Recitation 6

Alex Dong

CDS, NYU

Fall 2020

Stochastic Processes Rabbit Hole

- ▶ Markov Chains are a topic in *stochastic processes*
- ► Stochastic Processes (&)
 - ▶ Finite Markov Chains (Discrete time, Discrete space)
 - ▶ Infinite Markov Chains (Discrete time, inf. discrete space)
 - ▶ Poisson Process (Continuous time, Discrete space)
 - ▶ Brownian Motion (Continuous time, continuous space)
- ▶ Main Assumption: Markov Property (Memoryless)
- ► Lots of Linear Algebra!

Questions: Stochastic Matrices

Let $A, B \in \mathbb{R}^{n \times n}$ be stochastic matrices. True or False for 1,2,3.

- 1. A is always invertible
- 2. The eigenvector corresponding to the largest eigenvalue of A is unique
- 3. A cannot have zero has its eigenvalue
- 4. Prove that AB is a stochastic matrix.

Hint for 4. Is there a way express the "sum of each column is 1" property as a matrix multiplication?

Solutions 1: Stochastic Matrices

Let A be a stochastic matrix. True or False for 1,2,3.

Solution

1. A is always invertible

False
$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

- 2. The eigenvector corresponding to the largest eigenvalue of A is
 - unique. False $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- 3. A cannot have zero has its eigenvalue. False: $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$

Solutions 2: Stochastic Matrices

4. Prove that the product of two stochastic matrices is a stochastic matrix.

Solution

Let A, B be stochastic matrices in \mathbb{R}^n .

Each entry is non-negative:

$$AB_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}$$

This summation is a sum of non-negative products, hence it is also non-negative.

Sum of each columns is 1:

Note that the property of each column summing to 1 can be seen as:

A matrix A is stochastic when

$$\begin{bmatrix} 1 & \dots & 1 \end{bmatrix} A = \begin{bmatrix} 1 & \dots & 1 \end{bmatrix}.$$

Then

$$\begin{bmatrix} 1 & \dots & 1 \end{bmatrix} AB = \begin{bmatrix} 1 & \dots & 1 \end{bmatrix} A = \begin{bmatrix} 1 & \dots & 1 \end{bmatrix}.$$

So AB is stochastic.

Change of Basis

- \blacktriangleright Sometimes, a matrix A 'prefers' certain directions (eigenvectors)
- ▶ (!!!) These directions act as *anchors* for understanding the action of a matrix.
- ▶ These are directions that we will *orient* or *change our basis* to.
- ▶ This is related to $P^{-1}DP$, or diagonalization (Lec 7).
 - ▶ Defined as $P^{-1}DP$ or PDP^{-1} , depending on which text/notes you reference.

Question: Change of Basis

Let A have eigenvectors $v_1, ..., v_n$ with corresponding eigenvalues $\lambda_1, ..., \lambda_n$. Let $\mathcal{B} = \{v_1, ..., v_n\}$ be a basis of \mathbb{R}^n . Let $x = \sum_{i=1}^n \alpha_i v_i$

- 1. Let P be a linear transformation that maps (canoncial basis vectors) e_i to v_i , for all $i \in {1, ..., n}$. Write the matrix P.
- 2. What is $PDP^{-1}x$?
- 3. Let $k \in \mathbb{N}$. What is $(PDP^{-1})^k x$?
- 4. If $A = PDP^{-1}$, give an interpretation for the action of A.

Solutions 1: Change of Basis

Let A have eigenvectors $v_1, ..., v_n$ with corresponding eigenvalues $\lambda_1, ..., \lambda_n$. Let $\mathcal{B} = \{v_1, ..., v_n\}$ be a basis of \mathbb{R}^n . Let $x = \sum_{i=1}^n \alpha_i v_i$

Solution

1. Let P be a linear transformation that maps (canoncial basis vectors) e_i to v_i , for all $i \in 1, ..., n$. Write the matrix P.

$$P = \begin{bmatrix} | & & | \\ v_1 & \dots & v_n \\ | & & | \end{bmatrix}$$

2. Let $D = Diag(\lambda_1, ..., \lambda_n)$. What is $PDP^{-1}x$? $P^{-1}x = P^{-1} \sum_{i=1}^{n} \alpha_i v_i = \sum_{i=1}^{n} \alpha_i e_i$ $DP^{-1}x = D(\sum_{i=1}^{n} \alpha_i e_i) = \sum_{i=1}^{n} \lambda_i \alpha_i e_i$ $PDP^{-1}x = P(\sum_{i=1}^{n} \lambda_i \alpha_i e_i) = \sum_{i=1}^{n} \lambda_i \alpha_i v_i$

