IFF	Anril	2024

Application No	240310750803
Candidate Name	SREYASH BAISHKHIYAR
Roll No	PB121203381
Test Date	04/04/2024
Test Time	3:00 PM - 6:00 PM
Subject	B. Tech

Section: Mathematics Section A

The area (in sq. units) of the region described by $\{(x, y) : y^2 \le 2x, \text{ and } y \ge 4x - 1\}$

Options

11

32

Question Type: MCQ

Question ID: 68019113804 Option 1 ID: 68019154413 Option 2 ID: 68019154411 Option 3 ID: 68019154414 Option 4 ID: 68019154412 Status: Not Answered

Chosen Option: --

Q.2 Let C be a circle with radius $\sqrt{10}$ units and centre at the origin. Let the line x + y = 2 intersects the circle C at the points P and Q. Let MN be a chord of C of length 2 unit and slope -1. Then, a distance (in units) between the chord PQ and the chord MN is

Options 1. $3 - \sqrt{2}$

2. $\sqrt{2} + 1$

3. $2 - \sqrt{3}$

4. $\sqrt{2}-1$

Question Type: MCQ

Question ID: 68019113806 Option 1 ID: 68019154420 Option 2 ID: 68019154421 Option 3 ID: 68019154422 Option 4 ID: 68019154419 Status: Answered

Let
$$f(x) = \int_0^x (t + \sin(1 - e^t)) dt$$
, $x \in \mathbb{R}$. Then, $\lim_{x \to 0} \frac{f(x)}{x^3}$ is equal to

Options 1.
$$\frac{2}{3}$$

2.
$$\frac{1}{6}$$

$$3. - \frac{1}{6}$$

$$4. -\frac{2}{3}$$

Question Type : MCQ

Question ID: 68019113802 Option 1 ID: 68019154403 Option 2 ID: 68019154405 Option 3 ID: 68019154406 Option 4 ID: 68019154404 Status: Not Answered

Chosen Option: --

Q.4 Let
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\vec{c} = x\hat{i} + 2\hat{j} + 3\hat{k}$, $x \in \mathbb{R}$.

If \vec{d} is the unit vector in the direction of $\vec{b} + \vec{c}$ such that $\vec{a} \cdot \vec{d} = 1$, then $(\vec{a} \times \vec{b}) \cdot \vec{c}$ is equal to

Options 1. 3

2. 6

3. 9

4. 11

Question Type : MCQ

Question ID: 68019113810 Option 1 ID: 68019154435 Option 2 ID: 68019154436 Option 3 ID: 68019154437 Option 4 ID: 68019154438 Status: Answered

Chosen Option: 3

Q.5 If the coefficients of x^4 , x^5 and x^6 in the expansion of $(1+x)^n$ are in the arithmetic progression, then the maximum value of n is:

Options 1. 7

2. 28

3. 21

4. 14

Question Type : MCQ

Question ID : 68019113797 Option 1 ID : 68019154383 Option 2 ID : 68019154386 Option 3 ID : 68019154385 Option 4 ID : 68019154384

Status : **Answered**

Q.6 Let $f(x) = 3\sqrt{x-2} + \sqrt{4-x}$ be a real valued function. If α and β are respectively the minimum and the maximum values of f, then $\alpha^2 + 2\beta^2$ is equal to

Options 1. 24

- 2.38
- 3. 44
- 4. 42

Question Type: MCQ

Question ID: 68019113800 Option 1 ID: 68019154395 Option 2 ID: 68019154396 Option 3 ID: 68019154397 Option 4 ID: 68019154398 Status: Not Answered

Chosen Option: --

Q.7 If the function

$$f(x) = \begin{cases} \frac{72^{x} - 9^{x} - 8^{x} + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0\\ a \log_{e} 2 \log_{e} 3, & x = 0 \end{cases}$$

is continuous at x = 0, then the value of a^2 is equal to

Options 1. 1250

- 2.1152
- 3.968
- 4. 746

Question Type : MCQ

Question ID: 68019113801 Option 1 ID: 68019154402 Option 2 ID: 68019154401 Option 3 ID: 68019154400 Option 4 ID: 68019154399 Status: Not Answered

Chosen Option : --

Let PQ be a chord of the parabola $y^2 = 12x$ and the midpoint of PQ be at (4, 1). Then, which of the following point lies on the line passing through the points P and Q?

Options

$$\left(\frac{3}{2},-16\right)$$

- 2. (3, -3) 3. (2, -9)
- $4.\left(\frac{1}{2},-20\right)$

Question Type: MCQ

Question ID: 68019113808 Option 1 ID: 68019154429 Option 2 ID: 68019154427 Option 3 ID: 68019154428 Option 4 ID: 68019154430

Status: Answered

Chosen Option: 1

Q.9 If the mean of the following probability distribution of a radam variable X:

X	0	2	4	6	8
P(X)	а	2a	a+b	2 <i>b</i>	3 <i>b</i>

is $\frac{46}{9}$, then the variance of the distribution is

- Options 1. $\frac{151}{27}$

 - 3. $\frac{581}{81}$
 - 4. $\frac{566}{81}$

Question Type: MCQ

Question ID: 68019113812 Option 1 ID: 68019154443 Option 2 ID: 68019154446 Option 3 ID: 68019154445 Option 4 ID: 68019154444 Status: Not Answered

Q.10 Let three real numbers a, b, c be in arithmetic progression and a + 1, b, c + 3 be in geometric progression. If a > 10 and the arithmetic mean of a, b and c is 8, then the cube of the geometric mean of a, b and c is

