Social Analytics and Social Network Analysis

1. Social Analytics

- **Definition**: The meaning of social analytics varies based on perspective.
 - 1. Philosophical View: Introduced by Lars-Henrik Schmidt, focusing on "socius" (commonness).
 - 2. *Practical View*: Analyzing digital interactions, relationships, and textual content from social media.

Purpose:

- 1. Understand customer behavior, preferences, and trends.
- 2. Analyze text data (sentiment analysis, NLP) and social networks (influencer identification, profiling).
- Branches of Social Analytics:
 - 1. Social Network Analysis (SNA) Studies relationships and structures in social networks.
 - 2. Social Media Analytics Focuses on analyzing data from social media platforms.

2. Social Network Analysis (SNA)

Definition:

- 1. Examines social structures made up of individuals, groups, or organizations.
- Uses mathematical models, statistics, and graph theory.
- 3. Originated in the 1950s, developed further in the 1980s.

Applications:

- 1. Identifying influential individuals or entities.
- 2. Understanding network dynamics and communication patterns.
- 3. Used in business intelligence, consumer analytics, and sociology.
- Types of Social Networks Relevant to Business:
 - 1. **Communication Networks** Analyze information flow between individuals/groups.
 - 2. **Community Networks** Study online and offline community interactions.
 - 3. **Criminal Networks** Understand criminal activities through network patterns.
 - 4. Innovation Networks Examine how ideas and innovations spread in a network.

3. Social Network Analysis Metrics

Concept:

- Networks consist of nodes (individuals/organizations) and ties (relationships).
- Represented using social network diagrams (nodes = points, ties = lines).

Categories of SNA Metrics:

- Connections Measures relationships and linkages.
- Distributions Examines how connections are spread.
- Segmentation Identifies clusters and influential entities.

Usage:

- Helps businesses optimize communication and marketing strategies.
- Supports law enforcement in tracking criminal networks.
- o Enhances innovation adoption through understanding network influence.

Conclusion

Social analytics helps in monitoring and interpreting digital interactions, while social network analysis provides a structured way to study relationships and influence. These analyses are widely used in business, sociology, criminology, and innovation tracking.

SOCIAL MEDIA DEFINITIONS AND CONCEPTS

Definition of Social Media

- Social media consists of technologies that enable social interactions where people create, share, and exchange information, ideas, and opinions.
- It is based on Web 2.0, allowing the creation and exchange of user-generated content (Kaplan & Haenlein, 2010).
- Social media relies on mobile and web-based platforms to facilitate interactive communication.

Evolution of Social Media

- Emerged in the early 1990s and has significantly improved in quality and quantity.
- Covers multiple formats, including blogs, forums, wikis, social networks, podcasts, videos, and ratings.
- Kaplan & Haenlein (2010) classified social media into six categories:
 - 1. Collaborative projects (e.g., Wikipedia)
 - 2. Blogs and microblogs (e.g., Twitter)
 - 3. **Content communities** (e.g., YouTube)
 - 4. Social networking sites (e.g., Facebook)
 - 5. Virtual game worlds (e.g., World of Warcraft)
 - 6. Virtual social worlds (e.g., Second Life)

Differences Between Social and Industrial Media

- **Quality:** Industrial media content is typically refined before publication, whereas social media content varies widely in quality.
- Reach: Both can reach a global audience, but social media is decentralized.
- Frequency: Social media content is updated and reposted more frequently.
- Accessibility: Industrial media is costly and owned by corporations, while social media is generally free or low-cost.
- **Usability:** Industrial media requires specialized skills; social media can be used by anyone.
- **Immediacy:** Social media allows for real-time responses, unlike industrial media, which has longer publishing cycles.
- **Updatability:** Social media content can be altered instantly, while industrial media is static once published.

Social Media Usage Trends

- Increasing engagement levels in social networking sites.
- Brogan & Bastone (2011) identified six levels of social media engagement.

- The number of inactive users has significantly decreased, with 82% of the online population now actively engaging with social media.
- Social media has reached mass adoption.

Social Media Analytics

Definition & Importance

- **Social media analytics** systematically processes content from social media platforms to improve an organization's competitiveness.
- Helps organizations understand and engage with consumers more effectively.
- Used for integrated marketing and communication strategies.

