

Mathématiques et calculs 1 : Contrôle continu n°1 Lundi 10 Octobre 2016

L1: Licence sciences et technologies Mention mathématiques, informatique et applications

Ce sujet contient 6 exercices. Tout document est interdit. Les calculatrices et les téléphones portables, même à titre d'horloge, sont également interdits.

INDIQUEZ VOTRE GROUPE DE TD SUR VOTRE COPIE!

Mettre $z_1 = (1-i)^{2016}$ sous forme algébrique. $z_2 = \frac{1+i}{1+i\sqrt{3}}$ sous forme exponentielle.

Exercice 2 Pour $\theta \in \mathbb{R}$, calculer la somme

$$S_n = \sum_{k=0}^n \sin(k\theta)$$

 $S_n = \sum_{k=0}^n \sin(k\theta)$ our signe

Déterminer les racines cubiques de -i. Les placer dans le plan muni d'un repère orthonormal.

Résoudre dans \mathbb{C} l'équation

 $z^2 + 5i = 1 + (3 + 4i)z$

Déterminer, quand elles existent, les limites des suites suivantes :

$$\underbrace{\widehat{(1)}} u_n = \frac{\sqrt{n^2 - 2}}{n^3 + 1} \quad X$$

2)
$$v_n = \frac{((-1)^n + 3)(n+5)}{n - \log(n)}$$

2)
$$v_n = \frac{((-1)^n + 3)(n+5)}{n - \log(n)}$$

3) $w_n = \frac{4^n n^2 - 2^n n^3 + 1}{n^3 - n}$

Soit u la suite définie par $u_0 = 0$ et $u_{n+1} = \frac{1}{2}u_n + \frac{1}{2}$.

1) Calculer u_1 et u_2 .

Pour tout $n \in \mathbb{N}$, on pose $v_n = u_n - 1$.

- 2) Exprimer v_{n+1} en fonction de v_n .
- 3) Donner la nature de la suite (v_n) et exprimer son terme général.
- 4) Calculer la limite de la suite (v_n) . En déduire la limite de la suite (u_n) .

Exercice 6

(1) Soit
$$f(x) = \frac{1}{3}(x^2 - 3x + 2)$$
.

(a) Donner les solutions de l'équation f(x) = 0. (b) Factoriser f(x).

(c) Donner le signe de f(x) en fonction de x.

(2) Soit
$$(u_n)$$
 la suite définie par $u_0 = \frac{1}{2}$ et $u_{n+1} = \frac{1}{3}u_n^2 + \frac{2}{3}$.

(a) Montrer que pour tout $n \ge 0$, $0 \le u_n \le 1$.

(b) Montrer que (u_n) est croissante.

(c) Etudier la convergence de (u_n) et préciser sa limite le cas échéant.

(3) Soit
$$(v_n)$$
 la suite définie par $v_0 = 3$ et $v_{n+1} = \frac{1}{3}v_n^2 + \frac{2}{3}$.

- (a) Montrer que pour tout $n \ge 0$, $v_n \ge 3$.
- (b) Montrer que (v_n) est croissante.
- (c) Donner $\lim_{n\to\infty} v_n$.