MATLAB Avançado Aula 4

Melissa Weber Mendonça melissa.mendonca@ufsc.br

Fitting

Queremos descobrir uma função (linear, polinomial ou não-linear) que aproxime um conjunto de dados:

Regressão

Podemos calcular automaticamente um modelo de regressão (usando quadrados mínimos) através da janela de um gráfico. Exemplo:

```
>> load census
>> plot(cdate, pop, 'ro')
```

Na janela do gráfico, podemos selecionar

Tools \rightarrow Basic Fitting

Norma dos resíduos

Podemos calcular a norma dos resíduos para um *fit* realizado através do comando

Podemos também extrapolar dados usando a interface gráfica do MATLAB, novamente em

Tools \rightarrow Basic Fitting

Finalmente, podemos usar o comando

 $\mathsf{File} \to \mathsf{Generate}\ \mathsf{Code}$

para criarmos uma função que reproduz o gráfico obtido.

Interpolação polinomial: polyfit

O comando

encontra os coeficientes do polinômio p(x) de grau n que aproxima os dados y(i) = p(x(i)), em um sentido de mínimos quadrados. O vetor p resultante contém os coeficientes do polinômio em ordem descendente de potências. O comando

retorna os coeficientes do polinômio em p e uma estrutura S que pode ser usada com o comando polyval.

A estrutura S contém os campos R, df e normr.

Se os dados y são aleatórios, uma estimativa da covariância de p é

Avaliação de polinômios: polyval

O comando

retorna o valor de um polinômio de grau $\tt n$ (armazenado no vetor $\tt p$) em $\tt x.$ O comando

usa a estrutura S gerada pelo comando polyfit para gerar delta, que é uma estimativa do desvio padrão do erro obtido ao se tentar calcular p(x).

Regressão por Quadrados Mínimos

Por exemplo, se quisermos fazer uma regressão linear em um conjunto de pontos (x, y), usamos o comando

O resultado é um vetor p que contém os coeficientes da reta

$$y = p_1 x + p_2$$

Exemplo:

```
>> x = 1:1:20;
>> y = x + 10*rand(1,20);
>> p = polyfit(x,y,1);
>> plot(x,y,'ro')
>> hold on
>> t = 0:0.1:20;
>> plot(t,polyval(p,t))
```


Exemplo (com resíduos)

```
>> x = 1:1:20;
>> y = x + 10*rand(1,20);
>> p = polyfit(x,y,1);
>> fitted = polyval(p,x);
>> res = y-fitted;
>> subplot(2,1,1), plot(x,y,'ro','markersize',8)
>> hold on
>> t = 0:0.1:20;
>> subplot(2,1,1), plot(t,polyval(p,t))
>> subplot(2,1,2), bar(x,res)
```


Scatter Plot

O comando

faz um gráfico dos pontos com coordenadas X e Y, usando círculos como marcadores.

Se usarmos

podemos especificar a área de cada marcador em S.

Outras opções:

- scatter(...,marcador) usa o marcador escolhido (p. ex.
 '+' ou '*')
- scatter(...,'filled') preenche os marcadores.

scatterhist

O comando

```
>> scatterhist(x,y)
```

cria um scatter plot dos dados nos vetores x e y e também um histograma em cada eixo do gráfico.

Exemplo:

```
>> x = randn(1000,1);
>> y = exp(.5*randn(1000,1));
>> scatterhist(x,y)
```


lsline

O comando

>> lsline

acrescenta uma reta calculada através de regressão linear (mínimos quadrados) para cada plot/scatter plot na figura atual.

Atenção: dados conectados com alguns tipos de reta ('-', '--' ou '.-') são **ignorados** por **lsline**.


```
x = 1:10;
>> y1 = x + randn(1,10);
>> scatter(x,y1,25,'b','*')
>> hold on
>> y2 = 2*x + randn(1,10);
>> plot(x,y2,'mo')
y3 = 3*x + randn(1,10);
>> plot(x,y3,'rx:')
>> y4 = 4*x + randn(1,10);
>> plot(x,y4,'g+--')
>> lsline
```


refcurve

Se o vetor p contém os coeficientes de um polinômio em ordem descendente de potências, o comando

adiciona uma curva de referência polinomial com coeficientes p ao gráfico atual.

