

RMG-Py API Reference

Release 2.4.1

William H. Green, Richard H. West, and the RMG Team

CONTENTS

1	RMG	G API Reference	3
	1.1	Arkane (arkane)	3
	1.2	Chemkin files (rmgpy.chemkin)	11
	1.3	Physical constants (rmgpy.constants)	14
	1.4	Database (rmgpy.data)	15
	1.5	Kinetics (rmgpy.kinetics)	79
	1.6	Molecular representations (rmgpy.molecule)	99
	1.7	Pressure dependence (rmgpy.pdep)	152
	1.8	QMTP (rmgpy.qm)	
	1.9	Physical quantities (rmgpy.quantity)	179
	1.10	Reactions (rmgpy.reaction)	185
	1.11	Reaction mechanism generation (rmgpy.rmg)	
	1.12	Reaction system simulation (rmgpy.solver)	212
	1.13	Species (rmgpy.species)	
	1.14	Statistical mechanics (rmgpy.statmech)	
	1.15	Thermodynamics (rmgpy.thermo)	
	1.16	RMG Exceptions (rmgpy.exceptions)	
Bi	bliogra	aphy	269
Рy	thon N	Module Index	271
In	dex		273

RMG is an automatic chemical reaction mechanism generator that constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react.

This is the API Reference guide for RMG. For instructions on how to use RMG, please refer to the User Guide.

For the latest documentation and source code, please visit http://reactionmechanismgenerator.github.io/RMG-Py/

CONTENTS 1

2 CONTENTS

RMG API REFERENCE

This document provides the complete details of the application programming interface (API) for the Python version of the Reaction Mechanism Generator. The functionality of RMG-Py is divided into many modules and subpackages. An overview of these components is given in the table below. Click on the name of a component to learn more and view its API.

Module	Description
arkane	Computing chemical properties from quantum chemistry calculations
rmgpy.chemkin	Reading and writing models in Chemkin format
rmgpy.constants	Physical constants
rmgpy.data	Working with the RMG database
rmgpy.kinetics	Kinetics models of chemical reaction rates
rmgpy.molecule	Molecular representations using chemical graph theory
rmgpy.pdep	Pressure-dependent kinetics from master equation models
rmgpy.qm	On-the-fly quantum calculations
rmgpy.quantity	Physical quantities and unit conversions
rmgpy.reaction	Chemical reactions
rmgpy.rmg	Automatic reaction mechanism generation
rmgpy.solver	Modeling reaction systems
rmgpy.species	Chemical species
rmgpy.statmech	Statistical mechanics models of molecular degrees of freedom
rmgpy.thermo	Thermodynamics models of chemical species
rmgpy.exceptions	Custom RMG exception classes

1.1 Arkane (arkane)

The *arkane* subpackage contains the main functionality for Arkane, a tool for computing thermodynamic and kinetic properties of chemical species and reactions.

1.1.1 Reading Gaussian log files

Class	Description
GaussianLog	Extract chemical parameters from Gaussian log files

1.1.2 Reading Q-Chem log files

Class	Description
QchemLog	Extract chemical parameters from Q-Chem log files

1.1.3 Reading Molpro log files

Class	Description
MolproLog	Extract chemical parameters from Molpro log files

1.1.4 Input

Function	Description
loadInputFile()	Load an Arkane job input file

1.1.5 Job classes

Class	Description
Arkane	Main class for Arkane jobs
StatMechJob	Compute the molecular degrees of freedom for a molecular conformation
ThermoJob	Compute the thermodynamic properties of a species
KineticsJob	Compute the high pressure-limit rate coefficient for a reaction using transition state theory
PressureDependence	Compute the phenomenological pressure-dependent rate coefficients $k(T, P)$ for a uni-
	molecular reaction network

arkane.gaussian.GaussianLog

class arkane.gaussian.GaussianLog(path)

Represent a log file from Gaussian. The attribute *path* refers to the location on disk of the Gaussian log file of interest. Methods are provided to extract a variety of information into Arkane classes and/or NumPy arrays.

getNumberOfAtoms()

Return the number of atoms in the molecular configuration used in the Gaussian log file.

get_optical_isomers_and_symmetry_number()

This method uses the symmetry package from RMG's QM module and returns a tuple where the first element is the number of optical isomers and the second element is the symmetry number.

loadConformer (symmetry = None, spinMultiplicity = 0, opticalIsomers = None, label = ")

Load the molecular degree of freedom data from a log file created as the result of a Gaussian "Freq" quantum chemistry calculation. As Gaussian's guess of the external symmetry number is not always correct, you can use the *symmetry* parameter to substitute your own value; if not provided, the value in the Gaussian log file will be adopted. In a log file with multiple Thermochemistry sections, only the last one will be kept.

loadEnergy(zpe_scale_factor=1.0)

Load the energy in J/mol from a Gaussian log file. The file is checked for a complete basis set extrapolation;

if found, that value is returned. Only the last energy in the file is returned. The zero-point energy is *not* included in the returned value; it is removed from the CBS-QB3 value.

loadForceConstantMatrix()

Return the force constant matrix from the Gaussian log file. The job that generated the log file must have the option iop(7/33=1) in order for the proper force constant matrix (in Cartesian coordinates) to be printed in the log file. If multiple such matrices are identified, only the last is returned. The units of the returned force constants are J/m^2. If no force constant matrix can be found in the log file, None is returned.

loadGeometry()

Return the optimum geometry of the molecular configuration from the Gaussian log file. If multiple such geometries are identified, only the last is returned.

loadNegativeFrequency()

Return the negative frequency from a transition state frequency calculation in cm^-1.

loadScanEnergies()

Extract the optimized energies in J/mol from a log file, e.g. the result of a Gaussian "Scan" quantum chemistry calculation.

loadZeroPointEnergy()

Load the unscaled zero-point energy in J/mol from a Gaussian log file.

arkane.qchem.QchemLog

class arkane.qchem.QChemLog(path)

Represent an output file from QChem. The attribute *path* refers to the location on disk of the QChem output file of interest. Methods are provided to extract a variety of information into Arkane classes and/or NumPy arrays.

getNumberOfAtoms()

Return the number of atoms in the molecular configuration used in the QChem output file.

get_optical_isomers_and_symmetry_number()

This method uses the symmetry package from RMG's QM module and returns a tuple where the first element is the number of optical isomers and the second element is the symmetry number.

loadConformer(symmetry=None, spinMultiplicity=0, opticalIsomers=None, label=")

Load the molecular degree of freedom data from an output file created as the result of a QChem "Freq" calculation. As QChem's guess of the external symmetry number is not always correct, you can use the *symmetry* parameter to substitute your own value; if not provided, the value in the QChem output file will be adopted.

loadEnergy (zpe_scale_factor=1.0)

Load the energy in J/mol from a QChem log file. Only the last energy in the file is returned. The zero-point energy is *not* included in the returned value.

loadForceConstantMatrix()

Return the force constant matrix (in Cartesian coordinates) from the QChem log file. If multiple such matrices are identified, only the last is returned. The units of the returned force constants are J/m^2. If no force constant matrix can be found in the log file, None is returned.

loadGeometry()

Return the optimum geometry of the molecular configuration from the QChem log file. If multiple such geometries are identified, only the last is returned.

loadNegativeFrequency()

Return the imaginary frequency from a transition state frequency calculation in cm^-1.

loadScanEnergies()

Extract the optimized energies in J/mol from a QChem log file, e.g. the result of a QChem "PES Scan" quantum chemistry calculation.

loadZeroPointEnergy()

Load the unscaled zero-point energy in J/mol from a QChem output file.

arkane.molpro.MolproLog

class arkane.molpro.MolproLog(path)

Represents a Molpro log file. The attribute *path* refers to the location on disk of the Molpro log file of interest. Methods are provided to extract a variety of information into Arkane classes and/or NumPy arrays.

getNumberOfAtoms()

Return the number of atoms in the molecular configuration used in the MolPro log file.

get_optical_isomers_and_symmetry_number()

This method uses the symmetry package from RMG's QM module and returns a tuple where the first element is the number of optical isomers and the second element is the symmetry number.

loadConformer (symmetry = None, spinMultiplicity = 0, optical Isomers = None, label = ")

Load the molecular degree of freedom data from a log file created as the result of a MolPro "Freq" quantum chemistry calculation with the thermo printed.

loadEnergy(zpe_scale_factor=1.0)

Return either the f12 or MRCI energy in J/mol from a Molpro Logfile. If the MRCI job outputted the MRCI+Davidson energy, the latter is returned. For CCSD(T)-f12, the function determines which energy (f12a or f12b) to use based on the basis set, which it will parse out of the Molpro file. For the vdz and vtz basis sets f12a is a better approximation, but for higher basis sets f12b is a better approximation.

loadForceConstantMatrix()

Print the force constant matrix by including the print, hessian command in the input file

loadGeometry()

Return the optimum geometry of the molecular configuration from the Molpro .out file. If multiple such geometries are identified, only the last is returned.

loadNegativeFrequency()

Return the negative frequency from a transition state frequency calculation in cm^-1.

loadScanEnergies()

Rotor scans are not implemented in Molpro

loadZeroPointEnergy()

Load the unscaled zero-point energy in J/mol from a MolPro log file.

Arkane input files

arkane.input.loadInputFile(path)

Load the Arkane input file located at path on disk, and return a list of the jobs defined in that file.

arkane.KineticsJob

class arkane.KineticsJob(reaction, Tmin=None, Tmax=None, Tlist=None, Tcount=0, sensitivity conditions=None)

A representation of an Arkane kinetics job. This job is used to compute and save the high-pressure-limit kinetics information for a single reaction.

usedTST - a boolean representing if TST was used to calculate the kinetics if kinetics is already given in the input, then it is False.

Tlist

The temperatures at which the k(T) values are computed.

Tmax

The maximum temperature at which the computed k(T) values are valid, or None if not defined.

Tmin

The minimum temperature at which the computed k(T) values are valid, or None if not defined.

draw(outputDirectory, format='pdf')

Generate a PDF drawing of the reaction. This requires that Cairo and its Python wrapper be available; if not, the drawing is not generated.

You may also generate different formats of drawings, by changing format to one of the following: *pdf*, *svg*, *png*.

execute(outputFile=None, plot=True)

Execute the kinetics job, saving the results to the given *outputFile* on disk.

generateKinetics(Tlist=None)

Generate the kinetics data for the reaction and fit it to a modified Arrhenius model.

plot(outputDirectory)

Plot both the raw kinetics data and the Arrhenius fit versus temperature. The plot is saved to the file kinetics.pdf in the output directory. The plot is not generated if matplotlib is not installed.

save(outputFile)

Save the results of the kinetics job to the file located at *path* on disk.

arkane.Arkane

class arkane.**Arkane**(inputFile=None, outputDirectory=None, verbose=20)

The Arkane class represents an instance of Arkane, a tool for computing properties of chemical species and reactions. The attributes are:

Attribute	Description
jobList	A list of the jobs to execute
inputFile	The path of the input file defining the jobs to execute
outputDirectory	The directory in which to write the output files
verbose	The level of detail in the generated logging messages

The output directory defaults to the same directory as the input file if not explicitly specified.

To use this class programmatically, create an instance and set its attributes using either the __init__() method or by directly accessing the attributes, and then invoke the <code>execute()</code> method. You can also populate the attributes from the command line using the <code>parseCommandLineArguments()</code> method before running <code>execute()</code>.

execute()

Execute, in order, the jobs found in input file specified by the *inputFile* attribute.

getLibraries()

Get RMG kinetics and thermo libraries

initializeLog(verbose=20, logFile=None)

Set up a logger for Arkane to use to print output to stdout. The *verbose* parameter is an integer specifying the amount of log text seen at the console; the levels correspond to those of the logging module.

loadInputFile(inputFile)

Load a set of jobs from the given *inputFile* on disk. Returns the loaded set of jobs as a list.

logFooter(level=20)

Output a footer to the log.

logHeader(level=20)

Output a header containing identifying information about Arkane to the log.

parseCommandLineArguments()

Parse the command-line arguments being passed to Arkane. This uses the argparse module, which ensures that the command-line arguments are sensible, parses them, and returns them.

Saving Arkane output

arkane.output.prettify(string, indent=4)

Return a "pretty" version of the given *string*, representing a snippet of Python code such as a representation of an object or function. This involves splitting of tuples, lists, and dicts (including parameter lists) onto multiple lines, indenting as appropriate for readability.

class arkane.output.PrettifyVisitor(level=0, indent=4)

A class for traversing an abstract syntax tree to assemble a prettier version of the code used to create the tree. Used by the *prettify()* function.

generic_visit(node)

Called if no explicit visitor function exists for a node.

visit(node)

Visit a node.

visit_Call(node)

Return a pretty representation of the class or function call represented by *node*.

visit_Dict(node)

Return a pretty representation of the dict represented by *node*.

visit_List(node)

Return a pretty representation of the list represented by node.

visit_Num(node)

Return a pretty representation of the number represented by *node*.

visit_Str(node)

Return a pretty representation of the string represented by *node*.

visit_Tuple(node)

Return a pretty representation of the tuple represented by *node*.

arkane.PressureDependenceJob

class arkane.PressureDependenceJob(network, Tmin=None, Tmax=None, Tcount=0, Tlist=None,

Pmin=None, Pmax=None, Pcount=0, Plist=None, maximum-GrainSize=None, minimumGrainCount=0, method=None, interpolationModel=None, maximumAtoms=None, activeKRotor=True, activeJRotor=True, rmgmode=False, sensitivity_conditions=None)

A representation of a pressure dependence job. The attributes are:

Attribute	Description
Tmin	The minimum temperature at which to compute $k(T, P)$ values
Tmax	The maximum temperature at which to compute $k(T, P)$ values
Tcount	The number of temperatures at which to compute $k(T, P)$ values
Pmin	The minimum pressure at which to compute $k(T, P)$ values
Pmax	The maximum pressure at which to compute $k(T, P)$ values
Pcount	The number of pressures at which to compute $k(T, P)$ values
Emin	The minimum energy to use to compute $k(T, P)$ values
Emax	The maximum energy to use to compute $k(T, P)$ values
maximumGrainSize	The maximum energy grain size to use to compute $k(T, P)$ values
minimumGrainCount	The minimum number of energy grains to use to compute $k(T, P)$ values
method	The method to use to reduce the master equation to $k(T, P)$ values
interpolationModel	The interpolation model to fit to the computed $k(T, P)$ values
maximumAtoms	The maximum number of atoms to apply pressure dependence to (in RMG jobs)
activeKRotor	A flag indicating whether to treat the K-rotor as active or adiabatic
activeJRotor	A flag indicating whether to treat the J-rotor as active or adiabatic
rmgmode	A flag that toggles "RMG mode", described below
network	The unimolecular reaction network
Tlist	An array of temperatures at which to compute $k(T, P)$ values
Plist	An array of pressures at which to compute $k(T, P)$ values
Elist	An array of energies to use to compute $k(T, P)$ values

In RMG mode, several alterations to the k(T,P) algorithm are made both for speed and due to the nature of the approximations used:

- Densities of states are not computed for product channels
- Arbitrary rigid rotor moments of inertia are included in the active modes; these cancel in the ILT and equilibrium expressions
- k(E) for each path reaction is computed in the direction A -> products, where A is always an explored isomer; the high-P kinetics are reversed if necessary for this purpose
- ullet Thermodynamic parameters are always used to compute the reverse k(E) from the forward k(E) for each path reaction

RMG mode should be turned off by default except in RMG jobs.

Plist

The pressures at which the k(T,P) values are computed.

Pmax

The maximum pressure at which the computed k(T,P) values are valid, or None if not defined.

Pmin

The minimum pressure at which the computed k(T,P) values are valid, or None if not defined.

Tlist

The temperatures at which the k(T,P) values are computed.

Tmax

The maximum temperature at which the computed k(T,P) values are valid, or None if not defined.

Tmin

The minimum temperature at which the computed k(T,P) values are valid, or None if not defined.

copy()

Return a copy of the pressure dependence job.

draw(outputDirectory, format='pdf')

Generate a PDF drawing of the pressure-dependent reaction network. This requires that Cairo and its Python wrapper be available; if not, the drawing is not generated.

You may also generate different formats of drawings, by changing format to one of the following: *pdf*, *svg*, *png*.

execute(outputFile, plot, format='pdf', print_summary=True)

Execute a PressureDependenceJob

fitInterpolationModel(Tdata, Pdata, kdata, kunits)

Fit an interpolation model to a pressure dependent rate

fitInterpolationModels()

Fit all pressure dependent rates with interpolation models

generatePressureList()

Returns an array of pressures based on the interpolation *model*, minimum and maximum pressures *Pmin* and *Pmax* in Pa, and the number of pressures *Pcount*. For Chebyshev polynomials a Gauss-Chebyshev distribution is used; for all others a linear distribution on an logarithmic pressure domain is used. Note that the Gauss-Chebyshev grid does *not* place *Pmin* and *Pmax* at the endpoints, yet the interpolation is still valid up to these values.

generateTemperatureList()

Returns an array of temperatures based on the interpolation *model*, minimum and maximum temperatures *Tmin* and *Tmax* in K, and the number of temperatures *Tcount*. For Chebyshev polynomials a Gauss-Chebyshev distribution is used; for all others a linear distribution on an inverse temperature domain is used. Note that the Gauss-Chebyshev grid does *not* place *Tmin* and *Tmax* at the endpoints, yet the interpolation is still valid up to these values.

initialize()

Initialize a PressureDependenceJob

maximumGrainSize

The maximum allowed energy grain size, or None if not defined.

plot(outputDirectory)

Plot pressure dependent rates

save(outputFile)

Save the output of a pressure dependent job

saveInputFile(path)

Save an Arkane input file for the pressure dependence job to *path* on disk.

arkane.StatMechJob

class arkane.StatMechJob(species, path)

A representation of a Arkane statistical mechanics job. This job is used to compute and save the statistical

mechanics information for a single species or transition state.

execute(outputFile=None, plot=False, pdep=False)

Execute the statistical mechanics job, saving the results to the given outputFile on disk.

load(pdep=False)

Load the statistical mechanics parameters for each conformer from the associated files on disk. Creates Conformer objects for each conformer and appends them to the list of conformers on the species object.

plotHinderedRotor(angle, v_list, cosineRotor, fourierRotor, rotor, rotorIndex, directory)

Plot the potential for the rotor, along with its cosine and Fourier series potential fits. The plot is saved to a set of files of the form hindered_rotor_1.pdf.

save(outputFile)

Save the results of the statistical mechanics job to the file located at *path* on disk.

arkane.ThermoJob

class arkane.ThermoJob(species, thermoClass)

A representation of an Arkane thermodynamics job. This job is used to compute and save the thermodynamics information for a single species.

element_count_from_conformer()

Get an element count in a dictionary form (e.g., {'C': 3, 'H': 8}) from the species conformer attribute.

Returns

Element count, keys are element symbols, values are number of occurrences of the element in the molecule.

Return type dict

execute(outputFile=None, plot=False)

Execute the thermodynamics job, saving the results to the given outputFile on disk.

generateThermo()

Generate the thermodynamic data for the species and fit it to the desired heat capacity model (as specified in the *thermoClass* attribute).

plot(outputDirectory)

Plot the heat capacity, enthapy, entropy, and Gibbs free energy of the fitted thermodynamics model, along with the same values from the statistical mechanics model that the thermodynamics model was fitted to. The plot is saved to the file thermo.pdf in the output directory. The plot is not generated if matplotlib is not installed.

save(outputFile)

Save the results of the thermodynamics job to the file located at *path* on disk.

1.2 Chemkin files (rmgpy.chemkin)

The rmgpy.chemkin module contains functions for reading and writing of Chemkin and Chemkin-like files.

1.2.1 Reading Chemkin files

Function	Description
loadChemkinFile()	Load a reaction mechanism from a Chemkin file
loadSpeciesDictionary()	Load a species dictionary from a file
loadTransportFile()	Load a Chemkin transport properties file
readKineticsEntry()	Read a single reaction entry from a Chemkin file
readReactionComments()	Read the comments associated with a reaction entry
readReactionsBlock()	Read the reactions block of a Chemkin file
readThermoEntry()	Read a single thermodynamics entry from a Chemkin file
removeCommentFromLine()	Remove comment text from a line of a Chemkin file or species dictionary

1.2.2 Writing Chemkin files

Function	Description
saveChemkinFile()	Save a reaction mechanism to a Chemkin file
saveSpeciesDictionary()	Save a species dictionary to a file
saveTransportFile()	Save a Chemkin transport properties file
saveHTMLFile()	Save an HTML file representing a Chemkin mechanism
<pre>saveJavaKineticsLibrary()</pre>	Save a mechanism to a (Chemkin-like) kinetics library for RMG-Java
<pre>getSpeciesIdentifier()</pre>	Return the Chemkin-valid identifier for a given species
markDuplicateReactions()	Find and mark all duplicate reactions in a mechanism
writeKineticsEntry()	Write a single reaction entry to a Chemkin file
writeThermoEntry()	Write a single thermodynamics entry to a Chemkin file

Reading Chemkin files

Main functions

rmgpy.chemkin.loadChemkinFile(path, dictionaryPath=None, transportPath=None, readComments=True, thermoPath=None, useChemkinNames=False, checkDuplicates=True)

Load a Chemkin input file located at *path* on disk to *path*, returning lists of the species and reactions in the Chemkin file. The 'thermoPath' point to a separate thermo file, or, if 'None' is specified, the function will look for the thermo database within the chemkin mechanism file

rmgpy.chemkin.loadSpeciesDictionary(path)

Load an RMG dictionary - containing species identifiers and the associated adjacency lists - from the file located at *path* on disk. Returns a dict mapping the species identifiers to the loaded species. Resonance isomers for each species are automatically generated.

rmgpy.chemkin.loadTransportFile(path, speciesDict)

Load a Chemkin transport properties file located at path and store the properties on the species in speciesDict.

Helper functions

rmgpy.chemkin.readKineticsEntry(entry, speciesDict, Aunits, Eunits)

Read a kinetics *entry* for a single reaction as loaded from a Chemkin file. The associated mapping of labels to species *speciesDict* should also be provided. Returns a Reaction object with the reaction and its associated kinetics.

rmgpy.chemkin.readReactionComments (reaction, comments, read=True)

Parse the *comments* associated with a given *reaction*. If the comments come from RMG (Py or Java), parse them and extract the useful information. Return the reaction object based on the information parsed from these comments. If *read* if False, the reaction is returned as an "Unclassified" LibraryReaction.

rmgpy.chemkin.readReactionsBlock(f, speciesDict, readComments=True)

Read a reactions block from a Chemkin file stream.

This function can also read the reactions.txt and pdepreactions.txt files from RMG-Java kinetics libraries, which have a similar syntax.

rmgpy.chemkin.readThermoEntry(entry, Tmin=0, Tint=0, Tmax=0)

Read a thermodynamics *entry* for one species in a Chemkin file. Returns the label of the species and the thermodynamics model as a NASA object.

Format specification at http://www2.galcit.caltech.edu/EDL/public/formats/chemkin.html

rmgpy.chemkin.removeCommentFromLine(line)

Remove a comment from a line of a Chemkin file or species dictionary file.

Returns the line and the comment. If the comment is encoded with latin-1, it is converted to utf-8.

Writing Chemkin files

Main functions

rmgpy.chemkin.saveChemkinFile(path, species, reactions, verbose=True, checkForDuplicates=True)

Save a Chemkin input file to *path* on disk containing the provided lists of *species* and *reactions*. If checkForDuplicates is False then we don't check for unlabeled duplicate reactions, thus saving time (eg. if you are sure you've already labeled them as duplicate).

rmgpy.chemkin.saveSpeciesDictionary(path, species, oldStyle=False)

Save the given list of *species* as adjacency lists in a text file *path* on disk.

If *oldStyle==True* then it saves it in the old RMG-Java syntax.

rmgpy.chemkin.saveTransportFile(path, species)

Save a Chemkin transport properties file to *path* on disk containing the transport properties of the given list of *species*.

The syntax is from the Chemkin TRANSPORT manual. The first 16 columns in each line of the database are reserved for the species name (Presently CHEMKIN is programmed to allow no more than 16-character names.) Columns 17 through 80 are free-format, and they contain the molecular parameters for each species. They are, in order:

- 1. An index indicating whether the molecule has a monatomic, linear or nonlinear geometrical configuration. If the index is 0, the molecule is a single atom. If the index is 1 the molecule is linear, and if it is 2, the molecule is nonlinear.
- 2. The Lennard-Jones potential well depth ϵ/k_B in Kelvins.
- 3. The Lennard-Jones collision diameter σ in Angstroms.
- 4. The dipole moment μ in Debye. Note: a Debye is $10^{-18} cm^{3/2} erq^{1/2}$.
- 5. The polarizability α in cubic Angstroms.
- 6. The rotational relaxation collision number $Z_r ot$ at 298K.
- 7. After the last number, a comment field can be enclosed in parenthesis.

rmgpy.chemkin.saveHTMLFile(path, readComments=True)

Save an output HTML file from the contents of a RMG-Java output folder

rmgpy.chemkin.saveJavaKineticsLibrary(path, species, reactions)

Save the reaction files for a RMG-Java kinetics library: pdepreactions.txt and reactions.txt given a list of reactions, with species.txt containing the RMG-Java formatted dictionary.

Helper functions

rmgpy.chemkin.getSpeciesIdentifier(species)

Return a string identifier for the provided *species* that can be used in a Chemkin file. Although the Chemkin format allows up to 16 characters for a species identifier, this function uses a maximum of 10 to ensure that all reaction equations fit in the maximum limit of 52 characters.

rmgpy.chemkin.writeKineticsEntry(reaction, speciesList, verbose=True, javaLibrary=False, commented=False)

Return a string representation of the reaction as used in a Chemkin file. Use *verbose* = *True* to turn on kinetics comments. Use *commented* = *True* to comment out the entire reaction. Use javaLibrary = True in order to generate a kinetics entry suitable for an RMG-Java kinetics library.

rmgpy.chemkin.writeThermoEntry(species, elementCounts=None, verbose=True)

Return a string representation of the NASA model readable by Chemkin. To use this method you must have exactly two NASA polynomials in your model, and you must use the seven-coefficient forms for each.

rmgpy.chemkin.markDuplicateReactions(reactions)

For a given list of reactions, mark all of the duplicate reactions as understood by Chemkin.

This is pretty slow (quadratic in size of reactions list) so only call it if you're really worried you may have undetected duplicate reactions.

1.3 Physical constants (rmgpy.constants)

The *rmgpy.constants* module contains module-level variables defining relevant physical constants relevant in chemistry applications. The recommended method of importing this module is

import rmgpy.constants as constants

so as to not place the constants in the importing module's global namespace.

The constants defined in this module are listed in the table below:

Symbol Constant Value Description $4.35974434 \times 10^{-18} \text{ J}$ $E_{\rm h}$ E_h Hartree energy \overline{F} F 96485.3365 C/mol Faraday constant $6.67384 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$ \overline{G} G Newtonian gravitational constant $6.02214179 \times 10^{23} \text{ mol}^{-1}$ $\overline{N}_{\mathrm{A}}$ Na Avogadro constant 8.314472 J/mol · K \overline{R} R gas law constant a0 $5.2917721092 \times 10^{-11} \text{ m}$ Bohr radius a_0 299792458 m/s speed of light in a vacuum cС $1.602176565 \times 10^{-19} \text{ C}$ eе elementary charge $9.80665 \,\mathrm{m/s^2}$ standard acceleration due to gravity gg $6.62606896 \times 10^{-34} \text{ J} \cdot \text{s}$ hh Planck constant $1.054571726 \times 10^{-34} \text{ J} \cdot \text{s}$ \hbar hbar reduced Planck constant $1.3806504 \times 10^{-23} \text{ J/K}$ kB Boltzmann constant $k_{\rm B}$ $9.10938291 \times 10^{-31} \text{ kg}$ $m_{\rm e}$ m_e electron rest mass $1.674927351 \times 10^{-27} \text{ kg}$ m_n neutron rest mass $m_{\rm n}$ $1.672621777 \times 10^{-27} \text{ kg}$ m_p proton rest mass $m_{\rm p}$ $1.660538921 \times 10^{-27} \text{ kg}$ amu atomic mass unit $m_{\rm u}$ 3.14159... π рi

Table 1: Physical constants defined in the rmgpy.constants module

1.4 Database (rmgpy.data)

1.4.1 General classes

Class/Function	Description	
Entry	An entry in a database	
Database	A database of entries	
LogicNode	A node in a database that represents a logical collection of entries	
LogicAnd	A logical collection of entries, where all entries in the collection must match	
Logic0r	A logical collection of entries, where any entry in the collection can match	
<pre>makeLogicNode()</pre>	Create a LogicNode based on a string representation	

1.4.2 Thermodynamics database

Class	Description	
ThermoDepository	A depository of all thermodynamics parameters for one or more species	
ThermoLibrary	library of curated thermodynamics parameters for one or more species	
ThermoGroups	A representation of a portion of a database for implementing the Benson group additivity	
	method	
ThermoDatabase	An entire thermodynamics database, including depositories, libraries, and groups	

1.4.3 Kinetics database

Class	Description		
DepositoryReaction	A reaction with kinetics determined from querying a kinetics depository		
LibraryReaction	A reaction with kinetics determined from querying a kinetics library		
TemplateReaction	A reaction with kinetics determined from querying a kinetics group additivity or rate rules		
	method		
ReactionRecipe	A sequence of actions that represent the process of a chemical reaction		
KineticsDepository			
KineticsLibrary	A library of curated kinetics parameters for one or more reactions		
KineticsGroups	A set of group additivity values for a reaction family, organized in a tree		
KineticsRules	A set of rate rules for a reaction family		
KineticsFamily	A kinetics database for one reaction family, including depositories, libraries, groups, and		
	rules		
KineticsDatabase	A kinetics database for all reaction families, including depositories, libraries, groups, and		
	rules		

1.4.4 Statistical mechanics database

Class	Description	
GroupFrequencies	A set of characteristic frequencies for a group in the frequency database	
StatmechDepository	A depository of all statistical mechanics parameters for one or more species	
StatmechLibrary	A library of curated statistical mechanics parameters for one or more species	
StatmechGroups	A set of characteristic frequencies for various functional groups, organized in a tree	
StatmechDatabase	An entire statistical mechanics database, including depositories, libraries, and groups	

1.4.5 Statistical mechanics fitting

Class/Function	Description	
DirectFit	DQED class for fitting a small number of vibrational frequencies and hindered rotors	
PseudoFit	DQED class for fitting a large number of vibrational frequencies and hindered rotors by	
	assuming degeneracies for both	
PseudoRotorFit	DQED class for fitting a moderate number of vibrational frequencies and hindered rotors	
	by assuming degeneracies for hindered rotors only	
fitStatmechDirect(Directly fit a small number of vibrational frequencies and hindered rotors	
fitStatmechPseudo(eudo () Fit a large number of vibrational frequencies and hindered rotors by assuming degenera-	
	cies for both	
fitStatmechPseudoR	Pitra moderate number of vibrational frequencies and hindered rotors by assuming de-	
	generacies for hindered rotors only	
fitStatmechToHeatC	a (Fatevilbyrati) on all and torsional degrees of freedom to heat capacity data	

rmgpy.data.base.Database

class rmgpy.data.base.Database(entries=None, top=None, label=", name=", solvent=None, short-Desc=") An RMG-style database, consisting of a dictionary of entries (associating items with data), and an optional tree

An RMG-style database, consisting of a dictionary of entries (associating items with data), and an optional tree for assigning a hierarchy to the entries. The use of the tree enables the database to be easily extensible as more parameters are available.

In constructing the tree, it is important to develop a hierarchy such that siblings are mutually exclusive, to ensure that there is a unique path of descent down a tree for each structure. If non-mutually exclusive siblings are encountered, a warning is raised and the parent of the siblings is returned.

There is no requirement that the children of a node span the range of more specific permutations of the parent. As the database gets more complex, attempting to maintain complete sets of children for each parent in each database rapidly becomes untenable, and is against the spirit of extensibility behind the database development.

You must derive from this class and implement the loadEntry(), saveEntry(), processOldLibraryEntry(), and generateOldLibraryEntry() methods in order to load and save from the new and old database formats.

ancestors(node)

Returns all the ancestors of a node, climbing up the tree to the top.

areSiblings(node, nodeOther)

Return *True* if *node* and *nodeOther* have the same parent node. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

descendTree(structure, atoms, root=None, strict=False)

Descend the tree in search of the functional group node that best matches the local structure around *atoms* in *structure*.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species generally not being prelabeled.

descendants(node)

Returns all the descendants of a node, climbing down the tree to the bottom.

generateOldTree(entries, level)

Generate a multi-line string representation of the current tree using the old-style syntax.

getEntriesToSave()

Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

getSpecies(path, resonance=True)

Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)

Load an RMG-style database from the file at location *path* on disk. The parameters *local_context* and *global_context* are used to provide specialized mapping of identifiers in the input file to corresponding functions to evaluate. This method will automatically add a few identifiers required by all data entries, so you don't need to provide these.

loadOld(dictstr, treestr, libstr, numParameters, numLabels=1, pattern=True)

Load a dictionary-tree-library based database. The database is stored in three files: *dictstr* is the path to the dictionary, *treestr* to the tree, and *libstr* to the library. The tree is optional, and should be set to '' if not desired.

loadOldDictionary(path, pattern)

Parse an old-style RMG database dictionary located at *path*. An RMG dictionary is a list of key-value pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty line. Returns a dict object with the values converted to Molecule or Group objects depending on the value of *pattern*.

loadOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at path.

loadOldTree(path)

Parse an old-style RMG database tree located at *path*. An RMG tree is an n-ary tree representing the hierarchy of items in the dictionary.

matchNodeToChild(parentNode, childNode)

Return *True* if *parentNode* is a parent of *childNode*. Otherwise, return *False*. Both *parentNode* and *childNode* must be Entry types with items containing Group or LogicNode types. If *parentNode* and *childNode* are identical, the function will also return *False*.

matchNodeToNode(node, nodeOther)

Return *True* if *node* and *nodeOther* are identical. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

matchNodeToStructure(node, structure, atoms, strict=False)

Return True if the *structure* centered at *atom* matches the structure at *node* in the dictionary. The structure at *node* should have atoms with the appropriate labels because they are set on loading and never change. However, the atoms in *structure* may not have the correct labels, hence the *atoms* parameter. The *atoms* parameter may include extra labels, and so we only require that every labeled atom in the functional group represented by *node* has an equivalent labeled atom in *structure*.

Matching to structure is more strict than to node. All labels in structure must be found in node. However the reverse is not true, unless *strict* is set to True.

At-	Description
tribute	
node	Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
	Entry.item
struc-	A Group or a Molecule
ture	
atoms	Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
	structure.getLabeledAtoms()
strict	If set to True, ensures that all the node's atomLabels are matched by in the structure

parseOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at *path*, returning the loaded entries (rather than storing them in the database). This method does not discard duplicate entries.

removeGroup(groupToRemove)

Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also update the parent/child relationships

Returns the removed group

save(path)

Save the current database to the file at location *path* on disk.

saveDictionary(path)

Extract species from all entries associated with a kinetics library or depository and save them to the path given.

saveOld(dictstr, treestr, libstr)

Save the current database to a set of text files using the old-style syntax.

saveOldDictionary(path)

Save the current database dictionary to a text file using the old-style syntax.

saveOldLibrary(path)

Save the current database library to a text file using the old-style syntax.

saveOldTree(path)

Save the current database tree to a text file using the old-style syntax.

rmgpy.data.kinetics.DepositoryReaction

class rmgpy.data.kinetics.DepositoryReaction(index=-1, reactants=None, products=None, specificCollider=None, kinetics=None, reversible=True, transitionState=None, duplicate=False, degeneracy=1, pairs=None, depository=None, family=None, entry=None)

A Reaction object generated from a reaction depository. In addition to the usual attributes, this class includes *depository* and *entry* attributes to store the library and the entry in that depository that it was created from.

allow_max_rate_violation

'bool'

Type allow_max_rate_violation

allow_pdep_route

'bool'

Type allow_pdep_route

calculateMicrocanonicalRateCoefficient(self, ndarray Elist, ndarray Jlist, ndarray reac-DensStates, ndarray prodDensStates=None, double T=0.0)

Calculate the microcanonical rate coefficient k(E) for the reaction reaction at the energies Elist in J/mol. reacDensStates and prodDensStates are the densities of states of the reactant and product configurations for this reaction. If the reaction is irreversible, only the reactant density of states is required; if the reaction is reversible, then both are required. This function will try to use the best method that it can based on the input data available:

- If detailed information has been provided for the transition state (i.e. the molecular degrees of freedom), then RRKM theory will be used.
- If the above is not possible but high-pressure limit kinetics $k_{\infty}(T)$ have been provided, then the inverse Laplace transform method will be used.

The density of states for the product prodDensStates and the temperature of interest T in K can also be provided. For isomerization and association reactions prodDensStates is required; for dissociation reactions it is optional. The temperature is used if provided in the detailed balance expression to determine the reverse kinetics, and in certain cases in the inverse Laplace transform method.

$calculateTSTRateCoefficient(self, double T) \rightarrow double$

Evaluate the forward rate coefficient for the reaction with corresponding transition state *TS* at temperature *T* in K using (canonical) transition state theory. The TST equation is

$$k(T) = \kappa(T) \frac{k_{\mathrm{B}} T}{h} \frac{Q^{\ddagger}(T)}{Q^{\mathrm{A}}(T) Q^{\mathrm{B}}(T)} \exp\left(-\frac{E_0}{k_{\mathrm{B}} T}\right)$$

where Q^{\ddagger} is the partition function of the transition state, Q^{A} and Q^{B} are the partition function of the reactants, E_{0} is the ground-state energy difference from the transition state to the reactants, T is the absolute temperature, k_{B} is the Boltzmann constant, and h is the Planck constant. $\kappa(T)$ is an optional tunneling correction.

 $calculateTSTRateCoefficients(self, ndarray\ Tlist) \rightarrow ndarray$

calculate_coll_limit(self, float temp, bool reverse=False)

Calculate the collision limit rate for the given temperature implemented as recommended in Wang et al. doi 10.1016/j.combustflame.2017.08.005 (Eq. 1)

$canTST(self) \rightarrow bool$

Return True if the necessary parameters are available for using transition state theory – or the microcanonical equivalent, RRKM theory – to compute the rate coefficient for this reaction, or False otherwise.

check_collision_limit_violation (self, $float\ t_min$, $float\ t_max$, $float\ p_min$, $float\ p_max$) \rightarrow list Warn if a core reaction violates the collision limit rate in either the forward or reverse direction at the relevant extreme T/P conditions. Assuming a monotonic behaviour of the kinetics. Returns a list with the

reaction object and the direction in which the violation was detected.

comment

str

Type comment

copy (self)

Create a deep copy of the current reaction.

degeneracy

The reaction path degeneracy for this reaction.

If the reaction has kinetics, changing the degeneracy will adjust the reaction rate by a ratio of the new degeneracy to the old degeneracy.

draw(self, path)

Generate a pictorial representation of the chemical reaction using the draw module. Use *path* to specify the file to save the generated image to; the image type is automatically determined by extension. Valid extensions are .png, .svg, .pdf, and .ps; of these, the first is a raster format and the remainder are vector formats.

duplicate

'bool'

Type duplicate

elementary_high_p

'bool'

Type elementary_high_p

$\textbf{ensure_species} (\textit{self}, \textit{bool reactant_resonance} = \textit{False}, \textit{bool product_resonance} = \textit{False})$

Ensure the reaction contains species objects in its reactant and product attributes. If the reaction is found to hold molecule objects, it modifies the reactant, product and pairs to hold Species objects.

Generates resonance structures for Molecules if the corresponding options, reactant_resonance and/or product_resonance, are True. Does not generate resonance for reactants or products that start as Species objects.

fixBarrierHeight(self, bool forcePositive=False)

Turns the kinetics into Arrhenius (if they were ArrheniusEP) and ensures the activation energy is at least the endothermicity for endothermic reactions, and is not negative only as a result of using Evans Polanyi with an exothermic reaction. If *forcePositive* is True, then all reactions are forced to have a non-negative barrier.

fixDiffusionLimitedA(self, T)

Decrease the pre-exponential factor (A) by the diffusion factor to account for the diffusion limit at the specified temperature.

generate3dTS(self, reactants, products)

Generate the 3D structure of the transition state. Called from model.generateKinetics().

self.reactants is a list of reactants self.products is a list of products

generatePairs(self)

Generate the reactant-product pairs to use for this reaction when performing flux analysis. The exact procedure for doing so depends on the reaction type:

Reaction type	Template	Resulting pairs
Isomerization	A -> C	(A,C)
Dissociation	A -> C + D	(A,C),(A,D)
Association	A + B -> C	(A,C), (B,C)
Bimolecular	A + B -> C + D	(A,C), (B,D) or (A,D), (B,C)

There are a number of ways of determining the correct pairing for bimolecular reactions. Here we try a simple similarity analysis by comparing the number of heavy atoms (C/O/N/S at the moment). This should work most of the time, but a more rigorous algorithm may be needed for some cases.

generateReverseRateCoefficient(self, bool network_kinetics=False, Tmin=None, Tmax=None)

Generate and return a rate coefficient model for the reverse reaction. Currently this only works if the *kinetics* attribute is one of several (but not necessarily all) kinetics types.

getEnthalpiesOfReaction($self, ndarray\ Tlist$) \rightarrow ndarray

Return the enthalpies of reaction in J/mol evaluated at temperatures *Tlist* in K.

$getEnthalpyOfReaction(self, double\ T) \rightarrow double$

Return the enthalpy of reaction in J/mol evaluated at temperature *T* in K.

$getEntropiesOfReaction(self, ndarray\ Tlist) \rightarrow ndarray$

Return the entropies of reaction in J/mol*K evaluated at temperatures *Tlist* in K.

$getEntropyOfReaction(self, double\ T) \rightarrow double$

Return the entropy of reaction in J/mol*K evaluated at temperature T in K.

getEquilibriumConstant(self, $double\ T$, $str\ type='Kc'$) \rightarrow double

Return the equilibrium constant for the reaction at the specified temperature *T* in K. The *type* parameter lets you specify the quantities used in the equilibrium constant: Ka for activities, Kc for concentrations (default), or Kp for pressures. Note that this function currently assumes an ideal gas mixture.

getEquilibriumConstants (self, ndarray Tlist, str type='Kc') \rightarrow ndarray

Return the equilibrium constants for the reaction at the specified temperatures *Tlist* in K. The *type* parameter lets you specify the quantities used in the equilibrium constant: Ka for activities, Kc for concentrations (default), or Kp for pressures. Note that this function currently assumes an ideal gas mixture.

$getFreeEnergiesOfReaction(self, ndarray\ Tlist) \rightarrow ndarray$

Return the Gibbs free energies of reaction in J/mol evaluated at temperatures *Tlist* in K.

$getFreeEnergyOfReaction(self, double T) \rightarrow double$

Return the Gibbs free energy of reaction in J/mol evaluated at temperature T in K.

$getRateCoefficient(self, double\ T, double\ P=0) \rightarrow double$

Return the overall rate coefficient for the forward reaction at temperature T in K and pressure P in Pa, including any reaction path degeneracies.

If diffusionLimiter is enabled, the reaction is in the liquid phase and we use a diffusion limitation to correct the rate. If not, then use the intrinsic rate coefficient.

getSource()

Return the database that was the source of this reaction. For a DepositoryReaction this should be a KineticsDepository object.

$getStoichiometricCoefficient(self, Species spec) \rightarrow int$

Return the stoichiometric coefficient of species *spec* in the reaction. The stoichiometric coefficient is increased by one for each time *spec* appears as a product and decreased by one for each time *spec* appears as a reactant.

$getSurfaceRateCoefficient(self, double T, double surfaceSiteDensity) \rightarrow double$

Return the overall surface rate coefficient for the forward reaction at temperature *T* in K with surface site density *surfaceSiteDensity* in mol/m2. Value is returned in combination of [m,mol,s]

getURL(self)

Get a URL to search for this reaction in the rmg website.

get_mean_sigma_and_epsilon(self, bool reverse=False)

Calculates the collision diameter (sigma) using an arithmetic mean Calculates the well depth (epsilon) using a geometric mean If reverse is False the above is calculated for the reactants, otherwise for the products

get_reduced_mass(self, bool reverse=False)

Returns the reduced mass of the reactants if reverse is False Returns the reduced mass of the products if reverse is True

$hasTemplate(self, list reactants, list products) \rightarrow bool$

Return True if the reaction matches the template of *reactants* and *products*, which are both lists of Species objects, or False if not.

index

'int'

Type index

isAssociation(self) \rightarrow bool

Return True if the reaction represents an association reaction $A + B \rightleftharpoons C$ or False if not.

isBalanced(self) \rightarrow bool

Return True if the reaction has the same number of each atom on each side of the reaction equation, or False if not.

$isDissociation(self) \rightarrow bool$

Return True if the reaction represents a dissociation reaction $A \Longrightarrow B + C$ or False if not.

isIsomerization(self) \rightarrow bool

Return True if the reaction represents an isomerization reaction $A \rightleftharpoons B$ or False if not.

isIsomorphic(self, Reaction other, bool eitherDirection=True, bool checkIdentical=False, bool checkOnlyLabel=False, bool checkTemplateRxnProducts=False, bool generateInitialMap=False, bool strict=True) → bool

Return True if this reaction is the same as the *other* reaction, or False if they are different. The comparison involves comparing isomorphism of reactants and products, and doesn't use any kinetic information.

Parameters

- eitherDirection (bool, optional) if False, then the reaction direction must match.
- **checkIdentical** (*bool*, *optional*) if True, check that atom ID's match (used for checking degeneracy)
- **checkOnlyLabel** (*bool*, *optional*) if True, only check the string representation, ignoring molecular structure comparisons

- **checkTemplateRxnProducts** (*bool*, *optional*) if True, only check isomorphism of reaction products (used when we know the reactants are identical, i.e. in generating reactions)
- **generateInitialMap** (bool, optional) if True, initialize map by pairing atoms with same labels
- **strict** (bool, optional) if False, perform isomorphism ignoring electrons

$isSurfaceReaction(self) \rightarrow bool$

Return True if one or more reactants or products are surface species (or surface sites)

$isUnimolecular(self) \rightarrow bool$

Return True if the reaction has a single molecule as either reactant or product (or both) $A \rightleftharpoons B + C$ or $A + B \rightleftharpoons C$ or $A \rightleftharpoons B$, or False if not.

is_forward

'bool'

Type is_forward

k_effective_cache

dict

Type k_effective_cache

kinetics

rmgpy.kinetics.model.KineticsModel

Type kinetics

label

str

Type label

$matchesSpecies(self, list reactants, list products=None) \rightarrow bool$

Compares the provided reactants and products against the reactants and products of this reaction. Both directions are checked.

Parameters

- reactants (list) Species required on one side of the reaction
- **products** (list, optional) Species required on the other side

network_kinetics

rmgpy.kinetics.arrhenius.Arrhenius

Type network kinetics

pairs

list

Type pairs

products

list

Type products

rank

object

Type rank

reactants

list

Type reactants

reverseThisArrheniusRate(self, Arrhenius kForward, str reverseUnits, Tmin=None, Tmax=None)

Reverses the given kForward, which must be an Arrhenius type. You must supply the correct units for the reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).

reversible

'bool'

Type reversible

specificCollider

rmgpy.species.Species

Type specificCollider

toCantera(self, speciesList=None, useChemkinIdentifier=False)

Converts the RMG Reaction object to a Cantera Reaction object with the appropriate reaction class.

If useChemkinIdentifier is set to False, the species label is used instead. Be sure that species' labels are unique when setting it False.

toChemkin(self, speciesList=None, kinetics=True)

Return the chemkin-formatted string for this reaction.

If *kinetics* is set to True, the chemkin format kinetics will also be returned (requires the *speciesList* to figure out third body colliders.) Otherwise, only the reaction string will be returned.

toLabeledStr(self, use_index=False)

the same as __str__ except that the labels are assumed to exist and used for reactant and products rather than the labels plus the index in parentheses

transitionState

rmgpy.species.TransitionState

Type transitionState

rmgpy.data.base.Entry

A class for representing individual records in an RMG database. Each entry in the database associates a chemical item (generally a species, functional group, or reaction) with a piece of data corresponding to that item. A significant amount of metadata can also be stored with each entry.

The attributes are:

Attribute	Description	
index	A unique nonnegative integer index for the entry	
label	A unique string identifier for the entry (or '' if not used)	
item	The item that this entry represents	
parent	The parent of the entry in the hierarchy (or None if not used)	
children	A list of the children of the entry in the hierarchy (or None if not used)	
data	The data to associate with the item	
reference	A Reference object containing bibliographic reference information to the source of the	
	data	
referenceType	The way the data was determined: 'theoretical', 'experimental', or 'review'	
shortDesc	A brief (one-line) description of the data	
longDesc	A long, verbose description of the data	
rank	An integer indicating the degree of confidence in the entry data, or None if not used	
nodalDis-	A float representing the distance of a given entry from it's parent entry	
tance		

rmgpy.data.statmech.GroupFrequencies

class rmgpy.data.statmech.GroupFrequencies(frequencies=None, symmetry=1)

Represent a set of characteristic frequencies for a group in the frequency database. These frequencies are stored in the *frequencies* attribute, which is a list of tuples, where each tuple defines a lower bound, upper bound, and degeneracy. Each group also has a *symmetry* correction.

generateFrequencies(count=1)

Generate a set of frequencies. For each characteristic frequency group, the number of frequencies returned is degeneracy * count, and these are distributed linearly between the lower and upper bounds.

rmgpy.data.kinetics.KineticsDatabase

class rmqpy.data.kinetics.KineticsDatabase

A class for working with the RMG kinetics database.

extractSourceFromComments(reaction)

reaction: A reaction object containing kinetics data and kinetics data comments. Should be either a PDepReaction, LibraryReaction, or TemplateReaction object as loaded from the rmgpy.chemkin.loadChemkinFile function

Parses the verbose string of comments from the thermo data of the species object, and extracts the thermo sources.

Returns a dictionary with keys of either 'Rate Rules', 'Training', 'Library', or 'PDep'. A reaction can only be estimated using one of these methods.

source = {'RateRules': (Family_Label, OriginalTemplate, RateRules), 'Library':

String_Name_of_Library_Used, 'PDep': Network_Index, 'Training': (Family_Label, Training_Reaction_Entry), }

generate_reactions(reactants, products=None, only families=None, resonance=True)

Generate all reactions between the provided list of one or two *reactants*, which should be Molecule objects. This method searches the depository, libraries, and groups, in that order.

$\begin{tabular}{ll} \begin{tabular}{ll} \beg$

Generate all reactions between the provided list or tuple of one or two reactants, which can be either

Molecule objects or Species objects. This method can apply all kinetics families or a selected subset.

Parameters

- reactants Molecules or Species to react
- products List of Molecules or Species of desired product structures (optional)
- **only_families** List of family labels to generate reactions from (optional) Default is to generate reactions from all families
- **resonance** Flag to generate resonance structures for reactants and products (optional) Default is True, resonance structures will be generated

Returns List of reactions containing Species objects with the specified reactants and products.

generate_reactions_from_libraries(reactants, products=None)

Find all reactions from all loaded kinetics library involving the provided *reactants*, which can be either Molecule objects or Species objects.

generate_reactions_from_library(library, reactants, products=None)

Find all reactions from the specified kinetics library involving the provided *reactants*, which can be either Molecule objects or Species objects.

${\tt getForwardReactionForFamilyEntry} (\textit{entry}, \textit{family}, \textit{thermoDatabase})$

For a given *entry* for a reaction of the given reaction *family* (the string label of the family), return the reaction with kinetics and degeneracy for the "forward" direction as defined by the reaction family. For families that are their own reverse, the direction the kinetics is given in will be preserved. If the entry contains functional groups for the reactants, assume that it is given in the forward direction and do nothing. Returns the reaction in the direction consistent with the reaction family template, and the matching template. Note that the returned reaction will have its kinetics and degeneracy set appropriately.

In order to reverse the reactions that are given in the reverse of the direction the family is defined, we need to compute the thermodynamics of the reactants and products. For this reason you must also pass the *thermoDatabase* to use to generate the thermo data.

load (path, families=None, libraries=None, depositories=None)

Load the kinetics database from the given *path* on disk, where *path* points to the top-level folder of the families database.

loadFamilies (path, families=None, depositories=None)

Load the kinetics families from the given *path* on disk, where *path* points to the top-level folder of the kinetics families.

The families argument accepts a single item or list of the following:

- Specific kinetics family labels
- Names of family sets defined in recommended.py
- 'all'
- 'none'

If all items begin with a ! (e.g. ['!H_Abstraction']), then the selection will be inverted to families NOT in the list.

loadLibraries (path, libraries=None)

Load the listed kinetics libraries from the given path on disk.

Loads them all if *libraries* list is not specified or *None*. The *path* points to the folder of kinetics libraries in the database, and the libraries should be in files like <path>/<library>.py.

loadOld(path)

Load the old RMG kinetics database from the given *path* on disk, where *path* points to the top-level folder of the old RMG database.

loadRecommendedFamiliesList(filepath)

Load the recommended families from the given file. The file is usually stored at 'kinetics/families/recommended.py'.

The old style was as a dictionary named *recommendedFamilies* containing all family names as keys with True/False values.

The new style is as multiple sets with unique names which can be used individually or in combination.

Both styles can be loaded by this method.

react_molecules (molecules, products=None, only_families=None, prod_resonance=True)

Generate reactions from all families for the input molecules.

reconstructKineticsFromSource(reaction, source, fixBarrierHeight=False, forcePositiveBarrier=False)

Reaction is the original reaction with original kinetics. Note that for Library and PDep reactions this function does not do anything other than return the original kinetics...

You must enter source data in the appropriate format such as returned from returned from self.extractSourceFromComments, self-constructed. fixBarrierHeight and forcePositiveBarrier will change the kinetics based on the Reaction.fixBarrierHeight function. Return Arrhenius form kinetics if the source is from training reaction or rate rules.

save(path)

Save the kinetics database to the given *path* on disk, where *path* points to the top-level folder of the kinetics database.

saveFamilies(path)

Save the kinetics families to the given *path* on disk, where *path* points to the top-level folder of the kinetics families.

saveLibraries(path)

Save the kinetics libraries to the given *path* on disk, where *path* points to the top-level folder of the kinetics libraries.

saveOld(path)

Save the old RMG kinetics database to the given *path* on disk, where *path* points to the top-level folder of the old RMG database.

saveRecommendedFamilies(path)

Save the recommended families to [path]/recommended.py. The old style was as a dictionary named *recommendedFamilies*. The new style is as multiple sets with different labels.

rmgpy.data.kinetics.KineticsDepository

class rmgpy.data.kinetics.KineticsDepository(label=", name=", shortDesc=", longDesc=")

A class for working with an RMG kinetics depository. Each depository corresponds to a reaction family (a *KineticsFamily* object). Each entry in a kinetics depository involves a reaction defined either by a real reactant and product species (as in a kinetics library).

ancestors(node)

Returns all the ancestors of a node, climbing up the tree to the top.

areSiblings(node, nodeOther)

Return *True* if *node* and *nodeOther* have the same parent node. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

descendTree(structure, atoms, root=None, strict=False)

Descend the tree in search of the functional group node that best matches the local structure around *atoms* in *structure*.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species generally not being prelabeled.

descendants (node)

Returns all the descendants of a node, climbing down the tree to the bottom.

generateOldTree(entries, level)

Generate a multi-line string representation of the current tree using the old-style syntax.

getEntriesToSave()

Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

getSpecies (path, resonance=True)

Load the dictionary containing all of the species in a kinetics library or depository.

load0ld(dictstr, treestr, libstr, numParameters, numLabels=1, pattern=True)

Load a dictionary-tree-library based database. The database is stored in three files: *dictstr* is the path to the dictionary, *treestr* to the tree, and *libstr* to the library. The tree is optional, and should be set to '' if not desired.

loadOldDictionary(path, pattern)

Parse an old-style RMG database dictionary located at *path*. An RMG dictionary is a list of key-value pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty line. Returns a dict object with the values converted to Molecule or Group objects depending on the value of *pattern*.

loadOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at *path*.

loadOldTree(path)

Parse an old-style RMG database tree located at *path*. An RMG tree is an n-ary tree representing the hierarchy of items in the dictionary.

matchNodeToChild(parentNode, childNode)

Return *True* if *parentNode* is a parent of *childNode*. Otherwise, return *False*. Both *parentNode* and *childNode* must be Entry types with items containing Group or LogicNode types. If *parentNode* and *childNode* are identical, the function will also return *False*.

matchNodeToNode(node, nodeOther)

Return *True* if *node* and *nodeOther* are identical. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

matchNodeToStructure(node, structure, atoms, strict=False)

Return True if the *structure* centered at *atom* matches the structure at *node* in the dictionary. The structure at *node* should have atoms with the appropriate labels because they are set on loading and never change. However, the atoms in *structure* may not have the correct labels, hence the *atoms* parameter. The *atoms*

parameter may include extra labels, and so we only require that every labeled atom in the functional group represented by *node* has an equivalent labeled atom in *structure*.

Matching to structure is more strict than to node. All labels in structure must be found in node. However the reverse is not true, unless *strict* is set to True.

At-	Description
tribute	
node	Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
	Entry.item
struc-	A Group or a Molecule
ture	
atoms	Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
	structure.getLabeledAtoms()
strict	If set to True, ensures that all the node's atomLabels are matched by in the structure

parseOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at *path*, returning the loaded entries (rather than storing them in the database). This method does not discard duplicate entries.

removeGroup(groupToRemove)

Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also update the parent/child relationships

Returns the removed group

save(path)

Save the current database to the file at location *path* on disk.

saveDictionary(path)

Extract species from all entries associated with a kinetics library or depository and save them to the path given.

saveEntry(f, entry)

Write the given *entry* in the kinetics database to the file object *f*.

saveOld(dictstr, treestr, libstr)

Save the current database to a set of text files using the old-style syntax.

saveOldDictionary(path)

Save the current database dictionary to a text file using the old-style syntax.

saveOldLibrary(path)

Save the current database library to a text file using the old-style syntax.

saveOldTree(path)

Save the current database tree to a text file using the old-style syntax.

rmgpy.data.kinetics.KineticsFamily

```
class rmgpy.data.kinetics.KineticsFamily(entries=None, top=None, label=", name=", reverse=", reversible=True, shortDesc=", longDesc=", forwardTemplate=None, forwardRecipe=None, reverseTemplate=None, reverseRecipe=None, forbidden=None, boundaryAtoms=None, treeDistances=None)
```

A class for working with an RMG kinetics family: a set of reactions with similar chemistry, and therefore similar reaction rates. The attributes are:

Attribute	Туре	Description
reverse	string	The name of the reverse reaction family
reversible	Boolean	Is family reversible? (True by default)
forwardTem-	Reaction	The forward reaction template
plate		
for-	ReactionRecipe	The steps to take when applying the forward reaction to a set of
wardRecipe		reactants
reverseTem-	Reaction	The reverse reaction template
plate		
reverseRecipe	ReactionRecipe	The steps to take when applying the reverse reaction to a set of
		reactants
forbidden	ForbiddenStructu	r€Optional) Forbidden product structures in either direction
ownReverse	Boolean	It's its own reverse?
'boundary-	list	Labels which define the boundaries of end groups in backbone/end
Atoms'		families
treeDistances	dict	The default distance from parent along each tree, if not set default
		is 1 for every tree
groups	KineticsGroups	The set of kinetics group additivity values
rules	KineticsRules	The set of kinetics rate rules from RMG-Java
depositories	list	A set of additional depositories used to store kinetics data from var-
		ious sources

There are a few reaction families that are their own reverse (hydrogen abstraction and intramolecular hydrogen migration); for these *reverseTemplate* and *reverseRecipe* will both be None.

addAtomLabelsForReaction(reaction, output_with_resonance=True)

Apply atom labels on a reaction using the appropriate atom labels from this reaction family.

The reaction is modified in place containing species objects with the atoms labeled. If output_with_resonance is True, all resonance structures are generated with labels. If false, only the first resonance structure successfully able to map to the reaction is used. None is returned.

addEntry(parent, grp, name)

Adds a group entry with parent parent group structure grp and group name name

${\bf addKineticsRulesFromTrainingSet} \ (\it thermoDatabase=None, trainIndices=None)$

For each reaction involving real reactants and products in the training set, add a rate rule for that reaction.

addReverseAttribute(rxn, react_non_reactive=True)

For rxn (with species' objects) from families with ownReverse, this method adds a *reverse* attribute that contains the reverse reaction information (like degeneracy)

Returns *True* if successful and *False* if the reverse reaction is forbidden. Will raise a *KineticsError* if unsuccessful for other reasons.

ancestors(node)

Returns all the ancestors of a node, climbing up the tree to the top.

applyRecipe(reactantStructures, forward=True, unique=True)

Apply the recipe for this reaction family to the list of Molecule objects *reactantStructures*. The atoms of the reactant structures must already be tagged with the appropriate labels. Returns a list of structures corresponding to the products after checking that the correct number of products was produced.

areSiblings(node, nodeOther)

Return *True* if *node* and *nodeOther* have the same parent node. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

calculateDegeneracy(reaction)

For a *reaction* with *Molecule* or *Species* objects given in the direction in which the kinetics are defined, compute the reaction-path degeneracy.

This method by default adjusts for double counting of identical reactants. This should only be adjusted once per reaction. To not adjust for identical reactants (since you will be reducing them later in the algorithm), add *ignoreSameReactants= True* to this method.

cleanTreeGroups(thermoDatabase=None)

clears groups and rules in the tree, generates an appropriate root group to start from and then reads training reactions Note this only works if a single top node (not a logic node) can be generated

crossValidate(folds=5, templateRxnMap=None, T=1000.0, iters=0, random_state=1)

Perform K-fold cross validation on an automatically generated tree at temperature T after finding an appropriate node for kinetics estimation it will move up the tree iters times. Returns a dictionary mapping {rxn:Ln(k_Est/k_Train)}

crossValidateOld (folds=5, T=1000.0, random_state=1, estimator='rate rules', thermo-Database=None)

Perform K-fold cross validation on an automatically generated tree at temperature T Returns a dictionary mapping {rxn:Ln(k_Est/k_Train)}

descendTree(structure, atoms, root=None, strict=False)

Descend the tree in search of the functional group node that best matches the local structure around *atoms* in *structure*.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species generally not being prelabeled.

descendants(node)

Returns all the descendants of a node, climbing down the tree to the bottom.

distributeTreeDistances()

fills in nodalDistance (the distance between an entry and its parent) if not already entered with the value from treeDistances associated with the tree the entry comes from

estimateKineticsUsingGroupAdditivity(template, degeneracy=1)

Determine the appropriate kinetics for a reaction with the given template using group additivity.

Returns just the kinetics, or None.

estimateKineticsUsingRateRules(template, degeneracy=1)

Determine the appropriate kinetics for a reaction with the given *template* using rate rules.

Returns a tuple (kinetics, entry) where *entry* is the database entry used to determine the kinetics only if it is an exact match, and is None if some averaging or use of a parent node took place.

evalExt(parent, ext, extname, templateRxnMap, obj=None, T=1000.0)

evaluates the objective function obj for the extension ext with name extname to the parent entry parent

extendNode (parent, templateRxnMap, thermoDatabase=None, obj=None, T=1000.0)

Constructs an extension to the group parent based on evaluation of the objective function obj

extractSourceFromComments(reaction)

Returns the rate rule associated with the kinetics of a reaction by parsing the comments. Will return the template associated with the matched rate rule. Returns a tuple containing (Boolean_Is_Kinetics_From_Training_reaction, Source_Data)

For a training reaction, the Source_Data returns:

```
[Family_Label, Training_Reaction_Entry, Kinetics_In_Reverse?]
```

For a reaction from rate rules, the Source_Data is a tuple containing:

where Exact is a boolean of whether the rate is an exact match, Template is the reaction template used, RateRules is a list of the rate rule entries containing the kinetics used, and TrainingReactions are ones that have created rules used in the estimate.

fillKineticsRulesByAveragingUp(verbose=False)

Fill in gaps in the kinetics rate rules by averaging child nodes recursively starting from the top level root template.

generateOldTree(entries, level)

Generate a multi-line string representation of the current tree using the old-style syntax.

generateProductTemplate(reactants0)

Generate the product structures by applying the reaction template to the top-level nodes. For reactants defined by multiple structures, only the first is used here; it is assumed to be the most generic.

generateReactions(reactants, products=None, prod_resonance=True)

Generate all reactions between the provided list of one, two, or three *reactants*, which should be either single Molecule objects or lists of same. Does not estimate the kinetics of these reactions at this time. Returns a list of *TemplateReaction* objects using Molecule objects for both reactants and products The reactions are constructed such that the forward direction is consistent with the template of this reaction family.

Parameters

- reactants (list) List of Molecules to react.
- **products** (*list*, *optional*) List of Molecules or Species of desired product structures.
- **prod_resonance** (*bool*, *optional*) Flag to generate resonance structures for product checking. Defaults to True, resonance structures are compared.

Returns List of all reactions containing Molecule objects with the specified reactants and products within this family. Degenerate reactions are returned as separate reactions.

generateTree(obj=None, thermoDatabase=None, T=1000.0)

Generate a tree by greedy optimization based on the objective function obj the optimization is done by iterating through every group and if the group has more than one training reaction associated with it a set of potential more specific extensions are generated and the extension that optimizing the objective function combination is chosen and the iteration starts over at the beginning

additionally the tree structure is simplified on the fly by removing groups that have no kinetics data associated if their parent has no kinetics data associated and they either have only one child or have two children one of which has no kinetics data and no children (its parent becomes the parent of its only relevant child node)

getBackboneRoots()

Returns: the top level backbone node in a unimolecular family.

getEndRoots()

Returns: A list of top level end nodes in a unimolecular family

getEntriesToSave()

Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

getExtensionEdge(parent, templateRxnMap, obj, T)

finds the set of all extension groups to parent such that 1) the extension group divides the set of reactions under parent 2) No generalization of the extension group divides the set of reactions under parent

We find this by generating all possible extensions of the initial group. Extensions that split reactions are added to the list. All extensions that do not split reactions and do not create bonds are ignored (although those that match every reaction are labeled so we don't search them twice). Those that match all reactions and involve bond creation undergo this process again.

Principle: Say you have two elementary changes to a group ext1 and ext2 if applying ext1 and ext2 results in a split at least one of ext1 and ext2 must result in a split

Speed of this algorithm relies heavily on searching non bond creation dimensions once.

getKinetics (reaction, templateLabels, degeneracy=1, estimator=", returnAllKinetics=True)

Return the kinetics for the given *reaction* by searching the various depositories as well as generating a result using the user-specified *estimator* of either 'group additivity' or 'rate rules'. Unlike the regular *getKinetics()* method, this returns a list of results, with each result comprising of

- 1. the kinetics
- 2. the source this will be *None* if from a template estimate
- 3. the entry this will be *None* if from a template estimate
- 4. is_forward a boolean denoting whether the matched entry is in the same direction as the inputted reaction. This will always be True if using rates rules or group additivity. This can be *True* or *False* if using a depository

If returnAllKinetics==False, only the first (best?) matching kinetics is returned.

getKineticsForTemplate(template, degeneracy=1, method='rate rules')

Return an estimate of the kinetics for a reaction with the given *template* and reaction-path *degeneracy*. There are two possible methods to use: 'group additivity' (new possible RMG-Py behavior) and 'rate rules' (old RMG-Java behavior, and default RMG-Py behavior).

Returns a tuple (kinetics, entry): If it's estimated via 'rate rules' and an exact match is found in the tree, then the entry is returned as the second element of the tuple. But if an average is used, or the 'group additivity' method, then the tuple returned is (kinetics, None).

getKineticsFromDepository(depository, reaction, template, degeneracy)

Search the given *depository* in this kinetics family for kinetics for the given *reaction*. Returns a list of all of the matching kinetics, the corresponding entries, and True if the kinetics match the forward direction or False if they match the reverse direction.

getLabeledReactantsAndProducts (reactants, products)

Given *reactants*, a list of Molecule objects, and products, a list of Molecule objects, return two new lists of Molecule objects with atoms labeled: one for reactants, one for products. Returned molecules are totally new entities in memory so input molecules *reactants* and *products* won't be affected. If RMG cannot find appropriate labels, (None, None) will be returned.

getRateRule(template)

Return the rate rule with the given template. Raises a ValueError if no corresponding entry exists.

getReactionMatches (*rxns=None*, *thermoDatabase=None*, *removeDegeneracy=False*, *estimateTh-ermo=True*, *fixLabels=False*, *exactMatchesOnly=False*, *getReverse=False*) returns a dictionary mapping for each entry in the tree: (entry.label,entry.item): list of all training reactions (or the list given) that match that entry

getReactionPairs(reaction)

For a given *reaction* with properly-labeled Molecule objects as the reactants, return the reactant-product pairs to use when performing flux analysis.

getReactionTemplate(reaction)

For a given *reaction* with properly-labeled Molecule objects as the reactants, determine the most specific nodes in the tree that describe the reaction.

getReactionTemplateLabels(reaction)

Retrieve the template for the reaction and return the corresponding labels for each of the groups in the template.

getRootTemplate()

Return the root template for the reaction family. Most of the time this is the top-level nodes of the tree (as stored in the *KineticsGroups* object), but there are a few exceptions (e.g. R_Recombination).

getSourcesForTemplate(template)

Returns the set of rate rules and training reactions used to average this *template*. Note that the tree must be averaged with verbose=True for this to work.

Returns a tuple of rules, training

```
where rules are a list of tuples containing the [(original_entry, weight_used_in_average), ... ]
```

and training is a list of tuples containing the [(rate_rule_entry, training_reaction_entry, weight_used_in_average),...]

getSpecies (path, resonance=True)

Load the dictionary containing all of the species in a kinetics library or depository.

getTopLevelGroups(root)

Returns a list of group nodes that are the highest in the tree starting at node "root". If "root" is a group node, then it will return a single-element list with "root". Otherwise, for every child of root, we descend until we find no nodes with logic nodes. We then return a list of all group nodes found along the way.

getTrainingDepository()

Returns the *training* depository from self.depositories

$\begin{tabular}{ll} \textbf{getTrainingSet}(thermoDatabase=None, removeDegeneracy=False, estimateThermo=True, fixLabels=False, getReverse=False) \end{tabular}$

retrieves all reactions in the training set, assigns thermo to the species objects reverses reactions as necessary so that all reactions are in the forward direction and returns the resulting list of reactions in the forward direction with thermo assigned

getw0(rxn)

calculates the w0 for Blower Masel kinetics by calculating wf (total bond energy of bonds formed) and wb (total bond energy of bonds broken) with w0 = (wf+wb)/2

hasRateRule(template)

Return True if a rate rule with the given *template* currently exists, or False otherwise.

isEntryMatch(mol, entry)

determines if the labeled molecule object of reactants matches the entry entry

isMoleculeForbidden(molecule)

Return True if the molecule is forbidden in this family, or False otherwise.

load(path, local_context=None, global_context=None, depositoryLabels=None)

Load a kinetics database from a file located at *path* on disk.

If *depositoryLabels* is a list, eg. ['training','PrIMe'], then only those depositories are loaded, and they are searched in that order when generating kinetics.

If depositoryLabels is None then load 'training' first then everything else. If depositoryLabels is not None then load in the order specified in depositoryLabels.

loadForbidden(label, group, shortDesc=", longDesc=")

Load information about a forbidden structure.

loadOld(path)

Load an old-style RMG kinetics group additivity database from the location path.

loadOldDictionary(path, pattern)

Parse an old-style RMG database dictionary located at *path*. An RMG dictionary is a list of key-value pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty line. Returns a dict object with the values converted to Molecule or Group objects depending on the value of *pattern*.

loadOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at *path*.

loadOldTemplate(path)

Load an old-style RMG reaction family template from the location *path*.

loadOldTree(path)

Parse an old-style RMG database tree located at *path*. An RMG tree is an n-ary tree representing the hierarchy of items in the dictionary.

loadRecipe(actions)

Load information about the reaction recipe.

loadTemplate(reactants, products, ownReverse=False)

Load information about the reaction template.

makeTree(obj=None, regularization=<function simpleRegularization>, thermoDatabase=None, T=1000.0)

generates tree structure and then generates rules for the tree

${\tt matchNodeToChild}(\textit{parentNode}, \textit{childNode})$

Return *True* if *parentNode* is a parent of *childNode*. Otherwise, return *False*. Both *parentNode* and *childNode* must be Entry types with items containing Group or LogicNode types. If *parentNode* and *childNode* are identical, the function will also return *False*.

matchNodeToNode(node, nodeOther)

Return *True* if *node* and *nodeOther* are identical. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

matchNodeToStructure(node, structure, atoms, strict=False)

Return True if the *structure* centered at *atom* matches the structure at *node* in the dictionary. The structure at *node* should have atoms with the appropriate labels because they are set on loading and never change. However, the atoms in *structure* may not have the correct labels, hence the *atoms* parameter. The *atoms* parameter may include extra labels, and so we only require that every labeled atom in the functional group represented by *node* has an equivalent labeled atom in *structure*.

Matching to structure is more strict than to node. All labels in structure must be found in node. However the reverse is not true, unless *strict* is set to True.

At-	Description
tribute	
node	Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
	Entry.item Entry.item
struc-	A Group or a Molecule
ture	
atoms	Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
	structure.getLabeledAtoms()
strict	If set to True, ensures that all the node's atomLabels are matched by in the structure

parseOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at *path*, returning the loaded entries (rather than storing them in the database). This method does not discard duplicate entries.

regularize(regularization=<function simpleRegularization>, keepRoot=True)

Regularizes the tree according to the regularization function regularization

removeGroup(groupToRemove)

Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also update the parent/child relationships

Returns the removed group

retrieveOriginalEntry(templateLabel)

Retrieves the original entry, be it a rule or training reaction, given the template label in the form 'group1;group2' or 'group1;group2;group3'

Returns tuple in the form (RateRuleEntry, TrainingReactionEntry)

Where the TrainingReactionEntry is only present if it comes from a training reaction

retrieveTemplate(templateLabels)

Reconstruct the groups associated with the labels of the reaction template and return a list.

save(path)

Save the current database to the file at location *path* on disk.

saveDepository(depository, path)

Save the given kinetics family *depository* to the location *path* on disk.

saveDictionary(path)

Extract species from all entries associated with a kinetics library or depository and save them to the path given.

saveEntry(f, entry)

Write the given *entry* in the thermo database to the file object f.

saveGeneratedTree(path=None)

clears the rules and saves the family to its current location in database

saveGroups(path)

Save the current database to the file at location *path* on disk.

saveOld(path)

Save the old RMG kinetics groups to the given *path* on disk.

saveOldDictionary(path)

Save the current database dictionary to a text file using the old-style syntax.

saveOldLibrary(path)

Save the current database library to a text file using the old-style syntax.

saveOldTemplate(path)

Save an old-style RMG reaction family template from the location *path*.

saveOldTree(path)

Save the current database tree to a text file using the old-style syntax.

This function takes a list of reactions appends it to the training reactions file. It ignores the existence of duplicate reactions.

The rank for each new reaction's kinetics is set to a default value of 3 unless the user specifies differently for those reactions.

For each entry, the long description is imported from the kinetics comment.

simpleRegularization(node)

Simplest regularization algorithm All nodes are made as specific as their descendant reactions Training reactions are assumed to not generalize For example if an particular atom at a node is Oxygen for all of its descendent reactions a reaction where it is Sulfur will never hit that node unless it is the top node even if the tree did not split on the identity of that atom

splitReactions(rxns, newgrp)

divides the reactions in rxns between the new group structure newgrp and the old structure with label oldlabel returns a list of reactions associated with the new group the list of reactions associated with the old group and a list of the indices of all of the reactions associated with the new group

rmgpy.data.kinetics.KineticsGroups

A class for working with an RMG kinetics family group additivity values.

ancestors(node)

Returns all the ancestors of a node, climbing up the tree to the top.

areSiblings(node, nodeOther)

Return *True* if *node* and *nodeOther* have the same parent node. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

descendTree(structure, atoms, root=None, strict=False)

Descend the tree in search of the functional group node that best matches the local structure around *atoms* in *structure*.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species generally not being prelabeled.

descendants(node)

Returns all the descendants of a node, climbing down the tree to the bottom.

estimateKineticsUsingGroupAdditivity(template, referenceKinetics, degeneracy=1)

Determine the appropriate kinetics for a reaction with the given template using group additivity.

Returns just the kinetics.

generateGroupAdditivityValues(trainingSet, kunits, method='Arrhenius')

Generate the group additivity values using the given *trainingSet*, a list of 2-tuples of the form (template, kinetics). You must also specify the *kunits* for the family and the *method* to use when generating the group values. Returns True if the group values have changed significantly since the last time they were fitted, or False otherwise.

generateOldTree(entries, level)

Generate a multi-line string representation of the current tree using the old-style syntax.

getEntriesToSave()

Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

getReactionTemplate(reaction)

For a given *reaction* with properly-labeled Molecule objects as the reactants, determine the most specific nodes in the tree that describe the reaction.

getSpecies (path, resonance=True)

Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)

Load an RMG-style database from the file at location *path* on disk. The parameters *local_context* and *global_context* are used to provide specialized mapping of identifiers in the input file to corresponding functions to evaluate. This method will automatically add a few identifiers required by all data entries, so you don't need to provide these.

nodalDistance is the distance between a given entry and its parent specified by a float

loadOld(dictstr, treestr, libstr, numParameters, numLabels=1, pattern=True)

Load a dictionary-tree-library based database. The database is stored in three files: *dictstr* is the path to the dictionary, *treestr* to the tree, and *libstr* to the library. The tree is optional, and should be set to '' if not desired.

loadOldDictionary(path, pattern)

Parse an old-style RMG database dictionary located at *path*. An RMG dictionary is a list of key-value pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty line. Returns a dict object with the values converted to Molecule or Group objects depending on the value of *pattern*.

loadOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at path.

loadOldTree(path)

Parse an old-style RMG database tree located at *path*. An RMG tree is an n-ary tree representing the hierarchy of items in the dictionary.

matchNodeToChild(parentNode, childNode)

Return *True* if *parentNode* is a parent of *childNode*. Otherwise, return *False*. Both *parentNode* and *childNode* must be Entry types with items containing Group or LogicNode types. If *parentNode* and *childNode* are identical, the function will also return *False*.

matchNodeToNode(node, nodeOther)

Return *True* if *node* and *nodeOther* are identical. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

matchNodeToStructure(node, structure, atoms, strict=False)

Return True if the *structure* centered at *atom* matches the structure at *node* in the dictionary. The structure at *node* should have atoms with the appropriate labels because they are set on loading and never change.

However, the atoms in *structure* may not have the correct labels, hence the *atoms* parameter. The *atoms* parameter may include extra labels, and so we only require that every labeled atom in the functional group represented by *node* has an equivalent labeled atom in *structure*.

Matching to structure is more strict than to node. All labels in structure must be found in node. However the reverse is not true, unless *strict* is set to True.

At-	Description
tribute	
node	Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
	Entry.item
struc-	A Group or a Molecule
ture	
atoms	Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
	structure.getLabeledAtoms()
strict	If set to True, ensures that all the node's atomLabels are matched by in the structure

parseOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at *path*, returning the loaded entries (rather than storing them in the database). This method does not discard duplicate entries.

removeGroup(groupToRemove)

Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also update the parent/child relationships

Returns the removed group

save(path)

Save the current database to the file at location *path* on disk.

saveDictionary(path)

Extract species from all entries associated with a kinetics library or depository and save them to the path given.

saveOld(dictstr, treestr, libstr)

Save the current database to a set of text files using the old-style syntax.

saveOldDictionary(path)

Save the current database dictionary to a text file using the old-style syntax.

saveOldLibrary(path)

Save the current database library to a text file using the old-style syntax.

saveOldTree(path)

Save the current database tree to a text file using the old-style syntax.

rmgpy.data.kinetics.KineticsLibrary

```
class rmgpy.data.kinetics.KineticsLibrary(label=", name=", solvent=None, shortDesc=", longDesc=", autoGenerated=False)
```

A class for working with an RMG kinetics library.

ancestors(node)

Returns all the ancestors of a node, climbing up the tree to the top.

areSiblings(node, nodeOther)

Return *True* if *node* and *nodeOther* have the same parent node. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

checkForDuplicates (markDuplicates=False)

Check that all duplicate reactions in the kinetics library are properly marked (i.e. with their duplicate attribute set to True). If markDuplicates is set to True, then ignore and mark all duplicate reactions as duplicate.

convertDuplicatesToMulti()

Merge all marked duplicate reactions in the kinetics library into single reactions with multiple kinetics.

descendTree(structure, atoms, root=None, strict=False)

Descend the tree in search of the functional group node that best matches the local structure around *atoms* in *structure*.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species generally not being prelabeled.

descendants(node)

Returns all the descendants of a node, climbing down the tree to the bottom.

generateOldTree(entries, level)

Generate a multi-line string representation of the current tree using the old-style syntax.

getEntriesToSave()

Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

getLibraryReactions()

makes library and template reactions as appropriate from the library comments and returns at list of all of these LibraryReaction and TemplateReaction objects

getSpecies(path, resonance=True)

Load the dictionary containing all of the species in a kinetics library or depository.

loadOld(path)

Load an old-style RMG kinetics library from the location *path*.

loadOldDictionary(path, pattern)

Parse an old-style RMG database dictionary located at *path*. An RMG dictionary is a list of key-value pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty line. Returns a dict object with the values converted to Molecule or Group objects depending on the value of *pattern*.

loadOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at path.

loadOldTree(path)

Parse an old-style RMG database tree located at *path*. An RMG tree is an n-ary tree representing the hierarchy of items in the dictionary.

markValidDuplicates(reactions1, reactions2)

Check for reactions that appear in both lists, and mark them as (valid) duplicates.

matchNodeToChild(parentNode, childNode)

Return *True* if *parentNode* is a parent of *childNode*. Otherwise, return *False*. Both *parentNode* and *childNode* must be Entry types with items containing Group or LogicNode types. If *parentNode* and *childNode* are identical, the function will also return *False*.

matchNodeToNode(node, nodeOther)

Return *True* if *node* and *nodeOther* are identical. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

matchNodeToStructure(node, structure, atoms, strict=False)

Return True if the *structure* centered at *atom* matches the structure at *node* in the dictionary. The structure at *node* should have atoms with the appropriate labels because they are set on loading and never change. However, the atoms in *structure* may not have the correct labels, hence the *atoms* parameter. The *atoms* parameter may include extra labels, and so we only require that every labeled atom in the functional group represented by *node* has an equivalent labeled atom in *structure*.

Matching to structure is more strict than to node. All labels in structure must be found in node. However the reverse is not true, unless *strict* is set to True.

At-	Description
tribute	
node	Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
	Entry.item
struc-	A Group or a Molecule
ture	
atoms	Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
	structure.getLabeledAtoms()
strict	If set to True, ensures that all the node's atomLabels are matched by in the structure

parseOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at *path*, returning the loaded entries (rather than storing them in the database). This method does not discard duplicate entries.

removeGroup(groupToRemove)

Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also update the parent/child relationships

Returns the removed group

save(path)

Save the current database to the file at location *path* on disk.

saveDictionary(path)

Extract species from all entries associated with a kinetics library or depository and save them to the path given.

saveEntry(f, entry)

Write the given *entry* in the kinetics library to the file object *f*.

saveOld(path)

Save an old-style reaction library to *path*. This creates files named species.txt, reactions.txt, and pdepreactions.txt in the given directory; these contain the species dictionary, high-pressure limit reactions and kinetics, and pressure-dependent reactions and kinetics, respectively.

saveOldDictionary(path)

Save the current database dictionary to a text file using the old-style syntax.

saveOldLibrary(path)

Save the current database library to a text file using the old-style syntax.

saveOldTree(path)

Save the current database tree to a text file using the old-style syntax.

rmgpy.data.kinetics.KineticsRules

class rmgpy.data.kinetics.KineticsRules(label=", name=", shortDesc=", longDesc=")

A class for working with a set of "rate rules" for a RMG kinetics family.

ancestors(node)

Returns all the ancestors of a node, climbing up the tree to the top.

areSiblings(node, nodeOther)

Return *True* if *node* and *nodeOther* have the same parent node. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

descendTree(structure, atoms, root=None, strict=False)

Descend the tree in search of the functional group node that best matches the local structure around *atoms* in *structure*.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species generally not being prelabeled.

descendants(node)

Returns all the descendants of a node, climbing down the tree to the bottom.

estimateKinetics(template, degeneracy=1)

Determine the appropriate kinetics for a reaction with the given *template* using rate rules.

Returns a tuple (kinetics, entry) where *entry* is the database entry used to determine the kinetics only if it is an exact match, and is None if some averaging or use of a parent node took place.

fillRulesByAveragingUp(rootTemplate, alreadyDone, verbose=False)

Fill in gaps in the kinetics rate rules by averaging child nodes. If verbose is set to True, then exact sources of kinetics are saved in the kinetics comments (warning: this uses up a lot of memory due to the extensively long comments)

generateOldTree(entries, level)

Generate a multi-line string representation of the current tree using the old-style syntax.

getAllRules (template)

Return all of the exact rate rules with the given *template*. Raises a ValueError if no corresponding entry exists.

getEntries()

Return a list of all of the entries in the rate rules database, sorted by index.

getEntriesToSave()

Return a sorted list of all of the entries in the rate rules database to save.

getRule(template)

Return the exact rate rule with the given template, or None if no corresponding entry exists.

getSpecies (path, resonance=True)

Load the dictionary containing all of the species in a kinetics library or depository.

hasRule(template)

Return True if a rate rule with the given template currently exists, or False otherwise.

load(path, local_context=None, global_context=None)

Load an RMG-style database from the file at location *path* on disk. The parameters *local_context* and *global_context* are used to provide specialized mapping of identifiers in the input file to corresponding

functions to evaluate. This method will automatically add a few identifiers required by all data entries, so you don't need to provide these.

loadOld(path, groups, numLabels)

Load a set of old rate rules for kinetics groups into this depository.

loadOldDictionary(path, pattern)

Parse an old-style RMG database dictionary located at *path*. An RMG dictionary is a list of key-value pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty line. Returns a dict object with the values converted to Molecule or Group objects depending on the value of *pattern*.

loadOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at path.

loadOldTree(path)

Parse an old-style RMG database tree located at *path*. An RMG tree is an n-ary tree representing the hierarchy of items in the dictionary.

${\tt matchNodeToChild}(parentNode, childNode)$

Return *True* if *parentNode* is a parent of *childNode*. Otherwise, return *False*. Both *parentNode* and *childNode* must be Entry types with items containing Group or LogicNode types. If *parentNode* and *childNode* are identical, the function will also return *False*.

matchNodeToNode(node, nodeOther)

Return *True* if *node* and *nodeOther* are identical. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

matchNodeToStructure(node, structure, atoms, strict=False)

Return True if the *structure* centered at *atom* matches the structure at *node* in the dictionary. The structure at *node* should have atoms with the appropriate labels because they are set on loading and never change. However, the atoms in *structure* may not have the correct labels, hence the *atoms* parameter. The *atoms* parameter may include extra labels, and so we only require that every labeled atom in the functional group represented by *node* has an equivalent labeled atom in *structure*.

Matching to structure is more strict than to node. All labels in structure must be found in node. However the reverse is not true, unless *strict* is set to True.

At-	Description
tribute	
node	Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
	Entry.item
struc-	A Group or a Molecule
ture	
atoms	Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
	structure.getLabeledAtoms()
strict	If set to True, ensures that all the node's atomLabels are matched by in the structure

parseOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at *path*, returning the loaded entries (rather than storing them in the database). This method does not discard duplicate entries.

processOldLibraryEntry(data)

Process a list of parameters *data* as read from an old-style RMG thermo database, returning the corresponding kinetics object.

removeGroup(groupToRemove)

Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also

update the parent/child relationships

Returns the removed group

save(path)

Save the current database to the file at location *path* on disk.

saveDictionary(path)

Extract species from all entries associated with a kinetics library or depository and save them to the path given.

saveEntry(f, entry)

Write the given *entry* in the thermo database to the file object *f*.

saveOld(path, groups)

Save a set of old rate rules for kinetics groups from this depository.

saveOldDictionary(path)

Save the current database dictionary to a text file using the old-style syntax.

saveOldLibrary(path)

Save the current database library to a text file using the old-style syntax.

saveOldTree(path)

Save the current database tree to a text file using the old-style syntax.

rmgpy.data.kinetics.LibraryReaction

```
class rmgpy.data.kinetics.LibraryReaction(index=-1,
                                                                reactants=None,
                                                                                    products=None,
                                                  specificCollider=None,
                                                                            kinetics=None,
                                                                                               net-
                                                                          reversible=True.
                                                  work kinetics=None,
                                                                                              tran-
                                                  sitionState=None,
                                                                        duplicate=False.
                                                                                             degen-
                                                  eracy=1,
                                                               pairs=None,
                                                                               library=None,
                                                                          elementary_high_p=False,
                                                  low_pdep_route=False,
                                                  allow_max_rate_violation=False, entry=None)
```

A Reaction object generated from a reaction library. In addition to the usual attributes, this class includes *library* and *entry* attributes to store the library and the entry in that library that it was created from.

allow_max_rate_violation

'bool'

Type allow_max_rate_violation

allow_pdep_route

'bool'

Type allow_pdep_route

calculateMicrocanonicalRateCoefficient(self, ndarray Elist, ndarray Jlist, ndarray reac-DensStates, ndarray prodDensStates=None, double T=0.0)

Calculate the microcanonical rate coefficient k(E) for the reaction reaction at the energies Elist in J/mol. reacDensStates and prodDensStates are the densities of states of the reactant and product configurations for this reaction. If the reaction is irreversible, only the reactant density of states is required; if the reaction is reversible, then both are required. This function will try to use the best method that it can based on the input data available:

• If detailed information has been provided for the transition state (i.e. the molecular degrees of freedom), then RRKM theory will be used.

• If the above is not possible but high-pressure limit kinetics $k_{\infty}(T)$ have been provided, then the inverse Laplace transform method will be used.

The density of states for the product prodDensStates and the temperature of interest T in K can also be provided. For isomerization and association reactions prodDensStates is required; for dissociation reactions it is optional. The temperature is used if provided in the detailed balance expression to determine the reverse kinetics, and in certain cases in the inverse Laplace transform method.

$calculateTSTRateCoefficient(self, double T) \rightarrow double$

Evaluate the forward rate coefficient for the reaction with corresponding transition state TS at temperature T in K using (canonical) transition state theory. The TST equation is

$$k(T) = \kappa(T) \frac{k_{\rm B}T}{h} \frac{Q^{\ddagger}(T)}{Q^{\rm A}(T)Q^{\rm B}(T)} \exp\left(-\frac{E_0}{k_{\rm B}T}\right)$$

where Q^{\ddagger} is the partition function of the transition state, Q^{A} and Q^{B} are the partition function of the reactants, E_{0} is the ground-state energy difference from the transition state to the reactants, T is the absolute temperature, k_{B} is the Boltzmann constant, and h is the Planck constant. $\kappa(T)$ is an optional tunneling correction.

calculateTSTRateCoefficients($self, ndarray\ Tlist$) \rightarrow ndarray

calculate_coll_limit(self, float temp, bool reverse=False)

Calculate the collision limit rate for the given temperature implemented as recommended in Wang et al. doi 10.1016/j.combustflame.2017.08.005 (Eq. 1)

$canTST(self) \rightarrow bool$

Return True if the necessary parameters are available for using transition state theory – or the microcanonical equivalent, RRKM theory – to compute the rate coefficient for this reaction, or False otherwise.

check_collision_limit_violation(self, $float\ t_min$, $float\ t_max$, $float\ p_min$, $float\ p_max$) \rightarrow list

Warn if a core reaction violates the collision limit rate in either the forward or reverse direction at the relevant extreme T/P conditions. Assuming a monotonic behaviour of the kinetics. Returns a list with the reaction object and the direction in which the violation was detected.

comment

str

Type comment

copy (self)

Create a deep copy of the current reaction.

degeneracy

The reaction path degeneracy for this reaction.

If the reaction has kinetics, changing the degeneracy will adjust the reaction rate by a ratio of the new degeneracy to the old degeneracy.

draw(*self*, *path*)

Generate a pictorial representation of the chemical reaction using the draw module. Use *path* to specify the file to save the generated image to; the image type is automatically determined by extension. Valid extensions are .png, .svg, .pdf, and .ps; of these, the first is a raster format and the remainder are vector formats.

duplicate

'bool'

Type duplicate

elementary_high_p

'bool'

Type elementary_high_p

ensure_species(self, bool reactant_resonance=False, bool product_resonance=False)

Ensure the reaction contains species objects in its reactant and product attributes. If the reaction is found to hold molecule objects, it modifies the reactant, product and pairs to hold Species objects.

Generates resonance structures for Molecules if the corresponding options, reactant_resonance and/or product_resonance, are True. Does not generate resonance for reactants or products that start as Species objects.

fixBarrierHeight(self, bool forcePositive=False)

Turns the kinetics into Arrhenius (if they were ArrheniusEP) and ensures the activation energy is at least the endothermicity for endothermic reactions, and is not negative only as a result of using Evans Polanyi with an exothermic reaction. If *forcePositive* is True, then all reactions are forced to have a non-negative barrier.

fixDiffusionLimitedA(self, T)

Decrease the pre-exponential factor (A) by the diffusion factor to account for the diffusion limit at the specified temperature.

generate3dTS(self, reactants, products)

Generate the 3D structure of the transition state. Called from model.generateKinetics().

self.reactants is a list of reactants self.products is a list of products

generatePairs(self)

Generate the reactant-product pairs to use for this reaction when performing flux analysis. The exact procedure for doing so depends on the reaction type:

Reaction type	Template	Resulting pairs
Isomerization	A -> C	(A,C)
Dissociation	A -> C + D	(A,C),(A,D)
Association	A + B -> C	(A,C), (B,C)
Bimolecular	$A + B \rightarrow C + D$	(A,C), (B,D) or (A,D), (B,C)

There are a number of ways of determining the correct pairing for bimolecular reactions. Here we try a simple similarity analysis by comparing the number of heavy atoms (C/O/N/S at the moment). This should work most of the time, but a more rigorous algorithm may be needed for some cases.

generateReverseRateCoefficient(self, bool network_kinetics=False, Tmin=None, Tmax=None)

Generate and return a rate coefficient model for the reverse reaction. Currently this only works if the *kinetics* attribute is one of several (but not necessarily all) kinetics types.

generate_high_p_limit_kinetics()

If the LibraryReactions represented by *self* has pressure dependent kinetics, try extracting the high pressure limit rate from it. Used for incorporating library reactions with pressure-dependent kinetics in PDep networks. Only reactions flagged as *elementary_high_p=True* should be processed here. If the kinetics is a :class:Lindemann or a :class:Troe, simply get the high pressure limit rate. If the kinetics is a :class:PDepArrhenius or a :class:Chebyshev, generate a :class:Arrhenius kinetics entry that represents the high pressure limit if $Pmax \ge 90$ bar . This high pressure limit Arrhenius kinetics is assigned to the reaction network_kinetics attribute. If this method successfully generated the high pressure limit kinetics, return True, otherwise False.

$getEnthalpiesOfReaction(self, ndarray Tlist) \rightarrow ndarray$

Return the enthalpies of reaction in J/mol evaluated at temperatures *Tlist* in K.

getEnthalpyOfReaction($self, double\ T$) \rightarrow double

Return the enthalpy of reaction in J/mol evaluated at temperature T in K.

getEntropiesOfReaction(self, ndarray Tlist) \rightarrow ndarray

Return the entropies of reaction in J/mol*K evaluated at temperatures *Tlist* in K.

$getEntropyOfReaction(self, double\ T) \rightarrow double$

Return the entropy of reaction in J/mol*K evaluated at temperature T in K.

getEquilibriumConstant(self, $double\ T$, $str\ type='Kc'$) \rightarrow double

Return the equilibrium constant for the reaction at the specified temperature *T* in K. The *type* parameter lets you specify the quantities used in the equilibrium constant: Ka for activities, Kc for concentrations (default), or Kp for pressures. Note that this function currently assumes an ideal gas mixture.

getEquilibriumConstants (self, ndarray Tlist, str type='Kc') \rightarrow ndarray

Return the equilibrium constants for the reaction at the specified temperatures *Tlist* in K. The *type* parameter lets you specify the quantities used in the equilibrium constant: Ka for activities, Kc for concentrations (default), or Kp for pressures. Note that this function currently assumes an ideal gas mixture.

$getFreeEnergiesOfReaction(self, ndarray\ Tlist) \rightarrow ndarray$

Return the Gibbs free energies of reaction in J/mol evaluated at temperatures Tlist in K.

$getFreeEnergyOfReaction(self, double T) \rightarrow double$

Return the Gibbs free energy of reaction in J/mol evaluated at temperature T in K.

$getRateCoefficient(self, double T, double P=0) \rightarrow double$

Return the overall rate coefficient for the forward reaction at temperature T in K and pressure P in Pa, including any reaction path degeneracies.

If diffusionLimiter is enabled, the reaction is in the liquid phase and we use a diffusion limitation to correct the rate. If not, then use the intrinsic rate coefficient.

getSource()

Return the database that was the source of this reaction. For a LibraryReaction this should be a Kinetic-sLibrary object.

$getStoichiometricCoefficient(self, Species spec) \rightarrow int$

Return the stoichiometric coefficient of species *spec* in the reaction. The stoichiometric coefficient is increased by one for each time *spec* appears as a product and decreased by one for each time *spec* appears as a reactant.

getSurfaceRateCoefficient($self, double\ T, double\ surfaceSiteDensity) <math>\rightarrow$ double

Return the overall surface rate coefficient for the forward reaction at temperature *T* in K with surface site density *surfaceSiteDensity* in mol/m2. Value is returned in combination of [m,mol,s]

getURL(self)

Get a URL to search for this reaction in the rmg website.

get_mean_sigma_and_epsilon(self, bool reverse=False)

Calculates the collision diameter (sigma) using an arithmetic mean Calculates the well depth (epsilon) using a geometric mean If reverse is False the above is calculated for the reactants, otherwise for the products

get_reduced_mass(self, bool reverse=False)

Returns the reduced mass of the reactants if reverse is False Returns the reduced mass of the products if reverse is True

$hasTemplate(self, list reactants, list products) \rightarrow bool$

Return True if the reaction matches the template of *reactants* and *products*, which are both lists of Species objects, or False if not.

index

'int'

Type index

isAssociation(self) \rightarrow bool

Return True if the reaction represents an association reaction $A + B \rightleftharpoons C$ or False if not.

isBalanced (self) \rightarrow bool

Return True if the reaction has the same number of each atom on each side of the reaction equation, or False if not.

isDissociation(self) \rightarrow bool

Return True if the reaction represents a dissociation reaction $A \rightleftharpoons B + C$ or False if not.

