BÖLÜM 6

DOĞRU AKIM DEVRELERİ

6.1. ELEKTROMOTOR KUVVET

Şekil 6.1. a) Bir bataryanın uçarına bağlı bir dirençten ibaret devre. b) emk'sı ε, iç direnci r olan bir kaynağın R dış direncine bağlı olduğunu gösteren devre.

Şekildeki batarya, ε emk kaynağı ile ona seri bağlı olan r iç direncinden oluşmaktadır. Yük, bataryanın negatif ucundan pozitif ucuna geçtiğinde potansiyeli ε kadar artar. Fakat yük, r direncinden geçerken potansiyeli Ir kadar azalır. O halde bataryanın uçları arasındaki voltaj

$$V = \epsilon$$
 - Ir

olur. Burada ε, açık devre voltajıdır. Yani akım yokken bataryanın kutupları arasındaki voltajdır. Çıkış voltajı V, dış direnç R'nin (yük direnci) uçları arasındaki potansiyel farkına eşittir.

$$V = IR$$

O halde devredeki akım,

$$\varepsilon = Ir + IR$$
 \Rightarrow $I = \frac{\varepsilon}{R + r}$

olur. $\varepsilon = Ir + IR$ eşitliğini I ile çarparsak

$$\varepsilon I = I^2 r + I^2 R$$

elde edilir. Bu, emk'nın çıkış gücü Iɛ'nin yük direncinde joule ısısı olarak harcanan I²R gücü ile, iç dirençte harcanan I²r gücüne dönüştüğünü söyler.

Örnek: Bir batarya 15 V'luk bir emk'ya sahiptir. R gibi bir dış yük direncine 20 W'lık bir güç sağlandığında bataryanın çıkış voltajı 10 V'tur. .

- a) R'nin değeri nedir?
- **b)** Bataryanın iç direnci nedir?

Çözüm:

a)
$$P = \frac{V^2}{R}$$
 \Rightarrow $R = \frac{V^2}{P} = \frac{10^2}{20}$ \Rightarrow $R = 5 \Omega$

b)
$$V = IR$$
 \Rightarrow $I = \frac{V}{R} = \frac{10}{5}$ \Rightarrow $I = 2 A$

$$\varepsilon = Ir + IR$$

$$15 = 2.r + 2.5$$
 \Rightarrow $r = 2.5 \Omega$

6.2. SERİ VE PARALEL BAĞLI DİRENÇLER

İki veya daha fazla direnç, çift başına sadece tek bir ortak noktaya sahipse bu dirençler seri bağlıdır. Bu devrede R₁ direncinden akan yük, R₂ direncinden akan yüke eşit olduğundan bütün dirençler içerisinden geçen akım aynıdır.

$$V = IR_1 + IR_2$$

$$IR_{e\varsigma} = I \; (R_1 + R_2)$$

$$R_{e\varsigma} = R_1 + R_2$$

İkiden fazla direnç olduğundan eş değer direnç

$$R_{es} = R_1 + R_2 + R_3 + \dots$$

eşitliğinden bulunur.

Şekil 6.2. İki tane direncin seri olarak bağlanması.

Paralel bağlı dirençler durumunda, her bir direncin uçları arasındaki potansiyel farkı eşittir. Fakat, her bir dirençten geçen akım genelde aynı değildir.

$$I = I_{1} + I_{2}$$

$$\frac{V}{R_{es}} = \frac{V}{R_{1}} + \frac{V}{R_{2}}$$

$$\frac{1}{R_{es}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$$

 R_1

 I_1

İkiden fazla direnç olduğundan eş değer direnç

$$\frac{1}{R_{es}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

eşitliğinden bulunur.

Örnek:

Şekilde gösterilen devre için a ve b uçları arasındaki eşdeğer direnci bulunuz.

$$\frac{1}{R_1} = \frac{1}{2} + \frac{1}{2} + \frac{1}{1}$$

$$\frac{1}{R_2} = \frac{1}{3} + \frac{1}{5}$$

$$R_1 = \frac{1}{2}\Omega$$

$$R_2 = \frac{15}{8}\Omega$$

$$R_{3} = \frac{15}{8} + 1 = \frac{23}{8}\Omega$$

$$\frac{1}{R_{5}} = \frac{1}{\frac{23}{8}} + \frac{1}{\frac{5}{2}} \qquad \Rightarrow \qquad R_{5} = \frac{115}{86}\Omega$$

$$R_{4} = \frac{1}{2} + 2 = \frac{5}{2}\Omega$$

$$a \bullet \qquad \qquad 2 \Omega \qquad \qquad 115/86 \Omega \qquad \qquad \qquad a \bullet \qquad \qquad b$$

$$R_{e\S} = \frac{115}{86} + 2 = \frac{289}{86} = 3,36 \,\Omega$$

Örnek: Seri bağlı iki direnç 690 Ω 'luk eşdeğer dirence sahiptir. Bunlar paralel olarak bağlandıklarında eşdeğer direnç 150 Ω olmaktadır. Her bir direncin değerini bulunuz.

