

# Online Coaching for UPSC MATHEMATICS QUESTION BANK SERIES

PAPER 1:06 Vector Analysis

#### **Content:**

01 GRADIENT, DIVERGENCE, CURL
02 GREEN GAUSS
03 DIFFERENTIAL GEOMETRY

### SuccessClap: Question Bank for Practice 01 GRADIENT, DIVERGENCE, CURL

- (1) Find the directional derivative of  $\varphi = x^2yz + 4xz^2$  at (1,-2,-1) in the direction 2i-j-2 k. In what direction the directional derivative will be maximum and what is its magnitude? Also find a unit normal to the surface  $x^2yz + 4xz^2 = 6$  at the point (1,-2,-1).
- (2) For the function  $f = y/(x^2+y^2)$ , find the value of the directional derivative making an angle 30° with the positive x axis at the point (0,1).
- (3) If  $\varphi(x,y) = \log \sqrt{(x^2+y^2)}$ , show that grad  $\varphi = \frac{r-(k.r)k}{(\{r-(k.r)k\},\{r-(k.r)k\}\}}$ .
- (4) If a and b be constant vectors then show that  $grad[r a b] = a \times b$ .
- (5) Find the equations of the tangent plane and normal to the surface  $2xz^2-3xy-4x = 7$  at the point (1,-1,2).
- (6) Given the curve  $x^2+y^2+z^2=1$ , x+y+z=1 (intersection of two surfaces), find the equations of the tangent line at point (1,0,0).
- (7) Find the angle between the surfaces  $x^2+y^2+z^2=9$ , and  $z=x^2+y^2-3$  at the point (2,-1,2).
- (8) If A is a differential vector function and  $\varphi$  is a differentiable scalar function, then  $\operatorname{div}(\varphi A) = (grad\varphi). A + \varphi div A \text{ or } (\nabla \cdot \varphi A) = (\nabla \varphi). A + \varphi(\nabla \cdot A).$
- (9) Find the constants a,b,c so that the vector F = (x+2y+az)i+(bx-3y-z)j+(4x+cy+2z)k is irrotational.
- (10) Prove that the curl  $(\varphi A) = (grad\varphi) \times A + \varphi curl A\nabla \times (\varphi A) = (\nabla \varphi) \times A + \varphi(\nabla \times A)$ .
- (11) Prove that  $\nabla^2 \left( \frac{x}{r^2} \right) = -\frac{2x}{r^4}$

- (12) Prove that div  $\hat{r} = \frac{2}{r}$
- (13) Prove that div  $r^n r = (n+3)r^n$ .
- (14) Prove that curl  $(r^n r) = 0$ , i.e.,  $r^n r$  is irrotational.
- (15) Prove that curl  $(A \times B) = (B \cdot \nabla)A BdivA (A \cdot \nabla)B + Adiv B$ .
- (16) Prove that  $\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$ .
- (17) If  $\nabla^2 f(r) = 0$ , show that  $f(r) = \frac{c_1}{r} + c_2$ , where  $r^2 = x^2 + y^2 + z^2$  and  $c_1$ ,  $c_2$  are arbitary constants.
- (18) Prove that  $\nabla^2 \left(\frac{1}{r}\right) = 0$ .
- (19) Prove that div grad  $r^n = n(n+1) r^{n-2}$ ,  $\nabla^2 r^n = n(n+1) r^{n-2}$ .
- (20) Prove that curl ( $\varphi$ grad  $\varphi$ ) = 0.
- (21) If f and g are two scalar point functions, prove that  $\operatorname{div}(f \nabla g) = f \nabla^2 g + \nabla f \cdot \nabla g$ .
- (22) Prove that  $\nabla \cdot \left(r\nabla\left(\frac{1}{r^3}\right)\right) = \frac{3}{r^4}$ .
- (23) Prove that b. $\nabla \left(a. \nabla \frac{1}{r}\right) = \frac{3(a.r)(b.r)}{r^5} \frac{a.b}{r^3}$  where a and b are constant vectors.
- (24) If a is a constant vector, prove that  $\operatorname{curl} \frac{a \times r}{r^3} = -\frac{a}{r^3} + \frac{3r}{r^6}$  (a-r).
- (25) Prove that div  $\left\{\frac{f(r)r}{r}\right\} = \frac{1}{r^2} \frac{d}{dr} (r^2 f)$ .
- (26) If a and b are constant vectors, prove that
- (i) div  $[(r \times a) \times b] = -2b. a$ ,
- (ii) curl  $[(r \times a) \times b] = b \times a$ .

