NUCLEAR REACTIONS: RADIOACTIVITY
. Nuclear reactions are important because these reactions are capable of releasing large amounts of energy
. They are clamified into two types: i) Nuclear Fission ii) Nuclear Fusion
Fission refers to the breaking up of a large nucleus into smaller tragments $\frac{235}{92}U + \frac{1}{6}n \longrightarrow \frac{143}{56}Ba + \frac{90}{36}Kr + 3\frac{1}{6}n + \text{energy}$
Fusion involves the combining of smaller fragments to form a large nucleus
$\frac{14}{7}N + \frac{1}{2}\alpha \longrightarrow {}^{17}O + {}^{1}P + \text{energy}$
The syllabus that the following symbolic representations for subatomic particles be learned:
Proton ! P Alpha 2 He or 2 a
Neutron on Beta -1 B or -1 e or B-
Electron -i e Gamma V
· During any nuclear reaction, the proton number, momentum, nuclean number and
· However, man or evergy alone is not conserved because some of the mans
gets converted into evergy a. why is evergy released in a nuclear reaction?
a. It is believed that in a nuclear reaction, there is always a lost in mans ie. the man of the products is less than the mans of the reactions.
this difference in man releases evergy in a nuclear reaction