$isIsomerization(self) \rightarrow bool$

Return True if the reaction represents an isomerization reaction A \Longrightarrow B or False if not.

isIsomorphic(self, Reaction other, bool eitherDirection=True, bool checkIdentical=False, bool checkOnlyLabel=False, bool checkTemplateRxnProducts=False, bool generateInitialMap=False, bool strict=True) \rightarrow bool

Return True if this reaction is the same as the *other* reaction, or False if they are different. The comparison involves comparing isomorphism of reactants and products, and doesn't use any kinetic information.

Parameters

- eitherDirection (bool, optional) if False, then the reaction direction must match.
- **checkIdentical** (*bool*, *optional*) if True, check that atom ID's match (used for checking degeneracy)
- **checkOnlyLabel** (*bool*, *optional*) if True, only check the string representation, ignoring molecular structure comparisons
- **checkTemplateRxnProducts** (*bool*, *optional*) if True, only check isomorphism of reaction products (used when we know the reactants are identical, i.e. in generating reactions)
- **generateInitialMap** (bool, optional) if True, initialize map by pairing atoms with same labels
- **strict** (bool, optional) if False, perform isomorphism ignoring electrons

$isSurfaceReaction(self) \rightarrow bool$

Return True if one or more reactants or products are surface species (or surface sites)

$isUnimolecular(self) \rightarrow bool$

Return True if the reaction has a single molecule as either reactant or product (or both) $A \rightleftharpoons B + C$ or $A + B \rightleftharpoons C$ or $A \rightleftharpoons B$, or False if not.

is_forward

'bool'

Type is forward

k_effective_cache

dict

Type k_effective_cache

kinetics

rmgpy.kinetics.model.KineticsModel

Type kinetics

label

str

Type label

matchesSpecies (self, list reactants, list products=None) \rightarrow bool

Compares the provided reactants and products against the reactants and products of this reaction. Both directions are checked.

Parameters

- reactants (list) Species required on one side of the reaction
- products (list, optional) Species required on the other side

network_kinetics

rmgpy.kinetics.arrhenius.Arrhenius

Type network_kinetics

pairs

list

Type pairs

products

list

Type products

rank

object

Type rank

reactants

list

Type reactants

reverseThisArrheniusRate(self, Arrhenius kForward, str reverseUnits, Tmin=None, Tmax=None)

Reverses the given kForward, which must be an Arrhenius type. You must supply the correct units for the reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).

reversible

'bool'

Type reversible

specificCollider

rmgpy.species.Species

Type specificCollider

toCantera(*self*, *speciesList=None*, *useChemkinIdentifier=False*)

Converts the RMG Reaction object to a Cantera Reaction object with the appropriate reaction class.

If useChemkinIdentifier is set to False, the species label is used instead. Be sure that species' labels are unique when setting it False.

toChemkin(self, speciesList=None, kinetics=True)

Return the chemkin-formatted string for this reaction.

If *kinetics* is set to True, the chemkin format kinetics will also be returned (requires the *speciesList* to figure out third body colliders.) Otherwise, only the reaction string will be returned.

toLabeledStr(self, use_index=False)

the same as __str__ except that the labels are assumed to exist and used for reactant and products rather than the labels plus the index in parentheses

transitionState

rmgpy.species.TransitionState

Type transitionState

rmgpy.data.base.LogicNode

class rmgpy.data.base.LogicNode(items, invert)

A base class for AND and OR logic nodes.

class rmgpy.data.base.LogicAnd(items, invert)

A logical AND node. Structure must match all components.

matchToStructure(database, structure, atoms, strict=False)

Does this node in the given database match the given structure with the labeled atoms?

Setting *strict* to True makes enforces matching of atomLabels in the structure to every atomLabel in the node

class rmgpy.data.base.LogicOr(items, invert)

A logical OR node. Structure can match any component.

Initialize with a list of component items and a boolean instruction to invert the answer.

getPossibleStructures(entries)

Return a list of the possible structures below this node.

matchLogicOr(other)

Is other the same LogicOr group as self?

matchToStructure(database, structure, atoms, strict=False)

Does this node in the given database match the given structure with the labeled atoms?

Setting *strict* to True makes enforces matching of atomLabels in the structure to every atomLabel in the node.

rmgpy.data.base.makeLogicNode(string)

Creates and returns a node in the tree which is a logic node.

String should be of the form:

- OR{}
- AND{}
- NOT OR{}
- NOT AND{}

And the returned object will be of class LogicOr or LogicAnd

rmgpy.data.kinetics.ReactionRecipe

class rmgpy.data.kinetics.ReactionRecipe(actions=None)

Represent a list of actions that, when executed, result in the conversion of a set of reactants to a set of products. There are currently five such actions:

Action	Arguments	Description
Name		
CHANGE_BO	Nanter1, order,	change the bond order of the bond between <i>center1</i> and <i>center2</i> by <i>order</i> ;
	center2	do not break or form bonds
FORM_BOND	center1, order,	form a new bond between center1 and center2 of type order
	center2	
BREAK_BON	Dcenter1, order,	break the bond between <i>center1</i> and <i>center2</i> , which should be of type
	center2	order
GAIN_RADIC	Adenter, radical	increase the number of free electrons on center by radical
LOSE_RADIO	Adenter, radical	decrease the number of free electrons on center by radical
GAIN_PAIR	center, pair	increase the number of lone electron pairs on center by pair
LOSE_PAIR	center, pair	decrease the number of lone electron pairs on center by pair

The actions are stored as a list in the *actions* attribute. Each action is a list of items; the first is the action name, while the rest are the action parameters as indicated above.

addAction(action)

Add an *action* to the reaction recipe, where *action* is a list containing the action name and the required parameters, as indicated in the table above.

applyForward(struct, unique=True)

Apply the forward reaction recipe to *molecule*, a single Molecule object.

applyReverse(struct, unique=True)

Apply the reverse reaction recipe to *molecule*, a single Molecule object.

getReverse()

Generate a reaction recipe that, when applied, does the opposite of what the current recipe does, i.e., it is the recipe for the reverse of the reaction that this is the recipe for.

rmgpy.data.statmech.StatmechDatabase

class rmgpy.data.statmech.StatmechDatabase

A class for working with the RMG statistical mechanics (frequencies) database.

getStatmechData(molecule, thermoModel=None)

Return the thermodynamic parameters for a given Molecule object *molecule*. This function first searches the loaded libraries in order, returning the first match found, before falling back to estimation via group additivity.

getStatmechDataFromDepository(molecule)

Return statmech data for the given Molecule object *molecule* by searching the entries in the depository. Returns a list of tuples (statmechData, depository, entry).

getStatmechDataFromGroups(molecule, thermoModel)

Return statmeth data for the given Molecule object *molecule* by estimating using characteristic group frequencies and fitting the remaining internal modes to heat capacity data from the given thermo model *thermoModel*. This always returns valid degrees of freedom data.

getStatmechDataFromLibrary(molecule, library)

Return statmech data for the given Molecule object *molecule* by searching the entries in the specified *StatmechLibrary* object *library*. Returns None if no data was found.

load(path, libraries=None, depository=True)

Load the statmech database from the given *path* on disk, where *path* points to the top-level folder of the thermo database.

loadDepository(path)

Load the statmech database from the given *path* on disk, where *path* points to the top-level folder of the thermo database.

loadGroups (path)

Load the statmech database from the given *path* on disk, where *path* points to the top-level folder of the thermo database.

loadLibraries(path, libraries=None)

Load the statmech database from the given *path* on disk, where *path* points to the top-level folder of the thermo database.

loadOld(path)

Load the old RMG thermo database from the given *path* on disk, where *path* points to the top-level folder of the old RMG database.

save(path)

Save the statmech database to the given path on disk, where path points to the top-level folder of the statmech database.

saveDepository(path)

Save the statmech depository to the given *path* on disk, where *path* points to the top-level folder of the statmech depository.

saveGroups(path)

Save the statmech groups to the given *path* on disk, where *path* points to the top-level folder of the statmech groups.

saveLibraries(path)

Save the statmech libraries to the given path on disk, where path points to the top-level folder of the statmech libraries.

saveOld(path)

Save the old RMG thermo database to the given *path* on disk, where *path* points to the top-level folder of the old RMG database.

rmgpy.data.statmech.StatmechDepository

class rmgpy.data.statmech.**StatmechDepository**(label=", name=", shortDesc=", longDesc=") A class for working with the RMG statistical mechanics (frequencies) depository.

ancestors(node)

Returns all the ancestors of a node, climbing up the tree to the top.

areSiblings(node, nodeOther)

Return *True* if *node* and *nodeOther* have the same parent node. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

descendTree(structure, atoms, root=None, strict=False)

Descend the tree in search of the functional group node that best matches the local structure around *atoms* in *structure*.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species generally not being prelabeled.

descendants(node)

Returns all the descendants of a node, climbing down the tree to the bottom.

generateOldTree(entries, level)

Generate a multi-line string representation of the current tree using the old-style syntax.

getEntriesToSave()

Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

getSpecies (path, resonance=True)

Load the dictionary containing all of the species in a kinetics library or depository.

load (path, local_context=None, global_context=None)

Load an RMG-style database from the file at location *path* on disk. The parameters *local_context* and *global_context* are used to provide specialized mapping of identifiers in the input file to corresponding functions to evaluate. This method will automatically add a few identifiers required by all data entries, so you don't need to provide these.

loadOld (dictstr, treestr, libstr, numParameters, numLabels=1, pattern=True)

Load a dictionary-tree-library based database. The database is stored in three files: *dictstr* is the path to the dictionary, *treestr* to the tree, and *libstr* to the library. The tree is optional, and should be set to '' if not desired.

loadOldDictionary(path, pattern)

Parse an old-style RMG database dictionary located at *path*. An RMG dictionary is a list of key-value pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty line. Returns a dict object with the values converted to Molecule or Group objects depending on the value of *pattern*.

loadOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at path.

loadOldTree(path)

Parse an old-style RMG database tree located at *path*. An RMG tree is an n-ary tree representing the hierarchy of items in the dictionary.

$\verb+matchNodeToChild+ (parentNode, childNode)+ \\$

Return *True* if *parentNode* is a parent of *childNode*. Otherwise, return *False*. Both *parentNode* and *childNode* must be Entry types with items containing Group or LogicNode types. If *parentNode* and *childNode* are identical, the function will also return *False*.

matchNodeToNode(node, nodeOther)

Return *True* if *node* and *nodeOther* are identical. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

matchNodeToStructure (node, structure, atoms, strict=False)

Return True if the *structure* centered at *atom* matches the structure at *node* in the dictionary. The structure at *node* should have atoms with the appropriate labels because they are set on loading and never change. However, the atoms in *structure* may not have the correct labels, hence the *atoms* parameter. The *atoms* parameter may include extra labels, and so we only require that every labeled atom in the functional group represented by *node* has an equivalent labeled atom in *structure*.

Matching to structure is more strict than to node. All labels in structure must be found in node. However the reverse is not true, unless *strict* is set to True.

At-	Description
tribute	
node	Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
	Entry.item
struc-	A Group or a Molecule
ture	
atoms	Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
	structure.getLabeledAtoms()
strict	If set to True, ensures that all the node's atomLabels are matched by in the structure

parseOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at *path*, returning the loaded entries (rather than storing them in the database). This method does not discard duplicate entries.

removeGroup(groupToRemove)

Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also update the parent/child relationships

Returns the removed group

save(path)

Save the current database to the file at location path on disk.

saveDictionary(path)

Extract species from all entries associated with a kinetics library or depository and save them to the path given.

saveEntry(f, entry)

Write the given *entry* in the thermo database to the file object f.

saveOld(dictstr, treestr, libstr)

Save the current database to a set of text files using the old-style syntax.

saveOldDictionary(path)

Save the current database dictionary to a text file using the old-style syntax.

saveOldLibrary(path)

Save the current database library to a text file using the old-style syntax.

saveOldTree(path)

Save the current database tree to a text file using the old-style syntax.

rmgpy.data.statmechfit

Fitting functions

rmqpy.data.statmechfit.fitStatmechToHeatCapacity(Tlist, Cvlist, Nvib, Nrot, molecule=None)

For a given set of dimensionless heat capacity data *Cvlist* corresponding to temperature list *Tlist* in K, fit *Nvib* harmonic oscillator and *Nrot* hindered internal rotor modes. External and other previously-known modes should have already been removed from *Cvlist* prior to calling this function. You must provide at least 7 values for *Cvlist*.

This function returns a list containing the fitted vibrational frequencies in a HarmonicOscillator object and the fitted 1D hindered rotors in HinderedRotor objects.

rmgpy.data.statmechfit.fitStatmechDirect(Tlist, Cvlist, Nvib, Nrot, molecule=None)

Fit *Nvib* harmonic oscillator and *Nrot* hindered internal rotor modes to the provided dimensionless heat capacities *Cvlist* at temperatures *Tlist* in K. This method assumes that there are enough heat capacity points provided that the vibrational frequencies and hindered rotation frequency- barrier pairs can be fit directly.

rmgpy.data.statmechfit.fitStatmechPseudoRotors(Tlist, Cvlist, Nvib, Nrot, molecule=None)

Fit *Nvib* harmonic oscillator and *Nrot* hindered internal rotor modes to the provided dimensionless heat capacities *Cvlist* at temperatures *Tlist* in K. This method assumes that there are enough heat capacity points provided that the vibrational frequencies can be fit directly, but the hindered rotors must be combined into a single "pseudo-rotor".

rmqpy.data.statmechfit.fitStatmechPseudo(Tlist, Cvlist, Nvib, Nrot, molecule=None)

Fit *Nvib* harmonic oscillator and *Nrot* hindered internal rotor modes to the provided dimensionless heat capacities *Cvlist* at temperatures *Tlist* in K. This method assumes that there are relatively few heat capacity points provided, so the vibrations must be combined into one real vibration and two "pseudo-vibrations" and the hindered rotors must be combined into a single "pseudo-rotor".

Helper functions

rmgpy.data.statmechfit.harmonicOscillator_heatCapacity(T, freq)

Return the heat capacity in J/mol*K at the given set of temperatures *Tlist* in K for the harmonic oscillator with a frequency *freq* in cm^-1.

rmgpy.data.statmechfit.harmonicOscillator_d_heatCapacity_d_freq(T, freq)

Return the first derivative of the heat capacity with respect to the harmonic oscillator frequency in J/mol*K/cm^-1 at the given set of temperatures *Tlist* in K, evaluated at the frequency *freq* in cm^-1.

rmgpy.data.statmechfit.hinderedRotor_heatCapacity(T, freq, barr)

Return the heat capacity in J/mol*K at the given set of temperatures *Tlist* in K for the 1D hindered rotor with a frequency *freq* in cm^-1 and a barrier height *barr* in cm^-1.

rmgpy.data.statmechfit.hinderedRotor_d_heatCapacity_d_freq(T, freq, barr)

Return the first derivative of the heat capacity with respect to the hindered rotor frequency in J/mol*K/cm^-1 at the given set of temperatures *Tlist* in K, evaluated at the frequency *freq* in cm^-1 and a barrier height *barr* in cm^-1.

rmgpy.data.statmechfit.hinderedRotor_d_heatCapacity_d_barr(T, freq, barr)

Return the first derivative of the heat capacity with respect to the hindered rotor frequency in J/mol*K/cm^-1 at the given set of temperatures *Tlist* in K, evaluated at the frequency *freq* in cm^-1 and a barrier height *barr* in cm^-1.

Helper classes

class rmgpy.data.statmechfit.DirectFit(Tdata, Cvdata, Nvib, Nrot)

Class for fitting vibrational frequencies and hindered rotor frequency-barrier pairs for the case when there are few enough oscillators and rotors that their values can be fit directly.

evaluate(x)

Evaluate the nonlinear equations and constraints for this system, and the corresponding Jacobian matrices, at the given value of the solution vector *x*. Return a tuple containing three items:

- A vector of the current values of the system of equations f(x).
- A matrix of the current values of the Jacobian of the system of equations: $J_{ij} = \frac{\partial f_i}{\partial x_j}$.
- A matrix of the current values of the Jacobian of the (linear) constrains: $J'_{ij} = \frac{\partial g_i}{\partial x_j}$.

initialize()

Initialize the DQED solver. The required parameters are:

- Neq The number of algebraic equations.
- Nvars The number of unknown variables.
- Ncons The number of constraint equations.

The optional parameters are:

- *bounds* A list of 2-tuples giving the lower and upper bound for each unknown variable. Use None if there is no bound in one or either direction. If provided, you must give bounds for every unknown variable.
- tolf The tolerance used for stopping when the norm of the residual has absolute length less than tolf, i.e. $\|\vec{f}\| \le \epsilon_f$.
- told The tolerance used for stopping when changes to the unknown variables has absolute length less than told, i.e. $\|\Delta \vec{x}\| \le \epsilon_d$.
- tolx The tolerance used for stopping when changes to the unknown variables has relative length less than tolx, i.e. $\|\Delta \vec{x}\| \le \epsilon_x \cdot \|\vec{x}\|$.
- maxIter The maximum number of iterations to use
- *verbose* True to have DQED print extra information about the solve, False to only see printed output when the solver has an error.

solve()

Using the initial guess x0, return the least-squares solution to the set of nonlinear algebraic equations defined by the evaluate() method of the derived class. This is the method that actually conducts the call to DQED. Returns the solution vector and a flag indicating the status of the solve. The possible output values of the flag are:

Value	Meaning
2	The norm of the residual is zero; the solution vector is a root of the system
3	The bounds on the trust region are being encountered on each step; the solution vector may or
	may not be a local minimum
4	The solution vector is a local minimum
5	A significant amount of noise or uncertainty has been observed in the residual; the solution may
	or may not be a local minimum
6	The solution vector is only changing by small absolute amounts; the solution may or may not
	be a local minimum
7	The solution vector is only changing by small relative amounts; the solution may or may not be
	a local minimum
8	The maximum number of iterations has been reached; the solution is the best found, but may or
	may not be a local minimum
9-18	An error occurred during the solve operation; the solution is not a local minimum

class rmgpy.data.statmechfit.PseudoRotorFit(Tdata, Cvdata, Nvib, Nrot)

Class for fitting vibrational frequencies and hindered rotor frequency-barrier pairs for the case when there are too many oscillators and rotors for their values can be fit directly, and where collapsing the rotors into a single pseudo-rotor allows for fitting the vibrational frequencies directly.

evaluate(x)

Evaluate the nonlinear equations and constraints for this system, and the corresponding Jacobian matrices, at the given value of the solution vector *x*. Return a tuple containing three items:

• A vector of the current values of the system of equations f(x).

- A matrix of the current values of the Jacobian of the system of equations: $J_{ij} = \frac{\partial f_i}{\partial x_i}$.
- A matrix of the current values of the Jacobian of the (linear) constrains: $J'_{ij} = \frac{\partial g_i}{\partial x_i}$.

initialize()

Initialize the DQED solver. The required parameters are:

- Neq The number of algebraic equations.
- Nvars The number of unknown variables.
- Ncons The number of constraint equations.

The optional parameters are:

- bounds A list of 2-tuples giving the lower and upper bound for each unknown variable. Use None if there is no bound in one or either direction. If provided, you must give bounds for every unknown variable.
- tolf The tolerance used for stopping when the norm of the residual has absolute length less than tolf, i.e. $\|\vec{f}\| \le \epsilon_f$.
- told The tolerance used for stopping when changes to the unknown variables has absolute length less than told, i.e. $\|\Delta \vec{x}\| \le \epsilon_d$.
- tolx The tolerance used for stopping when changes to the unknown variables has relative length less than tolx, i.e. $\|\Delta \vec{x}\| \le \epsilon_x \cdot \|\vec{x}\|$.
- maxIter The maximum number of iterations to use
- *verbose* True to have DQED print extra information about the solve, False to only see printed output when the solver has an error.

solve()

Using the initial guess x0, return the least-squares solution to the set of nonlinear algebraic equations defined by the evaluate() method of the derived class. This is the method that actually conducts the call to DQED. Returns the solution vector and a flag indicating the status of the solve. The possible output values of the flag are:

Value	Meaning
2	The norm of the residual is zero; the solution vector is a root of the system
3	The bounds on the trust region are being encountered on each step; the solution vector may or
	may not be a local minimum
4	The solution vector is a local minimum
5	A significant amount of noise or uncertainty has been observed in the residual; the solution may
	or may not be a local minimum
6	The solution vector is only changing by small absolute amounts; the solution may or may not
	be a local minimum
7	The solution vector is only changing by small relative amounts; the solution may or may not be
	a local minimum
8	The maximum number of iterations has been reached; the solution is the best found, but may or
	may not be a local minimum
9-18	An error occurred during the solve operation; the solution is not a local minimum

class rmgpy.data.statmechfit.PseudoFit(Tdata, Cvdata, Nvib, Nrot)

Class for fitting vibrational frequencies and hindered rotor frequency-barrier pairs for the case when there are too many oscillators and rotors for their values can be fit directly, and where we must collapse both the vibrations and hindered rotations into "pseudo-oscillators" and "pseudo-rotors".

evaluate(x)

Evaluate the nonlinear equations and constraints for this system, and the corresponding Jacobian matrices, at the given value of the solution vector *x*. Return a tuple containing three items:

- A vector of the current values of the system of equations f(x).
- A matrix of the current values of the Jacobian of the system of equations: $J_{ij} = \frac{\partial f_i}{\partial x_i}$.
- A matrix of the current values of the Jacobian of the (linear) constrains: $J'_{ij} = \frac{\partial g_i}{\partial x_i}$.

initialize()

Initialize the DQED solver. The required parameters are:

- Neq The number of algebraic equations.
- Nvars The number of unknown variables.
- Ncons The number of constraint equations.

The optional parameters are:

- bounds A list of 2-tuples giving the lower and upper bound for each unknown variable. Use None if there is no bound in one or either direction. If provided, you must give bounds for every unknown variable.
- tolf The tolerance used for stopping when the norm of the residual has absolute length less than tolf, i.e. $\|\vec{f}\| \le \epsilon_f$.
- told The tolerance used for stopping when changes to the unknown variables has absolute length less than told, i.e. $\|\Delta \vec{x}\| \le \epsilon_d$.
- tolx The tolerance used for stopping when changes to the unknown variables has relative length less than tolx, i.e. $\|\Delta \vec{x}\| \le \epsilon_x \cdot \|\vec{x}\|$.
- maxIter The maximum number of iterations to use
- *verbose* True to have DQED print extra information about the solve, False to only see printed output when the solver has an error.

solve()

Using the initial guess x0, return the least-squares solution to the set of nonlinear algebraic equations defined by the evaluate() method of the derived class. This is the method that actually conducts the call to DQED. Returns the solution vector and a flag indicating the status of the solve. The possible output values of the flag are:

value	Meaning
2	The norm of the residual is zero; the solution vector is a root of the system
3	The bounds on the trust region are being encountered on each step; the solution vector may or
	may not be a local minimum
4	The solution vector is a local minimum
5	A significant amount of noise or uncertainty has been observed in the residual; the solution may
	or may not be a local minimum
6	The solution vector is only changing by small absolute amounts; the solution may or may not
	be a local minimum
7	The solution vector is only changing by small relative amounts; the solution may or may not be
	a local minimum
8	The maximum number of iterations has been reached; the solution is the best found, but may or
	may not be a local minimum
9-18	An error occurred during the solve operation; the solution is not a local minimum

rmgpy.data.statmech.StatmechGroups

class rmgpy.data.statmech.StatmechGroups(label=", name=", shortDesc=", longDesc=")

A class for working with an RMG statistical mechanics (frequencies) group database.

ancestors(node)

Returns all the ancestors of a node, climbing up the tree to the top.

areSiblings(node, nodeOther)

Return *True* if *node* and *nodeOther* have the same parent node. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

descendTree(structure, atoms, root=None, strict=False)

Descend the tree in search of the functional group node that best matches the local structure around *atoms* in *structure*.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species generally not being prelabeled.

descendants(node)

Returns all the descendants of a node, climbing down the tree to the bottom.

generateOldLibraryEntry(data)

Return a list of values used to save entries to the old-style RMG thermo database based on the thermodynamics object *data*.

generateOldTree(entries, level)

Generate a multi-line string representation of the current tree using the old-style syntax.

getEntriesToSave()

Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

getFrequencyGroups(molecule)

Return the set of characteristic group frequencies corresponding to the speficied *molecule*. This is done by searching the molecule for certain functional groups for which characteristic frequencies are known, and using those frequencies.

getSpecies(path, resonance=True)

Load the dictionary containing all of the species in a kinetics library or depository.

getStatmechData(molecule, thermoModel)

Use the previously-loaded frequency database to generate a set of characteristic group frequencies corresponding to the speficied *molecule*. The provided thermo data in *thermoModel* is used to fit some frequencies and all hindered rotors to heat capacity data.

load(path, local_context=None, global_context=None)

Load an RMG-style database from the file at location *path* on disk. The parameters *local_context* and *global_context* are used to provide specialized mapping of identifiers in the input file to corresponding functions to evaluate. This method will automatically add a few identifiers required by all data entries, so you don't need to provide these.

loadOld(dictstr, treestr, libstr, numParameters, numLabels=1, pattern=True)

Load a dictionary-tree-library based database. The database is stored in three files: *dictstr* is the path to the dictionary, *treestr* to the tree, and *libstr* to the library. The tree is optional, and should be set to '' if not desired.

loadOldDictionary(path, pattern)

Parse an old-style RMG database dictionary located at *path*. An RMG dictionary is a list of key-value pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty line. Returns a dict object with the values converted to Molecule or Group objects depending on the value of *pattern*.

loadOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at path.

loadOldTree(path)

Parse an old-style RMG database tree located at *path*. An RMG tree is an n-ary tree representing the hierarchy of items in the dictionary.

matchNodeToChild(parentNode, childNode)

Return *True* if *parentNode* is a parent of *childNode*. Otherwise, return *False*. Both *parentNode* and *childNode* must be Entry types with items containing Group or LogicNode types. If *parentNode* and *childNode* are identical, the function will also return *False*.

matchNodeToNode(node, nodeOther)

Return *True* if *node* and *nodeOther* are identical. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

matchNodeToStructure(node, structure, atoms, strict=False)

Return True if the *structure* centered at *atom* matches the structure at *node* in the dictionary. The structure at *node* should have atoms with the appropriate labels because they are set on loading and never change. However, the atoms in *structure* may not have the correct labels, hence the *atoms* parameter. The *atoms* parameter may include extra labels, and so we only require that every labeled atom in the functional group represented by *node* has an equivalent labeled atom in *structure*.

Matching to structure is more strict than to node. All labels in structure must be found in node. However the reverse is not true, unless *strict* is set to True.

At-	Description
tribute	
node	Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
	Entry.item Entry.item
struc-	A Group or a Molecule
ture	
atoms	Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
	structure.getLabeledAtoms()
strict	If set to True, ensures that all the node's atomLabels are matched by in the structure

parseOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at *path*, returning the loaded entries (rather than storing them in the database). This method does not discard duplicate entries.

processOldLibraryEntry(data)

Process a list of parameters *data* as read from an old-style RMG statmech database, returning the corresponding thermodynamics object.

removeGroup(groupToRemove)

Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also update the parent/child relationships

Returns the removed group

save(path)

Save the current database to the file at location *path* on disk.

saveDictionary(path)

Extract species from all entries associated with a kinetics library or depository and save them to the path given.

saveEntry(f, entry)

Write the given *entry* in the thermo database to the file object *f*.

saveOld(dictstr, treestr, libstr)

Save the current database to a set of text files using the old-style syntax.

saveOldDictionary(path)

Save the current database dictionary to a text file using the old-style syntax.

saveOldLibrary(path)

Save the current database library to a text file using the old-style syntax.

saveOldTree(path)

Save the current database tree to a text file using the old-style syntax.

rmgpy.data.statmech.StatmechLibrary

class rmgpy.data.statmech.StatmechLibrary(label=", name=", shortDesc=", longDesc=")

A class for working with a RMG statistical mechanics (frequencies) library.

ancestors(node)

Returns all the ancestors of a node, climbing up the tree to the top.

areSiblings(node, nodeOther)

Return *True* if *node* and *nodeOther* have the same parent node. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

descendTree(structure, atoms, root=None, strict=False)

Descend the tree in search of the functional group node that best matches the local structure around *atoms* in *structure*.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species generally not being prelabeled.

descendants(node)

Returns all the descendants of a node, climbing down the tree to the bottom.

generateOldLibraryEntry(data)

Return a list of values used to save entries to the old-style RMG thermo database based on the thermodynamics object *data*.

generateOldTree(entries, level)

Generate a multi-line string representation of the current tree using the old-style syntax.

getEntriesToSave()

Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

getSpecies(path, resonance=True)

Load the dictionary containing all of the species in a kinetics library or depository.

load(*path*, *local_context=None*, *global_context=None*)

Load an RMG-style database from the file at location *path* on disk. The parameters *local_context* and *global_context* are used to provide specialized mapping of identifiers in the input file to corresponding functions to evaluate. This method will automatically add a few identifiers required by all data entries, so you don't need to provide these.

loadOld(dictstr, treestr, libstr, numParameters, numLabels=1, pattern=True)

Load a dictionary-tree-library based database. The database is stored in three files: *dictstr* is the path to the dictionary, *treestr* to the tree, and *libstr* to the library. The tree is optional, and should be set to '' if not desired.

loadOldDictionary(path, pattern)

Parse an old-style RMG database dictionary located at *path*. An RMG dictionary is a list of key-value pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty line. Returns a dict object with the values converted to Molecule or Group objects depending on the value of *pattern*.

loadOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at path.

loadOldTree(path)

Parse an old-style RMG database tree located at *path*. An RMG tree is an n-ary tree representing the hierarchy of items in the dictionary.

matchNodeToChild(parentNode, childNode)

Return *True* if *parentNode* is a parent of *childNode*. Otherwise, return *False*. Both *parentNode* and *childNode* must be Entry types with items containing Group or LogicNode types. If *parentNode* and *childNode* are identical, the function will also return *False*.

matchNodeToNode(node, nodeOther)

Return *True* if *node* and *nodeOther* are identical. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

matchNodeToStructure(node, structure, atoms, strict=False)

Return True if the *structure* centered at *atom* matches the structure at *node* in the dictionary. The structure at *node* should have atoms with the appropriate labels because they are set on loading and never change. However, the atoms in *structure* may not have the correct labels, hence the *atoms* parameter. The *atoms* parameter may include extra labels, and so we only require that every labeled atom in the functional group represented by *node* has an equivalent labeled atom in *structure*.

Matching to structure is more strict than to node. All labels in structure must be found in node. However the reverse is not true, unless *strict* is set to True.

At-	Description
tribute	
node	Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
	Entry.item
struc-	A Group or a Molecule
ture	
atoms	Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
	structure.getLabeledAtoms()
strict	If set to True, ensures that all the node's atomLabels are matched by in the structure

parseOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at *path*, returning the loaded entries (rather than storing them in the database). This method does not discard duplicate entries.

processOldLibraryEntry(data)

Process a list of parameters *data* as read from an old-style RMG thermo database, returning the corresponding thermodynamics object.

removeGroup(groupToRemove)

Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also update the parent/child relationships

Returns the removed group

save(path)

Save the current database to the file at location *path* on disk.

saveDictionary(path)

Extract species from all entries associated with a kinetics library or depository and save them to the path given.

saveEntry(f, entry)

Write the given *entry* in the thermo database to the file object f.

saveOld(dictstr, treestr, libstr)

Save the current database to a set of text files using the old-style syntax.

saveOldDictionary(path)

Save the current database dictionary to a text file using the old-style syntax.

saveOldLibrary(path)

Save the current database library to a text file using the old-style syntax.

saveOldTree(path)

Save the current database tree to a text file using the old-style syntax.

rmgpy.data.kinetics.TemplateReaction

class rmgpy.data.kinetics.TemplateReaction(index=-1, reactants=None, products=None, specificCollider=None, kinetics=None, reversible=True,
transitionState=None, duplicate=False, degeneracy=1, pairs=None, family=None, template=None,
estimator=None, reverse=None, is_forward=None)

A Reaction object generated from a reaction family template. In addition to attributes inherited from Reaction, this class includes the following attributes:

Attribute	Туре	Description	
family	str	The kinetics family that the reaction was created from.	
estimator	str	Whether the kinetics came from rate rules or group additivity.	
reverse	TemplateReaction	The reverse reaction, for families that are their own reverse.	
is_forward	bool	Whether the reaction was generated in the forward direction of the fam-	
		ily.	

allow_max_rate_violation

'bool'

Type allow_max_rate_violation

allow_pdep_route

'bool'

Type allow_pdep_route

calculateMicrocanonicalRateCoefficient(self, ndarray Elist, ndarray Jlist, ndarray reac-DensStates, ndarray prodDensStates=None, double T=0.0)

Calculate the microcanonical rate coefficient k(E) for the reaction reaction at the energies Elist in J/mol. reacDensStates and prodDensStates are the densities of states of the reactant and product configurations for this reaction. If the reaction is irreversible, only the reactant density of states is required; if the reaction is reversible, then both are required. This function will try to use the best method that it can based on the input data available:

- If detailed information has been provided for the transition state (i.e. the molecular degrees of freedom), then RRKM theory will be used.
- If the above is not possible but high-pressure limit kinetics $k_{\infty}(T)$ have been provided, then the inverse Laplace transform method will be used.

The density of states for the product prodDensStates and the temperature of interest T in K can also be provided. For isomerization and association reactions prodDensStates is required; for dissociation reactions it is optional. The temperature is used if provided in the detailed balance expression to determine the reverse kinetics, and in certain cases in the inverse Laplace transform method.

$calculateTSTRateCoefficient(self, double T) \rightarrow double$

Evaluate the forward rate coefficient for the reaction with corresponding transition state *TS* at temperature *T* in K using (canonical) transition state theory. The TST equation is

$$k(T) = \kappa(T) \frac{k_{\rm B}T}{h} \frac{Q^{\ddagger}(T)}{Q^{\rm A}(T)Q^{\rm B}(T)} \exp\left(-\frac{E_0}{k_{\rm B}T}\right)$$

where Q^{\ddagger} is the partition function of the transition state, Q^{A} and Q^{B} are the partition function of the reactants, E_{0} is the ground-state energy difference from the transition state to the reactants, T is the absolute temperature, k_{B} is the Boltzmann constant, and h is the Planck constant. $\kappa(T)$ is an optional tunneling correction.

calculateTSTRateCoefficients($self, ndarray\ Tlist$) \rightarrow ndarray

calculate_coll_limit(self, float temp, bool reverse=False)

Calculate the collision limit rate for the given temperature implemented as recommended in Wang et al. doi 10.1016/j.combustflame.2017.08.005 (Eq. 1)

$canTST(self) \rightarrow bool$

Return True if the necessary parameters are available for using transition state theory – or the microcanonical equivalent, RRKM theory – to compute the rate coefficient for this reaction, or False otherwise.

check_collision_limit_violation (self, $float\ t_min$, $float\ t_max$, $float\ p_min$, $float\ p_max$) \rightarrow list Warn if a core reaction violates the collision limit rate in either the forward or reverse direction at the relevant extreme T/P conditions. Assuming a monotonic behaviour of the kinetics. Returns a list with the reaction object and the direction in which the violation was detected.

comment

str

Type comment

copy()

creates a new instance of TemplateReaction

degeneracy

The reaction path degeneracy for this reaction.

If the reaction has kinetics, changing the degeneracy will adjust the reaction rate by a ratio of the new degeneracy to the old degeneracy.

draw(self, path)

Generate a pictorial representation of the chemical reaction using the draw module. Use *path* to specify the file to save the generated image to; the image type is automatically determined by extension. Valid extensions are .png, .svg, .pdf, and .ps; of these, the first is a raster format and the remainder are vector formats.

duplicate

'bool'

Type duplicate

elementary_high_p

'bool'

Type elementary_high_p

ensure_species(self, bool reactant_resonance=False, bool product_resonance=False)

Ensure the reaction contains species objects in its reactant and product attributes. If the reaction is found to hold molecule objects, it modifies the reactant, product and pairs to hold Species objects.

Generates resonance structures for Molecules if the corresponding options, reactant_resonance and/or product_resonance, are True. Does not generate resonance for reactants or products that start as Species objects.

fixBarrierHeight(self, bool forcePositive=False)

Turns the kinetics into Arrhenius (if they were ArrheniusEP) and ensures the activation energy is at least the endothermicity for endothermic reactions, and is not negative only as a result of using Evans Polanyi with an exothermic reaction. If *forcePositive* is True, then all reactions are forced to have a non-negative barrier.

fixDiffusionLimitedA(self, T)

Decrease the pre-exponential factor (A) by the diffusion factor to account for the diffusion limit at the specified temperature.

generate3dTS(self, reactants, products)

Generate the 3D structure of the transition state. Called from model.generateKinetics().

self.reactants is a list of reactants self.products is a list of products

generatePairs(self)

Generate the reactant-product pairs to use for this reaction when performing flux analysis. The exact procedure for doing so depends on the reaction type:

Reaction type	Template	Resulting pairs
Isomerization	A -> C	(A,C)
Dissociation	A -> C + D	(A,C),(A,D)
Association	A + B -> C	(A,C),(B,C)
Bimolecular	A + B -> C + D	(A,C), (B,D) or (A,D) , (B,C)

There are a number of ways of determining the correct pairing for bimolecular reactions. Here we try a simple similarity analysis by comparing the number of heavy atoms (C/O/N/S at the moment). This should work most of the time, but a more rigorous algorithm may be needed for some cases.

generateReverseRateCoefficient(self, bool network_kinetics=False, Tmin=None, Tmax=None)

Generate and return a rate coefficient model for the reverse reaction. Currently this only works if the *kinetics* attribute is one of several (but not necessarily all) kinetics types.

getEnthalpiesOfReaction($self, ndarray\ Tlist$) \rightarrow ndarray

Return the enthalpies of reaction in J/mol evaluated at temperatures *Tlist* in K.

getEnthalpyOfReaction(self, double T) \rightarrow double

Return the enthalpy of reaction in J/mol evaluated at temperature *T* in K.

$getEntropiesOfReaction(self, ndarray\ Tlist) \rightarrow ndarray$

Return the entropies of reaction in J/mol*K evaluated at temperatures *Tlist* in K.

$getEntropyOfReaction(self, double\ T) \rightarrow double$

Return the entropy of reaction in J/mol*K evaluated at temperature T in K.

getEquilibriumConstant(self, $double\ T$, $str\ type='Kc'$) \rightarrow double

Return the equilibrium constant for the reaction at the specified temperature *T* in K. The *type* parameter lets you specify the quantities used in the equilibrium constant: Ka for activities, Kc for concentrations (default), or Kp for pressures. Note that this function currently assumes an ideal gas mixture.

getEquilibriumConstants (*self*, *ndarray Tlist*, *str type*='Kc') \rightarrow ndarray

Return the equilibrium constants for the reaction at the specified temperatures *Tlist* in K. The *type* parameter lets you specify the quantities used in the equilibrium constant: Ka for activities, Kc for concentrations (default), or Kp for pressures. Note that this function currently assumes an ideal gas mixture.

$getFreeEnergiesOfReaction(self, ndarray\ Tlist) \rightarrow ndarray$

Return the Gibbs free energies of reaction in J/mol evaluated at temperatures Tlist in K.

$getFreeEnergyOfReaction(self, double T) \rightarrow double$

Return the Gibbs free energy of reaction in J/mol evaluated at temperature T in K.

getRateCoefficient(self, $double\ T$, $double\ P=0$) \rightarrow double

Return the overall rate coefficient for the forward reaction at temperature T in K and pressure P in Pa, including any reaction path degeneracies.

If diffusionLimiter is enabled, the reaction is in the liquid phase and we use a diffusion limitation to correct the rate. If not, then use the intrinsic rate coefficient.

getSource()

Return the database that was the source of this reaction. For a TemplateReaction this should be a Kinetic-sGroups object.

$getStoichiometricCoefficient(self, Species spec) \rightarrow int$

Return the stoichiometric coefficient of species *spec* in the reaction. The stoichiometric coefficient is increased by one for each time *spec* appears as a product and decreased by one for each time *spec* appears as a reactant.

$getSurfaceRateCoefficient(self, double T, double surfaceSiteDensity) \rightarrow double$

Return the overall surface rate coefficient for the forward reaction at temperature *T* in K with surface site density *surfaceSiteDensity* in mol/m2. Value is returned in combination of [m,mol,s]

getURL(self)

Get a URL to search for this reaction in the rmg website.

get_mean_sigma_and_epsilon(self, bool reverse=False)

Calculates the collision diameter (sigma) using an arithmetic mean Calculates the well depth (epsilon) using a geometric mean If reverse is False the above is calculated for the reactants, otherwise for the products

get_reduced_mass(self, bool reverse=False)

Returns the reduced mass of the reactants if reverse is False Returns the reduced mass of the products if reverse is True

$hasTemplate(self, list reactants, list products) \rightarrow bool$

Return True if the reaction matches the template of *reactants* and *products*, which are both lists of Species objects, or False if not.

index

'int'

Type index

isAssociation(self) \rightarrow bool

Return True if the reaction represents an association reaction $A + B \rightleftharpoons C$ or False if not.

isBalanced (self) \rightarrow bool

Return True if the reaction has the same number of each atom on each side of the reaction equation, or False if not.

isDissociation(self) \rightarrow bool

Return True if the reaction represents a dissociation reaction $A \rightleftharpoons B + C$ or False if not.

isIsomerization(self) \rightarrow bool

Return True if the reaction represents an isomerization reaction A \ightharpoonup B or False if not.

isIsomorphic(self, Reaction other, bool eitherDirection=True, bool checkIdentical=False, bool checkOnlyLabel=False, bool checkTemplateRxnProducts=False, bool generateInitialMap=False, bool strict=True) → bool

Return True if this reaction is the same as the *other* reaction, or False if they are different. The comparison involves comparing isomorphism of reactants and products, and doesn't use any kinetic information.

Parameters

- eitherDirection (bool, optional) if False, then the reaction direction must match.
- **checkIdentical** (*bool*, *optional*) if True, check that atom ID's match (used for checking degeneracy)
- **checkOnlyLabel** (*bool*, *optional*) if True, only check the string representation, ignoring molecular structure comparisons
- **checkTemplateRxnProducts** (*bool*, *optional*) if True, only check isomorphism of reaction products (used when we know the reactants are identical, i.e. in generating reactions)
- **generateInitialMap** (bool, optional) if True, initialize map by pairing atoms with same labels
- strict (bool, optional) if False, perform isomorphism ignoring electrons

isSurfaceReaction(self) \rightarrow bool

Return True if one or more reactants or products are surface species (or surface sites)

$isUnimolecular(self) \rightarrow bool$

Return True if the reaction has a single molecule as either reactant or product (or both) $A \rightleftharpoons B + C$ or $A + B \rightleftharpoons C$ or $A \rightleftharpoons B$, or False if not.

is_forward

'bool'

Type is_forward

k_effective_cache

dict

Type k_effective_cache

kinetics

rmgpy.kinetics.model.KineticsModel

Type kinetics

label

str

Type label

$matchesSpecies(self, list reactants, list products=None) \rightarrow bool$

Compares the provided reactants and products against the reactants and products of this reaction. Both directions are checked.

Parameters

- reactants (list) Species required on one side of the reaction
- products (list, optional) Species required on the other side

network_kinetics

rmgpy.kinetics.arrhenius.Arrhenius

Type network_kinetics

pairs

list

Type pairs

products

list

Type products

rank

object

Type rank

reactants

list

Type reactants

reverseThisArrheniusRate(self, Arrhenius kForward, str reverseUnits, Tmin=None, Tmax=None)

Reverses the given kForward, which must be an Arrhenius type. You must supply the correct units for the reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).

reversible

'bool'

Type reversible

specificCollider

rmgpy.species.Species

Type specificCollider

toCantera(self, speciesList=None, useChemkinIdentifier=False)

Converts the RMG Reaction object to a Cantera Reaction object with the appropriate reaction class.

If useChemkinIdentifier is set to False, the species label is used instead. Be sure that species' labels are unique when setting it False.

toChemkin(self, speciesList=None, kinetics=True)

Return the chemkin-formatted string for this reaction.

If *kinetics* is set to True, the chemkin format kinetics will also be returned (requires the *speciesList* to figure out third body colliders.) Otherwise, only the reaction string will be returned.

toLabeledStr(self, use index=False)

the same as __str__ except that the labels are assumed to exist and used for reactant and products rather than the labels plus the index in parentheses

transitionState

rmgpy.species.TransitionState

Type transitionState

rmgpy.data.thermo.ThermoDatabase

class rmgpy.data.thermo.ThermoDatabase

A class for working with the RMG thermodynamics database.

computeGroupAdditivityThermo(molecule)

Return the set of thermodynamic parameters corresponding to a given Molecule object *molecule* by estimation using the group additivity values. If no group additivity values are loaded, a DatabaseError is raised.

The entropy is not corrected for the symmetry of the molecule. This should be done later by the calling function.

correctBindingEnergy(thermo, species)

Changes the provided thermo, by applying a linear scaling relation to correct the adsorption energy.

Parameters

- thermo starting thermo data
- **species** the species (which is an adsorbate)

Returns corrected thermo

estimateRadicalThermoViaHBI(molecule, stableThermoEstimator)

Estimate the thermodynamics of a radical by saturating it, applying the provided stableThermoEstimator method on the saturated species, then applying hydrogen bond increment corrections for the radical site(s) and correcting for the symmetry.

No entropy is included in the returning term. This should be done later by the calling function.

estimateThermoViaGroupAdditivity(molecule)

Return the set of thermodynamic parameters corresponding to a given Molecule object *molecule* by estimation using the group additivity values. If no group additivity values are loaded, a DatabaseError is raised.

The entropy is not corrected for the symmetry of the molecule. This should be done later by the calling function.

extractSourceFromComments(species)

species: A species object containing thermo data and thermo data comments

Parses the verbose string of comments from the thermo data of the species object, and extracts the thermo sources.

Returns a dictionary with keys of either 'Library', 'QM', and/or 'GAV'. Commonly, species thermo are estimated using only one of these sources. However, a radical can be estimated with more than one type of source, for instance a saturated library value and a GAV HBI correction, or a QM saturated value and a GAV HBI correction.

source = {'Library': String_Name_of_Library_Used, 'QM': String_of_Method_Used, 'GAV': Dictionary_of_Groups_Used } The Dictionary_of_Groups_Used looks like {'groupType':[List of tuples containing (Entry, Weight)]

getAllThermoData(species)

Return all possible sets of thermodynamic parameters for a given Species object *species*. The hits from the depository come first, then the libraries (in order), and then the group additivity estimate. This method is useful for a generic search job.

Returns: a list of tuples (ThermoData, source, entry) (Source is a library or depository, or None)

getRingGroupsFromComments(thermoData)

Takes a string of comments from group additivity estimation, and extracts the ring and polycyclic ring groups from them, returning them as lists.

getThermoData(species, trainingSet=None)

Return the thermodynamic parameters for a given Species object *species*. This function first searches the loaded libraries in order, returning the first match found, before falling back to estimation via machine learning and then group additivity.

The method corrects for symmetry when the molecule uses machine learning or group additivity. Libraries and direct QM calculations are already corrected.

Returns: ThermoData

getThermoDataForSurfaceSpecies(species)

Get the thermo data for an adsorbed species, by desorbing it, finding the thermo of the gas-phase species, then adding an adsorption correction that is found from the groups/adsorption tree. Does not apply linear scaling relationship.

Returns a ThermoData object, with no Cp0 or CpInf

getThermoDataFromDepository(species)

Return all possible sets of thermodynamic parameters for a given Species object *species* from the depository. If no depository is loaded, a DatabaseError is raised.

Returns: a list of tuples (thermoData, depository, entry) without any Cp0 or CpInf data.

getThermoDataFromGroups(species)

Return the set of thermodynamic parameters corresponding to a given Species object *species* by estimation using the group additivity values. If no group additivity values are loaded, a DatabaseError is raised.

The resonance isomer (molecule) with the lowest H298 is used, and as a side-effect the resonance isomers (items in *species.molecule* list) are sorted in ascending order.

This does not account for symmetry. The method calling this sould correct for it.

Returns: ThermoData

getThermoDataFromLibraries (species, trainingSet=None)

Return the thermodynamic parameters for a given Species object *species*. This function first searches the loaded libraries in order, returning the first match found, before failing and returning None. *trainingSet* is used to identify if function is called during training set or not. During training set calculation we want to use gas phase thermo to not affect reverse rate calculation.

Returns: ThermoData or None

getThermoDataFromLibrary(species, library)

Return the set of thermodynamic parameters corresponding to a given Species object *species* from the specified thermodynamics *library*. If *library* is a string, the list of libraries is searched for a library with that name. If no match is found in that library, None is returned. If no corresponding library is found, a DatabaseError is raised.

Returns a tuple: (ThermoData, library, entry) or None.

get_thermo_data_from_ml(species, ml_estimator, ml_settings)

Return the set of thermodynamic parameters corresponding to a given Species object *species* by estimation using the ML estimator. Also compare the estimated uncertainties to the user-defined cutoffs. If any of the uncertainties are larger than their corresponding cutoffs, return None. Also check all other options in *ml_settings*.

For HBI, the resonance isomer with the lowest H298 is used and the resonance isomers in species are sorted in ascending order.

The entropy is not corrected for the symmetry of the molecule. This should be done later by the calling function.

load (path, libraries=None, depository=True)

Load the thermo database from the given *path* on disk, where *path* points to the top-level folder of the thermo database.

loadDepository(path)

Load the thermo database from the given *path* on disk, where *path* points to the top-level folder of the thermo database.

loadGroups (path)

Load the thermo database from the given *path* on disk, where *path* points to the top-level folder of the thermo database.

loadLibraries(path, libraries=None)

Load the thermo database from the given *path* on disk, where *path* points to the top-level folder of the thermo database.

If no libraries are given, all are loaded.

loadOld(path)

Load the old RMG thermo database from the given *path* on disk, where *path* points to the top-level folder of the old RMG database.

prioritizeThermo(species, thermoDataList)

Use some metrics to reorder a list of thermo data from best to worst. Return a list of indices with the desired order associated with the index of thermo from the data list.

pruneHeteroatoms (allowed=['C', 'H', 'O', 'S'])

Remove all species from thermo libraries that contain atoms other than those allowed.

This is useful before saving the database for use in RMG-Java

recordPolycylicGenericNodes()

Identify generic nodes in tree for polycyclic groups. Saves them as a list in the *genericNodes* attribute in the polycyclic *ThermoGroups* object, which must be pre-loaded.

Necessary for polycyclic heuristic.

recordRingGenericNodes()

Identify generic nodes in tree for ring groups. Saves them as a list in the *genericNodes* attribute in the ring *ThermoGroups* object, which must be pre-loaded.

Necessary for polycyclic heuristic.

save(path)

Save the thermo database to the given *path* on disk, where *path* points to the top-level folder of the thermo database.

saveDepository(path)

Save the thermo depository to the given *path* on disk, where *path* points to the top-level folder of the thermo depository.

saveGroups(path)

Save the thermo groups to the given *path* on disk, where *path* points to the top-level folder of the thermo groups.

saveLibraries(path)

Save the thermo libraries to the given *path* on disk, where *path* points to the top-level folder of the thermo libraries.

saveOld(path)

Save the old RMG thermo database to the given *path* on disk, where *path* points to the top-level folder of the old RMG database.

setDeltaAtomicAdsorptionEnergies(bindingEnergies=None)

Sets and stores the change in atomic binding energy between the desired and the Pt(111) default.

This depends on the two metal surfaces: the reference one used in the database of adsorption energies, and the desired surface.

If bindingEnergies are not provided, resets the values to those of the Pt(111) default.

Parameters bindingEnergies (*dict*, *optional*) – the desired binding energies with elements as keys and binding energy/unit tuples as values

Returns None, stores result in self.deltaAtomicAdsorptionEnergy

rmgpy.data.thermo.ThermoDepository

 $\textbf{class} \ \textit{rmgpy.data.thermo.} \textbf{ThermoDepository} (\textit{label=""}, \textit{name=""}, \textit{shortDesc=""}, \textit{longDesc=""})$

A class for working with the RMG thermodynamics depository.

ancestors(node)

Returns all the ancestors of a node, climbing up the tree to the top.

areSiblings(node, nodeOther)

Return *True* if *node* and *nodeOther* have the same parent node. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

descendTree(structure, atoms, root=None, strict=False)

Descend the tree in search of the functional group node that best matches the local structure around *atoms* in *structure*.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species generally not being prelabeled.

descendants(node)

Returns all the descendants of a node, climbing down the tree to the bottom.

generateOldTree(entries, level)

Generate a multi-line string representation of the current tree using the old-style syntax.

getEntriesToSave()

Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

getSpecies (path, resonance=True)

Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)

Load an RMG-style database from the file at location *path* on disk. The parameters *local_context* and *global_context* are used to provide specialized mapping of identifiers in the input file to corresponding functions to evaluate. This method will automatically add a few identifiers required by all data entries, so you don't need to provide these.

loadOld(dictstr, treestr, libstr, numParameters, numLabels=1, pattern=True)

Load a dictionary-tree-library based database. The database is stored in three files: *dictstr* is the path to the dictionary, *treestr* to the tree, and *libstr* to the library. The tree is optional, and should be set to '' if not desired.

loadOldDictionary(path, pattern)

Parse an old-style RMG database dictionary located at *path*. An RMG dictionary is a list of key-value pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty line. Returns a dict object with the values converted to Molecule or Group objects depending on the value of *pattern*.

loadOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at path.

loadOldTree(path)

Parse an old-style RMG database tree located at *path*. An RMG tree is an n-ary tree representing the hierarchy of items in the dictionary.

matchNodeToChild(parentNode, childNode)

Return *True* if *parentNode* is a parent of *childNode*. Otherwise, return *False*. Both *parentNode* and *childNode* must be Entry types with items containing Group or LogicNode types. If *parentNode* and *childNode* are identical, the function will also return *False*.

matchNodeToNode(node, nodeOther)

Return *True* if *node* and *nodeOther* are identical. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

$\verb+matchNodeToStructure+ (node, structure, atoms, strict = False)$

Return True if the *structure* centered at *atom* matches the structure at *node* in the dictionary. The structure at *node* should have atoms with the appropriate labels because they are set on loading and never change. However, the atoms in *structure* may not have the correct labels, hence the *atoms* parameter. The *atoms* parameter may include extra labels, and so we only require that every labeled atom in the functional group represented by *node* has an equivalent labeled atom in *structure*.

Matching to structure is more strict than to node. All labels in structure must be found in node. However the reverse is not true, unless *strict* is set to True.

At-	Description
tribute	
node	Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
	Entry.item
struc-	A Group or a Molecule
ture	
atoms	Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
	structure.getLabeledAtoms()
strict	If set to True, ensures that all the node's atomLabels are matched by in the structure

parseOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at *path*, returning the loaded entries (rather than storing them in the database). This method does not discard duplicate entries.

removeGroup(groupToRemove)

Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also update the parent/child relationships

Returns the removed group

save(path)

Save the current database to the file at location *path* on disk.

saveDictionary(path)

Extract species from all entries associated with a kinetics library or depository and save them to the path given.

saveEntry(f, entry)

Write the given *entry* in the thermo database to the file object f.

saveOld(dictstr, treestr, libstr)

Save the current database to a set of text files using the old-style syntax.

saveOldDictionary(path)

Save the current database dictionary to a text file using the old-style syntax.

saveOldLibrary(path)

Save the current database library to a text file using the old-style syntax.

saveOldTree(path)

Save the current database tree to a text file using the old-style syntax.

rmgpy.data.thermo.ThermoGroups

class rmqpy.data.thermo.ThermoGroups(label=", name=", shortDesc=", longDesc=")

A class for working with an RMG thermodynamics group additivity database.

ancestors(node)

Returns all the ancestors of a node, climbing up the tree to the top.

areSiblings(node, nodeOther)

Return *True* if *node* and *nodeOther* have the same parent node. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

copyData(source, destination)

This method copys the ThermoData object and all meta data from source to destination :param source: The entry for which data is being copied :param destination: The entry for which data is being overwritten

descendTree(structure, atoms, root=None, strict=False)

Descend the tree in search of the functional group node that best matches the local structure around *atoms* in *structure*.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species generally not being prelabeled.

descendants(node)

Returns all the descendants of a node, climbing down the tree to the bottom.

generateOldLibraryEntry(data)

Return a list of values used to save entries to the old-style RMG thermo database based on the thermodynamics object *data*.

generateOldTree(entries, level)

Generate a multi-line string representation of the current tree using the old-style syntax.

getEntriesToSave()

Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

getSpecies (path, resonance=True)

Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)

Load an RMG-style database from the file at location *path* on disk. The parameters *local_context* and *global_context* are used to provide specialized mapping of identifiers in the input file to corresponding functions to evaluate. This method will automatically add a few identifiers required by all data entries, so you don't need to provide these.

loadOld(dictstr, treestr, libstr, numParameters, numLabels=1, pattern=True)

Load a dictionary-tree-library based database. The database is stored in three files: *dictstr* is the path to the dictionary, *treestr* to the tree, and *libstr* to the library. The tree is optional, and should be set to 'if not desired.

loadOldDictionary(path, pattern)

Parse an old-style RMG database dictionary located at *path*. An RMG dictionary is a list of key-value pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty line. Returns a dict object with the values converted to Molecule or Group objects depending on the value of *pattern*.

loadOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at path.

loadOldTree(path)

Parse an old-style RMG database tree located at *path*. An RMG tree is an n-ary tree representing the hierarchy of items in the dictionary.

matchNodeToChild(parentNode, childNode)

Return *True* if *parentNode* is a parent of *childNode*. Otherwise, return *False*. Both *parentNode* and *childNode* must be Entry types with items containing Group or LogicNode types. If *parentNode* and *childNode* are identical, the function will also return *False*.

matchNodeToNode(node, nodeOther)

Return *True* if *node* and *nodeOther* are identical. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

matchNodeToStructure(node, structure, atoms, strict=False)

Return True if the *structure* centered at *atom* matches the structure at *node* in the dictionary. The structure at *node* should have atoms with the appropriate labels because they are set on loading and never change. However, the atoms in *structure* may not have the correct labels, hence the *atoms* parameter. The *atoms* parameter may include extra labels, and so we only require that every labeled atom in the functional group represented by *node* has an equivalent labeled atom in *structure*.

Matching to structure is more strict than to node. All labels in structure must be found in node. However the reverse is not true, unless *strict* is set to True.

At-	Description
tribute	
node	Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
	Entry.item
struc-	A Group or a Molecule
ture	
atoms	Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
	structure.getLabeledAtoms()
strict	If set to True, ensures that all the node's atomLabels are matched by in the structure

parseOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at *path*, returning the loaded entries (rather than storing them in the database). This method does not discard duplicate entries.

processOldLibraryEntry(data)

Process a list of parameters *data* as read from an old-style RMG thermo database, returning the corresponding thermodynamics object.

removeGroup(groupToRemove)

Removes a group that is in a tree from the database. For thermo groups we also, need to re-point any unicode thermoData that may have pointed to the entry.

Returns the removed group

save(path)

Save the current database to the file at location path on disk.

saveDictionary(path)

Extract species from all entries associated with a kinetics library or depository and save them to the path given.

saveEntry(f, entry)

Write the given *entry* in the thermo database to the file object *f*.

saveOld(dictstr, treestr, libstr)

Save the current database to a set of text files using the old-style syntax.

saveOldDictionary(path)

Save the current database dictionary to a text file using the old-style syntax.

saveOldLibrary(path)

Save the current database library to a text file using the old-style syntax.

saveOldTree(path)

Save the current database tree to a text file using the old-style syntax.

rmgpy.data.thermo.ThermoLibrary

```
class rmgpy.data.thermo.ThermoLibrary(label=", name=", solvent=None, shortDesc=", longDesc=")
```

A class for working with a RMG thermodynamics library.

ancestors(node)

Returns all the ancestors of a node, climbing up the tree to the top.

areSiblings(node, nodeOther)

Return *True* if *node* and *nodeOther* have the same parent node. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

descendTree(structure, atoms, root=None, strict=False)

Descend the tree in search of the functional group node that best matches the local structure around *atoms* in *structure*.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species generally not being prelabeled.

descendants(node)

Returns all the descendants of a node, climbing down the tree to the bottom.

generateOldLibraryEntry(data)

Return a list of values used to save entries to the old-style RMG thermo database based on the thermodynamics object *data*.

generateOldTree(entries, level)

Generate a multi-line string representation of the current tree using the old-style syntax.

getEntriesToSave()

Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

getSpecies (path, resonance=True)

Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)

Load an RMG-style database from the file at location *path* on disk. The parameters *local_context* and *global_context* are used to provide specialized mapping of identifiers in the input file to corresponding functions to evaluate. This method will automatically add a few identifiers required by all data entries, so you don't need to provide these.

loadOld (dictstr, treestr, libstr, numParameters, numLabels=1, pattern=True)

Load a dictionary-tree-library based database. The database is stored in three files: *dictstr* is the path to the dictionary, *treestr* to the tree, and *libstr* to the library. The tree is optional, and should be set to '' if not desired.

loadOldDictionary(path, pattern)

Parse an old-style RMG database dictionary located at *path*. An RMG dictionary is a list of key-value pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty line. Returns a dict object with the values converted to Molecule or Group objects depending on the value of *pattern*.

loadOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at *path*.

loadOldTree(path)

Parse an old-style RMG database tree located at *path*. An RMG tree is an n-ary tree representing the hierarchy of items in the dictionary.

matchNodeToChild(parentNode, childNode)

Return *True* if *parentNode* is a parent of *childNode*. Otherwise, return *False*. Both *parentNode* and *childNode* must be Entry types with items containing Group or LogicNode types. If *parentNode* and *childNode* are identical, the function will also return *False*.

${\tt matchNodeToNode}(node, nodeOther)$

Return *True* if *node* and *nodeOther* are identical. Otherwise, return *False*. Both *node* and *nodeOther* must be Entry types with items containing Group or LogicNode types.

matchNodeToStructure(node, structure, atoms, strict=False)

Return True if the *structure* centered at *atom* matches the structure at *node* in the dictionary. The structure at *node* should have atoms with the appropriate labels because they are set on loading and never change. However, the atoms in *structure* may not have the correct labels, hence the *atoms* parameter. The *atoms* parameter may include extra labels, and so we only require that every labeled atom in the functional group represented by *node* has an equivalent labeled atom in *structure*.

Matching to structure is more strict than to node. All labels in structure must be found in node. However the reverse is not true, unless *strict* is set to True.

At-	Description
tribute	
node	Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
	Entry.item
struc-	A Group or a Molecule
ture	
atoms	Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
	structure.getLabeledAtoms()
strict	If set to True, ensures that all the node's atomLabels are matched by in the structure

parseOldLibrary(path, numParameters, numLabels=1)

Parse an RMG database library located at *path*, returning the loaded entries (rather than storing them in the database). This method does not discard duplicate entries.

processOldLibraryEntry(data)

Process a list of parameters *data* as read from an old-style RMG thermo database, returning the corresponding thermodynamics object.

removeGroup(groupToRemove)

Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also update the parent/child relationships

Returns the removed group

save(path)

Save the current database to the file at location *path* on disk.

saveDictionary(path)

Extract species from all entries associated with a kinetics library or depository and save them to the path given.

saveEntry(f, entry)

Write the given *entry* in the thermo database to the file object *f*.

saveOld(dictstr, treestr, libstr)

Save the current database to a set of text files using the old-style syntax.

saveOldDictionary(path)

Save the current database dictionary to a text file using the old-style syntax.

saveOldLibrary(path)

Save the current database library to a text file using the old-style syntax.

saveOldTree(path)

Save the current database tree to a text file using the old-style syntax.

1.5 Kinetics (rmgpy.kinetics)

The *rmgpy.kinetics* subpackage contains classes that represent various kinetics models of chemical reaction rates and models of quantum mechanical tunneling through an activation barrier.

1.5.1 Pressure-independent kinetics models

Class	Description
KineticsData	A kinetics model based on a set of discrete rate coefficient points in temperature
Arrhenius	A kinetics model based on the (modified) Arrhenius expression
MultiArrhenius	A kinetics model based on a sum of <i>Arrhenius</i> expressions

1.5.2 Pressure-dependent kinetics models

Class	Description
PDepKineticsData	A kinetics model based on a set of discrete rate coefficient points in temperature and pres-
	sure
PDepArrhenius	A kinetics model based on a set of Arrhenius expressions for a range of pressures
MultiPDepArrheniu	SA kinetics model based on a sum of PDepArrhenius expressions
Chebyshev	A kinetics model based on a Chebyshev polynomial representation
ThirdBody	A low pressure-limit kinetics model based on the (modified) Arrhenius expression, with a
	third body
Lindemann	A kinetics model of pressure-dependent falloff based on the Lindemann model
Troe	A kinetics model of pressure-dependent falloff based on the Lindemann model with the
	Troe falloff factor

1.5.3 Tunneling models

Class	Description
Wigner	A one-dimensional tunneling model based on the Wigner expression
Eckart	A one-dimensional tunneling model based on the (asymmetric) Eckart expression

rmgpy.kinetics.KineticsData

 $\begin{array}{c} \textbf{class} \ \text{rmgpy.kinetics.} \textbf{KineticsData} (\textit{Tdata} = None, & \textit{kdata} = None, & \textit{Tmin} = None, & \textit{Tmax} = None, \\ & \textit{Pmin} = None, & \textit{Pmax} = None, & \textit{comment} = ") \\ & \text{A kinetics model based on an array of rate coefficient data vs. temperature. The attributes are:} \end{array}$

Attribute	Description
Tdata	An array of temperatures at which rate coefficient values are known
kdata	An array of rate coefficient values
Tmin	The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax	The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin	The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax	The maximum pressure at which the model is valid, or zero if unknown or undefined
comment	Information about the model (e.g. its source)

Pmax

The maximum pressure at which the model is valid, or None if not defined.

Pmin

The minimum pressure at which the model is valid, or None if not defined.

Tdata

An array of temperatures at which rate coefficient values are known.

Tmax

The maximum temperature at which the model is valid, or None if not defined.

Tmin

The minimum temperature at which the model is valid, or None if not defined.

comment

str

Type comment

$discrepancy(self, KineticsModel otherKinetics) \rightarrow double$

Returns some measure of the discrepancy based on two different reaction models.

getRateCoefficient(self, double T, double P=0.0) \rightarrow double

Return the rate coefficient in the appropriate combination of m^3 , mol, and s at temperature T in K.

isIdenticalTo(self, KineticsModel otherKinetics) \rightarrow bool

Returns True if the kdata and Tdata match. Returns False otherwise.

$isPressureDependent(self) \rightarrow bool$

Return False since, by default, all objects derived from KineticsModel represent pressure-independent kinetics.

$isSimilarTo(self, KineticsModel otherKinetics) \rightarrow bool$

Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/.5 for log(k), in other words, within a factor of 3.

$isTemperatureValid(self, double\ T) \rightarrow bool$

Return True if the temperature *T* in K is within the valid temperature range of the kinetic data, or False if not. If the minimum and maximum temperature are not defined, True is returned.

kdata

An array of rate coefficient values.

setCanteraKinetics(self, ctReaction, speciesList)

Sets the kinetics for a cantera reaction object.

toHTML(self)

Return an HTML rendering.

rmgpy.kinetics.Arrhenius

```
class rmgpy.kinetics.Arrhenius (A=None, n=0.0, Ea=None, T0=(1.0, 'K'), Tmin=None, Tmax=None, Pmin=None, Pmax=None, comment=")
```

A kinetics model based on the (modified) Arrhenius equation. The attributes are:

Attribute	Description
A	The preexponential factor
TO	The reference temperature
n	The temperature exponent
Ea	The activation energy
Tmin	The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax	The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin	The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax	The maximum pressure at which the model is valid, or zero if unknown or undefined
comment	Information about the model (e.g. its source)

The Arrhenius equation, given below, accurately reproduces the kinetics of many reaction families:

$$k(T) = A \left(\frac{T}{T_0}\right)^n \exp\left(-\frac{E_a}{RT}\right)$$

Above, A is the preexponential factor, T_0 is the reference temperature, n is the temperature exponent, and E_a is the activation energy.

Α

The preexponential factor.

Ea

The activation energy.

Pmax

The maximum pressure at which the model is valid, or None if not defined.

Pmin

The minimum pressure at which the model is valid, or None if not defined.

TΘ

The reference temperature.

Tmax

The maximum temperature at which the model is valid, or None if not defined.

Tmin

The minimum temperature at which the model is valid, or None if not defined.

changeRate(self, double factor)

Changes A factor in Arrhenius expression by multiplying it by a factor.

changeT0(self, double T0)

Changes the reference temperature used in the exponent to T0 in K, and adjusts the preexponential factor accordingly.

comment

str

Type comment

$discrepancy(self, KineticsModel otherKinetics) \rightarrow double$

Returns some measure of the discrepancy based on two different reaction models.

fitToData (self, ndarray Tlist, ndarray klist, str kunits, double T0=1, ndarray weights=None, bool three-Params=True)

Fit the Arrhenius parameters to a set of rate coefficient data *klist* in units of *kunits* corresponding to a set of temperatures *Tlist* in K. A linear least-squares fit is used, which guarantees that the resulting parameters provide the best possible approximation to the data.

getRateCoefficient(*self*, *double T*, *double P=0.0*) \rightarrow double

Return the rate coefficient in the appropriate combination of m³, mol, and s at temperature T in K.

isIdenticalTo(self, KineticsModel otherKinetics) \rightarrow bool

Returns True if kinetics matches that of another kinetics model. Must match temperature and pressure range of kinetics model, as well as parameters: A, n, Ea, T0. (Shouldn't have pressure range if it's Arrhenius.) Otherwise returns False.

$isPressureDependent(self) \rightarrow bool$

Return False since, by default, all objects derived from KineticsModel represent pressure-independent kinetics.

$isSimilarTo(self, KineticsModel otherKinetics) \rightarrow bool$

Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/.5 for log(k), in other words, within a factor of 3.

$isTemperatureValid(self, double\ T) \rightarrow bool$

Return True if the temperature *T* in K is within the valid temperature range of the kinetic data, or False if not. If the minimum and maximum temperature are not defined, True is returned.

n

The temperature exponent.

setCanteraKinetics(self, ctReaction, speciesList)

Passes in a cantera ElementaryReaction() object and sets its rate to a Cantera Arrhenius() object.

toArrheniusEP(self, $double\ alpha=0.0$, $double\ dHrxn=0.0$) \rightarrow ArrheniusEP

Converts an Arrhenius object to ArrheniusEP

If setting alpha, you need to also input dHrxn, which must be given in J/mol (and vise versa).

toCanteraKinetics(self)

Converts the Arrhenius object to a cantera Arrhenius object

Arrhenius(A,b,E) where A is in units of m^3/kmol/s, b is dimensionless, and E is in J/kmol

toHTML(self)

Return an HTML rendering.

rmgpy.kinetics.MultiArrhenius

A kinetics model based on a set of (modified) Arrhenius equations, which are summed to obtain the overall rate. The attributes are:

Attribute	Description
arrhenius	A list of the Arrhenius kinetics
Tmin	The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax	The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin	The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax	The maximum pressure at which the model is valid, or zero if unknown or undefined
comment	Information about the model (e.g. its source)

Pmax

The maximum pressure at which the model is valid, or None if not defined.

Pmin

The minimum pressure at which the model is valid, or None if not defined.

Tmax

The maximum temperature at which the model is valid, or None if not defined.

Tmin

The minimum temperature at which the model is valid, or None if not defined.

arrhenius

list

Type arrhenius

changeRate(self, double factor)

Change kinetics rate by a multiple factor.

comment

str

Type comment

$discrepancy(self, KineticsModel otherKinetics) \rightarrow double$

Returns some measure of the discrepancy based on two different reaction models.

getRateCoefficient(self, $double\ T$, $double\ P=0.0$) \rightarrow double

Return the rate coefficient in the appropriate combination of m³, mol, and s at temperature T in K.

$isIdenticalTo(self, KineticsModel otherKinetics) \rightarrow bool$

Returns True if kinetics matches that of another kinetics model. Each duplicate reaction must be matched and equal to that in the other MultiArrhenius model in the same order. Otherwise returns False

$isPressureDependent(self) \rightarrow bool$

Return False since, by default, all objects derived from KineticsModel represent pressure-independent kinetics.

$isSimilarTo(self, KineticsModel otherKinetics) \rightarrow bool$

Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/.5 for log(k), in other words, within a factor of 3.

$isTemperatureValid(self, double\ T) \rightarrow bool$

Return True if the temperature *T* in K is within the valid temperature range of the kinetic data, or False if not. If the minimum and maximum temperature are not defined, True is returned.

setCanteraKinetics(self, ctReaction, speciesList)

Sets the kinetic rates for a list of cantera *Reaction* objects Here, ctReaction must be a list rather than a single cantera reaction.

toArrhenius (*self*, *double Tmin=-1*, *double Tmax=-1*) \rightarrow Arrhenius

Return an Arrhenius instance of the kinetics model

Fit the Arrhenius parameters to a set of rate coefficient data generated from the MultiArrhenius kinetics, over the temperature range Tmin to Tmax, in Kelvin. If Tmin or Tmax are unspecified (or -1) then the MultiArrhenius's Tmin and Tmax are used. A linear least-squares fit is used, which guarantees that the resulting parameters provide the best possible approximation to the data.

toHTML(self)

Return an HTML rendering.

rmgpy.kinetics.PDepKineticsData

 $\textbf{class} \ \texttt{rmgpy.kinetics.PDepKineticsData}(\textit{Tdata=None}, \ \textit{Pdata=None}, \ \textit{kdata=None}, \ \textit{Tmin=None}, \\$

Tmax=None, Pmin=None, Pmax=None, comment=")

A kinetics model based on an array of rate coefficient data vs. temperature and pressure. The attributes are:

Attribute	Description
Tdata	An array of temperatures at which rate coefficient values are known
Pdata	An array of pressures at which rate coefficient values are known
kdata	An array of rate coefficient values at each temperature and pressure
Tmin	The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax	The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin	The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax	The maximum pressure at which the model is valid, or zero if unknown or undefined
comment	Information about the model (e.g. its source)

Pdata

An array of pressures at which rate coefficient values are known.

Pmax

The maximum pressure at which the model is valid, or None if not defined.

Pmin

The minimum pressure at which the model is valid, or None if not defined.

Tdata

An array of temperatures at which rate coefficient values are known.

Tmax

The maximum temperature at which the model is valid, or None if not defined.

Tmin

The minimum temperature at which the model is valid, or None if not defined.

comment

str

Type comment

$discrepancy(self, KineticsModel otherKinetics) \rightarrow double$

Returns some measure of the discrepancy based on two different reaction models.

efficiencies

dict

Type efficiencies

getCanteraEfficiencies(self, speciesList)

Returns a dictionary containing the collider efficiencies for this PDepKineticsModel object suitable for setting the efficiencies in the following cantera reaction objects: *ThreeBodyReaction*, *FalloffReaction*, 'ChemicallyActivatedReaction'

getEffectiveColliderEfficiencies (self, list species) \rightarrow ndarray

Return the effective collider efficiencies for all species in the form of a numpy array. This function helps assist rapid effective pressure calculations in the solver.

$getEffectivePressure(self, double P, list species, ndarray fractions) \rightarrow double$

Return the effective pressure in Pa for a system at a given pressure *P* in Pa composed of the given list of *species* (Species or Molecule objects) with the given *fractions*.

getRateCoefficient(self, $double\ T$, $double\ P=0.0$) \rightarrow double

Return the rate coefficient in the appropriate combination of m^3 , mol, and s at temperature T in K and pressure P in Pa.

highPlimit

rmgpy.kinetics.model.KineticsModel

Type highPlimit

isIdenticalTo(self, KineticsModel otherKinetics) \rightarrow bool

Returns True if the kdata and Tdata match. Returns False otherwise.

$isPressureDependent(self) \rightarrow bool$

Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

$isPressureValid(self, double P) \rightarrow bool$

Return True if the pressure *P* in Pa is within the valid pressure range of the kinetic data, or False if not. If the minimum and maximum pressure are not defined, True is returned.

$isSimilarTo(self, KineticsModel otherKinetics) \rightarrow bool$

Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/.5 for log(k), in other words, within a factor of 3.

$isTemperatureValid(self, double\ T) \rightarrow bool$

Return True if the temperature *T* in K is within the valid temperature range of the kinetic data, or False if not. If the minimum and maximum temperature are not defined, True is returned.

kdata

An array of rate coefficient values at each temperature and pressure.

setCanteraKinetics(self, ctReaction, speciesList)

Sets the kinetics for a cantera reaction object.

toHTML(self)

Return an HTML rendering.

rmgpy.kinetics.PDepArrhenius

A kinetic model of a phenomenological rate coefficient k(T, P) where a set of Arrhenius kinetics are stored at a variety of pressures and interpolated between on a logarithmic scale. The attributes are:

Attribute	Description
pressures	The list of pressures
arrhenius	The list of Arrhenius objects at each pressure
Tmin	The minimum temperature in K at which the model is valid, or zero if unknown or undefined
Tmax	The maximum temperature in K at which the model is valid, or zero if unknown or undefined
Pmin	The minimum pressure in bar at which the model is valid, or zero if unknown or undefined
Pmax	The maximum pressure in bar at which the model is valid, or zero if unknown or undefined
efficiencies	A dict associating chemical species with associated efficiencies
order	The reaction order $(1 = first, 2 = second, etc.)$
comment	Information about the model (e.g. its source)

The pressure-dependent Arrhenius formulation is sometimes used to extend the Arrhenius expression to handle pressure-dependent kinetics. The formulation simply parameterizes A, n, and $E_{\rm a}$ to be dependent on pressure:

$$k(T, P) = A(P) \left(\frac{T}{T_0}\right)^{n(P)} \exp\left(-\frac{E_{\mathrm{a}}(P)}{RT}\right)$$

Although this suggests some physical insight, the k(T, P) data is often highly complex and non-Arrhenius, limiting the usefulness of this formulation to simple systems.

Pmax

The maximum pressure at which the model is valid, or None if not defined.

Pmin

The minimum pressure at which the model is valid, or None if not defined.

Tmax

The maximum temperature at which the model is valid, or None if not defined.

Tmin

The minimum temperature at which the model is valid, or None if not defined.

arrhenius

list

Type arrhenius

changeRate(self, double factor)

Changes kinetics rate by a multiple factor.

comment

str

Type comment

$discrepancy(self, KineticsModel otherKinetics) \rightarrow double$

Returns some measure of the discrepancy based on two different reaction models.

efficiencies

dict

Type efficiencies

fitToData(self, ndarray Tlist, ndarray Plist, ndarray K, str kunits, double T0=1)

Fit the pressure-dependent Arrhenius model to a matrix of rate coefficient data *K* with units of *kunits* corresponding to a set of temperatures *Tlist* in K and pressures *Plist* in Pa. An Arrhenius model is fit cpdef changeRate(self, double factor)at each pressure.

getCanteraEfficiencies(self, speciesList)

Returns a dictionary containing the collider efficiencies for this PDepKineticsModel object suitable for setting the efficiencies in the following cantera reaction objects: *ThreeBodyReaction*, *FalloffReaction*, 'ChemicallyActivatedReaction'

$getEffectiveColliderEfficiencies(self, list species) \rightarrow ndarray$

Return the effective collider efficiencies for all species in the form of a numpy array. This function helps assist rapid effective pressure calculations in the solver.

getEffectivePressure(self, double P, list species, ndarray fractions) \rightarrow double

Return the effective pressure in Pa for a system at a given pressure *P* in Pa composed of the given list of *species* (Species or Molecule objects) with the given *fractions*.

$getRateCoefficient(self, double T, double P=0) \rightarrow double$

Return the rate coefficient in the appropriate combination of m^3 , mol, and s at temperature T in K and pressure P in Pa.

highPlimit

rmgpy.kinetics.model.KineticsModel

Type highPlimit

isIdenticalTo(self, KineticsModel otherKinetics) \rightarrow bool

Returns True if kinetics matches that of another kinetics model. Each duplicate reaction must be matched and equal to that in the other PDepArrhenius model in the same order. Otherwise returns False

isPressureDependent(self) \rightarrow bool

Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

$isPressureValid(self, double P) \rightarrow bool$

Return True if the pressure *P* in Pa is within the valid pressure range of the kinetic data, or False if not. If the minimum and maximum pressure are not defined, True is returned.

isSimilarTo(self, KineticsModel otherKinetics) \rightarrow bool

Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/.5 for log(k), in other words, within a factor of 3.

$isTemperatureValid(self, double\ T) \rightarrow bool$

Return True if the temperature *T* in K is within the valid temperature range of the kinetic data, or False if not. If the minimum and maximum temperature are not defined, True is returned.

pressures

The list of pressures.

setCanteraKinetics(self, ctReaction, speciesList)

Sets a Cantera PlogReaction()'s *rates* attribute with A list of tuples containing [(pressure in Pa, cantera arrhenius object), (..)]

toHTML(self)

Return an HTML rendering.

rmgpy.kinetics.MultiPDepArrhenius

A kinetic model of a phenomenological rate coefficient k(T, P) where sets of Arrhenius kinetics are stored at a variety of pressures and interpolated between on a logarithmic scale. The attributes are:

Attribute	Description
arrhenius	A list of the <i>PDepArrhenius</i> kinetics at each temperature
Tmin	The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax	The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin	The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax	The maximum pressure at which the model is valid, or zero if unknown or undefined
comment	Information about the model (e.g. its source)

Pmax

The maximum pressure at which the model is valid, or None if not defined.

Pmin

The minimum pressure at which the model is valid, or None if not defined.

Tmax

The maximum temperature at which the model is valid, or None if not defined.

Tmin

The minimum temperature at which the model is valid, or None if not defined.

arrhenius

list

Type arrhenius

$\textbf{changeRate} \, (\textit{self}, \textit{double factor})$

Change kinetic rate by a multiple factor.

comment

str

Type comment

discrepancy (self, KineticsModel otherKinetics) \rightarrow double

Returns some measure of the discrepancy based on two different reaction models.

efficiencies

dict

Type efficiencies

getCanteraEfficiencies(self, speciesList)

Returns a dictionary containing the collider efficiencies for this PDepKineticsModel object suitable for setting the efficiencies in the following cantera reaction objects: *ThreeBodyReaction*, *FalloffReaction*, 'ChemicallyActivatedReaction'

getEffectiveColliderEfficiencies (self, list species) \rightarrow ndarray

Return the effective collider efficiencies for all species in the form of a numpy array. This function helps assist rapid effective pressure calculations in the solver.

getEffectivePressure(self, double P, list species, ndarray fractions) \rightarrow double

Return the effective pressure in Pa for a system at a given pressure *P* in Pa composed of the given list of *species* (Species or Molecule objects) with the given *fractions*.

getRateCoefficient(self, $double\ T$, $double\ P=0.0$) \rightarrow double

Return the rate coefficient in the appropriate combination of m^3 , mol, and s at temperature T in K and pressure P in Pa.

highPlimit

rmgpy.kinetics.model.KineticsModel

Type highPlimit

$isIdenticalTo(self, KineticsModel otherKinetics) \rightarrow bool$

Returns True if kinetics matches that of another kinetics model. Each duplicate reaction must be matched and equal to that in the other MultiArrhenius model in the same order. Otherwise returns False

$isPressureDependent(self) \rightarrow bool$

Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

$isPressureValid(self, double P) \rightarrow bool$

Return True if the pressure *P* in Pa is within the valid pressure range of the kinetic data, or False if not. If the minimum and maximum pressure are not defined, True is returned.

$isSimilarTo(self, KineticsModel otherKinetics) \rightarrow bool$

Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/.5 for log(k), in other words, within a factor of 3.

$isTemperatureValid(self, double\ T) \rightarrow bool$

Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False if not. If the minimum and maximum temperature are not defined, True is returned.

setCanteraKinetics(self, ctReaction, speciesList)

Sets the PLOG kinetics for multiple cantera *Reaction* objects, provided in a list. ctReaction is a list of cantera reaction objects.

toHTML(self)

Return an HTML rendering.

rmgpy.kinetics.Chebyshev

A model of a phenomenological rate coefficient k(T, P) using a set of Chebyshev polynomials in temperature and pressure. The attributes are:

Attribute	Description	
coeffs	Matrix of Chebyshev coefficients, such that the resulting $k(T, P)$ has units of cm ³ , mol, s	
kunits	The units of the rate coefficient	
degreeT	The number of terms in the inverse temperature direction	
degreeP	The number of terms in the log pressure direction	
Tmin	The minimum temperature at which the model is valid, or zero if unknown or undefined	
Tmax	The maximum temperature at which the model is valid, or zero if unknown or undefined	
Pmin	The minimum pressure at which the model is valid, or zero if unknown or undefined	
Pmax	The maximum pressure at which the model is valid, or zero if unknown or undefined	
comment	Information about the model (e.g. its source)	

The Chebyshev polynomial formulation is a means of fitting a wide range of complex k(T, P) behavior. However, there is no meaningful physical interpretation of the polynomial-based fit, and one must take care to minimize the magnitude of Runge's phenomenon. The formulation is as follows:

$$\log k(T, P) = \sum_{t=1}^{N_T} \sum_{p=1}^{N_P} \alpha_{tp} \phi_t(\tilde{T}) \phi_p(\tilde{P})$$

Above, α_{tp} is a constant, $\phi_n(x)$ is the Chebyshev polynomial of degree n evaluated at x, and

$$\tilde{T} \equiv \frac{2T^{-1} - T_{\min}^{-1} - T_{\max}^{-1}}{T_{\max}^{-1} - T_{\min}^{-1}}$$

$$\tilde{P} \equiv \frac{2 \log P - \log P_{\min} - \log P_{\max}}{\log P_{\max} - \log P_{\min}}$$

are reduced temperature and reduced pressure designed to map the ranges (T_{\min}, T_{\max}) and (P_{\min}, P_{\max}) to (-1, 1).

Pmax

The maximum pressure at which the model is valid, or None if not defined.

Pmin

The minimum pressure at which the model is valid, or None if not defined.

Tmax

The maximum temperature at which the model is valid, or None if not defined.

Tmin

The minimum temperature at which the model is valid, or None if not defined.

changeRate(self, double factor)

Changes kinetics rates by a multiple factor.

coeffs

The Chebyshev coefficients.

comment

str

Type comment

degreeP

'int'

Type degreeP

degreeT

'int'

Type degreeT

$discrepancy(self, KineticsModel otherKinetics) \rightarrow double$

Returns some measure of the discrepancy based on two different reaction models.

efficiencies

dict

Type efficiencies

fitToData(self, ndarray Tlist, ndarray Plist, ndarray K, str kunits, int degreeT, int degreeP, double Tmin, double Tmax, double Pmin, double Pmax)

Fit a Chebyshev kinetic model to a set of rate coefficients K, which is a matrix corresponding to the temperatures Tlist in K and pressures Plist in Pa. degreeT and degreeP are the degree of the polynomials in temperature and pressure, while Tmin, Tmax, Pmin, and Pmax set the edges of the valid temperature and pressure ranges in K and bar, respectively.

getCanteraEfficiencies(self, speciesList)

Returns a dictionary containing the collider efficiencies for this PDepKineticsModel object suitable for setting the efficiencies in the following cantera reaction objects: *ThreeBodyReaction*, *FalloffReaction*, 'ChemicallyActivatedReaction'

getEffectiveColliderEfficiencies (self, list species) \rightarrow ndarray

Return the effective collider efficiencies for all species in the form of a numpy array. This function helps assist rapid effective pressure calculations in the solver.

$getEffectivePressure(self, double P, list species, ndarray fractions) \rightarrow double$

Return the effective pressure in Pa for a system at a given pressure *P* in Pa composed of the given list of *species* (Species or Molecule objects) with the given *fractions*.

getRateCoefficient(*self*, *double T*, *double P=0*) \rightarrow double

Return the rate coefficient in the appropriate combination of m^3 , mol, and s at temperature T in K and pressure P in Pa by evaluating the Chebyshev expression.

highPlimit

rmgpy.kinetics.model.KineticsModel

Type highPlimit

isIdenticalTo(self, KineticsModel otherKinetics) \rightarrow bool

Checks to see if kinetics matches that of other kinetics and returns True if coeffs, kunits, Tmin,

$isPressureDependent(self) \rightarrow bool$

Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

$isPressureValid(self, double P) \rightarrow bool$

Return True if the pressure *P* in Pa is within the valid pressure range of the kinetic data, or False if not. If the minimum and maximum pressure are not defined, True is returned.

$isSimilarTo(self, KineticsModel otherKinetics) \rightarrow bool$

Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/.5 for log(k), in other words, within a factor of 3.

$isTemperatureValid(self, double\ T) \rightarrow bool$

Return True if the temperature *T* in K is within the valid temperature range of the kinetic data, or False if not. If the minimum and maximum temperature are not defined, True is returned.

kunits

str

Type kunits

setCanteraKinetics(self, ctReaction, speciesList)

Sets the kinetics parameters for a Cantera ChebyshevReaction() object Uses set_parameters(self,Tmin,Tmax,Pmin,Pmax,coeffs) where T's are in units of K, P's in units of Pa, and coeffs is 2D array of (nTemperature, nPressure).

toHTML(self)

Return an HTML rendering.

rmgpy.kinetics.ThirdBody

class rmgpy.kinetics.ThirdBody(arrheniusLow=None, Tmin=None, Tmax=None, Pmin=None, Pmax=None, efficiencies=None, comment=")

A kinetic model of a phenomenological rate coefficient k(T, P) using third-body kinetics. The attributes are:

Attribute	Description	
arrheniusLow	The Arrhenius kinetics at the low-pressure limit	
Tmin	The minimum temperature at which the model is valid, or zero if unknown or undefined	
Tmax	The maximum temperature at which the model is valid, or zero if unknown or undefined	
Pmin	The minimum pressure at which the model is valid, or zero if unknown or undefined	
Pmax	The maximum pressure at which the model is valid, or zero if unknown or undefined	
efficiencies	A dict associating chemical species with associated efficiencies	
comment	Information about the model (e.g. its source)	

Third-body kinetics simply introduce an inert third body to the rate expression:

$$k(T, P) = k_0(T)[M]$$

Above, $[M] \approx P/RT$ is the concentration of the bath gas. This formulation is equivalent to stating that the kinetics are always in the low-pressure limit.

Pmax

The maximum pressure at which the model is valid, or None if not defined.

Pmin

The minimum pressure at which the model is valid, or None if not defined.

Tmax

The maximum temperature at which the model is valid, or None if not defined.

Tmin

The minimum temperature at which the model is valid, or None if not defined.

arrheniusLow

rmgpy.kinetics.arrhenius.Arrhenius

Type arrheniusLow

changeRate(self, double factor)

Changes kinetics rate by a multiple factor.

comment

str

Type comment

discrepancy (self, KineticsModel otherKinetics) \rightarrow double

Returns some measure of the discrepancy based on two different reaction models.

efficiencies

dict

Type efficiencies

getCanteraEfficiencies(self, speciesList)

Returns a dictionary containing the collider efficiencies for this PDepKineticsModel object suitable for setting the efficiencies in the following cantera reaction objects: *ThreeBodyReaction*, *FalloffReaction*, 'ChemicallyActivatedReaction'

getEffectiveColliderEfficiencies (self, list species) \rightarrow ndarray

Return the effective collider efficiencies for all species in the form of a numpy array. This function helps assist rapid effective pressure calculations in the solver.

getEffectivePressure(self, double P, list species, ndarray fractions) \rightarrow double

Return the effective pressure in Pa for a system at a given pressure *P* in Pa composed of the given list of *species* (Species or Molecule objects) with the given *fractions*.

getRateCoefficient(self, $double\ T$, $double\ P=0.0$) \rightarrow double

Return the value of the rate coefficient k(T) in units of m³, mol, and s at the specified temperature T in K and pressure P in Pa. If you wish to consider collision efficiencies, then you should first use getEffectivePressure() to compute the effective pressure, and pass that value as the pressure to this method.

highPlimit

rmgpy.kinetics.model.KineticsModel

Type highPlimit

$isIdenticalTo(self, KineticsModel otherKinetics) \rightarrow bool$

Checks to see if kinetics matches that of other kinetics and returns True if coeffs, kunits, Tmin,

isPressureDependent(self) \rightarrow bool

Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

$isPressureValid(self, double P) \rightarrow bool$

Return True if the pressure *P* in Pa is within the valid pressure range of the kinetic data, or False if not. If the minimum and maximum pressure are not defined, True is returned.

isSimilarTo(self, KineticsModel otherKinetics) \rightarrow bool

Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/.5 for log(k), in other words, within a factor of 3.

$isTemperatureValid(self, double\ T) \rightarrow bool$

Return True if the temperature *T* in K is within the valid temperature range of the kinetic data, or False if not. If the minimum and maximum temperature are not defined, True is returned.

setCanteraKinetics(self, ctReaction, speciesList)

Sets the kinetics and efficiencies for a cantera *ThreeBodyReaction* object

toHTML(self)

Return an HTML rendering.

rmgpy.kinetics.Lindemann

class rmgpy.kinetics.Lindemann(arrheniusHigh=None, arrheniusLow=None, Tmin=None, Tmax=None, Pmin=None, Pmax=None, efficiencies=None, comment=")

A kinetic model of a phenomenological rate coefficient k(T,P) using the Lindemann formulation. The attributes are:

Attribute	Description	
arrheniusHigh	The Arrhenius kinetics at the high-pressure limit	
arrheniusLow	The Arrhenius kinetics at the low-pressure limit	
Tmin	The minimum temperature at which the model is valid, or zero if unknown or undefined	
Tmax	The maximum temperature at which the model is valid, or zero if unknown or undefined	
Pmin	The minimum pressure at which the model is valid, or zero if unknown or undefined	
Pmax	The maximum pressure at which the model is valid, or zero if unknown or undefined	
efficiencies	A dict associating chemical species with associated efficiencies	
comment	Information about the model (e.g. its source)	

The Lindemann model qualitatively predicts the falloff of some simple pressure-dependent reaction kinetics. The formulation is as follows:

$$k(T, P) = k_{\infty}(T) \left[\frac{P_{\rm r}}{1 + P_{\rm r}} \right]$$

where

$$\begin{split} P_{\mathrm{r}} &= \frac{k_0(T)}{k_{\infty}(T)} [\mathrm{M}] \\ k_0(T) &= A_0 T^{n_0} \exp\left(-\frac{E_0}{RT}\right) \\ k_{\infty}(T) &= A_{\infty} T^{n_{\infty}} \exp\left(-\frac{E_{\infty}}{RT}\right) \end{split}$$

and [M] $\approx P/RT$ is the concentration of the bath gas. The Arrhenius expressions $k_0(T)$ and $k_{\infty}(T)$ represent the low-pressure and high-pressure limit kinetics, respectively.

Pmax

The maximum pressure at which the model is valid, or None if not defined.

Pmin

The minimum pressure at which the model is valid, or None if not defined.

Tmax

The maximum temperature at which the model is valid, or None if not defined.

Tmin

The minimum temperature at which the model is valid, or None if not defined.

arrheniusHigh

rmgpy.kinetics.arrhenius.Arrhenius

Type arrheniusHigh

arrheniusLow

rmgpy.kinetics.arrhenius.Arrhenius

Type arrheniusLow

changeRate(self, double factor)

Changes kinetics rate by a multiple factor.

comment

str

Type comment

$discrepancy(self, KineticsModel otherKinetics) \rightarrow double$

Returns some measure of the discrepancy based on two different reaction models.

efficiencies

dict

Type efficiencies

getCanteraEfficiencies(self, speciesList)

Returns a dictionary containing the collider efficiencies for this PDepKineticsModel object suitable for setting the efficiencies in the following cantera reaction objects: *ThreeBodyReaction*, *FalloffReaction*, 'ChemicallyActivatedReaction'

getEffectiveColliderEfficiencies (self, list species) \rightarrow ndarray

Return the effective collider efficiencies for all species in the form of a numpy array. This function helps assist rapid effective pressure calculations in the solver.

getEffectivePressure(self, double P, list species, ndarray fractions) \rightarrow double

Return the effective pressure in Pa for a system at a given pressure *P* in Pa composed of the given list of *species* (Species or Molecule objects) with the given *fractions*.

getRateCoefficient(self, double T, double P=0.0) \rightarrow double

Return the value of the rate coefficient k(T) in units of m^3, mol, and s at the specified temperature T in K and pressure P in Pa. If you wish to consider collision efficiencies, then you should first use getEffectivePressure() to compute the effective pressure, and pass that value as the pressure to this method.

highPlimit

rmgpy.kinetics.model.KineticsModel

Type highPlimit

isIdenticalTo(self, KineticsModel otherKinetics) \rightarrow bool

Checks to see if kinetics matches that of other kinetics and returns True if coeffs, kunits, Tmin,

isPressureDependent(self) \rightarrow bool

Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

isPressureValid(self, double P) \rightarrow bool

Return True if the pressure *P* in Pa is within the valid pressure range of the kinetic data, or False if not. If the minimum and maximum pressure are not defined, True is returned.

$isSimilarTo(self, KineticsModel otherKinetics) \rightarrow bool$

Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5 for log(k), in other words, within a factor of 3.

