Lecture 6: Quantum oracles & Recent experiments with quantum computers

Quantum Algorithms

Benoît Vermersch

October 19, 2021

LPMMC Grenoble & IQOQI Innsbruck

Outline

Information about the exam

Implementing a quantum oracle

Recent experimental breakthroughs with quantum computers

Presentation of a superconducting qubit quantum computer

The quantum supremacy experiment (Arute et al, 2019)

The toric code experiment (Satzinger et al, 2021)

Information about the exam

- Room D420 Jan 17th 1:30 pm 3:30 pm (2 hours).
- Two problems.
- Only the documents accessible on the Moodle (slides, exercices), and hand-written notes allowed.
- You can bring your laptop, but only to visualize the slides, not to use Internet.
- Use of smartphones/ipads, etc during the exam forbidden.

Outline

Information about the exam

Implementing a quantum oracle

Recent experimental breakthroughs with quantum computers

- Presentation of a superconducting qubit quantum computer
- The quantum supremacy experiment (Arute et al, 2019)
- The toric code experiment (Satzinger et al, 2021)

Grover's oracle: Reminder

- ullet Problem given a *n*-bit Boolean function f(x) . Find the solution x=w such that f(w)=1
- The quantum algorithm is given by

$$U = (U_{\text{diffuser}} U_{\text{oracle}})^t H^{\otimes n} \tag{1}$$

Grover's oracle: Reminder

- Grover's algorithm converges to the solution for $t \propto \sqrt{N = 2^n}$.
- ullet The diffuser $U_{
 m diffuser}=2\ket{\psi}ra{\psi}-1$ can be implemented with the Toffoli gate
- How can we implement an oracle $U_{\text{oracle}} |x\rangle = (-1)^{f(x)} |x\rangle$? (without knowing the solution w...)?
- Let us show that this possible using elementary bitstring operations and the technique of 'uncomputation'.

Case study: 3-SAT Problem

• 3-SAT: Given n bits, we are looking for the bit strings $x = (x_1, \dots, x_n)$ that satisfy the Boolean function

$$f(x) = C_1(x) \wedge \cdots \wedge C_M(x), \tag{2}$$

where \wedge is a conjunction (AND).

- Each clause $C_m(x)$ is made of a disjunction (OR: \vee) of at most three litterals.
- Example with M = 3, n = 2

$$f(x) = (x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2)$$
(3)

• 3-SAT is NP-Complete.

- Oracle $U_{\text{oracle}} |x\rangle = (-1)^{f(x)} |x\rangle$ with $f(x) = (x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2)$
- Step 1: Convert each clause to conjunctions (de Morgan's law)

$$f(x) = \neg(\neg x_1 \land \neg x_2) \land \neg(\neg x_1 \land x_2) \land \neg(x_1 \land \neg x_2)$$
(4)

• Step 2: Add one ancilla qubit and Tofolli gates to test each clause

$$|x\rangle \otimes |00\rangle \rightarrow |x\rangle \otimes |C_1(x)\rangle |C_2(x)\rangle$$
 (5)

• Step 3: Add an extra ancilla bit for performing the conjunctions between clauses and 'uncompute' the first ancilla qubits

• If the last ancilla is flipped, f(x) = 1, i.e., we can mark the solution!

 All ancilla qubits except one have been uncomputed, we have effectively realized a XOR oracle

$$|x\rangle \otimes |y\rangle \to |x\rangle \otimes |y \oplus f(x)\rangle$$
 (7)

• How to realize a *phase* oracle, as required for Grover's oracle, from a XOR oracle?

$$|x\rangle \to (-1)^{f(x)}|x\rangle$$
 (8)

ullet XOR to phase oracle conversion: Simply initialize the last ancilla using the H gate

