Analisi Matematica Soluzioni prova scritta parziale n. 1

Corso di laurea in Fisica, 2020-2021

18 dicembre 2020

1.1) Si consideri la successione definita per ricorrenza

$$\begin{cases} a_0 = \alpha \\ a_{n+1} = 4 - \frac{3}{a_n} \end{cases}$$

- (a) Al variare di $\alpha \in (-\infty, 0) \cup [1, +\infty)$ si determini, se la successione è ben definita e, quando esiste, qual è il suo limite.
- (b) Al variare di $\alpha \in \left[0, \frac{39}{40}\right]$ si determini se la successione è ben definita e, quando esiste, qual è il suo limite.
- (c) Riesci a trovare una formula esplicita (non ricorsiva) per i valori di α per i quali la successione non è ben definita?

Svolgimento. I punti fissi della funzione $f(x)=4-\frac{3}{x}$ sono le soluzioni di $x=4-\frac{3}{x}$ ovvero x=1 e x=3. Chiaramente se $\alpha=1$ o $\alpha=3$ la successione rimane costante $a_n=\alpha$ e il suo limite è α . Se x>3 allora $f(x)>4-\frac{3}{3}=3$, dunque l'intervallo $(3,+\infty)$ è invariante. Inoltre in tale intervallo risulta f(x)< x in quanto se x>0 la disequazione $4-\frac{3}{x}< x$ è equivalente a $x^2-4x+3>0$ che è verificata se x>3.

Dunque se $\alpha > 3$ si ha $a_n > 3$ e a_n è strettamente decrescente da cui $a_n \to \ell \in [3, \alpha)$. Ma visto che f è continua in ℓ , ℓ deve essere un punto fisso di f e l'unica possibilità è $\ell = 3$. Dunque $a_n \to 3$ in questo caso.

Se 1 < x < 3 allora $f(x) = 4 - \frac{3}{x} < 3$ e f(x) > x in quanto $4 - \frac{3}{x} > x$ per x > 0 è equivalente a $x^2 - 4x + 3 < 0$ che è verificata se 1 < x < 3. Dunque l'intervallo (1,3) è invariante e se $\alpha \in (1,3)$ si ha $a_n \in (1,3)$ per ogni n e a_n strettamente crescente. Dunque la succesione ha limite $a_n \to \ell$ e necessariamente $\ell \in (\alpha,3]$ è un punto fisso di f. L'unica possibilità è che sia $\ell = 3$.

Se x < 0 si ha $f(x) = 4 - \frac{3}{x} > 4$. Dunque l'intervallo $(-\infty, 0)$ viene mandato all'interno dell'intervallo invariante $(3, +\infty)$ per cui se $\alpha < 0$ si ha $a_n > 3$ per ogni $n \ge 1$ e la successione tende quindi a 3 come nel caso $\alpha > 3$.

In conclusione quando $\alpha \in (-\infty, 0) \cup [1, +\infty)$ la successione tende a 3 se $\alpha \neq 1$ e tende a 1 se $\alpha = 1$.

Sia ora $\alpha \in \left[0, \frac{39}{40}\right]$. La funzione f(x) non è definita in x=0 dunque se $\alpha=0$ allora $a_1=f(\alpha)$ non è definito. Se $\alpha>0$ certamente a_1 è ben definito ma potrebbe essere uguale a zero e in tal caso a_2 non sarebbe definito. In generale i valori di α per cui la successione non è ben definita sono quelli per cui $f^n(\alpha)=0$ per un qualche $n\in\mathbb{N}$ e si ottengono quindi partendo dal valore 0 e iterando la funzione f all'indietro, ovvero applicando la funzione inversa f^{-1} .

Se $y=4-\frac{3}{x}$ allora risolvendo in x si ottiene $x=f^{-1}(y)=\frac{3}{4-y}$. Dunque i punti "cattivi" sono: $0, f^{-1}(0)=\frac{3}{4}, f^{-1}\left(\frac{3}{4}\right)=\frac{12}{13}$ e $f^{-1}\left(\frac{12}{13}\right)=\frac{39}{40}$. Tutti gli altri punti dell'intervallo $\left[0,\frac{39}{40}\right]$ sono "buoni" in quanto nell'intervallo (0,1) si ha f(x) < x e dunque la successione a_n è strettamente decrescente ovvero, andando all'indietro, i punti "cattivi" sono una successione strettamente crescente (che quindi converge al punto fisso 2). Se α non è un punto cattivo la successione a_n dopo un numero finito di passi esce, decrescendo, dall'intervallo (0,1) e si ritrova quindi nell'intervallo $(-\infty,0)$ e da lì, come abbiamo già visto, tende a $\ell=3$.

