STATISTICAL ECO(-TOXICO)LOGY

IMPROVING THE UTILIZATION OF DATA FOR ECOLOGICAL RISK ASSESSMENT

by

EDUARD SZÖCS from zărnești / romania

Submitted Dissertation thesis for the partial fulfillment of the requirements for a Doctor of Natural Sciences

Fachbereich 7: Natur- und Umweltwissenschaften

Universität Koblenz-Landau

11. November 2016

1 INTRODUCTION AND OBJECTIVES

THREATS TO FRESHWATER ECOSYSTEMS FROM CHEMICAL POLLUTION

Freshwaters ecosystems, like streams, lakes and wetlands, make up only 0.01% of the World's water and cover only 0.8% of Earths surface (Dudgeon et al., 2006), yet they host an important component of global biodiversity. Freshwaters are a habitat for more than 125,000 species, which represents 10% of global biodiversity and ½ of all vertebrate species (Balian et al., 2007; Strayer and Dudgeon, 2010) and provide essential services for human well-being (Aylward et al., 2005). Small waterbodies are of particular importance, because of their high abundance (Downing et al., 2012), the high biodiversity they host (Davies et al., 2008) and the ecosystem services they provide (Biggs et al., 2016).

Earth is currently experiencing a functional change driven by human activities which are so far-reaching, that a new geological epoche "Anthropocene" has been proposed (Waters et al., 2016). These changes are also associated with biotic changes: 65% of rivers are currently at threat (Vörösmarty et al., 2010) and freshwaters are experiencing the greatest losses of biodiversity (WWF, 2016). A multitude of stressors contribute to this deterioration of freshwater biodiversity including habitat loss and degradation, overexploitation, invasive species and pollution (Dudgeon et al., 2006; Vörösmarty et al., 2010; WWF, 2016). Studies investigating water pollution have mainly focused on nutrient loading, acidification and pollution by organic loading (Schäfer et al., 2016). Chemicals have become ubiquitous throughout humankind. Currently, more than 100,000 chemicals are registered and in daily use (Schwarzenbach et al., 2010; Schwarzman and Wilson, 2009). These substances will somewhen ultimately end in the environment.

Despite their potential negative effects for biota and humans and their intentional release, pesticides have been neglected in the past by ecological studies investigating threats to freshwaters (Schäfer et al., 2016) and it is unknown how much the contribute to biodiversity loss (Persson et al., 2013; Rockström et al., 2009). However, recent studies indicated that pollution by pesticides may be a frequent threat to freshwaters that might have been neglected by ecological studies in the past. Malaj et al., (2014) showed that almost half of Euro-

pean water bodies are at risk from pesticides. In the United States, Stone et al., (2014) showed that 61% of assessed agricultural streams exceed aquatic-life benchmarks. On a global scale, Stehle and Schulz, (2015) found that 52.4% of detected insecticide concentrations (n = 11,300) exceeded risk thresholds. The high contact with adjacent land and low water volume of small streams make them particularly vulnerable to pesticide pollution (Biggs et al., 2016), however, there is currently a lack of data on pesticide pollution of small streams (Lorenz et al., 2016).

As reaction to the degradation of freshwaters several legal frameworks have been established to safeguard and improve the quality of freshwater ecosystems. In the European Union (EU), the Water Framework Directive (WFD) (European Union, 2000) regulates the protection of aquatic ecosystems and commits the member states to achieve a 'good' status of all water bodies. Knowing of the toxicity of pesticides and their intentional release into the environment, also the introduction and use of new pesticides is highly regulated. Sophisticate environmental risk assessment procedures have been developed and are requested by the EU (European Union, 2009) to ensure that the use of pesticides does not cause unacceptable effects to non-target organism, soil, air and water.

ENVIRONMENTAL RISK ASSESSMENT

Environmental risk assessment (ERA) tries to estimate risks to animals, populations or ecosystems. It investigates if a chemical can be used as intended without a causing detrimental impacts to the environment. ERA is used as a tool to support decision making under uncertainty (Newman, 2015). Environmental risk is defined as a combination of the severity and the probability of occurrence of a potential adverse effect to the environment (Suter, 2007). Therefore, ERA is based on two components: Effect- and exposure assessment. A combination of both is needed to characterise environmental risks.

