Planning and Scheduling: Introduction to Planning

Bonn-Aachen
International Center for
Information Technology

Prof. Dr.-Ing. Gerhard K. Kraetzschmar

Acknowledgements

- These slides refer to Chapter I of the textbook: Malik Ghallab, Dana Nau, and Paolo Traverso: Automated Planning: Theory and Practice Morgan Kaufmann, 2004
- These slides are an adaptation of slides by Dana Nau
- The contributions of these authors are gratefully acknowledged

Plans and Planning

- Plan:
 - A collection of actions for performing some task or achieving some objective
- Planning:
 - There are many programs to aid human planners
 - Project management
 - Plan storage/retrieval
 - Automatic schedule generation
 - Automatic plan generation is much more difficult
 - Many research prototypes
 - Fewer practical systems
 - Research is starting to pay off
 - Several successes on difficult practical problems


```
Op AB/WSetpRutmeLN Osrpton
                   02 Capbord
03 Etblb dtmponta blayeQ.2,109
00 BVMC 010 04301 isalo.0dimeerdilbt
                   02 8ghdrilt (25,0.8) t dph100
03 Enshdilat(125-050todeth100
                   02 Bghdrllt 000,488todet 10
                   02 Capbord
03 Eable damponta bleye@.8,100
                03401 lisal0.5dimeersdemiligtob
                   ègth040widh030 dph050
04 Bghsdemilpokeat(025,300
                       ègth040widh030 elph050
                    05 Enish is denill pocket at (0253.0)
ègth 040 widh 030 diph 050
              322901 Pecèn bad(srbandws)
                   02 Bybad hoveat85dg.F
08 B E £ 3000 04801 6 t p 02 pead pobes $ t f o m 100 R P M p i n e
               20001 Stp
                   02 Roolbogphy6 pooess
sigpbtoolin ed. qs
09 D E £ 3000 200001 6 tp
09 T E £ 9 0 0 0 5 4 7 7 0 1 6 altime on E £
00 A MC3000 45701 Stp
02 Ppaeboadfosoileig
00 B M £ 3 0 0 0 0 2 9 0 1 6 ts p
02 Seepintaldrsoponbad
06 C MC3000 75001 Sup
                   02 @pstsode pseat(351.2)onbadusignæže
                   31 Bpstsode pteat(384.0)onbadusingnože
00 D MC 000 57101 Dybod noveat85dg.Ftosldfysodepase
01 A TC 000 350001 Promposeapestg obord 01 B TC 000 296701 Promfialispeto 6bord
99 T 3970 833701 Taltietomatiatus
```

NASA Unmanned Spacecraft

- Remote Agent eXperiment (RAX)
 - Autonomous Al software for planning/control
 - Ran on the DSI spacecraft in May 1998
 - For several minutes it was allowed to control the spacecraft
- Mars rover
 - Guided by autonomous Al planning/control software

Other Examples

- Computer bridge: Bridge Baron
 - Used Al planning to win the 1997 world computer bridge championship
 - Commercial software, thousands of copies sold
- Manufacturing process planning
 - Software included with Amada's sheet-metal bending machines
 - Used to plan bending operations

Outline

- Conceptual model
- Restrictive assumptions
- Classical planning
- Relaxing the assumptions
- A running example: Dock Worker Robots

Conceptual Model

- Ingredients:
- Model of the environment: possible states
- Model of how the environment can change: effects of actions
- Specification of initial conditions and objectives
- Plans of actions that are generated by a planner
- A model of execution of a plan in the environment
- A model of observation of the environment

Conceptual Model

State-transition system

$$\Sigma = (S, A, E, \gamma)$$

- $S = \{states\}$
- A = {actions} (controllable)
- E = {events} (uncontrollable)
- state-transition function

$$\gamma: S \times (A \cup E) \mapsto 2^S$$

Observation function

$$h: S \mapsto O$$

- Controller: given observation $o \in O$, produces action $a \in A$
- Planner:
 - lacksquare Input: description of Σ , initial state $s_0 \in S$, some objective
 - Output: produces a plan to drive the controller

Conceptual Model

Possible objectives:

- lacksquare A set of goal states S_g
 - Find sequence of state transitions ending at a goal
- Some condition over the set of states followed by the system
 - \blacksquare e.g., reach S_g and stay there
- Utility function attached to states
 - Optimize some function of the utilities
- Tasks to perform, specified recursively as sets of sub-tasks and actions

Conceptual Model: Example

State transition system

$$\Sigma = (S, A, E, \gamma)$$

where

- $S = \{s_0, \dots, s_5\}$
- $A = \{ move_1, move_2 \}$ $\cup \{ put, take, load, unload \}$
- $E = \varnothing$
- γ : as shown
- Input to planner:
 - System Σ
 - Initial state s0
 - Goal state s5

Planning Versus Scheduling

- Scheduling
 - Decide how to perform a given set of actions using a limited number of resources in a limited amount of time
 - Typically NP-complete
- Planning
 - Decide what actions to use to achieve some set of objectives
 - Can be much worse than NP-complete
 - In the most general case, it is undecidable
 - Most research assumes various collections of restrictions to guarantee decidability
 - We will now look at some of the restrictions

Restrictive Assumptions

- \blacksquare A0 (finite Σ):
 - The state space S is finite
 - $S = \{s_0, s_1, s_2, \dots, s_k\}$ for some k
- \blacksquare A1 (fully observable Σ):
 - The observation function $h: S \mapsto O$ is the identity function
 - I.e., the controller always knows what state Σ is in

$$\Sigma = (S, A; E, \gamma)$$

$$S = \{states\}$$

$$A = \{actions\}$$

$$E = \{events\}$$

$$\gamma : S \times (A \cup E) \mapsto 2^{S}$$

Restrictive Assumptions

- \blacksquare A2 (deterministic Σ):
 - $\forall u \in A \cup E : ||\gamma(s, u)|| = 1$
 - Each action or event has only one possible outcome
- \blacksquare A3 (static Σ):
 - E is empty: no changes except those performed by the controller
- A4 (attainment goals):
 - A goal state s_g or a set of goal states S_g

$$\Sigma = (S, A; E, \gamma)$$

$$S = \{states\}$$

$$A = \{actions\}$$

$$E = \{events\}$$

$$\gamma : S \times (A \cup E) \mapsto 2^{S}$$

Restrictive Assumptions

- A5 (sequential plans):
 - Solution is a linearly ordered sequence of actions $\langle a_1, a_2, \ldots, a_n \rangle$
- A6 (implicit time):
 - No durations, instantaneous state transitions
- A7 (off-line planning):
 - Planner does not know the execution status

$$\Sigma = (S, A; E, \gamma)$$

$$S = \{states\}$$

$$A = \{actions\}$$

$$E = \{events\}$$

$$\gamma : S \times (A \cup E) \mapsto 2^{S}$$

Classical Planning

- Classical planning requires all eight restrictive assumptions
 - Complete knowledge about a deterministic, static, finite-state system with attainment goals and implicit time
- Reduces to the following problem:
 - Given (Σ, s_0, S_g)
 - find a sequence of actions $\langle a_1, a_2, \dots, a_n \rangle$
 - that produces a sequence of state transitions

$$s_1 = \gamma(s_0, a_1)$$

$$s_2 = \gamma(s_1, a_2)$$

$$\vdots$$

$$s_n = \gamma(s_{n-1}, a_n)$$

such that $s_n \in S_g$

Classical Planning: Example

- Same example as before:
 - System is finite, deterministic, static
 - Complete knowledge
 - Attainment goals
 - Implicit time
 - Offline planning
- Classical planning is just path-searching in a graph
 - States are nodes
 - Actions are edges

Is this trivial?

Classical Planning

- Very difficult computationally
 - Generalize the earlier example:
 - Five locations, three piles, three robots, 100 containers
 - \blacksquare Then there are 10^{277} states
 - \blacksquare More than 10^{190} times as many states as the number of particles in the universe!

