Logické funkce, Booleova algebra

Logické proměnné, elementární logické funkce, Booleova algebra, vyjadřování logických funkcí

Ing. Pavel Lafata, Ph.D. lafatpav@fel.cvut.cz

- Logické proměnné, funkce a jejich vyjadřování
 - logická proměnná obecně nezávislá matematická proměnná, která může nabývat konečného počtu hodnot – dvouhodnotová logika – logická 1 nebo logická 0
 - logické proměnné obvykle zapisujeme malými písmeny: a, b, c, d...
 - logická funkce představuje soubor pravidel pro jednoznačné přiřazení hodnot závisle proměnných (funkčních hodnot) k jednotlivým kombinacím nezávislých proměnných (logických proměnných)
 - logické funkce obvykle zapisujeme písmenem f s indexem nebo velkými písmeny
 - pro n proměnných máme 2^n různých kombinací a 2^{2^n} různých logických funkcí
 - určitá funkce jednoznačně určena hodnota pro všech 2ⁿ kombinací proměnných
 - neurčitá funkce pro alespoň jednu kombinaci proměnných není určena funkční hodnota
 - tím pádem logická funkce může nabývat logická 1, logická 0, X neurčitý stav
 - v jazyce VHDL definován datový typ std_logic 9 hodnot (viz VHDL přednášky)
 - pravdivostní tabulka tabulkový výčet kombinací vstupních proměnných a jim odpovídající funkční hodnota – úplná či neúplná (viz dále)
 - úplný soubor funkcí soubor (skupina) elementárních logických funkcí, pomocí nichž lze vyjádřit libovolnou logickou funkci
 - minimální úplný soubor funkcí minimální soubor elementárních logických funkcí, pomocí nichž lze vyjádřit libovolnou logickou funkci

- 1. Logické funkce 1 proměnné vstupní proměnná a
 - pro 1 vstupní proměnnou (a) 2 kombinace hodnot 4 různé logické funkce

а	f_0	f_1	f_2	f_3
0	0	1	0	1
1	0	0	1	1

- f_o nulová funkce, hodnota logická 0 nezávisle na hodnotě vstupní proměnné a
- f_3 jednotková funkce, hodnota logická 1 nezávisle na hodnotě vstupní proměnné a
- f_2 funkce identita, hodnota vždy stejná jako vstupní proměnná a: $f_2 = a$
- f_1 funkce negace, nabývá vždy přesně opačné hodnoty než proměnná a:

$$f_1 = \overline{a}; \quad f_1 = \neg a; \quad f_1 = \text{NOT } a$$

- v literatuře několik způsobů značení, v jazyce VHDL klíčové slovo NOT
- v elektronickém obvodu hradlo invertor negace znázorněna "kroužkem"
 značení ČSN EN 60617-12 (TNI 01 3760)
 značení ANSI/IEEE Std 91-1984, 91-1991a

- 2. Logické funkce 2 proměnných vstupní proměnné a, b
 - pro 2 proměnné (a, b), vytvoříme 4 kombinace hodnot, 16 různých logických funkcí

а	b	f_0	f_1	f_2	f_3	f_4	f_5
0	0	0	1	0	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	0	1	0	0	1

 tabulka obsahuje jen nejdůležitější vybrané funkce

- f_0 hodnota funkce je logická 1 pouze pokud obě vstupní proměnné a,b nabývají hodnoty logická 1, jinak je její hodnota logická 0
 - jedná se o **logický součin** (**konjunkci**), značíme obvykle symboly " \wedge ", " \cdot ", "AND" $\boxed{ f_0 = a \wedge b = a \cdot b = ab = a \, \text{AND} \, b }$
 - v jazyce VHDL klíčové slovo AND, obvodová značka hradlo logický součin
 značení ČSN EN 60617-12 (TNI 01 3760)
 značení ANSI/IEEE Std 91-1984, 91-1991a

