

National Aeronautics and Space Administration Goddard Earth Science Data Information and Services Center (GES DISC)

Goddard Earth Sciences Data and Information Services Center (GES DISC) https://disc.gsfc.nasa.gov NASA Goddard Space Flight Center Code 610.2 Greenbelt, MD 20771 USA

Kyle MacRitchie		
Name GES DISC GSFC Code 610.2 8/31/2015	Name Collaborator Address	
Date		
Reviewer Name	Date	
Reviewer Name GES DISC GSFC Code 610.2	Date	

Revision History

August 31, 2015	This document was first created.	Kyle MacRitchie

Table of Contents

1.1.1 Dataset/instruments
1.3.1 Acknowledgement
4.1.1 GrADS61
4.1.2 MATLAB
4.1.3 Python
4.1.4 hdp and ncdump

1.0 Introduction

This document provides basic information for using Tropical Rainfall Measurement Mission (TRMM) products.

The TRMM datasets consist of products generated for studying precipitation in the tropics. These products include observations of radiances, microwave temperature, radar reflectivity, rainfall rate, vertical rainfall profile, and convective and stratiform heating.

TRMM was launched on November 27, 1997 and decommissioned on April 15, 2015. It reentered Earth's atmosphere in June 2015.

1.1 Dataset/Mission Instrument Description

Each of the TRMM datasets listed below is created using algorithms that are explained in more detail in section 1.2.

Applicable Data Products

Table 1 below provides an overview of the 18 TRMM products discussed in this document.

	Visible and Infrared Scanner (VIRS) Level 1 Raw and Calibrated Radiance Products	16 orbits / day	2.2 km
	TRMM Microwave Imager (TMI) Level 1 Raw and Calibrated Radiance Product	16 orbits / day	4.4 km, 5.1 km
	TRMM Precipitation Radar (PR) Level 1 Power and Reflectivity Products	16 orbits / day	4.3 km, 5.0 km
	TRMM Precipitation Radar (PR) Level 1 Power and Reflectivity Products	16 orbits / day	4.3 km, 5.0 km
	TRMM Microwave Imager (TMI) Level 2 Hydrometeor Profile Product	16 orbits / day	4.4 km, 5.1 km
	TRMM Precipitation Radar (PR) Level 2 Surface Cross-Section Product	16 orbits / day	4.3 km, 5.0 km
	TRMM Precipitation Radar (PR) Level 2 Rain Characteristics Product	16 orbits / day	4.3 km, 5.0 km
•	TRMM Precipitation Radar (PR) Level 2 Rainfall Rate and Profile Product	16 orbits / day	

1.1.1 Dataset/Instruments

The Tropical Rainfall Measurement Mission (TRMM) is a collaborative effort between NASA and the Japanese Aerospace Exploration Agency (JAXA). The TRMM observatory, which housed the first-ever precipitation radar in space, was launched in 1997 into a near circular orbit of approximately 350 kilometers with a period of 92.5 minutes (15.6 orbits per day). During the period of 2001/8/7 to 2001/8/14, the average operating altitude changed from 350 km to 403 km (referred to also as TRMM Boost). The datasets described in this document were created using data from the TRMM observatory and its partner satellites.

Multiple instruments are used throughout the TRMM satellite constellation. They are described briefly below.

: The PR was the first spacebourne instrument designed to provide three-dimensional plots of storm structure. It has a horizontal resolution of about 5 km and a swath width of 247 km. It can provide vertical profiles of rain and snow from the surface to a height of 20 km and is sensitive to light rain rates as low as 0.5 mm/hr.

The TMI is a passive microwave sensor based on the Special Sensor Microwave/Imager (SSM/I). It measures the intensity of radiation at 10.7, 19.4, 21.3, 37, and 85.5 GHz.

The VIRS senses radiation in the visible and infrared wavelengths of 0.63, 1.6, 10.8, and 12 micrometers. The VIRS has a horizontal resolution of 2.4 km and a swath width of about 833 km.

Below is a table summary of the instrument specifications adapted from the NASA Precipitation Measurement Missions website.

13.8 GHz	10.7, 19.4, 21.3, 37, 85.5 GHz	Wavelengths: 0.63, 1.6, 10.8, 12 μm
5 km horizontal, 250 m vertical	11 km x 8 km at 37 GHz	2.4 km
Cross-track	Conical	Cross-track
247 km	878 km	833 km

[.] Summary of instrument specifications.

1.2 Algorithm Background

This section describes how each dataset is created.

: The TRMM Visible and Infrared Scanner (VIRS) Level 1B Calibrated Radiance Product contains calibrated radiances and auxiliary geolocation information from the five channels of the VIRS instrument for each pixel of each scan. The EOSDIS "swath" structure is used to accommodate the actual geophysical data arrays. Sixteen files of VIRS 1B01 data are produced each day.

For channels 1 and 2, Level 1B radiances are derived from the Level 1A (1A01) sensor counts by computing calibration parameters (gain and offset) derived from the counts registered during space and solar and/or lunar views. New calibration parameters are produced every one to four weeks. Channels 3, 4, and 5 are calibrated using the internal blackbody and the space view. These calibration parameters, together with a quadratic term determined pre-launch, are used to generate a counts vs. radiance curve for each band, which is then used to convert the earth-view pixel counts to spectral radiances.

Geolocation and channel data are written out for each pixel along the scan, whereas the time stamp, scan status (containing scan quality information), navigation, calibration coefficients, and solar/satellite geometry are specified on a per-scan basis. There are in general 18,026 scans along the orbit pre-boost and 18,223 post-boost, with each scan consisting of 261 pixels. The scan width is about 720 km pre-boost and 833 km post-boost.

This is the TRMM Microwave Imager (TMI) LEVEL 1B calibrated Brightness Temperature (T_b) data product. The TMI calibration algorithm (1B11) converts the radiometer counts to antenna temperatures by applying a linear relationship of the form $T_a = c_1 + c_2 x$ count. The coefficients are provided by the instrument contractor. Antenna temperatures are corrected for cross-polarization and spill over to produce brightness temperatures (T_b) , but no antenna beam pattern correction or sample to pixel averaging are performed. Temperatures are provided at 104 scan positions for the low frequency channels and 208 scan positions at 85 GHz. There are four samples per pixel (3 dB beam width) at 10 GHz, two samples at 19, 22, and 37 GHz, and one sample per pixel for the 85 GHz.

The PR calibration algorithm (1B21) converts the counts of radar echoes and noise levels into engineering values (power) and outputs the radar echo power and noise power separately. The algorithm also detects and flags the range bin with return power that exceeds a predetermined threshold value.

The PR reflectivity algorithm (1C21) converts the power and noise estimates from 1B21 to radar reflectivity factors (Z-factors). In order to reduce output data volume, only pixels with power that exceeds the minimum echo detected in 1B21 are converted and stored.

This product contains surface rainfall and vertical hydrometeor profiles on a pixel-by-

integrated attenuation (PIA), storm height, Xi, bright band height and the NUBF (Non-Uniform Beam Filling) correction; 2) rain fractions; 3) histograms of the storm height, bright-band height, snow-ice layer, reflectivity, rain rate, path-attenuation and NUBF correction; 4) correlation coefficients. The high resolution grids are in the Planetary Grid 2 structure and contain mean rain rate along with standard deviation and rain fractions.

This dataset contains PR monthly surface rainfall. These data were derived from rain rate statistics and include the estimated values of the probability distribution function of the space-time rain rates at four levels (2 km, 4 km, 6 km, and path-averaged) and the mean, standard deviation, and probability of rain derived from these distributions. Three different rain rate estimates are used as input to the algorithm: (1) the standard Z-R (or 0th-order estimate having no attenuation correction); (2) the Hitschfield-Bordan (H-B); and (3) the rain rates taken from 2A25.

This rainfall product contains data derived from the monthly SSM/I data averaged over 1° x 1° boxes each month. These data are used as input to the 3B43 monthly product described below.

This is a combined rainfall product. 3B31 uses the high quality retrievals done for the narrow swath in 2B31 to calibrate the wide swath retrievals generated in 2A12. For each 0.5° x 0.5° box and each vertical layer, an adjustment ratio is calculated for the swath overlap region for one month. Only TMI pixels with 2A12 pixelStatus equal to zero are included in monthly averages, which effectively removes sea ice.

The data product consists of TRMM Multi-Satellite Precipitation Analysis (TMPA) Rainfall Estimate Product 3B42 Version 7 (V7), which merges satellite rainfall estimates (S) with gauge data (G). First, all non-TRMM microwave precipitation estimates The 3B42 algorithm first combines microwave precipitation estimates from multiple low-earth-orbiting satellites are calibrated to the TRMM Microwave Imager precipitation (TMI; TRMM product 2A12) and then calibrated to the TRMM Combined Instrument precipitation (TCI; TRMM product 2B31). These are merged to produce a 3 hourly microwave-only best estimate. The infrared precipitation estimates (from multiple geosynchronous satellites) are then calibrated to the microwave estimate and used to fill in the regional gaps in the merged microwave field to produce a combined satellite rainfall estimate every 3 hours. These 3-hourly combined satellite estimates are then summed to the monthly scale and recalibrated with a monthly precipitation gauge analysis to provide the final SG-merged precipitation estimate as a Level 3 (L3) 3 hourly 0.25° x 0.25° quasi-global (50°N-S) gridded SG-rainfall database. Estimates of root-mean-square (RMS) precipitation error are also provided.

The data product consists of TRMM Multi-Satellite Precipitation Analysis (TMPA) Rainfall Estimate Product 3B43 Version 7 (V7), which merges satellite rainfall estimates (S) with gauge data (G) into gridded estimates on a calendar month temporal resolution and a 0.25° by 0.25° spatial resolution global band extending from 50°S to 50°N latitude. This algorithm is executed once per calendar month to produce the average best-estimate precipitation rate and RMS precipitation-error estimate field (3B43) described in 3B42 prior to recalibration of the 3 hourly product.

This is the convective and stratiform heating product. Convective and stratiform heating profiles are separated by comparing heating profiles from TRMM sensors to a lookup table of heating profiles mostly generated by the Goddard Cumulus Ensemble Cloud Resolving Model.

1.3 Data Disclaimer

1.3.1 Acknowledgement

If you use these data in publications, please acknowledge the Tropical Rainfall Measuring Mission (TRMM) as well as the Goddard Earth Sciences Data and Information Services Center (GES DISC) for the dissemination of the data. The standard for data citation can be found under the "Data Citation" tab on any of the TRMM product pages:

https://disc.gsfc.nasa.gov/datasets?project=TRMM

1.3.2 Contact Information

If you need assistance or wish to report a problem please use the following contact information:

 $: \underline{gsfc\text{-}help\text{-}disc@lists.nasa.gov}$

: 301-614-5268 : 301-614-5268

:

Goddard Earth Sciences Data and Information Services Center (GES DISC) NASA Goddard Space Flight Center Code 610.2 Greenbelt, MD 20771 USA

2.0 Data Organization

All datasets are stored in files that correspond to their temporal resolution. For example, the 3-hourly 3B42 data are stored in eight files per day at 00 UTC, 03 UTC, 06 UTC, etc. and monthly files are stored in separate files for each month.

2.1 File Naming Convention

File names involve some combination of the following attributes:

- <date> The date is always in a format with the last 2 digits of the year following by the month and the day, always with a leading zero. An example for 4 August 2009 would be:
- <orbit_number> This is the 5 digit orbit number.
- product_version> This is the product version. The most recent version is 7.

1B01. <date>.<orbit_number>.<product_version>.HDF</product_version></orbit_number></date>	HDF4
1B11. <date>.<orbit_number>.<product_version>.HDF</product_version></orbit_number></date>	HDF4
1B21. <date>.<orbit_number>.<pre>.<pre>.<pre>product_version>.HDF.Z</pre></pre></pre></orbit_number></date>	Compressed HDF4
1C21. <date>.<orbit_number>.<pre>.<pre>cproduct_version>.HDF.Z</pre></pre></orbit_number></date>	Compressed HDF4
2A12. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
2A21. <date>.<orbit_number>.<pre>.<pre>.<pre>product_version>.HDF.Z</pre></pre></pre></orbit_number></date>	Compressed HDF4
2A23. <date>.<orbit_number>.<pre>.<pre>cproduct_version>.HDF.Z</pre></pre></orbit_number></date>	Compressed HDF4
2A25. <date>.<orbit_number>.<pre>.<pre>cproduct_version>.HDF.Z</pre></pre></orbit_number></date>	Compressed HDF4
2B31. <date>.<orbit_number>.<pre>.<pre>product_version>.HDF.Z</pre></pre></orbit_number></date>	Compressed HDF4
3A11. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3A12. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3A25. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3A26. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3B31. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3A46. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3B42. <date>.<hour>.<product_version>.HDF.Z</product_version></hour></date>	Compressed HDF4
3B43. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
CSH. <date>.<product_version>.HDF</product_version></date>	HDF4

[.] File naming conventions.

