Système RAPI : Évolutions Logicielles Interface Web, Backend et Applications Mobiles

Membres de l'Équipe du laboratoire

UATM GASA FORMATION info@uatm-gasa.com

October 28, 2025

Les grandes Lignes

- 1 Évolutions de l'Interface Web
- 2 Application Mobile Android
- 3 Refactoring du Backend (FastAPI)
- 4 Système de Correction Intelligente
- **5** Conditions de Fonctionnement du Modèle
- 6 Synthèse
- Sécurité et Perspectives

Modernisation de l'Interface Web

Migration et Restructuration

Mise à niveau technologique

- Migration Chakra UI V2 \rightarrow V3 : Adoption des dernières fonctionnalités et optimisations
- **Restructuration architecturale** : Réorganisation modulaire du code pour une meilleure maintenabilité

Avantages

- Code plus propre et modulaire
- Performance améliorée
- Facilité de maintenance et d'évolution

Nouvelles Fonctionnalités Utilisateur (1/2)

Visualisation Améliorée

Détails d'analyse

- Accès aux détails post-analyse
- Informations complètes sur les détections

Visualiseur d'images

- Zoom avant/arrière
- Navigation sur images
- Inspection détaillée des résultats

Indicateurs Visuels

Niveau de confiance

- Vert : Haute confiance
- Jaune : Confiance moyenne
- Rouge : Faible confiance

Interface intuitive et informative

4/26

Nouvelles Fonctionnalités Utilisateur (2/2)

Intégration Backend et Multimédia

- Synchronisation Backend : Intégration complète des mises à jour API
- **Support audio** : Analyse de plaques sur clips audio avec appréciation de la qualité

Optimisation UX/UI

Audit complet réalisé sur :

- Performance de l'interface
- Expérience utilisateur (UX)
- Meilleur accessibilité

5/26

Visuel d'Interface Web (1/2)

Équipe IA (UATM) ALPR - Modifications October 28, 2025

6/26

Visuel d'Interface Web (2/2)

Mise à Niveau de l'Application Android

Évolutions majeures

- Adaptation aux nouvelles fonctionnalités du serveur
- Version web de l'application Android mise à jour

Refactoring Complet du Backend

Architecture RESTful Optimisée

Restructuration des Endpoints

Avant : Un seul endpoint monolithique exécutant tout le pipeline

Après : Endpoints atomiques avec fonctionnalités spécifiques

Avantages de l'approche atomique

- **Granularité** : Exécution de fonctionnalités spécifiques sans le pipeline complet
- Performance : Réduction des appels inutiles
- Flexibilité: Le frontend peut composer ses propres workflows
- **Scalabilité** : Meilleure gestion de la charge serveur et facilité d'intégration de nouvelles endpoints

Amélioration du Traitement d'Images

Algorithme de Correction de Pixels

Problème identifié:

- Images uploadées avec des défauts de pixels
- Risque de mauvaises détections

Solution implémentée :

- Algorithme de correction des pixels intégré au pipeline
- Prétraitement automatique des images

Impact

Réduction significative des erreurs dues à la qualité d'image

10/26

Problématique : Confusions Visuelles

Lettres et Chiffres Similaires

Le Problème

Le modèle IA peut confondre des caractères visuellement similaires

Solution

Correcteur automatique basé sur les conventions béninoises

11/26

Problématique : Confusions Visuelles

Exemple de confusion

Exemple Concret

Plaque réelle: BN0684 Détection IA: 8N06BA

Confusions identifiées:

- B confondu avec 8
- 8 confondu avec B
- 4 confondu avec A

12/26

Conventions des Plaques au Bénin

Formats Standards

Motos

Format 1:

- 1 chiffre
- 2 lettres
- 4 chiffres

1AB2345

Format 2:

- 1 chiffre
- 1 lettre
- 4 chiffres

1A2345

Voitures

Format 1:

- 2 lettres
- 4 chiffres

AB1234

Format 2:

- 1 lettre
- 4 chiffres

A1234

Algorithme de Correction (1/2)

Table de Confusion

Composants du Système

- chiffre_db : Base de données des chiffres (0-9)
- lettre_db : Base de données des lettres (A-Z)
- table_confusion : Dictionnaire des correspondances

Table de Confusion (Exemples)

```
0 \rightarrow \text{O/D} \quad 1 \rightarrow \text{I} \quad 2 \rightarrow \text{Z} \quad 5 \rightarrow \text{S} \quad 6 \rightarrow \text{G} \quad 7 \rightarrow \text{T} \quad 8 \rightarrow \text{B} \quad \dots
```

14/26

Algorithme de Correction (2/2)

Logique de Traitement

Processus de Correction

- 1 Vérifier le nombre de caractères détectés
- 2 Comparer avec le format attendu (moto/voiture)
- 3 Si confusion détectée : consulter la table et corriger
- 4 Si caractères en excès : supprimer le surplus

