IN THE CLAIMS:

Claim 1 (canceled).

Claim 2 (currently amended and reformatted): A compound of the formula IIa:

$$R^2$$
 R^3
 R^3
 R^4
 R^5

(Ha)

wherein

X is $-CH(R^7)$ - wherein R^7 is hydrogen, hydroxy, C_{1-7} alkoxy, $-QR^3$ or $-NR^8R^9$, wherein R⁸ is a group -Y¹R¹⁰, wherein

 Y^{l} is a direct bond, -C(O)-, -C(S)-, -S-, -C(O)O-, $-C(O)NR^{11}$ -, $-SO_{2}$ - or -SO₂NR¹²- (wherein R¹¹ and R¹², which may be the same or different, each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and

R¹⁰ is selected from one of the following nine groups:

1) hydrogen, C₁₋₇alkyl, C₃ reycloalkyl, C₁₋₄alkylY⁸C₁₋₄alkyl wherein Y⁸ is as defined herein, or phenyl,

which alkyl, cycloalkyl, alkylY8alkyl or phenyl group may bear one or more substituents selected from: halogeno, amino, C1-alkylamino, di(C1-alkyl)amino, hydroxy, carboxy, carbamoyl, C_{1-4} alkoxy, C_{1-4} alkylsulphanyl, C_{1-4} alkylsulphonyl, C1-4alkoxycarbonylamino, C1-4alkanoyl, phenyl, mtro, sulphate, phosphate, Z¹,

wherein Z' represents a 5-6 membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C1 4alkyl, C1-4hydroxyalkyl, C1-4alkoxy, C1-aminoalkyl, C1-7alkanoyl, cyanoC1-4alkyl, C_{1-4} alkoxy C_{1-4} alkyl, C_{1-4} alkylsulphonyl C_{1-4} alkyl and \mathbf{Z}^{3} ;

(wherein Z2 is a-5-6-membered saturated heterocyclic group (linked via carbon or nittogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, Ct 40lkyl, C, hydroxyalkyl, C, alkoxy, C, aminoalkyl, C1 zalkanoyl, cynnoC1 alkyl, C1 talkoxyC1 talkyl and CualkylsulphonylCualkyl,

 C_{1-4} alkyl Z^1 (wherein Z^1 is as defined herein), and a group $-Y^2R^{13}$. wherein

Y² is -NR¹⁴C(O)- or -O-C(O)- (wherein R¹⁴ represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and

 R^{13} is $C_{1-7}aikyl,\,C_{3.7}cycloalkyl or a group <math display="inline">R^{15}$ wherein R^{15} is a phenyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroatoms selected independently from O, N and S, which phenyl or aromatic heterocyclic group may bear one or more substituents selected from hydroxy, nitro, halogeno, amino, Ci-alkyl, Ci-ahaloalkyl, C_{1-4} alkoxy, C_{1-4} hydroxyalkyl, C_{1-4} aminoalkyl, C_{1-4} alkylamino, C1-4hydroxyalkoxy, carboxy, cyano, -CONR16R17 and -NR 13 COR 19 (wherein R 16 , R 17 , R 18 and R 19 , which may be the

same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) C₁₋₃alkoxyC₂₋₃alkyl,

- 2) R¹⁵ wherein R¹⁵ is as defined herein;
- 3) C₂₋₇aikenylR¹⁵ (wherein R¹⁵ is as defined herein);
- 4) C₃₋₇alkynylR¹⁵ (wherein R¹⁵ is as defined herein);
- 5) Z' (wherein Z' is as defined herein);
- 6) C_{1.7}alkylZ¹ (wherein Z¹ is as defined herein);

