

# UTILIZAÇÃO DE CULTURA MISTA E ELICIAÇÃO QUÍMICA PARA INDUZIR A BIOSSÍNTESE DE PRODUTOS NATURAIS POR ACTINOBACTÉRIAS ENDOFÍTICAS

IPPN WALTER MORS UFRJ. WALTER MORS

Letícia da Costa Pena Mendes<sup>1</sup>, Marco Antônio Silva Cabral<sup>2</sup>, Fernanda Oliveira das Chagas<sup>3</sup>

1. Faculdade de Farmácia e Instituto de Pesquisa de Produtos Naturais (IPPN) – UFRJ

(<u>leticiamendes.of@hotmail.com</u>)

Ciências Biológicas – UFRJ polo Xerém
IPPN - UFRJ

## INTRODUÇÃO

Uma nova biota com potencial biossintético que vem sendo pesquisada são os micro-organismos endofíticos. Apesar de haver estudos realizados há mais de 35 anos, existem diversos produtos naturais de bactérias e fungos ainda não descobertos, indicando que o número de genes biossintéticos é superior a quantidade de metabólitos conhecidos oriundos desses micro-organismos. Alguns desses genes podem não ser expressos nas condições padrões laboratoriais de cultivos, havendo necessidade de estímulos específicos para serem ativados, como a manipulação de fatores nutricionais e ambientais.

As linhagens escolhidas para a pesquisa foram isoladas de uma planta medicinal (figura 1) e se mostraram responsivas e biologicamente ativas contra bactérias e fungos em estudos prévios. Visto isso, estudos mais aprofundados desses genes silenciosos aliados com a indução de metabolitos secundários através da interação com outros microorganismos e por eliciação química, são de extrema importância.



**Figura 1.** *Tithonia diversifolia.* Planta medicinal de onde foram isoladas as actinobactérias endofíticas *Streptomyces sp.* RTd5 e *Streptomyces sp.* RTd8.

#### **OBJETIVOS**

Induzir a expressão de metabólitos secundários bioativos por Streptomyces sp. RTd8 e Streptomyces sp. RTd5 através de eliciação química com os antibióticos kanamicina e apramicina.

#### **METODOLOGIA**

Foram realizados experimentos de Concentração Inibitória Mínima (CIM ou MIC) para os eliciadores químicos kanamicina e apramicina (figura 2) seguido da inoculação das linhagens em meio sólido de DS (dextrose e soja) contendo uma concentração sub-inibitória dos eliciadores. Também foram inoculadas as bactérias em cultivo sem os eliciadores químicos. As culturas cresceram por 7 dias e, após esse período, realizou-se o corte dos fragmentos (figura 3) e microextração com metanol. O extratos secos foram analisados por cromatógrafo líquido de alta eficiência - HPLC (Shimadzu® Shim-Pak), com coluna analítica C18 100 mm x 4,6 mm, 2,7 µm (Ascentis Express) e gradiente de 10%-100% de acetronitrila em água durante 20 minutos, 100% de acetonitrila por 10 minutos, e recondicionamento: 100%-10% de acetronitrila em 2 minutos e 10% de acetonitrila aquosa por 5 min.



**Figura 2.** Representação esquemática do experimento de MIC em placa de Petri com kanamicina (as concentrações para apramicina foram 10 vezes menores).



**Figura 3**. Representação dos fragmentos extraídos do cultivo para a realização de quadruplicata de cada extrato.

#### **AGRADECIMENTOS**





#### **RESULTADOS**

Os experimentos de MIC (figura 4A) revelaram que as concentrações sub-inibitórias de kanamicina e apramicina no meio de cultura foram de 2,5 µg.mL<sup>-1</sup> e 0,25 µg.mL<sup>-1</sup>, respectivamente. As colônias tratadas de RTd5 e RTd8 demoraram mais para crescer (figura 4B e 4C) em relação ao padrão e adquiriram cor pastel. Não houve escurecimento do meio de cultura devido ao aparecimento de substância com cor, como ocorre no controle.



**Figura 4.** Experimento de MIC em placa de Petri (**A**); experimento com as actinobactérias RTd5 (**B**) e RTd8 (**C**) crescendo em meio com apramicina.

Comparando os cromatogramas das actinobactérias RTd5 e RTd8, foi possível identificar alterações nos perfis metabólicos de ambas (figura 5). A apramicina foi capaz de induzir a biossíntese de substâncias que não eram identificadas no cultivo controle das actinobactérias RTd5 e RTd8. Já com kanamicina, nenhum resultado relevante foi observado. Ao que tudo indica, os tempos de retenção das substâncias que foram induzidas com a apramicina em RTd5 e RTd8 são equivalentes.



Figura 5. cromatogramas das actinobactérias RTd5 e RTd8, respectivamente.

### DISCUSSÃO

Presume-se que o antibiótico, utilizado como eliciador químico, tardou o processo de produção de hifas e esporos pelas actinobactérias. Os cromatogramas das linhagens RTd5 e RTd8 cultivadas com apramicina apresentaram picos antes ausentes e mais intensos em comparação com os cromatogramas das mesmas linhagens sem tratamento. Considerando que as substâncias induzidas com apramicina em RTd5 e RTd8 possuem os mesmos tempos de retenção, supõe-se que, como ambas foram isoladas da mesma planta hospedeira e no mesmo processo de isolamento, é possível que elas sejam da mesma espécie ou até da mesma linhagem. Vale ressaltar que elas apresentam as mesmas características morfológicas macroscópicas.

## CONCLUSÃO

As actinobactérias RTd5 e RTd8 se mostraram promissoras no experimento de eliciação química, portanto, seu perfil metabólico será investigado mais profundamente com o intuito de identificar as substâncias sendo produzidas. Além disso, experimentos de co-cultura serão realizados com essas linhagens que foram responsivas.

#### REFERÊNCIAS

- 1. Ganesan, A. (2008). "The impact of natural products upon modern drug discovery." Current Opinion in Chemical Biology 12(3): 306-317
- 2. Chagas, F. O., Pessoti, R. C., Caraballo-Rodríguez, A. M., Pupo, M. T. (2018). "Chemical signaling involved in plant–microbe interactions". Chemical Society Reviews 47: 1652-1704.

3. Aigle, B. and C. Corre (2012). "Waking up Streptomyces Secondary Metabolism by Constitutive Expression of Activators or Genetic Disruption of Repressors." Methods in Enzymology 517: 343