【Bandit Algorithms学习笔记】EXP3算法理论证明

在bandit问题中我们更应该关心随机bandit模型是不是能用而不是模型正不正确。模型正确与否通常用预测结果表示,模型是否好用通常用模型预测结果的准确率表示。

对抗式赌博机

对抗式赌博机不去假设奖励是如何生成的,我们通常叫对抗式赌博机的环境为**对手**(adversary)。 **目标**是用来表述一个策略是否能够很好地和最优的动作对抗。

你可以想象一下和朋友在玩这样一个游戏,游戏流程如下:

- 1. 你告诉你的朋友你要选择的动作,动作有1或2.
- 2. 你的朋友秘密选择奖励x1 {0,1} 和x2 {0,1}
- 3. 你使用你的策略去选择动作A1或A2 ,然后得到奖励x_A
- 4. 遗憾就等于 R = max{x_1, x_2} -x_A

因此我们可以看到,adversarial bandit和stochastic bandit的区别是,前者的奖励是对手随机给出的(你可以想象一个赌场中,赌博机是能被人为操控的),而后者的奖励概率在我们之前讨论过的章节中是确定的(也就是每个bandit以概率 P_i 吐钱或者不吐钱)。

对抗式赌博机问题和随机赌博机问题相似,都有许多不同的推论,在下面的内容中我们将开始讨论。

Exp3算法

对抗式赌博机环境

对于n轮游戏,k臂对抗时赌博机会得到一串n个值的序列。每一轮学习者会选择动作的分布 P_t 属于 P_k-1 ,然后根据 P_t 采样得到动作 A_t 。

策略函数pai是历史序列到动作分布的一个映射。策略函数在环境中的表现可以用遗憾的期望来衡量,具体到下面这个公式:

k臂对抗式赌博机的交互协议如下:

加载失败,请点击重试

可见遗憾的随机性唯一来源于学习者动作的随机性,当然,和环境的交互意味着在t轮时刻的动作选择也许会依赖于动作t轮之前的动作,以及t轮及以前的奖励。

对于所有环境而言,worst-case遗憾为:

对于确定的策略,有结论 $R_n^*(\pi) \ge n(1-1/k)$,因此像Explore-then-commit和 UCB算法这种确定的策略是不适用于对抗式的场景。

根据琴生不等式以及最大不等式的凸性质,有:

EXP3算法流程

关于adversarial bandit最常见的算法就是EXP3,EXP3的计算流程如下:

- · 根据先前计算得到的 P_{ti} 采样的得到 A_t
- ·执行动作得到奖励,根据奖励的观测值 X_{ti} 估计每个动作的奖励估计值
- ・用奖励的估计值更新概率 P_{ti}

第一轮,初始化每个动作被执行的概率为1/K。

奖励的估计值

所有对抗式赌博机算法的关键都是一套机制,采用这种机制去估计没有玩过的赌博机臂的奖励。 P_t 是第t轮动作的条件概率。对于i属于[k], P_{ti} 的条件概率是(执行A1,得到奖励X1,执行A2,得到奖励X2,一直到执行A t-1得到奖励X t-1的条件下)执行动作A i的概率。

我们定义 x_{ti} 的估计值为:

$$\hat{X}_{ti} = rac{\mathbb{I}\left\{A_t = i
ight\}}{P_{ti}}\,X_t\,.$$

 X_{ti} 的条件期望满足, $E_{t-1}[X_{ti}] = x_{ti}$,意味着 X_{ti} 在t-1轮历史观测的条件下是 x_{ti} 的无偏估计。我们设定 $A_{ti} = I\{A_t = i\}$ 因此有 $X_t A_{ti} = x_{ti} A_{ti}$,并且 $E_t[A_{ti}] = P_{ti}$,并且因为 P_{ti} 是 $\sigma(A_1, X_1, ..., A_{t-1}, X_{t-1})$ 可测的。因此有:

$$\mathbb{E}_t \left[\hat{X}_{ti}
ight] = \mathbb{E}_t \left[rac{A_{ti}}{P_{ti}} \, x_{ti}
ight] = rac{x_{ti}}{P_{ti}} \, \mathbb{E}_t \left[A_{ti}
ight] = rac{x_{ti}}{P_{ti}} \, P_{ti} = x_{ti}$$

奖励估计值的方差

我们还需要计算奖励估计值的方差,因为如果奖励估计值的方差很小,证明我们的算法就越稳定,相反如果奖励估计值的方差太大,或许这个算法就不值得被使用。因此,我们需要考虑奖励估计值 X_{ti} 的方差 $V_t[X_{ti}]$ 。

根据条件方差的定义式

$$\mathbb{V}_t\left[U
ight] \doteq \mathbb{E}_t\left[\left(U - \mathbb{E}_t\left[U
ight]
ight)^2
ight]$$