- 2. Logické funkce 2 proměnných vstupní proměnné a, b
- f_1 funkce negace logického součinu, hodnota funkce je logická 0 pokud obě proměnné a, b nabývají hodnoty logická 1, v opačném případě je výstup logická 1
 - přesně opačná funkce k funkci logický součin negace logického součinu, v literatuře také nazývána Shefferova funkce
 - NOT AND = NAND

$$f_1 = \overline{a \wedge b} = \overline{a \cdot b} = \overline{ab} = a \text{ NAND } b$$

• hradlo negovaného logického součinu – k výstupu log. součinu přidáme negaci značení ČSN EN 60617-12 (TNI 01 3760) značení ANSI/IEEE Std 91-1984, 91-1991a

pozor na správný zápis negace, negace logického součinu a a b není rovna logickému součinu negace a a negace b! – dostaneme se k tomu později

$$\overline{a \wedge b} \neq \overline{a} \wedge \overline{b}$$
 !!!

2. Logické funkce 2 proměnných – vstupní proměnné a, b

а	b	f_0	f_1	f_2	f_3	f_4	f_5
0	0	0	1	0	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	0	1	0	0	1

- f_2 funkce nabývá logické 0 pouze když obě proměnné a, b jsou logické 0, pokud alespoň jedna z nich má hodnotu logická 1, hodnota funkce je logická 1
 - funkce se nazývá logický součet (disjunkce), značíme symboly " \lor ", "+", "OR"
 - v jazyce VHDL klíčové slovo OR

$$f_2 = a \lor b = a + b = a \text{ OR } b$$

obvodová značka – hradlo logický součet

značení ČSN EN 60617-12 (TNI 01 3760)

značení ANSI/IEEE Std 91-1984, 91-1991a

- 2. Logické funkce 2 proměnných vstupní proměnné a, b
- f_3 opačná funkce k funkci logický součet, její funkční hodnota je logická 1 pouze když obě proměnné a, b jsou logické 0, jinak je její hodnota logická 0
 - je to **negace logického součtu** NOT OR = **NOR**, v literatuře též Piercova funkce
 - v jazyce VHDL klíčové slovo NOR

$$f_3 = \overline{a \lor b} = \overline{a + b} = a \text{ NOR } b$$

hradlo negovaného logického součtu – k výstupu log. součtu přidáme negaci
 značení ČSN EN 60617-12 (TNI 01 3760)
 značení ANSI/IEEE Std 91-1984, 91-1991a

opět, pozor na negaci, negace logického součtu a a b není rovna logickému součtu negace a a negace b! – viz dále

$$\overline{\overline{a \vee b}} \neq \overline{a} \vee \overline{b}$$
 !!!

- 2. Logické funkce 2 proměnných vstupní proměnné a, b
- f_4 tato funkce nabývá hodnoty logická 1 pokud hodnoty obou proměnných jsou navzájem různé, a hodnoty logická 0 pokud jsou stejné
 - podobná funkci logického součtu, ale na rozdíl od něj dává funkce logickou 0 pokud a = b = 1 (logický součet dává logickou 1 pro tuto vstupní kombinaci)
 - může platit jen jedna vstupní podmínka (buď jen a = 1 nebo jen b = 1) "vyloučené nebo" = **exclusive OR** = **XOR** (někdy též funkce neekvivalence)
 - značíme pomocí symbolů " \oplus ", " \not ", " \not ", " \not ", "XOR"
 - a můžeme ji definovat pomocí předchozích funkcí:

$$f_4 = a \oplus b = \overline{a} \cdot b \vee a \cdot \overline{b}$$

obvodová značka – vychází ze značky logického součtu
 značení ČSN EN 60617-12 (TNI 01 3760)
 značení ANSI/IEEE Std 91-1984, 91-1991a

