Συνοπτική παρουσίαση επιλεγμένων τμημάτων της ενότητας 8 της ΕΙΣΑΓΩΓΗΣ (σελ. 27-38) του βιβλίου:

Ι. Τσαλαμέγκα – Ι. Ρουμελιώτη, "Ηλεκτρομαγνητικά Πεδία – Τόμος Α"

Ι. Τσαλαμέγκας – Ι. Ρουμελιώτης $\label{eq:Marting} \text{Μάρτιος } 2020$

ΕΙΣΑΓΩΓΗ Κυλινδρικό και Σφαιρικό σύστημα συντεταταγμένων

Α. Κυλινδρικό σύστημα συντεταγμένων (r,φ,z)

$$x = r \cos \varphi$$

$$y = r \sin \varphi$$

$$z = z$$

$$\mu\epsilon \ r > 0, \ 0 \le \phi < 2\pi, \ -\infty < z < +\infty.$$

• Αντίστροφος μετασχηματισμός

$$r = \sqrt{x^2 + y^2}$$
$$\varphi = \tan^{-1}(y/x)$$

z = z.

• Συντεταγμένες επιφάνειες (Σχ.1)

 S_r (με εξίσωση $r=r_{\!\scriptscriptstyle P}=\sigma \tau \alpha \theta$): Κυλινδρική επιφάνεια ακτίνας r .

 $S_{_{\varphi}}$ (με εξίσωση $\,\varphi=\varphi_{^{\!P}}=\sigma \tau \alpha \theta$): Ημιεπίπεδο.

 S_z (με εξίσωση $\,z=z_{\scriptscriptstyle P}=\sigma \tau \alpha \theta$): Επίπεδο.

Σχήμα 1

• Συντεταγμένες καμπύλες (Σχ.2)

 ℓ_r (καμπύλη των r): $\varphi = \varphi_{\scriptscriptstyle P} = \sigma \tau \alpha \theta$, $\theta = \theta_{\scriptscriptstyle P} = \sigma \tau \alpha \theta$, $0 \le r < \infty$.

 $\ell_{_{\phi}}$ (καμπύλη των φ) : $r=r_{_{\!P}}=\sigma$ ταθ , $z=z_{_{\!P}}=\sigma$ ταθ , $0\leq \varphi \leq 2\pi$,

 ℓ_z (καμπύλη των z) : $r = r_{\!\scriptscriptstyle P} = \sigma \tau \alpha \theta$, $\varphi = \varphi_{\!\scriptscriptstyle P} = \sigma \tau \alpha \theta$, $-\infty < z < \infty$.

Σχήμα 4

• Μοναδιαία διανύσματα- Μετρικοί συντελεστές (Σχ.1)

Με τη βοήθεια της σχέσεως

 $\overline{r} = (r\cos\varphi, r\sin\varphi, z) = \hat{x}r\cos\varphi + \hat{y}r\sin\varphi + \hat{z}z$

παίρνουμε

$$\frac{\partial \overline{r}}{\partial r} = (\cos \varphi, \sin \varphi, 0), \quad \frac{\partial \overline{r}}{\partial \varphi} = (-r \sin \varphi, r \cos \varphi, 0), \quad \frac{\partial \overline{r}}{\partial z} = (0, 0, 1)$$

και

$$\mathbf{h}_{\mathbf{r}} \equiv \left| \frac{\partial \overline{\mathbf{r}}}{\partial \mathbf{r}} \right| = 1, \ \mathbf{h}_{\phi} \equiv \left| \frac{\partial \overline{\mathbf{r}}}{\partial \phi} \right| = \mathbf{r}, \ \mathbf{h}_{\mathbf{z}} = \left| \frac{\partial \overline{\mathbf{r}}}{\partial \mathbf{z}} \right| = 1 \quad (\text{μετρικοί συντελεστές}). \tag{1}$$

Επομένως,

$$\hat{\mathbf{r}} = \frac{1}{h_r} \frac{\partial \overline{\mathbf{r}}}{\partial \mathbf{r}} = (\cos \varphi, \sin \varphi, 0) = \hat{\mathbf{x}} \cos \varphi + \hat{\mathbf{y}} \sin \varphi, \tag{2}\alpha$$

$$\hat{\varphi} = \frac{1}{h_{\varphi}} \frac{\partial \overline{r}}{\partial \varphi} = (-\sin \varphi, \cos \varphi, 0) = -\hat{x} \sin \varphi + \hat{y} \cos \varphi, \qquad (2\beta)$$

$$\hat{z} = \hat{z}$$
. (Ιδιο με του καρτεσιανού συστήματος.)