7) C1-7alkviY8Z1, wherein C1-7alkylY8Z1-(wherein

Z1 is as defined herein and

Y⁸ is -C(O)-, -NR⁵⁹C(O)-, -NR⁵⁹C(O)C₁₋₄alkyl-, -C(O)NR⁶⁰- or -C(O)NR⁶⁰C₁₋₄alkyl-, (wherein R⁵⁰ and R⁶⁰, which may be the same or different, each represents hydrogen, C₁₋₃alkyl, C₁₋₃hydroxyalkyl or C₁₋₃alkoxyC₂₋₃alkyl) C₁₋₃alkoxyC₂₋₃alkyl);

8) (C1-7alkvl) Y973, wherein (G1-7alkyl) Y9Z3 (wherein

c is 0 or 1,

Z3 is an amino acid group and

 Y^0 is a direct bond, -C(O)- or NR^{61} - (wherein R^{61} is hydrogen, $C_{1/3}$ alkyl or $C_{1/3}$ alkoxy $C_{2/3}$ alkyl) $C_{1/3}$ alkoxy $C_{2/3}$ alkyl); and

9) C_{1.7}alkylR¹⁵ (wherein R¹⁵ is as defined herein); and

R° is hydrogen, C_{1.7}alkyl or C_{3.7}cycloalkyl, which alkyl or cycloalkyl group may bear one or more substituents selected from C_{1.4}alkoxy and phenyl;

R¹, R² and R³ are each independently hydrogen, PO₃H₂, sulphate, C_{3.7}cycloalkyl, C_{2.7}alkenyl, C_{2.7}alkynyl, C_{1.7}alkanoyl, a group R²⁰C_{1.7}alkyl (wherein R⁷⁰ is phenyl which may bear one or more substituents selected from C_{1.4}alkyl, C_{1.4}alkoxy, C_{1.4}aminoalkyl and C_{1.4}hydroxyalkoxy), C_{1.7}alkyl or C_{1.7}alkylsulphonyl,

Page 5

which alkyl or alkylsulphonyl group may bear one or more substituents selected from: halogeno, amino, C_{1-4} alkylamino, $d_1(C_{1-4}$ alkyl)amino, hydroxy, C_{1-4} alkoxy, C_{1-4} alkylsulphonyl, C_{1-4} alkoxycarbonylamino, C_{1-4} alkanoyl, carboxy, phenyl, nitro, sulphate, phosphate and a group $-\frac{V^2R^{21}}{2}$, wherein $-\frac{V^2R^{21}}{2}$ (wherein

 Y^2 is -NR²²C(O)- or O-C(O)- (wherein R²² represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and

R²¹ is C_{1.7}alkyl, C_{3.7}cycloalkyl or a group R²³ wherein R²³ is a phenyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroatoms selected independently from O, N and S, which phenyl or aromatic heterocyclic group may bear one or more substituents selected from hydroxy, nitro, halogeno, amino, C_{1.4}alkyl, C_{1.4}haloalkyl, C_{1.4}alkoxy, C_{1.4}hydroxyalkyl, C_{1.4}aminoalkyl, C_{1.4}alkylamino, C_{1.4}hydroxyalkoxy, carboxy, cyano, CONR²⁴R²⁵ and -NR²⁶COR²⁷ (wherein R²⁴, R²⁵, R²⁶ and R²⁷, which may be the same or different, each represents hydrogen, C_{1.3}alkyl or C_{1.3}alkoxyC_{2.3}alkyl);

with the proviso that at least two of \mathbb{R}^1 , \mathbb{R}^2 and \mathbb{R}^3 are C_{1-7} alkyl;

 \mathbb{R}^4 is hydrogen, eyano, halogeno, nitro, amino, hydroxy, C_{1-7} alkoxy, C_{1-7} thioalkoxy, C_{1-7} alkanoyl or C_{1-7} alkyl,

which alkyl group may bear one or more substituents selected from: halogeno, amino, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, hydroxy, C₁₋₄alkoxy, C₁₋₄alkoxy, C₁₋₄alkylsulphanyl, C₁₋₄alkylsulphonyl, C₁₋₄alkoxycarbonylamino, C₁₋₄alkanoyl, carboxy, phenyl, nitro, sulphate, phosphate and a group -Y³R²⁸, -Y³R³⁸ wherein

