DÍALOG(R) File 351: Derwent WPI (c) 2001 Derwent Info Ltd. All rts. reserv.

011379605 **Image available**
WPI Acc No: 1997-357512/199733
XRPX Acc No: N97-296846

Video display system spatial light modulator - in which segment in colour wheel has neutral density filter with low strength area

Patent Assignee: TEXAS INSTR INC (TEXI)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
JP 9149350 A 19970606 JP 96216194 A 19960816 199733 B

Priority Applications (No Type Date): US 952423 A 19950817 Patent Details:
Patent No Kind Lan Pg Main IPC Filing Notes
JP 9149350 A 7

Abstract (Basic): JP 9149350 A

The system includes a spatial light modulator which uses a colour wheel (30). The colour wheel contains main colour segment (32) and a segment (34) having a neutral density filter (NDF) with low strength area.

The filter acts as a LC controller which control either an optical amplitude or colour. The spatial modulator generates image by deflecting the light passed on the element from the light source.

ADVANTAGE - Raises time utilized for processing least significant bit of data sample. Reduces number of bits utilized for display.

Title Terms: VIDEO; DISPLAY; SYSTEM; SPACE; LIGHT; MODULATE; SEGMENT; COLOUR; WHEEL; NEUTRAL; DENSITY; FILTER; LOW; STRENGTH; AREA

Derwent Class: P81; V07; W03; W04

International Patent Class (Main): H04N-005/74

International Patent Class (Additional): G02B-006/293; G02B-026/08;
H04N-009/12

File Segment: EPI; EngPI

Dwq.1/3

Manual Codes (EPI/S-X): V07-K01A2; W03-A08E; W03-A08E1; W04-Q01B; W04-Q01E3A

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-149350

(43)公開日 平成9年(1997)6月6日

(51) Int.Cl. ⁵ H 0 4 N 5/74 G 0 2 B 6/293 26/08 H 0 4 N 9/12	裁別記号	FI H04N 5/74 G02B 26/08 H04N 9/12 G02B 6/28	技 <mark>術表示</mark> 箇所 B E A C
		審査請求 未請求 請	 球項の数2 OL (全 7 頁)
(21)出職番号	特顯平 8-216194	(71)出願人 590000879 テキサス インスツルメンツ インコーポ	
(22)出顧日	平成8年(1996)8月16日	レイテツド アメリカ 合衆国 テキ サ ス州 ダラ ス,ノース	
(31)優先権主張番号	002423	セントラルエクスプレスウエイ 13500	
(32) 優先日	1995年8月17日	(72)発明者 グレゴリー	・ ジェイ、ヒューレット
(33)優先権主張国	米国 (US)	1	衆国テキサス州ガーランド,ノ 2831,アパートメント ナ 88

最終質に続く

(外3名)

(54) 【発明の名称】 濃度フィルタを有する空間光変調ディスプレイ

(57)【要約】

【課題】 空間光変調器を使用するビデオディスプレイシステムの表示する像のサンプル当たりより多くのビットを使用するように動作させることによりアーチファクトを少なくした像を表示させる。

【解決手段】 空間光変調器を含むビデオディスプレイシステムは、主色セグメント32と中性濃度フィルタ (NDF)と称する低強度領域を有する少なくとも1つのセグメント34とを含む3色のホイール30又は透明である1つのホイールを使用する。これに代えて、フィルタは、光振幅又は色のいずれかを制御する液晶コントローラであってもよい。低強度領域を使用することによって、データサンプルの最下位ビット(LSB)を処理するのに利用可能な時間の量を増大し、それによって表示に利用可能なビットの数への制約を除去する。

(74)代理人 弁理士 浅村 皓

【特許請求の範囲】

【請求項1】 空間光変調器であって、個々の素子のアレイのうちの選択されたいくつかの素子の偏向によって像を発生するような、前記空間光変調器、

前記空間光変調器を照明するように動作する光源、及び 前記光源からの光が前記空間光変調器を照射する前に前 記光を通過させる少なくとも1つのフィルタであって、 中性濃度領域を含む前記フィルタを含むビデオディスプ イレシステム。

