Apuntes: Representaciones complejas de grupos finitos

Rocío Belén Sepúlveda Manzo

RESUMEN. En esta charla realizaremos un repaso de representaciones de grupo finitos en el caso complejo. Esto nos permitirá sentar las bases para comprender a futuro los siguientes tipos de representaciones.

1. Representaciones

1.1. Nociones principales Sea G un grupo finito y V un \mathbb{C} -espacio vectorial de dimensión finita. Una representación (compleja, finito dimensional) de G en V es un homomorfismo de grupos $\rho: G \to GL(V)$ donde GL(V) es el grupo de automorfismos lineales de V. Se denota como el par (ρ, V) o bien, V cuando se tenga el contexto claro. La dimensión (o grado) de (ρ, V) es dim V.

Ejemplo (Representación de permutación de S_3). El grupo S_n actúa sobre la base canónica $\{e_j\}_{j=1}^n$ de $V=\mathbb{C}^n$ por permutación. Se extiende a una representación $\rho_{per}: S_n \to GL_n(\mathbb{C})$ de dimensión n. Esta representación la podemos ver como la acción:

$$\sigma(x_1,\ldots,x_n)\mapsto(x_{\sigma_1},\ldots,x_{\sigma_n})$$

Si consideramos S_3 , sus elementos son: 1, (12), (13), (123) (132). Una representación de S_3 en \mathbb{C}^3 está dada por la asignación:

$$1 \mapsto \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (12) \mapsto \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$(13) \mapsto \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad (23) \mapsto \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
$$(123) \mapsto \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad (132) \mapsto \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Lema 1. Sea (ρ, V) una representación. Entonces su dimensión es $\operatorname{tr} \rho(e)$.

Ejemplo. Podemos también definir la representación alternante de S_n en \mathbb{C} , este es \mathbb{C} equipado con la acción

$$\sigma \cdot v = \begin{cases} v, & \text{si } \sigma \text{ es una permutación par,} \\ -v, & \text{si } \sigma \text{ es una permutación impar.} \end{cases}$$

Fecha: 25 de octubre de 2023.

Equivalentemente, $\rho(\sigma) = \operatorname{sgn}(\sigma) \cdot I$ para cada $\sigma \in S_n$. Notemos que esta representación es de dimensión 1, veremos más adelante que es irreducible.

Para lo que sigue, será necesario contar con esta definición base:

Definición 2. Un homomorfismo de representaciones $f:(\rho_1,V_1)\to(\rho_2,V_2)$ es un homomorfismo de espacios vectoriales $f:V_1\to V_2$ que cumple $f\circ\rho_1(g)=\rho_2(g)\circ f$ para cada $g\in G$. Diremos que f es un isomorfismo si es isomorfismo de espacios vectoriales.

Lema 3 (Subrepresentaciones). Sea V una representación de G y sea $W \subseteq V$ un subespacio vectorial estable por la acción de G, es decir, para cada $g \in G$ se tiene $g \cdot W \subseteq W$. Entonces W es una representación de G con la acción restringida de V. La inclusión $W \to V$ es un morfismo de representaciones.

El W del lema anterior es una subrepresentación de V. Un ejemplo importante es el siguiente lema:

Lema 4 (La representación estándar de S_n). Sea (ρ, V) la representación por permutación de S_n en $V = \mathbb{C}^n$ Definamos las subrepresentaciones

$$U = \langle (1, \dots, 1) \rangle, \quad V_{st} = \{ v \in V : \sum_{j} v_{j} = 0 \}$$

Entonces ambos U, V_{st} son subrepresentaciones de S_n y $U \cong V_0$ es la representación trivial.

Lema 5 (Suma directa). Sean V_1 , V_2 representaciones de G. La acción $g(v_1, v_2) := (gv_1, g_v 2)$ determina una representación de G en $V_1 \oplus V_2$.

Por ejemplo, si V_{per} es la representación de permutación de S_n , entonces $V \cong V_0 \oplus V_{st}$.

