Interpretable time series neural representation for classification purposes

Etienne Le Naour ^{1,2}, Ghislain Agoua ², Nicolas Baskiotis ¹, Vincent Guigue ³

Sorbonne Université, CNRS, ISIR, 75005 Paris, France
 EDF R&D, Palaiseau, France
 AgroParisTech, Palaiseau, France

DSAA 2023

Motivations

 Over the past 5 years, a lot of work on unsupervised neural representations for time series Franceschi et al. [2019], Yue et al. [2022], Zhang et al. [2022], Yang and Hong [2022], etc.

- But no works on interpretable neural representations for time series
- Although neural methods for representing time series are relatively new, non neural interpretable methods for representing time series are widely studied (e.g. Symbolic Aggregate approximation (SAX) methods)

We need to define requirements for an interpretable neural representation

Notations

- ullet The univariate time series is denoted by the vector $oldsymbol{x} \in \mathbb{R}^T$
- Let r be the symbolic neural representation. We denote by \mathbb{A} the support (alphabet) common to all these elements: $r = (r_1, \dots, r_{T'}) \in \mathbb{A}^{T'}$
- ullet $\phi_{ heta}$ is the function that maps the time series into the representation
- $\psi_{ heta'}$ is the function that goes from the representation to the reconstruction space of the time series

Requirement n°1: temporal consistency

Requirement n°2: a decodable representation

Requirement n°3: discrete symbolic representation

- The purpose of a symbolic neural representation method is to capture complex phenomena within the representation while being able to interpret and visualize the representation elements
- In addition, the support must be common to all elements of the symbolic representation
- The size of the support should be small

Requirement n°4: shift equivariance properties

Requirement n°5: a representation adjustable to the frequency level

Proposed model

Global architecture

 Inspired from the Vector-Quantization Variational Auto-Encoder [van den Oord et al., 2017]

Encoder

- The encoder consists of B blocks with identical structure
- Inside one block the structure is :

- Each block divides the length of the input sequence by two and preserves the shift equivariance property through adaptive polyphase downsampling (Chaman and Dokmanic [2021])
- The decoder blocks are define symmetrically to the encoder blocks

Discretization mechanism: vector quantization

$$oldsymbol{e_{t'}^q} \leftarrow oldsymbol{c_k} \quad ext{where} \quad k = rg \min_j \lvert\lvert oldsymbol{e_{t'}} - oldsymbol{c_j}
vert
vert_2^2.$$

Interpretable classification on a unique representation

- For a sample i, we can extract for the representation r_i , the vector h_i which indicates if a symbolic subsequence is present in r_i .
- d stands for the cardinal of all the subsequence space
- Thus, h_i is a vector of size d composed of 0 and 1 elements $(h_i \in \{0,1\}^d)$.
- Then we can use h_i to solve the classification problem using logistic regression

$$\arg\min_{\boldsymbol{w},b} \frac{1-\rho}{2} \boldsymbol{w}^{T} \boldsymbol{w} + \rho \|\boldsymbol{w}\|_{1} + \lambda \sum_{i=1}^{n} \log \left(\exp \left(-y_{i} \left(\boldsymbol{h_{i}}^{T} \boldsymbol{w} + b \right) \right) + 1 \right),$$

Quantitative results on UCR archive

Table: Accuracy on 25 UCR datasets compare to other interpretable methods. The best results are in bold and the second best results are underlined.

Datasets	Ours	SAX	SAX	FS	LTS	DTW
		SEQL	VSM			CV
Coffee	0.964	1.000	0.929	0.929	1.000	1.000
Computers	0.728		0.620		0.584	0.620
DistalPhalanxOAG	0.755	0.818	0.842	0.655	0.779	0.626
DistalPhalanxOC	0.732	0.718	0.728	0.750	0.719	0.725
DistalPhalanxTW	0.640	0.748	0.604	0.626	0.626	0.633
Earthquakes	0.734	0.789	0.748	0.705	0.741	0.727
ECG5000	0.932	0.924	0.910	0.923	0.932	0.925
FordA	0.883	0.851	0.827	0.787	0.957	0.691
GunPoint	0.940	0.987	0.987	0.947	1.000	0.913
Ham	0.705	0.705	0.810	0.648	0.667	0.600
Herring	0.656	0.578	0.625	0.531	0.625	0.531
ItalyPowerDemand	0.906	0.734	0.816	0.917	0.970	0.955
LargeKitchenApp	0.864	0.760	0.877	0.560	0.701	0.795
PhalangesOC	0.748	0.717	0.710	0.744	0.765	0.761
ProximalPhalanxOC	0.818	0.818	0.828	0.804	0.834	0.790
ProximalPhalanxOAG	0.839	0.844	0.824	0.780	0.849	0.785
ProximalPhalanxTW	0.771	0.792	0.610	0.702	0.776	0.756
RefrigerationDevices	0.533	0.541	0.653	0.333	0.515	0.440
ScreenType	0.499	0.461	0.512	0.413	0.429	0.411
ShapeletSim	0.994	0.994	0.717	1.000	0.950	0.700
SmallKitchenApp	0.795	0.776	0.579	0.333	0.664	0.672
Strawberry	0.962	0.954	0.957	0.903	0.911	0.946
Wafer	0.975	0.993	0.999	0.997	0.996	0.995
Wine	0.759	0.556	0.963	0.759	0.500	0.611
Worms	0.714	0.536	0.558	0.649	0.610	0.532
Mean	0.793	0.770	0.769	0.715	0.764	0.725

Qualitative results on the ShapeletSim dataset

Figure: Local interpretability ShapeletSim

Figure: Global interpretability ShapeletSim

Thank you for your attention!

References I

- A. Chaman and I. Dokmanic. Truly shift-equivariant convolutional neural networks with adaptive polyphase upsampling. In 55th Asilomar Conference on Signals, Systems, and Computers, ACSSC, pages 1113–1120. IEEE, 2021. doi: 10.1109/IEEECONF53345.2021.9723377.
- J. Franceschi, A. Dieuleveut, and M. Jaggi. Unsupervised scalable representation learning for multivariate time series. In *Advances in Neural Information Processing Systems 32*, pages 4652–4663, 2019.
- A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural discrete representation learning. In *Advances in Neural Information Processing Systems 30*, pages 6306–6315, 2017.
- L. Yang and S. Hong. Unsupervised time-series representation learning with iterative bilinear temporal-spectral fusion. In *International Conference on Machine Learning, ICML*, volume 162 of *Proceedings of Machine Learning Research*, pages 25038–25054. PMLR, 2022.

References II

- Z. Yue, Y. Wang, J. Duan, T. Yang, C. Huang, Y. Tong, and B. Xu. Ts2vec: Towards universal representation of time series. In *Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI*, pages 8980–8987. AAAI Press, 2022.
- X. Zhang, Z. Zhao, T. Tsiligkaridis, and M. Zitnik. Self-supervised contrastive pre-training for time series via time-frequency consistency. *CoRR*, abs/2206.08496, 2022. doi: 10.48550/arXiv.2206.08496.