We obtain

$$|x\rangle |1\rangle^{\otimes M} (H|1\rangle) \rightarrow |x\rangle |1\rangle^{\otimes M} (|0 \oplus f(x)\rangle - |1 \oplus f(x)\rangle)$$

$$\rightarrow |x\rangle |1\rangle^{\otimes M} (-1)^{f(x)} (|0\rangle - |1\rangle)$$

$$\rightarrow (-1)^{f(x)} |x\rangle |1\rangle^{\otimes M} (H|1\rangle)$$
(9)

• which effectively realizes our oracle (and uncomputes the last ancilla)!

$$|x\rangle \rightarrow (-1)^{f(x)}|x\rangle$$
 (10)

The full circuit

Problem function:

$$f(x) = (x_1 \vee x_2) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2) \tag{11}$$

• Qiskit output: bistring 11 with probability 1.0: I coded the problem without knowing the solution, then the algorithm gives me the solution.

Outline

Information about the exam

Implementing a quantum oracle

Recent experimental breakthroughs with quantum computers

Presentation of a superconducting qubit quantum computer

The quantum supremacy experiment (Arute et al, 2019)

The toric code experiment (Satzinger et al, 2021)

How does it work?

- Superconducting material+Josephson junctions
 - ightarrow 53 'anharmonic oscillators' $h_i=\omega_0 a_i^\dagger a_i + U a_i^\dagger a_i (a_i^\dagger a_i -1) + \dots$
 - → Reviews by Devoret, Girvin, etc
- Cool to 20 mK temperature via a dilution fridge
- We can control the qubit $|0\rangle_i$, $|1\rangle_i = a_i^{\dagger} |0\rangle_i$ with 'single qubit gates'.
- iSwap gates between qubits $U_{i,j} = e^{i(\pi/4)(\sigma_i^{\mathsf{x}}\sigma_j^{\mathsf{x}} + \sigma_i^{\mathsf{y}}\sigma_j^{\mathsf{y}})}$
- Each qubit can be measured.
- We have a universal quantum computer: Every N-qubit state (dim 2^N) can be created and measured (Deutsch 1989).

$$|\psi\rangle = \sum_{s_1,...,s_N} c_{s_1,...,s_N} |s_1\rangle \otimes \cdots \otimes |s_N\rangle$$
 (12)

Programming a quantum computer

The quantum computing roadmap

- Long-terms goals: Quantum algorithms to solve hard problems
 - Data search (Grover's 1996)
 - Factorization (Shor's 1995)
 - Large-scale optimization problems (on-going debate)
- Outstanding conceptual/technological challenges
 - Error propagation is typically exponential in problem size
 - Sophisticated algorithms for 'quantum error correction' required to achieve fault tolerance.
- Massive investments (USA, China, Europe, etc) are helpful, but should not hide conceptual challenges ('quantum hype').
- We need verification methods to validate technological progress

What is this about?

- It will probably take years before we can run a quantum algorithm solving an open problem in computer science.
- An important milestone is to check that a quantum computer is able to perform a computation that is not achievable via a classical computer with reasonable resources (Preskill 2012).
- Two important conceptual questions
 - How can I check something that I cannot compute?
 - \bullet How can I explore an gigantic Hilbert space of dimension $2^{53}\sim 10^{15}$ with a finite number of measurements?

The supremacy test

Idea

- Use random circuits that are difficult to simulate classically for N > 50
- Make use of random matrix theory to create a faithful figure of merit, based on measuring the system in terms of 'bitstrings' (ex s = 01001...).

The supremacy test

Algorithm

- 1. Consider a reduced or 'shallow' circuit U that I can compute classically.
 - 1.1 Implement $|\psi\rangle = U|0\rangle^{\otimes N}$
 - 1.2 Measure $M \ll 2^N$ bitstrings $\{s_m\}$ (sampled ideally according to $P(s) = |\langle s|\psi||\rangle^2$).
 - 1.3 Evaluate the fidelity based on computing

$$\mathcal{F}_{XEB} = \frac{2^{N}}{M} \sum_{m=1}^{M} P(s_{m}) - 1$$
 (13)

- 2. Consider a non-simulatable 'supremacy' circuit U
 - 2.1 Measure the bitstrings $\{s_m\}$ as above
 - 2.2 Archive the results, waiting for the classical computer to 'catch up' and allow for the evaluation of the fidelity.

