Àlgebra Solucions dels exercicis del Capítol 5 (Lliçó 21) **Robert Fuster**

Exercici 21.1. Calculeu el determinant det $\begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix}$

$$\det\begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix} = 1 \cdot 1 - 2 \cdot (-3) = 7 \square$$

Exercici 21.2. Calculeu el determinant de la matriu $A = \begin{bmatrix} 1 & -1 & 2 & -1 \\ 1 & 1 & 1 & 1 \\ 4 & 0 & 6 & 1 \\ 2 & 0 & 2 & 1 \end{bmatrix}$

$$\begin{vmatrix} 1 & -1 & 2 & -1 \\ 1 & 1 & 1 & 1 \\ 4 & 0 & 6 & 1 \\ 2 & 0 & 3 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 2 & -1 \\ 0 & 2 & -1 & 2 \\ 0 & 4 & -2 & 5 \\ 0 & 2 & -1 & 3 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 2 & -1 \\ 0 & 2 & -1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 0 \square$$

Exercici 21.3. Estudieu la invertibilitat de les matrius

(a)
$$A = \begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix}$$
 (b)

(b)
$$B = \begin{bmatrix} 2 & 3 & 5 \\ -3 & 4 & 1 \\ 3 & 2 & -1 \end{bmatrix}$$

(a)
$$A = \begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 2 & 3 & 5 \\ -3 & 4 & 1 \\ 3 & 2 & -1 \end{bmatrix}$ (c) $C = \begin{bmatrix} 1 & -1 & 2 & -1 \\ 1 & 1 & 1 & 1 \\ 4 & 0 & 6 & 1 \\ 2 & 0 & 3 & 1 \end{bmatrix}$

En els exemples anteriors hem vist que els determinants d'aquestes matrius són det A = 7, $\det B = -102 i \det C = 0$. Per tant, A i B són invertibles i C no ho és. \Box

Exercici 21.4. Calculeu els determinants de les matrius següents:

(a)
$$\begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

(a)
$$\begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$$
 (b) $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ (c) $\begin{bmatrix} x+1 & x-1 \\ x-1 & x+1 \end{bmatrix}$

(d)
$$\begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 4 \\ 1 & 0 & -1 \end{bmatrix}$$
 (e)
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 1 & 2 \end{bmatrix}$$
 (f)
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 1 & 0 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 1 & 2 \end{bmatrix}$$

1

$$\begin{array}{c|cccc}
(f) & 1 & 2 & 3 \\
4 & 5 & 6 \\
2 & 1 & 0
\end{array}$$

(a)
$$\begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} = -1$$

(b)
$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix} = a^2 + b^2$$

(c)
$$\begin{bmatrix} x+1 & x-1 \\ x-1 & x+1 \end{bmatrix} = (x+1)^2 - (x-1)^2 = x^2 + 2x + 1 - (x^2 - 2x + 1) = 4x$$

(d)
$$\begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 4 \\ 1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & -4 \end{bmatrix} = -4$$

(e)
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -5 & -7 \end{bmatrix} = -3 \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -5 & -7 \end{bmatrix} = -3 \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix} = -9$$

(f)
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 3 \\ 6 & 6 & 6 \\ 2 & 1 & 0 \end{bmatrix} = 0$$

(Hem sumat la tercera fila a la primera i també a la segona. Llavors, com la nova matriu té dues files proporcionals, no pot ser invertible.)

