Indice

1	Formule sparse	1
2	Calcolo combinatorio	2
3	Propagazione degli errori 3.1 Propagazione lineare	2
4	Rigetto dati 4.1 Criterio di Chauvenet	
5		3
6	Regressione lineare 6.1 Caso base 6.1.1 Intercetta a 0 6.2 Incertezze sulle y variabili 6.3 Errori in x non trascurabili	4
7	PDF 7.1 caratteristiche PDF 7.2 Gaussiana 7.2.1 Gaussiana 2D 7.3 Uniforme 7.4 Student 7.4.1 Intervallo di confidenza 7.5 Priori → Posteriori	5 5 5 5
8	Probabilità variabile discreta 8.1 Distribuzione binomiale	5 5
9	Distribuzione Geometrica	6
10	Distribuzione di Poisson	6
\mathbf{A}	Gaussiane	7
В	Student	9
\mathbf{C}	Correlazione lineare	10
D	χ^2	11

1 Formule sparse

Coefficiente di correlazione lineare: $r = \frac{\sigma_{xy}}{\sigma_x \sigma_y} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} \quad r \in [-1; 1]$

Covarianza: $\sigma_{xy} = \frac{1}{N} \sum (x_i - \overline{x})(y_i - \overline{y})$

Deviazione std (s.q.m): $s_x = \sqrt{\frac{1}{N-1} \sum d_i^2} = \sqrt{\frac{1}{N-1} \sum (x_i - \overline{x})^2}$ (incertezza sulla singola misura)

Deviazione st
d della media: $s_{\overline{x}} = \sqrt{\frac{1}{N(N-1)}\sum (x_i - \overline{x})^2} = \frac{s_x}{\sqrt{N}}$

Densità di frequenza: $\Phi_k = \frac{f_k}{\Delta x}$. Δx : ampiezza bin, $f_k = \frac{n_k}{N}$, k: indice del bin.

Media aritmetica: $\frac{\sum x_i}{N}$ oppure $\frac{\sum n_k x_k}{N}$

Scarto quadratico medio (dev std): $s_x = \sqrt{\frac{1}{N-1} \sum d_i^2} = \sqrt{\frac{1}{N-1} \sum (x_i - \overline{x})^2}$

Scarto medio: $\frac{1}{N} \sum |d_i|$. $d_i = x_i - \overline{x}$

Varianza: $s_x^2 = \frac{N}{N-1}(\overline{x^2} - \overline{x}^2)$

2 Calcolo combinatorio

Disposizioni numero di modi diversi di disporre k oggetti, presi da un insieme di n oggetti (n nPr k).

$$\frac{n!}{(n-k)!}$$

Combinazioni numero di sottogruppi da k elementi possibili in un gruppo di n elementi (n nCr k).

$$\frac{n!}{(n-k)!\,k!} = \binom{n}{k}$$

3 Propagazione degli errori

3.1 Propagazione lineare

$$a = f(x) \Rightarrow \Delta a = \left| \frac{\partial f}{\partial x} \right|_{\substack{x = \overline{x} \\ y = \overline{y}}} \cdot \Delta x$$

3.2 Propagazione in quadratura

data $q(x,y), \sigma_x$ e σ_y allora $\overline{q} = q(\overline{x}, \overline{y})$ e $\sigma_q = \sqrt{\left(\frac{\partial q}{\partial x}\right)^2 (\sigma_x)^2 + \left(\frac{\partial q}{\partial y}\right)^2 (\sigma_y)^2 + 2\frac{\partial q}{\partial x}\frac{\partial q}{\partial y}\sigma_{xy}}$ se le variabili non sono correlate $(\sigma_{xy} = 0)$ allora la formula si riduce a: $\sigma_q = \sqrt{\left(\frac{\partial q}{\partial x}\right)^2 (\sigma_x)^2 + \left(\frac{\partial q}{\partial y}\right)^2 (\sigma_y)^2}$