The test is meaningful

For sufficiently large M,

$$\mathcal{F}_{\text{XEB}} = \frac{2^{N}}{M} \sum_{m=1}^{M} P(s_{m}) - 1 = 2^{N} \sum_{s=0}^{2^{N}-1} \sum_{m=1}^{M} \frac{\delta_{s,s_{m}}}{M} P(s) - 1 \approx 2^{N} \sum_{s=0}^{2^{N}-1} P(s)^{2} - 1 \quad (14)$$

• For a random circuit this sum can be calculated analytically.

The test is meaningful

For sufficiently large N,

$$\mathcal{F}_{\text{XEB}} \approx 2^{N} \sum_{s=0}^{2^{N}-1} P(s)^{2} - 1 \approx 2^{2N} \langle P(s)^{2} \rangle - 1$$
 (15)

$$Prob(P(s) \in [p, p + dp]) = 2^{N} exp(-2^{N} p) dp$$
(16)

- In average, $\langle P(s) \rangle = 2^{-N}$, as for a uniform distribution $P_{\rm uni}(s) = 2^{-N}$.
- However $\langle P(s)^2 \rangle = 2 \times 2^{-2N}$, twice compared to $P_{\rm uni}(s)^2 = 2^{-2N}$!
- ullet Therefore, $\mathcal{F}_{\mathrm{XEB}}=1.$ For uniform distribution, we get instead $\mathcal{F}_{\mathrm{XEB}}=0.$
- \bullet Fast convergence of the estimation of $\mathcal{F}_{\rm XEB}$ with $\sim 10^6$ measurements.

Results

Conclusion

- A remarkable technological achievement.
- Exponential propagation of errors. This was expected
- The power of classical simulations was underestimated (see eg X. Waintal et al, PRX 2020).

Sycamore was made for quantum error correction

- Each qubit is subject to errors. This can be a spin flip error (σ_x on the state), phase error (σ_z), or both.
- In quantum error correction, we fix errors by encoding the quantum information using several physical qubits.

The toric code

• The toric code $|G\rangle$ is the ground state of the Hamiltonian $H=-\sum_s A_s-\sum_p B_p$ (Kitaev 1997)

- Blue plaquettes $A_s = \sigma_{s_1}^z \sigma_{s_2}^z \sigma_{s_3}^z \sigma_{s_4}^z$
- Purple plaquettes $B_p = \sigma_{p_1}^{\mathsf{x}} \sigma_{p_2}^{\mathsf{x}} \sigma_{p_3}^{\mathsf{x}} \sigma_{p_4}^{\mathsf{x}}$

- $|0\rangle_L = |G\rangle$ can be created easily with Sycamore. $|1\rangle_L = X_L |G\rangle$.
- $A_s |G\rangle = |G\rangle$, $B_p |G\rangle = |G\rangle$. If it is not the case, an error occured!
- According to the quantum threshold theorem (Aharonov Ben-Or 1999), scaling up the toric code leads to fault-tolerant quantum computing

Experimental results

Experimental results

The toric code

- The toric code is also the simplest example of a quantum phase with 'intrinsic' topological order.
 - Non-local order parameter
 - Stability versus local perturbations
 - The excitations (i.e the errors) on top of $|G\rangle$ have anyonic statistics.
- The non-local order parameter: the topological entanglement entropy (Kitaev, Wen, Levin, Preskill 2006)

$$S_{\text{top}} = S_A + S_B + S_C - S_{AB} - S_{AC} - S_{BC} + S_{ABC} = -1$$
 (17)

with the entanglement entropy of subsystem X, $S_X = -\log(\text{Tr}[\rho_X^2])$.

Results

- First demonstration of intrinsic topological order
- Braiding of anyonic excitations (errors) have been also analyzed.
- Next step: non-abelian anyons in string nets models...