

COMPUTER ARCHITECTURE CS2010

Faculty of Computer Science and Engineering Department of Computer Engineering

Nam Ho namh@cse.hcmut.edu.vn

Chapter 4 THE PROCESSOR

- Assuming we have a hardware with single clock implementation and latencies of blocks showed on the table below.
- What is the critical path (longest-latency) for a MIPS AND instruction ?
- What is the clock cycle time?

I-Mem	400ps	
Add	100ps	
Mux	30ps	
ALU	120ps	
Regs	200ps	
D-Mem	350ps	
Control	100ps	

- The the critical path (longest-latency) for a MIPS AND instruction
 - I-Mem ->Regs -> Mux -> ALU -> Mux
- The critical path for LOAD instruction
 - I-Mem ->Regs -> Mux -> ALU -> D-Mem->Mux
 - -CC = 400 + 200 + 30 + 120 + 350 + 30 = 1130ps

- How long should the control unit generate the MemWrite signal?
 - Maximum time is CC I-Mem = 1130ps 400ps
- How about RegWrite?

I-Mem	400ps
Add	100ps
Mux	30ps
ALU	120ps
Regs	200ps
D-Mem	350ps
Control	100ps

 Assume that the instructions executed by a processors are broken down as follows.

ALU	Beq	lw	SW
50%	25%	15%	10%

 Assuming there are no stalls or hazards, calculate speedup with pipelined organization and multicycle.

$$-(0.15 \times 5 + (0.5 + 0.25 + 0.1) \times 4) * IC * CC$$

 Indicate dependences and their type for the following sequence of instruction

I1: lw \$1,40(\$6)

I2: add \$6,\$2,\$2

I3: sw \$6,50(\$1)

- Assume there is no forwarding in this pipelined processor. Indicate hazards and add nop instruction to eliminate them
- Assume there is full forwarding. Indicate hazards and add nop instruction to eliminate them


```
11: lw $1,40($6)
```

12: add \$6,\$2,\$2

13: sw \$6,50(\$4)

```
lw $1,40($6)
```

add \$6,\$2,\$2

nop

sw \$6,50(\$1)

