TD4 bis

Toujours plus de séries entières

1 Déterminer le développement en série entière et vérifier le rayon de convergence de

$$f(x) = \sqrt{\frac{1+x}{1-x}}$$

$$g(x) = \frac{x^2 + x - 3}{(x-2)^2(2x-1)}$$

2 Calculer, selon les valeurs du paramètre réel t, le développement en série entière en 0 de la fonction suivante

$$f(x) = \frac{1}{x^2 - 2tx + 1}$$

3 Dans cet exercice, on cherche à calculer $\sum_{n\geqslant 0}\frac{1}{(3n)!}$ par deux méthodes. On pose

$$S(x) = \sum_{n \ge 0} \frac{x^{3n}}{(3n)!}.$$

- 1. Méthode 1. On note $j = e^{\frac{2i\pi}{3}}$.
 - (a) Calculer $1+j^k+j^{2k}$ pour tout $k\in\mathbb{N}$. En déduire le développement en série entière de $e^x+e^{jx}+e^{j^2x}$.
 - (b) En déduire S(x), puis la valeur de la somme $S(x) = \sum_{n>0} \frac{1}{(3n)!}$.

2. Méthode 2

- (a) Former une équation différentielle du troisième ordre vérifiée par S.
- (b) La résoudre.
- (c) Retrouver la valeur de $S(x) = \sum_{n \geqslant 0} \frac{1}{(3n)!}$.

Soient $P_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$ et R > 0. Montrer que pour n assez grand, P_n n'admet pas de racines dans le disque fermé de centre 0 et de rayon R.