

22 Juillet 2022

SOUTENANCE DU PROJET 7: IMPLÉMENTER UN MODÈLE DE SCORING

Check KOUTAME

PLAN

I/ Projet et donnés

- Mission & Description du projet
- Observations des données

II/Traitement des données

Processus de traitements des données

III/ Modélisation

- Choix des métriques
- Entrainement et optimisation
- Analyse des résultats
- Interprétabilité

IV/ Dashboard

Conclusion

I. PROJET ET DONNÉES MISSION & DESCRIPTION DU PROJET:

Problématique :

- Société financière d'offre de crédit à la consommation pour la clientèle ayant peu ou pas d'historique de prêt
 - Possession d'une base de données avec plusieurs variables concernant les clients
 - Attribution de prêt ou non: client défaillant ou non
 - Créer un algorithme pour ces attributions.
- Comment implémenter un modèle de scoring et le présenter avec un Dashboard pour la clientèle?

Mission :

- Développer un modèle de Scoring de la probabilité de défaut de paiement du client pour étayer la décision d'accorder ou non un prêt à un client potentiel.
 - Développement d'un Dashboard interactif pour que les chargés de relation client
 - Améliorer la relation avec le client en faisant preuve de transparence.
 - Montrer au client les informations le concernant grâce à l'interactivité.
- Contrainte: utiliser un Kernel Kaggle pour l'analyse exploratoire et du pre-processing

I. PROJET ET DONNÉES: OBSERVATION DES DONNÉES

I. PROJET ET DONNÉES: OBSERVATION DES DONNÉES

	Données	Dimension	Nombre de variables	Nombre observations	Nombres de types de variables	Nombre de cellules manquantes	% de cellules manquantes	Nombre de lignes dupliquées	% de lignes dupliquées
0	[application_train, data]	(307511, 122)	122	307511	float64 65 int64 41 object 16 dtyp	9152465	0.243959	0	0.0
1	[application_test, data]	(48744, 121)	121	48744	float64 65 int64 40 object 16 dtyp	1404419	0.238117	0	0.0
2	[bureau, data]	(1716428, 17)	17	1716428	float64 8 int64 6 object 3 dtype:	3939947	0.135026	0	0.0
3	[bureau_balance, data]	(27299925, 3)	3	27299925	int64 2 object 1 dtype: int64	0	0.000000	0	0.0
4	[cc_balance, data]	(3840312, 23)	23	3840312	float64 15 int64 7 object 1 dtyp	5877356	0.066541	0	0.0
5	[installments_payments, data]	(13605401, 8)	8	13605401	float64 5 int64 3 dtype: int64	5810	0.000053	0	0.0
6	[POS_CASH_balance, data]	(10001358, 8)	8	10001358	int64 5 float64 2 object 1 dtype:	52158	0.000652	0	0.0
7	[previous_application, data]	(1670214, 37)	37	1670214	object 16 float64 15 int64 6 dtyp	11109336	0.179769	0	0.0

II.TRAITEMENT DES DONNÉES: PROCESSUS

Utilisation du Kernel Kaggle de Rishabh RAO

Process des 8 fichiers

Analyse exploratoire

- Sur l'ensemble des fichiers
- Utilisation du kernel Kaggle

Pré-traitement

- Changement du type de données(Yes/Non→ 1/0)
- Réduction de la mémoire des données
- Traitement des valeurs aberrantes trouvées pendant l'EDA
- > Imputations

Feature Enginnering

- Création de variables statistique et métier
- Encodage + merging
- Suppression des varaibles correlées et > 90% de V.manquantes
- Fearture selection LighGBM, RFECV, Boruta...
- Selection des varaibles les plus fréquences

Modélisation

- Utilisation de Pycarest
- > Choix de la métrique
- Optimisation du modèle
- Seuil de probabilité optimale

