1. (a)
$$D_f=\mathbb{R}\backslash\{0\}; \qquad D_g=\mathbb{R}; \qquad D_h=]-e,+\infty[;$$

$$D_i=]-2,2[; \qquad D_j=]0,+\infty[\backslash\{e^{-1}\}.$$

(b)
$$f^{-1}:]2, +\infty[\setminus \{3\} \to \mathbb{R}, \quad x \mapsto \frac{1}{\ln(x-2)};$$

 $g^{-1}:]-\infty, 2[\to \mathbb{R}, \quad x \mapsto \ln\left(\frac{2-x}{3}\right) + 1;$
 $h^{-1}: \mathbb{R} \to \mathbb{R}, \quad x \mapsto e^{1-x} - e.$

(c) Os zeros de i são $\pm\sqrt{3}$. A função j não tem zeros.

(d)
$$\left(\frac{1}{e-1},1\right)$$
.

2. $f \circ g : \mathbb{R} \to \mathbb{R}$, $x \mapsto |x - 1|$.

$$3. \ \ f^{^{-1}}: \left[-\frac{1}{2},\frac{1}{2}\right] \rightarrow [-\pi,0], \quad x \mapsto \arcsin(2x) - \frac{\pi}{2}.$$

4. (a)
$$D = [-1, 0];$$
 $f(D) = [0, \pi];$ zeros: -1 .

(b)
$$D = \mathbb{R};$$
 $g(D) = \left[-\frac{\pi}{3}, \frac{2\pi}{3} \right];$ zeros: $-\frac{\sqrt{3}}{9}$.

(c)
$$D = \mathbb{R} \setminus \{-1\};$$
 $h(D) = \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\};$ não tem zeros.

(d)
$$D = [1 - \sqrt{3}, 1 + \sqrt{3}]; \quad m(D) = \left[-\frac{\pi}{2}, \frac{\pi}{6} \right]; \text{ zeros: } 0 \text{ e } 2.$$

5. (a)
$$D = [-\sqrt{2}, \sqrt{2}];$$
 $f(D) = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$

(b)
$$(-1,0)$$
; $(1,0)$; $(0,-\frac{\pi}{2})$.

6.
$$D =]-\infty, -1] \cup [1, +\infty[; f(D) = [0, \pi] \setminus {\pi/2};$$
 zeros: 1.

(b)
$$f_j = g_j + h_j$$
, $j = 1, 2, 3$, onde $g_1(x) = 3 + x^4$, $h_1(x) = -2x - 5x^7$; $g_2(x) = x \sin x - x^3 \sin(5x)$, $h_2(x) = 2 \sin x$; $g_3(x) = \frac{\sqrt{3}}{2} \cos x$, $h_3(x) = \frac{1}{2} \sin x$.

- (d) O produto de duas funções com a mesma paridade, isto é, ambas pares ou ambas ímpares, é uma função par. O produto de uma função par com uma função ímpar é uma função ímpar.
- 8. O conjunto solução é:

(a)
$$\left\{\pm \frac{11\pi}{6}, \pm \frac{7\pi}{6}, \pm \frac{5\pi}{6}, \pm \frac{\pi}{6}\right\}$$
.

(b)
$$\left\{\frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\right\}$$
.

(c)
$$\{k\pi, k \in \mathbb{Z}\}$$
.

(d)
$$\left\{\frac{k\pi}{2}, k \in \mathbb{Z} \setminus \{0\}\right\} \cup \{-1, 1\}.$$

9.
$$D_f = \mathbb{R} \setminus \left(\left\{ \frac{\pi}{4} + k\pi, \ k \in \mathbb{Z} \right\} \cup \left\{ k\pi, \ k \in \mathbb{Z} \right\} \right).$$

10. (a)
$$D_f = \left] -\infty, -\frac{1}{2} \right].$$

(b)
$$]-\infty,-3].$$

11.
$$D_g = [-1, +\infty[; zeros: -1.$$

12. (a)
$$int(A) =]-\infty, 1[\cup]10, 35[.$$

(b)
$$\mathbb{R} \setminus A =]1, 3[\cup]3, 10] \cup]35, +\infty[.$$

(c)
$$ext(A) =]1, 3[\cup]3, 10[\cup]35, +\infty[.$$

(d)
$$fr(A) = \{1, 3, 10, 35\}.$$

(e)
$$\overline{A} =]-\infty, 1] \cup \{3\} \cup [10, 35].$$

13. (a)
$$int(A) = \emptyset;$$
 $\overline{A} = A;$ $A' = \emptyset.$

(b)
$$int(A) =]0, 1[\cup]2, 3[; \overline{A} = [0, 1] \cup [2, 3] \cup \{6, 10\}; A' = [0, 1] \cup [2, 3].$$

