

Advanced Kernel Methods for Multi-Task Learning

Tesis dirigida por José Dorronsoro y Carlos Alaíz

Carlos Ruiz Pastor

16 de enero de 2023

Índice

- ► Introducción Aprendizaje Multitarea Máquinas de Vectores Soporte
- ► Formulación Convexa para Aprendizaje Multitarea: Métodos de Kernel Formulación Convexa con Métodos de Kernel Combinación Convexa de Modelos Preentrenados
- ► Formulación Convexa para Aprendizaje Multitarea: Redes Neuronales
- ► Laplaciano Adaptativo para Aprendizaje Multitarea Laplaciano de Grafo con Métodos de Kernel Algoritmo Adaptativo para Laplaciano de Grafo
- ► Conclusiones y Trabajo Futuro

Índice

- ► Introducción Aprendizaje Multitarea Máquinas de Vectores Soporte
- Formulación Convexa para Aprendizaje Multitarea: Métodos de Kerne Formulación Convexa con Métodos de Kernel Combinación Convexa de Modelos Preentrenados
- ► Formulación Convexa para Aprendizaje Multitarea: Redes Neuronales
- ► Laplaciano Adaptativo para Aprendizaje Multitarea Laplaciano de Grafo con Métodos de Kernel Algoritmo Adaptativo para Laplaciano de Grafo
- Conclusiones y Trabajo Futuro

Introducción al Aprendizaje Automático

1. Introducción

- El Aprendizaje Automático (AA) intenta automatizar el proceso de aprendizaje
- En el aprendizaje supervisado tenemos:
 - un espacio de entrada \mathcal{X} ,
 - un espacio de salida \mathcal{Y} ,
 - y una distribución P(x,y) (desconocida) sobre $\mathcal{X} \times \mathcal{Y}$
- ullet Dada una función $f:\mathcal{X} o\mathcal{Y}$, definimos una función de pérdida como

$$\ell: \mathcal{Y} imes \mathcal{Y} o [0, \infty) \ (\mathbf{y}, f(\mathbf{x})) o \ell(\mathbf{y}, f(\mathbf{x})),$$

tal que $\ell(y,y)=0$ para todo $y\in\mathcal{Y}$

Riesgo Esperado

Introducción

• Dado un espacio de hipótesis \mathcal{H} , definimos el Riesgo Esperado:

$$R_P(h) = \int_{\mathcal{X} \times \mathcal{Y}} \ell(\mathbf{y}, h(\mathbf{x})) dP(\mathbf{x}, \mathbf{y}), \ h \in \mathcal{H}$$

• El objetivo es minimizar el Riesgo Esperado:

$$h^* = \arg\min_{h \in \mathcal{H}} \left\{ R_P(h) = \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, h(x)) dP(x, y)
ight\};$$

sin embargo, la distribución P(x, y) es desconocida

Riesgo Empírico

1. Introducción

• En su lugar tenemos n muestras de P(x, y):

$$D = \{(x_i, y_i) \sim P(x, y), i = 1, ..., n\},\$$

Riesgo Empírico

$$\hat{R}_D(h) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, h(x_i))$$

• Una estrategia común es minimizar el Riesgo Empírico Regularizado:

$$\arg\min\nolimits_{h\in\mathcal{H}}\left\{\tfrac{1}{n}\textstyle\sum\nolimits_{i=1}^{n}\ell(y_{i},h(x_{i}))+\Omega(h)\right\}$$

1. Introducción

- En aprendizaje multitarea con *T* tareas tenemos:
 - un espacio de entrada \mathcal{X} ,
 - un espacio de salida \mathcal{Y} ,
 - $-\,\,$ y T distribuciónes $extbf{ extit{P}} = (P_1, \ldots, P_T)$ (desconocidas) sobre $\mathcal{X} imes \mathcal{Y}$
- Tenemos que estimar T hipótesis $oldsymbol{h} = (h_1, \dots, h_T) \in \mathcal{H}^T$
- El Riesgo Esperado multitarea es:

$$R_{P}(\boldsymbol{h}) = \sum_{r=1}^{T} \int_{\mathcal{X} \times \mathcal{Y}} \ell(\boldsymbol{y}, h_{r}(\boldsymbol{x})) dP_{r}(\boldsymbol{x}, \boldsymbol{y})$$

1. Introducción

• Tenemos una muestra multitarea:

$$\mathbf{D} = \bigcup_{r=1}^{T} \left\{ (x_i^r, y_i^r) \sim P_r(x, y), \ i = 1, \dots, m_r \right\},\,$$

• El Riesgo Empírico multitarea es:

$$\hat{R}_{m{D}}(m{h}) = \sum_{r=1}^T rac{1}{m_r} \sum_{i=1}^{m_r} \ell(m{y}_i^r, h_r(m{x}_i^r))$$

• Minimizamos el Riesgo Empírico Regularizado multitarea:

$$\arg\min_{\boldsymbol{h}\in\mathcal{H}^T}\left\{\sum_{r=1}^T \frac{1}{m_r}\sum_{i=1}^{m_r}\ell(\boldsymbol{y}_i^r,h_r(\boldsymbol{x}_i^r)) + \Omega(\boldsymbol{h})\right\}$$

1. Introducción

- Hay tres opciones para minimizar el Riesgo Regularizado multitarea
 - Aprendizaje común (CTL): se usa un modelo común para todas las tareas

$$\arg\min_{h\in\mathcal{H}}\left\{\sum_{r=1}^{T}\frac{1}{m_{r}}\sum_{i=1}^{m_{r}}\ell(\mathbf{y}_{i}^{r},h(\mathbf{x}_{i}^{r}))+\Omega(h)\right\}$$

Aprendizaje independiente (ITL): se usan modelos independientes en cada tarea

$$\arg\min_{\pmb{h}\in\mathcal{H}^T}\left\{\sum_{r=1}^T\sum_{i=1}^{m_r}\ell(h_r(x_i^r),y_i^r)+\sum_{r=1}^T\Omega_r(h_r)\right\}$$

- Aprendizaje multitarea (MTL): se usan modelos específicos que comparten información
 - Basados en características
 - Basados en regularización
 - o Basados en combinación

1. Introducción

• Modelos basados en características (más comunes en redes neuronales)

$$\sum_{r=1}^T \sum_{i=1}^{m_r} \ell(g_r \circ f(x_i^r), y_i^r) + \Omega(f) + \Omega(g_1, \dots, g_T)$$

Modelos basados en regularización (más comunes con modelos lineales)

$$\sum_{r=1}^{T} \sum_{i=1}^{m_r} \ell(h_r(\mathbf{x}_i^r), \mathbf{y}_i^r) + \Omega(h_1, \dots, h_T), \ \Omega(h_1, \dots, h_T) \neq \sum_{r=1}^{T} \Omega_r(h_r)$$

Modelos basados en combinación (más comunes con métodos de kernel)

$$\sum_{r=1}^{T} \sum_{i=1}^{m_r} \ell(g(x_i^r) + g_r(x_i^r), y_i^r) + \Omega(g) + \Omega(g_1, \dots, g_T)$$

Máquinas de Vectores Soporte

1. Introducción

- Las Máquinas de Vectores Soporte (SVM) son modelos populares del AA
- Se definen usando problemas convexos
- Se puede aplicar el "truco del kernel"
- En clasificación maximizan el margen
- En regresión minimizan la distancia absoluta y definen un tubo de anchura ϵ que no es penalizado
- Consideramos tres variantes:
 - L1-SVM
 - L2-SVM
 - LS-SVM

L1-SVM

1. Introducción

Problema Primal - L1-SVM

$$\begin{split} & \min_{w,b,\boldsymbol{\xi}} \quad C \sum_{i=1}^n \xi_i + \frac{1}{2} \|w\|^2 \\ & \text{s.t.} \quad y_i(\langle w, \phi(x_i) \rangle + b) \geq p_i - \xi_i, \\ & \quad \xi_i \geq 0 \end{split}$$

