Problem Statement

- DATA ANOMALY

DETECTION SYSTEM

By:-Parth Tyagi

What is Anomaly Detection?

Anomaly detection is the process of identifying data points, events, or observations that deviate significantly from the normal patterns in a dataset.

Types of Anomalies		
Type	Description	Example
Point Anomaly	A single data point is far from the rest	A transaction of \$10,000 vs avg \$1000
Contextual	An anomaly based on context (e.g., time)	Login at 3 AM from unusual location
Collective	A sequence of events is unusual together	Series of failed logins from same IP

Industry Applications

User usually spends ₹1000/day → sudden ₹50,000 transaction = anomaly

Irregular heart rate or glucose spike in wearable data

Sudden drop in website traffic or spike in 500 errors

A customer ordering the same expensive product 20 times in an hour.

Dataset Description (Credit Card Fraud)

Credit Card Fraud

The features V1 to V28 were generated using PCA (Principal Component Analysis).

PCA is a dimensionality reduction technique that:

Takes correlated input features (like transaction time, merchant ID, etc.)

Converts them into new uncorrelated features (called components)

These components are labeled V1, V2, ..., V28

V14 < -9

That transaction has an extremely unusual pattern in the underlying data feature captured by V14.

A value this low is very rare — it's far from the mean, indicating strong deviation from normal.

Isolation Forest - Concept

What is Isolation Forest?

A machine learning algorithm for unsupervised anomaly detection Based on a simple idea:

"Anomalies are few and different, so they can be isolated faster."

Anomaly Score

Calculated from average path length over many trees

Shorter path = higher anomaly score

Predictions:

-1 = Anomaly

1 = Normal

Isolation Forest - Implementation

Rule-Based Detection

What is Rule-Based Anomaly Detection?

A system that uses if-then logic to flag anomalies based or known thresholds or patterns

Created using domain expertise or observed patterns

)	o N	<pre>df['Amount'] = StandardScaler().fit_transform(df[['Amount']]) df['rule_high_amount'] = df['Amount'] > 3 df['rule_v14_extreme'] = df['V14'] < -9 df['rule_based_anomaly'] = (df['rule_high_amount'] df['rule_v14_extreme']).asty</pre>	ype
		<pre># Summary total_rules_flagged = df['rule_based_anomaly'].sum() print(f"Rule-Based Anomalies Detected: {total_rules_flagged}")</pre>	
		Rule-Based Anomalies Detected: 4251	

Rule	Description
IF Amount > 2000 THEN flag	High-value transaction
IF V14 < -9 AND Amount > 1000	Rare pattern from known fraud
IF transactions from same user < 5 sec apart	Possible bot/fraud attack

Adding a GenAl Layer

What is GenAl (Generative Al)?

Uses Large Language Models (LLMs) like GPT-4 to understand and generate patterns Can read anomaly patterns and suggest human-readable rules

- Helps automate rule discovery from complex datasets
- Explains why a transaction may be suspicious
- Assists analysts by summarizing or validating anomalies

import openai openai.api_key = "your-api-key" prompt = "Found anomalies with V14 < -9 and Amount > 1000.\nSuggest a rule to detect similar cases." response = openai.ChatCompletion.create(model="gpt-4", messages=[{"role": "user", "content": prompt}]) print(response.choices[0].message.content)

Example Prompt to GPT

We found 5 transactions with:

- V14 < -9
- Amount > 1000

Normal transactions do not follow this pattern. Suggest a rule to detect similar anomalies.

Example Output from GPT:

"Flag transactions where V14 < -9 andAmount > 1000 as potentiallyfraudulent."

Combined Architecture

Thank You