2

Qi'ao Chen 21210160025

March 9, 2022

Exercise 1. $(\mathbb{C},+,\cdot)$ is an algebraically closed field. Show that the algebraic set $\{(x,y)\in\mathbb{C}^2:x^2+y^2=0\}$ is reducible, i.e., not a variety

$$\begin{array}{l} \textit{Proof. } \text{Since } x^2+y^2=(x+yi)(x-yi)\text{, } \{(x,y)\in\mathbb{C}^2: x^2+y^2=0\}=\{(x,y)\in\mathbb{C}^2: x+yi=0\}\cup\{(x,y)\in\mathbb{C}^2: x-yi=0\} \end{array} \qquad \Box$$

Exercise 2. Consider the theory of dense linear orders. Let $\varphi(x,y)$ be the formula x < y. One can show that $\varphi(x,y)$ has dichotomy property. Show by giving an example that D_3 is consistent

Proof. Consider

Exercise 3. In the structure $M=(\mathbb{R},+,\cdot,0,1,\leq)$, let $\varphi(\bar{x},\bar{y})$ be the formula $x_1y_1+x_2y_2=1$. Thus $\varphi(\mathbb{R}^2,\bar{b})$ is a line for most $\bar{b}\in\mathbb{R}^2$. It turns out that the formula φ does not have the dichotomy property. Find the largest n s.t. D_n is consistent

 $\varphi(x,y;a,b)$ is ax+by=1, not ab+xy=1No it's n=2.

+0.25 for a correct analysis of the wrong formularsorry that the x's and y's were confusing)

Proof. Largest n is 1. For a fixed $\bar{y}=(a,b)$ with $ab\neq 0$, we could take \bar{x}_0 on the line of xy = 1 and \overline{x}_0 outside the line.

Now for n = 2, suppose we have $\bar{y} = (a, b)$, $\bar{y}_0 = (a_0, b_0)$, $\bar{y}_1 = (a_1, b_1)$, $\bar{x}_{ij}=(a_{ij},b_{ij})$ for i,j=0,1 and D_n is consistent. Then since $\varphi(\bar{x}_{00},\bar{y})$ and $\varphi(\bar{x}_{01},\bar{y}).$

Suppose ab=1, then $a_{00}b_{00}=a_{01}b_{01}=0$. Since $\varphi(\bar{x}_{00},\bar{y}_0)$, $a_0b_0=1$ and hence $\varphi(\bar{x}_{01}, \bar{y}_1)$, a contradiction.

Now since $ab \neq 1$, \bar{x}_{00} and \bar{x}_{01} are on the same line xy = 1 - ab, and there is no such \bar{y}_0 to get a line $xy=1-a_0b_0$ to isolate \bar{x}_{00} and \bar{x}_{01} .

Thus D_2 is inconsistent

Exercise 4. Let T be a complete theory of the structure $(\mathbb{Z}, +, -, 0)$. Show that T is not \aleph_0 -stable

Proof. Suppose we are working in base-2 system.

Given $\sigma \in 2^{<\omega}$, let $\phi_{\sigma 0}(x) = \exists y(x=y\cdot (10)^{\text{lh}(\sigma)} + \sigma)$ and $\phi_{\sigma 1}(x) = \exists (x=y\cdot (10)^{\text{lh}(\sigma)}) + \sigma + 1\cdot (10)^{\text{lh}(\sigma)}$ where $\text{lh}(\sigma)$ denotes the length of σ . Then $\phi_{\sigma i}(x) \Leftrightarrow x$ extends σi for i = 0, 1. Thus we have a tree I think maybe the 12 and

Might want to revene o ϕ_{0} ϕ_{0} ϕ_{0} ϕ_{1} ϕ_{0} ϕ_{00} ϕ_{01} ϕ_{10} ϕ_{11}

34 (x= y. 10 + 011010 x = y.10 + (0000000 = 4.10 + 10011010 extends 100 100

where ϕ is x = x.

Now note that for any $\sigma \in 2^{<\omega} \phi_{\sigma} \leftrightarrow \phi_{\sigma 0} \lor \phi_{\sigma 1}$ and $\phi_{\sigma i} \vDash \neg \phi_{\sigma (1-i)}$ for i=0,1. For each $f:\omega \to 2$, $[\phi_{f|1}]\supseteq [\phi_{f|2}]\supseteq \cdots$ and since $S_1(\mathbb{Z})$ is compact, there is $p_f \in \bigcap_{i \in \omega} [\phi_{f|i}]$. If $f,g \in 2^\omega$ and $f \neq g$, then there is n s.t. $f(n) \neq g(n)$ and $f \mid n = g \mid n$. Then since $\phi_{f \mid (n+1)} \models \neg \phi_{g \mid (n+1)}$, $[\phi_{f \mid n+1}] \cap [\phi_{g \mid n+1}] = \emptyset$ and hence $p_f \neq p_q$. Thus $|S_1(\mathbb{Z})| \geq 2^{\aleph_0}$

R seems like I ended up in wong end

so x extends 000

+ (are off by one.

You might want to clarify that "y. 100" means

y+ ... + y

since multiplication isn't in the structure.

+0.75

(loe /4 for several