Solving Heterogeneous-Agent Models: Bopart, Krusell & Mitman MIT shock approach

Wouter J. Den Haan London School of Economics

© by Wouter J. Den Haan

BKM is part of the Reiter Family

- Generic Reiter: Use first-order perturbation to deal with aggregate fluctuations (and projection to deal with individual problem)
- Bopart, Krusell, and Mitman (2018) or BKM: Use MIT shock approach plus linearity assumption to deal with aggregate fluctuations

Bopart, Krusell, Mitman

Overview Bopart, Krusell, and Mitman

- As in Reiter, individual problem solved with projection method
- As in Reiter, linear solution with respect to aggregate random variables
 - Linearity is assumed, not formally derived with perturbation method
 - MIT shock used to get solution for one particular aggregate shock
 - Linearity assumption does the rest

What is an MIT disturbance?

An MIT shock is a one-time shock that

- Was believed to never ever occur and
- 2 Never ever to happen again after it occurs

MIT shock in rep. agent RBC

- Start with $k_0 = k_{ss}$ and $z_1 = +\sigma + z_{ss}$
- MIT shock ⇒ perfect foresight
- System of equations

$$c_t^{-1} = \beta c_{t+1}^{-1} z_{t+1} \alpha k_{t+1}^{\alpha - 1}$$

$$c_t + k_{t+1} = z_t k_t^{\alpha}$$

$$\ln z_{t+1} = \rho \ln z_t$$

MIT shock in rep. agent RBC

• Substitute out consumption

$$\frac{1}{z_{t}k_{t}^{\alpha}-k_{t+1}} = \beta \frac{z_{t+1}\alpha k_{t+1}^{\alpha-1}}{z_{t+1}k_{t+1}^{\alpha}-k_{t+2}}$$

$$k_{0} \quad \text{given}$$

- T equations in T unknowns for given final value for k_t
- Only one value for k_1 such that k_t converges to k_{ss} . (See Blanchard-Kahn/Sunspots slides)

Combining MIT shocks

- Q: What is time path for k_t if z₁ = λσ?
 A: solution for z₁ = σ scaled by λ
- Q: What is time path for k_t if $z_5 = \sigma$? A: same, just shifted five periods
- Q: What is time path for k_t if $z_1 = \sigma$ and $z_5 = \sigma$? A: the sum of the outcomes for the two individual events

All answers above are correct under linearity assumption

Linearity also makes extension to model with more than one type of disturbance

MIT shock in het. agent model

- Solve for no-aggregate-uncertainty steady state
- Consider a one-time never-again aggregate schock
- Policy rules are now time dependent, assume $k_{i,T+1}$ is the no-aggregate-risk policy rule
- Also assume $K_{T+1} = K_{ss}$
- Solve for transition time path
 - ullet Guess a solution for aggregate capital time path $\{K_t\}_{t=1}^T$
 - Solve for individual $k_{i,t}$ policy rules for t = 1, ..., T backwards
 - Update guess for timepath for K_t

Sequence-Space Jacobian

- Title of BKM: " Exploiting MIT shocks in heterogeneous-agent economies: the impulse response as a numerical derivative.
- But "derivative" is calculated numerically for a shock of certain magnitude.
- SSJ calculates those derivates explicitly. Big advantage: SPEED
- See Auclert, Bardoczy, Rognlie, and Straub (2021)

References

- Auclert, A. B. Bardoczy, M. Rognlie, and L. Straub, 2021, Using the Sequence-Space Jacobian to Solve and Estimate Heterogeneous-Agent Models, Econometrica 89, 2375-2408.
- Bopart, T., Krusell, P., and K. Mitman, 2018, Exploiting MIT shocks in heterogeneous-agent economies: the impulse response as a numerical derivative, Journal of Economic Dynamics and Control 89, 68-92.
- LeGrand, F., and X. Ragot, 2022, Managing Inequality over the Business Cycle: Optimal Policies with Heterogeneous Agents and Aggregate Shocks, International Economic Review 63, 511–540.

References

- Reiter, M., 2009, Solving heterogeneous-agent models by projection and perturbation, *Journal of Economic Dynamics* and Control, 32, 1120-1155.
- Winberry, T., 2016, A toolbox for solving and estimating heterogeneous agent macro models. Available at http://faculty.chicagobooth.edu/thomas.winberry/research/winber