

R.M.K. COLLEGE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution)

RSM Nagar, Puduvoyal—601206, Gummidipoondi (T.K), Thiruvallur (D.T), Tamil Nadu Approved by AICTE, New Delhi/ Affiliated to Anna University, Chennai Accredited by NBA (All Eligible Courses) / NAAC with "A" GRADE An ISO 21001:2018 Certified Institution

24EC102 - DIGITAL PRINCIPLES AND SYSTEMS DESIGN I – Semester Common to CSE, CSE(CS) & AI&DS

NAME	:
REGISTER NUMBER	:
BRANCH/SECTION	:

LIST OF EXPERIMENTS

A. Verification of Logic Gates

- 1. Implementation of Boolean expression using logic gates.
- 2. Design of adders
- 3. Design of subtractors.
- 4. Design of binary adder using IC7483
- 5. Design of Multiplexers & Demultiplexers.
- 6. Design of Encoders and Decoders.
- 7. Implementation of a boolean function using a multiplexer.
- 8. Design and implementation of 3 bit ripple counters.
- 9. Design and implementation of 3 bit synchronous counter
- 10. Design and implementation of shift registers.

PIN DIAGRAM OF BASIC LOGIC GATES:

Input		Output
Α	В	$Y = \overline{AB}$
0	0	1
0	1	1
1	0	1
1	1	0

Input	Output
Α	Y = A
0	1
1	0

Input		Output
Α	В	$Y = \overline{A+B}$
0	0	1
0	1	0
1	0	0
1	1	0

AND GATE

Input		Output
Α	В	Y = AB
0	0	0
0	1	0
1	0	0
1	1	1

OR GATE

Input		Output
Α	В	Y = A+B
0	0	0
0	1	1
1	0	1
1	1	1

EX-OR GATE

In	put	Output
Α	В	Y =
		$\mathbf{A} \oplus \mathbf{B}$
0	0	0
0	1	1
1	0	1
1	1	0

THREE INPUT AND GATE

Input		Output	
Α	В	С	Y = ABC
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

EX: NO: A DATE:

Verification of Logic Gates

AIM:

To verify the digital logic gates.

Apparatus Required:

SI. No.	COMPONENT	SPECIFICATION	QTY
1.	NOT GATE	IC 7404	1
2.	AND GATE	IC 7408	1
3.	OR GATE	IC 7432	1
4.	NAND GATE	IC 7400	1
5.	NOR GATE	IC 7402	1
6.	EX-OR GATE	IC 7486	1
7.	THREE INPUT NAND GATE	IC 7411	1
6.	DIGITAL IC TRAINER KIT	-	1
7.	PATCH CORD	-	-

Procedure:

- 1. Verify the gates.
- 2. Make the connections as per the circuit diagram.
- 3. Switch on VCC and apply various combinations of input according to truth table.
- 4. For all input combinations the outputs are verified with the truth table.

Result:

Thus the gates are verified with its truth table using logic gates.