Effect assessment characterises the strength of effects using laboratory and semi-field experiments. It establishes relationships between the concentration of a compound and the observed effects. In the European Union a tiered approach with increasing complexity and realism. Lower tier assessment is based on highly standardised single species laboratory experiments, whereas higher tier assessment is refined by testing additional species, extended laboratory experiments or model ecosystem experiments. To address the various uncertainties in effect assessment (e.g. experimental variation, variation between species, variation in environmental conditions etc) the retrieved toxicity values are multiplied by an assessment factor between 0.01 (lower tier assessment) and 0.5

(higher tier assessment) depending on data quality, which yields to a regulatory acceptable concentration (RAC) (EFSA, 2013).

Exposure Assessment for freshwaters aims to characterise the probability of an adverse effect by deriving a predicted environmental concentration (PEC) in surface waters and sediments (Newman, 2015). It is mainly based on modeling the fate of chemicals in the environment using computer simulations. In the European Union, the FOCUS models are used (EFSA, 2013; FOCUS, 2001). To calculate PECs these models need many compound specific input parameters like the molecular weight, water solubility, partitioning coefficients and dissipation time. Additionally, information on the application regime and crop type is needed. FOCUS models the concentration within edge-of-field streams of 1 meter width and 30cm depth (Erlacher and Wang, 2011). Nevertheless, recent research showed that FOCUS models fail predict measured field concentrations of pesticides (Knäbel et al., 2014; Knäbel et al., 2012).

The final step in ERA is risk characterisation. It puts together the information gained from effect and exposure assessment. Risk can be expressed in several ways, a quantitative way being the risk quotient approach: A PEC / RAC ratio greater than one indicating potential risks (Amiard-Triquet, 2015; EFSA, 2013; Suter, 2007). Pesticides can be authorised only if the risk quotient is below one indicating that harmful effects are unlikely.

ENVIRONMENTAL MONITORING

Widespread anthropogenic activities and the induced environmental changes have resulted in concerns about the state of the environment and have lead to the development of environmental monitoring programs worldwide (Nichols and Williams, 2006). After authorization, pesticides applied on agricultural fields may enter aquatic ecosystems via diffuse sources like spray-drift, surface run-off or drainage (Liess et al., 1999; Schulz, 2004; Stehle et al., 2013). These entered pesticides may have ecological effects and worsen the chemical status, acting contrary to the goal of the WFD. For monitoring the progress towards the goal of a 'good' status and for assessment of chemical status of surface waters the EU WFD established monitoring requirements for all European river basins (European Union, 2000). For chemical monitoring the WFD requires grab sampling and chemical analysis of 21 priority substances (of which 7 are pesticides) every third month and of 24 other pollutants (of which 12 are used as pesticides) every month (European Union, 2013). Additionally, 14 substances (of which 8 are used as pesticides, including Neonicotinoids) that may pose a significant risk, have a insufficient data basis and are candidates for future priority sub4

stances are currently monitored until 2019 (European Union, 2015). Although national monitoring programs might monitor a broader spectrum of chemical substances, it is obvious that only a small fraction of the chemical space can be monitored.

Environmental monitoring produces humongous amounts of data containing information of realised pesticide concentrations in the field, which can be complementary to environmental risk assessment (Suter, 2007). If the risk assessment process captured all relevant sources of risk no concentration above the derived RAC should be observed in European rivers. Therefore, monitoring data could be used to provide feedback for ERA after approval (Knauer, 2016). However, it must be noted that there is a mismatch between streams assessed in ERA and streams monitored according the WFD: The WFD aims at monitoring medium size to large streams greater than 10 km² catchment size, whereas ERA assesses risks for streams corresponding to a catchment size of approximately 7 km² (corresponding to 1 meter width, see Figure ?? ref to small streams supplement). Moreover, data from long-term monitoring programs can be used to study hypotheses about spatial and temporal dynamics and interactions, that are not evident from short term and short scale studies (Gitzen, 2012) and provide insights modeling approaches.

