

NSBM Green University Faculty of Computing BSc (Hons) Data Science

DS403.3- Big Data Programming

Intermediate Report

Group - 2

Student ID	Student Name
24490	MRK Karunathilaka
24572	MKIM Rohana
24614	GAAS Ganegoda

Module Lecturer: Mr. Adhil Rushdy

Table of Contents

1.	Batch Processing Implementation Steps	3
	Step 01: Resource Group Creation	3
	Step 02: Data Lake Setup	3
	Step 03: Data Ingestion with Azure Data Factory (ADF)	4
	Challenges & Solutions	5
	Step 04: Data Ingestion with Azure Data Factory (ADF)	6
	Step 05: Data Warehousing with Azure Synapse Analytics	7
2.	Key Technical Decisions & Justifications in Cold Path	7
3.	Challenges & Solutions in Cold Path	8

1. Batch Processing Implementation Steps

Step 01: Resource Group Creation

- Action: Created a resource group named lambda-arch-rg to centralize all project resources.
- **Purpose**: Ensures organized management and cost tracking.

Step 02: Data Lake Setup

- Actions: Created a Storage Account (ADLS Gen2) with four containers,
 - **bronze:** Stores raw data (e.g., CSV files from Google Drive).
 - silver: Holds transformed/cleaned data (Parquet format).
 - **gold:** Stores analysis-ready datasets (aggregated tables).
 - parameter: Contains JSON files for dynamic pipeline configurations.
- **Purpose**: A Data Lake is very cost-effective; it can store both structured and unstructured data due to its object Storage.

Step 03: Data Ingestion with Azure Data Factory (ADF)

- Linked Services
 - ADLS Gen2: Connected to the data lake containers.
 - Google Drive: Enabled CSV file ingestion (fallback after Git repo failed due to file size limits).

Challenges & Solutions

- Google Drive 100MB Limit
 - o Split files into smaller chunks (<100MB) to avoid corruption.
- Dynamic Pipeline
 - Used Lookup Activity to fetch parameters from JSON files.
 - For Each Activity + Copy Activity transferred files from Google Drive to bronze with,
 - Source parameter: relative url.
 - Sink parameters: Folder Name and File Name.


```
EXPLORER
OPEN EDITORS
                                          {} GoogleDrive.json > {} 2 > 
Folder_Name
    U Q1_Dataset (1).csv Data_Set_01
HEALTH-INSURANCE-ANALYSIS-WITH-LAMBD...
                                                         "relative_url": "/uc?id=1skPqSjUxk5bX_RhZdiurJrLevSZoK43T",
> Data Sources
                                                         "Folder_Name": "Medicare_DME_Devices_Supplies",
                                                         "File_Name": "Medicare_DME_Devices_Supplies_2021_1.csv"
~$ilding Process.docx
Building_Process.docx
                                                        "relative_url": "/uc?id=1qmTlwS7_HxSoLJH9xFSpghxAVlsnD3cz",

    ■ Configurtion_details_applictation.txt

                                                        "Folder_Name": "Medicare_DME_Devices_Supplies",
"File_Name": "Medicare_DME_Devices_Supplies_2021_2.csv"
■ DataBricks Access Tokens.txt
{} GoogleDrive.json

■ Relative Urls.txt

■ Relative_URL_CSV_Files.txt
                                                        "relative_url": "/uc?id=18JWh9w2RXF4cIVYeZHqEG7NXE7Q9hZLc",
                                                        "Folder_Name": "Medicare_DME_Devices_Supplies",
"File_Name": "Medicare_DME_Devices_Supplies_2021_3.csv"
                                                        "relative_url": "/uc?id=1NbMKCxPqpg2Z3xccPi746YTe9PL0CdIB",
                                                         "Folder_Name": "Medicare_DME_Devices_Supplies",
                                                         "File_Name": "Medicare_DME_Devices_Supplies_2021_4.csv"
```

Step 04: Data Ingestion with Azure Data Factory (ADF)

• Cluster Configuration

- Single-Node Cluster (Standard DS3 v2, 14GB RAM) to minimize costs.
- **Auto-termination**: Set to 10 minutes of inactivity.

• Data Processing

- 1. Mounted bronze and silver containers to Databricks.
- 2. Loaded data into Data Frames,
 - Claims df (claim details).
 - Drugs df (prescription data).
 - Medicare DME DS df (medical equipment records).
- 3. Transformed data (cleaning) \rightarrow Saved to silver (Parquet).

• Integration

 Linked Databricks notebook to ADF's batch_processing_pipeline via a Databricks-linked service.

Step 05: Data Warehousing with Azure Synapse Analytics

- Why Synapse? Unified platform for,
 - o **Data Factory (ADF)**: Pipeline orchestration (redundant with standalone ADF but retained for learning).
 - o Data Warehouse (DWH): Serverless SQL Pool chosen over Dedicated SQL Pool for:
 - **Cost Efficiency**: Pay-per-query (~\$5/TB scanned) vs. fixed hourly costs.
 - **Data Virtualization**: Uses OPENROWSET() to query ADLS directly (no storage duplication).

2. Key Technical Decisions & Justifications in Cold Path

Component	Choice	Reason
Cluster Type	Single-Node (Databricks)	Cost savings; sufficient for batch workloads.
File Format	Parquet	Columnar storage \rightarrow 80% smaller scans vs. CSV.
Synapse SQL Pool	Serverless	No infrastructure costs; scales to zero.
Data Ingestion	Google Drive + ADF	Workaround for Git's file size limits.

3. Challenges & Solutions in Cold Path

Challenge	Solution
Google Drive file corruption (>100MB)	Split files into sub-100MB chunks.
Databricks cluster startup delays	Auto-termination + single-node configuration.
Dynamic pipeline requirements	Parameterized JSON files + Lookup Activity.