Load " titanic_data". Survived as your y variable, and the other variables as your x variables. The goal is to build a model to predict whether a person survives or not

```
import pandas as pd
import numpy as np
from sklearn import preprocessing
{\tt import\ matplotlib.pyplot\ as\ plt}
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import seaborn as sns
from google.colab import drive
drive.mount('/content/drive')
p. Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
data=pd.read_csv("/content/drive/MyDrive/DataMining/Files/titanic_data.csv")
#explore the data
data.info()
data.columns
      <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):
                        Non-Null Count Dtype
      # Column
          PassengerId 891 non-null
          Survived 891 non-null
Pclass 891 non-null
                                           int64
          Name
Sex
                         891 non-null
                                           object
                         891 non-null
                                           object
          Age
SibSp
                         714 non-null
                                           float64
                         891 non-null
                                           int64
           Parch
                         891 non-null
                                           int64
           Ticket
                         891 non-null
                         891 non-null
204 non-null
                                           float64
       10 Cabin
                                           object
      11 Embarked
                         889 non-null
                                           object
     dtypes: float64(2), int64(5), object(5) memory usage: 83.7+ KB
     dtype='object')
\hbox{\tt \#Hitmap to check the null or drop columns}\\
import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=(20,20))
sns.heatmap(data.isnull()) ##to visualize the missing values
data.isnull().sum()
```


 $The \ data.info()\ indicates\ that\ three\ columns\ lack\ some\ data\ and\ may\ require\ some\ data\ wrangling, if\ possible. -\ Age: 177\ values\ missing\ (likely)$

- Cabin: 687 values missing (unlikely) - Embarked: 2 values missing (easy)

:a													
	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	<i>7</i> :
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S	
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S	
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S	
888	889	0	3	Johnston, Miss. Catherine Helen \Carrie\""	female	NaN	1	2	W./C. 6607	23.4500	NaN	S	
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С	
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q	

891 rows × 12 columns

data.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	1
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000	
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208	
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429	
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000	
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400	
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200	
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000	
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200	

The provides two immediate observations:

Survival rate: only 38% of the 891 passengers survived

Age: the average age of all passengers was 29.7 years with a strong StDev of 14.5 years

The data is about the Titanic passengers. The goal is to predict whether a passenger survives or not (1/0). The dataset provides the titanic passenger information. It includes 891 records and 12 fields. Input Variables:

survival:(Numeric) Survival 0 = No, 1 = Yes Name: (Categorical) Name of the person pclass: (Numeric) Ticket class 1 = 1st, 2 = 2nd, 3 = 3rd sex: (Categorical) Sex Male or Female

Age: (Numeric) Age in years

sibsp: (Numeric) number of siblings / spouses aboard the Titanic

parch: (Numeric) number of parents / children aboard the Titanic

ticket: (Categorical) Ticket number fare: (Numeric) Passenger fare

cabin: (Categirical) Cabin number

embarked: (Categorical) Port of Embarkation C = Cherbourg, Q = Queenstown, S = Southampton

#Cleaning Dataset, dropped 'Ticket' and 'Cabin' for our prediction model as they might have zero or low influence on 'Survived'

```
aata=aata.drop(["licket", "Labin"],axis=1)
sns.boxplot(data=data["Age"])
median_age=data["Age"].median()
data["Age"]=data["Age"].fillna(median_age)
data["Embarked"].value_counts()
data["Embarked"] = data["Embarked"].fillna("S")
```

```
80
70
60 -
50 -
40
30
20
10
```

```
#1. Can some important info be extracted from the name column? Use that in your models.
"""Yes, the titles can be extracted from the name column"""
data['Title'] = data.Name.str.extract(' ([A-Za-z]+)\.', expand=False)
data["Title"].value_counts()
```

```
Mr 517
Miss 182
Mrs 125
Master 40
Dr 7
Rev 6
Mille 2
Major 2
Coultess 1
Capt 1
Ms 1
Sir 1
Lady 1
Mme 1
Don 1
Jonkheer 1
```

Name: Title, dtype: int64

```
data['Title'] = data['Title'].replace(['Lady', 'Countess', 'Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')
data['Title'] = data['Title'].replace('Ms', 'Miss')
data['Title'] = data['Title'].replace('Mme', 'Mrs')
data[['Title', 'Survived']].groupby(['Title'], as_index=False).mean()
```

