Prova substitutiva: Análise II 27 de junho de 2017

Nome:
Responda: Qual prova vai ser substituída? O P1 O P2 O P3
Questões relativas à Prova 1
gaesioes relativas a riova r
Questão 1
Questão 2
Seja $f:[a,b]\to\mathbb{R}$ contínua. Se $\int_a^b f(x) dx=0$, então $f(x)=0$ para todo $x\in[a,b]$.
Questão 3 0 Sejam $f, g: [a, b] \to \mathbb{R}$ integráveis e defina $\mathcal{C} := \{x \in [a, b] : f(x) \neq g(x)\}$. Mostre que se \mathcal{C} tem medida
nula, as integrais $\int_a^b f(x)dx$ e $\int_a^b g(x)dx$ coincidem.
Questão 4
(a) Se $a_n := \int_a^b f(x) \sin(nx) dx$, então $a_n \to 0$.
(b) Se $b_n := n \int_a^b f(x) ^n dx$ e $ f(x) < r < 1, \forall x \in [a, b]$. Então $b_n \to 0$.
Questão 5
(b) $\int_{3}^{\infty} \frac{(\ln(x))^5}{x^{4/3}} dx$,
Questões relativas à Prova 2
Questão 1
1. A sequência f_n' converge uniformemente a uma função g
2. Existe um número $c \in [a, b]$, tal que $\{f_n(c)\}$ converge
3. Todas as derivadas f'_n são funções contínuas.
Então, f_n converge uniformente para uma função f derivável com $f'=g$. Dica: Use o teorema fundamental do cálculo.
Questão 2
(a) $\sum_{k \in \mathbb{N}} (x^2 + n^2)^{-1} x$, $\mathcal{X} = \mathbb{R}$
(b) $\sum_{k \in \mathbb{N}} \sqrt{k} \sin(\frac{x}{k^2}), \ \mathcal{X} = [-a, a] \ (\text{com } a > 0).$