【請求項2】 像を発生するために使用されるパルス幅 変調方法であって、

従来のバルス幅を持つデータサンプル当たり所定数のビットのうちの上位ビットを表示するステップ、及びデータサンプル当たり前記所定数のビットのうちの下位ビットが、該下位ビットに対する従来のバルス幅にフィルタ強度と前記フィルタの中性濃度セグメントの所定低強度との比を乗じたものに等しいバルス幅を持つように、前記下位ビットを表示するステップを含む方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ビデオディスプレイシステム、特に空間光変調器を使用するビデオディスプレイシステムに関する。

[0002]

【発明が解決しようとする課題】ビデオディスプレイに 使用される空間光変調器は、典型的に、最終像内の、各 画素、すなわち、各ピクセル毎に1つずつ、複数の個々 の素子を制御することによって像を発生する。これらの システムは、入力ビデオデータを取り扱うことに関して 新な調査研究を必要とするいくつかの明確な特性を有す る。従来の陰極線管(以下、CRTと称する)システム は、信号の電圧と観察者によって知覚される輝度との間 に非線形応答を有する。これに影響する1つのファクタ は、ほとんどのCRTシステムのスクリーン上に使用さ れるりん (燐) であり、これらのりんは非線形応答を有 するが、しかし色を発生するために必要である。空間光 変調器を用いると、CRTシステムのスクリーン表面を 照射する光によって色が制御される。個々の素子を照明 する光は、例えば、白色光源と或る型式の色フィルタを 使用するか、又は着色光源を使用するかのいずれかによ って、既に或る色を帯びている。これで以て、従来のC RTシステムの非線形応答を除去する。

【0003】空間光変調器システムの線形性のために、ビデオデータを「逆ガンマ」することが必要になる。CRTシステムは非常に行きわたっているので、ビデオ信号は、この信号経路中に既に組み込まれているシステムの非線形性に対するガンマ補正と云われる補正を施されている。空間光変調器システムのような、線形システムの場合は、この補正を除去しなければならない。

【0004】ほとんどの空間光変調器システムの性質に

は問題が起こる。これらのシステムは、典型的にパルス幅変調(以下、PWMと称する)によって動作する。入力データ信号は、ディジタル化されて各ピクセル毎に所定数のビットを持つサンプルになる。サンプルの各ビット毎の値は、そのフレーム中のその画素に対する知覚された輝度に依存する。最上位ビット(以下、MSBと称する)は、約1/2色セグメント時間中表示される。色セグメント時間は、フレーム時間を3で割ったものに等しく、それゆえ各色、すなわち、赤、緑、青は、フレーム時間の1/3を有する。フレーム時間は、入り信号の各像フレームに関連した時間である。60Hzシステムの場合は、フレーム時間は16.67msであり。これは、標準CRTシステムがそのスクリーン上に像を書き込む速度であるので、ディスプレイリフレッシュ速度とも称する。

【0005】PWMの動作は眼が変化を感じるには速過ぎるので眼は全色画像を知覚し、かつ眼は時間フレームにわたって輝度及び色を積分する。

【0006】次のMSBは、先のMSBの1/2色時間セグメントの1/2を有し、すなわち、色時間セグンメントの1/4を有し、以下同様にして、遂に最下位ビット(以下、LSBと称する)が表示される。LSBの幅は、達成可能な最小間隔に依存する。例えば、もし変調器が40μsより短い時間内にその素子をスイッチしかつ表示することができないならば、LSB時間は40μsより短くなることはできない。

