QUÍMICA NIVEL SUPERIOR PRUEBA 1

Lunes 20 de mayo de 2002 (tarde)

1 hora

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.

222-158 15 páginas

periódica	
Tabla	

2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)	
	9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At (210)	
	8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)	
	7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	- ,	
	6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19	
	5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37	
·			30 Zn 65,37	48 Cd 112,40		
			29 Cu 63,55	47 Ag 107,87	79 Au 196,97	
			28 Ni 58,71	46 Pd 106,42	78 Pt 195,09	
			27 Co 58,93	45 Rh 102,91	77 Ir 192,22	109 Mt
			26 Fe 55,85	44 Ru 101,07	76 Os 190,21	108 Hs
			25 Mn 54,94	43 Tc 98,91	75 Re 186,21	107 Bh (262)
Número atómico	Masa atómica		24 Cr 52,00	42 Mo 95,94	74 W 183,85	106 Sg (263)
Número	Masa a		23 V 50,94	41 Nb 92,91	1	105 Db (262)
			22 Ti 47,90	40 Zr 91,22	72 Hf 178,49	104 Rf (261)
			21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)
	4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)
1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)

71 Lu 174,97	103 Lr (260)
70	102
Yb	No
173,04	(259)
69	101
Tm	Md
168,93	(258)
68 Er 167,26	100 Fm (257)
67	99
Ho	Es
164,93	(254)
66	98
Dy	Cf
162,50	(251)
65	97
Tb	Bk
158,92	(247)
64	96
Gd	Cm
157,25	(247)
63	95
Eu	Am
151,96	(243)
62 Sm 150,35	94 Pu (242)
61	93
Pm	Np
146,92	(237)
60	92
Nd	U
144,24	238,03
59	91
Pr	Pa
140,91	231,04
58	90
Ce	Th
140,12	232,04
÷	++

1. Un compuesto que contiene sólo carbono, hidrógeno y oxígeno tiene la siguiente composición porcentual en masa:

carbono 60 %, hidrógeno 8 %, oxígeno 32 %.

¿Cuál de las siguientes puede ser una posible fórmula molecular?

- A. $C_5H_8O_2$
- B. C₅H₄O
- $C. C_6HO_3$
- D. C_7HO_4
- 2. ¿Qué muestra contiene menor cantidad de oxígeno?
 - A. 0.3 moles de H_2SO_4
 - B. 0.6 moles de O_3
 - C. 0,7 moles de HCOOH
 - D. 0,8 moles de H₂O
- 3. Se añaden 6,4 g de alambre de cobre a 0,10 dm³ de solución acuosa de AgNO₃ de concentración 1,0 mol dm⁻³ para formar plata metálica y nitrato de cobre(II) acuoso. Cuando se completa la reacción,
 - A. se observará un exceso de alambre de cobre.
 - B. todo el alambre de cobre se habrá disuelto y en la solución quedarán algunos iones plata.
 - C. todo el alambre de cobre se habrá disuelto y en la solución no quedarán iones plata.
 - D. la masa de plata metálica formada será igual a la masa de alambre de cobre que ha reaccionado.

222-158 Véase al dorso

4.	Se disuelven 2,02 g de KNO_3 ($M_r = 101$) en cantidad suficiente de agua para preparar 0,500 dm ³ de
	solución. ¿Cuál es la concentración de la solución expresada en mol dm ⁻³ ?

- A. 0,02
- B. 0,04
- C. 0,10
- D. 0,20
- **5.** El cobre consta de los isótopos ⁶³Cu y ⁶⁵Cu y su masa atómica relativa es 63,55. ¿Cuál es la composición más probable?

⁶³ Cu	⁶⁵ Cu
------------------	------------------

- A. 30 % 70 %
- B. 50 % 50 %
- C. 55 % 45 %
- D. 70 % 30 %
- 6. ¿Cuál(es) de los siguientes átomos tiene(n) uno o más electrones no apareados?
 - I. Hierro
 - II. Cobre
 - III. Zinc
 - A. Sólo 1
 - B. Sólo III
 - C. Sólo I y II
 - D. I, II y III

7. El espectro atómico de líneas proporciona información sobre ...I... de los átomos por medio ...II....

I

II

- A. los niveles energéticos de la distancia entre líneas
- B. la masa atómica del patrón de las líneas
- C. el número de electrones del número de líneas
- D. la carga nuclear de la intensidad de las líneas
- 8. ¿En cuál de los siguientes pares la primera especie tiene mayor tamaño que la segunda?
 - A. Cl y Cl
 - B. Na⁺ y Na
 - C. Na y K
 - D. Si y Cl
- 9. Los óxidos de los elementos del tercer periodo (Na → Cl) se tornan más ...I... y originan soluciones más ...II... cuando se añaden al agua.

