CSE 512 Final Projection Distribution Document $$\operatorname{Spring}\ 2022$$

Dongyang Wang

Normal Distribution: $X \sim N(\mu, \sigma^2)$

PDF:
$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$
 for $\mu \in \mathbb{R}$ and $\sigma^2 \in \mathbb{R}_+$ Support: $x \in \mathbb{R}$

CDF:
$$F_X(x) = \frac{1}{2} + \frac{1}{2}erf(\frac{x-\mu}{\sigma\sqrt{2}})$$
 where $erf(\frac{x-\mu}{\sigma\sqrt{2}}) = \frac{2}{\sqrt{\pi}} \int_{0}^{\frac{x-\mu}{\sigma\sqrt{2}}} e^{-t^2} dt$

MGF: $e^{\mu t + \frac{\sigma^2 t^2}{2}}$

Mean: μ

Variance: σ^2

Transformation to $\chi^2(n)$: $\sum_{i=1}^n (\frac{X_i - \mu}{\sigma})^2$

Exponential Distribution: $X \sim Exp(\lambda)$

PDF: $f_X(x) = \lambda e^{-\lambda x}$ for $\lambda > 0$

Support: $x \in [0, \infty)$

CDF: $F_X(x) = 1 - e^{-\lambda x}$

MGF: $\frac{\lambda}{\lambda - t}$ for $t < \lambda$ Mean: $\frac{1}{\lambda}$

Variance: $\frac{1}{\lambda^2}$

Transformation to $\chi^2(n)$: $2\lambda \sum_{i=1}^n X_i$

Transformation to $F(n_1, n_2)$: $\lambda = 1, \frac{X_1}{X_2}$

Transformation to $Gamma(1, \beta)$: $Exp(\beta) \equiv Gamma(1, \beta)$

Memoryless Property: P(X > x + a | X > a) = P(X > x)

Gamma Distribution: $X \sim Gamma(\alpha, \beta)$

PDF:
$$f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$$
, where $\Gamma(\alpha) = \int_0^{\infty} s^{\alpha-1} e^{-s} ds$, for $\alpha, \beta > 0$

Support: $x \in (0, \infty)$

CDF:
$$F_X(x) = \frac{\gamma(\alpha, \beta x)}{\Gamma(\alpha)}$$
 where $\gamma(\alpha, \beta x) = \int_0^{\beta x} t^{\alpha - 1} e^{-t} dt$

MGF: $(\frac{\beta}{\beta - t})^{\alpha}$ Mean: $\frac{\alpha}{\beta}$

Variance: $\frac{\alpha}{\beta^2}$

Transformation to $Exp(\beta)$: $Gamma(1, \beta) \equiv Exp(\beta)$

Transformation to $Beta(\alpha, \beta)$: $\frac{X_1}{X_1 + X_2}$ Transformation to $N(\mu, \sigma^2)$: $\mu = \frac{\beta}{\alpha}, \sigma^2 = \frac{\beta}{\alpha^2}, \beta \to \infty$ Transformation to $\chi^2(n)$: $\alpha = \frac{1}{2}, \beta = \frac{n}{2}$

Beta Distribution: $X \sim Beta(\alpha, \beta)$

PDF:
$$f_X(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$$
 where $B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$ for $\alpha,\beta > 0$

Support: $x \in [0, 1]$

CDF:
$$F_X(x) = I_x(\alpha, \beta) = \frac{\int_0^x t^{\alpha-1} (1-t)^{\beta-1} dt}{B(\alpha, \beta)}$$

MGF: $1 + \sum_{k=1}^{\infty} (\prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r}) \frac{t^k}{k!}$ Mean: $\frac{\alpha}{\alpha+\beta}$

Variance: $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

Transformation to Unif(0,1): $Beta(0,1) \equiv Unif(0,1)$

Uniform Distribution: $X \sim Unif(a, b)$

PDF: $f_X(x) = \frac{1}{b-a}$ for $-\infty < a < b < \infty$

Support: $x \in [a, b]$ CDF: $F_X(x) = \frac{x-a}{b-a}$

MGF: $\begin{cases} \frac{e^{tb} - e^{ta}}{t(b-a)}, & \text{for } t = 0\\ 1, & \text{for } t \neq 0 \end{cases}$

