SEQUENCE LISTING

- <110> ZAPHIROPOULOS, Peter et al.
- <120> A NOVEL COMPONENT IN THE HEDGEHOG SIGNALLING PATHWAY
- <130> 2921-0130P
- <140> 09/807,007
- <141> 2001-04-06
- <160> 16
- <170> PatentIn version 3.1
- <210> 1
- <211> 1146
- <212> PRT
- <213> Homo sapiens
- <400> 1
- Met Thr Arg Ser Pro Pro Leu Arg Glu Leu Pro Pro Ser Tyr Thr Pro 1 5 10 15
- Pro Ala Arg Thr Ala Ala Pro Gln Ile Leu Ala Gly Ser Leu Lys Ala 20 25 30
- Pro Leu Trp Leu Arg Ala Tyr Phe Gln Gly Leu Leu Phe Ser Leu Gly 35 40 45
- Cys Gly Ile Gln Arg His Cys Gly Lys Val Leu Phe Leu Gly Leu Leu 50 55 60
- Ala Phe Gly Ala Leu Ala Leu Gly Leu Arg Met Ala Ile Ile Glu Thr 65 70 75 80
- Asn Leu Glu Gln Leu Trp Val Glu Val Gly Ser Arg Val Ser Gln Glu 85 90 95
- Leu His Tyr Thr Lys Glu Lys Leu Gly Glu Glu Ala Ala Tyr Thr Ser 100 105 110
- Gln Met Leu Ile Gln Thr Ala Arg Gln Glu Gly Glu Asn Ile Leu Thr 115 120 125
- Pro Glu Ala Leu Gly Leu His Leu Gln Ala Ala Leu Thr Ala Ser Lys 130 · 135 140

145	GIN	vaı	ser	Leu	150	GIÀ	гуѕ	Ser	irp	155	Leu	ASI	rys	116	160
Tyr	Lys	Ser	Gly	Val 165	Pro	Leu	Ile	Glu	Asn 170	Gly	Met	Ile	Glu	Arg 175	Met
Ile	Glu	Lys	Leu 180	Phe	Pro	Cys	Val	Ile 185	Leu	Thr	Pro	Leu	Asp 190	Cys	Phe
Trp	Glu	Gly 195	Ala	Lys	Leu	Gln	Gly 200	Gly	Ser	Ala	Tyr	Leu 205	Pro	Gly	Arg
Pro	Asp 210	Ile	Gln	Trp	Thr	Asn 215	Leu	Asp	Pro	Glu	Gln 220	Leu	Leu	Glu	Glu
Leu 225	Gly	Pro	Phe	Ala	Ser 230	Leu	Glu	Gly	Phe	Arg 235	Glu	Leu	Leu	Asp	Lys 240
Ala	Gln	Val	Gly	Gln 245	Ala	Tyr	Val	Gly	Arg 250	Pro	Cys	Leu	His	Pro 255	Asp
Asp	Leu	His	Cys 260	Pro	Pro	Ser	Ala	Pro 265	Asn	His	His	Ser	Arg 270	Gln	Ala
Pro	Asn	Val 275	Ala	His	Glu	Leu	Ser 280	Gly	Gly	Cys	His	Gly 285	Phe	Ser	His
Lys	Phe 290	Met	His	Trp	Gln	Glu 295	Glu	Leu	Leu	Leu	Gly 300	Gly	Met	Ala	Arg
Asp 305	Pro	Gln	Gly ·	Glu	Leu 310	Leu	Arg	Ala	Glu	Ala 315	Leu	Gln	Ser	Thr	Phe 320
Leu	Leu	Met	Ser	Pro 325	Arg	Gln	Leu	Tyr	Glu 330	His	Phe	Arg	Gly	Asp 335	Tyr
Gln	Thr	His	Asp 340	Ile	Gly	Trp	Ser	Glu 345	Glu	Gln	Ala	Ser	Thr 350	Val	Leu
Gln	Ala	Trp 355	Gln	Arg	Arg	Phe	Val 360	Gln	Leu	Ala	Gln	Glu 365	Ala	Leu	Pro

- Glu Asn Ala Ser Gln Gln Ile His Ala Phe Ser Ser Thr Thr Leu Asp $370 \hspace{1.5cm} 375 \hspace{1.5cm} 380$
- Asp Ile Leu His Ala Phe Ser Glu Val Ser Ala Ala Arg Val Val Gly 385 390 395 400
- Gly Tyr Leu Leu Met Leu Ala Tyr Ala Cys Val Thr Met Leu Arg Trp 405 410 415
- Asp Cys Ala Gln Ser Gln Gly Ser Val Gly Leu Ala Gly Val Leu Leu 420 425 430
- Val Ala Leu Ala Val Ala Ser Gly Leu Gly Leu Cys Ala Leu Leu Gly 435 440 445
- Ile Thr Phe Asn Ala Ala Thr Thr Gln Val Leu Pro Phe Leu Ala Leu 450 455 460
- Gly Ile Gly Val Asp Asp Val Phe Leu Leu Ala His Ala Phe Thr Glu 465 470 475 480
- Ala Leu Pro Gly Thr Pro Leu Gln Glu Arg Met Gly Glu Cys Leu Gln 485 490 495
- Arg Thr Gly Thr Ser Val Val Leu Thr Ser Ile Asn Asn Met Ala Ala 500 505 510
- Phe Leu Met Ala Ala Leu Val Pro Ile Pro Ala Leu Arg Ala Phe Ser 515 520 525
- Leu Gln Ala Ala Ile Val Val Gly Cys Thr Phe Val Ala Val Met Leu 530 540
- Val Phe Pro Ala Ile Leu Ser Leu Asp Leu Arg Arg His Cys Gln 545 550 555 560
- Arg Leu Asp Val Leu Cys Cys Phe Ser Ser Pro Cys Ser Ala Gln Val 565 570 575
- Ile Gln Ile Leu Pro Gln Glu Leu Gly Asp Gly Thr Val Pro Val Gly 580 585 590

Ile Ala His Leu Thr Ala Thr Val Gln Ala Phe Thr His Cys Glu Ala 595 600 605

Ser Ser Gln His Val Val Thr Ile Leu Pro Pro Gln Ala His Leu Val 610 620 .

