SEMESTER 5 CIVIL ENGINEERING

HYDROLOGY AND WATER RESOURCES ENGINEERING

Course Code	PCCET501	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. To expose the students to the fundamental concepts of groundwater hydrology and its engineering applications.

Module No.	Syllabus Description	Contact Hours			
	Hydrologic cycle-precipitation-mechanism, types, forms and measurement				
	using rain gauges, Optimum number of rain gauges, representation of rainfall				
	data-mass curve and hyetograph, computation of mean precipitation over a				
1	catchment, Design rainfall - probable maximum rainfall; IDF curves	11			
	(conceptual idea only). Infiltration-measurement by double ring, infiltrometer,				
	Horton's model, infiltration indices. Evaporation –measurement and control				
	Runoff-components of runoff- Hydrograph analysis-Hydrograph from				
	isolated storm-Base flow, separation. Unit hydrograph – uses, assumptions				
	and limitations of unit hydrograph theory. Computation of storm/flood				
	hydrograph of different duration by method of superposition and by				
2	development of S– Hydrograph; Floods-methods of design flood estimation –	11			
	Empirical methods; SPF and PMF, Return period (conceptual ideas only)				
	Streamflow measurement-area velocity method of stream gauging, selection				
	of site for stream gauging station, Stage-discharge curve, flow duration curve-				
	uses and characteristics				
	Irrigation-Necessity, Benefits and ill effects. Types: flow and lift irrigation	4.4			
3	- perennial and inundation irrigation. Soil-water -plant relationships.	11			

	Irrigation efficiencies, Computation o crop water requirement: depth and	
	frequency of Irrigation. Duty and delta, duty-factors affecting and method	
	of improving duty, Computation of crop water requirement by using the	
	concept of duty and delta. Irrigation structures - storage structures -	
	Reservoirs - types, zones, yield of reservoir; determination of storage	
	capacity and yield by mass curve method; Reservoir sedimentation and	
	control - trap efficiency- computation of life of reservoir – river training -	
	diversion structures - layout	
	Vertical distribution of ground water- classification of saturated formation	
	(review) Aquifer properties, Darcy's law, Well hydraulics-Steady radial	
	flow into a fully penetrating well in Confined and Unconfined aquifers;	
4	Types of wells, Types of tube wells; well losses; Yield of open wells-	11
	pumping test and recuperation test. Pollution of ground water- sources,	
	distribution and evaluation of ground water pollution (Brief description	
	only). Artificial recharge of ground water- different techniques.	
1		

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject			Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe and estimate the different components of hydrologic cycle by processing hydro-meteorological data	К3
CO2	Determine the crop water requirements for the design of irrigation canals by recollecting the principles of irrigation engineering	К3
CO3	Describe and apply the principles of reservoir engineering to estimate the capacity of reservoirs and their useful life	К3
CO4	Demonstrate the principles of groundwater engineering and apply them for computing the yield of aquifers and wells	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3					2					
CO2	3	3					2					
CO3	3	2					2					
CO4	3	3					2					

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Irrigation, Water Resources and Water Power Engineering,	Modi P N	S.B.H Publishers and Distributors, New Delhi	2009				
2	Irrigation and Water Power Engineering,	Punmia B.C., Ashok K Jain, Arun K Jain, B. B. L Pande	Laxmi Publications (P) Ltd.	2009				

Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Hand book of Applied Hydrology,	Ven Te Chow	Tata McGraw Hill	1988	
2	Ground Water Hydrology,	Todd D. K.	Wiley	2005	
3	Groundwater	H. M Raghunath	New age International New Delhi	2007	
4	Irrigation and Water Resources Engineering	G. L. Asawa.	New Age International New Delhi	2008	
5	Hydrology and Water Resources Engineering,	Garg S. K.	Khanna Publishers New Delhi	2005	
6	Irrigation Engineering and Hydraulic Structures	Garg S K	Khanna Publishers New Delhi	2006	
7	Engineering Hydrology,	Subramanya K.	Tata McGraw Hill	2013	
8	Hydrology: Principles, Analysis and Design.	Raghunath H.M.	New Age International New Delhi	2006	

	Video Links (NPTEL, SWAYAM)				
Sl No.	Sl No. Link ID				
1	https://archive.nptel.ac.in/courses/105/104/105104103/				
2	https://archive.nptel.ac.in/courses/105/105/105105110/				
3	https://archive.nptel.ac.in/courses/105/105/105105042/				

TRANSPORTATION ENGINEERING

Course Code	PCCET502	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Design highway cross-section, alignments and pavements, and evaluate highway materials according to standard specifications.
- **2.** Analyse traffic patterns for effective signal design and gain comprehensive knowledge of railway tracks, harbours, docks, tunnels, and airports to facilitate integrated infrastructure design.

Module No.	Syllabus Description	Contact Hours
	Introduction: Classification of roads- based on material, function. Typical	
	cross sections of roads in urban and rural area, Requirements and factors	
	controlling alignment of roads.	
	Geometric design of highways: Design controls and criteria, Design of	
	highway cross section elements.	
1	Design of horizontal alignment - Stopping sight distance, Overtaking sight	12
	distance, super elevation, extra widening, transition curve, length and shift	12
	of transition curve, - worked out problems	
	Design of vertical alignment - gradient - grade compensation - summit	
	curves and valley curves	
	Highway materials: Desirable properties and testing of road aggregates,	
	bituminous materials and sub grade soil	
2	Introduction to Pavements and Pavement Design: Flexible and rigid	
	pavements, Functions of individual layers, Factors influencing pavement	11
	design	

	Flexible pavements: Design of flexible pavements by CBR method and	
	IRC 37: 2018* - worked out problems	
	Rigid pavements: Types of stresses: wheel load stresses, temperature	
	stresses, Critical combination of stresses - worked out problem, Functions	
	of longitudinal, contraction and expansion joints (Design not expected)	
	Traffic engineering: Road user, vehicle characteristics, Macroscopic	
	(Volume, Density and speed) and Microscopic (time and space headway)	
	characteristics of traffic stream- Fundamental diagrams of traffic flow-	
	Greenshield's model (derivation not required), Capacity and Level of	
	Service (Concept only).	
	Traffic Surveys: Data collection and Analysis - Volume, speed, O&D,	
3	parking studies	
	Types of intersections - At grade and grade separated intersections.	
	Traffic signal systems: Types, Design of isolated signals by Webster's	
	method- Warrants for traffic signal installation	
	Railway Engineering: Component parts of a railway track - functions,	
	concept of Gauges, sleeper density, coning of wheels, cant deficiency,	
	compensation of gradients	
	Introduction to Airport Engineering: Components of airport, selection	
	of site for airport. Runway orientation, basic runway length and corrections	
	required, Design of taxiways.	
	Harbours: classification, features, requirements. Break waters - necessity	
4	and functions, classification.	10
	Docks – Functions and types - dry docks, wet docks	
	Tunnel Engineering: Tunnel – sections, tunnel surveying - alignment,	
	transferring centre grade into tunnel.	

