2019 年普通高等院校招生全国统一考试

理科数学 III

本试卷共5页.考试结束后,将本试卷和答题卡一并收回.

1. 已知集合 $A = \{-1, 0, 1, 2\}, B = \{x \mid x^2 \leq 1\}, \text{ } ∅ A \cap B = \{x \mid x^2 \leq 1\}, \text{ } \emptyset A \cap B =$

A. $\{-1,0,1\}$ B. $\{0,1\}$

2. 若 z(1+i) = 2i, 则 z =

注意事项:1	. 答題	5前,	考生が	七将自	己的好	姓名、	准考	正号均	填写清	楚,	将条	形码	准确	粘贴	在条形
	码区	〈域〉	١.												

- 2. 选择题必修使用 2B 铅笔填涂; 非选择题必须使用 0.5 毫米黑色字迹的签字笔书写, 字体工整、笔迹清楚.
- 3. 请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效: 在草稿纸、试卷上答题无效.
- 4. 作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.
- 5. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正液、刮纸刀.

 $\mathsf{C.}\ \{-1,1\}$

D. $\{0,1,2\}$

一、选择题: 本大题共 12 小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中,只有一项是符合题目要求的.

	A. $-1-1$	B1+1	C. 1-1	D. 1+1						
3.	《西游记》《三国演	义》《水浒传》和《约	工楼梦》是中国古典	文学瑰宝,并成为中国古	典小说					
	四大名著. 某中学	2为了了解本小学生	上阅读四大名著的情	况,随机调查看了 100	位学生,					
	期中阅读过《西游	记》或《红楼梦》的学	学生共有 90 位,阅读	支过《红楼梦》的学生共有	ī 80 位,					
	阅读过《西游记》」	且阅读过《红楼梦》	的学生共有60位,	则该学校阅读过《西游记	己》的学					
	生人数与该学校学生总数比值的估计值									
	A. 0.5	B. 0.6	C. 0.7	D. 0.8						
4.	$(1+2x^2)(1+x)^4$	的展开式中 x^3 的	系数为							
	A. 12	B. 16	C. 20	D. 24						
5.	己知各项均为正数	女的等比数列 $\{a_n\}$	的前 4 项和为 15,]	且 $a_5 = 3a_3 + 4a_1$,则 a_3	=					
	A. 16	B. 8	C. 4	D. 2						
6.	己知曲线 $y = ae^x$	$+x\ln x$ 在点 (1,a	e) 处的切线方程为	y = 2x + b,则						
	A. $a = e, b = -1$		B. $a = e, b =$	B. $a = e, b = 1$						
	$C.\ a = \mathrm{e}^{-1} , b = 1$		D. $a = e^{-1}$, b	D. $a = e^{-1}, b = -1$						
7.	函数 $y = \frac{2x^3}{2^x + 2^{-1}}$	$\frac{1}{x}$ 在 [-6,6] 的图	象大致为							

- **8.** 如图,点 N 为正方形 ABCD 的中心, $\triangle EDC$ 为正三角形,平面 ECD 平面 ABCD, M 是线段 ED 的中点,则
 - A. BM = EN,且直线 BM,EN 是相交直线
 - B. $BM \neq EN$,且直线 BM,EN 是相交直线
 - C. BM = EN,且直线 BM,EN 是异面直线
 - D. $BM \neq EN$,且直线 BM,EN 是异面直线

- 9. 执行如图所示的程序框图,如果输入的 ε 为 0.01,则输出 s 的值等于
 - A. $2 \frac{1}{2^4}$
- B. $2 \frac{1}{2^5}$ C. $2 \frac{1}{2^6}$ D. $2 \frac{1}{2^7}$
- **10.** 双曲线 $C: \frac{x^2}{4} \frac{y^2}{2} = 1$ 的右焦点为 F,点 P 在 C 的一条渐近线上,O 为坐标原点. 若 |PO| = |PF|,则 $\triangle PFO$ 的面积为

B.
$$\frac{3\sqrt{2}}{2}$$

C.
$$2\sqrt{2}$$

D.
$$3\sqrt{2}$$

11. 设 f(x) 是定义域为 **R** 的偶函数,且在 $(0, +\infty)$ 单调递减,则

A.
$$f(\log_3 \frac{1}{4}) > f(2^{-3/2}) > f(2^{-2/3})$$

$$\mathsf{A.} \ f\left(\log_3\frac{1}{4}\right) > f(2^{-3/2}) > f(2^{-2/3}) \qquad \mathsf{B.} \ f\left(\log_3\frac{1}{4}\right) > f(2^{-2/3}) > f(2^{-3/2})$$

C.
$$f(2^{-3/2}) > f(2^{-2/3}) > f(\log_3 \frac{1}{4})$$

$$\text{C. } f(2^{-3/2}) > f(2^{-2/3}) > f\left(\log_3\frac{1}{4}\right) \qquad \text{D. } f(2^{-2/3}) > f(2^{-3/2}) > f\left(\log_3\frac{1}{4}\right)$$

- 12. 设函数 $f(x)=\sin\left(\omega x+\frac{\pi}{5}\right)(\omega>0)$,已知 f(x) 在 $[0,2\pi]$ 有且仅有 5 个零点,下述 四个结论:
 - ① f(x) 在 $(0,2\pi)$ 有且仅有 3 个极大值点;
 - ② f(x) 在 $(0,2\pi)$ 有且仅有 2 个极小值点;
 - ③ f(x) 在 $\left(0, \frac{\pi}{10}\right)$ 单调递增;
 - ④ ω 的取值范围是 $\left[\frac{12}{5}, \frac{29}{10}\right)$.