(Σημείωση: Η (1α) προκύπτει άμεσα και πιο απλά από τη σχέση $\hat{r} = \overline{r}/r$).

• Στοιχεία μήκους

$$d\ell_r = h_r dr = dr, \quad d\ell_{\varphi} = h_{\varphi} d\varphi = r d\varphi, \quad d\ell_z = dz$$
(3)

• Στοιχεία επιφάνεας

$$dS_r = (d\ell_z)(d\ell_\varphi) = rd\varphi dz \tag{4a}$$

$$dS_{\omega} = (d\ell_z)(d\ell_r) = drdz \tag{46}$$

$$dS_z = (d\ell_x)(d\ell_y) = rdrd\varphi. \tag{4}$$

• Στοιχείο όγκου

$$dV = (d\ell_r)(d\ell_{\varphi})(d\ell_z) = rdrd\varphi dz.$$
 (5)

Εφαρμογή: Εύρεση καρτεσιανών συνιστωσών διανύσματος από τις κυλινδρικές συνιστώσες

Δίνεται η έκφραση

$$\overline{A} = A_r \hat{r} + A_{\alpha} \hat{\varphi} + A_z \hat{z}$$

ενός διανύσματος \overline{A} μέσω των κυλινδρικών συνιστωσών του. Να βρεθεί η έκφρασή του $\overline{A} = A_x \hat{x} + A_y \hat{y} + A_z \hat{z} \, .$

Λύση

$$A_{x} = \overline{A} \cdot \hat{x} = (A_{r}\hat{r} + A_{\varphi}\hat{\varphi} + A_{z}\hat{z}) \cdot \hat{x} = A_{r}\hat{r} \cdot \hat{x} + A_{\varphi}\hat{\varphi} \cdot \hat{x} + A_{z}\hat{z} \cdot \hat{x} \stackrel{(2)}{=} A_{r}\cos\varphi - A_{\varphi}\sin\varphi.$$

Ομοίως

$$A_y = \overline{A} \cdot \hat{y} = (A_r \hat{r} + A_{\varphi} \hat{\varphi} + A_z \hat{z}) \cdot \hat{y} = A_r \hat{r} \cdot \hat{y} + A_{\varphi} \hat{\varphi} \cdot \hat{y} + A_z \hat{z} \cdot \hat{y} \stackrel{(2)}{=} A_r \sin \varphi + A_{\varphi} \cos \varphi.$$

Η συνιστώσα A_z δεν μεταβάλλεται κατά τον παραπάνω μετασχηματισμό.

Σε μητρική μορφή.

$$\begin{pmatrix} A_{x} \\ A_{y} \\ A_{z} \end{pmatrix} = \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} A_{r} \\ A_{\varphi} \\ A_{z} \end{pmatrix}$$

Β. Σφαιρικό σύστημα συντεταγμένων (r,θ,φ)

 $x = r \sin \theta \cos \phi$

 $y = r \sin \theta \sin \phi$

 $z = r \cos \theta$

$$\mu\epsilon 0 < r < \infty, 0 \le \varphi < 2\pi, 0 \le \theta \le \pi$$
.

• Αντίστροφος μετασχηματισμός

$$r = \sqrt{x^{2} + y^{2} + z^{2}},$$

$$\theta = \tan^{-1} \frac{\sqrt{x^{2} + y^{2}}}{z},$$

$$\varphi = \tan^{-1} (y/x).$$

• Συντεταγμένες επιφάνειες (Σχ.5)

 S_r (με εξίσωση $r=r_{\!\scriptscriptstyle P}=\sigma \tau \alpha \theta$): Σφαιρική επιφάνεια ακτίνας r .

