dop.5 Ряд Лорана. Классификация изолированных особых точек.

Определение 1. Рядом Лорана называется функциональный ряд вида: $\sum_{n=-\infty}^{n=\infty} c_n(z-z_0)^n(1) = \sum_{n=0}^{n=\infty} c_n(z-z_0)^n(\text{ряд.1}) + \sum_{n=1}^{n=\infty} \frac{c_{-n}}{(z-z_0)^n}(\text{ряд.2})$, где z переменная $\in \mathbb{C} \setminus \{z_0\}$, а c_n коэффициенты $\in \mathbb{C}$.

Говорят, что ряд (1) сходится в т. z, если в ней сходятся ряд.1 и ряд.2.

- 1) Ряд.1 называют **правильной** частью. Если его радиус сходимости $R_1 = 0$, то он сходится лишь в т. z_0 , а ряд (1) не сходится нигде. Если $R_1 > 0$, то в круге $|z z_0| < R_1$ ряд.1 сходится абсолютно к некоторой функции $f_1(z)$.
- 2) Ряд.2 называют главной частью, он не является степенным рядом, но приводится к нему заменой $\rho=\frac{1}{z-z_0}$. Если радиус сходимости ряда $\sum_{n=1}^{n=\infty}c_{-n}\rho^n(2)$ равен 0, то и ряд (1) и ряд.2 не сходятся. Если радиус сходимости (2) $R_2^{-1}>0$, то ряд (2) сходится абсолютно в круге $|\rho|< R_2^{-1}\Rightarrow$ ряд.2 сходится абсолютно в области $|z-z_0|>R_2$ к некоторой функции $f_2(z)$. Если $R_1< R_2$, то области сход. рядов не пересекаются и ряд Лорана не сходится нигде. Если $R_1=R_2=R$, то общие точки сходимости могут лежать лишь на $|z-z_0|=R$ и их наличие требует отдельного исследования. Если $R_1>R_2$, то оба ряда абсолютно сходятся в кольце $D:R_2<|z-z_0|< R_1$, ряд (1) абсолютно сходится там же к функции $f(z)=f_1(z)+f_2(z)$.

Замечание: Пусть ряд (1) абс.сход в кольце D к функции f(z). Покажем, что коэффициенты этого ряда однозначно определяются его суммой f(z). Рассмотрим ряд (1) в точках окружности $\phi:|z-z_0|=\rho$, где $R_2<\rho< R_1$. На этой окружности как на компакте, ряд сх-ся равномерно. Равномерная сходимость сохраняется при умножении каждого члена ряда на функцию ограниченную на ϕ . Фикс k и рассмотрим функцию $\frac{1}{2\pi i(z-z_0)^{k+1}}\Rightarrow \frac{f(z)}{2\pi i(z-z_0)^{k+1}}=\sum_{n=-\infty}^{n=\infty}\frac{1}{2\pi i}c_n(z-z_0)^{n-k-1}\iff \frac{1}{2\pi i}\oint_{\phi}\frac{f(z)}{(z-z_0)^{k+1}}\,dz=\sum_{n=-\infty}^{n=\infty}\frac{1}{2\pi i}c_n\oint_{\phi}(z-z_0)^{n-k-1}\,dz$. Интеграл в правой части $\neq 0$ только при $n-k-1=-1\iff n=k$ (в лекциях Домриной считался) при этом он равен $2\pi i\Rightarrow c_k=\frac{1}{2\pi i}\oint_{\phi}\frac{f(z)}{(z-z_0)^{k+1}}\,dz$ определены однозначно.

Теорема 1. Функция $f(z) \in A(D), D: R_2 < |z-z_0| < R_1$, может быть представлена рядом Лорана по степеням $(z-z_0)$ причем это представление единственно. Доказательство: \Longrightarrow : доказано в замечании.

