BEE 6740 Spring 2014

Ecohydrology

Here are some generic parameters for modeling plant evaporation potential using the crop coefficient method. We assume 5 development stages:

I = slow development stage (early spring / recently planted)

II = rapid growth stage

III = fully developed canopy

IV = Senescence

V = dormancy or winter.

Some Useful Plant Properties

	T _b (°C)	GDD _{max} (°C)	K _{cmin}	K _{cmax}	$Z_{r\min}$ (mm)	Z _{rmax} (mm)
Deciduous, mixed forest,	1	2500	0.25	1	1500	1500
shurbland	1	2500	0.2	1	750	750
Conifer forest	0	2500	0.9	0.9	1500	1500
Natural grassland	-1	3000	0.2	1	600	600
Hay, fallow, alfalfa, pasture	-1	3000	0.2	1	600	600
Row crops, small grains	5	2000	0.1	1	75	750
Recreational grasslands	10	2500	0.4	1	75	300

 T_b is the base temperature for calculating growing degree days (GDD)

 K_c is the crop coefficient for adjusting PET to reflect the crop capacity to transpire

 Z_r is the root depth

Percent of GDD_{max} at which each stage begins

	ı	II	III	IV	V	
Deciduous, mixed forest,	0	10	22.5	90	100	
shurbland	0	7.5	12.5	95	100	
Conifer forest	0	5	10	95	100	
Natural grassland	0	5	10	95	100	
Hay, fallow, alfalfa, pasture	0	15	40	90	100	
Row crops, small grains	0	7.5	17.5	85	100	

Growth factor for each stage

$$\alpha_{I} = \frac{GDD}{GDD_{IV}}$$

$$\alpha_{II} = 1 + \frac{(GDD - GDD_{II})}{GDD_{IV}} \frac{(GDD_{IV} - GDD_{II})}{(GDD_{III} - GDD_{II})}$$

$$\alpha_{III} = 1$$

$$\alpha_{IV} = 1 - 0.6 \frac{(GDD - GDD_{IV})}{(GDD_{Max} - GDD_{IV})}$$

$$\alpha_{V} = 0$$

Calculating K_c and Z_r

$$K_{c,i} = K_{cmin} + \alpha_i (K_{cmax} - K_{cmin})$$

$$Z_{r,i} = Z_{rmin} + \alpha_i (Z_{rmax} - Z_{rmin})$$