$isTemperatureValid(self, double\ T) \rightarrow bool$

Return True if the temperature *T* in K is within the valid temperature range of the kinetic data, or False if not. If the minimum and maximum temperature are not defined, True is returned.

setCanteraKinetics(self, ctReaction, speciesList)

Sets the efficiencies and kinetics for a cantera reaction.

toHTML(self)

Return an HTML rendering.

rmgpy.kinetics.Troe

class rmgpy.kinetics.Troe(arrheniusHigh=None, arrheniusLow=None, alpha=0.0, T3=None, T1=None, T2=None, Tmin=None, Tmax=None, Tmin=None, Tmin=

A kinetic model of a phenomenological rate coefficient k(T, P) using the Troe formulation. The attributes are:

Attribute	Description	
arrheniusHigh	The Arrhenius kinetics at the high-pressure limit	
arrheniusLow	The Arrhenius kinetics at the low-pressure limit	
alpha	The α parameter	
T1	The T_1 parameter	
T2	The T_2 parameter	
<i>T3</i>	The T_3 parameter	
Tmin	The minimum temperature at which the model is valid, or zero if unknown or undefined	
Tmax	The maximum temperature at which the model is valid, or zero if unknown or undefined	
Pmin	The minimum pressure at which the model is valid, or zero if unknown or undefined	
Pmax	The maximum pressure at which the model is valid, or zero if unknown or undefined	
efficiencies	A dict associating chemical species with associated efficiencies	
comment	Information about the model (e.g. its source)	

The Troe model attempts to make the Lindemann model quantitative by introducing a broadening factor F. The formulation is as follows:

$$k(T, P) = k_{\infty}(T) \left[\frac{P_{\rm r}}{1 + P_{\rm r}} \right] F$$

where

$$P_{\rm r} = \frac{k_0(T)}{k_{\infty}(T)} [{\rm M}]$$

$$k_0(T) = A_0 T^{n_0} \exp\left(-\frac{E_0}{RT}\right)$$

$$k_{\infty}(T) = A_{\infty} T^{n_{\infty}} \exp\left(-\frac{E_{\infty}}{RT}\right)$$

and [M] $\approx P/RT$ is the concentration of the bath gas. The Arrhenius expressions $k_0(T)$ and $k_\infty(T)$ represent the low-pressure and high-pressure limit kinetics, respectively. The broadening factor F is computed via

$$\log F = \left\{ 1 + \left[\frac{\log P_{\rm r} + c}{n - d(\log P_{\rm r} + c)} \right]^2 \right\}^{-1} \log F_{\rm cent}$$

$$c = -0.4 - 0.67 \log F_{\rm cent}$$

$$n = 0.75 - 1.27 \log F_{\rm cent}$$

$$d = 0.14$$

$$F_{\rm cent} = (1 - \alpha) \exp(-T/T_3) + \alpha \exp(-T/T_1) + \exp(-T_2/T)$$

Pmax

The maximum pressure at which the model is valid, or None if not defined.

Pmin

The minimum pressure at which the model is valid, or None if not defined.

T1

The Troe T_1 parameter.

T2

The Troe T_2 parameter.

T3

The Troe T_3 parameter.

Tmax

The maximum temperature at which the model is valid, or None if not defined.

Tmin

The minimum temperature at which the model is valid, or None if not defined.

alpha

'double'

Type alpha

arrheniusHigh

rmgpy.kinetics.arrhenius.Arrhenius

Type arrheniusHigh

arrheniusLow

rmgpy.kinetics.arrhenius.Arrhenius

Type arrheniusLow

changeRate(self, double factor)

Changes kinetics rate by a multiple factor.

comment

str

Type comment

$discrepancy(self, KineticsModel otherKinetics) \rightarrow double$

Returns some measure of the discrepancy based on two different reaction models.

efficiencies

dict

Type efficiencies

getCanteraEfficiencies(self, speciesList)

Returns a dictionary containing the collider efficiencies for this PDepKineticsModel object suitable for setting the efficiencies in the following cantera reaction objects: *ThreeBodyReaction*, *FalloffReaction*, 'ChemicallyActivatedReaction'

getEffectiveColliderEfficiencies (self, list species) \rightarrow ndarray

Return the effective collider efficiencies for all species in the form of a numpy array. This function helps assist rapid effective pressure calculations in the solver.

$getEffectivePressure(self, double P, list species, ndarray fractions) \rightarrow double$

Return the effective pressure in Pa for a system at a given pressure *P* in Pa composed of the given list of *species* (Species or Molecule objects) with the given *fractions*.

getRateCoefficient(self, $double\ T$, $double\ P=0.0$) \rightarrow double

Return the value of the rate coefficient k(T) in units of m³, mol, and s at the specified temperature T in K and pressure P in Pa. If you wish to consider collision efficiencies, then you should first use getEffectivePressure() to compute the effective pressure, and pass that value as the pressure to this method.

highPlimit

rmgpy.kinetics.model.KineticsModel

Type highPlimit

isIdenticalTo(self, KineticsModel otherKinetics) \rightarrow bool

Checks to see if kinetics matches that of other kinetics and returns True if coeffs, kunits, Tmin,

$isPressureDependent(self) \rightarrow bool$

Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

$isPressureValid(self, double P) \rightarrow bool$

Return True if the pressure *P* in Pa is within the valid pressure range of the kinetic data, or False if not. If the minimum and maximum pressure are not defined, True is returned.

$isSimilarTo(self, KineticsModel otherKinetics) \rightarrow bool$

Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/.5 for log(k), in other words, within a factor of 3.

$isTemperatureValid(self, double\ T) \rightarrow bool$

Return True if the temperature *T* in K is within the valid temperature range of the kinetic data, or False if not. If the minimum and maximum temperature are not defined, True is returned.

setCanteraKinetics(self, ctReaction, speciesList)

Sets the efficiencies, kinetics, and troe falloff parameters for a cantera FalloffReaction.

toHTML(self)

Return an HTML rendering.

rmgpy.kinetics.Wigner

class rmqpy.kinetics.Wigner(frequency)

A tunneling model based on the Wigner formula. The attributes are:

Attribute	Description	
frequency	The imaginary frequency of the transition state	

An early formulation for incorporating the effect of tunneling is that of Wigner [1932Wigner]:

$$\kappa(T) = 1 + \frac{1}{24} \left(\frac{h \left| \nu_{\text{TS}} \right|}{k_{\text{B}} T} \right)^2$$

where h is the Planck constant, ν_{TS} is the negative frequency, k_{B} is the Boltzmann constant, and T is the absolute temperature.

The Wigner formula represents the first correction term in a perturbative expansion for a parabolic barrier [1959Bell], and is therefore only accurate in the limit of a small tunneling correction. There are many cases for which the tunneling correction is very large; for these cases the Wigner model is inappropriate.

$calculateTunnelingFactor(self, double\ T) \rightarrow double$

Calculate and return the value of the Wigner tunneling correction for the reaction at the temperature T in K.

calculateTunnelingFunction(self, ndarray Elist) \rightarrow ndarray

Raises NotImplementedError, as the Wigner tunneling model does not have a well-defined energy-dependent tunneling function.

frequency

The negative frequency along the reaction coordinate.

rmgpy.kinetics.Eckart

class rmgpy.kinetics.**Eckart**(*frequency*, *E0_reac*, *E0_TS*, *E0_prod=None*) A tunneling model based on the Eckart model. The attributes are:

Attribute	Description	
frequency	The imaginary frequency of the transition state	
E0_reac	The ground-state energy of the reactants	
EO_TS	The ground-state energy of the transition state	
E0_prod The ground-state energy of the products		

If E0_prod is not given, it is assumed to be the same as the reactants; this results in the so-called "symmetric" Eckart model. Providing E0_prod, and thereby using the "asymmetric" Eckart model, is the recommended approach.

The Eckart tunneling model is based around a potential of the form

$$V(x) = \frac{\hbar^2}{2m} \left[\frac{Ae^x}{1 + e^x} + \frac{Be^x}{(1 + e^x)^2} \right]$$

where x represents the reaction coordinate and A and B are parameters. The potential is symmetric if A=0 and asymmetric if $A \neq 0$. If we add the constraint |B| > |A| then the potential has a maximum at

$$x_{\text{max}} = \ln\left(\frac{B+A}{B-A}\right)$$

$$V(x_{\text{max}}) = \frac{\hbar^2}{2m} \frac{(A+B)^2}{4B}$$

The one-dimensional Schrodinger equation with the Eckart potential is analytically solvable. The resulting microcanonical tunneling factor $\kappa(E)$ is a function of the total energy of the molecular system:

$$\kappa(E) = 1 - \frac{\cosh(2\pi a - 2\pi b) + \cosh(2\pi d)}{\cosh(2\pi a + 2\pi b) + \cosh(2\pi d)}$$

where

$$2\pi a = \frac{2\sqrt{\alpha_1 \xi}}{\alpha_1^{-1/2} + \alpha_2^{-1/2}}$$

$$2\pi b = \frac{2\sqrt{|(\xi - 1)\alpha_1 + \alpha_2|}}{\alpha_1^{-1/2} + \alpha_2^{-1/2}}$$

$$2\pi d = 2\sqrt{|\alpha_1 \alpha_2 - 4\pi^2/16|}$$

$$\alpha_1 = 2\pi \frac{\Delta V_1}{h |\nu_{\rm TS}|}$$

$$\alpha_2 = 2\pi \frac{\Delta V_2}{h |\nu_{\rm TS}|}$$

$$\xi = \frac{E}{\Delta V_1}$$

 ΔV_1 and ΔV_2 are the thermal energy difference between the transition state and the reactants and products, respectively; $\nu_{\rm TS}$ is the negative frequency, h is the Planck constant.

Applying a Laplace transform gives the canonical tunneling factor as a function of temperature T (expressed as $\beta \equiv 1/k_{\rm B}T$):

$$\kappa(T) = e^{\beta \Delta V_1} \int_0^\infty \kappa(E) e^{-\beta E} dE$$

If product data is not available, then it is assumed that $\alpha_2 \approx \alpha_1$.

The Eckart correction requires information about the reactants as well as the transition state. For best results, information about the products should also be given. (The former is called the symmetric Eckart correction, the latter the asymmetric Eckart correction.) This extra information allows the Eckart correction to generally give a better result than the Wigner correction.

E0_TS

The ground-state energy of the transition state.

E0_prod

The ground-state energy of the products.

E0_reac

The ground-state energy of the reactants.

calculateTunnelingFactor($self, double\ T$) \rightarrow double

Calculate and return the value of the Eckart tunneling correction for the reaction at the temperature T in K.

calculateTunnelingFunction(self, ndarray Elist) \rightarrow ndarray

Calculate and return the value of the Eckart tunneling function for the reaction at the energies *Elist* in J/mol.

frequency

The negative frequency along the reaction coordinate.

1.6 Molecular representations (rmgpy.molecule)

The *rmgpy.molecule* subpackage contains classes and functions for working with molecular representations, particularly using chemical graph theory.

1.6.1 Graphs

Class Description		
Vertex	A generic vertex (node) in a graph	
Edge A generic edge (arc) in a graph		
Graph	A generic graph data type	

1.6.2 Graph isomorphism

Class	Description	
VF2	Graph isomorphism using the VF2 algorithm	

1.6.3 Elements and atom types

Class/Function	Description
Element A model of a chemical element	
<pre>getElement()</pre>	Return the <i>Element</i> object for a given atomic number or symbol
AtomType	A model of an atom type: an element and local bond structure
<pre>getAtomType()</pre>	Return the AtomType object for a given atom in a molecule

1.6.4 Molecules

Class	Description	
Atom	An atom in a molecule	
Bond	A bond in a molecule	
Molecule	lecule A molecular structure represented using a chemical graph	

1.6.5 Functional groups

Class	Description	
GroupAtom	An atom in a functional group	
GroupBond	d A bond in a functional group	
Group	roup A functional group structure represented using a chemical graph	

1.6.6 Molecule Utilities

Class	Description
rmgpy.molecule.resonance	Resonance structure generation methods
rmgpy.molecule.kekulize	Kekule structure generation
rmgpy.molecule.pathfinder	Resonance path enumeration
rmgpy.molecule.converter	Molecule object converter (RDKit/OpenBabel)
rmgpy.molecule.translator	Molecule string representation translator

1.6.7 Adjacency lists

Function	Description
fromAdjacencyList()	Convert an adjacency list to a set of atoms and bonds
toAdjacencyList()	Convert a set of atoms and bonds to an adjacency list

1.6.8 Symmetry numbers

Class	Description
<pre>calculateAtomSymmetryNumber()</pre>	Calculate the atom-centered symmetry number for an atom in a molecule
<pre>calculateBondSymmetryNumber()</pre>	Calculate the bond-centered symmetry number for a bond in a molecule
<pre>calculateAxisSymmetryNumber()</pre>	Calculate the axis-centered symmetry number for a double bond axis in a
	molecule
calculateCyclicSymmetryNumber	(Calculate the ring-centered symmetry number for a ring in a molecule
calculateSymmetryNumber()	Calculate the total internal + external symmetry number for a molecule

1.6.9 Molecule and reaction drawing

Class	Description
MoleculeDrawer	Draw the skeletal formula of a molecule
ReactionDrawer	Draw a chemical reaction

rmgpy.molecule.graph.Vertex

class rmgpy.molecule.graph.Vertex

A base class for vertices in a graph. Contains several connectivity values useful for accelerating isomorphism searches, as proposed by Morgan (1965).

Attribute	Type	Description
connectivity1	int	The number of nearest neighbors
connectivity2	int	The sum of the neighbors' <i>connectivity1</i> values
connectivity3	int	The sum of the neighbors' <i>connectivity2</i> values
edges	dict	Dictionary of edges with keys being neighboring vertices
sortingLabel	int	An integer label used to sort the vertices

connectivity1

'short'

Type connectivity1

connectivity2

'short'

Type connectivity2

connectivity3

'short'

Type connectivity3

$copy(self) \rightarrow Vertex$

Return a copy of the vertex. The default implementation assumes that no semantic information is associated with each vertex, and therefore simply returns a new *Vertex* object.

edges

dict

Type edges

equivalent (self, Vertex other, bool strict=True) \rightarrow bool

Return True if two vertices *self* and *other* are semantically equivalent, or False if not. You should reimplement this function in a derived class if your vertices have semantic information.

ignore

'bool'

Type ignore

$isSpecificCaseOf(self, Vertex other) \rightarrow bool$

Return True if *self* is semantically more specific than *other*, or False if not. You should reimplement this function in a derived class if your edges have semantic information.

mapping

rmgpy.molecule.graph.Vertex

Type mapping

resetConnectivityValues(self)

Reset the cached structure information for this vertex.

sortingLabel

'short'

Type sortingLabel

terminal

'bool'

Type terminal

rmgpy.molecule.graph.Edge

class rmgpy.molecule.graph.Edge(vertex1, vertex2)

A base class for edges in a graph. The vertices which comprise the edge can be accessed using the *vertex1* and *vertex2* attributes.

```
copy(self) \rightarrow Edge
```

Return a copy of the edge. The default implementation assumes that no semantic information is associated with each edge, and therefore simply returns a new *Edge* object. Note that the vertices are not copied in this implementation.

equivalent (self, Edge other) \rightarrow bool

Return True if two edges *self* and *other* are semantically equivalent, or False if not. You should reimplement this function in a derived class if your edges have semantic information.

$getOtherVertex(self, Vertex vertex) \rightarrow Vertex$

Given a vertex that makes up part of the edge, return the other vertex. Raise a ValueError if the given vertex is not part of the edge.

$isSpecificCaseOf(self, Edge\ other) \rightarrow bool$

Return True if *self* is semantically more specific than *other*, or False if not. You should reimplement this function in a derived class if your edges have semantic information.

vertex1

rmgpy.molecule.graph.Vertex

Type vertex1

vertex2

rmgpy.molecule.graph.Vertex

Type vertex2

rmgpy.molecule.graph.Graph

class rmgpy.molecule.graph.Graph(vertices=None)

A graph data type. The vertices of the graph are stored in a list *vertices*; this provides a consistent traversal order. A single edge can be accessed using the *getEdge()* method or by accessing specific vertices using vertex1.edges[vertex2]; in either case, an exception will be raised if the edge does not exist. All edges of a vertex can be accessed using the *getEdges()* method or vertex.edges.

$addEdge(self, Edge\ edge) \rightarrow Edge$

Add an *edge* to the graph. The two vertices in the edge must already exist in the graph, or a ValueError is raised.

$addVertex(self, Vertex vertex) \rightarrow Vertex$

Add a *vertex* to the graph. The vertex is initialized with no edges.

copy (*self*, *bool deep=False*) \rightarrow Graph

Create a copy of the current graph. If *deep* is True, a deep copy is made: copies of the vertices and edges are used in the new graph. If *deep* is False or not specified, a shallow copy is made: the original vertices and edges are used in the new graph.

$copyAndMap(self) \rightarrow dict$

Create a deep copy of the current graph, and return the dict 'mapping'. Method was modified from Graph.copy() method

findIsomorphism (self, Graph other, dict initialMap = None, bool saveOrder = False, bool strict = True)

Returns True if *other* is subgraph isomorphic and False otherwise, and the matching mapping. Uses the VF2 algorithm of Vento and Foggia.

Parameters

- initialMap (dict, optional) initial atom mapping to use
- **saveOrder** (*bool*, *optional*) if True, reset atom order after performing atom isomorphism
- **strict** (bool, optional) if False, perform isomorphism ignoring electrons

findSubgraphIsomorphisms (self, Graph other, dict initialMap=None, bool saveOrder=False) \rightarrow list Returns True if other is subgraph isomorphic and False otherwise. Also returns the lists all of valid mappings.

Uses the VF2 algorithm of Vento and Foggia.

getAllCycles (self, Vertex startingVertex) \rightarrow list

Given a starting vertex, returns a list of all the cycles containing that vertex.

This function returns a duplicate of each cycle because [0,1,2,3] is counted as separate from [0,3,2,1]

getAllCyclesOfSize(self, int size) \rightarrow list

Return a list of the all non-duplicate rings with length 'size'. The algorithm implements was adapted from a description by Fan, Panaye, Doucet, and Barbu (doi: 10.1021/ci00015a002)

B. T. Fan, A. Panaye, J. P. Doucet, and A. Barbu. "Ring Perception: A New Algorithm for Directly Finding the Smallest Set of Smallest Rings from a Connection Table." *J. Chem. Inf. Comput. Sci.* **33**, p. 657-662 (1993).

$getAllCyclicVertices(self) \rightarrow list$

Returns all vertices belonging to one or more cycles.

getAllEdges (self) \rightarrow list

Returns a list of all edges in the graph.

getAllPolycyclicVertices(self) \rightarrow list

Return all vertices belonging to two or more cycles, fused or spirocyclic.

getAllSimpleCyclesOfSize(self, int size) \rightarrow list

Return a list of all non-duplicate monocyclic rings with length 'size'.

Naive approach by eliminating polycyclic rings that are returned by qetAllCyclicsOfSize.

$getDisparateRings(self) \rightarrow tuple$

Get all disjoint monocyclic and polycyclic cycle clusters in the molecule. Takes the RC and recursively merges all cycles which share vertices.

Returns: monocyclic_cycles, polycyclic_cycles

$getEdge(self, Vertex vertex1, Vertex vertex2) \rightarrow Edge$

Returns the edge connecting vertices *vertex1* and *vertex2*.

getEdges (*self*, *Vertex vertex*) \rightarrow dict

Return a dictionary of the edges involving the specified *vertex*.

$getLargestRing(self, Vertex vertex) \rightarrow list$

returns the largest ring containing vertex. This is typically useful for finding the longest path in a polycyclic ring, since the polycyclic rings returned from getPolycyclicRings are not necessarily in order in the ring structure.

$\texttt{getMaxCycleOverlap}(\textit{self}) \rightarrow \text{int}$

Return the maximum number of vertices that are shared between any two cycles in the graph. For example, if there are only disparate monocycles or no cycles, the maximum overlap is zero; if there are "spiro" cycles, it is one; if there are "fused" cycles, it is two; and if there are "bridged" cycles, it is three.

$getMonocyclicRings(self) \rightarrow list$

Return a list of cycles that are monocyclic.

getPolycyclicRings (self) \rightarrow list

Return a list of cycles that are polycyclic. In other words, merge the cycles which are fused or spirocyclic into a single polycyclic cycle, and return only those cycles. Cycles which are not polycyclic are not returned.

$getRelevantCycles(self) \rightarrow list$

Returns the set of relevant cycles as a list of lists. Uses RingDecomposerLib for ring perception.

Kolodzik, A.; Urbaczek, S.; Rarey, M. Unique Ring Families: A Chemically Meaningful Description of Molecular Ring Topologies. J. Chem. Inf. Model., 2012, 52 (8), pp 2013-2021

Flachsenberg, F.; Andresen, N.; Rarey, M. RingDecomposerLib: An Open-Source Implementation of Unique Ring Families and Other Cycle Bases. J. Chem. Inf. Model., 2017, 57 (2), pp 122-126

$getSmallestSetOfSmallestRings(self) \rightarrow list$

Returns the smallest set of smallest rings as a list of lists. Uses RingDecomposerLib for ring perception.

Kolodzik, A.; Urbaczek, S.; Rarey, M. Unique Ring Families: A Chemically Meaningful Description of Molecular Ring Topologies. J. Chem. Inf. Model., 2012, 52 (8), pp 2013-2021

Flachsenberg, F.; Andresen, N.; Rarey, M. RingDecomposerLib: An Open-Source Implementation of Unique Ring Families and Other Cycle Bases. J. Chem. Inf. Model., 2017, 57 (2), pp 122-126

$get_edges_in_cycle(self, list vertices, bool sort=False) \rightarrow list$

For a given list of atoms comprising a ring, return the set of bonds connecting them, in order around the ring.

If *sort=True*, then sort the vertices to match their connectivity. Otherwise, assumes that they are already sorted, which is true for cycles returned by getRelevantCycles or getSmallestSetOfSmallestRings.

hasEdge(self, $Vertex\ vertex1$, $Vertex\ vertex2$) \rightarrow bool

Returns True if vertices *vertex1* and *vertex2* are connected by an edge, or False if not.

hasVertex (self, $Vertex \ vertex$) \rightarrow bool

Returns True if *vertex* is a vertex in the graph, or False if not.

$isCyclic(self) \rightarrow bool$

Return True if one or more cycles are present in the graph or False otherwise.

$isEdgeInCycle(self, Edge\ edge) \rightarrow bool$

Return True if the edge between vertices *vertex1* and *vertex2* is in one or more cycles in the graph, or False if not.

$\textbf{isIsomorphic} (\textit{self}, \textit{Graph other}, \textit{dict initialMap=None}, \textit{bool saveOrder=False}, \textit{bool strict=True}) \rightarrow \\$

Returns True if two graphs are isomorphic and False otherwise. Uses the VF2 algorithm of Vento and Foggia.

Parameters

- initialMap (dict, optional) initial atom mapping to use
- **saveOrder** (*bool*, *optional*) if True, reset atom order after performing atom isomorphism
- **strict** (bool, optional) if False, perform isomorphism ignoring electrons

isMappingValid (self, Graph other, dict mapping, bool equivalent=True, bool strict=True) \rightarrow bool

Check that a proposed *mapping* of vertices from *self* to *other* is valid by checking that the vertices and edges involved in the mapping are mutually equivalent. If equivalent is True it checks if atoms and edges are equivalent, if False it checks if they are specific cases of each other. If strict is True, electrons and bond orders are considered, and ignored if False.

isSubgraphIsomorphic (self, Graph other, dict initialMap=None, bool saveOrder=False) \rightarrow bool

Returns True if *other* is subgraph isomorphic and False otherwise. Uses the VF2 algorithm of Vento and Foggia.

$isVertexInCycle(self, Vertex vertex) \rightarrow bool$

Return True if the given vertex is contained in one or more cycles in the graph, or False if not.

$merge(self, Graph \ other) \rightarrow Graph$

Merge two graphs so as to store them in a single Graph object.

ordered_vertices

list

Type ordered_vertices

removeEdge(self, Edge edge)

Remove the specified *edge* from the graph. Does not remove vertices that no longer have any edges as a result of this removal.

removeVertex (self, Vertex vertex)

Remove *vertex* and all edges associated with it from the graph. Does not remove vertices that no longer have any edges as a result of this removal.

resetConnectivityValues(self)

Reset any cached connectivity information. Call this method when you have modified the graph.

restore_vertex_order(self)

reorder the vertices to what they were before sorting if you saved the order

sortVertices(self, bool saveOrder=False)

Sort the vertices in the graph. This can make certain operations, e.g. the isomorphism functions, much more efficient.

$split(self) \rightarrow list$

Convert a single Graph object containing two or more unconnected graphs into separate graphs.

updateConnectivityValues(self)

Update the connectivity values for each vertex in the graph. These are used to accelerate the isomorphism checking.

vertices

list.

Type vertices

rmgpy.molecule.vf2.VF2

class rmgpy.molecule.vf2.**VF2**(graphA=None, graphB=None)

An implementation of the second version of the Vento-Foggia (VF2) algorithm for graph and subgraph isomorphism.

feasible(self, $Vertex\ vertex1$, $Vertex\ vertex2$) \rightarrow bool

Return True if vertex *vertex1* from the first graph is a feasible match for vertex *vertex2* from the second graph, or False if not. The semantic and structural relationship of the vertices is evaluated, including several structural "look-aheads" that cheaply eliminate many otherwise feasible pairs.

findIsomorphism(self, Graph graph1, Graph graph2, dict initialMapping, bool saveOrder=False, bool strict=True) \rightarrow list

Return a list of dicts of all valid isomorphism mappings from graph *graph1* to graph *graph2* with the optional initial mapping *initialMapping*. If no valid isomorphisms are found, an empty list is returned.

findSubgraphIsomorphisms(self, Graph graph1, Graph graph2, dict initialMapping, bool save-Order=False) \rightarrow list

Return a list of dicts of all valid subgraph isomorphism mappings from graph *graph1* to subgraph *graph2* with the optional initial mapping *initialMapping*. If no valid subgraph isomorphisms are found, an empty list is returned.

isIsomorphic(self, Graph graph1, Graph graph2, dict initialMapping, bool saveOrder=False, bool strict=True) \rightarrow bool

Return True if graph *graph1* is isomorphic to graph *graph2* with the optional initial mapping *initialMapping*, or False otherwise.

isSubgraphIsomorphic(self, Graph graph1, Graph graph2, dict initialMapping, bool save-Order=False) \rightarrow bool

Return True if graph *graph1* is subgraph isomorphic to subgraph *graph2* with the optional initial mapping *initialMapping*, or False otherwise.

rmgpy.molecule.Element

class rmgpy.molecule.**Element**(*number*, *symbol*, *name*, *mass*, *isotope=-1*, *chemkinName=None*) A chemical element. The attributes are:

Attribute	Type	Description
number	int	The atomic number of the element
symbol	str	The symbol used for the element
name	str	The IUPAC name of the element
mass	float	The mass of the element in kg/mol
covRadius	float	Covalent bond radius in Angstrom
isotope	int	The isotope integer of the element
chemkinName	str	The chemkin compatible representation of the element

This class is specifically for properties that all atoms of the same element share. Ideally there is only one instance of this class for each element.

```
chemkinName
    str
         Type chemkinName
covRadius
     'float'
         Type covRadius
isotope
     'int'
         Type isotope
mass
     'float'
         Type mass
name
     str
         Type name
number
     'int'
         Type number
symbol
    str
         Type symbol
```

rmgpy.molecule.getElement(value, int isotope=-1) \rightarrow Element

Return the *Element* object corresponding to the given parameter *value*. If an integer is provided, the value is treated as the atomic number. If a string is provided, the value is treated as the symbol. An ElementError is raised if no matching element is found.

rmgpy.molecule.AtomType

```
class rmgpy.molecule.AtomType(label=", generic=None, specific=None, single=None, allDouble=None, rDouble=None, oDouble=None, sDouble=None, triple=None, quadruple=None, benzene=None, lonePairs=None, charge=None)
```

A class for internal representation of atom types. Using unique objects rather than strings allows us to use fast pointer comparisons instead of slow string comparisons, as well as store extra metadata. In particular, we store

metadata describing the atom type's hierarchy with regard to other atom types, and the atom types that can result when various actions involving this atom type are taken. The attributes are:

Attribute	Туре	Description
label	str	A unique label for the atom type
generic	list	The atom types that are more generic than this one
specific	list	The atom types that are more specific than this one
incrementBond	list	The atom type(s) that result when an adjacent
		bond's order is incremented
decrementBond	list	The atom type(s) that result when an adjacent
		bond's order is decremented
formBond	list	The atom type(s) that result when a new single bond
		is formed to this atom type
breakBond	list	The atom type(s) that result when an existing single
		bond to this atom type is broken
incrementRadical	list	The atom type(s) that result when the number of
		radical electrons is incremented
decrementRadical	list	The atom type(s) that result when the number of
		radical electrons is decremented
incrementLonePair	list	The atom type(s) that result when the number of
		lone electron pairs is incremented
decrementLonePair	list	The atom type(s) that result when the number of
		lone electron pairs is decremented
	re what are required in a give	en atomtype. Any int in the list is acceptable. An empty
list is a wildcard		
'single'	''list''	The total number of single bonds on the atom
'allDouble'	''list''	The total number of double bonds on the atom
'rDouble'	''list''	The number of double bonds to any non-oxygen,
		nonsulfur
'oDouble'	''list''	The number of double bonds to oxygen
'sDouble'	''list''	The number of double bonds to sulfur
'triple'	''list''	The total number of triple bonds on the atom
'quadruple'	''list''	The total number of quadruple bonds on the atom
'benzene'	''list''	The total number of benzene bonds on the atom
'lonePairs'	''list''	The number of lone pairs on the atom
'charge'	''list''	The partial charge of the atom

allDouble

list

Type allDouble

benzene

list

Type benzene

breakBond

list

Type breakBond

charge

list

Type charge

decrementBond

list

Type decrementBond

decrementLonePair

list

Type decrementLonePair

decrementRadical

list

Type decrementRadical

equivalent($self, AtomType \ other$) \rightarrow bool

Returns True if two atom types *atomType1* and *atomType2* are equivalent or False otherwise. This function respects wildcards, e.g. R!H is equivalent to C.

formBond

list

Type formBond

generic

list

Type generic

$getFeatures(self) \rightarrow list$

Returns a list of the features that are checked to determine atomtype

incrementBond

list

Type incrementBond

incrementLonePair

list

Type incrementLonePair

incrementRadical

list

Type incrementRadical

$isSpecificCaseOf(self, AtomType other) \rightarrow bool$

Returns True if atom type *atomType1* is a specific case of atom type *atomType2* or False otherwise.

label

str

Type label

lonePairs

list

Type lonePairs

oDouble

list

Type oDouble

```
quadruple
                                     list
                                                                     Type quadruple
 rDouble
                                     list
                                                                     Type rDouble
sDouble
                                     list
                                                                     Type sDouble
setActions (self, incrementBond, decrementBond, formBond, breakBond, incrementRadical, decrementBond, decrementBond, decrementBond, breakBond, incrementBond, decrementBond, decrementBond, decrementBond, breakBond, incrementBond, decrementBond, decrementBond, breakBond, incrementBond, decrementBond, 
                                                                                                     tRadical, incrementLonePair, decrementLonePair)
single
                                     list
                                                                     Type single
specific
                                     list
                                                                     Type specific
triple
                                     list
                                                                     Type triple
```

rmgpy.molecule.getAtomType(atom, dict bonds) \rightarrow AtomType

Determine the appropriate atom type for an *Atom* object *atom* with local bond structure *bonds*, a dict containing atom-bond pairs.

The atom type of an atom describes the atom itself and (often) something about the local bond structure around that atom. This is a useful semantic tool for accelerating graph isomorphism queries, and a useful shorthand when specifying molecular substructure patterns via an RMG-style adjacency list.

We define the following basic atom types:

Atom type	Description
General atom types	
R	any atom with any local bond structure
R!H	any non-hydrogen atom with any local bond structure
Hydrogen atom types	
Н	hydrogen atom with up to one single bond
Carbon atom types	
С	carbon atom with any local bond structure
Ca	carbon atom with two lone pairs and no bonds
Cs	carbon atom with up to four single bonds
Csc	charged carbon atom with up to three single bonds
Cd	carbon atom with one double bond (not to O or S) and up to two single bon
Cdc	charged carbon atom with one double bond and up to one single bond
CO	carbon atom with one double bond to oxygen and up to two single bonds
CS	carbon atom with one double bond to sulfur and up to two single bonds
Cdd	carbon atom with two double bonds
Ct	carbon atom with one triple bond and up to one single bond

Table 2 – continued from previous page

Cb	Description
	carbon atom with up to two benzene bonds and up to one single bond
Cbf	carbon atom with three benzene bonds
C2s	carbon atom with one lone pair (valance 2) and up to two single bonds
C2sc	charged carbon atom with one lone pair (valance 2) and up to three single b
C2d	carbon atom with one lone pair (valance 2) and one double bond
C2dc	charged carbon atom with one lone pair (valance 2), one double bond and u
C2tc	charged carbon atom with one lone pair (valance 2), one triple bond
Nitrogen atom types	
N	nitrogen atom with any local bond structure
N0sc	charged nitrogen atom with three lone pairs (valance 0) with up to one sing
N1s	nitrogen atom with two lone pairs (valance 1) and up to one single bond
N1sc	charged nitrogen atom with two lone pairs (valance 1) up to two single bone
N1dc	charged nitrogen atom with two lone pairs (valance 1), one double bond
N3s	nitrogen atom with one lone pair (valance 3) with up to three single bonds
N3d	nitrogen atom with one lone pair (valance 3), one double bond and up to on
N3t	nitrogen atom with one lone pair (valance 3) and one triple bond
N3b	nitrogen atom with one lone pair (valance 3) and two benzene bonds
N5sc	charged nitrogen atom with no lone pairs (valance 5) with up to four single
N5dc	charged nitrogen atom with no lone pairs (valance 5), one double bond and
N5ddc	charged nitrogen atom with with no lone pairs (valance 5) and two double b
N5dddc	charged nitrogen atom with with no lone pairs (valance 5) and three double
N5tc	charged nitrogen atom with with no lone pairs (valance 5), one triple bond a
N5b	nitrogen atom with with no lone pairs (valance 5) and two benzene bonds (or
N5bd	nitrogen atom with with no lone pairs (valance 5), two benzene bonds, and
Oxygen atom types	
0	oxygen atom with any local bond structure
0a	oxygen atom with three lone pairs and no bonds
0000	aborged average with three lone pairs (valence 0) and up to one single band
00sc	charged oxygen with three lone pairs (valance 0) and up to one single bond
00dc	charged oxygen atom with three lone pairs (valance 0) and one double bond
00dc 02s	charged oxygen atom with three lone pairs (valance 0) and one double bond oxygen atom with two lone pairs (valance 2) and up to two single bonds
00dc 02s 02sc	charged oxygen atom with three lone pairs (valance 0) and one double bond oxygen atom with two lone pairs (valance 2) and up to two single bonds charged oxygen atom with two lone pairs (valance 2) and up to one single bonds
00dc 02s 02sc 02d	charged oxygen atom with three lone pairs (valance 0) and one double bond oxygen atom with two lone pairs (valance 2) and up to two single bonds charged oxygen atom with two lone pairs (valance 2) and up to one single boxygen atom with two lone pairs (valance 2) and one double bond
00dc 02s 02sc 02d 04sc	charged oxygen atom with three lone pairs (valance 0) and one double bond oxygen atom with two lone pairs (valance 2) and up to two single bonds charged oxygen atom with two lone pairs (valance 2) and up to one single boxygen atom with two lone pairs (valance 2) and one doubel bond charged oxygen atom with one one pair (valance 4) and up to three single bond
00dc 02s 02sc 02d 04sc 04dc	charged oxygen atom with three lone pairs (valance 0) and one double bond oxygen atom with two lone pairs (valance 2) and up to two single bonds charged oxygen atom with two lone pairs (valance 2) and up to one single boxygen atom with two lone pairs (valance 2) and one double bond charged oxygen atom with one one pair (valance 4) and up to three single both charged oxygen atom with one one pair (valance 4), one double bond and up to three single both charged oxygen atom with one one pair (valance 4), one double bond and up to three single both charged oxygen atom with one one pair (valance 4), one double bond and up to three single both charged oxygen atom with one one pair (valance 4), one double bond and up to three single both charged oxygen atom with one one pair (valance 4).
00dc 02s 02sc 02d 04sc 04dc 04tc	charged oxygen atom with three lone pairs (valance 0) and one double bond oxygen atom with two lone pairs (valance 2) and up to two single bonds charged oxygen atom with two lone pairs (valance 2) and up to one single boxygen atom with two lone pairs (valance 2) and one double bond charged oxygen atom with one one pair (valance 4) and up to three single box charged oxygen atom with one one pair (valance 4), one double bond and up charged oxygen atom with one one pair (valance 4) and one triple bond
00dc 02s 02sc 02d 04sc 04dc 04tc 04b	charged oxygen atom with three lone pairs (valance 0) and one double bond oxygen atom with two lone pairs (valance 2) and up to two single bonds charged oxygen atom with two lone pairs (valance 2) and up to one single boxygen atom with two lone pairs (valance 2) and one double bond charged oxygen atom with one one pair (valance 4) and up to three single both charged oxygen atom with one one pair (valance 4), one double bond and up to three single both charged oxygen atom with one one pair (valance 4), one double bond and up to three single both charged oxygen atom with one one pair (valance 4), one double bond and up to three single both charged oxygen atom with one one pair (valance 4), one double bond and up to three single both charged oxygen atom with one one pair (valance 4).
00dc 02s 02sc 02d 04sc 04dc 04tc 04b Silicon atom types	charged oxygen atom with three lone pairs (valance 0) and one double bond oxygen atom with two lone pairs (valance 2) and up to two single bonds charged oxygen atom with two lone pairs (valance 2) and up to one single boxygen atom with two lone pairs (valance 2) and one double bond charged oxygen atom with one one pair (valance 4) and up to three single box charged oxygen atom with one one pair (valance 4), one double bond and up charged oxygen atom with one one pair (valance 4) and one triple bond oxygen atom with one one pair (valance 4) and and two benzene bonds
00dc 02s 02sc 02d 04sc 04dc 04tc 04b Silicon atom types Si	charged oxygen atom with three lone pairs (valance 0) and one double bond oxygen atom with two lone pairs (valance 2) and up to two single bonds charged oxygen atom with two lone pairs (valance 2) and up to one single boxygen atom with two lone pairs (valance 2) and one double bond charged oxygen atom with one one pair (valance 4) and up to three single box charged oxygen atom with one one pair (valance 4), one double bond and up to charged oxygen atom with one one pair (valance 4) and one triple bond oxygen atom with one one pair (valance 4) and and two benzene bonds silicon atom with any local bond structure
00dc 02s 02sc 02d 04sc 04dc 04tc 04b Silicon atom types Si	charged oxygen atom with three lone pairs (valance 0) and one double bond oxygen atom with two lone pairs (valance 2) and up to two single bonds charged oxygen atom with two lone pairs (valance 2) and up to one single boxygen atom with two lone pairs (valance 2) and one doubel bond charged oxygen atom with one one pair (valance 4) and up to three single box charged oxygen atom with one one pair (valance 4), one double bond and up charged oxygen atom with one one pair (valance 4) and one triple bond oxygen atom with one one pair (valance 4) and and two benzene bonds silicon atom with any local bond structure silicon atom with four single bonds
00dc 02s 02sc 02d 04sc 04dc 04tc 04b Silicon atom types Si Sis	charged oxygen atom with three lone pairs (valance 0) and one double bond oxygen atom with two lone pairs (valance 2) and up to two single bonds charged oxygen atom with two lone pairs (valance 2) and up to one single boxygen atom with two lone pairs (valance 2) and one double bond charged oxygen atom with one one pair (valance 4) and up to three single box charged oxygen atom with one one pair (valance 4), one double bond and up to charged oxygen atom with one one pair (valance 4) and one triple bond oxygen atom with one one pair (valance 4) and one triple bond oxygen atom with one one pair (valance 4) and and two benzene bonds silicon atom with any local bond structure silicon atom with one double bond (to carbon) and two single bonds
00dc 02s 02sc 02d 04sc 04dc 04tc 04b Silicon atom types Si SiS	charged oxygen atom with three lone pairs (valance 0) and one double bond oxygen atom with two lone pairs (valance 2) and up to two single bonds charged oxygen atom with two lone pairs (valance 2) and up to one single boxygen atom with two lone pairs (valance 2) and one double bond charged oxygen atom with one one pair (valance 4) and up to three single boxygen atom with one one pair (valance 4), one double bond and upoxygen atom with one one pair (valance 4), one double bond and upoxygen atom with one one pair (valance 4) and one triple bond oxygen atom with one one pair (valance 4) and and two benzene bonds silicon atom with any local bond structure silicon atom with one double bond (to carbon) and two single bonds silicon atom with one double bond (to oxygen) and two single bonds
00dc 02s 02sc 02d 04sc 04dc 04tc 04b Silicon atom types Si Sis Sis Sid Si0	charged oxygen atom with three lone pairs (valance 0) and one double bond oxygen atom with two lone pairs (valance 2) and up to two single bonds charged oxygen atom with two lone pairs (valance 2) and up to one single boxygen atom with two lone pairs (valance 2) and one double bond charged oxygen atom with one one pair (valance 4) and up to three single boxygen atom with one one pair (valance 4), one double bond and upoxygen atom with one one pair (valance 4) and one triple bond oxygen atom with one one pair (valance 4) and and two benzene bonds silicon atom with any local bond structure silicon atom with one double bond (to carbon) and two single bonds silicon atom with one double bond (to oxygen) and two single bonds silicon atom with two double bonds
00dc 02s 02sc 02d 04sc 04dc 04tc 04b Silicon atom types Si Sis Sis Sid Si0 Sidd	charged oxygen atom with three lone pairs (valance 0) and one double bond oxygen atom with two lone pairs (valance 2) and up to two single bonds charged oxygen atom with two lone pairs (valance 2) and up to one single boxygen atom with two lone pairs (valance 2) and one double bond charged oxygen atom with one one pair (valance 4) and up to three single boxygen atom with one one pair (valance 4), one double bond and upoxygen atom with one one pair (valance 4) and one triple bond oxygen atom with one one pair (valance 4) and and two benzene bonds silicon atom with any local bond structure silicon atom with one double bond (to carbon) and two single bonds silicon atom with one double bond (to oxygen) and two single bonds silicon atom with two double bonds silicon atom with one triple bond and one single bond
00dc 02s 02sc 02d 04sc 04dc 04tc 04tc 04b Silicon atom types Si Sis Sis Sid Si0 Sidd Sit	charged oxygen atom with three lone pairs (valance 0) and one double bond oxygen atom with two lone pairs (valance 2) and up to two single bonds charged oxygen atom with two lone pairs (valance 2) and up to one single boxygen atom with two lone pairs (valance 2) and one double bond charged oxygen atom with one one pair (valance 4) and up to three single box charged oxygen atom with one one pair (valance 4), one double bond and upont charged oxygen atom with one one pair (valance 4) and one triple bond oxygen atom with one one pair (valance 4) and and two benzene bonds silicon atom with any local bond structure silicon atom with one double bond (to carbon) and two single bonds silicon atom with one double bond (to oxygen) and two single bonds silicon atom with two double bonds silicon atom with one triple bond and one single bond silicon atom with two benzene bonds and one single bond
00dc 02s 02sc 02d 04sc 04dc 04tc 04b Silicon atom types Si SiS Sid Sid Si0 Sidd Sit Sib	charged oxygen atom with three lone pairs (valance 0) and one double bond oxygen atom with two lone pairs (valance 2) and up to two single bonds charged oxygen atom with two lone pairs (valance 2) and up to one single boxygen atom with two lone pairs (valance 2) and one double bond charged oxygen atom with one one pair (valance 4) and up to three single boxygen atom with one one pair (valance 4), one double bond and upoxygen atom with one one pair (valance 4) and one triple bond oxygen atom with one one pair (valance 4) and and two benzene bonds silicon atom with any local bond structure silicon atom with one double bond (to carbon) and two single bonds silicon atom with one double bond (to oxygen) and two single bonds silicon atom with two double bonds silicon atom with one triple bond and one single bond
00dc 02s 02sc 02d 04sc 04dc 04tc 04tc Silicon atom types Si SiS Sid Sid Si0 Sidd Sit Sib Sibf Sulfur atom types	charged oxygen atom with three lone pairs (valance 0) and one double bond oxygen atom with two lone pairs (valance 2) and up to two single bonds charged oxygen atom with two lone pairs (valance 2) and up to one single boxygen atom with two lone pairs (valance 2) and one double bond charged oxygen atom with one one pair (valance 4) and up to three single boxygen atom with one one pair (valance 4), one double bond and upoxygen atom with one one pair (valance 4) and one triple bond oxygen atom with one one pair (valance 4) and and two benzene bonds silicon atom with any local bond structure silicon atom with one double bond (to carbon) and two single bonds silicon atom with one double bond (to oxygen) and two single bonds silicon atom with one triple bond and one single bond silicon atom with two double bonds and one single bond silicon atom with two benzene bonds and one single bond silicon atom with three benzene bonds
00dc 02s 02sc 02d 04sc 04dc 04tc 04b Silicon atom types Si Sis Sis Sid Si0 Sidd Sit Sib Sibf Sulfur atom types S	charged oxygen atom with three lone pairs (valance 0) and one double bond oxygen atom with two lone pairs (valance 2) and up to two single bonds charged oxygen atom with two lone pairs (valance 2) and up to one single boxygen atom with two lone pairs (valance 2) and one double bond charged oxygen atom with one one pair (valance 4) and up to three single boxygen atom with one one pair (valance 4), one double bond and upoxygen atom with one one pair (valance 4) and one triple bond oxygen atom with one one pair (valance 4) and and two benzene bonds silicon atom with any local bond structure silicon atom with one double bond (to carbon) and two single bonds silicon atom with one double bond (to oxygen) and two single bonds silicon atom with one triple bond and one single bond silicon atom with two double bonds and one single bond silicon atom with two benzene bonds and one single bond silicon atom with three benzene bonds
00dc 02s 02sc 02d 04sc 04dc 04tc 04tc Silicon atom types Si SiS Sid Sid Si0 Sidd Sit Sib Sibf Sulfur atom types	charged oxygen atom with three lone pairs (valance 0) and one double bond oxygen atom with two lone pairs (valance 2) and up to two single bonds charged oxygen atom with two lone pairs (valance 2) and up to one single boxygen atom with two lone pairs (valance 2) and one double bond charged oxygen atom with one one pair (valance 4) and up to three single boxygen atom with one one pair (valance 4), one double bond and upoxygen atom with one one pair (valance 4) and one triple bond oxygen atom with one one pair (valance 4) and and two benzene bonds silicon atom with any local bond structure silicon atom with one double bond (to carbon) and two single bonds silicon atom with one double bond (to oxygen) and two single bonds silicon atom with one triple bond and one single bond silicon atom with two double bonds and one single bond silicon atom with two benzene bonds and one single bond silicon atom with three benzene bonds

Table 2 – continued from previous page

S2s S2sc	sulfur atom with two lone pairs (valance 2) and up to two single bonds charged sulfur atom with two lone pairs (valance 2) and up to three single b
S2sc	charged sulfur atom with two lone pairs (valance 2) and up to three single b
S2d	sulfur atom with two lone pairs (valance 2) and one double bond
S2dc	charged sulfur atom with two lone pairs (valance 2), one double bond and u
S2tc	charged sulfur atom with two lone pairs (valance 2) and one triple bond
S4s	sulfur atom with one lone pair (valance 4) and up to four single bonds
S4sc	charged sulfur atom with one lone pair (valance 4) and up to five single bor
S4d	sulfur atom with one lone pair (valance 4), one double bond and up to two s
S4dd	sulfur atom with one lone pair (valance 4) and two double bonds
S4dc	charged sulfur atom with one lone pair (valance 4), one to three double bon
S4b	sulfur atom with one lone pair (valance 4) and two benzene bonds (one of t
S4t	sulfur atom with one lone pair (valance 4), one triple bond and up to one si
S4tdc	charged sulfur atom with one lone pair (valance 4) one to two triple bonds,
S6s	sulfur atom with no lone pairs (valance 6) and up to six single bonds
S6sc	charged sulfur atom with no lone pairs (valance 6) and up to seven single be
S6d	sulfur atom with no lone pairs (valance 6), one double bond and up to four
S6dd	sulfur atom with no lone pairs (valance 6), two double bonds and up to two
S6ddd	sulfur atom with no lone pairs (valance 6) and three double bonds
S6dc	charged sulfur atom with no lone pairs (valance 6), one to three double bon
S6t	sulfur atom with no lone pairs (valance 6), one triple bond and up to three s
S6td	sulfur atom with no lone pairs (valance 6), one triple bond, one double bond
S6tt	sulfur atom with no lone pairs (valance 6) and two triple bonds
S6tdc	charged sulfur atom with no lone pairs (valance 6), one to two triple bonds,
Chlorine atom types	
Cl	chlorine atom with any local bond structure
Cl1s	chlorine atom with three lone pairs and zero to one single bonds
Iodine atom types	
I	iodine atom with any local bond structure
I1s	iodine atom with three lone pairs and zero to one single bonds
Fluorine atom types	
F	fluorine atom with any local bond structure
F1s	fluorine atom with three lone pairs and zero to one single bonds

Reaction recipes

A reaction recipe is a procedure for applying a reaction to a set of chemical species. Each reaction recipe is made up of a set of actions that, when applied sequentially, a set of chemical reactants to chemical products via that reaction's characteristic chemical process. Each action requires a small set of parameters in order to be fully defined.

We define the following reaction recipe actions:

Action	Arguments	Action
name		
CHANGE_BO	MDnter1, order,	change the bond order of the bond between <i>center1</i> and <i>center2</i> by
	center2	order; do not break or form bonds
FORM_BON	Ocenter1, order,	form a new bond between center1 and center2 of type order
	center2	
BREAK_BON	Denter1, order,	break the bond between center1 and center2, which should be of
	center2	type order
GAIN_RADIO	C Ad nter, radical	increase the number of free electrons on center by radical
LOSE_RADIO	C Ad nter, radical	decrease the number of free electrons on center by radical

rmgpy.molecule.Atom

class rmgpy.molecule.Atom(element=None, radicalElectrons=0, charge=0, label=", lonePairs=-100, coords=numpy.array([]), id=-1, props=None)

An atom. The attributes are:

Attribute	Туре	Description
atomType	AtomType	The atom type
element	Element	The chemical element the atom represents
radicalElectrons	short	The number of radical electrons
charge	short	The formal charge of the atom
label	str	A string label that can be used to tag individual atoms
coords	numpy array	The (x,y,z) coordinates in Angstrom
lonePairs	short	The number of lone electron pairs
id	int	Number assignment for atom tracking purposes
bonds	dict	Dictionary of bond objects with keys being neighboring atoms
props	dict	Dictionary for storing additional atom properties
mass	int	atomic mass of element (read only)
number	int	atomic number of element (read only)
symbol	str	atomic symbol of element (read only)

Additionally, the mass, number, and symbol attributes of the atom's element can be read (but not written) directly from the atom object, e.g. atom.symbol instead of atom.element.symbol.

applyAction(self, action)

Update the atom pattern as a result of applying *action*, a tuple containing the name of the reaction recipe action along with any required parameters. The available actions can be found *here*.

atomType

rmgpy. molecule. atom type. Atom Type

Type atomType

charge

'short'

Type charge

connectivity1

'short'

Type connectivity1

connectivity2

'short'

Type connectivity2

connectivity3

'short'

Type connectivity3

coords

numpy.ndarray

Type coords

$copy(self) \rightarrow Vertex$

Generate a deep copy of the current atom. Modifying the attributes of the copy will not affect the original.

decrementLonePairs(self)

Update the lone electron pairs pattern as a result of applying a LOSE_PAIR action.

decrementRadical(self)

Update the atom pattern as a result of applying a LOSE_RADICAL action, where *radical* specifies the number of radical electrons to remove.

edges

dict

Type edges

element

rmgpy.molecule.element.Element

Type element

equivalent (self, Vertex other, bool strict=True) \rightarrow bool

Return True if *other* is indistinguishable from this atom, or False otherwise. If *other* is an *Atom* object, then all attributes except *label* and 'ID' must match exactly. If *other* is an *GroupAtom* object, then the atom must match any of the combinations in the atom pattern. If strict is False, then only the element is compared and electrons are ignored.

getBondOrdersForAtom(self)

This helper function is to help calculate total bond orders for an input atom.

Some special consideration for the order B bond. For atoms having three B bonds, the order for each is 4/3.0, while for atoms having other than three B bonds, the order for each is 3/2.0

get_descriptor(self)

Return a tuple used for sorting atoms. Currently uses atomic number, connectivity value, radical electrons, lone pairs, and charge

id

'int'

Type id

ignore

'bool'

Type ignore

incrementLonePairs(self)

Update the lone electron pairs pattern as a result of applying a GAIN PAIR action.

incrementRadical(self)

Update the atom pattern as a result of applying a GAIN_RADICAL action, where *radical* specifies the number of radical electrons to add.

$isCarbon(self) \rightarrow bool$

Return True if the atom represents a carbon atom or False if not.

$isChlorine(self) \rightarrow bool$

Return True if the atom represents a chlorine atom or False if not.

$isFluorine(self) \rightarrow bool$

Return True if the atom represents a fluorine atom or False if not.

$isHydrogen(self) \rightarrow bool$

Return True if the atom represents a hydrogen atom or False if not.

isIodine(self) \rightarrow bool

Return True if the atom represents an iodine atom or False if not.

$isNOS(self) \rightarrow bool$

Return True if the atom represent either nitrogen, sulfur, or oxygen False if it does not.

isNitrogen(self)

Return True if the atom represents a nitrogen atom or False if not.

$isNonHydrogen(self) \rightarrow bool$

Return True if the atom does not represent a hydrogen atom or False if it does.

$isOxygen(self) \rightarrow bool$

Return True if the atom represents an oxygen atom or False if not.

isSilicon(self) \rightarrow bool

Return True if the atom represents a silicon atom or False if not.

$isSpecificCaseOf(self, Vertex other) \rightarrow bool$

Return True if *self* is a specific case of *other*, or False otherwise. If *other* is an *Atom* object, then this is the same as the *equivalent()* method. If *other* is an *GroupAtom* object, then the atom must match or be more specific than any of the combinations in the atom pattern.

$isSulfur(self) \rightarrow bool$

Return True if the atom represents a sulfur atom or False if not.

isSurfaceSite(self) \rightarrow bool

Return True if the atom represents a surface site or False if not.

label

str

Type label

lonePairs

'short'

Type lonePairs

mapping

rmgpy.molecule.graph.Vertex

Type mapping

props

dict

Type props

radicalElectrons

'short'

Type radicalElectrons

resetConnectivityValues(self)

Reset the cached structure information for this vertex.

setLonePairs(self, int lonePairs)

Set the number of lone electron pairs.

sortingLabel

'short'

Type sortingLabel

terminal

'bool'

Type terminal

updateCharge(self)

Update self.charge, according to the valence, and the number and types of bonds, radicals, and lone pairs.

rmgpy.molecule.Bond

class rmgpy.molecule.Bond(atom1, atom2, order=1)

A chemical bond. The attributes are:

Attribute	Туре	Description
order	float	The bond type
atom1	Atom	An Atom object connecting to the bond
atom2	Atom	An Atom object connecting to the bond

applyAction(self, action)

Update the bond as a result of applying *action*, a tuple containing the name of the reaction recipe action along with any required parameters. The available actions can be found *here*.

$$copy(self) \rightarrow Edge$$

Generate a deep copy of the current bond. Modifying the attributes of the copy will not affect the original.

decrementOrder(self)

Update the bond as a result of applying a CHANGE_BOND action to decrease the order by one.

equivalent(self, Edge other) \rightarrow bool

Return True if *other* is indistinguishable from this bond, or False otherwise. *other* can be either a *Bond* or a *GroupBond* object.

getBDE(self)

estimate the bond dissociation energy in J/mol of the bond based on the order of the bond and the atoms involved in the bond

$getOrderNum(self) \rightarrow float$

returns the bond order as a number

$getOrderStr(self) \rightarrow str$

returns a string representing the bond order

getOtherVertex (self, $Vertex\ vertex$) \rightarrow Vertex

Given a vertex that makes up part of the edge, return the other vertex. Raise a ValueError if the given vertex is not part of the edge.

$get_bond_string(self) \rightarrow str$

Represent the bond object as a string (eg. 'C#N'). The returned string is independent of the atom ordering, with the atom labels in alphabetical order (i.e. 'C-H' is possible but not 'H-C') :return: str

incrementOrder(self)

Update the bond as a result of applying a CHANGE_BOND action to increase the order by one.

isBenzene(self) \rightarrow bool

Return True if the bond represents a benzene bond or False if not.

isDouble(self) \rightarrow bool

Return True if the bond represents a double bond or False if not.

isHydrogenBond(self)

Return True if the bond represents a hydrogen bond or False if not.

isOrder(self, float otherOrder) \rightarrow bool

Return True if the bond is of order otherOrder or False if not. This compares floats that takes into account floating point error

NOTE: we can replace the absolute value relation with math is close when we swtich to python 3.5+

$isQuadruple(self) \rightarrow bool$

Return True if the bond represents a quadruple bond or False if not.

$isSingle(self) \rightarrow bool$

Return True if the bond represents a single bond or False if not.

$isSpecificCaseOf(self, Edge\ other) \rightarrow bool$

Return True if *self* is a specific case of *other*, or False otherwise. *other* can be either a *Bond* or a *GroupBond* object.

$isTriple(self) \rightarrow bool$

Return True if the bond represents a triple bond or False if not.

$isVanDerWaals(self) \rightarrow bool$

Return True if the bond represents a van der Waals bond or False if not.

order

'float'

Type order

setOrderNum(self, float newOrder)

change the bond order with a number

setOrderStr(self, str newOrder)

set the bond order using a valid bond-order character

vertex1

rmgpy.molecule.graph.Vertex

Type vertex1

vertex2

rmgpy.molecule.graph.Vertex

Type vertex2

Bond types

The bond type simply indicates the order of a chemical bond. We define the following bond types:

Bond type	Description
S	a single bond
D	a double bond
Т	a triple bond
В	a benzene bond

rmgpy.molecule.Molecule

class rmgpy.molecule.Molecule(atoms=None, symmetry=-1, multiplicity=-187, reactive=True, props=None, InChI=", SMILES=")

A representation of a molecular structure using a graph data type, extending the Graph class. Attributes are:

Attribute	Type	Description	
atoms	list	A list of Atom objects in the	
		molecule	
symmetryNumber	float	The (estimated) external + in-	
		ternal symmetry number of the	
		molecule, modified for chirality	
multiplicity	int	The multiplicity of this species,	
		multiplicity = 2*total_spin+1	
reactive	bool		
		True (by default) if the molecule participates i	n re
		It is set to False by the	
		filtration functions if a non	
		representative resonance	
		structure was generated by a	
		template reaction	
props	dict	A list of properties describing the	
		state of the molecule.	
InChI	str	A string representation of the	
		molecule in InChI	
SMILES	str	A string representation of the	
		molecule in SMILES	
fingerprint	str	A representation for fast compari-	
		son, set as molecular formula	

A new molecule object can be easily instantiated by passing the *SMILES* or *InChI* string representing the molecular structure.

InChI

InChI string for this molecule. Read-only.

SMILES

SMILES string for this molecule. Read-only.

addAtom(self, Atom atom)

Add an *atom* to the graph. The atom is initialized with no bonds.

addBond (self, Bond bond)

Add a *bond* to the graph as an edge connecting the two atoms *atom1* and *atom2*.

$addEdge(self, Edge\ edge) \rightarrow Edge$

Add an *edge* to the graph. The two vertices in the edge must already exist in the graph, or a ValueError is raised.

addVertex (self, $Vertex \ vertex$) \rightarrow Vertex

Add a vertex to the graph. The vertex is initialized with no edges.

assignAtomIDs(self)

Assigns an index to every atom in the molecule for tracking purposes. Uses entire range of cython's integer values to reduce chance of duplicates

$atomIDValid(self) \rightarrow bool$

Checks to see if the atom IDs are valid in this structure

atoms

List of atoms contained in the current molecule.

Renames the inherited vertices attribute of Graph.

$calculateCp0(self) \rightarrow double$

Return the value of the heat capacity at zero temperature in J/mol*K.

$calculateCpInf(self) \rightarrow double$

Return the value of the heat capacity at infinite temperature in J/mol*K.

calculateSymmetryNumber(self) \rightarrow float

Return the symmetry number for the structure. The symmetry number includes both external and internal modes.

clearLabeledAtoms(self)

Remove the labels from all atoms in the molecule.

connectTheDots(self)

Delete all bonds, and set them again based on the Atoms' coords. Does not detect bond type.

containsLabeledAtom(self, $str\ label$) \rightarrow bool

Return True if the molecule contains an atom with the label *label* and False otherwise.

$containsSurfaceSite(self) \rightarrow bool$

Returns True iff the molecule contains an 'X' surface site.

copy (self, $bool\ deep=False$) \rightarrow Graph

Create a copy of the current graph. If *deep* is True, a deep copy is made: copies of the vertices and edges are used in the new graph. If *deep* is False or not specified, a shallow copy is made: the original vertices and edges are used in the new graph.

$copyAndMap(self) \rightarrow dict$

Create a deep copy of the current graph, and return the dict 'mapping'. Method was modified from Graph.copy() method

countInternalRotors (self) \rightarrow int

Determine the number of internal rotors in the structure. Any single bond not in a cycle and between two atoms that also have other bonds are considered to be internal rotors.

deleteHydrogens(self)

Irreversibly delete all non-labeled hydrogens without updating connectivity values. If there's nothing but hydrogens, it does nothing. It destroys information; be careful with it.

draw(self, str path)

Generate a pictorial representation of the chemical graph using the draw module. Use path to specify

the file to save the generated image to; the image type is automatically determined by extension. Valid extensions are .png, .svg, .pdf, and .ps; of these, the first is a raster format and the remainder are vector formats.

enumerate_bonds(self) \rightarrow dict

Count the number of each type of bond (e.g. 'C-H', 'C=C') present in the molecule :return: dictionary, with bond strings as keys and counts as values

findIsomorphism(self, Graph other, dict initialMap = None, bool saveOrder = False, bool strict = True)

Returns True if other is isomorphic and False otherwise, and the matching mapping. The *initialMap* attribute can be used to specify a required mapping from *self* to *other* (i.e. the atoms of *self* are the keys, while the atoms of *other* are the values). The returned mapping also uses the atoms of *self* for the keys and the atoms of *other* for the values. The *other* parameter must be a *Molecule* object, or a TypeError is raised.

Parameters

- initialMap (dict, optional) initial atom mapping to use
- **saveOrder** (*bool*, *optional*) if True, reset atom order after performing atom isomorphism
- **strict** (*bool*, *optional*) if False, perform isomorphism ignoring electrons

findSubgraphIsomorphisms (*self*, *Graph other*, *dict initialMap=None*, *bool saveOrder=False*) → list Returns True if *other* is subgraph isomorphic and False otherwise. Also returns the lists all of valid mappings. The *initialMap* attribute can be used to specify a required mapping from *self* to *other* (i.e. the atoms of *self* are the keys, while the atoms of *other* are the values). The returned mappings also use the atoms of *self* for the keys and the atoms of *other* for the values. The *other* parameter must be a *Group* object, or a TypeError is raised.

find_H_bonds(self)

generates a list of (new-existing H bonds ignored) possible Hbond coordinates [(i1,j1),(i2,j2),...] where i and j values correspond to the indexes of the atoms involved, Hbonds are allowed if they meet the following constraints:

- 1) between a H and [O,N] atoms
- 2) the hydrogen is covalently bonded to an O or N
- 3) the Hydrogen bond must complete a ring with at least 5 members
- 4) An atom can only be hydrogen bonded to one other atom

fingerprint

Fingerprint used to accelerate graph isomorphism comparisons with other molecules. The fingerprint is a short string containing a summary of selected information about the molecule. Two fingerprint strings matching is a necessary (but not sufficient) condition for the associated molecules to be isomorphic.

Currently, the fingerprint is simply the chemical formula.

fromAdjacencyList(self, str adjlist, bool saturateH=False)

Convert a string adjacency list *adjlist* to a molecular structure. Skips the first line (assuming it's a label) unless *withLabel* is False.

fromAugmentedInChI(self, aug_inchi)

Convert an Augmented InChI string aug_inchi to a molecular structure.

fromInChI(self, str inchistr, backend='try-all')

Convert an InChI string *inchistr* to a molecular structure.

fromSMARTS (*self*, *smartsstr*)

Convert a SMARTS string *smartsstr* to a molecular structure. Uses RDKit to perform the conversion. This Kekulizes everything, removing all aromatic atom types.

fromSMILES(self, str smilesstr, backend='try-all')

Convert a SMILES string *smilesstr* to a molecular structure.

fromXYZ(self, ndarray atomicNums, ndarray coordinates)

Create an RMG molecule from a list of coordinates and a corresponding list of atomic numbers. These are typically received from CCLib and the molecule is sent to *ConnectTheDots* so will only contain single bonds.

generate_H_bonded_structures(self)

generates a list of Hbonded molecular structures in addition to the constraints on Hydrogen bonds applied in the find_H_Bonds function the generated structures are constrained to:

- 1) An atom can only be hydrogen bonded to one other atom
- 2) Only two H-bonds can exist in a given molecule

the second is done to avoid explosive growth in the number of structures as without this constraint the number of possible structures grows 2ⁿ where n is the number of possible H-bonds

${\tt generate_resonance_structures} (\textit{self, bool keep_isomorphic} = \textit{False, bool filter_structures} = \textit{True})$

Returns a list of resonance structures of the molecule.

getAllCycles (self, Vertex starting Vertex) \rightarrow list

Given a starting vertex, returns a list of all the cycles containing that vertex.

This function returns a duplicate of each cycle because [0,1,2,3] is counted as separate from [0,3,2,1]

$getAllCyclesOfSize(self, int size) \rightarrow list$

Return a list of the all non-duplicate rings with length 'size'. The algorithm implements was adapted from a description by Fan, Panaye, Doucet, and Barbu (doi: 10.1021/ci00015a002)

B. T. Fan, A. Panaye, J. P. Doucet, and A. Barbu. "Ring Perception: A New Algorithm for Directly Finding the Smallest Set of Smallest Rings from a Connection Table." *J. Chem. Inf. Comput. Sci.* **33**, p. 657-662 (1993).

$getAllCyclicVertices(self) \rightarrow list$

Returns all vertices belonging to one or more cycles.

getAllEdges (self) \rightarrow list

Returns a list of all edges in the graph.

getAllPolycyclicVertices (self) \rightarrow list

Return all vertices belonging to two or more cycles, fused or spirocyclic.

$getAllSimpleCyclesOfSize(self, int size) \rightarrow list$

Return a list of all non-duplicate monocyclic rings with length 'size'.

Naive approach by eliminating polycyclic rings that are returned by qetAllCyclicsOfSize.

getAromaticRings (self, $list\ rings=None$) \rightarrow tuple

Returns all aromatic rings as a list of atoms and a list of bonds.

Identifies rings using *Graph.getSmallestSetOfSmallestRings()*, then uses RDKit to perceive aromaticity. RDKit uses an atom-based pi-electron counting algorithm to check aromaticity based on Huckel's Rule. Therefore, this method identifies "true" aromaticity, rather than simply the RMG bond type.

The method currently restricts aromaticity to six-membered carbon-only rings. This is a limitation imposed by RMG, and not by RDKit.

getBond (self, Atom atom1, Atom atom2) \rightarrow Bond

Returns the bond connecting atoms *atom1* and *atom2*.

getBonds (self, $Atom\ atom$) \rightarrow dict

Return a dictionary of the bonds involving the specified atom.

getChargeSpan(self)

Iterate through the atoms in the structure and calculate the charge span on the overall molecule. The charge span is a measure of the number of charge separations in a molecule.

${\tt getDeterministicSmallestSetOfSmallestRings} (\textit{self}) \rightarrow list$

Modified *Graph* method *getSmallestSetOfSmallestRings* by sorting calculated cycles by short lenth and then high atomic number instead of just short length (for cases where multiple cycles with same length are found, *getSmallestSetOfSmallestRings* outputs non-determinstically).

For instance, molecule with this SMILES: C1CC2C3CSC(CO3)C2C1, will have non-deterministic output from *getSmallestSetOfSmallestRings*, which leads to non-deterministic bycyclic decomposition Using this new method can effectively prevent this situation.

Important Note: This method returns an incorrect set of SSSR in certain molecules (such as cubane). It is recommended to use the main *Graph.getSmallestSetOfSmallestRings* method in new applications. Alternatively, consider using *Graph.getRelevantCycles* for deterministic output.

In future development, this method should ideally be replaced by some method to select a deterministic set of SSSR from the set of Relevant Cycles, as that would be a more robust solution.

$getDisparateRings(self) \rightarrow tuple$

Get all disjoint monocyclic and polycyclic cycle clusters in the molecule. Takes the RC and recursively merges all cycles which share vertices.

Returns: monocyclic_cycles, polycyclic_cycles

$getEdge(self, Vertex vertex1, Vertex vertex2) \rightarrow Edge$

Returns the edge connecting vertices *vertex1* and *vertex2*.

$getEdges(self, Vertex vertex) \rightarrow dict$

Return a dictionary of the edges involving the specified *vertex*.

$getFormula(self) \rightarrow str$

Return the molecular formula for the molecule.

$getLabeledAtom(self, str label) \rightarrow Atom$

Return the atoms in the molecule that are labeled.

$getLabeledAtoms(self) \rightarrow dict$

Return the labeled atoms as a dict with the keys being the labels and the values the atoms themselves. If two or more atoms have the same label, the value is converted to a list of these atoms.

$getLargestRing(self, Vertex vertex) \rightarrow list$

returns the largest ring containing vertex. This is typically useful for finding the longest path in a polycyclic ring, since the polycyclic rings returned from getPolycyclicRings are not necessarily in order in the ring structure.

$getMaxCycleOverlap(self) \rightarrow int$

Return the maximum number of vertices that are shared between any two cycles in the graph. For example, if there are only disparate monocycles or no cycles, the maximum overlap is zero; if there are "spiro" cycles, it is one; if there are "fused" cycles, it is two; and if there are "bridged" cycles, it is three.

$getMolecularWeight(self) \rightarrow double$

Return the molecular weight of the molecule in kg/mol.

getMonocyclicRings (self) \rightarrow list

Return a list of cycles that are monocyclic.

getNetCharge(self)

Iterate through the atoms in the structure and calculate the net charge on the overall molecule.

getNthNeighbor (self, startingAtoms, distanceList, ignoreList=None, n=1)

Recursively get the Nth nonHydrogen neighbors of the startingAtoms, and return them in a list. *startingAtoms* is a list of :class:Atom for which we will get the nth neighbor. *distanceList* is a list of intergers, corresponding to the desired neighbor distances. *ignoreList* is a list of :class:Atom that have been counted in (n-1)th neighbor, and will not be returned. *n* is an interger, corresponding to the distance to be calculated in the current iteration.

getNumAtoms (self, str element=None) \rightarrow int

Return the number of atoms in molecule. If element is given, ie. "H" or "C", the number of atoms of that element is returned.

$getPolycyclicRings(self) \rightarrow list$

Return a list of cycles that are polycyclic. In other words, merge the cycles which are fused or spirocyclic into a single polycyclic cycle, and return only those cycles. Cycles which are not polycyclic are not returned.

getRadicalAtoms(self)

Return the atoms in the molecule that have unpaired electrons.

$getRadicalCount(self) \rightarrow short$

Return the total number of radical electrons on all atoms in the molecule. In this function, monoradical atoms count as one, biradicals count as two, etc.

$getRelevantCycles(self) \rightarrow list$

Returns the set of relevant cycles as a list of lists. Uses RingDecomposerLib for ring perception.

Kolodzik, A.; Urbaczek, S.; Rarey, M. Unique Ring Families: A Chemically Meaningful Description of Molecular Ring Topologies. J. Chem. Inf. Model., 2012, 52 (8), pp 2013-2021

Flachsenberg, F.; Andresen, N.; Rarey, M. RingDecomposerLib: An Open-Source Implementation of Unique Ring Families and Other Cycle Bases. J. Chem. Inf. Model., 2017, 57 (2), pp 122-126

${\tt getSingletCarbeneCount}(\mathit{self}) \rightarrow \mathsf{short}$

Return the total number of singlet carbenes (lone pair on a carbon atom) in the molecule. Counts the number of carbon atoms with a lone pair. In the case of [C] with two lone pairs, this method will return 1.

${\tt getSmallestSetOfSmallestRings} (\mathit{self}) \rightarrow list$

Returns the smallest set of smallest rings as a list of lists. Uses RingDecomposerLib for ring perception.

Kolodzik, A.; Urbaczek, S.; Rarey, M. Unique Ring Families: A Chemically Meaningful Description of Molecular Ring Topologies. J. Chem. Inf. Model., 2012, 52 (8), pp 2013-2021

Flachsenberg, F.; Andresen, N.; Rarey, M. RingDecomposerLib: An Open-Source Implementation of Unique Ring Families and Other Cycle Bases. J. Chem. Inf. Model., 2017, 57 (2), pp 122-126

getSymmetryNumber(self)

Returns the symmetry number of Molecule. First checks whether the value is stored as an attribute of Molecule. If not, it calls the calculateSymmetryNumber method.

getURL(self)

Get a URL to the molecule's info page on the RMG website.

$get_edges_in_cycle(self, list vertices, bool sort=False) \rightarrow list$

For a given list of atoms comprising a ring, return the set of bonds connecting them, in order around the ring.

If *sort=True*, then sort the vertices to match their connectivity. Otherwise, assumes that they are already sorted, which is true for cycles returned by getRelevantCycles or getSmallestSetOfSmallestRings.

$get_element_count(self) \rightarrow dict$

Returns the element count for the molecule as a dictionary.

$hasAtom(self, Atom atom) \rightarrow bool$

Returns True if *atom* is an atom in the graph, or False if not.

hasBond (self, Atom atom1, Atom atom2) \rightarrow bool

Returns True if atoms atom1 and atom2 are connected by an bond, or False if not.

$hasEdge(self, Vertex vertex1, Vertex vertex2) \rightarrow bool$

Returns True if vertices *vertex1* and *vertex2* are connected by an edge, or False if not.

hasVertex (self, $Vertex\ vertex$) \rightarrow bool

Returns True if *vertex* is a vertex in the graph, or False if not.

has_lone_pairs(self) \rightarrow bool

Return True if the molecule contains at least one lone electron pair, or False otherwise.

identifyRingMembership(self)

Performs ring perception and saves ring membership information to the Atom.props attribute.

implicitHydrogens

'bool'

Type implicitHydrogens

isAromatic(self)

Returns True if the molecule is aromatic, or False if not. Iterates over the SSSR's and searches for rings that consist solely of Cb atoms. Assumes that aromatic rings always consist of 6 atoms. In cases of naphthalene, where a 6 + 4 aromatic system exists, there will be at least one 6 membered aromatic ring so this algorithm will not fail for fused aromatic rings.

$isArylRadical(self, list aromaticRings=None) \rightarrow bool$

Return True if the molecule only contains aryl radicals, ie. radical on an aromatic ring, or False otherwise.

$isAtomInCycle(self, Atom atom) \rightarrow bool$

Return True if *atom* is in one or more cycles in the structure, and False if not.

isBondInCycle(self, Bond bond) \rightarrow bool

Return True if the bond between atoms *atom1* and *atom2* is in one or more cycles in the graph, or False if not.

$isCyclic(self) \rightarrow bool$

Return True if one or more cycles are present in the graph or False otherwise.

isEdgeInCycle($self, Edge \ edge$) \rightarrow bool

Return True if the edge between vertices *vertex1* and *vertex2* is in one or more cycles in the graph, or False if not.

isIdentical(self, Molecule other, bool strict=True) \rightarrow bool

Performs isomorphism checking, with the added constraint that atom IDs must match.

Primary use case is tracking atoms in reactions for reaction degeneracy determination.

Returns True if two graphs are identical and False otherwise.

If strict=False, performs the check ignoring electrons and resonance structures.

isIsomorphic (self, Graph other, dict initialMap=None, bool generateInitialMap=False, bool save-Order=False, bool strict=True) \rightarrow bool

Returns True if two graphs are isomorphic and False otherwise. The *initialMap* attribute can be used to specify a required mapping from *self* to *other* (i.e. the atoms of *self* are the keys, while the atoms of *other* are the values). The *other* parameter must be a *Molecule* object, or a TypeError is raised. Also ensures multiplicities are also equal.

Parameters

- initialMap (dict, optional) initial atom mapping to use
- **generateInitialMap** (*bool*, *optional*) if True, initialize map by pairing atoms with same labels
- **saveOrder** (*bool*, *optional*) if True, reset atom order after performing atom isomorphism
- **strict** (*bool*, *optional*) if False, perform isomorphism ignoring electrons

$isLinear(self) \rightarrow bool$

Return True if the structure is linear and False otherwise.

isMappingValid (*self*, *Graph other*, *dict mapping*, *bool equivalent=True*, *bool strict=True*) → bool Check that a proposed *mapping* of vertices from *self* to *other* is valid by checking that the vertices and edges involved in the mapping are mutually equivalent. If equivalent is True it checks if atoms and edges are equivalent, if False it checks if they are specific cases of each other. If strict is True, electrons and bond orders are considered, and ignored if False.

$isRadical(self) \rightarrow bool$

Return True if the molecule contains at least one radical electron, or False otherwise.

isSubgraphIsomorphic(self, Graph other, dict initialMap=None, bool generateInitialMap=False, bool saveOrder=False) \rightarrow bool

Returns True if *other* is subgraph isomorphic and False otherwise. The *initialMap* attribute can be used to specify a required mapping from *self* to *other* (i.e. the atoms of *self* are the keys, while the atoms of *other* are the values). The *other* parameter must be a *Group* object, or a TypeError is raised.

$isSurfaceSite(self) \rightarrow bool$

Returns True iff the molecule is nothing but a surface site 'X'.

$isVertexInCycle(self, Vertex vertex) \rightarrow bool$

Return True if the given vertex is contained in one or more cycles in the graph, or False if not.

is_equal(self, other)

Method to test equality of two Molecule objects.

kekulize(self)

Kekulizes an aromatic molecule.

$merge(self, Graph other) \rightarrow Graph$

Merge two molecules so as to store them in a single *Molecule* object. The merged *Molecule* object is returned.

multiplicity

'int'

Type multiplicity

ordered_vertices

list

Type ordered_vertices

props

dict

Type props

rdMol

object

Type rdMol

rdMolConfId

'int'

Type rdMolConfId

reactive

'bool'

Type reactive

removeAtom(self, Atom atom)

Remove *atom* and all bonds associated with it from the graph. Does not remove atoms that no longer have any bonds as a result of this removal.

removeBond (self, Bond bond)

Remove the bond between atoms *atom1* and *atom2* from the graph. Does not remove atoms that no longer have any bonds as a result of this removal.

removeEdge (self, Edge edge)

Remove the specified *edge* from the graph. Does not remove vertices that no longer have any edges as a result of this removal.

removeVanDerWaalsBonds(self)

Remove all van der Waals bonds.

removeVertex(self, Vertex vertex)

Remove *vertex* and all edges associated with it from the graph. Does not remove vertices that no longer have any edges as a result of this removal.

remove_H_bonds(self)

removes any present hydrogen bonds from the molecule

resetConnectivityValues(self)

Reset any cached connectivity information. Call this method when you have modified the graph.

restore_vertex_order(self)

reorder the vertices to what they were before sorting if you saved the order

saturate_radicals(self)

Saturate the molecule by replacing all radicals with bonds to hydrogen atoms. Changes self molecule object.

saturate_unfilled_valence(self, update=True)

Saturate the molecule by adding H atoms to any unfilled valence

sortAtoms (self)

Sort the atoms in the graph. This can make certain operations, e.g. the isomorphism functions, much more efficient.

This function orders atoms using several attributes in atom.getDescriptor(). Currently it sorts by placing heaviest atoms first and hydrogen atoms last. Placing hydrogens last during sorting ensures that functions with hydrogen removal work properly.

sortVertices(self, bool saveOrder=False)

Sort the vertices in the graph. This can make certain operations, e.g. the isomorphism functions, much more efficient.

$split(self) \rightarrow list$

Convert a single *Molecule* object containing two or more unconnected molecules into separate class: *Molecule* objects.

symmetryNumber

'float'

Type symmetryNumber

toAdjacencyList(self, str label=", bool removeH=False, bool removeLonePairs=False, bool old-Style=False)

Convert the molecular structure to a string adjacency list.

toAugmentedInChI(self) \rightarrow str

Adds an extra layer to the InChI denoting the multiplicity of the molecule.

Separate layer with a forward slash character.

toAugmentedInChIKey(self) \rightarrow str

Adds an extra layer to the InChIKey denoting the multiplicity of the molecule.

Simply append the multiplicity string, do not separate by a character like forward slash.

toGroup(self)

This method converts a list of atoms in a Molecule to a Group object.

toInChI(self) \rightarrow str

Convert a molecular structure to an InChI string. Uses RDKit to perform the conversion. Perceives aromaticity.

or

Convert a molecular structure to an InChI string. Uses OpenBabel to perform the conversion.

toInChIKey(self) \rightarrow str

Convert a molecular structure to an InChI Key string. Uses OpenBabel to perform the conversion.

or

Convert a molecular structure to an InChI Key string. Uses RDKit to perform the conversion.

toRDKitMol(self, *args, **kwargs)

Convert a molecular structure to a RDKit rdmol object.

toSMARTS(self)

Convert a molecular structure to an SMARTS string. Uses RDKit to perform the conversion. Perceives aromaticity and removes Hydrogen atoms.

toSMILES(self) \rightarrow str

Convert a molecular structure to an SMILES string.

If there is a Nitrogen atom present it uses OpenBabel to perform the conversion, and the SMILES may or may not be canonical.

Otherwise, it uses RDKit to perform the conversion, so it will be canonical SMILES. While converting to an RDMolecule it will perceive aromaticity and removes Hydrogen atoms.

toSingleBonds(self)

Returns a copy of the current molecule, consisting of only single bonds.

This is useful for isomorphism comparison against something that was made via fromXYZ, which does not attempt to perceive bond orders

update(self, log_species=True)

Update connectivity values, atom types of atoms. Update multiplicity, and sort atoms using the new connectivity values.

updateAtomTypes (self, bool logSpecies=True, bool raiseException=True)

Iterate through the atoms in the structure, checking their atom types to ensure they are correct (i.e. accurately describe their local bond environment) and complete (i.e. are as detailed as possible).

If *raiseException* is *False*, then the generic atomType 'R' will be prescribed to any atom when getAtomType fails. Currently used for resonance hybrid atom types.

updateConnectivityValues(self)

Update the connectivity values for each vertex in the graph. These are used to accelerate the isomorphism checking.

updateLonePairs(self)

Iterate through the atoms in the structure and calculate the number of lone electron pairs, assuming a neutral molecule.

updateMultiplicity(self)

Update the multiplicity of a newly formed molecule.

vertices

list

Type vertices

rmgpy.molecule.GroupAtom

 $\textbf{class} \ \texttt{rmgpy.molecule.GroupAtom} (atomType=None, \ radicalElectrons=None, \ charge=None, \ label=", lonePairs=None, props=None")$

An atom group. This class is based on the *Atom* class, except that it uses *atom types* instead of elements, and all attributes are lists rather than individual values. The attributes are:

Attribute	Type	Description
atomType	list	The allowed atom types (as AtomType objects)
radicalElectrons	list	The allowed numbers of radical electrons (as short integers)
charge	list	The allowed formal charges (as short integers)
label	str	A string label that can be used to tag individual atoms
lonePairs	list	The number of lone electron pairs
'charge'	''list''	The partial charge of the atom
props	dict	Dictionary for storing additional atom properties
reg_dim_atm	list	List of atom types that are free dimensions in tree optimization
reg_dim_u	list	List of unpaired electron numbers that are free dimensions in tree optimization
reg_dim_r	list	List of inRing values that are free dimensions in tree optimization

Each list represents a logical OR construct, i.e. an atom will match the group if it matches *any* item in the list. However, the *radicalElectrons*, and *charge* attributes are linked such that an atom must match values from the same index in each of these in order to match.

applyAction(self, list action)

Update the atom group as a result of applying *action*, a tuple containing the name of the reaction recipe action along with any required parameters. The available actions can be found *here*.

atomType

list

Type atomType

charge

list

Type charge

connectivity1

'short'

Type connectivity1

connectivity2

'short'

Type connectivity2

connectivity3

'short'

Type connectivity3

$copy(self) \rightarrow Vertex$

Return a deep copy of the *GroupAtom* object. Modifying the attributes of the copy will not affect the original.

countBonds (*self*, *wildcards=False*) \rightarrow list

Returns: list of the number of bonds currently on the :class:GroupAtom

If the argument wildcards is turned off then any bonds with multiple options for bond orders will not be counted

edges

dict

Type edges

equivalent(*self*, *Vertex other*, *bool strict=True*) → bool

Returns True if *other* is equivalent to *self* or False if not, where *other* can be either an *Atom* or an *GroupAtom* object. When comparing two *GroupAtom* objects, this function respects wildcards, e.g. R!H is equivalent to C.

$hasWildcards(self) \rightarrow bool$

Return True if the atom has wildcards in any of the attributes: atomtype, radical electrons, lone pairs, charge, and bond order. Returns "False" if no attribute has wildcards.

ignore

'bool'

Type ignore

$isCarbon(self) \rightarrow bool$

Return True if the atom represents an sulfur atom or False if not.

$isNitrogen(self) \rightarrow bool$

Return True if the atom represents an sulfur atom or False if not.

$is0xygen(self) \rightarrow bool$

Return True if the atom represents an oxygen atom or False if not.

```
isSpecificCaseOf(self, Vertex other) \rightarrow bool
```

Returns True if *self* is the same as *other* or is a more specific case of *other*. Returns False if some of *self* is not included in *other* or they are mutually exclusive.

$isSulfur(self) \rightarrow bool$

Return True if the atom represents an sulfur atom or False if not.

$isSurfaceSite(self) \rightarrow bool$

Return True if the atom represents a surface site or False if not.

label

str

Type label

lonePairs

list

Type lonePairs

$makeSampleAtom(self) \rightarrow Atom$

Returns: a class: Atom: object analagous to the GroupAtom

This makes a sample, so it takes the first element when there are multiple options inside of self.atomtype, self.radicalElectrons, self.lonePairs, and self.charge

mapping

rmgpy.molecule.graph.Vertex

Type mapping

props

dict

Type props

radicalElectrons

list

Type radicalElectrons

reg_dim_atm

list

Type reg_dim_atm

reg_dim_r

list

Type reg_dim_r

reg_dim_u

list

Type reg_dim_u

resetConnectivityValues(self)

Reset the cached structure information for this vertex.

sortingLabel

'short'

Type sortingLabel

terminal

'bool'

Type terminal

rmgpy.molecule.GroupBond

class rmgpy.molecule.**GroupBond**(atom1, atom2, order=None)

A bond group. This class is based on the *Bond* class, except that all attributes are lists rather than individual values. The allowed bond types are given *here*. The attributes are:

Attribute	Туре	Description
order	list	The allowed bond orders (as character strings)
reg_dim	Boolean	Indicates if this is a regularization dimension during tree generation

Each list represents a logical OR construct, i.e. a bond will match the group if it matches any item in the list.

applyAction(self, list action)

Update the bond group as a result of applying *action*, a tuple containing the name of the reaction recipe action along with any required parameters. The available actions can be found *here*.

$copy(self) \rightarrow Edge$

Return a deep copy of the *GroupBond* object. Modifying the attributes of the copy will not affect the original.

equivalent(self, Edge other) \rightarrow bool

Returns True if *other* is equivalent to *self* or False if not, where *other* can be either an *Bond* or an *GroupBond* object.

$getOrderNum(self) \rightarrow list$

returns the bond order as a list of numbers

$get0rderStr(self) \rightarrow list$

returns a list of strings representing the bond order

getOtherVertex(self, $Vertex \ vertex$) \rightarrow Vertex

Given a vertex that makes up part of the edge, return the other vertex. Raise a ValueError if the given vertex is not part of the edge.

isBenzene(self, bool wildcards=False) \rightarrow bool

Return True if the bond represents a benzene bond or False if not. If *wildcards* is False we return False anytime there is more than one bond order, otherwise we return True if any of the options are benzene

isDouble(self, bool wildcards=False) \rightarrow bool

Return True if the bond represents a double bond or False if not. If *wildcards* is False we return False anytime there is more than one bond order, otherwise we return True if any of the options are double.

isHydrogenBond(self, wildcards=False)

Return True if the bond represents a hydrogen bond or False if not. If *wildcards* is False we return False anytime there is more than one bond order, otherwise we return True if any of the options are hydrogen bonds.

isQuadruple(self, wildcards=False)

Return True if the bond represents a quadruple bond or False if not. If *wildcards* is False we return False anytime there is more than one bond order, otherwise we return True if any of the options are quadruple.

isSingle(self, bool wildcards=False) \rightarrow bool

Return True if the bond represents a single bond or False if not. If *wildcards* is False we return False anytime there is more than one bond order, otherwise we return True if any of the options are single.

NOTE: we can replace the absolute value relation with math.isclose when we swtich to python 3.5+

isSpecificCaseOf (self, Edge other) \rightarrow bool

Returns True if *other* is the same as *self* or is a more specific case of *self*. Returns False if some of *self* is not included in *other* or they are mutually exclusive.

$isTriple(self, bool wildcards=False) \rightarrow bool$

Return True if the bond represents a triple bond or False if not. If *wildcards* is False we return False anytime there is more than one bond order, otherwise we return True if any of the options are triple.

isVanDerWaals(self, wildcards=False)

Return True if the bond represents a van der Waals bond or False if not. If *wildcards* is False we return False anytime there is more than one bond order, otherwise we return True if any of the options are van der Waals.

makeBond (self, Molecule molecule, Atom atom1, Atom atom2)

Creates a :class: Bond between atom1 and atom2 analogous to self

The intended input arguments should be class :Atom: not class :GroupAtom: :param atom1: First :class: Atom the bond connects :param atom2: Second :class: Atom the bond connects

order

list

Type order

reg_dim

list

Type reg_dim

setOrderNum(*self*, *list newOrder*)

change the bond order with a list of numbers

setOrderStr(self, list newOrder)

set the bond order using a valid bond-order character list

vertex1

rmgpy.molecule.graph.Vertex

Type vertex1

vertex2

rmgpy.molecule.graph.Vertex

Type vertex2

rmgpy.molecule.Group

class rmgpy.molecule.Group(atoms=None, props=None, multiplicity=None)

A representation of a molecular substructure group using a graph data type, extending the Graph class. The attributes are:

Attribute	Type	Description
atoms	list	Aliases for the <i>vertices</i> storing <i>GroupAtom</i>
multiplicity	list	Range of multiplicities accepted for the group
props	dict	Dictionary of arbitrary properties/flags classifying state of Group object

Corresponding alias methods to Molecule have also been provided.

addAtom(self, GroupAtom atom)

Add an atom to the graph. The atom is initialized with no bonds.

addBond (self, GroupBond bond)

Add a *bond* to the graph as an edge connecting the two atoms *atom1* and *atom2*.

$addEdge(self, Edge\ edge) \rightarrow Edge$

Add an *edge* to the graph. The two vertices in the edge must already exist in the graph, or a ValueError is raised.

$addExplicitLigands(self) \rightarrow bool$

This function O2d/S2d ligand to CO or CS atomtypes if they are not already there.

Returns a 'True' if the group was modified otherwise returns 'False'

$addImplicitAtomsFromAtomType(self) \rightarrow Group$

Returns: a modified group with implicit atoms added Add implicit double/triple bonded atoms O, S or R, for which we will use a C

Not designed to work with wildcards

$addImplicitBenzene(self) \rightarrow Group$

Returns: A modified group with any implicit benzene rings added

This method currently does not if there are wildcards in atomtypes or bond orders The current algorithm also requires that all Cb and Cbf are atomtyped

There are other cases where the algorithm doesn't work. For example whenever there are many dangling Cb or Cbf atoms not in a ring, it is likely fail. In the database test (the only use thus far), we will require that any group with more than 3 Cbfs have complete rings. This is much stricter than this method can handle, but right now this method cannot handle very general cases, so it is better to be conservative.

$addVertex(self, Vertex vertex) \rightarrow Vertex$

Add a *vertex* to the graph. The vertex is initialized with no edges.

atoms

List of atoms contained in the current molecule.

Renames the inherited vertices attribute of Graph.

$classifyBenzeneCarbons(self, dict partners=None) \rightarrow tuple$

Parameters

- group :class:Group with atoms to classify
- partners dictionary of partnered up atoms, which must be a cbf atom

Returns: tuple with lists of each atom classification

clearLabeledAtoms(self)

Remove the labels from all atoms in the molecular group.

containsLabeledAtom(self, $str\ label$) \rightarrow bool

Return True if the group contains an atom with the label *label* and False otherwise.

$containsSurfaceSite(self) \rightarrow bool$

Returns True iff the group contains an 'X' surface site.

copy (*self*, *bool deep=False*) \rightarrow Graph

Create a copy of the current graph. If *deep* is True, a deep copy is made: copies of the vertices and edges are used in the new graph. If *deep* is False or not specified, a shallow copy is made: the original vertices and edges are used in the new graph.

$copyAndMap(self) \rightarrow dict$

Create a deep copy of the current graph, and return the dict 'mapping'. Method was modified from Graph.copy() method

$\begin{tabular}{ll} \textbf{createAndConnectAtom} (\textit{self}, \textit{ list atomtypes}, \textit{ GroupAtom connectingAtom}, \textit{ list bondOrders}) \rightarrow \\ \textbf{GroupAtom} \\ \end{tabular}$

This method creates an non-radical, uncharged, :class:GroupAtom with specified list of atomtypes and connects it to one atom of the group, 'connectingAtom'. This is useful for making sample atoms.

Parameters

- atomtypes list of atomtype labels (strs)
- **connectingAtom** :class:GroupAtom that is connected to the new benzene atom
- bondOrders list of bond Orders connecting newAtom and connectingAtom

Returns: the newly created atom

draw(self, format)

Use pydot to draw a basic graph of the group.

Use format to specify the desired output format, eg. 'png', 'svg', 'ps', 'pdf', 'plain', etc.

elementCount

dict

Type elementCount

findIsomorphism(self, Graph other, dict initialMap=None, bool saveOrder=False, bool strict=True)

Returns True if *other* is isomorphic and False otherwise, and the matching mapping. The *initialMap* attribute can be used to specify a required mapping from *self* to *other* (i.e. the atoms of *self* are the keys, while the atoms of *other* are the values). The returned mapping also uses the atoms of *self* for the keys and the atoms of *other* for the values. The *other* parameter must be a *Group* object, or a TypeError is raised.

$\textbf{findSubgraphIsomorphisms} (\textit{self}, \textit{Graph other}, \textit{dict initialMap=None}, \textit{bool saveOrder=False}) \rightarrow list$

Returns True if *other* is subgraph isomorphic and False otherwise. In other words, return True is self is more specific than other. Also returns the lists all of valid mappings. The *initialMap* attribute can be used to specify a required mapping from *self* to *other* (i.e. the atoms of *self* are the keys, while the atoms of *other* are the values). The returned mappings also use the atoms of *self* for the keys and the atoms of *other* for the values. The *other* parameter must be a *Group* object, or a TypeError is raised.

fromAdjacencyList(self, str adjlist)

Convert a string adjacency list *adjlist* to a molecular structure. Skips the first line (assuming it's a label) unless *withLabel* is False.

getAllCycles (self, Vertex startingVertex) \rightarrow list

Given a starting vertex, returns a list of all the cycles containing that vertex.

This function returns a duplicate of each cycle because [0,1,2,3] is counted as separate from [0,3,2,1]

getAllCyclesOfSize(self, int size) \rightarrow list

Return a list of the all non-duplicate rings with length 'size'. The algorithm implements was adapted from a description by Fan, Panaye, Doucet, and Barbu (doi: 10.1021/ci00015a002)

B. T. Fan, A. Panaye, J. P. Doucet, and A. Barbu. "Ring Perception: A New Algorithm for Directly Finding the Smallest Set of Smallest Rings from a Connection Table." *J. Chem. Inf. Comput. Sci.* **33**, p. 657-662 (1993).

$getAllCyclicVertices(self) \rightarrow list$

Returns all vertices belonging to one or more cycles.

$getAllEdges(self) \rightarrow list$

Returns a list of all edges in the graph.

$getAllPolycyclicVertices(self) \rightarrow list$

Return all vertices belonging to two or more cycles, fused or spirocyclic.

getAllSimpleCyclesOfSize(self, int size) \rightarrow list

Return a list of all non-duplicate monocyclic rings with length 'size'.

Naive approach by eliminating polycyclic rings that are returned by getAllCyclicsOfSize.

$getBond(self, GroupAtom atom1, GroupAtom atom2) \rightarrow GroupBond$

Returns the bond connecting atoms *atom1* and *atom2*.

getBonds (*self*, *GroupAtom atom*) \rightarrow dict

Return a list of the bonds involving the specified *atom*.

$getDisparateRings(self) \rightarrow tuple$

Get all disjoint monocyclic and polycyclic cycle clusters in the molecule. Takes the RC and recursively merges all cycles which share vertices.

Returns: monocyclic_cycles, polycyclic_cycles

$getEdge(self, Vertex vertex1, Vertex vertex2) \rightarrow Edge$

Returns the edge connecting vertices *vertex1* and *vertex2*.

getEdges (*self*, *Vertex vertex*) \rightarrow dict

Return a dictionary of the edges involving the specified *vertex*.

getExtensions(self, R=None, basename=", atmInd=None, atmInd2=None, Nsplits=None)

generate all allowed group extensions and their complements note all atomtypes except for elements and R/R!H's must be removed

$getLabeledAtom(self, str\ label) \rightarrow GroupAtom$

Return the atom in the group that is labeled with the given *label*. Raises ValueError if no atom in the group has that label.

$getLabeledAtoms(self) \rightarrow dict$

Return the labeled atoms as a dict with the keys being the labels and the values the atoms themselves. If two or more atoms have the same label, the value is converted to a list of these atoms.

$getLargestRing(self, Vertex vertex) \rightarrow list$

returns the largest ring containing vertex. This is typically useful for finding the longest path in a polycyclic ring, since the polycyclic rings returned from getPolycyclicRings are not necessarily in order in the ring structure.

$getMaxCycleOverlap(self) \rightarrow int$

Return the maximum number of vertices that are shared between any two cycles in the graph. For example, if there are only disparate monocycles or no cycles, the maximum overlap is zero; if there are "spiro" cycles, it is one; if there are "fused" cycles, it is two; and if there are "bridged" cycles, it is three.

getMonocyclicRings (self) \rightarrow list

Return a list of cycles that are monocyclic.

getNetCharge(self)

Iterate through the atoms in the group and calculate the net charge

getPolycyclicRings (self) \rightarrow list

Return a list of cycles that are polycyclic. In other words, merge the cycles which are fused or spirocyclic into a single polycyclic cycle, and return only those cycles. Cycles which are not polycyclic are not returned.

$getRelevantCycles(self) \rightarrow list$

Returns the set of relevant cycles as a list of lists. Uses RingDecomposerLib for ring perception.