Title Survived 0 Master 0.575000 1 Miss 0.702703 2 Mr 0.156673

3 Mrs 0.7936514 Rare 0.347826

data=data.drop(['PassengerId','Name'], axis=1)

data

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Title	2
0	0	3	male	22.0	1	0	7.2500	S	Mr	
1	1	1	female	38.0	1	0	71.2833	С	Mrs	
2	1	3	female	26.0	0	0	7.9250	S	Miss	
3	1	1	female	35.0	1	0	53.1000	S	Mrs	
4	0	3	male	35.0	0	0	8.0500	S	Mr	
886	0	2	male	27.0	0	0	13.0000	S	Rare	
887	1	1	female	19.0	0	0	30.0000	S	Miss	
888	0	3	female	28.0	1	2	23.4500	S	Miss	
889	1	1	male	26.0	0	0	30.0000	С	Mr	
890	0	3	male	32.0	0	0	7.7500	Q	Mr	

891 rows × 9 columns

```
#create dummy variables
#['Sex','Embarked','Title']
temp=pd.get_dummies(data[['Sex','Embarked','Title']], drop_first=True)
data=data.drop(['Sex','Embarked','Title'],axis=1)
data = pd.concat([data,temp],axis=1)
#Separate the x and y variables
x=data.drop(["Survived"],axis=1)
y=data['Survived'] # Survive is the y column
```

У

```
2/13/22, 11:36 PM
```

3 4

0

887

889

Name: Survived, Length: 891, dtype: int64

##train and test split

from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=101)

x_train

	Pclass	Age	SibSp	Parch	Fare	Sex_male	Embarked_Q	Embarked_S	Title_Miss	Title_Mr	Title_Mrs	Title_Rare
520	1	30.0	0	0	93.5000	0	0	1	1	0	0	0
510	3	29.0	0	0	7.7500	1	1	0	0	1	0	0
446	2	13.0	0	1	19.5000	0	0	1	1	0	0	0
2	3	26.0	0	0	7.9250	0	0	1	1	0	0	0
691	3	4.0	0	1	13.4167	0	0	0	1	0	0	0
575	3	19.0	0	0	14.5000	1	0	1	0	1	0	0
838	3	32.0	0	0	56.4958	1	0	1	0	1	0	0
337	1	41.0	0	0	134.5000	0	0	0	1	0	0	0
523	1	44.0	0	1	57.9792	0	0	0	0	0	1	0
863	3	28.0	8	2	69.5500	0	0	1	1	0	0	0

#2 Fit a logistic regression model.

 $\ddot{\mbox{\ \ }}$ Show precision, recall, F-score, and confusion matrix and interpret the results.

from sklearn.linear_model import LogisticRegression
from sklearn import metrics

logreg = LogisticRegression()

logreg.fit(x_train, y_train)

y_pred = logreg.predict(x_test)

/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,

len(y_pred)

268

from sklearn.metrics import confusion_matrix confusion_matrix = confusion_matrix(y_test, y_pred)
print(confusion_matrix)

from sklearn.metrics import classification_report print(classification_report(y_test, y_pred))

[[137 17] [37 77]]

	precision	recall	f1-score	support
0	0.79	0.89	0.84	154
1	0.82	0.68	0.74	114
accuracy			0.80	268
macro avg	0.80	0.78	0.79	268
weighted avg	0.80	0.80	0.79	268

#3. Try Linear Regression here #Separate the x and y variables x=data.drop(["Survived"],axis=1) y=data['Survived']

Train and test split

from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=101)

from sklearn.linear_model import LinearRegression

lm=LinearRegression()
lm.fit(x_train,y_train)

