

Organização e Arquitetura de Computadores

Entrada e Saída (E/S)

Givanaldo Rocha de Souza

http://docente.ifrn.edu.br/givanaldorocha givanaldo.rocha@ifrn.edu.br

Introdução

- Além do processador e da memória, o sistema de computação ainda possui os módulos de entrada e saída (E/S).
- → A arquitetura de E/S do sistema de computação é a sua interface com o mundo exterior.
 - Oferece um meio sistemático de controlar a interação com o mundo exterior.
 - Fornece ao sistema operacional as informações de que precisa para gerenciar a atividade de E/S de modo eficaz.

Introdução

- Cada módulo de E/S se conecta ao barramento ou comutador central e controla um ou mais periféricos.
- Um módulo de E/S contém uma lógica para realizar uma função de comunicação entre o periférico e o barramento.

Placa PCI USB 2.0

Introdução

- **Dúvida:** por que os periféricos não são conectados diretamente no barramento do sistema?
 - Existe uma grande variedade de periféricos, com diversos métodos de operação, inviabilizando o controle pelo processador.
 - A taxa de transferência de dados dos periféricos normalmente é diferente (mais lenta ou mais rápida) do que a da memória ou do processador.
 - Os periféricos normalmente utilizam formatos de dados e tamanhos de palavras diferentes do que é usado pelo computador ao qual estão conectados.
- Assim, um módulo de E/S é necessário!!!

Funções Principais do Módulo de E/S

- Interface com o processador e a memória por meio do barramento do sistema ou comutador central.
- Interface com um ou mais dispositivos periféricos por conexões de dados adequadas.

Dispositivos Externos

- Legíveis ao ser humano: adequados para a comunicação com usuários
 - Monitor, impressora, teclado
- Legíveis à máquina: adequados para a comunicação com equipamentos
 - Disco magnético e fita
 - Sensores e atuadores
- **Comunicação:** adequados para a comunicação com dispositivos remotos
 - Modem
 - Placa de interface de rede

Dispositivos Externos

Diagrama em blocos de um dispositivo externo

Detecção de erros

Funções de um Módulo de E/S

Controle e Temporização Coordenar o fluxo de tráfego entre os recursos internos e os dispositivos externos.
Comunicação com o processador Comunicação entre o processador e o dispositivo externo.
Comunicação com dispositivos Comunicação envolve comandos, informação de estado e dados (figura do slide anterior).
Área de armazenamento temporário de dados (buffering) Necessária devido à diferença de taxas de transferência já comentadas.

• Relatar erros ao processador: defeitos mecânicos e elétricos, erros na transferência de bits etc.

Controle e Temporização - Exemplo

- 1. O processador interroga o módulo de E/S para verificar o estado do dispositivo.
- 2. O módulo retorna o estado do dispositivo.
- Se o dispositivo estiver em operação e pronto para transmitir dados, o processador requisitará a transferência enviando um comando para o módulo de E/S.
- 4. O módulo de E/S obtém uma unidade de dados (p.ex., 8 ou 16 bits) do dispositivo.
- 5. Os dados são transferidos do módulo de E/S para o processador .

Comunicação com o processador

- ☐ Decodificação de comandos
 - Conversão entre sinais transmitidos através do barramento de controle e comandos usados pelos dispositivos.
- **□** Dados
 - São transferidos entre o processador e o módulo de E/S através do barramento de dados.
- Informação de estado
 - Lentidão dos periféricos faz com que seja importante conhecer o estado do módulo de E/S.
- Reconhecimento de endereço
 - O módulo de E/S deve reconhecer um endereço distinto para cada periférico controlado.

Buffering de dados

- A transferência de dados da memória principal para o módulo de E/S é feita rapidamente.
 - Esses dados são temporariamente armazenados no módulo de E/S e então enviados para o dispositivo numa taxa adequada.
- No caminho oposto, os dados são armazenados temporariamente no módulo de E/S para não reter a memória numa transferência de dados com baixa velocidade.
- O módulo de E/S deve ser capaz de realizar operações tanto à velocidade da memória quanto à do dispositivo externo.