^{*}IRC: 37-2018, Guidelines for the Design of Flexible Pavements is permitted in the examination hall.

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

^{*}IRC: 37-2018, Guidelines for the Design of Flexible Pavements is permitted in the examination hall.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply design criteria to develop highway cross-sections and design horizontal and vertical alignments.	К3
CO2	Apply standard code specifications to evaluate the quality of highway materials and understand the principles of flexible and rigid pavement designs	К3
CO3	Analyse road traffic phenomena through data collection, analysis, and interpretation via surveys; design traffic signals; and understand railway track components and their functions.	К3
CO4	Understand railway systems, harbours, docks, and tunnels, and design airport elements.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2			2						2
CO2	3	3				2		2				2
CO3	3	3				2						2
CO4	3	3				2						2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Highway Engineering	SK Khanna, CEO Justo, A. Veeraragavan	Nem Chand & Bros	R10th Edition - 2017				
2	Principles and Practices of Highway Engineering	Kadiyali, L. R. and N.B Lal,	Khanna Publishers	7e, 2017				
3	Principles of Transportation and Highway Engineering	Rao G. V.	Tata McGrawHill	1996				
4	Railway Track Engineering	Mundrey J. S.	Tata McGraw Hill	4e				
5	Railway Engineering	Rangawala, S.C.	Charotor Publishing House	27e, 2017				
6	Harbour, Dock & Tunnel Engineering	Srinivasan,R.	Charotor Publishing House	30e, 2022				
7	Airport Planning and Design Khanna, S. K. and Arora. M. G., S. S. Jain		Nemchand& Bros	6e, 2019				
8	IRC: 37-2018, Guidelines for the Pavements	IRC, New Delhi	2018					
9	IRC: 58 - 2015, Guidelines for t Pavements	IRC, New Delhi	2015					

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Planning and Design of Airports,	Horonjeff R. and McKelvy, F.	McGraw Hill	5e, 2010			
2	Transport Planning and Traffic Engineering,	O' Flaherty, C.A (Ed.).	Elsevier	1997			
3	Railway Engineering	Subhash C. Saxena	Dhanpat Rai & Sons				
4	Principles of Pavement Design	Yoder and W Nitezak,	John Wiley	1991			
5	Design of Functional Pavements	Yang	McGraw Hill				
6	Airport Engineering	Rangwala, S. C.	Charotar Publishing Co.	16e, 2016			
7	A course in Docks and Harbour Engineering	Bindra, S.P.	Dhanpat Rai& Sons				
8	Railway Engineering	Chandra, S., Agarwal, M.M.	Oxford University Press, New Delhi	2008			
9	Railway Engineering	Saxena, S., Arora, S. P	Dhanpat Rai & Sons	7e, 2010			
10	A Text Book of Railway Engineering	Subhash C Saxena, Satyapal Arora	Dhanpat Rai & Sons				
11	Design and Construction of Ports and Marine Structures	Quinn A.D.	McGraw Hill				
12	Railway Engineering	Agarwal. M.M.	Prabha & Co. New Delhi	1998			

Video Links (NPTEL, SWAYAM)				
Sl No.	Link ID			
1	https://nptel.ac.in/courses/105105107			
2	https://nptel.ac.in/courses/105107123			
3	https://nptel.ac.in/courses/105107220			

ENVIRONMENTAL ENGINEERING

Course Code	PCCET503	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET302	Course Type	Theory

Course Objectives:

- 1. To equip students with the skills to assess water quality and design appropriate treatment processes to ensure water meets health and safety standards.
- **2.** To study with knowledge of various wastewater treatment processes, including primary, secondary, and tertiary treatments, as well as advanced treatment technologies.

Module No.	Syllabus Description	Contact Hours			
	Introduction to environmental engineering- Population forecast- water				
	demand estimation-types of demand- demand fluctuation				
	Systems of sewerage: separate and combined				
	Layout plan of a conventional water treatment plant- site selection-Intakes-				
1	Screening-types of screens -aeration -aerator types	9			
	Theory and principles of sedimentation-Stoke's Law-Types of settling -				
	Design of plain sedimentation tanks				
	Mechanisms of coagulation and flocculation, popular coagulants and				
	feeding devices				
	Filtration of water-theory of filtration-types of filters - design of a slow				
	sand and rapid sand filter.				
2	Disinfection of water - various methods - advantages and limitations.	9			
	Lay out of water distribution network-types-methods of distribution.				
	Network analysis -Hardy cross and equivalent pipe methods.				
	Layout plan of a conventional waste water treatment plant- site selection-	9			
3	concept of primary, secondary and tertiary treatment, equalization of flow.	9			

	Secondary treatment methods-basic concepts of biological unit processes-	
	aerobic and anaerobic- attached and suspended growth processes	
	(Concepts only)	
	Trickling filter (Concept only)- types- construction & operation-design of	
	trickling filter.	
	Activated sludge process- basic concepts-design of a conventional	
	Activated Sludge Plant.	
	Up flow Anaerobic Sludge Blanket (UASB) reactor (Concept only).	
	Natural waste water treatment systems-Oxidation Ponds and Lagoons-	
	Wetlands and Rootzone systems (Concepts only).	9
4	Low-cost sanitation systems- Design of a septic tank and soak-pit.	,
	Sludge treatment (concepts only) -thickening- digestion- dewatering-	
	drying- composting.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
CO1	Solve the water demand of a city by using various forecasting methods and treat water	K2	
CO2	Design of slow sand and rapid sand filter and analyse the water distribution network	К3	
CO3	Understanding wastewater treatment processes and design of trickling filter and activated sludge process	К3	
CO4	Awareness about high-rate anaerobic process, oxidation ditches and natural wastewater treatment	K2	
CO5	Design of septic tanks and understanding various sludge treatment processes	К3	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2					2					
CO2	3	2	3				2					
CO3	3	2					2					
CO4	3	2					2					
CO5	3	2	3				2					