15/26

Logique de Correction : Étapes Détaillées

Étape 1 : Validation du Format

- Vérifier que le nombre de caractères correspond aux conventions
- Identifier le type de véhicule (moto ou voiture)

Étape 2 : Correction Position par Position

Pour chaque position dans la plaque :

- Si lettre attendue + chiffre détecté \rightarrow Remplacer par lettre correspondante
- ullet Si chiffre attendu + lettre détectée o Remplacer par chiffre correspondant

Gestion des Cas Particuliers

- Caractères en excès : Suppression automatique
- Format non conforme : Tentative de reconstruction

Exemple de Correction en Action

Cas d'une Voiture

Détection Brute

8N06BA

Problèmes:

- Position 1 : 8 (chiffre)
- Position 5 : B (lettre)
- Position 6 : A (lettre)

Après Correction

BN0684

Corrections:

- 8 → B (lettre)
- B \rightarrow 8 (chiffre)
- $A \rightarrow 4$ (chiffre)

Format Respecté

Voiture: [Lettre] [Lettre] [Chiffre] [Chiffre] [Chiffre]

Impact et Bénéfices du Correcteur

Amélioration de la Précision

- Correction automatique des confusions visuelles
- Respect strict des conventions béninoises
- Réduction des faux positifs

Avantages Opérationnels

- Robustesse : Gère les erreurs de détection courantes
- Adaptabilité : Facile d'ajouter de nouvelles règles
- **Traçabilité** : Possibilité de logger les corrections

Résultat

Le correcteur améliore significativement la fiabilité du système en transformant les détections ambiguës en résultats conformes

Spécifications Techniques du Modèle

Contraintes et Limitations

Exigences de Résolution

Résolution minimale requise : 1280×720 ou 720×1280 pixels

Conditions de Capture

- 1 Distance maximale : 12 mètres entre la caméra et la plaque
- 2 Angle de prise de vue : Entre 45° et 90°
 - Ne pas photographier depuis le sol en pointant vers le haut
 - Interdiction de prise du haut (aucun dataset disponible)

19/26

Limitations du Modèle

Cas de Non-Fonctionnement

Le modèle ne peut pas détecter les plaques suivantes :

- Plaques trop rouillées
- Plaques anciennes avec numéros effacés
- Plaques en mauvais état général

Recommandations

Pour des résultats optimaux :

- Éclairage suffisant (dans la journée est mieux)
- Plaques en bon état
- Respect des angles et distances
- Résolution d'image adéquate

Récapitulatif : Conditions Optimales

Paramètre	Valeur / Condition
Résolution minimale	1280 × 720 px
Distance maximale	12 mètres
Angle de prise de vue	45° – 90°
État de la plaque	Bon (non rouillée)
Prise du haut / pointant vers le haut	Non supportée
Qualité d'image	Correction automatique activée

Table: Spécifications techniques du système ALPR actuelle

Synthèse des Modifications

Interface Web

- Migration Chakra UI V3
- Visualiseur d'images
- Indicateurs visuels
- Audit UX/UI

Backend

- Endpoints atomiques pour optimiser les appels
- Correction pixels
- Correction automatique des numéros lus

Mobile

 Mise à niveau de l'application Android avec le nouveau endpoint de téléversement

Résultat Global

Écosystème logiciel modernisé, performant et évolutif

22/26

Prochaines Évolutions : Sécurisation

Authentification API

Implémentation prévue : Système d'authentification JWT

Objectifs:

- Sécuriser l'accès aux endpoints
- Gestion des clés API
- Traçabilité des requêtes

Bénéfices attendus

- Protection contre les accès non autorisés
- Monitoring des utilisations

23/26

Comparaison Avant/Après

Aspect	Avant	Après
Interface UI	Chakra UI V2	Chakra UI V3
Architecture Frontend	Monolithique	Modulaire
Endpoints Backend	Unique	Atomiques
Qualité d'image	Brute	Corrigée
Visualisation	Basique	Avancée + Zoom
Confiance IA	Non visible	Couleurs
Sécurité API	Basique	JWT (prévu)

Évolution majeure de l'ensemble de la plateforme

Conclusion

Accomplissements

- Modernisation complète de l'écosystème logiciel
- Architecture backend optimisée et flexible
- Interface utilisateur intuitive et performante
- Support multiplateforme (Web + Android) pour les testes manuels
- Système de Correction Intelligente pour la résolution des confusions Visuelles

Prochaine Étape Majeure

Implémentation de l'authentification JWT pour sécuriser l'accès

Vision

Plateforme ALPR professionnelle, sécurisée et prête pour la production

Questions?

Commentaires et discussions

info@uatm-gasa.com