Functions

Function: If a variable y depends on a variable x in such a way that each value of x determines exactly one value of y, then y is called a function of x and it is denoted by the following symbol,

$$y = f(x)$$

where x is independent variable and y is dependent variable. The inverse of this function is denoted by $f^{-1}(y) = x$.

Example: $y = x^2 + x + 1$; y = sinx; $y = e^x$; y = lnx etc.

Alternatively, let A and B be two non empty sets. A mapping $f:A\to B$ is called function if each element of A is assigned by unique element of B.

Types of functions: There are many types of functions. These have been discussed as:

Even function: A function y = f(x) is called an even function if it satisfies the condition

$$f(-x) = f(x).$$

Example: y = cosx, $y = x^4$, etc. are even functions.

Odd function: A function y = f(x) is called an odd function if it satisfies the condition

$$f(-x) = -f(x).$$

Example: y = sinx, $y = x^3$, etc. are odd functions.

One—one Function: Let f map A into B, i.e, $f:A \rightarrow B$. Then f is called a one-one function if different elements in B are assigned to different elements in A, that is, if no two different elements in A have the same image. More briefly, $f:A \rightarrow B$ is one-one if f(a) = f(b) implies a = b or, equivalently, $a \ne b$ implies $f(a) \ne f(b)$.

Onto Function: Let f be a function of A into B. Then f is called a onto function if every element of B appears as the image of at least one element of A. More briefly, $f: A \to B$ is onto function if f(A) = B.

Constant Function: A function f of A into B is called a constant function if the same element in B is assigned to every element in A. More briefly, $f: A \rightarrow B$ is a constant function if the range of f consists of only one element.

Inverse Function: Let f be a function of A into B. In general, $f^{-1}(b)$ could consist of more than one element or might even be the empty set \emptyset . Now if $f:A \to B$ is a one-one function and an onto function, then for each $b \in B$ the inverse $f^{-1}(b)$ will consist of a single element in A. We therefore have a rule that assigns to each $b \in B$ a unique element $f^{-1}(b)$ in A. Accordingly, f^{-1} is a function of B into A and we can write

$$f^{-1}: B \to A$$

In this situation, when $f: A \to B$ is one-one and onto, we call f^{-1} the inverse function of f.

Function, $f: A \rightarrow B$

Inverse function, $f^{-1}: B \to A$

Composition of Functions: Let f be a function of A into B and g be a function of B into C. We illustrate the functions below,

Let $a \in A$; then its image f(a) is in B which is the domain of g. Accordingly, we can find the image of f(a) under the mapping g, that is, we can find g(f(a)). Thus we have a rule which assigns to each element $a \in A$ a corresponding element $g(f(a)) \in C$. In other words, we have a function of A into C. This new function is called product function or composition function of f and g and it is denoted by

$$(g \circ f)$$
 or (gf)

More briefly, $f: A \to B$ and $g: B \to C$ then we define a function $(g \circ f): A \to C$ by

$$(g \circ f)(a) = g(f(a)).$$

<u>Domain</u>: The set of all values of x for which the function y = f(x) is defined, is called domain of the function. Simply domain is the set of all allowable x-values.

Mathematically,
$$D_f = \{x : y = f(x) \in \mathbb{R} \text{ and } x \in \mathbb{R} \}$$
.

Range: The set of all values of y corresponding to the x values for which the function y = f(x) is defined, is called range of the function. Simply range is the set of all possible y-values. Mathematically, $R_f = \{y : y = f(x) \in \mathbb{R} \text{ and } x \in \mathbb{R} \}$.

Interval: If the set of all real numbers lie between two real numbers a and b, where a < b then the set of all real numbers is called an interval. Intervals are four kinds:

- a) The set $\{x \in \mathbb{R}: a \le x \le b\}$ is called a closed interval, denoted by [a, b].
- b) The set $\{x \in \mathbb{R}: a < x < b\}$ is called an open interval, denoted by (a, b).
- c) The set $\{x \in \mathbb{R}: a < x \le b\}$ is called a left half open interval, denoted by (a, b].
- d) The set $\{x \in \mathcal{R}: a \le x < b\}$ is called a right half open interval, denoted by [a, b).

Problem 01: Find the domain and range of the function y = 2x + 5.