Options 1. 316

- 2. 120
- 3. 128
- 4. 312

Question Type: MCQ

Question ID : 68019113799 Option 1 ID : 68019154394 Option 2 ID : 68019154393 Option 3 ID : 68019154391 Option 4 ID : 68019154392 Status : Answered

Chosen Option : 4

The value of $\frac{1\times2^2+2\times3^2+....+100\times(101)^2}{1^2\times2+2^2\times3+....+100^2\times101}$ is

Options 1. $\frac{31}{30}$

- $\frac{305}{201}$
- 3. $\frac{306}{305}$
- 4. $\frac{32}{31}$

Question Type : MCQ

Question ID: 68019113798
Option 1 ID: 68019154387
Option 2 ID: 68019154388
Option 3 ID: 68019154390
Option 4 ID: 68019154389
Status: Answered

Q.12 Let
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 and $B = I + adj(A) + (adj A)^2 + ... + (adj A)^{10}$.

Then, the sum of all the elements of the matrix B is:

Options 1. -110

- 2. 22
- 3. -88
- 4. -124

Question Type: MCQ

Question ID: 68019113796 Option 1 ID: 68019154380 Option 2 ID: 68019154379 Option 3 ID: 68019154382 Option 4 ID: 68019154381 Status: Answered

Chosen Option: 3

Q.13 Let y = y(x) be the solution of the differential equation

$$(x^2+4)^2 dy + (2x^3y + 8xy - 2)dx = 0$$
. If $y(0) = 0$, then $y(2)$ is equal to

Options 1. 2π

- 2. $\frac{\pi}{16}$
- 3. $\frac{\pi}{8}$
- 4. $\frac{\pi}{32}$

Question Type: MCQ

Question ID: 68019113805 Option 1 ID: 68019154418 Option 2 ID: 68019154416 Option 3 ID: 68019154417 Option 4 ID: 68019154415 Status: Not Answered

Q.14 The area (in sq. units) of the region

$$S = \left\{ z \in \mathbb{C} : |z - 1| \le 2; (z + \overline{z}) + i(z - \overline{z}) \le 2, \operatorname{Im}(z) \ge 0 \right\} \text{ is}$$

Options 1. $\frac{7\pi}{4}$

- 2. $\frac{17\pi}{8}$
- 3. $\frac{3\pi}{2}$
- 4. $\frac{7\pi}{3}$

Question Type : MCQ

Question ID: 68019113795 Option 1 ID: 68019154377 Option 2 ID: 68019154378 Option 3 ID: 68019154375 Option 4 ID: 68019154376 Status: Not Answered

Chosen Option: --

Q.15 For $\lambda > 0$, let θ be the angle between the vectors $\vec{a} = \hat{i} + \lambda \hat{j} - 3\hat{k}$ and $\vec{b} = 3\hat{i} - \hat{j} + 2\hat{k}$. If the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are mutually perpendicular, then the value of $(14 \cos \theta)^2$ is equal to

Options 1. 20

- 2. 50
- 3. 40
- 4. 25

Question Type: MCQ

Question ID: 68019113811 Option 1 ID: 68019154440 Option 2 ID: 68019154441 Option 3 ID: 68019154442 Option 4 ID: 68019154439 Status: Answered

Q.16 Consider a hyperbola H having centre at the origin and foci on the x-axis. Let C_1 be the circle touching the hyperbola H and having the centre at the origin. Let C_2 be the circle touching the hyperbola H at its vertex and having the centre at one of its foci. If areas (in sq units) of C_1 and C_2 are 36π and 4π , respectively, then the length (in units) of latus rectum of H is

Options 1.

2. $\frac{14}{3}$

3

- 3. $\frac{28}{3}$
- 4. $\frac{11}{3}$

Question Type: MCQ

Question ID: 68019113807 Option 1 ID: 68019154425 Option 2 ID: 68019154424 Option 3 ID: 68019154423 Option 4 ID: 68019154426 Status: Not Answered

Chosen Option: --

0.17 Let a relation R on N × N be defined as:

 (x_1,y_1) R (x_2,y_2) if and only if $x_1 \le x_2$ or $y_1 \le y_2$.

Consider the two statements:

- (I) R is reflexive but not symmetric.
- (II) R is transitive

Then which one of the following is true?

Options 1. Neither (I) nor (II) is correct.

- 2. Only (II) is correct.
- 3. Both (I) and (II) are correct.
- 4. Only (I) is correct.

Question Type: MCQ

Question ID: 68019113794 Option 1 ID: 68019154374 Option 2 ID: 68019154372 Option 3 ID: 68019154373 Option 4 ID: 68019154371 Status: Answered

If the value of the integral $\int_{-1}^{1} \frac{\cos \alpha x}{1+3^x} dx$ is $\frac{2}{\pi}$. Then, a value of α is

- Options
 1. $\frac{\pi}{2}$ 2. $\frac{\pi}{3}$ 3. $\frac{\pi}{6}$ 4. $\frac{\pi}{4}$

Question Type: MCQ

Question ID: 68019113803 Option 1 ID: 68019154409 Option 2 ID: 68019154408 Option 3 ID: 68019154410 Option 4 ID: 68019154407 Status: Not Answered

Chosen Option: --

Q.19 Given that the inverse trigonometric function assumes principal values only. Let x, y be any two real numbers in [-1, 1] such that $\cos^{-1} x - \sin^{-1} y = \alpha$, $\frac{-\pi}{2} \le \alpha \le \pi$.

