Lab 8

Adam Shen

November 11, 2020

Packages

```
library(EnvStats)
library(tibble)
library(dplyr)
library(broom)
library(ggplot2)
theme_set(theme_bw())
```

Simple example data

```
newt <- read.table("./simpex.txt", header=TRUE)</pre>
```

Fit a NLS model

```
nls_model <- nls(y ~ exp(-beta1 * x), start=list(beta1=0.25), data=newt)</pre>
summary(nls_model)
##
## Formula: y ~ exp(-beta1 * x)
##
## Parameters:
         Estimate Std. Error t value Pr(>|t|)
##
## beta1 0.203449
                    0.006002
                                 33.9 0.000869 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01228 on 2 degrees of freedom
##
## Number of iterations to convergence: 4
## Achieved convergence tolerance: 1.26e-06
```

Confidence intervals

```
confint.default(nls_model)

## 2.5 % 97.5 %

## beta1 0.1916848 0.215213
```

The above confidence interval is calculated using a normal distribution rather than a t distribution, i.e.

$$\hat{\beta}_1 \quad \pm \quad z_{1-\alpha/2} \, \cdot \, \mathrm{se}(\hat{\beta}_1)$$

We can verify this:

```
nls_model %>%
 tidy() %>%
 mutate(
   lower = estimate - qnorm(0.975)*std.error,
   upper = estimate + qnorm(0.975)*std.error
 )
## # A tibble: 1 x 7
## term estimate std.error statistic p.value lower upper
             <dbl>
                       <dbl>
                              <dbl>
                                          <dbl> <dbl> <dbl>
## <chr>
## 1 beta1
             0.203
                     0.00600
                                 33.9 0.000869 0.192 0.215
```

The intervals are the same!

Fit a OLS model - Method 1

```
newt <- mutate(</pre>
 newt,
 lny = log(y),
 negx = -x
)
ols_model1 <- lm(lny ~ 0 + negx, data=newt)</pre>
summary(ols_model1)
##
## Call:
## lm(formula = lny ~ 0 + negx, data = newt)
## Residuals:
##
## -0.0219744 0.0061690 -0.0001689
## Coefficients:
        Estimate Std. Error t value Pr(>|t|)
##
## negx 0.2011692 0.0009768 205.9 2.36e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01614 on 2 degrees of freedom
## Multiple R-squared:
                        1, Adjusted R-squared: 0.9999
## F-statistic: 4.241e+04 on 1 and 2 DF, p-value: 2.358e-05
```

Fit a OLS model - Method 2

```
ols_model2 <- lm(log(y) \sim 0 + I(-x), data=newt)
summary(ols_model2)
##
## Call:
## lm(formula = log(y) \sim 0 + I(-x), data = newt)
##
## Residuals:
## -0.0219744 0.0061690 -0.0001689
##
## Coefficients:
```

```
## Estimate Std. Error t value Pr(>|t|)
## I(-x) 0.2011692 0.0009768 205.9 2.36e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01614 on 2 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 0.9999
## F-statistic: 4.241e+04 on 1 and 2 DF, p-value: 2.358e-05
```

What's the difference?

When doing predictions, ols_model1 will require you to supply **negative** x-values. ols_model2 will require you to supply **positive** x-values and it will calculate the negative of x for you.

Method 2 may be preferable as we can predict using the values on the same scale as the values originally supplied to us.

Confidence intervals

Here, we go back to calculating confidence intervals using the t distribution.

```
confint(ols_model1)

## 2.5 % 97.5 %

## negx 0.1969664 0.205372

confint(ols_model2)

## 2.5 % 97.5 %

## I(-x) 0.1969664 0.205372
```

Chlorine data

```
loss <- read.table("./chlorine.txt", header=TRUE)</pre>
```

Scatterplot

```
ggplot(loss, aes(x=Age, y=Available))+
  geom_point()+
  labs(x="Age (weeks)", y="Available Chlorine (Percent)")
```


Fit a NLS model

```
nls_model \leftarrow nls_model \leftarrow nls_model \leftarrow beta1 + (0.49 - beta1) * exp(-beta2*(Age - 8)),
                 start=list(beta1=0.35, beta2=0.034), data=loss)
summary(nls_model)
##
## Formula: Available ~ beta1 + (0.49 - beta1) * exp(-beta2 * (Age - 8))
##
## Parameters:
         Estimate Std. Error t value Pr(>|t|)
## beta1 0.390140 0.005045 77.333 < 2e-16 ***
## beta2 0.101633 0.013360
                               7.607 1.99e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01091 on 42 degrees of freedom
##
```

```
## Number of iterations to convergence: 6
## Achieved convergence tolerance: 1.601e-06
```

