Planet Types

New Discovery

> More about this planet

Exoplanet Census

O Transit (3286)

Display limited to planets with both measured or estimated orbital period and mass

(824)

Radial Velocity Microlensing

(9)

k=thousand,m=million

1989

YEAR 2021

Masses and orbital periods are estimated for some planets based on other parameters

DISCOVERIES‡ 4352

2021

Orbit period is equal to one trip around the star Does not include discoveries where mass or orbit period is

By Method

> More about planet-hunting methods

The Kepler Space Observatory is a NASA-build satellite that was launched in 2009. The telescope is dedicated to searching for exoplanets in star systems besides our own, with the ultimate goal of possibly finding other habitable planets besides our own. The original mission ended in 2013 due to mechanical failures, but the telescope has nevertheless been functional since 2014 on a "K2" extended mission.

Kepler had verified 1284 new exoplanets as of May 2016. As of October 2017 there are over 3000 confirmed exoplanets total (using all detection methods, including ground-based ones). The telescope is still active and continues to collect new data on its extended mission.

The main objective of the machine learning model is classify candidate exoplanets from the raw dataset. In other words, it aims to predict a category based on the following labels or strings: Confirm, false positive or candidate.

Having in mind that there is a preexistent classificaction, we should use models for classification: SVC, Kernel aproximation, SGD classifier, such as the following schema:

Dictonary:

Variable	Description
KOI	Kepler Objects of Interest
KOI_disposition	The category of this KOI from the Exoplanet Archive. Current values are
	CANDIDATE, FALSE POSITIVE, NOT DISPOSITIONED or CONFIRMED. All KOIS
	marked as CONFIRMED are also listed in the Exoplanet Archive Confirmed
	Planet table. Designations of CANDIDATE, FALSE POSITIVE, and NOT
	DISPOSITIONED are taken from the Disposition Using Kepler Data.
koi_fpflag_nt	A KOI whose light curve is not consistent with that of a transiting planet.
	This includes, but is not limited to, instrumental artifacts, non-eclipsing
	variable stars, and spurious (very low SNR) detections.

koi_fpflag_ss	A KOI that is observed to have a significant secondary event, transit shape, or out-of-eclipse variability, which indicates that the transit-like event is most likely caused by an eclipsing binary. However, self-luminous, hot Jupiters with a visible secondary eclipse will also have this flag set, but with a disposition of PC.
koi_fpflag_co	The source of the signal is from a nearby star, as inferred by measuring the centroid location of the image both in and out of transit, or by the strength of the transit signal in the target's outer (halo) pixels as compared to the transit signal from the pixels in the optimal (or core) aperture.
koi_fpflag_ec	The KOI shares the same period and epoch as another object and is judged to be the result of flux contamination in the aperture or electronic crosstalk.
koi_period	The interval between consecutive planetary transits.
koi_period_err1	
koi_period_err2	
koi_time0bk	The time corresponding to the center of the first detected transit in Barycentric Julian Day (BJD) minus a constant offset of 2,454,833.0 days. The offset corresponds to 12:00 on Jan 1, 2009 UTC.
koi time0bk err1	
koi_time0bk_err2	
koi_impact	The sky-projected distance between the center of the stellar disc and the center of the planet disc at conjunction, normalized by the stellar radius.
koi_impact_err1	
koi_impact_err2	
koi_duration	The duration of the observed transits. Duration is measured from first contact between the planet and star until last contact. Contact times are typically computed from a best-fit model produced by a Mandel-Agol (2002) model fit to a multi-quarter Kepler light curve, assuming a linear orbital ephemeris.
koi_duration_err1	

```
df = pd.read_csv("exoplanet_data.csv")
#Drop the null columns where all values are null
df = df.dropna(axis='columns', how='all')
# Drop the null rows
df = df.dropna()
df
```

Procedure standard:

1. We create the model using sklearn

```
from sklearn.linear_model import LinearRegression
model = LinearRegression
model
```

2. We fit the model to our data using the fin method (runing the model)

```
model.fit(X,y)
<is an object our model is now train>
```

3. We can predict

```
y_predicted = model.predict(X_test)
```

4. R2

model.score(X,y)

5. Performance Metric

R2 = r2_socore(y, predicted)

```
selected_features = df[['koi_fpflag_nt', 'koi_fpflag_ss', 'koi_fpflag_co', 'koi_fpflag_ec', 'koi_period',
'koi_time0bk', 'koi_impact', 'koi_duration']]
selected_features
```


Sources

Label Encoding sklearn.preprocessing:

https://scikit-learn.org/stable/modules/preprocessing_targets.html#preprocessing-targets

Approach

Supervised learning (classification)

This aims to predict a category, with a preexistence labeled as CANDIDATE, CONFIRMED and FALSE POSITIVE.

Comparing models

Logistic Regression					
Training data score	Training data score 0.7451840549303834				
Testing data score	0.7185354691075515				
Outputs	CONFIRMED CANDIDATE FALSE POSITIVE				
Precision	0.46	0.98	0.00		
F1 score	0.63	0.99	0.00		
recall 0.99		1	0.00		
Hyperparameter Tuning	0.79				
Accuracy	0.72 very low				

Random Forest				
Training data score		1		
Testing data score	Testing data score 0.8180778032036613			
Outputs	CONFIRMED CANDIDATE FALSE POSITIVE			
Precision	0.64	0.99	0.62	
F1 score	0.59	0.99	0.66	
recall	0.55	1	0.69	
Hyperparameter Tuning	0.8159			
Accuracy		0.82		

K Nearest Neighbor				
Training data score	0.86382			
Testing data score	0.81522			
Outputs	CONFIRMED CANDIDATE FALSE POSITIVE			
Precision	0.62	0.99	0.62	
F1 score	0.59	0.99	0.64	
recall	0.56	1	0.66	
Accuracy		0.82		

Support Vector Model				
Training data score	0.7770360480640854			
Testing data score	0.7877574370709383			
Outputs	CONFIRMED CANDIDATE FALSE POSITIVE			
Precision	0.83	0.54	0.99	
F1 score	0.22	0.69	0.99	
recall	0.13	0.96	1.00	
Hyperparameter Tuning	0.7806584242353678			

Accuracy	0.79
----------	------

Deep Learning – Neural Network				
Training data score	0.7770360480640854			
Testing data score	0.7877574370709383			
Outputs	CONFIRMED CANDIDATE FALSE POSITIVE			
Precision	0.83	0.54	0.99	
F1 score	0.22	0.69	0.99	
recall	0.13	0.96	1.00	
Hyperparameter Tuning	0.7806584242353678			
Accuracy	curacy 0.8278			

		Predicted values		
Observed values		CONFIRMED	FALSE POSITIVE	CANDIDATE
	CONFIRMED			
	FALSE POSITIVE			
	CANDIDATE			

Accuracy defined as TP+TN/Total observations is higher in