

1

പീരിയോഡിക് ടേബിളും ഇലക്ട്രോൺ വിന്യാസവും

ആറ്റം ഘടനയെക്കുറിച്ച് വായിച്ചപ്പോൾ കുട്ടിക്കുണ്ടായ ആകാംക്ഷ നിങ്ങൾക്കുമുണ്ടാകാം. നിരവധി പരീക്ഷണ പ്രവർത്തനങ്ങളിലൂടെയും അനുമാനങ്ങളിലൂടെയുമാണ് ആറ്റത്തെ ക്കുറിച്ചുള്ള ധാരണ ശാസ്ത്രലോകം രൂപപ്പെടുത്തിയെടുത്തത്. ആറ്റംഘടനയുടെ അടി സ്ഥാനത്തിലാണ് മൂലകങ്ങളെ സമഗ്രമായി വർഗീകരിച്ചുകൊണ്ടുള്ള പീരിയോഡിക് ടേബിൾ തയാറാക്കിയിരിക്കുന്നതെന്ന് നിങ്ങൾ മനസ്സിലാക്കിയിട്ടുണ്ട്.

പീരിയോഡിക് ടേബിളിൽ മൂലകവർഗീകരണത്തിന്റെ അടിസ്ഥാനം എന്താണ്?

222222222222

സബ്ഷെല്ലുകൾ

(സബ്ഷെല്ലുകൾക്ക് s, p, d, f എന്ന് പേര് കൊടുത്തിരിക്കുന്നത്) മൂലകങ്ങളുടെ അറ്റോമിക ഘടനയുമായി ബന്ധപ്പെട്ട ചില സവിശേഷതകൾ സൂചിപ്പിക്കുന്ന വാക്കുകളിൽ നിന്നാണ്. $s \rightarrow sharp$, $p \rightarrow principal$, $d \rightarrow diffuse$, $f \rightarrow fundamental$. ആറ്റം ഘടനയെ സംബന്ധിച്ച ആധുനിക സിദ്ധാന്തപ്രകാരം ന്യൂക്ലിയസ്സിന് ചുറ്റും ഇലക്ട്രോണുകൾ ത്രിമാനമേഖലയി ലാണ് സഞ്ചരിക്കുന്നത്. പ്രധാന ഊർജ നിലകളിൽത്തന്നെ ഉപ ഊർജനിലകൾ (Subshells) ഉണ്ട്. ഈ ഉപ ഊർജനിലകളിൽ ഇലക്ട്രോണുകൾ കാണപ്പെടുവാൻ സാധ്യത കൂടിയ മേഖലകൾ ഉണ്ട്. ഇവ ഓർബിറ്റലുകൾ (Orbitals) എന്നാണ് അറി യപ്പെടുന്നത്. ഒരു ഓർബിറ്റലിൽ ഉൾക്കൊ ള്ളാവുന്ന പരമാവധി ഇലക്ട്രോണുകളുടെ എണ്ണം 2 ആണ്. s സബ്ഷെല്ലിൽ ഇത്തര ത്തിൽ ഒരു ഓർബിറ്റൽ മാത്രമെ ഉള്ളു. ഇതിന് ഗോളാകൃതിയാണ്.

p സബ്ഷെല്ലിൽ 3 ഓർബിറ്റലുകൾ ഉണ്ടായിരിക്കും. ഇതിന് ഡംബെല്ലിന്റെ ആകൃതിയാണ് ഉള്ളത്. d സബ്ഷെല്ലുകളിൽ 5 ഓർബിറ്റലുകളും, f സബ്ഷെല്ലിൽ 7 ഓർബിറ്റലുകളും ഉണ്ട്. ഈ ഓർബിറ്റലുകളുടെ ആകൃതി സങ്കീർണമാണ്.

ഒരു മൂലകത്തിന്റെ അറ്റോമികനമ്പർ അറിയാമെങ്കിൽ പീരിയോഡിക് ടേബിളിൽ അതിന്റെ സ്ഥാനവും സ്വഭാവവും നിർണയിക്കാമല്ലോ?

ഉദാ: സോഡിയത്തിന്റെ അറ്റോമികനമ്പർ 11 ആണ്.