1.2. Resultados básicos en representaciones simples Los resultados importantes de la teoría de representaciones las veremos en esta sección. Primero, debemos definir un objeto clave:

Definición 6. Una representación V se dice simple si sus únicas representaciones son (0) y V

Teorema 7 (Lema de Schur). Sea G un grupo finito y sean V y W representaciones (simples) complejas finito-dimensionales de G. Entonces

$$\operatorname{Hom}_G(V, W) \cong \begin{cases} (0) & si \ V \not\cong W \ como \ representaciones, \\ \mathbb{C} & si \ V \cong W \ como \ representaciones \end{cases}$$

Demostración. Como V y W son representaciones simples, entonces para cada $f \in \operatorname{Hom}_G(V,W)$ cumple que $\ker(f)$ es (0) o V, mientras que $\operatorname{Im}(f)$ es (0) o W (esto es dado que la imagen y el kernel son siempre subrepresentaciones). Para el primer caso, supongamos que $V \not\cong W$, luego para $f \in \operatorname{Hom}_G(V,W)$ se tiene que no es inyectiva o bien, no es sobreyectiva. Si no es inyectiva entonces $\ker(f) = V$, por tanto $f \equiv 0$ y si no es sobreyectiva $\operatorname{Im}(f) = 0$, por tanto $f \equiv 0$. Para el segundo caso, supongamos que $V \cong W$, fijando un isomorfismo, podemos suponer que V = W. Sea $f \in \operatorname{End}_G(V)$ cualquiera. Como $\mathbb C$ es algebraicamente cerrado, tenemos un vector propio $v \in V$ no

nulo con valor propio $\lambda \in \mathbb{C}$. Notemos que $F := f - \lambda \operatorname{Id}_V \in \operatorname{End}_G(V)$ porque f y $\operatorname{Id}_V \in \operatorname{End}_G(V)$. Dado que F(v) = 0 vemos que $\ker(F) \neq (0)$ y, por ende, $\ker(F) = V$. Esto implica que $f = \lambda \operatorname{Id}_V$. Es decir, $\lambda \in \mathbb{C}$ determina el isomorfismo con \mathbb{C} .

Teorema 8 (Teorema de Maschke). Sea G un grupo finito y sea (ρ, V) una representación compleja finito dimensional de G. Entonces V se puede descomponer como suma directa de representaciones simples.

1.3. Representaciones irreducibles: teorema de estructura Sea G un grupo finito. Una representación compleja (ρ, V) no nula de G se dice *irreducible* si no es isomorfa a una suma directa de subrepresentaciones propias. Podemos deducir a partir de los teoremas de Schur y Maschke lo siguiente:

Teorema 9 (de estructura sobre \mathbb{C}). Sea G un grupo finito.

- (i) Una representación compleja de G es simple si y solo si es irreducible.
- (ii) Toda representación compleja de G es isomorfa a una suma directa de representaciones irreducibles.
- (iii) Dicha descomposición en irreducibles es única salvo orden e isomorfismo.
- (iv) Si V, W son representaciones complejas de G con W irreducible, entonces la cantidad de veces que W aparece como sumando directo en V es $\dim \operatorname{Hom}_G(V,W)$.

2. Caracteres y resultados preliminares

2.1. Nociones principales Sea G un grupo finito de orden n. El caracter (complejo) de una representación (ρ, V) es la función

$$\chi_V: G \to \mathbb{C}, \quad \chi_V(g) := \operatorname{tr} \rho(g).$$

Ejemplo. Sea $G = S_n$, y consideremos la representación $(\rho, V) = (\rho_{per}, \mathbb{C}^n)$. Podemos notar que $\chi_V(\sigma) = \operatorname{tr} \rho(\sigma) = \# \operatorname{Fix} \sigma$.

Lema 10 (Fórmulas básicas). Tenemos las siguientes fórmulas para caracteres:

- 1. $\chi_{V \oplus W} = \chi_V + \chi_W$
- 2. $\chi_V(e) = \dim V$,
- 3. $\chi_0 = 1$.

2.2. Teoría de caracteres Una función $\xi: G \to C$ es una función de clases si es constante en cada clase de conjugación de G. Sea c = c(G) el número de clases de conjugación de G y $\Omega = \Omega_G$ el conjunto de las funciones de clase de G. Así, Ω es un \mathbb{C} -espacio vectorial de dimensión c.

Lema 11 (Caracter como función de clases). Sea V representación. Entonces $\chi_V \in \Omega$. Demostración. La traza es invariante bajo conjugación.

2.3. Teoría de caracteres Definamos el siguiente producto interior en Ω :

$$(\psi, \xi) := \frac{1}{n} \sum \psi(g) \overline{\xi(g)},$$

donde n = #G y diremos que un caracter de una representación es *irreducible* si su representación lo es.

