Inference on random changepoint models: application to pre-dementia cognitive decline

Corentin Segalas

PhD defense, Supervisor: Hélène Jacqmin-Gadda

December 3rd, 2019

BORDEAUX POPULATION HEALTH Research Center - U1219

Biostatistics

Context: dementia

- Syndroms affecting cognitive abilities impacting daily life
- Differs from normal ageing
- Alzheimer's Disease main cause of dementia
- Major public health issue today and tomorrow

Context: cognitive decline trajectories

- Very long and progressive pre-diagnosis phase
- Heterogeneous and non-linear decline trajectories
- Subject-specific acceleration of cognitive decline

Figure: IST individual trajectories of 100 randomly selected high educational subjects diagnosed during follow-up from French cohort PAQUID.

Context: cognitive decline trajectories

Figure: Estimated cognitive trajectories for cases (red) and matched controls (blue) for low (left) and high (right) educational subjects from French cohort PAQUID (Amieva et al., 2014).

Context: cognitive decline trajectories

Figure: Estimated cognitive trajectories for cases (red) and matched controls (blue) for high educational subjects from French cohort PAQUID (Amieva et al., 2014).

Objectives

 Identifying the acceleration of cognitive decline: testing the existence of a random changepoint (CP) in a longitudinal trajectory

Statistical challenge: non identifiability of some nuisance parameters (no literature)

Objectives

 Identifying the acceleration of cognitive decline: testing the existence of a random changepoint (CP) in a longitudinal trajectory

Statistical challenge: non identifiability of some nuisance parameters (no literature)

2. Order of degradation: if a random CP exists, compare mean changepoint time between markers

Statistical challenge: need a bivariate modelisation

Objective: Testing the existence of a random changepoint in a mixed model

Segalas C, Amieva H, Jacqmin-Gadda H. A hypothesis testing procedure for random changepoint mixed models. *Statistics in Medicine*, 2019;1-13. https://doi.org/10.1002/sim.8195

The random changepoint mixed model

The random changepoint mixed model

$$Y(t_{ij}) = \beta_{0i} + \beta_{1i}t_{ij} + \beta_2\sqrt{(t_{ij} - \tau_i)^2 + \gamma} + \varepsilon_{ij}$$

$$Y(t_{ij}) = \beta_{0i} + \beta_{1i}t_{ij} + \beta_2\sqrt{(t_{ij} - \tau_i)^2 + \gamma} + \varepsilon_{ij}$$

- $\beta_{ki} = \beta_k + b_{ki}$ for k = 0, 1 with $b_i = (b_{0i}, b_{1i}) \sim \mathcal{N}(0, B)$
- $au_i = \mu_{ au} + \sigma_{ au} ilde{ au}_i$ with $ilde{ au}_i \sim \mathcal{N}(0,1)$ and $ilde{ au}_i \perp b_i$
- $\sqrt{.+\gamma}$ a smooth transition function
- $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma)$ residual error \perp of the random effects

At this stage β_2 is assumed non random

A score test approach

$$Y(t_{ij}) = \beta_{0i} + \beta_{1i}t_{ij} + \beta_2\sqrt{(t_{ij} - \tau_i)^2 + \gamma} + \varepsilon_{ij}$$

• Objective: H_0 : $\beta_2 = 0$ vs. H_1 : $\beta_2 \neq 0$

A score test approach

$$Y(t_{ij}) = \beta_{0i} + \beta_{1i}t_{ij} + \beta_2\sqrt{(t_{ij} - \tau_i)^2 + \gamma} + \varepsilon_{ij}$$

- Objective: H_0 : $\beta_2 = 0$ vs. H_1 : $\beta_2 \neq 0$
- Nuisance parameters: $\underline{\beta_0, \beta_1, \sigma, \sigma_0, \sigma_1, \sigma_{01}}, \underline{\mu_{\tau}, \sigma_{\tau}}$
- Classic score test statistics depends upon $\hat{\mu}_{\tau 0}, \hat{\sigma}_{\tau 0}$

$$S_n(0; \hat{\mu}_{\tau 0}, \hat{\sigma}_{\tau 0}, \hat{\theta}_0) = \frac{U_n(0; \hat{\mu}_{\tau 0}, \hat{\sigma}_{\tau 0}, \hat{\theta}_0)^2}{Var(U_n(0; \hat{\mu}_{\tau 0}, \hat{\sigma}_{\tau 0}, \hat{\theta}_0))}$$

with

$$U_n(0, \mu_\tau, \sigma_\tau, \theta) = \left. \frac{\partial \ell_n(Y; \beta_2, \mu_\tau, \sigma_\tau, \theta)}{\partial \beta_2} \right|_{\beta_2 = 0} \text{ and } U_n = \sum_{i=1}^n u_i$$

