POLITECNICO DI TORINO

Corso di Laurea in Ingegneria Meccanica

Tesi di Laurea

Dimensionamento di un braccio robotico a 6 assi

Progetto rover Trinity - Team DIANA

Relatore prof. Stefano Pastorelli Luigi DI RADO matricola: 204427

Anno accademico 2019 - 2020

Ringraziamenti

Indice

1	Rover Esplorativi e di Assistenza: Scenari di missione				
	1.1	Dall'esplorazione robotica all'assistenza di equipaggi	6		
	1.2	Rover Challenge Series: regolamento e requisiti nelle competizioni tra Rover	7		
	1.3	Scenari affrontati nelle competizioni e ruolo di un manipolatore robotico .	7		
		1.3.1 Manutenzione	7		
		1.3.2 Raccolta di campioni scientifici	7		
		1.3.3 Scenario Fetch and Collect	7		
2	Analisi preliminare dei requisiti				
	2.1	Tabella dei requisiti derivati dal progetto e dal regolamento	9		
	2.2	Workspace necessario	10		
	2.3	Confronto con i robot industriali a 6 gradi di libertà	10		
3	Design di un manipolatore a 6 gradi di libertà				
	3.1	Task di manipolazione e destrezza: Worst case	11		
	3.2	Modello multicorpo	11		
	3.3	Descrizione del modello di Robot scelto	11		
		3.3.1 Link: elenco e carichi strutturali stimati	11		
		3.3.2 Joints: elenco e potenze meccaniche necessarie	11		
4	Attuatori per un progetto di robotica low-cost				
	4.1	Motoriduttori Passo-Passo	13		
		4.1.1 Trasmissione del Moto e componenti utilizzati	13		
		4.1.2 Cenni di controllo ad anello aperto	13		
	4.2	Attuatori Lineari	13		
		4.2.1 Dimensionamento del cinematismo Joint 3	13		
	4.3	Servomotori digitali: Dynamixel MX160	13		
		4.3.1 Scelta ed integrazione, i vantaggi di un attuatore specifico per im-			
		piego robotico	13		
5	Pol	so sferico, design e scelte progettuali	15		
		5.0.1 Descrizione	15		
		5.0.2 Ingombri ed integrazione	15		
		5.0.3 Scelta dei Cuscinetti	15		

Indice

6	Trasmissio	Trasmissione del moto, analisi e dimensionamento dei cinematismi uti-				
	lizzati		17			
	6.0.1	Metodo di Lewis	17			
	6.0.2	Riduzione del numero minimo di denti: ingranamento elicoidale	17			
	6.0.3	Dimensionamento di un rotismo stampato in 3D, compromessi e assunzioni	17			
	6.0.4	Risultati ottenuti dal dimensionamento	17			
	6.0.5	Compromesso tra dimensionamento e ingombri	17			
7	Costruzione mediante manifattura additiva e assemblaggio					
	7.0.1	Studio del materiale da stampa ABSPlus P430	19			
	7.0.2	Produzione dei componenti	19			
	7.0.3	Assemblaggio	19			
8	Risultati	attesi ed ottenuti dal Robot realizzato	21			
	8.0.1	Test e collaudo del Robot assemblato	21			
	8.0.2	Carichi massimi applicati e precisione ottenuta	21			
	8.0.3	Risultati nelle Competizioni studentesche	21			
D	isegni ed el	aborati tecnici	23			
Bi	ibliografia		24			

Rover Esplorativi e di Assistenza: Scenari di missione

Il team DIANA, acronimo di *Ducti Ingenio Accipimus Naturam Astrorum*, lavora nella ricerca e nello sviluppo della robotica per applicazioni spaziali. Il Team è stato fondato nel 2008 in occasione del progetto nazionale AMALIA e ha prodotto tre prototipi di rover: **Amalia**, un rover lunare esplorativo, **T0-R0**, un rover marziano di assistenza che ha partecipato a European Rover Challenge 2018 e **TRINITY**, il nuovo rover marziano che ha partecipato all'European Rover Challenge 2019.

Figura 1.1. Rover AMALIA E T0-R0

Il team DIANA ha un'esperienza decennale nella progettazione e nello sviluppo di modelli di rover per l'esplorazione e l'assistenza e dispone di un set completo di abilità ingegneristiche, ottima conoscenza del software ed eccezionali capacità organizzative, gestionali e di lavoro di squadra, tutte cruciali nella produzione di un progetto complesso. Il team intende porre le basi per un nuovo approccio all'ingegneria aerospaziale, contribuendo a portare la robotica spaziale a un livello più accessibile grazie alla sua tecnica di lavoro innovativa. TRINITY è il prodotto del patrimonio e della competenza di dieci anni di duro

lavoro e ricerca approfondita, condotta con una visione chiara e un approccio specifico. Il team sta affrontando una crescita dal 2018 e la partecipazione all'European Rover Challenge ha avuto un ruolo chiave nel suo sviluppo poiché rappresenta un'opportunità senza precedenti per testare le soluzioni del team e capire dove e come migliorare il suo progetto.

Figura 1.2. Il Team DIANA con TRINITY ad ERC 2019

Nell'ambito del team DIANA che sta diventando un forte gruppo di giovani ingegneri che lavorano nella ricerca e nello sviluppo della robotica spaziale, testare il lavoro svolto in laboratorio è un passo cruciale nello sviluppo. Inoltre, il Team DIANA ha vissuto l'European Rover Challenge come un evento eccezionale, in grado di riunire ingegneri appassionati e qualificati in un ambiente internazionale.

