

BRAC University

Dept. of Computer Science and Engineering

Assessment: Quiz 3
Full Marks: 10
SET A

Semester:	Fall 2023	Name:	
Course Code:	CSE251		
Section:	15		

Student ID:

- No washroom breaks. Phones must be turned off. Using/carrying any notes during the exam is not allowed.
- At the end of the exam, the exam script must be returned to the invigilator.

Course Name:

- ✓ Marks allotted for each question are mentioned beside each question.
- Write your answers inside the indicated boxes (where applicable). If you run out of room for an answer, please continue on the back of the page".

Electronic Devices and Circuits

Symbols have their usual meanings.

Question 1: 10 Marks

The input of a **Half-wave rectifier** is exhibited in the Figure above and output load resistance is $R = 5 \text{ k}\Omega$. Silicon diodes are used in this circuit for which the forward drop is $V_{D0} = 0.7 \text{ V}$.

- i. Show the input and output waveforms. [2.5]
- ii. Draw the VTC curve [2.5]
- iii. Calculate input and output frequency [2.5]
- iv. Write down the logic function f of Circuit 2. [2.5]

BRAC University

Dept. of Computer Science and Engineering

Assessment: Full Marks: **SET** **Quiz 4** 10 **A**

10 Marks

Name:

Semester: Fall 2023 Course Code: CSE251 Section: **15**

Course Name: Electronic Devices and Circuits

Student ID:

- √ No washroom breaks. Phones must be turned off. Using/carrying any notes during the exam is not allowed.
- At the end of the exam, the **exam script** must be returned to the invigilator.
- ✓ Marks allotted for each question are mentioned beside each question.
- Write your answers inside the indicated boxes (where applicable). If you run out of room for an answer, please continue on the back of the page".
- Symbols have their usual meanings.

Question 1: [CO2]

The BJT in the adjacent figure has a $V_0 = -4.7$ V and $I_B = 0.042$ mA. and B = 100

- i. Determine the operating mode of the BJT. [4]
- ii. Find V_E , I_C and I_E [6]

100k52 100k52