МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) Физтех-школа физики и исследований им. Ландау

ЛАБОРАТОРНАЯ РАБОТА №1.2.5

Исследование прецессии уравновешенного гироскопа

Пилюгин Л. С. Б02-212 10 декабря 2022 г.

1 Аннотация

Цель работы: исследовать вынужденную прецессию гироскопа; установить зависимость скорости вынужденной прецессии от величины момента сил, действующих на ось гироскопа; определить скорость вращения ротора гироскопа и сравнить её со скоростью, расчитанной по скорости прецессии.

Оборудование: гироскоп в кардановом подвесе, секундомер, набор грузов, отдельный ротор гироскопа, цилиндр известной массы, крутильный маятник, штангенциркуль, линейка.

2 Теоритические сведения

Уравнения движения твёрдого тела:

$$\frac{d\vec{P}}{dt} = \vec{F}$$

$$\frac{d\vec{L}}{dt} = \vec{M}$$

$$\vec{L} = \vec{\imath} I_x \omega_x + \vec{\jmath} I_y \omega_y + \vec{k} I_z \omega_z$$

 $I_x,\ I_y,\ I_z$ — главные моменты иннерции, $\omega_x,\ \omega_y,\ \omega_z$ — компоненты $\vec{\omega}$ Для быстро вращающегося тела одна из компонент \vec{L} значительно превышает остальные.

Угловая скорость прецессии связана с моментом внешних сил и моментом импульса гироскопа:

$$\vec{M} = \left[\vec{\Omega}, \vec{L} \right]$$

Скорость прецессии для гироскопа с моментом иннерции I, угловой скоростью ω , грузом массой m на расстоянии l от оси вращения

$$\Omega = \frac{mgl}{I\omega_0}$$

3 Оборудование и инструментальные погрешности

Уравновешенный гироскоп закреплён в кольцах карданова подвеса. Наружное кольцо A свободно поворачивается вокруг вертикальной оси aa. Внутреннее кольцо Б связано с кольцом A осью $\delta\delta$. В кольце Б укреплён гироскоп, ось вращения которого $\epsilon\epsilon$ перпендикулярна к оси $\delta\delta$. Центр масс гироскопа находится на пересечении осей и покоится при вращении.

Ротор гироскопа — ротор высокооборотного электромотора М. Его кожух скреплён с кольцом Б. Оно может вращаться в кольце А вокруг оси $\delta\delta$, которое вращается в оси aa.

Рычаг С направлен по оси симметрии ротора. На него подвешивают грузы Г.

Электродвигатель компенсирует силы трения и момент импульса гироскопа не меняется по модулю. Из-за трения в осях ось гироскопа будет опускаться в направлении действия груза.

Для исследования зависимости скорости прецессии от момента силы к рычагу подвешиваются грузы. Скорость прецессии определяется по числу оборотов рычага и времени, которое на это ушло. В начале опыта рычаг надо поднять на 5-6 градусов, закончить, когда он на такой же угол опустится вниз.

Момент иннерции ротора измеряется по крутильным колебаниям на проволоке. Период его колебаний связан с периодом тела известного момента иннерции:

$$I_0 = I \frac{T_0^2}{T^2}$$

Угловая скорость вращения исследуется по частоте генерируемой ЭДС в обмотке.

4 Результаты измерений

Без приложения внешней силы широскоп покоится, т.к. все внешние силы и их моменты скомпенсированы. При нажатии на рычаг гироскоп поворачивается в плоскости, перпендикулярной направлению приложенной силы.

Измерим время и угол, на который повернётся ось гироскопа вокруг верикальной оси, опустившись при этом на 10 градусов. $l=121\,\mathrm{mm}$

$m, \pm 0,1$ г	t, c	φ, ±2°
341.7	274.85	3270
271.9	343.38	3240
219.5	378.22	2880
175.6	414.5	2520
141.7	440.16	2160
115.8	465	1860
92.6	448.31	1440
76.1	577.18	1530
56.7	576.59	1140

Параметры цилиндра: m=1616,7 г, d=78,3 мм. Период колебаний цилиндра $T_1=4,04\pm0,05$ с. Период колебаний ротора $T_1=3,21\pm0,05$ с. Момент иннерции цилиндра $I_0=\frac{md^2}{8}$. Момент иннерции цилиндра $I=I_0\frac{T_2^2}{T_1^2}=(78\pm4)\cdot10^{-5}\,\mathrm{kr}\cdot\mathrm{m}^2$.

$$\omega_0 = rac{k}{2\pi} = 400 \pm 20\,\Gamma$$
ц. Измерения осциллографом дают $\omega_0 pprox 390\,\Gamma$ ц

Трение в вертикальной оси можно оценить из времени опусания оси рычага:

$$M = \frac{\varphi_0}{2\pi t} I\omega_0$$

 $\varphi_0 = 10^{\circ}$

$m, \pm 0,1$ г	M , кг \cdot м $^2/c^2$
341.7	1.8 ± 0.1
271.9	1.5 ± 0.1
219.5	1.4 ± 0.1
175.6	1.3 ± 0.1
141.7	1.16 ± 0.09
115.8	1.1 ± 0.09
92.6	1.14 ± 0.09
76.1	0.89 ± 0.07
56.7	0.89 ± 0.07

Момент сил трения в оси ротора пропорционален угловой скорости, т.к. в смазке возникает вязкое трение.

$$M=k\omega$$

Измерим зависимость частоты вращения от времени после выключения тока.

ν, Гц	t, c
390.4	0
381.2	30
373.3	60
364	90
354.9	120
345.7	150
336.8	180
328.1	210
319.7	240
311	270
302.7	300
294.7	330
286.8	360
279.2	390
271.5	420
264.1	450
256.7	480
249.4	510
242.4	540
235.3	570
228.5	600

$$k = \frac{I \ln \frac{\nu_0}{\nu}}{t}$$

$$k = (703 \pm 4) \cdot 10^{-9} \, \mathrm{k} \cdot \mathrm{m}^2/\mathrm{c}$$

$$M = k\omega_0 = (1725 \pm 99) \cdot 10^{-6} \, \mathrm{k} \cdot \mathrm{m}^2/\mathrm{c}^2$$

5 Вывод

Была рассчитана скорость вращения ротора гироскопа при помощи измерения зависимости скорости прецессии от момента сил и осциллографа. Также измерены моменты сил трения в оси гироскопа и вертикальной оси.