Pertanto, per essere una fonte di competenza, un campo per i test e un'opportunità senza precedenti di crescita e raccolta, la partecipazione all'European Rover Challenge 2019 è senza dubbio un'esperienza necessaria e profondamente desiderata per il Team DIANA.

1.1 Dall'esplorazione robotica all'assistenza di equipaggi

I Rover di assistenza progettati dal Team DIANA rappresentano dei modelli di future missioni dove i Rover vengono impiegati nell'assistenza ad un equipaggio umano. Viene a cadere il presupposto per cui le sonde esplorative operano in scenari unmanned e il ruolo dell'operatore diventa centrale nella progettazione del Robot. Esso dovrà avere quanto più possibile un funzionamento autonomo per non sottrarre risorse all'utilizzatore, considerare la presenza di esseri umani nel suo workspace

- 1.2 Rover Challenge Series: regolamento e requisiti nelle competizioni tra Rover
- 1.3 Scenari affrontati nelle competizioni e ruolo di un manipolatore robotico
- 1.3.1 Manutenzione
- 1.3.2 Raccolta di campioni scientifici
- 1.3.3 Scenario Fetch and Collect

Analisi preliminare dei requisiti

2.1 Tabella dei requisiti derivati dal progetto e dal regolamento

ID	REQUIREMENT	TECHNICAL SOLUTION	VALIDATION
TR.ARM	Arm system must be able to reach the ground, use max of upper surface of chassis, reach 1.5 m of height, manipulate elements	Anthropomorphic arm, with 6 DoFs: from literature, solution with greater dexterity	CAD design (with TR.CORE); Matlab script of arm workspace; multibody model
TR.ARM	Arm system must be able to lift at at least a 5 Kg payload	Arm actuated by stepper motors, linear actuator and dinamixel servo motors with high torque	CAD design with TR.ARM; Matlab script of arm workspace; mul- tibody model; FEM model; Lewis theory
TR.ARM	Arm system must have high operative speed, without sacrificing accuracy (target of tool center point of $1cm^2$)	Implementation of control system of stepper motors, linear actuator and Dynamixel; position control system	Simulink model; inverse kinematics study

TR.ARM	TR.ARM must allow to	Spherical wrist; 3 DoFs	CAD design; Matlab
	reach the elements of the	on structure; 3 DoFs on	script for arm workspa-
	panel with the rover po-	wrist	ce; multibody model
	sitioned at 0.5 m from it		
	with toll perpendiucular		
	to pannel		
	to painior		

2.2 Workspace necessario

2.3 Confronto con i robot industriali a 6 gradi di libertà

Design di un manipolatore a 6 gradi di libertà

- 3.1 Task di manipolazione e destrezza: Worst case
- 3.2 Modello multicorpo
- 3.3 Descrizione del modello di Robot scelto
- 3.3.1 Link: elenco e carichi strutturali stimati
- 3.3.2 Joints: elenco e potenze meccaniche necessarie

Attuatori per un progetto di robotica low-cost

- 4.1 Motoriduttori Passo-Passo
- 4.1.1 Trasmissione del Moto e componenti utilizzati

Joint 1

Joint 2

- 4.1.2 Cenni di controllo ad anello aperto
- 4.2 Attuatori Lineari
- 4.2.1 Dimensionamento del cinematismo Joint 3
- 4.3 Servomotori digitali: Dynamixel MX160
- 4.3.1 Scelta ed integrazione, i vantaggi di un attuatore specifico per impiego robotico

Controllo in coppia

Polso sferico, design e scelte progettuali

- 5.0.1 Descrizione
- 5.0.2 Ingombri ed integrazione
- 5.0.3 Scelta dei Cuscinetti

Trasmissione del moto, analisi e dimensionamento dei cinematismi utilizzati

- 6.0.1 Metodo di Lewis
- 6.0.2 Riduzione del numero minimo di denti: ingranamento elicoidale
- 6.0.3 Dimensionamento di un rotismo stampato in 3D, compromessi e assunzioni
- 6.0.4 Risultati ottenuti dal dimensionamento
- 6.0.5 Compromesso tra dimensionamento e ingombri

Costruzione mediante manifattura additiva e assemblaggio

- 7.0.1 Studio del materiale da stampa ABSPlus P430
- 7.0.2 Produzione dei componenti
- 7.0.3 Assemblaggio

Risultati attesi ed ottenuti dal Robot realizzato

- 8.0.1 Test e collaudo del Robot assemblato
- 8.0.2 Carichi massimi applicati e precisione ottenuta
- 8.0.3 Risultati nelle Competizioni studentesche

Disegni ed elaborati tecnici

Bibliografia

- [1] G. Galilei, Nuovi studii sugli astri medicei, Manuzio, Venetia, 1612.
- [2] E. Torricelli, in "La pressione barometrica", *Strumenti Moderni*, Il Porcellino, Firenze, 1606.
- [3] E. Torricelli e A. Vasari, in "Delle misure", *Atti Nuovo Cimento*, vol. III, n. 2 (feb. 1607), p. 27–31.
- [4] Duane J.T., Learning Curve Approach To Reliability Monitoring, IEEE Transactions on Aerospace, Vol. 2, pp. 563-566, 1964