Solution: Given function is,

$$y = 2x + 5$$

Here, y gives real values for all real values of x. So, the domain of the given function is,

$$D_f = R$$

Again, we have,

$$y = 2x + 5$$

or,
$$2x = y - 5$$

or,
$$x = \frac{y-5}{2}$$

Here, x gives real values for all real values of y.

So, the range of the given function is,

$$R_{\scriptscriptstyle f}=R\,({
m Ans})$$

H.W:

Find the domain and range of the following functions

1.
$$y = 3x + 5$$
 Ans: $D_f = R$ and $R_f = R$

2.
$$y = 4x - 3$$
 Ans: $D_f = R$ and $R_f = R$

3.
$$y = ax + b$$
 Ans: $D_f = R$ and $R_f = R$

Problem 02: Find the domain and range of the function $y = x^2 + 3x + 2$.

Solution: Given function is,

$$y = x^2 + 3x + 2$$

Here, y gives real values for all real values of x.

So, the domain of the given function is,

$$D_f = R$$

Again, we have

$$y = x^2 + 3x + 2$$

$$or, x^2 + 3x + (2 - y) = 0$$

In the above equation the values of x will be real if and only if its $Discriminant \ge 0$.

i.e,
$$3^2 - 4.1.(2 - y) \ge 0$$
 ; $[b^2 - 4ac \ge 0]$

;
$$[b^2 - 4ac \ge 0]$$

$$or, 9-4(2-y) \ge 0$$

$$or, 9-8+4y \ge 0$$

$$or, 1+4y \ge 0$$

or,
$$4y \ge -1$$

$$or, \ y \ge -\frac{1}{4}$$

Therefore the range of the given function is,

$$R_f = [-\frac{1}{4}, \infty)$$
 (Ans)

Alternative way, For range we have

$$y = x^2 + 3x + 2$$

or,
$$x^2 + 3x + 2 = y$$

or,
$$x^2 + 2 \cdot x \cdot \frac{3}{2} + \left(\frac{3}{2}\right)^2 + 2 - \frac{9}{4} = y$$

$$or$$
, $\left(x+\frac{3}{2}\right)^2 - \frac{1}{4} = y$

$$or$$
, $\left(x + \frac{3}{2}\right)^2 = y + \frac{1}{4}$

$$or, x + \frac{3}{2} = \pm \sqrt{y + \frac{1}{4}}$$

or,
$$x = \pm \sqrt{y + \frac{1}{4}} - \frac{3}{2}$$

Here, x is defined if

$$y + \frac{1}{4} \ge 0$$

or,
$$y \ge -\frac{1}{4}$$

Therefore the range of the given function is,

$$R_f = [-rac{1}{4}, \infty)$$
 (Ans)

H.W:

Find the domain and range of the following quadratic functions

1.
$$y = x^2 + 5x + 6$$
 Ans: $D_f = R$ and $R_f = [-\frac{1}{4}, \infty)$

2.
$$y = -x^2 + 5x - 6$$
 Ans: $D_f = R$ and $R_f = (-\infty, \frac{1}{4}]$

4.
$$y = -x^2 + 1$$
 Ans: $D_f = R$ and $R_f = (-\infty, 1]$

5.
$$y = x^2 + 4x + 7$$
 Ans: $D_f = R$ and $R_f = [3, \infty)$

6.
$$y = x^2 - 4x + 3$$
 Ans: $D_f = R$ and $R_f = [-1, \infty)$

7.
$$y = (x+2)^2 + 3$$
 Ans: $D_f = R$ and $R_f = [3, \infty)$

Problem 03: Find the domain and range of the function $y = \frac{x-3}{2x+1}$.

Solution: Given function is,

$$y = \frac{x-3}{2x+1}$$

Here, y is undefined if

$$2x+1 = 0$$

or,
$$x = -\frac{1}{2}$$

So, y gives real values for all real values of x except $x = -\frac{1}{2}$.

Therefore, the domain of the given function is

$$D_f = R - \left\{ -\frac{1}{2} \right\}.$$

Again we have,

$$y = \frac{x-3}{2x+1}$$
or, $2xy + y = x-3$
or, $x-2xy = y+3$
or, $x(1-2y) = y+3$
or, $x = \frac{y+3}{1-2y}$

Here, x is undefined if

$$1 - 2y = 0$$

or,
$$y = \frac{1}{2}$$

So, x gives real values for all real values of y except $y = \frac{1}{2}$.