Kolodzik, A.; Urbaczek, S.; Rarey, M. Unique Ring Families: A Chemically Meaningful Description of Molecular Ring Topologies. J. Chem. Inf. Model., 2012, 52 (8), pp 2013-2021

Flachsenberg, F.; Andresen, N.; Rarey, M. RingDecomposerLib: An Open-Source Implementation of Unique Ring Families and Other Cycle Bases. J. Chem. Inf. Model., 2017, 57 (2), pp 122-126

getSmallestSetOfSmallestRings(self) \rightarrow list

Returns the smallest set of smallest rings as a list of lists. Uses RingDecomposerLib for ring perception.

Kolodzik, A.; Urbaczek, S.; Rarey, M. Unique Ring Families: A Chemically Meaningful Description of Molecular Ring Topologies. J. Chem. Inf. Model., 2012, 52 (8), pp 2013-2021

Flachsenberg, F.; Andresen, N.; Rarey, M. RingDecomposerLib: An Open-Source Implementation of Unique Ring Families and Other Cycle Bases. J. Chem. Inf. Model., 2017, 57 (2), pp 122-126

$get_edges_in_cycle(self, list vertices, bool sort=False) \rightarrow list$

For a given list of atoms comprising a ring, return the set of bonds connecting them, in order around the ring.

If *sort=True*, then sort the vertices to match their connectivity. Otherwise, assumes that they are already sorted, which is true for cycles returned by getRelevantCycles or getSmallestSetOfSmallestRings.

$get_element_count(self) \rightarrow dict$

Returns the element count for the molecule as a dictionary. Wildcards are not counted as any particular element.

$hasAtom(self, GroupAtom\ atom) \rightarrow bool$

Returns True if *atom* is an atom in the graph, or False if not.

hasBond (self, GroupAtom atom1, GroupAtom atom2) \rightarrow bool

Returns True if atoms *atom1* and *atom2* are connected by an bond, or False if not.

$hasEdge(self, Vertex vertex1, Vertex vertex2) \rightarrow bool$

Returns True if vertices vertex1 and vertex2 are connected by an edge, or False if not.

$hasVertex(self, Vertex vertex) \rightarrow bool$

Returns True if *vertex* is a vertex in the graph, or False if not.

$isAromaticRing(self) \rightarrow bool$

This method returns a boolean telling if the group has a 5 or 6 cyclic with benzene bonds exclusively

isBenzeneExplicit(self) \rightarrow bool

Returns: 'True' if all Cb, Cbf atoms are in completely explicitly stated benzene rings.

Otherwise return 'False'

$isCyclic(self) \rightarrow bool$

Return True if one or more cycles are present in the graph or False otherwise.

$isEdgeInCycle(self, Edge\ edge) \rightarrow bool$

Return True if the edge between vertices *vertex1* and *vertex2* is in one or more cycles in the graph, or False if not.

$isIdentical(self, Graph other, bool saveOrder=False) \rightarrow bool$

Returns True if *other* is identical and False otherwise. The function *isIsomorphic* respects wildcards, while this function does not, make it more useful for checking groups to groups (as opposed to molecules to groups)

$\textbf{isIsomorphic} (\textit{self}, \textit{Graph other}, \textit{dict initialMap=None}, \textit{bool saveOrder=False}, \textit{bool strict=True}) \rightarrow \\$

Returns True if two graphs are isomorphic and False otherwise. The *initialMap* attribute can be used to specify a required mapping from *self* to *other* (i.e. the atoms of *self* are the keys, while the atoms of *other* are the values). The *other* parameter must be a *Group* object, or a TypeError is raised.

isMappingValid(self, Graph other, dict mapping, bool equivalent=True, bool strict=True) \rightarrow bool Check that a proposed mapping of vertices from self to other is valid by checking that the vertices and

edges involved in the mapping are mutually equivalent. If equivalent is True it checks if atoms and edges are equivalent, if False it checks if they are specific cases of each other. If strict is True, electrons and bond orders are considered, and ignored if False.

isSubgraphIsomorphic(self, Graph other, dict initialMap=None, bool generateInitialMap=False, bool saveOrder=False) \rightarrow bool

Returns True if *other* is subgraph isomorphic and False otherwise. In other words, return True if self is more specific than other. The *initialMap* attribute can be used to specify a required mapping from *self* to *other* (i.e. the atoms of *self* are the keys, while the atoms of *other* are the values). The *other* parameter must be a *Group* object, or a TypeError is raised.

$isSurfaceSite(self) \rightarrow bool$

Returns True iff the group is nothing but a surface site 'X'.

$isVertexInCycle(self, Vertex vertex) \rightarrow bool$

Return True if the given *vertex* is contained in one or more cycles in the graph, or False if not.

$makeSampleMolecule(self) \rightarrow Molecule$

Returns: A sample class: Molecule: from the group

$merge(self, Graph \ other) \rightarrow Graph$

Merge two groups so as to store them in a single *Group* object. The merged *Group* object is returned.

$mergeGroups(self, Group other) \rightarrow Group$

This function takes *other* :class:Group object and returns a merged :class:Group object based on overlapping labeled atoms between self and other

Currently assumes other can be merged at the closest labelled atom

multiplicity

list

Type multiplicity

ordered_vertices

list

Type ordered_vertices

pickWildcards(self)

Returns: the :class:Group object without wildcards in either atomtype or bonding

This function will naively pick the first atomtype for each atom, but will try to pick bond orders that make sense given the selected atomtypes

props

dict

Type props

radicalCount

'short'

Type radicalCount

removeAtom(self, GroupAtom atom)

Remove *atom* and all bonds associated with it from the graph. Does not remove atoms that no longer have any bonds as a result of this removal.

removeBond (self, GroupBond bond)

Remove the bond between atoms *atom1* and *atom2* from the graph. Does not remove atoms that no longer have any bonds as a result of this removal.

removeEdge (self, Edge edge)

Remove the specified *edge* from the graph. Does not remove vertices that no longer have any edges as a result of this removal.

removeVanDerWaalsBonds(self)

Remove all bonds that are definitely only van der Waals bonds.

removeVertex(self, Vertex vertex)

Remove *vertex* and all edges associated with it from the graph. Does not remove vertices that no longer have any edges as a result of this removal.

resetConnectivityValues(self)

Reset any cached connectivity information. Call this method when you have modified the graph.

resetRingMembership(self)

Resets ring membership information in the GroupAtom.props attribute.

restore_vertex_order(self)

reorder the vertices to what they were before sorting if you saved the order

sortAtoms(self)

Sort the atoms in the graph. This can make certain operations, e.g. the isomorphism functions, much more efficient

$sortByConnectivity(self, list atomList) \rightarrow list$

Parameters atomList – input list of atoms

Returns: a sorted list of atoms where each atom is connected to a previous atom in the list if possible

sortVertices(self, bool saveOrder=False)

Sort the vertices in the graph. This can make certain operations, e.g. the isomorphism functions, much more efficient.

specifyAtomExtensions(self, i, basename, R)

generates extensions for specification of the type of atom defined by a given atomtype or set of atomtypes

specifyBondExtensions(self, i, j, basename, Rbonds)

generates extensions for the specification of bond order for a given bond

specifyExternalNewBondExtensions(self, i, basename, Rbonds)

generates extensions for the creation of a bond (of undefined order) between an atom and a new atom that is not H

specifyInternalNewBondExtensions(self, i, j, Nsplits, basename, Rbonds)

generates extensions for creation of a bond (of undefined order) between two atoms indexed i,j that already exist in the group and are unbonded

specifyRingExtensions(self, i, basename)

generates extensions for specifying if an atom is in a ring

specifyUnpairedExtensions(self, i, basename, Run)

generates extensions for specification of the number of electrons on a given atom

$split(self) \rightarrow list$

Convert a single *Group* object containing two or more unconnected groups into separate class: *Group* objects.

$standardizeAtomType(self) \rightarrow bool$

This function changes the atomTypes in a group if the atom must be a specific atomType based on its bonds and valency.

Currently only standardizes oxygen, carbon and sulfur atomTypes

We also only check when there is exactly one atomType, one bondType, one radical setting. For any group where there are wildcards or multiple attributes, we cannot apply this check.

In the case where the atomType is ambigious based on bonds and valency, this function will not change the type.

Returns a 'True' if the group was modified otherwise returns 'False'

$standardizeGroup(self) \rightarrow bool$

This function modifies groups to make them have a standard AdjList form.

Currently it makes atomtypes as specific as possible and makes CO/CS atomtypes have explicit O2d/S2d ligands. Other functions can be added as necessary

Returns a 'True' if the group was modified otherwise returns 'False'

toAdjacencyList(self, str label=")

Convert the molecular structure to a string adjacency list.

```
update(self)
```

updateConnectivityValues(self)

Update the connectivity values for each vertex in the graph. These are used to accelerate the isomorphism checking.

updateFingerprint(self)

Update the molecular fingerprint used to accelerate the subgraph isomorphism checks.

update_charge(self)

Update the partial charge according to the valence electron, total bond order, lone pairs and radical electrons. This method is used for products of specific families with recipes that modify charges.

vertices

list

Type vertices

rmgpy.molecule.resonance

This module contains methods for generation of resonance structures of molecules.

The main function to generate all relevant resonance structures for a given Molecule object is generate_resonance_structures. It calls the necessary functions for generating each type of resonance structure.

Currently supported resonance types:

· All species:

- generate_allyl_delocalization_resonance_structures: single radical shift with double or triple bond
- generate_lone_pair_multiple_bond_resonance_structures: lone pair shift with double or triple bond in a 3-atom system (between nonadjacent atoms)
- generate_adj_lone_pair_radical_resonance_structures: single radical shift with lone pair between adjacent atoms
- generate_adj_lone_pair_multiple_bond_resonance_structures: multiple bond shift with lone pair between adjacent atoms
- generate_adj_lone_pair_radical_multiple_bond_resonance_structures:
 multiple
 bond and radical shift with lone pair and radical between adjacent atoms

- generate_N5dc_radical_resonance_structures: shift between radical and lone pair mediated by an N5dc atom
- generate_aryne_resonance_structures: shift between cumulene and alkyne forms of arynes, which are not considered aromatic in RMG

• Aromatic species only:

- generate_optimal_aromatic_resonance_structures: fully delocalized structure, where all aromatic rings have benzene bonds
- generate_kekule_structure: generate a single Kekule structure for an aromatic compound (single/double bond form)
- generate_opposite_kekule_structure: for monocyclic aromatic species, rotate the double bond assignment
- generate_clar_structures: generate all structures with the maximum number of pi-sextet assignments

rmgpy.molecule.resonance.analyze_molecule

Identify key features of molecule important for resonance structure generation.

Returns a dictionary of features.

rmgpy.molecule.resonance.generate_N5dc_radical_resonance_structures

Generate all of the resonance structures formed by radical and lone pair shifts mediated by an N5dc atom.

rmqpy.molecule.resonance.generate_adj_lone_pair_multiple_bond_resonance_structures

Generate all of the resonance structures formed by lone electron pair - multiple bond shifts between adjacent atoms. Example: [:NH]=[CH2] <=> [::NH-]-[CH2+] (where ':' denotes a lone pair, '.' denotes a radical, '-' not in [] denotes a single bond, '-'/'+' denote charge) Here atom1 refers to the N/S/O atom, atom 2 refers to the any R!H (atom2's lonePairs aren't affected) (In direction 1 atom1 <losses> a lone pair, in direction 2 atom1 <gains> a lone pair)

$\verb|rmgpy.molecule.resonance.generate_adj_lone_pair_radical_multiple_bond_resonance_structures|\\$

Generate all of the resonance structures formed by lone electron pair - radical - multiple bond shifts between adjacent atoms. Example: [:N.]=[CH2] <=> [::N]-[.CH2] (where ':' denotes a lone pair, '.' denotes a radical, '-' not in [] denotes a single bond, '-'/'+' denote charge) Here atom1 refers to the N/S/O atom, atom 2 refers to the any R!H (atom2's lonePairs aren't affected) This function is similar to generate_adj_lone_pair_multiple_bond_resonance_structures() except for dealing with the radical transformations. (In direction 1 atom1 <losses> a lone pair, gains a radical, and atom2 looses a radical. In direction 2 atom1 <gains> a lone pair, looses a radical, and atom2 gains a radical)

rmgpy.molecule.resonance.generate_adj_lone_pair_radical_resonance_structures

Generate all of the resonance structures formed by lone electron pair - radical shifts between adjacent atoms. These resonance transformations do not involve changing bond orders. NO2 example: O=[:N]-[::O.] <=> O=[N.+]-[:::O-] (where ':' denotes a lone pair, '.' denotes a radical, '-' not in [] denotes a single bond, '-'/'+' denote charge)

$\verb|rmgpy.molecule.resonance.generate_allyl_delocalization_resonance_structures|\\$

Generate all of the resonance structures formed by one allyl radical shift.

Biradicals on a single atom are not supported.

rmqpy.molecule.resonance.generate_aromatic_resonance_structure

Generate the aromatic form of the molecule in place without considering other resonance.

Parameters

- mol Molecule object to modify
- **aromatic_bonds** (optional) list of previously identified aromatic bonds

• **copy** (*optional*) – copy the molecule if True, otherwise modify in place

Returns List of one molecule if successful, empty list otherwise

rmgpy.molecule.resonance.generate_aryne_resonance_structures

Generate aryne resonance structures, including the cumulene and alkyne forms.

For all 6-membered rings, check for the following bond patterns:

- DDDSDS
- STSDSD

This does NOT cover all possible aryne resonance forms, only the simplest ones. Especially for polycyclic arynes, enumeration of all resonance forms is related to enumeration of all Kekule structures, which is very difficult.

rmgpy.molecule.resonance.generate_clar_structures

Generate Clar structures for a given molecule.

Returns a list of Molecule objects corresponding to the Clar structures.

rmgpy.molecule.resonance.generate_isomorphic_resonance_structures

Select the resonance isomer that is isomorphic to the parameter isomer, with the lowest unpaired electrons descriptor.

We generate over all resonance isomers (non-isomorphic as well as isomorphic) and retain isomorphic isomers.

If *saturate_h* is *True*, then saturate *mol* with hydrogens before generating the resonance structures, and remove the hydrogens before returning *isomorphic_isomers*. This is useful when resonance structures are generated for molecules in which all hydrogens were intentionally removed as in generating augInChI. Otherwise, RMG will probably get many of the lonePairs and partial charges in a molecule wrong.

WIP: do not generate aromatic resonance isomers.

rmgpy.molecule.resonance.generate_kekule_structure

Generate a kekulized (single-double bond) form of the molecule. The specific arrangement of double bonds is non-deterministic, and depends on RDKit.

Returns a single Kekule structure as an element of a list of length 1. If there's an error (eg. in RDKit) then it just returns an empty list.

rmqpy.molecule.resonance.generate_lone_pair_multiple_bond_resonance_structures

Generate all of the resonance structures formed by lone electron pair - multiple bond shifts in 3-atom systems. Examples: aniline (Nc1cccc1), azide, [:NH2]C=[::O] <=> [NH2+]=C[:::O-] (where ':' denotes a lone pair, '.' denotes a radical, '-' not in [] denotes a single bond, '-'/'+' denote charge)

rmgpy.molecule.resonance.generate_optimal_aromatic_resonance_structures

Generate the aromatic form of the molecule. For radicals, generates the form with the most aromatic rings.

Returns result as a list. In most cases, only one structure will be returned. In certain cases where multiple forms have the same number of aromatic rings, multiple structures will be returned. If there's an error (eg. in RDKit) it just returns an empty list.

$\verb|rmqpy.molecule.resonance.generate_resonance_structures|\\$

Generate and return all of the resonance structures for the input molecule.

Most of the complexity of this method goes into handling aromatic species, particularly to generate an accurate set of resonance structures that is consistent regardless of the input structure. The following considerations are made:

1. False positives from RDKit aromaticity detection can occur if a molecule has exocyclic double bonds

- 2. False negatives from RDKit aromaticity detection can occur if a radical is delocalized into an aromatic ring
- 3. sp2 hybridized radicals in the plane of an aromatic ring do not participate in hyperconjugation
- 4. Non-aromatic resonance structures of PAHs are not important resonance contributors (assumption)

Aromatic species are broken into the following categories for resonance treatment:

- Radical polycyclic aromatic species: Kekule structures are generated in order to generate adjacent resonance structures. The resulting structures are then used for Clar structure generation. After all three steps, any non-aromatic structures are removed, under the assumption that they are not important resonance contributors.
- Radical monocyclic aromatic species: Kekule structures are generated along with adjacent resonance structures. All are kept regardless of aromaticity because the radical is more likely to delocalize into the ring.
- Stable polycyclic aromatic species: Clar structures are generated
- Stable monocyclic aromatic species: Kekule structures are generated

rmgpy.molecule.resonance.populate_resonance_algorithms

Generate list of resonance structure algorithms relevant to the current molecule.

Takes a dictionary of features generated by analyze_molecule(). Returns a list of resonance algorithms.

rmgpy.molecule.kekulize

This module contains functions for kekulization of a aromatic molecule. The only function that should be used outside of this module is the main *kekulize()* function. The remaining functions and classes are designed only to support the kekulization algorithm, and should not be used on their own.

The basic algorithm is as follows: 1. Identify all aromatic rings in the molecule, based on bond types. 2. For each ring, identify endocyclic and exocyclic bonds. 3. Determine if any bonds in the ring are already defined (not benzene bonds). 4. For the remaining bonds, determine whether or not they can be double bonds. 5. If a clear determination cannot be made, make heuristic based assumption. 6. Continue until all bonds in the ring are determined. 7. Continue until all rings in the molecule are determined.

Here, *endo* refers to bonds that comprise a given ring, while *exo* refers to bonds that are connected to atoms in the ring, but not part of the ring itself.

A key part of the algorithm is use of degree of freedom (DOF) analysis in order to determine the optimal order to solve the system. Rings and bonds with fewer DOFs have fewer ways to be to be kekulized, and are generally easier to solve. Each ring or bond that is fixed reduces the DOF of adjacent rings and bonds, and the process continues until the entire molecule can be solved.

Helper class containing information about a single aromatic bond in a molecule.

DO NOT use outside of this module. This class does not do any aromaticity perception.

bond

rmgpy.molecule.molecule.Bond

Type bond

double_possible

'bool'

Type double_possible

```
double_required
           'bool'
               Type double_required
     endo_dof
           'int'
               Type endo_dof
     exo_dof
           'int'
               Type exo_dof
      ring_bonds
           set
               Type ring_bonds
     update(self)
           Update the local degree of freedom information for this aromatic bond. The DOF counts do not include
           the bond itself, only its adjacent bonds.
           endo_dof refers to the number of adjacent bonds in the ring without fixed bond orders. exo_dof refers to
           the number of adjacent bonds outside the ring without fixed bond orders.
class rmgpy.molecule.kekulize.AromaticRing(atoms=None, endo_bonds=None, exo_bonds=None,
                                                       endo dof=-1, exo dof=-1)
     Helper class containing information about a single aromatic ring in a molecule.
     DO NOT use outside of this module. This class does not do any aromaticity perception.
     atoms
           list
               Type atoms
     endo_dof
           'int'
               Type endo_dof
     exo_dof
           'int'
               Type exo_dof
     kekulize(self) \rightarrow bool
           Attempts to kekulize a single aromatic ring in a molecule.
           Returns True if successful, and False otherwise.
     process_bonds(self) \rightarrow tuple
           Create AromaticBond objects for each endocyclic bond.
      resolved
           list
               Type resolved
     unresolved
           list
               Type unresolved
```

update(self)

Update the degree of freedom information for this aromatic ring.

endo_dof refers to the number of bonds in the ring without fixed bond orders. *exo_dof* refers to the number of bonds outside the ring without fixed bond orders.

rmgpy.molecule.kekulize.kekulize(Molecule mol)

Kekulize an aromatic molecule in place. If the molecule cannot be kekulized, a KekulizationError will be raised. However, the molecule will be left in a semi-kekulized state. Therefore, if the original molecule needs to be kept, it is advisable to create a copy before kekulizing.

Args: Molecule object to be kekulized

rmgpy.molecule.pathfinder

This module provides functions for searching paths within a molecule. The paths generally consist of alternating atoms and bonds.

rmgpy.molecule.pathfinder.add_allyls

Find all the (3-atom, 2-bond) patterns "X=X-X" starting from the last atom of the existing path.

The bond attached to the starting atom should be non single. The second bond should be single.

rmgpy.molecule.pathfinder.add_inverse_allyls

Find all the (3-atom, 2-bond) patterns "start~atom2=atom3" starting from the last atom of the existing path.

The second bond should be non-single.

rmgpy.molecule.pathfinder.add_unsaturated_bonds

Find all the (2-atom, 1-bond) patterns "X=X" starting from the last atom of the existing path.

The bond attached to the starting atom should be non single.

rmgpy.molecule.pathfinder.compute_atom_distance

Compute the distances between each pair of atoms in the atom_indices.

The distance between two atoms is defined as the length of the shortest path between the two atoms minus 1, because the start atom is part of the path.

The distance between multiple atoms is defined by generating all possible combinations between two atoms and storing the distance between each combination of atoms in a dictionary.

The parameter 'atom_indices' is a list of 1-based atom indices.

rmgpy.molecule.pathfinder.find_N5dc_radical_delocalization_paths

Find all the resonance structures of an N5dc nitrogen atom with a single bond to a radical N/O/S site, another single bond to a negatively charged N/O/S site, and one double bond (not participating in this transformation)

Example:

• N=[N+]([O])([O-]) <=> N=[N+]([O-])([O]), these structures are isomorphic but not identical, the transition is important for correct degeneracy calculations

In this transition atom1 is the middle N+ (N5dc), atom2 is the radical site, and atom3 is negatively charged A "if atom1.atomType.label == 'N5dc'" check should be done before calling this function

$\verb|rmgpy.molecule.pathfinder.find_adj_lone_pair_multiple_bond_delocalization_paths|\\$

Find all the delocalization paths of atom1 which either

- Has a lonePair and is bonded by a single/double bond (e.g., [::NH-]-[CH2+], [::N-]=[CH+]) direction 1
- Can obtain a lonePair and is bonded by a double/triple bond (e.g., [:NH]=[CH2], [:N]#[CH]) direction 2

Giving the following resonance transitions, for example:

- [::NH-]-[CH2+] <=> [:NH]=[CH2]
- [:N]#[CH] <=> [::N-]=[CH+]
- other examples: S#N, N#[S], O=S([O])=O

Direction "1" is the direction <increasing> the bond order as in [::NH-]-[CH2+] <=> [:NH]=[CH2] Direction "2" is the direction <decreasing> the bond order as in [:NH]=[CH2] <=> [::NH-]-[CH2+] (where ':' denotes a lone pair, '.' denotes a radical, '-' not in [] denotes a single bond, '-'/'+' denote charge) (In direction 1 atom1 <losses> a lone pair, in direction 2 atom1 <gains> a lone pair)

rmgpy.molecule.pathfinder.find_adj_lone_pair_radical_delocalization_paths

Find all the delocalization paths of lone electron pairs next to the radical center indicated by *atom1*. Used to generate resonance isomers in adjacent N/O/S atoms. Two adjacent O atoms are not allowed since (a) currently RMG has no good thermo/kinetics for R[:O+.][:::O-] which could have been generated as a resonance structure of R[::O|[::O.].

The radical site (atom1) could be either:

- *N u1 p0*, eg O=[N.+][:::O-]
- *N u1 p1*, eg R[:NH][:NH.]
- O ul pl, eg [:O.+]=[::N-]; not allowed when adjacent to another O atom
- O ul p2, eg O=N[::O.]; not allowed when adjacent to another O atom
- *S u1 p0*, eg O[S.+]([O-])=O
- *S u1 p1*, eg O[:S.+][O-]
- S u1 p2, eg O=N[::S.]
- any of the above with more than 1 radical where possible

The non-radical site (atom2) could respectively be:

- N u0 p1
- N u0 p2
- O u0 p2
- O u0 p3
- S u0 p1
- S u0 p2
- S u0 p3

(where ':' denotes a lone pair, '.' denotes a radical, '-' not in [] denotes a single bond, '-'/'+' denote charge) The bond between the sites does not have to be single, e.g.: [:O.+]=[::N-] <=> [::O]=[:N.]

rmgpy.molecule.pathfinder.**find_adj_lone_pair_radical_multiple_bond_delocalization_paths**Find all the delocalization paths of atom1 which either

- Has a lonePair and is bonded by a single/double bond to a radical atom (e.g., [::N]-[.CH2])
- Can obtain a lonePair, has a radical, and is bonded by a double/triple bond (e.g., [:N.]=[CH2])

Giving the following resonance transitions, for example:

- [::N]-[.CH2] <=> [:N.]=[CH2]
- O[:S](=O)[::O.] <=> O[S.](=O)=[::O]

Direction "1" is the direction <increasing> the bond order as in [::N]-[.CH2] <=> [:N.]=[CH2] Direction "2" is the direction <decreasing> the bond order as in [::N.]=[CH2] <=> [::N]-[.CH2] (where ':' denotes a lone pair, '.' denotes a radical, '-' not in [] denotes a single bond, '-'/'+' denote charge) (In direction 1 atom1 <losses> a lone pair, gains a radical, and atom2 looses a radical. In direction 2 atom1 <gains> a lone pair, looses a radical, and atom2 gains a radical)

rmgpy.molecule.pathfinder.find_allyl_delocalization_paths

Find all the delocalization paths allyl to the radical center indicated by *atom1*.

rmgpy.molecule.pathfinder.find_allyl_end_with_charge

Search for a (3-atom, 2-bond) path between start and end atom that consists of alternating non-single and single bonds and ends with a charged atom.

Returns a list with atom and bond elements from start to end, or an empty list if nothing was found.

rmgpy.molecule.pathfinder.find_butadiene

Search for a path between start and end atom that consists of alternating non-single and single bonds.

Returns a list with atom and bond elements from start to end, or None if nothing was found.

rmgpy.molecule.pathfinder.find_butadiene_end_with_charge

Search for a (4-atom, 3-bond) path between start and end atom that consists of alternating non-single and single bonds and ends with a charged atom.

Returns a list with atom and bond elements from start to end, or None if nothing was found.

rmgpy.molecule.pathfinder.find_lone_pair_multiple_bond_paths

Find all the delocalization paths between lone electron pair and multiple bond in a 3-atom system *atom1* indicates the localized lone pair site. Currently carbenes are excluded from this path.

Examples:

- N2O (N#[N+][O-] <-> [N-]=[N+]=O)
- Azide (N#[N+][NH-] <-> [N-]=[N+]=N <-> [N-2][N+]#[NH+])
- N#N group on sulfur (O[S-](O)[N+]#N <-> OS(O)=[N+]=[N-] <-> O[S+](O)#[N+][N-2])
- N[N+]([O-])=O <=> N[N+](=O)[O-], these structures are isomorphic but not identical, this transition is important for correct degeneracy calculations

rmgpy.molecule.pathfinder.find_shortest_path

rmqpy.molecule.pathfinder.is_atom_able_to_gain_lone_pair

Helper function Returns True if atom is N/O/S and is able to <gain> an additional lone pair, False otherwise We don't allow O to remain with no lone pairs

rmgpy.molecule.pathfinder.is_atom_able_to_lose_lone_pair

Helper function Returns True if atom is N/O/S and is able to <loose> a lone pair, False otherwise We don't allow O to remain with no lone pairs

rmgpy.molecule.converter

This module provides methods for converting molecules between RMG, RDKit, and OpenBabel.

rmgpy.molecule.converter.debugRDKitMol

Takes an rdkit molecule object and logs some debugging information equivalent to calling rdmol.Debug() but uses our logging framework. Default logging level is INFO but can be controlled with the *level* parameter. Also returns the message as a string, should you want it for something.

rmgpy.molecule.converter.fromOBMol

Convert a OpenBabel Mol object *obmol* to a molecular structure. Uses OpenBabel to perform the conversion.

rmgpy.molecule.converter.fromRDKitMol

Convert a RDKit Mol object *rdkitmol* to a molecular structure. Uses RDKit to perform the conversion. This Kekulizes everything, removing all aromatic atom types.

rmgpy.molecule.converter.toOBMol

Convert a molecular structure to an OpenBabel OBMol object. Uses OpenBabel to perform the conversion.

rmgpy.molecule.converter.toRDKitMol

Convert a molecular structure to a RDKit rdmol object. Uses RDKit to perform the conversion. Perceives aromaticity and, unless removeHs==False, removes Hydrogen atoms.

If returnMapping==True then it also returns a dictionary mapping the atoms to RDKit's atom indices.

rmgpy.molecule.translator

This module provides methods for translating to and from common molecule representation formats, e.g. SMILES, InChI, SMARTS.

rmgpy.molecule.translator.fromAugmentedInChI

Creates a Molecule object from the augmented inchi.

First, the inchi is converted into a Molecule using the backend parsers.

Next, the multiplicity and unpaired electron information is used to fix a number of parsing errors made by the backends.

Finally, the atom types of the corrected molecule are perceived.

Returns a Molecule object

rmgpy.molecule.translator.fromInChI

Convert an InChI string *inchistr* to a molecular structure. Uses a user-specified backend for conversion, currently supporting rdkit (default) and openbabel.

rmgpy.molecule.translator.fromSMARTS

Convert a SMARTS string *smartsstr* to a molecular structure. Uses RDKit to perform the conversion. This Kekulizes everything, removing all aromatic atom types.

rmgpy.molecule.translator.fromSMILES

Convert a SMILES string *smilesstr* to a molecular structure. Uses a user-specified backend for conversion, currently supporting rdkit (default) and openbabel.

rmgpy.molecule.translator.toInChI

Convert a molecular structure to an InChI string. For aug_level=0, generates the canonical InChI. For aug_level=1, appends the molecule multiplicity. For aug_level=2, appends positions of unpaired and paired electrons.

Uses RDKit or OpenBabel for conversion.

Parameters

- choice of backend, 'try-all', 'rdkit', or 'openbabel' (backend) —
- level of augmentation, 0, 1, or 2(aug_level) -

rmgpy.molecule.translator.toInChIKey

Convert a molecular structure to an InChI Key string. For aug_level=0, generates the canonical InChI. For aug_level=1, appends the molecule multiplicity. For aug_level=2, appends positions of unpaired and paired electrons.

Uses RDKit or OpenBabel for conversion.

Parameters

- choice of backend, 'try-all', 'rdkit', or 'openbabel' (backend) -
- level of augmentation, 0, 1, or 2 (aug_level) -

rmgpy.molecule.translator.toSMARTS

Convert a molecular structure to an SMARTS string. Uses RDKit to perform the conversion. Perceives aromaticity and removes Hydrogen atoms.

rmgpy.molecule.translator.toSMILES

Convert a molecular structure to an SMILES string.

If there is a Nitrogen/Sulfur atom present it uses OpenBabel to perform the conversion, and the SMILES may or may not be canonical.

Otherwise, it uses RDKit to perform the conversion, so it will be canonical SMILES. While converting to an RDMolecule it will perceive aromaticity and removes Hydrogen atoms.

Adjacency Lists

Note: The adjacency list syntax changed in July 2014. The minimal requirement for most translations is to prefix the number of unpaired electrons with the letter u. The new syntax, however, allows much greater flexibility, including definition of lone pairs, partial charges, wildcards, and molecule multiplicities.

Note: To quickly visualize any adjacency list, or to generate an adjacency list from other types of molecular representations such as SMILES, InChI, or even common species names, use the Molecule Search tool found here: http://rmg.mit.edu/molecule_search

An adjacency list is the most general way of specifying a chemical molecule or molecular pattern in RMG. It is based on the adjacency list representation of the graph data type – the underlying data type for molecules and patterns in RMG – but extended to allow for specification of extra semantic information.

The first line of most adjacency lists is a unique identifier for the molecule or pattern the adjacency list represents. This is not strictly required, but is recommended in most cases. Generally the identifier should only use alphanumeric characters and the underscore, as if an identifier in many popular programming languages. However, strictly speaking any non-space ASCII character is allowed.

The subsequent lines may contain keyword-value pairs. Currently there is only one keyword, multiplicity.

For species or molecule declarations, the value after multiplicity defines the spin multiplicity of the molecule. E.g. multiplicity 1 for most ground state closed shell species, multiplicity 2 for most radical species, and multiplicity 3 for a triplet biradical. If the multiplicity line is not present then a value of (1 + number of unpaired electrons) is assumed. Thus, it can usually be omitted, but if present can be used to distinguish, for example, singlet CH2 from triplet CH2.

If defining a Functional *Group*, then the value must be a list, which defines the multiplicities that will be matched by the group, eg. multiplicity [1,2,3] or, for a single value, multiplicity [1]. If a wildcard is desired, the line 'multiplicity x can be used instead to accept all multiplicities. If the multiplicity line is omitted altogether, then a wildcard is assumed.

e.g. the following two group adjlists represent identical groups.

```
group1
multiplicity x
1 R!H u0
```

```
group2
1 R!H u0
```

After the identifier line and keyword-value lines, each subsequent line describes a single atom and its local bond structure. The format of these lines is a whitespace-delimited list with tokens

```
<number> [<label>] <element> u<unpaired> [p<pairs>] [c<charge>] <bondlist>
```

The first item is the number used to identify that atom. Any number may be used, though it is recommended to number the atoms sequentially starting from one. Next is an optional label used to tag that atom; this should be an asterisk followed by a unique number for the label, e.g. *1. In some cases (e.g. thermodynamics groups) there is only one labeled atom, and the label is just an asterisk with no number: *.

After that is the atom's element or atom type, indicated by its atomic symbol, followed by a sequence of tokens describing the electronic state of the atom:

- u0 number of **unpaired** electrons (eg. radicals)
- p0 number of lone pairs of electrons, common on oxygen and nitrogen.
- c0 formal charge on the atom, e.g. c-1 (negatively charged), c0, c+1 (positively charged)

For *Molecule* definitions: The value must be a single integer (and for charge must have a + or - sign if not equal to 0) The number of unpaired electrons (i.e. radical electrons) is required, even if zero. The number of lone pairs and the formal charge are assumed to be zero if omitted.

For *Group* definitions: The value can be an integer or a list of integers (with signs, for charges), eg. u[0,1,2] or c[0,+1,+2,+3,+4], or may be a wildcard x which matches any valid value, eg. px is the same as p[0,1,2,3,4, ...] and cx is the same as c[...,-4,-3,-2,-1,0,+1,+2,+3,+4,...]. Lists must be enclosed is square brackets, and separated by commas, without spaces. If lone pairs or formal charges are omitted from a group definition, the wildcard is assumed.

The last set of tokens is the list of bonds. To indicate a bond, place the number of the atom at the other end of the bond and the bond type within curly braces and separated by a comma, e.g. {2, S}. Multiple bonds from the same atom should be separated by whitespace.

Note: You must take care to make sure each bond is listed on the lines of *both* atoms in the bond, and that these entries have the same bond type. RMG will raise an exception if it encounters such an invalid adjacency list.

When writing a molecular substructure pattern, you may specify multiple elements, radical counts, and bond types as a comma-separated list inside square brackets. For example, to specify any carbon or oxygen atom, use the syntax [C,0]. For a single or double bond to atom 2, write {2,[S,D]}.

Atom types such as R!H or Cdd may also be used as a shorthand. (Atom types like Cdd can also be used in full molecules, but this use is discouraged, as RMG can compute them automatically for full molecules.)

Below is an example adjacency list, for 1,3-hexadiene, with the weakest bond in the molecule labeled with *1 and *2. Note that hydrogen atoms can be omitted if desired, as their presence is inferred, provided that unpaired electrons, lone pairs, and charges are all correctly defined:

The allowed element types, radicals, and bonds are listed in the following table:

	Notation	Explanation
Chemical Element	С	Carbon atom
	О	Oxygen atom
	Н	Hydrogen atom
	S	Sulfur atom
	N	Nitrogen atom
Nonreactive Elements	Si	Silicon atom
	Cl	Chlorine atom
	Не	Helium atom
	Ar	Argon atom
Chemical Bond	S	Single Bond
	D	Double Bond
	T	Triple bond
	В	Benzene bond

rmgpy.molecule.adjlist.fromAdjacencyList(adjlist, group=False, saturateH=False)
Convert a string adjacency list adjlist into a set of Atom and Bond objects.

rmgpy.molecule.adjlist.toAdjacencyList(atoms, multiplicity, label=None, group=False, removeH=False, removeLonePairs=False, oldStyle=False)
Convert a chemical graph defined by a list of atoms into a string adjacency list.

rmgpy.molecule.symmetry

rmgpy.molecule.symmetry.calculateAtomSymmetryNumber($Molecule\ molecule\ Atom\ atom$) \to float Return the symmetry number centered at atom in the structure. The atom of interest must not be in a cycle.

rmgpy.molecule.symmetry.calculateBondSymmetryNumber($Molecule \ molecule, \ Atom \ atom 1, \ Atom \ atom 2) \rightarrow float$

Return the symmetry number centered at *bond* in the structure.

rmgpy.molecule.symmetry.calculateAxisSymmetryNumber($Molecule\ molecule$) \to float Get the axis symmetry number correction. The "axis" refers to a series of two or more cumulated double bonds (e.g. C=C=C, etc.). Corrections for single C=C bonds are handled in getBondSymmetryNumber().

Each axis (C=C=C) has the potential to double the symmetry number. If an end has 0 or 1 groups (eg. =C=CJJ or =C=C-R) then it cannot alter the axis symmetry and is disregarded:

If an end has 2 groups that are different then it breaks the symmetry and the symmetry for that axis is 1, no matter what's at the other end:

If you have one or more ends with 2 groups, and neither end breaks the symmetry, then you have an axis symmetry number of 2:

rmqpy.molecule.symmetry.calculateCyclicSymmetryNumber($Molecule \ molecule$) \rightarrow float

Get the symmetry number correction for cyclic regions of a molecule. For complicated fused rings the smallest set of smallest rings is used.

rmqpy.molecule.symmetry.calculateSymmetryNumber($Molecule\ molecule$) o float

Return the symmetry number for the structure. The symmetry number includes both external and internal modes.

rmgpy.molecule.draw.MoleculeDrawer

class rmgpy.molecule.draw.MoleculeDrawer(options=None)

This class provides functionality for drawing the skeletal formula of molecules using the Cairo 2D graphics engine. The most common use case is simply:

```
MoleculeDrawer().draw(molecule, format='png', path='molecule.png')
```

where molecule is the Molecule object to draw. You can also pass a dict of options to the constructor to affect how the molecules are drawn.

draw(molecule, format, target=None)

Draw the given *molecule* using the given image *format* - pdf, svg, ps, or png. If *path* is given, the drawing is saved to that location on disk. The *options* dict is an optional set of key-value pairs that can be used to control the generated drawing.

This function returns the Cairo surface and context used to create the drawing, as well as a bounding box for the molecule being drawn as the tuple (*left*, *top*, *width*, *height*).

render(cr, offset=None)

Uses the Cairo graphics library to create a skeletal formula drawing of a molecule containing the list of *atoms* and dict of *bonds* to be drawn. The 2D position of each atom in *atoms* is given in the *coordinates* array. The symbols to use at each atomic position are given by the list *symbols*. You must specify the Cairo context *cr* to render to.

rmgpy.molecule.draw.ReactionDrawer

class rmgpy.molecule.draw.ReactionDrawer(options=None)

This class provides functionality for drawing chemical reactions using the skeletal formula of each reactant and product molecule via the Cairo 2D graphics engine. The most common use case is simply:

```
ReactionDrawer().draw(reaction, format='png', path='reaction.png')
```

where reaction is the Reaction object to draw. You can also pass a dict of options to the constructor to affect how the molecules are drawn.

draw(reaction, format, path=None)

Draw the given reaction using the given image format - pdf, svg, ps, or png. If path is given, the drawing is saved to that location on disk.

This function returns the Cairo surface and context used to create the drawing, as well as a bounding box for the molecule being drawn as the tuple (*left*, *top*, *width*, *height*).

1.7 Pressure dependence (rmgpy.pdep)

The rmgpy. pdep subpackage provides functionality for calcuating the pressure-dependent rate coefficients k(T, P) for unimolecular reaction networks.

A unimolecular reaction network is defined by a set of chemically reactive molecular configurations - local minima on a potential energy surface - divided into unimolecular isomers and bimolecular reactants or products. In our vernacular, reactants can associate to form an isomer, while such association is neglected for products. These configurations are connected by chemical reactions to form a network; these are referred to as *path* reactions. The system also consists of an excess of inert gas M, representing a thermal bath; this allows for neglecting all collisions other than those between an isomer and the bath gas.

An isomer molecule at sufficiently high internal energy can be transformed by a number of possible events:

- · The isomer molecule can collide with any other molecule, resulting in an increase or decrease in energy
- The isomer molecule can isomerize to an adjacent isomer at the same energy
- The isomer molecule can dissociate into any directly connected bimolecular reactant or product channel

It is this competition between collision and reaction events that gives rise to pressure-dependent kinetics.

1.7.1 Collision events

Class	Description
SingleExponentialDown	A collisional energy transfer model based on the single exponential down model

1.7.2 Reaction events

Function	Description
calculateMicrocanonicalRateCoefficie	n R épurn the microcanonical rate coefficient $k(E)$ for a reaction
applyRRKMTheory()	Use RRKM theory to compute $k(E)$ for a reaction
applyInverseLaplaceTransformMethod()	Use the inverse Laplace transform method to compute $k(E)$ for
	a reaction

1.7.3 Pressure-dependent reaction networks

Class	Description
Configuration	A molecular configuration on a potential energy surface
Network	A collisional energy transfer model based on the single exponential down model

1.7.4 The master equation

Function	Description
<pre>generateFullMEMatrix()</pre>	Return the full master equation matrix for a network

1.7.5 Master equation reduction methods

Function	Description
msc.applyModifiedStrongCollis	Reflexice of the master equation to phenomenological rate coefficients
	k(T, P) using the modified strong collision method
rs.applyReservoirStateMethod(Reduce the master equation to phenomenological rate coefficients
	k(T, P) using the reservoir state method
cse.applyChemicallySignifican	t Rieghence a three smastler dequation to phenomenological rate coefficients
	k(T, P) using the chemically-significant eigenvalues method

rmgpy.pdep.SingleExponentialDown

class rmgpy.pdep.SingleExponentialDown(alpha0=None, T0=None, n=0.0)

A representation of a single exponential down model of collisional energy transfer. The attributes are:

Attribute	Description
alpha0	The average energy transferred in a deactivating collision at the reference temperature
TO	The reference temperature
n	The temperature exponent

Based around the collisional energy transfer probability function

$$P(E, E') = C(E') \exp\left(-\frac{E' - E}{\alpha}\right)$$
 $E < E'$

where the parameter $\alpha=\langle \Delta E_{\rm d} \rangle$ represents the average energy transferred in a deactivating collision. This is the most commonly-used collision model, simply because it only has one parameter to determine. The parameter α is specified using the equation

$$\alpha = \alpha_0 \left(\frac{T}{T_0}\right)^n$$

where α_0 is the value of α at temperature T_0 in K. Set the exponent n to zero to obtain a temperature-independent value for α .

TΘ

The reference temperature.

alpha0

The average energy transferred in a deactivating collision at the reference temperature.

$$as_dict(self) \rightarrow dict$$

A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

calculateCollisionEfficiency(self, double T, ndarray Elist, ndarray Jlist, ndarray densStates, double E0, double Ereac)

Calculate an efficiency factor for collisions, particularly useful for the modified strong collision method. The collisions involve the given *species* with density of states *densStates* corresponding to energies Elist' in J/mol, ground-state energy *E0* in kJ/mol, and first reactive energy *Ereac* in kJ/mol. The collisions occur at temperature *T* in K and are described by the average energy transferred in a deactivating collision *dEdown* in kJ/mol. The algorithm here is implemented as described by Chang, Bozzelli, and Dean [?].

generateCollisionMatrix (self, double T, ndarray densStates, ndarray Elist, ndarray Jlist=None)

Generate and return the collision matrix $\mathbf{M}_{\text{coll}}/\omega = \mathbf{P} - \mathbf{I}$ corresponding to this collision model for a given set of energies *Elist* in J/mol, temperature T in K, and isomer density of states *densStates*.

```
getAlpha(self, double T) \rightarrow double
```

Return the value of the α parameter - the average energy transferred in a deactivating collision - in J/mol at temperature T in K.

```
make_object(self, dict data, dict class dict)
```

A helper function for constructing objects from a dictionary (used when loading YAML files)

Parameters

- data (dict) The dictionary representation of the object
- **class_dict** (*dict*) A mapping of class names to the classes themselves

Returns None

n

'double'

Type n

Reaction events

Microcanonical rate coefficients

rmgpy.pdep.calculateMicrocanonicalRateCoefficient(reaction, ndarray Elist, ndarray Jlist, ndarray reacDensStates, ndarray prod-DensStates=None, double T=0.0)

Calculate the microcanonical rate coefficient k(E) for the reaction reaction at the energies Elist in J/mol. reac-DensStates and prodDensStates are the densities of states of the reactant and product configurations for this reaction. If the reaction is irreversible, only the reactant density of states is required; if the reaction is reversible, then both are required. This function will try to use the best method that it can based on the input data available:

- If detailed information has been provided for the transition state (i.e. the molecular degrees of freedom), then RRKM theory will be used.
- If the above is not possible but high-pressure limit kinetics $k_{\infty}(T)$ have been provided, then the inverse Laplace transform method will be used.

The density of states for the product *prodDensStates* and the temperature of interest *T* in K can also be provided. For isomerization and association reactions *prodDensStates* is required; for dissociation reactions it is optional. The temperature is used if provided in the detailed balance expression to determine the reverse kinetics, and in certain cases in the inverse Laplace transform method.

RRKM theory

rmgpy.pdep.applyRRKMTheory(transitionState, ndarray Elist, ndarray Jlist, ndarray densStates)

Calculate the microcanonical rate coefficient for a reaction using RRKM theory, where *transitionState* is the transition state of the reaction, *Elist* is the array of energies in J/mol at which to evaluate the microcanonial rate, and *densStates* is the density of states of the reactant.

RRKM (Rice-Ramsperger-Kassel-Marcus) theory is the microcanonical analogue of transition state theory. The microcanonical rate coefficient as a function of total energy E and total angular momentum quantum number J

is given by

$$k(E,J) = \frac{N^{\ddagger}(E,J)}{h\rho(E,J)}$$

where $N^{\ddagger}(E,J)$ is the sum of states of the transition state and $\rho(E,J)$ is the density of states of the reactant. If the J-rotor is treated as active, the J-dependence can be averaged in the above expression to give

$$k(E) = \frac{N^{\ddagger}(E)}{h\rho(E)}$$

as a function of total energy alone. This is reasonable at high temperatures, but less accurate at low temperatures.

Use of RRKM theory requires detailed information about the statistical mechanics of the reactant *and* transition state. However, it is generally more accurate than the inverse Laplace transform method.

Inverse Laplace transform method

rmgpy.pdep.applyInverseLaplaceTransformMethod(transitionState, Arrhenius kinetics, ndarray Elist, ndarray Jlist, ndarray densStates, double T=0.0)

Calculate the microcanonical rate coefficient for a reaction using the inverse Laplace transform method, where *kinetics* is the high pressure limit rate coefficient, *E0* is the ground-state energy of the transition state, *Elist* is the array of energies in kJ/mol at which to evaluate the microcanonial rate, and *densStates* is the density of states of the reactant. The temperature *T* in K is not required, and is only used when the temperature exponent of the Arrhenius expression is negative (for which the inverse transform is undefined).

The inverse Laplace transform method exploits the following relationship to determine the microcanonical rate coefficient:

$$\mathcal{L}[k(E)\rho(E)] = \int_0^\infty k(E)\rho(E)e^{-E/k_{\rm B}T} dE = k_\infty(T)Q(T)$$

Given a high-pressure limit rate coefficient $k_{\infty}(T)$ represented as an Arrhenius expression with positive n and $E_{\rm a}$, the microcanonical rate coefficient k(E) can be determined via an inverse Laplace transform. For n=0 the transform can be defined analytically:

$$k(E) = A \frac{\rho(E - E_{a})}{\rho(E)} \quad (n = 0)$$

For n>0 the transform is defined numerically. For n<0 or $E_{\rm a}<0$ the transform is not defined; in this case we approximate by simply lumping the T^n or $e^{-E_{\rm a}/RT}$ terms into the preexponential factor, and use a different k(E) at each temperature.

The ILT method does not required detailed transition state information, but only the high-pressure limit kinetics. However, it assumes that (1) $k_{\infty}(T)$ is valid over the temperature range from zero to infinity and (2) the activation energy $E_{\rm a}$ is physically identical to the reaction barrier $E_0^{\ddagger} - E_0$.

rmgpy.pdep.Configuration

class rmgpy.pdep.Configuration(*species)

A representation of a molecular configuration on a potential energy surface.

E0

The ground-state energy of the configuration in J/mol.

Elist

numpy.ndarray

Type Elist

activeJRotor

'bool'

Type activeJRotor

activeKRotor

'bool'

Type activeKRotor

calculateCollisionFrequency (*self*, *double T*, *double P*, *dict bathGas*) \rightarrow double

Return the value of the collision frequency in Hz at the given temperature *T* in K and pressure *P* in Pa. If a dictionary *bathGas* of bath gas species and corresponding mole fractions is given, the collision parameters of the bas gas species will be averaged with those of the species before computing the collision frequency.

Only the Lennard-Jones collision model is currently supported.

Calculate the density (and sum) of states for the configuration at the given energies above the ground state *Elist* in J/mol. The *activeJRotor* and *activeKRotor* flags control whether the J-rotor and/or K-rotor are treated as active (and therefore included in the density and sum of states). The computed density and sum of states arrays are stored on the object for future use.

cleanup(self)

Delete intermediate arrays used in computing k(T,P) values.

densStates

numpy.ndarray

Type densStates

$\mbox{\tt generateCollisionMatrix} (\textit{self}, \textit{double T}, \textit{ndarray densStates}, \textit{ndarray Elist}, \textit{ndarray Ilist=None}) \rightarrow \mbox{\tt ndarray}$

Return the collisional energy transfer probabilities matrix for the configuration at the given temperature *T* in K using the given energies *Elist* in kJ/mol and total angular momentum quantum numbers *Jlist*. The density of states of the configuration *densStates* in mol/kJ is also required.

getEnthalpy (*self*, *double* T) \rightarrow double

Return the enthalpy in kJ/mol at the specified temperature T in K.

getEntropy (*self*, *double* T) \rightarrow double

Return the entropy in J/mol*K at the specified temperature T in K.

$getFreeEnergy(self, double\ T) \rightarrow double$

Return the Gibbs free energy in kJ/mol at the specified temperature *T* in K.

$getHeatCapacity(self, double\ T) \rightarrow double$

Return the constant-pressure heat capacity in J/mol*K at the specified temperature T in K.

$hasStatMech(self) \rightarrow bool$

Return True if all species in the configuration have statistical mechanics parameters, or False otherwise.

$hasThermo(self) \rightarrow bool$

Return True if all species in the configuration have thermodynamics parameters, or False otherwise.

$isBimolecular(self) \rightarrow bool$

Return True if the configuration represents a bimolecular reactant or product channel, or False otherwise.

isTransitionState(self) \rightarrow bool

Return True if the configuration represents a transition state, or False otherwise.

$isUnimolecular(self) \rightarrow bool$

Return True if the configuration represents a unimolecular isomer, or False otherwise.

mapDensityOfStates(self, ndarray Elist, ndarray Jlist=None)

Return a mapping of the density of states for the configuration to the given energies *Elist* in J/mol and, if the J-rotor is not active, the total angular momentum quantum numbers *Jlist*.

mapSumOfStates(self, ndarray Elist, ndarray Jlist=None)

Return a mapping of the density of states for the configuration to the given energies *Elist* in J/mol and, if the J-rotor is not active, the total angular momentum quantum numbers *Jlist*.

species

list

Type species

sumStates

numpy.ndarray

Type sumStates

rmgpy.pdep.Network

A representation of a unimolecular reaction network. The attributes are:

Attribute	Description
isomers	A list of the unimolecular isomers in the network
reactants	A list of the bimolecular reactant channels (Configuration objects) in the network
products	A list of the bimolecular product channels (Configuration objects) in the network
pathReac-	A list of "path" reaction objects that connect adjacent isomers (the high-pressure-limit)
tions	
bathGas	A dictionary of the bath gas species (keys) and their mole fractions (values)
netReac-	A list of "net" reaction objects that connect any pair of isomers
tions	
T	The current temperature in K
P	The current pressure in bar
Elist	The current array of energy grains in kJ/mol
Jlist	The current array of total angular momentum quantum numbers
Nisom	The number of unimolecular isomers in the network
Nreac	The number of bimolecular reactant channels in the network
Nprod	The number of bimolecular product channels in the network
Ngrains	The number of energy grains
NJ	The number of angular momentum grains
grainSize	Maximum size of separation between energies
grainCount	Minimum number of descrete energies separated
E0	A list of ground state energies of isomers, reactants, and products
activeKRo-	True if the K-rotor is treated as active, False if treated as adiabatic
tor	
activeJRotor	True if the J-rotor is treated as active, False if treated as adiabatic
rmgmode	True if in RMG mode, False otherwise
eqRatios	An array containing concentration of each isomer and reactant channel present at equilibrium
collFreq	An array of the frequency of collision between
Mcoll	Matrix of first-order rate coefficients for collisional population transfer between grains for
	each isomer
densStates	3D np array of stable configurations, number of grains, and number of J

applyChemicallySignificantEigenvaluesMethod(lumpingOrder=None)

Compute the phenomenological rate coefficients k(T, P) at the current conditions using the chemically-significant eigenvalues method. If a *lumpingOrder* is provided, the algorithm will attempt to lump the configurations (given by index) in the order provided, and return a reduced set of k(T, P) values.

applyModifiedStrongCollisionMethod(efficiencyModel='default')

Compute the phenomenological rate coefficients k(T,P) at the current conditions using the modified strong collision method.

applyReservoirStateMethod()

Compute the phenomenological rate coefficients k(T, P) at the current conditions using the reservoir state method.

calculateCollisionModel()

Calculate the matrix of first-order rate coefficients for collisional population transfer between grains for each isomer, including the corresponding collision frequencies.

calculateDensitiesOfStates()

Calculate the densities of states of each configuration that has states data. The densities of states are computed such that they can be applied to each temperature in the range of interest by interpolation.

calculateEquilibriumRatios()

Return an array containing the fraction of each isomer and reactant channel present at equilibrium, as determined from the Gibbs free energy and using the concentration equilibrium constant K_c . These values

are ratios, and the absolute magnitude is not guaranteed; however, the implementation scales the elements of the array so that they sum to unity.

calculateMicrocanonicalRates()

Calculate and return arrays containing the microcanonical rate coefficients k(E) for the isomerization, dissociation, and association path reactions in the network.

getAllSpecies()

Return a list of all unique species in the network, including all isomers, reactant and product channels, and bath gas species.

initialize(Tmin, Tmax, Pmin, Pmax, maximumGrainSize=0.0, minimumGrainCount=0, activeJRotor=True, activeKRotor=True, rmgmode=False)

Initialize a pressure dependence calculation by computing several quantities that are independent of the conditions. You must specify the temperature and pressure ranges of interesting using *Tmin* and *Tmax* in K and *Pmin* and *Pmax* in Pa. You must also specify the maximum energy grain size *grainSize* in J/mol and/or the minimum number of grains *grainCount*.

invalidate()

Mark the network as in need of a new calculation to determine the pressure-dependent rate coefficients

mapDensitiesOfStates()

Map the overall densities of states to the current energy grains. Semi-logarithmic interpolation will be used if the grain sizes of *Elist0* and *Elist* do not match; this should not be a significant source of error as long as the grain sizes are sufficiently small.

printSummary(level=20)

Print a formatted list of information about the current network. Each molecular configuration - unimolecular isomers, bimolecular reactant channels, and bimolecular product channels - is given along with its energy on the potential energy surface. The path reactions connecting adjacent molecular configurations are also given, along with their energies on the potential energy surface. The *level* parameter controls the level of logging to which the summary is written, and is DEBUG by default.

selectEnergyGrains(T, grainSize=0.0, grainCount=0)

Select a suitable list of energies to use for subsequent calculations. This is done by finding the minimum and maximum energies on the potential energy surface, then adding a multiple of $k_{\rm B}T$ onto the maximum energy.

You must specify either the desired grain spacing *grainSize* in J/mol or the desired number of grains *Ngrains*, as well as a temperature *T* in K to use for the equilibrium calculation. You can specify both *grainSize* and *grainCount*, in which case the one that gives the more accurate result will be used (i.e. they represent a maximum grain size and a minimum number of grains). An array containing the energy grains in J/mol is returned.

setConditions(T, P, ymB=None)

Set the current network conditions to the temperature T in K and pressure P in Pa. All of the internal variables are updated accordingly if they are out of date. For example, those variables that depend only on temperature will not be recomputed if the temperature is the same.

solveFullME(tlist, x0)

Directly solve the full master equation using a stiff ODE solver. Pass the reaction network to solve, the temperature T in K and pressure P in Pa to solve at, the energies Elist in J/mol to use, the output time points tlist in S, the initial total populations S0, the full master equation matrix S1, the accounting matrix S2 relating isomer and energy grain indices to indices of the master equation matrix, and the densities of states S3 densS4 total population profiles for each isomer. Returns the times in S4, population distributions for each isomer, and total population profiles for each configuration.

solveReducedME(tlist, x0)

Directly solve the reduced master equation using a stiff ODE solver. Pass the output time points *tlist* in s and the initial total populations x0. Be sure to run one of the methods for generating k(T, P) values before

calling this method. Returns the times in s, population distributions for each isomer, and total population profiles for each configuration.

The master equation

rmgpy.pdep.me.generateFullMEMatrix(network, bool products=True)

Generate the full master equation matrix for the network.

An in-depth explanation can be found in the Master Equation section of the theory guide.

Methods for estimating k(T,P) values

The objective of each of the methods described in this section is to reduce the master equation into a small number of phenomenological rate coefficients k(T, P). All of the methods share a common formalism in that they seek to express the population distribution vector \mathbf{p}_i for each unimolecular isomer i as a linear combination of the total populations of all unimolecular isomers and bimolecular reactant channels.

The modified strong collision method

rmqpy.pdep.msc.applyModifiedStrongCollisionMethod(network, str efficiencyModel='default')

The modified strong collision method utilizes a greatly simplified collision model that allows for a decoupling of the energy grains. In the simplified collision model, collisional stabilization of a reactive isomer is treated as a single-step process, ignoring the effects of collisional energy redistribution within the reactive energy space. An attempt to correct for the effect of collisional energy redistribution is made by modifying the collision frequency $\omega_i(T,P)$ with a collision efficiency $\beta_i(T)$ estimated from the low-pressure limit fall-off of a single isomer.

By approximating the reactive populations as existing in pseudo-steady state, the master equation is converted to a matrix equation is at each energy. Solving these small matrix equations gives the pseudo-steady state populations of each isomer as a function of the total population of each isomer and reactant channel, which are then applied to determine the k(T,P) values.

In practice, the modified strong collision method is the fastest and most robust of the methods, and is reasonably accurate over a wide range of temperatures and pressures.

The reservoir state method

rmgpy.pdep.rs.applyReservoirStateMethod(network)

In the reservoir state method, the population distribution of each isomer is partitioned into the low-energy grains (called the *reservoir*) and the high-energy grains (called the *active space*). The partition generally occurs at or near the lowest transition state energy for each isomer. The reservoir population is assumed to be thermalized, while the active-space population is assumed to be in pseudo-steady state. Applying these approximations converts the master equation into a single large matrix equation. Solving this matrix equation gives the pseudo-steady state populations of each isomer as a function of the total population of each isomer and reactant channel, which are then applied to determine the k(T,P) values.

The reservoir state method is only slightly more expensive than the modified strong collision method. At low temperatures the approximations used are very good, and the resulting k(T,P) values are more accurate than the modified strong collision values. However, at high temperatures the thermalized reservoir approximation breaks down, resulting in very inaccurate k(T,P) values. Thus, the reservoir state method is not robustly applicable over a wide range of temperatures and pressures.

The chemically-significant eigenvalues method

$rmgpy.pdep.cse. \begin{tabular}{ll} apply Chemically Significant Eigenvalues Method (\it network, list lumpin-gOrder=None) \end{tabular} lumpin-gOrder=None) \end{tabular}$

In the chemically-significant eigenvalues method, the master equation matrix is diagonized to determine its eigenmodes. Only the slowest of these modes are relevant to the chemistry; the rest involve internal energy relaxation due to collisions. Keeping only these "chemically-significant" eigenmodes allows for reduction to k(T, P) values.

The chemically-significant eigenvalues method is the most accurate method, and is considered to be exact as long as the chemically-significant eigenmodes are separable and distinct from the internal energy relaxation eigenmodes. However, this is often only the case near the high-pressure limit, even for networks of only modest size. The chemically-significant eigenvalues method is also substantially more expensive to apply than the other methods.

1.8 QMTP (rmgpy.qm)

The *rmgpy.qm* subpackage contains classes and functions for working with molecular geometries, and interfacing with quantum chemistry software.

1.8.1 Main

Class	Description
QMSettings	A class to store settings related to quantum mechanics calculations
QMCalculator	An object to store settings and previous calculations

1.8.2 Molecule

Class	Description
Geometry	A geometry, used for quantum calculations
QMMolecule	A base class for QM Molecule calculations

1.8.3 QM Data

Class/Function	Description
QMData	General class for data extracted from a QM calculation

1.8.4 QM Verifier

Class/Function	Description
QMVerifier	Verifies whether a QM job was successfully completed

1.8.5 Symmetry

Class/Function	Description
PointGroup	A symmetry Point Group
PointGroupCalculator	Wrapper type to determine molecular symmetry point groups based on 3D coordi-
	nates
SymmetryJob	Determine the point group using the SYMMETRY program

1.8.6 Gaussian

Class/Function	Description
Gaussian	A base class for all QM calculations that use Gaussian
GaussianMol	A base Class for calculations of molecules using Gaussian.
GaussianMolPM3	A base Class for calculations of molecules using Gaussian at PM3.
GaussianMolPM6	A base Class for calculations of molecules using Gaussian at PM6.

1.8.7 **Mopac**

Class/Function	Description
Морас	A base class for all QM calculations that use Mopac
MopacMol	A base Class for calculations of molecules using Mopac.
MopacMolPM3	A base Class for calculations of molecules using Mopac at PM3.
MopacMolPM6	A base Class for calculations of molecules using Mopac at PM6.
MopacMolPM7	A base Class for calculations of molecules using Mopac at PM7.

rmgpy.qm.main

class rmgpy.qm.main.QMSettings(software=None, method='pm3', fileStore=None, scratchDirectory=None, onlyCyclics=True, maxRadicalNumber=0)

A minimal class to store settings related to quantum mechanics calculations.

Attribute	Type	Description
software	str	Quantum chemical package name in common letters
method	str	Semi-empirical method
fileStore	str	The path to the QMfiles directory
scratchDirectory	str	The path to the scratch directory
onlyCyclics	bool	True if to run QM only on ringed species
maxRadicalNumber	int	Radicals larger than this are saturated before applying HBI

checkAllSet()

Check that all the required settings are set.

 $\textbf{class} \ \texttt{rmgpy.qm.main.QMCalculator} (software=None, \ method='pm3', \ fileStore=None, \ scratchDirectory=None, \ onlyCyclics=True, maxRadicalNumber=0)$

A Quantum Mechanics calculator object, to store settings.

The attributes are:

Attribute	Туре	Description
settings	QMSettings	Settings for QM calculations
database	ThermoLibrary	Database containing QM calculations

checkPaths()

Check the paths in the settings are OK. Make folders as necessary.

checkReady()

Check that it's ready to run calculations.

getThermoData(molecule)

Generate thermo data for the given Molecule via a quantum mechanics calculation.

Ignores the settings onlyCyclics and maxRadicalNumber and does the calculation anyway if asked. (I.e. the code that chooses whether to call this method should consider those settings).

initialize()

Do any startup tasks.

runJobs(spc_list, procnum=1)

Run QM jobs for the provided species list (in parallel if requested).

setDefaultOutputDirectory(outputDirectory)

IF the fileStore or scratchDirectory are not already set, put them in here.

rmgpy.qm.molecule

class rmgpy.qm.molecule.Geometry(settings, uniqueID, molecule, uniqueIDlong=None)

A geometry, used for quantum calculations.

Created from a molecule. Geometry estimated by RDKit.

The attributes are:

Attribute	Type	Description
settings	QMSettings	Settings for QM calculations
uniqueID	str	A short ID such as an augmented InChI Key
molecule	Molecule	RMG Molecule object
uniqueIDlong	str	A long, truly unique ID such as an augmented InChI

generateRDKitGeometries()

Use RDKit to guess geometry.

Save mol files of both crude and refined. Saves coordinates on atoms.

qetCrudeMolFilePath()

Returns the path of the crude mol file.

getFilePath(extension, scratch=True)

Returns the path to the file with the given extension.

The provided extension should include the leading dot. If called with *scratch=False* then it will be in the *fileStore* directory, else *scratch=True* is assumed and it will be in the *scratchDirectory* directory.

getRefinedMolFilePath()

Returns the path the refined mol file.

rd_build()

Import rmg molecule and create rdkit molecule with the same atom labeling.

rd_embed(rdmol, numConfAttempts)

Embed the RDKit molecule and create the crude molecule file.

saveCoordinatesFromQMData(qmdata)

Save geometry info from QMData (eg CCLibData)

uniqueID = None

A short unique ID such as an augmented InChI Key.

uniqueIDlong = None

Long, truly unique, ID, such as the augmented InChI.

class rmgpy.qm.molecule.QMMolecule(molecule, settings)

A base class for QM Molecule calculations.

Specific programs and methods should inherit from this and define some extra attributes and methods:

- outputFileExtension
- inputFileExtension
- generateQMData() ... and whatever else is needed to make this method work.

The attributes are:

Attribute	Type	Description
molecule	Molecule	RMG Molecule object
settings	QMSettings	Settings for QM calculations
uniqueID	str	A short ID such as an augmented InChI Key
uniqueIDlong	str	A long, truly unique ID such as an augmented InChI

calculateChiralityCorrection()

Returns the chirality correction to entropy (R*In(2) if chiral) in J/mol/K.

calculateThermoData()

Calculate the thermodynamic properties.

Stores and returns a ThermoData object as self.thermo. self.qmData and self.pointGroup need to be generated before this method is called.

checkPaths()

Check the paths in the settings are OK. Make folders as necessary.

checkReady()

Check that it's ready to run calculations.

createGeometry()

Creates self.geometry with RDKit geometries

determinePointGroup()

Determine point group using the SYMMETRY Program

Stores the resulting PointGroup in self.pointGroup

generateQMData()

Calculate the QM data somehow and return a CCLibData object, or None if it fails.

generateThermoData()

Generate Thermo Data via a QM calc.

Returns None if it fails.

getFilePath(extension, scratch=True)

Returns the path to the file with the given extension.

The provided extension should include the leading dot. If called with scratch=False then it will be in the fileStore directory, else scratch=True is assumed and it will be in the scratchDirectory directory.

getInChiKeyAug()

Returns the augmented InChI from self.molecule

getMolFilePathForCalculation(attempt)

Get the path to the MOL file of the geometry to use for calculation attempt.

If attempt <= self.scriptAttempts then we use the refined coordinates, then we start to use the crude coordinates.

getThermoFilePath()

Returns the path the thermo data file.

initialize()

Do any startup tasks.

inputFilePath

Get the input file name.

loadThermoData()

Try loading a thermo data from a previous run.

maxAttempts

The total number of attempts to try

outputFilePath

Get the output file name.

parse()

Parses the results of the Mopac calculation, and returns a QMData object.

saveThermoData()

Save the generated thermo data.

scriptAttempts

The number of attempts with different script keywords

rmgpy.qm.qmdata

```
class rmgpy.qm.qmdata.QMData(groundStateDegeneracy=-1,
                                                                      numberOfAtoms=None,
                                stericEnergy=None, molecularMass=None,
                                                                        energy=0,
                                                                                  atomic-
                                Numbers=None,
                                               rotationalConstants=None,
                                                                          atomCoords=None,
                                frequencies=None, source=None)
```

General class for data extracted from a QM calculation

groundStateDegeneracy = None

Electronic ground state degeneracy in RMG taken as number of radicals +1

numberOfAtoms = None

Number of atoms.

rmgpy.qm.qmverifier

```
class rmgpy.qm.qmverifier.QMVerifier(molfile)
```

Verifies whether a QM job (externalized) was successfully completed by

- searching for specific keywords in the output files,
- located in a specific directory (e.g. "QMFiles")

checkForInChiKeyCollision(logFileInChI)

This method is designed in the case a MOPAC output file was found but the InChI found in the file did not correspond to the InChI of the given molecule.

This could mean two things: 1) that the InChI Key hash does not correspond to the InChI it is hashed from. This is the rarest case of them all 2) the complete InChI did not fit onto just one line in the MOPAC output file. Therefore it was continued on the second line and only a part of the InChI was actually taken as the 'whole' InChI.

This method reads in the MOPAC input file and compares the found InChI in there to the InChI of the given molecule.

succesfulJobExists()

checks whether one of the flags is true. If so, it returns true.

rmgpy.qm.symmetry

class rmgpy.qm.symmetry.PointGroup(pointGroup, symmetryNumber, chiral)

A symmetry Point Group.

Attributes are:

- pointGroup
- · symmetryNumber
- · chiral
- linear

class rmqpy.qm.symmetry.PointGroupCalculator(settings, uniqueID, qmData)

Wrapper type to determine molecular symmetry point groups based on 3D coords information.

Will point to a specific algorithm, like SYMMETRY that is able to do this.

class rmgpy.qm.symmetry.SymmetryJob(settings, uniqueID, qmData)

Determine the point group using the SYMMETRY program

(http://www.cobalt.chem.ucalgary.ca/ps/symmetry/).

Required input is a line with number of atoms followed by lines for each atom including: 1) atom number 2) x,y,z coordinates

finalTol determines how loose the point group criteria are; values are comparable to those specified in the GaussView point group interface

calculate()

Do the entire point group calculation.

This writes the input file, then tries several times to run 'symmetry' with different parameters, until a point group is found and returned.

inputFilePath

The input file's path

parse(output)

Check the *output* string and extract the resulting point group, which is returned.

run(command)

Run the command, wait for it to finish, and return the stdout.

uniqueID = None

The object that holds information from a previous QM Job on 3D coords, molecule etc...

writeInputFile()

Write the input file for the SYMMETRY program.

rmgpy.qm.gaussian

class rmgpy.qm.gaussian.Gaussian

A base class for all QM calculations that use Gaussian.

Classes such as *GaussianMol* will inherit from this class.

failureKeys = ['ERROR TERMINATION', 'IMAGINARY FREQUENCIES']

List of phrases that indicate failure NONE of these must be present in a successful job.

parse()

Parses the results of the Gaussian calculation, and returns a QMData object.

successKeys = ['Normal termination of Gaussian']

List of phrases to indicate success. ALL of these must be present in a successful job.

verifyOutputFile()

Check's that an output file exists and was successful.

Returns a boolean flag that states whether a successful GAUSSIAN simulation already exists for the molecule with the given (augmented) InChI Key.

The definition of finding a successful simulation is based on these criteria: 1) finding an output file with the file name equal to the InChI Key 2) NOT finding any of the keywords that are denote a calculation failure 3) finding all the keywords that denote a calculation success. 4) finding a match between the InChI of the given molecule and the InchI found in the calculation files 5) checking that the optimized geometry, when connected by single bonds, is isomorphic with self.molecule (converted to single bonds)

If any of the above criteria is not matched, False will be returned. If all are satisfied, it will return True.

class rmgpy.qm.gaussian.GaussianMol(molecule, settings)

A base Class for calculations of molecules using Gaussian.

Inherits from both QMMolecule and Gaussian.

calculateChiralityCorrection()

Returns the chirality correction to entropy (R*ln(2) if chiral) in J/mol/K.

calculateThermoData()

Calculate the thermodynamic properties.

Stores and returns a ThermoData object as self.thermo. self.qmData and self.pointGroup need to be generated before this method is called.

checkPaths()

Check the paths in the settings are OK. Make folders as necessary.

checkReady()

Check that it's ready to run calculations.

createGeometry()

Creates self.geometry with RDKit geometries

determinePointGroup()

Determine point group using the SYMMETRY Program

Stores the resulting PointGroup in self.pointGroup

generateQMData()

Calculate the QM data and return a QMData object.

generateThermoData()

Generate Thermo Data via a QM calc.

Returns None if it fails.

getFilePath(extension, scratch=True)

Returns the path to the file with the given extension.

The provided extension should include the leading dot. If called with *scratch=False* then it will be in the *fileStore* directory, else *scratch=True* is assumed and it will be in the *scratchDirectory* directory.

getInChiKeyAug()

Returns the augmented InChI from self.molecule

getMolFilePathForCalculation(attempt)

Get the path to the MOL file of the geometry to use for calculation attempt.

If attempt <= self.scriptAttempts then we use the refined coordinates, then we start to use the crude coordinates.

getParser(outputFile)

Returns the appropriate cclib parser.

getThermoFilePath()

Returns the path the thermo data file.

initialize()

Do any startup tasks.

inputFileKeywords(attempt)

Return the top keywords for attempt number attempt.

NB. attempt begins at 1, not 0.

inputFilePath

Get the input file name.

loadThermoData()

Try loading a thermo data from a previous run.

maxAttempts

The total number of attempts to try

outputFilePath

Get the output file name.

parse(

Parses the results of the Mopac calculation, and returns a QMData object.

saveThermoData()

Save the generated thermo data.

scriptAttempts

The number of attempts with different script keywords

verifyOutputFile()

Check's that an output file exists and was successful.

Returns a boolean flag that states whether a successful GAUSSIAN simulation already exists for the molecule with the given (augmented) InChI Key.

The definition of finding a successful simulation is based on these criteria: 1) finding an output file with the file name equal to the InChI Key 2) NOT finding any of the keywords that are denote a calculation failure 3) finding all the keywords that denote a calculation success. 4) finding a match between the InChI of the given molecule and the InchI found in the calculation files 5) checking that the optimized geometry, when connected by single bonds, is isomorphic with self.molecule (converted to single bonds)

If any of the above criteria is not matched, False will be returned. If all are satisfied, it will return True.

writeInputFile(attempt)

Using the Geometry object, write the input file for the attempt.

class rmgpy.qm.gaussian.GaussianMolPM3(molecule, settings)

Gaussian PM3 calculations for molecules

This is a class of its own in case you wish to do anything differently, but for now it's only the 'pm3' in the keywords that differs.

calculateChiralityCorrection()

Returns the chirality correction to entropy (R*ln(2) if chiral) in J/mol/K.

calculateThermoData()

Calculate the thermodynamic properties.

Stores and returns a ThermoData object as self.thermo. self.qmData and self.pointGroup need to be generated before this method is called.

checkPaths()

Check the paths in the settings are OK. Make folders as necessary.

checkReady()

Check that it's ready to run calculations.

createGeometry()

Creates self.geometry with RDKit geometries

determinePointGroup()

Determine point group using the SYMMETRY Program

Stores the resulting PointGroup in self.pointGroup

generateQMData()

Calculate the QM data and return a QMData object.

generateThermoData()

Generate Thermo Data via a QM calc.

Returns None if it fails.

getFilePath(extension, scratch=True)

Returns the path to the file with the given extension.

The provided extension should include the leading dot. If called with *scratch=False* then it will be in the *fileStore* directory, else *scratch=True* is assumed and it will be in the *scratchDirectory* directory.

getInChiKeyAug()

Returns the augmented InChI from self.molecule

getMolFilePathForCalculation(attempt)

Get the path to the MOL file of the geometry to use for calculation attempt.

If attempt <= self.scriptAttempts then we use the refined coordinates, then we start to use the crude coordinates.

qetParser(outputFile)

Returns the appropriate cclib parser.

getThermoFilePath()

Returns the path the thermo data file.

initialize()

Do any startup tasks.

inputFileKeywords(attempt)

Return the top keywords for attempt number attempt.

NB. attempt begins at 1, not 0.

inputFilePath

Get the input file name.

keywords = ['# pm3 opt=(verytight,gdiis) freq IOP(2/16=3)', '# pm3 opt=(verytight,gdiis) freq IOP(2/16=3)', '# pm3 opt=(verytight,gdiis) freq IOP(2/16=3)', '# pm3 opt=(verytight,gdiis) freq IOP(2/16=3)'

Keywords that will be added at the top of the qm input file

loadThermoData()

Try loading a thermo data from a previous run.

maxAttempts

The total number of attempts to try

outputFilePath

Get the output file name.

parse()

Parses the results of the Mopac calculation, and returns a QMData object.

saveThermoData()

Save the generated thermo data.

scriptAttempts

The number of attempts with different script keywords

verifyOutputFile()

Check's that an output file exists and was successful.

Returns a boolean flag that states whether a successful GAUSSIAN simulation already exists for the molecule with the given (augmented) InChI Key.

The definition of finding a successful simulation is based on these criteria: 1) finding an output file with the file name equal to the InChI Key 2) NOT finding any of the keywords that are denote a calculation failure 3) finding all the keywords that denote a calculation success. 4) finding a match between the InChI of the given molecule and the InchI found in the calculation files 5) checking that the optimized geometry, when connected by single bonds, is isomorphic with self.molecule (converted to single bonds)

If any of the above criteria is not matched, False will be returned. If all are satisfied, it will return True.

writeInputFile(attempt)

Using the Geometry object, write the input file for the attempt.

class rmgpy.qm.gaussian.GaussianMolPM6(molecule, settings)

Gaussian PM6 calculations for molecules

This is a class of its own in case you wish to do anything differently, but for now it's only the 'pm6' in the keywords that differs.

calculateChiralityCorrection()

Returns the chirality correction to entropy (R*ln(2) if chiral) in J/mol/K.

calculateThermoData()

Calculate the thermodynamic properties.

Stores and returns a ThermoData object as self.thermo. self.qmData and self.pointGroup need to be generated before this method is called.

checkPaths()

Check the paths in the settings are OK. Make folders as necessary.

checkReady()

Check that it's ready to run calculations.

createGeometry()

Creates self.geometry with RDKit geometries

determinePointGroup()

Determine point group using the SYMMETRY Program

Stores the resulting PointGroup in self.pointGroup

generateQMData()

Calculate the QM data and return a QMData object.

generateThermoData()

Generate Thermo Data via a QM calc.

Returns None if it fails.

getFilePath(extension, scratch=True)

Returns the path to the file with the given extension.

The provided extension should include the leading dot. If called with *scratch=False* then it will be in the *fileStore* directory, else *scratch=True* is assumed and it will be in the *scratchDirectory* directory.

getInChiKeyAug()

Returns the augmented InChI from self.molecule

getMolFilePathForCalculation(attempt)

Get the path to the MOL file of the geometry to use for calculation attempt.

If attempt <= self.scriptAttempts then we use the refined coordinates, then we start to use the crude coordinates.

getParser(outputFile)

Returns the appropriate cclib parser.

getThermoFilePath()

Returns the path the thermo data file.

initialize()

Do any startup tasks.

inputFileKeywords(attempt)

Return the top keywords for attempt number attempt.

NB. attempt begins at 1, not 0.

inputFilePath

Get the input file name.

keywords = ['# pm6 opt=(verytight,gdiis) freq IOP(2/16=3)', '# pm6 opt=(very

Keywords that will be added at the top of the qm input file

loadThermoData()

Try loading a thermo data from a previous run.

maxAttempts

The total number of attempts to try

outputFilePath

Get the output file name.

parse()

Parses the results of the Mopac calculation, and returns a QMData object.

saveThermoData()

Save the generated thermo data.

scriptAttempts

The number of attempts with different script keywords

verifyOutputFile()

Check's that an output file exists and was successful.

Returns a boolean flag that states whether a successful GAUSSIAN simulation already exists for the molecule with the given (augmented) InChI Key.

The definition of finding a successful simulation is based on these criteria: 1) finding an output file with the file name equal to the InChI Key 2) NOT finding any of the keywords that are denote a calculation failure 3) finding all the keywords that denote a calculation success. 4) finding a match between the InChI of the given molecule and the InchI found in the calculation files 5) checking that the optimized geometry, when connected by single bonds, is isomorphic with self.molecule (converted to single bonds)

If any of the above criteria is not matched, False will be returned. If all are satisfied, it will return True.

writeInputFile(attempt)

Using the Geometry object, write the input file for the *attempt*.

rmgpy.qm.mopac

class rmgpy.qm.mopac.Mopac

A base class for all QM calculations that use MOPAC.

Classes such as MopacMol will inherit from this class.

failureKeys = ['IMAGINARY FREQUENCIES', 'EXCESS NUMBER OF OPTIMIZATION CYCLES', 'NOT ENOUGH TIME List of phrases that indicate failure NONE of these must be present in a successful job.

getParser(outputFile)

Returns the appropriate cclib parser.

successKeys = ['DESCRIPTION OF VIBRATIONS', 'MOPAC DONE']

List of phrases to indicate success. ALL of these must be present in a successful job.

usePolar = False

Keywords for the multiplicity

verifyOutputFile()

Check's that an output file exists and was successful.

Returns a boolean flag that states whether a successful MOPAC simulation already exists for the molecule with the given (augmented) InChI Key.

The definition of finding a successful simulation is based on these criteria: 1) finding an output file with the file name equal to the InChI Key 2) NOT finding any of the keywords that are denote a calculation failure 3) finding all the keywords that denote a calculation success. 4) finding a match between the InChI of the given molecule and the InchI found in the calculation files 5) checking that the optimized geometry, when connected by single bonds, is isomorphic with self.molecule (converted to single bonds)

If any of the above criteria is not matched, False will be returned. If all succeed, then it will return True.

class rmgpy.qm.mopac.MopacMol(molecule, settings)

A base Class for calculations of molecules using MOPAC.

Inherits from both QMMolecule and Mopac.

calculateChiralityCorrection()

Returns the chirality correction to entropy (R*ln(2) if chiral) in J/mol/K.

calculateThermoData()

Calculate the thermodynamic properties.

Stores and returns a ThermoData object as self.thermo. self.qmData and self.pointGroup need to be generated before this method is called.

checkPaths()

Check the paths in the settings are OK. Make folders as necessary.

checkReady()

Check that it's ready to run calculations.

createGeometry()

Creates self.geometry with RDKit geometries

determinePointGroup()

Determine point group using the SYMMETRY Program

Stores the resulting PointGroup in self.pointGroup

generateQMData()

Calculate the QM data and return a QMData object, or None if it fails.

generateThermoData()

Generate Thermo Data via a QM calc.

Returns None if it fails.

getFilePath(extension, scratch=True)

Returns the path to the file with the given extension.

The provided extension should include the leading dot. If called with *scratch=False* then it will be in the *fileStore* directory, else *scratch=True* is assumed and it will be in the *scratchDirectory* directory.

getInChiKeyAug()

Returns the augmented InChI from self.molecule

getMolFilePathForCalculation(attempt)

Get the path to the MOL file of the geometry to use for calculation *attempt*.

If attempt <= self.scriptAttempts then we use the refined coordinates, then we start to use the crude coordinates.

getParser(outputFile)

Returns the appropriate cclib parser.

qetThermoFilePath()

Returns the path the thermo data file.

initialize()

Do any startup tasks.

inputFileKeywords(attempt)

Return the top, bottom, and polar keywords.

inputFilePath

Get the input file name.

keywords = [{'top': 'precise nosym THREADS=1', 'bottom': 'oldgeo thermo nosym precise THREADS= Keywords that will be added at the top and bottom of the qm input file

loadThermoData()

Try loading a thermo data from a previous run.

maxAttempts

The total number of attempts to try

outputFilePath

Get the output file name.

parse()

Parses the results of the Mopac calculation, and returns a QMData object.

saveThermoData()

Save the generated thermo data.

scriptAttempts

The number of attempts with different script keywords

verifyOutputFile()

Check's that an output file exists and was successful.

Returns a boolean flag that states whether a successful MOPAC simulation already exists for the molecule with the given (augmented) InChI Key.

The definition of finding a successful simulation is based on these criteria: 1) finding an output file with the file name equal to the InChI Key 2) NOT finding any of the keywords that are denote a calculation failure 3) finding all the keywords that denote a calculation success. 4) finding a match between the InChI of the given molecule and the InchI found in the calculation files 5) checking that the optimized geometry, when connected by single bonds, is isomorphic with self-molecule (converted to single bonds)

If any of the above criteria is not matched, False will be returned. If all succeed, then it will return True.

writeInputFile(attempt)

Using the Geometry object, write the input file for the *attempt*.

class rmgpy.qm.mopac.MopacMolPM3(molecule, settings)

Mopac PM3 calculations for molecules

This is a class of its own in case you wish to do anything differently, but for now it's the same as all the MOPAC PMn calculations, only pm3

calculateChiralityCorrection()

Returns the chirality correction to entropy (R*ln(2) if chiral) in J/mol/K.

calculateThermoData()

Calculate the thermodynamic properties.

Stores and returns a ThermoData object as self.thermo. self.qmData and self.pointGroup need to be generated before this method is called.

checkPaths()

Check the paths in the settings are OK. Make folders as necessary.

checkReady()

Check that it's ready to run calculations.

createGeometry()

Creates self.geometry with RDKit geometries

determinePointGroup()

Determine point group using the SYMMETRY Program

Stores the resulting PointGroup in self.pointGroup

generateQMData()

Calculate the QM data and return a QMData object, or None if it fails.

generateThermoData()

Generate Thermo Data via a QM calc.

Returns None if it fails.

getFilePath(extension, scratch=True)

Returns the path to the file with the given extension.

The provided extension should include the leading dot. If called with *scratch=False* then it will be in the *fileStore* directory, else *scratch=True* is assumed and it will be in the *scratchDirectory* directory.

getInChiKeyAug()

Returns the augmented InChI from self.molecule

getMolFilePathForCalculation(attempt)

Get the path to the MOL file of the geometry to use for calculation *attempt*.

If attempt <= self.scriptAttempts then we use the refined coordinates, then we start to use the crude coordinates.

getParser(outputFile)

Returns the appropriate cclib parser.

getThermoFilePath()

Returns the path the thermo data file.

initialize()

Do any startup tasks.

inputFileKeywords(attempt)

Return the top, bottom, and polar keywords for attempt number attempt.

NB. attempt begins at 1, not 0.

inputFilePath

Get the input file name.

loadThermoData()

Try loading a thermo data from a previous run.

maxAttempts

The total number of attempts to try

outputFilePath

Get the output file name.

parse()

Parses the results of the Mopac calculation, and returns a QMData object.

saveThermoData()

Save the generated thermo data.

scriptAttempts

The number of attempts with different script keywords

verifyOutputFile()

Check's that an output file exists and was successful.

Returns a boolean flag that states whether a successful MOPAC simulation already exists for the molecule with the given (augmented) InChI Key.

The definition of finding a successful simulation is based on these criteria: 1) finding an output file with the file name equal to the InChI Key 2) NOT finding any of the keywords that are denote a calculation failure 3) finding all the keywords that denote a calculation success. 4) finding a match between the InChI of the given molecule and the InchI found in the calculation files 5) checking that the optimized geometry, when connected by single bonds, is isomorphic with self.molecule (converted to single bonds)

If any of the above criteria is not matched, False will be returned. If all succeed, then it will return True.

writeInputFile(attempt)

Using the Geometry object, write the input file for the *attempt*.

class rmgpy.qm.mopac.MopacMolPM6(molecule, settings)

Mopac PM6 calculations for molecules

This is a class of its own in case you wish to do anything differently, but for now it's the same as all the MOPAC PMn calculations, only pm6

calculateChiralityCorrection()

Returns the chirality correction to entropy (R*ln(2) if chiral) in J/mol/K.

calculateThermoData()

Calculate the thermodynamic properties.

Stores and returns a ThermoData object as self.thermo. self.qmData and self.pointGroup need to be generated before this method is called.

checkPaths()

Check the paths in the settings are OK. Make folders as necessary.

checkReady()

Check that it's ready to run calculations.

createGeometry()

Creates self.geometry with RDKit geometries

determinePointGroup()

Determine point group using the SYMMETRY Program

Stores the resulting PointGroup in self.pointGroup

generateQMData()

Calculate the QM data and return a QMData object, or None if it fails.

generateThermoData()

Generate Thermo Data via a QM calc.

Returns None if it fails.

getFilePath(extension, scratch=True)

Returns the path to the file with the given extension.

The provided extension should include the leading dot. If called with *scratch=False* then it will be in the *fileStore* directory, else *scratch=True* is assumed and it will be in the *scratchDirectory* directory.

getInChiKeyAug()

Returns the augmented InChI from self.molecule

getMolFilePathForCalculation(attempt)

Get the path to the MOL file of the geometry to use for calculation attempt.

If attempt <= self.scriptAttempts then we use the refined coordinates, then we start to use the crude coordinates.

getParser(outputFile)

Returns the appropriate cclib parser.

getThermoFilePath()

Returns the path the thermo data file.

initialize()

Do any startup tasks.

inputFileKeywords(attempt)

Return the top, bottom, and polar keywords for attempt number *attempt*.

NB. attempt begins at 1, not 0.

inputFilePath

Get the input file name.

loadThermoData()

Try loading a thermo data from a previous run.

maxAttempts

The total number of attempts to try

outputFilePath

Get the output file name.

parse()

Parses the results of the Mopac calculation, and returns a QMData object.

saveThermoData()

Save the generated thermo data.

scriptAttempts

The number of attempts with different script keywords

verifyOutputFile()

Check's that an output file exists and was successful.

Returns a boolean flag that states whether a successful MOPAC simulation already exists for the molecule with the given (augmented) InChI Key.

The definition of finding a successful simulation is based on these criteria: 1) finding an output file with the file name equal to the InChI Key 2) NOT finding any of the keywords that are denote a calculation failure 3) finding all the keywords that denote a calculation success. 4) finding a match between the InChI of the given molecule and the InchI found in the calculation files 5) checking that the optimized geometry, when connected by single bonds, is isomorphic with self.molecule (converted to single bonds)

If any of the above criteria is not matched, False will be returned. If all succeed, then it will return True.

writeInputFile(attempt)

Using the Geometry object, write the input file for the *attempt*.

class rmgpy.qm.mopac.MopacMolPM7(molecule, settings)

Mopac PM7 calculations for molecules

This is a class of its own in case you wish to do anything differently, but for now it's the same as all the MOPAC PMn calculations, only pm7

calculateChiralityCorrection()

Returns the chirality correction to entropy (R*ln(2) if chiral) in J/mol/K.

calculateThermoData()

Calculate the thermodynamic properties.

Stores and returns a ThermoData object as self.thermo. self.qmData and self.pointGroup need to be generated before this method is called.

checkPaths()

Check the paths in the settings are OK. Make folders as necessary.

checkReady()

Check that it's ready to run calculations.

createGeometry()

Creates self.geometry with RDKit geometries

determinePointGroup()

Determine point group using the SYMMETRY Program

Stores the resulting PointGroup in self.pointGroup

generateQMData()

Calculate the QM data and return a QMData object, or None if it fails.

generateThermoData()

Generate Thermo Data via a QM calc.

Returns None if it fails.

getFilePath(extension, scratch=True)

Returns the path to the file with the given extension.

The provided extension should include the leading dot. If called with *scratch=False* then it will be in the *fileStore* directory, else *scratch=True* is assumed and it will be in the *scratchDirectory* directory.

getInChiKeyAug()

Returns the augmented InChI from self.molecule

getMolFilePathForCalculation(attempt)

Get the path to the MOL file of the geometry to use for calculation *attempt*.

If attempt <= self.scriptAttempts then we use the refined coordinates, then we start to use the crude coordinates.

getParser(outputFile)

Returns the appropriate cclib parser.

getThermoFilePath()

Returns the path the thermo data file.

initialize()

Do any startup tasks.

inputFileKeywords(attempt)

Return the top, bottom, and polar keywords for attempt number *attempt*.

NB. attempt begins at 1, not 0.

inputFilePath

Get the input file name.

loadThermoData()

Try loading a thermo data from a previous run.

maxAttempts

The total number of attempts to try

outputFilePath

Get the output file name.

parse()

Parses the results of the Mopac calculation, and returns a QMData object.

saveThermoData()

Save the generated thermo data.

scriptAttempts

The number of attempts with different script keywords

verifyOutputFile()

Check's that an output file exists and was successful.

Returns a boolean flag that states whether a successful MOPAC simulation already exists for the molecule with the given (augmented) InChI Key.

The definition of finding a successful simulation is based on these criteria: 1) finding an output file with the file name equal to the InChI Key 2) NOT finding any of the keywords that are denote a calculation failure 3) finding all the keywords that denote a calculation success. 4) finding a match between the InChI of the given molecule and the InchI found in the calculation files 5) checking that the optimized geometry, when connected by single bonds, is isomorphic with self.molecule (converted to single bonds)

If any of the above criteria is not matched, False will be returned. If all succeed, then it will return True.

writeInputFile(attempt)

Using the Geometry object, write the input file for the *attempt*.

1.9 Physical quantities (rmgpy.quantity)

A physical quantity is defined by a numerical value and a unit of measurement.

The *rmgpy.quantity* module contains classes and methods for working with physical quantities. Physical quantities are represented by either the *ScalarQuantity* or *ArrayQuantity* class depending on whether a scalar or vector (or tensor) value is used. The *Quantity* function automatically chooses the appropriate class based on the input value. In both cases, the value of a physical quantity is available from the value attribute, and the units from the units attribute.

For efficient computation, the value is stored internally in the SI equivalent units. The SI value can be accessed directly using the value_si attribute. Usually it is good practice to read the value_si attribute into a local variable and then use it for computations, especially if it is referred to multiple times in the calculation.

Physical quantities also allow for storing of uncertainty values for both scalars and arrays. The uncertaintyType attribute indicates whether the given uncertainties are additive ("+|-") or multiplicative ("*|/"), and the uncertainty attribute contains the stored uncertainties. For additive uncertainties these are stored in the given units (not the SI equivalent), since they are generally not needed for efficient computations. For multiplicative uncertainties, the uncertainty values are by definition dimensionless.

1.9.1 Quantity objects

Class	Description
ScalarQuantity	A scalar physical quantity, with units and uncertainty
ArrayQuantity	An array physical quantity, with units and uncertainty
Quantity()	Return a scalar or array physical quantity

1.9.2 Unit types

Units can be classified into categories based on the associated dimensionality. For example, miles and kilometers are both units of length; seconds and hours are both units of time, etc. Clearly, quantities of different unit types are fundamentally different.

RMG provides functions that create physical quantities (scalar or array) and validate the units for a variety of unit types. This prevents the user from inadvertently mixing up their units - e.g. by setting an enthalpy with entropy units - which should reduce errors. RMG recognizes the following unit types:

Function	Unit type	SI unit
Acceleration()	acceleration	m/s^2
Area()	area	m^2
Concentration()	concentration	$\mathrm{mol/cm^3}$
Dimensionless()	dimensionless	
Energy()	energy	J/mol
Entropy()	entropy	$J/\text{mol} \cdot K$
Flux()	flux	$\mathrm{mol/cm^2 \cdot s}$
Frequency()	frequency	cm^{-1}
Force()	force	N
Inertia()	inertia	$\mathrm{kg}\cdot\mathrm{m}^2$
Length()	length	m
Mass()	mass	kg
Momentum()	momentum	$\mathrm{kg}\cdot\mathrm{m/s^2}$
Power()	power	W
Pressure()	pressure	Pa
RateCoefficient()	rate coefficient	s^{-1} , $m^3/mol \cdot s$, $m^6/mol^2 \cdot s$, $m^9/mol^3 \cdot s$
Temperature()	temperature	K
Time()	time	S
Velocity()	velocity	m/s
Volume()	volume	m^3

In RMG, all energies, heat capacities, concentrations, fluxes, and rate coefficients are treated as intensive; this means that these quantities are always expressed "per mole" or "per molecule". All other unit types are extensive. A special exception is added for mass so as to allow for coercion of g/mol to amu.

RMG also handles rate coefficient units as a special case, as there are multiple allowed dimensionalities based on the reaction order. Note that RMG generally does not attempt to verify that the rate coefficient units match the reaction order, but only that it matches one of the possibilities.

The table above gives the SI unit that RMG uses internally to work with physical quantities. This does not necessarily correspond with the units used when outputting values. For example, pressures are often output in units of bar instead of Pa, and moments of inertia in amu * angstrom² instead of kg * m². The recommended rule of thumb is to use prefixed SI units (or aliases thereof) in the output; for example, use kJ/mol instead of kcal/mol for energy values.

rmgpy.quantity.ScalarQuantity

class rmgpy.quantity.**ScalarQuantity**(*value=0.0*, *units=*", *uncertainty=0.0*, *uncertaintyType=*'+|-')

The *ScalarQuantity* class provides a representation of a scalar physical quantity, with optional units and uncertainty information. The attributes are:

Attribute	Description
value	The numeric value of the quantity in the given units
units	The units the value was specified in
uncertainty	The numeric uncertainty in the value in the given units (unitless if multiplicative)
uncertainty-	The type of uncertainty: '+ -' for additive, '* /' for multiplicative
Type	
value_si	The numeric value of the quantity in the corresponding SI units
uncertainty_si	The numeric value of the uncertainty in the corresponding SI units (unitless if multiplica-
	tive)

It is often more convenient to perform computations using SI units instead of the given units of the quantity. For this reason, the SI equivalent of the *value* attribute can be directly accessed using the *value_si* attribute. This value is cached on the *ScalarQuantity* object for speed.

$as_dict(self) \rightarrow dict$

A helper function for YAML dumping

copy (self) \rightarrow ScalarQuantity

Return a copy of the quantity.

equals(self, quantity)

Return True if the everything in a quantity object matches the parameters in this object. If there are lists of values or uncertainties, each item in the list must be matching and in the same order. Otherwise, return False (Originally intended to return warning if units capitalization was different, however, Quantity object only parses units matching in case, so this will not be a problem.)

$getConversionFactorFromSI(self) \rightarrow double$

Return the conversion factor for converting a quantity to a given set of *units* from the SI equivalent units.

$getConversionFactorFromSItoCmMolS(self) \rightarrow double$

Return the conversion factor for converting into SI units only with all lengths in cm, instead of m. This is useful for outputting chemkin file kinetics. Depending on the stoichiometry of the reaction the reaction rate coefficient could be /s, cm^3/mol/s, cm^6/mol^2/s, and for heterogeneous reactions even more possibilities. Only lengths are changed. Everything else is in SI, i.e. moles (not molecules) and seconds (not minutes).

$getConversionFactorToSI(self) \rightarrow double$

Return the conversion factor for converting a quantity in a given set of units to the SI equivalent units.

getUncertainty(self)

The numeric value of the uncertainty, in the given units if additive, or no units if multiplicative.