Solutions 2: Change of Basis

Let A have eigenvectors $v_1, ..., v_n$ with corresponding eigenvalues $\lambda_1, ..., \lambda_n$. Let $\mathcal{B} = \{v_1, ..., v_n\}$ be a basis of \mathbb{R}^n . Let $x = \sum_{i=1}^n \alpha_i v_i$

Solution

3. Let $k \in \mathbb{N}$ What is $(PDP^{-1})^k x$? $(PDP^{-1})^2 = PDP^{-1}PDP^{-1} = PD^2P^{-1}$ Likewise.

$$(PDP^{-1})^k = PD^kP^{-1}$$

4. If $A = PDP^{-1}$, give an interpretation for the action of A on a vector x.

First view x as a vector in the coordinates of basis $v_1, ..., v_n$.

 P^{-1} transforms these coordinates into the standard basis.

D stretches the new coordinate e_i by the eigenvalue λ_i .

P transforms these coordinates back into the basis of $v_1, ..., v_n$

Spectral Theorem

Theorem (Spectral Theorem (!!!))

Let $A \in \mathbb{R}^{n \times n}$ be a **symmetric** matrix. Then there is a orthonormal basis of \mathbb{R}^n composed of eigenvectors of A.

- ▶ One of most important theorems in Linear Algebra
- ▶ Symmetric matrices induce an orthonormal basis of eigenvectors
- ▶ Makes analyzing the behavior of a symmetric matrix very easy
- ▶ Many examples of 'natural' symmetric matrices
 - ► Covariance Matrix
- ▶ Proved in Homework 5

Questions: Spectral Theorem

- 1. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Give a vector v with ||v|| = 1 such that ||Av|| is maximized.
- 2. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, with eigenvalues $\lambda_1, ..., \lambda_n$, and orthonormal family of associated eigenvectors $u_1, ..., u_n$. Give an orthonormal basis of Ker(A) and Im(A) in terms of the u_i 's.

Solutions 1: Spectral Theorem

1. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Give a vector v with ||v|| = 1 such that ||Av|| is maximized.

Solution

Let $A = U\Lambda U^T$, where U is orthogonal with columns $u_1,...,u_n$, and Λ is diagonal with entries $\lambda_1,...,\lambda_n$. Let $v = \sum_{i=1}^n \alpha_i u_i$, where $\sum_{i=1}^n \alpha_i^2 = 1$ Then, $U^T v = \sum_{i=1}^n \alpha_i e_i$. $\Lambda U^T v = \sum_{i=1}^n \lambda_i \alpha_i e_i$

$$U\Lambda U^T v = \sum_{i=1}^n \lambda_i \alpha_i u_i$$

$$\|U\Lambda U^T v\| = \|\sum_{i=1}^n \lambda_i \alpha_i u_i\|$$

$$\|U\Lambda U^T v\| = \sum_{i=1}^n \lambda_i^2 \alpha_i^2 \|u_i\| \qquad by \ o$$

by orthonormality

 $||U\Lambda U^T v|| = \sum_{i=1}^n \lambda_i^2 \alpha_i^2$

Maximize this quantity by setting $\alpha_j = 1$, where j is the index with the largest magnitude eigenvalue.

Solutions 2 : Spectral Theorem

2. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, with eigenvalues $\lambda_1, ..., \lambda_n$, and orthonormal family of associated eigenvectors $u_1, ..., u_n$. Give an orthonormal basis of Ker(A) and Im(A) in terms of the u_i 's.

Solution

Since A is symmetric, then A induces an orthonormal basis of eigenvectors $u_1, ..., u_n$ with eigenvalues $\lambda_1, ..., \lambda_n$, and $A = U\Lambda U^T$. Let $v = \sum_{i=1}^n \alpha_i u_i$ Then by the previous question, $U\Lambda U^T v = \sum_{i=1}^n \lambda_i \alpha_i u_i$ Now, consider all j s.t $\lambda_j = 0$. $Av = \sum_{i=1}^n \lambda_i \langle v, u_i \rangle = 0 \text{ when } v \in Span(\{u_j | \lambda_j = 0, \text{ for } j \in 1, ..., n\}).$ So $Ker(A) = Span(\{u_j | \lambda_j = 0, \text{ for } j \in 1, ..., n\}).$ Likewise.

 $Im(A) = Span(\{u_k | \lambda_k \neq 0, \text{ for } k \in 1, ..., n\})$