

Matching blood & saving lives, one drop at a time

Blood typing is more complex than you think

Significant need & market potential

14.5 Million

Blood transfusions

(per year in the US for surgeries, injuries or hemolytic illnesses)

3.93 Million

New births requiring prenatal blood screening (per year in the US)

Basic ABO Typing

- 2 major antigens: A & B
- 4 blood types easy to screen (A, B, AB, O)

Less Characterized Minor Antigens

- 40+ clinically significant minor antigen groups
- Often cause hemolytic reactions

Donor-recipient Compatibility

- Blood serum contains antibodies
- Antigens (major AND minor) on donor red blood cells (RBCs) must be compatible with patient antibodies

Current standard: cumbersome Coombs' Test

1. Recipient serum is obtained

Donor blood added to serum.Antibodies target RBCs

3. Add anti-human antibodies (Coombs' reagent). Agglutination occurs in positive reaction.

Source: Rad, 2006

- 1. Expensive: Requires lab space/equipment & trained technicians
- 2. Subjective: depends on technicians skill of reading agglutination
- 3. Slow: Speed is needed in emergency situations
- **4. Binary Readings:** Yes/no for ONE antigen instead of full characterization of all 40+ antigens

AccuDrop: "Coombs-on-a-Chip"

The Technology

- Photolithography to manufacture silicon master design
- 2) Poly (dimethylsiloxane) cast to create device with channels (200-1000 µm)

Source: Duffy DC, 1998

Introduce test serum to attached blood cells

Immunofluorescence using anti-human antibody

Device Schematic & Usage Steps

- Multiple channels with attached RBCs of different blood types.
- Channels that are highlighted in yellow (representative color) mark correctly identified antibodies in serum input (on the left) for donorrecipient compatibility.

An overarching snapshot of immunofluorescence shown on the left

2016 Development timeline and costs

February July March April May June Redesign and Conduct ease-of-Validate device Continue larger Begin exploring Design and iterate prototype use device testing data on larger population tests FDA device validate prototype (cost: \$325) (cost: dependent populations approval options Finalize device Develop on number of design Begin developing manufacturing Test alternative iterations; large-scale options fluorescence estimate \$500) File for provisional manufacturing methods (cost: patent (cost ≈ Finalize early Recruit volunteers options \$2000) \$1000) partnerships and for ease of use Seek financing customers device testing options (cost: \$0-\$200 for initial studies)

An experienced team

Advisors

- Dr. Dongeun Huh (Principal Investigator, Professor of Bioengineering)
- Dr. Donald Siegel (Principal Investigator, HUP Division of Transfusion Director)

Team

- Woo Byun (Research Scientist in Huh Lab)
- Vahid Hoshmand (MSE & BSE Bioengineering)
- Liz Hwang (Healthcare Management & Bioengineering)
- Kush Mehta (MSE & BSE Bioengineering)
- Nicholas Perkons (MD/PhD in Bioengineering)
- Carla Winter (BSE Bioengineering)

References

- CDC. "Births and Natality." CDC FastStats. Department of Health and Human Services, 20 July 2015. Web. 25 Nov. 2015. http://www.cdc.gov/nchs/fastats/births.htm.
- CDC. "Blood Safety Basics." Blood Safety. U.S. Department of Health and Human Services, 31 Jan. 2013. Web. 25 Nov. 2015. http://www.cdc.gov/bloodsafety/basics.html.
- Duffy DC, McDonald J, Schueller O, and Whitesides G. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Analytical Chemistry 70, 1998.