Osserviamo che i punti "cattivi" $c_n = f^{-n}(0)$ sono rappresentati da frazioni di due numeri consecutivi in cui il numeratore è il triplo del denominatore precedente. Dunque tali numeri devono procedere approssimativamente come una successione geometrica di ragione 3. In effetti osserviamo che se moltiplichiamo numeratore e denominatore per 2 si trova che il denominatore è una potenza di 3 a meno di una unità. Possiamo quindi congetturare che valga questa formula:

$$c_n = \frac{3^{n+1} - 3}{3^{n+1} - 1}.$$

La formula può quindi essere dimostrata vera per induzione: se n = 0 si ha $c_0 = 0$ che è il primo punto cattivo, e supposto che c_n sia l'n-esimo punto cattivo si avrà:

$$c_{n+1} = f^{-1}(c_n) = \frac{3}{4 - c_n} = \frac{3}{4 - \frac{3^{n+1} - 3}{3^{n+1} - 1}}$$
$$= \frac{3}{\frac{4 \cdot 3^{n+1} - 4 - 3^{n+1} + 3}{3^{n+1} - 1}} = \frac{3 \cdot 3^{n+1} - 3}{3 \cdot 3^{n+1} - 1} = \frac{3^{n+2} - 3}{3^{n+2} - 1}$$

che dimostra la formula congetturata.

1.2) Si consideri la successione definita per ricorrenza

$$\begin{cases} a_0 = \alpha \\ a_{n+1} = \frac{3}{3-a_n} - 1 \end{cases}$$

- (a) Al variare di $\alpha \in (-\infty, 2] \cup (3, +\infty)$ si determini, se la successione è ben definita e, quando esiste, qual è il suo limite.
- (b) Al variare di $\alpha \in \left[\frac{81}{40}, 3\right]$ si determini se la successione è ben definita e, quando esiste, qual è il suo limite.
- (c) Riesci a trovare una formula esplicita (non ricorsiva) per i valori di α per i quali la successione non è ben definita?

Svolgimento. L'esercizio è simile alla variante precedente. Se $\alpha=0$ o $\alpha=2$ abbiamo un punto fisso e quindi la successione risulta costante e converge a $\ell=\alpha$. Se $\alpha\in(0,2)$ la successione è strettamente decrescente e converge a $\ell=0$. Se $\alpha\in(-\infty,0)$ la successione è strettamente crescente e converge a $\ell=0$. Se $a_0=\alpha\in(2,+\infty)$ in un passo si ha $a_1\in(-\infty,0)$ e quindi, di nuovo, la successione converge a $\ell=0$. In definitiva per ogni $\alpha\in(-\infty,2]\cup(3,+\infty)$ la successione tende a $\ell=0$ tranne che per $\alpha=2$ per il quale si ha $a_n\to\ell=2$.

Nell'intervallo [2,3) si hanno i punti "cattivi" che si determinano partendo da $\alpha = 3$ e iterando la funzione inversa $f^{-1}(y) = 3 - \frac{3}{y+1}$: 3, $\frac{9}{4}$, $\frac{27}{13}$ e $\frac{81}{40}$.

Si osserva che i punti cattivi hanno un numeratore che è una potenza di 3 e il denominatore è la metà del numeratore calato di uno. Possiamo quindi congetturare che l'n-esimo punto cattivo c_n si possa scrivere con la formula

$$c_n = \frac{2 \cdot 3^{n+1}}{3^{n+1} - 1}$$

che può essere verificata per induzione.

2.1) Per quali $x \in \mathbb{R}$ la seguente serie converge?

$$\sum_{n} x^{n} \cdot \left(\frac{n}{n+2}\right)^{n^{2}}$$

Svolgimento. Chiamiamo a_n l'n-esimo addendo della serie. Applichiamo il criterio della radice alla serie dei valori assoluti:

$$\sqrt[n]{|a_n|} = |x| \left(\frac{n}{n+2}\right)^n = \frac{|x|}{\left(\frac{n+2}{n}\right)^n} = \frac{|x|}{\left(1+\frac{2}{n}\right)^n} \to \frac{|x|}{e^2}.$$

Quindi se $|x| < e^2$ la serie converge assolutamente e dunque converge. Se $|x| > e^2$ si ha $|a_n| \to +\infty$ dunque i termini della serie non sono infinitesimi e la serie non converge. Cosa succede se $|x| = e^2$? In tal caso ricordiamo che la successione $\left(1 + \frac{1}{n}\right)^n$ è crescente e quindi $\left(1 + \frac{1}{n}\right)^n \le e$. Se n è pari, mettendo $\frac{n}{2}$ al posto di n si ottiene $\left(1 + \frac{2}{n}\right)^n \le e^2$ da cui $\sqrt[n]{|a_n|} \ge 1$ ovvero $|a_n| \ge 1$. Dunque anche in questo caso i termini della serie non sono infinitesimi e la serie non può convergere.