(27) Show that 
$$\nabla^2 \left( \frac{x}{r^3} \right) = 0$$

- (28) Show that under a rotation of rectangular axes, the origin remaining the same, the vector differential operator  $\nabla$  remains invariant.
- (29) If  $\varphi(x, y, z)$  is a scalar invariant with respect to a rotation of axes, then grad  $\varphi$  is a vector invariant under this transformation.
- (30) If V (x,y,z) is a vector function invariant with respect to a rotation of axes, then div V is a scalar invariant under this transformation.
- (31) Prove that grad (A.B)= $(B.\nabla)A + (A.\nabla)B + B \times curl A + A \times curl B$ .
- (32) Prove that curl of the gradient of  $\varphi$  is  $zero \nabla \times (\nabla \varphi) = 0$ , *i.e*  $curl\ grad\ \varphi = 0$ .
- (33) Prove that div  $(A \times B) = B \cdot curlA A \cdot curlB$  $\nabla \cdot (A \times B) = B \cdot (\nabla \times A) - A \cdot (\nabla \times B)$ .

## SuccessClap: Question Bank for Practice 02 GREEN, GAUSS, DIVERGENCE

- (1). Find the work done in moving a particle once around a circle C in the xy-plane, if the circle has centre at the origin and radius 2 and if force field F is given by F = (2x y + 2z)i + (x + y z)j + (3x 2y 5z)k.
- (2). Evaluate

$$\int_{C} \{(2xy^3 - y^2\cos x)dx + (1 - 2y\sin x + 3x^2y^2)dy\}$$

Where C is the arc of the parabola

$$2x = \pi y^2$$
 from (0,0) to  $(\frac{1}{2}\pi, 1)$ .

- (3). Evaluate  $\iint_S F$ . n ds, where F = yzi + zxj + xyk and S is that part of the surface of the sphere  $x^2 + y^2 + z^2 = 1$  which lies in the first octant.
- (4). Evaluate  $\iint_S F$ . n ds, where  $F = zi + xj 3y^2zk$  and S is the surface of the cylinder  $x^2 + y^2 = 16$  included in the first octant between z = 0 and z = 5.
- (5). Evaluate  $\iint_S F$ , n ds, where  $F = (x + y^2)i 2xj + 2yzk$  and S is the surface of the plane 2x + y + 2z = 6 in the first octant.
- (6). Evaluate  $\iint_S F$ . n ds, where F = yi + 2xj zk and S is the surface of the plane 2x + y = 6 in the first octant cut-off by the plane z = 4.
- (7). Evaluate by Green's theorem  $\int_{c} e^{-x} (\sin y dx + \cos y dy)$ , C being the rectangle with vertices  $(0,0)(\pi,0)\left(\pi,\frac{\pi}{2}\right)$  and  $\left(0,\frac{\pi}{2}\right)$ .
- (8). Verify divergence theorem for

$$F = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$$

Taken over the rectangular parallelepiped

- (9). Evaluate  $\iint_S x^2 dydz + y^2 dzdx + 2z(xy x y)dxdy$ . Where S is the surface of the cube 0 < x < 1, 0 < y < 1, 0 < z < 1.
- (10). By transforming to a triple integral evaluate.

$$I = \iint_{S} (x^3 \, dydz + x^2ydzdx + x^2zdxdy)$$

S is the closed surface bounded by the plane z=0, z=b and the cylinder  $x^2+y^2=a^2$ .

(11). Apply Gauss's divergence theorem to evaluate

$$\iint_{S} [(x^3 - yz) \, dydz - 2x^2ydzdx + zdxdy]$$

Over the surface of a cube bounded by the coordinate planes and the plane x = y = z = a.

(12). Find  $\iint_{S} A. n ds$ , where

$$A = (2x + 3z)i - (xz + y)j + (y^2 + 2z)k$$

And S is the surface of the sphere having centre at (3, -1, 2) and radius 3.

(13). Evaluate

$$\iint_{S} (y^{2}z^{2}i + z^{2}x^{2}j + z^{2}y^{2}k). n ds$$

Where S is the part of the sphere  $x^2 + y^2 + z^2 = 1$  above the xy-plane and bounded by this plane.

