Device to Device (D2D) Communication in 5G

Dr. Kiran M IT Dept., NITK

Previous Session

- Routing Algorithms
 - Static Non Adaptive Proactive
 - Dynamic Adaptive Reactive
- Routing Parameters
- Dijkstra's Algorithm
 - Forward Route Source to Destination Used for data packets
 - Backward Route Destination to Source Used for Control Packets (ACK)
 - Downstream (Forward Route) and Upstream (Backward Route)

Users Requirement

- Multimedia Rich Data Exchange.
- Fast Service.
- High quality voice calls.
- Newer and more demanding applications.
- Information at fingertips.

5G Verticals or 5G Allied technologies or 5G Components

- Heterogeneous Networks
 - Various Radio access Technology, different cells with different capacity of users.
- Massive MIMO
 - Large Antenna Arrays
- Cognitive Radio Networks
 - Intelligent spectrum allocation and usage.
- mmWave
 - o 30 300 GHz.
- D2D Communication.

Introduction

- LTE Long Term Evolution 2009
 - o Requirements for the 4G standards was discussed in 1998!!
- 3GPP (3rd Generation Partnership Project) Introduced Proximity Services in LTE Rel. 12 for in coverage D2D Communication (or LTE Advanced).
- LTE Rel. 13 extended D2D communication for out of coverage devices.
- LTE Rel. 14 extended D2D communication for Vehicle to Vehicle communication (V2V)
 - High speed high density
- D2D Communication is also called as Sidelink Communication.

ProSe [1, 2]

- ProSe enabled UE, works with close proximity UE devices.
- ProSe enables direct communication between nearby devices without the base station.
 - Hence, D2D communication,
 - Basically introduced for Public Safety
 - LTE Direct.
- Communication link is not established through the eNB.
 - eNB supports the communication, but, will not be part of it.
 - Unlike traditional cellular communication.

Other Direct Communication Techniques [1]

- Bluetooth 5
 - o 2 Mbps, 240m
- Wifi Direct
 - 250 Mbps, 200m
- LTE Direct
 - o 13.5 Mbps , 500m
 - Quite less data rate !!
 - Meant for Public Safety hence less data rate.

Public Safety Applications - The First Responders

- Large Events,
- Pandemics,
- Severe accidents,
- Environmental disasters,
- Law enforcement,
- Fire and emergency medical services

- Base station evolved Node B eNobeB eNb eNB
- Mobile Node User Equipment (UE)

Out of Coverage

Relay Communication

Why D2D Communication?

- Mainly public safety
 - Extended to commercial applications.
 - Advertising, Gaming, Social Networking
- Ultra Low Latency Communication
- Global synchronization of CUs is not required
 - Local synchronization among D2D users is enough.
- Offloading certain traffic from eNB
 - Mitigate Network Congestion

Why D2D ? (Contd.)

- Coverage extension through relay nodes.
- High Spectral Efficiency
 - No. of bits transmitted per Hz
- High Energy Efficiency
 - No. of bits transmitted per Joule.
- Throughput is high.

Spectrum Allocation in D2D Communication [1]

Inband

- Licensed Spectrum, the spectrum used by the cellular user.
- Spectrum can be further divided into
 - Overlay Non overlapping spectrum, separate spectrum for D2D and Cellular users
 - Interferences will be less
 - If D2D users are not active, spectrum will be wasted.
 - Underlay Same Spectrum for both D2D and Cellular.
 - Interferences will be more.
 - eNB will handle it to the maximum, but can not eliminate it.
 - Opportunistic, more efficient usage of spectrum.

Outband

- Unlicensed Spectrum
- Cellular communication does not occur.
- No interferences between Cellular users and D2D users
- Controlled
 - Communication is controlled by Cellular network
- Uncontrolled
 - eNB will not interfere in D2D communication.
 - Since the spectrum is unlicensed, anyone can use it, no restrictions
 - Hence, uneven transmissions, no synchronization, more interferences, more noise.

LTE D2D Functionalities [2]

- Discovery.
 - Information/Services provided by the other UEs
- Synchronization.
 - Common System Information
- Direct Communication.
 - Establish a direct communication link between the UEs without eNB.

D2D in NS3

- Go to NS3 App store
- Search for "Public Safety Communications" or D2D Communication
- Download
- You can copy the required files in to the NS3 folder
- Or, you can install it as a separate repository.

For installing it as a separate repository

Go to folder *psc-ns3-3.0.1* and follow the below mentioned steps.

Step 1: ./waf --build-profile=debug --enable-examples --enable-test configure

Step 2: ./waf

Step 3: execute the scratchsimulator.cc

./waf --run scratch/scratchsimulator

Next Session

- NS 3 Implementation of D2D Communication
- Course Project

References

[1] Udit N K and Debashri Kumar Sanyal, "An Overview of Device-to-Device Communication in Cellular Networks", ICT Express, Elsevier, 4(2018), 203-208

[2] Richard R, Fernando J C, Aziza B M, and Samantha G "Implementation and Validation of an LTE D2D Model for NS3", WNS3 2017, ACM

[3] Wikipedia