Pro Pro Pro Ser Asp Pro Leu Gly Ser Glu Leu Phe Ser Pro Gly Gly 625 630 635 640

Ser Thr Arg Asp Leu Leu Gly Gln Glu Glu Glu Thr Arg Gln Lys Ala 645 650 655

Ala Cys Lys Ser Leu Pro Cys Ala Arg Trp Asn Leu Ala His Phe Ala 660 665 670

Arg Tyr Gln Phe Ala Pro Leu Leu Gln Ser His Ala Lys Ala Ile 675 680 685

Val Leu Val Leu Phe Gly Ala Leu Leu Gly Leu Ser Leu Tyr Gly Ala 690 695 700

Thr Leu Val Gln Asp Gly Leu Ala Leu Thr Asp Val Val Pro Arg Gly 705 710 715 720

Thr Lys Glu His Ala Phe Leu Ser Ala Gln Leu Arg Tyr Phe Ser Leu 725 730 735

Tyr Glu Val Ala Leu Val Thr Gln Gly Gly Phe Asp Tyr Ala His Ser 740 745 750

Gln Arg Ala Leu Phe Asp Leu His Gln Arg Phe Ser Ser Leu Lys Ala 755 760 765

Val Leu Pro Pro Pro Ala Thr Gln Ala Pro Arg Thr Trp Leu His Tyr 770 780

Tyr Arg Asn Trp Leu Gln Gly Ile Gln Ala Ala Phe Asp Gln Asp Trp 785 790 795 800

Ala Ser Gly Arg Ile Thr Arg His Ser Tyr Arg Asn Gly Ser Glu Asp 805 810 815

- Gly Ala Leu Ala Tyr Lys Leu Leu Ile Gln Thr Gly Asp Ala Gln Glu 820 825 830
- Leu Leu Asp Phe Ser Gln Leu Thr Thr Arg Lys Leu Val Asp Arg Glu 835 840 845
- Gly Leu Ile Pro Pro Glu Leu Phe Tyr Met Gly Leu Thr Val Trp Val 850 855 860
- Ser Ser Asp Pro Leu Gly Leu Ala Ala Ser Gln Ala Asn Phe Tyr Pro 865 870 875 880
- Pro Pro Pro Glu Trp Leu His Asp Lys Tyr Asp Thr Thr Gly Glu Asn 885 890 895
- Phe Arg Ile Pro Pro Ala Gln Pro Leu Glu Phe Ala Gln Phe Pro Phe 900 905 910
- Leu Leu Arg Gly Leu Gln Lys Thr Ala Asp Phe Val Glu Ala Ile Glu 915 920 925
- Gly Ala Arg Ala Cys Ala Glu Ala Gly Gln Ala Gly Val His Ala 930 935 .940
- Tyr Pro Ser Gly Ser Pro Phe Leu Phe Trp Glu Gln Tyr Leu Gly Leu 945 950 955 960
- Arg Arg Cys Phe Leu Leu Ala Val Cys Ile Leu Leu Val Cys Thr Phe 965 970 975
- Leu Val Cys Ala Leu Leu Leu Leu Asn Pro Trp Thr Ala Gly Leu Ile 980 985 990
- Val Leu Val Leu Ala Met Met Thr Val Glu Leu Phe Gly Ile Met Gly 995 1000 1005
- Phe Leu Gly Ile Lys Leu Ser Ala Ile Pro Val Val Ile Leu Val 1010 1015 1020
- Ala Ser Val Gly Ile Gly Val Glu Phe Thr Val His Val Ala Leu 1025 1030 1035

Gly	Phe 1040	Leu	Thr	Thr	Gln	Gly 1045	Ser	Arg	Asn	Leu	Arg 1050	Ala	Ala	His	
	Leu 1055	Glu	His	Thr	Phe	Ala 1060	Pro	Val	Thr	Asp	Gly 1065	Ala	Ile	Ser	
Thr 1	Leu 1070	Leu	Gly	Leu	Leu	Met 1075	Leu	Ala	Gly	Ser	His 1080	Phe	Asp	Phe	
Ile '	Val 1085	Arg	Tyr	Phe	Phe	Ala 1090	Ala	Leu	Thr	Val	Leu 1095	Thr	Leu	Leu	
Gly I	Leu 1100	Leu	His	Gly	Leu	Val 1105	Leu	Leu	Pro	Val	Leu 1110	Leu	Ser	Ile	
Leu (Gly 1115	Pro	Pro	Pro	Glu	Val 1120	Ile	Gln	Met	Tyr	Lys 1125	Glu	Ser	Pro	
	Ile 1130	Leu	Ser	Pro	Pro	Ala 1135	Pro	Gln	Gly	Gly	Gly 1140	Leu	Arg	Pro	
Glu (Glu 1145	Ile													
<210><211><211><212><212><213>	> 34 > DN		apie	ens											,
<400>		3 00	ataa	ctca		2222								acaccc	
														tggctt tgtggc	120
														atggcc	180 240
														caggag	300
														ctgata	360
														cacctc	420
														gatttg	480

aacaaaatct gctacaagtc aggagttccc cttattgaaa atggaatgat tgagcggatg 540 attgagaage tgtttccgtg cgtgatcctc accccctcg actgcttctg ggagggagcc 600 660 aaactccaag ggggctccgc ctacctgccc ggccgcccgg atatccagtg gaccaacctg gatocagago agotgotgga ggagotgggt cootttgcot coottgaggg ottocgggag 720 ctgctagaca aggcacaggt gggccaggcc tacgtggggc ggccctgtct gcaccctgat 780 gacctccact gcccacctag tgcccccaac catcacagca ggcaggctcc caatgtggct 840 900 cacgagetga gtgggggetg ccatggette teccacaaat teatgeactg geaggaggaa ttgctgctgg gaggcatggc cagagacccc caaggagagc tgctgagggc agaggccctg 960 cagagcacct tottgctgat gagtococgo cagotgtacg agoatttoog gggtgactat 1020 cagacacatg acattggctg gagtgaggag caggccagca cagtgctaca agcctggcag 1080 eggegetttg tgeagetgge eeaggaggee etgeetgaga aegetteeca geagateeat 1140 geetteteet eeaceaceet ggatgacate etgeatgegt tetetgaagt eagtgetgee 1200 cgtgtggtgg gaggctatct gctcatgctg gcctatgcct gtgtgaccat gctgcggtgg 1260 1320 gactgcgccc agtcccaggg ttccgtgggc cttgccgggg tactgctggt ggccctggcg gtggcctcag gccttgggct ctgtgccctg ctcggcatca ccttcaatgc tgccactacc 1380 caggtgctgc ccttcttggc tctgggaatc ggcgtggatg acgtattcct gctggcgcat 1440 gccttcacag aggctctgcc tggcacccct ctccaggagc gcatgggcga gtgtctgcag 1500 cgcacgggca ccagtgtcgt actcacatcc atcaacaaca tggccgcctt cctcatggct 1560 1620 gccctcgttc ccatccctgc gctgcgagcc ttctccctac aggcggccat agtggttggc tgcacctttg tagccgtgat gcttgtcttc ccagccatcc tcagcctgga cctacggcgg 1680 cgccactgcc agcgccttga tgtgctctgc tgcttctcca gtccctgctc tgctcaggtg 1740 atteagatee tgeeceagga getgggggae gggaeagtae eagtgggeat tgeecacete 1800 actgccacag ttcaagcctt tacccactgt gaagccagca gccagcatgt ggtcaccatc 1860 ctgcctcccc aagcccacct ggtgccccca ccttctgacc cactgggctc tgagctcttc 1920 agccctggag ggtccacacg ggaccttcta ggccaggagg aggagacaag gcagaaggca 1980 geetgeaagt coetgeectg tgeeegetgg aatettgeee atttegeeeg etateagttt 2040 gccccgttgc tgctccagtc acatgctaag gccatcgtgc tggtgctctt tggtgctctt 2100 ctgggcctga gcctctacgg agccaccttg gtgcaagacg gcctggccct gacggatgtg 2160

