Burt Le

TEST REPORT

APPLICANT: C.O.B.O. S.p.A. - Divisione 3B6

Via Sivo, 74-28053 Castelletto Ticino (NO)-Italy

Tel. +39 0331-92861 Fax +39 0331-972160

Mail: Paolo.staurengo@3b6.it

EUT DESCRIPTION Digging measurement system for Excavator

EUT TRADEMARK C.O.B.O. S.p.A. - Divisione 3B6

Complex Electronics Ltd.

WESTLINE sarl

EUT MODEL Remote sensor RAL S02

REFERENCE STANDARDS: FCC part 15.109

TEST REPORT NUMBER FCC.RX.08.1505-1

TEST REPORT ISSUE DATE 14/01/2009

TESTING LABORATORY Prima Ricerca & Sviluppo S.r.l.

Via Campagna, 92 -22020 Faloppio (Co) -Italy

TESTING LOCATION As Above

DATE OF TEST SAMPLE

RECEIPT

23/09/2008

DATE OF TEST 13-14/01/2009

TESTED BY Andrea Bortolotti

APPROVED BY Massimo Maltempi

The test results reported in this test report shall refer only to the sample actually tested and shall not refer or be deemed to refer to bulk from which such a sample may be said to have be obtained.

Reproduction of this Test Report, should not be reproduced, except in full, without the written authorization of the

Reproduction of this Test Report, should not be reproduced, except in full, without the written authorization of the Laboratory

TRFCC_15.109 Page 1 of 23

0. CONTENTS

			Page
0.	COI	NTENTS	2
1.	TEC	CHNICAL INFORMATION OF EQUIPMENT UNDER TEST (EUT)	3
	1.1	Identification	3
	1.2	Technical data	3
	1.3	General Technical data	4
	1.4	Transceiver data	7
	1.5	Modifications incorporated in E.U.T	9
	1.6	Ports identification	9
	1.7	Auxiliary equipment	9
2.	TES	ST CONDITIONS	10
	2.1	Operating test modes and test conditions	10
	2.2	Test overview	10
3.	REF	FERENCE STANDARD FOR PERFORMED TESTS	11
4.	Sun	nmary of test results	12
	4.1	Emission tests	12
5.	TES	ST RESULTS	13
	5.1	Photographic documentation	22

TECHNICAL INFORMATION OF EQUIPMENT UNDER TEST (EUT) 1.

1.1 Identification

Manufacturer:

C.O.B.O. S.p.A. - Divisione 3B6 **Brand name:**

Complex Electronics Ltd.

WESTLINE sarl

C.O.B.O. S.p.A. - Divisione 3B6

Complex Electronics Ltd.

WESTLINE sarl

Equipment: Digging measurement system for Excavator

Serial number: Not present

FCC ID: **WXNEZDIGPRO**

Country of manufacturer: **ITALY**

1.2 Technical data

FCC class: 47 CFR FCC Part 15 Subpart C § 15.109

Product type:

Radio type: unintentional transceiver: RX

Power type: **Battery**

Frequency range: 2400 - 2483.5 MHz

Channel number:

badwidth (protocol b/g/n):

Carrier Frequency for 20MHz Channel No.1: 2401 MHz

Channel No.2: 2414 MHz

Channel No.3: 2427 MHz

Channel No.4: 2440 MHz

Channel No.5: 2453 MHz

Channel No.6: 2466 MHz

Field Antenna: Antenna Type: wire

Page 3 of 23 TRFCC_15.109

1.3 General Technical data

Application Description

Digging measurement system for Excavator

EZDig System Radio Description

The base, transmitter and receiver module (MD360R - EZD001-SE01 - Led Display) sends a synch packet (it takes about 500 µs to send it), then it goes in RX and listens for a response packet of one sensor (RALS01 - EZD002-0010 - angle sensor & RALS02 -

EZD003-0010 - angle sensor and laser receiver) for 4 ms; after that, it sends a synch again and waits the remaining 4 ms without going in RX.

