Практическая справка по тому, как писать код

Содержание

1	Оце	ценка качества: кросс-валидация и бутстрэп					
	1.1	Общие правила против утечек данных	3				
	1.2	K-Fold кросс-валидация (классификация с масштабированием)	3				
	1.3	Параметры cross_val_score (кратко)	4				
	1.4	Интерпретация вывода	4				
	1.5	Leave-One-Out (LOO) — максимально строгая CV	4				
	1.6	Leave-One-Group-Out (LOGO) — запрет утечек между группами	5				
	1.7	Бутстрэп-оценка и доверительные интервалы метрики	5				
	1.8	Подбор гиперпараметров без утечек (намёк)	6				
	1.9	Чеклист «без утечек»	6				
2		гимизация гиперпараметров: практическая выжимка по ноутбуку в Forch	8				
2							
2	Py	Forch	8				
2	Py 7	Torch Несколько важных понятий перед разбором ноутбука	8 12				
2	Py72.12.2	Forch Несколько важных понятий перед разбором ноутбука	8 12 15				
2	Py72.12.22.3	Forch Несколько важных понятий перед разбором ноутбука	8 12 15 17				
2	Py72.12.22.32.42.5	Гогсh Несколько важных понятий перед разбором ноутбука torch.optim.LBFGS torch.optim.Adam Финальный расчёт меток и центроидов (инференс без градиентов)	8 12 15 17 18				
2	Py72.12.22.32.42.5	Гогсh Несколько важных понятий перед разбором ноутбука torch.optim.LBFGS torch.optim.Adam Финальный расчёт меток и центроидов (инференс без градиентов) Метрика силуэта (silhouette_score) Что возвращает функция (словарь результатов)	8 12 15 17 18				

		2.8.1	Контейнер nn.Sequential: что это, что внутрь кладут, есть ли свои параметры	23	
		2.8.2	Что такое логиты (<i>logits</i>)	23	
		2.8.3	nn.Linear: что это, как работает и зачем нужен	24	
		2.8.4	nn.BCEWithLogitsLoss: что это и как работает	26	
3	Опт	гимиза	торы sklearn: SGDClassifier и SGDRegressor	32	
	3.1	SGDCla	assifier: линейный классификатор	32	
	3.2	Допус	тимые значения параметров: loss и elasticnet	32	
	3.3	3.3 SGDRegressor: линейная регрессия с SGD			
	3.4 Функции потерь в SGDRegressor: huber, epsilon_insensitive, squared_epsi				
	3.5	Практ	рика и советы	36	
	3.6	Ещё к	ороткие примеры	36	
	3.7	Парам	иетр solver в scikit-learn: где он есть и что означает	37	
4	KN	N: кла	ссифицирующие и регрессионные варианты	39	
	4.1	Взвеш	иенный KNN: weights="distance" и свои ядра	40	
	4.2	K-Mea	ans (sklearn.cluster.KMeans)	42	
5	Решающие деревья в scikit-learn: обучение, стрижка, кодирован категорий			45	
	5.1	Бинар	ное решающее дерево (классификация и регрессия)	45	
	5.2	Стрия	кка дерева (Pruning): cost-complexity и выбор сср_alpha	46	
	5.3	Катего	ориальные признаки: label/one-hot/target encoding	49	
6	SVI	миsv	/R: быстрый практический конспект	53	
	6.1	SVM A	для классификации (SVC, LinearSVC)	53	
	6.2	SVR д	для регрессии (SVR, LinearSVR)	54	

1 Оценка качества: кросс-валидация и бутстрэп

Зачем. Надёжная оценка обобщающей способности модели требует *строгого разделения* данных на обучающие и валидационные части без «подглядывания» в ответы валидации. Ниже — практические шаблоны кода и правила, как не допустить утечек.

1.1 Общие правила против утечек данных

- Весь препроцессинг внутри Pipeline. Масштабирование, целевое кодирование, отбор признаков и т.п. должны обучаться ТОЛЬКО на тренировочной части каждого фолда.
- **Не трогайте тест.** Любой подбор гиперпараметров делайте *тест молько* по CV на трейне. Тест держите «на потом».
- Соблюдайте стратификацию/группы. Для классификации используйте StratifiedKFold. Для зависимых выборок (пользователь, серия, сессия) используйте GroupKFold/LeaveOneGroupOu
- Временные ряды отдельный режим. Для них применяют TimeSeriesSplit (разрезы «вперёд во времени»).

1.2 К-Fold кросс-валидация (классификация с масштабированием)

```
1 from sklearn.model_selection import StratifiedKFold, cross_val_score
2 from sklearn.pipeline import make_pipeline
3 from sklearn.preprocessing import StandardScaler
4 from sklearn.linear_model import LogisticRegression
6 cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
7 pipe = make_pipeline(
      StandardScaler(),
      LogisticRegression(solver="lbfgs", max_iter=200)
9
10 )
11
scores = cross_val_score(
      pipe, X, y,
13
      scoring="roc_auc",
14
      cv=cv,
15
      n_jobs=-1
16
17 )
print("AUC (meanstd): %.3f %.3f" % (scores.mean(), scores.std()))
```

Kommenmapu"u. StandardScaler обучается внутри каждого фолда, исключая утечки масштаба. Для регрессии используйте KFold вместо StratifiedKFold и подходящую метрику (r2, neg_mean_absolute_error, ...).

Что происходит.

- Генератор StratifiedKFold создаёт 5 стратифицированных фолдов (сохраняются доли классов), перемешивание фиксируется random_state.
- Pipeline гарантирует, что StandardScaler обучается внутри каждого фолда только на его train-части, исключая утечку масштаба.

- cross_val_score для каждого фолда: клонирует пайплайн, обучает на train, считает метрику ROC AUC на val; возвращает массив из 5 значений.
- n_jobs=-1 параллелит вычисления по всем доступным ядрам.

1.3 Параметры cross_val_score (кратко)

- estimator: любая модель/пайплайн с методами fit и predict/predict_proba/decision_functi
- Х, у: данные и целевая переменная; для безнадзорных задач у можно опустить.
- groups: групповые метки (используются, если cv групповой сплит).
- scoring: строка с метрикой ("roc_auc", "accuracy", "neg_mean_absolute_error и др.) либо кастомная функция-оценщик.
- cv: число фолдов (например, 5) или генератор разбиений (StratifiedKFold, KFold, GroupKFold, TimeSeriesSplit).
- n_jobs: число параллельных процессов; -1 все ядра.
- verbose, pre_dispatch, error_score: управление логами, диспетчеризацией задач и поведением при ошибках (по умолчанию np.nan).

Возвращаемое значение: ndarray формы $(n_splits,)$ — метрика на каждом фолде. Если нужны несколько метрик и/или времена fit/score, используйте cross_validate.

1.4 Интерпретация вывода

Строка печати "AUC (mean+/-std): ..." показывает среднее качество по фолдам и его разброс. Небольшая дисперсия (std мала) — признак стабильности; большая — сигнал проверить стратификацию, несбалансированность классов и/или корректность препроцессинга внутри Pipeline.

1.5 Leave-One-Out (LOO) — максимально строгая CV

```
from sklearn.model_selection import LeaveOneOut, cross_val_score
from sklearn.linear_model import SGDClassifier
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

loo = LeaveOneOut()
pipe = make_pipeline(StandardScaler(), SGDClassifier(loss="log_loss", random_state=7))
scores = cross_val_score(pipe, X, y, scoring="accuracy", cv=loo)
print("LOO accuracy (mean):", scores.mean())
```

Комментарий. LOO делает N прогонов (дорого), каждый раз обучая на N-1 примерах и проверяя на 1 примере. Полезно на маленьких датасетах; на средних/больших — неэффективно.

1.6 Leave-One-Group-Out (LOGO) — запрет утечек между группами

```
1 from sklearn.model_selection import LeaveOneGroupOut, cross_val_score
2 from sklearn.neighbors import KNeighborsClassifier
3 from sklearn.pipeline import make_pipeline
4 from sklearn.preprocessing import StandardScaler
5 import numpy as np
7 # groups[i] -- идентификатор группы (например, пользователь/сессия/серия)
8 groups = np.array(user_ids) # длины N
10 logo = LeaveOneGroupOut()
pipe = make_pipeline(StandardScaler(), KNeighborsClassifier(n_neighbors=5))
13 scores = cross_val_score(
      pipe, X, y,
14
                          # <- критично: разрезы делаются по группам
      groups=groups,
15
      scoring="accuracy",
16
      cv=logo
17
18 )
print("LOGO accuracy (meanstd): %.3f %.3f" % (scores.mean(), scores.std()))
```

Комментарий. Все объекты одной группы *целиком* попадают либо в трейн, либо в валидацию — это устраняет утечки (например, когда один и тот же пользователь встречается в обоих наборах).

1.7 Бутстрэп-оценка и доверительные интервалы метрики

Идея. С переотбором (bootstrap) многократно семплируем тренировочные выборки из исходных данных, обучаем модель и считаем метрику на out-of-bag (примеров, не попавших в бутстрэп-выборку) или на фиксированном валидационном наборе. Распределение метрики даёт стандартную ошибку и доверительный интервал.

```
1 import numpy as np
2 from sklearn.utils import resample
3 from sklearn.metrics import accuracy_score
4 from sklearn.model_selection import train_test_split
5 from sklearn.pipeline import make_pipeline
6 from sklearn.preprocessing import StandardScaler
7 from sklearn.linear_model import LogisticRegression
9 # фиксируем тест, бутстрэпим трейн (чтобы не "подглядывать" в тест)
10 X_tr, X_te, y_tr, y_te = train_test_split(X, y, test_size=0.2, stratify=y,
      random_state=7)
pipe = make_pipeline(StandardScaler(), LogisticRegression(max_iter=1000))
_{13} B = 1000
14 scores = []
rng = np.random.RandomState(7)
n = len(y_tr)
19 for b in range(B):
      idx = rng.randint(0, n, size=n)
                                            # семпл с возвращением
20
      Xb, yb = X_{tr}[idx], y_{tr}[idx]
21
      pipe.fit(Xb, yb)
22
      # оценка на фиксированном тесте (без утечки)
      scores.append( accuracy_score(y_te, pipe.predict(X_te)) )
24
25
26 scores = np.array(scores)
lo, hi = np.percentile(scores, [2.5, 97.5])
28 print("Bootstrap acc: mean=%.3f 95%% CI=[%.3f, %.3f]" % (scores.mean(), lo,
      hi))
```

Комментарий. Альтернатива — оценивать на *out-of-bag* каждом прогоне: брать объекты, *не* вошедшие в бутстрэп-выборку, и считать метрику по ним. Важно: *не* использовать всю исходную разметку для настройки препроцессинга — держите препроцесс в Pipeline и обучайте его только на бутстрэп-выборке.

1.8 Подбор гиперпараметров без утечек (намёк)

Правильный контур.

- Для подбора C, alpha, n_neighbors, ... используйте GridSearchCV/RandomizedSearchCV с Pipeline и корректным cv (StratifiedKFold, GroupKFold, ...).
- **Нестед CV** (вложенная CV) даёт незамещённую оценку качества, но дороже по вычислениям.

1.9 Чеклист «без утечек»

- Все трансформеры/кодировщики/скалеры внутри Pipeline.
- Группы/стратификация указаны явно, если это важно для задачи.
- Гиперпараметры подбираются внутри CV, тест используется один раз в самом конпе.

ullet Для временных рядов — TimeSeriesSplit, а не обычный KFold.

2 Оптимизация гиперпараметров: практическая выжимка по ноутбуку в PyTorch

В ноутбуке решаются две задачи: мягкая кластеризация k-means на наборах Iris. Для кластеризации оптимизируются координаты центроидов с помощью двух оптимизаторов (LBFGS, Adam); в классификации сравниваются LogisticRegression (L-BFGS) и AdamW в РуТогсh. Качество в кластеризации оценивается метрикой silhouette_score. Ниже — подробные пояснения ко всем вызовам.

2.1 Несколько важных понятий перед разбором ноутбука

Центроиды — это ключевое понятие в алгоритме k-means. Под центроидом понимается «центр» кластера: точка в пространстве признаков, которая играет роль представителя группы объектов. Если у нас есть k кластеров, то мы поддерживаем k центроидов, обычно в виде матрицы размера $k \times d$, где d — размерность признакового пространства. Каждая строка такой матрицы хранит координаты одного центроида. В классическом k-means на каждом шаге объекты относятся к ближайшему центроиду, после чего координаты центроидов пересчитываются как среднее по своим точкам. В мягкой (soft) версии k-means, которая реализована в ноутбуке, назначение точек к центроидам происходит не жёстко, а через распределение вероятностей (softmax от расстояний). Центроиды при этом становятся n параметрами оптимизации: мы ищем такие их значения, которые минимизируют функцию потерь, отражающую «качество» разбиения. Именно эти центроиды и передаются в оптимизатор (LBFGS, Adam) как обучаемый параметр С.

Выбор начальных центроидов — важный шаг в алгоритме k-means. Так как задача кластеризации нелинейна и может иметь много локальных минимумов, начальная инициализация сильно влияет на итоговый результат. В классическом варианте k-means центроиды могут быть выбраны просто случайным образом из множества объектов: берём k случайных точек и используем их координаты как начальные центры. Более продвинутый способ — инициализация k-means++, где новые центры выбираются так, чтобы они были как можно дальше друг от друга; это улучшает устойчивость и снижает риск попадания в плохой минимум. В нашем ноутбуке для простоты использовалась случайная инициализация: матрица init_centroids формируется либо из случайного подмножества данных, либо из случайных чисел, после чего она превращается в параметр nn.Parameter и дальше уже оптимизируется выбранным методом (LBFGS, SGD, Adam). Таким образом, оптимизация не «придумывает» кластеры с нуля, а постепенно улучшает первоначальную случайную расстановку центроидов.

Чтобы понимать, что именно мы оптимизируем, важно уточнить несколько базовых понятий. В РуТогсh все данные представлены в виде mensopos. Тензор — это многомерный массив чисел: вектор (одномерный тензор), матрица (двумерный тензор), трёхмерный массив (например, для изображений формата [каналы, высота, ширина]), и так далее. В задаче кластеризации у нас есть матрица признаков $X \in \mathbb{R}^{N \times d}$, где N — число объектов, d — размерность признакового пространства. Аналогично, начальные центроиды можно хранить как матрицу размера $k \times d$, где k — количество кластеров, а каждая строка соответствует координатам одного центра. Такой объект в РуТогсh — это обычный тензор, созданный заранее (например, из случайной инициализации или через выбор случайных объектов из данных).

