Московский Физико-Технический Институт

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа №2.5.1

Измерение коэффициента поверхностного натяжения жидкости

Автор: Алексей Домрачев 615 группа

Цель работы: измерение коэффициента поверхностного натяжения воды при разной температуре с использованием известного коэффициента поверхностного натяжения этанола; определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости.

В работе используются: прибор Ребиндера с термостатом; исследуемые жидкости; стаканы.

Теория. Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька внутри жидкости избыточное давление дается формулой Лапласа:

$$\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} = \frac{2\sigma}{r} \tag{1}$$

Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости. Измеряется давление, необходимое для выталкивания в жидкость пузырька газа.

Также надо ввести формулы теплоты образования единицы площади поверхности q и поверхностной энергии единицы площади поверхности $U_{\rm n}/F$, где F — площадь.

$$q = -T\frac{d\sigma}{dT} \tag{2}$$

$$\frac{U_{\Pi}}{F} = \sigma - T \frac{d\sigma}{dT} \tag{3}$$

Экспериментальная установка. Исследуемая жидкость (вода) наливается в сосуд В. Этиловый спирт наливается в сосуд Е. Сосуды закрыты пробками. Через пробку сосуда, в котором проводятся измерения, проходит полая металлическая игла С, нижний конец которой погружен в жидкость, а верхний открыт в атмосферу. Если другой сосуд герметично закрыт, то в сосуде с иглой создается разрежение, и пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно найти по величине разрежения, необходимого для прохождения пузырьков.

При приоткрытом кране K_1 из аспиратора A по каплям вытекает вода, создавая разрежение, которое измеряется наклонным спиртовым манометром M. Показания манометра, умноженные на зависящий от наклона коэффициент (обычно 0,2), дают давление в $\kappa rc/m^2$ (1 $\kappa rc/m^2 = 9.8~\Pi a$).

Для стабилизации температуры исследуемой жидкости через рубашку D непрерывно прогоняется вода из термостата.

Рис. 1: Экспериментальная установка

Обычно кончик иглы лишь касается поверхности жидкости, чтобы исключить влияние гидростатического давления столба жидкости. Однако при измерении температурной зависимости коэффициента поверхностного натяжения возникает ряд сложностей. Во-первых, большая теплопроводность металлической трубки приводит к тому, что температура на конце трубки заметно ниже, чем в глубине жидкости. Во-вторых, тепловое расширение поднимает уровень жидкости при увеличении температуры. Это гидростатическое давление вычитается из падения лапласова давления вследствие уменьшения σ .

Обе погрешности можно устранить, погрузив кончик трубки до самого дна. Полное давление, измеренное при этом микроманометром, $P = \Delta P + \rho gh$. Заметим, что ρgh от температуры практически не зависит, так как подъем уровня жидкости компенсируется уменьшением ее плотности (произведение ρh определяется массой всей жидкости и поэтому постоянно). Величину ρgh следует измерить экспериментально двумя методами. Во-первых, замерить величину $P_1 = \Delta P'$, когда кончик трубки только касается поверхности жидкости. Затем при этой же температуре опустить иглу до дна и замерить $P_2 = \rho gh + \Delta P''$. Из-за несжимаемости жидкости можно положить $\Delta P' = \Delta P''$ и тогда $\rho gh = P_1 - P_2$. Во-вторых, при измерениях P_1 и P_2 замерить линейкой глубину погружения иглы h_1 и h_2 .

Измерение радиуса иглы.

1. Убедимся в исправности установки, для этого установим скорость падения капель примерно 1 капля в 5 секунд, добьёмся пробулькивания пузырьков (из-за несовершенства установки, пробулькивание будет 2-3 пузырька, что ухудшает экспериментальные данные).

^{*} — игла находится в этаноле.