Se p é um vetor com n+1 elementos, a curva é dada por

$$y = p(1)x^{n} + p(2)x^{n-1} + \ldots + p(n)x + p(n+1)$$

gline

O comando

>> gline

permite ao usuário adicionar manualmente um segmento de reta à última figura desenhada.

A reta pode ser editada manualmente na ferramenta de edição de gráficos do MATLAB.

Ajuste polinomial

O comando

ajusta uma reta aos vetores x e y e mostra um gráfico interativo do resultado.

ajusta um polinômio de grau n aos dados.

Só disponível na Statistics Toolbox!

Curve Fitting Toolbox

Para fazermos o ajuste de curvas de maneira interativa, podemos usar o comando

>> cftool

Só disponível com a Curve Fitting Toolbox

Resolução de equações lineares e não-lineares em MATLAB

Comandos básicos de álgebra linear: det

Para calcularmos o determinante de uma matriz quadrada A, usamos o comando

Exemplo:

```
>> A = [1 2 0; 3 1 4; 5 2 1]

>> det(A)

>> B = [1 2 3;4 5 6;7 8 9]

>> det(B)
```


Comandos básicos de álgebra linear: eig

Para calcularmos os autovalores de A, usamos

Para calcularmos também os autovetores, usamos

$$\gg$$
 [V,D] = eig(A)

onde V tem os autovetores de A nas colunas, e D é uma diagonal com os autovalores de A.

Exemplos:

```
>> eig(eye(n,n))
>> [V,D] = eig(eye(n,n))
>> A = [1 2 3;4 5 6;7 8 9];
>> [V,D] = eig(A)
```


Comandos básicos de álgebra linear: inv

Para calcularmos a inversa de uma matriz *quadrada e inversível* A, usamos o comando

Exemplos:

```
>> M = [1 4 3;2 1 0;0 0 1];
>> inv(M)
>> inv(M)*M
>> A = [1 2 3;4 5 6;7 8 9];
>> inv(A)
>> inv(A)*A
```


Resolução Sistemas Lineares no MATLAB

Aqui, vamos supor que queremos resolver um sistema linear, ou seja, um problema do tipo

Encontrar $x \in \mathbb{R}^n$ tal que

$$Ax = b$$

com $A \in \mathbb{R}^{m \times n}$ e $b \in \mathbb{R}^m$.

Sistemas quadrados: usando inv

Primeiramente, se a matriz A for quadrada e inversível, podemos encontrar

$$x = A^{-1}b.$$

usando o comando

$$>> x = inv(A)*b$$

Sistemas quadrados: o operador \

Se, por outro lado, não for desejável encontrar a inversa da matriz A, podemos usar o operador \setminus para resolver Ax = b:

$$\rightarrow$$
 x = A\b

ou então a função linsolve:

resolve o sistema linear Ax = b usando a fatoração LU caso a matriz seja quadrada.

- $ightharpoonup A_{n \times n}$ inversível: solução por LU;
- $ightharpoonup A_{n\times n}$ singular: erro.
- $ightharpoonup A_{m \times n}$: quadrados mínimos

Sistemas quadrados: decomposição LU

Sabemos que a eliminação gaussiana leva uma matriz A em duas matrizes L e U tais que

$$A = LU$$

Assim,

$$Ax = b \Leftrightarrow (LU)x = b \Leftrightarrow \begin{cases} Ly = b \\ Ux = y \end{cases}$$