$getUncertaintyType(self) \rightarrow str$

The type of uncertainty: '+|-' for additive, '*|/' for multiplicative

getValue(self)

The numeric value of the quantity, in the given units

isUncertaintyAdditive(self) \rightarrow bool

Return True if the uncertainty is specified in additive format and False otherwise.

$isUncertaintyMultiplicative(self) \rightarrow bool$

Return True if the uncertainty is specified in multiplicative format and False otherwise.

```
make_object(self, dict data, dict class_dict)
           A helper function for constructing objects from a dictionary (used when loading YAML files)
               Parameters
                   • data (dict) – The dictionary representation of the object
                   • class_dict (dict) – A mapping of class names to the classes themselves
               Returns None
     setUncertainty(self, v)
     setUncertaintyType(self, str v)
           Check the uncertainty type is valid, then set it.
     setValue(self, v)
     uncertainty
           ScalarQuantity.getUncertainty(self)
           The numeric value of the uncertainty, in the given units if additive, or no units if multiplicative.
     uncertaintyType
           ScalarQuantity.getUncertaintyType(self) -> str
           The type of uncertainty: '+|-' for additive, '*|/' for multiplicative
     uncertainty_si
           'double'
               Type uncertainty_si
     units
           str
               Type units
     value
           ScalarQuantity.getValue(self)
           The numeric value of the quantity, in the given units
     value_si
           'double'
               Type value_si
rmgpy.quantity.ArrayQuantity
class rmgpy.quantity.ArrayQuantity(value=None,
                                                                    units=",
                                                                                       uncertainty=None,
                                            uncertaintyType='+|-')
```

and uncertainty information. The attributes are:

Attribute	Description
value	The numeric value of the quantity in the given units
units	The units the value was specified in
uncertainty	The numeric uncertainty in the value (unitless if multiplicative)
uncertainty-	The type of uncertainty: '+ -' for additive, '* /' for multiplicative
Type	
value_si	The numeric value of the quantity in the corresponding SI units
uncertainty_si	The numeric value of the uncertainty in the corresponding SI units (unitless if multiplica-
	tive)

It is often more convenient to perform computations using SI units instead of the given units of the quantity. For this reason, the SI equivalent of the *value* attribute can be directly accessed using the *value_si* attribute. This value is cached on the *ArrayQuantity* object for speed.

$as_dict(self) \rightarrow dict$

A helper function for YAML dumping

copy (*self*) \rightarrow ArrayQuantity

Return a copy of the quantity.

equals(self, quantity)

Return True if the everything in a quantity object matches the parameters in this object. If there are lists of values or uncertainties, each item in the list must be matching and in the same order. Otherwise, return False (Originally intended to return warning if units capitalization was different, however, Quantity object only parses units matching in case, so this will not be a problem.)

$getConversionFactorFromSI(self) \rightarrow double$

Return the conversion factor for converting a quantity to a given set of *units* from the SI equivalent units.

$getConversionFactorFromSItoCmMolS(self) \rightarrow double$

Return the conversion factor for converting into SI units only with all lengths in cm, instead of m. This is useful for outputting chemkin file kinetics. Depending on the stoichiometry of the reaction the reaction rate coefficient could be /s, cm^3/mol/s, cm^6/mol^2/s, and for heterogeneous reactions even more possibilities. Only lengths are changed. Everything else is in SI, i.e. moles (not molecules) and seconds (not minutes).

$getConversionFactorToSI(self) \rightarrow double$

Return the conversion factor for converting a quantity in a given set of units to the SI equivalent units.

getUncertainty(self)

The numeric value of the uncertainty, in the given units if additive, or no units if multiplicative.

$getUncertaintyType(self) \rightarrow str$

The type of uncertainty: '+|-' for additive, '*|/' for multiplicative

getValue(self)

The numeric value of the array quantity, in the given units.

$isUncertaintyAdditive(self) \rightarrow bool$

Return True if the uncertainty is specified in additive format and False otherwise.

$isUncertaintyMultiplicative(self) \rightarrow bool$

Return True if the uncertainty is specified in multiplicative format and False otherwise.

make_object(self, dict data, dict class_dict)

A helper function for constructing objects from a dictionary (used when loading YAML files)

Parameters

• data (dict) – The dictionary representation of the object

• class_dict (dict) – A mapping of class names to the classes themselves

```
Returns None
```

```
setUncertainty(self, v)
```

setUncertaintyType(self, str v)

Check the uncertainty type is valid, then set it.

If you set the uncertainty then change the type, we have no idea what to do with the units. This ensures you set the type first.

```
setValue(self, v)
```

uncertainty

ArrayQuantity.getUncertainty(self)

The numeric value of the uncertainty, in the given units if additive, or no units if multiplicative.

uncertaintyType

```
ArrayQuantity.getUncertaintyType(self) -> str
```

The type of uncertainty: '+|-' for additive, '*|/' for multiplicative

uncertainty_si

numpy.ndarray

Type uncertainty_si

units

str

Type units

value

ArrayQuantity.getValue(self)

The numeric value of the array quantity, in the given units.

value_si

numpy.ndarray

Type value_si

rmgpy.quantity.Quantity

```
rmqpy.quantity.Quantity(*args, **kwargs)
```

Create a *ScalarQuantity* or *ArrayQuantity* object for a given physical quantity. The physical quantity can be specified in several ways:

- A scalar-like or array-like value (for a dimensionless quantity)
- An array of arguments (including keyword arguments) giving some or all of the *value*, *units*, *uncertainty*, and/or *uncertaintyType*.
- A tuple of the form (value,), (value, units), (value, units, uncertainty), or (value, units, uncertaintyType, uncertainty)
- An existing ScalarQuantity or ArrayQuantity object, for which a copy is made

1.10 Reactions (rmgpy.reaction)

The rmgpy. reaction subpackage contains classes and functions for working with chemical reaction.

1.10.1 Reaction

Class	Description
Reaction	A chemical reaction

rmgpy.reaction.Reaction

class rmgpy.reaction.Reaction(index=-1, label=", reactants=None, products=None, specific-Collider=None, kinetics=None, network_kinetics=None, reversible=True, transitionState=None, duplicate=False, degeneracy=1, pairs=None, allow_pdep_route=False, elementary_high_p=False, allow_max_rate_violation=False, rank=None, comment=", is_forward=None)

A chemical reaction. The attributes are:

At-	Type	Description
tribute	7,60	
index	int	A unique nonnegative integer index
label	str	A descriptive string label
reac-	list	The reactant species (as Species objects)
tants		
prod-	list	The product species (as Species objects)
ucts		
'speci-	Speci	esThe collider species (as a Species object)
fic-		
Col-		
lider'		
ki-	Kinet	i. CEMokienetics model to use for the reaction
net-		
ics		
net-	Arrher	The kinetics model to use for PDep network exploration if the kinetics attribute is
work_k	inetics	:class:PDepKineticsModel:
re-	bool	True if the reaction is reversible, False if not
versible		
tran-	Trans	i Ellon Garastri on state
si-		
tion-		
State		
du-	bool	True if the reaction is known to be a duplicate, False if not
pli-		
cate		
de-	double	e The reaction path degeneracy for the reaction
gen-		
er-		
acy		
pairs	list	Reactant-product pairings to use in converting reaction flux to species flux
al-	bool	True if the reaction has an additional PDep pathway, False if not (by default), used for
	ep_route	
ele-	bool	If True, pressure dependent kinetics will be generated (relevant only for unimolecular li-
men-		brary reactions) If False (by default), this library reaction will not be explored. Only
tary_hi	gh_p	unimolecular library reactions with high pressure limit kinetics should be flagged (not if
		the kinetics were measured at some relatively low pressure)
com-	str	A description of the reaction source (optional)
ment		
is_forw		Indicates if the reaction was generated in the forward (true) or reverse (false)
rank	int	Integer indicating the accuracy of the kinetics for this reaction

allow_max_rate_violation

'bool'

Type allow_max_rate_violation

${\tt allow_pdep_route}$

'bool'

Type allow_pdep_route

 $\begin{tabular}{ll} \textbf{calculateMicrocanonicalRateCoefficient} (self, ndarray Elist, ndarray Ilist, ndarray reac-\\ DensStates, ndarray prodDensStates=None, double\\ T=0.0) \end{tabular}$

Calculate the microcanonical rate coefficient k(E) for the reaction reaction at the energies Elist in J/mol. reacDensStates and prodDensStates are the densities of states of the reactant and product configurations for this reaction. If the reaction is irreversible, only the reactant density of states is required; if the reaction is reversible, then both are required. This function will try to use the best method that it can based on the input data available:

- If detailed information has been provided for the transition state (i.e. the molecular degrees of freedom), then RRKM theory will be used.
- If the above is not possible but high-pressure limit kinetics $k_{\infty}(T)$ have been provided, then the inverse Laplace transform method will be used.

The density of states for the product prodDensStates and the temperature of interest T in K can also be provided. For isomerization and association reactions prodDensStates is required; for dissociation reactions it is optional. The temperature is used if provided in the detailed balance expression to determine the reverse kinetics, and in certain cases in the inverse Laplace transform method.

$calculateTSTRateCoefficient(self, double T) \rightarrow double$

Evaluate the forward rate coefficient for the reaction with corresponding transition state TS at temperature T in K using (canonical) transition state theory. The TST equation is

$$k(T) = \kappa(T) \frac{k_{\rm B}T}{h} \frac{Q^{\ddagger}(T)}{Q^{\rm A}(T)Q^{\rm B}(T)} \exp\left(-\frac{E_0}{k_{\rm B}T}\right)$$

where Q^{\ddagger} is the partition function of the transition state, Q^{A} and Q^{B} are the partition function of the reactants, E_{0} is the ground-state energy difference from the transition state to the reactants, T is the absolute temperature, k_{B} is the Boltzmann constant, and h is the Planck constant. $\kappa(T)$ is an optional tunneling correction.

calculateTSTRateCoefficients (self, ndarray Tlist) \rightarrow ndarray

calculate_coll_limit(self, float temp, bool reverse=False)

Calculate the collision limit rate for the given temperature implemented as recommended in Wang et al. doi 10.1016/j.combustflame.2017.08.005 (Eq. 1)

$canTST(self) \rightarrow bool$

Return True if the necessary parameters are available for using transition state theory – or the microcanonical equivalent, RRKM theory – to compute the rate coefficient for this reaction, or False otherwise.

check_collision_limit_violation (self, $float\ t_min$, $float\ t_max$, $float\ p_min$, $float\ p_max$) \rightarrow list Warn if a core reaction violates the collision limit rate in either the forward or reverse direction at the relevant extreme T/P conditions. Assuming a monotonic behaviour of the kinetics. Returns a list with the reaction object and the direction in which the violation was detected.

comment

str

Type comment

copy (self)

Create a deep copy of the current reaction.

degeneracy

The reaction path degeneracy for this reaction.

If the reaction has kinetics, changing the degeneracy will adjust the reaction rate by a ratio of the new degeneracy to the old degeneracy.

draw(self, path)

Generate a pictorial representation of the chemical reaction using the draw module. Use *path* to specify the file to save the generated image to; the image type is automatically determined by extension. Valid

extensions are .png, .svg, .pdf, and .ps; of these, the first is a raster format and the remainder are vector formats.

duplicate

'bool'

Type duplicate

elementary_high_p

'bool'

Type elementary_high_p

ensure_species (self, bool reactant_resonance=False, bool product_resonance=False)

Ensure the reaction contains species objects in its reactant and product attributes. If the reaction is found to hold molecule objects, it modifies the reactant, product and pairs to hold Species objects.

Generates resonance structures for Molecules if the corresponding options, reactant_resonance and/or product_resonance, are True. Does not generate resonance for reactants or products that start as Species objects.

fixBarrierHeight(self, bool forcePositive=False)

Turns the kinetics into Arrhenius (if they were ArrheniusEP) and ensures the activation energy is at least the endothermicity for endothermic reactions, and is not negative only as a result of using Evans Polanyi with an exothermic reaction. If *forcePositive* is True, then all reactions are forced to have a non-negative barrier.

fixDiffusionLimitedA(self, T)

Decrease the pre-exponential factor (A) by the diffusion factor to account for the diffusion limit at the specified temperature.

generate3dTS(self, reactants, products)

Generate the 3D structure of the transition state. Called from model.generateKinetics().

self.reactants is a list of reactants self.products is a list of products

qeneratePairs(self)

Generate the reactant-product pairs to use for this reaction when performing flux analysis. The exact procedure for doing so depends on the reaction type:

Reaction type	Template	Resulting pairs
Isomerization	A -> C	(A,C)
Dissociation	A -> C + D	(A,C),(A,D)
Association	A + B -> C	(A,C), (B,C)
Bimolecular	A + B -> C + D	(A,C), (B,D) or (A,D), (B,C)

There are a number of ways of determining the correct pairing for bimolecular reactions. Here we try a simple similarity analysis by comparing the number of heavy atoms (C/O/N/S at the moment). This should work most of the time, but a more rigorous algorithm may be needed for some cases.

generateReverseRateCoefficient(self, bool network_kinetics=False, Tmin=None, Tmax=None)

Generate and return a rate coefficient model for the reverse reaction. Currently this only works if the *kinetics* attribute is one of several (but not necessarily all) kinetics types.

$getEnthalpiesOfReaction(self, ndarray Tlist) \rightarrow ndarray$

Return the enthalpies of reaction in J/mol evaluated at temperatures *Tlist* in K.

$getEnthalpyOfReaction(self, double\ T) \rightarrow double$

Return the enthalpy of reaction in J/mol evaluated at temperature T in K.

getEntropiesOfReaction(self, ndarray Tlist) \rightarrow ndarray

Return the entropies of reaction in J/mol*K evaluated at temperatures *Tlist* in K.

$getEntropyOfReaction(self, double\ T) \rightarrow double$

Return the entropy of reaction in J/mol*K evaluated at temperature T in K.

getEquilibriumConstant(self, $double\ T$, $str\ type='Kc'$) \rightarrow double

Return the equilibrium constant for the reaction at the specified temperature *T* in K. The *type* parameter lets you specify the quantities used in the equilibrium constant: Ka for activities, Kc for concentrations (default), or Kp for pressures. Note that this function currently assumes an ideal gas mixture.

getEquilibriumConstants (self, ndarray Tlist, str type='Kc') \rightarrow ndarray

Return the equilibrium constants for the reaction at the specified temperatures *Tlist* in K. The *type* parameter lets you specify the quantities used in the equilibrium constant: Ka for activities, Kc for concentrations (default), or Kp for pressures. Note that this function currently assumes an ideal gas mixture.

$getFreeEnergiesOfReaction(self, ndarray\ Tlist) \rightarrow ndarray$

Return the Gibbs free energies of reaction in J/mol evaluated at temperatures Tlist in K.

$getFreeEnergyOfReaction(self, double T) \rightarrow double$

Return the Gibbs free energy of reaction in J/mol evaluated at temperature T in K.

getRateCoefficient(self, $double\ T$, $double\ P=0$) \rightarrow double

Return the overall rate coefficient for the forward reaction at temperature T in K and pressure P in Pa, including any reaction path degeneracies.

If diffusionLimiter is enabled, the reaction is in the liquid phase and we use a diffusion limitation to correct the rate. If not, then use the intrinsic rate coefficient.

$\textbf{getStoichiometricCoefficient}(\textit{self}, \textit{Species spec}) \rightarrow \text{int}$

Return the stoichiometric coefficient of species *spec* in the reaction. The stoichiometric coefficient is increased by one for each time *spec* appears as a product and decreased by one for each time *spec* appears as a reactant.

$getSurfaceRateCoefficient(self, double T, double surfaceSiteDensity) \rightarrow double$

Return the overall surface rate coefficient for the forward reaction at temperature *T* in K with surface site density *surfaceSiteDensity* in mol/m2. Value is returned in combination of [m,mol,s]

getURL(self)

Get a URL to search for this reaction in the rmg website.

get_mean_sigma_and_epsilon(self, bool reverse=False)

Calculates the collision diameter (sigma) using an arithmetic mean Calculates the well depth (epsilon) using a geometric mean If reverse is False the above is calculated for the reactants, otherwise for the products

get_reduced_mass(self, bool reverse=False)

Returns the reduced mass of the reactants if reverse is False Returns the reduced mass of the products if reverse is True

$hasTemplate(self, list reactants, list products) \rightarrow bool$

Return True if the reaction matches the template of *reactants* and *products*, which are both lists of Species objects, or False if not.

index

'int'

Type index

$isAssociation(self) \rightarrow bool$

Return True if the reaction represents an association reaction $A + B \Longrightarrow C$ or False if not.

isBalanced (self) \rightarrow bool

Return True if the reaction has the same number of each atom on each side of the reaction equation, or False if not.

$isDissociation(self) \rightarrow bool$

Return True if the reaction represents a dissociation reaction $A \Longrightarrow B + C$ or False if not.

$isIsomerization(self) \rightarrow bool$

Return True if the reaction represents an isomerization reaction A \Longrightarrow B or False if not.

isIsomorphic(self, Reaction other, bool eitherDirection=True, bool checkIdentical=False, bool checkOnlyLabel=False, bool checkTemplateRxnProducts=False, bool generateInitialMap=False, bool strict=True) → bool

Return True if this reaction is the same as the *other* reaction, or False if they are different. The comparison involves comparing isomorphism of reactants and products, and doesn't use any kinetic information.

Parameters

- eitherDirection (bool, optional) if False,then the reaction direction must match
- **checkIdentical** (*bool*, *optional*) if True, check that atom ID's match (used for checking degeneracy)
- **checkOnlyLabel** (*bool*, *optional*) if True, only check the string representation, ignoring molecular structure comparisons
- **checkTemplateRxnProducts** (*bool*, *optional*) if True, only check isomorphism of reaction products (used when we know the reactants are identical, i.e. in generating reactions)
- **generateInitialMap** (bool, optional) if True, initialize map by pairing atoms with same labels
- **strict** (bool, optional) if False, perform isomorphism ignoring electrons

$isSurfaceReaction(self) \rightarrow bool$

Return True if one or more reactants or products are surface species (or surface sites)

$isUnimolecular(self) \rightarrow bool$

Return True if the reaction has a single molecule as either reactant or product (or both) $A \rightleftharpoons B + C$ or $A + B \rightleftharpoons C$ or $A \rightleftharpoons B$, or False if not.

is_forward

'bool'

Type is_forward

k_effective_cache

dict

Type k_effective_cache

kinetics

rmgpy.kinetics.model.KineticsModel

Type kinetics

label

str

Type label

matchesSpecies (self, list reactants, list products=None) \rightarrow bool

Compares the provided reactants and products against the reactants and products of this reaction. Both directions are checked.

Parameters

- reactants (list) Species required on one side of the reaction
- products (list, optional) Species required on the other side

network_kinetics

rmgpy.kinetics.arrhenius.Arrhenius

Type network_kinetics

pairs

list

Type pairs

products

list

Type products

rank

object

Type rank

reactants

list

Type reactants

reverseThisArrheniusRate(self, Arrhenius kForward, str reverseUnits, Tmin=None, Tmax=None)

Reverses the given kForward, which must be an Arrhenius type. You must supply the correct units for the reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).

reversible

'bool'

Type reversible

specificCollider

rmgpy.species.Species

Type specificCollider

toCantera(*self*, *speciesList=None*, *useChemkinIdentifier=False*)

Converts the RMG Reaction object to a Cantera Reaction object with the appropriate reaction class.

If useChemkinIdentifier is set to False, the species label is used instead. Be sure that species' labels are unique when setting it False.

toChemkin(self, speciesList=None, kinetics=True)

Return the chemkin-formatted string for this reaction.

If *kinetics* is set to True, the chemkin format kinetics will also be returned (requires the *speciesList* to figure out third body colliders.) Otherwise, only the reaction string will be returned.

toLabeledStr(self, use_index=False)

the same as __str__ except that the labels are assumed to exist and used for reactant and products rather than the labels plus the index in parentheses

transitionState

rmgpy.species.TransitionState

Type transitionState

1.11 Reaction mechanism generation (rmgpy.rmg)

The *rmgpy.rmg* subpackage contains the main functionality for using RMG-Py to automatically generate detailed reaction mechanisms.

1.11.1 Reaction models

Class	Description
Species	A chemical species, with RMG-specific functionality
CoreEdgeReactionModel	A reaction model comprised of core and edge species and reactions

1.11.2 Input

Function	Description
readInputFile()	Load an RMG job input file
saveInputFile()	Save an RMG job input file

1.11.3 Output

Function	Description
saveOutputHTML()	Save the results of an RMG job to an HTML file
saveDiffHTML()	Save a comparison of two reaction mechanisms to an HTML file

1.11.4 Job classes

Class	Description
RMG	Main class for RMG jobs

1.11.5 Pressure dependence

Class	Description
PDepReaction	A pressure-dependent "net" reaction
PDepNetwork	A pressure-dependent unimolecular reaction network, with RMG-specific functionality

rmgpy.rmg.model.CoreEdgeReactionModel

class rmgpy.rmg.model.CoreEdgeReactionModel(core=None, edge=None, surface=None)

Represent a reaction model constructed using a rate-based screening algorithm. The species and reactions in the model itself are called the *core*; the species and reactions identified as candidates for inclusion in the model are called the *edge*. The attributes are:

Attribute	Description
core	The species and reactions of the current model core
edge	The species and reactions of the current model edge
networkDict	A dictionary of pressure-dependent reaction networks (Network objects) indexed by
	source.
networkList	A list of pressure-dependent reaction networks (Network objects)
networkCount	A counter for the number of pressure-dependent networks created
indexSpecies-	A dictionary with a unique index pointing to the species objects
Dict	
solventName	String describing solvent name for liquid reactions. Empty for non-liquid estimation
surfaceSiteDen-	The surface site density (a SurfaceConcentration quantity) or None if no heterogeneous
sity	catalyst.

addNewSurfaceObjects(obj, newSurfaceSpecies, newSurfaceReactions, reactionSystem)

obj is the list of objects for enlargement coming from simulate newSurfaceSpecies and newSurfaceReactions are the current lists of surface species and surface reactions following simulation reactionSystem is the current reactor manages surface species and reactions being moved to and from the surface moves them to appropriate newSurfaceSpc/RxnsAdd/loss sets returns false if the surface has changed

addReactionLibraryToEdge(reactionLibrary)

Add all species and reactions from *reactionLibrary*, a KineticsPrimaryDatabase object, to the model edge.

addReactionLibraryToOutput(reactionLib)

Add all species and reactions from *reactionLibrary*, a KineticsPrimaryDatabase object, to the output. This does not bring any of the reactions or species into the core itself.

addReactionToCore(rxn)

Add a reaction *rxn* to the reaction model core (and remove from edge if necessary). This function assumes *rxn* has already been checked to ensure it is supposed to be a core reaction (i.e. all of its reactants AND all of its products are in the list of core species).

addReactionToEdge(rxn)

Add a reaction *rxn* to the reaction model edge. This function assumes *rxn* has already been checked to ensure it is supposed to be an edge reaction (i.e. all of its reactants OR all of its products are in the list of core species, and the others are in either the core or the edge).

addReactionToUnimolecularNetworks (newReaction, newSpecies, network=None)

Given a newly-created Reaction object *newReaction*, update the corresponding unimolecular reaction network. If no network exists, a new one is created. If the new reaction is an isomerization that connects two existing networks, the two networks are merged. This function is called whenever a new high-pressure limit edge reaction is created. Returns the network containing the new reaction.

addSeedMechanismToCore(seedMechanism, react=False)

Add all species and reactions from *seedMechanism*, a KineticsPrimaryDatabase object, to the model core. If *react* is True, then reactions will also be generated between the seed species. For large seed mechanisms this can be prohibitively expensive, so it is not done by default.

addSpeciesToCore(spec)

Add a species spec to the reaction model core (and remove from edge if necessary). This function also

moves any reactions in the edge that gain core status as a result of this change in status to the core. If this are any such reactions, they are returned in a list.

addSpeciesToEdge(spec)

Add a species *spec* to the reaction model edge.

adjustSurface()

Here we add species intended to be added and remove any species that need to be moved out of the core. For now we remove reactions from the surface that have become part of a PDepNetwork by intersecting the set of surface reactions with the core so that all surface reactions are in the core thus the surface algorithm currently (June 2017) is not implemented for pdep networks (however it will function fine for non-pdep reactions on a pdep run)

applyKineticsToReaction(reaction)

retrieve the best kinetics for the reaction and apply it towards the forward or reverse direction (if reverse, flip the direaction).

applyThermoToSpecies(procnum)

Generate thermo for species. QM calculations are parallelized if requested.

checkForExistingReaction(rxn)

Check to see if an existing reaction has the same reactants, products, and family as *rxn*. Returns True or False and the matched reaction (if found).

First, a shortlist of reaction is retrieved that have the same reaction keys as the parameter reaction.

Next, the reaction ID containing an identifier (e.g. label) of the reactants and products is compared between the parameter reaction and the each of the reactions in the shortlist. If a match is found, the discovered reaction is returned.

If a match is not yet found, the Library (seed mechs, reaction libs) in the reaction database are iterated over to check if a reaction was overlooked (a reaction with a different "family" key as the parameter reaction).

checkForExistingSpecies(molecule)

Check to see if an existing species contains the same molecule. Molecule as *molecule*. Comparison is done using isomorphism without consideration of electrons. Therefore, resonance structures of a species will all match each other.

Returns the matched species if found and *None* otherwise.

clearSurfaceAdjustments()

empties surface tracking varaibles

enlarge(newObject=None, reactEdge=False, unimolecularReact=None, bimolecularReact=None, trimolecularReact=None)

Enlarge a reaction model by processing the objects in the list <code>newObject</code>. If <code>newObject</code> is a <code>rmg.species</code>. Species object, then the species is moved from the edge to the core and reactions generated for that species, reacting with itself and with all other species in the model core. If <code>newObject</code> is a <code>rmg.unirxn.network.Network</code> object, then reactions are generated for the species in the network with the largest leak flux.

If the *reactEdge* flag is *True*, then no newObject is needed, and instead the algorithm proceeds to react the core species together to form edge reactions.

generateKinetics(reaction)

Generate best possible kinetics for the given *reaction* using the kinetics database.

generateThermo(spc, rename=False)

Generate thermo for species.

getLists()

Return lists of all of the species and reactions in the core and the edge.

getModelSize()

Return the numbers of species and reactions in the model core and edge. Note that this is not necessarily equal to the lengths of the corresponding species and reaction lists.

getStoichiometryMatrix()

Return the stoichiometry matrix for all generated species and reactions. The id of each species and reaction is the corresponding row and column, respectively, in the matrix.

initializeIndexSpeciesDict()

Populates the core species dictionary

integer -> core Species

with the species that are currently in the core.

makeNewPDepReaction(forward)

Make a new pressure-dependent reaction based on a list of *reactants* and a list of *products*. The reaction belongs to the specified *network* and has pressure-dependent kinetics given by *kinetics*.

No checking for existing reactions is made here. The returned PDepReaction object is not added to the global list of reactions, as that is intended to represent only the high-pressure-limit set. The reaction-Counter is incremented, however, since the returned reaction can and will exist in the model edge and/or core

makeNewReaction(forward, checkExisting=True, generateThermo=True)

Make a new reaction given a Reaction object *forward*. The reaction is added to the global list of reactions. Returns the reaction in the direction that corresponds to the estimated kinetics, along with whether or not the reaction is new to the global reaction list.

The forward direction is determined using the "is_reverse" attribute of the reaction's family. If the reaction family is its own reverse, then it is made such that the forward reaction is exothermic at 298K.

The forward reaction is appended to self.newReactionList if it is new.

makeNewSpecies (object, label=", reactive=True, checkForExisting=True, generateThermo=True)

Formally create a new species from the specified *object*, which can be either a Molecule object or an *rmgpy.species.Species* object. It is emphasized that *reactive* relates to the *Species* attribute, while *reactive structure* relates to the Molecule attribute.

markChemkinDuplicates()

Check that all reactions that will appear the chemkin output have been checked as duplicates.

Call this if you've done something that may have introduced undetected duplicate reactions, like add a reaction library or seed mechanism. Anything added via the expand() method should already be detected.

printEnlargeSummary (newCoreSpecies, newCoreReactions, newEdgeSpecies, newEdgeReactions, reactionsMovedFromEdge=None, reactEdge=False)

Output a summary of a model enlargement step to the log. The details of the enlargement are passed in the newCoreSpecies, newCoreReactions, newEdgeSpecies, and newEdgeReactions objects.

processNewReactions (newReactions, newSpecies, pdepNetwork=None, generateThermo=True)

Process a list of newly-generated reactions involving the new core species or explored isomer *newSpecies* in network *pdepNetwork*.

Makes a reaction and decides where to put it: core, edge, or PDepNetwork.

prune(reactionSystems, toleranceKeepInEdge, toleranceMoveToCore, maximumEdgeSpecies, min-SpeciesExistIterationsForPrune)

Remove species from the model edge based on the simulation results from the list of reactionSystems.

registerReaction(rxn)

Adds the reaction to the reaction database.

The reaction database is structured as a multi-level dictionary, for efficient search and retrieval of existing reactions.

The database has two types of dictionary keys: - reaction family - reactant(s) keys

First, the keys are generated for the parameter reaction.

Next, it is checked whether the reaction database already contains similar keys. If not, a new container is created, either a dictionary for the family key and first reactant key, or a list for the second reactant key.

Finally, the reaction is inserted as the first element in the list.

removeEmptyPdepNetworks()

searches for and deletes any empty pdep networks

removeSpeciesFromEdge(reactionSystems, spec)

Remove species *spec* from the reaction model edge.

retrieve(family_label, key1, key2)

Returns a list of reactions from the reaction database with the same keys as the parameters.

Returns an empty list when one of the keys could not be found.

searchRetrieveReactions(*rxn*)

Searches through the reaction database for reactions with an identical reaction key as the key of the parameter reaction.

Both the reaction key based on the reactants as well as on the products is used to search for possible candidate reactions.

$\textbf{setThermodynamicFilteringParameters} (\textit{Tmax}, \textit{toleranceThermoKeepSpeciesInEdge}, \textit{minCore-number} (\textit{Tmax}, \textit{toleranceThermoKeepSpeciesInEdge}, \textit{toleranceThermoKeepSpeciesInE$

SizeForPrune, maximumEdgeSpecies, reactionSystems)

sets parameters for thermodynamic filtering based on the current core Tmax is the maximum reactor temperature in K toleranceThermoKeepSpeciesInEdge is the Gibbs number above which species will be filtered minCoreSizeForPrune is the core size at which thermodynamic filtering will start maximumEdge-Species is the maximum allowed number of edge species reactionSystems is a list of reactionSystem objects

thermoFilterDown(maximumEdgeSpecies, minSpeciesExistIterationsForPrune=0)

removes species from the edge based on their Gibbs energy until maximumEdgeSpecies is reached under the constraint that all removed species are older than minSpeciesExistIterationsForPrune iterations maximumEdgeSpecies is the maximum allowed number of edge species minSpeciesExistIterationsForPrune is the number of iterations a species must be in the edge before it is eligible for thermo filtering

thermoFilterSpecies(spcs)

checks Gibbs energy of the species in species against the maximum allowed Gibbs energy

updateUnimolecularReactionNetworks()

Iterate through all of the currently-existing unimolecular reaction networks, updating those that have been marked as invalid. In each update, the phenomonological rate coefficients k(T, P) are computed for each net reaction in the network, and the resulting reactions added or updated.

class rmgpy.rmg.model.ReactionModel(species=None, reactions=None)

Represent a generic reaction model. A reaction model consists of *species*, a list of species, and *reactions*, a list of reactions.

merge (other)

Return a new *ReactionModel* object that is the union of this model and *other*.

RMG input files

rmgpy.rmg.input.readInputFile(path, rmg0)

Read an RMG input file at path on disk into the RMG object rmg.

rmgpy.rmg.input.saveInputFile(path, rmg)

Save an RMG input file at path on disk from the RMG object rmg.

rmgpy.rmg.main.RMG

class rmgpy.rmg.main.RMG(inputFile=None, outputDirectory=None)

A representation of a Reaction Mechanism Generator (RMG) job. The attributes are:

Attribute	Description
inputFile	The path to the input file
databaseDirectory	The directory containing the RMG database
thermoLibraries	The thermodynamics libraries to load
reactionLibraries	The kinetics libraries to load
statmechLibraries	The statistical mechanics libraries to load
seedMechanisms	The seed mechanisms included in the model
kineticsFamilies	The kinetics families to use for reaction generation
kineticsDepositories	The kinetics depositories to use for looking up kinetics in each family
kineticsEstimator	The method to use to estimate kinetics: 'group additivity' or 'rate rules'
solvent	If solvation estimates are required, the name of the solvent.
reactionModel	The core-edge reaction model generated by this job
reactionSystems	A list of the reaction systems used in this job
database	The RMG database used in this job
modelSettingsList	List of ModelSettings objects containing information related to how to manage species/reaction move
simulatorSettingsList	List of SimulatorSettings objects containing information on how to run simulations
trimolecular	True to consider reactions between three species (i.e., if trimolecular reaction families are present)
unimolecularThreshold	Array of flags indicating whether a species is above the unimolecular reaction threshold
bimolecularThreshold	Array of flags indicating whether two species are above the bimolecular reaction threshold
trimolecularThreshold	Array of flags indicating whether three species are above the trimolecular reaction threshold
unimolecularReact	Array of flags indicating whether a species should react unimolecularly in the enlarge step
bimolecularReact	Array of flags indicating whether two species should react in the enlarge step
trimolecularReact	Array of flags indicating whether three species should react in the enlarge step
termination	A list of termination targets (i.e TerminationTime and TerminationConversion objects)
speciesConstraints	Dictates the maximum number of atoms, carbons, electrons, etc. generated by RMG
outputDirectory	The directory used to save output files
verbosity	The level of logging verbosity for console output
loadRestart	True if restarting a previous job, False otherwise
saveRestartPeriod	The time period to periodically save a restart file (Quantity), or None for never.
units	The unit system to use to save output files (currently must be 'si')
generateOutputHTML	True to draw pictures of the species and reactions, saving a visualized model in an output HTML fil
generatePlots	True to generate plots of the job execution statistics after each iteration, False otherwise
verboseComments	True to keep the verbose comments for database estimates, False otherwise
saveEdgeSpecies	True to save chemkin and HTML files of the edge species, False otherwise
keepIrreversible	True to keep ireversibility of library reactions as is ('<=>' or '=>'). False (default) to force all library
trimolecularProductReversible	True (default) to allow families with trimolecular products to react in the reverse direction, False
pressureDependence	Whether to process unimolecular (pressure-dependent) reaction networks
quantumMechanics	Whether to apply quantum mechanical calculations instead of group additivity to certain molecular

Table 3 – continued from previous page

Attribute	Description
ml_estimator	To use thermo estimation with machine learning
ml_settings	Settings for ML estimation
wallTime	The maximum amount of CPU time in the form DD:HH:MM:SS to expend on this job; used to stop
kineticsdatastore	True if storing details of each kinetic database entry in text file, False otherwise
initializationTime	The time at which the job was initiated, in seconds since the epoch (i.e. from time.time())
done	Whether the job has completed (there is nothing new to add)

checkInput()

Check for a few common mistakes in the input file.

checkLibraries()

Check unwanted use of libraries: Liquid phase libraries in Gas phase simulation. Loading a Liquid phase library obtained in another solvent than the one defined in the input file. Other checks can be added here.

check_model()

Run checks on the RMG model

clear()

Clear all loaded information about the job (except the file paths).

execute(**kwargs)

Execute an RMG job using the command-line arguments args as returned by the argparse package.

finish()

Complete the model generation.

generateCanteraFiles(chemkinFile, **kwargs)

Convert a chemkin mechanism chem.inp file to a cantera mechanism file chem.cti and save it in the cantera directory

initialize(**kwargs)

Initialize an RMG job using the command-line arguments args as returned by the argparse package.

loadInput(path=None)

Load an RMG job from the input file located at *inputFile*, or from the *inputFile* attribute if not given as a parameter.

loadRMGJavaInput(path)

Load an RMG-Java job from the input file located at *inputFile*, or from the *inputFile* attribute if not given as a parameter.

loadRestartFile(path)

Load a restart file at path on disk.

loadThermoInput(path=None)

Load an Thermo Estimation job from a thermo input file located at *inputFile*, or from the *inputFile* attribute if not given as a parameter.

logHeader(level=20)

Output a header containing identifying information about RMG to the log.

makeSeedMech (firstTime=False)

causes RMG to make a seed mechanism out of the current chem_annotated.inp and species_dictionary.txt this seed mechanism is outputted in a seed folder within the run directory and automatically added to as the (or replaces the current) 'Seed' thermo and kinetics libraries in database

if run with firstTime=True it will change self.name to be unique within the thermo/kinetics libraries by adding integers to the end of the name to prevent overwritting

makeSpeciesLabelsIndependent(species)

This method looks at the core species labels and makes sure none of them conflict If a conflict occurs, the second occurance will have '-2' added returns a list of the old labels

processPdepNetworks(obj)

properly processes PDepNetwork objects and lists of PDepNetwork objects returned from simulate

processReactionsToSpecies(obj)

properly processes Reaction objects and lists of Reaction objects returned from simulate

processToSpeciesNetworks(obj)

breaks down the objects returned by simulate into Species and PDepNetwork components

readMeaningfulLineJava(f)

Read a meaningful line from an RMG-Java condition file object *f*, returning the line with any comments removed.

register_listeners()

Attaches listener classes depending on the options found in the RMG input file.

run_model_analysis(number=10)

Run sensitivity and uncertainty analysis if requested.

run_uncertainty_analysis()

Run uncertainty analysis if proper settings are available.

saveEverything()

Saves the output HTML, the Chemkin file, and the Restart file (if appropriate).

The restart file is only saved if self.saveRestartPeriod or self.done.

saveInput(path=None)

Save an RMG job to the input file located at path, or from the outputFile attribute if not given as a parameter

$\begin{tabular}{ll} \begin{tabular}{ll} \beg$

updates the length and boolean value of the unimolecular and bimolecular react and threshold flags

rmgpy.rmg.main.initializeLog(verbose, log_file_name)

Set up a logger for RMG to use to print output to stdout. The *verbose* parameter is an integer specifying the amount of log text seen at the console; the levels correspond to those of the logging module.

rmgpy.rmg.main.makeProfileGraph(stats file)

Uses gprof2dot to create a graphviz dot file of the profiling information.

This requires the gprof2dot package available via *pip install gprof2dot*. Render the result using the program 'dot' via a command like *dot -Tps2 input.dot -o output.ps2*.

Rendering the ps2 file to pdf requires an external pdf converter ps2pdf output.ps2 which produces a output.ps2.pdf file.

rmgpy.rmg.main.processProfileStats(stats_file, log_file)

Saving RMG output

rmgpy.rmg.output.saveOutputHTML(path, reactionModel, partCoreEdge='core')

Save the current set of species and reactions of reactionModel to an HTML file path on disk. As part of this

process, drawings of all species are created in the species folder (if they don't already exist) using the rmgpy. molecule.draw module. The jinja package is used to generate the HTML; if this package is not found, no HTML will be generated (but the program will carry on).

rmgpy.rmg.output.saveDiffHTML(path, commonSpeciesList, speciesList1, speciesList2, commonReactions, uniqueReactions1, uniqueReactions2)

This function outputs the species and reactions on an HTML page for the comparison of two RMG models.

rmgpy.rmg.pdep.PDepNetwork

class rmgpy.rmg.pdep.PDepNetwork(index=-1, source=None)

A representation of a *partial* unimolecular reaction network. Each partial network has a single *source* isomer or reactant channel, and is responsible only for k(T,P) values for net reactions with source as the reactant. Multiple partial networks can have the same source, but networks with the same source and any explored isomers must be combined.

Attribute	Type	Description
source	list	The isomer or reactant channel that acts as the source
explored	list	A list of the unimolecular isomers whose reactions have been fully explored

addPathReaction(newReaction)

Add a path reaction to the network. If the path reaction already exists, no action is taken.

applyChemicallySignificantEigenvaluesMethod(lumpingOrder=None)

Compute the phenomenological rate coefficients k(T, P) at the current conditions using the chemically-significant eigenvalues method. If a *lumpingOrder* is provided, the algorithm will attempt to lump the configurations (given by index) in the order provided, and return a reduced set of k(T, P) values.

applyModifiedStrongCollisionMethod(efficiencyModel='default')

Compute the phenomenological rate coefficients k(T, P) at the current conditions using the modified strong collision method.

applyReservoirStateMethod()

Compute the phenomenological rate coefficients k(T, P) at the current conditions using the reservoir state method.

calculateCollisionModel()

Calculate the matrix of first-order rate coefficients for collisional population transfer between grains for each isomer, including the corresponding collision frequencies.

calculateDensitiesOfStates()

Calculate the densities of states of each configuration that has states data. The densities of states are computed such that they can be applied to each temperature in the range of interest by interpolation.

calculateEquilibriumRatios()

Return an array containing the fraction of each isomer and reactant channel present at equilibrium, as determined from the Gibbs free energy and using the concentration equilibrium constant K_c . These values are ratios, and the absolute magnitude is not guaranteed; however, the implementation scales the elements of the array so that they sum to unity.

calculateMicrocanonicalRates()

Calculate and return arrays containing the microcanonical rate coefficients k(E) for the isomerization, dissociation, and association path reactions in the network.

cleanup()

Delete intermedate arrays used to compute k(T,P) values.

exploreIsomer(isomer)

Explore a previously-unexplored unimolecular *isomer* in this partial network using the provided core-edge reaction model *reactionModel*, returning the new reactions and new species.

getAllSpecies()

Return a list of all unique species in the network, including all isomers, reactant and product channels, and bath gas species.

getLeakBranchingRatios(T, P)

Return a dict with the unexplored isomers in the partial network as the keys and the fraction of the total leak coefficient as the values.

getLeakCoefficient(T, P)

Return the pressure-dependent rate coefficient k(T, P) describing the total rate of "leak" from this network. This is defined as the sum of the k(T, P) values for all net reactions to nonexplored unimolecular isomers.

getMaximumLeakSpecies(T, P)

Get the unexplored (unimolecular) isomer with the maximum leak flux. Note that the leak rate coefficients vary with temperature and pressure, so you must provide these in order to get a meaningful result.

get_energy_filtered_reactions(T, tol)

Returns a list of products and isomers that are greater in Free Energy than a*R*T + Gfsource(T)

get_rate_filtered_reactions(T, P, tol)

determines the set of pathReactions that have fluxes less than tol at steady state where all $A \Rightarrow B + C$ reactions are irreversible and there is a constant flux from/to the source configuration of 1.0

initialize(Tmin, Tmax, Pmin, Pmax, maximumGrainSize=0.0, minimumGrainCount=0, activeJRotor=True, activeKRotor=True, rmgmode=False)

Initialize a pressure dependence calculation by computing several quantities that are independent of the conditions. You must specify the temperature and pressure ranges of interesting using *Tmin* and *Tmax* in K and *Pmin* and *Pmax* in Pa. You must also specify the maximum energy grain size *grainSize* in J/mol and/or the minimum number of grains *grainCount*.

invalidate()

Mark the network as in need of a new calculation to determine the pressure-dependent rate coefficients

label

Get the *label* for this network (analogous to reaction families as a reaction's source)

mapDensitiesOfStates()

Map the overall densities of states to the current energy grains. Semi-logarithmic interpolation will be used if the grain sizes of *Elist0* and *Elist* do not match; this should not be a significant source of error as long as the grain sizes are sufficiently small.

merge(other)

Merge the partial network other into this network.

printSummary(level=20)

Print a formatted list of information about the current network. Each molecular configuration - unimolecular isomers, bimolecular reactant channels, and bimolecular product channels - is given along with its energy on the potential energy surface. The path reactions connecting adjacent molecular configurations are also given, along with their energies on the potential energy surface. The *level* parameter controls the level of logging to which the summary is written, and is DEBUG by default.

remove_disconnected_reactions()

gets rid of reactions/isomers/products not connected to the source by a reaction sequence

remove_reactions (reactionModel, rxns)

removes a list of reactions from the network and all reactions/products left disconnected by removing those reactions

selectEnergyGrains(T, grainSize=0.0, grainCount=0)

Select a suitable list of energies to use for subsequent calculations. This is done by finding the minimum and maximum energies on the potential energy surface, then adding a multiple of $k_{\rm B}T$ onto the maximum energy.

You must specify either the desired grain spacing *grainSize* in J/mol or the desired number of grains *Ngrains*, as well as a temperature *T* in K to use for the equilibrium calculation. You can specify both *grainSize* and *grainCount*, in which case the one that gives the more accurate result will be used (i.e. they represent a maximum grain size and a minimum number of grains). An array containing the energy grains in J/mol is returned.

setConditions(T, P, ymB=None)

Set the current network conditions to the temperature T in K and pressure P in Pa. All of the internal variables are updated accordingly if they are out of date. For example, those variables that depend only on temperature will not be recomputed if the temperature is the same.

solveFullME(*tlist*, *x0*)

Directly solve the full master equation using a stiff ODE solver. Pass the reaction network to solve, the temperature T in K and pressure P in Pa to solve at, the energies Elist in J/mol to use, the output time points tlist in S, the initial total populations S0, the full master equation matrix S0, the accounting matrix S1 indices relating isomer and energy grain indices to indices of the master equation matrix, and the densities of states S1 density S2 density S3 in mol/S4 of each isomer. Returns the times in S4, population distributions for each isomer, and total population profiles for each configuration.

solveReducedME(tlist, x0)

Directly solve the reduced master equation using a stiff ODE solver. Pass the output time points *tlist* in s and the initial total populations x0. Be sure to run one of the methods for generating k(T, P) values before calling this method. Returns the times in s, population distributions for each isomer, and total population profiles for each configuration.

$solve_SS_network(T, P)$

calculates the steady state concentrations if all $A \Rightarrow B + C$ reactions are irreversible and the flux from/to the source configuration is 1.0

update(reactionModel, pdepSettings)

Regenerate the k(T, P) values for this partial network if the network is marked as invalid.

updateConfigurations(reactionModel)

Sort the reactants and products of each of the network's path reactions into isomers, reactant channels, and product channels. You must pass the current *reactionModel* because some decisions on sorting are made based on which species are in the model core.

rmgpy.rmg.pdep.PDepReaction

```
class rmgpy.rmg.pdep.PDepReaction(index=-1, label=", reactants=None, products=None, specific Collider=None, network=None, kinetics=None, network=None, kinetics=None, network=kinetics=None, reversible=True, transitionState=None, duplicate=False, degeneracy=1, pairs=None)
```

allow_max_rate_violation

'bool'

Type allow_max_rate_violation

allow_pdep_route

'bool'

Type allow_pdep_route

calculateMicrocanonicalRateCoefficient(self, ndarray Elist, ndarray Jlist, ndarray reac-DensStates, ndarray prodDensStates=None, double T=0.0)

Calculate the microcanonical rate coefficient k(E) for the reaction reaction at the energies Elist in J/mol. reacDensStates and prodDensStates are the densities of states of the reactant and product configurations for this reaction. If the reaction is irreversible, only the reactant density of states is required; if the reaction is reversible, then both are required. This function will try to use the best method that it can based on the input data available:

- If detailed information has been provided for the transition state (i.e. the molecular degrees of freedom), then RRKM theory will be used.
- If the above is not possible but high-pressure limit kinetics $k_{\infty}(T)$ have been provided, then the inverse Laplace transform method will be used.

The density of states for the product prodDensStates and the temperature of interest T in K can also be provided. For isomerization and association reactions prodDensStates is required; for dissociation reactions it is optional. The temperature is used if provided in the detailed balance expression to determine the reverse kinetics, and in certain cases in the inverse Laplace transform method.

$calculateTSTRateCoefficient(self, double T) \rightarrow double$

Evaluate the forward rate coefficient for the reaction with corresponding transition state *TS* at temperature *T* in K using (canonical) transition state theory. The TST equation is

$$k(T) = \kappa(T) \frac{k_{\rm B}T}{h} \frac{Q^{\ddagger}(T)}{Q^{\rm A}(T)Q^{\rm B}(T)} \exp\left(-\frac{E_0}{k_{\rm B}T}\right)$$

where Q^{\ddagger} is the partition function of the transition state, $Q^{\rm A}$ and $Q^{\rm B}$ are the partition function of the reactants, E_0 is the ground-state energy difference from the transition state to the reactants, T is the absolute temperature, $k_{\rm B}$ is the Boltzmann constant, and h is the Planck constant. $\kappa(T)$ is an optional tunneling correction.

calculateTSTRateCoefficients($self, ndarray\ Tlist$) \rightarrow ndarray

calculate_coll_limit(self, float temp, bool reverse=False)

Calculate the collision limit rate for the given temperature implemented as recommended in Wang et al. doi 10.1016/j.combustflame.2017.08.005 (Eq. 1)

$canTST(self) \rightarrow bool$

Return True if the necessary parameters are available for using transition state theory – or the microcanonical equivalent, RRKM theory – to compute the rate coefficient for this reaction, or False otherwise.

check_collision_limit_violation (self, $float\ t_min$, $float\ t_max$, $float\ p_min$, $float\ p_max$) \rightarrow list Warn if a core reaction violates the collision limit rate in either the forward or reverse direction at the relevant extreme T/P conditions. Assuming a monotonic behaviour of the kinetics. Returns a list with the reaction object and the direction in which the violation was detected.

comment

str

Type comment

copy (self)

Create a deep copy of the current reaction.

degeneracy

The reaction path degeneracy for this reaction.

If the reaction has kinetics, changing the degeneracy will adjust the reaction rate by a ratio of the new degeneracy to the old degeneracy.

draw(self, path)

Generate a pictorial representation of the chemical reaction using the draw module. Use *path* to specify the file to save the generated image to; the image type is automatically determined by extension. Valid extensions are .png, .svg, .pdf, and .ps; of these, the first is a raster format and the remainder are vector formats.

duplicate

'bool'

Type duplicate

elementary_high_p

'bool'

Type elementary_high_p

ensure_species(self, bool reactant_resonance=False, bool product_resonance=False)

Ensure the reaction contains species objects in its reactant and product attributes. If the reaction is found to hold molecule objects, it modifies the reactant, product and pairs to hold Species objects.

Generates resonance structures for Molecules if the corresponding options, reactant_resonance and/or product_resonance, are True. Does not generate resonance for reactants or products that start as Species objects.

fixBarrierHeight(self, bool forcePositive=False)

Turns the kinetics into Arrhenius (if they were ArrheniusEP) and ensures the activation energy is at least the endothermicity for endothermic reactions, and is not negative only as a result of using Evans Polanyi with an exothermic reaction. If *forcePositive* is True, then all reactions are forced to have a non-negative barrier.

fixDiffusionLimitedA(self, T)

Decrease the pre-exponential factor (A) by the diffusion factor to account for the diffusion limit at the specified temperature.

generate3dTS(self, reactants, products)

Generate the 3D structure of the transition state. Called from model.generateKinetics().

self.reactants is a list of reactants self.products is a list of products

generatePairs(self)

Generate the reactant-product pairs to use for this reaction when performing flux analysis. The exact procedure for doing so depends on the reaction type:

Reaction type	Template	Resulting pairs
Isomerization	A -> C	(A,C)
Dissociation	A -> C + D	(A,C),(A,D)
Association	A + B -> C	(A,C), (B,C)
Bimolecular	A + B -> C + D	(A,C), (B,D) or (A,D), (B,C)

There are a number of ways of determining the correct pairing for bimolecular reactions. Here we try a simple similarity analysis by comparing the number of heavy atoms (C/O/N/S at the moment). This should work most of the time, but a more rigorous algorithm may be needed for some cases.

generateReverseRateCoefficient(self, bool network_kinetics=False, Tmin=None, Tmax=None)

Generate and return a rate coefficient model for the reverse reaction. Currently this only works if the *kinetics* attribute is one of several (but not necessarily all) kinetics types.

$getEnthalpiesOfReaction(self, ndarray\ Tlist) \rightarrow ndarray$

Return the enthalpies of reaction in J/mol evaluated at temperatures *Tlist* in K.

getEnthalpyOfReaction($self, double\ T$) \rightarrow double

Return the enthalpy of reaction in J/mol evaluated at temperature *T* in K.

$getEntropiesOfReaction(self, ndarray\ Tlist) \rightarrow ndarray$

Return the entropies of reaction in J/mol*K evaluated at temperatures *Tlist* in K.

getEntropyOfReaction(self, double T) \rightarrow double

Return the entropy of reaction in J/mol*K evaluated at temperature T in K.

getEquilibriumConstant(self, double T, str type='Kc') \rightarrow double

Return the equilibrium constant for the reaction at the specified temperature *T* in K. The *type* parameter lets you specify the quantities used in the equilibrium constant: Ka for activities, Kc for concentrations (default), or Kp for pressures. Note that this function currently assumes an ideal gas mixture.

getEquilibriumConstants (*self*, *ndarray Tlist*, *str type*='Kc') \rightarrow ndarray

Return the equilibrium constants for the reaction at the specified temperatures *Tlist* in K. The *type* parameter lets you specify the quantities used in the equilibrium constant: Ka for activities, Kc for concentrations (default), or Kp for pressures. Note that this function currently assumes an ideal gas mixture.

$getFreeEnergiesOfReaction(self, ndarray\ Tlist) \rightarrow ndarray$

Return the Gibbs free energies of reaction in J/mol evaluated at temperatures Tlist in K.

$getFreeEnergyOfReaction(self, double\ T) \rightarrow double$

Return the Gibbs free energy of reaction in J/mol evaluated at temperature T in K.

getRateCoefficient(self, $double\ T$, $double\ P=0$) \rightarrow double

Return the overall rate coefficient for the forward reaction at temperature T in K and pressure P in Pa, including any reaction path degeneracies.

If diffusionLimiter is enabled, the reaction is in the liquid phase and we use a diffusion limitation to correct the rate. If not, then use the intrinsic rate coefficient.

getSource()

Get the source of this PDepReaction

$getStoichiometricCoefficient(self, Species spec) \rightarrow int$

Return the stoichiometric coefficient of species *spec* in the reaction. The stoichiometric coefficient is increased by one for each time *spec* appears as a product and decreased by one for each time *spec* appears as a reactant.

$getSurfaceRateCoefficient(self, double\ T, double\ surfaceSiteDensity) ightarrow double$

Return the overall surface rate coefficient for the forward reaction at temperature *T* in K with surface site density *surfaceSiteDensity* in mol/m2. Value is returned in combination of [m,mol,s]

getURL(self)

Get a URL to search for this reaction in the rmg website.

get_mean_sigma_and_epsilon(self, bool reverse=False)

Calculates the collision diameter (sigma) using an arithmetic mean Calculates the well depth (epsilon) using a geometric mean If reverse is False the above is calculated for the reactants, otherwise for the products

get_reduced_mass(self, bool reverse=False)

Returns the reduced mass of the reactants if reverse is False Returns the reduced mass of the products if reverse is True

$hasTemplate(self, list reactants, list products) \rightarrow bool$

Return True if the reaction matches the template of *reactants* and *products*, which are both lists of Species objects, or False if not.

index

'int'

Type index

isAssociation(self) \rightarrow bool

Return True if the reaction represents an association reaction $A + B \Longrightarrow C$ or False if not.

isBalanced(self) \rightarrow bool

Return True if the reaction has the same number of each atom on each side of the reaction equation, or False if not.

isDissociation(self) \rightarrow bool

Return True if the reaction represents a dissociation reaction $A \rightleftharpoons B + C$ or False if not.

isIsomerization(self) \rightarrow bool

Return True if the reaction represents an isomerization reaction $A \rightleftharpoons B$ or False if not.

isIsomorphic(self, Reaction other, bool eitherDirection=True, bool checkIdentical=False, bool checkOnlyLabel=False, bool checkTemplateRxnProducts=False, bool generateInitialMap=False, bool strict=True) → bool

Return True if this reaction is the same as the *other* reaction, or False if they are different. The comparison involves comparing isomorphism of reactants and products, and doesn't use any kinetic information.

Parameters

- eitherDirection (bool, optional) if False, then the reaction direction must match.
- **checkIdentical** (*bool*, *optional*) if True, check that atom ID's match (used for checking degeneracy)
- **checkOnlyLabel** (*bool*, *optional*) if True, only check the string representation, ignoring molecular structure comparisons
- **checkTemplateRxnProducts** (*bool*, *optional*) if True, only check isomorphism of reaction products (used when we know the reactants are identical, i.e. in generating reactions)
- **generateInitialMap** (bool, optional) if True, initialize map by pairing atoms with same labels
- strict (bool, optional) if False, perform isomorphism ignoring electrons

$isSurfaceReaction(self) \rightarrow bool$

Return True if one or more reactants or products are surface species (or surface sites)

$isUnimolecular(self) \rightarrow bool$

Return True if the reaction has a single molecule as either reactant or product (or both) $A \rightleftharpoons B + C$ or $A + B \rightleftharpoons C$ or $A \rightleftharpoons B$, or False if not.

is_forward

'bool'

Type is_forward

k_effective_cache

dict

Type k_effective_cache

kinetics

rmgpy.kinetics.model.KineticsModel

Type kinetics

label

str

Type label

$matchesSpecies(self, list reactants, list products=None) \rightarrow bool$

Compares the provided reactants and products against the reactants and products of this reaction. Both directions are checked.

Parameters

- **reactants** (*list*) Species required on one side of the reaction
- products (list, optional) Species required on the other side

network_kinetics

rmgpy.kinetics.arrhenius.Arrhenius

Type network_kinetics

pairs

list

Type pairs

products

list

Type products

rank

object

Type rank

reactants

list

Type reactants

reverseThisArrheniusRate(self, Arrhenius kForward, str reverseUnits, Tmin=None, Tmax=None)

Reverses the given kForward, which must be an Arrhenius type. You must supply the correct units for the reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).

reversible

'bool'

Type reversible

specificCollider

rmgpy.species.Species

Type specificCollider

toCantera(self, speciesList=None, useChemkinIdentifier=False)

Converts the RMG Reaction object to a Cantera Reaction object with the appropriate reaction class.

If useChemkinIdentifier is set to False, the species label is used instead. Be sure that species' labels are unique when setting it False.

toChemkin(self, speciesList=None, kinetics=True)

Return the chemkin-formatted string for this reaction.

If *kinetics* is set to True, the chemkin format kinetics will also be returned (requires the *speciesList* to figure out third body colliders.) Otherwise, only the reaction string will be returned.

toLabeledStr(self, use_index=False)

the same as __str__ except that the labels are assumed to exist and used for reactant and products rather than the labels plus the index in parentheses

transitionState

rmgpy.species.TransitionState

Type transitionState

rmgpy.rmg.model.Species

class rmgpy.rmg.model.Species(index=-1, label=", thermo=None, conformer=None, molecule=None, transportData=None, molecularWeight=None, energyTransfer-Model=None, reactive=True, props=None, SMILES=", InChI=", $aug_inchi=None$, symmetryNumber=-1, creationIteration=0, explicitlyAllowed=False)

A chemical species, representing a local minimum on a potential energy surface. The attributes are:

Attribute	Description
index	A unique nonnegative integer index
label	A descriptive string label
thermo	The heat capacity model for the species
conformer	The molecular conformer for the species
molecule	A list of the Molecule objects describing the molec-
transportData	ular structure A set of transport collision parameters
molecularWeight	The molecular weight of the species
energyTransferModel	The collisional energy transfer model to use
	True if the species participates in reaction families. Reaction libraries and seed mechanisms that include the species are always considered regardless of this variable
props	A generic 'properties' dictionary to store user- defined flags
aug_inchi	Unique augmented inchi
symmetryNumber	Estimated symmetry number of the species, using the resonance hybrid
creationIteration	Iteration which the species is created within the reaction mechanism generation algorithm
explicitlyAllowed	Flag to exempt species from forbidden structure checks

InChI

InChI string representation of this species. Read-only.

SMILES

SMILES string representation of this species. Read-only.

Note that SMILES representations for different resonance structures of the same species may be different.

aug_inchi

str

Type aug_inchi

$calculateCp0(self) \rightarrow double$

Return the value of the heat capacity at zero temperature in J/mol*K.

False if not

$calculateCpInf(self) \rightarrow double$

Return the value of the heat capacity at infinite temperature in J/mol*K.

conformer

rmgpy.statmech.conformer.Conformer

Type conformer

containsSurfaceSite(self) \rightarrow bool

Return True if the species is adsorbed on a surface (or is itself a site), else False.

copy (*self*, *bool deep=False*) \rightarrow Species

Create a copy of the current species. If the kw argument 'deep' is True, then a deep copy will be made of the Molecule objects in self.molecule.

For other complex attributes, a deep copy will always be made.

creationIteration

'int'

Type creationIteration

energyTransferModel

object

Type energyTransferModel

explicitlyAllowed

'bool'

Type explicitly Allowed

fingerprint

Fingerprint of this species, taken from molecule attribute. Read-only.

fromAdjacencyList(self, adjlist)

Load the structure of a species as a Molecule object from the given adjacency list *adjlist* and store it as the first entry of a list in the *molecule* attribute. Does not generate resonance isomers of the loaded molecule.

fromSMILES(self, smiles)

Load the structure of a species as a Molecule object from the given SMILES string *smiles* and store it as the first entry of a list in the *molecule* attribute. Does not generate resonance isomers of the loaded molecule.

generateEnergyTransferModel(self)

Generate the collisional energy transfer model parameters for the species. This "algorithm" is *very* much in need of improvement.

generateStatMech(self)

Generate molecular degree of freedom data for the species. You must have already provided a thermodynamics model using e.g. generateThermoData().

generateTransportData(self)

Generate the transportData parameters for the species.

generate_aug_inchi(self)

generate_resonance_structures(self, bool keep_isomorphic=True, bool filter_structures=True)

Generate all of the resonance structures of this species. The isomers are stored as a list in the *molecule* attribute. If the length of *molecule* is already greater than one, it is assumed that all of the resonance structures have already been generated.

getAugmentedInChI(self)

getDensityOfStates (*self*, *ndarray Elist*) \rightarrow ndarray

Return the density of states $\rho(E)$ dE at the specified energies *Elist* in J/mol above the ground state.

getEnthalpy (*self*, *double* T) \rightarrow double

Return the enthalpy in J/mol for the species at the specified temperature T in K.

getEntropy (*self*, *double* T) \rightarrow double

Return the entropy in J/mol*K for the species at the specified temperature T in K.

$getFreeEnergy(self, double\ T) \rightarrow double$

Return the Gibbs free energy in J/mol for the species at the specified temperature T in K.

$getHeatCapacity(self, double\ T) \rightarrow double$

Return the heat capacity in J/mol*K for the species at the specified temperature T in K.

getPartitionFunction($self, double\ T$) \rightarrow double

Return the partition function for the species at the specified temperature T in K.

getResonanceHybrid(self)

Returns a molecule object with bond orders that are the average of all the resonance structures.

$getSumOfStates(self, ndarray\ Elist) \rightarrow ndarray$

Return the sum of states N(E) at the specified energies *Elist* in J/mol.

getSymmetryNumber(self)

Get the symmetry number for the species, which is the highest symmetry number amongst its resonance isomers and the resonance hybrid. This function is currently used for website purposes and testing only as it requires additional calculateSymmetryNumber calls.

getThermoData(self, solventName=")

Returns a thermoData object of the current Species object.

If the thermo object already exists, it is either of the (Wilhoit, ThermoData) type, or it is a Future.

If the type of the thermo attribute is Wilhoit, or ThermoData, then it is converted into a NASA format.

If it is a Future, then a blocking call is made to retrieve the NASA object. If the thermo object did not exist yet, the thermo object is generated.

getTransportData(self)

Returns the transport data associated with this species, and calculates it if it is not yet available.

$hasStatMech(self) \rightarrow bool$

Return True if the species has statistical mechanical parameters, or False otherwise.

$hasThermo(self) \rightarrow bool$

Return True if the species has thermodynamic parameters, or False otherwise.

$has_reactive_molecule(self) \rightarrow bool$

True if the species has at least one reactive molecule, *False* otherwise

index

'int'

Type index

isIdentical(self, other, bool strict=True) \rightarrow bool

Return True if at least one molecule of the species is identical to *other*, which can be either a Molecule object or a *Species* object.

If strict=False, performs the check ignoring electrons and resonance structures.

isIsomorphic(self, other, bool generateInitialMap=False, bool strict=True) \rightarrow bool

Return True if the species is isomorphic to *other*, which can be either a Molecule object or a *Species* object.

Parameters

- **generateInitialMap** (bool, optional) If True, make initial map by matching labeled atoms
- **strict** (*bool*, *optional*) If False, perform isomorphism ignoring electrons.

isSolvent

'bool'

Type isSolvent

isSurfaceSite(self) \rightarrow bool

Return True if the species is a vacant surface site.

$is_structure_in_list(self, list species_list) \rightarrow bool$

Return True if at least one Molecule in self is isomorphic with at least one other Molecule in at least one Species in species list.

label

str

Type label

molecularWeight

value_si is in kg/molecule not kg/mol)

Type The molecular weight of the species. (Note

molecule

list

Type molecule

multiplicity

Fingerprint of this species, taken from molecule attribute. Read-only.

props

dict

Type props

reactive

'bool'

Type reactive

setE0WithThermo(self)

Helper method that sets species' E0 using the species' thermo data

set_structure(self, str structure)

Set self.molecule from *structure* which could be either a SMILES string or an adjacency list multi-line string

symmetryNumber

'float'

Type symmetryNumber

thermo

object

Type thermo

toAdjacencyList(self)

Return a string containing each of the molecules' adjacency lists.

toCantera(self, useChemkinIdentifier=False)

Converts the RMG Species object to a Cantera Species object with the appropriate thermo data.

If useChemkinIdentifier is set to False, the species label is used instead. Be sure that species' labels are unique when setting it False.

toChemkin(self)

Return the chemkin-formatted string for this species.

transportData

object

Type transportData

1.12 Reaction system simulation (rmgpy.solver)

The rmgpy.solver module contains classes used to represent and simulate reaction systems.

1.12.1 Reaction systems

Class	Description
ReactionSystem	Base class for all reaction systems
SimpleReactor	A simple isothermal, isobaric, well-mixed batch reactor
LiquidReactor	A homogeneous, isothermal, isobaric liquid batch reactor

1.12.2 Termination criteria

Class	Description
TerminationTime	Represent a time at which the simulation should be terminated
TerminationConversion	Represent a species conversion at which the simulation should be terminated

rmgpy.solver.ReactionSystem

 sensitiveSpecies=None,

A base class for all RMG reaction systems.

Keq

numpy.ndarray

Type Keq

addReactionsToSurface(self, list newSurfaceReactions, list newSurfaceReactionInds, list surface-Species, list surfaceReactions, list edgeSpecies)

moves new surface reactions to the surface done after the while loop before the simulate call ends

advance()

Simulate from the current value of the independent variable to a specified value *tout*, taking as many steps as necessary. The resulting values of t, y, and $\frac{dy}{dt}$ can then be accessed via the t, y, and dydt attributes.

atol_array

numpy.ndarray

Type atol_array

bimolecularThreshold

numpy.ndarray

Type bimolecularThreshold

computeRateDerivative(self)

Returns derivative vector df/dk_j where dy/dt = f(y, t, k) and k_j is the rate parameter for the jth core reaction.

compute_network_variables(self, pdepNetworks=None)

Initialize the arrays containing network information:

- NetworkLeakCoefficients is a n x 1 array with n the number of pressure-dependent networks.
- **NetworkIndices is a n x 3 matrix with** n the number of pressure-dependent networks and 3 the maximum number of molecules allowed in either the reactant or product side of a reaction.

coreReactionRates

numpy.ndarray

Type coreReactionRates

coreSpeciesConcentrations

numpy.ndarray

Type coreSpeciesConcentrations

coreSpeciesConsumptionRates

numpy.ndarray

Type coreSpeciesConsumptionRates

coreSpeciesProductionRates

numpy.ndarray

Type coreSpeciesProductionRates

coreSpeciesRates

numpy.ndarray

Type coreSpeciesRates

dydt0

numpy.ndarray

Type dydt0

edgeReactionRates

numpy.ndarray

Type edgeReactionRates

edgeSpeciesRates

numpy.ndarray

Type edgeSpeciesRates

generate_reactant_product_indices(self, coreReactions, edgeReactions)

Creates a matrix for the reactants and products.

generate_reaction_indices(self, coreReactions, edgeReactions)

Assign an index to each reaction (core first, then edge) and store the (reaction, index) pair in a dictionary.

generate_species_indices(self, coreSpecies, edgeSpecies)

Assign an index to each species (core first, then edge) and store the (species, index) pair in a dictionary.

getLayeringIndices(self)

determines the edge reaction indices that indicate reactions that are valid for movement from edge to surface based on the layering constraint

get_species_index(self, spc)

Retrieves the index that is associated with the parameter species from the species index dictionary.

initialize()

Initialize the DASPK solver by setting the initial values of the independent variable t0, dependent variables y0, and first derivatives dydt0. If provided, the derivatives must be consistent with the other initial conditions; if not provided, DASPK will attempt to estimate a consistent set of initial values for the derivatives. You can also set the absolute and relative tolerances atol and rtol, respectively, either as single values for all dependent variables or individual values for each dependent variable.

initializeModel(self, list coreSpecies, list coreReactions, list edgeSpecies, list edgeReactions, list surfaceSpecies=None, list surfaceReactions=None, list pdepNetworks=None, atol=1e-16, rtol=1e-8, sensitivity=False, sens_atol=1e-6, sens_rtol=1e-4, filterReactions=False, dict conditions=None)

Initialize a simulation of the reaction system using the provided kinetic model. You will probably want to create your own version of this method in the derived class; don't forget to also call the base class version, too.

```
initialize_solver(self)
```

initialize_surface(self, list coreSpecies, list coreReactions, list surfaceSpecies, list surfaceReactions)

removes surfaceSpecies and surfaceReactions from until they are self consistent:

- 1) every reaction has one species in the surface
- 2) every species participates in a surface reaction

initiate_tolerances (self, atol=1e-16, rtol=1e-8, sensitivity=False, sens_atol=1e-6, sens_rtol=1e-4)

Computes the number of differential equations and initializes the tolerance arrays.

jacobianMatrix

numpy.ndarray

Type jacobianMatrix

kb

numpy.ndarray

Type kb

kf

numpy.ndarray

Type kf

logConversions (self, speciesIndex, y0)

Log information about the current conversion values.

```
logRates (self, double charRate, species, double speciesRate, double maxDifLnAccumNum, network,
          double networkRate)
    Log information about the current maximum species and network rates.
maxEdgeSpeciesRateRatios
    numpy.ndarray
        Type maxEdgeSpeciesRateRatios
maxNetworkLeakRateRatios
    numpy.ndarray
        Type maxNetworkLeakRateRatios
neq
    'int'
        Type neq
networkIndices
    numpy.ndarray
        Type networkIndices
networkLeakCoefficients
    numpy.ndarray
        Type networkLeakCoefficients
networkLeakRates
    numpy.ndarray
        Type networkLeakRates
numCoreReactions
    'int'
        Type numCoreReactions
numCoreSpecies
    'int'
        Type numCoreSpecies
numEdgeReactions
    'int'
        Type numEdgeReactions
numEdgeSpecies
    'int'
        Type numEdgeSpecies
numPdepNetworks
    'int'
```

Type numSurfaceReactions numSurfaceSpecies

numSurfaceReactions

'int'

'int'

Type numPdepNetworks

Type numSurfaceSpecies

productIndices

numpy.ndarray

Type productIndices

prunableNetworkIndices

numpy.ndarray

Type prunableNetworkIndices

prunableNetworks

list

Type prunableNetworks

prunableSpecies

list

Type prunableSpecies

prunableSpeciesIndices

numpy.ndarray

Type prunableSpeciesIndices

reactantIndices

numpy.ndarray

Type reactantIndices

reactionIndex

dict

Type reactionIndex

reset_max_edge_species_rate_ratios(self)

This function sets maxEdgeSpeciesRateRatios back to zero for pruning of ranged reactors it is important to avoid doing this every initialization

residual()

Evaluate the residual function for this model, given the current value of the independent variable t, dependent variables y, and first derivatives dydt. Return a numpy array with the values of the residual function and an integer with status information (0 if okay, -2 to terminate).

rtol_array

numpy.ndarray

Type rtol array

sensitiveSpecies

list

Type sensitiveSpecies

sensitivityCoefficients

numpy.ndarray

Type sensitivityCoefficients

sensitivityThreshold

'double'

Type sensitivityThreshold

set_initial_conditions(self)

Sets the common initial conditions of the rate equations that represent the reaction system.

- Sets the initial time of the reaction system to 0
- Initializes the species moles to a n x 1 array with zeros

set_initial_derivative(self)

Sets the derivative of the species moles with respect to the independent variable (time) equal to the residual.

set_initial_reaction_thresholds(self)

```
set_prunable_indices(self, edgeSpecies, pdepNetworks)
```

simulate(self, list coreSpecies, list coreReactions, list edgeSpecies, list edgeReactions, list surfaceSpecies, list surfaceReactions, list pdepNetworks=None, bool prune=False, bool sensitivity=False, list sensWorksheet=None, modelSettings=None, simulatorSettings=None, dict conditions=None)

Simulate the reaction system with the provided reaction model, consisting of lists of core species, core reactions, edge species, and edge reactions. As the simulation proceeds the system is monitored for validity. If the model becomes invalid (e.g. due to an excessively large edge flux), the simulation is interrupted and the object causing the model to be invalid is returned. If the simulation completes to the desired termination criteria and the model remains valid throughout, None is returned.

snapshots

list

Type snapshots

speciesIndex

dict

Type speciesIndex

step()

Perform one simulation step from the current value of the independent variable toward (but not past) a specified value *tout*. The resulting values of t, y, and $\frac{dy}{dt}$ can then be accessed via the t, y, and dydt attributes.

surfaceReactionIndices

numpy.ndarray

Type surfaceReactionIndices

surfaceSpeciesIndices

numpy.ndarray

Type surfaceSpeciesIndices

t0

'float'

Type t0

termination

list

Type termination

trimolecular

'bool'

Type trimolecular

```
trimolecularThreshold
          numpy.ndarray
               Type trimolecularThreshold
     unimolecularThreshold
          numpy.ndarray
               Type unimolecularThreshold
     validLayeringIndices
          numpy.ndarray
               Type validLayeringIndices
     yΘ
          numpy.ndarray
               Type y0
rmgpy.solver.SimpleReactor
class rmgpy.solver. SimpleReactor (T, P, initial Mole Fractions, nSims=1, termination=None, sen-
                                         sitiveSpecies=None,
                                                               sensitivityThreshold=1e-3,
                                                                                           sensCondi-
                                         tions=None)
     A reaction system consisting of a homogeneous, isothermal, isobaric batch reactor. These assumptions allow
     for a number of optimizations that enable this solver to complete very rapidly, even for large kinetic models.
     Keq
          numpy.ndarray
               Type Keq
     Р
          rmgpy.quantity.ScalarQuantity
               Type P
     Prange
          list
               Type Prange
     Т
          rmgpy.quantity.ScalarQuantity
               Type T
     Trange
          list
               Type Trange
     ٧
           'double'
               Type V
     addReactionsToSurface(self, list newSurfaceReactions, list newSurfaceReactionInds, list surface-
                                 Species, list surfaceReactions, list edgeSpecies)
          moves new surface reactions to the surface done after the while loop before the simulate call ends
```

advance()

Simulate from the current value of the independent variable to a specified value *tout*, taking as many steps as necessary. The resulting values of t, y, and $\frac{dy}{dt}$ can then be accessed via the t, y, and dydt attributes.

atol_array

numpy.ndarray

Type atol_array

bimolecularThreshold

numpy.ndarray

Type bimolecularThreshold

calculate_effective_pressure(self, rxn)

Computes the effective pressure for a reaction as:

$$P_{eff} = P * \sum_{i} \frac{y_i * eff_i}{\sum_{j} y_j}$$

with:

- P the pressure of the reactor,
- y the array of initial moles of the core species

or as:

$$P_{eff} = \frac{P * y_{specificCollider}}{\sum_{j} y_{j}}$$

if a specificCollider is mentioned.

colliderEfficiencies

numpy.ndarray

Type colliderEfficiencies

computeRateDerivative(self)

Returns derivative vector df/dk_j where dy/dt = f(y, t, k) and k_j is the rate parameter for the jth core reaction.

compute_network_variables(self, pdepNetworks=None)

Initialize the arrays containing network information:

- NetworkLeakCoefficients is a n x 1 array with n the number of pressure-dependent networks.
- **NetworkIndices is a n x 3 matrix with** n the number of pressure-dependent networks and 3 the maximum number of molecules allowed in either the reactant or product side of a reaction.

constantVolume

'bool'

Type constantVolume

${\tt convertInitialKeysToSpeciesObjects} ({\it self, speciesDict})$

Convert the initial Mole Fractions dictionary from species names into species objects, using the given dictionary of species.

coreReactionRates

numpy.ndarray

Type coreReactionRates

coreSpeciesConcentrations

numpy.ndarray

Type coreSpeciesConcentrations

coreSpeciesConsumptionRates

numpy.ndarray

Type coreSpeciesConsumptionRates

coreSpeciesProductionRates

numpy.ndarray

Type coreSpeciesProductionRates

coreSpeciesRates

numpy.ndarray

Type coreSpeciesRates

dydt0

numpy.ndarray

Type dydt0

edgeReactionRates

numpy.ndarray

Type edgeReactionRates

edgeSpeciesRates

numpy.ndarray

Type edgeSpeciesRates

generate_rate_coefficients(self, coreReactions, edgeReactions)

Populates the forward rate coefficients (kf), reverse rate coefficients (kb) and equilibrium constants (Keq) arrays with the values computed at the temperature and (effective) pressure of the reaction system.

generate_reactant_product_indices(self, coreReactions, edgeReactions)

Creates a matrix for the reactants and products.

generate_reaction_indices(self, coreReactions, edgeReactions)

Assign an index to each reaction (core first, then edge) and store the (reaction, index) pair in a dictionary.

generate_species_indices(self, coreSpecies, edgeSpecies)

Assign an index to each species (core first, then edge) and store the (species, index) pair in a dictionary.

getLayeringIndices(self)

determines the edge reaction indices that indicate reactions that are valid for movement from edge to surface based on the layering constraint

get_species_index(self, spc)

Retrieves the index that is associated with the parameter species from the species index dictionary.

get_threshold_rate_constants(self, modelSettings)

Get the threshold rate constants for reaction filtering.

initialMoleFractions

dict

Type initialMoleFractions

initialize()

Initialize the DASPK solver by setting the initial values of the independent variable $t\theta$, dependent variables

y0, and first derivatives *dydt0*. If provided, the derivatives must be consistent with the other initial conditions; if not provided, DASPK will attempt to estimate a consistent set of initial values for the derivatives. You can also set the absolute and relative tolerances *atol* and *rtol*, respectively, either as single values for all dependent variables or individual values for each dependent variable.

Initialize a simulation of the simple reactor using the provided kinetic model.

```
initialize_solver(self)
```

initialize_surface(self, list coreSpecies, list coreReactions, list surfaceSpecies, list surfaceReactions)

removes surfaceSpecies and surfaceReactions from until they are self consistent:

- 1) every reaction has one species in the surface
- 2) every species participates in a surface reaction

initiate_tolerances (self, atol=1e-16, rtol=1e-8, sensitivity=False, sens_atol=1e-6, sens_rtol=1e-4)

Computes the number of differential equations and initializes the tolerance arrays.

Return the analytical Jacobian for the reaction system.

jacobianMatrix

numpy.ndarray

Type jacobianMatrix

kb

numpy.ndarray

Type kb

kf

numpy.ndarray

Type kf

logConversions(self, speciesIndex, y0)

Log information about the current conversion values.

Log information about the current maximum species and network rates.

maxEdgeSpeciesRateRatios

numpy.ndarray

Type maxEdgeSpeciesRateRatios

maxNetworkLeakRateRatios

numpy.ndarray

Type maxNetworkLeakRateRatios

nSims

'int'

Type nSims

```
neq
    'int'
        Type neq
networkIndices
    numpy.ndarray
        Type networkIndices
networkLeakCoefficients
    numpy.ndarray
        Type networkLeakCoefficients
networkLeakRates
    numpy.ndarray
        Type networkLeakRates
numCoreReactions
    'int'
        Type numCoreReactions
numCoreSpecies
    'int'
        Type numCoreSpecies
numEdgeReactions
    'int'
        Type numEdgeReactions
numEdgeSpecies
    'int'
        Type numEdgeSpecies
numPdepNetworks
    'int'
        Type numPdepNetworks
numSurfaceReactions
    'int'
        Type numSurfaceReactions
numSurfaceSpecies
    'int'
        Type numSurfaceSpecies
pdepColliderKinetics
    list
        Type pdepColliderKinetics
pdepColliderReactionIndices
    numpy.ndarray
```

Type pdepColliderReactionIndices

pdepSpecificColliderKinetics

list

Type pdepSpecificColliderKinetics

pdepSpecificColliderReactionIndices

numpy.ndarray

Type pdepSpecificColliderReactionIndices

productIndices

numpy.ndarray

Type productIndices

prunableNetworkIndices

numpy.ndarray

Type prunableNetworkIndices

prunableNetworks

list

Type prunableNetworks

prunableSpecies

list

Type prunableSpecies

prunableSpeciesIndices

numpy.ndarray

Type prunableSpeciesIndices

reactantIndices

numpy.ndarray

Type reactantIndices

reactionIndex

dict

Type reactionIndex

reset_max_edge_species_rate_ratios(self)

This function sets maxEdgeSpeciesRateRatios back to zero for pruning of ranged reactors it is important to avoid doing this every initialization

residual (self, double t, ndarray y, ndarray dydt, ndarray senpar=numpy.zeros(1, numpy.float64))

Return the residual function for the governing DAE system for the simple reaction system.

rtol_array

numpy.ndarray

Type rtol_array

sensConditions

dict

Type sensConditions

sensitiveSpecies

list

Type sensitiveSpecies

sensitivityCoefficients

numpy.ndarray

Type sensitivityCoefficients

sensitivityThreshold

'double'

Type sensitivityThreshold

set_colliders(self, coreReactions, edgeReactions, coreSpecies)

Store collider efficiencies and reaction indices for pdep reactions that have collider efficiencies, and store specific collider indices

set_initial_conditions(self)

Sets the initial conditions of the rate equations that represent the current reactor model.

The volume is set to the value derived from the ideal gas law, using the user-defined pressure, temperature, and the number of moles of initial species.

The species moles array (y0) is set to the values stored in the initial mole fractions dictionary.

The initial species concentration is computed and stored in the coreSpeciesConcentrations array.

set_initial_derivative(self)

Sets the derivative of the species moles with respect to the independent variable (time) equal to the residual.

set_initial_reaction_thresholds(self)

```
set_prunable_indices(self, edgeSpecies, pdepNetworks)
```

simulate(self, list coreSpecies, list coreReactions, list edgeSpecies, list edgeReactions, list surfaceSpecies, list surfaceReactions, list pdepNetworks=None, bool prune=False, bool sensitivity=False, list sensWorksheet=None, modelSettings=None, simulatorSettings=None, dict conditions=None)

Simulate the reaction system with the provided reaction model, consisting of lists of core species, core reactions, edge species, and edge reactions. As the simulation proceeds the system is monitored for validity. If the model becomes invalid (e.g. due to an excessively large edge flux), the simulation is interrupted and the object causing the model to be invalid is returned. If the simulation completes to the desired termination criteria and the model remains valid throughout, None is returned.

snapshots

list

Type snapshots

speciesIndex

dict

Type speciesIndex

specificColliderSpecies

list

Type specificColliderSpecies

step()

Perform one simulation step from the current value of the independent variable toward (but not past) a specified value *tout*. The resulting values of t, y, and $\frac{dy}{dt}$ can then be accessed via the t, y, and dydt attributes.

surfaceReactionIndices

numpy.ndarray

Type surfaceReactionIndices

surfaceSpeciesIndices

numpy.ndarray

```
Type surfaceSpeciesIndices
     t0
          'float'
              Type t0
     termination
          list
              Type termination
     trimolecular
          'bool'
              Type trimolecular
     trimolecularThreshold
          numpy.ndarray
              Type trimolecularThreshold
     unimolecularThreshold
          numpy.ndarray
              Type unimolecularThreshold
     validLayeringIndices
          numpy.ndarray
              Type validLayeringIndices
     yΘ
          numpy.ndarray
              Type y0
rmgpy.solver.LiquidReactor
class rmgpy.solver.LiquidReactor(T, initialConcentrations, nSims=1, termination=None, sen-
                                       sitiveSpecies=None,
                                                             sensitivityThreshold=1e-3,
                                                                                         sensCondi-
                                       tions=None, constSPCNames=None)
     A reaction system consisting of a homogeneous, isothermal, constant volume batch reactor. These assumptions
     allow for a number of optimizations that enable this solver to complete very rapidly, even for large kinetic
     models.
     Keq
          numpy.ndarray
              Type Keq
     Ρ
          rmgpy.quantity.ScalarQuantity
              Type P
     Т
          rmgpy.quantity.ScalarQuantity
              Type T
     Trange
          list
```

Type Trange

٧

'double'

Type V

addReactionsToSurface(self, list newSurfaceReactions, list newSurfaceReactionInds, list surface-Species, list surfaceReactions, list edgeSpecies)

moves new surface reactions to the surface done after the while loop before the simulate call ends

advance()

Simulate from the current value of the independent variable to a specified value *tout*, taking as many steps as necessary. The resulting values of t, y, and $\frac{dy}{dt}$ can then be accessed via the t, y, and dydt attributes.

atol_array

numpy.ndarray

Type atol_array

bimolecularThreshold

numpy.ndarray

Type bimolecularThreshold

computeRateDerivative(self)

Returns derivative vector df/dk_j where dy/dt = f(y, t, k) and k_j is the rate parameter for the jth core reaction.

compute_network_variables(self, pdepNetworks=None)

Initialize the arrays containing network information:

- NetworkLeakCoefficients is a n x 1 array with n the number of pressure-dependent networks.
- **NetworkIndices is a n x 3 matrix with** n the number of pressure-dependent networks and 3 the maximum number of molecules allowed in either the reactant or product side of a reaction.

constSPCIndices

list

Type constSPCIndices

constSPCNames

list

Type constSPCNames

constantVolume

'bool'

Type constantVolume

convertInitialKeysToSpeciesObjects(self, speciesDict)

Convert the initialConcentrations dictionary from species names into species objects, using the given dictionary of species.

coreReactionRates

numpy.ndarray

Type coreReactionRates

coreSpeciesConcentrations

numpy.ndarray

Type coreSpeciesConcentrations

coreSpeciesConsumptionRates

numpy.ndarray

Type coreSpeciesConsumptionRates

coreSpeciesProductionRates

numpy.ndarray

Type coreSpeciesProductionRates

coreSpeciesRates

numpy.ndarray

Type coreSpeciesRates

dydt0

numpy.ndarray

Type dydt0

edgeReactionRates

numpy.ndarray

Type edgeReactionRates

edgeSpeciesRates

numpy.ndarray

Type edgeSpeciesRates

generate_rate_coefficients(self, coreReactions, edgeReactions)

Populates the forwardRateCoefficients, reverseRateCoefficients and equilibriumConstants arrays with the values computed at the temperature and (effective) pressure of the reacion system.

generate_reactant_product_indices(self, coreReactions, edgeReactions)

Creates a matrix for the reactants and products.

generate_reaction_indices(self, coreReactions, edgeReactions)

Assign an index to each reaction (core first, then edge) and store the (reaction, index) pair in a dictionary.

generate_species_indices(self, coreSpecies, edgeSpecies)

Assign an index to each species (core first, then edge) and store the (species, index) pair in a dictionary.

getLayeringIndices(self)

determines the edge reaction indices that indicate reactions that are valid for movement from edge to surface based on the layering constraint

get_constSPCIndices(self, coreSpecies)

Allow to identify constant Species position in solver

get_species_index(self, spc)

Retrieves the index that is associated with the parameter species from the species index dictionary.

get_threshold_rate_constants(self, modelSettings)

Get the threshold rate constants for reaction filtering.

modelSettings is not used here, but is needed so that the method matches the one in simpleReactor.

initialConcentrations

dict

Type initialConcentrations

initialize()

Initialize the DASPK solver by setting the initial values of the independent variable t0, dependent variables

y0, and first derivatives *dydt0*. If provided, the derivatives must be consistent with the other initial conditions; if not provided, DASPK will attempt to estimate a consistent set of initial values for the derivatives. You can also set the absolute and relative tolerances *atol* and *rtol*, respectively, either as single values for all dependent variables or individual values for each dependent variable.

Initialize a simulation of the liquid reactor using the provided kinetic model.

```
initialize_solver(self)
```

initialize_surface(self, list coreSpecies, list coreReactions, list surfaceSpecies, list surfaceReactions)

removes surfaceSpecies and surfaceReactions from until they are self consistent:

- 1) every reaction has one species in the surface
- 2) every species participates in a surface reaction

initiate_tolerances(self, atol=1e-16, rtol=1e-8, sensitivity=False, sens_atol=1e-6, sens_rtol=1e4)

Computes the number of differential equations and initializes the tolerance arrays.

Return the analytical Jacobian for the reaction system.

jacobianMatrix

numpy.ndarray

Type jacobianMatrix

kb

numpy.ndarray

Type kb

kf

numpy.ndarray

Type kf

logConversions(self, speciesIndex, y0)

Log information about the current conversion values.

Log information about the current maximum species and network rates.

maxEdgeSpeciesRateRatios

numpy.ndarray

Type maxEdgeSpeciesRateRatios

maxNetworkLeakRateRatios

numpy.ndarray

Type maxNetworkLeakRateRatios

nSims

'int'

Type nSims

neq

'int'

Type neq

networkIndices

numpy.ndarray

Type networkIndices

networkLeakCoefficients

numpy.ndarray

Type networkLeakCoefficients

networkLeakRates

numpy.ndarray

Type networkLeakRates

numCoreReactions

'int'

Type numCoreReactions

numCoreSpecies

'int'

Type numCoreSpecies

numEdgeReactions

'int'

Type numEdgeReactions

numEdgeSpecies

'int'

Type numEdgeSpecies

numPdepNetworks

'int'

Type numPdepNetworks

numSurfaceReactions

'int'

Type numSurfaceReactions

numSurfaceSpecies

'int'

Type numSurfaceSpecies

productIndices

numpy.ndarray

Type productIndices

prunableNetworkIndices

numpy.ndarray

Type prunableNetworkIndices

prunableNetworks

list

Type prunableNetworks

prunableSpecies

list

Type prunableSpecies

prunableSpeciesIndices

numpy.ndarray

Type prunableSpeciesIndices

reactantIndices

numpy.ndarray

Type reactantIndices

reactionIndex

dict

Type reactionIndex

reset_max_edge_species_rate_ratios(self)

This function sets maxEdgeSpeciesRateRatios back to zero for pruning of ranged reactors it is important to avoid doing this every initialization

residual (self, double t, ndarray y, ndarray dydt, ndarray senpar=numpy.zeros(1, numpy.float64))

Return the residual function for the governing DAE system for the liquid reaction system.

rtol_array

numpy.ndarray

Type rtol_array

sensConditions

dict

Type sensConditions

sensitiveSpecies

list

Type sensitiveSpecies

sensitivityCoefficients

numpy.ndarray

Type sensitivityCoefficients

sensitivityThreshold

'double'

Type sensitivityThreshold

set_initial_conditions(self)

Sets the initial conditions of the rate equations that represent the current reactor model.

The volume is set to the value in m3 required to contain one mole total of core species at start.

The coreSpeciesConcentrations array is set to the values stored in the initial concentrations dictionary.

The initial number of moles of a species j is computed and stored in the y0 instance attribute.

set_initial_derivative(self)

Sets the derivative of the species moles with respect to the independent variable (time) equal to the residual.

set_initial_reaction_thresholds(self)

set_prunable_indices(self, edgeSpecies, pdepNetworks)

simulate(self, list coreSpecies, list coreReactions, list edgeSpecies, list edgeReactions, list surface-Species, list surfaceReactions, list pdepNetworks=None, bool prune=False, bool sensitivity=False, list sensWorksheet=None, modelSettings=None, simulatorSettings=None, dict conditions=None)

Simulate the reaction system with the provided reaction model, consisting of lists of core species, core reactions, edge species, and edge reactions. As the simulation proceeds the system is monitored for validity. If the model becomes invalid (e.g. due to an excessively large edge flux), the simulation is interrupted and the object causing the model to be invalid is returned. If the simulation completes to the desired termination criteria and the model remains valid throughout, None is returned.

snapshots

list

Type snapshots

speciesIndex

dict

Type speciesIndex

step()

Perform one simulation step from the current value of the independent variable toward (but not past) a specified value *tout*. The resulting values of t, y, and $\frac{dy}{dt}$ can then be accessed via the t, y, and dydt attributes.

surfaceReactionIndices

numpy.ndarray

Type surfaceReactionIndices

surfaceSpeciesIndices

numpy.ndarray

Type surfaceSpeciesIndices

t0

'float'

Type t0

termination

list

Type termination

trimolecular

'bool'

Type trimolecular

trimolecularThreshold

numpy.ndarray

Type trimolecularThreshold

unimolecularThreshold

numpy.ndarray

Type unimolecularThreshold

validLayeringIndices

numpy.ndarray

Termination criteria

class rmgpy.solver.TerminationTime

Represent a time at which the simulation should be terminated. This class has one attribute: the termination *time* in seconds.

class rmgpy.solver.TerminationConversion

Represent a conversion at which the simulation should be terminated. This class has two attributes: the *species* to monitor and the fractional *conversion* at which to terminate.

1.13 Species (rmgpy.species)

The rmqpy. species subpackage contains classes and functions for working with chemical species.

1.13.1 Species

Class	Description
Species	A chemical species

1.13.2 Transition state

Class	Description	
TransitionState	A transition state	

rmgpy.species.Species

A chemical species, representing a local minimum on a potential energy surface. The attributes are:

Attribute	Description
index	A unique nonnegative integer index
label	A descriptive string label
thermo	The heat capacity model for the species
conformer	The molecular conformer for the species
molecule	A list of the Molecule objects describing the molecular structure
transportData	A set of transport collision parameters
molecularWeight	The molecular weight of the species
energyTransferModel	The collisional energy transfer model to use
	True if the species participates in reaction families, Reaction libraries and seed mechanisms that include the species are always considered regardless of this variable
props	A generic 'properties' dictionary to store user-defined flags
aug_inchi	Unique augmented inchi
symmetryNumber	Estimated symmetry number of the species, using the resonance hybrid
creationIteration	Iteration which the species is created within the reaction mechanism generation algorithm
explicitlyAllowed	Flag to exempt species from forbidden structure checks

InChI

InChI string representation of this species. Read-only.

SMILES

SMILES string representation of this species. Read-only.

Note that SMILES representations for different resonance structures of the same species may be different.

aug_inchi

str

Type aug_inchi

$calculateCp0(self) \rightarrow double$

Return the value of the heat capacity at zero temperature in J/mol*K.

$calculateCpInf(self) \rightarrow double$

Return the value of the heat capacity at infinite temperature in J/mol*K.

conformer

rmgpy.statmech.conformer.Conformer

Type conformer

$containsSurfaceSite(self) \rightarrow bool$

Return True if the species is adsorbed on a surface (or is itself a site), else False.

copy (*self*, *bool deep=False*) \rightarrow Species

Create a copy of the current species. If the kw argument 'deep' is True, then a deep copy will be made of the Molecule objects in self.molecule.

For other complex attributes, a deep copy will always be made.

creationIteration

'int'

Type creationIteration

energyTransferModel

object

Type energyTransferModel

explicitlyAllowed

'bool'

Type explicitly Allowed

fingerprint

Fingerprint of this species, taken from molecule attribute. Read-only.

fromAdjacencyList(self, adjlist)

Load the structure of a species as a Molecule object from the given adjacency list *adjlist* and store it as the first entry of a list in the *molecule* attribute. Does not generate resonance isomers of the loaded molecule.

fromSMILES (self, smiles)

Load the structure of a species as a Molecule object from the given SMILES string *smiles* and store it as the first entry of a list in the *molecule* attribute. Does not generate resonance isomers of the loaded molecule.

generateEnergyTransferModel(self)

Generate the collisional energy transfer model parameters for the species. This "algorithm" is *very* much in need of improvement.

generateStatMech(self)

Generate molecular degree of freedom data for the species. You must have already provided a thermodynamics model using e.g. generateThermoData().

generateTransportData(self)

Generate the transportData parameters for the species.

```
generate_aug_inchi(self)
```

generate_resonance_structures(self, bool keep_isomorphic=True, bool filter_structures=True)

Generate all of the resonance structures of this species. The isomers are stored as a list in the *molecule* attribute. If the length of *molecule* is already greater than one, it is assumed that all of the resonance structures have already been generated.

getAugmentedInChI(self)

getDensityOfStates(self, ndarray Elist) \rightarrow ndarray

Return the density of states $\rho(E)$ dE at the specified energies Elist in J/mol above the ground state.

getEnthalpy (*self*, *double* T) \rightarrow double

Return the enthalpy in J/mol for the species at the specified temperature T in K.

getEntropy (*self*, *double* T) \rightarrow double

Return the entropy in J/mol*K for the species at the specified temperature T in K.

getFreeEnergy (*self*, *double* T) \rightarrow double

Return the Gibbs free energy in J/mol for the species at the specified temperature T in K.

$getHeatCapacity(self, double\ T) \rightarrow double$

Return the heat capacity in J/mol*K for the species at the specified temperature T in K.

getPartitionFunction($self, double\ T$) \rightarrow double

Return the partition function for the species at the specified temperature *T* in K.

getResonanceHybrid(self)

Returns a molecule object with bond orders that are the average of all the resonance structures.

$getSumOfStates(self, ndarray Elist) \rightarrow ndarray$

Return the sum of states N(E) at the specified energies *Elist* in J/mol.

getSymmetryNumber(self)

Get the symmetry number for the species, which is the highest symmetry number amongst its resonance isomers and the resonance hybrid. This function is currently used for website purposes and testing only as it requires additional calculateSymmetryNumber calls.

getThermoData(self, solventName=")

Returns a thermoData object of the current Species object.

If the thermo object already exists, it is either of the (Wilhoit, ThermoData) type, or it is a Future.

If the type of the thermo attribute is Wilhoit, or ThermoData, then it is converted into a NASA format.

If it is a Future, then a blocking call is made to retrieve the NASA object. If the thermo object did not exist yet, the thermo object is generated.

getTransportData(self)

Returns the transport data associated with this species, and calculates it if it is not yet available.

$hasStatMech(self) \rightarrow bool$

Return True if the species has statistical mechanical parameters, or False otherwise.

