The Quantum Query Complexity of Read-Many Boolean Formulas

Andrew Childs¹, Shelby Kimmel², Robin Kothari¹

1. University of Waterloo

2. MIT

General Boolean Formula

Boolean: $x_i \in \{0,1\}$

- Unbounded Fan-in
 - AND

- OR

- No fanout of gates
- Fanout of inputs OK
- *n* =# of inputs (6)
- S = # of input edges (formula size) (10)
- *G* =# of gates (6)

Want to Evaluate with Quantum Computer

Quantum Query Complexity

Number of queries to the inputs x_i needed to evaluate the formula (with bounded error) with a quantum computer. Denoted by Q(f).

New Bounds on Formula Quantum Query Complexity

Upper Bound: Algorithm to evaluate any Boolean formula w/ quantum query complexity

$$O(min\{n, S^{1/2}, n^{1/2}G^{1/4}\})$$

Lower Bound: Given values for n, S, and G, \exists a formula with n inputs, size $\leq S$, and gate count $\leq G$, with query complexity

$$\Omega(min\{n,S^{1/2},n^{1/2}G^{1/4}\})$$

n=# of inputs, S=# of input edges, G=# of gates

Application 1: Classical Formula Complexity

$$Q(f) = O(n^{1/2}G^{1/4})$$

$$G(f) = \Omega(n^{-2}Q^4)$$

Upper bound on Query Complexity in terms of number of gates in the formula

Lower bound on the number of gates in a formula in terms of the query complexity.

Result:

• PARITY requires n^2 gates (previous best result: $S = \Omega(n^2)$) [Khrapchenko, '71]

Application 2: Classical Formula Complexity

Can circuits be efficiently expressed as formulas?

Result:

• Given $\epsilon > 0$, there exists a constant depth circuit of size O(n), such that a formula representation requires $O(n^{2-\epsilon})$ gates

Previous Result [Jukna '12, Nechiporuk, '66]

• There exists a constant depth circuit of size O(n), such that a formula representation requires **formula size** $O(n^{2-o(1)})$.

Proof Idea:

• Construct a constant depth, size O(n) circuit with Q(f) close to linear. Apply previous technique for lower bounding gates.

New Bounds on Formula Quantum Query Complexity

Upper Bound: Algorithm to evaluate any Boolean formula w/ quantum query complexity

$$O(min\{n, S^{1/2}, n^{1/2}G^{1/4}\})$$

Lower Bound: Given values for n, S, and G, \exists a formula with n inputs, size $\leq S$, and gate count $\leq G$, with query complexity

$$\Omega(min\{n,S^{1/2},n^{1/2}G^{1/4}\})$$

n=# of inputs, S=# of input edges, G=# of gates

General vs. Read-Once Formulas

 $Q(f) = \Theta(\sqrt{S})$ [Reichardt, '11]

S = # of input edges (formula size)

"Read-many" = general

$$Q(f) = O(\sqrt{S})$$

Q(f) = O(min{n,
$$S^{1/2}$$
, $n^{1/2}G^{1/4}$ })

- n Query all inputs (trivial)
- $S^{1/2}$ convert to read-once

n=# of inputs, S=# of input edges, G=# of gates

Q(f) = O(min{
$$n, S^{1/2}, n^{1/2}G^{1/4}$$
})

Strategy: Deal with "high degree" (deg $> G^{1/2}$) inputs separately before expanding.

If $x_1 = 1$, learn <u>a lot</u> (output of $> G^{1/2}$ OR gates)

Q(f) = O(min{n,
$$S^{1/2}$$
, $n^{1/2}G^{1/4}$ })

<u>Plan</u>

- 1. Learn all high deg (deg $> G^{1/2}$) nodes by Grover search:
 - O Search among high deg "OR" inputs for value 1. Each time kills $G^{1/2}$ gates, so can't have too many rounds.
 - Repeat high deg "AND" inputs (search for 0).
- 2. Now S is small because no input is high degree
 - Expand (by repeating inputs) to Read-Once

Parts 1 & 2 each use $O(n^{1/2}G^{1/4})$ queries.