gtgcctcggg	gcaccaagga	gcatgccttc	ctgagcgccc	agctcaggta	cttctccctg	2220
tacgaggtgg	ccctggtgac	ccagggtggc	tttgactacg	cccactccca	acgcgccctc	2280
tttgatctgc	accagcgctt	cagttccctc	aaggcggtgc	tgcccccacc	ggccacccag	2340
gcaccccgca	cctggctgca	ctattaccgc	aactggctac	agggaatcca	ggctgccttt	2400
gaccaggact	gggcttctgg	gcgcatcacc	cgccactcgt	accgcaatgg	ctctgaggat	2460
ggggccctgg	cctacaagct	gctcatccag	actggagacg	cccaggagct	tctggatttc	2520
agccagctga	ccacaaggaa	gctggtggac	agagagggac	tgattccacc	cgagctcttc	2580
tacatggggc	tgaccgtgtg	ggtgagcagt	gaccccctgg	gtctggcagc	ctcacaggcc	2640
aacttctacc	ccccacctcc	tgaatggctg	cacgacaaat	acgacaccac	gggggagaac	2700
tttcgcatcc	cgccagctca	gcccttggag	tttgcccagt	tccccttcct	gctgcgtggc	2760
ctccagaaga	ctgcagactt	tgtggaggcc	atcgaggggg	cccgggcagc	atgcgcagag	2820
gccggccagg	ctggggtgca	cgcctacccc	agcggctccc	ccttcctctt	ctgggaacag	2880
tatctgggcc	tgcggcgctg	cttcctgctg	gccgtctgca	tcctgctggt	gtgcactttc	2940
ctcgtctgtg	ctctgctgct	cctcaacccc	tggacggctg	gcctcatagt	gctggtcctg	3000
gcgatgatga	cagtggaact	ctttggtatc	atgggtttcc	tgggcatcaa	gctgagtgcc	3060
atccccgtgg	tgatccttgt	ggcctctgta	ggcattggcg	ttgagttcac	agtccacgtg	3120
gctctgggct	tcctgaccac	ccagggcagc	cggaacctgc	gggccgccca	tgcccttgag	3180
cacacatttg	ccccgtgac	cgatggggcc	atctccacat	tgctgggtċt	gctcatgctt	3240
gctggttccc	actttgactt	cattgtaagg	tacttctttg	cggcgctgac	agtgctcacg	3300
ctcctgggcc	tcctccatgg	actcgtgctg	ctgcctgtgc	tgctgtccat	cctgggcccg	3360
ccgccagagg	tgatacagat	gtacaaggaa	agcccagaga	tcctgagtcc	accagctcca	3420
cagggaggcg	ggcttaggcc	cgaggagatc	tag			3453

<210> 3

<211> 126

<212> DNA

<213> Homo sapiens

<400> 3

<210> <211> 119 <212> DNA <213> Homo sapiens <400> geggeeatag tggttggetg cacetttgta geegtgatge ttgtetteee ageeateete 60 agectggace taeggeggeg ceaetgeeag egeettgatg tgetetgetg etteteeag 119 <210> 5 <211> 12886 <212> DNA <213> Homo sapiens <400> 5 egggtgaate eeggegeege geeeeggaee egeageteee tgeaeteete eeteeeagee 60 gctttaacac ccacacccca cagtctctcc cacgsccgcg ccttggcggc cccactgaat 120 ccctacgcgg ggcccagcgg taccgggaga ccgggctagc ctatgggagc gcccagataa 180 cgcgggttgg gggcgcccgc gcccccatcc ccgccagcat gactcgatcg ccgccctca 240 gagagetgee ecegagttae acaceeceag etegaacege ageaceecag gtgagtagag 300 ggggagctgg aagaaggaag agagcggagc caggtctgtc actcgggcct ctgcaaggtt 360 tgtgatgtct tgaagtgccg agtgtcatta gatgtctgaa ggcaagtgag agccagcacc 420 gcaagcaagt tgtgcgtgtg tgtcggtgtg tctgtgccgg tgtctcctca tcqtctqqcc 480 agtgagaatg aatgtctgtg ggttcacctc tgtgtccacc cgacgacagg tgtgtgtaca 540 tatgtatcct gctctcagaa aatgggccta tgccgccggg cgcggtgact cacgcctgta 600 atcccaacac tgggaggctg aggcaggcag attacctgag gtcaggagtt cgagaccagc 660 caggccaaca tggggaaact ctgtctctac taaaaataaa aattagcagg gcgtggtggc 720 gggcgcctgt agtcccaact actcgggagg ctgaggcagg agaatctctt gaacctggga 780 ggcggaggtt gcagtcaagc cgagatcaca ccactgcact ccagccaggg caacagagcg 840 900 gaaaataggc ctatgccttc ctcaggtgtg tgctggggat ggtgggtgtt acatcttcca 960 agtctgggcc tgtgtctgtg ttggtgctcc ctgtcccaca tccagaaatc aagaagcgag 1020 ggctgggcag cagatataca gggtgagaag ggaaggattt catgcattgt tacagtgatg 1080

1140

cctggctgac ccttctcttt ccatcccaga tcctagctgg gagcctgaag gctccactct

ggcttcgtgc	ttacttccag	ggcctgctct	tctctctggg	atgcgggatc	cagagacatt	1200
gtggcaaagt	gctctttctg	ggactgttgg	cctttggggc	cctggcatta	ggtctccgca	1260
tggccattat	tgagacaaac	ttggaacagc	tctgggtaga	aggtaagttg	tggacactgg	1320
ccatagetge	tcaggtatgg	tgagcccaag	acaagaacgg	ggtgaggagc	tggctactga	1380
gctctagcag	gcctggccct	ggggctggag	ggtcacctgc	tggccagagt	cctacacctg	1440
ggcatctagg	aacaccgttc	cctcccacaa	ccataaatgg	acatctgcag	atgttagacc	1500
ttgtgaattg	ggtgtataga	atatttgtct	gtgattttgc	ttaagcccta	gaccacacaa	1560
gaaatccgca	.gagccacaca	accgaggctt	ctccacttcc	ctggcagagc	tccaggaccc	1620
agaagcctgg	ggagtcggcc	tgggccatga	ccaggccctc	agggataagg	cagggactcc	1680
tctctgccgc	acctctccca	cttgtctggg	gaggcctcag	agttagaagc	ccccttcgca	1740
agttctgacc	cgcctaggcc	ctttccccc	cagctttctc	tgtttgctct	ggcagtgggc	1800
agccgggtga	gccaggagct	gcattacacc	aaggagaagc	tgggggagga	ggctgcatac	1860
acctctcaga	tgctgataca	gaccgcacgc	caggaggag	agaacatcct	cacacccgaa	1920
gcacttggcc	tccacctcca	ggcagccctc	actgccagta	aagtccaagt	atcactctat	1980
gggaaggtga	gtctggctga	gcccctgagc	agctgggggc	gaggcgtgct	gtgggggttc	2040
tggagtggga	atccccttct	tctgctgatc	tcctatgccc	ctggctattg	cagtcctggg	2100
atttgaacaa	aatctgctac	aagtcaggag	ttccccttat	tgaaaatgga	atgattgagc	2160
gggtaagtgt	cctgagaggg	agtagaggca	gaactttttc	tgtagcgtgg	gaggactcag	2220
agaccgagca	agccccacag	cctgcaatct	gcccccttaa	aactaaggag	ggggattgca	2280
gagggcatcc	tacaaaggtt	gtggggcagg	actgacgtgg	cccggggtat	ccctggcaga	2340
tgattgagaa	gctgtttccg	tgcgtgatcc	tcaccccct	cgactgcttc	tgggagggag	2400
ccaaactcca	agggggctcc	gcctacctgc	cgtgagtgcc	actcctgggg	ccctgcttca	2460
tctcccgctg	gggactctcc	cagcagaaag	gaggggtctg	gggaatgagg	atgatcaaaa	2520
ccttaccaag	gtcctaatta	cctcccaggc	caggaacaga	gagcatgggc	ttccccaagg	2580
ctctctccac	atcctccttc	tctttccctc	tcaaggaagg	aagacctgac	ttatttacac	2640
aaaactaaac	acaaagatct	gtaagatctg	agcaaaggag	aaaaagatcc	ccacaaagag	2700
gctttgctgg	gggaaattac	ctaggtgttt	gctaagccat	tgcccaggcc	agaaagaaaa	2760
cctgctacag	gcatgtgcct	gctggttgta	tattagaacc	aagcacacag	cttggtaagg	2820