- Se puede ver que esta formulación es equivalente a
 - Máquina de Vectores Soporte para Clasificación (SVC): $p_i = 1$ para $i = 1, \dots n$
 - Máquina de Vectores Soporte para Regresión (SVR): se duplican los patrones

o
$$y_i = 1, p_i = t_i - \epsilon$$
, en la primera mitad

$$\circ y_i = -1, \ p_i = -t_i - \epsilon$$
, en la segunda mitad

L₁-SVM

1. Introducción

Problema Dual - L1-SVM

$$\min_{\alpha} \quad \frac{1}{2} \alpha^{\mathsf{T}} Q \alpha - \alpha^{\mathsf{T}} \boldsymbol{p}$$
s.t.
$$\sum_{i=1}^{n} \gamma_{i} \alpha_{i} = 0,$$

$$0 < \alpha_{i} < C$$

- Aquí Q es la matriz de kernel
 - SVM lineal: $Q_{ij} = y_i y_i \langle x_i, x_j \rangle$
 - SVM no lineal: $Q_{ij} = \gamma_i \gamma_j k(x_i, x_j) = \gamma_i \gamma_j \langle \phi(x_i), \phi(x_j) \rangle$

L2-SVM

1. Introducción

Problema Primal - L2-SVM

$$\min_{w,b,\xi} \quad \frac{\mathcal{C}}{2} \sum_{i=1}^{m} (\xi_i)^2 + \frac{1}{2} \|w\|^2$$

s.t.
$$y_i(\langle w, \phi(x_i) \rangle + b) \geq p_i - \xi_i$$

Problema Dual - L2-SVM

$$\min_{\alpha} \quad \frac{1}{2} \alpha^{\mathsf{T}} \left(Q + \frac{1}{C} I_n \right) \alpha - \alpha^{\mathsf{T}} \boldsymbol{p}$$

s.t.
$$\sum_{i=1}^{n} \gamma_i \alpha_i = 0, \ \alpha_i \ge 0$$

LS-SVM

1. Introducción

Problema Primal - LS-SVM

$$\min_{w,b,\xi} \quad \frac{c}{2} \sum_{i=1}^{n} (\xi_i)^2 + \frac{1}{2} \|w\|^2$$

s.t.
$$y_i(\langle w, x_i \rangle + b) = p_i - \xi_i$$

Problema Dual - LS-SVM

$$\begin{bmatrix} 0 & \mathbf{\gamma}^{\mathsf{T}} \\ \hline \mathbf{\gamma} & Q + \frac{1}{C}I_n \end{bmatrix} \begin{bmatrix} b \\ \alpha \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{p} \end{bmatrix}$$

Índice

- 2. Formulación Convexa para Aprendizaje Multitarea: Métodos de Kernel
- Introducción
 Aprendizaje Multitarea
 Máquinas de Vectores Soporte
- ► Formulación Convexa para Aprendizaje Multitarea: Métodos de Kernel Formulación Convexa con Métodos de Kernel Combinación Convexa de Modelos Preentrenados
- ▶ Formulación Convexa para Aprendizaje Multitarea: Redes Neuronales
- Laplaciano Adaptativo para Aprendizaje Multitarea Laplaciano de Grafo con Métodos de Kernel Algoritmo Adaptativo para Laplaciano de Grafo
- ► Conclusiones y Trabajo Futuro

Formulación Aditiva con Métodos de Kernel

2. Formulación Convexa para Aprendizaje Multitarea: Métodos de Kernel

- Una manera de implementar el MTL es combinar una parte común y otras específicas
- Fue propuesta incialmente para SVM lineales en¹ con los modelos

$$h_r(\cdot) = \langle w + v_r, \cdot \rangle + b_r$$

y fue extendida al caso no lineal en² con los modelos

$$h_r(\cdot) = \langle w, \phi(\cdot) \rangle + \langle v_r, \phi_r(\cdot) \rangle + b_r$$

donde w es el parámetro de la parte común y v_r los de las partes específicas

¹Theodoros Evgeniou y Massimiliano Pontil. "Regularized multi-task learning". En: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2004, págs. 109-117.

²Feng Cai y Vladimir Cherkassky. "SVM+ regression and multi-task learning". En: International Joint Conference on Neural Networks. 2009, págs. 418-424.

Formulación Aditiva para L1-SVM MT

2. Formulación Convexa para Aprendizaje Multitarea: Métodos de Kernel

Problema Primal - L1-SVM MT Aditiva

$$\begin{split} \underset{\boldsymbol{w}, \boldsymbol{v}, \boldsymbol{b}, \boldsymbol{\xi}}{\arg\min} \quad & C \sum_{r=1}^{T} \sum_{i=1}^{m_r} \xi_i^r + \frac{1}{2} \sum_{r=1}^{T} \|\boldsymbol{v}_r\|^2 + \frac{\mu}{2} \|\boldsymbol{w}\|^2 \\ \text{s.t.} \quad & \boldsymbol{y}_i^r(\langle \boldsymbol{w}, \phi(\boldsymbol{x}_i^r) \rangle + \langle \boldsymbol{v}_r, \phi_r(\boldsymbol{x}_i^r) \rangle + b_r) \geq p_i^r - \xi_i^r, \\ & \xi_i^r \geq 0; \ i = 1, \dots, m_r, \ r = 1, \dots, T \end{split}$$

- El parámetro μ (junto con C) regula la influencia de cada parte:
 - $-\mu \to \infty$: modelos independientes (ITL)
 - $C o 0, \; \mu o 0$: modelo común (CTL)
- Tenemos la transformación común ϕ y las específicas ϕ_r

Formulacion Convexa con Métodos de Kernel

- 2. Formulación Convexa para Aprendizaje Multitarea: Métodos de Kernel
- Proponemos³ la siguiente formulación convexa para el aprendizaje multitarea:

$$h_r(\cdot) = \lambda_r \left\{ \langle w, \phi(\cdot) \rangle + b \right\} + (1 - \lambda_r) \left\{ \langle v_r, \phi_r(\cdot) \rangle + d_r \right\}, \ \lambda_r \in [0, 1]$$

- Los hiperparámetros λ_r , en lugar de μ , regulan la influencia de cada parte
- Extendemos esta formulación⁴ y desarrollamos tres variantes de SVM:
 - L1-SVM
 - L2-SVM
 - LS-SVM

³Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "A Convex Formulation of SVM-Based Multi-task Learning". En: HAIS Proceedings. Vol. 11734. Springer, 2019, págs. 404-415.

⁴Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Convex formulation for multi-task L1-, L2-, and LS-SVMs". En: Neurocomputing 456 (2021), págs. 599-608.

Formulación Convexa para L1-SVM MT

2. Formulación Convexa para Aprendizaje Multitarea: Métodos de Kernel

Problema Primal - L1-SVM MT Convexa

$$\begin{split} \min_{w,v,b,d,\xi} \quad & C \sum_{r=1}^{T} \sum_{i=1}^{m_r} \xi_i^r + \frac{1}{2} \sum_{r=1}^{T} \|v_r\|^2 + \frac{1}{2} \|w\|^2 \\ \text{s.t.} \qquad & y_i^r \left(\lambda_r \left\{ \left\langle w, \phi(\mathbf{x}_i^r) \right\rangle + b \right\} + (1 - \lambda_r) \left\{ \left\langle v_r, \phi_r(\mathbf{x}_i^r) \right\rangle + d_r \right\} \right) \geq p_i^r - \xi_i^r, \\ & \xi_i^r \geq 0, \ i = 1, \dots, m_r, \ r = 1, \dots, T \end{split}$$

- Los hiperparámetros λ_r regulan la influencia de cada parte:
 - $-\lambda_1,\ldots,\lambda_T=0$: modelos independientes (ITL)
 - $-\lambda_1,\ldots,\lambda_T=1$: modelo común (CTL)
- El hiperparámetro C no interviene en el grado de interdependencia de los modelos

Formulación Convexa para L1-SVM MT

2. Formulación Convexa para Aprendizaje Multitarea: Métodos de Kernel

Problema Dual - L1-SVM MT Convexa

$$egin{array}{ll} \min_{oldsymbol{lpha}} & rac{1}{2} oldsymbol{lpha}^\intercal \left(\Lambda Q \Lambda + \left(I_n - \Lambda
ight) K \left(I_n - \Lambda
ight)
ight) oldsymbol{lpha} - oldsymbol{p} oldsymbol{lpha} \ ext{s.t.} & 0 \leq lpha_i^r \leq \mathcal{C}; \; i = 1, \ldots, m_r, \; r = 1, \ldots, T, \ & \sum_{i=1}^{m_r} lpha_i^r y_i^r = 0; \; r = 1, \ldots, T \end{array}$$

- Usamos la matriz $\Lambda = \operatorname{diag}(\overbrace{\lambda_1,\ldots,\lambda_1}^{m_1},\ldots,\overbrace{\lambda_T,\ldots,\lambda_T}^{m_T})$
- La matriz Q es común entre todas las tareas usando el kernel k correspondiente a ϕ
- La matriz K es diagonal por bloques, con los kernel k_r correspondientes a ϕ_r
- La función de kernel es:

$$\widehat{k}(x_i^r, x_j^s) = \lambda_r \lambda_s k(x_i^r, x_j^s) + \delta_{rs} (1 - \lambda_r) (1 - \lambda_s) k_r(x_i^r, x_j^s)$$

