Problem: We will explore several methods to see if certain characteristics or features can be used to predict whether an applicant defaults or pays his loan. Then we will use machine learning technics to develop a model to predict credit default. To reach this goal, we will implement a 3 steps project:

· Step 1-Identify and handle missing values

Identify missing values

Evaluate the missing values

Deal with the missing values

Correct data format

Get indicator variables and assign them to dummy variables

Binning in order to categorise the loan value

- Step 2- Analyse Individual Feature Patterns using Visualization and stastical technicques
- Step 3- Develop the Model

The data come from: http://www.creditriskanalytics.net/datasets-private2.html) The data set HMEQ reports characteristics and delinquency information for 5,960 home equity loans. A home equity loan is a loan where the obligor uses the equity of his or her home as the underlying collateral.

1-Identify and handle missing values

_IMPORT ' Home Equity Data set' from the following link: http://www.creditriskanalytics.net/uploads/1/9/5/1/19511601/hmeq.csv (http://www.creditriskanalytics.net/uploads/1/9/5/1/19511601/hmeq.csv).

In [700]:

```
import numpy as np
import pandas as pd
url = 'http://www.creditriskanalytics.net/uploads/1/9/5/1/19511601/hmeq.csv'
df = pd.read_csv(url)
df.head()
#df.shape
```

Out[700]:

	BAD	LOAN	MORTDUE	VALUE	REASON	JOB	YOJ	DEROG	DELINQ	CLAGE
0	1	1100	25860.0	39025.0	HomeImp	Other	10.5	0.0	0.0	94.366667
1	1	1300	70053.0	68400.0	HomeImp	Other	7.0	0.0	2.0	121.833333
2	1	1500	13500.0	16700.0	HomeImp	Other	4.0	0.0	0.0	149.466667
3	1	1500	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	0	1700	97800.0	112000.0	HomeImp	Office	3.0	0.0	0.0	93.333333
4										

In [701]:

```
#First lets only use numeric data #df=df._get_numeric_data()
```

In [702]:

<pre>print(df.dtypes)</pre>	
-----------------------------	--

BAD int64 LOAN int64 MORTDUE float64 float64 **VALUE REASON** object JOB object YOJ float64 **DEROG** float64 float64 DELINQ CLAGE float64 float64 NINQ CLNO float64 float64 **DEBTINC** dtype: object

Evaluating for Missing Data

The missing values are auto-converted to Python's default **NaN**. We use Python's built-in functions to identify these missing values by using *.isnull()* method to detect missing data:

The output is a boolean value indicating whether the value that is passed into the argument is in fact missing data.

In [703]:

```
missing_data = df.isnull()
missing_data.head()
```

Out[703]:

	BAD	LOAN	MORTDUE	VALUE	REASON	JOB	YOJ	DEROG	DELINQ	CLAGE	NING
0	False	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	False
3	False	False	True	True	True	True	True	True	True	True	True
4	False	False	False	False	False	False	False	False	False	False	False
4											•

In [704]:

```
# Identy the columns with missing values.

for column in missing_data.columns.values.tolist():
    print(column)
    #print (missing_data[column].value_counts())
    #print("")
```

BAD

LOAN

MORTDUE

VALUE

REASON

JOB

YOJ

DEROG

DELINQ

CLAGE

NINQ

CLNO

DEBTINC

In [705]:

```
for column in missing data.columns.values.tolist():
    print (missing_data[column].value_counts())
    print("")
False
         5960
Name: BAD, dtype: int64
         5960
False
Name: LOAN, dtype: int64
False
         5442
True
          518
Name: MORTDUE, dtype: int64
False
         5848
True
          112
Name: VALUE, dtype: int64
False
         5708
True
          252
Name: REASON, dtype: int64
         5681
False
          279
True
Name: JOB, dtype: int64
False
         5445
True
          515
Name: YOJ, dtype: int64
False
         5252
          708
True
Name: DEROG, dtype: int64
False
         5380
True
          580
Name: DELINQ, dtype: int64
False
         5652
True
          308
Name: CLAGE, dtype: int64
         5450
False
True
          510
Name: NINQ, dtype: int64
False
         5738
True
          222
Name: CLNO, dtype: int64
False
         4693
True
         1267
Name: DEBTINC, dtype: int64
```