3.3 Media pesata

Date due misure $(x_1 \pm \sigma_1)$ e $(x_2 \pm \sigma_2)$ compatibili tra loro, è possibile ricavare la miglior stima del valore $x_p = \frac{w_1 \cdot x_1 + w_2 \cdot x_2}{w_1 + w_2}$ dove $w_i = \frac{1}{\sigma_i^2}$ e la dev std $\sigma_p = \frac{1}{\sqrt{w_1 + w_2}}$

4 Rigetto dati

4.1 Criterio di Chauvenet

Data la misura sospetta x_s , se $P\left(|z| > \frac{x_s - \mu}{\sigma}\right) \cdot N < 0.5$ allora la misura x_s può essere rigettata. Successivamente bisogna ricalcolare media e deviazione std (quest'ultima è difficile).

Caso campioni ridotti

Se $P\left(|t|>\frac{x_s-\overline{x}}{\sigma_x}\right)\cdot N<0.5$ allora può essere rigettata.

Valutazione delle ipotesi

Test delle ipotesi

Dato un valore accettato v_{acc} e una serie di N misure con media \overline{x} e dev std σ_x , si calcola $\sigma_{\overline{x}} = \frac{\sigma_x}{\sqrt{N}}$ poi si calcola $z = \frac{\overline{x} - v_{acc}}{\sigma_{\overline{x}}}$ e, se N è grande si usa G(z) altrimenti $S_{\nu}(z)$.

Bisogna prendere entrambe le code, quindi moltiplicare per 2. Se il valore trovato è minore di 0.05 allora c'è discrepanza, se è minore di 0.01 questa è critica.

Se si deve determinare la compatibilità di due misure, senza la presenza di un valore accettato si calcola:

- se le popolazioni sono ridotte: $t = \frac{\overline{x_1} \overline{x_2}}{\sqrt{\left(\frac{n_1 1}{n_1 + n_2 2}\sigma_1^2 + \frac{n_2 1}{n_1 + n_2 2}\sigma_2^2\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$ con $\nu = n_1 + n_2 2$
- se le popolazioni sono numerose: $z = \frac{|\overline{x_1} \overline{x_2}|}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \left(\frac{\sigma_1^2}{n_1} = \sigma_{\overline{x}}^2\right)$

Test correlazione lineare

Per verificare l'ipotesi di correlazione lineare calcolo il coefficiente di correlazione lineare:

 $r_0 = \frac{\sigma_{xy}}{\sigma_x \sigma_y} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} \quad r \in [-1; 1] \text{ e controllo sulla tabella la probabilità } P_N(|r| > r_0) \text{ se } P < 0.05 \text{ l'ipotesi di } P_N(|r| > r_0)$ correlazione lineare è buona, se P < 0.01 è ottima.

5.3 Test del χ^2

Verifica distribuzione di probabilità/PDF 5.3.1

Dato un set di N risultati divisi in n bin del tipo $[a_i;b_i]$ o x_i e una pdf $\Phi(x;\alpha;\ldots)$ o una ditribuzione di probabilità $P(k;\alpha;\ldots)$ dove $\alpha;\ldots$ sono gli altri parametri; chiamo O_i il numero di eventi in un bin, E_i il numero di eventi previsti da Φ o P e σ_i l'errore su O_i

- O_i lo prendo dal set di risultati
- se ho una pdf $E_i = N \int_{a_i}^{b_i} \Phi(x) dx = N p_i$
- $\bullet\,$ se ho una distr. di prob. $E_i=NP(x_i)=N\,p_i$
- se $p_i \ll 1$ (molti bin) allora $\sigma_i^2 = Np_i = E_i$ (variabile poissoniana)
- altrimenti $\sigma_i^2 = Np_i(1-p_i)$ (variabile binomiale)

$$\chi^2 = \sum_{i=0}^{n} \frac{\left(O_i - E_i\right)^2}{\sigma_i^2}$$

Ora bisogna determinare i gradi di libertà ν ; in genere sono n-1 ma per ogni parametro della pdf/dist. stimato a partire dai risultati se ne perde un'altro.

