When F = K, we call f an n-linear form (or multilinear form). If  $n \geq 2$  and  $E_1 = E_2 = \ldots = E_n$ , an n-linear map  $f: E \times \ldots \times E \to F$  is called symmetric, if  $f(x_1, \ldots, x_n) = f(x_{\pi(1)}, \ldots, x_{\pi(n)})$  for every permutation  $\pi$  on  $\{1, \ldots, n\}$ . An n-linear map  $f: E \times \ldots \times E \to F$  is called alternating, if  $f(x_1, \ldots, x_n) = 0$  whenever  $x_i = x_{i+1}$  for some  $i, 1 \leq i \leq n-1$  (in other words, when two adjacent arguments are equal). It does no harm to agree that when n = 1, a linear map is considered to be both symmetric and alternating, and we will do so.

When n=2, a 2-linear map  $f: E_1 \times E_2 \to F$  is called a bilinear map. We have already seen several examples of bilinear maps. Multiplication  $\cdot: K \times K \to K$  is a bilinear map, treating K as a vector space over itself.

The operation  $\langle -, - \rangle \colon E^* \times E \to K$  applying a linear form to a vector is a bilinear map.

Symmetric bilinear maps (and multilinear maps) play an important role in geometry (inner products, quadratic forms) and in differential calculus (partial derivatives).

A bilinear map is symmetric if f(u,v) = f(v,u), for all  $u,v \in E$ .

Alternating multilinear maps satisfy the following simple but crucial properties.

**Proposition 7.3.** Let  $f: E \times ... \times E \to F$  be an n-linear alternating map, with  $n \geq 2$ . The following properties hold:

(1) 
$$f(\ldots, x_i, x_{i+1}, \ldots) = -f(\ldots, x_{i+1}, x_i, \ldots)$$

$$(2) f(\ldots, x_i, \ldots, x_j, \ldots) = 0,$$

where  $x_i = x_j$ , and  $1 \le i < j \le n$ .

(3) 
$$f(\ldots, x_i, \ldots, x_j, \ldots) = -f(\ldots, x_j, \ldots, x_i, \ldots),$$
 where  $1 \le i < j \le n$ .

$$f(\ldots, x_i, \ldots) = f(\ldots, x_i + \lambda x_j, \ldots),$$

for any  $\lambda \in K$ , and where  $i \neq j$ .

*Proof.* (1) By multilinearity applied twice, we have

$$f(\ldots, x_i + x_{i+1}, x_i + x_{i+1}, \ldots) = f(\ldots, x_i, x_i, \ldots) + f(\ldots, x_i, x_{i+1}, \ldots) + f(\ldots, x_{i+1}, x_{i+1}, x_{i+1}, \ldots),$$

and since f is alternating, this yields

$$0 = f(\dots, x_i, x_{i+1}, \dots) + f(\dots, x_{i+1}, x_i, \dots),$$