Дополнительная практическая работа: «Множественная линейная регрессия»

Оглавление

Цель работы	1
· · · · · · · · · · · · · · · · · · ·	
Перечень обеспечивающих средств	
Общие теоретические сведения	
Линейная регрессия	2
Градиентный спуск	2
Допущения линейной регрессии	3
Ограничения линейной регрессии	3
Регуляризация	3
L1-регуляризация (lasso)	3
L2-регуляризация (ridge)	4
Elastic Net регуляризация	4
Множественная линейная регрессия	4
Задание	5
Требования к отчету	6
Литература	

Цель работы

Получить практические навыки использования линейной регрессии.

Задачи работы

- 1. Научиться аналитически решать задачу линейной регрессии.
- 2. Научиться решать задачу линейной регрессии с помощью библиотеки sklearn.

Перечень обеспечивающих средств

- 1. **ПК**.
- 2. Учебно-методическая литература.
- 3. Задания для самостоятельного выполнения.

Общие теоретические сведения

Линейная регрессия

Данные: пары значений (x_i, y_i) , где i = 1, ..., N.

x называется предиктором или регрессором,

у называется зависимой переменной.

Задача: Найти такие значения a и b, чтобы функция f(x) = ax + b как можно точнее аппроксимировала y, т.е. чтобы $f(x_i) \approx y_i$ для всех i.

Метрика производительности – среднеквадратичная ошибка:

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2$$

где y_i - значение из данных, $f(x_i)$ - результат работы модели.

Градиентный спуск

- 1. Случайным образом выбираем точку (a_0, b_0) .
- 2. Вычисляем значения частных производных ошибки.
- 3. Изменяем координаты так, чтобы двигаться в сторону уменьшения производной:

$$a_i = a_{i-1} - \alpha \frac{\partial \text{MSE}}{\partial a}(a_{i-1}), b_i = b_{i-1} - \beta \frac{\partial \text{MSE}}{\partial b}(b_{i-1}).$$

4. Если $\mathrm{MSE}(a_i,b_i)-\mathrm{MSE}(a_{i-1},b_{i-1})$ достаточно мало, то завершаем. Иначе — возвращаемся к шагу 2.

Допущения линейной регрессии

Остатки: величины $y_i - f(x_i)$.

Допущения линейной регрессии

- Между х и у есть линейная зависимость.
- Остатки распределены нормальным образом.
- Среднее значение остатков равно нулю.
- Дисперсия остатков постоянна.

Ограничения линейной регрессии

- Низкая точность при аппроксимации нелинейных функций.
- Нельзя использовать для вычислений вне известного интервала.
- Считаем, что предикторы не содержат ошибок измерений.
- Нет ограничений области значений.

Регуляризация

Если данных мало, а модель сложная, то высока вероятность переобучения.

Регуляризация — добавление дополнительных слагаемых к метрике производительности для того, чтобы штрафовать модель за излишне сложные решения и, таким образом, препятствовать переобучению.

Смещение увеличивается, разброс уменьшается.

L1-регуляризация (lasso)

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2 + \lambda_1 \sum_{i} |a_i|$$

$$\sum_{i} -y_{i} \log f(z_{i}) - (1 - y_{i}) \log(1 - f(z_{i})) + \lambda_{1} \sum_{i} |a_{i}|$$

L1-регуляризация обнуляет параметры a_i , которые вносят в основном шум.

L2-регуляризация (ridge)

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2 + \lambda_2 \sum_{i} a_i^2$$

$$\sum_{i} -y_{i} \log f(z_{i}) - (1 - y_{i}) \log(1 - f(z_{i})) + \lambda_{2} \sum_{i} a_{i}^{2}$$

L2-регуляризация не даёт значениям параметров a_i бесконтрольно увеличиваться.

Elastic Net регуляризация

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2 + \lambda_1 \sum_{i} |a_i| + \lambda_2 \sum_{i} a_i^2$$

$$\sum_{i=1}^{N} -y_i \log f(z_i) - (1 - y_i) \log(1 - f(z_i)) + \lambda_1 \sum_{i=1}^{N} |a_i| + \lambda_2 \sum_{i=1}^{N} a_i^2$$

Множественная линейная регрессия

Данные: $(x_{1i}, x_{2i}, ..., x_{Ki}, y_i)$, где i = 1, ..., N.

Задача: Найти такие значения a_k , где k = 1, ..., K, чтобы функция

$$f(x_1, x_2, ..., x_K) = a_1 x_1 + a_2 x_2 + ... + a_K x_K + b$$

как можно точнее аппроксимировала у,

т.е. чтобы $f(x_1, x_2, ..., x_K) \approx y_i$ для всех i.

$$b = a_0 x_0$$
, где $x_0 = 1$.

$$f(x_1, x_2, ..., x_K) = a_0 x_0 + a_1 x_1 + a_2 x_2 + \dots + a_K x_K = \sum_{k=0}^K a_k x_k$$

Задание

Пояснение

Для сохранения результатов данной работы вам понадобится один файл. Назовите его «*Фамилия* – дополнительное задание.ipynb».

Часть 1

• Обновите свой репозиторий, созданный в практической работе №1, из оригинального репозитория: https://github.com/mosalov/Notebook For Al Main.

Часть 2

- Откройте свой репозиторий в Binder (https://mybinder.org/).
- Откройте файл «task5.ipynb».
- Изучите, при необходимости выполните повторно, приведённый в файле код.
- С помощью библиотек sklearn по аналогии с имеющимся кодом решите задачу линейной регрессии, а также примените L1, L2 и ElasticNet регуляризации для случая множественной регрессии: зависимая переменная Weight, perpeccopы: Length1, Length2, Length3, Height, Width.
- Сохраните код в ipynb-файле. Необходимые пояснения опишите в своём docx/doc-файле.

Замечания

- 1. X_train будет двумерным массивом это нормально.
- 2. Сразу нормируйте значения регрессоров и зависимой переменной.
- 3. При нормировке вы можете передавать в MinMaxScaler сразу весь необходимый массив.
- 4. Т.к. x_train двумерный массив, к нему не нужно применять reshape. К одномерному y_train — нужно.
- 5. Модели линейной регрессии будут возвращать массив в качестве значения coef .
- 6. Вы не сможете без дополнительных ухищрений нарисовать графики, поэтому можете этого не делать.

Требования к отчету

Загрузите свой файл в репозиторий, созданный в практическом задании №1 по пути: «Notebook_For_Al_Main/2020 Осенний семестр/Дополнительное практическое задание/» и сделайте пул-реквест.

Литература

- https://habr.com/ru/post/514818/
- https://habr.com/ru/post/474602/
- http://statistica.ru/theory/osnovy-lineynoy-regressii/
- http://statistica.ru/theory/logisticheskaya-regressiya/
- https://habr.com/ru/post/485872/
- https://habr.com/ru/company/ods/blog/323890/#metod-maksimalnogopravdopodobiya
- https://dyakonov.org/2018/03/12/%D0%BB%D0%BE%D0%B3%D0%B8%D1 %81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F-%D0%BE%D1%88%D0%B8%D0%B1%D0%BA%D0%B8/