Completeness of FOL=

LOGIC I Benjamin Brast-McKie November 26, 2024

Basic Lemmas

- **L9.1** If $\hat{a}(\alpha) = \hat{c}(\alpha)$ for all free variables α in a wff φ , then $\mathcal{V}_{\mathcal{T}}^{\hat{a}}(\varphi) = \mathcal{V}_{\mathcal{T}}^{\hat{c}}(\varphi)$.
- **L11.5** $\mathcal{V}_{\mathcal{T}}^{\hat{a}}(\varphi) = \mathcal{V}_{\mathcal{T}}^{\hat{a}}(\varphi[\beta/\alpha])$ if $\mathfrak{v}_{\mathcal{T}}^{\hat{a}}(\alpha) = \mathfrak{v}_{\mathcal{T}}^{\hat{a}}(\beta)$ and β is free for α in φ .
- **L11.6** If \mathcal{M} and \mathcal{M}' have the same domain \mathbb{D} where $\mathcal{I}(\mathcal{F}^n) = \mathcal{I}'(\mathcal{F}^n)$ and $\mathcal{I}(\alpha) = \mathcal{I}'(\alpha)$ for every n-place predicate \mathcal{F}^n and constant α that occurs in a wff φ , then $\mathcal{V}^{\hat{n}}_{\mathcal{I}}(\varphi) = \mathcal{V}^{\hat{n}}_{\mathcal{I}'}(\varphi)$ for any v.a. \hat{a} defined over \mathbb{D} .
- **L12.1** If α is a constant and X is an FOL⁼ derivation in which the constant β does not occur, then $X[\beta/\alpha]$ is also an FOL⁼ derivation.
- **L12.3** If $\Lambda \cup \{\varphi\}$ is inconsistent, then $\Lambda \vdash \neg \varphi$.
- **L12.4** If $\Lambda \vdash \varphi$ and $\Pi \cup \{\varphi\} \vdash \psi$, then $\Lambda \cup \Pi \vdash \psi$.
- **L12.6** If $\Lambda \cup \{\varphi\}$ and $\Lambda \cup \{\neg \varphi\}$ are both inconsistent, then Λ is inconsistent.
- **L12.9** If $\Lambda \vdash \varphi$ and $\Lambda \vdash \neg \varphi$, then Λ is inconsistent.
- **L12.11** If $\Lambda \vdash \varphi$, then $\Lambda \cup \Pi \vdash \varphi$.

Completeness

T12.1 Every consistent set of $\mathcal{L}^=$ wfss Γ is satisfiable.

Completeness: If $\Gamma \models \varphi$, then $\Gamma \vdash \varphi$.

- Assuming $\Gamma \models \varphi$, we know $\Gamma \cup \{\neg \varphi\}$ is unsatisfiable (check).
- So $\Gamma \cup \{\neg \varphi\}$ is inconsistent by **T12.1**.
- So $\Gamma \vdash \neg \neg \varphi$ by **L12.3**, and so $\Gamma \vdash \varphi$ by DN and **L12.4**.

Assume: Let Γ be a set of $\mathcal{L}^{=}$ wfss that is consistent in FOL⁼.

Saturation

Extension: Let $\mathcal{L}_{\mathbb{N}}^{=}$ include the extra constants \mathbb{N} .

• Let \mathbb{C} be the set of all constants in $\mathcal{L}_{\mathbb{N}}^{=}$.

Free: Let $\varphi(\alpha)$ be a wff of $\mathcal{L}_{\mathbb{N}}^{=}$ with at most one free variable α .

Saturated: A set of wfss Σ is SATURATED in $\mathcal{L}_{\mathbb{N}}^{=}$ just in case for each wff $\varphi(\alpha)$ of $\mathcal{L}_{\mathbb{N}}^{=}$, there is a constant β where $(\exists \alpha \phi \to \phi[\beta/\alpha]) \in \Sigma$.

L12.2 Γ is consistent in FOL $_{\mathbb{N}}^{=}$.

We will hence forth take 'consistent' to mean 'consistent in FOL_N.

Free Enumeration: Let $\varphi_1(\alpha_1)$, $\varphi_2(\alpha_2)$, $\varphi_3(\alpha_3)$,... enumerate all wffs of $\mathcal{L}_{\mathbb{N}}^=$ with at most one free variable.

Witnesses: $\theta_1 = (\exists \alpha_1 \varphi_1 \to \varphi_1[n_1/\alpha_1])$ where $n_1 \in \mathbb{N}$ is the first constant not in φ_1 .

 $\theta_{k+1} = (\exists \alpha_{k+1} \varphi_{k+1} \to \varphi_{k+1} [n_{k+1}/\alpha_{k+1}])$ where $n_{k+1} \in \mathbb{N}$ is the first constant not in φ_{k+1} or θ_j for any $j \leq k$.

Saturation: $\Sigma_0 = \Gamma$, $\Sigma_{n+1} = \Sigma_n \cup \{\theta_{n+1}\}$, and $\Sigma_{\Gamma} = \bigcup_{i \in \mathbb{N}} \Sigma_n$.