ഇലക്ട്രോൺ വിന്യാസം - 2,8,1 ഗ്രൂപ്പ് നമ്പർ - പീരിയഡ് നമ്പർ -

ഒന്നാം ഗ്രൂപ്പിൽ വരുന്ന ഈ മൂലകം ലോഹമാകാ നാണോ അലോഹമാകാനാണോ സാധ്യത?

ഇത്തരത്തിൽ മൂലകങ്ങളുടെ ഗുണങ്ങൾ കൃത്യമായി വിശ കലനം ചെയ്യാനും പ്രവചിക്കാനും കഴിയുന്ന തരത്തി ലാണല്ലോ ഈ ടേബിളിൽ മൂലകങ്ങളെ വർഗീകരിച്ചിരി ക്കുന്നത്. പീരിയോഡിക് ടേബിളിൽ മൂലകസ്വഭാവങ്ങ ളുടെ ക്രമാവർത്തനത്തിന്റെ അടിസ്ഥാനം അവയുടെ ആറ്റംഘടനയാണ്. ആറ്റത്തെക്കുറിച്ചുള്ള നൂതനമായ അറി വുകൾ പീരിയോഡിക് ടേബിളുമായി എങ്ങനെ ബന്ധ പ്പെടുന്നുവെന്ന് നമുക്ക് പരിശോധിക്കാം.

വിവിധ ആറ്റം മാതൃകകളെ കുറിച്ച് നിങ്ങൾ മനസ്സിലാ ക്കിയിട്ടുണ്ട്. ബോർ മാതൃകപ്രകാരം ആറ്റത്തിനുള്ളിൽ ന്യൂക്ലിയസ്സിനു ചുറ്റുമുള്ള വിവിധ ഷെല്ലുകളിലാണ് ഇല ക്ട്രോണുകൾ ക്രമീകരിച്ചിരിക്കുന്നതെന്നും ഊർജനില കൂടി വരുന്ന ക്രമത്തിലാണ് ഷെല്ലുകളിൽ ഇലക്ട്രോണുകൾ നിറയുന്നതെന്നും നിങ്ങൾക്കറിയാമല്ലോ.

ന്യൂക്ലിയസ്സിൽനിന്ന് അകലം കൂടുന്നതനുസരിച്ച് ഷെല്ലുകളിലെ ഇലക്ട്രോണുകളുടെ ഊർജം കൂടി വരുകയും ന്യൂക്ലിയസ്സും ഇലക്ട്രോണുകളും തമ്മി ലുള്ള ആകർഷണബലം കുറയുകയും ചെയ്യുന്നു.

ലിതിയത്തിന്റെ ($_3\mathrm{Li}$) ഇലക്ട്രോൺ വിന്യാസം 2,1 എന്നാണല്ലോ.

ഇതുപോലെ സോഡിയം, ആർഗോൺ എന്നിവയുടെ ഇല ക്ട്രോൺ വിന്യാസം എഴുതി പട്ടിക 1.1 പൂർത്തിയാക്കൂ.

മൂലകാ	ഷെല്ലുകൾ				
	K	L	M		
₁₁ Na					
₁₈ Ar					

പട്ടിക 1.1

• ആർഗോണിന്റെ ബാഹൃതമഷെല്ലായ M-ൽ എത്ര ഇലക്ട്രോണുക ളാണ് ഉള്ളത്?

M ഷെല്ലിൽ ഉൾക്കൊള്ളാവുന്ന പരമാവധി ഇലക്ട്രോൺ എത്രയാണ്?

ആർഗോണിന്റെ അടുത്ത മൂലകമായ പൊട്ടാസ്യത്തിൽ ($_{19}$ K) ആർഗോണി നെക്കാൾ ഒരു ഇലക്ട്രോണാണ് കൂടുതലുള്ളത്. പൊട്ടാസ്യത്തിന്റെ ഇല ക്ട്രോൺ വിന്യാസം 2,8,8,1 ആണ്. മൂന്നാമത്തെ ഷെല്ലിന് ഇനിയും പത്ത് ഇലക്ട്രോണുകൾ കൂടി ഉൾക്കൊള്ളാനുള്ള ശേഷി ഉണ്ടെന്നിരിക്കെ, എന്തു കൊണ്ടായിരിക്കാം പൊട്ടാസ്യത്തിലെ അവസാനത്തെ ഇലക്ട്രോൺ മൂന്നാ മത്തെ ഷെല്ലിൽ നിറയാതെ, 4–ാമത്തെ ഷെല്ലിൽ പോയത്?