aactcagtgg	ggcctttctg	ggccctttct	atgtattagg	taaccctgcc	ctgatattcg	2880
tctcagcccc	ttgtactctt	ctacagetea	ctgtagcacc	ctggtgggcc	catgcagcct	2940
ggcagttctg	agaagctgag	gcttgcacac	cctccatatg	gaaggacaaa	tcggcagata	3000
agaggagggt	ggggtacagc	atggcgcccc	agcagcagtt	tggagcctgg	gttttcgtcc	3060
ctgaccctca	ccaactatag	gcttttccct	cagcggccgc	ccggatatcc	agtggaccaa	3120
cctggatcca	gagcagctgc	tggaggagct	gggtcccttt	gcctcccttg	agggcttccg	3180
ggagctgcta	gacaaggcac	aggtgggcca	ggcctacgtg	gggcggccct	gtctgcaccc	3240
tgatgacctc	cactgcccac	ctagtgcccc	caaccatcac	agcaggcagg	tgggttccaa	3300
ccaggtctgc	cagggaaagg	ctgttttcct	tccctttccc	ttcctcatac	tcctgtgttc	3360
tgggggagct	gactgctctg	tgccctgacc	ccccacttcc	tggccattat	taccctgctc	3420
ccacagtgcc	aggcccccaa	tgttccattc	ccattcagtt	atcctacgga	gccctcaagt	3480
ggtatatatg	aatccctttt	tccttttcta	agcctagata	aggctggact	tcttttttt	3540
ttttttttg	agtctcactc	tgtcacccag	gctggagtgc	agtagttcga	tcttggctca	3600
ctgcaacctc	ggctcaagca	attctcctgc	cttagcctcc	tgagtagctg	ggattacagg	3660
tgcccaccac	catgcccggc	taatttttat	tagcctccca	aagtgctggg	attacaggcg	3720
tgagccactg	cgcctggcca	aggctggact	ttttatcaaa	atagactaat	acagggaaac	3780
taagaacaca	gcaggtaagc	atgaatatca	tacctggttt	cccaggtttc	tttgtggccc	3840
tgcaaatgtg	gtacttttt	cagaatccgc	cagttacacc	agctcctccc	agaagcctac	3900
ttccaggcct	ctgcttcccc	ttggggcttc	ctgtctgcgg	gatactagct	gttcactcct	3960
gcagagcagt	caagaggctc	agaatagtta	cctacactcc	agccctactg	agcttcatgg	4020
cagcgtggtt	cctggaggtg	gaagcccagg	gacactcagt	tatccacggc	cagggccttg	4080
agcattaacc	cctcctgttc	ccctccaggg	ctcccaatgt	ggctcacgag	ctgagtgggg	4140
gctgccatgg	cttctcccac	aaattcatgc	actggcagga	ggaattgctg	ctgggaggca	4200
tggccagaga	ccccaagga	.gagctgctga	ggtagggtct	cctctgggag	ttggtgaggg	4260
gactctgttc	atgagaaccc	atactgtaat	gccaggcagc	tctggcaaaa	ggcccttcac	4320
atccctcacc	aggtgtttgg	gccagctctg	acccctggtt	ctcccacacc	cccaccaggg	4380
cagaggccct	gcagagcacc	ttcttgctga	tgagtccccg	ccagctgtac	gagcatttcc	4440
ggggtgacta	tcagacacat	gacattggct	ggagtgagga 	gcaggccagc	acagtgctac	4500

4560 aagcctggca gcggcgcttt gtgcaggtcg gtatggacaa ggacaagggg ggtgccctga 4620 ggccattccc tectectgee ecetectate caccetgttt etecagetgg eceaggagge 4680 cctgcctgag aacgcttccc agcagatcca tgccttctcc tccaccaccc tggatgacat cctgcatgcg ttctctgaag tcagtgctgc ccgtgtggtg ggaggctatc tgctcatggt 4740 4800 gggtcttgca cetggeacet tgeceecace ceacetecaa ceagtgeeca eeetgggage ccctgagact gccctttccc cccacagctg gcctatgcct gtgtgaccat gctgcggtgg 4860 4920 gactgcgccc agtcccaggg ttccgtgggc cttgccgggg tactgctggt ggccctggcg 4980 gtggcctcag gccttgggct ctgtgccctg ctcggcatca ccttcaatgc tgccactacc 5040 caggtacgcc aggactgcag ggcagactca gtgccagtca ccaggcttca cgggtcctca 5100 getgeeeget cetetgeece tecaggtget gecettettg getetgggaa teggegtgga 5160 tgacgtattc ctgctggcgc atgccttcac agaggctctg cctggcaccc ctctccaggt 5220 5280 gttcaagtga cccttgggct gctaatgaac ctcggtgcct cttgtcccca tctgtaaaca 5340 ggggaaataa tagtgctgtg tcctaagggt tattgtttgg atcagtgagg taactcaagt 5400 tgaatgetta gaacageeca teataegtae atggtaeeca ataaatgeta geeaetgtgt 5460 tatgactgcc ccacctetgc accccaagtt cctgagcctc cccttcactc cactttgaca 5520 eggeeetee ettgtgaeet gagggeaggt ecceaetetg teetggeagg agegeatggg 5580 cgagtgtctg cagcgcacgg gcaccagtgt cgtactcaca tccatcaaca acatggccgc 5640 cttcctcatg gctgccctcg ttcccatccc tgcgctgcga gccttctccc tacaggcggc 5700 catagtggtt ggctgcacct ttgtagccgt gatgcttgtc ttcccagcca tcctcagcct ggacctacgg cggcgccact gccagcgcct tgatgtgctc tgctgcttct ccaggtactg 5760 cgtgcgcccc agccccttcc tcccgtgacc cacgccagcc tgtcccctca ccagcatttc 5820 5880 aaggcacaga cetgtcatee actetetace tettecagte cetgetetge teaggtgatt 5940 cagateetge eccaggaget gggggaeggg acagtaceag tgggeattge ceaceteaet 6000 gccacagttc aagcetttac ccactgtgaa gccagcagcc agcatgtggt caccatcctg cctccccaag cccacctggt gccccacct tctgacccac tgggctctga gctcttcagc 6060 6120 cctggagggt ccacacggga ccttctaggc caggaggagg agacaaggca gaaggcagcc tgcaagtccc tgccctgtgc ccgctggaat cttgcccatt tcgcccgcta tcagtttgcc 6180