Detecção de erros

- Relatar erros ao processador:
 - Mau funcionamento elétrico ou mecânico.
 - Falha de alimentação de papel
 - Papel emperrado
 - Trilha de disco defeituosa
 - o etc.
 - Alterações no padrão de bits transmitidos por um dispositivo para o módulo de E/S.
 - Bit de paridade

Módulo de E/S: estrutura interna

Técnicas usadas para E/S

	Sem interrupções	Com interrupções
Transferência entre memória e E/S por meio do processador	E/S programada	E/S controlada por interrupção
Transferência direta entre memória e E/S		Acesso direto à memória (DMA)

E/S programada

- Em um programa, a execução de uma instrução relacionada a E/S faz com que um comando seja enviado para o módulo de E/S.
- O módulo de E/S executa a operação requisitada e sinaliza o seu término carregando um valor no registrador de estado.
- Nenhuma ação é executada pelo módulo para alertar o processador sobre o término da operação.
- É responsabilidade do processador verificar periodicamente o estado do módulo, para ver se a operação foi completada.

E/S programada

Leitura de um bloco de dados

Endereçamento de dispositivos de E/S

- ☐ E/S mapeada na memória
 - Há um único espaço de endereçamento para posições de memória e dispositivos de E/S.
 - Exemplo:
 - Endereçamento de Byte
 - Endereços de 10 bits → 1024 Bytes
 - ✓ Endereços 0-511: memória principal
 - ✓ Endereços 512-1023: dispositivos de E/S
- ☐ E/S independente
 - Espaço de endereçamento de E/S é independente do espaço de endereçamento da memória.

E/S mapeada na memória

ENDEREÇO	INSTRUÇÃO	OPERANDO	COMENTÁRIO
200	Carregar acumulador	"1"	
201	Armazenar acumulador	517	Iniciar leitura do teclado
202	Carregar acumulador	517	Obter byte de estado
203	Desviar se sinal = 0	202	Repetir até que esteja pronto
204	Carregar o acumulador	516	Carregar byte de dados

E/S independente

Acesso aos dispositivos de E/S é feito através de instruções especiais (comandos).

ENDEREÇO	INSTRUÇÃO	OPERANDO	COMENTÁRIO
200	Iniciar E/S	5	Iniciar leitura do teclado
201	Testar E/S	5	Testar se a operação foi completada
202	Desviar se não pronto	201	Repetir até que seja completada
203	Leitura	5	Carregar byte de dados

E/S controlada por interrupção

Processador envia um comando de E/S para o módulo e continua a executar outras instruções.
O módulo de E/S interrompe o processador quando o mesmo estiver pronto para trocar dados.
Processador efetua a transferência de dados e depois retorna ao seu processamento original.
É mais eficiente que a E/S programada, pois elimina ciclos de espera desnecessários.

E/S controlada por interrupção Leitura de um bloco de dados

Processamento da interrupção

Processamento da interrupção

Módulo de E/S Intel 82C55A

- Módulo de E/S de uso geral em um único chip, projetado para uso com o processador Intel 80386.
- ☐ Pode ser programado para E/S programada ou E/S controlada por interrupção.
- Como interface externa para dispositivos, possui 3 grupos de linhas de 8 bits (A, B e C).
 - Em um modo de operação específico, os 3 grupos funcionam como 3 portas de E/S.
 - Nos demais modos, as linhas dos grupos A e B funcionam como portas de E/S e as do grupo C como linhas de controle para os grupos A e B.

Módulo de E/S Intel 82C55A

Módulo de E/S Intel 82C55A

Acesso Direto à Memória (DMA)

- ☐ Envolve um módulo adicional no barramento do sistema.
- Esse módulo, denominado controlador de DMA, imita o processador nas funções de E/S de dados.
- O controlador de DMA pode operar das seguintes maneiras:
 - Usando o barramento apenas quando o processador não o utiliza.
 - Forçando o processador a suspender temporariamente sua operação – técnica conhecida como roubo de ciclo.

