Двойственность в теории приближений

14 декабря 2019 г.

Общие соображения. Пусть X — линейное нормированное пространство, $M \subset X$, $x \in X$. Рассмотрим произвольный функционал $\xi \in X^*$ из единичного шара: $\|\xi\|_{X^*} \leqslant 1$. Для любого $y \in M$ имеем $\|x-y\|_X \geqslant \langle \xi, x-y \rangle = \langle \xi, x \rangle - \langle \xi, y \rangle$, откуда

$$E(x,M)_X\geqslant \langle \xi,x\rangle -\xi(M), \quad$$
где $\xi(M):=\sup_{y\in M}\langle \xi,y\rangle.$

Эта оценка очень полезна, поскольку точна для выпуклых множеств.

Теорема 1. Пусть M — выпуклое множество в нормированном пространстве X. Для любого $x \in X$ имеет место равенство

$$E(x, M)_X = \max_{\|\xi\|_{X^*} \le 1} \langle \xi, x \rangle - \xi(M).$$

Eсли $L \subset X$ является линейным подпространством, то

$$E(x,L)_X = \max_{\xi \perp L, \|\xi\|_{X^*} \le 1} \langle \xi, x \rangle = \max_{\xi \perp L} \frac{\langle \xi, x \rangle}{\|\xi\|_{X^*}}.$$
 (1)

(Запись $\xi \perp L$ означает, что $\langle \xi, y \rangle = 0 \ \forall y \in L$.)

Доказательство. Оценку снизу для E(x,M) мы уже получили; докажем, что для некоторого функционала ξ достигается равенство. Будем считать, что E(x,M)=1. Точку x можно отделить от множества $M+B_X^\circ$, где B_X° — открытый единичный шар пространства X. Это означает, что найдётся функционал ξ единичной нормы, такой что

$$\langle \xi, x \rangle \geqslant \sup_{y \in M, \|z\|_X < 1} \langle \xi, y + z \rangle.$$

Ясно, что правая часть неравенства равна $\xi(M) + 1$; ч.т.д.

В случае линейного подпространства условие $\xi \perp L$ необходимо, так как иначе $\xi(L) = +\infty$.

Равенство (1) применил в теории приближений С.М. Никольский (1946).

Двойственность поперечников. Напомним некоторые определения. Множество $B \subset \mathbb{R}^N$ называется выпуклым телом, если оно выпукло, компактно и имеет непустую внутренность. Выпуклое центрально симметричное тело $B \subset \mathbb{R}^N$ определяет нормированное пространство \mathbb{R}^N_B с единичным шаром B. Полярой множества $B \subset \mathbb{R}^N$ называется множество $B^{\circ} = \{y \in \mathbb{R}^N \colon \sup_{x \in B} \langle x, y \rangle \leqslant 1\}$. (Здесь $\langle \cdot, \cdot \rangle$ есть обычное скалярное произведение.) Ясно, что шар пространства, сопряженного к \mathbb{R}^N_B , есть B° .

Рассмотрим нормированное пространство $X = \mathbb{R}^N_B$, выпуклое тело $C \subset \mathbb{R}^N$ и линейное n-мерное подпространство $L_n \subset \mathbb{R}^N$. Из (1) вытекает равенство

$$E(C, L_n)_X = \max_{\substack{x \in C \\ \xi \perp L_n, \|\xi\|_{X^*} \leqslant 1}} \langle \xi, x \rangle = \max_{\substack{x \in C \\ \xi \in L_n^{\perp} \cap B^{\circ}}} \langle \xi, x \rangle = \max_{\xi \in L_n^{\perp} \cap B^{\circ}} \|x\|_{\mathbb{R}^N_{C^{\circ}}}.$$

Так мы приходим к определению *гельфандовского поперечника* множества K в нормированном пространстве X:

$$d^{n}(K,X) := \inf_{L \subset X, \operatorname{codim} L = n} \sup_{x \in L \cap K} \|x\|_{Y}.$$

Нами доказано следующее равенство:

$$d_n(C, \mathbb{R}^N_B) = d^n(B^\circ, \mathbb{R}^N_{C^\circ}),$$

или, в терминах сопряжённых пространств и их шаров,

$$d_n(B_Y, X) = d^n(B_{X^*}, Y^*).$$

Наконец, в важнейшем частном случае пространств ℓ_p^N получаем

$$d_n(B_p^N, \ell_q^N) = d^n(B_{q'}^N, \ell_{p'}^N), \quad \frac{1}{p} + \frac{1}{p'} = \frac{1}{q} + \frac{1}{q'} = 1.$$

Переход от колмогоровских поперечников к гельфандовским особенно полезен для нижних оценок. Можно неформально пояснить это следующим образом: неравенство $d_n(K,X) \geqslant \alpha$ означает, что $\forall L_n \exists x \in K \ \forall y \in K$

 $L_n: ||x - y|| \ge \alpha$. Аналогичное неравенство для гельфандовских поперечников записывается проще (одна перемена кванторов вместо двух): $\forall L^n \exists x \in K \cap L^n: ||x|| \ge \alpha$.

