MS321 Algebra, tutorial 7, question 4

4. Suppose G is a group and define the set

$$Z(G) = \{ x \in G \mid xg = gx \text{ for all } g \in G \},\$$

that is, the subset of G consisting of those elements which commute with all elements of G. Show that Z(G) is a subgroup of G. Show that Z(G) is normal in G.

- (a) The element $e \in Z(G)$ since, for all $g \in G$, ge = g and eg = g so that eg = ge.
- (b) Suppose $x, y \in Z(G)$ and let $g \in G$. Then

$$(xy)g = x(yg) = x(gy) = (xg)y = (gx)y = g(xy),$$

where the second equality follows from $y \in Z(G)$ and the fourth equality follows from $x \in Z(G)$. Thus $xy \in Z(G)$.

(c) Suppose $x \in Z(G)$ and let $g \in G$. Then

$$x^{-1}g = (g^{-1}x)^{-1} = (xg^{-1})^{-1} = gx^{-1},$$

where the second equality follows from $x \in Z(G)$. Thus $x^{-1} \in Z(G)$. (a), (b) and (c) give Z(G) < G.

Finally, if $x \in Z(G)$ and $g \in G$, then $g^{-1}xg = g^{-1}gx = x \in Z(G)$, so that Z(G) is normal in G.