

When a function that outputs the sign of (x_1-3x_2) is used as a classification model to fit the data set, what is the resultant loss?

2) For the data set (error loss obtained v				on function be $\frac{x^2-2}{5}$. The mean squared $ \mathcal{Y} = \mathfrak{M} \mathcal{X} + \mathcal{L}$	78 (7-7)2
ЭC 1	2 S	ار - ابح عرب	(y-y) ²	$\lambda = \frac{2}{3}$	
ے لر 5	3 G	7/s 14/5 27c	6.76 0.04 1.96	9-2	l6- 3
		5	13.6	3.4	5

A probability model $P(X) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0,5] \\ 0, & \text{otherwise} \end{cases}$ is obtained by the density estimation algorithm for the data points $x_1 = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=$

$$= \frac{1}{5} \left(-5 \log \left(\frac{1}{5} \right) \right)$$

$$= -1 \left[\log_{6} 5 \right] = \log_{6} 8(5) = 0.63897$$

5) Let $g(x)=2.5e^{-x^2+0.2x+2}$. Determine the equation of the tangent line at x=0.5 and using it estimate the value of g(1.5).

$$g(0.5) = g(0.5) + g(0.5) (2C - 0.5)$$

$$9'(x) = 2.5 e^{-x^2 t_0 z x t^2}$$
 (-2x to.2)
 $9'(x) = 2.5 e^{-x^2 t_0 z x t^2}$ (-2x to.2)
 $9'(x) = 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $9'(x) = 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $9'(x) = 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $9'(x) = 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0 z x t^2) + 2}$
 $= 2.5 e^{-(x^2 t_0$

6) The directional derivative of $f(x,y)=xy^2+3x^2$ at (1,1) in the direction of unit vector along w=[-1,1] is 7.3

$$DD = (3 + 6 \times)^{2} + (2 \times 3)^{2}$$

$$= -\frac{7}{5} + 2^{2}$$

$$= -\frac{7}{5} = -3.53$$

Use the below information for Q7 & Q8

Compute the gradient of a function $g(x,y)=\sqrt{2x^2-y^3}$ at (2,1).

7) Enter the value of first element of the gradient.

1,5

No, the answer is incorrect

Score: 0

Accepted Answers:

(Type: Range) 1,2

9) A function $f(x,y) = x^2 + 2xy^3$ is approximated linearly in the neighbourhood of (2,-2). Use the approximation to approximate f(2.3, -2.2).

$$\frac{2f}{2} = 2x + 2y^{2} = 2(2) + 2(-2)^{2} = 4 - 16 = -12$$

$$\frac{2f}{2} = 2x(3y^{2}) = ((2)(-2)^{2} = 12x4 = 48$$

$$= -12x4 = 48$$

$$= -28 - 12x + 24 + 48y + 96$$

$$= -12x + 46y - 446$$

$$= -12x + 46y + 92$$

A vector x=[a,b] has dot products $x\cdot r=1$ and $x\cdot s=0$ with two given vectors r=[2,-1] and s=[-1,2].

14) Consider a line with zero slope and y-intercept of 2. The sum of squared residuals obtained when this line is used to fit the

$$\begin{bmatrix} 30 & lo \end{bmatrix} \begin{bmatrix} 0,7 = \begin{bmatrix} 25 \\ lo \end{bmatrix} \end{bmatrix}$$

$$f(x) = \begin{cases} \frac{\sqrt{1+ax} - \sqrt{1-ax}}{x}, & \text{if } -1 \leq x < 0 \\ \frac{2x+1}{x-1}, & \text{if } 0 \leq x < 1 \end{cases}$$

lim 1 (a) - (a) = 1 x x = 1 | 1 = 2x | 1 = 1 | 1 =

NOTE: Enter your answer to the nearest integer.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes **Answers Type**: Equal

Text Areas : PlainText
Possible Answers :

-1