Simulation eines Vielkörpersystems auf einem verteilten Rechner

Masterarbeit

Adrian Pegler

18. Juli 2018

CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL
INSTITUT FÜR INFORMATIK
ARBEITSGRUPPE SCIENTIFIC COMPUTING

Betreut durch: Prof. Dr. Steffen Börm

Dipl.-Inf. Sven Christophersen

Eidesstattliche Erklärung
Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.
Kiel, 18. Juli 2018
iii

Zusammenfassung

Für die Dimension einer Galaxie wäre aber auch dieser Ansatz nicht ausreichend. Zum einen wird bei etwa 100 Milliarden Sonnen weiterhin eine riesige Menge Rechenleistung benötigt, zum anderen wird genügend Speicher benötigt, um die benötigten Daten vorzuhalten. Daher wird ferner eine Möglichkeit vorgestellt, die Berechnung und die Daten auf ein Rechencluster zu verteilen. Dabei beschränken wir uns auf das Message-Passing-Modell und stellen eine Implementierung unter Verwendung der Bibliothek MPI vor. Durch diese Parallelisierung ist für große Probleme die optimale Komplexität $\mathcal{O}(\frac{kn}{p})$ erreichbar.

Inhaltsverzeichnis

1	Einl	eitung 1
	1.1	Motivation
	1.2	Ziele 2
	1.3	Aufbau
2		ndlagen 5
	2.1	Hierarchische Matrizen
		2.1.1 \mathcal{H} -Matrizen
		2.1.2 Optimierung
		2.1.3 \mathcal{H}^2 -Matrizen
	2.2	Paralleles Rechnen
		2.2.1 Parallele Hardware
		2.2.2 Parallele Software
	2.3	MPI
		2.3.1 Geschichte
		2.3.2 Point-to-Point-Kommunikation
		2.3.3 Kollektive Kommunikation
_	TT	uptteil 37
3		1
	3.1	00
	3.2	\mathcal{H}^2 -Matrixstruktur und Approximation
		3.2.1 Clusterung
		3.2.2 Vorwärtstransformation
		3.2.3 Auswertung der Kopplungsmatrizen
	2.2	3.2.4 Rückwärtstransformation
	3.3	Parallelisierung
		3.3.1 Arbeitsverteilung
		3.3.2 Datenverteilung
		3.3.3 Kommunikation
4	Eval	luation 61
	4.1	Theoretische Abschätzung
	4.2	Laufzeitmessung
	4.3	Speicherbedarf
	T.0	operation

Inhaltsverzeichnis

5	Fazi	und Ausblick	73
	5.1	Fazit	73
	5.2	Ausblick	73
Bi	bliog	afie 7	75

Einleitung

Vorbemerkungen

Ich verwende in diesem Dokument den nach Herrn Prof. Dr. H. Laue benannten *Lauehaken*: Sei $n \in \mathbb{N}$, dann bezeichnet \underline{n} die Menge $\{1, \ldots, n\}$. In Anlehnung an die Schreibweise \mathbb{N}_0 für die natürlichen Zahlen $\mathbb{N} \cap \{0\}$ bezeichnet \underline{n}_0 die Menge $\{0, \ldots, n\}$.

Eine digitale Version dieser Arbeit ist in meinem zugehörigen GitHub-Repository¹ zu finden.

1.1. Motivation

Angeblich soll Sir Isaac Newton durch das Fallen eines Apfels die grundlegende Idee gehabt haben, dass die Mechanik des Himmels und der Erde doch dieselbe sein könnte [Stukeley 1936]. Jeder Schüler hat von dieser Geschichte gehört - und ob sie nun wahr ist oder nicht, sein Gesetz der nicht-relativistischen Gravitation ist bis heute eine wichtige Formel in der Physik.

Seien für zwei Körper die Massen m_1 , m_2 und Positionen x_1 , x_2 gegeben. Dann wirkt durch die Masse m_2 eine Kraft f auf die Masse m_1 , die sich durch

$$f = \gamma m_1 m_2 \frac{x_2 - x_1}{\|x_2 - x_1\|_2^3} \tag{1.1}$$

berechnen lässt [Newton 1833]. Dabei ist $\gamma \approx 6,67408*10^{-11} m^3 kg^{-1}s^{-2}$ die Gravitationskonstante [Mohr u. a. 2016] und $\|\cdot\|_2: \mathbb{R}^d \to \mathbb{R}^d$ die euklidische Norm $z \mapsto \sqrt{\sum_{i \in \underline{d}_i} |z|^2}$. Im Weiteren werden die Position eines Körpers und der Körper assoziiert.

Diese Formel für zwei Körper auszurechnen, stellt zunächst kein Problem dar. Von größerem Interesse für die Wissenschaft sind aber Mehrkörperprobleme, also die gravitationellen Wechselwirkungen zwischen einer Menge von Körpern. Seien im Folgenden also $n \in \mathbb{N}$ und eine Menge Ω von n Körpern gegeben. Für $x \neq y \in \Omega$ und die zugehörigen Massen m_x und m_y wirkt mit Gleichung 1.1 durch den Körper y eine Kraft

$$f_{xy} = \gamma m_x m_y \frac{y - x}{\|y - x\|_2^3} \tag{1.2}$$

¹ https://github.com/AdrianPegler/MasterThesis

1. Einleitung

auf den Körper x. Will man nun die kumulative Kraft bestimmen, die durch alle Körper aus Ω auf den Körper x wirkt, so muss der folgende Term berechnet werden:

$$f_{x} = \sum_{\substack{y \in \Omega \\ y \neq x}} \gamma m_{x} m_{y} \frac{y - x}{\|y - x\|_{2}^{3}}$$
 (1.3)

[Börm 2016]. Für die Simulation aller auftretenden Gravitationskräfte müssen also für alle n Körper jeweils (n-1) Terme berechnet werden. Das Problem hat also eine Komplexität von $\mathcal{O}(n^2)$.

Problematisch wird dies, wenn man sich beispielsweise die Dimensionen unseres Sonnensystems vergegenwärtigt. Laut NASA² besteht die Milchstraße aus etwa 100 Milliarden (also 10^{11}) Sonnen. Um sämtliche gravitationelle Wechselwirkungen in unserer Galaxie zu berechnen, müssten also ungefähr $(10^{11})^2=10^{22}$ Terme gelöst werden. Geht man davon aus, dass ein aktueller Prozessor nicht mehr als eine Milliarde Terme pro Sekunde ausrechnen kann, so benötigt er etwa 10^{13} Sekunden, also mehr als 300.000 Jahre für einen einzigen Simulationsschritt. Ein Problem dieser Größenordnung könnte also nicht in annehmbarer Zeit gelöst werden. [Börm 2016]

In dieser Arbeit wird ein zweigleisiger Ansatz am vorliegenden Beispiel vorgestellt, mit dessen Hilfe Probleme dieser Größen- und Komplexitätsklasse in den Griff zu bekommen sind.

1.2. Ziele

Der erste Teil des Ansatzes ist eine Reduktion der Komplexitätsklasse des Gravitationsproblems. Gleichung 1.2 definiert eine vollbesetzte Matrix. Es gibt Möglichkeiten, solche Matrizen speicherplatzsparend durch Matrizen mit deutlich niedrigerem Rang anzunähern. Eine dieser Möglichkeiten ist die Darstellung als hierarchische Matrix. Diese Technik soll genutzt werden, um das vorliegende Problem in linearer Komplexität bewältigen zu können.

Dieser Ansatz alleine wird aber nicht ausreichen, um das vorliegende Problem ausreichend schnell zu lösen. Wir werden daher zusätzlich nach einer Möglichkeit suchen, den Algorithmus parallel von vielen Rechnern gleichzeitig lösen zu lassen. Wir werden dazu einen Algorithmus vorstellen, der dies bewerkstelligt, und zeigen, dass dieser die Arbeit optimal auf die beteiligten Prozesse aufteilen kann.

World Book at NASA [2007]: https://web.archive.org/web/20090412172631/http://mynasa.nasa.gov/worldbook/galaxy_worldbook.html

Archivierte url: http://mynasa.nasa.gov/worldbook/galaxy_worldbook.html vom 12. April 2009. Abgerufen am 1. Mai 2018.

1.3. Aufbau

Im folgenden Kapitel werden die Grundlagen der Arbeit vorgestellt. Den Anfang bilden die hierarchischen Matrizen. Dazu werden zunächst allgemeine Möglichkeiten vorgestellt, eine Matrix als hierarchische Matrix darzustellen. Im Anschluss werden einige Möglichkeiten der Optimierung dieser Darstellung vorgestellt, die uns schließlich zu den sogenannten \mathcal{H}^2 -Matrizen führen, welche wir für die Darstellung des Gravitationsproblems nutzen wollen.

In Abschnitt 2.2 wird eine Zusammenfassung der Entwicklung der Computer hin zu Parallelität gegeben. Außerdem werden kurz Herausforderungen im Zusammenhang mit parallel arbeitenden Algorithmen erläutert. Im Anschluss wird mit dem Message-Passing-Modell ein Modell vorgestellt, mit dem parallele Algorithmen strukturiert und viele der Herausforderungen umgangen werden können.

Abschnitt 2.3 widmet sich einer Bibliothek, die das Message-Passing-Modell umsetzt: das Message-Passing-Interface. Diese Bibliothek werden wir später nutzen, um unseren Algorithmus zu parallelisieren.

In Kapitel 3 wird zunächst die Ausgangssituation für unseren Ansatz vorgestellt, also ein nicht-optimierter, nicht-parallel arbeitender Algorithmus zur Berechnung der gravitationellen Wechselwirkungen. Dann werden wir uns in Abschnitt 3.2 eine Variante anschauen, die die Struktur der \mathcal{H}^2 -Matrizen nutzt, um die Berechnungen deutlich effektiver durchzuführen. Schließlich wird in Abschnitt 3.3 dieser Algorithmus noch um Möglichkeiten der Parallelisierung erweitert.

Der erarbeitete Algorithmus muss natürlich noch evalutiert werden. In Kapitel 4 werden wir zunächst eine theoretische Abschätzung der Komplexitätsklasse des parallel arbeitenden Algorithmus vornehmen. Im Anschluss werden die theoretischen Überlegungen durch Laufzeitmessung überprüft. Den Abschluss bilden Fazit und Ausblick.

2.1. Hierarchische Matrizen

Erinnern wir uns an Gleichung 1.2 aus der Einleitung, in welcher die gravitationelle Wechselwirkung zwischen zwei Körpern x und y beschrieben wurde. Durch die Festlegung $(f_{xy})_{x,y\in\Omega}$ wird eine vollbesetzte Matrix definiert. Ein Ansatz, um große vollbesetzte Matrizen speicherplatzsparend aufzustellen und Berechnungen zeiteffektiv durchzuführen, besteht darin, sie als hierarchische Matrizen darzustellen. Im Folgenden sollen daher die Grundlagen für allgemeine \mathcal{H} - und \mathcal{H}^2 -Matrizen eingeführt werden. Für ausführlichere Arbeiten zu dem Thema der hierarchischen Matrizen sei auf die Arbeiten von Grasedyck [2001] und Hackbusch [1999] verwiesen.

Erarbeitet wurde das Konzept der hierarchischen Matrizen unter anderem zur effektiven Lösung Fredholmscher Integralgleichungen:

$$u(x) = \int_{\Omega} u(x) g(x, y) \, \forall x \in \Omega.$$

Dabei ist $\Omega \subseteq \mathbb{R}^d$ und $g \colon \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ eine sogenannte *Kernfunktion*. Diskretisiert man diese Gleichung mit dem Galerkinverfahren unter Verwendung einer Finite-Elemente-Basis $(\phi_i)_{i \in I}$ erhält man die zugehörige Matrix

$$G_{ij} = \int_{\Omega} \int_{\Omega} \phi_i\left(x\right) g\left(x,y\right) \phi_j\left(y\right) \ dy \ dx, \quad \forall i,j \in I.$$

Um die Integration über $\Omega \times \Omega$ aufspalten zu können, ist es notwendig, dass die Variablen in der Kernfunktion getrennt werden können. Die Kernfunktion g muss also in der Form

$$g(x,y) = \sum_{\nu \in \underline{k}_{1}} a_{\nu}(x) b_{\nu}(y)$$

mit $k \in \mathbb{N}$, $a_{\nu}, b_{\nu} \colon \mathbb{R}^d \to \mathbb{R}$ vorliegen. Eine Kernfunktion dieser Form heißt *entartete Kernfunktion* von Rang k. Allgemein nennen wir eine Funktion g eine Kernfunktion einer Matrix G, falls die Funktion g die Matrix G erzeugt, also gerade $G_{\mu\nu} = g(\mu, \nu)$ gilt.

Nicht jede Kernfunktion ist entartet, es lassen sich aber oft entartete Kernfunktionen konstruieren, die die Funktion approximieren. Möglichkeiten sind beispielsweise Approximationen durch Taylor-Entwicklung oder Interpolation. [Grasedyck 2001]

Obige Ausführungen können auch durch Matrizen ausgedrückt werden: Seien X, Y

Mengen und $G \in \mathbb{R}^{X \times Y}$ eine Matrix mit Kernfunkion $g \colon X \times Y \to \mathbb{R}$. Ist g entartet, so gilt also für $x \in X$ und $y \in Y$ gerade $G_{xy} = g(x,y) = \sum_{v \in \underline{k}} a_v(x) b_v(y)$. Die Summe in dieser Gleichung können wir auch durch Multiplikation zweier Matrizen $A \in \mathbb{R}^{X \times k}$ und $B^T \in \mathbb{R}^{Y \times k}$ mit $A_{xv} = a_v(x)$, $B_{yv} = b_v(y)$ ausdrücken. Analog dazu, die Kernfunktion als entartete Kernfunktion darzustellen, ist also die Darstellung der Matrix G durch Matrizen A und B durch $G = AB^T$.

Approximation

Im Folgenden wird eine beispielhafte Approximation einer nicht-entarteten Kernfunktion durch Interpolation vorgestellt, um so eine entartete Kernfunktion zu erhalten. Der Aufbau folgt weitestgehend dem von Kapitel 3 von Börm [2018]. Für eine Approximation einer nicht-entarten Kernfunktion durch Taylor-Entwicklung sei wiederum auf Grasedyck [2001] verwiesen.

Sei $g\colon \Omega \times \Omega \to \mathbb{R}$ eine nicht-entartete Kernfunktion. Für eine Interpolationsordnung k und ein Teilgebiet $\sigma \subset \Omega$ wählen wir Interpolationspunkte $\xi_{\sigma,1},\ldots,\xi_{\sigma,k}$. Nun suchen wir eine Approximation von $g|_{\Omega \times \sigma}$ der Form

$$g_{\sigma}(x,y) = \sum_{\nu \in \underline{k}_{1}} g(x,\xi_{\sigma,\nu}) \mathcal{L}_{\sigma,\nu}(y), \qquad (2.1)$$

in der x und y getrennt sind. Somit hätten wir bereits eine entartete Kernfunktion. In eben dieser Form werden Lagrange-Interpolaten in Stützstellen $\xi_{\sigma,\nu}$ mit Lagrange-Basisfunktionen $\mathcal{L}_{\sigma,\nu}$ dargestellt.

Bevor wir die Funktion g allerdings wie in Gleichung 2.1 approximieren können, müssen wir die Lagrange-Basisfunktionen auf mehrdimensionalen Gebieten konstruieren und einige Eigenschaften sicherstellen.

Lagrange-Interpolation im mehrdimensionalen Raum

Zunächst definieren wir die Lagrange-Basispolynome auf dem Referenzintervall [-1,1]. Für $k \in \mathbb{N}$, $\nu \in \underline{k}_0$ und paarweise verschiedene Stützstellen $\xi_0, \dots, \xi_k \in [-1,1]$ ist durch

$$\mathcal{L}_{\nu}\left(x\right) := \prod_{\substack{\mu \in \underline{k}_{0} \\ \nu \neq \nu}} \frac{x - \xi_{\mu}}{\xi_{\nu} - \xi_{\mu}} \qquad \text{für alle } x \in [-1, 1]$$

das ν -te Lagrange-Polynom gegeben. Eine Eigenschaft der Lagrange-Polynome, die wir später noch benötigen, ist:

$$\mathcal{L}_{\nu}\left(\xi_{\mu}\right) = \delta_{\nu\mu} := \begin{cases} 1 & \text{falls } \nu = \mu, \\ 0 & \text{sonst.} \end{cases}$$
 (2.2)

Wir können durch

$$\mathfrak{I}: C[-1,1] \to \Pi_k, \qquad f \mapsto \sum_{\nu \in \underline{k}_h} f(\xi_{\nu}) \mathcal{L}_{\nu}$$

einen Lagrange-Interpolationsoperator definieren, der auf [-1,1] stetige Funktionen auf Polynome aus Π_k abbildet, also auf Polynome von höchstens Grad k. Somit können wir diese Funktionen bereits mit Hilfe der Stützstellen durch die Lagrange-Polynome annähern.

Um diesen Operator auf Funktionen auf beliebigen Intervallen [a,b] mit a < b zu übertragen, definieren wir eine Transformation:

$$\Phi_{[a,b]}: [-1,1] \to [a,b]$$
 $x \mapsto \frac{b+a}{2} + \frac{b-a}{2}x.$

Diese Transformation hat für alle $x \in [-1, 1]$ die Eigenschaften:

$$\Phi_{[a,b]}(-1) = a, \quad \Phi_{[a,b]}(1) = b, \quad \Phi'_{[a,b]}(x) = \frac{b-a}{2} > 0.$$

Sie ist also affin und bijektiv. Für $f \in C[a,b]$ gilt also $\tilde{f} := f \circ \Phi_{[a,b]} \in C[-1,1]$, sodass wir den auf [-1,1] definierten Interpolationsoperator $\mathfrak I$ auf \tilde{f} anwenden können. Wir können also einen Interpolationsoperator auf dem Intervall [a,b] durch

$$\mathfrak{I}_{[a,b]} \colon C[a,b] \to \Pi_k, \qquad f \mapsto \mathfrak{I}[f \circ \Phi_{[a,b]}] \circ \Phi_{[a,b]}^{-1}$$

definieren. Durch Einsetzen der Definition von 3, erhalten wir so die Darstellung:

$$\mathfrak{I}_{\left[a,b\right]}[f] = \sum_{\nu \in \underline{k}_{0}} f \circ \Phi_{\left[a,b\right]}\left(\xi_{\nu}\right) \mathcal{L}_{\nu} \circ \Phi_{\left[a,b\right]}^{-1} = \sum_{\nu \in \underline{k}_{0}} f\left(\Phi_{\left[a,b\right]}\left(\xi_{\nu}\right)\right) \mathcal{L}_{\nu} \circ \Phi_{\left[a,b\right]}^{-1}.$$

Da diese Definition recht unhandlich ist, definieren wir zur Vereinfachung für $\nu \in \underline{k}_0$ und $x \in [a,b]$:

$$egin{aligned} \xi_{[a,b],
u} &:= \Phi_{[a,b]}\left(\xi_{
u}
ight) = rac{b+a}{2} + rac{b-a}{2} \xi_{
u} \ \mathcal{L}_{[a,b],
u} &:= \prod_{\substack{\mu \in \underline{k}_0 \ u
eq
u}} rac{x - \xi_{[a,b],\mu}}{\xi_{[a,b],
u} - \xi_{[a,b],\mu}}. \end{aligned}$$

Da mit Gleichung 2.2 die Gleichung

$$\begin{split} \mathcal{L}_{\nu} \circ \Phi_{[a,b]}^{-1} \left(\xi_{[a,b],\mu} \right) &= \mathcal{L}_{\nu} \circ \Phi_{[a,b]}^{-1} \left(\Phi_{[a,b]} \left(\xi_{[a,b],\mu} \right) \right) \\ &= \mathcal{L}_{\nu} \left(\xi_{\mu} \right) = \delta_{\nu\mu} \\ &= \mathcal{L}_{[a,b],\nu} \left(\xi_{[a,b],\mu} \right) \end{split}$$

für alle ν , $\mu \in \underline{k}_0$ erfüllt ist, stimmen $\mathcal{L}_{\nu} \circ \Phi_{[a,b]}^{-1}$ und $\mathcal{L}_{[a,b],\nu}$ in k+1 Punkten überein. Da beides Polynome in Π_k sind, müssen sie bereits identisch sein. Damit erhalten wir die

vereinfachte Darstellung:

$$\mathfrak{I}_{[a,b]}[f] = \sum_{\nu \in \underline{k}_0} f\left(\xi_{[a,b],\nu}\right) \mathcal{L}_{[a,b],\nu}, \qquad \text{ für alle } f \in C[a,b].$$

Nun müssen wir für unser Problem noch Interpolationsoperatoren auf Gebieten im mehrdimensionalen Raum definieren. Der Einfachheit halber, und weil der später vorgestellte Algorithmus ohnehin mit solchen sogenannten *bounding boxes* arbeitet, beschränken wir uns auf achsenparallele Quader $Q = [a_1, b_1] \times ... \times [a_d, b_d]$. Sei also eine zu interpolierende Funktion $f \in C(Q)$ gegeben. Für $\iota \in \underline{d}_l$ und $x \in Q$ gewinnen wir aus f eine Funktion

$$f_{x,t} : [a_t, b_t] \to \mathbb{R}, \qquad y \mapsto f(x_1, \dots, x_{t-1}, y, x_{t+1}, \dots, x_d),$$

bei der alle Parameter außer dem ι -ten fest sind. Auf diese Funktion auf dem Intervall $[a_\iota,b_\iota]$ können wir den Interpolationsoperator $\mathfrak{I}_{[a_\iota,b_\iota]}$ anwenden und erhalten so den Operator

$$\mathfrak{I}_{Q,\iota}\colon C\left(Q\right)\to C\left(Q\right).$$

Mit diesem erhalten wir für $f \in C(Q)$ und $x \in Q$:

$$\mathfrak{I}_{Q,\iota}[f]\left(x\right) = \sum_{\nu \in \underline{K}_0} f\left(x_1, \ldots, x_{\iota-1}, \xi_{[a_\iota, b_\iota]}, x_{\iota+1}, \ldots, x_d\right) \mathcal{L}_{[a_\iota, b_\iota], \nu}\left(x_\iota\right).$$

Somit bildet $\mathfrak{I}_{Q,\iota}$ eine stetige Funktion auf eine neue stetige Funktion ab, die sich in der ι -ten Komponente wie ein Polynom verhält. Durch Hintereinanderausführung der Operatoren für jede Dimension erhalten wir ein Polynom in jeder Komponente und mit

$$\mathfrak{I}_{Q} := \mathfrak{I}_{Q,1} \circ \ldots \circ \mathfrak{I}_{Q,d}$$

einen Interpolationsoperator, der für alle $f \in C(Q)$ und $x \in Q$ die Gleichung

$$\mathfrak{I}_{Q}[f](x) = \sum_{\nu_{1} \in \underline{k}_{0}} \dots \sum_{\nu_{d} \in \underline{k}_{1}} f\left(\xi_{[a_{1},b_{1}],\nu_{1}}, \dots, \xi_{[a_{d},b_{d}],\nu_{d}}\right) \mathcal{L}_{[a_{1},b_{1}],\nu_{1}}(x_{1}) \dots \mathcal{L}_{[a_{d},b_{d}],\nu_{d}}(x_{d}) \quad (2.3)$$

erfüllt. Mit den Definitionen

$$\begin{split} \xi_{Q,\nu} &= \left(\xi_{[a_1,b_1],\nu_1}, \dots, \xi_{[a_d,b_d],\nu_d} \right) \text{ und} \\ \mathcal{L}_{Q,\nu} &= \mathcal{L}_{[a_1,b_1],\nu_1} \left(x_1 \right) \dots \mathcal{L}_{[a_d,b_d],\nu_d} \left(x_d \right) \text{, für alle } \nu \in M := \underline{k}_0^d, \ x \in Q \end{split}$$

erhalten wir die gewohnte Darstellung

$$\mathfrak{I}_{Q}[f] = \sum_{\nu \in M} f\left(\xi_{Q,\nu}\right) \mathcal{L}_{Q,\nu}$$
, für alle $f \in C\left(Q\right)$.

Mit diesem Interpolationsoperator können wir nun die entartete Approximation der Kernfunktion g aus Gleichung 2.1 konstruieren. Der Einfachheit halber identifizieren wir im Folgenden die Gebiete $\sigma \in T_{\Omega}$ mit einem überdeckenden Quader Q_{σ} . Der später vorgestellte Algorithmus konstruiert die Gebiete σ von vornherein als achsenparallele Quader.