ccgttgctgc	tccagtcaca	tgctaaggta	agactgggca	gagcagggca	gagacttagc	6240
atctctgggc	ccagaagggc	agagagggct	tagtccactg	cctgaggggc	tgggggcagc	6300
cctggggtct	ccagcttagt	tgctacatcc	cgcaggccat	cgtgctggtg	ctctttggtg	6360
ctcttctggg	cctgagcctc	tacggagcca	ccttggtgca	agacggcctg	gccctgacgg	6420
atgtggtgcc	tcggggcacc	aaggagcatg	ccttcctgag	cgcccagctc	aggtacttct	6480
ccctgtacga	ggtggccctg	gtgacccagg	gtggctttga	ctacgcccac	tcccaacgcg	6540
ccctctttga	tctgcaccag	cgcttcagtt	ccctcaaggc	ggtgctgccc	ccaccggcca	6600
cccaggcacc	ccgcacctgg	ctgcactatt	accgcaactg	gctacagggt	gagaggcgag	6660
gagacgggca	gggaggggtg	ctgcagggag	aaacgccctg	gggccaccag	ctaatagaac	6720
cctatcctgg	tctcccccag	gaatccaggc	tgcctttgac	caggactggg	cttctgggcg	6780
catcacccgc	cactcgaccg	caatggctct	gaggatgggg	ccctggccta	caagctgctc	6840
atccagactg	gagacgccca	ggagcttctg	gatttcagcc	aggttgggag	agggctggag	6900
gggtccacta	gtacaggggc	tgcaggcctc	ctgggcccag	gccttcagcc	ctctctgcct	6960
ctgcagctga	ccacaaggaa	gctggtggac	agagaggac	tgattccacc	cgagctcttc	7020
tacatggggc	tgaccgtgtg	ggtgagcagt	gaccccctgg	gtctggcagc	ctcacaggcc	7080
aacttctacc	ccccacctcc	tgaatggctg	cacgacaaat	·acgacaccac	gggggagaac	7140
tttcgcagtg	agtcttgggg	ggagctcggc	aagagcctca	gcctcgccca	cacaagccct	7200
gagcctgagg	ccctgcccac	tctgccccgt	gctcaccgcc	ctgtccctct	ccctcttctc	7260
ccttcccctc	ccctccacag	tcccgccagc	tcagcccttg	gagtttgccc	agttcccttt	7320
cctgctgcgt	ggcctccaga	agactgcaga	ctttgtggag	gccatcgagg	gggcccgggc	7380
agcatgcgca	gaggccggcc	aggctggggt	gcacgcctac	cccagcggct	ccccttcct	7440
cttctgggaa	cagtatctgg	gcctgcggcg	ctgcttcctg	ctggccgtct	gcatcctgct	7500
ggtgtgcact	ttcctcgtct	gtgctctgct	gctcctcaac	ccctggacgg	ctggcctcat	7560 [°]
agtgagtgct	tgcaggagtg	gggacagaga	caccccaccc	ttccctgccc	agcctgtcat	7620
ccctcctgcc	aggagccctc	tgtgagccct	gtctccctca	ggtgctggtc	ctggcgatga	7680
tgacagtgga	actctttggt	atcatgggtt	tcctgggcat	caagctgagt	gccatccccg	7740
tggtgatcct	tgtggcctct	gtaggcattg	gcgttgagtt	cacagtccac	gtggctctgg	7800
tgagcacggg	caccccgggg	agggaccaat	cagctgattc 13	agtattcaac	acatattgtt	7860

caagccccta ctatgtgcta ggtactattt aagaatttgg gctgggtgga cgtggtagct 7920 catteetgta ateccageae tttgggagge egaggeaggt ggateaeetg aggteaggag 7980 ttcgaaacca gcctggccaa catggtgaaa ccctgtcttt actaaaaaata caaaaaatta 8040 gccaggcgtg gtggcacatg ccagtaatcc cagctacttt ggaggctgag gcagaattgc 8100 ttgaacctgg gaggcgaagg ttgcagtgag ctgagatcgt gccattgcac tccagcctgg 8160 8220 cagtggctca tgcctgtaat tgggatgatg ctggggcatt ttgggaggcc aaggcaggcg 8280 gateceetga agteaggagt teaagaceag eetggeeaae attgeaaaae eeegteteta 8340 ctgaaaatac aaaaattagc tgggcgtggt ggctcatgcc tgtaatccca gctactcagg 8400 aggctgaggc aggagaatta cttgaaccca ggaggcggag gttacagtga gctgagatca 8460 catcactgta ctccagcctg ggcaaaagag caagattcaa tcttcaaaaa aagaatttgg 8520 aaaataaaaa taaaaagaat acgggatata atagcaatac agttttttac ctccaaggaa 8580 cttatattct agggatagag atagacaata agggctgggt gaggtggctt acgcctgtaa 8640 tcccagcact ttgggaagcc gaggtgggca catcacttga ggtcaggagt tcaagaccag 8700 cctggccgac atggtgaaac cccatctcta ctaaaaatat gaaaattagc tgggtgtggg 8760 ggtgcatgcc tgtaatccca gctacttgga aggctgaggc aggagaatca cttgaacccg 8820 ggagggtgga ggttgccatg agccgagacc atgccactgc actccagcct gggagaccga 8880 gcaaaactcc atctcaaaaa aagaaaaaaa aacctcagcc tcccaaagtg ctgggattac 8940 aggcatgagc caccgtgccc gggcttgttt gttttaagag acagggtctc actctgtcac 9000 ccaggetgta ccctattttc tacgtgtctc tgtgtctaag ctcaccaaac ccatccatac 9060 agtgttacct aaaaggactc acgcatgctc cctgtacagt tcccatgaac ttagttcacc 9120 cagcctttgg tgggccaagg tatcgttgag ctctgaagac agatacagct cgggacatgg 9180 ctgagctggc catgactggc agaggagcag ctccaggacc actctgtttt cctagggctt 9240 cctgaccacc cagggcagcc ggaacctgcg ggccgcccat gcccttgagc acacatttgc 9300 ccccgtgacc gatggggcca tctccacatt gctgggtctg ctcatgcttg ctggttccca 9360 ctttgacttc attgtaaggt agggagggct cggggcaggg aggcagggct caggacaggc 9420 ctgggctgac tccccccaca ccctacccct aggtacttct ttgcggcgct gacagtgctc 9480 acgctcctgg gcctcctcca tggactcgtg ctgctgcctg tgctgctgtc catcctgggc 9540