Confidence intervals

Using normal distribution here.

```
confint.default(nls_model)

## 2.5 % 97.5 %

## beta1 0.38025219 0.4000279

## beta2 0.07544721 0.1278185
```

Variance-covariance matrix

```
vcov(nls_model)

## beta1 beta2

## beta1 2.545129e-05 5.984317e-05

## beta2 5.984317e-05 1.784969e-04
```

Sums of squares and related quantities

```
(nls_info <- nls_model %>%
  augment() %>%
  summarise(
    n = nrow(loss),
    `p+1` = length(coef(nls_model)),
    SSE = sum(.resid^2),
    df = n - `p+1`,
    MSE = SSE/df,
    s = sqrt(MSE),
    SST = sum(Available^2) - (sum(Available)^2 / n),
    R.sq = 1 - SSE/SST
))
```

```
## # A tibble: 1 x 8
## n `p+1` SSE df MSE s SST R.sq
## <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <30.000119 0.0109 0.0395 0.873</pre>
```

Visualize the NLS fit

```
nls_model %>%
  augment() %>%
  ggplot(aes(x=Age))+
   geom_point(aes(y=Available))+
   geom_line(aes(y=.fitted), colour="#3366FF", size=1)+
  labs(x="Age (weeks)", y="Available Chlorine (percent)")
```


Fit OLS model to get SSPE

As mentioned in *Module 8.7*, the SSPE does not change regardless of the type of model we fit. We can obtain the SSPE values by fitting a OLS model.

```
ols_model <- lm(Available ~ Age, data=loss)
summary(ols_model)</pre>
```

```
##
## Call:
## lm(formula = Available ~ Age, data = loss)
##
## Residuals:
##
                    1Q
                          Median
                                         3Q
                                                  Max
## -0.025741 -0.012042 -0.001608 0.012034
                                            0.026224
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
                0.4855103 0.0058907
                                        82.42 < 2e-16 ***
##
   (Intercept)
               -0.0027168  0.0002431  -11.18  3.67e-14 ***
##
  Age
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01539 on 42 degrees of freedom
## Multiple R-squared: 0.7483, Adjusted R-squared: 0.7423
## F-statistic: 124.9 on 1 and 42 DF, p-value: 3.675e-14
anova(ols model)
## Analysis of Variance Table
##
## Response: Available
##
            Df
                  Sum Sq Mean Sq F value
             1 0.0295587 0.0295587 124.88 3.675e-14 ***
## Residuals 42 0.0099413 0.0002367
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
anova(ols_model) %>%
 tidy() %>%
 summarise(SST = sum(sumsq))
## # A tibble: 1 x 1
##
       SST
##
      <dbl>
## 1 0.0395
```

Side note: we can also see that the SST value obtained from the OLS model is the same as the one obtained from the NLS model.

```
anovaPE(ols_model)
```

```
## Age 1 0.0295587 0.0295587 324.7290 3.279e-16 ***

## Lack of Fit 16 0.0075747 0.0004734 5.2009 0.0001074 ***

## Pure Error 26 0.0023667 0.0000910

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Create anovaPE table for NLS model

```
pure_error <- anovaPE(ols_model) %>%
  tidy() %>%
  filter(term == "Pure Error")

total_error <- nls_info %>%
  mutate(term = "Total Error") %>%
  select(term, df, sumsq = SSE)

lack_of_fit <- tibble(
  term = "Lack of Fit",
  df = total_error$df - pure_error$df,
  sumsq = total_error$sumsq - pure_error$sumsq,
  meansq = sumsq / df,
  statistic = meansq / pure_error$meansq,
  p.value = pf(statistic, df1=df, df2=pure_error$df, lower.tail=FALSE)
)</pre>
```

```
bind_rows(
 lack_of_fit,
 pure_error,
 total_error
)
## # A tibble: 3 x 6
##
                    df
     term
                         sumsq
                                    meansq statistic p.value
##
     <chr>
                 <dbl>
                         <dbl>
                                     <dbl>
                                               <dbl>
                                                       <dbl>
## 1 Lack of Fit
                    16 0.00264 0.000165
                                                1.81 0.0867
## 2 Pure Error
                    26 0.00237 0.0000910
                                               NA
                                                     NA
## 3 Total Error
                    42 0.00500 NA
                                               NA
                                                     NA
```

The associated hypotheses are:

 ${\cal H}_0:$ functional form is a dequate $\;$ vs $\;$ ${\cal H}_A:$ functional form is in adequate

The p-value of this test is 0.0867. Since this p-value is greater than 0.05, we fail to reject the null hypothesis. We conclude that there is insufficient evidence that the functional form of the non-linear model is inadequate.