

HOME CREDIT GROUP

Business Understanding

- Home Credit is an international lender for home mortgages with operations in 9 countries
- Focuses on responsible lending primarily to unbanked population
- Predicting a client's repayment ability is a critical business need
- Historical data of ~300k manually processed loan applications
- Business Action: Decide whether to fund a loan based on probability of default

OUR GOAL

Business Action: Will we fund a given applicant

Assumptions:

- 1. Same premium interest rate to all applicants
- 2. Principle determined by applicant
- 3. Loan term is 30 years

DATA IN HAND

Highly unbalanced, missing values, unclean data

~300k
Historical loan applications

9.6%
Low base rate

121
Features

~200 Dimensionality

Target Variable

1 - Applicant defaulted on the loan

0 - Applicant didn't default on the loan

Data Types

- Nominal
- Numeric

Data File Format

.CSV

Some features

Feature Name	Description
AMT_INCOME_TOTAL	Income of the client
DAYS_EMPLOYED	How many days before the application the person started current employment
FLAG_OWN_REALTY	Flag if client owns a house or flat
DAYS_BIRTH	Client's age in days at the time of application
CNT_FAM_MEMBERS	How many family members does client have
EXT_SOURCE_1 EXT_SOURCE_2 EXT_SOURCE_3	Normalized score from external data source

Data Cleaning

Data cleaning & preparation

Raw data .csv

- Improper datatypes
- Raw format

Data cleaning

- Resampling without replacement
- Datatype correction
- CSV to Weka format

Data ready for Weka

- .arff
- Correct datatypes
- ~50k instances

DATA MODELS

Test Method: Spilt by % 66/33

Classifier	Accuracy (%)	AUC	Confusion Matrix
Logistic Regression*	91.67	0.732	a b < classified as 15557 33 a = 0 1383 17 b = 1
Support Vector Machine	91.76	0.500	a b < classified as 15590 0 a = 0 1400 0 b = 1
Random Forest	91.75	0.700	a b < classified as 15590 0 a = 0 1400 0 b = 1
Decision Tree (J48)	91.76	0.500	a b < classified as 15590 0 a = 0 1400 0 b = 1
Naïve Bayes	72.56	0.665	a b < classified as 11666 3924 a = 0 737 663 b = 1

^{*} Refer Appendix B for more details

FINAL MODEL

Logistic Regression

Why Logistic Regression?

Considering our use case, we need **well** calibrated probabilities & logistic regression returns that.

Other benefits:

- Higher Area Under ROC
- Easy to iteratively train with new data
- Relatively faster when applying

Fig. Comparison of Probability calibration plot for different classifiers

FINAL MODEL

Logistic Regression – CV (10-folds)

Correctly Classified Instances 45830 91.715 % Incorrectly Classified Instances 8.285 % 4140 Kappa statistic 0.0223 Mean absolute error 0.1397 Root mean squared error 0.2655 Relative absolute error 92.2656 % Root relative squared error 96.4686 % Total Number of Instances 49970

=== Detailed Accuracy By Class ===

TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
0.998	0.986	0.918	0.998	0.957	0.067	0.740	0.964	0
0.014	0.002	0.439	0.014	0.027	0.067	0.740	0.218	1
0.917	0.905	0.879	0.917	0.880	0.067	0.740	0.903	

=== Confusion Matrix ===

Weighted Avg.

а	b	< classified as
45772	74	a = 0
4066	58	b = 1

Ridge	Generalization Accuracy (%)	AUC
1.00E+16	91.747	0.5
1.00E+8	91.747	0.601
1	91.659	0.732
1.00E-8	91.715	0.74
1.00E-16	91.747	0.601

Cut Off Determination

Best Cut Off for Max Profit

Assumptions:

- All loan amounts are 100k
- Annual Rate is 2.5%
- Term 30 years
- Default is at year 15

actual	predicted error	predictior p	(Non-Default)	Decision	Cash Flow, model	Cash Flow, Null	error	tp	fp	fn			CUTOFF	0.96		Rate	2.50%
1	1	0.959	0.959	1	1678.98	1678.98		0	1	0	0	<	NPV Model	\$ 10,816,076.42	*	Principle	\$ 100,000.00
1	1	0.985	0.985	1	1678.98	1678.98		0	1	0	0		NPV Null	\$ (83,264,821.30)		Term (Mo)	360
1	1	0.994	0.994	1	1678.98	1678.98		0	1	0	0			-113%		Monthly Payment	\$395.12
1	1	0.964	0.964	1	1678.98	1678.98		0	1	0	0					Annualized	\$4,741.45
1	1	0.888	0.888	2	0.00	1678.98		1	0	0	1		% Funded	40%		NPV Non Default	\$1,678.98
1	1	0.938	0.938	2	0.00	1678.98		1	0	0	1					NPV Default	(\$38,855.28)
1	1	0.898	0.898	2	0.00	1678.98		1	0	0	1						
1	1	0.976	0.976	1	1678.98	1678.98		0	1	0	0		Non-Default	Default	<- Predicted A	As .	
1	1	0.867	0.867	2	0.00	1678.98		1	0	0	1		19610	26236	Non-Default		
1	1	0.847	0.847	2	0.00	1678.98		1	0	0	1		569	3555	Default		