Growth & Adoption

- Growth of social media platforms: Facebook, Twitter, LinkedIn, YouTube, etc.
- Analytics tools help businesses engage with millions of customers daily.
- Harvard Business Review (2010) Survey Findings:
 - o 75% of companies don't know where their valuable customers are talking about them.
 - 31% do not measure the effectiveness of social media.
 - o Only 23% use social media analytic tools.
 - Just 7% integrate social media into marketing activities.

Challenges & Potential

- Many companies still use social media mainly for one-way promotion instead of listening and analyzing customer conversations.
- Despite challenges, companies expect **growth in social media investment** even as spending on traditional media declines.

Measuring Social Media Impact

- Extracting insights from billions of posts, reviews, and blogs is challenging.
- Analytics tools fall into three categories:
 - 1. **Descriptive Analytics** Tracks statistics like followers, engagement, and platform usage.
 - 2. **Social Network Analysis** Maps influence and connection networks.
 - Advanced Analytics Uses predictive and text analytics to analyze themes, sentiment, and trends.

Best Practices in Social Media Analytics (Paine & Chaves, 2012)

- 1. Think of Measurement as a Guidance System
 - Analytics should **identify effective strategies** rather than just reward or punish performance.
 - Helps determine which platforms matter most to your audience.
- 2. Track Sentiment Accurately

- Extract and categorize sentiment from online conversations as **positive**, **negative**, **or neutral**.
- Avoid tagging mixed-polarity phrases (e.g., "great location but smelly bathroom") as neutral.

3. Continuously Improve Text Analysis Accuracy

• Use industry-specific **text analytics tools** that adapt and refine their accuracy over time.

4. Monitor the Ripple Effect

- o A single social media mention may spread through retweets, shares, and influencer posts.
- o Identify which posts go viral and why.

5. Look Beyond the Brand

• Track **broader industry conversations**, not just direct mentions of your brand.

6. Identify Key Influencers

o Focus on influencers who **shape conversations in your industry**, not just brand advocates.

7. Evaluate the Accuracy of Analytics Tools

• Accuracy varies across platforms (80–90% for review sites/Twitter, 60–70% for blogs/forums).

8. Incorporate Social Media Insights into Business Planning

Identify patterns between social media metrics and business activities to refine strategy.

Conclusion

- Social media analytics is evolving, with companies refining their measurement techniques.
- Success depends on accurate sentiment analysis, influencer tracking, and integrating analytics into decision-making.
- Future improvements will enhance **data accuracy and business impact** through smarter algorithms and predictive insights.

Predictive Analytics:

Multiple Goals in Decision Making

1. Understanding Multiple Goals in Management Decisions

- Management decisions are rarely based on a **single** objective (e.g., profit maximization).
- Modern organizations pursue multiple goals simultaneously, which can sometimes complement or conflict with each other.
- Different stakeholders (shareholders, employees, managers, customers, community) have varying and often competing goals.
- Decision-making must balance multiple objectives rather than just focusing on one.

2. Examples of Multiple Goals in Organizations

- A profit-making firm may have goals such as:
 - o Earning revenue and maximizing profit.
 - Expanding its business and product development.
 - Providing job security and benefits to employees.
 - Serving the community and ensuring corporate social responsibility.
 - Keeping shareholders satisfied while also offering competitive salaries to managers.

• In decision-making (e.g., investment choices), some goals **align** (growth increases profit), while others **conflict** (higher salaries reduce profit).

3. Challenges in Handling Multiple Goals

- 1. Lack of Clarity Organizations may not have a clearly defined set of goals.
- 2. Changing Priorities The importance of specific goals may shift over time or in different scenarios.
- 3. **Different Perspectives** Goals and sub-goals are viewed differently at various levels (top management vs. employees).
- 4. **External Influences** Goals change in response to market trends, competition, and regulations.
- 5. **Quantification Issues** Measuring the impact of alternatives on multiple goals is difficult.
- 6. **Decision-Making by Groups** Teams with different interests and priorities make collective decisions.
- 7. **Varying Goal Priorities** Different stakeholders prioritize goals differently (e.g., investors focus on returns, employees on job security).

4. Methods for Handling Multiple Goals

Several techniques can be used to incorporate multiple goals into decision-making models:

- 1. **Utility Theory** Assigns a numerical value (utility) to different choices to compare them.
- 2. **Goal Programming** Uses optimization methods to **balance multiple goals** (not just maximize one).
- 3. **Constraints in Linear Programming (LP)** Defines certain goals as constraints while optimizing another objective.
- 4. **Points System** Assigns weights or scores to different goals to evaluate alternatives.