【0007】しかしながら、60Hzディスプレイリフレッシュ速度すなわちフレーム時間で動作するCRTの応答を完全にシミュレートするために、そのシステムはデータの8ビットより多いビットを必要とする。40μsに等しいLSB時間を持つ空間光変調器は、色セグメント当たり7ビットより多くを達成することができない。この結果、CRTシステムの低劣シミュレーションに加えて、いくつかの好ましくないアーチファクトを生じる。像中の低強度領域に、少数のビットがコンチュアリングアーチファクトを生じる。更に、暗領域が「汚れ」て見え、かつデータ圧縮アーチファクトが強化される。これらの問題は、もし或る動作方法を使用してサンプル当たりより多くのビットを使用するようにシステムを動作させるとしたならば、除去することができるであろう。

[0008]

【課題を解決するための手段】本発明は、ビデオ像の改善された表示のためのシステム及び方法を提供する。このシステムは、各色毎に濃度フィルタ(以下、NDFと称する)を備える色ホイール又はフィルタを使用する。各色に対するNDFは、より長い時間間隔中ビットを表示できるようにし、下位ビットの表示に対する時間の成る最小量である限界を克服する。

【0009】このシステムの利点は、このシステムが表

示像内にサンプル当たりより多くのビットを使用できるようにし、アーチファクトを少なくした像しかも従来のディスプレイシステムの像により密接に整合する像を発生すると云うことである。

[0010]

【実施例の形態】従来のPWMシステムにおいては、M SBは色セグメント時間の1/2を受ける。色セグメント時間は、典型には、フレーム時間の1/3ずつである。6 0 Hzシステムの場合は、フレーム時間は1/60秒、すなわち、16.67msである。206 0 Hz速度もまた、ディスプレイリフレッシュ速度と称し、これはC RTシステムの書込み時間に由来する。この結果、0.01667/3ms、すなわち、5.56msの、したがってまた5、 560μ sの色セグメント時間を生じる。

【0011】赤、緑、青の3つの同等のセグメントを備える色ホイールを使用する色ホイールシステムの場合は、この時間はスポーク時間を含まなければならない。スポーク時間は、色と色との間のホイールのスポークが光源の前を通過するのにかかる時間である。この時間は、変調器のアドレス指定電子回路へデータをロードするにかかる時間、及び変調器の個々の素子の応答時間を含まなければならない。

【0012】見積として、5,560μsシステムを使用して表1を作ることができ、この表は、ビット7をMSB、かつビット0をLSBとする、従来のPWMを使用する8ビットシステムに対して、各有効ビット毎に割り当てられた時間を示す。

【0013】 【表1】

ピット	時間決定	時間上限 (μs)
MSB (ピット7)	く 1/2 色セグメント時間	2780
MSB-I (次のMSB,ピット6)	く 1/4 色セグメント時間	1390
bit 5	く 1/8 色セグメント時間	695
bit 4	く 1/16 色セグメント時間	348
bit 3	く 1/32 色セグメント時間	174
bit 2	く 1/64 色セグメント時間	87
bit 1	く 1/128 色セグメント時間	43
bit 0	く 1/256 色セグメント時間	21

【0014】したがって、40μsと云うような最短時間を有する変調器の場合、データの7ビットより多くを表示することはできない。21μsは、素子が新データにリセットし、次のデータを受け、この新データにリセットするのに充分な時間を与えることができない。このような限界を有する変調器の1例は、図1に示されている。

【0015】図1は、ディジタルミラーデバイス(以下、DMDと称する)として知られた変調素子10の側面図を示す。ミラー20は、水平位置において安定であり、ビーム16によって支持されている。ミラー20がアドレス電極12bによってアドレス指定されるとき、ミラー20はその片側をランディング電極14bに座着させかつ位置22aを取るまで傾斜する。データのミラー20に関するビットが持つ時間が経過した後、ミラー20に関するビットが持つ時間が経過した後、ミラー20に切せットされる、すなわち、ミラー20を新データに応答させる信号を与えられる。この論議のために、もしデータが、上に論じたように、ミラー20に位置22を取られせるならば、ミラー20はオンであると仮定する。ミラー20からの光がスクーン又は表面に像を

