Полиэдральный конус, порождённый векторами $e_1...e_m$ в пространстве R^n — это $\sum_{i=1}^m R_{\geq 0}e_i$. Полиэдральный конус называется **острым**, если не содержит в себе подпространства, большего, чем $\{0\}$ и **рациональным**, если конечно порождается элементами целочисленной решётки Z^n . Все конусы в R^n делятся на пары двойственных друг к другу: **двойственный** конус к σ есть конус $\sigma^{\nu} := \{x \in R^n | (x,y) \geq 0 \ \forall y \in \sigma\}$. **Гранью** $\tau \prec \sigma$ конуса σ называется $\{x \in \sigma | (x,y) = 0\}$ для некоторого $y \in \sigma^{\nu}$. Одномерные грани называются **лучами**. **Веером** Σ называется конечный набор острых рациональных полиэдральных конусов в R^n , такой что

- 1) $\tau \prec \sigma \in \Sigma \Rightarrow \tau \in \Sigma$.
- 2) $\sigma_1 \in \Sigma$, $\sigma_2 \in \Sigma \Rightarrow \sigma_1 \cap \sigma_2 \prec \sigma_1$, $\sigma_1 \cap \sigma_2 \prec \sigma_2$.

Веер называется **полным**, если объединение его конусов есть всё \mathbb{R}^n и **билатеральным**, если существует базис целочисленной решётки, каждый вектор которого порождает некоторый луч этого веера, а остальные лучи этого веера лежат в отрицательном ортанте относительно этого базиса. В этом случае этот базис будет порождать один из конусов веера.

Пусть T — алгебраический тор размерности n с решёткой однопараметрический подгрупп $N\cong Z^n$ и решёткой характеров $M=\operatorname{Hom}(N,Z)\cong Z^n$. Тогда существует взаимно однозначное соответствие между торическими многообразиями и веерами в N. Более того, существует взаимно однозначное соответствие между полными торическими многообразиями и полными веерами над решёткой однопараметрических подгрупп тора T.

Каждый содержащий начало координат выпуклый многогранник P размерности d в R^d с вершинами в узлах целочисленной решётки соответствует некоторому вееру FaceFan(P) в R^d , его вершины являются порождающими лучей веера. Два многогранника P_1 , P_2 с вершинами в узлах решётки Z^n называются **изоморфными**, если существует биекция $\varphi: R^d \to R^n$, такая что $\varphi(Z^n) = Z^n$ и $\varphi(P_1) = P_2$.

Гладкий d-многогранник Фано — выпуклый многогранник размерности d в R^d с вершинами в узлах целочисленной решётки, содержащий начало координат, такой что набор вершин каждой его грани даёт базис целочисленной решётки.

Веера, соответствующие гладким d-многогранникам Фано, соответствуют гладким торическим многообразиям Фано, причём классы изоморфности гладких торических многообразий Фано соответствуют классам изоморфности гладких d-многогранников Фано.

Полное торическое многообразие X с действием тора T называется **лучистым**, если максимальная унипотентная подгруппа группы автоморфизмов многообразия X действует на X с открытой орбитой.

Теорема 1. Пусть X — полное торическое многообразие, тогда следующие утверждения эквивалентны:

- 1) Многообразие X является лучистым;
- 2) Веер Σ_X является билатеральным.

Исследуем лучистость полных гладких торических многообразий Фано с помощью

проверки, являются ли соответствующие веера билатеральными. Полезным будет понятие специального вложения многогранника.

Грань F многогранника $P \subset R^d$ называется **специальной**, если

$$\sum_{v \in V(P)} v = \sum_{v \in V(F)} a_v v, a_v \ge 0$$

Пусть P, Q — изоморфные гладкие d-многогранники Фано, тогда Q называется **специальный вложением** для P, если $\operatorname{conv}(e_1,...,e_n)$ является специальной гранью для Q.

У любого гладкого d-многогранника Фано есть особое вложение, так как сумма радиус-векторов его вершин попадёт хотя бы в один конус над гранью этого многогранника, а любая его грань является специальной.