Equivalencia

2. Formulación Convexa para Aprendizaje Multitarea: Métodos de Kernel

Proposicion (Equivalencia entre formulaciones para L1-SVM MT)

Para valores $\lambda \in (0,1)$, la formulación aditiva con hiperparámetros C_{add}, μ y la formulación convexa con C_{conv} y un λ común, $\lambda_1, \ldots, \lambda_T = \lambda$, son equivalentes cuando

$$C_{add} = (1 - \lambda)^2 C_{conv}, \ \mu = (1 - \lambda)^2 / \lambda^2.$$

- Para $\lambda=0$, la formulación convexa con un λ común es equivalente a modelos independientes (ITL)
- Para $\lambda=1$, la formulación convexa con un λ común es equivalente a un modelo común (CTL)

Formulación Aditiva vs. Formulación Convexa

Formulación Convexa para L2-SVM MT

2. Formulación Convexa para Aprendizaje Multitarea: Métodos de Kernel

Problema Primal - L2-SVM MT Convexa

Problema Dual - L2-SVM MT Convexa

$$\begin{split} & \underset{\alpha}{\min} & \quad \frac{1}{2} \alpha^{\mathsf{T}} \left(\left\{ \Lambda Q \Lambda + \left(I_n - \Lambda \right) K \left(I_n - \Lambda \right) \right\} + \frac{1}{C} I \right) \alpha - \boldsymbol{p} \alpha \\ & \text{s.t.} & \quad 0 \leq \alpha_i^r, \ i = 1, \ldots, m_r, \ r = 1, \ldots, T, \\ & \quad \sum_{i=1}^{m_r} \alpha_i^r \boldsymbol{y}_i^r = 0, \ r = 1, \ldots, T \end{split}$$

Formulación Convexa para LS-SVM MT

2. Formulación Convexa para Aprendizaje Multitarea: Métodos de Kernel

Problema Primal - LS-SVM MT Convexa

Problema Dual - LS-SVM MT Convexa

$$\begin{bmatrix} \mathbf{0} & \mathbf{0}_{T}^{\mathsf{T}} & \mathbf{y}^{\mathsf{T}}\Lambda \\ \mathbf{0}_{T} & \mathbf{0}_{T \times T} & A^{\mathsf{T}}Y(I_{n} - \Lambda) \\ \mathbf{y} & YA & \{\Lambda Q\Lambda + (I_{n} - \Lambda)K(I_{n} - \Lambda)\} + \frac{1}{C}I \end{bmatrix} \begin{pmatrix} b \\ d_{1} \\ \vdots \\ d_{T} \\ \boldsymbol{\alpha} \end{pmatrix} = \begin{pmatrix} 0 \\ \mathbf{0}_{T} \\ \boldsymbol{p} \end{pmatrix}$$

Combinación Convexa de Modelos Preentrenados

2. Formulación Convexa para Aprendizaje Multitarea: Métodos de Kernel

- Como alternativa natural, consideramos⁵ la combinación convexa de
 - modelo común $g(\cdot)$ ya entrenado
 - modelos específicos $g_r(\cdot)$ ya entrenados

frente al aprendizaje MT con formulación convexa

• Minimizamos el riesgo eligiendo los hiperparámetros $\lambda_1,\ldots,\lambda_T$ óptimos

$$\hat{R}_D(\lambda_1,\ldots,\lambda_T) = \sum_{r=1}^T \sum_{i=1}^{m_r} \ell(\lambda_r g(x_i^r) + (1-\lambda_r)g_r(x_i^r), y_i^r),$$

- Consideramos las pérdidas:
 - Cuadrática y Absoluta (regresión)
 - Hinge y Hinge Cuadrática (clasificación)

⁵Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Convex formulation for multi-task L1-, L2-, and LS-SVMs". En: *Neurocomputing* 456 (2021), págs. 599-608.

Formulación Unificada

2. Formulación Convexa para Aprendizaje Multitarea: Métodos de Kernel

En todos los casos el riesgo lo podemos expresar como

$$\hat{R}_D(\lambda_1,\ldots,\lambda_T) = \sum_{r=1}^T \sum_{i=1}^{m_r} u(\lambda_r c_i^r + d_i^r)$$

• Como $\hat{R}_D(\lambda_1,\ldots,\lambda_T)$ es separable, tenemos en cada tarea el problema

$$\arg\min_{\lambda_r \in [0,1]} \mathcal{J}(\lambda_r) = \sum_{i=1}^{m_r} u(\lambda_r c_i^r + d_i^r)$$

• Usando el Teorema de Fermat

$$\lambda^* = \arg\min_{0 \leq \lambda \leq 1} \mathcal{J}(\lambda) \iff (0 \in \partial \mathcal{J}(\lambda^*) \text{ y } \lambda^* \in (0,1)) \text{ o } \lambda^* = 0 \text{ o } \lambda^* = 1$$

Combinación Convexa con Error Cuadrático

2. Formulación Convexa para Aprendizaje Multitarea: Métodos de Kernel

• La función a minimizar es

$$\arg\min_{\lambda\in[0,1]}\mathcal{J}(\lambda) = \sum_{i=1}^{m} (\lambda c_i + d_i)^2$$

• La derivada es

$$\mathcal{J}'(\lambda) = \sum_{i=1}^{m} 2c_i(\lambda c_i + d_i)$$

• Como es derivable, resolviendo $\mathcal{J}'(\lambda)=0$ obtenemos

$$\lambda' = -rac{\sum_{i=1}^{m} d_i c_i}{\sum_{i=1}^{m} (c_i)^2}$$

• La solución es entonces $\lambda^* = \max(\min(\lambda', 1), 0)$

Combinación Convexa con Error Absoluto

2. Formulación Convexa para Aprendizaje Multitarea: Métodos de Kernel

Hay que resolver

$$\arg\min_{\lambda\in[0,1]}\mathcal{J}(\lambda) = \sum_{i=1}^{m} |\lambda c_i + d_i|$$

• El subgradiente de cada sumando es

$$\partial \left| \lambda c_i + d_i
ight| = egin{cases} - \left| c_i
ight|, & \lambda c_i + d_i < 0, \ \left[- \left| c_i
ight|, \left| c_i
ight|
ight], & \lambda c_i + d_i = 0, \ \left| c_i
ight|, & \lambda c_i + d_i > 0 \end{cases}$$

Combinación Convexa con Error Absoluto

2. Formulación Convexa para Aprendizaje Multitarea: Métodos de Kernel

Proposicion (λ^* óptimo para el problema con valor absoluto)

- $\lambda^*=0$ es óptimo si y solo si: $-\sum_{i:\;0>\lambda_{(i)}}\left|c_{(i)}\right|+\sum_{i:\;0<\lambda_{(i)}}\left|c_{(i)}\right|\leq 0$
- $\lambda^* \in (0,1)$ es óptimo si y solo si $0<\lambda^*=\lambda_{(k)}<1$ para algún $k=1,\ldots,m$, y

$$-\sum_{i:\;\lambda_{(k)}>\lambda_{(i)}}\left|c_{(i)}
ight|+\sum_{i:\;\lambda_{(k)}<\lambda_{(i)}}\left|c_{(i)}
ight|\in\left[-\left|c_{(k)}
ight|,\left|c_{(k)}
ight|
ight]$$

