

Conception of parallel algorithms

F. Desprez - UE Parallel alg. and prog.

2016-2017 - 1

Some references

- Parallel Programming For Multicore and Cluster System, T. Rauber, G. Rünger
- Decomposing the Potentially Parallel A one day course, Elspeth Minty, Robert Davey, Alan Simpson, David Henty, Edinburgh Parallel Computing Centre The University of Edinburgh

Algorithm Parallelization

- The target architecture and the programing model have an influence over the way of designing (and writing) a parallel algorithm
- The parallel algorithm should be designed depending of the characteristics of the sequential algorithm
 - Type of data manipulated (tables, graphs, data structures, ...)
 - Data accesses (regular, random, ...)
 - Granularity
 - Dependences (control, data)
 - ...

Goals

- To obtain the same results as the sequential program!
- · Gain some time
- Reduce the storage consumption (memory, disk)

F. Desprez - UE Parallel alg. and prog

2016-2017 - 3

Parallelization Steps

Computation decomposition

- The computations of a sequential program are decomposed into tasks (with dependencies between them)
- · Each task is the smallest unit of parallelism
- Various levels of execution
 - Instruction parallelism
 - Data parallelism
 - Functional parallelism
- The decomposition can be static (before execution) or dynamic (at runtime)
- At any time of execution, the number of "executable" tasks gives a higher bound of the degree of parallelism of the program
- The decomposition into tasks consists in generating enough parallelism to have a maximum occupancy of the cores / processors / machines

F. Desprez - UE Parallel alg. and prog

2016-2017 - 5

Computation decomposition, contd.

- Pay attention to **granularity**!
 - The execution time of a task must be large in relation to the time it takes to schedule it, place it, start it, acquire its data, return the computed data
 - Large coarse grain tasks with numerous computations
 - · Fine-grained tasks with few computations
 - Compromise to find according to the performances (computation, access to the data, overhead of the system, communications, disk access, ...)

Assignment to processes or threads

- A process or thread represents a flow of control executed by a processor or a core
 - · Performs tasks one after the other
 - Not necessarily the same number as the number of processors (or cores)
- Assign tasks to ensure proper balancing (i.e. all processors or cores must have the same volume of computation to run)
 - Attention should be paid to memory access (for shared memories) and message exchanges (for distributed memories)
 - Re-use of data if possible
 - Also called scheduling
 - If executed during the initialization phase of the program: static scheduling
 - If executed during program execution: dynamic scheduling
 - Main goal: equal use of processors while maintaining a smallest amount of communication between processors

F. Desprez - UE Parallel alg. and prog.

2016-2017 - 7

Placing processes on processors

- Generally placing each process (or thread) on separate processors (or core)
- If more processes than processors then placing more processes on processors
 - Performed by the system and / or program directives
 - Goal: Balance and reduce communications
- Scheduling algorithm
 - A method for efficiently executing a set of tasks for a determined duration on a set of specified execution units
 - Satisfying dependencies between tasks (precedence constraints)
 - Capacity constraints (because number of execution units limited)
 - Sequential or Parallel Tasks
 - Goal
 - Set the **start time** and the target execution unit for each task
 - Minimize the **execution time** (makespan) = time between start of the 1st task and the end of the last task

Parallelism levels

- Computations executed by a program provide opportunities for parallel execution at different levels
 - Instruction
 - Loop
 - Functions
- Different levels of granularity (fine, medium, wide)
 - Possibility of grouping the different elements to increase the granularity
 - Different algorithms according to the different granularities

F. Desprez - UE Parallel alg. and prog.

2016-2017 - 9

Parallelism at the instruction level

- The instructions of a program can run in parallel if they are independent
- There are several types of dependencies
 - Flow dependencies (ou true dependencies): there is a flow dependency between I_1 and I_2 if I_1 computes a result value in a register or a variable used by I_2 as an operand
 - **Anti-dependency**: there is an anti-dependency between I_1 and I_2 if I_1 uses a register or an operand variable that is used by I_2 to store a result
 - Output dependency: there is an output dependency between I_1 and I_2 if I_1 and I_2 use the same register or the same variable to store a result of a calculation

$$I_1: \underline{R_1} \leftarrow R_2 + R_3 \qquad I_1: R_1 \leftarrow \underline{R_2} + R_3 \qquad I_1: \underline{R_1} \leftarrow R_2 + R_3$$

$$I_2: R_5 \leftarrow \underline{R_1} + R_4 \qquad I_2: \underline{R_2} \leftarrow R_4 + R_5 \qquad I_2: \underline{R_1} \leftarrow R_4 + R_5$$
flow dependency anti dependency output dependency

Dependence Graph

$$I_1: R_1 - A$$
 $I_2: R_2 - R_2 + R_1$
 $I_3: R_1 - R_3$
 $I_4: B - R_1$

F. Desprez - UE Parallel alg. and prog

2016-2017 - 11

Using instruction parallelism

- Used by superscalar processors
 - Dynamic scheduling of hardware-level instructions with extraction of independent instructions automatically
 - Then assigned to independent units
- On VLIW, static scheduling performed by the compiler with arrangement of instructions in long instructions with assignment to the units
- · As an input a sequential program with no explicit parallelism

