عنوان پروژه

پرهام الوانی پاییز ۱۳۹۶

پییر ٬٬

دانشکده مهندسی کامپیوتر و فناوری اطلاعات

١

طرح مساله

- ◄ سمت كاربر◄ سمت ديتاسنتر
- ETSI GS MANO •

- **◄** NFVO
- **▼** VNFM
- **▼** VIM

NFVO وظیفه ی استقرار زنجیرههای کارکرد سرویس را برعهده دارد. همانگونه که در مستند ETSI نیز آمده است هر نمونه از کارکردهای مجازی شبکه نیاز دارد تحت مدیریت یکی از VNFMهای موجود در شبکه باشد.

شکل ۱: معماری سطح بالای مجازیسازی کارکردهای شبکه

یکی از وظایف m VNFM مانیتور کردن وضعیت و خطاهای نمونهها میباشد این امر باعث افزایش بار پردازشی m VNFM میگردد و از سوی دیگر تحلیل این اطلاعات میبایست با تاخیر معقولی

صورت پذیرد که این امر نیاز به یک بستر ارتباطی مطمئن دارد.

پذیرفتن بیشترین تقاضای زنجیره کارکرد سرویس با در نظر گرفتن نیاز هر نمونه کارکرد مجازی

شبکه به یک VNFM.

٧

- ▼ توپولوژی زیرساخت شامل پنهای باند لینکها و ظرفیت NFVI-PoPها موجود است.
 - ا تقاضای زنجیره کارکرد سرویس به صورت کامل و از پیش مشخص شده داریم. ightharpoonup n
 - ◄ هر تقاضا شامل نوع و تعداد نمونههای مجازی و پنهای باند لینکهای مجازی میباشد.
 - ▼ نوع کارکرد مجازی شبکه تعریف شده است که هر یک مقدار مشخصی از حافظه را مصرف می کنند.
 - ◄ تعداد پردازندههایی که به هر نمونه تخصیص مییابد با توجه به ترافیک ورودی نمونه مشخص می شود.
 - ▶ نمونهها بین زنجیرهها به اشتراک گذاشته نمیشوند.

◄ محدودیت ظرفیت لینکها ◄ محدودیت توان پردازش سرورهای فیزیکی با توجه به میزان حافظه و تعداد پردازندهها

- ◄ برای سادگی مساله برای هر زنجیره یک VNFM تخصیص میدهیم.
 - ▼ VNFMها میتوانند بین زنجیره به اشتراک گذاشته شوند.
- ◄ هر نمونه از VNFMها میتواند تعداد مشخصی از نمونههای کارکرد مجازی شبکه را سه دسی دهد.
- ightharpoons برای ارتباط میان هر نمونه از m VNFMها و m VNFMها پهنای باند مشخصی رزرو میگردد.
 - ◄ بر روی هر NFVI-PoP حداکثر یک نمونه VNFM مستقر می گردد.

Mohammad Abu-Ledbeh, Diala Naboulsi, Roch Glitho, Constant Wette Tchouati. On the Placement of VNF Managers in Large-Scale and Distributed NFV Systems. IEEE Transactions on Network and Service Management, 2017

هدف کاهش هزینهی عملیاتی در حالی که تاخیرهای ارتباطی و محدودیتهای ظرفیت رعایت میشوند. مساله از منظر VNFM برای scale کردن یک VNF instance کردن به دلیل تغییرات ترافیکی در سیستم کامل مستقر شده است استفاده می گردد. این scale کردن به دلیل تغییرات ترافیکی در سیستم به وقوع پیوسته است.

کمترین هزینه برای اعمال تغییرات بر روی دیتاسنتر. در اینجا منظور از هزینه، توان مصرفی سرورها و هزینههایی است که جهت مهاجرت و ساخت نمونهها پرداخت می شود.

- ◄ توپولوژی زیرساخت شامل پنهای باند لینکها و ظرفیت NFVI-PoPها موجود است.
 - ◄ وضعیت NFVI-PoPها و نمونههایی که روی آنها مستقر است موجود است.
 - ▶ وضعیت لینکهای فیزیکی و لینکهای مجازی که روی آنها قرار دارند موجود است.
 - ▶ تعداد نمونههای لازم از پیش مشخص است.
 - ◄ با ایجاد نمونههای جدید ترافیک ورودی و خروجی نمونهی اولیه بین نمونههای جدید تقسیم میگردد.
 - ▼ تنها در مورد یک نمونه از یک زجیره بحث میگردد.

- ▼ نمونهها به صورت عمودی مقیاسپذیر نیستند.
- ▶ محدودیت توان پردازشی سرورهای فیزیکی با توجه به تعداد پردازندهها
 - هزینهی ساخت نمونه
- هزینهی مهاجرت نمونه (hot migration) بر اساس جابجایی حافظه
 - هزينهي روشن کردن سرور جديد

Vincenzo Eramo, Emanuele Miucci, Mostafa Ammar. An Approach for Service Function Chain Routing and Virtual Function Network Intance Migration in Network Function Virtualization Architecture. IEEE Transactions on Networking, 2017

کاهش توان مصرفی در یک ترافیک $\operatorname{cycle-stationary}$ با مهاجرت و مقیاس دهی عمودی نمونهها در وضعیتهای ترافیکی مختلف

مسالهي سوم

مساله از منظر NFVO برای به روزرسانی یک NFVG مطرح شده است.

کمترین هزینه (تغییرات) برای به روزرسانی یک m VNF-FG در یک سیستم مستقر شده

- ightharpoons توپولوژی زیرساخت شامل پنهای باند لینکها و ظرفیت m NFVI-PoPها موجود است.
 - ▼ وضعیت NFVI-PoPها و نمونههایی که روی آنها مستقر است موجود است.
 - ▶ وضعیت لینکهای فیزیکی و لینکهای مجازی که روی آنها قرار دارند موجود است.
 - ◄ تغییرات شامل اضافه و کم شدن نمونهها و لینکها میباشد.
 - هزينهي ساخت نمونه
 - هزینهی مهاجرت نمونه (hot migration) بر اساس جابجایی حافظه
 - هزینهی روشن کردن سرور جدید