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Waste Water engineering	Metcalf and Eddy	Tata McGraw Hill publishing Co Ltd	2003			
2	Water supply engineering	S K Garg	Khanna Publishers	37e, 2024			
3	Sewage and air pollution engineering	S K Garg	Khanna Publishers	43e, 2024			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
		B C Punmia, Arun					
1	Water supply engineering	Kumar Jain, Ashok	Laxmi Publications	2e, 2016			
		Kumar Jain					
		Ashok Kumar Gupta,					
	Wastewater engineering, issues	Vengatesh Uddameri,	CRC Press, Taylor and	10 2022			
2	trends and solutions	Abhradeep, Majumder,	Francis Group	1e, 2023			
		Shripad K. Nimbhorkar					
	Water supply and sanitary	Danawala	Charotar Publishing	202 2022			
3	engineering	Rangwala	House Pvt ltd.	29e, 2022			

Video Links (NPTEL, SWAYAM)				
Sl No.	Link ID			
1	https://nptel.ac.in/courses/103107084			
2	https://archive.nptel.ac.in/courses/127/105/127105018/			
3	https://archive.nptel.ac.in/courses/105/106/105106119/			
4	https://archive.nptel.ac.in/courses/105/104/105104102/			

FOUNDATION ENGINEERING

Course Code	PBCET504	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Goal of this course is to expose the students to the fundamental concepts of foundation engineering.
- **2.** After this course, students will be able to recognize practical problems of foundations in real-world situations and respond accordingly.

Module No.	Syllabus Description	
1	Earth pressure - At rest, active and passive earth pressures - Rankine's theory - Earth pressure and point of application for cohesionless and cohesive soils - Influence of surcharge and water table on earth pressure - Numerical problems - Earth pressure with layered backfill - Numerical problems - Coulomb's theory [concept only] Stability of finite slopes - Toe failure, base failure, slip failure - Swedish Circle Method (Procedure only) - Friction circle method (Procedure only) - Taylor's Stability number - Stability charts (Demo only)	11
2	General Considerations: Functions of foundations - definition of shallow and deep foundation Site investigation and soil exploration: objectives - planning - reconnaissance - Guidelines for choosing spacing and depth of borings [I.S. guidelines only]. Standard Penetration Test – Procedure and correlations - Corrections for SPT value – Numerical Problems - Boring log - Soil profile. Plate load test –	11

	Procedure, uses and limitations-Field test - Plate load test - Procedure, uses	
	and limitations	
	Failure mechanism (General, local and punching shear failure) – situations in	
	which each of them can be expected.	
	Terzaghi's bearing capacity theory for strip footing [no derivation required] –	
	Assumptions -Gross and Net bearing pressure - Ultimate and Safe bearing	
	capacityAllowable soil pressure -Bearing capacity factors- Numerical	
	problems	
	Terzaghi's formulae for circular and square footings - Numerical problems -	
	Factors affecting bearing capacity - Effect of water table on bearing capacity	
	- Numerical problems.	
	Settlement analysis: Introduction- causes of settlement – estimation immediate	
	settlement (I.S. Code) Numerical problems	
	Design of Isolated Footing-Combined footings- Rectangular and Trapezoidal	
3	combined footings - Numerical problems	11
	Raft foundations: Types - Design Principles of raft foundation- Bearing	
	capacity equations for raft on sand (Teng's equation based on SPT value) and	
	for raft on clay (Skempton's formula) - Floating foundations	
	Pile foundations: Uses and classification of piles - Selection of type and length	
	of piles - Bearing capacity of single pile in clay and sand [I.S. Static formulae]	
	- Numerical problems - Dynamic formulae (Modified Hiley formulae only) —	11
4	Numerical Problems - I.S. Pile load test [conventional] - Negative skin friction	11
	- Group action - Group efficiency - Capacity of Pile groups - Numerical	
	problems	

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

Guidelines for Project:

The project should be designed so that students should learn all the basic design steps in foundation design.

- 1. On the first class, while giving introduction to the subject, direct the students to form groups, if any student wish to work individually the faculty shall assess the student's capacity and take appropriate decision.
- 2. Guide the students to visit two site investigation projects (preferably one to design shallow foundation and other to design deep foundations)
- **3.** Students can select any building for the study. The building which they have designed in the previous semester for PBCET404 can be used in this semester also.
- 4. The faculty in charge should provide two sets of soil investigation data for each group. Among them one should be of having adequate bearing capacity at shallow depth and the other with low bearing capacity at shallow depth. The group should calculate allowable bearing capacity and design one shallow and one deep foundation. The group should calculate allowable bearing capacity and design one shallow and one deep foundation.
- 5. For shallow foundation design students should first design the trench/ check the stability of trench. Find the possible unsupported cut. Further they have to find the stable slope in which the trench should be made.
- **6.** The detailed design of shallow foundations with drawings should be prepared considering bearing capacity and settlement.
- 7. While using the second set of soil exploration data students should check the feasibility of both raft and pile foundations.
- **8.** Design of pile foundation is expected with detailed drawings.
- **9.** Prepare a detailed report with all the obtained results.

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	• 2 questions will be given from each	
module.	module, out of which 1 question should	
• Total of 8 Questions,	be answered. Each question can have a	
each carrying 2 marks	maximum of 2 sub divisions. Each	40
(8x2 =16 marks)	question carries 6 marks.	
	(4x6 = 24 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the concept of lateral earth pressure and slope stability and apply it for the design of trenches.	К3
CO2	Calculate bearing capacity, pile capacity, and foundation settlement	К3
CO3	Develop soil investigation report	К3
CO4	Design appropriate foundation using the available soil exploration data and superstructure requirement.	К6

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3		2				2			1
CO2	3	2	3						2			1
CO3	3									2		1
CO4	3	3	3		3		2		2	3		2

	Text Books							
Sl. No Title of the Book		Name of the Author/s	Name of the Publisher	Edition and Year				
1	Basic and Applied Soil Mechanics	Ranjan G. and A. S. R. Rao New Age International		5e, 2024				
2	Geotechnical Engineering	Arora K. R	Standard Publishers	2020				
3	Foundation engineering	Varghese, P. C.	PHI Learning	2000				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Principles of Geotechnical Engineering	Das B. M	Cengage India Pvt. Ltd	2010				
2	Foundation Design: Principles and Practices	Donald Coduto, William Kitch, Man-chu Yeung	Pearson	3e, 2015				
3	Soil Mechanics and Foundation Engineering	B.N.D. Narasinga Rao	Wiley	2019				