- The vast majority of AI research has been on classical planning
 - Parts I and II of the book
- Too restricted to fit most problems of practical interest
 - But the ideas can sometimes be useful in those problems

- Relax A0 (finite Σ):
 - Discrete, e.g. 1st-order logic:
 - Continuous, e.g. numeric variables
 - Sections:
 - 2.4 (extensions to classical)
 - I 0.5 (control-rule planners)
 - II.7 (HTN planning)
 - Case study: Chapter 21 (manufacturability analysis)
- Relax A1 (fully observable Σ):
 - If we don't relax any other restrictions, then the only uncertainty is about s_0

$$\Sigma = (S, A; E, \gamma)$$

$$S = \{states\}$$

$$A = \{actions\}$$

$$E = \{events\}$$

$$\gamma : S \times (A \cup E) \mapsto 2^{S}$$

- Relax A2 (deterministic Σ):
 - Actions have more than one possible outcome
 - Seek policy or contingency plan
 - With probabilities:
 - Discrete Markov Decision Processes (MDPs)
 - Chapter I I
 - Without probabilities:
 - Nondeterministic transition systems
 - Chapters 12, 18

$$\Sigma = (S, A; E, \gamma)$$

$$S = \{states\}$$

$$A = \{actions\}$$

$$E = \{events\}$$

$$\gamma : S \times (A \cup E) \mapsto 2^{S}$$

- Relax AI and A2:
 - Finite POMDPs
 - Plan over belief states
 - Exponential time & space
 - Section 16.3
- Relax A0 and A2:
 - Continuous or hybrid MDPs
 - Control theory (see engineering courses)
- Relax A0, A1, and A2
 - Continuous or hybrid POMDPs
 - Case study: Chapter 20 (robotics)

$$\Sigma = (S, A; E, \gamma)$$

$$S = \{states\}$$

$$A = \{actions\}$$

$$E = \{events\}$$

$$\gamma : S \times (A \cup E) \mapsto 2^{S}$$

- Relax A3 (static Σ):
 - Other agents or dynamic environment
 - Finite perfect-info zero-sum games (introductory Al courses)
 - Randomly behaving environment
 - Decision analysis (business, operations research)
 - Can sometimes map this into MDPs or POMDPs
 - Case studies: Chapters 19 (space),22 (emergency evacuation)
- Relax A1 and A3
 - Imperfect-information games
 - Case study: Chapter 23 (bridge)

$$\Sigma = (S, A; E, \gamma)$$

$$S = \{states\}$$

$$A = \{actions\}$$

$$E = \{events\}$$

$$\gamma : S \times (A \cup E) \mapsto 2^{S}$$

- Relax A5 (sequential plans) and A6 (implicit time):
 - Temporal planning
 - Chapters 13, 14
- Relax A0, A5, A6
 - Planning and resource scheduling
 - Chapter 15
- 247 other combinations
 - We won't discuss them all!

$$\Sigma = (S, A; E, \gamma)$$

$$S = \{states\}$$

$$A = \{actions\}$$

$$E = \{events\}$$

$$\gamma : S \times (A \cup E) \mapsto 2^{S}$$

A running example: Dock Worker Robots

- Generalization of the earlier example
 - A harbor with several locations
 - E.g., docks, docked ships, storage areas, parking areas
 - Containers
 - Going to/from ships
 - Robot carts
 - Can move containers
 - Cranes
 - Can load and unload containers

A running example: Dock Worker Robots

- Locations: l_1, l_2, \dots
- Containers: c_1, c_2, \ldots
 - Can be stacked in piles, loaded onto robots, or held by cranes
- Piles: $p_1, p_2, ...$
 - Fixed areas where containers are stacked
 - Pallet at the bottom of each pile
- Robot carts: r_1, r_2, \ldots
 - Can move to adjacent locations
 - Carry at most one container
- Cranes: k_1, k_2, \ldots
 - Each belongs to a single location
 - Move containers between piles and robots
 - If there is a pile at a location, there must also be a crane there

A running example: Dock Worker Robots

Fixed relations: same in all states

```
adjacent(l, l') attached(p, l) belongs\_to(k, l)
```

Dynamic relations: differ from one state to another

```
egin{array}{ll} occupied(l) & at(r,l) \ loaded(r,c) & unloaded(r) \ holding(k,c) & empty(k) \ in(c,p) & on(c,c') \ top(c,p) & top(pallet,p) \ \end{array}
```

Actions:

```
take(c, k, p)

put(c, k, p)

load(r, c, k)

unload(r)

move(r, l, l')
```