I

II

- A. iónicos ácidas
- B. iónicos alcalinas
- C. covalentes ácidas
- D. covalentes alcalinas

Véase al dorso

10. ¿Cuál(es) de las siguientes reacciones es(son) espontánea(s)?

I.
$$Cl_2 + 2Br^- \rightarrow Br_2 + 2Cl^-$$

II.
$$Br_2 + 2I^- \rightarrow I_2 + 2Br^-$$

- A. Sólo I
- B. Sólo II
- C. Ambas I y II
- D. Ninguna

11. ¿Cuántos pares de electrones enlazantes y pares solitarios hay en la estructura de Lewis del HCOOCH₃?

Pares enlazantes Pares solitarios

- A. 8 4
- B. 7 5
- C. 7 4
- D. 5

12. El ángulo de enlace carbono-carbono-carbono en el $\mathrm{CH_3CHCH_2}$ es cercano a

- $A. 180^{\circ}.$
- B. 120°.
- C. 109°.
- D. 90°.

13.	Es p	probable que la deslocalización electrónica sea significativa en el
	A.	CO_2 .
	B.	SO_2 .
	C.	нсоон.
	D.	${ m TiO}_2$.
14.	La f	Forma del ion triyoduro, I_3^- , se describe preferentemente como
	A.	angular.
	B.	lineal.
	C.	en forma de T.
	D.	triangular.
15.	¿Qu	é ocurre durante la transformación de un líquido a sólido a una temperatura fija?
	A.	Las partículas se hacen más pequeñas y se libera calor.
	B.	Las partículas se aproximan y se absorbe calor.
	C.	Las partículas se ordenan más y se libera calor.
	D.	Las fuerzas de atracción entre las partículas se hacen más fuertes y se absorbe calor.
16.	Se d	debe determinar la masa molar de un gas desconocido pesando una muestra. Además de su masa il de los siguientes datos es necesario conocer?
		I. Presión
		II. Temperatura
		III. Volumen
	A.	Sólo I
	B.	Sólo II
	C.	Sólo I y II

222-158 Véase al dorso

D. I, II y III

- 17. La presión total de una mezcla de 0.6 moles de N_2 , 0.4 moles de O_2 y 0.2 moles de H_2 es de 2.0 atmósferas. ¿Cuál es la presión parcial del N_2 expresada en atmósferas?
 - A. 0,5
 - B. 0,6
 - C. 1,0
 - D. 1,2
- 18. ¿Cuál es el valor de ΔH (expresado en kJ mol⁻¹) para la siguiente reacción?

Energías de	Н—Н	С—С	C = C	С—Н
enlace	42.6	2.40	(10	410
/ kJ mol ⁻¹	436	348	612	412

- A. 124
- B. 101
- C. -101
- D. -124

19. Utilizando la siguiente información:

$$H_2(g) + O_2(g) \rightarrow H_2O_2(l)$$
 $\Delta H = -187,6 \text{ kJ}$

$$\Delta H = -187,6 \text{ kJ}$$

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$$
 $\Delta H = -571,6 \text{ kJ}$

$$\Delta H = -571.6 \text{ kJ}$$

¿cuál es el valor de ΔH (expresado en kJ) para la siguiente reacción?

$$2H_2O_2(1) \rightarrow 2H_2O(1) + O_2(g)$$

- -196,4A.
- B. -384,0
- C. -759,2
- D. -946,8
- 20. ¿Para cuál de las siguientes reacciones la variación de entropía, ΔS , es más cercana a cero?
 - $H_2O(1) \rightarrow H_2O(g)$ A.
 - $Mg(s) + Cl_2(g) \rightarrow MgCl_2(s)$ B.
 - C. $H_2(g) + I_2(g) \rightarrow 2HI(g)$
 - D. $Mg(s) + H_2O(l) \rightarrow MgO(s) + H_2(g)$
- Cuando ΔG^{\ominus} de una reacción es negativa, la reacción es 21.
 - A. rápida.
 - B. endotérmica.
 - C. reversible.
 - D. espontánea.