Оценка Белинского. Рассмотрим функцию $F(x) = \sum_{k=1}^{\infty} \frac{\sin kx}{k}$. Известно, что $f(x) = (\pi - x)/2, x \in (0, 2\pi)$. Функция называется ядром Бернулли, важна тем, что она генерирует класс Соболева W_1^1 :

$$W_1^1 = \{ f : ||f'||_1 \le 1 \} = \{ \varphi * F + c : ||\varphi||_1 \le 1, \ c \in \mathbb{R} \}.$$

Рассмотрим приближение класса W_1^1 пространством $\mathcal{T}(\Lambda) := \{\sum_{k \in \Lambda} c_k e^{ikx}\}$ в метрике L_q . В силу того, что и класс и пространство инвариантны относительно сдвига (также будем считать $0 \in \Lambda$),

$$E(W_1^1, \mathcal{T}(\Lambda))_q = \inf_{t \in \mathcal{T}(\Lambda)} ||F - t||_q.$$

Особо интересны оценки при $2 < q < \infty$, в этом случае порядок убывания колмогоровских поперечников $d_n(W_1^1, L_q)$ неизвестен; известно только, что

$$c_q \frac{\log^{1/2} n}{\sqrt{n}} \leqslant d_n(W_1^1, L_q) \leqslant C_q \frac{\log n}{\sqrt{n}}.$$

Ясно, что $d_n(W_1^1,L_q)\leqslant\inf_{|\Lambda|=n}E(W_1^1,\mathcal{T}(\Lambda))_q$; последняя величина называется тригонометрическим поперечников, её порядок известен: $n^{-1/2}\log n$. Мы докажем только нижнюю оценку, она сводится к тому, что при $|\Lambda|=n$ имеем

$$E(F, \mathcal{T}(\Lambda))_q \geqslant c_q \frac{\log n}{\sqrt{n}}.$$

Используем двойственность:

$$E(F, \mathcal{T}(\Lambda))_q = \sup_{g \perp \mathcal{T}(\Lambda)} \frac{\int Fg}{\|g\|_{q'}}.$$

Возьмём $g(x) = \sum_{k=1}^{N} b_k \sin kx$, тогда $\int Fg = \sum_{k=1}^{N} b_k/k$. Обеспечим ортогональность следующим образом:

$$g(x) = \sum_{k=1}^{N} \sin kx - \sum_{k \in \Lambda, 1 \le k \le N} \sin kx.$$

Тогда

$$\int Fg = \sum_{\substack{k=1..N\\k \notin \Lambda}} 1/k \geqslant \log N - \log n + O(1).$$

Оценим знаменатель:

$$||g||_{q'} \le ||\sum_{k=1}^{N} \sin kx||_{q'} + ||\sum_{k \in \Lambda, 1 \le k \le N} \sin kx||_{q'} \ll N^{1-1/q'} + n^{1/2}.$$

(Первое слагаемое – сопряжённое ядро Дирихле, его L_p -нормы известны, $\asymp N_{1-1/p}$ при $1 ; второе слагаемое оценили через <math>L_2$, т.к. q' < 2.) Итого, при $N \asymp n^{q/2}$ получается нужная оценка.

Пример: поперечник куба в ℓ_1^N . Двойственность очень полезна: она даёт нам возможность работать в двух постановках – в прямой (аппроксимация, колмогоровский поперечник), и в двойственной (сечения, гельфандовский поперечник). Разберём пример: поперечник куба $d_n(B_\infty^N, \ell_1^N)$. Ясно, что он не провосходит (N-n), приближаем куб пространством $L_n = (x_1, \ldots, x_n, 0, 0, \ldots, 0)$. Нижнюю оценку проще получить в двойственной постановке:

$$d_n(B_{\infty}^N, \ell_1^N) = d^n(B_{\infty}^N, \ell_1^N).$$

Возьмём подпространство L^n коразмерности n, нужно доказать, что в сечении $B_\infty^N \cap L^n$ есть точка x с $\|x\|_1 \geqslant N-n$. Оказывается, в качестве x можно взять любую крайнюю точку этого сечения:

Пемма 1. Пусть x — крайняя точка сечения $B_{\infty}^N \cap L_k$ куба пространством размерности k. Тогда вектор x содержит по крайней мере k координат, по модулю равных 1.

Доказательство. Предположим, это не так, у x координаты j_1,\ldots,j_l , равны по модулю единице, а остальные меньше, при этом l < k. Поскольку $\dim L_k = k$, в L_k найдётся ненулевой вектор y, такой что $y_{j_1} = y_{j_2} = \ldots = y_{j_l} = 0$ (у нас l уравнений и k "неизвестных"). Проверим, что при малых λ , имеем $x + \lambda y \in B_\infty^N \cap L_k$. Действительно, $x, y \in L_k$, поэтому сумма в L_k . Координаты x_{j_s} не меняются и остаются в [-1,1]. Остальные координаты, в силу $|x_j| < 1$, попадут в [-1,1] при малых λ .