	Video Links (NPTEL, SWAYAM)				
Sl No.	Link ID				
1	https://nptel.ac.in/courses/105105176				
2	https://nptel.ac.in/courses/105105207				
3	https://nptel.ac.in/courses/105106144				
4	https://nptel.ac.in/courses/105107120				

PBL Course Elements

L: Lecture	R: Project (1 Hr.), 2 Faculty Members					
(3 Hrs.)	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video			

Assessment and Evaluation for Project Activity

Sl.	Evaluation for	Allotted
No		Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

SEMESTER S5 ADVANCED STRUCTURAL ANALYSIS

Course Code	PECET521	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET303/ PCCET403	Course Type	Theory

Course Objectives:

- 1. This course provides the fundamental concepts of three hinged arches and matrix analysis of structures, specifically on direct stiffness method.
- 2. This course equips students with the concepts of finite element methods, which in turn is the basis of many structural analysis software, and a brief idea on the concept of structural dynamics.

Module No.	Syllabus Description	Contact Hours
1	Two hinged Arches: Analysis of two hinged arches - Support reactions normal thrust and radial shear at any section of a parabolic arch due to simple cases of loading, influence line for horizontal thrust, bending moment, normal thrust, and radial shear. Matrix Analysis of Structures: Reviewing the definition of flexibility and stiffness influence coefficients, and concepts of physical approach	9
2	Direct stiffness method: Introduction to direct stiffness method-Rotation of axes in two dimensions, stiffness matrix of elements in global co- ordinates from element co-ordinates- assembly of load vector and stiffness matrix, solution of two span continuous beam-single bay single storey portal frame.	9
3	Structural dynamics: Introduction - degrees of freedom - equation of motion, D'Alembert's principle-damping- free response of damped and undamped systems- logarithmic decrement single degree of freedom systems subjected to harmonic load - transient and steady state responses, simple portal frame problems.	9

	Finite Element Methods: Boundary value problems; Introduction to	
_	approximate numerical solutions for solving differential equations.	
4	Formulation techniques: Element equations using weighted residual	9
	approach - the axial element example.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Apply suitable methods of analysis for arches.	К3				
CO2	Apply the displacement methods to analyse framed structures.	К3				
CO3	Remember basic dynamics, understand the basic principles of structural dynamics and apply the same to simple structures.	K2				
CO4	Understand the basic features of boundary value problems, and fundamental concept of the finite element method, and develop the ability to generate the governing FE equations for systems governed by partial differential equations.	К3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										
CO2	3	3	1									
CO3	3	3	1									
CO4	3	3	2	1								

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Comprehensive Structural	R.Vaidyanathan and	Laxmi Publications	Fourth						
1	Analysis Volume I & II	P.Perumal	(P) Ltd	2024						
2	Elementary Finite Element Method	Desai, C.S.	Prentice Hall of India	1979						
3	Structural Dynamics: Theory	Mario Paz, William	CBS Publishers, New	5 th ed.						
	and Computation	Leigh	Delhi, India	2004						
4	Intermediate Structural Analysis,	Wang C.K.	McGraw Hill Education	2017						
5	Matrix Analysis of Framed Structures	James M Gere & William Weaver	CBS Publishers	2 nd edition 2018						

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Structural Analysis II	S.S. Bhavikatti	Vikas Publication Houses (P) Ltd	2016						
2	Finite Element Procedures in Engineering Analysis	Bathe, K.J.	Prentice Hall of India	2006						
3	Finite Element Analysis Theory and Programming,	Krishnamoorthy, C.S.	Tata McGraw Hill.	2 nd edition 2017						
4	Dynamics of Structures	Clough R. W. and J. Penzien	McGraw Hill	2 nd edition 2015						
5	Dynamics of Structures- Theory and application to Earthquake Engineering	Chopra A. K.	Pearson Education India	3 rd edition 2008						
6	Structural Analysis,	R.C. Hibbeler	Pearson	10 th Edition 2022						
7	Basic Structural Analysis	Reddy C. S.	Tata McGraw Hill	3 rd edition 2017						

	Video Links (NPTEL, SWAYAM)						
Sl. No. Link ID							
1	https://archive.nptel.ac.in/courses/105/105/105105109/						
2	https://onlinecourses.nptel.ac.in/noc21_ce44/preview						
3	https://archive.nptel.ac.in/courses/105/101/105101006/						
4	https://archive.nptel.ac.in/courses/112/104/112104193/						

MODERN CONSTRUCTION TECHNOLOGY

Course Code	PECET522	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Describe the various sustainable materials and smart materials suitable for Construction
- 2. Outline the various technologies and equipment used for smart & economic construction

Module No.	Syllabus Description	Contact Hours				
	Sustainable Construction Materials: Wood, bamboo, straw bales, earthen					
	materials, recycled aggregates, recycled plastic products, sustainable					
	concretes, bio composites					
1	Smart & Intelligent materials: Types - Neoprene, Bridge pads, thermocol -					
1	Smart and Intelligent Materials, Special features: - Shape Memory Alloys	9				
	(SMAs), Magneto strictive materials, Piezoelectric materials, Electrochromic					
	materials, Green materials including biomaterials, biopolymers, bioplastics -					
	Case studies showing the applications of smart and intelligent materials.					
	Equipment for Earth Work: Fundamentals of earth work operations - earth					
	moving operations - types of earth work equipment - tractors, motor graders,					
	scrapers, front end waders - excavating and earth moving equipment- dozer,					
2	excavators, rippers, loaders - trucks and hauling equipment, compacting					
	equipment, finishing equipment.	9				
	Erection Equipment: Cranes, Derrick Cranes, Mobile cranes, Overhead					
	cranes, Traveller cranes, Tower cranes					
	Construction techniques: Construction joints - movement and expansion					
	joints -Vacuum Dewatering of Concrete Flooring - Techniques of					
3	construction for continuous concreting operation in Tall buildings - Slip Form	9				
	techniques—Erection techniques of Tall structures, large Span Structures -					

