

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 17159 Tel: +82-31-323-6008 Fax: +82-31-323-6010

http://www.ltalab.com

Dates of Tests: April 01, 2019 ~ April 24, 2019

Test Report S/N: LR500111904S Test Site: LTA CO., LTD.

## **CERTIFICATION OF COMPLIANCE**

FCC ID.

**APPLICANT** 

W6YPT400TWR

PASSTECH CO., LTD.

**Equipment Class** : Part 15 – Radio Frequency Devices

Manufacturing Description : LOCKER LOCK

Manufacturer : PASSTECH CO., LTD.

Model name : PT400TWR

Varient Model name : PT200TWR, PT600TWR

Test Device Serial No.: : Identical prototype

Rule Part(s) : FCC Part 15 Subpart C; ANSI C-63.10-2013

Frequency Range : 13.56 MHz

Date of issue : April 24, 2019

This test report is issued under the authority of:

The test was supervised by:

JaBeom, Koo / Manager

JaBeom. Koo

HeeCheon Kwon, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP

NVLAP LAB Code.: 200723-0

# TABLE OF CONTENTS

| 1. GENERAL INFORMATION                   | 3  |
|------------------------------------------|----|
| 2. INFORMATION ABOUT TEST ITEM           | 4  |
| 3. TEST REPORT                           | 5  |
| 3.1 SUMMARY OF TESTS                     | 5  |
| 3.2 EUT measurements                     | 6  |
| 3.3 TECHNICAL CHARACTERISTICS TEST       | 7  |
| 3.3.1 OCCUPIED BANDWIDTH                 | 7  |
| 3.3.2 RADIATED EMISSION TEST RESULTS     | 9  |
| 3.3.3 Frequency Stability                | 17 |
| APPENDIX                                 |    |
| APPENDIX A TEST EQUIPMENT USED FOR TESTS | 18 |

## 1. General information

## 1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 17159

Web site : <a href="http://www.ltalab.com">http://www.ltalab.com</a>
E-mail : <a href="mailto:chahn@ltalab.com">chahn@ltalab.com</a>
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

## 1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

| Agency | Country | Accreditation No.                            | Validity                                             | Reference             |
|--------|---------|----------------------------------------------|------------------------------------------------------|-----------------------|
| NVLAP  | U.S.A   | 200723-0 2019-09-30 ECT accredited Lab       |                                                      | ECT accredited Lab.   |
| RRA    | KOREA   | KR0049 - EMC acc                             |                                                      | EMC accredited Lab.   |
| FCC    | U.S.A   | 649054 Updating                              |                                                      | FCC CAB               |
| VCCI   | JAPAN   | C-4948,<br>T-2416,<br>R-4483(10 m),<br>G-847 | 2020-09-10<br>2020-09-10<br>2020-10-15<br>2022-06-13 | VCCI registration     |
| IC     | CANADA  | 5799A-1                                      | 2019-11-07                                           | IC filing             |
| KOLAS  | KOREA   | NO.551                                       | 2021-08-20                                           | KOLAS accredited Lab. |

## 2. Information about test item

## 2-1 Client & Manufacturer

Company name : PASSTECH CO., LTD.

Address : #1305 Kranz Techno, 5442-1, Sangdaewon-dong, Jungwon-gu,

Seongnam-si, Gyeonggi-do, South Korea

Tel / Fax : +82-31-743-7277 / +82-31-743-7276

## **2-2 Equipment Under Test (EUT)**

Model name : PT400TWR

Varient Model name : PT200TWR, PT600TWR

Serial number : Identical prototype

Date of receipt : April 01, 2019

EUT condition : Pre-production, not damaged

Antenna type : Loop Antenna
Frequency Range : 13.56 MHz
Power Source : 6.0 Vdc

## **2-3 Tested frequency**

|                 | LOW | MID   | HIGH |
|-----------------|-----|-------|------|
| Frequency (MHz) | -   | 13.56 | -    |

2-4 Ancillary Equipment

| Equipment | Model No. | Serial No. | Manufacturer |
|-----------|-----------|------------|--------------|
| -         | -         | -          | -            |