- 2. Logické funkce 2 proměnných vstupní proměnné a, b
- f_5 opačná funkce k funkci XOR, její hodnota je logická 1 pokud hodnoty obou vstupních proměnných a, b jsou shodné, pokud a, b jsou různé, dává logickou 0
 - negace XOR = XNOR, někdy též funkce ekvivalence
 - značíme ji pomocí symbolů "=", " \leftrightarrow ", " \Leftrightarrow ", "EQ", "XNOR"
 - v jazyce VHDL klíčové slovo XNOR
 - můžeme ji vyjádřit jako:

$$f_5 = \overline{a \oplus b} = a = b = \overline{a} \cdot \overline{b} \vee a \cdot b$$

obvodová značka – doplnění negace do symbolu hradla XOR
 značení ČSN EN 60617-12 (TNI 01 3760)
 značení ANSI/IEEE Std 91-1984, 91-1991a

Elementární logické funkce – pravdivostní tabulka, shrnutí

а	b	NOT a	NOT b	AND	NAND	OR	NOR	XOR	XNOR
0	0	1	1	0	1	0	1	0	1
0	1	1	0	0	1	1	0	1	0
1	0	0	1	0	1	1	0	1	0
1	1	0	0	1	0	1	0	0	1

- Logické funkce, úplný soubor funkcí
 - na počátku jsme definovali úplný soubor funkcí a minimální úplný soubor funkcí pomocí něho můžeme vyjádřit libovolnou logickou funkci
 - příklady minimálních úplných souborů:
 - 1. **funkce NAND** negovaný logický součin sám o sobě je minimálním úplným souborem funkcí a lze pomocí něho vyjádřit libovolnou logickou funkci
 - 2. funkce NOR i negovaný logický součet je minimálním úplným souborem funkcí
 - tyto 2 funkce jsou tedy důležité při realizaci logických funkcí pomocí hradel
 - 3. **funkce AND + NOT** logický součin a negace
 - 4. **funkce OR + NOT** logický součet a negace
 - příklad (neminimálního) úplného souboru:
 - 1. **funkce AND**, **OR**, **NOT** trojice funkcí: logický součin, logický součet, negace, pomocí nich lze vyjádřit libovolnou logickou funkci

Booleova algebra

- algebra = obecně matematický prostor obsahující definice symbolů, operací a pravidel pro manipulaci s těmito symboly
- Booleova algebra část algebry zabývající se logickými proměnnými a funkcemi
- pojmenována na počest po Georgeovi Booleovi, formulace základů matematické logiky a informatiky: The Laws of Thought (1854)

- Booleova algebra
 - 1. **definovány dva základní prvky** logická 0 (nepravda), logická 1 (pravda)
 - 2. Booleova algebra založena na úplném souboru funkcí AND, OR, NOT
 - zákony Booleovy algebry:
 - 1. Asociativita logického součtu $a \lor (b \lor c) = (a \lor b) \lor c$
 - 2. Asociativita logického součinu a(bc) = (ab)c
 - 3. Komutativita logického součtu $a \lor b = b \lor a$
 - 4. Komutativita logického součinu ab = ba
 - 5. Distributivní zákon $a(b \lor c) = ab \lor ac$ $(a \lor b) \cdot (a \lor c) = a \lor bc$

- zákony Booleovy algebry:
 - 6. Zákon o vyloučení třetího $a \cdot \overline{a} = 0$ $a \vee \overline{a} = 1$
 - 7. Zákon o idempotenci prvků $a \lor a = a$ $a \cdot a = a$
 - 8. Zákon agresivity nuly $a \cdot 0 = 0$
 - 9. Zákon agresivity jedničky $a \lor 1 = 1$
 - 10. Zákon neutrálnosti nuly $a \lor 0 = a$
 - 11. Zákon neutrálnosti jedničky $a \cdot 1 = a$

- zákony Booleovy algebry:
 - 12. Zákon absorpce $a(a \lor b) = a$

$$a(a \lor b) = a$$
$$a \lor ab = a$$

12. Zákon absorpce negace

$$a \lor \overline{a}b = a \lor b$$

 $\overline{a} \lor ab = \overline{a} \lor b$

13. Zákon dvojité negace

$$\overline{\overline{a}} = a$$

- 14. Zákon o negaci logického součinu $\overline{ab} = \overline{a} \vee \overline{b}$
- 15. Zákon o negaci logického součtu $\overline{a \lor b} = \overline{a}\overline{b}$

