Curbe eliptice peste corpuri finite

Adrian Manea

2 noiembrie 2019

Cuprins

1	Preliminarii	2
	1.1 Varietăți algebrice	2
	1.2 Varietăți proiective	5
	1.2.1 Aplicație aritmetică	7
2	Curbe algebrice 2.1 Divizori	9 10
	Index	11
	Bibliografie	11

1.1 Varietăți algebrice

Începem prezentarea cu cîteva preliminarii privitoare la varietăți algebrice și alte noțiuni elementare de algebră comutativă.

Vom folosi următoarele notații și obiecte:

- *K* este un corp perfect, i.e. unul pentru care orice extindere algebrică este separabilă;
- \overline{K} este o închidere algebrică fixată a lui K;
- $\operatorname{Gal}(\overline{K}/K) = G_{\overline{K}/K}$ este grupul Galois al extinderii $K \subseteq \overline{K}$.

În majoritatea exemplelor, K va fi (o extindere algebrică a lui) \mathbb{Q} , \mathbb{Q} sau \mathbb{F}_p .

Definiție 1.1: *Spațiul afin* peste corpul *K* este mulțimea de *n*-tupluri:

$$\mathbb{A}^n = \mathbb{A}^n(K) = \{ P = (x_1, \dots, x_n) \in \overline{K}^n \}.$$

Similar, se defineste *spațiul punctelor K-rationale* din \mathbb{A}^n , care conține restricția $P \in K^n$.

Fie $\overline{K}[X] = \overline{K}[X_1, ..., X_n]$ un inel de polinoame în n nedeterminate și fie $I \le \overline{K}[X]$ un ideal. Putem asocia fiecărui astfel de ideal o submulțime a lui \mathbb{A}^n :

$$V_I = \{ P \in \mathbb{A}^n \mid f(P) = 0, \quad \forall f \in I \}.$$

Definiție 1.2: O multime algebrică afină este o multime de forma V_I ca mai sus.

Dacă V este o astfel de mulțime, idealul lui V este:

$$I(V) = \{ f \in \overline{K}[X] \mid f(P) = 0, \quad \forall P \in V \}.$$

Spunem că o mulțime algebrică este *definită* peste K dacă idealul său I(V) poate fi generat de polinoame din K[X] și notăm aceasta cu V/K.

Dacă V este definită peste K, multimea punctelor K-rationale ale lui V este multimea:

$$V(K) = V \cap \mathbb{A}^n(K).$$

Observație 1.1: Conform teoremei bazei a lui Hilbert, idealele lui $\overline{K}[X]$ și K[X] sînt finit generate.

Fie *V* o multime algebrică și considerăm idealul:

$$I(V/K) = \{ f \in K[X] \mid f(P) = 0, \forall P \in V \} = I(V) \cap K[X].$$

Se poate observa că *V* este definită peste *K* dacă si numai dacă are loc relatia:

$$I(V) = I(V/K) \cdot \overline{K}[X].$$

Presupunem acum că V este definită peste K și fie $f_1, \dots, f_m \in K[X]$, generatori ai idealului I(V/K). Rezultă că V(K) este mulțimea soluțiilor $x = (x_1, \dots, x_n)$ pentru ecuațiile polinomiale:

$$f_1(x) = \dots = f_m(x) = 0, \quad x_1, \dots, x_n \in K.$$

Exemplu 1.1: Fie V mulțimea algebrică din \mathbb{A}^2 dată de ecuația $X^2 - Y^2 = 1$.

Atunci V este definită peste orice corp K.

Presupunem acum char $K \neq 2$. Rezultă $V(K) \simeq \mathbb{A}^1(K) - \{0\}$, o bijecție fiind, de exemplu:

$$\mathbb{A}^{1}(K) - \{0\} \longrightarrow V(K)$$
$$t \longmapsto \left(\frac{t^{2} + 1}{2t}, \frac{t^{2} - 1}{2t}\right).$$

Exemplu 1.2: Mulțimea algebrică $V: X^n + Y^n = 1$ este definită peste $\mathbb Q$ și, folosind Marea Teoremă a lui Fermat, pentru orice $n \geq 3$, are loc:

$$V(\mathbb{Q}) = \begin{cases} \{(1,0),(0,1)\}, & n \text{ impar} \\ \{(\pm 1,0),(0,\pm 1)\}, & n \text{ par} \end{cases}.$$

Exemplu 1.3: Mulțimea algebrică $V: X^2 = Y^3 + 17$ are multe puncte Q-raționale. De fapt, se poate arăta că $V(\mathbb{Q})$ este infinită. Cîteva exemple sînt:

$$V(\mathbb{Q}) = \{(3, -2), (378661, 5234), \left(\frac{2651}{512}, \frac{137}{64}\right)\}.$$

Definiție 1.3: O mulțime algebrică (afină) se numește *varietate algebrică (afină)* dacă I(V) este un ideal prim al lui $\overline{K}[X]$.

