Abdul Zreika

The University of Sydney

• Declarative logic-programming language

- Declarative logic-programming language
- Facts:

```
person("abdul").
person("martha").
person("alice").
person("john").
```

- Declarative logic-programming language
- Facts:

```
person("abdul"). wants("alice", "cake").
person("martha"). wants("ant", "honey").
person("alice"). wants("john", "pineapple").
person("john").
```

- Declarative logic-programming language
- Facts:

```
person("abdul"). wants("alice", "cake").
person("martha"). wants("ant", "honey").
person("alice"). wants("john", "pineapple").
person("john").
```

• Rules:

```
person_wants(X, Y) :- person(X), wants(X, Y).
```

Declarative logic-programming language

• Facts:

```
person("abdul"). wants("alice", "cake").
person("martha"). wants("ant", "honey").
person("alice"). wants("john", "pineapple").
person("john").
```

• Rules:

```
person_wants(X, Y) :- person(X), wants(X, Y).
wants(X, "inlining in soufflé") :- person(X).
```

Find all pairs (x,y) of natural numbers below 1000 where x < 10 and $y = x^2$

```
natural_number(0).
natural_number(x+1) :- natural_number(x), x < 999.

natural_pair(x,y) :- natural_number(x), natural_number(y).

query(x,y) :- natural_pair(x,y), x < 10, y = x*x.
.output query</pre>
```

```
natural_number(0).
natural_number(x+1) :-
    natural_number(x),
    x < 999.
natural_pair(x,y) :-
    natural_number(x),
    natural number(y).
query(x,y) :-
    natural_pair(x,y),
    x < 10,
```

y = x*x.

Relation	# Tuples Generated	Total Time (s)	Total Time (%)
natural_number	1,000	0.002	1.2%
natural_pair	1,000,000	0.154	92.2%
query	10	0.011	6.6%

```
natural_number(0).
natural_number(x+1) :- natural_number(x), x < 999.

natural_pair(x,y) :- natural_number(x), natural_number(y).

query(x,y) :- natural_pair(x,y), x < 10, y = x*x.
.output query</pre>
```

```
natural_number(0).
natural_number(x+1) :- natural_number(x), x < 999.

natural_pair(x,y) :- natural_number(x), natural_number(y).

query(x,y) :- natural_pair(x,y), x < 10, y = x*x.
.output query</pre>
```

```
natural_number(0).
natural_number(x+1) :- natural_number(x), x < 999.

natural_pair(x,y) :- natural_number(x), natural_number(y).

query(x,y) :- natural_number(x), natural_number(y), x < 10, y = x*x.
.output query</pre>
```

```
natural_number(0).
natural_number(x+1) :- natural_number(x), x < 999.
query(x,y) :- natural_number(x), natural_number(y), x < 10, y = x*x.
.output query</pre>
```

Initial Program

Relation	# Tuples Generated	Total Time (s)	Total Time (%)
natural_number	1,000	0.002	1.2%
natural_pair	1,000,000	0.154	92.2%
query	10	0.011	6.6%

Peak Memory: 27.94 MB Total Time: 0.17 s

New and ImprovedTM Program

Relation	# Tuples Generated	Total Time (s)	Total Time (%)
natural_number	1,000	0.002	100%
query	10	0.00	0%

Peak Memory: 11.68 MB Total Time: 0.01 s

• The process of replacing the occurrences of a relation with its rules

- The process of replacing the occurrences of a relation with its rules
 - One round of a top-down evaluation

- The process of replacing the occurrences of a relation with its rules
 - One round of a top-down evaluation
- Sound and complete

- The process of replacing the occurrences of a relation with its rules
 - One round of a top-down evaluation
- Sound and complete
- Inlining is most appropriate for relations that:
 - Compute a large number of tuples
 - Are not used much
 - Have a small number of rules
 - If they appear negated, then don't have large rule bodies
 - Only a small portion of the relation is likely to be used

- The process of replacing the occurrences of a relation with its rules
 - One round of a top-down evaluation
- Sound and complete
- Inlining is most appropriate for relations that:
 - Compute a large number of tuples
 - Are not used much
 - Have a small number of rules
 - If they appear negated, then don't have large rule bodies
 - Only a small portion of the relation is likely to be used
- Primarily beneficial when it is not useful to precompute and store all the tuples in the relation