The supremum score test (Hansen, 1996)

Test statistic:

$$T_n = \sup_{(\mu_{\tau}, \sigma_{\tau})} S_n(0; \mu_{\tau}, \sigma_{\tau}, \hat{\theta}_0)$$

with $\hat{ heta}_0$ MLE of identifiable nuisance parameters under H_0

The supremum score test (Hansen, 1996)

• Test statistic:

$$T_n = \sup_{(\mu_{\tau}, \sigma_{\tau})} S_n(0; \mu_{\tau}, \sigma_{\tau}, \hat{\theta}_0)$$

with $\hat{ heta}_0$ MLE of identifiable nuisance parameters under H_0

• Empirical distribution of T_n under H_0 : perturbation algorithm (van der Vaart et al., 1996). For k = 1, ..., K, we generate n r.v. $\xi_i^{(k)} \sim \mathcal{N}(0, 1)$ and compute

$$T_n^{(k)} = \sup_{(\mu_\tau, \sigma_\tau)} \frac{\left(\sum_{i=1}^n u_i(0; \mu_\tau, \sigma_\tau, \hat{\theta}_0) \xi_i^{(k)}\right)^2}{\sum_{i=1}^n u_i(0; \mu_\tau, \sigma_\tau, \hat{\theta}_0)^2}$$

• Empirical p-value $p_K = rac{1}{K} \sum_{k=1}^K \mathbf{1}_{T_n^{(k)} > T_n^{(obs)}}$

Heterogeneity in β_2 ?

Project 1

• Is β_2 subject specific (i.e. random)?

$$H_0$$
: $B = \begin{pmatrix} \sigma_0^2 & \sigma_{01} & 0 \\ \sigma_{01} & \sigma_1^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, vs. H_1 : B unstructured

- ⇒ corrected test for variance components (Stram and Lee, 1994)
- Does β₂ depend on covariate?
 - \Rightarrow Wald test

Additional tests for heterogeneity

Heterogeneity in β_2 ?

• Is β_2 subject specific (i.e. random)?

$$H_0$$
: $B = \begin{pmatrix} \sigma_0^2 & \sigma_{01} & 0 \\ \sigma_{01} & \sigma_1^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, vs. H_1 : B unstructured

- ⇒ corrected test for variance components (Stram and Lee, 1994)
- Does β_2 depend on covariate?
 - \Rightarrow Wald test

Heterogeneity in τ_i ?

- Does τ_i depend on covariate?
 - \Rightarrow Wald test

1000 replicates

$$Y(t_{ij}) = \beta_{0i} + \beta_{1i}t_{ij} + \beta_2\sqrt{(t_{ij} - \tau_i)^2 + \gamma} + \varepsilon_{ij}$$

with parameters:

•
$$\beta_{0i} = 20 + \alpha_{0i}$$
 and $\beta_{1i} = -0.3 + \alpha_{1i}$

•
$$\alpha_i = (\alpha_{0i}, \alpha_{1i})^{\top} \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0.1 \\ 0.1 & 0.2 \end{pmatrix}\right)$$

and various scenarios:

- N = 50:100
- P(dropout) = 0; 0.1
- $\beta_2 = 0 \ (M_0); -0.05 \ (M_1); -0.075 \ (M_2); -0.1 \ (M_3)$
- $(\mu_{\tau}, \sigma_{\tau}) = (10, 2); (10, 4); (15, 2)$