Когда мы пишем nn.Parameter(init_centroids.clone().to(device), requires_grad=True), мы именно этот тензор центроидов превращаем в обучаемый параметр. Мы сами явно задаём его (через переменную init_centroids), и именно его оптимизатор будет изменять. Таким образом, тензоры не появляются «из воздуха» — их создаёт исследователь, а класс nn.Parameter лишь «оборачивает» их, чтобы PyTorch учитывал их в процессе оптимизации

В этом разделе на простом примере разбирается то, как использовать оптимизаторы LBFGS и Adam для оптимизации параметров. Также разбирается, что такое «температура» tau в мягком k-means и, как работает $soft_k$ -means_loss функция с использованием $soft_k$.

Что делает soft_kmeans_loss и почему она так устроена.

Это скалярная функция потерь, которую мы минимизируем по параметрам (центроидам) для задачи "мягкой" кластеризации. На вход она получает батч данных $X_{\text{batch}} \in \mathbb{R}^{B \times D}$ и текущие центроиды $C \in \mathbb{R}^{K \times D}$; на выходе возвращает одно число L, измеряющее, насколько хорошо центры объясняют точки из батча.

```
def soft_kmeans_loss(centroids: torch.Tensor,
      X_batch: torch.Tensor,
      tau: float = 0.5) -> torch.Tensor:
3
4
       # X_batch: (B, D), centroids: (K, D)
5
       # 1) Попарные квадраты расстояний d_{b,k} = ||x_{b} - c_{k}||^{2} -> (B, K)
6
      diff = X_batch[:, None, :] - centroids[None, :, :]
      dist2 = (diff * diff).sum(dim=2)
       # 2) Мягкие присваивания по softmax с температурой tau
10
      q = torch.softmax(-dist2 / tau, dim=1) # (B, K)
11
12
       # 3) Ожидаемое расстояние (реконструкция)
13
      recon = (q * dist2).mean()
14
15
       # 4) Энтропийный член (поощряет мягкость на ранних этапах)
16
       eps = 1e-12
17
       entropy = -(q * torch.log(q + eps)).mean()
18
       # 5) Итоговый лосс
20
      loss = recon - tau * entropy
21
      return loss
```

Сначала считаются попарные квадраты расстояний от каждой точки до каждого центроида. За счёт броадкастинга формируется тензор разностей $\mathbf{diff} \in \mathbb{R}^{B \times K \times D}$ и затем $\mathbf{dist2} = (\mathbf{diff} \cdot \mathbf{diff})$ суммируется по признаковой оси: $\mathbf{dist2} \in \mathbb{R}^{B \times K}$ с элементами $d_{b,k} = \|x_b - c_k\|_2^2 = \sum_{d=1}^D (x_{b,d} - c_{k,d})^2$. Это «геометрическая часть» лосса.

Почему появляется трёхмерный тензор $(B \times K \times D)$ и как в этом участвует broadcasting.

Нам нужно сразу получить расстояния от *каждой* точки батча к *каждому* центроиду. Пусть $X_{\text{batch}} \in \mathbb{R}^{B \times D}$ — это B точек в D-мерном пространстве, а $C \in \mathbb{R}^{K \times D}$ — K

центроидов. Попарные разности координат для всех пар (b,k) удобно хранить в едином тензоре diff с формой (B,K,D), где элемент

$$diff[b, k, d] = X_{batch}[b, d] - C[k, d].$$

Такой трёхмерный тензор — это просто «стопка» разностей по всем парам «точка—центроид»: первая ось выбирает точку b, вторая — центроид k, а третья хранит координаты по признакам $d=1,\ldots,D$.

Чтобы получить diff *векторно*, без циклов, мы временно добавляем оси длины 1 так, чтобы формы вычитались по правилу broadcasting. В коде это записывается как

$$\texttt{X_batch[:, None, :]} \in \mathbb{R}^{B \times 1 \times D}, \qquad \texttt{centroids[None, :, :]} \in \mathbb{R}^{1 \times K \times D}.$$

Далее поэлементное вычитание X_batch[:, None, :]—centroids[None, :, :] автоматически транслирует (broadcast) размерности: оси длины 1 «растягиваются» до нужных размеров, так что результат имеет форму (B,K,D) и эквивалентен «каждая из B строк X вычтена из всех K строк C». При этом PyTorch не копирует данные $B \times K$ раз — трансляция логическая, вычисления идут по правилу совместимости размерностей.

Трёхмерность здесь — промежуточный технический шаг, позволяющий за один векторизованный вызов получить все (b,k)-разности. Сразу после этого мы сворачиваем координатную ось D, чтобы получить матрицу квадратов расстояний:

$$\texttt{dist2} = (\texttt{diff} \cdot \texttt{diff}).\texttt{sum}(\texttt{dim=2}) \in \mathbb{R}^{B \times K}, \qquad \texttt{dist2}[b,k] = \sum_{d=1}^D (X_{b,d} - C_{k,d})^2 = \|x_b - c_k\|_2^2.$$

Интуитивно о вычитании с broadcasting и формах тензоров.

В батче $X_{\text{batch}} \in \mathbb{R}^{B \times D}$ каждая строка — это один объект с D признаками. В матрице центроидов $C \in \mathbb{R}^{K \times D}$ каждая строка — центр одного из K кластеров. Чтобы одновременно посчитать разности «объект минус центроид» по всем парам (b,k), мы добавляем «фиктивные» оси: берём $X_{\text{batch}}[:,\text{None},:] \in \mathbb{R}^{B \times 1 \times D}$ и $C[\text{None},:,:] \in \mathbb{R}^{1 \times K \times D}$. Правило broadcasting говорит: оси, где стоит 1, «растягиваются» до нужного размера при поэлементной операции, поэтому вычитание

$$\mathtt{diff} \ = \ X_{\mathrm{batch}}[:,\mathtt{None},:] \ - \ C[\mathtt{None},:,:]$$

даёт тензор формы $\mathbb{R}^{B \times K \times D}$, где элемент $\mathtt{diff}[b,k,d] = X_{\mathrm{batch}}[b,d] - C[k,d]$. Интуитивно это то же самое, как если бы мы концептуально «расплющили» пары в матрицу формы $(B \cdot K, D)$: по строкам идут все пары «объект-центроид», по столбцам — признаки. Мы так явно не делаем, а сразу сворачиваем признаковую ось D: считаем квадраты и суммируем по d, получая матрицу расстояний

$$\mathtt{dist2} \ = \ (\mathtt{diff} \cdot \mathtt{diff}).\mathtt{sum}(\mathtt{dim} = 2) \ \in \ \mathbb{R}^{B \times K},$$

где в каждой строке b стоят расстояния текущего объекта до всех K центроидов, а в каждом столбце k — расстояния всех B объектов до данного центроида. На этом шаге мы имеем «карту расстояний»: на пересечении $(b,k) - \|x_b - c_k\|_2^2$. Далее применяем softmax no ocu кластеров (в коде dim = 1) к отрицательным расстояниям с температурой τ :

$$q \; = \; \texttt{softmax}\big(-\; \texttt{dist2}/\tau, \; \texttt{dim} = 1\big) \in \mathbb{R}^{B \times K},$$

и получаем вероятности принадлежности каждого объекта к каждому клакстеру: в каждой строке b значения $q_{b,k} \in (0,1)$ складываются в 1. Таким образом, трёхмерный тензор $(B \times K \times D)$ — лишь удобный промежуточный формат, который позволяет векторно (без циклов) посчитать все попарные разности по признакам и затем свести их к нужной нам двумерной матрице расстояний $(B \times K)$.

Продолжаем обсуждение про softmax.

Далее вычисляются мягкие присваивания q — вероятности принадлежности точки x_b каждому кластеру k. Они получаются как softmax от *отрицательных* расстояний с температурой $\tau > 0$:

$$q_{b,k} = \frac{\exp(-d_{b,k}/\tau)}{\sum_{j=1}^{K} \exp(-d_{b,j}/\tau)}, \quad q_b \in \Delta^{K-1}, \sum_k q_{b,k} = 1.$$

Отрицательный знак перед $d_{b,k}$ принципиален: чем ближе точка к центру, тем выше вероятность. Параметр τ управляет «мягкостью»: при $\tau \to 0$ распределение становится почти onehot (классический жёсткий k-means. То есть расстояние между точками при деление на маленькое τ становится очень большим, из-за чего получаются большие различия в вероятностях), при больших τ — более равномерным (точка частично принадлежит нескольким кластерам. То есть вероятности получаются очень близкими друг к другу по значениям). В коде это строка $\mathbf{q} = \mathbf{torch.softmax}(-\mathbf{dist2} / \mathbf{tau}, \mathbf{dim=1})$.

Лосс складывается из двух слагаемых. Первое — ожидаемое (по q) квадратичное расстояние до центров:

recon =
$$\frac{1}{B} \sum_{b=1}^{B} \sum_{k=1}^{K} q_{b,k} d_{b,k}$$

и оно «наказывает» за далёкое расположение точек от выбранных центроидов. Второе — энтропия распределений q_b (со знаком минус в целевой функции из-за минуса, который дает логарифм):

$$H(q) = -\frac{1}{B} \sum_{b=1}^{B} \sum_{k=1}^{K} q_{b,k} \log(q_{b,k} + \varepsilon), \qquad \varepsilon = 10^{-12},$$

где маленькое ε обеспечивает численную устойчивость (избегает $\log 0$). Энтропия измеряет неопределённость: равномерные распределения имеют высокое H, почти onehot — низкое. Логарифм здесь показывает наше «удивление» из-за того, что точка с маленькой вероятностью попала имеено в этот кластер. То есть, если энтропия большая, то это показывает нам, что в кластере есть точки, которые скорее всего ему не принадлежат.

Итоговая цель:

$$L(C; X_{\mathrm{batch}}) = \underbrace{\mathrm{recon}}_{\mathrm{cpedhee\ pacctoshue}} - \tau \underbrace{H(q)}_{\mathrm{мягкость\ присваиваний}}.$$

Знак минус перед H(q) выбран так, чтобы *поощрять* более высокую энтропию в начале обучения (мягкие присваивания предотвращают преждевременное «залипание» в плохую жёсткую сегментацию. То есть, если взять энтропию со знаком плюс, то это приведет к выбору точек с максимальной вероятностью попасть в кластер, из-за чего модель на ранних этапах может зафиксировать точки в плохо обученных кластерах) и постепенно,

по мере оптимизации центроидов, позволять распределениям становиться определённее. Параметр τ здесь играет двойную роль: он и «температура» в softmax, и вес энтропийного слагаемого, согласующий масштабы двух разных величин (по сути указывает, насколько сильно мы учитываем энтропию по отношению к расстоянию).

К вопросу о том, как меняется энтропия:.

Если вероятность отнесения ко всем кластерам примерно одинаковя, то значение энтропии удаляется от нуля и говорит нам, что точка весит где-то между кластерами. Если же вероятность отнесения к одному кластеру $\to 1$, а к другому $\to 0$, то первый член суммы зануляется из-за логарифма, а другой из-за вероятности, и это уже говорит нам об уверенности отнесения объекту к кластеру + уменьшает энтропию.

Заметим, что softmax — многоклассовый аналог сигмоиды: он преобразует вектор действительных чисел в вероятности, суммирующиеся к 1. Батч B — это просто подмножество объектов, обрабатываемых одновременно (в коде X_{batch} имеет форму (B,D)). Градиентная оптимизация меняет только центроиды C (они объявлены как обучаемый параметр nn.Parameter), стремясь минимизировать L; на практике это даёт гладкую, дифференцируемую версию k-means, к которой классический алгоритм приближается при $\tau \to 0$.

2.2 torch.optim.LBFGS

LBFGS — квази-ньютонинский метод для гладких целей. И в PyTorch мы реализуем его следующим образом:

Что такое nn.Parameter и почему .clone().to(device). nn — это модуль torch.nn с «строительными блоками» нейросетей. nn.Parameter — подкласс Tensor, помечающий тензор как обучаемый параметр. Если такой параметр находится внутри nn.Module, он автоматически регистрируется и попадает в model.parameters() (это можно передать в nn.Parameter для оптимизации). В примере мы явно создаём параметр центроидов:

```
C = nn.Parameter(init_centroids.clone().to(device), requires_grad=True).
```

Здесь .clone() гарантирует, что С имеет собственное хранилище и является *листовым* тензором (без grad_fn), что важно для корректного подсчёта градиентов и работы оптимизатора. Вызов .to(device) переносит данные на нужное устройство (CPU/GPU) и приводит к нужному типу, чтобы устройство С совпадало с устройством данных X_t.

Почему именно .clone().to(device) и что значит «листовой» тензор.

- .clone(). Создаёт новый тензор с собственным хранилищем памяти, а не ссылку/«вид» на исходные данные. Это важно, чтобы параметр не зависел от чужих буферов и корректно участвовал в автодиффе как самостоятельный объект. В нашем кейсе исходные init_centroids созданы без градиентов, поэтому clone() даёт тензор без grad_fn (см. ниже), и после обёртки в nn.Parameter(..., requires_grad=True) он становится обучаемым «листом».
- .to(device). Переносит тензор на нужное устройство (CPU/GPU) и, при необходимости, меняет тип данных: .to(device), .to(dtype=torch.float32), или сразу .to(device, dtype=torch.float32). Это гарантирует совпадение устройства/типа у параметра C и данных X_t , иначе операции (вычитание, матричные умножения) упадут с ошибкой «tensors on different devices/dtypes».
- «Листовой» (leaf) тензор. Тензор называется листовым, если он не получен как результат дифференцируемой операции (у него grad_fn=None) и создан пользователем явно (или через detach()). Только у листовых тензоров при backward() накапливаются градиенты в поле .grad; именно такие тензоры оптимизатор умеет обновлять. Параметры моделей (nn.Parameter) по смыслу должны быть листовыми.
- grad_fn. Это ссылка на «функцию-источник» в графе автодифференцирования, породившую тензор. Если grad_fn не None, тензор результат операции (например, CloneBackward, AddBackward и т.п.) и не является листом; градиент для него не сохраняется в .grad (он транзитно считается для его «родителей»). У листовых тензоров grad_fn=None.

nn.Parameter: какие аргументы вообще есть.

- Подпись: nn.Parameter(data, requires_grad=True). У Parameter ровно $\partial \epsilon a$ аргумента: исходный тензор data и флаг requires_grad. Других позиционных/именованных параметров у конструктора нет.
- data. Любой torch. Tensor. Если нужно задать устройство/тип, делайте это ∂o обёртки: torch.tensor(..., device=..., dtype=...) или потом data.to(...).
- requires_grad. Включает/выключает обучение данного параметра. Если False, градиенты не будут считаться, оптимизатор его не изменит удобно для «заморозки» части модели.
- Как задать прочее. Параметры вроде device, dtype, форма, инициализация задаются через сам Tensor (фабрики torch.zeros/ones/empty, torch.randn, .uniform_(), .normal_() и т.п.) до обёртки в nn.Parameter. Для групп параметров есть контейнеры nn.ParameterList и nn.ParameterDict.

requires_grad: зачем и как работает. Если requires_grad=True, то во время loss.backward() PyTorch вычислит $\partial L/\partial C$ и запишет в C.grad. Если False, градиент не считается (параметр «заморожен»). Это основной переключатель «обучаемости» для любого тензора/параметра.

