5.2 习题

2024年5月19日

5.2.1

证明:

有理数 $\delta>0, \epsilon=\frac{2}{3}\delta>0$ 。由于 $(a_n)_{n=1}^\infty$ 是柯西序列,所以存在一个 $N_a\geq 0$ 使得 $d(a_j,a_k)\leq \frac{1}{2}\epsilon$ 对所有 $j,k\geq N_a$ 均成立。

由于 $(a_n)_{n=1}^\infty$ 和 $(b_n)_{n=1}^\infty$ 是等价的,所以存在一个 $N_m \ge 0$ 使得 $d(a_n - b_n) \le \frac{1}{2}\epsilon$ 对所有 $n \ge N_m$ 均成立。

取 $M = max(N_a, N_m)$, 所以当取 $j, k \ge M$ 时,

$$\begin{aligned} |(a_j - b_j) - (a_k - b_k)| &\leq |a_j - b_j| + |a_k - b_k| \leq \epsilon \\ |(a_j - b_j) - (a_k - b_k)| &= |a_j - a_k + b_k - b_j| \geq |b_k - b_j| - |a_j - a_k| \\ &\Rightarrow \epsilon + |a_j - a_k| \geq |b_k - b_j| \\ &\Rightarrow \frac{3}{2} \epsilon \geq |b_k - b_j| \end{aligned}$$

由此可知 $|b_k-b_j| \leq \frac{3}{2}\epsilon = \delta$,所以 $(b_n)_{n=1}^{\infty}$ 也是柯西序列

5.2.2

证明:

(1) 充分性

 $(a_n)_{n=1}^{\infty}$ 是有界的,那么存在 $M\geq 0$ 使得 $|a_i|\leq M$ 对任意的 $i\leq 1$ 均成立。

由于 $(a_n)_{n=1}^\infty$ 和 $(b_n)_{n=1}^\infty$ 是等价的,所以存在一个 $N_m \ge 0$ 使得 $d(a_n-b_n) \le \epsilon$ 对所有 $n \ge N_m$ 均成立。又因为,

$$|b_n| - |a_n| \le |a_n - b_n| \le \epsilon$$
$$|b_n| \le \epsilon + |a_n|$$
$$|b_n| \le \epsilon + M$$

且 $b_1, b_2, b_3, ..., b_{N_m}$ 是有限序列,所以 $b_1, b_2, b_3, ..., b_m$ 也是有界的。综上, $(b_n)_{n=1}^{\infty}$ 是有界的。