Se l'ipotesi è corretta $\chi^2 \approx \nu$, se no $\chi^2 \gg \nu$, $\chi^2 \gg \nu$ può voler dire che l'errore è stato sovrastimato.

Per praticità introduciamo il χ^2 ridotto: $\tilde{\chi}^2 = \frac{\chi^2}{\nu} \approx 1$ se l'ipotesi è corretta. Se $P_{\nu}(\chi^2 > \chi_0^2) < 0.05$ c'è discrepanza, se < 0.01 questa è netta.

Attenzione

- il numero di misure in ogni bin dev'essere $\geq 4-5$
- bisogna avere abbastanza bin affinché $\nu > 0$

5.3.2 Verifica relazione funzionale

Dato un insieme di N coppie $(x_i, y_i \pm \sigma_i)$ e una funzione $f(x; \alpha; ...)$

$$\chi^2 = \sum_{i=0}^{N} \left(\frac{y_i - g(x_i)}{\sigma_i} \right)^2$$

I gradi di libertà sono: $\nu = N-$ il numero di parametri α, \dots dedotti dai dati. Ora calcolo il $\tilde{\chi}^2 = \frac{\chi^2}{\nu}$ e la trattazione è uguale a quella per il caso precedente.

6 Regressione lineare

6.1 Caso base

Dato un insieme di misure: $x_i(y_i \pm \sigma_{yi})$, nell'ipotesi che:

- y_i siano estratti da popolazioni gaussiane
- $\sigma_y i = \sigma_y j \ \forall i, j$

Le migliori stime di m e q e delle loro incertezze sono:

$$m = \frac{N \sum x_i y_i - \sum x_i \sum y_i}{\Delta} \qquad q = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum x_i y_i}{\Delta} \qquad \Delta = N \sum x_i^2 - \left(\sum x_i\right)^2$$
$$\sigma_m = \sigma_y \sqrt{\frac{N}{\Delta}} \qquad \sigma_q = \sigma_y \sqrt{\frac{\sum x_i^2}{\Delta}}$$

Se non ho σ_y posso stimarla (e usarla per calcolare σ_m e σ_q) come $\hat{\sigma_y} = \sqrt{\frac{1}{N-2}\sum (y_i - mx_i - q)^2}$

6.1.1 Intercetta a 0

$$m = \frac{\sum x_i y_i}{\sum x_i^2} \qquad \sigma_m = \frac{\sigma_y}{\sqrt{\sum x_i^2}}$$

6.2 Incertezze sulle y variabili

In questo caso peso i vari punti in base all'errore: peso $w_i = \frac{1}{\sigma_i^2}$ E ottengo:

$$m = \frac{\sum w_i \sum w_i x_i y_i - \sum w_i x_i \sum w_i y_i}{\Delta} \quad q = \frac{\sum w_i x_i^2 \sum w_i y_i - \sum w_i x_i \sum w_i x_i y_i}{\Delta} \quad \Delta = \sum w_i \sum w_i x_i^2 - \left(\sum w_i x_i\right)^2 + \left(\sum w_i x_i \sum w_i x_i + \sum \sum w_i x_i$$

(Il cuffia rimanda al par 10.3 del Fornasini per σ_m e σ_q)

6.3 Errori in x non trascurabili

Calcolo m ignorando gli errori su x. Poi calcolo un σ_y equivalente: $\sigma_{y\,eq}=m\sigma_x$.

