Exercise 1 (3.2.E Vakil). Show that we have identified all the prime ideals of $\mathbb{C}[x,y]$.

 \llbracket Hint: Suppose $\mathfrak p$ is a prime ideal that is not principal. Show you can find $f,g\in\mathfrak p$ with no common factor. By considering the Euclidean algorithm in the Euclidean domain $\mathbb C(x)[y]$, show that you can find a nonzero $h\in \mathrm{gen}(f,g)\subseteq\mathfrak p$. Using primality, show that one of the linear factors of h, say (x-a), is in $\mathfrak p$. Similarly show there is some $(y-b)\in\mathfrak p$. \rrbracket

The example in the book before the exercise describes $\mathbb{A}^2_{\mathbb{C}} = \operatorname{Spec} \mathbb{C}[x,y]$. The example shows that

- $\diamond 0$ is a prime ideal.
- \diamond Ideals of the form gen(x-a,y-b) with $a,b\in\mathbb{C}$ are prime. Even more, that they are maximal.
- \diamond And finally ideals of the form gen(f) with an irreducible f are also prime.

The hint tells us to take a prime ideal and assume it is not of the form gen(f) with an irreducible f. Then we will conclude that it is of the form gen(x-a,y-b) which is the other only non-zero possibility.

Answer

Take a non-principal ideal $\mathfrak{p} \in \operatorname{Spec} \mathbb{C}[x,y]$, we begin by wanting to find such f,g with $\gcd(f,g)=1$.

If this were not the case, then all polynomials in \mathfrak{p} would have a common factor. Let $p = \gcd(f)_{f \in \mathfrak{p}}$, then p is a generator for \mathfrak{p} . As it was the case that \mathfrak{p} wasn't principal, our assumption that no such f,g exist must be false.

Assume that g's degree in y is lower than f's we may apply the division algorithm on $\mathbb{C}(x)[y]$ to obtain

$$f = qg + r$$
, $q, r \in \mathbb{C}(x)[y]$ and $\deg_y(r) \leq \deg_y(g)$.

We may iterate this process and continue dividing with the residues in order to obtain

$$g = q_2r + r_2 \Rightarrow r = q_3r_2 + r_3 \Rightarrow \dots$$

until we reach a point where the remainder has degree zero in y. Retracing the equalities from the last point to the first equation, let us write

$$f(x,y) = \frac{q_1(x,y)}{q_2(x)}g(x,y) + \frac{r_1(x)}{r_2(x)}$$

where $\frac{r_1}{r_2}$ is the last remainder. Homogenizing we obtain an equation of the form

$$q_2r_2f = q_1r_2g + r_1q_2 \Rightarrow r_1q_2 \in \text{gen}(f,g)$$

and we may also see that r_1q_2 is a polynomial depending only on x. Thus we may factor it into

$$r_1q_2(x) = \prod_{i=1}^d (x - a_i) \Rightarrow \exists j((x - a_j) \in \mathfrak{p}).$$

The same argument may be repeated but this time we obtain a polynomial $(y-b) \in \mathfrak{p}$. With this we have

$$gen(x-a, y-b) \subseteq \mathfrak{p}$$

and as \mathfrak{p} is a proper prime ideal, it must occur that \mathfrak{p} is this maximal ideal.

Exercise 2 (3.2.K Vakil). Suppose S is a multiplicative subset of A. Describe an order-preserving bijection of the prime ideals of $S^{-1}A$ with the prime ideals of A that don't meet the multiplicative set S.

Answer

We will describe the bijection

$$\{ \mathfrak{p} \in \operatorname{Spec} A : \mathfrak{p} \cap S = \emptyset \} \to \operatorname{Spec} S^{-1}A.$$

If $\mathfrak{p} \in \operatorname{Spec} A$ with $\mathfrak{p} \cap S = \emptyset$ we will show that $S^{-1}\mathfrak{p}$ is a prime ideal in $S^{-1}A$. Suppose that $\frac{a_1}{s_1} \frac{a_2}{s_2} \in S^{-1}\mathfrak{p}$. Then there exist $p \in \mathfrak{p}$ and $s \in S$ such that

$$\frac{a_1}{s_1}\frac{a_2}{s_2} = \frac{p}{s} \Rightarrow u(a_1a_2s - s_1s_2p) = 0, \quad \text{for some} \quad u \in S.$$

Now

$$us_1s_2p \in \mathfrak{p} \Rightarrow ua_1a_2s \in \mathfrak{p} \Rightarrow a_1a_2 \in \mathfrak{p} \Rightarrow a_1 \in \mathfrak{p} \vee a_2 \in \mathfrak{p}$$

from which we conclude that either $\frac{a_1}{s_1}$ or $\frac{a_2}{s_2}$ is in $S^{-1}\mathfrak{p}$, which means that $S^{-1}\mathfrak{p}$ is a prime ideal.

