### gsplat + MLPs

Jeffrey Hu | November 22, 2024 @jefequien





#### Outline

- 1. About Me
- 2. Appearance + MLP
- 3. Deblurring + MLPs
- 4. Compression + MLP
- 5. Recommendations

- 2017 2019 MIT CSAIL
- 2020 2022 TuSimple
- 2022 2024 Parallel Systems
- 2024 now gsplat + PhD apps

- 2017 2019 MIT CSAIL
  - Segmentation, Pose Detection
  - YOLOs, MaskRCNN, AlphaPose
- 2020 2022 TuSimple
- 2022 2024 Parallel Systems
- 2024 now gsplat + PhD apps





- 2017 2019 MIT CSAIL
- 2020 2022 TuSimple
  - Localization
  - Self-supervised monocular depth
- 2022 2024 Parallel Systems
- 2024 now gsplat + PhD apps









- 2017 2019 MIT CSAIL
- 2020 2022 TuSimple
- 2022 2024 Parallel Systems
  - 3D auto-labeling with SAM, GroundingDINO, Midas, Marigold, DPVO, Instant-NGP
  - HydraNet with ResNet backbone and taskspecific heads
- 2024 now gsplat + PhD apps



- 2017 2019 MIT CSAIL
- 2020 2022 TuSimple
- 2022 2024 Parallel Systems
- 2024 now gsplat + PhD apps
  - Video diffusion models
  - Gaussian splatting
    - MCMC, bilateral, 2.5DGS, Fisheye-GS



### Gaussian Splatting



MCMC, 2M, bilateral grid

### Gaussian Splatting



A Gaussian has properties: center position, color, covariance matrix, and opacity

### Why MLPs?

- Relighting
  - RNG: Relightable Neural Gaussians
  - A Diffusion Approach to Radiance Field Relighting using Multi-Illumination Synthesis
- Ambient Motion
  - Modeling Ambient Scene Dynamics for Free-view Synthesis
- Level of Detail
  - Scaffold-GS, Octree-GS
- Background Modeling
- Appearance
- Deblurring
- Compression



class AppearanceOptModule(torch.nn.Module):

```
"""Appearance optimization module."""
                                    self.embeds = torch.nn.Embedding(n, embed_dim)
                                    self.color_mlp = create_mlp(
    means: (N, 3)
                                         in_dim=embed_dim + feature_dim + (sh_degree + 1) ** 2,
   scales: (N, 3)
                                        num_layers=mlp_depth + 1,
    quats: (N, 3)
                                         layer_width=mlp_width,
                                        out_dim=3,
opacities: (N,)
                                        initialize_last_layer_zeros=True,
   colors: (N, 1, 3)
 features: (N, 32)
                              if TCNN_EXISTS:
                                 return _create_mlp_tcnn(
                                    in_dim,
                                     num_layers,
                                     layer_width,
                                     out_dim,
                                     initialize_last_layer_zeros=initialize_last_layer_zeros,
                              else:
                                 return _create_mlp_torch(
```

class AppearanceOptModule(torch.nn.Module):

"""Appearance optimization module."""

```
def forward(self, features: Tensor, image_ids: Tensor, dirs: Tensor) -> Tensor:
    means: (N, 3)
    scales: (N, 3)
    quats: (N, 3)
    opacities: (N,)
    colors: (N, 1, 3)
    features: (N, 32)

    def forward(self, features: Tensor, image_ids: Tensor, dirs: Tensor) -> Tensor:
        embeds = self.embeds(image_ids).repeat(*features.shape[:-1], 1)
        dirs = encode_dirs(dirs)
        mlp_in = torch.cat([embeds, features, dirs], dim=-1)
        colors = self.color_mlp(mlp_in)
        return colors

colors: (N, 1, 3)
    features: (N, 32)
```

#### Photo Tourism

Photo Tourism is a dataset of images of famous landmarks, such as the Sacre Coeur, the Trevi Fountain, and the Brandenburg Gate. The images were captured by tourist at different times of the day and year, images have varying lighting conditions and occlusions. The evaluation protocol is based on NeRF-W, where the image appearance embeddings are optimized on the left side of the image and the metrics are computed on the right side of the image.