2/13/22, 11:36 PM

LinearRegression()

x_test

	Pclass	Age	SibSp	Parch	Fare	Sex_male	Embarked_Q	Embarked_S	Title_Miss	Title_Mr	Title_Mrs	Title_Rare
331	1	45.5	0	0	28.5000	1	0	1	0	1	0	0
700	1	18.0	1	0	227.5250	0	0	0	0	0	1	0
748	1	19.0	1	0	53.1000	1	0	1	0	1	0	0
751	3	6.0	0	1	12.4750	1	0	1	0	0	0	0
481	2	28.0	0	0	0.0000	1	0	1	0	1	0	0
388	3	28.0	0	0	7.7292	1	1	0	0	1	0	0
416	2	34.0	1	1	32.5000	0	0	1	0	0	1	0
407	2	3.0	1	1	18.7500	1	0	1	0	0	0	0
482	3	50.0	0	0	8.0500	1	0	1	0	1	0	0
829	1	62.0	0	0	80.0000	0	0	1	0	0	1	0

```
predictions = lm.predict(x_test)
```

268 rows x 12 columns

len(predictions)

268

x_test_plt=np.arange(0,len(x_test),1)

import matplotlib.pyplot as plt $\verb|plt.scatter(x_test_plt, predictions, label="predictions")|\\$ plt.scatter(x_test_plt,y_test,label="Actuals") plt.legend()

We can not do linear regression here as the prediction values are not between 0 and 1

```
#4. Build KNN Model
```

from sklearn.preprocessing import MinMaxScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.pipeline import Pipeline from sklearn.metrics import (f1_score,confusion_matrix, precision_score, recall_score, classification_report)
pipe = Pipeline([('a', MinMaxScaler()), ('b', KNeighborsClassifier())])

x_test

```
Fare Sex_male Embarked_Q Embarked_S Title_Miss Title_Mr Title_Mrs Title_Rare 🎉
         Pclass Age SibSp Parch
pipe.fit(x_train, y_train)
```

x_test

Pclass Age SibSp Parch Fare Sex_male Embarked_Q Embarked_S Title_Miss Title_Mr Title_Mrs Title_Rare 331 1 45.5 0 0 28.5000 1 0 1 0 0 0 700 1 18.0 0 227.5250 0 Ω Ω Ω 748 1 19.0 0 53.1000 751 3 6.0 0 1 12.4750 0 0 Ω 481 2 28.0 388 3 28.0 0 7.7292 416 2 34.0 1 1 32.5000 407 2 3.0 1 18.7500 0 0 0 0 0 0 8.0500 1 0 0 80.0000 0 0 0 829 1 62.0 0

y_pred_pipe=pipe.predict(x_test)
y_pred_pipe

268 rows × 12 columns

For KNN model:

- $\bullet \ \ \, \text{True negative is 137, means predict a passenger is not survived when the passenger is actually not survived}$
- False positive is 17, means predict a passenger is survived when the passenger is actually survived
- $\bullet \ \ \text{False negative is 42, means predict a passenger is not survived when the passenger is actually survived}$
- True positive is 72, means predict a passenger is survived when the passenger is actually survived

```
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
from math import sqrt

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(x_train)
scaled_x_test=scaler.transform(x_test)
scaled_x_train=scaler.transform(x_train)

##5. Grid Search for optimal solution
from sklearn.model_selection import GridSearchCV
model = KNeighborsRegressor()
grid_params = {
    'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
    'weights': ['distance'],
    'metric': ['euclidean', 'manhattan']
```