DEPLOYMENT

Make data driven decisions

- Deploy a Logistic Regression model which will run on new applications
- Predict Probability of default
- Home credit group's loan department to decide on whether to fund based on implied interest rate, probability of default, and cut off of .96*
- Apply the decision across the list of applications

Deployment

Use Case Example

Other Business Use:

- Modify premium rate based on market conditions
- Create a tiered interest rate system
- Cut Off for different term lengths (15 years)
- Building block for more complex business questions
 - Input for regression models -> EV of Cashflow
 - O Optimize loan portfolio for reward/risk

Challenges:

- Potential for multiple input variables
- Timing Issue When do they default? What was their original term?
- Non-Uniform Cash flow

KEY LEARNINGS

Data preparation can be tedious

Sometimes data can be in **huge volumes** and with a lot of garbage. Allot enough **time** for data preparation. Lot of data isn't always good in which case **sampling** can help.

Always keep in mind the use case

We found a strong tendency to drift between answering **regression** and **categorical** scenarios. Re-center around the use case to avoid going on analytical tangents.

Consider human bias

Ensure that you consider **human biases** while doing data science projects. In our case, the historical loan applications were approved by manual procedure and may involve human bias.

APPENDIX A

Feature Engineering – Lessons Learnt

- Initially, we proposed feature selection over reducing the size of dataset
- However, we learnt that there are high chances of missing out on important features
- So, we picked 50k instances maintaining the same base rate
- Find previous feature selection approach in the following slides

Proposed Feature selection, data cleaning & preparation

Raw data .csv

- Improper datatypes
- Multiple features
- Missing data

Feature selection & data cleaning*

- % Missing values
- Correlation w.r.t target
- Domain Knowledge
- Resampling (for SVM & Random Forest)

Data ready for Weka

- .arff
- Limited features
- Correct datatypes

Proposed Feature Engineering Process

Found top **features** based on:

- Correlation with respect to the target
- Domain knowledge
- Missing Values %

Action:

- Enlisted features with high missing value %
- Skimmed through to find any features of domain importance & high correlation to target, ignore these features
- Remove the rest

Finding Missing Value %

Used the below code

```
#Importing Pandas & NumPy libs import pandas as pd import numpy as np
```

```
#Reading csv file
df = pd.read_csv(r"*\application_train.csv")
```

#Getting dataframe of attributes, it's sum of missing values a=pd.DataFrame(df.isnull().sum(), columns=["missing values"])

#Calculating & adding % of missing values a["% of missing values"]= np.round((df.isnull().sum()*100)/len(df),2)

#Sort asc b=a.sort_values("missing_values", ascending=False)

#Display all rows without truncation
pd.set_option('display.max_rows', None)
#Print the results
print(b)