This time slot of 10 ms is repeated for 10 times at a specified carrier frequency, that is changed at the end.

The first frequency used is 2401 MHz, then 2414 MHz, 2427 MHz, 2440 MHz, 2453 MHz, and finally 2466 MHz. So 6 frequency hops are used in cycle mode. Every next hop is obtained by adding 13 MHz to the current one.

The transmission is done in GFSK modulation at the nominal power of 0 dBm, with 250 kbps data rate.

The synch packets are 11 bytes long and they are made of 1 byte Preamble, 4 bytes Address, 4 bytes Payload, 2 bytes CRC.

The sensors (up to 8) transmit a response packet (about 500 μ s to send it) every 100 ms; every response is sent at one of the 6 carriers, in cycle mode. The response sending is repeated 10 times, then, before sending for the 11th time, the sensors go in RX for 4 ms to receive the base synch.

The transmission is done in GFSK modulation at the nominal power of 0 dBm, with 250 kbps data rate.

The response packets are 11 bytes long and they are made of 1 byte Preamble, 4 bytes Address, 4 bytes Payload, 2 bytes CRC.

TRFCC 15.109 Page 4 of 23

Radio packet

QUALITY SISTEM PROJECT SPECIFICATION

Document: SP EZDig System Radio -UK

> Project Code: EDZ System

Date: 23 / 09 / 2008

Byte10	Byte9	Byte8	Byte7	Byte6	Byte5	Byte4	Byte3	Byte2	Byte1	Byte0
Preamble	e Address				Payl	oad		CF	RC	

Page: 2 / 3

Receiver Classification

Class 3 according to ETSI 300440 - 1.

Technical Data

MD360R - EZD001-SE01 - Led Display

Power supply: 9 ÷ 30 Vdc
 Supply Current: 300 mA

Operating Temperature Range: from -20℃ to +70℃
 Storage Temperature Range: from -30℃ to +85℃

• Protection: IP54

RALS01 - EZD002-0010 - Angle Sensor

Angle Sensor

Measurement Range: 360°
Resolution: 0.3°
Accuracy: ± 0,2°

Max thermal drift
 ± 0,5° on the operating temperature range

• Power supply: 2,7 ÷ 4,2 Vdc by 3,6 V 750 mA Li-ion battery

• Supply Current : 6 mA

Operating Temperature Range: from -20℃ to +70℃
 Storage Temperature Range: from -30℃ to +85℃

• Protection: IP67

RALS02 - EZD003-0010 - Angle Sensor and Laser Receiver

Angle Sensor

Measurement Range: 360°
Resolution: 0.3°
Accuracy: ± 0,2°

Max thermal drift ± 0,5° on the operating temperature range

Laser Receiver

Measurement Range: 80 mm
 Resolution: 2 mm
 Accuracy: ± 2 mm

Power supply:
 Supply Current:
 2,7 ÷ 4,2 Vdc by 3,6 V 750 mA Li-ion battery
 Supply Current:
 6 mA (13 mA with laser receiver active)

Operating Temperature Range: from -20℃ to +70℃
 Storage Temperature Range: from -30℃ to +85℃

• Protection: IP67

TRFCC_15.109 Page 5 of 23

TRFCC_15.109 Page 6 of 23

1.4 Transceiver data

PRODUCT SPECIFICATION

Single chip 2.4 GHz Transceiver

nRF2401

FEATURES

- True single chip GFSK transceiver in a small 24-pin package (QFN24 5x5mm)
- Data rate 0 to1Mbps
- Only 2 external components
- Multi channel operation
 - 125 channels
 - Channel switching time <200µs.
 - Support frequency hopping
- Data slicer / clock recovery of data
- · Address and CRC computation
- DuoCeiverTM for simultaneous dual receiver topology
- ShockBurstTM mode for ultra-low power operation and relaxed MCU performance
- Power supply range: 1.9 to 3.6 V
- Low supply current (TX), typical 10.5mA peak
 @ -5dBm output power
- Low supply current (RX), typical 18mA peak in receive mode
- 100 % RF tested
- No need for external SAW filter
- World wide use

