# ORDNANCE TECHNICAL INTELLIGENCE AGENCY

# **ENCYCLOPEDIA OF EXPLOSIVES**

A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture, and Uses

Box CM, Duke Station
Durham, North Carolina

## INTRODUCTION

The ENCYCLOPEDIA OF LAPLOSIVES was originally designed as an in small research instrument for use by personnel of the Ordnance Technical Intelligence Agency. At that time, the scope of the Encyclopedia included only explosives nomenclature and a brief statement of uses for each entry. Preliminary research, however, quickly revealed that unclassified publications in the explosives field were either outdated by the second World War, or were too technical or too brief to be useful to the novice working with explosives data. The scope of the present Encyclopedia was determined by this gap in publications on explosives.

The Encyclopedia is intended to serve as a research and reference aid on domestic and foreign explosives, both industrial and military. It has been prepared as a preliminary edition with the hope that its users will readily contribute their suggestions, additions, and general improvements. These suggestions will be incorporated into a later final edition.

The main body of the Encyclopedia is divided into three sections: Glossary, General Section, and Foreign Section. In addition, there is an appendix and a bibliography.

The Glospary contains primarily those terms which either are unique to explosives or which have a particular specialized meaning when applied to explosives. Thus, terms such as "hygroscopicity" which do not change in meaning when describing explosives are omitted, while those like "power" which have a particular definition for explosives are included.

The General Section is intended to cover domestic and foreign standard explosives that are currently in use, or were in use during World War II. It also includes some explosive compositions which have been seriously considered for standardization by the United States in recent years. With few exceptions, the General Section does not include explosives components, raw materials, or related chemicals; these are covered in the appearance (such as nitrocellulose) where it was felt that inclusion in the appendix would not permit adequate description. Each entry in the General Section includes (when information is evailable) a statement on American and foreign nomenclature, composition, characteristics, manufacturing processes, uses, and any other pertinent data.

The Foreign Section constitutes an index of foreign explosives nomenclature. It is subdivided into British, French, German, Hungarian, Italian, Japanese, Russian, and Spanish Terms. This section directs the user's attention to the appropriate entry in the General Section. It is hoped that a rore extensive list of foreign terms can be provided in the future.

In addition to the main sections, the Encyclopedia contains two appendices. The first appendix provides a list of explosives constituents, with a brief statement on the uses of each. The second appendix consists of a tabulation of comparative test data for selected explosives to permit the user to compare certain properties of the listed explosives.

Finally, a bibliography has been prepared which provides the list of sources used in preparing the Encyclopedia.

The Encyclopedia was reviewed in draft form by interested personnel of Picatinny Arsenal, Dover, New Jersey. In particular, Dr. B. T. Fedoroff, Mr. O. E. Sheffield, and Mr. C. G. Dunkle very generously volunteered their time to correct the numerous errors and omissions in the draft.

R. P. A. 13 May 1960

## TABLE OF CCHTENTS

| Section                                                                                                  | Page                            |
|----------------------------------------------------------------------------------------------------------|---------------------------------|
| I. Clossery                                                                                              | 1                               |
| II. General Section                                                                                      | 11                              |
| III. Foreign Section                                                                                     | 143                             |
| Rritish Terms                                                                                            | 144<br>146<br>149<br>150<br>152 |
| IV. Appendices                                                                                           | •• 163                          |
| Appendix I: Index of Explosives Constituents Appendix II: Comparative Test Values of Selected Explosives |                                 |
| V. Bibliography                                                                                          | •• 131                          |

## GLOSSARY

#### ABSCRBENT

A portus material which may or may not be combustible and which has the ability to absorb a liquid explosive (such as nitroglycerin) in large quantities for the purpose of making the transport and handling of the explosive both safe and easy.

## RIAST (or BLAST EFFECT)

The blast of a detomation is the shock wave emitted from the point of detonation, and includes a shock front, a high pressure area behind the shock front, and the following rerefaction. The energy released by the detonation of an explosive charge compresses the layer of air around the charge and forces it outward at high velocity. This layer of highly compressed air is bounded by an extremely sharp front known as the "shock front." The shock front is followed by a high pressure area composed of the gaseous products of detonation which move outward as a strong wind. Because of the forward inertia of the gaseous products of detonation, the pressure in the high pressure area cannot decrease in velocity as rapidly as the pressure at the point of detonation. Consequently, a low pressure area is produced, a "rarefaction," behind the high pressure area. When the pressure drops below the atmospheris pressure level, the wind of the high pressure area reverses its direction and moves toward the original detunation point. Thus, a target subjected to the blast of an explosive must undergo both a shattering shock front and pressures in two directions.

#### BRISANCE

The brisance of an explosive is the shock which is produced when the explosive detonates; that is, brisance is the shattaring effect shown by an explosive, and depends principally upon the velocity of detonation of the explosive, and to a lesser extent upon its energy content.

#### CRATERING (or CRATERING EFFECT)

The ability of an explosion to move a quantity of earth and thus form a circular depression in the ground known as a crater. A ground-level explosion creates a crater by the scouring action of gases; an underground explosion creates t crater by the heaving action of the products of explosion.

#### DEFLAGRATION

The process of spontaneous surface burning or vaporizing, with the products of reaction flowing away from the surface to expose the unreacted material beneath. Each explosive has a certain temperature at which the output of heat is sufficiently high to permit burning or vaporization to continue without any additional heat from an outside source. At this temperature, which is called the "! mition temperature" (assentry), leftsgration begins. Deflagration can proceed at different rates; in the case of a finely divided explosive, deflagration of all the particles can occur almost instantaneously. Confinement of the particles by the viscosity of gaseous products increases the pressure which in turn increases both the temperature and the rate of reaction. The final effect under confinement is explosion, which may be violent deflagration or detonation depending upon the material.

#### DENSITY OF LOADING

The density of loading of an explosive is the ratio between the weight of the explosive and the weight of the volume of water which would fill the total chamber in which the charge is loaded. It is used to determine the relative density of explosives loaded in containers such as projectiles and primers.

#### DESKNSITIZER

A substance introduced into an explosive compound so as to reduce the explosive's sensitivity to initiation by impact, friction, heat, or by detonation of a primer.

#### DETUNATION

The almost instantaneous decomposition of an explosive, either by an extremely rapid combustion or by rupture and rearrangement of the molecules themselves. The explosive reaction is initiated by the shock wave (see BLAST), and the reaction supplies energy to maintain the shock. A detonation can be visualized as an explosion wave travalling through the high explosive charge at an extremely high velocity (22,000 to 27,500 ft/sec). Detenation is the usual or desired manner of functioning of high explosives. Low explosives, or propellants, usually deflagrate and energy rather than definate.

The rate of advance of the reaction zone is called the "detenation rate" or "detenation velocity." When the detenation rate attains such a value that it will continue without diminution through the unreacted material, it is called the "stable detenation velocity." When the detenation rate is equal to or greater than the stable detenation. When the detenation rate is lower than the stable detenation velocity, the reaction is called a "high-order detenation velocity, the reaction is called a "low-order detenation."

DETCHATION HATE OF DETCHATION VELOCITY

Hes DETONATION

#### REPLOSION

A violent bursting or expansion within a material which results from a chemical reaction, and which produces heat and noise, and may liberate gas. An explosion may be a deflagration or a detonation (see entries).

#### EIFLOSTVE

A substruce capable of undergoing rapid chemical reaction or decomposition as described under EXPLOSION. Explosives may be classified in several ways depending upon the basis of comparison. selected. When classified according to their characteristics of explosion, they may be divided into high explosives (H.E.) which detonate (including initiating and non-initiating explosives) and low explosives (L.Z.) which deflagrate (see entries for HIOH EXPLOSIVES and PROPELLANTS). When classified according to chemical composition, they can be divided into organic compounds (including explosives such as nitroglycerin, nitrocellulose, TMT, tetracone), inorganic compounds (such as lead avide. ammonium nitrate, mercuric fulminate), and nixtures of oxidizing and oxidizable materiels (such as black powder and some solid rocket propollants). When classified according to chemical composition they can also be divided into explosive compounds (products of chemical reactions between two cr more substances) and explosive mixtures (products of the physical or mechanical mixture of two or more substances).

#### EXPLOSIVE TRAINS

A propositing-charge explosive train ejects the projective from the weapon and usually consists of a primer, an ignitar or igniting charge, and a propolling charge. Thus a spit of five from a small quantity of sensitive explosive, the primer, initiated by a blow from the firing pin, is transmitted and intensified by the igniter so that a large, relatively insensitive propelling charge burns in the proper manner and ejects the projectile from the bore.

A bursting-charge explosive train frequents the projectile, and usually consists of a priser; descenter, booster, and bursting charge. Other elements are sometimes required, but these four charges are fundamental. The detonator sets up a high explosive wave when initiated by the priser, which is intensified by the booster, and transmitted to the bursting charge, which then explodes with a high-order descention.

#### EXTRUSICE

The process or method by which certain explosives (principally solid propellants) are formed into comparatively intricate cross-sectional configurations by being forced through a die opening of the proper shape. Heat is usually applied to give added plasticity.

FORCE

See POWER

FUKL

The term, when applied to rocket propallants, indicates the material which, by burning, generates power (and thus the required thrust). The fuel generally is mixed with an exidiser (see entry) to permit combustion. Fuels may be solid or liquid.

HIGH-ORDER DETONATION

See LETCHATIO"

## HIGH EXPLOSIVE (H.E.)

A material which normally detonates when subjected to heat or shock; it will not burn except under special conditions. High explosives are characterized by the extreme rapidity with which decomposition and tlast occur. They decompose almost instantaneously either by extremely rapid combustion, or by ruphwe and rearrangement of the molecules themselves. In either case, gaseous and/or solid products of reaction are produced. The disruptive effect of the reaction makes a high explosive valuable as a bursting charge, but precludes its use as a propallant because the gases are formed so quickly that excessive pressures are devaloped which would likely burst the barrel of the weapon.

#### IGNITION TEMPERATURE

The minimum temperature of an explosive at which duflagration will begin within a specified time period, usually of five seconds. In the case of high explosives deflagration takes place so quickly as to produce a detonation.

#### INHIBITOR

A substance which is introduced (2) an explosive compound to stop or depress undesirable chamical reactions during storage, or to reduce the rate of chemical reaction upon explosion.

LOW EXPLOSIVE (L.E.)

See PROPELLANT

LOW-ORDER DETONATION

See DETCHATION

MOHAUPT EFFECT

See SHAPED CHARGE

MUNROE EFFECT

See SHAPED CHARGE

#### NEW IAN EFFECT

See SHAPED CHARGE

#### OXIDIZER

A substance which liberates oxygen and thereby permits the fuel with which i is mixed to burn. Oxidizers may be solid or liquid. Liquid oxidizers are stored separately from the fuel until combustion is desired. Solid oxidizers are incorporated into the explosive mixture.

#### POWER

The power, or strength, of an explosive is its ability to displace the surrounding medium.

## PROPELLANT (LOW EXPLOSIVE, L.E.)

A combustible material which decomposes very rapidly but does not normally detonate (at high velocity), this action being called deflagration. In decomposition, propellants produce a large volume of gases which produce enough pressure to propel a projectile or rocket. Propellants do not usually propagate a detonation. Under certain conditions, however, they may react like high explosives, that is, they may detonate.

#### PRIMERS and PRIMER MIXTURES

A primer mixture is an explosive (called "initiating explosive") sensitive to a blow such as that from a firing pin. It is used to transmit shock or flame to another explosive, a time element, or a detonator. Primers can be classified as friction, percussion, or electric primers:

Friction primers are devices which produce a spit of fire as a result of friction of a rod or wire moving (either by such or pull) through the primer mixture. They are most commonly used for separate loading ammunition.

Percussion primers are devices which produce a spit of fire from the impact of a firing pin or from the impact of the percussion device in an inertia-operated fuse.

Electric primers are devices which are designed for initiation by an electric current. The electric and a minimation electric-percussion primers have largely supplanted the friction primers.

#### SENSITIVITY

Sensitivity to impact is the ease with which an explosive material explodes upon the application of mechanical shock. Explosion by impact may be due to the development in the explosive of "hot spots" of finite size. In general, the impact sensitivity of an explosive material increases with the temperature, and the molten material is much more sensitive than the hot, solid material.

Sensitivity to friction is the ease with which an explosive material explodes upon the application of friction. Explosion by friction, like explosion by impact, is generally attributed to hot spots within the explosive material. The friction-producing material must be of a certain degree of hardness and must have a melting point higher than the ignition temperature of the explosive.

Sansitivity to initiation is the ease with which an explosive material exploses when subjected to the explosion of another material. In general, sansitivity to initiation is parallel to sensitivity to impact, but not to sensitivity to friction (or heat).

#### SHAPED CHARGE

A shaped charge consists of a high explosive charge (usually cylindrical) into one end of which a cone has been sunk. The cone may or may not be lined with an inert material such as metal. or glass, depending on whether the explosive charge is to be detonated upon direct contact with the target (no liner being used) or upon a specified distance from the terget. The distance between the explosive and the target upon detonation is called the "stand-off" distance. When a shaped charge is detunated. detonation waves are formed which travel in different predetermined directions in such a manner that they meet and reinforce each other (much like light rays reflecting off a parabolic mirror). This reinforcing effect is called the "Munroe effect," after the man who discovered it. The reinforced detenation wave forms a rapidly-moving jet which contains in it small particles of the collapsing cone liner. The jet is followed by the "slug." which contains the major portion of the collapsing conc liner (the "Mohaupt effect" or Newman effect"). The major damage from a shaped charge detonation is caused by the jet, which exerts a pressure upon the target of several hundred thousand atmospheres, and which literally pushes aside the target material by plastic floy.

Shaped charges have been used in artillery and rocket ammunition, demolition charges, and antitank mines. While shaped charges may be used in both rotating and non-rotating projectiles, the rotation of a shaped charge projectile can reduce its effectiveness by as much as 50%. Rotating shaped charge projectiles are, however, more effective than a standard bursting charge. Shaped charge grenades and bazooks-type rockets do not rotate and have a resultant greater penetrating power on armor plate.

SHOCK WAVE

See BLAST

#### STABILITY

The ability of an explosive to retain unaltered its chemical and physical properties during a given period of storage, under normal conditions or sometimes under more severe conditions. Although explosives are by nature comparatively unstable in their structures, all military explosives may be considered to have a high order of stability at temperatures of from 15° to 25°C (59° to 77°F). Each explosive has a higher temperature at which decomposition becomes rapidly accelerated and instability is pronounced.

#### STABILIZER

A substance introduced into an explosive material for the purpose of increasing the explosive's ability to withstand spontaneous chemical decomposition. A stabilizer usually will react with the products of decomposition of the parent explosive and thereby will prevent these products from accelerating the decomposition rate.

STABLE DETONATION VELOCITY

See DETONATION

STAND-OFF DISTANCE

Sec SHAPED CHARGE

Shaped charges have been used in artillery and rocket ammunition, demolition charges, and antitank mines. While shaped charges may be used in both rotating and non-rotating projectiles, the rotation of a shaped charge projectile can reduce its effectiveness by as much as 50%. Rotating shaped charge projectiles are, however, more effective than a standard bursting charge. Shaped charge grenades and bazooks-type rockets do not rotate and have a resultant greater penetrating power on armor plate.

A CONTROL OF THE PROPERTY OF T

SHOCK WAVE

See BLAST

#### STABILITY

The ability of an explosive to retain unaltered its chemical and physical properties during a given period of storage, under normal conditions or sometimes under more severe conditions. Although explosives are by nature comparatively unstable in their structures, all military explosives may be considered to have a high order of stability at temperatures of from 15° to 25°C (59° to 77°F). Each explosive has a higher temperature at which decomposition becomes rapidly accelerated and instability is pronounced.

#### STABILIZER

A substance introduced into an explosive material for the purpose of increasing the explosive's ability to withstand spontaneous chemical decomposition. A stabiliser usually will react with the products of decomposition of the parent explosive and thereby will prevent these products from accelerating the decomposition rate.

STABLE DETONATION VELOCITY

See DETONATION

STAND-OFF DISTANCE

See SHAPED CHARGE

STRENGTH

See POWER

## SYMPATHETIC DETONATION

Sympathetic detonation or explosion by influence is the explosion of a material produced by shock waves transmitted through the air from another explosion. This characteristic of certain explosives is commonly utilized in land mines.

#### ATMATRITE

Alternate Nomenclature: For The entry is given in the English equivalent of the Russian nomenclature; there is no corresponding U.S. explc ive.

Foreign Nomenclature:
Russian: Almatrit

Composition:

See specific compositions listed under AMMONALMATRIT NO. 98, KALITAIMATRIT NO. 55, and NATRITALMATRIT NO. 19.

Comments:

Almatrites are a series of Russian commercial explosives, developed at the University of Mescow, which contain chlorates and perchlorates together with combustibles (crganic compounds). They are reported to be as stable as, and less sensitive to friction than, cheddites.

\*\*\*\*

AMATOL

See also AMMONIUM NITRATE, TRINITRO-TOLUENE

None Nomenclature:

Foreign Nomenclature:
British: Amatol

French:
German:
Japanese:

Amatol Amatol Shotoyaku

Italian: Russian:

Amatolo A, Amatol, AT

Spanish: Amatola

Composition:

Amatols are compositions containing ammonium nitrate and TNT in varying ratios. The most common composition contains these ingredients in 50/50 proportions. Other common compositions contain ammonium nitrate and TNT in 80/20 and 60/40 ratios. 50/50 amatol uses Grade II TNT: 80/20 amatol uses Grade III TNT. (See TRINITROTOLUENF for details on the grades of TNT.)

LOTAMA

Characteristics:

Amatols are buff yellow explosives. 50/50 amatol is maltloaded, while 80/20 amatel is loaded by extrusion (see below under Manufacture). 50/50 amatol detonates when subjected to a temperature of 265°C for five seconds; 60/40 amatol detonates at 270°C and 80/20 amatol at 280°C. Upon detonation. 50/50 amotol emits black smoke; 80/.0 amatol generates white smoke. Amatols do not form dangerous compounds with metals other than copper and tin. Amatols are more or less incensitive to shock and friction; increases in ammonium nitrate content decrease sensitivity. However, all amatols are hygroscopic, and increases in ammonium nitrate content increase hygroscopicity. Amatols have more strength than TNT. while 80/20 amatol is stronger than 50/50 amatol. At temperatures under 80° to 81°C (melting point of TNT) TNT and ammonium mitrate do not react with each other; at temperatures of 100° to 120°C, these ingredients react only slightly. Sensitivity, strength, and stability are not affected by prolonged storage at 50°C.

Manufacture:

In the manufacture of 50/50 amatol, ammonium nitrate is dried and heated to 90°C. It is added to molten TNT.

Mixing continues until the mixture cools to between 80° and 85°C, and the mixture is melt-loaded into shell or bomb. 80/20 amatol, although prepared in a like manner, is more difficult to manufacture since the mixture is plastic rather than fluid. The size of ammonium nitrate crystals must be controlled since large crystals will not retain molten TNT during the loading operation. Because of its plasticity, 80/20 amatol must be loaded with extrusion loading machines.

Usesi

Amatols have been used as the bursting charge in shell and bombs, mainly to conserve the limited supply of TNT. They also have been used in mixtures with aluminum to form ammonals (see entry).

Comments:

The only significant advantage of amatols has been the conservation (i.e., "stretching") of TNT supplies. The development of synthetic toluene manufacture has reduced this advantage. Moreover, the development of more powerful binary explosives, such as composition B and pentolite (see entries), has further contributed to lessened needs for amatols.

\*\*\*\*\*

AMERICAN

See PERMISSIBLE EXPLOSIVE

\*\*\*\*

Carried Control of the Control of th

AMMONALMATRIT NO. 98

See also ALMATRITE

Alternate Nominclature:

None

Foreign Nomenclature:

The entry is given in the Russian nomenclature; there is no English equivalent.

Compositions

Ammonium Chlorate--- 89%

Combustible ---- 11% (containing 8% vaseline, 27% peraffin, 65% rosin)

Comments:

Ammonalmatrit no. 98 is a Russian commercial explosive of the almatrite class (see entry). Its brisance is higher than that of TNT.

\*\*\*\*

LAKOMEIA

See also MINOL

Alternate Nomenclature:

None

Foreign Nomenclature:

French: Amnonal

Ammonal, Ammonpulver German: Hungarian: Ammoniás robbano-anyag

Italian: Ammonal Russian: Ammonal

Spanish: Amonal

Composition:

Ammonals are compositions containing aluminum, ammonium nitrate, and TNT (i.e., amatol plus aluminum) in varying ratios. The composition listed below gives the most common proportions of these ingredients:

Ammonium Nitrate--- 22%

Aluminum----- 11%

Some am chals may also contain as much an 3, of charcoal.

VWHICHVI

Characteristics:

Ammonals are cast-loaded explosives. The composition listed above will detonate when subjected to a temperature of 265°C for five seconds. Ammonals are more sensitive to initiation than amatols and, because of their aluminum content, detonate with higher temperatures, greater blast effect, and brighter flash. The composition given above is about 12% more brisant than 50/50 amatol and practically as brisant as TNT (99.6% as brisant as meas red by the Sand Test).

Manufacture:
Sec AMATOL

Usesi

Ammonals have been used in shell to conserve the limited supply of TNT (see <u>Comments</u> below). Although they are no longer used as standard explosives, the high flash of an ammonal burst is useful in proving ground tests to facilitate observation, particularly at night.

Comments:

The only significant advantages of ammonals have been the conservation of TNT supply and the higher brisance over ematols (which also have been used to conserve TNT). The development of synthetic toluene manufacture has reduced these advantages. Moreover, since ammonals are inferior to minol (see entry) with respect to blast and shock effects and less brisant than more modern binary explosives such as pentolite and composition E (see entries), they offer no advantages for use in connection with modern techniques of warfare.

\*\*\*\*

AMMONIA DYNAMITE

See STRAIGHT DYNAMITE

\*\*\*\*

AMMONIA GELATIN DYNAMITE

See GELATIN DYNAMITE, LOW-FREEZING AND NON-FREEZING DYNAMITES

#### AMMONITE

| Alterna+o | Nomenclature: | Foreign Nomence | Lature:  |
|-----------|---------------|-----------------|----------|
| None      |               | French:         | Ammonite |
|           |               | German:         | Ammonit  |
|           |               | Italian:        | Anmonite |
|           |               | Russian:        | Ammonit  |
|           |               | Spanishs        | Amonita  |

Composition:

Ammonites are a group of safety (permissible) explosives, now used primarily in the Soviet Union, which contain ammonium nitrate plus nitro compounds. The following compositions can be considered as being representative of Soviet types:

| Ammonium Nitrate TNT | 98%<br>12% ( | kno | wr as | ammonit | no. | 2) |
|----------------------|--------------|-----|-------|---------|-----|----|
| Ammonium Nitrate     | 73%          |     |       |         |     |    |
| Potassium Nitrate    |              |     |       |         |     |    |
|                      |              |     |       |         |     |    |
| Ammonium Nitrate     | 77.6%        |     |       |         |     |    |
| TAT                  |              |     |       |         |     |    |
| Wood Meal            |              |     |       |         |     |    |
| Ammonium Nitrate     | 54.5%        | to  | 57.5% | ,<br>,  |     |    |
| TNT                  | 8,58         | to  | 9,59  | •       |     |    |
| Pine Bark            |              |     |       |         |     |    |
| Sodium Chloride      |              |     |       |         |     |    |

| Ammonium Nitrate | 59.5% | to | 62.5% |
|------------------|-------|----|-------|
| Trinitroxylene   |       |    |       |
| Pine Bark        | 2.5%  | to | 3.5%  |
| Sodium Chloride  |       |    |       |

Other aromatic nitro compounds such as dinitronaphthalene may be used in place of TNT and trinitroxylene.

Characteristics:

Ammonites have a low sensitivity to both shock and friction because of their ammonium nitrate content. This ammonium nitrate, however, makes them extremely hygnescopic. Mesover, they will deteriorate when stored for any length of time.

Manufacture:

Armonitos are mechanical mixtures and are made simply by mixing ingredients together in the same manner as most dynamites.

#### ARMONIME

**Uses:** 

Armonites are used for underground mining where a permissible explosive is required. Their use is confined primarily to the Soviet Union. Some ammonites have been employed in military roles as substitutes for explosives using TNT and nitroglycerin.

\*\*\*

#### AMMONIT-GUDRONIT

Alternate Nomenclature: None

Foreign Nomenclature:

The entry is given in the Russian nomenclature; thore is no English equivalent.

Composition:

Ammonium Nitrate----? The exact composition is not known. Tar (Gudron)----?

Comments:

Ammonit-gudronit is a Russian commercial blasting explosive, probably of the ammonite class (see entry). Its brisance is about equal to that of TMT. Because of its ammonium nitrate content, ammonit-gudronit is hygroscopic, and will probably deteriorate upon long storage.

\*\*\*\*

AHMONIUM CRESSYLATE

See ECRASITE

\*\*\*

#### AMMONIUM NITRATE

Alternate Nomenclature: Mong

Foreign Nomenclature:

French: Nitrat d'ammoniaque Ammoniumnitrat, German:

Ammoniumsalpeter

Hungarian: Ammoniumnitrát.

Ammonsalétrom

Nitrato ammonico Italian:

Japanesei Ammor ........

Polisha Saletra "monowa Russianı Ammoniintys selitra. Anothe-kislyi ammonii

Nitrato amonico Spanish:

The second secon

Composition:

NHUNO3 -- chemical compound containing the following parcontages by weight of the elements: Nitrogen--- 35.00%

Hydrogen--- 5.04%

Oxygen---- 59.96%

Characteristics:

Ammonium mitrate is a colorless, press- or cast-loaded explosive meltin at 159.5°C. It will ignite when subjected to a temperature of 465°C for five seconds. The grade used for explosives must be at least 99% pure. Ammonium nitrate is extremely hygroscopic. In the presence of moisture, it will react with copper to form a compound (tetraminocupric nitrate) which is as sensitive to impact and as brisant as lead azide. Ammonium nitrate will corrode iron, steel, brass, lead, and cadmium. It is the least sensitive to impact of any of the military explosives. It will not detonate when subjected to heat unless highly confined, and only partial defonation results even when boostered with a charge of tetryl or cyclonite. Despite its hygroscopicity, ammonium nitrate is very stable in storage at temperatures as high as 150°C (although slight sublimation may occur under certain conditions). Decomposition does not occur significantly until the compound begins to melt.

#### Manufacture:

An aqueous solution of ammonia is neutralized with nitric acid and then evaporated. The resulting ammonium nitrate is grained and dried.

#### Usest

Ammonium nitrate is commonly used as an explosives extender (e.g., amatol), and as an ingredient in binary explosives, dynamites, cratering explosives, and some solid rocket propellants. Because of its insensitivity, ammonium nitrate is seldom used alone as an explosive.

#### Comments:

Ammonium nitrate is used universally both as a nitrogenous fertilizer and as a constituent in explosives. When used as a fertilizer, the compound does not have to meet as high a standard of purity as that imposed by explosives requirements. Facilities used to produce ammonium nitrate fertilizer can produce the purer grade for explosives use without any conversion. The purity of the product can be improved by controlling the purity of the ammonia and nitric acid.

In 1958, an agreement was concluded arous the several NATO member nations for a common minimum specialization on ammonium nitrate applicable to deliveries of the explosive material from one NATO country to another.

ALMOSTUM PICRATE.

AMMONIUM PICRATE

See EXPLOSIVE n

ネスナイギギ

AMMONIUM TRIMITROPHENOLATE

See EXILOSIVE D

\*\*\*\*

**AMMONPEK** 

Alternata Nomenclature:

Foreign Nomenclature:
The entry is given in the
Russian nomenclature; there
is no English equivalent.

Composition:

Ammonium Nitrate--- 95% Coal Tar Pitch---- 5%

Comments:

Ammonpek is a Soviet high explosive which has been used as a substitute for TNT. It has the advantage of low sensitivity to shock, but because of its high ammonium nitrate content, it is extremely hygroscopic and is probably unstable in storage. The development of synthetic toluene manufacture probably has greatly decreased the need for ammonpek.

\*\*\*\*

### ANGAYAKU

Alternate Nomenclature:

Foreign Nomenclature:

The entry is given in the Japanese nomenclature; there is no English equivalent.

Compositions

Japan has used three types of angayaku, with the following compositions:

| Cyclonite        |      |     |        |
|------------------|------|-----|--------|
| Armonium ".trete |      |     |        |
| PETN             |      |     |        |
| Wax              | <br> | 15% | <br>8% |

Comments:

Cyclonite/wax angayaku is similar in composition to U.S. composition A (see entry). It was used by the Japanese during World War II as a bursting charge for armor-piercing shells, while cyclonite/ammonium nitrate angayaku was used in bombs and cyclonite/PETN/wax angayaku was used in machinegun bullets.

NOTE: The Japanese incorporated high explosive fillers into machinegun bullets with calibors as small as 7.7-mm.

\*\*\*\*

AFACHE COAL POWDER

See PERMISSIBLE EXPLOSIVE

\*\*\*\*

ARABINOSE TETRANITRATE

See SUGAR NITRATE

\*\*\*\*

AROMATIC NITRO COMPOUNDS

See also EXPLOSIVE D, PICRIC ACID,
TETRANITROANILINE, TETRYL, TRIAZIDOTRINITROBENZENE, TRINITROPHENETOLE,
TRINITROTOLUENE; also Appendix I
under CRESSYLITE, DINITROBENZENE,
DINITRONAPHTHALENE, DINITROPHENOL,
DINITROTOLUENE, DINITROXYLENE,
HEXANITRODIPHENYLAMINE, MONONITROBENZENE, MONONITRONAPHTHALENE,
MONONITROTOLUENE, TRINITROBENZENE,
TRINITRONAPHTHALENE, TRINITROXYLENE

Alternate Nomenclature:

Composition:

For specific comments on Composition, Characteristics, Manufacture, and Uses, see EXPLOSIVE D, PICRIC ACID, TETALNITROANILINE, TETRYL, and TRINITROTOLUENE.

#### AROMATIC NITEO COMPOUNDS

Characteristics:

Archatic nitro compounds form the most important class of military high explosives. They include the many nitro derivatives of benzene, toluene, xylene, naphthalene, phenol, and cresol (other aromatic nitro compounds such as anthracene are not utilized in explosives). As a group, these nitro compounds are stable and efficient in explosives. They are, however, poisonous, and care must be taken in their handling and manufacture. They can be absorbed through the skin and by breathing their dust and vacors. Various illnesses ranging from temporary mild dermatitis to death can result.

Manufacture:

In the manufacture of aromatic nitro compounds, the product is always obtained by reacting the aromatic compound with nitric acid. The aromatic compounds are obtained either as by-products in the manufacture of coke or gas, or in gasoline as a product of the fractional-distillation process.

Uses:

Aromatic nitro compounds have a wide range of uses, both alone and as constituents of compound explosives. For example, TNT (trinitrotoluene) and picric acid (trinitrophenol) have been used alone as bursting charges for high explosive ammunition; in addition, TNT has been used in amatols and picric acid has been used in the manufacture of explosive D. TNT still is the most widely used of the standard military bursting charges. Aromatic nitro compounds also have been used as constituents in smokeless propellants, in detonating and priming compositions, and in liquid form (usually as by-products in the manufacture of pure nitro compounds) in non-freezing dynamites and other commercial explosives.

\*\*\*\*

AROMATICS

See ARCMATIC NITRO COMPOUNDS

\*\*\*\*

ASTRALITE

See also DYNAMITE

Alternate Nomenciature:

Foreign Nomenclatur British: Asura 100

French: Astralit Gorman: Astralit Italian: Astralite Spanish: Astralita Composition:

Astralites are a form of ammonium nitrate dynamites. Two examples, manufactured in pre-World War II Germany, are given below:

|                  | trai. | tralit IA |
|------------------|-------|-----------|
| Ammonium Nitrata |       |           |
| TNT              | 12%   | <br>25.0% |
| Vegetable Meal   | 3%    | 2.7%      |
| Charcoal         |       |           |
| Nitroglycerin    | 14%   | <br>4.0%  |

The British astralite contains nitrocellulose (grucotton type) in place of the vegetable meal.

Characteristics:

Astralites differ from most dynamites in that they contain only small amounts of nitroglycerin and relatively large amounts of TNT. Their other characteristics are those listed under DYNAMITE.

#### Manufacture:

See DYNAMITE.