Transformation Algorithm

```
Algorithm 1 Inline Transformer
 1: function INLINEPROGRAM(P, I) \triangleright P - program, I - set of inlined relations
       inliningPerformed = true
       while inliningPerformed do
 3:
           inliningPerformed = false
 4:
           clausesToRemove = \emptyset
 5:
           for all clauses c \in P s.t. relation(c) \notin I do
 6:
               if body(c) contains a literal L s.t. L uses a relation in I then
 7:
                  clauses To Remove. add(c)
 8:
                  inliningPerformed = true
 9:
                  V = \text{set of conjunctions replacing L after one step of inlining}
10:
                  for all v \in V do
11:
                      newClause = copy of c with L replaced by v
12:
                      P.addClause(newClause)
13:
           for all c \in \text{clausesToRemove do}
14:
               P.removeClause(C)
15:
```

Transformation Algorithm

Algorithm 1 Inline Transformer

```
1: function Inlined relations
      inliningPerformed = true
2:
      while inliningPerformed do
          inliningPerformed = false
          clausesToRemove = \emptyset
5:
          for all clauses c \in P s.t. relation(c) \notin I do
6:
             if body(c) contains a literal L s.t. L uses a relation in I then
7:
                clauses To Remove. add(c)
8:
                inliningPerformed = true
9:
                 V = \text{set of conjunctions replacing L after one step of inlining}
10:
                for all v \in V do
11:
                    newClause = copy of c with L replaced by v
12:
                    P.addClause(newClause)
13:
          for all c \in \text{clausesToRemove do}
14:
             P.removeClause(C)
15:
```

- Let L be the literal we want to inline.
- Cases:

- Let L be the literal we want to inline.
- Cases:
 - L = !L', where L' needs to be inlined

- Let L be the literal we want to inline.
- Cases:
 - L = !L', where L' needs to be inlined
 - L = $a(x_1, ..., x_k, ..., x_n)$, x_k an aggregator that needs to be inlined

- Let L be the literal we want to inline.
- Cases:
 - L = !L', where L' needs to be inlined
 - L = $a(x_1, ..., x_k, ..., x_n)$, x_k an aggregator that needs to be inlined
 - L = $a(x_1, ..., x_n)$, a needs to be inlined

- Let L be the literal we want to inline.
- Cases:
 - L = !L', where L' needs to be inlined
 - L = $a(x_1, ..., x_k, ..., x_n)$, x_k an aggregator that needs to be inlined
 - L = $a(x_1, ..., x_n)$, a needs to be inlined

- Let L be the literal we want to inline.
- Cases:
 - L = !L', where L' needs to be inlined
 - L = $a(x_1, ..., x_k, ..., x_n)$, x_k an aggregator that needs to be inlined
 - $L = a(x_1, ..., x_n)$, a needs to be inlined

- L = !L', where L' needs to be inlined
 - Inline L' recursively

- L = !L', where L' needs to be inlined
 - Inline L' recursively
 - New versions of L' will be of the form:

$$L'_1 = L'_{11} \wedge L'_{12} \wedge \cdots \wedge L'_{1m_1}$$

$$L'_2 = L'_{21} \wedge L'_{22} \wedge \cdots \wedge L'_{2m_2}$$

$$\vdots$$

$$L'_n = L'_{n1} \wedge L'_{n2} \wedge \cdots \wedge L'_{nm_n}$$

•
$$L' = L'_1 \vee \cdots \vee L'_n$$

- L = !L', where L' needs to be inlined
 - Inline L' recursively
 - New versions of L' will be of the form:

$$L'_{1} = L'_{11} \wedge L'_{12} \wedge \cdots \wedge L'_{1m_{1}}$$

$$L'_{2} = L'_{21} \wedge L'_{22} \wedge \cdots \wedge L'_{2m_{2}}$$

$$\vdots$$

$$L'_{n} = L'_{n1} \wedge L'_{n2} \wedge \cdots \wedge L'_{nm_{n}}$$

•
$$\neg L' = \neg (L'_1 \lor \cdots \lor L'_n)$$

- L = !L', where L' needs to be inlined
 - Inline L' recursively
 - New versions of L' will be of the form:

$$L'_{1} = L'_{11} \wedge L'_{12} \wedge \cdots \wedge L'_{1m_{1}}$$

$$L'_{2} = L'_{21} \wedge L'_{22} \wedge \cdots \wedge L'_{2m_{2}}$$

$$\vdots$$

$$L'_{n} = L'_{n1} \wedge L'_{n2} \wedge \cdots \wedge L'_{nm_{n}}$$

•
$$\neg L' = \neg L'_1 \wedge \cdots \wedge \neg L'_n$$

- Let L be the literal we want to inline.
- Cases:
 - L = !L', where L' needs to be inlined
 - L = $a(x_1, ..., x_k, ..., x_n)$, x_k an aggregator that needs to be inlined
 - $L = a(x_1, ..., x_n)$, a needs to be inlined

