HW 7Posted Monday March 19^h Due Monday March 26^h EE40 Maharbiz Spring 2012

1. Apply nodal analysis to determine I_C in the circuit below.

2. Use any analysis technique of your choice to determine $i_c(t)$ in the circuit below.

3. The input signal in the op-amp circuit below is given by $v_{in}(t) = V_0 cos\omega t$. Assuming the op amp is operating within its linear range, obtain an expression for $v_{out}(t)$ by applying the phasor-domain technique, and then evaluate it for the frequency at which $\omega RC = 1$.

4. Determine the resonant frequency of the circuit below, given that R = 100 Ω , L = 5 mH, and C = 1 μ F.

- 5. For the two circuits shown below, determine
- (a) the transfer function $\mathbf{H} = \mathbf{V_o}/\mathbf{V_i}$
- (b) the frequency ω_o at which \boldsymbol{H} is purely real.

