Шаблон отчёта по лабораторной работе

Простейший вариант

Дмитрий Сергеевич Кулябов

Содержание

1	цел	ь расоты :	6											
2		сание результатов выполнения лабораторной работы:	7											
	2.1	описание выполняемого задания:	7											
		2.1.1 1. Открытие Midnight Commander	7											
		2.1.2 2. Переход в каталог ~/work/arch-pc	8											
		2.1.3 3. Создание файла lab5-1.asm	8											
		2.1.4 4. Открытие файла lab5-1.asm для редактирования	9											
		2.1.5 5. Ввод текста программы	9											
		2.1.6 6. Просмотр файла lab5-1.asm	9											
		2.1.7 7. Трансляция программы в объектный файл	10											
		2.1.8 8. Ввод ваших ФИО	10											
		2.1.9 9. Скачивание файла in_out.asm	11											
		2.1.10 10. Копирование файла in_out.asm	12											
		2.1.11 11. Создание копии lab5-1.asm	14											
		2.1.12 12. Исправление текста программы в lab5-2.asm	14											
		2.1.13 13. Замена подпрограммы sprintLF на sprint	15											
	2.2	выводы по результатам выполнения заданий	17											
3	Опи	сание результатов выполнения заданийдля самостоятельной работы:	18											
		описание выполняемого задания:	18											
		3.1.1 Создание копии файлах lab5-1.asm lab5-2.asm in out.asm: .	18											
		3.1.2 Получение исполняемого файла	19											
		3.1.3 4. Проверка работы программы	19											
	3.2	выводы по результатам выполнения заданий:	20											
4	Воп	росы для самопроверки :	21											
-		.1 1. Каково назначение mc?												
		2. Какие операции с файлами можно выполнить как с помощью	21											
		команд bash, так и с помощью меню (комбинаций клавиш) mc? При-												
		ведите несколько примеров.	21											
	4.3	3. Какова структура программы на языке ассемблера NASM?	21											
	4.4													
	-••	языке ассемблера NASM?	22											
	4.5	5. Для чего используются компоненты db, dw, dd, dq и dt языка ас-												
		семблера NASM?	22											

4.6	6. Какое произойдет действие при выполнении инструкции mov										
	eax, esi?	22									
4.7	7. Для чего используется инструкция int 80h?	22									
4.8	Выводы,согласованные с целью работы:	23									

Список иллюстраций

2.1	рисунок 01			•		•	•				•		•	•	•		•	•				•		•		7
2.2	рисунок 02																									8
2.3	рисунок 03																									9
2.4	рисунок 04																									10
2.5	рисунок 05																									11
2.6	рисунок 06																									11
2.7	рисунок 07																									11
2.8	рисунок 08																									12
2.9	рисунок 09																									13
2.10	рисунок 10																									13
2.11	рисунок 11																									14
2.12	рисунок 12																									15
2.13	рисунок 13																									16
2.14	рисунок 14																									16
2.15	рисунок 15	•	•		•	•	•		•	•			•		•	•			•			•		•	•	16
3.1	рисунок 16																									18
	рисунок 17																									

Список таблиц

1 Цель работы:

Приобретение практических навыков работы в Midnight Commander.Освоение инструкций языка ассемблера mov и int

2 Описание результатов выполнения лабораторной работы:

2.1 описание выполняемого задания:

2.1.1 1. Открытие Midnight Commander

Сначала мы открываем Midnight Commander, чтобы удобно работать с файлами. Это делается с помощью команды:

imadakrour:~\$ mc

Рис. 2.1: рисунок 01

Комментарий: Вот как выглядит Midnight Commander после запуска. Очень удобно, особенно для навигации по файлам и папкам!

2.1.2 2. Переход в каталог ~/work/arch-pc

После открытия Midnight Commander, мы переходим в каталог ~/work/arch-pc, который мы создали во время выполнения лабораторной работы №4. Это можно сделать с помощью клавиш на клавиатуре.

Рис. 2.2: рисунок 02

Комментарий: Мы находимся в каталоге arch-pc. Важно убедиться, что мы в нужном месте перед тем, как продолжать!

2.1.3 3. Создание файла lab5-1.asm

Теперь мы создаем новый файл lab5-1.asm. Для этого используем команду touch в строке ввода:

imadakrour:~\$ touch lab5-1.asm

Рис. 2.3: рисунок 03

Комментарий: Файл lab5-1.asm успешно создан. Это будет наш первый файл для написания кода на ассемблере.

