1

(Mar 2021)

(Mar 2021)

(Mar 2021)

(Mar 2021)

d) 2

d) 1

c) $\frac{1}{2\sqrt{2}}\log_e 2$ d) $\frac{1}{4}\log_e 2$

Assignment 2

EE24Btech11024 - G. Abhimanyu Koushik

1) The least value of |z| where z is complex number which satisfies the inequality $\exp\left(\frac{(|z|+3)(|z|-1)}{||z|+1|}\log_e 2\right) \ge 1$

2) Let $f: S \to S$ where $S = (0, \infty)$ be a twice differentiable function such that f(x+1) = xf(x). If

3) If y = y(x) is the solution of the differential equation $\left(\frac{dy}{dx}\right) + (\tan x)y = \sin x$, $0 \le x \le \frac{\pi}{3}$, with y(0) = 0,

4) If the foot of perpendicular from the point (4,2,8) on the $L_1: \frac{x-a}{l} = \frac{y-2}{3} = \frac{z-b}{4}$, $l \neq 0$ is (3,5,7), then find the shortest distance between the line L_1 and line $L_2: \frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$ is equal to

 $g: S \to \mathbb{R}$ be defined as $g(x) = \log_e f(x)$, then the value of |g''(5) - g''(1)| is equal to

c) $\sqrt{5}$

c) $\frac{205}{144}$

 $\log_{\sqrt{2}} |5\sqrt{7} + 9i|$, $i = \sqrt{-1}$, is equal to

a) 8

a) $\frac{197}{144}$

a) log_e 2

then $y\left(\frac{\pi}{4}\right)$ is equal to:

b) 3

b) $\frac{187}{144}$

b) $\frac{1}{2} \log_{e} 2$

a) $\frac{\sqrt{2}}{3}$	b) $\frac{1}{\sqrt{3}}$	c) $\frac{1}{2}$	d) $\frac{1}{\sqrt{6}}$					
5) If (x, y, z) be an arbitrary point lying on the plane P which passes through the points $(42, 0, 0)$, $(0, 42, 0)$, and $(0, 0, 42)$, then the value of expression $3 + \frac{x-11}{(y-19)^2(z-12)^2} + \frac{y-19}{(x-11)^2(z-12)^2} + \frac{z-12}{(x-11)^2(y-19)^2} - \frac{x+y+z}{14(x-11)(y-19)(z-12)}$ is equal to								
14(x-11)(y-19)(z-12)			(Mar	2021)				
a) 3	b) 0	c) 39	d) -45					
6) Consider the integral $I = \int_0^{10} \frac{[x]e^{[x]}}{e^{x-1}} dx$, where $[x]$ denotes the greatest integer less than or equal to x . Then the value of I is equal to :								
	•		(Mar	2021)				
a) $45(e-1)$	b) $45(e+1)$	c) $9(e-1)$	d) $9(e+1)$					
7) Let $A(-1,1)$, $B(3,4)$ and $C(2,0)$ be given three points. A line $y = mx$, $m > 0$, intersects lines AC and BC at point P and Q respectively. Let A_1 and A_2 be the areas of $\triangle ABC$ and $\triangle PQC$ respectively, such that $A_1 = 3A_2$, then the value of m is equal to:								
•	-	•	(Mar	2021)				
a) $\frac{4}{15}$	b) 1	c) 2	d) 3					
8) Let f be a real-valued function, defined on $\mathbb{R} - \{-1, 1\}$ and given by $f(x) = 3\log_e\left(\frac{ (x-1) }{ (x+1) }\right) - \frac{2}{x-1}$. Then in which of the following intervals, function $f(x)$ is increasing?								
	,	<i>3</i> × <i>7</i>	(Mar	2021)				

(Mar 2021)

d) 0

	a) $(-\infty, -1) \cup \left(\left[\frac{1}{2}, \infty \right) \right)$ b) $(-1, \frac{1}{2} \right]$	- {1})	c) $(-\infty, \infty) - \{-1, 1\}$ d) $(-\infty, \frac{1}{2}] - \{-1\}$		
9)	$(a < 0)$ be $2\sqrt{2}$ and $2\sqrt{2}$		e shortest distance from	$a^2 + y^2 + ax + 2ay + c = 0$ origin to a tangent to this	
				(1	Mar 2021)
	a) $\sqrt{10}$	b) $\sqrt{6}$	c) $\sqrt{11}$	d) $\sqrt{7}$	
10)		that a 6-digit integer for the probability of event A is			etitions, be Mar 2021)
	a) 4/9	30	,	d) $\frac{11}{27}$	
11)	Let $\alpha \in \mathbb{R}$ be such that	It the function $f(n) = \begin{cases} 0 \\ 0 \end{cases}$	$\frac{\cos^{-1}(1 - \{x\}^2)\sin^{-1}(1 - \{x\})}{\{x\} - \{x\}^3} x \neq x$	0, is continuous 0.	at $x = 0$,
	where $\{x\} = x - [x]$, [x	r] is the greatest integer le	ess than or equal to x. T	hen:	Mar 2021)
	a) $\alpha = \frac{\pi}{4}$	b) No such α exists	c) $\alpha = 0$	d) $\alpha = \frac{\pi}{\sqrt{2}}$	
12)	The maximum value of	$f(x) = \begin{vmatrix} \sin^2 x & 1 + c \\ 1 + \sin^2 x & \cos x \\ \sin^2 x & \cos x \end{vmatrix}$	$\begin{vmatrix} \cos^2 x & \cos 2x \\ \sin^2 x & b \cos 2x \\ \sin 2x \end{vmatrix}, x \in \mathbb{R} \text{ is }$:	Mar 2021)
	a) $\sqrt{7}$	b) $\sqrt{5}$	c) 5	d) $\frac{3}{4}$	
13)	CD, DA respectively. I	<i>BCD</i> having 5, 7, 6, 9 p Let α be the number of trenumber of quadrilaterals	riangles having these poin	nts from the diffe	erent sides
	Then $(p - a)$ is equal a	o.		(1	Mar 2021)
	a) 1890	b) 795	c) 717	d) 1173	
14)	4x with respect	to the line			
	y = x. Then the equation	on of tangent to C at $P(2)$, 1) is:	(1	Mar 2021)
	a) $2x + y = 5$	b) $x + 2y = 4$	c) $x + 3y = 5$	d) $x - y = 1$	
15)		trigonometric functions ta		. Then, the numb	per of real
	value of x which satisfy	$y \sin^{-1}\left(\frac{3x}{5}\right) + \sin^{-1}\left(\frac{4x}{5}\right) =$	$\sin^{-1} x$ is	(1	Mar 2021)

c) 3

a) 1

b) 2