Predicting Fraud in Credit Card Transactions

ITCS 5156-051 Project Spring 2024 Semester Chris Piacesi

Credit Card Fraud

According to a 2022 Press Release from Nilson Report:

- Payment card fraud losses worldwide exceeded \$32 billion in 2021.
- Nearly \$12 Billion in the US.
- Over the next 10 years, the industry is projected to lose an accumulated \$397 billion worldwide.
- Online purchases leave merchants more vulnerable to fraud.

Existing Approaches

- ★ Improved Strategy for High Recall Using KNN, LDA, and Linear Regression^[1]
- Decision Tree, Logistic Classification, and Random Forests [2]
- Support Vector Machines [3]

^[3] Xia, Jianglin. "Credit Card Fraud Detection Based on Support Vector Machine." *Highlights in Science Engineering and Technology*, vol. 23, Dec. 2022, pp. 93–97. https://doi.org/10.54097/hset.v23i.3202.

^[1] Chung, Jiwon, and Kyung-Ho Lee. "Credit Card Fraud Detection: An Improved Strategy for High Recall Using KNN, LDA, and Linear Regression." *Sensors*, vol. 23, no. 18, Sept. 2023, p. 7788. https://doi.org/10.3390/s23187788.

^[2] Afriyie, Jonathan Kwaku, et al. "A Supervised Machine Learning Algorithm for Detecting and Predicting Fraud in Credit Card Transactions." *Decision Analytics Journal*, vol. 6, Mar. 2023, p. 100163. https://doi.org/10.1016/j.dajour.2023.100163.

Objective

High Recall to prevent the misclassification of genuine fraud cases as non-fraud instances.

Recall =
$$TP/$$

 $TP+FN$

- If pKNN[i] is 0 or pLDA[i] is 0, and pLR[i] is less than mvLR, then pOR[i] is set to 0.
- Conversely, if pKNN[i] is 1 or pLDA[i] is 1, and pLR[i] is greater than mvLR, then set pOR[i] to 1.
- If neither of the conditions is met in a particular row, pOR[i] simply takes on the value pKNN[i].

Datasets

IEEE-CIS Fraud Detection | Kaggle

The data comes from Vesta Corporation's real-world e-commerce transactions and contains a wide range of features from device type to product features. Vesta Corporation is the forerunner in guaranteed e-commerce payment solutions and provides fraud detection and prevention platform.

<u>Credit Card Transactions Fraud Detection Dataset</u> (kaggle.com)

Simulated data contains 1000 customers doing transactions with a pool of 800 merchants from January 1st, 2019 through December 31st, 2020.

My Approach – Improved Strategy for High Recall Using KNN, LDA, and Linear Regression

Enhanced Recall Model

Results

	precision	recall	f1-score	support
0 1	0.99 0.10	0.76	0.86 0.18	113866 4242
accuracy macro avg weighted avg	0.54 0.96	0.75 0.75	0.75 0.52 0.83	118108 118108 118108

		precision	recall	f1-score	support
	0	0.99 0.26	0.92	0.95 0.39	113866 4242
accurac macro av weighted av	лg	0.62 0.96	0.85 0.91	0.91 0.67 0.93	118108 118108 118108

7

	precision	recall	f1-score	support
0 1	0.99 0.10	0.75	0.86 0.18	113866 4242
accuracy macro avg weighted avg	0.54 0.96	0.75 0.75	0.75 0.52 0.83	118108 118108 118108

	precision	recall	f1-score su	pport
0 1	0.99 0.10	0.75	0.86 0.18	13866 4242
accuracy macro avg eighted avg	0.54 0.96	0.75 0.75	0.52 1	18108 18108 18108

Conclusions and Future Work

- Poor performance of the LDA and LR models is bringing down the performance of the Ensemble Learning approach.
- Much more sophisticated approaches are required to get accurate results with high recall.
- Vesta Corporation promotes its use of not only the application of ML, but also AI, and Human Intelligence for its fraud detection and prevention platform.
- Additional Feature Engineering and Model Tuning to improve performance.
- Time Series Analysis

Chris Piacesi

cpiacesi@uncc.edu

https://www.linkedin.com/in/chris-piacesi

Thank you

