


```
c) Ta(y / g " p ?) = 0
                Trappy x ) = Trappy x = Trappy = Trappy = Trappy = Trappy => Trappy > Trapp
 d (y =)2 = 1.
              e) Tr(x=)=0
               Tr(ps = Tr(in'y'; 'i) = Tr(in'y'p'y') = +113 Tr(in'y'z) = -Tr(ps) => Tr(ps = 0
f | Box = 2pq - xp = pq + 25" p, q.
               BA = PM 8/9 8 = PM 9 1 1/5 = PM 9 1 (- 1 - 1 - 2 - 1 - 2 - 2 PM 9 1 - 9 - 1 - 9 - 1 - 1
                          =2091, -95
                         = p, q, (x//1/- = 5 - 1/+ = 1/4 / ) = p, q, (25 / + = (1/4 / + 1/4 / ) = pq + 25 / p, q
g) Tr (# 4) = 4pq
               Tr(sp) = Tr(pnr qv v) = pnqv Tr(sr; v) = pnqv 4 nr = 4pq
h) Tr ($50. . $40) = 0 if n is odd
               Tr (4... 4.) = Tr (1/5) $ $ ... $ = Tr (15 $ ... $ ) = [-1] Tr (1/5) $ ... $ => 0 if nisod
 i) T-(6, 8, 4, 8, ) = 4 [(p. p.) (p.p.) + (p.p.) (p.p.) - (p. p.) (p. p.)]
              Tr (papers fr) = par p2 p3 p4 Tr (x x + 1 + 2 p 4) = par p2 p3 p4 (2 p 7 Tr (x 4) = 1.)
                                                    - Tr(10-18-511) = po po po po po (8 n/ nap - Tr(10- T 5 P + 2n 1 5) 5 1)
                                                    = App po po (8n/6nop + Tr (1 = 15 pp 1 - 2n = Tr (1 = 81))
                                                    = ft pop pr ps (pn sn 4 - 8 ns n 1 + Tr (- y sr 4 + Zn x x x x ))
```


Comparing your result to that of the Born approximation to the scattering amplitudes in monetal-tiple grantum merchanics, diduce the form and the sign of the classical Number potential. As part of the dara approximation, scattering electrons are regarded as distinguished particles. Thus, of the town the feed disgram about a point of only one. Sources since with distinguished porticles are consequely itself, compared to source since with distinguished porticles, are consequely itself, compared to some special because the first one. To evaluate it completure in the impreciations built, we keep only there is lower to the individual for second term, at \$1,000 to the individual in the second term, at \$1,000 to the individual in the second term, at \$1,000 to the individual in the second term, at \$1,000 to the individual in the result of porticles have no source to the second term, at \$1,000 to the individual in the result of porticles are there. Then the above, we can infer that the spin of each provide but the second or positive is the second with the spin of each provide the scattering complitude is separately conserved with an amount of the spin of each provide the scattering complitude is in the compared with an amount of the spin of the different form. This can be compared with an amount of the spin of each provide by applying the Born approvide the scattering or positive in the compared with an amount of the spin of the different form. The making this compared with an amount of the spin of the different morneality with the making this compared with an amount of the spin of the spin of the different morneality with the making this compared with an amount of the spin of the spin of the different morneality with the spin of anomalies with the spin of the spin o	1		Ī					1							<u> </u>				ĺ												i							
amplitudes in monthipsissic guartum medichanics, ideal use the form and the sign of the classical Neckowa. portential, As part of the Born approximation, scattering electrons as repetial as distinguisable particles. Thus, of the two true tent dispersus alreas in part of only one. Services since with distinguisable portices we can uniquely idealify every but. Services since with distinguisable portices we can uniquely idealify every but. The scalable its amplitude in the monthipsis is but everythe for first one. To scalable its amplitude in the monthipsis is but exceed ince, as 13 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1					L	M	Da	1 68	4		DU		res	u/	Ι,	6	tha		of	H	د	Bo	cn	a	ao	ro.	xi x	MA	ion		人	枞	e.	S CC	Щ	es:	na	
of the classical Michause portential. As part of the Barn approximation, scalering electrons are regarded as distinguished particles. Thus, of the turn tree level they areas along in part of only one. Sienviews since with distinguished portices, the can uniquely itealfy composed. Jaing porticle with its impaint and sometimes the consist the first one. To evaluate its ampliture in the momentalization hand, we keep only terms to leavest passible make in the 3-anomalia, which is the second over 100 for \$100 fo	· .	<u> </u>						- i (U	- 1					ļ					1			- 1	1	•	i I				i					. !		5	
of the classical Michause portential. As part of the Barn approximation, scalering electrons are regarded as distinguished particles. Thus, of the turn tree level they areas along in part of only one. Sienviews since with distinguished portices, the can uniquely itealfy composed. Jaing porticle with its impaint and sometimes the consist the first one. To evaluate its ampliture in the momentalization hand, we keep only terms to leavest passible make in the 3-anomalia, which is the second over 100 for \$100 fo)	ļ	ļ.,		a	M.D	l.i	40	lcs		A	Mon	re	1.	<i>i</i> is	lic	4	24	un	k .	MC	ch	ам	٤٤		dec	luc	Ł	the		or e	1	et in	1	1/4		Sign	l
As part of the Born approximation, scalecting electrons are regarded as distinguished particles. Thus, of the sum tree-level dispersion algorithm is part of only one. Services since with distinguishable porticles, one can uniquely identify clary out. gaing particle with its injuring sound-topert. We consider the first one. To evaluate it amplitude in the monoclarithmic built, we keep only treat to laurest possible often in the monoclarithmic built, we keep only treat to laurest possible often in the monoclarithmic built is the second over, or fight of it is fluid to perform the performance of the fight of the particle of the performance of the perf		ļ	ļ.,	_				_ļ_	!					<u> </u>	ļ	ļ				<u>L</u> .	ļ]			!				U	
particles. This of the two free-level dispenses alread in part of only one services aince with distinguishable particles are can uniquely idealify exery but. Joing particle with its is any and sometimes the consider the first that. To evaluate it amplifude in the momentalization with, we been only terms to lawest passible addr in the 3-momenta which is the second fore, or fip \$1.4.4.1.1.4.4. p=(m, \$1, p) = (m, \$1)		 	ļ	_	8	}	1	<u>.</u>		as	Sì	۵.	y	ĸK	u	.	A	oti	int	al	•			_														
particles. This of the two free-level dispenses alread in part of only one services aince with distinguishable particles are can uniquely idealify exery but. Joing particle with its is any and sometimes the consider the first that. To evaluate it amplifude in the momentalization with, we been only terms to lawest passible addr in the 3-momenta which is the second fore, or fip \$1.4.4.1.1.4.4. p=(m, \$1, p) = (m, \$1)		-}-	1_	_	<u> </u>	·	_	-									ļ <u>.</u> .	_	\	<u> </u>	ļ					_				4					_		<u> </u>	
particles. This of the two free-level dispenses alread in part of only one services aince with distinguishable particles are can uniquely idealify exery but. Joing particle with its is any and sometimes the consider the first that. To evaluate it amplifude in the momentalization with, we been only terms to lawest passible addr in the 3-momenta which is the second fore, or fip \$1.4.4.1.1.4.4. p=(m, \$1, p) = (m, \$1)		ļ	 		A:	\$ -	pai	-4			the		or!		n p	O)	1130	1	dia ,	Sc	ai f	E4	Au .		L	የቁሳ	S	at	h	4	w	d	_4	. _0	is	ing	<u>ais</u>	, i