Uses:

Astralites are used for rock-blasting work. They have found wide use in the Communist Blcc, especially in the Soviet Union.

なまれまが

AUSTIN RED-D-GEL

See PERMISSIBLE EXPLOSIVE

\*\*\*\*

AUSTIN RED DIAMOND

See PERMISSIBLE EXPLOSIVE

\*\*\*\*

AZIDES

See also LEAD AZIDE, SILVER AZIDE

Comments:

Azider are compounds of hydrazoic acid (IN.) and are explosive in their nature (especially the azides of lead, mercury, and silver). Azides contain no caygen in their chemical structure and their decomposition does not involve combustion. Lead azide has been used extensively in explosives applications.

## AZIDO-TENEROSSOVAYA

Alternate Nomenclature:

Foreign Nomenclature:

The entry is given in the Russian nomenclature; there is no English equivalent.

The literal translation of the term is "or lead azide and lead atyphnate."

Compositions

Lead Azide---- 0.20 to 0.25 gram

Lead Styphnate--- 0.06 to 0.05 gram layer covering lead azide

Comments:

Azido-tenerossovaya is a Soviet composition used in detonating caps.

\*\*\*\*

BALLISTITE

Boe also DOUBLE-BASE SMOKELESS PROPELLANT, NITROCELLULOSE

Alternate Nomenclature:

Foreign Nomenclature:

French: Balistite

German: Ballisti

Ballistit, WPC/89,

Würfelpulver/89

Hungarian: Ballisztit

Italian: Balistite

Spanish: Balistita

Composition:

A typical composition is listed below. Percentages may vary depending upon the manufacturer and the end-use of the product.

Nitrocellulose---- 60%

Nitroglycerin---- 39%

Piphenylamine---- 0.75%

Graphite Coating --- 0.25%

Characteristics:

Ballistite generally appears in flakes, sometimes in cords and single-perforated tubes. Its other characteristics are those listed for double-base smokeless propellants (see entry).

Manufactures

See DOUBLE-LASE SMOKELESS PROPELLANT

Comments

In the United States, ballistite is the standard mertar round propellant. The term "ballistite" often is used in the United States as a generic term for smokeless propellants with a high nitroglycerin content. In Italy, Germany, and the Scandinavian countries, ballistite has been the preferred propellant for most types of ammunition. In Japan it has been used to fill rockets.

\*\*\*\*

#### BARATOL

Alternate Nomenclature:

Composition:

Barium Nitrate---- 67%

Characteristics:

Baratol is a cast-loaded high explosive. It will ignite when subjected to a temperature of 385°C for five seconds. Baratol is nonhygroscopic at 30°C and 90% relative humidity. It is considerably less sensitive to impact than TNT, and is about 56% as brisant as TNT.

Manufacture:

Barium nitrate is heated to about 90°C and is added to molten TNT. The mixture is agitated until uniform. It is then melt-loaded at the lowest practicable temperature.

Uses:

Baratol has been used as a bomb filler.

Comments:

Baratol was first developed during World War I. The proportions given undar Composition above are not mandatory and can be varied to meet required purposes.

B RCAL

#### BARONAL

Alternate Nomenclature:

Composition:

Barium Nitrate---- 50% TNT----- 35% Aluminum---- 15%

Characteristics:

Baronal is a cast-loaded high explosive somewhat similar to baratol (see entry). It will ignite when subjected to a temperature of 345°C for five seconds. Baronal is less sensitive to impact than TNT, and is about 83% as brisant as TNT. It is more brisant than baratol.

Manufacture:

Barium Nitrate is heated to about 90°C and is added to TNT which has been previously melted. Powdered aluminum is added, and the mixture is agitated until uniform. Baronal is then melt-leaded at the lowest practicable temperature.

Uses:

Baronal has been used as a bomb filler.

HKKKK

#### BELAYA SMES!

Alternate Nomenclature:

Foreign Nomenclature:

The entry is given in the Russian nomenclature; there is no English equivalent. The literal translation of the term is "white composition."

Composition:

Mercuric Fulminate---- 80 to 85% Potaggium Chlorate---- 15 to 20%

Comments:

Belaya smes! is a Soviet rixture used in percussion compositions.

## BELLITE

None Nomenclature:

Foreign Nomenclature:
Russian: Belit

Composition:

Bellites are a series of commercial high explosives containing ammonium nitrate and nitro compounds, principally of bemone. The original formula called for ammonium nitrate and mone nitrober ens. This benzene compound was later replaced by dinitrobenzene which, because of its solid structure and greater effectiveness, was found to produce a better explosive. The following compositions, used by the Soviet Union, may be taken as representative:

| Ammonium Nitrate | 35%   | **** | 87% | <br>80% |
|------------------|-------|------|-----|---------|
| Dinitrobenzene   | 65%   |      | 13% | <br>8%  |
| Trinitroxylene   | • • • |      | ••• | <br>12% |

Comments:

Bellites are used primarily for coal mining. They are popular in Europe and in the Soviet Union, but have not met with much favor in the United States.

\*\*\*\*

BITUMINITE

See PERMISSIBLE EXPLOSIVE

XXXXX

BLACK DIAMOND

See PERMISSIBLE EXPLOSIVE

\*\*\*\*

BLACK DIAMOND NU-CEL

See PERMISSIBLE EXPLOSIVE

#### BLACK POWDER

Alternato Nomenelature:
Gunpowder

Foreign Nomenclature:

French: Foudre noire
German: Schwarzpulver
Huigarian: Fekete löpor
Italian: Polvere nera
Russian: Chörnyi porokh

Spanish: Polvora negra

Composition:

Characteristics:

Black powder is a gray-black to black, press-loaded (or loosely packed) explosive. It will ignite when subjected to a temperature of \$127°C\$ for five seconds. It is insensitive to shock but highly sensitive to friction and heat. It is only about 50% as strong as TNT, being the weakest explosive used as a bursting charge. Black powder is hygroscopic, and is therefore unstable in storage except under conditions of controlled humidity. It will not burn completely and the residue causes excessive corrosion of the gun barrel and produces large quantities of smoke.

Usesi

Black powder may be used in primers, igniters, shrapnel charges, safety fuse, quick matches, and rarely, in bursting charges for low explosive shells. During World War II, the Soviet Union used two principal types of black powder: "melkozernistyi" (grains of about 1-mm) and "krupnozernistyi" (grains of about 5- to 10-mm). These were used in some igniters, delay fuzes, and in incendiary, illuminating, shrapnel, and propaganda ammunition.

Manufacture:

Sulfur of very high quality is pulverized together with charcoal, in the specified proportions. The pulverized material is then mixed either with the pulverized nitrate (also of very high quality) or stirred into a saturated solution of the nitrate (depending upon plant equipment). The product is ground, pressed, and re-ground to insure uniformity.

Black powder also has been used in countries such as France as a cheap blasting explosive for commercial purposes. For such uses, France has produced three varieties of black powder:

|                      | Lente | iinai   | Forte   |
|----------------------|-------|---------|---------|
| Saltpeter (sodium or | 40%   | <br>623 | <br>72% |
| potassium nitrate)   |       |         |         |
| Charco 1             | 30%   | <br>18% | <br>15% |
| Sulfurencement       | 30%   | <br>20% | <br>13% |

### Comments:

The military applications of black powder have practically disappeared due to the development of more efficient explosives. Black powder containing potassium nitrate is called "Army Black Powder;" black powder containing sodium nitrate is called "commercial" or "sodium nitrate" black powder.

\*\*\*\*

#### BLASTING GELATIN

## See also DYNAMITE, NITROGLYCERIN

| Alternate Nomenclature: | Foreign Nomencl |                                                             |
|-------------------------|-----------------|-------------------------------------------------------------|
| Explosive Gelatin       | French:         | Gélatine explosive,<br>Gélatine détonante                   |
|                         | Germon:         | Sprenggelatine,<br>Sprenggumi                               |
|                         | Hungarian:      | Robband-zselatin                                            |
| ,                       | Italian:        | Gelatina esplosiva                                          |
|                         | Japanese:       | See DYNAMITE                                                |
|                         | Russian:        | Gremuchii studen!                                           |
|                         | Spanish:        | Gelatina explosiva,<br>Gelatina detonante,<br>Dinamita goma |

| Composition: Nitroglycerin |    |    |     |
|----------------------------|----|----|-----|
| Nitroglycerin              | 90 | to | 939 |
| Nitrocellulose             | 7  | to | 10% |

Characteristics:

Blasting gelatin is a yellow, translucent, soft, elastic explosive material. It is less sensitive to shock, friction. and impact than either nitroglycerin or guhr dynamites (dynamites with inactive base). "Thirmer" gelatins (those utilizing smaller quantities of nitrocellulose) are known as "gelatin dynamites" (see entry). Blasting gelatin is completely insensitive to water, and is far more difficult to freeze then guhr dynamites. However, when it does freeze, its sensitivity increases markedly. Blasting gelatin is about as stable as nitroglycerin; it is completely stable at ordinary temperatures. Rapid temperature changes, however, cause the nitroglycerin to exude and result in increased sensitivity. Blasting gelatin is difficult to explode. the rate of difficulty increasing with increases in nitrocellulose content. A high nitrocellulose content changes the explosive characteristics from those of a high explosive to those of a propellant (see DOUBLE-BASE SMOKELESS PROPELLANT).

Manufacture:

Nitrocellulose (collodion cotton type) is mixed into nitroglycerin for the preliminary gelatinization. The resulting colloid is mixed by shovel or by hand and is allowed to stand for some 20 to 25 minutes. It is then sent to mixing machines, where the absorbents are incorporated into the colloid. The gelatin is then placed into cartridges by means of screw machines.

Uses:

The high brisance of blasting gelatin is used to best advantage for the blasting overy hard rock. It is also excellent for use in underwater blasting operations.

\*\*\*\*

BULK POWDER

See E. C. POWDER

\*\*\*\*

#### CARLIT

| Alternate Nomenclature:          | Foreign Nomenclature: |         |  |  |  |
|----------------------------------|-----------------------|---------|--|--|--|
| None                             | Japanese:             | Karitto |  |  |  |
| Composition: Ammonium Perchamate | 56%                   | •       |  |  |  |
| Silicon Carbia;                  |                       |         |  |  |  |
| Wood Pulpanera                   | 12%                   |         |  |  |  |
| Petrolaum                        | 6%                    |         |  |  |  |

Comments:

Carlit is a Japanese explosive composition which was first used during World War II as a bursting charge for mines and depth charges, and in demolition charges, primarily to conserve the limited supplies of benzene and toluene. At present, it is used extensively in Japan for industrial purposes, and is being utilized in experimental solid rocket propellants. Since the first carlit composition. (listed above), several modufications have been produced.

<del>\*\*\*</del>

CELLULOSE NITRATE

See NITROCKLLULOSE

\*\*\*\*

CHANAYAKU

Alternate Nomenclature:

None

Foreign Nomenclature: The entry is given in the

Japanese nomenclature: there is no English equivalent.

Composition:

TNT----Dinitronaphthalene---- 30%

Comments:

Chanayaku is a Japanese explosive composition which was used during World War II as a bursting charge for artillery ammunition.

\*\*\*\*

CHAŌYAKU

Alternate Nomenclature:

None

Foreign Nomenclature:

The entry is given in the Japanese nomenclature, there is no English equivalent.

Composition:

Picric Acid---- 75%

TNT-- -- 25%

Comments:

Chacyaku is a Japanose explosive composition which was

used during World War II as a bursting charge for aerial bombs.

#### \*\*\*\*

### CHEDDITE

| Alternate Nomenclature:                 | Foreign Nomencle | វិទ្ធិការស្វា                                                                                |
|-----------------------------------------|------------------|----------------------------------------------------------------------------------------------|
| None                                    | French:          | Cheddite                                                                                     |
|                                         | German:          | Cheddit                                                                                      |
| • • • • • • • • • • • • • • • • • • • • | Hungarian:       | Cheddit                                                                                      |
|                                         | Italian:         | Cheddite, Alto esplosivo<br>al clorato di potassio<br>(potassium chlorate high<br>explosivo) |
|                                         | Russian:         | Shedit                                                                                       |
|                                         | Spanish:         | Cheddita                                                                                     |

Composition:

Cheddites are a series of chlorate (and sometimes perchlorate) explosives. The two types given below, manufactured in France, may be considered representative:

| Cheddite No. 1       |      |         |  |
|----------------------|------|---------|--|
| Potassium Chlorate   | •••  | <br>79% |  |
| Sodium Chlorate      |      |         |  |
| Castor Oil           | 5%   | 5%      |  |
| Mononitronaphthalene |      |         |  |
| Dinitrotoluene       | : 5% | 15%     |  |

#### Characteristics:

Cheddites are more sensitive than the permissible explosives, and the chlorate cheddites are more sensitive than the perchlorates. The lower sensitivity of the perchlorates makes them the safer cheddites to handle and transport.

#### Uses:

Cheddites are widely used for commercial blasting purposes. They are used in France for both industrial and military blasting operations.

#### Comments:

Cheddites were developed in France. They have, however, been adopted by many countries. The Soviet Union has not used them since the country feels that its almorates (see entry) are preferable.

COAL TAR SALT

See TRINITROTOLUENE

\*\*\*\*

COALITE

See PERMISSIBLE EXPLOSIVE

\*\*\*\*

COLLIER

See PERMISSIBLE KIPLOSIVE

\*\*\*\*

COLLODION

See PERMISSIBLE EXPLOSIVE

\*\*\*\*

COLLOIDED PROPELLANT

See SMOKELESS PROPELLANT

\*\*\*\*

#### COMPOSITE PROPELLANT

None Nomenclature:

Compositions

Composite propellants contain no mitrocellulose or nitroglycerin (as do other types of modern propellants). They normally consist of an organic fuel (such as ammonium picrate), an inorganic oxidising agent (such as potassium nitrate), and an organic binding agent. A representative composition, known as T-9, is given below:

Ammonium Picrate---- 40.7%
Potassium Nitrate---- 47.6%
Ethyl Cellulose----- 4.5%
Chlorinated Wax----- 4.5%
Calgium Stearate---- 0.5%

#### COMPOSITE PROPELLANT

Characteristics:

Composite propellants are an uncolloided heterogeneous mixture of ingredients. They are more or less plastic, and can be molded into the desired phase. Their burning rate is not affected by low temperatures, but they tend to become brittle and crack. They cannot be used with safety at temperatures of -12°C and under. The burning of composite propellants produces a large smount of white smoke.

Manufacture:

The manufacturing process involves only a simple mixing of the ingredients.

Upest

Composite propellants are used as JATO (Jet-Assisted Take-Off) and rocket propellants.

Comments:

Composite propeliants were developed primarily to climinate the difficulties involved in the manufacture of double-base propellants in large grains, and the changes in ballistic effects of these double-base propellants caused by changes in temperature. Composite propellants have been successful in these respects, although they are still affected by low temperatures. Further improvements in resistance to temperature changes will be made as better binding agents are developed.

\*\*\*\*

#### COMPOSITION A

Alternate Nomenclature:

Composition:

Cyclonite 91%
Beeswax or wax derived from petroleum---- 9%

Characteristics:

Composition A is a white to buff (Although German and Italian compositions were dyed blue and red respectively), press-loaded explosive. It will detonate when subjected to a temperature of 250°C for five seconds. Composition A is about 30% stronger than TNT. It is entirely stable but is slightly corrosive to steel, magnesium, copper, and copper alloys. The har reduces the composition's sensitivity. However, the wax coes not enter into detonation and therefore reduces velocity. In burning, the wax also robs the explosive of some oxygon, thereby reducing ats strength.

# Uses:

Composition A is best used as a booster with small amounts of wax, which does not coat the grain. It is also used as a bursting charge, where larger amounts of wax are used to act as grain coating.

# Comments:

Changes in the granulation of cyclonite and the method of manufacture have resulted in variations known as composition A-2 and composition A-3. A similar composition, called "angayaku" (see entry), was used by Japan during World War II.

#### \*\*\*\*

COMPOSITION A-2 and COMPOSITION A-3

See Comments under CUMFOSITION A

\*\*\*\*

# COMPOSITION B and COMPOSITION B-2

| Alternate | Nomenclature: |
|-----------|---------------|
| Cycle     | tol           |

Foreign Nomenclature:

Italian: Tritolite Japanese: Nigotanyaku

Swedish: Hexotol (Brand name used by Bofors of Sweden)

# Composition:

| Cyclonite TNT Beeswax | 59%<br>40% | } | U.S. composition B    |
|-----------------------|------------|---|-----------------------|
| Cyclonite TNT-        | 50%<br>50% | } | Foreign composition B |
| Cyclonite TNT         | 60%<br>40% | } | Composition B-2       |

#### Characteristics

Compositions B and B-2 are dirty white to brownish yellow, cast-loaded explosives. Composition B will detonate them subjected to a temperature of 278°C for five seconds. It is slightly corrosive to steel, magnesial, more, and copper allow. Compositions B and B-2 are very stable with respect to temperature. Composition B-2 is much more sensitive than composition B. Both are better than composition A in that an active desensitizing agent increases power. However, sensitivity and TNT content are disadvantages (the latter because 10 may be in limited supply).

Manufactures

Wet cyclenite is slowly added to TNT which has been previously melted at 100°C. The mixture is heated and stirred until all moisture has been removed. Wax is added and the mixture is thoroughly stirred. It is then cooled to a suitable pouring temperature.

វិធិមិធីវិ

Composition B is used by all nations as a bursting charge in ammunition which does not have to penetrate a target (ex: mines and bombs).

\*\*\*\*

#### COMPOSITION C

Alternate Nomenclature:

Plastic Explosive (along with other composition C-series explosives)

Composition:

Cyclonite 88.0% Cil 11.4% Leoithin 0.6%

Characteristics:

Composition C is a white to brown, Fand-tamped explosive. It will detenate when subjected to a temperature of 28500 for five seconds. Composition C is non-reactive with metals, but is unstable. It is less effective than composition B but 21% more efficient than TNT in shaped charges. It retains its plasticity between 0° and 40°C, but below 0°C it becomes brittle and insensitive while above 40°C it becomes gummy and tends to exude oil. Lecithin is used to prevent the formation of large or yetals which would increase sensitivity.

Uses:

Composition C is used as a demolition agent by many countries. A similar composition, called "oshitsuyaku" (see entry), was used by Japan during World War II.

KKKKK

# COMPOSITION C-2

Alternate Nomenclature:

Plactic Explosive (along with other composition C-series explosives)

Composition:

Cycloni 9----- 78.7%

Mononitrotoluene----- 12.0%

INT----- 5.0%

Wet Witrocallulose--- 0.6%

Dimethylformamide---- 1.0%

Characteristics:

Composition C-2 is a white to yellow-brown, hand-temped explosive. It will detonate when subjected to a temperature of 285°C for five seconds. Composition G-2 is plastic from -30° to 52°C. It becomes less plastic in hot storage because of evaporation of volatile matter. Composition G-2 is more sensitive and effective than composition C since less than 1% of the material is inert compared with 12% in composition C.

Uses: Composition C-2 is used as a plastic demolition agent.

\*\*\*\*

# COMPOSITION 0-3

Alternate Nomenclatures
Plastic Explosive (along
with other composition
C-series explosives)

| Compositions       | ~~ ~ |             |               |
|--------------------|------|-------------|---------------|
| Cyclonite          |      |             |               |
| Tetryl             | 3.0≴ | )           |               |
| Mononitrotoluene   | 5.0  |             | *             |
| Dinitrotoluene     |      | Plasticiser | or plasticiam |
|                    |      |             |               |
| Wet Nitrocellulose |      |             |               |

Characteristics:

Composition C-3 is a yellowish, puttylike, hand-tamped explosive. It will detonate when subjected to a temperature of 280°C for five secondo. Two classes of composition C-3 (Class A and Class B) are manufactured, in accordance with military specifications. The two classes differ only with respect to acidity (see Uses below). Composition C-3 is pliable at normal temperatures and can be easily molded to suit requirements. It is hygroscopic, but its brisance is unchanged after total immarsion in water. It is more brisant than TNT, but less brisant than tetryl. Its sensitivity to impact is similar to that of TNT, but much less than that of cyclonate, Composition C-3 is somewhat unstable. When exposed to air at 25°C for five days, it loses 1.2% of its weight because of its volatility. Moreover, it becomes hard and brittle at -29°C and undergoes considerable exudation at 77°C.

manuractura:

Tetryl, nitrocellulose, and the nitrotoluenes are mixed together to form the plasticizing agent. This plasticizer is then heated to 100°C and wet cyclonite is added. The mixture is stirred and heated until the composition is uniform and all the water has been driven off.

Upes

Class A composition C-3 is used for the manufacture of demolition blocks; class B composition C-3 is used both for the manufacture of demolition blocks and the loading of ammunition where a lower acidity is desired.

Comments:

Composition C-3 was developed to improve the instability of composition C-2. It has not been completely satisfactory in this respect, and is being replaced by composition C-4 (see entry).

HHHHH

COMPOSITION C-L

Alternate Nomenclature:
Harrisite
Plastic Explosive (along with other composition G-series explosives)

Composition:

Polyimobutylene 2.1%
Motor Oil 1.6%
Di-(2-ethylhexyl) sebacate 5.3%

Characteristics:

Composition C-k is a dirty white to light brown, puttylike, hend-tamped explosive. It will explode when subjected to a temperature of 290°C for five seconds. Composition C-k has a higher stability than composition C-3. It is essentially nonhygroscopic. It will not harden at -57°C and will not undergo exudation at 77°C. Composition C-k is less sensitive to impact and slightly more brisant than composition C-3. The two compositions are allest equal in sensitivity to initiation.

Manufacture:

The isobutylene plasticizer, previously made up in other, is mixed with cyclonite (crystals of the micron size or less) either by machine or by hand kneeding and rolling (machine mixing uses a Schrader Bowl mixer). The mixture is then dried at 60°C.

Us es:

Composition C-4 is used primarily for demolition blocks. It is well suited for underwater demolition if properly packaged. It is ideally suited for cutting through steel because of its plasticity and its high velocity of detonation.

Comments:

Composition C-4 has been developed to improve the instability and hygroscopicity of composition C-3 (see entry). It has not, however, entirely replaced composition C-3.

\*\*\*\*

COMPOSITION T-9

See COMPOSITE PROPELLANT

#### CORDITE

# See also DOUBLE-BASE SMOKELESS PROPELLANT

# None None

Foreign Nomenclature:

British: Cordite Franch: Cordite

Garman: Kordit (rarely, cordite)

Hungarian: Kordit
Italian: Cordite
Russian: Kordit
Spanish: Cordita

Composition:

A typical composition is listed below. Percentages may very depending upon the manufacturer and the end-use of the product.

Guncotton----- 37% Nitroglycerin---- 58% Mineral Jelly---- 5%

Characteristics:

Cordite is very similar to brown twine in appearance (hence its name). Its other characteristics are those listed for double-base smokeless propellants (see entry).

Manufactures

Nitrocellulose (guncotton type) and nitroglycerin are mixed together by means of acetone. The mineral felly is then added, and upon removal of the acetone the colloid is pressed into cords.

Usest

Cordite is used in Great Britain as the propellant for the armed forces. In this respect, the term is often used loosely to apply to propellants deviating considerably from the composition listed above. Cordite is used throughout Western Europe as a standard military propellant. In the United States, it does not meet satisfactorily all U.S. Army specifications.

Comments:

Because of the gun-barrel erosion caused by cordite, a modification was introduced, called "cordite M.D." (i.e., "cordite, modified") and containing 65% mitrocallulose (guncotton type), 30% nitroglycerin, and 5% mineral jelly. A further modification, called "cordite R.D.B." (Research Department B), was introduced during World War 1, "extend the supply f colvents. For this purpose, cordite R.D.B. contains nitrosellulose of low nitration. The formula called

for 52% nitrocellulose, 42% nitroglycerin, 6% mineral jelly. Cordite M.D. is the preferred type.

\*\*\*\*

#### CRESSYLITE

Alternate Nomenclature:

# Composition: Pieric Acid----- 60% Trinitrograsol---- 40%

Characteristics:

Oressylite is a high explosive closely related to picric acid. It is somewhat less sensitive to impact and shock than pigric acid, and consequently requires a more powerful charge to initiate its detonation.

Orensylite is now rarely used as an explosive. It was first used by France as a bursting charge and subsequently was used by most countries. It was quickly replaced by TNT. however, when an inexpensive manufacturing process for TNT was found. France and the Soviet Union still use cressylite to a limited extent.

HHNNN

### CYCLONITE

| Alternate Nomenciature:                   | Foreign Numerclature: |                                          |  |  |  |
|-------------------------------------------|-----------------------|------------------------------------------|--|--|--|
| Cyclotrimethylene-<br>trinitremine        | Britishs              | NDX (Research Depart-<br>ment Explosive) |  |  |  |
| Trimethylenetrinitramine                  | French:<br>Germun:    | Exogène<br>Hoxogen                       |  |  |  |
| NOTE: The term "RDX,"                     | Japaneses             | Shouyaku, Tan-o-yaku                     |  |  |  |
| although British in origin, is often used | Italians              | T-4, Trimotilentri-<br>nitrosmina        |  |  |  |
| interchangeably with                      | Rusulans              | Ghekaoghen, Gh                           |  |  |  |
| "cyclonite" in the U.S.                   | Spanish:              | Ciclonita, Faxogene                      |  |  |  |

#### CYCLONITE

Composition:

(CH<sub>2</sub>)<sub>3</sub>N<sub>3</sub>(NO<sub>2</sub>)<sub>3</sub> or C<sub>3</sub>H<sub>6</sub>N<sub>6</sub>O<sub>6</sub> -- chemica compound containing the following percentages by weight of the elements:

Carben---- 16.22% Hydrogen--- 2.72% Nitrogen--- 37.88% Oxygen---- 43.22%

Characteristics:

Cyclonite is a colorless or white, press-loaded high explosive melting at 204°C. It will detonate when subjected to a temperature of 260°C for five seconds. Cyclonite is classified into two types, in accordance with military specifications. Type A must have a minimum melting point of 200°C (the melting point given above is for pure cyclonite) and a maximum acidity of 0.05% (as nitric acid); type B must have a minimum melting point of 190°C and a maximum acidity of 0.02% (as acetic acid). There is also a slight difference in grazulation between the two grades. Type 2 is the less pure of the two types, the impurity consisting mainly of HMI (see entry). Cyclonite has no reaction with aluminum or stainless steel. It reacts slightly with copper, brass, mild steel, and cadmium, and when damp it also reacts slightly with mickel and zinc. Cyclonite is nonhygroscopic at 30°C and 90% relative humidity. It is as stable as TNT at temperatures under 100° to 150°C. It has been stored for ten months at 85°C without any change in stability. Cyclonite has the same sensitivity to impact as tetryl, but is more sensitive to miction than tetryl. Both types of cyclonite are equally sensitive to impact, friction, heat, and initiation. Cyclonite is more powerful than tetryl and is considered the second most powarful standard military explosive (nitroglycerin being the first).

Manufactures

Formaldehyde is reacted with ammonia to yield hexamethylenetetramine, which in turn is nitrated to yield crude cyclonite. The syclonite is collected by filtration and is washed and ground.

Usest

Cyclonite is used mainly in mixtures (composition A, compositions B and B-2, compositions C, C-2, C-3, and C-4, torpax, PTX-1, and FTX-2), but can be used alone as a subbooster, booster, and bursting charge.

Comments:

The chief impurity occurring in the manufacture or cyclonite is HMX (see entry). Its presence in cyclonite is not considered has mful.

CYCLOTETRAMETHYLENETETRA-NITRAMINE See HMX

\*\*\*

CYCLOTRIMETHYLEN F'R INITRAMINE

See CYCLONITE

\*\*\*\*

CHICLOTOL

See CONFOSITION B

\*\*\*\*

DRY

Alternate Nomenclature:
Depth Bomb Explosive

Composition:

Characteristics:

THY is a gray, cast-losded explosive. It will ignite when subjected to a temperature of 400°C for five seconds. DHI, intended as an improvement over toroex, is less sensitive and more powerful then torpex, and is very suitable for depth bombs. It is, however, hygroscopic and reacts with medals in the same manner as amatol (see entry).

Manufactures

Wet cyclonite is slowly added to molten TNT. The mixture is stirred until all water is removed. Ammonium nitrate is added, the mixture is heated and stirred, and aluminum is added. Stirring is continued while the mixture is cooled.

DBX can also be made by adding 21% ammonium nitrate and 18% aluminum to 42% composition B (of 50/50 proportions) plus 19% molten TNT.

Daog:

DEX may is used as a bursting charge in dept's bombs.

Comments:

DEX may be considered as torpex in which half of the cyclonite content has been replaced by ammonium nitrate. Although DEX has been used in the United States and Great Britain, it has not been standardized for general use.

\*\*\*\*

DDNP

Alternate Nomenclature:

Diagodinitrophonol

Diazol

Dinol

Composition:

C6H2(:N2)(:0)NO2)2 or C6H2N1O5 -- chemical compound containing the following percentages by weight of the elements:

Carbon---- 34.30%

Hydrogen---- 0.96%

Nitrogen--- 26,67%

Oxygen---- 38.07%

Characteristics:

DENP is a greenish yellow to brown, press-leaded explosive melting at 157°C. It will explode when subjected to a temperature of 195°C for five seconds. DINP is nonhygroscopic. It is as sensitive to impact and friction as lead azide. It is as brisant as TNT, and more brisant than mercuric fulminate. Its stability is satisfactory in that it can be stored at 50°C for at least 30 months without change.

Manufacture:

Picramic acid is prepared by purifying the product resulting from the evaporation of a mixture of an alcoholic solution of ammonium picrate (explosive D) and ammonium sulfide. Picramic acid is suspended in hydrochloric acid, and the mixture is cooled and stirred. Sodium nitrite, diluted with water, is added and the resulting precipitate is filtered and washed. This precipitate is dissolved in hot acetone; upon the addition of ice water, DDNP is precipitated.

U368:

DDNP is used extensively in commercial blasting caps, and to a lesser extent in military priming compositions and detonators.

DEGN

See also PROPEILANTS, FOREIGN (German and Italian Propeilants)

Alternate Nomenclature:

Diethyleneglycol Dinitrate Dinitrodiglycol

Composition:

O(CH2CH2.0.NO2)2 or ChH8N2O7 -- chemical compound containing the following percentages by weight of the elements:

Carbon---- 24.50% Hydrogen--- 4.11% Nitrogen--- 14.28% Oxygen---- 57.11%

Characteristics:

DEGN is a colorless explosive compound. It will detenate when subjected to a temperature of 237°C for five seconds. Its sensitivity to impact and its power are less than those of nitroglycerin; it is, however, more powerful than TNT. DEGN is extremely stable, much more so than nitroglycerin. When free of acid, it can withstand storage for long periods of time at ordinary temperatures without change. DEGN has a high valatility and it will impart this characteristic to explosive compositions of which it is an ingredient. However, it has the advantage of cooling the temperature of explosion of explosive compositions, and thereby reducing gum barrel erosion.

Manufactures

Disthylene glycol is reacted with mixed acid to precipitate DEGN. The separated DEGN is purified by washing (the purity of the product depending upon the purity of the ingredients).

Uses

DEGN was used more or less extensively by Germany and Italy during World War II in propellant compositions of the double- and triple-base types, as a replacement for nitroglycerin. The Soviet Union has also employed DEGN in certain propellant compositions, but not to any large extent.

\*\*\*\*

DEPTH BOMB EXPLOSIVE

See DBX.

\*\*\*

DEFONATING OIL

DINOL

DITONATING OIL See NITROGLYCERIN DIAZODINITROPHENOL See DUNP \*\*\* DIAZOL See DDNP \*\*\*\* DIETHYLENEOLYCOL DINITRATE See DECH DINITRODIGLYCOL See Decin DINITROETHILENEDIAMINE See EDNA

See DDNP

DONARTIE

None Nomenclature:

Foreign Nomenciature:
German: Donarit

Composition:

The following compositions may be taken as representative:

|                                                  |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | narite 2<br>wdery type |
|--------------------------------------------------|-------|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Nitroglycerin                                    | • • • |       | * + 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.0%                   |
| Nitroglycol                                      | 22.0% | ~~~~~ | • • • | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •••                    |
| Colloid Cotton                                   |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
| Ammonium Nitrate                                 |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
| Sodium Nitrate                                   | 10.0% |       | •••   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
| Aromatic Nitrocompounds                          | •••   |       | • • • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0%                   |
| INT                                              | 5.0%  |       | 14.0% | W-100 M 0 M 100 M |                        |
| DNT (liquid)                                     | 6.03  |       | 2.0%  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •••                    |
| Wood Meal                                        | 0.8%  |       | 2.0%  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.0%                   |
| Dågaarentertertertertertertertertertertertertert | 0.2%  |       | 0.5%  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •••                    |

Comments:

Donarites are a group of German dynamite-type mining explosives. Donarite 1, listed above, was manufactured during World War II. Another type of donarite, containing 67-80% ammonium nitrate, 12-25% TNT, 3-8% nitroglycerin, 0.2% nitrocellulose, and his vegetable meal, was manufactured for military purposes and was used as a grenade filler. Donarites currently being used are of uncertain composition.

