Van Emde Boas Tree

Shubham Agrawal

Agenda:

- 1. Node Structure
- 2. Insertion
- 3. Successor
- 4. Delete
- 5. Time Complexity
- 6. Space Complexity

Problem

Given a set **S** of elements such that the elements are taken from universe {0, 1, u-1}, perform following operations efficiently.

- 1. Insert
- 2. Successor
- 3. Delete

Different Solutions:

1. Bit Vector

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	1

- 2. Balanced BST like AVL tree, Red Black tree
- 3. VEB tree

Complexity Comparison:

Here, **u**-->universe size, **n**--> Number of elements present in the tree.

Data Structure	Insert	Successor	Delete		
Bit Vector	O(1)	O(u)	O(1)		
AVL (BST)	O(log n)	O(log n)	O(log n)		
VEB	O(log log u)	O(log log u)	O(log log u)		

Where might O(log log u) come from

$$T(k) = T(k/2) + O(1)$$
 -----> $O(\log k)$
 $T(\log u) = T(\log(u) / 2) + O(1)$ ----> $O(\log \log u)$
 $S(u) = S(sqrt(u)) + O(1)$ ----> $O(\log \log u)$

1. Bit Vector

0 -> Absent, 1 -> Present

Suppose u = 16 elements from $\{0, 1, ..., 15\}$

And n = 4 and $\{1, 9, 10, 15\}$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	1

2. Split the universe into sqrt(u) clusters of size sqrt(u)

Summary Vector

- 1. Insert O(1)
- 2. Successor(X):
 - a. Look in X's Cluster ---> O(sqrt(u))
 - b. Look for the next 1 in summary vector ---> O(sqrt(u))
 - c. Look for the first one in that cluster ---> O(sqrt(u))

O(sqrt(u))

Terminologies

```
If x = i * sqrt(u) + j, where 0 <= j < sqrt(u)
i-> cluster number
j-> position in that cluster
```

$$X = 9$$
 sqrt(16)=4, $9 = 2*4+1$

- 1. high(X) = floor(X/sqrt(u)) = 2
- 2. low(X) = X % sqrt(u) = 1
- 3. index(i, j) = i*sqrt(u) + j ---> index(2, 1) = 2*sqrt(16) + 1 = 2*4 + 1 = 9

3. Recursion

We define data structure V (size u) VEB.

It contains:

- 1. V.clusters[i] from $0 \le i \le sqrt(u)$ size(V.cluster[i]) = sqrt(u) VEB
- 2. V.summary size(V.summary) = sqrt(u) VEB

Structure of vEB node

```
10 ----> 1, 3, 43, 34, 23, 100 ---> max = 100 \rightarrow 2^8
Class VEB{
    int u;
    vector<VEB*> clusters(sqrt(u));
    VEB* summary(Sqrt(u));
```

Insertion Algo:

$$T(u) = 2*T(\sqrt{u}) + O(1)$$

$$O(\log u)$$

Successor Algo:

Return index(i, j)

```
Successor(V, X):
                                              T(u) = 3*T(\sqrt{u}) + O(1)
    i = high(X)
                                              O(\log u)^{n}(\log 3)
    j = Successor(V.cluster[i], low(X))
    If i == Infinity:
         i = Successor(V.summary, i)
         i = Successor(V.cluster[i], -Infinity) // V.cluster[i].min
```

4. Store Min and Max

Augmentation like AVL tree:

Node Structure of VEB Tree

Modified Insertion Algo:

```
Insert(V, x):
                                              O(log u)
    if(X< V.min):
         V.min = X
    if(X> V.max):
         V.max = X
    Insert(V.cluster[high(i)], low(x))
    Insert(V.summary, high(X))
```

Modified Successor Algo:

```
Successor(V, X):
    i = high(X)
    if( low(X) < V.cluster[i].max):</pre>
         j = Successor(V.cluster[i], low(X))
    else:
         i = Successor(V.summary, i)
         j = V.cluster[i].min
    Return index(i, j)
```

 $T(u) = T(\sqrt{u}) + O(1)$ $O(\log \log u)$

5. Don't Store min recursively

```
Insert(V, x):
     If V.min = None:
                                                 O(log log u)
          V.min = V.max = X
          return
     if(X< V.min):
          Swap V.min <-> X
     if(X> V.max):
          V.max = X
     If V.cluster[high(X)].min = None:
          Insert(V.summary, high(X))
     Insert(V.cluster[high(i)], low(x))
```


Delete Algo:

```
Delete (V, X):
     If X=V.min:
                                                       O(log log u)
           I = V.summary.min
           If i=None:
                 V.min=V.max=None
                 Return
           X = V.min = index(i, V.cluster[i].min)
     Delete(V.cluster[high(X), low(X))
     If V.cluster[high(X)].min = None:
           Delete(v.summary, high(X))
     If X = V \max
           If V.summary.max = None:
                V.max = V.min
           Else:
                 i = V.summary.max
                 V.max = index(i, V.cluster[i].max)
```

Space Complexity: O(u)

References:

- 1. https://www.geeksforgeeks.org/van-emde-boas-tree-set-1-basics-and-construction/
- 2. https://www.youtube.com/watch?v=hmReJCupbNU
- 3. https://www.youtube.com/watch?v=xMr_EhBqBpw
- 4. Introduction to Algorithms Third Edition (CLRS book) page 531.