Comp3620/Comp6320 Artificial Intelligence

Quiz 2: Logic and Constraints April 24–27, 2018

Stud	ent	Nii	mbe	ar

u 6139152

1. Logic and Deduction

True or False: (1pt per correct answer)

no A in V.

- \uparrow True or False $(p \vee \neg q) \wedge (r \wedge (\neg p \vee s))$ is in conjunctive normal form.
- True or False $(p \vee \neg q) \wedge (r \wedge (\neg p \vee s))$ is in disjunctive normal form. True or False $(p \vee \neg q) \wedge (r \wedge (\neg p \vee s))$ is in negation normal form.

True or False: (2pts per correct answer) (7pvr) v(7gvr) ¬pvrv¬qvr

- True or False: $(p \land q) \rightarrow r$ logically implies $(p \rightarrow r) \lor (q \rightarrow r)$.
 True or False: $\exists x (F(x) \lor G(x))$ logically implies $\exists x F(x) \lor \exists x G(x)$.
- Υ True or False: $\forall x(F(x) \vee G(x))$ logically implies $\forall xF(x) \vee \forall xG(x)$.

2. Constraint Solving

For this question, suppose we are using backtracking search to look for solutions to a CSP, but in fact it has no solutions (though we don't know that until the search eventually returns "inconsistent").

True or False: (2pts per correct answer)

- True or False: Using pure (naïve) backtracking, the size of the search tree does not depend on variable ordering.
 - True or False: Using forward checking with a fixed variable order, the size of the search tree does not depend on value ordering.

3. Arc Consistency

(True)or False: (1pt)

O(d2) d is the stee of the largest domain.

 $O(n^2d^2+n^2d^3)$

• True or False: In the worst case, the runtime of the AC-3 algorithm is exponential in the number of decision variables. $\mathcal{O}(n^2 + n^2 d)$

Let $\gamma = (V, D, C)$ be a CSP and suppose that X and Y are two variables in V, with domains $D_X = \{1, 2, 3, 4, 5, 6, 7\}$ and $D_Y = \{2, 4, 6\}$ respectively. The constraints relating X and Y are X < Y and X + Y > 8. Let $\gamma' = (V, D', C')$ be the network after the pairs (X,Y) and (Y,X) have been made arc consistent. Write out: (1 pt each)

$$D'_{X} = \{ 3, 4, 5 \}$$

 $D'_{Y} = \{ 6 \}$

Let $\gamma^{ac} = (V, D^{ac}, C^{ac})$ be the constraint network after arc consistency has been enforced (i.e. to all of γ , not just to X and Y). Let n be the number of solutions to γ , and let n^{ac} be the number of solutions to γ^{ac} . Circle all of the following statements that could be true: (4 pts)

(a) $n^{ac} = 0$ but no D_i^{ac} are empty no solution, but no domains empty (b) $n^{ac} > 0$ but some D_i^{ac} is empty one solution, but one domain is empty (c) $n^{ac} > 0$ but a backtracking solver could still backtrack wont backtrack 1 times one solution, but backtracking solver wild $(d) n^{ac} < n$ Solutions after before backtrack. (f) $n^{ac} > n$

X=51,4,51 Y= {6}