

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Agenda

1	Motivation
2	Miro Board
3	Hardware
4	Daten
5	Modelle

1. Motivation

Motivation

 $Video: https://nrodlzdf-a.akamaihd.net/none/zdf/23/12/231229_clip_3_vks/1/231229_clip_3_vks_4328k_p19v17.webm$

Motivation

Schlechte Nackenpositionen im Alltag verhindern

Motivation

Schlechte Nackenpositionen

Fig.: 3

Idee

Wearable für den Nacken

- Trackt Nackenposition
- Erkennt ungesunde Haltung
- Warnung durch Tonausgabe
- Analyse in Echtzeit, ohne Datentransfer

2. Miro Board

Value Proposition

For customers / audiences

Menschen mit schlechter Körperhaltung / Bürokräfte

Menschen in Städten

Menschen mit Kommunikations schwierigkeiten

who needs / wants / problems to be solved

aufrechter sitzen Lärm / Umweltbelastung durch Autos Erleichterung bei der Verständigung

the product name is a product category

Körperhaltungsmonitoring AutoEar

Quick Communicator

that key benefits / reasons to buy / provides this value

Erinnerung an bessere Körperhaltung Benachichtigung wenn keine Autos vor dem Fenster sind und gelüftet werden kann

Unterstützung bei der Kommunikation durch Handbewegungen

Value Proposition

Characteristics / Behaviors

Product Goals

Process

Capabilities

2. Hardware

Bewegungserfassung

Accelerometer:

Messung von linearen Bewegungen (X, Y, Z-Achse)

Gyroscope:

Messung der Drehgeschwindigkeit

Magnetometer: Misst das Magnetfeld

Fig.: 5

Geräuschwarnung

- Warnung über Bluetooth
 - Drahtlose Verbindung zu einem Lautsprecher
- Bluetooth Modul ist integriert im Microcontroller
- Bluetooth 5.0, integrierte PCB-Antenne

Fig.: 5

3. Daten

Datengewinnung

Externe Daten Käuflich verfügbar

Daten selbst erheben

Datengewinnung

Daten selbst erheben

Anbringungsmöglichkeiten der Sensoren

Erhobene Daten

3. Modelle

Modellvergleich

Methode	Vorteile	Nachteile
Schwellenwertlogik	 Einfache Implementierung Wenig Rechenleistung notwendig 	 Dynamische Bewegungen werden nicht erfasst Geringe Anpassungsfähigkeit an unterschiedliche Personen
Entscheidungsbaum	 Effizient bei wenigen Features 	 Ungenau bei verrauschten Daten
Neuronales Netz	 Lernt komplexe Bewegungsmuster Anpassungsfähig bei verschiedenen Personen 	 Erfordert initiales Training

Modellvergleich

Methode	Vorteile	Nachteile
Schwellenwertlogik	 Einfache Implementierung Wenig Rechenleistung notwendig 	 Dynamische Bewegungen werden nicht erfasst Geringe Anpassungsfähigkeit an unterschiedliche Personen
Entscheidungsbaum	 Effizient bei wenigen Features 	 Ungenau bei verrauschten Daten
Neuronales Netz	 Lernt komplexe Bewegungsmuster Anpassungsfähig bei verschiedenen Personen 	 Erfordert initiales Training

4. Ziel

Konfusionsmatrix

		Reales Ergebni	s
rsage		Nacken gerade	Nacken gekrümmt
Vorhersage	Nacken gerade	True Positive: Korrekt erkannte gerade Haltung; keine Warnung	False Positive: Gekrümmte Haltung nicht erkannt; keine Warnung
	Nacken gekrümmt	False Negative: Gerade Haltung nicht erkannt; Warnung	True Negative: Korrekt erkannte gekrümmte Haltung; Warnung

Quelle: Sawadski (2025)

Konfusionsmatrix

Accuracy:

Anteil der Korrekten Vorhersagen insgesamt

80 – 95 %

Precision:

Tatsächlich korrekte Warnungen

Quelle: Sawadski (2025)

60 – 80 %

Recall:

Erkennung von gekrümmter Haltung

90 – 100 %

Vielen Dank.

Textquellen

- o a Nano 33 BLE Sense. (o. D.). Docs.Arduino. Abgerufen am 18. März 2025, von https://docs.arduino.cc/tutorials/nano-33-ble-sense/imu-accelerometer/
- b Nano 33 BLE Sense. (o. D.). Docs.Arduino. Abgerufen am 18. März 2025,
 von https://docs.arduino.cc/tutorials/nano-33-ble-sense/ble-device-to-device/
- Sawadski, B. (2025, 7. März). Performance-Metriken des überwachten Lernens für Klassifikationsprobleme.
 Synvert. https://synvert.com/synvert-blog/performance-metriken-klassifikation-2-2/

Bildquellen

Fig. 1	Benevida. (2023, 5. August). The Best Ways to Fix Forward Head Posture (Nerd Neck). https://benevidawellness.com/. https://benevidawellness.com/how-to-fix-forward-head-posture/
Fig. 2	Physiotherapy Treatment, Exercise Physio, Massage, and Pilates Care Our Clinic. (o. D.). Physio Labs. https://www.physiolabs.com.au/uploads/2/1/8/9/21894396/1311220-orig_orig.png
Fig. 3	Images Vector (o.D.). Shutterstock. https://static1.howtogeekimages.com/wordpress/wp-content/uploads/2018/04/shutterstock_441776695.jpg
Fig. 4	Bild generiert mit Open Al ChatGPT, 19.03.2025
Fig. 5	Nano 33 BLE Sense. (o. D.). Docs.Arduino. Abgerufen am 18. März 2025, von https://docs.arduino.cc/hardware/nano-33-ble-sense/