2.2) Per quali $x \in \mathbb{R}$ la seguente serie converge?

$$\sum_{n} x^{n} \cdot \left(\frac{2n}{2n+1}\right)^{n^{2}}$$

Svolgimento. Similmente alla variante precedente si ha

$$\sqrt[n]{|a_n|} = \frac{|x|}{\left(1 + \frac{1}{2n}\right)^n} = \frac{|x|}{\sqrt{\left(1 + \frac{1}{2n}\right)^{2n}}} \to \frac{|x|}{\sqrt{e}}.$$

Dunque se $|x| < \sqrt{e}$ la serie converge assolutamente mentre se $|x| > \sqrt{e}$ la serie non converge. Se $|x| = \sqrt{e}$, ricordando che $\left(1 + \frac{1}{2n}\right)^{2n} \le e$ si trova $|a_n| \ge 1$ e dunque anche in questo caso la serie non converge.

2.3) Per quali $x \in \mathbb{R}$ la seguente serie converge?

$$\sum_{n} x^{n} \cdot \left(\frac{n-1}{n+1}\right)^{n^{2}-1}$$

Svolgimento. Similmente alle varianti precedenti (ma possiamo traslare gli indici di una unità, questo non cambia il carattere della serie)

$$\sqrt[n+1]{|a_n|} = \frac{|x|}{\left(1 + \frac{2}{n-1}\right)^{n-1}} = \frac{|x|}{\left(\left(1 + \frac{1}{\frac{n-1}{2}}\right)^{\frac{n-1}{2}}\right)^2} \to \frac{|x|}{e^2}.$$

Quindi se $|x| < e^2$ la serie converge e se $|x| > e^2$ la serie non converge. Per $|x| = e^2$ la serie non converge in quanto $\left(1 + \frac{1}{\frac{n-1}{2}}\right)^{\frac{n-1}{2}} < e$ almeno quando n è dispari e dunque se $|x| = e^2$ si ha $|a_n| > 1$ per n dispari. \square

3.1) Per quali $x \in \mathbb{R}$ la seguente serie converge?

$$\sum_{n} \frac{x^n}{\sqrt{n}} \left(1 - \frac{n}{n+1} x^n \right)$$

Svolgimento. Verifichiamo innanzitutto se è soddisfatta la condizione necessaria per la convergenza. Se $x \neq 0$ l'n-esimo addendo della serie è:

$$a_n = \frac{x^n}{\sqrt{n}} \cdot x^n \cdot \left(\frac{1}{x^n} - \frac{1}{1 + \frac{1}{n}}\right)$$

4

da cui $a_n \to -\infty$ se |x| > 1 e in tal caso la serie non può convergere. Se |x| < 1 conviene spezzare il termine *n*-esimo in due addendi:

$$a_n = \frac{x^n}{\sqrt{n}} - \frac{n}{n+1} \cdot \frac{x^{2n}}{\sqrt{n}}.$$

Utilizzando il criterio della radice (oppure del confronto asintotico) è facile verificare che entrambe le serie $\sum \frac{x^n}{\sqrt{n}}$ e $\sum \frac{n}{n+1} \cdot \frac{x^{2n}}{\sqrt{n}}$ sono assolutamente convergenti se |x| < 1 e dunque anche la serie data è convergente. Rimangono i casi |x| = 1.

Se x = -1 si ha

$$a_n = \frac{(-1)^n}{\sqrt{n}} - \frac{\sqrt{n}}{n+1}.$$

La serie $\sum \frac{(-1)^n}{\sqrt{n}}$ è convergente per il criterio di Leibniz, ma la serie $\sum \frac{\sqrt{n}}{n+1}$ è divergente in quanto il termine generico è asintotico a $\frac{1}{\sqrt{n}}$ la cui serie è divergente. Dunque per x = -1 la serie diverge $(a - \infty)$.

Se x = 1 si ha

$$a_n = \frac{1}{\sqrt{n(n+1)}}$$

che è asintotico a $n^{-\frac{3}{2}}$. Per il criterio di confronto asintotico in questo caso la serie è convergente.

In conclusione la serie converge se e solo se $x \in (-1, 1]$.

3.2) Per quali $x \in \mathbb{R}$ la seguente serie converge?

$$\sum_{n} \frac{x^{n}}{\sqrt{n}} \left((-1)^{n} - \frac{n}{n+1} x^{n} \right)$$

Svolgimento. L'esercizio è simile alla variante precedente. Se |x| > 1 il termine generico non è infinitesimo e la serie non converge. Se |x| < 1 la serie si spezza in due addendi ed entrambi danno luogo a serie convergenti. Se x=1 troviamo la somma di una serie convergente per Leibniz e di una serie divergente per confronto asintotico, dunque la nostra serie è pure divergente. Se x=-1 la serie diventa a termini positivi ed è convergente per confronto asintotico.