Как передавать параметры оптимизатору в общем случае.

• Один параметр (как здесь): opt = torch.optim.SGD([C], lr=...).

• Вся модель: opt = torch.optim.Adam(model.parameters(), lr=...) — попадут все nn.Parameter внутри model.

Какие оптимизаторы есть в torch.optim (краткая ориентировка).

- SGD (с momentum, опц. nesterov) простой и масштабируемый; ключевые параметры: 1r, momentum, weight_decay.
- Adam/AdamW адаптивные методы; AdamW с «декуплированным» weight_decay; ключевые параметры: lr, betas, eps, weight_decay.
- **RMSprop** хорошо «гасит» шум за счёт скользящего среднего квадратов градиентов; ключевые: lr, alpha, eps.
- Adagrad/Adadelta накапливают масштаб для каждого параметра; работают «из коробки», но шаг со временем затухает.
- LBFGS квази-Ньютоновский метод для гладких задач; требует *closure*.
- Также есть Adamax, ASGD, Rprop, NAdam, RAdam более узкие случаи/вариации.

torch.optim.LBFGS: ключевые параметры.

- 1r базовый коэффициент шага внешней итерации (грубая «скорость» метода).
- max_iter сколько внутренних итераций сделать за один step(). В примере стоит 10, а значит step() может несколько раз вызвать closure(). То есть внутри step(closure) функция closure может быть вызвана для оптимизации loss не больше 10 раз. (см. ниже)
- max_eval максимум пересчётов целевой функции; по умолчанию выбирается из max_iter.
- tolerance_grad, tolerance_change критерии остановки по норме градиента и по изменению функции (численные пороги).
- history_size объём памяти L-BFGS (сколько последних направлений/«пар» (s, y) хранить для приближения Гессиана); типичные значения 10–100. Больше точнее аппроксимация кривизны, но дороже по памяти.
- line_search_fn стратегия линейного поиска. Допустимые значения: None (без явного поиска; используется внутренняя эвристика) или "strong_wolfe" (поиск длины шага, удовлетворяющей сильным условиям Вольфа: достаточное убывание/условие Армихо и условие кривизны; обычно стабильнее на негладких/шумных ландшафтах, но дороже понадобится больше вызовов closure()).

Что делает opt.step(closure) у L-BFGS. Для L-BFGS closure обязателен: оптимизатор должен многократно пересчитывать значение лосса и его градиент, чтобы построить квази-Гессиан и провести (опционально) линейный поиск. Один step() — это «внешняя» итерация, внутри которой выполняется до max_iter «внутренних» итераций; на каждой из них L-BFGS вызывает closure(), читает loss и .grad у параметров, обновляет аппроксимацию Гессиана (через историю направлений) и выбирает шаг. Поэтому в примере внешний цикл ограничивает число step() так, чтобы общее «бюджетное» число внутренних шагов было около 300: max(1, 300 // 10).

Что происходит внутри closure().

- opt.zero_grad(set_to_none=True) обнуляет (точнее, устанавливает в None) накопленные градиенты у всех параметров оптимизатора. В РуТогсh градиенты накапливаются от вызова к вызову backward(); поэтому перед каждым новым пересчётом их нужно сбрасывать. Режим set_to_none=True экономит память и чуть быстрее, чем явная запись нулей; для оптимизаторов это эквивалент нулю.
- loss = soft_kmeans_loss(C, X_t, tau=0.5) вычисляется текущее значение целевой функции на всех данных (full-batch).
- loss.backward() автоматическое дифференцирование (autograd) вычисляет градиенты $\partial L/\partial C$ и складывает их в C.grad. По умолчанию граф не сохраняется (retain_graph=False); функция возвращает *скалярный* loss, который L-BFGS использует для критериев и линейного поиска.
- Boзврат loss. closure обязан вернуть скалярную потерю; L-BFGS может вызывать closure многократно внутри одного step() до достижения условий останова (включая Strong Wolfe, если включён линейный поиск).

Почему L-BFGS требует closure, а Adam/SGD — нет. SGD/Adam делают один градиентный шаг на основе уже посчитанного градиента и не требуют переоценки лосса внутри step(). L-BFGS же строит аппроксимацию второй производной и подбирает длину шага; для этого ему нужно многократно «спросить» у модели актуальные loss и grad при разных кандидатов шага — именно это и делает closure.

Итог по строчке с параметром: nn.Parameter(init_centroids.clone().to(device), requires_grad=True). Это создаёт листовой обучаемый тензор центроидов $C \in \mathbb{R}^{K \times D}$ на нужном устройстве, независимый от исходного массива и готовый к оптимизации. Флаг requires_grad=True включает подсчёт градиентов для C. Передача [C] в оптимизатор делает этот параметр «управляемым» (его .grad будет обновляться и он будет изменяться вызовами step()).

2.3 torch.optim.Adam

Adam — адаптивный метод первого порядка, который поддерживает для каждого параметра свою «масштабированную» скорость за счёт экспоненциальных средних градиентов и их квадратов. Он устойчив к разномасштабным признакам (хотя стандартизация всё равно помогает). Управляющие параметры: 1r (в ноутбуке 0.1 для Iris), betas (по умолчанию (0.9, 0.999)) и ерз (по умолчанию 1e-8). В примере Adam работает в full-batch режиме: каждый шаг видит все точки и обновляет центроиды один раз.

```
# Full-batch Adam
opt = torch.optim.Adam([C], lr=adam_lr)
for _ in range(steps):
    opt.zero_grad(set_to_none=True)
    loss = soft_kmeans_loss(C, X_t, tau=tau) # full-batch
    loss.backward()
    opt.step()
    losses.append(float(loss.item()))
```

Что происходит:

- opt = torch.optim.Adam([C], lr=adam_lr) создаём оптимизатор Adam, который будет обновлять параметр С. Квадратные скобки означают, что в оптимизатор передаётся список параметров/тензоров; шаг обучения задаётся adam_lr.
- for _ in range(steps) внешний цикл оптимизации; столько раз параметр С будет обновлён.
- opt.zero_grad(set_to_none=True) обнуляем накопленные градиенты у параметров, которыми управляет оптимизатор; флаг set_to_none=True делает градиенты None (экономия памяти и скорость).
- loss = soft_kmeans_loss(C, X_t, tau=tau) считаем скалярный лосс по всей выборке (full-batch); см. разбор функции soft_kmeans_loss.
- loss.backward() автодифференцирование: вычисляет $\partial loss/\partial C$ и записывает его в C.grad.
- opt.step() шаг Adam: обновляет С с учётом текущего градиента и внутренних моментов.
- losses.append(float(loss.item())) сохраняем значение лосса как число Python для логирования/графика.

loss.item(): зачем и как работает.

- Что это. item() метод PyTorch-тензора *скалярной* формы (0-D), который возвращает его численное значение как число Python (float или int). Пример: float_loss = loss.item().
- **Когда уместно.** Для логирования/печати лосса после backward() и step(), чтобы сохранить значение в список/файл, построить график и т.п. Возврат уже без вычислительного графа.
- Важно: Метод называется item() (без s). Варианта items() у тензоров нет это опечатка (у словарей Python есть dict.items(), у тензоров нет).
- **Требование к форме.** item() работает *только* для скаляров. Если тензор не скаляр (например, форма (В,) или (В,К)), будет ошибка. В таком случае используйте tensor.tolist() (список Python), tensor.detach().cpu().numpy() (NumPy) или предварительно усредните, чтобы получить скаляр.
- **Градиенты.** item() *отрывает* значение от графа (возвращает чистое число Python), поэтому по нему нельзя делать backward(). Это нормально для логирования, но не для дальнейших вычислений с автодифференцированием.
- **Производительность.** На GPU item() синхронизирует устройство с CPU (блокирует поток), поэтому не вызывайте его слишком часто внутри горячих циклов. Лучше суммировать/усреднять лосс тензорно и вызывать item() реже (например, раз в эпоху/итерацию внешнего цикла).

2.4 Финальный расчёт меток и центроидов (инференс без градиентов).

```
# Get hard labels on full data
with torch.no_grad():
diff = X_t[:, None, :] - C[None, :, :]
dist2 = (diff * diff).sum(dim=2) # (N, K)
q = torch.softmax(-dist2 / tau, dim=1) # (N, K)
labels = torch.argmax(q, dim=1).detach().cpu().numpy()
C_cpu = C.detach().cpu().numpy()
```

with torch.no_grad(): что даёт этот контекст.

• В режиме инференса нам не нужны градиенты и граф вычислений, поэтому контекст torch.no_grad() отключает отслеживание операций автодифференциатором, что уменьшает расход памяти и ускоряет вычисления, так как промежуточные тензоры не сохраняются для последующего backward().

Зачем снова пересчитываются расстояния и softmax.

• После обучения оптимизатором у нас есть обновлённые центроиды С, поэтому нужно получить итог кластеризации на всём датасете: для каждой точки пересчитать расстояния до всех центроидов, превратить их в вероятности принадлежности с помощью softmax и на основе этих вероятностей выбрать итоговый кластер; это тот же самый расчёт, что внутри soft_kmeans_loss, только теперь на всей выборке сразу.

Формирование жёстких меток labels.

• Матрица q имеет размер $N \times K$, где каждая строка содержит вероятности принадлежности одной точки ко всем K кластерам, a torch.argmax(q, dim=1) берёт индекс максимальной вероятности в каждой строке и возвращает вектор длины N со значениями от 0 до K-1, далее detach() отрывает результат от графа, cpu() переносит данные на CPU, а numpy() преобразует тензор в массив NumPy для последующей визуализации или сохранения.

Сохранение центроидов в удобном формате С_сри.

• Выражение C_cpu = C.detach().cpu().numpy() делает копию текущих центроидов без связи с графом, переносит их на CPU и преобразует в массив NumPy, чтобы можно было легко рисовать центры на графиках, логировать координаты или сохранять результаты на диск.

Итог блока.

• Финальная часть кода подводит результаты обучения: для каждой точки вычисляются вероятности принадлежности и выбирается жёсткая метка кластера, а также

готовятся к использованию на CPU финальные координаты центроидов в виде массивов NumPy; контекст no_grad делает этот этап быстрым и экономным по памяти, так как градиенты больше не нужны.

2.5 Метрика силуэта (silhouette_score).

```
1 # Когда мы внутри функции обращаемся к имени переменной, интерпретатор сначала ищет её во внутренней (локальной) области функции. Если не находит -- идёт в область видимости выше (глобальная область модуля).
```

sil = silhouette_score(X, labels) if len(np.unique(labels)) > 1 else np.nan

Силуэт измеряет, насколько хорошо объекты отделены между кластерами по сравнению с тем, как тесно они «свои» внутри кластера. Для каждого объекта i вычисляются две величины:

$$a(i) = \frac{1}{|C(i)| - 1} \sum_{j \in C(i), j \neq i} d(i, j)$$
 (средняя дистанция до *своего* кластера),

$$b(i) = \min_{C \neq C(i)} \ \frac{1}{|C|} \sum_{j \in C} d(i,j)$$
 (минимальная средняя дистанция до *чужого* кластера).

Точка-силуэт:

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}} \in [-1, 1].$$

Итоговая метрика по датасету — это среднее $S = \frac{1}{N} \sum_i s(i).$

Интерпретация значений.

- $s(i) \approx 1$: объект хорошо вписан в свой кластер и далеко от других (кластеризация для него «чистая»).
- $s(i) \approx 0$: объект лежит на границе кластеров (равноудалён от своего и ближайшего чужого).
- s(i) < 0: объект ближе к чужому кластеру, чем к своему (часто признак ошибочного присвоения).

На практике средний силуэт S часто считают «хорошим» при $S \gtrsim 0.5$, «удовлетворительным» при 0.2-0.5 и «слабым» при S < 0.2 (эвристика, не правило).

Когда метрика определена и зачем проверка в коде.

- Нужны $\kappa a \kappa$ минимум δa различных кластера в labels. Если кластер всего один, b(i) не определено потому в коде стоит проверка len(np.unique(labels)) > 1; иначе возвращаем np.nan.
- Кластеры из одного объекта допустимы: для такой точки a(i) = 0, силаэт всё равно считается (по формуле выше).

Как вызваны функции в scikit-learn.

- silhouette_score(X, labels, metric='euclidean', sample_size=None, random_state=None средний силуэт по всем объектам (или по подвыборке, если задан sample_size).
- silhouette_samples(X, labels, ...) покомпонентные s(i), удобно для диагностики и графиков.
- metric по умолчанию "euclidean"; можно "manhattan", "cosine" и др., либо "precomputed" для заранее посчитанной матрицы дистанций.

Важные практические замечания.

- Масштабирование признаков критично: при разных шкалах одна ось может доминировать в расстояниях, и силуэт исказится.
- Стоимость по времени/памяти $\mathcal{O}(N^2)$ из-за попарных дистанций; для больших N используйте sample_size.
- Силуэт лучше отражает качество *выпуклых, примерно равноплотных* кластеров; для вытянутых/не-выпуклых структур (типа «полумесяцев») он может вводить в заблуждение.
- Если есть «шум» с меткой -1 (например, после DBSCAN), silhouette_score трактует -1 как обычный кластер; обычно шум стоит отфильтровать перед расчётом силуэта.

Мини-пример использования.

```
from sklearn.metrics import silhouette_score, silhouette_samples

# X: (N, d), labels: (N,), k >= 2 уникальных значений в labels

S = silhouette_score(X, labels, metric="euclidean")

s_per_point = silhouette_samples(X, labels)

print("average silhouette:", S)

print("per-sample silhouette shape:", s_per_point.shape)
```

Функция silhouette_samples: покомпонентный силуэт.

• silhouette_samples(X, labels, metric='euclidean', metric_params=None) возвращает вектор $s \in [-1,1]^N$, где каждая компонента s(i) — это силуэт конкретного объекта i. Формула такая же, как у среднего силуэта: для точки i вычисляются a(i) — среднее расстояние до всех точек своего кластера, и b(i) — минимальная средняя дистанция до ближсайшего чужого кластера; затем $s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$. Положительные значения (ближе к 1) означают «правильное» присвоение, около нуля — пограничные случаи, отрицательные — потенциальные ошибки кластеризации.

Когда использовать.

• Эта функция нужна для диагностики: построить «силуэтные» диаграммы по каждому кластеру, выявить точки с s(i) < 0, сравнить распределения s(i) между кластерами, оценить неоднородность кластеров. В отличие от silhouette_score, она не усредняет, а возвращает значения по всем объектам.

Параметры и возвращаемое значение.