De Morganovy zákony

- Booleova algebra a jazyk VHDL
 - Distributivní zákon dle Booleovy algebry vs. jazyk VHDL
 - v Booleově algebře má logický součin vyšší prioritu než logický součet
 - můžeme proto zapsat bez použití závorek např.: $a \lor \overline{b}c$
 - závorky nejsou nutné: $a \lor (\overline{b}c) = a \lor \overline{b}c$
 - v jazyce VHDL je to však jinak:
 nejvyšší prioritu má NOT (negace)
 nižší (stejnou) prioritu mají AND, OR, NAND, NOR, XOR, XNOR (všechny ostatní)
 - logický součin a logický součet tedy mají ve VHDL stejnou prioritu! nutné závorky
 - ve VHDL navíc musíme vždy oddělit pomocí závorek všechny nestejné operace (kromě NOT)!
 - uvedený výraz v jazyce VHDL tedy zapíšeme: $a \operatorname{OR} \left(\operatorname{NOT} b \operatorname{AND} c \right)$

Logické funkce – vyjadřování logických funkcí, nejčastěji pomocí:

- Pravdivostní tabulka
- 2. Zkrácený seznam stavových indexů
- 3. Algebraický zápis
- 4. Mapy

Pravdivostní tabulka

- tabulkový výčet jednotlivých kombinací nezávislých logických proměnných a jim přiřazených hodnot dané logické funkce
- obvykle přidáváme sloupec stavových indexů N
- úplná pravdivostní tabulka obsahuje všechny kombinace vstupních proměnných
 - pro *n* vstupních proměnných obsahuje *2ⁿ* řádků
- neúplná (zkrácená) pravdivostní tabulka z úplné pravdivostní tabulky vynecháme neurčité stavy (neurčité stavy zapisujeme X), počet řádků neúplné tabulky ≤ 2^n
- pokud dvě logické funkce mají navzájem shodné pravdivostní tabulky, jedná se o identické logické funkce (a naopak)
- pravdivostní tabulka je vhodná pro popis logického obvodu (výstupní funkce), ale nehodí se pro minimalizaci ani realizaci pomocí hradel

Pravdivostní tabulka

příklad:

3 vstupní proměnné – a, b, c, obvykle přiřazujeme a na LSB pozici a c na MSB pozici

úplná pravdivostní tabulka funkce f zkrácená pravd. tabulka funkce f

N	С	b	а	f
0	0	0	0	0
1	0	0	1	×
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

N	С	b	а	f
0	0	0	0	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

- **N** je sloupec stavových indexů binární kombinace nezávislých proměnných vyjádřená v desítkové soustavě
- s počtem proměnných n narůstá exponenciálně počet řádků úplné tabulky (2^n)

Zkrácený seznam stavových indexů

- zkrácený zápis pravdivostní tabulky
- seznam indexů N, ve kterých nabývá daná funkce logické 1 nebo neurčitého stavu
- pro rozlišení zapisujeme neurčité stavy do závorek
- předchozí funkci f můžeme zapsat ve formě zkráceného seznamu stavových indexů:
 f = (1), 2, 3, 5, 6, 7

Algebraický zápis

- zápis ve formě funkčního vyjádření pomocí trojice elementárních logických funkcí log. součtu, log. součinu a negace a s použitím pravidel a zákonů Booleovy algebry
- nejprve několik potřebných definicí:
- nezávislá proměnná jedna vstupní proměnná funkce v přímém či negovaném tvaru
- podstatný bod stav, kdy daná funkce nabývá hodnoty logická 1
- nepodstatný bod stav, kdy funkce nabývá logické 0 nebo neurčitého stavu
- term jeden výraz obsahující každou nezávislou proměnnou přesně jedenkrát
- součinový term term obsahující jen operaci logického součinu vytvořený jako logický součin vstupních nezávislých proměnných
- **součtový term** obdobně, term obsahující jen operaci logický součet
- minterm součinový term obsahující všechny vstupní nezávislé proměnné právě jednou v přímém či negovaném tvaru
- maxterm obdobně, součtový term obsahující všechny proměnné právě jednou

