Tsuboyama et al. [54] FERROELECTRIC LIQUID CRYSTAL DEVICE [75] Inventors: Akira Tsuboyama, Segamihara; Toshiharu Uchimi; Kenji Shinjo, both of Atsugi, all of Japan Canon Kabushiki Kaisha, Tokyo, [73] Assignee: Japan [21] Appl. No.: 98,318 [22] Sep. 18, 1987 Filed: [30] Foreign Application Priority Data Sep. 20, 1986 [JP] Japan 61-222709 [52] Field of Search 350/350 S, 341 [58] [56] References Cited U.S. PATENT DOCUMENTS

United States Patent [19]

[11]	Patent	Number:
------	--------	---------

[45] Date of Patent:

4,783,148

4,721,367	1/1988	Yoshinaga et al	350/341	X
4,744,636	5/1988	Tsuboyama	350/341	X
Assistant Exar	niner—I	tanley D. Miller David Lewis m—Fitzpatrick, Cella,	Harper	&
[57]	£	ABSTRACT		

4,720,173 1/1988 Okada et al. 350/341

A ferroelectric liquid crystal device is by disposing between a pair of substrates a ferroelectric liquid crystal composition showing a phase transition series of isotropic—chiral nematic phase (N*)—chiral smectic C phase on temperature decrease. The alignment state of the liquid crystal is improved by forming alignment control films of mutually different materials on the pair of substrates. The alignment state is improved especially when the liquid crystal composition is formulated to show a helical pitch in N* phase which exceeds three times the spacing between the pair of substrates.

11 Claims, 5 Drawing Sheets

⑩ 日本国特許庁(JP)

⑪特許出願公開

⑩ 公 開 特 許 公 報 (A)

昭63-77019

⑤Int Cl.4

識別記号

庁内整理番号

❸公開 昭和63年(1988)4月7日

G 02 F

1/133 1/137 3 1 5 7370-2H 7610-2H

審査請求 未請求 発明の数 1 (全7頁)

東京都大田区下丸子3丁目30番2号 キャノン株式会社内

母発明の名称 強誘電性液晶素子

②特 願 昭61-222709

20出 願 昭61(1986)9月20日

明 79発 明 Ш 者 坪 ⑦発 明 治 内 海 俊 79発 明 新 庄 者 健 キャノン株式会社 创出 顖 人

東京都大田区下丸子3丁目30番2号東京都大田区下丸子3丁目30番2号

キャノン株式会社内

キャノン株式会社内

東京都大田区下丸子3丁目30番2号

邳代 理 人 弁理士 丸島 儀一

明 細 替

1. 発明の名称

強誘電性液晶素子

- 2. 特許請求の範囲
- (1) 一対の基板間に強誘電性液晶を挟持してなる 液晶素子において該強誘電性液晶相を有する液晶 組成物が降温過程において等方相(Iso相)から カイラルネマテイツク相(N*相)、カイラルスメ クテイツクC相(SmC*相)の相転移を生じ、か つ前記一対の基板上にある該液晶に接して設けら れた液晶配向制御膜が異なる物質の配向制御膜で あることを特徴とする強誘電性液晶素子。
- (2)前記配向膜に一軸性配向処理が、少なくとも 一方の配向膜に処されていることを特徴とする特 許請求の範囲第1項記載の強誘電性液晶素子。
- (4) 前記強誘電性液晶が無電界時に少なくとも 2 つの安定配向状態を示す液晶である特許請求の範囲第 1 項記載の強誘電性液晶素子。

- (5) 前記カイラルネマチック相のらせんピッチ (p) と前記一対の基板間の距離(d) との関係が p/d>3 であることを特徴とする特許請求の範囲
- 3. 発明の詳細な説明

第1項記載の強誘電性液晶紫子。

〔産業上の利用分野〕

本発明は、液晶表示素子や液晶ー光シヤツタ等で用いる液晶素子、特に強誘電性液晶を用いた液晶素子に関し、更に詳しくは液晶分子の初期配向状態を改善することにより、表示特性を改善した液晶素子に関するものである。

〔背景技術〕

強誘電性液晶分子の屈折率異方性を利用して偏 光素子との組み合わせにより透過光線を制御する 型の表示素子がクラーク(Clark)及びラガーウオ ル(Lagerwall)により提案されている。(特開昭 56-107216号公報、米国特許第4367924号明細費 等)。この強誘電性液晶は、一般に特定の温度域に おいて、カイラルスメクチック C相(SmC*)又は H相(SmH*)を有し、この状態において、加え

