- 1. Data storage (including number representations)
 - a. Bits and their storage
 - i. Boolean (And, OR, and Xor)
 - ii. Gates and flip-flops
 - 1. Flip-flip = (hold value after input changes to 0)
 - iii. Hexadecimal notation
 - 1. 0 to F
 - b. Main memory
 - i. Memory organization
 - 1. High order bit, \rightarrow low order bit
 - ii. Measuring memory capacity
 - 1. Power of two since its more convenient
 - 2. KB = 1000 and kibi B = 1024 etc
 - c. Mass Storage
 - i. Magnetic systems
 - 1. Normal hard drives
 - a
 - 2. Storing information on tape
 - a. Turning
 - ii. Optical systems
 - 1. CD, DVD etc.
 - a. External systems
 - iii. Flash based systems
 - 1. SSD
 - a. Super fast compared to other mass storage systems
 - 2. SD
 - a. Camera cards and the likes
 - d. Representing information as bit patters.
 - i. Representing text is bit patterns using ASCII
 - 1. Maybe write some code as an ensample or something.
 - ii. Representing numeric values
 - 1. 0000 = 0
 - 2. 0001 = 1
 - $3. \quad 0010 = 2$
 - 4. 0011 = 3
 - iii. Representing images
 - 1. Bit map 0 to 255 (show example from/in Matlab if needed)
 - iv. Representing Audio
 - 1. Store amplitude of wave and save it at a interval.

- e. The binary system
 - i. Binary system
 - 1. Base 10 vs base 2
 - ii. Binary addition
 - 1. 01010101 + 10101010 = 11111111
 - 2. 00100110 + 10100010 = 11001100
 - iii. Fractions in binary
 - 1. From book

i.
$$4+1+(1/2)+(1/8) = 5.625$$

- f. Storing integers
 - i. Two's complement notation

a. Using patterns of length three	
Bit pattern	Value represented
011 010 001 000 111 110 101	3 2 1 0 -1 -2 -3 -4

- 1.
- 2. The problem with overflow

b.
$$11 + 7 = 0$$

- ii. Excess notation
 - 1. Subtract value of highest order bit
- g. Storing fractions
 - i. Floating point notation
 - 1. From book

- a.
- 2. From Joan
 - a. Write here
- ii. Truncation errors
 - 1. When information is lost like above

- h. Data and programming
 - i. Python
 - 1. Print "hallo world" etc
 - ii. Variables
 - iii. Operators and expressions
 - iv. Debugging
- i. Data compression
 - i. Lossless vs lossy
 - 1. Same data/loose some data
 - ii. Compressing images
 - 1. Integer division on the whole bitmap and to get lower values and multiply it again to get the image bad (lossy)
 - iii. Compression Audio
 - 1. Removing information that the human ear can't hear
 - 2. Integer division on the whole amplitude map and multiply again to get the audio back (lossy)
- j. Communication errors
 - i. Parity bits
 - 1. First bit in a in byte in example, when there is a even number of 1s its 1 and when its uneven its 0.
 - ii. ECC (Error Correcting code)
 - 1. Every symbol has a code and its picks the ones that is the shortest when it detects an error.

- 2. Data manipulation (machine architecture)
 - a. Computer architecture
 - i. Cpu basis

1.

- ii. The stored program
 - In older days one system could only run program one, since the hardware
 was specifically designed to run it. It was first later that it was found out
 that a system could run multiple different program by storing the program
 in the main memory, and that you wouldn't need to rewire the whole cpu.
- b. Machine language
 - i. The instruction repertoire
 - 1. RISC (Reduced Instruction set computer)
 - 2. CISC(Complex instruction set computer)
 - a. Used is most modern computers
 - ii. An illustrative machine language
 - 1. Appendix c
 - a. No fucking clue atm
- c. Program execution
 - i. The program is loaded from the main memory into the register. From there its run by the processor.
 - ii. The CPU preforms its job by running a tree step process known as the machine cycle. The steps in the cycle is fetch decode and execute.
 - iii. An example of a program execution
 - 1. See book page 106 to 107
 - iv. Program versus data
 - 1. Many programs can be stored in the main memory at the same time and the processor has no way of knowing if its data or a program its dealing with, since its all 1s and 0s.
- d. Arithmetic/logic instructions
 - i. Logic operations
 - 1. And, OR, Xor
 - ii. Rotating and shifting operations
 - 1. Rotating is rotating the whole bit string so the one at the end goes to the start or at the start to the end.
 - 2. Shift means shifts the whole but string by one and replaces the first one with either 0, 1 or what got pushed out at the end(rotate)
 - iii. Arithmetic operations
 - 1. Things not supported by the cpu? Like floating point etc
- e. Communicating with other devices

i. Controllers

1.

