Informe de trabajo

Ejercicio de entrega obligatoria TP3

Facultad de Ingeniería UNLP E0301 Introducción al Diseño Lógico Curso 2023 G1

 Caciani Toniolo, Melina 	02866/1
melicaciani@gmail.com	

Chanquía, Joaquín

 02887/7

 joaquin.chanquia@alu.ing.unlp.edu.ar

Ollier, Gabriel 02958/4
 gabyollier@hotmail.com

ENUNCIADO

En la figura 1 se muestran cuatro Flip Flops (FF) de distintos tipos: SR, JK, D y T

Figura 1.

En la figura 2 se muestran tres señales, S1, S2 y CLK.

Figura 2

CUESTIONARIO

a) Escriba la tabla característica de cada uno de los FF.

S	R	CLK	ď	/Q
0	0	1	No Usado	
0	1	1	1	0
1	0	→	0	1
1	1	1	à	/Q ⁻
J	K	CLK	Q	/Q
0	0	→	Q	/Q
0	1	\downarrow	0	1
1	0	→	1	0
1	1	\	/Q ⁻	Q

Asumimos que Q empieza en 0 y /Q en 1

Asumimos que cuando una entrada cambia en el momento de un flanco, no se llega a ver reflejado el cambio Asumimos que cuando en el FlipFlop SR cambia de un 00 a un 11, Q queda en 1 y /Q queda en 0

b) En la figura 2 se muestran tres señales, S1, S2 y CLK. Si acada FF se le aplica la misma señal de CLK y se utiliza S1 como entrada S, J, T o D y la señal S2 como R o K según corresponda, haga un gráfico de los valores que adquiere Q y Qn a la salida de cada FF. Considere que todos los FF tiene un retardo de propagación de 20 ns.

Flip Flop SR:

Flip Flop D:

Flip Flop T:

Flip Flop JK:

c) Utilizando FF tipo JK, diseñe un contador módulo 2, otro contador módulo 3 y otro contador módulo 5. Simule cada uno de ellos en Quartus.

Contador módulo 2:

Contador módulo 3:

Contador módulo 5:

d) Utilizando los contadores que diseñó en el punto c), diseñe un contador módulo 60 y simule en Quartus.

e) ¿Cuál es la frecuencia máxima a la que pueden operar los contadores que diseñó? Justifique.

La frecuencia máxima de nuestros contadores al ser sincrónicos y todas las compuertas conectadas al reloj, la frecuencia máxima estará dada por 1/Nt siendo N el número de compuertas por las que pasa la señal entre el clock y la salida y t el tiempo de propagación de cada compuerta. Suponiendo un tiempo de propagación de 10ns.

N usamos la cantidad de flip flops que hay en el circuito. En el contador 60 se usan dos contadores modulo 2, uno de modulo 3 y uno de modulo 5 por lo que es la suma entre estos.

Contador modulo 2: N =1 -> fmax = 1/10ns = 100MHz Contador modulo 3: N=2 -> fmax = 1/20ns = 50MHz Contador modulo 5: N=3 -> fmax = 1/30ns = 33.3MHz Contador modulo 60: N=7 -> fmax = 1/70ns = 14.28MHz