Simulations: results

N			100		
drop-out			0	0.1	
M_0	0.041	0.030	0.038	0.040	
M_1	0.630	0.304	0.966	0.680	
M_2	0.967	0.678	1	0.973	
M_3	1	0.945	1	1	
M_1	0.470	0.185	0.864	0.501	
M_2	0.873	0.527	0.998	0.902	
M_3	0.980	0.791	1	0.993	
M_1	0.303	0.071	0.626	0.207	
M_2	0.615	0.215	0.967	0.545	
M_3	0.917	0.438	0.999	0.869	
	M ₁ M ₂ M ₃ M ₁ M ₂ M ₃ M ₁ M ₂ M ₃	$\begin{array}{c c} & 0 \\ M_0 & 0.041 \\ M_1 & 0.630 \\ M_2 & 0.967 \\ M_3 & 1 \\ M_1 & 0.470 \\ M_2 & 0.873 \\ M_3 & 0.980 \\ M_1 & 0.303 \\ M_2 & 0.615 \\ \end{array}$	$\begin{array}{c cccc} M_0 & 0.041 & 0.030 \\ \hline M_1 & 0.630 & 0.304 \\ M_2 & 0.967 & 0.678 \\ \hline M_3 & 1 & 0.945 \\ \hline M_1 & 0.470 & 0.185 \\ \hline M_2 & 0.873 & 0.527 \\ \hline M_3 & 0.980 & 0.791 \\ \hline M_1 & 0.303 & 0.071 \\ \hline M_2 & 0.615 & 0.215 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Table: Sizes and powers of the test of each scenario with K=500 perturbations.

Simulations: results

N	5	0	100		
drop-out	0	0.1	0	0.1	
	M_0	0.041	0.030	0.038	0.040
	M_1	0.630	0.304	0.966	0.680
$(\mu_{ au},\sigma_{ au})=(10,2)$	M_2	0.967	0.678	1	0.973
	M_3	1	0.945	1	1
	M_1	0.470	0.185	0.864	0.501
$(\mu_{ au},\sigma_{ au})=(10,4)$	M_2	0.873	0.527	0.998	0.902
	M_3	0.980	0.791	1	0.993
	$\overline{M_1}$	0.303	0.071	0.626	0.207
$(\mu_\tau,\sigma_\tau)=(15,2)$	M_2	0.615	0.215	0.967	0.545
	M_3	0.917	0.438	0.999	0.869

Table: Sizes and powers of the test of each scenario with K=500 perturbations.

Application: the PAQUID cohort

- cohort of 3777 elderly subjects (≥ 65yo) from the French departments of Gironde and Dordogne, 25 years follow-up
- 901 incident cases of dementia between year 1 and 25
- Isaac 15s score (verbal fluency)
- Stratified analysis on the educational level

Application: results

	obs. statistic test	<i>p</i> —value
High education	143.7	< 0.001
Low education	56.9	< 0.001

Table: Score test results with K = 500

 \Rightarrow We clearly reject H_0 : $\beta_2 = 0$ for both group

Application: results

	obs. statistic test	<i>p</i> —value
High education	143.7	< 0.001
Low education	56.9	< 0.001

Table: Score test results with K = 500

 \Rightarrow We clearly reject H_0 : $\beta_2 = 0$ for both group

$$\beta_{2i} = \beta_2 + \alpha_{2i}$$
 with $\alpha_i = (\alpha_{0i}, \alpha_{1i}, \alpha_{2i}) \sim \mathcal{N}(0, B)$

$$(H_0): \mathsf{B} = egin{pmatrix} \sigma_0^2 & \sigma_{01} & 0 \\ \sigma_{01} & \sigma_1^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, vs. $(H_1): B$ unstructured

 \Rightarrow We reject H_0 : $\sigma_2 = 0$ for both group (p < 0.001)

Discussion

- Valid test with good power
- testRCPM function in rcpm package
- Assumption of a fixed β_2 (test with random β_{2i} robust)
- Relaxing the assumption of a Gaussian distribution for $\tilde{\tau}_i$

Project 2

Objective: Compare mean CP date between markers

Segalas C, Helmer C, Jacqmin-Gadda H. A curvilinear bivariate random changepoint model to assess temporal order of markers. Submitted to *Statistical Methods in Medical Research*, resubmitted after 1st revision.