Dashboard

- Développement & déploiement sur
 Streamlit
- API utilisant mlflow

II.TRAITEMENT DES DONNÉES: ANALYSE EXPLORATOIRE

- > Analyse exploratoire sur l'ensemble des variables de tous les 8 fichiers
 - > L'objectif est de voir quelles sont les variables qui présentent une grande variabilité

Exemple du fichier application_train

	S	K_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	1
)	100002	1	Cash loans	М	N	Υ	0	202500.0	406597.5	
	1	100003	0	Cash loans	F	N	N	0	270000.0	1293502.5	
:	2	100004	0	Revolving loans	М	Υ	Y	0	67500.0	135000.0	

3 rows × 122 columns

Nombre par type de variable % des types de variable

float64	65	53.280000
int64	41	33.610000
object	16	13.110000

Target: 8% défaillant – 92% Non-défaillant

II.TRAITEMENT DES DONNÉES: PRE-PROCESSING

- ➤ Utilisation du Kernel Kaggle de Rishabh RAO
- Sur seulement les fichiers application_train & application_test
- > Changement du type de données
 - Homme/Femme ou Yes/Non →I/O
 - Réduction de la taille en mémoire des données (par exemple int32 en int8)
- > Valeurs abérrantes
 - Correction des valeurs aberrantes trouvées pendant l'EDA
 - Correction/Suppression des valeurs uniques
- > Valeurs manquantes & imputation
 - Suppression des Nan des variables ayant plus de 67%
 - Imputation en faisant 3 tests
 - Test I: imputation par la médiane sur les V. quantitative, et par la mode pour les V. catégorielles
 - Test II: imputation par 0 sur les V. quantitatives, et par la XNA pour les V. catégorielles
 - Test III: imputation par un algorithme NaNimputer pour les V. quantitatives et par XNA pour les V. catégorielles

II.TRAITEMENT DES DONNÉES: FEATURE ENGINEERING

- Utilisation du Kernel Kaggle de Rishabh RAO
- Sur l'ensemble des fichiers

> Ajout de variables métiers

- Revenu, de rente et de crédit : ratio/différence
- Jours en années, changement de jours : ratio
- Âge de la voiture, ancienneté d'emploi : ratio/différence
- Flag sur les téléphones : ratio/différence
- Membres de la famille : ratio/différence
- Note de la région où vit le client : ratio/différence
- Données externes : ratio, moyenne, max, min
- Informations sur le bâtiment : somme, multiplication
- Défauts de paiements et les défauts observables : somme/ratio
- Flag sur les documents : somme, moyenne, variance, écart-type
- Modification du demandeur : somme/ratio

> Ajout de variables statistiques

- Quantitatives: min, max, sum,
- Qualitatives : sum, mean, count

II.TRAITEMENT DES DONNÉES: FEATURE ENGINEERING: MERGING

Dataframe initial	Nbr lignes var. initiales	Nbr lignes var. après suppression des variables correlées	Merge avec application_train/test et suppr var. colinéaires + > 90% nan
application_train/test	(307511, 122) (48744, 121)	(307507, 206) (48744, 205)	
credit_card_balance	(3840312, 23)	agg_ccb_cat (103558, 21) agg_ccb_num (103558, 68)	(307507, 246) (48744, 245)
installments_payments	(13605401, 8)	agg_pay_num (339587, 30)	(307507, 265) (48744, 264)
POS_CASH_balance	(10001358, 10)	agg_pos_num (337252, 27)	(307507, 285) (48744, 284)
previous_application	(1670214, 37)	agg_prev_num (338857, 114)	(307507, 552) (48744, 551)
bureau_balance	(27299925, 3)	agg_bureau_balance_par_demandeur (305811, 12)	(307507, 555) (48744, 554)
bureau	(1716428, 17)	agg_bureau_num (305811, 60)	(307507, 615) (48744, 614)

Cellule finale: train_set: (307507,**615**) test_set (48744,**614**)