Teorema 12 (Los caracteres irreducibles son ortonormales, a.k.a. Ortogonalidad I). Dadas representaciones complejas irreducibles V y W de G, tenemos

$$(\chi_V, \chi_W) = \begin{cases} 1 & \text{si } V \cong W \text{ como representaciones,} \\ 0 & \text{si } V \ncong W \text{ como representaciones} \end{cases}$$

El teorema anterior nos quiere decir que el conjunto de caracteres irreducibles (cuya representación es irreducible) de G es ortonormal con respecto a su producto interno (implícitamente decirmos que este conjunto es un espacio vectorial).

Teorema 13 (Criterio de irreducibilidad). Una representación compleja V es irreducible si y solo si $(\chi_V, \chi_V) = 1$.

Teorema 14 (El caracter determina la representación). Dos representaciones complejas V y W de G son isomorfas si y solo si $\chi_V = \chi_W$.

Teorema 15 (Los caracteres irreducibles son base de Ω). La colección de los caracteres irreducibles $\{\chi_W : W \text{ es irreducible}\}\$ forma una base del espacio Ω de funciones de clase.

Corolario 16 (Conteo de representaciones irreducibles). La cantidad de representaciones complejas irreducibles de G salvo isomorfismo es igual a c(G), la cantidad de clases de conjugación de G.

Ejemplo. Notemos que S_3 tiene 3 clases de conjugación representadas por 1, (12) y (123). Por tanto, posee tres representaciónes sobre \mathbb{C} -espacios vectoriales.

Teorema 17 (Ortogonalidad II). Para todo g y $h \in G$ y $\{U_i\}$ subrepresentaciones irreducibles distintas de G, luego

$$\sum_{i=1}^{c} \chi_{U_i}(g) \overline{\chi_{U_i}(h)} = \begin{cases} 0 & \text{si } g, \ h \in G \text{ no son conjugados,} \\ n/\#C & \text{si } g, \ h \in G \text{ son conjugados } y \text{ su clase es } C. \end{cases}$$

Definición 18. Sean U_1, \ldots, U_c todas las representaciones complejas irreducibles de G (salvo isomorfismo), donde c = c(G) es el número de clases de conjugación de G. Sean g_1, \ldots, g_c representantes de las clases de conjugación de G respectivamente.

La tabla de caracteres de G es la matriz

$$T = [\chi_{U_i}(g_i)_{i,j}] \in \mathrm{Mat}_{c \times c}(\mathbb{C}).$$

Ejemplo. Calculemos la tabla de caracteres de S_3 : Primero, notemos que las representaciones que hemos estudiado para este grupo son $V_{\rm sgn}$ la alternante, V_0 la trivial, V_{per} la de permutación y V_{st} la estándar. Claramente la representación trivial y la alternante son irreducibles. Veamos que la estándar también es irreducible: Las clases de conjugación de S_3 son 1, (12) y (123), por otro lado, la representación de permutación de S_3 cumple $V_{per} = V_0 \oplus V_{st}$ como mencionamos anteriomente. Entonces, por el lema 10, se tiene $\chi_{st} = \chi_{per} - \chi_0$. Como $\chi_{V_{per}}(\sigma) = \#\operatorname{Fix} \sigma$. Entonces

$$\chi_{st}(1) = 3 - 1 = 2$$
, $\chi_{st}(12) = 1 - 1 = 0$, $\chi_{st}(123) = 0 - 1 = -1$.

Ahora, calculemos el producto interior, anotando C_{σ} por la clase de conjugación de $\sigma \in S_3$.

$$(\chi_{st}, \chi_{st}) = \frac{1}{6} (2^2 \cdot 1 + 0^2 \cdot \#C_{(12)} + (-1)^2 \cdot \#C_{(123)}) = \frac{4 + 0 + 2}{6} = 1.$$

Por el teorema 13 (criterio de irreducibilidad) tenemos que la representación estándar es irreducible.

Por lo tanto, la tabla de caracteres de S_3 es:

$$\begin{array}{c|cccc} & 1 & (12) & (123) \\ \hline \chi_0 & 1 & 1 & 1 \\ \chi_{\rm sgn} & 1 & -1 & 1 \\ \chi_{st} & 2 & 0 & -1 \\ \end{array}$$

Correo electrónico: rseplveda@uc.cl