Λήμμα 0.0.1. Έστω $n \ge 1$ και β_1, \ldots, β_n οι n διακεκριμένες πραγματικές ρίζες του n-οστού πολυωνύμου Hermite $H_n(x)$. Αν $\varrho_1, \ldots, \varrho_n$ είναι η λύσ η του συστήματος γραμμικών εξισώσεων (x; t) τότε $\varrho_i > 0$ για κάθε $i = 1, \ldots, n$.

Απόδειξη. Καθώς

$$H_n(x) = \prod_{j=1}^n (x - \beta_j),$$

προχύπτει ότι για $i=1,\ldots,n,$ το

$$f_i(x) = \left(\frac{H_n(x)}{(x-\beta_i)}\right)^2 = \prod_{j=1, j \neq i}^n (x-\beta_j)^2$$

είναι ένα μονικό πολυώνυμο βαθμού 2n-2 και τέτοιο ώστε $f_i(x) \geq 0$ για κάθε x. Έτσι έχουμε

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^2} f_i(x) dx > 0.$$

Όμως $f_i(\beta_i)>0$ και $f_i(\beta_j)=0$ για $i\neq j$. Έτσι από το λήμμα 1.2.5 παίρνουμε ότι

$$f_i(\beta_i)\varrho_j = \sum_{i=1}^n f_i(\beta_j)\varrho_j = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^2} f_i(x) dx > 0.$$

και έτσι έχουμε το ζητούμενο.