结合

$${\hat X}_{ti}^2=rac{A_{ti}}{P_{ti}^2}\,x_{ti}^2$$

$$\mathbb{E}_t \left[\hat{X}_{ti}^2
ight] = rac{x_{ti}^2}{P_{ti}}$$

我们容易得到:

$$\mathbb{V}_t \left[\hat{X}_{ti}
ight] = x_{ti}^2 rac{1 - P_{ti}}{P_{ti}}$$

但是,观察这个式子我们能够看出一个问题: 概率越小的动作,方差越大。因此,这样设定估计值 对概率小的动作非常不友好,为了解决这个问题,设定另外一个估计值:

$$\hat{{Y}}_{ti} = rac{\mathbb{I}\left\{A_t = i
ight\}}{P_{ti}}\,Y_t$$

其中, $y_{ti} = 1 - x_{ti}$, $Y_t = 1 - X_t$ 。如此一来,根据方差的性质我们能够得到:前一种估计方式和后一种估计方式的方差是相等的,即:

$$\mathbb{V}_t \left[\hat{X}_{ti}
ight] = \mathbb{V}_t \left[\hat{Y}_{ti}
ight] = y_{ti}^2 rac{1 - P_{ti}}{P_{ti}}$$

前者估计值的范围是0到正无穷,后者的范围是负无穷到1,所以后者估计值的方差较小,对"好动作"的估计值会更加精准。

概率计算

我们定义前t轮奖励估计值的和为:

$$\hat{S}_{ti} \doteq \sum_{s=1}^t \hat{X}_{si}$$

对于前t轮奖励和越高的动作,我们自然是希望执行这个动作的概率越高,这样便于指导我们在接下来的几轮中获得更多的奖励。我们需要将奖励和映射为概率,这样便于我们选取动作:

$$P_{ti} \doteq rac{\exp(\eta \hat{S}_{t-1,i})}{\sum_{j} \exp(\eta \hat{S}_{t-1,j})}$$

你可以理解 n 为学习率,值越大,越倾向于选择奖励高的动作。

为了便于计算,我们常常采用增量形式的概率计算:

$$P_{t+1,i} = rac{P_{ti} \exp(\eta \hat{X}_{ti})}{\sum_{j} P_{tj} \exp(\eta \hat{X}_{tj})}$$

虽然这样的计算方式对于较大的n和K而言会使得数据不置信。

EXP3遗憾计算

上述的前置知识介绍完之后,我们进入EXP3算法的遗憾期望计算。

推论1

对于上述adversarial bandit问题,其遗憾满足下面式子:

$$R_n \leq 2 \sqrt{n K \log(K)}$$
 .

证明

根据遗憾的定义式: $Rn = \Sigma_{t=1}^n X_{ti} - E[\Sigma_{t=1}^n X_t]$,因为奖励的估计值是无偏的,因此, $E[S_{ni}] = \Sigma_{t=1}^n x_{ti}$,并且 $E[X_t] = \Sigma_i P_{ti} x_{ti} = \Sigma_i P_{ti} E[X_{ti}]$,因此 $E[\Sigma_{t=1}^n X_t] = \Sigma_{t,i} P_{t,i} X_{t,i}$ 因此我们定义 Sn 拔等于 $\Sigma_{t,i} P_{t,i} X_{t,i}$,因此就有遗憾改写为:

$$\hat{S}_{ni}$$
 – \hat{S}_{n}

为了便于下文推导,我们将上式指数化,得到 $exp(\eta S_{ni})$,我们还定义:

$$W_n \doteq \sum_j \exp(\eta(\hat{S}_{nj}))$$

因此有 $W_0=K, S0i=0$,那么便有以下式子:

$$\exp(\eta \hat{S}_{ni}) \leq \sum_j \exp(\eta(\hat{S}_{nj})) = W_n = W_0 rac{W_1}{W_0} \ldots rac{W_n}{W_{n-1}}$$

根据上式规律,我们需要找出Wt/Wt-1,

$$rac{W_t}{W_{t-1}} = \sum_j rac{\exp(\eta \hat{S}_{t-1,j})}{W_{t-1}} \exp(\eta \hat{X}_{tj}) = \sum_j P_{tj} \exp(\eta \hat{X}_{tj}) \, .$$

观察上式最右边的指数形式,我们根据不等式 $e^x \le x^2 + x + 1$, x < 1 和不等式 $e^x \ge x + 1$,得到:

$$rac{W_t}{W_{t-1}} \leq 1 + \eta \sum_j P_{tj} \hat{X}_{tj} + \eta^2 \sum_j P_{tj} \hat{X}_{tj}^2 \leq \exp(\eta \sum_j P_{tj} \hat{X}_{tj} + \eta^2 \sum_j P_{tj} \hat{X}_{tj}^2)$$

综上变形得到:

$$\exp(\eta \hat{S}_{ni}) \leq K \exp(\eta \hat{S}_n + \eta^2 \sum_{t,j} P_{tj} \hat{X}_{tj}^2)$$

上式取对数后变形得到:

$$\hat{S}_{ni}$$
 – $\hat{S}_n \leq rac{\log(K)}{\eta} + \eta \sum_{t,j} P_{tj} \hat{X}_{tj}^2$

我们可以找到上式最右边一项的上界为:

$$\mathbb{E}_t \left[\sum_j P_{tj} \hat{X}_{tj}^2
ight] = \sum_j p_{tj} (1 - 2 y_{tj}) + \sum_j y_{tj}^2 \leq K_t$$

再放缩得到:

$$R_{ni} \leq rac{\log(K)}{\eta} + \eta n K$$

根据高中所学的对勾函数的性质,我们容易得到遗憾上界为:

$$R_n \leq 2\sqrt{nK\log(K)}$$
 .

证明完毕。

课后思考题

我们之前的证明是采用X估计值,也就是第一种估计值证明遗憾的期望,小伙伴们可以试着用Y的估计值证明一下遗憾的期望,看看能得出什么结论吧~