Санкт-Петербургский государственный университет Математико-механический факультет Кафедра физической механики

МЕТОДЫ ИЗМЕРЕНИЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ СИСТЕМЫ Отчёт по лабораторной работе №1

«Обработка результатов физических измерений. Измерение электронным частотомером ЧЗ-32 периода следования импульсов»

Выполнил студент:

Ковалёва Дана Александровна группа: 23.С02-мм

Проверил:

к.ф.-м.н., доцент Кац Виктор Михайлович

Содержание

Осн	ювная часть
2.1	Теоретическая часть
	Эксперимент
2.3	Обработка данных
	Таблицы
	Графики

1 Введение

Лабораторная работа направлена на решение следующих задач: освоение практических навыков многократных прямых измерений физических величин с использованием соответствующего измерительного оборудования, а также приобретение опыта элементарной статистической обработки результатов наблюдений, полученных при прямых измерениях.

2 Основная часть

2.1 Теоретическая часть

Вычисление погрешности прибора $\Delta T_{\text{приб}}$:

$$\Delta T_{\text{приб}} = \gamma_T T_{\text{cp}} \tag{1}$$

$$\gamma_T = \pm (\gamma_0 + \frac{T_0}{T_x}) \cdot 100\% \tag{2}$$

где $\gamma_0=5\cdot 10^{-7},\, T_0=10^{-4}$ с на грубой шкале, $T_0=10^6$ с на точной шкале.

2.2 Эксперимент

Рис. 1. Схема установки

2.3 Обработка данных

Таблицы

$$T_{\rm cp} = 282.16$$

Диапазон показаний прибора $0-10^4$ мс. Погрешность прибора $\Delta T_{\rm приб}=0.000241$ мс.

Рис. 2. Фотография установки

Таблица 1. Измерения на грубой шкале

№ П.П.	Диапазон показаний использованной шкалы прибора	Результаты отдельных наблюдений (T_i)	Погрешность прибора на данной шкале $(\Delta T_{\text{приб}})$
	MC	MC	MC
1	$0-10^{7}$	282.7	0.00024089
2		281.7	0.00024124
3		282.5	0.00024096
4		282.0	0.00024114
5		282.0	0.00024114
6		281.9	0.00024117
7		281.8	0.00024121
8		282.6	0.00024092
9		282.1	0.00024110
10		282.3	0.00024103

Таблица 2. Измерения на точной шкале

№ п.п.	Результаты отдельных наблюдений (T_i)	Случайные отклонения от среднего $(d_i = T_i - \overline{T})$	$d_i^2 = (T_i - \overline{T})^2$
	MC	MC	Mc^2

№ п.п.	Результаты наблюдений	Отклонения d_i	d_i^2
	MC	MC	MC^2
1	282.926	0.49102	0.241101
2	281,802	-0.63298	0.400664
3	282,582	0.14702	0.0216149
4	282,693	0.25802	0.0665743
5	281,894	-0.54098	0.292659
6	282,524	0.08902	0.00792456
7	282,220	-0.21498	0.0462164
8	282,786	0.35102	0.123215
9	281,807	-0.62798	0.394359
10	282,256	-0.17898	0.0320338
11	282,973	0.53802	0.289466
12	282,224	-0.21098	0.0445126
13	281,997	-0.43798	0.191826
14	282,622	0.18702	0.0349765
15	282,770	0.33502	0.112238
16	283,136	0.70102	0.491429
17	282,735	0.30002	0.090012
18	282,340	-0.09498	0.0090212
19	282,339	-0.09598	0.00921216
20	282,128	-0.30698	0.0942367
21	282,258	-0.17698	0.0313219
22	282,489	0.05402	0.00291816
23	282,505	0.07002	0.0049028
24	282,958	0.52302	0.27355
25	282,638	0.20302	0.0412171
26	282,345	-0.08998	0.0080964
27	281,998	-0.43698	0.190952
28	281,345	-1.08998	1.18806
29	282,684	0.24902	0.062011
30	283,159	0.72402	0.524205
31	282,816	0.38102	0.145176
32	281,950	-0.48498	0.235206
33	282,197	-0.23798	0.0566345
34	282,422	-0.01298	0.00016848
35	282,430	-0.00498	0.000025
36	282,642	0.20702	0.042857
37	282,971	0.53602	0.287317
38	282,580	0.14502	0.0210308
39	282,115	-0.31998	0.102387
40	281,863	-0.57198	0.327161

№ п.п.	Результаты наблюдений	Отклонения d_i	d_i^2
	MC	MC	Mc^2
41	282,017	-0.41798	0.174707
42	282,424	-0.01098	0.000121
43	282,675	0.24002	0.0576096
44	283,157	0.72202	0.521313
45	282,442	0.00702	0.000049
46	281,895	-0.53998	0.291578
47	281,993	-0.44198	0.195346
48	282,236	-0.19898	0.039593
49	282,728	0.29302	0.0858607
50	283,063	0.62802	0.394409
	$T_{\rm cp} = \frac{\sum_{i=1}^{50} T_i}{50} = 282.435$	$\sum_{i=1}^{50} d_i = 16.759$	$\sum_{i=1}^{50} d_i^2 = 8.29907$

Графики

Среднеквадратичное отклонение:

$$\sigma \approx \sqrt{\frac{\sum_{i=1}^{n} (T_i - \overline{T})^2}{n-1}} = 0,41154$$
 (3)

Таблица 3. Таблица для построения гистограммы и кривой распределения

№ ин- тер- ва-	Границы интервалов (ширина интервала $\Delta h = 0.1814$)	Число случаев (Δn) , когда результат наблюдения попадает в данный интервал	Доля (часть) полного числа результатов, попадающих в данный интервал $(\delta n = \frac{\Delta n}{n})$
1	281.345		
2	281.526	1	0.02
3	281.708	2	0.04
4	281.890	3	0.06
5	282.071	4	0.08
6	282.252	9	0.18
7	282.433	7	0.14
8	282.615	8	0.16
9	282.796	8	0.16
10	282.977	5	0.10
11	283.159	3	0.06

Дисперсия:

$$\sigma^2 = 0,16937\tag{4}$$

Средняя квадратичная погрешность среднего:

$$\Delta T \approx \frac{\sigma}{\sqrt{n}} = 0,0582 \tag{5}$$

Окончательный результат:

$$T = T_{\rm cp} \pm \Delta T = 282.435 \pm 0.000241$$
 (6)

3 Выводы

Цели лабораторной работы достигнуты. Освоена методика многократных прямых измерений физической величины с использованием частотомера ЧЗ-32. Приобретены навыки выполнения статистической обработки результатов измерений, включающей расчет дисперсии и среднеквадратичного отклонения.

Список литературы

 $[1] \ \mathtt{https://github.com/st122869/2025-lab}$