Project 2

$$Y^\ell(t^\ell_{ij}) = \beta^\ell_{0i} + \beta^\ell_{1i}(t^\ell_{ij} - \tau^\ell_i) + \beta^\ell_{2i} \sqrt{(t^\ell_{ij} - \tau^\ell_i)^2 + \gamma} + \varepsilon^\ell_{ij} \quad \ell = 1, 2$$

- $\beta_{ki}^{\ell} = \beta_{k}^{\ell} + b_{ki}^{\ell}$ with $b_{i}^{\ell} = (b_{0i}^{\ell}, b_{1i}^{\ell}, b_{2i}^{\ell}) \sim \mathcal{N}(0, B^{\ell})$
- $au_i^\ell = \mu_{ au}^\ell + \sigma_{ au}^\ell ilde{ au}_i^\ell$ with $ilde{ au}_i^\ell \sim \mathcal{N}(0,1)$ and $ilde{ au}_i^\ell \perp b_i$
- $\sqrt{.+\gamma}$ a smooth transition function
- $\varepsilon_{ii}^{\ell} \sim \mathcal{N}(0, \sigma^{\ell})$ residual error \perp of the random effects

$$Y^{\ell}(t_{ij}^{\ell}) = \beta_{0i}^{\ell} + \beta_{1i}^{\ell}(t_{ij}^{\ell} - \tau_i^{\ell}) + \beta_{2i}^{\ell}\sqrt{(t_{ij}^{\ell} - \tau_i^{\ell})^2 + \gamma} + \varepsilon_{ij}^{\ell} \quad \ell = 1, 2$$

- $\beta_{ki}^\ell=\beta_k^\ell+b_{ki}^\ell$ with $b_i^\ell=(b_{0i}^\ell,b_{1i}^\ell,b_{2i}^\ell)\sim\mathcal{N}(0,B^\ell)$
- $au_i^\ell = \mu_{ au}^\ell + \sigma_{ au}^\ell ilde{ au}_i^\ell$ with $ilde{ au}_i^\ell \sim \mathcal{N}(0,1)$ and $ilde{ au}_i^\ell \perp b_i$
- $\sqrt{.+\gamma}$ a smooth transition function
- $\varepsilon_{ii}^{\ell} \sim \mathcal{N}(0, \sigma^{\ell})$ residual error \perp of the random effects

 $+ corr(b_i^1, b_i^2) = B^{12}$ and $corr(\tilde{\tau}_i^1, \tilde{\tau}_i^2) = \rho_{\tau}^{12} \Rightarrow$ bivariate model

Curvilinearity

Figure: Histogram of the Grober and Buschke (GB) immediate and free recall from the 3C cohort.

Curvilinearity

Figure: Estimated link function between crude score and the underlying latent process (Proust Lima et al., 2006)

I-spline transformation of both crude markers Y^{ℓ} :

$$\tilde{Y}_{ij}^{\ell} = g^{\ell}(Y_{ij}^{\ell}, \frac{\eta^{\ell}}{\eta^{\ell}}) = \frac{\eta_0^{\ell}}{\eta_0^{\ell}} + \sum_{k=1}^{5} \frac{\eta_k^{\ell 2}}{\eta_k^{\ell}} I_k^{\ell}(Y_{ij}^{\ell}) \quad \ell = 1, 2$$

- I-splines of degree 2 with 2 internal knots at the quantiles
- $\tilde{Y} = (\tilde{Y}^1, \tilde{Y}^2)$ follows bivariate random changepoint model
- Identifiability constraints on the model: $\beta_0^{\ell} = 0$ and $\sigma_{\epsilon}^{\ell} = 1$

Inference

Project 2

• Log-likelihood $\tilde{\tau}_i = (\tilde{\tau}_i^{\ 1}, \tilde{\tau}_i^{\ 2})$:

$$\ell(\theta) = \sum_{i=1}^{n} \log \int f(\tilde{Y}_{i}|\tilde{\tau}_{i}) f(\tilde{\tau}_{i}) \mathrm{d}\tilde{\tau}_{i} + n \log |J_{g}^{1}| |J_{g}^{2}|$$

where $\tilde{Y}_i | \tilde{\tau}_i$ is a multivariate Gaussian.