Therefore, the range of the given function is

$$R_f = R - \left\{ \frac{1}{2} \right\}$$
 (Ans)

Problem 04: Find the domain and range of the function $y = \frac{x^2 - 4}{x - 2}$.

Solution: Given function is,

$$y = \frac{x^2 - 4}{x - 2}$$

Here, y is undefined if

$$x - 2 = 0$$

or,
$$x = 2$$

So, y gives real values for all real values of x except x = 2.

Therefore, the domain of the given function is

$$D_f = R - \{2\}.$$

Again we have,

$$y = \frac{x^2 - 4}{x - 2}$$

$$or, y = \frac{(x + 2)(x - 2)}{x - 2} ; x \neq 2$$

$$or, y = x + 2 ; x \neq 2$$

$$or, x = y - 2 ; x \neq 2$$

Here, x is defined for all real values of y except y = 4

Therefore, the range of the given function is

$$R_f = R - \{4\} \tag{Ans}$$

H.W:

Find the domain and range of the following quadratic functions

1.
$$y = \frac{x}{x+1}$$
 Ans: $D_f = R - \{-1\}$ and $R_f = R - \{1\}$
2. $y = \frac{1+x}{5-x}$ Ans: $D_f = R - \{5\}$ and $R_f = R - \{-1\}$
3. $y = \frac{2}{x+3}$ Ans: $D_f = R - \{-3\}$ and $R_f = R - \{0\}$
4. $y = \frac{x-3}{x^2-9}$ Ans: $D_f = R - \{-3,3\}$ and $R_f = R - \{0,\frac{1}{6}\}$
5. $y = \frac{4x+3}{x^2+1}$ Ans: $D_f = R$ and $R_f = [-1,4]$

Problem 05: Find the domain and range of the function $y = \sqrt{2x+5}$.

Solution: Given function is,

$$y = \sqrt{2x + 5}$$

Here, y gives real values iff

$$2x + 5 \ge 0$$

or,
$$2x \geq -5$$

or,
$$x \geq -\frac{5}{2}$$

Therefore, the domain of the given function is

$$D_f = \left[-\frac{5}{2}, \infty \right].$$

Again,

$$y = \sqrt{2x+5}$$
 ·····(1)

The values of y in (1) are positive or zero, i.e, y < 0.

Now
$$y^2 = 2x + 5$$
; $y < 0$. [Squaring both sides]

$$2x + 5 = y^2 \qquad ; y < 0.$$

$$2x = y^2 - 5 \qquad ; y < 0.$$

$$x = \frac{y^2 - 5}{2} \qquad ; y < 0.$$

Here, x is defined for $y \ge 0$.

Therefore, the range of the given function is

$$R_f = \{ y : y \ge 0 \}$$
$$= [0, \infty) (Ans).$$

Problem 06: Find the domain and range of the function $y = -\sqrt{1-2x}$.

Solution: Given function is,

$$y = -\sqrt{1 - 2x}$$

Here, y gives real values iff

$$1-2x \geq 0$$

$$or$$
, $-2x \ge -1$

or,
$$2x \leq 1$$

or,
$$x \leq \frac{1}{2}$$

Therefore, the domain of the given function is

$$D_f = \left(-\infty, \frac{1}{2}\right].$$

Again, we have,

$$y = -\sqrt{1-2x}$$
 ·····(1)

The values of y in (1) are negative or zero i.e., $y \ge 0$.

Now
$$y^2 = 1 - 2x$$
; $y > 0$

[Squaring both sides]

$$1 - 2x = y^2 : y > 0$$

$$2x = 1 - y^2$$
; $y > 0$

$$x = \frac{1 - y^2}{2}; y > 0$$

Here, x is defined for $y \le 0$.

