NYCU-EE DCS-2023

HW04

Design: Histogram Equalizer (HE)

資料準備

- 1. 從 TA 目錄資料夾解壓縮
 - % tar -xvf ~dcsta01/HW04.tar
- 2. 解壓縮資料夾 HW04 包含以下:
 - A. 00 TESTBED/
 - B. 01_RTL/
 - C. 02_SYN/
 - D. 03_GATE/
 - E. 09 UPLOAD/

Block Diagram

設計描述

這次作業要求利用 pipeline 去設計 Histogram Equalizer 之硬體。 Histogram Equalizer 是傳統的影像處理演算法,可以加強灰階圖片的對比度。 演算法如下:

1. 先將圖片做histogram(分布統計):

一張圖片依raster scan order(如上)的方式,將 pixel 的值(0-255)數量做統計,如下:

2. 將圖片做Cumulative Histogram(累計分佈統計) 將第一步分佈統計資料做累積分佈,1資料量為0資料量+1資料量,2資料 量為0資料量+1資料量+2資料量,255資料量應為圖片大小資料量。

3. 算出 transform function 使用 Cumulative Histogram 算出 transform function。

注意: pixel 值介於 0-255 之間,這個transform function 可能會讓pixel的值超出範圍,記得必須處理邊界問題。

註: 將937/4093轉為小數也無法通過本次作業, design compiler無法處理小數。 註: 此公式為設計過的,為了是讓你們練習pipeline,實際上的公式並不長這樣。 4. 將原圖每個點使用transform function 轉化成新圖片。

5. 這次你們<mark>必須自己寫pattern 測試,助教只會給予10筆測資</mark>,助教的 pattern 會在in_valid = 1 時連續給予1032筆值,前8筆 in_image[7:0]為要修 正的pixel 值,後1024 筆 in_image[7:0]依 raster scan order 連續給予32x32 的圖,利用這些值去統計histogram並修正助教給予的前8筆資料。

Input

Signal name	Number of bit	Description
clk	1 bit	clock
rst_n	1 bit	Asynchronous active-low reset
in_valid	1-bit	Inputs are now valid, 0 for invalid, 1 for valid.
in_image	8 bit	First 8 cycle give the pixels which need to do the histogram equalize. Following 1024 cycle give the original image

Output

Signal name	Number of	Description
out_valid	1 bit	Should set to high when your image_out[7:0] is ready

out_image 8 bits	TA's pattern will check your result.
------------------	--------------------------------------

Example Waveform

Input

前 8 筆為要被轉換的pixel 資料,接下來就是 32x32 圖片資料。

Output

連續拉起 8 cycle out_valid,分別輸出已被轉換的 pixel 資料,Out_valid 結束後下 3 個 negedge 內給予下一組 in_valid。

Specification

- 1. Top module name: HE (File name: HE.sv) (-5% if naming error)
- 2. 所有 output 必須為 0, 在非同步負準位 reset。
- 3. In_valid 落下後 1000 cycle 之内 out_valid 必須拉起。
- 4.02_SYN result 不行有error 且不能有latches、slack必須為MET。
- 5.01_RTL & 03_GATE 不能有timing violation且通過助教測資。
- 6. Clock period 5ns •
- 7. Input delay = 0.5 * clock period; output delay = 0.5 * clock period •
- 8. 不要使用for loop

上傳檔案

- 1. 程式碼請使用09_upload上傳。
- 2. report_dcsxx.pdf, xx is your server account. 上傳至 new e3。(naming error -5%)
- 3. 1de請在 2023/4/27 23:59:59 之前上傳
- 4. 2de請在 2023/5/4 23:59:59 之前上傳

Grading Policy

- 1. Pass the 01_RTL & 02_Synthesis & 03_GATE: 60%
- 2. Performance: 30%

Ranking formula: total latency * area

3. Report: 10%

Note

Template folders and reference commands:

- 1. 01_RTL/ (RTL simulation) ./01 run
- 2. 02_SYN/ (Synthesis) ./01_run_dc
- 3. 03_GARE/(GATE simulation) ./01_run

報告請簡單且重點撰寫,不超過兩頁 A4,並包括以下內容

- 1. 描述你的設計方法,包含但不限於如何加速(減少 critical path)或降低面積。
- 2. 基於以上,畫出你的架構圖(Block diagram)與 FSM diagram,以及你如何運用 pipeline去設計你的design。
- 3. 心得報告,不侷限於此次作業,對於作業或上課內容都可以寫下。
- 4. 遇到的困難與如何解決。