Topology Question - Continuous $f: \mathbb{R}_{\text{co-countable}} \longrightarrow \mathbb{R}_{\text{usual}}$

David Veitch

August 2019

1 Question

Prove that there exist no continuous function $f: \mathbb{R}_{\text{co-countable}} \longrightarrow \mathbb{R}_{\text{usual}}$.

Recall:

- $\mathbb{R}_{\text{co-countable}}$ and $\mathbb{R}_{\text{usual}}$ are \mathbb{R} with the co-countable (\mathbb{R} , $\mathbb{R}_{\text{co-countable}}$) and usual topologies (\mathbb{R} , $\mathbb{R}_{\text{usual}}$) respectively
- In $(\mathbb{R}, \mathbb{R}_{\text{co-countable}})$, $\mathbb{R}_{\text{co-countable}} := \{U \subseteq \mathbb{R} \mid \mathbb{R} \setminus U \text{ is countable}\} \cup \{\emptyset\}$
- In $(\mathbb{R}, \mathbb{R}_{usual})$, \mathbb{R}_{usual} is generated by the basis $\mathcal{B} := \{(a, b) \mid a, b \in \mathbb{R}, a < b\}$

2 Answer

Suppose there did exist a continuous function $f: \mathbb{R}_{\text{co-countable}} \longrightarrow \mathbb{R}_{\text{usual}}$. Therefore $\forall (a, b) \in \mathbb{R}$, we have by the continuity of f that $f^{-1}((a, b)) \in \mathbb{R}_{\text{co-countable}}$.

Let D_1 and D_2 be disjoint open intervals in \mathbb{R} (and hence $D_1, D_2 \in \mathbb{R}_{usual}$).

Since f is continuous, $f^{-1}(D_1)$, $f^{-1}(D_2) \in \mathbb{R}_{\text{co-countable}}$. Therefore by the definition of $\mathbb{R}_{\text{co-countable}}$, $\mathbb{R} \setminus f^{-1}(D_1)$ is countable, and $\mathbb{R} \setminus f^{-1}(D_2)$ is countable.

Also, note that $f^{-1}(\mathbb{R} \setminus D_1) = f^{-1}(\mathbb{R}) \setminus f^{-1}(D_1)$, and $f^{-1}(\mathbb{R} \setminus D_2) = f^{-1}(\mathbb{R}) \setminus f^{-1}(D_2)$.

Also, $D_1 \subseteq \mathbb{R} \setminus D_2 \Rightarrow f^{-1}(D_1) \subseteq f^{-1}(\mathbb{R} \setminus D_2)$. Given $f^{-1}(\mathbb{R} \setminus D_2)$ is countable $\Rightarrow f^{-1}(D_1)$ is countable.

However, we also know that $\mathbb{R} = f^{-1}(D_1) \cup (\mathbb{R} \setminus f^{-1}(D_1))$. Therefore \mathbb{R} is a union of two countable sets $\Rightarrow \mathbb{R}$ is countable. This is obviously a contradiction. Therefore there exists no continuous function $f : \mathbb{R}_{\text{co-countable}} \longrightarrow \mathbb{R}_{\text{usual}}$.

3 Supplemental Material

This is not the most difficult problem in topology I came across, however I think it is nice because of the contradiction that is ultimately arrived at, that \mathbb{R} is countable.

Special thanks to Ivan Khatchatourian who assigned a version of this question as a 'Big List' homework question for MAT327 Introduction to Topology at the University of Toronto in the summer of 2019.