(c)
$$int(A) =]-3,3[;$$
 $\overline{A} = A' = [-3,3].$

(d)
$$int(A) =]-1, 0[\cup]1, +\infty[;$$
 $\overline{A} = A' = [-1, 0] \cup [1, +\infty[.$

(e)
$$\operatorname{int}(A) = \emptyset$$
; $\overline{A} =]-\infty, -1];$ $A' =]-\infty, -1].$

(f)
$$\operatorname{int}(A) = \emptyset$$
; $\overline{A} = A \cup \{0\}$; $A' = \{0\}$.

$$\begin{array}{ll} \text{(f)} & \operatorname{int}(A) = \emptyset; & \overline{A} = A \cup \{0\}; & A' = \{0\}. \\ \\ \text{(g)} & \operatorname{int}(A) = \emptyset; & \overline{A} = A \cup \{0\}; & A' = \{0\} \cup \{\frac{1}{n}: n \in \mathbb{N}\}. \end{array}$$

15. Sim, é.

18. Por exemplo, para
$$A=[2,3[$$
 e $B=]3,4]$ tem-se $\overline{A\cap B}=\emptyset$, enquanto que $\overline{A}\cap \overline{B}=\{3\}.$

- 19. Pontos isolados: pontos da forma $x = \frac{1}{n}, n \in \mathbb{N};$ pontos de acumulação: x = 0.
- 20. —
- 21. —
- 22. —
- 23. —
- (a) infimo = mínimo = -1; supremo = máximo = 3
 - (b) ínfimo = $-\sqrt{2}$; supremo = $\sqrt{2}$; não tem nem máximo nem mínimo.
 - (c) ínfimo = $-\sqrt{2}$; supremo = $\sqrt{2}$; não tem nem máximo nem mínimo.
 - (d) infimo = -1; supremo = máximo = 0;não tem mínimo.
 - (e) infimo = -1; supremo = máximo = 2;não tem mínimo.
 - (f) \inf infimo = \min infimo = 1; supremo = 3;não tem máximo.
- 25. Ambos são majorados, minorados e limitados; $\max(A) = 1$, $\min(A) = -3$, $\sup(B) = 1$, $\inf(B) = -1$.

26.
$$\sup(A) = 1$$
, $\sup(B) = 2$, $\sup(A \cup B) = 2$, $\sup(A \cap B) = 1$; $\inf(A) = -3$, $\inf(B) = -4$, $\inf(A \cup B) = -4$, $\inf(A \cap B) = -3$.

- 28. (a) $u_1 = 0$; $u_3 = \frac{1}{2}$; $u_5 = \frac{2}{3}$; $u_2 = u_4 = 1$.
 - (b) i. Verdadeira, $u_{29} = \frac{14}{15}$;
 - ii. Verdadeira.
- 29. (a)
 - (b) Sim, porque toda a sucessão monótona e limitada é convergente.
- 30.
- (a) 1

(b) $+\infty$

(c) $\frac{3}{2}$

(d) 0

- 31. (a) 1
 - (b) Não existe.
 - (c) 0
 - (d) Não existe.
- 32. (a) $x_n = n+1; y_n = -n.$
 - (b) $x_n = n; y_n = -2n.$
 - (c) Não existem exemplos.
 - (d) $x_n = n; z_n = \frac{1}{n^2}$.
 - (e) Não existem exemplos.
- 33. —
- 34. (a) Não existe.
 - (b) $\frac{1}{2}$
 - (c) $\frac{1}{2}$
 - (d) $-\frac{\pi}{2}$
 - (e) $\frac{\pi}{2}$
 - (f) e^2
- 35. Por exemplo, $f(x) = \begin{cases} x^2 & \text{se } x \neq 0 \\ 1 & \text{se } x = 0 \end{cases}$ e g(x) = 2x.