- (14). Evaluate  $\iint_S F$ . n ds, over the entire surface of the region above the xy-plane bounded by the cone  $z^2 = x^2 + y^2$  and the plane z = 4, if  $F = 4xzi + xyz^2j + 3zk$
- (15). Show that  $\iint_{S}(x^2i+y^2j+z^2k)$  .  $n\ ds$  vanishes where S denotes the surface of the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

(16). If  $F = (x^2 + y - 4)i + 3xyj + (2xz + z^2)k$ , evaluate  $\iint_S (\nabla \times F) \cdot n \, ds$  where S is the surface of the sphere  $x^2 + y^2 + z^2 = 16$  above the xy plane.

(17). Evaluate  $\iint_{S} (\nabla \times A)$ . n ds, where

A =  $(x - z)i + (x^3 + yz)j - 3xy^2k$  and S is the surface of the cone  $z = 2 - \sqrt{(x^2 + y^2)}$  above the xy plane.

(18). Evaluate  $\iint_{S} (ax^2 + by^2 + cz^2) ds$ 

Over the sphere  $x^2 + y^2 + z^2 = 1$  using the divergence theorem.

- (19). Verify Stoke's theorem for  $F = (2x y)i yz^2j y^2zk$ , where S is the upper half surface of the  $x^2 + y^2 + z^2 = 1$  and C is its boundary.
- (20). Verify Stoke's theorem for  $F = (x^2 + y^2)i 2xyj$  taken round the rectangle bounded by  $x = \pm a, y = 0, y = b$ .
- (21). Verify Stoke's theorem for  $F = (-y^2)i + x^2j$ , where S is the circular disc  $x^2 + y^2 \le 1$ , z = 0.
- (22). Evaluate by Stoke's theorem

$$\oint_C (e^x dx + 2y dy - dz)$$

Where C is the curve  $x^2 + y^2 = 4$ , z = 2.

(23). Evaluate

$$\oint_C (xydx + xy^2dy)$$

By Stoke's theorem where C is the square in the xy plane with vertices (1,0), (-1,0), (0,1), (0,-1).

(24). Evaluate by Stoke's theorem

$$\oint_{C} (\sin z dx - \cos x dy + \sin y dz)$$

Where C is the boundary of the rectangle.

$$0 < x < \pi$$
,  $0 < y < 1$ ,  $z = 3$ .

(25). Apply Stoke's theorem to prove that

$$\int_{c} (ydx + zdy + xdz) = -2\sqrt{2} \pi a^{2}$$

Where C is the curve given by

$$x^2 + y^2 + z^2 - 2ax - 2ay = 0, x + y = 2a$$

And begins at the point (2a, 0,0) and goes at first below the plane.

- (26). Use Stoke's theorem to evaluate  $\iint_S (\nabla \times F) \cdot n \, ds$  and where F = yi + (x 2xz)j xyk and S is the surface of the sphere  $x^2 + y^2 + z^2 = a^2$  above xy plane.
- (27). Evaluate the surface integral  $\iint_S \text{curl } F$ , n ds by transforming it into a line integral, S being that part of the surface of the paraboloid  $z = 1 x^2 y^2$  for which z > 0, and F = yi + zj + xk.
- (28). If  $F = (y^2 + z^2 x^2)i + (z^2 + x^2 y^2)j + (x^2 + y^2 z^2)k$ , evaluate  $\iint_S \text{curl } F$ . n ds taken over the portion of the surface  $x^2 + y^2 + z^2 2ax + az = 0$  above the plane z = 0, Verify Stoke's theorem.
- (29). Using Green's theorem evaluate

$$\int_{C} (x^2 - y^2) dx + 2xy dy$$

Where C is the curve of the region bounded by  $y^2 = x$  and  $x^2 = y$ .

(30). Evaluate

$$\int_{C} (\sin x - y) dx - \cos x dy,$$

Where C is the triangle with vertices  $(0,0)(\frac{\pi}{2},0)$  and  $(\frac{\pi}{2},1)$ .



