

KIT advanced approaches for MC modeling and multiphysics coupling

Yuefeng Qiu(Chu), Lei Lu, Ulrich Fischer

Institute for Neutron Physics and Reactor Technology, KIT

- Introduction
- The integrated system
- Geant4 developements
- Test verifications
- Summary and outlook

Introduction

- KIT Karlsruhe Institute of Technology
 - Created in 2009: University of Karlsruhe + Karlsruhe Research Centre (FZK)
 - One of the 17 largest Helmholtz center
- INR Institute for Neutron Physics and Reactor Technology
 - Fission: Design optimizations and safety evaluations on LWR and GEN IV reactor
 - Fusion: Nuclear component design, fabrication neutronics analysis, and experiment.

Introduction

- NK Group Neutronics and nuclear data
 - Focus on fusion neutronics
- Computational methods and tools
 - McCad: Advance MC modelling program
 - McMeshTran: Multi-physics coupling tool
 - R2S-mesh: Coupled system for shutdown dose rate calculation
- Neutronics analysis
 - ITER, DEMO, IFMIF

ITER FW dose rate

Introduction

Karlsruhe Institute of Technology

- Nuclear data
 - Contributing to JEFF-3.2 library
- Experiment facility
 - Neutron laboratory of the Technical University of Dresden (TUD)
 - Accelerator: 300 kV, 10 mA, up to 10¹² n/s

n + 63,65Cu up to 200 MeV

Eurofer steel DPA cross-section data

SiC detector ISMART

- Introduction
- The integrated system
- Geant4 developements
- Test verifications
- Summary and outlook

Y. Qiu, Institute for Neutron Physics and Reactor Technology (INR)

Integrated system

- CAD conversion tool for Monte Carlo (MC) neutronics codes;
- Data transfer tool for translating MC results for TH/SM codes;
- Implementation and integration of tools into a suitable platform.

Integrated system

- SALOME
 - Open-source integration platform;
 - GEOM: CAD modelling;
 - SMESH: Mesh generation;
 - ParaView: Data visualization.
- MC codes
 - MCNP5: CSG
 - MCNP6: hybrid CSG and mesh
 - TRIPOLI-4: CSG
 - Geant4: CSG and Tessellated solid
- TH/SM codes
 - Fluent
 - CFX
 - **ANSYS Workbench**
- Integrated system
 - MC geometry conversion tool
 - MC data transfer tool
 - All the missing links

Y. Qiu, Institute for Neutron Physics and Reactor Technology (INR)

Integrated system-- McCad

Karlsruhe Institute of Technology

- SALOME intergrating version of McCad
 - Integrated GUI;
 - Model persistency using a project file;
 - Internal data sharing with CAD and mesh modules.
- Model processing functions
 - Decomposition
 - Void generation
 - Tessellation
 - Mesh generation
- Hybrid MC geometry support
 - Hybrid CSG& mesh for MCNP6
 - Hybrid CSG& faceted solid for Geant4

Y. Qiu, Institute for Neutron Physics and Reactor Technology (INR)

Integrated system-- McCad

- CSG decomposition algorithm
 - assisting splitting surfaces
 - Optimizing splitting surfaces sorting algorithm
- Mesh generation approach
 - Tessellation-Tetrahedralization (TT)

Integrated system-- McMeshTran

- A MC Mesh and data Transformation/ Translation/ Transfer tool;
- A module in SALOME, sharing meshes with SMESH and data with ParaView
- Store mesh and data using universal library **MED**
- Mathematic calculations, spatial transformation
- Generic interpolation
 - Nearly any mesh to any mesh
 - MED data mapping functions
 - Volume weighted scheme: physical conservative mapping data on cell
 - Point to point scheme: fast mapping data on node