Infine $\sigma_{y\,tot} = \sqrt{\sigma_y^2 + \sigma_{y\,eq}^2}$ e mi riconduco al caso delle sole incertezze sulle y variabili

7 PDF

7.1 caratteristiche PDF

Normalizzazione: $1 = \int \Phi(x) dx$

Media: $\overline{x} = \int x \Phi(x) dx$

Varianza: $s_x^2 = \int (x - \overline{x})^2 \Phi(x) dx$

7.2 Gaussiana

$$\Phi(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\bar{c} = \mu \qquad s_x^2 = \sigma^2 \qquad z = \frac{x-\mu}{\sigma} \qquad \hat{\mu} = \bar{x} \qquad \hat{\sigma}^2 = s_x^2 \qquad \text{FWHM} = 2\sigma\sqrt{\ln 4}$$

La combinazione $q=c_1x+c_2y$ di due variabili gaussiane è a sua volta gaussiana; media: $\mu=c_1\mu_x+c_2\mu_y$, varianza: $\sigma^2=c_1^2\sigma_x^2+c_2^2\sigma_y^2$

7.2.1 Gaussiana 2D

$$\sigma_{xy} = \int \int_{-\infty}^{+\infty} (x - \overline{x})(y - \overline{y}) \Phi(x, y) dx dy = \overline{xy} - \overline{x}\overline{y}$$

7.3 Uniforme

$$\Phi(x) = \frac{1}{b-a}$$

$$\begin{array}{l} \text{Media} = \frac{a+b}{2} \\ \text{Varianza} = \overline{x^2} - \overline{x}^2 = \frac{(a-b)^2}{12} \\ \text{Incertezza std} = s_x = \frac{(a-b)^2}{\sqrt{3}} \end{array}$$

7.4 Student

$$S_{\nu}(t) = \frac{c_{\nu}}{\left(1 + \frac{t^2}{\nu}\right)^{\frac{\nu+1}{2}}}$$

Già per $n \approx 30/35$, $S_{\nu}(t) \rightarrow G(z)$

7.4.1 Intervallo di confidenza

Se data una misura $(\overline{x} \pm \sigma_{\overline{x}})$ che si vuole esprimere con un intervallo di confidenza del (per esempio) 95%, bisogna determinare i gradi di libertà $\nu = N-1$ e ricavare il valore di k dalla tabella, che riporta però $\frac{1-\text{percentuale}}{2}$, quindi in questo caso la colonna da preferire sarebbe quella corrispondente a 0.025.

A questo punto si esprime l'intervallo come: $\overline{x} - k\sigma_{\overline{x}} < \overline{x} < \overline{x} + k\sigma_{\overline{x}}$

7.5 Priori \longrightarrow Posteriori

Supponiamo di avere a priori una variabile reale r distribuita uniformemente su [0;1] e di volerla raffinare sulla base dell'osservazione di un evento successivo E.

Inizialmente la probabilità dell'ipotesi H_i è pari a $P(H_i) = dP(r) = \Phi_{pr}(r) dr$ dove Φ_{pr} è la pdf a priori.

Supponiamo che possa calcolare la probabilità P(E|r).

Ora per la formula di Bayes abbiamo che: $\Phi_{po}(r) dr = dP(H_i|E) = \frac{P(E|r)P(H_i)}{P(E)} = \frac{P(E|r)dP(r)}{\int_0^1 P(E|r)dr} = \frac{P(E|r)dr}{\int_0^1 P(E|r)dr} \Rightarrow \Phi_{po}(r) = \frac{P(E|r)}{\int_0^1 P(E|r)dr}$

8 Probabilità variabile discreta

Sono tutte normalizzate a 1

8.1 Distribuzione binomiale

$$P(k, n, p) = \binom{n}{k} p^k q^{n-k}$$

Media: $\overline{k} = n \cdot p$

Varianza: $\sigma^2 = n \cdot p \cdot q = n \cdot p (1 - p)$ La distribuzione è simmetrica $\Leftrightarrow p = 0.5$

Tende ad una gaussiana per n grandi.

