Gimballed EDF propelled VTVL vehicle design and control

Defensa de proyecto final

Patricio Whittingslow Luís Cretton 11 de febrero de 2023

Objetivo

- Tecnología central para el desarrollo aeroespacial futuro
- Desarrollo de vehículo plataforma para ensayos a pequeña escala

Figura 1: Starship: referente en tecnología de vehículos orbitales reutilizables.

Estado del arte

• Tecnología monorrotor fijo tiene uso amplio

Figura 2: Dos vehículos VTVL eléctricos modernos. "VBat" (Izq.) y "Ikarus".

Estado del arte

 Tecnología monorrotor para empuje vectorial siendo usado por la ESA para ensayar algoritmos de control.

Figura 3: FROG de la ESA. Plataforma de ensayo de sistemas.

Diseño

Diseño - Propulsión másica

- Agua
- Peróxido HTP y cama catalítica

Figura 4: Análisis preliminar para un vehículo propulsado por agua a presión. La presión es la del tanque (absoluta). El peso estructural que se utilizó fue de 10kg.

Diseño – Elección de propulsor

Diámetro de EDF	70mm	90mm	120mm
Masa estructural [kg]	0,4	1	2
Masa batería [kg]	0,9	1,9	2
Mas electrónica [kg]	0,5	1	1
Empuje restante [kgf]	0,01	0,478	3,116
Tiempo vuelo [s]	253	184	132
Precio baterías-propulsor [usd]	165	365	693
Costo total [ars]	23968	53017	101313

Tabla 1: Estudio de diferentes EDF's disponibles en el mercado. El requerimiento excluyente para la selección de batería fue que permita vuelo sostenido por 2 minutos.

Simulación

Simulación - Modelo matemático

Notación y tratamiento matemático de Hahn [2013].

Simulación – Modelo matemático

Aceleración angular del vehículo tomando en cuenta efecto giroscopo y fuerzas externas debido a vorticidad.

$$^{B}\frac{\mathrm{d}}{\mathrm{d}t}(\underline{\omega}_{\mathrm{BN}}^{\mathrm{B}}) = (J_{\mathscr{C}}^{\mathrm{B}})^{-1} \cdot (-\underline{\tilde{\omega}}_{\mathrm{BN}}^{\mathrm{B}} \cdot J_{\mathscr{C}}^{\mathrm{B}} \cdot \underline{\omega}_{\mathrm{BN}}^{\mathrm{B}} - \mathbf{A}^{\mathrm{BG}} \cdot \underline{\tilde{\omega}}_{\mathrm{GB}}^{\mathrm{G}} \cdot J_{r\mathscr{R}}^{\mathrm{G}} \cdot \underline{\omega}_{r}^{\mathrm{G}} - \\ \underline{\tilde{\omega}}_{\mathrm{BN}}^{\mathrm{B}} \cdot J_{r\mathscr{R}}^{\mathrm{G}} \cdot \underline{\omega}_{r}^{\mathrm{G}} - \mathbf{A}^{\mathrm{BG}} \cdot J_{r\mathscr{C}}^{\mathrm{G}} \cdot \underline{N} \underline{\dot{\omega}}_{r}^{\mathrm{G}} + \underline{M}_{\mathscr{C}}^{\mathrm{B}})$$

Simulación – Control

- Representación espacio de estados.
- Controlador LQR.
- Estimador de actitud Madgewick.

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \tag{1}$$

$$\mathbf{u} = \mathbf{K}_{\text{LQR}}(\mathbf{x} - \mathbf{x}_0) \tag{2}$$

Referencias

Hubert Hahn. Rigid Body Dynamics of Mechanisms: 1 Theoretical Basis. Springer Science & Business Media, 2013.