Lecture 4 Deep Learning

CS 180 – Intelligent Systems

Dr. Victor Chen

Spring 2021

Deep learning gaining popularity

Deep learning today

AI APPLICATIONS

https://experiments.withgoogle.com/collection/ai

Demo

https://quickdraw.withgoogle.com/

The model takes sequences of strokes as input.

Deep learning in a nutshell

"Regular" neural networks usually have

- one to two hidden layers
- are used for SUPERVISED learning.

"Deep" neural networks have

- more hidden layers
- can be used for both UNSUPERVISED and SUPERVISED learning.

Regular neural network (dense/fully-connect neural network)

A deep network for recognizing handwritten digits

Why deep learning is generally better?

Feature detection using deep learning

"The hidden layers" can (1) detect "true underlying" features and (2) train model on those features

Object detection example

0123456789

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

Feature detectors

0123456789 0123456789 0123456789 0123456789

Figure 1.2: Examples of handwritten digits from U.S postal envelopes.

What is this neuron doing?

Hidden layer neurons become feature detectors

Hidden layer neurons become feature detectors

Hidden layer neurons become feature detectors

Another neuron

Another neuron

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

What features do you think would make a good model?

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

Hidden neurons can detect for specific parts of an image

But what about correlation among different parts?

postal envelopes.

Successive layers can learn higher-level features

Successive layers can learn higher-level features

That is how multiple layers make sense

We want to **stack many hidden layers** to capture "true" features from lower levels to higher levels

Successive layers can learn higher-level features

Your brain works that way

Review

How to train a neural network?

$$f(x) = \frac{1}{1 + e^{-x}}$$

-0.06

W1

-2.5 -

W3

W2

1.4

f(x)

$$f(x) = \frac{1}{1 + e^{-x}}$$

-0.06

2.7

0.002

$$-0.06 \times 2.7 + 2.5 \times 8.6 + 1.4 \times 0.002 = 21.34$$

sigmoid(21.34) = 0.99

1.4

A dataset

Fields		class		
1.4 2.7	1.9	0		
3.8 3.4	3.2	0		
6.4 2.8	1.7	1		
4.1 0.1	0.2	0		
etc				

Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc ...

Initialize model with random weights

Present a training record

Field	ds		class	
1.4	2.7	1.9	0	
3.8	3.4	3.2	0	
6.4	2.8	1.7	1	
4.1	0.1	0.2	0	
etc				

Fiel	ds		<u>class</u>	
1.4	2.7	1.9	0	
3.8	3.4	3.2	0	
6.4	2.8	1.7	1	
4.1	0.1	0.2	0	
etc				

Feed it through to get output

Fields class

1.4 2.7 1.9 0

etc ...

Compare with target output

<u> Fiel</u>	ds	<u> </u>				
1.4	2.7	1.9	0			
3.8	3.4	3.2	0			
6.4	2.8	1.7	1			
4.1	0.1	0.2	0			
etc						

Adjust weights based on error (gradient descent)

Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0

etc ...

Present a training pattern

Fields

class

- 1.4 2.7 1.9
- 0
- 3.8 3.4 3.2
- 6.4 2.8 1.7
- 4.1 0.1 0.2

etc ...

Feed it through to get output

Fields

class

- 1.4 2.7 1.9
- 0
- 3.8 3.4 3.2
- 6.4 2.8 1.7
- 4.1 0.1 0.2

etc ...

Compare with target output

Fields

class

1.4 2.7 1.9

0

3.8 3.4 3.2

0

6.4 2.8 1.7

]

4.1 0.1 0.2

0

etc ...

Adjust weights based on error

Repeat this THOUSANDS, MAYBE MILLIONS OF TIMES

– each time taking a RANDOM training record, and making slight weight adjustments

error -0.1

Initial random weights

In the past, we rarely use a very deep network

Now we have a new way to train a very deep neural networks...

then this layer then this layer

Train this layer

then this layer

then this laver
then this laver
finally this layer

EACH of non-output layers is trained to be an auto-encoder

Auto-encoder

Auto-encoder is a neural network with the output layer having the same number of neurons as the input layer.

Auto-encoder

The purpose of using *Auto-encoder* is to reconstruct (recover) its input (X).

We want the output to be as close to input as possible

Why Auto-encoder can learn "true" features?

- The 'middle hidden layer' has fewer neurons than the inputs.
- <u>Compress input data</u> into a <u>short code</u> in such a way that when we uncompress that code, we can get input recovered.
- The output from the 'middle hidden layer' are "true" features (embedding of the input).
- This process forces 'middle hidden layer' to become good feature detectors for input
- This process can also be referred to dimensionality reduction.

Popular deep learning architectures

- Convolutional Neural Networks
 - Scenarios where spatially-closer data are more correlated
- Recurrent Neural Networks
 - Data with temporal or sequential structures

Popular deep learning architectures

- Convolutional Neural Networks
 - Scenarios where spatially-closer data are more correlated
- Recurrent Neural Networks
 - Data with temporal or sequential structures

Convolutional Neural Network (CNN)

In CNNs, hidden neurons are only connected to local receptive field.

- The number of weights (parameters) in CNNs is much smaller than a fully-connected neural network.
- CNN is widely used in computer vision.

Example: 200x200 image

- a) A fully connected layer: 40,000 input units X 40,000 hidden units => 1.6 billion connections (parameters)
- b) A CNN layer: 5x5 kernel, 100 kernel => 2,600 parameters

Three Stages of A Convolutional Operation

- 1. Convolution
- 2. Nonlinear transformation
- 3. Pooling

Convolution stage

- Input: an image x (2-D array) x
- Convolution kernel (2-D array of learnable parameters): w
- Output: called feature map (2-D array of processed data): s
 Convolution operation:

$$s[i,j] = (x*w)[i,j] = \sum_{m=-M}^{M} \sum_{n=-N}^{N} x[i+m,j+n] w[m,n]$$

Single Convolution Kernel

1 _{×1}	1,0	1 _{×1}	0	0
O _{×0}	1,	1,0	1	0
0 _{×1}	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

Multiple Convolution Kernels

Multiple convolution kernels yield multiple feature maps, one for each kernel.

Multiple Convolution Kernels

In TesorFlow, you should provide the following parameters to define each convolutional layer:

- Number of filters/kernels
- Kernel size (vertical, horizontal): the height and width of convolution window
- Strides (vertical, horizontal): default strides=(1, 1)

Demo of multiple kernels

http://setosa.io/ev/image-kernels/

Nonlinear transformation

Tanh(x)

ReLU

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$f(x) = max(0,x)$$

Pooling (downsampling strategy)

Common pooling operations:

- Max pooling: reports the maximum output within a rectangular neighborhood.
- Average pooling: reports the average output of a rectangular neighborhood.
- Pool size (vertical, horizontal)
- Stride value (vertical, horizontal)
- Padding: "valid" or "same"

Each CNN operation (Conv + Nonlinear + Pooling)

Video on CNN

Note on CNN

- 1. You may use multiple convolution kernels (hidden neurons), which give you multiple feature maps.
- 2. You may stack multiple convolutional layers for extracting features at different levels.
- 3. Higher-level layers take the feature maps from lower-level layers as input.

Deep CNN

CNN extracts features automatically through multiple layers.

CNN for RGB Image Classification

CNN in Alpha-Go

Policy network

$$p_{\sigma l \rho} (a | s)$$

- A CNN with 13 layers
- Input board position as image
- Output: , where is the next move

CNN for Image Classification

https://cs.stanford.edu/people/karpathy/convnetjs/

CNN talks

NVIDIA's CES 2015 talk about their self-driving cars

YOLO