- Optimization: Levenberg-Marquardt algorithm (Marquardt, 1963) and pseudo adaptive Gaussian quadrature
- Test: H_0 : $\mu_{\tau}^1 \mu_{\tau}^2 = 0$ vs. H_1 : $\mu_{\tau}^1 \mu_{\tau}^2 \neq 0$: a Wald test

500 replicates

N = 500 subjects with 7 visits from t = -25 to t = 0

- a null scenario with $\mu_{ au}^1 = \mu_{ au}^2 = -10$
- an alternative scenario with $\mu_{ au}^1=-10
 eq \mu_{ au}^2=-8$
- ullet a Gaussian scenario with markers $ilde{Y}^\ell$
- ullet a curvilinear scenario with markers $Y^\ell = \sqrt{10 ilde{Y}^\ell}$

⇒ Four scenarios : Gaussian null, curvilinear null, Gaussian alternative and curvilinear alternative

Simulations: results (null scenarios)

$$extstyle{\mathcal{H}}_0: \mu_ au^1 = \mu_ au^2$$

	θ	$\hat{ heta}$	bias%	CR	$\hat{ heta}$	bias%	CR
	Gaussian				cu	rvilinear	
μ_{τ}^{1}	-10.000	-9.994	0.064	94.2	-10.024	0.242	92.6
$\sigma_{ au}^{1}$	2.000	2.039	1.954	93.0	1.974	1.289	94.0
$\sigma_{ au}^1 \ \mu_{ au}^2 \ \sigma_{ au}^2$	-10.000	-9.998	0.024	94.2	-10.030	0.300	93.8
σ_{τ}^2	3.000	3.010	0.327	94.4	2.972	0.930	95.6
$\sigma_{ au}^{12}$	1.225	1.237	1.015	94.8	1.220	0.363	95.4
empirical size 0.050					0.064		

CR: coverage rate of the 95% confidence interval.

Simulations: results (null scenarios)

$$H_0: \mu_{ au}^1 = \mu_{ au}^2$$

	θ	$\hat{ heta}$	bias%	CR	$\hat{ heta}$	bias%	CR
	Gaussian				cu	rvilinear	
μ_{τ}^{1}	-10.000	-9.994	0.064	94.2	-10.024	0.242	92.6
$\sigma_{ au}^{1}$	2.000	2.039	1.954	93.0	1.974	1.289	94.0
$\sigma_{ au}^1 = \mu_{ au}^2$	-10.000	-9.998	0.024	94.2	-10.030	0.300	93.8
$\sigma_{ au}^2$	3.000	3.010	0.327	94.4	2.972	0.930	95.6
$\sigma_{ au}^{12}$	1.225	1.237	1.015	94.8	1.220	0.363	95.4
empirical size 0			0.050			0.064	

CR: coverage rate of the 95% confidence interval.

Simulations: results (null scenarios)

$$H_0: \mu_{ au}^1 = \mu_{ au}^2$$

	θ	$\hat{ heta}$	bias%	CR	$\hat{ heta}$	bias%	CR
		C	aussian		cu	rvilinear	
μ_{τ}^{1}	-10.000	-9.994	0.064	94.2	-10.024	0.242	92.6
$\sigma_{ au}^{1}$	2.000	2.039	1.954	93.0	1.974	1.289	94.0
$\sigma_{ au}^1 \ \mu_{ au}^2 \ \sigma_{ au}^2$	-10.000	-9.998	0.024	94.2	-10.030	0.300	93.8
σ_{τ}^2	3.000	3.010	0.327	94.4	2.972	0.930	95.6
$\sigma_{ au}^{12}$	1.225	1.237	1.015	94.8	1.220	0.363	95.4
empirical size 0.050					0.064		

CR: coverage rate of the 95% confidence interval.

Simulations: results (alternative scenarios)

$$H_0$$
: $\mu_{\tau}^1 \neq \mu_{\tau}^2$

	θ	$\hat{ heta}$	bias%	CR	$\hat{ heta}$	bias%	CR
	Gaussian				cu	rvilinear	
μ_{τ}^{1}	-10.000	-10.000	0.005	94.4	-10.005	0.052	94.2
$\sigma_{ au}^1$	2.000	1.967	1.647	92.6	1.972	1.388	92.6
$\sigma_{ au}^1 \ \mu_{ au}^2$	-8.000	-8.003	0.037	92.8	-8.045	0.565	91.4
$\sigma_{ au}^2$	3.000	3.002	0.070	94.6	2.999	0.033	93.4
$\sigma_{ au}^{12}$	1.225	1.216	0.737	95.8	1.220	0.363	95.4
empirical power			1.000			1.000	