### **SuccessClap: Question Bank for Practice**

#### 03 DIFFERENTIAL GEOMETRY

- (1)State and prove servet Frenet formula.
- (2) Show
- (a)  $\dot{\mathbf{v}} = \dot{\mathbf{s}} \mathbf{t}$
- (b)  $\ddot{v} = \ddot{s} t + k \dot{s}^2 n$
- $\ddot{v} = (\ddot{s} k^2 s^3)t + \dot{s}(3k \, \ddot{s} + \dot{k} \, \dot{s})n + k \, c \, \dot{s}^3b$ (c)

Hence deduce



(e) 
$$b = \frac{\dot{v} \times \ddot{v}}{k s^3}$$

(f) 
$$k^2 = \frac{|\ddot{r}| - \ddot{s}^2}{\dot{s}^4}$$

(g) 
$$c = \frac{[\dot{v} \ \ddot{v} \ \ddot{v}]}{k^2 \dot{s}^6}$$

- (3)For helix  $r = a \cos t + a \sin t + bt k a > 0$ ,  $b \neq 0$ . Find curvature at "t".
- (4)Let v = v(s) be a curve. Prove
- v'.v''=0 (i)
- (ii)  $v''' = -k^2 t + k' n + kcb$
- (iii)  $v'.v''' = -k^2$
- (iv)  $v'' \cdot v''' = kk'$
- (v)  $v'''' = -3kk't + (k'' k^3 kc^2)n + 2(k'c + c'k) b$
- (vi) v'. v'''' = -3kk'
- (vii)  $v'' \cdot v'''' = k(k'' k^3 kc^2)$
- (viii)  $v''' \cdot v'''' = k' \cdot k'' + 2k^3k' + k^2cc' + kk'c^2$ .
- (ix)  $[t't''t'''] = k^3(kc'-k'c)$  $= k^5 \frac{d}{ds} \left(\frac{c}{k}\right)$
- $[b' b'' b'''] = c^3 (k'c kc')$ (x)  $= c^5 \frac{d}{ds} \left(\frac{k}{s}\right)$

- (5) Find the curvature vector and curvature at t = 1 for  $v = t i + \frac{1}{2} t^2 j + \frac{1}{3} t^3 k$
- (6) Prove that a regular curve of class  $c^m$  ( $m \Rightarrow z$ ) is a straight line if and only if its curvature is identically zero.

(7) Show 
$$k = \frac{|\dot{\mathbf{v}} \times \ddot{\mathbf{v}}|}{|\dot{\mathbf{r}}|^3}$$

(8) Show radius of curvature at t for  $r = a \cos t + a \sin t j a > 0$  is a.

(9) For 
$$\mathbf{v} = \mathbf{x}(t) \mathbf{i} + \mathbf{y}(t) \mathbf{j} \mathbf{k} = \frac{|\dot{x}\ddot{y} - \ddot{x}\dot{y}|}{(\dot{x}^2 + \dot{y}^2)^{3/2}}$$

(10) Show curvature of v = (t - sin t) + (1- cos t) j + t k is 
$$\frac{(1+4\sin^4\frac{t}{2})^{1/2}}{(1+4\sin^2\frac{t}{2})^{3/2}}$$

(11) For x = 
$$4a \cos^3 t$$
, y =  $4a \sin^3 t$ , z =  $3c \cos 2t$   
Show k =  $\frac{a}{6(a^2+c^2)\sin 2t}$ 

(12) Show radius of curvature at any point of curve

$$x^2 + y^2 = a^2$$
,  $x^2 - y^2 = az$  is  $\frac{(5a^2 - 4z^2)^{3/2}}{a\sqrt{5a^2 + 12z^2}}$ .

 $x = a \cos 2t$ 

(13) Find equation of asculating plane and curvature at t of  $y = a \sin 2t$  $z = 2a \sin t$ 

is  $(\sin t + \sin 2t \cos t)x - 2\cos^2 t$  y+2z =3a sin t.

$$k = \frac{\sqrt{5 + 3\cos^2 t}}{2a(1 + \cos^2 t)^{3/2}}$$

(14) For curve x = 3t, y = 
$$3t^2$$
, z =  $2t^3$  show p =  $\frac{3}{2}(1 + 2t^2)^2$ .

(15) Find curvature of  $v = a(t - \sin t)i + a(1 - \cos t)j + bt k$ 

Ans: 
$$\frac{a(b^2 + 4a^2 sin^4 \frac{t}{2})^{1/2}}{(b^2 + 4a^2 sin^2 \frac{t}{2})^{3/2}}$$

(16) For helix  $x = a \cos t$ 

y = a sin t  
z = a t cot 
$$\propto$$
, show k =  $\frac{1}{a}$  sin<sup>2</sup>  $\propto$ 

(17) For x = t, y = 
$$t^2$$
, z =  $t^3$   
 $k^2 = \frac{4(9t^4 + 9t^2 + 1)}{(9t^4 + 4t^2 + 1)^3}$ 

(18) For x =a(3t-t<sup>3</sup>), y = 3at<sup>2</sup>, z = a(3t+t<sup>3</sup>). Show k = 
$$\frac{1}{3a(1+t^2)^2}$$
.