Para encontrarmos a decomposição LU de uma matriz A no MATLAB, usamos o comando

$$\rightarrow$$
 [L,U] = $lu(A)$

Podemos em seguida resolver o sistema Ax = b fazendo

Testar a solução com

$$A = \begin{pmatrix} 1.0001 & 1 \\ 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

Testar a solução com

$$A = \begin{pmatrix} 1.0001 & 1 \\ 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \qquad x = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

Testar a solução com

$$A = \begin{pmatrix} 1.0001 & 1 \\ 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 2.0001 \\ 2 \end{pmatrix}$$

Testar a solução com

$$A = \begin{pmatrix} 1.0001 & 1 \\ 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 2.0001 \\ 2 \end{pmatrix} \qquad x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Este sistema é chamado *mal-condicionado*: uma mudança pequena no lado direito muda completamente a solução.

pcg Gradiente conjugado precondicionado:

$$\rightarrow$$
 x = pcg(A,b)

tenta resolver o sistema linear $n \times n$ Ax = b. A deve ser simétrica, definida positiva e esparsa.

bicg Gradiente bi-conjugado:

$$>> x = bicg(A,b)$$

tenta resolver o sistema linear $n \times n$ Ax = b. A deve ser esparsa.

gmres Generalized minimum residual method:

$$>> x = gmres(A,b)$$

tenta resolver o sistema linear $n \times n$ Ax = b. A deve ser esparsa.

Isqr LSQR (quadrados mínimos):

$$>> x = lsqr(A,b)$$

tenta resolver o sistema $m \times n$ Ax = b através do método de quadrados mínimos. A deve ser esparsa.

Resolução de equações não-lineares

Agora, queremos resolver o problema de encontrar $x \in \mathbb{R}^n$ tal que

$$F(x) = 0$$

onde $F : \mathbb{R}^n \to \mathbb{R}^m$ (onde m ou n podem ser iguais a 1).

Equação não linear a uma variável: fzero

Aqui, o problema que nos interessa é encontrar uma raiz da equação

$$f(x) = 0$$

onde $f: \mathbb{R} \to \mathbb{R}$.

Para isto usamos o comando

$$>> x = fzero(fun, x0)$$

Mas: quem é fun?

É a referência (function handle) da função f!

Referências a funções definidas inline

Podemos usar funções anônimas para chamar fzero.

Exemplo:

ou ainda

>>
$$x = fzero(@(x) x.^2-4,6)$$

Referências a funções definidas em arquivo

Se a função para a qual gostaríamos de encontrar uma raiz estiver em um arquivo próprio, no formato

podemos chamar a função **fzero** a partir do ponto x0, escrevendo

O algoritmo da função **fzero** usa uma combinação dos métodos da bissecção, secante e interpolação quadrática inversa.

► Encontrar uma das raizes de $f(x) = x^2 - 4$ a partir do ponto x = -6.

```
>> quadratica = @(x) x.^2-4;
>> fzero(quadratica,-6)
```

▶ Encontrar uma raiz de $f(x) = e^{2x} - 3$.

Raizes de um polinômio: roots

Para encontrar as raizes de um polinômio de grau n da forma

$$p(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$$

primeiramente representamos este polinômio como um vetor *linha* p no MATLAB, cujas componentes são os coeficientes dos termos em ordem descendente de grau, ou seja,

>>
$$p = [a_n \ a_{n-1} \cdots \ a_2 \ a_1 \ a_0]$$

Em seguida, usamos o comando

$$\rightarrow r = roots(p)$$

resultando em um vetor coluna r com as raizes deste polinômio.

$$p(x) = t^3 + 2t^2 - 5t - 6$$

>> p = [1 2 -5 -6]
>> roots(p)

Figura: $p(x) = t^3 + 2t^2 - 5t - 6$ e suas raizes.

Sistema de equações não lineares: fsolve

Para encontrarmos a solução de um sistema de equações não lineares da forma

$$F(x) = 0$$

onde $F: \mathbb{R}^n \to \mathbb{R}^m$, usamos a função **fsolve**, identicamente à função **fzero**:

se utilizarmos uma função em arquivo, ou

se utilizarmos uma função anônima.