STATISTICAL ECOTOXICOLOGY

Environmental effect assessment generates data on ecological effects using experiments. The produced datasets range from small univariate datasets (lower tier assessment) to medium sized multivariate datasets (higher tier assessment). These datasets are analysed using statistical techniques in order to extract usable information for assessment and therefore, statistics are crucial for effect assessment (Newman, 2012). Statistical ecotoxicology combines statistics with the specific needs and constraints of ecotoxicology. It aims to provide solutions to statistical challenges in ecotoxicology (Fox and Landis, 2016a), guidance on experimental designs (Johnson et al., 2015) and tools to integrate big data (Van den Brink et al., 2016) to improve accuracy of ERA.

The relationships between the concentration of a compound and the observed effects are usually analysed using dose-response models, which can be used to derive an effective concentration for x% effect (EC_x) (Ritz, 2010). Nevertheless, such relationships cannot always be established from experimental data. For example, model ecosystem experiments are conducted to characterise effects on whole biological communities. However, because of multivariate responses and potential indirect effects, there is no clear dose-response relationship and

no models for this kind of data available. There are also other examples were fitting dose-response models is problematic (Green, 2016). In such cases, there is usually a no-observed-effect concentration (NOEC) computed.

The NOEC is the highest tested concentration that does not lead to significant deviation from the control response and therefore relies on null hypothesis significance testing (NHST). However, the use of NOEC as toxicity measure in environmental effect assessment has been heavily criticised in the past (Chapman et al., 1996; Fox et al., 2012; Fox and Landis, 2016b; Jager, 2012; Laskowski, 1995; Warne and Dam, 2008). One such critic is the low statistical power for NHST in common ecotoxicological experiments (Van Der Hoeven, 1998). *A priori* power calculations can provide useful guidance for choosing experimental designs (Johnson et al., 2015), but are rarely used by ecotoxicologists (Newman, 2008).

Instead of conducting experiments, toxicity could be also predicted from molecular structures using quantitative structure-activity relationships (QSAR), which are usually calculated using machine-learning techniques (Cortes-Ciriano, 2016; Murrell et al., 2015). Nevertheless, in order to improve these models to give sufficient prediction accuracy more data from experiments is needed (Kühne et al., 2013).

A large amount of data is available that could be used for effect and exposure assessment. For example, the US EPA ECOTOX database (U.S. EPA, 2016), the Pesticides Properties Database (Lewis et al., 2016) and ETOX (Umweltbundesamt, 2016) provide toxicity data that could be used for effect assessment. Databases like Physprop (Howard and Meylan, 2016) and PubChem (Kim et al., 2016) provide chemical properties that are needed as input for exposure models. Monitoring data provides information on realised concentrations, could be used for validation of models and retrospective risk assessment. This "big data" can provide new information and opportunities for ERA (Dafforn et al., 2015). However, it needs to be linked and easily accessible in order to be used effectively in ERA.

OBJECTIVES AND OUTLINE OF THE THESIS

The overall goal of this thesis was to contribute to the emerging field of statistical ecotoxicology, environmental risk assessment and environmental monitoring. The main objectives were (i) to scrutinise new methods in statistical ecotoxicology, (ii) explore available monitoring data and (iii) provide tools to deal with big data. Figure 1.1 provides a conceptual overview on ERA and envi-

ronmental monitoring as outlined in the previous sections, as well as the parts of this thesis and its relations.

The thesis starts with a comparison of statistical methods to analyse ecotoxicological experiments in effect assessment (Chapter ??). Specific questions addressed were:

- Are newer statistical methods more powerful than currently used methods for NHST?
- How much statistical power do current experimental designs in ecotoxicology exhibit?

Exposure assessment aims at predicting chemical concentrations in small streams. Chapter ?? focuses on measured large-scale environmental concentrations and the drivers thereof. Specific goals were:

- Compile all available monitoring data on pesticides in small streams in Germany
- Explore the relationship between agricultural land use and streams size and measured pesticide concentrations.
- Study annual dynamics of pesticide exposure, as well as the influence of precipitation on measured pesticide concentrations.
- Assess the current pollution in German streams and identify responsible pesticides.

The compilation of monitoring data from different data sources, lead to a big inhomogeneous amount of data that first needs to be harmonised. Chapter ?? (chemical data) and Chapter ?? (biological data) describe software solutions to simplify and accelerate the workflow of:

- validating and harmonising chemical and taxonomic data
- linking datasets
- retrieving properties and identifiers

Figure 1.1: Conceptual overview on environmental risk assessment, environmental monitoring and the parts addressed by this thesis.

