Reparo automatizado de problemas de compatibilidade com dispositivos móveis em páginas da Web

Sonal Mahajan, Negarsadat Abolhassani, Phil McMinn and William G. J. Halfond

Vilson Soares de Siqueira

Sumário

- 1. INTRODUÇÃO
- 2. BACKGROUND
- ABORDAGEM
- 4. AVALIAÇÃO
- 5. TRABALHOS CORRELATOS
- 6. CONCLUSÃO E TRABALHOS FUTUROS

- Os dispositivos móveis tornaram-se um dos meios mais comuns de acesso à Internet.
- Sites problemáticos podem apresentar vários problemas de usabilidade, como texto ilegível, navegação desordenada ou conteúdo que transborda a área de visualização do dispositivo.
- Em 2015 o Google Incorporou a compatibilidade como parte dos critérios de classificação ao retornar resultados de pesquisa.
- Ferramentas de Teste: BrowserStack e o SauceLabs

- As abordagens existentes são limitadas para ajudar os desenvolvedores a detectar e reparar problemas compatibilidade. Exemplo: Google e pelo Bing
- Para resolver esse problema, criaram uma abordagem para gerar automaticamente patches CSS que podem melhorar a compatibilidade de uma página da web com dispositivos móveis.
- A abordagem constrói modelos baseados em grafos do layout de uma página da web.
- Para identificar eficientemente o melhor patch.
- Protótipo MFIX

As contribuições do trabalho são as seguintes:

- 1. Uma técnica para gerar automaticamente patches baseados em CSS para melhorar a compatibilidade com dispositivos móveis de uma página da Web
- Um estudo empírico em sites populares que mostram a eficácia da abordagem em melhorar a avaliação da compatibilidade com dispositivos móveis mantendo o layout das páginas originais.
- 3. Um estudo de usuário que mostra que as páginas corrigidas por nossa abordagem são preferidas para uso móvel e são classificadas como mais legíveis.

Background

Background | Tipos de Problemas

Ferramentas de teste para dispositivos móveis amplamente usadas fornecidas pelo Google [15] e O Bing [4] reporta problemas de mobilidade em cinco áreas:

- 1. Font sizing
- 2. Tap target spacing
- 3. Content sizing
- 4. Viewport configuration
- 5. Flash usage

Background | Métodos Abordados Atualmente

- Serviços comerciais: bMobilized e o Mobify.
- Técnicas de design responsivas
- A abordagem introduz uma nova técnica para lidar com problemas de Compatibilidade com dispositivos móveis, ajustando propriedades CSS específicas na página e produzindo um patch de reparo.
- O patch de reparo usa consultas de mídia CSS para garantir que as modificações sejam realizadas apenas para a exibição em Dispositivos Móveis.

Abordagem

Approach

- O objetivo da abordagem é gerar automaticamente um patch que possa ser aplicado ao CSS de uma página da Web para melhorar sua compatibilidade com dispositivos móveis
- Usam três tipos de técnicas Font sizing ,Tap target spacing, Content sizing

Approach

- O desafio de gerar um reparo bem-sucedido envolve o equilíbrio de dois objetivos:
 - abordar os problemas de compatibilidade com D. M..
 - garantir um layout esteticamente agradável e utilizável.
- gerar uma solução o mais fiel possível ao layout original da página

Abordagem

- A abordagem para gerar um patch CSS pode ser dividida em três fases distintas:
 - segmentação
 - Identifica os agrupamentos visuais naturais
 - localização
 - Identifica os problemas de compatibilidade
 - reparo
 - Ajusta os elementos dentro do segmento

0

Figure 1: Overview of the approach.

(a) PUT with segments highlighted

(b) PUT with distortions highlighted

(c) Repaired PUT

Abordagem | Fase 1 - Segmentação

- Para identificar os segmentos em uma página, a abordagem analisa a árvore DOM (Document Object Model) do PUT.
- algoritmo de particionamento baseado em cluster automatizado proposto por Romero et al. [33]

Abordagem | Fase 2 - Localização

- analisa o PUT para identificar quais segmentos contêm problemas compatíveis com dispositivos móveis.
- Identifica os tipos de problemas para cada segmento.
- identifica as propriedades CSS que provavelmente precisarão ser ajustadas.
- A saída da fase de localização é um mapeamento dos segmentos potencialmente problemáticos para essas propriedades.
- Teste de Compatibilidade para Dispositivos Móveis do Google (GMFT) como MFO.

Abordagem | Fase 2 - Localização

- Saída é um conjunto de tuplas (s, T)
 - o **s** é um segmento problemático
 - T é um conjunto de Tipos de problemas associados
- Identificando as propriedades problemáticas do CSS
 - Modela as relações de estilo relevantes entre seus elementos HTML com base nas dependências de herança e estilo do CSS com Property Dependence Graph (PDG).

- O objetivo da terceira fase é calcular um reparo para o PUT.
- O melhor reparo tem que equilibrar dois objetivos.
 - O primeiro objetivo é identificar o conjunto de alterações - um patch - que melhorará a compatibilidade com dispositivos móveis do PUT.
 - O segundo objetivo é identificar o conjunto de mudanças que não alteram significativamente o layout do PUT.