- ii. Direct memory access
 - 1. Since a controller is connected directly to the computer's memory bus it can read data from a disk drive while processor preforms a process.
- iii. Handshaking
 - 1. Two way communication so two devices can share status and coordinates their activates.
- iv. Popular communication Media
 - 1. Parallel communication
 - a. Data transfer over multiple different lines
 - 2. Serial Communication
 - a. Data transfer over a single line
 - 3. Communication rates
 - a. Speed
 - i. Normally in bits per sec
 - b. Multiplexing
 - i. Data transfer both ways at the same time.
- f. Programming data manipulation
 - i. Logic and shift operations
 - 1. 5 xor 4 is 1
 - 2. 5 or 4 is 5
 - 3. 5 and 4 which is 4
 - ii. Control structures
 - 1. If, while, etc,
 - 2. Functions
 - iii. Input and output
 - 1. Input = input from user
 - 2. Output = output to user or from a function
- g. Other architectures
 - i. Pipelining
 - 1. Allowing the steps to be done overlappingly
 - a. So the next step is ready when the current one is done
 - ii. Multiprocessor machines
 - 1. Parallel processing
 - a. Multiple instructions can be run at the same time for a faster processing time

b. MIMD(Multiple-instruction stream, Multiple-data Steam) as oppse to SDMD (Single-instruction stream, Single-data Steam)

3. Operating systems

a. The History of Operating systems

į,

b. Operating system architecture

Ĭ.

- c. Coordinating the machines activities
- d. Handing competition among processes
- e. Security

- 4. Networking and the Internet
 - a. Network fundamentals
 - i. Network classifications
 - 1. Pan (personal area network)
 - a. Normally within a few meters, bluetooth etc
 - 2. LAN (local area network)
 - a. Within a network, home, school or workplace
 - 3. Man (metropolitan area network)
 - a. Spanning a local community
 - 4. WAN (Wide Area network)
 - a. World wide network?
 - 5. AP (acces point)
 - a. Acess to the network, its if a wifi ap, router or access from outside the network into it.
 - ii. Protocols
 - 1. CSMA/CD (Carrier sense, multiple access with collision detection)
 - a. Device waits until network is quiet to say something and if multiple both say something both stop and try again
 - 2. CSMA/CA (Carrier sense, multiple access with collision avoidance)
 - a. Request to send/clear to send
 - iii. Combining networks
 - 1. Repeater, switch, bridge and routers
 - a. You know these of the top of your head.
 - b. Gateway, forewarding table, DHCP etc
 - iv. Methods of process Communications
 - 1. Client server
 - a. FTP
 - b. Websites
 - c. Etc of the top of your head
 - 2. Client Client
 - a. P2p
- i. Torrents
- ii. Games
- iii. Some communication services
- 3. Server Server
 - a. SMTP
- v. Distributed systems
 - 1. Cluster computing
 - a. Handing data in a large data center
 - 2. Grid computing
 - a. Lots of server spread all over the globe to handle request locally
 - 3. Cloud computing
 - a. You can rent more servers on demand
- b. The Internet
 - i. Internet architecture
 - 1. ISP (Internet service provider)

