试卷序号:	班级:	学号:	姓名:

- — — — 订 — — — — — 线 — — ·

防灾科技学院

2015-2016 学年 第二学期期末考试

大学物理(上) 试卷(A)使用班级 15 级理工类本科生 答题时间 120 分钟

题号	_	=	Ξ	四	五	总分	阅卷 教师
得分							

(阿伏加德罗常数 $N_A = 6.02 \times 10^{23} \, mol^{-1}$; 摩尔气体常数 $R = 8.31 \, J/mol \cdot K$; 玻尔兹曼常数 $k = 1.38 \times 10^{-23} \, J \cdot K^{-1}$; $g = 10 \, m/s^2$)

选择题(本大题共10小题,每题3分,共30分。)

- 1. 质点作曲线运动, \bar{r} 表示位置矢量, \bar{v} 表示速度, \bar{a} 表示加速度,S 表示路程, a_r 表示切向加速度,下列表达式中,()

- (1) dv/dt = a, (2) dr/dt = v, (3) dS/dt = v, (4) $|d\vec{v}/dt| = a_t$
 - (A) 只有(1)、(4)是对的; (B) 只有(2)、(4)是对的;
- - (C) 只有(2)是对的; (D) 只有(3)是对的。
- 2. 如图所示, 质量为 m 的物体用平行于斜面的细线联结置于光滑的斜面上, 若斜面向左方作加速运动, 当物体刚脱离斜面时,
 - 它的加速度的大小为()

- 3. 一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在平衡位置处,则它的能量是:()
 - (A) 动能为零,势能最大; (B) 动能为零,势能为零; (C) 动能最大,势能最大; (D) 动能最大,势能为零。
- 4. 对质点组有以下几种说法:(1) 质点组总动量的改变与内力无关;(2) 质点组总动能的改变与内力做功无关;(3) 质点组 机械能的改变与保守内力做功无关,下列对上述说法判断正确的是(
 - (A) 只有(1)是正确的;
- (B) (1)、(2)是正确的;
- (C) (1)、(3)是正确的;
- (D) (2)、(3)是正确的。
- 5. 轮圈半径为 R, 其质量 M 均匀分布在轮缘上, 长为 R、质量为 m 的均质辐条固定在轮心和轮缘间, 辐条共有 2N 根。今若将 辐条数减少N根,但保持轮对通过轮心、垂直于轮平面轴的转动惯量保持不变,则轮圈的质量应为(
- (A) $\frac{N}{12}m + M$; (B) $\frac{N}{6}m + M$; (C) $\frac{2N}{2}m + M$; (D) $\frac{N}{2}m + M$
- 6. 假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的(
 - (A) 动量矩守恒, 动能守恒:
- (B) 动量矩守恒, 机械能守恒;
- (C) 动量矩不守恒, 机械能守恒; (D) 动量矩不守恒, 动量也不守恒。
- 7. 一物体作简谐振动,振动方程为 $x = A\cos(\omega t + \frac{1}{4}\pi)$ 。在 t = T/4(T为周期)时刻,物体的加速度为()

(A) $-\frac{1}{2}\sqrt{2}A\omega^2$; (B) $\frac{1}{2}\sqrt{2}A\omega^2$; (C) $-\frac{1}{2}\sqrt{3}A\omega^2$; (D) $\frac{1}{2}\sqrt{3}A\omega^2$

- 8. "理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功。"对此说法,有如下几种评论,正确的是:(
 - (A) 不违反热力学第一定律, 但违反热力学第二定律;