Zulässigkeit

Wir können also durch Interpolation auf Gebieten $\sigma \subset \Omega$ eine entartete Kernfunktion g_σ konstruieren. Für $x \in \Omega$ und $y \in \sigma$ approximiert die Funktion g_σ die Funktion g allerdings nur dann gut, wenn x und σ hinreichend weit voneinander entfernt sind (vgl. Grasedyck [2001]). Daher wollen wir nun eine Bedingung einführen, die eine Aussage darüber trifft, ob das Gebiet σ für ein Gebiet τ zulässig, also für alle $x \in \tau$ hinreichend weit entfernt ist. Das Gebiet τ wird auch *Target*- oder *Zielgebiet*, das Gebiet σ auch *Source*- oder *Quellgebiet* genannt.

Definition 2.1. (Zulässigkeitsbedingung)

Wir nennen eine Abbildung, die jedem Paar $(\tau, \sigma) \in \mathcal{P}(\Omega) \times \mathcal{P}(\Omega)$ entweder "zulässig" oder "unzulässig" zuordnet, Zulässigkeitsbedingung.

Wir wollen gerne eine konkrete Zulässigkeitsbedingung konstruieren. Dazu benötigen wir noch ein paar Definitionen. Seien Gebiete $\sigma, \tau \subseteq \Omega$ gegeben. Dann bezeichnet

$$diam(\sigma) := max\{||x - y|| \mid x, y \in \sigma\}$$

den Durchmesser eines Teilgebiets und

$$dist(\sigma,\tau) := min\{||x - y|| \mid x \in \sigma, y \in \tau\}$$

den Abstand der beiden Teilgebiete zueinander.

Damit lässt sich die von Grasedyck [2001] aufgeführte η -Zulässigkeit wie folgt definieren:

Definition 2.2. (η -Zulässigkeit)

Sei $\eta \in \mathbb{R}^+$. Dann heißt die Abbildung $\mathcal{Z}_{\eta} \colon \mathcal{P}(\Omega) \times \mathcal{P}(\Omega) \to \{\textit{zulässig}, \textit{unzulässig}\}$ mit

$$\mathcal{Z}_{\eta}\left(\tau,\sigma\right) = \begin{cases} zul\ddot{a}ssig & \text{falls } \left\{diam\left(\tau\right),diam\left(\sigma\right)\right\} \leqslant 2\eta dist\left(\tau,\sigma\right) \\ unzul\ddot{a}ssig & \text{sonst} \end{cases}$$

 η -Zulässigkeitsbedingung. Paare (τ, σ) , für die $\mathcal{Z}(\tau, \sigma) = z$ ulässig gilt, werden η -zulässig genannt.

Für kleine η zeigen Hackbusch und Börm [2002] in Kapitel 5 die exponentielle Konvergenz der durch Interpolation approximierten Funktion gegen die Kernfunktion und Grasedyck [2001] die exponentielle Konvergenz bei Approximation durch Taylor-Entwicklung.

Börm [2018] weist in Kapitel 3.4 nach, dass für asymptotisch glatte Funktionen die Approximation für jedes $\eta > 0$ exponentiell konvergiert, wenn die obige Zulässigkeitsbedingung erfüllt ist. Eine unendlich oft differenzierbare Kernfunktion g heißt asymptotisch glatt, wenn für alle $\alpha, \beta \in \mathbb{N}_0^d$ und $x, y \in \mathbb{R}^d$ mit $x \neq y$ eine Konstante $C \colon \mathbb{N}^2 \to \mathbb{R}_{>0}$ existiert, sodass die partiellen Ableitungen von g wie folgt abgeschätzt werden können:

$$\left| \partial_{x}^{\alpha} \partial_{y}^{\beta} g\left(x,y\right) \right| \leq C\left(|\alpha|,|\beta|\right) \|x-y\|^{-|\alpha|-|\beta|} |g\left(x,y\right)|.$$

(vgl. Hackbusch und Börm [2002])

Tschebyscheff-Interpolationspunkte

Die Wahl der Zulässigkeitsbedingung ist nicht der einzige Einflussfaktor auf die Genauigkeit der Approximation. Auch die Wahl der Interpolationspunkte trägt dazu bei. Als nahezu optimale Interpolationspunkte haben sich die Tschebyscheff-Interpolationspunkte erwiesen [Li 2004]. Daher führen wir diese im Folgenden kurz ein.

Definition 2.3. (Tschebyscheff-Polynome)

Durch

$$T_n = \begin{cases} 1 & \text{falls } n = 0 \\ x & \text{falls } n = 1 \\ 2xT_{n-1}(x) - T_{n-2}(x) & \text{sonst,} \end{cases}$$
 für alle $n \in \mathbb{N}_0$, $x \in \mathbb{R}$

wird eine Familie $(T_n)_{n\in\mathbb{N}_0}$ von Polynomen definiert. Für $n\in\mathbb{N}_0$ bezeichnen wir T_n als n-tes Tschebyscheff-Polynom. [Börm 2018]

Mit Hilfe des Additionstheorems $\cos{(\alpha + \beta)} = \cos{\alpha}\cos{\beta} - \sin{\alpha}\sin{\beta}$ und den Eigenschaften des Cosinus lässt sich leicht die folgende Aussage zeigen.

Lemma und Definition 2.4. Für $n \in \mathbb{N}_0$ und $x \in [-1,1]$ gilt:

$$T_n(x) = \cos(n\arccos(x))$$
.

Daraus folgen insbesondere die n reellen einfachen Nullstellen

$$T_{n}\left(\xi_{
u}
ight)=0, \qquad \qquad \xi_{
u}:=\cos\left(\pirac{2
u+1}{2n}-
ight) \qquad \qquad ext{für alle }
u\in\underline{n}.$$

Diese Nullstellen nennen wir Tschebyscheff-Interpolationspunkte. [Börm 2018]

Clusterung

Im Abschnitt Approximation wurde gezeigt, wie die Kernfunktion auf Teilgebieten approximiert werden kann, sofern die Paare von Gebieten zulässig sind. Im Abschnitt Zulässigkeit wurde eine Bedingung aufgestellt, wann Paare von Gebieten zulässig sind und wann nicht. In diesem Kapitel soll eine Struktur vorgestellt werden, mit der solche Paare von Teilgebieten strukturiert werden können. Dazu werden zunächst einige grundlegende Definitionen benötigt.

Definition 2.5. (Baum)

Ein Paar T = (V, E) mit $E \subset V \times V$ nennen wir einen Baum mit Knoten V und Kanten E, wenn die folgenden Bedingungen erfüllt sind:

1. Es gibt genau ein Element $root(T) \in V$, sodass für alle $v \in V$ gilt: $(v, root(T)) \notin E$. Dieses Element heißt Wurzel des Baumes T.

- 2. Zu jedem Knoten $v \in V \setminus \{root(T)\}$ gibt es $n \in \mathbb{N}$ und einen Weg $w := (v_i)_{i \in \underline{n}_0}$ der Länge n von der Wurzel $root(t) =: v_0$ zum Knoten $v =: v_n$ mit $(v_{i-1}, v_i) \in E$ für $i \in \underline{n}$.
- 3. Es gibt keine Zyklen.

Es gelten folgende Notationen:

- 1. Die Länge des längsten Weges in T heißt die Tiefe des Baumes und wird mit $depth\left(T\right)$ bezeichnet.
- 2. Mit " $q \in T$ " ist stets " $q \in V$ " gemeint.
- 3. $sons(q) := sons_T(q) := \{v \in V \mid (q,v) \in E\}$ ist die Menge der *Söhne* eines Knotens $q \in T$.
- 4. $sons^*(q) := \begin{cases} q \cup \bigcup_{\tilde{q} \in sons(q)} sons^*(\tilde{q}) & \text{falls } sons(t) \neq \emptyset, \\ q & \text{sonst,} \end{cases}$ ist die Menge aller Nachfahren eines Knotens $q \in T$.
- 5. $T^{(i)}$ bezeichnet die *i*-te Ebene des Baumes. Dabei gilt:
 - (a) $T^{(0)} := \{ root(T) \}$ und
 - (b) $T^{(i)} := \{ \tilde{v} \in V \mid \exists v \in T^{(i-1)} : \tilde{v} \in sons(v) \} \text{ für } i \in depth(T)_{i}$
- 6. Der Begriff "oberhalb" bedeutet "näher zur Wurzel", der Begriff "unterhalb" respektive "weiter oder gleich weit entfernt von der Wurzel".
- 7. $\mathcal{L}(T) := \{ q \in T \mid \forall v \in T \colon (q, v) \notin E \}$ bezeichnet die Menge aller Blätter des Baumes T.
- 8. $\mathcal{L}\left(T,i\right):=\mathcal{L}\left(T\right)\cap T^{(i)}$ ist die Menge der Blätter auf der i-ten Ebene des Baumes.
- 9. $\mathcal{L}\left(T,\leqslant s\right):=\mathcal{L}\left(T\right)\cap\bigcup_{i\in\underline{s}_{\mathsf{h}}}T^{(i)}$ sind alle Blätter der Ebenen $0,\ldots,s\leqslant depth\left(T\right).$

[Grasedyck 2001]

Wir wollen nun eine spezielle Baumstruktur definieren, mit der im Allgemeinen eine beliebige Menge M hierarchisch partitioniert werden kann. Diese Struktur wollen wir dann für unsere Menge Ω nutzen.

Definition 2.6. (Clusterbaum)

Wir nennen einen Baum T = (V, E) mit $V \subseteq \mathcal{P}(M) \setminus \{\emptyset\}$ einen *Clusterbaum* einer Menge M, falls die nachfolgenden Bedingungen erfüllt sind:

- 1. root(T) = M
- 2. $\forall t \in T : t = \bigcup_{s \in sons(t)} s$.
- 3. $\forall t \in T \ \forall s_0, s_1 \in sons(t) : s_0 \cap s_1 = \emptyset$

Für einen Clusterbaum verwenden wir in der Regel die Notation T_M um auf die verwendete Indexmenge hinzuweisen, und bezeichnen die Knoten $t \in T_M$ als Cluster. [Börm 2018]

Grasedyck [2001] nennt Clusterbäume auch hierarchische Partitionsbäume oder kurz \mathcal{H} -Bäume der Menge M. Der Name leitet sich direkt von den Eigenschaften des Clusterbaumes her. Es gilt nämlich:

- 1. Die Menge $P_{M}^{(i)}:=T_{M}^{(i)}\cup\mathcal{L}\left(T,\leqslant i\right)$ bildet für alle $i\in\underline{depth\left(T_{M}\right)_{|_{0}}}$ eine disjunkte Partition der Menge M.
- 2. Die Partitionen sind über die Ebenen des Baumes hierarchisch geordnet. Damit ist gemeint, dass für alle $i \in \underline{depth}(T_M)_{\parallel}$ die Partition $P^{(i)}$ feiner ist als die Partition $P^{(i-1)}$, also mehr und kleinere Teilmengen beinhaltet.

Mit Hilfe eines Clusterbaumes können Partitionen einer Menge also hierarchisch strukturiert werden. Meist werden sie genutzt, um eine Indexmenge oder die geometrische Struktur eines Problems zu partitionieren. Letztere Variante wird auch *geometrischer Clusterbaum* genannt.

Ein weiterer praktischer Aspekt von Clusterbäumen ist ihre gute rekursive Konstruierbarkeit. Beginnend mit der vollständigen Menge M wird ein Cluster jeweils in Sohncluster unterteilt, bis entweder in den Blättern jeweils nur noch ein Element vorhanden ist oder eine anders geartete Abbruchbedingung erfüllt ist. Für praktische Anwendungen ist es in der Regel nicht effizient, bis zu einelementigen Mengen zu teilen. Üblich sind beispielsweise Abbruchbedingungen, die eine gewisse Mächtigkeit für Blattmengen vorgeben. Wird diese unterschritten, wird nicht weiter geteilt.

Das Teilen der Cluster kann ebenfalls unterschiedlich motiviert sein. Naheliegend sind kardinalitätsgesteuerte Zerlegungen, um ein optimales Loadbalancing zu erhalten, sowie die Zerlegung anhand der zugrundeliegenden geometrischen Struktur. Auch kombinierte Zerlegungen sind denkbar.

Definition 2.7. (Blockbaum, (streng) zulässiger Blockbaum)

Seien Menge X, Y und jeweils zugehörige Clusterbäume T_X und T_Y gegeben.

Wir nennen einen Clusterbaum $T_{X \times Y}$ der Menge $X \times Y$ Blockbaum, falls die folgenden Eigenschaften erfüllt sind:

- 1. Für alle Knoten $b \in T_{X \times Y}$ existieren Knoten $t \in T_X$ und $s \in T_Y$, sodass $b = t \times s$
- 2. Falls $b = t \times s \in T_{X \times Y}$ kein Blatt ist, gilt

$$sons\left(b\right) = \begin{cases} \left\{t \times s' \mid s' \in sons\left(s\right)\right\} & \text{falls } sons\left(t\right) = \varnothing, \ sons\left(s\right) \neq \varnothing \\ \left\{t' \times s \mid t' \in sons\left(t\right)\right\} & \text{falls } sons\left(t\right) \neq \varnothing, \ sons\left(s\right) = \varnothing \\ \left\{t' \times s' \mid t' \in sons\left(t\right), \ s' \in sons\left(s\right)\right\} & \text{ansonsten} \end{cases}$$

Die Knoten des Blockbaumes heißen Blöcke. Die Komponenten $t \in T_X$ und $s \in T_Y$ werden auch Zeilen- und Spaltencluster genannt.

Wir nennen einen Block $b = t \times s$ zulässig bezüglich einer Zulässigkeitsbedingung \mathcal{Z} , wenn $\mathcal{Z}(t,s) = zulässig$ erfüllt ist.

Wir nennen einen Blockbaum zulässig, wenn für alle Blattblöcke $b=t\times s\in\mathcal{L}\left(T_{X\times Y}\right)$ gilt: $\mathcal{Z}\left(t,s\right)=zulässig \text{ oder }sons\left(t\right)=\varnothing \text{ oder }sons\left(s\right)=\varnothing.$

Wir nennen ihn streng zulässig, wenn gilt:

$$\mathcal{Z}\left(t,s\right)=zul\ddot{a}sig\ oder\ sons\left(t\right)=\varnothing=sons\left(s\right)$$
 ,

Mit

$$\mathcal{L}^{+}\left(T_{X\times Y}\right) = \left\{b = t \times s \in \mathcal{L}\left(T_{X\times Y}\right) \mid \mathcal{Z}\left(t,s\right) = zul\ddot{a}ssig\right\}$$
und
$$\mathcal{L}^{-}\left(T_{X\times Y}\right) = \left\{b = t \times s \in \mathcal{L}\left(T_{X\times Y}\right) \mid \mathcal{Z}\left(t,s\right) = unzul\ddot{a}ssig\right\}$$

bezeichnen wir die Mengen der zulässigen beziehungsweise unzulässigen Blätter eines Blockbaumes. \mathcal{L}^+ ($T_{X\times Y}$) wird auch Fernfeld und \mathcal{L}^- ($T_{X\times Y}$) Nahfeld genannt. Die Namen leiten sich von der η -Zulässigkeitsbedingung her, die auf der relativen Nähe der Cluster zueinander beruht.

Abbildung 2.1. Schematische Darstellung eines Blockbaumes. In grün sind zulässige, in rot unzulässige Blöcke gekennzeichnet. (Quelle: Börm u. a. [2014])

Mit Hilfe von Blockbäumen können wir nun also Paare von Teilgebieten hierarchisch strukturieren und auf Zulässigkeit prüfen. In Abbildung 2.1 ist ein Blockbaum $T_{\Omega \times \Omega}$, genauer die Blätter des Blockbaumes, für eine Menge $\Omega \subset \mathbb{R}^1$ dargestellt. Die unzulässigen Blöcke sind rot, die zulässigen Blöcke grün markiert. Zur Linken des Blockbaumes ist der Clusterbaum mit den Targetclustern, unten der Clusterbaum mit den Sourceclustern schematisch abgebildet. Die langen, parallel zur Matrix liegenden Striche stellen die Menge Ω und die kurzen, orthogonalen Striche die hierarchische Partitionierung dar. Bei einer eindimensionalen geometrischen Struktur, wie sie hier zur Vereinfachung dargestellt ist, beschränken sich die unzulässigen Blöcke außerhalb der Diagonalen, da hier die Nachbarschaftsverhältnisse der Cluster komplexer werden.

2.1.1. \mathcal{H} -Matrizen

Definition 2.8. (Rk-Matrix)

Seien $m, n, k \in \mathbb{N}$ sowie $M \in \mathbb{R}^{m \times n}$ gegeben. Wir nennen M eine Rk-Matrix, wenn Matrizen $A \in \mathbb{R}^{m \times k}$ und $B \in \mathbb{R}^{n \times k}$ existieren, sodass

$$M = AB^T$$

gilt. Die Menge aller solcher Rk-Matrizen bezeichnen wir mit

$$\mathcal{R}_k(m,n) = \{ M \in \mathbb{R}^{m \times n} \mid M = AB^T, A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{n \times k} \}.$$

[Börm 2018]

Das praktische an **R**k-Matrizen ist, dass sie sich durch k (m+n) Koeffizienten darstellen lassen. Ist $k \ll m, n$ ist dies wesentlich effizienter als eine volle Darstellung mit $m \cdot n$ Koeffizienten. [Börm 2018]

Definition 2.9. (Hierarchische Matrix oder \mathcal{H} -Matrix)

Seien X, Y zwei Mengen, T ein zugehöriger zulässiger Blockbaum mit Zulässigkeitsbedingung \mathcal{Z} und $k: \mathcal{L}(T) \to \mathbb{N}_0$ die Rangverteilung der Blätter.

Eine Matrix $M \in \mathbb{R}^{X \times Y}$ heißt *hierarchische Matrix* oder kurz \mathcal{H} -Matrix bezüglich T, \mathcal{Z} und k, falls für jeden Blattblock $b \in \mathcal{L}(T)$ der korrespondierende Matrixblock $M_b = (M_{ij})_{(i,j) \in b}$ eine \mathbb{R}^k -Matrix ist

Eine Zahl $k_0 \in \mathbb{N}$ mit $k(b) \le k_0$ für alle $b \in \mathcal{L}^+(T_{X \times Y})$ heißt lokaler Rang der hierarchischen Matrix.

[Grasedyck 2001; Börm 2018]

Für die Darstellung in Computern sind \mathcal{H} -Matrizen von besonderem Interesse, da sie sich durch die Zerlegung in **R**k-Matrizen besonders kompakt speichern lassen. Für eine \mathcal{H} -Matrix M mit lokalem Rang k existieren nach Definition Familien von Matrizen $(A_b)_{b\in\mathcal{L}^+(T_{X\times Y})}$ und $(B_b)_{b\in\mathcal{L}^+(T_{X\times Y})}$, mit

$$A_b \in \mathbb{R}^{t \times k}$$
, $B_b \in \mathbb{R}^{s \times k}$, $M|_b = A_b B_b^T$, für alle $b = t \times s \in \mathcal{L}^+ (T_{X \times Y})$.

So verbleiben nur noch für unzulässige Blöcke $b \in \mathcal{L}^-(T_{X \times Y})$ vollbesetzte Matrizen $N_b = M|_b$, sogenannte Nahfeldmatrizen.

Das Tripel $\left((A_b)_{b\in\mathcal{L}^+(T_{X\times Y})}, (B_b)_{b\in\mathcal{L}^+(T_{X\times Y})}, (N_b)_{b\in\mathcal{L}^-(T_{X\times Y})}\right)$ bezeichnen wir als \mathcal{H} -Matrix-Darstellung der Matrix M. [Börm 2018]

In Abbildung 2.2 ist eine \mathcal{H} -Matrix schematisch dargestellt. Für zulässige Blöcke sind die Matrizen A_b und B_b in blau und die Nahfeldmatrizen N_b in rot gekennzeichnet. Durch die Dicke der Matrizen A_b und B_b ist der lokale Rang k dargestellt. Die Speicherplatzersparnis ist dadurch gut zu erkennen.

Gerade auch im Zusammenhang mit dieser Arbeit ist aber von noch größerem Interesse, dass auch Operationen wie Matrix-Vektor-Multiplikationen auf \mathbf{R} k-Matrizen und damit auch auf \mathcal{H} -Matrizen wesentlich effektiver implementiert werden können. Grasedyck [2001] weist nach, dass die Matrix-Vektor-Multiplikation nur k (n+m) statt $n\cdot m$ Operationen benötigt.

Abbildung 2.2. Schematische Darstellung einer \mathcal{H} -Matrix. In blau sind die Matrizen A_b und B_b , in rot die Matrizen N_b gekennzeichnet. (Quelle: Börm u. a. [2014])

2.1.2. Optimierung

Im Folgenden werden wir uns einige Eigenschaften der \mathcal{H} -Matrizen genauer anschauen. Dadurch werden wir Möglichkeiten finden, durch die wir hierarchische Matrizen noch sparsamer speichern und effizienter Berechnungen auf ihnen durchführen können.

Zeilen- und Spaltenmatrizen

Bisher wurde eine hierarchische Matrix konstruiert, indem die Kernfunktion g auf zulässigen Blöcken $b = \tau \times \sigma \in \mathcal{L}^+(T_{X \times Y})$ durch die auf σ interpolierte Funktion

$$g_{\sigma}(x,y) = \sum_{\nu \in k} g(x, \xi_{\sigma,\nu}) \mathcal{L}_{\sigma,\nu}(y)$$

approximiert wurde. Somit erhalten wir durch die punktweise Definition

$$(A_b)_{x\nu} := g(x, \xi_{\sigma,\nu}) \text{ und } (B_b)_{y\nu} := \mathcal{L}_{\sigma,\nu}(y) \text{ für alle } x \in \tau \text{ und } y \in \sigma$$

Matrizen $A_b \in \mathbb{R}^{m \times k}$ und $B_b \in \mathbb{R}^{n \times k}$. Damit können wir die Matrix G auf Blöcken $b \in \mathcal{L}^+(T_{X \times Y})$ in der Form

$$(G|_b)_{xy} = g(x,y) \approx g_\sigma(x,y) = \left(A_b B_b^T\right)_{xy},$$

also durch **R**k-Matrizen darstellen und erhalten so eine Darstellung als hierarchische Matrix. [Börm 2018]

Ein Blick auf die Definition der Matrizen B_b verrät, dass diese nicht von den Zielgebieten τ sondern ausschließlich von den Quellgebieten σ abhängen. Wir können also für konstantes σ für alle Blöcke $\tilde{b}=\tilde{\tau}\times\sigma\in T_{X\times Y}$ die Matrix $B_{\tilde{b}}$ durch eine Matrix

$$(W_{\sigma})_{uv} := \mathcal{L}_{\sigma,v}(y)$$

substituieren. Anstatt also für jeden Block b wieder eine eigene Matrix aufstellen zu müssen, können sich Blöcke mit gleichem Quellgebiet σ die Matrizen W_{σ} teilen. Insbesondere muss diese Matrix W_{σ} auch nur einmal berechnet werden, womit ein erheblicher Teil des Rechnungsaufwands bei der Konstruktion von \mathcal{H} -Matrizen eingespart werden kann. Zudem können wiederum Operationen wie die Matrix-Vektor-Multiplikation effektiver durchgeführt werden, da auch hier die Matrix W_{σ} ausgeklammert werden kann, und so nur einmal in die Berechnung einfließt. [Börm 2018]

Definition 2.10. (Zeilen-/Spaltenmatrizen)

Wir nennen Matrizen $W_{\sigma} \in \mathbb{R}^{\sigma \times k}$ wie oben *Spaltenmatrizen* einer hierarchischen Matrix *G*. Bei Interpolation in der ersten Komponente nennen wir sie entsprechend *Zeilenmatrizen*.

Dargestellt ist diese Optimierung in Abbildung 2.3. In hellblau wurden die Spaltenmatrizen W_{σ} auf dem Clusterbaum eingezeichnet. Die verbleibenden dunkelblauen Matrizen sind die nicht optimierten Matrizen A_b . Ein Vergleich der Häufigkeit der Matrizen A_b und W_{σ} verdeutlicht die zuvor beschriebene Einsparung von Redundanz.