Só na Optimization Toolbox!

Resolver o sistema de equações

Encontrar a raiz de

Otimização: Minimização de funções

Agora, queremos resolver o problema

minimizar
$$f(x)$$
.

Para encontrarmos o mínimo de uma função real de várias variáveis, a partir de um ponto inicial x0, usamos o comando

```
>> x = fminsearch(@funcao,x0)
```

Se quisermos também saber o valor da função no ponto de mínimo, usamos a sintaxe

```
>> [x,fval] = fminsearch(@funcao,x0)
```


Minimizar

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$
>> f = @(x) 100*(x(2)-x(1).^2).^2+(1-x(1)).^2
>> fminsearch(f,[0;0])

Minimização de uma função de uma variável com restrições: fminbnd

Para encontrarmos o mínimo de uma função de uma variável dentro de um intervalo [a, b], usamos o comando

```
>> x = fminbnd(@funcao,a,b)
```

Se quisermos também saber o valor da função no ponto de mínimo, usamos a sintaxe

```
>> [x,fval] = fminbnd(@funcao,a,b)
```



```
    Minimizar f(x) = x nos intervalos [0,1] e [-10,1].
    >> f = @(x) x;
    >> fminbnd(f,0,1)
    >> fminbnd(f,-10,1)
    Minimizar f(x) = x² - 1 no intervalo [1,3].
    >> f = @(x) x.^2;
    >> fminbnd(f,1,3)
```


Outros comandos úteis

Integração numérica geral: integral

Para calcularmos uma aproximação numérica de $\int_a^b f(x)dx$, usamos o comando

em que fun é uma referência a uma função.

Exemplo:

Calcular a integral imprópria de $f(x) = e^{-x^2} (\ln(x))^2$ entre 0 e ∞ .

>> fun =
$$@(x) \exp(-x.^2).*log(x).^2;$$

Integração numérica finita: quad

Para calcularmos uma aproximação numérica de $\int_a^b f(x)dx$ pela quadratura de Simpson (adaptativa), usamos o comando

em que fun é uma referência a uma função.

Integração numérica discreta: trapz

Se tudo o que conhecemos sobre a função é seus valores em um conjunto de pontos, podemos aproximar o valor da sua integral $\int_a^b f(x)dx$ usando o comando **trapz**. Para calcularmos uma aproximação numérica de $\int_a^b f(x)dx$, primeiramente precisamos representar a função f em um conjunto de pontos:

Agora, usamos o comando trapz:

$$>> z = trapz(x,y)$$

Diferenciação Numérica: gradient

O gradiente de uma função $f: \mathbb{R}^n \to \mathbb{R}$ é dado por

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial F}{\partial x_n}(x)\right).$$

Para calcularmos o gradiente de uma função de uma variável, procedemos da seguinte maneira.

```
>> x = a:h:b;
>> f = funcao(x);
>> g = gradient(f,h)
```

O comando ${\tt gradient}$ calcula numericamente a derivada de f em função da variável x nos pontos escolhidos.

Diferenciação Numérica: gradient

Para calcularmos o gradiente de uma função de duas variáveis, o procedimento é equivalente. A diferença é que agora precisamos gerar uma malha de pontos usando o comando meshgrid.

```
>> x = a:hx:b;
>> y = c:hy:d;
>> [x,y] = meshgrid(x,y);
>> f = funcao(x,y)
>> [gx,gy] = gradient(f,hx,hy)
```


Interpolação

Suponha que temos um conjunto de dados, e gostaríamos de encontrar uma função polinomial (ou polinomial por partes) que *interpole* estes pontos.

