Practice problems

Solutions

- 1. Induction proofs, type I: Sum/product formulas: The most common, and the easiest, application of induction is to prove formulas for sums or products of n terms. All of these proofs follow the same pattern.
 - (a) $\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$
 - (b) $\sum_{i=0}^{n} 2^{i} = 2^{n+1} 1$ (sum of powers of 2)
 - (c) $\sum_{i=0}^{n} r^i = \frac{1-r^{n+1}}{1-r}$ $(r \neq 1)$ (sum of finite geometric series)
 - (d) $\sum_{i=0}^{n} i! i = (n+1)! 1$.

Solution: All proofs follow the pattern illustrated by the sample proof (of the formula $\sum_{i=1}^{n} i = n(n+1)/2$). We will carry out the details for (a) and (d). The other formulas can be proved similarly. (Note that (b) is a special case of (c).)

Proof of (a): We seek to show that, for all $n \in \mathbb{N}$,

(*)
$$\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}.$$

Base case: When n = 1, the left side of (*) is $1 \cdot (1+1) = 2$, and the right side is $1 \cdot (1+1)(1+2)/3 = 2$, so both sides are equal and (*) is true for n = 1.

Induction step: Let $k \in \mathbb{N}$ be given and suppose (*) is true for n = k. Then

$$\sum_{i=1}^{k+1} i(i+1) = \sum_{i=1}^{k} i(i+1) + (k+1)(k+2)$$

$$= \frac{k(k+1)(k+2)}{3} + (k+1)(k+2) \quad (by induction hypothesis)$$

$$= \frac{(k+1)(k+2)(k+3)}{3}.$$

Thus, (*) holds for n = k + 1, and the proof of the induction step is complete.

Conclusion: By the principle of induction, it follows that (*) is true for all $n \in \mathbb{N}$.

Proof of (d): We seek to show that, for all $n \in \mathbb{N}$,

(*)
$$\sum_{i=0}^{n} i! i = (n+1)! - 1.$$

Base case: When n = 1, the left side of (*) is $0 + 1 \cdot 1! = 1$, and the right side is (1 + 1)! - 1 = 1, so both sides are equal and (*) is true for n = 1.

Induction step: Let $k \in \mathbb{N}$ be given and suppose (*) is true for n = k. Then

$$\sum_{i=1}^{k+1} i \cdot i! = \sum_{i=1}^{k} i \cdot i! + (k+1)(k+1)!$$

$$= (k+1)! - 1 + (k+1)(k+1)! \quad (by induction hypothesis)$$

$$= (k+1)!(k+2) - 1$$

$$= (k+2)! - 1.$$

Thus, (2) holds for n = k + 1, and the proof of the induction step is complete.

Conclusion: By the principle of induction, (*) is true for all $n \in \mathbb{N}$.

2. Induction proofs, type II: Inequalities: A second general type of application of induction is to prove inequalities involving a natural number n. These proofs also tend to be on the routine side; in fact, the algebra required is usually very minimal, in contrast to some of the summation formulas.

In some cases the inequalities don't "kick in" until n is large enough. By checking the first few values of n one can usually quickly determine the first n-value, say n_0 , for which the inequality holds. Induction with $n = n_0$ as base case can then be used to show that the inequality holds for all $n > n_0$.

- (a) $2^n > n$
- (b) $2^n > n^2 \ (n > 4)$
- (c) $n! > 2^n \ (n \ge 4)$
- (d) $(1-x)^n \ge 1 nx \ (0 < x < 1)$
- (e) $(1+x)^n \ge 1 + nx \ (x > 0)$

Solution: We will give detailed proofs for (c), (d), (e). The other inequalities can be proved similarly.

Proof of (c): A direct check of the inequality for the first few values of n shows that the left-right pairs in the stated inequality are (1,2),(2,4),(6,8),(24,16),(120,32). Thus, the inequality fails for n=1,2,3, but holds for n=4,5. This suggests that it indeed holds for all n from 4 onwards. We will prove this by induction, i.e., we will show that

$$(*) n! > 2^n$$

holds for all n > 4.

