2.2 Schrödinger's wave equation

Slides: Video 2.2.2 From de Broglie to Schrödinger

Text reference: Quantum Mechanics for Scientists and Engineers

Sections 2.1 – 2.2

Electrons as waves

de Broglie's hypothesis is that the electron wavelength λ is given by

$$\lambda = \frac{h}{p}$$

where p is the electron momentum and h is Planck's constant

$$h = 6.62606957 \times 10^{-34} J s$$

Now we want to use this to help construct a wave equation

A Helmholtz wave equation

If we are considering only waves of one wavelength λ for the moment

i.e., monochromatic waves we can choose a Helmholtz wave equation

$$\frac{d^2\psi}{dz^2} = -k^2\psi \text{ with } k = \frac{2\pi}{\lambda}$$

which we know works for simple waves

with solutions like

 $\sin(kz)$, $\cos(kz)$, and $\exp(ikz)$

(and $\sin(-kz)$, $\cos(-kz)$, and $\exp(-ikz)$)

A Helmholtz wave equation

In three dimensions, we can write this as

$$\nabla^2 \psi \equiv \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = -k^2 \psi$$

which has solutions like

$$\sin(\mathbf{k} \cdot \mathbf{r})$$
, $\cos(\mathbf{k} \cdot \mathbf{r})$, and $\exp(i\mathbf{k} \cdot \mathbf{r})$

(and $\sin(-\mathbf{k} \cdot \mathbf{r})$, $\cos(-\mathbf{k} \cdot \mathbf{r})$, and $\exp(-i\mathbf{k} \cdot \mathbf{r})$)

where \mathbf{k} and \mathbf{r} are vectors

From Helmholtz to Schrödinger

With de Broglie's hypothesis
$$\lambda = h/p$$

and the definition $k = 2\pi/\lambda$
then $k = 2\pi p/h = p/\hbar$
where we have defined $\hbar \equiv h/2\pi$
so $k^2 = p^2/\hbar^2$

Hence we can rewrite our Helmholtz equation

or
$$\nabla^2 \psi = -\frac{p^2}{\hbar^2} \psi$$
$$-\hbar^2 \nabla^2 \psi = p^2 \psi$$

From Helmholtz to Schrödinger

If we are thinking of an electron, we can divide both sides by its mass m_o to obtain

$$-\frac{\hbar^2}{2m_o}\nabla^2\psi = \frac{p^2}{2m_o}\psi$$

But we know from classical mechanics that

$$\frac{p^2}{2m_o}$$
 = kinetic energy of electron and in general

Total energy (E)=Kinetic energy + Potential energy ($V(\mathbf{r})$)

From Helmholtz to Schrödinger

So Kinetic energy =
$$p^2 / 2m_o$$

= Total energy (E) - Potential energy $(V(\mathbf{r}))$

Hence our Helmholtz equation
$$-\frac{\hbar^2}{2m_o}\nabla^2\psi = \frac{p^2}{2m_o}\psi$$

becomes the Schrödinger equation $-\frac{\hbar^2}{2m_o}\nabla^2\psi = (E - V(\mathbf{r}))\psi$

or equivalently
$$\left(-\frac{\hbar^2}{2m_o} \nabla^2 + V(\mathbf{r}) \right) \psi = E \psi$$

Schrödinger's time-independent equation

We can postulate a Schrödinger equation for any particle of mass m

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})\right)\psi = E\psi$$

Formally, this is the time-independent Schrödinger equation

Probability densities

```
Born's postulate is that
   the probability P(\mathbf{r}) of finding an electron
     near any specific point r in space
      is proportional to the modulus squared |\psi(\mathbf{r})|^2
       of the wave amplitude \psi(\mathbf{r})
|\psi(\mathbf{r})|^2 can therefore be viewed as a
    "probability density"
      with \psi(\mathbf{r}) called a "probability amplitude"
         or a "quantum mechanical amplitude"
```