 \Longleftrightarrow : Фикс произвольную точку $z\in D$, построим вспомогательное кольцо D' с тем же центром в $z_0,\,D'\in D$ и $z\in int(D')$. Пусть $\Gamma_1^{'}:|\rho-z_0|=R_1'$ и $\Gamma_2^{'}|\rho-z_0|=R_2'$ – внутрення и внешняя границы кольца D', тогда $f(z)=\frac{1}{2\pi i}\oint_{\Gamma_1'}\frac{f(\rho)}{\rho-z}d\rho-\frac{1}{2\pi i}\oint_{\Gamma_2'}\frac{f(\rho)}{\rho-z}d\rho(*)$. Т.к $|\frac{z-z_0}{\rho-z_0}|<1$ для \forall точек $\rho\in \Gamma_1'$, то подынтегральную дробь $\frac{1}{\rho-z}$ можно заменить ∞ геом.прогрессией $\frac{1}{\rho-z}=\frac{1}{\rho-z_0+z_0-z}=\frac{1}{\rho-z_0}\cdot\frac{1}{1-\frac{z-z_0}{\rho-z_0}}=\frac{1}{\rho-z_0}\sum_{n=0}^{\infty}\frac{(z-z_0)^n}{(\rho-z_0)^n}=\sum_{n=0}^{\infty}\frac{(z-z_0)^n}{(\rho-z_0)^{n+1}}\Longleftrightarrow\frac{f(\rho)}{\rho-z_0}=\sum_{n=0}^{\infty}\frac{f(\rho)(z-z_0)^n}{(\rho-z_0)^{n+1}}(**)$ Ряд в правой части сходится равномерно на Γ_1' т.к мажорируется $\max_{\rho\in\Gamma_1'}|f(\rho)|\sum_{n=0}^{\infty}\frac{(z-z_0)^n}{(\rho-z_0)^{n+1}}\Longrightarrow$ можно почленно интегрировать (**) по окружности $\Gamma_1'\colon\oint_{\Gamma_1'}\frac{f(\rho)}{\rho-z_0}d\rho=\sum_{n=0}^{\infty}\oint_{\Gamma_1'}\frac{f(\rho)(z-z_0)^n}{(\rho-z_0)^{n+1}}d\rho\Longleftrightarrow\frac{1}{2\pi i}\oint_{\Gamma_1'}\frac{f(\rho)}{\rho-z_0}d\rho=\sum_{n=0}^{\infty}f_{n}(z-z_0)^n(****)$

Рассмотрим второй интеграл в (*). Для \forall точки $\rho \in \Gamma_2'$ выполнено $\mu = \frac{|\rho-z_0|}{|z-z_0|} < 1 \Rightarrow -\frac{1}{\rho-z} = \frac{1}{z-z_0-(\rho-z_0)} = \frac{1}{z-z_0} \frac{1}{1-\frac{\rho-z_0}{z-z_0}} = \sum_{n=0}^{\infty} \frac{(\rho-z_0)^n}{(z-z_0)^{n+1}} = \sum_{n=1}^{\infty} \frac{(\rho-z_0)^{n-1}}{(z-z_0)^n} = \sum_{n=1}^{\infty} \frac{(z-z_0)^{-n}}{(\rho-z_0)^{-n+1}} (+)$. Получается р-но.сх-ся ряд на Γ_2' т.к мажорируется числовой прогрессией со знаменателем μ . Равномерная сходимость (+) сохранится и после умножения каждого члена на ограниченную в Γ_2' ф-цию $\frac{f(\rho)}{2\pi i}$. Интегрируя почленно $-\frac{f(\rho)}{2\pi i(\rho-z)} = \sum_{n=1}^{\infty} \frac{f(\rho)(z-z_0)^{-n}}{(\rho-z_0)^{-n+1}}$ по окружности Γ_2' и полагая $c_{-n} = \frac{1}{2\pi i} \oint_{\Gamma_1'} \frac{f(\rho)}{(\rho-z_0)^{-n+1}} d\rho$, $n=1..\infty(++)$. Имеем $\frac{1}{2\pi i} \oint_{\Gamma_2'} \frac{f(\rho)}{\rho-z} d\rho = \sum_{n=1}^{\infty} c^{-n}(z-z_0)^{-n}(+++)$. Заменяя оба интеграла в (*) на их разложения (****) и (+++) приходим к ряду Лорана. Пусть $D: 0 < |z-z_0| < R$ -проколотая окрестность точки $z_0 \neq \infty$ и $f(z) \in A(D)$. Точка z_0 для ф-ции f(z) является изолированной особой точкой. D можно рассматривать как кольцо с центром в т. z_0 и внутренним радиусом 0. По теореме Лорана f(z) может быть разложена в D в ряд Лорана по степеням $z-z_0$: $\sum_{n=-\infty}^{n=\infty} c_n(z-z_0)^n(1) = \sum_{n=0}^{n=\infty} c_n(z-z_0)^n + \sum_{n=1}^{n=\infty} c_{-n}(z-z_0)^{-n}$, $z\in D(1)$. Для этого ряда имеются 4 возможно-

сти:

1) Точка z_0 – устранимая особая точка f(z), если главная часть ряда Лорана (1) равна нулю. 2) Точка z_0 – полюс f(z), если главная часть ряда Лорана (1) содержит конечное число членов. 3) Точка z_0 – полюс порядка $k(k \in N)$ функции f(z), если k – максимальная по модулю степень у ненулевого члена главной части лорановского разложения в проколотой окрестности точки z_0 . А именно, ряд (1) имеет коэффициент $c_{-k} \neq 0$, в то время как $c_{-n} = 0$ $\forall n>k$. 4) Точка z_0 – **существенно особая точка** f(z), если главная часть ряда (1) содержит бесконечное число членов.

