

LINMA2470 Stochastic Modelling

SIMON DESMIDT

Academic year 2024-2025 - Q2

Contents

1	Reminders		
	1.1	General properties of probability	
	1.2	Expectation and variance	
	1.3	Law of large numbers	
	1.4	Central limit theorem	
	1.5	Exponential distribution	
2	Pois	sson Processes	
	2.1	Distribution of $N(t)$	
	2.2	Non-homogenous Poisson processes	
	2.3	Bernoulli process approximation	
	2.4	Classification of queueing systems	

Reminders

1.1 General properties of probability

- $P[A \cup B] = P[A] + P[B] P[1 \cap B];$
- $P[A|B] = \frac{P[A \cap B]}{P[B]} = \frac{P[AB]}{P[B]}$;
- A and B are independent iff $P[AB] = P[A]P[B] \Longrightarrow P[A|B] = P[A]$;
- $P[X \le x] = F_X(x)$ is the distribution function, i.e. a monotone increasing function of x going from 0 to 1 when x goes from $-\infty$ to $+\infty$.
- Its derivative is the density function $f_X(x)$ such that $f_X(x)\delta \approx P[x \le X \le x + \delta]$ for an infinitesimal δ .
- A random variable *X* is said to be memoryless if $\forall t, x > 0$, P[X > t + x | X > t] = P[X > x].
- Markov inequality (for a nonnegative random variable): $P[Y \ge y] \le \frac{\mathbb{E}[Y]}{y}$;
- Chebyshev inequality: $P[|Z \mathbb{E}[Z]| \ge \varepsilon] \le \frac{\sigma_Z^2}{\varepsilon^2}$;

1.2 Expectation and variance

- For a discrete random variable, $\mathbb{E}[X] = \sum_{n=-\infty}^{\infty} nP[X=n]$;
- For a continuous random variable, $\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx$;
- $\mathbb{E}[X] = \int_0^\infty (1 F_X(x)) dx$.
- $Var[X] = \sigma_X^2 = \mathbb{E}[(X \mathbb{E}[X])^2] = \mathbb{E}[X^2] \mathbb{E}[X]^2$;

1.3 Law of large numbers

Let $X_1, ..., X_n$ be a series of independent and uniformly distributed (IID) random variables with expectation \bar{X} and finite variance σ_X^2 . Let $S_n = X_1 + \cdots + X_n$. Then,

• Weak version:

$$\lim_{n \to \infty} P\left[\left|\frac{S_n}{n} - \bar{X}\right| \ge \varepsilon\right] = 0 \tag{1.1}$$

• Strong version:

$$\lim_{n\to\infty} P\left[\sup_{m\geq n} \left(\frac{S_m}{m} - \bar{X}\right) > \varepsilon\right] = 0 \iff \lim_{n\to\infty} \frac{S_n}{n} = X \quad \text{with probability 1} \quad (1.2)$$

1.4 Central limit theorem

$$\lim_{n \to \infty} P\left[\frac{S_n - n\bar{X}}{\sqrt{n}\sigma} \le y\right] = \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \tag{1.3}$$

1.5 Exponential distribution

- $f_X(x) = \lambda e^{-\lambda x}$, for $x \ge 0$;
- $F_X(x) = 1 e^{-\lambda x}$, for $x \ge 0$;
- $\mathbb{E}[X] = 1/\lambda$.
- \rightarrow Note: the exponential distribution is memoryless.

Poisson Processes

A Poisson process N(t) counts the number of arrivals with exponentially distributed inter-arrival times.

$$S_n = \sum_{i=1}^n X_i \qquad X_i \sim \exp(\lambda)$$
 (2.1)

 $\forall n, t$, we have the relation $\{S_n \leq t\} = \{N(t) \geq n\}$, where S_n is a random variable telling at which time the n-th occurrence appears.

 \rightarrow Note: a Poisson process is memoryless: $P[Z_1 > x] = e^{-\lambda x}$, with Z_1 be the duration of the time interval from t until the first arrival after t.

For a Poisson process of rate λ , and any given t > 0, the length of the interval from t until the first arrival after t is an exponentially distributed random variable. This random variable is idenpendent of both N(t) and of the N(t) arrival epochs before time t. It is also independent of $N(\tau)$, $\forall \tau \leq t$.

Let us consider the process after Z_1 , Z_m , the time until the m-th arrival after time t. It is independent of N(t) and of the entier previous history of the process. Let us denote $\tilde{N}(t,t') = N(t') - N(t)$.

- Stationary increments property: It has the same distribution as N(t'-t), $\forall t' \geq t$ (stationary increments property);
- Independent increments property: For any sequence of times $0 < t_1 < \cdots < t_k$, the set $\{N(t_1), \tilde{N}(t_1, t_2), \dots, \tilde{N}(t_{k-1}, t_k)\}$ is a set of independent random variables.

