Algebra

D. Zack Garza

August 15, 2019

Contents

1 Lecture 1 (Thu 15 Aug 2019)

1

1 Lecture 1 (Thu 15 Aug 2019)

Definition: A group is an ordered pair $(G, \cdot : G \times G \to G)$ where G is a set and \cdot is a binary operation, which satisfies the following axioms:

- 1. Associativity: $(g_1g_2)g_3 = g_1(g_2g_3)$
- 2. Identity: $\exists e \in G \ni ge = eg = g$
- 3. Inverses: $g \in G \implies \exists h \in G \ni gh = gh = e$.

Some examples of groups:

- \bullet $(\mathbb{Z},+)$
- \bullet $(\mathbb{Q},+)$
- $(\mathbb{Q}^{\times}, \times)$
- $(\mathbb{R}^{\times}, \times)$
- $(GL(n, \mathbb{R}), \times) = \{A \in Mat_n \ni det(A) \neq 0\}$
- (S_n, \circ)

Definition: A subset $S \subseteq G$ is a subgroup of G iff

- $1. \ s_1, s_2 \in S \implies s_1 s_2 \in S$
- $2. e \in S$
- $3. \ s \in S \implies s^{-1} \in S$

We denote such a subgroup $S \leq G$.

Examples:

- $(\mathbb{Z},+) \leq (\mathbb{Q},+)$
- $SL(n,\mathbb{R}) \leq GL(n,\mathbb{R})$, where $SL(n,\mathbb{R}) = \{A \in GL(n,\mathbb{R}) \ni \det(A) = 1\}$

Definition: A group G is cyclic iff G is generated by a single element.

Exercise: Show $\langle g \rangle = \{g^n \ni n \in \mathbb{Z}\} \cong \bigcap \{H \leq G \ni g \in H\}.$

Theorem: Let G be a cyclic group, so $G\langle g\rangle$.

- 1. If $|G| = \infty$, then $G \cong \mathbb{Z}$.
- 2. If $|G| = n < \infty$, then $G \cong \mathbb{Z}_n$

Definition: Let $H \leq G$, and define a right coset of G by $aH = \{ah \ni H \in H\}$. A similar definition can be made for left cosets.

Then $aH = bH \iff b^{-1}a \in G \text{ and } Ha = Hb \iff ab^{-1} \in H.$