Computational Electromagnetics

Hw8-Q2

Mohammadreza Arani

1401/10/26

```
clear; clc; close all;
```

The problem is:

۲۰ با استره از تبدی shanks عمورس (۱-) کی مارین بند عرایف الفارت این در این از این در این از این از این از این ا مرید بزاره کامیونز بیره ناشد. تعدد جمات اذبی عبر طیراز سر را در را فی به تعدد اذبی در ماری سنیم
سریت باشد (با درنظ رفتن که بعیر داهد عبر طیراز)

Shanks's Transform formulation is:

$$S = \frac{\left(S_{n+1} * S_{n-1} - S_n^2\right)}{\left(S_{n+1} + S_{n-1} - 2S_n\right)}$$

The series to apply the transform is:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n)}$$

```
Max_iter = 1e+04;
cntr=2;

S_n = zeros(1,Max_iter);

while(1)

S_n(cntr) = S_n(cntr-1) + (-1)^cntr/(cntr-1);

error = abs(S_n(cntr) - S_n(cntr-1));
if(error<1e-3)
    break;
end</pre>
```

```
if(cntr>Max_iter)
          break;
end
cntr = cntr+1;
end
```

```
% disp(S_n)
Num_Max = 7;
Keeper = cell(Max_iter,Max_iter);
cntr2 = 1;
while(1)
    S_n_T = S_n(1:Num_Max);
    S_n_{emp} = S_n_T;
    cntr3 = 0;
    while(1)
        cntr3 = cntr3 +1;
        S_n_Temp = perform_Shanks(S_n_Temp);
        Keeper{cntr2 , cntr3} = S_n_Temp ;
        if(length(S_n_Temp)<3)</pre>
            break;
        end
    end
    Prev = cell2mat(Keeper(cntr2,cntr3-2));
    Final = cell2mat(Keeper(cntr2,cntr3-1));
    error_trans = abs( Final(end) - Prev(end) );
    Prev_2 = cell2mat(Keeper(cntr2,cntr3-1));
    Final_2 = cell2mat(Keeper(cntr2,cntr3));
    error_trans_2 = abs( Final_2(end) - Prev_2(end) );
    if( (error_trans<1e-3) && (error_trans_2<1e-3) )</pre>
        break;
    end
    if(cntr2>Max_iter)
        break;
    end
```

```
cntr2 = cntr2+1;
Num_Max = Num_Max+2;
if(Num_Max>cntr)
    break;
end
```

```
disp(S_n(1:Num_Max)'); % Given Series
  1.0000000000000000
  0.5000000000000000
  0.833333333333333
  0.583333333333333
  0.783333333333333
  0.61666666666667
  0.759523809523809
  0.634523809523809
  0.745634920634921
  0.645634920634921
  0.736544011544012
  0.653210678210678
  0.730133755133755
  0.658705183705184
  0.725371850371850
  0.662871850371850
  0.721695379783615
  0.666139824228060
  0.718771403175428
  0.668771403175428
```

```
cell2mat(Keeper(cntr2,cntr3-7))' ); % Generated SHanks Series
disp(
  0.693140127374205
  0.693148869333182
  0.693146681971590
  0.693147354031818
  0.693147111911928
  0.693147210655419
  0.693147166238412
  0.693147187892628
  0.693147176565422
  0.693147182765315
  0.693147179326246
  0.693147181431651
  0.693147180247842
  0.693147181001345
  0.693147180604408
```

```
0.693147119737629
  0.693147196108489
  0.693147176120171
  0.693147181988219
  0.693147179616545
  0.693147180970217
  0.693147179603046
  0.693147180810286
  0.693147175736740
  0.693147168094248
  0.693147190988102
  0.693147234477407
  0.693147212628626
           cell2mat(Keeper(cntr2,cntr3-5))' ); % Generated SHanks Series
disp(
  0.693147179506449
  0.693147177877719
  0.693147187773986
  0.693147170801418
  0.693147176203286
  0.693147146411038
  0.693147168228574
  0.693147193467518
  0.693147176658810
  0.693147142022397
  0.693147219318417
disp(
           cell2mat(Keeper(cntr2,cntr3-4))' ); % Generated SHanks Series
  0.693147186043765
  0.693147183766039
  0.693147174291965
  0.693147171181333
  0.693147159085680
  0.693147033274481
  0.693147181514178
  0.693147205652950
  0.693147165730255
           cell2mat(Keeper(cntr2,cntr3-3))' ); % Generated SHanks Series
disp(
  0.693147187455125
  0.693147171031682
  0.693147182694033
  0.693147172323245
  0.693147101079378
  0.693147209548667
  0.693147190835223
           cell2mat(Keeper(cntr2,cntr3-2))' ); % Generated SHanks Series
disp(
  0.693147177677940
  0.693147180819805
  0.693147184389785
  0.693147144181797
  0.693147194193413
           cell2mat(Keeper(cntr2,cntr3-1))' ); % Generated SHanks Series
disp(
```

```
0.693147197854006
0.693147183370418
0.693147166770018
```

```
disp( cell2mat(Keeper(cntr2,cntr3))' ); % Generated SHanks Series
```

0.693147291985178

```
function S_T1 = perform_Shanks(S_n)
M = length(S_n);

S_T1 = zeros(1,M-1-2+1);
for i=1:M-2
    A = S_n(i);
    B = S_n(i+1);
    C = S_n(i+2);

    S = Shanks_Trans_nodes(A,B,C);
    S_T1(i) = S;

end

end

function S = Shanks_Trans_nodes(A,B,C)
S = (C*A-B^2)/(C+A-2*B);
end
```