Intermediate Microeconomics Spring 2025

Week 11a: Imperfect Competition

Yuanning Liang

Oligopoly

- □ A market with relatively few firms but more than one
- ☐ Possibility of strategic interaction among firms
- □ Difficult to predict exactly the possible outcomes for price and output

Pricing Under Homogeneous Oligopoly

- ☐ We will assume that the market is *perfectly* competitive on the demand side
 - there are many buyers, each of whom is a price taker
- □ We will assume that the good obeys the law of one price
 - this assumption will be relaxed when product differentiation is discussed

Pricing Under Homogeneous Oligopoly

- □ We will assume that there is a relatively small number of identical firms (n)
 - we will initially start with n fixed, but later allow n to vary through entry and exit in response to firms' profitability
- \square The output of each firm is q_i (i=1,...,n)
 - symmetry in costs across firms will usually require that these outputs are equal

Pricing Under Homogeneous Oligopoly

□ The inverse demand function for the good shows the price that buyers are willing to pay for any particular level of industry output

$$P = f(Q) = f(q_1+q_2+...+q_n)$$

□ Each firm's goal is to maximize profits

$$\pi_{i} = f(Q)q_{i} - C_{i}(q_{i})$$

$$\pi_{i} = f(q_{1} + q_{2} + ...q_{n})q_{i} - C_{i}$$

Oligopoly Pricing Models

- ☐ The <u>quasi-competitive model</u> assumes pricetaking behavior by all firms
 - P is treated as fixed
- ☐ The <u>cartel model</u> assumes that firms can <u>collude</u> perfectly in choosing industry output and *P*

Oligopoly Pricing Models

- ☐ The Cournot model assumes that firm *i* treats firm *j*'s output as fixed in its decisions
- ☐ The <u>conjectural variations model</u> assumes that firm *j*'s output will respond to variations in firm *i*'s output

Quasi-Competitive Model

- ☐ Each firm is assumed to be a price taker
- □ The first-order condition for profit-maximization is

$$\partial \pi_i / \partial q_i = P - (\partial C_i / \partial q_i) = 0$$

$$P = MC_i (q_i) \quad (i=1,...,n)$$

□ Along with market demand, these n supply equations will ensure that this market ends up at the short-run competitive solution

Quasi-Competitive Model

Bertrand Model

- □ Two identical firms
 - Producing *identical* products at a constant MC = c
 - Choose prices p_1 and p_2 **simultaneously**
 - ☐ <u>Single</u> period of competition
 - How Sales get split
 - ☐ All sales go to the firm with the lowest price
 - \square Sales are **split evenly** if $p_1 = p_2$

Bertrand Model: The Only Pure-strategy Nash equilibrium

- □ The Only Pure-strategy Nash equilibrium: $p_1^* = p_2^* = c$
 - Both firms are playing a best response to each other
 - Neither firm has an incentive to deviate to some other strategy
- □ A formal proof should verify that all other cases are not Nash equilibrium
 - Let's focus on cases where $p_1 \le p_2$
 - Three cases: $p_1^* < c$, $p_1^* > c$, $p_1^* = c$

Bertrand Model: The Only Pure-strategy Nash equilibrium

- $\blacksquare \text{ If } p_1 < c \pmod{p_1 \le p_2}$
 - Profit would be negative, should deviate to $p_1 = c$
- $\blacksquare \text{ If } p_1 > c \quad (and \ p_1 \le p_2)$
 - Firm 2 could gain by *undercutting* the price of firm 1 and captures all the market
- $\blacksquare \text{ If } p_1 = c \quad (and \ p_1 \le p_2)$
 - If $p_1 < p_2$, then firm 1 can raise price **slightly over** c but still lower than P_2 , and earn higher profit (because it still gets the whole market)
- ☐ The Only Pure-strategy Nash equilibrium: $p_1^* = p_2^* = c$

Bertrand Model

- \square For any number of firms $n \ge 2$
 - The same result
 - Nash equilibrium of the *n*-firm Bertrand game is p_1^* = p_2^* = ... = p_n^* = c
- ☐ The <u>Bertrand paradox</u>
 - The Nash equilibrium of the Bertrand model is the same as the perfectly competitive outcome even though there are only two firms
 - ☐ Price is set to marginal cost
 - ☐ Firms earn zero profit

