

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA

Bases de Datos. Grupo 1

Ing. Fernando Arreola

Fecha de entrega: 24 de MARZO de 2025

TAREA 5

Apellido paterno	Apellido materno	Nombre(s)
Soriano	Barrera	María Elena

Axiomas de Armstrong

Los Axiomas de Armstrong son un conjunto de reglas de inferencia que permiten derivar dependencias funcionales válidas a partir de un conjunto de dependencias conocidas. Son esenciales en el proceso de normalización de bases de datos, donde se busca reducir la redundancia y mejorar la integridad de los datos.

Estos axiomas fueron propuestos por William W. Armstrong en 1974 y constituyen una base sólida para el razonamiento lógico sobre las dependencias funcionales en un esquema relacional.

Reglas Básicas:

* Reflexividad

Si Y X, entonces $X \to Y$

Si el lado derecho (Y) está contenido en el lado izquierdo (X), entonces la dependencia es válida por sí sola.

Ejemplo 1

Supón que tienes el conjunto de atributos:

X =

Ejemplo 2:

Como "Nombre" está contenido en X:

 \rightarrow Nombre, CURP \rightarrow Nombre

Esto es válido por reflexividad.

* Aumentación o Expansión

Si X \rightarrow Y, entonces XZ \rightarrow YZ, (donde Z es cualquier conjunto de atributos).

Podemos agregar el mismo conjunto de atributos Z a ambos lados de la dependencia sin invalidarla.

2

Ejemplo 1:

Si sabes que:

 $\mathbf{A} \to \mathbf{B}$

Entonces también puedes decir que:

 $AC \to BC$

Esto es útil cuando se combinan dependencias funcionales en conjuntos más grandes.

* Transitividad

Si X \rightarrow Y y Y \rightarrow Z, entonces X \rightarrow Z

Si X determina Y y Y determina Z, entonces X también determina Z.

Ejemplo 1:

 $A \to B$

 $\mathrm{B} \to \mathrm{C}$

Entonces: $A \to C$

Esto es muy usado en la inferencia de nuevas dependencias.

Reglas Derivadas:

* Unión

Si
$$X \to Y$$
 y $X \to Z$, entonces $X \to YZ$

Ejemplo 1

Si
$$A \rightarrow B$$
 y $A \rightarrow C$
Entonces $A \rightarrow BC$

* Descomposición

Si
$$X \to YZ$$
, entonces $X \to Y$ y $X \to Z$

Ejempl0 1:

Si A
$$\rightarrow$$
 BC
Entonces A \rightarrow B v A \rightarrow C

* Pseudotransitividad

Si
$$X \to Y$$
 y $YZ \to W$, entonces $XZ \to W$

Ejemplo 1:

Si A
$$\rightarrow$$
 B y BC \rightarrow D
Entonces AC \rightarrow D

Bibliografía

W. W. Armstrong, "Dependency structures of data base relationships," in Information Processing 74: Proceedings of IFIP Congress, Stockholm, Sweden, 1974, pp. 580–583.

R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, 7th ed., Boston, MA, USA: Pearson, 2016.

A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Concepts, 6th ed., New York, NY, USA: McGraw-Hill, 2010.