• $\lambda^* = 1$ es óptimo en otro caso

Combinación Convexa: Tabla

	$\lambda^* \in (0,1)$					
Cuadrática	$0<-rac{\sum_{i=1}^{m}d_{i}c_{i}}{\sum_{i=1}^{m}(c_{i})^{2}}<1$					
Absoluta	$-\sum_{i:\;\lambda_{(k)}>\lambda_{(i)}}\left c_{(i)} ight +\sum_{i:\;\lambda_{(k)}<\lambda_{(i)}}\left c_{(i)} ight \in\left[-\left c_{(k)} ight ,\left c_{(k)} ight ight]$					
Hinge	$\Big - \textstyle \sum_{i: \; \lambda_{(k)} > \lambda_{(i)}} \max \left(0, c_{(i)}\right) - \textstyle \sum_{i: \; \lambda_{(k)} < \lambda_{(i)}} \min \left(0, c_{(i)}\right) \in \left[\min \left(0, c_{(k)}\right), \max \left(0, c_{(k)}\right)\right]$					
Hinge Cuad.	$-\frac{\sum_{i:\;\lambda_{(k+1)} \geq \lambda_{(i)}} \max(0,c_{(i)}) d_{(i)} + \sum_{i:\;\lambda_{(k)} \leq \lambda_{(i)}} \min(0,c_{(i)}) d_{(i)}}{\sum_{i:\;\lambda_{(k+1)} \geq \lambda_{(i)}} \max(0,c_{(i)})^2 + \sum_{i:\;\lambda_{(k)} \leq \lambda_{(i)}} \min(0,c_{(i)})^2} \in [\lambda_{(k)},\lambda_{(k+1)}]$					
	$\lambda^*=0$					
Cuadrática	$-rac{\sum_{i=1}^{m}d_{i}c_{i}}{\sum_{i=1}^{m}(c_{i})^{2}}\leq0$					
Absoluta	$\left -\sum_{i:\;0>\lambda_{(i)}}\left c_{(i)} ight +\sum_{i:\;0<\lambda_{(i)}}\left c_{(i)} ight \leq0$					
Hinge	$-\sum_{i:\;0>\lambda_{(i)}}\max\left(0,c_{(i)} ight)-\sum_{0<\lambda_{(i)}}\min\left(0,c_{(i)} ight)\leq 0$					
Hinge Cuad.	$-\sum_{i:\; 0>c_{(i)}, 0<\lambda_{(i)}} 2c_id_i - \sum_{i:\; 0< c_{(i)}, 0>\lambda_{(i)}} 2c_{(i)}d_{(i)} \leq 0$					
$\lambda^*=1$ en otro caso						

Experimentos: Modelos

- Common Task Learning LX-SVM (CTL-LX): Un único modelo LX-SVM que es común para todas las tareas
- Independent Task Learning LX-SVM (ITL-LX): Un modelo LX-SVM independiente para cada tarea
- Direct Convex Combination of LX-SVMs (CMB-LX): Una combinación convexa de los mejores CTL-LX y ITL-LX
- Convex Multi-Task Learning LX-SVM (MTL-LX): Un modelo multitarea con la formulación convexa basado en la LX-SVM

Experimentos: Problemas

Problema	Tamaño	Dimensión	N° tareas	Tam. tarea medio	Tam. tarea mín.	Tam. tarea máx.
majorca	15 330	765	14	1095	1095	1095
tenerife	15 330	765	14	1095	1095	1095
california	19 269	9	5	3853	5	8468
boston	506	12	2	253	35	471
abalone	4177	8	3	1392	1307	1527
crime	1195	127	9	132	60	278
binding	32 302	184	47	687	59	3089
landmine	14820	10	28	511	445	690
adult_(G)	48 842	106	2	24 421	16 192	32 650
adult_(R)	48 842	103	5	9768	406	41762
adult_(G, R)	48 842	101	10	4884	155	28 735
compas_(G)	3987	11	2	1993	840	3147
compas_(R)	3987	9	4	997	255	1918
compas_(G, R)	3987	7	8	498	50	1525

Experimentos: Procedimiento

- Para majorca y tenerife, usamos los datos de 2013, 2014 and 2015 como conjuntos de entrenamiento, validación y test, respectivamente
- Para el resto, usamos una CV anidada con 3 particiones externas e internas estratificadas por tareas
- Los hiperparámetros se eligen con una búsqueda en rejilla con las particiones de entrenamiento y validación
- Obtenemos 3 scores de test para cada modelo en cada problema

Experimentos: Hiperparámetros

- Por limitaciones computacionales nos restringimos a la búsqueda de tres hiperparámetros para la búsqueda en rejilla
- Las anchuras de kernel para los modelos MTL se extraen de los modelos CTL e ITL

	Rejilla	CTL-L1,2	ITL-L1,2	MTL-L1,2	CTL-LS	ITL-LS	MTL-LS
С	$\left\{4^k: -2 \le k \le 6\right\}$	CV	CV	CV	CV	CV	CV
ϵ	$\left\{ \frac{\sigma}{4^k} : 1 \le k \le 6 \right\}$	CV	CV	CV	-	-	-
γ_c	$\left\{ rac{4^k}{d}: -2 \leq k \leq 3 ight\}$	CV	-	CTL-L1,2	CV	-	CTL-LS
γ_s^r	$\left\{ egin{array}{l} rac{4^k}{d}: -2 \leq k \leq 3 \ rac{4^k}{d}: -2 \leq k \leq 3 \ ight\} \end{array}$	-	CV	ITL-L1,2	-	CV	ITL-LS
λ	$\{0,1k:0\leq k\leq 10\}$	-	-	CV	-	-	CV

Experimentos: Resultados de Regresión (MAE)

	maj.	ten.	boston	california	abalone	crime
ITL-L1	5.087 (6)	5.743 (3)	2.341±0.229 (1)	36883.582±418.435 (2)	1.481±0.051 (3)	0.078±0.001 (2)
CTL-L1	5.175 (7)	5.891 (5)	2.192 \pm 0.244 (1)	41754.337 \pm 270.908 (6)	1.482±0.050 (3)	0.078±0.001 (2)
CMB-L1	5.047 (5)	5.340 (1)	2.239 \pm 0.255 (1)	36880.238 \pm 420.417 (1)	1.470 \pm 0.052 (2)	0.077 ±0.002 (2)
MTL-L1	5.050 (5)	5.535 (2)	2.206 \pm 0.292 (1)	36711.383 \pm 343.333 (1)	1.454±0.048 (1)	0.074 \pm 0.002 (1)
ITL-L2	4.952 (3)	5.629 (3)	2.356±0.300 (1)	37374.618 ± 433.511 (5)	1.498±0.054 (4)	0.079±0.002 (2)
CTL-L2	5.193 (7)	6.107 (8)	2.083 \pm 0.136 (1)	42335.612 \pm 163.773 (8)	1.503±0.047 (5)	0.080±0.002 (2)
CMB-L2	4.869 (3)	5.963 (6)	2.089 \pm 0.128 (1)	37374.618 ± 433.511 (4)	1.494±0.050 (4)	0.077 ±0.003 (2)
MTL-L2	4.854 (2)	5.784 (4)	2.089 ± 0.134 (1)	37202.603 ± 419.166 (3)	1.482 ± 0.049 (3)	0.077±0.002 (2)
ITL-LS	4.937 (3)	5.649 (3)	2.204± 0.116 (1)	37348.347±441.240 (4)	1.496±0.051 (4)	0.079±0.002 (2)
CTL-LS	5.193 (7)	6.005 (7)	2.072 \pm 0.143 (1)	42259.492±146.825 (7)	1.502±0.052 (5)	0.079 ±0.002 (2)
CMB-LS	4.977 (4)	5.593 (3)	2.081 ± 0.146 (1)	37339.179 \pm 430.288 (4)	1.486±0.049 (4)	0.079 ±0.002 (2)
MTL-LS	4.824 (1)	5.754 (4)	2.077 \pm 0.152 (1)	37231.043 ±420.992 (4)	1.478 ± 0.050 (3)	0.076±0.002 (2)

Experimentos: Resultados de Clasificación (Score F1)

2. Formulación Convexa para Aprendizaje Multitarea: Métodos de Kernel

	comp_(G)	comp_(R)	comp_(G,R)	ad_(G)	ad_(R)	ad_(G,R)	landmine	binding	mean	rank	Wil.
ITL-L1	0,625	0.639	0,630	0.659	0,653	0,657	0,231	0,867	0.620	10	2
CTL-L1	0,623	0,638	0,638	0,657	0,650	0,653	0,255	0,901	0.627	7	2
CMB-L1	0,616	0,638	0,638	0,658	0,650	0,653	0.270	0,901	0.628	6	2
MTL-L1	0.627	0,636	0.640	0.659	0.655	0.659	0,242	0.907	0.628	5	2
ITL-L2	0,636	0,623	0,607	0.668	0.666	0.668	0,256	0,867	0.624	8	2
CTL-L2	0.640	0,647	0.651	0,665	0,661	0,659	0.270	0,903	0.637	2	2
CMB-L2	0,629	0,640	0,645	0,666	0,662	0,661	0.270	0,903	0.634	3	2
MTL-L2	0,634	0.651	0,650	0.668	0.666	0.668	0,263	0.909	0.639	1	1
ITL-LS	0.631	0,622	0,608	0.659	0.659	0.660	0,243	0,867	0.619	12	2
CTL-LS	0,628	0.644	0.649	0,650	0,653	0,647	0,230	0,853	0.619	11	2
CMB-LS	0,630	0,635	0,642	0,657	0,658	0,654	0,238	0,873	0.623	9	2
MTL-LS	0,630	0,641	0,648	0.659	0.659	0,659	0.257	0.906	0.632	4	2