Métricas:

- Função F Ferramenta de Insights do Google PageSpeed (PSIT) atribui uma pontuação no intervalo de 0 a 100, com 100 depois de avaliar a compatibilidade de uma página web
- Função L compara a quantidade de alteração entre o layout de uma página que contém um patch candidato versus o layout da página original

- Segmento (SM) é definido como um grafo completo direcionado, onde os nós são os segmentos e os rótulos das arestas representam relações de layout entre segmentos.
- Para determinar os rótulos, calcula-se os limites mínimos do retângulos (MBRs) de cada segmento.
- Encontrar as coordenadas máxima e mínima X e Y dos elementos.

- determina qual das seguintes relações se aplica: (1) interseção, (2) contenção, ou (3) directional (ou seja, acima, abaixo, esquerda, direita). Cada aresta em um SM é rotulada dessa maneira.
- Um Intra-Segmento (ISM) é o mesmo, porém, é construído para cada segmento e os nós são os elementos HTML dentro do segmento.

- Corrigindo os Patches do Candidato
 - Para identificar o melhor patch de CSS, a abordagem deve encontrar novos valores para as propriedades potencialmente problemáticas.
 - Formalização: Dado I, a abordagem deve identificar um conjunto de novos valores para cada um dos fatores de ajuste (por exemplo, a) em cada tupla de I, de modo que o valor de F seja 100) e o valor de L é zero (ou seja, não há diferenças de layout)

- Um cálculo direto dessa solução enfrenta dois desafios
- O primeiro desses desafios é que uma solução ideal que satisfaça ambas as condições acima pode não existir.
- O segundo desafio é que, mesmo se tal solução existir, existe em um espaço de solução que cresce exponencialmente com base no número de elementos e propriedades que devem ser considerados.
- Uso de Algoritmo de Aproximação
- Abordagem deve encontrar um conjunto de valores que minimize a pontuação do layout e maximize a pontuação de compatibilidade com dispositivos móveis

- O algoritmo leva em consideração vários aspectos únicos do domínio do problema para gerar um patch de alta qualidade em um período de tempo razoável.
 - 1 Através da experimentação manual, verificou-se que, soluções boas ou ótimas envolvem tipicamente um grande número de pequenas mudanças em muitos segmentos
 - 2 calcular os valores das funções L e F é caro. F requer acesso a uma API na web e L requer a renderização da página e informações de layout.
 - Evitar o uso sequencial de L e F

- Fluxo de Execução:
 - Gera primeiro um conjunto de tamanho n de correções candidatas
 - Para gerar cada patch candidato, a abordagem cria uma cópia de I, chamada de I', e depois itera sobre cada tupla em I
 - com probabilidade x, perturba aleatoriamente o valor do fator de ajuste
 - Então I' convertido em um patch R
 - adicionado ao conjunto de correções candidatas
 - Esse processo é repetido até que a abordagem tenha gerado n correções de candidatos
 - A abordagem então calcula, paralelamente, os valores de F e L após aplicar um Path

- Fluxo de Execução:
 - calcula-se a soma ponderada de F e L
 - O patch candidato com o valor mais alto de F e o valor mais baixo de L, é selecionado como a solução final

- Gerando o patch para dispositivos móveis
 - calcula-se a soma ponderada de F e L
 - O patch candidato com o valor mais alto de F e o valor mais baixo de L, é selecionado como a solução final

Avaliação

Avaliação

As questões específicas de pesquisa que consideramos foram:

- RQ1: Qual é a eficácia da abordagem na reparação de problemas de compatibilidade com dispositivos móveis em páginas da Web?
- RQ2: Quanto tempo leva para a abordagem gerar patches para os problemas de compatibilidade com dispositivos móveis em páginas da web?
- RQ3: Qual o impacto da aparência visual das páginas da web depois de aplicar os patches de reparo CSS sugeridos?

Avaliação | Implementação

- Implementação Java como uma ferramenta protótipo chamada MFix.
- Para identificar os problemas de compatibilidade, usou-se a API do Google Mobile Test Tool (GMFT).
- Para obter a pontuação de compatibilidade, usou-se o Google PageSpeed Insights Tool (PSIT).

Avaliação | Assuntos

- Para os experimentos, foi usado 38 assuntos do mundo real coletados nos 50 sites mais visitados em todas as dezessete categorias rastreadas pelo Alexa.
- Usou o plugin Scrapbook-X Firefox, para baixar uma página HTML e seus arquivos de suporte, como imagens, CSS e Javascript.

