Unit 2.4 — Average Acceleration (Guided Notes)

1				\sim	4	•
ı	ı	ı ın	cn.	1.0	nte	νt
1				(,()	1115	ΛI

- Space Shuttle Atlantis must rapidly change its _____ to reach orbital speed.
- Any time _____ changes, the motion has acceleration.

II. What Is Average Acceleration?

- Definition: average acceleration ā is **change in _____ per unit time**.
- Formula: $\bar{\mathbf{a}} = \Delta \mathbf{v} / \Delta \mathbf{t} = (\mathbf{v}_f \mathbf{v}_i) / (\mathbf{t}_f \mathbf{t}_i)$.
- SI units: ______ (meters per second per second).

III. Notation and Units

- v i: initial velocity; v f: final velocity; Δt: ______.
- Keep units consistent. Convert km/h → m/s before using the formula.
- 1 km/h \approx 0.27778 m/s; 1 m/s = 3.6 km/h.

IV. Vector Nature (Sign Matters)

- Acceleration is a vector in 1D: sign indicates direction along the __-axis.
- Positive acceleration points in +x; negative acceleration points in -x.
- "Negative acceleration" means a is ______ to the chosen + direction.

V. Speeding Up vs. Slowing Down

- Moving in +x and speeding up \rightarrow a > 0.
- Moving in +x and slowing down \rightarrow a < 0 (opposite to motion).
- Moving in -x and **speeding up** toward $-x \rightarrow a < 0$ (same direction as motion).

VI. Skateboarder Example (Direction Focus)

- Moving right (+): slowing to a stop \rightarrow a is _____.
- Turning left (-) and speeding up \rightarrow v negative and a _____ (same direction).

VII. Average Acceleration from Speeds

- Use $\bar{\mathbf{a}} = (\mathbf{v}_{\mathbf{i}} \mathbf{v}_{\mathbf{i}})/\Delta t$ when you know start/end velocities and time.
- Structure: identify v i, v f; compute Δv ; divide by Δt ; include sign/units.

VIII. Mixed Units	Example	(Why Co	nvert?)
-------------------	---------	---------	---------

- If v is in km/h and t is in s, convert v to ___/s so ā is in m/s2.
- Consistent units avoid _____ and make answers comparable.

IX. v-t Graphs and Acceleration

- On a velocity–time graph, the **slope equals** _____.
- Positive slope $\rightarrow \bar{a} > 0$; negative slope $\rightarrow \bar{a} < 0$; **flat** $\rightarrow \bar{a} =$ ___.
- Average acceleration over an interval is the slope of the _____ line on v–t.

X. Connecting x-t, v-t, and a

- From x–t: slope gives ___; changing slope implies changing v → acceleration present.
- From v–t: slope gives ___ directly; area under v–t gives Δx.
- Average acceleration over an interval equals Δv/Δt.

XI. Solving Strategy

- Step 1: Write given values (v_i, v_f, Δt) with _____ and _____.
- Step 2: Convert units if needed (e.g., km/h → m/s).
- Step 3: Compute $\Delta v = v_f v_i$ (keep the sign).
- Step 4: Compute $\bar{a} = \Delta v / \Delta t$ with units m/s^2 .
- Step 5: Interpret the _____ in context (speeding up vs. slowing down).

XII. Common Pitfalls

- Mixing units (km/h with s) \rightarrow **_____ first**.
- Dropping the ____ on Δv or \bar{a} .
- Calling any negative ā "deceleration" without considering direction and motion sign.

XIII. Summary

- Average acceleration: $\bar{a} = \Delta v/\Delta t$ with units m/s^2 .
- Signs encode direction; slowing down in +x gives _______ā.
- On v–t graphs, **slope =** _____; flats mean a = 0.

Guided Examples (Unit 2.4)

Ex 1 — Convert km/h to m/s, then find ā Prompt: A car accelerates from rest to +60.0 km/h in 5.00 s.

v_i = 0.0 m/s; v_f = 60.0 km/h.
Convert 60.0 km/h to m/s: 60.0 × (1000/3600) = _____ m/s (≈16.7).
∆t = 5.00 s; ∆v = ___ - 0 = ___ m/s.
ā = ∆v/∆t = ___ /5.00 = ___ m/s² (≈ 3.33).
Conclusion: ā ≈ ___ m/s².
Ex 2 — Slowing down in +x (negative ā) Prompt: An automobile slows from +15.0 m/s to +5.0 m/s in 5.0 s.
v_i = +15.0 m/s; v_f = +5.0 m/s; ∆t = 5.0 s.
∆v = 5.0 - 15.0 = ___ m/s.
ā = ∆v/∆t = (__ m/s) / 5.0 s = ___ m/s².
Conclusion: ā is ____ (opposite the +x motion).
Ex 3 — Interpreting direction words Prompt: A skateboarder moving right slows to a stop; then speeds up left.
Right is +x. Slowing while moving +x → ā ____.
After turning, moving left (-x) and speeding up → ā _____ (same direction as motion).

Ex 4 — v–t slope as acceleration Prompt: On a v–t graph, how do you recognize acceleration and compute \bar{a} ?

• Conclusion: Both segments can have _____ acceleration, but for different

• Acceleration is the _____: $\bar{a} = \Delta v/\Delta t$ from two points.

reasons.

- Upward slope $\rightarrow \bar{a} > 0$; downward slope $\rightarrow \bar{a} < 0$; flat $\rightarrow \bar{a} =$ __.
- Conclusion: Use the **secant** _____ on v–t to get the average acceleration.