sources since with obstray is back portions, we can conjunctly identify chary seet. 30 mg particle with its in any ang sount-report the donors to the flesh once. To evaluate its amplitude in the movedativistic limit, we keep only terms to lowest passible order in the 3-movedativistic limit, we keep only terms to lowest passible order in the 3-movedativistic limit, we keep only terms to lowest passible order in the 3-movedativistic limit, we keep only terms to lowest passible order in the 3-movedate which is the second here, to 19 p 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-		- L			f				1			i i	ì	i	1	1		1		٠ ا	i		i	ĺ			9				,	. [v		
Joing particle with its injury and sounterpart We consider the first one. To enclose its amplitude in the instructionistic house, we keep only terms to invest possibly arter in the 3-bouncein, which is the second here, to lip p it is the perfect of the point of the second here, to lip p it is the perfect of the point of the second here, to lip p it is the perfect of points of the second here, to lip p it is the second here, to lip p it is the second here, to lip p it is the second here. Therefore (p-p) = [m m) - [p p 1] = - [p p) and us(p) = m((2), u. p) =			-		_ 04	2 (*)	ાં	_ 23	•	7	1/45_		۲_	the		we		ELL	<u> - (</u>	erel		13.	12.0	.	0	74	91	'n	par	*	al	٥Ŋ	y	Ø#	۱ ع			
Joing particle with its injury and sounterpart We consider the first one. To enclose its amplitude in the instructionistic house, we keep only terms to invest possibly arter in the 3-bouncein, which is the second here, to lip p it is the perfect of the point of the second here, to lip p it is the perfect of the point of the second here, to lip p it is the perfect of points of the second here, to lip p it is the second here, to lip p it is the second here, to lip p it is the second here. Therefore (p-p) = [m m) - [p p 1] = - [p p) and us(p) = m((2), u. p) =		-{	-		<u> </u>	-	-	- -	-	_			. 84		ļ ,	_		_	1	ļ	f - 1					-	L			-,	, !	7						
To evaluate its amplitude in the Monrelativistic limit, we keep only trems to lowest passible adder in the 3- monreta with this is the second term, or \$\beta^{\beta} \beta^{\beta} \bet			-	-}-	156	AT V	(VI	<u> </u>		<i>i 1</i>	(c	-14	<u>;;k</u>	_d	35	7	I/S	AC.	.	Pa	1.0	رخد	4) <u>L</u>	CÓ	<u>. </u>	山丛	94	ciy	- 4	2.5	i y		<i>327</i>	<i>i</i> 6	a-1	<u></u> -	_
To evaluate its amplitude in the Monrelativistic limit, we keep only terms to lower passible adder in the 3-monreta, which is the second here, or 13 p = 1 2 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2	-		╁	+	+-	<u> </u>	 -	- -	1	j		 - ;]		 						1	 		,	1.1		•	. 1		11	1	•		.					
Invest possible order in the 3-momenta, which is the second fort, to \$\beta^{-1} \beta^{-1} \delta^{-1} \delta^{-1		 	 	+-	ď	#J		1	7719	\$.;£4		15.14	6.7	3	E	ja	1	-	101	ia P		a P		4/2	0	ي جي	(DL	<u>-</u>	eke.	7	(2)	÷	<u>/ (C</u>					
lowest possible order in the 3-bounch's which is the second fort, to \$\beta^{\beta} \beta^{\beta^{\beta}} \beta^{\beta^{\beta^{\beta}}} \beta^{\beta^{\beta^{\beta}}} \beta^{\beta^{\beta^{\beta}}} \beta^{\beta^{\beta^{\beta}}} \beta^{\beta^{\beta^{\beta^{\beta}}}} \beta^{\be		· ·	†		Ta	<u> </u>	<u> </u> _	1	L		L.,		!	İ		1	2	<u></u>	la -		J.L	المائدة ا	مز!	k.	$\cdot I$. 20	ما			1	1.				-		
p=(m, \bar{p}), \bar{p} \display \text{ [m, \bar{k}]} [m			┢			1 5	W. CA	1870	N. Wast	-91	• •••	9.75	3 23 7	TLAU		ın.			J758	23.5	29C - 3	<i>y</i> 131	4	_!(##	<u> </u>		<i>N</i> C.	<u> </u>	4	.DW	'y -	FL	-144	,	37			