Big Idea: Lower Bound

Compose PARITY and AND to get new formula that needs large query complexity

$$Q(PARITY_k) = \Omega(k)$$

[Beals et al, '98]

$$Q(AND_{n/k}) = \Omega(\sqrt{n/k})$$

PARITY

 $1\ldots k$

Bound on composed: [Reichardt, '11]
=
$$\Omega(k) \times \Omega(\sqrt{n/k}) = \Omega(\sqrt{n \times k})$$

AND AND AND AND

By adjusting k, can get a formula w/ lower bound that matches $\Omega(\min\{n, S^{1/2}, n^{1/2}G^{1/4}\})$

Extensions: Constant Depth Formulas

What if also know depth = d?

Upper bound still holds, but need to create new worst case functions for lower bound

Depth	Function Composed with AND	Upper/Lower Bounds on Q
Not constant	PARITY	Tight
$d \geq 3$	ONTO	Tight up to log factors
d = 2	2-Distinctness	$O(n^{.75})$, $\Omega(n^{.555})$

Application 3: Boolean Matrix Product Verification

Boolean Matrix Product Verification

A, B, C are $n \times n$ Boolean matrices $A \times B = C$? ($\vee \sim +, \ \wedge \sim \times$)

 $Q(BMPV) = O(n^{3/2}), \Omega(n)$ [Buhrman and Spalek, '06]

Result:

• $Q(BMPV) = \Omega(n^{1.0555})$

Summary and Open Problems

Accomplished:

- Optimal algorithm for Boolean formulas (in terms of n, S, and G).
- New technique for lower bounding # of gates for functions.
- New result on gates needed to convert from circuit to formula
- Improved lower bound for BMPV

To Do:

- Tighter bounds on formulas w/ constant depth
- Create new algorithms with quantum subroutines

The Quantum Query Complexity of Read-Many Formulas

Andrew Childs, Shelby Kimmel, Robin Kothari

arXiv:1112.0548

Quantum Boolean Formula Problems

Triangle Problem

n vertex graph (n^2 edges) \rightarrow triangle? [Belovs, '11]

Boolean Matrix Product Problems

[Jeffrey, Kothari, Magniez, '12]

k-distinctness

n integers $\rightarrow \geq k$ of them equal? [Belovs, '12]

Outline

- 1. Intro to Boolean formulas and quantum query complexity
- 2. Optimal algorithm for Boolean formulas
- 3. Applications
 - a) Boolean Matrix Product Verification
 - b) Classical Formula Complexity

Applications: Boolean Matrix Product Verification

Boolean Matrix Product Verification

A,B,C are $n \times n$ Boolean matrices $\to A \times B = C$? ($\lor \sim +, \land \sim \times$) $Q(BMPV) = O(n^{3/2}), \Omega(n)$ [Buhrman and Spalek, '06]

Applications: Boolean Matrix Product Verification

$$\begin{bmatrix} a_{11} & a_{12} & \cdots \\ a_{21} & \ddots & \vdots \\ \vdots & \cdots & \ddots \end{bmatrix} \begin{bmatrix} v_{11} & v_{12} & \cdots \\ v_{21} & \ddots & \vdots \\ \vdots & \cdots & \ddots \end{bmatrix}^? = \mathbb{I} \leq \text{Boolean Matrix Product Verification (all matrices unknown)}$$

$$A \text{ known} \qquad V \text{ unknown}$$

$$f = (AND) \circ (Boolean\ Vector\ Product\ Verification)$$

$$Q(f) = \Omega(Q(AND)) \times \Omega(Q(BVPV))$$
 [Reichardt, '11]

Lower bound = $\Omega(n^{1.0555})$ Previous best lower bound= $\Omega(n)$

Q(f) = O(min{n,
$$S^{1/2}$$
, $n^{1/2}G^{1/4}$ })

- n Query all inputs (trivial)
- $S^{1/2}$ convert to read-once

n=# of inputs, S=# of input edges, G=# of gates