## JUSTIN PATE

IST-652

CRIME DATA--MAP

#DEFINE WORKING DIRECTORY LINK TO GOOGLE DRIVE
import os
import plotly.express as px #plotly express for plotting
os.getcwd()
from google.colab import drive
drive.mount('/content/drive/', force\_remount=True)
pathlocation = '/content/drive/My Drive/Colab Notebooks/IST\_652/PROJECT/'
os.chdir(pathlocation)
os.getcwd()

Mounted at /content/drive/
 '/content/drive/My Drive/Colab Notebooks/IST\_652/PROJECT'

#import crime file. File is in zip format so needs to have compression option listed
import pandas as pd
import zipfile

df = pd.read\_csv('crime\_open\_database\_core\_2018.csv.gz', compression='gzip', sep=',')

/usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py:2718: DtypeWarning: Columns (9,10,12,13) have mixed types. Specify dtype option on import or set low\_memory=False. interactivity=interactivity, compiler=compiler, result=result)

#show a sample of the data frame

| ₽       | uid      | city_name o    | offense_code | offense_type                                   | offense_group                                  | offense_against | date_single      | longitude  | latitude  | location_type   | location_category | census_block    | date_start | date_end |
|---------|----------|----------------|--------------|------------------------------------------------|------------------------------------------------|-----------------|------------------|------------|-----------|-----------------|-------------------|-----------------|------------|----------|
| 0       | 1187951  | Austin         | 22U          | other burglary/breaking & entering             | burglary/breaking & entering                   | property        | 2018-01-01 00:00 | -97.710191 | 30.349433 | other           | other             | 484530018043000 | NaN        | NaN      |
| 1       | 1187952  | Austin         | 520          | weapon law violations                          | weapon law violations                          | society         | 2018-01-01 00:00 | -97.741558 | 30.411489 | residence       | residence         | 484530017541002 | NaN        | NaN      |
| 2       | 1187953  | Austin         | 23H          | all other larceny                              | larceny/theft offenses                         | property        | 2018-01-01 00:00 | -97.741119 | 30.305911 | vehicle parking | open space        | 484530002031007 | NaN        | NaN      |
| 3       | 1187954  | Austin         | 290          | destruction/damage/vandalism of property (exce | destruction/damage/vandalism of property (exce | property        | 2018-01-01 00:00 | -97.672452 | 30.363035 | residence       | residence         | 484530018333009 | NaN        | NaN      |
| 4       | 1187955  | Austin         | 290          | destruction/damage/vandalism of property (exce | destruction/damage/vandalism of property (exce | property        | 2018-01-01 00:00 | -97.699980 | 30.258932 | other           | other             | 484530009021000 | NaN        | NaN      |
|         |          |                |              |                                                |                                                |                 |                  |            |           |                 |                   |                 |            |          |
| 1608784 | 18882009 | Virginia Beach | 35A          | drug/narcotic violations                       | drug/narcotic offenses                         | society         | 2018-12-31 23:10 | -76.065879 | 36.759361 | NaN             | NaN               | 518100454221000 | NaN        | NaN      |
| 1608785 | 18882010 | Virginia Beach | 520          | weapon law violations                          | weapon law violations                          | society         | 2018-12-31 23:10 | -76.065879 | 36.759361 | NaN             | NaN               | 518100454221000 | NaN        | NaN      |
| 1608786 | 18882011 | Virginia Beach | 35A          | drug/narcotic violations                       | drug/narcotic offenses                         | society         | 2018-12-31 23:23 | -76.159443 | 36.830235 | NaN             | NaN               | 518100460051035 | NaN        | NaN      |
| 1608787 | 18882012 | Virginia Beach | 12U          | other robbery                                  | robbery                                        | property        | 2018-12-31 23:30 | -75.971098 | 36.833776 | NaN             | NaN               | 518100440031000 | NaN        | NaN      |
| 1608788 | 18882013 | Virginia Beach | 23F          | theft from motor vehicle (except theft of moto | larceny/theft offenses                         | property        | 2018-12-31 23:59 | -76.089190 | 36.800369 | NaN             | NaN               | 518100454053001 | NaN        | NaN      |

1608789 rows × 14 columns

df.ftypes

L

/usr/local/lib/python3.6/dist-packages/ipykernel\_launcher.py:1: FutureWarning:

DataFrame.ftypes is deprecated and will be removed in a future version. Use DataFrame.dtypes instead.

uid int64:dense city\_name
offense\_code object:dense object:dense offense\_type offense\_group object:dense object:dense offense\_against object:dense object:dense date\_single longitude float64:dense latitude float64:dense location\_type object:dense location\_category object:dense int64:dense census\_block date\_start object:dense date\_end object:dense dtype: object

dfchart = df.sample(n=400)

px.parallel\_categories(dfchart, dimensions=[])

[->



px.histogram(dfchart, x='city\_name',color="offense\_group")

L



px.scatter\_matrix(dfchart, height=1200,width=1200)

 $\Box$ 



offense\_type

px.histogram(df, x='city\_name')

 $\Box$ 





```
#look at the city options
dfcities = df.groupby('city_name').count()
dfcities = dfcities.reset_index()
dfcities[['city_name']]
```

| $\Box$ > |    | city_name      |
|----------|----|----------------|
|          | 0  | Austin         |
|          | 1  | Boston         |
|          | 2  | Chicago        |
|          | 3  | Detroit        |
|          | 4  | Fort Worth     |
|          | 5  | Kansas City    |
|          | 6  | Los Angeles    |
|          | 7  | Louisville     |
|          | 8  | Mesa           |
|          | 9  | New York       |
|          | 10 | San Francisco  |
|          | 11 | Tucson         |
|          | 12 | Virginia Beach |

```
#define a function that will filter to the specific city
def citycrime(citystr):
   dfmap=df.loc[df['city_name'] == citystr]
   dfmap = dfmap[['latitude','longitude', 'offense_group', 'offense_code']]
   return dfmap.sample(n=400)
```