p=(m, \bar{p}), \bar{p} = (m, \bar{p}), \bar{p} = (\bar{p}, \bar{p})^2 q		Ī	T		l _m	1165	ļ		22.	Ы		de	•		11	3	۱ - ۱	405	ne z			16.	, ,		,	c,	- 130	4	ne er		75	142	8		7	2]		- ·-
Therefore $(p-p_i)^2 = (m-m_i)^2 - (p-p_i)^2 = -(p-p_i)^2$ and unless $(p-p_i)^2 = (p-p_i)^2 = (p-p_i)$	·		†"			-]	Ţ	2 1 3 4 1					12.	- 15	_	<u> </u>	124.4			1 -		• •					641		7			Ŧ	}***-	12	-7-{	-	
Therefore $(p-p_i)^2 = (m-m_i)^2 - (p-p_i)^2 = -(p-p_i)^2$ and unless $(p-p_i)^2 = (p-p_i)^2 = (p-p_i)$																																_			ĺ			
Therefore $(p-p_i)^2 = (p-m_i)^2 - (p-p_i)^2 = -(p-p_i)^2$ and $u_i(p) = m_i(\frac{p_i}{p_i})_i u_i(p_i) = m_i(\frac{p_i}{p_i})_i u_i(\frac{p_i}{p_i})_i$. Le. where E_p is a two-component constant spinor hormalized to G , $G_i = S_{i-1}$. The spinor products in the result of part a) are then $U_i(p)$ $u_i(p) = m_i(E_i, G_i)_i \cdot m_i(E_i)_i = 2m_i E_i \cdot E_i - 2m_i S_{i-1}$ $U_i(p)$ $u_i(p) = m_i(E_i, G_i)_i \cdot m_i(E_i)_i = 2m_i E_i \cdot E_i - 2m_i S_{i-1}$ From the above, we can infer that the spin of each particle has to be separately conserved. With this result, we can rewrite the scattering complitude as $iM = -ig^2 \cdot 2m_i S_{i-1} - (p-p_i)^2 \cdot m_i^2 \cdot 2m_i S_{i-1} \cdot m_i \cdot m_i C_i \cdot m_i $						p:	* (Ma	, <u>k</u>				ء ام	= [W	ا روا	3'			k=	N.	, k	,		k,	= (n,												
where Es, is a two-component constant spinot normalized to Es Es: - Sai The spinot products in the result of part at are then Usifolusial = Im [Est Sol f Im [Est] = 2 m Est Es = 2 m Est. Usifolusial = Im [Est Sol f Im [Est] = 2 m Est Es = 2 m Est. Usifolusial = Im [Est. Est] y Im [Est] = 2 m Est. From the above, we can infer that the spin of each particle has to be separately conserved. With this result, we can rewrite the scattering complitude as it = -ig 2 m Sec - [F = FT - mg 2 m Est. = - 1] = - 2 m Est. This can be compared with an analysis expression obtained by applying the Born approximation to solve this nonrelativistic scattering interaction: Up [IT] p) = -iV(a) [2T] E(Est - Est. = a = B - B. When making this comparison are should be missful of the different normali-		ļ	L		_	<u> </u>			-				i 			ļ	<u> </u>	ļ					_															
where Es, is a two-component constant spinot normalized to Es Es: - Sai The spinot products in the result of part at are then Usifolusial = Im [Est Sol f Im [Est] = 2 m Est Es = 2 m Est. Usifolusial = Im [Est Sol f Im [Est] = 2 m Est Es = 2 m Est. Usifolusial = Im [Est. Est] y Im [Est] = 2 m Est. From the above, we can infer that the spin of each particle has to be separately conserved. With this result, we can rewrite the scattering complitude as it = -ig 2 m Sec - [F = FT - mg 2 m Est. = - 1] = - 2 m Est. This can be compared with an analysis expression obtained by applying the Born approximation to solve this nonrelativistic scattering interaction: Up [IT] p) = -iV(a) [2T] E(Est - Est. = a = B - B. When making this comparison are should be missful of the different normali-		ļ	- 1		.	<u> </u>				_,		12			_	Z —			12	ļ			12	_						4		[-1	! }		
where Es, is a two-component constant spinot normalized to Es Es; + Ss. The spinot products in the result of part at are then Usifolusial = Im [Es, Est f Im [Es] = 2 m Es Es = 2 m Ss. Usifolusial = Im [Es, Est f Im [Es] = 2 m Es Es = 2 m Ss. From the above, we can infer that the spin of each particle has to be separately conserved. With I his result, we can rewrite the scattering complitude as it = -ig 2 m Ssc - Ip = Im I = -ig 2 m Ss = -		ا ــــــــــــــــــــــــــــــــــــ	ļ	-	T	erc	10	ce.	_ .	[p	- 6		= {	M -	m)	_	Ā.	δ'	2	-	ΙĒ	- ই		a	۸d	_4	ماء)=	M	5 t	1.	ر کام	9.	<u> </u>	Щ	5	اع ,	۲.