$hasThermo(self) \rightarrow bool$

Return True if the species has thermodynamic parameters, or False otherwise.

$has_reactive_molecule(self) \rightarrow bool$

True if the species has at least one reactive molecule, False otherwise

index

'int'

Type index

isIdentical(self, other, bool strict=True) \rightarrow bool

Return True if at least one molecule of the species is identical to *other*, which can be either a Molecule object or a *Species* object.

If strict=False, performs the check ignoring electrons and resonance structures.

$\textbf{isIsomorphic} (\textit{self}, \textit{other}, \textit{bool generateInitialMap=False}, \textit{bool strict=True}) \rightarrow \textbf{bool}$

Return True if the species is isomorphic to *other*, which can be either a Molecule object or a *Species* object.

Parameters

- **generateInitialMap** (bool, optional) If True, make initial map by matching labeled atoms
- **strict** (*bool*, *optional*) If False, perform isomorphism ignoring electrons.

isSolvent

'bool'

Type isSolvent

$isSurfaceSite(self) \rightarrow bool$

Return True if the species is a vacant surface site.

is_structure_in_list(*self*, *list species_list*) → bool

Return True if at least one Molecule in self is isomorphic with at least one other Molecule in at least one Species in species list.

label

str

Type label

molecularWeight

value_si is in kg/molecule not kg/mol)

Type The molecular weight of the species. (Note

molecule

list

Type molecule

multiplicity

Fingerprint of this species, taken from molecule attribute. Read-only.

props

dict

Type props

reactive

'bool'

Type reactive

setE0WithThermo(self)

Helper method that sets species' E0 using the species' thermo data

set_structure(self, str structure)

Set self.molecule from *structure* which could be either a SMILES string or an adjacency list multi-line string

symmetryNumber

'float'

Type symmetryNumber

thermo

object

Type thermo

toAdjacencyList(self)

Return a string containing each of the molecules' adjacency lists.

toCantera(self, useChemkinIdentifier=False)

Converts the RMG Species object to a Cantera Species object with the appropriate thermo data.

If useChemkinIdentifier is set to False, the species label is used instead. Be sure that species' labels are unique when setting it False.

toChemkin(self)

Return the chemkin-formatted string for this species.

transportData

object

Type transportData

rmgpy.species.TransitionState

class rmgpy.species.TransitionState(label=", conformer=None, frequency=None, tunneling=None, degeneracy=1)

A chemical transition state, representing a first-order saddle point on a potential energy surface. The attributes are:

Attribute	TDescription
label	A descriptive string label
conformer	The molecular degrees of freedom model for the species
frequency	The negative frequency of the first-order saddle point
tunneling	The type of tunneling model to use for tunneling through the reaction barrier
degeneracy	The reaction path degeneracy

$calculateTunnelingFactor(self, double\ T) \rightarrow double$

Calculate and return the value of the canonical tunneling correction factor for the reaction at the given temperature T in K.

$calculateTunnelingFunction(self, ndarray Elist) \rightarrow ndarray$

Calculate and return the value of the microcanonical tunneling correction for the reaction at the given energies *Elist* in J/mol.

conformer

rmgpy.statmech.conformer.Conformer

Type conformer

degeneracy

'int'

Type degeneracy

frequency

The negative frequency of the first-order saddle point.

$\textbf{getDensityOfStates} (\textit{self}, \textit{ndarray Elist}) \rightarrow \text{ndarray}$

Return the density of states $\rho(E)$ dE at the specified energies Elist in J/mol above the ground state.

getEnthalpy (*self*, *double* T) \rightarrow double

Return the enthalpy in J/mol for the transition state at the specified temperature T in K.

getEntropy (*self*, *double* T) \rightarrow double

Return the entropy in J/mol*K for the transition state at the specified temperature T in K.

$getFreeEnergy(self, double T) \rightarrow double$

Return the Gibbs free energy in J/mol for the transition state at the specified temperature T in K.

$\textbf{getHeatCapacity}(\textit{self}, \textit{double}\ T) \rightarrow \textbf{double}$

Return the heat capacity in J/mol*K for the transition state at the specified temperature T in K.

getPartitionFunction(self, double T) \rightarrow double

Return the partition function for the transition state at the specified temperature T in K.

$getSumOfStates(self, ndarray\ Elist) \rightarrow ndarray$

Return the sum of states N(E) at the specified energies *Elist* in J/mol.

label

str

Type label

tunneling

rmgpy.kinetics.model.TunnelingModel

Type tunneling

1.14 Statistical mechanics (rmgpy.statmech)

The *rmgpy.statmech* subpackage contains classes that represent various statistical mechanical models of molecular degrees of freedom. These models enable the computation of macroscopic parameters (e.g. thermodynamics, kinetics, etc.) from microscopic parameters.

A molecular system consisting of N atoms is described by 3N molecular degrees of freedom. Three of these modes involve translation of the system as a whole. Another three of these modes involve rotation of the system as a whole, unless the system is linear (e.g. diatomics), for which there are only two rotational modes. The remaining 3N-6 (or 3N-5 if linear) modes involve internal motion of the atoms within the system. Many of these modes are well-described as harmonic oscillations, while others are better modeled as torsional rotations around a bond within the system.

Molecular degrees of freedom are mathematically represented using the Schrodinger equation $\hat{H}\Psi=E\Psi$. By solving the Schrodinger equation, we can determine the available energy states of the molecular system, which enables computation of macroscopic parameters. Depending on the temperature of interest, some modes (e.g. vibrations) require a quantum mechanical treatment, while others (e.g. translation, rotation) can be described using a classical solution.

1.14.1 Translational degrees of freedom

Class	Description
IdealGasTranslation	A model of three-dimensional translation of an ideal gas

1.14.2 Rotational degrees of freedom

Class	Description
LinearRotor	A model of two-dimensional rigid rotation of a linear molecule
NonlinearRotor	A model of three-dimensional rigid rotation of a nonlinear molecule
KRotor	A model of one-dimensional rigid rotation of a K-rotor
SphericalTopRotor	A model of three-dimensional rigid rotation of a spherical top molecule

1.14.3 Vibrational degrees of freedom

Class	Description
HarmonicOscillator	A model of a set of one-dimensional harmonic oscillators

1.14.4 Torsional degrees of freedom

Class	Description
HinderedRotor	A model of a one-dimensional hindered rotation

1.14.5 The Schrodinger equation

Class	Description
getPartitionFunction	(Calculate the partition function at a given temperature from energy levels and degen-
	eracies
<pre>getHeatCapacity()</pre>	Calculate the dimensionless heat capacity at a given temperature from energy levels
	and degeneracies
<pre>getEnthalpy()</pre>	Calculate the enthalpy at a given temperature from energy levels and degeneracies
<pre>getEntropy()</pre>	Calculate the entropy at a given temperature from energy levels and degeneracies
<pre>getSumOfStates()</pre>	Calculate the sum of states for a given energy domain from energy levels and degen-
	eracies
<pre>getDensityOfStates()</pre>	Calculate the density of states for a given energy domain from energy levels and de-
	generacies

1.14.6 Convolution

Class	Description
convolve()	Return the convolution of two arrays
convolveBS(Convolve a degree of freedom into a density or sum of states using the Beyer-Swinehart (BS) direct
	count algorithm
convolveBSS	RConvolve a degree of freedom into a density or sum of states using the Beyer-Swinehart-Stein-
	Rabinovitch (BSSR) direct count algorithm

1.14.7 Molecular conformers

Class	Description
Conformer	A model of a molecular conformation

Translational degrees of freedom

class rmgpy.statmech.IdealGasTranslation(mass=None, quantum=False)

A statistical mechanical model of translation in an 3-dimensional infinite square well by an ideal gas. The attributes are:

Attribute	Description
mass	The mass of the translating object
quantum	True to use the quantum mechanical model, False to use the classical model

Translational energies are much smaller than $k_{\rm B}T$ except for temperatures approaching absolute zero, so a classical treatment of translation is more than adequate.

The translation of an *ideal gas* – a gas composed of randomly-moving, noninteracting particles of negligible size – in three dimensions can be modeled using the particle-in-a-box model. In this model, a gas particle is confined to a three-dimensional box of size $L_x L_y L_z = V$ with the following potential:

$$V(x, y, z) = \begin{cases} 0 & 0 \le x \le L_x, 0 \le y \le L_y, 0 \le z \le L_z \\ \infty & \text{otherwise} \end{cases}$$

The time-independent Schrodinger equation for this system (within the box) is given by

$$-\frac{\hbar^2}{2M}\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}\right)\Psi(x,y,z)=E\Psi(x,y,z)$$

where M is the total mass of the particle. Because the box is finite in all dimensions, the solution of the above is quantized with the following energy levels:

$$E_{n_x,n_y,n_z} = \frac{\hbar^2}{2M} \left[\left(\frac{n_x \pi}{L_x} \right)^2 + \left(\frac{n_y \pi}{L_y} \right)^2 + \left(\frac{n_z \pi}{L_z} \right)^2 \right] \qquad n_x,n_y,n_z = 1,2,\dots$$

Above we have introduced n_x , n_y , and n_z as quantum numbers. The quantum mechanical partition function is obtained by summing over the above energy levels:

$$Q_{\text{trans}}(T) = \sum_{n_x=1}^{\infty} \sum_{n_y=1}^{\infty} \sum_{n_z=1}^{\infty} \exp\left(-\frac{E_{n_x,n_y,n_z}}{k_{\text{B}}T}\right)$$

In almost all cases the temperature of interest is large relative to the energy spacing; in this limit we can obtain a closed-form analytical expression for the translational partition function in the classical limit:

$$Q_{\rm trans}^{\rm cl}(T) = \left(\frac{2\pi M k_{\rm B} T}{h^2}\right)^{3/2} V$$

For a constant-pressure problem we can use the ideal gas law to replace V with $k_{\rm B}T/P$. This gives the partition function a temperature dependence of $T^{5/2}$.

$as_dict(self) \rightarrow dict$

A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

getDensityOfStates(self, ndarray Elist, ndarray densStates0=None) \rightarrow ndarray

Return the density of states $\rho(E)$ dE at the specified energies *Elist* in J/mol above the ground state. If an initial density of states *densStates0* is given, the rotor density of states will be convoluted into these states.

getEnthalpy (*self*, *double* T) \rightarrow double

Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

getEntropy (*self*, *double* T) \rightarrow double

Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

getHeatCapacity (self, double T) \rightarrow double

Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

$getPartitionFunction(self, double\ T) \rightarrow double$

Return the value of the partition function Q(T) at the specified temperature T in K.

getSumOfStates(self, ndarray Elist, ndarray sumStates0=None) \rightarrow ndarray

Return the sum of states N(E) at the specified energies *Elist* in J/mol above the ground state. If an initial sum of states *sumStates0* is given, the rotor sum of states will be convoluted into these states.

make_object(self, dict data, dict class_dict)

A helper function for constructing objects from a dictionary (used when loading YAML files)

Parameters

- data (dict) The dictionary representation of the object
- class_dict (dict) A mapping of class names to the classes themselves

Returns None

mass

The mass of the translating object.

quantum

'bool'

Type quantum

rmgpy.statmech.LinearRotor

class rmgpy.statmech.LinearRotor(inertia=None, symmetry=1, quantum=False, rotationalConstant=None)

A statistical mechanical model of a two-dimensional (linear) rigid rotor. The attributes are:

Attribute	Description
inertia	The moment of inertia of the rotor
rotationalConstant	The rotational constant of the rotor
symmetry	The symmetry number of the rotor
quantum	True to use the quantum mechanical model, False to use the classical model

Note that the moment of inertia and the rotational constant are simply two ways of representing the same quantity; only one of these can be specified independently.

In the majority of chemical applications, the energies involved in the rigid rotor place it very nearly in the classical limit at all relevant temperatures; therefore, the classical model is used by default.

A linear rigid rotor is modeled as a pair of point masses m_1 and m_2 separated by a distance R. Since we are modeling the rotation of this system, we choose to work in spherical coordinates. Following the physics convention – where $0 \le \theta \le \pi$ is the zenith angle and $0 \le \phi \le 2\pi$ is the azimuth – the Schrodinger equation for the rotor is given by

$$-\frac{\hbar^2}{2I} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right] \Psi(\theta, \phi) = E \Psi(\theta, \phi)$$

where $I \equiv \mu R^2$ is the moment of inertia of the rotating body, and $\mu \equiv m_1 m_2/(m_1 + m_2)$ is the reduced mass. Note that there is no potential term in the above expression; for this reason, a rigid rotor is often referred to as a *free* rotor. Solving the Schrodinger equation gives the energy levels E_J and corresponding degeneracies g_J for the linear rigid rotor as

$$E_J = BJ(J+1)$$
 $J = 0, 1, 2, ...$
 $g_J = 2J + 1$

where J is the quantum number for the rotor – sometimes called the total angular momentum quantum number – and $B \equiv \hbar^2/2I$ is the rotational constant.

Using these expressions for the energy levels and corresponding degeneracies, we can evaluate the partition function for the linear rigid rotor:

$$Q_{\text{rot}}(T) = \frac{1}{\sigma} \sum_{J=0}^{\infty} (2J+1)e^{-BJ(J+1)/k_{\text{B}}T}$$

In many cases the temperature of interest is large relative to the energy spacing; in this limit we can obtain a closed-form analytical expression for the linear rotor partition function in the classical limit:

$$Q_{\rm rot}^{\rm cl}(T) = \frac{1}{\sigma} \frac{8\pi^2 I k_{\rm B} T}{h^2}$$

Above we have also introduced σ as the symmetry number of the rigid rotor.

```
as\_dict(self) \rightarrow dict
```

A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

getDensityOfStates(self, ndarray Elist, ndarray densStatesO=None) \rightarrow ndarray

Return the density of states $\rho(E)$ dE at the specified energies *Elist* in J/mol above the ground state. If an initial density of states *densStates0* is given, the rotor density of states will be convoluted into these states.

getEnthalpy (*self*, *double* T) \rightarrow double

Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

getEntropy (*self*, *double* T) \rightarrow double

Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

$\textbf{getHeatCapacity}(\textit{self}, \textit{double}\ T) \rightarrow \text{double}$

Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

$getLevelDegeneracy(self, int J) \rightarrow int$

Return the degeneracy of level *J*.

$getLevelEnergy(self, int J) \rightarrow double$

Return the energy of level J in kJ/mol.

getPartitionFunction($self, double\ T$) \rightarrow double

Return the value of the partition function Q(T) at the specified temperature T in K.

$getSumOfStates(self, ndarray\ Elist, ndarray\ sumStatesO=None) \rightarrow ndarray$

Return the sum of states N(E) at the specified energies *Elist* in J/mol above the ground state. If an initial sum of states *sumStates0* is given, the rotor sum of states will be convoluted into these states.

inertia

The moment of inertia of the rotor.

```
make_object(self, data, class_dict)
```

quantum

'bool'

Type quantum

rotationalConstant

The rotational constant of the rotor.

symmetry

'int'

Type symmetry

rmgpy.statmech.NonlinearRotor

A statistical mechanical model of an N-dimensional nonlinear rigid rotor. The attributes are:

Attribute	Description
inertia	The moments of inertia of the rotor
rotationalConstant	The rotational constants of the rotor
symmetry	The symmetry number of the rotor
quantum	True to use the quantum mechanical model, False to use the classical model

Note that the moments of inertia and the rotational constants are simply two ways of representing the same quantity; only one set of these can be specified independently.

In the majority of chemical applications, the energies involved in the rigid rotor place it very nearly in the classical limit at all relevant temperatures; therefore, the classical model is used by default. In the current implementation, the quantum mechanical model has not been implemented, and a NotImplementedError will be raised if you try to use it.

A nonlinear rigid rotor is the generalization of the linear rotor to a nonlinear polyatomic system. Such a system is characterized by three moments of inertia I_A , I_B , and I_C instead of just one. The solution to the Schrodinger equation for the quantum nonlinear rotor is not well defined, so we will simply show the classical result instead:

$$Q_{\rm rot}^{\rm cl}(T) = \frac{\pi^{1/2}}{\sigma} \left(\frac{8k_{\rm B}T}{h^2}\right)^{3/2} \sqrt{I_{\rm A}I_{\rm B}I_{\rm C}}$$

 $as_dict(self) \rightarrow dict$

A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

 $getDensityOfStates(self, ndarray\ Elist, ndarray\ densStatesO=None) \rightarrow ndarray$

Return the density of states $\rho(E)$ dE at the specified energies *Elist* in J/mol above the ground state. If an initial density of states *densStates0* is given, the rotor density of states will be convoluted into these states.

 $getEnthalpy(self, double\ T) \rightarrow double$

Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

getEntropy (*self*, *double* T) \rightarrow double

Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

getHeatCapacity (*self*, *double* T) \rightarrow double

Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

getPartitionFunction(self, double T) \rightarrow double

Return the value of the partition function Q(T) at the specified temperature T in K.

 $getSumOfStates(self, ndarray\ Elist, ndarray\ sumStates0=None) \rightarrow ndarray$

Return the sum of states N(E) at the specified energies *Elist* in J/mol above the ground state. If an initial sum of states *sumStates0* is given, the rotor sum of states will be convoluted into these states.

inertia

The moments of inertia of the rotor.

make_object(self, data, class_dict)

quantum

'bool'

Type quantum

rotationalConstant

The rotational constant of the rotor.

symmetry

'int'

Type symmetry

rmgpy.statmech.KRotor

class rmgpy.statmech.**KRotor**(*inertia=None*, *symmetry=1*, *quantum=False*, *rotationalConstant=None*) A statistical mechanical model of an active K-rotor (a one-dimensional rigid rotor). The attributes are:

Attribute	Description
inertia	The moment of inertia of the rotor in amu*angstrom^2
rotationalConstant	The rotational constant of the rotor in cm^-1
symmetry	The symmetry number of the rotor
quantum	True to use the quantum mechanical model, False to use the classical model

Note that the moment of inertia and the rotational constant are simply two ways of representing the same quantity; only one of these can be specified independently.

In the majority of chemical applications, the energies involved in the K-rotor place it very nearly in the classical limit at all relevant temperatures; therefore, the classical model is used by default.

The energy levels E_K of the K-rotor are given by

$$E_K = BK^2$$
 $K = 0, \pm 1, \pm 2, \dots$

where K is the quantum number for the rotor and $B \equiv \hbar^2/2I$ is the rotational constant.

Using these expressions for the energy levels and corresponding degeneracies, we can evaluate the partition function for the K-rotor:

$$Q_{\text{rot}}(T) = \frac{1}{\sigma} \left(1 + \sum_{K=1}^{\infty} 2e^{-BK^2/k_{\text{B}}T} \right)$$

In many cases the temperature of interest is large relative to the energy spacing; in this limit we can obtain a closed-form analytical expression for the linear rotor partition function in the classical limit:

$$Q_{\mathrm{rot}}^{\mathrm{cl}}(T) = \frac{1}{\sigma} \left(\frac{8\pi^2 I k_{\mathrm{B}} T}{h^2} \right)^{1/2}$$

where σ is the symmetry number of the K-rotor.

 $as_dict(self) \rightarrow dict$

A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

getDensityOfStates(self, ndarray Elist, ndarray densStatesO=None) \rightarrow ndarray

Return the density of states $\rho(E)$ dE at the specified energies *Elist* in J/mol above the ground state. If an initial density of states *densStates0* is given, the rotor density of states will be convoluted into these states.

getEnthalpy (*self*, *double* T) \rightarrow double

Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

getEntropy (*self*, *double* T) \rightarrow double

Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

 $getHeatCapacity(self, double\ T) \rightarrow double$

Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

 $getLevelDegeneracy(self, int J) \rightarrow int$

Return the degeneracy of level J.

$getLevelEnergy(self, int J) \rightarrow double$

Return the energy of level J in kJ/mol.

getPartitionFunction($self, double\ T$) \rightarrow double

Return the value of the partition function Q(T) at the specified temperature T in K.

$getSumOfStates(self, ndarray\ Elist, ndarray\ sumStatesO=None) \rightarrow ndarray$

Return the sum of states N(E) at the specified energies *Elist* in J/mol above the ground state. If an initial sum of states *sumStates0* is given, the rotor sum of states will be convoluted into these states.

inertia

The moment of inertia of the rotor.

make_object(self, data, class_dict)

quantum

'bool'

Type quantum

rotationalConstant

The rotational constant of the rotor.

symmetry

'int'

Type symmetry

rmgpy.statmech.SphericalTopRotor

A statistical mechanical model of a three-dimensional rigid rotor with a single rotational constant: a spherical top. The attributes are:

Attribute	Description
inertia	The moment of inertia of the rotor
rotationalConstant	The rotational constant of the rotor
symmetry	The symmetry number of the rotor
quantum	True to use the quantum mechanical model, False to use the classical model

Note that the moment of inertia and the rotational constant are simply two ways of representing the same quantity; only one of these can be specified independently.

In the majority of chemical applications, the energies involved in the rigid rotor place it very nearly in the classical limit at all relevant temperatures; therefore, the classical model is used by default.

A spherical top rotor is simply the three-dimensional equivalent of a linear rigid rotor. Unlike the nonlinear rotor, all three moments of inertia of a spherical top are equal, i.e. $I_A = I_B = I_C = I$. The energy levels E_J and corresponding degeneracies g_J of the spherial top rotor are given by

$$E_J = BJ(J+1)$$
 $J = 0, 1, 2, ...$
 $q_J = (2J+1)^2$

where J is the quantum number for the rotor and $B \equiv \hbar^2/2I$ is the rotational constant.

Using these expressions for the energy levels and corresponding degeneracies, we can evaluate the partition function for the spherical top rotor:

$$Q_{\text{rot}}(T) = \frac{1}{\sigma} \sum_{J=0}^{\infty} (2J+1)^2 e^{-BJ(J+1)/k_{\text{B}}T}$$

In many cases the temperature of interest is large relative to the energy spacing; in this limit we can obtain a closed-form analytical expression for the linear rotor partition function in the classical limit:

$$Q_{\rm rot}^{\rm cl}(T) = \frac{1}{\sigma} \left(\frac{8\pi^2 I k_{\rm B} T}{h^2} \right)^{3/2}$$

where σ is the symmetry number of the spherical top. Note that the above differs from the nonlinear rotor partition function by a factor of π .

$as_dict(self) \rightarrow dict$

A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

getDensityOfStates(self, ndarray Elist, ndarray densStatesO=None) \rightarrow ndarray

Return the density of states $\rho(E)$ dE at the specified energies *Elist* in J/mol above the ground state. If an initial density of states *densStates0* is given, the rotor density of states will be convoluted into these states.

getEnthalpy (*self*, *double* T) \rightarrow double

Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

getEntropy (*self*, *double* T) \rightarrow double

Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

getHeatCapacity ($self, double\ T$) \rightarrow double

Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

$getLevelDegeneracy(self, int J) \rightarrow int$

Return the degeneracy of level *J*.

$getLevelEnergy(self, int J) \rightarrow double$

Return the energy of level J in kJ/mol.

getPartitionFunction(self, double T) \rightarrow double

Return the value of the partition function Q(T) at the specified temperature T in K.

$getSumOfStates(self, ndarray\ Elist, ndarray\ sumStates0=None) \rightarrow ndarray$

Return the sum of states N(E) at the specified energies *Elist* in J/mol above the ground state. If an initial sum of states *sumStates0* is given, the rotor sum of states will be convoluted into these states.

inertia

The moment of inertia of the rotor.

make_object(self, data, class_dict)

quantum

'bool'

Type quantum

rotationalConstant

The rotational constant of the rotor.

symmetry

'int'

Type symmetry

rmgpy.statmech.HarmonicOscillator

class rmgpy.statmech.**HarmonicOscillator**(frequencies=None, quantum=True)

A statistical mechanical model of a set of one-dimensional independent harmonic oscillators. The attributes are:

Attribute	Description
frequencies	The vibrational frequencies of the oscillators
quantum	True to use the quantum mechanical model, False to use the classical model

In the majority of chemical applications, the energy levels of the harmonic oscillator are of similar magnitude to $k_{\rm B}T$, requiring a quantum mechanical treatment. Fortunately, the harmonic oscillator has an analytical quantum mechanical solution.

Many vibrational motions are well-described as one-dimensional quantum harmonic oscillators. The time-independent Schrodinger equation for such an oscillator is given by

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi(x) + \frac{1}{2}m\omega^2 x^2\Psi(x) = E\Psi(x)$$

where m is the total mass of the particle. The harmonic potential results in quantized solutions to the above with the following energy levels:

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega \qquad n = 0, 1, 2, \dots$$

Above we have introduced n as the quantum number. Note that, even in the ground state (n = 0), the harmonic oscillator has an energy that is not zero; this energy is called the *zero-point energy*.

The harmonic oscillator partition function is obtained by summing over the above energy levels:

$$Q_{\rm vib}(T) = \sum_{n=0}^{\infty} \exp\left(-\frac{\left(n + \frac{1}{2}\right)\hbar\omega}{k_{\rm B}T}\right)$$

This summation can be evaluated explicitly to give a closed-form analytical expression for the vibrational partition function of a quantum harmonic oscillator:

$$Q_{\rm vib}(T) = \frac{e^{-\hbar\omega/2k_{\rm B}T}}{1 - e^{-\hbar\omega/k_{\rm B}T}}$$

In RMG the convention is to place the zero-point energy in with the ground-state energy of the system instead of the numerator of the vibrational partition function, which gives

$$Q_{\rm vib}(T) = \frac{1}{1 - e^{-\hbar\omega/k_{\rm B}T}}$$

The energy levels of the harmonic oscillator in chemical systems are often significant compared to the temperature of interest, so we usually use the quantum result. However, the classical limit is provided here for completeness:

$$Q_{\rm vib}^{\rm cl}(T) = \frac{k_{\rm B}T}{\hbar\omega}$$

 $as_dict(self) \rightarrow dict$

A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

frequencies

The vibrational frequencies of the oscillators.

getDensityOfStates(self, ndarray Elist, ndarray densStatesO=None) \rightarrow ndarray

Return the density of states $\rho(E)$ dE at the specified energies *Elist* in J/mol above the ground state. If an initial density of states *densStates0* is given, the rotor density of states will be convoluted into these states.

getEnthalpy (*self*, *double* T) \rightarrow double

Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

getEntropy (*self*, *double* T) \rightarrow double

Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

$\textbf{getHeatCapacity}(\textit{self}, \textit{double}\ T) \rightarrow \textbf{double}$

Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

getPartitionFunction(self, double T) \rightarrow double

Return the value of the partition function Q(T) at the specified temperature T in K.

getSumOfStates (self, ndarray Elist, ndarray sumStates0=None) \rightarrow ndarray

Return the sum of states N(E) at the specified energies *Elist* in J/mol above the ground state. If an initial sum of states *sumStates0* is given, the rotor sum of states will be convoluted into these states.

make_object(self, dict data, dict class_dict)

A helper function for constructing objects from a dictionary (used when loading YAML files)

Parameters

- data (dict) The dictionary representation of the object
- **class_dict** (*dict*) A mapping of class names to the classes themselves

Returns None

quantum

'bool'

Type quantum

Torsional degrees of freedom

A statistical mechanical model of a one-dimensional hindered rotor. The attributes are:

Attribute	Description
inertia	The moment of inertia of the rotor
rotationalConstant	The rotational constant of the rotor
symmetry	The symmetry number of the rotor
fourier	The $2xN$ array of Fourier series coefficients
barrier	The barrier height of the cosine potential
quantum	True to use the quantum mechanical model, False to use the classical model
semiclassical	True to use the semiclassical correction, False otherwise

Note that the moment of inertia and the rotational constant are simply two ways of representing the same quantity; only one of these can be specified independently.

The Schrodinger equation for a one-dimensional hindered rotor is given by

$$-\frac{\hbar^2}{2I}\frac{d^2}{d\phi^2}\Psi(\phi) + V(\phi)\Psi(\phi) = E\Psi(\phi)$$

where I is the reduced moment of inertia of the torsion and $V(\phi)$ describes the potential of the torsion. There are two common forms for the potential: a simple cosine of the form

$$V(\phi) = \frac{1}{2}V_0 \left(1 - \cos \sigma \phi\right)$$

where V_0 is the barrier height and σ is the symmetry number, or a more general Fourier series of the form

$$V(\phi) = A + \sum_{k=1}^{C} (a_k \cos k\phi + b_k \sin k\phi)$$

where A, a_k and b_k are fitted coefficients. Both potentials are typically defined such that the minimum of the potential is zero and is found at $\phi = 0$.

For either the cosine or Fourier series potentials, the energy levels of the quantum hindered rotor must be determined numerically. The cosine potential does permit a closed-form representation of the classical partition function, however:

$$Q_{\mathrm{hind}}^{\mathrm{cl}}(T) = \left(\frac{2\pi I k_{\mathrm{B}} T}{h^2}\right)^{1/2} \frac{2\pi}{\sigma} \exp\left(-\frac{V_0}{2k_{\mathrm{B}} T}\right) I_0\left(\frac{V_0}{2k_{\mathrm{B}} T}\right)$$

A semiclassical correction to the above is usually required to provide a reasonable estiamate of the partition function:

$$Q_{\text{hind}}^{\text{semi}}(T) = \frac{Q_{\text{vib}}^{\text{quant}}(T)}{Q_{\text{vib}}^{\text{cl}}(T)} Q_{\text{hind}}^{\text{cl}}(T)$$

$$= \frac{h\nu}{k_{\text{B}}T} \frac{1}{1 - \exp\left(-h\nu/k_{\text{B}}T\right)} \left(\frac{2\pi I k_{\text{B}}T}{h^2}\right)^{1/2} \frac{2\pi}{\sigma} \exp\left(-\frac{V_0}{2k_{\text{B}}T}\right) I_0\left(\frac{V_0}{2k_{\text{B}}T}\right)$$

Above we have defined ν as the vibrational frequency of the hindered rotor:

$$\nu \equiv \frac{\sigma}{2\pi} \sqrt{\frac{V_0}{2I}}$$

 $as_dict(self) \rightarrow dict$

A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

barrier

The barrier height of the cosine potential.

energies

numpy.ndarray

Type energies

fitCosinePotentialToData(self, ndarray angle, ndarray V)

Fit the given angles in radians and corresponding potential energies in J/mol to the cosine potential. For best results, the angle should begin at zero and end at 2π , with the minimum energy conformation having a potential of zero be placed at zero angle. The fit is attempted at several possible values of the symmetry number in order to determine which one is correct.

fitFourierPotentialToData(self, ndarray angle, ndarray V)

Fit the given angles in radians and corresponding potential energies in J/mol to the Fourier series potential. For best results, the angle should begin at zero and end at 2π , with the minimum energy conformation having a potential of zero be placed at zero angle.

fourier

The 2xN array of Fourier series coefficients.

frequency

'double'

Type frequency

getDensityOfStates (self, ndarray Elist, ndarray densStates0=None) \rightarrow ndarray

Return the density of states $\rho(E)$ dE at the specified energies *Elist* in J/mol above the ground state. If an initial density of states *densStates0* is given, the rotor density of states will be convoluted into these states.

getEnthalpy (*self*, *double* T) \rightarrow double

Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

getEntropy (*self*, *double* T) \rightarrow double

Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

$getFrequency(self) \rightarrow double$

Return the frequency of vibration in cm^-1 corresponding to the limit of harmonic oscillation.

getHamiltonian (self, $int\ Nbasis$) \rightarrow ndarray

Return the to the Hamiltonian matrix for the hindered rotor for the given number of basis functions *Nbasis*. The Hamiltonian matrix is returned in banded lower triangular form and with units of J/mol.

$getHeatCapacity(self, double\ T) \rightarrow double$

Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

$getLevelDegeneracy(self, int J) \rightarrow int$

Return the degeneracy of level *J*.

$getLevelEnergy(self, int J) \rightarrow double$

Return the energy of level J in J.

getPartitionFunction(self, double T) \rightarrow double

Return the value of the partition function Q(T) at the specified temperature T in K.

getPotential (*self*, *double phi*) \rightarrow double

Return the value of the hindered rotor potential $V(\phi)$ in J/mol at the angle phi in radians.

$getSumOfStates(self, ndarray\ Elist, ndarray\ sumStatesO=None) \rightarrow ndarray$

Return the sum of states N(E) at the specified energies *Elist* in J/mol above the ground state. If an initial sum of states *sumStates0* is given, the rotor sum of states will be convoluted into these states.

inertia

The moment of inertia of the rotor.

```
make_object(self, data, class_dict)
```

quantum

'bool'

Type quantum

rotationalConstant

The rotational constant of the rotor.

semiclassical

'bool'

Type semiclassical

solveSchrodingerEquation(self, int Nbasis=401) \rightarrow ndarray

Solves the one-dimensional time-independent Schrodinger equation to determine the energy levels of a one-dimensional hindered rotor with a Fourier series potential using *Nbasis* basis functions. For the purposes of this function it is usually sufficient to use 401 basis functions (the default). Returns the energy eigenvalues of the Hamiltonian matrix in J/mol.

symmetry

'int'

Type symmetry

rmgpy.statmech.schrodinger

The *rmgpy.statmech.schrodinger* module contains functionality for working with the Schrodinger equation and its solution. In particular, it contains functions for using the energy levels and corresponding degeneracies obtained from solving the Schrodinger equation to compute various thermodynamic and statistical mechanical properties, such as heat capacity, enthalpy, entropy, partition function, and the sum and density of states.

```
rmgpy.statmech.schrodinger.convolve(ndarray rho1, ndarray rho2)
```

Return the convolution of two arrays rho1 and rho2.

```
rmgpy.statmech.schrodinger.convolveBS(ndarray\ Elist,\ ndarray\ rho0,\ double\ energy,\ int\ degeneracy=1)
```

Convolve a molecular degree of freedom into a density or sum of states using the Beyer-Swinehart (BS) direct count algorithm. This algorithm is suitable for unevenly-spaced energy levels in the array of energy grains *Elist* (in J/mol), but assumes the solution of the Schrodinger equation gives evenly-spaced energy levels with spacing *energy* in kJ/mol and degeneracy *degeneracy*.

```
rmgpy.statmech.schrodinger.convolveBSSR(ndarray Elist, ndarray rho0, energy, degeneracy=unitDegeneracy, int n0=0)
```

Convolve a molecular degree of freedom into a density or sum of states using the Beyer-Swinehart-Stein-Rabinovitch (BSSR) direct count algorithm. This algorithm is suitable for unevenly-spaced energy levels in both the array of energy grains *Elist* (in J/mol) and the energy levels corresponding to the solution of the Schrodinger equation.

```
rmgpy.statmech.schrodinger.getDensityOfStates(ndarray Elist, energy, degeneracy=unitDegeneracy, int n0=0, ndarray densStates0=None) \rightarrow ndarray
```

Return the values of the dimensionless density of states $\rho(E)$ dE for a given set of energies Elist in J/mol above the ground state using an initial density of states densStates0. The solution to the Schrodinger equation is given using functions energy and degeneracy that accept as argument a quantum number and return the corresponding energy in J/mol and degeneracy of that level. The quantum number always begins at n0 and increases by ones.

```
rmgpy.statmech.schrodinger.getEnthalpy(double\ T,\ energy,\ degeneracy=unitDegeneracy,\ int\ n0=0,\ int\ nmax=10000,\ double\ tol=1e-12) \to double
```

Return the value of the dimensionless enthalpy H(T)/RT at a given temperature T in K. The solution to the Schrodinger equation is given using functions *energy* and *degeneracy* that accept as argument a quantum number and return the corresponding energy in J/mol and degeneracy of that level. The quantum number always begins

at n0 and increases by ones. You can also change the relative tolerance tol and the maximum allowed value of the quantum number nmax.

```
rmgpy.statmech.schrodinger.getEntropy(double\ T, energy, degeneracy=unitDegeneracy, int\ n0=0, int\ nmax=10000, double\ tol=1e-12) \rightarrow double
```

Return the value of the dimensionless entropy S(T)/R at a given temperature T in K. The solution to the Schrodinger equation is given using functions *energy* and *degeneracy* that accept as argument a quantum number and return the corresponding energy in J/mol and degeneracy of that level. The quantum number always begins at n0 and increases by ones. You can also change the relative tolerance tol and the maximum allowed value of the quantum number nmax.

```
rmgpy.statmech.schrodinger.getHeatCapacity(double\ T,\ energy,\ degeneracy=unitDegeneracy,\ int n0=0,\ int\ nmax=10000,\ double\ tol=1e-12) \to {\rm double}
```

Return the value of the dimensionless heat capacity $C_{\rm v}(T)/R$ at a given temperature T in K. The solution to the Schrodinger equation is given using functions *energy* and *degeneracy* that accept as argument a quantum number and return the corresponding energy in J/mol and degeneracy of that level. The quantum number always begins at n0 and increases by ones. You can also change the relative tolerance tol and the maximum allowed value of the quantum number nmax.

```
rmgpy.statmech.schrodinger.getPartitionFunction(double T, energy, degeneracy=acy=unitDegeneracy, int n0=0, int nmax=10000, double tol=1e-12) \rightarrow double
```

Return the value of the partition function Q(T) at a given temperature T in K. The solution to the Schrodinger equation is given using functions *energy* and *degeneracy* that accept as argument a quantum number and return the corresponding energy in J/mol and degeneracy of that level. The quantum number always begins at n0 and increases by ones. You can also change the relative tolerance tol and the maximum allowed value of the quantum number nmax.

```
rmgpy.statmech.schrodinger.getSumOfStates(ndarray\ Elist,\ energy,\ degeneracy=unitDegeneracy,\ int\ n0=0,\ ndarray\ sumStates0=None) \rightarrow ndarray
```

Return the values of the sum of states N(E) for a given set of energies Elist in J/mol above the ground state using an initial sum of states sumStates0. The solution to the Schrodinger equation is given using functions energy and degeneracy that accept as argument a quantum number and return the corresponding energy in J/mol and degeneracy of that level. The quantum number always begins at n0 and increases by ones.

rmgpy.statmech.schrodinger.unitDegeneracy(n)

rmgpv.statmech.Conformer

class rmgpy.statmech.Conformer(E0=None, modes=None, spinMultiplicity=1, opticalIsomers=1, number=None, mass=None, coordinates=None)

A representation of an individual molecular conformation. The attributes are:

Attribute	Description	
E0	The ground-state energy (including zero-point energy) of the conformer	
modes	A list of the molecular degrees of freedom	
spinMultiplicity	The degeneracy of the electronic ground state	
opticalIsomers	The number of optical isomers	
number	An array of atomic numbers of each atom in the conformer	
mass	An array of masses of each atom in the conformer	
coordinates	An array of 3D coordinates of each atom in the conformer	

Note that the *spinMultiplicity* reflects the electronic mode of the molecular system.

Ε0

The ground-state energy (including zero-point energy) of the conformer.

$as_dict(self) \rightarrow dict$

A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

coordinates

An array of 3D coordinates of each atom in the conformer.

getActiveModes (self, bool activeJRotor=False, bool activeKRotor=True) \rightarrow list

Return a list of the active molecular degrees of freedom of the molecular system.

$getCenterOfMass(self, atoms=None) \rightarrow ndarray$

Calculate and return the [three-dimensional] position of the center of mass of the conformer in m. If a list *atoms* of atoms is specified, only those atoms will be used to calculate the center of mass. Otherwise, all atoms will be used.

$getDensityOfStates(self, ndarray Elist) \rightarrow ndarray$

Return the density of states $\rho(E)$ dE at the specified energies *Elist* above the ground state.

getEnthalpy (*self*, *double* T) \rightarrow double

Return the enthalpy in J/mol for the system at the specified temperature T in K.

getEntropy (*self*, *double* T) \rightarrow double

Return the entropy in J/mol*K for the system at the specified temperature T in K.

$getFreeEnergy(self, double\ T) \rightarrow double$

Return the Gibbs free energy in J/mol for the system at the specified temperature T in K.

getHeatCapacity (self, double T) \rightarrow double

Return the heat capacity in J/mol*K for the system at the specified temperature T in K.

$getInternalReducedMomentOfInertia(self, pivots, top1, option=3) \rightarrow double$

Calculate and return the reduced moment of inertia for an internal torsional rotation around the axis defined by the two atoms in *pivots*. The list *top1* contains the atoms that should be considered as part of the rotating top; this list should contain the pivot atom connecting the top to the rest of the molecule. The procedure used is that of Pitzer¹, which is described as $I^{(2,option)}$ by East and Radom². In this procedure, the molecule is divided into two tops: those at either end of the hindered rotor bond. The moment of inertia of each top is evaluated using an axis determined by option. Finally, the reduced moment of inertia is evaluated from the moment of inertia of each top via the formula (11*I2)/(11+I2).

option is an integer corresponding to one of three possible ways of calculating the internal reduced moment of inertia, as discussed in East and Radom [2]

option	moments of inertia of each rotating group calculated about the axis containing the twisting
= 1	bond
option	each moment of inertia of each rotating group is calculated about an axis parallel to the
= 2	twisting bond and passing through its center of mass
option	moments of inertia of each rotating group calculated about the axis passing through the cen-
= 3	ters of mass of both groups

$$\frac{1}{I^{(2,option)}}=\frac{1}{I_1}+\frac{1}{I_2}$$

¹ Pitzer, K. S. J. Chem. Phys. 14, p. 239-243 (1946).

² East, A. L. L. and Radom, L. J. Chem. Phys. 106, p. 6655-6674 (1997).

getMomentOfInertiaTensor(self) \rightarrow ndarray

Calculate and return the moment of inertia tensor for the conformer in kg*m^2. If the coordinates are not at the center of mass, they are temporarily shifted there for the purposes of this calculation.

getNumberDegreesOfFreedom(self)

Return the number of degrees of freedom in a species object, which should be 3N, and raises an exception if it is not.

getPartitionFunction(self, double T) \rightarrow double

Return the partition function Q(T) for the system at the specified temperature T in K.

getPrincipalMomentsOfInertia(self)

Calculate and return the principal moments of inertia and corresponding principal axes for the conformer. The moments of inertia are in kg*m^2, while the principal axes have unit length.

$getSumOfStates(self, ndarray Elist) \rightarrow ndarray$

Return the sum of states N(E) at the specified energies *Elist* in kJ/mol above the ground state.

getSymmetricTopRotors(self)

Return objects representing the external J-rotor and K-rotor under the symmetric top approximation. For nonlinear molecules, the J-rotor is a 2D rigid rotor with a rotational constant B determined as the geometric mean of the two most similar rotational constants. The K-rotor is a 1D rigid rotor with a rotational constant A-B determined by the difference between the remaining molecular rotational constant and the J-rotor rotational constant.

getTotalMass (self, atoms=None) \rightarrow double

Calculate and return the total mass of the atoms in the conformer in kg. If a list *atoms* of atoms is specified, only those atoms will be used to calculate the center of mass. Otherwise, all atoms will be used.

make_object(self, dict data, dict class_dict)

A helper function for constructing objects from a dictionary (used when loading YAML files)

Parameters

- data (dict) The dictionary representation of the object
- class_dict (dict) A mapping of class names to the classes themselves

Returns None

mass

An array of masses of each atom in the conformer.

modes

list

Type modes

number

An array of atomic numbers of each atom in the conformer.

opticalIsomers

'int'

Type opticalIsomers

spinMultiplicity

'int'

Type spinMultiplicity

1.15 Thermodynamics (rmgpy.thermo)

The rmgpy. thermo subpackage contains classes that represent various thermodynamic models of heat capacity.

1.15.1 Heat capacity models

Class	Description
ThermoData	A heat capacity model based on a set of discrete heat capacity points
Wilhoit	A heat capacity model based on the Wilhoit polynomial
NASA	A heat capacity model based on a set of NASA polynomials
NASAPolynomial	A heat capacity model based on a single NASA polynomial

rmgpy.thermo.ThermoData

A heat capacity model based on a set of discrete heat capacity data points. The attributes are:

Attribute	Description
Tdata	An array of temperatures at which the heat capacity is known
Cpdata	An array of heat capacities at the given temperatures
H298	The standard enthalpy of formation at 298 K
S298	The standard entropy at 298 K
Tmin	The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax	The maximum temperature at which the model is valid, or zero if unknown or undefined
E0	The energy at zero Kelvin (including zero point energy)
comment	Information about the model (e.g. its source)

Cp0

The heat capacity at zero temperature.

CpInf

The heat capacity at infinite temperature.

Cpdata

An array of heat capacities at the given temperatures.

Ε0

The ground state energy (J/mol) at zero Kelvin, including zero point energy, or None if not yet specified.

H298

The standard enthalpy of formation at 298 K.

S298

The standard entropy of formation at 298 K.

Tdata

An array of temperatures at which the heat capacity is known.

Tmax

The maximum temperature at which the model is valid, or None if not defined.

Tmin

The minimum temperature at which the model is valid, or None if not defined.

$as_dict(self) \rightarrow dict$

A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

comment

str

Type comment

discrepancy (self, HeatCapacityModel other) \rightarrow double

Return some measure of how dissimilar self is from other.

The measure is arbitrary, but hopefully useful for sorting purposes. Discrepancy of 0 means they are identical

getEnthalpy($self, double\ T$) \rightarrow double

Return the enthalpy in J/mol at the specified temperature T in K.

getEntropy (*self*, *double* T) \rightarrow double

Return the entropy in J/mol*K at the specified temperature T in K.

$getFreeEnergy(self, double\ T) \rightarrow double$

Return the Gibbs free energy in J/mol at the specified temperature *T* in K.

$getHeatCapacity(self, double\ T) \rightarrow double$

Return the constant-pressure heat capacity in J/mol*K at the specified temperature T in K.

$isIdenticalTo(self, HeatCapacityModel other) \rightarrow bool$

Returns True if *self* and *other* report very similar thermo values for heat capacity, enthalpy, entropy, and free energy over a wide range of temperatures, or False otherwise.

isSimilarTo(self, $HeatCapacityModel other) <math>\rightarrow$ bool

Returns True if *self* and *other* report similar thermo values for heat capacity, enthalpy, entropy, and free energy over a wide range of temperatures, or False otherwise.

isTemperatureValid($self, double\ T$) \rightarrow bool

Return True if the temperature T in K is within the valid temperature range of the thermodynamic data, or False if not. If the minimum and maximum temperature are not defined, True is returned.

label

str

Type label

make_object(self, dict data, dict class_dict)

A helper function for constructing objects from a dictionary (used when loading YAML files)

Parameters

- data (dict) The dictionary representation of the object
- class_dict (dict) A mapping of class names to the classes themselves

Returns None

toNASA(self, double Tmin, double Tmax, double Tint, bool fixedTint=False, bool weighting=True, int continuity=3) \rightarrow NASA

Convert the object to a NASA object. You must specify the minimum and maximum temperatures of the fit

Tmin and *Tmax* in K, as well as the intermediate temperature *Tint* in K to use as the bridge between the two fitted polynomials. The remaining parameters can be used to modify the fitting algorithm used:

- fixedTint False to allow Tint to vary in order to improve the fit, or True to keep it fixed
- ullet weighting True to weight the fit by T^{-1} to emphasize good fit at lower temperatures, or False to not use weighting
- *continuity* The number of continuity constraints to enforce at *Tint*:
 - 0: no constraints on continuity of $C_p(T)$ at *Tint*
 - 1: constrain $C_p(T)$ to be continous at *Tint*
 - 2: constrain $C_{\rm p}(T)$ and $\frac{dC_{\rm p}}{dT}$ to be continuous at *Tint*
 - 3: constrain $C_p(T)$, $\frac{dC_p}{dT}$, and $\frac{d^2C_p}{dT^2}$ to be continuous at *Tint*
 - 4: constrain $C_{\rm p}(T)$, $\frac{dC_{\rm p}}{dT}$, $\frac{d^2C_{\rm p}}{dT^2}$, and $\frac{d^3C_{\rm p}}{dT^3}$ to be continuous at *Tint*
 - 5: constrain $C_{\rm p}(T)$, $\frac{dC_{\rm p}}{dT}$, $\frac{d^2C_{\rm p}}{dT^2}$, $\frac{d^3C_{\rm p}}{dT^3}$, and $\frac{d^4C_{\rm p}}{dT^4}$ to be continuous at *Tint*

Note that values of *continuity* of 5 or higher effectively constrain all the coefficients to be equal and should be equivalent to fitting only one polynomial (rather than two).

Returns the fitted NASA object containing the two fitted NASAPolynomial objects.

toWilhoit(self, B=None) \rightarrow Wilhoit

Convert the Benson model to a Wilhoit model. For the conversion to succeed, you must have set the *CpO* and *CpInf* attributes of the Benson model.

B: the characteristic temperature in Kelvin.

rmgpy.thermo.Wilhoit

class rmgpy.thermo.Wilhoit(Cp0=None, CpInf=None, a0=0.0, a1=0.0, a2=0.0, a3=0.0, H0=None, S0=None, B=None, Tmin=None, Tmax=None, label=", comment=") A heat capacity model based on the Wilhoit equation. The attributes are:

Attribute	Description
a0	The zeroth-order Wilhoit polynomial coefficient
al	The first-order Wilhoit polynomial coefficient
a2	The second-order Wilhoit polynomial coefficient
аЗ	The third-order Wilhoit polynomial coefficient
H0	The integration constant for enthalpy (not H at T=0)
SO	The integration constant for entropy (not S at T=0)
E0	The energy at zero Kelvin (including zero point energy)
В	The Wilhoit scaled temperature coefficient in K
Tmin	The minimum temperature in K at which the model is valid, or zero if unknown or undefined
Tmax	The maximum temperature in K at which the model is valid, or zero if unknown or undefined
comment	Information about the model (e.g. its source)

The Wilhoit polynomial is an expression for heat capacity that is guaranteed to give the correct limits at zero and infinite temperature, and gives a very reasonable shape to the heat capacity profile in between:

$$C_{\rm p}(T) = C_{\rm p}(0) + \left[C_{\rm p}(\infty) - C_{\rm p}(0)\right] y^2 \left[1 + (y-1)\sum_{i=0}^3 a_i y^i\right]$$

Above, $y \equiv T/(T+B)$ is a scaled temperature that ranges from zero to one based on the value of the coefficient B, and a_0 , a_1 , a_2 , and a_3 are the Wilhoit polynomial coefficients.

The enthalpy is given by

$$H(T) = H_0 + C_{\rm p}(0)T + \left[C_{\rm p}(\infty) - C_{\rm p}(0)\right]T$$

$$\left\{ \left[2 + \sum_{i=0}^3 a_i\right] \left[\frac{1}{2}y - 1 + \left(\frac{1}{y} - 1\right)\ln\frac{T}{y}\right] + y^2 \sum_{i=0}^3 \frac{y^i}{(i+2)(i+3)} \sum_{j=0}^3 f_{ij}a_j \right\}$$

where $f_{ij} = 3 + j$ if i = j, $f_{ij} = 1$ if i > j, and $f_{ij} = 0$ if i < j.

The entropy is given by

$$S(T) = S_0 + C_{\rm p}(\infty) \ln T - \left[C_{\rm p}(\infty) - C_{\rm p}(0) \right] \left[\ln y + \left(1 + y \sum_{i=0}^{3} \frac{a_i y^i}{2+i} \right) y \right]$$

The low-temperature limit $C_{\rm p}(0)$ is 3.5R for linear molecules and 4R for nonlinear molecules. The high-temperature limit $C_{\rm p}(\infty)$ is taken to be $[3N_{\rm atoms}-1.5]\,R$ for linear molecules and $[3N_{\rm atoms}-(2+0.5N_{\rm rotors})]\,R$ for nonlinear molecules, for a molecule composed of $N_{\rm atoms}$ atoms and $N_{\rm rotors}$ internal rotors.

В

The Wilhoit scaled temperature coefficient.

Cp0

The heat capacity at zero temperature.

CpInf

The heat capacity at infinite temperature.

E0

The ground state energy (J/mol) at zero Kelvin, including zero point energy.

For the Wilhoit class, this is calculated as the Enthalpy at 0.001 Kelvin.

НΘ

The integration constant for enthalpy.

NB. this is not equal to the enthlapy at 0 Kelvin, which you can access via E0

S0

The integration constant for entropy.

Tmax

The maximum temperature at which the model is valid, or None if not defined.

Tmin

The minimum temperature at which the model is valid, or None if not defined.

a0

'double'

Type a0

a1

'double'

Type a1

a2

'double'

Type a2

а3

'double'

Type a3

 $as_dict(self) \rightarrow dict$

A helper function for YAML parsing

comment

str

Type comment

$copy(self) \rightarrow Wilhoit$

Return a copy of the Wilhoit object.

$discrepancy(self, HeatCapacityModel other) \rightarrow double$

Return some measure of how dissimilar self is from other.

The measure is arbitrary, but hopefully useful for sorting purposes. Discrepancy of 0 means they are identical

fitToData(self, ndarray Tdata, ndarray Cpdata, double Cp0, double CpInf, double H298, double S298, double B0=500.0)

Fit a Wilhoit model to the data points provided, allowing the characteristic temperature *B* to vary so as to improve the fit. This procedure requires an optimization, using the fminbound function in the scipy. optimize module. The data consists of a set of heat capacity points *Cpdata* in J/mol*K at a given set of temperatures *Tdata* in K, along with the enthalpy *H298* in kJ/mol and entropy *S298* in J/mol*K at 298 K. The linearity of the molecule, number of vibrational frequencies, and number of internal rotors (*linear*, *Nfreq*, and *Nrotors*, respectively) is used to set the limits at zero and infinite temperature.

fitToDataForConstantB(self, ndarray Tdata, ndarray Cpdata, double Cp0, double CpInf, double H298, double S298, double B)

Fit a Wilhoit model to the data points provided using a specified value of the characteristic temperature B. The data consists of a set of dimensionless heat capacity points *Cpdata* at a given set of temperatures *Tdata* in K, along with the dimensionless heat capacity at zero and infinite temperature, the dimensionless enthalpy *H298* at 298 K, and the dimensionless entropy *S298* at 298 K.

getEnthalpy (*self*, *double* T) \rightarrow double

Return the enthalpy in J/mol at the specified temperature T in K.

getEntropy ($self, double\ T$) \rightarrow double

Return the entropy in J/mol*K at the specified temperature T in K.

$getFreeEnergy(self, double\ T) \rightarrow double$

Return the Gibbs free energy in J/mol at the specified temperature T in K.

getHeatCapacity (*self*, *double* T) \rightarrow double

Return the constant-pressure heat capacity in J/mol*K at the specified temperature T in K.

$isIdenticalTo(self, HeatCapacityModel other) \rightarrow bool$

Returns True if *self* and *other* report very similar thermo values for heat capacity, enthalpy, entropy, and free energy over a wide range of temperatures, or False otherwise.

isSimilarTo(self, $HeatCapacityModel other) <math>\rightarrow$ bool

Returns True if *self* and *other* report similar thermo values for heat capacity, enthalpy, entropy, and free energy over a wide range of temperatures, or False otherwise.

$isTemperatureValid(self, double\ T) \rightarrow bool$

Return True if the temperature *T* in K is within the valid temperature range of the thermodynamic data, or False if not. If the minimum and maximum temperature are not defined, True is returned.

label

str

Type label

make_object(self, dict data, dict class_dict)

A helper function for constructing objects from a dictionary (used when loading YAML files)

Parameters

- data (dict) The dictionary representation of the object
- class_dict (dict) A mapping of class names to the classes themselves

Returns None

toNASA(self, double Tmin, double Tmax, double Tint, bool fixedTint=False, bool weighting=True, int continuity=3) \rightarrow NASA

Convert the Wilhoit object to a *NASA* object. You must specify the minimum and maximum temperatures of the fit *Tmin* and *Tmax* in K, as well as the intermediate temperature *Tint* in K to use as the bridge between the two fitted polynomials. The remaining parameters can be used to modify the fitting algorithm used:

- fixedTint False to allow Tint to vary in order to improve the fit, or True to keep it fixed
- ullet weighting True to weight the fit by T^{-1} to emphasize good fit at lower temperatures, or False to not use weighting
- continuity The number of continuity constraints to enforce at Tint:
 - 0: no constraints on continuity of $C_p(T)$ at *Tint*
 - 1: constrain $C_p(T)$ to be continous at *Tint*
 - 2: constrain $C_{\rm p}(T)$ and $\frac{dC_{\rm p}}{dT}$ to be continuous at Tint
 - 3: constrain $C_{\rm p}(T)$, $\frac{dC_{\rm p}}{dT}$, and $\frac{d^2C_{\rm p}}{dT^2}$ to be continuous at $\it Tint$
 - 4: constrain $C_{\rm p}(T),\, \frac{dC_{\rm p}}{dT},\, \frac{d^2C_{\rm p}}{dT^2},$ and $\frac{d^3C_{\rm p}}{dT^3}$ to be continuous at $\it Tint$
 - 5: constrain $C_{\rm p}(T)$, $\frac{dC_{\rm p}}{dT}$, $\frac{d^2C_{\rm p}}{dT^2}$, $\frac{d^3C_{\rm p}}{dT^3}$, and $\frac{d^4C_{\rm p}}{dT^4}$ to be continuous at *Tint*

Note that values of *continuity* of 5 or higher effectively constrain all the coefficients to be equal and should be equivalent to fitting only one polynomial (rather than two).

Returns the fitted NASA object containing the two fitted NASAPolynomial objects.

$toThermoData(self) \rightarrow ThermoData$

Convert the Wilhoit model to a ThermoData object.

rmgpy.thermo.NASA

class rmgpy.thermo.NASA(polynomials=None, Tmin=None, Tmax=None, E0=None, CpO=None, CpInf=None, label=", comment=")

A heat capacity model based on a set of one, two, or three NASAPolynomial objects. The attributes are:

Attribute	Description
polynomials	The list of NASA polynomials to use in this model
Tmin	The minimum temperature in K at which the model is valid, or zero if unknown or undefined
Tmax	The maximum temperature in K at which the model is valid, or zero if unknown or undefined
E0	The energy at zero Kelvin (including zero point energy)
comment	Information about the model (e.g. its source)

The NASA polynomial is another representation of the heat capacity, enthalpy, and entropy using seven or nine coefficients $\mathbf{a} = [a_{-2} \ a_{-1} \ a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6]$. The relevant thermodynamic parameters are evaluated via the expressions

$$\begin{split} \frac{C_{\mathrm{p}}(T)}{R} &= a_{-2}T^{-2} + a_{-1}T^{-1} + a_0 + a_1T + a_2T^2 + a_3T^3 + a_4T^4 \\ \frac{H(T)}{RT} &= -a_{-2}T^{-2} + a_{-1}T^{-1}\ln T + a_0 + \frac{1}{2}a_1T + \frac{1}{3}a_2T^2 + \frac{1}{4}a_3T^3 + \frac{1}{5}a_4T^4 + \frac{a_5}{T} \\ \frac{S(T)}{R} &= -\frac{1}{2}a_{-2}T^{-2} - a_{-1}T^{-1} + a_0\ln T + a_1T + \frac{1}{2}a_2T^2 + \frac{1}{3}a_3T^3 + \frac{1}{4}a_4T^4 + a_6 \end{split}$$

In the seven-coefficient version, $a_{-2} = a_{-1} = 0$.

As simple polynomial expressions, the NASA polynomial is faster to evaluate when compared to the Wilhoit model; however, it does not have the nice physical behavior of the Wilhoit representation. Often multiple NASA polynomials are used to accurately represent the thermodynamics of a system over a wide temperature range.

Cp0

The heat capacity at zero temperature.

CpInf

The heat capacity at infinite temperature.

E0

The ground state energy (J/mol) at zero Kelvin, including zero point energy, or None if not yet specified.

Tmax

The maximum temperature at which the model is valid, or None if not defined.

Tmin

The minimum temperature at which the model is valid, or None if not defined.

$as_dict(self) \rightarrow dict$

A helper function for YAML dumping

changeBaseEnthalpy(self, $double\ deltaH$) \rightarrow NASA

Add deltaH in J/mol to the base enthalpy of formation H298 and return the modified NASA object.

changeBaseEntropy (self, double deltaS) \rightarrow NASA

Add deltaS in J/molK to the base entropy of formation S298 and return the modified NASA object

comment

str

Type comment

$discrepancy(self, HeatCapacityModel other) \rightarrow double$

Return some measure of how dissimilar self is from other.

The measure is arbitrary, but hopefully useful for sorting purposes. Discrepancy of 0 means they are identical

getEnthalpy (*self*, *double* T) \rightarrow double

Return the enthalpy H(T) in J/mol at the specified temperature T in K.

getEntropy (*self*, *double* T) \rightarrow double

Return the entropy S(T) in J/mol*K at the specified temperature T in K.

$getFreeEnergy(self, double\ T) \rightarrow double$

Return the Gibbs free energy G(T) in J/mol at the specified temperature T in K.

getHeatCapacity ($self, double\ T$) \rightarrow double

Return the constant-pressure heat capacity $C_{\rm D}(T)$ in J/mol*K at the specified temperature T in K.

isIdenticalTo(self, $HeatCapacityModel\ other$) \rightarrow bool

Returns True if *self* and *other* report very similar thermo values for heat capacity, enthalpy, entropy, and free energy over a wide range of temperatures, or False otherwise.

$isSimilarTo(self, HeatCapacityModel other) \rightarrow bool$

Returns True if *self* and *other* report similar thermo values for heat capacity, enthalpy, entropy, and free energy over a wide range of temperatures, or False otherwise.

$isTemperatureValid(self, double\ T) \rightarrow bool$

Return True if the temperature *T* in K is within the valid temperature range of the thermodynamic data, or False if not. If the minimum and maximum temperature are not defined, True is returned.

label

str

Type label

make_object(self, dict data, dict class_dict)

A helper function for constructing objects from a dictionary (used when loading YAML files)

Parameters

- data (dict) The dictionary representation of the object
- class_dict (dict) A mapping of class names to the classes themselves

Returns None

poly1

rmgpy.thermo.nasa.NASAPolynomial

Type poly1

poly2

rmgpy.thermo.nasa.NASAPolynomial

Type poly2

poly3

rmgpy.thermo.nasa.NASAPolynomial

Type poly3

polynomials

The set of one, two, or three NASA polynomials.

 $selectPolynomial(self, double\ T) \rightarrow NASAPolynomial$

toCantera(self)

Return the cantera equivalent NasaPoly2 object from this NASA object.

$toThermoData(self) \rightarrow ThermoData$

Convert the NASAPolynomial model to a ThermoData object.

If Cp0 and CpInf are omitted or 0, they are None in the returned ThermoData.

toWilhoit (self) \rightarrow Wilhoit

Convert a MultiNASA object *multiNASA* to a *Wilhoit* object. You must specify the linearity of the molecule *linear*, the number of vibrational modes *Nfreq*, and the number of hindered rotor modes *Nrotors* so the algorithm can determine the appropriate heat capacity limits at zero and infinite temperature.

Here is an example of a NASA entry:

```
entry(
index = 2,
label = "octane",
molecule =
   1 C 0 {2,S}
   2 C 0 {1,S} {3,S}
   3 C 0 {2,S} {4,S}
   4 C 0 {3,S} {5,S}
   5 C 0 {4,S} {6,S}
   6 C O {5,S} {7,S}
   7 C 0 {6,S} {8,S}
   8 C 0 {7,S}
thermo = NASA(
   polynomials = [
        NASAPolynomial(coeffs=[1.25245480E+01,-1.01018826E-02,2.21992610E-04,-2.84863722E-07,1.
→12410138E-10,-2.98434398E+04,-1.97109989E+01], Tmin=(200,'K'), Tmax=(1000,'K')),
        NASAPolynomial(coeffs=[2.09430708E+01,4.41691018E-02,-1.53261633E-05,2.30544803E-09,-1.
→29765727E-13,-3.55755088E+04,-8.10637726E+01], Tmin=(1000,'K'), Tmax=(6000,'K')),
   ],
   Tmin = (200, 'K'),
   Tmax = (6000, 'K'),
reference = Reference(authors=["check on burcat"], title='burcat', year="1999", url="http://www.
→me.berkeley.edu/gri-mech/version30/text30.html"),
referenceType = "review",
shortDesc = u""""",
longDesc =
   u"""
    0.0.0
    )
```

rmgpy.thermo.NASAPolynomial

A heat capacity model based on the NASA polynomial. Both the seven-coefficient and nine-coefficient variations are supported. The attributes are:

Attribute	Description
coeffs	The seven or nine NASA polynomial coefficients
Tmin	The minimum temperature in K at which the model is valid, or zero if unknown or undefined
Tmax	The maximum temperature in K at which the model is valid, or zero if unknown or undefined
E0	The energy at zero Kelvin (including zero point energy)
comment	Information about the model (e.g. its source)

The NASA polynomial is another representation of the heat capacity, enthalpy, and entropy using seven or nine coefficients $\mathbf{a} = [a_{-2} \ a_{-1} \ a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6]$. The relevant thermodynamic parameters are evaluated via the expressions

$$\frac{C_{\rm p}(T)}{R} = a_{-2}T^{-2} + a_{-1}T^{-1} + a_0 + a_1T + a_2T^2 + a_3T^3 + a_4T^4$$

$$\begin{split} \frac{H(T)}{RT} &= -a_{-2}T^{-2} + a_{-1}T^{-1}\ln T + a_0 + \frac{1}{2}a_1T + \frac{1}{3}a_2T^2 + \frac{1}{4}a_3T^3 + \frac{1}{5}a_4T^4 + \frac{a_5}{T} \\ \frac{S(T)}{R} &= -\frac{1}{2}a_{-2}T^{-2} - a_{-1}T^{-1} + a_0\ln T + a_1T + \frac{1}{2}a_2T^2 + \frac{1}{3}a_3T^3 + \frac{1}{4}a_4T^4 + a_6 \end{split}$$

In the seven-coefficient version, $a_{-2} = a_{-1} = 0$.

As simple polynomial expressions, the NASA polynomial is faster to evaluate when compared to the Wilhoit model; however, it does not have the nice physical behavior of the Wilhoit representation. Often multiple NASA polynomials are used to accurately represent the thermodynamics of a system over a wide temperature range; the NASA class is available for this purpose.

Cp0

The heat capacity at zero temperature.

CpInf

The heat capacity at infinite temperature.

EΘ

The ground state energy (J/mol) at zero Kelvin, including zero point energy, or None if not yet specified.

Tmax

The maximum temperature at which the model is valid, or None if not defined.

Tmin

The minimum temperature at which the model is valid, or None if not defined.

as_dict(self)

c0

'double'

Type c0

c1

'double'

Type c1

c2

'double'

Type c2

с3

'double'

Type c3

с4

'double'

Type c4

с5

'double'

Type c5

c6

'double'

Type c6

changeBaseEnthalpy(self, double deltaH)

Add deltaH in J/mol to the base enthalpy of formation H298.

changeBaseEntropy(self, double deltaS)

Add deltaS in J/molK to the base entropy of formation S298.

cm1

'double'

Type cm1

cm2

'double'

Type cm2

coeffs

The set of seven or nine NASA polynomial coefficients.

comment

str

Type comment

$discrepancy(self, HeatCapacityModel other) \rightarrow double$

Return some measure of how dissimilar self is from other.

The measure is arbitrary, but hopefully useful for sorting purposes. Discrepancy of 0 means they are identical

getEnthalpy (*self*, *double* T) \rightarrow double

Return the enthalpy in J/mol at the specified temperature T in K.

getEntropy (*self*, *double* T) \rightarrow double

Return the entropy in J/mol*K at the specified temperature T in K.

$getFreeEnergy(self, double\ T) \rightarrow double$

Return the Gibbs free energy in J/mol at the specified temperature T in K.

$getHeatCapacity(self, double T) \rightarrow double$

Return the constant-pressure heat capacity in J/mol*K at the specified temperature T in K.

$isIdenticalTo(self, HeatCapacityModel other) \rightarrow bool$

Returns True if *self* and *other* report very similar thermo values for heat capacity, enthalpy, entropy, and free energy over a wide range of temperatures, or False otherwise.

isSimilarTo(self, $HeatCapacityModel other) <math>\rightarrow$ bool

Returns True if *self* and *other* report similar thermo values for heat capacity, enthalpy, entropy, and free energy over a wide range of temperatures, or False otherwise.

$isTemperatureValid(self, double\ T) \rightarrow bool$

Return True if the temperature *T* in K is within the valid temperature range of the thermodynamic data, or False if not. If the minimum and maximum temperature are not defined, True is returned.

label

str

Type label

make_object(self, dict data, dict class_dict)

A helper function for constructing objects from a dictionary (used when loading YAML files)

Parameters

- **data** (*dict*) The dictionary representation of the object
- class_dict (dict) A mapping of class names to the classes themselves

Returns None

1.16 RMG Exceptions (rmgpy.exceptions)

This module contains classes which extend Exception for usage in the RMG module

exception rmgpy.exceptions.ActionError

An exception class for errors that occur while applying reaction recipe actions. Pass a string describing the circumstances that caused the exceptional behavior.

exception rmgpy.exceptions.AtomTypeError

An exception to be raised when an error occurs while working with atom types. Pass a string describing the circumstances that caused the exceptional behavior.

exception rmgpy.exceptions.ChemicallySignificantEigenvaluesError

An exception raised when the chemically significant eigenvalue method is unsuccessful for any reason. Pass a string describing the cause of the exceptional behavior.

exception rmgpy.exceptions.ChemkinError

An exception class for exceptional behavior involving Chemkin files. Pass a string describing the circumstances that caused the exceptional behavior.

exception rmgpy.exceptions.CollisionError

An exception class for when RMG is unable to calculate collision efficiencies for the single exponential down pressure dependent solver. Pass a string describing the circumstances that caused the exceptional behavior.

exception rmgpy.exceptions.CoreError

An exception raised if there is a problem within the model core

exception rmgpy.exceptions.DatabaseError

A exception that occurs when working with an RMG database. Pass a string giving specifics about the exceptional behavior.

exception rmgpy.exceptions.DependencyError

An exception that occurs when an error is encountered with a dependency. Pass a string describing the circumstances that caused the exception.

exception rmgpy.exceptions.ElementError

An exception class for errors that occur while working with elements. Pass a string describing the circumstances that caused the exceptional behavior.

exception rmgpy.exceptions.ForbiddenStructureException

An exception passed when RMG encounters a forbidden structure. These are usually caught and the reaction that created it is ignored.

exception rmgpy.exceptions.ILPSolutionError

An exception to be raised when solving an integer linear programming problem if a solution could not be found or the solution is not valid. Can pass a string to indicate the reason that the solution is invalid.

exception rmgpy.exceptions.ImplicitBenzeneError

An exception class when encountering a group with too many implicit benzene atoms. These groups are hard to create sample molecules and hard for users to interpret. Pass a string describing the limitation.

exception rmgpy.exceptions.InchiException

An exception used when encountering a non-valid Inchi expression are encountered. Pass a string describing the error.

exception rmgpy.exceptions.InputError

An exception raised when parsing an input file for any module in RMG: mechanism generation, Arkane, conformer creation, etc. Pass a string describing the error.

exception rmgpy.exceptions.InvalidActionError

An exception to be raised when an invalid action is encountered in a reaction recipe.

exception rmgpy.exceptions.InvalidAdjacencyListError

An exception used to indicate that an RMG-style adjacency list is invalid. Pass a string describing the reason the adjacency list is invalid

exception rmgpy.exceptions.InvalidMicrocanonicalRateError(message,

 $k_ratio=1.0$,

 $Keq_ratio=1.0$)

Used in pressure dependence when the k(E) calculation does not give the correct kf(T) or Kc(T)

badness()

How bad is the error?

Returns the max of the absolute logarithmic errors of kf and Kc

exception rmgpy.exceptions.KekulizationError

An exception to be raised when encountering an error while kekulizing an aromatic molecule. Can pass a string to indicate the reason for failure.

exception rmgpy.exceptions.KineticsError

An exception class for problems with kinetics. This can be used when finding degeneracy in reaction generation, modifying KineticsData objects, or finding the kinetics of reactions. Unable Pass a string describing the problem.

exception rmgpy.exceptions.ModifiedStrongCollisionError

An exception raised when the modified strong collision method is unsuccessful for any reason. Pass a string describing the cause of the exceptional behavior.

exception rmgpy.exceptions.NegativeBarrierException

This Exception occurs when the energy barrier for a hindered Rotor is negative. This can occur if the scan or fourier fit is poor.

exception rmgpy.exceptions.NetworkError

Raised when an error occurs while working with a pressure-dependent reaction network

exception rmgpy.exceptions.OutputError

This exception is raised whenever an error occurs while saving output information. Pass a string describing the circumstances of the exceptional behavior.

exception rmgpy.exceptions.PressureDependenceError

An exception class to use when an error involving pressure dependence is encountered. Pass a string describing the circumstances of the exceptional behavior.

exception rmgpy.exceptions.QuantityError

An exception to be raised when an error occurs while working with physical quantities in RMG. Pass a string describing the circumstances of the exceptional behavior.

exception rmgpy.exceptions.ReactionError

An exception class for exceptional behavior involving Reaction objects. Pass a string describing the circumstances that caused the exceptional behavior.

exception rmgpy.exceptions.ReactionPairsError

An exception to be raised when an error occurs while working with reaction pairs.

exception rmgpy.exceptions.ReservoirStateError

An exception raised when the reservoir state method is unsuccessful for any reason. Pass a string describing the cause of the exceptional behavior.

exception rmgpy.exceptions.ResonanceError

An exception class for when RMG is unable to generate resonance structures.

exception rmgpy.exceptions.SettingsError

An exception raised when dealing with settings.

exception rmgpy.exceptions.SpeciesError

An exception class for exceptional behavior that occurs while working with chemical species. Pass a string describing the circumstances that caused the exceptional behavior.

exception rmgpy.exceptions.StatmechError

An exception used when an error occurs in estimating Statmech.

exception rmgpy.exceptions.StatmechFitError

An exception used when attempting to fit molecular degrees of freedom to heat capacity data. Pass a string describing the circumstances of the exceptional behavior.

exception rmgpy.exceptions.**UndeterminableKineticsError**(reaction, message=")

An exception raised when attempts to estimate appropriate kinetic parameters for a chemical reaction are unsuccessful.

exception rmgpy.exceptions.UnexpectedChargeError(graph)

An exception class when encountering a group/molecule with unexpected charge Curently in RMG, we never expect to see -2/+2 or greater magnitude charge, we only except +1/-1 charges on nitrogen, oxygen, sulfur or specifically carbon monoxide/monosulfide.

Attributes: graph is the molecule or group object with the unexpected charge

exception rmgpy.exceptions.VF2Error

An exception raised if an error occurs within the VF2 graph isomorphism algorithm. Pass a string describing the error.

BIBLIOGRAPHY

[1932Wigner] E.Wigner. Phys. Rev. 40, p. 749-759 (1932). doi:10.1103/PhysRev.40.749

[1959Bell] R. P. Bell. Trans. Faraday Soc. 55, p. 1-4 (1959). doi:10.1039/TF9595500001

[Chang2000] A. Y. Chang, J. W. Bozzelli, and A. M. Dean. Z. Phys. Chem. **214**, p. 1533-1568 (2000). doi: 10.1524/zpch.2000.214.11.1533

270 Bibliography

PYTHON MODULE INDEX

```
а
arkane, 3
r
rmgpy.chemkin, 11
rmgpy.constants, 14
rmgpy.data, 15
rmgpy.exceptions, 266
rmgpy.kinetics, 79
rmgpy.molecule, 99
rmgpy.molecule.adjlist, 148
rmgpy.molecule.converter, 146
rmgpy.molecule.kekulize, 142
rmgpy.molecule.pathfinder, 144
rmgpy.molecule.resonance, 139
rmgpy.molecule.translator, 147
rmgpy.pdep, 152
rmgpy.qm, 161
rmgpy.quantity, 179
rmgpy.reaction, 185
rmgpy.rmg, 192
rmgpy.solver, 212
rmgpy.species, 232
rmgpy.statmech, 238
rmgpy.statmech.schrodinger, 251
rmgpy.thermo, 255
```

272 Python Module Index

INDEX

A	method), 193
A (rmgpy.kinetics.Arrhenius attribute), 81	<pre>addPathReaction() (rmgpy.rmg.pdep.PDepNetwork</pre>
a0 (rmgpy.thermo.Wilhoit attribute), 258	method), 200
a1 (rmgpy.thermo.Wilhoit attribute), 258	addReactionLibraryToEdge()
a2 (rmgpy.thermo.Wilhoit attribute), 258	(rmgpy.rmg.model. Core Edge Reaction Model
a3 (rmgpy.thermo.Wilhoit attribute), 259	method), 193
ActionError, 266	addReactionLibraryToOutput()
<pre>activeJRotor (rmgpy.pdep.Configuration attribute),</pre>	(rmgpy.rmg.model. Core Edge Reaction Model
156	method), 193
<pre>activeKRotor (rmgpy.pdep.Configuration attribute),</pre>	addReactionsToSurface()
156	(rmgpy.solver.LiquidReactor method), 226
<pre>add_allyls (in module rmgpy.molecule.pathfinder),</pre>	addReactionsToSurface()
144	(rmgpy.solver.ReactionSystem method), 212
add_inverse_allyls (in module	addReactionsToSurface()
rmgpy.molecule.pathfinder), 144	(rmgpy.solver.SimpleReactor method), 218
add_unsaturated_bonds (in module	addReactionToCore()
rmgpy.molecule.pathfinder), 144	(rmgpy.rmg.model. Core Edge Reaction Model
addAction() (rmgpy.data.kinetics.ReactionRecipe	method), 193
method), 51	addReactionToEdge()
addAtom() (rmgpy.molecule.Group method), 132	(rmgpy.rmg.model. Core Edge Reaction Model
addAtom() (rmgpy.molecule.Molecule method), 118	method), 193
addAtomLabelsForReaction()	addReactionToUnimolecularNetworks()
(rmgpy.data.kinetics.KineticsFamily method),	(rmgpy.rmg.model.CoreEdgeReactionModel
30	method), 193
addBond() (rmgpy.molecule.Group method), 132	addReverseAttribute()
addBond() (rmgpy.molecule.Molecule method), 118	(rmgpy.data.kinetics.KineticsFamily method),
addEdge() (rmgpy.molecule.graph.Graph method), 103	30
addEdge() (rmgpy.molecule.Group method), 133	addSeedMechanismToCore()
addEdge() (rmgpy.molecule.Molecule method), 119	(rmgpy.rmg.model. Core Edge Reaction Model
addEntry() (rmgpy.data.kinetics.KineticsFamily	method), 193
method), 30	$\verb"addSpeciesToCore"()" (rmgpy.rmg.model. Core Edge Reaction Model Species ToCore") (rmgpy.rmg.model. Core Edge Reaction Model Species ToCore Edge Reaction Mode$
addExplicitLigands() (rmgpy.molecule.Group	method), 193
method), 133	$\verb"addSpeciesToEdge()" (rmgpy.rmg.model. Core Edge Reaction Model Species ToEdge Reaction Model Model Species ToEdge Reaction Model Model$
addImplicitAtomsFromAtomType()	method), 194
(rmgpy.molecule.Group method), 133	<pre>addVertex() (rmgpy.molecule.graph.Graph method),</pre>
addImplicitBenzene() (rmgpy.molecule.Group	103
method), 133	addVertex() (rmgpy.molecule.Group method), 133
addKineticsRulesFromTrainingSet()	<pre>addVertex() (rmgpy.molecule.Molecule method), 119</pre>
(rmgpy.data.kinetics.KineticsFamily method),	<pre>adjustSurface() (rmgpy.rmg.model.CoreEdgeReactionModel</pre>
30	method), 194
addNewSurfaceObjects()	advance() (rmgpy.solver.LiquidReactor method), 226
(rmgpy.rmg.model. Core Edge Reaction Model)	advance() (rmgpy.solver.ReactionSystem method), 212

advance() (rmgpy.solver.SimpleReactor method), 218 allDouble (rmgpy.molecule.AtomType attribute), 108 allow_max_rate_violation	applyAction() (rmgpy.molecule.Atom method), 113 applyAction() (rmgpy.molecule.Bond method), 116 applyAction() (rmgpy.molecule.GroupAtom method), 128
attribute), 19	<pre>applyAction() (rmgpy.molecule.GroupBond method),</pre>
allow_max_rate_violation	131
(rmgpy.data.kinetics.LibraryReaction at- tribute), 44	<pre>applyChemicallySignificantEigenvaluesMethod()</pre>
allow_max_rate_violation	applyChemicallySignificantEigenvaluesMethod()
(rmgpy.data.kinetics.TemplateReaction at-	(rmgpy.pdep.Network method), 158
tribute), 63	applyChemicallySignificantEigenvaluesMethod()
allow_max_rate_violation	(rmgpy.rmg.pdep.PDepNetwork method), 200
(rmgpy.reaction.Reaction attribute), 186	applyForward() (rmgpy.data.kinetics.ReactionRecipe
allow_max_rate_violation	method), 51
(rmgpy.rmg.pdep.PDepReaction attribute),	applyInverseLaplaceTransformMethod() (in
202	module rmgpy.pdep), 155
allow_pdep_route(rmgpy.data.kinetics.DepositoryReac	
attribute), 19	(rmgpy.rmg.model.CoreEdgeReactionModel
allow_pdep_route(rmgpy.data.kinetics.LibraryReaction	n method), 194
attribute), 44	<pre>applyModifiedStrongCollisionMethod()</pre> (in
allow_pdep_route(rmgpy.data.kinetics.TemplateReaction	on module rmgpy.pdep.msc), 160
attribute), 63	<pre>applyModifiedStrongCollisionMethod()</pre>
allow_pdep_route (rmgpy.reaction.Reaction at-	(rmgpy.pdep.Network method), 158
tribute), 186	<pre>applyModifiedStrongCollisionMethod()</pre>
allow_pdep_route (rmgpy.rmg.pdep.PDepReaction attribute), 202	(rmgpy.rmg.pdep.PDepNetwork method), 200
alpha (rmgpy.kinetics.Troe attribute), 96	<pre>applyRecipe() (rmgpy.data.kinetics.KineticsFamily</pre>
alpha0 (rmgpy.pdep.SingleExponentialDown attribute),	method), 30
153	<pre>applyReservoirStateMethod() (in module</pre>
analyze_molecule (in module	rmgpy.pdep.rs), 160
rmgpy.molecule.resonance), 140	applyReservoirStateMethod()
ancestors() (rmgpy.data.base.Database method), 17	(rmgpy.pdep.Network method), 158
ancestors() (rmgpy.data.kinetics.KineticsDepository	applyReservoirStateMethod()
method), 27	(rmgpy.rmg.pdep.PDepNetwork method),
ancestors() (rmgpy.data.kinetics.KineticsFamily	200
method), 30	applyReverse() (rmgpy.data.kinetics.ReactionRecipe
ancestors() (rmgpy.data.kinetics.KineticsGroups	method), 51
method), 37	applyRRKMTheory() (in module rmgpy.pdep), 154
ancestors() (rmgpy.data.kinetics.KineticsLibrary	applyThermoToSpecies()
method), 39	(rmgpy.rmg.model.CoreEdgeReactionModel
ancestors() (rmgpy.data.kinetics.KineticsRules	method), 194
method), 42	areSiblings() (rmgpy.data.base.Database method),
ancestors() (rmgpy.data.statmech.StatmechDepository	17
method), 52	areSiblings() (rmgpy.data.kinetics.KineticsDepository
ancestors() (rmgpy.data.statmech.StatmechGroups	method), 27
method), 59 ancestors() (rmgpy.data.statmech.StatmechLibrary	areSiblings() (rmgpy.data.kinetics.KineticsFamily
	method), 30 areSiblings() (rmgpy.data.kinetics.KineticsGroups
method), 61 ancestors() (rmgpy.data.thermo.ThermoDepository	method), 37
method), 72	areSiblings() (rmgpy.data.kinetics.KineticsLibrary
ancestors() (rmgpy.data.thermo.ThermoGroups	method), 39
method), 74	areSiblings() (rmgpy.data.kinetics.KineticsRules
ancestors() (rmgpy.data.thermo.ThermoLibrary	method), 42
method), 76	areSiblings() (rmgpy.data.statmech.StatmechDepository
**	J ., Grymming Troubles

<pre>method), 52 areSiblings() (rmgpy.data.statmech.StatmechGroups method), 59</pre>	<pre>atol_array (rmgpy.solver.LiquidReactor attribute), 226 atol_array (rmgpy.solver.ReactionSystem attribute),</pre>
areSiblings() (rmgpy.data.statmech.StatmechLibrary method), 61	atol_array (rmgpy.solver.SimpleReactor attribute), 219
areSiblings() (rmgpy.data.thermo.ThermoDepository method), 72	Atom (class in rmgpy.molecule), 113 atomIDValid() (rmgpy.molecule.Molecule method),
areSiblings() (rmgpy.data.thermo.ThermoGroups method), 74	atoms (rmgpy.molecule.Group attribute), 133
areSiblings() (rmgpy.data.thermo.ThermoLibrary method), 76	atoms (rmgpy.molecule.kekulize.AromaticRing at- tribute), 143
Arkane (class in arkane), 7	atoms (rmgpy.molecule.Molecule attribute), 119
arkane (module), 3	AtomType (class in rmgpy.molecule), 107
AromaticBond (class in rmgpy.molecule.kekulize), 142	atomType (rmgpy.molecule.Atom attribute), 113
ArrayQuantity (class in rmgpy.quantity), 182	atomType (rmgpy.molecule.GroupAtom attribute), 128 AtomTypeError, 266
Arrhenius (class in rmgpy.kinetics), 80	aug_inchi (rmgpy.rmg.model.Species attribute), 208
arrhenius (rmgpy.kinetics.MultiArrhenius attribute), 83	aug_inchi (rmgpy.species.Species attribute), 233
${\it arrhenius} ({\it rmgpy.kinetics.MultiPDepArrhenius} {\it at-}$	В
tribute), 87	B (rmgpy.thermo.Wilhoit attribute), 258
arrhenius (rmgpy.kinetics.PDepArrhenius attribute), 86	badness () (rmgpy.exceptions.InvalidMicrocanonicalRateErromethod), 267
arrheniusHigh (rmgpy.kinetics.Lindemann attribute), 93	barrier (rmgpy.statmech.HinderedRotor attribute), 249 benzene (rmgpy.molecule.AtomType attribute), 108
arrheniusHigh (rmgpy.kinetics.Troe attribute), 96	bimolecularThreshold (rmgpy.solver.LiquidReactor
$\verb arrheniusLow (\textit{rmgpy}. \textit{kinetics}. \textit{Lindemann attribute}), 93$	attribute), 226
arrheniusLow (rmgpy.kinetics.ThirdBody attribute), 91	bimolecularThreshold
arrheniusLow (rmgpy.kinetics.Troe attribute), 96	(rmgpy.solver.ReactionSystem attribute),
as_dict() (rmgpy.pdep.SingleExponentialDown	213
method), 153 as_dict() (rmgpy.quantity.ArrayQuantity method), 183	bimolecularThreshold (rmgpy.solver.SimpleReactor
as_dict() (rmgpy.quantity.ScalarQuantity method), 163	attribute), 219
181	Bond (class in rmgpy.molecule), 116 bond (rmgpy.molecule.kekulize.AromaticBond attribute),
as_dict() (rmgpy.statmech.Conformer method), 253	142
as_dict() (rmgpy.statmech.HarmonicOscillator method), 247	breakBond (rmgpy.molecule.AtomType attribute), 108
$\verb"as_dict()" (rmgpy.statmech.HinderedRotor" method),$	C
249	c0 (rmgpy.thermo.NASAPolynomial attribute), 264
as_dict() (rmgpy.statmech.IdealGasTranslation	c1 (rmgpy.thermo.NASAPolynomial attribute), 264
method), 240	c2 (rmgpy.thermo.NASAPolynomial attribute), 264
<pre>as_dict() (rmgpy.statmech.KRotor method), 244 as_dict() (rmgpy.statmech.LinearRotor method), 241</pre>	c3 (rmgpy.thermo.NASAPolynomial attribute), 264
as_dict() (rmgpy.statmech.NonlinearRotor method),	c4 (rmgpy.thermo.NASAPolynomial attribute), 264
243	c5 (rmgpy.thermo.NASAPolynomial attribute), 264
as_dict() (rmgpy.statmech.SphericalTopRotor	c6 (rmgpy.thermo.NASAPolynomial attribute), 264 calculate() (rmgpy.qm.symmetry.SymmetryJob
method), 246	method), 166
<pre>as_dict() (rmgpy.thermo.NASA method), 261</pre>	calculate_coll_limit()
as_dict() (rmgpy.thermo.NASAPolynomial method), 264	(rmgpy. data. kinetics. Depository Reaction
as_dict() (rmgpy.thermo.ThermoData method), 256	<pre>method), 19 calculate_coll_limit()</pre>
as_dict() (rmgpy.thermo.Wilhoit method), 259	(rmgpy.data.kinetics.LibraryReaction method),
<pre>assignAtomIDs() (rmgpy.molecule.Molecule method),</pre>	(rmgpy.aaia.kinetics.LibraryReaction method), 45

<pre>calculate_coll_limit()</pre>	<pre>calculateCpInf()</pre>
<pre>method), 64 calculate_coll_limit() (rmgpy.reaction.Reaction</pre>	<pre>calculateCpInf()</pre>
method), 187	calculateCpInf() (rmgpy.species.Species method),
calculate_coll_limit()	233
(rmgpy.rmg.pdep.PDepReaction method),	calculateCyclicSymmetryNumber() (in module
(mgpy.rmg.paep.1 Depkeaction meinoa), 203	rmgpy.molecule.symmetry), 151
<pre>calculate_effective_pressure()</pre>	calculateDegeneracy()
(rmgpy.solver.SimpleReactor method), 219	(rmgpy.data.kinetics.KineticsFamily method),
calculateAtomSymmetryNumber() (in module	30
rmgpy.molecule.symmetry), 150	calculateDensitiesOfStates()
calculateAxisSymmetryNumber() (in module	(rmgpy.pdep.Network method), 158
rmgpy.molecule.symmetry), 150	calculateDensitiesOfStates()
calculateBondSymmetryNumber() (in module	(rmgpy.rmg.pdep.PDepNetwork method),
rmgpy.molecule.symmetry), 150	200
<pre>calculateChiralityCorrection()</pre>	calculateDensityOfStates()
(rmgpy.qm.gaussian.GaussianMol method),	(rmgpy.pdep.Configuration method), 156
167	<pre>calculateEquilibriumRatios()</pre>
<pre>calculateChiralityCorrection()</pre>	(rmgpy.pdep.Network method), 158
(rmgpy.qm.gaussian.GaussianMolPM3	calculateEquilibriumRatios()
method), 169	(rmgpy.rmg.pdep.PDepNetwork method),
<pre>calculateChiralityCorrection()</pre>	200
(rmgpy.qm.gaussian.GaussianMolPM6	<pre>calculateMicrocanonicalRateCoefficient() (in</pre>
method), 170	module rmgpy.pdep), 154
<pre>calculateChiralityCorrection()</pre>	<pre>calculateMicrocanonicalRateCoefficient()</pre>
(rmgpy.qm.molecule.QMMolecule method),	(rmgpy.data.kinetics.DepositoryReaction
164	method), 19
<pre>calculateChiralityCorrection()</pre>	<pre>calculateMicrocanonicalRateCoefficient()</pre>
(rmgpy.qm.mopac.MopacMol method), 173	(rmgpy.data.kinetics.LibraryReaction method),
<pre>calculateChiralityCorrection()</pre>	44
(rmgpy.qm.mopac.MopacMolPM3 method),	<pre>calculateMicrocanonicalRateCoefficient()</pre>
174	(rmgpy. data. kinetics. Template Reaction
<pre>calculateChiralityCorrection()</pre>	method), 63
(rmgpy.qm.mopac.MopacMolPM6 method),	<pre>calculateMicrocanonicalRateCoefficient()</pre>
176	(rmgpy.reaction.Reaction method), 186
<pre>calculateChiralityCorrection()</pre>	<pre>calculateMicrocanonicalRateCoefficient()</pre>
(rmgpy.qm.mopac.MopacMolPM7 method),	(rmgpy.rmg.pdep.PDepReaction method), 202
177	<pre>calculateMicrocanonicalRates()</pre>
<pre>calculateCollisionEfficiency()</pre>	(rmgpy.pdep.Network method), 159
(rmgpy.pdep.SingleExponentialDown method),	<pre>calculateMicrocanonicalRates()</pre>
153	(rmgpy.rmg.pdep.PDepNetwork method),
<pre>calculateCollisionFrequency()</pre>	200
(rmgpy.pdep.Configuration method), 156	<pre>calculateSymmetryNumber() (in module</pre>
calculateCollisionModel() (rmgpy.pdep.Network	rmgpy.molecule.symmetry), 151
method), 158	calculateSymmetryNumber()
calculateCollisionModel()	(rmgpy.molecule.Molecule method), 119
(rmgpy.rmg.pdep.PDepNetwork method), 200	calculateThermoData()
	(rmgpy.qm.gaussian.GaussianMol method), 167
<pre>calculateCp0() (rmgpy.molecule.Molecule method),</pre>	calculateThermoData()
calculateCp0() (rmgpy.rmg.model.Species method),	(rmgpy.qm.gaussian.GaussianMolPM3
208	method), 169
calculateCp0() (rmgpy.species.Species method), 233	calculateThermoData()

(rmgpy.qm.gaussian.GaussianMolPM6 method), 170	(rmgpy.kinetics.Wigner method), 97 calculateTunnelingFunction()
<pre>calculateThermoData()</pre>	(rmgpy.species.TransitionState method),
(rmgpy.qm.molecule.QMMolecule method),	237
164	canTST() (rmgpy.data.kinetics.DepositoryReaction
<pre>calculateThermoData()</pre>	method), 20
(rmgpy.qm.mopac.MopacMol method), 173	canTST() (rmgpy.data.kinetics.LibraryReaction
<pre>calculateThermoData()</pre>	method), 45
(rmgpy.qm.mopac.MopacMolPM3 method), 174	canTST() (rmgpy.data.kinetics.TemplateReaction method), 64
<pre>calculateThermoData()</pre>	canTST() (rmgpy.reaction.Reaction method), 187
(rmgpy.qm.mopac.MopacMolPM6 method),	canTST() (rmgpy.rmg.pdep.PDepReaction method), 203
176	<pre>changeBaseEnthalpy() (rmgpy.thermo.NASA</pre>
<pre>calculateThermoData()</pre>	method), 261
(rmgpy.qm.mopac.MopacMolPM7 method),	<pre>changeBaseEnthalpy()</pre>
178	(rmgpy.thermo.NASAPolynomial method),
<pre>calculateTSTRateCoefficient()</pre>	264
(rmgpy.data.kinetics.DepositoryReaction method), 19	<pre>changeBaseEntropy() (rmgpy.thermo.NASA method),</pre>
<pre>calculateTSTRateCoefficient()</pre>	<pre>changeBaseEntropy()</pre>
(rmgpy.data.kinetics.LibraryReaction method), 45	(rmgpy.thermo.NASAPolynomial method), 264
<pre>calculateTSTRateCoefficient()</pre>	changeRate() (rmgpy.kinetics.Arrhenius method), 81
(rmgpy.data.kinetics.TemplateReaction	changeRate() (rmgpy.kinetics.Chebyshev method), 89
method), 64	changeRate() (rmgpy.kinetics.Lindemann method), 93
<pre>calculateTSTRateCoefficient()</pre>	changeRate() (rmgpy.kinetics.MultiArrhenius
(rmgpy.reaction.Reaction method), 187	method), 83
<pre>calculateTSTRateCoefficient()</pre>	changeRate() (rmgpy.kinetics.MultiPDepArrhenius
(rmgpy.rmg.pdep.PDepReaction method),	method), 87
203	changeRate() (rmgpy.kinetics.PDepArrhenius
<pre>calculateTSTRateCoefficients()</pre>	method), 86
(rmgpy. data. kinetics. Depository Reaction	changeRate() (rmgpy.kinetics.ThirdBody method), 91
method), 19	changeRate() (rmgpy.kinetics.Troe method), 96
<pre>calculateTSTRateCoefficients()</pre>	changeT0() (rmgpy.kinetics.Arrhenius method), 81
$(rmgpy. data. kinetics. Library Reaction\ method),$	charge (rmgpy.molecule.Atom attribute), 113
45	charge (rmgpy.molecule.AtomType attribute), 108
<pre>calculateTSTRateCoefficients()</pre>	charge (rmgpy.molecule.GroupAtom attribute), 129
(rmgpy.data.kinetics.TemplateReaction	Chebyshev (class in rmgpy.kinetics), 89
method), 64	<pre>check_collision_limit_violation()</pre>
<pre>calculateTSTRateCoefficients()</pre>	(rmgpy.data.kinetics.DepositoryReaction
(rmgpy.reaction.Reaction method), 187	method), 20
<pre>calculateTSTRateCoefficients()</pre>	<pre>check_collision_limit_violation()</pre>
(rmgpy.rmg.pdep.PDepReaction method), 203	(rmgpy.data.kinetics.LibraryReaction method), 45
<pre>calculateTunnelingFactor()</pre>	<pre>check_collision_limit_violation()</pre>
(rmgpy.kinetics.Eckart method), 99	(rmgpy. data. kinetics. Template Reaction
<pre>calculateTunnelingFactor()</pre>	method), 64
(rmgpy.kinetics.Wigner method), 97	<pre>check_collision_limit_violation()</pre>
<pre>calculateTunnelingFactor()</pre>	(rmgpy.reaction.Reaction method), 187
(rmgpy.species.TransitionState method),	<pre>check_collision_limit_violation()</pre>
237	
colouleteTunnelineFunction()	(rmgpy.rmg.pdep.PDepReaction method),
<pre>calculateTunnelingFunction()</pre>	

