Systèmes dynamiques DM 1

Pour le 07/10/21

Notations et préliminaires

On note $\mathbf{T} = \mathbf{R}/\mathbf{Z}$ le tore de dimension 1 muni de la topologie quotient, et $\pi : \mathbf{R} \to \mathbf{T}$ la projection canonique. Si $x \in \mathbf{R}$, on note $\hat{x} \in \mathbf{T}$ son image par π . On note Homeo(\mathbf{T}) (resp. Homeo(\mathbf{R})) l'ensemble des homéomorphismes de \mathbf{T} (resp. de \mathbf{R}). Si $f \in \text{Homeo}(\mathbf{T})$, on dit que $F \in \text{Homeo}(\mathbf{R})$ est un relevé de f si $\pi \circ F = f \circ \pi$.

- 1. Montrer que tout $f \in \text{Homeo}(\mathbf{T})$ admet un relevé $F \in \text{Homeo}(\mathbf{R})$ et que tous les autres relevés sont de la forme F + k où $k \in \mathbf{Z}$.

 Indication: on pourra considérer le point \hat{x} envoyé sur $\hat{0}$ par f et étendre l'application $\pi_{|]0,1[}^{-1} \circ f \circ \pi_{|]x,x+1[}$ de]x,x+1[à \mathbf{R} tout entier.
- **2.** a. Montrer que si $f \in \text{Homeo}(\mathbf{T})$ alors il existe un entier d tel que pour tout relevé F de f,

$$F(x+1) = F(x) + d, \quad x \in \mathbf{R}.$$

b. Montrer que $d = \pm 1$.

Si d=1, on dira que f est un homéomorphisme positif de \mathbf{T} et on notera $f \in \mathrm{Homeo}_+(\mathbf{T})$. On note $\mathrm{Homeo}_+(\mathbf{T})$ l'ensemble de tous les relevés des éléments de $\mathrm{Homeo}_+(\mathbf{T})$, c'est- à-dire l'ensemble de tous les homéomorphismes croissants F de \mathbf{R} tels que $F-\mathrm{id}_{\mathbf{R}}$ est périodique de période 1.

Si $\alpha \in \mathbf{R}$, on notera $T_{\alpha} : \mathbf{R} \to \mathbf{R}$ la translation d'angle α définie par $T_{\alpha}(x) = x + \alpha$ pour tout $x \in \mathbf{R}$. Si $\hat{\alpha} \in \mathbf{R}/\mathbf{Z}$, on notera aussi $R_{\hat{\alpha}} : \mathbf{T} \to \mathbf{T}$ la rotation d'angle $\hat{\alpha}$ définie par $R_{\hat{\alpha}}(\hat{x}) = \hat{x} + \hat{\alpha}$ pour tout $\hat{x} \in \mathbf{T}$.

Le nombre de rotation de Poincaré

Le but de cette partie est de montrer le résultat suivant.

Théorème. Soit $F \in Homeo_+(\mathbf{T})$. Alors il existe un unique $\rho \in \mathbf{R}$ tel que pour tout $n \in \mathbf{Z}$ et tout $x \in \mathbf{R}$,

$$-1 < F^{n}(x) - x - n\rho < 1. (1)$$

En particulier on a pour tout $x \in \mathbf{R}$,

$$\rho = \lim_{n \to \pm \infty} \frac{F^n(x)}{n}.$$

Le nombre ρ est appelé nombre de rotation de F et est noté $\rho(F)$.

Dans toute la suite, on fixe $F \in \widetilde{\text{Homeo}}_+(\mathbf{T})$ et on note $\varphi = F - \mathrm{id}_{\mathbf{R}}$.

3. Montrer que pour tous $x, y \in \mathbf{R}$, on a

$$-1 < \varphi(y) - \varphi(x) < 1.$$

On note pour tout $n \in \mathbf{Z}$

$$m_n = \min_{x \in \mathbf{R}} F^n(x) - x, \quad M_n = \max_{x \in \mathbf{R}} F^n(x) - x.$$

4. Montrer que pour tout $n \geq 1$,

$$0 \le M_n - m_n < 1.$$

5. Montrer que pour tous $n, n' \ge 1$,

$$m_{n'} + m_n < m_{n+n'} < M_{n+n'} < M_n + M_{n'}$$
.

6. En déduire que

$$\sup_{n>1} \frac{m_n}{n} = \inf_{n\geq 1} \frac{M_n}{n}.$$

On note ρ cette borne commune.

7. Montrer que pour tout $n \geq 1$, il existe $z_n \in \mathbf{R}$ tel que

$$F^n(z_n) = z_n + n\rho.$$

8. Montrer que ρ satisfait (1) pour tout $n \geq 1$ et conclure.

Quelques propriétés du nombre de rotation

Dans cette partie, on fixe $p \in \mathbf{Z}$, $q \in \mathbf{Z}_{\geq 1}$, $f \in \mathrm{Homeo}_+(\mathbf{T})$, un rel èvement $F \in \widetilde{\mathrm{Homeo}}_+(\mathbf{T})$ de f et $\alpha \in \mathbf{R}$.

- **9.** En utilisant la question **6.**, montrer que $\rho(F) = p/q$ si, et seulement si, il existe $x \in \mathbf{R}$ tel que $F^q(x) = x + p$.
- **10.** Montrer que $\rho(F) > p/q$ (resp. $\rho(F) < p/q$) si, et seulement si pour tout $x \in \mathbf{R}$, $F^q(x) > x + p$ (resp $F^q(x) < x + p$).
- 11. Montrer que $\rho(T_{\alpha}) = \alpha$.
- 12. Montrer que $\rho(F+p) = \rho(F) + p$. En déduire que pour tout $f \in \text{Homeo}_+(\mathbf{T})$, la classe $\widehat{\rho(F)} \in \mathbf{T}$ ne dépend pas du rel èvement F choisi. On notera simplement $\rho(f) = \widehat{\rho(F)}$ le nombre de rotation de f.
- **13.** Montrer que $\rho(F^q) = q\rho(F)$.

