CS 188: Artificial Intelligence

Markov Decision Processes

Instructor: Anca Dragan

University of California, Berkeley

[These slides adapted from Dan Klein and Pieter Abbeel]

Non-Deterministic Search

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)

Grid World Actions

Deterministic Grid World

Markov Decision Processes

```
An MDP is defined by:
A set of states s ∈ S
A set of actions a ∈ A
A transition function T(s, a, s')
Probability that a from s leads to s', i.e., P(s' | s, a)
Also called the model or the dynamics
A reward function R(s, a, s')
Sometimes just R(s) or R(s')
A start state
Maybe a terminal state
```


Video of Demo Gridworld Manual Intro

What is Markov about MDPs?

- o "Markov" generally means that given the present state, the future and the past are independent
- o For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

Andrey Markov (1856-1922)

Policies

o In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal

- o For MDPs, we want an optimal policy $\pi^*: S \to A$
 - o A policy π gives an action for each state
 - o An optimal policy is one that maximizes expected utility if followed
 - o An explicit policy defines a reflex agent

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Optimal Policies

R(s) = -0.01

$$R(s) = -0.4$$

R(s) = -0.03

R(s) = -2.0

Utilities of Sequences

Utilities of Sequences

• What preferences should an agent have over reward sequences?

o More or less? [1, 2, 2] or [2, 3, 4]

o Now or later? [0, 0, 1] or [1, 0, 0]

Discounting

- o It's reasonable to maximize the sum of rewards
- o It's also reasonable to prefer rewards now to rewards later
- o One solution: values of rewards decay exponentially

Discounting

- o How to discount?
 - o Each time we descend a level, we multiply in the discount once
- o Why discount?
 - o Think of it as a gamma chance of ending the process at every step
 - o Also helps our algorithms converge
- o Example: discount of 0.5
 - o U([1, 2, 3]) = 1*1 + 0.5*2 + 0.25*3

Quiz: Discounting

o Given:

- o Actions: East, West, and Exit (only available in exit states a, e)
- o Transitions: deterministic
- o Quiz 1: For $\gamma = 1$, what is the optimal pol 10 <- <- 1
- o Quiz 2: For $\gamma = 0.1$, what is the optimal p 10 <- <- > 1
- o Quiz 3: For which γ are West and East equally good when in state d? $_{1\gamma=10\,\gamma^3}$

Infinite Utilities?!

• Problem: What if the game lasts forever? Do we get infinite rewards?

Solutions:

- Finite horizon: (similar to depth-limited
 - Terminate episodes after a fixed T steps (e.g.
 - Gives nonstationary policies (π depends on time

- lacktriangleright Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Example: Racing

Example: Racing

A robot car wants to travel far, quickly

Three states: Cool, Warm, Overheated

Two actions: *Slow*, *Fast* 0.5 +1 Going faster gets double reward 1.0 Fast Slow -10 +1 0.5 Warm Slow 0.5 +2 Fast 0.5 Overheated 1.0

MDP Search Trees

Each MDP state projects an expectimax-like search tree

Recap: Defining MDPs

- o Markov decision processes:
 - o Set of states S
 - o Start state s₀
 - o Set of actions A
 - o Transitions P(s' | s, a) (or T(s, a, s'))
 - o Rewards R(s, a, s') (and discount γ) .

- o MDP quantities so far:
 - o Policy = Choice of action for each state
 - oUtility = sum of (discounted) rewards

Solving MDPs

- o We're doing way too much work with expectimax!
- o Problem: States are repeated
 - o Idea: Only compute needed quantities once
- o Problem: Tree goes on forever
 - o Idea: Do a depth-limited computation, but with increasing depths until change is small
 - o Note: deep parts of the

Optimal Quantities

The value (utility) of a state s:

V*(s) = expected utility starting in s and acting optimally

The value (utility) of a q-state (s,a):

Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:

 $\pi^*(s)$ = optimal action from state s

Snapshot of Demo - Gridworld V Values

Snapshot of Demo - Gridworld Q Values

Values of States

o Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$
s,a,s'

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

Time-Limited Values

- o Key idea: time-limited values
- o Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - o Equivalently, it's what a depth-k expectimax would give from s

k=0

k=1

$$k=2$$

$$k=3$$

$$k=4$$

k=5

k=6

$$k=7$$

$$k=8$$

k = 100

Computing Time-Limited Values

Value Iteration

Value Iteration

- o Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- o Given vector of $V_{k}(s)$ values, do one ply of expectimax from each $V_{k+1}(s)$ $stV_{k+1}(s) \leftarrow \max_{a} \sum_{s} T(s,a,s') \left[R(s,a,s') + \gamma V_{k}(s') \right]$

- o Repeat until convergence
- o Complexity of each iteration: O(S²A)
- o Theorem: will converge to unique optimal values
 - o Basic idea: approximations get refined towards optimal values
 - o Policy may converge long before values do

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_1 \left(\begin{array}{c} S: .5*1+.5*1=1 \\ F: -10 \end{array} \right)$$

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Convergence*

- \circ How do we know the V_k vectors are going to converge?
- \circ Case 1: If the tree has maximum depth M, then V_{M} holds the actual untruncated values
- o Case 2: If the discount is less than 1
 - o Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - o The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - o That last layer is at best all R_{MAX}
 - o It is at worst R_{MIN}
 - o But everything is discounted by γ^k that far out
 - o So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - o So as k increases, the values converge