ccąccgccag	aggtgaccac	accctcggca	ccatccctct	actcccagcc	caagggacgg	9600
ggtagggaga	ggcaagggaa	gggacagagc	cctgtggccc	acagacaggt	acctccccaa	9660
caggtgccac	cagctgaagg	tggcagcctc	ctcctttccc	cagacaccat	gttcctgccc	9720
ctcagccctc	ctggcttctt	catgggaccc	accttagact	tttaggatcc	agaacaaggt	9780
gcagggtttg	ccccaggcct	caacatcctg	tcgcctgcca	gctctcatat	cctgctggag	9840
accaacaagg	gccccagctt	cccaacagtc	atggtaatcc	ccagcgagat	gctaaagggg	9900.
acgggagccc	caggggcccg	tgggcttact	ggggctggtg	tctccccaca	ggtgatacag	9960
atgtacaagg	aaagcccaga	gatcctgagt	ccaccagctc	cacagggagg	cgggcttagg	10020
tggggggcat	cctcctccct	gccccagagc	tttgccagag	tgactacctc	catgaccgtg	10080
gccatccacc	caccccccct	gcctggtgcc	tacatccatc	cagcccctga	tgagccccct	10140
tggtcccctg	ctgtcactag	ctctggcaac	ctcagttcca	ggggaccagg	tccagccact	10200
gggtgaaaga	gcagctgaag	cacagagacc	atgtgtgggg	cgtgtggggt	cactgggaag	10260
cactgggtct	ggtgttagac	gcaggatgga	cccctggagg	gctctgctgc	tgctgcatcc	10320
cctctcccga	cccagctgtc	atgggcctcc	ctgatatcca	tacagaacag	ccaccgattt	10380
gcacatccag	gcctgtgtga	gcctgtatct	gtgtcacttg	agagtgaaag	ctggcacttg	10440
gggctgcagt	gcagccctgt	ccccttccc	accccacacc	actgcctgcc	cagctgacca	10500
agcctgaggg	accctccagc	acccttccgt	ctggtgactc	ctgggcaggc	tctccatatc	10560
cctgcccacc	tcctaccaca	tccattattt	atatgaaaat	gtctattttt	gtagtataca	10620
tacatgttag	ctatgatgaa	agttttattt	tttaaagaat	gaaatatatt	ctatgtgaag	10680
ctatgatgaa	agttttattt	tttaaagaat	gaaatatatt	ctatgtgaac	taatctcgaa	10740
agttttattt	tttaaagaat	gaaatatatt	ctatgtgtgc	aagtgaacat	tagcttcagt	10800
tgctttttt	tggacagagt	ggggagtttg	caagtgaaca	ttagctattg	gaaggagctt	10860
ctctggtgcc	aggacctgag	gtattagctt	ctctagttct	gggtggaaaa	gaccccagat	10920
tctggatttt	tgtcatatac	ttggtaacat	catctggatt	aagtgcttac	tatacaaaac	10980
gataacaaat	tttgttggtg	tgaaatccta	ctgggttcaa	tctggagacc	gagagcagaa	11040
aaaaaagaac	cccactgtgt	ggctttcaga	gccaccatat	tccagcctgc	ccgtctctcc	11100
agactcacct	ccacctacct	gcttcacccg	cacgggaaac	ggcaaggcag	aggggcaaag	11160
ccatgcagca	ggtggaaggc	gaggtggagg	cagatcagga	aagcagccag	ttgaagcaga	11220

gagaggtcaa	cagggtctgg	ggagcttctc	aggaggtttg	tggacccagg	gaaaggagcc	11280
aggttccaga	gcaacctcca	aggcaaaggc	ctctgtaagt	tggttgtcct	gacagccgag	11340
aggtgtcttt	ggccagtcag	ccagtggatc	agttgcggga	actgctcaga	aactgaggtg	11400
ctagcagtta	gtgaggacac	agcgtaagtt	gtttgttctg	tgaaagttga	acagctccac	11460
taagcagagg	ccttgaagag	tggccacagc	cctggaatag	agcacagagc	ctcacctaga	11520
ggcgtgggga	ggtttgcaac	tgccccttcc	cagccatagc	ttaggaccca	tagtctagtt	11580
cacatagacc	ctgggctcca	accacccact	caccaggaat	gatcccaccc	caggaacaat	11640
gcgttctcac	atcccacccc	acctggacaa	aggccaggaa	atcatgttct	gaccaaaaga	11700
tacaacaaca	aaaacaacaa	caacaaaaaa	cgcctattgc	aattgaatcc	acgctaaaat	11760
gcctaaaaag	ctcaagagaa	gcgggtagtt	ggcagagaac	ctagagtagg	gggtgcaacc	11820
agcaggccca	agggagggag	gctgcatttg	ggtccagcag	tgtttgggtc	accaagaagg	11880
gccttctagg	tggagcagag	agageteace	aggccagaat	agtgcaaagg	gggtcagccc	11940
tcagtgccac	ttaccagcgg	agtaaccctg	ggcaagttag	ccagcctcac	taagcctccc	12000
catcttcatc	tttccaggcc	cgaggagatc	tagcctctgc	ctcccacccc	agcaccccct	12060
catcagacac	aaggagcgcc	actgtctgga	caggctgaat	tggtcttcgg	gtccctaatt	12120
tctcatacgc	cattccctct	gcctagaaca	ctttctcacc	tccccttgat	gtgaccccat	12180
atcacccttc	gaggtgaatt	ggatcggatg	ccatctcctc	caggaggggt	ggggtcgtgc	12240
ctcctgtgag	gtcccagtgc	ccctgagtgt	ctgtgcccgt	ctgtttcccc	gtccctctct	1′2300
ctaagcccgg	aggcttactg	cgggtaagga	cggcgggaca	ggaccttaac	ccctgggacg	12360
aacaccagct	ccgcaaagga	ctccgcaccc	ggcgccgccc	acggggtgcg	ggtcccagga	12420
ggaccagcag	agaggagcat	aggagagcaa	aggagatcag	tgacccatgg	cttccccggt	12480
ggcgcggaac	agcccggagc	cgcctgtgat	ttgcataccc	atggtgcacc	acgaaaagat	12540
accctcaaga	tgcttgcact	ccctctgtgc	gcgcatttct	gcactgtttt	agagcatgat	12600
gcctcttaca	cgcatctgtg	tgcataaact	acatataggg	agtgcgtacc	acgcaggcat	12660
ccaacaacca	taagtgtgtt	aagtgttagt	tctccctgcg	aggttcgaag	cggaagtcac	12720
gaatatactc	gggtttctct	tcaaagcgca	taaatctttc	gccttttact	aaagatttcc	12780
gtggagagaa	agttgtgagt	ttttattcaa	ttttttgagg	cctcttattt	cctgaggcta	12840
catttttaag	tattaaaagt	taggcaacta	caaaaaaaa	aaaaaa		12886