Dynamique des homéomorphismes de nombre de rotation rationnel

Ici on fixe $f \in \text{Homeo}_+(\mathbf{T})$ et $F \in \widetilde{\text{Homeo}}_+(\mathbf{T})$ un rel èvement de f.

- **14.** Montrer que $F \in Homeo_+(\mathbf{T})$ a un point fixe si et seulement si $\rho(F) = 0$.
- 15. Montrer que les ensembles α et ω -limites de tout point de \mathbf{R} est contenu dans $\operatorname{Fix}(F)$, l'ensemble des points fixes de F.

On suppose maintenant que $\rho(f) = p/q + \mathbf{Z}$ où $p \in \mathbf{Z}$ et $q \ge 1$ sont premiers entre eux.

- **16.** Montrer que f a une orbite de période q et que toutes les orbites périodiques de f sont de période q.
- 17. Montrer que les ensembles α et ω -limites de tout point de \mathbf{T} est une orbite périodique de f.

Le cas irrationnel

Dans cette partie on montre le

Théorème (Poincaré). Soit $f \in \text{Homeo}_+(\mathbf{T})$ de nombre de rotation irrationnel (i.e. sans points périodiques). Alors f est semi-conjugué à la rotation d'angle $\rho(f)$, i.e. il existe une surjection continue $h: \mathbf{T} \to \mathbf{T}$ croissante (i.e. tout rel èvement H de h est croissant) telle que

$$h \circ f = R_{\rho(f)} \circ h.$$

Soit donc $f \in \text{Homeo}_+(\mathbf{T})$ de nombre de rotation $\hat{\rho} \in \mathbf{T}$ irrationnel. On fixe $F \in \widetilde{\text{Homeo}}_+(\mathbf{T})$ un rel èvement de f et on note $\rho = \rho(F)$.

18. On fixe $x \in \mathbf{R}$. Montrer que les applications

$$\psi: \mathbf{Z}^2 \to \mathbf{R}$$
 et $\psi': \mathbf{Z}^2 \to \mathbf{R}$
$$(p,q) \mapsto q\rho - p \qquad (p,q) \mapsto F^q(x) - p$$

sont injectives. On note Z (resp. Z') l'image de ψ (resp. ψ'). Montrer que Z est dense dans \mathbf{R} .

- **19.** On pose $H = \psi \circ \psi'^{-1} : Z' \to Z$. Montrer que H est croissante et s'étend en une fonction continue, croissante $H : \mathbf{R} \to \mathbf{R}$ telle que H(x+1) = H(x) + 1.
- **20.** Conclure.

Le Théorème de Denjoy

Si la semi-conjugaison h de la partie précédente est injective, alors h est un homéomorphisme (car \mathbf{T} est compact) et on dit que f est topologiquement conjugué à $R_{\rho(f)}$. On dira que f est C^1 si tous ses rel èvements le sont et on notera $f': \mathbf{T} \to \mathbf{R}$ sa dérivée. On dira qu'une application $g: \mathbf{T} \to \mathbf{R}$ est à variation bornée s'il existe une constante C > 0 telle que pour tout $q \ge 1$ et toute séquence $0 \le x_1 < \cdots < x_q < 1$, on a

$$\sum_{i=1}^{q} |g(\widehat{x_{i+1}}) - g(\widehat{x_i})| \le C,$$

o ù $x_{q+1} = x_1$. Dans cette partie nous allons montrer le

Théorème (Denjoy). Soit $f \in \text{Homeo}_+(\mathbf{T})$ sans point périodique et de classe C^1 tel que f' > 0 et tel que f' est à variation bornée. Alors f est topologiquement conjugué à $R_{\rho(f)}$.

On fixe f comme dans l'énoncé et $h: \mathbf{T} \to \mathbf{T}$ une semi-conjugaison donnée par la partie précédente. On dira qu'un intervalle ouvert I de \mathbf{T} est errant si $f^n(I)$ est disjoint de I pour tout $n \geq 1$.

21. Soit $\hat{x} \in \mathbf{T}$. Montrer que si $h^{-1}(\{\hat{x}\})$ n'est pas réduit à un point, alors f poss ède un intervalle errant. En déduire que si f n'a pas d'intervalle errant, alors f est topologiquement conjugué à $R_{\rho(f)}$.

Dans toute la suite, on suppose que f a un intervalle errant I et on note ℓ la mesure de Lebesgue sur \mathbf{T} .

- **22.** Montrer que $\ell(f^n(I)) + \ell(f^{-n}(I)) \to 0$ quand $n \to \infty$.
- **23.** Montrer qu'il existe une suite $(q_n)_{n\geq 1}$ d'entiers positifs qui tend vers l'infini, telle que pour tout $n\geq 1$ et tout $\hat{x}\in \mathbf{T}$, il existe un intervalle fermé I_n joignant \hat{x} à $f^{q_n}(\hat{x})$ dont les intérieurs des itérés $f^k(I_n)^{\circ}$, $k=0,\ldots,q_n$, sont disjoints deux à deux
- **24.** Montrer que ln f' est à variation bornée et en déduire l'existence d'une constante C > 0 telle que

$$C^{-1} \le (f^{q_n})'(\hat{x}) (f^{-q_n})'(\hat{x}) \le C, \quad \hat{x} \in \mathbf{T}.$$

25. En déduire que $\ell(I) = 0$ et conclure.