REFERENCES

Amiard-Triquet, C. (2015). *Aquatic ecotoxicology: advancing tools for dealing with emerging risks*. Boston, MA: Elsevier.

Aylward, B., J. Bandyopadhyay, J.-C. Belausteguigotia, P. Borkey, A. Z. Cassar, L. Meadors, L. Saade, M. Siebentritt, R. Stein, S. Tognetti, et al. (2005). "Freshwater ecosystem services". *Ecosystems and human well-being: policy responses* 3, 213–256.

Balian, E. V., H. Segers, C. Lévèque, and K. Martens (2007). "The Freshwater Animal Diversity Assessment: an overview of the results". *Hydrobiologia* 595 (1). pdf RS, 627–637.

Biggs, J., S. von Fumetti, and M. Kelly-Quinn (2016). "The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers". *Hydrobiologia*.

- Chapman, P., P. Chapman, and R. Caldwell (1996). "A warning: NOECs are inappropriate for regulatory use". *Environmental Toxicology and Chemistry* 15 (2), 77–79.
- Cortes-Ciriano, I. (2016). "Bioalerts: a python library for the derivation of structural alerts from bioactivity and toxicity data sets". *Journal of Cheminformatics* 8(1).
- Dafforn, K. A., E. L. Johnston, A. Ferguson, C. Humphrey, W. Monk, S. J. Nichols, S. L. Simpson, M. G. Tulbure, and D. J. Baird (2015). "Big data opportunities and challenges for assessing multiple stressors across scales in aquatic ecosystems." *Marine and Freshwater Research*.
- Davies, B., J. Biggs, P. Williams, M. Whitfield, P. Nicolet, D. Sear, S. Bray, and S. Maund (2008). "Comparative biodiversity of aquatic habitats in the European agricultural landscape". *Agriculture, Ecosystems & Environment* 125 (1-4), 1–8.
- Downing, J. A., J. J. Cole, C. A. Duarte, J. J. Middelburg, J. M. Melack, Y. T. Prairie, P. Kortelainen, R. G. Striegl, W. H. McDowell, and L. J. Tranvik (2012). "Global abundance and size distribution of streams and rivers". *Inland waters* 2 (4), 229–236.
- Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Leveque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. J. Stiassny, and C. A. Sullivan (2006). "Freshwater biodiversity: importance, threats, status and conservation challenges". *Biological Reviews* 81 (2), 163–182.
- EFSA (2013). "Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters". EFSA Journal 11 (7), 3290.
- Erlacher, E. and M. Wang (2011). "Regulation (EC) No. 1107/2009 and upcoming challenges for exposure assessment of plant protection products Harmonisation or national modelling approaches?" *Environmental Pollution* 159 (12), 3357–3363.
- European Union (2000). "Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy". Official Journal of the European Union L 327, 1–73.

- European Union (2009). "Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC". Official Journal of the European Union L 309, 1–50.
- European Union (2013). "Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy". Official Journal of the European Union L226, 1–17.
- European Union (2015). "Commission Implementing Decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council (notified under document C(2015) 1756)". Official Journal of the European Union L28, 40–42.
- FOCUS (2001). FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC. EC Document Reference SANCO/4802/2001-rev.2.
- Fox, D. R., E. Billoir, S. Charles, M. L. Delignette-Muller, and C. Lopes (2012). "What to do with NOECS/NOELS—prohibition or innovation?" *Integrated Environmental Assessment and Management* 8 (4), 764–766.
- Fox, D. R. and W. G. Landis (2016a). "Comment on ET&C perspectives, November 2015-A holistic view". *Environmental Toxicology and Chemistry* 35 (6), 1337–1339.
- Fox, D. R. and W. G. Landis (2016b). "Don't be fooled-A no-observed-effect concentration is no substitute for a poor concentration-response experiment: NOEC and a poor concentration-response experiment". *Environmental Toxicology and Chemistry* 35 (9), 2141–2148.
- Gitzen, R. A., ed. (2012). *Design and analysis of long-term ecological monitoring studies*. Cambridge; New York: Cambridge University Press.
- Green, J. W. (2016). "Issues with using only regression models for ecotoxicity studies". *Integrated Environmental Assessment and Management* 12 (1), 198–199.
- Howard, P. H. and W. Meylan (2016). *Physical and Chemical Property Database*. URL: http://www.srcinc.com/what-we-do/environmental/scientific-databases.html.

