Семинар 1 АМВ, весна 2019

1. Организационные вопросы. (кратко)

2. Асимптотики.

В курсе изучаются алгоритмы и их сложность. У алгоритма должен быть конечный вход (и конечный выход). На практике приходится решать задачи для больших входов, поэтому нужно уметь оценивать (асимптотически) количество затрачиваемых ресурсов (например времени, памяти) в зависимости от размера входа. Объясняю, что такое время T(n) работы алгоритма в худшем случае. Пару слов про разные модели вычислений: МТ, RAM, другие модельные. Нам надо научиться работать с асимптотическими обозначениями и освоить инструменты для оценивания асимптотического поведения функций, заданных сложным образом.

Дальше ввожу асимптотические обозначения.

Примеры: $\sum_{k=1}^n k$ (явное выражение и оценки сверху-снизу) и $\sum_{k=1}^n \sqrt{k}$ (сверху-снизу). $\sum_{k=1}^n \frac{1}{k \log k}$ на оценки интегралами. $\sum_{k=1}^n k \cdot k!$ на телескопию.

Часто требуется оценить асимптотическое поведение функции, заданной рекурсивно. Если вы каким-нибудь образом угадали ответ, то его можно доказать по индукции.

Пример: $T(n) = 2T(\lfloor n/2 \rfloor) + \Theta\left(\frac{n}{\log n}\right)$ (имеется в виду, что это выполнено для n > N для некоторого N, а значения $T(1), T(2), \ldots, T(N)$ произвольные).

Сначала постараемся догадаться какая асимптотика у заданной последовательности. Можно нарисовать дерево рекурсии (иногда с его помощью можно заметить нетривиальные вещи, как например при анализе линейного алгоритма поиска медианы). Но обычно хватает просто развернуть эту рекурренту в сумму. Так как мы пока ничего не доказываем, а делаем npukudky, то можно считать n степенью двойки: $n=2^m$, взять в качестве $\Theta\left(\frac{n}{\log n}\right)$ просто $\frac{n}{\log_2 n}$ и считать, что рекуррента верна, начиная с n=2.

$$T(n) = 2T(n/2) + \frac{n}{\log_2 n} = 2\left(2T(n/4) + \frac{n/2}{\log_2(n/2)}\right) + \frac{n}{\log_2 n} = \dots =$$

$$= \sum_{k=0}^{\log_2 n - 1} \frac{n}{\log_2(n/2^k)} + 2^{\log_2 n} T(n/2^{\log_2 n}) = 2^m T(1) + \sum_{k=0}^{m-1} \frac{2^m}{(m-k)} =$$

$$= 2^m \left(T(1) + \sum_{l=1}^m \frac{1}{l}\right) \sim 2^m \log m \sim n \log \log n$$

Теперь строго докажем, что любая функция T(n), которая удовлетворяет данной рекурренте, начиная с некоторого n, равна $\Theta(n\log\log n)$. Будем доказывать по индукции два утверждения.

Семинар 1 АМВ, весна 2019

• Докажем, что $\exists c_1$, т. ч. $T(n) \leqslant c_1 n \log_2 \log_2 n$ при $n \geqslant 4$. Обращаю внимание на то, что мы один раз выбираем c_1 (достаточно большой) и затем для этой c_1 не зависящей от n доказываем и базу и любой переход. Очевидно, что мы можем выбрать ее, т. ч. $T(k) \leqslant c_1 k \log_2 \log_2 k$ для всех $k = 4, 5, \ldots, N$. После этого мы должны доказать переход. Пусть $T(k) \leqslant c_1 k \log_2 \log_2 k$ для всех $k = 4, 5, \ldots, N, N + 1, \ldots, n - 1$. Нам нужно доказать, что ту же константу c_1 можно использовать для оценки $T(n) < c_1 n \log_2 \log_2 n$.

$$T(n) \leqslant 2T(\lfloor n/2 \rfloor) + a_1 \frac{n}{\log_2 n} \leqslant 2c_1 \lfloor n/2 \rfloor \log_2 \log_2 \lfloor n/2 \rfloor + a_1 \frac{n}{\log_2 n} \leqslant$$

$$\leqslant c_1 n \log_2 \log_2(n/2) + a_1 \frac{n}{\log_2 n} = c_1 n \log_2(\log_2 n - 1) + a_1 \frac{n}{\log_2 n} =$$

$$= c_1 n \log_2 \log_2 n + c_1 n \log_2 \left(1 - \frac{1}{\log_2 n}\right) + a_1 \frac{n}{\log_2 n} \leqslant$$

$$\leqslant c_1 n \log_2 \log_2 n - c_1 \log_2 e \frac{n}{\log_2 n} + a_1 \frac{n}{\log_2 n} \leqslant c_1 n \log_2 \log_2 n,$$

если мы выберем $c_1 \log_2 e > a_1$ (изначально мы могли это сделать). В предпоследнем переходе использовалось неравенство $\ln(1-x) < -x$.

• Доказательство того, что $\exists c_2 > 0$, т. ч. $T(n) \ge c_2 n \log_2 \log_2 n$ при $n \ge 4$ можно проделать почти так же, только в конце нужно чуть более аккуратно воспользоваться утверждением, что вообще говоря $\ln(1-x) \sim -x$ при $x \to 0$.

Если рекуррента имеет некоторый стандартный вид, то можно воспользоваться следующей теоремой и не проводить выкладки и доказательство каждый раз.

Теорема. Для решения рекурренты вида

$$T(n) = aT(\frac{n}{b}) + f(n),$$

где f(n) – известная положительная функция, $a \geqslant 1, b > 1$, верно следующее.

- (a) Если $f(n) = O(n^{\log_b a \varepsilon})$ для некоторого $\varepsilon > 0$, то $T(n) = \Theta(n^{\log_b a})$.
- (b) Ecnu $f(n) = \Theta(n^{\log_b a})$, mo $T(n) = \Theta(n^{\log_b a} \log n)$.
- (c) Пусть $f(n) = \Omega(n^{\log_b a + \varepsilon})$ для некоторого $\varepsilon > 0$. Пусть также выполнено дополнительное условие регулярности функции $f \colon af(\frac{n}{b}) \leqslant cf(n)$ при некотором c < 1 и всех достаточно больших n. Тогда $T(n) = \Theta(f(n))$.

Примеры использования: алгоритм Карацубы, быстрое возведение в степень, mergesort.

Алгоритм Карацубы: задача перемножить два числа a, b в некоторой системе счисления. Поразрядные операции выполняются за O(1). Разделяй и властвуй.

Семинар 1 АМВ, весна 2019

Быстрое возведение в степень: задача возвести число a в степень n. Все умножения выполняются за O(1). Поэтому размер a на сложность не влияет. Считаем длиной входа $\log n$.

- ullet справа налево возводим a в квадрат m раз и перемножаем нужные степени
- ullet слева направо разделяй и властвуй: $a^{2(\ldots)+n_0}=a^{(\ldots)^2}\cdot a^{n_0}$

Нерандомизированный алгоритм поиска порядковой статистики, доказательство его линейности.