られる電界に応答して第1の光学的安定状態と第2 の光学的安定状態のいずれかを取り、且つ電界の印 加のないときはその状態を維持する性質、すなわち 双安定性を有し、また電界の変化に対する応答も速 やかであり、高速ならびに記憶型の表示案子として の広い利用が期待されている。しかしながら、この 双安定性を有する液晶を用いた光学変調案子が所 定の駆動特性を発揮するためには、一対の平行基板 間に配置される液晶が、電界の印加状態とは無関係 に、上記2つの安定状態の間での変換が効果的に起 るような分子配列状態にあることが必要である。た とえば SmC* または SmH* 相を有する強誘電性液 晶については、SmC*またはSmH*相を有する液 晶分子層が基板面に対して垂直で、したかって液 晶分子軸が基板面にほぼ平行に配列した領域(モ ノドメイン)が形成される必要がある。

このような強誘電性液晶の配向方法としては、従来のTN型液晶表示装置におけると同様に、まず、ラビング法や斜方蒸着により、液晶セル内の基板面に、物理的なキズを付した有機薄膜、無機蒸着

一方、Iso→N*→SmC*の相転移を持つFLC (強誘電性液晶)材料は温度特性に優れ、また、液 晶分子のスメクチツク層の法線方向からの傾き角 が、スメクチツク A 相を持つ材料よりも大きいな どの優れた特徴を持つが、大きな面積で均一な配 向を得る手法は知られていない。

〔発明が解決しようとする問題点〕

そこで本発明は、強誘電性液晶素子において、均一なモノドメインの初期配向状態を実現することによって表示特性を改善したFLC素子、特に降温過程において等法相からカイラルネマチック相、カイラルスメクチックC相へ相転移する液晶組成物を使用したFLC素子を、提供することにある。

又、Iso→N*→SmC*という相系列を持つ液 晶のSmC*相の均一配向性はN*相のらせんピッ チとも関連をもつため、本発明では、N*相のらせ んピッチをも考慮した上で均一なモノドメイン配 向となりうるFLC案子を提供する。

〔発明の問題点を解決するための手段及び作用〕 すなわち、本発明は降温過程において、Iso→ 膜を形成して分子の配列方向性を与えたものであった。例えば、ラビング法は、ガラス基板に透明電極を形成した後、有機高分子膜を形成した後、有機高分子膜を形成したないたなどの布で一方向へこすり、膜表面についた微細なキズによって液晶分子を整列させる方法である。また斜方蒸着法は、有機高分子膜の替りにSiOなどの無機物の膜を、基板を傾けて行なう蒸着、すなわち斜方蒸着により形成するものである。

強誘電性液晶独自の配向方式としては、ガラス基盤を上下にこすり合わせて、液晶分子を配列させる方法や、ポリエチレンテレフタレートシートをスペーサーとして、セル間隙を形成し、そのエッヂの方向性を利用して、配向される手法などがある。

以上のような方法を用いて比較的容易に均一な配向が可能なものは、強誘電性液晶相(カイラルスメチック C 相)の高温側にスメクチック A 相を持つものが知られているが、スメクチック A 相を持たない強誘電性液晶で充分に満足な均一な配向状態を得る手法は知られていない。

N*→SmC*の相転移を示す強誘電性液晶を挟持 した一対の基板上に形成した配向膜を異種の物質 にすることによりSmC*における配向状態を均一 にすることができる。

また本発明はN*のらせんピッチ(p)と液晶セル厚(d)の比p/dが3以上であるときにSmC*における配向状態を均一にすることができる。

以下本発明を詳細に説明する。

第3図は配向状態を説明する模式図であり、液晶に降温過程でIso→N*→SmC*の相転移を示す組成物を使用した場合に、両面を同種の配向膜とした場合の液晶の配向状態を第3図(a)に、又、異種の配向膜を用いた場合の液晶の配向状態を第3図(b)に示した。

33は液晶分子を表わしており、N*相では液晶分子は一軸配向処理方向31に向いているそれを冷却していくと、スメクチック層(30)が形成されるが、その際同じ物質の配向膜を使用すると、スメクチック層30の層方向が2つ存在するのに対し異なる物質の配向膜を用いるとスメクチックの層

30方向は一様になる。

又、第6図に無電界時に少なくとも2つの安定状態、特に双安定状態をもつ強誘電性液晶素子を用いた液晶セルを模式的に描いた。61と61bは、In2O3、SnO2やITO(Indium Tin Oxide)等の透明電極がコートされた基板(ガラス板)であり、その間に複数の液晶分子層がガラス基板面に対して垂直な層となるように配向したSmC*(カイラルスメクチツクC相)の液晶が封入されている。太線で示した線63が液晶分子を表わしており、この液晶分子63は、その分子に直交した方向に双極子モーメント(p1)64を有している。

第6図に示すように、電界を印加していない状態でも液晶分子のらせん構造がほどけ、非らせん構造となっている場合には双極子モーメント pa 又はpb は上向き (64a) 又は下向き (64b) のどちらかの状態をとり、双安定状態が形成される。このようなセルに第6図に示す如く一定の閾値以上の極性の異なる電界 Ea または Eb を付与すると、双極子モーメント電界 Ea 又は Eb は電界ベクトルに対応