De facto, $\lim_{x\to 0} f(g(x)) = 0$ e $f(\lim_{x\to 0} g(x)) = f(0) = 1$.

- 36. (a) $2 3\sqrt{2}$
 - (b) -2
 - (c) $\frac{8}{3}$
- 37. (a) k = 1
 - (b) k = 3
 - (c) k = 0
- 38. —
- 39. (a) $S_1 = \frac{1}{10}, S_2 = \frac{1}{10} + \frac{1}{10^2}, \dots, S_n = \frac{1}{10} + \frac{1}{10^2} + \dots + \frac{1}{10^n} = \frac{1}{9}(1 (\frac{1}{10})^n), \dots$ A soma da série é $\frac{1}{9}$.

	(b) $S_1 = \frac{3}{2}, S_2 = \frac{3}{2} + (\frac{3}{2})^2, \dots, S_n = \frac{3}{2} + (\frac{3}{2})^2 + \dots + (\frac{3}{2})^n = -3(1 - (\frac{3}{2})^n), \dots$				
		líneas seguintes só se aj	presenta a soma da série, no caso		
	de ser possível.				
	(c) $\frac{1}{8}$				
	(d) $\frac{10}{3}$				
	(e) $\frac{1}{e-1}$				
	(f) $3 + \frac{3}{2} = \frac{9}{2}$				
	(g) $\frac{3}{2}$				
10	(h) $\frac{3}{2}$				
40.	(a) divergente	(b) convergente	(c) convergente		
	(d) divergente	(e) convergente	(f) convergente		
	(g) convergente	(h) divergente	(i) convergente		
	(j) divergente	(k) convergente	(l) convergente		
	(m) convergente	(n) convergente	(o) convergente		
	(p) convergente	(q) divergente	(r) convergente		
	(s) convergente	(t) convergente			
41.	_				
42.	(a) divergente				
	(b) divergente				
	(c) convergente				
	(d) divergente				
	(e) convergente				
	(f) convergente				
	(g) se $ k > 1$ a série diverge e se $ k < 1$ a série converge.				
	(h) convergente				
43.					
	(a) convergente	(b) divergente	(c) divergente		
44.	(a) simplesmente conv	ergente	(b) simplesmente convergente		
	(a) simplesmente convergente(c) simplesmente convergente		(d) absolutamente convergente		
	(c) simplesmente conv	(a) absolutamente convergente			
	(e) absolutamente convergente		(f) absolutamente convergente		

45.

	(a) absolutamente convergente	(b) absolutament	te convergent		
	(c) absolutamente convergente	(d) absolutament	te convergent		
	(e) simplesmente convergente	(f	divergente			
	(g) absolutamente convergente	(h) divergente			
46.	_					
47.	_					
48.	_					
49.	(a) $f'(x) = -\sin x e^{\cos x} + \sin x + x \cos x$, com $D_{f'} = \mathbb{R}$.					
	(b) $f'(x) = \frac{2x^3 - 3x^2 - 2}{(x^3 + 2)^2} + 2$, com $D_{f'} = \mathbb{R} \setminus \{-\sqrt[3]{2}\}$.					
	(c) $f'(x) = 4(x+5)^3$, com $D_{f'} = \mathbb{I}$	R.				
50.	_					
51.	. (a) f é diferenciável em todo o domínio \mathbb{R} e $f'(x) = e^x$.					
	(b) f é diferenciável em $\mathbb{R} \backslash \{0\}$ e f	$'(x) = \begin{cases} -e^{-x} \\ e^x \end{cases}$	$ \begin{array}{ll} se & x > 0 \\ se & x < 0 \end{array} $			
	(c) f é diferenciável em todo o dor	mínio \mathbb{R} e $f'(x)$	=2x.			
52.	_					
53.	$y = \frac{1}{4}x + 1.$					
54.	$4. (g \circ f)'(x) = (4x^3e^{-x} - x^4e^{-x})g'(x^4e^{-x}), \text{ com } x \in \mathbb{R}.$					
55.	(a) $f(1) = 0$. (b) —					
56.	6. A derivada para $x \in \mathbb{R}$ é, respectivamente, dada por:					
	$-f'(-x), e^x f'(e^x), \frac{2x}{x^2}$	$\frac{x}{+1}f'(\ln(x^2+1)$), $f'(x)f'(f(x))$	(x)		
57.	_					
58.	(a) —					
	(b) $f'(x) = \begin{cases} \cos x & \text{se } x < 0 \\ \frac{e^x}{e^x + 1} & \text{se } x > 0 \end{cases}$.					
	(c) Não, porque para todo $a, b \in]0, +\infty[$, com $a \neq b$, se tem $f(a) \neq f(b)$.					
59.	(a) A afirmação é verdadeira, porq(b) —	ue g não é uma	função diferenc	ciável em 0.		
60.						
	(a) 2 (b) 0 (c)	(d)	1 (e	e) 1		
61.	(a) h é contínua em todo o seu domínio \mathbb{R} .					
	(b) —					
	(c) Tem uma assímptota horizonta	ıl de equação y =	=0.			

