HOMEWORK 10

JACKSON VAN DYKE

Exercise 1 (Hatcher §2.1.12). Show that chain homotopy of chain maps is an equivalence relation.

Solution. Recall that chain maps $\varphi, \psi: C \to D$ are chain homotopic, written $\varphi \cong \psi$ iff there exists a homomorphism $T: C \to D$ such that $\partial T + T\partial = \varphi - \psi$.

Reflexive: Let $\varphi: C \to D$ be a chain map. Then take $T: C \to D$ to be the zero map. Then $\partial T + T\partial = 0 = \varphi - \varphi$.

Symmetric: Let $\varphi \stackrel{\sim}{\cong} \psi$, i.e. there is some $T: C \to D$ such that $\partial T + T\partial = \varphi - \psi$. Then -T is a chain homotopy in the other direction, since

(1)
$$\partial (-T) - T\partial = -(\varphi - \psi) = \psi - \varphi.$$

Transitive: Let $\varphi_1 \stackrel{\circ}{\cong} \varphi_2$ and $\varphi_2 \stackrel{\circ}{\cong} \varphi_3$, i.e. we have $T_1, T_2 : C \to D$ such that

(2)
$$T_1 \partial + \partial T_1 = \varphi_1 - \varphi_2 \qquad T_2 \partial + \partial T_2 = \varphi_2 - \varphi_3.$$

Then $T := T_1 + T_2$ is a chain homotopy from φ_1 to φ_3 , since

(3)
$$T\partial + \partial T = T_1\partial + \partial T_1 + T_2\partial + \partial T_2 = \varphi_1 - \varphi_2 + \varphi_2 - \varphi_3 = \varphi_1 - \varphi_3$$
.

Exercise 2 (Hatcher §2.1.17). (a) Compute the homology groups $H_n(X, A)$ when X is S^2 or $S^1 \times S^1$, and A is a finite set of points in X.

(b) Compute the groups $H_n(X,A)$ and $H_n(X,B)$ for X a closed orientable surface of genus two with A and B the circles shown in Fig. 1. [What are X/A and X/B?

Exercise 3 (Hatcher §2.1.27). Let $f:(X,A)\to (Y,B)$ be a map such that both $f: X \to Y$ and the restriction $f: A \to B$ are homotopy equivalences.

- (a) Show that $f_*: H_n(X,A) \to H_n(Y,B)$ is an isomorphism for all n. (b) For the case of the inclusion $f: (D^n, S^{n-1}) \hookrightarrow (D^n, D^n \setminus \{0\})$ show that fis not a homotopy equivalence of pairs - there is no $g:(D^n,D^n\setminus\{0\})\to$ (D^n, S^{n-1}) such that fg and gf are homotopic to the identity through maps of pairs. Observe that a homotopy equivalence of pairs $(X,A) \to (Y,B)$ is also a homotopy equivalence for the pairs obtained by replacing A and Bby their closures.

FIGURE 1. Figure from Hatcher.

Exercise 4 (Hatcher §2.1.29). Show that $S^1 \times S^1$ and $S^2 \vee S^1 \vee S^2$ have isomorphic homology groups in all dimensions, but their universal covering spaces do not.

Exercise 5 (Hatcher $\S 2.2.9(a,b)$). Compute the homology groups of the following 2-complexes:

- (a) The quotient of S^2 obtained by identifying north and south poles to a point.
- (b) $S^1 \times (S^1 \vee S^1)$.

Exercise 6 (Hatcher §2.2.12). Show that the quotient map $S^1 \times S^1 \to S^2$ collapsing the subspace $S^1 \vee S^1$ to a point is not nullhomotopic by showing that it induces an isomorphism on H_2 . On the other hand, show via covering spaces that any map $S^1 \to S^1 \times S^1$ is nullhomotopic.

- **Exercise 7** (Hatcher §2.2.28). (a) Use the Mayer-Vietoris sequence to compute the homology groups of the space obtained form a torus $S^1 \times S^1$ by attaching a Möbius band via a homeomorphism from the boundary circle of the Möbius band to the circle $S^1 \times \{x_0\}$ in the torus.
 - (b) Do the same for the space obtained by attaching a Möbius band to \mathbb{RP}^2 via a homeomorphism of its boundary circle to the standard $\mathbb{RP}^1 \subset \mathbb{RP}^2$.

Exercise 8. Let A be the interval

$$\left\{e^{i\theta} \left| -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \right.\right\} \subset S^1 \ .$$

Note that $1 \in A$. Regarding $S^1 \subset S^2$ in the usual way, show that excision fails for $\{1\} \subset A \subset S^2$, i.e. inclusion does not induce an isomorphism

(5)
$$H\left(S^{2}\setminus\{1\},A\setminus\{1\}\right)\to H\left(S^{2},A\right).$$