

# Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemática

Primer Semestre de 2019

#### Tarea 2

Fundamentos de la Matemática - MAT 2405 Fecha de Entrega: 2019/04/24

> Integrantes del grupo: Nicholas Mc-Donnell, Maximiliano Norbu

## **Problemas**

#### Problema 8pts:

ea  $\varphi$  una  $\mathcal{L}$ -fórmula con una variable libre x. Sea  $\mathfrak{M}$  una  $\mathcal{L}$ -estructura. Muestre que  $\mathfrak{M} \models \forall x \varphi$  si y sólo si para toda  $\mathfrak{M}$ -asignación  $i : \{x\} \to M$  se cumple que  $(\mathfrak{M}, i) \models \varphi$ .

Solución problema 1: ebemos probar que, dado  $b \in M$ :

- 1.  $\mathfrak{M}'_b \models \varphi(\hat{x}|x)$
- 2.  $(\mathfrak{M}, i_b) \models \varphi$ , donde  $i_b : \{x\} \to M$  es la asignación  $i_b(x) = b$

son equivalentes.

Para esto basta demostrar el caso de términos y luego (inductivamente) extenderlo a todas las fórmulas posibles.

Para un término t cualquiera, como t tiene solo la variable libre x (enunciado):

- 1.  $t(\hat{x}|x)$  no tiene variables libres. Su interpretación en  $\mathfrak{M}'_b$  (donde  $\mathfrak{M}'_b$  es una  $\mathcal{L}'$ -estructura y donde  $\mathcal{L}'$  es una extensión del lenguaje  $\mathcal{L}$  que solo agrega una constante b la cual interpreto de manera natural) está bien definida, pues  $t^{\mathfrak{M}'_b} \in M$
- 2. Podemos usar  $i_b$  para interpretar x y  $t^{(\mathfrak{M},i_b)} \in M$

Es importante notar que  $t^{(\mathfrak{M},i_b)}=t^{\mathfrak{M}'_b}$ , o sea, son el mismo elemento en M.

Por esto, para el caso de términos, se cumple lo propuesto.

Ahora extenderemos este caso a las fórmulas atómicas.

Si  $\varphi$  fuera una fórmula atómica  $Rt_1, ..., t_n$  (R siendo una relación n-aria y  $t_j$  siendo términos con solo una variable libre x), entonces dado  $b \in M$ , de las definiciones obtenemos:

1. 
$$\mathfrak{M}'_b \models \varphi(\hat{x}|x)$$
 si y sólo si  $(t_1^{\mathfrak{M}'_b}, ..., t_n^{\mathfrak{M}'_b}) \in R^{\mathfrak{M}'_b}$ 

2. 
$$(\mathfrak{M}, i_b) \models \text{si y solo si } (t_1^{(\mathfrak{M}, i_b)}, ..., t_n^{(\mathfrak{M}, i_b)}) \in \mathbb{R}^{\mathfrak{M}}$$

Aquí es importante notar que  $R^{\mathfrak{M}'_b} = R^{\mathfrak{M}}$ . También notar que las interpretaciones de los términos  $(t_j)$  son las mismas en ambos casos (viendo término a término) por el caso de términos visto anteriormente. Por estas dos cosas se tiene que  $\mathfrak{M}'_b \models \varphi(\hat{x}|x)$  si y solo si  $(\mathfrak{M}, i_b) \models \varphi$ .

Ahora, si  $\psi$  fuera fórmula y  $\varphi = \neg \psi$ , claramente  $Free(\psi) = Free(\neg \psi) = Free(\varphi) = x$ ,  $t^{\mathfrak{M}'_b} = t^{(\mathfrak{M}, i_b)} = b \in M$ .

Con esto tenemos:

1. 
$$\mathfrak{M}'_b \models \varphi(\hat{x}|x) = \neg \psi(\hat{x}|x)$$
 si y solo si  $\mathfrak{M}'_b \nvDash \psi(\hat{x}|x)$ 

2. 
$$(\mathfrak{M}, i_b) \models \varphi = \neg \psi \text{ si y solo si } (\mathfrak{M}, i_b) \nvDash \psi$$

Por el paso inductivo tenemos  $\mathfrak{M}_b' \models \psi(\hat{x}|x)$  si y solo si  $(\mathfrak{M}, i_b) \models \psi$  por lo que:

$$\mathfrak{M}_b' \models \varphi(\hat{x}|x) = \neg \psi(\hat{x}|x) \text{ si y solo si } (\mathfrak{M}, i_b) \models \varphi = \neg \psi.$$