<210> 6

<211> 1447

<212> PRT

<213> Homo sapiens

<400> 6

Met Ala Ser Ala Gly Asn Ala Ala Glu Pro Gln Asp Arg Gly Gly 1 5 10 15

Gly Ser Gly Cys Ile Gly Ala Pro Gly Arg Pro Ala Gly Gly Gly Arg
20 25 30

Arg Arg Arg Thr Gly Gly Leu Arg Arg Ala Ala Ala Pro Asp Arg Asp 35 40 45

Tyr Leu His Arg Pro Ser Tyr Cys Asp Ala Ala Phe Ala Leu Glu Gln 50 55 60

Ile Ser Lys Gly Lys Ala Thr Gly Arg Lys Ala Pro Leu Trp Leu Arg 65 70 75 80

Ala Lys Phe Gln Arg Leu Leu Phe Lys Leu Gly Cys Tyr Ile Gln Lys 85 90 95

Asn Cys Gly Lys Phe Leu Val Val Gly Leu Leu Ile Phe Gly Ala Phe 100 105 110

Ala Val Gly Leu Lys Ala Ala Asn Leu Glu Thr Asn Val Glu Glu Leu 115 120 125

Trp Val Glu Val Gly Gly Arg Val Ser Arg Glu Leu Asn Tyr Thr Arg 130 135 140

Gln Lys Ile Gly Glu Glu Ala Met Phe Asn Pro Gln Leu Met Ile Gln 145 150 155 160

Thr Pro Lys Glu Glu Gly Ala Asn Val Leu Thr Thr Glu Ala Leu Leu 165 170 175

Gln His Leu Asp Ser Ala Leu Gln Ala Ser Arg Val His Val Tyr Met 180 185 190

Leu Ile Thr Glu Thr Gly Tyr Met Asp Gln Ile Ile Glu Tyr Leu Tyr Pro Cys Leu Ile Ile Thr Pro Leu Asp Cys Phe Trp Glu Gly Ala Lys Leu Gln Ser Gly Thr Ala Tyr Leu Leu Gly Lys Pro Pro Leu Arg Trp Thr Asn Phe Asp Pro Leu Glu Phe Leu Glu Glu Leu Lys Lys Ile Asn Tyr Gln Val Asp Ser Trp Glu Glu Met Leu Asn Lys Ala Glu Val Gly His Gly Tyr Met Asp Arg Pro Cys Leu Asn Pro Ala Asp Pro Asp Cys Pro Ala Thr Ala Pro Asn Lys Asn Ser Thr Lys Pro Leu Asp Met Ala Leu Val Leu Asn Gly Gly Cys His Gly Leu Ser Arg Lys Tyr Met His Trp Gln Glu Glu Leu Ile Val Gly Gly Thr Val Lys Asn Ser Thr Gly Lys Leu Val Ser Ala His Ala Leu Gln Thr Met Phe Gln Leu Met Thr

Tyr Asn Arg Gln Trp Lys Leu Glu His Leu Cys Tyr Lys Ser Gly Glu

Arg Thr Tyr Val Glu Val Val His Gln Ser Val Ala Gln Asn Ser Thr \$405\$

Pro Lys Gln Met Tyr Glu His Phe Lys Gly Tyr Glu Tyr Val Ser His

Ile Asn Trp Asn Glu Asp Lys Ala Ala Ile Leu Glu Ala Trp Gln

380 .

- Gln Lys Val Leu Ser Phe Thr Thr Thr Thr Leu Asp Asp Ile Leu Lys 420 425 430
- Ser Phe Ser Asp Val Ser Val Ile Arg Val Ala Ser Gly Tyr Leu Leu 435 440 445
- Met Leu Ala Tyr Ala Cys Leu Thr Met Leu Arg Trp Asp Cys Ser Lys 450 460
- Ser Gln Gly Ala Val Gly Leu Ala Gly Val Leu Leu Val Ala Leu Ser 465 470 475
- Val Ala Ala Gly Leu Gly Leu Cys Ser Leu Ile Gly Ile Ser Phe Asn 485 490 495
- Ala Ala Thr Thr Gln Val Leu Pro Phe Leu Ala Leu Gly Val Gly Val 500 505 510
- Asp Asp Val Phe Leu Leu Ala His Ala Phe Ser Glu Thr Gly Gln Asn 515 520 525
- Lys Arg Ile Pro Phe Glu Asp Arg Thr Gly Glu Cys Leu Lys Arg Thr 530 535 540 .
- Gly Ala Ser Val Ala Leu Thr Ser Ile Ser Asn Val Thr Ala Phe Phe 545 550 555 560
- Met Ala Ala Leu Ile Pro Ile Pro Ala Leu Arg Ala Phe Ser Leu Gln 565 570 575
- Ala Ala Val Val Val Phe Asn Phe Ala Met Val Leu Leu Ile Phe 580 585 590
- Pro Ala Ile Leu Ser Met Asp Leu Tyr Arg Arg Glu Asp Arg Arg Leu 595 600 605
- Asp Ile Phe Cys Cys Phe Thr Ser Pro Cys Val Ser Arg Val Ile Gln 610 620
- Val Glu Pro Gln Ala Tyr Thr Asp Thr His Asp Asn Thr Arg Tyr Ser 625 630 635 640

Pro Pro Pro Pro Tyr Ser Ser His Ser Phe Ala His Glu Thr Gln Ile 645 650 655

.]

Thr Met Gln Ser Thr Val Gln Leu Arg Thr Glu Tyr Asp Pro His Thr $660 \hspace{1cm} 665 \hspace{1cm} 670$