On the other hand if $\mathfrak{q} \in \operatorname{Spec} S^{-1}A$ we can take its preimage through the mapping:

$$\phi^{-1}\left[\mathfrak{q}\right] = \left\{ x \in A : \frac{x}{1} \in \mathfrak{q} \right\}$$

and we will show that this ideal doesn't intersect S.

On the contrary, if it did, if there was $s_0 \in S \cap \phi^{-1}[\mathfrak{q}]$ then $\frac{s_0}{1} \in \mathfrak{q}$. Then

$$\left(\frac{1}{s_0}\right)\left(\frac{s_0}{1}\right)=1\in\mathfrak{q}$$
 because \mathfrak{q} is prime .

This means that \mathfrak{q} must be the whole ring, but if \mathfrak{q} were proper, we would have a contradiction. This means that our assumption was wrong and therefore $\phi^{-1}[\mathfrak{q}] \cap S = \emptyset$.

This is the bijection in question. It preserves order because preimages of sets preserve order.

Exercise 3 (3.6.M Vakil). Verify that $[gen(y-x^2)] \in \mathbb{A}^2_{\mathbb{C}}$ is a generic point for $V(y-x^2)$.

Answer

Call $\mathfrak{p} = \text{gen}(y - x^2)$, the closure of $\{\mathfrak{p}\}$ is

$$\overline{\{\mathfrak{p}\}} = \bigcap_{\substack{F\supseteq\{\mathfrak{p}\}\\F \text{ closed}}} F = \bigcap_{\mathfrak{p}\in V(S)} V(S).$$

I'm confused still on treating ideals as points. Couldn't finish on time.

Exercise 4 (3.6.P Vakil). Show that $\mathbb{A}^2_{\mathbb{C}}$ is a Noetherian topological space: any decreasing sequence of closed subsets of $\mathbb{A}^2_{\mathbb{C}} = \operatorname{Spec} \mathbb{C}[x,y]$ must eventually stabilize. Note that it can take arbitrarily long to stabilize. (The closed subsets of $\mathbb{A}^2_{\mathbb{C}}$ were described in 3.4.5.).

Show that \mathbb{C}^2 with the classical topology is not a Noetherian topological space.

Answer

Let (F_k) be a descending chain of closed subsets of $\mathbb{A}^2_{\mathbb{C}}$. Every F_k can be seen to be $V(I_k)$ where $I_k \lhd \mathbb{C}[x,y]$ is an ideal. So by the Nullstellensatz:

$$F_1 \supseteq F_2 \supseteq \dots$$

 $\Rightarrow V(I_1) \supseteq V(I_2) \supseteq \dots$
 $\Rightarrow I_1 \subseteq I_2 \subseteq \dots$

Now (I_k) is an ascending chain of ideals in $\mathbb{C}[x,y]$, and as this ring is Noetherian, ascending chains stabilize. Which means that there exists r with the property

that

$$I_r = I_{r+1} = \dots$$

and therefore $V(I_r)=V(I_{r+1})=\dots$ from which we extract that $\mathbb{A}^2_{\mathbb{C}}$ is Noetherian as a topological space.

On the other hand if we consider the collection of closed balls $(\overline{B}(0,\frac{1}{n}))_{n\in\mathbb{N}}$, we see that this collection doesn't stabilize. If it did, there would exist an r such that

$$\overline{B}\left(0,\frac{1}{r}\right) = \overline{B}\left(0,\frac{1}{r+1}\right) = \dots$$

but there are no points in $\overline{B}\left(0,\frac{1}{r}\right)\setminus\overline{B}\left(0,\frac{1}{r+1}\right)$ which are limits of sequences inside $\overline{B}\left(0,\frac{1}{r+1}\right)$ because any point in the annulus has positive distance to the smaller ball.