Índice

- 3. Formulación Convexa para Aprendizaje Multitarea: Redes Neuronales
- Introducción
 Aprendizaje Multitarea
 Máquinas de Vectores Soporte
- Formulación Convexa para Aprendizaje Multitarea: Métodos de Kerne Formulación Convexa con Métodos de Kernel Combinación Convexa de Modelos Preentrenados
- ► Formulación Convexa para Aprendizaje Multitarea: Redes Neuronales
- Laplaciano Adaptativo para Aprendizaje Multitarea Laplaciano de Grafo con Métodos de Kernel Algoritmo Adaptativo para Laplaciano de Grafo
- Conclusiones y Trabajo Futuro

Redes Neuronales MT

- 3. Formulación Convexa para Aprendizaje Multitarea: Redes Neuronales
- Los métodos de kernel ofrecen propiedades deseables como
 - convexidad
 - dualidad
 - truco del kernel

pero tienen una limitación computacional

- Las redes neuronales son mejores alternativas para grandes volúmenes de datos
- Existen arquitecturas neuronales específicas para algunos tipos de datos:
 - imágenes
 - texto
 - sonido
- Proponemos una arquitectura MT para redes basada en la combinación convexa

Redes Neuronales MT: Hard Sharing

3. Formulación Convexa para Aprendizaje Multitarea: Redes Neuronales

- La manera más común de adaptar las redes neuronales es el hard sharing⁶
 - Capas ocultas compartidas por todas las tareas
 - Capas de salida específicas para cada tarea
- El modelo se puede expresar como:

$$h_r(\cdot) = g_r(\cdot; w_r, d_r, \Theta) = \{\langle w_r, f(\cdot; \Theta) \rangle\} + d_r$$

- $-w_r, d_r$ son los parámetros de las capas de salida específicas
- $-\Theta$ son los parámetros de las capas ocultas compartidas
- Se comparte la misma representación en todas las tareas

⁶Rich Caruana. "Multitask Learning". En: Mach. Learn. 28.1 (1997), págs. 41-75.

Ejemplo de Hard Sharing para dos tareas

3. Formulación Convexa para Aprendizaje Multitarea: Redes Neuronales

Formulación Convexa para Redes Neuronales MT

- 3. Formulación Convexa para Aprendizaje Multitarea: Redes Neuronales
- Proponemos⁷ la formulación convexa para redes neuronales MT, combinando:
 - Una parte común $g(\cdot; w, b, \Theta)$
 - $-\;$ Una parte específica $g_r(\cdot; w_r, d_r, \Theta_r)$
- Los modelos son:

$$\begin{split} h_r(\cdot) &= \lambda_r g(\cdot; w, b, \Theta) + (1 - \lambda_r) g_r(\cdot; w_r, d_r, \Theta_r) \\ &= \lambda_r \{ \langle w, f(\cdot; \Theta) \rangle + b \} + (1 - \lambda_r) \{ \langle w_r, f_r(\cdot; \Theta_r) \rangle + d_r \} \end{split}$$

- -w. Θ son los parámetros de la red común (capa de salida y ocultas)
- $-w_r, \Theta_r$ son los parámetros de las redes específicas (capa de salida y ocultas)
- No se comparte la representación, se combinan una parte común y partes específicas

⁷Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Convex Multi-Task Learning with Neural Networks". En: HAIS Proceedings. Vol. 13469. Springer, 2022, págs. 223-235.

Ejemplo de formulación convexa para dos tareas

3. Formulación Convexa para Aprendizaje Multitarea: Redes Neuronales

Formulación Convexa para Redes Neuronales MT

3. Formulación Convexa para Aprendizaje Multitarea: Redes Neuronales

• El riesgo a minimizar en este caso es

$$\hat{R}_{D} = \sum_{r=1}^{T} \sum_{i=1}^{m_{r}} \ell(h_{r}(x_{i}^{r}), y_{i}^{r}) + \frac{\mu}{2} \left(\|w\|^{2} + \sum_{r=1}^{T} \|w_{r}\|^{2} + \Omega(\Theta) + \Omega(\Theta_{r}) \right)$$

• Se puede aplicar el descenso por gradiente con

$$\begin{split} &\nabla_{w}h_{t}(\boldsymbol{x}_{i}^{t}) = \lambda_{t}f(\boldsymbol{x}_{i}^{t},\boldsymbol{\Theta}), & \nabla_{\boldsymbol{\Theta}}h_{t}(\boldsymbol{x}_{i}^{t}) = \lambda_{t}\left\langle \boldsymbol{w}, \nabla_{\boldsymbol{\Theta}}f(\boldsymbol{x}_{i}^{t},\boldsymbol{\Theta})\right\rangle; \\ &\nabla_{w_{t}}h_{t}(\boldsymbol{x}_{i}^{t}) = (1-\lambda_{t})f_{t}(\boldsymbol{x}_{i}^{t},\boldsymbol{\Theta}), & \nabla_{\boldsymbol{\Theta}_{t}}h_{t}(\boldsymbol{x}_{i}^{t}) = (1-\lambda_{t})\left\langle \boldsymbol{w}, \nabla_{\boldsymbol{\Theta}_{t}}f_{t}(\boldsymbol{x}_{i}^{t},\boldsymbol{\Theta}_{t})\right\rangle; \\ &\nabla_{w_{r}}h_{t}(\boldsymbol{x}_{i}^{t}) = 0, & \nabla_{\boldsymbol{\Theta}_{r}}h_{t}(\boldsymbol{x}_{i}^{t}) = 0, \text{ for } r \neq t \end{split}$$

• Los gradientes se escalan adecuadamente con λ_t y $(1-\lambda_t)$

Experimentos: Conjuntos de Datos

3. Formulación Convexa para Aprendizaje Multitarea: Redes Neuronales

- Usamos cuatro conjuntos de datos de imágenes 28×28 en escala de grises:
 - var-MNIST
 - rot-MNIST
 - var-FMNIST
 - rot-FMNIST
- Cada uno con 70k ejemplos y 10 clases
- Los conjuntos de datos variations tienen 3 tareas: standard, random, images
- Los conjuntos de datos *rotated* tienen 6 tareas: 0, 15, 30, 45, 60, 75

Experimentos: Modelos

- 3. Formulación Convexa para Aprendizaje Multitarea: Redes Neuronales
- Comparamos cuatro modelos:
 - ctlNN_conv
 - itlNN_conv
 - cvxmtlNN_conv
 - hsmtlNN_conv
- Todos están basados en una red convolucional de Pytorch con
 - Conv. Layer (10 output channels)
 - Conv. Layer (20 output channels)
 - Dropout (p = 0.5) and Max. Pooling
 - Fully Connected Layer (320 neurons)
 - Fully Connected Layer (50 neurons)
- Todos los modelos se entrenan con el algoritmo AdamW. CV para hiperpar.
 - $-\alpha$ (weight decay)
 - $-\lambda$ (en el modelo convexo)

Experimentos: Resultados

3. Formulación Convexa para Aprendizaje Multitarea: Redes Neuronales

	var-MNIST	rot-MNIST	var-FMNIST	rot-FMNIST				
	accuracy							
ctlNN	0.964	0.973	0.784	0.834				
itlNN	0.968	0.981	0.795	0.873				
hsmtlNN	0.971	0.980	0.770	0.852				
cvxmtlNN	0.974	0.984	0.812	0.880				
CVXIIILIININ	$(\lambda^*=0.6)$	$(\lambda^*=0.8)$	$(\lambda^* = 0.6)$	$(\lambda^* = 0.6)$				
	categorical cross-entropy							
ctlNN	1.274 \pm 0.143	1.145 \pm 0.039	2.369 \pm 0.183	1.757 ± 0.075				
itlNN	1.072 \pm 0.029	$\textbf{0.873} \pm \textbf{0.058}$	2.356 \pm 0.130	1.598 \pm 0.04				
hsmtlNN	1.087 \pm 0.253	$\textbf{0.898} \pm \textbf{0.073}$	$\textbf{3.067} \pm \textbf{0.888}$	1.888 \pm 0.07				
cvxmtlNN	0.924 \pm 0.024	$\textbf{0.831} \pm \textbf{0.029}$	$\textbf{2.147} \pm \textbf{0.090}$	1.482 \pm 0.06				
CVXIIILIININ	$(\lambda^* = 0.6)$	$(\lambda^*=0.8)$	$(\lambda^* = 0.6)$	$(\lambda^* = 0.6)$				