APPLICATIONS

- Wireless mouse, keyboard, joystick
- Keyless entry
- · Wireless data communication
- · Alarm and security systems
- Home automation
- Surveillance
- Automotive
- Telemetry
- · Intelligent sports equipment
- Industrial sensors
 - Toys

GENERAL DESCRIPTION

nRF2401 is a single-chip radio transceiver for the world wide 2.4 - 2.5 GHz ISM band. The transceiver consists of a fully integrated frequency synthesizer, a power amplifier, a crystal oscillator and a modulator. Output power and frequency channels are easily programmable by use of the 3-wire serial interface. Current consumption is very low, only 10.5mA at an output power of -5dBm and 18mA in receive mode. Built-in Power Down modes makes power saving easily realizable.

QUICK REFERENCE DATA

Parameter	Value	Unit
Minimum supply voltage	1.9	V
Maximum output power	0	dBm
Maximum data rate	1000	kbps
Supply current in transmit @ -5dBm output power	10.5	mA
Supply current in receive mode	18	mA
Temperature range	-40 to +85	°C
Sensitivity	-90	dBm
Supply current in Power Down mode	400	nA

Table 1 nRF2401 quick reference data

TRFCC_15.109 Page 7 of 23

ELECTRICAL SPECIFICATIONS

Conditions: VDD = +3V, VSS = 0V, $T_A = -40$ °C to +85°C

Symbol	Parameter (condition)	Notes	Min.	Тур.	Max.	Units			
	Operating conditions								
VDD	Supply voltage		1.9	3.0	3.6	V			
TEMP	Operating Temperature		-40	+27	+85	°C			
			•			•			
	Digital input pin								
V_{IH}	HIGH level input voltage		VDD- 0.3		VDD	V			
V_{IL}	LOW level input voltage		Vss		0.3	V			
	Digital output pin								
V_{OH}	HIGH level output voltage (I _{OH} =-0.5mA)		VDD- 0.3		VDD	V			
V _{OL}	LOW level output voltage (I _{OL} =0.5mA)		Vss		0.3	V			
OL.	General RF conditions								
f	Operating frequency	1)	2400		2524	MHz			
f _{OP}	Crystal frequency	2)	4		20	MHZ			
$\frac{f_{XTAL}}{\Delta f}$	Frequency deviation	4)	4	±156	20	kHz			
R _{GFSK}	Data rate ShockBurst TM		>0	±130	1000	kbps			
R _{GFSK}	Data rate Direct Mode	3)	250		1000	kbps			
F _{CHANNEL}	Channel spacing	3)	230	1	1000	MHz			
* CHANNEL					I.	141112			
	Transmitter operation								
P_{RF}	Maximum Output Power	4)		0	+4	dBm			
P _{RFC}	RF Power Control Range		16	20		dB			
P _{RFCR}	RF Power Control Range Resolution				±3	dB			
P_{BW}	20dB Bandwidth for Modulated Carrier				1000	kHz			
P _{RF2}	2 nd Adjacent Channel Transmit Power 2MHz				-20	dBm			
P_{RF3}	3 rd Adjacent Channel Transmit Power 3MHz				-40	dBm			
I_{VDD}	Supply current @ 0dBm output power	5)		13		mA			
I_{VDD}	Supply current @ -20dBm output power	5)		8.8		mA			
I_{VDD}	Average Supply current @ -5dBm output	6)		0.8		mA			
T	power, ShockBurst™	7)		10		<u> </u>			
I _{VDD}	Average Supply current in stand-by mode	7)		12		μA			
I_{VDD}	Average Supply current in power down			400		nA			
	Receiver operation								
I_{VDD}	Supply current one channel 250kbps			18		mA			
I_{VDD}	Supply current one channel 1000kbps			19		mA			
I_{VDD}	Supply current two channels 250kbps			23		mA			
I_{VDD}	Supply current two channels 1000kbps			25		mA			
RX_{SENS}	Sensitivity at 0.1%BER (@250kbps)			-90		dBm			
RX_{SENS}	Sensitivity at 0.1%BER (@1000kbps)			-80		dBm			
C/I _{CO}	C/I Co-channel	8)		10/4		dB			
C/I _{1ST}	1st Adjacent Channel Selectivity C/I 1MHz	8)		-20/0		dB			
C/I _{2ND}	2 nd Adjacent Channel Selectivity C/I 2MHz	8)		-37/-20		dB			
C/I _{3RD}	3 rd Adjacent Channel Selectivity C/I 3MHz	8)		-43/-30		dB			
RX_B	Blocking Data Channel 2			-45/-41		dB			

