HM6116-2, HM6116-3, HM6116-4 HM6116P-2, HM6116P-3, HM6116P-4

2048-word×8-bit High Speed Static CMOS RAM

FEATURES

• Single 5V Supply and High Density 24 Pin Package

High speed: Fast Access Time
 Low Power Standby and
 Low Power Operation
 120ns/150ns/200ns (max.)
 Standby: 100µW (typ.)
 Operation: 180mW (typ.)

Completely Static RAM: No clock or Timing Strobe Required

• Directly TTL Compatible: All Input and Output

Pin Out Compatible with Standard 16K EPROM/MASK ROM

Equal Access and Cycle Time

EFUNCTIONAL BLOCK DIAGRAM

MADSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit
Voltage on Any Pin Relative to GND	$\overline{v_r}$	-0.5° to +7.0	V
Operating Temperature	T.,.	0 to +70	°C
Storage Temperature (Plastic)	Tere	-55 to +125	•c
Storage Temperature (Ceramic)	Tete	-65 to +150	,C
Temperature Under Bias	Ther	-10 to +85	*C
Power Dissipation	P_{T}	1.0	W

^{*} Pulse Width 50ns : -3.5V

TRUTH TABLE

CS	ŌĒ	WE	Mode	Vcc Current	I/O Pin	Ref. Cycle
Н	×	×	Not Selected	ISB, ISBI	High Z	
L	L	Н	Read	Icc	Dout	Read Cycle (1)~(3)
L	Н	L	Write	Icc	Din	Write Cycle (1)
L	L	L	Write	Icc	Din	Write Cycle (2)

■PIN ARRANGEMENT

TRECOMMENDED DC OPERATING CONDITIONS $(Ta=0 \text{ to } +70^{\circ}\text{C})$

Item	Symbol	min	typ	max	Unit	
6 1 1/1	Vcc	4.5	5.0	5.5	V	
Supply Voltage	GND	0	0	0	v	
	V _{1H}	2.2	3.5	6.0	V	
Input Voltage	V_{IL}	-3.0*	_	0.8	v	

^{*} Pulse Width: 50ns, DC: ViL min = -0.3V

DC AND OPERATING CHARACTERISTICS ($V_{cc}=5V\pm10\%$, GND=0V, $T_a=0$ to $+70^{\circ}$ C)

Item	6 1 1	Symbol Test Conditions		HM6116/P-2			HM6116/P-3/-4			
Item	Symbol	lest Conditions	min typ*		max	min	typ*	max	Unit	
Input Leakage Current	$ I_{LI} $	V_{cc} = 5.5V, V_{is} = GND to V_{cc}	-	_	10		_	10	μΑ	
Output Leakage Current	I _{LO}	$\overline{\text{CS}} - V_{IH} \text{ or } \overline{\text{OE}} - V_{IH},$ $V_{I/O} = \text{GND to } V_{CC}$	_	-	10	_	_	10	μА	
Operating Power Supply	Icc	$\overline{CS} = V_{iL}, I_{iN} = 0 \text{mA}$	-	40	80	-	35	70	mA	
	Icci ••	$V_{IH} = 3.5 \text{V}, V_{IL} = 0.6 \text{V},$ $I_{I:0} = 0 \text{mA}$	-	35	_	_	30	_	mA	
Average Operating Current	Iccz	Min. cycle, duty-100%	_	40	80	-	35	70	mA	
	Isa	$\overline{CS} = V_{tH}$	-	5	15	~	5	15	mA	
Current	ndby Power Supply rent I_{SB1} $\overline{CS} \ge V_{CC} - 0.2V, \ V_{in} \ge V_{CC} - 0.2V \text{ or } V_{in} \le 0.2V$		_	0.02	2	_	0.02	2	mA	
	, Iot -	Io1 - 4mA	_	_	0.4	-	_	_	V	
Output Voltage	Vo.	IoL = 2.1mA	-	_	_	_	_	0.4	v	
	V _{OH}	I _{OH} = -1.0mA	2.4	_	-	2.4	_	_	V	