2.1.4 4. Открытие файла lab5-1.asm для редактирования

Далее мы открываем файл lab5-1.asm для редактирования с помощью функциональной клавиши F4. В Midnight Commander встроенный редактор обычно либо nano, либо mcedit.

2.1.5 5. Ввод текста программы

Теперь вводим текст программы из листинга 5.1 (можно без комментариев). После того как введем текст, не забываем сохранить изменения и закрыть файл.

2.1.6 6. Просмотр файла lab5-1.asm

После редактирования открываем файл lab5-1.asm для просмотра с помощью F3. Это позволит нам убедиться, что все записано правильно.

Рис. 2.4: рисунок 04

Комментарий: Проверяем файл. Всё выглядит хорошо, код на месте!

2.1.7 7. Трансляция программы в объектный файл

Теперь мы переводим текст программы в объектный файл. Для этого используем NASM и LD:

```
imadakrour:~$ nasm -f elf lab5-1.asm
imadakrour:~$ ld -m elf_i386 -o lab5-1 lab5-1.o
```

После этого запускаем исполняемый файл:

```
imadakrour:~$ ./lab5-1
Введите строку:
```

2.1.8 8. Ввод ваших ФИО

На запрос вводим свои ФИО.

Имя пользователя

Рис. 2.5: рисунок 05

```
imadakrour@fedora:~/work/arch-pc/lab05

Q 

x

imadakrour@fedora:~/work/arch-pc/lab05$ nasm -f elf lab5-1.asm

imadakrour@fedora:~/work/arch-pc/lab05$ ld -m elf_i386 -o lab5-1 lab5-1.o

imadakrour@fedora:~/work/arch-pc/lab05$ ./lab5-1

BBegurre crpoxy:

imad akrour

imadakrour@fedora:~/work/arch-pc/lab05$
```

Рис. 2.6: рисунок 06

Комментарий: Вводим свои данные. Это часть, когда мы тестируем, как программа реагирует на ввод!

2.1.9 9. Скачивание файла in_out.asm

Следующим шагом скачиваем файл in_out.asm со страницы курса в ТУИС. Этот файл будет содержать подпрограммы, которые нам понадобятся.

Рис. 2.7: рисунок 07

Комментарий: Скачивание файла in_out.asm. Это важно для следующих шагов в лабораторной работе!

2.1.10 10. Копирование файла in_out.asm

Убедитесь, что файл in_out.asm находится в том же каталоге, что и lab5-1.asm. В одной из панелей Midnight Commander открываем каталог с lab5-1.asm, а в другой — каталог со скачанным файлом. Используем функциональную клавишу F5 для копирования.

Рис. 2.8: рисунок 08

Рис. 2.9: рисунок 09

Рис. 2.10: рисунок 10

Комментарий: Копируем in_out.asm в нужный каталог. Теперь у нас есть все необходимые файлы!

2.1.11 11. Создание копии lab5-1.asm

Теперь создаем копию файла lab5-1.asm с именем lab5-2.asm с помощью F6. Это позволяет нам работать с новой версией программы, не теряя оригинал.

Рис. 2.11: рисунок 11

Комментарий: Создаем копию. Всегда полезно иметь резервную копию оригинального файла!

2.1.12 12. Исправление текста программы в lab5-2.asm

Теперь мы изменяем текст программы в lab5-2.asm, используя подпрограммы из in_out.asm (например, sprintLF, sread и quit). После этого создаем исполняемый файл и проверяем его работу.

```
⊕
                                                               a
                   mc [imadakrour@fedora]:~/work/arch-pc/lab05
 GNU nano 7.2
                 /home/imadakrour/work/arch-pc/lab05/lab5-2.asm
       msg db "Введите строку:", 0 ; сообщение для вывода
                                   ; буфер для ввода строки, размером 100 ба>
       buffer times 100 db 0
section .text
global _start
              ; Вывод сообщения с новой строки
                               ; загрузить адрес сообщения в еах
      mov eax, msg
      call sprintLF
                               ; вызвать подпрограмму для вывода сообщения с>
 Ввод строки пользователя
       mov eax, buffer
                               ; указать адрес буфера для записи введенной с>
      mov ebx, 100
                               ; указать максимальную длину вводимой строки
       call sread
                                ; вызвать подпрограмму для ввода строки
 Завершение программы
call quit
                       ; вызвать подпрограмму для завершения
            ^T Execute
^J Justify
  Help
                                                             ^C Location
                                                                Go To Line
```

Рис. 2.12: рисунок 12

Комментарий: Внесенные изменения. Теперь программа должна использовать новые подпрограммы!