|   | Method ≣↑                 | PSNR ≡↑ | SSIM ≣↑ | LPIPS =↑ | Time ≣↑     | GPU mem. ≣↑ |
|---|---------------------------|---------|---------|----------|-------------|-------------|
| ~ | K-Planes                  | 21.10   | 0.761   | 0.313    | 24m 37s     | 3.59 GB     |
| ~ | GS-W                      | 21.38 ① | 0.817 ① | 0.213 ①  | 1h 13m 50s  | 21.93 GB    |
| ~ | NeRF-W (reimplementation) | 21.75   | 0.790   | 0.268    | 44h 23m 46s | 98.80 GB    |
| ~ | Scaffold-GS               | 23.50   | 0.854   | 0.170    | 1h 27m 49s  | 18.34 GB    |
| ~ | gsplat                    | 23.66   | 0.857   | 0.162    | 1h 44m 24s  | 4.68 GB     |
| ~ | WildGaussians             | 24.65   | 0.851   | 0.179    | 10h 18m 16s | 18.24 GB    |



### Deblurring Original Paper



$$\hat{r}_j = r_j \cdot \min(1.0, \ \lambda_s \delta r_j + (1 - \lambda_s))$$

$$\hat{s}_j = s_j \cdot \min(1.0, \ \lambda_s \delta s_j + (1 - \lambda_s))$$

### Deblurring Original Paper



Dataset





#### Implementation

def \_\_init\_\_(self, n: int, embed\_dim: int = 4):

torch.cat([images\_emb, means\_emb, scales, quats], dim=-1)

scales\_delta = torch.clamp(mlp\_out[:, :3], min=0.0, max=0.1)

quats\_delta = torch.clamp(mlp\_out[:, 3:], min=0.0, max=0.1)

scales = torch.exp(scales + scales\_delta)

quats = quats + quats\_delta

return scales, quats

```
self.embeds = torch.nn.Embedding(n, embed_dim)
                                      self.means_encoder = get_encoder(num_freqs=3, input_dims=3)
                                      self.blur_deltas_mlp = create_mlp(
    means: (N, 3)
                                          in_dim=embed_dim + self.means_encoder.out_dim + 7,
   scales: (N, 3)
                                          num_layers=5,
                                          layer_width=64,
    quats: (N, 3)
                                          out_dim=7,
opacities: (N,)
      sh0: (N, 1, 3)
                                  def forward(self, image_ids: Tensor, means: Tensor, scales: Tensor, quats: Tensor):
      shN: (N, 15, 3)
                                      quats = F.normalize(quats, dim=-1)
                                      means_emb = self.means_encoder.encode(log_transform(means))
                                      images_emb = self.embeds(image_ids).repeat(means.shape[0], 1)
                                      mlp_out = self.blur_deltas_mlp(
```

).float()

class BlurOptModule(nn.Module):

"""Blur optimization module."""

|                        | Train PSNR | Val PSNR |
|------------------------|------------|----------|
| 3DGS-MCMC              | 29.61      | 24.73    |
| With blur optimization | 34.36      | 24.32    |

|                        | Train PSNR | Val PSNR |
|------------------------|------------|----------|
| 3DGS-MCMC              | 29.61      | 24.73    |
| With blur optimization | 34.36      | 24.32    |



|                        | Train PSNR | Val PSNR |
|------------------------|------------|----------|
| 3DGS-MCMC              | 29.61      | 24.73    |
| With blur optimization | 34.36      | 24.32    |

















### Deblurring Other papers

• DOF-GS: Explicit modeling for defocus blur.



• BAGS: Fit 2D blur kernels at the same time as 3DGS.



Blur Mask

```
class BlurOptModule(nn.Module):
     """Blur optimization module."""
    def __init__(self, n: int, embed_dim: int = 4):
          self.blur_masks = torch.nn.Parameter(torch.zeros(n, 400, 600, 1))
    def predict_mask(self, image_ids: Tensor):
          blur_mask = torch.sigmoid(self.blur_masks[image_ids])
blur_mask = self.blur_module.predict_mask(image_ids, depths)
renders_blur, _, _ = self.rasterize_splats(
                                                                        if self.cfg.blur_opt and blur:
   camtoworlds=camtoworlds,
                                                                            scales, quats = self.blur_module(
   Ks=Ks,
   width=width,
                                                                                 image_ids=image_ids,
   height=height,
                                                                                 means=self.splats["means"],
   sh_degree=sh_degree_to_use,
                                                                                scales=self.splats["scales"],
   near_plane=cfg.near_plane,
                                                                                 quats=self.splats["quats"],
   far_plane=cfg.far_plane,
   image_ids=image_ids,
                                                                        else:
   render_mode="RGB",
   masks=masks,
                                                                            scales = torch.exp(self.splats["scales"])
   blur=True,
                                                                            quats = self.splats["quats"] # [N, 4]
colors = (1 - blur_mask) * colors + blur_mask * renders_blur[..., 0:3]
```