Abbildung 2.3. Darstellung der Ersetzung der Matrizen B_b durch Spaltenmatrizen W_σ . Letztere sind in hellblau auf dem Clusterbaum eingezeichnet. Die verbleibenden dunkelblauen Matrizen sind die Matrizen A_b . (Quelle: Börm u. a. [2014])

Transfermatrizen und Clusterbasis

Von Hackbusch und Börm [2002] wird auf folgende Eigenschaft der Interpolationsoperatoren hingewiesen:

Sei $\mathcal{Q}_k := \{\prod_{i \in \underline{i_0}} p_i \mid p_i \in \Pi_k, \ i_0 \in \mathbb{N}\}$ der durch Tensorprodukte von Polynomen von höchstens Grad k aufgespannte Polynomraum. Da alle Cluster durch Polynome der selben Ordnung interpoliert wurden, zeigt Gleichung 2.3, dass \mathfrak{I}_Q gerade eine Projektion auf diesen Raum \mathcal{Q}_k ist.

Wegen dieser Projektionseigenschaft des Interpolationsoperators folg für $\sigma \in T_Y \setminus \mathcal{L}(T_Y)$, Söhne $\tilde{\sigma} \in sons(\sigma)$ und für alle $\nu \in \underline{k}$:

$$\mathcal{L}_{\sigma,\nu} = \mathfrak{I}_{\tilde{\sigma}}[\mathcal{L}_{\sigma,\nu}] = \sum_{\tilde{\nu} \in \underline{k}_{1}} \mathcal{L}_{\sigma,\nu}\left(\xi_{\tilde{\sigma},\tilde{\nu}}\right) \mathcal{L}_{\tilde{\sigma},\tilde{\nu}}.$$

Die Spalten- (bzw. Zeilen-)matrizen lassen sich also verlustfrei aus den Spalten- (bzw. Zeilen-)matrizen der Söhne konstruieren. Anstatt also auf jeder Ebene des Clusterbaumes

eine vollständige Matrix $W_{\sigma} \in \mathbb{R}^{\sigma \times k}$ aufzustellen, genügt es, für jeden Sohncluster $\tilde{\sigma} \in sons(\sigma)$ Matrizen $E_{\tilde{\sigma}} \in \mathbb{R}^{k \times k}$ mit $(E_{\tilde{\sigma}})_{\tilde{\nu},\nu} := \mathcal{L}_{\sigma,\nu}(\xi_{\tilde{\sigma},\tilde{\nu}})$ zu speichern. Diese Matrizen haben nur noch k^2 statt $|\sigma| \cdot k$ Einträge. Da in der Regel $k < |\sigma|$ gilt, können wir weiteren Speicherplatz einsparen. Dies führt zu folgender Definition:

Definition 2.11. (Transfermatrix, Clusterbasis)

Sei T_Y ein Clusterbaum mit einer Familie von Spalten- (bzw. Zeilen-)matrizen $W=(W_\sigma)_{\sigma\in T_Y}$. Existiert eine Familie $E=(E_\sigma)_{\sigma\in T_Y}$ von $(k\times k)$ -Matrizen mit der Eigenschaft

$$W_{\sigma}|_{\tilde{\sigma}\times k}=W_{\tilde{\sigma}}E_{\tilde{\sigma}}$$
 für alle $\sigma\in T_{Y}\setminus\mathcal{L}\left(T_{Y}\right)$ und $\tilde{\sigma}\in sons\left(\sigma\right)$,

so nennen wir W eine (*geschachtelte*) Clusterbasis (von Rang k) für den Clusterbaum T_Y . Die Matrizen der Familie E heißen *Transfermatrizen*. [Börm 2018]

Mit der *geschachtelten Darstellung* $(W_{\sigma})_{\sigma in\mathcal{L}(T_Y)}$, $(E_{\sigma})_{\sigma \in T_Y \setminus \mathcal{L}(T_Y)})$ der Clusterbasen haben wir nun also eine noch kompaktere Darstellung der Matrizen B_b . Dargestellt ist dies in Abbildung 2.4.

Abbildung 2.4. Ersetzung der Matrizen W_{σ} durch Transfermatrizen $E_{\tilde{\sigma}}$ auf Nicht-Blattclustern. (Quelle: Börm u. a. [2014])

Interpolation in beiden Komponenten

Auch in diesem Abschnitt folge ich dem Aufbau von Börm [2018].

Wir haben bereits einige Eigenschaften der Matrizen B_b beziehungsweise W_σ identifiziert, die sich zur Effektivitätssteigerung nutzen lassen. Leider bleiben die Speicherplatzineffizienz und der höhere Rechenaufwand für die Matrizen A_b bestehen, die die positiven

Eigenschaften der Matrizen W_{σ} nicht teilen. Allerdings haben wir die Matrizen W_{σ} einfach punktweise aus den Lagrange-Polynomen bei der Interpolation definiert.

Es liegt also nahe eine Interpolation nicht nur in einer, sondern in beiden Variablen durchzuführen. Dazu wählen wir Interpolationspunkte $\xi_{\tau,1},\ldots,\xi_{\tau,k}$ und erhalten wiederum mit den zugehörigen Lagrange-Polynomen $\mathcal{L}_{\tau,1},\ldots,\mathcal{L}_{\tau,k}$:

$$g\left(x,y\right)\approx\tilde{g}\left(x,y\right)=\sum_{\mu\in\underline{k}_{1}}\sum_{\nu\in\underline{k}_{1}}\mathcal{L}_{\tau,\mu}\left(x\right)g\left(\xi_{\tau,\mu},\xi_{\sigma,\nu}\right)\mathcal{L}_{\sigma,\nu}\left(y\right).$$

Die Funktion \tilde{g} ist ebenfalls eine entartete Kernfunktion, nur dass diesmal die Körper x und y ausschließlich in Verbindung mit den Lagrange-Polynomen auftauchen. Mit

$$(S_b)_{\mu\nu} := g\left(\xi_{\tau,\mu}, \xi_{\sigma,\nu}\right), \ \mu, \nu \in \underline{k}$$

erhalten wir eine Familie von Koeffizientenmatrizen $(S_b)_{b\in\mathcal{L}^+(T_{X\times Y})}\in\mathbb{R}^{k\times k}$, die weder von x, noch von y anhängt, sondern lediglich von den Interpolationspunkten. Durch die neuerliche Interpolation haben wir die Abhängigkeit von x wiederum auf Lagrange-Polynome beschränkt und erhalten so Matrizen $V_\tau\in\mathbb{R}^{\tau\times k}$ durch die Festlegung

$$(V_{\tau})_{xu} := \mathcal{L}_{\tau,\mu}(x).$$

Insgesamt erhalten wir also für alle $b = \tau \times \sigma \in \mathcal{L}^+(T_{X \times Y})$

$$G|_b \approx \tilde{G}|_b = V_{\tau} S_b W_{\sigma}^T.$$

Da die Matrizen V_{τ} analog zu den Matrizen W_{σ} definiert wurden, teilen sie dieselben positiven Eigenschaften. Beide lassen sich also nicht nur effizient speichern, sondern auch effizient konstruieren. Außerdem brauchen sie auf Grund der Entkoppelung von τ und σ jeweils nur einmal aufgestellt zu werden. Die Matrizen S_b , die die Kopplung zwischen den Clustern τ und σ beschreiben, sind wiederum verhältnismäßig klein. Diese haben nur $k \cdot k$ Einträge und lassen sich daher ebenfalls effizient verarbeiten.

2.1.3. \mathcal{H}^2 -Matrizen

Die Überlegungen der letzten Abschnitte fließen nun in der Definition der \mathcal{H}^2 -Matrizen zusammen.

Definition 2.12. (\mathcal{H}^2 -Matrizen)

Sei $T_{X\times Y}$ ein streng zulässiger Blockbaum, $k\in\mathbb{N}_0$ und seien V und W geschachtelte Clusterbasen des Ranges k für die Clusterbäume T_X und T_Y . Eine Matrix $M\in\mathbb{R}^{X\times Y}$ heißt \mathcal{H}^2 -Matrix mit Zeilenbasis V und Spaltenbasis W, falls für alle zulässigen Blattblöcke $b=\tau\times\sigma\in\mathcal{L}^+$ ($T_{X\times Y}$) eine Matrix $S_b\in\mathbb{R}^{k\times k}$ existiert, sodass

$$M|_{h} = V_{\tau} S_{h} W_{\sigma}^{T}$$

erfüllt ist. Die Familie $(S_b)_{b \in \mathcal{L}^+(T_{X \times Y})}$ bezeichnen wir als Familie der Kopplungsmatrizen.

Für unzulässig Blattblöcke $b=\tau\times\sigma\in\mathcal{L}^-\left(T_{X\times Y}\right)$ verbleiben, wie auch bei den \mathcal{H} -Matrizen , die vollbesetzten Nahfeldmatrizen N_b . Mit geschachtelten Darstellungen

$$\left((V_{\tau})_{\tau in \mathcal{L}(T_X)}, (E_{\tau})_{\tau \in T_X \setminus \mathcal{L}(T_X)} \right) \text{ und } \left((W_{\sigma})_{\sigma in \mathcal{L}(T_Y)}, (F_{\sigma})_{\sigma \in T_Y \setminus \mathcal{L}(T_Y)} \right)$$

der Clusterbasen V und W bezeichnen wir das Tupel

$$\left((S_b)_{b\in\mathcal{L}^+(T_{X\times Y})}, (N_b)_{b\in\mathcal{L}^-(T_{X\times Y})}, (V_\tau)_{\tau in\mathcal{L}(T_X)}, (E_\tau)_{\tau\in T_X\setminus\mathcal{L}(T_X)}, (W_\sigma)_{\sigma in\mathcal{L}(T_Y)}, (F_\sigma)_{\sigma\in T_Y\setminus\mathcal{L}(T_Y)}\right)$$
als \mathcal{H}^2 -Matrix-Darstellung der Matrix M .

In Abbildung 2.5 ist all dies zusammen dargestellt. Die Familien $(V_{\tau})_{\tau in \mathcal{L}(T_X)}$ und $(W_{\sigma})_{\sigma in \mathcal{L}(T_Y)}$ links und unten sind hellblau gefärbt. Die Familien der Transfermatrizen $(E_{\tau})_{\tau \in T_X \setminus \mathcal{L}(T_X)}$ und $(F_{\sigma})_{\sigma \in T_Y \setminus \mathcal{L}(T_Y)}$ sind in dunkelblau abgebildet. Die Kopplungsmatrizen $(S_b)_{b \in \mathcal{L}^+(T_{X \times Y})}$ sind in pink und die Nahfeldmatrizen $(N_b)_{b \in \mathcal{L}^-(T_{X \times Y})}$ unverändert in rot dargestellt. Die Ersparnis an Speicherplatz gegenüber der vollbesetzten Matrix und selbst

Abbildung 2.5. Darstellung einer \mathcal{H}^2 -Matrix: In blau die geschachtelten Clusterbasen, in pink die Kopplungsmatrizen, in rot die verbleibenden Nahfeldmatrizen. (Quelle: Börm u. a. [2014])

gegenüber der Darstellung als \mathcal{H} -Matrix ist augenscheinlich.

Von Börm [2007] wird eine vollständige Charakterisierung der \mathcal{H}^2 -Matrizen vorgenommen. Dadurch wird ein für uns entscheidender Unterschied zwischen \mathcal{H} -Matrizen und \mathcal{H}^2 -Matrizen deutlich: Bei \mathcal{H} -Matrizen müssen die zu den zulässigen Blöcken $b=\tau\times\sigma\in\mathcal{L}^+$ ($T_{X\times Y}$) gehörige Matrizen $M|_{\tau\times\sigma}$ niedrigen Rang besitzen. Bei \mathcal{H}^2 -Matrizen hingegen müssen die deutlich größeren Matrizen $M|_{\tau\times R_\tau}$ und $M|_{C_\sigma\times\sigma}$ für alle Cluster $\tau\in T_X$ und $\sigma\in T_Y$ niedrigen Rang besitzen. Dabei sind für alle $\tau\in T_X$ und $\tau\in T_Y$ definiert:

$$R_{\tau} := \bigcup_{r \in row*(\tau)} r, \qquad C_{\sigma} := \bigcup_{c \in col(\sigma)} c,$$

$$row*(\tau) := \{ s \in T_{Y} \mid \exists \tilde{\tau} \in T_{X} \colon \ \tilde{\tau} \times s \in \mathcal{L}^{+}(T_{X \times Y}) \land \tau \in sons*(\tilde{\tau}) \},$$

$$col*(\sigma) := \{ t \in T_{X} \mid \exists \tilde{\sigma} \in T_{Y} \colon \ t \times \tilde{\sigma} \in \mathcal{L}^{+}(T_{X \times Y}) \land \sigma \in sons*(\tilde{\sigma}) \}.$$

Dieser Unterschied ist in Abbildung 2.6 bildlich dargestellt.

Mit den \mathcal{H}^2 -Matrizen haben wir eine sehr effiziente Teilmenge der hierarchischen Matrizen gefunden, die sich noch kompakter speichern lassen und mit denen Berechnungen noch effizienter durchgeführt werden können. In Abschnitt 3.2 wird die Umsetzung dieser Struktur für das Modellproblem der Berechnung von Gravitationskräften vorgestellt.

Abbildung 2.6. Vergleich zwischen \mathcal{H} - und \mathcal{H}^2 -Matrix: Bei ersterer müssen nur einzelne Teilmatrizen niedrigen Rang besitzen, bei letzterer ganze Zeilen- und Spaltenblöcke. (Quelle: Börm [2018])

2.2. Paralleles Rechnen

Bereits in Abschnitt 1.1 wurde gezeigt, dass das Problem der gravitationellen Wechselwirkungen in unserer Galaxie mit einem aktuellen Computer nicht ohne weiteres lösbar ist. Konnten sich früher Programmierer darauf verlassen, dass in einigen Jahren eine deutlich schnellere Prozessorgeneration erscheinen würde, so dass Probleme ohne weitere Änderungen schneller gelöst werden könnten, ist dies heute leider nicht mehr der Fall.

Grund hierfür ist die Physik. Dazu ein kleines Rechenexperiment: Nehmen wir einen Prozessorchip von etwa einem Zentimeter Durchmesser an und vergegenwärtigen wir uns die Lichtgeschwindigkeit $c \approx 3 \cdot 10^{10~1}$. Licht könnte diesen Chip also etwa 30 Milliarden mal pro Sekunde durchqueren, was 30 Gigahertz entspräche. Bedenkt man, dass man in Prozessoren mit Elektrizität arbeitet und somit beispielsweise mit kapazitären Effekten und proportional zur Taktfrequenz steigender Verlustleistung zu kämpfen hat, sind die 3 Gigahertz aktueller Mittelklasseprozessoren durchaus nicht zu verachten.

Zwar wäre eine Möglichkeit die Chips weiter zu verkleinern, jedoch machen dem Fortschritt hier quantenmechanische Phänomene aktuell noch einen Strich durch die Rechnung. Ein gängiger und gangbarer Lösungsweg besteht in der Parallelisierung von Soft- und Hardware. Durch das gleichmäßige Verteilen eines Algorithmus auf mehrere Prozessoren kann die Gesamtlaufzeit entsprechend verringert werden. Unter optimalen Bedingungen könnte theoretisch eine Verdopplung der Prozessoranzahl eine Halbierung der Laufzeit bewirken. Heute haben daher die meisten Prozessoren nicht mehr nur einen Rechenkern, sondern mehrere und für die Berechnung großer mathematischer Probleme arbeiten oft viele Rechner zusammen an der Lösung. [Börm 2017]

Ein weiterer Grund für parallele beziehungsweise verteilte Rechnersysteme ist die Diskrepanz zwischen vorhandenem und benötigtem Speicher. Beispielsweise hat der diesbezüglich größte Computer im Rechenzentrum der Christian-Albrecht-Universität Kiel einen Hauptspeicher von 768 GB. Ein aktuelles, speicherintensives Problem ist ein engmaschiges Klimamodell der Erde. Bei einer Dichte von einer Masche alle 1,56 km in Äquatornähe wird der Gesamtspeicherbedarf auf etwa 24000 GB geschätzt [Wehner u. a. 2008]. Ein Problem dieser Größe passt nicht mehr in den Hauptspeicher eines Computers. Hinzu kommt die Skalierbarkeit solcher Probleme: Angenommen ein Hauptspeicher von 24000 GB stünde auf einem Computer zur Verfügung. Warum bei einer Maschendichte von 1,56 km stehen bleiben und nicht noch feiner auflösen um noch genauere Berechnungen durchzuführen? Warum bei der Berechnung der gravitationellen Wechselwirkungen bei den Sonnen unserer Galaxie stehen bleiben und nicht die Planeten, Monde oder noch kleinere Himmelskörper mit einbeziehen? Diese Probleme, und damit auch der Speicherbedarf, lassen sich also nahezu beliebig vergrößern. Wir benötigen also eine Möglichkeit, günstig genügend Hauptspeicher zur Verfügung zu stellen. Das Vernetzen von Computern und das Verteilen der Arbeit und der Daten durch parallel arbeitende Algorithmen auf die

Bureau International des Poids et Mesures [1975], Resolution 2 of the 15th CGPM, URL: https://www.bipm.org/en/CGPM/db/15/2/ Abgerufen am 16.07.2018

	eine Instruktion	mehrere Instruktionen
	(single instruction)	(multiple instruction)
ein Datensatz	SISD: konventioneller	MISD: Spezialrechner
(single data)	einkerniger Prozessor	_
mehrere Datensätze	SIMD: Vektorrechner	MIMD: Multicore;
(multiple data)		Clustersystem

Tabelle 2.1. Flynnsche Klassifikation mit Beispielen.

vernetzten Rechner ist ein Lösungsansatz für dieses Problem.

Im folgenden Kapitel wird kurz skizziert, wie parallel arbeitende Hardware gestaltet sein kann und welche Vor- und Nachteile und welche Herausforderungen damit einhergehen. Grundbegriffe der Computerarchitektur werden vorausgesetzt, da eine Einführung den Umfang dieser Arbeit sprengen würde.

2.2.1. Parallele Hardware

Prozessor

Flynn [1972] klassifiziert vier unterschiedliche Architekturen von Rechnern. Dabei unterteilt er nach der Möglichkeit des Prozessors, zu einem Zeitpunkt einzelne oder mehrere Instruktionen beziehungsweise Datensätze zu verarbeiten (vgl. Tabelle 2.1).

Vor einigen Jahrzehnten waren die meisten Prozessoren in PCs noch SISD-Architekturen. Sie hatten einen Prozessor mit einem einzelnen Kern; konnten also zu jedem Zeitpunkt nur eine Instruktion auf einem Datensatz ausführen. Heute sind Multicore-Prozessoren üblich. Auf einem Prozessorchip finden sich hierbei mehrere Rechenkerne. Die einzelnen Kerne sind unabhängig voneinander; sie verwalten eigene Register und führen eigene Instruktionen aus. Daher zählen Multicore-Prozessoren zu den MIMD-Architekturen. Zu diesen Architekturen gehören ebenfalls die später erläuterten Clustersysteme. [Flynn 1972; Barbic 2006]

MIMD-Architekturen sind auf Grund ihrer autonom arbeitenden und programmierbaren Prozessoren sehr flexibel und können viele Probleme effizient lösen. Die Autonomie der Prozessoren stellt die Programmierung aber auch vor Herausforderungen. Durch die asynchrone Ausführung der Programme wird das Verhalten des gesamten Systems schwer vorhersagbar. [Börm 2017]

MISD-Architekturen, also solche, in denen parallel auf einem Datum mehrere Instruktionen ausgeführt werden können, sind nur in Spezialrechnern zu finden und für die Lösung der meisten Probleme nicht geeignet. [Hennessy und Patterson 2011; Körbler 2007]

SIMD-Architekturen hingegen, in denen auf mehreren Daten parallel die gleiche Instruktion ausgeführt werden kann, sind durchaus gängig. Ihr Hintergrund sind Algorithmen, die auf ganzen Reihen von Daten immer wieder dieselbe Operation ausführen. Während

beim Ansatz der MIMD-Architekturen die Operationen dynamisch auf die einzelnen Recheneinheiten verteilt werden, ist der Ansatz von SIMD-Architekturen beziehungsweise von Vektorrechnern, die Anzahl der Rechenwerke in den Recheneinheiten zu erhöhen und eine Operation für mehrere Daten gleichzeitig auszuführen. Zum Beispiel werden für die Berechnung der Gravitationskräfte für viele Körper immer wieder dieselben Operationen verarbeitet. Anstatt diese also für jedes einzelne Paar von Körpern durchzuführen, könnten sie für mehrere Paare von Körpern gleichzeitig durchgeführt werden.

Der Name "Vektorrechner" leitet sich von der Anlehnung an die kartesische Geometrie her, in der ein Vektor ein Tupel von Zahlen ist. Entsprechend werden Daten desselben Typs ebenfalls als Vektoren bezeichnet. Um solche Vektoren handhaben zu können, verfügen Vektorrechner über spezielle Vektorregister, die mehrere Daten gleichzeitig fassen können. Für jedes einzelne Datum innerhalb dieser Register ist dann jeweils ein eigenes Rechenwerk im Kern zuständig. [Börm 2017]

Prozessoren laden in der Regel nicht nur ein einzelnes Datum, sondern gleich eine sogenannte cache line aus dem Hauptspeicher. Daher ist es sinnvoll, um SIMD-Parallelisierung optimal ausnutzen zu können, die Daten im Hauptspeicher anhand dieser cache lines anzuordnen. Dazu müssen in der Regel explizite Methoden zum Anfordern von aligned memory verwendet werden. Außerdem müssen die parallel zu verarbeitenden Daten im Hauptspeicher direkt hintereinander und nicht durch andere Daten unterbrochen auftauchen. Nehmen wir an, wir wollten die Daten der Körper, die für die Berechnung der Gravitationskräfte benötigt werden, in einer Struktur zusammenfassen. Wollen wir Daten zu vielen dieser Körper speichern, so wäre es in Bezug auf Vektorrechner nicht sinnvoll, ein Array dieser Strukturen anzulegen (engl.: array of structs). Dabei würden die im Sinne der Vektorisierung zusammengehörigen Daten durch andere getrennt. Um eine Vektorisierung zu ermöglichen, ist es daher sinnvoll die Struktur so zu definieren, dass sie Arrays der benötigten Daten beinhaltet (engl.: struct of arrays). So kann sichergestellt werden, dass diese Daten im Hauptspeicher hintereinander stehen. [Börm 2017; Hennessy und Patterson 2011]

Viele aktuelle Multicore-Prozessoren verfügen zusätzlich über einige Möglichkeiten der Vektorisierung. Es existieren aber auch auf diese Art der Parallelisierung spezialisierte Prozessoren. [Hennessy und Patterson 2011]

Speicherverwaltung

In Abschnitt 2.2 wurde bereits kurz erwähnt, dass bei Multicore-Prozessoren jeder Kern seine eigenen Register hat. Genau genommen verfügen die Kerne meist auch über privaten L1-, seltener über L2- oder L3-Cache. Diese sind meist *shared* (dt.: gemeinsam genutzt). Shared Memory wird von allen Prozessoren gemeinsam verwaltet.

Grundsätzlich können die heute üblichen MIMD Architekturen weiter anhand ihrer Speicherverwaltung unterteilt werden. Beim Shared-Memory-Modell wird ein globaler Speicher gemeinsam genutzt. Sie teilen sich also einen gemeinsamen Adressraum. Dies trifft in der Regel auf den Hauptspeicher, aber eventuell auch auf ebenen des Caches

zu. Anders ist dies beim Distributed-Memory-Modell. Hier besitzt jeder Prozessor seinen eigenen Speicher. Distributed-Memory-Systeme sind in der Regel vernetzte Rechnersysteme. Allerdings wird auch auf Shared-Memory-Systemen durch moderne Betriebssysteme ein Distributed-Memory-Modell simuliert. Durch die Virtualisierung des Hauptspeichers etwa wird jedes Programm behandelt, als hätte es den Hauptspeicher für sich alleine. Dabei wird jedem Programm ein privater Bereich des Hauptspeichers zugewiesen. Das Programm nutzt diesen Bereich, als sei es der gesamte Hauptspeicher. [Körbler 2007]

Der Vorteil von gemeinsam genutztem Speicher ist, vorausgesetzt das Programm wurde entsprechend entworfen, dass die Ergebnisse eines Kerns den anderen automatisch auch zur Verfügung stehen. Arbeiten also mehrere Recheneinheiten gemeinsam an einem Problem, müssen die Ergebnisse einer Einheit den anderen also gegebenenfalls nicht explizit mitgeteilt werden. Dies vermeidet Overhead durch das Austauschen und Kopieren von Daten. Jedoch ist es bei privatem Cache möglich, diesen in größerer Nähe zum zugehörigen Kern auf dem Chip zu platzieren. Dies führt zu besseren Zugriffszeiten als gänzlich gemeinsam genutzter Cache und wird daher auch oft verwendet.