	Bridge Construction - Construction sequence and methods - Bow string	
	bridges, cable stayed bridges - Launching techniques for heavy decks.	
	Cost-effective construction: Rapid wall construction, soil-cement block	
	masonry, voided slab, filler slab, rat-trap bond, cavity wall, ferrocement and	
	ferro concrete constructions.	
	Prefabricated construction: Advantages and disadvantages, prefabricated	
	components.	
4	Pre-Engineered Buildings: Introduction – Advantages - Pre-Engineered	9
	Buildings Vs Conventional Steel Buildings – Applications	
	Basic concept of prestressing : Fundamental understanding of pre-tensioned	
	and post-tensioned construction.	
	Construction 3D printing.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out of	
• Total of 8 Questions, each	which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	To identify various sustainable and smart materials for structures	K2				
CO2	To understand the equipment used in construction	K2				
CO3	To outline the construction techniques for tall buildings and bridges	K2				
CO4	To understand the advanced technologies for cost effective construction	К2				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					2	2					2
CO2	3					2	2					2
CO3	3					2	2					2
CO4	3					2	2					2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year					
1	Materials for Civil and Construction Engineers	Michel S. Mamlouk, John P Zaniewski	Prentice Hall	2016					
2	Smart Materials and Structures	Gandhi M. V. and B. S. Thompson	Chapmann & Hall, London	1993					
3	Construction Planning, Equipment and Methods	Peurifoy, R.L., Ledbetter, W.B. and Schexnayder, C	McGraw Hill, Singapore	2006					

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Modern Methods of Construction and Innovative Materials	Arthur Lyons	Routledge Taylor & Francis Group	2024			

	Video Links (NPTEL, SWAYAM)					
Sl. No.	Link ID					
1	https://archive.nptel.ac.in/courses/105/106/105106053/					
2	https://archive.nptel.ac.in/courses/105/103/105103206/					

OPEN CHANNEL HYDRAULICS

Course Code	PECET523	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. To familiarize the concepts of different types of open channel flows hydraulics and apply for practical problems

Module No.	Syllabus Description	Contact Hours
1	Open channel flow, Uniform flow - Conveyance and section factor, Hydraulic exponents Computation of discharge through compound channels; Design of channels for uniform flow-Non erodible channel-Minimum permissible velocity-best hydraulic section. Erodible channels which scour but do not silt- Tractive force approach, stable hydraulic section. Velocity distribution in open channels, Pressure distribution in curvilinear flows- flows through spillway crest and spillway bucket.	9
2	Specific energy- specific energy diagram and discharge diagram, Critical flow and its computationHydraulic exponents Application of Specific energy for channel transitions- hump and reduction in channel width	9
3	Gradually varied flow- Dynamic equation of gradually varied flow-different forms; Computation of length of water surface profiles - direct step method, Bresse's method; Standard step method. Rapidly varied flow-Hydraulic jump - sloping and exponential channels, types based on tail water conditions. Uses of hydraulic jumps for energy dissipation below spillways- jump height curve; tail water rating curve; Design features of USBR stilling basins, Standing wave flume, Parshall flume	9

	Unsteady flow through open channels – Surges- positive surges (problems)	
4	and concept of negative surges; Spatially varied flow, dynamic equation of	9
	spatially varied flow, Analysis of spatially varied flow profile.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5 15		10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 = 24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply the principles of uniform flow computation in open channels	К3
CO2	Analyze the specific energy concepts for practical applications	К3
CO3	Analyze the flow through open channels for gradually varied flow cases	К3
CO4	Analyze the rapidly varied flow through open channels and describe its practical applications	К3
CO5	Analyze the unsteady flow and spatially varied flow cases through open channels	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										
CO2	3	3										
CO3	3	3										
CO4	3	3										
CO5	3	3										

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Hydraulics and Fluid Mechanics including Hydraulic machines	Modi P. N. and S. M. Seth,	S.B.H Publishers, New Delhi,	22e, 2019				
2	Flow in Open channels	SubramanyaK	TataMcGraw-Hill	5e, 2019				
3	Open - Channel Flow	Hanif Chaudhary M	Springer	2e, 2007				
4	Theory and Applications of Fluid Mechanics	Subramanya K	Tata McGraw-Hill	1993				

Reference Books							
Sl. No Title of the Book Name of the Author/s Name of the Publisher Education and Publisher							
1	Flow through Open Channels	Chow VT	McGraw Hill, 1959	1959			
2	Flow through Open Channels	Rangaraju K. G	Tata McGraw Hill	1994			
3	Flow through Open Channels,	Srivastava R	Oxford Publishers	2012			

DISASTER MANAGEMENT

Course Code	PECET524	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. Objective of the course is to introduce the concept of disasters, their causes and their mitigation and management.

Module No.	Syllabus Description	Contact Hours
	Hazards and disasters: Introduction to key concepts and terminology: hazard,	
	disasters and types of classifications, vulnerability, exposure, risk, crisis,	
	emergency, capacity, resilience, Carbon footprint. Effect of subsystems of	
1	earth.	9
	Extent and nature of natural hazards, implications of climate change: Earth	
	quakes, Volcanoes, Floods. Coastal disasters- Storm surges, Tsunamis,	
	mitigation methods.	
	Landslides, Causes and prediction,	
2	Soil and soil degradation, erosion and Desertification, Forest fires, their	9
_	mitigation methods.	
	Impacts and assessment: Risk Management and Assessment and Disaster	
	Management cycle.	
3	SWOT Analysis- basic concepts, uses, limitations and	9
	advantages. Disaster management plan and reports, participation of	
	community in disaster management.	
	Hazard and disaster management plans for floods, storm surges, landslides,	
4	earthquakes, forest fires: pre-disaster phase, actual disaster phase, post-	9
	disaster phase	

Relief and Amenities, Relief camps, organization, individual and community	
participation, camp layout, food requirement, water needs, sanitation, security,	
information administration. Technology in disaster management.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5 15		10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Explain interaction between subsystems of earth that give rise to hazards and their potential for disasters	К2			
CO2	Explain the evolving concepts and thoughts of management of hazards and disasters	К2			
CO3	Apply the knowledge to find the causes behind natural disasters and evaluate their magnitude and impacts	К3			
CO4	Develop management plans for hazards and disasters, and understand the roles of agencies involved	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											1
CO2	3											2
CO3	3	3					2					2
CO4	3		3									1

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books			
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year	
1	Disaster Management	Mrinalini Pandey	Wiley	2e	
2	Disaster Risk Reduction in South Asia	Ariyabandu, M. and Sahni P.	Prentice-Hall (India)	2003	
3	Environmental Geology - Ecology, Resource and Hazard Management	Valdiya, K.S.	McGraw-Hill Education	2013	
4	Disaster Management: Global Problems and Local Solutions	Shaw, R and Krishnamurthy, RR	Springer, Amsterdam	2010	
5	Disaster Management - A Disaster Manager's Handbook	Nick Carter. W.,	Asian Development Bank, Philippines.	1991	
6	Disaster management	Gupta, H.K.	Universities Press (India) Ltd.	2003	
7	Natural and Anthropogenic Disasters- Vulnerability, Preparedness and Mitigation	Jha, M.K.	Springer, Amsterdam.	2010	