Índice

- 4. Laplaciano Adaptativo para Aprendizaje Multitarea
- Introducción
 Aprendizaje Multitarea
 Máquinas de Vectores Soporte
- Formulación Convexa para Aprendizaje Multitarea: Métodos de Kerne Formulación Convexa con Métodos de Kernel Combinación Convexa de Modelos Preentrenados
- ► Formulación Convexa para Aprendizaje Multitarea: Redes Neuronales
- ► Laplaciano Adaptativo para Aprendizaje Multitarea Laplaciano de Grafo con Métodos de Kernel Algoritmo Adaptativo para Laplaciano de Grafo
- Conclusiones y Trabajo Futuro

Aprendizaje Multitarea con Regularización Laplaciana

4. Laplaciano Adaptativo para Aprendizaje Multitarea

- La formulación convexa asume que hay una parte común a todas las tareas
- Sin embargo, pueden existir distintos grados de relación entre las tareas
- Por otra parte, la definición de tareas puede ser arbitraria
- Es posible que definamos tareas distintas que realmente son la misma
- Una alternativa para el aprendizaje MT es usar una regularización laplaciana de grafo:
 - para mejorar modelos
 - para encontrar relaciones entre tareas

Aprendizaje Multitarea con Regularización Laplaciana

4. Laplaciano Adaptativo para Aprendizaje Multitarea

- Consideramos un grafo donde
 - Los nodos representan tareas
 - Las aristas y sus pesos representan las relaciones entre las tareas
- La matriz de adyacencia A tiene los pesos de las aristas
- La matriz de grados D es una matriz diagonal donde

$$(D)_{rr} = \sum_{s=1}^{T} (A)_{rs}$$

• La matriz Laplaciana se define como L=D-A

Aprendizaje Multitarea con Regularización Laplaciana

4. Laplaciano Adaptativo para Aprendizaje Multitarea

• Dados los modelos para cada tarea definidos como

$$h_r(\cdot) = \langle w_r, \cdot \rangle + b_r,$$

definimos la regularización

$$\sum_{r=1}^{T} \sum_{s=1}^{T} (A)_{rs} \| w_r - w_s \|^2$$

• Esta regularización se puede expresar como

$$\sum_{r=1}^{T} \sum_{s=1}^{T} (A)_{rs} \|w_r - w_s\|^2 = \sum_{r=1}^{T} \sum_{s=1}^{T} (L)_{rs} \langle w_r, w_s \rangle$$

• ¿Cómo definimos la regularización laplaciana en un espacio de kernel?

Laplaciano de Grafo con Métodos de Kernel

- 4. Laplaciano Adaptativo para Aprendizaje Multitarea
- Inspirados por el trabajo en⁸ proponemos lo siguiente:
 - Consideramos el problema de minimización (con E una matriz def. pos.)

$$R(u_1,\ldots,u_T) = \sum_{r=1}^T \sum_{i=1}^{m_r} \ell(y_i^r,\langle u_r,\phi(x_i^r)
angle) + \mu \sum_r \sum_s \langle E\rangle_{rs} \langle u_r,u_s
angle$$
 (1)

 $-\hspace{0.1cm}$ Si usamos el vector $oldsymbol{u}^{\intercal}=(u_1^{\intercal},\ldots,u_T^{\intercal})$ lo expresamos como

$$R(\boldsymbol{u}) = \sum_{r=1}^{T} \sum_{i=1}^{m_r} \ell(\boldsymbol{\gamma}_i^r, \langle \boldsymbol{u}, \boldsymbol{e}_r \otimes \phi(\boldsymbol{x}_i^r) \rangle) + \mu \left(\boldsymbol{u}^\mathsf{T}(E \otimes I) \boldsymbol{u} \right)$$
 (2)

donde \otimes indica el producto tensorial y $e_1, \dots e_T$ es la base canónica de \mathbb{R}^T

⁸Theodoros Evgeniou, Charles A. Micchelli y Massimiliano Pontil. "Learning Multiple Tasks with Kernel Methods". En: *J. Mach. Learn. Res.* 6 (2005), págs. 615-637.

Laplaciano de Grafo con Métodos de Kernel

4. Laplaciano Adaptativo para Aprendizaje Multitarea

Lema

Las soluciones u_1^*, \ldots, u_T^* de (1), o equivalentemente la solución \mathbf{u}^* de (2), se pueden obtener minimizando

$$S(\boldsymbol{w}) = \sum_{r=1}^{T} \sum_{i=1}^{m_r} \ell(y_i^r, \langle \boldsymbol{w}, (B_r \otimes \phi(x_i^r)) \rangle) + \mu \boldsymbol{w}^{\mathsf{T}} \boldsymbol{w},$$

donde $\mathbf{w} \in \mathbb{R}^p \otimes \mathcal{H}$ con $p \geq T$ y B_r son las columnas de $B \in \mathbb{R}^{p \times T}$, una matriz de rango máximo tal que $E^{-1} = B^T B$.

El kernel reproductor correspondiente es:

$$\left\langle B_r \otimes \phi(\mathbf{x}_i^r), B_s \otimes \phi(\mathbf{x}_j^s) \right\rangle = \left(E^{-1}\right)_{rs} k(\mathbf{x}_i^r, \mathbf{x}_j^s)$$

Laplaciano de Grafo con Métodos de Kernel y Formulación Convexa

- 4. Laplaciano Adaptativo para Aprendizaje Multitarea
- Proponemos combinar la formulación convexa con la regularización Laplaciana⁹

$$\sum_{r=1}^{I} \sum_{i=1}^{m_r} \ell(y_i^r, \lambda_r \langle w, \phi(x_i^r) \rangle + (1 - \lambda_r) \langle v_r, \phi(x_i^r) \rangle) + \sum_r \sum_s (I + \mu L)_{rs} \langle v_r, v_s \rangle + \langle w, w \rangle$$

- Usando esta formulación y el lema anterior proponemos:
 - L1-SVM MT convexa con regularización laplaciana
 - L2-SVM MT convexa con regularización laplaciana
 - LS-SVM MT convexa con regularización laplaciana

⁹Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Convex Graph Laplacian Multi-Task Learning SVM". En: *ICANN*. Vol. 12397. Springer, 2020, págs. 142-154.

Formulación Convexa para L1-SVM MT con Laplaciano

4. Laplaciano Adaptativo para Aprendizaje Multitarea

Problema Primal - L1-SVM Convexa con Laplaciano

$$\min_{\boldsymbol{v}, \boldsymbol{b}, \boldsymbol{\xi}, \boldsymbol{w}} \quad C \sum_{r=1}^{T} \sum_{i=1}^{m_r} \xi_i^r + \frac{\nu}{2} \sum_{r=1}^{T} \sum_{s=1}^{T} (L)_{rs} \left\langle v_r, v_s \right\rangle + \frac{1}{2} \sum_{r} \|v_r\|^2 + \frac{1}{2} \|w\|^2$$
 s.t.
$$y_i^r (\lambda_r(\langle \boldsymbol{w}, \phi(\boldsymbol{x}_i^r) \rangle) + (1 - \lambda_r)(\langle v_r, \psi(\boldsymbol{x}_i^r \rangle)) + b_r) \geq p_i^r - \xi_i^r,$$

$$\xi_i^r \geq 0, \ i = 1, \dots, m_r, \ r = 1, \dots, T$$

- Los hiperparámetros λ_r regulan la influencia de cada parte:
 - $-\lambda_1,\ldots,\lambda_T=0$: modelos independientes (ITL)
 - $-\lambda_1,\ldots,\lambda_T=1$: modelo común (CTL)
- La matriz laplaciana L establece relaciones entre las partes específicas v_r

Formulación Convexa para L1-SVM MT con Laplaciano

4. Laplaciano Adaptativo para Aprendizaje Multitarea

Problema Dual - L1-SVM Convexa con Laplaciano

$$\begin{aligned} & \underset{\alpha}{\text{min}} & \Theta(\alpha) = \frac{1}{2}\alpha^t \left(\Lambda Q \Lambda + (I_n - \Lambda) \,\widetilde{Q} \, (I_n - \Lambda)\right) \alpha - \boldsymbol{p}\alpha \\ & \text{s.t.} & 0 \leq \alpha_i^r \leq \mathcal{C}, \ i = 1, \ldots, m_r, r = 1, \ldots, T, \\ & \sum_{i=1}^{n_r} \alpha_i^r y_i^r = 0, \ r = 1, \ldots, T \end{aligned}$$

