PUNOI: mësuesi i matematikës PJETËR NEÇAJ

TIRANË, SHQIPËRI më 6 korrik 2025

TEMA: NJË PROBLEM nga GJEOMETRIA PLANE

Është dhënë një katërkëndësh çfarëdo dhe i mysët ABCD. Le të jetë një pikë P çfarëdo brënda këtij katërkëndëshi. Pikën P e bashkojmë me meset e brinjëve të katërkëndëshit e kështu formohen 4 katërkëndësha. Shënojmë me S₁,S₂,S₃,S₄ syprinat e këtyre katërkëndëshave që u formuan, duke i marrë me radhë, në një radhitje (sipas lëvizjes së akrepave të orës). Problemi është: Të gjejmë një lidhje midis syprinave S₁,S₂,S₃,S₄?

•Po arsyetojmë si më poshtë:

Në fillim po bëjmë ndërtime ndihmëse, bashkojmë pikën P me kulmet ABCD. Në trekëndëshin PAB kemi dy trekëndëshat PAM dhe PMB ku AM=MB nga sjell se këta dy trekëndësha kanë syprina të barabarta. Shënojmë a=S_{PAM}=S_{PMB}

Në trekëndëshin PBC kemi dy trekëndëshat PBN dhe PNC ku BN=NC sjell se këta dy trekëndësha kanë syprina të barabarta.

Shënojmë b=S_{PBN}=S_{PNC}

Shënojmë c= S_{PCK} = S_{PKD}

Shënojmë

d=S_{PDL}=S_{PLA}

Vlerësojmë $S_1+S_3=(a+d)+(b+c)=a+b+c+d$

Vlerësojmë $S_2+S_4=(c+d)+(a+b)=a+b+c+d$

Duket qartë se shumat:

 $S_1+S_3=S_2+S_4$

Pra kemi një Pohim të Vërtetë, kemi vërtetuar një <u>TEOREMË</u>.

Tani po e formuloj TEOREMËN që UNË e VËRTETOVA

TEOREMË: Në qoftë se një pikë çfarëdo P brënda një katërkëndëshi çfarëdo dhe të mysët, e bashkojmë me meset e brinjëve të katërkëndëshit formohen 4 katërkëndësha me syprina S₁,S₂,S₃,S₄ (të shënuara në një sens rrotullimi), atëherë është i vërtetë barzimi: **S**₁+**S**₃=**S**₂+**S**₄

KUJDES: Po e vazhdojmë studimin e PROBLEMIT, tani në rastin e përgjithshëm, për një shumëkëndësh çfarëdo dhe të mysët me numër çift brinjësh n=6,n=8,n=10,.... Dhe arsyetojmë si më poshtë.

•Le të kemi një gjashtëkëndësh çfarëdo dhe i mysët.

Pika P çfarëdo brënda gjashtëkëndëshit, dhe M,N,K,L,Q,H meset e brinjëve.

Bashkojmë pikën P me meset e brinjëve dhe do formohen 6 katërkëndësha si në figurë . Ndërtim ndihmës, bashkojmë pikën P me të gjitha kulmet e gjashtëkëndëshit ABCDEF.

Në trekendëshin PAB kemi AM=MB duke sjellë që:

Syprina S_{PAM}=S_{PMB}=a njësi katrore.

Vazhdojmë arsyetimet si më sipër dhe në trekëndëshin PFA kemi FH=HA duke sjell që:

S_{PFH}=S_{PHA}=f njësi katrore.

Shënojmë S_1 = S_{PMAH} , S_2 = S_{PHFQ} , S_3 = S_{PQEL} , S_4 = S_{PLDK} , S_5 = S_{PKCN} , S_6 = S_{PNBM}

Vlerësojmë se: $S_1+S_3+S_5=(a+f)+(e+d)+(c+b)=a+b+c+d+e+f$

Gjithashtu kemi: $S_2+S_4+S_6=(f+e)+(d+c)+(b+a)=a+b+c+d+e+f$

•Duket qartë se shumat: $S_1+S_3+S_5 = S_2+S_4+S_6$

Është e qartë se Teorema që vërtetuam më sipër për n=4 dhe n=6 është e vërtetë kur numri i brinjëve n çift për n=4,6,8,10,12,.....

Pra është e vërtetë se: $S_1+S_3+S_5+S_7+....+S_{n-1} = S_2+S_4+S_6+S_8+....+S_n$

•Unë gjykoj se ZBULOVA një të vërtetë në GJEOMETRINË PLANE, pra VËRTETOVA një TEOREMË, dhe dëshiroj e besoj se kam të drejtë ti vëndos një EMËR, unë po e emëroj:

TEOREMA PJETËR NEÇAJ

©Te drejtat e autorit , PJETËR NEÇAJ

Po formulojmë Teoremën për rastin e përgjithshëm:

Në një shumëkëndësh të mysët të çfarëdoshëm ku numri i brinjëve n është numër çift , pra n=4,6,8,10... dhe një pikë çfarëdo P brënda këtij shumëkëndëshi e bashkojmë me meset e brinjëve të shumëkëndëshit do formohen n katërkëndësha, dhe nëqoftëse shënojmë syprinat e tyre me $S_1,S_2,S_3,S_4,S_5,S_6,...,S_{n-1},S_n$ (të shënuara në një sens rrotullimi) , atëherë tregohet se është i vërtetë barazimi: $S_1+S_3+S_5+S_7+....+S_{n-1}=S_2+S_4+S_6+S_8+....+S_n$

Shënim:

Këtë TEOREMË e vërtetoi mësuesi Pjetër Neçaj dhe u publikua më 6 Korrik 2025.

Tiranë, Shqipëri më 6 KORRIK 2025