1

Matrix-circle

Kukunuri Sampath Govardhan

1

1

CONTENTS

I Problem Statement

II Construction

I. PROBLEM STATEMENT

If circles $x^2+y^2+2x+2ky+6=0$, $x^2+y^2+2ky+k=0$ intersect orthogonally then find k.

II. CONSTRUCTION

Fig. 1. Orthogonal Circles

Value	Description
$\begin{pmatrix} -1 \\ -k \end{pmatrix}$	Center of circle C1
$\begin{pmatrix} 0 \\ -k \end{pmatrix}$	Center of circle C2
X	Radius of circle C1
90°	Given that C1 and C2 are Orthogonal
1	Distance between centers of the circles
	$ \begin{pmatrix} -1 \\ -k \end{pmatrix} $ $ \begin{pmatrix} 0 \\ -k \end{pmatrix} $ X

PARAMETERS

Standard form of a circle in matrix form is

$$xVx^T + 2u^Tx + f = 0$$

where,

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, Center \mathbf{C} = -\mathbf{V}^{-1} \mathbf{u}^{\mathbf{T}},$$

Radius of a circle is $r = \sqrt{\mathbf{u}^{T}\mathbf{u} - f}$

Equation of given circles can be represented in matrix form as

$$\mathbf{x}\mathbf{x}^{\mathbf{T}} + 2(1 \quad k)\mathbf{x} + 6 = 0 \tag{1}$$

$$\mathbf{x}\mathbf{x}^{\mathbf{T}} + 2\begin{pmatrix} 0 & k \end{pmatrix}\mathbf{x} + k = 0 \tag{2}$$

where.

$$\mathbf{u_1} = \begin{pmatrix} 1 \\ k \end{pmatrix}, \mathbf{u_2} = \begin{pmatrix} 0 \\ k \end{pmatrix}, f_1 = 6, f_2 = k$$
$$\mathbf{C_1} = \begin{pmatrix} -1 & -k \end{pmatrix}, \mathbf{C_2} = \begin{pmatrix} 0 & -k \end{pmatrix}$$

The radius of first circle is $r_1 = \sqrt{k^2 - 5}$

The radius of Second Circle is $r_2 = \sqrt{k^2 - k}$

Given that, the circles are orthogonal so the angle between the radii r1 and r2 is 90°.

From figure $\Delta PC1C2$ is a Right angled triangle with hypotenuse d = ||C1 - C2||.

So, by using Pythagoraus theorem

$$||\mathbf{C_1} - \mathbf{C_2}||^2 = ||\mathbf{C_1} - \mathbf{P}||^2 + ||\mathbf{C_2} - \mathbf{P}||^2$$
 (3)

Therefore,

$$||\mathbf{C_1} - \mathbf{C_2}||^2 = \mathbf{r_1^2} + \mathbf{r_2^2}$$

$$1 = k^2 - 5 + k^2 - k \tag{4}$$

Yielding, k = 2 or $-\frac{3}{2}$ Therefore, the value of k is

$$k = 2 \text{ or } -\frac{3}{2}$$