Blur Mask

```
class BlurOptModule(nn.Module):
    """Blur optimization module."""

def __init__(self, n: int, embed_dim: int = 4):
    self.blur_masks = torch.nn.Parameter(torch.zeros(n, 400, 600, 1))

def predict_mask(self, image_ids: Tensor):
    blur_mask = torch.sigmoid(self.blur_masks[image_ids])
```



Blur Mask

```
class BlurOptModule(nn.Module):
    """Blur optimization module."""

def __init__(self, n: int, embed_dim: int = 4):
    self.blur_masks = torch.nn.Parameter(torch.zeros(n, 40, 60, 1))

def predict_mask(self, image_ids: Tensor):
    x = self.blur_masks[image_ids]
    x = F.interpolate(x.permute(0, 3, 1, 2), scale_factor=(10, 10), mode='bilinear').permute(0, 2, 3, 1)
    blur_mask = torch.sigmoid(x)
```



Better than baseline!

Blur MLP

```
class BlurOptModule(nn.Module):
    """Blur optimization module."""

def __init__(self, n: int, embed_dim: int = 4):
    self.embeds = torch.nn.Embedding(n, embed_dim)
    self.depths_encoder = get_encoder(num_freqs=3, input_dims=1)
    self.grid_encoder = get_encoder(num_freqs=1, input_dims=2)
    self.blur_mask_mlp = create_mlp(
        in_dim=embed_dim + self.depths_encoder.out_dim + self.grid_encoder.out_dim,
        num_layers=5,
        layer_width=64,
        out_dim=1,
    )
```







Blur MLP Regularization

```
class BlurOptModule(nn.Module):
    """Blur optimization module."""
    def mask_loss(self, blur_mask: Tensor):
        x = blur_mask.mean()
        maskloss = torch.abs(x)
```

$$\mathcal{L}_s = \lambda_{\text{photo}} \| C_{\text{out}}^s - C_{\text{obs}}^s \| + \lambda_{\text{DS}} \mathcal{L}_{\text{D-SSIM}} (C_{\text{out}}^s, C_{\text{obs}}^s) + \lambda_{\text{mask}} \| m^s \|, \tag{8}$$

From BAGS









Blur MLP Regularization

```
class BlurOptModule(nn.Module):
    """Blur optimization module."""
    def mask_loss(self, blur_mask: Tensor):
        x = blur_mask.mean()
        maskloss = torch.abs(x)
        maskloss = x**2
```

$$\mathcal{L}_s = \lambda_{\text{photo}} \| C_{\text{out}}^s - C_{\text{obs}}^s \| + \lambda_{\text{DS}} \mathcal{L}_{\text{D-SSIM}} (C_{\text{out}}^s, C_{\text{obs}}^s) + \lambda_{\text{mask}} \| m^s \|, \tag{8}$$

From BAGS



Blur MLP Regularization

```
class BlurOptModule(nn.Module): \mathcal{L}_{s} = \lambda_{\mathrm{photo}} \| C_{\mathrm{out}}^{s} - C_{\mathrm{obs}}^{s} \| + \lambda_{\mathrm{DS}} \mathcal{L}_{\mathrm{D-SSIM}}(C_{\mathrm{out}}^{s}, C_{\mathrm{obs}}^{s}) + \lambda_{\mathrm{mask}} \| m^{s} \|, \tag{8} def mask_loss(self, blur_mask: Tensor): From BAGS \mathbf{x} = \mathbf{blur_mask.mean()} -maskloss = torch.abs(x)
```

