Clustering 1

EE412: Foundation of Big Data Analytics

Announcements

Homeworks

• HW0 (due: 09/21)

• HW1 (due: 10/05)

Recap: LSH

collision = John want => doz Jocol band 1

• Locality Sensitive Hashing (LSH)

- Theory of LSH
 - Locality-sensitive families
 - AND and OR constructions
- LSH for cosine distance
 - Random hyperplanes

3 rows-

band 2

band 3

Outline

- 1. Clustering
- 2. Hierarchical Clustering
- 3. K-means Clustering

Clustering

- The process of grouping a collection of points into clusters
 - Members of the same cluster are close/similar to each other
 - Members of different clusters are dissimilar
- We focus on cases when
 - Data is very large
 - Space is high-dimensional
 - Space is non-Euclidean
 - Similarity is defined using any distance measure

Points, Spaces, and Distances

- Distance measure gives a distance between two points
 - Recall the 4 requirements for a distance measure
- Popular distance measures in a Euclidean space
 - Euclidean (L2) distance: $\sqrt{\sum_i (x_i y_i)^2}$
 - Manhattan (L1) distance: $\sum_{i} |x_i y_i|$
 - L0 distance: $\sum_{i} [1 \text{ if } x_i \neq x_y \text{ else } 0]$
 - L-Infinity distance: $\max_i |x_i y_i|$

Example: Clusters and Outliers

Jaemin Yoo

Example: Documents

• Finding topics:

- Represent a document by a vector (x_1, x_2, \cdots, x_k) where $x_i = 1$ iff the *i*-th word appears in the document
- Idea: Documents with similar sets of words may be about the same topic
- Task: Find clusters of documents
 - Slightly different from finding similar pairs (by LSH)

La Goal', Good dusters, not party

Cosine, Jaccard, and Euclidean

- We have a choice when we think of documents as sets of words:
 - Sets as vectors: Measure similarity by the cosine distance
 - Sets as sets: Measure similarity by the Jaccard distance
 - Sets as points: Measure similarity by Euclidean distance

Clustering in Low-Dimensional Space

Clustering in two dimensions looks easy

The Curse of Dimensionality

- High-dimensional spaces have the "curse of dimensionality"
 - Almost all pairs of points are equally far away from one another

The Curse of Dimensionality

nalvas of se=1

- Consider two random points in the n-dimensional unit hypercube
- The variance of their distance goes to a constant when $n \to \infty$
 - But the possible range is $[0, \sqrt{n})$
- E.g., when n = 2500
 - The distance can be anything in [0, 50)
 - However, most distances are in (20, 21)

Source: https://math.stackexchange.com/questions/1976842/how-is-the-distance-of-two-random-points-in-a-unit-hypercube-distributed

Clustering Strategies (1)

Hierarchical

- **Agglomerative** (bottom up)
 - Initially, each point is a cluster
 - Repeatedly combine the "nearest" clusters into one
- **Divisive** (top down)
 - Start with one cluster and recursively split it

Point assignment

- Maintain a set of clusters
- Points belong to the "nearest" cluster

Clustering Strategies (2)

• In Euclidean:

- Points are vectors of real numbers, i.e. coordinates
- It is possible to summarize a collection of points as their average
 - We call it centroid
- Distance measure: L2 norm, L1 norm

• In non-Euclidean:

- There is no notion of location, and centroid
- We summarize a collection of points differently
- Distance measures: Jaccard, Hamming, cosine

Clustering Strategies (3)

- Q: Does the data fit in memory or it resides on disk?
- In-memory clustering is more straightforward
 - Example: K-means
- Large-data clustering requires loading one batch of data at a time
 - Cluster them in memory and keep summaries of clusters
 - Example: BFR, CURE

Hierarchical vs. Point-Assignment

- (Left) Point assignment is good when clusters have nice shapes
- (Right) Hierarchical can win when shapes are weird
 - Note both clusters have essentially the same centroid

Outline

- 1. Clustering
- 2. <u>Hierarchical Clustering</u>
- 3. K-means Clustering

Hierarchical Clustering

- **Key operation:** Repeatedly merge two "nearest" clusters
- Three important questions:
 - 1. How to represent a cluster?
 - 2. How to determine the nearness of clusters?
 - 3. When to stop merging clusters?

