CAIM: Cerca i Anàlisi d'Informació Massiva

FIB, Grau en Enginyeria Informàtica

Slides by Marta Arias, José Luis Balcázar, Ramon Ferrer-i-Cancho, Ricard Gavaldá Department of Computer Science, UPC

Fall 2018

http://www.cs.upc.edu/~caim

Information Retrieval Models,

Setting the stage to think about IR

What is an Information Retrieval Model?

We need to clarify:

- (what info is stored/indexed about each document?), A proposal for a logical view of documents
- a query language

(what kinds of queries will be allowed?),

and a notion of relevance

(how to handle each document, given a query?).

2. Information Retrieval Models

Information Retrieval Models, II

A couple of IR models

Focus for this course:

- ▶ Boolean model,
- Boolean queries, exact answers;
 - extension: phrase queries.
- Vector model,
- weights on terms and documents;
- similarity queries, approximate answers, ranking.

1/21

Boolean Model of Information Retrieval

Relevance assumed binary

Documents:

A document is completely identified by the set of terms that it contains.

- Order of occurrence considered irrelevant,
- number of occurrences considered irrelevant

(but a closely related model, called bag-of-words or BoW, does consider relevant the number of occurrences).

Thus, for a set of terms $\mathcal{T}=\{t_1,\dots,t_T\}$, a document is just a subset of \mathcal{T} .

Each document can be seen as a bit vector of length ${\cal T},$

 $d=(d_1,\ldots,d_T)$, where

- $ightharpoonup d_i = 1$ if and only if t_i appears in d, or, equivalently,
- $lack d_i=0$ if and only if t_i does not appear in d.

Queries in the Boolean Model, II

A close relative to propositional logic

Analogy:

- Terms act as propositional variables;
- documents act as propositional models;
- a document is relevant for a term if it contains the term, that is, if, as a propositional model, satisfies the variable;
- queries are propositional formulas
- (with a syntactic condition of avoiding global negation);
 - a document is relevant for a query if, as a propositional model, it satisfies the propositional formula.

Queries in the Boolean Model, I

Boolean queries, exact answers

Atomic query:

a single term.

The answer is the set of documents that contain it.

Combining queries:

- ▶ OR, AND: operate as union or intersection of answers;
- ▶ Set difference, t_1 BUTNOT $t_2 \equiv t_1$ AND NOT t_2 ;
- motivation: avoid unmanageably large answer sets.

In Lucene: +/- signs on query terms, Boolean operators.

Example, |

5/21

A very simple toy case

Consider 7 documents with a vocabulary of 6 terms:

d1 = one three

d2 = two two three

d3 = one three four five five

d4 = one two two two three six six

d5 = three four four four six

d6 = three three six six

d7 =four five

6/21

Example, II

Our documents in the Boolean model

	five	four	one	six	three	tmo	
1 =	 0	0	\vdash	0	\vdash	0	
d2 =	 0	0	0	0	\vdash	П	
3 =	 $\overline{}$	\vdash	\vdash	0	\vdash	0	
4 ==	 0	0	\vdash	\vdash	\vdash	\vdash	
5 =	 0	\vdash	0	П	\vdash	0	
= 9	 0	0	0	\vdash	\vdash	0	
= 2	 \vdash	\vdash	0	0	0	0	

(Invent some queries and compute their answers!)

Phrase Queries,

Slightly beyond the Boolean model

Phrase queries: conjunction plus adjacency

Ability to answer with the set of documents that have the terms of the query consecutively.

- A user querying "Keith Richards" may not wish a document that mentions both Keith Emerson and Emil Richards.
- Requires extending the notion of "basic query" to include adjacency

Queries in the Boolean Model, III

No ranking of answers

Answers are not quantified:

A document either

- matches the query (is fully relevant),
- or does not match the query (is fully irrelevant).

Depending on user needs and application, this feature may be good or may be bad.

9/21

Phrase Queries, II

Options to "hack them in"

Options:

 Run as conjunctive query, then doublecheck the whole answer set to filter out nonadjacency cases.

This option may be very slow in cases of large amounts of false positives".

- Keep in the index dedicated information about adjacency of any two terms in a document (e.g. positions)
- Keep in the index dedicated information about a choice of "interesting pairs" of words. ▲

10/21

Vector Space Model of Information Retrieval, I

Basis of all successful approaches

Order of words still irrelevant.

Frequence is relevant.

Not all words are equally important.