- Jager, T. (2012). "Bad habits die hard: The NOEC's persistence reflects poorly on ecotoxicology". *Environmental Toxicology and Chemistry* 31 (2), 228–229.
- Johnson, P. C. D., S. J. E. Barry, H. M. Ferguson, and P. Müller (2015). "Power analysis for generalized linear mixed models in ecology and evolution". *Methods in Ecology and Evolution* 6 (2), 133–142.
- Kim, S., P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B. A. Shoemaker, J. Wang, B. Yu, J. Zhang, and S. H. Bryant (2016). "PubChem Substance and Compound databases". *Nucleic Acids Research* 44 (D1), D1202–D1213.
- Knäbel, A., K. Meyer, J. Rapp, and R. Schulz (2014). "Fungicide Field Concentrations Exceed FOCUS Surface Water Predictions: Urgent Need of Model Improvement". *Environmental Science & Technology* 48 (1), 455–463.
- Knäbel, A., S. Stehle, R. B. Schäfer, and R. Schulz (2012). "Regulatory FOCUS Surface Water Models Fail to Predict Insecticide Concentrations in the Field". *Environmental Science & Technology* 46 (15), 8397–8404.
- Knauer, K. (2016). "Pesticides in surface waters: a comparison with regulatory acceptable concentrations (RACs) determined in the authorization process and consideration for regulation". *Environmental Sciences Europe* 28 (13).
- Kühne, R., R.-U. Ebert, P. C. von der Ohe, N. Ulrich, W. Brack, and G. Schüürmann (2013). "Read-Across Prediction of the Acute Toxicity of Organic Compounds toward the Water Flea Daphnia magna". *Molecular Informatics* 32 (1), 108–120.
- Laskowski, R. (1995). "Some good reasons to ban the use of NOEC, LOEC and related concepts in ecotoxicology". *Oikos* 73 (1), 140–144.
- Lewis, K. A., J. Tzilivakis, D. J. Warner, and A. Green (2016). "An international database for pesticide risk assessments and management". *Human and Ecological Risk Assessment: An International Journal* 22 (4), 1050–1064.
- Liess, M., R. Schulz, M.-D. Liess, B. Rother, and R. Kreuzig (1999). "Determination of insecticide contamination in agricultural headwater streams". *Water Research* 33 (1), 239–247.

- Lorenz, S., J. J. Rasmussen, A. Süß, T. Kalettka, B. Golla, P. Horney, M. Stähler, B. Hommel, and R. B. Schäfer (2016). "Specifics and challenges of assessing exposure and effects of pesticides in small water bodies". *Hydrobiologia*, 1–12.
- Malaj, E., P. C. v. d. Ohe, M. Grote, R. Kühne, C. P. Mondy, P. Usseglio-Polatera, W. Brack, and R. B. Schäfer (2014). "Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale". *Proceedings of the National Academy of Sciences* 111 (26), 9549–9554.
- Murrell, D. S., I. Cortes-Ciriano, G. J. P. van Westen, I. P. Stott, A. Bender, T. E. Malliavin, and R. C. Glen (2015). "Chemically Aware Model Builder (camb): an R package for property and bioactivity modelling of small molecules". *Journal of Cheminformatics* 7(1).
- Newman, M. C. (2008). ""What exactly are you inferring?" A closer look at hypothesis testing". *Environmental Toxicology and Chemistry* 27 (7). Newman, M. C., 1633–1633.
- Newman, M. C. (2012). *Quantitative ecotoxicology*. Boca Raton, FL: Taylor & Francis.
- Newman, M. C. (2015). Fundamentals of ecotoxicology: the science of pollution. Boca Raton: CRC Press, Taylor & Francis Group.
- Nichols, J. and B. Williams (2006). "Monitoring for conservation". *Trends in Ecology & Evolution* 21 (12), 668–673.
- Persson, L. M., M. Breitholtz, I. T. Cousins, C. A. de Wit, M. MacLeod, and M. S. McLachlan (2013). "Confronting unknown planetary boundary threats from chemical pollution". *Environmental science & technology* 47 (22), 12619–12622.
- Ritz, C. (2010). "Toward a unified approach to dose-response modeling in ecotoxicology". *Environmental Toxicology and Chemistry* 29(1), 220–229.
- Rockström, J., W. Steffen, K. Noone, A. Persson, 3. Chapin F. S., E. F. Lambin, T. M. Lenton, M. Scheffer, C. Folke, H. J. Schellnhuber, B. Nykvist, C. A. de Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sorlin, P. K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R. W. Corell, V. J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, and J. A. Foley (2009). "A safe operating space for humanity". *Nature* 461 (7263), 472–5.

