Review of Related Literature

December 9, 2024

Chapter 1

Review of Related Literature

1.1 Related Literature

This section of the chapter presents related literature that is considered essential for the development of this special problem.

1.1.1 Deep Learning

Kelleher (2019) states that deep learning is inclined on making large-scale neural networks geared towards creating data-driven decisions. Furthermore, it was also argued that deep learning is oriented towards large-scale, complex data.

1.1.2 YOLOv5

According to Solawetz (2024), YOLOv5 is a model from a family of computer vision models used for object detection. YOLOv5 is reported to perform comparably to state-of-the-art techniques. It is designed to extract features from raw input images, used primarily in training object detection models alongside various data augmentation techniques.

1.1.3 Image and Video Processing

Kumar (2024) defines image processing as a process of turning an image into its digital form and extracting data from it through certain functions and operations. Usual processes are considered to treat images as 2D signals wherein different processing methods utilize these signals. Like image processing, Riches Resources (2020) defines video processing as being able to extract information and data from video footage through signal processing methods. However, in video processing, due to the diversity of video formats, compression and decompression methods

are often expected to be performed on videos before processing methods to either increase or decrease bitrate.

1.2 Related Studies

This section of the chapter presents related studies conducted by other researchers wherein the methodology and technologies used may serve as basis in the development of this special problem.

1.2.1 Automated Detection and Classification of Road Anomalies in VANET Using Deep Learning

In the study of Bibi et al. (2021)...

1.2.2 Smartphones as Sensors for Road Surface Monitoring

In their study, Chapman, Li, and Sattar (2018)...

1.3 Chapter Summary

The following table provides a comparison between related studies and their research gaps:

Table 1.1: Comparison of Studies on Technology for Traceability and Supply Chain

Study	Technology	Focus Area	Key Findings	Limitations
	Used			
Shamsuzzoha et	Blockchain (hy-	Traceability	Demonstrated feasi-	Connectivity iss
al. (2023)	brid model)		bility for traceability,	usability challen
			certification, and	and limited adopt
			buyer-seller accep-	incentives.
			tance.	
Cocco & Man-	Blockchain,	Italian agri-	Proposed a novel	High complex
zardo (2021)	IoT (RFID,	food trace-	blockchain-IoT solu-	multiple technological
	IPFS, NFC,	ability system	tion for traceability	(RFID, IPFS, NFC
	Ethereum)		and transparency.	
Kresna et al.	IT-based system	Digital trace-	Identified weaknesses	Relied on spec
(2017)	(RFID, CCTV,	ability system	in traditional paper-	technologies (CC'
	GPS)	(IT-based)	based IT traceability	GPS, RFID);
			systems.	integrated v
				blockchain.
Tiwari (2020)	Blockchain,	Tuna tracking	Enhanced trans-	Limited to spec
	smart contracts,	certification	parency and ad-	regions and sup
	SMS		dressed issues like	chains.
			IUU fishing.	
Tiwari (2020)	Blockchain, IBM	Food supply	Real-time tracking en-	Focused on gen
	Food Trust,	chain	abled recalls and pro-	food products; h
	GTIN/UPC		vided insights.	dependency on I
	identifiers			ecosystem.