Data Analytics and Visualization Boot Camp Statistics Cheat Sheet

Selecting an Appropriate Statistical Test							
Statistical Test	Input Variable Type						
	Independent		Dependent		Analytical Question		
	# of Variables	Data Type	# of Variables	Data Type			
One-Sample t-Test	1	Dichotomous (Population or Sample)	1	Continuous	Is there a statistical difference between the mean of the sample distribution and the mean of the population distribution?		
Two-Sample t-Test	1	Dichotomous (Sample A vs. Sample B)	1	Continuous	Is there a statistical difference between the distribution means from two samples?		
ANOVA	1+	Categorical	1	Continuous	Is there a statistical difference between the distribution means from multiple samples?		
Simple Linear Regression	1	Continuous	1	Continuous	Can we predict values for a dependent variable using a linear model and values from the independent variable?		
Multiple Linear Regression	2+	Continuous	1	Continuous	How much variance in the dependent variable is accounted for in a linear combination of independent variables?		
Chi-Squared Test	1	Categorical	1+	Categorical	Is there a difference in categorical frequencies between groups?		

• Bell or • Value • Shapi • Follow Standard Deviations

What Is Normal Data?

- Bell curve distribution
- Values closer to the mean occur more frequently than values away from mean
- Shapiro-Wilk test p-value approximately greater than 0.05
- Follows the 68-95-99.7 rule
 - 68% of all data falls within 1 standard deviation from mean
 - 95.54% of all data falls within 2 standard deviations
 - 99.73% of all data falls within 3 standard deviations

Dichotomous—one of two categories Ordinal—ranked order, has a sequence Nominal—labels and names Continuous—can be subdivided infinitely Interval—spaced out evenly on a scale

Selecting a Significance Level					
Importance of Findings	Significance Level	Probability of Being Wrong			
Low	0.1	1 in 10			
Normal	0.05	5 in 100			
High	0.01	1 in 100			
Very High	0.001	1 in 1,000			
Extreme	0.0001	1 in 10,000			

Types of the state of the state

Types of Analytical Errors

- · False positive error
- Reject the null hypothesis when true
- Can be limited by making significance smaller
- · False negative error
- Fail to reject the null hypothesis when false
- Can be limited by adding measurements to analysis

Equation of a Line y = mx + b $\downarrow \text{Slope}$ Dependent variable Independent variable

Pearson's Correlation				
Absolute Value of r	Strength of Correlation			
r < 0.3	None or very weak			
0.3 ≤ r < 0.5	Weak			
0.5 ≤ r < 0.7	Moderate			
r ≥ 0.7	Strong			

A/B Testing Criteria

- If the success metric is numerical and the sample size is small, use a z-score summary statistic.
- If the success metric is numerical and the sample size is large, use a two-sample t-test.
- · If the success metric is categorical, use a chi-squared test.