On quasitrivial symmetric nondecreasing associative operations PhD Seminar

Jimmy Devillet

in collaboration with Gergely Kiss and Jean-Luc Marichal

University of Luxembourg

Connectedness

Let X be a nonempty set and let $F: X^n \to X$

Definition

• The points $\mathbf{x}, \mathbf{y} \in X^n$ are connected for F if

$$F(\mathbf{x}) = F(\mathbf{y})$$

• The point $\mathbf{x} \in X^n$ is *isolated for F* if it is not connected to another point in X^n

Connectedness

For any integer $n \geq 1$, let $L_n = \{1,...,n\}$ endowed with \leq

Example. $F(x,y) = \max\{x,y\}$ on L_4

Quasitriviality and Idempotency

Definition

 $F: X^n \to X$ is said to be

• quasitrivial if

$$F(x_1,...,x_n) \in \{x_1,...,x_n\}$$

• idempotent if

$$F(n \cdot x) = x$$

where $n \cdot x = x, ..., x$ (n times)

Associativity

Definition

 $F: X^n \to X$ is said to be *associative* if

$$F(x_1, \dots, x_{i-1}, F(x_i, \dots, x_{i+n-1}), x_{i+n}, \dots, x_{2n-1})$$

$$= F(x_1, \dots, x_i, F(x_{i+1}, \dots, x_{i+n}), x_{i+n+1}, \dots, x_{2n-1})$$

A class of associative operations

Let (X, \leq) be a chain, e.g., $X = L_n = \{1, ..., n\}$, $n \geq 1$, endowed with \leq

We are interested in the class of operations $F: X^n \to X$, that are

- quasitrivial
- symmetric
- nondecreasing in each variable
- associative

A first characterization

Let $x \wedge y = \min\{x, y\}$ and $x \vee y = \max\{x, y\}$

Theorem

 $F\colon X^n \to X$ $(n\geq 3)$ is quasitrivial, symmetric, nondecreasing and associative iff there exists a quasitrivial and nondecreasing operation $G\colon X^2\to X$ such that

$$F(x_1,\ldots,x_n) = G(\bigwedge_{i=1}^n x_i,\bigvee_{i=1}^n x_i)$$
 (1)

Moreover, G is unique, symmetric, and associative

Derivability

Definition (Dudek-Mukhin, 2006) Assume $F: X^n \to X$ and $H: X^2 \to X$ are associative. F is said to be *derived from* H if

$$F(x_1,\ldots,x_n)=x_1\circ\cdots\circ x_n$$

where $x \circ y = H(x, y)$

Corollary

If $F: X^n \to X$ is of the form (1), where $G: X^2 \to X$ is quasitrivial, symmetric, and nondecreasing, then F is associative and derived from G

A result of Ackerman

Proposition (Ackerman, To appear)

 $F\colon X^n \to X$ is quasitrivial, symmetric, associative, and derived from a quasitrivial and associative operation $H\colon X^2 \to X$ iff there exists a linear ordering \preceq on X such that F is the maximum operation on (X, \preceq) , i.e.,

$$F(x_1,\ldots,x_n) = x_1 \vee_{\preceq} \cdots \vee_{\preceq} x_n \tag{2}$$

A result of Ackerman

Single-peaked linear orderings

Definition. Let (X, \leq) and (X, \preceq) be chains. The linear ordering \leq is said to be *single-peaked w.r.t.* \leq if for any $a, b, c \in X$ such that a < b < c we have $b \prec a$ or $b \prec c$

Example. The ordering \leq on

$$L_4 = \{1 < 2 < 3 < 4\}$$

defined by

$$3 \prec 2 \prec 4 \prec 1$$

is single-peaked w.r.t. \leq

Note: There are exactly 2^{n-1} single-peaked linear orderings on L_n .

Single-peaked linear orderings

Single-peaked linear orderings

Proposition

Let (X, \leq) and (X, \leq) be chains and let $F: X^n \to X$ be of the form (2). Then F is nondecreasing w.r.t. \leq iff \leq is single-peaked w.r.t. \leq

A second characterization

Theorem

Let (X, \leq) be a chain and let $F: X^n \to X$. The following assertions are equivalent.

- (i) F is quasitrivial, symmetric, nondecreasing, and associative (associativity can be ignored when n=2)
- (ii) F is of the form (1), where $G: X^2 \to X$ is quasitrivial, symmetric, and nondecreasing
- (iii) F is of the form (2) for some linear ordering \leq on X that is single-peaked w.r.t. \leq

If any of these assertions holds, then ${\it G}$ is associative and ${\it F}$ is derived from ${\it G}$

Thank you for your attention!

Selected references

N. L. Ackerman. A characterization of quasitrivial n-semigroups. To appear in Algebra Universalis

S. Berg and T. Perlinger. Single-peaked compatible preference profiles: some combinatorial results. Social Choice and Welfare, 27(1):89–102, 2006

D. Black. On the rationale of group decision-making. J Polit Economy, 56(1):23–34, 1948

D. Black. The theory of committees and elections. Kluwer Academic Publishers, Dordrecht, 1987

M. Couceiro, J. Devillet, and J.-L. Marichal. Characterizations of idempotent discrete uninorms. Fuzzy Sets and Systems. In press. https://doi.org/10.1016/j.fss.2017.06.013

J. Devillet, G. Kiss, and J.-L. Marichal. Characterizations of quasitrivial symmetric nondecreasing associative operations. Submitted for publication. arXiv:1705.00719.

W. A. Dudek and V. V. Mukhin. On *n*-ary semigroups with adjoint neutral element. Quasigroups and Related Systems, 14:163–168, 2006