162 checkForDuplicates() (rmgpy.data.kinetics.KineticsLibrary method),	chemkinName (rmgpy.molecule.Element attribute), 107 classifyBenzeneCarbons() (rmgpy.molecule.Group method), 133
checkForExistingReaction()	cleanTreeGroups() (rmgpy.data.kinetics.KineticsFamily method), 31
(rmgpy.rmg.model.CoreEdgeReactionModel method), 194	cleanup() (rmgpy.pdep.Configuration method), 156 cleanup() (rmgpy.rmg.pdep.PDepNetwork method),
<pre>checkForExistingSpecies()</pre>	200
(rmgpy.rmg.model.CoreEdgeReactionModel	clear() (rmgpy.rmg.main.RMG method), 198
method), 194	clearLabeledAtoms() (rmgpy.molecule.Group
<pre>checkForInChiKeyCollision()</pre>	method), 133
(rmgpy.qm.qmverifier.QMVerifier method), 166	clearLabeledAtoms() (rmgpy.molecule.Molecule method), 119
checkInput() (rmgpy.rmg.main.RMG method), 198	<pre>clearSurfaceAdjustments()</pre>
checkLibraries() (rmgpy.rmg.main.RMG method), 198	(rmgpy.rmg.model.CoreEdgeReactionModel method), 194
checkPaths() (rmgpy.qm.gaussian.GaussianMol	cm1 (rmgpy.thermo.NASAPolynomial attribute), 265
method), 167	cm2 (rmgpy.thermo.NASAPolynomial attribute), 265
checkPaths() (rmgpy.qm.gaussian.GaussianMolPM3 method), 169	coeffs (rmgpy.kinetics.Chebyshev attribute), 89 coeffs (rmgpy.thermo.NASAPolynomial attribute), 265
checkPaths() (rmgpy.qm.gaussian.GaussianMolPM6	colliderEfficiencies (rmgpy.solver.SimpleReactor
method), 171	attribute), 219
checkPaths() (rmgpy.qm.main.QMCalculator	CollisionError, 266
method), 163	comment (rmgpy.data.kinetics.DepositoryReaction at-
<pre>checkPaths() (rmgpy.qm.molecule.QMMolecule</pre>	tribute), 20
method), 164	comment (rmgpy.data.kinetics.LibraryReaction at-
<pre>checkPaths() (rmgpy.qm.mopac.MopacMol method),</pre>	tribute), 45
173 checkPaths() (rmgpy.qm.mopac.MopacMolPM3	comment (rmgpy.data.kinetics.TemplateReaction attribute), 64
method), 174	comment (rmgpy.kinetics.Arrhenius attribute), 81
checkPaths() (rmgpy.qm.mopac.MopacMolPM6	comment (rmgpy.kinetics.Chebyshev attribute), 89
method), 176	comment (rmgpy.kinetics.KineticsData attribute), 80
<pre>checkPaths() (rmgpy.qm.mopac.MopacMolPM7</pre>	comment (rmgpy.kinetics.Lindemann attribute), 94
method), 178	comment (rmgpy.kinetics.MultiArrhenius attribute), 83
checkReady() (rmgpy.qm.gaussian.GaussianMol method), 167	comment (rmgpy.kinetics.MultiPDepArrhenius attribute), 88
checkReady() (rmgpy.qm.gaussian.GaussianMolPM3	comment (rmgpy.kinetics.PDepArrhenius attribute), 86
method), 169	comment (rmgpy.kinetics.PDepKineticsData attribute),
checkReady() (rmgpy.qm.gaussian.GaussianMolPM6	84
method), 171	comment (rmgpy.kinetics.ThirdBody attribute), 91
checkReady() (rmgpy.qm.main.QMCalculator	comment (rmgpy.kinetics.Troe attribute), 96
method), 163	comment (rmgpy.reaction.Reaction attribute), 187
checkReady() (rmgpy.qm.molecule.QMMolecule	comment (rmgpy.rmg.pdep.PDepReaction attribute), 203
method), 164	comment (rmgpy.thermo.NASA attribute), 261
checkReady() (rmgpy.qm.mopac.MopacMol method),	comment (rmgpy.thermo.NASAPolynomial attribute), 265
173	comment (rmgpy.thermo.ThermoData attribute), 256
checkReady() (rmgpy.qm.mopac.MopacMolPM3 method), 174	<pre>comment (rmgpy.thermo.Wilhoit attribute), 259 compute_atom_distance (in module</pre>
checkReady() (rmgpy.qm.mopac.MopacMolPM6	rmgpy.molecule.pathfinder), 144
method), 176	compute_network_variables()
checkReady() (rmgpy.qm.mopac.MopacMolPM7	(rmgpy.solver.LiquidReactor method), 226
method), 178	compute_network_variables()
ChemicallySignificantEigenvaluesError, 266	(rmgpy.solver.ReactionSystem method), 213
ChemkinError, 266	compute_network_variables()

(rmgpy.solver.SimpleReactor method), 219	(rmgpy.data.kinetics.KineticsLibrary method),
<pre>computeGroupAdditivityThermo()</pre>	40
$(rmgpy.data.thermo.ThermoDatabase\ method),$	<pre>convertInitialKeysToSpeciesObjects()</pre>
69	(rmgpy.solver.LiquidReactor method), 226
<pre>computeRateDerivative()</pre>	<pre>convertInitialKeysToSpeciesObjects()</pre>
(rmgpy.solver.LiquidReactor method), 226	(rmgpy.solver.SimpleReactor method), 219
<pre>computeRateDerivative()</pre>	<pre>convolve() (in module rmgpy.statmech.schrodinger),</pre>
(rmgpy.solver.ReactionSystem method), 213	251
<pre>computeRateDerivative()</pre>	convolveBS() (in module
(rmgpy.solver.SimpleReactor method), 219	rmgpy.statmech.schrodinger), 251
Configuration (class in rmgpy.pdep), 155	convolveBSSR() (in module
Conformer (class in rmgpy.statmech), 252	rmgpy.statmech.schrodinger), 251
conformer (rmgpy.rmg.model.Species attribute), 209	coordinates (rmgpy.statmech.Conformer attribute),
conformer (rmgpy.species.Species attribute), 233	253
conformer (rmgpy.species.TransitionState attribute),	coords (rmgpy.molecule.Atom attribute), 114
237	copy() (arkane.PressureDependenceJob method), 10
connectivity1 (rmgpy.molecule.Atom attribute), 113	copy() (rmgpy.data.kinetics.DepositoryReaction
connectivity1 (rmgpy.molecule.graph.Vertex at-	method), 20
tribute), 101	copy() (rmgpy.data.kinetics.LibraryReaction method),
connectivity1 (rmgpy.molecule.GroupAtom at-	45
tribute), 129	copy() (rmgpy.data.kinetics.TemplateReaction method),
connectivity2 (rmgpy.molecule.Atom attribute), 113	64
connectivity2 (rmgpy.molecule.graph.Vertex at-	copy() (rmgpy.molecule.Atom method), 114
tribute), 101	copy() (rmgpy.molecule.Bond method), 116
connectivity2 (rmgpy.molecule.GroupAtom at-	copy() (rmgpy.molecule.graph.Edge method), 102
tribute), 129	copy() (rmgpy.molecule.graph.Graph method), 103
connectivity3 (rmgpy.molecule.Atom attribute), 114	copy() (rmgpy.molecule.graph.Vertex method), 101
connectivity3 (rmgpy.molecule.graph.Vertex at-	copy() (rmgpy.molecule.Group method), 133
tribute), 101	copy() (rmgpy.molecule.GroupAtom method), 129
connectivity3 (rmgpy.molecule.GroupAtom at-	copy() (rmgpy.molecule.GroupBond method), 131
tribute), 129	copy() (rmgpy.molecule.Molecule method), 119
connectTheDots() (rmgpy.molecule.Molecule	copy() (rmgpy.quantity.ArrayQuantity method), 183
method), 119	copy() (rmgpy.quantity.ScalarQuantity method), 181
constantVolume (rmgpy.solver.LiquidReactor at-	copy() (rmgpy.reaction.Reaction method), 187
tribute), 226	copy() (rmgpy.rmg.model.Species method), 209
constantVolume (rmgpy.solver.SimpleReactor at-	copy() (rmgpy.rmg.pdep.PDepReaction method), 203
tribute), 219	copy() (rmgpy.species.Species method), 233
constSPCIndices (rmgpy.solver.LiquidReactor at-	
tribute), 226	copyAndMap() (rmgpy.molecule.graph.Graph method),
constSPCNames (rmgpy.solver.LiquidReactor attribute),	103
226	copyAndMap() (rmgpy.molecule.Group method), 133
containsLabeledAtom() (rmgpy.molecule.Group	copyAndMap() (rmgpy.molecule.Molecule method), 119
method), 133	copyData() (rmgpy.data.thermo.ThermoGroups
<pre>containsLabeledAtom() (rmgpy.molecule.Molecule</pre>	method), 74
method), 119	CoreEdgeReactionModel (class in rmgpy.rmg.model),
containsSurfaceSite() (rmgpy.molecule.Group	193
method), 133	CoreError, 266
<pre>containsSurfaceSite() (rmgpy.molecule.Molecule</pre>	coreReactionRates (rmgpy.solver.LiquidReactor at-
method), 119	tribute), 226
containsSurfaceSite() (rmgpy.rmg.model.Species	coreReactionRates (rmgpy.solver.ReactionSystem at-
method), 209	tribute), 213
containsSurfaceSite() (rmgpy.species.Species	coreReactionRates (rmgpy.solver.SimpleReactor at-
method), 233	tribute), 219
convertDuplicatesToMulti()	coreSpeciesConcentrations

(rmgpy.solver.LiquidReactor attribute), 226	method), 173
coreSpeciesConcentrations	<pre>createGeometry() (rmgpy.qm.mopac.MopacMolPM3</pre>
(rmgpy.solver.ReactionSystem attribute),	method), 174
213	createGeometry() (rmgpy.qm.mopac.MopacMolPM6
coreSpeciesConcentrations	method), 176
(rmgpy.solver.SimpleReactor attribute), 219	createGeometry() (rmgpy.qm.mopac.MopacMolPM7
coreSpeciesConsumptionRates (rmany solver LiquidPagetor attribute) 226	method), 178 creationIteration (rmgpy.rmg.model.Species
(rmgpy.solver.LiquidReactor attribute), 226 coreSpeciesConsumptionRates	attribute), 209
(rmgpy.solver.ReactionSystem attribute),	creationIteration (rmgpy.species.Species attribute),
213	233
coreSpeciesConsumptionRates	<pre>crossValidate() (rmgpy.data.kinetics.KineticsFamily</pre>
(rmgpy.solver.SimpleReactor attribute), 220	method), 31
coreSpeciesProductionRates	$\verb crossValidateOld() \textit{crmgpy.data.kinetics.KineticsFamily} \\$
(rmgpy.solver.LiquidReactor attribute), 227	method), 31
coreSpeciesProductionRates	D
(rmgpy.solver.ReactionSystem attribute),	D
213	Database (class in rmgpy.data.base), 16
coreSpeciesProductionRates	DatabaseError, 266
(rmgpy.solver.SimpleReactor attribute), 220	debugRDKitMol (in module rmgpy.molecule.converter),
coreSpeciesRates (rmgpy.solver.LiquidReactor attribute), 227	146
coreSpeciesRates (rmgpy.solver.ReactionSystem at-	decrementBond (rmgpy.molecule.AtomType attribute),
tribute), 213	108
coreSpeciesRates (rmgpy.solver.SimpleReactor at-	decrementLonePair (rmgpy.molecule.AtomType attribute), 109
tribute), 220	decrementLonePairs() (rmgpy.molecule.Atom
correctBindingEnergy()	method), 114
(rmgpy.data.thermo.ThermoDatabase method),	decrementOrder() (rmgpy.molecule.Bond method),
69	116
$\verb countBonds() (rmgpy.molecule.GroupAtom method), \\$	decrementRadical (rmgpy.molecule.AtomType at-
129	tribute), 109
<pre>countInternalRotors() (rmgpy.molecule.Molecule</pre>	<pre>decrementRadical() (rmgpy.molecule.Atom method),</pre>
method), 119	114
covRadius (rmgpy.molecule.Element attribute), 107	degeneracy (rmgpy.data.kinetics.DepositoryReaction
Cp0 (rmgpy.thermo.NASA attribute), 261 Cp0 (rmgpy.thermo.NASAPolynomial attribute), 264	attribute), 20
Cp0 (rmgpy.thermo.ThermoData attribute), 255	degeneracy (rmgpy.data.kinetics.LibraryReaction at-
Cp0 (rmgpy.thermo.Wilhoit attribute), 258	tribute), 45
Cpdata (rmgpy.thermo.ThermoData attribute), 255	degeneracy (rmgpy.data.kinetics.TemplateReaction attribute), 64
CpInf (rmgpy.thermo.NASA attribute), 261	degeneracy (rmgpy.reaction.Reaction attribute), 187
CpInf (rmgpy.thermo.NASAPolynomial attribute), 264	degeneracy (rmgpy.rmg.pdep.PDepReaction attribute),
CpInf (rmgpy.thermo.ThermoData attribute), 255	203
CpInf (rmgpy.thermo.Wilhoit attribute), 258	degeneracy (rmgpy.species.TransitionState attribute),
<pre>createAndConnectAtom() (rmgpy.molecule.Group</pre>	237
method), 133	degreeP (rmgpy.kinetics.Chebyshev attribute), 89
<pre>createGeometry() (rmgpy.qm.gaussian.GaussianMol</pre>	degreeT (rmgpy.kinetics.Chebyshev attribute), 90
method), 167	deleteHydrogens() (rmgpy.molecule.Molecule
createGeometry() (rmgpy.qm.gaussian.GaussianMolPM	,,
method), 169	densStates (rmgpy.pdep.Configuration attribute), 156
createGeometry() (rmgpy.qm.gaussian.GaussianMolPN	
<pre>method), 171 createGeometry() (rmgpy.qm.molecule.QMMolecule</pre>	DepositoryReaction (class in rmgpy.data.kinetics),
method), 164	descendants() (rmgpy.data.base.Database method),
createGeometry() (rmgpy.qm.mopac.MopacMol	17
VIVI I	± 1

<pre>descendants() (rmgpy.data.kinetics.KineticsDepository</pre>	<pre>method), 171 determinePointGroup()</pre>
descendants() (rmgpy.data.kinetics.KineticsFamily method), 31	(rmgpy.qm.molecule.QMMolecule method), 164
descendants() (rmgpy.data.kinetics.KineticsGroups	<pre>determinePointGroup()</pre>
<pre>method), 37 descendants() (rmgpy.data.kinetics.KineticsLibrary</pre>	<pre>(rmgpy.qm.mopac.MopacMol method), 173 determinePointGroup()</pre>
method), 40	(rmgpy.qm.mopac.MopacMolPM3 method),
descendants() (rmgpy.data.kinetics.KineticsRules	174
method), 42	<pre>determinePointGroup()</pre>
descendants() (rmgpy.data.statmech.StatmechDepositor method), 52	y (rmgpy.qm.mopac.MopacMolPM6 method), 176
<pre>descendants() (rmgpy.data.statmech.StatmechGroups</pre>	<pre>determinePointGroup()</pre>
method), 59	(rmgpy.qm.mopac.MopacMolPM7 method),
<pre>descendants() (rmgpy.data.statmech.StatmechLibrary</pre>	178
method), 61	DirectFit (class in rmgpy.data.statmechfit), 55
<pre>descendants() (rmgpy.data.thermo.ThermoDepository</pre>	discrepancy() (rmgpy.kinetics.Arrhenius method), 81
method), 72	discrepancy() (rmgpy.kinetics.Chebyshev method), 90
descendants() (rmgpy.data.thermo.ThermoGroups method), 74	<pre>discrepancy() (rmgpy.kinetics.KineticsData method), 80</pre>
<pre>descendants() (rmgpy.data.thermo.ThermoLibrary</pre>	discrepancy() (rmgpy.kinetics.Lindemann method), 94
<pre>descendTree() (rmgpy.data.base.Database method),</pre>	discrepancy() (rmgpy.kinetics.MultiArrhenius method), 83
<pre>descendTree() (rmgpy.data.kinetics.KineticsDepository</pre>	<pre>discrepancy() (rmgpy.kinetics.MultiPDepArrhenius</pre>
<pre>descendTree() (rmgpy.data.kinetics.KineticsFamily</pre>	discrepancy() (rmgpy.kinetics.PDepArrhenius method), 86
<pre>descendTree() (rmgpy.data.kinetics.KineticsGroups</pre>	discrepancy() (rmgpy.kinetics.PDepKineticsData method), 84
descendTree() (rmgpy.data.kinetics.KineticsLibrary method), 40	<pre>discrepancy() (rmgpy.kinetics.ThirdBody method), 92 discrepancy() (rmgpy.kinetics.Troe method), 96</pre>
descendTree() (rmgpy.data.kinetics.KineticsRules	discrepancy() (rmgpy.thermo.NASA method), 261
method), 42	discrepancy() (rmgpy.thermo.NASAPolynomial
<pre>descendTree() (rmgpy.data.statmech.StatmechDepositor</pre>	
method), 52	discrepancy() (rmgpy.thermo.ThermoData method),
<pre>descendTree() (rmgpy.data.statmech.StatmechGroups</pre>	256
method), 59	discrepancy() (rmgpy.thermo.Wilhoit method), 259
<pre>descendTree() (rmgpy.data.statmech.StatmechLibrary</pre>	<pre>distributeTreeDistances()</pre>
method), 61	(rmgpy.data.kinetics.KineticsFamily method),
<pre>descendTree() (rmgpy.data.thermo.ThermoDepository</pre>	31
method), 72	$\verb double_possible \textit{crmgpy.molecule.kekulize.AromaticBond} $
<pre>descendTree() (rmgpy.data.thermo.ThermoGroups</pre>	attribute), 142
method), 74	$\verb double_required (\textit{rmgpy}. \textit{molecule}. \textit{kekulize}. \textit{AromaticBond}$
<pre>descendTree() (rmgpy.data.thermo.ThermoLibrary</pre>	attribute), 142
method), 76	draw() (arkane.KineticsJob method), 7
<pre>determinePointGroup()</pre>	draw() (arkane.PressureDependenceJob method), 10
(rmgpy.qm.gaussian.GaussianMol method), 167	draw() (rmgpy.data.kinetics.DepositoryReaction method), 20
<pre>determinePointGroup()</pre>	<pre>draw() (rmgpy.data.kinetics.LibraryReaction method),</pre>
(rmgpy.qm.gaussian.GaussianMolPM3	45
method), 169	<pre>draw() (rmgpy.data.kinetics.TemplateReaction method),</pre>
<pre>determinePointGroup()</pre>	64
(rmgpy.qm.gaussian.GaussianMolPM6	draw() (rmgpy.molecule.draw.MoleculeDrawer

tribute), 86

method), 151	efficiencies (rmgpy.kinetics.PDepKineticsData at-
<pre>draw() (rmgpy.molecule.draw.ReactionDrawer method),</pre>	tribute), 84 efficiencies (rmgpy.kinetics.ThirdBody attribute), 92
draw() (rmgpy.molecule.Group method), 134	efficiencies (rmgpy.kinetics.True attribute), 96
draw() (rmgpy.molecule.Group method), 134 draw() (rmgpy.molecule.Molecule method), 119	Element (class in rmgpy.molecule), 106
draw() (rmgpy.motectile.Motectile method), 119 draw() (rmgpy.reaction.Reaction method), 187	element (rmgpy.molecule.Atom attribute), 114
draw() (rmgpy.reaction.Reaction method), 187 draw() (rmgpy.rmg.pdep.PDepReaction method), 203	element_count_from_conformer()
duplicate (rmgpy.data.kinetics.DepositoryReaction at-	(arkane.ThermoJob method), 11
tribute), 20	elementary_high_p(rmgpy.data.kinetics.DepositoryReaction
duplicate (rmgpy.data.kinetics.LibraryReaction	attribute), 20
attribute), 45	elementary_high_p (rmgpy.data.kinetics.LibraryReaction
duplicate (rmgpy.data.kinetics.TemplateReaction at-	attribute), 45
tribute), 65	elementary_high_p (rmgpy.data.kinetics.TemplateReaction
duplicate (rmgpy.reaction.Reaction attribute), 188	attribute), 65
duplicate (rmgpy.rmg.pdep.PDepReaction attribute),	elementary_high_p (rmgpy.reaction.Reaction at-
204	tribute), 188
dydt0 (rmgpy.solver.LiquidReactor attribute), 227	elementary_high_p (rmgpy.rmg.pdep.PDepReaction
dydt0 (rmgpy.solver.ReactionSystem attribute), 213	attribute), 204
dydt0 (rmgpy.solver.SimpleReactor attribute), 220	elementCount (rmgpy.molecule.Group attribute), 134
-, (or)	ElementError, 266
E	Elist (rmgpy.pdep.Configuration attribute), 155
E0 (rmgpy.pdep.Configuration attribute), 155	endo_dof (rmgpy.molecule.kekulize.AromaticBond at-
E0 (rmgpy.statmech.Conformer attribute), 252	tribute), 143
E0 (rmgpy.thermo.NASA attribute), 261	endo_dof (rmgpy.molecule.kekulize.AromaticRing at-
E0 (rmgpy.thermo.NASAPolynomial attribute), 264	tribute), 143
E0 (rmgpy.thermo.ThermoData attribute), 255	energies (rmgpy.statmech.HinderedRotor attribute),
E0 (rmgpy.thermo.Wilhoit attribute), 258	249
E0_prod (rmgpy.kinetics.Eckart attribute), 99	<pre>energyTransferModel (rmgpy.rmg.model.Species at-</pre>
E0_reac (rmgpy.kinetics.Eckart attribute), 99	tribute), 209
E0_TS (rmgpy.kinetics.Eckart attribute), 99	energyTransferModel (rmgpy.species.Species at-
Ea (rmgpy.kinetics.Arrhenius attribute), 81	tribute), 234
Eckart (class in rmgpy.kinetics), 98	<pre>enlarge() (rmgpy.rmg.model.CoreEdgeReactionModel</pre>
Edge (class in rmgpy.molecule.graph), 102	method), 194
edgeReactionRates (rmgpy.solver.LiquidReactor at-	<pre>ensure_species()(rmgpy.data.kinetics.DepositoryReaction</pre>
tribute), 227	method), 20
edgeReactionRates (rmgpy.solver.ReactionSystem at-	<pre>ensure_species() (rmgpy.data.kinetics.LibraryReaction</pre>
tribute), 213	method), 46
edgeReactionRates (rmgpy.solver.SimpleReactor at-	<pre>ensure_species() (rmgpy.data.kinetics.TemplateReaction</pre>
tribute), 220	method), 65
edges (rmgpy.molecule.Atom attribute), 114	<pre>ensure_species() (rmgpy.reaction.Reaction method),</pre>
edges (rmgpy.molecule.graph.Vertex attribute), 101	188
edges (rmgpy.molecule.GroupAtom attribute), 129	<pre>ensure_species() (rmgpy.rmg.pdep.PDepReaction</pre>
edgeSpeciesRates (rmgpy.solver.LiquidReactor at-	method), 204
tribute), 227	Entry (class in rmgpy.data.base), 24
edgeSpeciesRates (rmgpy.solver.ReactionSystem at-	enumerate_bonds() (rmgpy.molecule.Molecule
tribute), 213	method), 120
edgeSpeciesRates (rmgpy.solver.SimpleReactor at-	equals() (rmgpy.quantity.ArrayQuantity method), 183
tribute), 220	equals() (rmgpy.quantity.ScalarQuantity method), 181
efficiencies (rmgpy.kinetics.Chebyshev attribute), 90	equivalent() (rmgpy.molecule.Atom method), 114
efficiencies (rmgpy.kinetics.Lindemann attribute), 94	equivalent() (rmgpy.molecule.AtomType method),
efficiencies (rmgpy.kinetics.MultiPDepArrhenius at-	109
tribute), 88	equivalent() (rmgpy.molecule.Bond method), 116
efficiencies (rmgpy.kinetics.PDepArrhenius at-	equivalent() (rmgpy.molecule.graph.Edge method),
tribute) 86	102

equivalent() (rmgpy.molecule.graph.Vertex method), 101	(rmgpy.data.kinetics.KineticsFamily method), 31
equivalent() (rmgpy.molecule.GroupAtom method), 129	<pre>extractSourceFromComments()</pre>
<pre>equivalent() (rmgpy.molecule.GroupBond method),</pre>	69
estimateKinetics() (rmgpy.data.kinetics.KineticsRule.	_s F
method), 42	failureKeys (rmgpy.qm.gaussian.Gaussian attribute),
estimateKineticsUsingGroupAdditivity()	167
(rmgpy.data.kinetics.KineticsFamily method),	failureKeys (rmgpy.qm.mopac.Mopac attribute), 172
31	feasible() (rmgpy.molecule.vf2.VF2 method), 106
estimateKineticsUsingGroupAdditivity()	fillKineticsRulesByAveragingUp()
(rmgpy.data.kinetics.KineticsGroups method),	(rmgpy.data.kinetics.KineticsFamily method),
37	32
estimateKineticsUsingRateRules()	fillRulesByAveragingUp()
(rmgpy.data.kinetics.KineticsFamily method),	(rmgpy.data.kinetics.KineticsRules method), 42
31	find_adj_lone_pair_multiple_bond_delocalization_paths
estimateRadicalThermoViaHBI()	(in module rmgpy.molecule.pathfinder), 144
(rmgpy.data.thermo.ThermoDatabase method),	find_adj_lone_pair_radical_delocalization_paths
69	(in module rmgpy.molecule.pathfinder), 145
estimateThermoViaGroupAdditivity()	find_adj_lone_pair_radical_multiple_bond_delocalization_
(rmgpy.data.thermo.ThermoDatabase method),	(in module rmgpy.molecule.pathfinder), 145
69	find_allyl_delocalization_paths (in module
evalExt() (rmgpy.data.kinetics.KineticsFamily	rmgpy.molecule.pathfinder), 146
method), 31	find_allyl_end_with_charge (in module
<pre>evaluate() (rmgpy.data.statmechfit.DirectFit method),</pre>	rmgpy.molecule.pathfinder), 146
55	find_butadiene (in module
evaluate() (rmgpy.data.statmechfit.PseudoFit	rmgpy.molecule.pathfinder), 146
method), 57	find_butadiene_end_with_charge (in module
<pre>evaluate() (rmgpy.data.statmechfit.PseudoRotorFit</pre>	rmgpy.molecule.pathfinder), 146
method), 56	find_H_bonds() (rmgpy.molecule.Molecule method),
<pre>execute() (arkane.Arkane method), 7</pre>	120
<pre>execute() (arkane.KineticsJob method), 7</pre>	<pre>find_lone_pair_multiple_bond_paths (in module</pre>
<pre>execute() (arkane.PressureDependenceJob method),</pre>	rmgpy.molecule.pathfinder), 146
10	find_N5dc_radical_delocalization_paths (in
<pre>execute() (arkane.StatMechJob method), 11</pre>	module rmgpy.molecule.pathfinder), 144
<pre>execute() (arkane.ThermoJob method), 11</pre>	find_shortest_path (in module
execute() (rmgpy.rmg.main.RMG method), 198	rmgpy.molecule.pathfinder), 146
exo_dof (rmgpy.molecule.kekulize.AromaticBond	<pre>findIsomorphism() (rmgpy.molecule.graph.Graph</pre>
attribute), 143	method), 103
exo_dof (rmgpy.molecule.kekulize.AromaticRing at-	<pre>findIsomorphism() (rmgpy.molecule.Group method),</pre>
tribute), 143	134
explicitlyAllowed (rmgpy.rmg.model.Species	findIsomorphism() (rmgpy.molecule.Molecule
attribute), 209	method), 120
explicitlyAllowed (rmgpy.species.Species attribute), 234	findIsomorphism() (rmgpy.molecule.vf2.VF2 method), 106
<pre>exploreIsomer() (rmgpy.rmg.pdep.PDepNetwork</pre>	<pre>findSubgraphIsomorphisms()</pre>
method), 200	(rmgpy.molecule.graph.Graph method),
extendNode() (rmgpy.data.kinetics.KineticsFamily	103
method), 31	<pre>findSubgraphIsomorphisms()</pre>
<pre>extractSourceFromComments()</pre>	(rmgpy.molecule.Group method), 134
(rmgpy. data. kinetics. Kinetics Database	findSubgraphIsomorphisms()
method), 25	(rmgpy.molecule.Molecule method), 120
<pre>extractSourceFromComments()</pre>	

<pre>findSubgraphIsomorphisms()</pre>	<pre>fixDiffusionLimitedA()</pre>	
(rmgpy.molecule.vf2.VF2 method), 106	(rmgpy.rmg.pdep.PDepReaction method),	
fingerprint (rmgpy.molecule.Molecule attribute), 120	204	
fingerprint (rmgpy.rmg.model.Species attribute), 209	ForbiddenStructureException, 266	
fingerprint (rmgpy.species.Species attribute), 234	formBond (rmgpy.molecule.AtomType attribute), 109	
finish() (rmgpy.rmg.main.RMG method), 198	fourier (rmgpy.statmech.HinderedRotor attribute), 250	
fitCosinePotentialToData()	frequencies (rmgpy.statmech.HarmonicOscillator at-	
(rmgpy.statmech.HinderedRotor method), 249	tribute), 248 frequency (rmgpy.kinetics.Eckart attribute), 99	
<pre>fitFourierPotentialToData()</pre>	frequency (rmgpy.kinetics.Wigner attribute), 97	
(rmgpy.statmech.HinderedRotor method), 250	frequency (rmgpy.species.TransitionState attribute), 237	
<pre>fitInterpolationModel()</pre>	frequency (rmgpy.statmech.HinderedRotor attribute),	
(arkane.PressureDependenceJob method),	250	
10	<pre>fromAdjacencyList() (in module</pre>	
<pre>fitInterpolationModels()</pre>	rmgpy.molecule.adjlist), 150	
(arkane.PressureDependenceJob method), 10	fromAdjacencyList() (rmgpy.molecule.Group method), 134	
<pre>fitStatmechDirect() (in module rmgpy.data.statmechfit), 54</pre>	fromAdjacencyList() (rmgpy.molecule.Molecule method), 120	
<pre>fitStatmechPseudo() (in module</pre>	fromAdjacencyList() (rmgpy.rmg.model.Species method), 209	
fitStatmechPseudoRotors() (in module rmgpy.data.statmechfit), 55	fromAdjacencyList() (rmgpy.species.Species method), 234	
fitStatmechToHeatCapacity() (in module	fromAugmentedInChI (in module	
rmgpy.data.statmechfit), 54	rmgpy.molecule.translator), 147	
fitToData() (rmgpy.kinetics.Arrhenius method), 81 fitToData() (rmgpy.kinetics.Chebyshev method), 90	fromAugmentedInChI() (rmgpy.molecule.Molecule method), 120	
$\verb fitToData() (rmgpy.kinetics.PDepArrhenius method), \\$	fromInChI (in module rmgpy.molecule.translator), 147	
86	fromInChI() (rmgpy.molecule.Molecule method), 120	
fitToData() (rmgpy.thermo.Wilhoit method), 259	fromOBMol (in module rmgpy.molecule.converter), 146	
<pre>fitToDataForConstantB() (rmgpy.thermo.Wilhoit</pre>	fromRDKitMol (in module rmgpy.molecule.converter), 146	
fixBarrierHeight() (rmgpy.data.kinetics.DepositoryR method), 20	edatamSMARTS (in module rmgpy.molecule.translator), 147 fromSMARTS () (rmgpy.molecule.Molecule method), 120	
fixBarrierHeight() (rmgpy.data.kinetics.LibraryReactioncomSMILES (in module rmgpy.molecule.translator), 147 method), 46 fromSMILES() (rmgpy.molecule.Molecule method), 121		
fixBarrierHeight()(rmgpy.data.kinetics.TemplateReacfivomSMILES()(rmgpy.rmg.model.Species method), 209		
<pre>method), 65 fixBarrierHeight() (rmgpy.reaction.Reaction</pre>	fromSMILES() (rmgpy.species.Species method), 234 fromXYZ() (rmgpy.molecule.Molecule method), 121	
method), 188	11 omx12() (mgpy.motecute.motecute method), 121	
fixBarrierHeight() (rmgpy.rmg.pdep.PDepReaction method), 204	G	
fixDiffusionLimitedA()	Gaussian (class in rmgpy.qm.gaussian), 167	
(rmgpy.data.kinetics.DepositoryReaction	GaussianLog (class in arkane.gaussian), 4	
method), 20	GaussianMol (class in rmgpy.qm.gaussian), 167	
fixDiffusionLimitedA()	GaussianMolPM3 (class in rmgpy.qm.gaussian), 169 GaussianMolPM6 (class in rmgpy.qm.gaussian), 170	
(rmgpy.data.kinetics.LibraryReaction method), 46	${\tt generate3dTS()} \ ({\it rmgpy.data.kinetics.DepositoryReaction}$	
fixDiffusionLimitedA()	method), 20	
(rmgpy.data.kinetics.TemplateReaction	<pre>generate3dTS() (rmgpy.data.kinetics.LibraryReaction</pre>	
method), 65	generate3dTS()(rmgpy.data.kinetics.TemplateReaction	
fixDiffusionLimitedA() (rmgpy.reaction.Reaction method), 188	method), 65	

```
generate3dTS() (rmgpy.reaction.Reaction method),
                                                           (rmgpy.data.kinetics.KineticsDatabase
        188
                                                           method), 25
generate3dTS()
                     (rmgpy.rmg.pdep.PDepReaction
                                                  generate_reactions_from_families()
                                                           (rmgpy.data.kinetics.KineticsDatabase
        method), 204
generate_adj_lone_pair_multiple_bond_resonance_struotunhed), 25
        (in module rmgpy.molecule.resonance), 140
                                                  generate_reactions_from_libraries()
generate_adj_lone_pair_radical_multiple_bond_resonan@engspt.rduct.kimesics.KineticsDatabase
        (in module rmgpy.molecule.resonance), 140
                                                           method), 26
generate_adj_lone_pair_radical_resonance_strugetheraste_reactions_from_library()
        (in module rmgpy.molecule.resonance), 140
                                                           (rmgpy.data.kinetics.KineticsDatabase
generate_allyl_delocalization_resonance_structures
                                                          method), 26
                                                  generate_resonance_structures
        (in module rmgpy.molecule.resonance), 140
                                                                                             module
generate_aromatic_resonance_structure
                                                           rmgpy.molecule.resonance), 141
        module rmgpy.molecule.resonance), 140
                                                  generate_resonance_structures()
generate_aryne_resonance_structures (in mod-
                                                           (rmgpy.molecule.Molecule method), 121
        ule rmgpy.molecule.resonance), 141
                                                  generate_resonance_structures()
generate_aug_inchi()
                          (rmgpy.rmg.model.Species
                                                           (rmgpy.rmg.model.Species method), 209
                                                  generate_resonance_structures()
        method), 209
generate_aug_inchi()
                             (rmgpy.species.Species
                                                           (rmgpy.species.Species method), 234
                                                  generate_species_indices()
        method), 234
generate_clar_structures
                                 (in
                                          module
                                                           (rmgpy.solver.LiquidReactor method), 227
        rmgpy.molecule.resonance), 141
                                                  generate_species_indices()
generate_H_bonded_structures()
                                                           (rmgpy.solver.ReactionSystem method), 214
        (rmgpy.molecule.Molecule method), 121
                                                  generate_species_indices()
generate_high_p_limit_kinetics()
                                                           (rmgpy.solver.SimpleReactor method), 220
        (rmgpy.data.kinetics.LibraryReaction method),
                                                  generateCanteraFiles()
                                                                               (rmgpy.rmg.main.RMG
                                                           method), 198
generate_isomorphic_resonance_structures(in
                                                  generateCollisionMatrix()
                                                           (rmgpy.pdep.Configuration method), 156
        module rmgpy.molecule.resonance), 141
                                                  generateCollisionMatrix()
generate_kekule_structure
                                  (in
                                          module
                                                           (rmgpy.pdep.SingleExponentialDown method),
        rmgpy.molecule.resonance), 141
generate_lone_pair_multiple_bond_resonance_structures33
        (in module rmgpy.molecule.resonance), 141
                                                  generateEnergyTransferModel()
generate_N5dc_radical_resonance_structures
                                                           (rmgpy.rmg.model.Species method), 209
                                                  generateEnergyTransferModel()
        (in module rmgpy.molecule.resonance), 140
generate_optimal_aromatic_resonance_structures
                                                           (rmgpy.species.Species method), 234
        (in module rmgpy.molecule.resonance), 141
                                                  generateFrequencies()
generate_rate_coefficients()
                                                           (rmgpy.data.statmech.GroupFrequencies
        (rmgpy.solver.LiquidReactor method), 227
                                                           method), 25
generate_rate_coefficients()
                                                  generateFullMEMatrix()
                                                                                             module
                                                                                   (in
        (rmgpy.solver.SimpleReactor method), 220
                                                           rmgpy.pdep.me), 160
generate_reactant_product_indices()
                                                  generateGroupAdditivityValues()
        (rmgpy.solver.LiquidReactor method), 227
                                                           (rmgpy.data.kinetics.KineticsGroups method),
generate_reactant_product_indices()
        (rmgpy.solver.ReactionSystem method), 213
                                                  generateKinetics() (arkane.KineticsJob method), 7
generate_reactant_product_indices()
                                                  generateKinetics()(rmgpy.rmg.model.CoreEdgeReactionModel
        (rmgpy.solver.SimpleReactor method), 220
                                                           method), 194
generate_reaction_indices()
                                                  generateOldLibraryEntry()
        (rmgpy.solver.LiquidReactor method), 227
                                                           (rmgpy.data.statmech.StatmechGroups
generate_reaction_indices()
                                                           method), 59
        (rmgpy.solver.ReactionSystem method), 214
                                                  generateOldLibraryEntry()
generate_reaction_indices()
                                                           (rmgpy.data.statmech.StatmechLibrary
        (rmgpy.solver.SimpleReactor method), 220
                                                           method), 61
                                                  generateOldLibraryEntry()
generate_reactions()
```

```
(rmgpy.data.thermo.ThermoGroups
                                         method),
                                                            method), 173
        74
                                                   qenerateQMData() (rmgpy.qm.mopac.MopacMolPM3
generateOldLibraryEntry()
                                                            method), 175
        (rmgpy.data.thermo.ThermoLibrary
                                                   generateQMData() (rmgpy.qm.mopac.MopacMolPM6
                                         method),
                                                            method), 176
generateOldTree()
                         (rmgpy.data.base.Database
                                                   qenerateQMData() (rmgpy.qm.mopac.MopacMolPM7
        method), 17
                                                            method), 178
generateOldTree() (rmgpy.data.kinetics.KineticsDepositgemerateRDKitGeometries()
        method), 28
                                                            (rmgpy.qm.molecule.Geometry
                                                                                             method),
generateOldTree() (rmgpy.data.kinetics.KineticsFamily
                                                            163
        method), 32
                                                   generateReactions()
generateOldTree() (rmgpy.data.kinetics.KineticsGroups
                                                            (rmgpy.data.kinetics.KineticsFamily
                                                                                             method),
        method), 38
generateOldTree() (rmgpy.data.kinetics.KineticsLibrarygenerateReverseRateCoefficient()
                                                            (rmgpy.data.kinetics.DepositoryReaction
        method), 40
generateOldTree() (rmgpy.data.kinetics.KineticsRules
                                                            method), 21
                                                   generateReverseRateCoefficient()
        method), 42
generateOldTree() (rmgpy.data.statmech.StatmechDepository
                                                            (rmgpy.data.kinetics.LibraryReaction method),
        method), 53
qenerateOldTree() (rmgpy.data.statmech.StatmechGroupenerateReverseRateCoefficient()
        method), 59
                                                            (rmgpy.data.kinetics.TemplateReaction
generateOldTree() (rmgpy.data.statmech.StatmechLibrary
                                                            method), 65
                                                   generateReverseRateCoefficient()
        method), 61
qenerateOldTree() (rmgpy.data.thermo.ThermoDepository
                                                            (rmgpy.reaction.Reaction method), 188
                                                   generateReverseRateCoefficient()
        method), 72
generateOldTree() (rmgpy.data.thermo.ThermoGroups
                                                            (rmgpy.rmg.pdep.PDepReaction
                                                                                             method),
        method), 75
                                                            204
generateOldTree() (rmgpy.data.thermo.ThermoLibrary generateStatMech()
                                                                              (rmgpy.rmg.model.Species
        method), 77
                                                            method), 209
generatePairs() (rmgpy.data.kinetics.DepositoryReactiogenerateStatMech() (rmgpy.species.Species method),
        method), 21
generatePairs()(rmgpy.data.kinetics.LibraryReaction generateTemperatureList()
                                                            (arkane.PressureDependenceJob
        method), 46
                                                                                             method),
generatePairs()(rmgpy.data.kinetics.TemplateReaction
        method), 65
                                                   generateThermo() (arkane.ThermoJob method), 11
generatePairs() (rmgpy.reaction.Reaction method),
                                                   qenerateThermo() (rmgpy.rmg.model.CoreEdgeReactionModel
                                                            method), 194
generatePairs()
                     (rmgpy.rmg.pdep.PDepReaction
                                                   generateThermoData()
        method), 204
                                                            (rmgpy.qm.gaussian.GaussianMol
                                                                                             method),
                                                            168
generatePressureList()
        (arkane.PressureDependenceJob
                                         method),
                                                   generateThermoData()
                                                            (rmgpy.qm.gaussian.GaussianMolPM3
generateProductTemplate()
                                                            method), 169
        (rmgpy.data.kinetics.KineticsFamily method),
                                                   generateThermoData()
                                                            (rmgpy.qm.gaussian.GaussianMolPM6
                                                            method), 171
generateQMData() (rmgpy.qm.gaussian.GaussianMol
                                                   generateThermoData()
        method), 168
generateQMData() (rmgpy.qm.gaussian.GaussianMolPM3
                                                            (rmgpy.qm.molecule.QMMolecule
                                                                                             method),
        method), 169
generateQMData() (rmgpy.qm.gaussian.GaussianMolPM6enerateThermoData() (rmgpy.qm.mopac.MopacMol
                                                            method), 173
        method), 171
generateQMData() (rmgpy.qm.molecule.QMMolecule
                                                   generateThermoData()
                                                            (rmgpy.qm.mopac.MopacMolPM3
        method), 164
                                                                                             method),
generateQMData()
                                                            175
                       (rmgpy.qm.mopac.MopacMol
```

<pre>generateThermoData()</pre>	<pre>get_optical_isomers_and_symmetry_number()</pre>
(rmgpy.qm.mopac.MopacMolPM6 method),	(arkane.qchem.QChemLog method), 5
176	<pre>get_rate_filtered_reactions()</pre>
generateThermoData()	(rmgpy.rmg.pdep.PDepNetwork method),
(rmgpy.qm.mopac.MopacMolPM7 method), 178	201 got reduced mass () (rmany data kinetics DepositoryPeastion
generateTransportData()	<pre>get_reduced_mass() (rmgpy.data.kinetics.DepositoryReaction</pre>
(rmgpy.rmg.model.Species method), 209	get_reduced_mass() (rmgpy.data.kinetics.LibraryReaction
<pre>generateTransportData() (rmgpy.species.Species</pre>	method), 47
method), 234 generateTree() (rmgpy.data.kinetics.KineticsFamily	<pre>get_reduced_mass() (rmgpy.data.kinetics.TemplateReaction</pre>
method), 32	<pre>get_reduced_mass()</pre>
generic (rmgpy.molecule.AtomType attribute), 109 generic_visit() (arkane.output.PrettifyVisitor	get_reduced_mass() (rmgpy.rmg.pdep.PDepReaction
method), 8	method), 205
Geometry (class in rmgpy.qm.molecule), 163	<pre>get_species_index() (rmgpy.solver.LiquidReactor</pre>
<pre>get_bond_string() (rmgpy.molecule.Bond method),</pre>	method), 227
117	<pre>get_species_index() (rmgpy.solver.ReactionSystem</pre>
<pre>get_constSPCIndices()</pre>	method), 214
<pre>(rmgpy.solver.LiquidReactor method), 227 get_descriptor() (rmgpy.molecule.Atom method),</pre>	<pre>get_species_index() (rmgpy.solver.SimpleReactor</pre>
114	<pre>get_thermo_data_from_ml()</pre>
<pre>get_edges_in_cycle()</pre>	$(rmgpy.data.thermo.ThermoDatabase\ method),$
(rmgpy.molecule.graph.Graph method), 104	70 get_threshold_rate_constants()
<pre>get_edges_in_cycle() (rmgpy.molecule.Group</pre>	(rmgpy.solver.LiquidReactor method), 227
method), 136	<pre>get_threshold_rate_constants()</pre>
get_edges_in_cycle() (rmgpy.molecule.Molecule	(rmgpy.solver.SimpleReactor method), 220
<pre>method), 123 get_element_count() (rmgpy.molecule.Group</pre>	<pre>getActiveModes() (rmgpy.statmech.Conformer method), 253</pre>
method), 136	getAllCycles() (rmgpy.molecule.graph.Graph
<pre>get_element_count() (rmgpy.molecule.Molecule</pre>	method), 103
method), 124	getAllCycles() (rmgpy.molecule.Group method), 134
<pre>get_energy_filtered_reactions()</pre>	<pre>getAllCycles() (rmgpy.molecule.Molecule method),</pre>
(rmgpy.rmg.pdep.PDepNetwork method),	121
201	<pre>getAllCyclesOfSize()</pre>
<pre>get_mean_sigma_and_epsilon()</pre>	(rmgpy.molecule.graph.Graph method),
(rmgpy.data.kinetics.DepositoryReaction	103
method), 22	getAllCyclesOfSize() (rmgpy.molecule.Group
<pre>get_mean_sigma_and_epsilon()</pre>	method), 134 getAllCyclesOfSize() (rmgpy.molecule.Molecule
(1mgpy.aaia.kineiics.LibraryReaction method), 47	method), 121
<pre>get_mean_sigma_and_epsilon()</pre>	getAllCyclicVertices()
(rmgpy.data.kinetics.TemplateReaction	(rmgpy.molecule.graph.Graph method),
method), 66	103
<pre>get_mean_sigma_and_epsilon()</pre>	<pre>getAllCyclicVertices() (rmgpy.molecule.Group</pre>
(rmgpy.reaction.Reaction method), 189	method), 134
<pre>get_mean_sigma_and_epsilon()</pre>	<pre>getAllCyclicVertices() (rmgpy.molecule.Molecule</pre>
(rmgpy.rmg.pdep.PDepReaction method),	method), 121
205	getAllEdges() (rmgpy.molecule.graph.Graph
<pre>get_optical_isomers_and_symmetry_number()</pre>	method), 103 getAllEdges() (rmgpy.molecule.Group method), 134
get_optical_isomers_and_symmetry_number()	getAllEdges() (rmgpy.molecule.Molecule method),
(arkane.molpro.MolproLog method), 6	121

getAllPolycyclicVertices()	method), 96
(rmgpy.molecule.graph.Graph method) 104	
getAllPolycyclicVertices() (rmgpy.molecule.Group method), 134	<pre>getChargeSpan() (rmgpy.molecule.Molecule method), 122</pre>
getAllPolycyclicVertices()	<pre>getConversionFactorFromSI()</pre>
(rmgpy.molecule.Molecule method), 121	(rmgpy.quantity.ArrayQuantity method),
getAllRules() (rmgpy.data.kinetics.KineticsRule	
method), 42	<pre>getConversionFactorFromSI()</pre>
getAllSimpleCyclesOfSize()	(rmgpy.quantity.ScalarQuantity method),
(rmgpy.molecule.graph.Graph method)	
104	getConversionFactorFromSItoCmMolS()
getAllSimpleCyclesOfSize()	(rmgpy.quantity.ArrayQuantity method),
(rmgpy.molecule.Group method), 134	183
getAllSimpleCyclesOfSize()	<pre>getConversionFactorFromSItoCmMolS()</pre>
(rmgpy.molecule.Molecule method), 121	(rmgpy.quantity.ScalarQuantity method),
getAllSpecies() (rmgpy.pdep.Network method), 159	
<pre>getAllSpecies() (rmgpy.rmg.pdep.PDepNetwor</pre>	
method), 201	(rmgpy.quantity.ArrayQuantity method),
getAllThermoData() (rmgpy.data.thermo.ThermoDa	
method), 70	<pre>getConversionFactorToSI()</pre>
<pre>getAlpha() (rmgpy.pdep.SingleExponentialDow</pre>	181
	<pre>/e getCrudeMolFilePath()</pre>
method), 121	(rmgpy.qm.molecule.Geometry method),
<pre>getAtomType() (in module rmgpy.molecule), 110</pre>	163
<pre>getAugmentedInChI() (rmgpy.rmg.model.Specie</pre>	es getDensityOfStates() (in module rmgpy.statmech.schrodinger), 251
getAugmentedInChI() (rmgpy.species.Specie	
method), 234	method), 209
getBackboneRoots()(rmgpy.data.kinetics.KineticsFa	
method), 32	method), 234
getBDE() (rmgpy.molecule.Bond method), 116	<pre>getDensityOfStates()</pre>
getBond() (rmgpy.molecule.Group method), 135	(rmgpy.species.TransitionState method),
getBond() (rmgpy.molecule.Molecule method), 121	237
<pre>getBondOrdersForAtom() (rmgpy.molecule.Ator</pre>	<pre>n getDensityOfStates() (rmgpy.statmech.Conformer</pre>
getBonds() (rmgpy.molecule.Group method), 135	getDensityOfStates()
getBonds() (rmgpy.molecule.Molecule method), 122	(rmgpy.statmech.HarmonicOscillator method),
getCanteraEfficiencies()	248
(rmgpy.kinetics.Chebyshev method), 90	getDensityOfStates()
getCanteraEfficiencies()	(rmgpy.statmech.HinderedRotor method),
(rmgpy.kinetics.Lindemann method), 94	(rmgpy.siaimech.Hinaereakolor meinoa), 250
getCanteraEfficiencies()	getDensityOfStates()
(rmgpy.kinetics.MultiPDepArrhenius method	
88	240
getCanteraEfficiencies()	<pre>getDensityOfStates() (rmgpy.statmech.KRotor</pre>
(rmgpy.kinetics.PDepArrhenius method)	
86	<pre>getDensityOfStates() (rmgpy.statmech.LinearRotor</pre>
getCanteraEfficiencies()	method), 242
$(rmgpy.kinetics.PDepKineticsData\ method), 8$	4 getDensityOfStates()
getCanteraEfficiencies()	(rmgpy.statmech.NonlinearRotor method),
(rmgpy.kinetics.ThirdBody method), 92	243
<pre>getCanteraEfficiencies() (rmgpy.kinetics.Tro</pre>	<pre>e getDensityOfStates()</pre>

$(rmgpy.statmech.SphericalTopRotor\ method),$	method), 21
246	<pre>getEnthalpiesOfReaction()</pre>
${\tt getDeterministicSmallestSetOfSmallestRings()}$	(rmgpy.data.kinetics.LibraryReaction method),
(rmgpy.molecule.Molecule method), 122	46
<pre>getDisparateRings() (rmgpy.molecule.graph.Graph</pre>	<pre>getEnthalpiesOfReaction()</pre>
method), 104	(rmgpy.data.kinetics.TemplateReaction
<pre>getDisparateRings() (rmgpy.molecule.Group</pre>	method), 65
method), 135	<pre>getEnthalpiesOfReaction()</pre>
<pre>getDisparateRings() (rmgpy.molecule.Molecule</pre>	(rmgpy.reaction.Reaction method), 188
method), 122	<pre>getEnthalpiesOfReaction()</pre>
getEdge() (rmgpy.molecule.graph.Graph method), 104	(rmgpy.rmg.pdep.PDepReaction method),
getEdge() (rmgpy.molecule.Group method), 135	204
getEdge() (rmspy.molecule.Molecule method), 122	getEnthalpy() (in module
getEdges() (rmgpy.molecule.graph.Graph method),	rmgpy.statmech.schrodinger), 251
104	getEnthalpy() (rmgpy.pdep.Configuration method),
	156
getEdges() (rmgpy.molecule.Group method), 135	
getEdges() (rmgpy.molecule.Molecule method), 122	<pre>getEnthalpy() (rmgpy.rmg.model.Species method),</pre>
<pre>getEffectiveColliderEfficiencies()</pre>	
(rmgpy.kinetics.Chebyshev method), 90	getEnthalpy() (rmgpy.species.Species method), 234
<pre>getEffectiveColliderEfficiencies()</pre>	getEnthalpy() (rmgpy.species.TransitionState
(rmgpy.kinetics.Lindemann method), 94	method), 237
<pre>getEffectiveColliderEfficiencies()</pre>	<pre>getEnthalpy() (rmgpy.statmech.Conformer method),</pre>
(rmgpy.kinetics.MultiPDepArrhenius method),	253
88	<pre>getEnthalpy() (rmgpy.statmech.HarmonicOscillator</pre>
<pre>getEffectiveColliderEfficiencies()</pre>	method), 248
(rmgpy.kinetics.PDepArrhenius method), 86	<pre>getEnthalpy() (rmgpy.statmech.HinderedRotor method), 250</pre>
<pre>getEffectiveColliderEfficiencies()</pre>	<pre>getEnthalpy() (rmgpy.statmech.IdealGasTranslation</pre>
(rmgpy.kinetics.PDepKineticsData method), 84	method), 240
<pre>getEffectiveColliderEfficiencies()</pre>	<pre>getEnthalpy() (rmgpy.statmech.KRotor method), 244</pre>
(rmgpy.kinetics.ThirdBody method), 92	<pre>getEnthalpy() (rmgpy.statmech.LinearRotor method),</pre>
<pre>getEffectiveColliderEfficiencies()</pre>	242
(rmgpy.kinetics.Troe method), 96	<pre>getEnthalpy() (rmgpy.statmech.NonlinearRotor</pre>
<pre>getEffectivePressure() (rmgpy.kinetics.Chebyshev</pre>	method), 243
method), 90	<pre>getEnthalpy() (rmgpy.statmech.SphericalTopRotor</pre>
getEffectivePressure()	method), 246
(rmgpy.kinetics.Lindemann method), 94	getEnthalpy() (rmgpy.thermo.NASA method), 261
getEffectivePressure()	getEnthalpy() (rmgpy.thermo.NASAPolynomial
(rmgpy.kinetics.MultiPDepArrhenius method),	method), 265
(1mgpy.kinetics.Mutti DepArrhentus method), 88	
	<pre>getEnthalpy() (rmgpy.thermo.ThermoData method),</pre>
<pre>getEffectivePressure()</pre>	256
(rmgpy.kinetics.PDepArrhenius method),	getEnthalpy() (rmgpy.thermo.Wilhoit method), 259
86	<pre>getEnthalpyOfReaction()</pre>
<pre>getEffectivePressure()</pre>	(rmgpy.data.kinetics.DepositoryReaction
(rmgpy.kinetics.PDepKineticsData method), 84	method), 21
<pre>getEffectivePressure() (rmgpy.kinetics.ThirdBody</pre>	<pre>getEnthalpyOfReaction()</pre>
method), 92	(rmgpy.data.kinetics.LibraryReaction method),
<pre>getEffectivePressure() (rmgpy.kinetics.Troe</pre>	46
method), 96	<pre>getEnthalpyOfReaction()</pre>
<pre>getElement() (in module rmgpy.molecule), 107</pre>	(rmgpy.data.kinetics.TemplateReaction
<pre>getEndRoots() (rmgpy.data.kinetics.KineticsFamily</pre>	method), 65
method), 32	${\tt getEnthalpyOfReaction()}\ ({\it rmgpy.reaction.Reaction}$
<pre>getEnthalpiesOfReaction()</pre>	method), 188
(rmgpy.data.kinetics.DepositoryReaction	<pre>getEnthalpyOfReaction()</pre>

(rmgpy.rmg.pdep.PDepReaction 204	method),		opy() method),		y.statmech.Hind	leredRotor
getEntries() (rmgpy.data.kinetics.Kir method), 42	neticsRules	getEntr		(rmgpy.stat	mech.IdealGasT	Franslation
getEntriesToSave() (rmgpy.data.base	e.Database	getEntr	opy() (<i>rr</i>	mgpy.statme	ch.KRotor meth	
<pre>method), 17 getEntriesToSave() (rmgpy.data.kinetics.K</pre>	KineticsDepo	ository	242		ech.LinearRotor	
<pre>method), 28 getEntriesToSave() (rmgpy.data.kinetics.F</pre>	KineticsFam	getEntro ily	opy() <i>method</i>),		v.statmech.Nonli	inearRotor
<pre>method), 33 getEntriesToSave() (rmgpy.data.kinetics.F</pre>	KineticsGroi	getEntro ups	opy() method),	. 01.	atmech.Spherica	ulTopRotor
method), 38 getEntriesToSave() (rmgpy.data.kinetics.F	KineticsLibra				o.NASA method) y.thermo.NASAI	
method), 40 getEntriesToSave() (rmgpy.data.kinetics.k		-	method),	265		·
method), 42			256			
<pre>getEntriesToSave() (rmgpy.data.statmech.</pre>		getEntr	opy0fRe	action()		
<pre>getEntriesToSave() (rmgpy.data.statmech.</pre>	.StatmechGr		(rmgpy.d method),		DepositoryReac	rtion
<pre>getEntriesToSave() (rmgpy.data.statmech.</pre>	StatmechLi				LibraryReaction	ı method),
<pre>getEntriesToSave() (rmgpy.data.thermo.T</pre>	hermoDepo.	sitory	47	action()	,	, ,,,
${\tt getEntriesToSave()}\ ({\it rmgpy.data.thermo.T}$	hermoGroup	ps	(rmgpy.de	ata.kinetics.	TemplateReaction	on
<pre>method), 75 getEntriesToSave() (rmgpy.data.thermo.T</pre>	hermoLibra	<i>ry</i> getEntro		action()	(rmgpy.reaction	n.Reaction
<pre>method),77 getEntropiesOfReaction()</pre>		getEntr		action()		
(rmgpy.data.kinetics.DepositoryReac method), 21	ction		(rmgpy.rr 205	mg.pdep.PD	epReaction	method),
<pre>getEntropiesOfReaction()</pre>	n mathad)			Constant() DepositoryReac	etion
46	і тетоа),		method),	21		iion
<pre>getEntropiesOfReaction()</pre>	on	•		Constant(ata.kinetics.) LibraryReaction	n method),
<pre>getEntropiesOfReaction()</pre>	88			Constant() TemplateReactio	on.
getEntropiesOfReaction()	00		method),		<i>тетриие</i> кейси	n
(rmgpy.rmg.pdep.PDepReaction 205	method),			Constant() ction method), 1	80
getEntropy() (in	module			Constant(09
rmgpy.statmech.schrodinger), 252 getEntropy() (rmgpy.pdep.Configuration	method),		(rmgpy.rr 205	mg.pdep.PD	epReaction	method),
156	memou),	getEqui		Constants	()	
getEntropy() (rmgpy.rmg.model.Species me					DepositoryReac	rtion
getEntropy() (<i>rmgpy.species.Species metho</i> getEntropy() (<i>rmgpy.species.TransitionStat</i>			<i>method</i>), librium	21 Constants	()	
237			(rmgpy.d		CibraryReaction	n method),
getEntropy() (rmgpy.statmech.Conformer 253	method),	getEaui	47 librium	Constants	()	
getEntropy() (rmgpy.statmech.Harmonic method), 248	cOscillator			ata.kinetics.	TemplateReaction	on

<pre>getEquilibriumConstants()</pre>	getFreeEnergy() (rmgpy.statmech.Conformer method), 253
<pre>getEquilibriumConstants()</pre>	<pre>getFreeEnergy() (rmgpy.thermo.NASA method), 261</pre>
(rmgpy.rmg.pdep.PDepReaction method), 205	getFreeEnergy() (rmgpy.thermo.NASAPolynomial method), 265
<pre>getExtensionEdge() (rmgpy.data.kinetics.KineticsFama method), 33</pre>	
<pre>getExtensions() (rmgpy.molecule.Group method),</pre>	<pre>getFreeEnergy() (rmgpy.thermo.Wilhoit method), 259 getFreeEnergyOfReaction()</pre>
<pre>getFeatures() (rmgpy.molecule.AtomType method),</pre>	(rmgpy.data.kinetics.DepositoryReaction
109	method), 21
<pre>getFilePath() (rmgpy.qm.gaussian.GaussianMol</pre>	<pre>getFreeEnergyOfReaction()</pre>
method), 168	(rmgpy.data.kinetics.LibraryReaction method),
<pre>getFilePath() (rmgpy.qm.gaussian.GaussianMolPM3</pre>	47
method), 169	<pre>getFreeEnergyOfReaction()</pre>
<pre>getFilePath() (rmgpy.qm.gaussian.GaussianMolPM6</pre>	(rmgpy.data.kinetics.TemplateReaction
method), 171	method), 66
<pre>getFilePath() (rmgpy.qm.molecule.Geometry</pre>	<pre>getFreeEnergyOfReaction()</pre>
method), 163	(rmgpy.reaction.Reaction method), 189
<pre>getFilePath() (rmgpy.qm.molecule.QMMolecule</pre>	<pre>getFreeEnergyOfReaction()</pre>
method), 164	(rmgpy.rmg.pdep.PDepReaction method),
<pre>getFilePath() (rmgpy.qm.mopac.MopacMol method),</pre>	205
173	getFrequency() (rmgpy.statmech.HinderedRotor
<pre>getFilePath() (rmgpy.qm.mopac.MopacMolPM3</pre>	method), 250
method), 175	getFrequencyGroups()
<pre>getFilePath() (rmgpy.qm.mopac.MopacMolPM6</pre>	(rmgpy.data.statmech.StatmechGroups method), 59
<pre>getFilePath() (rmgpy.qm.mopac.MopacMolPM7</pre>	<pre>getHamiltonian() (rmgpy.statmech.HinderedRotor</pre>
<pre>getFormula() (rmgpy.molecule.Molecule method), 122</pre>	getHeatCapacity() (in module
<pre>getForwardReactionForFamilyEntry()</pre>	rmgpy.statmech.schrodinger), 252
(rmgpy. data. kinetics. Kinetics Database	getHeatCapacity() (rmgpy.pdep.Configuration
method), 26	method), 156
<pre>getFreeEnergiesOfReaction()</pre>	getHeatCapacity() (rmgpy.rmg.model.Species
(rmgpy.data.kinetics.DepositoryReaction	method), 210
method), 21	<pre>getHeatCapacity() (rmgpy.species.Species method),</pre>
<pre>getFreeEnergiesOfReaction()</pre>	234
47	<pre>getHeatCapacity() (rmgpy.species.TransitionState</pre>
<pre>getFreeEnergiesOfReaction()</pre>	getHeatCapacity() (rmgpy.statmech.Conformer
(rmgpy.data.kinetics.TemplateReaction	method), 253
method), 66	<pre>getHeatCapacity() (rmgpy.statmech.HarmonicOscillator</pre>
<pre>getFreeEnergiesOfReaction()</pre>	method), 248
(rmgpy.reaction.Reaction method), 189	getHeatCapacity() (rmgpy.statmech.HinderedRotor
getFreeEnergiesOfReaction()	method), 250
(rmgpy.rmg.pdep.PDepReaction method), 205	<pre>getHeatCapacity() (rmgpy.statmech.IdealGasTranslation</pre>
<pre>getFreeEnergy() (rmgpy.pdep.Configuration method),</pre>	<pre>getHeatCapacity() (rmgpy.statmech.KRotor method),</pre>
<pre>getFreeEnergy() (rmgpy.rmg.model.Species method),</pre>	<pre>getHeatCapacity()</pre>
<pre>getFreeEnergy() (rmgpy.species.Species method), 234</pre>	<pre>getHeatCapacity() (rmgpy.statmech.NonlinearRotor</pre>
<pre>getFreeEnergy() (rmgpy.species.TransitionState</pre>	method), 243
method), 237	<pre>getHeatCapacity()(rmgpy.statmech.SphericalTopRotor</pre>

<pre>method), 246 getHeatCapacity() (rmgpy.thermo.NASA method),</pre>	<pre>getLayeringIndices()</pre>
261	<pre>getLayeringIndices() (rmgpy.solver.SimpleReactor</pre>
<pre>getHeatCapacity() (rmgpy.thermo.NASAPolynomial</pre>	<pre>method), 220 getLeakBranchingRatios()</pre>
getHeatCapacity() (rmgpy.thermo.ThermoData method), 256	(rmgpy.rmg.pdep.PDepNetwork method),
<pre>getHeatCapacity() (rmgpy.thermo.Wilhoit method),</pre>	- -
259 getInChiKeyAug() (rmgpy.qm.gaussian.GaussianMol	(rmgpy.rmg.pdep.PDepNetwork method), 201
method), 168	<pre>getLevelDegeneracy()</pre>
<pre>getInChiKeyAug() (rmgpy.qm.gaussian.GaussianMolPM</pre>	250
<pre>getInChiKeyAug() (rmgpy.qm.gaussian.GaussianMolPM</pre>	MgetLevelDegeneracy() (rmgpy.statmech.KRotor method), 244
<pre>getInChiKeyAug() (rmgpy.qm.molecule.QMMolecule</pre>	<pre>getLevelDegeneracy() (rmgpy.statmech.LinearRotor</pre>
<pre>getInChiKeyAug() (rmgpy.qm.mopac.MopacMol</pre>	<pre>getLevelDegeneracy()</pre>
method), 173	(rmgpy.statmech.SphericalTopRotor method),
getInChiKeyAug() (rmgpy.qm.mopac.MopacMolPM3	246
method), 175	getLevelEnergy() (rmgpy.statmech.HinderedRotor
<pre>getInChiKeyAug() (rmgpy.qm.mopac.MopacMolPM6</pre>	<pre>method), 250 getLevelEnergy() (rmgpy.statmech.KRotor method),</pre>
getInChiKeyAug() (rmgpy.qm.mopac.MopacMolPM7	244
method), 178	getLevelEnergy() (rmgpy.statmech.LinearRotor
getInternalReducedMomentOfInertia()	method), 242
(rmgpy.statmech.Conformer method), 253 getKinetics() (rmgpy.data.kinetics.KineticsFamily	<pre>getLevelEnergy() (rmgpy.statmech.SphericalTopRotor</pre>
method), 33	getLibraries() (arkane.Arkane method), 7
getKineticsForTemplate()	<pre>getLibraryReactions()</pre>
(rmgpy.data.kinetics.KineticsFamily method), 33	(rmgpy.data.kinetics.KineticsLibrary method), 40
getKineticsFromDepository()	${\tt getLists()} \ ({\it rmgpy.rmg.model.CoreEdgeReactionModel}$
(rmgpy.data.kinetics.KineticsFamily method),	method), 194
33	<pre>getMaxCycleOverlap()</pre>
<pre>getLabeledAtom() (rmgpy.molecule.Group method),</pre>	(rmgpy.molecule.graph.Graph method), 104
<pre>getLabeledAtom()</pre>	<pre>getMaxCycleOverlap() (rmgpy.molecule.Group</pre>
<pre>getLabeledAtoms() (rmgpy.molecule.Group method),</pre>	<pre>getMaxCycleOverlap() (rmgpy.molecule.Molecule</pre>
getLabeledAtoms() (rmgpy.molecule.Molecule	<pre>getMaximumLeakSpecies()</pre>
method), 122	(rmgpy.rmg.pdep.PDepNetwork method),
getLabeledReactantsAndProducts()	201
(rmgpy.data.kinetics.KineticsFamily method), 33	<pre>getModelSize() (rmgpy.rmg.model.CoreEdgeReactionModel</pre>
<pre>getLargestRing() (rmgpy.molecule.graph.Graph</pre>	<pre>getMolecularWeight() (rmgpy.molecule.Molecule</pre>
<pre>getLargestRing() (rmgpy.molecule.Group method),</pre>	<pre>getMolFilePathForCalculation()</pre>
135	(rmgpy.qm.gaussian.GaussianMol method),
getLargestRing() (rmgpy.molecule.Molecule	168
<pre>method), 122 getLayeringIndices() (rmgpy.solver.LiquidReactor</pre>	<pre>getMolFilePathForCalculation()</pre>
method), 227	method), 169

<pre>getMolFilePathForCalculation()</pre>	method), 168
(rmgpy.qm.gaussian.GaussianMolPM6 method), 171	getParser() (rmgpy.qm.gaussian.GaussianMolPM3 method), 169
<pre>getMolFilePathForCalculation()</pre>	<pre>getParser() (rmgpy.qm.gaussian.GaussianMolPM6</pre>
(rmgpy.qm.molecule.QMMolecule method),	method), 171
165	getParser() (rmgpy.qm.mopac.Mopac method), 172
<pre>getMolFilePathForCalculation()</pre>	<pre>getParser() (rmgpy.qm.mopac.MopacMol method),</pre>
(rmgpy.qm.mopac.MopacMol method), 173	173
<pre>getMolFilePathForCalculation()</pre>	getParser() (rmgpy.qm.mopac.MopacMolPM3
(rmgpy.qm.mopac.MopacMolPM3 method), 175	method), 175 getParser() (rmgpy.qm.mopac.MopacMolPM6
<pre>getMolFilePathForCalculation()</pre>	method), 177
(rmgpy.qm.mopac.MopacMolPM6 method),	getParser() (rmgpy.qm.mopac.MopacMolPM7
(176)	method), 178
<pre>getMolFilePathForCalculation()</pre>	<pre>getPartitionFunction() (in module</pre>
(rmgpy.qm.mopac.MopacMolPM7 method),	rmgpy.statmech.schrodinger), 252
178	<pre>getPartitionFunction() (rmgpy.rmg.model.Species</pre>
<pre>getMomentOfInertiaTensor()</pre>	method), 210
(rmgpy.statmech.Conformer method), 253	<pre>getPartitionFunction() (rmgpy.species.Species</pre>
<pre>getMonocyclicRings()</pre>	method), 234
(rmgpy.molecule.graph.Graph method),	<pre>getPartitionFunction()</pre>
104	(rmgpy.species.TransitionState method),
getMonocyclicRings() (rmgpy.molecule.Group	237
method), 135	<pre>getPartitionFunction()</pre>
<pre>getMonocyclicRings() (rmgpy.molecule.Molecule</pre>	(rmgpy.statmech.Conformer method), 254
method), 122	getPartitionFunction()
<pre>getNetCharge() (rmgpy.molecule.Group method), 135 getNetCharge() (rmgpy.molecule.Molecule method),</pre>	(rmgpy.statmech.HarmonicOscillator method), 248
123	getPartitionFunction()
<pre>getNthNeighbor() (rmgpy.molecule.Molecule</pre>	(rmgpy.statmech.HinderedRotor method),
method), 123	250
<pre>getNumAtoms() (rmgpy.molecule.Molecule method),</pre>	<pre>getPartitionFunction()</pre>
123	(rmgpy.statmech.IdealGasTranslation method),
<pre>getNumberDegreesOfFreedom()</pre>	240
(rmgpy.statmech.Conformer method), 254 getNumberOfAtoms() (arkane.gaussian.GaussianLog	<pre>getPartitionFunction() (rmgpy.statmech.KRotor</pre>
method), 4	getPartitionFunction()
getNumberOfAtoms() (arkane.molpro.MolproLog	(rmgpy.statmech.LinearRotor method), 242
method), 6	<pre>getPartitionFunction()</pre>
<pre>getNumberOfAtoms() (arkane.qchem.QChemLog</pre>	(rmgpy.statmech.NonlinearRotor method),
method), 5	243
<pre>getOrderNum() (rmgpy.molecule.Bond method), 116</pre>	<pre>getPartitionFunction()</pre>
<pre>getOrderNum() (rmgpy.molecule.GroupBond method),</pre>	(rmgpy.statmech.SphericalTopRotor method), 246
getOrderStr() (rmgpy.molecule.Bond method), 116	getPolycyclicRings()
getOrderStr() (rmgpy.molecule.GroupBond method), 110	(rmgpy.molecule.graph.Graph method),
131	104 memou),
<pre>getOtherVertex() (rmgpy.molecule.Bond method),</pre>	<pre>getPolycyclicRings() (rmgpy.molecule.Group</pre>
116	method), 135
<pre>getOtherVertex() (rmgpy.molecule.graph.Edge</pre>	<pre>getPolycyclicRings() (rmgpy.molecule.Molecule</pre>
method), 102	method), 123
<pre>getOtherVertex() (rmgpy.molecule.GroupBond</pre>	<pre>getPossibleStructures()</pre>
method), 131	(rmgpy.data.base.LogicOr method), 50
getParser() (rmgpy.qm.gaussian.GaussianMol	<pre>getPotential() (rmgpy.statmech.HinderedRotor</pre>

method), 250	<pre>getReactionTemplate()</pre>
<pre>getPrincipalMomentsOfInertia()</pre>	(rmgpy.data.kinetics.KineticsGroups method),
(rmgpy.statmech.Conformer method), 254	38
getRadicalAtoms() (rmgpy.molecule.Molecule	<pre>getReactionTemplateLabels()</pre>
method), 123	(rmgpy.data.kinetics.KineticsFamily method),
getRadicalCount() (rmgpy.molecule.Molecule	34
method), 123	getRefinedMolFilePath()
<pre>getRateCoefficient()</pre>	(rmgpy.qm.molecule.Geometry method),
method), 21	<pre>getRelevantCycles() (rmgpy.molecule.graph.Graph</pre>
getRateCoefficient()	method), 104
(rmgpy.data.kinetics.LibraryReaction method),	<pre>getRelevantCycles() (rmgpy.molecule.Group</pre>
47	method), 135
<pre>getRateCoefficient()</pre>	<pre>getRelevantCycles() (rmgpy.molecule.Molecule</pre>
(rmgpy. data. kinetics. Template Reaction	method), 123
method), 66	<pre>getResonanceHybrid() (rmgpy.rmg.model.Species</pre>
<pre>getRateCoefficient() (rmgpy.kinetics.Arrhenius</pre>	method), 210
method), 81	getResonanceHybrid() (rmgpy.species.Species
<pre>getRateCoefficient() (rmgpy.kinetics.Chebyshev</pre>	method), 234
method), 90	getReverse() (rmgpy.data.kinetics.ReactionRecipe
<pre>getRateCoefficient() (rmgpy.kinetics.KineticsData</pre>	<pre>method), 51 getRingGroupsFromComments()</pre>
getRateCoefficient() (rmgpy.kinetics.Lindemann	(rmgpy.data.thermo.ThermoDatabase method),
method), 94	70
<pre>getRateCoefficient()</pre>	<pre>getRootTemplate() (rmgpy.data.kinetics.KineticsFamily</pre>
(rmgpy.kinetics.MultiArrhenius method),	method), 34
83	<pre>getRule() (rmgpy.data.kinetics.KineticsRules method),</pre>
<pre>getRateCoefficient()</pre>	42
(rmgpy.kinetics.MultiPDepArrhenius method),	<pre>getSingletCarbeneCount()</pre>
88	(rmgpy.molecule.Molecule method), 123
<pre>getRateCoefficient()</pre>	<pre>getSmallestSetOfSmallestRings()</pre>
(rmgpy.kinetics.PDepArrhenius method),	(rmgpy.molecule.graph.Graph method),
<pre>86 getRateCoefficient()</pre>	104
(rmgpy.kinetics.PDepKineticsData method), 84	<pre>getSmallestSetOfSmallestRings()</pre>
getRateCoefficient() (rmgpy.kinetics.ThirdBody	getSmallestSetOfSmallestRings()
method), 92	(rmgpy.molecule.Molecule method), 123
<pre>getRateCoefficient() (rmgpy.kinetics.Troe method),</pre>	
96	method), 21
<pre>getRateCoefficient() (rmgpy.reaction.Reaction</pre>	<pre>getSource() (rmgpy.data.kinetics.LibraryReaction</pre>
method), 189	method), 47
<pre>getRateCoefficient()</pre>	<pre>getSource() (rmgpy.data.kinetics.TemplateReaction</pre>
(rmgpy.rmg.pdep.PDepReaction method),	method), 66
205	<pre>getSource() (rmgpy.rmg.pdep.PDepReaction method),</pre>
getRateRule() (rmgpy.data.kinetics.KineticsFamily	205
method), 33	getSourcesForTemplate()
<pre>getReactionMatches()</pre>	(rmgpy.data.kinetics.KineticsFamily method), 34
(mgpy.aaia.kinetics.KineticsFamily method), 33	getSpecies() (rmgpy.data.base.Database method), 17
<pre>getReactionPairs() (rmgpy.data.kinetics.KineticsFami</pre>	
method), 34	method), 28
<pre>getReactionTemplate()</pre>	getSpecies() (rmgpy.data.kinetics.KineticsFamily
(rmgpy.data.kinetics.KineticsFamily method),	method), 34
34	${\tt getSpecies()} \qquad (\textit{rmgpy.data.kinetics.KineticsGroups}$

method), 38	235
<pre>getSpecies() (rmgpy.data.kinetics.KineticsLibrary</pre>	<pre>getSumOfStates() (rmgpy.species.TransitionState</pre>
<pre>getSpecies() (rmgpy.data.kinetics.KineticsRules</pre>	<pre>getSumOfStates()</pre>
<pre>getSpecies() (rmgpy.data.statmech.StatmechDepository</pre>	getSumOfStates() (rmgpy.statmech.HarmonicOscillato. method), 248
<pre>getSpecies() (rmgpy.data.statmech.StatmechGroups</pre>	<pre>getSumOfStates() (rmgpy.statmech.HinderedRotor</pre>
<pre>getSpecies() (rmgpy.data.statmech.StatmechLibrary</pre>	<pre>getSumOfStates() (rmgpy.statmech.IdealGasTranslatio</pre>
<pre>getSpecies() (rmgpy.data.thermo.ThermoDepository</pre>	<pre>getSumOfStates() (rmgpy.statmech.KRotor method),</pre>
<pre>getSpecies() (rmgpy.data.thermo.ThermoGroups</pre>	<pre>getSumOfStates()</pre>
<pre>getSpecies() (rmgpy.data.thermo.ThermoLibrary</pre>	<pre>getSumOfStates() (rmgpy.statmech.NonlinearRotor</pre>
<pre>getSpeciesIdentifier() (in module</pre>	<pre>getSumOfStates() (rmgpy.statmech.SphericalTopRotor</pre>
<pre>getStatmechData() (rmgpy.data.statmech.StatmechData</pre>	(rmgpy. data. kinetics. Depository Reaction
<pre>getStatmechData() (rmgpy.data.statmech.StatmechGro method), 59</pre>	<pre>ups method), 22 getSurfaceRateCoefficient()</pre>
<pre>getStatmechDataFromDepository()</pre>	<pre>(rmgpy.data.kinetics.LibraryReaction method), 47 getSurfaceRateCoefficient()</pre>
getStatmechDataFromGroups() (rmgpy.data.statmech.StatmechDatabase	(rmgpy.data.kinetics.TemplateReaction method), 66
method), 51	<pre>getSurfaceRateCoefficient()</pre>
getStatmechDataFromLibrary()	(rmgpy.reaction.Reaction method), 189
(rmgpy.data.statmech.StatmechDatabase method), 51	<pre>getSurfaceRateCoefficient()</pre>
getStoichiometricCoefficient()	205
(rmgpy.data.kinetics.DepositoryReaction	<pre>getSymmetricTopRotors()</pre>
method), 22	(rmgpy.statmech.Conformer method), 254
<pre>getStoichiometricCoefficient()</pre>	<pre>getSymmetryNumber() (rmgpy.molecule.Molecule</pre>
(rmgpy.aaia.kinetics.EtoraryReaction method), 47	getSymmetryNumber() (rmgpy.rmg.model.Species
getStoichiometricCoefficient()	method), 210
(rmgpy.data.kinetics.TemplateReaction method), 66	getSymmetryNumber() (rmgpy.species.Species method), 235
<pre>getStoichiometricCoefficient()</pre>	<pre>getThermoData() (rmgpy.data.thermo.ThermoDatabase</pre>
<pre>getStoichiometricCoefficient()</pre>	<pre>getThermoData() (rmgpy.qm.main.QMCalculator</pre>
205	<pre>getThermoData() (rmgpy.rmg.model.Species method),</pre>
getStoichiometryMatrix()	210
(rmgpy.rmg.model.CoreEdgeReactionModel method), 195	<pre>getThermoData() (rmgpy.species.Species method), 235 getThermoDataForSurfaceSpecies()</pre>
getSumOfStates() (in module	(rmgpy.data.thermo.ThermoDatabase method),
rmgpy.statmech.schrodinger), 252 getSumOfStates() (rmgpy.rmg.model.Species	getThermoDataFromDepository()
method), 210 qetSumOfStates() (rmony species Species method)	(rmgpy.data.thermo.ThermoDatabase method),

<pre>getThermoDataFromGroups()</pre>	(rmgpy.quantity.ScalarQuantity method), 181
70	getURL() (rmgpy.data.kinetics.DepositoryReaction
getThermoDataFromLibraries() (rmgpy.data.thermo.ThermoDatabase method), 70	method), 22 getURL() (rmgpy.data.kinetics.LibraryReaction method), 47
<pre>getThermoDataFromLibrary()</pre>	getURL() (rmgpy.data.kinetics.TemplateReaction
(rmgpy.data.thermo.ThermoDatabase method),	method), 66
70	getURL() (rmgpy.molecule.Molecule method), 123
<pre>getThermoFilePath()</pre>	getURL() (rmgpy.reaction.Reaction method), 189
(rmgpy.qm.gaussian.GaussianMol method),	getURL() (rmgpy.rmg.pdep.PDepReaction method), 205
168	getValue() (rmgpy.quantity.ArrayQuantity method),
<pre>getThermoFilePath()</pre>	183
(rmgpy.qm.gaussian.GaussianMolPM3 method), 170	<pre>getValue() (rmgpy.quantity.ScalarQuantity method),</pre>
<pre>getThermoFilePath()</pre>	<pre>getw0() (rmgpy.data.kinetics.KineticsFamily method),</pre>
(rmgpy.qm.gaussian.GaussianMolPM6	34
method), 171	Graph (class in rmgpy.molecule.graph), 103
<pre>getThermoFilePath()</pre>	<pre>groundStateDegeneracy (rmgpy.qm.qmdata.QMData</pre>
(rmgpy.qm.molecule.QMMolecule method),	attribute), 165
165	Group (class in rmgpy.molecule), 132
<pre>getThermoFilePath() (rmgpy.qm.mopac.MopacMol</pre>	GroupAtom (class in rmgpy.molecule), 128
method), 173	GroupBond (class in rmgpy.molecule), 131
<pre>getThermoFilePath()</pre>	GroupFrequencies (class in rmgpy.data.statmech), 25
(rmgpy.qm.mopac.MopacMolPM3 method), 175	Н
<pre>getThermoFilePath()</pre>	H0 (rmgpy.thermo.Wilhoit attribute), 258
(rmgpy.qm.mopac.MopacMolPM6 method),	H298 (rmgpy.thermo.ThermoData attribute), 255
177	HarmonicOscillator (class in rmgpy.statmech), 247
<pre>getThermoFilePath()</pre>	harmonicOscillator_d_heatCapacity_d_freq()
(rmgpy.qm.mopac.MopacMolPM7 method),	(in module rmgpy.data.statmechfit), 55
178	$harmonic Oscillator_heat Capacity (\verb) (in module$
<pre>getTopLevelGroups()</pre>	rmgpy.data.statmechfit), 55
(rmgpy.data.kinetics.KineticsFamily method),	has_lone_pairs() (rmgpy.molecule.Molecule
34	method), 124
<pre>getTotalMass() (rmgpy.statmech.Conformer method),</pre>	has_reactive_molecule()
254 getTrainingDepository()	(rmgpy.rmg.model.Species method), 210
(rmgpy.data.kinetics.KineticsFamily method),	has_reactive_molecule() (rmgpy.species.Species
(Imgpy.dadd.kinetics.KineticsFamily method), 34	method), 235
<pre>getTrainingSet() (rmgpy.data.kinetics.KineticsFamily</pre>	hasAtom() (rmgpy.molecule.Group method), 136
method), 34	hasAtom() (rmgpy.molecule.Molecule method), 124
getTransportData() (rmgpy.rmg.model.Species	hasBond() (rmgpy.molecule.Group method), 136 hasBond() (rmgpy.molecule.Molecule method), 124
method), 210	hasEdge() (rmgpy.molecule.graph.Graph method), 105
<pre>getTransportData() (rmgpy.species.Species method),</pre>	hasEdge() (rmgpy.molecule.Group method), 136
235	hasEdge() (rmgpy.molecule.Molecule method), 124
<pre>getUncertainty() (rmgpy.quantity.ArrayQuantity</pre>	hasRateRule() (rmgpy.data.kinetics.KineticsFamily
method), 183	method), 34
<pre>getUncertainty() (rmgpy.quantity.ScalarQuantity</pre>	hasRule() (rmgpy.data.kinetics.KineticsRules method),
getUncertaintyType()	42
(rmgpy,quantity.ArrayQuantity method),	hasStatMech() (rmgpy.pdep.Configuration method), 156
183	hasStatMech() (rmgpy.rmg.model.Species method),
<pre>getUncertaintyType()</pre>	210 (rmgpy.rmg.model.species method),

hasStatMech() (rmgpy.species.Species method), 235 hasTemplate() (rmgpy.data.kinetics.DepositoryReaction	<pre>incrementBond (rmgpy.molecule.AtomType attribute),</pre>
method), 22	<pre>incrementLonePair (rmgpy.molecule.AtomType at-</pre>
hasTemplate() (rmgpy.data.kinetics.LibraryReaction	tribute), 109
method), 47	<pre>incrementLonePairs() (rmgpy.molecule.Atom</pre>
hasTemplate() (rmgpy.data.kinetics.TemplateReaction	method), 114
method), 66	<pre>incrementOrder() (rmgpy.molecule.Bond method),</pre>
hasTemplate() (rmgpy.reaction.Reaction method), 189	117
hasTemplate() (rmgpy.rmg.pdep.PDepReaction	<pre>incrementRadical (rmgpy.molecule.AtomType at-</pre>
method), 205	tribute), 109
hasThermo() (rmgpy.pdep.Configuration method), 156	<pre>incrementRadical() (rmgpy.molecule.Atom method),</pre>
hasThermo() (rmgpy.rmg.model.Species method), 210	114
hasThermo() (rmgpy.species.Species method), 235	index (rmgpy.data.kinetics.DepositoryReaction at-
hasVertex() (rmgpy.molecule.graph.Graph method),	tribute), 22
105	index (rmgpy.data.kinetics.LibraryReaction attribute),
hasVertex() (rmgpy.molecule.Group method), 136	47
hasVertex() (rmgpy.molecule.Group memod), 130	index (rmgpy.data.kinetics.TemplateReaction attribute),
hasWildcards() (rmgpy.molecule.GroupAtom	66
method), 129	index (rmgpy.reaction.Reaction attribute), 189
highPlimit (rmgpy.kinetics.Chebyshev attribute), 90	index (rmgpy.rmg.model.Species attribute), 210
	index (rmgpy.rmg.ndaet.species ditribute), 210
highPlimit (rmgpy.kinetics.Lindemann attribute), 94	
highPlimit (rmgpy.kinetics.MultiPDepArrhenius attribute), 88	index (rmgpy.species.Species attribute), 235
	inertia (rmgpy.statmech.HinderedRotor attribute), 250
highPlimit (rmgpy.kinetics.PDepArrhenius attribute),	inertia (rmgpy.statmech.KRotor attribute), 245
86	inertia (rmgpy.statmech.LinearRotor attribute), 242
highPlimit (rmgpy.kinetics.PDepKineticsData attribute), 84	inertia (rmgpy.statmech.NonlinearRotor attribute), 243
highPlimit (rmgpy.kinetics.ThirdBody attribute), 92	$\verb"inertia" (rmgpy. statmech. Spherical Top Rotor \ attribute),$
highPlimit (rmgpy.kinetics.Troe attribute), 96	246
HinderedRotor (class in rmgpy.statmech), 248	initialConcentrations
<pre>hinderedRotor_d_heatCapacity_d_barr()</pre>	(rmgpy.solver.LiquidReactor attribute), 227
module rmgpy.data.statmechfit), 55	<pre>initialize() (arkane.PressureDependenceJob</pre>
<pre>hinderedRotor_d_heatCapacity_d_freq()</pre>	method), 10
module rmgpy.data.statmechfit), 55	<pre>initialize() (rmgpy.data.statmechfit.DirectFit</pre>
<pre>hinderedRotor_heatCapacity() (in module</pre>	method), 55
rmgpy.data.statmechfit), 55	initialize() (rmgpy.data.statmechfit.PseudoFit method), 58
	<pre>initialize() (rmgpy.data.statmechfit.PseudoRotorFit</pre>
id (rmgpy.molecule.Atom attribute), 114	method), 57
IdealGasTranslation (class in rmgpy.statmech), 239	<pre>initialize() (rmgpy.pdep.Network method), 159</pre>
identifyRingMembership()	initialize() (rmgpy.qm.gaussian.GaussianMol
(rmgpy.molecule.Molecule method), 124	method), 168
ignore (rmgpy.molecule.Atom attribute), 114	initialize() (rmgpy.qm.gaussian.GaussianMolPM3
ignore (rmgpy.molecule.graph.Vertex attribute), 102	method), 170
	initialize() (rmgpy.qm.gaussian.GaussianMolPM6
ignore (rmgpy.molecule.GroupAtom attribute), 129 ILPSolutionError, 266	method), 171
	initialize() (rmgpy.qm.main.QMCalculator
ImplicitBenzeneError, 266	method), 163
implicitHydrogens (rmgpy.molecule.Molecule	initialize() (rmgpy.qm.molecule.QMMolecule
attribute), 124	method), 165
InChI (rmgpy.molecule.Molecule attribute), 118	initialize() (rmgpy.qm.mopac.MopacMol method),
InChI (rmgpy.rmg.model.Species attribute), 208	173
InChI (rmgpy.species.Species attribute), 233	initialize() (rmgpy.qm.mopac.MopacMolPM3
InchiException, 266	method), 175

<pre>initialize() (rmgpy.qm.mopac.MopacMolPM6</pre>	<pre>inputFileKeywords() (rmgpy.qm.mopac.MopacMol</pre>
<pre>initialize() (rmgpy.qm.mopac.MopacMolPM7</pre>	<pre>inputFileKeywords()</pre>
<pre>method), 178 initialize() (rmgpy.rmg.main.RMG method), 198</pre>	(rmgpy.qm.mopac.MopacMolPM3 method), 175
initialize() (rmgpy.rmg.pdep.PDepNetwork	<pre>inputFileKeywords()</pre>
method), 201	(rmgpy.qm.mopac.MopacMolPM6 method),
<pre>initialize() (rmgpy.solver.LiquidReactor method),</pre>	177
227	<pre>inputFileKeywords()</pre>
<pre>initialize() (rmgpy.solver.ReactionSystem method),</pre>	(rmgpy.qm.mopac.MopacMolPM7 method), 178
<pre>initialize() (rmgpy.solver.SimpleReactor method),</pre>	<pre>inputFilePath (rmgpy.qm.gaussian.GaussianMol at- tribute), 168</pre>
<pre>initialize_solver() (rmgpy.solver.LiquidReactor</pre>	<pre>inputFilePath (rmgpy.qm.gaussian.GaussianMolPM3</pre>
<pre>initialize_solver() (rmgpy.solver.ReactionSystem</pre>	<pre>inputFilePath (rmgpy.qm.gaussian.GaussianMolPM6</pre>
<pre>initialize_solver() (rmgpy.solver.SimpleReactor</pre>	<pre>inputFilePath (rmgpy.qm.molecule.QMMolecule at- tribute), 165</pre>
<pre>initialize_surface() (rmgpy.solver.LiquidReactor</pre>	<pre>inputFilePath (rmgpy.qm.mopac.MopacMol at- tribute), 173</pre>
<pre>initialize_surface()</pre>	<pre>inputFilePath (rmgpy.qm.mopac.MopacMolPM3 at- tribute), 175</pre>
<pre>initialize_surface() (rmgpy.solver.SimpleReactor</pre>	<pre>inputFilePath (rmgpy.qm.mopac.MopacMolPM6 at- tribute), 177</pre>
<pre>initializeIndexSpeciesDict()</pre>	inputFilePath (rmgpy.qm.mopac.MopacMolPM7 at-
(rmgpy.rmg.model.CoreEdgeReactionModel	tribute), 178
method), 195	<pre>inputFilePath (rmgpy.qm.symmetry.SymmetryJob at-</pre>
initializeLog() (arkane.Arkane method), 7	tribute), 166
initializeLog() (in module rmgpy.rmg.main), 199	InvalidActionError, 267
initializeModel() (rmgpy.solver.LiquidReactor	InvalidAdjacencyListError, 267
method), 228	invalidate() (rmgpy.pdep.Network method), 159
<pre>initializeModel() (rmgpy.solver.ReactionSystem</pre>	<pre>invalidate()</pre>
initializeModel() (rmgpy.solver.SimpleReactor	InvalidMicrocanonicalRateError, 267
method), 221	is_atom_able_to_gain_lone_pair (in module
initialMoleFractions (rmgpy.solver.SimpleReactor	rmgpy.molecule.pathfinder), 146
attribute), 220	is_atom_able_to_lose_lone_pair (in module
initiate_tolerances()	rmgpy.molecule.pathfinder), 146
<pre>(rmgpy.solver.LiquidReactor method), 228 initiate_tolerances()</pre>	<pre>is_equal() (rmgpy.molecule.Molecule method), 125 is_forward (rmgpy.data.kinetics.DepositoryReaction</pre>
(rmgpy.solver.ReactionSystem method), 214	attribute), 23
<pre>initiate_tolerances()</pre>	is_forward (rmgpy.data.kinetics.LibraryReaction at-
(rmgpy.solver.SimpleReactor method), 221	tribute), 48
InputError, 266	is_forward (rmgpy.data.kinetics.TemplateReaction at-
inputFileKeywords()	tribute), 67
(rmgpy.qm.gaussian.GaussianMol method),	is_forward (rmgpy.reaction.Reaction attribute), 190
168	is_forward (rmgpy.rmg.pdep.PDepReaction attribute),
<pre>inputFileKeywords()</pre>	206
(rmgpy.qm.gaussian.GaussianMolPM3	<pre>is_structure_in_list() (rmgpy.rmg.model.Species</pre>
method), 170	method), 211
<pre>inputFileKeywords()</pre>	<pre>is_structure_in_list() (rmgpy.species.Species</pre>
(rmgpy.qm.gaussian.GaussianMolPM6	method), 235
method), 171	isAromatic() (rmgpy.molecule.Molecule method), 124

<pre>isAromaticRing() (rmgpy.molecule.Group method),</pre>	method), 105
136	<pre>isEdgeInCycle() (rmgpy.molecule.Group method),</pre>
<pre>isArylRadical() (rmgpy.molecule.Molecule method),</pre>	136
124	<pre>isEdgeInCycle() (rmgpy.molecule.Molecule method),</pre>
isAssociation() (rmgpy.data.kinetics.DepositoryReact	ion 124
method), 22	<pre>isEntryMatch() (rmgpy.data.kinetics.KineticsFamily</pre>
<pre>isAssociation() (rmgpy.data.kinetics.LibraryReaction</pre>	method), 34
method), 47	isFluorine() (rmgpy.molecule.Atom method), 115
isAssociation() (rmgpy.data.kinetics.TemplateReaction	
method), 67	isHydrogenBond() (rmgpy.molecule.Bond method),
isAssociation() (rmgpy.reaction.Reaction method),	117
189	isHydrogenBond() (rmgpy.molecule.GroupBond
isAssociation() (rmgpy.rmg.pdep.PDepReaction	method), 131
method), 206	isIdentical() (rmgpy.molecule.Group method), 136
isAtomInCycle() (rmgpy.molecule.Molecule method),	isIdentical() (rmgpy.molecule.Molecule method),
124	124
	isIdentical() (rmgpy.rmg.model.Species method),
isBalanced() (rmgpy.data.kinetics.DepositoryReaction	
method), 22	210
isBalanced() (rmgpy.data.kinetics.LibraryReaction	isIdentical() (rmgpy.species.Species method), 235
method), 48	isIdenticalTo() (rmgpy.kinetics.Arrhenius method),
isBalanced() (rmgpy.data.kinetics.TemplateReaction	82
method), 67	isIdenticalTo() (rmgpy.kinetics.Chebyshev method),
isBalanced() (rmgpy.reaction.Reaction method), 189	90
isBalanced() (rmgpy.rmg.pdep.PDepReaction	isIdenticalTo() (rmgpy.kinetics.KineticsData
method), 206	method), 80
isBenzene() (rmgpy.molecule.Bond method), 117	isIdenticalTo() (rmgpy.kinetics.Lindemann method),
isBenzene() (rmgpy.molecule.GroupBond method),	94
131	isIdenticalTo() (rmgpy.kinetics.MultiArrhenius
isBenzeneExplicit() (rmgpy.molecule.Group	method), 83
method), 136	isIdenticalTo()(rmgpy.kinetics.MultiPDepArrhenius
<pre>isBimolecular() (rmgpy.pdep.Configuration method),</pre>	method), 88
156	isIdenticalTo() (rmgpy.kinetics.PDepArrhenius
<pre>isBondInCycle() (rmgpy.molecule.Molecule method),</pre>	method), 86
124	isIdenticalTo() (rmgpy.kinetics.PDepKineticsData
isCarbon() (rmgpy.molecule.Atom method), 115	method), 85
isCarbon() (rmgpy.molecule.GroupAtom method), 129	isIdenticalTo() (rmgpy.kinetics.ThirdBody method),
isChlorine() (rmgpy.molecule.Atom method), 115	92
isCyclic() (rmgpy.molecule.graph.Graph method),	isIdenticalTo() (rmgpy.kinetics.Troe method), 97
105	isIdenticalTo() (rmgpy.thermo.NASA method), 262
isCyclic() (rmgpy.molecule.Group method), 136	isIdenticalTo() (rmgpy.thermo.NASAPolynomial
isCyclic() (rmgpy.molecule.Molecule method), 124	method), 265
isDissociation() (rmgpy.data.kinetics.DepositoryReac	
	01.
method), 22	method), 256
isDissociation() (rmgpy.data.kinetics.LibraryReaction	
method), 48	isIodine() (rmgpy.molecule.Atom method), 115
	omisIsomerization() (rmgpy.data.kinetics.DepositoryReaction
method), 67	method), 22
<pre>isDissociation() (rmgpy.reaction.Reaction method),</pre>	isIsomerization() (rmgpy.data.kinetics.LibraryReaction
190	method), 48
isDissociation() (rmgpy.rmg.pdep.PDepReaction	<pre>isIsomerization() (rmgpy.data.kinetics.TemplateReaction</pre>
method), 206	method), 67
isDouble() (rmgpy.molecule.Bond method), 117	isIsomerization() (rmgpy.reaction.Reaction
isDouble() (rmgpy.molecule.GroupBond method), 131	method), 190
<pre>isEdgeInCycle() (rmgpy.molecule.graph.Graph</pre>	<pre>isIsomerization() (rmgpy.rmg.pdep.PDepReaction</pre>

method), 206	<pre>isPressureDependent()</pre>
isIsomorphic() (rmgpy.data.kinetics.DepositoryReactio method), 22	
isIsomorphic() (rmgpy.data.kinetics.LibraryReaction	isPressureDependent()
method), 48 isIsomorphic() (rmgpy.data.kinetics.TemplateReaction	
method), 67 isIsomorphic() (rmgpy.molecule.graph.Graph	method), 92 isPressureDependent() (rmgpy.kinetics.Troe
method), 105 isIsomorphic() (rmgpy.molecule.Group method), 136 isIsomorphic() (rmgpy.molecule.Molecule.method)	method), 97 isPressureValid() (rmgpy.kinetics.Chebyshev
isIsomorphic() (rmgpy.molecule.Molecule method), 124	method), 90 isPressureValid() (rmgpy.kinetics.Lindemann
isIsomorphic() (rmgpy.molecule.vf2.VF2 method), 106	<pre>method), 94 isPressureValid() (rmgpy.kinetics.MultiPDepArrhenius</pre>
isIsomorphic() (rmgpy.reaction.Reaction method), 190	<pre>method), 88 isPressureValid() (rmgpy.kinetics.PDepArrhenius</pre>
isIsomorphic() (rmgpy.rmg.model.Species method), 210	<pre>method), 87 isPressureValid() (rmgpy.kinetics.PDepKineticsData</pre>
isIsomorphic() (rmgpy.rmg.pdep.PDepReaction method), 206	<pre>method), 85 isPressureValid() (rmgpy.kinetics.ThirdBody</pre>
isIsomorphic() (rmgpy.species.Species method), 235 isLinear() (rmgpy.molecule.Molecule method), 125	method), 92 isPressureValid() (rmgpy.kinetics.Troe method), 97
isMappingValid() (rmgpy.molecule.graph.Graph	isQuadruple() (rmgpy.molecule.Bond method), 117
method), 105 isMappingValid() (rmgpy.molecule.Group method),	<pre>isQuadruple() (rmgpy.molecule.GroupBond method),</pre>
136 isMappingValid() (rmgpy.molecule.Molecule	isRadical() (rmgpy.molecule.Molecule method), 125 isSilicon() (rmgpy.molecule.Atom method), 115
<pre>method), 125 isMoleculeForbidden()</pre>	isSimilarTo() (rmgpy.kinetics.Arrhenius method), 82 isSimilarTo() (rmgpy.kinetics.Chebyshev method), 90
(rmgpy.data.kinetics.KineticsFamily method),	isSimilarTo() (rmgpy.kinetics.Chebyshev method),
34	80
<pre>isNitrogen() (rmgpy.molecule.Atom method), 115 isNitrogen() (rmgpy.molecule.GroupAtom method),</pre>	isSimilarTo() (rmgpy.kinetics.Lindemann method), 94
129 isNonHydrogen() (rmgpy.molecule.Atom method), 115	isSimilarTo() (rmgpy.kinetics.MultiArrhenius method), 83
isNOS() (rmgpy.molecule.Atom method), 115 isOrder() (rmgpy.molecule.Bond method), 117	isSimilarTo() (rmgpy.kinetics.MultiPDepArrhenius method), 88
isotope (rmgpy.molecule.Element attribute), 107 is0xygen() (rmgpy.molecule.Atom method), 115	isSimilarTo() (rmgpy.kinetics.PDepArrhenius method), 87
isOxygen() (rmgpy.molecule.GroupAtom method), 129	isSimilarTo() (rmgpy.kinetics.PDepKineticsData
<pre>isPressureDependent() (rmgpy.kinetics.Arrhenius</pre>	method), 85 isSimilarTo() (rmgpy.kinetics.ThirdBody method), 92
<pre>isPressureDependent() (rmgpy.kinetics.Chebyshev</pre>	isSimilarTo() (rmgpy.kinetics.Troe method), 97 isSimilarTo() (rmgpy.thermo.NASA method), 262
isPressureDependent()	isSimilarTo() (rmgpy.thermo.NASAPolynomial
(rmgpy.kinetics.KineticsData method), 80 isPressureDependent() (rmgpy.kinetics.Lindemann method), 94	method), 265 isSimilarTo() (rmgpy.thermo.ThermoData method), 256
isPressureDependent()	isSimilarTo() (rmgpy.thermo.Wilhoit method), 259
(rmgpy.kinetics.MultiArrhenius method), 83	isSingle() (rmgpy.molecule.Bond method), 117 isSingle() (rmgpy.molecule.GroupBond method), 131
isPressureDependent()	isSolvent (rmgpy.rmg.model.Species attribute), 211
(rmgpy.kinetics.MultiPDepArrhenius method), 88	<pre>isSolvent (rmgpy.species.Species attribute), 235 isSpecificCaseOf() (rmgpy.molecule.Atom method),</pre>
~ ~	