Base case: For n = 4, the left and right sides of (*) are 24 and 16, respectively, so (*) is true in this case.

Induction step: Let $k \geq 4$ be given and suppose (*) is true for n = k. Then

$$(k+1)! = k!(k+1)$$

$$> 2^{k}(k+1) \quad (by induction hypothesis)$$

$$\geq 2^{k} \cdot 2 \quad (since \ k \geq 4 \ and \ so \ k+1 \geq 2))$$

$$= 2^{k+1}.$$

Thus, (*) holds for n = k + 1, and the proof of the induction step is complete.

Conclusion: By the principle of induction, it follows that (*) is true for all $n \geq 4$.

Proof of (d) and (e): We will prove that for any real number x > -1

$$(1+x)^n \ge 1 + nx.$$

holds for any $n \in \mathbb{N}$. This simultaneously proves both statements (d) and (e): (e) corresponds to the case x > 0, while (d) corresponds to the case -1 < x < 0 (with x' = -x in place of x).

Base case: For n = 1, the left and right sides of (*) are both 1 + x, so (*) holds.

Induction step: Let $k \in \mathbb{N}$ be given and suppose (*) is true for n = k and any real number x > -1. We seek to show that (*) holds for n = k + 1 and any real number x > -1.

Let x > -1 be given. Then

$$(1+x)^{k+1} = (1+x)^k (1+x)$$

 $\geq (1+kx)(1+x)$ (by ind. hyp. and since $x > -1$ and thus $(1+x) > 0$)
 $= 1 + (k+1)x + kx^2$ (by algebra)
 $\geq 1 + (k+1)x$ (since $kx^2 \geq 0$).

Hence (*) holds for n = k + 1, and the proof of the induction step is complete.

Conclusion: By the principle of induction, it follows that (*) holds for all $n \in \mathbb{N}$.

- 3. Induction proofs, type III: Extension of theorems from 2 variables to n variables: Another very common and usually routine application of induction is to extend general results that have been proved for the case of 2 variables to the case of n variables. Below are some examples. In proving these results, use the case n = 2 as base case. To see how to carry out the general induction step (from the case n = k to n = k + 1), it may be helpful to first try to see how get from the base case n = 2 to the next case n = 3.
 - (a) Show that if x_1, \ldots, x_n are odd, then $x_1 x_2 \ldots x_n$ is odd. (Use the fact (proved earlier) that the product of 2 odd numbers is odd, as starting point, and use induction to extend this result to the product of n odd numbers.)

Solution: We will prove by induction on n the following statement:

P(n): If x_1, \ldots, x_n are odd numbers, then $x_1 x_2 \ldots x_n$ is odd.

We will use the following fact (proved earlier):

(*) If x and y are odd, then xy is odd.

Base case: For n = 1, the product $x_1
dots x_n$ reduces to x_1 , so is odd whenever x_1 is odd. Hence P(1) is true. Induction step.

- Let $k \ge 1$, and suppose P(k) is true, i.e., suppose that any product of k odd numbers is again odd.
- We seek to show that P(k+1) is true, i.e., that any product of k+1 odd numbers is odd.
- Let x_1, \ldots, x_{k+1} be odd numbers.
- Applying the induction hypothesis to x_1, \ldots, x_k , we obtain that the product $x_1 x_2 \ldots x_k$ is odd.
- Since x_{k+1} is odd and, by (*), the product of two odd numbers is again odd, it follows that $x_1x_2...x_{k+1} = (x_1...x_k)x_{k+1}$ is odd.
- As x_1, \ldots, x_{k+1} were arbitrary odd numbers, we have proved P(k+1), so the induction step is complete.

