

# Реализация дисциплины обслуживания CBWFQ для ядра Linux

Автор: Куклина Мария Дмитриевна Научный руководитель: Шинкарук Дмитрий Николаевич

Санкт-Петербург, 2018

### Цели и задачи

Цель – реализация дисциплины обслуживания Class-Based Weighted Fair Queueing (CBWFQ) в ядре Linux.

#### Задачи

- ▼ Проанализировать и сравнить дисциплины обслуживания PQ, CBQ, HTB, HFSC, FWFQ, CBWFQ.
- ▼ Восстановить алгоритмы Class-Based WFQ.
- Настроить среду для реализации и тестирования.
- У Реализовать модуль ядра CBWFQ в ядре Linux.
- У Реализовать интерфейс утилиты tc для управления модулем.
- Провести тестирование.

# Сравнительная таблица ДО

| Свойство                      | PQ   | CBQ | HTB  | HFSC  | FWFQ  | CBWFQ   |
|-------------------------------|------|-----|------|-------|-------|---------|
| Метод<br>планирования         | RR   | WRR | RR   | RT/LS | WFQ   | WFQ     |
| Отбрасывание                  | TD   | TD  | TD   | TD    | ED/AD | TD/WRED |
| Честность                     | -    | -   | -    | -     | +     | +       |
| Разделение<br>канала          | -    | +   | +    | +     | -     | -       |
| Решение проблемы<br>голодания | -    | +   | +    | +     | +     | +       |
| Сложность<br>реализации       | Низк | Выс | Сред | Выс   | Сред  | Сред    |
| Сложность<br>конфигурации     | Низк | Выс | Сред | Выс   | Низк  | Низк    |
| Конфигурация<br>классов       | -    | +   | +    | +     | -     | +       |
| Реализация<br>в Linux         | +    | +   | +    | +     | -     | -       |

Обозначения: (W)RR – (Weighted) Round Robin, RT/LS – Real Time/Link Sharing. TD – Tail Drop, ED/AD – Early Dropping/Aggressive Dropping.

## Качество обслуживания в ядре Linux



Схема движения пакетов в ядре Linux.

## Плагин для утилиты tc

#### Опции для настройки дисциплины.

- ✓ "bandwidth" пропускная способность канала.
- "defaut" ключевое слово, определяющее, что далее пойдут команды для настройки класса по умолчанию.

#### Опции для настройки классов.

- ✓ "rate" минимальная пропускная способность для класса.
- ▼ "limit" максимальное количество пакетов в очереди класса.

# WFQ на основе вычисления порядкового номера пакета



# Class-Based Weighted Fair Queueing



Схема движения пакетов в планировщике CBWFQ

- У Возможность конфигурации пользовательских классов.
- У Выделение минимальной пропускной способности классу.



## Блок-схемы алгоритмов CBWFQ



Начало О := дисциплина обслуживания cl := find min(O) pkt := dequeue(cl) Нет cl.queue пуста cl.sn := pkt.sn cl.sn := 0Bce Нет классы Q.sn := 0 Q.sn := pkt.sn Вернуть pkt Конец

Алгоритм enqueue

Алгоритм dequeue

## Настройка тестовой среды



```
tc qdisc add dev $IFACE root handle 1: cbwfq bandwidth\
        100Mbps default rate 5Mbps
tc class add dev $IFACE parent 1: classid 1:2 cbwfg
        rate 25Mbps
tc class add dev $IFACE parent 1: classid 1:3 cbwfq
        rate 70Mbps
tc filter add dev ens4 parent 1:1 protocol ip u32 match \
        ip dport $TESTPORT1 0xffff flowid 1:2
tc filter add dev ens4 parent 1:0 protocol ip u32 match \
        ip dport $TESTPORT2 0xffff flowid 1:3
```

### Структура эксперимента №1

```
iperf3 -c $SERVERIP1 -p $TESRPORT1 -b 500M -u -t 90
iperf3 -c $SERVERIP2 -p $TESRPORT2 -b 500M -u -t 90
```



## График распределения доли ПС по классам



Среднее значение процента ПС для класса 1:  $71 \pm 3\%$  (P = 0.95). Среднее значение процента ПС для класса 2:  $27 \pm 2\%$  (P = 0.95).

# Структура эксперимента №2

```
iperf3 -c $SERVERIP -p $TESRPORT1 -b 100M -u -t 90
iperf3 -c $SERVERIP -p $TESRPORT2 -b 5 -u -t 90
```



## График распределения доли ПС по классам



Среднее значение процента ПС для класса 1:  $94 \pm 0.5\%$  (P = 0.95). Среднее значение процента ПС для класса 2:  $5 \pm 0.07\%$  (P = 0.95).



#### Вывод

- Проведён сравнительный анализ классовых дисциплин обслуживания.
- Проведено исследование модели WFQ.
- Реализован интерфейс для системы tc.
- У Реализован алгоритм CBWFQ в ядре Linux.
- ▼ Перспектива развития работы: реализация алгоритма WRED и доработка модуля до дисциплины LLQ.



Спасибо за внимание!