- Algebraický zápis
 - úplná normální disjunktní forma (ÚNDF) forma funkce obsahující logické součty mintermů – součet součinů – v literatuře též Sum of Products, SoP
 - obsahuje tolik součinů, kolik má daná funkce podstatných (jednotkových) bodů

$$f_D = \bigvee_{N=0}^{2^n - 1} f_N C_N = \sum_{N=0}^{2^n - 1} f_N C_N$$

- kde:
 - V, Σ logický součet (OR), N index, f_N hodnota funkce f pro daný index N, C_N logický součin nezávislých proměnných pro daný index N
- minimální normální disjunktní forma (MNDF) minimalizovaná forma ÚNDF dané funkce f, obsahující nejmenší možný počet mintermů
- vyjádření funkce f pomocí ÚNDF:
- pro každý řádek úplné pravdivostní tabulky dané funkce vytvoříme logický součin funkční hodnoty f_N a vstupních proměnných a, b, c pokud obsahuje pro daný řádek tabulky proměnná log. 1, zapíšeme ji přímo, v případě log. 0 zapíšeme její negaci
- využijeme zákony o neutrálnosti jedničky a agresivity nuly
- výslednou ÚNDF formu zapíšeme jako součet jednotlivých mintermů
- předchozí příklad funkce f neurčitý stav považujeme za logickou 1:

$$\begin{split} f_{\scriptscriptstyle D} &= 0 \cdot \overline{a} \overline{b} \overline{c} \vee 1 \cdot a \overline{b} \overline{c} \vee 1 \cdot \overline{a} b \overline{c} \vee 1 \cdot a b \overline{c} \vee 0 \cdot \overline{a} \overline{b} c \vee 1 \cdot a \overline{b} c \vee 1 \cdot \overline{a} b c \vee 1 \cdot a b c \\ f_{\scriptscriptstyle D} &= a \overline{b} \overline{c} \vee \overline{a} b \overline{c} \vee a b \overline{c} \vee a \overline{b} c \vee \overline{a} b c \vee a b c \end{split}$$

- Algebraický zápis
 - úplná normální konjunktní forma (ÚNKF) forma funkce obsahující logické součiny maxtermů – součin součtů – v literatuře též Product of Sums, PoS
 - obsahuje tolik součtů, kolik má daná funkce nepodstatných bodů

$$f_K = \bigwedge_{N=0}^{2^n - 1} f_N \vee D_N = \prod_{N=0}^{2^n - 1} f_N \vee D_N$$

- kde:
 - Λ , Π logický součin (AND), N index, f_N hodnota funkce f pro daný index N, D_N logický součet nezávislých proměnných pro daný index N
- minimální normální konjunktní forma (MNKF) minimalizovaná forma ÚNKF dané funkce f, obsahující nejmenší možný počet maxtermů
- vyjádření funkce f pomocí ÚNKF:
- pro každý řádek úplné pravdivostní tabulky dané funkce vytvoříme logický součet funkční hodnoty f_N a <u>negace</u> logického součinu proměnných a, b, c proměnné zapisujeme v přímém či negovaném tvaru stejně jako v případě ÚNDF
- využijeme zákony o neutrálnosti nuly a agresivity jedničky a De Morganovy zákony
- výslednou ÚNKF formu zapíšeme jako součin jednotlivých maxtermů
- předchozí příklad funkce f neurčitý stav považujeme za logickou 0:

$$f_{K} = \left(0 \vee \overline{a}\overline{b}\overline{c}\right) \cdot \left(0 \vee \overline{a}\overline{b}\overline{c}\right) \cdot \left(1 \vee \overline{a}b\overline{c}\right) \cdot \left(1 \vee \overline{a}$$