Conclusion: By the principle of induction, it follows that P(n) is true for all $n \in \mathbb{N}$.

(b) Show that if a_i and b_i (i = 1, 2, ..., n) are real numbers such that $a_i \le b_i$ for all i, then

$$\sum_{i=1}^{n} a_i \le \sum_{i=1}^{n} b_i.$$

(Use the fact (from Chapter 1) that $a \leq b$ and $c \leq d$ implies $a + c \leq b + d$.)

Solution: We will prove by induction on n the following statement:

P(n): For all real numbers a_i and b_i (i = 1, ..., n) such that $a_i \le b_i$ for all i we have

$$(*) \qquad \sum_{i=1}^{n} a_i \le \sum_{i=1}^{n} b_i.$$

(Note that the quantifier "for all real numbers a_i and b_i " must be part of the induction statement we seek to prove.)

Base case: For n = 1, the left and right sides are a_1 and b_1 , respectively, and the inequality (*) therefore follows from our hypothesis that $a_i \leq b_i$ for all i = 1, ..., n. Hence P(1) is true.

Induction step:

- Let $k \ge 1$, and suppose P(k) is true, i.e., suppose that for n = k and any choice of real numbers a_1, \ldots, a_k and b_1, \ldots, b_k satisfying $a_i \le b_i$ for each i, the inequality (*) holds.
- We seek to show that P(k+1) is true, i.e., that for n=k+1 any choice of real numbers a_1, \ldots, a_{k+1} and b_1, \ldots, b_{k+1} satisfying $a_i \leq b_i$ for each i, the inequality (*) holds.
- Let a_1, \ldots, a_{k+1} and b_1, \ldots, b_{k+1} be given real numbers such that $a_i \leq b_i$ for each i.
- Then

$$\sum_{i=1}^{k+1} a_i = \sum_{i=1}^k a_i + a_{k+1}$$

$$\leq \sum_{i=1}^k b_i + a_{k+1} \quad \text{(by induction hypothesis applied to } a_1, \dots a_k)$$

$$\leq \sum_{i=1}^k b_i + b_{k+1} \quad \text{(by assumption } a_{k+1} \leq b_{k+1})$$

$$= \sum_{i=1}^{k+1} b_i.$$

- Thus, (*) holds for n = k + 1 and the given numbers a_1, \ldots, a_{k+1} and b_1, \ldots, b_{k+1} .
- Since the a_1, \ldots, a_{k+1} and b_1, \ldots, b_{k+1} were arbitrary real numbers satisfying $a_i \leq b_i$ for each i, we have obtained statement P(k+1), and the proof of the induction step is complete.

Conclusion: By the principle of induction, it follows that P(n) is true for all $n \in \mathbb{N}$.

(c) Show that if x_1, \ldots, x_n are real numbers, then

$$\left| \sin \left(\sum_{i=1}^{n} x_i \right) \right| \le \sum_{i=1}^{n} \left| \sin x_i \right|.$$

(Use the trig identity for $\sin(\alpha + \beta)$.)

Solution: We seek to prove by induction on n the following statement:

P(n): For all real numbers x_1, \ldots, x_n we have

$$\left| \sin \left(\sum_{i=1}^{n} x_i \right) \right| \le \sum_{i=1}^{n} \left| \sin x_i \right|.$$

The key to the argument is the trig identity

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha,$$

which is valid for any real α and β . Since $|\cos x| \le 1$, this identity implies, via the triangle inequality,

$$|\sin(\alpha + \beta)| \le |\sin \alpha \cos \beta| + |\sin \beta \cos \alpha|$$

$$\le |\sin \alpha| + |\sin \beta|.$$

The inequality (**) is the case n=2 of the statement (*) we seek to prove, and will be needed in the induction proof. (One could also use it as the base case of an induction proof that starts with n=2, but it is easier to start the induction with n=1, where the base case is trivial.)