 Y^3 is -NR²⁹C(O)- or -O-C(O)- (wherein R²⁹ represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂ 3alkyl) and

R²⁸ is C_{1.7}alkyl, C_{3.7}cycloalkyl or a group R³⁰ wherein R³⁰ is a phonyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroatoms selected independently from O, N and S, which phenyl or aromatic heterocyclic group may bear one or more substituents selected

from hydroxy, nitro, halogeno, amino, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} hydroxyalkyl, C_{1-4} aminoalkyl, C_{1-4} alkylamino, C_{1-4} hydroxyalkoxy, carboxy, cyano, -CONR³¹R³² and -NR³¹COR³² (wherein R³¹, R³², R³³ and R³⁴, which may be the same or different, each represents hydrogen, C_{1-3} alkoxy C_{2-3} alkyl);

R⁵ and R⁶ are each independently selected from hydrogen, -OPO₃H₂, phosphonate, cyano, halogeno, nitro, amino, carboxy, carbamoyl, hydroxy, C₁₋₇alkoxy, C₁₋₇alkanoyl, C₁₋₇thioalkoxy, C₁₋₇alkyl.

which alkyl group may bear one or more substituents selected from: halogeno, amino, C_{1-4} alkylamino, di(C_{1-4} alkyl)amino, hydroxy, C_{1-4} alkoxy, C_{1-4} alkylsulphonyl, C_{1-4} alkoxycarbonylamino, C_{1-4} alkanoyl, carboxy, phenyl, sulphate, phosphate and a group $-Y^3R^{28}$, wherein $-Y^2R^{38}$

(wherein Y^3 is $NR^{29}C(O)$ - or -O-C(O)- (wherein R^{29} represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and

R²⁸ is C₁₋₇alkyl, C₃₋₇cycloalkyl or a group R³⁰ wherein R³⁰ is a phonyl group or a 5-10 membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroatoms selected independently from O, N and S, which phenyl or aromatic heterocyclic group may bear one or more substituents selected from hydroxy, nitro, halogeno, amino, C₁₋₄alkyl, C₁₋₄haloalkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, C₁₋₄hydroxyalkoxy, carboxy, cyano, -CONR³¹R³² and -NR³¹COR³² (wherein R³¹, R³², R³³ and R³⁴, which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₁alkoxyC₂₋₃alkyl) G₁₋₃alkoxyC₂₋₃alkyl), and

a group $-Y^1R^{35}$, $-Y^4R^{35}$ wherein

Y⁴ is -C(O)-, -OC(O)-, -O, -SO-, -SO₂-, -OSO₂-, -NR³⁶-, -C₁₋₄alkylNR³⁶-, -C₁₋₄alkylC(O)-, -NR³⁷C(O)-, OC(O)O-, -C(O)NR³⁸- or -NR³⁹C(O)O- (wherein R³⁶, R³⁷, R³⁸ and R³⁹, which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and

Page 7

R35 is a sugar motety, a mono-peptide, a di-peptide, a tri-peptide, a terra-peptide, sulphate, hydroxy, amino, C1-7alkyl, C1-7alkoxy, C1-7alkanoyl, C1-7alkylamino, $di(C_{1-7}alkyl)amino,\ aminoC_{1-7}alkylamino,\ C_{1-7}alkylaminoC_{1-7}alkylamino,$ C_{1-7} alkanoylamino C_{1-7} alkyl, di $(C_{1-7}$ alkylamino C_{1-7} alkylamino, C_{1-7} alkylphosphate, C_{1-7} alkylphosphonate, C_{1-7} alkylcarbamoyl C_{1-7} alkyl,