- X матрица признаков формы (N,d) или попарная матрица дистанций (N,N), если задано metric="precomputed".
- labels вектор меток кластеров длины N (целые номера кластеров); должно быть > 2 различных значений.
- metric метрика расстояний: по умолчанию "euclidean"; допустимы "manhattan", "cosine" и др., а также "precomputed".
- metric_params опциональный словарь доп. параметров выбранной метрики (если требуется).
- Возврат ndarray формы (N,) с силуэтами каждого объекта.

Как читать и использовать значения.

- $s(i) \approx 1$ объект хорошо «сидит» в своём кластере и далеко от остальных; $s(i) \approx 0$ на границе; s(i) < 0 вероятная ошибочная принадлежность.
- Для быстрой диагностики смотрят $\min s(i)$, долю отрицательных s(i), а также среднее s(i) по каждому кластеру (может отличаться от глобального среднего).
- Вычислительная стоимость $\mathcal{O}(N^2)$ по памяти/времени из-за попарных расстояний; для очень больших N стройте графики/статистики по подвыборке.

2.6 Что возвращает функция (словарь результатов).

Функция возвращает обычный dict Python с агрегированными итогами одного запуска оптимизатора; ключи и значения следующие:

- "name" строка: имя использованного оптимизатора ("LBFGS" или "Adam").
- "centroids" numpy.ndarray формы (K, D): финальные координаты центроидов в пространстве признаков. Каждая строка один кластер, каждый столбец признак.
- "labels" numpy.ndarray формы (N,) целых чисел: «жёсткие» метки кластеров для всех объектов. Значения в диапазоне [0,K-1] и соответствуют строкам X в исходном порядке.
- "losses" numpy.ndarray формы (T,) с траекторией лосса по шагам обучения: для Adam по внешним шагам (эпохам), для LBFGS по внешним вызовам step() (внутренние итерации считаются внутри оптимизатора и сюда не попадают). Полезно для кривых сходимости.
- "silhouette" число с плавающей точкой: итоговый silhouette_score на всём датасете при финальных метках; если кластеров оказалось меньше двух, возвращается np.nan.

2.7 Короткие практические выводы

Если цель гладкая и размер данных умеренный, LBFGS в full-batch часто даёт быстрые и стабильные шаги. Adam хорошо стартует и менее чувствителен к выбору шага, но при долгой тренировке может потребовать уменьшения lr. SGD масштабируется и даёт гибкость через batch_size, однако требует аккуратной настройки lr и перемешивания данных. Для линейной классификации по табличным данным LogisticRegression с уменьшением С — крепкий базовый вариант; SGDClassifier полезен на больших наборах; AdamW в РуТогсh удобен, когда хочется явно контролировать weight_decay (регуляризацию) и интегрировать модель в тензорный пайплайн.

2.8 Мини-пример: настройка регуляризации и оптимизация модели (PyTorch, Adam).

```
1 import numpy as np
2 import torch
3 from torch import nn
5 device = "cuda" if torch.cuda.is_available() else "cpu"
6 Xt = torch.tensor(X, dtype=torch.float32, device=device)
7 yt = torch.tensor(y, dtype=torch.float32, device=device).view(-1, 1)
9 model = nn.Sequential(nn.Linear(2, 1)).to(device)
10 criterion = nn.BCEWithLogitsLoss()
11
12 # Базовый Adam (без L2). Для L2 используйте weight_decay.
# opt = torch.optim.Adam(model.parameters(), lr=1e-1)
14 # Пример с L2-пенальти (coupled) прямо в Adam:
opt = torch.optim.Adam(model.parameters(), lr=1e-2, weight_decay=1e-2)
16
17
18 losses = []
19
  for it in range(300):
      opt.zero_grad()
                                   # 1) обнуляем прошлые градиенты
20
      logits = model(Xt)
                                  # 2) npsmoŭ npoxod -> norumu z \ in R^{N \times 1}
21
      loss = criterion(logits, yt) # 3) BCEWithLogitsLoss: crumaem BCE no логитам
22
      loss.backward()
                                   # 4) aemorpa∂: dL/dw
                                   # 5) шаг оптимизатора (обновление весов)
      opt.step()
24
      losses.append(loss.item()) # 6) сохраняем скалярное значение лосса
25
26
27 print("PyTorch Adam final loss (BCE):", losses[-1])
28
  # Инференс: перевод логитов в вероятности сигмоидой
29
30 def torch_predict_proba(Z):
      Zt = torch.tensor(Z, dtype=torch.float32, device=device)
31
      with torch.no_grad():
                                                      # отключаем граф градиентов
32
          logits = model(Zt).cpu().numpy().ravel() # logits -> numpy, shape: (N,)
33
      return 1.0 / (1.0 + np.exp(-logits))
34
                                                     \# sigma(z)
```

Что делает код по шагам.

Сначала подключаются torch и nn, выбирается устройство device (GPU при наличии), и исходные массивы X, у приводятся к тензорам float32 на том же устройстве; целевой вектор у разворачивается до формы (N,1), как ожидает BCEWithLogitsLoss. Модель — это nn. Sequential из одного линейного слоя nn. Linear(2,1) (вход из двух признаков, выход — один логит). Функция потерь BCEWithLogitsLoss принимает логиты (а не вероятности) и стабильно внутри применяет сигмоиду. Оптимизатор Adam на каждом шаге: обнуляет градиенты zero_grad(), делает прямой проход (получаем логиты), считает лосс, выполняет обратное распространение backward() и обновляет параметры step(). Значение loss.item() добавляется в список losses для последующего анализа сходимости. Для инференса определена torch_predict_proba: внутри no_grad логиты переводятся в NumPy и через сигмоиду получаются вероятности $P(y=1 \mid x)$.

Идея. nn. Sequential — это *линейный* контейнер слоёв: он получает тензор на вход и прогоняет его последовательно через вложенные модули. Сам по себе Sequential *не имеет обучаемых параметров* — все параметры принадлежат вложенным слоям. Важно: каждый вложенный модуль должен принимать один вход и возвращать один выход, совместимый по форме со следующим модулем в цепочке.

Есть ли у nn. Sequential собственные параметры? Обучаемых гиперпараметров у **Sequential** нет: он просто хранит и вызывает дочерние модули. Тем не менее, как и любой nn. Module, он:

- наследует методы .parameters(), .named_parameters(), .modules(), .children() для доступа к параметрам/подмодулям;
- умеет переключаться между режимами train()/eval() (влияет на Dropout/BatchNorm внутри);
- переносится на устройство/тип через .to(device[, dtype]), .cuda(), .cpu(), .float() и т.д.;
- поддерживает индексацию и слайсы: seq[0], seq[:2] возвращают подцепочку;
- позволяет добавлять слои программно: seq.add_module("name layer) или создавать с OrderedDict.

Когда Sequential не подойдёт. Если в архитектуре нужны ветвления, суммирования/конкатенации путей, скип-соединения (residual), условные вычисления, несколько входов/выходов или модули со сложной сигнатурой forward, используйте собственный класс, унаследованный от nn.Module, и реализуйте логику в forward. Sequential оставьте для действительно «прямых» цепочек.

2.8.2 Что такое логиты (logits)

Определение (бинарный случай). В моделях классификации *логит* — это сырой выход модели до применения сигмоиды. Обозначим его через $z \in \mathbb{R}$. Связь с вероятностью положительного класса:

$$p = \sigma(z) = \frac{1}{1 + e^{-z}}, \qquad z = \log \frac{p}{1 - p} = \text{logit}(p).$$

То есть логит — это логарифм отношения шансов (log-odds). Знак z определяет сторону порога (при $z = 0 \Rightarrow p = 0.5$), а модуль |z| соответствует «уверенности» модели.

Определение (многоклассовый случай). При K классах модель выдаёт вектор логитов $z \in \mathbb{R}^K$ (по одному на класс). Вероятности получаются softmax-преобразованием:

$$p_k = \frac{e^{z_k}}{\sum_{i=1}^K e^{z_j}}, \qquad k = 1, \dots, K.$$

Важно: добавление одной и той же константы ко всем компонентам z не меняет p (инвариантность softmax к сдвигу).

Интерпретация и свойства.

- **Неограниченность:** логиты лежат на всей прямой \mathbb{R} (или в \mathbb{R}^K); вероятности всегда в (0,1) и суммируются к 1 (для softmax).
- Порог и уверенность: $z=0 \Rightarrow p=0.5$. Чем больше |z|, тем ближе p к 0 или 1 (большая уверенность).
- Линейная форма: в линейных моделях $z = w^{\top}x + b$ скалярный (для бинарной) или набор линейных оценок (для многоклассовой).
- **Разности логитов:** при softmax именно разности $z_k z_j$ определяют относительные шансы классов (логарифм отношения вероятностей).

Почему многие лоссы принимают логиты, а не вероятности. Функции BCEWithLogitsLoss (бинарная кросс-энтропия на логитах) и CrossEntropyLoss (многоклассовая кросс-энтропия) ожидают не нормированные логиты и внутри выполняют численно устойчивые операции (log_sigmoid, logsumexp). Это:

- уменьшает численные переполнения/потери точности при очень больших |z|;
- даёт стабильные градиенты, особенно в хвостах распределений;
- избавляет от необходимости вручную применять $\sigma(\cdot)$ или softmax (\cdot) перед лоссом.

Практическое правило: если используете BCEWithLogitsLoss/CrossEntropyLoss, не применяйте sigmoid/softmax к выходам модели до лосса.

Связь с API (scikit-learn, PyTorch).

- В sklearn метод decision_function(X) возвращает «сырые оценки» z (логиты для логистической регрессии); predict_proba(X) уже вероятности.
- В PyTorch модуль выдаёт логиты; вероятности можно получить torch.sigmoid(z) (бинарный) или torch.softmax(z, dim=1) (многоклассовый). Для обучения используйте BCEWithLogitsLoss/CrossEntropyLoss.

Мини-примеры.

```
1 # Бинарный случай: логиты -> вероятность
2 logits = model(X) # shape: (N, 1)
3 proba = torch.sigmoid(logits) # (0,1)
4
5 # Многоклассовый случай: логиты -> вероятности
6 logits = model(X) # shape: (N, K)
7 probs = torch.softmax(logits, dim=1) # строки суммируются к 1
```

2.8.3 nn.Linear: что это, как работает и зачем нужен

Суть. nn.Linear — это модуль PyTorch, реализующий *аффинное* (линейное со сдвигом) преобразование над последним измерением входного тензора:

$$y = x W^{\top} + b,$$

где $x \in \mathbb{R}^{* \times d_{\text{in}}}$ (звёздочкой обозначены любые ведущие размерности — батчи и пр.), $W \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}}$, $b \in \mathbb{R}^{d_{\text{out}}}$, а на выходе получаем $y \in \mathbb{R}^{* \times d_{\text{out}}}$. Это самый базовый «полносвязный» слой: он умножает каждый вектор признаков на матрицу весов и добавляет смещение.

Формальные параметры конструктора. nn.Linear(in_features, out_features, bias=True, device=None, dtype=None).

- ullet in_features размер входного признакового вектора $d_{
 m in}.$
- ullet out_features размер выходного вектора d_{out} .
- bias добавлять ли смещение b (по умолчанию True); если в модели сразу после Linear идёт нормализация (например, BatchNorm), смещение иногда отключают.
- device, dtype на каком устройстве и с каким типом создать параметры (обычно задают позже через .to(device)).

Формы входов и выходов. Слой применяет преобразование κ *последнему измерению* входа. Если на вход подан:

- 2D тензор формы (N, d_{in}) получим (N, d_{out}) (классический батч).
- ND тензор $(n_1, \ldots, n_k, d_{\rm in})$ получим $(n_1, \ldots, n_k, d_{\rm out})$; все ведущие измерения сохраняются, линейное преобразование применяется независимо к каждому вектору длины $d_{\rm in}$.

Параметры и их число. Внутри nn.Linear обучаемые параметры — это weight формы $(d_{\text{out}}, d_{\text{in}})$ и, при bias=True, bias формы (d_{out}) . Общее число параметров:

$$d_{\text{out}} \cdot d_{\text{in}} + \{\text{bias}\} \cdot d_{\text{out}}.$$

Частые сценарии использования.

- Логистическая регрессия: nn.Linear(d,1) даёт логит z; вероятность получают сигмоидой, а лосс через nn.BCEWithLogitsLoss().
- Классификатор на K классов: nn.Linear(d,K) выдаёт логиты (N,K); сверху nn.CrossEntropyLoss() (внутри есть log_softmax).
- Головы нейросетей: после свёрточного экстрактора признаков (N, C, H, W) делают Flatten() и несколько Linear со слоями активации.

Практические мелочи и типовые ошибки.

- **Несоответствие форм:** последняя размерность входа должна равняться in_features.
- Дублирование смещения: если за Linear следует BatchNorm1d, часто ставят bias=False (смещение компенсирует BN).
- Заморозка слоя: чтобы не обучать слой, отключите градиенты: for p in layer.parameters(): p.requires_grad=False.
- Устройство/тип: переносите слой и данные на одно устройство и используйте согласованные dtype (float32 безопасный дефолт).

Задача и идея. BCEWithLogitsLoss — это бинарная кросс-энтропия на логитах, стандартная функция потерь для бинарной классификации и мульти-лейбл задач (когда на один объект может приходиться несколько независимых меток). Она принимает логиты x (сырые выходы модели до сигмоиды) и целевые значения $y \in \{0,1\}$ (или [0,1] при сглаживании/soft-лейблах) и возвращает скалярную ошибку.

Формула (один пример, один выход). Пусть $x \in \mathbb{R}$ — логит, $y \in \{0,1\}$ — целевая метка. Наивная форма через сигмоиду $\sigma(x) = \frac{1}{1+e^{-x}}$:

$$\ell(x,y) = -(y \log \sigma(x) + (1-y) \log(1-\sigma(x))).$$

В реализации используется численно устойчивая эквивалентность (без явной сигмоиды):

$$\ell(x,y) = \max(x,0) - xy + \log(1 + e^{-|x|}),$$

что предотвращает переполнения при больших |x|.

Бинарная кросс-энтропия: $-(y \log p + (1-y) \log(1-p))$

Что считает и зачем. Эта функция потерь измеряет расхождение между истинной меткой $y \in \{0,1\}$ и предсказанной моделью вероятностью $p \in (0,1)$.

$$\ell(y,p) = -(y \log p + (1-y) \log(1-p)).$$

- Если y=1, остаётся $-\log p$: чем ближе p к 1, тем меньше потеря; уверенная ошибка $(p\approx 0)$ даёт огромный штраф.
- Если y = 0, остаётся $-\log(1-p)$: чем ближе p к 0, тем лучше; уверенная ошибка $(p \approx 1)$ снова штрафуется сильно.
- Лосс ℓ всегда ≥ 0 , минимален при «правильной» уверенности модели.
- Грубо говоря: эта *loss-функция* указывает на различия между двумя распредлениями (инстинным и предсказанным). Истинное распределение умножается на логарифм предсказанного. Получается, что *loss-функция* штрафует модель за неуверенность в правильном ответе или за уверенность в неправильном.