- Let A be the aggregator, and B be the body of the aggregator we want to inline
 - A is of the form <aggr_type> : <body>

- Let A be the aggregator, and B be the body of the aggregator we want to inline
 - A is of the form <aggr_type> : <body>
 - $B' = B'_1 \vee ... \vee B'_n$

- Let A be the aggregator, and B be the body of the aggregator we want to inline
 - A is of the form <aggr_type> : <body>
 - $B' = B'_1 \vee ... \vee B'_n$
 - If A = max Z : B, then:
 - A' = $\max(\max Z : B'_{1}, \max Z : B'_{2}, ..., \max Z : B'_{n})$

- Let A be the aggregator, and B be the body of the aggregator we want to inline
 - A is of the form <aggr_type> : <body>
 - $B' = B'_1 \vee ... \vee B'_n$
 - If A = max Z : B, then:
 - A' = max(max Z : B'_{1} , max Z : B'_{2} , ..., max Z : B'_{n})
 - If A = min Z : B, then:
 - A' = min(min Z : B'₁, min Z : B'₂, ..., min Z : B'_n)
 - If A = sum Z : B, then:
 - A' = sum(sum Z : B'_{1} , sum Z : B'_{2} , ..., sum Z : B'_{n})
 - If A = count Z : B, then:
 - A' = sum(count Z : B'_{1} , count Z : B'_{2} , ..., count Z : B'_{n})

Literal Algorithm

- Let L be the literal we want to inline.
- Cases:
 - L = !L', where L' needs to be inlined
 - L = $a(x_1, ..., x_k, ..., x_n)$, x_k an aggregator that needs to be inlined
 - L = $a(x_1, ..., x_n)$, a needs to be inlined

Literal Algorithm - Atoms

- Let $L = a(x_1, ..., x_n)$ be the atom we want to inline
- Let the rules for a be defined as follows:
 - $a(y_{11}, ..., y_{1n}) :- B_1(y_{11}, ..., y_{1n})$
 - $a(y_{21}, ..., y_{2n}) :- B_2(y_{21}, ..., y_{2n})$
 - ...
 - $a(y_{m1}, ..., y_{mn}) :- B_m(y_{m1}, ..., y_{mn})$

- Argument matching
- E.g. unifying $a(x_1, ..., x_n)$ and $a(y_1, ..., y_n)$

- Argument matching
- E.g. unifying $a(x_1, ..., x_n)$ and $a(y_1, ..., y_n)$
 - $x_1 = y_1, ..., x_n = y_n$

- Argument matching
- E.g. unifying $a(x_1, ..., x_n)$ and $a(y_1, ..., y_n)$
 - $x_1 = y_1, ..., x_n = y_n$
- Problem: unifying a(x, y) and a(y, z)

- Argument matching
- E.g. unifying $a(x_1, ..., x_n)$ and $a(y_1, ..., y_n)$
 - $x_1 = y_1, ..., x_n = y_n$
- Problem: unifying a(x, y) and a(y, z)
 - a(y, z) ---renaming--> $a(y_0, z_0)$

Literal Algorithm - Atoms

- Let $L = a(x_1, ..., x_n)$ be the atom we want to inline
- Let the rules for a be defined as follows:
 - $a(y_{11}, ..., y_{1n}) :- B_1(y_{11}, ..., y_{1n})$
 - $a(y_{21}, ..., y_{2n}) :- B_2(y_{21}, ..., y_{2n})$
 - ...
 - $a(y_{m1}, ..., y_{mn}) :- B_m(y_{m1}, ..., y_{mn})$

Literal Algorithm

- Let L be the literal we want to inline.
- Cases:
 - L = !L', where L' needs to be inlined
 - L = $a(x_1, ..., x_k, ..., x_n)$, x_k an aggregator that needs to be inlined
 - L = $a(x_1, ..., x_n)$, a needs to be inlined

- Can't complete inlining if:
 - Input, output, or printsize relations are chosen to be inlined

- Can't complete inlining if:
 - Input, output, or printsize relations are chosen to be inlined
 - There's a cycle in the precedence graph composed entirely of inlined relations
 - In other words, let G be the precedence graph, and G' be the subgraph of G containing only the nodes that are inlined. If G' contains a cycle, then inlining is not possible.

