Due date: 2023-08-09, 23:59 IST.

(https://swayam.gov.in)

d22180@students.iitmandi.ac.in ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Computer Vision (course)

Click to register for Certification

/2023_10 /exam_form

/dashboard)

If already registered, click to check your payment status

Course
outline

How does an **NPTEL** online course work? ()

Week 0 ()

Week 1:()

Lecture 01 : **Fundamentals** of Image Processing Part I (unit?unit=17& lesson=18)

exam Week 1: Assignment 1

Assignment not submitted

1) 2 points

Consider the Direct Linear Transform (DLT) algorithm for a point correspondence $x_i' \leftrightarrow x_i$ which involves the following equation using homogeneous coordinate representation of points x'_i and x_i in the transformed and original 2-D projective space where H is a projective transformation.

 $x' \sim Hx$

Choose the correct option from the following:

- a) Vectors x' and Hx may have similar magnitude but different direction.
- b) Vectors x' and Hx may not be equal. They have similar direction but different magnitude.
- c) Vectors x' and Hx may be equal. They have similar direction and magnitude.
- d) Cross product of x' and Hx is a zero vector.

□ a)

□ b)

_ c)

□ d)

FOR QUESTIONS 2 AND 3

Consider a 3-bit grey scale image with dimension 256×32 .

2) 2 points

1 of 5

O Lecture 02 : Fundamentals	What will be the range of values in its X-axis?
of Image Processing Part II	a) 0 to 255
(unit?unit=17& lesson=19)	b) 1 to 256
C Lecture 03 :	c) 0 to 15
Transform Part	d) 0 to 7
(unit?unit=17& lesson=20)	○ a) ○ b)
Lecture 04 :	○ c)
Image Transform Part	O d)
II (unit?unit=17&	3) 2 points What will be the minimum and maximum range of values in its V axis?
lesson=21)	What will be the minimum and maximum range of values in its Y-axis?
○ Week 1 : Lecture	a) 32 and 512
Materials (unit?unit=17&	b) 1024 and 8192
lesson=22)	c) 0 and 16
O Quiz: Week 1 : Assignment 1	d) 32 and 128
(assessment?nam	ne=173)
Feedback	(b)
Form for Week	○ c)
1 (unit?unit=17&	O d)
lesson=23)	4) 2 points
Week 2 : ()	An image taken using a camera can be enhanced different techniques. Suppose, a software is developed which can detect if an image has been enhanced or not with 95% accuracy. A
Download Videos ()	survey is done and it is found that 80% of all images are enhanced. If the software predicts that an image is enhanced, what is the probability that the image is actually enhanced.
ů	a) 0.95
	b) 0.987
	c) 0.2
	d) 0.77
	O a)
	O b)
	O c)
	○ d)
	5)

2 of 5 02/08/23, 10:15

computer	Vision -	- Unit 3 -	Week	1	
omputer	A 121011 -	- Omi 5 -	Week	1	

Consider two images I_1 and I_2 with dimensions 16×2 and 4×16 respectively. I_1 consists of 16 background pixels and I_2 consists of 4 background pixels. Rest pixels are foreground pixels. Suppose, a pixel is selected at random and is found to be background pixel. What is the probability that the selected pixel is from image I_2 ?

- a) 0.125
- b) 0.2
- c) 0.6
- d) 0.33
 - **O** a)
 - **O** b)
 - O c)
 - O d)

2 points

Consider the following 3-bit grey scale image

0	1	2	3
4	5	6	7
0	1	2	5
4	1	5	6

What of the following can be the value when vertical Prewitt operator and horizontal Prewitt operator are applied on the orange colored pixel?

- a) 0 and 2
- b) 0 and 10
- c) 8 and -2
- d) 2 and 10
 - **O** a)
 - **O** b)
 - O c)
 - O d)

7) 2 points

3 of 5 02/08/23, 10:15

Consider the following 3-bit grey scale image

0	1	2	3
4	5	6	7
0	1	2	5
4	1	5	6

What of the following can be the value when vertical Snobel operator and horizontal Snobel operator are applied on the orange colored pixel?

- a) 0 and 2
- b) 7 and 9
- c) -5 and 5
- d) 5 and 5
 - O a)
 - **O**b)
 - O c)
 - O d)

2 points

Consider the following 3-bit grey scale image

3	1	2	3
1	7	6	4
2	1	7	5

When contrast enhancement using histogram equalization is used, to which intensity is the intensity 5 mapped to?

- a) 6
- b) 5
- c) 4
- d) 3
 - **O** a)
 - **O** b)
 - O c)
 - Od

9) **2 points**

<u>^</u>

4 of 5 02/08/23, 10:15

Consider the following 3-bit grey scale image

3	1	2	3
1	7	6	4
2	1	7	5
0	1	5	6

When contrast enhancement using histogram equalization is used, to which intensity is the intensity 3 mapped to?

- a) 6
- b) 5
- c) 4
- d) 3
 - O a)
 - **O**b)
 - O c)
 - O d)

10) 2 points

A continuous time signal is given by $x(t) = e^{-2t}u(t)$, its fourier transform $X(j\omega)$ is given by

- a) $1/(2 + j\omega)$
- b) $1/(3 + j\omega)$
- c) $1/(1 + j\omega)$
- d) $1/(4 + j\omega)$
 - **O** a)
 - **O** b)
 - O c)
 - Od

You may submit any number of times before the due date. The final submission will be considered for grading.

Submit Answers