\*\*\*\*

DOUBLE-BASE COLLOIDED PROPELLANT

See DOUBLE-BASE SMOKELESS PROPELLANT

# PROPELLANT

DOUBLE-BASE SMOKELESS PROPELLANT See also BALLISTITE, CORDITE, NITROCFLLULOSE, NITROGLYCERIN, SMOKELESS PROPELLANT

Alternate Nomenclature:

Solventless Propeliant or Powder Double-Base Powder Double-Base Colloided Propellant Foreign Comenclature:

Himgarian: Kettős alapanyagi lőpor Russian: Nitroglitserinovyje pcrokh

Spanish: Pólvora de doble base

Compositions

Double-base smokeless propellants usually contain nitrocellulose and nitroglycerin as the principal ingredients. They may consist of from 60 to 80% nitrocellulose and from 20 to 40% nitroglycerin. In some cases, however, nitroglycerin is partially replaced by other organic nitrates having the property of gelatinizing nitrocellulose. Stabilizers and other additives are usually included to achieve desired results.

Characteristics:

Double-base propellants vary from clive to black in color and arm manufactured in as many forms as single-base propellants, i.e., strips, flakes, spheres, pellets, tubes, and perforated cylindrical shapes. Double-base propellants have greater potential than single-base propellants because of the additional energy content available from nitroglycerin. Double-base propellants are less hygroscopic than single-base types. Moreover, double-base propellants contain less solvent than single-base types and therefore have a higher inherent ballistic stability.

Manufactures

Double-base propellants are manufactured by one of two processes, the "solvent" process and the "nonsolvent" or "solventless" process. The solvent process is similar to that used for the manufacture of single-base smokeless propellants (see entry), except that a mixture of ethanol and soctone is used as the solvent and the solvent recovery procedure is omitted because of the hazard involved in recovering solvents containing nitroglycerin. The non-solvent process is used when the nitroglycerin and other colloiding agents constitute approximately 40% of the composition. In this process, wet nitrocellulose is mixed with nitroglycerin. The stabiliser (contralite) is wixed in and water removed by centrifuge. The colloid is partially dried, and any remaining ingredients are mixed in. The remaining water is removed by rolling.

Usest

Before World War II, double-base propellants were limited to use in mortar and small arms ammunition. Since then, they have been used in most types of ammunition, as well as in rocket propellant compositions.

Comments:

Double-base propellants have replaced single-base propellants in many ammunition propellant applications. They have the advant: se of higher energy content and greater ease of stabilization. Since double-base propellants have a greater potential, a specified quantity of double-base propellant will give better ballistic results than an equal quantity of single-base propellant.

The term "double-base colloided propellant" for double-base smokeless propellant is coming into increasingly wide usage since it is more accurate in its description (these propellants are not entirely smokeless).

\*\*\*\*

DUNNITE

Sec EXPLOSIVE D

\*\*\*\*

DUOBET.

See PERMISSIBLE EXPLOSIVE

\*\*\*\*\*

DYNAMITE

See also ASTRALITE, DONARITE,
DYNAMON, NITROGLYCERIN, and specific
types listed under Composition
below.

Alternate Nomenclature:
See Comments below

French: Dynamite

German: Dynamit, Sprengstoff

Hungarian: Dinamit Italian: Dinamit Japanese: Kaiyaku Russian: Dinamit Spanish: Finamit

Gorman dynamices: GELATINE-DINAMIT,

gelatin dynamite; GUIRDYNAMIT, guhr dynamite; SICHER-HEITSDYNAMIT, safety dynamite; SPRENGGELATINE, blasting gelatin.

Japanese dynamites (trade names of the Nippon Oils and Fats Co., Ltd.): MATSU. blasting gelatin: **SAKURA NO. 1.& NO. 2,** gelatin; KIRI NOS. 1, 2, 3, SHIN-KIRI, summonia gelatin; TAKE NOS. 1, 2, & 3, KEYAKI, special ammonia gelatin; SHIN-KYORYOKU, summonia explosive; SHIRAUME, TOKU-SHIRAUME NOS. 1 & 2, permissible gelatin; SHCAN, SHIN-TOKU-SHOAN, permiscible ammonia dynamite: L-SHOAN, low density permissible dynamite; ko-shoan bakutaku, shoan BAKUYAKU NOS. TOL & 201 permissible ammonium nitrate explosive.

Soviet dynamites: CREMUCHII STUDEN', blasting gelatin; CRISUTIN, gelatinized nitroglycerin; PLASTICHESKII DINAMIT, plastic dynamite.

Composition:

All dynamites except military dynamite contain nitroglycerin plus varying combinations of absorbent materials, oxidisers, antacids, and freeming-point depressants. Dynamites can be grouped into the basic types listed below:

Blasting Gelatin Gelatin Dynamitr Low-Freezing and Non-Freezing Dynamites Military Dynamics Permissible Explosive Straight Dynamics

For the composition we each type, see individual entries.

Characteristics:

For specific characteristics, see entries for the types liked under Composition above. In general, dynamites are sensitive to shock, friction, and heat, unless desensitized by inert materials which, in turn, reduce explosive power. However, dynamites are not as sensitive to moderate shocks as nitroglycerin, and are safer to handle and transport.

Manufacture:

For specific processes, see entries for the types listed under Composition above. The manufacturing processes normally involve simply a mechanical mixing of the nitroglycerin with the other ingredients.

Uses

Dynamites are used universally for blasting operations both above—and below-ground, and underwater. The specific types listed under Composition above are used to accomplish specified blasting operations. For example, the blasting of soft rock or earth is achieved with a straight ammonia dynamite because of the explosive's great heaving force and relatively low rate of detonation; the blasting of hard tough rock is achieved through a gelatin dynamite, which has a low heaving force but a high rate of detonation.

Comments:

The term "dynamite" has both a general and a specific meaning. As a general term it is used to refer to all the mixtures listed under Composition above. As a specific term, it is used as an alternate reference to straight dynamites.

Military blasting operations usually utilize the same types of dynamites as commercial operations. However, military dynamite has been designed for certain blasting and demolition work (see entry).

Recently, a trend has developed in the United States leading away from nitroglycerin explosives to cheaper blasting explosives such as those based on ammonium nitrate.

\*\*\*\*

DYNAMITE NO. 1

See STRAIGHT DYNAMITE

DYNAMITE WITH ACTIVE BASE

Seo STRAIGHT DYNAMITE

\*\*\*\*

DYNAMITE WITH INACTIVE BASE

See STRAIGHT DYNAMITE

\*\*\*

#### DYNAMON

Alternate Nomenclature:

Composition:

Dynamon, as originally made in Austria, had the following compositions:

|                   | Dynamon |    |     | er Dynamon |
|-------------------|---------|----|-----|------------|
| Ammonium Nitrate  |         |    |     |            |
| Red Charcoal      | 32      | to | 13% | <br>4%     |
| Putassium Nitrate |         |    |     |            |

The present compositions, as used in the Soviet Bloc, are as follows:

| Ammonium Nitrate | 89% | <br>90% |
|------------------|-----|---------|
| Peat             |     |         |
| Vegetable Meal   | ••• | <br>10% |

# Characteristics:

Dynamons are very stable in storage. They are more powerful than straight dynamites, to which they are closely related.

#### Uses

Dynamons are used by the Soviet Bloc for hard ore blasting and for excavating. They are no longer used in western Europe.

#### E. C. POWDER

# Alternate Nomenclature:

Bulk Powder

Composition:

| Nitrocellulose (13.2% N) | 80%   |
|--------------------------|-------|
| Barium Micrata           | 8%    |
| Potassium Nitrate        | 8%    |
| Starch                   | 3%    |
| Aurine Dye               | 0.25% |
| Diphenylemine            | 0.75% |

# Characteristics:

E. C. powder is an orange or pink, coarse sand textured explosive. It will detonate when subjected to a temperature of 200°C for five seconds. When dry it reacts slightly with copper, magnesium, magnesium-aluminum alloy, and mild steel plated with copper or zinc. When wet it severely attacks copper, brass, magnesium, magnesium-aluminum alloy, mild steel, mild steel coated with acid-proof black paint, and mild steel plated with copper, cadmium, nickel, or zinc. E. C. powder absorbs moisture readily and therefore must be protected from the atmosphere. It is sensitive to friction, shock, and heat. It but as extremely rapidly in the open, but detonates if confined. It is, therefore, sufficiently sensitive to be used as a high explosive as well as a propellant. It is usually exploded by flame from a primer or fuze.

# Uses:

E. C. powder was used at one time as a bursting charge in fragmentation hand grenades. It is now used in shotgun shells and blank ammunition. Its burning rate prevents its use as a standard military propellant.

# Comments:

The name "E. C. powder" is an abbreviation for Explosives Company Powder since it was invented by the Explosives Company at Stowmarket in England. It was one of the first nitrocellulose compositions to be developed.

\*\*\*

# ECRASITE

Alternate Nomenclature:

Ammonium Cressylate

French: Ecrasite

German: Ekrasit

Hu garian: Ekrasit

Italian: Ecrasite

Russian: Ekrazit

Soanish: Ecrasita

Composition:

C6H.CH3(NO2)30NH4 or C7H8N4O7 -- chemical compound containing the following percentages by weight of the elements:

Carbon---- 32.31% Hydrogen--- 3.10% Nitrogen--- 21.54% Oxygen---- 43.05%

Characteristics:

Ecrasite is a high explosive closely related to picric acid. It is highly stable and only slightly sensitive to impact. It is twice as powerful as dynamite, but its detonation is difficult to initiate.

Uses:

Ecrasite is now rarely used as an explosive. It was formerly used as a bursting charge, especially by Austria. It is still used by the Soviet Bloc to a very limited extent.

\* \*\*

#### EDNA

Alternate Nomenclature:
Ethylenedinitramine
Dinitroethylenediamine
Haleite

Composition:

(CH<sub>2</sub>)<sub>2</sub>(NH)<sub>2</sub>(NO<sub>2</sub>)<sub>2</sub> or C<sub>2</sub>H<sub>6</sub>N<sub>1</sub>O<sub>1</sub> -- chemical compound containing the following percentages by weight of the elements:

Carbon----- 16.00%

Hydrogen---- 11.03%

Nitrogen---- 37.33%

Oxygen----- 12.64%

Carlo Ca

Characteristics:

EDNA is a white to buff, press-loaded explosive melting with decomposition at 177.3°C. It will detent when subjected to a temperature of 189°C for five seconds. Dry EDNA will not react with most metals; in the presence of moisture, however, it will react with brass, cadmium, copper, nickel, raid steel, and zinc. It is virtually ronhygroscopic, absorbing only 0.01% moisture when in an atmosphere of 90% relative humidity at 30°C. EDNA is less sensitive to impact than tetryl but more sensitive than TNT; it is somewhat less sensitive to initiation than tetryl. It is more brisant than tetryl. Although EDNA is less stable than tetryl, it has been stored for five months at 65°C and for 30 months at 50°C without any trace of instability.

# Manufacture:

Ethyleneures is reacted with either concentrated sitric acid or mixed acid to yield dinitroethyleneures. The dinitroethyleneures is filtered out of the mother liquor, washed, and mixed with seven times its weight of water. This is boiled until the evolution of carbon dioxide gas stops. The resulting EDNA, gathered by filtration, is washed and dried.

#### Uses:

ETNA has been used as both a bursting charge and an ingredient of educatol (see entry).

# Comments:

The sensitivity of ENNA precludes its use as a standard military bursting charge. It is useful chiefly as an ingredient for educatol (see entry).

\*\*\*\*\*

EDNATOL

Alternate Nomenclature:

EDNA----- 60% or 55%

Characteristics:

Ednatol is a dirty white to buff, cast-loaded explosive which melts at 80°C (55/45 type). Ednatol 55/45 will deconate when subjected to a temperature of 190°C for five seconds. When dry, it is slightly corrosive to copper, mild steel, and zinc. When damp, it is much more corrosive to these metals, and also corro as cadmium and nickel. Ednatol is practically nonhygroscopic. Its sensitivity to impact and initiation is greater than that of TNT and less than that of EDNA. It will not detonate when hit by a rifle bullet, although it will occasionally ignite. Ednatol 60/40 is 14% more powerful than TNT; ednatol 55/45 is 20% more powerful than TNT. Ednatol's stability is equal to that of EDNA at temperatures up to 100°C. However, it becomes unstable at higher temperatures, and at 120°C it is considerably less stable than EDNA.

Manufacture:

TNT is heated to about 100°C and melted. Wet EDNA is slowly added and the mixture is stirred and heated until all moisture has been removed. The mixture is then cooled to about 85°C to make it suitable for pouring.

Uses:

Ednatol can be used as a bursting charge in shell and bombs. Although it has been standardized in the United States, it has not yet been used to any great extent.

\*\*\*

#### ENNAYAKU

Alternate Nomenclature:

The entry is given in the Japanese nomenclature; there is no English equivalent.

Composition:

Potassium Chlorate---- 80% Mononitrotoluene----- 15% Castor Bean Oil----- 5%

Comments:

Ennayaku is . Capanese explosive composition which was used during World War II as a bursting charge, probably for grenades and mortar shells.

\*\*\*

#### ENTOYAKU

#### ENTOYAKU

Alternate Nomenclature: None

Foreign Nomenclature:

The entry is given in the Japanese nomenclature: there is no English equivalent.

Composition:

Potassium Chlorate---- 80% Dinitrotoluene----- 16% Castor Oil Bean---- 4%

Comments:

Entoyaku is a Japanese explosive composition which was used during World War II as a bursting charge for granades and mortar shells, and in demolition charges.

ETHYL PICRATE

See TNPH

ETHYLENEDIAMINE DINITRATE

Sec EDD

\*\*\*\*

EXPLOSIVE D

See also ARCMATIC NITRO COMPOUNDS

Alternate Nomenclature:

Ammonium Picrate

Foreign Nomenclature:

French: Picrate d'ammoniaque

Ammonium Trinitrophenolate

German:

Ammoniumpilrat Hungarian: Dunnit robbandanyag

Dunnite

Italian:

Picrato ammonico

Pikrit ammonia,

See Comments below

Russian:

Pikrinovo-Lalyi ammonii

Picrato amónico Spanish:

Composition:

Collook All (NO2)3 or Collon 107 -- chemical co so ad containing

the rollowing percentages by weight of the elements:

Carbon ---- 29.28%

Hydregon--- 2.46%

N1trogen--- 22.76%

Oxygen 45.50%

#### EXPLOSIVE D

Characteristics:

Explosive D is a yellow to orange, press-loaded explosive. It will detonate when subjected to a temperature of 318°C for five seconds; it will not melt. It does not react with metals when dry; when wet, however, explosive D will react to form sensitive metallic picrates. The presence of small traces of these picrates in the explosive may lower the detonation temperature. Explosive D is somewhat hygroscopic, absorbing over 5% by weight of where during storage in a moisture-saturated atmosphere. It is insensitive to friction and shock; the presence of moisture reduces sensitivity to initiation. Explosive D is less sensitive than TNT.

Manufacture:

The manufacturing process is extremely simple. Explosive be crystallizes out of a cooling solution of picric acid and hot water neutralized with aqueous ammonia. The precipitate is dried at 45°C, and then is screened and packed.

Uses:

Explosive D is used as the bursting charge in armor-piercing shells. It is also coming into widespread use as the organic fuel in composite propellants (see entry). It has also been used to some extent in France, mixed with potassium nitrate, as a propellant.

Comments:

The insensitivity of explosive D to shock and friction makes it an excellent bursting charge for armor-piercing projectiles since it will not detonate upon impact. In other respects, however, it is inferior as a high explosive to TNT.

The term "explosive D" originally was given to ammonium picrate in order to keep the explosive composition secret, the "D" standing for Dunn, the name of its proponent. The explosive was called unofficially Dunnite. At present, the term "explosive D" is in general usage, and "Dunnite" is only rarely used.

\*\*\*\*

explosive oil

See NITROGLYCERIN

\*\*\*

EXTRA DYNAMITE

See STRAIGHT DYNAMITE

FLASHLESS AND SMOKELESS COMPOSITIONS

See also SINGLE-BASE SMOKELESS PROPELLANT

Alternate Nomenclature:

and NH (nonhygroscopic)

Comments:

For Characteristics and Manufacture see SINGLE-BASE SMOKELESS PROPELLANT. Flashless and smokeless compositions are a class of single-base propellants used chiefly in artillery ammunition. Standard U.S. compositions include M-1, M-3, M-4, M-6, M-10, M-12, and M-14 types. Ingredients vary, but all contain nitrocellulose plus nitrotoluene and other materials. They are not truly nonhygroscopic, but are much less hygroscopic than pyrocellulose propellants.

\*\*\*\*

FNH (flashless, nonhygroscopic)

See FLASHLESS AND SMOKELESS COMPOSITIONS

\*\*\*\*

### FRENCH MIXTURE

Alternate Nomenclature:

The entry is given in the Russian: Frantsuzskaya smest English equivalent of the Russian nomenclature; there is no corresponding U.S. explosive.

Composition:

Picric Acid------ 80% Dinitronaphthalene---- 20%

Comments:

French mixture is a Acviet composition which has been used to fill artillery ammunition, bombs, antitank mines, and for demolition charges.

\*\*\*\*

FULMINATE OF MELCURY

See MERCURIC FULLINATE

GEL-COALITE

# See PERMISSIBLE EXPLOSIVE

\*\*\*

#### GELATIN DYNAMITE

#### See also DYNAMITE

Alternate Nomenclature:
Nitrogelatin
Nitrogelin

Foreign Nomenclature:
British: Gelig

British: Gelignite French: Gélatine-dynamite,

nitrogélatine

German: Gelatinedynamit,

nitrogelatino

Hungarian: Nitrozselatinos dinamit,

dinamitgél, gelignit

Italian: Gelatina-dinamite,

nitrogelatina

Japanese: SAKURA NOS. 1 & 2 (trade

name of Nippon Oils and

Fats Co., Ltd.)

Russian: Grisutin, studenistyi

dinamit

Spanish: Gelatina dinamita,

nitrogelatine

Composition:

Golatin dynamites consist of blasting gelatin (see entry) to which wood meal and sodium or potassium nitrates (saltpeters) have been added. They also may contain ammonium nitrate (in which case they are called "ammonia gelatin dynamites") and aromatic nitro compounds. Gelatin dynamites normally have a lower nitroccllulose content than blasting gelating and thus are often spoken of as being "thinner" or softer gelatins. The following compositions have been used in the United Status:

Characteristics:

Gelatin dynamites are plastic and cohesive; they may be shaped and knoaded as desired. They may or may not be hygroscopic depending upon the types and quantities of ingredients. Exposure to moisture-laden atmosphere has caused difficulties because of the hygroscopicity of sodium nitrate and ammonium nitrate. Gelatin dynamites antended for tropical climates, therefore, usually contain potassium nitrate, which is more expensiv than sodium mitrate but nonhygroscopic. Ammonium nitrate content, however, is desirable in some gelatin dynamites because of the particularly nigh strength it imparts to explosive mixtures. These ammonia gelatin dynamites are extremely hygroscopic and require special waterproof packing. Gelatin dynamites are about as sensitive to shock as blasting gelatin and guhr dynamites. This sensitivity, however, varies depending upon ingredients. For example, potassium perchlorate will raise shock sensitivity while aromatic nitro compounds (see below) will depress this sensitivity. Moist gelatin dynamites are less censitive to shock than the dry material. Sensitivity to initiation varies with nitrocellulose content. Gelatin dynamites with a relatively high nitrocellulose content require a strong blasting cap for detonation while those with a low nitrocellulese content can be detonated with a weak blasting cap. Long periods of storage may decrease sensitivity to initiation.

Under wartime conditions when glycerin has been in short supply, the nitroglycerin content in gelatin dynamites has been reduced to a low of 18%. Since such a composition contains relatively little "nitroglycerin-gelatin," it must be extended by the addition of aromatic nitro compounds such as TNT and dinit otoluene, which partially dissolve in warm nitroglycerin but only desensitize it very little. When the compound cools, he nitro compound tends to crystallize out of solution and add its own characteristics to those of straight nitroglycerin.

### Manufacture:

The "dope" which is made up of both the oxidizing agents (nitrates or perchlorates) and combustible materials (wood moal, cercal meal, charcoal, etc.), must be in as finely pulverized a state as possible. Accordingly, each ingredient must be ground to a fine consistency. The mixing and gelatinization processes are identical to those described for blasting gelatin (see entry), and are conducted with the same equipment.

#### Uses:

Gelatir. dynamites are used for rock bla. who and underwater blastars operations. The ammonia gelatin committee, despite their strength, are not suitable for hard one or rock blesting because of their lower velocity of detonation and lower density.

GELOBEL

GELOBEL

See PERMISSIBLE EXPLOSIVE

\*\*\*\*

GLUCOSE PENTANITRATE

See SUGAR NITRATE

\*\*\*\*

GLYCERYL TRINITRATE

See NITROGLYCERIN

\*\*\*\*

#### OREMUCHE-RTUTNAYA

Alternate Nomenclature:

Foreign Nomenclature:

The entry is given in the
Russian nomenclature; there
is no English equivalent.
The literal translation of
the term is "of mercuric
fulminate."

Comments:

Gremuche-rtutnaya is a Soviet detonating cap composition consisting solely of mercuric fulminate, usually in 0.2-gram charges.

\*\*\*\*

GRENITE

See also NITHOSTARCH

Alternate Nomenclature:

Foreign Nomenclature:

Composition:

Grenite is a nitrostarch explosive whose composition varies according to the manufacturer and the product's end use. The composition listed below gives the input limits for each ingredient:

| Not           | less than | Not more than |
|---------------|-----------|---------------|
| Nitrostarch   |           |               |
| Petroleum Oil |           |               |
| Gum Arabic    | 0.75%     | 2.00%         |
| Moisture      | • • •     | 1.00%         |

Characteristics:

Grenite appears as small white, hard granules. It is not significantly hygroscopic. It is less sensitive than straight nitrostarch. Petroleum ingredients reduce somewhat the sensitivity of straight nitrostarch.

Manufacture:

Granite is prepared by spraying dry nitrostarch with a solution of the binding materials while agitating the mixture. The product is dried and account to proper size.

Usas:

Crenite has been used only in grenades since it is too sensitive to setback for use in projectiles.

Comments:

As in the case of Trojan explosives (see entry), nitrestarch is new rarely used for military purposes except for training requirements.

\*\*\*\*

**GUANYL NITRAMINE** 

See NITROGUANIDINE

\*\*\*

GUHR DYNAMITE

See STRAIGHT DYNAMITE

### GUNCOTTON

# See also NITROCELLULOSE, SINGLE-BASE SMOKELESS PROPELLANT

Alternate Nomenclature:

Foreign Nomenclature:

Fre ch: Coton-collodion,

coton-nitré, coton-

poudre. fulmicoton

German:

Koliodiumwolle,

nitrozellulosepulver,

schiessbaumwolle,

schicsswolle

Hungarian: Lögyapot

Italian:

Fulmicotone, cotone

fulminante

Russian:

Piroksilin, khlcp-

chatobumaz'my;

porokh

Spanish:

Algodón pólvora

Composition:

Uncolloided Nitrocellulose--- 87% Moisture---- 13%

Characteristics:

Guncotton is a white explosive material. It will ignite when subjected to a temperature of from 195° to 200°C for five seconds. It is nonreactive with metals. It is about 98% as strong as TNT. When dry it is 19% stronger than TNT. Like other single-base propellants, it is hygroscopic and unstable. 30% moisture will prevent ignition. It is about as sensitive as TNT. Dry, it is about as sensitive as PETN. See NITROCELLULGE and SINGLE-BASE SMOKELESS PROPEZLANT for other characteristics.

#### Manufacture:

See NITROCELLULOSE and SINGLE-BASE SMOKELESS PROPELLANT.

# Uses:

Guncotton is commonly used as a propellant, rarely as a demolition agent.

#### Comments:

The term "guncotton" is commonly applied to forms of nitrocellulose containing 13% or more nitrogen.

# HAISHOKUYAKU

Alternate Nomenclature:

Foreign Nomenclature:

The entry is given in the Japanese nomenclature; there is no English equivalent.

Composition:

Ammonia Parchlorate 77.04 Cyclonite 17.0% Silicon Carbide 1.5% Paraffin 4.5%

Comments:

Haishokuvaku is a Japanese explosive composition which was used during World War II in demolition blocks.

\*\*\*\*

HALEITE

Sca EUNA

**\*\*\*\*** 

HARRISITE

See COMPOSITION C-L

\*\*\*\*

HBX-1

See TORPEX

\*\*\*\*

HERCOGEL A and HERCOGEL 2

See PERMISSIBLE EXPLOSIVE

\*\*\*\*

HEXAMINE

See HEXITE

\*\*\*

#### HEXANITE:

None Nomenclature:

Foreign Momenclature:

German: Hexa

Hexa, Novit

Composition:

Hexite---- LOS

Characteristics:

Hexanite is only slightly superior to TNT with respect to brisance and power, and is comparable to TNT with respect to sensitivity and stability. It does not react with metals.

Uses:

Hexanite was used by Germany during World War II as a bursting charge in mines; torpedoes, and depth charges.

Comments:

Hexanite has been used chiefly as a substitute for TNT. It does not offer any significant advantages other than lessening the demand for TNT.

\*\*\*\*

# HEXANITE, ALUMINIZED

Alternate Nomenclature:

Foreign Nomenclature:

German: Schiesswolle 18,

TSMV 1-101

Composition:

Comments:

Aluminized hexanite was used extensively by the Germans during World War II as the main bursting charge in torpede warheads. Its blast effect is greater than that of tritonal.

\*\*\*

HEXANITRODIPHELYLANINE:

See HEXITE

HEXIT.

See HEXITE

\*\*\*\*

HEXITE

bee Appendix I for additional uses.

Alternate N mencleture:

The state of the s

Hexanitrodiphenylamine Hexil

Composition:

(NO<sub>2</sub>)<sub>3</sub>C<sub>6</sub>H<sub>2</sub>NHC<sub>6</sub>H<sub>2</sub>(NC<sub>2</sub>)<sub>3</sub> or C<sub>12</sub>H<sub>5</sub>N<sub>7</sub>O<sub>12</sub> -- chemical compound containing the following percentages by weight of the elements: Carbon---- 32.81% Hydrogen---- 1.15%

Nitrogen---- 22.33% Oxygen----- 43.71%

Characteristics:

Hexite appears as yellow to brownish yellow crystals. It melts at from  $240^{\circ}$  to  $245^{\circ}$ C. It is similar to tetryl in sensitivity and brisance, and is very stable.

Manufacture:

Aniline is condensed through the addition of dinitrochlorbenzene. The resulting dinitrophenylemine is nitrated to form the hexanitro compound.

Uses:

Hexite was used extensively by Germany during World War II as a booster, and, rarely, as a bursting charge.

\*\*\*\*

HMX (beta-type)

Alternate Nomenclature:

Cyclotetremethylanetetranitramine

Homocyclonite

Tetranitrotetrasacle-octane

Composition:

ChilgNgOs -- chemical compound containing its Collowing percentrges by weight of the elements: Carbones--- 16.2%

Hydrogen--- 2.7%

Mitrigen---- 37.9%

Oxygen----- 43.2%

HMX (bete Type)

Characteristics:

HMX is a white explosive material which melts at from 273° to 280°C (depending upon the method of measurement). It will explode when subjected to a temperature of 327°C for five seconds. HMX occurs as an impurity or by-product in the manufacture of cyclonite (see entry). It is very similar to cyclonite in sensitivity, brisance, and strength, but is somewhat 1 as powerful than its parant explosive. HMX to no hyperocycle at 30°C and 95% relative handity.

Comments:

HMX has not been used alone as an explosive to any great extent. It may, however, see increasing usage in booster applications.

\*\*\*\*

HOMOCYCLONITE

See HMX

XXXXX

#### INCENDIARY COMPOSITIONS

# None Nomenclature:

Composition:

Examples of typical incendiary compositions are given below:

| 50/50 Magnesium-Aluminum Alloy                  | 48.0% | <br>48.0% |
|-------------------------------------------------|-------|-----------|
| Barium Nitrate                                  | 50.5% | <br>50.5% |
| Linseed Oil                                     |       |           |
| Asphaltumananananananananananananananananananan | •••   | <br>1.5%  |

Comments:

Incendiary compositions must be sensitive to the force of impact of the projectiles which carry them but must be insensitive to the force of setback. They are chemicals which ignite at the bursting of the projectile, and undergo burning rather than detonation. Such compositions are even less sensitive to impact than the least sensitive of the standard high explosives and have relatively high explosion temperatures (585°C).

MMMMM

INDEPENDENT (series)

Sec PERMISSIBLE EXPLOSIVE

\*\*\*\*

INDEPENDENT GEL-A

Sea PERMISSIBLE EXPLOSIVA

AUNTH

JUDSON POWDER

See STRAIGHT DYNAMITE

\*\*\*\*

# K-1 MIXTURE

Alternate Nomenclature: Foreign Nomenclature:

The entry is given in the Russian: K-1 splay
English equivalent of the
Russian nomenclature; there
is no corresponding U.S.
explosive.

# Composition:

THT----- 70% Dinitrobenzene---- 30%

Characteristics:

K-1 mixture is less brisant than TNT, but it is still too brisant for effective fragmentation of cast iron containers; it will shatter the container into fragments too small to be of much use. To reduce this high brisance, long blocks of less brisant explosives such as schneiderive have been inserted into K-1 mixture with favorable results. K-1 mixture is a toxic explosive, and is therefore becoming obsolete.

#### Uses

K-1 mixture has been used by the Soviet Union as a bursting charge in some cast iron land mines. It is being replacify K-2 mixture (see antry).

#### **X-2 MIXTURE**

Alternate Nomenclature:

The entry is given in the Russian: K-2 splay
English equivalent of the
Russian nomenclature; there
is no corresponding U.S.
explosive.

Composition:

Trinitronaphthalene---- 20%

Comments:

K-2 mixture has been used by the Soviet Union as a cursting charge in cast iron land mines. It is replacing K-1 mixture (see entry) because of the lower toxicity of K-2 mixture.

#### XXXXX

KALIIALMATRIT NO. 55

See also ALMATRITE

Alternate Nomenclature:

None

Foreign Nomenclature:

The entry is given in the Russian nomenclature; there is no English equivalent.

Composition:

Potassium Uniorate--- 55%

Combustible----- 12% (containing 5% vaseline, 30% paraffin, 65% rosin)

Comments:

Kalialmatrit no. 55 is a Russian commercial explosive of the almatrite class. It has a brisance lower than that of TNT.

#### KUNBF

Alternate Nomenclature:
Potassium Dinitrobenzfuroxan

Composition:

Compound containing the following percent iges by weight of the elements: Carbon---- 27.3%

hydrogen---- U.u. Nitrogen---- 21.2%

Oxygen---- 36.3% Potassium--- 14.8%

Characteristics:

KDNBF is an orange to brown, press-loaded explosive with a melting point of 210°C. It will explode when subjected to a temperature of 250°C for five seconds. KLNBF is extremely sensitive to impact. It is only slightly hygroscopic and is stable in storage (less than 0.1% of the material is lost when it is subjected to 100°C temperatures for four days).

Manufacture:

Alkaline sodium hypophlorite is reacted with benzfuroxan. The latter is dissolved in concentrated sulfuric acid and nitrated with mixed acid. The resulting dinitrobenzfuroxan is neutralized with potassium bicarbonate. Treatment with hot water causes the KDNEF to crystallize out of solution.

Usesi

KINBF is suitable for use as a primary high explosive.