2.2 File Format and Structure

TRMM files are in the Hierarchical Data Format Version 4 (HDF-4), developed at the National Center for Supercomputing Applications (https://www.hdfgroup.org). These extensions facilitate the creation of Grid, Point, and Swath data structures, depending on whether the data are orbital or gridded.

Orbital (levels 1 and 2) data are stored in HDF-4 files that use the swath structure.

The variables within the orbital TRMM files (the product IDs that begin with a "1" or a "2") contain Swath data structures with dimensions of (nscan x nray). The gridded variables have dimensions of (longitude x latitude). Three-dimensional variables, found in the gridded files, have a third dimension of height above the surface, measured in kilometers.

Missing data are represented by values that are less than or equal to -99, -9999, -9999, -9999.9, and -9999.9 corresponding to 1-byte integers, 2-byte integers, 4-byte floats, and 8-byte floats.

Array dimensions are ordered so that the first dimension has the most rapidly varying index and the last dimension has the least rapidly varying index, which is sometimes called column-major

ordering. Languages such as Fortran, MATLAB, and R use column-major ordering naturally. If you use row-major languages such as C++ and Python, it is recommended that you reverse the order of the dimensions of the arrays for optimal performance.

2.3 Key Science Data Fields

Below are the variables, and the products in which they are found, that we expect to be the most popular.

surfaceRain	Surface Rainfall Rate	lat x lon	mm hr ⁻¹
convectPreciptiation	Surface Convective Rain Rate	level x lat x lon	mm hr ⁻¹
surfacePrecipitation	Surface Precipitation Rate	lat x lon	mm hr ⁻¹
cldlce	Cloud Ice Water Content	level x lat x lon	g m ⁻³
cldWater	Cloud Liquid Water Content	level x lat x lon	g m ⁻³
snow	Snow Liquid Content	level x lat x lon	g m ⁻³
graupel	Graupel Liquid Water Content	level x lat x lon	g m ⁻³
latentHeat	Latent Heat Release	level x lat x lon	K hr ⁻¹
precipitation	Surface Precipitation Estimate	lat x lon	mm hr ⁻¹
HQprecipitation	Microwave Precipitation Estimate*	lat x lon	mm hr ⁻¹
IRprecipitation	Infrared Precipitation Estimate*	lat x lon	mm hr ⁻¹
relativeError	Random Error Estimate	lat x lon	mm hr ⁻¹
precipitation	Surface Precipitation Estimate	lat x lon	mm hr ⁻¹
relativeError	Random Error Estimate	lat x lon	mm hr ⁻¹

Description of popular variables.

3.0 Data Contents

3.1 Dimensions

The dimensions of the variables within the files vary by processing level, which refers to the "1", "2", or "3" at the beginning of the product ID. A summary of the dimensionality of the most common variables is given below. See section 3.3 for more details on each individual dataset.

Most of these variables have dimensions of x refers to the number of scans in each granule, which varies by file. The second dimension, refers to the number of angle bins in each scan, which is always 49.

These variables have various numbers of dimensions made up of the ones listed below.

: number of clusters at each freezing height, always 100

: number of profiling layers, always 28

: number of pixels in each scan, always 208

: number of freezing height indices, always 13

: number corresponding to the hydrometeor species. Table 5 below lists the species.

1	Cloud liquid water content	g m ⁻³
2	Rain water content	g m ⁻³
3	Cloud ice water content	g m ⁻³
4	Snow water content	g m ⁻³
5	Graupel water content	g m ⁻³
6	Latent heating	K h ⁻¹

Description of hydrometeor species.

These variables are on geographic grids and have various combinations of the dimensions listed below.

number of latitudes

: number of longitudes

: number of vertical layers denoting the height above the surface. There are 28 vertical layers beginning at $0.5\,\mathrm{km}$ and increasing in $0.5\,\mathrm{km}$ intervals to $10\,\mathrm{km}$ and then $1\,\mathrm{km}$ intervals to $18\,\mathrm{km}$.

All 32-bit variables have attributes to make them COARDS-compliant.

Resolution

TRMM data are available on a variety of grids depending on the products chosen. Table 1 shows the temporal and horizontal resolutions associated with each TRMM product.

Temporal resolutions vary between 16 orbits/day (90 minutes), 3-hourly, and monthly. 3-hourly data exist at the synoptic and intermediate synoptic times of 00, 03, 06, 09, 12, 15, 18, and 21 UTC. Sub-daily data represent observations taken at that instant whereas monthly data represent monthly averages.

The orbital data products (1XXX and 2XXX) have latitude and longitude variables contained within the HDF files to allow proper swath mapping. Gridded files (3XXX) do not have explicit latitude and longitude information. Instead, the gridded files contain the

metadata and generally span 50°S to 50°N and 180°W to 180°E. Some products only span 38°S to 38°N, see section 3.3 for specific details.

Gridded TRMM products use the center of grid boxes for their latitude and longitude coordinates. For example, the TRMM 3B42 dataset, which spans 50°S to 50°N and 180°W to 180°E has a grid that goes from 49.875°S TO 49.875°N and 179.875°W to 179.875°E. Consult the sample code in Section 4 of this Readme for specific examples.

Detailed information on data resolution can be found in the <u>PPS File Specification document</u> cited at the end of this Readme document.

3.2 Global Attributes

In addition to SDS arrays containing variables and dimension scales, global metadata are also stored in the files. Some metadata are required by standard conventions, some are present to meet data provenance requirements, and others as a convenience to users of TRMM products. A summary of global attributes present in all files is shown in Table 6.

AlgorithmID	The algorithm that generated the product.
AlgorithmVersion	The version of the algorithm specified as the AlgorithmID.
FileName	The file name.
GenerationDateTime	The date and time the granule was generated.
StartGranuleDateTime	The start time of the data in the granule.
StopGranuleDateTime	The stop time of the data in the granule.
GranuleNumber	The granule number.
NumberOfSwaths	The number of swaths in the granule.
NumberOfGrids	The number of grid structures in the granule.
GranuleStart	The granule's orbit starting place.
TimeInterval	The time interval covered by the granule. Possible values are: ORBIT,
Timeintervar	HALFORBIT, HOUR, 3_HOUR, DAY, MONTH, and CONTACT.
ProcessingSystem	The name of the processing system.
ProductVersion	The data version assigned by ProcessingSystem.
MissingData	The number of missing scans.

Description of global attributes.

FillValue	float32	Floating-point value used to identify missing		
		data. Will normally be set to		
		1e15. Not included in every TRMM file.		
Units	string	The units of the variable. Must be a string that		
		can be recognized by		
		UNIDATA's Udunits package.		
Scale_factor	float32	If variable is packed as 16-bit integers, this is the		
		scale_factor for		
		expanding to floating-point.		

A list of key metadata fields can be found in Table 7. Global attributes in a file

can be

. Key Metadata Items

viewed with the

software: ncdump -h -c <TRMM file>.

17

3.3 Products and Variables

Start Date: 1997-12-08	Start Date: 2001-08-24
Stop Date: 2001-08-07	Stop Date: 2015-04-08
Latitude: 38°S – 38°N	Latitude: 38°S - 38°N
Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
91.5 min/orbit = 16 orbits/day	92.5 min/orbit = 16 orbits/day
2.2 km	2.4 km
Swath Width: 720 km	Swath Width: 833 km
Pixels/Scan: 261	Pixels/Scan: 261
Scans/Second (SS): 2*98.5/60	Scans/Second (SS): 2*98.5/60
Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5490
Average Scans/Orbit: nscan = 18026	Average Scans/Orbit: 5550 = 18223
nscan = SS*SO	nscan = SS*SO
137 MB	138 MB

	Char Attribute	10,000	-	-	-	=
ECS core metadata						
	Char Attribute	10,000	-	-	-	-
Product specific metad	ata					
	Char Attribute	5,000	=	-	-	-
Specifications for the s						
	Vdata Table	8	nscan	-	-	-
Time associated with ea						
	Float SDS	4	261*nscan	-	-	degree
Latitude information						
	Float SDS	4	261*scan	-	-	degree
Longitude information						
	Vdata Table	19	nscan	-	-	-
Status of each scan						
	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric in						
	Vdata Table	32	nscan	_	-	-
Solar unit vector in Geo				tance		
	Integer SDS	2	5*2*3*nscan	-	-	-
Raw calibration counts			/ ale			
	Integer SDS	2	6*nscan	-	0 – 4095	counts
Primary and redundant				and the electroi	nics module	
A	Float SDS	4	2*2*27*nscan	-	-	degree
Angles to the satellite and sun from the IFOV pixel position on the earth						
	Float SDS	4	5*261*nscan	depends	depends	mW cm ⁻² µm ⁻¹ sr ⁻¹
Scene data for the five	channels					

Solar Position	3 * 8-byte float	Sun Unit Vectors: x-, y-, and z-components
Distance	8-byte float	Sun-Earth Distance (m)

1	Channel number
2	Data word
3	Blackbody, space view, solar diffuser
4	Number of scans

		The zenith angle is measured between the local pixel geodetic zenith and
1	zenith, azimuth	the direction to the satellite. The azimuth angle is measure clockwise
		from the local north direction toward the local east direction.
2	object	The object to which the directions point, namely the satellite and the
2	Object	sun.
3	nivel number	Angles are given only for every tenth pixel along a scan: e.g. pixels 1, 11,
3	pixel number	21,, 261.
4	scan number	Scan line number

Start Date: 1997-12-08	Start Date: 2001-08-24
Stop Date: 2001-08-07	Stop Date: 2015-04-08
Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
91.5 min/orbit = 16 orbits/day	92.5 min/orbit = 16 orbits/day
4.4 km at 85.5 GHz	5.1 km at 85.5 GHz
Swath Width: 760 km	Swath Width: 878 km
Pixels/Scan: 104 (low resolution)	Pixels/Scan: 104 (low resolution)
208 (high resolution)	208 (high resolution)
Scans/Second (SS): 36.100/60	Scans/Second (SS): 36.100/60
Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
Average Scans/Orbit: nscan = 2991	Average Scans/Orbit: nscan = 3023
nscan = SS * SO + 100	nscan = SS * SO + 100
16 MB	16 MB

	Char Attribute	10,000	-	-	-	-
ECS core metadata						
	Char Attribute	10,000	-	-	-	-
Product specific metadata						
	Char Attribute	5,000	-	-	-	-
Specification of the swath geo						
	Vdata Table	9	nscan	-	-	-
Time associated with each sca		,	2224			
	Float SDS	4	208*nscan	-	-	degree
Latitude information	FI . 000		0.00 t			_
	Float SDS	4	208*nscan	-	-	degree
Longitude information	\/	01				
Chabanas	Vdata Table	21	nscan	-	-	-
Status of each scan	\/ L L T L L	20				
Consequently and a second size for any	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric informa		OF.				
Calibration	Vdata Table	95	nscan	-	-	-
Calibration	Intones CDC	2	1/*2*0*			
Colibration maggurament in a	Integer SDS	2	16*2*9*nscan	-	-	-
Calibration measurement, in c	Float SDS	are: sampies, io		SCall.		dograa
Angle between the local pivel		•	12*nscan	- congle is given fo	-	degree
Angle between the local pixel resolution pixel along a scan: p			o the satellite. This	angle is given it	or every 20	riigii
resolution pixel along a scall: [7)	7*104*nscan	(T-100)*100		K
Low resolution channels brigh	Integer SDS	۷	1 104 HSCall	(1-100) 100	-	N
Low resolution chamiles bright	Integer SDS	2	2*208*nscan	(T-100)*100		K
High resolution channels brigh	9	_	2 200 1130411	(1-100) 100	_	IX
riigirresolution channels brigi	it temperature					

2-byte integer	4-digit year, e.g., 1998
1-byte integer	The month of the year
1-byte integer	The day of the month
1-byte integer	

Start Date: 1997-12-08	Start Date: 2001-08-24
Stop Date: 2001-08-07	Stop Date: 2015-04-08
Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
91.5 min/orbit = 16 orbits/day	92.5 min/orbit = 16 orbits/day
4.3 km	5.0 km
Swath Width: 215 km	Swath Width: 247 km
Rays/Scan: nray = 49	Rays/Scan: nray = 49
Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6
Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250
nscan = SS*SO	nscan = SS*SO
67 MB	79 MB