- 2. Tier-1
 - a. Backbone
- 3. Tier-2
 - a. Regional
- 4. Tier-3 (intranet, Independent network)
 - a. Access ISP
 - i. The ones who provide internet to consumers
- ii. Internet addressing
 - 1. Ip addresses
 - a. IPv4
 - i. 32 bit = 2^32 Binary
 - b. IPv6
 - i. 128 bit = 2^128 Hexadecimal
 - c. Ips are assigned by the "Internet corporation for assigned names and numbers(ICANN)
 - d. Top level domains
 - i. .com, .dk .ing. etc
 - ii. For countries they are called Country code TLD
 - iii. Domain name systems (DNS)
- iii. Internet applications
 - 1. In older times there for protocols for everything
 - a. Network news transfer protocol(NNTP)
 - b. File transfer protocol(FTP)
 - c. Telnet and later SSH (secure shell)
 - 2. But as web services became more and more sophisticated, more and more things were moved from their dedicated networks to the HTTP Protocol,
 - 3. Mail SMTP Simple mail transfer protocol
 - 4. VOIP
 - a. Voice over ip
 - b. Voice other the internet compared to over the telephone network.
- c. The World wide web
 - i. The Internet
 - ii. Web implementation
 - 1. URL (uniform resource locater)
 - a. http://sdu.dk/information/odense.pdf
 - iii. HTML(Hyper text markup language)
 - iv. XML (eXtensible markup language)
 - v. Client-side and server side Activities
 - a. Client send request to server, and server serve user.
- d. Internet protocols
 - i. The layered approach to Internet software

- Each application uses a port for transmitting data
- ii. The TCP/IP protocol suite
 - 1. Protocol package for handing data transmission over a network
- e. Security
 - i. Forms of attack
 - 1. DDOS and DOS
 - 2. Malware
 - 3. Spyware
 - 4. Worm
 - 5. Trojan horse
 - 6. Phishing
 - 7. Man in the middle attack
 - 8. Social engineering attack
 - ii. Protection and cures
 - 1. Firewall
 - 2. Spam filter
 - 3. Antivirus program
 - iii. Encryption
 - 1. HTTPS
 - a. HTTP (SSL)
 - 2. SSL
 - a. Secure socket layer
 - iv. Legal approaches to network security
 - 1. Nope nope and nope

5. Algorithms

- a. The concept of an algorithm
 - i. The formal definition of an algorithm
 - 1. "an Algorithm is an ordered set of unambiguous, executable steps that defines a terminating process.
 - ii. The abstract nature of an algorithm
 - 1. Algorithms can be defined in many different ways but can do the same.
- b. Algorithm representation
 - i. Primitives
 - 1. In simple English first do, then do etc
 - ii. Pseudocode
 - 1. If, else, while, for statement and logic like that so it can be easily implemented in code.
- c. Algorithm discovery
 - i. The art of problem solving
 - 1. Understand the problem
 - 2. Get an idea of how a algorithm may be able to solve the problem
 - 3. Formulate a algorithm and represent it as a problem
 - 4. Test and evaluate the result for accuracy and if it can be used in to real world.
- d. Iterative structures
 - i. The Sequential search algorithm
 - 1. do something until statement is true/false
 - 2. up to n operations (worst case)
 - 3. 1 best case
 - ii. Loop control
 - 1. While and for loops, gives the programmer more control and it makes the code more flexible
 - iii. The insertion sort algorithm
 - 1. Worst case n^2
 - 2. Base case n
- e. Recursive structures
 - i. The binary search algorithm
 - 1. Find something in a already sorted list.
 - 2.

Figure 5.12 Applying our strategy to search a list for the entry John

ii. Recursion control

- 1. Having a if statement before the recursive call to avoid a infinite function
- f. Efficiency and correctness
 - i. You have to use the correct algorithms in the right applications to avoid overhead and to reduce run times for the problem.

6. Database systems

- a. Database fundamentals
 - i. The significance of database systems
 - A database is super optimized compared the privies solution where end
 part of the company had one file on one computer or a solution like it.
 When the database system was invented, it was possible to have the whole
 company in the same data set, which would mean that you would all have
 a unified and live set of the data, this meant that you could work most
 faster and spend less time checking records and unifying them.
 - ii. The role of schemas
 - 1. The schema defines that database what information should be in what tables, and what type of data is allowed, it's also used to set user rights in database systems
 - iii. Database management systems
 - 1. System used to interact with the database itself, and the program the programs you designs interacts with and will maintain the integrity of the database.
 - iv. Database models
 - 1. Relational database
 - 2. Object oriented database
- b. The relations model
 - 1. Tables called relations with rows called tuples with information
 - ii. Issues of relation design
 - a. You should only have one concept in a relation, as if you should not have employee Job and assignment in the same relation.
 - iii. Relational operations
 - 1. Select, Project, and join.
 - iv. SQL
 - 1. Select form job
 - 2. From assignment, job
 - 3. Where assignment.JobID = Job.JobID
 - 4. And assignment.termdata = "*":
- c. Object-oriented databases
 - i. In a object orientated database the data is linked to each other with from the privies selection.
- d. Maintaining database integrity
 - In small private data bases a corrupt or loss of data are generally not a
 problem as then user can fast repair the data or load from a small back-up
 and bring the data up to data relatively fast.
 - 2. In a enterprise sitting where a multiuser database is in use a error can have disasters effect when a problem with the database arises and most systems will be down and a whole loss of income in imminent.
 - ii. The commit rollback protocol locking
 - 1. Commit point is when the transaction has been recorded by the log in the database.