\*\*\*\*

KING

See PERMISSIELE EXPLOSIVE

\*\*\*\*

KING NU-GEL

See PERMISSIBLE EXPLOSIVE

\*\*\*

KING SPECIAL

See PERMISCIBLE ALPLOSIVE

# KOMBINIROVANNAYA AZIDO-TETRILOVAYA

# KCMBINIROVANNAYA AZIDO-TETRILOVAYA

Alternate Nomer clature:

Foreign Nomenclature:

The entry is given in the
Russian nomenclature; there
as no English equivalent.
The literal translation of

the term is "combined lead anide and tetry"."

Composition:

Lead Azide---- 0.15 to 0.20 gram top layer Tetryl---- Up to 1.0 gram bottom layer

Tetryl sometimes is replaced by PETN or cyclonite.

Comments:

Kombinirovannaya azido-tetrilovaya is a Soviet explosive composition used in detonating caps.

XXXXX

#### KOMBINIROVANNAYA-GREMUCHERTUTNC-TETRILGVAYA

Alternate Nomenclature:

Foreign Nomenclature:

The entry is given in the Russian nomenclature; there is no English equivalent. The literal translation of the term is "combined mercuric fulminate and tetryl."

Composition:

Mercuric Fulminate---- 0.5 gram top layer Tetryl----- Up to 1.0 gram bottom layer

Tetryl sometimes is replaced by PETN or cyclonite.

Comments:

Kombinirovannaya-gremuchertutno-tetrilovaya is a Soviet explosive composition used in detonating caps.

MAKKE

#### L-MIXTURE

Alternate Nomenclature:

The entry is given in the Russian: L-spinv
English equivalent of the
Russian nomenclature; there
is no corresponding U.S.
explorive.

Composition:

Characteristics:

L-mixture is as sensitive to impact as TNT. It is, however, easier to detonate and requires a much smaller becater charge than does TNT. A booster is unnecessary if a sureng detonator is used.

Uses:

L-mixture is a Soviet explosive composition which has been used for cast-loaded antitank mines and in demolition blocks.

XXXXX

L. ST.

See LEAD STYPHNATE

\*\*\*\*

LACTOSE HEXANITRATE

See SUGAR NITRATE

\*\*\*\*

LDNR

Alternate Nomenclature:
Lead Dinitroresorcinate

Composition:

PbU6H2N2O6 -- chemical compound containing the following percentages by weight of the elements: Tead----- 51.1% Carbon---- 17.8% HyJrogen--- 6.5% Nitrogen--- 6.9%

0xygen---- 23.7%

Characteristics:

IDER is a red or yellow, press-loaded explosive material. It will explode when subjected to a temperature of 265°C for five seconds. It is only slightly hygroscopic. It is considerably more sensitive to impact than THT.

Manufacture:

Dinitrosoresc: sinol, prepared by treating resorcinol with mitrous acid, is exidized to dinitroresorcinel. A solution of the dinitroresorcinel and sodium carbonate is combined with a lead nitrate solution. The precipitate is filtered and washed thereughly.

ប៉ីដូចភូវ

LDNR has been used in electric detenators.

\*\*\*\*

LEAD AZIDE

See also AZIDES

None Nomenclature:

Foreign Nomenclature:

French: Azoture de plomb,

nitrure de plomb

German: Bleiasid

Italian: Acido di piombo,

azoimide di piombo

Japanese: Chikka namari (Army),

chikkaen (Navy)

Russian: Asid svintsa

Spanish: Acido de plomo,

nitruro de plomo

Composition:

Pb(N<sub>3</sub>)<sub>2</sub> -- chemical compound containing the following porcentages by weight of the elements: Lead----- 71.14% Nitrogen--- 28.66%

Characteristics:

Lead aside is a white to buff, press-loaded explosive material. It will not melt, but decomposes instead. It will explode when subjected to a temperature of 340°C for five seconds, and may detonate spontaneously at any temperature if crystals are over one millimeter in length. Lead aside contains no oxygen and detonation involves no combustion. Pry lead aside does not affect metals; moist lead aside correct sine and ocpper rapidly, and with copper forms the extramely sensitive and dengences compound copper aside. Unlike mercuric fulminate, lead saide connot easily be dead-pressed. It is entirely etable and only slightly hygroscopic; it will not decompose during prolonged periods of storage at moderately high

temperatures. Lead azide is extremely sensitive to shock, friction, and heat. This sensitivity increases rapidly as crystal size increases to a point where spontaneous detonation may occur. Ordinarily lead azide is stored under water, although such storage of untreated lead azide may actually increase sensitivity since water may increase crystal size. For this reason, lead azide intended for long-term storage under water is usually destrinated to permit safe storage.

# Manufacture:

Lesd azide, because of its sensitivity, is manufactured in small quantities, normally 300 grams of product. Sodium azide is prepared by treating scdamide (produced by interaction of sedium and aqueous ammonia) with nitrous oxide. The sodium azide is then reacted with lead acetate or lead nitrate, to produce lead szide as a white precipitate.

#### Uses:

Lead azide is used in primers and detonators. Since in pressed form it detonates less readily than in free form, lead azide for detonating caps and primers is coated with a layer of sensitizer to initiate its detonation.

#### Comments:

Lead azide is more efficient than mercuric fulminate, and is now used for many applications formerly filled by mercuric fulminate.

\*\*\*\*\*

LEAD DINITRORESORCINATE

See LDNR

\*\*\*\*

#### LEAD STYPHNATE

| Alternate Nomenclature:            | Foreign Nomenc | lature:                                                 |
|------------------------------------|----------------|---------------------------------------------------------|
| L. St.<br>Lead Trinitroresorcinate | French:        | Trinitrorescrinate de plomb                             |
|                                    | Germanı        | Bleitrinitroresorzin: s                                 |
|                                    | Italian:       | Stifnato di piombo,<br>trinitroresorcinato<br>di piombo |
|                                    | Russian:       | trinitroresortsinat<br>svintsa, TNRS                    |
|                                    | Spanish:       | Trinitroresorcina plomada                               |

Composition:

Pb0206H(NO2)3 or PbC6HN308 -- chemical compound containing the following percentages by weight of the elements:

Lead----- 46.02% Carbon---- 15.00% Hydrogen--- 0.22% Nitrogen--- 9.33% Oxygen---- 28.43%

Characteristics:

Lead styphnate is a reddish-brown, press-loaded explosive which melts with explosive violence at 260° to 310°C. It will explode when subjected to a temperature of 282°C for five seconds. Lead styphnate is only slightly hygroscopic. The has a higher order of sensitivity than lead azide, but is a poor initiator; it cannot initiate the detonation of any of the military high explosives except PETN.

Manufacture:

Magnesium oxide is added to a suspension of styphnic acid in water, producing a solution of magnesium styphnate. This styphnate is mixed into a lead acetate colution. Dilute nitric acid is added after a precipitate is formed. The mixture is stirred and cooled until the lead styphnate crystals are formed; this precipitate is filtered, washed, and dried.

Usesi

Lead styphnate is used as an ingredient of the priming layer used as a coating for lead azide detonating charges.

\*\*\*\*

LEAD TRINITRORESORCINATE

See LEAD STYPHNATE

\*\*\*\*

LIQUID OXYGEN EXPLOSIVE

Alternate Nomenclature:

LOXE (see Comments below)

Foreign Nomenclature:

Hungarian: Oxilikvit

Russian: Oksilikvit

Composition:

Liquid cxyger explosives consist of a porous combustible material such as lampblack impregnated with liquid oxygen or liquid air, although fireproofed absorbant materials may be used without much change in characteristics.

Gharacteristics:

Liquid oxygen explosives are very sensitive to heat and shock. The liquid oxygen readily evaporates from the impregnated material. For this reason, they cannot be stored for long periods of time. Liquid oxygen explosives utilizing a fireproofed material will not readily detonate from shock, although they still can be detonated easily by a blasting cap.

Manufacture:

Manufacture of liquid oxygen explosives is simply a question of impregnating the absorbent material with liquid oxygen. The explosives ordinarily are prepared on the spot because of their sensitivity and the rapid evaporation of the liquid ingredient.

Usest

Liquid oxygen explosives are used for aboveground mining purposes. They are never used underground. In the Soviet Union, they have been used in both commercial and military roles for some blasting operations.

Comments:

Liquid oxygen explosives rapidly lose their explosive character as the liquid oxygen or air evaporates. his is an important safety factor in cases where the explosive charge does not detonate.

The abbreviation LOXE for liquid oxygen explosives has not been standardized, and some preference has been expressed for the use of the abbreviation LOX. However, since LOX is normally used to refer to liquid oxygen, this dictionary uses the abbreviation LOXE to distinguish the mining explosive from the liquid material.

\*\*\*

LOW-FREEZING AND NON-FREEZING DYNAMITES

See also DYNAMITE, NITROGLYCERIN

Alternate Nomenclature:

Foreign Nomenclature:

Composition:

Low-freezing and non-freezing dynamites are similar to gelatin dynamites (see entry) but include in addition an ingredient which will lower the tendency on nitroglycerin explosions to freeze. As in the case of other dynamites, some lose-freezing and non-freezing dynamities may contain ammonium nitrate. Representative compositions of low-freezing dynamites follow:

# LON-FREEZING AND NON-FREEZING DYNAMITES

| Low-Freezing Gelating | n Dynai | rite |
|-----------------------|---------|------|
| Nitroglycerin         | 35%     |      |
| Liquid Dinitrotcluene | 24%     |      |
| Nitrocellulose        | 2£      |      |
| Wood Meal             | 5%      |      |
| Sodium Nitrate        | 30%     |      |

| Gelati.:e-Telsit (a : | Swiss low-fra | ezing ammonia | dynamite) |
|-----------------------|---------------|---------------|-----------|
| Nitroglycerin         | 22.0%         | _             | -         |
| Dinitrotoluene        | 21.0%         |               |           |
| Nitrocellulose        | 1.5%          |               |           |
| Ammonium Nitrate      | 55.5%         |               |           |

In the case of non-freezing dynamites, several ingredients may be used to render the compositions non-freezing: dinitro-chlorohydrine, nitrated polymerized products of glyceria (such as tetranitroglycerin, dinitroacetin, dinitroformin), and nitrates of glycol. Representative compositions are listed below:

| Non-Freezing Gelatin |            |
|----------------------|------------|
| Nitroglycerin        | 111%       |
| Dinitrochiorohydrine | 19%        |
| Nitrocellulose       | 29.        |
| Sodium Nitrate       | 28%        |
| Wood Meal            | 7 <b>%</b> |

| Non-Freezing Straight Dynamite | 1 |
|--------------------------------|---|
| Nitroglycerin 15%              | - |
| Tetranitroglycerin 15%         |   |
| Wood Meal 10%                  |   |
| Sulfur 3%                      |   |
| Rosin 2%                       |   |
| Sodium Nitrate 55%             |   |

#### Characteristics:

Low-freezing dynamites usually freeze within a few degrees of 0°C and thus are suitable for exposure to moderate winter weather. Non-freezing dynamites usually can be subjected to temperatures down to -30°C without freezing. Low-freezing dynamites relying heavily upon dinitrotoluene are not as brisant as the equivalent dynamite. The use of nitrated polymerized products of glycerin reduce only slightly the strength of dynamite and when used in proper proportions aid appreciably in preventing the freezing of dynamites. The use of glycol nitrates gives even better results since these nitrates do not reduce sensitivity to a whiteton, they make the explosive non-freezing, and they relieve any shortage of glycerin. Other characteristics are like those for other dynamites.

Manufacture:

The manufacturing process of low-freezing and non-freezing dynamites is the same as that for the equivalent dynamites.

**Uses:** 

Low-freezing and non-freezing dynamites are used for all blasting and mining operations where cold is liable to freeze ordinary untreated explosives.

\*\*\*\*

LOW VELOCITY MILITARY DYNAMITE

See also MILITARY DINAMITE

Alternate Nomenclature:

| Composition:                  |       |                                |
|-------------------------------|-------|--------------------------------|
| 99.5/0.5 cyclonite/1-MA dye   | 17.5% |                                |
|                               |       | 1-methylamino-anthraquinone)   |
|                               |       |                                |
| Tripentaerythritol            | 8.6%  |                                |
| 68/32 Vistac No. 1/DOS Binder | 4.1%  | (Vistac no. 1 being rolybutene |
| ,                             |       | of low molecular weight;       |
|                               |       | DOS hoing dioctylashacetel     |

Characteristics:

Now velocity military dynamite is a pink, machine-loaded (by a Hall Packer) explosive. It will explode when subjected to a temperature of 480°C for five seconds. It is somewhat less strong than TNT and is less sensitive to impact. It is unaffected by friction sensitivity tests. It has good resistance to low temperatures and has functioned satisfactorily after being maintained at a temperature of -65°C for one day.

# Menufacture:

The process of manufacture is classified Confidential.

Cellulose Acetate, LH-1----- 2.0%

#### Uses:

Low velocity military dynamite will be used for dynamite applications where a low detonation velocity is desired le-

#### Comments:

To date, low velocity military dynamite has only been prepared on a laboratory scale, and tests on the inlosive are continuing.

संसम्ब

But the state of t

LOXE

See LIQUID OXYGEN EXPLOSIVE

\*\*\*\*

LVD

See Low VELOCITY MILITARY DYNAMITE

\*\*\*\*

MALTOSE OCTONITRATE

Sea SUGAR NITRATE

\*\*\*\*

#### MANNITOL HEXANITRATE

# Alternate Nomenclature:

Composition:

C6H8N6O18 -- chemical compound containing the following percentages by weight of the elements: Carbon---- 15.94% Hydrogen--- 1.78% Nitrogen--- 18.59% Oxygen---- 63.69%

Characteristics:

Mannitol hexanitrate is a press-loaded explosive which melts at 112-113°C. It will explode when subjected to a temperature of 175°C for five seconds. It is extremely sensitive to impact, being comparable to lead azide in this respect. It is only slightly hygroscopic.

Manufacture:

Concentrated sulfuric acid is added to a previously-mixed solution of concentrated nitric acid and d-mannitol. The resulting precipitate is filtered and washed. The crude explosive material is purified and dried.

Uses:

Mannitol hexanitrate can be used as a secondary charge in detonators, and in blasting caps designed to be initiated by a fuze.

46364646

#### MANNOSE OCTONITRATE

#### See SUGAR NITRATE

\*\*\*\*\*

#### MEDIUM VELOCITY MILITARY DYNAMITE

# Alternate Nomenclature: MVD

Composition:

| Cyclonite        | 75% |                                             |
|------------------|-----|---------------------------------------------|
| TNT              | 15% |                                             |
| Starch           | 5%  |                                             |
| SAE No. 10 011   | 4%  |                                             |
| Vistanex Oil Gel | 1%  | (containing SAE no. 10 011/Vistanex         |
|                  | •   | B-120XC/Navy D2 wax in 80/15/5 proportions) |

### Characteristics:

Medium velocity military dynamite is a buff, machine-loaded (by a Hall Packer) explosive. It is stronger than TNT and is less sensitive to impact (although it is more sensitive than low velocity military dynamite).

#### Manufacture:

Medium velocity military dynamite is manufactured on a standard dynamite production line. However, details of handling materials and techniques of manufacture are classified.

#### Uses:

Medium velocity military dynamite will be used for military excavation, demolition, and cratering operations for which standard high explosives are unsuitable.

\*\*\*\*

# MERCURIC FULMINATE

# Alternate Nomenclature: Fulminate of Mercury Mercury Fulminate

Foreign Nomenclature:

Franch: Fulminate de mercure German: Knallquecksilber Hungarian: Higanyfulminát, durranohigany Pulminate di mercurio Italiana Japanese: Raiko (thunder mercury) Russian: Gremuchaya rtut! Spanish:

Fulminato de mercurio. fulminato mercurico

Composition:

Hg(CNU)<sub>2</sub> or HgC<sub>2</sub>N<sub>2</sub>O<sub>2</sub> -- chemical compound containing the following percentages by weight of the elements:

Mercury---- 70.6%

Carbon---- 8.4%

Nitrogen--- 9.8%

Oxygen---- 11.2%

Characteristics:

Mercuric fulminate is a white (when pure) to grayish yellow, press-loaded, heavy crystalline exclosive material. It will explode when subjected to a temperature of 210°C for five reconds. When dry, mercuric fulminate reacts vigorously with aluminum and magnesium, more slowly with copper, brass, and bronze. When wet, it reacts immediately with copper, zinc, brass, and bronze. It does not meact with iron or steel. Dry mercuric fulminate is extremely sensitive to friction and impact, and is therefore always stored under water. It is practically nonhygroscopic. It is unstable and will explode when subjected to high temperatures (in the order of 100°C) for periods such as 16 hours. Prolonged exposure to tropical temperatures will cause slow deterioration and loss in detonation ability. Storage for three years at 35°C will cause mercuric fulminate to become inert; storage for 10 months at 50°C will produce the same result. It is. therefore, not suitable for use in the tropics.

Manufacture:

Mercury is dissolved in nitric acid, and the solution is mixed into ethyl alcohol. The resulting fulminate precipitate is repeatedly washed and, finally, purified.

Uses:

Mercuric fulminate is universally used as a detonator, either alone or more commonly mixed with 10 to 20% of potassium nitrate, thereby achieving greater efficiency.

Comments:

Mercuric fulminate is the only explosive known that can act as a primer, detonator, and booster in one charge. It is, however, less efficient than lead azide, and has been replaced by lead azide in many applications. For example, mercuric fulminate will not detonate TNT or explosive D unless an unsafe quantity is used.

\*\*\*\*

MERCURY FULKINATE

See MERCURIC FULMINATE

MILITARY DYNAMITE

See also LOW VELOCITY MILITARY DYNAMITE and MEDIUM VELOCITY MILITARY DYNAMITE

Comments:

For details on Alternate Nomenclature, Characteristics, Manufacture, and Uses, see IAW VELOCITY MILITARY DYNAMITE and MEDIUM VELOCITY MILITARY DYNAMITE. Unlike commercial dynamites, military dynamites contain no nitroglycerin. They will not freeze in cold storage and will not exude in hot storage. They are less sensitive to friction and impact than commercial dynamites, and can be handled, transported, and stored with relative safety.

In addition to the low and medium velocity dynamites already referred to above, a military dynamite with a high velocity of detonation has been proposed. The nature of this explosive is classified.

\*\*\*\*\*\*

MINEX

See TORPEX

\*\*\*\*

MINOI.

Alternate Nomenclature:

A Section of the Sect

Composition:

Minols are a series of explosives developed by the British during World War II. The following three compositions were formulated:

|                    | Minol- |     | -2 Mino7-3 |
|--------------------|--------|-----|------------|
| TNT                | 48%    | ЦО  | 12%        |
| Ammonium Nitrate   | 42%    | 40% | 38%        |
| Aluminum, Powdered | 10%    | 20% | 20%        |

The composition of Minoi-2 may also be expressed as 50/50 amatol plus 25% powdered aluminum.

Characteristics:

Minol is a gray, cast-loaded explosive. To all ignite when subjected to a temperature of 435°C for five seconds. It is

comparable to TNT and tritonal in sensitivity to initiation, but is more sensitive to shock and is less brisant. It is unstable in the presence of moisture, hewever, since the ammonium nitrate and aluminum react with each other.

Manufacture:

Ammonium nitrate and aluminum are added to TNT which has been previously melted and which is maintained at 90°C. Minol can also be repared by adding a specific quantity of aluminum to previously-prepared aluminum.

Uses:

Minol has been used as a bursting charge where TNT has been in short supply. Its advantages are not enough to warrant its use as anything but a TNT substitute.

\*\*\*

MONOBEL

See PERMISSIBLE EXPLOSIVE

\*\*\*\*\*

MVD

See MEDIUM VELOCITY MILITARY DYNAMITE

\*\*\*\*

# NAKOL'NAYA SMES'

Alternate Nomenclature:

Foreign Nomenclature:

The entry is given in the Russian nomenclature; there is no English equivalent. The literal translation of the term is "needle action composition."

Composition:

Lead Styphnate----?

Tetracene-----?
The exact composition is not known.
Antimony Trisulfide----?

-

Comments:

Nakol'haya smes' is a Soviet explosive mixture used as a percussion composition.

NAPCOGEL

See PERMISSIBLE EXPLOSIVE

\*\*\*

NATIONAL

See PERMISSIBLE EXPLOSIVE

\*\*\*\*

NATRIIALMATRIT NO. 19

See also AIMATRITE

Alternate Nomenclature:

Foreign Nonanclature:

The entry is given in the Russian nomenclature; there is no English equivalent.

Composition:

Socium Chlorate--- 90%

Combustible---- 10% (containing 5% vaseline, 92.5% paraffin, 2.5% rosin)

Comments:

Natriialmatrit no. 19 is a Russian commercial explosive of the almatrite class (see entry). It has a brisance slightly higher than that of TNT.

\*\*\*\*

NC

See NITROCELLULOSE

\*\*\*\*

NG

See NITROGLYCERIN

\*\*\*\*

NH (nonhygroscopie)

See FLASHLESS AND SMOKEYRSS

COMPOSITION:

NITRO PENTAERYTHRITE

See PETÑ

\*\*\*\*

NITROARABINGSE

See SUGAR NITRATE

XXXXX

NITROCELLULOSE

See also DOUBLE-BASE SMOKELESS
PROPELLANT, GUNCOTION, PYROCELLULOSE,
SINGLE-BASE SMOKELESS PROPELLANT,
TRIPLE-BASE SMOKELESS PROPELLANT

Alternate Nomenclature:
Cellulose Nitrate

Collodion

MC

Pyrocollodion
Pyrocotton

Guncotton

Foreign Nomenclature:

French: Pyroxylol
German: Nitrozellulose
Hungarian: Nitrocelluloze

Italian: Nitrocellulosa Russian: Nitrokletchatka,

nitrotselulosa

Spanish: Nitrocelulosa,

piroxilina

Sowiet NC types: KOLLOKSILIN, 11-12%N; PIROKOLLODION, 12.45%N; PIROKSILIN NO. 1, 12-13%N; PIROKSILIN NO. 2, 13%N and above.

U.S. NC types: PYROXYLIN or COLLODION, 8-12%N; PYRO-COLLODION, 12.45%N; PYRO-CELLULOSE, 12.60%N; GUN-COTTON, 13%N and above.

Composition:

Nitrocellulose is a mixture of groups of units of various degrees of nitration. Its overall chemical formula may be written as:  $C_6H_{10-x}O_5(NO_2)_x$ , where "x" usually is between 2 and 3.

Characteristics:

Nitrocellulose is white when pure, but appears more often se amber, brown, or black. It is manufactured in flakes, strips. sheets, pellets, or perforated cylindrical grains. The U.S. types listed above are universally recognized. Nitrocellulose consists of a mixture of nitrates obtained by nitrating callulose. Nitrogen (N) content (and thereby explosives characteristics) varies according to variations in the condition for nitration. Nitrocellulose is inherently unstable: moreover, increases in nitrogen content increase this lack of stability. Unstability causes decomposition which produces nitrogen dioxide; the dioxide in turn attacks nitrocellulose and increases the rate of decomposition. Thus. the decomposition of nitrocellulose is a self-catalyzing process. The lack of stability can be partially overcome through improved nitration and purification procedures and better control of cellulose quality. Nitrocellulose is somewhat hygroscopic (decreasingly so with increasing nitrogen content). Absorption of moisture may cause significant changes in the propellant's ballistic value. Dry nitrocellulose is very sensitive to impact, friction, heat, and spark.

# Manufacture:

The manufacture of pyrocellulose can be used as an example. Cellulose, obtained from either purified cotton linters or wood, is thoroughly dried and reacted with mixed acid. The crude nitrocellulose is separated from the resulting slurry by centrifuge. The nitrocellulose is boiled (for purification or stabilization) and packed. Other types of nitrocellulose are produced according to this basic pattern.

# Uses:

Nitrocellulose is used in single-base smokeless propellants (nitrocellulose and non-explosive ingredients), double-base smokeless propellants (nitrocellulose and nitroglycerin), triple-base smokeless propellants (nitrocellulose, nitroglycerin, and nitroguanidine), and dynamites. Commercially, it is also used in pharmaceutical, laquer, and photographic products. Pyroxylin is the only form of nitrocellulose not used in explosives.

\*\*\*\*\*

NITROGELATIN

See GELATIN DYNAMITE

# NITROCELIN

NITROGELIN

See GELATIN DYNAMITE

\*\*\*\*

NITROGLUCOSE

See SUGAR NITRATE

\*\*\*\*

#### NITROGLYCERIN

Explosive Cil
Detonating Cil
Glyceryl Trinitrate
NG

Foreign Nomenclature:

French: Nitroglycerine, huile

de Nobel, huile

explosive

German: Nitroglyzerin, sprengčl,

glonoin

Hungarian: Nitrogliceria, robbano-

olaj (explosive oil)

Italian: Nitroglicerina, olio

esplosivo, olio

detonante

Russian: Nitroglitserin

Spanish: Nitroglicerina, aceite

explosivo

Also NITROGLYCERIN EXPLOSIVE:

French: Explosif à la nitro-

glycérine

German: Nitroglyzerinsprengstoff

Italian: Esplosivo alla nitro-

glicerina

Spanish: Explosivo de mitroglicerina

Also NITROGLYCERIN POWDER:

French: Poudre à base de nitro-

glycórine, poudre à la

nitroglycérine

German: Nit:

Italian:

Nitroglyzerinpulver

Polvere a base di

nitroglicerina

Spanish: Pólvora de nitro-

glicerine

Composition:

 $\overline{C_3H_{ij}}(0NO_2)_3$  or  $C_3H_{ij}N_3O_9$  -- chemical compound containing the following percentages by weight of the elements:

Carbon---- 15.37% Hydrogen--- 2.22%

Nitrogen---- 18.50% 0xvzer---- 63.41%

Characteristics:

Nitroglycering is an oily colorless liquid then pure; the commercial product is yellowish or wine-yellow to brownish yellow. The labile form melts at 2.200, the stable form at 13.2°C. The liquid will explode when subjected to a temperature of 22200 for five seconds. Nitroglycerin is extremely sensitive to impact and friction, exceeding mercuric fulminate in this respect. It is the most hazardous explosive manufactured in relatively large quantities, and extreme care must be taken in the production process. It will detonate readily from the shock of iron striking iron or porcelain striking percelain. Its sensitivity is increased markedly by heat. Large quantities will burn only for a short period of time since heat accumulation soon causes detonation. Despite internal stresses, nitroglycerin is stable at temperatures under 50°C, but higher temperatures cause decomposition which rapidly increases as the temperature increases. Nitroglyccrin is nonhygroscopic.

Manufacture:

Olycorin is mitrated with mixed acid. Agitation and cooling ere continued until reaching a temperature of about 15°C. The mixture is run off into a separating tank where the nitroglycerin floats to the surface and is collected. is purified, washed, and put into storage. In the United States, the nitration process is carried out in steel or cast iron containers; in Europe it is carried out in lead containers. Nitration and purification in Europe are carried out by the Schmid and Biazzi continuou's processes, which also use glycerin and mixed acid.

Usest

Nitroglycerin is used extensively in propollant compositions, dynamites, and alone (with non-explosive materials) as a blasting explosive. Because of extremely dangerous handling difficulties, the use of straight liquid nitroglycerin is prohibited. If straight nitroglycerin is required, it is first mixed with an obsorbent material such as "kleselguhr." In this form (i.e., dynamite) it may be packed, shipped, and handlad, with relatively little danger,

Recently, a trend has developed in the United States leading away from commercial nitroglycerin explosives to cheaper blasting explosives such as those based on ammordum nitrate.

\*\*\*

NITROGLYCERIN T PLOSIVE

See NITROGLICERIN

\*\*\*\*

NITROGLYCERIN POWDER

See NITROGLYCERIN

**公司工程** 

#### NITROGUANIDINE

Alternate Nomenclature:
Guanyl Nitramine
Picrite

Foreign Nomenclature:
British: Picrite

Composition:

H<sub>2</sub>N.C(:NH).NH.NO<sub>2</sub> or CH<sub>1</sub>N<sub>1</sub>O<sub>2</sub> -- chemical compound containing the following percentages by weight of the elements:

Carbon---- 11.5li% Hydrogen--- 3.87% Nitrogen--- 53.8li% Oxygen---- 30.75%

Characteristics:

Nitroguanidine is a colorless or white, crystalline, pressloaded explosive material melting at 232°C. It will detonate when subjected to a temperature of 275°C for five seconds. Nitroguanidine is far less sensitive than TNT to impact, friction, and initiation. It is less brigant than TNT and it has a relatively low heat of explosion (thus its ability to "cool" propellant compositions). Nitroguanidine is more stable than TNT and is nonhygroscopic.

Manufacture:

Nitroguanidine may be manufactured by two processes.
Guanidine is reacted with nitric acid or the addiamide is reacted with ammonium nitrate. Either reaction results in guan dine nitrate, which is dehydrated to nitroguanidine with sulfiric acid.

Uses:

Nitroguanidine is used primarily in propellant compositions (see TRIPLE-BASE SMOKELESS PROPELLANT). It was used during World War II by the Germans as a shell filling protector (from impact shock) and by the Italians in two amatol-type fillings.

Comments:

Nitroguan ine is desirable in certain propellants because of its ability to reduce temperatures of explosion and thus limit gun barrel wear. It also acts to a certain extent as a propellant stabilizer. Its use as a high explosive has virtually disappeared since, at best, it has been an inferior substitute for TNT.

\*\*\*\*

NITROHYDRENE

See Uses under SUGAR NITRATE

\*\*\*\*

NITROMANNITE

See MANNITOL HEXANITRATE

\*\*\*\*

NITROSTARCH

See also GRENITE, NITROSTARCH
BLASTING EXPLOSIVE, TROJAN
EXPLOSIVE, NITROSTARCH DEMOLITION EXPLOSIVE

Alternate Nomenclature:

Starch Nitrate

Foreign Nomenclature:

French: Xyloidine German: Xyloidin Siloidina

Spanish: Xiloidina,

nitroalmidón

Russianz

Nitrokrakhmal

Composition:

Mitrostarch is not a single well-defined compound, but rather a mixture of nitrates obtained by nitrating starch. No single chemical formula properly describes the compound.

#### NITROSTARCH

Characteristics:

Nitrostarch is a white, finely divided, presser to produce very similar in appearance to ordinary powder.

will ignite when subjected to a temperature of the seconds, and will burn with explosive violence of the corrode from and copper. Nitrostarch is highly and remained and will ignite from the smallest spark. It is alightly hygroscopic, absorbing 1 to 2% moisture. It is unstable in storage at elevated temperatures; it will decompose and cause spectaneous combustion. It is more sensitive to impact than TNT but less sensitive than enther dry guncotton or nitroglycerin. Its sensitivity there are sharply when the material is warm and dry.

Manufacture:

Starch is purified and dried, and then nitrated with mixed acid. The resulting nitrostarch is evaporated from the spent acid, washed, and dried. Corn starch is the preferred raw material in the United States, although cassava seems to give a slightly more stable product.

Uses:

Straight nitrostarch is not used alone as an explosive because of its extreme sensitivity. It has been used to make Trojan explosives, grenite, and nitrostarch blasting explosives (see entries).

Comments:

Frequently, commercial and military explosives are referred to as "nitrostarch." They are, however, compositions of straight nitrostarch and other ingredients. As mentioned above, straight nitrostarch never is used alone. Since nitrostarch is a nitrate and not a nitro compound, the chemically correct nomenclature is "starch nitrate" not "nitrostarch." However, the latter has been generally adopted.

NITROSTARCH BLASTING EXPLOSIVE

See also NITROSTARCH

# Alternate Nomenclature:

Composition

The following composition can be considered as representative:

| Nitrostarch    | 35.5%         |            |
|----------------|---------------|------------|
| TNT            | 15.0%         |            |
| Barium Nitrate | 43.5%         |            |
| Aluminum       | 3.0%          |            |
| Graphite       | 2.0%          |            |
| Paraffin       | 1.0%          |            |
| Coal Dust      | insignificant | percentage |
| Dicyandicmide  | insignificant | percentage |

Comments:

Nitrostarch blasting explosives are used in roles normally utilizing dynamites. The nitrostarch explosives have the advantage of being non-freezing and non-exuding. Nitrostarch blasting explosives are similar to nitrostarch demolition explosives (see entry).

\*\*\*\*

# NITROSTARCH DEMOLITION EXPLOSIVE See also NITROSTARCH

# Alternate Nomenclature:

Composition:

| 081010111            |     |
|----------------------|-----|
| Nitrostarch          | 49% |
| Barium Nitrate       | 40% |
| Mononitronaphthalene | 7%  |
| Paranitroaniline     |     |
| 017                  | 7%  |

Characteristics:

mit wial. It will detonate when subjected to a temperature of 1,500 for five seconds. It is highly sensitive to impact, and will explode from the impact of a riffle bullet. It is will butly hygroscopic, absorbing about 2, m leture in an at a sphere of 3000 and 90% relative humidit.