- Schäfer, R. B., B. Kühn, E. Malaj, A. König, and R. Gergs (2016). "Contribution of organic toxicants to multiple stress in river ecosystems". *Freshwater Biology*. DOI: 10.1111/fwb.12811.
- Schulz, R. (2004). "Field Studies on Exposure, Effects, and Risk Mitigation of Aquatic Nonpoint-Source Insecticide Pollution: A Review". *Journal of Environmental Quality* 33 (2), 419–448.
- Schwarzenbach, R. P., T. Egli, T. B. Hofstetter, U. v. Gunten, and B. Wehrli (2010). "Global Water Pollution and Human Health". *Annual Review of Environment and Resources* 35(1), 109–136. URL: http://dx.doi.org/10.1146/annurevenviron-100809-125342.
- Schwarzman, M. R. and M. P. Wilson (2009). "New Science for Chemicals Policy". *Science* 326 (5956), 1065–1066. URL: http://science.sciencemag.org/content/326/5956/1065.
- Stehle, S., A. Knäbel, and R. Schulz (2013). "Probabilistic risk assessment of insecticide concentrations in agricultural surface waters: a critical appraisal". *Environmental Monitoring and Assessment* 185 (8), 6295–6310.
- Stehle, S. and R. Schulz (2015). "Pesticide authorization in the EU—environment unprotected?" *Environmental Science and Pollution Research* 22 (24), 19632–19647.
- Stone, W. W., R. J. Gilliom, and K. R. Ryberg (2014). "Pesticides in U.S. Streams and Rivers: Occurrence and Trends during 1992–2011". *Environmental Science & Technology* 48 (19), 11025–11030.
- Strayer, D. L. and D. Dudgeon (2010). "Freshwater biodiversity conservation: recent progress and future challenges". *Journal of the North American Benthological Society* 29 (1), 344–358.
- Suter, G. W., ed. (2007). *Ecological risk assessment*. Boca Raton: CRC Press/Taylor & Francis.
- Umweltbundesamt (2016). ETOX: Information System Ecotoxicology and Environmental Quality Targets. URL: http://webetox.uba.de/webETOX/index.do.
- U.S. EPA (2016). The ECOTOXicology knowledgebase (ECOTOX). URL: http://cfpub.epa.gov/ecotox/.

- Van den Brink, P. J., C. B. Choung, W. Landis, M. Mayer-Pinto, V. Pettigrove, P. Scanes, R. Smith, and J. Stauber (2016). "New approaches to the ecological risk assessment of multiple stressors". *Marine and Freshwater Research* 67 (4), 429.
- Van Der Hoeven, N. (1998). "Power analysis for the NOEC: What is the probability of detecting small toxic effects on three different species using the appropriate standardized test protocols?" *Ecotoxicology* 7 (6), 355–361.
- Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. R. Liermann, and P. M. Davies (2010). "Global threats to human water security and river biodiversity". *Nature* 467 (7315), 555–561.
- Warne, M. S. J. and R. van Dam (2008). "NOEC and LOEC data should no longer be generated or used". *Australasian Journal of Ecotoxicology* 14, 1–5.
- Waters, C. N., J. Zalasiewicz, C. Summerhayes, A. D. Barnosky, C. Poirier, A. Galuszka, A. Cearreta, M. Edgeworth, E. C. Ellis, M. Ellis, et al. (2016). "The Anthropocene is functionally and stratigraphically distinct from the Holocene". *Science* 351 (6269), aad2622.
- WWF (2016). Living Planet Report 2016 Risk and resilience in a new era. URL: http://wwf.panda.org/about_our_earth/all_publications/lpr_2016/.