Çözüm:

$$\begin{array}{lll} R_{e\varsigma} = R_1 + R_2 = 690 \ \Omega & \Rightarrow & R_1 = 690 - R_2 \\ \\ \frac{1}{R_{e\varsigma}} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{150} & \Rightarrow & \frac{1}{690 - R_2} + \frac{1}{R_2} = \frac{1}{150} \\ & \frac{690 - R_2 + R_2}{(690 - R_2)R_2} = \frac{1}{150} \\ & R_2^2 - 690R_2 + 103500 = 0 \\ & \sqrt{\Delta} = 250 \\ & R_2 = \frac{-690 \mp 250}{2} \Rightarrow & R_2 = 470 \ \Omega \\ & R_2 = 220 \ \Omega \end{array}$$

 $R_1=220~\Omega,\quad R_1=470~\Omega$

6.3. KIRCHHOFF KURALLARI

1. Herhangi bir düğüm noktasına gelen akımların toplamı, bu düğüm noktasını terk eden akımların toplamına eşit olmalıdır. Düğüm noktası, devredeki akımın kollara ayrıldığı herhangi bir noktadır.

2. Herhangi bir kapalı devre boyunca bütün devre elemanlarının uçları arasındaki potansiyel değişimlerinin cebirsel toplamı sıfır olmalıdır.

$$\sum \Delta V_i = 0$$

Bu kuralların uygulanmasında şu hususlara dikkat edilmelidir.

- a) Bir direnç akım yönünde geçiliyorsa,
 direncin uçları arasındaki potansiyel
 değişimi IR'dir.
- b) Direnç akıma ters yönde geçiliyorsa direncin uçları arasındaki potansiyel değişimi + IR'dir.
- c) Bir emk kaynağı, emk yönünde (- uçtan
 + uca) geçiliyorsa potansiyel değişimi
 + ε'dir.
- d) Bir emk kaynağı, emk'nin tersi yönünde
 (- uçtan + uca) geçiliyorsa potansiyel
 değişimi ε'dir.

Örnek: Şekildeki devrede I₁, I₂ ve I₃ akımlarını bulunuz.

Çözüm:

Kirchoff'un 1. kuralı

$$\mathbf{I}_1 = \mathbf{I}_2 + \mathbf{I}_3$$

Kirchoff'un 2. kuralı

Üst halka için

$$24 - 2I_1 - 4I_1 - 3I_3 = 0$$

$$2I_1 + I_3 = 8$$

$$I_3 = 8 - 2I_1$$

Alt halka için

$$12 + 3I_3 - 1I_2 - 5I_2 = 0$$

$$2I_2 - I_3 = 4$$

Taraf tarafa toplanırsa

$$I_1 + I_2 = 6$$

$$I_2 = 6 - I_1$$

1. kuralda yerine konulduğunda

$$I_1 = 6 - I_1 + 8 - 2I_1$$
 \Rightarrow $I_1 = 3.5 A$

$$I_2 = 6 - I_1$$
 \Rightarrow $I_2 = 2.5 A$

$$I_3 = 8 - 2I_1$$
 \Rightarrow $I_3 = 1 A$

Örnek: a) Şekildeki devrede I₁, I₂ ve I₃ akımlarını bulunuz.

b) c ve f noktaları arasındaki potansiyel farkı bulunuz.

Çözüm:

a)

Kirchoff'un 1. kuralı

$$\mathbf{I}_1 + \mathbf{I}_3 = \mathbf{I}_2$$

Kirchoff'un 2. kuralı

Sol halka için

$$70 - 60 - 3.10^{3}I_{2} - 2.10^{3}I_{1} = 0 \qquad \Rightarrow \qquad 3.10^{3}I_{2} + 2.10^{3}I_{1} = 10$$

$$I_{1} = (10 - 3.10^{3}I_{2}) / 2.10^{3}$$

Sağ halka için

$$80 - 60 - 4.10^{3}I_{3} - 3.10^{3}I_{2} = 0 \\ \Rightarrow \qquad 3.10^{3}I_{2} + 4.10^{3}I_{3} = 20 \\ I_{3} = (20 - 3.10^{3}I_{2}) / 4.10^{3}$$