#### NTTROSTARCH DEMOLITION EXPLOSIVE

Usea:

As its name indicates, nitrostarch demolitimm explosive has been used principally in demolition charges. It is similar to nitrostarch blasting explosives (see entry).

\*\*\*\*

NITROSUCROSE

See SUGAR NITRATE

\*\*\*\*

NITROSUGAR

See SUGAR NITRATE

\*\*\*\*

NON-FREEZING DYNAMITE

See LOW-FREEZING AND NON-FREEZING

DYNAMITES

\*\*\*\*

OSHITSUYAKU

Alternate Nomenclature:

None

Foreign Nomenclature:

The entry is given in the Japanese nomenclature; there is no English

equivalent.

Compositiona

Cyclonite----- 80% Vegetable Oil---- 20%

Comments:

Oshitsuyaku is a Japanese explosive composition similar to U.S. composition B (see entry). It was used during World War II as a demolition agent.

#### OSHIYAKU

# OSHTYAKU

Alternate Nomenclature:

The entry is given in the Japanese nomenclature; there is no English equivalent.

Comments:

Oshiyaku is a Japanese explosive composition which was used during World War II as a bursting charge in artillery ammunition.

\*\*\*\*

# OTSU-B

None Nomenclaturo:

The entry is given in the Japanese nomenclature; there is no English equivalent.

Composition:

Comments:

ř.a.

Otsu-B is a Japanese explosive composition which was used during World War TI as a bursting charge in tempedoes, mines, and depth charges.

\*\*\*\*

See PICRIC ACID

#### PENTAERYTHRITE TENRAMITRATE

PENTAERYTHRITE TETRANITRATE

See PETN

\*\*\*\*\*

PENTAPRYTHRITOL TETRANITRATE

See PETN

::\*###

PENTHRITE

See PETN

\*\*\*\*

PENTOLITE

Alternate Nomenciature:

Foreign Nomenclature:
Japaness: Pentoriru

Composition:

Pentolite is a mixture of TNT and PETN in varying proportions. The most important composition contains TNT and PETN in a 50/50 proportion. Other compositions contain higher percentages of TNT. The descriptions below are for pentolite 50/50.

Characteristics:

Pentolite is a dirty white to light buff, press- or cast-loaded explosive which malts at 76°C. It will detonate when subjected to a temperature of 220°C for five seconds. Dry pentolite is highly compatible with metals, only slightly affecting sinc-plated steel. Wet pentolite slightly affects copper, brass, magnesium, magnesium-aluminum alloy, mild steel, and mild steel plated with copper, cadmium, zinc, or nickel. Pentolite is made in two grades; grade I is used for cast-loading and grade II for press-loading. The explosive is stable in storage, although less stable than straight PETN. High temperatures may cause some separation of PETN and TNT; temperatures above 50°C may cause the explosive to exude. Pentolite is 49% more efficient in shaped charges than TNT, and is more brisant than TNT.

Manufacture:

Two manufacturing methods are available. In the first, TNT is added to a suspension of PETN in water kapted to above 80°C. The TNT melts and coats the PETN particles. Upon cooling the mixture, the TNT solidifies and the resulting

granules are collected and dried. In the second process, separate collitions of Phili-acetone and TNT-acetone are prepared. The solutions are mixed and poured into water. The precipitated pentolite solid is separated and dried.

Usesz

Name of the second seco

Pentolite is used as a bursting charge, shaped charge, in rockets, and in shaped demolition charges. During World, War II, Japan used pentolite as a bursting charge for machinegum bullets (the Japanese incorporated high explosive fillers into machinegum bullets with collibers as small as 7.7-mm).

Comments:

The present trend is to replace pentolite with composition B because of the former's tendency to exude and separate, and its greater sensitivity over composition B.

\*\*\*\*

PERMICET.

See PERMISSIBLE EXPLOSIVE

\*\*\*\*

PERMISSIBLE DYNAMITE

See PERMISSIBLE EXPLOSIVE

#### PERMISSIBLE EXPLOSIVE

#### PERMISSIBLE EXPLOSIVE

See also DYNAMITE, NITROGLYCERIN

Alternate Nomenclature:
Permissible Dynamite
Safety Explosive

Foreign Nomenclature:
Belgian: Explosif:S. G. P.

(securité, grisou, poussière),

emplosif antigri-

souteux

British: Permitted explosive

(not to be confused with authorized explosives which are certified safe only for handling and

transport)

French: Explosif antigrisouteux,

explosia de surâté

German: Schlagusttersichere,

sicherheitssprengstoff, sprengstoff, wetter-

dynamit

Hungarian: Engedélyezett, kezelés-

biztos, biztonsági, kezelésbiztos dinamit, sujtólégbiztos lőszer

Italian: Esplosivo

Esplosivo ammissibile,

esplosivo di sicurezza

Rusrian: Bezopası

Bezopasnoye vzryvchatoye

veshchestvo

Spanish: Explosivo aprobado,

explosivo autorizado, explosivo de seguridad

Composition:

Permissible explosives are types of dynamites which usually contain ammonium nitrate and which are sonsitized with nitrocellulose or gelatinized nitroglycerin (or less commonly with nitrostarch or INT). They may contain a small amount of a "cooling" material such as sodium nitrate or chloride. The following composition gives the input limits for each ingredient:

Ammonium Nitrate----- 50 to 80% Nitroglycerin----- 10 to 15% Absorbent Material---- Up to 10% Other ingredients----- Up to 40%

In some countries, major ingredients such as armonium nitrate and nitroglycerin have been replaced by other explosives with satisfactory results.

Characteristics:

Permissible explosives are intended for the mining of cost where the accumulation of methane gas-wir mixtures ("fire damp") and coul dust-air mixtures may be ignited by the high detonation temperatures of explosives not having certain characteristics. Parmissible explosives, therefore, have comparatively low detonation temperatures; moreover, detonation products cool too rapidly to fire the ignitable atmosphere around them. Other characteristics are those listed for DYNAMITE.

Manufacture: See DYNAMITE

#### Uses:

Permissible explosives are used universally in coal mines. The nongelatinous permissibles are well adapted for use in mines that are relatively dry; the gelatinous permissibles are better adapted for use in wet mines. They are designed especially for blasting rock in coal mines.

Comments: """

In the United States, permissible explosives must be approved for use by the Bureau of Mines, Department of the Interior. Samples of proposed permissible explosives must be forwarded by the manufacturar to the Bureau, where extensive tests are conducted to determine the explosive's acceptability. Permissible explosives that have been approved for use may be detonated only with electric detonators (not fuse and detonators), the detonating charge of which consists of a l-gram mixture of 80 parts of mercurio fulminate and 20 parts of potassium chlorate (or their equivalent).

The following is a list of permissible explosives approved by the Bureau of Mines for use in the United States (as of 31 December 1957).

Nongelatinous Permissible Explosives:

American 2, 3-A, 4-A, 5, 11, 12, 12-A, 14-A, 21, 22, 23 American A

Apache Coal Powder A, B, H L.F.

Austin Red Diamond No. 1, 2, 3, 4, 5, 9-B, 9-C, 1C-4, 11 Bituminite D

Black Dismond No. 5-A, 7, 7-A, 7-AA, 8, 9-A, 11, 11-A, 11-B, 12-B, 15, 55

# PERMISSIPLE EXPLOSIVE

Black Diamond A. G Plack Diamond Special A. C Coalite B, C, Col, C, Col, K, K-1, IL, IL-1, IS, IS-1, N, M-1, MS, MS-1, S, S-1, T, T-1, 5-S, 7-R, 7-S, Collier C Duobel A, B, C, D, E, P EL-1416, 1417, 454 Inderendent A, B, C, C-1, D, E, F, G, H King No. 5-A, 7, 7-A, 7-AA, 8, 9, 5-A, 11, 11-A, 11-B, 12-B, 15, 55 King No. A, G King Special A, C Lump Coal C, CC Miners' Friend No. 2 Monobel A, AA, B, C, D, E National A, A-1, B, C, D, E, Y, F-1, G, H Peerless No. 2 Red Crown B-3, D-2 Red HA, HB, HC, HD, HF, HL Super-X No. 2, 2-A, 3, 3-A, 5, 7, 8, 9, 11 Super-I Big Coal D Super-X Big Red No. 7-C Wesco Coal Powder No. 1

# Galatinous Permissible Explosives:

Austin Red-D-Gel
Black Diamond Nu-Gel No. 4
Gel-Coalite W, Y, Z
Gel-Coalite No. 3
Gelobel A, AA, C
Hercogel 2
Hercogel A
Independent Gel-A
King Nu-Gel No. 4
Napcogel No. 1
Permigel A, B
Super-X Gel
Super-X Gel A, B

Permissible explosives are not normally imported or exported, unless a country has no dynamite production facilities at all. Therefore each nation has developed and standardised its cum types of permissible explosives.

\*\*\*

# PETN

ilternat: Nomenclature: Foreign Nomenclature: Nitro Pentaerythrite German: Nitropentaerythrit. Pentaerythrite Tetranitrate pentrit Pentaerythritol Tetranitrato Italian: Pentrite Pentirite Japanese: Shoeiyaku Tetranitropentaerythritol Russian: Tetraeretritol nitrat, TEN

Composition:

C(CH2ONO2)4 or C5H8N4O12 -- chemical compound containing the following percentages by weight of the elements: Carbon---- 13,00% Hydrogen---- 2.55% Nitrogen---- 17.72%

Organ --- 60.73%

Characteristics:

PETN is a white or light buff, press-loaded explosive material. The pure explosive melts at 141.30C; commarcial grades melt at from 138.0° to 138.5°C. PETN will detonate when subjected to a temperature of 225°C for five seconds. The dry material does not react with metals; wet PETN will affect copper, brass, magnesium, magnesium-aluminum alloy, mild steel, mild steel coated with acid-proof black paint, and mild steel plated with cadmium, copper, nickel, or zinc. Wet PETN will also slightly affect aluminum after prolonged storage. PETN is graded into four classes (classes A, B, C, and D) according to its granulation (i.e., size of its crystals). It is extrumely stable when no acid is present, and will show no decomposition if stored for long periods at temperatures ranging up to 100°C. However, the presence of only 0.01% free acid causes rapidly increasing decomposition. PETN is one of the strongest known explosives, being 95 to 96% more powerful than TNT. It is more or less insensitive to friction, less sensitive than nitroglycerin to impact. It is, however, extremely sensitive to initiation.

Manufacture:

PETN may be manufactured by one of two methods; one with and one without sulfuric acid. When using sulfuric acid, penta-erythritol is reacted with nitric acid. Sulfuric acid is added to complete the separation of PETN. The process not using sulfuric acid is the preferred manufacturing process in the United States. In this preferred method, pentacrythrital is added to 96% nitric acid. After 20 minutes, this solution is added to cold water and the precipitation: "" is filtered out. After rewashing, the PETN is discolved to acetone, the solution is filtered, and the PETN is precipitated by the addition of cold water. PETN generally is not dried before use.

Uses

Class A PETN is used in boosters and detonating ruse (Primacord); class B PETN is used as an ingredient for priming compositions; class C PETN is used in the manufacture of pentolite (see entry); and class D PETN is used in detonators and blasting caps.

\*\*\*\*

# PETN/WAX

Alternate Nomencleture:

Composition:

PETN---- 95% -- 90% -- 87% -- 82% -- 70% -- 60% -- 50% -- 35%

Wax---- 5% -- 10% -- 13% -- 18% -- 30% -- 40% -- 50% -- 65%

Comments:

PETN/wax compositions have been used primarily by Germany and Italy as boosters or press-loaded bursting charges, depending upon the amount of wax.

\*\*\*

# **PICRATOL**

Alternata Nomenclature:

Composition:
Explosive D---- 52%
TNT----- 48%

Characteristics:

Picratol is a brown-yellow, cast-loaded explosive material. It will detonate when subjected to a temperature of 28500 for five seconds. Picratol is insensitive to shock, and its brisance lies between that of explosive D and TMT. It is nonhygromeopic. When stored for long periods of time at high temperatures, the explosive exhibits a slight resolution between the explosive D and TMT. At ordinary temperatures, however, picratol is entirely stable.

Hanufacture: ....

TNT is melted and heated to over 90°C. Explosive D is added without being preheated. The resulting thick slurry is cooled to about 85°C and is cast-loaded into amminition.

Jses:

Pickatch is used as a standard filler for armor-picking bombs.

Comments:

Picratol was developed during World War II as an inexpensive cast-loaded substitute to explosive D, which had to be press-loaded under pressures running up to 12,000 psi. It has proven quite satisfactory.

#### \*\*\*\*

### PICRIC ACID

### See also AROMATIC NITRO COMPOUNDS

| Alternate | Nomenclature: |
|-----------|---------------|
| P. A.     |               |
| This      |               |
| Trini     | trophenol     |

Foreign Nomenciature:
British: Lyddite

French: Acide picrique, trinitrophénol, mélinite

German: Pikrir.agure, trinitrophenol, melinit,

bittersäure, Fp 88, Füllpulver 1688

Humgarian: Pikrinsav, trinitrofenol Italian: Acido picrico, trinitrofenolo, pertite

Japanese: Oshokuyaku (Army),

shimose bakuyaku (Navy) Russian: Pikrinovaya kislota,

malinit, M.

Spanish: Acido pierico, trinitrofenol

Composition:

C6H2(NO2)3OH or C6H3N3O7 -- chemical compound containing the following percentages by weight of the elements:

Cerbon---- 31.45% Hydrogen--- 1.32% Nitrogen--- 18.34% Oxygen---- 48.89% Characteristics:

Picric scid is a light to bright vellow, press-loaded explosive which melts at from 1220 to 1230C. It will detenate when subjected to a temperature of 320°C for five seconds. Picric acid reacts with all metals except eluminum and tin. Its relations with copper, brass, lead, and iron are especially dargerous since the compounds resulting from these reactions are extremely sensitive. Picri, acid was the first high explosive to be cast-loaded. but its melting point is too high for safe casting: the melting point can be lowered by the addition of other nitro explosives. Picric acid is about as sensitive to shock, friction, and initiation as TNT. It is more powerful than TNT, and will produce a greater number of fragments than TNT when both explosives are loaded with equal densities in fragmentation shells. Picric scid is nonhygroscopic, and is highly stable; long periods of storage at ordinary temperatures have caused no measureable change in the explosive.

Manufacture:

Picric acid may be manufactured from benzene through three processes: the phenol process, the chlorbenzene process, and the catalytic process. (1) In the phenol process phenol, prepared by the hydrolysis of benzene sulfonic acid, is treated with sulfuric acid to yield phenol sulfonic acid which in turn is treated with nitric scid. The solution is cooled and the crystallized picric acid is separated, washed, and dried. (2) In the chlorbensene process, benzene is treated with gaseous chlorine, yielding monochlorbersene. The product is purified and nitrated to give dinitrochlorbensene. The latter, on treatment with lime or soda, loses its chlorine content and becomes calcium or sodium dinitrophenolate, which on acidifying is converted to dinitrophenol. This in turn is nitrated to picric acid. (3) In the catalytic process, beazene is converted into either dimitrophenol or pictic acid direct in one operation by means of weak nitric acid in the presence of mercuric fulminate which acts as a catalyst.

5868t

Picric acid is used by the United States chiefly in the manufacture of explosive D (see entry); by Germany as a booster; by Japan as a booster and bursting charge; and by France in the manufacture of tridite and trimonite (see entries). It may be used as a bursting charge by countries where toluene is in short supply. However, such usage usually requires a non-metallic shell lining for projectiles.

HHHH

PICRITE.

See HITHOGUANIDINE

\*\* 14%

PIPE

Altarnate Nomencleture:

Composition:

Characteristics:

PIPE is a hand-tamped, nonhygroscopic high explosive. It is somewhat more sensitive to impact than TNT, but is unaffected by a direct hit of a rifle bullet. It is insensitive to friction, and is stable in storage.

Manufacture:

PIPE is manufactured very simply through a mechanical mixing of the PETN and oil.

Uses:

PIPE is used as a plastic demolition emplosive.

\*\*\*\*

PLASTIC EXPLOSIVES

See COMPOSITIONS C, C-2, O-3, and C-4, PIPE, PVA-4, RIPE

\*\*於計

PLX-100 and PLX-95/5

Alternate Nomenclature:

Composition:

PIX-100 PIX-25 P

# PLX-100, FLX-95/5

Characteristics:

PLY is a light yellow, liquid explosive with a melting point of -29°C and a boiling point of 101°C (figures for PLX-100). The explosive, therefore, is used in its liquid state. Both types of PLX will explode then subjected to a temperature of 430°C for five seconds. PLY will corrode brass, but it does not react with stainless and mild steel. It is semewhat less sensitive to impact than TNT, and it will not detenate from the impact of a rifle bullet.

Manufactures

The explosive (95/5 type) is mixed only when ready to use. The components are stored separately.

Usess

PLY is used for minefield clearance. For this purpose, the liquid is placed in glass containers.

\*\*\*\*

POTASSIUM DINITROBENZFORUXAN

See KDNBF

**HXXXX** 

PROPELLANTS

See COMPOSITE PROPELIANT, DOUBLE-BASE SMOKELESS PROPELIANT, PROPELIANTS—FOREIGN, SINGLE-BASE CMOKELESS PROPELIANT, SMOKELESS PROPELIANT, SOLID ROCKET PROPELIANT, TRIPLE-BASE SMOKELESS PROPELIANT

PROPELLANTS--FOREIGN

For general information on clarges of propellants not discussed under this entry, see the references given for PROPELLANTS.

modern foreign propellants do not differ greatly from the smokeless propellants used by the United States. All have a nit coellulose base (with the exception of some rocket propellants), and may be classed as singles, doubles, and triple-base propellants. Major differences from United States compositions, such as was employed by Germany during World War II, arise primarily from the scarcity of glycerin rather than improved characteristics.

Smokeless propellants have been manufactured by practically all nations, large and small. No definite pattern of production for the several types can be established, although countries manufacturing only small arms ammunition have tended to concentrate on the production of single-base propellants because of their greater ease of manufacture, the availability of raw materials, and the relatively little difference between the performance of single-base and double-base types when used in small arms ammunition.

The production of triple-base propellants (sometimes called double-base propellants with nitroguanidine) has been much more restricted than double-base types. Outside of the United States, only Great Britain and Germany are known to have employed triple-base types in any quantity. The advantages of triple-base propellants are not as easily understood as are the advantages of other explosives, since they occur primarily within the gun (in the form of cooler burning temperatures and thus less gun barrel erosion) rather than in the performance characteristics of the projectile.

British Fropellants

British propellants are quite similar to United States smokeless propellants. The British leaned heavily on double-base types (see CORDITE), but the necessities of World War II forced some modifications in propellant compositions, bringing both single-base (such as N.C.T.) and triple-base compositions into extensive use. Examples of British compositions are given below:

| Sir               | gle-B        | ase Do  | uble-Bas | e Tr         | iple-Base |
|-------------------|--------------|---------|----------|--------------|-----------|
| Nitrocellulose    | 94.7%        |         | 77.90%   |              | 2C.0%     |
| Nitroglycerin     |              |         | 14.05%   | ****         | 19.0%     |
| Dinitrotoluene    | 4.1%         | ******* |          |              | •••       |
| Nitronaphthalene  | •••          |         | 5.40%    |              | 4 4 6     |
| Nitroguanidine    | <b>**</b> ** |         | • • •    |              | 54.77     |
| Tinamanananananan | 0.5%         | ****    | <b></b>  |              | •••       |
| Graphi terrare    | 0.2%         |         | 0.25%    | -            | •••       |
| Cryclide          | •••          |         | 610      |              | 0.3%      |
| Centralite        | 0.5%         |         | 1.50     | ment tendent | 6.0%      |

French Propellants

French propellants are of the common single-base (poure B and poudre B.N.) and double-base types. They differ, however, in that they normally contain more than one nitration level of nitrocellulose in each composition. The scarcity of glycerin has restricted the production of double-base propellants, and consequently France relies more beavily upon single-base types than do other European nations. Examples of French compositions are given below:

|                      |   | Poudre  | B.N.    |    |                |
|----------------------|---|---------|---------|----|----------------|
| Guncotton 68%        |   |         | )       |    |                |
| Collodion Cotton 29% | - | 28%     | ) Forms | OI | nitrocellulose |
| Barium Nitrate       |   |         |         |    |                |
| Potassium Nitrate    |   | 8%      |         |    |                |
| Vaseline 2%          |   |         |         |    | •              |
| Soda Ash             | - | 2%      |         |    |                |
| Volatiles 1%         |   | mreno 🚉 |         |    |                |

German Propellants

German propellants are of the single-, double-, and triple-base types. The double- and triple-base compositions, however, differ from United States and British types in that during World War II nitroglycerin was often replaced by DEGN (see entry) and TEGN (see entry). German single-base propellants conformed more closely to United States types, although there were some German compositions which included PETN. Extensive use was made of stabilizers; in many cases, two or more stabilizers were used in the same composition. Examples of German propellant compositions are given below:

| Single-Rase       |            |             |       |                 |       |             |       |
|-------------------|------------|-------------|-------|-----------------|-------|-------------|-------|
| Nitrocellulcse    | 95.9%      | در نه ۱۹۹۹  | 34.0% | 450 top 100 657 | 98.18 | 60 65 T. 60 | 96.5% |
| Dibutylphthalate  | • • •      | ~~~~        | •••   | -               | • • • | ****        | 1.13  |
| Potassium Sulfate | <b>?••</b> | * 100 ** 40 | •••   | T 100 MP MD     | • • • | بدره سا     | 1.0%  |
| PETN              | •••        | ~~~         | 64.77 |                 | •••   |             | •••   |
| Oraphite          | 0.5%       |             |       | -               | 0.15  |             | 7,3%  |
| Camphor '         | • • •      |             | •••   |                 | 1.8%  |             | •••   |
| Contra ite        | 3.6%       |             | k11.0 | - 1             |       | *******     | 1.2%  |
| Diphonylamine     | • • •      | ***         | •••   | *               | •••   |             | 0.2%  |

| Double-Base         |       |       |         |               |       |                     |         |
|---------------------|-------|-------|---------|---------------|-------|---------------------|---------|
| Nitrocellulose      | 70.45 |       | 63 Th   |               | 60.5% | -                   | 58.0%   |
| Nitroglycerin       | 27.3% |       | 33.0%   | rgs-date-file | • • • |                     | •••     |
| DEN                 | •••   |       | •••     | -             | 20°0% |                     | •••     |
| TEON                | - • • |       | • • •   | <b>***</b>    |       |                     | 25.1%   |
| Dimitrotoluene      | •••   | ED# % | •••     | ند بدادی      | 1.0%  | 44 P                | •••     |
| Nitronaphthalene    |       |       | • • •   |               | 2.5%  |                     | +++     |
| Hydro allulose      | •••   |       | ***     | -             | 3.0%  |                     | ***     |
| Potassium Sulfate   | 0.6%  |       | - કાર્ય |               |       |                     | 110(7)6 |
| Graphite            | •••   |       | 0.1%    |               | 0.10  |                     | 0.13    |
| Magnesium Oxide     | •••   | -     | •••     |               | 0.15% | <u></u>             | 0.8%    |
| Centralite          | 1.5%  |       | • • •   |               | 3.75% | ,<br>               | 12.C%   |
| as-Diphenylurea     | 0.2%  |       | 0.2%    | -             | •••   | <b>40 40 5</b> 0 C3 |         |
| Ethylpnenylurethane | o • • |       | 1.5%    | ****          | •••   | -                   | 040     |
| Diphenylurethane    | •••   | MINUM | 1.8%    |               | 4     |                     | •••     |

| Triplo-Base          |       |
|----------------------|-------|
| Nitrocellulose       |       |
| DEGN                 | 18.6% |
| Nitroguanidine-      | 30.0% |
| Graphite             | 0.1%  |
| Magnesium Oxide      | 0.3%  |
| Acardite             | 0.5%  |
| Diphenylurethane     | 3.25% |
| Methylphenylurethane | 3.75% |

Italian Propellants

Italian propellants in use during World War II were very similar to the propellants used in Germany. The Italians, however, did not employ triple-base propellants. Like the Germans, the Italians replaced nitroglycerin with DEGN and employed several stabilizers in some of their compositions. Examples of Italian propellant compositions are given below:

|                           |         | ase Dc |              |        | uble-Base |
|---------------------------|---------|--------|--------------|--------|-----------|
| Nitrocellulose            | 97 : O% |        | <b>62.0%</b> |        |           |
| Callulose Acetate-Nitrate |         |        |              | ****** | 63.5%     |
| Nitroglycerin             |         | -      | 33.0%        | ****   | • • •     |
| DEGN                      | •••     |        | •••          | -      | 27.0%     |
| Cellulose Acetate         |         |        | •••          |        | 5.C%      |
| Graphite                  |         |        | 0.3%         | -      | •••       |
| Petroleum Jelly           | •••     |        |              | -      |           |
| Centralite                | 2.0%    |        | 2.6%         |        | 4.5%      |
| Diphenylamine             | 1.0%    |        | -            |        | 444       |
| as-Diphenylurea           | •••     | -      | 0.14         |        | ***       |

#### PROPELLANTS -- FOREIGN

Japanese Propellants

Julanese propellants used during World War II were restricted almost exclusively to single-base types on account of the scarcity of glycerin and glycerin substitutes (glycels). Only a rew double-base propellants were produced. Examples of Japanese propellant compositions are given below:

| Sir                    | ile-B | ase Si | ngle-B | ase Do                 | ble-Ease |
|------------------------|-------|--------|--------|------------------------|----------|
| Nitrocellulose         |       |        |        |                        | 72.C%    |
| Nitroglycerin          | •••   | -      | •••    | 71.00 mm mm mm mm      |          |
| Dinitrotoluene         | 5.5%  |        | 5.0%   |                        |          |
| Tinamenanamenanamenana | •••   | ****   | 2.0%   | 127 <b>149 (44 (47</b> | • • •    |
| Potassium Nitrate      | ~     |        |        |                        | 2.5%     |
| Oraphito               |       |        |        | ~>====                 | ***      |
| Diphenylamine          | 1.0%  |        |        |                        | 0 • •    |
| as-Diphenylurea        |       |        |        | وه عو وال استفاده      | 6.0%     |

Soviet Propellants (Metalel'nyye vzryvchatyye weshchastva)

Soviet propellants are of the standard single- and doublebase types, and are similar to those in use in other
countries. Before World War II, only single-base propellants were in use. Since then, single-base types have
been limited to small arms ammunition and some artillery
emmunition, while double-base types have been used in
artillery ammunition and rockets. The Soviet Union has
not used any triple-base propellants or any glycerin
substitutes. Examples of Soviet propellant compositions
are given below:

|                | <u> </u> | ngle- | Base, | Artil: | lery  | Sin | ngle-Base, | SAA |
|----------------|----------|-------|-------|--------|-------|-----|------------|-----|
| Nitrocellulose | 98.9%    |       | 99.3% |        | 98.7% |     | 96.9%      | -   |
| Graphite       |          |       |       |        |       |     |            |     |
| Camphor        | •••      |       | •••   | -      | •••   |     | 0.8%       |     |
| Diphenylamine  | 1.1%     |       | 0.7%  |        | 1.3%  |     | 2.0%       |     |

Double-Base, Antitank Nitrocellulose---- 64.4%

Nitroglycerin---- 20.8% Dinitrotoluene---- 3.9%

Graphite---- 0.3%

Petroleum Jelly---- 2.6% Centralite---- 1.3%

as-Diphenyluree---- 6.7%

\*\*\*\*

#### PTX-1

Alternate Nomenclature:

Cyclenite--- 30%
Tetryl- --- 50%
TNT---- 20%

Characteristics:

TTX-1 is a light yellow, cast-loaded explosive which melts (eutectically) at 67°C. It does not react with aluminum or mild steel. It is roughly twice as sensitive to impact as TNT and may explode from the impact of a rifle bullet. It is nonhygroscopic and stable in storage.

Manufacture:

FTX-1 may be prepared by adding wet cyclonite to melted tetrytol 40/60. The mixture is heated and stirred until all water is evaporated and the composition is uniform. PTX-1 may also be prepared by adding tetryl to composition 5.

Uses:

PTX-1 may be employed in land mines and for demolition charges.

Commentaz

FTX-1 is an experimental explosive designed to overcome the sensitivity of tetrytol and its tendency to exude.

\*\*\*\*

#### PTI-2

Alternate Nomenclature:

Composition:

Cyclonite---- 44%-41%
PETN------ 28%-26%
TNT------ 28%-33%

Characteristics:

PTX-2 is a dirty white to light buff, cast coded explosive which merts (subscriedly) at 75°C. It is much more sensitive to impact then TNT, more so that PTX-1. It is, however, less sensitive to rifle bullet impact than PTX-1. It is nonhygroscopic.

#### PTX-2

Manufacture:

PTY-2 may be prepared by adding wet sychonite to melted pentolite (30/70). The mixture is heated and stirred until all water is evaporated and the composition is uniform.

PTX-2 may also be prepared by adding wet PETN to composition B.

Usest

PTX-2 may be employed in shaped charge and fragmentation shells.

Comments:

PTX-2 is an experimental explosive designed to overcome the sensitivity of pentolite.

KKKKK

#### PVA-L

# Alternate Nomenclature:

Compositions

Characteristics:

PVA-4 is a white, press-loaded or extruded explosive. It will explode when subjected to a temperature of 375°C for five seconds. It is quite sensitive to impact and will be affected by a rifle bullet 80% of the time. It is slightly hygroscopic.

Hanufacture:

A solution of polyvinyl acetate and dibutylphthalate in acetone is added to a hot water slurry of cyclonite. The resulting PVA-4 is stirred for uniformity of composition.

Uses:

PVA-4, a semi-plastic composition, is suitable for use as a demolition charge explosive.

Comments:

PVA-4 of 90% cyclonite was originally prepared by Garada.

\*\*\*\*

ZYROCELLULOSIS

See NITHOCELLULOSE

\*\*\*\*

# PYROCOLLODICE

PYROCOLLODION See NITROCELLULOSE \*\*\*\* PYROCOTTON See NITROCELLULOSE \*\*\*\* PYRCHITE See TETRYL \*\*\*\* See NITROCELLULOSE PYROXYLIN \*\*\*\* RDX See CYCLONITE \*\*\*\* RED CROWN (series) See PERMISSIBLE EXPLOSIVE RED H (series) See PERMISSIBLE EXPLOSIVE X 7.7.7. X

RIPE

None Nomenclature:

Cyclonite---- 85%
Oulf Crown E Oil--- 15%

Characteristics:

RIPE is a white, hand-temped explosive. Its strength is some
18% greater than that of TNT. It is practically nonhygroscopic.

Manufacture:

RIPE is very simply manufactured through a mechanical mixing of the cyclonite and oil.

Uses:
RIPE is used as a plastic demolition explosive.

\*\*\*\*

ROCKET PROPELLANT

See SOLID ROCKET PROPELLANT

\*\*\*\*

#### RUSSIAN ALLOY

Alternate Nomenclature:

The entry is given in the Japanese: Onayaku

English equivalent of the Russian: Ruskii splay
Russian nomenclature; there
is no corresponding U.S.

explosive.

# Composition:

Comments:

Russian alloy is an explosive composition which has been used by the Soviet Union as a bursting charge in land mines, bombs, and artillery ammunition, and by Japan during World War II as a bursting charge in artillery ammunition.

\*\*\*\*

#### RUSSIAN MIXTURE

Alternate Nomenclature: Foreign Nomenclature:
The entry is given in the Russian: Amentol, russkaya
English equivalent of the
Russian nomenclature; there
is no corresponding U.S.
axplosive.

Composition:

Comments:

Russian mixture is a Soviet explosive composition. Its uses at mot known, but it may be used as a bursting charge or a demolition explosive. Because of its ammonium nitrate content, it is hygroscopic and therefore not entirely satisfactory.

**非效性效果** 

SAFETY EXPLOSIVE

See PERMISSIBLE EXPLOSIVE

XXXXX

SHOAN BAKUYAKU

See also Foreign Nomenclature under DYNAMITE

None Nomenclature:

Foreign Nomenclature:

The entry is given in the Japanese nomenclature; there is no corresponding U.S. explasive.

