

PES University, Bangalore

UE14EC255

(Established under Karnataka Act No. 16 of 2013)

MAY 2016: END SEMESTER ASSESSMENT (ESA) B. T. .. IV SEMESTER

UE14EC255 - PROBABILITY THEORY AND RANDOM PROCESSES

		The Angular All Questions May Market 4	200
	Time: 3 Hrs Answer All Questions Max Marks;		
1	(a)	State the axioms of probability.	06
	(b)	Define the following: (i) Sample space (ii) Conditional probability (iii) Independent	08
		events (iv) Random variable.	0.0
_	(c)	Show that for any two events A and B, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.	06
2	(a)	Define the cumulative distribution function (CDF) of a random variable X and discuss	08
_	-	its properties.	
	(b)	Consider a continuous random variable X , with probability density function (PDF)	06
		$\int c(4x-2x^2), 0 \le x \le 2$	
1		$f_X(x) = \begin{cases} c(4x - 2x^2), & 0 \le x \le 2\\ 0, & \text{otherwise.} \end{cases}$	
		Find the values of (i) c , and (ii) $P(X > 1)$.	
	(c)	Consider a random variable X which has a uniform distribution between a and b ,	06
		with the PDF	
		$\int \frac{1}{h} \left(x \right) - \int \frac{1}{h} \left(x \right) dx = 0$	
		$f_X(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{otherwise.} \end{cases}$	
		Derive the expressions for its (i) CDF, (ii) mean, and (iii) variance.	
3	(a)		04
J	(a)	For a random variable X , show that	04
		$\operatorname{var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2,$	
		where $var(X)$ denotes the variance of X and $\mathbb{E}(X)$ denotes the expectation of X.	
	(b)	Let X and Y be two independent standard normal random variables. Find the joint	08
		distribution of $R = \sqrt{X^2 + Y^2}$ and $\theta = \tan^{-1}(\frac{Y}{X})$. What can be said about the	
		distribution of R and θ ?	
	(c)	Show that the MGF of a Gaussian random variable with mean μ and variance σ^2 is	08
		given by $M_X(t) = e^{(\mu t + \frac{1}{2}\sigma^2 t^2)}$.	
4	(a)	Show that the Poisson distribution $Poi(\lambda)$ is the limiting case of a Bernoulli distribu-	06
		tion $Ber(n, p)$ with parameter $\lambda = np$.	
	(b)	State and prove Markov's inequality.	06
	(c)	Define the covariance between random variables X and Y . Discuss its properties.	08
5	(a)	State and prove the central limit theorem.	08
	(b)	Explain (i) Random process, (ii) Strict-sense stationary (SSS) process, (ii) Wide-sense	08
		stationary (WSS) process, and (iv) Ergodic process.	
	(c)		04
		identical autocorrelations, then show that $Z(t,s) = aX(t,s) + bY(t,s)$ is also WSS.	