MS-E2122 - Nonlinear Optimization Lecture 1

Fabricio Oliveira

Systems Analysis Laboratory
Department of Mathematics and Systems Analysis

Aalto University School of Science

July 12, 2021

Outline of this lecture

What is optimisation?

Mathematical programming and optimisation

Types of mathematical optimisation models

Applications

Resource allocation

The pooling problem: refinery operations planning

Robust optimisation

Classification: support vector machines

Fabricio Oliveira 1/2

What is optimisation?

Discipline of applied mathematics. The idea is to search values for variables in a given domain that maximise/minimise function values.

Can be achieved by

- Analysing properties of functions / extreme points or
- Applying numerical methods

Optimisation has important applications in fields such as

- operations research (OR);
- economics;
- statistics;
- machine learning and artificial intelligence.

What is optimisation?

In this course, optimisation is viewed as the core element of mathematical programming.

Math. programming is a central OR modelling paradigm:

- variables → decisions: business decisions, parameter definitions, settings, geometries, ...;
- **domain** → constraints: logic, design, engineering, ...;
- **function** → objective function: measurement of (decision) quality.

However, math. programming has many applications in fields other than OR, which causes some confusion;

We will study math. programming in its most general form: both constraints and objectives are nonlinear functions.

Types of programming

The simpler are the assumptions which define a type of problems, the better are the methods to solve such problems.

Some useful notation:

- $ightharpoonup x \in \mathbf{R}^n$ vector of (decision) variables x_j , $j=1,\ldots,n$;
- $f: \mathbf{R}^n \to \mathbf{R} \cup \{\pm \infty\}$ objective function;
- $ightharpoonup X \subseteq \mathbf{R}^n$ ground set (physical constraints);
- $ightharpoonup g_i, h_i: \mathbf{R}^n \to \mathbf{R}$ constraint functions;
- ▶ $g_i(x) \le 0$ for i = 1, ..., m inequality constraints;
- $ightharpoonup h_i(x)=0$ for $i=1,\ldots,l$ equality constraints;

Types of programming

Our goal will be to solve variations of the general problem P:

$$(P):$$
 min. $f(x)$ subject to: $g_i(x) \leq 0, i=1,\ldots,m$ $h_i(x)=0, i=1,\ldots,l$ $x \in X.$

- ▶ Linear programming (LP): linear $f(x) = c^{\top}x$ with $c \in \mathbb{R}^n$; constraint functions $g_i(x)$ and $h_i(x)$ are affine $(a_i^{\top}x b_i)$, with $a_i \in \mathbb{R}^n$, $b \in \mathbb{R}$); $X = \{x \in \mathbb{R}^n : x_j \ge 0, j = 1, ..., n\}$.
- Nonlinear programming (NLP): some (or all) of the functions f, g_i or h_i are nonlinear;
- ▶ (Mixed-)integer programming ((M)IP): LP where (some of the) variables are binary (or integer). $X \subseteq \mathbb{R}^k \times \{0,1\}^{n-k}$
- Mixed-integer nonlinear programming (MINLP): MIP+NLP.

Resource allocation and portfolio optimisation

Problem statement. Plan production that maximises return. Let

- $ightharpoonup I = \{1, \dots, i, \dots, M\}$ resources;
- $ightharpoonup J = \{1, \dots, j, \dots, N\}$ products;
- $ightharpoonup c_j$ return per unit of product $j \in J$;
- $\textbf{ } a_{ij} \text{ resource } i \in I \text{ requirement for } \\ \text{ making product } j \in J \text{ ; } \\ \text{ subject to: } \sum_{j \in J} a_{ij} x_j \leq b_i, \forall i \in I \\$
- $lackbox{b}_i$ availability of resource $i \in I$;

$$x_j \ge 0, \forall j \in J$$

max. $\sum c_j x_j$

 $ightharpoonup x_j$ - production of $j \in J$.

Remark:

- ▶ notice that max. $f(x) = \min_{x \in \mathcal{X}} -f(x)$;
- the base of most practical optimisation problems; exploits mature LP technology.