Интуиция. Функция $-\log(\cdot)$ быстро растёт около нуля, поэтому *уверенные ошибки* наказываются значительно сильнее, чем неуверенные. Это стимулирует модель не только угадать класс, но и давать к нему высокую (обоснованную) вероятность.

Связь с логитами. На практике модель выдаёт *логит* $x \in \mathbb{R}$, а вероятность получается как $\sigma(x) = \frac{1}{1+e^{-x}}$. Тогда $\ell(y,p)$ можно писать как $\ell(y,\sigma(x))$.

Численно устойчивая эквивалентность (без явной сигмоиды). Чтобы избежать переполнений при больших |x| и вычисления $\log(0)$, используют эквивалентную форму через softplus:

$$\ell(x,y) = \max(x,0) - xy + \log(1 + e^{-|x|}).$$

Эта формула даёт те же значения, что и $-(y \log \sigma(x) + (1-y) \log(1-\sigma(x)))$, но считается стабильно: экспоненты не «взрываются», а логарифмы не получают нулевые аргументы.

Мини-пример. Пусть y = 1.

- Если $x = 4 \Rightarrow p \approx 0.982$, то $\ell \approx -\log 0.982 \approx 0.018$ почти нет ошибки.
- Если $x=-4 \Rightarrow p \approx 0.018$, то $\ell \approx -\log 0.018 \approx 4.02$ большая «цена» уверенной ошибки.

Ключевые параметры конструктора.

- weight: тензор весов. Масштабирует вклад отдельных элементов/примеров в среднее.
- pos_weight: тензор длины C (или скаляр для одного выхода), ycunusaem вклад nonoжumenьных примеров класса(ов). Полезно при дисбалансе: pos_weight > 1 повышает цену ошибок на классе «1».
- reduction: "mean" (по умолчанию; усреднить по всем элементам), "sum" (просуммировать), "none" (вернуть лосс той же формы, что вход).

Когда использовать.

- Бинарная классификация: один выход (N,1) или (N,); цель (N,1)/(N,).
- Мульти-лейбл классификация: выход (N,C), цель (N,C), каждая колонка независимая «бинарка».
- Для взаимоисключающих K классов (K > 2) используйте CrossEntropyLoss (она сама применяет log_softmax).

Типичные ошибки и как их избежать.

- **Не применяйте** sigmoid **перед лоссом.** BCEWithLogitsLoss уже «знает» про сигмоиду внутри.
- Типы и формы: цели должны быть float32, а не целочисленные метки long. Формы входа и цели должны совпадать (или быть совместимыми по broadcasting).
- Дисбаланс классов: используйте pos_weight (весит положительные наблюдения), не путайте с weight, который масштабирует элементы в целом.

Мини-пример (бинарный случай, с pos_weight).

```
import torch
from torch import nn

# Данные (N=5): логиты модели и бинарные цели
logits = torch.tensor([ 2.0, -1.0, 0.0, 3.0, -4.0]) # shape: (5,)
targets = torch.tensor([ 1.0, 0.0, 1.0, 0.0]) # float!

# Усилим вклад положительных примеров (например, класс "1" редок)
criterion = nn.BCEWithLogitsLoss(pos_weight=torch.tensor(3.0))

loss = criterion(logits, targets)
print(float(loss)) # скалярная ошибка

# Вероятности для анализа/метрик (вне лосса)
proba = torch.sigmoid(logits) # в (0,1)
```

Мини-пример (тренировочный шаг для линейной модели).

```
model = nn.Sequential(nn.Linear(d, 1)) # выход: логиты
criterion = nn.BCEWithLogitsLoss()
opt = torch.optim.AdamW(model.parameters(), lr=1e-3, weight_decay=1e-2)

for _ in range(300):
    opt.zero_grad()
    logits = model(X) # shape: (N, 1)
    loss = criterion(logits, y) # y: shape (N, 1), float {0,1}
    loss.backward()
    opt.step()
```

Зачем «на логитах». Работа «на логитах» (вместо вероятностей) позволяет применять устойчивые преобразования (logsigmoid, logsumexp), что:

- предотвращает log(0) и переполнения при больших |x|;
- улучшает стабильность и качество градиентов;
- упрощает код (не нужно явно вызывать sigmoid перед лоссом).

Регуляризация: как настроить. Вариантов два. Во-первых, можно использовать параметр weight_decay в torch.optim. Adam; это добавляет L_2 -штраф сцеплённым образом (coupled), т.е. через модификацию градиента. Во-вторых, предпочтительный современный способ — torch.optim. AdamW, где L_2 реализован декуплированно (weight decay отдельно от градиента), что даёт более корректное поведение при адаптивных шагах. Типичный рабочий диапазон: weight_decay $\in \{10^{-3}, 10^{-2}, 10^{-1}\}$, шаг lr начните с $10^{-3} \dots 10^{-2}$ и подберите по кривой losses. При слишком большом weight_decay появится недообучение (лосс «застынет» высоко), при слишком маленьком — риск переобучения.

Почему BCEWithLogitsLoss. Эта функция сразу принимает логиты $z = w^{\top}x + b$ и внутри вычисляет $\sigma(z)$, избегая численных переполнений при больших |z|. Если бы вы использовали BCELoss, пришлось бы самим применять sigmoid(), и тогда при больших логитах можно получить $\log(0)$ и NaN.

Частые проверки. Убедитесь, что формы согласованы: Xt.shape=(N,2), yt.shape=(N,1); типы — float32; все тензоры на одном устройстве (сри или cuda). Если лосс не убывает или «взрывается», уменьшите lr (например, в 10 раз) и/или снизьте weight_decay; для стабильности входы лучше стандартизовать.

Функция torch_predict_proba (инференс вероятностей)

```
def torch_predict_proba(Z):
    Zt = torch.tensor(Z, dtype=torch.float32, device=device)
    with torch.no_grad():
        logits = model(Zt).cpu().numpy().ravel()
    return 1.0 / (1.0 + np.exp(-logits))
```

Коротко о том, что происходит.

- Вход Z: массив признаков формы (M, d) (обычно numpy.ndarray).
- torch.tensor(..., dtype=torch.float32, device=device) создаём тензор нужного типа на CPU/GPU, как у модели.
- Блок with torch.no_grad(): отключает автодифференцирование для быстрого и экономного по памяти инференса.
- logits = model(Zt) модель возвращает логиты формы (M, 1); .cpu().numpy().ravel() переносит на CPU и делает вектор (M,).
- Возвращаем вероятность положительного класса через сигмоиду: $\sigma(x) = 1/(1 + e^{-x})$.

Получение меток классов по порогу

Коротко о строках кода.

- with torch.no_grad(): режим инференса: не строим граф градиентов.
- logits = model(Xt) прямой проход; на выходе сырые оценки (логиты) формы (N,1).
- torch.sigmoid(logits) переводим логиты в вероятности $\in (0,1)$; .squeeze(1) убирает ось размера $1 \Rightarrow (N,)$.
- (probs >= 0.5) порог 0.5 даёт булевы метки; .long() превращает их в целочисленные {0,1} (torch.int64).

Примечание. Порог 0.5 — дефолт для симметричных задач. Его имеет смысл сдвигать (например, на 0.3/0.7) при дисбалансе классов или если целевая метрика — recall/precision/F1.

Итог: что именно делает модель в коде (Logistic + Adam в PyTorch)

1) **Архитектура и выход модели.** Модель nn.Sequential(nn.Linear(2,1)) реализует линейное отображение

$$z = w_1 x_1 + w_2 x_2 + b = w^{\mathsf{T}} x + b,$$

где z-norum (logit), то есть логарифм отношения шансов: $z=\log\frac{p}{1-p}$. На выходе слоя nn.Linear сразу получаем логиты (ещё не вероятности). Изначально смысл логита заключается в том, что он переводит вероятность $p\in(0,1)$ в вещественную прямую:

$$logit(p) = log\left(\frac{p}{1-p}\right) \in (-\infty, +\infty).$$

, что по смыслу и делает модель. На первых шагах полученные значения еще не совсем логиты, но по ходу оптимизации они ими становятся.

- **2)** Инициализация параметров. При создании nn.Linear(2,1) веса $w \in \mathbb{R}^2$ и смещение $b \in \mathbb{R}$ инициализируются случайно (по умолчанию равномерно в $\mathcal{U}(-1/\sqrt{2}, 1/\sqrt{2})$ в знаменателе стоит количество признаков, подаваемых в модель); это даёт ненулевую стартовую точку, от которой оптимизатор начинает подстройку. Затем модель переносится на устройство device (CPU/GPU).
- **3)** Почему «логиты» и где берутся вероятности. В бинарной классификации удобно моделировать именно логиты z, а вероятность положительного класса получать через сигмоиду:

$$p(y = 1 \mid x) = \sigma(z) = \frac{1}{1 + e^{-z}}.$$

Сигмоида переводит любые $z \in \mathbb{R}$ в $p \in (0,1)$, что естественно интерпретировать как вероятность и удобно дифференцировать.

4) Функция потерь. Используется BCEWithLogitsLoss(), которая enympu применяет сигмоиду к логитам и считает бинарную кросс-энтропию (численно устойчивый вариант):

$$L = -\frac{1}{N} \sum_{i=1}^{N} \left(y_i \log p_i + (1 - y_i) \log(1 - p_i) \right), \quad p_i = \sigma(z_i).$$

Эта функция совместима с логитами на входе и корректно даёт градиенты для обучения.

- **5)** Оптимизация (Adam). Оптимизатор Adam обновляет w, b по градиентам, используя адаптивные шаги (первые/вторые моменты градиента). Один шаг тренинга выглядит так:
 - 1. opt.zero_grad() обнулить старые градиенты.
 - 2. logits = model(Xt) прямой проход: получить логиты z.
 - 3. loss = criterion(logits, yt) посчитать BCE-лосс.

- 4. loss.backward() автодифференцирование: $\nabla_w L, \nabla_b L$.
- 5. opt.step() обновить параметры w, b.

Цикл повторяется 300 итераций; loss.item() сохраняется для мониторинга сходимости.

- **6) Как из логитов получить решения.** После обучения модель выдаёт логиты z; для вероятностей применяем $\sigma(z)$. Для меток берём порог, обычно 0.5: если $p \geq 0.5 \Rightarrow y = 1$, иначе y = 0. При дисбалансе классов порог можно сдвигать.
- 7) Интуитивная картина. Модель учится подбирать w, b так, чтобы гиперплоскость $w^{\top}x + b = 0$ разделяла классы: на позитивной стороне сигмоида даёт p близко к 1, на негативной к 0. Случайная инициализация задаёт стартовую прямую; BCEWithLogitsLoss и Adam итеративно вращают/сдвигают её, минимизируя ошибку.

3 Оптимизаторы sklearn: SGDClassifier и SGDRegressor

Идея. Семейство моделей SGD* обучает *линейные* модели (гиперплоскость $w^{\top}x + b$) стохастическим градиентным спуском по одному объекту или по минибатчам. Это даёт масштабируемость и позволяет использовать регуляризацию (L_2/L_1 /elastic net) и разные схемы шага.

3.1 SGDClassifier: линейный классификатор

Назначение. Поддерживает бинарную и многоклассовую классификацию. Доступны SVM-подобные лоссы (hinge) и логистический log_loss с вероятностями.

Ключевые параметры (с допустимыми значениями).

- loss функция потерь:
 - "log_loss" то же, что и кросс=энтропия (см. выше) (логистическая; доступны predict_proba (пропускает сырые значения через сигмоиду)/predict_log_proba);
 - "hinge", "squared_hinge" (линейный SVM, вероятностей нет);
 - "modified_huber" (робастная классификация; есть predict_proba);
 - "perceptron" (знак отступа).
- penalty регуляризация: "12", "11", "elasticnet" или None.
- alpha сила регуляризации (>0); типично $10^{-6} \dots 10^{-3}$.
- 11_ratio доля L_1 в "elasticnet" (интервал 0...1).
- learning_rate схема шага: "optimal", "constant", "invscaling", "adaptive".
- eta0 базовый шаг (для "constant", "invscaling", "adaptive").
- power_t показатель в "invscaling" $(\eta_t = \eta_0 t^{-power_t})$.
- \bullet max_iter, tol число эпох и ранняя остановка.
- shuffle перемешивать ли объекты между эпохами (True по умолчанию).
- class_weight веса классов ("balanced" или словарь).
- average усреднение весов (True/целое) для стабилизации на потоках.
- random_state, fit_intercept, early_stopping, validation_fraction, n_iter_no_change.

3.2 Допустимые значения параметров: loss и elasticnet

loss & SGDClassifier: "hinge", "squared_hinge", "modified_huber"

"hinge" (линейный SVM). Кусочно-линейная маржинальная потеря

$$\ell_{\text{hinge}}(y, f) = \max(0, 1 - y f).$$

Нулевая при правильной классификации с запасом $(y f \ge 1)$, линейно растёт при нарушении отступа. Обучает «разделяющую гиперплоскость» с максимальным зазором. Вероятности не определены; используйте decision_function.

"squared_hinge" (квадратичный hinge). Квадратичный вариант маржинальной потери

$$\ell_{\text{s-hinge}}(y, f) = (\max(0, 1 - y f))^2.$$

Сильнее штрафует крупные нарушения отступа, имеет непрерывный градиент на границе. Вероятности также не поддерживаются; интерпретируйте баллы через decision_function.

"modified_huber" (сглажённая и робастная). Робастная (испоьзуется для повышения устойчивости модели при шумных данных, данных с выбросами или ошибками) сглажённая альтернатива hinge: около границы ведёт себя как squared_hinge, а для «сильно неверных» примеров растёт линейно (ограничивает величину градиента, что повышает устойчивость к выбросам). В реализации sklearn для loss="modified_huber" доступны predict_proba (получаются из откалиброванных отступов), что удобно, когда нужны «вероятностные» оценки при SVM-подобной постановке.

Итого по выбору:

- Хотите вероятности и стабильную оптимизацию берите "log_loss".
- Максимальный зазор/линейная маржинальная постановка "hinge" или "squared_hinge" (второй мягче по градиентам).
- Нужна робастность к выбросам и «почти вероятности» без чисто логистической модели "modified_huber".

elasticnet: что это за регуляризация

Смысл. Elastic Net объединяет L_1 - и L_2 -штрафы. Пусть $\alpha > 0$ — общий коэффициент регуляризации, а $11_{\tt ratio} \in [0,1]$ — доля L_1 . Тогда добавочный член к функции потерь имеет вид

$$\alpha \Big(11_{\tt ratio} \|w\|_1 + (1 - 11_{\tt ratio}) \frac{1}{2} \|w\|_2^2 \Big).$$

 L_1 продвигает разреженность (зануляет части весов, тем самым делает отбор признаков), а L_2 усаживает веса и снижает переобучение на скоррелированных признаках. Совместно они:

- лучше работают при сильной мультиколлинеарности (признаки сильно коррелируют , то есть один можно выразить через другой) (по сравнению с чистым L_1);
- могут давать компактные и устойчивые модели (часть коэффициентов ровно нулевые, оставшиеся «усажены»);
- требуют подбора обеих ручек: α (общая сила) и 11_ratio (баланс L_1/L_2).