1	The number of columns with	missing values are	67 out of 122 columns
2			% of missing values
3	COMMONAREA MEDI	214865	69.87
4	COMMONAREA AVG	214865	69.87
5	COMMONAREA MODE	214865	69.87
6	NONLIVINGAPARTMENTS MODE	213514	69.43
7	NONLIVINGAPARTMENTS AVG	213514	69.43
8	NONLIVINGAPARTMENTS MEDI	213514	69.43
9	FONDKAPREMONT MODE	210295	68.39
10	LIVINGAPARTMENTS MODE	210293	68.35
11	LIVINGAPARIMENTS_NODE	210199	68.35
12	LIVINGAPARTMENTS MEDI	210199	68.35
13			67.85
	FLOORSMIN_AVG	208642	
14	FLOORSMIN_MODE	208642	67.85
15	FLOORSMIN_MEDI	208642	67.85
16	YEARS_BUILD_MEDI	204488	66.50
17	YEARS_BUILD_MODE	204488	66.50
18	YEARS_BUILD_AVG	204488	66.50
19	OWN_CAR_AGE	202929	65.99
20	LANDAREA_MEDI	182590	59.38
21	LANDAREA_MODE	182590	59.38
22	LANDAREA_AVG	182590	59.38
23	BASEMENTAREA_MEDI	179943	58.52
24	BASEMENTAREA_AVG	179943	58.52
25	BASEMENTAREA_MODE	179943	58.52
26	EXT_SOURCE_1	173378	56.38
27	NONLIVINGAREA_MODE	169682	55.18
28	NONLIVINGAREA_AVG	169682	55.18
29	NONLIVINGAREA_MEDI	169682	55.18
30	ELEVATORS_MEDI	163891	53.30
31	ELEVATORS_AVG	163891	53.30
32	ELEVATORS MODE	163891	53.30
33	WALLSMATERIAL MODE	156341	50.84
34	APARTMENTS MEDI	156061	50.75
35	APARTMENTS AVG	156061	50.75
36	APARTMENTS MODE	156061	50.75
37	ENTRANCES MEDI	154828	50.35
38	ENTRANCES AVG	154828	50.35
39	ENTRANCES MODE	154828	50.35
40	LIVINGAREA AVG	154350	50.19
41	LIVINGAREA MODE	154350	50.19
42	LIVINGAREA MEDI	154350	50.19
43	HOUSETYPE MODE	154297	50.18
44	FLOORSMAX MODE	153020	49.76
45	FLOORSMAX MEDI	153020	49.76
45	FLOORSMAX AVG	153020	49.76
47	YEARS BEGINEXPLUATATION MOD		49.76
48			48.78 48.78
	YEARS_BEGINEXPLUATATION_MED		
49	YEARS_BEGINEXPLUATATION_AVG		48.78
50	TOTALAREA_MODE	148431	48.27
51	EMERGENCYSTATE_MODE	145755	47.40
52	OCCUPATION_TYPE	96391	31.35
5.3	FVT COTIDER 2	60065	10.93

Finding correlation w.r.t. target variable

Used Weka

Step 1: Go to Select Attributes tab

Step 2: Select CorrelationAttributeEval

Step 3: Select Target variable

Step 4: Click Start

This will give a list of attributes with correlation.

```
=== Attribute Selection on all input data ===
Search Method:
    Attribute ranking.
Attribute Evaluator (supervised, Class (nominal): 2 TARGET):
    Correlation Ranking Filter
Ranked attributes:
 0.160303
             41 EXT SOURCE 2
             42 EXT SOURCE 3
 0.157397
             18 DAYS BIRTH
 0.078239
             47 DAYS LAST PHONE CHANGE
 0.055218
 0.054706
              4 CODE GENDER
 0.051457
             21 DAYS ID PUBLISH
 0.050994
             38 REG CITY NOT WORK CITY
 0.049404
             14 NAME EDUCATION TYPE
 0.045982
             23 FLAG EMP PHONE
 0.044932
             19 DAYS EMPLOYED
```

APPENDIX A (Contd.)

For non-linear models

For SVM & Random Forest, due to the **performance issues**, we used **resampling with replacement** technique to get a smaller sample dataset

Steps:

- In Weka, apply the Filter: Resample
- Set noReplacement = true and percentage
- Apply

APPENDIX B

Logistic Regression – Spilt by % (66/33)

```
=== Summary ===
Correctly Classified Instances
                                                         91.6657 %
                                     15574
Incorrectly Classified Instances
                                      1416
                                                          8.3343 %
Kappa statistic
                                         0.0179
Mean absolute error
                                         0.1398
Root mean squared error
                                         0.2661
Relative absolute error
                                        92.3428 %
Root relative squared error
                                        96.7866 %
Total Number of Instances
                                     16990
```

=== Detailed Accuracy By Class ===

TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
0.998	0.988	0.918	0.998	0.956	0.051	0.732	0.962	0
0.012	0.002	0.340	0.012	0.023	0.051	0.732	0.211	1
0.917	0.907	0.871	0.917	0.880	0.051	0.732	0.900	

=== Confusion Matrix ===

а	b	< classified a	S
15557	33	a = 0	
1383	17	b = 1	

Weighted Avg.

APPENDIX C

Explanation – Picking up the cut-off

- Export predictions into Excel
- Determine our model's probability estimate for "Non-Default"
- Given assumptions of same loan offer to all applicants and defaults occurring at the same point in term of loan, calculate NPV of a Non Default and NPV of a Default
- Decision to fund changes based on the Cut Off established
- Run optimization to maximize the NPV for sum of all applicants by adjusting the Cut Off
- Value of NPV Model is not a prediction! This technique was used to account for difference between the **cost** of a default vs. the **benefit** of a non-default.