From the memoryless property, here is another definition of a Poisson process:

• A Poisson process is a counting process that has the stationay and independent increment properties and such that

$$P[\tilde{N}(t, t + \delta) = 0] = 1 - \lambda \delta + o(\delta)$$

$$P[\tilde{N}(t, t + \delta) = 1] = \lambda \delta + o(\delta)$$

$$P[\tilde{N}(t, t + \delta) \ge 2] = o(\delta)$$
(2.2)

2.1 Distribution of N(t)

 S_n is the sum n IID random variables and f_{S_n} is the convolution of n times f_X :

$$f_{S_n}(t) = \frac{\lambda^n t^n e^{-\lambda t}}{(n-1)!}$$
 (2.3)

From this,

$$P[N(t) = n - 1] = \frac{(\lambda t)^n e^{-\lambda t}}{(n)!}$$
(2.4)

and finally,

$$\mathbb{E}[N(t)] = \lambda t \qquad Var[N(t)] = \lambda t \tag{2.5}$$

From equation (2.4), the Poisson process verifies the following probability conditions:

- $P[\tilde{N}(t, t + \delta) = 0] = 1 \lambda \delta + o(\delta);$
- $P[\tilde{N}(t, t + \delta) = 1] = \lambda \delta + o(\delta);$
- $P[\tilde{N}(t, t + \delta) \ge 2] = o(\delta);$

where we use a first-order approximation of the exponential term, with $o(\delta)$ its residual. As $o(\delta)$ is negligible, we can approximate the Poisson process as a Bernoulli process.

2.1.1 Combining Poisson processes

Let $N_1(t)$ and $N_2(t)$ be tow independent Poisson processes. Let the process $N(t) = N_1(t) + N_2(t)$. We can show using the three properties above that N(t) is a Poisson process with rate $\lambda_1 + \lambda_2$.

2.1.2 Subdividing a Poisson process

Let N(t) be a Poisson process with rate λ . We split the arrivals in 2 subprocesses $N_1(t)$ and $N_2(t)$. Each arrival of N(t) is sent to $N_1(t)$ with probability p and to $N_2(t)$ with probability (1-p), each split being independent from all others.

Then, the resulting processes $N_1(t)$ and $N_2(t)$ are two independent Poisson processes with respective rate $p\lambda$ and $(1-p)\lambda$.

2.1.3 Conditional arrival distribution

The density probability function when we have n Poisson processes, under the condition that N(t) = n, is

$$f(s_1, ..., s_n | N(t) = n) = \frac{n!}{t^n}$$
 (2.6)

From the previous results, we can compute that

$$P[S_1 > \tau | N(t) = n] = \left(\frac{t - \tau}{t}\right)^n \tag{2.7}$$

and the expectation is

$$E[S_1|N(t) = n] = \frac{t}{n+1}$$
 (2.8)

And from this, we derive that

$$P[X_i > \tau | N(t) = n] = \left(\frac{t - \tau}{t}\right)^n \tag{2.9}$$

with expectation

$$E[X_i] = \frac{t}{n+1} {(2.10)}$$

And thus the density function is

$$f_{S_i}(x|N(t)=n) = \frac{x^{i-1}(t-x)^{n-i}n!}{t^n(n-i)!(i-1)!}$$
(2.11)

2.2 Non-homogenous Poisson processes

A non-homogenous Poisson rocess N(t) is a counting process with increments that are independent but not stationary, with

- $P[\tilde{N}(t, t + \delta) = 0] = 1 \lambda(t)\delta + o(\delta);$
- $P[\tilde{N}(t, t + \delta) = 1] = \lambda(t)\delta + o(\delta);$
- $P[\tilde{N}(t, t + \delta) \ge 2] = o(\delta);$

where $\tilde{N}(t, t + \delta) = N(t + \delta) - N(t)$. The time-varying arrival rate $\lambda(t)$ is assumed to be continuous and strictly positive.

2.3 Bernoulli process approximation

We can approximate the non-homogenous Poisson process with a Bernoulli process where the time is partitioned into increments of lengths inversely proportional to $\lambda(t)$ (i.e. using a nonlinear time scale).

- $P[\tilde{N}(t, t + \epsilon/\lambda(t)) = 0] = 1 \epsilon + o(\epsilon);$
- $P[\tilde{N}(t, t + \epsilon/\lambda(t)) = 1] = \epsilon + o(\epsilon);$
- $P[\tilde{N}(t, t + \epsilon/\lambda(t)) \ge 2] = o(\epsilon);$

Letting ϵ tend to zero, we obtain

$$P[N(t) = n] = \frac{(m(t))^n e^{-m(t)}}{n!} \qquad P[\tilde{N}(t, t') = n] = \frac{(m(t, t'))^n e^{-m(t, t')}}{n!}$$
(2.12)

with

$$m(t) = \int_0^t \lambda(\tau)d\tau \qquad m(t,t') = \int_t^{t'} \lambda(\tau)d\tau \tag{2.13}$$

2.4 Classification of queueing systems

• We note A/B/k where A is the type of distribution for the arrival process, B for the service time and k the number of servers.

We suppose that the arrivals wait in a single queue. Commonly used letters are

- M: exponential distribution (for A) or Poisson process (for B);
- D: deterministic time intervals;
- E: Erlang distribution;
- G: general distribution.