## 3. Test Report

## 3.1 Summary of tests

| FCC Part Section(s) | Parameter           | Test<br>Condition | Status<br>(note 1) |  |  |
|---------------------|---------------------|-------------------|--------------------|--|--|
| 15.225              | OCCUPIED BANDWIDTH  | DTH               |                    |  |  |
| 15.209              | Radiated Emission   | Radiation         | С                  |  |  |
| 15.207              | Conducted Emission  | Radiation         | С                  |  |  |
| 15.225 (e)          | Frequency Stability |                   | С                  |  |  |

The above equipment was tested by LTA Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10-2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15 The test results of this report relate only to the tested sample identified in this report.

#### FCC 15.203 Antenna Requirement

The equipment and its antenna comply with this requirement since the antenna is built in the equipment and it cannot be replaced by end users.

#### 3.2 EUT measurements

- 1. In order to establish the maiximum radiation, firstly, there have been viewed all orthogonal dajustments of the test samples, secondly the test ample have been rotated at all adjustments around the own axis between 0° and 360°, and thirdly, the antenna polarization between horizontal and vertical had been varied.
- 2. Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 10m open field test site. Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlated with the one of tests made in an open field site based on KDB 414788.
- 3. The test was measured in the most Worst Case Without Tag state compared to the With Tag and Without Tag states.

## 3.3 Technical Characteristics Test

## 3.3.1 OCCUPIED BANDWIDTH

#### **TEST PROCEDURE**

Type A with highet data rate. The transmitter output is connected to the spectrum analyzer. The RBW is set to 10kHz. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Note: Because the measured signal is CW or CW-like adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW

**Measurement Data: Complies** 



Date: 22.APR.2019 14:00:31

#### 3.3.2 RADIATED EMISSION TEST RESULTS

#### LIMITS AND PROCEDURE

- (a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/ meter at 30 meters.
- (b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110— 14.010 MHz and shall not exceed the general radiated emission limits in § 15.209 as follows:
- §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency     | Field Strength | Measurement distance |
|---------------|----------------|----------------------|
| (MHz)         | (uV/m)         | ( <b>m</b> )         |
| 0.009 - 0.490 | 2 400/F(kHz)   | 300                  |
| 0.490 – 1.705 | 24 000/F(kHz)  | 30                   |
| 1.705 – 30.0  | 30             | 30                   |
| 30 – 88       | 100            | 3                    |
| 88 – 216      | 150            | 3                    |
| 216 – 960     | 200            | 3                    |
| Above 960     | 500            | 3                    |

<sup>\*\*</sup> Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g. §§ 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Formula for converting the filed strength from uV/m to dBuV/m is:

Limit  $(dBuV/m) = 20 \log \lim (uV/m)$ 

#### In addition:

§15.209 (d) The emission limits shown the above table are based on measurements employing a CISPR quasipeak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector.

§15.209 (d) The provisions in §§ 15.225, measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.

#### **TEST PROCEDURE**

ANSI C63.10, 2013

The EUT is an intentional radiator that incorporates a digital device, the highest fundamental frequency generated or used in the device is 13.56 MHz; therefore, the frequency range was investigated from 0.15 MHz to the 10th harmonic of the highest fundamental frequency, or 1000 MHz, whichever is greater.

**Measurement Data: Complies** 

Figure 1. Direction of the Loop Antenna

Horizontal (Top View)

Antenna was not rotated.

Vertical (Side View)

EUT

Front side: 0 deg.
Forward direction: clockwise

Figure 2. Antenna angle



#### DATA\_FUNDAMENTAL



4, Songjuro 236Beon-gil, yanggi-myeon,

Yongin-si, Gyeonggi-do, Korea

Tel: +82-31-3236008,9 Fax: +82-31-3236010

www.ltalab.com

EUT/Model No.: PT400TWR Temp/Humi: 23 / 36

Test Mode : RFID mode Tested by: Kwon H C

......