McMeshTran GUI

data interpolation

Integrated system-- McMeshTran

- MC interfaces
 - MCNP5 mesh tally interface
 - MCNP6 unstructured mesh output
 - TRIPOLI-4 interface
 - Geant4 Interface
- TH/SM interfaces
 - Fluent: User Defined Function (C source)
 - CFX: User Fortran (Fortran source)
 - ANSYS Workbench: Comma-separated Value (CSV) format
- Voxel searching algorithm
 - Points are grouped into regular voxels
 - The voxel is firstly located, next find the point inside the voxel
 - The time complexity for locating the voxel is O(1)

Integrated system— McMeshTran verifications

- MCNP5 mesh tally interface
 - Inverted interpolation check
 - Interpolated results agree with MCNP direct-tallied result
- MCNP6 unstructured interface
 - Hybrid CSG and mesh model
 - Unstructured mesh generated by ANSYS-**ICEM**
- CFD interfaces
 - 1/6 FW model;
 - Nuclear heating transfered is using McMeshTran
 - CFX results are agree with Fluent

CFX-solid

Fluent-solid

3.96e+02 3.87e+02 3.78e+02 3.70e+02 3.526+02 3.44e+02 3.35e+02 3.26e+02

- Introduction
- The integrated system
- Geant4 developements
- Test verifications
- Summary and outlook

Y. Qiu, Institute for Neutron Physics and Reactor Technology (INR)

Geant4 developements – Half-space solid

- Half-space surface
 - Common analytic surface
 - Sense: half-space index
 - 1: $f(x, y, z) \ge 0$, positive half-space
 - -1: $f(x, y, z) \le 0$, negative half-space
- Half-space solid
 - Boolean intersect by half-space surface
 - Complex geometry can be decomposed into half-space solids
 - It is consisted of:
 - A list of half-space surfaces
 - A pre-calculated boundary box
 - Volume and surface area (optional)
 - A polyhedron for visualization.

Geant4 developements -- Half-space solid

Geant4 developements -- Adanced modelling

- →Interface to export a complete GDML file
- →Polyhedron is generated by Open Cascade library
- →Material is managed in McCad
- →Also able to export **Tessellated Solid**

- → Modifying GDML schema to accept new solid type
- →Add a Polyhedron type in the Define block
- →Add a HalfSpaceSolid type in the solid block
- →Union the HalfSpaceSolid using the G4BooleanSolid (not efficient)

→ Modifying Geant4 **GDML** parser to process new solids

Geant4 developements – Unst. scoring mesh

- First-order elements
 - General type for all convex first-order element
 - Currently implemented four element type
- Preprocess
 - Input: a list of point with indicate order
 - Common preprocess
 - Calculate boundary box
 - Pre-calculate face normal and other params
 - Calculate Area
 - Calculate Center
 - Difference preprocess
 - Form faces
 - Calculate volume
 - Reverse node ordering
- Particle tracking
 - All the required methods
 - General for all convex element type

Geant4 developements -- Multi-physics

- Unstructured scoring mesh
 - Based on G4VScoringMesh
 - Use command script
 - Assign Multifunctional detector
 - Able to use all implement elements
 - Visualized the mesh and result
 - In linear or log color map
 - Geant4 have limitation on visualization

Y. Qiu, Institute for Neutron Physics and Reactor Technology (INR)

- Import mesh / Export results
 - Mesh parser for VTK format
 - Export the results in VTK format

Unstructured mesh

Visualization in Geant4

Export for ParaView

- Introduction
- The integrated system
- Geant4 developements
- Test verifications
- Summary and outlook

