Learn Statistics

Are you confused between PMF and PDF?

I was too. So I revised it —and here's a simple version just for you.

Aliya Jabbar

What is PMF?

PMF = Probability Mass Function Used for: Discrete values (like 0, 1, 2...)

It gives the exact probability of an outcome.

Example

Aliya Jabbar

Example

Tossing a fair die Each number (1 to 6) has the same chance: 1/6

Number 🕪	PMF P(X = x)		
1	1/6		
2	1/6		
•••	•••		
6	1/6		

Aliya Jabbar

What is PDF?

PDF = Probability Density Function
Used for: Continuous values (like time,
height)

Probability at an exact point is 0 — we take a range.

Example

Aliya jabbar

PDF Example

You can't say:
Probability of 155 cm = ?
But you can say:
Probability of height between
155–170 cm
= Area under the curve

Quick Tip to Remember

PMF = Point (discrete)

PDF = Density (continuous)

- PMF → exact values
- **№** PDF → area under curve

Types of PIMF Distributions

- Bernoulli Distribution: This represents a single experiment or trial that has only two possible outcomes—success (1) or failure (0), like flipping a coin once.
- Binomial Distribution: This models the number of successes in a fixed number of independent Bernoulli trials, such as flipping a coin 10 times and counting how many head you get.
- Poisson Distribution: This describes the number of times a rare event occurs within a fixed interval of time or space, like counting how many phone calls come to a help desk in one hour.

Types of PDF Distributions

- Uniform Distribution: Every value within a certain range has an equal chance of occurring, like randomly picking a number between 1 and 10.
- Normal Distribution: Data is symmetrically distributed in a bell-shaped curve, with most values clustering around the average (mean), like human heights.
- Exponential Distribution: It models the time between events that happen randomly and independently, like the time between arrivals of buses at a stop.

Summary

Term	Use For	Example	Key Idea
PMF	Discrete	Die roll	Exact value prob
PDF	Continuous	Height	Range probability

Was this helpful? I'm creating more of these "Made Easy" notes!

Follow me or share this with a friend who's also learning.

Aliya jabbar

