ELEC 462/562 Statistical Signal Processing Project

Due: 16.12.2024

Electrocardiogram (ECG) Signal Restoration

Assume that we observe the electrocardiogram (ECG) signal $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{W}$ over an LTI noncausal system given in the following figure. Here \mathbf{H} is a convolution matrix constituted by the system impulse response. The noise $\mathbf{W} \in \mathbb{R}^{300}$ is a white Gaussian vector with zero mean and variance 16×10^{-4} . \mathbf{X} and \mathbf{W} are assumed to be uncorrelated.

We assume that the signal \mathbf{X} is a Gaussian random vector with zero mean and covariance matrix $(\lambda \mathbf{L}^T \mathbf{L})^{-1}$ where \mathbf{L} is a Tikhonov regularization matrix. The parameter λ is the regularization parameter that controls the smoothing level. The observation vector $\mathbf{Y} = \mathbf{y} \in \mathbb{R}^{300}$, the ground-truth signal $\mathbf{x} \in \mathbb{R}^{300}$, the system matrix $\mathbf{H} \in \mathbb{R}^{300 \times 300}$ and the matrix $\mathbf{L} \in \mathbb{R}^{300 \times 300}$ are given in the attached mat files. In this project, your task is to estimate the signal \mathbf{X} using two different estimators and to compare their performances.

- a) Derive the maximum likelihood (ML) estimator for X.
- b) For given observation vector $\mathbf{Y} = \mathbf{y}$, obtain the ML estimate $\widehat{x}_{\mathrm{ML}}$. Plot the observation \mathbf{y} . Plot the estimate $\widehat{x}_{\mathrm{ML}}$ along with the ground-truth \mathbf{x} in the same figure. Interpret the result.
- c) Derive the maximum-a-posteriori (MAP) estimator for ${\bf X}$.
- d) For given observation vector $\mathbf{Y} = \mathbf{y}$, obtain the linear estimate $\hat{\mathbf{x}}_{\text{MAP}}(\lambda)$ for $\lambda = 1, 10, 100$, 1000. Plot each $\hat{\mathbf{x}}_{\text{MAP}}(\lambda)$ for different values of λ along with the ground-truth \mathbf{x} . Interpret the effect of λ on estimation.
- e) Calculate the mean square error of each estimate such that

$$MSE = \frac{1}{300} \|\mathbf{x} - \hat{\mathbf{x}}\|^2$$

List the results in a table such that

	ML	MAP ($\lambda = 1$)	$MAP (\lambda = 10)$	MAP ($\lambda = 100$)	$MAP (\lambda = 1000)$
MSE					