	Char Attribute	10,000	-	-	-	-
ECS core metadata						
	Char Attribute	10,000	-	-	-	-
Product specific metadata						
	Vdata Table	4	18	-	-	-
Calibration coefficients for the coefficient (unitless, 1 record),						
,	Vdata Table	60	49	-	-	-
Information about each ray (ar	ngle bin) that is con	stant for every s	can. The record nur	mber represents	the angle bin	number.
Each record describes one ray	0 ,	,		,	3	
	Char Attribute	5,000	-	-	-	-
Specification of the swath geor	metry					
	Vdata Table	8	nscan	-	-	-
Time associated with the scan,	expressed as 8-by	te float UTC seco	nd of the day.			
	Float SDS	4	nray*nscan	-	-	degree
Latitude information						
	Float SDS	4	nray*nscan	-	-	degree
Longitude information						
	Vdata Table	15	nscan	-	-	-
Status of each scan						
	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric informat						
	Vdata Table	6	nscan	-	-	-
Radar transmission power and						
	Integer SDS	2	nray*nscan	100	-120 ~ -20	dBm
System Noise (dBm) is an avera		red system noise		ta are given the	value of -32,7	<u>'34.</u>
	Integer SDS	1	nray*nscan	-	-	-
System Noise Warning Flag indicates possible contamination of lower window noise by high towers of rain. 1 means possible contamination; 0 means no possible contamination.						
			VVOI VVIIIGOVV IIOIGC K	J ingil towers o	rain. Findar	15

	Integer SDS	1	nray*nscan	-	-	-
Minimum echo flag indicates th	ne presence of rair	n in the ray (angle	e bin).			
	Integer SDS	2	2*nray*nscan	-	_	_
Bin storm height is the range bi	O .	torm ton	2 111 4) 1100411			
Birr storm rieight is the runge bi	Float SDS	4	nray*nscan	_	_	
Angle, in degrees, between the		•		odatia) zanith at	the intercept	ion of the
		ne beam's cente	i iiiie. The local (ged	odetic) zeriitii at	the intersecti	on or the
ray and the earth ellipsoid is us		4	т.			
	Integer SDS	4	nray*nscan	-	-	m
Distance between the spacecra				earth ellipsoid.		
	Integer SDS	2	2*29*nscan	-	-	-
Starting range bin number of th	ne oversample (eit	her surface or ra	iin) data, counting f	rom the top dov	vn.	
	Integer SDS	2	nray*nscan	-	-	-
Land or ocean information. The		are: 0 = water, 1		B = water (w/ lar	ge attenuatio	n), 4 =
land/coast (w/ large attenuatio		,	,		9	,,
The state of the s	Integer SDS	2	nray*nscan	-	_	_
Definition TBD by NASDA.	integer 3D3	2	Tirdy Tiscuit			
Definition 100 by NA30A.	Integer SDS	2	nrav*nccan			
	O .		nray*nscan	-	- 	-
Range bin number of the peak						iot by the
on board surface detection. The	•	er is defined in th	nis volume in the se	ction on Precipit	tation Radar,	
Instrument and Scan Geometry						
	Float SDS	2	nray*nscan	-	-	-
Range bin number of the earth	ellipsoid.					
	Integer SDS	2	2*nray*nscan	-	-	-
Range bin number of the lowes	t clutter free bin.	Clutter free bin r	numbers are given f	or clutter free co	ertain and pos	ssible,
respectively. The clutter free ce						
	Integer SDS	2	nray*nscan	=	=	_
Mean range bin number of the	9			n the IFOV		
Wearrange birrhumber of the				in the ii Ov.		
Daniel kie a sale a cita	Integer SDS	2	2*nray*nscan	- OV The Cost eller	-	in an artist
Range bin number of the maxir		elevation in a box	centered on the IF	OV. The first ain	nension is the	box size,
with sizes of 5 km x 5 km and 1						
	Integer SDS	2	2*nray*nscan	-	-	-
Range bin number of the minin	num DID surface e	levation in a box	centered on the IF	OV. The first dim	nension is the	box size,
with sizes of 5 km x 5 km and 1	1 km x 11 km.					
	Integer SDS	2	140*nray*nscan	100	-120 ~ -20	dBm
Return power (dBm) of the nor	•	each ray has a d	•	ements after the	e end of each	rav are
filled with a value of -32767. Of						
including an entire scan of miss						
S .	sing bins, have the	value 01 -32/34.	. THE SIZE OF CACITIA	y is specified iii	itay ricader, v	vitii aii
accuracy of 0.9 dBm.	Intono CDC	2	F*20*:	100	120 20	alD.sa
Data and a Calbara and	Integer SDS	2	5*29*nscan	100	-120 ~ -20	dBm
Return power (dBm) of the surf						
where data is not written due t			•	0	an of missing	pins,
have the value of -32734. In the		nsion, Offset = -1				
	Integer SDS	2	28*11*nscan	100	-120 ~ -20	dBm
Return power (dBm) of the rain		for the central 1	11 rays (rays #20-30), with an accura	acy of 0.9 dBn	n. Bins
where data is not written due t						
have the value of -32734. In the			•	•	3	•

Radar Transmission Power 2-byte integer
Total (sum) power of 128 SSPA elements corrected with SSPA temperature in orbit, based on temperature test data of
SSPA transmission power. The units are dBm * 100. For this variable, the TSDIS Toolkit does not provide scaling.
Transmitted Pulse Width 4-byte float
Transmitted pulse width (s) corrected with FCIF temperature in orbit, based on temperature test data of FCIF.

No Rain
Rain Possible
Rain Possible (echo greater than rain threshold #1 in clutter range)
Rain Possible (echo greater than rain threshold #2 in clutter range)
Rain Certain

Bin Storm Height is Range Bin Number of the storm top. The first dimension is threshold, with values of possible rain threshold and certain rain threshold in that order. The Bin Storm Heights are generated in the procedure to determine the Minimum Echo Flag. The Bin Storm Height is the top range bin of the portion of consecutive range bins that flagged the ray as rain possible or rain certain. The range bin number is defined in this volume in the section on Precipitation Radar, Instrument and Scan Geometry.

The first dimension is the Bin Start of Oversample and Surface Tracker Status. The second dimension is the ray. The number of rays is 29 because this information only applies to the rays that have oversample data (rays #11 to #39). The third dimension is the scan. The Surface Tracker Status has the value of 0 (Lock) or 1 (Unlock), where Lock means that (1) the on board surface detection detected the surface and (2) the surface detected later by processing on the ground fell within the oversample bins. Unlock means that Lock was not achieved. The range bin number is defined in this volume in the section on Precipitation Radar, Instrument and Scan Geometry.

Start Date: 1997-12-08	Start Date: 2001-08-24
Stop Date: 2001-08-07	Stop Date: 2015-04-08
Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
91.5 min/orbit = 16 orbits/day	92.5 min/orbit = 16 orbits/day
4.3 km	5.0 km
Swath Width: 215 km	Swath Width: 247 km
Rays/Scan: nray = 49	Rays/Scan: nray = 49
Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6
Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250
nscan = SS*SO	nscan = SS*SO
44 MB	44 MB

	Char Attribute	10,000	-	-	-	-
ECS core metadata						
	Char Attribute	10,000	-	-	-	-
Product specific metadata						
	Vdata Table	4	18	-	-	-
Calibration coefficients for the F coefficient (unitless, 1 record), a						
	Vdata Table	60	49	-	-	-
Information about each ray (and Each record describes one ray a	,	,	can. The record nur	mber represents	the angle bin	number.
zaciii eesi a deesiinees eiie i aj a	Char Attribute	5,000	-	-	-	-
Specification of the swath geom		-,				
ı	Vdata Table	8	nscan	-	-	-
Time associated with the scan, e	expressed as 8-byt	te float UTC seco	nd of the day.			
	Float SDS	4	nray*nscan	-	-	degree
Latitude information						
	Float SDS	4	nray*nscan	-	-	degree
Longitude information						
	Vdata Table	15	nscan	-	-	-
Status of each scan						
	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric informati						
	Vdata Table	6	nscan	-	-	-
Radar transmission power and t						
	Integer SDS	2	nray*nscan	100	-120 ~ -20	dBm
System Noise (dBm) is an average		red system noise		ta are given the	value of -32,7	34.
	Integer SDS	1	nray*nscan	-	-	-
System Noise Warning Flag indipossible contamination; 0 mean			wer window noise b	by high towers o	t rain. 1 mear	1S

	Integer SDS	1	nray*nscan	-	-	-
Minimum echo flag indicates th		in the ray (angle				
	Integer SDS	2	2*nray*nscan	-	-	-
Bin storm height is the range bi		torm top.				
	Float SDS	4	nray*nscan	-	-	-
Angle, in degrees, between the		ne beam's center	fline. The local (geo	detic) zenith at	the intersection	on of the
ray and the earth ellipsoid is use						
	Integer SDS	4	nray*nscan	-	-	m
Distance between the spacecra		of the footprint o		earth ellipsoid.		
	Integer SDS	2	2*29*nscan	-	-	-
Starting range bin number of th		ner surface or ra	in) data, counting fr	om the top dov	vn.	
	Integer SDS	2	nray*nscan	-	-	-
Land or ocean information. The		are: 0 = water, 1	= land, 2 = coast, 3	= water (w/ lar	ge attenuatior	า), 4 =
land/coast (w/ large attenuation						
	Integer SDS	2	nray*nscan	-	-	-
Definition TBD by NASDA.						
	Integer SDS	2	nray*nscan	-	-	-
Range bin number of the peak s		•		•		ot by the
on board surface detection. The		er is defined in th	is volume in the sec	ction on Precipit	ation Radar,	
Instrument and Scan Geometry						
	Float SDS	2	nray*nscan	-	-	-
Range bin number of the earth						
	Integer SDS	2	2*nray*nscan	-	-	-
Range bin number of the lowes						sible,
respectively. The clutter free ce				e possible bin ni	umber.	
	Integer SDS	2	nray*nscan	-	-	-
Mean range bin number of the				n the IFOV.		
	Integer SDS	2	2*nray*nscan	-	-	-
Range bin number of the maxim		levation in a box	centered on the IF	OV. The first dim	nension is the	box size,
with sizes of 5 km x 5 km and 1						
	Integer SDS	2	2*nray*nscan	-	-	-
Range bin number of the minim		evation in a box	centered on the IFO	DV. The first dim	ension is the	box size,
with sizes of 5 km x 5 km and 1°						
	Integer SDS	2	140*nray*nscan	100	-120 ~ -20	dBm
Return power (dBm) of the norm						
filled with a value of -32767. Ot						
including an entire scan of miss	ing bins, have the	value of -32734.	The size of each rag	y is specified in I	Ray Header, w	ith an
accuracy of 0.9 dBm.						
	Integer SDS	2	5*29*nscan	100	-120 ~ -20	dBm
Return power (dBm) of the surf						
where data is not written due to			•	•	an of missing b	oins,
have the value of -32734. In the					100 00	-ID
Data (15) (11	Integer SDS	2	28*11*nscan	100	-120 ~ -20	dBm
Return power (dBm) of the rain						
where data is not written due to have the value of -32734. In the				•	an or missing t	JINS,
r nave me value or -37734. In the	a cangerrank nimer	$1S1O11 \cup 11SP1 = -1$	9 and increment =	1		

Start Date: 1997-12-08	Start Date: 2001-08-24
Stop Date: 2001-08-07	Stop Date: 2015-04-08
Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
Surface – 18 km	Surface – 18 km
91.5 min/orbit = 16 orbits/day	92.5 min/orbit = 16 orbits/day
4.4 km at 85.5 GHz	5.1 km at 85.5 GHz
0.5 km from surface to 4 km	0.5 km from surface to 4 km
1.0 km from 4 km to 6 km	1.0 km from 4 km to 6 km
2.0 km from 6 km to 10 km	2.0 km from 6 km to 10 km
4.0 km from 10 km to 18 km	4.0 km from 10 km to 18 km
Swath Width: 760 km	Swath Width: 878 km
Pixels/Scan: 208	Pixels/Scan: 208
Scans/Second (SS): 36.100/60	Scans/Second (SS): 36.100/60
Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
Average Scans/Orbit: nscan = 2991	Average Scans/Orbit: nscan = 3023
nscan = SS * SO + 100	nscan = SS * SO + 100
11 MB	11 MB