Ein Nachteil von Shared-Memory-Systemen ist, dass der Schaltungsaufwand für den Zugriff auf den gemeinsam genutzten Speicher mit wachsender Anzahl Recheneinheiten rapide ansteigt [Börm 2017]. Außerdem können Race Conditions auftreten, die durch den gemeinsam genutzten Speicher verursacht werden. Diese können dazu führen, dass die Ergebnisse von Programmen unvorhersagbar werden.

Beim Schreiben von parallelen Programmen ist also besondere Vorsicht geboten. Gegebenenfalls müssen Zugriffe auf gemeinsam genutzte Ressourcen zeitweise unterbunden werden, um Race Conditions zu vermeiden. Außerdem muss klar sein, welche Daten sich wo befinden, und ob sie gemeinsam genutzt werden oder nicht. Dies ist gegebenenfalls eine noch größere Herausforderung, wenn der Hauptspeicher innerhalb eines parallelen Programms teilweise gemeinsam genutzt wird und teilweise verteilt ist.

Netzwerk

Wie bereits erwähnt gibt es Probleme, die für einen einzelnen Computer zu viel Hauptspeicher benötigen oder zu viel Rechenaufwand bedeuten. Daher ist es naheliegend, Computer zu Netzwerken, sogenannten *Clustersystemen*, zusammenzuschließen. Hierbei können die vernetzten Computer, die als *Knoten* des Clustersystems bezeichnet werden, über die Netzwerkverbindung kommunizieren. Clustersysteme gehören zur Klasse der MIMD-Architekturen und stellen meist eine Mischform aus Distributed- und Shared-Memory-Modell dar: Jeder Knoten hat seinen eigenen Hauptspeicher, der nicht mit den anderen Knoten geteilt wird; die einzelnen Knoten sind in der Regel aber Shared-Memory-Systeme. Meist verfügen die einzelnen Knoten über einen oder mehrere Multicore-Prozessor(en). [Bauke und Mertens 2006]

2.2.2. Parallele Software

Im vorherigen Abschnitt wurde die Entwicklung von einzelnen Computern mit einer Recheneinheit hin zu Clustersystemen skizzert, deren Knoten mit multiplen Recheneinheiten bestückt sind.

Solange es sich um einen Computer mit Multicore-Prozessor handelt, ist bis dato keine Änderung an der Software notwendig, um auf diesem Multicore-Prozessor lauffähig zu sein. Auf einem Computer läuft in der Regel nicht nur ein einzelnes Programm, sondern mindestens noch ein Betriebssystem und meist auch noch einige weitere Programme. Der Prozessor kann nun lediglich mehrere Programme echt parallel verarbeiten.

Allerdings profitiert ein Programm bis dato noch wenig von parallel arbeitender Technologie; es wird nur gegebenenfalls seltener von anderen Programmen unterbrochen. Soll sich das Potential der Parallelität für ein Programm voll entfalten, so muss das Programm selbst parallel arbeiten, um so mehrere Kerne beziehungsweise mehrere Knoten eines Clusters nutzen zu können.

Dazu sind natürlich auch entsprechende Entwicklungen im Bereich der Software notwendig. Zum einen muss es überhaupt möglich sein, mehrere Instanzen eines Prozesses zu starten und diese zusammenarbeiten zu lassen. Dies impliziert aber wiederum die Schaffung von Möglichkeiten, die oben erwähnten Race Conditions zu vermeiden. Schließlich müssen für Programme, die auf Clustersystemen arbeiten, Möglichkeiten geschaffen werden zu kommunizieren. Durch diese Kommunikation wäre es dann auch nicht mehr notwendig, alle Daten lokal abrufbar zu haben. Stattdessen wäre es möglich, die Datenmenge auf die Knoten zu verteilen und bei Bedarf zwischen Knoten auszutauschen. Erst dadurch sind Probleme wie die Berechnung der Gravitationskräfte oder engmaschige Klimamodelle zu bewältigen. All diese Konzepte vorzustellen wäre im Rahmen dieser Arbeit nicht zielführend. Wir beschränken uns also auf die Einführung eines Konzeptes.

Das Message-Passing-Modell

Für unser Beispielproblem der Berechnung der Gravitationskräfte ist ein Programm vonnöten, das auf einem Clustersystem läuft und dessen Speicher verteilt verwaltet wird. Daher wird im folgenden Kapitel ein Parallel-Programing-Modell vorgestellt, das die Schwierigkeiten von Shared-Memory-Systemen umgeht und ein Konzept der Speicherverwaltung und Kommunikation auf verteilten Rechnersystemen liefert. Dieses Konzept ist das sogenannte Message-Passing-Modell. Dieses Modell geht von einer Menge von autonomen Prozessen aus, die

- 1. eindeutig benannt sind und
- 2. jeweils über privaten Speicher verfügen.

Dies spezifiziert nicht, um welche Art Rechner(system) es sich handelt. Bei gemeinsam genutztem Hauptspeicher wird davon ausgegangen, dass jeder Prozess einen eigenen privaten Bereich zugewiesen bekommt.

Um nun Daten von einem Prozess P_i an einen Prozess P_j zu senden, muss P_i explizit im Programmlauf seine Daten in Form einer Nachricht (engl.: message) verschiocken, und respektive P_i diese Nachricht und damit die Daten in Empfang nehmen.

Ein Nachteil des Message-Passing-Modells besteht in der Grundannahme von nicht gemeinsam genutztem Speicher. Jeder Prozess hat seine eigenen Kopien der benötigten Daten und Ergebnisse müssen explizit durch Nachrichten mitgeteilt und in die Speicherbereiche der anderen Prozesse kopiert werden. Dies macht das Programm aber auch weniger anfällig für Race-Conditions. Weitere Vorteile des Message-Passing-Modells sind:

Portabilität Message-Passing ist spätestens seit MPI (vgl.: Abschnitt 2.3) auf den meisten parallelen Plattformen einheitlich implementiert.

Universalität Das Message-Passing-Modell stellt nur minimale Anforderungen an die zugrundeliegende Hardware. Es funktioniert einheitlich für vernetzte Systeme mit verteiltem Speicher ebenso wie für Shared-Memory-Systeme oder Kombinationen aus diesen.

Einfachheit Das Modell unterstützt explizite Kontrolle über Referenzen zu Speicherzellen und erleichtert so auch Debugging.

Diese Vorteile machen das Message-Passing-Modell zu einem der Standardmodelle im High-Performance-Computing. [IBM 2017; Foster 1995; van Engelen 2017]

2.3. MPI

MPI (*Message-Passing Interface*) ist eine Spezifikation für den Nachrichtenaustausch eines verteilten Systems. MPI richtet sich hauptsächlich nach dem *Message-Passing-Modell* (siehe Abschnitt 2.2.2). Erweitert wird das "klassische" Message-Passing-Modell unter anderem durch kollektive Kommunikationsmöglichkeiten, Remote-Speicherzugriff und parallele I/O-Operationen. Als Interface bietet MPI selbst keine Implementierung des Standards, sondern beschreibt Methoden und ihre Semantik.

Das Ziel von MPI ist es, einen Standard für Programme zu liefern, die sich des Message-Passing-Modells bedienen, und somit zu Effizienz, Portabilität und Flexibilität beizutragen. [MPI-Forum 2015]

2.3.1. Geschichte

Bereits vor 1992 gab es Bibliotheken für paralleles Rechnen. Jedoch gab es keinen einheitlichen Standard und die meisten Bibliotheken waren systemspezifisch, sodass das Portieren von Programmen auf ein anderes System zumindest eine aufwendige Aufgabe war. Auch die Ansätze der Bibliotheken unterschieden sich teilweise stark. Ein weit verbreiteter Ansatz war allerdings auch damals schon das Message-Passing-Model. [Kendall 2017]

Am 29. und 30. April 1992 begann mit dem *Workshop on Standards for Message-Passing in a Distributed Memory Environment* am *Center for Research on Parallel Computing* in Williamsburg (Virginia) ein Prozess zur Standardisierung des Message-Passing-Ansatzes [Walker 1992]. Hier wurden die essentiellen Bestandteile eines standardisierten Message-Passing-Interfaces diskutiert. An diesem Prozess waren rund 60 Personen von 40 verschiedenen Organisationen beteiligt, darunter die bedeutendsten Anbieter von Parallelrechnern sowie Forscher aus Universitäten, staatlichen Laboren und der Industrie. Die Ergebnisse wurden zunächst in einem vorläufigen Entwurf im November 1992 und schließlich in revidierter Fassung in einem Proposal, bekannt als MPI-1, veröffentlicht. [Dongarra u. a. 1993]

Eine Hauptabsicht von MPI-1 war es, erst einmal den "Ball in's Rollen zu bringen" und eine Diskussion anzuregen. Daher beschäftigte es sich noch hauptsächlich mit Pointto-Point-Kommunikation. Aktuell liegt MPI in der Version 3.1 vor und bietet neben der Point-to-Point-Kommunikation auch kollektive Routinen, nicht-blockierende Methoden, automatische Puffer-Verwaltung und vieles mehr. [MPI-Forum 2015]

Das Interfaces wurden bald in den Programmiersprachen C und Fortran implementiert. Heute gibt es eine Vielzahl von Implementierungen; sowohl kostenfreie, wie MPICH² oder Open MPI³, aber auch kostenpflichtige, wie die Implementierungen von Intel⁴ oder IBM⁵.

² Entwickler: Argonne National Laboratory – Früheste Implementierung – Bis heute weiterentwickelt – URL: https://www.mpich.org/

Entwickler: Diverse – Kombiniert Ansätze von FT-MPI, LA-MPI und LAM/MPI – URL: https://www.open-mpi.org/

⁴ https://software.intel.com/en-us/intel-mpi-library

⁵ https://www.ibm.com/de-de/marketplace/spectrum-mpi

2.3.2. Point-to-Point-Kommunikation

Die Point-to-Point-Kommunikation ist das durch das Message-Passing-Modell beschriebene Herzstück von MPI. Die Standardmethoden in C-Syntax sind:

Listing 2.1. Die Syntax der standard Sende- und Empfangsoperationen

```
MPI_Send(
   void* data,
   int count,
   MPI_Datatype datatype,
   int destination,
   int tag,
   MPI_Comm communicator)

MPI_Recv(
   void* data,
   int count,
   MPI_Datatype datatype,
   int source,
   int tag,
   MPI_Comm communicator,
   MPI_Status* status)
```

Jede Nachricht besteht aus einem Daten-Teil sowie einem *Umschlag* (engl.: envelope). Der Daten-Teil beinhaltet die Daten, die vom Sende- in den Empfangspuffer kopiert werden sollen (void* data), deren Anzahl (int count) sowie den Datentyp der zu sendenden Elemente (MPI_Datatype datatype). [MPI-Forum 2015]

Der Umschlag besteht aus:

Sender Dieser wird bei der Point-to-Point-Kommunikation automatisch hinzuge-

fügt, muss aber bei der kollektiven Kommunikation explizit angegeben

werden (vgl.: Abschnitt 2.3.3).

Empfänger Jeder Prozess im Kommunikator hat eine eindeutige Nummer. Über diese

Nummer (int destination) wird der Empfänger festgelegt.

Kennzeichnung Eine Kennzeichnung (engl.: tag) kann zur Differenzierung der Nachrichten

eingesetzt werden (int tag).

Kommunikator Der MPI_Comm communicator spezifiziert eine Menge von p Prozessen, die

sich diesen Kommunikator teilen. Die *Prozessgruppe* ist geordnet und die Prozesse sind durch ihren Rang destination $\in p-1$ _h innerhalb der

Gruppe spezifiziert.

2. Grundlagen

Kommunikationsmodus	blockierende Methode	nicht-blockierende Methode			
Standard	MPI_Send	MPI_Isend			
Synchro	MPI_Ssend	MPI_Issend			
Ready	MPI_Rsend	MPI_Irsend			
Buffered	MPI_Bsend	MPI_Ibsend			
	MPI_Recv	MPI_Irecv			

Tabelle 2.2. MPIs Point-to-Point-Kommunikationsvarianten (Quelle: Akinci [2012])

Diese Informationen ermöglichen es, Nachrichten voneinander unterscheiden und selektiv empfangen zu können. Der zugehörige Empfängeraufruf muss genau zum Sendeaufruf passen. [MPI-Forum 2015]

MPI_Status* status dient dem empfangenden Prozess dazu eventuelle Fehler zu erhalten. Dies ist besonders dann wichtig, wenn der Sender oder die Kennzeichnung, zum Beispiel auf Grund der Nutzung von Wildcards, nicht bekannt ist. Der Datentyp MPI_Status enthält dazu die Member MPI_SOURCE, MPI_TAG und MPI_ERROR. [MPI-Forum 2015]

Bei den in Listing 2.1 dargestellten Standard-Point-to-Point-Methoden handelt es sich um blockierende Operationen. Das heißt, dass das Programm aus MPI_Send erst zurückkehrt, wenn sicher ist, dass die gesendeten Daten wieder verändert werden dürfen. Entweder, weil sie in einen temporären Systempuffer, oder weil sie bereits in den Empfängerspeicher übertragen wurden. Dies kann bei manchen Programmen zu viel Wartezeit führen, andere benötigen eventuell mehr Sicherheit im Ablauf. Daher bietet MPI Variationen dieser Standard-Sendeoperation an. Diese sind in Tabelle 2.2 aufgelistet und werden im Folgenden kurz erläutert.

Beim synchronen Senden wird, wie in Abbildung 2.7.(a) dargestellt, zunächst vom sendenden Prozess eine "Ready to send"-Mitteilung verschickt. Auf diese antwortet der empfangende Prozess mit einer "Ready to receive"-Mitteilung. Im Anschluss findet das Senden und Empfangen der Daten statt. Durch dieses Vorgehen müssen die Prozesse aber gegebenenfalls auf einander warten. Die Wartezeit ist in der Abbildung durch die dunkel eingefärbten Bereiche dargestellt. Dafür wird aber nicht nur sichergestellt, dass die gesendeten Daten verändert werden dürfen, sondern auch, dass der Empfänger-Prozess zumindest damit begonnen hat die Daten auch zu empfangen. [Akinci 2012; MPI-Forum 2015]

Das Ready-Send sieht wie eine einfachere synchrone Sende-Variante aus (vgl. Abbildung 2.7.(b)), ist tatsächlich aber noch restriktiver. Die Methoden MPI_Rsend beziehungsweise MPI_Irsend erwarten, dass die "Ready to receive"-Mitteilung bereits geschickt wurde, wenn sie aufgerufen werden. Nur wenn diese Mitteilung bereits eingetroffen ist, werden die Daten auch gesendet, ansonsten wird ein Fehler gemeldet. Diese Methode soll den System-Overhead durch Sendeoperationen und Synchronisation minimieren. Es wird jedoch dazu geraten diese Methode nur zu verwenden, wenn die zeitliche Abfolge garantiert ist. [Akinci 2012; MPI-Forum 2015]

- (a) Ablauf der synchronen Sendeoperation.
- (b) Ablauf der Ready-Send-Operation.

(c) Ablauf der gepufferten Sendeoperation.

Abbildung 2.7. Ablauf unterschiedlicher Kommunikationsmodi in MPI. Quelle: Akinci [2012]

Beim Buffered-Send werden die Daten in einem gesonderten Puffer zwischengespeichert. Dies führt durch das zusätzliche Kopieren gegebenenfalls zu weiterem Overhead, dafür kann der Prozess, wie in Abbildung 2.7.(c) zu erkennen, im Anschluss an den Kopiervorgang seine Arbeit fortsetzen und auch den Sendepuffer bereits verändern. Die eigentliche Sendeoperation wird dann zu einem späteren Zeitpunkt nach der "Ready to receive"-Mitteilung des Empfängers durchgeführt. Der Puffer zum Zwischenspeichern muss allerdings auch durch den Nutzer zur Verfügung gestellt werden und wird nicht automatisch durch das System verwaltet. [Akinci 2012; MPI-Forum 2015]

Bei allen blockierenden Methoden können Deadlocks auftreten. Diese können beispielsweise entstehen, wenn zwei Prozesse Daten austauschen wollen, jedoch beide mit einer Sendeoperation beginnen, die nicht zurückkehrt, bevor nicht auch das Empfangen der Daten begonnen wurde. Beide Prozesse werden niemals beginnen Daten zu empfangen und werden somit auch nie aus dem Senden zurückkehren. Abhilfe können die nicht-blockierenden Methoden liefern.

Die nicht-blockierenden Methoden bestehen grundsätzlich aus zwei Aufrufen. Einer Initialisierung des Sendens/Empfangens, ohne dass auf dessen Ausführung gewartet wird, und einer Abschlussmethode, wie MPI_Wait, MPI_Probe oder MPI_Test. Dies nicht-blockierenden Methoden ermöglicht es dem sendenden und dem empfangenden Prozess weitere Arbeiten auszuführen, um so möglichst Wartezeiten zu vermeiden beziehungsweise produktiv zu nutzen. Allerdings sollten weder der Sende- noch der Empfangspuffer zwischen Initialisierung und Abschluss verändert werden. [Akinci 2012; MPI-Forum 2015]

2. Grundlagen

2.3.3. Kollektive Kommunikation

Zusätzlich zur klassischen Point-to-Point-Kommuniklation bietet MPI Möglichkeiten für kollektive Kommunikation. Ein Unterschied zur direkten Kommunikation zwischen zwei Knoten ist, dass hier keine getrennten Send- und Receive-Operationen durchgeführt werden. Bei der kollektiven Kommunikation rufen alle Prozesse eines Kommunikators dieselbe Methode auf. Daher sind auch die Parameter destination und tag nicht mehr notwendig. Wie auch bei der Point-to-Point-Kommunikation gibt es bei diesen Methoden jeweils eine blockierende und eine nicht-blockierende Variante.

Die einfachste kollektive Methode ist MPI_Barrier. Diese dient nicht dem Austausch von Daten, sondern ausschließlich der Synchronisation der Prozesse eines Kommunikators. Jeder Prozess, der diese Methode aufruft, wartet, bis jeder Prozess des Kommunikators diese Methode ebenfalls aufgerufen hat. Eine Deadlockgefahr besteht, falls nicht alle Prozesse des Kommunikators die Methode aufrufen. [MPI-Forum 2015]

In Abbildung 2.11 sind einige kollektive Methoden und ihre jeweilige Funktionsweise veranschaulicht und werden im Folgenden kurz erläutert.

Der Broadcast dient dazu, Daten von einem Prozess an alle anderen zu verteilen. Die Syntax ist Listing 2.2 zu finden.

Die meisten Parameter sind bereits aus dem vorherigen Abschnitt bekannt. Neu ist der Parameter int root. Dieser bezeichnet den Rang des Prozesses im Kommunikator, der die Daten an die anderen verteilen möchte. Er legt also letztlich fest welcher Prozess sendet und welcher empfängt. Auch wenn es auf den ersten Blick so aussehen mag, werden die Daten nicht ausschließlich vom Sender nacheinander an alle Empfänger gesendet, was

Listing (2.2) Die Syntax von MPI_Bcast

```
MPI_Bcast(
  void* data,
  int count,
  MPI_Datatype datatype,
  int root,
  MPI_Comm communicator)
```


Abbildung 2.9. Mögliche Verteilung der Daten durch MPI_Bcast. (Quelle: Kendall [2017])

linearen Aufwand bedeuten würde, sondern baumartig weitergegeben. In Abbildung 2.9 wird ein möglicher Ablauf dargestellt. Durch dieses Vorgehen ist logarithmische Laufzeit erreichbar. [Kendall 2017; MPI-Forum 2015]

MPI_Scatter dient ebenfalls dem Verteilen von Daten von einem Prozess auf die anderen, jedoch wird hier ein Array auf alle Prozesse eines Kommunikators verteilt. Dies kann zum Beispiel genutzt werden, um Testdaten in einem Root-Prozess einzulesen und dann an die anderen Prozesse zu verteilen. Umgekehrt zieht MPI_Gather die Daten aller Prozesse eines Kommunikators auf einem Prozess zusammen, beispielsweise um die Ergebnisse einer verteilten Berechnung auf einem Prozess zu aggregieren und auszugeben. Beim darunter abgebildeten MPI_Allgather wird das Ergebnis nicht nur auf einem, sondern auf allen Prozessen gesammelt. [Kendall 2017; MPI-Forum 2015]

Ähnlich zu den beiden Gather-Methoden sind die Methoden MPI_Reduce und MPI_-Allreduce. Auch diese sammeln Daten von allen Prozessen auf einen, respektive auf alle Prozesse, zusammen. Jedoch werden hierbei die Daten nicht einfach in einem Array gebündelt, sondern über den Parameter MPI_Op op eine Operation mitgegeben, die auf die gesammelten Daten angewandt wird. So können aus den gesendeten Daten direkt das Maximum, Minimum, die Summe und vieles mehr bestimmt werden. [Kendall 2017; MPI-Forum 2015]

Zuletzt ist MPI_Alltoall in Abbildung 2.11 dargestellt. Hierbei führt quasi jeder Prozess ein Scatter durch. Man könnte es auch als *Transponieren* der "Prozess-Daten-Matrix" bezeichnen. [MPI-Forum 2015]

Von jeder dieser kollektiven Methoden gibt es wie bereits erwähnt ebenfalls eine nichtblockierende Variante, die, der Namenskonvention folgend, durch ein eingeschobenes I gekennzeichnet ist.

Außerdem gibt es für die Daten austauschenden Methoden eine *vektorisierte* Variante. Alle zuvor erläuterten Methoden erwarten eine feste Anzahl an zu kommunizierenden Elementen pro Prozess. Es kann aber vorkommen, dass zwischen unterschiedlichen Pro-

Listing (2.3) Die Syntax von MPI_Alltoallv

```
int MPI_Alltoallv(
   const void* sendbuffer,
   const int sendcounts[],
   const int senddispls[],
   MPI_Datatype sendtype,
   void* recvbuffer,
   const int recvcounts[],
   const int recvdispls[],
   MPI_Datatype recvtype,
   MPI_Comm comm)
```

2. Grundlagen

zessen unterschiedliche Anzahlen von Elementen ausgetauscht werden müssen. Genau dies ist durch die vektorisierten Varianten, zu erkennen an einem hinter dem Namen angefügten v, möglich. Diese erwarten jeweils ein Array von Anzahlen zu sendender und zu empfangender Elemente. Als Beispiel ist die Syntax der vektorisierten Alltoall-Methode in Listing 2.3 aufgeführt.

Für $i \in \underline{p-1}_0$ legt der i-te Eintrag der Arrays sendcounts und recvcounts fest, wie viele Elemente an den i-ten Prozess gesendet, respektive vom i-ten Prozess empfangen werden. Neu sind außerdem die **int**-Arrays senddispls und recvdispls. Der i-te Eintrag legt hier fest, ab welchem Index die Daten im sendbuffer für den i-ten Prozess bestimmt sind, beziehungsweise ab welchem Index im recvbuffer die Daten des i-ten Prozesses zu empfangen sind. [MPI-Forum 2015]

(a) Beim MPI_Bcast wird ein Datensatz von einem Root-Prozess an alle anderen Prozesse gesendet und von diesen empfangen.

(b) MPI_Scatter verteilt ein Array von Daten auf die Prozesse. MPI_Gather vereinigt Daten aller Prozesse in einem Array auf einem Root-Prozess.

	Date	en —	\rightarrow								
Prozesse	A_0	B_0	C_0	D_0	E_0	F_0	Allgather	A_0			
	A_0	B_0	C_0	D_0	E_0	F_0		B_0			
	A_0	B_0	C_0	D_0	E_0	F_0		C_0			
	A_0	B_0	C_0	D_0	E_0	F_0		D_0			
	A_0	B_0	C_0	D_0	E_0	F_0		E_0			
	A_0	B_0	C_0	D_0	E_0	F_0		F_0			

(c) MPI_Allgather vereint ebenfalls Daten aller Prozesse, allerdings erhält jeder Prozess eine Kopie des Arrays.

