

Experiment No.: 01

Aim: Explore the descriptive statistics on the given dataset.

Importing Libraries

```
from google.colab import drive
drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remoun

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from scipy import stats

Load the Dataset

df = pd.read_csv(r'/content/drive/MyDrive/ADS LAB_STUDENTS/bmi.csv')
df

	Gender	Height	Weight	bmi	Age
0	Male	174	80	26.4	25
1	Male	189	87	24.4	27
2	Female	185	80	23.4	30
3	Female	165	70	25.7	26
4	Male	149	61	27.5	28
5	Male	177	70	22.3	29
6	Female	147	65	30.1	31
7	Male	154	62	26.1	32
8	Male	174	90	29.7	27

df.describe()

	Height	Weight	bmi	Age
count	9.000000	9.000000	9.000000	9.000000
mean	168.222222	73.888889	26.177778	28.333333
std	15.368619	10.740629	2.639497	2.345208
min	147.000000	61.000000	22.300000	25.000000
25%	154.000000	65.000000	24.400000	27.000000
50%	174.000000	70.000000	26.100000	28.000000
75%	177.000000	80.000000	27.500000	30.000000
max	189.000000	90.000000	30.100000	32.000000

Measure of Central Tendency

Mean

```
df.mean()
    <ipython-input-7-c61f0c8f89b5>:1: FutureWarning: The default value of numeric_only in DataFrame.mean is deprecated. In a
    Height
               168.222222
    Weight
                73.888889
    bmi
                26.177778
                28.333333
    Aae
    dtype: float64
mean = df["Age"].mean()
mean
    28.33333333333333
Median
df.median()
    <ipython-input-8-6d467abf240d>:1: FutureWarning: The default value of numeric_only in DataFrame.median is deprecated. In
      df.median()
              174.0
    Height
    Weight
                70.0
                26.1
    bmi
                28.0
    Aae
    dtype: float64
median = df["Age"].median()
median
    28.0
```

Mode

df.mode()

•		Gender	Height	Weight	bmi	Age
	0	Male	174.0	70.0	22.3	27.0
	1	NaN	NaN	80.0	23.4	NaN
	2	NaN	NaN	NaN	24.4	NaN
	3	NaN	NaN	NaN	25.7	NaN
	4	NaN	NaN	NaN	26.1	NaN
	5	NaN	NaN	NaN	26.4	NaN
	6	NaN	NaN	NaN	27.5	NaN
	7	NaN	NaN	NaN	29.7	NaN
	8	NaN	NaN	NaN	30.1	NaN

```
mode = df["Age"].mode()
mode

0 27
Name: Age, dtype: int64
```

Measure of spread

```
18/01/2024, 10:28
                                              20102118_187_Himali Suroshi_Exp 01_ADS.ipynb - Colaboratory
                    5.500000
        Age
        dtype: float64
   df.std()
        <ipython-input-17-ce97bb7eaef8>:1: FutureWarning: The default value of numeric_only in DataFrame.std is deprecated. In a
                  15.368619
        Height
        Weight
                 10.740629
                  2.639497
                   2.345208
        Age
        dtype: float64
   var = df["Age"].var()
   var
        5.5
   sd = df["Age"].std()
   sd
        2.345207879911715
   M1 = df["Age"].max()
   M1
        32
   M2 = df["Age"].min()
   M2
        25
   range = M1 - M2
   range
   Q1 = df["Age"].quantile(0.25)
        27.0
   Q3 = df["Age"].quantile(0.75)
        30.0
   IQR = Q3 - Q1
   IQR
        3.0
   df.boxplot(column = "Age")
```


df.boxplot(column = "Age", by = "Gender")

<Axes: title={'center': 'Age'}, xlabel='Gender'>

Measure of shape

Skew = df["Age"].skew()
Skew

0.232582599660668

Kurtosis = df["Age"].kurtosis()
Kurtosis

-1.041322314049585

Platykurtic (kurtois<3)

Leptokurtic (kurtois>3)

mesokurtic (kurtois=3)

Risk = sd/mean Risk

0.08277204282041346

Harmonic_mean = stats.hmean(df["Age"])
Harmonic_mean

```
28.162486494356003
DQ = Harmonic_mean/mean
DQ
    0.993970111565506
zscore = stats.zscore(df["Age"])
    0
        -1.507557
        -0.603023
    2
        0.753778
        -1.055290
        -0.150756
    5
         0.301511
         1.206045
         1.658312
        -0.603023
    Name: Age, dtype: float64
```

Conclusion:

In this experiment we explore Descriptive Statistics for "BMI" Dataset. We perform all statistics operations like measures of central tendency, measures of spread and measures of shape on "Age" Column.

Measure of central Tendency: Measure of central tendency is used to describe the middle/centre value of the data. Mean, Median, Mode are measures of central tendency.

Measure of Spread: The measure of spread/dispersion is used to describe how data is spread. It also describes the variability of the dataset. Standard Deviation, Variance, Range, IQR, are used to describe the measure of spread.