maskloss = lambda\_a  $* 1 / (1 - x + eps) * lambda_b * (1 / (x + eps))$ 





Blur MLP Regularization

```
class BlurOptModule(nn.Module): \mathcal{L}_s = \lambda_{\mathrm{photo}} \| C_{\mathrm{out}}^s - C_{\mathrm{obs}}^s \| + \lambda_{\mathrm{DS}} \mathcal{L}_{\mathrm{D-SSIM}}(C_{\mathrm{out}}^s, C_{\mathrm{obs}}^s) + \lambda_{\mathrm{mask}} \| m^s \|, \quad (8) def mask_loss(self, blur_mask: Tensor): From BAGS  x = \mathrm{blur_mask.mean}() \\ - \mathrm{maskloss} = \mathrm{torch.abs}(x) \\ - \mathrm{maskloss} = \mathrm{torch.abs}(x) \\ - \mathrm{maskloss} = \mathrm{lambda_a} * 1 / (1 - x + \mathrm{eps}) * \mathrm{lambda_b} * (1 / (x + \mathrm{eps})) + \mathrm{c} \\ - \mathrm{maskloss} = \mathrm{lambda_a} * x + \mathrm{lambda_b} * (1 / (1 - x + \mathrm{eps}) + 1 / (x + \mathrm{eps})) + \mathrm{c} \\ - \mathrm{self.bounded\_l1\_loss} = \mathrm{bounded\_l1\_loss}(10.0, 0.5)
```





maskloss = self.bounded\_l1\_loss(x)







## Deblurring Results

|           | defocuscake | defocuscaps | defocuscisco | defocuscoral  | defocuscupcake  |
|-----------|-------------|-------------|--------------|---------------|-----------------|
| Ours      | 26.80       | 24.30       | 20.47        | 19.37         | 22.25           |
| Deblur-GS | 26.88       | 24.50       | 20.83        | 19.78         | 22.11           |
| BAGS      | 27.21       | 24.16       | 20.79        | 20.53         | 22.93           |
| DOF-GS    | -           | -           | -            | % <del></del> | 20 <del>=</del> |

|           | defocuscups | defocusdaisy | defocussausage | defocusseal | defocustools | AVERAGE |
|-----------|-------------|--------------|----------------|-------------|--------------|---------|
| Ours      | 25.28       | 23.63        | 18.47          | 25.75       | 27.22        | 23.35   |
| Deblur-GS | 26.28       | 23.54        | 18.99          | 26.18       | 27.96        | 23.71   |
| BAGS      | 26.27       | 23.74        | 18.76          | 26.52       | 28.60        | 23.95   |
| DOF-GS    |             | -            | -              | =           |              | 24.12   |



# Deblurring Results



Results



### Deblurring Failed Experiments

• Use ground truth as input to mask MLP.



Add depth and depth\_blur as input to mask MLP.



# Deblurring Failed Experiments

Add color as input to mask MLP.



• Use a mask CNN instead of mask MLP.





class PngCompression(use\_sort: bool = True, verbose: bool = True)

[source]

Uses quantization and sorting to compress splats into PNG files and uses K-means clustering to compress the spherical harmonic coefficents.

### Warning

This class requires the imageio, plas and torchpq packages to be installed.

### **A** Warning

This class might throw away a few lowest opacities splats if the number of splats is not a square number.

### Note

The splats parameters are expected to be pre-activation values. It expects the following fields in the splats dictionary: "means", "scales", "quats", "opacities", "sh0", "shN". More fields can be added to the dictionary, but they will only be compressed using NPZ compression.

### **REFERENCES**

- Compact 3D Scene Representation via Self-Organizing Gaussian Grids
- Making Gaussian Splats more smaller

### Default vs MCMC

|                           | PSNR  | SSIM | LPIPS | Num GSs | Mem (GB) | Time (min) |
|---------------------------|-------|------|-------|---------|----------|------------|
| gsplat (default settings) | 29.00 | 0.87 | 0.14  | 3237318 | 5.62     | 19.39      |
| absgrad                   | 29.11 | 0.88 | 0.12  | 2465986 | 4.40     | 18.10      |
| antialiased               | 29.03 | 0.87 | 0.14  | 3377807 | 5.87     | 19.52      |
| mcmc (1 mill)             | 29.18 | 0.87 | 0.14  | 1000000 | 1.98     | 15.42      |
| mcmc (2 mill)             | 29.53 | 0.88 | 0.13  | 2000000 | 3.43     | 21.79      |
| mcmc (3 mill)             | 29.65 | 0.89 | 0.12  | 3000000 | 4.99     | 27.63      |
| absgrad & antialiased     | 29.14 | 0.88 | 0.13  | 2563156 | 4.57     | 18.43      |
| mcmc & antialiased        | 29.23 | 0.87 | 0.14  | 1000000 | 2.00     | 15.75      |

