Algorytmy numeryczne

Zadanie 3 Dawid Bińkuś & Oskar Bir & Mateusz Małecki grupa 1 tester-programista

9 Grudzień 2018

1 Majority/Consensus problem

Sprawozdanie prezentuje analizę problemu przeprowadzenia głosowania większościowego, przedstawionego w sposób następujący:

Dane jest N agentów, o trzech możliwych stanach: $\{Y, N, U\}$, znaczące kolejno: agent głosujący na TAK, agent głosujący na NIE oraz agent niezdecydowany. W każdym kroku omawianego problemu losowanych jest dwóch agentów z równomiernym prawdopodobieństwem $(\frac{2}{n \cdot (n-1)})$. Następnie dochodzi do zmiany stanu wybranych agentów według następujących reguł przejść stanów:

- $\{Y, U\} \to \{Y, Y\},$
- $\{Y, N\} \rightarrow \{U, U\},$
- $\bullet \ \{N,U\} \to \{N,N\}.$

Kroki wykonywane są, dopóki wszyscy agenci nie będą jednakowego stanu.

Dla danego prawdopodobieństwa $P_{\#Y,\#N}$, niech #N oznacza ilość agentów głosujących na NIE, a #Y ilość agentów głosujących na TAK. Program przygotowany w ramach projektu, ma na celu obliczenie prawdopodobieństwa zagłosowania na TAK przy liczbie agentów równej N i określonym stanie początkowym. Do jego obliczenia wykorzystany został układ równań liniowych obliczony za pomocą 3 różnych algorytmów:

- Algorytm Gaussa z częściowym wyborem elementu początkowego (nazywany dalej PG) oraz jego wariant z optymalizacją dla macierzy rzadkich (nazywany dalej PGS)
- Algorytm Jacobiego z postacią iteracyjną: $x_i^{(k+1)} = \frac{-\sum_{j=1}^n a_{ij} x_j^{k} + b_i}{a_{ii}}, i = 1, 2, ..., n, j \neq i,$
- Algorytm Gaussa-Seidela z postacią iteracyjną: $x_i^{(k+1)} = \frac{-\sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} \sum_{j=i+1}^n a_{ij} x_j^{(k)} + b_i}{a_{ii}}$

Wszystkie testy niezbędne do analizy problemu zostały wykonane, używając typu podwójnej precyzji double za pomocą programu wykonanego w języku Java. Zakres testów to N=3,4,...,30 (chyba że jest podane inaczej) w ilości prób równej 200.

2 Implementacja i możliwość stosowania metod iteracyjnych

Rysunek 1: Wykres reprezentujący błąd bezwzględny metod Gaussa oraz metod iteracyjnych względem metody Monte Carlo

2.1 Generowanie układu równań dla danej liczby agentów

Generowanie układu równań dla danego N odbywa się w sposób następujący:

- 1. Określenie wszystkich możliwych przypadków (ilość agentów #Y oraz ilość agentów #N),
- 2. Wyliczenie wszystkich możliwych kombinacji bez powtórzeń za pomocą Symbolu Newtona $\binom{N}{2}$,
- 3. Wygenerowanie równań dla poszczególnych przypadków,
- 4. Osadzenie równań w macierzy,
- 5. Wypełnienie wektora B zerami z wyjątkiem ostatniej wartości (gdyż ostatni przypadek jest zawsze przypadkiem pewnym, tj $P_{\#Y=N,\#N=0}=1$).

2.2 Prawidłowość implementacji

By zweryfikować poprawność implementacji zarówno generowania macierzy jak i obliczania stworzonego w ten sposób układu równań, wykonane zostały testy dla N=3,4,...,15, których zadaniem było obliczenie wszystkich możliwych prawodopodobieństw i zestawienie ich z prawdopodobieństwem wyliczonym za pomocą metody Monte Carlo w ilości iteracji = 10000000. Błędy osiągnięte za pomocą zaimplementowanych algorytmów osiągają wartości rzędu $[10^{-3}, 10^{-6}]$ (przy czym warto zauważyć, że tak wysoki błąd osiągają tylko metody iteracyjne z niską żądaną precyzją), co biorąc pod uwagę niedoskonałość metody Monte Carlo jest wynikiem jak najbardziej zadowalającym.

2.3 Metody iteracyjne a problem

Wnioskując z wykresu 1a możemy śmiało stwierdzić, iż metody iteracyjne są jak najbardziej słusznym sposobem na rozwiązanie problemu. Jednakże, najistotniejszym czynnikiem w przypadku ich działania jest zakładana dokładność obliczeń, tj. $\|X^{(k+1)} - X^{(k)}\| < p$, gdzie p - żądana precyzja. W przypadku żądanej dokładności równej 10^{-6} zauważyć można że, różnice względem wartości wyliczonej za pomocą metody Monte Carlo są większe niż w przypadku metod iteracyjnych z większą zadaną dokładnością $(10^{-10}, 10^{-14})$.