	Char Attribute	10,000	-	-	-	-
ECS core metadata						
	Char Attribute	10,000	=	-	-	-
Product specific metadata						
	Char Attribute	5,000	-	-	-	-
Specification of the swath geo	metry					
	Vdata Table	9	nscan	-	-	-
Time associated with each sca	n					
	Float SDS	4	208*nscan	-	-	degree
Latitude information						J
	Float SDS	4	208*nscan	-	-	degree
Longitude information						
zong.rado imermation	Vdata Table	21	nscan	-	-	-
Status of each scan	vaata rabio	21	1100011			
otatus of outfloan.	Vdata Table	88	nscan	_		_
Spacecraft geocentric informa		00	riscari			
Spaced art geocenti le illioi lila	Integer SDS	1	npixel*nscan	_		
Indicates the quality of the dat			ripixer riscari			
indicates the quality of the da	Integer SDS	1	nnivol*nccan			
Indicates if rain is possible.		1 O poroin	npixel*nscan	-	-	-
Indicates if rain is possible. 0	= rain is possible, ·	< U = 110 fain				

Start Date: 1997-12-08	Start Date: 2001-08-24
Stop Date: 2001-08-07	Stop Date: 2015-04-08
Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
91.5 min/orbit = 16 orbits/day	92.5 min/orbit = 16 orbits/day
4.3 km	5.0 km
Swath Width: 215 km	Swath Width: 247 km
Rays/Scan: nray = 49	Rays/Scan: nray = 49
Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6
Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250
nscan = SS*SO	nscan = SS*SO
11 MB	11 MB

Start Date: 1997-12-08	Start Date: 2001-08-24
Stop Date: 2001-08-07	Stop Date: 2015-04-08
Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
91.5 min/orbit = 16 orbits/day	92.5 min/orbit = 16 orbits/day
4.3 km	5.0 km
Swath Width: 215 km	Swath Width: 247 km
Rays/Scan: nray = 49	Rays/Scan: nray = 49
Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6
Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250
nscan = SS*SO	nscan = SS*SO
7 MB	7 MB

	Char Attribute	10,000	-	-	-	-
ECS core metadata						
	Char Attribute	10,000	-	-	-	-
Product specific metadata						
	Char Attribute	5,000	-	-	-	-
Specification of the swath geo	metry					
	Vdata Table	9	nscan	-	-	-
Time associated with each scan						
	Float SDS	4	208*nscan	-	-	degree
Latitude information						

	Integer SDS	1	nray*nscan	-	-	-
The warm rain flag is set as f	9		ited; 11 = confidence in		,	
shallow but not isolated; 21	= confidence in st	nallow but not is	solated; 0 = not shallow	t; < 0 = rain not	certain or m	issing
	Integer SDS	1	nray*nscan	-	-	-
Indicates whether the data a	re obtained over	sea or land, and	d the confidence in the o	data		
	Integer SDS	2	nray*nscan	-	-	-
A positive height of bright ba	and is defined in r	neters above m	ean sea level. Negative	values are defir	ned as: -1111	= no
bright band, -8888 = no rain,	-9999 = data mis	sing				
	Integer SDS	4	nray*nscan	-	-	-
The maximum value of the b			3			
The maximum value of the b	right band.					
The maximum value of the b	0	2	nray*nscan	-	-	-
A positive range bin number	Integer SDS	2 to the peak of	3	-	-	-
	Integer SDS that corresponds		3	-	-	-
	Integer SDS that corresponds Integer SDS	to the peak of 2	the bright band. 2*nray*nscan	- - bottom.		-

100	Stratiform certain	When R_type_V = T_stra; (BB exists) and R_type_H = T_stra;
110	Stratiform certain	When R_type_V = T_stra; (BB exists) and R_type_H = T_others;
120	Probably stratiform	When R_type_V = T_others; and R_type_H = T_stra;
130	Maybe stratiform	When R_type_V = T_stra; (BB detection certain) and R_type_H = T_conv;
140	Maybe stratiform or maybe transition or something else	When R_type_V = T_others; (BB hardly expected) and R_type_H = T_stra;
152	Maybe stratiform	Shallow isolated (type of warm rain) is detected. When R_type_V = T_others; R_type_H = T_stra; and shallowRain = 20 or 21;
160	Maybe stratiform, rain hardly expected near surface	BB may exist but is not detected when R_type_V = T_others; R_type_H = T_stra;
170	Maybe stratiform, rain hardly expected near surface	BB hardly expected. Maybe cloud only. When R_type_V = T_others; R_type_H = T_stra;
200	Convective certain	When R_type_V = T_conv; (no BB) and R_type_H = T_conv;
210	Convective certain	When R_type_V = T_others; and R_type_H = T_conv;
220	Convective certain	When R_type_V = T_conv; and R_type_H = T_others;
230	Probably convective	When R_type_V = T_conv; (BB exists) and R_type_H = T_conv;
240	Maybe convective	When R_type_V = T_conv; and R_type_H = T_stra;
251	Convective	Shallow isolated is detected. When R_type_V = T_conv, R_type_H = T_conv and shallowRain = 10 or 11;
252	Convective	Shallow rain (non-isolated) is detected. When R_type_V = T_conv, R_type_H = T_conv and shallowRain = 20 or 21;
261	Convective	Shallow isolated is detected. When R_type_V = T_conv; R_type_H = T_others; and shallowRain = 10 or 11;
262	Convective	Shallow rain (non-isolated) is detected. When R_type_V[i] = T_conv, R_type_H[i] = T_others; and shallow Rain[i] = 20 or 21;
271	Convective	Shallow isolated is detected. When R_type_V = T_others; R_type_H = T_conv; and shallowRain = 10 or 11;
272	Convective	Shallow isolated is detected. When R_type_V = T_others; R_type_H = T_conv; and shallowRain = 20 or 21;
281	Convective	Shallow isolated is detected. When R_type_V = T_conv; R_type_H = T_stra; and shallowRain = 10 or 11;
282	Convective	Shallow rain (non-isolated) is detected. When R_type_V[i] = T_conv, R_type_H[i] = T_stra; and shallow Rain[i] = 20 or 21;
291		

0	good	over ocean
10	BB detection may be good	over ocean
20	R-type classification may be good (BB detection is good or BB does not exist)	over ocean
30	Both BB detection and R-type classification may be good	over ocean
50	not good (because of warnings)	over ocean
100	bad (possible data corruption)	over ocean
1	good	over land
11	BB detection may be good	over land
21	R-type classification may be good (BB detection is good or BB does not exist)	over land
31	Both BB detection and R-type classification may be good	over land
51	not good (because of warnings)	over land
101	bad (possible data corruption)	over land
2	good	over coastline
12	BB detection may be good	over coastline
22	R-type classification may be good (BB detection is good or BB does not exist)	over coastline
32	Both BB detection and R-type classification may be good	over coastline
52	not good (because of warnings)	over coastline
102	bad (possible data corruption)	over coastline
4	good	over inland lake
14	BB detection may be good	over inland lake
24	R-type classification may be good (BB detection is good or BB does not exist)	over inland lake
34	Both BB detection and R-type classification may be good	over inland lake
54	not good (because of warnings)	over inland lake
104	bad (possible data corruption)	over inland lake
9	may be good	land/sea unknown
19	BB detection may be good	land/sea unknown
29	R-type classification may be good (BB detection is good or BB does not exist)	land/sea unknown
39	Both BB detection and R-type classification may be good	land/sea unknown
59	not good (because of warnings)	land/sea unknown
109	bad (possible data corruption)	land/sea unknown
	1 /	

When the status flag is "no rain" or "data missing", status flag contains -88 for no rain and -99 for missing data. Assignment of the above numbers are based on the following rules:

good, may be good when status < 100 and not good when status 100			
BB detection not so confident			
R-type classification not so confident (but BB detection is good or doesn't exist)			
BB detection and R-type classification both not confident			
Overall quality of the processed data is not good			
over ocean			
over land			
over coastline			
over inland lake			
land/sea unknown			

In other words, if the Status Flag is 100, the data are untrustworthy; between 10 and 100 then the data are not confident, equal to 9 then the data may be good; and between 0 and 9 then the data are good.

16 MB compressed, 253 MB original	16 MB compressed, 256 MB original
nscan = SS*SO	nscan = SS*SO
Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250
Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6
Rays/Scan: nray = 49	Rays/Scan: nray = 49
Swath Width: 215 km	Swath Width: 247 km
4.3 km	5.0 km
91.5 min/orbit = 16 orbits/day	92.5 min/orbit = 16 orbits/day
Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Stop Date: 2001-08-07	Stop Date: 2015-04-08
Start Date: 1997-12-08	Start Date: 2001-08-24

	Char Attribute	10,000	-	-	-	-
ECS core metadata		-,				
230 00.0	Char Attribute	10,000	-	-	_	_
Product specific metadata	orial / ttiribato	10,000				
Troduct specific frictadata	Vdata Table	4	49			
Mainlobe Clutter Edge and Sic		•	47	-	-	-
iviairiiobe ciuttei Euge and Sic						
Consideration of the according	Char Attribute	5,000	-	-	-	-
Specification of the swath geo		0				
	Vdata Table	8	nscan	-	-	-
Time associated with the scan		yte float UTC sec	ond of the day.			
	Float SDS	4	nray*nscan	-	-	degree
Latitude information						
	Float SDS	4	nray*nscan	-	-	degree
Longitude information						G
	Float SDS	4	nray*nscan	_	-	degree
Spacecraft local zenith angle.	11001 020	•	may modern			aogroo
spacecrare rocar zermer arigie.	Vdata Table	15	nscan	-		
Status of each scan.	vaata rabic	10	riscari			
Status Of Each Scall.	Vdata Table	88	ncoon			
Consequent		ŎŎ	nscan	-	-	-
Spacecraft geocentric informa	ition.					
Rain Rate						
Reliability						

	Integer SDS	2	80*nray*nscan	100	0 ~ 80	dBZ
Attenuation corrected reflectivity less than 0.0 dBZ missing data in reflectivity pr	are set to 0.0 dB		0 0	0	0	
	Integer SDS	2	5*nray*nscan	-	0 ~ 79	
Range bin numbers of the nodes at which the values of Attenuation and Z-R Parameters are given (see below). The values						
of the parameters between the nodes are linearly interpolated.						
	Float SDS	4	5*nray*nscan	-	0.00010 ~ 0.00200	

It relates the attenuation coefficient, k (dB/km) to the Z-factor: $k = -\infty$ computed at ncell2dar range g

	Float SDS	4	2*nray*nscan	-	0 – 50	g km m ⁻³
Vertically integrated value	of sum precipitat	ion water conte	ent calculated from Ze	at each rai	nge bin. The first i	ndex is the
precipitation liquid water of		0 0		The second	I index is the sum	of
precipitation ice content fr	•	e storm to the f	reezing height.			
	Integer SDS	2	nray*nscan	-	-	-
Method Flag indicates whi					ncluding no rain c	ase). Bit 0 is
the least significant bit (i.e	., if bit i =1 and ot	her bits =0, the	unsigned integer valu	ıe is 2 ⁱ).		
	Float SDS	4	nray*nscan	-	0.0 ~ 100.0	-
Correction factor for the su	urface reference.					
	Float SDS	4	nray*nscan	-	0.0 ~ 100.0	-
The adjustment parameter		the filtered sur		.21 algorith		
	Float SDS	4	2*nray*nscan	-	0.0 ~ 100.0	-
Roughly represents the rai				thods.		
	Float SDS	4	2*nray*nscan	-	0.0 ~ 100.0	-
Average of zeta in the vicir methods.	nity of each beam	position (avera	ige over three scans ai	nd three IF(JVs). It is calculate	ed using two
	Float SDS	4	2*nray*nscan	-	0.0 ~ 100.0	-
Standard deviation of zeta	in the vicinity of	each beam posi	ition (using three scan	s and three	FOVs). It is calcu	lated using
two methods.						
	Float SDS	4	2*nray*nscan	-	0.0 ~ 99.0	-
Normalized standard devia		eta_sd/Zeta_m	n. When Zeta_mn tak	es on small	values (or zero) X	i is set to 99.0
It is calculated using two m						
	Float SDS	4	3*nray*nscan	-	1 ~ 10	-

The default value is 0 (normal). Bit 0 is the least significant bit (i.e., if bit i =1 and other							
bits =0, the unsigned integer value is 2**i). The following meanings are assigned to							
each bit in the 16-bit integer if the bit = 1.							
0	normal						
1	unusual situation in rain average						
2	NSD of zeta (xi) calculated from less than 6 points						
4	NSD of PIA calculated from less than 6 points						
8	NUBF for Z-R below lower bound						
16	NUBF for PIA above upper bound						
32	epsilon not reliable, epsi_sig less than or equal to 0.0						
64	2A21 input data not reliable						
128	2A23 input data not reliable						
256	range bin error						
512	sidelobe clutter removal						
1024	probability=0 for all tau						
2048	pia_surf_ex less than or equal to 0.0						
4096	const Z is invalid						
8192	reliabFactor in 2A21 is NaN						
16384	data missing						

