Problem 5

a)

Prefix Match	Link Interface		
11100000 00 0			
11100000 01000000	1		
1110000	2		
11100001 1	3		
otherwise	3		

b) Prefix match for first address is 5th entry: link interface 3
Prefix match for second address is 3nd entry: link interface 2
Prefix match for third address is 4th entry: link interface 3

Problem 6

Destination Address Range	Link Interface
00000000 through	0
00111111	
01000000	
through	1
01011111	
01100000	
through	2
01111111	
10000000	
through	2
10111111	
11000000	
through	3
11111111	

number of addresses for interface $0 = 2^6 = 64$ number of addresses for interface $1 = 2^5 = 32$ number of addresses for interface $2 = 2^6 + 2^5 = 64 + 32 = 96$ number of addresses for interface $3 = 2^6 = 64$

Problem 7

Destination Address Range	Link Interface
11000000 through (32 addresses) 11011111	0
10000000 through(64 addresses) 10111111	1
11100000 through (32 addresses) 11111111	2
00000000 through (128 addresses) 01111111	3

Problem 8

Subnet 1: 223.1.17.0/26 Subnet 2: 223.1.17.128/25 Subnet 3: 223.1.17.192/28

Note: Always start by assigning blocks to the "largest" subnet (In this case Subnet #2)

Problem 11

Any IP address in range 128.119.40.128 to 128.119.40.191

Four equal size subnets: 128.119.40.64/28, 128.119.40.80/28, 128.119.40.96/28, 128.119.40.112/28

Problem 16

a) Home addresses: 192.168.1.1, 192.168.1.2, 192.168.1.3 with the router interface being 192.168.1.4

b)

NAT Translation Table	
WAN Side	LAN Side
24.34.112.235, 4000	192.168.1.1, 3345
24.34.112.235, 4001	192.168.1.1, 3346
24.34.112.235, 4002	192.168.1.2, 3445
24.34.112.235, 4003	192.168.1.2, 3446
24.34.112.235, 4004	192.168.1.3, 3545
24.34.112.235, 4005	192.168.1.3, 3546

Chapter 5

Problem 3

Step	N'	D(t),p(t)	<i>D(u),p(u)</i>	D(v),p(v)	D(w),p(w)	D(y),p(y)	D(z),p(z)
0	X	∞	∞	3,x	6,x	6,x	8,x
1	XV	7,v	6,v	3,x	6,x	6,x	8,x
2	xvu	7,v	6,v	3,x	6,x	6,x	8,x
3	xvuw	7,v	6,v	3,x	6,x	6,x	8,x
4	xvuwy	7,v	6,v	3,x	6,x	6,x	8,x
5	xvuwyt	7,v	6,v	3,x	6,x	6,x	8,x
6	xvuwytz	7,v	6,v	3,x	6,x	6,x	8,x

Problem 5

		Cost to				
		u	V	X	У	Z
	v	∞	∞	∞	∞	∞
From	X	∞	∞	∞	∞	∞
	7.	00	6	2.	∞	0

Cost to

		u	V	X	У	Z
From	v x z	1 ∞ 7	0 3 5	3 0 2	∞ 3 5	6 2 0
		Co	st to			
		u	v	X	y	Z
Enom	V	1 4	0	3	3	5 2 0
From	X Z	6	3 5	2	3 3 5	0
			ost to	V	X 7	7
		u	V	X	У	Z
From	v x	1 4	0 3	3	3	5 2 0
	Z	6	5	2	3 5	0