- Algebraický zápis
 - konjunktní formu funkce získáme z těch řádků pravdivostní tabulky, kdy funkce f dává hodnotu logická 0 nebo neurčitý stav – zákon o neutrálnosti nuly
 - disjunktní formu funkce získáme z těch řádků pravdivostní tabulky, kdy funkce f dává hodnotu logická 1 nebo neurčitý stav – zákon o neutrálnosti jedničky
 - každou funkci f proto můžeme vždy zapsat v její disjunktní i konjunktní formě
 - disjunktní a konjunktní formu dané funkce můžeme navzájem převádět:
 - 1. nahradíme všechny logické součty (V) pomocí logických součinů (Λ) a naopak
 - 2. ve všech výrazech nahradíme jednotlivé proměnné jejich negacemi a naopak
 - 3. musíme vždy převádět úplné formy, tzn. obsahující všechny řádky pravdivostní tabulky funkce (s hodnotou logická 0 i 1), neurčité stavy ponecháme vždy v obou formách
 - příklad převeďte ÚNDF předchozí funkce f na její ÚNKF:

$$\begin{split} \text{UNDF:} & f_D = 0 \cdot \overline{a} \overline{b} \overline{c} \vee \mathbf{X} \cdot a \overline{b} \overline{c} \vee 1 \cdot \overline{a} b \overline{c} \vee 1 \cdot a b \overline{c} \vee 0 \cdot \overline{a} \overline{b} c \vee 1 \cdot a \overline{b} c \vee 1 \cdot \overline{a} b c \vee 1 \cdot a b c = \\ & = \underline{a} \overline{b} \overline{c} \vee \overline{a} b \overline{c} \vee a b \overline{c} \vee a \overline{b} c \vee \overline{a} b c \vee a b c \end{split}$$

$$\begin{split} \mathsf{ÚNKF} &: f_K = \left(0 \lor a \lor b \lor c\right) \cdot \left(\mathbf{X} \lor \overline{a} \lor b \lor c\right) \cdot \left(1 \lor a \lor \overline{b} \lor c\right) \cdot \left(1 \lor \overline{a} \lor \overline{b} \lor c\right) \cdot \left(0 \lor a \lor b \lor \overline{c}\right) \cdot \left(1 \lor \overline{a} \lor b \lor \overline{c}\right) \cdot \left(1 \lor \overline{a} \lor \overline{b} \lor \overline{c}\right) = \end{split}$$

$$= \underline{(a \lor b \lor c) \cdot (\overline{a} \lor b \lor c) \cdot (a \lor b \lor \overline{c})}$$

Karnaughovy mapy

- existuje více druhů map, Karnaughovy mapy do 6 proměnných nejvhodnější
- grafická reprezentace funkce f
- mapa má vždy 2^n políček kde n je počet nezávislých proměnných funkce
- každé políčko v Karnaughově mapě představuje jeden řádek pravdivostní tabulky
- každé políčko v Karnaughově mapě představuje jeden minterm funkce f
- políčka v Karnaughově mapě očíslována pomocí Grayova kódu indexy navzájem sousedních políček vyjádřené ve dvojkové soustavě se liší jen na jedné řádové pozici
- proměnné v mapě obvykle přiřazujeme od a LSB až "poslední" MSB
- oblasti pokrytí mapy jednotlivými proměnnými znázorňujeme po stranách mapy

Karnaughova mapa 1 proměnné – a

pravdivostní tabulka

N	а	f
0	0	f_0
1	1	f_1

Karnaughova mapa 2 proměnných – a, b

pravdivostní tabulka

N	b	а	f
0	0	0	f_0
1	0	1	f_1
2	1	0	f_2
3	1	1	f_3

Karnaughova mapa \overline{ab} \underline{ab} $a\overline{b}$ $a\overline{b}$ ab ab ab ab

- Karnaughova mapa 3 proměnných a, b, c
 - první řádek očíslujeme 0, 1, 3, 2 (Grayův kód)
 - druhý řádek je zvětšen o +4

- Karnaughova mapa 4 proměnných a, b, c, d
 - první řádek očíslujeme 0, 1, 3, 2 (Grayův kód)
 - druhý řádek = první řádek +4
 - pak přeskočíme na čtvrtý řádek = druhý řádek +4
 - nakonec se vrátíme na třetí řádek = čtvrtý řádek +4