Therefore, the range of the given function is

$$R_f = \{ y : y \le 0 \}$$
$$= (-\infty, 0] \text{ (Ans).}$$

H.W:

Find the domain and range of the following functions

1.
$$y = \sqrt{2x-1}$$
 Ans: $D_f = \left[\frac{1}{2}, \infty\right)$ and $R_f = \left[0, \infty\right)$

2.
$$y = \sqrt{1-5x}$$
 Ans: $D_f = \left(-\infty, \frac{1}{5}\right]$ and $R_f = \left[0, \infty\right)$

3.
$$y = \sqrt{2x-1} + 5$$
 Ans: $D_f = \left[\frac{1}{2}, \infty\right)$ and $R_f = \left[5, \infty\right)$

4.
$$y = \sqrt{x+6} - 3$$
 Ans: $D_f = [-6, \infty)$ and $R_f = [-3, \infty)$

5.
$$y=5-\sqrt{8-2x}$$
 Ans: $D_f=\left(-\infty,4\right]$ and $R_f=\left[5,-\infty\right)$

6.
$$y = -\sqrt{x-1}$$
 Ans: $D_f = [1, \infty)$ and $R_f = (-\infty, 0]$

7.
$$y = -\sqrt{1-4x}$$
 Ans: $D_f = \left(-\infty, \frac{1}{4}\right]$ and $R_f = \left(-\infty, 0\right]$

Problem 07: Find the domain and range of the function $y = \sqrt{x^2 - 4x + 3}$.

Solution: Given function is,

$$y = \sqrt{x^2 - 4x + 3}$$

Here, y gives real values iff,

$$x^2 - 4x + 3 \ge 0$$

or,
$$x^2 - 3x - x + 3 \ge 0$$

or,
$$x(x-3)-1(x-3) \ge 0$$

or,
$$(x-3)(x-1) \ge 0$$

This inequality is satisfied if

$$x \le 1$$
 or $x \ge 3$

Therefore, the domain of the given function is,

$$D_f = \{x : x \le 1\} \cup \{x : x \ge 3\}$$

$$=(-\infty,1]\cup[3,\infty)$$

$$= R - (1,3)$$

Again, we have,

$$y = \sqrt{x^2 - 4x + 3} \cdot \cdots \cdot (1)$$

The values of y in (1) are positive or zero i.e, y < 0.

Now,
$$y^2 = x^2 - 4x + 3$$
; $y < 0$

[Squaring both sides]

$$x^2 - 4x + 3 - y^2 = 0$$
; $y < 0$

$$x^2 - 4x + (3 - y^2) = 0; y < 0$$

In the above equation the values of x will be real if and only if it's *Discriminant* ≥ 0 .

i.e,
$$(-4)^2 - 4 \times 1.(3 - y^2) \ge 0$$
; $y < 0[b^2 - 4ac \ge 0]$

$$or, 16-4(3-y^2) \ge 0; y < 0$$

$$or$$
, $16-12+4y^2 \ge 0$; $y < 0$

$$or, 4+4y^2 \ge 0; y < 0$$

$$or, 1 + y^2 \ge 0; y < 0$$

Here, *x* is defined for $y \ge 0$.

So the range of the given function is

$$R_f = \{ y : y \ge 0 \}$$

$$= [0, \infty)$$
 (Ans).

Problem 08: Find the domain and range of the function $y = \sqrt{x^2 + 1}$.

Solution: Given function is,

$$y = \sqrt{x^2 + 1}$$

Here, y gives real values iff,

$$x^2 + 1 \ge 0$$

This inequality is satisfied for all real values of x.

Therefore the domain of the given function is,

$$D_f = R$$
.

Again, we have,

$$y = \sqrt{x^2 + 1} \dots (1)$$

The values of y in (1) are positive and lowest value is $1, i.e, y \le 1$.

$$Now \quad y^2 = x^2 + 1$$

$$\Rightarrow x^2 + 1 - y^2 = 0 \qquad ; y < 1$$

$$\Rightarrow x^2 + 0.x + (1 - y^2) = 0 ; y < 1$$

In the above equation the values of x will be real if and only if its $Discriminant \ge 0$.

 $;y \not < 1$

[Squaring both sides]

i.e,
$$0^2 - 4.1.(1 - y^2) \ge 0$$
; $y < 1[b^2 - 4ac \ge 0]$

$$or, -4(1-y^2) \ge 0; y \le 1$$

or,
$$4y^2 - 4 \ge 0$$
; $y \le 1$

or,
$$y^2 - 1 \ge 0$$
; $y \le 1$

Here, x is defined for all $y \ge 1$.

$$R_f = \{y : y \ge 1\}$$

$$=[1,\infty)$$
 (Ans).