which (which alkyl, alkoxy, alkanoyl, alkylamino, dialkylamino, aminoalkylamino, alkylaminoalkylamino, alkanoylaminoalkyl, dialkylaminoalkylamino, alkylphosphate, alkylphosphonale or alkylcarbamoylalkyl, may bear one or more substituents selected from: halogeno, amino, Ci-alkylamino, di(Ci-alkyl)amino, hydroxy. C_{1-4} hydroxyalkyl, C_{1-4} alkoxy, C_{1-4} alkylsulphanyl, C_{1-4} alkylsulphonyl, C1-alkoxycarbonylamino, C1-alkanoyl, carboxy, phenyl, nitro, sulphate, phosphate and a group -Y5R40, wherein -Y5R40(wherein

 Y^{5} is $-NR^{41}C(O)$ -, $C(O)NR^{42}$ -, -C(O)-O- or -O-C(O)- (wherein R^{41} and R^{42} which may be the same or different each represents hydrogen, Ct salkyl or C1.3alkoxyC2-3alkyl) and

R⁴⁰ is C₁₋₇alkyl, C₃₋₇cycloalkyl, carboxyC₁₋₇alkyl or a group R⁴³ wherein R43 is a phenyl group, a benzyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroalnins selected independently from O, N and S, which phenyl, benzyl or aromatic heterocyclic group may bear one or more substituents selected from hydroxy, nitro, halogeno, amino, C1-alkyl, C1-haloalkyl, C1-alkoxy, C1-ahydroxyalkyl, C1-aminoalkyl, C1-alkylamino, $C_{144} hydroxyalkoxy, carboxy, cyano, -CONR^{44}R^{45}$ and -NR $^{46}COR^{47}$ (wherein R44, R45, R46 and R47, which may be the same or different, each represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl) G1.3alkoxyC2.3alkyl)),

R48, wherein R48 (wherein R48 is a phonyl group, a benzyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with

Page 8

1-4 heteroatoms selected independently from O, N and S, which phenyl, benzyl or aromatic heterocyclic group may bear one or more substituents selected from

hydroxy, nitro, halogeno, amino, C₁₋₄alkyl, C₁₋₄haloalkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, di(C₁₋₄hydroxyalkyl)aminoC₁₋₄alkyl, di(C₁₋₄aminoalkyl)aminoC₁₋₄alkyl, C₁₋₄hydroxyalkoxy, carboxy, carboxy, C₁₋₄carboxyalkyl, phenyl, cyano, -CONR⁴⁹R⁵⁰, -NR⁵¹COR⁵² (wherein R⁴⁹, R⁵⁰, R⁵¹ and R⁵², which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and C₁₋₄alkylR⁵³ (wherein R⁵³ is as defined herein),

C1-7alkylR48 (wherein R48 is as defined herein),

R⁵³, wherein R⁵³ (wherein R⁵³ is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from

oxo, hydroxy, halogeno, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄carboxyalkyl, C₁₋₄aminoalkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl and R⁵⁴, wherein R⁵⁴ (wherein R⁵⁴ is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from

oxo, hydroxy, halogeno, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl and <u>C₁₋₄alkylsulphonylC₁₋₄alkyl</u>
C₁₋₄alkylsulphonylC₁₋₄alkyl), or

(CH2)aY6(CH2)bR53, wherein (CH2)aY6(CH3)bR53 (wherein

R⁵³ is as defined herein, a is 0, or an integer 1-4, b is 0 or an integer 1-4 and

Y⁶ represents a direct bond, -O-, -C(O)-, -NR⁵⁵-, -NR⁵⁶C(O)- or -C(O)NR⁵⁷. (whercin R⁵⁵, R⁵⁶, and R⁵⁷, which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl),

and wherein one or more of the $(CH_2)_a$ or $(CH_2)_b$ groups may bear one or more substituents selected from hydroxy, amino and <u>halogeno</u> halogeno)

with the proviso that R^5 is not hydroxy, alkoxy, substituted alkoxy (wherein R^5 is Y^4R^{35} and Y^4 is -O- and R^{35} is C_{1-7} alkyl bearing one or more substituents selected from the list given herein), -OPO₃H₂, -O-C₁₋₇alkanoyl or benzyloxy;

with the further provise that at least one of R^5 or R^6 is a group $-Y^4R^{35}$ (wherein Y^4 and R^{35} are as defined herein) but with the further provises

that when R^5 is $-Y^4R^{35}$ and R^6 is hydrogen, hydroxy, methoxy or methoxycarbonyl, $-Y^4R^{35}$ is not selected from cases wherein:

 Y^4 is C(O)-, -OC(O)-, -O-, -SO-, $-OSO_2$ -, $-NR^{36}$ -, $-NR^{37}C(O)$ - or $-C(O)NR^{38}$ (wherein R^{36} , R^{37} and R^{38} , which may be the same or different, each represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and

R³⁵ is a glycine, valine or lysine group, a dipeptide of glycine and valine groups, C_{1.7}alkyl, C_{1.7}alkoxy, C_{1.7}alkanoyl, (which alkyl, alkoxy or alkanoyl may bear one or more substituents selected from; halogeno, hydroxy, and a group Y⁵R⁴⁰ (wherein Y⁵ is -O-C(O)- and R⁴⁰ is C_{1.7}alkyl) C_{1.7}alkyl), or R⁴⁸, wherein R⁴⁶ (wherein R⁴⁸ is a tetrazolyl group (which may or may not be substituted as herein defined), a phenyl group or a benzyl group which phenyl or benzyl group may bear one or more substituents selected from C_{1.4}alkyl C_{1.4}alkyl); and

that when R^6 is $-Y^4R^{35}$ and R^5 is hydrogen, hydroxy, methoxy or methoxycarbonyl, $-Y^4R^{35}$ is not selected from cases wherein:

 Y^4 is -C(O)-, -O- or $-OSO_2$ - and

R³⁵ is C₁₋₇alkyl, C₁₋₇alkoxy (which alkyl, alkoxy or alkanoyl may bear one or more substituents selected from: halogono), R⁴⁸ (wherein R⁴⁸ is a benzyl group which

Page 10

benzyl group may bear one or more substituents selected from $C_{1,4}$ alkyl), or \mathbb{R}^{53} (wherein \mathbb{R}^{53} is piperidinyl);

or a salt thereof.

Claim 3 (canceled).

Claim 4 (currently amended and reformatted): A compound according to claim 2 wherein

X is <u>CH(R')</u>, CH(R') wherein

 R^7 is $-OR^8$ or $-NR^8R^9$, wherein $-NR^8R^9$ -(wherein R^8 is a group $-Y^1R^{10}$ (wherein Y^1 is -C(O)-, -C(O)O- or $-C(O)NR^{11}$ - (wherein R^{11} represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{10} is as defined in claim 2) and R^9 is as defined in claim 2.

Claim 5 (previously presented): A compound according to claim 2 wherein \mathbb{R}^1 , \mathbb{R}^2 and \mathbb{R}^3 are each methyl.

Claim 6 (previously presented): A compound according to claim 2 wherein R⁴ is hydrogen.

Claim 7 (currently amended and reformatted): A compound according to claim 2 wherein \mathbb{R}^6 is hydrogen, halogeno, amino, carboxy, hydroxy, $C_{1.7}$ alkoxy or a group $\underline{\mathbf{Y}^4\mathbf{R}^{35}}$, $\mathbf{Y}^4\mathbf{R}^{35}$ wherein

 Y^4 is -C(O)-, -O- or -OSO₂- and

 R^{35} is C_{1-7} alkyl, C_{1-7} alkoxy (which alkyl or alkoxy may hear one or more substituents selected from halogeno), R^{48} (wherein R^{48} is a benzyl group) or R^{53} (wherein R^{53} is

a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms selected independently from O, S and N).