MCMC

```
means: (N, 3)
   scales: (N, 3)
   quats: (N, 3)
opacities: (N,)
      sh0: (N, 1, 3)
      shN: (N, 15, 3)
 def _compress_npz(
     compress_dir: str, param_name: str, params: Tensor, **kwargs
   -> Dict[str, Any]:
     """Compress parameters with numpy's NPZ compression."""
     npz_dict = {"arr": params.detach().cpu().numpy()}
     save_fp = os.path.join(compress_dir, f"{param_name}.npz")
     os.makedirs(os.path.dirname(save_fp), exist_ok=True)
     np.savez_compressed(save_fp, **npz_dict)
     meta = {
         "shape": params.shape,
         "dtype": str(params.dtype).split(".")[1],
     return meta
```

```
11M means.npz
329 meta.json
3.5M opacities.npz
14M quats.npz
11M scales.npz
11M sh0.npz
160M shN.npz
```

### 208M compression.zip

```
"psnr": 26.94044303894043,
"ssim": 0.8427160978317261,
"lpips": 0.14394041895866394,
```

-450 MB +0.18 PSNR

Quantization

```
def log_transform(x):
    return torch.sign(x) * torch.log1p(torch.abs(x))
grid = params.reshape((n_sidelen, n_sidelen, -1))
mins = torch.amin(grid, dim=(0, 1))
maxs = torch.amax(grid, dim=(0, 1))
grid_norm = (grid - mins) / (maxs - mins)
img_norm = grid_norm.detach().cpu().numpy()
img = (img_norm * (2**8 - 1)).round().astype(np.uint8)
img = img.squeeze()
imageio.imwrite(os.path.join(compress_dir, f"{param_name}.png"), img)
meta = {
    "shape": list(params.shape),
   "dtype": str(params.dtype).split(".")[1],
    "mins": mins.tolist(),
    "maxs": maxs.tolist(),
return meta
```

```
means_l.png
2.9M
2.3M
     means_u.png
     meta.json
2.8K
     opacities.png
745K
3.8M
      quats.png
      scales.png
2.8M
2.6M
      sh0.png
      shN.npz
 34M
```

### 49M compression.zip

```
"psnr": 26.902538299560547,
"ssim": 0.8414101004600525,
"lpips": 0.14493945240974426,
```

-159 MB -0.04 PSNR

KMeans Clustering





KMeans Clustering

```
n_{clusters}: int = 65536,
quantization: int = 6,
kmeans = KMeans(n_clusters=n_clusters, distance="manhattan", verbose=verbose)
x = params.reshape(params.shape[0], -1).permute(1, 0).contiguous()
labels = kmeans.fit(x)
npz_dict = {
   "centroids": centroids_quant,
   "labels": labels,
np.savez_compressed(os.path.join(compress_dir, f"{param_name}.npz"), **npz_dict)
params = centroids[labels]
```

```
2.9M
       means_l.png
2.3M
       means_u.png
1.1K
       meta.json
       opacities.png
 745K
       quats.png
 3.8M
2.8M
       scales.png
 2.6M
       sh0.png
 3.4M
       shN.npz
       compression.zip
  19M
"psnr": 26.571739196777344,
"ssim": 0.8375915288925171,
"lpips": 0.15935097634792328,
    -30 MB
    -0.33 PSNR
```

Sorting



```
means_l.png
2.7M
382K
      means_u.png
1.1K
      meta.json
      opacities.png
734K
3.7M
      quats.png
2.7M
      scales.png
2.5M
      sh0.png
3.4M
      shN.npz
 16M
      compression.zip
```

```
"psnr": 26.571739196777344,
"ssim": 0.8375915288925171,
"lpips": 0.15935097634792328,
```