Y. Qiu, Institute for Neutron Physics and Reactor Technology (INR)

Test verifications

Compared with Geant4 primitives with Average Absolute Deviation

	Volume (%)	Relative position	Surface normal	Distance to enter	Safety outside	Distance to exit	Safety inside
Вох	0.001	Pass	0	6.08×10 ⁻¹⁵	1×10-9	2.67×10 ⁻¹⁵	0
Sphere	0.023	Pass	2.56×10 ⁻³³	8.61×10 ⁻¹⁴	N/A	7.02×10 ⁻¹⁵	0
Cylinder	0.012	Pass	3.98×10 ⁻³³	8.68×10 ⁻¹⁵	N/A	1.77×10 ⁻¹⁵	0
Cone	0.156	Pass	7.81×10 ⁻¹⁸	4.38×10 ⁻¹⁴	N/A	3.71×10 ⁻¹⁵	9.03×10 ⁻¹¹
Torus	0.163	Pass	4.65×10 ⁻³¹	2.06×10 ⁻¹¹	N/A	1.21×10 ⁻¹¹	N/A
Trapezoid	0.014	Pass	5.28×10 ⁻²¹	4.96×10 ⁻¹⁰	N/A	4.54×10 ⁻¹⁰	2.49×10 ⁻¹⁰
Tube	0.133	Pass	4.57×10 ⁻³³	5.54×10 ⁻¹⁵	N/A	1.12×10 ⁻¹⁵	4.62×10 ⁻¹⁷
Cut Tube	0.099	Pass	5.72×10 ⁻³³	2.28×10 ⁻¹⁴	N/A	2.25×10 ⁻¹⁵	2.12×10 ⁻¹⁰
Cone section	0.123	Pass	1.11×10 ⁻³²	3.40×10 ⁻¹⁴	N/A	3.35×10 ⁻¹⁵	1.16×10 ⁻¹⁵
Ellipsoid	0.002	Pass	3.86×10 ⁻³³	2.54×10 ⁻¹⁵	N/A	1.25×10 ⁻¹⁵	N/A
Torus section	0.175	Pass	9.20×10 ⁻³¹	1.38×10 ⁻¹²	N/A	1.07×10 ⁻¹²	N/A
UMeshHex Box	0	Pass	0	9.15×10 ⁻¹⁵	N/A	6.14×10 ⁻¹⁵	0
UMeshHex Trapozoid	0	Pass	2.59×10 ⁻³²	2.22×10 ⁻¹⁵	N/A	3.46×10 ⁻¹⁵	N/A
UMeshPent Wedge	0.012	Pass	1.22×10 ⁻³²	4.44×10 ⁻¹⁵	N/A	1.71×10 ⁻¹⁵	
UMeshPyrm Pyramid	N/A	Pass	1.16×10 ⁻²³	-2.65×10 ⁻¹⁰	N/A	2.22×10 ⁻¹⁰	1.20×10 ⁻¹⁰
UMeshTet Tetrahedron	0	Pass	0	0	0	0	0

Test verifications

- HalfSpaceSolid vs. Tessellated solid
 - Breeder unit of fusion blanket
 - Complex model with cooling channels
- Calculation
 - Geantino
 - Particles: 1e6
- Time comparison
 - Half-space solid: 86.3 sec (need optimization)
 - Tessellated solid: 78.2 sec

Y. Qiu, Institute for Neutron Physics and Reactor Technology (INR)

Test verifications

- Test of unstructured scoring mesh using a steel pipe case
 - Orthogonal mesh compared with MCNP5
 - superimposed unstructured mesh tally compared with MCNP6
 - Results agree very well.

MCNP neutron flux (Cart.) Geant4 neutron flux (Cart.)

MCNP neutron flux (Cyl.) Geant4 neutron flux (Cyl.)

Geant4 neutron flux (UM)

- Introduction
- The integrated system
- Geant4 developements
- Test verifications
- Summary and outlook

Y. Qiu, Institute for Neutron Physics and Reactor Technology (INR)

Summary

Summary

- An CAD based modelling approach has been developed for Geant4 simulation
- The unstructured mesh scoring function has been developed for multi-physics coupling analysis
- These functions have been implemented in an integrated system. based on SALOME platform.

Outlook

Conduct more tests on the Half-space solid;

Y. Qiu, Institute for Neutron Physics and Reactor Technology (INR)

- Make code available;
- Extend Geant4 for fusion neutronics, e.g implement reflecting boundary, fusion reactor neutron source;
- Validations of Geant4 for fusion neutronics, e.g. benchmarking, experiment validation, etc.