UNIVERSIDAD DE SAN MARTÍN DE PORRES

Facultad de Ciencias Contables, Económicas y Financieras

Escuela Profesional de Economía

Curso: Econometría Básica

Semestre: 2025-II

EP3

Docente: Luis Chávez Fecha: 20/10/2025

- 1. (6 points) Considere el caso de una regresión para establece la incidencia del ingreso (ing), la riqueza (rq), el número de miembros del hogar (nm) y nivel socioeconómico (nse) sobre el consumo del hogar.
 - (a) (2 points) Establecer qué variables potencialmente presentaría multicolinealidad. Fundamentar.
 - (b) (2 points) Plantear un ejemplo en Excel donde se evidencie multicolinealidad perfecta. Regresionar en Stata y evidenciar el problema.
 - (c) (2 points) Plantear un ejemplo en Excel donde se evidencie multicolinealidad imperfecta. Regresionar en Stata y evidenciar el problema usando pruebas estadísticas.
- 2. (10 points) COnsidere la siguiente estimación econométrica.

		Variable dependiente: Nota final			
Coeficiente	Error Std.	t	P > t		
8.732	2.514	3.47	0.001		
0.421	0.091	4.63	0.000		
0.049	0.018	2.72	0.008		
-0.823	0.442	-1.86	0.066		
-0.117	0.072	-1.62	0.108		
100					
0.61					
	8.732 0.421 0.049 -0.823 -0.117 100 0.61	8.732 2.514 0.421 0.091 0.049 0.018 -0.823 0.442 -0.117 0.072 100 0.61	8.732 2.514 3.47 0.421 0.091 4.63 0.049 0.018 2.72 -0.823 0.442 -1.86 -0.117 0.072 -1.62 100 0.61		

Breusch–Pagan: $\chi^2(1) = 6.42$, p = 0.0113

- (a) (2 points) Escribir la FRM (modelo estimado). Interpretar los coeficientes del modelo.
- (b) (2 points) Evaluar heteroscedasticidad.
- (c) (4 points) Calcular los intervalos de confianza de cada estimador.
- (d) (2 points) Predecir la diferencia media de las notas de estudiantes que trabajan y no trabajan.

3. (4 points) Considere el modelo lineal

$$y_i = \beta_0 + \beta_1 x_i + u_i, \qquad i = 1, ..., n,$$

donde

$$E[u_i] = 0, \quad \operatorname{var}(u_i) = \sigma^2 h(x_i)$$

y $h(x_i) > 0$ es una función conocida de la(s) variable(s) explicativa(s) (por ejemplo $h(x_i) = x_i^2$).

- (a) (2 points) Explique por qué esto constituye heterocedasticidad.
- (b) (2 points) Si $h(x_i)$ es conocida, muestre cómo transformar el modelo para obtener errores con varianza constante y explicar cómo estimar los parámetros eficientemente.

Otra oportunidad, no vendría mal y probemos empezar de cero...