(19) Find curvature (i) 
$$y = x^2$$
 Ans:  $\frac{2}{(1+4x^2)^{3/2}}$  (ii)  $xy = \lambda$  Ans:  $\frac{2\lambda x^3}{(x^4+\lambda^2)^{3/2}}$ 

(20) Find curvature (a) 
$$v = a \cos t i + b \sin t j$$
 Ans: 
$$\frac{ab}{(a^2 \sin^2 t + b^2 \cos^2 t)^{3/2}}$$

(b) 
$$v = \cosh t \hat{i} + \sinh t j$$

Ans: 
$$\frac{1}{\cosh^2 2t}$$

(c) 
$$v = t i + t^{3/2} j$$

Ans: 
$$\frac{6}{\sqrt{t} (4+9t)^{3/2}}$$

(21) Find torsion for 
$$v = a \cos t \hat{i} + a \sin t j + bt L$$

Ans: 
$$\frac{b}{a^2+b^2}$$

(22) Show along curve 
$$kc = |t'.b'|$$

(23) Show along curve 
$$c = [t n n']$$

(24) Show c = 
$$\frac{[v' \, v'' \, v''']}{k^2}$$

(25) Show c = 
$$\frac{[\dot{\mathbf{v}}\ \ddot{\mathbf{v}}\ \ddot{\mathbf{v}}]^2}{|\dot{\mathbf{v}}\times\ddot{\mathbf{v}}|^2}$$

(26) Show 
$$v = a \cos t i + a \sin t j + bk + a > 0 b \neq 0$$
 is a plane curve.

(27) Show 
$$r = (t, \frac{1+t}{t}, \frac{1-t^2}{t})$$
 lies on the plane.

- (28) Find torsion  $v = ti + t^2j + t^3k$  Ans:  $\frac{3}{1+9t^2+9t^4}$ .
- (29) Find torsion r = (at a sin t)i +(a- a cos t)j +bt k Ans:  $\frac{-b}{b^2+4a^2sin^4\frac{t}{2}}$
- (30) For curve x = a tan t, y = a cot t, z =  $\sqrt{z} \alpha \log \tan t$ Prove p =  $\sigma = \frac{2\sqrt{2} \alpha}{\sin^2 2t}$
- (31) Prove for curve of intersection of  $x^2+y^2=z^2$  and  $z=a \tan^{11}\frac{y}{x}$   $P = \frac{a(2+\theta^2)^{3/2}}{8+5\theta^2+\theta^4)^{\frac{1}{2}}} \quad \sigma = \frac{a(8+5\theta^2+\theta^4)}{6+\theta^2} \quad where \quad y = x \tan \theta$
- (32) For a point on curve of intersection  $x^2-y^2=c^2$  and y=x tanh  $\frac{z}{c}$ . Show  $p=\sigma=\frac{2x^2}{c}$  (33)
- (34) Determine the function f(y) so that curve  $v = (a \cos u, a \sin u, f(u))$  should be a plane curve. Ans:  $f(u) = A \sin u + B \cos u + C$ .
- (35) If tangent and binomial at a point of curve make angle  $\theta$  and  $\varphi$  with a fixed drx.

Show 
$$\frac{\sin\theta}{\sin\varphi}\frac{d\theta}{d\varphi} = \frac{-k}{c}$$
.

(36) If 
$$\frac{dt}{ds} = w \times t$$
,  $\frac{dn}{ds} = w \times n$ ,  $\frac{db}{ds} = w \times b$ . Find w. Ans:  $w = ct + kb$  w: Darboux vector.

- (37) Find Direction cosines of
- (a) Unit principal normal vector
- (b) Unit Binomial vector.
- (38) Show that position vector of current point on curve  $d = d \left( \frac{d^2v}{d^2} \right) + \frac{d}{d} \left[ \frac{\sigma dr}{d^2} \right] + \frac{p}{d^2v} = 0$

v = v(s) satisfies eqn 
$$\frac{d}{ds} \left[ \sigma \frac{d}{ds} \left( p \frac{d^2 v}{ds^2} \right) \right] + \frac{d}{ds} \left[ \frac{\sigma}{p} \frac{dr}{ds} \right] + \frac{p}{\sigma} \frac{d^2 v}{ds^2} = 0$$

- (39) Find torsion
- (a)  $v = t i + t^2 i + t^3 k$  at t = 2
- (b)  $v = (3t-t^3)i+3t^2j+(3t+t^3)k$
- (c) v = (t-sint)i+(1-cost)j+tk
- (d)  $x = a \cos t$ ,  $y = a \sin t$ ,  $z = at \tan \infty$ .

(40) For x = a(3t-t<sup>3</sup>), y=3at<sup>2</sup>, z = a(3t+t<sup>3</sup>).  
Show k = c = 
$$\frac{1}{3a(1+t^2)^2}$$
.

(41) For x = 3t, y=3t<sup>2</sup>, z = 2t<sup>3</sup>  

$$k = c = \frac{z}{3(1+2t^2)^2}$$
.

- (42) Find torsion
- (a)  $x^2+y^2=a^2$  Intersection point

$$x^2-y^2 = az$$

Ans: 
$$\frac{6\sqrt{a^2-z^2}}{5a^2+12z^2}$$

(b)  $x = a \cos 2t$ 

$$y = a \sin 2t$$

$$z = 2a \sin t$$

Ans: 
$$\frac{3}{(5sect+3\cos t)}$$

- (43) Find cuvature and torsion of x = a cost, y = a sin t, z = ct Ans:  $\frac{a}{a^2+c^2}$ ,  $\frac{c}{a^2+c^2}$
- (44) (a) Find length of helix for  $0 \le t \le 2\pi$ r = a cos t i+a sin t + bt k

(b) Find length of 
$$0 \le t \le \pi$$

$$V=4 \cosh 2t i+4 \sinh 2t j+8t k$$
.

- (c) Find length of  $v = t i + t^{3/2} j$  from (0,0,0) to (4,8,0).
  - (44) (a) Show length of the curve x =  $2a(\sin t + t\sqrt{1 t^2})$ ,

y =  $2at^2$ , z = 4at between points t =  $t_1$  and t =  $t_2$  is  $4\sqrt{2}$  a ( $t_2$  –  $t_1$ ).

(b) Find arc length as a function of  $\theta$ 

$$x = (a+b)\cos\theta - b\cos\left(\frac{a+b}{b}\theta\right), y = (a+b)\sin\theta - b\sin\left(\frac{a+b}{b}\theta\right),$$

$$z = 0$$

Ans: 
$$\frac{4(a+b)b}{a} \left[ 1 - \cos \frac{a\theta}{2b} \right]$$

(c) Find length of the curve given by intersection

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, x = a cosh  $\frac{z}{a}$  from (0,0,0) to (x,y,z).

Ans: 
$$\frac{\sqrt{a^2+b^2}}{b}y$$

(d)Length of helix  $v = 3\cos t i + 3\sin j + 4tk$ 

$$0 \le t \le 2\pi$$

(e) Find length of one complete turn of helix  $v = (a \cos t, a \sin t, bt) - \infty < t < \infty \quad a > 0, b > 0$ 

(f) Find length of curve in  $0 \le t \le \pi$ 

 $v = 3 \cosh 2t i + 3 \sin 2t j + 6t k.$ 

(g) Find length of curve in t = 1 to t = 3

$$v = (\sin t + t\sqrt{1 - t^2})i + t^2j + 2t k$$

(h)Length of curve by intersection of  $x^2-y^2=1$ ,

 $x = \cosh z \text{ from } (1,0,0) \text{ to } (x,y,z).$ 

(45)Find equation of helix  $v = a \cos t i + a \sin t j + ctk$  $-\infty < t < \infty$  in terms of arc length "s" as parameter.

(46)Express  $v = e^t \cos t i + e^t \sin t j + e^t k$  $-\infty < t < \infty$  in terms of arc length "s".

(47) Find the unit tangent vector t and direction cosines of tangent at a point on circular helix

$$x = a \cos t$$
,  $y = a \sin t$ ,  $z = bt$   $-\infty < t < \infty$ 

Practice All Qns from Question Bank and PYQs is enough to score 350+ Marks in Upsc Maths. We provide Question Bank Solutions and PYQ Solns from 1992-2020. Checkout SuccessClap.com

(48)Show that the tangent vectors along the curve  $v = at i+bt^2 j+t^3 k$  where  $2b^2 = 3a$  make a constant angle with vector i + k.