2.1.13 13. Замена подпрограммы sprintLF на sprint

Наконец, мы заменяем подпрограмму sprintLF на sprint в lab5-2.asm. После этого создаем исполняемый файл и проверяем его работу.

Рис. 2.13: рисунок 13

Рис. 2.14: рисунок 14

Рис. 2.15: рисунок 15

Комментарий: Подпрограмма заменена, всё готово к тестированию. Важно понимать разницу между sprint u sprintLF: первая просто выводит строку, а вторая — c

2.2 выводы по результатам выполнения заданий

В ходе лабораторной работы мы создали и изменили ассемблерные файлы, научились работать с Midnight Commander, а также использовали подпрограммы из внешнего файла. Это был полезный опыт в работе с ассемблером и системным программированием!

3 Описание результатов выполнения заданийдля самостоятельной работы:

3.1 описание выполняемого задания:

3.1.1 Создание копии файлах lab5-1.asm lab5-2.asm in_out.asm:

Сначала мы создаем копию файла lab5-1.asm. Это нужно, чтобы внести изменения, не затрагивая оригинал.

Рис. 3.1: рисунок 16

3.1.2 Получение исполняемого файла

После внесения изменений, мы трансформируем наш ассемблерный файл в объектный файл и компилируем его в исполняемый файл. Вот команды, которые мы используем:

```
imadakrour:~$ nasm -f elf lab5-1.asm
imadakrour:~$ nasm -f elf lab5-2.asm

imadakrour:~$ ld -m elf_i386 -o lab5-1 lab5-1.o
imadakrour:~$ ld -m elf_i386 -o lab5-2 lab5-2.o
```

3.1.3 4. Проверка работы программы

Теперь запускаем исполняемый файл и вводим свои ФИО, когда программа запрашивает строку.

```
imadakrour:~$ ./lab5-1
imadakrour:~$ ./lab5-2
```


Рис. 3.2: рисунок 17

Комментарий: Программа корректно запрашивает ввод. Вводим свои данные— это всегда интересный момент!

3.2 выводы по результатам выполнения заданий:

В ходе самостоятельной работы мы изменили несколько ассемблерных файлов, проверили их работу и узнали, как использовать подпрограммы из внешнего файла. Это дало нам полезный опыт в написании и компиляции кода на ассемблере!

4 Вопросы для самопроверки:

4.1 1. Каково назначение тс?

Ответ: mc (Midnight Commander) — это текстовый файловый менеджер для UNIXподобных систем, который позволяет пользователям удобно управлять файлами и каталогами через графический интерфейс.

4.2 2. Какие операции с файлами можно выполнить как с помощью команд bash, так и с помощью меню (комбинаций клавиш) mc? Приведите несколько примеров.

Ответ: - **Копирование файлов:** можно использовать команду ср в bash или сочетание клавиш F5 в mc. - **Перемещение файлов:** можно использовать команду mv в bash или F6 в mc. - **Удаление файлов:** команда rm в bash и F8 в mc.

4.3 3. Какова структура программы на языке ассемблера NASM?

Ответ: Программа на языке ассемблера NASM состоит из следующих секций: .data (для инициализированных данных), .bss (для неинициализированных

4.4 4. Для описания каких данных используются секции bss и data в языке ассемблера NASM?

Ответ: - **Секция .data:** используется для хранения инициализированных данных (например, строки, массивы). - **Секция .bss:** используется для хранения неинициализированных данных (например, переменные, которые не имеют начального значения).

4.5 5. Для чего используются компоненты db, dw, dd, dq и dt языка ассемблера NASM?

Ответ: - db: для объявления байтов (1 байт). - dw: для объявления слов (2 байта). - dd: для объявления двойных слов (4 байта). - dq: для объявления Quad слов (8 байт). - dt: для объявления десятичных значений (различные размеры).

4.6 6. Какое произойдет действие при выполнении инструкции mov eax, esi?

Ответ: Инструкция mov eax, esi копирует значение из регистра esi в регистр eax.

4.7 7. Для чего используется инструкция int 80h?

Ответ: Инструкция int 80h используется для вызова системных вызовов в Linux, позволяя программе взаимодействовать с операционной системой.

4.8 Выводы, согласованные с целью работы:

Мы освоили язык ассемблера **NASM**, включая работу с файлами, структуру программ и взаимодействие с операционной системой. Эти навыки углубили наше понимание программирования на низком уровне.