Практика подбора.

- Начните с $\alpha \in \{10^{-4}, 10^{-3}, 10^{-2}\}$, l1_ratio $\in \{0.1, 0.5, 0.9\}$; уточняйте поиском по сетке.
- Если нужна сильная разреженность/отбор признаков повышайте 11_ratio к 1 (вплоть до чистого L_1).
- Если признаки сильно скоррелированы и важна устойчивость понижайте 11_ratio к 0 (в сторону L_2).

Мини-пример (логистическая классификация с вероятностями).

```
1 from sklearn.linear_model import SGDClassifier
2 import numpy as np
4 sgd = SGDClassifier(
     loss="log_loss",
      penalty="12",
6
7
      alpha=1e-4,
     learning_rate="optimal",
8
      max_iter=5000,
9
10
     tol=1e-4,
     random_state=7
11
12 ).fit(Xtr, ytr)
14 # Вероятности (для log_loss и modified_huber доступны proba)
proba = sgd.predict_proba(Xte)[:, 1] # P(y=1 | x)
17 # Альтернатива: через decision_function + сигмоида (бинарный случай)
sigmoid = lambda z: 1.0 / (1.0 + np.exp(-z))
p_alt = sigmoid(sgd.decision_function(Xte))
```

Что возвращают методы.

- predict(X) метки классов формы (N,).
- ullet predict_proba(X) вероятности (N,K) при loss="log_loss" (исп. сигмоиду) и частично "modified_huber".
- predict_log_proba(X) лог-вероятности (для loss="log_loss").
- decision_function(X) отступы: (N,) в бинарном и (N,K) в многоклассовом случае. То есть сырое линейное значение до применения сигмоиды или softmax.
- partial_fit(X, y[, classes]) инкрементальное дообучение на потоках.
- \bullet get_params(), set_params() доступ/настройка гиперпараметров.
- densify(), sparsify() перевод coef_ в плотный/разреженный формат (в новых версиях могут считаться устаревшими).

Полезные атрибуты.

ullet coef_(K,d), intercept_(K,), classes_, n_iter_, t_, n_features_in_, feature_names_in_.

3.3 SGDRegressor: линейная регрессия с SGD

Назначение. Линейная регрессия (комбинация признаков, весов и байеса), обучаемая стохастическим/минибатч-градиентным спуском, с поддержкой робастных и ε -инсеnsitive потерь.

Ключевые параметры (с допустимыми значениями).

• loss: "squared_error" (MSE), "huber", "epsilon_insensitive", "squared_epsilon_insensiti

- penalty \in {"12", "11", "elasticnet", None}; alpha; l1_ratio.
- epsilon ширина «мёртвой зоны» для epsilon_* и huber.
- learning_rate \in {"optimal", "constant", "invscaling", "adaptive"}, a takke eta0 $(learning_rate)$, power_t.max_iter, tol, shuffle, random_state, fit_intercept, early_stopping, valid

3.4 Функции потерь в SGDRegressor: huber, epsilon_insensitive, squared_epsilon_insensitive

Обозначим остаток (ошибку) $r = y - \hat{y}$. Параметр epsilon > 0 управляет «мёртвой зоной» (нечувствительностью к малым ошибкам) для трёх функций потерь ниже.

huber — робастная квадратно-линейная потеря. Квадратичная около нуля и линейная на больших остатках:

$$\ell_{\mathrm{Huber}}(r) = \begin{cases} \frac{1}{2} r^2, & |r| \leq \epsilon, \\ \epsilon \left(|r| - \frac{\epsilon}{2}\right), & |r| > \epsilon. \end{cases}$$

Интуиция: мелкие ошибки наказываются как при MSE (гладкие градиенты), крупные — лишь линейно, что снижает влияние выбросов. Градиент по r: r при $|r| \le \epsilon$ и $\epsilon \operatorname{sign}(r)$ при $|r| > \epsilon$.

epsilon_insensitive — ϵ -нечувствительная потеря (как в ϵ -SVR). Игнорирует ошибки внутри «трубы» ширины ϵ и линейно штрафует выход за неё:

$$\ell_{\epsilon}(r) = \max(0, |r| - \epsilon).$$

Подходит, когда хочется нулевого штрафа на уровне шума и линейного наказания за превышение.

squared_epsilon_insensitive — квадратичная версия ϵ -нечувствительной. Сохраняет «трубу» ширины ϵ , но за её пределами штраф квадратичный:

$$\ell_{\epsilon^2}(r) = \left(\max(0, |r| - \epsilon)\right)^2.$$

Дает нулевой штраф внутри шума и более сильное наказание за большие промахи (по сравнению с линейной версией).

Практические заметки.

- Роль ϵ . Чем больше ϵ , тем шире зона нечувствительности (или квадратичная зона в huber) и тем ниже чувствительность к шуму; слишком большое ϵ может вести к недообучению.
- Когда что выбирать. huber хорошо работает при выбросах; epsilon_insensitive и squared_epsilon_insensitive воспроизводят поведение ϵ -SVR в стохастической линейной постановке.
- Регуляризация. В SGDRegressor дополнительно задаются penalty $\in \{12, 11, \text{elasticnet}\}$ и α они существенно влияют на устойчивость и обобщение.

Мини-пример (МЅЕ-регрессия).

```
from sklearn.linear_model import SGDRegressor

reg = SGDRegressor(
loss="squared_error",
penalty="elasticnet",
alpha=1e-4, l1_ratio=0.15,
learning_rate="invscaling", eta0=1e-2, power_t=0.5,
max_iter=5000, tol=1e-4, random_state=7
).fit(Xtr, ytr)

y_pred = reg.predict(Xte) # (N,)
r2 = reg.score(Xte, yte) # R^2 на тесте
```

Что возвращают методы.

- predict(X) предсказанные значения (N,).
- score(X, y) R^2 по умолчанию.
- \bullet partial_fit(X, y) потоковое дообучение.
- \bullet get_params(), set_params() чтение/задание гиперпараметров.
- coef⁻, intercept⁻bias()set_params()⁻/.

3.5 Практика и советы

- Масштабируйте признаки (StandardScaler) критично для скорости и стабильности шага.
- Для классификации loss="log_loss" даёт predict_proba; для hinge вероятностей нет используйте decision_function.
- Регуляризацию усиливают так: ↑alpha (в SGD*); для elasticnet регулируйте 11_ratio.
- Если обучение «дрожит», уменьшите eta0 или выберите learning_rate="adaptive".
- Для потоков данных используйте partial_fit и average=True.

3.6 Ещё короткие примеры

Линейный SVM через SGDClassifier (hinge).

```
svm_lin = SGDClassifier(
   loss="hinge", penalty="12", alpha=1e-4,
   learning_rate="optimal", max_iter=2000, tol=1e-4, random_state=0
4 ).fit(Xtr, ytr)

margins = svm_lin.decision_function(Xte) # (N,) unu (N, K)
y_pred = svm_lin.predict(Xte)
```

Робастная регрессия Huber с адаптивным шагом.

```
hub = SGDRegressor(
    loss="huber", epsilon=0.1,
    learning_rate="adaptive", eta0=1e-2,
    penalty="12", alpha=1e-4,
    max_iter=3000, tol=1e-4, random_state=0
).fit(Xtr, ytr)

print(hub.coef_, hub.intercept_)
```

3.7 Параметр solver в scikit-learn: где он есть и что означает

Сначала важная оговорка. *Не во всех* моделях scikit-learn есть явный параметр solver. Он присутствует лишь там, где действительно выбирается численный метод оптимизации (обычно для гладких задач). Модели наподобие деревьев решений, случайных лесов, kNN, наивного Байеса, SVC/SVR не имеют пользовательского solver: они используют фиксированные алгоритмы (жадное разбиение, поиск соседей, libsvm/SMO и т.п.).

$\Gamma \partial e$ solver ecmb

- LogisticRegression: solver \in {lbfgs, newton-cg, sag, saga, liblinear}. Выбор влияет на поддержку штрафов (L1/L2/elasticnet), мультикласс и масштаб данных.
- Ridge/RidgeClassifier: solver \in {auto, svd, cholesky, lsqr, sparse_cg, sag, saga}. Разные решатели для плотных/разреженных и малых/больших задач наименьших квадратов.
- MLPClassifier/MLPRegressor: solver \in {adam, sgd, lbfgs}. Соответственно адаптивный стохастический метод, классический SGD или квазиньютоновский full-batch.
- PCA: параметр $svd_solver \in \{auto, full, arpack, randomized\}$ выбор варианта SVD/coбcтвенных значений.
- NMF: $solver \in \{cd, mu\}$ координатный спуск или мультипликативные обновления.

 $\Gamma \partial e$ solver нет, но важны детали оптимизации

- SVC/SVR: внутри libsvm/SMO; solver не настраивается.
- LinearSVC/LinearSVR: внутри liblinear (варианты координатного спуска); есть dual=True/False для выбора прямой/двойственной постановки.
- Lasso/ElasticNet: используются варианты координатного спуска; явного solver нет (есть selection, max_iter, tol и т.п.).
- SGDClassifier/SGDRegressor: это сами по себе стохастические решатели; вместо solver выбираются loss, penalty, alpha, learning_rate и т. д.
- Деревья/лес/градиентный бустинг: нет solver; обучение жадное построение/свертка деревьев (параметры: criterion, max_depth, learning_rate и пр.).

- L-BFGS (квазиньютоновский, full-batch). Аппроксимирует гессиан через ограниченную историю градиентов; быстрые точные шаги на гладких задачах; чувствителен к масштабированию признаков.
- Newton-CG (усечённый Ньютон). Использует информацию о гессиане (или его умножениях) и метод сопряжённых градиентов для внутреннего решения; хорошо для гладких задач среднего размера.
- liblinear. Библиотека для линейных моделей (логистическая регрессия, линейный SVM): координатный спуск/двойственный оптимизатор, эффективен на малых/средних данных, поддерживает L1.
- SAG/SAGA. Стохастические методы со снижением дисперсии: хранят усреднённый градиент по всем объектам. SAGA добавляет проксимальный шаг и поддерживает разреживающие штрафы (L1, elasticnet). Требуют обязательного масштабирования признаков и подходят для больших датасетов.
- SGD. Базовый стохастический градиентный спуск с различными расписаниями шага; даёт максимальную гибкость, но требует аккуратной настройки learning_rate/eta0/моментума.
- Adam. Адаптивный метод первого порядка (накопление первых/вторых моментов градиента); устойчив на «шумных» ландшафтах, хорошо работает по умолчанию в MLP.
- Cholesky / SVD / LSQR / sparse_cg (для регрессии на МНК). Прямые (cholesky, svd) и итерационные (lsqr, sparse_cg) решатели для линейных систем; выбор зависит от размера и разреженности матрицы признаков.
- ARPACK / randomized SVD (в PCA). Итерационные методы для нескольких главных компонент (arpack) и стохастический быстрый SVD (randomized) на больших плотных данных.
- Coordinate Descent (CD). Последовательная оптимизация по координатам; используется в Lasso/ElasticNet и NMF (solver="cd"); хорошо работает с разреживающими штрафами.
- Multiplicative Updates (MU) (NMF). Простые неотрицательные обновления; обычно медленнее CD, но очень стабильны при неотрицательных ограничениях.

Практические подсказки

- Для sag/saga/sgd/adam всегда масштабируйте признаки (StandardScaler), иначе возможны проблемы со сходимостью.
- Для логистической регрессии: lbfgs надёжный дефолт; saga если нужны L1/elasticnet или очень большие данные.
- Для гребневой регрессии: svd/cholesky малые плотные; lsqr/sparse_cg крупные/разреженные; sag/saga очень большие.
- \bullet Деревья, леса, бустинг, kNN, SVC solver не выбирается; на качество влияют другие гиперпараметры.

4 KNN: классифицирующие и регрессионные варианты

Примечание про теорию. Полная теория вынесена в отдельный файл. Здесь — практическая выжимка по коду и настройкам.

1) KNN-κλαccuφυκαπορ (KNeighborsClassifier)

Идея. Для каждого объекта находим k ближайших обучающих точек и голосуем за класс (равномерно или с весами, зависящими от расстояния). Основные гиперпараметры: n_neighbors (k), weights ("uniform" или "distance"), metric (по умолчанию "minkowski" с параметром p: p=2 — евклидова, p=1 — манхэттенская), algorithm ("auto", "kd_tree", "ball_tree", "brute"). Масштабирование признаков почти всегда полезно.

```
1 from sklearn.neighbors import KNeighborsClassifier
2 from sklearn.pipeline import make_pipeline
3 from sklearn.preprocessing import StandardScaler
5 # KNN-классификатор с весами по расстоянию
6 knn_clf = make_pipeline(
      StandardScaler(),
      KNeighborsClassifier(
8
         n_neighbors=5,
9
         weights="distance",
                                    # unu "uniform"
10
         metric="minkowski",
11
          p=2
                                     # 2=Euclidean, 1=Manhattan
12
      )
13
14 )
15 knn_clf.fit(Xtr, ytr)
y_pred = knn_clf.predict(Xte)
17 proba = knn_clf.predict_proba(Xte) # вероятности классов (если поддерживается)
```

Как работает.

Функция $make_pipline$ позволяет собрать контейнер и последовательно применить трансформацию к данным. Стоит отметить, что у пайплайна есть атрибут .named_steps. Это просто словарь, в котором ключи — это имена шагов пайплайна (те строки, которые вы указали: "scaler "kneighborsclassifier"), а значения — соответствующие объекты (например, StandardScaler(), KNeighborsClassifier()). В данном случае стандартизацию и модель. Соответсвенно обращение к функциям модель можно производить через функцию .named_steps.

Алгоритм: Π ouck сосеdей \rightarrow взвешенное голосование \rightarrow класс/вероятности. При weights="distance" ближние соседи влияют сильнее. Выбор k: малый $k \Rightarrow$ риск переобучения, большой $k \Rightarrow$ сглаживание границы.