Técnica de roubo de ciclo

Estrutura interna de um módulo DMA

- Algumas possibilidades:
 - Barramento único, DMA separado
 - Barramento único, DMA-E/S integrados
 - Barramento específico de E/S

Barramento Único, DMA separado

■ Barata ②

☐ Ineficiente – a transferência de cada palavra consome vários ciclos de barramento ☺

Barramento Único, DMA-E/S Integrados

☐ Custosa ⊗

☐ Eficiente ☺

Barramento Específico de E/S

- □ Custosa ⊗
- **□** Eficiente ☺

Interfaces com família 80x86 e DRAM
Quando o módulo de DMA precisa de barramentos, ele envia sinal HOLD ao processador.
CPU responde HLDA (hold acknowledge).

Módulo de DMA pode usar barramentos.

DACK = DMA admowledge (reconhecimento de DMA)

DREQ = DMA request (requisição de DMA)

HLDA = HOLD acknowledge (reconhecimento de HOLD)

HRQ = HOLD request (requisição de HOLD)

- ☐ Exemplo: transferir dados da memória para o disco.
- Dispositivo requisita serviço de DMA levantando DREQ (requisição de DMA).
- 2. DMA levanta sua linha HRQ (hold request)
- CPU termina ciclo de barramento presente (não necessariamente instrução presente) e levanta linha HDLA HDLA (hold acknowledge). HOLD permanece ativo pela duração do DMA.

- ☐ **Exemplo:** transferir dados da memória para o disco.
- DMA ativa DACK (DMA acknowledge), dizendo ao dispositivo para iniciar a transferência.
- 5. DMA inicia transferência colocando endereço do primeiro byte no barramento de endereço e ativando MEMR; depois, ativa IOW para escrever no periférico. DMA decrementa contador e incrementa ponteiro de endereço. Repete até contagem chegar a zero.
- DMA desativa HRQ, retornando o controle do barramento de volta à CPU.

Canais de E/S

- ☐ Dispositivos de E/S se tornam mais sofisticados.
- Por exemplo, placas gráficas 3D.
- CPU instrui controlador de E/S a realizar transferência.
- Controlador de E/S realiza transferência inteira.
- Melhora velocidade.
 - Retira carga da CPU.
 - Processador dedicado é mais rápido.

Evolução

- 1. Processador controla diretamente dispositivos.
- 2. Módulos de E/S são adicionados.
- 3. Interrupções são utilizadas.
- 4. É introduzido o módulo de DMA
- 5. O módulo de E/S evolui para um **canal**, e executa programas de E/S carregados da memória principal.
- 6. O canal evolui para um *processador*, possuindo sua própria memória local.

Enquanto se prossegue nesse caminho de evolução, cada vez mais a função de E/S é realizada sem envolvimento da CPU, melhorando o desempenho da mesma.

Tipos de Canais de E/S

☐ Seletores

 Dedicam-se à transferência de dados apenas com um único dispositivo por vez

Multiplexadores

Transferem dados de/para vários dispositivos simultaneamente

Canal Seletor

Canal Multiplexador

Estudo de Caso: USB

- ☐ Universal Serial Bus: interface para transmissão de dados e distribuição de energia que foi introduzido para melhorar as interfaces serial (RS-232) e em paralelo.
- Capaz de conectar até 127 dispositivos de E/S: mouse, teclado, impressora, scanner, joystick, disco externo, DVD player, máquina digital, VoIP-phone etc.

Estudo de Caso: Firewire (IEEE 1394)

- Similar ao USB, contudo o desempenho do Firewire é superior, sendo cerca de 30 vezes mais rápido.
- Capaz de conectar até 63 dispositivos de E/S: discos externos, câmeras digitais, televisão digital etc.

Estudo de Caso: HDMI

- High-Definition Multimidia Interface: sistema digital de conexão capaz de transmitir áudio e vídeo através de um único cabo.
- Os resultados serão belíssimas imagens de alta qualidade e definição, em um padrão superior com relação ao sistema analógico de conexão.

Perguntas?