形成する面へ反射する。

【0016】リセット信号の後、新データがオン信号であるならば、これがミラー20を位置22aへ復帰させ、又は新信号がオフあるならば、その場合はミラー20に位置22bを取らせる。位置22bは、アドレス電極12aをアドレス指定して、ミラー20をランディング電極14aに座着させることによって達成される。オフ位置においては、ミラー20が水平を維持するのではなく反対位置を取ることが望ましく、これは反対位置を取ることで以てヒンジがオン位置へ向けて永久に傾斜するのを防止しかつ光学システム内のオン経路とオフ経路との間に大きな離隔を置くからである。

【0017】しかしながら、ミラー20の運動に関連したミラー20応答時間がある。この応答時間は、或る時間間隔、すなわち、ミラーフライト時間と呼ばれる、ミラー20が新位置を取るのにかかる通常約10μsを要する。この応答時間は、LSB時間内に許されなればならない最小時間量を限定する時間である。DMD以外の他の変調器も、類似の限定をそれらの応答時間に課せられる。アクチュエーテッドミラーデバイス、すなわち、

AMAは、そのミラー運動について類似の限定を課せられる。液晶セルには、セルをオンオフするために、ねじる時間を与えなければならない。

【0018】しかしながら、色セグンメント時間内により多くのビットを処理できるようにする方法及びシステムが存在する。システムに利用可能なサンプル当たりエキストラピットが低強度コンチュアリングのアーチファクト、「汚れ」た暗領域を除去するのを助け、かつ連続強度応答をより良くシミュレートするのを助ける。

【0019】システムに課せられる限界は、LSBを適正に表示するために利用可能な時間の最小量である。したがって、もしLSB時間を長くする方法があるとしたならば、限界は適用されないことになる。しかしながら、もし標準濃度色ホイールを使用したならば、LSB時間を長くすることは画像を変化させることになる。

【0020】色ホイールが各色セグメント内に低濃度セグメントを含むことによって、LSB時間を延ばすことができ、各データサンプル毎により多くのビットを使用できるようにする。この色ホイールの例は、図2に示されている。

【0021】色ホイール30は3つのセグメントを有し、これらのセグメントの各々は120の弧長 θ_{CS} を有する。各弧長 θ_{CS} は、短い弧長 θ_{NDF} のNDFを含む。例えば、1つの弧長 θ_{CS} が、青である主色セグメント32と青にNDFを加えて得られる θ_{NDF} の長さの低濃度青セグメント、すなわち、NDFセグメント34とを含む。NDFセグメント34を可能にするには、その

が、しかしこのビットに対するセグメントの強度は色セグメントのうちの主色セグメント32の強度の50%に過ぎない。強度を半分にすることによって、そのビットを2倍長く表示することを許される。したがって、8ビット用NDF・PWMシステム内の時間は、43μsだけ長くなる。エキストラ43μsの使用するには、これにそのシステム中の他のビットを適応させなければならない。

【0024】これら下位ビットに対する時間は、主色セグメント32の強度とNDFセグメント34の強度との比に従来のPWM時間を乗じたものである。例えば、上掲の8ビットに対する時間は、43/2μs、すなわち、21.5μsである。主色セグメント32のNDFセグメント34の強度は主色セグメント32の強度の1セグメント34の強度は主色セグメント32の強度の1/2)。これは、2×21.5μs=43μsである。しかしながら、上に挙げたように、43μsだけ時間を長くすることは、他の、従来式に変調されたビットにとって利用可能な時間の量を減少させる。

【0025】この結果、傾向例として下の表2に示されるように、システムの光効率の総合的低下を招くことがある。表2は、各ピクセルに対するデータサンプル当たりビット数を意味する、システムのビット数を示す。NDFの濃度は、1と仮定される主色セグメント32の濃度に比較してのNDFセグメント34の濃度は、NDFセグメント34の濃度は、NDFセグメント34の濃度は、NDFセグメント34の濃度がその色の主色セグメント32の