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Geological Hazards: Their assessment, avoidance and mitigation	Bell, F.G.	E & FN SPON Routledge, London.	1999			
2	Natural Disasters	Alexander, D.,	Research Press, New Delhi	1993			
3	Handbook of Disaster and Emergency Management	Khorram-Manesh	Kompendiet (Gothenburg).	2017			
4	Disaster Management in India Policies, Institutions, Practices	Rajendra Kumar Pandey	Routledge	2023			

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Sl. No. Link ID				
1	https://nptel.ac.in/courses/105104183				
2	https://onlinecourses.swayam2.ac.in/cec19_hs20/preview				

SEMESTER S5
APPLIED HYDROLOGY AND CLIMATOLOGY

Course Code	PECET526	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. To expose the students to the fundamental concepts of groundwater hydrology and its engineering applications.

Module No.	Syllabus Description	Contact Hours
1	Introduction - weather and climate; hydrometeorology- variables affecting precipitation- humidity, vapor pressure, saturation vapor pressure—temperature relation (simple problems), perceptible water, forms and types of precipitation; cloud - types; Monsoon- characteristics of Indian summer monsoon rainfall- climate oscillations and Indian monsoon rainfall, Evapotranspiration - methods of estimation-Blaney Criddle method (problem)- penman method, Penmann-Montieth method	9
2	Causes and effects of climate change, modeling of hydrologic impact of climate change on water resources-typical framework, general circulation models and regional climate models; Downscaling-concept and types, Catchment characteristics, classification of streams - stream pattern and stream order;	9
3	Statistical methods in hydro-climatology: principal component analysis and its use in climate change studies, methods for change point analysis, methods for trend analysis-statistical and graphical methods, stationary and non-stationary series- determination of non-stationarity of hydro-climatic series (no problems)	9
4	Design flood and their Estimation - Different methods; Flood frequency studies -Gumbel's method; Flood Routing-Hydrologic and Hydraulic routing,	9

Flood routing through reservoirs - concept only. Flood routing through	
channels - Muskingum method, determination of Muskingum parameters.	
Flood control methods - Flood forecasting and warning (Brief descriptions	
only)	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Estimate the different components of hydrologic cycle by processing hydro-meteorological data	К3
CO2	Describe the characteristics of hydrological extremes and climate change	K2
CO3	Apply statistical methods in modelling of hydro climatic extremes	К3
CO4	Describe the procedure of flood routing by considering the impact of climate change	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3					2					
CO2	3	2					2					
CO3	3	3					2					
CO4	3	2					2					

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Engineering Hydrology – IV th edition	Subramanya K.	Tata McGraw Hill	2013.						
2	Hydrology: Principles, Analysis and Design- 3 rd edition	Raghunath H.M.	New Age International New Delhi	2006						
3	Statistical Methods in Hydrology and Hydro climatology	Rajib Maity	Springer	2018						
4	A Text Book of Stochastic Hydrology	Jayarami Reddy	Laxmi Publications, New Delhi	2016						

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Hand book of Applied Hydrology	Ven Te Chow.	Tata McGraw Hill	1988						
2	Irrigation and Water Resources Engineering	G.L.Asawa	New Age International New Delhi	2008						
3	Hydrology and Water Resources Engineering,	Garg S. K.	Khanna Publishers New Delhi	2005						
4	Hydro climatology: Perspectives and Applications	M. L. Shelton	Cambridge University Press	2009						

Video Links (NPTEL, SWAYAM)						
Sl No.	Link ID					
1	https://archive.nptel.ac.in/courses/105/104/105104029/					
2	https://archive.nptel.ac.in/courses/105/101/105101002/					

TOWN PLANNING

Course Code	PECET527	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. To have the knowledge on planning process and to introduce to the students about the regulations and laws related to Town Planning.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Definition of town planning, Evolution of towns, Objective of town	
	planning, Economic Justification for town planning, Principles of town	
	planning, Necessity of town planning, Origin, Growth and patterns of town	
1	development, distribution of land use, site for ideal town.	9
	Migration trends and impacts on urban and rural development, Problems of	
	urban growth-beginning of town planning acts- concept of new towns -	
	comprehensive planning of towns. Re- planning of existing towns	
	Surveys: Definition, Necessity, collection of data, Types of surveys,	
	methods adopted to collect data, Drawings, reports.	
2	Zoning: Definition, Use of land, Objects of zoning, Principles of zoning,	9
	Aspects, Advantages & Importance zoning, Transition zone, Economy of	
	zoning, Zoning powers, Maps for zoning	
	Housing: Classification of residential buildings- Agencies for housing-	
	Housing finance agencies- problems of housing in India	
	Slums: Causes, characteristics and effects of slums, Slum clearance.	
3	Industries: Classification of industry, Concentration of industry,	9
	requirements of the industry, Industrial townships.	
	Public Buildings: Location, classification principle of design, town centre,	
	grouping of public buildings.	

Re-planning of existing towns: Objects of re-planning, defects of existing town, data required for re- planning, Urban Renewal projects, Decentralization and Re-centralized, Garden city concept overview.

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome						
CO1	Understand the need of town planning	K2					
CO2	Identify the data required for the town planning process and methods used to collect the data	K2					
CO3	Apply the town planning strategies in the various levels of town planning	К3					
CO4	Understand about the various rules and regulations in town planning	K2					
CO5	Analyze the replanning concept of existing towns	К3					

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3											
CO3	3	2										
CO4	3					3		3				2
CO5	3	2				3						

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Fundamentals of Town planning	Hiraskar G K	Dhanpat Rai publications	1993
2	Study of Town and Country planning in India	N.K Gandhi	Indian Town and Country Planning Association	1973
3	Town planning	Rangwala	Charotar publishing house	2015
4	Architecture & Town Planning	Satish chamdra Agarwala	DhanpatRai& Co (P) Ltd.	2013

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Traffic Engineering and	Khadiyali L.R.	Khanna Tech	1999							
1	Transport planning	J	Publishers								
2	Text book of Town Planning	Abir Bandyopadhyay	Books & Allied Ltd	2000							
3	Town Planning the basics	Tony Hall	Taylor & Francis Ltd	2019							

