2020-2021 学年线性代数 I (H) 期中

任课老师: 吴志祥 考试时长: 120 分钟

一、(10分)设方程组:

$$\begin{cases} x_1 - x_2 + x_3 - x_4 = 0 \\ 2x_1 + 4x_2 - 5x_3 + 7x_4 = 0 \\ ax_1 + 3x_2 - 4x_3 + 6x_4 = 0 \end{cases}$$

的解空间为 V_1 ,方程组:

$$\begin{cases} 4x_1 + 2x_2 - 3x_3 + bx_4 = 0 \\ 5x_1 + 7x_2 - 9x_3 + 13x_4 = 0 \\ 3x_1 - 3x_2 + 3x_3 - 2x_4 = 0 \end{cases}$$

的解空间为 V_2 , 问 a,b 为何值时 , $\mathbf{R}^4 = V_1 \oplus V_2$.

- 二、 (10 分) 设 $V = \{(a_{ij})_{n \times n} \mid \forall i, j, a_{ij} = a_{ji}\}$
 - (1) 证明: V 为 $F^{n \times n}$ 的子空间;
 - (2) 求 V 的基和维数.
- 三、 (10 分) 设 $f_1 = -1 + x$, $f_2 = 1 x^2$, $f_3 = 1 x^3$, $g_1 = x x^2$, $g_2 = x + x^3$, $V_1 = L(f_1, f_2, f_3)$, $V_2 = L(g_1, g_2)$, 求:
 - (1) $V_1 + V_2$ 的基和维数;
 - (2) $V_1 \cap V_2$ 的基和维数;
 - (3) V_2 在 $\mathbf{R}[x]_4$ 空间的补.
- 四、 $(10 \, \text{分})$ 设 ϵ_1 , ϵ_2 为 n 维欧氏空间 V 的两个单位正交向量, 定义

$$\sigma(\alpha) = \alpha - 2(\alpha, \epsilon_1)\epsilon_1 - 2(\alpha, \epsilon_2)\epsilon_2$$

证明:

- (1) σ 是 V 上的线性变换;
- (2) $\forall \alpha, \beta \in V, (\sigma(\alpha), \sigma(\beta)) = (\alpha, \beta).$
- 五、(10 分)已知 n 阶矩阵 A 的秩为 1 ,证明: $A^k = \operatorname{tr}(A)^{k-1}A$.(注: tr 为矩阵的迹,即矩阵的对角线元素之和)

六、
$$(10\ 分)$$
 已知矩阵 $A=\begin{pmatrix} a & b & c \\ d & e & f \\ h & x & y \end{pmatrix}$ 的逆是 $A^{-1}=\begin{pmatrix} -1 & -2 & -1 \\ 2 & 1 & 0 \\ 0 & -3 & -1 \end{pmatrix}$,且已知矩阵
$$B=\begin{pmatrix} a-2b & b-3c & -c \\ d-2e & e-3f & -f \\ h-2x & x-3y & -y \end{pmatrix}.$$
 求矩阵 X 满足:

$$X + (B(A^{\mathrm{T}}B^{2})^{-1}A^{\mathrm{T}})^{-1} = X(A^{2}(B^{\mathrm{T}}A)^{-1}B^{\mathrm{T}})^{-1}(A+B).$$

- 七、 $(10 \, \text{分})$ 设 $V(\mathbf{F})$ 是一个 n 维线性空间, $\sigma \in L(V,V)$, 证明:
 - (1) 在 $\mathbf{F}[x]$ 中有一个次数不高于 n^2 的多项式 p(x) 使 $p(\sigma) = 0$;
 - (2) σ 可逆 \iff 有一常数项不为 0 的多项式 p(x) 使 $p(\sigma) = 0$.

$$\begin{pmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}$$

(1) 求 σ 在基 $\{\beta_1, \beta_2, \beta_3\}$ 下对应的矩阵 B, 其中:

$$\beta_1 = 2\alpha_1 + \alpha_2 + 3\alpha_3, \ \beta_2 = \alpha_1 + \alpha_2 + 2\alpha_3, \ \beta_3 = -\alpha_1 + \alpha_2 + \alpha_3$$

- (2) 求 σ 的值域 $\sigma(V)$ 和核 ker σ ;
- (3) 把 $\sigma(V)$ 的基扩充为 V 的基, 并求 σ 在这组基下对应的矩阵;
- (4) 把 $ker\sigma$ 的基扩充为 V 的基、并求 σ 在这组基下对应的矩阵.
- 九、(20分)判断下列命题的真伪,若它是真命题,请给出简单的证明;若它是伪命题,给 出理由或举反例将它否定.
 - (1) 若 α_1 , α_2 , α_3 线性相关,则 $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$, $\alpha_3 + \alpha_1$ 也线性相关;
 - (2) 一个有限维线性空间只包含有限个子空间;
 - (3) 已知 $\sigma \in L(V, V)$, $\dim V = n$, 则由 $r(\sigma) + \dim(\ker \sigma) = n$ 可得 $\operatorname{Im} \sigma + \ker \sigma = V$;
 - (4) 若对于任何正整数 n, 方阵 A (阶数大于 1) 的 n 次乘积 A^n 都是非零方阵,则 A 是可逆的.