Fabricio Oliveira Applications 8/23

Portfolio optimization

Problem statement. Plan portfolio of assets to minimise exposition to risk. Let

- ▶ $J = \{1, ..., j, ..., N\}$ assets;
- μ_j expected relative return of asset $j \in J$;
- Σ covariance matrix;
- ε minimum expected return;
- $ightharpoonup x_i$ position of asset $j \in J$

min.
$$x^{\top} \Sigma x$$

subject to: $\mu^{\top} x \ge \epsilon$

$$0 \le x_j \le 1, \forall j \in J$$

Remarks:

- The term $x^{\top} \Sigma x$ measures exposition to risk. It is credited to Harry Markowitz (1952).
- Another important class: quadratic programming (nonlinear).

Refinery Operations Planning Problem

Oil refinery operational planning

- Goal is to maximize profit;
- Several possible configurations;
- Product property specifications must be met;

Model characteristics:

- Bilinear (nonconvex) and mixed-integer;
- Large number of flows;
- Several nonlinear constraints.

Refinery Operations Planning Problem

Objective: maximize profit

Variables:

- Stream Flows (crude, intermediate and final products);
- Storage;
- Stream properties.

Constraints

- Mass balance;
- Market features (supply and demand);
- Unit capacities;
- Stream property limits;
- Calculation of mix properties (nonlinear).

11/23

Refinery Operations Planning Problem

The challenging aspect is how to model the calculation of product properties in a mix. Let:

- $ightharpoonup x_p$ be the volume of product $p \in P$ and
- $ightharpoonup q_p$ the value of a given chemical property (sulphur content, octane content, viscosity...).

In a given mix, mass and property balances are calculated as:

$$x_A = x_B + x_C$$

$$q_A = \frac{q_B x_B + q_C x_C}{x_A}$$

Remarks:

- More complex mixes (such as nonlinear balances) might need to be considered.
- ► These are bilinear programming problems (nonlinear).

Is a subarea of mathematical programming concerned with uncertainty in the input data.

It's a risk-averse perspective that seeks protection against variability.

Consider the resource allocation problem under uncertainty:

$$\begin{aligned} & \text{max. } c^\top x \\ & \text{subject to: } \tilde{a}_i^\top x \leq b_i, \forall i \in I \\ & x_j \geq 0, \forall j \in J \end{aligned}$$

where \tilde{a}_i is a random variable.

Fabricio Oliveira Applications 14/23

Assume that, for any $i\in I$, $\tilde{a}_i\in\epsilon_i=\{\overline{a}_i+P_iu:||u||_2\leq\Gamma_i\}$, where

- $ightharpoonup \overline{a}_i$ is the nominal (average) value;
- ▶ P_i is the characteristic matrix of the ellipsoid ϵ ;
- $ightharpoonup \Gamma_i$ is risk-aversion control parameter.

Then, the robust counterpart can be stated as

$$\begin{aligned} & \text{max. } c^\top x \\ & \text{subject to: } \max_{a_i \in \epsilon_i} \left\{ a_i^\top x \right\} \leq b_i, \forall i \in I \\ & x_j \geq 0, \forall j \in J. \end{aligned}$$

Notice that

$$\max_{a_i \in \epsilon_i} \left\{ a_i^\top x \right\} = \overline{a}_i^\top x + \max_{u} \left\{ u^\top P_i x : ||u||_2 \le \Gamma_i \right\} = \overline{a}_i^\top x + \Gamma_i ||P_i x||_2$$

The robust counterpart can be equivalently stated as:

$$\begin{aligned} & \text{max. } c^\top x \\ & \text{subject to: } \overline{a}_i^\top x + \Gamma_i ||P_i x||_2 \leq b_i, \forall i \in I \\ & x_j \geq 0, \forall j \in J. \end{aligned}$$

Remarks:

- ▶ In case data is available, P_i can be obtained from the empirical covariance matrix;
- Values of Γ_i can be drawn, for example, from a Chi-squared distribution. Γ_i is sometimes called the budget of uncertainty.