1. kuralda yerine konulduğunda

$$\begin{split} (10 \text{ - } 3.10^3 I_2) \ / \ 2.10^3 + (20 \text{ - } 3.10^3 I_2) \ / \ 4.10^3 &= I_2 \\ 40 &= 13.10^3 I_2 \qquad \Rightarrow \qquad I_2 = 3,077 \text{ mA} \\ I_1 &= (10 \text{ - } 3.10^3 I_2) \ / \ 2.10^3 \qquad \Rightarrow \qquad I_1 = 0,385 \text{ mA} \\ I_3 &= (20 \text{ - } 3.10^3 I_2) \ / \ 4.10^3 \qquad \Rightarrow \qquad I_3 = 2,692 \text{ mA} \end{split}$$

b)
$$V_{cf} = -60 - 3.3,077$$
 $V_{cf} = -69.23 \text{ V}$

6.4. RC DEVRELERI

6.4.1. Bir kondansatörün Yüklenmesi

Şekil 6.4. Bir direnç, bir batarya ve bir anahtar ile seri bağlı kondansatör

Şekil 6.4a'da S anahtarı açıkken kondansatör yüksüz ve akım yoktur. Şekil 6.4b'de anahtar kapatıldıktan sonra bir akım meydana gelir ve

$$\varepsilon - IR - \frac{q}{C} = 0$$

olur. Burada IR direncin uçları arasındaki, $\frac{q}{C}$ kondansatörün uçları arasındaki potansiyel düşmesidir. Devredeki akımın başlangıç değeri t=0 anında kondansatör üzerindeki yük sıfır olduğundan

$$I_0 = \frac{\varepsilon}{R}$$

olur. Daha sonra kondansatör maksimum Q değerine ulaştığında yük akımı durur ve akım sıfır olur. O halde

$$Q = C\varepsilon$$

olur.

Yük ve akımın zamana bağlı ifadeleri de şöyle olur.

$$\begin{split} \frac{d}{dt}(\epsilon-IR-\frac{q}{C}) &= 0 \quad \Rightarrow \quad 0-R\frac{dI}{dt}-\frac{1}{C}\frac{dq}{dt} = 0 \\ R\frac{dI}{dt} &= -\frac{1}{C}I \\ \int_{I_0}^I \frac{dI}{I} &= \int_0^I -\frac{1}{RC}dt \quad \Rightarrow \quad \ell n\frac{I}{I_0} = -\frac{1}{RC}t \\ &= \frac{I}{I_0} = e^{-\frac{t}{RC}} \end{split}$$

$$I &= \frac{\epsilon}{R}e^{-\frac{t}{RC}} \qquad \Rightarrow \quad \frac{dq}{dt} = \frac{\epsilon}{R}e^{-\frac{t}{RC}} \\ \int_0^q dq &= \int_0^I \frac{\epsilon}{R}e^{-\frac{t}{RC}}dt \\ q &= \frac{\epsilon}{R}\left(-RCe^{-\frac{t}{RC}}\right)_0^I \qquad \Rightarrow \quad q = -\epsilon C\left(e^{-\frac{t}{RC}}-1\right) \\ q &= Q\left(1-e^{-\frac{t}{RC}}\right) \end{split}$$

Bu ifadelerdeki RC niceliğine devrenin τ zaman sabiti denir. Bu, akımın başlangıç değerinin 1/e katına düşmesi için geçen zamanı gösterir. Yani τ zamanında $I=\frac{I_0}{e}=0,37I_0$ olması demektir.

Örnek: t = 0'da, C sığalı yüksüz bir kondansatör sabit bir ε emk'ya sahip bir aküye R direnci üzerinden bağlıdır.

- **a)** Kondansatör, ulaşabileceği maksimum yük değerinin yarısına sahip olması için ne kadar zaman geçer?
 - b) Kondansatörün tamamen yüklenmesi için ne kadar zaman geçer?