Claim 8 (previously presented): A compound according to claim 2 wherein R⁶ is hydrogen, C(O)OCH₃ or methoxy.

Claim 9 (currently amended and reformatted): A compound according to claims 2 wherein

 R^5 is hydrogen, halogeno, amino, carboxy, carbamoyl, C_{1-7} alkanoyl, C_{1-7} thioalkoxy, or a group $-Y^4R^{35}$, $-Y^4R^{35}$ wherein

 Y^4 is -C(O)-, -OC(O), -O-, -SO-, $-OSO_2$ -, $-NR^{36}$ -, $-NR^{37}C(O)$ - or $-C(O)NR^{38}$ (wherein R^{36} , R^{37} and R^{38} , which may be the same or different, each represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and

R³⁵ is a sugar moiety, a mono-poptide, a di-peptide, a tri-peptide, a tetra-peptide, C₁₋₇alkyl, C₁₋₇alkoxy, C₁₋₇alkanoyl, C₁₋₇alkanoylaminoC₁₋₇alkyl,

which (which alkyl, alkoxy, alkanoyl, alkanoylaminoalkyl may bear one or more substituents selected from: halogeno, amino, hydroxy, carboxy, and a group -Y⁵R⁴⁰, wherein -Y⁵R⁴⁰ (wherein

 Y^5 is -C(O)-O- or -O-C(O)- and

R⁴⁰ is C₁ 7alkyl or a group R⁴³ wherein R⁴³ is a benzyl group, group),

R⁴⁸, wherein R⁴⁸ (wherein R⁴⁸ is a phenyl group, a benzyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroatoms selected independently from O, N and S, which phenyl, benzyl or aromatic heterocyclic group may bear one or more substituents selected from

hydroxy, fluoro, amino, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl. C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, di(C₁₋₄hydroxyalkyl)aminoC₁₋₄alkyl, di(C₁₋₄aminoalkyl)aminoC₁₋₄alkyl,

C_{1.4}hydroxyalkoxy, carboxy, C_{1.4}carboxyalkyl, cyano, -CONR⁴⁹R⁵⁰, -NR⁵¹COR⁵² (wherein R⁴⁹, R⁵⁰, R⁵¹ and R⁵², which may be the same or different, each represents hydrogen, C_{1.3}alkyl or C_{1.3}alkoxyC_{2.3}alkyl) and C_{1.4}alkylR⁵³ (wherein R⁵³ is as defined herein), C_{1.7}alkylR⁴⁸ (wherein R⁴⁸ is as defined herein), R⁵³, wherein R⁵³ (wherein R⁵³)

R⁵³ is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from

oxo, hydroxy, fluoro, chloro, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄carboxyalkyl, C₁₋₄aminoalkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl and R⁵⁴, wherein R⁵⁴ (wherein R⁵⁴ is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from

Oxo, hydroxy, halogeno, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl and C₁₋₄alkylsulphonylC₁₋₄alkyl C₁₋₄alkylsulphonylC₁₋₄alkyl), or

(CH2), Y6(CH2), R53, wherein (CH2), Y6(CH2), R54 (wherein

R⁵³ is as defined herein,

a is 0, or an integer 1.4,

b is 0 or an integer 1-4 and

Y⁶ represents a direct bond, -O-, C(O)-, -NR⁵⁵-, -NR⁵⁶C(O)- or -C(O)NR⁵⁷- (wherein R⁵⁵, R⁵⁶, and R⁵⁷, which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl),

and wherein one or more of the (CH₂)_a or (CH₂)_b groups may bear one or more substituents selected from hydroxy, amino and halogene halogene);

Page 13

with the proviso that R^5 is not alkoxy, substituted alkoxy (wherein R^5 is Y^4R^{35} and Y^4 is -O- and R^{35} is $C_{1.7}$ alkyl bearing one or more substituents selected from the list given herein), -O- $C_{1.7}$ alkanoyl or benzyloxy.

