ENSAE - Computational Statistics

Professor Christian P. Robert

Zakarya Ali

December 15, 2017

Problem 9.3. The following are genotype on blood type.

Genotype	Probability	Observed	Probability	Frequency
AA	p_A^2	A	$p_A^2 + 2p_A p_O$	$n_A = 186$
AO	$2p_Ap_O$			
BB	p_B^2	В	$p_B^2 + 2p_B p_O$	$n_B = 38$
ВО	$2p_Bp_O$			
AB	$2p_Ap_B$	AB	$p_A p_B$	$n_{AB} = 13$
OO	p_O^2	O	p_O^2	$n_O = 284$

Estimate p_A , p_B and p_O using a Gibbs sampler. Make a histogram of the samples.

We know $P_A + P_B + P_O = 1$, thus we only need to deduce P_A and P_B . From Problem 5.18, we get

$$(P_A, P_B, 1 - P_A - P_B) | (n, Z_A, Z_B) \sim D(Z_A + n_A + 1, Z_B + n_B + n_{AB} + 1, n_A - Z_A + n_B - Z_B + 2n_O + 1),$$

where $n = (n_A, n_B, n_{AB}, n_O)$ and Z_A, Z_B are the missing values such as,

$$Z_A|n, P_A, P_B \sim Bin(n_A, \frac{P_A^2}{P_A^2 + 2P_A P_O})$$

$$Z_B|n,P_A,P_B \sim Bin(n_B,\frac{P_B^2}{P_B^2+2P_BP_O})$$

From these laws, we can produce the following Gibbs Sampler:

Figure 1 show the generation of 10^5 observations from the Gibbs Sampler. And Table 1 present the values estimated.

Algorithm 1 Gibbs Sampler

 $\forall t,$

- Draw $(P_A^{t+1},P_B^{t+1}) \sim f(Z_A^t,Z_B^t)$ with f density of $D(Z_A+n_A+1,Z_B+n_B+n_{AB}+1,n_A-Z_A+n_B-Z_B+2n_O+1)$
- $\bullet \ P_O^{t+1} = 1 P_A^{t+1} P_B^{t+1}$
- Draw $Z_A^{t+1} \sim g(P_A^t, P_B^t)$ where g is the density of $Bin(n_A, \frac{P_A^2}{P_A^2 + 2P_A P_O})$
- Draw $Z_B^{t+1} \sim h(P_A^t, P_B^t)$ where h is the density of $Bin(n_B, \frac{P_B^2}{P_B^2 + 2P_B P_O})$

Figure 1: Historgrams of p_A (purple), p_B (blue) and p_O (gold), with Gibbs Sampler

p_A	p_B	p_O
0.2150003	0.05104553	0.7339541

Table 1: Estimations of p_A, p_B, p_O

```
1 #Initialization
2 library(gtools)
3 iterations = 10**5
4 nA = 186
5 nB = 38
6 \text{ nAB} = 13
7 n0 = 284
8
  #gibbs sampler
   gibbs_sampler = function(iterations, nA, nB, nAB, nO){
10
     pA = c(.25)
11
     pB = c(.05)
12
     p0 = 1 - pA - pB
13
     for (i in 1:iterations-1){
14
       ZA=rbinom(1,nA,pA[i]^2/(pA[i]^2+2*pA[i]*p0))
15
       ZB=rbinom(1,nB,pB[i]^2/(pB[i]^2+2*pB[i]*p0))
16
       temp=rdirichlet(1,c(nA+nAB+ZA+1,nB+nAB+ZB+1,nA-ZA+nB-ZB+2*nO+1))
17
       pA=c(pA,temp[1])
18
       pB=c(pB,temp[2])
19
       p0 = c(p0, 1-temp[1]-temp[2])
20
21
     return (data.frame(pA,pB,p0))
22
  }
23
^{24}
 #Sample generation
  sample = gibbs_sampler(iterations, nA, nB, nAB, nO)
26
27
28 #Histograms
  hist(sample[,1],main="",freq=F,col="purple", xlim=c(0,1), ylim=c
      (0,60), xlab=""
  par (new=TRUE)
30
  hist(sample[,2], main="", freq=F, col="blue", xlim=c(0,1), ylim=c(0,60),
       xlab="")
  par (new=TRUE)
32
  hist(sample[,3], main="",freq=F,col="gold", xlim=c(0,1), ylim=c(0,60)
33
      , xlab="")
34
35 #Estimations
36 pA_estimate = mean(na.omit(sample[,1]))
37 pB_estimate = mean(na.omit(sample[,2]))
 pO_estimate = 1 - pA_estimate - pB_estimate
```