- Karnaughova mapa 5 proměnných a, b, c, d, e
 - osa symetrie rozděluje mapu na dvě poloviny levá + pravá část (osově symetrické)
 - vždy políčko v pravé polovině mapy = políčko v levé polovině +4
 - první řádek levá část 0, 1, 3, 2 (Grayův kód) pravá část = 6, 7, 5, 4
 - druhý řádek = první řádek +8
 - pak přeskočíme na čtvrtý řádek = druhý řádek +8
 - nakonec se vrátíme na třetí řádek = čtvrtý řádek +8

						<u> </u>				_
						 	b			-
				а		 		а		
			_		1	<u>i</u>	<u> </u>	1		1
		f_0	f_1	f_3	f_2	f_6	f_{7}	f_5	f_4	
	•	N = 0	N = 1	N = 3	N = 2	N = 6	N = 7	N = 5	N = 4	+8
		f_8	f_9	f_{11}	f_{10}	f_{14}	f_{15}	f_{13}	f_{12}	
		N = 8	N = 9	N = 11	N = 10	N = 14	N = 15	N = 13	N = 12	
							,		,	
		f_{24} N = 24	f_{25} N = 25	f_{27}	f_{26}	f_{30}	f_{31} N = 31	f_{29}	f_{28}	+8 +8
	d	N = 24	N = 25	N = 27	N = 26	N = 30	IN = 21	N = 29	N = 28	1) /
		f_{16}	f_{17}	f_{19}	f_{18}	f_{22}	f_{23}	f_{21}	f_{20}	
e		N = 16	N = 17	N = 19	N = 18	N = 22	N = 23	N = 21	N = 20	
						+4	+4	+4		
						1			/ +4	

oblast pokrytí proměnnou a rozdělena na dvě části (osově symetrické)

- Karnaughovy mapy sousední políčka
- indexy sousedních políček v Karnaughově mapě zapsané ve dvojkové soustavě změna jen na jedné řádové pozici – vždy jen jedna proměnná se liší (přímý vs. negovaný tvar)
- každá Karnaughova mapa může být přeložena zleva-doprava, seshora-dolů, mapy pro 5 a více proměnných navíc osy symetrie políčka z okrajů po složení navzájem sousední

	_		<u>a</u>	h	
				<i>D</i>	,
		•	•	,	1
	f_0	f_1	f_3	f_2	
	N = 0	N = 1	N = 3	N = 2	
	f_4	f_5	f_{7}	f_6	
	N = 4	N = 5	N = 7	N = 6	V
./					/

- **příklad** mapa pro 3 proměnné
- složení mapy políčka č. 6 a 4 jsou sousední, políčka č. 0 a 2 jsou sousední, políčka č. 0 a 4 jsou sousední a políčka č. 2 a 6 jsou sousední

- **jiný příklad**, Karnaughova mapa pro 4 proměnné, jsou políčka č. 12 a 14 sousední? řešení rozepíšeme dané indexy ve dvojkové soustavě:
 - 12₍₁₀₎ -> 1100₍₂₎ -> dcba

 $\boldsymbol{\mathcal{C}}$

 $14_{(10)} \rightarrow 1110_{(2)} \rightarrow dcba$

obě čísla se navzájem liší jen na jedné řádové pozici (proměnná b) = políčka jsou sousední

- Karnaughovy mapy zápis funkce pomocí mapy
- napíšeme "1" (nebo čáru) do políčka s indexem, ve kterém nabývá funkce logické 1, "X" do políčka, ve kterém je hodnota funkce neurčitý stav a "0" do políčka s indexem, ve kterém dává funkce hodnotu logická 0
- příklad Karnaughova mapa předchozí funkce f:

			<u>u</u>	h
				<i>D</i>
	0	Х	1	1
	N = 0	N = 1	N = 3	N = 2
	0	1	1	1
c	N = 4	N = 5	N = 7	N = 6

- Karnaughovy mapy pro více než 6 proměnných nepřehledné
- Karnaughovy mapy užitečné hlavně pro minimalizaci tvaru funkce