其中所有正确结论的编号是

- A. (1)(4)
- B. (2)(3)
- C. 123
- D. 134

- 二、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分.
- 13. 已知 a, b 为单位向量, 且 a · b = 0, 若 c = 2a $\sqrt{5}b$, 则 $\cos < a$, c > = _____
- **14.** 记 S_n 为等差数列 $\{a_n\}$ 的前 n 项和. 若 $a_1 \neq 0, a_2 = 3a_1, 则 <math>\frac{S_{10}}{S_{\pi}} =$ _____.
- **15.** 设 F_1 , F_2 为椭圆 C: $\frac{x^2}{36} + \frac{y^2}{20} = 1$ 的两个焦点, M 为 C 上一点且在第一象限. 若 $\triangle MF_1F_2$ 为等腰三角形,则 M 的坐标为为
- 16. 学生到工厂劳动实践, 利用 3D 打印技术制作模型. 如图, 该模型为长方体 ABCD- $A_1B_1C_1D_1$ 挖去四棱锥 O-EFGH 后所得的几何体,其中 O 为长方体的中心, E, F, G,H 分别为所在棱的中点, $AB=BC=6\,\mathrm{cm},\,AA_1=4\,\mathrm{cm}.\,$ 3D 打印所用的材料密度 为 0.9 g/cm³. 不考虑打印损耗,制作该模型所需原料的质量为

理科数学 Ⅲ 试题 第3页(共6页)

- 三、解答题: 共 70 分. 解答应写出文字说明、证明过程或演算步骤. 第 17~21 题为必考题,每个试题考生都必须作答. 第 22、23 题为选考题,考生根据要求作答.
- (一)必考题:共60分.

17.(12分)

为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将 200 只小鼠随机分成 *A、B* 两组,每组 100 只,其中 *A* 组小鼠给服甲离子溶液,*B* 组小鼠给服乙离子溶液.每 只小鼠给服的溶液体积相同、摩尔浓度相同经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:

子残留百分比直方图 乙离子残留百分比直方图

记 C 为事件: "乙离子残留在体内的百分比不低于 5.5", 根据直方图得到 P(C) 的估计 值为 0.70.

- (1)求乙离子残留百分比直方图中 $a \ b$ 的值;
- (2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值代表).

18.(12分)

 $\triangle ABC$ 的内角 A,B,C 的对边分别为 a,b,c. 已知 $a\sin\frac{A+C}{2}=b\sin A$.

- (1)求 B;
- (2)若 $\triangle ABC$ 为锐角三角形,且 c=1,求 $\triangle ABC$ 面积的取值范围.

19.(12分)

图 1 是矩形 ADEB, $Rt\triangle ABC$ 和菱形 BFGC 组成的一个平面图形,其中 AB=1, BE=BF=2, $\angle FBC=60^\circ$. 将其沿 AB, BC 折起使得 BE 与 BF 重回,连结 DG, 如图 2.

- (1)证明:图 2 中的 A, C, G, D 四点共面,且平面 $ABC \perp$ 平面 BCGE;
- (2)求图 2 中的二面角 B-CG-A 的大小.

20.(12分)

已知函数 $f(x) = 2x^3 - ax^2 + b$.

- (1)讨论 f(x) 的单调性;
- (2)是否存在 a,b,使得 f(x) 在区间 [0,1] 的最小值为 -1 且最大值为 1? 若存在,求出 a,b 的所有值;若不存在,说明理由.

21.(12分)

已知曲线 C: $y=\frac{x^2}{2}$, D 为直线 $y=-\frac{1}{2}$ 上的动点, 过 D 作 C 的两条切线, 切点分别为 A, B.

- (1)证明:直线 AB 过定点:
- (2) 若以 $E\left(0,\frac{5}{2}\right)$ 为圆心的圆与直线 AB 相切,且切点为线段 AB 的中点,求四边形 ADBE 的面积.

- (二)选考题: 共 10 分. 请考生再第 22、23 题中任选一题作答. 如果多做,则按所做的第一题计分.
- 22. [选修 4-4: 坐标系与参数方程](10 分)

如图, 在极坐标系 Ox 中, A(2,0), $B\left(\sqrt{2},\frac{\pi}{4}\right)$, $C\left(\sqrt{2},\frac{3\pi}{4}\right)$, $D(2,\pi)$, 弧 \widehat{AB} , \widehat{BC} , \widehat{CD} 所在圆的圆心分别是 (1,0), $\left(1,\frac{\pi}{2}\right)$, $(1,\pi)$. 曲线 M_1 是弧 \widehat{AB} , M_2 是弧 \widehat{BC} , M_3 是 弧 \widehat{CD} .

- (1)分别写出 M_1, M_2, M_3 的极坐标方程;
- (2)曲线 M 是由 M_1, M_2, M_3 构成,若点 P 在 M 上,且 $|OP| = \sqrt{3}$,求点 P 的极坐标.

23. [选修 4-5:不等式选讲](10 分)

设 $x, y, z \in \mathbf{R}$,且 x + y + z = 1.

- (1)求 $(x-1)^2 + (y+1)^2 + (z+1)^2$ 的最小值;
- $(2) 若 (x-2)^2 + (y-1)^2 + (z-a)^2 \geqslant \frac{1}{3}, 证明: a \leqslant -3 或 a \geqslant -1.$

录入: 宜昌 李云皓

张家口 饶强

河南 林木

安徽 贾彬

河南 时涛

河北 焦子奇

安徽 史飞

绘图: 合肥 向禹

排版: 浙江 陈晓

严禁用于商业用途,转载请注明作者与出处!

理科数学 Ⅲ 试题 第6页(共6页)