	Syops
	I fand binary trees particularly interesting this
	week so I decided to do a bit more research
	about them. My first question was:
Q:	How are binary trees used in the real world?
A:	Binary trees have many different forms and
	therefore have a variety of applications. One
200	example that corresponded with my computer
	scrence class was something called "Huffman
	Coding". This is a technique used frequently in
	computer science to compress large files,
	Binary search trees are also utilized in a lot
	of search applications for data structures,
	such as maps and sets. A final example of
	Where binary trees shine is the At algorithm.
	This is a famous algorithm that AI applications
	Use to find the efficient, short paths
	between points.

While researching for my first question, I become curious how binary search is implemented and how exactly it relates to binary trees. Q: What is binary search and how does the algorithm for it look? A: Binary search is essentially a simple way to find an object within a set. This is accomplished by sorting the set and repeatedly dividing it in half. If the object is less than the middle element of the set, we know the object wouldn't be in the latter half so we discard it. If the object is greater than the middle element of the set, we know that the object wouldn't be in the first half so we distard it. This is repeated until the object is found. This idea is commonly implemented with recursion. Sample Binary Search Algorithm: def Bsearch (1st , L, R, x): if R >=1: moddle = 1 + (R-1) // 2 if Ist [middle] == x: return middle elf array [middle] > X: return bsearch (array, middle -1, R, X) return b Search Carray, middle +1, R, X) return " I tem not in array"