersection (according to outcode bits)
 - ► Then check outcode again
- Note: use parametric forms

$$x_h = x_{ha} + (x_{hb} - x_{ha})u$$

$$y_h = y_{ha} + (y_{hb} - y_{ha})u$$

$$z_h = z_{ha} + (z_{hb} - z_{ha})u$$

$$h = h_a + (h_b - h_a)u$$

Polygon Clipping in 3D

- Similar to 2D clipping
 - Bounding box
 - Clipping with each clipping plane
 - **Etc.....**

Bounding Boxes

- Rather than doing clipping on a complex polygon, we can use an axis-aligned bounding box or extent
 - ► Smallest rectangle aligned with axes that encloses the polygon
 - Simple to compute: max and min of x and y

