Hardware

A/D převodníky 4. ročník

Paralelní A/D převodník

- Flash, přímý, komparační
- Nejrychlejší typ A/D převodníků (v jednom časovém okamžiku)
 - · Rychlost je dána rychlostí komparátorů a dekodérem
 - Řádově ns
- Pro n bitový převodník je potřeba 2ⁿ-1 komparátorů
- S rozlišením roste/klesá počet komparátorů (nákladné řešení)
 - Vyrábí se 8–10 bitové
- Přesnost není moc velká (technologická náročnost výroby odporů)
- Pro snížení nákladů a zvýšení přesnosti je možné kaskádní zapojení

Paralelní A/D převodník

- Komparátory porovnávají převáděné napětí U_x s dílčím, referenčním napětím U_{ref}
- Díky přesnému odporovému, děliči, je U_{ref} rovnoměrně rozděleno na dílčí komparátory
- $V_x = 0V$
 - Na výstupech komparátorů je "0"
- $V_x > U_{ref0,...,n}$
 - Na výstupu příslušného komp. Je "1"
- Dekodér se postará o převod do bin. podoby
- U_{lsb} je na každém odporovém děliči stejné
- Výstup z komparátorů je většinou ještě přiveden na D. KO, až poté do dekodéru

U_x/U_REF	K7	K6	K5	K4	К3	K2	K1	Y 3	Y2	Y1
0	0	0	0	0	0	0	0	0	0	0
1/8										
2/8										
3/8										
4/8										
5/8										
6/8										
7/8										

$\rm U_x/\rm U_{REF}$	K7	К6	K5	K4	К3	K2	K1	Y 3	Y2	Y1
0	0	0	0	0	0	0	0	0	0	0
1/8	0	0	0	0	0	0	1	0	0	1
2/8										
3/8										
4/8										
5/8										
6/8										
7/8										-

$\rm U_x/\rm U_{REF}$	K7	K6	K5	K4	К3	K2	K1	Y 3	Y2	Y 1
0	0	0	0	0	0	0	0	0	0	0
1/8	0	0	0	0	0	0	1	0	0	1
2/8	0	0	0	0	0	- 1	1	0	- 1	0
3/8										
4/8										
5/8										
6/8										
7/8										

$\rm U_x/\rm U_{REF}$	K7	K6	K5	K4	К3	K2	K1	Y 3	Y2	Y 1
0	0	0	0	0	0	0	0	0	0	0
1/8	0	0	0	0	0	0	1	0	0	1
2/8	0	0	0	0	0	1	1	0	1	0
3/8	0	0	0	0	1	1	1	0	1	1
4/8	0	0	0	1	1	1	1	1	0	0
5/8	0	0	1	1	1	1	1	1	0	1
6/8	0	1	1	1	1	1	1	1	1	0
7/8	1	1	1	1	1	1	1	1	1	1

Paralelní A/D převodník - kaskáda

Pro 8 bitový paralelní A/D převodník by bylo zapotřebí 255 komparátorů -> nemožné

- Jedná se o tzv. sériově-paralelní A/D převodníky
 - Doba převodu je delší
 - · Možno dosáhnout většího a přesnějšího rozlišení
- Jaký je nyní počet komparátorů?
 - 30

Kompenzační A/D převodníky

- Tzv. automatické kompenzátory napětí
- Nejpoužívanějším, jednoduché na výrobu, rychlé
- Porovnávají vst. napětí se zpětnovazebním napětím (získané z D/A převodníku)
 - Dokud není rozdíl minimální -> ukončení převodu
- Čítací, sledovací a s postupnou aproximací

Kompenzační čítací A/D přev.

- Se stupňovitým napětím, přírůstkový
- Čítač je inkrementován na základě impulzů a výstupu z komparátoru
- Začátek převodu
 - Obsah čítače je vynulován
 - Výstup komp. je "1"

- S každým impulzem je zvýšena hodnota čítače
 - Čímž také narůstá UDA
- $V_{DA} >= U_{VST}$
 - Výstup komparátoru je "0" -> konec čítání
 - Hodnota převáděného napětí je uložena v čítači (resp. v paměť ové části)

Kompenzační čítací A/D přev.