^{*} Vcc-5V, Ta-25°C

EAC CHARACTERISTICS (V_{cc} =5 $V\pm10\%$, T_a =0 to +70°C)

• AC TEST CONDITIONS

Input Pulse Levels: 0.8 to 2.4V Input Rise and Fall Times: 10 ns

input rise and rail times: 10 ns

Input and Output Timing Reference Levels: 1.5V

Output Load: 1TTL Gate and C_L = 100pF (including scope and jig)

• READ CYCLE

Item	6 1 1	HM6116/P-2		HM6116/P-3		HM6116/P-4		Unit
Item	Symbol	min	max	min	max	min	max) Unit
Read Cycle Time	1 RC	120	_	150	_	200		ns
Address Access Time	LAA	_	120		150	_	200	ns
Chip Select Access Time	LACS	-	120	_	150	_	200	ns
Chip Selection to Output in Low Z	tclz	10	_	15	-	15		ns
Output Enable to Output Valid	toE		80	_	100	_	120	ns
Output Enable to Output in Low Z	toLz	10	_	15		15	_	ns
Chip Deselection to Output in High Z	tcHZ	0	40	0	50	0	60	ns
Chip Disable to Output in High Z	tonz	0	40	0	50	0	60	ns
Output Hold from Address Change	t _{OH}	10		15		15	_	ns

^{**} Reference Only

• WRITE CYCLE

Item	C	HM61	16/P-2	HM6116/P-3		HM6116/P-4		Unit
	Symbol	min	max	min	max	min	max	Unit
Write Cycle Time	twc	120	_	150		200		ns
Chip Selection to End of Write	tcw	70	_	90	_	120	_	ns
Address Valid to End of Write	taw	105	_	120	_	140		ns
Address Set Up Time	tas	20	_	20	_	20	_	ns
Write Pulse Width	twp	70		90	_	120		ns
Write Recovery Time	t w _R	5	_	10	_	10	_	ns
Output Disable to Output in High Z	t on z	0	40	0	50	0	60	ns
Write to Output in High Z	t w + z	0	50	0	60	0	60	ns
Data to Write Time Overlap	t ow	35	_	40		60	_	ns
Data Hold from Write Time	t DH	5	_	10	-	10	_	ns
Output Active from End of Write	tow	5	_	10		10		ns

ECAPACITANCE $(f-1MHz, Ta-25^{\circ}C)$

Item	Symbol	Test Conditions	typ	max	Unit
Input Capacitance	C _i ,	V.,-0V	3	5	pF
Input/Output Capacitance	Cvo	$V_{l,0} = 0 \text{ V}$	5	7	pF

Note) This parameter is sampled and not 100% tested.

TIMING WAVEFORM

● READ CYCLE (1)(1)

● READ CYCLE (2)(1)(2)(4)

● READ CYCLE (3)(1)(3)(4)

NOTES: 1. WE is High for Read Cycle.

Device is continuously selected, CS = V_{IL}.
 Address Valid prior to or coincident with CS transition Low.
 OE = V_{IL}.

WRITE CYCLE(1)

● WRITE CYCLE (2) (5)

- NOTES: 1. A write occurs during the overlap (t_{WP}) of a low \overline{CS} and a low \overline{WE} . 2. t_{WR} is measured from the earlier of \overline{CS} or \overline{WE} going high to the end of write cycle.
 - 3. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
 - 4. If the CS low transition occurs simultaneously with the WE low transitions or after the WE transition, output remain in a high impedance state.

 - 5. OE is continuously low. (OE = V_{IL})
 6. D_{out} is the same phase of write data of this write cycle.

 - 7. Dout is the read data of next address.

 8. If CS is Low during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.

vs. SUPPLY VOLTAGE 1.3 Ta = 25°C 1.2 1.1

LOW INPUT VOLTAGE

Supply Voltage Vcc (V)