8.1.1 Contatori e la loro efficienza

Dato il numero totale di particelle inviate N e il numero di particelle rilevate n l'efficienza è: $\varepsilon = \frac{n}{N}$ e l'errore assoluto su ε pari ad una dev st
d è: $\Delta \varepsilon = \frac{\sqrt{N \cdot \varepsilon \cdot (1 - \varepsilon)}}{N}$ Posso parlare di un intervallo di CL per esempio del 95% se la probabilità che un certo evento si verifichi con un' ε al di

fuori di quell'intervallo è minore del 5%

Distribuzione Geometrica 9

$$P(k, p) = p(1 - p)^{k-1}$$

Media: $\overline{k} = \frac{1}{p}$

Deviazione std: $\sigma_k = \frac{\sqrt{1-p}}{p}$

10 Distribuzione di Poisson

$$P(k,\mu) = \frac{\mu^k e^{-\mu}}{k!}$$

Media: $\overline{k} = \mu$

Deviazione std: $\sigma_k = \sqrt{\mu}$

Il parametro μ esprime il numero medio di oggetti in una porzione di spazio/tempo/ecc.

Si usa quando i numeri sono troppo grandi per la binomiale.

Data una singola misura m di una variabile poissoniana, la migliore stima del parametro μ è m stessa; l'incertezza è quindi: $\sigma_m = \sqrt{m} \Rightarrow$ l'errore relativo è $\frac{1}{\sqrt{m}}$

A Gaussiane

Tavola della distribuzione Normale Standardizzata

	Area sottesa alla curva di densità normale standardizzata calcolata tra 0 e Z											
z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09		
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359		
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753		
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141		
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517		
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879		
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224		
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549		
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852		
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133		
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389		
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621		
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830		
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015		
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177		
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319		
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441		
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545		
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633		
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706		
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767		
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817		
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857		
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890		
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916		
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936		
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952		
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964		
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974		
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981		
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986		
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990		
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993		
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995		
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997		
3,4	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4998		
3,5	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998		
3,6	0,4998	0,4998	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999		
3,7	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999		
3,8	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999		
3,9	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000		

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

TABLE of CRITICAL VALUES for STUDENT'S t DISTRIBUTIONS

Column headings denote probabilities (α) **above** tabulated values.