Çözüm:

$$\mathbf{a)} \qquad \mathbf{q}(t) = \mathbf{Q} \left(1 - \mathrm{e}^{-\frac{t}{RC}} \right) \qquad \Rightarrow \qquad \frac{\mathbf{Q}}{2} = \mathbf{Q} \left(1 - \mathrm{e}^{-\frac{t}{RC}} \right)$$

$$\frac{1}{2} = \mathrm{e}^{-\frac{t}{RC}}$$

$$t = -RC \, \ell n \, \frac{1}{2} \quad \Rightarrow \qquad t = 0,693RC$$

$$\mathbf{b}) \qquad \mathbf{Q} = \mathbf{Q} \left(1 - \mathrm{e}^{-\frac{t}{RC}} \right) \qquad \Rightarrow \qquad 1 = 1 - \mathrm{e}^{-\frac{t}{RC}}$$

$$0 = \mathrm{e}^{-\frac{t}{RC}}$$

$$\frac{t}{RC} = -\ell n \, 0 \quad \Rightarrow \qquad t = \infty$$

6.4.1. Bir Kondansatörün Boşalması

Şekil 6.5. Bir direnç ve bir anahtara bağlı yüklü bir kondansatör

Başlangıçta kondansatörün uçlarında Q/C'lik bir potansiyel farkı vardır. Akım sıfır olduğundan direncin uçlarında potansiyel farkı sıfırdır. Anahtar kapatıldığında kondansatör direnç üzerinden boşalmaya başlar ve devredeki akım I ve kondansatör üzerindeki yük q olur.

O halde $IR = \frac{q}{C}$ olur. Devredeki akım, kondansatörün üzerindeki yükün azalma hızına eşit

olmalıdır:
$$I = -\frac{dq}{dt}$$

$$\begin{split} -\frac{dq}{dt}R &= \frac{q}{C} \quad \Rightarrow \quad \int\limits_{Q}^{q} \frac{dq}{q} = \int\limits_{0}^{t} -\frac{1}{RC}dt \\ & \qquad \ell n q \big|_{Q}^{q} = -\frac{1}{RC}t \Big|_{0}^{t} \quad \Rightarrow \quad \ell n \frac{q}{Q} = -\frac{t}{RC} \\ & \qquad \ell n q = \ell n Q - \frac{t}{RC} \\ & \qquad q = Q e^{-\frac{t}{RC}} \quad \Rightarrow \quad \frac{dq}{dt} = Q \bigg(-\frac{1}{RC} e^{-\frac{t}{RC}} \bigg) \\ & \qquad -\frac{dq}{dt} = \frac{Q}{RC} e^{-\frac{t}{RC}} \quad \Rightarrow \quad I = \frac{Q}{RC} e^{-\frac{t}{RC}} \\ & \qquad I = \frac{\varepsilon}{R} e^{-\frac{t}{RC}} \end{split}$$

Örnek: 5,1 μ C'luk bir başlangıç yüküne sahip 2.10⁻³ μ F'lık bir kondansatör 1300 Ω'luk bir direnç üzerinden boşalmaktadır.

- **a)** Kondansatörün uçlarına bağlandıktan 9 μs sonra dirençten geçen akımı hesaplayınız.
 - **b**) 8 μs sonra kondansatör üzerinde ne kadar yük birikir?

a)
$$I_0 = \frac{Q}{RC} = \frac{5,1.10^{-6}}{1,3.10^3.2.10^{-9}}$$
 \Rightarrow $I_0 = 1,96 \text{ A}$

$$I = I_0 e^{-\frac{t}{RC}} \qquad \Rightarrow \qquad I = 1,96.e^{-\frac{9}{1,3.10^3.2.10^9}}$$

$$I = 1,96.0,0314$$

$$I = 0,0615 \text{ A} = 61,5 \text{ mA}$$

$$\Rightarrow \qquad q = 5,1.10^{-6} e^{-\frac{8}{1,3.10^3.2.10^9}}$$

$$q = 5,1.10^{-6}.0,046$$

$$q = 0,235.10^{-6} \text{ C} = 0,235 \text{ }\mu\text{C}$$

Problemler

- 1. Bir dc güç kaynağı, 40 V'luk bir açık devre emk'sı ve 2 Ω 'luk bir iç dirence sahiptir. Bu kaynak, her biri 6 V'luk emk'sı ve 0,3 Ω 'luk iç dirence sahip seri bağlı iki aküyü şarj etmek için kullanılmaktadır. Şarj akımı 4 A ise;
 - a) Seri olarak bağlanması gereken ilave direncin değeri ne olmalıdır?
 - b) Güç kaynağı, aküler ve ilave dirençte kaybolan gücü bulunuz.
 - c) Ne kadarlık bir güç aküler içerisinde kimyasal enerjiye dönüşür?

a)
$$\epsilon - Ir - IR - Ir_1 - \epsilon_1 - Ir_2 - \epsilon_2 = 0$$

$$40 - 4.2 - 4R - 4.0,3 - 6 - 4.0,3 - 6 = 0$$

$$4R = 17,6$$

$$R = 4,4 \ \Omega$$

b)
$$P = I^{2}R$$

$$P = 4^{2}(2 + 4,4 + 0,3 + 0,3)$$

$$P = 112 \text{ W}$$

c)
$$P = I\epsilon_1 + I\epsilon_2$$
$$P = 4(6+6)$$
$$P = 48 \text{ W}$$

2. İki tane bilinmeyen direnç seri bağlandığında 5 A'lik toplam bir akım ile 225 W'lık bir güç harcanmaktadır. Dirençler paralel bağlandığında aynı toplam akım için 50 W'lık bir güç harcanmaktadır. Dirençlerin değerlerini tayin edin.