Then, the minimum value of $x^2 + y^2 + 2xy \sin \alpha$ is

Options 1. ()

- 4. -1

Question Type: MCQ

Question ID: 68019113813 Option 1 ID: 68019154449 Option 2 ID: 68019154450 Option 3 ID: 68019154448 Option 4 ID: 68019154447 Status: Not Answered

Q.20 Let P be the point of intersection of the lines
$$\frac{x-2}{1} = \frac{y-4}{5} = \frac{z-2}{1}$$
 and

$$\frac{x-3}{2} = \frac{y-2}{3} = \frac{z-3}{2}$$
. Then, the shortest distance of P from the line $4x = 2y = z$ is

Options 1.
$$\frac{5\sqrt{14}}{7}$$

2.
$$\frac{6\sqrt{14}}{7}$$

3.
$$\frac{3\sqrt{14}}{7}$$

4.
$$\frac{\sqrt{14}}{7}$$

Question Type: MCQ

Question ID: 68019113809 Option 1 ID: 68019154433 Option 2 ID: 68019154434 Option 3 ID: 68019154431 Option 4 ID: 68019154432 Status: Answered

Chosen Option: 2

Section: Mathematics Section B

There are 4 men and 5 women in Group A, and 5 men and 4 women in Group B. If 4 persons are selected from each group, then the number of ways of selecting 4 men and 4 women is

Given 121 Answer:

Question Type: SA

Question ID: 68019113817 Status: Answered

If $\int \csc^5 x \, dx = \alpha \cot x \csc x \left(\csc^2 x + \frac{3}{2} \right) + \beta \log_e \left| \tan \frac{x}{2} \right| + C$

where $\alpha, \beta \in \mathbb{R}$ and C is the constant of integration, then the value of $8(\alpha + \beta)$

Given --Answer:

Question Type: SA

Question ID: 68019113819 Status: Not Answered

Q.23	Consider a triangle ABC having the vertices $A(1, 2)$, $B(\alpha, \beta)$ and	
	angles $\angle ABC = \frac{\pi}{6}$ and $\angle BAC = \frac{2\pi}{3}$. If the points B and C lie or	the line $y = x + 4$,
	then $\alpha^2 + \gamma^2$ is equal to	
Giver Answer		
		Question Type : SA Question ID : 68019113821
		Status : Not Answered
Q.24	In a tournament, a team plays 10 matches with probabilities of y each match as $\frac{1}{3}$ and $\frac{2}{3}$ respectively. Let x be the number of matwins, and y be the number of matches that team loses. If the property y is y , then y equals	ches that the team
Giver Answer		
		Question Type : SA Question ID : 68019113823 Status : Not Answered
Q.25	Consider a line L passing through the points P(1, 2, 1) and 0 mirror image of the point A(2, 2, 2) in the line L is (α, β, γ) , equal to	
Giver Answer		
		Question Type : SA Question ID : 68019113822 Status : Not Answered
Q.26	Let S= $\{\sin^2 2\theta : (\sin^4 \theta + \cos^4 \theta) x^2 + (\sin 2\theta) x + (\sin^6 \theta + \cos^6 \theta)\}$ If α and β be the smallest and largest elements of the set S, respectively.	
Giver Answer		
		Question Type : SA Question ID : 68019113815 Status : Not Answered
Q.27	Let $y = y(x)$ be the solution of the differential equation $(x + y + 2)^2 dx = dy$, $y(0) = -2$. Let the maximum and $y(0) = -2$ the function $y = y(x)$ in $\left[0, \frac{\pi}{3}\right]$ be α and β , respectively. If $(3\alpha + \pi)^2 + \beta^2 = \gamma + \delta\sqrt{3}$, γ , $\delta \in \mathbb{Z}$, then $\gamma + \delta$ equals	ninimum values of
Giver Answer		
		Question Type : SA Question ID : 68019113820 Status : Not Answered

Given 0 Answer:

Question Type : SA

Question ID : 68019113816

Status : Answered

Consider the function
$$f: \mathbb{R} \to \mathbb{R}$$
 defined by $f(x) = \frac{2x}{\sqrt{1+9x^2}}$. If the composition of

$$f$$
, $(f \circ f \circ f \circ \cdots \circ f)(x) = \frac{2^{10}x}{\sqrt{1+9\alpha x^2}}$, then the value of $\sqrt{3\alpha+1}$ is equal to ______

Given --

Answer:

Question Type : SA
Question ID : 68019113814
Status : Not Answered

Q.30 Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be a thrice differentiable function such that $f(0) = 0$, $f(1) = 1$, $f(2) = -1$, $f(3) = 2$ and $f(4) = -2$. Then, the minimum number of zeros of $(3f'f'' + ff''')$ (x) is _____

Given --Answer :

Question Type : **SA**

Question ID : **68019113818**Status : **Not Answered**

Section: Physics Section A

Q.31 Which of the diode circuit shows correct biasing used for the measurement of dynamic resistance of p-n junction diode:

Question Type : MCQ

Question ID: 68019113824
Option 1 ID: 68019154461
Option 2 ID: 68019154464
Option 3 ID: 68019154463
Option 4 ID: 68019154462
Status: Answered

Q.32 A 2 kg brick begins to slide over a surface which is inclined at an angle of 45° with respect to horizontal axis. The co-efficient of static friction between their surfaces is:

Options 1. 1

- 2. 0.5
- 3. 1.7
- 4. $\frac{1}{\sqrt{3}}$

Question Type : MCQ

Question ID: 68019113827 Option 1 ID: 68019154473 Option 2 ID: 68019154476 Option 3 ID: 68019154475 Option 4 ID: 68019154474 Status: Answered

Chosen Option: 4

Q.33 The magnetic moment of a bar magnet is 0.5 Am². It is suspended in a uniform magnetic field of 8×10⁻²T. The work done in rotating it from its most stable to most unstable position is:

Options 1. 16×10⁻² J

- 2. Zero
- $3.4 \times 10^{-2} J$
- 4. 8×10⁻² J

Question Type : MCQ

Question ID : 68019113836 Option 1 ID : 68019154512 Option 2 ID : 68019154509 Option 3 ID : 68019154510 Option 4 ID : 68019154511 Status : Answered

Chosen Option: 1

Q.34 The width of one of the two slits in a Young's double slit experiment is 4 times that of the other slit. The ratio of the maximum of the minimum intensity in the interference pattern is:

Options 1. 4:1

- 2. 1:1
- 3. 9:1
- 4.16:1

Question Type: MCQ

Question ID: 68019113839
Option 1 ID: 68019154523
Option 2 ID: 68019154524
Option 3 ID: 68019154521
Option 4 ID: 68019154522
Status: Answered

Q.35 According to Bohr's theory, the moment of momentum of an electron revolving in 4th orbit of hydrogen atom is:

- Options 1. $2\frac{h}{\pi}$

 - 4. $\frac{h}{\pi}$

Question Type : MCQ

Question ID: 68019113841 Option 1 ID: 68019154529 Option 2 ID: 68019154532 Option 3 ID: 68019154531 Option 4 ID: 68019154530 Status: Answered

Chosen Option: 3

Q.36 A charge q is placed at the center of one of the surface of a cube. The flux linked with the cube is:

Options 1. $\frac{q}{2 \in_0}$

- 2. Zero
- $4. \ \frac{q}{8 \in_0}$

Question Type: MCQ

Question ID: 68019113834 Option 1 ID: **68019154501** Option 2 ID: 68019154504 Option 3 ID: 68019154502 Option 4 ID: 68019154503 Status: Answered

Q.37 Match List I with List II

	LIST I		LIST II
A.	Purely capacitive circuit	I.	$\stackrel{I \uparrow}{\longrightarrow} V$
В.	Purely inductive circuit	II.	V
C.	LCR series at resonance	III.	$\begin{array}{c} V \\ \theta \\ \end{array}$
D.	LCR series circuit	IV.	V ↑ 90° → I

Choose the correct answer from the options given below:

Options 1. A-I. B-IV, C-II, D-III

2. A-I. B-IV, C-III, D-II

3. A-IV. B-I, C-III, D-II

4. A-IV. B-I, C-II, D-III

Question Type : MCQ

Question ID: 68019113837
Option 1 ID: 68019154514
Option 2 ID: 68019154515
Option 3 ID: 68019154513
Option 4 ID: 68019154516
Status: Answered

Q.38 In simple harmonic motion, the total mechanical energy of given system is E. If mass of oscillating particle P is doubled then the new energy of the system for same amplitude is:

Options 1. $E\sqrt{2}$

- 2. E
- 3. $E/\sqrt{2}$
- 4. 2E

Question Type: MCQ

Question ID: 68019113843 Option 1 ID: 68019154537 Option 2 ID: 68019154540 Option 3 ID: 68019154538 Option 4 ID: 68019154539 Status: Answered

Chosen Option: 3

Q.39 Correct formula for height of a satellite from earths surface is:

Options
$$1 \cdot \left(\frac{T^2 R^2}{4\pi^2 g}\right)^{1/3} - R$$

$$2.\left(\frac{T^2R^2g}{4\pi^2}\right)^{1/3} - R$$

$$3.\left(\frac{T^2R^2g}{4\pi}\right)^{1/2}-R$$

4.
$$\left(\frac{T^2R^2g}{4\pi^2}\right)^{-1/3} + R$$

Question Type: MCQ

Question ID: 68019113830 Option 1 ID: 68019154485 Option 2 ID: 68019154488 Option 3 ID: 68019154486 Option 4 ID: 68019154487 Status: Answered

0.40 Identify the logic gate given in the circuit:

Options 1. OR- gate

- 2. NOR gate
- 3. AND gate
- 4. NAND- gate

Question Type: MCQ

Question ID : 68019113842 Option 1 ID : 68019154533 Option 2 ID : 68019154536 Option 3 ID : 68019154535 Option 4 ID : 68019154534 Status : Answered

Chosen Option: 2

Q.41 Arrange the following in the ascending order of wavelength:

- A. Gamma rays (λ_1)
- B. x rays (λ_2)
- C. Infrared waves (λ3)
- D. Microwaves (λ_4)

Choose the most appropriate answer from the options given below

Options 1. $\lambda_4 < \lambda_3 < \lambda_2 < \lambda_1$

- 2. $\lambda_2 < \lambda_1 < \lambda_4 < \lambda_3$
- 3. $\lambda_4 < \lambda_3 < \lambda_1 < \lambda_2$
- 4. $\lambda_1 < \lambda_2 < \lambda_3 < \lambda_4$

Question Type : MCQ

Question ID : 68019113838 Option 1 ID : 68019154517 Option 2 ID : 68019154519 Option 3 ID : 68019154518 Option 4 ID : 68019154520 Status : Answered

Q.42 Applying the principle of homogeneity of dimensions, determine which one is correct.

where T is time period, G is gravitational constant, M is mass, r is radius of orbit.