- Usable band is determined by local regulations
 The crystal frequency may be chosen from 5 different values (4, 8, 12, 16, and 20MHz) which are specified in the configuration word, see Table 9. 16MHz are required for 1Mbps operation.
- 3) Data rate must be either 250kbps or 1000kbps.
- 4) Antenna load impedance = $100\Omega + j175\Omega$
- Antenna load impedance = $100\Omega + j175\Omega$. Effective data rate 250kbps or 1Mbps. Antenna load impedance = $100\Omega + j175\Omega$. Effective data rate 10kbps.
- 6)
- Current if 4 MHz crystal is used.
- 250kbps/1000kbps.

Page 8 of 23 TRFCC_15.109

1.5 Modifications incorporated in E.U.T.

The following items are the modifications introduced in the equipment under test:

None

1.6 Ports identification

This section contains descriptions of all signal ports and AC/DC power input/output ports, the length and the type of the cable provided by manufacturer needed for the tests.

Moreover it is specified if the ports are ever or optionally connected.

Po	ort	Description	Connection	
1	Enclosure	Plastic case	By screws and by pressure	
2	AC power input/output ports			
3	DC power input/output ports	3.6Vdc	Internal battery connector	
4	Signals / control lines			
5	Telecommunication ports			

Note: During the tests all cables must be what provided the manufacturer or the same that used in the real employment of the EUT.

1.7 Auxiliary equipment

none

TRFCC_15.109 Page 9 of 23

2. TEST CONDITIONS

2.1 Operating test modes and test conditions

The equipment has been tested according to the operative conditions described in the user/installation manual provided by the manufacturer and by following reference standards:

Reference Standard:

47 CFR FCC Part 15 Subpart C § 15.109

In the following table there are the operating conditions adopted during tests identified by an indicator (#..) at which has been referred the item "Operating condition of the equipment under test" of all technical sheets of the tests (see Section 4)

Operating condition	Description
#1	RX in Operating Mode

2.2 Test overview

The appliance is classified as "Intentional radiator" in conformity to FCC Part 15 Subpart C § 15.109.

TRFCC_15.109 Page 10 of 23

3. REFERENCE STANDARD FOR PERFORMED TESTS

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.4-2003 and 47 CFR FCC Part 15 Subpart C.

TRFCC_15.109 Page 11 of 23

4. SUMMARY OF TEST RESULTS

4.1 Emission tests

	Port	Phenomena	Basic standard	Operating condition ¹	Result
1	Enclosure	Radiated emission	FCC Part 15 § 15 109	#1	Within the limit
2	AC mains Input ports	RF Disturbance voltage: continuous	FCC Part 15 § 15 207	Port not	present