CR: coverage rate of the 95% confidence interval.

$$H_0: \mu_{\tau}^1 \neq \mu_{\tau}^2$$

	θ	$\hat{ heta}$	bias%	CR	$\hat{ heta}$	bias%	CR
	Gaussian				cu	rvilinear	
$\mu_{ au}^{1}$	-10.000	-10.000	0.005	94.4	-10.005	0.052	94.2
$\sigma_{ au}^{1}$	2.000	1.967	1.647	92.6	1.972	1.388	92.6
$\sigma_{ au}^1 \ \mu_{ au}^2$	-8.000	-8.003	0.037	92.8	-8.045	0.565	91.4
$\sigma_{ au}^2$	3.000	3.002	0.070	94.6	2.999	0.033	93.4
$\sigma_{ au}^{12}$	1.225	1.216	0.737	95.8	1.220	0.363	95.4
empirical power			1.000			1.000	

CR: coverage rate of the 95% confidence interval.

Simulations: results (alternative scenarios)

$$H_0$$
: $\mu_{\tau}^1 \neq \mu_{\tau}^2$

	θ	$\hat{ heta}$	bias%	CR	$\hat{ heta}$	bias%	CR
	Gaussian				curvilinear		
$\mu_{ au}^{1}$	-10.000	-10.000	0.005	94.4	-10.005	0.052	94.2
$\sigma_{ au}^1$	2.000	1.967	1.647	92.6	1.972	1.388	92.6
$\sigma_{ au}^1 \ \mu_{ au}^2$	-8.000	-8.003	0.037	92.8	-8.045	0.565	91.4
$\sigma_{ au}^2$	3.000	3.002	0.070	94.6	2.999	0.033	93.4
$\sigma_{ au}^{12}$	1.225	1.216	0.737	95.8	1.220	0.363	95.4
empirical power			1.000			1.000	

CR: coverage rate of the 95% confidence interval.

Simulations: curvilinear link function estimation

Figure: Estimated mean link function (solid) vs. true link function (dotted) for both markers and for alternative and null scenario.

Application: the Three City (3C) cohort

- cohort of 2104 elderly subjects (≥ 65yo)
- 401 incident cases from Bordeaux center
- Grober and Bushke (GB) immediate vs. free recall

Application: the Three City (3C) cohort

- cohort of 2104 elderly subjects (≥ 65yo)
- 401 incident cases from Bordeaux center
- Grober and Bushke (GB) immediate vs. free recall

Table: Results of the preliminary tests on the 3C sample.

	$\beta_2 = 0$ vs. $\beta_2 \neq 0$	$\sigma_2 = 0$ vs. $\sigma_2 \neq 0$
GB immediate recall	< 0.001	< 0.001
GB free recall	< 0.001	< 0.001

Application: results

Table: Results of the bivariate estimation on the 3C sample.

	GB immediate recall		GB free	e recall	Wa	Wald test	
	\hat{eta}	$\widehat{se}(\hat{eta})$	$\boldsymbol{\hat{\beta}}$	$\widehat{se}(\hat{eta})$	stat.	p-value	
β_1	-0.286	0.023	-0.262	0.037	0.589	0.443	
β_2	-0.230	0.022	-0.229	0.029	0.024	0.877	
$\mu_{ au}$	-3.177	0.347	-5.820	0.579	3.937	0.047	

se: standard error

⇒ difference between GB immediate and free recall

Application: marginal estimation

$$E(\tilde{Y}^\ell(t),\hat{\theta}^\ell) = \int E(\tilde{Y}^\ell(t)|\tau_i^\ell,\hat{\theta}^\ell) f(\tau_i^\ell|\hat{\theta}^\ell) \mathrm{d}\tau_i^\ell$$

Figure: All individual GB immediate and free recall trajectories on the transformed scale compared to the estimated marginal trajectory $E(\tilde{Y}^\ell(t))$

Figure: Upper panes: true transformed observation vs. predicted observations; Lower panes: individual observations (dots) vs. their predicted trajectories (solid line).

- Valid estimation procedure and valid test
- bircpme function in rcpm package
- Identification of a late acceleration of cognitive decline
 - ⇒ modelling cases and controls together?

Time of differenciation versus late accelerated decline

Figure: Estimated cognitive trajectories for cases (red) and matched controls (blue) for high educational subjects from French cohort PAQUID (Amieva et al., 2014).