22. $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$

¿Cuál de los siguientes cambios producirá un aumento de la velocidad de la reacción anterior cuando se añaden 50 cm³ de solución de HCl de concentración 1,0 mol dm⁻³ a 1,0 g de CaCO₃?

- A. Aumento de volumen de HCl
- B. Disminución de la concentración de HCl
- C. Disminución del tamaño de las partículas de CaCO₃ sólido
- D. Aumento de la presión de CO₂
- 23. ¿Qué enunciado(s) es(son) verdadero(s) cuando se refiere(n) a la siguiente reacción a 100°C?

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

- I. Se espera que cada choque entre moléculas de N₂ y H₂ produzca NH₃.
- II. Esta reacción debe implicar un choque entre una molécula de $\rm\,N_2\,$ y tres de $\rm\,H_2\,$.
- A. Sólo I
- B. Sólo II
- C. I y II
- D. Ninguno
- **24.** La velocidad de una reacción química aumenta al elevarse la temperatura. Este aumento de la velocidad de reacción se debe a
 - I. un incremento de la velocidad de choque.
 - II. la disminución de la energía de activación.
 - III. un aumento del número de moléculas que reaccionan.
 - A. Sólo I
 - B. Sólo II
 - C. Sólo I y III
 - D. I, II y III

M02/420/H(1)S

$$K_{\rm c} = \frac{[{\rm O}_2]^5[{\rm NH}_3]^4}{[{\rm NO}]^4[{\rm H}_2{\rm O}]^6}$$

¿Qué ecuación se corresponde con esta expresión de equilibrio?

- A. $4NH_3 + 5O_2 \rightleftharpoons 4NO + 6H_2O$
- B. $4NO + 6H_2O \rightleftharpoons 4NH_3 + 5O_2$
- C. $8NH_3 + 10O_2 \rightleftharpoons 8NO + 12H_2O$
- D. $2NO + 3H_2O \rightleftharpoons 2NH_3 + \frac{5}{2}O_2$

26. La reacción

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

es exotérmica. ¿Cuál(es) de los siguientes factores se puede(n) utilizar para desplazar el equilibrio hacia la derecha?

- I. Aumento de presión
- II. Aumento de temperatura
- A. Sólo I
- B. Sólo II
- C. I y II
- D. Ninguno

27. ¿Cuál de las siguientes combinaciones es correcta?

	$\Delta H_{ m vaporización}$	Punto de ebullición	Fuerzas intermoleculares
A.	elevado	alto	fuertes
B.	elevado	bajo	débiles
C.	bajo	bajo	fuertes
D.	bajo	alto	débiles

28. Las soluciones P, Q, R y S tienen las siguientes propiedades:

P:
$$pH = 8$$

$$Q: [H^+] = 1 \times 10^{-3} \text{ mol dm}^{-3}$$

R:
$$pH = 5$$

S:
$$[H^+] = 2 \times 10^{-7} \text{ mol dm}^{-3}$$

Si estas soluciones se ordenan de forma creciente respecto de su acidez (la menos ácida primero), el orden correcto es:

- A. **P**, **S**, **R**, **Q**.
- B. **Q**, **R**, **S**, **P**.
- C. S, R, P, Q.
- D. **R**, **P**, **Q**, **S**.
- 29. La ionización del ácido sulfúrico se representa por medio de las siguientes ecuaciones:

$$H_2SO_4(aq) + H_2O(l) \rightarrow H_3O^+(aq) + HSO_4^-(aq)$$

 $HSO_4^-(aq) + H_2O(l) \rightarrow H_3O^+(aq) + SO_4^{2-}(aq)$

¿Cuál es la base conjugada del HSO₄(aq)?