- 2. Максимальное давление при пробулькивании пузырьков и температуре $t_1 = 21^{\circ}C$ равно $P_1 = 39$ дел.
- 3. С помощью табличного значения коэффициента поверхностного натяжения этанола и формул (4), (5) вычислим r. Он получился равным r=0.1 мм. $*-\sigma_{\text{этанола}}=22.8\cdot 10^{-3}~\text{Дж/м}^2~\text{[H.Б. Варгафтик. Справочник по теплофизическим свойствам газов и жидкостей, М., 1972 г. 2 изд. стр. 415 таблица 65]$
- 4. Теперь с помощью микроскопа измерим диаметр иглы еще раз. Получили, что $r=0.4~\mathrm{mm}$
- 5. Различие в 3 мм можно объяснить тем, что при прямом измерении мы не учитываем толщину стенки иглы, а при косвенном измерении учитывается только "активный радиус, К тому же измерение давления имеет большую погрешность, причины этого описаны в п.1 этого раздела.

Поправка.

- 1. Перенесем иглу в сосуд с водой.
- 2. Максимальное давление при пробулькивании, когда игла находится на $h_1=5.5~{\rm cm},$ то есть лишь касается поверхности жидкости, равно $P_2=111~{\rm дел}.$
- 3. Утопим иглу до $h_2=6.3$ см. Максимальное давление при этом равно $P_3=139$ дел.
- 4. Тогда $\Delta P = 28$ дел поправка.
- 5. Проверим, насколько точно мы измерили разность давлений. Рассчитав Δh из известных h_1 и h_2 и из ΔP .

$$\Delta h = h_1 - h_2 = 0.8 \,\text{cm}; \ \Delta h_{\text{эксп.}} = \frac{\Delta P}{\rho g} = 0.3 \,\text{cm}.$$

6. Значения не совпадают из тех же соображений, что и в п.1 предыдущего раздела.

Обработка результатов. Во время всех экспериментов множитель на манометре M был в значении 0.1

Радиус иглы.

$$P_1 = 39 \cdot 0.1 \cdot 9.8 = 38.2 \,\Pi a \tag{4}$$

Подставив табличное значения коэффициента поверхностного натяжения этанола $\sigma=22.8\cdot 10^{-3}\, \text{Дж/м}^2$ в формулу (1), рассчитаем радиус иглы.

$$P_1 = \frac{2\sigma}{r} \quad \Rightarrow \quad r = 0.1 \,\text{MM} \tag{5}$$

Зависимость σ **от** T. Снимем зависимость $\sigma(T)$ при нагревании воды и визуализируем их в виде таблицы.

Таблица 1: Зависиомсть σ от T

$T, {^{\circ}C}$	T, K	Р, дел	$P - \Delta P$, дел	$P - \Delta P$, Па	$\sigma \cdot 10^3$, H/M
28	301	140.0	112.0	109.76	54.88
35	308	139.0	111.0	108.78	54.39
40	313	137.0	109.0	106.82	53.41
45	318	136.0	108.0	105.84	52.92
50	323	134.7	106.7	104.53	52.26
55	328	132.5	104.5	102.41	51.21
60	333	129.0	101.0	98.98	49.49

С помощью МНК рассчитаем $\frac{d\sigma}{dT}$.

$$\frac{d\sigma}{dT} = -0.16 \pm 0.01 \cdot 10^{-3} \frac{H}{M \cdot K}$$
 (6)

Теперь с помощью формул (2) и (3) рассчитаем q и U_{Π}/F для каждой из температур и обобщим данные в таблице.

Таблица 2: Итоговые данные

<i>T</i> , K	$\sigma \cdot 10^{-3}, \mathrm{H/m}$	$q \cdot 10^{-3}, \text{ H/M}$	$\frac{U_\Pi}{F} \cdot 10^{-3}, \mathrm{H/M}$
301.0	54.88	48.45	103.33
308.0	54.39	49.58	103.97
313.0	53.41	50.38	103.79
318.0	52.92	51.19	104.11
323.0	52.26	51.99	104.26
328.0	51.21	52.80	104.00
333.0	49.49	53.60	103.09

Рис. 2: Итоговые данные

Подведение итогов. Во время эксперимента были измерены коэффициенты поверхностного натяжения воды при разных температурах. Они оказалось недостаточно близки к табличным значениям [Таблица 11, Лаб. практикум]. Возможно, это обосновывается несовершенством экспериментальной установки, а именно плохим качеством иглы, из-за которого пробулькивание происходило по 2–4 пузыря воздуха.