 S_{θ} (με εξίσωση $\,\theta=\theta_{\rm P}=\sigma\tau\alpha\theta\,)$: Κώνος με άξονα Οz και γενέτειρα ΟΡ.

 $S_{_{\varphi}}$ (με εξίσωση $\,\varphi=\varphi_{^{P}}=\sigma \tau \alpha \theta$): Ημιεπίπεδο.

• Συντεταγμένες καμπύλες (Σχ.6)

 ℓ_r (καμπύλη των r) : $\varphi = \varphi_{\rm P} = \sigma \tau \alpha \theta$, $\theta = \theta_{\rm P} = \sigma \tau \alpha \theta$, $0 \le r < \infty$.

 $\ell_{\,\theta}$ (καμπύλη των $\,\theta$) : $r=r_{\!\scriptscriptstyle P}=\!\sigma \tau \alpha \theta$, $\,\,\varphi=\varphi_{\!\scriptscriptstyle P}=\!\sigma \tau \alpha \theta$, $\,\,0\leq\theta\leq\pi$,

 $\ell_{_{\varphi}}$ (καμπύλη των $_{\varphi}$) : $r=r_{_{\!P}}=\sigma \tau \alpha \theta$, $\theta=\theta_{_{\!P}}=\sigma \tau \alpha \theta$, $0\leq \varphi \leq 2\pi$.

• Μοναδιαία διανύσματα-μετρικοί συντελεστές

Με τη βοήθεια της σχέσεως

 $\overline{r} = (r\sin\theta\cos\phi, r\sin\theta\sin\phi, r\cos\theta) = \hat{x}r\sin\theta\cos\phi + \hat{y}r\sin\theta\sin\phi + \hat{z}r\cos\theta$

προκύπτει

$$\frac{\partial \overline{r}}{\partial r} = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta),$$

$$\frac{\partial \overline{r}}{\partial \theta} = (r \cos \theta \cos \varphi, r \cos \theta \sin \varphi, -r \sin \theta),$$

$$\frac{\partial \overline{r}}{\partial \varphi} = (-r\sin\theta\sin\varphi, r\sin\theta\cos\varphi, 0)$$

και

$$h_r \equiv \left| \frac{\partial \overline{r}}{\partial r} \right| = 1, \quad h_\theta \equiv \left| \frac{\partial \overline{r}}{\partial \theta} \right| = r, \quad h_\phi \equiv \left| \frac{\partial \overline{r}}{\partial \phi} \right| = r \sin \theta \ (\text{metrois sin} \theta \text{ sin} \theta).$$
 (6)

Επομένως,

$$\hat{\mathbf{r}} = \frac{1}{\mathbf{h}_r} \frac{\partial \overline{\mathbf{r}}}{\partial \mathbf{r}} = \hat{\mathbf{x}} \sin \theta \cos \phi + \hat{\mathbf{y}} \sin \theta \sin \phi + \hat{\mathbf{z}} \cos \theta \tag{7a}$$

$$\hat{\theta} = \frac{1}{h_0} \frac{\partial \overline{r}}{\partial \theta} = \hat{x} \cos \theta \cos \phi + \hat{y} \cos \theta \sin \phi - \hat{z} \sin \theta , \qquad (7\beta)$$

$$\hat{\varphi} = \frac{1}{h_{\varphi}} \frac{\partial \overline{r}}{\partial \varphi} = -\hat{x} \sin \varphi + \hat{y} \cos \varphi \quad (\text{idio me ton kulindrikoù susthmatos}). \tag{7\gamma}$$

(Σημείωση: Η (7α) προκύπτει άμεσα και πιο απλά από τη σχέση $\hat{r} = \overline{r} / r$).

