Machine Learning

Basic Practice

Feature Engineering: Transform raw data into the dataset

Categorical data => numerical:

$$red = [1, 0, 0]$$

yellow = [0, 1, 0]
green = [0, 0, 1]

• Cannot simply use 1, 2, 3 because it implies an order.

Binning: Transform numerical data into categorical ones

Normalization:

$$\bar{x}^{(j)} = \frac{x^{(j)} - \min^{(j)}}{\max^{(j)} - \min^{(j)}},$$

• Standardization/z-score normalization:

$$\hat{x}^{(j)} = \frac{x^{(j)} - \mu^{(j)}}{\sigma^{(j)}}.$$

- \circ Normalize the distribution to have $\mu = 0$ and $\sigma = 1$
- Choose standardization:
 - Unsupervised learning
 - Bell shaped feature
 - o When have outliers
 - o Otherwise normalization

Data Imputation - Deal with missing feature

- 1. Replace the missing value of the feature with the average value of this feature in the dataset.
- 2. Set the missing value to be a value outside of the value range of the feature, and let the computer to learn how to deal with outliers.
- 3. Use missing values as targets

Learning Algorithm Selection

- 1. In-memory vs. out-of-memory
 - Can the data be fully loaded into the RAM?
 - o If not choose incremental learning algorithms
- 2. Categorical vs. numerical
- 3. Linear separable?

- Yes SVM w/ linear kernel, logistic regression
- No NNWs etc.
- 4. Prediction speed:
 - KNN is slow, so does deep/recurrent networks.

Scikit-Learn Algorithm

Regularization: Deal with overfitting

$$\min_{\mathbf{w},b} \left[C|\mathbf{w}| + \frac{1}{N} \sum_{i=1}^{N} (f_{\mathbf{w},b}(\mathbf{x}_i) - y_i)^2 \right],$$

- C ::= Hyperparameter
 - "Determines the tradeoff btw increasing the margin and ensuring each x lies on the right side."
- Usually chosen experimentally

 As C gets greater, the cost for misclassification (the second term of the function) becomes negligible. => SVM will try to find the highest margin by ignoring misclassification.

Model Performance Assessment

- 1. For REGRESSION:
 - Mean Squared Error
- 2. For CLASSIFICATION:
 - a. Accuracy / Cost-sensitive accuracy:

$$\operatorname{accuracy} \stackrel{\mathrm{def}}{=} \frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}.$$

b. Precision:

$$\operatorname{precision} \stackrel{\mathrm{def}}{=} \frac{\operatorname{TP}}{\operatorname{TP} + \operatorname{FP}}.$$

- "The proportion of relevant documents in all returned documents".
- Useful when solving a spam problem. People have more tolerance of not spamming junk mails over spamming important emails.
- c. Recall:

$$\operatorname{recall} \stackrel{\mathrm{def}}{=} \frac{\operatorname{TP}}{\operatorname{TP} + \operatorname{FN}}.$$

- "The ratio of the relevant documents returned o the total number of the relevant documents that could have been returned."

d. Confusion Matrix:

- Useful when accessing multi-class classification.
- In its (i,j) cell, it shows the number of instances i that were predicted to be in class j.

Figure 3: The area under the ROC curve (shown on gray).

- 1. Discretize the range of the confidence score.
 - If this range for a model is [0, 1], then you can discretize it like this: [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1].
 - 2. Use each discrete value as the prediction threshold, predict the labels of examples in your dataset using the model and this threshold.
- Can only be used to assess classifiers w/ return confidence score/probability of prediction
 - E.g. Logistic Regression, NNWs, Decision Tree
- The higher the AUC the better the classifier

Hyperparameter Tuning

How to select good hyperparameters like C for SVM?

1. Grid Search

- Use different different non-random value for different models and evaluate them to find the best one.
- 2. Random search and Bayesian hyperparameter optimization.

3. Cross-Validation

- Build model iteratively by dividing the dataset into subsets (called folds) and average them to get the final result.