In [706]:

```
df.describe(include =['object'])
```

Out[706]:

	REASON	JOB
count	5708	5681
unique	2	6
top	DebtCon	Other
freq	3928	2388

Current sample is 5960. Only columns "BAD" and "LOAN" do not have missing values.

The next step now is to find a method to handle these missing values for the following features: MORTDUE, VALUE, REASON, JOB, YOJ, DEROG, DELINQ, CLAGE, NINQ, CLNO, DEBTINC.

Dealing with missing values: Several options are available. a) no rows or columns can be dropped as they do not have enough empty values. b) The more reasonable options to deal with these missings values are to replace them by either mean or frequency.

There are 2 categorical variables in the data which are "REASON" and "JOB". We will use the frequency to replace the missing values. The obove table shows the most frequent values for "REASON" and "JOB" are repectively "DebtCon" and "Other". This can be observed as well by using the "value_counts" method below. Hence we will replace the missing values by "DebtCon" and "Other".

In [707]:

'DebtCon'

```
#Number of missing values in Columns 'REASON' and 'JOB'
print('Number of NAN values for column REASON :', df["REASON"].isnull().sum())
print('Number of NAN values for column JOB :', df["JOB"].isnull().sum())
Number of NAN values for column REASON: 252
Number of NAN values for column JOB: 279
In [708]:
df['REASON'].value counts()
Out[708]:
DebtCon
           3928
HomeImp
           1780
Name: REASON, dtype: int64
In [709]:
df['REASON'].value counts().idxmax()
Out[709]:
```

```
In [710]:
```

```
df['JOB'].value_counts()
Out[710]:
Other
           2388
ProfExe
           1276
Office
            948
Mgr
            767
Self
            193
Sales
            109
Name: JOB, dtype: int64
In [711]:
df['JOB'].value_counts().idxmax()
Out[711]:
'Other'
In [712]:
df["REASON"].replace(np.nan, 'DebtCon', inplace=True)
df["JOB"].replace(np.nan, 'Other', inplace=True)
df.describe(include =['object'])
Out[712]:
```

	REASON	JOB
count	5960	5960
unique	2	6
top	DebtCon	Other
frea	4180	2667

In [713]:

```
print('Number of NAN values for column REASON :', df["REASON"].isnull().sum())
print('Number of NAN values for column JOB :', df["JOB"].isnull().sum())
```

Number of NAN values for column REASON : 0 Number of NAN values for column JOB : 0

In [714]:

df.head()

Out[714]:

	BAD	LOAN	MORTDUE	VALUE	REASON	JOB	YOJ	DEROG	DELINQ	CLAGE
0	1	1100	25860.0	39025.0	HomeImp	Other	10.5	0.0	0.0	94.366667
1	1	1300	70053.0	68400.0	HomeImp	Other	7.0	0.0	2.0	121.833333
2	1	1500	13500.0	16700.0	HomeImp	Other	4.0	0.0	0.0	149.466667
3	1	1500	NaN	NaN	DebtCon	Other	NaN	NaN	NaN	NaN
4	0	1700	97800.0	112000.0	HomeImp	Office	3.0	0.0	0.0	93.333333

The next step is to replace the missing values in the remaining variables by their mean. These variables are : MORTDUE, VALUE, YOJ, DEROG, DELINQ, CLAGE, NINQ, CLNO, DEBTINC.