Spinor products in the result of part all are there \[\overline{U_{i}}(\beta) \text{ us } \beta \] \[\overline{U_{i}}(\beta) \text{ us } \be		-	┨_	-1			ſ	1		- "											1]			- !		. 1	•			- 3		- 1		- 1	- 1	~ * '	1	
Usile) usip = m (Ex. Sel go for Ex. = 2m Ex Ex. = 2m Sec. Usela) is late = m (Ex. Sel go for Ex. = 2m Ex Ex. = 2m Sec. From the above, we can infer that the spin of each particle has to be separately conserved. With this result are can rewrite the scattering complitude as iM = -ig 2m Sec - (x. B) = mg 2m Sex = (x. B) = mg This can be compared with an analysius expression obtained by applying the Born approximation to solve this mountativistic scattering interaction; (p' iT p) = -iV(a) (2m) S(Ex. Exp. = p), q = \varphi - \varphi.		-	╁		1	إيدر	-	Š,	; -	ÌS	_a	- +	40.	CO	mp	o.M.¢	nt		ons	Fan	}	انوع	וכא		100	Ma	lz.	cd	+0	6,	<u>. </u>	₹.	> b	15,	. 7	he		
Usile) usip = m (Ex. Sel go for Ex. = 2m Ex Ex. = 2m Sec. Usela) is late = m (Ex. Sel go for Ex. = 2m Ex Ex. = 2m Sec. From the above, we can infer that the spin of each particle has to be separately conserved. With this result are can rewrite the scattering complitude as iM = -ig 2m Sec - (x. B) = mg 2m Sex = (x. B) = mg This can be compared with an analysius expression obtained by applying the Born approximation to solve this mountativistic scattering interaction; (p' iT p) = -iV(a) (2m) S(Ex. Exp. = p), q = \varphi - \varphi.			╁┈			<u> </u>	-	- -		8	 -			7				r.	<u> </u>					,1							\dashv							
Ide (h) we (h) = som (Er, Ex) y' som (Er) = 2m Ex Exx + 2m Exx = From the above, we can infer that the spin of each particle has to be separately conserved. With this result we can rewrite the seathering complified as iM = +ig 2m Exc - 1		-			_ Sf	inc) <u>- 1</u>	- 10	rþ	eli∤	<u>د ځې</u>	11) 	۲ć	_re	₹ U	! *	p†	P	pr+	aj	a	<u>e</u>	44	en					_	-	\dashv						
Ide (h) we (h) = som (Er, Ex) y' som (Er) = 2m Ex Exx + 2m Exx = From the above, we can infer that the spin of each particle has to be separately conserved. With this result we can rewrite the seathering complified as iM = +ig 2m Exc - 1			╁	 -		<u> </u>	╁-	+								-			-				_											\dashv				
Ide (h) we (h) = form Er, Ex. y of (Ex.) = 2m Ex Ex. + 2m Ex. From the above, we can infer that the spin of each particle has to be separately conserved. With this result, we can rewrite the sea fering complified as M=+ig^2 2m Sec - 1		-	╁╌			ī	.1			1.1			12	. 6	1	40 K	-	L ,)))	٤.	e		7 .	2				-	\dashv		_			-	-		
From the above, we can infer that the spin of each particle has to be separately conserved. With this result, an can rewrite the scattering complitude as $iM = -ig^{2} \cdot 2m \cdot S_{cc} - \frac{q}{(p-p)^{2} - mp} \cdot \frac{q}{(p-p)^{2} - mp} \cdot \frac{q}{(p-p)^{2} - mp}$ This can be compared with an analogous expression obtained by applying the Born approximation to solve this nonrelativistic scattering interaction: (p'liTlp) = -iV(q) (2m) S(Ep-Ep), \qq = \bar{q} = \bar{p} - \bar{p}.		†-	t	-			4 ° 14	r	v s	191	_			\$4. X	<u> </u>	. 34	7-{	E,		<u> </u>	.75	76		<u> </u>	· ·	<u> </u>			\dashv			_						
