

Firefighting Operational Cost Prediction with Tree-Based Models

Haniff, Ryan Mahajan, Ravish Park, Haelang Ullmann, Gabriel

CONTENTS

- 1. Introduction: Research Questions
- 2. Dataset
 - a. Feature Selection
 - b. Cost Categories
 - c. Data Preprocessing
- 3. Model Design
- 4. Results
 - a. Summary
 - b. F1-Score Comparison
 - c. Classification Comparison by Category
- 5. Conclusion and Discussion
 - a. Comparing with the State of the Art
 - b. Rooms for Improvement

INTRODUCTION

- 1. Is it possible to **predict the approximate cost of firefighting operations** using tree-based models?
- 2. What features correlate more or less strongly with the operational cost?
- 3. Which tree-based model provides the best prediction accuracy?

FEATURE SELECTION

COST CATEGORIES

Category	Cost range	
0	Cost < £300	
1	Cost \geq = £300 and Cost $<$ £500	
2	Cost \geq £500 and Cost $<$ £700	
3	Cost \geq = £700 and Cost $<$ £900	
4	Cost \geq = £900 and Cost $<$ £1100	
5	Cost >= £1100	

DATA PREPROCESSING

We removed NaN rows, standardized the date formats, and decreased cost category imbalance.

Original Dataset

Undersampled Dataset

0	35.05%	
1	21.26%	
2	15.64%	
3	8.19%	
4	7.51%	
5	12.35%	

MODEL DESIGN

	Inputs	Models	Output
July 17:	Date of Call	Decision Tree	
	Property Type Number of Pumps	Boosted Tree	Cost Category
	Pump Hours	Random Forest	
	Mean Temp.		

SUMMARY OF RESULTS

After training the models with default parameters and further improving them with hyperparameter search, we observed that the best model is **Decision Tree** (0.789).

	weighted f1-score (regular ds)	weighted f1-score (undersampled ds)
Decision Tree	0.778	0.789
Random Forest	0.608	0.685
Boosted Trees	0.757	0.778

F1-SCORE COMPARISON BY DATASET

CLASSIFICATION COMPARISON BY CATEGORY

Undersampled Dataset

RELEVANT FEATURES FOR CLASSIFICATION

CONCLUSION

- 1. Is it possible to **predict the approximate cost of firefighting operations** using tree-based models?
 - a. Yes, although not the best, the models produced acceptable performance
- 2. What features correlate more or less strongly with the operational cost?
 - a. Features relate to pump operations have high correlations while other variables like weather have weak correlation.
- 3. Which tree-based model provides the best prediction accuracy?
 - a. From our experiment, the best model is decision tree.

COMPARING WITH STATE OF THE ART

- Current industrial products: cost prediction for insurance and construction business
 - We found no solutions aimed at fire departments or public safety sector
- No accuracy data for comparison

ROOM FOR IMPROVEMENT

1. Access to a variety of additional features

- a. Building materials
 - i. concrete vs. wooden walls
 - ii. old vs. renovated vs. new
- b. Presence of fire sprinkler system
- c. Neighborhood density
- d. etc.

2. Testing with different hyperparameters

- a. A broad range of hyperparameter values
- b. Other unspecified parameters

3. Test using additional datasets

a. Other cities