Data parallelism

- Same operation performed on different elements of a larger data structure (array for example)
 - If these operations are independent then they can be carried out in parallel
 - The elements of the data structure are distributed in a balanced manner on the processors
 - Each processor executes the operation on the elements assigned to it
- Extension of programming languages (data-parallel languages)
 - A single flow of control
 - Special constructions to express data-parallel operations on arrays (SIMD model)
 - C*, data-parallel C, PC++, DINO, High Performance Fortran, Vienna Fortran

```
a(1:n) = b(0:n-1) + c(1:n) for (i=1:n)

a(i) = b(i-1) + c(i)

endfor.
```

Owner computes rule

F. Desprez - UE Parallel alg. and prog

2016-2017 - 13

Loop parallelism

- Many algorithms traverse a large data structure (data array, matrix, image, ...)
- Expressed by a loop in the imperative languages
- If there are no dependencies between the different iterations of a loop, we will have a parallel loop
- Several kinds of parallel loops
 - FORALL
 - DOPAR
- · Possibility of having
 - Multiple instructions in a loop
 - Nested loops
- Loop transformations of to find parallelism

FORALL loop

- · With one or more assignments to array elements
- If only one assignment, then equivalent to an array assignment
 - The computations given in the right part of the assignment are executed in any order
 - Then the results are affected in the array elements (in any order)

```
forall (i = 1:n)

a(i) = a(i-1) + a(i+1)

endforall
a(1:n) = a(0:n-1) + a(2:n+1)
```

- · If more than one assignment
 - They are executed one after the other as array assignments
 - An assignment ends before the next one starts

F. Desprez - UE Parallel alg. and prog

2016-2017 - 15

DOPAR loop

- Can contain
 - one or more assignments to tables
 - other instructions or other loops
- Executed by multiple processors in parallel (in any order)
- The instructions for each iteration are executed sequentially in the order of the program, using the values of the variables in the initial state (before execution of the DOPAR loop)
- The updates of the variables of an iteration are not visible for the other iterations
- Once all iterations have been executed, the iterations updates are combined and a new global state is computed

Execution Comparison

Start values			After for loop	After forall loop	After dopar loop
a(0)	1				
a(1)	2	b(1)	4	5	4
a(2)	3	b(2)	7	8	6
a(3)	4	b(3)	9	10	8
a(4)	5	b(4)	11	11	10
a(5)	6				

F. Desprez - UE Parallel alg. and prog

2016-2017 - 17

Functional parallelism

- Many parallel programs have independent parts that can be executed in parallel
 - Simple Instructions, blocks, loops, or function calls
- One can see the parallelism of tasks by considering the different parts of a program as tasks
 - Functional parallelism or task parallelism
- To use task parallelism, tasks and their dependencies are represented as a graph where the **nodes** are **tasks** and the **vertexes dependencies between tasks**
 - Sequential tasks or parallel tasks (mixed parallelism)
- To schedule tasks, you must assign a start date to each task that satisfies dependencies (a task can not be started until all tasks on which it depends have been completed)
 - Minimize overall execution time (makespan)
 - Static and dynamic algorithms

Functional parallelism

Limitations

- Start-up costs
 - At the beginning (and at the end of the pipeline) few active tasks
- Load Balancing
 - If tasks have higher costs, it is difficult to balance the work between processors (think of re-splitting if possible)
- Scalability
 - Limitation on the number of processors that can be used

F. Desprez - UE Parallel alg. and prog

2016-2017 - 19

Functional parallelism

Static Scheduling Algorithm

- Determines assignment of tasks deterministically at the start of the program or at compilation
- Based on an estimate of the execution time of tasks (measures or models)
- Dynamic Scheduling Algorithm
 - Determines the assignment of tasks at runtime
 - Allows to adapt placement according to conditions
 - Using a task pool that contains tasks that are ready to run
 - At each task execution, all tasks that depend on them (and whose dependencies are satisfied) are found in the pool
 - Often used in shared memory machines (pool in main memory)
- Languages that allow functional parallelism
 - TwoL, PCN, P3L, Kaapi, OpenMP
- · Used in multi-threaded systems, workflows systems

Task farming

- Source
 - Divides initial tasks among workers and ensures balancing
- Worker
 - Receives the task from the source, performs the job and passes the result
- Sink
 - Receives completed tasks from workers and collects partial results

(nría_

F. Desprez - UE Parallel alg. and prog.

2016-2017 - 21

Task farming, contd.

- Limitations of the task farming model
 - Large number of communications
 - · Limited to certain types of applications
 - Scheduling management if no knowledge of task execution times

Conclusion

- Not one single solution but several solutions
- Combination of models
 - Task parallelism and data parallelism (mixed parallelism)
- Implicit or explicit parallelism
- Automatic or semi-automatic discovery of parallelism
- · Scheduling and task load-balancing algorithms
- Importance of execution models!

F. Desprez - UE Parallel alg. and prog.

2016-2017 - 23

