Experiment 1: Estimation of Fe²⁺ by Potentiometric Titration

Name: Vidhi P Shah

Registration No.: 21BCE1297

Slot: L11-L12

Date: 21/09/21

OBSERVATIONS:

Rough Titration:

Strength of standard potassium dichromate = 0.05N

Volume of FAS solution = 20mL

S. No	Volume of K ₂ Cr ₂ O ₇ (mL)	EMF (Volt)
1	0.0000	0.4110
2	1.0000	0.4130
3	2.0000	0.4160
4	3.0000	0.4370
5	4.0000	0.5710
6	5.0000	0.5920
7	6.0000	0.6030
8	7.0000	0.6160
9	8.0000	0.6190
10	9.0000	0.6220
11	10.0000	0.6240

Fair Titration:

Strength of standard potassium dichromate = 0.05N

Volume of FAS solution = 20mL

S. No	Volume of K ₂ Cr ₂ O ₇ (mL)	EMF(Volt)	ΔE (Volt)	ΔV (mL)	ΔΕ/ΔV (Volt/mL)	Average Volume (mL)
1	0.0000	0.4110				
2	1.0000	0.4130	0.0020	1.0000	0.0020	0.5000
3	2.0000	0.4160	0.0030	1.0000	0.0030	1.5000
4	2.2000	0.4180	0.0020	0.2000	0.0100	2.1000
5	2.4000	0.4230	0.0050	0.2000	0.0250	2.3000
6	2.6000	0.4280	0.0050	0.2000	0.0250	2.5000
7	2.8000	0.4330	0.0050	0.2000	0.0250	2.7000
8	3.0000	0.4370	0.0040	0.2000	0.0200	2.9000
9	3.2000	0.4480	0.0110	0.2000	0.0550	3.1000
10	3.4000	0.4680	0.0200	0.2000	0.1000	3.3000
11	3.6000	0.4960	0.0280	0.2000	0.1400	3.5000
12	3.8000	0.5370	0.0410	0.2000	0.2050	3.7000
13	4.0000	0.5710	0.0340	0.2000	0.1700	3.9000
14	5.0000	0.5920	0.0210	1.0000	0.0210	4.5000
15	6.0000	0.6030	0.0110	1.0000	0.0110	5.5000

10	DE= 0.002 V	2. AE= 0.000	3. AE= 0.002 V
	AV = 1 mL	DV= ImL	∆V=0,2mL
	AE = 0.002 V AV mL	AF - 0.003 V	SE = 0.01 V/mL
5,	AE= 0.005 V	S. DE = 0.005V	6. AB = 0.005V
	AV= 00.2mL	AV = 0.2mL	DV - 0.2mL
	AE = 0,025 V	AE - 0.0250V ML	AE = 0.025 V
7.	DE = 0.004V	8. DE = 0.011 V	9. DE 2 0.02 V
	△V = 0.2 mL	DV = 0.2mL	6v = 0.2ml
	$\frac{\Delta E}{\Delta V} = 0.02 \text{ V/mL}$	ΔE = 0.055 V/mL	$\Delta E = 0.1 VlmL$
10.	AE = 0.0290V	11. DE= 0.0410 V	April 1
	DV = 0000 baro.2ml		-
	ΔE = 0.1 500 V ΔV	ΔE = 0.2050 V	$\frac{\Delta E}{\Delta V} = 0.17 \frac{M}{V}$
	DE = 0.0210 V	14. AE = 0.0110	
	AV = 1.00 mL	DV=1mL	
	DE = 0.0210V	AE = 0.011 X	
	DV mz	DV ML	i .

CALCULATIONS:

Volume of $K_2Cr_2O_7$ (from derivative graph) $(V_1) = 3.7 \text{ mL}$

Normality of $K_2Cr_2O_7(N_1) = 0.05 N$

Volume of Fe^{2+} solution $(V_2) = 20 \text{ mL}$

Normality of Fe^{2+} solution $(N_2) = ?$

$$N_1 V_1 = N_2 V_2$$

$$N_2 = (N_1 V_1)/(V_2)$$

= 0.00925 N

Amount of Fe^{2+} present in 1 liter of the given solution = Eq. wt. (55.85) x Normality

Amount of Fe^{2+} present in whole given solution = [Eq. wt. (55.85) x Normality] / 10

```
V_1 = 3.7 \text{ mL} (from graph)

N_1 = 0.05 \text{ N}

V_2 = 20 \text{ mL}

N_2 = 7

N_1 = 1.2 \text{ N}_2 = 3.7 \times 0.05

V_2 = 3.7 \times 8 \times 1

V_3 = 1.2 \times 10^{-3}

V_4 = 1.2 \times 10^{-3}

V_5 = 1.2 \times 10^{-3}

V_7 = 1.2 \times 10^{-3}

V_8 = 1.2 \times 10^{-3}
```

GRAPH:

Result:

- 1. Equivalence point determined from the graph = 3.7 ml
- 2. The amount of Fe2+ ion present in one litre of the given solution = 0.5166g