Проект по М.

Атабекян Эдгар Сенаторов Пётр

Цель

Предсказать качество вина (целевые классы от 3 до 8) на основе химических характеристик, используя тренировочные данные.

Целевая метрика:

Quadratic Weighted Kappa (QWK). $\kappa = 1 - \frac{\sum_{i,j} w_{i,j} O_{i,j}}{\sum_{i,j} w_{i,j} E_{i,j}}.$

$$\kappa = 1 - rac{\sum_{i,j} w_{i,j} O_{i,j}}{\sum_{i,j} w_{i,j} E_{i,j}}$$

Данные:

- Тренировочный набор: химические параметры (11 признаков) и целевой признак quality.
- Тестовый набор: те же признаки, без значений quality.
- Дисбаланс классов: большинство данных приходится на классы 5 и
- Пропуски отсутствуют.
- Выбросы есть, в большинстве своем у классов 5 и 6.
- Наибольшая корреляция с полем alcohol.

Бейслайн:

- Модель: LightGBM Classifier с базовыми параметрами.
- Использованы все признаки без изменений.
- Добавлены новые признаки.
- Также использовался catboost для бейслайна, но цифры хуже.

Усиление бейслайна

LGBMClassifier

- Добавление новых данных
- Подбор гиперпараметров LightGBM с помощью Optuna.

€0

LGBM.csv

Complete (after deadline) · 19m ago

0.49187

0.45166

• Кросс валидация с использованием K-Fold и выбор самого частого предсказания

LGBM_KFold.csv

Complete (after deadline) · 18m ago

0.51054

0.49657

LGBMRegressor с окуглением параметров

- Добавление новых данных
- Подбор гиперпараметров LightGBM с помощью Optuna.
- Кросс валидация с использованием K-Fold и выбор самого частого предсказания
- Кросс-валидация+ Optuna

Q	LGBM_Reg_KFold_3.csv Complete (after deadline) · 39m ago	0.59283	0.53906
Q	LGBM_Reg_KFold_2.csv Complete (after deadline) · 39m ago	0.58163	0.54288
Q	LGBM_Reg_KFold_1.csv Complete (after deadline) · 40m ago	0.58070	0.51470
Q	LGBM_Reg.csv Complete (after deadline) - 40m ago	0.57761	0.54885

Усиление бейслайна

NN + Optimized Rounder

- Добавление новых данных
- Небольшая модель с одной сверткой, Dropout и Batch Norm
- После получения предсказаний прогон через Optimized rounder для получения оптимальных границ для разбиения на классы

- Также была попытка усложнить модель, но результаты лучше не стали
- Помимо ранее названных методов сначала были испробованы стекинг, max voting, удаление выбросов (стало сильно хуже) и скейлинг некоторых признаков (также привело только к ухудшению)