

MANUAL

PLACA PARA UTILIZAÇÃO DO CHIP DIDÁTICO

BLENO SANTOS NEVES PROFESSOR ESTEVÃO TEIXEIRA UFJF

MANUAL DO USUÁRIO

da Placa para utilização do Chip DIDÁTICO para medições e experimentações

- Evite poeira, umidade e temperaturas extremas. Não coloque a placa em local onde possa ficar úmido, nem próximo a líquidos.
- Antes de ligar a placa confira a tensão e a corrente máxima da fonte.
 Ajuste em 5V e 100mA. A Placa só deve ser alimentada em 5V.
- Evite contato direto com a mão, não coloque de forma alguma a mão no chip, nem retire sua proteção do encapsulamento.
- A placa possui um fusível de proteção, caso o fusível esteja queimado, não utilizar a placa até a substituição do mesmo. Não retirar o fusível da placa.
- Qualquer tensão externa a ser introduzida na placa não deve ultrapassar 5V.
- Ao trabalhar com os circuitos de amplificadores, não ultrapassar a tensão de 20mVpp na onda de entrada.

<u>Sumário</u>

1	Introdução à placa	4
2	Alimentação	5
3	Blocos da placa	6
	3.1 Polarização PMOS e NMOS	6
	3.2 Decodificador	7
	3.3 Somador	8
	3.4 Espelho NMOS e PMOS	8
	3.5 Polarização High Compliance	9
	3.6 Par diferencial PMOS e NMOS	. 10
	3.7 Bloco Seguidor de Fonte	. 10
	3.8 Bloco Inversor.	. 11
4	Terminais	. 12
	4.1 PINAGEM DOS TERMINAIS	. 12
	Terminal 1	. 12
	Terminal 2	. 13
	Terminal 3	. 13

1 Introdução à placa

A placa de circuito foi construída para interação com o chip didático, e só deve ser utilizada com essa série de chips.

A placa possuí 11 blocos e 3 terminais. São eles: Polarização PMOS, Polarização NMOS, Decodificador, Somador, Espelho NMOS, Espelho PMOS, Polarização High Compliance, Par diferencial PMOS, Par diferencial NMOS, Seguidor, Inversor. A seguir serão descritos todos blocos e terminais que a placa contém.

Figura 1 – A placa

2 Alimentação

A placa deve ser alimentada com uma fonte de 5V, com corrente máxima de 100mA. O terminal positivo da fonte deve ser ligado ao fio vermelho que contém um fusível de proteção, e o terminal negativo ao fio cinza.

Figura 2 – Alimentação

3 Blocos da placa

A imagem abaixo mostra alguns dos blocos disponíveis na placa.

Figura 3 – Blocos

3.1 Polarização PMOS e NMOS

Os blocos mostrados na figura a seguir são utilizados para polarização dos circuitos PMOS e NMOS do chip. Para fazer a polarização deve-se conectar um multímetro na função amperímetro nos terminais do bloco, ajustar com a ajuda do trimpot (resistor variável) presente no bloco a corrente para 40µA. Após o ajuste da corrente os terminais devem ser curto-circuitados com a ajuda de um jumper.

Figura 4 - Blocos de polarização

3.2 Decodificador

A placa conta com um decodificador, utilizado para o acesso aos vários espelhos de corrente. Esse acesso é feito através da multiplexagem do valor de entrada do decodificador. Ele é um bloco de 5 chaves ligadas em pull-up. São 4 entradas (chaves 1 a 4) e 1 enable (chave EN) que é habilitado com 0 logico. As chaves funcionam em 1 lógico se posicionadas para baixo, e 0 logico se posicionadas para cima.

Figura 5 – Decodificador

3.3 Somador

Para utilização do somador de corrente temos um bloco com 3 terminais. Dos quais os dois primeiros se encontram as entradas e no terceiro a saída do circuito. As correntes de entrada são reguladas através dos trimpot's. Com um multímetro na função amperímetro conecte as duas pontas nos terminais e regule a corrente desejada no trimpot, após a regulagem adicione aos terminais um jumper, e faça a medida nos terminais de saída.

Figura 6 – Somador

3.4 Espelho NMOS e PMOS

No chip existem 16 espelhos de corrente NMOS e 16 espelhos de corrente PMOS. Todos os espelhos têm uma entrada e duas saídas. Para alocar uma variedade razoável de blocos sem exceder a contagem de pinos do chip, todos os espelhos de corrente do mesmo tipo (NMOS ou PMOS) compartilham os mesmos pinos, por meio de um multiplexador analógico (vide bloco decodificador).

Os blocos contém dois terminais de entrada e dois terminais de saída. Os terminais de entrada são para regulagem de corrente à 40µA e 80µA, os terminais de saída são as respectivas correntes espelhadas pelo circuito. Para funcionamento do circuito acesse o terminal da corrente desejada conectando um multímetro na função amperímetro, e faça o ajuste da corrente através do

trimpot. Após regulagem adicione um jumper e faça as medidas nos terminais de saída da mesma maneira.