Options 1. $T^2 = 4\pi^2 r^3$

2.
$$T^2 = \frac{4\pi^2 r}{GM^2}$$

3.
$$T^2 = \frac{4\pi^2 r^2}{GM}$$

$$2. T^2 = \frac{4\pi^2 r}{GM^2}$$
$$3. T^2 = \frac{4\pi^2 r^2}{GM}$$
$$4. T^2 = \frac{4\pi^2 r^3}{GM}$$

Question Type: MCQ

Question ID: 68019113825 Option 1 ID: 68019154467 Option 2 ID: 68019154468 Option 3 ID: 68019154466 Option 4 ID: 68019154465

Status: Answered Chosen Option: 2

Q.43 A body of m kg slides from rest along the curve of vertical circle from point A to B in friction less path. The velocity of the body at B is:

(given, R = 14 m, $g = 10 \text{ m/s}^2$ and $\sqrt{2} = 1.4$)

Options 1. 16.7 m/s

- 2. 19.8 m/s
- 3. 10.6 m/s
- 4. 21.9 m/s

Question Type: MCQ

Question ID: 68019113829 Option 1 ID: 68019154482 Option 2 ID: 68019154483 Option 3 ID: 68019154484 Option 4 ID: 68019154481

Status: Answered

Q.44 Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: Number of photons increases with increase in frequency of light.

Reason R: Maximum kinetic energy of emitted electrons increases with the frequency of incident radiation.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

Options 1. A is correct but R is not correct.

- 2. A is not correct but R is correct.
- 3. Both A and R are correct and R is the correct explanation of A.

.

Both A and R are correct and R is NOT the correct explanation of A.

Question Type: MCQ

Question ID: 68019113840 Option 1 ID: 68019154527 Option 2 ID: 68019154528 Option 3 ID: 68019154525 Option 4 ID: 68019154526 Status: Answered

Chosen Option: 3

Q.45 A 90 kg body placed at 2R distance from surface of earth experiences gravitational pull of:

 $(R = Radius of earth, g = 10 m s^{-2})$

Options 1. 120 N

- 2. 300 N
- 3. 225 N
- 4. 100 N

Question Type: MCQ

Question ID: 68019113828 Option 1 ID: 68019154479 Option 2 ID: 68019154477 Option 3 ID: 68019154478 Option 4 ID: 68019154480 Status: Answered

Q.46 A cyclist starts from the point P of a circular ground of radius 2 km and travels along its circumference to the point S. The displacement of a cyclist is:

Options 1. 8 km

- 2. 4 km
- 3. 6 km
- $4.\sqrt{8}$ km

Question Type: MCQ

Question ID: 68019113826 Option 1 ID: 68019154469 Option 2 ID: 68019154470 Option 3 ID: 68019154472 Option 4 ID: 68019154471 Status: Answered

Chosen Option: 4

Q.47 A sample of gas at temperature T is adiabatically expanded to double its volume. Adiabatic constant for the gas is $\gamma = 3/2$. The work done by the gas in the process

$$(\mu = 1 \text{ mole})$$

Options 1. $RT\left[2-\sqrt{2}\right]$

- 2. $RT \left[1 2\sqrt{2} \right]$ 3. $RT \left[\sqrt{2} 2 \right]$
- 4. $RT \left[2\sqrt{2} 1 \right]$

Question Type: MCQ

Question ID: 68019113832 Option 1 ID: 68019154493 Option 2 ID: 68019154496 Option 3 ID: 68019154494 Option 4 ID: 68019154495 Status: Answered

Q.48 An electric bulb rated 50 W - 200 V is connected across a 100 V supply. The power dissipation of the bulb is:

Options 1. 12.5 W

- 2. 25 W
- 3. 100 W
- 4. 50 W

Question Type: MCQ

Question ID: 68019113835
Option 1 ID: 68019154505
Option 2 ID: 68019154508
Option 3 ID: 68019154507
Option 4 ID: 68019154506
Status: Answered

Chosen Option : 1

Q.49 The translational degrees of freedom (f_t) and rotational degrees of freedom (f_r) of CH_4 molecule are:

Options 1. $f_t = 2$ and $f_r = 2$

2. $f_t = 2$ and $f_r = 3$

3. $f_t = 3$ and $f_r = 2$

4. $f_t = 3$ and $f_r = 3$

Question Type : MCQ

Question ID : 68019113833
Option 1 ID : 68019154500
Option 2 ID : 68019154498
Option 3 ID : 68019154497
Option 4 ID : 68019154499
Status : Answered

Q.50 Given below are two statements:

Statement I : The contact angle between a solid and a liquid is a property of the material of the solid and liquid as well.

Statement II: The rise of a liquid in a capillary tube does not depend on the inner radius of the tube.

In the light of the above statements, choose the correct answer from the options given below:

Options 1. Statement I is true but Statement II is false.

- 2. Both Statement I and Statement II are false.
- 3. Statement I is false but Statement II is true.
- 4. Both Statement I and Statement II are true.