- **3.** a) Şekilde 6 V'luk aküden geçen akımı hesaplayınız.
 - b) a ve b noktaları arasındaki potansiyel farkını bulunuz.

$$I_1 = \frac{9I_2 - 10}{8} \qquad \Rightarrow \qquad I_1 = \frac{34}{25} A$$

a)
$$I_{x} = I_{1} + I_{3}$$

$$I_{x} = \frac{34}{25} + \frac{28}{25}$$

$$I_{x} = \frac{62}{25} A$$

b)
$$V_a - V_b = 2 + 6 - 4 = 4 \text{ V}$$

4. 10 μF'lık bir kondansatör 10 V'luk bir batarya ile bir R direnci üzerinden yüklenmektedir. Yüklenme başladıktan 3 s sonra, kondansatör 4 V'luk bir potansiyel farkına ulaşmaktadır. R direncini bulunuz.

Çözüm:

$$\begin{split} q(t) = Q \Bigg(1 - e^{-\frac{t}{RC}} \Bigg) \quad \Rightarrow \qquad \frac{q}{C} = \frac{Q}{C} \Bigg(1 - e^{-\frac{t}{RC}} \Bigg) \\ V = V_0 \Bigg(1 - e^{-\frac{t}{RC}} \Bigg) \qquad \Rightarrow \qquad 4 = 10 \Bigg(1 - e^{-\frac{3}{R10.10^{-6}}} \Bigg) \\ 0.6 = e^{-\frac{3.10^5}{R}} \\ -\frac{3.10^5}{R} = -0.51 \\ R = 5.88.10^5 \, \Omega \end{split}$$

- 5. Şekilde görülen devrede S anahtarı uzun zamandır açıktı. Anahtar ani olarak kapatılıyor.
 - a) Anahtar kapanmadan önce,
 - **b**) Anahtar kapandıktan sonra zaman sabitini bulunuz.
 - \mathbf{c}) $\mathbf{t} = 0$ 'da anahtar kapaliysa zamanın fonksiyonu olarak devredeki akımı hesaplayınız.

c) Bataryanın taşıdığı akım
$$I = \frac{\sum V}{\sum R} = \frac{10}{50.10^3} = 200 \,\mu\text{A}$$

$$100 \, \text{k}\Omega' \text{luk dirençteki akım} \quad I = I_0 \text{e}^{-\frac{t}{RC}} = \frac{10}{100.10^3} \text{e}^{-\frac{t}{1}} = 100 \text{e}^{-t} \,\mu\text{A}$$
 Anahtar kapalı ise akım $I_{\text{Top}} = 200 + 100 \text{e}^{-t} \,\mu\text{A}$

- **6.** a) Çıkış voltajı 10 V ve iç direnci 0,2 Ω olan bataryaya bağlı 5,6 Ω 'luk dirençten geçen akım nedir?
 - **b)** Bataryanın emk'sı nedir?

Çözüm:

a) V = IR10 = I.5,6

$$I = 1,79 A$$

b) $V = \varepsilon - IR$ $\varepsilon = 10 + 1,79.0,2$

 $\varepsilon = 10,358 \text{ V}$

7. Şekilde görülen devrede her bir dirençte harcanan gücü bulunuz.

Çözüm:

$$I = \frac{V}{R} = \frac{18}{6,75} = 2,67 \text{ A}$$

$2\Omega i$ çin

$$P_2 = I^2 R = (2,67)^2.2 = 14,26 \text{ W}$$

4 Ωiçin

$$P_4 = I^2 R = (2,67)^2.4 = 28,52 \text{ W}$$

$$\Delta V_2 = 2,67.2 = 5,34 \text{ V}$$

$$\Delta V_4 = 2,67.4 = 10,68 \text{ V}$$

$$\Delta V_{paralel} = 18 - 10,68 - 5,34 = 2 V$$

<u>3 Ωiçin</u>

$$P_2 = \frac{V^2}{R} = \frac{4}{3} W$$

$1 \Omega i cin$

$$P_4 = \frac{V^2}{R} = \frac{4}{1} = 4 \text{ W}$$