ド、ポリパラキシリレン、ポリエステル、ポリアミド、セルロース樹脂、アクリル樹脂又はシランカツプリング剤(信越化学工業(株)のKBM602(N-B(アミノエチル)γアミノプロピルメチルジメトキシシラン)、KBM603(N-B(アミノエチル)γアミノプロピルトリメトキシシラン)、あるいはKBE1003(ビニルトリエトキシシラン))等がある。

上記の物質の組み合わせとしては例えば(一方がポリイミド、他方がシランカツブリング剤)、(ポリビニルアルコール、シランカツブリング剤)、(ポリイミド、ポリエチレン)、(ポリイミド、ポリビニルアルコール)又は(ポリアミド、セルロース樹脂)等がある。

さらに本発明では上記配向制御膜に同じ方法ではなく例えば、片側にななめ蒸養、もう一方にラビング処理をほどこしても、又は片側に水平配向でもう一方に垂直配向で方向づけをしてもよい。さらに、N*のらせんピッチ(p)をセルギヤップの3倍以上にすると均一な配向状態となる。それは、

して上向き 64a 又は下向き 64b と向きを変え、それに応じて液晶分子は第1の安定状態 63a かあるいは第2の安定状態 63b の何れか一方に配向する。

両面を同種の配向膜にした場合は、2つの配向膜間で強誘電性液晶の自発分極を引きつける強さに差がないため、強誘電性液晶は上述したような第1の安定状態(63a)又は第2の安定状態(63b)のどちらかをとりうる。

つまり、第3図aで示すように液晶分子は2通りの方向をとる可能性がある。

それに対し、異種の配向膜構成にすると、強誘電性液晶の自発分極を引きつける強さに差があるため強誘電性液晶は第1の安定状態(63a)又は第2の安定状態(63b)の必ず一方の方向を向く。すなわちセルを平面的に見た時(第3図(b))、液晶分子がスメクチック層のどちらに傾くかが決められるため、層方向が一様な方向を向いた配向となる。

本発明の配向制御膜として使われる物質は、具体的にポリイミド、ポリビニルアルコール、ポリエチレン、ポリアミドイミド、ポリエステルイミ

SmC*相の配向状態はN*層を冷却してSmC*相へ移る過程で決定されるからで、N*のらせんピッチがセルギヤツブ(d)の3倍以下であると、N*からSmC*に転移する際、N*液晶の分子軸が基板の法線方向にねじれたまま相転移してしまい、そのためSm相が歪んでしまうからである。この状態では均一な配向状態を得ることはできない。

そこでN*のらせんピッチpをp>3dとして、N*の分子の基板の法線方向のねじれを解消させ、N*状態で、一軸性配向処理方向に分子軸を向かせ、その一軸性を保ったままSmC*相へ転移する必要がある。これにより均一な層構造が実現でき、コントラストなど良好な駆動特性を示す配向状態が得られる。

以下実施例を説明する。実施例中、混合液晶の混合比率は重量比率で示してある。

〈実施例Ⅰ〉

液晶セルの上下基板に設けた配向膜は以下のように設定した。

基板1 ポリイミド配向膜;ラビング た液晶組成物を用いた。 液晶セル①

基板2 シランカツプリング剤

セル厚 2.0 μ m

基板 1 ポリビニルアルコール配向膜; 液晶セル② ラビング

基板 2 シランカツプリング剤

セル厚 2.0 μ m

基板 1 ポリイミド;ラビング 液晶セル③

基板 2 ポリエチレン

セル厚 1.8 μ m

上記の各配向膜は以下の市販品を用いた。

ポリイミド

: SP510 東レ㈱社製

シランカツプリング剤:КВМ602

信越化学工漿㈱

ポリエチレン

:ニポロンハード1200

東洋曹遠工築㈱

ポリビニルアルコール: EG25 日本合成ゴム㈱ 配向膜塗布はスピンナーにより行ない 500~1000 Aの膜厚に設定した。

液晶材料として以下の3種の液晶化合物の混合し

クの相転移を示した。代表例として混合液晶(A: B=70:30):単体液晶C=85:15の液晶組成物 の相転移温度を以下に示す。

Cryst
$$\frac{15.8}{13.3}$$
 $\frac{19.9}{18.0}$ $\frac{55.2}{18.0}$ $\frac{82.5}{150}$ $\frac{19.9}{18.0}$ $\frac{19.9}{18.0}$

又、上記液晶組成物のN*らせんピッチと、混 合比との関連を第2図に示す。第2図から混合液晶 (A:B=70:30)と単体液晶Cとの混合比が85: 15 でピツチが発散していることがわかる。そこで、 混合比(90:10), (85:15), (50:50) の 3点で配向性のテストを行なった。