	If all bits 0: no rain. Otherwise:						
1	0: over ocean						
	1: over land						
2	over coast, river, etc.						
3	OIA from constant-Z-near-surface assumption						
4	spatial reference						
5	temporal reference						
6	global reference						
7	hybrid reference						
8	good to take statistics of epsilon						
9	HB method used, SRT totally ignored						
10	very large pia_srt for given zeta						
11	very small pia_srt for given zeta						
12	no ZR adjustment by epsilon						
13	no NUBF correction because NSD unreliable						
14	surface attenuation > 60 dB						
15	data partly missing between rain top and bottom						

Start Date: 1997-12-08	Start Date: 2001-08-24
Stop Date: 2001-08-07	Stop Date: 2015-04-08
Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
91.5 min/orbit = 16 orbits/day	92.5 min/orbit = 16 orbits/day
4.3 km	5.0 km
Swath Width: 215 km	Swath Width: 247 km
Rays/Scan: nray = 49	Rays/Scan: nray = 49
Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6
Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250
nscan = SS*SO	nscan = SS*SO
11 MB compressed	11 MB compressed

	Char Attribute	10,000	-	-	-	-
ECS core metadata						
	Char Attribute	10,000	-	-	-	-
Product specific metadata						
	Char Attribute	5,000	-	-	-	-
Specification of the swath geor	metry					
	Vdata Table	9	nscan	-	-	-
Time associated with each scar	1					
	Float SDS	4	208*nscan	-	-	degree
Latitude information						
	Float SDS	4	208*nscan	-	-	degree
Longitude information						-
	Vdata Table	21	nscan	-	-	-
Status of each scan						
	Vdata Table	88	nscan	-	-	=

	Integer SDS	2	nradarrange * nray*nscan	10	0 - 500	mm hr ⁻¹
Instantaneous rain rate at the ra	adar range gates. ⁻	The accuracy is 0	.1 mm hr ⁻¹ .			
	Integer SDS	2	nradarrange * nray*nscan	10	-125 – 125	mm hr ⁻¹
RMS uncertainty in the R-hat es	timated at the rad	lar range gates. (The negative sign ir	ndicating estima	tes based on	a "rain-
possible" detection by the radar	rather than the "	rain-certain" ass	ociated with positiv	ve values). The va	alues -125 an	d 125 are
reserved for cases where the RN	/IS uncertainty со	uld not be accura	ately estimated. The	e accuracy is 0.5	mm/hr.	
	Float SDS	4	nray*nscan	-	0 – 500	mm hr ⁻¹
Surface rain rate.						
	Integer SDS	2	nray*nscan	100	-125 – 125	mm hr-1
RMS uncertainty in RR-Surf. (The	e negative sign inc	dicating estimate	s based on a "rain-	oossible" detecti	ion by the rac	lar rather
than the "rain-certain" associate	ed with positive va	alues). The value:	s -125 and 125 are i	reserved for case	es where the	RMS
uncertainty could not be accura	tely estimated. Th	e accuracy is 0.5	mm/hr.			
	Float SDS	4	nlayer*nray *nscan	-	-	K hr ⁻¹
The "hydrometeor heating" calc	ulated from the v	ertical fluxes of t	he different hydror	neteor species a	ind using aver	age
archival temperature/ pressure/						
is assumed to be liquid. Heating			ŭ .			
	Float SDS	4	4*nray*nscan	-	-	-
Contents and ranges are not pul	blic.		-			

Geolocation is the earth location of the center of the IFOV at the altitude of the earth ellipsoid. The first dimension is latitude and longitude, in that order. The next dimensions are numbers of pixels and scans. Values are represented as floating point decimal degrees. Off-earth is represented as -9999.9. Latitude is positive north, negative south. Longitude is positive east, negative west. A point on the 180° meridian is assigned to the western hemisphere.

D-hat is the correlation-corrected mass-weighted mean drop diameter. The accuracy is 0.01 "normalized" mm (the value 0 indicates no rain or bad data). The average value of dHat is around 1.1 "normalized" mm, a unit which comes from the fact that dHat is related to the true mass-weighted mean drop diameter D^* mm by the formula dHat = D^* rHat-0.155 (with rHat in mm/hr).

(specified as height above earth ellipsoid)

Start Date: 1997-12-01
Stop Date: 2015-03-31
Latitude: 40°S – 40°N
Longitude: 180°W – 180°E
Monthly
5° x 5°; nlat = 16, nlon = 72
23 KB compressed

		1			1	
	Char Attribute	10,000	-	-	-	-
ECS core metadata						
	Char Attribute	10,000	-	-	-	-
Product specific metadata						
	Char Attribute	5,000	-	-	-	-
GridStructure gives the specific	cation of the geom	etry of the grids.				
	Float SDS	4	nlat*nlon	-	0 – 3000	mm
The Monthly Rainfall is the sur		ceans in 5° x 5° b	ooxes from 40°N x	40°S.		
	Integer SDS	4	nlat*nlon	-	0 – 500,000	-
The number of samples over the		5° x 5° box for on	e month.			
	Integer SDS	4	nlat*nlon	-	1 – 10 ⁹	0
Indicates how well the histogra		mperatures fits		ibution function		
	Float SDS	4	nlat*nlon	-	0 – 6	km
Estimated height of the 0°C isc						
	Float SDS	4	nlat*nlon	=	160- 180	K
The mean of non-raining brigh		S.				
	Float SDS	4	nlat*nlon	-	0 – 15	mm h ⁻¹
Logarithmic mean rain rate.						
	Float SDS	4	nlat*nlon	-	0 – 1	mm h ⁻¹
Standard deviation of the logar	rithmic rain rate.					
	Float SDS	4	nlat*nlon	-	0 – 1	-
Probability of rain in each 5° x	5° box.					
	Integer SDS	2	nlat*nlon	-	-	
	Integer SDS	2	nlat*nlon	-	-	
Note that this product only inc	ludes data over oc	eans. Data over I	and are assigned t	he missing value	of -9999.	

Start Date: 1997-12-01 Stop Date: 2015-03-31
Latitude: 40°S – 40°N Longitude: 180°W – 180°E
Monthly
0.5° x 0.5°; nlat = 160, nlon = 720
56 MB compressed

Start Date: 1997-12-01
Stop Date: 2015-03-31
Latitude: 40°S - 40°N
Longitude: 180°W – 180°E
Monthly
5° x 5° and 0.5° x 0.5°
38 MB compressed

Integer CDC	2	nlath*nlanh*?	0 to 2 000 000	
	2			-
The number of R-Z coefficient pixel counts coboxes for one month.	onditioned o	n stratiform rain for near-:	surface and 2km heigh	ts over 0.5° x 0.5°
Integer SDS	2	nlath*nlonh*2	0 to 2,000,000	-
The number of R-Z coefficient pixel counts co	onditioned o	n convective rain for near-	-surface and 2km heigh	nts over 0.5° x 0.5°
boxes for one month.				
Integer SDS	2	nlath*nlonh*2	0 to 2,000,000	-
The number of R-Z coefficient pixel counts for	r near-surfa	ce and 2km heights over 0	0.5° x 0.5° boxes for one	e month.
		nlath*nlonh		-
Counts of non-zero near-surface rain conditi	oned on stra	tiform rain over 0.5° x 0.5°	° boxes for one month	
Integer SDS		nlath*nlonh		-
Counts of non-zero near-surface rain conditi	oned on con	vective rain over 0.5° x 0.5	5° boxes for one month	l.
Integer SDS	2	nlath*nlonh	0 to 2,000,000	-
Counts of non-zero estimated surface rain co	nditioned or	n stratiform rain over 0.5°	x 0.5° boxes for one m	onth.
Integer SDS	2	nlath*nlonh	0 to 2,000,000	-
Counts of non-zero estimated surface rain co	nditioned or	n convective rain over 0.5°	x 0.5° boxes for one n	nonth.
Integer SDS	2	nlath*nlonh	0 to 2,000,000	-
Counts of non-zero estimated surface rain ov	er 0.5° x 0.5	° box		

Integer SDS

	lata a a CDC	4		0 to	
	Integer SDS	4	nlath*nlonh	2,000,000,000.	-
Near-surface rain counts at a ho	rizontal resolu	ition of 0.5° x 0.	5°		
	Integer SDS	4	nlath*nlonh	0 to 2,000,000	-
The number of bright band cour	nts over each 0	.5° x 0.5° box fo	or one month		
	Integer SDS	4	nlath*nlonh	0 to 2,000,000	-
The Total Pixel Number 2 is the		al pixels over 0.			
	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The B parameter in rainfall-refle				R, Z pairs condition	ed on stratiform rain.
Computed for near-surface and					. 1
T	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The A parameter in rainfall-refle				R, Z pairs condition	ed on stratiform rain.
Computed for near-surface and				0.04-1.0	h. 1
	Float SDS	4 A 7 A D from 100	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The B parameter in rainfall-reflerain. Computed for near-surface					ea on convective
Tain. Compated for field Sarrace	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The A parameter in rainfall-refle		'			
rain. Computed for near-surface					
, , , , , , , , , , , , , , , , , , ,					
	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The B parameter in rainfall-refle		$R = AZ^B$ from		R, Z pairs. Compute	ed for near-surface
and 2km heights at a horizontal			Ü		
<u> </u>	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The A parameter in rainfall-refle	ectivity relation	$R = AZ^B$ from	fitting of instantaneous R	R, Z pairs. Compute	ed for near-surface
and 2km heights at a horizontal	resolution of C).5° x 0.5°			
	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero		ain conditioned			
	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Mean of non-zero near-surface		ed on stratiform			
	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero					
					mm h ⁻¹
Mean of non-zero near-surface					
	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero			clutter (see 2A25 algorith	m user guide) con	ditioned on
stratiform rain at a horizontal re				0.01-400.0	11
Mannofrancisco	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Mean of non-zero estimated sur		w clutter (see 2)	425 algorithm user guide,) conditioned on si	tratiform rain at a
horizontal resolution of 0.5° x 0.	Float SDS	1	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero		4 aco rain bolowy		0.0 to 400.0	
convective rain at a horizontal r			Julier (See ZAZO digulilli	in user guide) com	amoneu on
CONVECTIVE FAILT AT A HOHIZOHILATE	Float SDS	3 X U.S 4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
 Mean of non-zero estimated su		•			
horizontal resolution of 0.5° x 0.		vv clutter (366 Z	125 digoriti ilir user gulue,	, conditioned on co	
Tionzontairesolution of 0.3 × 0.	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero		•			
of 0.5° x 0.5°				53.00, 000	

	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Mean of non-zero estimated sur	face rain belo	w clutter (see 2	A25 algorithm user guide)	at a horizontal re	solution of 0.5° x 0.5
	Float SDS	4	nlath*nlonh	0.0 to 3,000.0	mm h ⁻¹
Standard deviation of shallow ra	ain at a horizor	ntal resolution o	of 0.5° x 0.5°		
	Float SDS	4	nlath*nlonh	0.0 to 3,000.0	mm h ⁻¹
Mean of shallow rain at a horizo					
	Float SDS	4	nlath*nlonh	0.0 to 3,000.0	mm h ⁻¹
Standard deviation of shallow is					
	Float SDS	4	nlath*nlonh	0.0 to 3,000.0	mm h ⁻¹
Mean of shallow isolated rain at					
	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Standard deviation of epsilon0 of					ion of 0.5° x 0.5°
	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Mean of epsilon0 conditioned o).5°
	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Standard deviation of epsilon0 of					tion of 0.5° x 0.5°
	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Mean of epsilon0 conditioned o					0.5°
	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Standard deviation of epsilon co					on of 0.5° x 0.5°
4 6 11 1111	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Mean of epsilon conditioned on					5*
	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Standard deviation of epsilon co					on of 0.5° x 0.5°
Man of ancilon conditioned on	Float SDS	4	nlath*nlonh	0.0 to 5.0	- -
Mean of epsilon conditioned on		in and use of 2F			
Standard dayiation of bright bor	Float SDS	•	nlath*nlonh	0.0 to 20,000.0	m
Standard deviation of bright bar	Float SDS	4	nlath*nlonh*2	0.0 +0.20.000.0	m
Standard deviation of storm hai		•		0.0 to 20,000.0	m
Standard deviation of storm hei	Float SDS	4	nlath*nlonh	0.0 to 20,000.0	no.
Standard deviation of snow dep		•		0.0 to 20,000.0	m
standard deviation or snow dep	Float SDS	1		0.0 to 20,000.0	m
Mean of snow depth at a horizo		4 2 of 0 5° v 0 5°	nlath*nlonh	0.0 to 20,000.0	m
viearr or snow deptir at a norizo	Float SDS	4	nlath*nlonh	0.0 to 100	dBZ
Mean of maximum reflectivity in		•		0.0 10 100	UDZ
viearr or maximum renectivity in	Float SDS	4	nlath*nlonh	0.0 to 100.0	dBZ
Mean of maximum reflectivity in		•		0.0 to 100.0	UDL
viean or maximum renectivity in	Float SDS	4	nlath*nlonh	0.0 to 3000.0	mm h ⁻¹
Standard Deviation of non-zero		'			11111111
Standard Deviation of Hon-Zero	Float SDS	4	nlath*nlonh	0.0 to 3000.0	mm h ⁻¹
Mean of non-zero near-surface		•		0.0 10 3000.0	17111111
Wiedir Of Hoff Zero fiedi -surface	Float SDS	10112011tai 1 6301t	nlath*nlonh	0.0 to 20,000.0	m
BB Height Mean gives the montl		right-hand heid			111
22 Height Weari gives the month	Float SDS	4	nlath*nlonh*2	0.0 to 20,000.0	m
Storm Height Mean gives the m		•			
convective rain over 0.5° x 0.5° g			ignit, anconamonea ana c	onarrionea for stra	athorn and
2011/0611/07/01/01/01/01/01/01/01/01/01/01/01/01/01/	grid boxes.				

