Universidad Nacional de Colombia Sede Medellín Posgrados en Matemáticas - Admisión Semestre 2021-02 Prueba de Conocimientos

Nombre:	Documento:	

Instrucciones. La evaluación es individual y tiene una duración de 3 horas. No se permite el uso de libros, notas o apuntes. Es muy importante que cada ejercicio sea resuelto en forma clara y precisa. Por favor apague su teléfono celular.

Sección I: Cálculo

- 1. Sea $\{a_n\}_{n\in\mathbb{N}}$ una sucesión en $(0,\infty)$ tal que:
 - (a) $\{a_n\}_{n\in\mathbb{N}}$ es creciente,
 - (b) para cada $n \in \mathbb{N}$, $a_n^2 \le 1 + a_n$.

Demuestre que $\{a_n\}_{n\in\mathbb{N}}$ es acotada, es decir, existe una constante B>0 tal que $|a_n|\leq B$ para todo $n\in\mathbb{N}$.

- 2. (a) Demuestre que $|\operatorname{sen}(x^2)| \le x^{1/2}$ para cada $x \in [0,1]$. Indicación: considere la función $f:[0,1] \to \mathbb{R}$ definida como $f(t) = \operatorname{sen}(t)$.
 - (b) Pruebe que la ecuación

$$\ln(x+2) = x$$

tiene una solución en $(0, \infty)$.

3. Sea $S = \{(x, y, z) : z = 4 - x^2 - y^2, z \ge 0\}$ orientada con la normal unitaria cuya tercera componente es positiva. Calcule el flujo del campo vectorial $\overrightarrow{F} : \mathbb{R}^3 \to \mathbb{R}^3$, definido como

$$\overrightarrow{F}(x, y, z) = (3x - xy^2, -yx^2 + e^{x^2z} \tan^{-1}(x^2 + z^2), z + 1),$$

a través de la superficie S.

Sección II: Álgebra Lineal

1. Sea W el subconjunto de las matrices de tamaño 3×3 con entradas reales que son antisimétricas. Es decir,

$$W = \{ A \in M_{3 \times 3} \mid A^T = -A \}.$$

- (a) Demostrar que W es un subespacio vectorial de $M_{3\times3}$.
- (b) Encontrar una base para W y calcular su dimensión.
- 2. Supogamos que ${\bf u}$ y ${\bf v}$ son vectores de $\mathbb{R}^n.$ Demostrar que

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2.$$

- 3. Sea $A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$.
 - (a) Calcule los valores propios y los correspondientes vectores propios de A.
 - (b) Encuentre una base ortogonal para \mathbb{R}^3 de vectores propios de A.
 - (c) Diagonalizar ortogonalmente a la matriz A, es decir, encontrar una matriz ortogonal Q y una matriz diagonal D tales que $A = QDQ^T$.