Wniosek 1 Metody iteracyjne umożliwiają rozwiązanie problemu aczkolwiek, by osiągnąć dokładniejsze wyniki, należy zwiększyć dokładność, a co za tym idzie - liczbę iteracji, co znacząco wydłuża czas działania algorytmu.

3 Analiza wyników i wydajność zaimplementowanych algorytmów

3.1 Analiza wyników

Błąd bezwzględny dla poszczególnych metod był wyliczany w sposób następujący:

- 1. Wygenerowana została macierz A oraz wektor B,
- 2. Za pomocą danego algorytmu obliczany zostaje wektor X (wynikowy),
- 3. Wykonujemy operację $A \cdot x = b'$,
- 4. Wyliczany jest błąd bezwzględny kolejnych wartości wektora b' względem wektora b,
- 5. Jako błąd przechowywana jest największa wartość oraz jej średnia.

3.1.1 Gauss oraz Gauss z optymalizacją dla macierzy rzadkich

Przeanalizujmy wykres 2a. Zostało na nim przedstawione zestawienie wyników dla wartości średniej oraz maksymalnej błędu bezwzględnego. Z wartości na nich ukazanych wynika, że w przypadku metod PG oraz PGS, zarówno maksymalny jak i średni błąd jest identyczny.

Wniosek 2 Algorytm PG oraz PGS osiągają taką samą dokładność. Dodanie optymalizacji dla macierzy rzadkich nie ma żadnego wpływu na końcowy wynik.

3.1.2 Algorytmy iteracyjne

Przeanalizujmy wykresy 2c oraz 2d. Prezentują one maksymalny oraz średni błąd bezwzględny dla różnej dokładności: $10^{-6}, 10^{-10}$ oraz 10^{-14} . Wnioski z nich są następujące:

Wniosek 3 Zarówno algorytm Jacobiego jak i Gaussa-Seidela oferują taką samą dokładność, w zależności od tego jaka precyzja była żądana. Warunek kończący iterowanie był zależny od maksymalnego błędu między kolejnymi iteracjami - stąd mniejszy średni błąd bezwzględny.

Rysunek 2: Wykresy reprezentujące czas wykonania i błędy bezwzględne zaimplementowanych algorytmów

3.2 Wydajność

3.2.1 Metody PG oraz PGS

Przeanalizujmy wykres 2b. Zauważyć na nim można znaczną przewagę algorytmu PGS względem PG w czasie wykonywania. Wynika to ze specyfiki działania wariantu PGS - algorytm ten pomija redukcję elementów w wierszu w przypadku gdy wybrany na początku element jest równy zeru.

Wniosek 4 Wariant PGS algorytmu Gaussa jest wydajniejszy niż standardowy wariant PG. Zestawiając ten wniosek z wnioskiem 3 stwierdzić można, iż wariant PGS zapewnia o wiele lepszą wydajność nie mając żadnego wpływu na poprawność zwracanych wyników.

3.2.2 Metody iteracyjne

W przypadku metod iteracyjnych, należy rozważyć osobno algorytmy dla różnej żądanej precyzji. Jednakże we wszystkich przypadków, zależność jest następująca: Metoda Gaussa-Seidela w każdym przypadku (wraz z wzrostem N) ma krótszy czas wykonania względem metody Jacobiana.

Wniosek 5 Metoda Gaussa-Seidela jest wydajniejsza od metody Jacobiana - wynika to ze sposobu działania obu tych algorytmów. Metoda Jacobiana by osiągnąć żądaną precyzję musi wykonać o wiele więcej iteracji niż metoda Gaussa-Seidela.

3.3 Podsumowanie

Wniosek 6 Biorąc pod uwagę wszystkie czynniki (rozmiar planszy oraz żądaną dokładność), najlepszą metodą w kategorii poprawność/wydajność jest PGS. Zapewnia on przyzwoitą dokładność, jednocześnie deklasuje pozostałe metody w kwestii czasu wykonywania. Jednakże, jeśli chcemy osiągnąć daną precyzję, metody iteracyjne gwrantują pewność zwracanego wyniku. Bazując na wniosku 5, najlepszym wyborem jest metoda Gaussa-Seidela. (2e)

4 Podział pracy

Dawid Bińkuś	Oskar Bir	Mateusz Małecki
Implementacja algorytmu PG	Implementacja algorytmu	Implementacja algorytmu Jaco-
oraz PGS	Gaussa-Seidela	biego
Przygotowanie sprawozdania	Przygotowanie testów i ich uru-	Praca nad strukturą projektu
	chomienie	
Implementacja algorytmu gene-	Przygotowanie wykresów końco-	Implementacja symulacji Monte
rowania macierzy	wych	Carlo