Proposal of a two-class random changepoint model

$$Y(t_{ij}) = \beta_{0i} + \beta_{1i}t_{ij} + \frac{\delta_i}{\beta_{2i}}f(t_{ij} - \tau_i, \eta) + \varepsilon_{ij}$$

- δ_i case indicator for subject i (1 for cases, 0 for controls)
- f difference from the linear trajectory
- $\beta_{ki} = \beta_k + b_{ki}$ with $b_i = (b_{0i}, b_{1i}, b_{2i}) \sim \mathcal{N}(0, B)$
- $\tau_i = \mu_{\tau} + \sigma_{\tau} \tilde{\tau}_i$ with $\tilde{\tau}_i \sim \mathcal{N}(0,1)$ and $\tilde{\tau}_i \perp b_i$
- $arepsilon_{ij} \sim \mathcal{N}(0,\sigma)$ residual error ot of the random effects

Estimation by MLE using the Levenberg-Marquardt algorithm

Application: nested case control from PAQUID

- 901 incident cases
- 901 controls, observed non demented at case diagnosis with same age ± 2 yo, same sex, same education
- Isaac 15s score (verbal fluency)

Ongoing work 00000

Application: nested case control from PAQUID

- 901 incident cases
- 901 controls, observed non demented at case diagnosis with same age ± 2 yo, same sex, same education
- Isaac 15s score (verbal fluency)

 \Rightarrow estimated time of differenciation: -11.094 [-12.522; -9.667]

Application: estimated mean trajectories

Status - - Controls - Cases

Perspectives and discussion

A semi-latent class random changepoint model

$$Y(t_{ij}) = \beta_{0i} + \beta_{1i}t_{ij} + \frac{c_i}{\beta_{2i}}f(t_{ij} - \tau_i, \eta) + \varepsilon_{ij}$$

A semi-latent class random changepoint model

$$Y(t_{ij}) = \beta_{0i} + \beta_{1i}t_{ij} + \frac{c_i}{\beta_{2i}}f(t_{ij} - \tau_i, \eta) + \varepsilon_{ij}$$

with a class membership model

$$\mathbb{P}(c_i = 1 | X_i, \delta_i) = \left(rac{\mathsf{exp}(\eta^ op X_i)}{1 + \mathsf{exp}(\eta^ op X_i)}
ight)^{1 - \delta_i}$$

- δ_i case indicator (1 for cases, 0 for controls)
- ⇒ all cases have a changepoint
- ⇒ some controls have a changepoint

- Selection bias: a joint model that models together:
 - ullet the longitudinal marker $Y(t_{ij}) = ilde{Y}(t_{ij}) + arepsilon_{ij}$
 - the time to dementia:

$$\lambda(t_{ij}) = \lambda_0(t_{ij}) \exp(\nu^\top Z_i + \gamma \tilde{Y}(t_{ij}))$$

 \Rightarrow possible to test for the existence of the random CP

- Selection bias: a joint model that models together:
 - ullet the longitudinal marker $Y(t_{ij}) = ilde{Y}(t_{ij}) + arepsilon_{ij}$
 - the time to dementia:

$$\lambda(t_{ij}) = \lambda_0(t_{ij}) \exp(\nu^\top Z_i + \gamma \tilde{Y}(t_{ij}))$$

- \Rightarrow possible to test for the existence of the random CP
- The timescale issue: age or delay?
 - age at CP depends upon age at dementia
 - our interest: delay between CP and diagnosis

- Selection bias: a joint model that models together:
 - the longitudinal marker $Y(t_{ii}) = \tilde{Y}(t_{ii}) + \varepsilon_{ii}$
 - the time to dementia:

$$\lambda(t_{ij}) = \lambda_0(t_{ij}) \exp(\nu^\top Z_i + \gamma \tilde{Y}(t_{ij}))$$

- \Rightarrow possible to test for the existence of the random CP
- The timescale issue: age or delay?
 - age at CP depends upon age at dementia
 - our interest: delay between CP and diagnosis
- Random changepoint model vs. flexible nonlinear model