	Dat€	en —	→										
Prozesse —	A_0	A_1	A_2	A_3	A_4	A_5	Alltoall	A_0	B_0	C_0	D_0	E_0	F_0
	B_0	B_1	B_2	B_3	B_4	B_5		A_1	B_1	C_1	D_1	E_1	F_1
	C_0	C_1	C_2	C_3	C_4	C_5		A_2	B_2	C_2	D_2	E_2	F_2
	D_0	D_1	D_2	D_3	D_4	D_5		A_3	B_3	C_3	D_3	E_3	F ₃
	E_0	E_1	E_2	E_3	E_4	E_5		A_4	B_4	C_4	D_4	E_4	F_4
↓	F_0	F_1	F_2	F_3	F_4	F_5		A_5	B_5	C_5	D_5	E_5	F_5

(d) MPI_Alltoall ist ein simultanes MPI_Scatter aller Prozesse. Betrachtet man die Prozesse und Daten als Matrix, wird eine Matrixtranformation durchgeführt.

Abbildung 2.11. Möglichkeiten der kollektiven Kommunikation in MPI. (Quelle: Schwarz [2011])

Hauptteil

3.1. Ausgangssituation

Zur Erinnerung: Wir wollen für $n \in \mathbb{N}_{\geq 2}$ die wechselseitigen Gravitationskräfte von n Himmelskörpern berechnen. Da die größten davon die Sonnen sind und es davon bereits mehr als genug in unserer Galaxie gibt, beschränken wir uns zunächst auf diese. Die Menge unserer n Sonnen ist im Folgenden mit der Menge Ω dargestellt. Für jede Sonne $x \in \Omega$ muss die Gleichung

 $f_{x} = \sum_{\substack{y \in \Omega \\ y \neq x}} \gamma m_{x} m_{y} \frac{y - x}{\|y - x\|_{2}^{3}}$ (3.1)

gelöst werden. Zunächst wird im Folgenden die Grundstruktur des Programms vorgestellt. Das Programm ist in C geschrieben und wurde in der nicht-optimierten Version von Sven Christophersen zur Verfügung gestellt. Die aktuelle Version des approximierten und parallelen Algorithmus ist in meinem GitHub-Repository zu finden ¹. Da die früheren Versionen nicht abgerufen werden können werden zu diesen Stadien Codebeispiele im Text eingefügt.

Wir benötigen als ersten Schritt eine Datenstruktur, die unsere Sonnen darstellt. Diese ist in Listing 3.1 aufgeführt und heißt bodies. In Vorbereitung einer eventuell anschließenden Vektorisierung (vgl. Abschnitt 5.2) wurde diese Struktur als struct of arrays (vgl. Abschnitt 2.2.1) angelegt.

Die Komponenten der Struktur sind:

- 1. das Array int *id, das einer einfachen Identifizierung der Sonnen dient,
- 2. die Arrays double *x, *y, *z, in denen die Positionen der Sonnen gespeichert werden,
- 3. die Arrays **double** *Fx, *Fy, *Fz, in denen die Kraftvektoren, die auf die einzelnen Sonnen wirken, gespeichert werden,
- 4. die Arrays **double** *vx, *vy, *vz, in denen der Geschwindigkeitsvektor jeder Sonne gespeichert wird,
- 5. das Array double *m, in dem die Massen der Sonnen gespeichert werden, und zuletzt

¹ https://github.com/AdrianPegler/Gravitation

Listing (3.1) Die Struktur bodies dient der Speicherung aller mit den einzelnen Sonnen zusammenhängenden Daten.

```
/st Struct that holds coordinates x, masses m and forces F for all
   particles. */
struct _bodies {
 int
         *id; // id to identify each single body
 double *x; // x-components of the masses.
 double *y; // y-components of the masses.
 double *z; // z-components of the masses.
 double *Fx; // x-components of the forces.
 double *Fy; // y-components of the forces.
 double *Fz; // z-components of the forces.
 double *vx; // x-components of the velocities.
 double *vy; // y-components of the velocities.
 double *vz; // z-components of the velocities.
 double *m; // The masses.
         n; // Number of masses.
 double th; // length of one timestep.
typedef struct _bodies bodies;
```

6. die Werte **int** n und **double** th, die die Anzahl an Sonnen und die Länge eines Zeitschritts in Sekunden enthalten.

Die Körper entsprechen keinen reellen Himmelkörpern, zu denen uns keine Daten vorliegen, sondern werden zufällig generiert. Die Sonnen werden in einem Gebiet von ± 1 Lichtjahr in jeder Koordinatenrichtung um einen angenommenen Ursprung mit Massen zwischen einer und 15 Sonnenmassen verteilt.

Um nun alle gravitationellen Wechselwirkungen zu berechnen, wird die Methode compute_forces_bodies(...) (vgl. Listing 3.2) ausgeführt. Gut zu erkennen ist die matrix- ähnliche Struktur: Die beiden **for**-Schleifen entsprechen dem zeilen- und spaltenweisen Durchgehen der zugehörigen $\Omega \times \Omega$ -Matrix. Explizit aufgestellt wird diese Matrix allerdings nicht, da dies in Bezug auf den Speicherplatz äußerst ineffizient wäre. Stattdessen wird direkt, wie in Gleichung 3.1 angegeben, die kumulative Kraft für jede Sonne berechnet und in der bodies-Struktur gespeichert. Ein Teil der Kernfunktion ist in den Aufruf von calc_potential(...) in Zeile 19 ausgegliedert. Diese Methode berechnet das rein auf der Entfernung der beiden Sonnen beruhende Gravitationspotential P(x,y), sodass die Formel aus Gleichung 3.1 wie folgt dargestellt werden kann:

$$f_x = \sum_{\substack{y \in \Omega \\ y \neq x}} \gamma m_x m_y P(x, y), \quad P(x, y) := \frac{y - x}{\|y - x\|_2^3}.$$

Wie bereits in der Einleitung beschrieben ist das Problem mit diesem Algorithmus, dass er in Bezug auf die Laufzeit quadratisch skaliert. Läuft dieser Algorithmus mit $n=2^{13}\approx 8.000$ Sonnen noch in 1,097 Sekunden durch, so braucht er bereits für $n=2^{15}\approx 32.000$ Sonnen 17,531 Sekunden und für $n=2^{16}\approx 64.000$ Sonnen bereits über 70 Sekunden.² Und diese Größenordnung ist weit entfernt von dem reellen Problem, die Gravitationskräfte in unserer Galaxie mit etwa 100.000.000.000 Sonnen zu berechnen.

Listing (3.2) Diese Methode berechnet die auftretenden Gravitationskräfte.

```
/* Computation of the resulting forces for every particle.*/
   void compute_forces_bodies(bodies *b) {
 3
      int n = b \rightarrow n;
 4
      int i, j;
 5
      double F[3], P[3];
 6
      double *x, *y, *z, *m;
 7
      x = b->x;
 8
      y = b -> y;
 9
      z = b -> z;
10
      m = b -> m;
11
      for (i = 0; i < n; ++i) {
12
        F[0] = 0.0;
13
        F[1] = 0.0;
        F[2] = 0.0;
14
15
        for (j = 0; j < n; ++j) {
16
          if (i == j) {
17
       continue;
18
          }
19
          calc_potential(x[i], y[i], z[i], x[j], y[j], z[j], P);
20
          F[0] += m[j] * P[0];
21
          F[1] += m[j] * P[1];
22
          F[2] += m[j] * P[2];
23
24
        b \rightarrow Fx[i] += GAMMA * m[i] * F[0];
25
        b \rightarrow Fy[i] += GAMMA * m[i] * F[1];
        b \rightarrow Fz[i] += GAMMA * m[i] * F[2];
26
27
      }
28 | }
```

² Ausgeführt auf einem Computer mit 16 Gb Arbeitsspeicher und einem Intel Core i7-4710HQ.

3.2. \mathcal{H}^2 -Matrixstruktur und Approximation

Nun wollen wir die in Abschnitt 2.1 vorgestellte Struktur der hierarchischen Matrizen nutzen, um den Algorithmus zu beschleunigen. Wir wollen also die Kernfunktion

$$f: \Omega \times \Omega \to \mathbb{R}^3, \ (x,y) \mapsto \gamma m_x m_y \frac{y-x}{\|y-x\|_2^3}$$

durch Lagrange-Interpolation der Ordnung k_0 in jeder Koordinatenrichtung auf Clustern τ und σ des zulässigen Blocks $b=\tau\times\sigma\in\mathcal{L}^+(T_{\Omega\times\Omega})$ approximieren. Dazu konstruieren wir Tschebyscheff-Interpolationspunkte $\xi_{\mathfrak{g},i}$, $\mathfrak{g}\in\{\tau,\sigma\}$, $i\in k_0^3=:M\subset\mathbb{N}^3$ und erhalten so:

$$\begin{split} f(x,y) &\approx \tilde{f}(x,y) = \sum_{\nu \in M} \sum_{\mu \in M} \mathcal{L}_{\tau,\nu}(x) \gamma m_x m_y \frac{\xi_{\sigma,\mu} - \xi_{\tau,\nu}}{\left\| \xi_{\sigma,\mu} - \xi_{\tau,\nu} \right\|_2^3} \mathcal{L}_{\sigma,\mu}(y) \\ &= \gamma \sum_{\nu \in M} \mathcal{L}_{\tau,\nu}(x) m_x \sum_{\mu \in M} \frac{\xi_{\sigma,\mu} - \xi_{\tau,\nu}}{\left\| \xi_{\sigma,\mu} - \xi_{\tau,\nu} \right\|_2^3} \mathcal{L}_{\sigma,\mu}(y) m_y \\ &= \gamma \sum_{\nu \in M} \mathcal{L}_{\tau,\nu}(x) m_x \sum_{\mu \in M} P(\xi_{\tau,\nu}, \xi_{\sigma,\mu}) \mathcal{L}_{\sigma,\mu}(y) m_y. \end{split}$$

Anders ausgedrückt wollen wir die Matrix $F:=(f_{xy})_{x,y\in\Omega}$ durch eine \mathcal{H}^2 -Matrix \tilde{F} approximieren. Für einen streng zulässigen Blockbaum $T_{\Omega\times\Omega}$ und jeden zulässigen Block $b=\tau\times\sigma\in\mathcal{L}^+(T_{\Omega\times\Omega})$ konstruieren wir die nötigen Matrizen mit $\mu,\nu\in M$ wie folgt:

$$E_{\tilde{\tau}} := (E_{\tilde{\tau}})_{\mu\nu} := \mathcal{L}_{\tau,\nu}(\xi_{\tilde{\tau},\mu}) \quad \text{für alle } \tilde{\tau} \in sons(\tau) \text{ falls } \tau \notin \mathcal{L}(T_{\Omega}),$$

$$V_{\tau} := \begin{cases} (V_{\tau})_{x\nu} := \mathcal{L}_{\tau,\nu}(x) & \text{für alle } x \in \tau \text{ falls } \tau \in \mathcal{L}(T_{\Omega}), \\ \sum_{\tilde{\tau} \in sons(\tau)} E_{\tilde{\tau}} V_{\tilde{\tau}} & \text{falls } \tau \notin \mathcal{L}(T_{\Omega}), \end{cases}$$

$$S_b := (S_b)_{\mu\nu} := P(\xi_{\tau,\nu}, \xi_{\sigma,\mu}),$$

$$E_{\tilde{\sigma}} := (E_{\tilde{\sigma}})_{\mu\nu} := \mathcal{L}_{\sigma,\nu}(\xi_{\tilde{\sigma},\mu}) \quad \text{für alle } \tilde{\sigma} \in sons(\sigma) \text{ falls } \tau \notin \mathcal{L}(T_{\Omega}),$$

$$W_{\sigma} := \begin{cases} (W_{\sigma})_{y\nu} := \mathcal{L}_{\sigma,\nu}(y) & \text{für alle } y \in \sigma \text{ falls } \sigma \in \mathcal{L}(T_{\Omega}), \\ \sum_{\tilde{\sigma} \in sons(\sigma)} E_{\tilde{\sigma}} W_{\tilde{\sigma}} & \text{falls } \sigma \notin \mathcal{L}(T_{\Omega}). \end{cases}$$

$$(3.2)$$

Für die unzulässigen Blöcke $b= au imes\sigma\in\mathcal{L}^-(T_{\Omega imes\Omega})$ müssen wir weiterhin vollbesetzte Matrizen $N_b:=\big(\gamma m_x m_y P(x,y)\big)_{x\in\tau,y\in\sigma}$

auswerten.

Für die Anschauung mag es helfen, sich die Faktoren $\mathcal{L}_{\tau,\nu}m_x=:h_x$ beziehungsweise $\mathcal{L}_{\sigma,\mu}m_y=:h_y$ als Anteil der Masse der Sonne x beziehungsweise y an $Ersatzmassen\ m_{\zeta_{\mathfrak{g},i}}$ vorzustellen, wobei $\mathfrak{g}\in\{\tau,\sigma\}$ und $\mathfrak{i}\in M$ gilt. Durch die Interpolation werden also für weit genug entfernte Gebiete statt der echten Sonnen Ersatzkörper betrachtet, die sich an der Position der Interpolationspunkte befinden und eben diese Ersatzmassen haben.

Listing (3.3) Die Struktur Cluster vereint die Definition eines Clusters mit der eines Clusterbaumes.

```
struct _Cluster{
 bodies *bodies;
                             //related bodies
  int id;
                             //id of the Cluster
 int start;
                            //start index of the according subarray
 int n;
                            //number of bodies in this Cluster
  double a[3];
                             //"upper left" corner of the bounding box
                             //"lower right" corner of the bounding box
  double b[3];
  double center[3];
                            //center of the bounding box
  double diam;
                            //diameter of the bounding box
  double *m;
                            //substitution masses
 double *F;
                            //substitution forces
 double *xs;
                            //coordinates of the locations of submasses
 int num_sons;
                             //number of son clusters
  struct _Cluster *son[2];
                             //pointers to the son
typedef struct _Cluster Cluster;
```

3.2.1. Clusterung

Für die oben beschriebene Approximation müssen wir einen Clusterbaum und einen streng zulässigen Blockbaum konstruieren. Dazu benötigen wir zunächst eine Datenstruktur für Clusterbäume. Diese sind in Listing 3.3 zu finden.

Die Datenstruktur

Die Datenstruktur speichert die für die Cluster notwendigen Daten sowie jeweils Zeiger auf die Sohncluster *son[2]. Jedes Cluster verweist auf die zum Baum gehörenden bodies *bodies, und nutzt einen Startindex int start sowie die Anzahl int n, der zum Cluster gehörenden Sonnen, um auf die zum Cluster gehörigen Sonnen zu verweisen und zuzugreifen. Auch denkbar wäre es, nicht getrennt das bodies-Array und den Startindex zu speichern, sondern direkt auf das erste Element des zum Cluster gehörenden Teilarrays zu zeigen. Für jedes Cluster ein eigenes Array anzulegen würde hingegen zu Redundanz und somit unnötigem Speicherbedarf führen, da jede Ebene des Clusterbaumes eine Partition von Ω erzeugt. Die hier vorgestellte Variante erscheint mir am vielseitigsten, ohne nennenswert unnötig Speicher zu belegen.

Außerdem enthält das Cluster die die Elemente des Clusters umschließende bounding box (vgl. Seite 8). Diese wird durch zwei Punkte in der Gestalt von **double** a[3] und **double** b[3] aufgespannt. Da das Zentrum mehrfach bei der Konstruktion und Teilung auftaucht ist dieses zur Laufzeitoptimierung in **double** center[3] abgespeichert. Ebenso ist

der Durchmesser der bounding box in **double** diam hinterlegt, um ihn nur einmal bei der Konstruktion und nicht bei jeder Abfrage erneut berechnen zu müssen.

Die drei Arrays **double** *m, **double** *F und **double** *xs repräsentieren die in den Clustern genutzten Ersatzkörper. In *m sind die n Massen, in *F die Ersatzkräfte und in *xs die Positionen der Ersatzkörper, beziehungsweise Interpolationspunkte $\xi_{\mathfrak{g},i}$, gespeichert. Für jeden Interpolationspunkt muss eine Ersatzmasse gespeichert werden können, sodass *m k_0^3 Einträge hat. Da *F ein Array von dreidimensionalen Vektoren ist, enthält es $3k_0^3$ Einträge. Zwar sind *xs ebenfalls dreidimensionale Punkte, jedoch bilden diese ein regelmäßiges Raster. Indem wir die Koordinatenprojektionen der Punkte speichern, reichen $3k_0$ Einträge. Die Interpolationspunkte können dann durch $\{xs_0,\ldots,xs_{k_0-1}\}\times\{xs_0,\ldots,xs_{k_0-1}\}\times\{xs_0,\ldots,xs_{k_0-1}\}$ rekonstruiert werden. Die Einträge sind jeweils nach Koordinatenrichtung zusammengefasst, also erst alle x-Koordinaten, dann die y-Koordinaten usw. Dies bildet wieder eine "struct of arrays"-Struktur, um eine einfache Vektorisierung zu ermöglichen.

Die Membervariable int num_sons dient in diesem Fall der einfacheren Abfrage, ob es sich bei dem Cluster um ein Blatt oder einen inneren Knoten handelt. In allgemeineren Kontexten ist es durchaus möglich, dass Cluster unterschiedlich viele Sohncluster haben. Beispielweise hat der zugehörige Blockbaum $T_{\Omega \times \Omega}$ vier Sohnblöcke pro Nicht-Blattblock.

Die Konstruktion

Nun, da wir eine Datenstruktur für Clusterbäume definiert haben, müssen wir diesen noch erzeugen. Sei dazu eine bodies Struktur mit zufällig generierten Sonnen gegeben.

Nun beginnen wir, indem wir ein Wurzelcluster root mit $id_{root} = 0$ konstruieren. Per Definition enthält es alle in bodies gegebenen Sonnen, womit die Member *bodies, start und n bereits festgelegt sind. Als nächstes erzeugen wir für die gegebenen Sonnen eine bounding box mit minimalen Ausmaßen. Dazu fassen wir für jede Koordinatenrichtung die kleinsten (beziehungsweise größten) Positionswerte der bodies in a (beziehungsweise b) zusammen. Alternativ könnte man, wegen der zufälligen Konstruktion der Sonnen, auch dessen Grenzen als bounding box wählen. Zu dieser bounding box werden nun die Werte center[3] und diam berechnet. Die Member double *m und double *F bleiben mit 0 inizialisiert. Die Interpolationspunkte xs werden allerdings ebenfalls jetzt berechnet. Dazu wurden beim Start des Programmes bereits Tschebyscheff-Interpolationspunkte auf dem Intervall [-1,1] berechnet. Diese werden jetzt für jede Koordinatenrichtung ι auf das entsprechende Intervall $[a_{\iota},b_{\iota}]$ des Quaders der bounding box transformiert.

Um nun mit dieser Wurzel einen Clusterbaum zu konstruieren, unterteilen wir ein Cluster jeweils in Sohncluster bis eine Abbruchbedingung erfüllt ist. Die wichtigsten Auszüge aus dem Code zur rekursiven Konstruktion des Clusterbaumes sind in Listing 3.4, Listing 3.5 und Listing 3.6 aufgeführt.

Da wir mit zufällig generierten und recht großen Datenmengen arbeiten, ist es nicht notwendig, die Unterteilung eines Clusters in Sohncluster kardinalitätsgesteuert vorzunehmen, um ein gutes Load- Balancing zu erhalten. Dies könnte bei reellen Daten möglicherweise notwendig werden, wenn es in der betrachteten Menge Ω große Bereiche mit sehr wenigen

Listing (3.4) Dies sind die Kernmethoden der Konstruktion des Clusterbaumes. Die Teilung der bounding box wird hier vorgenommen sowie die Sortierung der Elemente und Konstruktion der Sohncluster gestartet.

```
1
   void _setup(Cluster *c, int depth){
2
3
     if(depth < MAX_DEPTH){</pre>
                                  //split as long as condition is not met
 4
       _setup_nonLeafCluster(c, depth);
5
     }
 6
   [...]
7
   }
8
   void _setup_nonLeafCluster(Cluster *c, int depth){
9
     int dir = _largest_direction(c);
10
     int border = _sortIndices(c, dir); //number of elements in the first
         son cluster
11
                                  //new bounding box points
     double b1[3],a2[3];
12
     for(int d = 0; d < 3; d++){
13
       if(d == dir){
14
         b1[d] = c->center[d];
15
         a2[d] = c->center[d];
16
       } else {
17
         b1[d] = c->b[d];
18
         a2[d] = c->a[d];
19
       }
20
     }
21
     c -> num_sons = 2;
22
     c->son[0] = _new_bound_Cluster(c->start, border, c->bodies, c->a, b1);
23
     _setup(c->son[0], depth+1);
24
     c->son[1] = _new_bound_Cluster(c->start + border, c->n - border, c->
         bodies, a2, c->b);
25
     _setup(c->son[1], depth+1);
26
```

Körpern gibt. Der hier vorgestellte Algorithmus unterteilt die Cluster auf jeder Stufe des Baumes rein geometrisch durch eine Mittelebene. Dazu wird zunächst die Richtung der größten Ausdehnung der bounding box bestimmt und dann in dieser Koordinatenrichtung mittig unterteilt. Während dieser Unterteilung werden die zunächst ungeordneten bodies gemäß ihrer Zugehörigkeit zu einem der beiden Sohncluster sukzessive sortiert.

Die Methode _sortIndices beruht, über die gesamte Konstruktion des Clusterbaumes betrachtet, auf der Grundidee von Quicksort. Für die größte Richtung $[a_t, b_t]$ des Quaders, der die bounding box darstellt, wird als Quasi-Pivotelement jeweils die Mitte $c_t = \frac{a_t + b_t}{2}$ dieser Richtung gesetzt und die Sonnen entsprechend ihrer Position in die linke oder rechte

Listing (3.5) Hier wird der Wert MAX_DEPTH für die Abbruchbedingung berechnet.

```
void init(int argc, String* argv){
 2
 3
   switch(argc){
 4
     case 3:
 5
       pot = atoi(argv[2]);
 6
     case 2:
 7
       INTERPOLATION_POINTS = atoi(argv[1]);
 8
 9
10
     NUM_SUB_MASSES = INTERPOLATION_POINTS * INTERPOLATION_POINTS *
         INTERPOLATION_POINTS;
11
12
     int leaf_pot = INTERPOLATION_POINTS - 1 ? ceil(log2(2 * NUM_SUB_MASSES))
13
     MAX_DEPTH = pot - leaf_pot;
14
   [...]
15
```

Hälfte einsortiert. Anders als bei Quicksort wird auf Grund der gewählten Abbruchbedingung die Liste nicht vollständig sortiert. Für den Algorithmus ist die Zugehörigkeit der Sonnen zu bestimmten Clustern die entscheidende Information.