	Video Links (NPTEL, SWAYAM)								
Sl. No.	Link ID								
1	https://nptel.ac.in/courses/124107158								
2	https://nptel.ac.in/courses/124105016								
3	https://nptel.ac.in/courses/105107067								

OPTIMIZATION TECHNIQUES AND OPERATIONAL RESEARCH FOR CIVIL ENGINEERS

Course Code	PECET528	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understand the principles of optimization.
- 2. Summarize the concepts of Linear and Non-linear Programming
- 3. Understand the concept of Dynamic programming

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Linear Programming: Introduction and formulation of models; Convexity; simplex method; Two phase method; Degeneracy, non - existent and	9
1	unbounded solutions; Duality in L.P.P. Dual simplex method, Sensitivity analysis; Revised simplex method; transportation and assignment problems	
2	Non-Linear Programming: Classical optimisation methods; Equality and inequality constraints; Lagrange multipliers; & KuhnTucker conditions; Quadratic forms; Quadratic programming.	9
3	Search Methods: One dimensional optimisation; Fibonacci search; multi- dimensional search methods; Univariate search; gradient methods; steepest descent/ascent methods; Conjugate Gradient method; Penalty function approach.	9
4	Dynamic Programming: Principle of optimality; Recursive relations; solution of L.P.Problem; simple examples. Integer Linear Programming: travelling salesman problem	9

^{*}Formulation and solution of Civil Engineering optimization problems such as design of beams and frames, design of reservoirs, signal systems, etc. by different techniques are expected to be covered

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome						
CO1	Understand the basic concepts of classical optimization techniques	K2					
CO2	Analyse optimization algorithms	К3					
CO3	Analyse linear and nonlinear programming problems and interpret the solutions	К3					
CO4	Apply optimization methods to solve Civil Engineering Design Problems	К3					

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		1							3
CO2	3	3	3		1							3
CO3	3	3	3		1							3
CO4	3	3	3		1							3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Optimisation Theory and Applications	S.S.Rao	Wiley Eastern Ltd., New Delhi	
2	Structural optimization using sequential linear programming	Bhavikatti S. S	Vikas publishing house	
3	Operation Research	Richard Bronson	Schaum's Outline Series	

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Introduction to Optimisation	J.C.Pant	Jain Brothers; New Delhi	

	Video Links (NPTEL, SWAYAM)					
Sl. No.	Sl. No. Link ID					
1	https://archive.nptel.ac.in/courses/105/108/105108127/					
2	https://nptel.ac.in/courses/105103210					

SEMESTER S5

DESIGN OF PRESTRESSED CONCRETE

Course Code	PECET525	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBCET404	Course Type	Theory

Course Objectives:

1. This course will enable students to learn Design of Prestressed Concrete Elements.

SYLLABUS

Module No.	Syllabus Description	Contact Hours	
	Introduction and Analysis of Members: Concept of Prestressing - Types of		
	Pre-stressing - Advantages - Limitations - Prestressing systems - Anchoring		
	devices - Materials - Mechanical Properties of high strength concrete -		
1	high strength steel - Stress-Strain curve for High strength concrete	9	
	Losses in Prestress: Loss of Pre stress due to Elastic shortening, Friction,		
	Anchorage slip, Creep of concrete, Shrinkage of concrete and Relaxation		
	of steel - Total Loss.		
	Design of Sections for Flexure: Analysis of members at ultimate strength		
	- Preliminary Design - Final Design for Type 1members.		
2	Deflection due to gravity loads - Deflection due to prestressing force-Total	9	
	deflection - Limits of deflection - Limits of span-to-effective depth ratio		
	Design of Sections for Flexure: Analysis of members at ultimate strength		
	- Preliminary Design - Final Design for Type 1 members.		
3	Design for Shear: Analysis for shear - Components of shear resistance	9	
	- Modes of Failure - Limit State of		
	collapse for shear - Design of transverse reinforcement.		
	Different anchorage system and design of end block by latest IS codes.		
4	Conceptual design and detailing of Prestressed deck	9	
	Prestressed beam – cast in situ slab composite Sections- Analysis		

Continuous Internal Evaluation Marks (CIE):

Attenda	nce	Internal Ex	Evaluate	Analyse	Total
5		15	10	10	40

Criteria for Evaluation (Evaluate and Analyse): 20 marks

Assignment

1. Structural design and detailing of composite prestressed beam- cast in situ slab from field- Load calculations has to taken from first principles

Criteria for evaluation:

- 1. Defining objectives (K4 4 points).
- 2. field data collection (K4 4 points)
- 3. Analysis of data (K5 4 points)
- 4. Final design (K4-2 points, K5-2 points)
 - a. Summarizes findings and insights. (K4)
 - b. Reflects critical thinking and informed decision-making. (K5)
- 5. Structural Detailing (K5- 4 marks)

Scoring:

- 1. Accomplished (4 points): Exceptional analysis, clear implementation, and depth of understanding.
- 2. Competent (3 points): Solid performance with minor areas for improvement.
- 3. Developing (2 points): Adequate effort but lacks depth or clarity.
- 4. Minimal (1 point): Incomplete or significantly flawed.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A Part B		Total
• 2 Questions from each	• 2 questions will be given from each	
module.	module, out of which 1 question should	
• Total of 8 Questions, each	be answered. Each question can have a	70
carrying 3 marks	maximum of 3 sub divisions. Each	60
(8x3 =24marks)	question carries 9 marks.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
CO1	Understand the concept, principle, systems and typology of Prestressing	К3	
CO2	Apply mechanical principles for analysis of prestress	К3	
CO3	Evaluate the flexural, shear and torsional behaviour of prestressed sections	К3	
CO4	Apply the principles of composite sections to prestressed members	К3	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3										2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Prestressed Concrete	Krishna Raju.N	Tata McGraw Hill	6e, 2018
2	Prestressed Concrete Structures	P. Dayaratnam	Medtech	7e, 2017
3	Prestressed Concrete	N. Rajagopalan	Narosa Publishing House	2017
4	Prestressed Concrete Design	Praveen Nagarajan	Pearson	2013

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Limit State Design of Prestressed Concrete, - Vol - 1 & 2	Guyon .V	Applied Science Publishers, London	1995		
2	Mechanics of Prestressed Concrete Design	Mallick and Rangaswamy	Khanna Publishers	2014		
3	Prestressed Concrete	Pandit & Gupta	CBS Publishers	2019		
4	Relevant latest IS codes		•	•		

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Sl. No. Link ID				
1	https://archive.nptel.ac.in/courses/105/106/105106118/				

GEOTECHNICAL ENGINEERING LAB

Course Code	PCCEL507	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET402	Course Type	Lab

Course Objectives:

- 1. This laboratory course aims to provide students with hands-on experience in testing and analysing soil properties.
- **2.** Through a series of laboratory experiments, students will learn to evaluate the index properties and engineering properties of the soil.
- **3.** By the end of the course, students will be equipped with the practical skills and knowledge necessary to conduct soil investigations and interpret geotechnical data.