Hierarchical Clustering: Euclidean

- In a Euclidean case:
- Q1: How to represent a cluster of many points?
 - As we merge clusters, we represent the "location" of each cluster by
 - Its centroid = average of its (data) points
- Q2: How to determine the nearness of clusters?
 - Measure cluster distances by distances of centroids
 - Merge two clusters with the shortest distance

× = centroid

Dendogram

Efficiency of Hierarchical Clustering

- Basic algorithm
 - At each step, compute distances between pairs of clusters
 - Running time is $O(n^3)$, since $n^2 + (n-1)^2 + (n-2)^2 + \cdots$

Efficiency of Hierarchical Clustering

- More efficient implementation is possible using a priority queue
 - Priority queue can store a collection of prioritized elements
 - The overall algorithm is $O(n^2 \log n)$, which is better than $O(n^3)$
- Why is it better?
 - We can avoid re-computing the distances computed in earlier iterations
 - See the textbook for details

Hierarchical Clustering: Non-Euclidean

In a non-Euclidean case:

- The only "locations" we can talk about are the points themselves
- Three possible approaches regarding the questions:
 - Q1: How to represent a cluster of many points?
 - Q2: How to determine the nearness of clusters?
- Note: They can also be used in a Euclidean case

Non-Euclidean Approach 1

- Q1: How to represent a cluster of many points?
 - Pick a clustroid = (data) point "closest" to all other points
 - Possible meanings of "closest":
 - Smallest maximum / average distance to other points
- Q2: How to determine the nearness of clusters?
 - Treat clustroid as if it were centroid

Centroid vs. Clusteroid

- Centroid is the average of all (data) points in the cluster
 - This means centroid is an "artificial" point
- Clustroid is an existing point that is "closest" to all other points

Non-Euclidean Approach 2

- Q1: How to represent a cluster of many points?
 - As the collection of points in a cluster
- Q2: How to determine the nearness of clusters?
 - Define inter-cluster distance:
 - Minimum of the distances between any two points, one from each cluster
 - Average distance of all pairs of points, one from each cluster

Non-Euclidean Approach 3

- Q1: How to represent a cluster of many points?
 - As the collection of points in a cluster.
- Q2: How to determine the nearness of clusters?
 - Merge clusters whose union is most cohesive (cohision)
 - Possible notions of cohesion (the smaller, the more cohesive):
 - Diameter of the merged cluster = Maximum distance between points
 - Average distance between all points.
 - Inverse density of the cluster = Diameter or average distance / # of points how sood the cluster.

When to Stop?

- When do we stop merging clusters?
 - If the diameter of merged cluster exceeds threshold
 - If the density of merged cluster is below threshold
 - If there is evidence that the merged cluster yields a bad cluster
 - E.g., average diameter suddenly increases

Pop Quiz

- Perform a hierarchical clustering on the points below
 - The distance between two clusters is the maximum of the distances between any two points

• 1, 4, 9, 16, 25, 36

Outline

- 1. Clustering
- 2. Hierarchical Clustering
- 3. K-means Clustering

k-means Algorithm

- Best known family of clustering algorithms for point assignment
- Given Euclidean space/distance and k = number of clusters
 - Possible to deduce k by trial and error
- Find cluster centers that minimizes sum of squared distances
 - From each point to its cluster center

k-means Algorithm

- **Initialize** clusters by picking k centers
- Until convergence:
 - 1. For each point, assign it to the cluster whose centroid is the closest
 - 2. After all points are assigned, update the centroids of the k clusters
 - As the average of data points within each cluster
- Convergence means that points don't move between clusters

Shortcoming of *k*-means

37 Centrold oil @ 2

- Convergence of k-means heavily depends on the initial centroids
- It can perform arbitrarily badly in such a case:

k-means++

Goal: Pick points that are likely to lie in different clusters

• Basic idea:

- Pick a small sample of points S, cluster them, and use the centroids
 - Any algorithm can be used for the clustering
- Sample size |S| is proportional to $k \times \log n$, where n is the data size
- How to pick sample points:
 - Visit points in a random order × 1404
 - Add each point p to the sample with a probability proportional to $D(p)^2$.
 - D(p) = Distance between p and the nearest already picked point

Consist for points (sumple overs actual space) =1 600d initial points

KΔIST

Example: Assigning Clusters

Example: Assigning Clusters

Example: Assigning Clusters

Getting the k Right

How to select k?

- Try different *k*
- Look at the change in the average distance to centroid as k increases
- Average falls rapidly until right k, then changes little

Example: Picking k

Too few; many long distances to centroid

Source: Stanford CS246 (2022)

Jaemin Yoo

Example: Picking k

Just right; distances rather short

Source: Stanford CS246 (2022)

Jaemin Yoo

Example: Picking k

Summary

1. Clustering

- Curse of dimensionality
- Clustering strategies
- 2. Hierarchical Clustering
 - Euclidean vs. non-Euclidean
 - Centroids vs. clustroids
- 3. K-means Clustering
 - *k*-means++
 - Selection of k