

COMPUTER SCIENCE HIGHER LEVEL PAPER 1

Monday 12 November 2007 (afternoon)

2 hours 15 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Section A: answer all the questions.
- Section B: answer all the questions.

SECTION A

Answer **all** the questions.

1.	Outline what is meant by <i>prototyping</i> .	[2 marks]
2.	Outline the function of the <i>linker</i> .	[2 marks]
3.	State three items of documentation that are usually included in a software package.	[3 marks]
4.	Describe how the computer carries out a machine instruction.	[4 marks]
5.	Outline what is meant by <i>double buffering</i> .	[2 marks]
6.	(a) Define interrupt.	[2 marks]
	(b) Describe how an interrupt is detected and identified by the processor.	[4 marks]
7.	Compare batch and real time processing.	[3 marks]
8.	(a) State three types of <i>file organization</i> .	[3 marks]
	(b) State two operations that are commonly carried out on files.	[2 marks]
9.	Given the following recursive method.	
	<pre>public static void charOut(char a, char b, int n) { if (n>0) { System.out.println(a); charOut(b,a,n-1); System.out.println(b); } } Determine the output produced by the call charOut('1','2',2).</pre>	
	Show all your working.	[4 marks]

- **10.** Outline **two** advantages of using *bar codes* in a warehouse data collection system. [2 marks]
- 11. A microprocessor embedded in a plastic card can be used to store information that can be read from, or stored on, the card using special terminals.
 - (a) Outline **one** advantage and **one** disadvantage of such cards. [2 marks]
 - (b) Outline **two** conditions that need to be met for such cards to be widely used. [2 marks]
- 12. By drawing an appropriate *truth table* determine whether the following *Boolean expressions* are equivalent or not. [3 marks]

$$\begin{array}{l}
A \cdot \overline{B} \\
\overline{A} + \overline{B} \cdot A
\end{array}$$

[2 marks]

SECTION B

Answer **all** the questions.

(e)

13. Two of the most common computer operations are *sorting* and *searching*.

possible. Explain how this could be done.

(a) Explain what is meant by sorting. [2 marks]
 (b) Explain what is meant by searching. [2 marks]
 (c) State one example of internal sort method and state its efficiency in BigO notation. [2 marks]
 (d) State one example of search method and state its efficiency in BigO notation. [2 marks]

Sorts are time consuming and it may be a good policy to avoid them where

14. A large company sets up a Wide Area Network (WAN) so that customers can place orders directly with the company's computer.

(a) Identify the *hardware* needed by the customer to place an order. [2 marks]

(b) State **one** advantage to the company and **one** advantage to the customer of such a system.

[2 marks]

(c) The communication uses a *packet switching* system. Explain how packet switching works.

[4 marks]

(d) Compare parallel and serial transmission.

[2 marks]

8807-7011 **Turn over**

15.	An accounting system accepts data from a keyboard. Each transaction record consists of the following
	fields: account number, description and value. Data is stored in a sequential transaction file, validated,
	and all valid transactions copied to a <i>direct access file</i> and an error report produced.

(a) Define an appropriate data structure to hold the transaction data. [3 marks]

(b) Draw a system flowchart representing this process. [4 marks]

(c) Explain the difference between transaction and master files. [3 marks]

16. The linked list is held in memory in a table, which has room for 100 entries. The first item on the list is pointed to by the pointer start.

All free locations in the table are linked and nextAvailable is a pointer to the next free location in the table.

Each node consists of a student's name and a pointer to the next item in the list. Pointer -1 is the sentinel value.

The table currently holds four entries in such a way that they can be retrieved in alphabetical order

		STUDENT'S	NEXT
start 0		NAME	STUDENT
	0	Adams, Jose	3
nextAvailable 4	1	Turner, Ivor	-1
	2	Kliss, Mary	1
	3	Brown, Charlie	2
	4		5
	5		6
	6		7
	•		
	98		99
	99		-1

(a) Determine the new state of the table and pointers start and nextAvailable after name Lohy, Ann has been inserted in the list given above.

[3 marks]

(b) Determine the new state of the table and the pointers start and nextAvailable after name Kliss, Mary has been deleted from the **original** list.

[3 marks]

(c) Describe, by means of diagrams, or otherwise, how this list can be held in a memory as a dynamic data structure.

[4 marks]

8807-7011 Turn over

17. An organization wishes to create a *database* containing all relevant members' data.

-				1 20		11 . 1
I)ata	trom	hundreds	of mem	hers' to	rme ie	collected.

(a)	Describe a suitable method of data input.	[2 marks]
-----	---	-----------

(b) Describe a method to be used to reduce the number of input errors. [2 marks]

(c) Explain how the loss of *data integrity* can be minimized in the following types of errors

(i) program errors [2 marks]

(ii) errors in data transmission [2 marks]

(iii) errors in operating procedures. [2 marks]

- **18.** Digital computers use binary codes to represent data.
 - (a) (i) Explain why digital computers are based on the *binary number system*. [2 marks]
 - (ii) State why the *hexadecimal number system* is frequently used in computing. [1 mark]
 - (b) Convert:
 - (i) $111100001010_{(2)} = ?_{(16)}$

[1 mark]

(ii) $347_{(16)} = ?_{(2)}$

[1 mark]

(c) A *two's complement* binary representation of a floating-point number with a ten-bit *mantissa* followed by a six-bit *exponent* is stored within the following register.

Determine its decimal value.

Show all your working.

[5 marks]