and that
$$x_1 y \in \mathbb{Z}$$

general solution.
• $g(d(a_1b)) = (x_0, y_0)$ is a solution
• (x_0, y_0) is a solution
• $(x_0 + tq, y_0 - tp)$
 $t \in \mathbb{Z}$
 $f = \frac{d}{g(d(a_1b))}$, $f = \frac{d}{g(d(a_1b))}$

$$7/6x + 51y = 22$$

$$9 cd (6,51)$$

$$= 9 cd (6,3)$$

$$= 3$$

$$3 \times 22$$
(annot be solved

$$72 = 56 + 16$$

 $56 = 3 \cdot 16 + 8$
 $56 = 3(72 - 56) + 8$
 $56 = 3 \cdot 72 - 3 \cdot 56 + 8$
 $8 = 4 \cdot 56 - 3 \cdot 72 + 5$
 $40 = 20 \cdot 56 - |5 \cdot 72|$

$$22 = 56 + 16$$

$$56 = 3 \cdot 16 + 8$$

$$6 = 3(72 - 56) + 8$$

$$6 = 3 \cdot 72 - 3 \cdot 56 + 8$$

$$7 = 9 \cdot 56 - 3 \cdot 72 + 5$$

$$10 = 20 \cdot 56 - |5 \cdot 72|$$

$$1 = 20 \cdot 56 - |5 \cdot 72|$$

$$1 = 20 \cdot 56 - |5 \cdot 72|$$

4.55\$ dines-lo Cents quarters = 25 outs · Mgyingm & minimum number of Gins · X of dimes=x of quarters?

X: & of dimes y: & of quarters 10x - 25y=455 9cd(25,10)=5 5=25-2.10 * 9 455-1-2.91.10+91.25 $\chi = -182, y = 91$ all solutions are (-182+t.5,91-t.2)

$$t=37$$
, $(3,17)$, (20)
 $t=38$, $(8,15)$, (23)
 $t=39$, $(13,13)$, (26)
 $t=40$, (18) , (11) , (11) , (11) , (11) , (21)

1.8 \$ Adults 0-75 \$ Child 54m 90 \$ 2: * of Adults 180=2.75+30 4: * of Kids. 75=2.50+15 15=75-5(180-275) 1802+75y=9000 - g cd (180,75) (15=5.75-2-180 = g(d(75,30) 9(1/30/15)=15

$$t=248.(40.24)$$

 $t=249.(45.12)$
 $t=250.(50.0)$

$$x = -42, y = 42$$

$$(-42+t\cdot3,42-t\cdot2)$$

$$t = (4, (0, |4))$$

$$t = 15, (3, |2)$$

$$t = 16, (6, |6)$$

$$t = 17, (9, 8)$$

$$t = 18, (12, 6)$$

$$t = 19, (15, 4)$$

$$t = 20, (18, 12)$$

$$t = 21$$

(21,0)

•
$$ma = mb \ (modn) \land g < d(m,n) = 1$$
 $\Rightarrow a = b \ (modn)$
 $ma = mb \ (modn)$
 $ma = mb \ (modn)$
 $a = mb$

$$\frac{\partial^{\alpha} n|C - n|(a-b)}{\partial a = b(mod n)}$$

a = b (modn)

$$a = (b + kn)(modn)$$
 $a = (b + kn)(modn)$
 $a = (b + kn)(modn)$
 $a = (a - b)(a - b)(a - kn)$
 $a = (b + kn)(modn)$
 $a = (b + kn)(modn)$

 $a\chi = b \pmod{n}$ gcd(a,n)=15/6+n8) · 52=6(mod8) 9(d(5,8)= 5 2 = 14 (mods) y=22 (mod8)y = 30 (mod8)

$$5\chi \equiv q \pmod{6}$$

 $g(d(5,6) = 1$
 $5\chi \equiv 10 \pmod{6}$
 $\chi \equiv 2 \pmod{6}$
 $\chi = 3 \pmod{6}$
 $\chi = 4 \pmod{6$

$$3\alpha = 24 \pmod{1}$$

 $2 = 8 \pmod{1}$