Remarcăm că dacă V este definită peste K, atunci este suficient să verificăm dacă I(V/K) este ideal prim al lui K[X].

Fie V/K o varietate, adică V este varietate definită peste K. Atunci *inelul coordonatelor afine* al V/K este:

$$K[V] = \frac{K[X]}{I(V/K)}.$$

De asemenea, deoarece I(V/K) este ideal prim, rezultă că K[V] este domeniu de integritate. Corpul său de fracții se notează K(V) și se numește *corpul de funcții* al lui V/K.

Similar putem formula înlocuind K cu \overline{K} .

În plus, orice element al $\overline{K}[V]$ se definește pînă la un element din $I(V/\overline{K})$, deci pînă la un polinom ce se anulează pe V. Rezultă că $f \in \overline{K}[V]$ induce o funcție $f: V \to \overline{K}$.

Definiție 1.4: Fie *V* o varietate algebrică.

Dimensiunea varietății, notată dim V, este gradul de transcendență al extinderii $\overline{K}(V)$ peste \overline{K} .

Exemplu 1.4: dim $\mathbb{A}^n = n$, deoarece $\overline{K}(\mathbb{A}^n) = \overline{K}(X_1, \dots, X_n)$.

Dacă $V \subseteq \mathbb{A}^n$ este dat de o ecuație polinomială neconstantă $f(X_1, ..., X_n) = 0$, atunci dim V = n - 1.

Vom fi interesați de proprietatea de *netezime*, care se definește prin analogul condiției de existență a planului tangent:

Definiție 1.5: Fie V o varietate algebrică, $P \in V, f_1, \dots, f_m \in \overline{K}[X]$ o mulțime de generatori pentru I(V).

V se numește nesingulară (netedă) în P dacă matricea jacobiană $\left(\frac{\partial f_i}{\partial X_j}(P)\right)$ are rangul n – $\dim V$.

Exemplu 1.5: Fie V dată de o ecuație polinomială neconstantă $f(x_1, ..., x_n) = 0$.

Atunci dim V = n - 1, deci P este singularitate dacă și numai dacă $\frac{\partial f}{\partial x_i}(P) = 0$, $\forall 1 \le i \le n$. Totodată, f(P) = 0, deci în total obținem n + 1 condiții pe n nedeterminate.

Exemplu 1.6: Fie două varietăți:

$$V_1: Y^2 = X^3 + X$$
 si $V_2: Y^2 = X^3 + X^2$.

Punctele lor singulare trebuie să satisfacă:

$$V_1^{\text{sing}}: 3X^2 + 1 = 2Y = 0$$
 si $V_2^{\text{sing}}: 3X^2 + 2X = 2Y = 0$.

Rezultă că V_1 nu are singularități, dar V_2 are, originea (0,0).

Putem formula și o altă caracterizare a netezimii, prin funcții definite pe varietate. Fie P un punct arbitrar din V. Definim idealul $M_P ext{ } ext{$

$$M_P = \{ f \in \overline{K}[V] \mid f(P) = 0 \}.$$

Se poate observa că M_P este maximal, deoarece avem izomorfismul:

$$\overline{K}[V]/M_P \to \overline{K}$$
 $f \mapsto f(P).$

Rezultă că grupul factor M_P/M_P^2 este un \overline{K} -spațiu vectorial finit dimensional. Are loc:

Propoziție 1.1: Fie V o varietate algebrică.

Punctul $P \in V$ este nesingular dacă și numai dacă $\dim_{\overline{K}} M_P/M_P^2 = \dim V$.

Exemplu 1.7: Reluăm cazul anterior al varietăților V_1 și V_2 (exemplul 1.6) și fie P = (0, 0). În ambele cazuri, M_P este generat de X și Y, deci M_P^2 este generat de X^2 , XY și Y^2 .

Pentru V_1 avem:

$$X = Y^2 - X^3 \equiv 0 \mod M_p^2$$

deci M_P^2 este generat doar de Y.

Dar pentru V_2 nu avem nicio relație netrivială între X și Y modulo M_p^2 , deci ambele nedeterminate sînt necesare ca generatori.

Rezultă că V_1 e netedă, dar V_2 nu este, deoarece dim $V_{1,2} = 1$.