In [715]:

```
# Computing the mean for each remaining variable and replacing NaN by mean value in eac
h column
avg MORTDUE = df["MORTDUE"].astype("float").mean(axis=0)
df['MORTDUE'].replace(np.nan, avg MORTDUE, inplace = True)
avg VALUE = df["VALUE"].astype("float").mean(axis=0)
df['VALUE'].replace(np.nan, avg_VALUE, inplace = True)
avg_YOJ = df["YOJ"].astype("float").mean(axis=0)
df['YOJ'].replace(np.nan, avg YOJ, inplace = True)
avg DEROG = df["DEROG"].astype("float").mean(axis=0)
df["DEROG"].replace(np.nan, avg_DEROG, inplace = True)
avg_DELINQ = df["DELINQ"].astype("float").mean(axis=0)
df["DELINO"].replace(np.nan, avg DELINO, inplace = True)
avg CLAGE = df["CLAGE"].astype("float").mean(axis=0)
df["CLAGE"].replace(np.nan, avg_CLAGE, inplace = True)
avg_NINQ = df["NINQ"].astype("float").mean(axis=0)
df["NINO"].replace(np.nan, avg NINO, inplace = True)
avg_CLNO = df["CLNO"].astype("float").mean(axis=0)
df["CLNO"].replace(np.nan, avg CLNO, inplace = True)
avg_DEBTINC = df["DEBTINC"].astype("float").mean(axis=0)
df["DEBTINC"].replace(np.nan, avg DEBTINC, inplace = True)
print("avg_MORTDUE =", avg_MORTDUE)
print("avg_VALUE =", avg_VALUE)
print("avg_YOJ =", avg_YOJ)
print("avg_DEROG =", avg_DEROG)
print("avg_DELINQ =", avg_DELINQ)
print("avg_CLAGE =", avg_CLAGE)
print("avg_NINQ =", avg_NINQ)
print("avg CLNO =", avg CLNO)
print("avg_DEBTINC =", avg_DEBTINC)
avg MORTDUE = 73760.817199559
avg VALUE = 101776.04874145007
```

```
avg_MORTDUE = 73760.817199559

avg_VALUE = 101776.04874145007

avg_YOJ = 8.922268135904499

avg_DEROG = 0.2545696877380046

avg_DELINQ = 0.4494423791821561

avg_CLAGE = 179.76627518656605

avg_NINQ = 1.1860550458715597

avg_CLNO = 21.29609620076682

avg_DEBTINC = 33.77991534872112
```

In [716]:

df.describe()

Out[716]:

	BAD	LOAN	MORTDUE	VALUE	YOJ	DEROG
count	5960.000000	5960.000000	5960.000000	5960.000000	5960.000000	5960.000000
mean	0.199497	18607.969799	73760.817200	101776.048741	8.922268	0.254570
std	0.399656	11207.480417	42481.395689	56843.931566	7.239301	0.794198
min	0.000000	1100.000000	2063.000000	8000.000000	0.000000	0.000000
25%	0.000000	11100.000000	48139.000000	66489.500000	3.000000	0.000000
50%	0.000000	16300.000000	69529.000000	90000.000000	8.000000	0.000000
75%	0.000000	23300.000000	88200.250000	119004.750000	12.000000	0.000000
max	1.000000	89900.000000	399550.000000	855909.000000	41.000000	10.000000

Check the dataset in order to ensure there are no missing data

In [717]:

df.head()

Out[717]:

	BAD	LOAN	MORTDUE	VALUE	REASON	JOB	YOJ	DEROG	DELINQ	
0	1	1100	25860.0000	39025.000000	HomeImp	Other	10.500000	0.00000	0.000000	
1	1	1300	70053.0000	68400.000000	HomeImp	Other	7.000000	0.00000	2.000000	
2	1	1500	13500.0000	16700.000000	HomeImp	Other	4.000000	0.00000	0.000000	
3	1	1500	73760.8172	101776.048741	DebtCon	Other	8.922268	0.25457	0.449442	
4	0	1700	97800.0000	112000.000000	HomeImp	Office	3.000000	0.00000	0.000000	
4									•	,