	试卷序号:	班级:	学号:	姓名:	
_		- 装	——订———	———线————	
	(B) 不违反热力学第	二定律,但违反热力学第	一定律;		
	(C)不违反热力学第	一定律,也不违反热力学	第二定律;		
	(D)违反热力学第一	定律,也违反热力学第二	定律。		
9. 孝	吉一平面简谐波的表达式为	$y = A\cos(Bt - Cx)$, \vec{x}	中 A、B、C为正值常量。	则: ()	
	(A) 波速为 C;	(B) 周期为 $\frac{1}{B}$;	(C) 波长为 $\frac{2\pi}{C}$;	(D) 角频率为 $\frac{2\pi}{B}$ 。	
10.	理想气体处于平衡状态,	设温度为 T, 气体分子的	自由度为 i ,则每个气体	分子所具有的: ()	
	(A) 动能为 $\frac{i}{2}kT$;	(B) 动能为 $\frac{i}{2}RT$;	(C) 平均动能为 $\frac{i}{2}kT$	(D) 平均平动动能为 $\frac{i}{2}$	$\frac{1}{2}RT$
二、 1.	阅卷教师 得 分 已知质点的运动方程为 t =1 s 时, 质点的位矢	$\vec{r} = 2t\vec{i} + (1-t^2)\vec{j}$, $\vec{\chi} + r$	个空,每空 2 分,共 16 的单位为 m, t 的单位为	5 分。) s ,则质点的运动轨迹为	;
	转轴转动,该飞轮对轴的质量为 m的一艘宇宙飞船	的转动惯量为前者的二倍。	。啮合后整个系统的角边可认为该飞船只在地球	静止飞轮突然和上述转动的飞速度 $\omega =。$ 这的引力场中运动。已知地球质	
4.	一质点同时参与两个在	司一直线上的简谐振动 x ₁	$=4\times10^{-2}\cos(\omega t+\frac{\pi}{4}),$	$x_2 = 2 \times 10^{-2} \cos(\omega t - \frac{3\pi}{4})$ (SI)),则该质点合振
	动的初相位为	。(余弦形式表示合约 4. 00×10 ⁻² s,波的传播速	振动方程情况下)	由正方向传播,则位于 <i>x</i> ₁ = 10.	
6.	一定量 H_2 气(视为刚性分	·子的理想气体),若温度年	每升高 1 K, 其内能增加	41.55J,则该 <i>H</i> ₂ 气的质量为	g。
7.	一热机由温度为 $727^{0}c$ 的	高温热源吸热,向温度为	1527°c的低温热源放热。	。若热机在最大效率下工作,	且每一循环吸热
三、	2000J, 则此热机每一循环 阅卷教师		小题、每题 5 分、共 10)分。)要求写出解题所依据的	完理、完律、公
1.	式、画出必要的图,	写出主要过程; 只有答案	尽,没有任何说明和过程		

2. 飞轮半径为 0. 4 m,自静止启动,其角加速度为 $\alpha=0.2rad\cdot s^{-2}$,求 t=2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度的大小。

四、

 阅卷教师

 得
 分

母 分] 计算题(本大题共 2 小题,每题 10 分,共 20 分。)要求写出解题所依据的定理、定律、公式、画出必要的图,写出主要过程;只有答案,没有任何说明和过程,无分。

- 1、一木块与弹簧相连接,静止于光滑水平面上,如图所示,质量为0.01kg的子弹以速度 $_{v}=500m/s$ 水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数 $_{k}=8\times10^{3}N/m$,木块的质量为4.99kg,不计桌面摩擦,试求:
 - (1) 该系统振动的振幅;
 - (2) 若以弹簧原长时物体所在处为坐标原点,向左为x 轴正向,求简谐运动方程。

- 2. 如图所示,已知t=0 时和t=0. 5s 时的波形曲线分别为图中曲线(a)和(b) ,波沿x轴正向传播,试根据图中绘出的条件求: (1)波动方程(波函数);
 - (2) P点 ($x_p = 1m$) 的振动方程。

五、

阅卷	教师	
得	分	

综合计算题(本大题共 2 小题,每题 12 分,共 24 分。)要求写出解题所依据的定理、定律、公式、画出必要的图,写出主要过程;只有答案,没有任何说明和过程,无分。

- 1. 如图所示装置,定滑轮的半径为 r ,绕转轴的转动惯量为 J ,滑轮两边分别悬挂质量为 m_1 和 m_2 的物体 A 、 B 。 A 置于倾角 为 θ 的斜面上,它和斜面间的摩擦因数为 μ ,若 B 向下作加速运动时,求:
 - (1) 物体 B 下落加速度的大小;
 - (2) 滑轮两边绳子的张力。(设绳的质量及伸长均不计,绳与滑轮间无滑动,滑轮轴光滑.)

2. 如图所示,abcda 为一定量的某刚性双原子分子理想气体的循环过程,已知: $P_a=P_d=1\times10^5\,Pa$; $P_b=P_c=2\times10^5\,Pa$;

$$V_a = V_b = 2 \times 10^{-3} \, m^3$$
; $V_c = V_d = 3 \times 10^{-3} \, m^3$

求: (1) 各过程中系统从外界共吸收的热量;

- (2) 各过程系统对外做的功;
- (3) 此循环过程的效率。

