Solutions to FM2 Test #5

- 1. Unbiased estimates of the population mean and variance are $\bar{x}=3$ and $s_{n-1}^2=10$ respectively.
- 2. Let X measure the length in metres of a randomly chosen king fish. Then $X \sim N(\mu, 0.12^2)$. Since $P(X \le 0.7) = 0.8$, we conclude $\mu = 0.599$ (3 s.f.).
- 3. Let X count the number of emails arriving in a 45 minute period. Then $X \sim \text{Po}(3)$. Hence $P(X > 2) = 1 P(X \le 2) = 0.577$ (3 s.f.).
- 4. The confidence interval is $\bar{x} \pm z^* \frac{3.2}{\sqrt{400}} = [10.0, 10.6]$ (3 s.f.).
- 5. Let M and W measure the weights in kilograms of a randomly chosen man and a randomly chosen woman respectively. Then $M \sim N(70, 10^2)$ and $W \sim N(60, 5^2)$. Hence the total weight $T \sim N(530, 575)$. So P(T > 550) = 0.202 (3 s.f.).
- 6. (a) $E(\bar{X}) = 4/p$ (b) So an unbiased estimator of 1/p is $\bar{X}/4$.
- 7. The null hypothesis is H_0 : $\mu = 64$ and the alternative hypothesis is H_1 : $\mu \neq 64$. The test statistic is

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

The p-value is $0.000177 \ll 0.05$. Hence there is very strong evidence that the species is not species A.

8. The null hypothesis is H_0 : $\mu = 48$ and the alternative hypothesis is H_1 : $\mu > 48$. The test statistic is

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(5)$$

The p-value is 0.0320. Hence there is evidence at the 5% level of significance that Alice's mean phosphorous level exceeds 48 mg/l.

9. The null hypothesis is H_0 : $\mu = 0.5$ and the alternative hypothesis is H_1 : $\mu \neq 0.5$. The test statistic is

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

To calculate the p-value we need to know σ , which is calculated by integration to be $\sqrt{1/12}$, whence the p-value is 0.00661. Hence there is sufficient evidence at the 1% level of significance to reject the null hypothesis in favour of the alternative hypothesis. The student better go back to the drawing board and rethink his random number generator.

- 10. (a) $\alpha = 0.05$
 - (b) Given the null hypothesis, we have $\bar{X} \sim N(60, 4/100)$. So the acceptance region at the 5% level of significance for the mean of the sample is $]-\infty, 60 + z^* \times 2/10] =]-\infty, 60.329]$. Next $\beta = 0.25 = \text{normalcdf}(-\infty, 60.329, \mu, 0.2)$, whence $\mu = 60.5$ (3 s.f.).