- A. $H_2O(1)$
- B. $H_3O^+(aq)$
- C. $H_2SO_4(aq)$
- D. $SO_4^{2-}(aq)$
- **30.** ¿Cuál es la $[H^+]$ y la $[OH^-]$ de una solución de un ácido débil $(K_a = 1, 0 \times 10^{-7})$ de concentración $0,10 \, \text{mol dm}^{-3}$?

$$[H^{+}]$$
 $[OH^{-}]$

A.
$$1,0 \times 10^{-1}$$
 $1,0 \times 10^{-13}$

B.
$$1,0 \times 10^{-3}$$
 $1,0 \times 10^{-11}$

C.
$$1,0 \times 10^{-4}$$
 $1,0 \times 10^{-10}$

D.
$$1,0\times10^{-6}$$
 $1,0\times10^{-8}$

- ¿Cuál(es) de las siguientes combinaciones formará(n) una solución tampón (buffer)?
 - $20\,\mathrm{cm^3}$ de $\mathrm{CH_3COOH}$ 0,10 $\mathrm{mol\,dm^{-3}}$ y 10 $\mathrm{cm^3}$ de $\mathrm{CH_3COONa}$ 0,10 $\mathrm{mol\,dm^{-3}}$ I.
 - 20 cm³ de CH₃COOH 0,10 moldm⁻³ y 10 cm³ de NaOH 0,10 moldm⁻³ II.
 - A. Sólo I
 - B. Sólo II
 - C. Ambas, I y II
 - D. Ninguna
- **32.** ¿Cuál de los siguientes cambios representa una reacción de reducción?
 - $Mn^{2+}(aq) \rightarrow MnO_4^-(aq)$ A.
 - B. $\operatorname{CrO}_{4}^{2-}(\operatorname{aq}) \to \operatorname{Cr}^{3+}(\operatorname{aq})$
 - C. $2CrO_4^{2-}(aq) \rightarrow Cr_2O_7^{2-}(aq)$
 - D. $MnO_2(s) \rightarrow MnO_4^{2-}(aq)$
- A continuación se transcriben los potenciales standard de electrodo para el Al y el Mn: 33.

$$Al^{3+}(aq) + 3e^{-} \rightleftharpoons Al(s)$$
 -1,66 V
 $Mn^{2+}(aq) + 2e^{-} \rightleftharpoons Mn(s)$ -1,18 V

$$Mn^{2+}(aq) + 2e^{-} \rightleftharpoons Mn(s)$$
 -1.18 V

¿Cuál es el potencial de una pila fabricada con dichos metales en contacto con soluciones de sus iones de concentración 1,0 moldm⁻³?

- A. 0,22 V
- B. 0,48 V
- 2,84 V C.
- D. 3,43 V

34. Cuando se electroliza una solución acuosa de cloruro de cobre(II) usando electrodos de carbón los productos son

	electrodo negativo	electrodo positivo
A.	hidrógeno gaseoso	cloro gaseoso
B.	hidrógeno gaseoso	oxígeno gaseoso
C.	cobre metálico	oxígeno gaseoso
D.	cobre metálico	cloro gaseoso

- 35. Los siguientes compuestos tienen masas molares semejantes. ¿Qué compuesto tiene mayor punto de ebullición?
 - A. CH₃COOH
 - B. C₂H₅OCH₃
 - C. CH₃COCH₃
 - D. C_2H_5Cl
- **36.** ¿Qué molécula tiene un centro quiral?
 - A. NH₂CH₂COOH
 - B. CH₃CH(NH₂)COOH
 - C. $CH_3C(NH_2)$, COOH
 - D. $(CH_3)_2C(NH_2)COOH$
- 37. ¿Qué reacción se produce a temperatura ambiente?
 - A. $CH_2CH_2CH_2NH_2 + OH^- \rightarrow CH_3CH_2CH_2OH + NH_2^-$
 - B. $CH_3CH_2CH_2OCH_3 + CN^- \rightarrow CH_3CH_2CH_2OCN + CH_3^-$
 - C. $CH_3CH_2CH_2Br + OH^- \rightarrow CH_3CH_2CH_2OH + Br^-$
 - D. $(CH_3)_3COH + Cl^- \rightarrow (CH_3)_3CCl + OH^-$

38.	¿Que	é compuesto sufre oxidación cuando se lo trata con dicromato(VI) de potasio en medio ácido?
	A.	CH ₃ CH ₂ CHO
	B.	CH ₃ COCH ₃
	C.	CH ₃ COOH
	D.	$(CH_3)_3COH$
39.	¿Que	é compuesto reacciona por un mecanismo de sustitución electrófila?
	A.	1-Bromobutano
	B.	Ciclohexano
	C.	Metilbenceno
	D.	Propanona
40.		l espectro de masas del $CH_3COOC_2H_5$ no se espera encontrar un pico mayor a una de las siguientes iones m/e. ¿A cuál de ellas?
	A.	88
	B.	32
	C.	29
	D.	15