• Usamos la matriz
$$\Lambda = \operatorname{diag}(\overbrace{\lambda_1,\ldots,\lambda_1}^{m_1},\ldots,\overbrace{\lambda_T,\ldots,\lambda_T}^{m_T})$$

- La matriz Q es común entre todas las tareas usando el kernel k_{ϕ} correspondiente a ϕ
- La matriz $ilde{Q}$ se define usando el kernel: $ilde{k}_{\psi}(x_i^r,x_j^s) = \left((
 u L + I_T)^{-1}
 ight)_{rs} k_{\psi}(x_i^r,x_j^s)$
- La función de kernel es: $\widehat{k}(x_i^r, x_j^s) = \lambda_r \lambda_s k_\phi(x_i^r, x_j^s) + (1 \lambda_r)(1 \lambda_s) \widetilde{k}_\psi(x_i^r, x_j^s)$

Formulación Convexa para L2-SVM MT con Laplaciano

4. Laplaciano Adaptativo para Aprendizaje Multitarea

Problema Primal - L2-SVM Convexa con Laplaciano

$$\min_{\substack{v_1, \dots, v_T; \\ b_1, \dots, b_T; \\ \xi, w;}} C \sum_{r=1}^T \sum_{i=1}^{m_r} (\xi_i^r)^2 + \frac{\nu}{2} \sum_{r=1}^T \sum_{s=1}^T (A)_{rs} \|v_r - v_s\|^2 + \frac{1}{2} \sum_r \|v_r\|^2 + \frac{1}{2} \|w\|^2$$

s.t.
$$y_i^r(\lambda_r(\langle w, \phi(x_i^r) \rangle) + (1 - \lambda_r)(\langle v_r, \psi(x_i^r \rangle)) + b_r) \ge p_i^r - \xi_i^r;$$

Problema Dual - L2-SVM Convexa con Laplaciano

$$\min_{\boldsymbol{\alpha}} \ \Theta(\boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{\alpha}^{t} \left\{ \left(\Lambda Q \Lambda + \left(I_{n} - \Lambda \right) \widetilde{Q} \left(I_{n} - \Lambda \right) \right) + \frac{1}{C} I_{n} \right\} \boldsymbol{\alpha} - \boldsymbol{p} \boldsymbol{\alpha}$$

s.t.
$$0 \le \alpha_i^r$$
, $i = 1, \ldots, m_r$, $r = 1, \ldots, T$, $\sum_{i=1}^{n_r} \alpha_i^r y_i^r = 0$, $r = 1, \ldots, T$

Formulación Convexa para LS-SVM MT con Laplaciano

4. Laplaciano Adaptativo para Aprendizaje Multitarea

Problema Primal - LS-SVM Convexa con Laplaciano

$$\min_{\substack{v_1, \dots, v_T; \\ b_1, \dots, b_T; \\ \xi, w;}} C \sum_{r=1}^T \sum_{i=1}^{m_r} (\xi_i^r)^2 + \frac{\nu}{2} \sum_{r=1}^T \sum_{s=1}^T (A)_{rs} \|v_r - v_s\|^2 + \frac{1}{2} \sum_r \|v_r\|^2 + \frac{1}{2} \|w\|^2$$

s.t.
$$y_i^r(\lambda_r(\langle w, \phi(x_i^r) \rangle) + (1 - \lambda_r)(\langle v_r, \psi(x_i^r \rangle)) + b_r) = p_i^r - \xi_i^r$$

Problema Dual - LS-SVM Convexa con Laplaciano

$$\begin{bmatrix}
\mathbf{0}_{T \times T} & A^{\mathsf{T}}Y \\
YA & (\Lambda Q \Lambda + (I_n - \Lambda) \widetilde{Q} (I_n - \Lambda)) + \frac{1}{C} I_n
\end{bmatrix} \begin{vmatrix} b_1 \\ \vdots \\ b_T \\ \alpha \end{vmatrix} = \begin{bmatrix} \mathbf{0}_T \\ \mathbf{p} \end{bmatrix}$$

Algoritmo Adaptativo para Laplaciano de Grafo

4. Laplaciano Adaptativo para Aprendizaje Multitarea

- La selección de la matriz de adyacencia A (y la respectiva L) es determinante
- Proponemos¹⁰ un método para la selección automática de A
- Tiene que tener las siguientes restricciones:
 - A es simétrica
 - $(A)_{rs} \geq 0, r, s = 1, \ldots, T.$
 - $-\sum_{s=1}^{\infty} (A)_{rs} = 1$
- La entropía de cada fila \mathbf{a}^r es: $H(\mathbf{a}^r) = \sum_{s=1}^T (A)_{rs} \log((A)_{rs})$
- Interpretación:
 - $-\sum_{r=1}^T H(\boldsymbol{a}^r)$ es máxima si A es constante, $A=\frac{1}{T}\mathbf{1}_T\mathbf{1}_T^\intercal$
 - $-\sum_{r=1}^T H(\boldsymbol{a}^r)$ es mínima si A es la identidad, $A=I_T$

¹⁰Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Adaptive Graph Laplacian for Convex Multi-Task Learning SVM". En: HAIS Proceedings. Vol. 12886. Springer, 2021, págs. 219-230.

Algoritmo Adaptativo para Laplaciano de Grafo

4. Laplaciano Adaptativo para Aprendizaje Multitarea

Problema para Algoritmo Adaptativo

$$\min_{\substack{\mathbf{M}, \mathbf{V}, \mathbf{b}; \\ \mathbf{A} \in (\mathbb{R}_{\geq 0})^{T \times T}, \\ \mathbf{A} \mathbf{1}_{T} = \mathbf{1}_{T}}} C \sum_{r=1}^{T} \sum_{i=1}^{m_{r}} \ell(\lambda_{r} \langle w, \phi(\mathbf{x}_{i}^{r}) \rangle + (1 - \lambda_{r}) \langle v_{r}, \psi(\mathbf{x}_{i}^{r}) \rangle + b_{r}, \mathbf{y}_{i}^{r}) \\
+ \frac{\nu}{2} \sum_{r=1}^{T} \sum_{s=1}^{T} (A)_{rs} \|v_{r} - v_{s}\|^{2} + \frac{1}{2} \sum_{r=1}^{T} \|v_{r}\|^{2} + \frac{1}{2} \|w\|^{2} \\
- \mu \sum_{r=1}^{T} H(\boldsymbol{a}^{r})$$

Algoritmo Adaptativo para Laplaciano de Grafo

- 4. Laplaciano Adaptativo para Aprendizaje Multitarea
- Para minimizar este problema alternamos los siguientes pasos:
 - Fijamos A y minimizamos en w, v, b:

$$\begin{split} & \underset{w, \mathbf{v}, \mathbf{b}}{\min} & & & C \sum_{r=1}^{T} \sum_{i=1}^{m_{r}} \ell(\lambda_{r} \left< w, \phi(\mathbf{x}_{i}^{r}) \right> + (1 - \lambda_{r}) \left< v_{r}, \psi(\mathbf{x}_{i}^{r}) \right> + b_{r}, \mathbf{y}_{i}^{r}) \\ & & & + \frac{\nu}{2} \sum_{r=1}^{T} \sum_{s=1}^{T} (A)_{rs} \left\| \mathbf{v}_{r} - \mathbf{v}_{s} \right\|^{2} + \frac{1}{2} \sum_{r=1}^{T} \left\| \mathbf{v}_{r} \right\|^{2} + \frac{1}{2} \left\| \mathbf{w} \right\|^{2} \end{split}$$

— Fjamos w, v, b y minimizamos en A:

$$\min_{\substack{A \in (\mathbb{R}_{\geq 0})^{T \times T}, \\ A \mathbf{1}_{T} = \mathbf{1}_{T}}} J(A) = \frac{\nu}{2} \sum_{r=1}^{T} \sum_{s=1}^{T} (A)_{rs} \| \mathbf{v}_{r} - \mathbf{v}_{s} \|^{2} - \mu \sum_{r=1}^{T} H(\boldsymbol{a}^{r})$$