Question Type: MCQ

Question ID: 68019113831 Option 1 ID: 68019154491 Option 2 ID: 68019154490 Option 3 ID: 68019154492 Option 4 ID: 68019154489

Status : **Answered** Chosen Option : **3**

Section: Physics Section B

Q.51	A rod of length 60 cm rotates with a uniform angular velocity 2 perpendicular bisector, in a uniform magnetic filed 0.5T. The d field is parallel to the axis of rotation. The potential difference ends of the rod is V.	irection of magnetic
Give Answer		
		Question Type : SA Question ID : 68019113846 Status : Not Answered
Q.52	A bus moving along a straight highway with speed of 72 km/s within 4 s after applying the brakes. The distance travelled by time (Assume the retardation is uniform) ism.	
·	within 4 s after applying the brakes. The distance travelled by time (Assume the retardation is uniform) ism. 122.2	

Q.53 A parallel plate capacitor of capacitance 12.5 pF is charged by a battery connected between its plates to potential difference of 12.0 V. The battery is now disconnected and a dielectric slab (∈_r = 6) is inserted between the plates. The change in its potential energy after inserting the dielectric slab is _____ × 10⁻¹² J.

Given --Answer :

Question Type : SA

Question ID : 68019113853 Status : Not Answered

Q.54 Mercury is filled in a tube of radius 2 cm up to a height of 30 cm. The force exerted by mercury on the bottom of the tube is N.

(Given, atmospheric pressure = 10^5 Nm⁻², density of mercury = 1.36×10^4 kg m⁻³, g = 10 m s⁻², $\pi = \frac{22}{7}$)

Given --Answer :

Question Type : SA

Question ID : 68019113850 Status : Not Answered

Q.55 Two wires A and B are made up of the same material and have the same mass. Wire A has radius of 2.0 mm and wire B has radius of 4.0 mm. The resistance of wire B is 2Ω . The resistance of wire A is Ω .

Given 16 Answer:

Question Type : SA

Question ID : 68019113848 Status : Answered

Q.56 Two parallel long current carrying wire separated by a distance 2r are shown in the figure. The ratio of magnetic field at A to the magnetic field produced at C is $\frac{x}{7}$.

The value of x is _____.

Given --Answer :

Question Type: SA

Question ID: 68019113847 Status: Not Answered

Section: Chemistry Section A

Q.61 The number of species from the following that have pyramidal geometry around the central atom is

$$S_2O_3^{2-}, SO_4^{2-}, SO_3^{2-}, S_2O_7^{2-}$$

Options 1. 2

2. 3

3. 4

4. 1

Question Type: MCQ

Question ID: 68019113861 Option 1 ID: 68019154580 Option 2 ID: 68019154581 Option 3 ID: 68019154582 Option 4 ID: 68019154579 Status: Answered

Chosen Option : 1

Q.62 The correct order of the first ionization enthalpy is

Options 1. T1 > Ga > A1

2. Ga > Al > B

3. B > A1 > Ga

4. Al > Ga > Tl

Question Type: MCQ

Question ID : 68019113860 Option 1 ID : 68019154577 Option 2 ID : 68019154575 Option 3 ID : 68019154576 Option 4 ID : 68019154578 Status : Answered

Chosen Option: 2

Q.63 Choose the Incorrect Statement about Dalton's Atomic Theory

Options 1.

All the atoms of a given element have identical properties including identical mass.

2

Compounds are formed when atoms of different elements combine in any ratio.

- 3. Matter consists of indivisible atoms.
- 4. chemical reactions involve reorganization of atoms

Question Type : MCQ

Question ID : 68019113854
Option 1 ID : 68019154552
Option 2 ID : 68019154553
Option 3 ID : 68019154551
Option 4 ID : 68019154554
Status : Answered

Q.64 If an iron (III) complex with the formula $\left[\text{Fe} \left(\text{NH}_3 \right)_x \left(\text{CN} \right)_y \right]^-$ has no electron in its e_g orbital, then the value of x + y is Options 1. 3

Juona 1.

2. 4

3. 6

4. 5

Question Type: MCQ

Question ID: 68019113864
Option 1 ID: 68019154591
Option 2 ID: 68019154592
Option 3 ID: 68019154594
Option 4 ID: 68019154593
Status: Answered

Chosen Option: 4

Q.65 Common name of Benzene - 1, 2 - diol is -

Options 1. o-cresol

2. quinol

3. catechol

4. resorcinol

Question Type : MCQ

Question ID: 68019113871
Option 1 ID: 68019154622
Option 2 ID: 68019154620
Option 3 ID: 68019154621
Option 4 ID: 68019154619
Status: Answered

Chosen Option : $\boldsymbol{2}$

$$CH_3 - CH_2 - CH_2 - Br + NaOH \xrightarrow{C_2H_5OH} Product'A'$$

$$\begin{array}{c} & \xrightarrow{\text{H}_2\text{O}} & \xrightarrow{\text{Product "B"}} \\ & \xrightarrow{\text{Diborane}} & \xrightarrow{\text{H}_2\text{O}/\text{H}_2\text{O}_2/\overline{\text{O}}\text{H}} & \text{Product "C"} \end{array}$$

Consider the above reactions, identify product B and product C.

