Principles of Sigma-Delta ADC

Quan Sun

Outline

- Nyquist-rate Analog-to-Digital Converters
- Sigma-Delta Analog-to-Digital Converters
- 1st-order SD Modulator
- 2nd-order SD Modulator

Nyquist-rate A-to-D Converter

Operating at nyquist-rate :fs = $2f_b \rightarrow$ high-order analog anti-aliasing filter 2^N discrete-value level mapping \rightarrow hard to implement for large N

Nyquist-rate ADC Signal Flow

Quantization Noise(1)

$$y = g_q x + e(x)$$

g_a: quantizer gain

e(x): quantization noise, a non-linear function of input x

 Δ : quantization step, $\Delta = Y_{ES} / (2^N - 1)$

e(x)~U(- $\Delta/2$, $\Delta/2$): input is assumed to change randomly from sample to sample in the interval $\pm X_{FS}/2$

Quantization Noise(2)

Power of e:
$$\overline{e^2} = \sigma^2(e) = \int_{-\infty}^{+\infty} e^2 PDF(e) de = \frac{1}{\Delta} \int_{-\Delta/2}^{+\Delta/2} e^2 de = \frac{\Delta^2}{12}$$

Power spectral density of e:
$$S_E(f) = \frac{\overline{e^2}}{f_s} = \frac{\Delta^2}{12f_s}$$
 Signal bandwidth spreads over the band [-fs/2, +fs/2]

Power of in-band quantization noise:
$$P_Q = \int_{-f_b}^{f_b} S_E(f) df = \frac{\Delta^2}{12}$$

SNR of a nyquist-rate ADC:
$$\frac{Y_{FS}^2}{8} / \overline{e^2} \approx \frac{3}{2} 2^{2N}$$
 \rightarrow SNR | _{dB}=6.02N+1.72

Summary of Nyquist-rate ADC

- Need for a high performance anti-aliasing filter to obtain high resolution and minimum distortion
- Hard to realize high resolution due to device mismatch

Sigma-Delta A-to-D Converter

- ☐ Modulator was proposed in 1962, not gained importance until development in digital VLSI
- ☐ Using two basic ideas to increase the accuracy of A-to-D conversion:
 - ✓ Oversampling: $OSR = f_s/f_N = f_s/2f_b$
 - ✓ Noise-shaping: high-pass filter to decrease in-band quantization noise

Oversampling(1)

☐Simplify anti-aliasing filter design $\checkmark f_b << f_s/2 \rightarrow \text{frequency components in}[f_b, f_s-f_b] \text{ do not alias into signal band}$

Oversampling(2)

- Push quantization noise to out-of-band
 - when a oversampled signal is quantized, the power of the quantization noise is still distributed in the range $[-f_s/2, f_s/2]$, but only part of the total error is placed within the signal band.
 - ✓ In-band quantization noise power: $P_Q = \int_{-f_b}^{+f_b} S_E(f) df = \int_{-f_b}^{+f_b} \frac{\Delta^2}{12f_s} df = \frac{\Delta^2}{12OSR}$
 - ✓ SNR of a oversampling ADC:

$$SNR = \frac{3}{2}2^{2N}OSR \rightarrow SNR|_{dB} = 6.02N + 1.72 + 10log_{10}(OSR)$$

Noise-shaping

- in-band quantization noise can be further reduced by high-pass filtered.
 - ✓ A simple first-order filtered noise: $e_{hp}(n)=e(n)-e(n-1)=e(n)(1-z^{-1})$
- General noise transfer function: NFT(z)= $(1-z^{-1})^{\perp}$
- Quantization noise power after apply oversampling and noise-shaping:

$$P_{Q} = \int_{-f_{b}}^{+f_{b}} \frac{\Delta^{2}}{12f_{s}} NTF^{2}(f) df \approx \frac{\Delta^{2}}{12} \cdot \frac{\pi^{2L}}{(2L+1)OSR^{(2L+1)}}$$

SNR of a ADC with oversampling and noise-shaping(Sigma-Delta):

$$SNR = \frac{3}{2} 2^{2N} \frac{(2L+1)OSR^{(2L+1)}}{\pi^{2L}}$$

⇒SNR|_{dB}=6.02N+1.72
+10log₁₀(2L+1)/
$$\pi$$
^{2L}
+(2L+1)10log₁₀(OSR)

Sigma-Delta ADC Signal Flow

Sigma-Delta Modulator(1)

Linear model of SDM

■SDM is the ultimate responsible for the accuracy of A-to-D conversion

 \square SDM can be viewed as a 2 inputs(x,e), one output(y) system with TF:

$$Y(z) = STF(z)X(z) + NTF(z)E(z)$$

$$STF(z) = \frac{g_q H(z)}{1 + g_q H(z)} \qquad NTF(z) = \frac{1}{1 + g_q H(z)}$$

Sigma-Delta Modulator(2)

□Using a loop filter with large gain within signal band:

$$STF(z) \approx 1$$

$$NTF(z) = \frac{1}{1 + g_q H(z)} << 1$$

Sigma-Delta Modulator(3)

1st-order SD Modulator(1)

$$Y(z) = \frac{g_1 g_q z^{-1} X(z) + (1 - z^{-1}) E(z)}{1 - (1 - g_1' g_q) z^{-1}}$$

$$g_1' g_q = 1 \qquad \Rightarrow \qquad Y(z) = \frac{g_1}{g_1'} \cdot z^{-1} X(z) + (1 - z^{-1}) E(z)$$

1st-order SD Modulator(2)

□ Pattern noise or idle tone present when DC applied to 1st-order SDM

1st-order SD Modulator(3)

2nd-order SD Modulator(1)

$$Y(z) = \frac{g_1 g_2 g_q z^{-2} X(z) + (1 - z^{-1})^2 E(z)}{1 + (g_2' g_q - 2) z^{-1} + (1 + g_1' g_2 g_q - g_2' g_q) z^{-2}}$$

$$\begin{cases} g_1'g_2g_q = 1 \\ g_2' = 2g_1'g_2 \end{cases} \Rightarrow Y(z) = \frac{g_1}{g_1'} \cdot z^{-2}X(z) + (1 - z^{-1})^2 E(z)$$

2nd-order SD Modulator(2)

- ☐ Parameters should be selected carefully, some of important concerns:
 - ✓ Stability: 2^{nd} -order SDM is stable for input in the range[$-0.9\Delta/2$, $0.9\Delta/2$], if g_2 ′> $1.25g_1g_2$ ′
 - ✓ Easy to implement: integrator realized by SC circuits, consider match and area
 - ✓ Minimizing integrator output: supply, power consumption.

Selecting the coefficients of a SDM involves solving several trade-off among architectural, circuital, and technological aspects of the practical implementation.

2nd-order SD Modulator(3)

g1=g1'=0.5, g2=g2'=0.5, OSR=128, Δ =2

2nd-order SD Modulator(4)

g1=g1'=0.5, g2=g2'=0.5, OSR=128,
$$\Delta$$
=2