Let $S=(s_1,s_2,\ldots,s_n)$ be a collection of vectors in a vector space V. Suppose we also have $W\subseteq V$ a subspace. Denote $\bar{S}=(\bar{s}_1,\bar{s}_2,\ldots,\bar{s}_n)$ where $\bar{s}_i=s_i+W$. So \bar{S} is a collection of vectors in V/W.

- (1) Show that if S spans V then \bar{S} spans V/W.
- (2) Give an example of S, V, W where \bar{S} spans V/W but S doesn't span V.
- (3) Is it true that if S is linearly independent in V then \bar{S} is linearly independent in V/W? Prove it or give a counterexample.
- (4) Is it true that if \bar{S} is linearly independent in V/W then S is linearly independent in V? Prove it or give a counterexample.