- 2. Using the log a rollback can be performed to undo all the transactions until a point in time.
- 3. But a rollback can result in a cascading rollback where other transactions also have be undone due to whats undone.

iii. Locking

- 1. Lock a set data so only one program can edit it at the time.
- e. Traditional file structure
 - i. Sequential files
 - 1. Things are stored in 1 long string.3
 - ii. Indexed files
 - 1. Information is stored in blocks with a key that makes its faster to get information from inside the file
 - iii. Hash files
 - 1. Works like the indexed file except the key points at the information needed.
- f. Data mining
 - i. Analyzing of large sets of data to get useable information,
- g. Social impact of database technology
 - i. This means information is faster and easier to find and get, therefor making it harder to hide information from the public.

7. Artificial intelligence

- a. Intelligence and machines
 - i. Intelligent agent (IA)
 - 1. A "AI" that can solve a problem in a limited realm
 - Robot, self-driving car, autonomous plane or a character in a video game.
 - i. Responds to stimuli from its environment
 - ii. Research methodologies
 - 1. Engineering track
 - a. Working very well, getting a program to solve a very specific task
 - 2. Computational understanding
 - a. Making a general AI
 - iii. The Turing test
 - 1. Having a conversation with the AI without being able to tell the difference from a human and the computer for 5 minutes
- b. Perception
 - i. Understanding images
 - 1. Easy to design a specific system to handle one puzzle but hard to design a program to handle all puzzles
 - 2. Its hard to make a program understand what things are in the image, what items etc.
 - ii. Language processing
 - 1. Making a program but understanding and being able to act upon what you've said to it.
- c. Reasoning
 - i. Production systems
 - 1. A collection of states
 - a. All states of the puzzle and ranked what closer to being solved.
 - 2. A collection of productions
 - a. All the possible moves that the program to make to come closer to being solved
 - 3. A control system
 - a. A system doing the calculation about what moves to do. And a directed graph of what to do.
 - ii. Search trees
 - 1. A tree leading from the start point to the goal point in the shortest or most efficient way.
 - iii. Heuristics
 - 1. From goal to the starting point.
- d. Additional areas of research
 - i. Representing and manipulating knowledge
 - 1. Just say something
 - ii. Learning
 - 1. Imitation
 - 2. Supervised training
 - 3. Reinforcement

- a. Given a rule to rule for itself if it was a success or a failure
- iii. Genetic algorithm
 - 1. No clue atm
- e. Artificial neural networks
 - i. Basis properties
 - 1. Outputs 1 or 0 depending if the input exceeds the threshold value
 - ii. Training artificial neural networks
 - 1. Compared to normal programming the values are not entered into the system but trained via supervised training.
 - iii. Associative memory
 - 1. Can recognize patterns in the data at hand.
- f. Robotics
 - i. Engeering AI stuff YAAY fun stuff, you know this shizz
- g. Considering the consequences
 - i. Stamp example
 - 1. We don't know how an AI with react, and what it will do.

- 8. Theory of computation
 - a. Functions and their computation

i.

- b. Turing machines
 - i. Turing machines fundamentals
 - ii. The church-turing thesis
- c. Universal programing languages
 - i. The bare bones language
 - ii. Programming in bare bones
 - iii. The universality of bare bones
- d. A noncomputable function
 - i. The halting problem
 - ii. The unsolvability of the halting problem
- e. Complexity of problems
 - i. Measuring a problems complexity
 - ii. Polynomial versus nonpolynomial problems
 - iii. Np problems
- f. Public-key Cryptography
 - i. Modular notation
 - ii. RSA public key cryptography