VOC (Voice of Customer)

Three phase variable resistive load bank with 12kW maximum capacity and 10 variable step control.

SI no	Customer requirement	Input	Output	
1	Step 1	3x 690Ω resistors (90W rating)	250W, 0.35A	
2	Step 2	3x 690Ω resistors (90W rating)	250W, 0.35A	
3	Step 3	3x 344Ω resistors (175W rating)	500W, 0.70A	
4	Step 4	3x 172Ω resistors (500W rating)	1kW, 1.39A	
5	Step 5	3x 172Ω resistors (500W rating)	1kW, 1.39A	
6	Step 6	3x 172Ω resistors (500W rating)	1kW, 1.39A	
7	Step 7	3x 86Ω resistors (750W rating)	2kW, 2.78A	
8	Step 8	3x 86Ω resistors (750W rating)	2kW, 2.78A	
9	Step 9	3x 86Ω resistors (750W rating)	2kW, 2.78A	
10	Step 10	3x 86Ω resistors (750W rating)	2kW, 2.78A	

Equal steps can also be triggered for the following loads.

Equal Steps	Load per Step	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6
2	6000	1,2,3,4, 5,6,7	8,9,10				
3	4000	1,2,3,4, 5,6	7,8	9,10			
4	3000	1,2,3,7	4,8	5,9	6,10		
6	2000	1,2,3,4	5,6	7	8	9	10

Rated 3 phase voltage,

$$V_{\text{Line}} = 415V$$
,

$$V_{Line} = 415V$$
, $V_{phase} = 239.60 V$

For star connected circuit,

$$V_{\text{phase}} = V_{\text{line}} / \sqrt{3}$$

$$I_{line} = I_{Phase}$$

$$R_{Phase} = V_{Phase} / I_{phase}$$

Sample calculation,

Load, P = 1000W,
$$V_{Line} = 415V$$

$$V_{phase} = V_{line} / \sqrt{3} = 415/1.732 = 239.60V$$

$$P = V_{line} I_{line} x \sqrt{3}$$

$$=> I_{line} = I_{phase} = P/(V_{line} \times \sqrt{3}) = 1.39A$$

$$R_{Phase} = V_{Phase} / I_{phase} = 239.6/1.39 = 172.37\Omega (\approx 172\Omega)$$