His Val Tyr Tyr Thr Thr Ala Glu Pro Arg Ser Glu Ile Ser Val Gln 675 680 685

Pro Val Thr Val Thr Gln Asp Thr Leu Ser Cys Gln Ser Pro Glu Ser 690 695 700

Thr Ser Ser Thr Arg Asp Leu Leu Ser Gln Phe Ser Asp Ser Ser Leu 705 710 715 720

His Cys Leu Glu Pro Pro Cys Thr Lys Trp Thr Leu Ser Ser Phe Ala 725 730 735

Glu Lys His Tyr Ala Pro Phe Leu Leu Lys Pro Lys Ala Lys Val Val 740 745 750

Val Ile Phe Leu Phe Leu Gly Leu Leu Gly Val Ser Leu Tyr Gly Thr 755 760 765

Thr Arg Val Arg Asp Gly Leu Asp Leu Thr Asp Ile Val Pro Arg Glu 770 780

Thr Arg Glu Tyr Asp Phe Ile Ala Ala Gln Phe Lys Tyr Phe Ser Phe 785 790 795 800

Tyr Asn Met Tyr Ile Val Thr Gln Lys Ala Asp Tyr Pro Asn Ile Gln 805 810 815

His Leu Leu Tyr Asp Leu His Arg Ser Phe Ser Asn Val Lys Tyr Val 820 825 830

Met Leu Glu Glu Asn Lys Gln Leu Pro Lys Met Trp Leu His Tyr Phe 835 840 845

Arg Asp Trp Leu Gln Gly Leu Gln Asp Ala Phe Asp Ser Asp Trp Glu 850 855 860

- Thr Gly Lys Ile Met Pro Asn Asn Tyr Lys Asn Gly Ser Asp Asp Gly 865 870 875 880
- Val Leu Ala Tyr Lys Leu Leu Val Gln Thr Gly Ser Arg Asp Lys Pro 885 890 895
- Ile Asp Ile Ser Gln Leu Thr Lys Gln Arg Leu Val Asp Ala Asp Gly 900 905 910
- Ile Ile Asn Pro Ser Ala Phe Tyr Ile Tyr Leu Thr Ala Trp Val Ser 915 920 925
- Asn Asp Pro Val Ala Tyr Ala Ala Ser Gln Ala Asn Ile Arg Pro His 930 935 940
- Arg Pro Glu Trp Val His Asp Lys Ala Asp Tyr Met Pro Glu Thr Arg 945 950 955 960
- Leu Arg Ile Pro Ala Ala Glu Pro Ile Glu Tyr Ala Gln Phe Pro Phe 965 970 975
- Tyr Leu Asn Gly Leu Arg Asp Thr Ser Asp Phe Val Glu Ala Ile Glu 980 985 990
- Lys Val Arg Thr Ile Cys Ser Asn Tyr Thr Ser Leu Gly Leu Ser Ser 995 1000 1005
- Tyr Pro Asn Gly Tyr Pro Phe Leu Phe Trp Glu Gln Tyr Ile Gly 1010 1015 1020
- Leu Arg His Trp Leu Leu Phe Ile Ser Val Val Leu Ala Cys 1025 1030 1035
- Thr Phe Leu Val Cys Ala Val Phe Leu Leu Asn Pro Trp Thr Ala 1040 1045 1050
- Gly Ile Ile Val Met Val Leu Ala Leu Met Thr Val Glu Leu Phe 1055 1060 1065
- Gly Met Met Gly Leu Ile Gly Ile Lys Leu Ser Ala Val Pro Val 1070 1075 1080

- Val Ile Leu Ile Ala Ser Val Gly Ile Gly Val Glu Phe Thr Val 1085 1090 1095
- His Val Ala Leu Ala Phe Leu Thr Ala Ile Gly Asp Lys Asn Arg 1100 1105 1110
- Arg Ala Val Leu Ala Leu Glu His Met Phe Ala Pro Val Leu Asp 1115 1120 1125
- Gly Ala Val Ser Thr Leu Leu Gly Val Leu Met Leu Ala Gly Ser 1130 1135 1140
- Glu Phe Asp Phe Ile Val Arg Tyr Phe Phe Ala Val Leu Ala Ile 1145 1150 1155
- Leu Thr Ile Leu Gly Val Leu Asn Gly Leu Val Leu Pro Val 1160 1165 1170
- Leu Leu Ser Phe Phe Gly Pro Tyr Pro Glu Val Ser Pro Ala Asn 1175 1180 1185
- Gly Leu Asn Arg Leu Pro Thr Pro Ser Pro Glu Pro Pro Pro Ser 1190 1195 1200
- Val Val Arg Phe Ala Met Pro Pro Gly His Thr His Ser Gly Ser 1205 1210 1215
- Asp Ser Ser Asp Ser Glu Tyr Ser Ser Gln Thr Thr Val Ser Gly 1220 1225 1230
- Leu Ser Glu Glu Leu Arg His Tyr Glu Ala Gln Gln Gly Ala Gly 1235 1240 1245
- Gly Pro Ala His Gln Val Ile Val Glu Ala Thr Glu Asn Pro Val 1250 1260
- Phe Ala His Ser Thr Val Val His Pro Glu Ser Arg His His Pro 1265 1270 1275
- Pro Ser Asn Pro Arg Gln Gln Pro His Leu Asp Ser Gly Ser Leu 1280 1285 1290

Pro Pro Gly Arg Gln Gly Gln Gln Pro Arg Arg Asp Pro Pro Arg 1295 1300 1305

Glu Gly Leu Trp Pro Pro Leu Tyr Arg Pro Arg Arg Asp Ala Phe 1310 1315 1320

Glu Ile Ser Thr Glu Gly His Ser Gly Pro Ser Asn Arg Ala Arg 1325 1330 1335

Trp Gly Pro Arg Gly Ala Arg Ser His Asn Pro Arg Asn Pro Ala 1340 1345 1350

Ser Thr Ala Met Gly Ser Ser Val Pro Gly Tyr Cys Gln Pro Ile 1355 1360 1365

Thr Thr Val Thr Ala Ser Ala Ser Val Thr Val Ala Val His Pro 1370 1375 1380

Pro Pro Val Pro Gly Pro Gly Arg Asn Pro Arg Gly Gly Leu Cys 1385 1390 1395

Pro Gly Tyr Pro Glu Thr Asp His Gly Leu Phe Glu Asp Pro His 1400 1405 1410

Val Pro Phe His Val Arg Cys Glu Arg Arg Asp Ser Lys Val Glu 1415 1420 1425

Val Ile Glu Leu Gln Asp Val Glu Cys Glu Glu Arg Pro Arg Gly 1430 1435 1440

Ser Ser Ser Asn 1445

<210> 7

<211> 54

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(54)

<223>

<400> 7 ggg ctt agg tgg ggg gca tcc tcc tcc ctg ccc cag agc ttt gcc aga 48 Gly Leu Arg Trp Gly Ala Ser Ser Ser Leu Pro Gln Ser Phe Ala Arg 10 gtg act 54 Val Thr <210> 8 <211> 18 <212> PRT <213> Homo sapiens <400> 8 Gly Leu Arg Trp Gly Ala Ser Ser Leu Pro Gln Ser Phe Ala Arg 5 10 15 Val Thr <210> 9 <211> 54 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(54) <223> <400> 9 acc tcc atg acc gtg gcc atc cac cca ccc ccc ctg cct ggt gcc tac 48 Thr Ser Met Thr Val Ala Ile His Pro Pro Pro Leu Pro Gly Ala Tyr 5 atc cat 54 Ile His <210> 10 <211> 18 <212> PRT <213> Homo sapiens <400> 10 Thr Ser Met Thr Val Ala Ile His Pro Pro Pro Leu Pro Gly Ala Tyr

J

10

```
Ile His
<210> 11
<211>
      54
<212>
       DNA
<213>
      Homo sapiens
<220>
<221> CDS
<222> (1)..(54)
<223>
<400> 11
cca gcc cct gat gag ccc cct tgg tcc cct gct gcc act agc tct ggc
                                                                      48
Pro Ala Pro Asp Glu Pro Pro Trp Ser Pro Ala Ala Thr Ser Ser Gly
                                    10
aac ctc
                                                                      54
Asn Leu
<210> 12
<211> 18
<212> PRT
<213> Homo sapiens
<400> 12
Pro Ala Pro Asp Glu Pro Pro Trp Ser Pro Ala Ala Thr Ser Ser Gly
                                    10
Asn Leu
<210> 13
<211> 33
<212> DNA
<213>
      Homo sapiens
<220>
<221>
      CDS
<222>
      (1)..(33)
<223>
```

25

10

33

<400> 13

agt tcc agg gga cca ggt cca gcc act ggg tga

Ser Ser Arg Gly Pro Gly Pro Ala Thr Gly

5

```
<210> 14
<211> 10
<212> PRT
<213> Homo sapiens
<400> 14
Ser Ser Arg Gly Pro Gly Pro Ala Thr Gly
<210> 15
<211> 18
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)..(18)
<223>
<400> 15
agg ccc gag gag atc tag
                                                                     18
Arg Pro Glu Glu Ile
<210> 16
<211> 5
<212> PRT
<213> Homo sapiens
<400> 16
Arg Pro Glu Glu Ile
               5
```