	T	1	<u></u>	1	
	51	1			
	Float SDS	4	nlath*nlonh*nh3	0.1 to 80	dBZ
The monthly means of the corre		-			10.7
2 7 14 0 1	Float SDS	4	nlath*nlonh*nh3	0.1 to 80.0	dBZ
Conv. Zm Mean 2 gives the mon			eflectivity of convective r	ain at the fixed he	eights of 2 km, 4 km, 6
km, and path average over 0.5°					10.7
7.14	Float SDS	4	nlath*nlonh*nh3	0.1 to 80.0	dBZ
Zt Mean 2 gives the monthly me	eans of the cor	rected reflectiv	rity at the fixed heights of	12 km, 4 km, 6 km,	and path average
over 0.5° x 0.5° grid boxes.	51 . 252				10.7
	Float SDS	. 4	nlath*nlonh*nh3	-20.0 to 80.0	dBZ
Strat. Zm Means gives the mont			effectivity of stratiform ra	in at the fixed heig	ghts of 2 km, 4 km, 6
km, and path average over 0.5°					10.7
	Float SDS	4	nlath*nlonh*nh3	-20.0 to 80.0	dBZ
Conv. Zm Mean 2 gives the mon			reflectivity of convective	rain at the fixed he	eight levels of 2 km, 4
km, 6 km, and path average ove					
	Float SDS	4	nlath*nlonh*nh3	-20.0 to 80.0	dBZ
Zm Mean 2 gives the monthly m		easured reflect	ivity at the fixed height le	evels of 2 km, 4 km	i, 6 km, and path
average over 0.5° x 0.5° grid box					. 1
	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹
Strat. Rain Rate Dev. 2 gives star					° boxes for one
month. The rain rates are determ					
	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹
Strat. Rain Rate Mean 2 gives m					
rates are determined in 2A-25 a					
	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹
Conv. Rain Rate Dev. 2 gives sta					
month. The rain rates are deter					
	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹
Conv. Rain Rate Mean 2 gives m					
rates are determined in 2A-25 a					
	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹
Rain Rate Dev. 2 gives standard					e rain rates are
determined in 2A-25 and evalua		•		•	. 1
Dain Data Mana 2 siyas masana	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹
Rain Rate Mean 2 gives means of				onth. The rain rates	s are determined in
2A-25 and evaluated at the fixed		KM, 4 KM, 6 KM,	, and path average.		
	Char	5,000	-	-	=
	Attribute				
GridStructure gives the specification				1 000 1- 1 000	
The last the second last are second last and a second last are	Float SDS	4	nlat*nlon*nang*3	-1.000 to 1.000	-
This is the correlation coefficien		n-integrated att	enuations (SRT, HB, and t	oth order PIAS) at a	angles of 0, 5, 10 and
15 for a 5° x 5° box for one mon		4	-1-14-140	1 000 to 1 000	
The second second self-second of Civitana	Float SDS	4	nlat*nlon*3	-1.000 to 1.000	-
These are correlation coefficient					lation coefficient of
rain rates at 2 km vs 4 km, 2 km					
Those are correlation as file.	Float SDS	4	nlat*nlon*3	-1.000 to 1.000	-
These are correlation coefficient					elation coefficient of
rain rates at 2 km vs 4 km, 2 km	vs o km, and a	+ KIII VS 6 KIII) T	orab xb box for one m	OHIII.	

	. 000		1 1 4 1 40	1.000 1.000	
		4	nlat*nlon*3	-1.000 to 1.000	-
These are correlation coefficients o	f non-zero r	ain rates betwe	een 3 heights (i.e., correla	tion coefficient of	rain rates at 2 km vs
4 km, 2 km vs 6 km, and 4 km vs 6 k	(m) for a 5°	x 5° box for one	e month. They are calculat	ted under convecti	ve condition,
stratiform condition or both.	•		,		
Int	teger SDS	2	nlat*nlon*ncat2	0 to 32,000	-
Histogram of near-surface rain rate	at a horizoi	ntal resolution	of 5 x 5		
Int	teger SDS	2	nlat*nlon*ncat2	0 to 32,000	-
Histogram of epsilon0 conditioned	on stratifor	m rain and use	2A21 SRT at a horizontal r	esolution of 5° x 5	0
Int	teger SDS	2	nlat*nlon*ncat2	0 to 32,000	-

Integer SDS nlat*nlon*ncat2 0 to 32,767 Histogram in counts of non-zero near-surface rainfall conditioned on convective rain for 30 categories over a 5° x 5° box for one month. Integer SDS 2 0 to 32,767 nlat*nlon*ncat2 Histogram in counts of non-zero estimated surface rain conditioned on stratiform rain for 30 categories over a 5° x 5° box for one month. Integer SDS 0 to 32,767 nlat*nlon*ncat2 Histogram in counts of non-zero estimated surface rain conditioned on convective rain for 30 categories over a 5° x 5° box for one month. Integer SDS 2 nlat*nlon*ncat2 0 to 32,767 Histogram in counts of non-zero estimated surface rain for 30 categories over a 5° x 5° box for one month. Integer SDS nlat*nlon*ncat2 0 to 32,767 Histogram in counts of maximum Z in bright band from nadir ray for 30 categories over a 5° x 5° box for one month. Integer SDS nlat*nlon*ncat2 0 to 32,767 Histogram in counts of bright band width from nadir ray for 30 categories over a 5° x 5° box for one month. Integer SDS nlat*nlon*ncat2 0 to 32,767 2 Histogram in counts of bright band heights from nadir ray for 30 categories over a 5° x 5° box for one month. Integer SDS nlat*nlon*ncat2*nh1 0 to 32,767 These are histograms of non-zero rain rate pixels for stratiform rain at five heights (2, 4, 6, 10 and 15 km) and path-average for 20 categories over a 5° x 5° box for one month. Integer SDS nlat*nlon*ncat2*nh1 0 to 32,767 These are histograms of non-zero rain rate pixels for convective rain at five heights (2, 4, 6, 10 and 15 km) and path-average for 20 categories over a 5° x 5° box for one month. Integer SDS nlat*nlon*ncat2*nh1 0 to 32.767 These are histograms of non-zero rain rate pixels at five heights (2, 4, 6, 10 and 15 km) and path-average for 20 categories over a 5° x 5° box for one month. Integer SDS nlat*nlon*ncat2*nh1 0 to 32,767 The Stratiform Zt Histograms are histograms of corrected reflectivity factors for stratiform rain pixels at five heights (2, 4, 6, 10 and 15 km) and path-average for 20 categories over a 5° x 5° box for one month. 0 to 32,767 Integer SDS nlat*nlon*ncat2*nh1 The Convective Zt Histograms are histograms of corrected reflectivity factors for convective rain pixels at five heights (2, 4, 6, 10 and 15 km) and path-average for 20 categories over a 5° x 5° box for one month. Integer SDS nlat*nlon*ncat2*nh1 0 to 32,767 The Zt Histograms are histograms of corrected reflectivity factors i for rain pixels at five heights (2, 4, 6, 10 and 15 km) and path-average for 20 categories over a 5° x 5° box for one month. Integer SDS nlat*nlon*ncat2*nh1 0 to 32,767 The Stratiform Zm Histograms are histograms of measured reflectivities of stratiform rain pixels at five heights (2, 4, 6, 10 and 15 km) and path-average for 20 categories over a 5° x 5° box for one month. Integer SDS nlat*nlon*ncat2*nh1 0 to 32,767 The Convective Zm Histograms are histograms of measured reflectivities of convective rain pixels at five heights (2, 4, 6, 10 and 15 km) and path-average for 20 categories over a 5° x 5° box for one month. nlat*nlon*ncat2*nh1 0 to 32.767 Integer SDS The Zm Histograms are histograms of measured reflectivities of rain pixels at five heights (2, 4, 6, 10 and 15 km) and pathaverage for 20 categories over a 5° x 5° box i for one month.

	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
These are histograms of the brig	ht-band heigh	ts for 30 catego	ries over a 5 x 5 box for o	ne month, given th	nat the bright band is
detected.	9	o o		J	Ü
	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
These are histograms of the 'effe	ective' storm h	eights for strati	form rain for 30 categorie	es over a 5° x 5° bo	x for one month.
	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
These are histograms of the 'effe	ective' storm h	eights for			

Justa man CDC	4		0 += 2 000 000	
Integer SDS		nlat*nlon	0 to 2,000,000	-
The number of non-zero estimated surface ra			010 00	
Integer SDS	2	nlat*nlon	0 to 32,767	-
Counts of Near-surface rain fall conditioned o	n stratiform rair	n at a horizontal resolution	า of 5° x 5°	
Integer SDS	2	nlat*nlon	0 to 32,767	-
Counts of Near-surface rain fall conditioned on convective rain at a horizontal resolution of 5° x 5°				
Integer SDS	4	nlat*nlon	0 to 2,000,000	-
Near-surface rain counts at a horizontal resolution of 5° x 5°				
Integer SDS	2	nlat*nlon*nang	0 to 30,000	-

Rain Angle Pixel Number 1 is the total number of non-zero rain rate pixels over each 5° x 5° latitude-longitude grid box for a month. This parameterTJETQ4 545.62 520.78 24.36 reW*-4(e)4(t)-4(o)-2(ta)-4(l n[(-)] TJETQq6)-5Fa_86 669.7 36.84 12.12 reW*

			ļ		
	Float SDS	4	nlat*nlon	0.0 to 400.0	mm h ⁻¹
Mean of non-zero estimated surf	face rain belov	w clutter (See 2)	A25 algorithm user guide)	conditioned on st	tratiform rain at a
horizontal resolution of 5° x 5°					
	Float SDS	4	nlat*nlon	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero e			clutter (See 2A25 algorithm	m user guide) con	ditioned on
convective rain at a horizontal re					
	Float SDS	4	nlat*nlon	0.0 to 400.0	mm h ⁻¹
Mean of non-zero estimated surf	face rain below	v clutter (See 2)	A25 algorithm user guide)	conditioned on co	onvective rain at a
horizontal resolution of 5° x 5°	Flact CDC	1		0.01400.0	l. 1
	Float SDS	4	nlat*nlon	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero e	estimated surra	ace rain below o	Slutter (See 2A25 algorith)	m user guide) at a	norizontal resolution
of 5° x 5°	Float SDS	1	nlat*nlon	0.0 to 400.0	mm h ⁻¹
Mean of non-zero estimated surf		4			
	Float SDS	<i>n</i> ciuttei (see 27 4	A25 algoritriin user guide) nlat*nlon	0.0 to 20,000.0	
Standard deviation of snow dept		1		0.0 to 20,000.0	m
	Float SDS	4	nlat*nlon	0.0 to 20,000.0	m
Mean of snow depth at a horizor		•	mat mon	0.0 to 20,000.0	111
	Float SDS	4	nlat*nlon	0.0 to 100.0	dBZ
Standard Deviation of maximum		•			UDZ
	Float SDS	4	nlat*nlon	0.0 to 100.0	dBZ
Mean of maximum reflectivity in		•		0.0 to 100.0	GDL
	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Standard deviation of non-zero r		ain rate conditic			
	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Mean of non-zero near-surface r	ain rate condi	tioned on strati	form rain at a horizontal r	resolution of 5° x 5	;°
	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Standard deviation of non-zero r	near-surface ra	ain rate conditic	ned on convective rain at	a horizontal resol	lution of 5° x 5°
	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Mean of non-zero near-surface r	ain rate condi	tioned on conve	ective rain at a horizontal	resolution of 5° x!	
	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Standard deviation of non-zero r					
		4		0.0 to 3000.0	mm h ⁻¹
Mean of non-zero near-surface r					
	Float SDS	4	nlat*nlon	0.0 to 5.0	_
Standard deviation of epsilon0 co					ion of 5° x 5°
	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Mean of epsilon0 conditioned or					
	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Standard deviation of epsilon0 co					tion of 5° x 5°
	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Mean of epsilon0 conditioned or					
	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Standard deviation of epsilon cor					n of 5° x 5°
	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Mean of epsilon conditioned on					
	Float SDS	4	nlat*nlon	0.0 to 5.0	- on of F° v F°
Standard deviation of epsilon cor	nannoned on c	onvective rain a	inu use of ZAZ i SKT at a h	iorizontai resolutio	א ל א ט ווע.