| Freq  | Reading | C.F    | Result<br>QP | Limit  | Margin | Height | Angle | Polarity |
|-------|---------|--------|--------------|--------|--------|--------|-------|----------|
| MHz   | dBuV    | dB     | dBuV/m       | dBuV/m | dB     | cm     | deg   |          |
|       |         |        |              |        |        |        |       |          |
| 11.75 | 19.83   | -19.01 | 0.82         | 29.54  | 28.72  |        |       |          |
| 12.28 | 19.98   | -18.92 | 1.06         | 29.54  | 28.48  |        |       |          |
| 12.29 | 21.16   | -18.92 | 2.24         | 29.54  | 27.30  |        |       |          |
| 12.38 | 20.55   | -18.90 | 1.65         | 29.54  | 27.89  |        |       |          |
| 12.53 | 19.45   | -18.87 | 0.58         | 29.54  | 28.96  |        |       |          |
| 13.56 | 47.76   | -18.69 | 29.07        | 84.00  | 54.93  |        |       |          |
| 14.01 | 20.20   | -18.61 | 1.59         | 29.54  | 27.95  |        |       |          |
| 14.34 | 19.61   | -18.56 | 1.05         | 29.54  | 28.49  |        |       |          |
| 14.79 | 19.06   | -18.48 | 0.58         | 29.54  | 28.96  |        |       |          |
| 15.29 | 18.80   | -18.37 | 0.43         | 29.54  | 29.11  |        |       |          |
| 15.39 | 19.22   | -18.35 | 0.87         | 29.54  | 28.67  |        |       |          |

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Note: Dist Corr 30 m = -40 dB

-

#### DATA\_FUNDAMENTAL



4, Songjuro 236Beon-gil, yanggi-myeon,

Yongin-si, Gyeonggi-do, Korea Tel: +82-31-3236008,9

Fax: +82-31-3236010

www.ltalab.com

EUT/Model No.: PT400TWR Temp/Humi: 23 / 36

and the state of the second

Test Mode : RFID mode Tested by: Kwon H C

Tested by North C



| Freq  | Reading | C.F    | Result<br>QP | Limit  | Margin | Height | Angle    | Polarity  |
|-------|---------|--------|--------------|--------|--------|--------|----------|-----------|
| MHz   | dBuV    | dB     | dBuV/m       | dBuV/m | dB     | cm     | deg      |           |
|       |         |        |              | ••••   |        |        |          |           |
| 11.89 | 19.99   | -18.99 | 1.00         | 29.54  | 28.54  |        |          |           |
| 12.82 | 20.56   | -18.97 | 1.59         | 29.54  | 27.95  |        |          |           |
| 12.10 | 19.98   | -18.95 | 1.03         | 29.54  | 28.51  |        |          |           |
| 12.24 | 19.99   | -18.93 | 1.06         | 29.54  | 28.48  |        | 10000000 |           |
| 12.40 | 19.99   | -18.90 | 1.09         | 29.54  | 28.45  |        |          |           |
| 12.46 | 20.20   | -18.89 | 1.31         | 29.54  | 28.23  |        |          |           |
| 13.03 | 19.84   | -18.79 | 1.05         | 29.54  | 28.49  |        |          |           |
| 13.56 | 28.59   | -18.69 | 9.90         | 84.00  | 74.10  |        |          |           |
| 14.75 | 19.45   | -18.48 | 0.97         | 29.54  | 28.57  |        | 22222    |           |
| 14.91 | 19.61   | -18.46 | 1.15         | 29.54  | 28.39  |        |          | 353111111 |
| 14.98 | 19.45   | -18.44 | 1.01         | 29.54  | 28.53  |        |          |           |

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Note: Dist Corr 30 m = -40 dB