Bertrand Model

- ☐ The Bertrand paradox
 - General: holds for any c and any downwardsloping demand curve
 - Not general: can be undone by changing assumptions:
 - ☐ Choosing quantity rather than price
 - ☐ Facing <u>capacity constraint</u>
 - □ Products slightly <u>differentiated</u> (not perfect substitute)
 - ☐ Repeated <u>interaction</u>

- □ The assumption of price-taking behavior may be inappropriate in oligopolistic industries
 - each firm can recognize that its output decision will affect price
- □ An alternative assumption would be that firms act as a group and coordinate their decisions so as to achieve monopoly profits

 \square In this case, the cartel acts as a multiplant monopoly and chooses q_i for each firm so as to maximize total industry profits

$$\pi = PQ - [C_1(q_1) + C_2(q_2) + ... + C_n(q_n)]$$

 \square If write everything in terms of q_i

$$\pi = f(q_1 + q_2 + ... + q_n)[q_1 + q_2 + ... + q_n] - \sum_{i=1}^{n} C_i(q_i)$$

The first-order conditions for a maximum are that

$$\frac{\partial}{\partial q_i} \left(\sum_{j=1}^n \pi_j \right) = P(Q) + P'(Q) \sum_{j=1}^n q_j \left[+ C'_i(q_i) = 0 \quad \text{for } i = 1, \dots, n \right]$$

This implies that

$$MR(Q) = MC_i(q_i)$$

 At the profit-maximizing point, marginal revenue will be equal to each firm's marginal cost

- □ There are three problems with the cartel solution
 - these monopolistic decisions may be illegal
 - it requires that the directors of the cartel know the market demand function and each firm's marginal cost function
 - the solution may be unstable
 - \square each firm has an incentive to expand output because $P > MC_i$

Cournot Model

- \square Each firm recognizes that its own decisions about q_i affect price
 - \triangleright $\partial P/\partial q_i \neq 0$
- □ However, each firm believes that its decisions do not affect those of any other firm

Cournot Model

 \square Firm i's profit = total revenue – total cost

$$\pi_i = P(Q)q_i - C_i(q_i)$$

☐ First-order conditions for profit maximization:

$$\frac{\partial \pi_i}{\partial q_i} = \underbrace{P(Q) + P'(Q)q_i}_{\mathsf{MR}} - \underbrace{C'_i(q_i)}_{\mathsf{MC}} = 0$$

- Maximize profit where $MR_i = Mc_i$
 - \Box the firm assumes that changes in q_i affect its total revenue only through their direct effect on market price

Cournot Model

- ☐ Each firm's output will exceed the cartel output
 - the firm-specific marginal revenue is larger than the market-marginal revenue
 - $P(Q) + P'(Q)q_i > P(Q) + P'(Q)Q$
- □ Each firm's output will fall short of the competitive output
 - $q_i \cdot \partial P/\partial q_i < 0$

Bertrand vs. Cournot vs. Cartel

- In Cournot game, industry profits
 - Lower than in the cartel model (P_AAEP_C <P_MMDP_C)
- DWL
 - Smaller in the Cournot model (3) than in the cartel situation (1+2+3)

Varying the Number of Cournot Firms

- □ The Cournot model
 - Can represent the whole range of outcomes by varying the number of firms
 - \blacksquare $n = \infty \Rightarrow$ perfect competition
 - \blacksquare $n = 1 \Rightarrow$ perfect cartel / monopoly
- □ *n* identical firms
 - Same cost function $C(q_i)$
 - In equilibrium, each produces $q_i = Q/n$

Varying the Number of Cournot Firms

- \square Difference between price and marginal cost: P'(Q)Q/n
 - The wedge term disappears as *n* grows large; firms become infinitesimally small price takers
 - ☐ Price approaches marginal cost
 - □ Market outcome approaches the perfectly competitive one
 - As n decreases to 1: the Cournot outcome approaches that of a perfect cartel

Conjectural Variations Model

- ☐ In markets with only a few firms, we can expect there to be strategic interaction among firms
- One way to build strategic concerns into our model is to consider the assumptions that might be made by one firm about the other firm's behavior

Conjectural Variations Model

- □ For each firm i, we are concerned with the assumed value of $\frac{\partial q_j}{\partial q_i}$ for $i \neq j$
- because the value will be speculative, models based on various assumptions about its value are termed <u>conjectural variations models</u>
 - they are concerned with firm i's conjectures about firm j's output variations

