FIG 1: current frequency

p = pulse duration = T/3

T = time of one cycle = 1/ff = drive frequency in Hz f = c/(3 a) where a = segment length = plate separation in metres Distance 'a' is fixed for a particular SCAM, but is flexible to support SCAMs of different scales. Typical values for 'a' would range from 1 cm to 1 km

For example, if a = 1 cm, ie 10^{-2} m, then $f = 3 \times 10^{8}$ / $(3 \times 10^{-2}) = 10^{10}$ Hz, ie 10 GHz $T = 1 / 10^{10} = 10^{-10}$ seconds, and $p = 10^{-10}/3$ seconds

+

p = pulse duration = T / 3

T = time of one cycle

f = drive frequency in Hz

f = c / (3 a) where a = segment length = plate separation in metres

Distance 'a' is fixed for a particular SCAM, but is flexible to support SCAMs of different scales. Typical values for 'a' would range from 1 cm to 1 km

For example, if a=1 cm, ie 10^{-2} m, then $f=3 \times 10^{8}$ / $(3 \times 10^{-2})=10^{10}$ Hz, ie 10 GHz T=1 / $10^{10}=10^{-10}$ seconds, and $p=10^{-10}/3$ seconds

FIG 3: x and z separation of 2 segments, ie segment pair

+

FIG 4: x and z separations of neighboring segments

TOOSGGG. OICHOM

FIG 6: z and y separation in two plates

FIG 7: perspective view of the two plates

FIG 9: m-n segment distance relationship

9/14

FIG 10: Force between current-carrying conducting wires

I current in the wires

In this theoretical description, the values of a, h_1 , h_2 , l_1 , l_2 and I are variable

FIG 11: Plate 1 (0,0) to Plate 2 (m,n) segment distance, B

11/14

FIG 12: timing differences

12/14

	0	1p	2p	3р	4p	5p	6р	7p	8p	9p	10p	time
			T		1	1	1		I i	1	see	below for units
segmen)	_									
Plate 1 Plate 2												
i late 2												
segme	nt (0,1)										
Plate 1												
Plate 2												
	<u> </u>								relat	ive ov	erlap = 1	- (8 - 7.810)
segme Plate 1 Plate 2		2)									_ '	` = 0.810 [′]
					_			7 81		- rels	ative overl	— rlap = 8 - 7.810
								7.01	·	1010	20000	= 0.19
	1.4.0											
segme		') 										
Plate 1												
Plate 2	-											
		•										
segme	nt (1,1)							— rela	itive ov	verlap = 6	6 - 5.568 = 0.432
Plate 1		_								_		
Plate 2	2											
							Same					
segme	nt (1.2) \		-1,14,1,18,21,11				, , , , , , , , , , , , , , , , , , , ,	relati	ve ove	erlap = 9	- 8.718 = 0.282
Plate 1		- <i>)</i>								•		
Plate 2				<u> </u>								
riate 2	•										_	

Explanation of time units

p = pulse duration = T / 3, T = time of one cycle = 1 / f, f = drive frequency in Hz f = c / (3 a) where a = segment length = plate separation in metres

Distance 'a' is fixed for a particular SCAM, but is flexible to support SCAMs of different scales. Typical values for 'a' would range from 1 cm to 1 km

For example, if a = 1 cm, ie 10^{-2} m, then $f = 3 \times 10^{8}$ / $(3 \times 10^{-2}) = 10^{10}$ Hz, ie 10 GHz T = 1 / 10^{10} = 10^{-10} seconds, and p = 10^{-10} /3 seconds

Note: due to the Plate 2 phase shift of p, the Plate 1 arrival times are delayed (right-shifted) by p

FIG 14: Relativistic force between current-carrying conducting wires

FIG 15 Lorentz length contraction

