Parishram (2025)

Physical Chemsitry

Electrochemistry

DPP:5

Q1 The equilibrium constant of the following redox reaction at 298 K is 1×10^8

$$\begin{split} 2 F e^{3+} \; (aq.) \; + 2 I^{-}(aq.) \; &\rightleftharpoons 2 F e^{2+} \; (aq.) \\ &+ I_{2} \; (s) \end{split}$$

If the standard reduction potential of iodine becoming iodide is $+0.54 \, \mathrm{V}$. What is the standard reduction potential of $\mathrm{Fe^{3+}/Fe^{2+}}$?

- (A) +1.006 V
- (B) -1.006 V
- (C) +0.77 V
- (D) -0.77 V
- Q2 The equilibrium constant for the following general reaction is 10^{30} . Calculate E° for the cell

$$2X_2(s) + 3Y^{2+}(aq) \rightleftharpoons 2X_2^{3+}(aq) + 3Y(s)$$

- (A) +0.105 V
- (B) +0.2955 V
- (C) 0.0985~V
- (D) -0.2955 V
- Q3 The potential of the cell containing two hydrogen electrodes as represented below

Pt;
$$\frac{1}{2}$$
H₂ (g) $|H^+(10^{-8} M)|$ is

$$H^+(0.001 M) \mid \frac{1}{2}H_2(g)$$
; Pt

- (A) 0.296 V
- (B) -0.295 V
- (C) 0.13~V
- (D) -0.13 V
- Q4 The equilibrium constant of the reaction $\mathrm{Cu}(\mathrm{s}) + 2\mathrm{Ag}^+(\mathrm{aq}) \to \mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{Ag}(\mathrm{s})$ $\mathrm{E}^0 = 0.46~\mathrm{V}$ at $298~\mathrm{K}$ is
 - (A) 2.4×10^{10}
 - (B) 2.0×10^{10}
 - (C) 4.0×10^{10}

- (D) 4.0×10^{15}
- Q5 Which one is the wrong statement about electrochemical series?
 - (A) Active metals have negative reduction potentials.
 - (B) Active non-metals have positive reduction potentials.
 - (C) Metals above hydrogen liberate hydrogen from acids.
 - (D) Metals below hydrogen are strong reducing agents.
- Q6 Determine the equilibrium constant of the following reaction at $298~\mathrm{K}$

$$2Fe^{3+} + Sn^{2+} \rightarrow 2Fe^{2+} + Sn^{4+}$$

(Given:
$$E_{
m sn^{4+}/Sin^{2+}}^{\circ}=0.15$$
 volt,

$$E^\circ_{\mathrm{Fe}^{3+/}}\mathrm{Fe}^{2+}=0.771$$
 volt)

- (A) 1.0×10^{10}
- (B) 1.0×10^{21}
- (C) 2.0×10^{21}
- (D) 2.0×10^{11}
- Q7 The standard reduction potentials in acidic conditions are 0.77 V and 0.53 V, respectively, for ${
 m Fe}^{3+} \mid {
 m Fe}^{2+}$ and $I_3^- \mid I^- {
 m couples}.$ The equilibrium constant for the reaction:

$$2\mathrm{Fe^{3+}} + 3\mathrm{I^-} \rightleftharpoons 2\mathrm{Fe^{2+}} + I_3^-,$$
 is $(2.303\mathrm{RT/F} = 0.06)$

- (A) 2×10^8
- (B) 10^8
- (C) 10^4
- (D) 10^{-8}
- **Q8** The nature of curve of E° cell vs. $\log K_c$ is:
 - (A) Straight line
 - (B) Parabola
 - (C) Hyperbola

- (D) Elliptical current
- **Q9** The Nernst equation ${
 m E}={
 m E}^\circ-{
 m RT/nF\ln}{
 m Q}$ indicates that the ${
 m Q}$ will be equal to equilibrium constant K_c when
 - (A) $E=E^\circ$
 - (B) RT/nF = 1
 - (C) $E = \mathsf{zero}$
 - (D) $E^\circ=1$
- **Q10** The E° at $25^\circ C$ for the following reaction is 0.22~V. Calculate the equilibrium constant at $25^\circ C$.

$$\mathrm{H_2}(\mathrm{~g}) + 2\mathrm{AgCl}(\mathrm{s}) o 2\mathrm{Ag}(\mathrm{s}) + 2\mathrm{HCl}(\mathrm{aq})$$

- (A) 2.8×10^7
- (B) 5.2×10^8
- (C) 5.2×10^6
- (D) $5.2 imes 10^3$
- Q11 The standard EMF of a galvanic cell involving two moles of electrons in its redox reaction is $0.59~\rm{V}$. The equilibrium constant for a redox reaction of the cell is
 - (A) 10^{20}
- (B) 10^5
- (C) 10
- (D) 10^{10}
- Q12 The oxidation potential of hydrogen electrode at $pH=10 \mbox{ and } P_{H_2}=1 \mbox{ atm is}$
 - (A) 0.51 V
 - (B) 0.00 V
 - (C) +0.59 V
 - (D) 0.059 V
- **Q13** From the electrochemical series, it can be concluded that:
 - (A) Zn^{2+} will liberate H_2 from 1MHCl
 - (B) Ag metal reacts spontaneously with ${\rm Zn}^{2+}.$
 - (C) Zn metal will liberate H_2 from 1MHCl
 - (D) Ag metal will liberate H_2 from 1MHCl
- Q14 At equilibrium:
 - (A) ${
 m E^{\circ}}_{
 m cell}\,=0, \Delta {
 m G^{\circ}}=0$
 - (B) $\mathrm{E_{cell}} \, = 0, \Delta \mathrm{G} = 0$
 - (C) Both are correct
 - (D) None is correct

Answer Key

Q1	(C)

Q2 (B)

(A) Q3

Q4 (D)

(D) Q5

(B) Q6

Q7 (B)

(A) Q8

(C) Q9

Q10 (A)

Q11 (A)

Q12 (C)

Q13 (C)

Q14 (B)

Hints & Solutions

Note: scan the QR code to watch video solution

Q1 Video Solution:

Q2 Video Solution:

Q3 Video Solution:

Q4 Video Solution:

Q5 Video Solution:

Q6 Video Solution:

Q7 Video Solution:

Q8 Video Solution:

Q9 Video Solution:

Q10 Video Solution:

Q11 Video Solution:

Q12 Video Solution:

Q13 Video Solution:

Q14 Video Solution:

