CLASSIFICATION & PREDICTION

Classification:

- predicts categorical class labels
- classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data
- Supervised learning process

• Prediction:

 models continuous-valued functions, i.e., predicts unknown or missing values

Typical Applications

- credit approval
- target marketing
- treatment effectiveness analysis

Steps in classification

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction: training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set, otherwise overfitting will occur

Classification Process (1): Model Construction

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

Classification Algorithms

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

<u>Classification Process (2): Use the Model in Prediction</u>

<u>Issues in classification & prediction</u>

Data cleaning

- Preprocess data in order to reduce noise and handle missing values
- Relevance analysis (feature selection)
 - Remove the irrelevant or redundant attributes
- Data transformation
 - Generalize and/or normalize data

Evaluating the classification techniques

Predictive accuracy

Ability to predict the class label correctly

Speed

- time to construct the model
- time to use the model

Robustness

handling noise and missing values

Scalability

efficiency in disk-resident databases

Interpretability

understanding and insight provided by the model

Goodness of rules

- decision tree size
- compactness of classification rules

Classification by decision tree induction

Decision tree

- A flow-chart-like tree structure
- Internal node denotes a test on an attribute
- Branch represents an outcome of the test
- Leaf nodes represent class labels or class distribution
- Decision tree generation consists of two phases
 - Tree construction
 - At start, all the training examples are at the root
 - Partition the examples recursively based on selected attributes

- Tree pruning
 - Identify and remove branches that reflect noise or outliers
- Use of decision tree: Classifying an unknown sample
 - Test the attribute values of the sample against the decision tree

Decision tree induction example

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Output: A Decision Tree for "buys-computer"

Decision Tree induction algorithm

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-andconquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)

Conditions for stopping partitioning

- All samples for a given node belongs to the same class
- There are no remaining attributes for further partitioning –
 majority voting is employed for classifying the leaf
- There are no samples left

Attribute selection methods

- Information gain
- Gain ratio
- Gini index

Information gain (ID3)

- All attributes are assumed to be categorical
- Can be modified for continuous-valued attributes
- Select the attribute with the highest information gain
- Assume there are two classes, P and N
- Let the set of examples S contain p elements of class P and
 n elements of class N
- The amount of information, needed to decide if an arbitrary example in S belongs to P or N is defined as

$$I(p,n) = -\frac{p}{p+n} \log_2 \frac{p}{p+n} - \frac{n}{p+n} \log_2 \frac{n}{p+n}$$

- Assume that using attribute A, a set S will be partitioned into sets $\{S_1, S_2, ..., S_v\}$
 - If S_i contains p_i examples of P and n_i examples of N, the entropy, or the expected information needed to classify objects in all sub trees S_i is

$$E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

 The encoding information that would be gained by branching on A

$$Gain(A) = I(p,n) - E(A)$$

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"
- \circ I(p, n) = I(9, 5) = 0.940
- Compute the entropy for age:

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3040	4	0	0
>40	3	2	0.971

$$E(age) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.69$$

Hence

$$Gain(age) = I(p,n) - E(age)$$

Similarly

$$Gain(income) = 0.029$$

 $Gain(student) = 0.151$

$$Gain(credit_rating) = 0.048$$

Gain ratio for attribute selection (C4.5)

- Information gain measure is biased towards attributes with a large number of values
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

$$SplitInfo_{A}(D) = -\sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times \log_{2}(\frac{|D_{j}|}{|D|})$$

- GainRatio(A) = Gain(A)/SplitInfo(A)
- Ex. $SplitInfo_A(D) = -\frac{4}{14} \times \log_2(\frac{4}{14}) \frac{6}{14} \times \log_2(\frac{6}{14}) \frac{4}{14} \times \log_2(\frac{4}{14}) = 0.926$ - gain_ratio(income) = 0.029/0.926 = 0.031
- The attribute with the maximum gain ratio is selected as the splitting attribute

Gini index (CART)

 If a data set D contains examples from n classes, gini index, gini(D) is defined as

$$gini(D) = 1 - \sum_{j=1}^{n} p_{j}^{2}$$
 where p_{j} is the relative frequency of class j in D

If a data set D is split on A into two subsets D₁ and D₂, the gini index gini(D) is defined as

$$gini_A(D) = \frac{|D_1|}{|D|}gini(D_1) + \frac{|D_2|}{|D|}gini(D_2)$$

Reduction in Impurity:

$$\Delta gini(A) = gini(D) - gini_A(D)$$

 The attribute provides the smallest gini_{split}(D) (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)

Tree Pruning

- Helps to remove the branches which reflects the
 - Noise
 - Errors
- Uses the statistical measures to identify the least reliable branches
- Characteristics of pruned tree
 - Easy to understand
 - Less complex
 - Small in size

Types of pruning

Pre-pruning

- Tree gets pruned by halting the construction process at early stages
- Leaf node gets introduced during the halt.
- Halt criteria
 - If the partition process results in a set of values for the statistical measures fall below the threshold value

contd...

Post-pruning

- Subtree gets removed at later stage
- Associated branches, nodes also gets discarded
- Cost complexity gets compared for pruned & unpruned trees

Bayesian classification

- Is a statistical classifier
- Predicts the class label by calculating the membership probabilities
- Naïve bayesian classifier is a simple bayesian classifier
- Works based on Bayes Theorem
- Uses the class conditional independence

Bayes Theorem

- Introduced by Thomas Bayes
- Let
 - X be a tuple/evidence
 - X gets described by n attributes values
 - H be the hypothesis
 - Data tuple X belongs to the specified class C_i
- Need to determine P(H|X) → Probability the hypothesis H holds the tuple X
- P(H|X) Posterior/posteriori probability

- P(H) Prior/Apriori probability of H
- Prior probability is independent of any attributes
- P(X|H) Posterior probability of X conditioned on H.
- P(X) prior probability for X
- Need to calculate all the above mentioned values

$$p(H \mid X) = \frac{p(X \mid H)p(H)}{p(X)}$$

 Calculate the value for all the classes, select the class which has the largest value

Naïve Bayesian Classification

- Let
 - D be a training data tuples, class labels
 - X gets described by n attributes values
 - $-A_1,A_2,...A_n$ are the values for the tuple
- Let
 - m classes C_1, C_2, \dots, C_m
 - X be the given tuple
- Classifier assigns a class label which have highest posterior probability conditioned on X

$P(C_i|X) > P(C_i|X)$ for $1 \le j \le m, j \ne i$

The class which has maximum value is said to be "maximum posteriori hypothesis"

$$p(\mathbf{C}_i|X) = \frac{p(X|\mathbf{C}_i)p(\mathbf{C}_i)}{p(X)}$$

- P(X) constant for all the classes
- Numerator alone need to be maximized
- Class probability can be computed using

$$P(c_i) = \frac{|C_{i,D}|}{|D|}$$

$$p(X \mid c_i) = \prod_{j=1}^{m} p(x_j \mid c_i) = p(x_1 \mid c_i) \times p(x_2 \mid c_i) \times ... p(x_m \mid c_i)$$

we can easily compute the value for the terms in the above equation let $\mathbf{x_k}$ be the value for an attribute $\mathbf{A_k}$ for the tuple X

- If A_k is a categorical value then
- P($x_k | C_i$) is the # of tuples in C_i having value x_k for A_k divided by $|C_{i,D}|$ (# of tuples of C_i in D)
- If A_k is a Continuous value then

 $P(x_k | C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ

$$g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$p(x_j \mid c_i) = g(x_j, \mu_{ci}, \sigma_{ci})$$

we need to compute the last two parameters which are the mean and standard deviation for the tuples in a class C_i for an attribute A_k

 Calculate the probability for each class, select the class label for which we got a highest value.

Case study

using the previous example, predict the class label for a tuple

X={age=youth, income=medium, student=yes, credit-rating=fair}

let buys-computer is a class label

C1= set of tuples belongs to a class buys computer=yes

C2=set of tuples belongs to a class buys computer=no

Bayesian Belief Networks

- Also called as belief networks, bayesian networks, probabilistic networks
- Limitations of naïve bayesian classifier
 - Assumes the class conditional independence
 - Simplifies the computation
 - Suitable if the assumption holds true
- Dependency exists between the variables
- BBN specifies the joint conditional probability distributions
 - Class conditional dependencies between the subset of attributes

- Provides a graphical model to represent the causal relationships
- Defined by two components
 - Directed Acyclic Graph (DAG)
 - Set of conditional probability table (CPT)

DAG

- Collection of nodes
- Node represents a random variable
- Variables
 - Continuous or discrete
 - Actual variables or hidden variables believed to form a relationship
- Nodes are connected through arcs
- Arcs represents a probabilistic dependence

- If there is an arc from node y to node z then
 - Y is a parent (immediate predecessor) for Z
 - Z is a descendant for Y
 - Given a node parents, every variable is conditionally independent of its non descendants in the graph

Simple BBN with six Boolean variables

- Lung cancer is influenced by family history of lung cancer as well as whether or not a person is smoker
- Variable positive-x-ray is independent of whether the patient has the family history of lung cancer or is a smoker
- Variable lung cancer is conditionally independent of emphysema, given its parents family history, smoker
- Conditional Probability Table (CPT)
 - Need to be constructed for every variable Y
 - Specifies the conditional distribution P(Y|Parents(Y))
 - Parents(Y) is the parents of Y
 - Conditional probability for each value of Y for each possible combination of values of its parents

for node LungCancer we may have

```
P(LungCancer = "True" | FamilyHistory = "True" ∧Smoker = "True") = 0.8
P(LungCancer = "False" | FamilyHistory = "False" ∧Smoker = "False") = 0.9
...
```

• The joint probability of any tuple $(z_1,...,z_n)$ corresponding to variables Z1,...,Zn

$$P(z_1,...,z_n) = \prod_{i=1}^n P(z_i | Parents(Z_i))$$

- Where P(z₁,....z_n) is the probability of a particular combination of values of Z, and the values P(z_i|Parents(Z_i)) corresponds to the entries in CPT
- A node can be selected as a "output" node represents the class label attribute
- Learning algorithms return the probability rather than class label

<u>Prediction</u>

- Process of predicting the continuous values rather than a categorical values
- Example
 - Predicting the salary for a person with 20 years of experience
- Regression is the most widely used approach
 - Introduced by sir frances galton
 - Used to model the relationship between one/more
 - Predictor variables and response variables
- In data mining
 - Predictor variables are attributes of interest
 - Response variable is what to predict

- Problems can be solved by linear regression by converting it to linear regression model
- Some of packages solves the regression problems
 - SAS <u>www.sas.co</u>m
 - SPSS www.spss.com

Linear Regression

- Involves a response variable y and single predictor variable x
- It models y as a linear function of x

$$y = b + wx$$

where b, w are regression coefficients

- b, w are solved using method of least squares
- Let
 - D is the set of training set of tuples
 - |D| is the total no. of tuples
- Training data tuples converted into data points $(x_1,y_1),(x_2,y_2),....(x_{|D|},y_{|D|})$

$$W = \frac{\sum_{i=1}^{|D|} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{|D|} (x_i - \overline{x})^2}$$

$$B = \overline{y} - W\overline{x}$$

• Where $\overline{x}, \overline{y}$ are the mean for an attribute x, y

Case study

using the table given below predict the response variable value for an predictor variable value 10 years experience

Experience (years)	salary
3	30
8	57
9	64
13	72
3	36
6	43
11	59
21	90
1	20
16	83