CS 224n Assignment #3: Dependency Parsing

Heehoon Kim

1 Machine Learning & Neural Networks

- (a) i. Using momentum helps to cancel out fluctuation by bumps in the contour of a loss function and reinforce the vector component to downward direction.
 - ii. Parameters with small gradients will get larger updates, which in turn accelerates convergence. Parameters with large gradients will slow down, so overshooting can be prevented.
- (b) i. γ should be $\frac{1}{1-p_{drop}}$ to maintain overall magnitude of values in the layer.
 - ii. During evaluation, deterministic results are preferred.

2 Neural Transition-Based Dependency Parsing

(a) Here are steps.

Stack	Buffer	New dependency	Transition
[ROOT]	[I, parsed, this, sentence, correctly]		Initial Configuration
[ROOT, I]	[parsed, this, sentence, correctly]		SHIFT
[ROOT, I, parsed]	[this, sentence, correctly]		SHIFT
[ROOT, parsed]	[this, sentence, correctly]	$parsed \rightarrow I$	LEFT-ARC
[ROOT, parsed, this]	[sentence, correctly]		SHIFT
[ROOT, parsed, this, sentence]	[correctly]		SHIFT
[ROOT, parsed, sentence]	[correctly]	sentence \rightarrow this	LEFT-ARC
[ROOT, parsed]	[correctly]	$parsed \rightarrow sentence$	RIGHT-ARC
[ROOT, parsed, correctly]			SHIFT
[ROOT, parsed]	ĺ	$parsed \rightarrow correctly$	RIGHT-ARC
[ROOT]	ĺ	$ROOT \rightarrow parsed$	RIGHT-ARC

- (b) At each step, one word goes from the buffer to the stack OR one word is popped from the stack. So it takes 2n steps.
- (e) Achieved UAS of 88.52 on the dev set and UAS of 89.11 on the test set.
- (f) i. Error type: Verb Phrase Attachment Error
 - Incorrect dependency: wedding \rightarrow fearing
 - Correct dependency: heading \rightarrow fearing
 - ii. Error type: Coordination Attachment Error
 - Incorrect dependency: makes \rightarrow rescue
 - Correct dependency: rush \rightarrow rescue
 - iii. Error type: Prepositional Phrase Attachment Error
 - Incorrect dependency: named \rightarrow Midland
 - Correct dependency: $guy \rightarrow Midland$
 - iv. Error type: Modifier Attachment Error
 - Incorrect dependency: elements \rightarrow most
 - Correct dependency: $crucial \rightarrow most$