- 62. Relativamente à função f: não é contínua em x=0; tem uma assímptota vertical de equação x=0; tem uma assímptota oblíqua de equação y=x-1 (à esquerda do gráfico); tem uma assímptota horizontal de equação y=0 (à direita do gráfico).
 - Relativamente à função g: é contínua em] $-1, +\infty$ [; tem uma assímptota vertical de equação x = 0; tem uma assímptota oblíqua de equação y = x 3, (à direita do gráfico).
- 63. (a) A função f não tem assímptotas;
 - (b) A função f tem duas assímptotas verticais à esquerda e à direita em x = -1 e x = 1 e uma assímptota horizontal, y = 0, à esquerda e à direita;
 - (c) A função f tem uma assímptota não vertical y = x à esquerda e à direita;
 - (d) A função f não tem assímptotas;
 - (e) A função f não tem assímptotas.
- 64. O domínio da função $f \in \mathbb{R} \setminus \{2\}$. A função f tem uma assímptota horizontal, y=1, à esquerda e à direita e uma assímptota vertical, x=2, à esquerda e à direita. O domínio da função $g \in \mathbb{R} \setminus \{0\}$. A função g tem uma assímptota oblíqua, y=x, à esquerda e à direita e uma assímptota vertical, x=0, à esquerda e à direita.
- 65. (a) O domínio da função f é \mathbb{R} . A função f tem dois zeros, 0 e 3, e não possui assímptotas. $f'(x) = 3x^2 6x$, $x \in \mathbb{R}$. Os extremos da função f são atingidos em x = 0 e x = 2. A função f é crescente nos intervalos $]-\infty,0[$ e $]2,+\infty[$ e decrescente no intervalo]0,2[. $f''(x)=6x-6, x\in \mathbb{R}$. f tem um ponto de inflexão em x=1. A função f é côncava no intervalo $]-\infty,1[$ e convexa no intervalo $]1,+\infty[$.
 - (b) O domínio da função $f \in \mathbb{R} \setminus \{0\}$. Os zeros da função f são -2 e 2. A função tem uma assímptota oblíqua, y = x, à esquerda e à direita e uma assímptota vertical, x = 0, à esquerda e à direita. $f'(x) = \frac{x^2+4}{x^2}$, $x \neq 0$. A função f não tem extremos e é crescente em $] \infty, 0[$ e em $]0, +\infty[$. $f''(x) = \frac{-8}{x^3}$, $x \neq 0$. A função f não tem pontos de inflexão. A função f é convexa no intervalo $]-\infty, 0[$ e côncava no intervalo $]0, +\infty[$.
 - (c) O domínio da função f é $\mathbb{R} \setminus [-1,1]$. Os zeros da função f são os pontos $-\sqrt{2}$ e $\sqrt{2}$. A função f tem uma assímptota vertical à esquerda, x=-1, e uma assímptota vertical à direita, x=1. $f'(x)=\frac{2x}{x^2-1}, \ |x|>1$. A função f não tem extremos. A função f é decrescente no intervalo $]-\infty,-1[$ e crescente no intervalo $]1,\infty[$. $f''(x)=\frac{(-2)(x^2+1)}{(x^2-1)^2}, \ |x|>1$. A função f não tem pontos de inflexão e é côncava.
 - (d) O domínio da função f é \mathbb{R} . A função possui um único zero, 1, e não tem assímptotas. $f'(x) = \begin{cases} \ln x + 1 & \text{se } x > 0 \\ \frac{-1}{2\sqrt{(1-x)}} & \text{se } x < 0 \end{cases}$. A função f possui um extremo no ponto $x = \frac{1}{e}$. A função f é decrescente nos intervalos $]-\infty,0[$ e $]0,\frac{1}{e}[$ e crescente no intervalo $]\frac{1}{e},+\infty[$. $f''(x) = \begin{cases} \frac{1}{x} & \text{se } x > 0 \\ -\frac{1}{4(1-x)^{\frac{3}{2}}} & \text{se } x < 0 \end{cases}$ A função f não tem pontos de inflexão. A função f é côncava em $]-\infty,0[$ e é convexa em $]0,+\infty[$.