4.1 Взвешенный KNN: weights="distance" и свои ядра

Смысл. Вместо простого голосования по k соседям используем веса, зависящие от расстояния: ближние соседи влияют сильнее, дальние — слабее. В scikit-learn параметр weights y KNeighborsClassifier/KNeighborsRegressor может быть:

- "uniform" равные веса (классический KNN).
- "distance" веса обратно пропорциональны расстоянию, $w_i \propto 1/d_i$; если есть нулевые расстояния, решение строится только по таким соседям (внутренняя логика sklearn).
- callable своя функция весов $w_i = f(d_i)$.

Как это считается. Для классификации — взвешенное голосование:

$$\hat{y} = \arg\max_{c} \sum_{i \in \mathcal{N}_k(x)} w_i \, \mathbf{1} \{ y_i = c \}.$$

Для регрессии — взвешенное среднее:

$$\hat{y} = \frac{\sum_{i \in \mathcal{N}_k(x)} w_i y_i}{\sum_{i \in \mathcal{N}_k(x)} w_i}.$$

Пример: weights="distance" (классификация).

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

knn_w = make_pipeline(
StandardScaler(),
KNeighborsClassifier(n_neighbors=7, weights="distance", metric="minkowski", p=2)

knn_w.fit(Xtr, ytr)
y_pred = knn_w.predict(Xte)
proba = knn_w.predict_proba(Xte)
```

Подводные камни.

- Масштаб признаков критичен (обязательно StandardScaler).
- При $d_i \approx 0$ веса могут резко «взрываться»; используйте устойчивые формулы (например, $1/(d_i + \varepsilon)$ или гауссово ядро).
- Выбор k и формы весов по кросс-валидации; малый k переобучает, большой k переусредняет.

2) Классификатор ближайшего центроида (NearestCentroid)

Идея. Для каждого класса вычисляется один центроид (среднее по признакам). Новый объект относим к классу ближайшего центроида. Это очень быстрый и интерпретируемый

базовый метод.

Гиперпараметры. metric ("euclidean" по умолчанию, можно "manhattan" и др.), shrink_threshold (опц. «усадка» центроидов для борьбы с шумом; None — без усадки).

```
1 from sklearn.neighbors import NearestCentroid
2 from sklearn.pipeline import make_pipeline
3 from sklearn.preprocessing import StandardScaler
4 from sklearn.metrics import pairwise_distances
5 import numpy as np
7 nc = make_pipeline(
      StandardScaler(),
      NearestCentroid(metric="euclidean", shrink_threshold=None)
9
10 )
nc.fit(Xtr, ytr)
12 y_pred = nc.predict(Xte)
13
14 # Уверенность: расстояния до центроидов (чем ближе, тем увереннее)
15
16 # У пайплайна пс будет атрибут .named_steps.
17 # Это просто словарь, в котором ключи -- это имена шагов пайплайна (те строки, к
      оторые вы указали: "scaler", "nearestcentroid"), а значения -- соответствующи
      е объекты (например, StandardScaler(), NearestCentroid()).
19 centroids = nc.named_steps["nearestcentroid"].centroids_
```

Как работает. *На обучении:* средние по классам \rightarrow центроиды. *На предсказании:* расстояние до каждого центроида \rightarrow выбираем ближайший.

3) KNN-perpeccop (KNeighborsRegressor)

Идея. Для точки берём k ближайших вещественных ответов и возвращаем средневзвешенное (или простое среднее). Те же метрики и алгоритмы поиска, что и в классификации.

```
1 from sklearn.neighbors import KNeighborsRegressor
2 from sklearn.pipeline import make_pipeline
3 from sklearn.preprocessing import StandardScaler
5 knn_reg = make_pipeline(
      StandardScaler(),
6
      KNeighborsRegressor(
7
          n_neighbors=7,
8
         weights="distance",
                                   # ближние соседи сильнее
9
          metric="minkowski",
10
          p=2
11
      )
12
13 )
14 knn_reg.fit(Xtr, ytr)
y_hat = knn_reg.predict(Xte)
```

Как работает. Поиск соседей \to агрегация ответов: при weights="uniform" это среднее по k соседям; при "distance" — взвешенное среднее с весами, убывающими по расстоянию. Регуляризация фактически задаётся выбором k: больше $k \Rightarrow$ сильнее сглаживание.

Практика и советы.

- Масштабируйте признаки (StandardScaler) перед KNN/центроидными методами метрика чувствительна к масштабу.
- Подбирайте n_neighbors и metric/p по кросс-валидации. Для категориальных/смешанных признаков рассмотрите специализированные метрики.
- Для больших данных смотрите на algorithm="kd_tree"/"ball_tree" или используйте подвыборку/арргохітаte NN.

4.2 K-Means (sklearn.cluster.KMeans)

Идея и когда применять. K-Means — классический алгоритм кластеризации: он находит K центроидов $\{c_k\}_{k=1}^K$ и присваивает каждой точке ближайший центроид по евклидовому расстоянию, минимизируя сумму внутрикластерных квадратов расстояний (WCSS). Полезен как быстрый базовый метод при примерно сферических, схожих по размеру кластерах и когда масштаб признаков сопоставим (желательно предварительно стандартизовать).

Ключевые параметры.

- $n_{clusters}$ число кластеров K (обязательный гиперпараметр).
- \bullet init инициализация центроидов: "k-means++" (дефолт и рекомендовано) или "random"; можно передать пользовательские центры как массив формы (K,d).
- n_init сколько раз запускать алгоритм с разной инициализацией и выбрать лучшее решение по inertia_; обычно ≥ 10 .
- max_iter максимум итераций одного запуска (lloyd/elkan).
- tol критерий сходимости для ранней остановки.
- algorithm "lloyd" (классический) или "elkan" (ускорение треугольным неравенством для евклидовой метрики).
- random_state воспроизводимость инициализации.

Основные атрибуты/методы.

- ullet cluster_centers_ $\in \mathbb{R}^{K imes d}$ найденные центры.
- labels_ $\in \{0,\dots,K-1\}^N$ метки кластеров обучающей выборки.
- inertia_ итоговая сумма $\sum b \min k \|x_b c_k\|^2$ (чем меньше, тем плотнее кластеры).
- fit(X), predict(X), fit_predict(X).

Мини-пример (базовый сценарий).

```
1 from sklearn.cluster import KMeans
2 from sklearn.preprocessing import StandardScaler
4 scaler = StandardScaler()
5 X_scaled = scaler.fit_transform(X)
7 km = KMeans(
     n_clusters=3,
     init="k-means++",
9
     n_init=10,
10
     max_iter=300,
11
12
      tol=1e-4,
13
      algorithm="lloyd",
      random_state=7
14
15 )
16 labels = km.fit_predict(X_scaled)
print("inertia:", km.inertia_)
print("centers shape:", km.cluster_centers_.shape)
```

На больших данных: MiniBatchKMeans. Для потоковой/большой выборки используйте мини-батчи: ускорение за счёт стохастических обновлений, возможна чуть худшая inertia_.

Практические советы.

- Масштабируйте признаки (StandardScaler) без этого доминирующие масштабы смещают центры.
- Начинайте с init="k-means++" и n_init \geq 10; оценивать разумный K удобно по силуэту или «локтю» inertia_(K).
- algorithm="elkan" ускоряет для плотных данных с евклидовой метрикой.

Чем K-Means отличается от «K Centroids» (Nearest Centroid)

Идеологическое отличие.

• **K-Means** (unsupervised). Игнорирует метки классов и cam ищет K центров, минимизируя суммарный разброс внутри кластеров. Результат — кластеры безотносительно истинных классов.

• Nearest Centroid (supervised). Для каждого класса берёт среднее всех его обучающих объектов (один центроид на класс), затем относит новую точку к ближайшему классовому центру. В sklearn это sklearn.neighbors.NearestCentroid (опц. shrink_threshold для усадки центроидов).

Последствия на практике.

- K-Means может выделить кластеры, не совпадающие с истинными классами (и их число K задаёте вы). Он полезен для разведки структуры данных и предобработки (инициализация центров, сжатие, прототипы).
- Nearest Centroid это *классификатор*: число центров равно числу классов; обучение просто усреднение по метке, без итеративной оптимизации.

Omличие om $Soft\ K$ -Means (температурные присваивания)

Жёсткие vs мягкие назначения. Классический K-Means делает эсёсткое присваивание (one-hot): точка попадает к одному ближайшему центру. Soft K-Means (как в вашем ноутбуке) использует $softmax(-\|x-c\|^2/\tau)$ и мягкие вероятности принадлежности q_b, k , добавляя энтропийный член в лосс. Это помогает стабильности на старте и даёт вероятностную интерпретацию.

Типичные ошибки и быстрые проверки

- **Не масштабированы** признаки центры «тянут» признаки с большими шкалами.
- ullet Слишком маленький n init попадание в плохие локальные минимумы.
- Переоценка inertia: она падает с ростом K всегда; используйте силуэт/BIC/AIC (для смесей) или правило «локтя».
- **Неевклидова природа данных.** K-Means оптимален для евклидовой геометрии; для категориальных/других метрик рассмотрите k-modes/k-prototypes или кластеризацию по расстояниям.

5 Решающие деревья в scikit-learn: обучение, стрижка, кодирование категорий

5.1 Бинарное решающее дерево (классификация и регрессия)

Суть. Дерево рекурсивно бьёт пространство признаков на прямоугольные области по правилам вида $x_j \leq t$. В листьях хранятся прогнозы: для классификации — распределения по классам, для регрессии — средние/медианы по целям. Обучение выбирает признак и порог, максимизирующие выигрыш критерия.

Ключевые параметры DecisionTreeClassifier.

- ullet criterion \in {"gini", "entropy", "log_loss"}: мера неопределённости в узлах.
- splitter \in {"best", "random"}: перебор лучшего сплита или случайный.
- max_depth: ограничение глубины (целое) пред-стрижка.
- min_samples_split: минимум объектов, чтобы делить узел (целое или доля (0,1]).
- min_samples_leaf: минимум объектов в листе (целое или доля).
- max_features \in {None, целое, доля, "sqrt", "log2"}: сколько признаков рассматривать при поиске сплита.
- class_weight: веса классов ("balanced" или dict).
- random_state: воспроизводимость.
- ccp_alpha ≥ 0 : сила пост-стрижки по минимальной сложности (Cost-Complexity Pruning).

Ключевые параметры DecisionTreeRegressor.

- $\bullet \ \, {\tt criterion} \in \{ \hbox{\tt "squared_error"}, \, \hbox{\tt "friedman_mse"}, \, \hbox{\tt "absolute_error"}, \, \hbox{\tt "poisson"} \}.$
- Остальные параметры аналогичны: splitter, max_depth, min_samples_split, min_samples_leat max_features, ccp_alpha.

Мини-пример: классификация.

```
1 from sklearn.tree import DecisionTreeClassifier
2 from sklearn.model_selection import train_test_split
3 from sklearn.metrics import accuracy_score
5 Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y,
      random_state=7)
6
7 clf = DecisionTreeClassifier(
     criterion="gini",
      max_depth=None,
                                 # без пред-стрижки по глубине
9
      min_samples_split=2,
10
11
      min_samples_leaf=1,
12
      max_features=None,
      random_state=7
13
14 )
15 clf.fit(Xtr, ytr)
y_pred = clf.predict(Xte)
print("accuracy:", accuracy_score(yte, y_pred))
print("depth:", clf.get_depth(), "leaves:", clf.get_n_leaves())
```

Мини-пример: регрессия.

5.2 Стрижка дерева (Pruning): cost-complexity и выбор сср_alpha

Идея. Пост-стрижка удаляет «дорогие» ветви, которые мало улучшают качество, минимизируя $R_{\alpha}(T) = R(T) + \alpha |T|$, где R(T) — эмпирическая ошибка, |T| — число листьев. В sklearn используется cost-complexity pruning с параметром ccp_alpha.

Пост-стрижка по минимальной сложности (cost-complexity pruning)

Что такое эмпирическая ошибка R(T). Под R(T) понимают «наказанность» дерева на обучающей выборке: суммарную нечистоту листьев, взвешенную по числу объектов в листах. Для классификации это сумма по всем листьям $\sum_{\ell \in \text{leaves}} n_{\ell}$ · impurity $_{\ell}$, где impurity $_{\ell}$ вычисляется выбранным критерием (gini или entropy); для регрессии — аналогично, но с squared_error/absolute_error/poisson. Интуитивно: чем «грязнее» листья (смешение классов, высокая дисперсия), тем выше R(T).

Что означает функционал $R_{\alpha}(T) = R(T) + \alpha |T|$. Это баланс «качества на обучении» и «сложности» дерева:

- R(T) поощряет точное подгоняние (меньше лучше).
- |T| число листьев (сложность модели); множитель $\alpha \ge 0$ штрафует за лишние листья.
- При $\alpha = 0$ оптимально максимально разветвлённое дерево (риск переобучения). При больших α дерево агрессивно режется (риск недообучения).

Минимизируя $R_{\alpha}(T)$, мы ищем компромисс «смещение–дисперсия»: немного жертвуем подгонкой ради лучшей обобщаемости.

Пайплайн подбора ccp_alpha.

- 1. Получить путь α -значений через cost_complexity_pruning_path.
- 2. Обучить семейство деревьев с этими α , выбрать лучшее по CV.
- 3. Обучить финальную модель с найденным ccp_alpha.

Код: подбор ccp_alpha c кросс-валидацией.