from sklearn.neighbors import KNeighborsRegressor

```
gs = GridSearchCV(KNeighborsRegressor(),
                    grid params,
                     verbose=1,
                     cv=3,
                    n_jobs=-1)
gs_results = gs.fit(scaled_x_train, y_train)
      Fitting 3 folds for each of 20 candidates, totalling 60 fits
scaled_x_test
      array([[0.
                           , 0.61266649, 0.
                            0.23892362, 0.125
              [0.
                                                                          , 1.
                            0.25251427, 0.125
                                                      , ..., 1.
              0.
              [0.5
                           , 0.03506388, 0.125
                                                      , ..., 0.
                                                                          , 0.
              [1.
                            0.67382441, 0.
                                                                         , 0.
                                                      , ..., 1.
              Γ0.
                            0.8369122 , 0.
                                                      , ..., 0.
                                                                          , 1.
                           ]])
data.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 891 entries, 0 to 890
      Data columns (total 13 columns):
                         Non-Null Count Dtype
      # Column
           Survived
                         891 non-null
                         891 non-null
891 non-null
           Pclass
                                            float64
           Age
           SibSp
                         891 non-null
                                            int64
           Parch
                         891 non-null
                                            int64
           Fare
                         891 non-null
                                            float64
           Sex_male
                         891 non-null
           Embarked_Q 891 non-null
Embarked_S 891 non-null
                                            uint8
           Title_Miss 891 non-null
                                           uint8
           Title_Mr 891 non-null
Title_Mrs 891 non-null
                                           uint8
      12 Title_Rare 891 non-null uint8 dtypes: float64(2), int64(4), uint8(7)
      memory usage: 48.0 KB
#7. What happens when K=N? Check the model performance on the training and testing data. Here, N=No of data points in the training set.
rmse_val = []
for K in range(1,12): # used 12 based on 12 variables in the dataset
    model = KNeighborsRegressor(n_neighbors = K)
     model.fit(scaled_x_train, y_train) #fit the model
    pred=model.predict(scaled_x_test) #make prediction on test set
error = sqrt(mean_squared_error(y_test,pred)) #calculate rmse
    rmse_val.append(error) #store rmse values
    print('RMSE value for k= ^{\prime} , K-1 , 'is:', error)
plt.xticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],fontsize=12)
plt.show()
      RMSE value for k= 0 is: 0.4488792012484348
      RMSE value for k= 1 is: 0.4063396858522528 RMSE value for k= 2 is: 0.3868699071282999
      RMSE value for k= 3 is: 0.38874079151161206
      RMSE value for k= 4 is: 0.3888367650451102
      RMSE value for k= \, 5 is: 0.3895398484524251 RMSE value for k= \, 6 is: 0.3929782716926476
      RMSE value for k= 7 is: 0.39402901154648307
      RMSE value for k= 8 is: 0.3906616783038156
RMSE value for k= 9 is: 0.3900344416479675
      RMSE value for k= 10 is: 0.38545467345943957
       0.44
       0.43
       0.42
       0.41
       0.40
       0.39
            0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
We created elbow grapph and we can clearly see the slope change is maximum at point 2. So we will use k=2
```

```
pred = gs.predict(scaled_x_test)
error = sqrt(mean_squared_error(y_test,pred)) #calculate rmse
rmse_val.append(error) #store rmse values
print('RMSE value for k= ' , gs_results.best_estimator_.n_neighbors , 'is:', error)

RMSE value for k= 10 is: 0.38352844434979055
```

So based on the grid search we can say the optimum value of RMSE is at k=10 which would give best model prediction

```
gs_results.best_score_
```

```
gs_results.best_params_

{'metric': 'euclidean', 'n_neighbors': 10, 'weights': 'distance'}

#6. What happens when K=1? Check the model performance on the training and testing data.
rmse_val=[]

for K in range(1,12): # used 12 based on 12 variables in the dataset
    model = KNeighborsRegressor(n_neighbors = 1)
    model = KNeighborsRegressor(n_neighbors = 1)
    model.fit(scaled_x_train, y_train) #fit the model
    pred=model.predict(scaled_x_test) #make prediction on test set
    error = sqrt(mean_squared_error(y_test,pred)) #calculate rmse
    rmse_val.append(error) #store rmse values
    print('RMSE value for k= ', K-1, 'is:', error)

plt.plot(rmse_val)
    plt.xticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],fontsize=12)
    plt.show()

RMSE value for k= 0 is: 0.4488792012484348
    RMSE value for k= 1 is: 0.4488792012484348
    RMSE value for k= 3 is: 0.4488792012484348
    RMSE value for k= 4 is: 0.4488792012484348
    RMSE value for k= 5 is: 0.4488792012484348
    RMSE value for k= 6 is: 0.448879201248348
    RMSE value for k= 6 is: 0.448879201248348
    RMSE value for k= 8 is: 0.448879201248348
    RMSE value for k= 9 is: 0.448879201248348
    RMSE value for k= 10 is: 0.448879201248348
    RMSE value for k= 10 is: 0.448879201248348
    RMSE value for k= 10 is: 0.448879201248348

    RMSE value for k= 10 is: 0.448879201248348

    RMSE value for k= 10 is: 0.448879201248348

    RMSE value for k= 10 is: 0.448879201248348

    RMSE value for k= 10 is: 0.448879201248348

    RMSE value for k= 10 is: 0.448879201248348

    RMSE value for k= 10 is: 0.448879201248348
```

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

✓ 0s completed at 11:22 PM