UPPSALA UNIVERSITET

Matematiska institutionen

Inger Sigstam, tel: 471 3223

Tentamen i matematik ALGEBRA 1 2010-01-08

Skrivtid: 14-19. Inga hjälpmedel tillåtna. Lösningarna skall åtföljas av förklarande text. Varje uppgift ger högst 5 poäng. För betygen 3 (4) (5) krävs minst 18 (25) (32) poäng, inklusive ev bonuspoäng.

- 1. (a) Avgör om några av följande tre utsagor är ekvivalenta, genom att använda sanningsvärdestabell.
 - (i) $(p \lor q) \land (\neg(p \land q))$
 - (ii) $(p \land \neg q) \lor (q \land \neg p)$
 - (iii) $\neg p \longrightarrow \neg q$
 - (b) Låt A och B vara mängder. Visa mängdlikheten $(A \cup B)^c = A^c \cap B^c$, (där komplementet till en mängd X har betecknats X^c).
- 2. Visa att $\sqrt{6}$ är ett irrationellt tal.
- 3. Bestäm den minsta ickenegativa resten som fås då 4314^{321} delas med 13.
- 4. Ekvationen $z^4 + 2z^2 8z + 5 = 0$ har en dubbelrot. Lös ekvationen fullständigt!
- 5. På mängden av par av reella tal, $\mathbf{R} \times \mathbf{R}$, definierar vi en relation S genom

$$(a,b)S(c,d) \Longleftrightarrow \exists p,q \in \mathbf{Q} (a-c=p \text{ och } b-d=q),$$

där ${f Q}$ som vanligt betecknar de rationella talen. Visa att S är en ekvivalensrelation på ${f R} \times {f R}$.

Ekvivalensklassen som innehåller paret (a, b) betecknas [(a, b)].

Vilka par ingår i ekvivalensklassen [(1,2)]?

- 6. Visa med induktion att $6|(8^n-2^n)$ för alla naturliga tal n.
- 7. Låt **N** vara mängden av naturliga tal, och **U** mängden av udda naturliga tal. Konstruera fyra funktioner f_1 , f_2 , f_3 och f_4 från **N** till **U** med följande egenskaper:
 - (i) $f_1: \mathbf{N} \longrightarrow \mathbf{U}$ är injektiv men inte surjektiv;
 - (ii) $f_2: \mathbf{N} \longrightarrow \mathbf{U}$ är surjektiv men inte injektiv;
 - (iii) $f_3: \mathbf{N} \longrightarrow \mathbf{U}$ är varken surjektiv eller injektiv.
 - (iv) $f_4: \mathbf{N} \longrightarrow \mathbf{U}$ är bijektiv;
- 8. Bestäm det reella talet a så att ekvationen $x^3 x^2 + ax + 5 = 0$ får en icke-reell rot med realdelen 1. Lös ekvationen fullständigt.

LYCKA TILL!

Korta svar till Algebra 1, 2010-01-08:

- 1. (a) Ställ upp sanningsvärdestabell, de två första formlerna är ekvivalenta.
 - (b) Rita t ex Venn-diagram.
- 2. Man kan använda liknande bevis som motsvarande för $\sqrt{2}$. (Det behöver modifieras lite).
- 3. Minsta icke-negativa resten blir 8.
- 4. Dubbelroten är z=1, övriga rötter är $z=-1\pm 2i$.
- 5. Visa att S är reflexiv, symmetrisk och transitiv. Man får sedan $[(1,2)] = \mathbf{R} \times \mathbf{R}$ eftersom (a,b)S(1,2) om och endast om både a och b är rationella tal.
- 6. Bassteg: n = 0. Induktionsantagande: Det finns heltal A så att $6A = 8^p 2^p$. Induktionssteget: Visa att $8^{p+1} 2^{p+1}$ kan skrivas som 6B för något heltal B. Dra sedan slutsats enligt induktionsaxiomet.
- 7. T.ex följande: $f_1(n) = 2n + 3$. Ej surjektiv, ty blir aldrig 1. Injektiv ty tar olika till olika. $f_2(0) = f_2(1) = 1$, $f_2(n) = 2n 1$ för $n \ge 2$. Ej injektiv, ty $f_2(0) = f_2(1)$. Surjektiv ty alla udda naturliga tal fås.
 - $f_3(n) = 4$ (konstantfunktion). Ej injektiv ty t ex $f_3(0) = f_3(1)$. Ej surjektiv, ty t ex $f_3(n) \neq 7$ för alla n.
 - $f_4(n) = 2n + 1$. Både surjektiv och injektiv.
- 8. a = 3. Rötterna är $x = 1 \pm 2i$ och x = -1.