#### **DATA TX SPURIOUS EMISSION Below 30**



4, Songjuro 236Beon-gil, yanggi-myeon,

Yongin-si, Gyeonggi-do, Korea

Tel: +82-31-3236008,9 Fax: +82-31-3236010 www.ltalab.com

EUT/Model No.: PT400TWR Temp/Humi: 23 / 36

Test Mode : RFID mode

Tested by: Kwon H C



Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

- 1 -

Note: Marker 9 is the fundamental Signal

#### **DATA TX SPURIOUS EMISSION Below 30**



4, Songjuro 236Beon-gil, yanggi-myeon,

Yongin-si, Gyeonggi-do, Korea

Tel: +82-31-3236008,9 Fax: +82-31-3236010 www.ltalab.com

EUT/Model No.: PT400TWR Temp/Humi: 23 / 36

: RFID mode Test Mode

Tested by: Kwon H C



Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

#### DATA\_TX SPURIOUS EMISSION 30 TO 1000 MHz



4, Songjuro 236Beon-gil, yanggi-myeon,

Yongin-si, Gyeonggi-do, Korea

Tel: +82-31-3236008,9 Fax: +82-31-3236010

www.ltalab.com

EUT/Model No.: PT400TWR Temp/Humi: 23 / 36

Test Mode : RFID mode Tested by: Kwon H C



Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain



4, Songjuro 236Beon-gil, yanggi-myeon,

Yongin-si, Gyeonggi-do, Korea

Tel: +82-31-3236008,9 Fax: +82-31-3236010 www.ltalab.com

EUT/Model No.: PT400TWR Temp/Humi: 23 / 36

TOTAL MODE OF THE COLUMN TOTAL COLUMN TOTAL

Test Mode : RFID mode Tested by: Kwon H C



Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

## 3.3.3 Frequency Tolerance

#### **Procedure:**

The temperature test was started after the temperature stabilization time of 30 minutes.

#### **Requirement:**

The frequency tolerance of the carrier signal shall be maintained within  $\pm -0.01\%$  of the operating frequency over a temperature variation of  $\pm -20$  degrees to  $\pm 50$  degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Test method : ANSI C63.10 : 2013

Tx Frequency : 13.56 MHz

Result : Complies

**Measurement Data:** 

OPERATING FREQUENCY: 13,560,000 Hz

Freq. Tolerance Limit:  $\pm 0.01$  %

|         |       |      | @2 mins    |           | @5 mins    |           | @10 mins   |           |
|---------|-------|------|------------|-----------|------------|-----------|------------|-----------|
| VOLTAGE | POWER | TEMP | FREQ       | Deviation | FREQ       | Deviation | FREQ       | Deviation |
| (%)     | (Vdc) | (°C) | (Hz)       | (%)       | (Hz)       | (%)       | (Hz)       | (%)       |
| 100     |       | -20  | 13,560,031 | 0.00022   | 13,560,032 | 0.00023   | 13,560,032 | 0.00025   |
| 100     |       | -10  | 13,560,034 | 0.00025   | 13,560,036 | 0.00026   | 13,560,037 | 0.00027   |
| 100     |       | 0    | 13,560,032 | 0.00023   | 13,560,033 | 0.00024   | 13,560,033 | 0.00024   |
| 100     | 6.0   | 10   | 13,560,035 | 0.00025   | 13,560,038 | 0.00028   | 13,560,039 | 0.00028   |
| 100     | 0.0   | 20   | 13,560,037 | 0.00027   | 13,560,038 | 0.00028   | 13,560,038 | 0.00028   |
| 100     |       | 30   | 13,560,043 | 0.00031   | 13,560,045 | 0.00033   | 13,560,046 | 0.00033   |
| 100     |       | 40   | 13,560,047 | 0.00034   | 13,560,049 | 0.00036   | 13,560,051 | 0.00037   |
| 100     |       | 50   | 13,560,047 | 0.00034   | 13,560,048 | 0.00035   | 13,560,049 | 0.00036   |
| 85      | 102   | 20   | 13,560,016 | 0.00011   | 13,560,018 | 0.00013   | 13,560,019 | 0.00014   |
| 115     | 138   | 20   | 13,559,979 | 0.00015   | 13,559,977 | 0.00016   | 13,559,976 | 0.00017   |