Total: 493 variables

II.TRAITEMENT DES DONNÉES: FEATURE ENGINEERING: FEATURE SELECTION

- > Utilisation de plusieurs algorithmes de sélection de variables importantes
- > Sélection finale basée sur le nombre de répétition d'une variable dans tous les algorithmes

III. MODÉLISATION MÉTHODOLOGIE

- La variable cible: binaire
 - Client défaillants: 8%
 - Client non défaillants: 92%

- > Classification binaire
 - Client défaillants: classe 1
 - Client non défaillants: classe 0

Méthodologie

- > Pycaret: Idée des différents algorithmes de classification les plus performants
- > Equilibrer les données: SMOTE
- > Choix des métriques: Précision, Recall, Fbeta, métrique métier, etc...
- > Optimisation des modèles : modèles bayesiens
- > Choix du modèle final & Seuil de probabilité optimale

III. MODÉLISATION CHOIX DES MÉTRIQUES

Matrice de confusion

		TP:	FN:					
Š	+	Vrais	Faux					
éelles		Positif	Négatifs					
ée		FP:	TN:					
$ \mathbf{R} $	-	Faux	Vrais					
		positifs	Négatifs					
		+	-					
		Prédictions						

- De ne pas prédire « défaillant » un client non défaillant : minimiser les faux positifs (erreur de type I: Il convient donc de maximiser la métrique Précision
- De ne pas prédire un client non-défaillant s'il est défaillant : minimiser le nombre de faux négatifs (erreur de type II): Dans notre cas, il convient donc de maximiser les métriques Recall ou FBeta 10.

$$Pr\acute{e}cision = \frac{TP}{TP+FP}$$
 $Recall = \frac{TP}{TP+FN}$

$$\mathbf{F}_{\beta}$$
-score = $(1 + \beta^2) \cdot \frac{\text{precision} \cdot \text{recall}}{(\beta^2 \cdot \text{precision}) + \text{recall}}$

Fonction Coût

$$J = TP * TP_{value} + TN * TN_{value} + FP * FP_{value} + FN * FN_{value}$$

Ces valeurs de coefficients signifient que les Faux Négatifs engendrent des pertes 10 fois plus importantes que les gains des Vrai Négatifs

TP_value :0

FN_value :-10

TN_value : | FP_value : 0

13

III. MODÉLISATION MODÉLISATION: PYCARET

- > Objectif: Avoir une idée de plusieurs algorithmes simultanément
- > Possibilité de rééquilibrer les variables cibles

	Model	Ассигасу	AUC	Recall	Prec.	F1	Карра	MCC	TT (Sec)
catboost	CatBoost Classifier	0.9179	0.7685	0.0683	0.4452	0.1184	0.0991	0.1498	65.9950
xgboost	Extreme Gradient Boosting	0.9158	0.7562	0.0800	0.3930	0.1329	0.1086	0.1481	51.9390
lightgbm	Light Gradient Boosting Machine	0.9162	0.7550	0.0503	0.3640	0.0883	0.0701	0.1104	10.2220
rf	Random Forest Classifier	0.9124	0.7342	0.0586	0.2897	0.0974	0.0722	0.0987	49.9230
gbc	Gradient Boosting Classifier	0.9019	0.7168	0.1046	0.2466	0.1468	0.1037	0.1146	125.7170
et	Extra Trees Classifier	0.9018	0.7124	0.0947	0.2331	0.1347	0.0924	0.1030	42.0720
ada	Ada Boost Classifier	0.8723	0.6979	0.1959	0.2010	0.1984	0.1290	0.1291	32.8100
lda	Linear Discriminant Analysis	0.7316	0.6739	0.4904	0.1484	0.2278	0.1185	0.1498	7.8820
knn	K Neighbors Classifier	0.6839	0.5661	0.3829	0.1040	0.1636	0.0419	0.0556	116.7160
nb	Naive Bayes	0.1113	0.5592	0.9762	0.0816	0.1506	0.0019	0.0174	5.3040
qda	Quadratic Discriminant Analysis	0.1459	0.5553	0.9502	0.0828	0.1523	0.0044	0.0266	10.4890
quu	Quadratic Disciminant Analysis	0.1433	0.5555	0.5502	0.0020	0.1020	0.0044	0.0200	10.4030

- ✓ Choix des données du Test I
- ✓ Choix du les 3 modèles ensemblistes
 - ✓ Choix porté sur LightGBM
 - ✓ Plus rapide...