Nach Definition 2.6 wurden zwei Beispiele für Abbruchbedingungen erwähnt. Wegen der zufälligen Generierung lässt sich die ungefähre Anzahl Elemente in den Blattclustern anhand der Tiefe des Baumes schätzen. Indem wir als Abbruchbedingung eine maximale Tiefe für den Clusterbaum festlegen, stellen wir gleichzeitig sicher, dass der Clusterbaum ein vollständiger Binärbaum wird. Der Wert MAX_DEPTH für die Abbruchbedingung wird gleich zu Beginn des Programmlaufs auf Basis der Anzahl an Sonnen ($n=|\Omega|=2^{\rm pot}$) und der Anzahl Interpolationspunkte $k:=k_0^3$ berechnet. Dabei gilt:

$$\mathsf{MAX_DEPTH} := \mathsf{pot} - \mathsf{I}, \qquad \qquad \mathsf{I} := \begin{cases} \lceil \log_2(2k) \rceil & \mathsf{falls} \ k_0 > 1 \\ 4 & \mathsf{falls} \ k_0 = 1 \end{cases} \tag{3.4}$$

Bei einer Baumtiefe von pot wären die Blattcluster im Schnitt gerade einelementig. Indem die Abbruchbedingung die Tiefe des Clusterbaumes auf pot – $\mathfrak l$ begrenzt, enthalten die Blattknoten im Schnitt gerade $2^{\mathfrak l}$ Elemente. Durch diese Baumtiefenregulierung wird für $k_0>1$ die nächsthöhere Zweierpotenz zur doppelten Anzahl an Interpolationspunkten als durchschnittliche Anzahl Sonnen pro Blattcluster festgelegt. Für die Interpolationsordnung $k_0=1$ wäre dies eine zu feine Zerlegung. Daher wird hier $\mathfrak l$ auf den Wert 4 und damit die durchschnittliche Blattgröße auf $2^4=8$ gesetzt. Indem die Blattgröße im Schnitt auf ungefähr das Doppelte der Anzahl an Interpolationspunkten festgelegt wird, soll eine gute

Listing (3.6) Diese Methode nimmt die Sortierung der bodies anhand einer vorgegebenen Koordinatenrichtung vor.

```
int _sortIndices(Cluster *c, int dir){
 1
 2
     if(0 == c->n){
3
       return 0;
 4
5
     int j, front, back;
 6
     double *assoc_coord;
7
8
     //get associated coordinates of bodies
9
     assoc_coord = _getAssocCoord(c->bodies, dir);
10
11
     //sort the bodies according to clusters center
12
     front = 0;
13
     back = c->n;
14
     back -= 1;
15
     do {
16
       j = c->start + front;
17
18
       if(assoc_coord[j] < c->center[dir]){
19
         front++;
20
       } else {
21
         if(assoc_coord[c->start + back] <= c->center[dir]){
22
      swap_bodies(c->bodies, c->start + front, c->start + back);
23
         }
24
         back--;
25
       }
26
     } while(front <= back);</pre>
27
28
     return front; //front resembles the number of elements in the left half
29 | }
```

Balance zwischen Genauigkeit und Laufzeit erreicht werden.

Für die Blattcluster ist keine eigene setup-Methode notwendig, da der Konstruktor _new_bound_Cluster(...) zunächst alle Werte für ein Blattcluster setzt. Die Methode _setup(...) entscheidet also anhand der Stufe ob ein Cluster ein Blattcluster bleibt, oder durch Unterteilung zu einem Nicht-Blattcluster wird.

Listing (3.7) Diese Methode dient dem rekursiven Aufruf der Vorwärtstransformation und delegiert die Konstruktion der Ersatzmassen. Dabei wird zwischen Blatt-und Nicht-Blattclustern unterschieden.

```
void forward(Cluster *c){
   if(c->num_sons) {
        _forward_nonLeaf(c);
   } else {
        _forward_leaf(c);
   }
}
```

3.2.2. Vorwärtstransformation

Nun da wir den Clusterbaum T_{Ω} konstruiert haben, können wir uns an die Berechnung der Gravitation machen. Um eine Matrix-Vektor-Multiplikation mit der Matrix \tilde{F} auf zulässigen Blöcken auszuwerten, muss diese Operation als erstes auf den Matrizen W_{σ} ausgewertet werden. Die Auswertung der Matrizen W_{σ} nennt man auch *Vorwärtstransformation*.

Da W_{σ} ausschließlich von Clustern und nicht von Blöcken abhängt, können wir die Vorwärtstransformation einfach für alle $\sigma \in T_{\Omega}$ durchführen. Dies geschieht im vorliegenden Programm durch einen Aufruf von forward(Cluster *c) mit $root(T_{\Omega})$. Die Methode forward(...) unterscheidet zwischen Blatt- und Nicht-Blattclustern, und ruft entsprechend die Methode _forward_Leaf(Cluster *c) oder _forward_nonLeaf(Cluster *c) auf.

Die Methode _forward_Leaf(...) entspricht der Konstruktion und Auswertung der Matrizen W_{σ} anhand der Sonnen $x \in \sigma$. Durch sie werden, wie auf Seite40 beschrieben, für alle Interpolationspunkte $\xi_{c\mu} \in \times_{i=0}^2 \{xs_{i\cdot k}, \dots, xs_{(i+1)\cdot k-1}\}, \mu \in M$ durch

$$\mathbf{m}_{\xi_{\mathsf{c}\mu}} = \mathbf{m}_{\mu} := \sum_{y \in \mathsf{c}} \mathcal{L}_{\mathsf{c},\mu}(y) m_y$$

die Ersatzmassen in der Clusterbasis berechnet und gespeichert.

Die Methode _forward_nonLeaf(Cluster *c) nutzt die Struktur der geschachtelten Clusterbasis um die Matrizen W_{σ} anhand der Sohncluster zu konstruieren. Sie berechnet die Ersatzmassen nicht aus allen Sonnen des Clusters, sondern aus den Interpolationspunkten und Ersatzmassen der Sohncluster (vgl. Abschnitt 2.1.2). Für letztere müssen daher die Ergebnisse der Söhne bereits vorliegen. Daher ruft diese als ersten Schritt forward(cs) für alle Sohncluster cs auf.

Auf diese Weise durchlaufen die Methoden gemeinsam betrachtet rekursiv den Clusterbaum. Der Code der drei Methoden ist in Listing 3.7, Listing 3.8 und Listing 3.9 zu finden. Stellt man sich den Baum von der Wurzel aus nach unten hängend vor, werden also die Massen der Sonnen in den Baum hochgezogen. Je höher die Stufe des Baumes, um so gröber ist die Approximation.

Listing (3.8) Diese Methode arbeitet auf den Transfermatrizen und ruft daher zuerst rekursiv die Vorwärtstransformation für die Sohncluster auf.

```
void _forward_nonLeaf(Cluster *c){
 1
     int i, j, k, w, wj, son, ison, json, kson, wson, wsonj;
 3
     double sum, l1, l2, l3;
 4
 5
     forward(c->son[0]); //recursiv call for first son
 6
     forward(c->son[1]); //recursiv call for second son
 7
 8
     //for all submasses
 9
     for(i = 0; i < INTERPOLATION_POINTS; i++){</pre>
10
       for(j = 0; j < INTERPOLATION_POINTS; j++){</pre>
11
         wj = i * INTERPOLATION_POINTS + j;
12
         for(k = 0; k < INTERPOLATION_POINTS; k++){</pre>
13
      w = wj * INTERPOLATION_POINTS + k;
14
      sum = 0.0;
15
16
      //for all sons
17
      for(son = 0; son < 2; son++){
18
        //for all sons submasses
19
        for(ison = 0; ison < INTERPOLATION_POINTS; ison++){</pre>
20
           l1 = lagrange(c, i, 0, c->son[son]->xs[ison]);
21
           for(json = 0; json < INTERPOLATION_POINTS; json++){</pre>
22
             wsonj = ison * INTERPOLATION_POINTS + json;
23
             l2 = l1 * lagrange(c, j, 1, c->son[son]->xs[INTERPOLATION_POINTS]
                 + json]);
24
             for(kson = 0; kson < INTERPOLATION_POINTS; kson++){</pre>
25
         wson = wsonj * INTERPOLATION_POINTS + kson;
26
         13 = 12 * lagrange(c, k, 2, c->son[son]->xs[2 * INTERPOLATION_POINTS
               + kson]);
28
         //calculate the substitution mass
29
          sum += c->son[son]->m[wson] * 13;
30
             }
31
           }
32
        }
33
      }
34
      c \rightarrow m[w] = sum;
35
         }
36
37
     }
38 | }
```

Listing (3.9) Diese Methode erstellt die Clusterbasis des Clusterbaumes.

```
1 void _forward_leaf(Cluster *c){
     if(0 == c->n) { return; }
 3
     int i, j, k, l, m, w, wj;
 4
     double x, y, z, *mass, l1, l2, l3;
 5
     bodies *b = c->bodies;
 6
     mass = b->m;
 7
 8
     for(i = 0; i < NUM_SUB_MASSES; i++){</pre>
 9
        c->m[i] = 0.0;
10
11
12
     //for all linked actual masses
13
     for(l = 0; l < c->n; l++){
14
       m = c->start + l;
15
       x = b -> x[m];
16
        y = b \rightarrow y[m];
17
        z = b \rightarrow z[m];
18
19
       //for all interpolation points:
20
        for(i = 0; i < INTERPOLATION_POINTS; i++){</pre>
21
          l1 = lagrange(c, i, 0, x);
22
          for(j = 0; j < INTERPOLATION_POINTS; j++){</pre>
23
      wj = i * INTERPOLATION_POINTS + j;
24
       l2 = l1 * lagrange(c, j, 1, y);
25
       for(k = 0; k < INTERPOLATION_POINTS; k++){</pre>
26
         //actual interpolation point:
27
        w = wj * INTERPOLATION_POINTS + k;
28
         //actual lagrange weight:
29
        l3 = l2 * lagrange(c, k, 2, z);
30
31
         //calculate the substitution mass
32
         c \rightarrow m[w] += mass[m] * l3;
33
      }
34
35
        }
36
     }
37 }
```

3.2.3. Auswertung der Kopplungsmatrizen

Der nächste Schritt in der Auswertung ist die Multiplikation mit den Kopplungsmatrizen S_b . Da diese Matrizen, im Gegensatz zu den Clusterbasen V_τ und W_σ , vom Block und damit von beiden und nicht nur von einem Cluster abhängen, müssen wir nun den Blockbaum $T_{\Omega \times \Omega}$ durchlaufen. Gleichzeitig können wir in diesem Schritt die Nahfeldmatrizen N_b , die ebenfalls von den Blöcken abhängen, auswerten.

Den Blockbaum haben wir nicht explizit aufgestellt. Das ist auch nicht notwendig, da wir ihn implizit konstruieren können und somit keinen Speicherplatz benötigen. Wir durchlaufen unseren impliziten Blockbaum, indem wir, beginnend mit dem Wurzelblock $b_{root} = root(T_{\Omega}) \times root(T_{\Omega})$, für jeden Block $b = \tau \times \sigma$ prüfen, ob

- 1. $\mathcal{Z}_{\eta}(\tau,\sigma) = zul\ddot{a}ssig$ erfüllt ist. Ist dies der Fall, haben wir, unabhängig davon, ob $\tau \in \mathcal{L}(T_{\Omega})$ oder $\sigma \in \mathcal{L}(T_{\Omega})$ gilt, einen Blattblock erreicht und können S_b auswerten.
- 2. Ist $\mathcal{Z}_{\eta}(\tau, \sigma) = unzul \ddot{a}ssig$, prüfen wir, ob
 - (a) $\tau, \sigma \in \mathcal{L}(T_{\Omega})$. Falls τ und σ Blattcluster sind, haben wir ebenfalls einen Blattblock erreicht, können aber nicht approximieren und müssen daher N_b auswerten.
 - (b) Sind τ und σ aber keine Blattcluster, so können wir durch folgende Zuweisung rekursiv fortfahren:

Für $\tilde{\tau}_0 \neq \tilde{\tau}_1 \in sons(\tau)$ und $\tilde{\sigma}_0 \neq \tilde{\sigma}_1 \in sons(\sigma)$ definieren wir Sohnblöcke

$$\begin{split} \tilde{b}_0 &:= \tilde{\tau}_0 \times \tilde{\sigma}_0 \\ \tilde{b}_2 &:= \tilde{\tau}_1 \times \tilde{\sigma}_0 \end{split} \qquad \begin{split} \tilde{b}_1 &:= \tilde{\tau}_0 \times \tilde{\sigma}_1 \\ \tilde{b}_3 &:= \tilde{\tau}_1 \times \tilde{\sigma}_1. \end{split}$$

Durch dieses Vorgehen konstruieren wir implizit einen streng zulässigen Blockbaum. Zulässige Blöcke werden automatisch Blattblöcke, da die Rekursion dort nicht fortgesetzt wird. Außerdem werden die Sohnblöcke immer aus genau einer Stufe des Clusterbaumes gebildet, bei welchem wir sichergestellt haben, dass er als vollständiger Binärbaum konstruiert wird. Daher ist auch sichergestellt, dass unzulässige Blattblöcke nur aus Blättern des Clusterbaumes bestehen können.

Für jeden Blattblock $b = \tau \times \sigma$ wird also

- 1. für alle $x \in \tau$ und $y \in \sigma$ die Funktion f ausgewertet und direkt in den bodies gespeichert, falls b unzulässig ist, oder
- 2. für alle Interpolationspunkte $\xi_{\tau,\nu}$, $\xi_{\tau,\nu}$, mit $\nu,\mu\in M$ der Ausdruck $P(\xi_{\tau,\nu},\xi_{\tau,\nu})$ ausgewertet und mit den in der Vorwärtstransformation berechneten Ersatzmassen m_{μ} multipliziert, falls b zulässig ist.

Anschaulich werden in diesem Schritt in den zulässigen Blöcken aus den Ersatzmassen und Interpolationspunkten Quasi-Ersatzkräfte³ berechnet.

 $^{^3}$ An dieser Stelle wird nur die Masse des Source-Clusters σ verrechnet. Daher handelt es sich im physikalischen Sinne noch nicht um eine Kraft.

Listing (3.10) Durch diese rekursive Struktur wird ein impliziter Blockbaum durchlaufen, um die Matrizen S_h bzw. N_h auszuwerten.

```
1
   void _eval(Cluster *ct, Cluster *cs){
 2
     if(admissable(ct, cs)){
 3
         _eval_CC(ct, cs);
 4
     } else {
 5
       if (ct->num_sons && cs->num_sons){ //both clusters have sons left:
 6
         _eval(ct->son[0], cs->son[0]);
 7
         _eval(ct->son[0], cs->son[1]);
 8
         _eval(ct->son[1], cs->son[0]);
 9
         _eval(ct->son[1], cs->son[1]);
10
                                           //no son clusters left but still
       } else {
           not admissable:
11
         _eval_full(ct, cs);
12
13
     }
14
     // world.rank?:current_level?:printf("\nfirst admissable block on level
         %d\n", first_admissable);
15
     // world.rank?:current_level?:printf("split depth: %d\n", SPLIT_DEPTH);
16
```

3.2.4. Rückwärtstransformation

Der letzte Schritt der Berechnung ist die Auswertung der Matrizen V_{τ} . Diesen Schritt nennt man auch *Rückwärtstranformation*.

Auch dieser Schritt hängt wieder ausschließlich von den Clustern ab. Daher kann die Rückwärtstranformation wieder unabhängig von den Blöcken für den gesamten Clusterbaum T_{Ω} ausgeführt werden. Wir rufen dazu wieder mit $root(T_{\Omega})$ die Methode backward (Cluster *c) auf. Wie bereits bei der Vorwärtstransformation unterscheidet diese Methode, ob es sich bei dem aktuellen Cluster um ein Blatt- oder ein Nicht-Blattcluster handelt und delegiert die Arbeit entsprechend an die Methoden _backward_Leaf(Cluster *c) und _backward_nonLeaf(Cluster *c). Anders als bei der Vorwärtstransformation müssen bei der Rückwärtstransformation die Ergebnisse des Vaterclusters für die Söhne vorliegen. Daher gibt die Methode _backward_nonLeaf(Cluster *c) die approximierten Quasi-Kräfte, gewichtet über die Lagrange-Polynome, an die Sohncluster weiter. Für alle Söhne $\tilde{c} \in sons(c)$ und alle $\mu \in M$ wird

 $\mathsf{F}_{\mathsf{c}, ilde{\mathsf{c}},\mu} = \sum_{
u \in M} \mathcal{L}_{\mathsf{c},
u}(\xi_{ ilde{\mathsf{c}},\mu} \mathsf{F}_{\mathsf{c},
u})$

zu den dort eventuell bereits aus der Auswertung der Kopplungsmatrizen vorhandenen Quasi-Ersatzkräfte addiert.

Schließlich werden in der Methode _backward_Leaf(Cluser *c) die Quasi-Ersatzkräfte

3.2. \mathcal{H}^2 -Matrixstruktur und Approximation

 $F_{c,\nu}$, $\nu \in M$ aus den Blattclustern über die Lagrange-Polynome gewichtet auf alle Sonnen $x \in c$ verteilt und mit deren Masse m_x multipliziert. Da auch hier bereits aus der Nahfeldauswertung Kräfte vorhanden sind, müssen diese approximierten Kräfte⁴ zu den vorhandenen addiert werden.

Da diese Methoden analog zu denjenigen der Vorwärtstransformation funktionieren sind diese hier nicht aufgeführt.

 $[\]overline{}^4$ Durch die Multiplikation mit m_x werden die Quasi-Kräfte im physikalischen Sinne zu Kräften vervollständigt.

3.3. Parallelisierung

Im vorherigen Kapitel haben wir die Berechnung der Gravitationskräfte durch Interpolation approximiert. Dadurch konnten wir die Technik der \mathcal{H}^2 -Matrizen nutzen, um den Rechenaufwand des Algorithmus zu optimieren. Um die absolute Laufzeit aber noch weiter zu reduzieren, sind wir an einer parallel arbeitenden Variante dieses Algorithmus interessiert. In diesem Kapitel wird ein Ansatz dazu vorgestellt.

Ziel ist es, zunächst einen einfachen Algorithmus zu entwerfen. Daher beschränken wir uns auf Parallelisierung nach dem Message-Passing-Modell unter Verwendung von MPI. Wir wollen also $p \in \mathbb{N}$ Prozesse starten können, von denen jeder eine eindeutige $id \in \underline{p-1}_0$ und seinen privaten Speicherbereich besitzt. Insbesondere ist in diesem Modell Shared-Memory ausgeschlossen. Außerdem sollen die Prozesse miteinander kommunizieren können, um Daten auszutauschen. Die Menge der Prozesse wird im Folgenden mit $\mathfrak P$ bezeichnet.

Der Code im GitHub-Repository⁵ entspricht der Umsetzung dieses Kapitels inklusive des Vorangegangenen. Da die Methoden durch die Anpassungen länger werden, jedoch viel Code durch die vorigen Abschnitte redundant wäre, werden im Folgenden nur noch kurze Codeausschnitte abgebildet. Für allen weiteren Code sei auf das Repository verwiesen.

3.3.1. Arbeitsverteilung

Damit wir von parallel arbeitenden Prozessen profitieren können, muss die Arbeit möglichst gleichmäßig auf diese Prozesse verteilt werden. Wir folgen, in modifizierter Variante, dem von Börm und Bendoraityte [2008] vorgestellten Cluster-zentrierten Ansatz. Dieser basiert auf dem Grundgedanken, dass für Vorwärts- und Rückwärtstransformation ausschließlich Daten zwischen Vater- und Sohnclustern ausgetauscht werden müssen. Um möglichst viel Kommunikation zu sparen, ist es daher besonders effektiv, wenn möglichst viele Söhne durch denselben Prozess verarbeitet werden wie der Vater. Besonders einfach wird das Verteilen der Cluster und das Loadbalancing, wenn wir p als Zweierpotenz $p=2^q$ wählen. Da dann die Anzahl von Clustern in $T_{\Omega}^{(q)}$ gerade p entspricht, können wir diese Ebene, zuzüglich der Sohncluster, optimal auf die Prozesse verteilen. Wir gehen im Folgenden immer von einer so gewählten Anzahl Prozesse aus.

Um diesen Ansatz auf den Algorithmus zu übertragen, wird in der in Listing 3.5 aufgeführten init-Methode die globale Variable SPLIT_DEPTH = $\log_2(p) = q$ gesetzt. Außerdem bekommt die Datenstruktur Cluster einen weiteren Member: **int** active. In diesem wird die id des für dieses Cluster zuständigen Prozesses gespeichert.

Zudem gibt es aber noch Cluster auf den Ebenen $T_{\Omega}^{<q}:=T_{\Omega}^{(0)},\ldots,T_{\Omega}^{(q-1)}$. Um ein Cluster $C\in T_{\Omega}^{<q}$ zu klassifizieren nutzt jeder Prozess $P\in\mathfrak{P}$ mit id_P zwei Konstanten. Gilt für alle Nachfahren $\overline{C}\in sons^*(C)\colon \overline{C}$.active $\neq id_P$, so wird der Member C.active auf die **int**-Konstante inactive gesetzt. Gibt es aber Nachfahren $\overline{C}\in sons^*(C)$ mit \overline{C} .active $=id_P$, so

⁵ https://github.com/AdrianPegler/Gravitation

Listing (3.11) Für die Verteilung der Cluster auf die Prozesse angepasste _setup-Methode.

```
1
   void _setup(Cluster *c, int depth){
      if(depth == SPLIT_DEPTH){
 3
        c->active = ++split_count;
 4
      }
 5
 6
      if(depth < MAX_DEPTH){</pre>
 7
        _setup_nonLeafCluster(c, depth);
 8
 9
10
      if(c->active == semi_active){
11
        if(c\rightarrow son[0]\rightarrow active == inactive \&\& c\rightarrow son[1]\rightarrow active == inactive){}
12
          c->active = inactive;
13
        } else{
14
          if(c->son[0]->active != world.rank
15
       && c->son[0]->active != semi_active
       && c->son[1]->active != world.rank
16
17
       && c->son[1]->active != semi_active) {
18
         c->active = inactive;
19
20
21
22
   }
```

wird der Member C.active stattdessen auf die **int**-Konstante semi_active gesetzt. Inaktive Cluster werden während der Vorwärts- und Rückwärtstransformation nicht weiter beachtet. Semi-aktive Cluster berechnen zwar Ersatzmassen, aber nur aus den Ersatzmassen des (semi-)aktiven und nicht des inaktiven Sohnclusters.

Um diese Einteilung vorzunehmen, wird vorrangig der Code der Methode _setup(...) (vgl. Listing 3.4) angepasst. Dieser ist in Listing 3.11 aufgeführt.

Zudem bekommt der Konstruktor _new_bound_Cluster einen neuen Parameter, um den Member active des zu konstruierenden Clusters zu initialisieren. Für die Konstruktion der Wurzel ist dieser auf semi_active gesetzt. Danach wird durch die Methode _setup_nonLeafCluster(...) immer der Wert des Vaters an die Söhne weitergegeben. Der zugehörige Code ist in der Datei cluster.c zu finden und wird im Folgenden kurz erläutert.

Dazu wird zunächst überprüft, ob die SPLIT_DEPTH erreicht wurde. Ist dies der Fall, wird der Member active auf die *id* des zuständigen Prozesses gesetzt. Dies geschieht einfach durch Abzählen. Als nächstes folgt der bereits aus Listing 3.4 bekannte Aufruf, der das Teilen in Sohncluster, das Sortieren der bodies und die Rekursion beinhaltet. Der letzte Teil wird beim Abbau der Rekursion durchgeführt. Hier wird für eben die Cluster in

3. Hauptteil

 $T_{\Omega}^{(< q)}$ überprüft, ob diese auf semi-active bleiben, oder, falls kein Nachfahre aktiv ist, der Member active auf inactive gesetzt wird.

Die Idee der semi-aktiven Cluster beruht darauf, die Gestalt der Spalten-bzw. Zeilenmatrizen V_{τ} und W_{σ} auszunutzen. Diese werden für Nicht-Blattcluster durch die Transfermatrizen aus den Söhnen konstruiert (vgl. Abschnitt 3.2). Während der Vorwärtstransformation werden für ein solches Cluster $C_{semi} \in T_{\Omega}^{< q}$ die Ersatzmassen nur aus (semi-)aktiven Söhnen errechnet. Da diese Cluster für mehrere Prozesse als semi-aktiv gekennzeichnet sind, werden global betrachtet alle Söhne in der Vorwärtstransformation beachtet. Ist eines dieser Cluster Bestandteil eines zulässigen Blockes $b_0 = C_{semi} \times C$ oder $b_1 = C \times C_{semi}$, so können die Prozesse ihre Berechnungen untereinander austauschen. Somit werden die Definitionen der Matrizen V_{τ} und W_{σ} aus Gleichung 3.2 beziehungsweise Gleichung 3.3 lediglich auf

Abbildung 3.12. Für einen Prozess P mit $id_P = 1$ und die Anzahl Prozesse p = 4 ist hier die Zuständigkeit des Prozesses P für Blöcke eines Blockbaumes farbig dargestellt. (Quelle: Börm u. a. [2014])

mehrere Prozesse verteilt und die Summation bei Bedarf aus den Teilergebnissen gebildet.

Unter der Voraussetzung, dass alle notwendigen Informationen für jeden Prozess vorhanden sind, ist die einzige Anpassung der Auswertung der Kopplungsmatrizen, dass sich die Auswertung auf (semi-)aktive Targetcluster beschränkt. Auch die Rückwärtstransformation wird wiederum lediglich auf (semi-)aktiven Clustern durchgeführt.