Variance: $\frac{(b-a)^2}{12}$

Transformation to $Exp(\lambda)$: $\frac{-log(Y)}{\lambda}$ where $Y = \frac{X-a}{b-a}$

Chi-Squared Distribution: $X \sim \chi^2(n)$

PDF: $f_X(x) = \frac{1}{2^{n/2}\Gamma(n/2)}x^{\frac{n}{2}-1}e^{-\frac{x}{2}}$

Support: $n \in \mathbb{N}_+$ CDF: $F_X(x) = \frac{1}{\Gamma(n/2)} \gamma(\frac{n}{2}, \frac{x}{2})$

MGF: $(1-2t)^{-\frac{n}{2}}$ for $t < \frac{1}{2}$

Mean: n

Variance: 2n

Transformation to $F(n_1, n_2)$: $\frac{X_1/n_1}{X_2/n_2}$

Transformation to $Exp(\lambda)$: $\chi^2(2) \equiv Exp(\frac{1}{2})$

F Distribution: $X \sim F(x; d_1, d_2)$

PDF: $f_X(x) = \frac{\sqrt{\frac{(d_1x)^{d_1}d_2^{d_2}}{(d_1x+d_2)^{d_1+d_2}}}}{xB(\frac{d_1}{2},\frac{d_2}{2})}, d_1, d_2 > 0$ are degrees of freedom Support: $x \in (0,\infty)$ if $d_1 = 1$, otherwise $x \in [0,\infty)$ CDF: $F_X(x) = I_{\frac{d_1x}{d_1x+d_2}}(\frac{d_1}{2}, \frac{d_2}{2})$

MGF: Does Not Exist Mean: $\frac{d_2}{d_2-2}$ for $d_2 > 2$ Variance: $\frac{d_2}{d_2-2}$ for $d_2 > 4$

Transformation to $\chi^2(n)$: $n_1X_1, n_2 \to \infty$

Binomial Distribution: $X \sim Binomial(n, p)$

PMF: $f_X(x) = \binom{n}{k} p^k (1-p)^{n-k}$ for $p \in [0, 1]$ Support: $k \in \{0, 1, 2...n\}$ CDF: $F_X(x) = \sum_{i=0}^k \binom{n}{k} p^k (1-p)^{n-k}$

MGF: $(1 - p + pe^{t})^{n}$

Mean: np

Variance: np(1-p)

Transformation to $N(\mu, \sigma^2)$: $\mu = np$, $\sigma^2 = np(1-p)$, $n \to \infty$ Transformation to $Poisson(\lambda)$: $\lambda = np, n \to \infty$

Poisson Distribution: $X \sim Pois(\lambda)$

PMF: $f_X(x) = \frac{\lambda^k e^{-\lambda}}{k!}$ for $\lambda \in (0, \infty)$

Support: $k \in \mathbb{N}_0$

CDF: $F_X(x) = \sum_{i=0}^{k} \frac{\lambda^k e^{-\lambda}}{k!}$

MGF: $e^{\lambda(e^t-1)}$

Mean: λ

Variance: λ

Transformation to $N(\mu, \sigma^2)$: $\mu = \lambda, \sigma^2 = \lambda, \lambda \to \infty$

Geometric Distribution: $X \sim Geom(p)$

PMF: $f_X(x) = p(1-p)^{k-1}$ for 0

Support: number of trials $k \in \{1, 2, 3...\}$

CDF: $F_X(x) = 1 - (1 - p)^k$

MGF: $\frac{pe^t}{1-(1-p)e^t}$ Mean: $\frac{1}{p}$

Variance: $\frac{1-p}{p^2}$

Transformation to $Poisson(\lambda)$: $\sum_{i=1}^{r} X_i, \ \lambda = \frac{r}{p}, \ r \to \infty$

Memoryless Property: P(X > x + a | X > a) = P(X > x)