5. Key Takeaways

- Multiple objectives must be considered together, rather than focusing on a single measure of success.
- Decision-making models often convert multiple goals into a single evaluation metric (e.g., weighted score).
- Analytic Hierarchy Process (AHP) is one approach that helps in evaluating multi-objective decisions.
- Organizations need flexible decision-making frameworks to accommodate shifting priorities and stakeholder needs.

Sensitivity Analysis

1. Understanding Sensitivity Analysis

- Sensitivity analysis evaluates how changes in input data or parameters affect the outcome of a model.
- It helps assess uncertainty in decision-making by testing different scenarios.
- Used widely in **Management Support Systems (MSS)** to adapt models to changing conditions and improve decision-making.
- Enhances **confidence** in models by understanding their reliability under different assumptions.

2. Key Objectives of Sensitivity Analysis

- Evaluating external variables Examines how uncontrollable factors (e.g., market trends) affect outcomes.
- Assessing decision variables Tests the impact of internal decision factors on results.
- Handling uncertainty Analyzes how inaccurate estimations affect model predictions.
- **Examining variable interactions** Studies dependent relationships between input variables.
- **Ensuring robustness** Checks if decisions hold under different conditions.

3. Applications of Sensitivity Analysis

- Revising models to reduce excessive sensitivity.
- Adding details to improve model accuracy.
- Obtaining **better estimates** for uncertain variables.
- Modifying real-world systems to minimize sensitivity risks.
- Monitoring actual results for continuous improvements.

4. Types of Sensitivity Analysis

A. Automatic Sensitivity Analysis

- Performed in quantitative models (e.g., Linear Programming LP).
- Identifies the range within which an input can change without significantly impacting the solution.
- Limited to one variable change at a time.
- Fast and efficient, requiring minimal computational effort.
- Examples: Used in **Solver, Lindo**, and LP reports.

B. Trial-and-Error Sensitivity Analysis

- Involves manually changing inputs and re-solving the problem multiple times.
- Helps discover **better solutions** through iterative experimentation.
- Commonly performed using tools like Excel modeling software.
- Includes two approaches:
 - 1. What-If Analysis Examines different scenarios by changing inputs.
 - 2. Goal Seeking Adjusts input values to achieve a specific target output.

5. Key Takeaways

- Sensitivity analysis ensures flexibility in decision-making.
- Helps in risk management by identifying key vulnerabilities in models.
- Provides insights into how sensitive a decision is to variable changes.
- Supports better planning and strategic decision-making by exploring alternative scenarios.

Notes on Goal Seeking

1. Understanding Goal Seeking

- Goal seeking is a backward solution approach that calculates input values needed to achieve a specific target output.
- It is widely used in decision-making models to determine necessary conditions for achieving business objectives.
- Helps managers make data-driven decisions by working backward from a defined goal.

2. Examples of Goal Seeking

- Determining the R&D budget required to achieve a 15% annual growth rate by 2018.
- Finding the number of nurses needed to reduce emergency room waiting time to under 10 minutes.
- Setting **interest rates** in financial models to achieve a **net present value (NPV) of zero** (used in financial planning).

3. Applications of Goal Seeking

A. Computing Internal Rate of Return (IRR)

- Used in financial planning models (e.g., in Excel).
- Determines the interest rate at which NPV equals zero.
- Example: Given a set of **annual returns**, goal seeking can find the **required interest rate** for a balanced investment.

B. Computing Break-Even Points

- Identifies the quantity of production at which profit equals zero.
- Helps businesses determine how much they need to sell to cover costs.
- Essential for profit planning and cost analysis.

4. Goal Seeking vs. Sensitivity Analysis

Feature	Goal Seeking	Sensitivity Analysis
Approach	Backward-looking	Forward-looking
Focus	Finding required inputs to reach a goal	Evaluating how output changes with input variations
Example	Finding the required price to achieve a profit target	Checking how profit changes when costs increase
Use Case	Financial planning, break-even analysis	Risk assessment, scenario planning

5. Importance of Goal Seeking in Decision Support Systems (DSS)

- Ensures managers can test different scenarios easily.
- Supports what-if analysis, helping businesses make informed strategic decisions.
- Helps in **forecasting and planning** by determining required inputs for a desired outcome.