Fellowwind

https://linkedin.com/in/brianbonk
https://brianbonk.dk
https://github.com/brianbonk

FastTrack Recognized Solution Architect Power BI 2022 >> Certified Trainer Data Platform

2018 >>

AGENDA

- The history of Kusto
- Where does Kusto and RTA fit in the Data area
- RTA in Fabric incl. roadmap
- Capabilities using Kusto
- Get started for free
- Introduction to the KQL language
- Kusto functions
- Notebooks with Magic
- Visualisation
- Dash-boarding

Jaques Cousteau 1910-1997

Jaques Cousteau 1910-1997

The history of Kusto

CMPivot

It all starts with data

Telemetry – a key data for digital transformation

Telemetry – a key data for digital transformation

Telemetry – a key data for digital transformation

■ Sqlbits

Cybersecurity
Asset tracking and management
Predictive maintenance
Supply chain optimization
Customer experience
Energy management
Inventory management
Quality control
Environmental monitoring
Fleet management
Health and safety

Microsoft Fabric

Store data

OneLake

Microsoft Fabric

Store data

OneLake

Microsoft Fabric

Event ingestion

Real-Time analytics

Synapse Data

Engineering

Real-Time dashboards

Real-Time triggers

Real-Time Al

Real-Time applications

Event driven actions

Get data

Data Factory

Prepare data

Synapse Data Warehouse

Synapse Data Science

Synapse Real-Time Analytics

Use data

Data Activator

Power BI

Fabric Real-time Analytics solution enables organizations to consume vast amount of data, focus and scale up their Analytics solution with data in motion, empower their business analysts, and democratize their data for citizen data scientists and Data Engineers

Streaming data with ease

EVENTSTREAM

The brand-new event stream service, leverages the ability to get data from several sources of streaming data and save it to a wide variety of destinations, including OneLake, KQL databases and Azure services.

The service computes the data once and can pipe it out to several destinations at once. All configured and maintained from within the Microsoft Fabric portal and "coded" with your mouse.

Imagine scenarios of IoT devices loading data to both the data warehouse and other 3-rd party destinations – this can now be done using the low-code approach from Event Stream.

Data Activator

Unlimited Scale (query, ingestion Any data source Any data format and storage) KQL database Real-time Structured transformation og Streaming analytics in Key capabilities Semi-structured Near-Real-Time complicated data Free-text strcutures High performance Everything is indexed Low latency Timeseries database and partitioned High freshness

Real-Time Analytics

Get started for free

https://dataexplorer.azure.com/freecluster https://detective.kusto.io

The language and structure

The language and structure

Using the Notebook feature in Azure Data Studio to demo

Get the database id from your Fabric Kusto cluster

print strcat("Database in scope: ", current_database())

The language and structure

KQL


```
NYCTaxi
| where passenger_count > 1
| project passenger_count, total_amount, VendorID, fare_amount
| extend AmtPsngr = total_amount / passenger_count
| where AmtPsngr > 10
| summarize TotalAmount = sum(total_amount), AvgAmtPsngr = avg(AmtPsngr) by VendorID
| where VendorID <> 1
```

Kusto in Power Bl

Forget everything you know about

query performance vs data types &

data modelling best practices

Data modelling Kusto in Power Bl

- Single table reporting can be a good option, if you can include all columns from dimensions to the table
- M:M relations are hard to avoid, but not a big deal →
 all queries will be translated to KQL
- All dimensions must be tagged with "IsDimension=true"
- Dimensions can be imported if they are <1 mio rows.
- INTEGER and DECIMAL er slow joins compared to STRING

Harness the Power (BI) of Kusto

Let Power BI build the KQL

- In Power Query
- Using DAX

Or build a Kusto function

Analysis and reporting

Functions

Functions in Kusto is equivalent to a stored procedure in the SQL world.

With additional functionality to be able to go outside of the cluster and service and ask for data from a different place in the world.

```
.create-or-alter function GetSysLogs(TimeWindow:string , Bucket:string )
{
   cluster('help').database('SampleLogs').RawSysLogs
   | where timestamp > ago(totimespan(TimeWindow))
   | summarize LogCount=count() by name, bin(timestamp, totimespan(Bucket))
   | order by timestamp asc
}
// to execute the function
GetSysLogs('5d','1h')
```


Data discovery and outlier detection

Data discovery is what we've just been through – use select statements and filter your data to find and explore the data given to you.

RENDERING!!

```
NYCTaxi
| where tpep_pickup_datetime between (datetime(2009-01-01)..datetime(2015-01-01))
| extend PickUpdate = startofday(tpep_pickup_datetime)
| summarize SumPsngrCount = sum(passenger_count) by PickUpdate
| project PickUpdate, SumPsngrCount
| render timechart
    with(
        title = "timechart"
        ,xtitle = "Time"
        ,ytitle = "Fares"
    )
```

Data discovery and outlier detection

```
Outliers series_outliers() - LINK
series_decompose() - LINK
series_decompose_anomalies() - LINK
series_decompose_forecast() - LINK
```

```
range x from 0 to 364 step 1
| extend t = datetime(2023-01-01) + 1d*x
| extend y = rand() * 10
// generate a sample series with outliers at first day of each month
| extend y = iff(monthofyear(t) != monthofyear(prev(t)), y+20, y)
| summarize t = make_list(t), series = make_list(y)
| extend outliers=series_outliers(series)
| extend pos_anomalies = array_iff(series_greater_equals(outliers, 1.5), 1, 0)
| render anomalychart with(xcolumn=t, ycolumns=series, anomalycolumns=pos_anomalies)
```

Analysis and reporting

Real-Time Analytics Dashboards

Dashboards in RTA – on the roadmap...

Image from James Westall

Thank you

Connect with me at:

in https://linkedin.com/in/brianbonk

https://brianbonk.dk

https://github.com/brianbonk

