Lecture 11 : The Basic Numerical Quantities Associated to a Continuous *X*

In this lecture we will introduce four basic numerical quantities associated to a continuous random variable X. You will be asked to calculate these (and the cdf of X) given f(x) on the midterms and the final.

These quantities are

- 11 The *p*-th percentile $\eta(P)$.
- **2** The α -th critical value X_{α} .
- 3 The expected value E(X) or μ .
- 4 The variance V(X) or σ^2 .

I will compute all these for $\cup (a, b)$ the linear distribution and $\cup (a, b)$.

Percentiles and Critical Values of Continuous Random Variables

Percentiles

Let P be a number between 0 and 1. The 100p-th percentile, denoted $\eta(P)$, of a continuous random variable X is the unique number satisfying

$$P(X \le \eta(P)) = P \tag{\sharp}$$

or

$$F(\eta(P)) = P \tag{\sharp\sharp}$$

So if you know F you can find $\eta(P)$. Roughly

$$\eta(P) = F^{-1}(P)$$

The geometric interpretation of $\eta(P)$ is very important

The geometric interpretation of (#)

 $\eta(P)$ is the number such that the vertical line $x = \eta(P)$ cuts off area P to the left under the graph of f(x). (this is the picture above)

Special Case The median $\widetilde{\mu}$

The median $\widetilde{\mu}$ is the unique number so that

$$P(X \le \widetilde{\mu}) = \frac{1}{2}$$

or $F(\widetilde{\mu}) = \frac{1}{2}$

so the median is the 50-th percentile.

The picture

Since the total area is 1, the area to the right of the vertical line $x = \widetilde{\mu}$ also $\frac{1}{2}$. So $x = \widetilde{\mu}$ bisects the area.

Critical Values

Roughly speaking if you switch left to right in the definition of percentile you get the definition of the critical value. Critical values play a key role in the formulas for <u>confidence intervals</u> (later).

Definition

Let α be a real number between 0 and 1. Then the α -th critical value, denoted x_{α} , is the unique number satisfying

$$P(X \ge x_{\alpha}) = \alpha \tag{b}$$

Let's rewrite (b) in terms of F. We have

$$P(X \ge x_{\alpha}) = 1 - P(X \le x_{\alpha})$$
$$= 1 - F(x_{\alpha})$$

So (b) becomes

$$1 - F(x_{\alpha}) = \alpha$$

$$F(x_{\alpha}) = 1 - \alpha$$

$$x_{\alpha} = F^{-1}(1 - \alpha)$$
 (bb)

What about the geometric interpretation?

The geometric interpretation

 x_{α} is the number so that the vertical line $x = x_{\alpha}$ cuts off area α to the <u>right</u> under the graph of f(x).

Relation between critical values and percentiles

 $x=x_{\alpha}$ cuts off area $1-\alpha$ to the <u>left</u> since the total area is 1. But $n(1-\alpha)$ is the number such that $x=\eta(1-\alpha)$ cuts off area $1-\alpha$ to the left. So

$$\underline{x_{\alpha} = \eta(1-\alpha)}$$

Computation of Examples

Example 1 $(X \sim \bigcup (a, b))$

Lets compute the $\eta(p)$ -th percentile for $X \sim \bigcup (a,b)$

So the point $\eta(p)$ between a and b must have the property that the area of the shaded box is p. But the base of the box is $\eta(p) - a$ and the ????? is $\frac{1}{h-a}$ so

Area =
$$bh = (\eta(p) - a)\left(\frac{1}{b - a}\right)$$
 so
$$(n(p) - a)\left(\frac{1}{b - a}\right) = p \quad \text{or}$$

$$\eta(p) = a + p(b - a) = (1 - p)a + pb \tag{*}$$

Example 1 (Cont.)

How about the median $\widetilde{\mu}$.

So we want $\eta(\frac{1}{2})$. By (*) we have

$$\widetilde{\mu} = \eta \left(\frac{1}{2}\right) - a + \frac{b-a}{2} = \frac{a+b}{2}$$

Remark

 $\frac{a+b}{2}$ is the midpoint of the interval [a, b].

Critical Values for $\bigcup (a, b)$

$$x_{lpha} = \eta(1-lpha) = a + (1-lpha)(b-lpha)$$

$$= a + b - a - lpha b + lpha a$$
So $x_{lpha} = lpha a + (1-lpha)b$.

Example 2 (The linear distribution)

Recall the linear distribution has density

$$f(x) = \begin{array}{cc} 0, & x < 0 \\ 2x, & 0 \le x \le 1 \\ 0, & x > 1 \end{array}$$

The 100p-th percentile

We want the area of the triangle to be p. But the box is $\eta(p)$ and the height is $Z\eta(p)$ so

$$A = \frac{1}{2}bh = \frac{1}{2}\eta(p)(2n(p))$$
$$= \eta(p)^2$$

We have to solve

$$\eta(p)^2 = p$$

So $\eta(p) = \sqrt{p}$

In particular

$$\widetilde{\mu} = \eta \left(\frac{1}{2}\right) = \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2}$$

This will be important ????.

Expected Value

Definition

The expected value or mean E(X) or μ of a continuous random variable is defined by

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

We will compute some examples.