Summary

- A test procedure for the existence of a random changepoint
 ⇒ acceleration of cognitive decline
- A bivariate model to compare mean time of change of different markers
 - ⇒ temporal order of time of change between different markers
- A new random changepoint model to identify time of differentiation between cases and controls
 - ⇒ late cognitive decline vs. time of differentiation

- A test procedure for the existence of a random changepoint ⇒ acceleration of cognitive decline
- A bivariate model to compare mean time of change of different markers
 - ⇒ temporal order of time of change between different markers
- A new random changepoint model to identify time of differentiation between cases and controls
 - ⇒ late cognitive decline vs. time of differentiation
- ⇒ all implemented in R and C++ into the rcpm package

Other applications

- the rate of CD4 T-lymphocytes and viral load for HIV
- the prostate specific antigen for prostate cancer
- the glomerular filtration rate for chronic kidney disease
- etc.

Acknowledgements

Acknowledgements

• Hélène Jacqmin-Gadda

Acknowledgements

- Hélène Jacqmin-Gadda
- The jury
- BIOSTAT team & colleagues
- Friends & family

Thank you for your attention!

- Amieva H. et al. "Compensatory mechanisms in higher-educated subjects with Alzheimer's disease: a study of 20 years of cognitive decline." Brain: A Journal of Neurology (2014)
- Hansen B.E. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis." Econometrica (1996)
- Stram D.O. and Lee J.W. "Variance Components Testing in the Longitudinal Mixed Effects Model." Biometrics (1994)
- Marquardt D.W. "An Algorithm for Least-Squares Estimation of Nonlinear Parameters." Journal of the Society for Industrial and Applied Mathematics (1963)
- Grober E. and Buschke H. "Genuine Memory Deficits in Dementia." Developmental Neuropsychology (1987)
- van der Vaart A.W. and Wellner J.A. "Weak Convergence and Empirical Processes." Chapter 2.9, Springer Series in Statistics
- Proust-Lima C. et al. "Sensitivity of Four Psychometric Tests to Measure Cognitive Changes in Brain Aging-Population-based Studies. American Journal of Epidemiology (2006)

https://github.com/crsgls

Power of the test when the difference in slopes is random

N	5	0	100		
drop-out		0	0.1	0	0.1
	M_1	0.361	0.153	0.708	0.390
$(\mu_{ au},\sigma_{ au})=(10,2)$	M_2	0.732	0.407	0.986	0.863
	M_3	0.955	0.754	1	0.986

Table: Power of the test computed on 1000 replicates of each scenarios with K=500 perturbations with data simulated with a random β_{2i} , $\sigma_2=0.1$.

A random β_{2i}

$$Y(t_{ij}) = \beta_{0i} + \beta_{1i}t_{ij} + \beta_{2i}\sqrt{(t_{ij} - \tau_i)^2 + \gamma} + \varepsilon_{ij}$$

- H_0 : $\beta_2 = 0$ but $\sigma_2 \neq 0$
- H_1 : $\beta_2 \neq 0$ but $\sigma_2 \neq 0$

 \Rightarrow not our objective: testing in a RCP model if the marginal trajectory is linear

A random β_{2i}

$$Y(t_{ij}) = \beta_{0i} + \beta_{1i}t_{ij} + \beta_{2i}\sqrt{(t_{ij} - \tau_i)^2 + \gamma} + \varepsilon_{ij}$$

- H_0 : $\beta_2 = 0$ but $\sigma_2 \neq 0$
- H_1 : $\beta_2 \neq 0$ but $\sigma_2 \neq 0$
- \Rightarrow not our objective: testing in a RCP model if the marginal trajectory is linear
- \Rightarrow our objective: testing if a RCP exists with the assumption that $\beta_2=0$ only if no CP (realistic for assessing cognitive decline)

Application: results (IST and MMSE)

Table: Results of the bivariate estimation on the 3C sample.

	IST		MM	MMSE		Wald test	
	\hat{eta}	$\widehat{se}(\hat{eta})$	\hat{eta}	$\widehat{se}(\hat{eta})$	stat.	<i>p</i> —value	
β_1	-0.344	0.027	-0.410	0.024	2.273	0.132	se
β_2	-0.216	0.019	-0.342	0.023	5.235	0.022	
$\mu_{ au}$	-3.508	0.536	-2.918	0.193	1.164	0.281	
-1	l l						

standard error

⇒ no difference between IST and MMSE