Compositions

Ammonium Nitrate---- 79% Dinitronaphthalene---- 10% Sodium Chloride----- 10% Sawdust------ 15%

Comments:

Shoan bakuyake is a Japanese explosive composition which was used during World War II in demolition charges.

#### SILVER AZIDE

SILVER AZIDE

See also AZIDES

Alternate Nomenclature:

Foreign Nomenclature:

French: Azoture d'argent,

altrure d'argent

German:

Silberazid

Italian:

Acido d'argento, azoimide d'argento

Sparish

Acido de plata,

Acido

nitruro de plata

Composition:

AgN3 -- chemical compound containing the following percentages by weight of the elements: Silver---- 72.0%

Nitrogen--- 28.0%

Characteristics:

Silver azide is a white to gray, press-loaded explosive melting at 251°C. It will detonate when exposed to a temperature of 290°C for five seconds. Like lead aside, silver azide contains no oxygen and detonation involves no combustion. It is non-volatile and practically nonhygrescopic. It is somewhat more sensitive than lead azide. Like lead azide, silver azide is stored wet.

Manufacture:

A solution of sodium azide is added slowly to a solution of silver nitrate which is being rapidly stirred. The resulting silver azide precipitate is filtered out or solution.

Uses:

Silver axide may be used as an initiating explosive, although its use thus far has been very limited.

\*\*\*\*

SINGLE-BASE COLLOIDED PROPELLANT See SINGLE-BASE SMOKELESS PROPELLANT

\*\*\*\*

SINGLE-BASE POWDER

See SINGLE-BASE SMOKELESS PROPELLANT

HNNNN

SINGLE-BASE SMOKE-LEES PROPELLANT

SINGLE-BASE SMOKELESS PROPELLANT

See also GUNCOTTON, NITROCELLULOSE, PROPELLANTS—FOREIGN, SMOKELESS PROPELLANT, and specific types listed under Composition below

Alternate Nomenclature:

Single-Tase Colloided Properlant

Single-Base Powder

Foreign Nomenclature:

British: N.C.T. (Nitrocellulose,

Tubular)

Russian: Piroksilinovyye

porokh:

Spanish:

Pólvora de base única, pólvora nitrocelulósica

Composition:

Single-base propellants contain nitrocellulose as their principal ingredient. In addition they contain a stabiliser, and also may contain inorganic nitrates, nitrocompounds, and non-emplosive materials such as metallic salts, metals, carbohydrates, and dyes.

Single-base propellants can be grouped into the following types:

Pyrocellulose (powder)

E. C. Powder

Flashless and Smokeless Compositions

Small Arms Propellant

Each of the above is discussed under a separate entry. For foreign compositions, see PROPETIANTS - FOREIGN.

Characteristics

Single-base propellants usually are amber, brown, or black in color and are manufactured in as many forms as double-base propellants, i.e., flakes, strips, sheets, spheres, pellets, tubes, and perforated cylindrical grains (normally with one or seven perforations). The amount of energy and gas liberated by single-base propellants is determined by the degree of nitration (as measured by the nitrogen content). Single-base propellants are inherently unstable, and stabilizers are required to bring the stability of these propellants up to practical limits. These propellants are more difficult to stabilize than are double-base propellants. Single-base propellants are hygroscopic; the presence of moisture in the propellant will change the muzzle velocity and thus the predictable accuracy of projectiles.

#### SINGLE-BASE SMOKELESS PROPELLANT

Manufactu ..

Nitrocellulose is first compressed to squeeze out a portion of excess water. It is then impregnated with alcohol which displaces the remaining water and dehydrates the material. The resulting dehydrated block is broken up and mixed with ether to form a colloid. At this stage the stabilizer, usually diphenylamine, is added. The colloid is again pressed into a block and is forced through a "maceroni press" where it emerges in strands similar in appearance and size to macaroni. The colloid is re-blocked as long parforated tubes (if this is the form desired). The grains undergo a solvent recovery process (to collect ether and alcohol) and are dried.

Uses:

Single-base propellants have been used in most types of ammunition. However, many propellant requirements are better filled by double-base propellants, and single-base propellants have been replaced by double-base types in many applications. In countries where nitroglycerin is in very short supply, single-base propellants may be used in ammunition with passable results.

Comments:

Since single-base propellants are colloids and not powders, the use of the phrase "single-base powder" is not correct. The term "single-base colloided propellant" for these propellants is coming into increasingly wide usage since it is more accurate in its description (the propellants are not completely smokeless).

\*\*\*\*

SHALL ARMS PROPELLANT

See also SINGLE-BASE SMOKELESS PROPELLANT

Alternate Nomenclature:

Composition:

Since smell arms propellants are a type of single-base propellant, they all contain nitrocellulose as their principal ingredient, plus varying amounts of stabilizers and other non-explosive ingredients. Typical compositions are listed below:

To all the above compositions, a glaze of graphite and a coating of dimitrotoluene is applied to the grains.

Characteristics:

Smokeless propellants for small arms are usually glazed with graphite to facilitate machine loading and to prevent the accumulations of large charges of static electricity. Small arms propellants have a black polished appearance. They have a high order of stability and are particularly resistant to the effects of moisture because of the dinitrotoluene coating. Since the propellant grains are small, they ignite more readily and burn more freely than artillary propellants. However, when moisture is present or abnormal temperatures prevail, the small grains are subject to more rapid deterioration than the larger grains. Many small arms propellants are nearly as sensitive to friction as black powder.

Manufacture and Usos:
See SINCHE-BASE SMOKELESS PROPELLANT

\*\*\*\*\*\*\*\*\*\*\*\*

SMOKETESS PROPELLANT

See also COMPOSITE PROPELLANT, DOUBLE-BASE SMOKELESS PROPELLANT, SINGLE-BASE SMOKELESS PROPELLANT, TRIPLE-BASE SMOKELESS PROPELLANT

Alternate Nomenclature:
Colloided Propellant
Smokeless Powder

Foreign Nomenclature:
Russian: Bezdymnyi porokh

Comments:

Smokeless propellants may be divided into four main classes:
Single-Base Smokeless Propellant
Double-Base Smokeless Propellant
Triple-Base Smokeless Propellant
Composite Propellant

Antrie under the above headings give specific details on Composition, Characteristics, Manufacture, and Uses.

All smokeless propellants with the exception of composite propellants contain nitrocellulose as one of the "bases." Single-base propellants have nitrocellulose as their active explosive; double-base propellants contain nitrocellulose and nitroglycerin as the two bases; and triple-base propellants contain nitrocellulose, nitroglycerin, and nitroguanidine. Triple-base propellants have often been treated as a type of double-base propellants; however, these propellants contain three active explosives in their composition and their characteristics differ considerably from the characteristics of double-base propellants. They are, therefore, properly treated as a separate class of propellants.

Smokeless propeliants have replaced black powder in all but the crudest propellant applications. They are used in all types of infantry and artillery ammunition and in many types of rocket motors.

The term "colloided propellant" for smokeless propellants is coming into increasingly wine usage since it is more accurate in its description than is the term "smokeless propellant" (these propellants are colloids and they are not completely smokeless).

\*\*\*\*

SOLID ROCKET PROPELLANT

Alternate Nomenclature:

Composition:

Solid rocket propellants may utilize a number of compounds, some of which are classified Confidential or above when used in propellant applications. In gener i, all solid rocket propellants contain a fuel and on ordizer in the proper proportions for sustained combustion.

Sclid rocket propallants may be divided into three categories: double-base smokeless propellants, composite propallants, and cast perchlorate propellants. The first two are discussed under individual entries. Examples of United States cast perchlorate propellants are listed below:

| AJ 7-161 (Asphalt Base Perchlo                                                                                                          | rate) |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------|
| Potassium Perchlorate                                                                                                                   | 76.58 |
| $\widetilde{F}\widetilde{u}\widetilde{o}\widetilde{1}=\omega_{u}\omega_{u}\omega_{u}\omega_{u}\omega_{u}\omega_{u}\omega_{u}\omega_{u}$ | 23.5% |

| AN-507 (Resin Fase Perchlorate |            |                            |
|--------------------------------|------------|----------------------------|
| Ammonium Perchlorate           | 75%        |                            |
| Fuel                           | 24.825%    | (50% A-10 polyester resin, |
| 4.3.38.4.6                     | 15 3 9 F d | 50% styrene)               |
| Additives                      | しゅよりか      |                            |

| Thickol (Rubber Base Perchlon | rate)  |
|-------------------------------|--------|
| Ammonium Perchlorate          | 21.15% |
| Potassium Perchlorate         |        |
| Polysulfide Rubber (Thickol)  | 28.85% |
| Additives                     | 2.88%  |

## Characteristics:

Soild rocket propellants have a wide range of characteristics, depending upon the individual compositions. While the ideal rocket propellant has not yet been developed, its characteristics have been established as follows:

- a. Uniform ignition and burning
- b. Wall-defined, reproduceable, and approximately constant burning sw face
- c. Reproduceable composition with a constant heat of explosion
- d. Nonhygroscopicity
- e. Procurable in grains having widely varying burning times, either by changes in composition or structure
- f. Adequate mechanical properties
- g. High performance
- h. Smokelessness
- i. Stability
- j. Not affected by temperature variations

## Manufacture:

The manufacture of double-base and composite propellants is discussed under individual entries. Perchlorate propellants in general are the easiest of all solid propellants to manufacture. The oxidizer, pulverized into an extremely fine powder, is added to the fuel, which has been previously melted. The mixture is stirred, cast, and ollowed to cool.

ÜBES:

It is apparent from their name that solid rocket propellants are used for rockets and missiles.

Comments:

Solid rocket propellants are coming into increasing usage because of their major advantages over liquid propallants, i.e., their generally good storage characteristics and their ease of handling. However, difficulties in obtaining required characteristics such as uniform borning time has limited the full utilization of their advantages.

\*\*\*\*

SOLVENTLESS PROPELLANT or POWNER

See DOUBLE-BASE AMOKELESS PROPELLANT

\*\*\*\*

STARCH NICRATE

See NITROSTARCH

\*\*\*\*

STRAIGHT DYNAMITE

See also DYNAMITE, MILITARY DYNAMITE, NITROGLICERIN

Alternate Nomenclature:

Dynamite No. 1
See Composition below

Foreign Nomenclature:
See DYNAMITE

Composition:

Straight dynamites can be subdivided into "dynamites with inactive base (Guhr dynamites)" and "dynamites with active base (Extra dynamites)." Representative compositions are given below:

| Inactive Base Nitroglycerin Kieselguhr | 75%<br>25% | } | Rarely, the composition some nitrocellulose. | ray | irclude |
|----------------------------------------|------------|---|----------------------------------------------|-----|---------|
|                                        |            |   |                                              |     |         |

| Active Base (U.S.) Nitroglycerin |       |            | •                  |
|----------------------------------|-------|------------|--------------------|
| Nitroglycerin                    | 40%   |            | . May also be made |
| Sodium Nitrate                   | 山 to  | 45% approx | ) with ammonium    |
| Wood Malamana                    | 12 to | 15% approx | ritrate, giving    |
| Calcium Carbonate                | 1 to  | 3% approx  |                    |

Wood or Cereal Meal---- 10%

Sodium Nitrate---- FS

Low-freezing straight dynamites (see LOW-FREEZING AND NON-FREEZING DYNAMITES) have compositions in which the nitro-glycerin is replaced by nitrated mixtures of glycerin and glycel, or of glycerin and anger (see SHAR NITRAME).

Characteristics:

Inactive base -- Dynamites with inactive base are raddishyellow to brownish yellow, and almost white when frozen.
They resemble fresh earth in that they are a crumbly-plastic
mass. They are nonhygroscopic. Normally they will freeze
at 10°C; when frozen they are less sensitive than the plastic
material. If made from nitrocellulose which has been fully
stabilized, dynamites with inactive base are completely
stable, even at tropical temperatures. Their sensitivity
to shock and friction is not quite as high as that of
nitroglycerin; they are also less brisant than nitroglycerin. However, these dynamites will detonate when
bit by a rifle bullet. They are more sensitive than other
types of dynamites.

Active bare -- Dynamites with active base are greasy powders which are loose and moist. The ammonia dynamites (varieties containing ammonium nitrate) are especially strong but have the disadvantage of high hygroscopicity. Sodium nitrate also lends its characteristics of hygroscopicity to these dynamites. Other characteristics are similar to dynamites with inactive base.

# Manufactures

Straight dynamites are manufactured by mixing nitroglycerin with kieselguhr (in the case of inactive base) or other absorbent material (in the case of active base). The mixing is done by shovel or by hand and the resulting material is screened to insure complete uniformity and fine graining.

### Uses:

Since straight dynamites are fast and shattering when detonated, they are used where a "quick" explosive is desired. Such uses include underwater blasting (excluding ammonta dynamites), steel demolition work, and the priming of deep-well blasting gelatins. Dynamites thus inactive base are practically non-existent in the United States today; they have been replaced by active tese types and are used only as a basis of comparison for other types of dynamites.

#### STRAIGHT DYNAMITE

Commonts:

The terminology for straight dynamites has not met with consistent usage. The term "dynamite" often is used to refer only to dynamites with active and inactive bases (i.e., straight dynamites), whereas it is more properly used to refer to the entire dynamite class of explosives. The term "straight dynamite" has been used in the United States to refer to dynamites with active base; the term is correctly used, however, to include all of the dynamites discussed in this entry. The term "dynamite no. 1" is popularly used in the United States as an alternate name for dynamites with inactive base.

\*\*\*\*

SUCROSE OCTONITRATE

See SUGAR NITRATE

\*\*\*\*

SUGAR NITRATE

Alternate Nomenclature:

Composition:

The following sugar nitrates have been found to exhibit explosives characteristics:

Arabinose Tetranitrate (Nitroarabinose) -- C5H6O(ONO2)4 or C5H6N4O13
Glucose Pentanitrate (Nitroglucose) -- C6H7O(ONO2)5 or C6H7N5O16
Lactose Hexanitrate -- C12H16O; (ONO2)6 or C12H16N6O23
Lactose Octonitrate (Nitrolactose) -- C12H14O3(ONO2)8 or C12H14N6O27
Maltose Octonitrate (Nitromaltose) -- C12H14O3(ONO2)8 or C12H14N8O27
Mannose Pentanitrate (Nitromannose) -- C6H7O(ONO2)5 or C6H7N5O16
Sucrose Octonitrate (Nitrosucrose) -- C12H14O3(ONO2)8 or C12H14N8O27

Many other sugar mitrates have been prepared, but they have no importance as explosives.

Characteristics:

Sugar nitrates appear as colorless or white crystals. They melt at comparatively low temperatures, ranging from 80° to 165°C. In a molten state, they are sticky and rasinous; upon cooling, they do not crystallize easily or rapidly. In this, they resemble the sugars from which they are produced. Sugar nitrates are inherently unstable. Compounds made from them are far less stable than nitroglycerin unless a stabilizer (normally diphenylamine) is added.

Hanufactures

Sugar of the required type is dissolved in concentrated nitric acid. Concentrated sulfuric acid is added drop by drop, and the sugar nitrate will crystallize out of solution.

Uses:

Sugar nitrates are utilized in explosives as substitutes for nitroglycerin. Sucrose octonitrate has been used in the United States in mixtures with nitroglycerin for the manufacture of "nitrohydrene" (82-86% nitroglycerin, 14-18% sucrose octonitrate), which has functioned as a non-freezing dynamite. Mixtures of glucose pentanitrate and nitroglycerin, and lastese octonitrate and nitroglycerin have also been prepared. These mixtures are similar to nitroglycerin in explosive strength, but are difficult to stabilize.

Comments:

Since sugar nitrates are used in explosives only as substitutes for nitroglycerin, the extent of their use dispends entirely upon the degree of scarcity of glycerin and their cost of production. At best, a sugar nitrate will replace only 14 to 18% of nitroglycerin in an explosive compound; the increased need for nitric acid to manufacture sugar nitrates wakes their use a saving of dubious value.

<del>\*\*\*</del>

SYM-TRINITROTOLUME

See TRINITROTCLUENE

# 15 <del>15</del> 15 M

T-9

Sea COMPOSITION 1-9

KKKKK

TEGN

Alternate Nomenclature:
Triethyloneglycoldinitrate

Composition:

UGH12N2O8 -- chemical compound containing the following percentages by weight of the elements: Carbon---- 29.9% Hydrogen--- 5.4% Nitrogen--- 11.7% Output ---- 53.0%

Characteristics:

TENN is a liquid compound with a meiting point of -19°C. It will explode when subjected to a temperature of 223°C for five seconds. It is less sensitive to impact than TNT, and is unaffected by friction tests. It is, however, volatile.

Manufacture:

Purified triethyleneglycol is nitrated (at a temperature of  $0^{\circ} \pm 5^{\circ}$ C), and then poured over water and extracted three times with ether. The extract is washed first with water and then with a sodium bicarbonate solution. The product is dried by removing water and ether.

Uses:

Trum has been used as an ingredient of rocket and double-base propellants, especially by the Germans during World War II.

Comments:

The quantity production of TENN still presents some difficulties and its use in propellant compositions is being replaced by other liquid nitrates.

\*\*\*\*

# TETRACENE

Alternate Nomenclature: Foreign Nomenclature:
4-guanyl-(nitrosoaminoguanyl)- Soviet: Tetratsin
1-tetrasene

Composition:

H<sub>2</sub>N<sub>2</sub>O(:NH).NH.NH.N:M.C(:NH).NH.NH.NO or C<sub>2</sub>H<sub>8</sub>N<sub>1</sub>,O -- chemical compound containing the following percentages wright of the elements: Carbon----- 12.77\$

Hydrogen---- 4.28% Nitrogen---- 74.44% Oxygen----- 8.51% Characteristics:

Tetracene is a colorless or pale yellow, fluffy, pressloaded material which melts with explosive violence at from 11,00 to 16000. It will explode when subjected to a temperature of 16000 for five seconds. Tetracene is slightly hygroscopic. While it is stable at temperatures of 7500 and under, it will decompose at higher temperatures, the decomposition rate increasing rapidly as the temperature increases. Tetracene is somewhat more sensitive than merouric fulminate. It detonates readily from exposure to flame. Its explosion temperature is relatively low and makes it useful in priming compositions.

## Manufacture:

Tetracene may be prepared by dissolving aminoguanidine carbonate in a mixture of glacial acetic acid (pure acid) and water. After the solution has been filtered and cooled, solid sodium nitrite is added. The tetracene precipitates, and is collected and washed.

Usesi

Tetracene is used either as an ingredient of priming compositions or as an intermediate booster. It is not used to initiate the detonation of high explosives since it will not detonate TNT, and will detonate PETN and tetryl only if the tetracene is unpressed.

\*\*\*\*

TETRALITE

See TETRYL

\*\*\*\*

TEIRANITROANILINE

See also AROMATIC BIRRO COMPOUNDS

Alternate Nomenclature:

Composition:

C6HNH2(NO2); or C6H3N5O8 -- chemical compound containing the following percentages by weight of the elements:

Carbon---- 26.38% Hydrogen--- 1.11% Nitrogen--- 25.64% Cxygen---- 46.87%

#### TETRANITAGGALLIANE

Characteristics:

Tetranitroaniline is a greenish yellow to olive green crystalline material which malts at from 2100 to 21500 with accomposition. It does not react with metals. Tetranitroaniline is nonhygroscopic, and completely stable in dry storage. However, long-term exposure to moisture tends to promate hydrolysis of the compound. Tetranitroaniline is more sensitive to impact and friction than TNT. It is readily detonated by the penetration of a rifle bullet. It is one of the strongest high explosives, being about 10% stronger than TNT.

Manufacture:

Benzene, reacted with mixed acid. is nitrated to dinitrobenzene. which is converted to metanitroaniline by treatment with a sodium sulfide solution. Metanitroaniline is converted to metanitroaniline sulfate by being reacted with sulfuric acid. The sulfate, in turn, is nitrated to tetranitroaniline by reacting it with strong mixed acid.

Uses:

Tetranitroaniline has been used as an ingredient of cheap, relatively insensitive blasting explosives, so as to increase both explosive strength and sensitivity to detonation. It has also been used as a partial substitute for marcuric fulminate in commercial blasting caps or electric detonators, and, by the Soviet Union, as a booster charge in ammunition. It is not used as a military bursting charge.

Comments:

Tetranitroamiline is considerably more expensive to produce than is TNT. For this reason, and because of its high sensitivity, it is not suitable as a military bursting charge. Although the addition of as little as 5% paraffin or 25% dimitrobenzene would reduce the sensitivity of tetranitroamiline to manageable proportions, such additions would reduce the compound's explosive strength to a point making impracticable its use as a military high explosive. Tetranitroamiline is not to be confused with trinitroamiline, which is a different chemical compound.

**MXXXX** 

TETRANIZACERYTHRITOL

See PETN

\*\*\*\*

TETRANITROMETHYLANILI IE

Sec TETRYL

\*\*\*

TETRANTTROTETRAZACYCLE-OGIANE

See HMX

\*\*\*\*

TETRYL.

# See also AROMATIC NITRO COMPOUNDS

Alternate No enclature: Foreign Nomenclature: Pyronite British CE (Composition, exploding) Tetralite French: Tetryl Trinitrophenylmethyl-German: Tetryl Tetrile, Tetryi nitramine Itelian: (Formerly also Tetranitro-Japanese: Melayaku Russians methylaniline) Tetril Spanish: Tetranitrometilaniline, Tetryl

Composition:

C6H2(NO2)3(NCH3NO2) or C7H5N5O8 -- chemical compound containing the following percentages by weight of the elements:

Carbon---- 29.28% Hydrogen--- 1.75% Nitrogen--- 24.39% Oxygen---- di.58%

Characteristics:

Tetryl is a colorless or yellow, crystalline, press-loaded material which melts at between 129° and 130°C. It will ignite when subjected to a temperature of 257°C for rive seconds. Tetryl does not react with metals. It is only slightly hygroscopic, but the presence of even a slight amount of maisture will reduce its effectiveness. Tetryl is more sensitive to shock and friction than TNT. It is easily detonated by penetration of a rifle bullet. It is completely stable at temperatures of 120°C and under.

Manufacture:

Benzene is treated with mixed soid, and the resulting nitrobenzene is reduced to aniline by treatment with iron filings and hydrochloric acid. The aniline is combined with methyl alcohol (wood alcohol) by heating under pressure in the presence of sulfuric acid or iodine. The resulting dimethylaniline is dissolved in sulfuric acid and the solution is treated with mixed acid. The tetryl precipitates, and is boiled, ground, re-boiled, and dried.

TETRYL

Uses:

Tetryl is universally used as a booster, rarely as a bursting charge, and in the manufacture of tetrytol (see entry). It is also used less extensively in military and commercial detonators, as a partial substitute for mercuric fulminate charges by being pressed into the bottom of the detonator shell and covered with a small printing charge of fulminate.

\*\*\*\*

TETRYTOL

Alternate Nomenclature:

Foreign Momenclature:
Russian: Tetritol

Composition:

Tetrytol is a composition containing varying proportions of tetryl and TNT. The following compositions are typical:

Tetryl----- 80% ---- 75% ---- 70% ---- 65% INT----- 20% ---- 25% ---- 30% ---- 35%

Characteristics:

Tetrytol is a light yellow to buff, cast-loaded, solid which melts at 68°C. The compositions listed above will ignite when subjected to the following temperatures for five seconds: 80/20 tetrytol--290°C; 75/25 tetrytol--310°C; 70/30 tetrytol--320°C; and 65/35 tetrytol--325°C. Dry tetrytol will slightly affect magnagizmedizzinum alloy. Wet tetrytol will affect copper, bress, aluminum, magnesium, magnesium-aluminum allor. mild steel, and mild steel plated with cadmium, copper, sinc, or nickel. Tetrytol is practically nonhygroscopic in that it absorbs only 0.02% moisture when exposed to an atmosphere of 90% relative humidity at 30°C. Its sensitivity to impact, shock, heat, and initiation is intermediate between that of THT and that of tetryl. It is more brisant than TNT and less brisant than tetryl. It is entirely stable in storage at 65°C and under, Higher temperatures, however, cause some exudation and distortion of shape.

Manufactures

That is heated until it has malted and its temperature is slightly above 100°C. Tetryl is added and the temperature is decreased until the proper viscosity for pouring is obtained. Part of the tetryl dissolves in the That the remainder forms a simple mixture with the molten Internal

Uses

Tetrytol is used as a demolition explosive, a bursting charge for mines, and in the bursting tubes of chemical shells.

TNA

See TETRANITROANILINE

HHMMN

TNP

Sec PICRIC ACID

**光に光光に** 

TNPH

See also AROMATIC NITRO COMPOUNDS

Altornate Nomenclature:
Ethyl Picrate
Trinitrophenetole
Trinitrophenylethylether

Compositions

C6H2(NO2)3C2H5 or C8H7N3O6 -- chemical compound containing the following percentages by weight of the elements:

Carbon---- 39.84% Hydrogen--- 2.92% Nitrogen--- 17.43% Oxygen---- 39.81%

Characteristics:

TNPH is a cast-loaded explosive material with a melting point of 78.3°C. It is similar to TNT in power and can be successfully mixed with cyclorite and ammonium nitrate for other explosives. However, it is more sensitive to handle than TNT, and is more complicated and expensive than TNT to manufacture.

Uses:

TNPH normally is used as a component in booster and bursting charge compositions. It has been proposed, however, as a bursting charge in French ammunition where serious toluene shortages have required the development of TNT substitutes.

Comments:

TNPH is of value as a high explosive only in cases where TNT substitutes are required. In other cases, its munufacturing and sensitivity disadvantages outweigh its usefulness except as an ingredient in explosive compositions.

\*\*\*\*

TRT

TNT

See TRINITROTOLUENE

\*\*\*\*

ak and the article and the state of the stat

TOLITE

See TRINITROTOLUENE

\*\*\*\*

TORPEX

Alternate Nomenclature:

Foreign Nomenclature:

Swedish: Hexotonal (Brand name used by Bafors of Swedan)

Cyclonite---- 415

Aluminum---- 18%

Slight variations in the percentage of ingredients has resulted in the following types:

| Torpe        | x I      | Torpe | x II Tor   | pex/Wax |
|--------------|----------|-------|------------|---------|
| Cyclonite 45 | ~ ~~~    | 429   |            | 44%     |
| TNT 3?       | <u> </u> | 409   | £ ======== | 379     |
| Aliminom18   | %        | 189   |            | 18%     |
| Beeswax      | -        |       |            | 1%      |

Characteristics:

Torpex is a silvery-white, cast-losded explosive material. It will detonate when subjected to a temperature of 260°C for five seconds. It reacts slightly with brass. Torpex is nonhygroscopic when exposed to an atmosphere of 90% relative humidity at 30°C. It is more sansitive to impact than composition B, and is readily detonated by the penetration of a rifle bullet. It is more brisant than TAT, but less brisant than cyclonite. Torpex has a high order of stability; it has been stored for 13 months at 65°C without change. However, slight traces of moisture in the composition will result in the liberation of gases which may rupture the ammunition component it fills and which will increase the sensitivity of the torpex to shock.

#### Manuracture

TMT is heated until it has melted and its temperature is

about 100°C. Slightly wet cyclonite is added slowly, and mixing and heating are continued until all moisture has been removed. Crained aluminum is added and stirring is continued until a uniform mixture results. The temperature of the mixture is decreased until the proper viscosity for pouring is obtained.

Usest

Tor ex is used by the United States and Great Britain as a bursting charge in mines, torpedoss, and depth charges; it was used by Germany as a bursting charge in bombs.

Comments:

Recause of the sensitivity of torpex, two other explosives have been developed, DBX (see entry) and HBX-1. HBX-1 has a torpex composition plus a desensitizer and calcium chloride (it is actually made from corposition B, composition D-2, TNT, and aluminum). It is less sensitive and less brisant than torpex, and is nonhygroscopic. HBX-1 has not been standardized for general use.

\*\*\*\*

TPI

See TORPEX

\*XXXX

#### TRIAZIDOTRINITROBENZENE

Alternate Nomenclature:
Trinitrotriszidobenzene

Corposition:

tages by weight of the elements: Carbon---- 21.4%
Nitrogen--- 20.6%
Oxygen---- 28.6%

Characteristics:

Triazidotrinitrobenzene is a greenish yellow, press-laded explosive, melting at 13100. It is nonhygroscopic, and will not exude. It does not react with more common detale such as iron, steel, copper, and brass.

# TRIALLOTRINITRODENZENE

Manufacture:

Sym-trichlorobenzene is prepared by chlorinating aniline to form trichloroaniline, and eliminating the amino group. The sym-triunlorobenzene is nitrated, and the precipitated trinitro trichlorobenzene (either powder or in acetone solution) is added to a solution of sedium azide in alcohol and is stirred rapidly. Trinitrotriazidel maene precipitates and is washed and dried.

Unest

Trinzidotrinitrobenzene has recently been found to be very suitable for use in priming compositions.

\*\*\*\*

#### TRIDITE

Alternate Nomenclature:

Foreign Nomenclature:
British: Nellite
French: DD
Italian: MBT

Composition:

The following composition may be taken as representative:

Picric Acid----- 80% Dinitrophenol---- 20%

Characteristics:

Tridite is a cast-leaded explosive. It is slightly inferior to pictic acid as an explosive, but has the advantage of being castable. It will not exude.

Usesi

Tridite has been used as a bursting charge for artillery shells and bombs. However, with the modern trend away from using picric acid in bursting charges, tridite is used with decreasing frequency.

\*\*\*\*

TRIETHYLENEGLYCOLDINITRATE

See TEGN

HHHHH

TRILITE

See TRINITROTOLUENE

상성부상상

TRIMETHYLENETRINITRAMINE

See CYCLONITE

\*\*\*\*

TRIMONITE

Alternate Nomenclature:

French: M Mn

Composition:

During World War II; France used the following modified composition:

Ficric Acid----- 70% Mononitronaphthalene---- 30%

Characteristics:

Trimonite is a cast-loaded explusive melting at 9000. It will detenate when subjected to a temperature of 31500 for five seconds. It is less sensitive to initiation and less brisant than straight picric acid. However, when stored at elevated temperatures, it will exude.

Manufacture:

Picric acid and mononitronaphthalone are melted together and stirred until the composition is uniform.

Uses:

Trimonite has been used as a bursting charge for artillery shells and bombs, especially in France. However, with the modern trond away from using pieric acid in bursting charges, trimonite is used with decreasing frequency.

\*\*\*\*

TRINITROPHENETOLE

See TNPH

\*\*\*

#### TRINITROPHENOL

TRINITROPHENOL

See PICRIC ACID

\*\*\*\*

TRINITROPHENYLETHYLETHER

See TNTY

\*\*\*\*

TRINITROPHE: YIMETHYINITRAMINE

See TLIRIL

\*\*\*\*

# TRINITROTOLUENE

# See ARCMATIC NITRO COMPOUNDS

| Alternate Nomenclature: For                                | eign Nomencl | ature:                                                 |
|------------------------------------------------------------|--------------|--------------------------------------------------------|
| Coul Tar Salt                                              | British:     | Trotyl                                                 |
| Sym-Trinitrotoluene (Sym-<br>metrical Trinitrotoluene) ThT | French:      | Tolite, trinitrotoluène, trinitrotoluol, trotyl        |
| Tolite                                                     | German:      | Fp-02, fullpulver 1902,                                |
| Trilite<br>Trinitrotoluol                                  |              | tolit, trinitrotoluci, trotyl                          |
| Triton                                                     | Hungarian:   | Trilit, trinitrotoluol,                                |
| Trotyl                                                     |              | tritolo, trotil                                        |
| NOTE: The terms "trotyl" and "tolite" are of British       | Itelian:     | Tolite, trinitrotolueno, trinitrotoluolo, tritolo      |
| and French origins respectively.                           | Japanese:    | Chakatusuyaku, type<br>92 (see also separate<br>entry) |
|                                                            | Russian:     | T, tol, brotil                                         |
|                                                            | Spanish:     | Tolita, trilita,<br>trinitrotolucao,<br>trinitrotoluol |

The occurs in six isomers, designated alphas, below, games, deltas, epsilons, and delastrinity obligate. The empirical formula given above applies to all six verieties; differences aming the isomers are due to the different locations of one of the mitro groups in the compound's structure. For example, alphas, betas, and gammastrinity obligate have the full value structural formulae:

Characteristics:

Trinitrotoluene appears as light yellow flakes or rhombohedral crystals. TNT is classified into three grades in accordance with military specifications: Grade I with a solidification point of at least 80°C: Grade II with a solidification point of at least 79.500; and Grade III with a solidification point of at least 7600. Trinitrotoluene may be cast- or press-loaded; cast-loading is the proferred method. In liquid form, trinitrotoluene is much more sensitive to impact thian the solid material. It is practically nonhygroscopic, absorbing not more than 0.2% moisture. It is one of the least sensitive of the military high explosives. Its brisance is equal to that of picric acid and guncotton, less than that of tetryl, EDNA, PETN, cyclonite, and nitroglycerin. It is quite stable in closed storage, although in the presence of certain chemical compounds such as alkalies and armonia it forms unstable and dangerous compounds. Moreover, exposure to sumlight or ultraviolet light in the presence of oxygen causes progressive discoloration and decomposition and increasing sonsitivity to impact.