Seja K uma constante real arbitrária:

(i)
$$\frac{5}{4}x^4 + 2\sin x + K$$

(j)
$$2t^4 - 4t^{\frac{3}{2}} - \frac{1}{2}t^{-2} + K$$

(k)
$$\frac{1}{3}x^3 - 2x - \frac{1}{x} + K$$

(1)
$$\frac{1}{\cos x} + K$$

(m)
$$-\sqrt{3}\cos x + \frac{1}{2}\ln|x| + K$$

(n)
$$\ln(1+x^2) + K$$

(o)
$$\frac{2}{3}\sin^{\frac{3}{2}}x + K$$

(p)
$$\frac{1}{4} \ln^4 |x| + K$$

(q)
$$e^{x^2} + K$$

(r)
$$\arctan \sqrt{x} + K$$

(s)
$$\sin x - \frac{1}{3}\sin^3 x + K$$

67.

(a)
$$x \tan x + \ln|\cos x| + K$$

(b)
$$\frac{-1}{2}e^x \cos x + \frac{1}{2}e^x \sin x + K$$

(c)
$$x \ln x - x + K$$

(d)
$$x \arctan x - \frac{1}{2} \ln(1 + x^2) + K$$

(e)
$$\frac{1}{2} \frac{\sin x}{\cos^2 x} + \frac{1}{2} \ln|\sec x + \tan x| + K$$

(f)
$$-\frac{5}{16}\cos 5x\cos 3x - \frac{3}{16}\sin 5x\sin 3x + K$$

68.

(a)
$$2\sqrt{x} - x + \frac{2}{3}x^{3/2} - 2\ln(1+\sqrt{x}) + K$$

(a)
$$2\sqrt{x} - x + \frac{2}{3}x^{3/2} - 2\ln(1+\sqrt{x}) + K$$
 (b) $-6x^{1/6} + 2\sqrt{x} - \frac{6}{5}x^{5/6} + \frac{6}{7}x^{7/6} + 6\arctan x^{1/6} + K$

(c)
$$e^x - \arctan e^x + K$$

(d)
$$\arctan(\ln x) - \ln x + \frac{1}{3} \ln^3 x + K$$

(e)
$$\ln(2x) - \ln 2 \ln(\ln(4x)) + K$$

(f)
$$-\frac{4}{3}(1-\sqrt{x})^{3/2}+K$$

69. $Q(t) = -ECe^{-\alpha t} \left(\frac{\alpha}{\omega}\sin\omega t + \cos\omega t\right) + EC.$

(a)
$$\frac{1}{2}x\sqrt{9-x^2} + \frac{9}{2}\arcsin\frac{x}{3} + K$$

(b)
$$\arcsin \frac{e^x}{2} + K$$

(c)
$$\frac{2}{9}\sqrt{2+6x+9x^2} + \frac{13}{9}\ln\left|\sqrt{2+6x+9x^2} + 3x + 1\right| + K$$

(d)
$$-\frac{1}{2} \frac{1}{(3+\ln x)^2} + K$$

(e)
$$-\arcsin\frac{1-x}{3} + K$$

(f)
$$-2\sqrt{\cos x} + \frac{2}{5}(\cos x)^{\frac{5}{2}} + K$$

(g)
$$-\frac{\sqrt{5-x^2}}{5x} + K$$

(h)
$$\frac{\sqrt{2}}{2} \ln \left| \frac{x}{\sqrt{2} + \sqrt{2 + x^2}} \right| + K$$

(i)
$$\frac{1}{2}x\sqrt{4+5x^2} + \frac{2\sqrt{5}}{5}\ln\frac{\left|\sqrt{4+5x^2} + \sqrt{5}x\right|}{2} + K$$
 (j) $-\frac{2}{105}(1-x)^{3/2}(8+12x+15x^2) + K$