In [718]:

```
No_missing_data = df.isnull()
No_missing_data.head()
```

Out[718]:

	BAD	LOAN	MORTDUE	VALUE	REASON	JOB	YOJ	DEROG	DELINQ	CLAGE	NINC
0	False	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False	Fals€
2	False	False	False	False	False	False	False	False	False	False	Fals€
3	False	False	False	False	False	False	False	False	False	False	Fals€
4	False	False	False	False	False	False	False	False	False	False	Fals€

```
In [719]:
```

```
for column in No missing data.columns.values.tolist():
    print (No_missing_data[column].value_counts())
    print("")
False
         5960
Name: BAD, dtype: int64
False
         5960
Name: LOAN, dtype: int64
False
         5960
Name: MORTDUE, dtype: int64
         5960
False
Name: VALUE, dtype: int64
         5960
False
Name: REASON, dtype: int64
False
         5960
Name: JOB, dtype: int64
False
         5960
Name: YOJ, dtype: int64
False
         5960
Name: DEROG, dtype: int64
         5960
Name: DELINQ, dtype: int64
False
         5960
Name: CLAGE, dtype: int64
False
         5960
Name: NINQ, dtype: int64
         5960
Name: CLNO, dtype: int64
False
         5960
Name: DEBTINC, dtype: int64
```

Get indicator variables and assign it to data frame "dummy_variables

In [720]:

```
df.columns
```

Out[720]:

In [721]:

```
df['REASON'].value_counts()
```

Out[721]:

DebtCon 4180 HomeImp 1780

Name: REASON, dtype: int64

In [722]:

```
dummy_variable_1 = pd.get_dummies(df["REASON"])
dummy_variable_1.head()
```

Out[722]:

	DebtCon	HomeImp
0	0	1
1	0	1
2	0	1
3	1	0
4	0	1

In [723]:

```
# Replace the dummy variables 'DebtCon' and 'HomeImp'their values
df["REASON"].replace("DebtCon", "1", inplace = True)
df["REASON"].replace("HomeImp", "1", inplace = True)
df.head(5)
```

Out[723]:

	BAD	LOAN	MORTDUE	VALUE	REASON	JOB	YOJ	DEROG	DELINQ	
0	1	1100	25860.0000	39025.000000	1	Other	10.500000	0.00000	0.000000	_
1	1	1300	70053.0000	68400.000000	1	Other	7.000000	0.00000	2.000000	1
2	1	1500	13500.0000	16700.000000	1	Other	4.000000	0.00000	0.000000	1
3	1	1500	73760.8172	101776.048741	1	Other	8.922268	0.25457	0.449442	1
4	0	1700	97800.0000	112000.000000	1	Office	3.000000	0.00000	0.000000	
4									1	

In [724]:

```
# correct data format
df["REASON"]=df["REASON"].astype(int, copy=True)
df.dtypes
```

Out[724]:

BAD int64 LOAN int64 float64 MORTDUE float64 **VALUE** int64 **REASON** JOB object float64 YOJ **DEROG** float64 float64 DELINO CLAGE float64 float64 NINQ CLNO float64 DEBTINC float64 dtype: object

In [725]:

df.describe()

Out[725]:

	BAD	LOAN	MORTDUE	VALUE	REASON	YOJ	
count	5960.000000	5960.000000	5960.000000	5960.000000	5960.0	5960.000000	596
mean	0.199497	18607.969799	73760.817200	101776.048741	1.0	8.922268	
std	0.399656	11207.480417	42481.395689	56843.931566	0.0	7.239301	
min	0.000000	1100.000000	2063.000000	8000.000000	1.0	0.000000	
25%	0.000000	11100.000000	48139.000000	66489.500000	1.0	3.000000	
50%	0.000000	16300.000000	69529.000000	90000.000000	1.0	8.000000	
75%	0.000000	23300.000000	88200.250000	119004.750000	1.0	12.000000	
max	1.000000	89900.000000	399550.000000	855909.000000	1.0	41.000000	1
4							•

```
In [726]:
```

```
df.corr()['BAD'].sort_values()
Out[726]:
CLAGE
          -0.165113
LOAN
          -0.075099
YOJ
          -0.058314
MORTDUE
         -0.046034
VALUE
          -0.028852
CLNO
          -0.004067
DEBTINC
          0.124324
NINQ
           0.168851
           0.264068
DEROG
DELINO
           0.341472
           1.000000
BAD
REASON
                NaN
Name: BAD, dtype: float64
In [727]:
df['JOB'].value_counts()
Out[727]:
Other
           2667
ProfExe
           1276
Office
            948
Mgr
            767
Self
            193
Sales
            109
Name: JOB, dtype: int64
In [728]:
```

```
dummy_variable_2 = pd.get_dummies(df["JOB"])
dummy_variable_2.head()
```

Out[728]:

	Mgr	Office	Other	ProfExe	Sales	Self
0	0	0	1	0	0	0
1	0	0	1	0	0	0
2	0	0	1	0	0	0
3	0	0	1	0	0	0
4	0	1	0	0	0	0

We now have the values 0 and 1 to represent the dummy variables, we will now insert this column back into our original dataset.

In [729]:

```
# merge data frame "df" and "dummy_variable_1"
df = pd.concat([df, dummy_variable_1], axis=1)

# drop original column "REASON" from "df"
df.drop("REASON", axis = 1, inplace=True)

# merge data frame "df" and "dummy_variable_2"
df = pd.concat([df, dummy_variable_2], axis=1)

# drop original column "JOB" from "df"
df.drop("JOB", axis = 1, inplace=True)
```

In [730]:

```
df.head()
```

Out[730]:

	BAD	LOAN	MORTDUE	VALUE	YOJ	DEROG	DELINQ	CLAGE	NII
0	1	1100	25860.0000	39025.000000	10.500000	0.00000	0.000000	94.366667	1.0000
1	1	1300	70053.0000	68400.000000	7.000000	0.00000	2.000000	121.833333	0.0000
2	1	1500	13500.0000	16700.000000	4.000000	0.00000	0.000000	149.466667	1.0000
3	1	1500	73760.8172	101776.048741	8.922268	0.25457	0.449442	179.766275	1.1860
4	0	1700	97800.0000	112000.000000	3.000000	0.00000	0.000000	93.333333	0.0000
4									•

Categorise the loan value into 4 bins of equal size bandwith. First let's plot the distribution of loan Value

In [731]:

```
%matplotlib inline
import matplotlib as plt
from matplotlib import pyplot

plt.pyplot.hist(df["VALUE"])

# set x/y labels and plot title
plt.pyplot.xlabel("VALUE")
plt.pyplot.ylabel("count")
plt.pyplot.title("VALUE bins")
```

Out[731]:

Text(0.5, 1.0, 'VALUE bins')

In [732]:

```
df['VALUE'].value_counts().idxmax()
```

Out[732]:

101776.04874145007

In [733]:

```
# 4 bins of equal size bandwith
bins = np.linspace(min(df["VALUE"]), max(df["VALUE"]), 5)
bins
```

Out[733]:

```
array([ 8000. , 219977.25, 431954.5 , 643931.75, 855909. ]
```

In [734]:

```
# Let's see the bin group names and apply the function "cut" to determine what each va
lue of "df['VALUE']" belongs to.
group_names = ['Low','Moderate', 'Medium', 'High']
df['VALUE_BINNED'] = pd.cut(df['VALUE'], bins, labels=group_names, include_lowest=True)
df[['VALUE','VALUE_BINNED']].tail(5)
```

Out[734]:

	VALUE	VALUE_BINNED
5955	90185.0	Low
5956	92937.0	Low
5957	92924.0	Low
5958	91861.0	Low
5959	88934.0	Low