Ahora, sean  $\psi$  y  $\sigma$  fórmulas con unica variable libre x y sea  $\varphi = \psi * \sigma$  con \* conectivo binario, claramente  $Free(\varphi) = x$ .  $t^{\mathfrak{M}'_b} = t^{(\mathfrak{M},i_b)} = b \in M$ . Con esto tenemos:

1. 
$$\mathfrak{M}_b' \models \varphi(\hat{x}|x) = \psi * \sigma(\hat{x}|x)$$
 si y solo si  $\mathfrak{M}_b' \models \psi(\hat{x}|x) * \mathfrak{M}_b' \models \sigma(\hat{x}|x)$ 

2. 
$$(\mathfrak{M}, i_b) \models \varphi = \psi * \sigma$$
 si y solo si  $(\mathfrak{M}, i_b) \models \psi * (\mathfrak{M}, i_b) \models \sigma$ 

Por ejemplo, si  $\mathfrak{M}_b' \models \varphi(\hat{x}|x) = \psi \vee \sigma(\hat{x}|x)$  si y solo si  $\mathfrak{M}_b' \models \psi(\hat{x}|x)$  o  $\mathfrak{M}_b' \models \sigma(\hat{x}|x)$ .

También  $(\mathfrak{M}, i_b) \models \varphi = \psi \vee \sigma$  si y solo si  $(\mathfrak{M}, i_b) \models \psi$  o  $(\mathfrak{M}, i_b) \models \sigma$ .

O sea,  $\mathfrak{M}'_b \models \varphi(\hat{x}|x) = \psi \vee \sigma(\hat{x}|x)$  si y solo si  $(\mathfrak{M}, i_b) \models \varphi = \psi \vee \sigma$ . Por paso inductivo tenemos  $\mathfrak{M}'_b \models \varphi(\hat{x}|x) = \psi * \sigma(\hat{x}|x)$  si y solo  $(\mathfrak{M}, i_b) \models \varphi = \psi * \sigma$  se cumple pa todos los conectores binarios.

Ahora, sea  $\psi$  fórmula, y variable y  $\varphi = \mathbb{Q}y\psi$  con  $\mathbb{Q}$  cuantificador. Hay dos casos. Caso 1: si  $y \notin Free(\psi)$ :

Tenemos:

1. 
$$\mathfrak{M}_b' \models \phi(\hat{x}|x) = \mathbb{Q}y\psi(\hat{x}|x)$$
 si y solo si  $\mathfrak{M}_b' \models \psi(\hat{x}|x)$ 

2. 
$$(\mathfrak{M}, i_b) \models \phi = \mathbb{Q}y\psi$$
 si y solo si  $(\mathfrak{M}, i_b) \models \psi$ 

Entonces  $\mathfrak{M}'_b \models \phi(\hat{x}|x)$  si y solo si  $(\mathfrak{M}, i_b) \models \phi$ Caso 2: si  $y \in Free(\psi)$ .

Sea  $\hat{y}^{\mathfrak{M}''_{bb'}} := b' \in M$ , tenemos  $\mathfrak{M}'_b(\hat{y}|y) \models \mathbb{Q}y\psi(\hat{y}|y)$  si y solo si  $\mathbb{Q}b' \in M$ ,  $\mathfrak{M}''_{bb'} \models \psi$ .

Luego,  $\hat{y}^{\mathfrak{M}'_{b'}} := b' \in M$ , tenemos que  $(\mathfrak{M}, i_b) \models \mathbb{Q}y\psi$  si y solo si  $(\mathfrak{M}'_{b'}, i_b) \models \psi$ 

Por hipotesis tenemos que  $\mathfrak{M}'_b \models \psi$  si y solo si  $(\mathfrak{M}, i_b) \models \psi$ . Además tenemos que dado  $b' \in M$  tenemos que  $\mathfrak{M}''_{bb'}$  es la misma que  $\mathfrak{M}'_b$  con la siguiente modificación:

 $\hat{y}^{\mathfrak{M}''_{bb'}} = \hat{y}^{\mathfrak{M}'_{b'}} = b' \in M$ . Esto demuestra que  $\mathfrak{M}'_b \models \mathbb{Q}y\psi$  si y solo si  $(\mathfrak{M}, i_b) \models \mathbb{Q}y\psi$ .

Con todo esto, se cumple para todas las fórmulas y obtenemos lo pedido.

### Problema 2:

- (a) (4pts) Con el lenguaje  $\mathcal{L} = \{\dot{+}, \dot{=}, E\}$ , y la  $\mathcal{L}$ -estructura  $\mathfrak{M} = (\mathbb{Z}/p\mathbb{Z}, +, =, f)$  donde el símbolo de función unaria E se interpreta como la función  $f(x) = x^2$  y los otros símbolos se interpretan de la manera usual, muestre que el conjunto  $A = \{\overline{1}\} \subseteq \mathbb{Z}/p\mathbb{Z}$  es definible.
- (b) (8pts) Con el lenguaje  $\mathcal{L} = \{\dot{+}, \dot{=}\}$  y la  $\mathcal{L}$ -estructura  $\mathfrak{M} = (\mathbb{N}_0, +, =)$  donde los símbolos del lenguaje se interpretan de la manera usual, mostrar que todo subconjunto finito de  $\mathbb{N}_0$  es definible.

