Computer Networks-Lab Final

NAME: Sameer Ahmed

ROLL NO: 200973

Bs-Cys 3-A

Date: 29/12/2021

Question 01: For the following IP Addresses, Identify the following:

1) Class (A, B, C, D, E)

2) Network-Host Division (Example: N.N.N.H)

3) Subnet Mask (Example: 255.0.0.0)

Ans: -

1. 139.34.23.1

Class: B

Network-Host Division: N.N.H.H

Subnet Mask: 255.255.0.0

2. 219.80.60.110

Class: C

• Network-Host Division: N.N.N.H

Subnet Mask: 255.255.255.0

3. 24.254.254.254

Class: A

Network-Host Division: N.H.H.H

Subnet Mask: 255.0.0.0

4. 10.80.10.1

- Class: A
- Network-Host Division: N.H.H.H
- Subnet Mask: 255.0.0.0

5. 100.1.1.1

- Class: A
- Network-Host Division: N.H.H.H
- Subnet Mask: 255.0.0.0

6. 122.11.12.22

- Class: A
- Network-Host Division: N.H.H.H
- Subnet Mask: 255.0.0.0

7. 166.77.88.80

- Class: B
- Network-Host Division: N.N.H.H
- Subnet Mask: 255.255.0.0

8. 34.200.234.12

- Class: A
- Network-Host Division: N.H.H.H
- Subnet Mask: 255.0.0.0

9. 193.254.254.254

- Class: C
- Network-Host Division: N.N.N.H
- Subnet Mask: 255.255.255.0

10. 200.200.200.200

- Class: C
- Network-Host Division: N.N.N.H
- Subnet Mask: 255.255.255.0

Question 02: Complete the following network in Packet Tracer:

Please take screenshots when all configurations are done and PING is successful.

Network-1:

- 1. Add a PC
- a. Assign IP address (last 2 digits of student ID for each octet)
- b. Example: ID = 201764, IP = 64.64.64.64
- c. If last 2 digits of your ID are 00, then assign 100.100.100.100
- 2. Add a Switch (2960)
- 3. Connect the PC to the Switch
- 4. Capture screenshot of the "IP configuration" of PC

ID= 200973, IP= 73.73.73.73

Network-2:

- 1. Add a PC
- a. Assign IP address of 200.200.200.200
- 2. Add a Switch (2960)
- 3. Connect the PC to the Switch
- 4. Capture screenshot of the "IP configuration" of PC

Add a Router (2911):

- 1. Connect both of the Switches to Router keeping in mind the respective Port (Fast Ethernet or Gigabit Ethernet)
- 2. Assign IPs to both of the Router Interfaces i.e. one for Network-1 and other for Network-2
- 3. Capture screenshots of both of the Router Interfaces

GigabitEthernet0/0	
Port Status	☑ On
Bandwidth	○ 1000 Mbps ② 100 Mbps ○ 10 Mbps ☑ Auto
Duplex	O Half Duplex 🕙 Full Duplex 🗹 Auto
MAC Address	00D 0.9776.0E 01
IP Configuration	
IPv4 Address	73.73.73.1
Subnet Mask	255.0.0.0
Tx Ring Limit	10

PING:

- 1. Send PING request from Network-2 i.e. PC = 200.200.200.200 to the Network-1 i.e. PC = IP with your Student ID last 2 digits
- 2. Capture the screenshot of "PING Request"

```
C:\>ping 73.73.73.73

Pinging 73.73.73.73 with 32 bytes of data:

Reply from 73.73.73.73: bytes=32 time<lms TTL=127
Reply from 73.73.73.73: bytes=32 time=lms TTL=127
Reply from 73.73.73.73: bytes=32 time<lms TTL=127
Reply from 73.73.73.73: bytes=32 time=lms TTL=127

Ping statistics for 73.73.73.73:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = lms, Average = 0ms</pre>
```

Question 03: Implement Static Routing in the Network

Network-1:

- 1. Add first PC
- a. Assign IP address (last 2 digits of student ID for each octet)
- b. Example: ID = 201764, IP = 64.64.64.64
- c. If last 2 digits of your ID are 00, then assign 100.100.100.100
- 2. Add second PC
- a. Assign the NEXT IP address
- b. Example: ID = 201764, IP-1 = 64.64.64.64, IP-2 = 64.64.64.65
- c. In case of 100.100.100.100, assign 101.101.101.101
- 3. Add a Switch (2960)
- 4. Connect both of the PCs to the Switch
- 5. Capture screenshot of the "IP configuration" of both of the PCs

IP-1: 73.73.73.73, IP-2: 73.73.73.74

Add a Router (2911): (Router-1)

- a. Connect the switch to Router keeping in mind the respective Port (Fast Ethernet or Gigabit Ethernet)
- b. Assign IPs to both of the Router Interfaces i.e. one for Network-1 and other for Router-2
- c. Capture screenshots of both of the Router Interfaces

Network-1: -

Router-2: -

Network-2:

- 1. Add first PC
- a. Assign IP address 192.192.192.192
- 2. Add second PC
- a. Assign IP address 192.192.192.193
- 3. Add a Switch (2960)
- 4. Connect both of the PCs to the Switch
- 5. Capture screenshot of the "IP configuration" of both of the PCs

Add a Router (2911): (Router-2)

- a. Connect the switch to Router keeping in mind the respective Port (Fast Ethernet or Gigabit Ethernet)
- b. Assign IPs to both of the Router Interfaces i.e. one for Network-2 and other for Router-1
- c. Capture screenshots of both of the Router Interfaces

Network-2: -

Router-1: -

Static Routing:

- 1. Implement Static Routing and configure both Routers
- 2. Establish communication between both networks i.e. Network-1 and Network-2

Router-1: -

Router-2: -

Static Routes

```
        Network
        73.73.73.0

        Mask
        255.255.255.0

        Next Hop
        192.168.2.1
```

```
Network Address
73.73.73.0/24 via 192.168.2.1
```

PING:

- 1. Generate a ping request from Network 2 to Network 1
- 2. Example: Ping from 192.192.192.192 to 64.64.64.64 (Or Your IP)
- 3. Take Screenshot of the PING request

```
C:\>ping 73.73.73.73

Pinging 73.73.73.73 with 32 bytes of data:

Reply from 73.73.73.73: bytes=32 time<lms TTL=126
Ping statistics for 73.73.73.73:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = Oms, Average = Oms</pre>
```