Table 1: SUBJECTS

ID	URL	Category	Rank	#HTML
1	http://aamc.org	Health	23	598
2	https://arxiv.org	Science	21	381
3	http://us.battle.net	Kids and teens	2	615
4	https://bitcointalk.org	Science	25	1302
5	http://blizzard.com	Kids and teens	33	313
6	https://boardgamegeek.com	Games	31	4474
7	https://bulbagarden.net	Kids and teens	26	151
8	http://coinmarketcap.com	Science	8	1964
9	http://correios.com.br/para-voce	Society	14	769
10	http://dict.cc	Reference	20	633
11	https://www.discogs.com	Arts	26	5738
12	http://drudgereport.com	News	23	779
13	http://www.finalfantasyxiv.com	Games	37	61
14	http://www.flashscore.com	Sports	16	6621
15	https://www.fragrantica.com	Health	35	1091
16	http://forum.gsmhosting.com/vbb	Home	39	2618
17	http://www.intellicast.com	Science	38	1393
18	https://www.irctc.co.in	Regional	34	1031
19	https://www.irs.gov	Home	14	569
20	https://www.leo.org	Reference	31	990
21	http://letour.fr	Sports	3	1260
22	http://lolcounter.com	Kids and teens	30	1257
23	http://www.mmo-champion.com	Games	29	1903
24	http://myway.com	Computers	42	135
25	https://www.ncbi.nlm.nih.gov	Science	2	833
26	http://www.nexusmods.com	Games	28	2108
27	http://nvidia.com	Games	20	719
28	http://rotoworld.com	Sports	41	2523
29	http://sigmaaldrich.com	Science	37	141
30	http://us.soccerway.com	Sports	30	2708
31	http://www.square-enix.com	Games	30	198
32	https://travel.state.gov	Home	26	440
33	http://www.weather.gov	Science	18	1101
34	http://www.bom.gov.au	Kids and teens	48	685
35	http://www.wiley.com	Shopping	14	460
36	http://onlinelibrary.wiley.com	Business	33	824
37	https://www.wowprogress.com	Games	46	2828
38	https://xkcd.com	Arts	48	121

Avaliação | Experimentos I

Para abordar RQ1 e RQ2, executou o MFix dez vezes em cada um dos 38 sujeitos para suavizar o não-determinismo inerente ao algoritmo de aproximação usado para encontrar uma solução de reparo

Para o RQ1, consideramos duas métricas para avaliar a eficácia.

- Primeira, usou o GMFT para medir quantos dos assuntos foram considerados compatíveis com dispositivos móveis após a aplicação do patch.
- Segunda, comparou as pontuações antes e depois para compatibilidade com dispositivos móveis e distorção de layout para cada assunto

Avaliação | Experimentos I

 Para o RQ2, mediu-se o tempo médio total de execução do MFix para cada uma das dez execuções de cada um dos assuntos e também mediu-se o tempo gasto nas diferentes etapas da abordagem.

Avaliação | Resultados

- Os resultados para a efetividade (RQ1) foram que 95% (36 de 38) dos sujeitos passaram no GMFT depois de aplicar o patch de reparo de CSS sugerido pelo MFix
- Em média, o MFix melhorou a pontuação de compatibilidade com dispositivos móveis dos assunto em 33%.
- Em média, o melhor reparo teve uma pontuação de distorção de layout 55% menor que o pior reparo.

Avaliação | Resultados

- O tempo total de execução (RQ2) exigido pela abordagem para os diferentes sujeitos variou de 2 minutos a 10 minutos, com média de pouco menos de 5 minutos. Em agosto de 2017, uma instância do Amazon EC2 t2.xlarge custava US \$ 0,188 por hora.
- Assim, com um tempo médio de 5 minutos, o custo de executar o MFix em 100 instâncias foi de US\$ 1,50 por sujeito

Evaluation

Discussion of results.

Avaliação | Experimentos II

- Para RQ3, realizou-se uma pesquisa com base no usuário para avaliar a estética e o apelo visual da página reparada. A principal intenção do estudo foi avaliar a eficácia da métrica de distorção de layout.
- Com base na análise dos resultados da primeira variante da pesquisa, descobriu-se que os usuários preferiram usar a versão reparada em 26 dos 38 indivíduos, três sujeitos receberam igual preferência pelas versões originais e reparadas, e apenas nove sujeitos receberam uma preferência por usar a versão original.

Avaliação | Experimentos II

Figure 4: Breakdown of the running time of \mathcal{M} Fix

Trabalhos Correlatos

Trabalhos Correlatos

 Existem abordagens na literatura que tentam corrigir problemas de apresentação em uma página da Web, mas nenhuma delas tenta reparar problemas de compatibilidade com dispositivos móveis.

| Conclusão e | Futuros | Trabalhos

Conclusão

- Foi introduzido uma abordagem para o reparo automatizado de problemas de compatibilidade com dispositivos móveis em páginas da web.
- A abordagem primeiro segmenta a página em elementos que formam agrupamentos visuais naturais.
- Em seguida, ele cria modelos baseados em grafos dos segmentos e layout da página e usa as restrições representadas por esses grafos para computar um reparo que pode melhorar a compatibilidade com dispositivos móveis, minimizando a interrupção do layout.

Trabalhos Futuros

 trabalho futuro é ampliar nossa abordagem para lidar com transformações complexas, como a conversão de links de navegação em menus suspensos

Perguntas?

Obrigado!