#### Solución problema 2:

(a) Sea  $\varphi$  la siguiente  $\mathcal{L}$ -fórmula con variable libre x:

$$(f(x) = x) \land (\forall y \neg (x + y = y))$$

Se puede notar que si x cumple f(x)=x, entonces es su propio cuadrado en  $\mathbb{Z}/p\mathbb{Z}$ , se recuerda que es cuerpo<sup>1</sup>, por lo que no hay divisores de 0, entonces  $x^2-x=x(x-\overline{1})=0$  y como es un cuerpo se sabe que  $x=\overline{1}$  ó  $x=\overline{0}$ . Luego  $\overline{1}+y\neq y$ , para cualquier y, pero  $\overline{0}+y=y$ , para cualquier y, por lo que solo  $\overline{1}$  satisface  $\varphi$ . Con lo que A es definible.

(b) Se nota que si existe  $\varphi_n$   $\mathcal{L}$ -fórmula tal que solo n lo satisface, entonces un conjunto finito  $A = \{a_1, ..., a_k\}$  es definible por la siguiente  $\mathcal{L}$ -fórmula:

$$\bigvee_{i=1}^{k} \varphi_{a_i}$$

<sup>&</sup>lt;sup>1</sup>Artin (2011)

Se puede notar que  $\varphi_0$  sería la  $\mathcal{L}$ -fórmula con variable libre  $b \ \forall x(x+b=x)$ . Luego, se considera la siguiente  $\mathcal{L}$ -fórmula con variable libre a

$$\forall x, y((x+y=a) \implies ((\neg(x=y)) \land (((a=x) \land \varphi_0(y|b)) \lor ((a=y) \land \varphi_0(x|b)))))$$

Se va a notar que esta es  $\varphi_1$ , ya que solo 1 cumple que la única forma de escribirlo en forma de suma es tomándose a si mismo y sumándole el 0, también se consideran ambas posibilidades con el orden<sup>2</sup>. Con estas  $\mathcal{L}$ -fórmulas se tiene lo suficiente para construir  $\varphi_n$  con variable libre x:

$$\exists y((\underbrace{((\dots(y+y)+\dots)+y)}_{"n"y} = x) \land \varphi_1(y|a))$$

Esto es suficiente ya que para cada  $\varphi_n$  el n es fijo, y n es único número natural que cumple que es la suma de n unos. Ya construido  $\varphi_n$  por lo mencionado al comienzo, se tiene que todo subconjunto finito A de  $\mathbb{N}_0$  es definible.

#### Problema Bonus:

ea  $A = \{p_1, p_2, ...\}$  el conjunto de todas las letras proposicionales. Muestre que hay a lo más un conjunto consistente maximal que contiene el conjunta A.

Solución problema 3: ean  $\Delta_1$  y  $\Delta_2$  dos conjuntos consistentes maximales que contienen A. Luego, pasa una de los opciones  $\Delta_1 \neq \Delta_2$  ó  $\Delta_1 = \Delta_2$ . Viendo el primer caso, existe  $\varphi \in \Delta_1 \setminus \Delta_2$ , luego ya que  $\Delta_2$  es consistente maximal y  $\varphi \notin \Delta_2$ ,  $\neg \varphi \in \Delta_2$ . Sea  $B \subset A$  las letras proposicionales en  $\varphi$ , luego  $B \cup \{\varphi\} \subset \Delta_1$  y  $B \cup \{\neg \varphi\} \subset \Delta_2$ . Ahora, claramente  $B \cup \{\varphi\} \vdash \varphi$  y por correctitud  $B \cup \{\varphi\} \models \varphi$ , similarmente para  $B \cup \{\neg \varphi\}$  entonces existen valuaciones  $V_1, V_2$  que satisfacen cada uno correspondientemente, entonces particularmente satisfacen B y como  $\varphi$  esta compuesta por los elementos de B se cumple que  $V_1(\varphi) = V_2(\varphi)$ , pero si esto es una contradicción. Con esto se tiene que  $\Delta_1 = \Delta_2$  por lo que solo hay un conjunto consistente maximal que contiene A.

<sup>&</sup>lt;sup>2</sup>La suma es conmutativa.

# Referencias

Artin, M. (2011). Algebra. Pearson Prentice Hall.