期中复习•复分析常见判断题汇总

黄天一

2023年4月14日

这里我们给出不少与复分析期中前内容相关的判断题,来帮助同学们复习一些细枝末节的概念与性质. 先判断对错,再说明理由. 下面我们总设 Ω 是 $\mathbb C$ 中的区域.

- 1. 若 f 在 $z_0 \in \mathbb{C}$ 处满足 Cauchy-Riemann 方程, 则 f 在 z_0 处全纯.
- 2. 存在 $B(0,1)\setminus\{0\}$ 上的无界全纯函数 f, 使得 $\lim_{z\to 0}zf(z)=0$.
- 3. 设 $f = u + iv \in H(\Omega)$, 且满足 $u = v^2$, 则 f 为常数.
- 4. 设 u 在 Ω 上调和,则存在 $f \in H(\Omega)$,使得 u = Re f.
- 5. 若整函数 f 将实轴和虚轴上的点均映为实数, 则 f'(0) = 0.
- 6. Log(z) 作为多值函数, 成立等式 $Log(z^2) = 2Log(z)$.
- 7. 对任意的 $z \in \mathbb{C} \setminus \{0\}$ 和 $w \in \mathbb{C}$, 成立 $z^{2w} = z^w \cdot z^w$.
- 8. sin z 是复数域上的有界函数.
- 9. 函数 $f(z) = \operatorname{Log}\left(\frac{z^2-1}{z}\right)$ 在区域 $\mathbb{C}\setminus([-1,0]\cup[1,\infty))$ 上能选出单值的全纯分支.
- 10. 设 f 为 $\sqrt[4]{(1-z)^3(1+z)}$ 在 $\mathbb{C}\setminus[-1,1]$ 上的单值全纯分支,并且 $f(i)=\sqrt{2}e^{\frac{\pi}{8}i}$,则 $f(-i)=\sqrt{2}e^{\frac{\pi}{8}i}$.
- 11. 若 f 在 Ω 上全纯, 则沿 Ω 内任一可求长闭曲线的积分为零.
- 12. 若 f 在 Ω 上全纯, 则 f 在 Ω 上存在原函数.
- 13. 在单位圆周上可以用多项式一致逼近函数 $f(z) = \frac{1}{z}$.
- 14. $\stackrel{\text{def}}{=} \operatorname{Re} z_1 \leq 0, \operatorname{Re} z_2 \leq 0 \text{ pt}, |e^{z_1} e^{z_2}| \leq |z_1 z_2|.$
- 15. ℃上的非负调和函数为常数.
- 16. 设 f 为非常值整函数, 则当 $z \to \infty$ 时, $|f(z)| \to \infty$.
- 17. 非常值整函数 f 的像在 \mathbb{C} 中稠密.

18. 设 $f \in |z| < 2$ 内全纯, 且对任意 $n \ge 1$, 有

$$\int_{|z|=1} \frac{f(z)dz}{(n+1)z-1} = 0,$$

则 f 恒为零.

- 19. 单位圆盘 B(0,1) 上的非零全纯函数在 B(0,1) 中至多有有限个零点.
- 20. 设 f 在 Ω 上全纯, 且在 Ω 上恒成立 $f'(z) \neq 0$, 则 f 在 Ω 上单叶.
- 21. 方程 $2z^4 = \sin z$ 在 |z| < 1 中只有一个根.
- 22. 方程 $z^8 4z^5 + z^2 1 = 0$ 在圆环 1 < |z| < 2 内的零点个数为 3.
- 23. 设 $f \in H(\Omega) \cap C(\overline{\Omega})$, 则 $f \in \Omega$ 的边界上取到最大模.
- 24. 设 $|z_k| > 1, k = 1, \dots, n$. 则存在 $z_0 \in \partial B(0,1)$, 满足 $\prod_{k=1}^{n} |z_k z_0| > 1$.
- 25. 存在 B(0,1) 上的全纯函数 f, 使得在 B(0,1) 上恒成立 $|f(z)| = |z|^2 + 1$.
- 26. 设 f 为整函数, 如果 f 在 B(0,1) 内非零, 且 $f(z) = M, \forall |z| = 1$, 则 f 为常数.
- 27. 设 $f: B(0,1) \to B(0,1)$ 全纯, 且 f(0) = 0, 则 $\sum_{n=0}^{\infty} f(z^n)$ 在 B(0,1) 中内闭一致收敛.