Figura 7 - Blocos espelho NMOS E PMOS

3.5 Polarização High Compliance

O bloco a seguir é utilizado para polarização dos circuitos HIGH COMPLIANCE. Ele regula a tensão BIAS dos dispositivos através dos trimpot's desse bloco, e para medi-la basta usar os pinos 10 e 11 do terminal 1. *

Figura 8 - Polarização High Compliance

3.6 Par diferencial PMOS e NMOS

Os jumpers desses blocos habilitam as entradas do par diferencial sendo os pinos 11 e 12 do terminal 2 para o par NMOS e os pinos 3 e 4 do terminal 1 para o par PMOS. Para acesso a saída dos pares diferenciais, devemos acessar os pinos 13 e 14 do terminal 2, para NMOS e pinos 5 e 6 do terminal 1 para PMOS. *

Figura 9 – Blocos Par Diferencial NMOS e PMOS

3.7 Bloco Seguidor de Fonte

O jumper contido nesse bloco habilita o seguidor de fonte. Que tem acesso da sua entrada no pino 2 do terminal 3 e sua saída no pino 3 do mesmo terminal. *

Figura 10 - Bloco Seguidor de Fonte

*para mais informações sobre os terminais acessar o capítulo sobre terminais nesse documento.

3.8 Bloco Inversor

O jumper contido nesse bloco habilita o inversor. Que tem acesso da sua entrada no pino 5 do terminal 3 e sua saída no pino 6 do mesmo terminal. Uma regulagem da excursão do inversor deve ser previamente feita antes do seu uso. Para isso habilitamos o bloco com jumper e medimos na saída uma tensão de 2,5V (pino 6, terminal 3), essa será a maior excursão do inversor.

Figura 11 - Bloco do Inversor

4 Terminais

A placa dispõe de 3 terminais para acesso aos 40 pinos do chip além de interação com os blocos anteriormente descritos. Para melhor visualização definimos cada terminal de acordo com a imagem a seguir, onde os pontos indicam a posição do pino 1, e a partir dele contamos crescentemente até o pino 16. As tabelas a seguir definem a função de cada pino dos terminais.

Figura 12 – Terminais

4.1 PINAGEM DOS TERMINAIS

Terminal 1

Pino 1	34T	GND	GND
Pino 2	1T	Chip pino 1	PDPC_BIAS
Pino 3	2T	Chip pino 2	PDPC_In2
Pino 4	3T	Chip pino 3	PDPC_In1
Pino 5	4T	Chip pino 38	PDPC_Out1
Pino 6	5T	Chip pino 39	PDPC_Out2
Pino 7	6T	Chip pino 4	VBP
Pino 8	7T	Chip pino 11	M_PMOS_In
Pino 9	8T	Chip pino 12	M_PMOS_Out1
Pino 10	9T	Chip pino 13	M_PMOS_Out2
Pino 11	10T	Chip pino 27	M_NMOS_HC_BIAS
Pino 12	11T	Chip pino 14	M_PMOS_HC_BIAS
Pino 13	12T	Decodificador Chip pino 19	EM
Pino 14	13T	Decodificador Chip pino 15	A3
Pino 15	14T	Decodificador Chip pino 16	A2
Pino 16	38T	Chip pino 10	VDD_B

Terminal 2

Pino 1	35T	GND	
Pino 2	15T	Decodificador Chip pino 17	A1
Pino 3	16T	Decodificador Chip pino 18	A0
Pino 4	17T	Chip pino 21	M_NMOS_In
Pino 5	18T	Chip pino 22	M_NMOS_Out1
Pino 6	19T	Chip pino 23	M_NMOS_Out2
Pino 7	20T	Chip pino 26	Sum_NMOS_In1
Pino 8	21T	Chip pino 24	Sum_NMOS_In2
Pino 9	22T	Chip pino 25	Sum_NMOS_Out
Pino 10	23T	Chip pino 31	VBN
Pino 11	24T	Chip pino 33	PDN_In1
Pino 12	25T	Chip pino 32	PDN_In2
Pino 13	26T	Chip pino 29	PDN_Out1
Pino 14	27T	Chip pino 28	PDN_Out2
Pino 15	28T	REGULAGEM do seguidor	
		de fonte	
Pino 16	39T	Chip pino 40	VDD

Terminal 3

			1
Pino 1	36T	GND	
Pino 2	29T	Chip pino 35	SF_In
Pino 3	30T	Chip pino 34	SF_Out
Pino 4	31T	REGULAGEM 2,5V PARA Excursao do inversor	
Pino 5	32T		Inv. NIMOS In
FIII0 3	321	Chip pino 36	Inv_NMOS_In
Pino 6	33T	Chip pino 37	Inv_NMOS_Out
Pino 7	42T	Entrada par diferencial PMOS	
Pino 8	43T	Entrada par diferencial PMOS	
Pino 9	44T	Entrada par diferencial NMOS	
Pino 10	45T	Entrada par diferencial NMOS	
Pino 11	46T	Chip pino 6	SW_ln3
Pino 12	47T	Chip pino 7	SW_ln2
Pino 13	48T	Chip pino 8	SW_ln1
Pino 14	49T	Chip pino 9	SW_ln0
Pino 15	50T	Chip pino 5	SW_Out
Pino 16	37T	GND	