Conjectural Variations Model

□ The first-order condition for profit maximization becomes

$$\frac{\partial \pi_{i}}{\partial q_{i}} = P + q_{i} \left[\frac{\partial P}{\partial q_{i}} + \sum_{j \neq i} \frac{\partial P}{\partial q_{j}} \cdot \frac{\partial q_{j}}{\partial q_{i}} \right] - MC_{i}(q_{i}) = 0$$

The firm must consider how its output decisions will affect price in two ways

- directly
- indirectly through its effect on the output decisions of other firms

Practice example: Natural Springs Duopoly

- Assume that there are two owners of natural springs
 - each firm has no production costs
 - each firm has to decide how much water to supply to the market
- □ The demand for spring water is given by the linear demand function

$$Q = q_1 + q_2 = 120 - P$$

Natural Springs Duopoly

☐ In a Bertrand model, what are the market price and the quantity supplied?

$$P = 0, Q = 120$$

Natural Springs Duopoly

□ In a Cartel model, what are the market price and the quantity supplied?

P = 60, Q = 60

Cournot's Natural Springs Duopoly

☐ In a Cournot model, what are the market price and the quantity supplied?

$$P = 40, Q = 80, q_1 = q_2 = 40$$

最大化利润的first order condition就是best-response function

EXAMPLE 15.2 Cournot Best-Response Diagrams

- Solve for the Nash equilibrium using graphical methods
 - Graph the intercepts of the best-response functions
 - Intersection between the best responses is the Nash equilibrium
- An isoprofit curve for firm 1
 - Is the locus of quantity pairs providing it with the same profit level

Best-Response Diagram for Cournot Duopoly

Demand: P(Q) = a-Q

Cost: $C_i(q_i) = cq_i$

 Solve for the Cournot firms' best response functions.

Best-Response Diagram for Cournot Duopoly

Best-Response Diagram for Cournot Duopoly

Demand: P(Q) = a-Q

Cost: $C_i(q_i) = cq_i$

- Firms' best responses are drawn as thick lines;
 - Their intersection (E) is the Nash equilibrium of the Cournot game.

$$q_1 = \frac{a - q_2 - c}{2}$$
 $q_2 = \frac{a - q_1 - c}{2}$

- An iso-profit curve for firm 1
 - Is the *locus* of quantity pairs providing it with the same profit level

Iso-profit curve: inverse U-shape

- As q_1 was close to 0 and q_1 increases, $100/q_1$ dominates, and q_1+100/q_1 decreases if $q_1<10$
 - So if q₁<10, q₂ must be increasing to keep profit constant at 100
- As q_1 increases further (>10), q_1 will begin to dominate, and q_1+100/q_1 increases
 - So q₂ must be decreasing to keep profit constant at 100

Iso-profit curve

 As profit increases from 100 to 200 to yet higher levels, the associated isoprofits shrink down to the monopoly point, which is the highest isoprofit on the diagram.

Question: Why does firm 1's individual isoprofit reach a peak on its best-response function?

Highest q_2 On this curve:

$$q_1^*=10, q_2^*=a-c-20$$

Bring q_2^* to the best-response curve:

$$q_{1} = \frac{a - q_{2} - c}{2}$$

$$= \frac{a - c - (a - c - 20)}{2}$$

$$= 10$$

Intuition: On firm 1's best-response function, for a given level of q2

- If firm 1 increases its output q1, profit will decrease.
- If firm 1 decreases its output q1, profit will also decrease.

Hence, the point on the best-response function is at the peak of the isoprofit curve.

Best-response diagrams
$$q_1 = \frac{a - q_2 - c}{2}$$

$$q_1 = \frac{a - q_2 - c}{2}$$

$$q_2 = \frac{a - q_1 - c}{2}$$

- Panel (a) depicts an increase in both firms' marginal costs, c, shifting their best responses inward.
- If marginal costs are different as in Panel (b), output q₁ is lower, q₂ is higher.
- What about an increase in the preference parameter, α ?

Practice example:

- Let c_i be the constant marginal and average cost for firm i (so that firms may have different marginal costs). Suppose demand is given by P=1-Q.
- □ 1. Calculate the Nash equilibrium quantities assuming there are two firms in a Cournot market. Also compute market output, market price, firm profits, industry profits, consumer surplus, and total welfare.
- □ 2. Represent the Nash equilibrium on a best-response function diagram. Show how a reduction in firm 1's cost would change the equilibrium. Draw a representative isoprofit for firm 1.