TRFCC_15.109 Page 12 of 23

_			
_	TEGT	DECLI	ıтe
5.	IESI	RESU	\mathbf{L}

		46		
DVDIVTED	EMICCIONIO	(h7 · 10 ¹¹ Harn	onic	 1/
NADIATED		NIZ TIV Halli	IOHIC	

TRFCC_15.109 Page 13 of 23

TEST 1

RADIATED EMISSION 9 KHZ ÷10TH HARMONIC

REFERENCE DOCUMENT

FCC 47CFR Part 15

• TEST LOCATION: Semi-anechoic chamber

• TEST EQUIPMENT USED FOR TEST: EMI receiver Rohde & Schwarz Mod. ESU 40

Chase Antenna Mod. CBL 6111 A

• TESTED PORT: Enclosure

EMISSION LIMITS:

Acc. to Section 15.209 of reference document

• UNCERTAINTY OF MEASURE: Combined uncertainty = \pm 1.75 dB

Total uncertainty = $(k=2) \pm 3.5 dB$

TEST CONDITIONS:			MEASURED
Ambient temperature :	15 - 35 °C		23,5 ± 3 °C
Ambient humidity:	25 - 75 %rH		39 ± 5 %rH
Pressure :	85 - 106 kPa	(860 mbar - 1060 mbar)	950 ± 50 mbar

OPERATING CONDITION (Rif. Section. 2): #1

RESULT: WITHIN THE LIMIT

TRFCC_15.109 Page 14 of 23

CH1	2401MHz
СНЗ	2427MHz
CH6	2466MHz

EMI Auto Test Template: Electric Field Strength FCC

Hardware Setup: Electric Field Strengh FCC
Measurement Type: Open-Area-Test-Site
Frequency Range: 30 MHz - 18 GHz
Graphics Level Range: 0 dBμV/m - 80 dBμV/m

Data Reduction:

Limit Line #1: FCC 15 109 Peak
Limit Line #2: FCC 15 109 AV

Peak Search: 6 dB

Maximum Results: 4

Subrange Maxima: 0

Maxima per Subrange: 1

Acceptance Offset: -10 dB

Maximum Number of Results: 4

Subrange	Detectors	IF Bandwidth	Meas. Time	Receiver
30 MHz - 1 GHz	MaxPeak; Average	120 kHz	1 s	Receiver
1 GHz - 2.8 GHz	MaxPeak; Average	1 MHz	0.1 s	Receiver
2.8 GHz - 18 GHz	MaxPeak; Average	1 MHz	0.1 s	Receiver

TRFCC_15.109 Page 15 of 23

CH1: 30-1000MHz

VERTICAL

Electric Field Strength FCC

TRFCC_15.109 Page 16 of 23

Horizontal

Electric Field Strength FCC

TRFCC_15.109 Page 17 of 23

CH1: 1-18GHz

Vertical

Electric Field Strength FCC

TRFCC_15.109 Page 18 of 23

Horizontal

Electric Field Strength FCC

TRFCC_15.109 Page 19 of 23

CH1: 18-25GHz

Vertical

Horizontal*

^{*} No disturbance above CSA noise level in both polarization. The plot from 18GHz to 25GHz are equal.

TRFCC_15.109 Page 20 of 23

Observation: have not been detected spurious for channel CH3 and CH6.

The drawings are the same for all channel (see previous pages).

Spurious emissions level (dBuV/m)					
CH3			CH6		
f	Bandwidth (kHz)	Level	f	Bandwidth (kHz)	Level
[MHz]		[dBuV/m]	[MHz]		[dBuV/m]
30 to 1000	120	Φ	30 to 1000	120	Φ
1000 to 25000	1000	Θ	1000 to 18000	1000	Θ

Measurement Uncertainty: +/- 3 dB

⊖ = No signal above noise level 30 dBuV/m)

 Θ = No signal above noise level 40 dBuV/m)

TRFCC_15.109 Page 21 of 23

5.1 Photographic documentation

TRFCC_15.109 Page 22 of 23

PHOTO 2 - SET-UP FOR EMISSION RADIATED TEST

TRFCC_15.109 Page 23 of 23