Claim 10 (original). A compound according to claim 2 selected from:

- (55)-5-(acetylamino)-9,10,11-trimethoxy-6,7-dihydro-5*H*-dibenzo[a,c]cyclohepten-3-yl 3-{[(2R)-2,6-diaminohexanoyl]amino} propanoate,
- (55)-5-(acetylamino)-9,10,11-trimethoxy-6,7-dihydro-5H-dibenzo[a,c]cyclohepten-3-yl 3-[(2-aminoacetyl)amino|propanoate,
- N-([(5.5)-5-(acetylamino)-9,10,11-trimethoxy 6,7-dibydro-5H-dibenzo[a,c]cyclohepten-3 yl]oxymethyl)-2-morpholinoacetamide,
- (2S,3S,4S,5R,6R)-6- $\{[(5S)$ -5-(acctylamino)-9,10,11-trimethoxy-6,7-dihydro-5H-dibenzo-[a,c]cyclohepten-3-yl]oxy $\}$ -3,4,5-trihydroxytetraliydro-2H-pyran-2-carboxylic acid,
- N [(5S)-3-(4-{4-methylpiperazin-1-ylmethyl}phenylcarbonyloxy)-9,10,11-mimethoxy 6, 7-dihydro-5H dibenzo[a,c]cyclohepten-5-yl]acetamide,
- $N-[(5S)-3-(4-\{morpholinomethyl\}phenylcarbonyloxy)-9,10,11$ trimethoxy-6,7-dihydro-5 H-dibenzo[a,c]cyclohepten-5-yl]acetamide.
- (58)-5-(acctylamino)-9,10,11-trimethoxy-6,7-dihydro-5H-dihenzo(a,c)cyclohepten-3-yl 3-[4-methylpiperazin-1-ylcarbonyl]propanoate,
- 5-[{(55)-5-(acetylamino)-9,10,11-trimethoxy-6,7-dihydro-5*H*-dihenzo[a,c]cyclohepten-3 -yl}oxycarbonyl]pentanoic acid,
- 4-(3-[(5.5)-5-(acetylamino)-9,10,11-trimethoxy-6,7-dihydro-5<math>H-dihenzo[a,c]cyclohepten-3 yl]oxy-3-oxopropyl)benzoic acid and
- (2S)-N-[(5S)-5-(acetylamino) 9,10,11-trimethoxy-6.7-dihydro 5H-dibenzo[a,c]-cyclohepten-3-yl]-2-amino-3-hydroxypropanamide,

and salts thereof.

1.WA/2050149.2

Claim 11 (original): A compound according to claim 2 selected from $N-[(5S)-3-(4-\{4 \text{ methylpiperazin-1-ylmethyl}\}\text{phenylearbonyloxy})-9,10,11-trimethoxy-6, 7-dihydro-5H-dibenzo[a,c]cyclohepten-5-yl]acetamide and$

(2S)-N-[(5S)-5-(acetylamino)-9,10,11-trimethoxy-6,7-dihydro-5II-dibenzo[a,c]-cyclohepten-3-yl]-2-amino-3 hydroxypropanamide, and salts thereof.

Claim 12 (original): A compound according to claim 2 selected from (2S)-N-[(5S)-5-(acetylamino)-9,10,11-trimethoxy 6,7-dihydro-5H-dibenzo[a,c]-cyclohepten-3-yl]-2-amino-5-[(2-nitroethanimidoyi)amino]pentanamide and salts thereof.