Exercici 21.5. Calculeu els determinants següents, cercant en cada cas el mètode més eficient que pugueu trobar

(a)
$$\det \begin{bmatrix} x & x & x & x \\ x & y & y & y \\ x & y & z & z \\ x & y & z & t \end{bmatrix}$$
 (b) $\det \begin{bmatrix} 1+x & 1 & 1 & \dots & 1 \\ 1 & 1+x & 1 & \dots & 1 \\ 1 & 1 & 1+x & \dots & 1 \\ \dots & & & & & \\ 1 & 1 & 1 & \dots & 1+x \end{bmatrix}$ (la matriu és d'ordre n)

(a)
$$\det \begin{bmatrix} x & x & x & x \\ x & y & y & y \\ x & y & z & z \\ x & y & z & t \end{bmatrix} = \det \begin{bmatrix} x & 0 & 0 & 0 \\ x & y - x & y - x & y - x \\ x & y - x & z - x & z - x \\ x & y - x & z - x & t - x \end{bmatrix} = \det \begin{bmatrix} x & 0 & 0 & 0 \\ x & y - x & 0 & 0 \\ x & y - x & z - y & t - y \end{bmatrix}$$
$$= \det \begin{bmatrix} x & 0 & 0 & 0 \\ x & y - x & 0 & 0 \\ x & y - x & z - y & 0 \\ x & y - x & z - y & t - z \end{bmatrix} = x(y - x)(z - y)(t - z)$$

(b)
$$\det\begin{bmatrix} 1+x & 1 & 1 & \dots & 1 \\ 1 & 1+x & 1 & \dots & 1 \\ 1 & 1 & 1+x & \dots & 1 \\ \dots & & & & & & \\ 1 & 1 & 1 & \dots & 1+x \end{bmatrix} = \det\begin{bmatrix} n+x & n+x & n+x & \dots & n+x \\ 1 & 1+x & 1 & \dots & 1 \\ 1 & 1 & 1+x & \dots & 1 \\ \dots & & & & & \\ 1 & 1 & 1 & \dots & 1+x \end{bmatrix}$$
$$= (n+x) \det\begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1+x & 1 & \dots & 1 \\ 1 & 1 & 1+x & \dots & 1 \\ \dots & & & & & \\ 1 & 1 & 1 & \dots & 1+x \end{bmatrix} = (n+x) \det\begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 0 & x & 0 & \dots & 0 \\ 0 & 0 & x & \dots & 0 \\ \dots & & & & & \\ 0 & 0 & 0 & \dots & x \end{bmatrix} = (n+x)x^{n-1}$$

Exercici 21.6. Per a quins valors dels paràmetres són invertibles les matrius de l'exercici anterior?

- (a) Per a x = 0, y = x, z = y o t = z.
- (b) Per a x = -n o x = 0.

Exercici 21.7. La matriu A l'hem obtinguda, a partir de la matriu identitat fent-hi les següents operacions elementals:

- 1. Hem permutat les files segona i quarta
- 2. A la fila tercera li hem sumat quatre vegades la primera
- 3. Hem multiplicat la columna segona per −2
- 4. Hem multiplicat la fila primera per 3.
- 5. Herm permutat les files primera i tercera.

Quin és el deteminant de A?

$$\det A = (-1)(3)(-2)(1)(-1) = 6$$

Exercici 21.8. Sabent que el determinant de la matriu 3×3 A és igual a 7, calculeu els determinants següents:

- (a) $\det A^t$ (b) $\det(2A)$ (c) $\det(E_{1,3}A)$ (d) $\det(E_{1,3}(-5)A)$ (e) $\det A^2$ (f) $\det A^{-1}$ (g) $\det(E_2(3)A^{-1})$

- (a) $\det A^t = 7$ (b) $\det(2A) = 2^3 \cdot 7$ (c) $\det(E_{1,3}A) = -7$ (d) $\det(E_{1,3}(-5)A) = 7$ (e) $\det A^2 = 7^2$ (f) $\det A^{-1} = 1/7$ (g) $\det(E_2(3)A^{-1}) = 3/7$

Exercici 21.9. Demostreu que la matriu

$$\begin{bmatrix} x+1 & x \\ x & x-1 \end{bmatrix}$$

és invertible (independentment del valor del paràmetre x) i calculeu-ne la inversa.

