Übungsblatt 9

zur Vorlesung Mannigfaltigkeiten

Sommersemester 2016

Aufgabe 1. Sei $n \in \mathbb{N}$ und sei $k \in \mathbb{N}$ mit $k \leq n$. Zeigen Sie, dass die *Grassmannsche*

$$G_k(n) = \{ V \subset \mathbb{R}^n \mid V \text{ ist ein Untervektorraum der Dimension } k \}$$

eine glatte Mannigfaltigkeit der Dimension k(n-k) ist. Gehen Sie dazu wie folgt vor:

- a) Sei $V \in G_k(n)$. Zeigen Sie, dass 1-Formen $\xi^1, \ldots, \xi^{n-k} \in (\mathbb{R}^n)^*$ existieren, sodass $\xi^1 \wedge \cdots \wedge \xi^{n-k} \neq 0$ und $V = \bigcap_{i=1}^{n-k} \ker \xi^i = \{v \in \mathbb{R}^n \mid \xi^i(v) = 0 \ \forall i = 1, \ldots, n-k\}$. Es gilt also $V = \ker \xi$, wobei $\xi : \mathbb{R}^n \to \mathbb{R}^{n-k}$ die Matrix mit Zeilen ξ^i ist.
- b) Seien $V = \ker \xi, W = \ker \eta \in G_k(n)$. Zeigen Sie, dass V = W gilt, genau dann wenn eine Matrix $A \in GL(n-k,\mathbb{R})$ existiert mit $\eta = A \circ \xi$.
- c) Sei $\mathbf{i} = i_1 < i_2 \cdots < i_{n-k}, i_l \in \{1, \dots, n\}$ ein Multiindex. Betrachten Sie $U_{\mathbf{i}} = \{[\ker \xi] \in G_k(n) \mid \det \xi_{\mathbf{i}} \neq 0\}$, wobei $\xi_{\mathbf{i}} \in \mathfrak{gl}(n-k,\mathbb{R})$ die Untermatrix von ξ ist, die man durch Auswahl der Spalten i_1, \dots, i_{n-k} erhält. Sei $\mathbf{i}^c = j_1 < \dots < j_k$ der komplementäre Multiindex, also $j_m \neq i_l$ für alle m, l. Betrachten Sie nun die Abbildung

$$\phi_{\mathbf{i}}: U_{\mathbf{i}} \to \operatorname{Mat}(k, n - k), \qquad \phi_{\mathbf{i}}(\ker \xi) = \xi_{\mathbf{i}}^{-1} \xi_{\mathbf{i}^c}.$$

Zeigen Sie, dass dies einen glatten Atlas für $G_k(n)$ ergibt.

Aufgabe 2. a) Sei $V_0 = \operatorname{span}(e_1, e_2) \subset \mathbb{R}^4$. Zeigen Sie, dass die Abbildung

$$O(4) \to G_2(4), \quad B \mapsto B(V_0)$$

glatt und surjektiv ist. Folgern Sie, dass $G_2(4)$ kompakt ist.

b) Zeigen Sie, dass die $Pl\ddot{u}cker-Abbildung$ p eine Einbettung ist:

$$p: G_2(4) \to \mathbb{P}(\Lambda^2(\mathbb{R}^4)^*), \quad p(\ker \xi) = [\xi^1 \wedge \xi^2].$$

- **Aufgabe 3.** a) Sei $F: \mathbb{R}^2 \to \mathbb{R}^3$ gegeben durch $F(x,y) = (x^2y, 2xy^3, \sin(x)\cos(y))$ und seien $\xi = ydy + zdz, \eta = xdy \wedge dz \in \Omega^*(\mathbb{R}^3)$. Berechnen Sie $F^*\xi$ und $F^*\eta$.
 - b) Sei $\omega = dx \wedge dy$ auf $M = \mathbb{R}^2$. Bestimmen Sie die Darstellung von ω in Polarkoordinaten $x = r \cos \theta, y = r \sin \theta$.

Aufgabe 4. Sei $M = \mathbb{R}^{2n}$ mit Koordinaten $q^1, \dots, q^n, p^1, \dots, p^n$ und sei $\omega \in \Omega^2(\mathbb{R}^{2n})$ gegeben durch

$$\omega = \sum_{i=1}^{n} dp^{i} \wedge dq^{i}.$$

Zeigen Sie:

- a) $df(X) = \omega(X_f, X)$, für alle $f \in C^{\infty}(\mathbb{R}^{2n}), X \in \Gamma(T\mathbb{R}^{2n})$ (Notation von Blatt 6, Aufgabe 2.)
- b) $\{f,g\} = -\omega(X_f,X_g)$ für alle $f,g \in C^{\infty}(\mathbb{R}^{2n})$ (Notation von Blatt 6, Aufgabe 2.)
- c) $\omega^n = n! dp^1 \wedge dq^1 \wedge \cdots \wedge dp^n \wedge dq^n$, wobei $\omega^n = \omega \wedge \omega \wedge \cdots \wedge \omega$ (n-mal).

Abgabe Donnerstag, 16.06.2016 in der Vorlesung.