

Register								
Number								

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Set - A

College of Engineering and Technology

School of Computing

Academic Year: 2021-22 (Even)

Course Code & Title : 18CSS202J - Computer Communications Duration : 100 Minutes (2 Periods)

Year & Sem : II Year / IV Sem Max Marks : 50

Course Articulation Matrix:

S.No.	Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
1	CO1	3	-	-	-	-	-	-	-	-	-	-	3
2	CO2	3	2	3	-	-	-	-	-	-	-	-	3
3	CO3	3	3	3	-	-	-	-	-	-	-	-	3
4	CO4	3	2	-	-	-	-	-	-	-	-	-	3
5	CO5	3	-	-	-	-	-	-	-	-	-	-	2
6	CO6	3	3	3	-	-	-	-	-	-	-	-	3

Part - A (20 x 1 = 20 Marks)

Instructions: 1) Answer ALL questions. 2) The duration for answering the part A is 30 minutes (this sheet will be collected after 30 minutes). 3) Encircle the correct answer 4) # denotes the type of the question is "fill in the blank"

Q. No	Question	Marks	BL	CO	РО	PI Code
1	control refers to a set of procedures used to restrict the amount of data that the sender can send before waiting for acknowledgment. A. Flow B. Error C. Transmission D. Data Control	1	1	4	1	1.7.1
2	In the sliding window method of flow control, the receiver window size when frames are received A. increases in C. doubles in D. remains its original	1	2	4	2	2.6.3
3	A sender has a sliding window of size 15. The first 15 frames are sent. How many frames are in the window now? A. 0 B. 1 C. 14 D. 15	1	3	4	2	2.6.3
4	Which data link layer function answers the question: How much data may be sent? A. line discipline B. flow control C. error control D. session management	1	2	4	1	1.7.1
5#	HDLC is an acronym for	1	1	4	1	1.7.1
6	The Protocol has both flow control and error control A. Stop-and-Wait B. Go-Back-N ARQ C. Selective-Repeat ARQ D. both (b) and (c)	1	2	4	1	1.7.1

7	The between two words is the number of differences	1	2	1	2	2.6.3
7	between corresponding bits	1	2	4	2	2.0.3
	A. Hamming code C. Hamming rule B. Hamming distance D. Hamming length					
8	In block coding, if k =2 and n =3, we have invalid	1	3	4	2	2.6.3
	codewords A. 8 B. 4 C. 2 D. 0					
9	is a multiple-access method in which the available	1	2	4	1	1.7.1
	bandwidth of a link is shared in time, frequency, or through code, between different stations.					
	A. Controlled access C. Serial access D. Random access					
10	HDLC and PPP are layer protocols	1	1	4	1	1.7.1
	A. Data link B. Network C. Physical D. Presentation					
11	In forwarding, the full IP address of a destination is given	1	2	6	1	1.7.1
	in the routing table. A. next-hop B. network-specific					
	C. host-specific D. default					
12	A routing table is updated periodically using one of the	1	1	6	1	1.7.1
	dynamic routing protocols A. static B. dynamic C. hierarchical D. hybrid					
	A. static B. dynamic C. hierarchical D. hybrid					
13	The task of moving the packet from the input queue to the output queue in a router is done by	1	1	6	1	1.7.1
	A. input and output ports B. routing processor					
	C. switching fabrics D. routing ports					
14	The routing uses the Dijkstra algorithm to build a	1	1	6	1	1.7.1
	routing table. A. distance vector B. link state					
	C. path vector D. vector					
15	The OSPF protocol is an intradomain routing protocol based on	1	1	6	1	2.6.3
	routing.					
	A) distance vector B) link state C) path vector D) link vector					
16	How often does a RIPv1 router broadcast its routing table by	1	1	6	1	1.7.1
16	default?	'	'	0	1	1.7.1
	a) Every 30 seconds b) Every 60 seconds c) Every 90 seconds d) RIPv1 does not broadcast periodically					
17	Which command will display all the EIGRP feasible successor routes known to a router?	1	1	6	1	1.7.1
	A. show ip routes B. show ip eigrp summary					
	C. show ip eigrp topology D. show ip eigrp adjacencies					
18	How many entry and exit points can be found in a stub network?	1	2	6	1	1.7.1
	A. Five B. Four C. Two D. One					
19	Distance vector routing algorithm is implemented in Internet as	1	2	6	1	1.7.1
	A. OSPF B. RIP C. ARP D. APR					
20	In OSPF, which protocol is used to discover neighbour routers	1	1	6	1	1.7.1
	automatically? A. Link state protocol B. Error-correction protocol					
	C. Routing information protocol D. Hello protocol					

Register								
Number								

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Set - A

College of Engineering and Technology

School of Computing

Academic Year: 2021-22 (Even)

Course Code & Title : 18CSS202J - Computer Communications Duration : 100 Minutes (2 Periods)

Year & Sem : II Year / IV Sem Max Marks : 50

Instr	Part – B (2 x 5 = 10 Marks) Instructions: Answer ALL questions														
Q. No	Question	Marks	BL	СО	РО	PI Code									
21	Compare and contrast byte-oriented and bit-oriented protocols. Which category is popular now (explain the reason)?	5	2	4	1	1.7.1									
22	What are the functions of a RIP message? Why do OSPF messages propagate faster than RIP messages?	5	2	6	1	1.7.1									

	Part – C (2 x 10 = 20 Marks)													
Instructions: Answer ALL questions														
Q. No	Question	Marks	BL	СО	РО	PI Code								
23. A	Explain in detail with an example the Stop-and-Wait Automatic Repeat Request Protocol's mechanism.	10	1	4	1	1.7.1								
	Or			ı	ı									
23. B. i.	Assuming even parity, find the parity bit for the data unit 1 0 0 1 0 1 1	2	3	4	2	2.6.3								
23. B. ii.	Given the dataword 1 0 1 0 0 1 1 1 1 0 and the divisor 1 0 1 1 1, Show the generation of the codeword at the sender site (using binary division).	8	3	4	2	2.6.3								
24. A	Explain the path vector protocol with example.	10	1	6	1	1.7.1								
	Or			1		1								
24. B	Demonstrate the Open Shortest Path First protocol with example.	10	2	6	1	1.7.1								

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

