Changement d'état isobare des mélange binaires liquide-vapeur

Objectifs

Compréhension des principales méthodes de séparation par distillation utilisées au laboratoire

Les différents types de diagrammes binaires

de la miscibilité totale ...

Condition de miscibilité totale

Z: (homo)azéotrope

Courbe ébullition/rosée

... à la miscibilité nulle

H: hétéroazèotrope

Distillation simple

- Pince plate pour maintenir le ballon
- Pierre ponce pour réguler l'ébullition
- Clip pour maintenir le réfrigérant à eau droit (circulation d'eau ascendante)
- Elévateur en position réglable pour stopper la chauffe

Distillation fractionnée

Evolution au cours du temps de T et composition en tête de colonne et dans le bouilleur

Séparation des constituants d'un mélange azéotropique

Distillation hétéroazéotropique

Entraînement à la vapeur

Extraction, dans des conditions douces, de composés organiques non miscibles à l'eau :

1. Foyer - 2. Chaudière - 3. Vase à fleurs - 4. Vidange de condensation - 5. Col de cygni
M2 Physique Prépaignegatecphysique? Sortie d'eau chaude - 8. Arrivée d'eau froide - 9. Essencier serve
à la décantation de l'essence et de l'hydrolat.

Entraînement (hétéro)azéotropique de l'eau

Tableau 2 : Quelques hétéroazéotropes usuels formés avec H₂O sous 1 bar [5]

Composé 2	Benzène	Cyclohexane	Toluène
T*2 /°C	80,1	80,8	110,7
T* _H /°C	69,25	69,5	84,1
w ₂ /%	91,17	91,6	86,5