Folosind idealul maximal, avem:

Definiție 1.6: *Inelul local* al varietății V în P, notat $\overline{K}[V]_P$, este localizatul în M_P , adică:

$$\overline{K}[V]_P = \{ F \in \overline{K}(V) \mid F = f/g, \quad f, g \in \overline{K}[V], g(P) \neq 0 \}.$$

Remarcăm că din F = f/g rezultă că F(P) = f(P)/g(P) este corect definită. Funcțiile din $\overline{K}[V]_P$ se numesc regulate (sau definite) în P.

1.2 Varietăți proiective

Definim varietățile proiective ca fiind colecția de linii ce trec prin originea unui spațiu afin de dimensiune imediat superioară.

Definiție 1.7: *Spațiul n-proiectiv* peste K, notat \mathbb{P}^n sau $\mathbb{P}^n(\overline{K})$, este multimea tuturor (n+1)-tuplurilor $(x_0, \dots, x_n) \in \mathbb{A}^{n+1}$, astfel încît cel puțin o coordonată x_i este nenulă modulo echivalența:

$$(x_0,\dots,x_n)\sim (y_0,\dots,y_n)\Longleftrightarrow \exists \lambda\in \overline{K}^\times \text{ a.î. } x_i=\lambda y_i, \forall i.$$

Clasa de echivalență $\{(\lambda x_0, \dots, \lambda x_n) \mid \lambda \in \overline{K}^*\}$ se notează $[x_0, \dots, x_n]$, iar x_0, \dots, x_n se numesc coordonatele omogene ale punctului respectiv în \mathbb{P}^n .

De asemenea, multimea punctelor K-rationale din \mathbb{P}^n este:

$$\mathbb{P}^n(K) = \{ [x_0, \dots, x_n] \in \mathbb{P}^n \mid x_i \in K \}.$$

Observație 1.2: Pentru $P = [x_0, ..., x_n] \in \mathbb{P}^n(K)$, nu rezultă că fiecare $x_i \in K$. În schimb, alegem un i cu $x_i \neq 0$ și rezultă că $x_i/x_i \in K$, pentru orice j.

Definiție 1.8: Fie $P = [x_0, ..., x_n] \in \mathbb{P}^n(\overline{K})$. Corpul minimal de definiție pentru P peste K este corpul:

$$K(P) = K(x_0/x_i, \dots, x_n/x_i), \quad \forall i, \text{ cu } x_i \neq 0.$$

Definiție 1.9: Un polinom $f \in \overline{K}[X]$ se numește *omogen de grad d* dacă:

$$f(\lambda x_0, \dots, \lambda x_n) = \lambda^d f(x_0, \dots, x_n), \quad \forall \lambda \in \overline{K}.$$

Un *ideal omogen* al lui $\overline{K}[X]$ este generat de polinoame omogene.

Fiecărui ideal omogen îi putem asocia o submulțime a \mathbb{P}^n :

$$V_I = \{ P \in \mathbb{P}^n \mid f(P) = 0, \text{ pentru orice } f \in I \text{ omogen } \}.$$

Definiție 1.10: O *mulțime (algebrică) proiectivă* este una de forma V_I ca mai sus. Idealul omogen al unei mulțimi proiective, notat I(V), este idealul lui $\overline{K}[X]$ generat de:

$$\{f \in \overline{K}[X] \mid f \text{ omogen }, f(P) = 0, \forall P \in V\}.$$

Similar putem descrie si V/K si $V(K) = V \cap \mathbb{P}^n(K)$.

Exemplu 1.8: O *dreaptă* în \mathbb{P}^2 este o mulțime algebrică dată de aX + bY + cZ = 0, cu $a, b, c \in \overline{K}$, nu toate nule.

Dacă, de exemplu, $c \neq 0$, atunci dreapta este definită peste orice corp care conține a/c și b/c. În general, un *hiperplan* în \mathbb{P}^n este dat de o ecuație:

$$a_0X_0 + a_1X_1 + \cdots + a_nX_n = 0$$
, $a_i \in \overline{K}$, nu toate nule.

Exemplu 1.9: Fie V în \mathbb{P}^2 dată de $X^2 + Y^2 = Z^2$.

Atunci, pentru orice corp K, cu char $K \neq 2$, avem $V(K) \simeq \mathbb{P}^1(K)$, de exemplu prin:

$$\mathbb{P}^{1}(K) \to V(K)$$
$$[s, t] \mapsto [s^{2} - t^{2}, 2st, s^{2} + t^{2}].$$

1.2.1 Aplicație aritmetică

Fie un punct din $\mathbb{P}^n(\mathbb{Q})$, de coordonate $[x_0, \dots, x_n], x_i \in \mathbb{Q}$.