d.f.	0.40	0.25	0.10	0.05	0.04	0.025	0.02	0.01	0.005	0.0025	0.001	0.0005
1	0.325	1.000	3.078	6.314	7.916	12.706	15.894	31.821	63.656	127.321	318.289	636.578
2	0.289	0.816	1.886	2.920	3.320	4.303	4.849	6.965	9.925	14.089	22.328	31.600
3	0.277	0.765	1.638	2.353	2.605	3.182	3.482	4.541	5.841	7.453	10.214	12.924
4	0.271	0.741	1.533	2.132	2.333	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	0.267	0.727	1.476	2.015	2.191	2.571	2.757	3.365	4.032	4.773	5.894	6.869
6	0.265	0.718	1.440	1.943	2.104	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	0.263	0.711	1.415	1.895	2.046	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	0.262	0.706	1.397	1.860	2.004	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	0.261	0.703	1.383	1.833	1.973	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	0.260	0.700	1.372	1.812	1.948	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	0.260	0.697	1.363	1.796	1.928	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	0.259	0.695	1.356	1.782	1.912	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	0.259	0.694	1.350	1.771	1.899	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	0.258	0.692	1.345	1.761	1.887	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	0.258	0.691	1.341	1.753	1.878	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	0.258	0.690	1.337	1.746	1.869	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	0.257	0.689	1.333	1.740	1.862	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	0.257	0.688	1.330	1.734	1.855	2.101	2.214	2.552	2.878	3.197	3.610	3.922
19	0.257	0.688	1.328	1.729	1.850	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	0.257	0.687	1.325	1.725	1.844	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	0.257	0.686	1.323	1.721	1.840	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	0.256	0.686	1.321	1.717	1.835	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	0.256	0.685	1.319	1.714	1.832	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	0.256	0.685	1.318	1.711	1.828	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	0.256	0.684	1.316	1.708	1.825	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	0.256	0.684	1.315	1.706	1.822	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	0.256	0.684	1.314	1.703	1.819	2.052	2.158	2.473	2.771	3.057	3.421	3.689
28	0.256	0.683	1.313	1.701	1.817	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	0.256	0.683	1.311	1.699	1.814	2.045	2.150	2.462	2.756	3.038	3.396	3.660
30	0.256	0.683	1.310	1.697	1.812	2.042	2.147	2.457	2.750	3.030	3.385	3.646
31	0.256	0.682	1.309	1.696	1.810	2.040	2.144	2.453	2.744	3.022	3.375	3.633
32	0.255	0.682	1.309	1.694	1.808	2.037	2.141	2.449	2.738	3.015	3.365	3.622
33	0.255	0.682	1.308	1.692	1.806	2.035	2.138	2.445	2.733	3.008	3.356	3.611
34	0.255	0.682	1.307	1.691	1.805	2.032	2.136	2.441	2.728	3.002	3.348	3.601
35	0.255	0.682	1.306	1.690	1.803	2.030	2.133	2.438	2.724	2.996	3.340	3.591
36	0.255	0.681	1.306	1.688	1.802	2.028	2.131	2.434	2.719	2.990	3.333	3.582
37	0.255	0.681	1.305	1.687	1.800	2.026	2.129	2.431	2.715	2.985	3.326	3.574
38	0.255	0.681	1.304	1.686	1.799	2.024	2.127	2.429	2.712	2.980	3.319	3.566
39	0.255	0.681	1.304	1.685	1.798	2.023	2.125	2.426	2.708	2.976	3.313	3.558
40	0.255	0.681	1.303	1.684	1.796	2.021	2.123	2.423	2.704	2.971	3.307	3.551
60	0.254	0.679	1.296	1.671	1.781	2.000	2.099	2.390	2.660	2.915	3.232	3.460
80	0.254	0.678	1.292	1.664	1.773	1.990	2.088	2.374	2.639	2.887	3.195	3.416
100	0.254	0.677	1.290	1.660	1.769	1.984	2.081	2.364	2.626	2.871	3.174	3.390
120	0.254	0.677	1.289	1.658	1.766	1.980	2.076	2.358	2.617	2.860	3.160	3.373
140	0.254	0.676	1.288	1.656	1.763	1.977	2.073	2.353	2.611	2.852	3.149	3.361
160	0.254	0.676	1.287	1.654	1.762	1.975	2.071	2.350	2.607	2.847	3.142	3.352
180	0.254	0.676	1.286	1.653	1.761	1.973	2.069	2.347	2.603	2.842	3.136	3.345
200	0.254	0.676	1.286	1.653	1.760	1.972	2.067	2.345	2.601	2.838	3.131	3.340
250	0.254	0.675	1.285	1.651	1.758	1.969	2.065	2.341	2.596	2.832	3.123	3.330
inf	0.253	0.674	1.282	1.645	1.751	1.960	2.054	2.326	2.576	2.807	3.090	3.290

