ALGORITHM FEBENII

using the Taylor
method for highaccuracy integration
of non-stiff problems

ANDREW REAGAN
DEPARTMENT OF MATH
UNIVERSITY OF VERMONT

ALGORITHMIC DIFFERENTIATION

The basics, main theorem, example

ADVANTAGES AND DISADVANTAGES

Why do we want to use this

IMPLEMENTATION DETAILS

Operator overloading and source code transformation

MAIN RESULTS: 3-BODY PROBLEM

ALGORITHMIC DIFFERENTIATION

The basics, main theorem, example

ADVANTAGES AND DISADVANTAGES

Why do we want to use this

IMPLEMENTATION DETAILS

Operator overloading and source code transformation

MAIN RESULTS: 3-BODY PROBLEM

ALGORITHMIC DIFFERENTIATION

The basics, main theorem, example

ADVANTAGES AND DISADVANTAGES

Why do we want to use this

IMPLEMENTATION DETAILS

Operator overloading and source code transformation

MAIN RESULTS: 3-BODY PROBLEM


```
VACC happy%
VACC happy% cat tbp.in
/* ODE specification: tbp
   Two body problem, discretized into
   a set of four ODE's. */
diff(x1, t) = x3;
diff(x2, t) = x4;
diff(x3, t) = -x1/((x1^2+x2^2)^(3/2));
diff(x4, t) = -x2/((x1^2+x2^2)^(3/2));
ecc = 0.6; /* 1-ecc, 0, 0, -sqrt((1+ecc)/(1-ecc)); */
initial values= 0.4, 0, 0, -2;
start time= 0.0;
stop time = 500.0;
absolute error tolerance = 0.1e-16;
relative error tolerance = 0.1e-16;
VACC happy% cat make.sh
# make the executable
./taylor -name tbp -o tbp.c -jet -step tbp.in
./taylor -name tbp -o taylor.h -header
./taylor -name tbp -o main tbp.c -main only tbp.in
gcc -03 main tbp.c tbp.c -lm -sVACC happy%
VACC happy%
```

ALGORITHMIC DIFFERENTIATION

The basics, main theorem, example

ADVANTAGES AND DISADVANTAGES

Why do we want to use this

IMPLEMENTATION DETAILS

Operator overloading and source code transformation

MAIN RESULTS: 3-BODY PROBLEM

THANK YOU