Sledovací A/D přev.

- S vratným čítačem
- Využití obousměrného čítače
- Směr je řízen výstupem komparátoru
- Špatně reaguje na rychlé změny signálu
- Oscilace převodníku
- Poskytuje okamžitou hodnotu U_x

Sledovací A/D přev.

HAW 4. ročník | 2018 | rev.1

A/D přev. s postupnou aproximací

- Postupná kompenz. napětí od MSB po LSB
- Nejdříve nulování registru
- MSB nastaven na "1" -> DA vytvoří U_{DA} = U_{ref}/2
- \rightarrow ? $U_{DA} = U_{x}$?
 - $\cdot U_{DA} > U_{x}$
 - bit zachován
 - $U_{DA} <= U_x$
 - bit nulován

A/D přev. s postupnou aproximací

- Pevná doba převodu (n taktů)
- Vysoká přesnost
- Použití:
 - Voltmetry, digitální osciloskopy
- Vyžadují konstantní vstupní napětí během převodu
 - Na vstupu kondenzátor

A/D přev. s postupnou aproximací

- Pomalejší, ale velmi přesný, odolný proti brumu a šumu
- Analogový signál je transformován na časový interval, který je následně digitalizován
- Převod je složen ze dvou fází
- Multimetry

Nulování čítače a vybití kondenzátoru (S)

▶ 1. fáze

- Signálem "start" se otevře hradlo a do čítače začnou přicházet impulzy, zároveň je na přepínači U_{VST}
- Po konstantní dobu se integruje U_{VST} (u_i lineárně roste) a obsah čítače roste konstantní rychlostí (T_x)
- Po naplnění se přepne přepínač na konstantní U_{REF} (opačná polarita U_{VST})

2. fáze:

- Na vstupu integrátoru je konstantní napětí opačné polarity -> začne klesat napětí na jeho výstupu
- Čítač čítá příchozí impulzy od nuly po dobu T_{REF} (vybití kondenzátoru)
- Napětí u_i lineárně klesá rychlostí úměrnou velikosti U_{REF}
- u_i = 0 -> změna výstupu komparátoru, signál "stop" -> uzavření hradla -> hodnota uložena v čítači
- Obsah čítače je úměrný času T_{REF} , který je úměrný velikosti U_{VST}
- Měřené napětí je úměrné době druhé integrace

A/D převodník - sigma delta

- Rozdělen na analogovou a digitální část
 - A: jednoduchá, pomalejší (integrátor, komparátor, zdroj U_{RFF}, obvody pro slučování analogových signálů)
 - D: složitější, rychlá (číslicová filtrace a decimace vzorkovaného signálu)
- Vzorkovací frekvence je n-krát větší než f_{max} vstupního signálu
 - Klasické A/D převodníky využívají Shannon/Kotělnikovův/Nyquistův teorém
 - Mnohem větší počet vzorků -> oversampling

A/D převodník – sigma delta

A/D převodník - sigma delta

Na základě výstupu z komparátoru se překlápí výstup z D/A převodníku

A second example of PDM of 100 samples of two periods of a sine wave of twice the frequency

A/D převodník – sigma delta

Pulse Density Modulator

A/D převodník - sigma delta

- Číslicový filtr
 - Potlačuje šum způsobený vzorkováním

A/D převodník - sigma delta

- Decimace signálu
 - Redukce délky signálu -> odstranění vybraných vzorků (např. každý N-tý -> N-krát kratší signál)
- Vzorkovací kmitočty: 44,1kHz / 96kHz / 192kHz
- Doba převodu: jednotky us

A/D převodník – sigma delta

- Levné
- Vysoké rozlišení (24, 32 bit)
- Nízká spotřeba
- Digitální filtr
- Potlačují kvantizační šum
- Vhodné pro audio techniku

KONEC

Zdroje

- http://lucy.troja.mff.cuni.cz/~tichy/elektroni ka/kap8/pevodnky.html [13. 9. 2018]
- https://cs.wikipedia.org/wiki/A/D_p%C5%99e vodn%C3%ADk [13. 9. 2018]
- https://blogs.synopsys.com/vipcentral/2015/05/07/mipi-soundwire-2-of-3/ [5. 10. 2018]