Algoritmo 1: Algoritmo para laplaciano adaptativo.

```
Input: (X, y) = \{(x_i^r, y_i^r), i = 1, \dots, m_r; r = 1, \dots, T\}
                                                                                                                         // Data
A = A_0
                                                                                                         // Constant matrix
while True do
     L_{\text{inv}} \leftarrow \text{getInvLaplacian}(A)
                                                                                                                      // Step 0
     \alpha_{\text{opt}} \leftarrow \text{solveDualProblem}((X, y), L_{\text{inv}}, \text{params})
                                                                                                                      // Step 1
     o \leftarrow \text{computeObjectiveValue}((X, y), L_{\text{inv}}, \alpha_{\text{opt}})
                                                                                           // Objective function value
     if o^{old} - o < \delta_{tol} then
           break
                                                                                                          // Exit condition
     end
     D \leftarrow \text{computeDistances}((X, v), L_{\text{inv}}, \alpha_{\text{ont}})
                                                                                                                      // Step 2
     A \leftarrow \mathsf{updateAdiMatrix}(D, \mathsf{params})
                                                                                                                      // Step 3
end
return \alpha_{opt}, A
```


Experimentos Sintéticos: Problemas

- 4. Laplaciano Adaptativo para Aprendizaje Multitarea
- Definimos problemas donde las tareas están agrupadas en clusters
 - Definimos τ tareas subvacentes (clusters) usando las funciones $f_r, r=1,\ldots,\tau$
 - La función de regresión la usamos como frontera de clasificación
 - En cada una definimos T_r tareas virtuales, $r=1,\ldots,\tau$ (las que ven los modelos)

	τ	f_r	T_r	Total tareas virtuales
regClusterso, clasClusterso	3	J 1 ()	2	7
regelusterso, claseiusterso		$f_3(x) = \sin(10x)$ $f_3(x) = x^3$	2	/
regClusters1, clasClusters1	2	$f_1(x) = x^2$ $f_2(x) = \sin(10x)$	5	7
regClusters2, clasClusters2	2	$f_1(x) = \sin(10x)$ $f_2(x) = x^3$	1	5

Experimentos Sintéticos: clusterso

4. Laplaciano Adaptativo para Aprendizaje Multitarea

• Gráficas de regClusterso y clasClusterso

Experimentos Sintéticos: Resultados

4. Laplaciano Adaptativo para Aprendizaje Multitarea

	regClustersO	regClusters1	regClusters2	clasClustersO	clasClusters1	clasClusters2	
	MAE			F1			
CTL-L1	0.989	0.512	0.541	0.901	0.912	0.904	
ITL-L1	0.221	0.212	0.159	0.922	0.923	0.910	
MTL-L1	0.213	0.176	0.135	0.924	0.925	0.914	
cvxGLMTL-L1	0.212	0.173	0.138	0.920	0.926	0.912	
AdapGLMTL-L1	0.152	0.116	0.107	0.924	0.929	0.916	
CTL-L2	0.990	0.642	0.768	0.904	0.912	0.906	
ITL-L2	0.213	0.201	0.154	0.928	0.928	0.910	
MTL-L2	0.209	0.168	0.131	0.925	0.927	0.913	
cvxGLMTL-L2	0.204	0.169	0.131	0.921	0.923	0.915	
AdapGLMTL-L2	0.141	0.115	0.103	0.924	0.929	0.915	
CTL-LS	0.989	0.642	0.766	0.895	0.908	0.894	
ITL-LS	0.212	0.209	0.149	0.914	0.915	0.904	
MTL-LS	0.206	0.167	0.131	0.917	0.917	0.905	
cvxGLMTL-LS	0.207	0.169	0.132	0.919	0.921	0.897	
AdapGLMTL-LS	0.136	0.115	0.106	0.920	0.921	0.901	

Experimentos Sintéticos: Matrices de Adyacencia

4. Laplaciano Adaptativo para Aprendizaje Multitarea

• Matrices de regClusterso para L1, L2 y LS-SVM MT de laplaciano adaptativo

Experimentos Sintéticos: Matrices de Adyacencia

4. Laplaciano Adaptativo para Aprendizaje Multitarea

• Matrices de clasClusterso para L1, L2 y LS-SVM MT de laplaciano adaptativo

Índice

- ► Introducción Aprendizaje Multitarea Máquinas de Vectores Soporte
- Formulación Convexa para Aprendizaje Multitarea: Métodos de Kerne Formulación Convexa con Métodos de Kernel Combinación Convexa de Modelos Preentrenados
- ► Formulación Convexa para Aprendizaje Multitarea: Redes Neuronales
- ▶ Laplaciano Adaptativo para Aprendizaje Multitarea Laplaciano de Grafo con Métodos de Kernel Algoritmo Adaptativo para Laplaciano de Grafo
- ► Conclusiones y Trabajo Futuro

Conclusiones

- El Aprendizaje Multitarea ofrece una serie de ventajas, pero es necesario desarrollar técnicas para crear un acoplamiento de los modelos de cada tarea
- Proponemos una formulación que considera la combinación convexa de una parte común a todas las tareas y otra específica
- Formulación convexa con métodos de kernel:
 - Definimos las L1, L2 y LS-SVM MT con esta formulación convexa
 - Analizamos la alternativa que consiste en la combinación convexa de modelos preentrenados
 - Mostramos buenos resultados de las SVM MT convexas con varios problemas
- Formulación convexa con redes neuronales:
 - Aplicamos esta formulación convexa también a redes neuronales
 - Mostramos que nuestra propuesta obtiene mejores resultados que el Hard Sharing en cuatro conjuntos de imágenes

Conclusiones

- La formulación convexa asume que todas las tareas comparten una parte común
- Las tareas a veces están repetidas o no todas comparten la misma relación entre ellas
- Con la regularización laplaciana se pueden modelar distintas relaciones entre tareas definiendo una matriz de adyacencia adecuada
- Regularización laplaciana de grafo:
 - Extendemos la regularización laplaciana a los espacios de kernel
 - Definimos modelos que juntan la formulación convexa con la regularización laplaciana, y la aplicamos a la L1, L2 y LS-SVMs
 - Proponemos un algoritmo adaptativo para aprender la matriz de adyacencia
 - Obtenemos buenos resultados en problemas sintéticos y reales

Trabajo Futuro5. Conclusiones y Trabajo Futuro

- Investigar métodos para la selección de hiperparámetros en los modelos MT
- Aprender de forma automática los hiperparámetros λ_r de la combinación convexa de redes usando el descenso por gradiente
- Aplicar la regularización laplaciana a modelos neuronales

Referencias

- [1] Feng Cai y Vladimir Cherkassky. "SVM+ regression and multi-task learning". En: International Joint Conference on Neural Networks. 2009, págs. 418-424.
- [2] Rich Caruana. "Multitask Learning". En: Mach. Learn. 28.1 (1997), págs. 41-75.
- [3] Theodoros Evgeniou, Charles A. Micchelli y Massimiliano Pontil. "Learning Multiple Tasks with Kernel Methods". En: J. Mach. Learn. Res. 6 (2005), págs. 615-637.
- [4] Theodoros Evgeniou y Massimiliano Pontil. "Regularized multi-task learning". En: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2004, págs. 109-117.
- [5] Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "A Convex Formulation of SVM-Based Multi-task Learning". En: HAIS Proceedings. Vol. 11734. Springer, 2019, págs. 404-415.

Referencias

- [6] Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Adaptive Graph Laplacian for Convex Multi-Task Learning SVM". En: *HAIS Proceedings*. Vol. 12886. Springer, 2021, págs. 219-230.
- [7] Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Convex formulation for multi-task L1-, L2-, and LS-SVMs". En: *Neurocomputing* 456 (2021), págs. 599-608.
- [8] Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Convex Graph Laplacian Multi-Task Learning SVM". En: ICANN. Vol. 12397. Springer, 2020, págs. 142-154.
- [9] Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Convex Multi-Task Learning with Neural Networks". En: HAIS Proceedings. Vol. 13469. Springer, 2022, págs. 223-235.

Advanced Kernel Methods for Multi-Task Learning

Gracias por su atención.

Índice

- 6. Conclusiones y Trabajo Futuro
- ► Introducción Aprendizaje Multitarea Máquinas de Vectores Soporte
- ► Formulación Convexa para Aprendizaje Multitarea: Métodos de Kernel Formulación Convexa con Métodos de Kernel Combinación Convexa de Modelos Preentrenados
- ► Formulación Convexa para Aprendizaje Multitarea: Redes Neuronales
- ▶ Laplaciano Adaptativo para Aprendizaje Multitarea Laplaciano de Grafo con Métodos de Kernel Algoritmo Adaptativo para Laplaciano de Grafo
- ► Conclusiones y Trabajo Futuro