Data Science for Engineers

Week 5 assignment

- 1. Which of the following statements is/are not TRUE with respect to the multi variate optimization?
 - I The gradient of a function at a point is parallel to the contours
 - II Gradient points in the direction of greatest increase of the function
 - III Negative gradients points in the direction of the greatest decrease of the function
 - IV Hessian is a non-symmetric matrix
 - (a) I
 - (b) II and III
 - (c) I and IV
 - (d) III and IV

Answer: (c)

- 2. The solution to an unconstrained optimization problem is always the same as the solution to the constrained one.
 - (a) True
 - (b) False

Answer: (b)

- 3. Gradient based algorithm methods compute
 - (a) only step length at each iteration
 - (b) both direction and step length at each iteration
 - (c) only direction at each iteration
 - (d) none of the above

Answer: (b)

- 4. For an unconstrained multivariate optimization given $f(\overline{x})$, the necessary second order condition for \overline{x}^* to be the minimizer of $f(\overline{x})$ is
 - (a) $\nabla^2 f(\overline{x}^*)$ must be negative definite.

- (b) $\nabla^2 f(\overline{x}^*)$ must be positive definite.
- (c) $\nabla f(\overline{x}^*) = 0$
- (d) $f''(x^*) > 0$

Answer: (b)

- 5. Consider an optimization problem $\min_{x_1, x_2 \in \mathbb{R}} f(x_1, x_2) = x_1^2 + 4x_2^2 2x_1 + 8x_2$.
 - (i) Which among the following is the stationary point for $f(x_1, x_2)$?
 - (a) (0,0)
 - (b) (1,-1)
 - (c) (-1, -1)
 - (d) (-1,1)

Answer: (b)

- (ii) Find the eighen values corresponding to Hessian matrix of f.
 - (a) 1, -1
 - (b) 1,1
 - (c) 2, 8
 - (d) 0, 2

Answer: (c)

- (iii) Find the minimum value of f.
 - (a) 0
 - (b) -5
 - (c) -1
 - (d) 1

Answer: (b)

(iv) Now, in order to find the minimum value of f subject to the constraint

$$x_1 + 2x_2 = 7,$$

what should be the first order condition for $\overline{\mathbf{x}^*}$ to be a minimizer of $f(x_1, x_2)$?

(a)

$$2x_1^* + 2 = \lambda$$

$$-8x_2^* - 8 = 2\lambda$$

$$x_1^* + 2x_2^* = 7$$

(b)
$$-2x_{1}^{*}+2=\lambda$$

$$-8x_{2}^{*}-8=2\lambda$$

$$x_{1}^{*}+2x_{2}^{*}=7$$
(c)
$$2x_{1}^{*}-2=-\lambda$$

$$8x_{2}^{*}+8=-2\lambda$$

$$x_{1}^{*}+2x_{2}^{*}=7$$
(d)
$$-2x_{1}^{*}+2=-\lambda$$

$$-8x_{2}^{*}-8=-2\lambda$$

Answer: (b)

(v) What is the minimum value of $f(x_1, x_2)$ subject to the above mentioned constrained?

 $x_1^* + 2x_2^* = 7$

- (a) -5
- (b) -1
- (c) 27
- (d) 0

Answer: (c)

- 6. Find the maximum value of $f(x,y) = 49 x^2 y^2$ subject to the constraints x + 3y = 10.
 - (a) 49
 - (b) 46
 - (c) 59
 - (d) 39

Answer: (d)

7. Consider an optimization problem $\min_{x_1,x_2} x^2 - xy + y^2$ subject to the constraints

$$2x + y \le 1$$

$$x + 2y \ge 2$$

$$x \ge -1$$

Find the lagrangian function for the above optimization problem.

(a)
$$L(x, y, \mu_1, \mu_2, \mu_3) = x^2 - xy + y^2 + \mu_1(2x + y - 1) + \mu_2(2 - x - 2y) + \mu_3(-x - 1)$$

(b)
$$L(x, y, \mu_1, \mu_2, \mu_3) = x^2 - xy + y^2 + \mu_1(2x + y - 1) + \mu_2(x + 2y - 2) + \mu_3(-x - 1)$$

(c)
$$L(x, y, \mu_1, \mu_2, \mu_3) = x^2 - xy + y^2 + \mu_1(2x + y - 1) + \mu_2(x + 2y - 2) + \mu_3(x + 1)$$

(d)
$$L(x, y, \mu_1, \mu_2, \mu_3) = x^2 - xy + y^2 + \mu_1(1 - 2x - y) + \mu_2(2 - x - 2y) + \mu_3(-x - 1)$$

Answer: (a)