Letztlich verteilt sich die Arbeit durch diesen Ansatz sehr natürlich auf die Prozesse. In Abbildung 3.12 ist dies veranschaulicht. Hier ist für einen Prozess P mit $id_P=1$ und insgesamt p=4 Prozesse dargestellt, welche Zuständigkeit sich für den Prozess P und die Blöcke des Blockbaumes aus der Aufteilung der Targetcluster ergeben. In den Clusterbäumen links und unten sind in hellblau die Clusterbasen, in dunkelblau die Transfermatrizen und in schwarz schraffiert die Transfermatrizen der semi-aktiven Cluster dargestellt.

3.3.2. Datenverteilung

Eine weitere grundlegende Frage ist, wo welche Daten vorhanden sein sollten. Ein möglicher Ansatz wäre, dass jeder Prozess eine Kopie aller Daten hat. Allerdings würde der Hauptspeicher bei 32 Prozessen auf einem Knoten⁶ sehr schnell knapp werden. Außerdem sei an dieser Stelle an die weitere Skalierbarkeit des Problems erinnert (vgl. Abschnitt 2.2). Daher müssen die Daten über die Prozesse und Knoten verteilt werden.

Da wir im vorigen Kapitel bereits beschrieben haben, wie die Arbeit effektiv verteilt werden kann, ist es nur naheliegend die Daten auf die gleiche Weise zu verteilen. Jeder Prozess soll also genau die Teile der bodies-Struktur beinhalten, die zu seinen aktiven Clustern gehören. Dies entspricht den hellblau gekennzeichneten Teilen des Clusterbaumes links in Abbildung 3.12.

Weder bei reellen Daten noch bei unseren zufällig generierten Testdaten können wir davon ausgehen, dass diese nach Clustern sortiert vorliegen. Da ferner bei reellen Daten davon auszugehen ist, dass diese aus Gründen des Speicherbedarfs verteilt eingelesen werden müssen, generiert in unserem Programm ebenfalls jeder Prozess selbst zufällige Testdaten. Es wäre möglich die Daten so verteilt zu belassen, wie sie generiert beziehungsweise eingelesen wurden. Jedoch wäre dann während der Vorwärts- und Rückwärtstransformation eine große Menge an Kommunikation notwendig um diese entsprechend der Arbeitsverteilung durchzuführen. Daher ist es sinnvoll diese Daten einmal nach Prozesszugehörigkeit auszutauschen. Dies bedeutet zwar einen erheblichen Kommunikationsaufwand, dafür kann aber im Anschluss die Vorwärts- und Rückwärtstransformation komplett lokal und ohne weitere Kommunikation durchgeführt werden. Außerdem ist nicht davon auszugehen, dass viele Sonnen ihre bounding box während weniger Simulationsschritte verlassen. Daher kann dieser Kommunikationsaufwand als einmalig gewertet werden.

Diese Kommunikation wird während der Konstruktion des Clusterbaumes vorgenommen. Der zugehörige Quellcode ist in Listing 3.12 und Listing 3.13 aufgeführt.

⁶ Dies entspricht den Spezifikationen der meisten Knoten des RZ-Clusters der Uni Kiel.

Listing (3.12) Ausschnitt aus der parallelen Konstruktion des Clusterbaumes.

```
Cluster *constructClusterTree(bodies *b){
 2
 3
     preSort(root, 0);
 4
     new_bs = new_bodies(new_n);
 5
     alltoall_bodies(my_bs, send_count, send_displ,
 6
           new_bs, recv_count, recv_displ);
 7
     del_bodies(my_bs);
 8
     my_bs = new_bs;
 9
     //reset roots bodies*
10
     root->bodies = my_bs;
11
     root->n
                   = my_bs->n;
12
     [...]
13
```

Die Methode preSort(...) sortiert die bodies, indem sie den Clusterbaum bis zur Ebene SPLIT_DEPTH konstruiert. In den Arrays send_count[] und send_displ[] merkt sich jeder Prozess, wie viele Elemente seiner bodies und ab welcher Position er an welchen anderen Prozess zu senden hat. Respektive werden in den Arrays recv_count[] und recv_displ[] die Anzahlen und Pufferpositionen für die zu empfangenden Daten gespeichert. Diese werden über die Methode MPI_Gather(...) (vgl. Abbildung 2.11) zwischen den Prozessen ausgetauscht. So bekommt jeder Prozess von den anderen mitgeteilt, wie viele Elemente er von ihnen gesendet bekommen wird. Die Gesamtgröße der künftigen bodies-Memberarrays wird in new_n gespeichert.

Der Datenaustausch findet über die Methode MPI_Alltoallv(...) (vgl. Abbildung 2.11 und Listing 2.3) statt. Diese führt mit Hilfe der zuvor konstruierten count- und displ-Arrays gerade eine Transformation der "Prozess-Daten-Matrix" aus. Dadurch ist es in einem einzigen Kommunikationsschritt möglich, dass jeder Prozess jedem anderen die zugehörigen Daten schickt und respektive von diesem erhält. Danach werden noch einige Variablen aktualisiert und schließlich wird der Clusterbaum wie gehabt vollständig bis zur Ebene MAX_DEPTH konstruiert.

In Abschnitt 3.2.1 wurde der Programmparameter pot vorgestellt, der die Anzahl an Testsonnen bestimmt. Bei der parallelen Variante generiert jeder Prozess gerade 2^{pot} Sonnen. Die globale Menge Ω hat also $|\Omega|=2^q2^{\text{pot}}=2^{q+\text{pot}}$ Elemente. Daher wird die maximale Baumtiefe MAX_DEPTH $=q+\text{pot}-\mathfrak{l}$ gesetzt. Dadurch wird die durchschnittliche Blattgröße von $2^{\mathfrak{l}}$ Elementen beibehalten. Im Folgenden wird die Zahl $n:=|\Omega|=2^{q+\text{pot}}$ für alle bodies auf allen Prozessen und die Zahl $m:=2^{\text{pot}}$ für die durchschnittliche Anzahl bodies pro Prozess verwendet.

Listing (3.13) Diese Methode sortiert die lokalen bodies nach Prozesszugehörigkeit.

```
1
   void preSort(Cluster *c, int depth){
 2
     if(depth == SPLIT_DEPTH){
3
       c->active = ++split_count;
 4
 5
       //get count and start index of data to send to process #split_count
 6
       send_count[split_count] = c->n;
 7
       send_displ[split_count] = split_count == 0 ? 0 :
 8
                   send_displ[split_count - 1] + send_count[split_count - 1];
9
10
       MPI_Gather(&send_count[split_count], 1, MPI_INT, recv_count, 1,
           MPI_INT, split_count, MPI_COMM_WORLD);
11
       if(world.rank == c->active){
12
         new_n = 0;
13
         for(int i = 0; i < world.size; i++){</pre>
14
      recv_displ[i] = new_n;
15
      new n
                   += recv_count[i];
16
         }
17
       }
18
     }
19
     [...] // Sortierung und rekursiver Aufruf
20
```

3.3.3. Kommunikation

Als Resultat der Aufteilung der Daten müssen wir uns nun Gedanken machen, welche Daten für die Auswertungen der Matrizen zusätzlich zu den lokal vorhandenen gebraucht und damit kommuniziert werden müssen.

In Abbildung 3.15 sind diese Zusammenhänge in Bezug auf einen Prozess $P \in \mathfrak{P}$ visualisiert. Dabei gilt wieder $id_P = 1$ und p = 4. Die dunkel schraffierten Blöcke sind diejenigen, für deren Auswertung Daten von P benötigt werden – entweder Berechnungen aus der Vorwärtstransformation für zulässige oder die Daten von Sonnen für unzulässige Blöcke. Der Prozess P muss die Daten aus den zugehörigen Clustern also an die anderen Prozesse übermitteln. Umgekehrt benötigt P die Daten zu den hell schraffierten Blöcken für seine Auswertung der Kopplungsmatrizen und Rückwärtstransformation. Lediglich die nicht schraffierten Blöcke benötigen keine Kommunikation, da alle Daten lokal verfügbar sind. Der Datenaustausch kann wie zuvor wieder durch eine Transformation der "Prozess-Daten-Matrix" und damit über MPI_Alltoallv(...) in einem Kommunikationsschritt bewerkstelligt werden.

Diesmal liegen die Daten allerdings nicht sequentiell hintereinander, sondern sind über den Clusterbaum und die bodies-Arrays verteilt. Hinzu kommt, dass für zulässige und

3. Hauptteil

Abbildung 3.15. Hier sind einige Implikationen der Datenverteilung visualisiert. Die schraffierten Blöcke benötigen Datenaustausch mit Prozess *P* (Quelle: Börm u. a. [2014])

unzulässige Blöcke unterschiedliche Daten ausgetauscht werden müssen. Für zulässige Blöcke brauchen lediglich die errechneten Ersatzmassen ausgetauscht werden, da die Interpolationspunkte bereits von jedem Prozess berechnet wurden. Dies ist also nur ein double-Array mit verhältnismäßig wenigen Daten. Für unzulässige Blöcke hingegen müssen alle zugehörigen Daten aus den Memberarrays x, y, z und m sowie die Anzahl der zum Cluster gehörenden Sonnen übertragen werden.

Auf Grund der Fragmentierung der Daten müssen diesmal für die Kommunikation manuell Sende- und Empfangspuffer angelegt werden. Der zugehörige Code ist in der Datei eval.c zu finden und wird im Folgenden erläutert.

Die Methode void _prep_comm(Cluster *ct, Cluster *cs) durchläuft ebenso wie die

in Listing 3.10 dargestellte Methode _eval(...) den impliziten Blockbaum und sucht nach zulässigen und unzulässigen Blöcken mit (semi-)aktivem Targetcluster. Pointer zu diesen Source- und Targetclustern werden in Arrays von Vektoren⁷ gespeichert.⁸ Dabei wird darauf geachtet, dass die Daten aus (semi-)aktiven Clustern, für die mehrere Prozesse zuständig sind, für alle beteiligten Prozesse vermerkt werden.

Im Anschluss nutzt die Methode **void** _prep_buffers() diese gesammelten Daten, um die Sende- und Empfangspuffer zu allozieren und mit den zu sendenden Daten zu füllen. Sind diese Puffer bereit, kann die Kommunikation durchgeführt werden. Dazu wird die Methode **void** _communicate() aufgerufen. Dies führt mit den entsprechenden Puffern und den gesammelten Anzahl- und Positionsdaten insgesamt sechs Aufrufe von MPI_Alltoallv(...) durch: Eine für die Ersatzmassen der Cluster, und fünf für die benötigten bodies-Daten, da die einzelnen Koordinatenrichtungen, die Anzahlen pro Cluster und die Massen in einzelnen Arrays vorliegen.

Nachdem die Kommunikation vollendet wurde, müssen die Daten noch an die richtigen Stellen vermittelt werden. Die Methode **void** _finalize_comm() kopiert die empfangenen Ersatzmassen in die Cluster, in denen diese benötigt werden. Dabei werden die Ersatzmassen von Clustern, die sich aus den Ersatzmassen mehrerer Prozesse zusammensetzen, summiert (vgl. Gleichung 3.2 bzw. Gleichung 3.3). Dies hat den Vorteil, dass wir so später nicht zu unterscheiden brauchen, wo welche Ersatzmassen zu finden sind. Die empfangenen bodies-Daten werden nicht kopiert, um Speicherplatz zu sparen. Die zugehörigen Cluster müssen aber angepasst werden. Der Startindex und die Anzahl wird entsprechend der Empfangspuffer gesetzt. Später können so die Daten direkt aus diesen Puffern abgerufen werden.

Nun kann die Auswertung der Kopplungsmatrizen wie gehabt durch Aufrufen der Methode _eval(...) durchgeführt werden. Die einzigen Anpassungen sind das Auslassen von Blöcken mit inaktivem Targetcluster und die Unterscheidung, ob die bodies-Daten in der lokalen bodies Struct oder in den Empfangspuffern zu finden sind.

Abschließend werden die Daten in inaktiven Clustern durch die Methode **void** _clear_inactive_clusters() wieder auf 0 gesetzt, da diese beim nächsten Simulationsschritt nicht überschrieben werden würden. (Semi-)aktive Cluster werden während der Vorwärtstransformation neu berechnet und Cluster, für die genau ein anderer Prozess zuständig ist, werden nach der Kommunikation mit den neuen Daten überschrieben. Diese brauchen also nicht eigens geleert werden, um sicherzustellen, dass keine alten Daten verbleiben und zu fehlerhaften Berechnungen führen.

Durch diese Schritte haben wir unseren Algorithmus nun so angepasst, dass Teilprozesse weitestgehend unabhängig voneinander parallel an der Berechnung der Gravitationskräfte arbeiten können. Das nächste Kapitel wird noch zeigen, dass diese Arbeitsteilung nahezu optimal ist.

Die Implementierung der vector-Struktur sowie zugehörige Methoden wurden von https://gist.github.com/-EmilHernvall/953968 übernommen und leicht modifiziert und erweitert.

 $^{^8\,}$ Mit einem Vektor ist in diesem Fall eine Struktur gemeint, die ein Array mit flexibler Länge darstellt.

Evaluation

Börm und Bendoraityte [2008] haben gezeigt, dass deren paralleler Ansatz sehr nah an die optimale parallele Effizienz von $\mathcal{O}(\frac{nk}{p})$ herankommt, falls n deutlich größer als p ist. Dabei gilt: $n:=|\Omega|$ ist die Anzahl Sonnen, $p:=|\mathfrak{P}|$ ist die Anzahl Prozesse und $k:=k_0^3$ ist die Anzahl Interpolationspunkte, mit dem Grad der eindimensionalen Lagrange-Polynome k_0 . Außerdem sei im Folgenden $m:=\frac{n}{p}$ die durchschnittliche Anzahl Elemente pro Prozess.

Im Folgenden gilt es, die Argumentation von Börm und Bendoraityte [2008] auf den vorliegenden Algorithmus zu übertragen und durch Daten aus praktischen Laufzeitmessungen zu stützen. Da unser Algorithmus mit impliziten Blockbäumen und \mathcal{H}^2 -Matrizen arbeitet, wird die Konstruktion nicht weiter behandelt. Stattdessen konzentrieren wir uns auf eine Abschätzung für die Laufzeit.

4.1. Theoretische Abschätzung

Zunächst treffen wir auch für diesen Abschnitt eine Annahme, die wir bereits bei der Vorstellung des Algorithmus als sinnvoll erachteten:

Annahme 1.

Es existiert $q \in \mathbb{N}$, sodass für $p := |\mathfrak{P}|$ gilt:

$$p = 2^{q}$$
.

Zusätzlich zu der sichergestellten vollständigen Binärbaumstruktur benötigt der Clusterbaum für einige Abschätzungen weitere Eigenschaften:

Annahme 2.

Es existiert eine Konstante C_{st} , sodass für alle Teilbäume T_{sub} mit $\tau := root(T_{sub}) \in T_{\Omega}^{(q)}$ gilt: $|T_{sub}|^1 \leqslant C_{st} \frac{n}{kn}$ und $|\tau| \leqslant C_{st} \frac{n}{n}$.

Diese Annahme wurde durch die Wahl der Abbruchbedingung bei der Konstruktion des Clusterbaumes sichergestellt. Es gilt $|T_{sub}| = \frac{1}{2} \frac{n}{kp}$ (vgl. Gleichung 3.4), da jeder Prozess gerade einen Teilbaum konstruiert, wie er zuvor vom gesamten nicht-parallelisierten Algorithmus vorgenommen wurde (vgl. letzter Absatz in Abschnitt 3.3.2). Zwar lässt sich

 $^{^{1}}$ $|T_{sub}|$ bezeichnet die Anzahl Knoten im Baum.

4. Evaluation

die Anzahl Elemente der Cluster $\tau \in T_{\Omega}^{(q)}$ nicht exakt angeben, da die Unterteilung in Sohncluster nicht nach Kardinalität vorgenommen wird, jedoch beträgt diese im Schnitt gerade $m=\frac{n}{v}$. Die Konstante C_{st} kann also als ≈ 1 angenommen werden.

Die Methode _setup(Cluster *c, int depth), die in unserem Algorithmus die Verteilung der Cluster auf Prozesse vornimmt, gewährleistet einige Eigenschaften, die wir im Folgenden noch benötigen werden.

Bemerkung 4.1. (Zuständigkeiten)

Für den verteilten Clusterbaum T_{Ω} gelten folgende Eigenschaften:

Für
$$\tau \in T_{\Omega}^{(\geqslant q)}$$
 existiert genau ein $P \in \mathfrak{P}$ mit τ .activ = id_P . (4.1)

Jeder Prozess $P \in \mathfrak{P}$ berechnet auf jeder Ebene $T_{\Omega}^{(q')}$, $q' \in \underline{q-1}_{0}$ genau eine Transfermatrix. (4.2)

Aus Gleichung 4.2 folgt direkt mit $q = \log_2 p$ (vgl. Abschnitt 3.3.1):

Die Anzahl Transfermatrizen
$$E_{\tau}$$
, $\tau \in T_{\Omega}^{(\leqslant q)}$ pro Prozess beträgt q . (4.2')

Da wir einen parallel arbeitenden Algorithmus haben, ist es für die Abschätzung des Rechenaufwandes nicht ausreichend, die Anzahl an Operationen zu zählen. Da die Prozesse kommunizieren müssen, ist regelmäßig eine Synchronisation der Prozesse notwendig. So wird es vorkommen, dass ein Prozess P_i schneller seine Berechnungen durchführt als ein Prozess P_i und dann auf diesen warten muss, bevor die Kommunikation stattfinden kann.

Daher verwenden wir einen ähnlichen Ansatz, wie er auch beim BSP-Modell [Valiant 1990] verwendet wurde: Die gesamte Berechnung wird in eine Sequenz von $s \in \mathbb{N}_0$ Superschritten eingeteilt, die jeweils unabhängig von den anderen Prozessen von einem Prozesse durchgeführt werden können. Der i-te Superschritt startet simultan, sobald alle Prozesse den (i-1)-ten Superschritt abgeschlossen haben, $i \in \underline{s}$. Als Zeiteinheit verwenden wir die abstrahierte Einheit Zyklus. Ein Zyklus sei dabei lang genug, um eine arithmetische Operation, einen Speicherzugriff oder eine Sende- oder Empfangsoperation für einen double-Wert durchzuführen.

Lemma 4.2. (Vorwärtstransformation)

Die parallele Vorwärtstransformation benötigt $\mathcal{O}(\frac{nk}{p} + k^2 \log_2 p)$ Zyklen.

Beweis: Die gesamte Vorwärtstransformation kann in einem Superschritt abgehandelt werden, da keinerlei Kommunikation notwendig ist.

Zunächst werden alle aktiven Cluster ausgewertet. Seien also $P \in \mathfrak{P}$ und T^P_{Ω} der aktive Teilbaum dieses Prozesses. Für ein Blattcluster $\sigma \in \mathcal{L}(T^P_{\Omega})$ müssen für alle k Ersatzmassen $|\sigma|$ Berechnungen durchgeführt werden. Dann gilt mit Annahme 2, dass insgesamt

$$\sum_{\sigma \in \mathcal{L}(T_{\Omega}^{p})} k|\sigma| = k \sum_{\sigma \in \mathcal{L}(T_{\Omega}^{p})} |\sigma| \approx km$$

$$\leqslant C_{st} \frac{nk}{p}$$

Operationen ausgeführt werden müssen.

Für Nicht-Blattcluster $\sigma \in T^p_\Omega \setminus \mathcal{L}(T^p_\Omega)$ sind für die k Ersatzmassen und beide Sohncluster wiederum k Auswertungen notwendig. Damit folgt, dass weitere

$$\begin{split} &\sum_{\sigma \in T^p_{\Omega} \setminus \mathcal{L}(T^p_{\Omega})} &\sum_{\tilde{\sigma} \in sons(\sigma)} 2k^2 \leqslant \sum_{\tilde{\sigma} \in T^p_{\Omega}} 2k^2 \\ &= 2k^2 |T^p_{\Omega}| \leqslant 2k^2 C_{st} \frac{n}{kp} = 2C_{st} \frac{nk}{p} \end{split}$$

Operationen ausgeführt werden müssen.

Für die Ebenen $T_{\Omega}^{(< q)}$ werden nun jeweils die k Ersatzmassen aus den k Ersatzmassen eines Sohnclusters berechnet. Da es gerade $q = \log_2(p)$ Ebenen gibt, führt dies insgesamt zu obiger Abschätzung.

Lemma 4.3. (Rückwärtstransformation)

Die parallele Rückwärtstransformation benötigt $\mathcal{O}(\frac{nk}{p} + k^2 \log_2 p)$ Zyklen.

Beweis: Der Beweis läuft analog zu dem von Lemma 4.2, die Berechnung verläuft lediglich von der Wurzel zu den Blättern statt wie bei der Vorwärtstransformation umgekehrt. \Box

Lemma 4.4. (Kopplungsmatrizen und Nahfeld)

Die Auswertung der Kopplungs- und Nahfeldmatrizen benötigt $\mathcal{O}(\frac{nk}{\nu} + k^2 \log_2 p)$ Zyklen.

Beweis: Von Börm und Bendoraityte [2008] wurde mit Lemma 3 bewiesen, dass der Speicherbedarf für Nah- und Fernfeldmatrizen $\mathcal{O}(\frac{nk}{p}+k^2\log_2 p)$ beträgt. Da der Algorithmus für jedes Element der Matrizen S_b und N_b nicht mehr als zwei Auswertungen vornimmt, liegt auch die benötigte Anzahl Zyklen in $\mathcal{O}(\frac{nk}{p}+k^2\log_2 p)$. Auch in diesem Schritt ist keine Kommunikation notwendig, sodass auch diese Auswertung in einem Superschritt stattfinden kann.

Bleibt noch die Kommunikation. Diese gliedert sich in zwei Superschritte: Das Vorbereiten mit dem anschließenden Senden der Daten und das Empfangen der Daten.

Lemma 4.5. (Kommunikation)

Die Kommunikation benötigt $\mathcal{O}(\frac{nk}{p} + k \log_2 p)$ Zyklen.

Beweis: Die Vorbereitung der Kommunikation arbeitet nach derselben Struktur wie die Auswertung der Kopplungs- und Nahfeldmatrizen. Anders als während der Kopplung werden allerdings die k Ersatzmassen lediglich gesendet, und nicht jeweils mit k weiteren Ersatzmassen verrechnet. Insgesamt fallen also $\mathcal{O}(\frac{nk}{p} + k \log_2 p)$ Zyklen für die Kommunikation an. Da eben so viele Elemente gesendet und empfangen werden müssen, liegt der Gesamtaufwand für die Kommunikation in eben dieser Komplexitätsklasse.

4. Evaluation

Für jeden Superschritt wurde also gezeigt, dass dieser $\mathcal{O}(\frac{nk}{p} + k^2 \log_2 p)$ oder weniger Zyklen benötigt. Damit folgt für den gesamten Algorithmus:

Theorem 4.6. Die Berechnung des Algorithmus benötigt $O(\frac{nk}{p} + k^2 \log_2 p)$ Zyklen.

Börm und Bendoraityte [2008] merken im Anschluss an Theorem 1 noch an, dass für genügend große Probleme, in unserem Fall $m=\frac{n}{p}\geqslant k^2\log_2 p$, die optimale Komplexitätsordnung von $\mathcal{O}(\frac{nk}{p})$ erreicht wird.

4.2. Laufzeitmessung

Die theoretischen Argumente des letzten Abschnitts wollen wir nun durch die Messung von Laufzeitdaten des Algorithmus untermauern.

Um diese Daten zu sammeln, wurde das vorliegende Programm auf dem NEC HPC-Linux-Cluster der CAU Kiel ausgeführt. Jeder Knoten dieses Clusters ist mit 192 GB Arbeitsspeicher und zwei Intel Xeon Gold 6130 bestückt, die einen Kerntakt von 2,1 GHz aufweisen. Verbunden sind die Knoten über EDR infiniband. Als Compiler wurden der Intel-C-Compiler 17.0.4 sowie der Intel-MPI-Compiler 17.0.4 verwendet.