From the above, we can infer that the spin of each platficle has to be separately conserved. With this result, we can rewrite the scattering complitude as iM=-ig^2 2m Sec - 1 - 2 2m Ser = 1 - 2 2m Ses Ser This can be compared with an analogous expression obtained by applying the Born approximation to solve this nonrelativistic scattering interaction: (p'liTlp) = -iV(a) 2m S(Ep-Ep), \qq = \bar{a} = \bar{a} - \bar{b}. When making this comparison are should be minstful of the different normali-		<u> </u>	T		†-	1	† -		7	-	}							_	۰									-										
From the above, we can infer that the spin of each platficle has to be separately conserved. With this result, we can rewrite the scattering complitude as iM=-ig^2 2m Sec - 1 - 2 2m Ser = 1 - 2 2m Ses Ser This can be compared with an analogous expression obtained by applying the Born approximation to solve this nonrelativistic scattering interaction: (p'liTlp) = -iV(a) 2m S(Ep-Ep), \qq = \bar{a} = \bar{a} - \bar{b}. When making this comparison are should be minstful of the different normali-		- -				ū	1.	()		_ [4]=	5 44	8		وي ا	y	°F	7	G,r	=	2	E	. 8	1 4	. 2	m 8	ر ایدار					i						
Separately conserved. With this result, we can rewrite the scattering complitude as $iM = +ig^{2} \cdot 2m \cdot 5cc - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr -$																U		1	2ºL				'				-											
Separately conserved. With this result, we can rewrite the scattering complitude as $iM = +ig^{2} \cdot 2m \cdot 5cc - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr - \frac{1}{(\beta - \beta)^{2} - m_{\beta}^{2}} \cdot 2m \cdot 5cr -$		<u> </u>	ļ_	J.,		ļ		_											<u> </u>																			
Separately conserved. With this result, we can rewrite the scattering complitude as $iM = -ig^{2} \cdot 2m \cdot S_{cc} - \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} + \frac{1}{(\beta - \beta)^{2} - m_{\phi}^{2}} \cdot 2m \cdot S_{cc} +$		ļ.,,	Ĺ.		Fr	רמע	1	the		abo	W		WL	4	ak	in	u	٠,	ha	+	the	S	p in		,f	ea	d		art	ıd	٤	2u S	Į	*	bc		ļ	
iM=+ig ³ 2 m S _{cc} $\frac{1}{-l\bar{p}-\bar{p}l^2-m_{\bar{p}}^2}$ 2 m S _{cc} $\frac{1}{(l\bar{p}-\bar{p})l^2-m_{\bar{p}}^2}$ 3 m S _{cc} $\frac{1}{(l\bar{p}-\bar{p})l^2-m_{\bar{p}}^2}}$ 3 m S _{cc} $\frac{1}{(l\bar{p}-\bar{p})l^2-m_{\bar{p}}^2}}$ 3 m S _{cc} $\frac{1}{(l\bar{p}-\bar{p})l^2-m_{\bar{p}}^2}}$ 4 m S _{cc} $\frac{1}{(l\bar{p}-\bar{p})l^2-m_{\bar{p}}^2}}$ 5 m		<u> </u>	ļ	_		1			[- 1		1				}		1	t				1		.					-	- 1	- 1				- 1]	
iM=+ig^2 2 m Scc $\frac{1}{-(\vec{p}-\vec{p})^2-m_{\vec{p}}}$ 2m Sr = $\frac{13^2-2}{(\vec{p}-\vec{p})^2-m_{\vec{p}}}$ 2m Sis Scr		 	ļ			Pa	ra	te	ly.		on	ser	ve	<u>d.</u>	W	1+4	1	S		es :	elf.	4	£_	Cay	r_t	w	·ik		he	30	a H	es:	<i>i</i> 14	Crie	او	74	de	45
This can be compared with an analogous expression obtained by applying the Born approximation to solve this nonrelativistic scattering interaction: $\langle p' iT p\rangle = -i \vec{V}(\vec{q}) 2\pi \delta(E_p'-E_p), \vec{q} = \vec{p}'-\vec{p}.$ When making this comparison is we should be missiful of the different normality		<u> </u>	∤		-	ļ	\vdash	+-								ļ		 	 	-		!											J		•			
This can be compared with an analogous expression obtained by applying the Born approximation to solve this nonrelativistic scattering interaction: $\langle p' iT p\rangle = -i \vec{V}(\vec{q}) [2\pi] S(E_p'-E_p), \qquad \vec{q} = \vec{p}'-\vec{p}.$ When making this comparison, we should be missiful of the different normality		<u> </u>	 			1	<u> </u>	4	2	2		_			1		-	_	•	<u> </u>		<u> </u>	1		_			-		—.¦	-	-						