## Interactive map

The below map will plot based on the city selection

```
# Import the Folium library.
def displaymap(z):
  import folium
```

```
#sample tile styles below
     #Stamen Terrain
     #Stamen Toner
     #OpenStreetMap
  \label{lem:map_sign} $$\#$https://earthengine.googleapis.com/map/"+mapID['mapid']+"/{z}/{x}/{y}?token="+mapID['token'] $$
 # Define a method for displaying Earth Engine image tiles to folium map.
 def add_ee_layer(self, eeImageObject, visParams, name):
   mapID = ee.Image(eeImageObject).getMapId(visParams)
   folium.raster_layers.TileLayer(tiles = "Stamen Terrain",
                                     attr = "Map Data © <a href='https://earthengine.google.com/'>Google Earth Engine</a>",
                                    name = name,overlay = True,control = True).add_to(self)
 # Add EE drawing method to folium.
 folium.Map.add_ee_layer = add_ee_layer
 # Set visualization parameters.
 visParams = {'min':0, 'max':500, 'height':500, 'palette':['#1B1B1B','#1B1B1B','#1B1B1B']}
 #visParams = {'min':0, 'max':500, 'height':500, 'palette':['225ea8','41b6c4','a1dab4','ffffcc']}
 # Create a folium map object.
 #also get average lat and long of dataframe
 myMap = folium.Map(location=[dfformap["latitude"].mean(), dfformap["longitude"].mean()], zoom_start=z, tiles = "OpenStreetMap")
 # Add the elevation model to the map object.
 #myMap.add_ee_layer(dem, visParams, 'DEM')
 # Add a layer control panel to the map.
 myMap.add_child(folium.LayerControl())
 #add crime data
 crimedata = dfformap
 for index, row in crimedata.iterrows():
   folium.Marker(location=[row["latitude"], row["longitude"]],tooltip=row["offense_group"]).add_to(myMap)
 # Display the map.
 display(myMap)
 #print(type(myMap))
dfformap=citycrime('New York')
#dfformap = df.sample(n=300)
displaymap(10)
```



#dfformap=citycrime('Kansas City')
dfformap = df.sample(n=300)
displaymap(4.3)





## Chart visualization

Some Earth Engine functions produce tabular data that can be plotted by data visualization packages such as <code>matplotlib</code>. The following example demonstrates the display of tabular data from Earth Engine as a scatter plot. See <a href="Charting in Colaboratory">Charting in Colaboratory</a> for more information.

#some final aggregations by city with full dataset
df.groupby('city\_name').count()

 $\Box$  $\Rightarrow$ 

uid offense\_code offense\_type offense\_group offense\_against date\_single longitude latitude location\_type location\_category census\_block date\_start date\_end

| city_name      |        |        |        |        |        |        |        |        |        |        |        |        |        |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Austin         | 82353  | 82353  | 82353  | 82353  | 82353  | 82353  | 82353  | 82353  | 81788  | 81788  | 82353  | 0      | 0      |
| Boston         | 44165  | 44165  | 44165  | 44165  | 44165  | 44165  | 44165  | 44165  | 0      | 0      | 44165  | 0      | 0      |
| Chicago        | 262258 | 262258 | 262258 | 262258 | 262258 | 262258 | 262258 | 262258 | 261601 | 261601 | 262258 | 0      | 0      |
| Detroit        | 80618  | 80618  | 80618  | 80618  | 80618  | 80618  | 80618  | 80618  | 0      | 0      | 80618  | 0      | 0      |
| Fort Worth     | 53819  | 53819  | 53819  | 53819  | 53819  | 53819  | 53819  | 53819  | 0      | 53818  | 53819  | 0      | 0      |
| Kansas City    | 114889 | 114889 | 114889 | 114889 | 114889 | 114889 | 114889 | 114889 | 0      | 0      | 114889 | 114889 | 114889 |
| Los Angeles    | 241220 | 241220 | 241220 | 241220 | 241220 | 241220 | 241220 | 241220 | 241059 | 241059 | 241220 | 0      | 0      |
| Louisville     | 41008  | 41008  | 41008  | 41008  | 41008  | 41008  | 41008  | 41008  | 40974  | 40974  | 41008  | 0      | 0      |
| Mesa           | 28947  | 28947  | 28947  | 28947  | 28947  | 28947  | 28947  | 28947  | 0      | 0      | 28947  | 0      | 0      |
| New York       | 447766 | 447766 | 447766 | 447766 | 447766 | 447766 | 447766 | 447766 | 442802 | 442802 | 447766 | 447766 | 385601 |
| San Francisco  | 107095 | 107095 | 107095 | 107095 | 107095 | 107095 | 107095 | 107095 | 0      | 0      | 107095 | 0      | 0      |
| Tucson         | 78033  | 78033  | 78033  | 78033  | 78033  | 78033  | 78033  | 78033  | 0      | 0      | 78033  | 0      | 0      |
| Virginia Beach | 26618  | 26618  | 26618  | 26618  | 26618  | 26618  | 26618  | 26618  | 0      | 0      | 26618  | 0      | 0      |

```
dfbycity = df.loc[df['city_name'] == "New York"]
dfbycity
```

dfbycitychart = dfbycity.groupby('offense\_type').count()

dfbycitychart = dfbycitychart.sort\_values('uid', ascending = False)

dfbycitychart=dfbycitychart.reset\_index()

dfbycitychart

px.bar(dfbycitychart, x="offense\_type", y = "uid")