Problem 09: Find the domain and range of the function $y = \sqrt{4 - x^2}$.

Solution: Given function is,

$$y = \sqrt{4 - x^2}$$

Here, y gives real values iff,

$$4 - x^2 \ge 0$$

or,
$$(2+x)(2-x) \ge 0$$

This inequality is satisfied if,

$$-2 \le x \le 2$$

Therefore, the domain of the given function is,

$$D_f = \{x : -2 \le x \le 2\}$$

$$=[-2, 2]$$

Again, we have,

$$y = \sqrt{4 - x^2} \dots \dots (1)$$

The values of y in (1) are positive and lowest value is zero i.e,y < 0.

Now
$$y^2 = 4 - x^2$$
 ; $y \ne 0$ [Squaring both sides]

$$\Rightarrow x^2 + y^2 - 4 = 0 \qquad \qquad ; y < 0$$

$$\Rightarrow x^2 + 0.x + (y^2 - 4) = 0 \quad ; y < 0$$

In the above equation the values of x will be real if and only if it's $Discriminant \ge 0$.

i.e,
$$0^2 - 4.1.(y^2 - 4) \ge 0$$
 ; $y < 0[b^2 - 4ac \ge 0]$

$$or, -4y^2 + 16 \ge 0$$
 ; $y \le 0$

$$or$$
, $y^2 - 4 \le 0$; $y < 0$ [Dividing by -4]

Here, *x* is defined for all $0 \le y \le 2$.

Therefore the range of the given function is,

$$R_f = \{y : 0 \le y \le 2\}$$

$$=[0,2]$$
 (Ans.)

H.W:

Find the domain and range of the following functions

1.
$$y = \sqrt{x^2 - 3}$$
 Ans: $D_f = R - (-\sqrt{3}, \sqrt{3})$ and $R_f = [0, \infty)$

2.
$$y = \sqrt{x^2 - 25}$$
 Ans: $D_f = R - (-5, 5)$ and $R_f = [0, \infty)$

3.
$$y = \sqrt{x^2 + 3x}$$
 Ans: $D_f = R - (-3, 0)$ and $R_f = [0, \infty)$

4.
$$y = \sqrt{x^2 - 2x}$$
 Ans: $D_f = R - (0, 2)$ and $R_f = [0, \infty)$

5.
$$y = \sqrt{x^2 + 3}$$
 Ans: $D_f = R$ and $R_f = [3, \infty)$

6.
$$y = \sqrt{x^2 + 25}$$
 Ans: $D_f = R$ and $R_f = [25, \infty)$

7.
$$y = \sqrt{16 - x^2}$$
 Ans: $D_f = [-4, 4]$ and $R_f = [0, 4]$

8.
$$y = \sqrt{x^2 - 2x + 2}$$
 Ans: $D_f = R$ and $R_f = [1, \infty)$

Problem 10: Find the domain and range of the function $y = \frac{1}{\sqrt{2x+3}}$.

Solution: Given function is,

$$y = \frac{1}{\sqrt{2x+3}}$$

Here, y gives real values iff,

$$2x+3>0$$

or,
$$2x > -3$$

or,
$$x > -\frac{3}{2}$$

Therefore the domain of the given function is $D_f = \{x : x > -\frac{3}{2}\}$.

$$D_f = \left(-\frac{3}{2}, \infty\right)$$

Again, we have,

$$y = \frac{1}{\sqrt{2x+3}} \cdots (1)$$

The values of y in (1) are positive and lowest value is near to 0, i.e., y > 0.

Now,
$$y^2 = \frac{1}{2x+3}$$
 ; $y > 0$

$$or, 2x+3=\frac{1}{v^2}$$
 ; $y>0$

$$or, 2x = \frac{1}{v^2} - 3$$
 ; $y > 0$

or,
$$x = \frac{1}{2} \left(\frac{1}{y^2} - 3 \right)$$
 ; $y > 0$

Here, x is defined for all y > 0.

Therefore the range of the given function is

$$R_f = \{ y : y > 0 \}$$

$$=(0,\infty)$$
 (Ans)