This can be compared with an analogous expression obtained by applying the Born approximation to solve this nonrelativistic scattering interaction: $\langle p' iT p\rangle = -i \vec{V}(\vec{q}) 2\pi \delta(E_p'-E_p), \vec{q} = \vec{p}'-\vec{p}.$ When making this comparison is we should be missiful of the different normality		 -	╁─	-		1/	1=	+,	3		M -	ccl	-7	1 · 7	512	- M	7	LM	10	r.			2	7 11	4	MZ	ss	, t	-	-	\dashv	_		\dashv	_		¦	
approximation to solve this monorelativestic scattering interaction: $\langle p' iT p\rangle = -i \vec{V}(\vec{a}) 2\pi \delta(E_p - E_p), \vec{q} = \vec{p} - \vec{p}.$ When making this comparison, we should be miniful of the different normality		- 	╁┈	-}-		-	-		+					!			7		ļ. —.]	-1					-+									
approximation to solve this monorelativestic scattering interaction: $\langle p' iT p\rangle = -i \vec{V}(\vec{a}) 2\pi \delta(E_p - E_p), \vec{q} = \vec{p} - \vec{p}.$ When making this comparison, we should be miniful of the different normality		¦	<u> </u>		TL	}		L4	I.				لد	* 4	:11	۔۔	! <u>-</u> .						- 45			L		j		.— 		-			Q		¦	
$\langle \vec{p} iT \vec{p}\rangle = -i\vec{V}(\vec{q}) [2\pi] \delta(\vec{E}\vec{p}' - \vec{E}\vec{p}), \qquad \vec{q} = \vec{p}' - \vec{p}.$ When making this comparison, we should be mirelful of the different normali-			 	-	11.73	12	-	<u> </u>	DC.		COM	Pa	<u>KA</u>	- 40	LTM	(A)	L_ <u> </u>	acret :	J	The		(D	. 35 (1	, ,	_01	DITA	19151	2	"	9	77	S 18	3	T.C.	, S	or M	_	
$\langle \vec{p} iT \vec{p}\rangle = -i\vec{V}(\vec{q}) [2\pi] \delta(\vec{E}\vec{p}' - \vec{E}\vec{p}), \vec{q} = \vec{p}' - \vec{p}.$ When making this comparison, we should be mixtful of the different normali-	<u> </u>		T		ai	do ta		t ida	Al.	A 11	,	,	< n	ise	41		M 6	** F	la		نزل		-	, ,, ,	Ļ,	. Ye s		14 -		ر أ م							_	
When making this comparison, exc should be mirelful of the different normali-						T					1	j	معد	M-M	1.			april 1								٦												
When making this comparison, exc should be mirelful of the different normali-									Ì					-																								
When making this comparison, sex should be missiful of the different normality			_	_ [ζ,	11	iT	-)	آرو	2	۱;-	/la		211	18	(E	P	Ę٥].			4	=	- '6	<u>م</u>												
_ +	_	<u> </u>	_			ļ													ļ							<u>' </u>]					_	
-+	<u> </u>	ļ;	<u> </u> _	ļ	-	<u> </u>			_	_						ļ 			<u> </u>	<u> </u>	ļ		_						# F		F.						_	
Ration of momentum cigenstates complayed in relativistic OFT and nonrelativisti		<u> </u>	ļ	-	_ W	kej	_	K A	ak.	in a	_+	nì.s	ر	0 3 M	<u>ar</u>	SO	4.1	U	K	sh.	2/4	a_	bc	les	i) e g	1	[_	*	} }.c.		d	20	. 61		not	Ma	15	<u>-</u>
Retion of momentum cigenstates comployed in relativistic OFT and nonrelativistic		 	 -	-		1.	<u> </u>		_ N	_ }	 						f			<u> </u>		_			, ,		Î.		Λ.	 - -	_	_	 }) h		1.
╶╏╶┆╌┆╌╂╌╎┈┧┈╏┈╎┈╎┈╏┈╏┈╏┈╏┈╏┈╏┈╏┈╏┈╎┈╏┈╎┈╏┈╏┈╏┈╏┈		ļ	-		2	411	h_	- 1	애.	M	bM	ent	i A in	۸	Cig	C/1	77.	es.		Ma.	ay A	d	لعند	re	let	ı Vi	5.¢ i	۲.	O()		<u>-</u>	mo	•	no	110	ia i	V.	St.
		<u> </u>	 	-				-	{ -					_					<u> </u>	<u> </u>						_			-	-+	}						\dashv	