-3 MB -0.0 PSNR

# Compression Ranking

| Method                       | Rank 🖣 | TanksAnd | Temples |         | +            | MipNeRF | 360    |         | *            |
|------------------------------|--------|----------|---------|---------|--------------|---------|--------|---------|--------------|
|                              | *      | PSNR 🖣   | SSIM 💠  | LPIPS + | Size<br>[MB] | PSNR 🖣  | SSIM 🔷 | LPIPS + | Size<br>[MB] |
| HAC-highrate                 | 4.8    | 24.40    | 0.853   | 0.177   | 11.2         | 27.59   | 0.809  | 0.234   | 22.5         |
| HAC-lowrate                  | 4.9    | 24.04    | 0.846   | 0.187   | 8.1          | 27.30   | 0.803  | 0.246   | 14.4         |
| gsplat-1.00M                 | 5.1    | 24.03    | 0.857   | 0.163   | 15.4         | 27.29   | 0.811  | 0.229   | 15.3         |
| IGS-Low                      | 5.6    | 23.70    | 0.836   | 0.227   | 8.4          | 27.33   | 0.809  | 0.257   | 12.5         |
| IGS-High                     | 5.7    | 24.05    | 0.849   | 0.210   | 12.5         | 27.62   | 0.819  | 0.247   | 25.4         |
| Morgenstern et al.<br>w/o SH | 5.9    | 25.27    | 0.857   | 0.217   | 8.2          | 27.02   | 0.803  | 0.232   | 16.7         |
| Morgenstern et al.           | 7.4    | 25.63    | 0.864   | 0.208   | 21.4         | 27.64   | 0.814  | 0.220   | 40.3         |
| Navaneet et al.<br>32K       | 7.6    | 23.44    | 0.838   | 0.198   | 13.0         | 27.12   | 0.806  | 0.240   | 19.0         |
| Navaneet et al.<br>16K       | 7.8    | 23.39    | 0.836   | 0.200   | 12.0         | 27.03   | 0.804  | 0.243   | 18.0         |
| RDO-Gaussian                 | 8.2    | 23.34    | 0.835   | 0.195   | 11.5         | 27.05   | 0.802  | 0.239   | 22.4         |

Ranking taken from: https://w-m.github.io/3dgs-compression-survey/

shN Codebook



Not used

```
self.splats["shN_codebook"] = npz["centroids"]
self.splats["shN_indices"] = npz["labels"]
shN = self.splats["shN_codebook"][self.splats["shN_indices"].int()]
if cfg.shN_reg > 0.0:
    loss += cfg.shN_reg * torch.abs(self.splats["shN_codebook"]).mean()
```

JPG vs PNG

Paper's PSNR: 27.79

Authors evaluated on larger images which were downscaled to the target size (avoiding JPEG compression artifacts) instead of using the official provided downscaled images. As mentioned in the 3DGS paper, this increases results slightly ~0.5 dB PSNR.



```
2.9M
      means_l.png
2.0M
      means_u.png
1.1K
      meta.json
505K
      opacities.png
3.7M
      quats.png
1.7M
      scales.png
2.0M
      sh0.png
3.4M
      shN.npz
```

16M compression.zip

```
"psnr": 26.887527465820312,
"ssim": 0.8451383113861084,
"lpips": 0.15079563856124878,
```

-0 MB +0.31 PSNR

# Compression JPG vs PNG

|                       | psnr  | ssim  | lpips | Size [MB] |
|-----------------------|-------|-------|-------|-----------|
| HAC-lowrate           | 27.53 | 0.807 | 0.238 | 16.0      |
| HAC-highrate          | 27.77 | 0.811 | 0.230 | 22.9      |
| gsplat-1M             | 27.29 | 0.811 | 0.229 | 16.0      |
| gsplat-1M w/ png_data | 27.54 | 0.821 | 0.215 | 16.0      |





shN MLP

```
class MlpOptModule(torch.nn.Module):
    """MLP optimization module."""
self.shN_mlp = create_mlp(
    in_dim=self.means_encoder.out_dim + 3 + 8,
    num_layers=5,
    layer_width=64,
    out_dim=((sh_degree + 1) ** 2 - 1) * 3,
means_emb = self.means_encoder.encode(log_transform(means))
sh0_{emb} = sh0[:, 0, :]
quats_emb = F.normalize(quats, dim=-1)
opacities_emb = opacities[:, None]
mlp_in = torch.cat(
    [means_emb, sh0_emb, quats_emb, scales, opacities_emb], dim=-1
mlp_out = self.shN_mlp(mlp_in)
shN = mlp_out.reshape(means.shape[0], -1, 3)
return shN
```

```
means_l.png
2.9M
1.8M
      means_u.png
 932
      meta.json
      mlp_module.pt
 36K
      opacities.png
376K
3.7M
      quats.png
1.6M
      scales.png
      sh0.png
1.7M
 12M
      compression.zip
"psnr": 27.07998275756836,
"ssim": 0.8467192649841309,
"lpips": 0.14368483424186707,
   -4 MB
   +0.19 PSNR
```