115	isTemperatureValid() (rmgpy.kinetics.Lindemann
<pre>isSpecificCaseOf() (rmgpy.molecule.AtomType</pre>	method), 94
method), 109	<pre>isTemperatureValid()</pre>
<pre>isSpecificCaseOf() (rmgpy.molecule.Bond method),</pre>	(rmgpy.kinetics.MultiArrhenius method), 83
$\verb isSpecificCaseOf() (rmgpy.molecule.graph. Edge $	isTemperatureValid()
method), 102	(rmgpy.kinetics.MultiPDepArrhenius method),
<pre>isSpecificCaseOf() (rmgpy.molecule.graph.Vertex</pre>	88
method), 102	isTemperatureValid()
<pre>isSpecificCaseOf() (rmgpy.molecule.GroupAtom</pre>	(rmgpy.kinetics.PDepArrhenius method), 87
$\verb isSpecificCaseOf() & (rmgpy.molecule.GroupBond) \\$	isTemperatureValid()
method), 132	(rmgpy.kinetics.PDepKineticsData method), 85
<pre>isSubgraphIsomorphic()</pre>	<pre>isTemperatureValid() (rmgpy.kinetics.ThirdBody</pre>
(rmgpy.molecule.graph.Graph method),	method), 92
105	<pre>isTemperatureValid() (rmgpy.kinetics.Troe method),</pre>
$\verb isSubgraphIsomorphic() (rmgpy.molecule.Group $	97
method), 137	isTemperatureValid() (rmgpy.thermo.NASA
isSubgraphIsomorphic() (rmgpy.molecule.Molecule	method), 262
method), 125	isTemperatureValid()
isSubgraphIsomorphic() (rmgpy.molecule.vf2.VF2 method), 106	(rmgpy.thermo.NASAPolynomial method), 265
isSulfur() (rmgpy.molecule.Atom method), 115	<pre>isTemperatureValid() (rmgpy.thermo.ThermoData</pre>
isSulfur() (rmgpy.molecule.GroupAtom method), 130	method), 256
isSurfaceReaction()	isTemperatureValid() (rmgpy.thermo.Wilhoit
(rmgpy.data.kinetics.DepositoryReaction	method), 259
method), 23	isTransitionState() (rmgpy.pdep.Configuration
isSurfaceReaction()	method), 156
(rmgpy.data.kinetics.LibraryReaction method),	isTriple() (rmgpy.molecule.Bond method), 117
48	isTriple() (rmgpy.molecule.GroupBond method), 132
isSurfaceReaction()	isUncertaintyAdditive()
(rmgpy.data.kinetics.TemplateReaction method), 67	(rmgpy.quantity.ArrayQuantity method), 183
isSurfaceReaction() (rmgpy.reaction.Reaction	isUncertaintyAdditive()
method), 190	(rmgpy.quantity.ScalarQuantity method),
isSurfaceReaction()	181
(rmgpy.rmg.pdep.PDepReaction method),	<pre>isUncertaintyMultiplicative()</pre>
206	(rmgpy.quantity.ArrayQuantity method),
isSurfaceSite() (rmgpy.molecule.Atom method), 115	183
<pre>isSurfaceSite() (rmgpy.molecule.Group method),</pre>	isUncertaintyMultiplicative()
137	(rmgpy.quantity.ScalarQuantity method),
isSurfaceSite() (rmgpy.molecule.GroupAtom	181
method), 130	isUnimolecular() (rmgpy.data.kinetics.DepositoryReaction
<pre>isSurfaceSite() (rmgpy.molecule.Molecule method),</pre>	method), 23
125	isUnimolecular() (rmgpy.data.kinetics.LibraryReaction
isSurfaceSite() (rmgpy.rmg.model.Species method),	method), 48
211	isUnimolecular() (rmgpy.data.kinetics.TemplateReaction
isSurfaceSite() (rmgpy.species.Species method), 235	method), 67
isTemperatureValid() (rmgpy.kinetics.Arrhenius	isUnimolecular() (rmgpy.pdep.Configuration
method), 82	method), 156
isTemperatureValid() (rmgpy.kinetics.Chebyshev method), 90	isUnimolecular() (rmgpy.reaction.Reaction method), 190
isTemperatureValid() (rmgpy.kinetics.KineticsData	isUnimolecular() (rmgpy.rmg.pdep.PDepReaction
method) 80	method) 206

isVanDerWaals() (rmgpy.molecule.Bond method), 117 isVanDerWaals() (rmgpy.molecule.GroupBond	kinetics (rmgpy.data.kinetics.LibraryReaction at- tribute), 48
method), 132	kinetics (rmgpy.data.kinetics.TemplateReaction
<pre>isVertexInCycle() (rmgpy.molecule.graph.Graph</pre>	attribute), 67
method), 105	kinetics (rmgpy.reaction.Reaction attribute), 190
<pre>isVertexInCycle() (rmgpy.molecule.Group method), 137</pre>	kinetics (rmgpy.rmg.pdep.PDepReaction attribute), 206
isVertexInCycle() (rmgpy.molecule.Molecule method), 125	KineticsData (class in rmgpy.kinetics), 79 KineticsDatabase (class in rmgpy.data.kinetics), 25
J	KineticsDepository (class in rmgpy.data.kinetics), 27
<pre>jacobian() (rmgpy.solver.LiquidReactor method), 228</pre>	KineticsError, 267
jacobian() (rmgpy.solver.SimpleReactor method), 221 jacobianMatrix (rmgpy.solver.LiquidReactor at-	KineticsFamily (class in rmgpy.data.kinetics), 29 KineticsGroups (class in rmgpy.data.kinetics), 37 KineticsJob (class in arkane), 6
tribute), 228 jacobianMatrix (rmgpy.solver.ReactionSystem at-	KineticsLibrary (class in rmgpy.data.kinetics), 39
tribute), 214	KineticsRules (class in rmgpy.data.kinetics), 42
<pre>jacobianMatrix (rmgpy.solver.SimpleReactor at- tribute), 221</pre>	KRotor (class in rmgpy.statmech), 244 kunits (rmgpy.kinetics.Chebyshev attribute), 91
K	L
k_effective_cache (rmgpy.data.kinetics.DepositoryRed attribute), 23	actabel (rmgpy.data.kinetics.DepositoryReaction at- tribute), 23
k_effective_cache (rmgpy.data.kinetics.LibraryReaction attribute), 48	on abel (rmgpy.data.kinetics.LibraryReaction attribute), 48
k_effective_cache (rmgpy.data.kinetics.TemplateReach attribute), 67	tibabel (rmgpy.data.kinetics.TemplateReaction attribute), 68
k_effective_cache (rmgpy.reaction.Reaction at-	label (rmgpy.molecule.Atom attribute), 115
tribute), 190	label (rmgpy.molecule.AtomType attribute), 109
k_effective_cache (rmgpy.rmg.pdep.PDepReaction	label (rmgpy.molecule.GroupAtom attribute), 130
attribute), 206	label (rmgpy.reaction.Reaction attribute), 190
kb (rmgpy.solver.LiquidReactor attribute), 228	label (rmgpy.rmg.model.Species attribute), 211
kb (rmgpy.solver.ReactionSystem attribute), 214	label (rmgpy.rmg.pdep.PDepNetwork attribute), 201
kb (rmgpy.solver.SimpleReactor attribute), 221	label (rmgpy.rmg.pdep.PDepReaction attribute), 206
kdata (rmgpy.kinetics.KineticsData attribute), 80	label (rmgpy.species.Species attribute), 236 label (rmgpy.species.TransitionState attribute), 237
kdata (rmgpy.kinetics.PDepKineticsData attribute), 85	label (rmgpy.thermo.NASA attribute), 262
KekulizationError, 267	label (rmgpy.thermo.NASAPolynomial attribute), 265
kekulize() (in module rmgpy.molecule.kekulize), 144	label (rmgpy.thermo.TvAsAr olynomiat attribute), 266
kekulize() (rmgpy.molecule.kekulize.AromaticRing	label (rmgpy.thermo.Wilhoit attribute), 259
method), 143	LibraryReaction (class in rmgpy.data.kinetics), 44
kekulize() (rmgpy.molecule.Molecule method), 125	Lindemann (class in rmgpy.kinetics), 93
Keq (rmgpy.solver.LiquidReactor attribute), 225 Keq (rmgpy.solver.ReactionSystem attribute), 212	LinearRotor (class in rmgpy.statmech), 241
Keq (rmgpy.solver.Keactionsystem attribute), 212 Keq (rmgpy.solver.SimpleReactor attribute), 218	LiquidReactor (class in rmgpy.solver), 225
keywords (rmgpy.qm.gaussian.GaussianMolPM3	load() (arkane.StatMechJob method), 11
attribute), 170	load() (rmgpy.data.base.Database method), 17
keywords (rmgpy.qm.gaussian.GaussianMolPM6 attribute), 171	load() (rmgpy.data.kinetics.KineticsDatabase method), 26
keywords (rmgpy.qm.mopac.MopacMol attribute), 174	load() (rmgpy.data.kinetics.KineticsFamily method), 34
kf (rmgpy.solver.LiquidReactor attribute), 228	load() (rmgpy.data.kinetics.KineticsGroups method),
kf (rmgpy.solver.ReactionSystem attribute), 214	38
kf (rmgpy.solver.SimpleReactor attribute), 221	load() (rmgpy.data.kinetics.KineticsRules method), 42
kinetics (rmgpy.data.kinetics.DepositoryReaction at- tribute), 23	load() (rmgpy.data.statmech.StatmechDatabase method), 51

load() (rmgpy.data.statmech.StatmechDepository method), 53	method), 26 loadLibraries() (rmgpy.data.statmech.StatmechDatabase
load() (rmgpy.data.statmech.StatmechGroups method),	method), 52
59	loadLibraries()(rmgpy.data.thermo.ThermoDatabase
<pre>load() (rmgpy.data.statmech.StatmechLibrary method),</pre>	method), 71
61	<pre>loadNegativeFrequency()</pre>
<pre>load() (rmgpy.data.thermo.ThermoDatabase method), 71</pre>	(arkane.gaussian.GaussianLog method), 5
load() (rmgpy.data.thermo.ThermoDepository method), 72	<pre>loadNegativeFrequency() (arkane.molpro.MolproLog method), 6</pre>
load() (rmgpy.data.thermo.ThermoGroups method), 75	loadNegativeFrequency()
load() (rmgpy.data.thermo.ThermoLibrary method), 77	(arkane.qchem.QChemLog method), 5
<pre>loadChemkinFile() (in module rmgpy.chemkin), 12</pre>	loadOld() (rmgpy.data.base.Database method), 17
loadConformer() (arkane.gaussian.GaussianLog	loadOld() (rmgpy.data.kinetics.KineticsDatabase
method), 4	method), 26
loadConformer() (arkane.molpro.MolproLog method), 6	loadOld() (rmgpy.data.kinetics.KineticsDepository method), 28
loadConformer() (arkane.qchem.QChemLog method),	loadOld() (rmgpy.data.kinetics.KineticsFamily
5	method), 35
loadDepository() (rmgpy.data.statmech.StatmechDatal	
method), 51	method), 38
<pre>loadDepository() (rmgpy.data.thermo.ThermoDatabase</pre>	eloadOld() (rmgpy.data.kinetics.KineticsLibrary method), 40
loadEnergy() (arkane.gaussian.GaussianLog method), 4	loadOld() (rmgpy.data.kinetics.KineticsRules method), 43
loadEnergy() (arkane.molpro.MolproLog method), 6	loadOld() (rmgpy.data.statmech.StatmechDatabase
loadEnergy() (arkane.qchem.QChemLog method), 5	method), 52
loadEntry() (rmgpy.data.kinetics.KineticsGroups method), 38	loadOld() (rmgpy.data.statmech.StatmechDepository method), 53
loadFamilies() (rmgpy.data.kinetics.KineticsDatabase	loadOld() (rmgpy.data.statmech.StatmechGroups
method), 26	method), 59
loadForbidden() (rmgpy.data.kinetics.KineticsFamily method), 35	loadOld() (rmgpy.data.statmech.StatmechLibrary method), 62
loadForceConstantMatrix()	loadOld() (rmgpy.data.thermo.ThermoDatabase
(arkane.gaussian.GaussianLog method),	method), 71
5	loadOld() (rmgpy.data.thermo.ThermoDepository
loadForceConstantMatrix()	method), 73
(arkane.molpro.MolproLog method), 6	loadOld() (rmgpy.data.thermo.ThermoGroups
loadForceConstantMatrix()	method), 75
(arkane.qchem.QChemLog method), 5	loadOld() (rmgpy.data.thermo.ThermoLibrary
loadGeometry() (arkane.gaussian.GaussianLog	method), 77
method), 5	loadOldDictionary() (rmgpy.data.base.Database
<pre>loadGeometry() (arkane.molpro.MolproLog method),</pre>	method), 17
6	loadOldDictionary()
<pre>loadGeometry() (arkane.qchem.QChemLog method), 5</pre>	(rmgpy.data.kinetics.KineticsDepository method), 28
loadGroups() (rmgpy.data.statmech.StatmechDatabase	<pre>loadOldDictionary()</pre>
method), 52	(rmgpy.data.kinetics.KineticsFamily method),
loadGroups() (rmgpy.data.thermo.ThermoDatabase	35
method), 71	<pre>loadOldDictionary()</pre>
loadInput() (rmgpy.rmg.main.RMG method), 198	(rmgpy.data.kinetics.KineticsGroups method),
loadInputFile() (arkane.Arkane method), 8	38
loadInputFile() (in module arkane.input), 6	loadOldDictionary() (rmeny data kinetics Kinetics Library method)
TOAUT TOLATTES LITEMODY NAME KINERCS KINERCS DATABASE	·

40	d D 20
40 loadOldDictionary()	method), 38 loadOldTree() (rmgpy.data.kinetics.KineticsLibrary
(rmgpy.data.kinetics.KineticsRules method), 43	method), 40
loadOldDictionary()	loadOldTree() (rmgpy.data.kinetics.KineticsRules
(rmgpy.data.statmech.StatmechDepository	method), 43
method), 53	loadOldTree() (rmgpy.data.statmech.StatmechDepository
<i>**</i>	
loadOldDictionary()	method), 53
(rmgpy.data.statmech.StatmechGroups method), 59	loadOldTree() (rmgpy.data.statmech.StatmechGroups method), 60
loadOldDictionary()	<pre>loadOldTree() (rmgpy.data.statmech.StatmechLibrary</pre>
(rmgpy.data.statmech.StatmechLibrary	method), 62
method), 62	<pre>loadOldTree() (rmgpy.data.thermo.ThermoDepository</pre>
loadOldDictionary()	method), 73
(rmgpy.data.thermo.ThermoDepository	loadOldTree() (rmgpy.data.thermo.ThermoGroups
method), 73	method), 75
loadOldDictionary()	<pre>loadOldTree() (rmgpy.data.thermo.ThermoLibrary</pre>
(rmgpy.data.thermo.ThermoGroups method),	method), 77
75	loadRecipe() (rmgpy.data.kinetics.KineticsFamily
loadOldDictionary()	method), 35
(rmgpy.data.thermo.ThermoLibrary method),	<pre>loadRecommendedFamiliesList()</pre>
77	(rmgpy.data.kinetics.KineticsDatabase
loadOldLibrary() (rmgpy.data.base.Database	method), 27
method), 17	<pre>loadRestartFile() (rmgpy.rmg.main.RMG method),</pre>
load0ldLibrary() (rmgpy.data.kinetics.KineticsDeposit	
method), 28	loadRMGJavaInput() (rmgpy.rmg.main.RMG
loadOldLibrary() (rmgpy.data.kinetics.KineticsFamily	method), 198
method), 35	loadScanEnergies() (arkane.gaussian.GaussianLog
loadOldLibrary() (rmgpy.data.kinetics.KineticsGroups	method), 5
method), 38	loadScanEnergies() (arkane.molpro.MolproLog
load0ldLibrary() (rmgpy.data.kinetics.KineticsLibrary	method), 6
method), 40	loadScanEnergies() (arkane.qchem.QChemLog
loadOldLibrary() (rmgpy.data.kinetics.KineticsRules	method), 5
method), 43	loadSpeciesDictionary() (in module
load0ldLibrary() (rmgpy.data.statmech.StatmechDepo	
method), 53	loadTemplate() (rmgpy.data.kinetics.KineticsFamily
loadOldLibrary() (rmgpy.data.statmech.StatmechGrou	
method), 60	loadThermoData() (rmgpy.qm.gaussian.GaussianMol
loadOldLibrary()(rmgpy.data.statmech.StatmechLibra	
method), 62	loadThermoData() (rmgpy.qm.gaussian.GaussianMolPM3
loadOldLibrary()(rmgpy.data.thermo.ThermoDeposite	pry method), 170
method), 73	loadThermoData() (rmgpy.qm.gaussian.GaussianMolPMo
loadOldLibrary()(rmgpy.data.thermo.ThermoGroups	method), 171
method), 75	loadThermoData() (rmgpy.qm.molecule.QMMolecule
loadOldLibrary()(rmgpy.data.thermo.ThermoLibrary	method), 165
method), 77	loadThermoData() (rmgpy.qm.mopac.MopacMol
loadOldTemplate() (rmgpy.data.kinetics.KineticsFamily	
method), 35	loadThermoData() (rmgpy.qm.mopac.MopacMolPM3
loadOldTree() (rmgpy.data.base.Database method),	method), 175
18	loadThermoData() (rmgpy.qm.mopac.MopacMolPM6
loadOldTree() (rmgpy.data.kinetics.KineticsDepository	method), 177
method), 28	loadThermoData() (rmgpy.qm.mopac.MopacMolPM7
loadOldTree() (rmgpy.data.kinetics.KineticsFamily	method), 178
method), 35	<pre>loadThermoInput() (rmgpy.rmg.main.RMG method),</pre>
loadOldTree() (rmgpy.data.kinetics.KineticsGroups	198

<pre>loadTransportFile() (in module rmgpy.chemkin), 12 loadZeroPointEnergy()</pre>	<pre>make_object() (rmgpy.thermo.ThermoData method),</pre>
(arkane.gaussian.GaussianLog method), 5	make_object() (rmgpy.thermo.Wilhoit method), 260 makeBond() (rmgpy.molecule.GroupBond method), 132
<pre>loadZeroPointEnergy() (arkane.molpro.MolproLog</pre>	<pre>makeLogicNode() (in module rmgpy.data.base), 50</pre>
method), 6	<pre>makeNewPDepReaction()</pre>
<pre>loadZeroPointEnergy() (arkane.qchem.QChemLog method), 6</pre>	(rmgpy.rmg.model.CoreEdgeReactionModel method), 195
logConversions() (rmgpy.solver.LiquidReactor method), 228	<pre>makeNewReaction() (rmgpy.rmg.model.CoreEdgeReactionModel</pre>
logConversions() (rmgpy.solver.ReactionSystem method), 214	makeNewSpecies() (rmgpy.rmg.model.CoreEdgeReactionModel method), 195
logConversions() (rmgpy.solver.SimpleReactor method), 221	<pre>makeProfileGraph() (in module rmgpy.rmg.main),</pre>
logFooter() (arkane.Arkane method), 8	<pre>makeSampleAtom() (rmgpy.molecule.GroupAtom</pre>
logHeader() (arkane.Arkane method), 8	method), 130
logHeader() (rmgpy.rmg.main.RMG method), 198	<pre>makeSampleMolecule() (rmgpy.molecule.Group</pre>
LogicAnd (class in rmgpy.data.base), 50	method), 137
LogicNode (class in rmgpy.data.base), 50	makeSeedMech() (rmgpy.rmg.main.RMG method), 198
LogicOr (class in rmgpy.data.base), 50	<pre>makeSpeciesLabelsIndependent()</pre>
logRates() (rmgpy.solver.LiquidReactor method), 228	(rmgpy.rmg.main.RMG method), 198
<pre>logRates() (rmgpy.solver.ReactionSystem method),</pre>	makeTree() (rmgpy.data.kinetics.KineticsFamily method), 35
logRates() (rmgpy.solver.SimpleReactor method), 221	<pre>mapDensitiesOfStates() (rmgpy.pdep.Network</pre>
lonePairs (rmgpy.molecule.Atom attribute), 115	method), 159
lonePairs (rmgpy.molecule.AtomType attribute), 109	<pre>mapDensitiesOfStates()</pre>
lonePairs (rmgpy.molecule.GroupAtom attribute), 130	(rmgpy.rmg.pdep.PDepNetwork method), 201
M	<pre>mapDensityOfStates() (rmgpy.pdep.Configuration</pre>
<pre>make_object() (rmgpy.pdep.SingleExponentialDown</pre>	method), 157
method), 154	mapping (rmgpy.molecule.Atom attribute), 115
<pre>make_object() (rmgpy.quantity.ArrayQuantity</pre>	mapping (rmgpy.molecule.graph.Vertex attribute), 102
method), 183	mapping (rmgpy.molecule.GroupAtom attribute), 130
make_object() (rmgpy.quantity.ScalarQuantity method), 182	mapSumOfStates() (rmgpy.pdep.Configuration method), 157
<pre>make_object() (rmgpy.statmech.Conformer method),</pre>	<pre>markChemkinDuplicates()</pre>
254	(rmgpy.rmg.model.CoreEdgeReactionModel
<pre>make_object() (rmgpy.statmech.HarmonicOscillator</pre>	method), 195
method), 248	markDuplicateReactions() (in module
make_object() (rmgpy.statmech.HinderedRotor method), 250	<pre>rmgpy.chemkin), 14 markValidDuplicates()</pre>
<pre>make_object() (rmgpy.statmech.IdealGasTranslation</pre>	(rmgpy.data.kinetics.KineticsLibrary method), 40
<pre>make_object() (rmgpy.statmech.KRotor method), 245</pre>	mass (rmgpy.molecule.Element attribute), 107
<pre>make_object() (rmgpy.statmech.LinearRotor method),</pre>	mass (rmgpy.statmech.Conformer attribute), 254
242	mass (rmgpy.statmech.IdealGasTranslation attribute),
<pre>make_object() (rmgpy.statmech.NonlinearRotor</pre>	241
method), 243	matchesSpecies() (rmgpy.data.kinetics.DepositoryReaction
<pre>make_object() (rmgpy.statmech.SphericalTopRotor</pre>	method), 23
method), 246	matchesSpecies()(rmgpy.data.kinetics.LibraryReaction
make_object() (rmgpy.thermo.NASA method), 262	method), 49
make_object() (rmgpy.thermo.NASAPolynomial	matchesSpecies()(rmgpy.data.kinetics.TemplateReaction method), 68
method), 265	matchesSpecies() (rmgpy.reaction.Reaction method),

```
190
                                                             (rmgpy.data.base.Database method), 18
matchesSpecies()
                      (rmgpy.rmg.pdep.PDepReaction
                                                    matchNodeToStructure()
                                                             (rmgpy.data.kinetics.KineticsDepository
        method), 207
matchLogicOr() (rmgpy.data.base.LogicOr method),
                                                             method), 28
                                                    matchNodeToStructure()
matchNodeToChild()
                          (rmgpy.data.base.Database
                                                             (rmgpy.data.kinetics.KineticsFamily method),
        method), 18
matchNodeToChild() (rmgpy.data.kinetics.KineticsDeposition*tochNodeToStructure()
        method), 28
                                                             (rmgpy.data.kinetics.KineticsGroups method),
matchNodeToChild() (rmgpy.data.kinetics.KineticsFamily
        method), 35
                                                    matchNodeToStructure()
matchNodeToChild() (rmgpy.data.kinetics.KineticsGroups
                                                             (rmgpy.data.kinetics.KineticsLibrary method),
        method), 38
{\tt matchNodeToChild()}\ (rmgpy.data.kinetics.KineticsLibram_{\tt matchNodeToStructure()}
        method), 40
                                                             (rmgpy.data.kinetics.KineticsRules method), 43
matchNodeToChild() (rmgpy.data.kinetics.KineticsRules matchNodeToStructure()
                                                             (rmgpy.data.statmech.StatmechDepository
        method), 43
                                                             method), 53
matchNodeToChild() (rmgpy.data.statmech.StatmechDepository
                                                    matchNodeToStructure()
        method), 53
matchNodeToChild() (rmgpy.data.statmech.StatmechGroups
                                                             (rmgpy.data.statmech.StatmechGroups
        method), 60
                                                             method), 60
matchNodeToChild()(rmgpy.data.statmech.StatmechLibmatchNodeToStructure()
                                                             (rmgpy.data.statmech.StatmechLibrary
        method), 62
matchNodeToChild() (rmgpy.data.thermo.ThermoDepository
                                                             method), 62
                                                    matchNodeToStructure()
        method), 73
matchNodeToChild() (rmgpy.data.thermo.ThermoGroups
                                                             (rmgpy.data.thermo.ThermoDepository
        method), 75
                                                             method), 73
matchNodeToChild()(rmgpy.data.thermo.ThermoLibrarmatchNodeToStructure()
                                                             (rmgpy.data.thermo.ThermoGroups
        method), 77
                                                                                               method),
matchNodeToNode()
                          (rmgpy.data.base.Database
                                                             75
        method), 18
                                                    matchNodeToStructure()
matchNodeToNode() (rmgpy.data.kinetics.KineticsDepository
                                                             (rmgpy.data.thermo.ThermoLibrary method),
        method), 28
                                                             77
                                                                               (rmgpy.data.base.LogicAnd
{\tt matchNodeToNode()}\ (rmgpy.data.kinetics.KineticsFamily\,{\tt matchToStructure()}\ 
        method), 35
                                                             method), 50
matchNodeToNode() (rmgpy.data.kinetics.KineticsGroupsmatchToStructure()
                                                                                (rmgpy.data.base.LogicOr
        method), 38
                                                             method), 50
matchNodeToNode() (rmgpy.data.kinetics.KineticsLibrarymaxAttempts
                                                                   (rmgpy.qm.gaussian.GaussianMol at-
        method), 40
                                                             tribute), 168
matchNodeToNode() (rmgpy.data.kinetics.KineticsRules maxAttempts
                                                                    (rmgpy.qm.gaussian.GaussianMolPM3
        method), 43
                                                             attribute), 170
matchNodeToNode() (rmgpy.data.statmech.StatmechDepaniaxAttempts
                                                                    (rmgpy.qm.gaussian.GaussianMolPM6
        method), 53
                                                             attribute), 171
matchNodeToNode() (rmgpy.data.statmech.StatmechGroupaxAttempts
                                                                   (rmgpy.qm.molecule.QMMolecule
        method), 60
                                                             tribute), 165
matchNodeToNode() (rmgpy.data.statmech.StatmechLibramaxAttempts (rmgpy.qm.mopac.MopacMol attribute),
        method), 62
                                                             174
matchNodeToNode() (rmgpy.data.thermo.ThermoDepositomaxAttempts
                                                                  (rmgpy.qm.mopac.MopacMolPM3
        method), 73
                                                             tribute), 175
matchNodeToNode() (rmgpy.data.thermo.ThermoGroups maxAttempts (rmgpy.qm.mopac.MopacMolPM6
        method), 75
                                                             tribute), 177
matchNodeToNode() (rmgpy.data.thermo.ThermoLibrary maxAttempts (rmgpy.qm.mopac.MopacMolPM7
        method), 77
                                                             tribute), 178
matchNodeToStructure()
                                                    maxEdgeSpeciesRateRatios
```

(rmgpy.solver.LiquidReactor attribute), 228 maxEdgeSpeciesRateRatios	neq (rmgpy.solver.LiquidReactor attribute), 228 neq (rmgpy.solver.ReactionSystem attribute), 215
(rmgpy.solver.ReactionSystem attribute),	neq (rmgpy.solver.Keactionsystem attribute), 213
215	Network (class in rmgpy.pdep), 157
	network_kinetics(rmgpy.data.kinetics.DepositoryReaction
maxEdgeSpeciesRateRatios	
(rmgpy.solver.SimpleReactor attribute), 221	attribute), 23
maximumGrainSize (arkane.PressureDependenceJob	network_kinetics(rmgpy.data.kinetics.LibraryReaction
attribute), 10	attribute), 49
maxNetworkLeakRateRatios	network_kinetics(rmgpy.data.kinetics.TemplateReaction
(rmgpy.solver.LiquidReactor attribute), 228	attribute), 68
maxNetworkLeakRateRatios	network_kinetics (rmgpy.reaction.Reaction at-
(rmgpy.solver.ReactionSystem attribute),	tribute), 191
215	<pre>network_kinetics (rmgpy.rmg.pdep.PDepReaction</pre>
maxNetworkLeakRateRatios	attribute), 207
(rmgpy.solver.SimpleReactor attribute), 221	NetworkError, 267
merge() (rmgpy.molecule.graph.Graph method), 105	networkIndices (rmgpy.solver.LiquidReactor at-
merge() (rmgpy.molecule.Group method), 137	tribute), 229
merge() (rmgpy.molecule.Molecule method), 125	networkIndices (rmgpy.solver.ReactionSystem at-
merge() (rmgpy.rmg.model.ReactionModel method),	tribute), 215
196	networkIndices (rmgpy.solver.SimpleReactor at-
merge() (rmgpy.rmg.pdep.PDepNetwork method), 201	tribute), 222
mergeGroups() (rmgpy.molecule.Group method), 137	networkLeakCoefficients
modes (rmgpy.statmech.Conformer attribute), 254	(rmgpy.solver.LiquidReactor attribute), 229
ModifiedStrongCollisionError, 267	networkLeakCoefficients
molecularWeight (rmgpy.rmg.model.Species at-	(rmgpy.solver.ReactionSystem attribute),
tribute), 211	215
molecularWeight (rmgpy.species.Species attribute),	networkLeakCoefficients
236	(rmgpy.solver.SimpleReactor attribute), 222
Molecule (class in rmgpy.molecule), 118	networkLeakRates (rmgpy.solver.LiquidReactor at-
molecule (rmgpy.rmg.model.Species attribute), 211	tribute), 229
molecule (rmgpy.species.Species attribute), 236	networkLeakRates (rmgpy.solver.ReactionSystem at-
MoleculeDrawer (class in rmgpy.molecule.draw), 151	tribute), 215
MolproLog (class in arkane.molpro), 6	networkLeakRates (rmgpy.solver.SimpleReactor at-
Mopac (class in rmgpy.qm.mopac), 172	tribute), 222
MopacMol (class in rmgpy.qm.mopac), 173	NonlinearRotor (class in rmgpy.statmech), 242
MopacMolPM3 (class in rmgpy.qm.mopac), 174	nSims (rmgpy.solver.LiquidReactor attribute), 228
MopacMolPM6 (class in rmgpy.qm.mopac), 176	nSims (rmgpy.solver.SimpleReactor attribute), 221
MopacMolPM7 (class in rmgpy.qm.mopac), 177	number (rmgpy.molecule.Element attribute), 107
MultiArrhenius (class in rmgpy.kinetics), 82	number (rmgpy.statmech.Conformer attribute), 254
MultiPDepArrhenius (class in rmgpy.kinetics), 87	numberOfAtoms (rmgpy.qm.qmdata.QMData attribute),
	165
multiplicity (rmgpy.molecule.Group attribute), 137	
multiplicity (rmgpy.molecule.Molecule attribute), 125	numCoreReactions (rmgpy.solver.LiquidReactor attribute), 229
multiplicity (rmgpy.rmg.model.Species attribute), 211	numCoreReactions (rmgpy.solver.ReactionSystem at- tribute), 215
multiplicity (rmgpy.species.Species attribute), 236	numCoreReactions (rmgpy.solver.SimpleReactor at-
	tribute), 222
N	numCoreSpecies (rmgpy.solver.LiquidReactor at-
	tribute), 229
n (rmgpy.kinetics.Arrhenius attribute), 82	numCoreSpecies (rmgpy.solver.ReactionSystem at-
n (rmgpy.pdep.SingleExponentialDown attribute), 154	tribute), 215
name (rmgpy.molecule.Element attribute), 107	
NASA (class in rmgpy.thermo), 260	
NASAPolynomial (class in rmgpy.thermo), 263	tribute), 222
NegativeBarrierException, 267	numEdgeReactions (rmgpy.solver.LiquidReactor at-

tribute), 229	outputFilePath (rmgpy.qm.mopac.MopacMolPM3 at-
numEdgeReactions (rmgpy.solver.ReactionSystem at-	tribute), 175
tribute), 215 numEdgeReactions (rmgpy.solver.SimpleReactor at-	<pre>outputFilePath (rmgpy.qm.mopac.MopacMolPM6 at- tribute), 177</pre>
numEdgeReactions (rmgpy.solver.SimpleReactor at- tribute), 222	outputFilePath (rmgpy.qm.mopac.MopacMolPM7 at-
numEdgeSpecies (rmgpy.solver.LiquidReactor at-	tribute), 179
tribute), 229	inionie), 179
numEdgeSpecies (rmgpy.solver.ReactionSystem at-	P
tribute), 215	P (rmgpy.solver.LiquidReactor attribute), 225
numEdgeSpecies (rmgpy.solver.SimpleReactor at-	P (rmgpy.solver.EiquidReactor attribute), 228
tribute), 222	pairs (rmgpy.data.kinetics.DepositoryReaction at-
numPdepNetworks (rmgpy.solver.LiquidReactor at-	tribute), 23
tribute), 229	pairs (rmgpy.data.kinetics.LibraryReaction attribute),
numPdepNetworks (rmgpy.solver.ReactionSystem at-	49
tribute), 215	pairs (rmgpy.data.kinetics.TemplateReaction attribute),
numPdepNetworks (rmgpy.solver.SimpleReactor at-	68
tribute), 222	pairs (rmgpy.reaction.Reaction attribute), 191
numSurfaceReactions (rmgpy.solver.LiquidReactor	pairs (rmgpy.rmg.pdep.PDepReaction attribute), 207
attribute), 229	parse() (rmgpy.qm.gaussian.Gaussian method), 167
numSurfaceReactions (rmgpy.solver.ReactionSystem	parse() (rmgpy.qm.gaussian.GaussianMol method),
attribute), 215	168
numSurfaceReactions (rmgpy.solver.SimpleReactor	parse() (rmgpy.qm.gaussian.GaussianMolPM3
attribute), 222	method), 170
numSurfaceSpecies (rmgpy.solver.LiquidReactor at-	parse() (rmgpy.qm.gaussian.GaussianMolPM6
tribute), 229	method), 172
numSurfaceSpecies (rmgpy.solver.ReactionSystem at-	parse() (rmgpy.qm.molecule.QMMolecule method),
tribute), 215	165
numSurfaceSpecies (rmgpy.solver.SimpleReactor at-	parse() (rmgpy.qm.mopac.MopacMol method), 174
tribute), 222	parse() (rmgpy.qm.mopac.MopacMolPM3 method),
0	175
	parse() (rmgpy.qm.mopac.MopacMolPM6 method),
oDouble (rmgpy.molecule.AtomType attribute), 109	177
opticalIsomers (rmgpy.statmech.Conformer at-	parse() (rmgpy.qm.mopac.MopacMolPM7 method), 179
tribute), 254 order (rmgpy.molecule.Bond attribute), 117	
order (rmgpy.molecule.GroupBond attribute), 132	parse() (rmgpy.qm.symmetry.SymmetryJob method), 166
ordered_vertices (rmgpy.molecule.graph.Graph at-	parseCommandLineArguments() (arkane.Arkane
tribute), 105	method), 8
ordered_vertices (rmgpy.molecule.Group attribute),	parseOldLibrary() (rmgpy.data.base.Database
137	method), 18
ordered_vertices (rmgpy.molecule.Molecule at-	parseOldLibrary() (rmgpy.data.kinetics.KineticsDepository
tribute), 125	method), 29
OutputError, 267	parseOldLibrary() (rmgpy.data.kinetics.KineticsFamily
outputFilePath (rmgpy.qm.gaussian.GaussianMol at-	method), 36
tribute), 168	parseOldLibrary() (rmgpy.data.kinetics.KineticsGroups
outputFilePath (rmgpy.qm.gaussian.GaussianMolPM3	method), 39
attribute), 170	<pre>parseOldLibrary() (rmgpy.data.kinetics.KineticsLibrary</pre>
$\verb"outputFilePath" (\textit{rmgpy}.\textit{qm.gaussian.GaussianMolPM6}) \\$	method), 41
attribute), 172	<pre>parseOldLibrary() (rmgpy.data.kinetics.KineticsRules</pre>
outputFilePath (rmgpy.qm.molecule.QMMolecule at-	method), 43
tribute), 165	parseOldLibrary() (rmgpy.data.statmech.StatmechDepository
outputFilePath (rmgpy.qm.mopac.MopacMol at-	method), 54
tribute), 174	parseOldLibrary() (rmgpy.data.statmech.StatmechGroups
	method), 60

parseOldLibrary() (rmgpy.data.statmech.StatmechLibra	poly1 (rmgpy.thermo.NASA attribute), 262
method), 62	poly2 (rmgpy.thermo.NASA attribute), 262
parseOldLibrary() (rmgpy.data.thermo.ThermoDeposit	φ 9 ly3 (rmgpy.thermo.NASA attribute), 262
	polynomials (rmgpy.thermo.NASA attribute), 262
<pre>parseOldLibrary() (rmgpy.data.thermo.ThermoGroups</pre>	populate_resonance_algorithms (in module
method), 76	rmgpy.molecule.resonance), 142
<pre>parseOldLibrary() (rmgpy.data.thermo.ThermoLibrary</pre>	Prange (rmgpy.solver.SimpleReactor attribute), 218
	PressureDependenceError, 267
	PressureDependenceJob (class in arkane), 9
. 011	pressures (rmgpy.kinetics.PDepArrhenius attribute),
pdepColliderKinetics (rmgpy.solver.SimpleReactor	87
	<pre>prettify() (in module arkane.output), 8</pre>
	PrettifyVisitor (class in arkane.output), 8
	printEnlargeSummary()
PDepKineticsData (class in rmgpy.kinetics), 83	(rmgpy.rmg.model.CoreEdgeReactionModel
PDepNetwork (class in rmgpy.rmg.pdep), 200	method), 195
	printSummary() (rmgpy.pdep.Network method), 159
	printSummary() (rmgpy.rmg.pdep.PDepNetwork
(rmgpy.solver.SimpleReactor attribute), 222	method), 201
	prioritizeThermo() (rmgpy.data.thermo.ThermoDatabase
(rmgpy.solver.SimpleReactor attribute), 223	method), 71
	process_bonds() (rmgpy.molecule.kekulize.AromaticRing
137	method), 143
	processNewReactions()
plot() (arkane.KineticsJob method), 7	(rmgpy.rmg.model.CoreEdgeReactionModel
plot() (arkane.Rineucssob method), 7 plot() (arkane.PressureDependenceJob method), 10	method), 195
•	processOldLibraryEntry()
<pre>plotHinderedRotor() (arkane.StatMechJob method),</pre>	(rmgpy.data.kinetics.KineticsRules method), 43
	processOldLibraryEntry()
Pmax (arkane.PressureDependenceJob attribute), 9	(rmgpy.data.statmech.StatmechGroups
Pmax (rmgpy.kinetics.Arrhenius attribute), 81	method), 60
•	processOldLibraryEntry()
Pmax (rmgpy.kinetics.KineticsData attribute), 79	(rmgpy.data.statmech.StatmechLibrary
Pmax (rmgpy.kinetics.Lindemann attribute), 93	method), 62
. 01:	processOldLibraryEntry()
Pmax (rmgpy.kinetics.MultiPDepArrhenius attribute), 87	(rmgpy.data.thermo.ThermoGroups method),
Pmax (rmgpy.kinetics.PDepArrhenius attribute), 85	76
Pmax (rmgpy.kinetics.PDepKineticsData attribute), 84	<pre>processOldLibraryEntry()</pre>
Pmax (rmgpy.kinetics.ThirdBody attribute), 91	(rmgpy.data.thermo.ThermoLibrary method),
Pmax (rmgpy.kinetics.Troe attribute), 95	78
*	processPdepNetworks() (rmgpy.rmg.main.RMG
Pmin (rmgpy.kinetics.Arrhenius attribute), 81	method), 199
	processProfileStats() (in module
Pmin (rmgpy.kinetics.KineticsData attribute), 80	rmgpy.rmg.main), 199
	<pre>processReactionsToSpecies()</pre>
Pmin (rmgpy.kinetics.MultiArrhenius attribute), 82	(rmgpy.rmg.main.RMG method), 199
Pmin (rmgpy.kinetics.MultiPDepArrhenius attribute), 87	<pre>processToSpeciesNetworks()</pre>
Pmin (rmgpy.kinetics.PDepArrhenius attribute), 86	(rmgpy.rmg.main.RMG method), 199
Pmin (rmgpy.kinetics.PDepKineticsData attribute), 84	<pre>productIndices (rmgpy.solver.LiquidReactor at-</pre>
Pmin (rmgpy.kinetics.ThirdBody attribute), 91	tribute), 229
Pmin (rmgpy.kinetics.Troe attribute), 95	productIndices (rmgpy.solver.ReactionSystem at-
PointGroup (class in rmgpy.qm.symmetry), 166	tribute), 216
PointGroupCalculator (class in	<pre>productIndices (rmgpy.solver.SimpleReactor at-</pre>
rmgpy.qm.symmetry), 166	tribute), 223

products (rmgpy.data.kinetics.DepositoryReaction attribute), 23	QMVerifier (class in rmgpy.qm.qmverifier), 165 quadruple (rmgpy.molecule.AtomType attribute), 109
products (rmgpy.data.kinetics.LibraryReaction attribute), 49	Quantity() (in module rmgpy.quantity), 184 QuantityError, 267
products (rmgpy.data.kinetics.TemplateReaction	quantum (rmgpy.statmech.HarmonicOscillator at-
attribute), 68	tribute), 248
products (rmgpy.reaction.Reaction attribute), 191	quantum (rmgpy.statmech.HinderedRotor attribute), 250
products (rmgpy.rmg.pdep.PDepReaction attribute), 207	quantum (rmgpy.statmech.IdealGasTranslation attribute), 241
props (rmgpy.molecule.Atom attribute), 115	quantum (rmgpy.statmech.KRotor attribute), 245
props (rmgpy.molecule.Group attribute), 137	quantum (rmgpy.statmech.LinearRotor attribute), 242
props (rmgpy.molecule.GroupAtom attribute), 130 props (rmgpy.molecule.Molecule attribute), 125	quantum (rmgpy.statmech.NonlinearRotor attribute), 243
props (rmgpy.rmg.model.Species attribute), 123	quantum (rmgpy.statmech.SphericalTopRotor attribute),
props (rmgpy.species.Species attribute), 236	246
prunableNetworkIndices	
(rmgpy.solver.LiquidReactor attribute), 229	R
prunableNetworkIndices	radicalCount (rmgpy.molecule.Group attribute), 137
(rmgpy.solver.ReactionSystem attribute), 216	radicalElectrons (rmgpy.molecule.Atom attribute), 115
prunableNetworkIndices	radicalElectrons (rmgpy.molecule.GroupAtom at-
(rmgpy.solver.SimpleReactor attribute), 223	tribute), 130
prunableNetworks (rmgpy.solver.LiquidReactor attribute), 229	rank (rmgpy.data.kinetics.DepositoryReaction attribute), 23
prunableNetworks (rmgpy.solver.ReactionSystem at-	rank (rmgpy.data.kinetics.LibraryReaction attribute), 49
tribute), 216	rank (rmgpy.data.kinetics.TemplateReaction attribute),
prunableNetworks (rmgpy.solver.SimpleReactor at-	68
tribute), 223	rank (rmgpy.reaction.Reaction attribute), 191
prunableSpecies (rmgpy.solver.LiquidReactor attribute), 230	rank (rmgpy.rmg.pdep.PDepReaction attribute), 207 rd_build() (rmgpy.qm.molecule.Geometry method),
prunableSpecies (rmgpy.solver.ReactionSystem attribute), 216	rd_embed() (rmgpy.qm.molecule.Geometry method),
prunableSpecies (rmgpy.solver.SimpleReactor attribute), 223	164
prunableSpeciesIndices	rdMol (rmgpy.molecule.Molecule attribute), 126 rdMolConfId (rmgpy.molecule.Molecule attribute), 126
(rmgpy.solver.LiquidReactor attribute), 230	rDouble (rmgpy.molecule.AtomType attribute), 110
prunableSpeciesIndices (rmgpy.solver.ReactionSystem attribute),	react_molecules() (rmgpy.data.kinetics.KineticsDatabas method), 27
216	reactantIndices (rmgpy.solver.LiquidReactor at-
prunableSpeciesIndices	tribute), 230
(rmgpy.solver.SimpleReactor attribute), 223	reactantIndices (rmgpy.solver.ReactionSystem at-
<pre>prune() (rmgpy.rmg.model.CoreEdgeReactionModel</pre>	tribute), 216
method), 195	reactantIndices (rmgpy.solver.SimpleReactor at-
$\verb pruneHeteroatoms() (rmgpy. data. thermo. ThermoDatab) $	
method), 71	reactants (rmgpy.data.kinetics.DepositoryReaction at-
PseudoFit (class in rmgpy.data.statmechfit), 57	tribute), 23
PseudoRotorFit (class in rmgpy.data.statmechfit), 56	reactants (rmgpy.data.kinetics.LibraryReaction attribute), 49
Q	reactants (rmgpy.data.kinetics.TemplateReaction at-
QChemLog (class in arkane.qchem), 5	tribute), 68
QMCalculator (class in rmgpy.qm.main), 162	reactants (rmgpy.reaction.Reaction attribute), 191
QMData (class in rmgpy.qm.qmdata), 165	reactants (rmgpy.rmg.pdep.PDepReaction attribute),
QMMolecule (class in rmgpy.qm.molecule), 164	207 Position (along in remove regetion), 185
QMSettings (class in rmgpy.qm.main), 162	Reaction (class in rmgpy.reaction), 185

ReactionDrawer (class in rmgpy.molecule.draw), 151	removeBond() (rmgpy.molecule.Molecule method), 126
ReactionError, 267	removeCommentFromLine() (in module
$\verb"reactionIndex" (\textit{rmgpy.solver.LiquidReactor attribute}),$	rmgpy.chemkin), 13
230	<pre>removeEdge() (rmgpy.molecule.graph.Graph method),</pre>
reactionIndex (rmgpy.solver.ReactionSystem at-	105
tribute), 216	removeEdge() (rmgpy.molecule.Group method), 137
reactionIndex (rmgpy.solver.SimpleReactor attribute),	removeEdge() (rmgpy.molecule.Molecule method), 126
223	removeEmptyPdepNetworks()
ReactionModel (class in rmgpy.rmg.model), 196 ReactionPairsError, 267	(rmgpy.rmg.model.CoreEdgeReactionModel method), 196
ReactionRecipe (class in rmgpy.data.kinetics), 50	removeGroup() (rmgpy.data.base.Database method),
ReactionSystem (class in rmgpy.solver), 212	18
reactive (rmgpy.molecule.Molecule attribute), 126	removeGroup() (rmgpy.data.kinetics.KineticsDepository
reactive (rmgpy.rmg.model.Species attribute), 211	method), 29
reactive (rmgpy.species.Species attribute), 236	removeGroup() (rmgpy.data.kinetics.KineticsFamily
readInputFile() (in module rmgpy.rmg.input), 197	method), 36
<pre>readKineticsEntry() (in module rmgpy.chemkin), 12</pre>	removeGroup() (rmgpy.data.kinetics.KineticsGroups
readMeaningfulLineJava() (rmgpy.rmg.main.RMG	method), 39
method), 199	removeGroup() (rmgpy.data.kinetics.KineticsLibrary
readReactionComments() (in module	method), 41
rmgpy.chemkin), 12	removeGroup() (rmgpy.data.kinetics.KineticsRules
<pre>readReactionsBlock() (in module rmgpy.chemkin),</pre>	method), 43
13	${\tt removeGroup()} \ ({\it rmgpy.data.statmech.StatmechDepository}$
readThermoEntry() (in module rmgpy.chemkin), 13	method), 54
reconstructKineticsFromSource()	removeGroup() (rmgpy.data.statmech.StatmechGroups
(rmgpy.data.kinetics.KineticsDatabase method), 27	method), 60 removeGroup() (rmgpy.data.statmech.StatmechLibrary
recordPolycylicGenericNodes()	method), 63
(rmgpy.data.thermo.ThermoDatabase method),	removeGroup()(rmgpy.data.thermo.ThermoDepository
71	method), 73
recordRingGenericNodes()	removeGroup() (rmgpy.data.thermo.ThermoGroups
(rmgpy.data.thermo.ThermoDatabase method),	method), 76
71	removeGroup() (rmgpy.data.thermo.ThermoLibrary
reg_dim (rmgpy.molecule.GroupBond attribute), 132	method), 78
$reg_dim_atm\ (rmgpy.molecule.GroupAtom\ attribute),$	removeSpeciesFromEdge()
130	(rmgpy.rmg.model. Core Edge Reaction Model
reg_dim_r (rmgpy.molecule.GroupAtom attribute), 130	method), 196
	removeVanDerWaalsBonds() (rmgpy.molecule.Group
register_listeners() (rmgpy.rmg.main.RMG	method), 138
method), 199	removeVanDerWaalsBonds()
registerReaction() (rmgpy.rmg.model.CoreEdgeReac	
method), 195	removeVertex() (rmgpy.molecule.graph.Graph
regularize() (rmgpy.data.kinetics.KineticsFamily	method), 105
method), 36	removeVertex() (rmgpy.molecule.Group method), 138
remove_disconnected_reactions()	removeVertex() (rmgpy.molecule.Molecule method),
(rmgpy.rmg.pdep.PDepNetwork method), 201	render() (rmgpy.molecule.draw.MoleculeDrawer
remove_H_bonds() (rmgpy.molecule.Molecule	method), 151
method), 126	ReservoirStateError, 267
remove_reactions() (rmgpy.rmg.pdep.PDepNetwork	reset_max_edge_species_rate_ratios()
method), 201	(rmgpy.solver.LiquidReactor method), 230
removeAtom() (rmgpy.molecule.Group method), 137	reset_max_edge_species_rate_ratios()
removeAtom() (rmgpy.molecule.Molecule method), 126	(rmgpy.solver.ReactionSystem method), 216
removeBond() (rmgpy.molecule.Group method), 137	reset_max_edge_species_rate_ratios()
	- · · · · · · · · · · · · · · · · · · ·

(rmgpy.solver.SimpleReactor method), 223	tribute), 49
resetConnectivityValues() (rmgpy.molecule.Atom method), 116	reversible (rmgpy.data.kinetics.TemplateReaction attribute), 68
resetConnectivityValues()	reversible (rmgpy.reaction.Reaction attribute), 191
(rmgpy.molecule.graph.Graph method), 105	reversible (rmgpy.rmg.pdep.PDepReaction attribute), 207
resetConnectivityValues()	ring_bonds (rmgpy.molecule.kekulize.AromaticBond
(rmgpy.molecule.graph.Vertex method), 102	attribute), 143
resetConnectivityValues()	RMG (class in rmgpy.rmg.main), 197
(rmgpy.molecule.Group method), 138	rmgpy.chemkin(<i>module</i>), 11
resetConnectivityValues()	rmgpy.constants (module), 14
(rmgpy.molecule.GroupAtom method), 130	rmgpy.data(module), 15
resetConnectivityValues()	rmgpy.exceptions (module), 266
(rmgpy.molecule.Molecule method), 126	rmgpy.kinetics (module), 79
resetRingMembership() (rmgpy.molecule.Group	rmgpy.molecule (module), 99
method), 138	rmgpy.molecule.adjlist(module), 148
residual() (rmgpy.solver.LiquidReactor method), 230	rmgpy.molecule.converter (module), 146
residual() (rmgpy.solver.ReactionSystem method),	rmgpy.molecule.kekulize(<i>module</i>), 142
216	rmgpy.molecule.pathfinder (module), 144
residual() (rmgpy.solver.SimpleReactor method), 223	rmgpy.molecule.resonance (module), 139
resolved (rmgpy.molecule.kekulize.AromaticRing attribute), 143	rmgpy.molecule.translator(module), 147
ResonanceError, 267	rmgpy.pdep (module), 152
restore_vertex_order()	<pre>rmgpy.qm (module), 161 rmgpy.quantity (module), 179</pre>
(rmgpy.molecule.graph.Graph method),	rmgpy.reaction (module), 179
105	rmgpy.reaction(module), 183 rmgpy.rmg (module), 192
restore_vertex_order() (rmgpy.molecule.Group	rmgpy.solver(module), 212
method), 138	rmgpy.species (module), 232
restore_vertex_order() (rmgpy.molecule.Molecule	rmgpy.statmech (<i>module</i>), 238
method), 126	rmgpy.statmech.schrodinger(module), 251
retrieve()(rmgpy.rmg.model.CoreEdgeReactionModel	rmgpy.thermo(module), 255
method), 196	rotationalConstant (rmgpy.statmech.HinderedRotor
retrieveOriginalEntry()	attribute), 251
(rmgpy.data.kinetics.KineticsFamily method),	rotationalConstant (rmgpy.statmech.KRotor at-
36	tribute), 245
<pre>retrieveTemplate() (rmgpy.data.kinetics.KineticsFami</pre>	lyotationalConstant (rmgpy.statmech.LinearRotor attribute), 242
reverseThisArrheniusRate()	rotationalConstant (rmgpy.statmech.NonlinearRotor
(rmgpy.data.kinetics.DepositoryReaction	attribute), 243
method), 24	$\verb rotationalConstant \textit{ rmgpy.statmech.SphericalTopRoto } $
reverseThisArrheniusRate()	attribute), 246
(rmgpy.data.kinetics.LibraryReaction method), 49	rtol_array (rmgpy.solver.LiquidReactor attribute), 230 rtol_array (rmgpy.solver.ReactionSystem attribute),
reverseThisArrheniusRate()	216
(rmgpy.data.kinetics.TemplateReaction method), 68	rtol_array (rmgpy.solver.SimpleReactor attribute), 223
reverseThisArrheniusRate()	run() (rmgpy.qm.symmetry.SymmetryJob method), 166
(rmgpy.reaction.Reaction method), 191	<pre>run_model_analysis() (rmgpy.rmg.main.RMG</pre>
reverseThisArrheniusRate()	method), 199
(rmgpy.rmg.pdep.PDepReaction method),	<pre>run_uncertainty_analysis()</pre>
207	(rmgpy.rmg.main.RMG method), 199
reversible (rmgpy.data.kinetics.DepositoryReaction attribute), 24	runJobs () (rmgpy.qm.main.QMCalculator method), 163
reversible (rmgpy.data.kinetics.LibraryReaction at-	

S	<pre>saveDictionary() (rmgpy.data.kinetics.KineticsLibrary</pre>
S0 (rmgpy.thermo.Wilhoit attribute), 258	method), 41
S298 (rmgpy.thermo.ThermoData attribute), 255	<pre>saveDictionary() (rmgpy.data.kinetics.KineticsRules</pre>
<pre>saturate_radicals() (rmgpy.molecule.Molecule</pre>	method), 44
method), 126	saveDictionary() (rmgpy.data.statmech.StatmechDepository
<pre>saturate_unfilled_valence()</pre>	method), 54
(rmgpy.molecule.Molecule method), 126	saveDictionary() (rmgpy.data.statmech.StatmechGroups
<pre>save() (arkane.KineticsJob method), 7</pre>	method), 60
<pre>save() (arkane.PressureDependenceJob method), 10</pre>	saveDictionary() (rmgpy.data.statmech.StatmechLibrary
<pre>save() (arkane.StatMechJob method), 11</pre>	method), 63
<pre>save() (arkane.ThermoJob method), 11</pre>	saveDictionary() (rmgpy.data.thermo.ThermoDepository
save() (rmgpy.data.base.Database method), 18	method), 74
<pre>save() (rmgpy.data.kinetics.KineticsDatabase method),</pre>	saveDictionary() (rmgpy.data.thermo.ThermoGroups
27	method), 76
save() (rmgpy.data.kinetics.KineticsDepository	saveDictionary()(rmgpy.data.thermo.ThermoLibrary
method), 29	method), 78
<pre>save() (rmgpy.data.kinetics.KineticsFamily method), 36</pre>	saveDiffHTML() (in module rmgpy.rmg.output), 200
<pre>save() (rmgpy.data.kinetics.KineticsGroups method),</pre>	saveEntry() (rmgpy.data.kinetics.KineticsDepository
39	method), 29
<pre>save() (rmgpy.data.kinetics.KineticsLibrary method),</pre>	saveEntry() (rmgpy.data.kinetics.KineticsFamily
41	method), 36
save() (rmgpy.data.kinetics.KineticsRules method), 44	saveEntry() (rmgpy.data.kinetics.KineticsLibrary
save() (rmgpy.data.statmech.StatmechDatabase	method), 41 saveEntry() (rmgpy.data.kinetics.KineticsRules
method), 52	saveEntry() (rmgpy.data.kinetics.KineticsRules method), 44
save() (rmgpy.data.statmech.StatmechDepository	saveEntry() (rmgpy.data.statmech.StatmechDepository
method), 54	method), 54
save() (rmgpy.data.statmech.StatmechGroups method),	saveEntry() (rmgpy.data.statmech.StatmechGroups
60	method), 61
save() (rmgpy.data.statmech.StatmechLibrary method),	saveEntry() (rmgpy.data.statmech.StatmechLibrary
63	method), 63
save() (rmgpy.data.thermo.ThermoDatabase method),	saveEntry() (rmgpy.data.thermo.ThermoDepository
71	method), 74
<pre>save() (rmgpy.data.thermo.ThermoDepository method), 74</pre>	saveEntry() (rmgpy.data.thermo.ThermoGroups
	method), 76
<pre>save() (rmgpy.data.thermo.ThermoGroups method), 76 save() (rmgpy.data.thermo.ThermoLibrary method), 78</pre>	saveEntry() (rmgpy.data.thermo.ThermoLibrary
save() (imgpy.adda.inermo.inermoLibrary method), 78 saveChemkinFile() (in module rmgpy.chemkin), 13	method), 78
saveCoordinatesFromQMData()	<pre>saveEverything() (rmgpy.rmg.main.RMG method),</pre>
(rmgpy,qm.molecule.Geometry method),	199
164	saveFamilies()(rmgpy.data.kinetics.KineticsDatabase
saveDepository() (rmgpy.data.kinetics.KineticsFamily	method), 27
method), 36	saveGeneratedTree()
saveDepository()(rmgpy.data.statmech.StatmechDatab	(rmgpy.data.kinetics.KineticsFamily method),
method), 52	36
saveDepository() (rmgpy.data.thermo.ThermoDatabase	saveGroups() (rmgpy.data.kinetics.KineticsFamily
method), 71	method), 36
saveDictionary() (rmgpy.data.base.Database	saveGroups() (rmgpy.data.statmech.StatmechDatabase
method), 18	method), 52
<pre>saveDictionary() (rmgpy.data.kinetics.KineticsDeposite</pre>	gaveGroups() (rmgpy.data.thermo.ThermoDatabase
method), 29	method), 71
saveDictionary() (rmgpy.data.kinetics.KineticsFamily	<pre>saveHTMLFile() (in module rmgpy.chemkin), 13</pre>
method), 36	<pre>saveInput() (rmgpy.rmg.main.RMG method), 199</pre>
saveDictionary() (rmgpy.data.kinetics.KineticsGroups	<pre>saveInputFile() (arkane.PressureDependenceJob</pre>
method), 39	method), 10

<pre>saveInputFile() (in module rmgpy.rmg.input), 197 saveJavaKineticsLibrary() (in module</pre>	<pre>saveOldDictionary()</pre>
<pre>saveLibraries() (rmgpy.data.kinetics.KineticsDatabase</pre>	saveOldDictionary() (rmgpy.data.statmech.StatmechGroups
saveLibraries() (rmgpy.data.statmech.StatmechDataba method), 52	se method), 61 saveOldDictionary()
saveLibraries() (rmgpy.data.thermo.ThermoDatabase method), 72	(rmgpy.data.statmech.StatmechLibrary method), 63
saveOld() (rmgpy.data.base.Database method), 18	saveOldDictionary()
saveOld() (rmgpy.data.kinetics.KineticsDatabase method), 27	(rmgpy.data.thermo.ThermoDepository method), 74
<pre>saveOld() (rmgpy.data.kinetics.KineticsDepository</pre>	<pre>saveOldDictionary()</pre>
method), 29	(rmgpy.data.thermo.ThermoGroups method),
saveOld() (rmgpy.data.kinetics.KineticsFamily method), 36	76 saveOldDictionary()
saveOld() (rmgpy.data.kinetics.KineticsGroups	(rmgpy.data.thermo.ThermoLibrary method),
method), 39	78
saveOld() (rmgpy.data.kinetics.KineticsLibrary method), 41	saveOldLibrary() (rmgpy.data.base.Database method), 18
saveOld() (rmgpy.data.kinetics.KineticsRules method), 44	saveOldLibrary() (rmgpy.data.kinetics.KineticsDepository method), 29
saveOld() (rmgpy.data.statmech.StatmechDatabase method), 52	saveOldLibrary() (rmgpy.data.kinetics.KineticsFamily method), 36
saveOld() (rmgpy.data.statmech.StatmechDepository method), 54	saveOldLibrary() (rmgpy.data.kinetics.KineticsGroups method), 39
saveOld() (rmgpy.data.statmech.StatmechGroups method), 61	saveOldLibrary() (rmgpy.data.kinetics.KineticsLibrary method), 41
saveOld() (rmgpy.data.statmech.StatmechLibrary method), 63	saveOldLibrary() (rmgpy.data.kinetics.KineticsRules method), 44
saveOld() (rmgpy.data.thermo.ThermoDatabase	${\tt saveOldLibrary()} \ (\textit{rmgpy.data.statmech.StatmechDepository}$
method), 72 saveOld() (rmgpy.data.thermo.ThermoDepository	method), 54 saveOldLibrary() (rmgpy.data.statmech.StatmechGroups
method), 74	method), 61
saveOld() (rmgpy.data.thermo.ThermoGroups method), 76	saveOldLibrary() (rmgpy.data.statmech.StatmechLibrary method), 63
saveOld() (rmgpy.data.thermo.ThermoLibrary method), 78	saveOldLibrary() (rmgpy.data.thermo.ThermoDepository method), 74
<pre>saveOldDictionary() (rmgpy.data.base.Database method), 18</pre>	saveOldLibrary() (rmgpy.data.thermo.ThermoGroups method), 76
<pre>saveOldDictionary()</pre>	saveOldLibrary() (rmgpy.data.thermo.ThermoLibrary method), 78
method), 29	<pre>saveOldTemplate() (rmgpy.data.kinetics.KineticsFamily</pre>
<pre>saveOldDictionary()</pre>	method), 36
(rmgpy.data.kinetics.KineticsFamily method), 36	saveOldTree() (rmgpy.data.base.Database method), 19
<pre>saveOldDictionary()</pre>	<pre>saveOldTree() (rmgpy.data.kinetics.KineticsDepository</pre>
(rmgpy.data.kinetics.KineticsGroups method),	method), 29
39	saveOldTree() (rmgpy.data.kinetics.KineticsFamily
<pre>saveOldDictionary()</pre>	method), 37
(rmgpy.data.kinetics.KineticsLibrary method), 41	<pre>saveOldTree() (rmgpy.data.kinetics.KineticsGroups</pre>
<pre>saveOldDictionary()</pre>	saveOldTree() (rmgpy.data.kinetics.KineticsLibrary
(rmgpy.data.kinetics.KineticsRules method), 44	method), 41

<pre>saveOldTree() (rmgpy.data.kinetics.KineticsRules</pre>	tribute), 177
method), 44	$scriptAttempts \ (rmgpy.qm.mopac.MopacMolPM7 \ at-$
<pre>saveOldTree() (rmgpy.data.statmech.StatmechDepositor</pre>	y tribute), 179
method), 54	sDouble (rmgpy.molecule.AtomType attribute), 110
<pre>saveOldTree() (rmgpy.data.statmech.StatmechGroups</pre>	searchRetrieveReactions()
method), 61	(rmgpy.rmg.model.CoreEdgeReactionModel
<pre>saveOldTree() (rmgpy.data.statmech.StatmechLibrary</pre>	method), 196
method), 63	selectEnergyGrains() (rmgpy.pdep.Network
saveOldTree() (rmgpy.data.thermo.ThermoDepository	method), 159
method), 74	selectEnergyGrains()
saveOldTree() (rmgpy.data.thermo.ThermoGroups	(rmgpy.rmg.pdep.PDepNetwork method),
method), 76	201
saveOldTree() (rmgpy.data.thermo.ThermoLibrary	<pre>selectPolynomial() (rmgpy.thermo.NASA method),</pre>
method), 78	262
saveOutputHTML() (in module rmgpy.rmg.output), 199	semiclassical (rmgpy.statmech.HinderedRotor
<pre>saveRecommendedFamilies()</pre>	attribute), 251
(rmgpy.data.kinetics.KineticsDatabase	sensConditions (rmgpy.solver.LiquidReactor at-
method), 27	tribute), 230
	sensConditions (rmgpy.solver.SimpleReactor at-
rmgpy.chemkin), 13	tribute), 223
<pre>saveThermoData() (rmgpy.qm.gaussian.GaussianMol</pre>	sensitive Species $(rmgpy.solver.Liquid Reactor$ $at-$
method), 168	tribute), 230
$saveThermoData() \ (rmgpy.qm.gaussian.GaussianMolPM) \ (rmgpy.qm.gaussian.Gaussian$	#GensitiveSpecies (rmgpy.solver.ReactionSystem at-
method), 170	tribute), 216
saveThermoData()(rmgpy.qm.gaussian.GaussianMolPM	MensitiveSpecies (rmgpy.solver.SimpleReactor at-
method), 172	tribute), 223
<pre>saveThermoData() (rmgpy.qm.molecule.QMMolecule</pre>	sensitivityCoefficients
method), 165	(rmgpy.solver.LiquidReactor attribute), 230
saveThermoData() (rmgpy.qm.mopac.MopacMol	sensitivityCoefficients
method), 174	(rmgpy.solver.ReactionSystem attribute),
saveThermoData() (rmgpy.qm.mopac.MopacMolPM3	216
method), 175	sensitivityCoefficients
saveThermoData() (rmgpy.qm.mopac.MopacMolPM6	(rmgpy.solver.SimpleReactor attribute), 223
method), 177	sensitivityThreshold (rmgpy.solver.LiquidReactor
saveThermoData() (rmgpy.qm.mopac.MopacMolPM7	attribute), 230
method), 179	sensitivityThreshold
<pre>saveTrainingReactions()</pre>	(rmgpy.solver.ReactionSystem attribute),
(rmgpy.data.kinetics.KineticsFamily method),	216
37	sensitivityThreshold (rmgpy.solver.SimpleReactor
<pre>saveTransportFile() (in module rmgpy.chemkin), 13</pre>	attribute), 224
ScalarQuantity (class in rmgpy.quantity), 181	<pre>set_colliders() (rmgpy.solver.SimpleReactor</pre>
scriptAttempts (rmgpy.qm.gaussian.GaussianMol at-	method), 224
tribute), 168	<pre>set_initial_conditions()</pre>
<pre>scriptAttempts(rmgpy.qm.gaussian.GaussianMolPM3</pre>	(rmgpy.solver.LiquidReactor method), 230
attribute), 170	<pre>set_initial_conditions()</pre>
<pre>scriptAttempts(rmgpy.qm.gaussian.GaussianMolPM6</pre>	(rmgpy.solver.ReactionSystem method), 216
attribute), 172	<pre>set_initial_conditions()</pre>
scriptAttempts (rmgpy.qm.molecule.QMMolecule at-	(rmgpy.solver.SimpleReactor method), 224
tribute), 165	<pre>set_initial_derivative()</pre>
scriptAttempts (rmgpy.qm.mopac.MopacMol at-	(rmgpy.solver.LiquidReactor method), 230
tribute), 174	set_initial_derivative()
scriptAttempts (rmgpy.qm.mopac.MopacMolPM3 at-	(rmgpy.solver.ReactionSystem method), 217
tribute), 175	set_initial_derivative()
scriptAttempts (rmgpy.qm.mopac.MopacMolPM6 at-	$(rmgpy.solver. Simple Reactor\ method),\ 224$

<pre>set_initial_reaction_thresholds()</pre>	<pre>setOrderNum() (rmgpy.molecule.Bond method), 117 setOrderNum() (rmgpy.molecule.GroupBond method),</pre>
<pre>(rmgpy.solver.ReactionSystem method), 217 set_initial_reaction_thresholds()</pre>	<pre>setOrderStr() (rmgpy.molecule.Bond method), 117 setOrderStr() (rmgpy.molecule.GroupBond method),</pre>
<pre>(rmgpy.solver.SimpleReactor method), 224 set_prunable_indices()</pre>	132 setThermodynamicFilteringParameters()
(rmgpy.solver.LiquidReactor method), 230	(rmgpy.rmg.model.CoreEdgeReactionModel
<pre>set_prunable_indices()</pre>	method), 196
(rmgpy.solver.ReactionSystem method), 217	SettingsError, 268
set_prunable_indices()	setUncertainty() (rmgpy.quantity.ArrayQuantity
(rmgpy.solver.SimpleReactor method), 224 set_structure() (rmgpy.rmg.model.Species method),	method), 184 setUncertainty() (rmgpy.quantity.ScalarQuantity
211	method), 182
<pre>set_structure() (rmgpy.species.Species method), 236</pre>	setUncertaintyType()
setActions() (rmgpy.molecule.AtomType method), 110	(rmgpy.quantity.ArrayQuantity method), 184
setCanteraKinetics() (rmgpy.kinetics.Arrhenius	setUncertaintyType()
method), 82	(rmgpy.quantity.ScalarQuantity method),
setCanteraKinetics() (rmgpy.kinetics.Chebyshev	182 setValue() (rmgpy.quantity.ArrayQuantity method),
<pre>method), 91 setCanteraKinetics() (rmgpy.kinetics.KineticsData</pre>	setValue() (rmgpy.quantity.ArrayQuantity method), 184
method), 80	setValue() (rmgpy.quantity.ScalarQuantity method),
<pre>setCanteraKinetics() (rmgpy.kinetics.Lindemann</pre>	182
method), 94	SimpleReactor (class in rmgpy.solver), 218
<pre>setCanteraKinetics()</pre>	simpleRegularization()
(rmgpy.kinetics.MultiArrhenius method), 83	(rmgpy.data.kinetics.KineticsFamily method), 37
<pre>setCanteraKinetics()</pre>	simulate() (rmgpy.solver.LiquidReactor method), 231
(rmgpy.kinetics.MultiPDepArrhenius method), 88	simulate() (rmgpy.solver.ReactionSystem method), 217
<pre>setCanteraKinetics()</pre>	simulate() (rmgpy.solver.SimpleReactor method), 224 single (rmgpy.molecule.AtomType attribute), 110
(rmgpy.kineucs.rDepArmenius meinou), 87	SingleExponentialDown (class in rmgpy.pdep), 153
setCanteraKinetics()	SMILES (rmgpy.molecule.Molecule attribute), 118
(rmgpy.kinetics.PDepKineticsData method), 85	SMILES (rmgpy.rmg.model.Species attribute), 208
<pre>setCanteraKinetics() (rmgpy.kinetics.ThirdBody</pre>	SMILES (rmgpy.species.Species attribute), 233
method), 92	snapshots (rmgpy.solver.LiquidReactor attribute), 231
<pre>setCanteraKinetics() (rmgpy.kinetics.Troe method),</pre>	snapshots (rmgpy.solver.ReactionSystem attribute), 217
97	snapshots (rmgpy.solver.SimpleReactor attribute), 224
<pre>setConditions() (rmgpy.pdep.Network method), 159 setConditions() (rmgpy.rmg.pdep.PDepNetwork</pre>	solve() (rmgpy.data.statmechfit.DirectFit method), 56 solve() (rmgpy.data.statmechfit.PseudoFit method), 58
method), 202	solve() (rmgpy.data.statmechfit.PseudoRotorFit
setDefaultOutputDirectory()	method), 57
(rmgpy.qm.main.QMCalculator method),	<pre>solve_SS_network() (rmgpy.rmg.pdep.PDepNetwork</pre>
163	method), 202
<pre>setDeltaAtomicAdsorptionEnergies()</pre>	solveFullME() (rmgpy.pdep.Network method), 159
(rmgpy.data.thermo.ThermoDatabase method),	solveFullME() (rmgpy.rmg.pdep.PDepNetwork
72 setE0WithThermo() (rmgpy.rmg.model.Species	method), 202 solveReducedME() (rmgpy.pdep.Network method), 159
method), 211	solveReducedME() (rmgpy.rmg.pdep.PDepNetwork rmgpy.rmg.pdep.PDepNetwork
setEOWithThermo() (rmgpy.species.Species method),	method), 202
236	solveSchrodingerEquation()
<pre>setLonePairs() (rmgpy.molecule.Atom method), 116</pre>	(rmgpy.statmech.HinderedRotor method),

251	<pre>split() (rmgpy.molecule.Group method), 138</pre>
<pre>sortAtoms() (rmgpy.molecule.Group method), 138</pre>	<pre>split() (rmgpy.molecule.Molecule method), 127</pre>
<pre>sortAtoms() (rmgpy.molecule.Molecule method), 126</pre>	<pre>splitReactions() (rmgpy.data.kinetics.KineticsFamily</pre>
<pre>sortByConnectivity() (rmgpy.molecule.Group</pre>	method), 37
method), 138	<pre>standardizeAtomType() (rmgpy.molecule.Group</pre>
sortingLabel (rmgpy.molecule.Atom attribute), 116	method), 138
<pre>sortingLabel (rmgpy.molecule.graph.Vertex attribute),</pre>	<pre>standardizeGroup()</pre>
102	method), 139
sortingLabel (rmgpy.molecule.GroupAtom attribute), 130	StatmechDatabase (class in rmgpy.data.statmech), 51 StatmechDepository (class in rmgpy.data.statmech),
sortVertices() (rmgpy.molecule.graph.Graph	52
method), 105	StatmechError, 268
sortVertices() (rmgpy.molecule.Group method), 138	StatmechFitError, 268
sortVertices() (rmgpy.molecule.Molecule method),	StatmechGroups (class in rmgpy.data.statmech), 59
126	StatMechJob (class in arkane), 10
Species (class in rmgpy.rmg.model), 208	StatmechLibrary (class in rmgpy.data.statmech), 61
Species (class in rmgpy.species), 232	step() (rmgpy.solver.LiquidReactor method), 231
species (rmgpy.pdep.Configuration attribute), 157	step() (rmgpy.solver.ReactionSystem method), 217
SpeciesError, 268	step() (rmgpy.solver.SimpleReactor method), 224
<pre>speciesIndex (rmgpy.solver.LiquidReactor attribute),</pre>	<pre>succesfulJobExists()</pre>
231	(rmgpy.qm.qmverifier.QMVerifier method),
<pre>speciesIndex (rmgpy.solver.ReactionSystem attribute),</pre>	166
217	successKeys (rmgpy.qm.gaussian.Gaussian attribute),
<pre>speciesIndex (rmgpy.solver.SimpleReactor attribute),</pre>	167
224	successKeys (rmgpy.qm.mopac.Mopac attribute), 172
specific (rmgpy.molecule.AtomType attribute), 110	sumStates (rmgpy.pdep.Configuration attribute), 157
${\tt specific Collider} \ (\textit{rmgpy.data.kinetics.DepositoryRead})$	et i cumrfaceReactionIndices
attribute), 24	(rmgpy.solver.LiquidReactor attribute), 231
$\verb specificCollider (rmgpy. data. kinetics. Library Reaction and the content of the content o$	
attribute), 49	$(rmgpy.solver.ReactionSystem \ attribute),$
$\verb specificCollider (rmgpy. data. kinetics. Template Reaction of the context o$	on 217
attribute), 68	surfaceReactionIndices
specificCollider (rmgpy.reaction.Reaction at-	(rmgpy.solver.SimpleReactor attribute), 224
tribute), 191	surfaceSpeciesIndices
<pre>specificCollider (rmgpy.rmg.pdep.PDepReaction</pre>	(rmgpy.solver.LiquidReactor attribute), 231
attribute), 207	surfaceSpeciesIndices
specificColliderSpecies	(rmgpy.solver.ReactionSystem attribute),
(rmgpy.solver.SimpleReactor attribute), 224	217
<pre>specifyAtomExtensions() (rmgpy.molecule.Group</pre>	surfaceSpeciesIndices
method), 138	(rmgpy.solver.SimpleReactor attribute), 224
<pre>specifyBondExtensions() (rmgpy.molecule.Group</pre>	symbol (rmgpy.molecule.Element attribute), 107
method), 138	symmetry (rmgpy.statmech.HinderedRotor attribute),
<pre>specifyExternalNewBondExtensions()</pre>	251
(rmgpy.molecule.Group method), 138	symmetry (rmgpy.statmech.KRotor attribute), 245
<pre>specifyInternalNewBondExtensions()</pre>	symmetry (rmgpy.statmech.LinearRotor attribute), 242
(rmgpy.molecule.Group method), 138	symmetry (rmgpy.statmech.NonlinearRotor attribute),
specifyRingExtensions() (rmgpy.molecule.Group	243
method), 138	symmetry (rmgpy.statmech.SphericalTopRotor at-
specifyUnpairedExtensions()	tribute), 246
(rmgpy.molecule.Group method), 138	SymmetryJob (class in rmgpy.qm.symmetry), 166
SphericalTopRotor (class in rmgpy.statmech), 245	symmetryNumber (rmgpy.molecule.Molecule attribute),
spinMultiplicity (rmgpy.statmech.Conformer	127
attribute), 254	symmetryNumber (rmgpy.rmg.model.Species attribute),
split() (rmgpy.molecule.graph.Graph method), 106	211
Speciel () (Imgpy, molecule, graph, Oraph memoal, 100	411

${\tt symmetryNumber} \ (\textit{rmgpy.species.Species attribute}), 236$	Tmax (rmgpy.kinetics.ThirdBody attribute), 91
Т	Tmax (rmgpy.kinetics.Troe attribute), 96
	Tmax (rmgpy.thermo.NASA attribute), 261
T (rmgpy.solver.LiquidReactor attribute), 225	Tmax (rmgpy.thermo.NASAPolynomial attribute), 264
T (rmgpy.solver.SimpleReactor attribute), 218	Tmax (rmgpy.thermo.ThermoData attribute), 255
T0 (rmgpy.kinetics.Arrhenius attribute), 81	Tmax (rmgpy.thermo.Wilhoit attribute), 258
T0 (rmgpy.pdep.SingleExponentialDown attribute), 153	Tmin (arkane.KineticsJob attribute), 7
t0 (rmgpy.solver.LiquidReactor attribute), 231	Tmin (arkane.PressureDependenceJob attribute), 10
t0 (rmgpy.solver.ReactionSystem attribute), 217	Tmin (rmgpy.kinetics.Arrhenius attribute), 81
t0 (rmgpy.solver.SimpleReactor attribute), 225	Tmin (rmgpy.kinetics.Chebyshev attribute), 89
T1 (rmgpy.kinetics.Troe attribute), 95	Tmin (rmgpy.kinetics.KineticsData attribute), 80
T2 (rmgpy.kinetics.Troe attribute), 96	Tmin (rmgpy.kinetics.Lindemann attribute), 93
T3 (rmgpy.kinetics.Troe attribute), 96	Tmin (rmgpy.kinetics.MultiArrhenius attribute), 83
Tdata (rmgpy.kinetics.KineticsData attribute), 80	Tmin (rmgpy.kinetics.MultiPDepArrhenius attribute), 87
Tdata (rmgpy.kinetics.PDepKineticsData attribute), 84	Tmin (rmgpy.kinetics.PDepArrhenius attribute), 86
Tdata (rmgpy.thermo.ThermoData attribute), 255	Tmin (rmgpy.kinetics.PDepKineticsData attribute), 84
TemplateReaction (class in rmgpy.data.kinetics), 63	Tmin (rmgpy.kinetics.ThirdBody attribute), 91
terminal (rmgpy.molecule.Atom attribute), 116	Tmin (rmgpy.kinetics.Troe attribute), 96
terminal (rmgpy.molecule.graph.Vertex attribute), 102	Tmin (rmgpy.thermo.NASA attribute), 261
terminal (rmgpy.molecule.GroupAtom attribute), 130	Tmin (rmgpy.thermo.NASAPolynomial attribute), 264
termination (rmgpy.solver.LiquidReactor attribute),	Tmin (rmgpy.thermo.ThermoData attribute), 255
231	Tmin (rmgpy.thermo.Wilhoit attribute), 258
termination (rmgpy.solver.ReactionSystem attribute),	toAdjacencyList() (in module
217	rmgpy.molecule.adjlist), 150
termination (rmgpy.solver.SimpleReactor attribute), 225	toAdjacencyList() (rmgpy.molecule.Group method),
TerminationConversion (class in rmgpy.solver), 232	toAdjacencyList() (rmgpy.molecule.Molecule
TerminationTime (class in rmgpy.solver), 232	method), 127
thermo (rmgpy.rmg.model.Species attribute), 211	toAdjacencyList() (rmgpy.rmg.model.Species
thermo (rmgpy.species.Species attribute), 236	method), 212
ThermoData (class in rmgpy.thermo), 255	toAdjacencyList() (rmgpy.species.Species method).
ThermoDatabase (class in rmgpy.data.thermo), 69	236
ThermoDepository (class in rmgpy.data.thermo), 72	toArrhenius() (rmgpy.kinetics.MultiArrhenius
thermoFilterDown() (rmgpy.rmg.model.CoreEdgeRead	ctionModel method), 83
method), 196	toArrheniusEP() (rmgpy.kinetics.Arrhenius method),
thermoFilterSpecies()	82
(rmgpy.rmg.model.CoreEdgeReactionModel	toAugmentedInChI() (rmgpy.molecule.Molecule
method), 196	method), 127
ThermoGroups (class in rmgpy.data.thermo), 74	toAugmentedInChIKey() (rmgpy.molecule.Molecule
ThermoJob (class in arkane), 11	method), 127
ThermoLibrary (class in rmgpy.data.thermo), 76	toCantera() (rmgpy.data.kinetics.DepositoryReaction
ThirdBody (class in rmgpy.kinetics), 91	method), 24
Tlist (arkane.KineticsJob attribute), 7	toCantera() (rmgpy.data.kinetics.LibraryReaction
Tlist (arkane.PressureDependenceJob attribute), 9	method), 49
Tmax (arkane.KineticsJob attribute), 7	toCantera() (rmgpy.data.kinetics.TemplateReaction
Tmax (arkane.PressureDependenceJob attribute), 10	method), 68
Tmax (rmgpy.kinetics.Arrhenius attribute), 81	toCantera() (rmgpy.reaction.Reaction method), 191
Tmax (rmgpy.kinetics.Chebyshev attribute), 89	toCantera() (rmgpy.rmg.model.Species method), 212
Tmax (rmgpy.kinetics.KineticsData attribute), 80	toCantera() (rmgpy.rmg.pdep.PDepReaction method).
Tmax (rmgpy.kinetics.Lindemann attribute), 93	207
Tmax (rmgpy.kinetics.MultiArrhenius attribute), 82	toCantera() (rmgpy.species.Species method), 236
Tmax (rmgpy.kinetics.MultiPDepArrhenius attribute), 82 Tmax (rmgpy.kinetics.MultiPDepArrhenius attribute), 87	toCantera() (rmgpy.thermo.NASA method), 262
Tmax (rmgpy.kinetics.PDepArrhenius attribute), 86	toCanteraKinetics() (rmgpy.kinetics.Arrhenius
Tmax (rmgpy.kinetics.PDepKineticsData attribute), 84	method), 82
iman (inispy.minemest DeplanemesDum unitome), 04	

toChemkin() (rmgpy.data.kinetics.DepositoryReaction method), 24	Trange (rmgpy.solver.SimpleReactor attribute), 218 TransitionState (class in rmgpy.species), 237
$\verb"toChemkin()" (rmgpy.data.kinetics.LibraryReaction")$	$\verb transitionState \textit{crmgpy.data.kinetics.DepositoryReaction} $
method), 49	attribute), 24
toChemkin() (rmgpy.data.kinetics.TemplateReaction method), 68	transitionState (rmgpy.data.kinetics.LibraryReaction attribute), 49
toChemkin() (rmgpy.reaction.Reaction method), 191	$\verb transitionState \textit{crmgpy.data.kinetics.TemplateReaction} $
toChemkin() (rmgpy.rmg.model.Species method), 212	attribute), 69
toChemkin() (rmgpy.rmg.pdep.PDepReaction method), 207	transitionState (rmgpy.reaction.Reaction attribute), 191
<pre>toChemkin() (rmgpy.species.Species method), 236</pre>	transitionState (rmgpy.rmg.pdep.PDepReaction at-
toGroup() (rmgpy.molecule.Molecule method), 127	tribute), 207
toHTML() (rmgpy.kinetics.Arrhenius method), 82	transportData (rmgpy.rmg.model.Species attribute),
toHTML() (rmgpy.kinetics.Chebyshev method), 91	212
toHTML() (rmgpy.kinetics.KineticsData method), 80	transportData (rmgpy.species.Species attribute), 236
toHTML() (rmgpy.kinetics.Lindemann method), 94	trimolecular (rmgpy.solver.LiquidReactor attribute),
toHTML() (rmgpy.kinetics.MultiArrhenius method), 83	231
toHTML() (rmgpy.kinetics.MultiPDepArrhenius	trimolecular (rmgpy.solver.ReactionSystem attribute),
method), 88	217
toHTML() (rmgpy.kinetics.PDepArrhenius method), 87	trimolecular (rmgpy.solver.SimpleReactor attribute),
toHTML() (rmgpy.kinetics.PDepKineticsData method),	225
85	trimolecularThreshold
toHTML() (rmgpy.kinetics.ThirdBody method), 92	(rmgpy.solver.LiquidReactor attribute), 231
toHTML() (rmgpy.kinetics.Troe method), 97	trimolecularThreshold
toInChI (in module rmgpy.molecule.translator), 147	(rmgpy.solver.ReactionSystem attribute),
toInChI() (rmgpy.molecule.Molecule method), 127	217
toInChIKey (in module rmgpy.molecule.translator), 147	trimolecularThreshold
toInChIKey() (rmgpy.molecule.Molecule method), 127	(rmgpy.solver.SimpleReactor attribute), 225
toLabeledStr() (rmgpy.data.kinetics.DepositoryReaction	
method), 24	Troe (class in rmgpy.kinetics), 95
toLabeledStr() (rmgpy.data.kinetics.LibraryReaction	tunneling (rmgpy.species.TransitionState attribute),
method), 49	237
$\verb"toLabeledStr" () (\textit{rmgpy.data.kinetics.TemplateReaction} \\$	
method), 68	U
toLabeledStr() (rmgpy.reaction.Reaction method),	$uncertainty \ (\textit{rmgpy.quantity.} A \textit{rrayQuantity attribute}),$
191	184
toLabeledStr() (rmgpy.rmg.pdep.PDepReaction method), 207	uncertainty (rmgpy.quantity.ScalarQuantity at- tribute), 182
toNASA() (rmgpy.thermo.ThermoData method), 256	uncertainty_si (rmgpy.quantity.ArrayQuantity
toNASA() (rmgpy.thermo.Wilhoit method), 260	attribute), 184
toOBMol (in module rmgpy.molecule.converter), 147	uncertainty_si (rmgpy.quantity.ScalarQuantity at-
toRDKitMol (in module rmgpy.molecule.converter), 147	tribute), 182
toRDKitMol() (rmgpy.molecule.Molecule method), 127	uncertaintyType (rmgpy.quantity.ArrayQuantity at-
toSingleBonds() (rmgpy.molecule.Molecule method),	tribute), 184
127	uncertaintyType (rmgpy.quantity.ScalarQuantity at-
toSMARTS (in module rmgpy.molecule.translator), 148	tribute), 182
toSMARTS() (rmgpy.molecule.Molecule method), 127	UndeterminableKineticsError, 268
toSMILES (in module rmgpy.molecule.translator), 148	UnexpectedChargeError, 268
toSMILES() (rmgpy.molecule.Molecule method), 127	unimolecularThreshold
toThermoData() (rmgpy.thermo.NASA method), 262	(rmgpy.solver.LiquidReactor attribute), 231
toThermoData() (rmgpy.thermo.Wilhoit method), 260	unimolecularThreshold
toWilhoit() (rmgpy.thermo.NASA method), 262	(rmgpy.solver.ReactionSystem attribute),
<pre>toWilhoit() (rmgpy.thermo.ThermoData method), 257</pre>	218
Trange (rmgpy.solver.LiquidReactor attribute), 225	

unimolecularThreshold	validLayeringIndices
(rmgpy.solver.SimpleReactor attribute), 225	(rmgpy.solver.ReactionSystem attribute),
uniqueID (rmgpy.qm.molecule.Geometry attribute), 164	218
uniqueID (rmgpy.qm.symmetry.SymmetryJob attribute),	validLayeringIndices (rmgpy.solver.SimpleReactor
166	attribute), 225
uniqueIDlong (rmgpy.qm.molecule.Geometry at-	value (rmgpy.quantity.ArrayQuantity attribute), 184
tribute), 164	value (rmgpy.quantity.ScalarQuantity attribute), 182
unitDegeneracy() (in module	value_si (rmgpy.quantity.ArrayQuantity attribute), 184
rmgpy.statmech.schrodinger), 252	value_si (rmgpy.quantity.ScalarQuantity attribute),
units (rmgpy.quantity.ArrayQuantity attribute), 184	182
units (rmgpy.quantity.ScalarQuantity attribute), 182	verifyOutputFile() (rmgpy.qm.gaussian.Gaussian
unresolved (rmgpy.molecule.kekulize.AromaticRing at-	method), 167
tribute), 143	<pre>verifyOutputFile() (rmgpy.qm.gaussian.GaussianMol</pre>
update() (rmgpy.molecule.Group method), 139	method), 168
update() (rmgpy.molecule.kekulize.AromaticBond	<pre>verifyOutputFile() (rmgpy.qm.gaussian.GaussianMolPM3</pre>
method), 143	method), 170
update() (rmgpy.molecule.kekulize.AromaticRing	verifyOutputFile() (rmgpy.qm.gaussian.GaussianMolPM6
method), 143	method), 172
update() (rmgpy.molecule.Molecule method), 128	verifyOutputFile() (rmgpy.qm.mopac.Mopac
update() (rmgpy.rmg.pdep.PDepNetwork method), 202	method), 172
<pre>update_charge() (rmgpy.molecule.Group method),</pre>	<pre>verifyOutputFile() (rmgpy.qm.mopac.MopacMol</pre>
139	method), 174
updateAtomTypes() (rmgpy.molecule.Molecule	<pre>verifyOutputFile() (rmgpy.qm.mopac.MopacMolPM3</pre>
method), 128	method), 175
updateCharge() (rmgpy.molecule.Atom method), 116	<pre>verifyOutputFile()(rmgpy.qm.mopac.MopacMolPM6</pre>
updateConfigurations()	method), 177
(rmgpy.rmg.pdep.PDepNetwork method),	<pre>verifyOutputFile() (rmgpy.qm.mopac.MopacMolPM7</pre>
202	method), 179
updateConnectivityValues()	Vertex (class in rmgpy.molecule.graph), 101
(rmgpy.molecule.graph.Graph method),	vertex1 (rmgpy.molecule.Bond attribute), 117
106	vertex1 (rmgpy.molecule.graph.Edge attribute), 102
updateConnectivityValues()	vertex1 (rmgpy.molecule.GroupBond attribute), 132
(rmgpy.molecule.Group method), 139	vertex2 (rmgpy.molecule.Bond attribute), 117
updateConnectivityValues()	vertex2 (rmgpy.molecule.graph.Edge attribute), 102
(rmgpy.molecule.Molecule method), 128	vertex2 (rmgpy.molecule.GroupBond attribute), 132
<pre>updateFingerprint() (rmgpy.molecule.Group</pre>	vertices (rmgpy.molecule.graph.Graph attribute), 106
method), 139	vertices (rmgpy.molecule.Group attribute), 139
updateLonePairs() (rmgpy.molecule.Molecule	vertices (rmgpy.molecule.Molecule attribute), 128
method), 128	VF2 (class in rmgpy.molecule.vf2), 106
updateMultiplicity() (rmgpy.molecule.Molecule	VF2Error, 268
method), 128	viscosity (rmgpy.solver.LiquidReactor attribute), 232
updateReactionThresholdAndReactFlags()	visit() (arkane.output.PrettifyVisitor method), 8
	The state of the s
(rmgpy.rmg.main.RMG method), 199	visit_Call() (arkane.output.PrettifyVisitor method), 8
updateUnimolecularReactionNetworks()	visit_Dict() (arkane.output.PrettifyVisitor method), 8
(rmgpy.rmg.model.CoreEdgeReactionModel	visit_List() (arkane.output.PrettifyVisitor method), 8
method), 196	<pre>visit_Num() (arkane.output.PrettifyVisitor method), 8</pre>
usePolar (rmgpy.qm.mopac.Mopac attribute), 172	<pre>visit_Str() (arkane.output.PrettifyVisitor method), 8</pre>
.,	<pre>visit_Tuple() (arkane.output.PrettifyVisitor method),</pre>
V	8
V (rmgpy.solver.LiquidReactor attribute), 226	147
V (rmgpy.solver.SimpleReactor attribute), 218	W
validLayeringIndices (rmgpy.solver.LiquidReactor	Wigner (class in rmgpy.kinetics), 97
	Wilhoit (class in rmgpy.thermo), 257
attribute), 231	withoit (class in imppy.meimo), 25/

```
writeInputFile() (rmgpy.qm.gaussian.GaussianMol
        method), 169
writeInputFile() (rmgpy.qm.gaussian.GaussianMolPM3
        method), 170
writeInputFile() (rmgpy.qm.gaussian.GaussianMolPM6
        method), 172
writeInputFile()
                       (rmgpy.qm.mopac.MopacMol
        method), 174
writeInputFile() (rmgpy.qm.mopac.MopacMolPM3
        method), 176
writeInputFile() (rmgpy.qm.mopac.MopacMolPM6
        method), 177
writeInputFile() (rmgpy.qm.mopac.MopacMolPM7
        method), 179
writeInputFile() \ (\textit{rmgpy.qm.symmetry.SymmetryJob}
        method), 167
writeKineticsEntry() (in module rmgpy.chemkin),
writeThermoEntry() (in module rmgpy.chemkin), 14
Υ
y0 (rmgpy.solver.LiquidReactor attribute), 232
y0 (rmgpy.solver.ReactionSystem attribute), 218
y0 (rmgpy.solver.SimpleReactor attribute), 225
```