Пусть $(e_1,...e_d)$ — стандартный базис пространства R^d , A — изоморфизм пространства R^d , переводящий порождающие векторы некоторых d лучей веера Σ в $\{e_i|i\in\{1..d\}\}$, тогда все линейные зависимости между порождающими векторами лучей веера Σ сохраняются для их образов, то есть порождающих векторов лучей веера $A\Sigma$, также в обратную сторону они тоже сохраняются, так как A^{-1} — тоже изоморфизм пространства. Значит билатеральность веера Σ относительно своего конуса σ равносильна билатеральности относительно конуса $\langle e_1,...,e_d\rangle_{R\geq 0}$ веера, лучи котороого порождаются векторами $\{Av_i|< v_i>_{R\geq 0}$ — луч веера $\Sigma\}$, где A — матрица, обратная к матрице, столбцы которой образуют набор порождающих векторов конуса σ .

Пусть P — выпуклый многогранник в R^d максимальной размерности, содержащий начало координат. Предположим, что у него есть специальная грань F и к тому же веер $\Sigma = \operatorname{FaceFan}(P)$ билатерален относительно конуса $\operatorname{Cone}(F)$. Обозначим A — изоморфизм пространства R^d , переводящий радиус-векторы вершин грани F в $\{e_i|i\in\{1..d\}\}$

Тогда

$$\sum_{v \in V(P)} v = \sum_{v \in V(F)} a_v v, a_v \ge 0$$

$$\sum_{v \in V(P) \setminus V(F)} v = \sum_{v \in V(F)} (a_v - 1)v, a_v \ge 0$$

$$\sum_{v \in V(P) \setminus V(F)} Av = \sum_{v \in V(F)} (a_v - 1)Av, a_v \ge 0$$

Из билатеральности имеем, что каждый вектор, входящий в сумму в левой части, лежит в отрицательном ортанте, тогда последнее равенство даёт, что значение $s=(s_1,...s_d)\in R^d$ сумм в левой и правой частях лежит в кубе $\{-1\leq x_1\leq 0\}\cap...\cap\{-1\leq x_d\leq 0\}$.

Теперь предположим, что P — это гладкий d-многогранник Фано, тогда

- 1) $\forall i \in \{1..d\}$ $s_i \neq 0$, потому что иначе для некоторого $i P \subset \{s_i \geq 0\}$ и какая-то грань обязаны содержать начало координат, что противоречит тому, что радиус-векторы её вершин образуют базис решётки Z^d .
- $2)\ A$ изоморфизм решётки Z^d и координаты вершин многогранника P целочисленные, значит левая часть равенства есть целочисленный вектор.

Таким образом, мы получаем, что $\forall i \in \{1..d\}$ $s_i = -1$ и из этого следует

- 1) $\forall v \in V(F)$ $a_v = 0$, то есть $\sum_{v \in V(P)} v = 0$, значит для многогранника P любая его грань является специальной.
- 2) Обозначим полученный из P с помощью изоморфизма A многогранник Q, тогда помимо вершин стандартного d-1-мерного симплекса Q имеет только вершины, координаты которых есть наборы из 0 и -1, причём индексы отрицательных координат, дизъюнктно объединяясь, дают множество $\{1..d\}$.

Тогда P принадлежит одному из K(d) классов изоморфности, где K(d) — количество неотрицательных целых решений уравнения $x_1+\ldots+x_d=d$, таких что $n\geq x_1\geq \ldots \geq x_d\geq 0$.

Если доказать, что многогранник, являющийся выпуклой оболочкой концов стандартного базиса решётки Z^d и точек с равными -1 координатами с номерами от 1 до x_1 , от x_1+1 до x_1+x_2 , ..., от $x_1+\ldots+x_{d-1}+1$ до d и нулевыми всеми остальными координатами для каждого такого решения уравнения, будет многогранником Фано, то классов изоморфности гладких d-многогранников Фано со специальной гранью, относительно которой соответствующий веер билатерален, ровно K(n).

Какие будут грани Q и будет ли веер $\operatorname{FaceFan}(Q)$ билатерален относительно конуса над каждой из них?