Ref. No.: LR500111904S

# APPENDIX A TEST EQUIPMENT USED FOR TESTS

|    | Use | Description                           | Model No.        | Serial No. | Manufacturer           | Interval | Last Cal. Date |
|----|-----|---------------------------------------|------------------|------------|------------------------|----------|----------------|
| 1  |     | Signal Analyzer (9 kHz ~ 30 GHz)      | FSV30            | 100757     | R&S                    | 1 year   | 2018-09-06     |
| 2  |     | SYNTHESIZED CW GENERATOR              | 83711B           | US34490456 | HP                     | 1 year   | 2019-03-16     |
| 3  |     | Attenuator (3 dB)                     | 8491A            | 37822      | НР                     | 1 year   | 2018-09-06     |
| 4  |     | Attenuator (10 dB)                    | 8491A            | 63196      | НР                     | 1 year   | 2018-09-06     |
| 5  |     | EMI Test Receiver (~7 GHz)            | ESCI7            | 100722     | R&S                    | 1 year   | 2018-09-06     |
| 6  |     | RF Amplifier (~1.3 GHz)               | 8447D OPT 010    | 2944A07684 | НР                     | 1 year   | 2018-09-06     |
| 7  |     | RF Amplifier (1~26.5 GHz)             | 8449B            | 3008A02126 | НР                     | 1 year   | 2019-03-16     |
| 8  |     | Horn Antenna (1~18 GHz)               | 3115             | 00114105   | ETS                    | 2 year   | 2018-08-04     |
| 9  |     | DRG Horn (Small)                      | 3116B            | 81109      | ETS-Lindgren           | 2 year   | 2018-05-03     |
| 10 |     | DRG Horn (Small)                      | 3116B            | 133350     | ETS-Lindgren           | 2 year   | 2018-05-03     |
| 11 |     | TRILOG Antenna                        | VULB 9160        | 9160-3237  | SCHWARZBECK            | 2 year   | 2019-03-16     |
| 12 |     | DC Power Supply                       | 6674A            | 3637A01657 | Agilent                | -        | -              |
| 13 |     | Power Meter                           | EPM-441A         | GB32481702 | НР                     | 1 year   | 2019-03-16     |
| 14 |     | Power Sensor                          | 8481A            | 3318A94972 | НР                     | 1 year   | 2018-09-06     |
| 15 |     | Audio Analyzer                        | 8903B            | 3729A18901 | НР                     | 1 year   | 2018-09-06     |
| 16 |     | Modulation Analyzer                   | 8901B            | 3749A05878 | НР                     | 1 year   | 2018-09-06     |
| 17 |     | TEMP & HUMIDITY Chamber               | YJ-500           | LTAS06041  | JinYoung Tech          | 1 year   | 2018-09-06     |
| 18 |     | Stop Watch                            | HS-3             | 812Q08R    | CASIO                  | 2 year   | 2018-03-21     |
| 19 |     | LISN                                  | KNW-407          | 8-1430-1   | Kyoritsu               | 1 year   | 2018-09-06     |
| 20 |     | Two-Lime V-Network                    | ESH3-Z5          | 893045/017 | R&S                    | 1 year   | 2019-03-16     |
| 21 |     | Highpass Filter                       | WHKX1.5/15G-10SS | 74         | Wainwright Instruments | 1 year   | 2019-03-16     |
| 22 |     | Highpass Filter                       | WHKX3.0/18G-10SS | 118        | Wainwright Instruments | 1 year   | 2019-03-16     |
| 23 |     | OSP120 BASE UNIT                      | OSP120           | 101230     | R&S                    | 1 year   | 2019-03-16     |
| 24 |     | Signal Generator(100 kHz ~ 40 GHz)    | SMB100A          | 177621     | R&S                    | 1 year   | 2019-03-16     |
| 25 |     | Vector Signal Generator(9kHz ~ 6 GHz) | SMBV100A         | 255081     | R&S                    | 1 year   | 2019-03-16     |
| 26 |     | Signal Analyzer (10 Hz ~ 40 GHz)      | FSV40            | 101367     | R&S                    | 1 year   | 2019-03-16     |
| 27 |     | RF Cable                              | SUCOFLEX         | -          | Huber+suhner           | -        | -              |
| 28 |     | Active Loop Antenna                   | HFH2-Z2          | -          | R&S                    | 2 year   | 2019-03-16     |