Introduction to Unix

Victor Eijkhout

2021

Table of Contents

- Files and such4
- Directories10
- Redirection, pipes15
- Permissions22
- Shell programming27
- Scripting38

1 Justification

Unix, in particular Linux, is the *de facto* operating system in High-Performance Computing (HPC).

Files and such

21s, touch

- List files: ls
- Maybe your account is still empty: do touch newfile, then ls again.
- Options: ls -l or for specific file ls -l newfile.

3 Display / add to file: cat

- Display a file: cat myfile
- Put something in a file: cat > myfile end with Control-D.
 Or use an editor, but this is sometimes still useful.
- Now cat it again.
- Do cat >> myfile and enter some text. What did this do?

4 cp, mv, rm

- Copy: cp file1 file2
 Do this, check that it's indeed a copy.
- Rename or 'move': mv file1 file2 check that the original file doesn't exist any more.
- Remove: rm myfile This is irrevocable!

5 Dealing with large (text) files

- If a file is larger than your screen: less yourfile
- If the start or end is interesting enough: head yourfile, tail yourfile
- Explore options: head -n 5 yourfile

Exercise 1: Put the pieces together

How would you display the 3rd line of a file?

Directories

6 Directories

- Make a subdirectory 'folder': mkdir newdir
- Check where you are: pwd
- Now go to the new directory: cd newdir and pwd 'change directory' and 'present working directory'
- Back to your home directory: cd without further arguments.

7 Paths

- Do:
 - 1. cd newdir
 - 2. touch nested_file
 - **3.** cd
- Now: ls newdir/nested_file
- That is called a path
 - Relative path: does not start with slash
 - Absolute path (such as pwd output): starts at root

8 More paths

- Path to your home directory: tilde cd ~
- Current directory: .
- Going out of a directory: cd ...
 (confusing: do you call this a level up or down?)
- You can use this in paths: ls newdir/subdir1/../subdir2

Exercise 2: Paths

After the following commands:

```
mkdir somedir
touch somedir/somefile
```

Give at least two ways of specifying the path to somefile from the current directory for instance for the ls command.

Same after doing cd somedir

Redirection, pipes

9 In/Output redirection

- There are three standard files: stdin, stdout, stderr
- Normally connected to keyboard, screen, and screen respectively.
- · Redirection: standard out to file:
 - ls > directorycontents
 (actually, screen is a file, so it is really a redirect)
- Standard in from file: mail < myfile (actually, the keyboard is also a file, so again redirection)

Exercise 3:

Make a copy of a file, using redirection (so no cp command).

10 Advanced: splitting out and err

- Sometimes you want to split standard out and error:
- Use stdout= 1 and stderr= 2: myprogram 1>results.out 2>results.err
- Very useful: get rid of errors: myprogram 2>/dev/null

11 Pipes

- Redirection is command-to-file.
- Pipe: command-to-command
 ls | wc -l
 (what does this do?)
- Unix philosophy: small building blocks, put together.

12 More command sequencing

More complicated case of one command providing input for another:

```
echo The line count is wc -l foo
```

where foo is the name of an existing file.

Use backquotes or command macro:

```
echo The line count is 'wc -1 foo' echo "There are $( wc -1 foo ) lines"
```

Exercise 4:

This way wc prints the file name. Can you figure out a way to prevent that from happening?

Permissions

13 Basic permissions

- Three degrees of access: user/group/other
- three types of access: read/write/execute

user	group	other
rwx	rwx	rwx

Example: rw-r----: owner read-write, group read, world nothing

14 Permission setting

- Add permissions chmod g+w myfile
- recursively: chmod -R o-r mydirectory
- Permissions are an octal number: chmod 644 myfile

15 Share files

- Make a file in your \$WORK file system, and make it visible to the world.
- Ask a fellow student to view it.
- ⇒ also necessary to make \$WORK readable.
 (Not a good idea to make \$HOME readable.)