- Can't complete inlining if:
 - Input, output, or printsize relations are chosen to be inlined
 - There's a cycle in the precedence graph composed entirely of inlined relations

- Can't complete inlining if:
 - Input, output, or printsize relations are chosen to be inlined
 - There's a cycle in the precedence graph composed entirely of inlined relations
 - A relation R that introduces new variables in its rules is marked to be inlined, but appears negated in a clause

- Can't complete inlining if:
 - Input, output, or printsize relations are chosen to be inlined
 - There's a cycle in the precedence graph composed entirely of inlined relations
 - A relation R that introduces new variables in its rules is marked to be inlined, but appears negated in a clause

```
a(x) := b(x,y), c(y).

d(x) := e(x), !a(x).
```

- Can't complete inlining if:
 - Input, output, or printsize relations are chosen to be inlined
 - There's a cycle in the precedence graph composed entirely of inlined relations
 - A relation R that introduces new variables in its rules is marked to be inlined, but appears negated in a clause

$$a(x) := b(x,y), c(y).$$
 $d(x) := e(x), !b(x,y).$
 $d(x) := e(x), !c(y).$

Usage

```
.decl natural_pairs(x:number, y:number) inline
```

Benchmarks

Program	Unchanged - Time (s)	Inlined (Maximal) – Time (s)	Speedup (x)
natpairs (n = 10,000)	19.3	0.03	644.3
natpairs (n = 100,000)	_*	0.2	∞
natpairs2 (n = 1000)	51.0	9.0	5.7
prime2 (n = 10,000)	103.7	79.4	1.3
nqueens (n = 8)	11569.0	269.6	42.9
tic-tac-toe	0.4	464.4	0.001

^{* 2708.9}s then ran out of memory

Benchmarks

Program	Unchanged – Memory (MB)	Inlined – Memory (MB)	Improvement(x)
natpairs (n = 10,000)	1640.1	11.7	140.2
natpairs (n = 100,000)	_*	13.0	∞
natpairs2 (n = 1000)	3266.6	16.5	198.0
prime2 (n = 10,000)	1040.3	1040.5	1.0
nqueens (n = 8)	8239.2	129.3	63.7
tic-tac-toe	25.2	9106.0	0.003

^{*} crashed at around 60GB

Case Study - natpairs2

```
.decl natural_number(x:number)
natural_number(0).
natural\_number(x+1) := natural\_number(x), x < 9999.
.decl natural_pairs(x:number, y:number) inline
natural_pairs(x, y) :- natural_number(x), natural_number(y).
.decl bad_pairs(x:number, y:number)
bad_pairs(x, y) :- natural_pairs(x, y), x \ge y, (x = 2; x = 3; x = 5; x = 7).
.decl good_pairs(x:number, y:number)
good_pairs(x, y) := natural_pairs(x, y), !bad_pairs(x, y).
.decl bad_number(x:number)
bad_number(2).
bad_number(x+2*y) := bad_number(x), bad_number(y), x+2*y < 1000.
.decl query(x:number)
query(x) := good_pairs(x, y), !bad_number(y), x < 100.
.output query()
```

Case Study - natpairs2

```
.decl natural_number(x:number)
natural_number(0).
natural_number(x+1) :- natural_number(x), x < 9999.

.decl natural_pairs(x:number, y:number) inline
natural_pairs(x, y) :- natural_number(x), natural_number(y).

.decl bad_pairs(x:number, y:number)
bad_pairs(x, y) :- natural_pairs(x, y), x >= y, (x = 2; x = 3; x = 5; x = 7).

.decl good_pairs(x:number, y:number)
good_pairs(x, y) :- natural_pairs(x, y), !bad_pairs(x, y).

.decl bad_number(x:number)
bad_number(2).
bad_number(x+2*y) :- bad_number(x), bad_number(y), x+2*y < 1000.

.decl query(x:number)
query(x) :- good_pairs(x, y), !bad_number(y), x < 100.

.output query()</pre>
```

Relations Inlined	Time (s)	Speedup (x)
Ø	46.90	-
{natural_pairs}	29.04	1.62
{bad_pairs}	1025.51	0.05
{good_pairs}	28.43	1.65
<pre>{natural_pairs, bad_pairs}</pre>	607.07	0.08
<pre>{natural_pairs, good_pairs}</pre>	0.17	276.88
{bad_pairs, good_pairs}	1195.04	0.04
<pre>{natural_pairs, bad_pairs, good_pairs}</pre>	9.08	5.17

Future Work

- Automating the inlining selection process
- Support specific rule inlining
- Fixing aggregator inlining
- Using inlining with Magic-Set