Fabricio Oliveira Applications 17/23

Suppose we are given some data $D \subset \mathbf{R}^n$ that can be separated into two sets in \mathbf{R}^n : $I^- = \{x_1, \dots, x_N\}$ and $I^+ = \{x_1, \dots, x_M\}$.

Each element in D is an observation of a given set of features; belonging to either I^- or I^+ defines a classification.

Our task is to select a function $f: \mathbf{R}^n \to \mathbf{R}$ from a given family of functions such that

$$f(x_i) < 0, \ \forall x_i \in I^- \ \text{and} \ f(x_i) > 0, \ \forall x_i \in I^+.$$

Typically, f is selected as a linear classifier, i.e., $f(x_i) = a^{\top} x_i - b$.

Of course, there is always the possibility of misclassification and, therefore, we want to determine the best possible classifier.

Fabricio Oliveira Applications 18/23

Fabricio Oliveira Applications 19/23

Let us define the following error measures:

$$e^{-}(x_{i} \in I^{-}; a, b) := \begin{cases} 0, & \text{if } a^{\top}x_{i} - b \leq 0, \\ a^{\top}x_{i} - b, & \text{if } a^{\top}x_{i} - b > 0. \end{cases}$$

$$e^{+}(x_{i} \in I^{+}; a, b) := \begin{cases} 0, & \text{if } a^{\top}x_{i} - b \geq 0, \\ b - a^{\top}x_{i}, & \text{if } a^{\top}x_{i} - b < 0. \end{cases}$$

Using slack variables u_i , $i=1,\ldots,M$, and v_i , $i=1,\ldots,N$, to represent e^- and e^+ , the optimal classifier is obtained from:

$$\begin{split} (LC) \ : \ & \min. \ \sum_{i=1}^M u_i + \sum_{i=1}^N v_i \\ & \text{subject to:} \ a^\top x_i - b - u_i \leq 0, i = 1, \dots, M \\ & a^\top x_i - b + v_i \geq 0, i = 1, \dots, N \\ & ||a||_2 = 1 \\ & u_i \geq 0, i = 1, \dots, M; v_i \geq 0, i = 1, \dots, N; a \in \mathbf{R}^n, b \in \mathbf{R}. \end{split}$$

Remark: notice that $||a||_2 = 1$ avoids (a, b) = (0, 0).

In practice, we can enforce a slab $S = \{-1 \le a^{\top}x_i - b \le 1\}$ as a buffer to trade off the robustness of the classifier to outliers.

Accordingly, we redefine our error measures as follows.

$$e^{-}(x_{i} \in I^{-}; a, b) := \begin{cases} 0, & \text{if } a^{\top}x_{i} - b \leq -1, \\ a^{\top}x_{i} - b, & \text{if } a^{\top}x_{i} - b > -1. \end{cases}$$

$$e^{+}(x_{i} \in I^{+}; a, b) := \begin{cases} 0, & \text{if } a^{\top}x_{i} - b \geq 1, \\ b - a^{\top}x_{i}, & \text{if } a^{\top}x_{i} - b < 1. \end{cases}$$

 e^- and e^+ include misclassifications and correct classifications that lie within S. The latter are know as support vectors.

The width of S is given by $2/||a||_2$, which is the distance between the hyperplanes $a^{\top}x_i - b = -1$ and $a^{\top}x_i - b = 1$.

The robust version of LC incorporating this buffer becomes

$$\begin{aligned} & \text{min. } \sum_{i=1}^M u_i + \sum_{i=1}^N v_i + \gamma ||a||_2^2 \\ & \text{subject to: } a^\top x_i - b - u_i \leq -1, \ i = 1, \dots, M \\ & a^\top x_i - b + v_i \geq -1, \ i = 1, \dots, N \\ & u_i \geq 0, i = 1, \dots, M; v_i \geq 0, i = 1, \dots, N; \\ & a \in \mathbf{R}^n, b \in \mathbf{R}. \end{aligned}$$

Remarks:

- The parameter γ controls the trade-off between the width of the slab S and the number of observations within the slab.
- ► This quadratic programming problem is known in the machine learning literature as support vector machine (SVM).

Fabricio Oliveira Applications 23/23