Per demostrar que és invertible bastarà que provem que el determinant d'aquesta matriu és no nul:

$$\det\begin{bmatrix} x+1 & x \\ x & x-1 \end{bmatrix} = (x+1)(x-1) - x^2 = -1$$

La inversa és

$$A^{-1} = - \begin{bmatrix} x - 1 & -x \\ -x & x + 1 \end{bmatrix}$$

Exercici 21.10. (Determinant de Vandermonde)

Calculeu els determinants

(a)
$$\begin{bmatrix} 1 & a \\ 1 & b \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & a & a^2 & a^3 \\ 1 & b & b^2 & b^3 \\ 1 & c & c^2 & c^3 \\ 1 & d & d^2 & d^3 \end{bmatrix}$

Podeu trobar una fórmula (i provar-la) per al determinant següent?

$$\det\begin{bmatrix} 1 & a & a^2 & \dots & a^n \\ 1 & b & b^2 & \dots & b^n \\ \dots & & & & & \\ 1 & c & c^2 & \dots & c^n \end{bmatrix}$$

(a)
$$\det \begin{bmatrix} 1 & a \\ 1 & b \end{bmatrix} = b - a$$

(b)

$$\det\begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix} = \det\begin{bmatrix} 1 & 0 & 0 \\ 1 & b - a & b^2 - ab \\ 1 & c - a & c^2 - ac \end{bmatrix} = \det\begin{bmatrix} 1 & 0 & 0 \\ 0 & b - a & b^2 - ab \\ 0 & c - a & c^2 - ac \end{bmatrix}$$
$$= (b - a)(c - a) \det\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & b \\ 0 & 1 & c \end{bmatrix} = (b - a)(c - a)(c - b)$$

(c)

$$\det\begin{bmatrix} 1 & a & a^2 & a^3 \\ 1 & b & b^2 & b^3 \\ 1 & c & c^2 & c^3 \\ 1 & d & d^2 & d^3 \end{bmatrix} = \det\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & b - a & b^2 - ab & b^3 - ab^2 \\ 1 & c - a & c^2 - ac & c^3 - ac^2 \\ 1 & d - a & d^2 - ad & d^3 - ad^2 \end{bmatrix}$$

$$= \det\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & b - a & b^2 - ab & b^3 - ab^2 \\ 0 & c - a & c^2 - ac & c^3 - ac^2 \\ 0 & d - a & d^2 - ad & d^3 - ad^2 \end{bmatrix}$$

$$= (b - a)(c - a)(d - a) \det\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & b & b^2 \\ 0 & 1 & c & c^2 \\ 0 & 1 & d & d^2 \end{bmatrix}$$

$$= (b - a)(c - a)(d - a)(c - b)(d - b)(d - c)$$

La fórmula és aquesta:

$$\det\begin{bmatrix} 1 & a & a^2 & \dots & a^n \\ 1 & b & b^2 & \dots & b^n \\ \dots & & & & \\ 1 & c & c^2 & \dots & c^n \end{bmatrix} = \prod_{1 \le i < j \le n} (a_j - a_i)$$

Es pot provar de diverses maneres. Per exemple, reproduint el mètode que hem fet servir en els tres determinants anteriors, combinat (si volem ser rigorosos) amb el mètode d'inducció.

Exercici 21.11. La figura representa el paral·lelogram ABCD definit pels vectors $\vec{u_1} = (a_{11}, a_{21})$ i $\vec{u_2} = (a_{21}, a_{22})$. Calculeu la seua àrea (restant a l'àrea del rectangle gran AFCI les dels polígons exteriors a ABCD).

Expressa el resultat que obtens com un determinant.

La superfície del romboide *ABCD* és la diferència entre l'àrea del rectangle *AFCI* i les dels quatre triangles i els dos rectangles exteriors al romboide. Notem, a més, que aquests polígons exteriors tenen àrees iguals dues a dues (per exemple, les àrees dels triangles *AEB* i *DCH* són iguals). En conseqüència,