Interpolação 1D: interp1

O comando

```
>> yi = interp1(x,Y,xi,method)
```

interpola os dados (x,Y) nos novos pontos xi, usando o método method, que pode ser:

- ▶ 'nearest' Vizinho mais próximo
- ▶ 'linear' Interpolação linear (default)
- ▶ 'spline' Splines cúbicos
- 'cubic' Interpolação por polinômios de Hermite


```
>> x = 0:10:
\Rightarrow y = sin(x);
\Rightarrow xi = 0:.25:10;
>> yi = interp1(x,y,xi);
>> plot(x,v,'o',xi,vi);
>> hold on;
>> zi = interp1(x,y,xi,'nearest');
>> plot(xi,zi,':k');
>> wi = interp1(x,y,xi,'spline');
>> plot(xi,wi,'m');
>> ui = interp1(x,y,xi,'cubic');
>> plot(xi,ui,'--g')
```


Interpolação 2D: interp2

O comando

interpola os dados (X,Y,Z) nos novos pontos (XI,YI) usando o método method, que pode ser

- 'nearest' Vizinho mais próximo
- ▶ 'linear' Interpolação linear (default)
- ▶ 'spline' Splines cúbicos
- 'cubic' Interpolação cúbica, se os dados forem uniformemente espaçados; senão, é o mesmo que spline.

Resolução de Equações Diferenciais

Uma EDO é uma equação que envolve uma ou mais derivadas de uma variável dependente y com respeito a uma única variável independente t (y = y(t)).

O MATLAB resolve equações diferenciais ordinárias de primeira ordem dos seguintes tipos:

- ▶ EDOs explícitas, do tipo y' = f(t, y)
- ► EDOs linearmente implícitas, do tipo M(t,y)y' = f(t,y), em que M(t,y) é uma matriz
- ▶ EDOs implícitas, do tipo f(t, y, y') = 0

Para resolvermos equações diferenciais de ordem superior, precisamos escrevê-las como um sistema de equações de primeira ordem (como fazemos no curso de cálculo).

Problemas de Valor Inicial

Geralmente, temos uma família de soluções y(t) que satisfaz a EDO. Para obtermos uma solução única, exigimos que a solução satisfaça alguma condição inicial específica, de forma que $y(t_0) = y_0$ em algum valor inicial t_0 .

$$\begin{cases} y' = f(t, y) \\ y(t_0) = y_0 \end{cases}$$

Solvers

A sintaxe para resolver uma equação diferencial é

Os argumentos de entrada são sempre os seguintes:

- odefun: O handle para uma função que avalia o sistema de EDOs em um ponto. Esta função deve estar na forma dydt = odefun(t,y), onde t é um escalar e dydt e y são vetores coluna.
- tspan: vetor especificando o intervalo de integração.
- y0: vetor das condições iniciais para o problema.
- options: Struct de parâmetros opcionais.

Os argumentos de saída são

- t: vetor coluna das variáveis independentes (pontos no intervalo desejado)
- y: vetor ou matriz contendo, em cada linha, a solução calculada no ponto contido na linha correspondente de t.

Solvers

Os métodos disponíveis estão divididos de acordo com o tipo de problema que resolvem:

- Problemas Não-Stiff:
 - ode45 (Runge-Kutta, passo simples)
 - ode23 (Runge-Kutta, passo simples)
 - ode113 (Adams-Bashforth-Moulton, passo múltiplo)
- Problemas Stiff:
 - ode15s (numerical differentiation formulas (NDFs), passo múltiplo)
 - ode23s (Rosenbrock, passo único)
 - ode23t (Trapezoide)
 - ode23tb (Runge-Kutta)

Para equações implícitas da forma

$$f(t, y, y') = 0,$$

pode-se usar o solver ode15i.

Resolver o problema de valor inicial

$$\begin{cases} y'(t) = \cos t \\ y(0) = 0 \end{cases}$$

```
>> odefun = @(t,y) cos(t);
>> [T,Y] = ode45(odefun,[0 1],0)
>> plot(T,Y)
>> hold on
>> plot(T,sin(T),'m')
```