```
1 from sklearn.tree import DecisionTreeClassifier
2 from sklearn.model_selection import StratifiedKFold, cross_val_score
3 import numpy as np
5 base = DecisionTreeClassifier(random_state=7)
6 path = base.cost_complexity_pruning_path(Xtr, ytr)
7 ccp_alphas = path.ccp_alphas # возрастающая сетка
9 cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=7)
10 mean_scores = []
11
12 for alpha in ccp_alphas:
      clf_alpha = DecisionTreeClassifier(random_state=7, ccp_alpha=alpha)
13
      cv_score = cross_val_score(clf_alpha, Xtr, ytr, cv=cv,
14
      scoring="accuracy").mean()
      mean_scores.append(cv_score)
15
16
best_alpha = ccp_alphas[int(np.argmax(mean_scores))]
18 clf_pruned = DecisionTreeClassifier(random_state=7,
      ccp_alpha=best_alpha).fit(Xtr, ytr)
print("best ccp_alpha:", best_alpha)
print("test accuracy:", clf_pruned.score(Xte, yte))
```

Как paбotaet cost_complexity_pruning_path. Вызов

```
base = DecisionTreeClassifier(random_state=7)

path = base.cost_complexity_pruning_path(Xtr, ytr)

ccp_alphas = path.ccp_alphas # возрастающая сетка alpha

impurities = path.impurities # соответствующие R(T) для поддеревьев
```

строит монотонный путь поддеревьев $T_0 \supset T_1 \supset \cdots \supset T_m$, полученных последовательным удалением «наименее выгодных» ветвей. Для каждой ступени считается эффективный α , при котором текущая обрезка впервые становится оптимальной:

$$\alpha_t = \frac{R(t) - R(T_t)}{|T_t| - 1},$$

где t — узел, а T_t — его поддерево. Возвращаемый массив ccp_alphas упорядочен неубывающе; двигаясь вправо, вы получаете всё более короткие деревья, а impurities — соответствующие им значения R(T).

Что такое CV и зачем он здесь. CV (кросс-валидация) — это процедура оценивания качества, при которой данные делят на K непересекающихся фолдов: модель обучают на K-1 фолдах и валидируют на оставшемся; цикл повторяют K раз и усредняют метрику. В классификации обычно берут StratifiedKFold (сохраняет доли классов). Здесь CV нужен, чтобы выбрать ccp_alpha, дающий лучшую валидационную метрику (например, ассигасу, roc_auc) — то есть дерево, которое лучше обобщается вне обучающей выборки.

На что влияет ccp_alpha.

- Степень усечения. Чем выше α , тем сильнее стрижка: меньше узлов, ниже глубина, проще правила.
- Смещение—дисперсия. Небольшая α снижает смещение, но может взвинтить дисперсию (переобучение); большая α наоборот.
- Интерпретируемость и скорость. Бо́льшая α даёт компактные деревья: быстрее предсказывают и легче объясняются.

Краткая расшифровка кода.

- ullet base = DecisionTreeClassifier(...) базовая заготовка без явной стрижки.
- cost_complexity_pruning_path(Xtr, ytr) строит цепочку поддеревьев и возвращает сетку α (ccp_alphas) и их R(T) (impurities).
- ccp_alphas возрастающие значения штрафа; под каждое α можно обучить дерево и оценить по CV, чтобы выбрать оптимум.

Замечания.

- Пред-стрижка (max_depth, min_samples_leaf, ...) и пост-стрижка (ccp_alpha) взаимодополняемы.
- Слишком большое ccp_alpha приведёт к сильной усечённости дерева и недообучению.

5.3 Категориальные признаки: label/one-hot/target encoding

Label/Ordinal Encoding (порядковые коды)

Смысл. Каждой категории присваивается целочисленный код. Подходит только для *порядковых* категорий; для *номинальных* может вносить ложный порядок.

Код с OrdinalEncoder.

```
1 import pandas as pd
2 from sklearn.preprocessing import OrdinalEncoder
3 from sklearn.compose import ColumnTransformer
4 from sklearn.pipeline import make_pipeline
5 from sklearn.tree import DecisionTreeClassifier
7 cat_cols = ["city", "segment"]
8 num_cols = ["age", "income"]
10 enc = ColumnTransformer(transformers=[
      ("cat", OrdinalEncoder(handle_unknown="use_encoded_value",
11
      unknown_value=-1), cat_cols),
       ("num", "passthrough", num_cols)
12
13 ])
14
clf_ord = make_pipeline(enc, DecisionTreeClassifier(random_state=7))
16 clf_ord.fit(Xtr_df, ytr)
```

Что происходит пошагово.

- Определение признаков. cat_cols имена категориальных столбцов ("city", "segment"), num_cols числовые ("age", "income"). Предполагается, что Xtr_df pandas.DataFrame с этими колонками; ytr целевая переменная.
- ColumnTransformer enc. Собирает колоночный препроцессинг:
 - Блок ("cat OrdinalEncoder(...), cat_cols) применяет OrdinalEncoder к city и segment, превращая категории в целые коды $\{0,1,2,\ldots\}$.
 - Параметр handle_unknown="use_encoded_value" + unknown_value=-1 гарантирует, что невидимые при обучении категории на валидации/проде будут закодированы как -1, вместо ошибки.
 - Блок ("num "passthrough num_cols) пропускает численные признаки без изменений.

На выходе получается единая числовая матрица признаков: сначала трансформированные категориальные, затем «как есть» числовые (порядок соответствует порядку блоков).

- Пайплайн clf_ord. make_pipeline(enc, DecisionTreeClassifier(...)) связывает препроцессинг и модель. При вызове fit:
 - 1. enc.fit_transform(Xtr_df) обучает кодировщик на тренировочных данных и возвращает числовую матрицу.
 - 2. DecisionTreeClassifier.fit(...) строит бинарное дерево по преобразованным признакам (критерий сплита по умолчанию gini).

- Почему OrdinalEncoder уместен с деревом. Решающее дерево делает пороговые сплиты вида feature ≤ θ. Даже если категориальные коды несут искусственный порядок, дерево может разрезать их подходящим порогом. Тем не менее, при сильной многокатегориальности чаще предпочитают OneHotEncoder; OrdinalEncoder хорош как компактный и быстрый базовый вариант.
- Поведение на неизвестных категориях. Если в X_test появится новая "city", OrdinalEncoder вернёт -1. Модель будет трактовать это как отдельное значение и сама выберет подходящий сплит (например, ≤ -0.5).
- Инференс. Вызовы clf_ord.predict(X) и clf_ord.predict_proba(X) автоматически выполнят тот же enc.transform и затем предсказание дерева. Никакого ручного преобразования признаков делать не нужно.

Полезные замечания.

- Чтобы получить имена выходных признаков после ColumnTransformer (для анализа важности), используйте enc.get_feature_names_out() (в новых версиях sklearn).
- Такой пайплайн совместим с GridSearchCV/RandomizedSearchCV: можно настраивать, например, decisiontreeclassifier__max_depth, decisiontreeclassifier__min_samples а также параметры кодировщика.
- Если категорий очень много и порядок не имеет смысла, рассмотрите OneHotEncoder(handle_unk он избегает навязанного порядка, но увеличивает размерность.

One-Hot Encoding (OHE)

Смысл. Каждая категория превращается в отдельный бинарный признак. Подходит для номинальных категорий; увеличивает размерность.

Koд c OneHotEncoder.

Замечания.

• handle_unknown="ignore" безопасно обрабатывает новые категории на тесте.

- Если sparse_output=True, то возвращается scipy.sparse разреженная матрица. Если False, то возвращается как обычный numpy.array.
- Для деревьев масштабирование не критично, но аккуратная обработка пропусков и редких категорий важна.

Target Mean Encoding (сглаженное среднее по категории)

Смысл. Категория кодируется *средним таргетом* по группе. Риск утечки! Делайте по фолдам, со сглаживанием к глобальному среднему.

Простой сглаженный target encoding (без внешних пакетов).

```
1 import numpy as np
2 import pandas as pd
3 from sklearn.base import BaseEstimator, TransformerMixin
5 class MeanTargetEncoder(BaseEstimator, TransformerMixin):
      def __init__(self, cols, m=100):
          self.cols = cols
7
          self.m = m # сила сглаживания
8
      def fit(self, X, y):
9
          Xy = pd.DataFrame(X, copy=False)
10
          Xy["_y_"] = y
11
          self.global_mean_ = float(np.mean(y))
12
          self.maps_ = {}
13
          for c in self.cols:
14
               grp = Xy.groupby(c)["_y_"].agg(["mean", "count"])
15
               smooth = (grp["count"] * grp["mean"] + self.m * self.global_mean_)
16
      / (grp["count"] + self.m)
               self.maps_[c] = smooth.to_dict()
17
          return self
18
      def transform(self, X):
19
          X = pd.DataFrame(X, copy=True)
          for c in self.cols:
21
               X[c] = X[c].map(self.maps_[c]).fillna(self.global_mean_)
22
          return X
^{23}
24
25 # пример использования
te_cols = ["city", "segment"]
te = MeanTargetEncoder(cols=te_cols, m=50).fit(Xtr_df, ytr)
28 Xtr_te = te.transform(Xtr_df)
29 Xte_te = te.transform(Xte_df)
31 clf_te = DecisionTreeClassifier(random_state=7).fit(Xtr_te, ytr)
```

Как работает (кратко).

• Идея. Для каждой категориальной колонки *с* заменяем категорию на *сглаженную среднюю* таргета: чем больше наблюдений у категории, тем ближе значение к её эмпирическому среднему; редкие категории притягиваются к глобальному среднему по выборке.

• Сглаживание. Для категории с эмпирическими mean и count = n:

$$\mathrm{enc}(c) = \frac{n \cdot \mathtt{mean} + m \cdot \mathtt{global_mean}}{n + m},$$

где m — гиперпараметр сглаживания (m в конструкторе).

- fit. Coxpаняет global_mean_ = $\mathbb{E}[y]$ и словари maps_[c] : категория \to сглаженная средняя для каждого столбца из cols.
- transform. Заменяет значения в cols на закодированные. Неизвестные/редкие категории и NaN получают global_mean_ благодаря fillna.
- Интеграция со sklearn. Наследование от BaseEstimator, TransformerMixin делает трансформер совместимым с Pipeline, GridSearchCV.

Какие объекты подавать на вход.

- X: табличные признаки формы (N,d) pandas.DataFrame (предпочтительно, т.к. используются имена колонок) или любой массивоподобный объект, который можно обернуть в DataFrame. В cols перечислены существующие в X категориальные столбцы; их значения должны быть хешируемыми (строки/числа).
- y: одномерный вектор длины N (pandas.Series или numpy.ndarray) с числовыми таргетами. Для бинарной классификации обычно $\{0,1\}$. Для регрессии любые вещественные.
- Выход transform. pandas. DataFrame той же формы, где указанные cols заменены на вещественные (кодированные) значения; остальные столбцы сохранены как есть.

Практические замечания.

- Избегайте утечки. Используйте трансформер внутри Pipeline с валидатором (cross_val_score, GridSearchCV), чтобы fit выполнялся только на тренировочных фолдах.
- Подбор т. Больший т сильнее тянет к глобальному среднему (полезно при редких категориях), меньший т позволяет лучше использовать частые категории.
- **Неизвестные категории.** На тесте получают global_mean_ благодаря fillna; это безопаснее, чем падать с ошибкой.

Важно про утечку.

- Делайте target encoding внутри кросс-валидации (out-of-fold), иначе модель «подсмотрит» таргет.
- Параметр m регулирует сглаживание: малое \to переобучение на редких категориях, большое \to сильная усреднённость.

6 SVM и SVR: быстрый практический конспект

6.1 SVM для классификации (SVC, LinearSVC)

Идея. Опорные векторы строят разделяющую гиперплоскость с *максимальным зазором* (margin). В мягком варианте решается

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + C \sum_{i} \xi_i \quad \text{s.t.} \quad y_i \left(w^{\top} \phi(x_i) + b \right) \ge 1 - \xi_i, \ \xi_i \ge 0,$$

где ϕ — (возможно, неявное) отображение в признаковое пространство, реализуемое ядром $K(x,x')=\langle \phi(x),\phi(x')\rangle$. Параметр C>0 контролирует баланс между шириной зазора и штрафом за ошибки.

Когда что брать.

- SVC (\sim LIBSVM): поддерживает любые ядра, хорош для малых/средних датасетов, работает в дуале.
- LinearSVC (\sim LIBLINEAR): линейное ядро, масштабируется на большие/разреженные данные (тексты). Быстрее на $d \gg n$.

Код: RBF-SVM с масштабированием и вероятностями.

```
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC

svc = make_pipeline(
StandardScaler(),
SVC(kernel="rbf", C=1.0, gamma="scale", probability=True,
class_weight=None, tol=1e-3, cache_size=200, max_iter=-1)

svc.fit(Xtr, ytr)
proba = svc.predict_proba(Xte)[:, 1] # вероятность положительного класса
```

Код: линейный SVM для больших/разреженных данных.

```
from sklearn.svm import LinearSVC
from sklearn.calibration import CalibratedClassifierCV

lin = LinearSVC(C=1.0, loss="squared_hinge", tol=1e-3, max_iter=5000)
lin_cal = CalibratedClassifierCV(lin, method="sigmoid", cv=5) # калибруем proba
lin_cal.fit(Xtr, ytr)
proba = lin_cal.predict_proba(Xte)[:, 1]
```

Ключевые параметры.

- kernel: "linear", "rbf", "poly", "sigmoid".
- C (> 0): сила штрафа за ошибки. Больше $C \Rightarrow$ меньше ошибок на трейне, риск переобучения.
- tol: порог остановки для оптимизации. Когда изменения в целевой функции становтся меньше tol, обучение останавливается.
- ullet max $_iter=-1.$ gamma(RBF/Poly/Sigmoid): ."scale $=1/(d\operatorname{Var}(X))$ (по умолчанию), "auto" =1/d, или число.
- degree, coef0 (для poly/sigmoid): степень полинома и сдвиг.
- $cache_size = 200$:.probability=True:predict_proba.
- class_weight: "balanced" для автоматического учёта дисбаланса.

Полезные атрибуты (для SVC).

- support_ (индексы опорных векторов), support_vectors_, n_support_.
- dual_coef_, intercept_ (bias). Для kernel="linear" доступен coef_ (веса гиперплоскости).

6.2 SVR для регрессии (SVR, LinearSVR)

Идея. ε -инвариантная регрессия подбирает функцию $f(x) = w^{\top} \phi(x) + b$, которая игнорирует мелкие ошибки $|y_i - f(x_i)| \leq \varepsilon$:

$$\min_{w,b,\xi,\xi^*} \frac{1}{2} ||w||^2 + C \sum_{i} (\xi_i + \xi_i^*) \text{ s.t. } \begin{cases} y_i - f(x_i) \le \varepsilon + \xi_i, \\ f(x_i) - y_i \le \varepsilon + \xi_i^*, \\ \xi_i, \xi_i^* \ge 0. \end{cases}$$

Параметр ε задаёт ширину «трубки» нечувствительности, C штрафует отклонения за её пределами.

Код: RBF-SVR с масштабированием.

```
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVR

svr = make_pipeline(
    StandardScaler(),
    SVR(kernel="rbf", C=10.0, epsilon=0.1, gamma="scale", tol=1e-3, cache_size=200)

s)
svr.fit(Xtr, ytr)
yhat = svr.predict(Xte)
```

Код: LinearSVR для больших/разреженных задач.

Ключевые параметры (SVR/LinearSVR).

- kernel (SVR): "rbf" (часто лучший базовый), "linear", "poly", "sigmoid".
- С (> 0): сила штрафа за выход за «трубку». Больше $C \Rightarrow$ меньше смещение, больше риск переобучения.
- \bullet epsilon: ширина ε -трубки; больше $\varepsilon \Rightarrow$ модель менее чувствительна к мелким шумам.
- gamma (ядровые SVR): масштаб ядра ("scale" по умолчанию).
- loss (LinearSVR): "epsilon_insensitive" или "squared_epsilon_insensitive.

Атрибуты.

- SVR: support_vectors_, dual_coef_, intercept_; для kernel="linear" coef_.
- LinearSVR: оптимизирует в npямой постановке, не хранит опорные векторы (экономнее по памяти/времени).

Практические советы.

- Масштабируйте признаки. Без скейлинга выбор γ , C, ε становится непредсказуемым.
- Для больших и разреженных данных пробуйте LinearSVR.