Rappel:

- Test I: imputation par la médiane sur les V. quantitative, et par la mode pour les V. catégorielles
- Test II: imputation par 0 sur les V. quantitatives, et par la XNA pour les V. catégorielles
- Test III: imputation par un algorithme NaNimputer pour les V. quantitatives et par XNA pour les V. catégorielles

III. MODÉLISATION MODÉLISATION: RÉÉQUILIBRAGE - SMOTE

Technique	es de rééquilibrage
LightGBM class_weight	class_weight
Undersamplig	SMOTE
Oversamplig	SMOTE, BordelineSMOTE, ADASYN
Oversampling + d'Undersempling	SMOTE

III. MODÉLISATION MODÉLISATION: OPTIMISATION

III. MODÉLISATION MODÉLISATION: BILAN DES MEILLEURS MODÈLES

Modèle	Jeu_donnees	FN	FP	TP	TN	Metrique	Optimisation	Class_weight	Rappel	Précision	F1	F5	F10	ROC_AUC	PR_AUC	Metier_score
lgbm_optuna_opt_5	train	1494	15960	3471	40577	F10	optuna	oui	0.6991	0.1786	0.2846	0.6286	0.6795	0.7795	0.2702	0.7135
lgbm_bayesian_opt_8	train	1515	15278	3450	41259	F10	bayes_opt	oui	0.6949	0.1842	0.2912	0.6279	0.6763	0.7826	0.2728	0.7219
lgbm_optuna_opt_F5	train	1522	16272	3443	40265	F5	optuna	non	0.6935	0.1746	0.2790	0.6223	0.6736	0.7727	0.2579	0.7079
lgbm bayesian opt 4	train	1526	14937	3439	41600	roc_auc	bayes_opt	oui	0.6926	0.1871	0.2947	0.6275	0.6746	0.7843	0.2801	0.7260

III. MODÉLISATION MODÉLISATION: INTERPRÉTABILITÉ

Modèle lightGBM

IV. DASHBOARD STREAMLIT + MLFLOW

IV. DASHBOARD STREAMLIT

Prêt à dépenser

DASHBOARD

IV. DASHBOARD STREAMLIT

IV. DASHBOARD STREAMLIT

Stats générales

Voir les distributions

IV. DASHBOARD STREAMLIT

Dashboard - Aide à la décision

Plus infos

Voir toutes infos clients?

Clients similaires

- Graphiques comparatifs
- Comparer traits stricts?
- Comparer demande prêt?

Facteurs d'influence

☑ Voir facteurs d'influence

Stats générales

Voir les distributions

IV. DASHBOARD **STREAMLIT**

Dashboard - Aide à la décision

Plus infos

✓ Voir toutes infos clients?

Clients similaires

- Graphiques comparatifs
- Comparer traits stricts?
- Comparer demande prêt?

Facteurs d'influence

☑ Voir facteurs d'influence

Stats générales

✓ Voir les distributions

CONCLUSION

- > Classification binaire avec variable cible déséquilibrée: utilisation de SMOTE
- Utilisation du modèle final LightGBM optimisé sur la métrique F10
- > Utilisation de SHAP pour l'interprétabilité globale et locale
- > API: utilisation mlflow
- > Dashboard: utilisation de Streamlit.

Pour aller plus loin...:

- ➤ Amélioration avec les feedbacks des experts + les utilisateurs
- Utilisation de métriques d'experts métiers
- Utilisation de cluster de calcul sur le cloud pour utiliser les modèles CatBoost & XGBoost