Claim 13. (original; previously formatted): A process for the manufacture of a compound of formula Ha as defined in claim 2 which comprises:

(a) for the preparation of compounds of formula Ha and salts thereof in which R⁵ or R⁶ is a group Y⁴R²⁵ (wherein R⁵ is as defined in claim 2 and Y⁴ is a group -OC(O)- or NHC(O)-), the reaction of a compound of formula HI or IV:

$$R^{2} \longrightarrow X$$

$$R^{1} \longrightarrow X$$

$$R^{2} \longrightarrow X$$

$$R^{3} \longrightarrow X$$

$$R^{4} \longrightarrow X$$

$$R^{1} \longrightarrow X$$

$$R^{2} \longrightarrow X$$

$$R^{3} \longrightarrow X$$

$$R^{4} \longrightarrow X$$

$$R^{1} \longrightarrow X$$

$$R^{2} \longrightarrow X$$

$$R^{3} \longrightarrow X$$

$$R^{4} \longrightarrow X$$

$$R^{2} \longrightarrow X$$

$$R^{3} \longrightarrow X$$

$$R^{4} \longrightarrow X$$

$$R^{5} \longrightarrow X$$

$$R^{5$$

(wherein X, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 are as defined in claim 2 and Y^7 is O- or -NH-), by acylation or coupling reactions;

- (b) for the preparation of compounds of formula IIa and salts thereof in which \mathbb{R}^5 or \mathbb{R}^6 is a group Y^4R^{35} (wherein R^{35} is $C_{1.7}$ alkoxy which may be substituted as defined in claim 2 and Y4 is a group -OC(O)- or -NHC(O)-), the reaction of a compound of formula III and IV, by acylation reactions;
- (c) for the preparation of compounds of formula Πa and salts thereof in which R^5 or R^6 is a group Y^4R^{35} (wherein R^{35} is ammo C_{1-7} alkylamino, C_{1-7} alkylamino C_{1-7} alkylamino, di(C1-7alkyl)aminoC1.7alkylamino and may be substituted as defined in claim 2, or is \mathbb{R}^{53} (wherein \mathbb{R}^{53} is as defined in claim 2) and \mathbb{Y}^4 is a group -OC(O)- or -NHC(O)-), can be prepared by the reaction of a compound of formula III or IV, acylation reactions;
- (d) for the preparation of compounds of formula Ha and salts thereof in which \mathbb{R}^5 or \mathbb{R}^6 is a group Y⁴R³⁵ (wherein R³⁵ is a sugar moiety and Y⁴ is a group -O- or -NH-), the reaction of a compound of formula III or IV, glycosylation reactions;
- (e) for the preparation of compounds of formula Ha and salts thereof in which \mathbb{R}^5 or \mathbb{R}^6 is a group Y4R35 (wherein R35 is sulphate and Y4 is a group O- or -NH-), the reaction of a compound of formula III or IV, by sulphonylation reactions:
- (f) for the preparation of compounds of formula Ha and salts thereof in which \mathbb{R}^5 or \mathbb{R}^6 is a group Y^4R^{35} (wherein R^{35} is $C_{1.7}$ alkylphosphate and may be substituted as defined in claim 2 and Y' is a group O- or -NH-), the reaction of a compound of formula III or IV, by phosphorylation reactions;
- (g) for the preparation of compounds of formula Ha and salts thereof in which R5 is amino the reaction of a carboxylic acid of formula V:

$$R^{2}$$
 R^{2}
 R^{1}
 R^{0}
 R^{0}

(wherein X, R^1 , R^2 , R^3 , R^4 and R^6 are as defined in claim 2) via Curtius rearrangement and hydrolysis; and

(h) for the preparation of compounds of formula Ha and salts thereof in which R⁵ or R⁶ is chloro the reaction of a compound of formula HI or IV by the Sandmeyer reaction; and when a pharmaceutically acceptable salt of a compound of formula Ha is required, reaction of the compound obtained with an acid or base whereby to obtain the desired pharmaceutically acceptable salt.

Claim 14 (original): A pharmaceutical composition which comprises as active ingredient a compound of formula Ha as defined in claim 2 or a pharmaceutically acceptable salt thereof in association with a pharmaceutically acceptable excipient or carrier.

Claim 15 (original): A method for producing a vascular damaging effect in a warm-blooded animal, such as a human being, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula IIa or a pharmaceutically acceptable salt thereof as defined in claim 2.