Es wurden unterschiedliche Testreihen durchgeführt, bei denen entweder die Anzahl Prozesse oder die Anzahl Sonnen variiert wurde, um beide Ansätze unabhängig voneinander testen zu können. Alle Tests wurden mit Lagrange-Polynomen von Grad 3 in jeder Richtung approximiert, was zu $3^3=27$ Interpolationspunkten führt. Außerdem wurde jeder Testlauf 10 Mal wiederholt und es wurden immer vollständige Knoten im Clustersystem angefordert, um stabile Daten zu ermitteln.

Approximation

In den ersten beiden Testreihen wurde die Anzahl Sonnen pro Prozess bei konstanter Anzahl Prozesse variiert. Die Messergebnisse sind in Tabelle 4.1 sowie in Abbildung 4.1 aufgeführt.

Abbildung beziehungsweise Tabelle (a) bezieht sich jeweils auf die Testreihe mit einem Prozess, (b) auf die Testreihe mit 32 Prozessen. Trotz einiger Schwankungen, deren Herkunft nicht festgestellt werden konnte, ist der lineare Zuwachs gut zu erkennen. Bei der eingezeichneten Geraden handelt es sich um eine von gnuplot berechnete Regressionsgerade. Der Testlauf mit 32 Prozessen zeigt eine etwas stärkere Steigung, die vermutlich auf den erhöhten Kommunikationsaufwand zurückzuführen ist. Es sei auch angemerkt, dass bei gleicher Anzahl Elemente pro Prozess das Gesamtproblem 32-Mal größer ist. Dennoch ist zu erkennen, dass die Approximation durch Interpolation und die Nutzung der \mathcal{H}^2 -Struktur in beiden Fällen den theoretischen Berechnungen auch in reellen Anwendungen gerecht wird und die Komplexität von $\mathcal{O}(n^2)$ auf $\mathcal{O}(kn)$ senken kann. Da k wesentlich kleiner als n ist, ist damit viel gewonnen.

Tabelle 4.1. In dieser Tabelle sind die Laufzeitmessungen der ersten beiden Testläufe aufgeführt.

#Elemente	Laufzeit [s]		
pro Prozess			
2 ¹⁰	0,008324		
2 ¹¹	0,02569		
2 ¹²	0,04406		
2 ¹³	0,1348		
2^{14}	0,503		
2^{15}	0,6866		
2^{16}	1,905		
2^{17}	5,271		
2 ¹⁸	6,454		
2 ¹⁹	17,52		
2^{20}	46,63		
2^{21}	55,57		
2^{22}	154,5		
2^{23}	413,1		
2^{24}	476		
2^{25}	1270		

#Elemente	Laufzeit [s]		
	Lauizeit [5]		
pro Pozess			
2 ¹⁰	0,02877		
2^{11}	0,06701		
2^{12}	0,1962		
2^{13}	0,3097		
2^{14}	0,7803		
2^{15}	2,402		
2 ¹⁶	3,288		
2 ¹⁷	8,54		
2 ¹⁸	19,9		
2 ¹⁹	27,01		
2^{20}	65,41		
2 ²¹	170		
2 ²²	239,1		
2^{23}	580,4		

geführt und entspricht damit der nichtparallelen Variante.

Um diese \mathcal{H}^2 -Struktur nutzen zu können, hatten wir die eigentliche Kernfunktion durch Interpolation approximiert. Zwar haben wir über eine Zulässigkeitsbedingung sichergestellt, dass die Ergebnisse "vernünftig" sind und Beweise angeführt, nach denen diese Approximation mit steigender Ordnung exponentiell gegen die eigentliche Kernfunktion konvergiert, aber wie ungenau wird die Berechnung durch die Approximation?

Tabelle 4.2. Die Tabelle zeigt den Approximationsfehler des parallelen und nicht-parallelen Algorithmus in Abhängigkeit zur Anzahl Interpolationspunkte k.

k	1	8	27	64	125	216	343
Fehler ^a	$2,66e^{-2}$	$3,99e^{-3}$	$5,26e^{-4}$	$5,79e^{-5}$	$5,14e^{-6}$	$1,08e^{-6}$	$1,96e^{-7}$
Fehler ^b	$1,51e^{-2}$	$2,25e^{-3}$	$2,79e^{-4}$	$3,09e^{-5}$	$2,97e^{-6}$	$5,66e^{-7}$	$1,04e^{-7}$
Laufzeit [s]	0,0486	0,0967	0,259	0,454	0,864	1,09	1,3

^a Ausführung mit einem Prozess. Entspricht der nicht-parallelisierten Variante.

⁽a) Dieser Testlauf wurde mit p=1 durch- (b) Dieser Testlauf wurde mit p=32 durchgeführt, um genau ein Knoten des Rechenclusters auszulasten.

^b Ausführung mit vier Prozessen, zum Überprüfen der Korrektheit der Parallelisierung.

4. Evaluation

Dazu wurden zwei Testreihen auf dem NEC-Cluster durchgeführt. Einmal wurde der Algorithmus mit nur einem Prozess ausgeführt, um eine nicht-parallel laufende Variante zu testen. Dazu wurde die Anzahl Elemente auf $n=2^{16}$ gesetzt. Um die parallel arbeitende Variante vergleichen zu können, wurde eine weitere Testreihe mit p=4, $m=2^{14}$ und so mit $n=4\cdot m=2^{16}$ durchgeführt.

Um zu ermitteln, welchen Fehler die Approximation induziert, wurde zunächst das approximierte Simulationsergebnis berechnet. Anschließend wurden die Kräfte aller Sonnen durch den nicht-approximierten vollbesetzten Algorithmus berechnet. Der Quotient der beiden Ergebnisse gibt dann die relative Abweichung des approximierten Algorithmus von der tatsächlichen Lösung an und ist in der Tabelle in den beiden "Fehler"-Zeilen zu finden.

Da es umständlich ist, beide Testläufe mit exakt denselben Daten auszuführen, wurden jeweils getrennt die Abweichungen von der korrekten Lösung berechnet. Somit lassen sich beide Testläufe indirekt vergleichen.

Wie an den Daten zu erkennen ist, nimmt der Fehler bei jeder Erhöhung der Interpolationsordnung k_0 um einen Faktor zwischen 5 und 10 ab. Unsere Approximation konvergiert also in beiden Testläufen wie vorgesehen exponentiell. Allerdings fällt auf, dass die parallelisierte Variante fast durchgängig um etwa Faktor 2 besser approximiert – eine Verbesserung, die ich mir nicht ohne Weiteres erklären kann.

Parallelität

Bereits durch die höhere Steigung der Geraden in Abbildung 4.1.(b) gegenüber der in (a) lässt sich erahnen, dass durch die Kommunikation bei der Parallelisierung ein gewisser Overhead verursacht wird. Um dies genauer zu untersuchen, wurde die Anzahl Sonnen

Tabelle 4.3. Tabelle der gemessenen Laufzeitdaten in Abhängigkeit zur Anzahl Prozesse.

#Prozesse	Laufzeit [s]		
1	46,54		
2	27,73		
4	36,94		
8	51,94		
16	31,29		
32 ^a	49,42		
32^{b}	40,82		
64	64,96		
128	42,27		

^a Die 32 Prozesse befanden sich auf einem Knoten des Clustersystems.

^b Die 32 Prozesse verteilten sich zu je 16 auf zwei Knoten des Clustersystems.

pro Prozess² auf $m = 2^{20}$ fixiert und die Anzahl Prozesse variiert. Die Messdaten sind in Tabelle 4.3 und Abbildung 4.2 zu finden.

Die Daten unterliegen leider recht großen Schwankungen. Woher diese Schwankungen stammen, muss an anderer Stelle genauer untersucht werden, da es den Umfang und die Zielsetzung dieser Arbeit übersteigt. Allerdings waren diese Ergebnisse in sich sehr stabil. Auch mehrfache Wiederholungen der einzelnen Testläufe haben immer bis auf wenige Zehntelsekunden dieselbe Zeit benötigt. Trotzdem scheint mir, dass die errechnete Regressionsgerade die allgemeine Tendenz der Laufzeit einigermaßen akkurat wiedergibt.

Ein gewisser Anstieg der Laufzeit ist zu erwarten, da der Kommunikationsaufwand steigt. Insgesamt zeigt sich aber die fast optimale Ausnutzung der Parallelität.

Ein interessanter Effekt kann an den mit Fußnoten a und b gekennzeichneten Testläufen beobachtet werden. Während bei a alle Prozesse auf einem Knoten gearbeitet haben, wurden diese für den Testlauf b auf zwei Knoten verteilt. Eine an sich naheliegende Vermutung wäre, dass die Testparameter für a bessere Laufzeiten ergeben müssten, da die Kommunikation auf einem Rechner und ohne Netzwerkbeteiligung stattfinden kann. In der Realität hat sich aber gezeigt, dass es gerade umgekehrt ist. Vermutlich behindern sich die vielen Speicherzugriffe bei dem Testlauf auf einem Knoten so stark, dass es effektiver ist einen Teil der Kommunikation über das Netzwerk zu führen. Auch dieser Effekt müsste gegebenenfalls an anderer Stelle genauer untersucht werden.

² Mit einer Verdoppelung der Prozessanzahl geht also auch eine Verdopplung der Anzahl Sonnen einher.

4. Evaluation

(a) Dieser Testlauf wurde mit p = 1 durchgeführt und entspricht damit der nicht-parallelen Variante.

(b) Dieser Testlauf wurde mit p=32 durchgeführt, um genau einen Knoten des Rechenclusters auszulasten.

Abbildung 4.1. In dieser Abbildung ist der Zusammenhang der Laufzeit mit der Anzahl an Elementen pro Prozess dargestellt.

Abbildung 4.2. Dieses Diagramm zeigt den Anstieg der Laufzeit in Abhängigkeit zur Anzahl Prozesse.

4. Evaluation

4.3. Speicherbedarf

Unser Algorithmus nutzt die Struktur der \mathcal{H}^2 -Matrizen weitestgehend implizit. Daher haben wir auch darauf verzichtet, eine theoretische Speicherplatzabschätzung durchzuführen. Abschätzungen für vollständig konstruierte \mathcal{H}^2 -Matrizen wurden bereits erarbeitet (vgl. beispielsweise Börm und Bendoraityte [2008], Kapitel 4.2 *Storage complexity*). Diese sind zwar vermutlich für unseren reichlich pessimistisch, jedoch auch für hinreichend große n linear. Gleichwohl ist natürlich von Interesse, welchen Speicherbedarf unser Algorithmus aufweist.

Dazu wurde aus obiger Testreihe mit p=32 und $k_0=3$, also k=27, zusätzlich zur Laufzeit der Speicherbedarf des Algorithmus in Abhängigkeit zur Problemgröße n ermittelt. Der Wert m, also die Anzahl Sonnen pro Prozess, wurde dazu wie zuvor variiert. In Tabelle 4.4 sind die Ergebnisse zu finden. Zusätzlich sind diese in Abbildung 4.3 veranschaulicht. Dabei ist jeweils der Speicherbedarf eines einzelnen Prozesses aufgeführt.

Gut zu erkennen ist die lineare Komplexität. Bei den Kurven handelt es sich nicht um Regressionsgeraden, sondern direkt um Verbindungsstrecken der Messerwerte. Der prognostizierte lineare Speicherbedarf ist damit also bestätigt. Den größten Anteil am Gesamtspeicherbedarf macht der Clusterbaum aus, gefolgt von den Daten der bodies. Die Kommunikationspuffer sind lediglich Teil des sonstigen Speicherbedarfs und fallen damit

Tabelle 4.4. Diese Tabelle zeigt die gemessenen Kategorien des Speicherbedarfs eines einzelnen Prozesses.

#Elemente	Speicherbedarf	Speicherbedarf	Speicherbedarf	Speicherbedarf
pro Prozess	gesamt [MB]	Clusterbaum	bodies [MB]	sonstiges [MB]
		[MB]		
2 ¹⁰	0,91	0,24	0,09	0,58
2 ¹¹	1,31	0,42	0,18	0,71
2^{12}	2,48	0,79	0,35	1,35
2 ¹³	4,28	1,53	0,69	2,06
2^{14}	7,23	3,01	1,38	2,84
2 ¹⁵	13,66	5,98	2,76	4,92
2 ¹⁶	24,73	11,92	5,51	7,3
2 ¹⁷	45,22	23,8	11,01	10,41
2 ¹⁸	87,43	47,49	22,02	17,92
2 ¹⁹	166,47	95,09	44,04	27,34
2^{20}	318,14	190,18	88,08	39,88
2^{21}	621,1	380,21	176,16	64,73
2^{22}	1216,34	760,3	352,32	103,72
2 ²³	2377,01	1519,89	704,65	152,47

verhältnismäßig wenig ins Gewicht.

Obwohl wir durch die Nutzung der der \mathcal{H}^2 -Matrizen lineare statt quadratische Komplexität erreichen, und durch die Verteilung der Daten weiteren Speicherplatz einsparen, benötigt der Algorithmus dennoch viel Hauptspeicher. Bei 32 Prozessen auf einem Knoten, von denen bei $m=2^{23}=8.388.608$ jeder ungefähr 2,5 GB Arbeitsspeicher benötigt, summiert sich dies zu einem stolzen Speicherbedarf von 80 GB. Das Monitoring-System des HPC-Clusters hat mit einem Spitzenbedarf von 109 GB sogar noch etwas mehr Speicherbedarf gemessen. Diese Diskrepanz könnte auf Speicherfragmentierung zurückzuführen sein. Entscheidend ist, dass m bei dem zur Verfügung stehenden Hauptspeicher von 196 GB nicht weiter gesteigert werden kann.

Hinzu kommt, dass selbst aus inaktiven Clustern Daten für die Ermittlung von zulässigen Blöcken benötigt werden. Daher würde der Speicherbedarf des Clusterbaumes durch Erhöhung der Anzahl Prozesse selbst bei konstanter Anzahl Elemente pro Prozess voraussichtlich weiter ansteigen. Hier besteht also sicherlich noch Optimierungspotential.

Abbildung 4.3. Diese Abbildung zeigt den Speicherbedarf in MB in Abhängig zur Anzahl Sonnen pro Prozess. Die Kurven zeigen den Speicherbedarf eines einzelnen Prozesses: in lila den maximalen Gesamtbedarf, in grün den für den Clusterbaum, in blau den für die bodies-Struct und in gelb allen weiteren Speicherbedarf.

Fazit und Ausblick

5.1. Fazit

Wir haben gesehen, dass sich hierarchische Matrizen, speziell \mathcal{H}^2 -Matrizen, sehr gut eignen, um vollbesetzte Matrizen zumindest näherungsweise und effizient zu berechnen. Indem wir die Berechnung der Gravitationskräfte durch Interpolation approximierten, konnten wir den Ansatz der \mathcal{H}^2 -Matrizen nutzen, um den Berechnungsaufwand von $\mathcal{O}(n^2)$ auf einen Aufwand von $\mathcal{O}(nk)$ reduzieren. Für konstantes k erhalten wir also lineare Komplexität.

Da wir weder eine explizite Matrix, noch einen expliziten Blockbaum speichern, ist in unserem Fall der durch \mathcal{H}^2 -Matrizen erreichbare lineare Speicherbedarf von zweitrangiger Bedeutung. Tatsächlich liegt der Speicherbedarf sogar höher als bei dem nicht-optimierten Grundalgorithmus, da dieser lediglich die bodies speichert. Indem wir also Speicheraufwand für einen Clusterbaum investieren, erhalten wir eine signifikant verbesserte Laufzeit, ohne die dieses Problem nicht in sinnvoller Zeit lösbar wäre.

Weiterhin wurde gezeigt, dass sich der entstandene Algorithmus gut auf viele Rechner verteilen lässt. Für große n ist durch die Parallelisierung des Algorithmus nahezu optimale Komplexität erreichbar. Allerdings kann auch hier der erhöhte Speicherbedarf bei großem m und n=mp zu einem Problem werden. Hier ist weitere Optimierung erforderlich.

5.2. Ausblick

Trotz allem was wir in dieser Arbeit erreicht haben, bleiben noch viele Optimierungsmöglichkeiten

In dieser Arbeit haben wir einen Algorithmus erarbeitet, der sich auf das Message-Passing-Modell beschränkt. Das hat Vorteile, aber auch Nachteile. Beispielsweise wird durch das Message-Passing-Modell der Nutzen von Shared Memory ignoriert. Das erhöht den Speicherbedarf, da jeder Prozess Kopien von Daten von anderen Prozessen benötigt. Zudem erhöht sich die Laufzeit, da sich auch Prozesse, die auf einem gemeinsamen Knoten arbeiten, über Daten explizit austauschen müssen. Ein kombinierter Ansatz könnte die Laufzeit weiter optimieren. Auf den einzelnen Knoten des Rechenclusters könnten die Vorteile von Shared Memory genutzt werden, indem die Parallelisierung hier auf anderem Wege als durch MPI erfolgt. Die benötigte Kommunikation zwischen Knoten könnte weiterhin über Message Passing implementiert werden.

5. Fazit und Ausblick

Außerdem wurde bei dem Algorithmus darauf geachtet, dass die Datenstrukturen eine Vektorisierung möglich machen. Viele der Berechnungen in diesem Algorithmus eignen sich dafür, als Vektoren verarbeitet zu werden. Dies hätte das Potential, zumindest diese Teile der Berechnung nochmals um einen Faktor zu beschleunigen.

Eine weitere Option, die in Zukunft zu prüfen wäre, ist, die Technologie von Grafikkarten für dieses Problem zu nutzen. Bei diesen handelt es sich allerdings um spezialisierte Recheneinheiten. Eventuell eignen diese sich daher nicht uneingeschränkt, um gravitationelle Wechselwirkungen zu berechnen.

Der Ansatz in dieser Arbeit, über Approximation die Komplexität zu reduzieren und die Berechnung dann effizient parallel durchführen zu lassen, wurde nur am Beispiel der Gravitationskräfte eingeführt. Gleichzeitig wurde die Grundlage bewusst sehr allgemein eingeführt, sodass voraussichtlich viele weitere Probleme mit ähnlicher Struktur ebenfalls durch diesen Ansatz effizient gelöst werden können.

Literaturverzeichnis

- [Akinci 2012] Ö. Akinci. MPI Point to Point Communication. Juni 2012. URL: http://training.uhem.itu.edu.tr/docs/14haziranmpi/01.1_14Haz2012_MPI_P2P_III_Block-NonBlock-Comm_e2.pdf. (Siehe Seiten 30, 31)
- [Barbic 2006] J. Barbic. Multi-core architectures. Mai 2006. URL: https://www.cs.cmu.edu/~fp/courses/15213-s06/lectures/27-multicore.pdf. (Siehe Seite 23)
- [Bauke und Mertens 2006] H. Bauke und S. Mertens. Cluster Computing: Praktische Einführung in das Hochleistungsrechnen auf Linux-Clustern. Springer-Verlag, 2006. (Siehe Seite 25)
- [Börm 2007] S. Börm. Data-sparse approximation of non-local operators by \mathcal{H}^2 -matrices. *Linear Algebra and its Applications* 422 (2007), Seiten 380–403. (Siehe Seite 21)
- [Börm 2016] S. Börm. Wissenschaftliches Rechnen. Feb. 2016. URL: https://www.math.uni-kiel.de/scicom/de/lehre/wissenschaftliches-rechnen. (Siehe Seite 2)
- [Börm 2017] S. Börm. Hochleistungsrechnen. Jan. 2017. URL: https://www.math.uni-kiel.de/scicom/de/lehre/hpc. (Siehe Seiten 22–25)
- [Börm 2018] S. Börm. Numerik nicht-lokaler Operatoren. Feb. 2018. URL: https://www.math.uni-kiel.de/scicom/de/lehre/nichtlokal. (Siehe Seiten 6, 9, 10, 12, 14–16, 18 und 21)
- [Börm und Bendoraityte 2008] S. Börm und J. Bendoraityte. Distributed \mathcal{H}^2 -matrices for non-local operators. *Comput Visual Sci* 11 (2008), Seiten 237–249. (Siehe Seiten 52, 61, 63, 64 und 70)
- [Börm u. a. 2014] S. Börm, S. Christophersen, J.Gördes, K.Reimer und D.Boysen. \mathcal{H}^2 -Matrices. 2014. URL: https://www.math.uni-kiel.de/scicom/de/vortraege/dateien/2014/141205-h2matrices. (Siehe Seiten 13, 15, 17, 18, 20, 54 und 58)
- [Dongarra u. a. 1993] J. J. Dongarra, R. Hempel, A. J. Hey und D. W. Walker. A proposal for a user-level, message passing interface in a distributed memory environment. Technischer Bericht. Oak Ridge National Lab., TN (United States), 1993. (Siehe Seite 28)
- [Flynn 1972] M. J. Flynn. Some computer organizations and their effectiveness. *IEEE transactions on computers* 100.9 (1972), Seiten 948–960. (Siehe Seite 23)
- [Foster 1995] I. Foster. 1.3 A Parallel Programming Model. 1995. URL: http://www.mcs.anl.gov/~itf/dbpp/text/node9.html. (Siehe Seite 27)
- [Grasedyck 2001] L. Grasedyck. Theorie und Anwendungen hierarchischer Matrizen. Dissertation. Christian-Albrechts Universität Kiel, 2001. (Siehe Seiten 5, 6, 9, 11, 12, 14, 15)

- [Hackbusch 1999] W. Hackbusch. A Sparse Matrix Arithmetic Based on \mathcal{H} -Matrices. Part I: Introduction to \mathcal{H} -Matrices. Computing 62.2 (1999), Seiten 89–108. (Siehe Seite 5)
- [Hackbusch und Börm 2002] W. Hackbusch und S. Börm. \mathcal{H}^2 -matrix approximation of integral operators by interpolation. *Applied Numerical Mathematics* 43 (2002), Seiten 129–143. (Siehe Seiten 9 und 17)
- [Hennessy und Patterson 2011] J. L. Hennessy und D. A. Patterson. Computer architecture: a quantitative approach. Elsevier, 2011. (Siehe Seiten 23, 24)
- [IBM 2017] IBM. The message passing model. 2017. URL: https://www.ibm.com/support/knowledgecenter/en/SSF4ZA_9.1.3/pmpi_guide/mesage_passing_model.html. (Siehe Seite 27)
- [Kendall 2017] W. Kendall. A Comprehensive MPI Tutorial Resource. 2017. URL: http://mpitutorial.com/. (Siehe Seiten 28, 32, 33)
- [Körbler 2007] S. Körbler. Parallel Computing-Systemarchitekturen und Methoden der Programmierung (2007). (Siehe Seiten 23 und 25)
- [Li 2004] R.-C. Li. Near optimality of Chebyshev interpolation for elementary function computations. *IEEE Transactions on Computers* 53.6 (2004), Seiten 678–687. (Siehe Seite 10)
- [Mohr u. a. 2016] P. J. Mohr, D. B. Newell und B. N. Taylor. CODATA recommended values of the fundamental physical constants: 2014. *Journal of Physical and Chemical Reference Data* 45.4 (2016), Seite 043102. (Siehe Seite 1)
- [MPI-Forum 2015] MPI-Forum. MPI: A Message-Passing Interface Standard Version 3.1. Technischer Bericht. Message Passing Interface Forum, Juni 2015. (Siehe Seiten 28–34)
- [Newton 1833] I. Newton. Philosophiae naturalis principia mathematica. Band 1. G. Brookman, 1833. (Siehe Seite 1)
- [Schwarz 2011] S. Schwarz. Intro to MPI. Feb. 2011. URL: http://www.dartmouth.edu/~rc/classes/intro_mpi/print_pages.shtml. (Siehe Seite 35)
- [Stukeley 1936] W. Stukeley. Memoirs of Sir Isaac Newton's Life. Taylor und Francis, 1936. (Siehe Seite 1)
- [Valiant 1990] L. G. Valiant. A bridging model for parallel computation. *Communications of the ACM* 33.8 (1990), Seiten 103–111. (Siehe Seite 62)
- [Van Engelen 2017] R. van Engelen. Parallel Programming Models. 2017. URL: https://www.cs.fsu.edu/~engelen/courses/HPC/Models.pdf. (Siehe Seite 27)
- [Walker 1992] D. W. Walker. Standards for message-passing in a distributed memory environment. Technischer Bericht. Oak Ridge National Lab., TN (United States), 1992. (Siehe Seite 28)
- [Wehner u. a. 2008] M. Wehner, L. Oliker und J. Shalf. Towards ultra-high resolution models of climate and weather. *The International Journal of High Performance Computing Applications* 22.2 (2008), Seiten 149–165. (Siehe Seite 22)