(j)
$$-\frac{2}{105}(1-x)^{3/2}(8+12x+15x^2)+K$$

(a)
$$x + \frac{1}{2}x^2 + \frac{7}{2}\ln|-2 + x| - \frac{1}{2}\ln|x| + K$$

(b)
$$\frac{1-2x}{(-1+x)^2} + \ln|-1+x| + K$$

(c)
$$\frac{2}{5} \arctan x + \frac{3}{10} \ln |1 + 2x| + \frac{1}{10} \ln |1 + x^2| + K$$

(d)
$$-\frac{\sqrt{14}}{14} \arctan \frac{1+x}{\sqrt{14}} + \frac{1}{2} \ln|15+2x+x^2| + K$$

(e)
$$\frac{1}{4} \frac{-2x-5}{x^2+2x+3} - \frac{\sqrt{2}}{4} \arctan \frac{1+x}{\sqrt{2}} + \frac{5}{4} \ln|1+x| - \frac{1}{8} \ln|3+2x+x^2| + K$$

(f)
$$-\frac{1}{1+x^2} - 3\arctan x + \frac{5}{2}\ln(1+x^2) + K$$

- 72. f é integrável em [-1,2]; g é integrável em [0,3]; h não é integrável em [0,1]; i não é integrável em $[0,\pi]$; j é integrável em [1,5].
- 73. A função g é integrável em [0,2] com $\int_0^2 g(x) \ dx = 2$.

75.

$$F_1'(x) = \ln x;$$

$$F_2'(x) = 2x\sqrt{1+x^8} - \frac{\sqrt{1+\ln^4 x}}{x};$$

$$F_3'(x) = 2xe^{-x^4} - e^{-x^2};$$

$$F_4'(x) = \frac{\cos x}{2\sqrt{x}} + \frac{\cos(1/x^2)}{x^2};$$

$$F_5'(x) = \frac{\sin(2x)}{2}\cos(\sin x) - 2x(x^2 + 1)\cos(x^2 + 1); \quad F_6'(x) = 3x^2 \int_1^x e^{-s^2} ds + x^3 e^{-x^2};$$

$$F_7'(x) = \int_0^x e^{-s^2} \, ds;$$

$$F_8'(x) = \sin(x^2) + e^{-x^2};$$

$$F_9'(x) = 3x^2 \ln(x^6 + 1) + \sin(x) \ln(\cos^2 x + 1).$$

76.
$$F'(x) = 2(x+1) \int_0^{\sin x} \arcsin t \, dt + x(x+1)^2 \cos x.$$

77.
$$k = 2e^{-1}$$
.

78.
$$F''(x) = e^{-x^2}$$

79.
$$F(3) = \int_0^9 f(t) \, dt$$
 é máximo local.

80. (a)
$$P = \frac{5}{6}$$
.

(b)
$$x = 2\sqrt{3}$$
.

82.

- (a) $1 + \frac{\pi}{2}$
- (c) $\frac{1 \cos(3)}{6}$
- (e) $\frac{7}{4}$
- (g) $\frac{\pi}{4}$
- (i) ln 2
- (k) $\arctan(e) \frac{\pi}{4}$
- (m) $\frac{\pi}{6}$
- (o) $\ln\left(\frac{9}{8}\right)$
- (q) $1 \ln(3) \ln \frac{1 + \ln 3}{\ln 3}$
- (s) $\frac{1+e^2}{4}$
- 83. $\frac{5}{3}$
- 84. $\frac{1}{2} \ln \frac{125}{104}$
- 85. $4\sqrt{2}$

86.

- (a) —
- (b) $\frac{37}{6}$
- 87. $4\sqrt{2} 4\ln(\sqrt{2} 1)$
- 88. —

89.

(a) 1

(b) π

(c) divergente

(d) 2

- (e) divergente
- (f) divergente

- (d) $2(2 \ln 3)$
- $(f) \frac{1}{2} \ln \left(\frac{3}{2} \right)$
- (h) $\frac{2}{3}$
- (j) $1 \cos(1)$
- (l) $\frac{1}{4} + \frac{\pi}{8}$
- $(n) \ \frac{526}{15} 32 \ln(3)$
- (p) $\ln(1+\sqrt{2})$
- (r) $4 2\sqrt{e}$
- (t) $\frac{8}{3}$