Base case: For n = 1, the left and right sides of (*) are both equal to $|\sin x_1|$, so (*) holds trivially in this case. Hence P(1) is true.

Induction step:

- Let $k \ge 1$, and suppose P(k) is true, i.e., suppose that (*) holds for n = k and any choice of real numbers x_1, \ldots, x_k .
- We seek to show that P(k+1) is true, i.e., that for any choice of real numbers x_1, \ldots, x_{k+1} the inequality (*) holds.
- Let x_1, \ldots, x_{k+1} be given real numbers.
- Then

$$\left| \sin \left(\sum_{i=1}^{k+1} x_i \right) \right| = \left| \sin \left(\left(\sum_{i=1}^{k} x_i \right) + x_{k+1} \right) \right|$$

$$\leq \left| \sin \left(\sum_{i=1}^{k} x_i \right) \right| + \left| \sin x_{k+1} \right| \quad (by \ (**) \ with \ \alpha = \sum_{i=1}^{k} x_i \ and \ \beta = x_{k+1})$$

$$\leq \sum_{i=1}^{k} \left| \sin x_i \right| + \left| \sin x_{k+1} \right| \quad (by \ induction \ hypothesis \ applied \ to \ x_1, \dots, x_k)$$

$$= \sum_{i=1}^{k+1} \left| \sin x_i \right|.$$

- Thus, (*) holds for n = k + 1 and the given numbers x_1, \ldots, x_{k+1} .
- Since the x_1, \ldots, x_{k+1} were arbitrary real numbers, we have obtained statement P(k+1), and proof of the induction step is complete.

Conclusion: By the principle of induction, it follows that P(n) is true for all $n \in \mathbb{N}$.

(d) Show that if A_1, \ldots, A_n are sets, then

$$(A_1 \cup \cdots \cup A_n)^c = A_1^c \cap \cdots \cap A_n^c$$

(This is a generalization of De Morgan's Law to unions of n sets. Use De Morgan's Law for two sets $((A \cup B)^c = A^c \cap B^c)$ and induction to prove this result.)

Solution: We seek to prove by induction on n the following statement:

P(n): For all sets A_1, \ldots, A_n we have

$$(A_1 \cup \dots \cup A_n)^c = A_1^c \cap \dots \cap A_n^c.$$

The key to the argument is two set version of De Morgan's Law:

$$(A \cup B)^c = A^c \cap B^c,$$

which holds for any sets A and B.

Base case: For n = 1, the left and right sides of (*) are both equal to A_1^c , so (*) holds trivially in this case. Hence P(1) is true.

Induction step:

- Let $k \ge 1$, and suppose P(k) is true, i.e., suppose that (*) holds for n = k and any sets A_1, \ldots, A_k .
- We seek to show that P(k+1) is true, i.e., that for any sets A_1, \ldots, A_{k+1} , (*) holds.
- Let A_1, \ldots, A_{k+1} be given sets.
- Then

$$(A_1 \cup \dots \cup A_{k+1})^c = ((A_1 \cup \dots \cup A_k) \cup A_{k+1})^c$$

$$= (A_1 \cup \dots \cup A_k)^c \cap A_{k+1}^c \quad (by \ (**) \ with \ A = (A_1 \cup \dots \cup A_k) \ and \ B = A_{k+1})$$

$$= (A_1^c \cap \dots \cap A_k^c) \cap A_{k+1}^c \quad (by \ induction \ hypothesis \ applied \ to \ A_1, \dots, A_k)$$

$$= A_1^c \cap \dots \cap A_k^c \cap A_{k+1}^c.$$

- Thus, (*) holds for n = k + 1 and the given sets A_1, \ldots, A_{k+1} .
- Since the A_1, \ldots, A_{k+1} were arbitrary sets, we have obtained statement P(k+1), and the proof of the induction step is complete.

Conclusion: By the principle of induction, it follows that P(n) is true for all $n \in \mathbb{N}$.