16 The x bit

The x bit has two meanings:

- For regular files: executable.
- For directories: you can go into them.
- Make all directories viewable: chmod -R g+X, o+X rootdir

Shell programming

17 Command execution

- Some shell commands are built-in, however most are programs.
- which ls
- Exercise: what can you find out about the ls program?
- Programs can be called directly: /bin/ls or found along the search path \$PATH:

echo \$PATH

18 The PATH variable

- The PATH variable is set by the system
- You can add in the .bashrc file
- TACC module system ...
- Temporary:

```
export PATH=/my/bin/dir:${PATH}
```

19 Things that look like commands

• Use alias to give a new name to a command:

```
alias ls='ls -F'
alias rm='rm -i'
```

• There is a shell level function mechanism, not explained here.

20 Processes

ps	list (all) processes	
kill	kill a process	
CTRL-c	kill the foreground job	
CTRL-z	RL-z suspect the foreground job	
jobs	give the status of all jobs	
fg	bring the last suspended job to the foreground	
fg %3	bring a specific job to the foreground	
bg	run the last suspended job in the background	

Exercise: how many programs do you have running?

21 Variables

- PATH is a variable, built-in to the shell
- you can make your own variables:

a=5 echo \$a

No spaces around the equals!

Exercise: what happens when you try to add two variables together?

a=3 b=5

22 Variable manipulation

• Often you want to strip prefixes or suffixes from a variable:

```
program.c \Rightarrow program /usr/bin/program \Rightarrow program
```

Parameter expansion:

```
a=program.c
echo ${a%.c}
a=/foo/bar/program.c
eecho ${a##*/}
```

23 Conditionals

Mostly text-based tests:

```
if [ $a = "foo" ] ; then
  echo "that was foo"
else
  echo "that was $a"
fi
```

• Single line:

```
if [ $a = "foo" ]; then echo "foo"; else echo "something"; fi Note the semicolons! also spaces around square brackets.
```

24 Other conditionals

Numerical tests:/

```
if [ $a -qt 2 ] ....
```

• File and directory:

```
if [ -f $HOME ] ; then echo "exists" ; else echo "no such" ; fi
if [ -d $HOME ] ; then echo "directory!" ; else echo "file" ; fi
```

25 Looping

 Loop: for item in list the item is available as macro

```
for letter in a b c ; do echo $letter ; done
```

· Loop over files:

```
for file in *; do echo $file; done
```

Exercises:

- 1. for each file, print its name and how many lines there are in it.
- 2. loop through your files, print which ones are directories.
- 3. for each C program, remove the object file.

26 Numerical looping

```
Type seq 1 5
Exercise: can you figure out how to loop 1...5?
n=12
## input
for i in .....; do echo $i; done
## output
1
....
12
```

Scripting

27 Script execution

• Create a script script.sh:

```
#!/bin/bash
echo foo
```

- Can you execute this? Does the error suggest a remedy?
- What is the remaining problem?

28 Arguments

- You want to call ./script.sh myfile
- Parameters are \$1 et cetera:

```
#!/bin/bash
echo "$1 is a file"
```

• How many arguments: \$#

29 Exercise

Write a script that takes as input a file name argument, and reports how many lines are in that file.

Edit your script to test whether the file has less than 10 lines (use the foo -lt bar test), and if it does, cat the file.

Add a test to your script so that it will give a helpful message if you call it without any arguments.

30 Exercise

Write a 'plagiarism detector'.

- Write a script that accepts two argument: one text file and one directory
 - ./yourscript.sh myfile targetdir (the .sh extension is required for this exercise)
- Your script should compare the text file to the contents of the directory:
 - If the file is different from anything in the directory, it should be copied into the directory; the script should not produce any output in this case.
 - If the file is the same as a file in the directory, the script should complain.
 - The test whether files are 'the same' should be made with the diff command. Explore options that allow diff to ignore differences that are only in whitespace.

31 Turn it in!

Here is how you submit your homework.

- There is a test/submit script: sds_plagiarism yourscript.sh
 This tests the correctness of your script.
- If your script passes the test, use the -s option to submit:
 sds_plagiarism -s yourscript.sh
 or use the -i option to submit incomplete:
 sds plagiarism -i yourscript.sh
- Add the -d option for some debugging output:
 sds plagiarism -d yourscript.sh
- (after you run the script once, you'll see in your directory the files that are used for testing)