Options 1. B = 1-Propanol C = 2-Propanol

- 2. B = C = 1-Propanol
- 3. B = 2-Propanol C = 1-Propanol
- 4. B = C = 2-Propanol

Question Type: MCQ

Question ID : 68019113872 Option 1 ID : 68019154624 Option 2 ID : 68019154626 Option 3 ID : 68019154623 Option 4 ID : 68019154625 Status : Answered

Chosen Option: 2

Q.67 For a strong electrolyte, a plot of molar conductivity against (concentration)^{1/2} is a straight line, with a negative slope, the correct unit for the slope is

Options 1. S cm² mol^{-3/2} L^{1/2}

- 2 S cm 2 mol $^{-3/2}$ L
- 3. S cm² mol⁻¹ L^{1/2}
- 4. S cm² mol^{-3/2} L^{-1/2}

Question Type : MCQ

Question ID : 68019113858 Option 1 ID : 68019154570 Option 2 ID : 68019154568 Option 3 ID : 68019154567 Option 4 ID : 68019154569 Status : Answered

Q.68 Match List I with List II

	LIST I		LIST II
A.	α - Glucose and α - Galactose	I.	Functional isomers
B.	α - Glucose and β - Glucose	II.	Homologous
C.	α - Glucose and α - Fructose	III.	Anomers
D.	α - Glucose and α - Ribose	IV.	Epimers

Choose the correct answer from the options given below:

Options 1. A-III, B-IV, C-I, D-II

- 2. A-IV, B-III, C-I, D-II
- 3. A-IV, B-III, C-II, D-I
- 4. A-III, B-IV, C-II, D-I

Question Type: MCQ

Question ID: 68019113873
Option 1 ID: 68019154627
Option 2 ID: 68019154629
Option 3 ID: 68019154630
Option 4 ID: 68019154628
Status: Answered

Chosen Option: 3

Q.69 Find out the major product formed from the following reaction. [Me:-CH3]

Options
$$NMe_2$$
 NMe_2

NMe₂

Question Type : MCQ

Question ID: 68019113869
Option 1 ID: 68019154611
Option 2 ID: 68019154614
Option 3 ID: 68019154612
Option 4 ID: 68019154613
Status: Answered

0.70 The adsorbent used in adsorption chromatography is/are -

- A. silica gel
- B. alumina
- C. quick lime
- D. magnesia

Choose the most appropriate answer from the options given below:

Options 1. C and D only

- 2. A and B only
- 3. B only
- 4. A only

Question Type: MCQ

Question ID: 68019113866
Option 1 ID: 68019154602
Option 2 ID: 68019154601
Option 3 ID: 68019154600
Option 4 ID: 68019154599
Status: Answered

Chosen Option : 1

Q.71 The correct statement/s about Hydrogen bonding is/are

- A. Hydrogen bonding exists when H is covalently bonded to the highly electro negative atom.
- B. Intermolecular H bonding is present in o-nitro phenol
- C. Intramolecular H bonding is present in HF.
- D. The magnitude of H bonding depends on the physical state of the compound.
- E. H-bonding has powerful effect on the structure and properties of compounds

Choose the correct answer from the options given below:

Options 1. A, B, D only

- 2. A, B, C only
- 3. A, D, E only
- 4. A only

Question Type: MCQ

Question ID : 68019113855 Option 1 ID : 68019154556 Option 2 ID : 68019154557 Option 3 ID : 68019154558 Option 4 ID : 68019154555 Status : Answered

Q.72 Fuel cell, using hydrogen and oxygen as fuels,

- A. has been used in spaceship
- B. has as efficiency of 40% to produce electricity
- C. uses aluminum as catalysts
- D. is eco-friendry
- E. is actually a type of Galvanic cell only

Choose the correct answer from the options given below:

Options 1. A, B, C only

- 2. A, D, E only
- 3. A, B, D, E only
- 4. A, B, D only

Question Type: MCQ

Question ID: 68019113857
Option 1 ID: 68019154563
Option 2 ID: 68019154565
Option 3 ID: 68019154566
Option 4 ID: 68019154564
Status: Answered

Product P is

Options

Question Type : MCQ

Chosen Option: 4

Question ID: 68019113870 Option 1 ID: 68019154615 Option 2 ID: 68019154618 Option 3 ID: 68019154617 Option 4 ID: 68019154616 Status: Answered

Q.74 The number of unpaired d-electrons in $[Co(H_2O)_6]^{3+}$ is _____.

Options 1. 4

2. 0

3. 1

4. 2

Question Type: MCQ

Question ID : 68019113863 Option 1 ID : 68019154590 Option 2 ID : 68019154587 Option 3 ID : 68019154588 Option 4 ID : 68019154589 Status : Answered

In the above chemical reaction sequence "A" and "B" respectively are Options 1. O 3, Zn/H 2O and NaOH(alc)/I 2

- 2. H₂O, H⁺ and KMnO₄
- 3. O₃, Zn/H₂O and KMnO₄
- 4. H_2O , H^+ and $NaOH_{(alc)}/I_2$

Question Type : MCQ

Question ID: 68019113868
Option 1 ID: 68019154608
Option 2 ID: 68019154607
Option 3 ID: 68019154610
Option 4 ID: 68019154609
Status: Answered

Chosen Option : 1

Q.76 When MnO_2 and H_2SO_4 is added to a salt (A), the greenish yellow gas liberated as salt (A) is :

Options 1. KNO3

- 2. NH₄Cl
- 3. CaI₂
- 4. NaBr

Question Type : MCQ

Question ID : 68019113865 Option 1 ID : 68019154598 Option 2 ID : 68019154596 Option 3 ID : 68019154597 Option 4 ID : 68019154595 Status : Answered

