Item-Based Recommender System For E-commerce

By: Ayodeji Ejigbo

Project Objective

shutterstock.com - 534696469

Objective:

Develop an item-based recommendation system to suggest items to users based on the similarity of items they have previously interacted with.

Use Case:

Suitable for e-commerce platforms with a wide range of items where user preferences need to be predicted.

Dataset Overview

Dataset Description: The Amazon Reviews data repository contains various datasets. For this case study, we are utilizing the Electronics dataset.

Variables:

- userid: Unique identifier for each user.
- itemid: Unique identifier for each item.
- o rating: Rating given by a user to an item, typically on a scale (e.g., 1 to 5).
- timestamp: Time at which the rating was recorded (optional).
- Data Source: This is a Kaggle Dataset
- Data Shape: 1.2M rows and 100k columns.

Why Item Based Collaborative-Filtering?

- Scalability with Large User Bases
- Stability and Accuracy
- Ease of Recommendation
- Robustness to User Changes

Feature Engineering & Data Cleaning

- Feature Engineering:
 - user_avg_rating: This shows the average rating per user.
 - Product_avg_rating: This shows the average rating per product.
- Data Cleaning:
 - Missing Values

Exploratory Data Analysis

Exploratory Data Analysis

Exploratory Data Analysis

Exploratory Data Analysis

Exploratory Data Analysis

Exploratory Data Analysis

Exploratory Data Analysis

Model Development

MODELS

- Deep Learning Models
 - Neural Collaborative Filtering (NCF)
- Matrix Factorization Techniques:
 - Singular Value Decomposition (SVD)
- K-Nearest Neighbors (KNN)
 - KNNBasic

Neural Collaborative Filtering (NCF)

MODEL ANALYSIS

	RMSE	MAE	PRECISION	RECALL	F1-SCORE
NCF	1.47	1.033	0.77	0.79	0.78
SVD	1.30	1.031	0.77	0.93	0.84
KNNBasic	1.40	1.095	0.74	0.99	0.84

Conclusion

- **SVD**: Best overall performance with lowest RMSE and MAE; strong balance in precision and recall.
- **KNNBasic**: Excels in recall, making it ideal for scenarios prioritizing recall.
- NCF: Needs improvement in accuracy; higher RMSE and lower recall.

Recommendations and Future Work

Recommendations and Future Work:

- Adopt SVD: Use as the primary algorithm for accurate recommendations.
- Use KNNBasic: Apply in scenarios where recall is critical.
- **Enhance NCF**: Focus on reducing RMSE and improving recall.
- Future Enhancements:
 - Address cold-start with hybrid models.
 - Explore scalability through distributed computing.
 - Incorporate user feedback for continuous improvement.