$ r_o \rightarrow$	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
N=3	100	94	87	81	74	67	59	51	41	29	0
N=4	100	90	80	70	60	50	40	30	20	10	0
N=5	100	87	75	62	50	39	28	19	10	3.7	0
N=6	100	85	70	56	43	31	21	12	5.6	1.4	0
N=7	100	83	67	51	37	25	15	8.0	3.1	0.6	0
N=8	100	81	63	47	33	21	12	5.3	1.7	0.2	0
N=9	100	80	61	43	29	17	8.8	3.6	1.0	0.1	0
N = 10	100	78	58	40	25	14	6.7	2.4	0.5		0
N = 11	100	77	56	37	22	12	5.1	1.6	0.3		0
N=12	100	76	53	34	20	9.8	3.9	1.1	0.2		0
N = 13	100	75	51	32	18	8.2	3.0	0.8	0.1		0
N = 14	100	73	49	30	16	6.9	2.3	0.5	0.1		0
N=15	100	72	47	28	14	5.8	1.8	0.4			0
N = 16	100	71	46	26	12	4.9	1.4	0.3			0
N = 17	100	70	44	24	11	4.1	1.1	0.2			0
N = 18	100	69	43	23	10	3.5	0.8	0.1			0
N = 19	100	68	41	21	9.0	2.9	0.7	0.1			0
N = 20	100	67	40	20	8.1	2.5	0.5	0.1			0
N=25	100	63	34	15	4.8	1.1	0.2				0
N = 30	100	60	29	11	2.9	0.5					0
N = 35	100	57	25	8.0	1.7	0.2					0
N = 40	100	54	22	6.0	1.1	0.1					0
N = 45	100	51	19	4.5	0.6						0

```
\frac{1}{\tilde{\chi}_0^2 \rightarrow}
               0.5
                    1.0
                          1.5
          0
                                2.0
                                     2.5
                                           3.0
                                                 3.5
                                                      4.0
                                                           4.5 \quad 5.0 \quad 5.5
                                                                             6.0
                                                                                  8.0
                                                                                        10.0
                     32
                           22
                                                            3.4
                                                                  2.5
\nu=1
               48
                                           8.3
                                                 6.1
                                                      4.6
         100
                                16
                                      11
                                                                       1.9
                                                                             1.4
                                                                                   0.5
                                                                                         0.2
               61
                     37
                           22
                                     8.2
                                           5.0
                                                 3.0
                                                                 0.7
                                                      1.8
                                                            1.1
\nu=2
         100
                                14
                                                                       0.4
                                                                             0.2
\nu=3
                     39
                           21
                                11
                                     5.8
                                           2.9
                                                 1.5
                                                                 0.2
         100
               68
                                                      0.7
                                                            0.4
                                                                       0.1
\nu=4
               74
                     41
                           20
                                9.2
                                     4.0
                                           1.7
                                                 0.7
                                                      0.3
         100
                                                            0.1
                                                                  0.1
\nu=5
         100
                                7.5
                                     2.9
                                           1.0
               78
                     42
                           19
                                                 0.4
                                                      0.1
\tilde{\chi}_0^2 \rightarrow
         0
              0.2
                         0.6 \ \ 0.8 \ \ 1.0 \ \ 1.2 \ \ 1.4 \ \ 1.6 \ \ 1.8 \ \ 2.0 \ \ 2.2 \ \ 2.4 \ \ 2.6 \ \ 2.8 \ \ 3.0
                    0.4
        100
              65
                    53
                          44
                               37
                                    32
                                         27
                                               24
                                                    21
                                                         18
                                                                    14
                                                                         12
                                                                              11
                                                                                   9.4 8.3
\nu=1
                                                              16
              82
                    67
                                    37
                                               25
                                                    20
                               45
                                         30
\nu=2
        100
                          55
                                                         17
                                                               14
                                                                    11
                                                                         9.1
                                                                              7.4
                                                                                   6.1
                                                                                        5.0
                    75
                                    39
                                               24
                                                              11
                                                                   8.6
                                                                              5.0
\nu=3
        100
              90
                          61
                               49
                                         31
                                                    19
                                                         14
                                                                        6.6
                                                                                   3.8 \ 2.9
                               52
        100
                    81
                          66
                                    41
                                          31
                                               23
                                                    17
                                                         13
                                                              9.2
                                                                   6.6
                                                                        4.8
                                                                              3.4
                                                                                   2.4
                                                                                        1.7
\nu=4
              94
        100
              96
                               55
                                    42
                                         31
                                               22
                                                    16
                                                              7.5
                                                                   5.1
                                                                        3.5
                                                                              2.3
                                                                                   1.6
\nu=5
                    85
                          70
                                                         11
                                                                                        1.0
                          73
                               57
                                    42
                                                         9.5
                                                              6.2
                                                                   4.0
                                                                        2.5
                                                                              1.6
        100
              98
                                          30
                                               21
                                                    14
\nu=6
                    88
                                                                                   1.0 \ 0.6
        100
                                    43
                                          30
                                               20
                                                    13
                                                         8.2
                                                              5.1