Alpha-trinitrotoluenc (symmetrical TNT or simply sym-TNT) constitutes 98% or more of the commercial product and the characteristics of this isomer govern the characteristics of the product. Grade I TNT, which is the purest of the three grades, contains the least amounts of impurities in the form of isomers other than alpha-tri- to the luene.

Meanfecture:

Trinitrotoluene may be manufactured by one, two, or threestage nitration processes, or more recently, by the scrtimons
process, with toluene and mixed acid as the raw materials.
While all four processes have been used on a production basis,
the three-stage process has had the adventages of
maximum yield, greater purity of product, and greater
ease of control of acid concentration and temperature
conditions. The continuous process, as employed by the
Bofors Company of Sweden, is coming into wide usage as
its advantage of continuous TNT yield become: increasingly
apparent.

In the one-stage process, a large excess of strong mixed acid is used and the temperature is gradually raised. TNT can be produced in the one process without transfer or separation of spent acid from intermediate products. In the two-stage process, either mono- or dinitrotoluene is produced in the first stage, and TNT in the second. In the three-stage process, by the use of three different acid mixtures and different conditions of temperature, etc., there are successively produced mono-, di-, and trimitrotoluane, each stage being carried out in a different nitrator. However, it should not be assumed that at any stage there is only one nitrated product. Thus all of the toluene is not nitrated to mononitrotoluene before any mononitrotoluene is nitrated to dimitrotoluene; all of the mononitrotoluene is not nitrated to dinitrotoluene before any dinitrotoluene is nitrated to trinitrotolume. The continuous process employs the same raw materials as the other processes, but operates on a continuous basis rather than on the "batch" basis of the other processes. Hence, it offers a greater yield over a given time period than do any of the other processes.

The TMT resulting from any of the processes must be washed, purified by remelting, granulated, screened, and dried. Oracles I and II TMT must be prepared by recrystallization or special chamical treatment of Grade III TMT. Grade I TMT requires additional purification and is the most expensive of the three grades.

"TNT-oil," the material used in some dynamites, is a byproduct in the process of TNT purification. Grude TNT
is treated with organic solvents (such as alcohol or
carbon tetrachloride) to remove any beta- and gamma-TNT
present. Upon distillation, the organic solvents are
recovered, and the residue is TNT-oil.

ប្រទទទ

The is universally used as the bursting charge for high explosive artillery shells, mines, bembs, and grenades. It may be used alone or mixed with ammonium nitrate (see AMATOL). It has also been used to a limited extent for demolition and blasting and in industrial explosives. It is used also in the Bickford fuse. The is also now being used as a constituent in some solid rocket propellants.

For us s of mononitrotoluene and dimitrotoluene, see Appendices.

まながなま

TOTNITROTE IAZIDOBENZENE

See TRIAZIDOTRINITROBENZENE

MANAN

TRIPLE-BASE SMOKELESS PROPELLANT See also SMOKELESS PROPELLANT

Alternate Nomenclature: See Comments below

Composition:

Triple-base smokeless propellants contain three principal explosive ingredients or "bases:" nitrocellulose, nitroglycerin, and nitroguanidine. The following compositions are representative of United States propellants in this category:

| ·                | M15   |   | M17   |               |
|------------------|-------|---|-------|---------------|
| Nitrocellulose   | 20.0% |   | 20.0% | <b>y</b>      |
| Nitroglycerin    | 19.0% |   | 21.5% | ) To which is |
| Nitroguanidine   | 54.7% |   | 54.7% | added 0.1%    |
| Ethyl Centralite | 6.0%  |   | 1.5%  |               |
| Cryolite         | 0,3%  | - | 0.3%  | )             |
| Unknown          | •••   |   | 2.0%  | <b>5</b>      |

Comments:

Triple-base propellants are often classified as a type of double-base propellant since they share many of the same characteristics. There are, however, sufficient differences to justify their separate classification. Due to the nimo-guanidine content, triple-base propellants burn at temperatures lower than other propellants and consequently cause far less gun barrel erosion than other propellants. Moreover, they are more stable than other propellants sine antiroguanidine acts at a stabilizer to a certain extent. The burning of triple-base propellants yields higher gas volume values than equal quantities of other propellants and thus imparts higher velocities to projectiles.

TRITON

# See TRINITROTOLUENE

\*\*\*\*\*\*

# TRITONAL

Alternate Nomenc ature:

Composition:

Aluminum---- 20%

Characteristics:

Tritonal is a silvery gray, cast-loaded material. It will explode when subjected to a temperature of 170°C after five seconds. It is very similar in its characteristics to TNT. It is essentially nonhygroscopic. It is slightly more sensitive to impact than TNT, but is equal to TNT in sensitivity to initiation. Its brisance is less than that of TNT, but it is more powerful than TNT.

## Manufacture:

TNT and aluminum are fed separately into a steam-heated kettle, where the mixture is agitated and heated until all of the TNT has melted. The resulting tritonal is ready for east-loading.

# Usesi

Tritonal is a standard United States military high explosive used in bombs for its high blast effect.

XXXXX

TROJAN EXPLOSIVE

See Also NITROSTARCH

Alternate Nomenclature:

Composition:

Trojan explosives have been made in two types depending upon usage: Trojan grenede explosives and Trojan trench mortar shell explosives. The compositions are almost identical. The composition listed below gives the input limits for each ingredient:

| Not                | less  | than       | Not | more  | than |
|--------------------|-------|------------|-----|-------|------|
| Nttrostarch        | 23.0% | ***        |     | 27.09 |      |
| Ammonium Nitrate   | 31.0% |            |     | 35.0% | •    |
| Codium Nitrate     | 35.0% | *J# @/## 7 |     | 40.0% |      |
| Charcoal           |       |            |     |       |      |
| Heavy hydrocarbons | 0.5%  |            |     | 1.5%  |      |
| Antacid            |       |            |     |       |      |
| Diphenylamine      | 0.2%  | ***        |     | 0.4%  |      |
| Mots+m.e           | • • • |            |     | 1.2%  |      |

Characteristics:

The second secon

Trojan explosives are grayish black in color and have a consistency similar to brown sugar. They are very hygroscopic, although oil in the compounds tends to reduce this disadvantage. Exposure to moisture tends to reduce both strength and sensitivity. These explosives are much less rensitive than straight nitrostarch, and are particularly insensitive to ignition and sympathetic detenation.

# Manufacture:

All materials other than the straight nitrostarch are ground and dried. The nitrostarch is mixed with this material.

# Usent

Projan explosives have been used as bursting charges for hand grenades, rifle grenades, and trench mortar shells. They are only used very rarely at present.

\*\*\*\*

TROTY).

See TRINITROTOLUENE

\*\*\*\*

#### TIPE 1

| Alternate Nomenclature:                                                                                              | Foreign | Nomen | clatu | <b>r</b> 6 ; |
|----------------------------------------------------------------------------------------------------------------------|---------|-------|-------|--------------|
| The entry is given in the English equivalent of the Japanese nomenclature; there is no corresponding U.S. explosive. | e<br>e  | ne .  |       |              |

| Compositions      |     |
|-------------------|-----|
| Amnicatum Picrate | 81% |
| Aluminum Powder   |     |
| Wood Pulpmannana  | 2%  |
| Petroleum         | 1%  |

Comments:

Type i is a Japanese explosive composition which was used during World War II as a bursting charge in depth charges.

\*\*\*

TIPE 88

Alternate Nomenclature: Foreign Nomenclature: The entry is given in the Japanese: Haensosanbakuyak English equivalent of an alternate Japanese nomenclature: there is no corresponding U.S. explosive.

Compositiona

Ammonium Perchlorate---- 75% Ferro-Silicon----- 16% Wood Meal----Crude Petroleum----

Characteristics:

Type 88 is a gray, press-loaded explosive composition. It will react with metals. Although it is stronger than TNT, it lacks the shattering power of TNT. It is hygroscopic and unstable.

Uses:

Type 88 is a Japanese explosive composition which can be used as a relatively chear underwater explosive.

\*\*\*\*

TYPE 92

Foreign Nomeaclature: Alternate Nomenclature: The entry is given in the None English equivalent of the Japanese nomenclature: see Comments below.

Composition: TMT----- 66%

Aluminum Powder---- 31%

Comments:

Type 92 is a Japanese explosive composition which was used

Ċ.

during World War II as a bursting charge for machinegum bullets. The United States has a similar explosive in tritonal (see entry). The term "type 92" has often been applied by the Japanese to refer to straight TNT.

NOTE: Japan incorporated high explosive fillers into machinegum bullets with calibers as small as 7.7-mm.

STANAR

TYPE 94

Alternate Nomenclature: Foreign Nomenclature:
The entry is given in the None
English equivalent of the
Japanese nomenclature;
there is no corresponding
U.S. explosive.

Composition:
Trinitroanisol---- 60%
Cyclonite----- 40%

Type the is a depended explosive composition which was used during World War II as a bursting charge in torpedoes.

**WKRNH** 

Type 97

The entry is given in the Japanese: Seigetta
English equivalent of an
alternate Japanese nomenclature; there is no
corresponding U.S.
explosive.

Comments:

Type 97 is a Japanese explosive composition much was used during World War II as a bursting charge in texpedoes and depth charges.

\*\*\*\*

TYPE 98

Alternate Nomenclature: Foreign Nomenclature:
The entry is given in the Japanese: H2Kongo
English equivalent of an alternate Japanese nomenclature; there is no corresponding U.S. explosi 3.

Type 98 is a Japanese explosive composition which was used during World War II as a priming and booster charge.

\*\*\*\*

## III FOREIGN SECTION

#### ERITISH TERMS

British Nomenclature Reference in General Section

Amatol Amatol

Astralite Astralite

CE Tetryl

Cordite Cordite

Gelignite Gelatin Dynamite

Lyddite Picric Acid

N.G.T. Single-Base Smokeless Propellant

Nellite Tridite

Nitrocelluloso, Tubular Single-Base Smokeless Propellant

Permitted Explosive Permissible Explosive

Picrite Nitroguanidine

RDX Cyclonite

Research Department Explosive Cyclenite

Trotyl Trinitrotolusne

Tubular Nitrocellulose Single-Base Smokeless Propellant

#### PRENCH TENAS

French Momenclature Reference in General Section.

Acide Picrique Pinzic Acid

Amatol Amatol

Ammona, Armonal

Armonite Ammonite

Astralit Astralite

Azoture d'argent Silver Azide

Azcture de plomb Lead Azide

Ballistite Ballistite

Cheddite Cheddite

Cordite Cordite

Coton-collodion Guncotton

Coton-nitré Guncotton

Coton-poudre Guncotton

DD Tridite

Dynamite Dynamite

Ecrasite Errasite

Exugène Gyelonite

Explosif à la nitroglycérine Nitroglycerin

Explosif antigrisouteux Permissible Explosive

Explosif de surêté Permissible Explosive

Fulndacton Guncotton

Fulminate de mercure Mercurio Fulminat.

# FRENCH TERMS (cont'à)

| Spench Nomenclature                  | Reference in General Section |
|--------------------------------------|------------------------------|
| Gélatine détonante                   | Blasting Gelatin             |
| Welstize-dynamito                    | Gelatin Dynamite             |
| Gélatina explosive                   | Blasting Gelatin             |
| Hurle de Nobel                       | Nitroglycerin                |
| Hulle explosive                      | Nitroglycerin                |
| M Mn                                 | Trimonite                    |
| Mélinite                             | Pigris Acid                  |
| Nitrat d'ammoniaque                  | Ammonium Nitrate             |
| Nitrogélatine                        | Gelatin Dynamits             |
| Nitroglycérine                       | Nitroglycerin                |
| Nitrure d'argent                     | Silver Azida                 |
| Nitrure de plomb                     | Lead Azide                   |
| Picrate d'ammoniaque                 | Explosive D                  |
| Poudre à base de nitrogly-<br>cérine | Nitroglycerin                |
| Poudre à la nitroglycérie            | Nitroglycerin                |
| Poudre noire                         | Black Powder                 |
| Pyroxylol.                           | Nitrocellulose               |
| Tetryl                               | Tatryl                       |
| Tolite                               | Trinitrotoluene              |
| Trinitrophénol                       | Picric Acid                  |
| Trinitroresorcinate de plo           | mb Lead Styphnate            |
| Trinitrotoluène                      | Trinitrotoluens              |
| Trinitrotoluol                       | Trinitrotoluone              |
| Trotyl                               | Trinitroteluene              |
| Xylu dine                            | Nitroster oli                |

#### GERMAN TERMS

German Nome Jature Reference in General Section

Amatol Amatol

Ammonal Ammonal

Ammonite Ammonite

Ammoniumnitrat Ammonium Nitrata

Ammoniumpikrat Explosive D

Ammoniumsalpeter Ammonium Nitrate

Ammonpulver Ammonal

Astralit Astralite

Ballistit Ballistite

Bittersaure Picric Acid

Bleiazid Lead Azide

Bleitrinitroresorsinet Lead Styphnate

Cheddit Cheddite

Cordite (rare) Cordite

Donarite Donarite

Dynamite Dynamite

Ekrasit Ecrasite

Fp-02 Trinitrotoluene

Fp-88 Piorie Acid

Füllpulver 1888 Pieric Acid

Füllpulver 1902 Trinitrotuluene

Gelatine-dynamite Gelatin Dynamite

Glonoin Nitroglycerin

Ouhr dynamic Synamics with Inactive Base (Ouhr

Dynamite)

## GERMAN TERMS (Cont'd)

German Nomenolature

Reference in General Section

Hexogen

Cyclonite

Knallquecksilber

Mercuric Fulminate

noilediumvolle

Juncotton

Kordit

Cordite

Malinit

Picric Acid

Nitrogelatine

Gelatin Dynamite

Mitroglyzerin

Nitroglycerin

Nitroglyzerinpulver

Nitroglycerin

Nitroglyserinsprengstoff

Nitroglycerin

Nitropentaerythrit

PETN

Nitrozellulose

Nitrocellulose

Nitrozellulosepulver

Guncotton

Pentrit

PETN

Pikrinsaure

Picric Acid

Schiesabaumwolle

Guncotton

Schiesswolle

Guncotton

Schlagwettersichere Spreng-

stoff

Permissible Explosive

Schwarzpulver

Black Powder

Sicherheitsdynamit

Permissible Explosive (Safety Dynamite)

Silberazid

Silver Azide

Sprenggelatine

Blasting Gelatin

Sprenggarmi

Blasting Gelatin

Sprengöl

Nitroglycerin

Sprengstoff

Dynamite

## GERMAN TERMS (Cont'd)

## Gorman Nomenciature

## Reference in General Section

Tutryl

Tetryl

Tolit

Trimitrotcluene

Trinita opiecol.

Picric Acid

Trinitrotoln 1

Trinitrotoluene

Trotyl

Trinitrotoluene

Wetterdynamit

Permissible Explosive

WPC/89

Ballistite

Würfelpulver/89

Ballistite

**Xyloidin** 

Nitroctarch

#### HUNGARIAN TERMS

Hungarian Nomenclature

Auference in General Section

Ammonia robbano-anyag

Ammonal.

Ammoniumnitrát

Ammonium Mitrate

Ammonsalétron

Ammonium Nitrate

Ballisztit

Billistite

Cheddit

Cheddite

Dinamit

Dynamite

Vekete löpor

Black Powder

Kottös alapanyagú löger

Double-Base Smokeless Propellant

Kordit

Cordite

Robband-zselatin

Blasting Gelatin

Trilit

Trinitrotoluene

Trinitrotoluol

Trinitroteluene

Tritolo

Trinitrotcluene

Trotii

Trinitrotoluene

#### ITALIAN TERMS

| Italian Nomenclaturo | Reference in General Section |  |
|----------------------|------------------------------|--|
| Acido d'argento      | .ilver Azide                 |  |
| Acido di pi mbo      | Lead Azide                   |  |

Acido pierico Pierie Acid

Alto esplosivo al clorato Cheddite di potassio

Amatolo Amatol

Ammonal Ammoral

Ammonite Ammonite

Astralite Astralite

Azoiwide d'argento Silver Azide

Azoimide di piombo Lead Azide

Balistite Ballistite

Cheddite Cheddite

Cordite Cordite

Cotone fulminante Guncotton

Dinamite Dynamite

Ecrasite Ecrasiti

Esplosivo alla mitroglicerina Nitroglycerin

Esplosive ammissibile Permissible Explosive

Esplosivo di sicurezza Permissible Explosive

Fulminato di marcurio Mercuric Fulminate

Fulmicotona Guncotton

Colutina-dinamite Gelatin Dynamita

## ITALIAN TERMS (Cont'd)

| Italian Nomenclature | Reference in General Section |
|----------------------|------------------------------|
|----------------------|------------------------------|

Gelatina esplosiva Blasting Gelatin

MBT Tricite

Nitrato armonico Ammonium Nitrate

Nitrocellulosa Nitrocellulose

Nitrogelatina Gelatin Dynamite

Nitroglicerina Nitroglycerin

Olie detenante Nitroglycomin

Olio esplosivo Nitroglycerin

Pentrite PETN

Pertite Picrit Acid

Picrato ammonico Explosive D

Polvere a base di nitro- Nitroglycerin

cerina

Polvere nera Black Fowder

Silcidina Nitrostarch

Stiffnato di piombo Road Styphnate

T-lı Cyclonite

Tetrile Tetryl

Tetryl Tetryl.

Tolite Trinitrotoluere

Trimetilentrinitroamina Cyclonite

Trinitrofenolo Picric Acid

Trinitroresorcinate di piombo Lead Styphnate

Trinitrotolueno Trinitrotoluene

Trinitrotoluclo Trinitrotolucle

Tritolite Composition B

Trivilo Trinitrotoluana

#### JAPANESE TERMS

Japarese Nomenclature

Reference in General Section

Ammonyaicu

Ammonium Nitrate

Angayaku

Angayaku: also Composition B

Chakatusuyaicu

Trinitrotoluene

Chanayaku

Chanayaku

Shabyaku

Chabyaku

Chikka Namari

Lead Azide

Chikkaen

Lead Azide

Ennayaku

Ennayaku

Tarioyaku

Entoyaku

H2Kongo

Type >8

Haensosanbakuyaku

Type 88

Haishokuyaku

Haishokuyaku

Kaiyaku

Dynamite

Karitto

Carlit

Kayaki

Special Ammonia Celatin (see under Dynamite)

Kiri No. 1

Ammonia Gelatin (see under Dynamite)

Kiri No. 2

Ammonia Gelatin (see under Dynamite)

Kiri No. 3

Ammonia Galatin (see under Dynamite)

Ko-Shoan Bakuyaku

Permissible Explosive (actually, Lor

Density Persissible Dynamite)

L-Shoan

Permissible Explosive (actually, Low

Density Permissible Dynamite)

Nigotanyaki.

Composition B.

Önayaku

Russian Alloy

Oshitsuyaka...

Ceniteuvaku; also Composation C

Öshiyaku

Öshtyaku

## JAPANTSE TERMS (Contid)

| Japaneso Nomenolature | Reference in General Section |
|-----------------------|------------------------------|
|-----------------------|------------------------------|

Öshokuyakı: Picric Acid

Otsu-B Otsu-B

Penbariru Pentalite

Raikô Mercuric Fulminate

Sakura No. 1 Gelatin (see under Dynamite)

Sakura No. 2 Gelatin (see under Dynamite)

Type 97 Seigattu

Picric Acid Shimose Bakuyaku

Ammonia Gelatin (see under Dynamite) Shin-Kiri

Ammonia Explosive (see under Dynamite) Shirkyoryoku

Shin-Toku-Shoan Permissible Explosive (actually,

Permissible Ammonia Dynamite)

Permissible Explosive (actually, Shoan Permissible Ammonia Dynamite)

Shoon Bakuyaku Shoan Bakayaku

Fermizsible Explosive (actually, Shoan Bakayaku No., 104

Permissible Ammonium Nitrate

Explosive)

Permissible Explosive (actually, Shoan Bakuyaku No. 201

Permissible Ammonium Nitrate

Explosive)

PETN Shoeiyaku

Shotoyaku Amatol

Shouyaku Crclonite

Take No. 1 Special Armionia Galatin (see under

Dynamite)

Take No. 2 Special Ammonia Call in (see under

Dynamite)

Take No. 3 Special Ammonia Gelutin (see under

Dynamite)

# JAPANESE TERMS (Contad)

| Japanese Nomenclature | Reference in General Section                          |  |
|-----------------------|-------------------------------------------------------|--|
| Tan-O-Yaku            | Cyclonite                                             |  |
| Toku-Shiraume No. 1   | Permissible Explosive (actually, Permissible Gelatin) |  |
| Toku-Shiraume Nc 2    | Permissible Explosive (actually, Permissible Gelatin) |  |
| Type 1                | Type 1                                                |  |
| Type 92               | Type 92; also Trinitrotoluque                         |  |
| Type 94               | Type 911                                              |  |

## RUSSIAN TERMS

Russian Nomenclature

Reference in General Section

A

Amatol

Almatrit.

Almatrite

Amatol

TEGTBMEA

Amatol

AMATOR

Ammokeil Ammokeij Ammokeil

Ammonal AMMOHAA LBIRWINA

Ammonalmatrit No. 98
Ammonalmatrit No. 98

Ammonalmatrit No. 98; see also Almatrit

Ammonitures andidas

Ammonium Nitrate

Ammoniinaya selitra Аммонийная Селитра

Ammonit Ammonur Ammonite

Ammonit-guaronit

Амковит-гудронит

Ammonit-gudronit

Amnonpek

Аммониек

Ammonpak

Ammontol

Russian Mixture

TA TA Amatol

Azid svintsa Aзид овинца Lead Azide

Azldo-tenerossovaya Авидо-тенерозован

Azido-ten grossovaya

Azotno-kisiyi ammonii Авотно-кножий аммоний Amionium Nitrate

Велауа визв

Belaya smes!

## RUSSIAN TERMS (Cont'd)

#### Russian Nomenclature

## Reference in General Section

Belit

Белит

Belite

Bezdymnyi porchi

Бездинний порож

Smokeless Prope'lant

Bazopasnoye varyvchatoye

veshchestvo

Бесопасное взривчатое

вещество

Permissible Explosive

Chornyi porokh Чёрный порож Black Powder

Dinami:

Динацит

Dynamite

Dinamon **Динамон**  Dynamon

Ekrazit EKPABUT

Ecrasite

Frantsuzskaya smes! Францувская смесь French Mixture

Gh r Cyclonite

Gheksoghen

Гексоген

Cyclonite

Gremichaya rtut!

Грежучая ртуть

Mercuric Fulminate

Gremiche-rtutnaya Гремуче-ртутная Gromucho-rtutneya

Gremuchil studen! Гренучий студень Blasting Galatin

Crizutin Гризутин Gelatin Dynamite

## RUSSIAN TERMS (Cont'd)

# Russian Nomenclature <u>Feference in General Section</u>

K-1 splav
K-1 cmmaa

**K-1 Mixture** 

K-2 splav K-2 сплав

X-2 Mixturo

Kalii Nitrat Калий нитрат

Potassium Nitrate (in Appendix I)

Kaliiaimatrit No. 55 Kanullaamatpur NY 55

Kaliialmatrit No. 55; see also Almatrit

Khlopchatobumazhnyy porokh Хлопчатобукажний порох Guncotton .

Kolloksilin Коллоксилин

Nitrocellulose

Kombinirovannaya azidotetrilovaya Комбинированная авидотетриловая Kombinirovannaya azido-tetrilovnya

Kerdit Kopgur

Cordite

Krupnozernistyi Крупнозернистый Large-grain (black powder)

Malkozernistyi Мелковерниотый Small-grain (black powder)

Nakolinaya ameat Hanozahasa Nakol'naya smes!

Watriialmatrit No. 19
HarpuManuarpur Nº 19

Natriialmatrit No. 19; se also Almatrit

Nitroglitserinovyye porokb Нитроглицериновые порох

Double-Base Smokeless Propellant; see also Propellants, Foreign

Nitroglitserin Hutpornulapun Nitroglycerin

Nitretselule за наприменулова Nitrocellulose

# RUSSIAN TEXAS (Cont'd)

| Russian Nomenclature Re                            | eference in General Section                                     |
|----------------------------------------------------|-----------------------------------------------------------------|
| Oksilikvit<br>Okenankest                           | Liquid Oxygen Explosive                                         |
| Fikrit ameenia<br>Tunpur sunoens                   | Explosive D                                                     |
| Pikrinovaya kislota<br>Пикриновая кислота          | Pieric Acid                                                     |
| Pikrinovckislyi ammonii<br>Пикриновскислий аммоний | Explosive D                                                     |
| Pirokollodion<br>Пироколлодион                     | Nitrocallulous (of 12.45% N)                                    |
| Piroksilin<br>Пироксилин                           | Nitrocollulose (cf 125 N or above)                              |
| Piroksilin No. 1<br>Unporcusum Nº 1                | Nitrocellulose (of 12 to 13% N)                                 |
| Piroksilin No. 2<br>Repondentia M 2                | Nitrocellulose (of 13% H and above)                             |
| Piroksilinovyye porokh<br>Пирокомлиновие порох     | Single Base Smokeless Propellant; see also Propellants, Foreign |
| Plasticheskii dinsmit<br>Пластический динамит      | Dynamite (plastic)                                              |
| Russkaya ames!<br>Русская эмесь                    | Russian Mixture                                                 |
| Ruskii splav<br>Руский сплав                       | Russian Alloy                                                   |
| Shedit<br>Megkr                                    | Cheddite                                                        |
| Stifnat orintea<br>Cruфнат овинца                  | Lead Styphnate                                                  |

Gulatin Dynamite

Studenistyi dinc:it Студежисткий динамит

#### RUSSIAN TERMS (Contin)

#### Russian Nomenclature

## Reference in General Section

and the same of th

Ŧ

and the second

rimitrotoluenc

TEN

PETN

Tetracritritol nitrat Тетравритритол нитрат PETN

Tetratein Тетрацин Tetracene

Tetril

Tetryl

Тетрил

Teurytol

Tetritol Тетритол

TNRS

Lead Styphnate

THPC

Tol ROT

Trinitrotoluene

Trinitrorezortsinat svintsa Тринитрореворцинат свинца

Lead Styphnate

Trotil

THOTHE

Trinitrotoluene

Vzryvchatoye veshchestvo

Ввривчатое вещество

Explosive Substance (no entry in the

General Section)

Zylyl (Kailil)

Коилил

Trinitroxylene (in Appendix I)

#### SPANISH TERMS

Spanish Nomenclature

Reference in General Section

Aceite explosive

Nitroglycerin

Acido de plata

Silver Azide

Lead Azide

Acido pícrico

Picric Acid

Algodón pólvora

Guncotton

Amatola

Aratol

Amonal

Isnounal

Amonita

Ammonite

Astralita

Astralite

Balistita

Ballistite

Cheddita

Cheddite

Ciclonita

Cyclonita

Cordita

Cordite

Dinamita

Dynamite

Dinamita goma

Blasting Gelatin

Ecrasita

Ecrasite

Explosivo aprobado

Permissible Emplosive

Explosivo autorizado

Fermissible Explosive

Explusivo de nitroglicerina

Nitroglycerin

Explosivo de seguridad

Permissible Explosive

Fulminato de mercúrio

Mercuric Fulminate

Fulminato mercárico

Mercuric Fulmina.

Gelatina detoninto

Blasting Gelatin

## SPANISE TERMS (Cont'd)

Spanish Nomenclature

Reference in General Section

Gelatina dinamita

Colatin Dynamite

Gelatina explosiva

Blasting Gelatin

Hexógeno

Cyclonite

Witreto amonico

Ammonium Sitrate

Nitroalmidon

Nitrostarch

Nitroceluloss

Nitrocellulose

Nitrogelatina

Gelatin Dynamite

Nitroglicerina

Nitroglycerin

Nitruro de plata

Silver Azide

Lead Azide

Nitruro de plomo

Picrato amónico

Explosive D

Piroxilina

Nitrocellulose

Pólvora de base única

Single-Base Smokeless Propellant

Pólvora de doble base

Double-Base Smokeless Propellant

Pólyora negra

Black Powder

Pólvora nitrocelulósica

Single-Base Smokeless Propellant

Tetranitrometilanilina

Tetryl

Tetryl

Tetryl

Tollta

Trinitroioluene

Trilita

Trinitrotoluene

Trinitrofenol

Picric Acid

Trinitrotolueno

Trinitrotoluene

Trinitrotolvol

Trinitrotolysis

Trinitrore screina plumada

Lead Styphnate

X1101dina

Nitrostarch

#### IV. APPENDACES

## APPENDIX I

#### INDEX OF EXPLOSIVES CONSTITUENTS

Material Uses

Propellant stabilizer. Acardite Diphenyl rea

Solvent in explosives production. Acetone

Activated Charcoal See Charcoal.

Component for high explosives, Aluminum primer and pyrotechnic compositions.

Raw material for ammonium nitrate, Ammonia explosive D, ammonium chlorate, and

ammonium perchlorate.

Ammonium Chloride Permissible galatin dynamits component. Sal Ammoniac

Ammonium Nitrate See GENERAL SECTION.

Ammonium Oxalate Permissible dynamite component, blasting explosive dehydrating agent.

Ammonium Perchlorate Detonating composition component: oxidizer for solid rocket propellants.

Antimony Sulfide Component in percussion pricar compositions.

Bagasse Pith Absorbent in permissible explosives.

Balsa Meal Absorbent in permissible explosives.

Barium Nitrate Component in blasting explosives, percussion priver compusitions, some propellant .. and pyrotechnic compositions.

## INDEX OF EXPLOSIVES CONSTRUCTED (contid)

| Mat      | erd | n3   |
|----------|-----|------|
| A 31 C V |     | 4,14 |

#### Unga

Parium Perceide

Priming and tracer composition component.

Ecogene

Raw material for nitrobenzene. See also GENERAL SECTION under Aromatic Nitro Compounds.

Binitrotoluene

Incorrect reference to Dinitrotoluene (sco).

Butyl Ricinoleate

Propellant deterrent costing.

Calcium Carbonate Chalk, Precipitated Explosives stabilizer and neutralizer.

Calcium Silicide

Component in detenuting and priming

compositions.

Campuor

Desensitizer for blasting gelatin.

Carbazole Diphenylimide

Propellant stabilizer.

Carbolic Acid

See Phenol.

Carbon Black

Absorbert for liquid oxygen explosives.

Caustic Soda

Ingredient in processing wood pulp or cotton linters for callulage.

Cellulose

Saw material for nitrocellulose.

Centralite I Diethyldichenylurea Diphenyldiethylurga Ethyl Centralite Mollite

Stabilizer and detorrent for propellants,

Centralite II Dimothyldiphenylurea Diphenyldimothylurea Methyl Centralite

Stabilizer and deterrent for propellants.

Chalk, Precipitated

See Calcium Carbonate.

Charcoal Activated Charcoal Wood Charcoal.

Component for black ponder and some industrial explosives.