In [735]:

```
# checking the bin classification
df["VALUE_BINNED"].value_counts()
```

Out[735]:

Low 5751 Moderate 193 Medium 12 High 4

Name: VALUE_BINNED, dtype: int64

In [736]:

```
#plotting the distribution for reach bin

%matplotlib inline
import matplotlib as plt
from matplotlib import pyplot

pyplot.bar(group_names, df["VALUE_BINNED"].value_counts())

# set x/y labels and plot title
plt.pyplot.xlabel("VALUE_BINNED")
plt.pyplot.ylabel("count")
plt.pyplot.title("Loan Value Classification")
```

Out[736]:

Text(0.5, 1.0, 'Loan Value Classification')

In [737]:

```
# We have now a dataframe with the categorisation for each loan in the last column' VAL UE\_BINNED'. df.head()
```

Out[737]:

	BAD	LOAN	MORTDUE	VALUE	YOJ	DEROG	DELINQ	CLAGE	NII
0	1	1100	25860.0000	39025.000000	10.500000	0.00000	0.000000	94.366667	1.0000
1	1	1300	70053.0000	68400.000000	7.000000	0.00000	2.000000	121.833333	0.0000
2	1	1500	13500.0000	16700.000000	4.000000	0.00000	0.000000	149.466667	1.0000
3	1	1500	73760.8172	101776.048741	8.922268	0.25457	0.449442	179.766275	1.1860
4	0	1700	97800.0000	112000.000000	3.000000	0.00000	0.000000	93.333333	0.0000

In [738]:

```
# Visualising the newly created bins with a Histogram
%matplotlib inline
import matplotlib as plt
from matplotlib import pyplot

a = (0,1,2,3)

# draw historgram of attribute "horsepower" with bins = 4
plt.pyplot.hist(df["VALUE"], bins = 4)

# set x/y labels and plot title
plt.pyplot.xlabel("VALUE")
plt.pyplot.ylabel("count")
plt.pyplot.title("Loan Value Classification")
```

Out[738]:

Text(0.5, 1.0, 'Loan Value Classification')


```
In [739]:
```

```
# Normalising the DATA
#df_mean = (df- df.mean())/df.std()
#df_mean.head()
```

In [740]:

```
# Save the new dataframe into csv format
```

In [741]:

```
df.to_csv('clean_Loandata.csv')
```

In [748]:

```
# Let's separate y_data from x_data (features)
y_data = df['BAD']
# Drop bad debt from the x_data
x_data=df.drop('BAD',axis=1)
x_data
```

Out[748]:

	LOAN	MORTDUE	VALUE	YOJ	DEROG	DELINQ	CLAGE	NINQ
0	1100	25860.0000	39025.000000	10.500000	0.00000	0.000000	94.366667	1.000000
1	1300	70053.0000	68400.000000	7.000000	0.00000	2.000000	121.833333	0.000000
2	1500	13500.0000	16700.000000	4.000000	0.00000	0.000000	149.466667	1.000000
3	1500	73760.8172	101776.048741	8.922268	0.25457	0.449442	179.766275	1.186055
4	1700	97800.0000	112000.000000	3.000000	0.00000	0.000000	93.333333	0.000000
5955	88900	57264.0000	90185.000000	16.000000	0.00000	0.000000	221.808718	0.000000
5956	89000	54576.0000	92937.000000	16.000000	0.00000	0.000000	208.692070	0.000000
5957	89200	54045.0000	92924.000000	15.000000	0.00000	0.000000	212.279697	0.000000
5958	89800	50370.0000	91861.000000	14.000000	0.00000	0.000000	213.892709	0.000000
5959	89900	48811.0000	88934.000000	15.000000	0.00000	0.000000	219.601002	0.000000
5960 rows × 19 columns								
4								•

This concludes the first part of this project. In the second part, the focus will be on the exploration and data analysis in order to identify the most relevant features that can be used to predict loan default

```
In [ ]:
```