shN MLP

|                       | psnr  | ssim  | lpips | Size [MB] |
|-----------------------|-------|-------|-------|-----------|
| HAC-lowrate           | 27.53 | 0.807 | 0.238 | 16.0      |
| HAC-highrate          | 27.77 | 0.811 | 0.230 | 22.9      |
| gsplat-1M             | 27.29 | 0.811 | 0.229 | 16.0      |
| gsplat-1M w/ png_data | 27.54 | 0.821 | 0.215 | 16.0      |
| gsplat-1M w/ shN_mlp  | 27.50 | 0.817 | 0.219 | 12.2      |





quats+scales MLP

```
means: (N, 3)
opacities: (N,)
        sh0: (N, 1, 3)
 features: (N, 4)
self.mlp = create_mlp(
     in_dim=self.means_encoder.out_dim + feature_dim + 4,
     num_layers=5,
     layer_width=64,
     out_dim=7 + ((sh_degree + 1) ** 2 - 1) * 3,
     initialize_last_layer_zeros=True,
def forward(self, means: Tensor, opacities: Tensor, sh0: Tensor, features: Tensor):
   means_emb = self.means_encoder.encode(log_transform(means))
   opacities_emb = opacities[:, None]
   sh0_{emb} = sh0[:, 0, :]
   mlp_in = torch.cat([means_emb, opacities_emb, sh0_emb, features], dim=-1)
   mlp_out = self.mlp(mlp_in).float()
   quats = mlp_out[:, :4]
   scales = mlp_out[:, 4:7]
   shN = mlp_out[:, 7:]
```

```
2.6M features.png
2.9M means_l.png
1.7M means_u.png
741 meta.json
66K mlp_module.pt
450K opacities.png
1.6M sh0.png
```

### 9.1M compression.zip

```
"psnr": 27.047954559326172,
"ssim": 0.8433372974395752,
"lpips": 0.14846640825271606,
```

### -2.9 MB -0.04 PSNR

# Compression quats+scales MLP

|                       | psnr  | ssim  | lpips | Size [MB] |
|-----------------------|-------|-------|-------|-----------|
| HAC-lowrate           | 27.53 | 0.807 | 0.238 | 16.0      |
| HAC-highrate          | 27.77 | 0.811 | 0.230 | 22.9      |
| gsplat-1M             | 27.29 | 0.811 | 0.229 | 16.0      |
| gsplat-1M w/ png_data | 27.54 | 0.821 | 0.215 | 16.0      |
| gsplat-1M w/ shN_mlp  | 27.50 | 0.817 | 0.219 | 12.2      |
| gsplat-1M w/ cov_mlp  | _     | -     | =     | 9.1       |

Unstable. MCMC requires quats and scales to compute noise.

# Compression Results

|                       | psnr  | ssim  | lpips | Size [MB] |
|-----------------------|-------|-------|-------|-----------|
| HAC-lowrate           | 27.53 | 0.807 | 0.238 | 16.0      |
| HAC-highrate          | 27.77 | 0.811 | 0.230 | 22.9      |
| gsplat-1M             | 27.29 | 0.811 | 0.229 | 16.0      |
| gsplat-1M w/ png_data | 27.54 | 0.821 | 0.215 | 16.0      |
| gsplat-1M w/ shN_mlp  | 27.50 | 0.817 | 0.219 | 12.2      |
| gsplat-2M w/ shN_mlp  | 27.85 | 0.827 | 0.198 | 24.1      |

### Recommendations

- Rerun MipNerf360 evaluation with PNGs.
- Promote a compression format.
  - MLP-decoded shN?
- Create OptModules interface.
  - Simplify simple\_trainer.py.
  - Abstract away module-specifics configs, optimizers, loss, schedules, etc.
  - Share code with Nerfstudio.
  - Create a zoo of modules.
    - CameraOptModule, AppearanceOptModule, BilateralOptModule, MLPOptModule, BlurOptModule, BackgroundOptModule

Thank you!