Expt. No.	Experiments
1	Sieve Analysis
2	Determination of Specific Gravity-Pycnometer & Specific Gravity bottle
3	Determination of Water Content-Oven Drying Method
4	Swelling Test-Free Swell
5	Hydrometer analysis
6	Atterberg Limits - Liquid Limit, Plastic Limit, Shrinkage Limit
7	Field Density Test – (i) Core Cutter, (ii) Sand Replacement Method
8	Light Compaction Test (Standard Proctor Test)
9	Direct Shear Test
10	Unconfined Compression Test
11	Consolidation Test
12	Permeability Test- Constant Head Permeability, Variable Head Permeability
13	Triaxial Shear strength Test
14	Flexible wall Permeability Test
15	Determination of Relative Density of Cohesionless soil

Minimum of 12 experiments from among the 15 experiments listed, is to be completed.

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total	
5	25	20	50	

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Determine experimentally the index properties of soil	К3
CO2	Evaluate experimentally the engineering properties of soil	К3
CO3	Analyse the experimental data and document the results	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2							2			2
CO2	3	2							2			2
CO3	3	2								3		2

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	. No Title of the Book Name of the Author/s Name of the Publisher						
1	Basic and Applied Soil	Ranjan G. and A. S. R.	New Age	4- 2022			
1	Mechanics	Rao,	International Pvt Ltd.	4e, 2022			
2	Soil Mechanics & Foundation Engineering	K.R. Arora	Standard Publisher	2019			

		Reference Books			
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Soil Mechanics in Engineering	Terzaghi K. and R. B.	John Wiley	1967	
	Practice	Peck		1507	
2	Relevant latest BIS standards		BIS, New Delhi		

	Video Links (NPTEL, SWAYAM)				
Sl No.	Link ID				
1	https://smfe-iiith.vlabs.ac.in/				
2	https://nptel.ac.in/courses/105101084				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

CONCRETE LAB (MT-2)

Course Code	PCCEL508	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. To enable experimental evaluation of properties of the materials used for concrete
- 2. To obtain the characteristics of the materials.

Expt. No.	Experiments
1	Test on Cement: Fineness, normal consistency, initial & final setting time.
2	Test on Cement: Specific gravity and compressive strength
3	Study on soundness of cement.
4	Test on Coarse and Fine Aggregate: Sieve analysis.
5	Test on Coarse and Fine Aggregate: Water absorption, bulk density, void ratio, porosity and specific gravity.
6	Test on bulking of sand.
7	Test on coarse aggregate crushing value
8	Tests on fresh concrete: Measurement of workability of concrete by slump cone test and compacting factor test.
9	Study on workability of concrete by Vee-Bee test and flow test.
10	Concrete mix design by IS code method and casting of cubes, cylinders with designed concrete mixes.
11	Tests on hardened properties of concrete: Compressive, split and flexural strength.
12	Tests on hardened properties of concrete: Modulus of elasticity of concrete
13	Tests on brick, floor and roof tiles as per IS code provision.
14	Study on Non-destructive tests on hardened concrete (Rebound hammer, ultrasonic pulse velocity and Rebar locator).
15	Study on concrete core cutter, concrete penetrometer and crack detection microscope.

Minimum of 12 experiments from among the 15 experiments listed, is to be completed.

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

Course Outcome		
CO1	CO1 To describe the basic properties of cement	
CO2	CO2 To characterize the physical and mechanical properties of various aggregates.	
CO3	CO3 To experimentally evaluate the fresh and hardened properties of concrete	
CO4	To interpret the quality of various construction materials as per IS Code provisions.	К3

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2							2			2
CO2	3	2							2			2
CO3	3	2							2			2
CO4	3	2			2	2		2	2			3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Concrete Technology, Theory and Practice	M. S. Shetty, A.K Jain	S.Chand & Company	2019		

		Reference Books				
Sl. No	Title of the Book	Title of the Book Name of the Author/s Name of the Publisher		Edition and Year		
1	Concrete Manual	M. L. Gambhir	Dhanpat Rai & Sons, Delhi.	2004		
2	Properties of Concrete	A. M. Neville	Pitman	2011		
	IS codes on cement: IS 1489(Part 1& 2):2015, IS 269:2015, IS 8112: 2013, IS 4031 (Part 1):1996,					
3	IS 4031 (Part 3):1988, IS 4031 (Part 4): 1988, IS 4031 (Part 5): 1988, IS 4031 (Part 6): 1988,					
	IS 4031 (Part 11): 1988, IS 5513: 1996					
IS codes on aggregate: IS 2386(Part 1):1963, IS 2386(Part 3):1963, IS 2386 (Part 4)				963,		
IS 383:2016						
	IS codes on fresh and hardened concrete: IS 1199(Part1 to 7): 2018, IS 10262:2019,					
5	IS 516 Part 1 Sec 1: 2021, IS 516 Part 5 (Sec 1 to 4), IS 516 Part 8 Sec 1: 2020, IS 14858: 2000,					
	IS 13311 (Part 2):1992					
	IS codes on brick and tiles: IS 3495 (Part 1 to 6): 2019, IS 1077:1992, IS 654:2023, IS 1237: 2012,					
6	IS 13630 (Part 1): 2019, IS 13630 (Part 2): 2019, IS 13630 (Part 6): 2019, IS 13630 (Part 15): 2019,					
	IS 5454: 2024					
7	Other relevant latest BIS standard	ls				

	Video Links (NPTEL, SWAYAM)				
Sl No.	Link ID				
1	https://cs-iitd.vlabs.ac.in/				
2	https://ms-nitk.vlabs.ac.in/exp/concrete-mix-design/simulation.html				
3	http://digimat.in/nptel/courses/video/105104030/L34.html				
4	http://acl.digimat.in/nptel/courses/video/105102012/L17.html				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted