CS182 - Foundations of Computer Science

PSO sessions 1 and 2, week of March 30, 2020

PSO₁

Problem 1. Consider the sequence $a_1 = 1$, $a_2 = 2$, $a_3 = 3$, and, for n > 3,

$$a_n = a_{n-1} + a_{n-2} + a_{n-3}.$$

Prove that $a_n < 2^n$ for $n \ge 1$. What kind of induction did you use.

Problem 2. Let $x_1 = 1$ and $x_{n+1} = \sqrt{1 + 2x_n}$ for $n \ge 1$. Prove that $x_n < 4$ for $n \ge 1$.

Problem 3. Let f(n) = f(n/2) + 4n for $n = 2^k$ and $k \ge 1$; f(1) = 1. Prove that $f(n) \le 8n$.

Problem 4. Which of the following recursive functions are well-defined for integer $n \geq 0$:

$$f(n) = \begin{cases} 1, & n = 0 \\ 2f(n-1), & n > 0 \end{cases}$$

$$f(n) = \begin{cases} 1 & , n = 0 \\ f(n+1) - 1 & , n > 0 \end{cases}$$

$$f(n) = \begin{cases} 1, & n = 0 \\ nf(n-1), & n > 0 \end{cases}$$

$$f(n) = \begin{cases} 1 & , n = 0 \\ f(n-2) + 2 & , n > 0 \end{cases}$$

PSO₂

Problem 1. The three recursive functions appear only slightly different. In each case guess a non-recursive formula for f(n) and prove your guess by induction.

```
• f(0) = 0; f(n) = 2 + f(n-1), for integer n > 0.
```

•
$$f(0) = 0$$
; $f(n) = 2f(n-1)$, for integer $n > 0$.

•
$$f(0) = 1$$
; $f(n) = 2f(n-1)$, for integer $n > 0$.

Problem 2. Consider the following pseudocode:

```
1: Function Big(n)

2: if n = 0 then

3: return(1)

4: else

5: return(2 \times Big(n-1))

6: end if
```

Prove by induction that the output of Big(n) is 2^n . Prove by induction that the running time of Big(n) is O(n).