Example 1 $(\overline{X} \sim \bigcup (a, b))$

$$E(X) = \int_{-\infty}^{\infty} f(x)dx = \int_{a}^{b} \frac{1}{b-a} x \, dx$$
$$= \frac{1}{b-a} \left(\frac{x^2}{2}\right)\Big|_{x=a}^{x-b} = \frac{1}{2} \frac{(b^2 - a^2)}{b-a} = \frac{b+a}{2}$$

Example 1 (Cont.)

Now we showed on page 9 that if $X \sim \bigcup (a,b)$ then the median $\widetilde{\mu}$ was given by $\widetilde{\mu} = \frac{a+b}{2}$.

Hence in this the mean is equal to the median

$$\mu = \widetilde{\mu} = \frac{a+b}{2}$$

Z This is not always the case as we will see shortly.

The "reason" $\mu = \widetilde{\mu}$ is that f(x) has a point of symmetry i.e. a point x_0 so that $f(x_0 f y) = f(x_0 - y)$

This means that the graph is symmetrical about the vertical line (mirror) $x = x_0$.

Proposition (Useful fact)

If x_0 is a point of symmetry for f(x) then

$$\mu = \widetilde{\mu} = x_0$$

Proposition (Cont.)

Now if $X \sim \bigcup (a,b)$ then $x_0 = \frac{a+b}{2}$ is a point of symmetry for f(x)

For a change we will prove the proposition

Proof

 $\widetilde{\mu}=x_0$ is immediate because by symmetry there is equal area to the left and right of x_0 .

Proof (Cont.)

Since the total area is 1, the area to the left of x_0 is $\frac{1}{2}$. Hence $\widetilde{\mu} = x_0$.

It is harder to prove

$$E(X) = \int_{-\infty}^{\infty} x f(x) = x_0$$

Trick : Since x_0 is a constant and $\int_{-\infty}^{\infty} f(x) dx = 1$ we have

$$\int_{0}^{\infty} x_0 f(x) dx = x_0$$

Proof (Cont.)

Thus to show

$$\int_{-\infty}^{\infty} x f(x) dx = x_0$$

It suffices to show

$$\int_{-\infty}^{\infty} x f(x) dx = \int_{-\infty}^{\infty} x_0 f(x) dx$$

or

$$\int_{-\infty}^{\infty} (x-x_0)f(x)dx = 0$$

But if we put

$$g(x) = (x - x_0)f(x)$$
 then

g(x) is antisymmetric or "odd" about x_0

$$g(x_0+y)=-g(x_0+g)$$

Proof (Cont.)

This is because $x - x_0$ is

But antisymmetric symmetric = antisymmetric (or odd-even = odd). Finally the integral of on antisymmetric (or "odd") function from $-\infty$ to ∞ is zero.

The integral to the left of x_0 cancels the area to the right.

This fact can save a lot of painful computation of expected values.

Example 2 (The linear distribution)

We have seen $\widetilde{\mu}=\frac{\sqrt{2}}{2}$, page 12, f(x) is certainly not symmetric so it is possible $\mu=\widetilde{\mu}$ and we will see that it is the case.

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$
$$= \int_{0}^{1} x(2x) dx$$
$$= 2 \int_{0}^{1} x^{2} dx$$
$$= 2 \left(\frac{1}{3}\right) = \frac{2}{3}$$

Handy fact
$$\int_0^1 x^n = \frac{1}{n}$$
.
So $\mu = \frac{2}{3}$ and $\widetilde{\mu} = \frac{2}{\sqrt{2}}$.

They aren't equal, which one is bigger?

Variance

The variance V(X) or σ^2 of a continuous random variable is defined by

$$V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

Remark

Once we learn about change of continuous random variable we will see this is

$$E\left((X-\mu)^2\right)$$

new random variable obtains from X using $h(x) = (x - \mu)^2$.

Once again there is a shortcut formula for V(X).

Proposition (Shortcut Formula)

$$V(X) = E(X^2) - (E(X))^2$$

= $E(X^2) - \mu^2$

This is the formula to use

Example 1 $(X \sim \bigcup (a, b))$

We know $\mu = \frac{a+b}{2}$. We have to compute $E(X^2)$

Example 1 (Cont.)

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f(x) dx$$

$$= \int_{a}^{b} x^{2} \underset{b-a}{\perp} dx$$

$$= \frac{1}{b-a} \left(\frac{x^{3}}{3} \right) \Big|_{x=a}^{x=b}$$

$$= \frac{1}{3} \frac{b^{3} - a^{3}}{b-a} = \frac{1}{3} (b^{2} + ab + a^{2})$$

So
$$V(X) = \frac{1}{3}(a^2 + ab + b^2) - \left(\frac{a+b}{2}\right)^2$$
$$= \frac{a^2 + ab + b^2}{3} - \frac{a^2 + 2ab + b^2}{4}$$
$$= \frac{a^2 - 2ab + b^2}{12} = \frac{(b-a)^2}{12}$$

Example 2 (The linear distribution)

We have seen (pg. 21)

$$\mu = \frac{2}{3}$$

We need $E(X^2)$

$$E(X^{2}) = \int_{-\infty}^{\infty} X^{2} f(x) dx$$

$$= \int_{0}^{1} x^{2} (2x) dx$$

$$= 2 \int_{0}^{1} x^{3} dx = 2 \left(\frac{1}{4}\right) = \frac{1}{2}$$
SO
$$V(X) = \frac{1}{2} - \left(\frac{2}{3}\right)^{2} = \frac{1}{2} - \frac{4}{9}$$

$$= \frac{9}{18} - \frac{8}{18} = \frac{1}{18}$$