L12.5 Σ_{Γ} is consistent and saturated in $\mathcal{L}_{\mathbb{N}}^{=}$.

Base: $\Sigma_0 = \Gamma$ is consistent.

• Immediate from L12.2.

Induction: Assume Σ_m is consistent.

- Assume $\Sigma_{m+1} = \Sigma_m \cup \{\theta_{m+1}\}$ is inconsistent for contradiction.
- So $\Sigma_m \vdash \neg \theta_{m+1}$ by **L12.3**, and so $\Sigma_m \vdash \neg (\exists \alpha_{m+1} \varphi_{m+1} \rightarrow \varphi_{m+1} [n_{m+1} / \alpha_{m+1}])$.
- So $\Sigma_m \vdash \exists \alpha_{m+1} \varphi_{m+1}$ and $\Sigma_m \vdash \neg \varphi_{m+1} [n_{m+1} / \alpha_{m+1}]$ by derived PL rules.
- So $\Sigma_m \vdash \forall \alpha_{m+1} \neg \varphi_{m+1}$ by $\forall I$ since n_{m+1} is not in $\forall \alpha_{m+1} \neg \varphi_{m+1}$ or Σ_m .
- So $\Sigma_m \vdash \neg \exists \alpha_{m+1} \varphi_{m+1}$ by $\forall \neg$, and so Σ_m is inconstant by **L12.9**.
- It follows by *reductio* that Σ_{m+1} is consistent.
- By weak induction, we know that Σ_k is consistent for all $k \in \mathbb{N}$.

Limit: If Σ_{Γ} is inconsistent, then X derives \bot from Σ_{Γ} in FOL $_{\mathbb{N}}^{=}$.

- Since *X* is finite, $\Sigma_m \vdash \bot$ for some $m \in \mathbb{N}$ including all premises in *X*.
- So Σ_m is inconsistent, contradicting the above.
- By *reductio*, Σ_{Γ} is consistent.

Maximization

Maximal: A set of wfss Δ is MAXIMAL in $\mathcal{L}_{\mathbb{N}}^{=}$ just in case either $\psi \in \Delta$ or $\neg \psi \in \Delta$ for every wfs ψ in $\mathcal{L}_{\mathbb{N}}^{=}$.

Full Enumeration: Let $\psi_0, \psi_1, \psi_2, \dots$ enumerate all wfss in $\mathcal{L}_{\mathbb{N}}^{=}$.

Maximization: $\Delta_0 = \Sigma_{\Gamma}$,

$$\Delta_{n+1} = \begin{cases} \Delta_n \cup \{\psi_n\} & \text{if } \Delta_n \cup \{\psi_n\} \text{ is consistent} \\ \Delta_n \cup \{\neg \psi_n\} & \text{otherwise.} \end{cases}$$
 $\Delta_{\Sigma} = \bigcup_{i \in \mathbb{N}} \Delta_i.$

L12.7 $\Delta = \Delta_{\Sigma_{\Gamma}}$ is maximal in $\mathcal{L}_{\mathbb{N}}^{=}$ and consistent.

Base: $\Delta_0 = \Sigma_{\Gamma}$ is consistent by **L12.5**.

Induction: Assume Δ_n is consistent.

• Want to show that Δ_{n+1} is consistent.

Case 1: If $\Delta_n \cup \{\psi_n\}$ is consistent, then $\Delta_{n+1} = \Delta_n \cup \{\psi_n\}$ is consistent.

Case 2: If $\Delta_n \cup \{\psi_n\}$ is inconsistent, then $\Delta_{n+1} = \Delta_n \cup \{\neg \psi_n\}$.

- Assume $\Delta_n \cup \{\neg \psi_n\}$ is inconsistent for contradiction.
- So Δ_n is inconsistent by **L12.6**.
- So Δ_{n+1} is consistent in both cases.

Limit If Δ is inconsistent, then Y derives \bot from Δ in FOL $_{\mathbb{N}}^{=}$.

- Since *Y* is finite, $\Delta_m \vdash \bot$ for some $m \in \mathbb{N}$ including all premises in *Y*.
- This contradicts the above, and so Δ is consistent by *reductio*.

Maximal: Let ψ be any wfs of $\mathcal{L}_{\mathbb{N}}^{=}$, and so $\psi = \psi_k$ for some $k \in \mathbb{N}$.

- By construction, $\psi_k \in \Delta_{k+1}$ or $\neg \psi_k \in \Delta_{k+1}$.
- Generalizing on ψ shows that Δ is maximal.

L12.8 $\Gamma \subseteq \Sigma_{\Gamma} \subseteq \Delta$ where Δ is saturated.

• Immediate from the definitions.

L12.10 $\varphi \in \Delta$ whenever $\Delta \vdash \varphi$.

- Assuming $\Delta \vdash \varphi$, we know $\Delta \not\vdash \neg \varphi$ by **L12.9**.
- So $\neg \varphi \notin \Delta$ since otherwise $\Delta \vdash \neg \varphi$.
- Thus $\varphi \in \Delta$ by maximality.