Putem presupune că am înmulțit cu numitorul comun și am eliminat factorii comuni, deci putem presupune $x_i \in \mathbb{Z}$, $\gcd(x_i) = 1$. Rezultă că punctul P determină coordonatele omogene x_i , pînă la un semn.

În general, dacă un ideal al unei mulțimi algebrice definite peste \mathbb{Q} , V/\mathbb{Q} , este generat de polinoame omogene $f_1, \dots, f_m \in \mathbb{Q}[X]$, descrierea $V(\mathbb{Q})$ revine la a rezolva ecuațiile omogene:

$$f_1(x_0,...,x_n) = \cdots = f_m(x_0,...,x_n) = 0, \quad \gcd(x_i) = 1.$$

Exemplu 1.10: Fie $V: X^2 + Y^2 = 3Z^2$, definit peste \mathbb{Q} , dar $V(\mathbb{Q}) = \emptyset$. Într-adevăr, presupunem că $[x, y, z] \in V(\mathbb{Q})$, cu $x, y, z \in \mathbb{Z}$ și $\gcd(x, y, z) = 1$. Rezultă $x^2 + y^2 = 0 \mod 3$, dar cum -1 nu este pătrat modulo 3, rezultă că $x = y = 0 \mod 3$, deci $x^2, y^2 : 3^2$, adică $3 \mid z$, contradicție cu $\gcd(x, y, z) = 1$.

Așadar, ideea generală este că, pentru a arăta că $V(\mathbb{Q}) = \emptyset$, este suficient să arătăm că ecuațiile omogene corespunzătoare nu au soluții nenule *modulo p*, pentru orice prim p (sau pentru orice putere a unui prim).

Spus mai simplu, avem implicația $V(\mathbb{Q}) = \emptyset \Rightarrow V(\mathbb{Q}_p) = \emptyset$, pentru orice corp p-adic \mathbb{Q}_p . Mai departe, implicația poate continua cu $V(\mathbb{R}) = \emptyset$.

Însă reciproca este falsă! Se poate arăta că, pentru varietatea:

$$V: 3X^2 + 4Y^2 + 5Z^3 = 0,$$

avem $V(\mathbb{Q}_p) \neq \emptyset$, $\forall p$, dar $V(\mathbb{Q}) = \emptyset$.

Definiție 1.11: O mulțime algebrică proiectivă se numește *varietate proiectivă* dacă idealul omogen I(V) este prim în $\overline{K}[X]$.

Fie $f(Y) \in \overline{K}[Y]$. Definim:

$$f^*(x_0,...,x_n) = x_i^d f\left(\frac{x_0}{x_i},\frac{x_1}{x_i},...,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},...,\frac{x_n}{x_i}\right),$$

unde $d = \deg f$ este cel mai mic întreg care face f^* polinom.

Spunem că f^* este omogenizatul lui f în raport cu x_i .

Definiție 1.12: Fie $V \subseteq \mathbb{A}^n$ o mulțime algebrică afină, cu idealul I(V) și fie V o submulțime a \mathbb{P}^n prin:

$$V \subseteq \mathbb{A}^n \xrightarrow{\phi_i} \mathbb{P}^n$$

$$\phi_i(\gamma_1, \dots, \gamma_n) \mapsto [\gamma_1, \dots, \gamma_{i-1}, 1, \gamma_i, \dots, \gamma_n].$$

Închiderea proiectivă a lui V, notată \overline{V} , este mulțimea proiectivă al cărui ideal omogen $I(\overline{V})$ este generat de omogenizatele generatorilor lui I(V).

Punctele din $V - \overline{V}$ se numesc *puncte la infinit* din V.

Exemplu 1.11: Fie *V* proiectivă, definită de $Y^2 = X^3 + 17$.

Rezultă că V este dată în \mathbb{P}^2 de:

$$\overline{Y}^2 \overline{Z} = \overline{X}^3 + 17 \overline{Z}^3, \quad X = \overline{X}/\overline{Z}, Y = \overline{Y}/\overline{Z}.$$

Varietatea are un singur punct la infinit, [0, 1, 0], obținut din $\overline{Z}=0$. Rezultă:

$$V(\mathbb{Q}) = \{(x, y) \in \mathbb{A}^2(\mathbb{Q}) \mid y^2 = x^3 + 17\} \cup \{[0, 1, 0]\}.$$

Definiție 1.13: Fie V/K o varietate proiectivă și fie $\mathbb{A}^n \subseteq \mathbb{P}^n$ astfel încît $V \cap \mathbb{A}^n \neq \emptyset$. Atunci se definește:

$$\dim V = \dim(V \cap \mathbb{A}^n).$$

Corpul de funcții K(V) este corpul de funcții al $V \cap \mathbb{A}^n$.