Теорема 2. Следующие 3 утверждения эквивалентны: а) z_0 - устранимая особая точка ф-ции f(z), б) \exists конечный $\lim_{z\to z_0} f(z)$, в) f(z) ограничена в некоторой окрестности точки z. Доказательство: а) \rightarrow б): По условию $f(z) = \sum_{n=0}^{\infty} c_n(z-z_0)^n, z \in D$. Сумма g(z) стоящего справа ряда непрерывна в т. z_0 и ее значение в этой точке равно свободному члену c_0 ряда, т.к вне z_0 функции f(z) и g(z) совпадают, то $\exists \lim_{z \to 0} f(z) = c_0$.

 δ) \rightarrow в) Функция имеющая конечный lim в точке z_0 ограничена в некоторой окрестности этой

в) \rightarrow а) По условию в некоторой окрестности U точки z_0 выполняется соотношение $|f(z)| \le$ $M \forall z \in U$. Пусть $\gamma: |z-z_0| = \rho$ - окружность принадлежащая этой окрестности. Как \Rightarrow из доказательства т. Лорана коэффициенты ряда (1) представимы в виде: $c_n = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz \Rightarrow$ $|c_n| \leq M \rho^{-1}$. Для отрицательных n правая часть этой оценки стремится к 0 при $\rho \to 0$. Таким образом в ряде (1) все коэффициенты c_n с отрицательными индексами = $0 \Rightarrow z_0$ устранимая особая точка $f(z)\square$.

Теорема 3. Изолир.особая точка z_0 ф-ции f(z) является ее полюсом $\iff \lim_{z \to z_0} f(z) = \infty$. Доказательство: 1)Пусть z_0 – полюс f(z), тогда в некоторой проколотой окрестности К точки z0 имеется представление $f(z) = \frac{c_{-k}}{(z-z_0)^k} + ... + c_0 + c_1(z-z_0) + ...(3)$, где $c_{-k} \neq 0$. Равенство (3) можно переписать в виде: $f(z)(z-z_0)^k=c_{-k}+c_{-k+1}(z-z_0)+...+c_0(z-z_0)^k+...,$ причем ряд, стоящий в правой части последнего равенства, сходится в некотором круге $K_r=\{z:|z-z_0|<$ r}. Если $\phi(z)$ сумма этого ряда, то $\phi(z) \in A(K_r)$, $\phi(z_0) = c_{-k} \neq 0$. Поэтому $f(z) = \frac{\phi(z)}{(z-z_0)^k}$ и очевидно $\lim_{z \to z_0} f(z) = \infty$. 2)Обратно, пусть $\lim_{z \to z_0} f(z) = \infty$. Тогда существует проколотая окрестность K точки z_0 , где $f(z) \neq 0$, поэтому в K определена аналитическая функция g(z) = 0 $\frac{1}{f(z)}$, причём справедливо представление: $g(z) = a_k(z-z_0)^k + a_{k+1}(z-z_0)^{k+1} + \dots = (z-z_0)^k (a_k+1)^k$ $a_{k+1}(z-z_0)+\dots$, где $k\geq 1,\ a_k\neq 0.$ Значит $g(z)=(z-z_0)^k\phi(z),$ где $\phi(z_0)\neq 0.$ Тогда $f(z)=\frac{1}{g(z)}=\frac{1}{(z-z_0)^k}\frac{1}{\phi(z)}=\{\phi(z)\in A(K)\Rightarrow \frac{1}{\phi(z)}\in A(K)$ значит можно разложить в ряд Лорана $\}=\frac{1}{(z-z_0)^k}(b_0+b_1(z-z_0)+\dots),$ где $b_0=\frac{1}{\phi(z_0)}=\frac{1}{a_k}\neq 0,$ т.е z_0 – полюс $f(z)\square$.

Теорема 4. Точка z_0 – полюс порядка k функции f(z) тогда и только тогда, когда в К

справедливо представление: $f(z) = \frac{\phi(z)}{(z-z_0)^k}$, где $\phi(z) \in A(z_0)$, $\phi(z_0) \neq 0$.

Теорема 5. Изолированная особая точка z_0 функции f(z) является существенно особой тогда и только тогда, когда не существует $\lim_{z \to z_0} f(z)$.

Теорема 6.(Сохоцкого) Пусть z_0 – существенно особая точка функции f(z). Тогда для произвольного числа $A \in \mathbb{C}$ найдётся такая последовательность z_n , сходящаяся к z_0 , что $f(z_n) \to A, n \to \infty.$

Теорема 7.(Пикара) Пусть $a \in C$ – существенно особая точка для f(z). Тогда в любой проколотой окрестности точки a, f(z) принимает все комплексные значения, причём каждое бесконечное число раз (за исключением, быть может, одного A)