• Στοιχεία μήκους

$$d\ell_r = h_r dr = dr$$
, $d\ell_\theta = h_\theta d\theta = r d\theta$, $d\ell_\varphi = h_\varphi d\varphi = r \sin\theta d\varphi$. (8)

• Στοιγεία επιφάνεας

$$dS_r = (d\ell_\theta)(d\ell_\phi) = r^2 \sin\theta d\theta d\phi \tag{9a}$$

$$dS_{\theta} = (d\ell_{\Phi})(d\ell_{\tau}) = r\sin\theta dr d\Phi \tag{96}$$

$$dS_{_{0}} = (d\ell_{_{1}})(d\ell_{_{\theta}}) = rdrd\theta \tag{9}$$

• Στοιχείο όγκου

$$dV = (d\ell_r)(d\ell_\theta)(d\ell_\theta) = r^2 \sin\theta dr d\theta d\theta. \tag{10}$$

(Σημείωση: Εναλλακτικά, από τον τύπο για τον όγκο σφαίρας ακτίνας r, $V = \frac{4}{3}\pi r^3$, προκύπτει

$$\frac{dV}{dr} = 4\pi r^2 \Rightarrow dV = 4\pi r^2 dr$$

Αυτό το στοιχείο όγκου είναι πιο εύχρηστο για ολοκληρώματα της μορφής $\int_V f(r)dV$. Για ολοκληρώματα της μορφής $\int_V f(r,\theta,\phi)dV$ πρέπει να χρησιμοποιηθεί το στοιχείο όγκου της εξίσωσης (10).)

Εφαρμογή: Εύρεση καρτεσιανών συνιστωσών διανύσματος από τις σφαιρικές του συνιστώσες

Δίνεται η έκφραση

$$\overline{\mathbf{A}} = \mathbf{A}_{\mathbf{r}} \hat{\mathbf{r}} + \mathbf{A}_{\boldsymbol{\theta}} \hat{\boldsymbol{\theta}} + \mathbf{A}_{\boldsymbol{\omega}} \hat{\boldsymbol{\phi}}$$

ενός διανύσματος Α μέσω των σφαιρικών συνιστωσών του. Να βρεθεί η έκφρασή του

$$\overline{A} = A_x \hat{x} + A_y \hat{y} + A_z \hat{z}.$$

Λύση: Έχουμε:

$$\boldsymbol{A}_{x} = (\boldsymbol{A}_{r}\hat{\boldsymbol{r}} + \boldsymbol{A}_{\theta}\hat{\boldsymbol{\theta}} + \boldsymbol{A}_{\phi}\hat{\boldsymbol{\phi}}) \cdot \hat{\boldsymbol{x}} = \boldsymbol{A}_{r}\hat{\boldsymbol{r}} \cdot \hat{\boldsymbol{x}} + \boldsymbol{A}_{\theta}\hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{x}} + \boldsymbol{A}_{\phi}\hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{x}} = \boldsymbol{A}_{r}\sin\theta\cos\phi + \boldsymbol{A}_{\theta}\cos\phi - \boldsymbol{A}_{\phi}\sin\phi$$

Ομοίως,

$$A_{y} = (A_{r}\hat{r} + A_{\theta}\hat{\theta} + A_{\phi}\hat{\phi}) \cdot \hat{y} = A_{r}\hat{r} \cdot \hat{y} + A_{\theta}\hat{\theta} \cdot \hat{y} + A_{\phi}\hat{\phi} \cdot \hat{y} = A_{r}\sin\theta\sin\phi + A_{\theta}\cos\theta\sin\phi + A_{\phi}\cos\phi,$$

$$\mathbf{A}_{z} = (\mathbf{A}_{r}\hat{\mathbf{r}} + \mathbf{A}_{\theta}\hat{\boldsymbol{\theta}} + \mathbf{A}_{\varphi}\hat{\boldsymbol{\phi}}) \cdot \hat{\mathbf{z}} = \mathbf{A}_{r}\hat{\mathbf{r}} \cdot \hat{\mathbf{z}} + \mathbf{A}_{\theta}\hat{\boldsymbol{\theta}} \cdot \hat{\mathbf{z}} + \mathbf{A}_{\varphi}\hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{z}} = \mathbf{A}_{r}\cos\theta - \mathbf{A}_{\theta}\sin\theta$$