Observație 1.3: Pentru alegeri diferite ale lui \mathbb{A}^n , obținem izomorfisme canonice între rezultate.

Similar, *netezimea* în varietăți proiective V se traduce în $V \cap \mathbb{A}^n$.

CURBE ALGEBRICE

Printr-o *curbă algebrică* vom înțelege o varietate proiectivă de dimensiune 1. Vom lucra, în general, cu curbe netede.

Notațiile specifice sînt:

- *C/K*: curba *C* este definită peste corpul *K*;
- $\overline{K}(C)$: corpul de funcții al lui C peste K;
- $\overline{K}[C]_P$: inelul local al lui C în punctul P;
- M_P : idealul maximal al inelului local $\overline{K}[C]_P$.

Definiție 2.1: Fie C o curbă și $P \in C$ un punct neted.

Valuarea normalizată pe $\overline{K}[C]_P$ este dată de:

$$\operatorname{ord}_{P}: \overline{K}[C]_{P} \to \mathbb{N} \cup \{\infty\}$$
$$\operatorname{ord}_{P}(f) = \sup\{d \in \mathbb{Z} \mid f \in M_{P}^{d}\}.$$

Folosind $\operatorname{ord}_P(f/g) = \operatorname{ord}_P(f) - \operatorname{ord}_P(g)$, putem extinde valuarea la \mathbb{Z} .

Un *uniformizator* pentru C în P este orice funcție $t \in \overline{K}(C)$, cu ord $_P t = 1$, adică t este generator pentru dealul M_P .

Pentru C și P ca mai sus, fie $f \in \overline{K}(C)$. Se definește *ordinul* lui f în P prin ord $_P f$. Dacă ordinul este pozitiv, spunem că f are zero în P; altfel, f are singularitate (pol) în P. Dacă ordinul este pozitiv, spunem că C este *definită* în P și putem calcula f(P). Altfel, $f(P) = \infty$.

Exemplu 2.1: Reluăm unul dintre exemplele anterioare (exemplul 1.6):

$$C_1: Y^2 = X^3 + X, \quad C_2: Y^2 = X^3 + X^2.$$

Ambele curbe au cîte o singularitate la infinit. Fie P = (0,0). Atunci C_1 este netedă în P, dar C_2 nu este.

Idealul maximal M_P al lui $\overline{K}[C_1]_P$ are proprietatea că M_P/M_P^2 este generat de Y, deci:

$$\operatorname{ord}_{P} Y = 1$$
, $\operatorname{ord}_{P} X = 2$, $\operatorname{ord}_{P} (2Y^{2} - X) = 2$,

ultima egalitate rezultînd din $2Y^2 - X = 2X^3 + X$.

2.1 Divizori

Definiție 2.2: Fie C o curbă algebrică. *Grupul divizorilor* curbei, notat DivC, este grupul abelian liber (\mathbb{Z} -modulul) generat de punctele de pe C.

Deci orice $D \in \text{Div}C$ este o sumă formală:

$$D=\sum_{P\in C}n_P(P),$$

unde $n_P \in \mathbb{Z}$ și $n_P = 0$ pentru majoritatea $P \in C$. Gradul divizorului D se definește prin:

$$\mathrm{deg}D=\sum_{P\in C}n_{P}.$$

____INDEX

C corp minimal, 6 curbe divizori, 10	spațiu afin, 2 proiectiv, 5 spațiul punctelor raționale, 2
M mulțime algebrică afină, 2 algebrică definită, 3 proiectivă, 6	U uniformizator, 9 V valuare normalizată, 9
P polinom omogen, 6 omogenizat, 7	varietate afină, 3 dimensiune, 4 netedă, 4 proiectivă, 7 închidere proiectivă, 7

[Husemoller, 2004] Husemoller, D. (2004). Elliptic Curves. Springer.

[Silverman, 1994] Silverman, J. (1994). Advanced Topics in the Arithmetic of Elliptic Curves. Springer.

[Silverman, 2009] Silverman, J. (2009). The Arithmetic of Elliptic Curves. Springer.

[Washington, 2008] Washington, L. (2008). *Elliptic Curves, Number Theory and Cryptography*. Chapman and Hall.