Développement d'un pare-feu domestique Présentation du projet (MAB1 Info)

Rémy Decocq

Faculté des Sciences Université de Mons

05/09/19

Outline

1 Introduction

2 État de l'art

- 3 Développement d'une application
- 4 Conclusion

Organisation du projet

Introduction

1^{ere} partie

État de l'art

- aspect "domestique" \rightarrow IoT. smarthome
- motivations pour la protection de tels réseaux
- aspect "sécurité" \rightarrow pare-feux, IDS, scanneurs

partie

Développement d'une application

- contexte et motivations
- présentation des concepts
- déploiement et tests

État de l'art

L'Internet des Objets (IoT)

Introduction

Pas de définition acceptée à l'unanimité

Les restrictions des équipements IoT

- contraints en ressources CPU, mémoire et radio
- requièrent une faible consommation énergétique
- programmés à un bas niveau d'abstraction
- conçus pour satisfaire une unique fonction

Relègue la sécurité au second plan

Protocoles adaptés aux équipements restreints

Les restrictions ont mené à l'élaboration de nouveaux standards et protocoles

Couches du modèle	Protocoles de la stack IoT	Protocoles de la stack TCP/IP
Application	IETF CoAP MQTT	HTTP FTP DNS
Sécurité	DTLS	TLS
Transport	UDP	TCP UDP
Réseau	IPv6 IETF RPL	IPv4 IPv6
Adaptation	IETF 6LoWPAN	Non défini
Lien	IEEE 802.15.4 MAC	Dépend du média et de la technologie
Physique	IEEE 802.15.4 PHY	(IEEE 802.11 WiFi, Ethernet,)

L'environnement *smarthome*

On compte en moyenne 11 smart devices par habitation (USA)

Pourquoi la sécurité dans l'IoT?

- Équipements vulnérables utilisés par des botnets (*Mirai*, *Reaper*, ...) dans des attaques de masse
- Atteinte à la vie privée facilitée (démo avec l'outil Shodan)

#ITP/1.1300 OC
Connection: close Server 8.4
Codectiontal: norsecone: concete, mastrealidate, pre-checké, post-checké, marageé
Progan: norsché
Euries: "1
Access'Control-Allan-Crigin: *
Cocss'Control-Allan-Crigin: *

**Tortest-Torte: textificate
**Tortest-

Protéger les smarthomes : les pare-feux

- Pare-feux niveau hôtes → non ou peu compatible avec les restrictions de l'IoT
- Pare-feux niveau réseau :
 - filtrage effectué en bordure du réseau domestique
 - sur une machine non restreinte (modem/routeur)
 - utilisant des techniques plus ou moins avancée

sous différentes formes : software sur le modem ou machine dédiée :

FIGURE - Cisco ASA 5506H -Appliance dédiée

FIGURE – b-box 3 - modem domestique

Protéger les smarthomes : les NIDS

Pare-feux → filtrent les paquets, bloquent selon des règles

NIDS, Network Intrusion Detection System:

- capturent et analysent le trafic et les évènements dans le réseau à protéger mais n'intervient pas de façon directe
- lancent des alertes à destination de l'utilisateur/administrateur suite à la détection de menaces

L'analyse du trafic se repose sur 2 techniques de détection :

- par signature : bdd de signatures d'attaques connues + pattern matching
- 2 par anomalies : heuristiques combinées à des profils types

Protéger les smarthomes : les scanneurs

Outline

1 Introduction

2 État de l'art

- 3 Développement d'une application
- 4 Conclusion

Idée générale

Concepts

Déploiement

Tests sur un réseau virtuel

Tests dans un environnement réel

Conclusion

Développement d'un pare-feu domestique

FAQ