▶ For a set of terms $\mathcal{T} = \{t_1, \dots, t_T\}$, a document is a vector $d=(w_1,\ldots,w_T)$ of floats instead of bits.

 $ightharpoonup w_i$ is the weight of t_i in d.

The tf-idf scheme

A way to assign weight vector to documents

Two principles:

The more frequent t is in d, the higher weight it should

The more frequent t is in the whole collection, the less it discriminates among documents, so the lower its weight should be in all documents.

Vector Space Model of Information Retrieval, II

Moving to vector space

A document is now a vector in IRT.

 The document collection conceptually becomes a matrix terms × documents.

but we never compute the matrix explicitly.

lacktriangle Queries may also be seen as vectors in $I\!\!R^T$.

13/21

14/21

The tf-idf scheme, II

The formula

A document is a vector of weights

$$d = [w_{d,1}, \dots, w_{d,i}, \dots, w_{d,T}].$$

Each weight is a product of two terms

$$w_{d,i} = tf_{d,i} \cdot idf_i.$$

The term frequency term tf is

$$tf_{d,i}=rac{f_{d,i}}{\max_j f_{d,j}},$$
 where $f_{d,j}$ is the frequency of t_j in $d.$

And the inverse document frequency idf is

$$idf_i = \log_2 rac{D}{df_i},$$
 where D = number of documents

and df_i = number of documents that contain term t_i .

$$five four one six three two maximal delta = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 0 \\ d2 = [& 0 & 0 & 1 & 0 & 1 & 2 \\ 3 & 1 & 1 & 0 & 1 & 2 & 1 \\ 3 & 1 & 1 & 0 & 1 & 0 \end{bmatrix} \begin{array}{c} 1 \\ 3 \\ 44 = [& 0 & 0 & 0 & 1 & 2 \\ 0 & 3 & 0 & 1 & 1 & 0 \\ d5 = [& 0 & 3 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 & 3 & 0 \\ d7 = [& 1 & 1 & 0 & 0 & 0 & 0 \\ \end{bmatrix} \begin{array}{c} 3 \\ 3 \\ 47 = [& 1 & 1 & 0 & 0 \\ \end{array}$$

 α

9

က

က

S

= df

Similarity of Documents in the Vector Space Model The cosine similarity measure

- "Similar vectors" may happen to have very different sizes.
- We better compare only their directions.
- Equivalently, we normalize them before comparing them to have the same Euclidean length.

$$sim(d1, d2) = \frac{d1 \cdot d2}{|d1| |d2|} = \frac{d1}{|d1|} \cdot \frac{d2}{|d2|}$$

where

$$v \cdot w = \sum_i v_i \cdot w_i$$
, and $|v| = \sqrt{v \cdot v} = \sqrt{\sum_i v_i^2}$.

- Our weights are all nonnegative.
- Therefore, all cosines / similarities are between 0 and 1.

6	1 0	$\frac{0}{3}\log_2\frac{7}{2}$	0	4	$\frac{4}{4}\log_2\frac{7}{2}$	3.61
9	> —	$\frac{1}{3}\log_2\frac{7}{6}$	0.07	1	$\frac{1}{4}\log_2\frac{7}{6} \frac{4}{4}\log_2$	1.22 0.11
cr:	0	$\frac{0}{3}\log_2\frac{7}{3}$	0	2	$\frac{2}{4}\log_2\frac{7}{3}$	1.22
c:) –	$\frac{1}{3}\log_2\frac{7}{3}$	0.41		$\frac{1}{4}\log_2\frac{7}{3}$	0.61
c:	· —	$\frac{1}{3}\log_2\frac{7}{3}$	0.41	0	$\frac{0}{4}\log_2\frac{7}{3}$	O
6	၊က	$\frac{3}{3}\log_2\frac{7}{2}$	1.81	0	$\frac{0}{4} \log_2 \frac{7}{2}$	0
	_			_		_
						Ш
∃ df	d3 = 1	d3 =		d4 =	d4 =	

Cosine similarity, Example

17/21

18/21

Then

$$|d3| = 1.898, \quad |d4| = 3.866, \quad d3 \cdot d4 = 0.26$$

and sim(d3, d4) = 0.035 (i.e., small similarity).

- Queries can be transformed to vectors too.
- Sometimes, tf-idf weights; often, binary weights.
 - $ightharpoonup sim(doc, query) \in [0, 1].$
- Answer: List of documents sorted by decreasing similarity.
- $\,\blacktriangleright\,$ We will find uses for comparing sim(d1,d2) too.