	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Mean of epsilon conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5°					
	Float SDS	4	nlat*nlon	0.0 to 70.0	dBZ

	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ
Monthly standard deviations of					
averaged standard deviation an		fixed heights of			
	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ
Monthly means of measured ra					path-averaged mear
and means at the fixed heights		nd 15 km are ca	<u> </u>		
	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ
Monthly standard deviations of					
averaged standard deviation an					
	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ
Monthly means of measured ra					e path-averaged
mean and means at the fixed he	0	5, 10 and 15 km			
	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ
Monthly standard deviations of		ar reflectivity a	t the fixed heights of 2, 4,	6, 10 and 15 km a	nd for path-average
over 5° x 5° boxes using data fro					
	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ
Monthly means of measured ra	dar reflectivity	at the fixed he	ights of 2, 4, 6, 10 and 15	km and for path-a	verage over 5° x 5°
boxes using data from 1C-21					
	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹
Monthly standard deviations of					. 1
	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹
Monthly means of non-zero rain					
	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹
Monthly standard deviations of					
	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹
Monthly means of non-zero rain					
	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹ ————
Monthly standard deviations of					
	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹
Monthly means of non-zero rair					
	Char Att.	5,000	-	-	-
GridStructure gives the specification		, ,	ırids.		
	Char Att.	10,000	-	-	-

Start Date: 1997-12-01
Stop Date: 2015-03-31
Latitude: 40°S – 40°N
Longitude: 180°W – 180°E
Monthly
5° x 5°; nlat = 16, nlon = 72
6 MB compressed

	Char Att.	10,000	-	-	-
ECS core metadata		·			
	Char Att.	10,000	-	-	-
Product specific metadata					
	Char Att.	5,000	-	-	-
GridStructure gives the specifica		metry of the	0		
	Integer SDS	4	nlat*nlon	0 - 2,147,483,647	-
Total number of counts (measur		onth at each			
	Integer SDS	4	nlat*nlon*nh2	0 - 2,147,483,647	-
	easurements) pe	er month at	each 5° x 5° boxes. This is comp	uted at 2km, 4km, 6km,	and for
the path-average.					
	Integer SDS	4	nlat*nlon*ncat3*nh2*nthrsh	1 – 2,147,483,647	-
			he zeroth order rain rate estima	te at each 5° x 5° boxes.	The pD
is computed at 2km, 4km, 6km,		n-average.			
	Integer SDS	4	nlat*nlon*ncat3*nh2*nthrsh	1 – 2,147,483,647	-
			he Hitschfield-Bordan (HB) rain r	rate estimate at each 5°	x 5°
boxes. The pDf is computed at 2		and for the			
	Float SDS	4	nlat*nlon*ncat3*nh2*nthrsh	1 – 2,147,483,647	-
			he Surface Reference Technique	(SRT) rain rate estimate	e at each
5° x 5° boxes. The pDf is comput	ed at 2km, 4km	, 6km, and			
	Float SDS	4	nlat*nlon*nh2*3*nthrsh	1 – 2,147,483,647	-
			the log-normal model obtained		Df.
Fitting parameters are given at 2	2km, 4km, 6km,	and for the	path-average. In addition, 5 thr	esholds are used.	
	Float SDS	4	nlat*nlon*nh2*3*nthrsh	-	-
The 3 fitting parameters for the	log-normal mod	del obtained	d from the HB pDf. Fitting param	eters are given at 2km,	4km,
6km, and for the path-average. I	In addition, 5 th	resholds ar	e used.		
	Float SDS	4	nlat*nlon*nh2*3*nthrsh	-	-
The 3 fitting parameters for the	log-normal mod	del obtained	d from the SRT pDf. Fitting paran	neters are given at 2km,	4km,
6km, and for the path-average.					
	Float SDS	4	nlat*nlon*nh2*nthrsh	-	-
Reliability parameter for the 0th	order fit.				
	Float SDS	4	nlat*nlon*nh2*nthrsh	-	-
Reliability parameter for the HB					
Reliability parameter for the HB		4	nlat*nlon*nh2*nthrsh	-	-
	fit. Float SDS	4	nlat*nlon*nh2*nthrsh	-	-
Reliability parameter for the HB Reliability parameter for the SRT	fit. Float SDS	4		- 0 – 3000	- mm h
Reliability parameter for the SR1	Float SDS Fit. Float SDS	4	nlat*nlon*nh2*nthrsh nlat*nlon*nh3 ermined from the threshold meth	0 - 3000 nod (in particular, it is	- mm h

Start Date: 1997-12-01
Stop Date: 2015-03-31
Latitude: 40°S - 40°N
Longitude: 180°W – 180°E
Monthly
0.5° x 0.5°; nlat = 160, nlon = 720
37 MB compressed

	Char Attribute	10,000	-	-	-
ECS core metadata					
	Char Attribute	10,000	-	-	-
Product specific metac	data				
·	Char Attribute	5,000	-	-	-
GridStructure gives the	e specification of the	geometry of the grid	ds.		
	Float SDS	4	nlat*nlon	0 – 3000	mm
Surface rain from 2A12	2 accumulated in each	n 0.5° x 0.5° box			
	Float SDS	4	nlat*nlon	0 – 3000	mm
Convective surface rain	n from 2A12 accumul	ated in each 0.5° x 0	.5° box		
	Float SDS	4	nlat*nlon*nlayer	0 – 10	g m ⁻³
Monthly mean rain water content from 2A12 at each vertical layer in each 0.5° x 0.5° box					
	Float SDS	4	nlat*nlon*nlayer	0 – 10	g m ⁻³
Monthly mean snow liquid content from 2A12 at each vertical layer in each 0.5° x 0.5° box					
	Float SDS	4	nlat*nlon*nlayer	0 – 10	g m ⁻³
Monthly mean graupel liquid content from 2A12 at each vertical layer in each 0.5° x 0.5° box					
	Integer SDS	4	nlat*nlon	1 – 10000	-
The monthly number of					tatus requirement
is to remove sea ice. n	pixTotalTMI is used to	compute the mont	hly means described	above.	
	Float SDS	4	nlat*nlon	0 – 3000	<u>mm</u>
	Float SDS	4	nlat*nlon*nlayer	0 – 10	g m ⁻³
Rain water content at					
	Float SDS	4	nlat*nlon*nlayer	0 – 10	g m ⁻³

Notes:

- The "scale by" column was omitted because none of the 3B31 variables are scaled.

 The dimension represents the number of profiling layers per grid box. There are 28 vertical layers (nlayer) that span from 0.5 km to 10 km by 0.5 km and then from 10 km to 18 km by 1 km.

Start Date: 1997-12-01 Stop Date: 2015-03-31
Latitude: 90°S – 90°N Longitude: 0° – 360°
Monthly
1° x 1°; nlat = 80, nlon = 360
300 KB uncompressed

	Char Attribute	10,000	<u> </u>	- -	=
ECS core metadata					
	Char Attribute	10,000	-	-	-
Product specific metadata					
	Char Attribute	5,000	-	-	-
GridStructure gives the specification of the geometry of the grids.					
	Float SDS	4	180*360*2	0 – 100 (1 st variable) 0 – 10 ⁹ (2 nd variable)	mm hr ⁻¹
SSM/I data averaged over 1° x 1° grid boxes and one month. The first variable is Precipitation Rate (mm/hr); the range is 0 to 100. The second variable is Number of Observations; the range is 0 to one billion.					

Note that the grids in SSM/I data are different than the standard TSDIS grids in the following ways:

- the longitude dimension precedes the latitude dimension;
- the longitude index begins at the Greenwich meridian;
- the latitude index begins at the northernmost row;
- the latitude range is -90° to +90°;
- Missing data are given the value of -9999.

CL LD L 4007 40 04
Start Date: 1997-12-01
Stop Date: to present
Latitude: 50°S – 50°N
Longitude: 180°W – 180°E
Monthly
0.25° x 0.25°; nlat = 400, nlon = 1440
0.71 MB compressed, 11 MB uncompressed

	Char Attribute	10,000	-	-	-
ECS core metadata					
	Char Attribute	10,000	-	-	-
Product specific metada	nta				
	Char Attribute	5,000	-	-	-
GridStructure gives the	specification of the g	geometry of the gric	S.		
	Float SDS	4	nlat*nlon	0 – 100	mm hr ⁻¹
TRMM Multi-satellite pr	recipitation analysis	(TMPA) precipitation	n estimate		
	Float SDS	4	nlat*nlon	0 – 100	mm hr ⁻¹
TMPA random error est	TMPA random error estimate				
	Float SDS	4	nlat*nlon	-	-
Flag to show source of data in each box					
	Float SDS	4	nlat*nlon	0 – 100	mm hr ⁻¹
Pre-gauge-adjusted microwave precipitation estimate in each grid box.					
	Float SDS	4	nlat*nlon	0 – 100	mm hr ⁻¹
Pre-gauge-adjusted infrared precipitation estimate in each grid box.					
	Integer SDS	1	nlat*nlon	-90 – 90	minute
Satellite observation time minus the time of the granule in each grid box.					

Notes:

• Missing data are given the value of -9999.9.

Start Date: 1997-12-01
Stop Date: to present
Stop Date: to present

Start Date: 1997-12-01
Stop Date: to present
Latitude: 50°S – 50°N
Longitude: 180°W – 180°E
Monthly
0.5° x 0.5°; nlat = 148, nlon = 720
8.0 MB uncompressed

Note that the layers are the same as those described for 3B31.

4.0 Options for Reading the Data

Examples that show how to read TRMM data files are shown throughout section 4. For the sake of consistency, each example will use TRMM 3B42 3-hourly data from 24 August 2012 at 12 UTC. The name of this file is and is described on page 55. This document will focus on the variable. This tutorial assumes that the file is uncompressed, so its name ends in .HDF.

To uncompress the file on a UNIX-based system (including Mac OS X), use the following command:

Note that most of the gridded TRMM files do not include latitude or longitude metadata. The bounds for each product are specified in the preceding pages of this README as well as in the descriptions of each HDF file. TRMM data are stored as the center of grid boxes, so for example, 3B42 data that has latitude and longitude bounds of 50°S – 50°N and 180°W – 180°E, respectively, can be represented by a latitude array from -49.875 to +49.875 and a longitude array of -179.875 to +179.875, both with a grid spacing of 0.25.

4.1 Command Line Utilities and Programs

4.1.1 GrADS

The Grid Analysis and Display System (GrADS) is well-suited for the visualization of TRMM data. However, since the TRMM files do not have embedded latitude and longitude data, they are not considered "self-describing". This means that latitude and longitude information must be specified in a separate file for GrADS to correctly interpret the data.

A data descriptor file must be created that tells GrADS information about the latitude and longitude data within the TRMM 3B42 data file. Below are the contents of a sample data descriptor file.

Note that the example below only includes the variables underneath (or instead of) the

variable. Simply list other variable to read in different data.

DSET 3B42.20120824.12.7.HDF UNDEF -9999.9 XDEF nlon 1440 LINEAR -179.875 0.25 YDEF nlat 400 LINEAR -49.875 0.25 TDEF nlat 1 LINEAR 12z24Aug2012 3hr VARS 1 precipitation=>precip 0 3B42_Precipitation ENDVARS The following assumes that the contents above are saved in a file called . To open GrADS, type at the system prompt and then choose landscape or portrait mode.