## INDEX OF EXPLOSIVES CONSTITUENTS (cost'd)

|                                                          | •                                                                                                                                                             |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moterial                                                 | Useo                                                                                                                                                          |
| Chile Saltpeter                                          | See Sodium Nitrate.                                                                                                                                           |
| Copper Acetylide<br>Cuprous Acetylide<br>Cuprous Carbido | Ign. tion composition for commercial electric detonators.                                                                                                     |
| Cornobalk Fith                                           | Absorbent in permissible explosives.                                                                                                                          |
| Cotton Linters                                           | Raw material for cellulose.                                                                                                                                   |
| Gresol                                                   | Raw material for mitrocresols.                                                                                                                                |
| Cressylive<br>Trinicrocresol                             | Rarely, a component for bursting charge compositions. See else GENERAL SECTION.                                                                               |
| Cuprous Acetylide                                        | See Copper Acetylide.                                                                                                                                         |
| Cuprous Cerbide                                          | See Copper Acetylide.                                                                                                                                         |
| Dibutylphthalate                                         | Propellant deterrent, plasticizer, and flash reducer.                                                                                                         |
| Diethyldiphenylurea                                      | Ses Centralite I.                                                                                                                                             |
| Dimethyldiphenyluroa                                     | See Centralite II.                                                                                                                                            |
| Dinitrobenzene<br>DNB                                    | Industrial explosives component. See also GENERAL SECTION under Aromatic Nitro Compounds.                                                                     |
| Dinitrochlorbenzene                                      | Chlorate explosives component;<br>also production of dinitrophenol,<br>trinitroanisol, hexite. See also<br>GENERAL SECTION under Aromatic Nitro<br>Compounds. |
| Diritroglycol                                            | See Nitroglycol.                                                                                                                                              |
| Dinitromonochlorhydrin                                   | Low-freezing dynamite component.                                                                                                                              |
|                                                          |                                                                                                                                                               |

Dinitrophenol

Pursting charge component (with pieric acid). See also GENERAL SECTION under Archatic Nitro Compounds.

## INDEX OF EXPLOSIVES CONSTITUTED (cont'd)

Material

**ซ**ออธ

Dinitromophthaiene

Permissible explosives ingredient; ravely, component of bursting charges. See also GENERAL SECTION under Aromatic Nitro Compounds.

Dimitrotoluene

name of the latest of the late

Propellant deterrent, cooling agent, and colindate component in permissible explosives, chlorate amplosives, and propellants. See also GENERAL SECTION under Aromatic Nitro Composition.

Dinitroxylene

Component in some non-freezing dynamites. See also GENERAL SECTION under under Aromatic Nitro Compounds.

Diphenylamine

Propellant stabilizer.

Diphenyldiethylurea

See Centralite I.

Diphenyldimethylurea

See Centralite II.

Diphenylimide

See Carbazole.

Diphenylurea

See Acardice.

DNB

See Minitrobenzene.

DNT

See Dinitrotoluene.

Ethanol

Ethyl Alcohol

Solvent in explosives productions

Ethyl Alcohol

See Ethanol.

Ethyl Centralite

See Centrality I.

Ethyleneglycol Dimitrate

See Nitroglycol.

Ethyl Picrate

See Trinitrophenetola.

Flowers of Tin

See Tin Dioxide.

Formaldehyde

Raw material for cyclonite.

Glass Powder

Component in percussion as compositions.

# INDEX OF EXPLOSIVES CONSTITUENTS (cont.a)

| Majerial                                     | <u> Твев</u>                                                                                                         |  |  |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|
| Glycerin                                     | Raw material for nitroglycerin.                                                                                      |  |  |  |
| Olycol Dinitrate                             | S. a Nitroglycol.                                                                                                    |  |  |  |
| <b>Graphi</b> te                             | Chaze for propellant grains; explosived binder and lubricant.                                                        |  |  |  |
| Hexamethylenetetramine                       | Intermediate product in the manufacture of cyclonite.                                                                |  |  |  |
| Hexamine                                     | See Hexite.                                                                                                          |  |  |  |
| Hexanitrodiphenyl                            | Intonating composition component.                                                                                    |  |  |  |
| Heranitrodiphenylamine                       | See Hexite.                                                                                                          |  |  |  |
| Hexanitrodiphenyjoxide                       | Detonating composition component.                                                                                    |  |  |  |
| Sexanitrodiphenyl Sulfons                    | Detomating composition component.                                                                                    |  |  |  |
| Hexanitrodiphenyl Sulfide<br>Picryl Sulfide  | Component in some burnting charges and detonating compositions.                                                      |  |  |  |
| Hexanitromannite                             | See Mannitol Hexanitrate.                                                                                            |  |  |  |
| Hoxanitromannitel                            | See Mennitol Herenitrate.                                                                                            |  |  |  |
| Head1                                        | See Hexite.                                                                                                          |  |  |  |
| Hexite Hexamine Hexanitrodiphenylamine Hexit | Priming composition component. See also GENERAL SECTION. Formerly used by Japan in some high explosive compositions. |  |  |  |
| India Saltpeter                              | See Potassium Mitrate.                                                                                               |  |  |  |
| Lead Dioxide Lead Oxide Lead Peroxide        | Detonating composition exidiser.                                                                                     |  |  |  |
| Lead Oxide                                   | See Luad Dioxide.                                                                                                    |  |  |  |
| Lead Peroxide                                | See Lead Dioxide.                                                                                                    |  |  |  |

Fuel in solid rowing propellants.

Primer composition component.

Lead Sterrate

Lead Sulfocyments
Lead Thiorgemate

# INDEX OF EXPLOSIVES CONSTITUENTS (cont'd)

| <u>Patoriel</u>                                                      | Unea                                                                                                   |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Lead Thicoyamate                                                     | See Lead Sulfocyanate.                                                                                 |
| Magnesium                                                            | Component in tracer and incendiary compositions; pyrotechnic compositions.                             |
| Magnetite                                                            | Incendiary composition component.                                                                      |
| Manganese Dioxide<br>Manganese Peroxide<br>Pyrolusite                | Detonating composition component; pyrotechnic compositions.                                            |
| Marganese Peroxide                                                   | See Wangamese Dioxide.                                                                                 |
| Mannitel Hexanitrate Hexanitromannite Hexanitromannitol Nitromannite | Mercuric folimate substitute in priming compositions. See also GENERAL SECTION.                        |
| Mercurous Azide<br>Mercury Azide                                     | Initiating composition component.                                                                      |
| Mercury                                                              | Raw material for mercuric fulminate and mercurous azide.                                               |
| Hercury Azida                                                        | See Mercurous Azide.                                                                                   |
| Methyl Centralite                                                    | See Centralite II.                                                                                     |
| Mineral Jelly Paraffin (soft) Petrolatum Petroleum Jelly Vaseling    | Desensitizer and flash reducer in propellants and high explosives.                                     |
| Mirbane Oil                                                          | See Mononitrobenzene                                                                                   |
| Mixed Acid<br>Nitrating acid                                         | Mixture of nitric and sulfuric acids, used in nitration.                                               |
| Mollite                                                              | See Contralite T.                                                                                      |
| Mononitrobenzene<br>Mirbane Oil<br>Nitrobenzene<br>Oil of Mirbane    | Propellant and blasting explosives component. See also GENETAL SECTION under Aromatic Nitro Compounds. |

## INDEX OF EXPLOSIVES CONST'TUENTS (cont'd)

| Material                                                                     | Vsec                                                                                                                               |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Mononitronaphthalene<br>Nitronaphthalene                                     | Component of some bursting charges (with picric coid). See also GENERAL SECTION under Archatic Mitro Compounds.                    |
| Menonitrotol.:ne                                                             | Component in low-freezing dynamics, blasting enlocives, as a plasticizer. See also GENERAL SECTION under Aronavic Nitro Compounds. |
| Naphthalene                                                                  | Enw material for uitronaphthalenes. See also GENERAL SECTION under Aromatic Nitro Compounds.                                       |
| Nitrate of Potash                                                            | See Potassium Nitrate.                                                                                                             |
| Nitrating Acid                                                               | See Mixed Acid.                                                                                                                    |
| Nitric Acid                                                                  | Raw material used in the production of explosives (usually in mixed acid).                                                         |
| Mitrobenzene                                                                 | See MononAtrobensene.                                                                                                              |
| Nitroglycol<br>Dinitroglycol<br>Ethyleneglycol Dinitrate<br>Glycol Dinitrate | Component in permissible explosives and low-freezing dynamites.                                                                    |
| Nitromannite                                                                 | See Mannitel Hezanitrate.                                                                                                          |
| Nitromethane                                                                 | See Tetranitromethane.                                                                                                             |
| Nitronaphthalene                                                             | See Mononitronaphthalene.                                                                                                          |
| Nitrosoguanidine                                                             | Component in percussion priming compositions.                                                                                      |
| Oil of Mirbane                                                               | See Mononitrobenzene.                                                                                                              |
| Paraffin                                                                     | See Mineral Jelly.                                                                                                                 |
| Perchlorate of Potash                                                        | See Potassium Parchlorate.                                                                                                         |
| Perfluorourea                                                                | Oxidizer in solid mocket propellants                                                                                               |

## THEEK OF EXPLOSIVES CONSTITUENTS (cont'd)

| ŀ | lat | 91 | 16 | 1] |
|---|-----|----|----|----|
|   |     |    |    |    |

#### Usos

Petrolation

See Mineral Jelly.

Petroleum Jelly

See Mineral Jelly.

Petroleum Uil

Explosives binding agent.

Phenol

Carbolic Acid

Raw material for nitrophenols. See also GINERAL SECTION under Aromatic

Mitro Compounds.

Phthalates

Fuels in solid rocket propellants.

Picryl Sulfide

See Hexanitrodiphenyl Sulfido.

Polynetrinacrylate

Oxidizer in solid rocket propallants.

Polysulfide Rubber

See Thiokol Polymer.

Polyurethanes

Fuels in solid rocket propellants.

Potassium Chlorate

Oxidizer for priming compositions.

Compenent in black pouder and pyrotechnic

Potaggium Nitrate India Saltpeter Nitrate of Potagh Prismatic Saltpeter Saltpeter

compositions; oxidiser in solid rocket propellants.

Potassium Perchlorate Perchlorate of Potash

Corronent for primer compositions, chlorate explosives, and pyrotechnic compositions; oxidizer in solid rocket propellants.

Potassium Sulfate

Primer composition component.

Telegiler Sellamiler

See rotassium Nitrate.

Pyrolusite

See Manganese Dioxide.

Soda Ash

Ingrodient in processing wood pulp or cotton linters for cellulose.

Sal Ammoniac

See Ammonium Chloride

## INDEX OF EXPLOSIVES CONSTRIPIENTS (contid)

| ileteriel                                      | Unes                                                                                                                                                       |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Salt                                           | See Sodium Chloride.                                                                                                                                       |
| Saltpoter                                      | Ser Potassium Nitrate, Sodium Mitrata                                                                                                                      |
| Saltpeter, Chile                               | See Sodium Nitrete.                                                                                                                                        |
| Saltpeter, Prismatic                           | See Potassium Nitrate.                                                                                                                                     |
| Silver Acetylide                               | Detenuting composition component.                                                                                                                          |
| Silver Permanganato                            | Primer composition component.                                                                                                                              |
| Sodium Elearbonate                             | Blasting explosives cooling agent.                                                                                                                         |
| Sodium Chlorata                                | Explosives and pyrotechnic composition oxidizer.                                                                                                           |
| Sodium Chloride<br>Salt                        | Permissible explosives brisance reducer.                                                                                                                   |
| Sodium Hyposalfite                             | See Sodium Thicaulfate.                                                                                                                                    |
| Sodium Nitrate<br>Chile Saltpeter<br>Saltpeter | Component in black powder, blasting powder, permissible explosives, ammoria dynamites, and pyrotechnic compositions; exidizer in solid rocket propellants. |
| Stample Oxide                                  | See Tin Picxide.                                                                                                                                           |
| Strontium Dioxide Strontium Peroxide           | Component in tracer and other pyrotechnic compositions.                                                                                                    |
| Strontium Peroxide                             | See Strontium Dioxide.                                                                                                                                     |
| Sugar                                          | See GENERAL SECTION under Sugar<br>Nitrates.                                                                                                               |
| Sulfur                                         | Component in black powder, some dynamites, pyrotechnic compositions; raw material for sulfuric acid.                                                       |
| Sulfuric Acid                                  | Component of mixed acid used for                                                                                                                           |

Tetranitromath.mo

explosives production.

Component in determing compositions and blasting explosives.

## INDEX OF EXPLOSIVES CONSTITUENTS (cont'd)

Material .....

วิธยล

Thickol Polyrom
Polysulfide Rubber

Fuel in solid rocket propollants.

Tin

Propellant flash reducer,

Tim Dioxide Flowers of Tim Stannic Oxide Propallant Mash reducer.

TNE

See Trinitrobenzene.

TNN

See Trinitronaphthalene.

TNX

See Trinitroxylene.

Toluene

Raw material for nitrotoluenes. See also OMNERAL SECTION under Aromatic Nitro Compounds.

Trinitrosnisol

Unoster charge component. See also GENERAL SECTION under Aromatic Nitro Compounds:

Trinitrobenzena Thá Most powerful of the aromatic nitre compounds, but too difficult to prepare amoept indirectly from TNT, which makes its production inteaseable. It can be used as a high employive.

Tranitrocresol

Ses Cressylite.

Trinitronaphthalens

Stabilizer for smokeless propellants.
See also GENERAL SECTION under
Aromatic Nitro Compounds.

Trinitrophenotols
Ethyl Picrate
Trivitrophenylethylether

Booster and bursting charge component. See also GENERAL SECTION under Aromatic Nitro Compounds.

Trinitrophenylethylether

See Trinitrophenetole.

## INDEX OF EXPLOSIVES CONSTITUENTS (nont'd)

Material Uses

Trinitroxylene Component in bursting charges (with TNN TNN and ammonium nitrate). See

TWI and ammonium nitrate). See a so GENERAL SECTION under Aromatic

Nitro Compounds.

Vaseline Ses Mineral, Colly.

Vegetable Meal See Baganco Pith; Balsa Heal, Cornstolk

Pith.

Wood Chargosi See Chargosi.

Wood Pulp Absorbent for nitroglycerin in dynamites; run meterial for

cellulose.

Kylene Raw material for natroxylenes. See also

GENERAL SECTION under Aromatic Nitro

Compounds.

II YIOOTEAN

COMPARATIVE TEST VALUES OF SELECTED EXPLOSIVES

| ST OSTVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limet Se                      | neit1 rity                                  | Brisance                  | О.            | :DA         | Detenation Eate                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------|---------------------------|---------------|-------------|--------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B.M. P.A. Apparatus* Apparatu | P.A.                                        | Sand Test,<br>200-ga Bomb | Ballistic ira | Traugi Test |                                                                          |
| A Land Address of the Artist of the Control of the | 2-lg lgt,<br>hgc in an        | 2-kg ugt, 2-kg ugt,<br>hgo in an hyt in in. | gas of sand               | Tri 3         | INI &       | Reters/second @ density (gr/us)                                          |
| Amet. 1 80/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | &                             | ដ                                           | 35.55                     | 130           | 123         | 4,500-5,100 (depending need density of explosite)                        |
| lestol 66/46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ĸ                             | Ŕ                                           | ¥*11                      | 128           | •           | 5,750 @ 3.50                                                             |
| Acetol 50/50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ĸ                             | 16                                          | ₹•2 <del>1</del>          | 124           | •           | 5 <sub>2</sub> 430 @ 1.55                                                |
| Americal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ĸ                             | Ħ                                           | 47.8                      | ÷<br>•        | :           |                                                                          |
| Amenica nitrave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TIO                           | <b></b>                                     | T <sub>I</sub>            | #<br>*        | %           | 1,000 0 0.5 (solid, no cinfinement) 2,510 0 1.4 Hquid, strong confinemen |
| Laratol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35                            | គ                                           | 26.8                      | :             | :           |                                                                          |
| Serone1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                             | ង                                           | 39.8                      | 8             | •           | 5,150 @ 2,32                                                             |
| Alack Porder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                            | <b>9</b> 3                                  | <b>60</b>                 | ४             | 10          | 160 a 1.6                                                                |
| Hasting Geletin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                             | •                                           | •                         | £<br>●        | 70.2        |                                                                          |
| ीर्ज्ञात्रकारीका के                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                             | ÷                                           | 1,9.6                     | 130           | 77.         | * d                                                                      |
| Jacossattar A-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1004                          | 35                                          | 51.5                      | 135           | :<br>•      | 3,100 @ 1.55                                                             |

<sup>4</sup> Direst of Kines Americans.

APPENDIX II (continued)

| Enleste.          | Depart Sereitivity     | agittvíty               | Brisance                  | A.                                    | SHET           | Deconstign Rate                           |
|-------------------|------------------------|-------------------------|---------------------------|---------------------------------------|----------------|-------------------------------------------|
|                   | Appairatus             | F.S.<br>Arparatus       | Sand Test,<br>200-em Bomb | Ballistic<br>Mortar                   | le Traue. Fest |                                           |
| ţ                 | 2-tg ugt,<br>hgt in cm | 2-kg ugt,<br>hgt in in. | gas of paris              | S THT                                 | Z.W. Z         | metery/savoni & density (gn/cc)           |
| Composition B     | ኤ                      | শ                       | 0.42                      | 133                                   | 1,30           | 7,840 0 1,58                              |
| Importion c       | <b>+00</b> 1           | :                       | it6.5                     | 02                                    | :              | •                                         |
| Supposition C-2   | 93                     | :                       | le si                     | 126                                   | 3<br>4         | 7,660 @ 1.57                              |
| Composition (2-3  | 100+                   | 7                       | 53.1                      | 125                                   | I.î            | 7,625 9 1.60                              |
| Composition (1-4) | 1004                   | 13                      |                           | 130                                   | •              | 8,0 6 7.59                                |
| Cyrionite         | Ħ                      | ω                       | 50,2                      | 150                                   | 1.77           | 8,180 to 1,65                             |
| Greiotal 75/25    | •                      | •                       | <b>₽</b><br>•<br>•        | SCHOOLINE E                           | :              | 7,938 @ 1.72<br>8,035 @ 1.70              |
| Cyclotal 76/30    | 8                      | ដ                       | 56.6                      | 135                                   | 5              | 8,066 = 1.73                              |
| Cyclotol 65/3     | :                      | 3                       | 55°4                      | គ្គ                                   | •              | 7.975 @ 2.72                              |
| Cycloto (C/:      | 22                     | ਜੋ                      | 9*15                      | 1.33                                  | •              | 7,500 & 2.72                              |
| ıiŭ               | ×                      | គ                       | 58.5                      | 311                                   | •              | 6,600 € 1,65                              |
| <b>38</b> 17      | :                      | 1,7*                    | 47.5, 115.6               | • • • • • • • • • • • • • • • • • • • | <i>E</i>       | 4,500 # 0.5<br>6,500 # 1.5<br>6,500 % 1.5 |

\* Intil 10 "9 established which issuer of picramic moid is involved.

APPENDIK II (continued)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                |                  | FILESCOPERS SERVICES PROPERTY OF THE |             | MITTER TRANSPORT OF LANGE THE RESIDENCE OF THE PROPERTY OF THE |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------|------------------|--------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Explosive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Impact Sansitivity B.H. P.A. | Polo           | Sand Test,       | Pallistic Tra                        | Trausi Test | Detoration Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Section of Park Bush and the contrast of the C | 2tg ugt,<br>bgt tn m         | i              | pres To see      | Twil 1                               | WI S        | neters/second @ Geneity (gaycc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1001                         | ٥.             | 42.2             | 8                                    | 2.2         | 6,760 9 1,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Syntacte w/ Inscrite Base<br>(75% Othe Synamics)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :<br>•<br>•<br>•             | •              | :                | No. 1999 M                           | ııı         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| E. C. Porder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27                           | :              | ,<br>8°97        |                                      |             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EDMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84                           | ដ              | 5.25°            | S.F.                                 | 122         | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Eduario?. 60/40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                            | £<br>•         | 148.0            | Ä                                    | गार         | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 24/55 laures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ж                            | :              | ग्॰ठंग           | 119                                  | 120         | 7,340 2 1.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Apploates D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :                            | 17             | 39.5             | &                                    | •           | 6,850 8 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Calatin Dynamits, 65%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :                            | <b>:</b>       | :                | (5)                                  | 177         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Heranite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                            | :              | ००गम             | 70%                                  | 7.5         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Hexaulte 1. Almdr. 234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :                            | :              | 0.84             | 130                                  | 3.16        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| T (beta-type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32                           | ۵              | , 60 <b>.</b> 44 | 150                                  | 11.5        | 9,124 0 1.8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| THEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                            | m              | h3.6-lu.8        |                                      | :           | - 187.<br>- 197.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 334                          | <b>6</b><br>1. | 50               | *                                    | a<br>č      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| * 1-by wedget.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |                |                  |                                      |             | TITOLINE A TIPLEMENT OF THE SECOND OF THE SE |

•

APPENDIX II (continued)

| extenios                                         | Impact Sensitivity                |                                                       | Brisance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | - Swe                                           | Devonation Rate                                                         |
|--------------------------------------------------|-----------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------|-------------------------------------------------------------------------|
|                                                  | B.J.,<br>Apparatus                | F.A.<br>Apparatus                                     | Sand Test,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iter<br>Ter                       | 1                                               |                                                                         |
|                                                  | 2-13; "Ft,<br>115r in co          | 2-kg wgt,<br>tgt in in.                               | gras of sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   | 13.5                                            | weters (second @ denrity (grycc)                                        |
| In extra                                         | 10 (pure)<br>37 (darter<br>rated) | <pre>10 (pure) 3 (pure) 37 (dextrinated) nated)</pre> | 19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                 | £                                               | 11,507 ° 2.0<br>11,630 € 3.0<br>5,180 @ 1,0                             |
| Lead Stypionate                                  | 11                                | m                                                     | র                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                 | <u>0</u>                                        | 5,200 @ 2,3                                                             |
| Low Felucity Military<br>Uppacite                | •                                 | ន                                                     | 5•०म                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                 | ₹<br>•                                          | १३३३ के १३०                                                             |
| Marmittol Herzenthrate                           | ជ                                 | -a                                                    | 68.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                 | 7.52                                            | 8,260 @ 1.73                                                            |
| Hedium Velocity<br>Filliary Dynatice             | 100                               | <b>18</b>                                             | 52.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 122                               | •                                               | 6,500-6,600 @ 1,1                                                       |
| Mercuric Pulminate                               | <b>W</b>                          | N                                                     | 23 <b>.</b> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | ¢                                               | 3,500 @ 2.0<br>L2850 @ 3.0<br>5,000 @ L.o                               |
| Mirol                                            | 35                                | ដ                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 143                               | 557                                             | 500 B 2000 K                                                            |
| Hitrocal ilese (12.6%)                           | œ                                 | m                                                     | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                 | y • •                                           | ę.<br>e.                                                                |
|                                                  | ¢,                                | u,                                                    | 49.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H.                                |                                                 | 7,300 @ 1,20                                                            |
| Etroglyseria (Rould) -                           | 15                                | :                                                     | 51.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | סקנ                               | 181                                             | 1,600-1,900 & L.t. (glass centineners) 7,700 & L.t. (stuel confinenent) |
| THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER. | -                                 | THE LOCK TWO TO THE PARTY PROPERTY OF THE PARTY.      | SANDO STATE | The statement of the statement of | CARBONIC WANTED CONTRACTOR STATES CONTRACTOR OF |                                                                         |

APPENDIK II (continued)

| 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | Tanganga          |                               | 4 - 1                                                          |               | A PROPERTY OF SECULOR | CARLES AND                                                     |
|-------------------------------------------|-------------------|-------------------------------|----------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                           | H. B. M. Stranger | Boll.  Apperetial: Apperetius | Sand Test,                                                     | Ballistic Tra | Transi Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Deboration Rate                                                                                    |
|                                           | 2-ig wet.         | •                             | gas of sand                                                    | S TAY!        | J. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | raters/escond & duesty (gu)co)                                                                     |
| Rivrogean dine                            | Ţd.               | କ୍ଷ                           | 36.0                                                           | 101           | 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,550 0 0.55                                                                                       |
| Nitrostarch Teaclifion<br>Explosive       | ឥ                 | <b>.</b>                      | 39•5                                                           | %             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ф<br>а                                                                                             |
| Pentolita 50/50                           | <b>ૠ</b>          | 12                            | 55.6                                                           | 326           | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29°1 8 017°6                                                                                       |
| Percolite 10/90                           | ઝ                 | ส                             | 1,9.5                                                          | :             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,640 & 2EF                                                                                        |
| MEG                                       | ĬĬ.               | <b>10</b>                     | 62.7                                                           | भार           | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8,300 a x.75                                                                                       |
| Pliratel 52/46                            | +00               | 11,                           | 15.0                                                           | 100           | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6,970 @ 3, 3                                                                                       |
| Piuric Acid                               | æ                 | ង                             | <b>5*8</b> †!                                                  | 112           | מנ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,2'0 @ 1.64 (preseed)<br>7,3'0 @ 1.71 (cast)                                                      |
| FIRE                                      | :                 | ជ                             | 9•ए।                                                           | •             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,05 @ 1.37                                                                                        |
| 5E-130                                    | 1004              | :                             | 8.3                                                            | 7.7           | *(121)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6,210 a 1,U,                                                                                       |
| 7LX-95/5                                  | 1004              | *                             | 50.6                                                           | •             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6,165 @ 1,12                                                                                       |
| 14-1                                      | នឹ                | •                             | 8°17                                                           | 261           | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,655 \$ 1.64                                                                                      |
| FIX-2                                     | *                 | •                             | 56.9                                                           | 133           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6,065 4. 1.70                                                                                      |
| * F Picric Acte.                          |                   |                               | AND COMPANY TO SERVICE AND |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | belians bet spraw pes de Aste Aste Village (sprawer) de specialiste de la beliancie de pesantie de |

APPENIET II (continued)

| Pmledes                  | 7                      | • • • • •                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | THE PARTY AND THE PARTY OF THE |
|--------------------------|------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | Jenes Denitivity 3.11. | intelvity<br>1.4.<br>Apparatus | Brisance<br>Sand Test,<br>2001-em Bomb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Forest Power Forest For | Tranzl Tect | Deronation Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | het in ca              | i-kg wgt.<br>Igt in in.        | हुम्बा भूद सक्राद                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A TRIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X ToT       | meters/second @ density (gm,tc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ~#<br>~                  | 22                     | ٥                              | 5.8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •           | 7 035 8 9 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RIPE                     | 53                     | 13                             | 1:0:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Mar Arids                | ঞ                      | m                              | 1.8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * (E)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Kar                      | 180                    | £\$                            | 7445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | <b>*</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tetraceca                | _                      | N                              | 2:8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>.</b> 45 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pote y.                  | 98                     | ဆ                              | 5 <b>4</b> .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | £ 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , K         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Istrytal 80/20           | æ                      | 8                              | 0°45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | }           | in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Irtzytol 75/25           | 28                     | 70                             | r,<br>ei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 57 % 5 X85 &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 16/01 Total              | ĸ                      | Ħ                              | 55.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | Court in Court                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tetaytoi 65/25           | නු                     | ជ                              | 52.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 09 F 20 C Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Torper                   | 21                     | 64                             | 59.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 191         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| selesidolatrità obenzeos | . <b>X</b> 3           | :                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | **(60)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Tridits                  | *                      | •                              | 36.0-43.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 001606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71-162      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          |                        |                                | The state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

APPENDIX II (continued)

| ralcotve       | Impact Sensitivity B.M. P.A. Apperatus Apparatu | nsitivity<br>P.A.<br>Apparatus              | Brissnce<br>Sand lest,<br>200-gs Emb | Por<br>Ballistic<br>Mortar | Power<br>Ballistic Trantl Test<br>Morter | Deterration Beise                             |
|----------------|-------------------------------------------------|---------------------------------------------|--------------------------------------|----------------------------|------------------------------------------|-----------------------------------------------|
|                | 2-tg vgt,<br>hgt in cm                          | 2-kg vgt, 2-kg vgt,<br>hgt in ca hgt in in. | gms of sand                          | * In                       | ¥ 10.1                                   | meters/ancond @ density (gu/cc)               |
| Trinend te     | \$                                              | 10                                          | ट•ग्रम                               | •                          | •                                        | 7,680 © 1,60                                  |
| Trinfirctolume | 95-100                                          | ३८-गर                                       | 1,8.0                                | 3td#100                    | St.1=100                                 | 6,640 # 1.55 (cast)<br>6,825 # 1.56 (pressed) |
| Iritonal       | ₩                                               | ដ                                           | 52.0                                 | 124                        | 85                                       | 6,47% @ 1.7% (cart)<br>6,70% @ 1.7% (prosend) |
| Type 98        | **************************************          | •                                           | ० स                                  | 109                        | 109                                      | ;                                             |

#### BUDGEVIRAPRY

Abardeen Proving Ground, Aberdeen, Maryland, the Omimance School. Fundamentals of Explosives, U.S. and Foreign, ST 9-2200-1. January 1953.

Bebie, Jules. Manual of Explosives, Military Pyrotechnics, and Chemical Warfors Agonts. N. w York: The Macrillan Company, 1943.

Brady, Coorgo S. Materials Hambook. 7th edition. New York: McGraw-hill Book Company, Inc., 1951.

Brunswig, H. <u>Explosives</u>. Translated and annotated by Charles E. Munroe and Alton L. Kibler. Lat ecition. New York: John Wiley and Sons, 1912.

Castilla's Spanish and English Technical Dictionary, 2 Volumes. New York: Philosophical Library, 1998.

Chernukin, Adolph E., editor. The English-Russian Technical Dictionary. Moscow: The State Theoretical Fublishing House; 1934.

Cohen, Jerome B. Japan's Economy in War and Reconstruction. Minneapolis: University of Minneapola Press, 1949.

Colver, Edward. High Explosives. New York: D. Van Hostrand Company, 1918.

Combined Intelligence Objectives Subcommittee. German Practice and Experience in Filling High Emlosives. Item No. 2, File No. XXVIII-60.

Cook, Melvin A. The science of High Explosives. New York: Reinhold Publishing Corporation 1958.

Davis, Tenney Lombard. The Chemistry of Powder and Explosives. 2 wolumes. New York: John Wiley and Sons, Inc., 1941, 1953.

De Vries, Louis. English-German Technical and Engineering Dictionary. 1st edition. New York: McGraw-Hill Company, Inc., 1954.

Denti, Renzo. Italian-English English-Italian Technical Dictionary. 2nd edition. Milan: Uirico Hospii Publisher, 1951.

Duke University, Durham, North Carolina, Ordnance Engineering Handbook Office. Glossary of Ordnance Terms. Preliminary edition. W. W. Holler, editor, June 1959.

Kettridge, Julius O. French-English and English-French Dictionary of Technical Terms and Phrasos. New Yorks he Wilson Company, D. d.

```
Marsho.
             above Methomacy of Explosives, Phillage.
 P. Riat
           's Son and Company, 1920,
 Meyer. :
             to the Species of Explosivers An Introduct.
              ry, Fredu West, Sed Analysis. New York The
 Their C'
 Crowsli
              fact, e in the Ammunition Training Forces to
 Moder, C .
 paper gier.
 Officers as
               atinny Arsenal. Ordnance Corps, 21 January
                ion. Nitroglycerine and Mitroglyceria: hyllo.
Maoum, Dr. P
               M. Symmes. Baltimore: The William Com.
Translated b
               .928.
Wilkins Comp.
                  eaty Organization, Military Agency les thunce
North Atlant
ization. 30
                 sation for Ammonium Nitrete (for 1
                 eliveries from One Country to Ano . ... . "Ar
<u>Emplosives?</u>
No. 4024, 2,
               oer 7958
               and Greene, John W. Laboratory Market 19
Olsen, Aller
               ry. New York: John Wiley and Soil Co.
Explosives Co.
               .e. Dover, New Jersey, Explosives and D. H.cs
Ficationy Are
               ties of Explosives of Military
Laboratory
                  . Revised by O. E. Sheffield. debt : lo.
W. R. Tomlin:
                  .958.
Revision 1.
Picatingy Arm and Dover, New Jersey, Samuel I elter that the
               Metionary of Explosives, Ammunition Find Ng.000
Laboratorias
               B. T. Fedoroff, Y. A. Acronson, ( 1. 1. ft
(Cormen Sect.
and E. F. Re:
               , leport No. 2510, January 1958.
               The Dover, New Jersey, Samuel Feltmen has a wi
Picatinny Ar
Laboratories tionary of Russian Ammunition and Visiging B. T. Fedoro. D. Clift, E. F. Roese, and T. A. Factoria.
Report No. 2 Mebruary 1995. CONFIDENTIA
Ficationy Are
                , Dover, New Jersey, the Y
                                                     a>:
Ammunition, rand Explosives. Lecunces.
Robinson, Cl : Shove. Explosions -- Their Anat a
Destruction let adition. New York: McGraw III to Company 7 1344.
Smith, . C. Aten. TNT -- Trinitrotoluenes and Montes
         .. 1163 -- Their Manufacture and Properties.
D. Va. 3 and Company, 1918.
```