                                                                   3.1
                                                                        1.9
\nu=7
              99
                    90
                          76
                               59
                                                                              1.1
                                                                                   0.7 \ 0.4
                                    43
                                         29
                                                              4.2
                                                                   2.4
        100
              99
                    92
                               60
                                               19
                                                         7.2
                                                                        1.4
                                                                              0.8
                          78
                                                    12
                                                                                   0.4 \ 0.2
\nu=8
                                                             3.5
        100
                          80
                               62
                                    44
                                         29
                                                    11
                                                         6.3
                                                                   1.9
                                                                        1.0
                                                                             0.5
\nu=9
              99
                    94
                                               18
                                                                                   0.3 \ 0.1
                                                              2.9
                                                                   1.5
\nu=10
        100
                          82
                               63
                                    44
                                         29
                                               17
                                                    10
                                                         5.5
                                                                        0.8
                                                                             0.4
                                                                                   0.2 \ 0.1
              100
                    95
\nu=11
        100
             100
                          83
                               64
                                    44
                                         28
                                               16
                                                   9.1
                                                         4.8
                                                             2.4
                                                                   1.2
                                                                        0.6
                                                                             0.3
                    96
                                                                                   0.1
\nu=12
        100
             100
                          84
                               65
                                    45
                                          28
                                                        4.2
                                                              2.0 \ 0.9
                                                                        0.4 \ 0.2
                    96
                                               16
                                                   8.4
\nu=13
        100
             100
                    97
                          86
                               66
                                    45
                                         27
                                                    7.7 \ 3.7
                                                              1.7 \ 0.7 \ 0.3
                                               15
                                                                              0.1
\nu=14
        100
                          87
                               67
                                    45
                                         27
                                               14
                                                    7.1
                                                         3.3
                                                              1.4
                                                                   0.6
              100
                    98
                                                                        0.2
                                                                              0.1
                          88
                                         26
                                                         2.9
                                                              1.2
                                                                  0.5 \ 0.2 \ 0.1
\nu=15
        100
             100
                    98
                               68
                                    45
                                               14
                                                   6.5
                          89
                               69
                                                        2.5
                                                              1.0
                                                   6.0
\nu=16
        100
             100
                    98
                                    45
                                          26
                                               13
                                                                  0.4
                                                                        0.1
                               70
                                                        2.2
                                                   5.5
                                                             0.8 \ 0.3 \ 0.1
\nu=17
        100
             100
                    99
                          90
                                    45
                                          25
                                               12
        100
             100
                               70
                                          25
                                               12
                                                         2.0 \ 0.7 \ 0.2 \ 0.1
                          90
\nu=18
                    99
                                    46
                                                    5.1
\nu=19
        100
             100
                    99
                          91
                               71
                                    46
                                         25
                                               11
                                                   4.7
                                                        1.7
                                                              0.6 \ 0.2 \ 0.1
                               72
                                                   4.3
                                                         1.5
\nu=20
       100
             100
                    99
                          92
                                    46
                                         24
                                               11
                                                              0.5
                                                                   0.1
                                                        1.2
\nu=22
                               73
                                                   3.7
        100
             100
                    99
                          93
                                    46
                                         23
                                               10
                                                             0.4 \ 0.1
\nu=24
        100
             100
                   100
                          94
                               74
                                    46
                                         23
                                              9.2
                                                   3.2
                                                         0.9
                                                              0.3 \ 0.1
\nu=26
        100
             100
                               75
                                          22
                                                   2.7 \ 0.7 \ 0.2
                   100
                                    46
                                              8.5
                          95
        100
                               76
             100
                   100
                                    46
                                          21
                                              7.8 \ 2.3 \ 0.6 \ 0.1
\nu=28
                          95
                               77
                                    47
                                         21
                                              7.2 \ 2.0 \ 0.5 \ 0.1
       100 \ 100
\nu = 30
                   100
                          96
```