At the GrADS prompt (ga->):

ga->xdfopen precip

Scanning Descriptor File: precip

SDF file 3B42.20120824.12.7.HDF is open as file 1

LON set to 0 360

LAT set to -49.875 49.875

LEV set to 0 0

Time values set: 2012:8:24:12 2012:8:24:12

E set to 11

The GrADS output should be the same as the text above in red.

To view an image of the precipitation data, type: ga-> d precip

To have GrADS shade the data instead of contouring, type: ga-> gxout shaded ga-> d precip

If you've already plotted the data with contours, you can clear before plotting the shaded data: ga-> clear graphics

There are numerous options for customizing plots in GrADS. For more information on using GrADS, or more information on Grads visit http://cola.gmu.edu/grads/.

4.1.2 MATI AB

MATLAB can be used to load, manipulate, and view TRMM precipitation data. To load the variable from the aforementioned TRMM file into MATLAB type:

>> precip = permute(hdfread('3B42.20120824.12.7.HDF', 'precipitation'),[2 1]);

This will load the data into a matrix called . Missing data are represented by , but MATLAB doesn't know that this value refers to missing data. The simplest way to replace the missing numeric values with MATLAB's not-a-number (NaN) values, is to type:

>> precip(precip < 0) = NaN;

It is okay to set all values less than zero to NaN since precipitation rate is a positive quantity. Users with the Mapping Toolbox can plot the precipitation data on a map using the following code:

```
figure;
axesm('MapProjection', 'egdcylin', 'maplatlimit', [-50 50], 'maplonlimit', [-180 180],...
  'ParallelLabel','on','PlabelMeridian','west','MeridianLabel','on','MLabelParallel','south',...
  'FontSize', 6, 'FontWeight', 'bold', 'PLineLocation', 20, 'MLineLocation', 20);
latitudes = -49.875:0.25:49.875; % These must be explicitly defined since they are not in the file.
longitudes = -179.875:0.25:179.875;
[latGrid, lonGrid] = meshgrat(latitudes,longitudes);
geoshow(latGrid,lonGrid,double(precip),'DisplayType','texturemap');
caxis([0 5]);
% There are lots of color maps to choose from, run the command "doc colormap" to see them
colormap(flipud(hot(21)));
chandle = colorbar('Location', 'EastOutside', 'FontSize', 6, 'FontWeight', 'bold'); % This line places the colorbar
set(get(chandle, 'ylabel'), 'String', 'Rain Rate (mm/hr)', 'FontSize', 10, 'FontWeight', 'Bold'); % Set the colorbar's label
set(chandle, 'YTick', 0:5);
% You should plot the continent boundaries after the shading is done.
states = geoshape(shaperead('landareas', 'UseGeoCoords', true));
geoshow(states, 'DefaultFaceColor', 'none', 'DefaultEdgeColor', 'k');
tightmap
title('24 August 2012 1200 UTC Rain Rate', 'FontSize', 8, 'FontWeight', 'bold');
print -dpng sampleTRMMmap.png
```

The code above should save a .png file that looks like Figure 1 below.

4.1.3 Python

Like GrADS and MATLAB, Python can be used to read, manipulate, and plot data. Below is a script that can be used as-is within Python to read and plot the TRMM data. It was written to be as similar to the aforementioned MATLAB script as possible. Please note that you must have the free numpy, matplotlib, basemap, and pyhdf packages to use this script.

```
# This is a test script that reads and plots the TRMM 3B42 3-hourly data.
from mpl_toolkits.basemap import Basemap, cm
import matplotlib.pyplot as plt
import numpy as np
from pyhdf.SD import SD, SDC
dataset = SD('/path/to/3B42.20120824.12.7.HDF', SDC.READ)
precip = dataset.select('precipitation')
precip = precip[:]
precip = np.transpose(precip)
theLats = np.arange(-49.875,50,0.25)
theLons = np.arange(-179.875,180,0.25)
# Set all the missing values less than 0 to NaNs
np.putmask(precip,precip<0,np.nan)
# Plot the figure, define the geographic bounds
fig = plt.figure(dpi=300)
latcorners = ([-50,50])
loncorners = ([-180,180])
m = Basemap(projection='cyl',\
Ilcrnrlat=latcorners[0],urcrnrlat=latcorners[1],llcrnrlon=loncorners[0],urcrnrlon=loncorners[1])
# Draw coastlines, state and country boundaries, edge of map.
m.drawcoastlines()
m.drawstates()
m.drawcountries()
# Draw filled contours.
clevs = np.arange(0,5.01,0.5)
# Define the latitude and longitude data
x, y = np.float32(np.meshgrid(theLons, theLats))
cs = m.contourf(x,y,precip,clevs,cmap=cm.GMT_drywet,latlon=True)
parallels = np.arange(-50.,51,25.)
m.drawparallels(parallels, labels=[True, False, True, False])
meridians = np.arange(-180.,180.,60.)
m.drawmeridians(meridians,labels=[False,False,False,True])
```

```
# Set the title and fonts
plt.title('24 August 2012 1200 UTC Rain Rate')
font = {'family' : 'normal', 'weight' : 'bold', 'size' : 6}
plt.rc('font', **font)

# Add colorbar
cbar = m.colorbar(cs,location='right',pad="5%")
cbar.set_label('mm/h')
plt.savefig('testTRMMmap.png',dpi=300)
```

The map shown below as Figure 2 results from the Python code above:

4.1.4 hdp and ncdump

The HDF Toolkit ships with two binary executables, and , that can be used to extract values from any HDF file. These are also available as standalone executable from the utilities folders found within each operating system at: ttp://ftp.hdfgroup.org/HDF/HDF_Current/bin.

can only read HDF files if your local copy of netCDF was originally compiled with HDF support.

To dump the entire file: or

To get just the header information: or

A partial example of output from is given below. (The output is similar.)

```
File attributes:
      Attr0: Name = FileHeader
             Type = 8-bit signed char
             Count= 357
             Value = AlgorithmID=3B42;\012AlgorithmVersion=3B4
            2_7.0;\012FileName=3B42.20120824.12.7.HDF
            :\012GenerationDateTime=2012-10-26T14:07:
            33.000Z;\012StartGranuleDateTime=2012-08-
            24T10:30:00.000Z;\012StopGranuleDateTime=
            2012-08-24T13:29:59.999Z;\012GranuleNumbe
            r=;\012NumberOfSwaths=0;\012NumberOfGrids
            =1;\012GranuleStart=;\012TimeInterval=3_H
            OUR;\012ProcessingSystem=PPS;\012ProductV
            ersion=7;\012MissingData=;\012
       Attr1: Name = FileInfo
             Type = 8-bit signed char
             Count= 253
             Value = DataFormatVersion=m;\012TKCodeBuildVersio
            n=1;\012MetadataVersion=m;\012FormatPacka
            ge=HDF Version 4.2 Release 4, January 25,
             2009;\012BlueprintFilename=TRMM.V7.3B42.
            blueprint.xml;\012BlueprintVersion=BV_13;
            \012TKIOVersion=1.6:\012MetadataStyle=PVL
            ;\012EndianType=LITTLE_ENDIAN;\012
       Attr2: Name = GridHeader
             Type = 8-bit signed char
             Count= 231
             Value = BinMethod=ARITHMETIC MEAN;\012Registratio
            n=CENTER;\012LatitudeResolution=0.25;\012
            LongitudeResolution=0.25;\012NorthBoundin
            gCoordinate=50;\012SouthBoundingCoordinat
            e=-50;\012EastBoundingCoordinate=180;\012
            WestBoundingCoordinate=-180;\012Origin=SO
            UTHWEST:\012
Variable Name = precipitation
      Index = 0
       Type= 32-bit floating point
       Ref. = 2
       Compression method = NONE
       Rank = 2
       Number of attributes = 1
       Dim0: Name=nlon
             Size = 1440
             Scale Type = number-type not set
             Number of attributes = 0
       Dim1: Name=nlat
             Size = 400
             Scale Type = number-type not set
             Number of attributes = 0
       Attr0: Name = units
             Type = 8-bit signed char
```

Count= 5 Value = mm/hr

4.2 Tools/Programming4()] T380 G[0 g qthat can be used for ann

This section briefly explains some programs and websites that can be used for TRMM data access, manipulation, and viewing.

ncdump

The ncdump tool can be used as a simple browser for HDF data files, to display the dimension names and sizes; variable names, types, and shapes; attribute names and values; and optionally, the values of data for all variables or selected variables in a netCDF file. 2905550551ETQ EMC (or)6et-common use of ncdump is with the –h option, in which only the header information is displayed.

ncdump [-c|-h] [-v ...] [[-b|-f] [c|f]] [-l len] [-n name] [-d n[,n]] filename

[-c] Coordinate variable data and header information

list lists contents of files in <filelist> dumpsds displays data of SDSs in <filelist> dumpvd displays data of vdatas in <filelist>. dumpvg displays data of vgroups in <filelist>. dumprig displays data of RIs in <filelist>. dumpgr displays data of RIs in <filelist>.

Giovanni 4

TRMM data can be found on NASA's data visualization website called Giovanni at https://giovanni.gsfc.nasa.gov/giovanni/. Giovanni allows users to create maps, animations, hovmöller diagrams, vertical cross sections, and more using a number of TRMM products including the 3B42, 3B43, and 3A12 products.

HDFView

HDFView is a Java based graphical user interface created by the HDF Group, which can be used to browse TRMM HDF files. HDFView allows users to view all objects in the HDF file hierarchy, which is represented as a tree structure. It also allows users to browse the data within each variable.

HDFView download and documentation can be found at: https://www.hdfgroup.org/products/java/hdfview/.

5.0 Data Services

You can familiarize yourself with TRMM data at: https://disc.gsfc.nasa.gov/datasets?project=TRMM.

Once you know which data you want, you can use the following services:

Mirador

Mirador (located at https://mirador.gsfc.nasa.gov)can be used to locate and download all of the TRMM data products described in this README document. In addition to basic data availability, Mirador allows users to convert some products, such as the 3B42 products, into NetCDF format before downloading.

OPENDAP

Many TRMM products can be found on the GES DISC OPeNDAP website: https://disc2.gesdisc.eosdis.nasa.gov/opendap/. OPeNDAP allows users to access and manipulate subsets of data without downloading the entire files.

Simple Subset Wizard (SSW)

Many of the TRMM products can be subset, and then downloaded, using the Simple Subset Wizard available here: https://disc.gsfc.nasa.gov/SSW/#keywords=TRMM.

If you need assistance or would like to report a problem:

: gsfc-help-disc@lists.nasa.gov

: 301-614-5224 : 301-614-5268

:

Goddard Earth Sciences Data and Information Services Center NASA Goddard Space Flight Center Code 610.2 Greenbelt, MD 20771 USA

6.0 More Information

The TRMM mission website is located at: https://pmm.nasa.gov/trmm.

Information on the TRMM instruments can be found at: https://pmm.nasa.gov/TRMM/trmm-instruments.

The GES DISC TRMM information portal can be found at:

https://disc.gsfc.nasa.gov/information/glossary?title=TRMM

TRMM Version 7 File Specifications:

https://pps.gsfc.nasa.gov/Documents/filespec.TRMM.V7.pdf

TRMM Anomalous Granule Table:

ftp://qpmweb2.pps.eosdis.nasa.gov/tsdis/AB/docs/anomalous.html

Other TRMM documents: http://pps.gsfc.nasa.gov/ppsdocuments.html

- J. Simpson, Adler, R.F., and North, G.R., 1988: A proposed tropical rainfall measuring mission (TRMM) satellite. ., , 278–295. (Link)
- C. Kummerow, Barnes, W., Kozu, T., Shiue, J., Simpson, J, 1998: The tropical rainfall measuring mission (TRMM) sensor package.

 , , 809–817. (Link)

Liu, Z. D. Ostrenga, W. Teng and S, Kempler, 2012, Tropical Rainfall Measuring Mission (TRMM) Precipitation Data Services for Research and Applications, Bulletin of the American Meteorological Society, doi: http://dx.doi.org/10.1175/BAMS-D-11-00152.1 (Link)

7.0 Acknowledgements

The distribution of the TRMM dataset is funded by <u>NASA's Science Mission Directorate</u>.

Much of the information in this Readme document is from the Precipitation Measurement Mission (https://pmm.nasa.gov/) and the Precipitation Processing System (https://pps.gsfc.nasa.gov/) websites.