これらの①、②、③のセルに混合比(90:10)、 (85:15), (50:50) の前記液晶を等方相にな る温度で注入しSmC*相における配向状態を40 倍の倍率を持つ偏光顕微鏡で観察し、又その配向 状態の定量的に比較をするため、100Hz±20Vの 電圧を上下基板に印加して、クロスニコルの偏光 顕微鏡を通して光量測定からコントラストを計測 した。結果を以下の表に示す。

化合物 A と化合物 B の混合液晶 (A:B=70:30) に液晶化合物Cの混合比を変化させて作った液晶 組成物を①、②、③のそれぞれの液晶セルに入れ てその均一配向性を検討した。

第1図にA, B, C3種の混合液晶組成物の昇温 過程の相図を示す。

すべての混合比率で液晶はエナンチオトロピッ

混合比	90 : 10	85:15	50 : 50
セル①	ドメインが多く 層のずれあり	均一配向	focal comic texture 一軸性なし
コントラスト	(1:5)	(1:20)	()
セル②	focal comic texture 一軸性なし	均一配向	focal comic texture
コントラスト	()	(1:16)	一軸性なし (一一)
セル③	Sm 層のずれあ る	均一配向	focal comic texture
コントラスト	(1:7)	(1:20)	()

上記の結果により、混合液晶(A:B=70:30) と単体液晶 C との混合比が 85;15 で N * らせん ピッチが発散している液晶組成物を用いた方が均 一配向をすることが明らかになった。

さらに実験を進めた結果、混合割合が85±3:15 干3であると、よい配向性が得られることが確認で きた。

このよい配向性を生じる混合割合時のN*らせ んピッチはセル厚 (2.0 μm) の3倍以上となって いる。

〈実施例2〉

液晶混合物として前述のB,C液晶化合物に加えて、以下の液晶化合物を用いた。

混合物 B: D=70:30を作り、この混合物に単体液晶 C を混合したその時の昇温過程の相図を図4に、この液晶組成物の N*のらせんピッチと液晶Cの混合比との関係を図 5 に示す。

相転移温度の代表例を以下に示す。(混合液晶(B: D=70:30):単体液晶C=80:20)

Cryst Sm
$$_2$$
 Scm $_2$ Scm $_2$ N $_3$ Iso $_{-4.4}$ 7.1 65.6 91.5

実施例1と同様に各混合比で配向状態を顕微鏡 観察により比較すると以下のような結果が得ら れた。

の評価を行った。結果を以下の表に示す。

組成物	Ţ	П
セル③	図3 (a) の状態	図3 (a) の状態
コントラスト	()	()
セル④		図3 (a) の状態

〈别果〉

3.

本発明により Iso→N*→SmC*という相転移 系列を持つ FLC 材料の良好な配向状態を得ること ができ、それにより表示ならびに駆動特性の優れ た強誘電液晶素子を得ることができる。

4. 図面の簡単な説明

第1図及び第4図は混合液晶組成物の昇温過程の相図、第2図及び第5図は混合液晶組成物のN*らせんピッチと液晶化合物Cの混合比との関係図、第3図は配向状態を説明する模式図、第6図は非らせん構造の強誘電性液晶を用いた液晶素子を模式的に表わす斜視図である。

混合比	90 : 10	80:20	50 : 50
セル①	focal comic	均一配向	focal comic
	texture		texture
コントラスト	()	(1:23)	()
セル②	層のズレがある	均一配向	focal comic
	欠陥多い		texture
コントラスト	(1:8)	(1:19)	()
セル③	focal comic	均一配向	focal comic
コントラスト	()	(1;16)	()

均一配向が得られたのは混合液晶(B:D=70: 30)と液晶Cとの比が(78±3%, 22±3%)の 範囲である。

(比較例1,2)

比較例として実施例1で用いた配向性の良い液晶組成物 I (混合液晶 (A:B=70:30):単体液晶 C=85:15)と実施例2で用いた配向性の良い液晶組成物 II (混合液晶 (B:D=70:30):単体液晶 C=80:20)をそれぞれポリイミド配向膜を両面に塗布し、ラビング処理した液晶セル③とポリビニルアルコール配向膜を両面に塗布しラビング処理した液晶セル④に注入し実施例1、2と同様

30・・・ スメクチック層

31 · · · 一軸配向処理方向

33・・・液晶分子

61a, 61b··· 基板

63 · · · 液晶分子

63a・・・第1の安定状態

636・・・第2の安定状態

64a・・・上向き双極子モーメント

646・・・下向き双極子モーメント

出願人 キャノン株式会社 代理人 丸 島 儀 一覧記

特開昭63-77019 (6)

特開昭63-77019 (7)

第 5 図

1

第 6 図