0.77 Correct order of stability of carbanion is -

Options 1. d > c > b > a

2.
$$c > b > d > a$$

3.
$$a > b > c > d$$

$$4 \cdot d > a > c > b$$

Question Type : MCQ

Question ID: 68019113867 Option 1 ID: 68019154603 Option 2 ID: 68019154606 Option 3 ID: **68019154604** Option 4 ID: **68019154605** Status : **Answered**

Chosen Option: 1

Q.78 A first row transition metal in its +2 oxidation state has a spin-only magnetic moment value of 3.86 BM. The atomic number of the metal is

Options 1. 26

2. 22

3. 25

4. 23

Question Type: MCQ

Question ID: 68019113862 Option 1 ID: **68019154586** Option 2 ID: 68019154585 Option 3 ID: 68019154583 Option 4 ID: **68019154584** Status: Answered

Q.79 The equilibrium constant for the reaction

$$SO_3(g) \Longrightarrow SO_2(g) + \frac{1}{2}O_2(g)$$

is $K_c = 4.9 \times 10^{-2}$. The value of K_c for the reaction given below is

$$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \Longrightarrow 2 \operatorname{SO}_3(g) \text{ is } :$$

Options 1. 41.6

- 2. 49
- 3. 4.9
- 4. 416

Question Type: MCQ

Question ID : 68019113856 Option 1 ID : 68019154561 Option 2 ID : 68019154562 Option 3 ID : 68019154559 Option 4 ID : 68019154560 Status : Answered

Chosen Option : 2

Q.80 Given below are two statements:

Statement I: The correct order of first ionization enthalpy values of Li, Na, F and Cl is $Na \le Li \le Cl \le F$.

Statement II: The correct order of negative electron gain enthalpy values of Li, Na, F and Cl is Na < Li < F < Cl

In the light of the above statements, choose the *correct* answer from the options given below:

Options 1. Statement I is true but Statement II is false

- 2. Both Statement I and Statement II are false
- 3. Both Statement I and Statement II are true
- 4. Statement I is false but Statement II is true

Question Type: MCQ

Question ID : 68019113859 Option 1 ID : 68019154573 Option 2 ID : 68019154572 Option 3 ID : 68019154571 Option 4 ID : 68019154574 Status : Answered

on Ontion : 1

Chosen Option : 1

Section: Chemistry Section B

Q.81	Consider the following reaction, the rate expression of which	s given below
	$A + B \rightarrow C$	
	rate = $k [A]^{1/2} [B]^{1/2}$	
	The reaction is initiated by taking 1 M concentration of A and constant (k) is $4.6 \times 10^{-2} \text{ s}^{-1}$, then the time taken for A to become sec. (nearest integer)	
Give Answer		
		Question Type : SA Question ID : 68019113878 Status : Not Answered
Q.82	Three moles of an ideal gas are compressed isothermally from constant pressure of 5 atm. Heat exchange Q for the compressionatm.	
Give Answer	n 7.55 :	
		Question Type : SA Question ID : 68019113876 Status : Answered
Give	with oxygen at high temperature forms oxides of formula M ₂ O ₂ 5). The 'spin-only' magnetic moment value of the amphoteric oxides is BM (near integer) (Given atomic number: Sc: 21, Ti: 22, V: 23, Cr: 24, Mn: 25 Ni: 28, Cu: 29, Zn: 30)	xide from the above
Answer	:	
		Question Type : SA Question ID : 68019113879 Status : Answered
Q.84	The total number of 'sigma' and 'Pi' bonds in 2-oxohex-4-yn	oic acid is
Give Answer		
		Question Type : SA Question ID : 68019113881 Status : Answered
Q.85	From 6.55 g of aniline, the maximum amount of acetanilide the will be 200×10^{-1} g.	nat can be prepared
Give Answer		
		Question Type : SA Question ID : 68019113880 Status : Not Answered

Q.86	Number of compounds / species from the following with non-z is .	ero dipole moment
	BeCl ₂ , BCl ₃ , NF ₃ , XeF ₄ , CCl ₄ , H ₂ O, H ₂ S, HBr, CO ₂ , H ₂ , HCl	
Give		
Answer	:	
		Question Type : SA
		Question ID : 68019113875 Status : Answered
0.07	77	
Q.87	Vanillin compound obtained from vanilla beans, has total sur and π electrons is	n of oxygen atoms
Give		
Answer		
		Question Type : SA Question ID : 68019113882
		Status: Not Answered
Q.88	The maximum number of orbitals which can be identified with	$n = 4$ and $m_i = 0$ is
4.55		
Give Answer		
Allswei	•	
		Question Type : SA Question ID : 68019113874
		Status : Answered
Q.89	2.7 kg of each of water and acetic acid are mixed. The freez solution will be $-x$ °C. Consider the acetic acid does not dim dissociates in water. $x = $ (nearest integer)	erise in water, nor
	[Given: Molar mass of water = 18 g mol^{-1} , acetic acid = 60	g moi
	$K_{f}H_{2}O: 1.86 \text{ K kg mol}^{-1}$	
	K _f acetic acid: 3.90 K kg mol ⁻¹	
	freezing point: H ₂ O = 273 K, acetic acid = 290 K]	
Give Answer		
		Question Type : SA
		Question ID : 68019113877 Status : Not Answered
		Status . NOT Answered

Q.90 Phthalimide is made to undergo foll	owing sequence of reactions.
Phthalimide (i) KOH (ii) Benzylchloride	→ 'P'
Total number of π bonds present in	product 'P' is/are
Total manifest of a contas present in	product I is the
Given	product I is air
•	Question Type : SA
Given	