Introduccion a R y RStudio

Taller de Introduccion a R y manejo de informacion grillada

Eduardo Noriega

Noviembre, 2018

¿Qué es R?

"R es un lenguaje y entorno de libre acceso para la computación estadística y gráficos que proporciona una amplia variedad de técnicas estadísticas y gráficas: modelado lineal y no lineal, pruebas estadísticas, análisis de series temporales, clasificación, clustering, etc."

- R core group

Descargar R y RStudio

https://www.rstudio.com/products/rstudio/download/

https://www.r-project.org/

https://www.r-project.org/

RStudio

https://www.rstudio.com/

Crear proyecto

- Para poder operar de forma ordenada es recomendable crear un Proyecto que contenga la información de entrada, salidas, scripts, etc.
- De esa forma las rutas de acceso se vuelven relativas sin depender de un árbol de carpetas propio de cada usuario.

Librerías

```
install.packages('beepr', repos = 'https://cloud.r-project.org')
## Installing package into 'C:/Users/HP/Documents/R/win-library/3.5'
## (as 'lib' is unspecified)
## package 'beepr' successfully unpacked and MD5 sums checked
##
## The downloaded binary packages are in
## C:\Users\HP\AppData\Local\Temp\RtmpOqI8So\downloaded_packages
library(beepr)
## Warning: package 'beepr' was built under R version 3.5.1
beep(sound = 8)
```

Librerías

Instalar librerias

```
install.packages('raster')
install.packages('openxls')
install.packages('ncdf4')
install.packages('lubridate')
```

Vector númerico

Vector de caracteres

Factores

Variables lógicas

```
a <- 2
b <- 3
a == b # ¿es a igual a b?
## [1] FALSE
```

Matrices

```
(A <- matrix(c(-67, -16, -68.5, -17.5), byrow = TRUE, ncol = 2))

## [,1] [,2]

## [1,] -67.0 -16.0

## [2,] -68.5 -17.5
```

Data frames

```
datos <- data.frame(fecha, precipitacion)</pre>
head(datos)
##
        fecha precipitacion
                 6.0
## 1 1991-01-01
## 2 1991-01-02
              7.0
## 3 1991-01-03
              24.0
## 4 1991-01-04
                      17.0
## 5 1991-01-05
              20.5
## 6 1991-01-06
                      20.5
```

Listas

```
(mi_lista <- list(matriz = A, df = datos))</pre>
## $matriz
          \lceil .1 \rceil \lceil .2 \rceil
##
## [1,] -67.0 -16.0
## [2,] -68.5 -17.5
##
## $df
##
            fecha precipitacion
## 1
      1991-01-01
                            6.0
##
   2
      1991-01-02
                           7.0
## 3
      1991-01-03
                            24.0
## 4
      1991-01-04
                            17.0
      1991-01-05
## 5
                            20.5
      1991-01-06
                            20.5
## 6
      1991-01-07
                            20.0
## 7
      1991-01-08
                            12.0
## 8
      1991-01-09
                            11.0
## 9
## 10 1991-01-10
                            14.0
## 11 1001-01-11
                             38 V
      Eduardo Noriega
```

Fechas

```
class(fecha)
## [1] "character"
fecha_formato <- as.Date(fecha) # ojo!
head(fecha_formato, 4)
## [1] "1991-01-01" "1991-01-02" "1991-01-03" "1991-01-04"
class(fecha_formato)
## [1] "Date"</pre>
```

Funciones

Si una tarea se repite mas de dos veces es hora de crear una funcion.

```
is.leapyear <- function(year){
   condicion_1 <- (year %% 4 == 0)
   condicion_2 <- (year %% 100 != 0)
   condicion_3 <- (year %% 400 == 0)
   return((condicion_1 & condicion_2) | condicion_3)
}</pre>
```

Operaciones lógicas

```
==, <, >, <=, >=, %in%
a \leftarrow 1 ; b \leftarrow c(1, 2, 3)
a == b
## [1] TRUE FALSE FALSE
a <= b
## [1] TRUE TRUE TRUE
a %in% b
## [1] TRUE
5 %in% b
## [1] FALSE
```

Indexacion

Vector []

```
fecha_formato[2]
## [1] "1991-01-02"
```

Matriz y data frame []

```
datos[1,2]
## [1] 6
head(datos[,2], 11)
## [1] 6.0 7.0 24.0 17.0 20.5 20.5 20.0 12.0 11.0 14.0 38.0
```

Data frame \$

```
datos_precip <- datos$precipitacion
head(datos_precip, 11)
## [1] 6.0 7.0 24.0 17.0 20.5 20.5 20.0 12.0 11.0 14.0 38.0</pre>
```

Indexacion

Listas [], [[]], \$ mi_lista[1] ## \$matriz ## [,1] [,2] ## [1,] -67.0 -16.0 ## [2,] -68.5 -17.5 mi_lista[[1]] ## [,1] [,2] ## [1,] -67.0 -16.0 ## [2.] -68.5 -17.5 mi_lista\$matriz ## [,1] [,2] ## [1,] -67.0 -16.0 ## [2,] -68.5 -17.5

Información de objetos

Propiedades de los datos

```
str(datos) # data frame

## 'data.frame': 15 obs. of 2 variables:
## $ fecha : Factor w/ 15 levels "1991-01-01","1991-01-02",..: 1 2
## $ precipitacion: num 6 7 24 17 20.5 20.5 20 12 11 14 ...
str(mi_lista) # lista

## List of 2
## $ matriz: num [1:2, 1:2] -67 -68.5 -16 -17.5
## $ df :'data.frame': 15 obs. of 2 variables:
## ..$ fecha : Factor w/ 15 levels "1991-01-01","1991-01-02",..: 1
## ..$ precipitacion: num [1:15] 6 7 24 17 20.5 20.5 20 12 11 14 ...
```

Algunos estadísticos

```
summary(datos$precipitacion)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.50 7.50 12.00 14.67 20.25 38.00
```

Bucles vs Vectorización

Bucles

```
salida <- vector()
for (i in 1:3) { salida[i] <- paste('indice', i, sep = '=') }
salida
## [1] "indice=1" "indice=2" "indice=3"</pre>
```

Vectorización

```
sapply(1:3, function(i) paste('indice', i, sep = '='))
## [1] "indice=1" "indice=2" "indice=3"
```

Ejemplo: Manipulacion de informacion tabular

4	A	В
1	fecha	San Calixto
2	01/01/1981	San_Calixto
3	02/01/1981	0.8
4	03/01/1981	11.9
5	04/01/1981	22.4
6	05/01/1981	8.1
7	06/01/1981	1
8	07/01/1981	0
9	08/01/1981	3.6
10	09/01/1981	1.1
11	10/01/1981	7.8
12	11/01/1981	3.8
13	12/01/1981	3.7
14	13/01/1981	5.7
15	14/01/1981	5.3
16	15/01/1981	1.9
17	16/01/1981	22.8
18	17/01/1981	0
19	18/01/1981	9.4
20	19/01/1981	7.8
21	20/01/1981	0.5
22	21/01/1981	4.7
23	22/01/1981	0
24	23/01/1981	0
25	24/01/1981	0
26	25/01/1981	0
27	26/01/1981	7.1
28	27/01/1981	19
29	28/01/1981	2.6
30	29/01/1981	0
31	30/01/1981	0
32	31/01/1981	0
33	01/02/1981	0.3
34	02/02/1981	4.5
35	03/02/1981	0
36	04/02/1981	0
37	05/02/1981	0
38	06/02/1981	18.2
39	07/02/1981	29.1
40	08/02/1981	3.5
41	09/02/1981	7.4