ആമുഖ ചിത്രത്തിൽ കുട്ടി പ്രകടിപ്പിച്ച സംശയവും നിങ്ങൾ കണ്ടല്ലോ? ആറ്റത്തിന്റെ ഘടനയുമായി ബന്ധപ്പെട്ട പഠനങ്ങൾക്ക് തുടർച്ചയും വളർച്ചയും ഉണ്ടെന്ന് നിങ്ങൾ മനസ്സിലാക്കിയിട്ടുണ്ട്. ആറ്റം ഘടനയെക്കുറിച്ചുള്ള ലളി തമായ വിശദീകരണമാണ് ബോർമാതൃക. ആറ്റത്തിൽ ഇലക്ട്രോണുകളുടെ സ്ഥാനവും സ്വഭാവവുമായി ബന്ധപ്പെട്ട് തുടർന്ന് നടത്തിയ പഠനങ്ങളിൽ ബോർമാതൃകയുടെ പരിമിതി ബോധ്യപ്പെടുകയും പുതിയ പരികല്പനകൾ രൂപീകരിക്കുകയും ചെയ്തു. ഇതുപ്രകാരം ഓരോ ഊർജനിലകളിലുള്ള ഇലക്ട്രോണുകൾ അതിലെ ഉപഊർജനിലകളിലാണ് (Sub energy level) വിന്യസിച്ചിരിക്കുന്നത്. ഓരോ ഷെല്ലിലുമുള്ള ഉപഊർജനിലകളെ സബ്ഷെ ല്ലുകൾ എന്നാണ് വിളിക്കുന്നത്. ഇവ s, p, d, f എന്നിങ്ങനെ ക്രമത്തിൽ നാമകരണം ചെയ്യപ്പെട്ടിരിക്കുന്നു. K ഒഴികെയുള്ള എല്ലാ മുഖ്യ ഊർജനില കളിലും ഒന്നിലധികം സബ്ഷെല്ലുകൾ ഉണ്ട്. K - ൽ ഇത്തരത്തിലുള്ള ഒരു ഊർജനില മാത്രമെ ഉള്ളു.

IT @ School Edubuntu വിലെ KALZIUM സോഫ്റ്റ്വെയർ ഉപയോ ഗിച്ച് പട്ടിക 1.1 ലെ പ്രവർത്തനം ശരിയോ എന്ന് പരിശോധിക്കുക.

ഓരോ ഊർജനിലയിലും അതിന്റെ ഷെല്ലിന്റെ ക്രമനമ്പറിന് തുല്യമായ എണ്ണം സബ്ഷെല്ലുകളാണ് ഉണ്ടായിരിക്കുക.

• ഒന്നാമത്തെ ഷെൽ ആയ K ഷെല്ലിൽ 1, അടുത്ത ഷെൽ ആയ L ഷെല്ലിൽ 2, എന്നിങ്ങനെ. M, N ഷെല്ലുകളിലെ സബ്ഷെല്ലുകളുടെ എണ്ണം എത്ര വീതമായിരിക്കും?

ഓരോ ഷെല്ലിലെയും സബ്ഷെല്ലുകൾ ഏതൊക്കെയാണെന്ന് പട്ടിക 1.2 ൽ നൽകിയിരിക്കുന്നത് ശ്രദ്ധിക്കൂ.

ഷെൽ നമ്പർ	1	2	3	4
സബ്ഷെല്ലുകൾ	S	s, p	s, p, d	s, p, d, f

പട്ടിക 1.2

എല്ലാ ഷെല്ലുകളിലുമുള്ള പൊതുവായ സബ്ഷെൽ ഏതാണ്?

ഓരോ സബ്ഷെല്ലും ഏത് ഷെല്ലിലേതാണെന്ന് എങ്ങനെ തിരിച്ചറിയാം? ഷെല്ലിന്റെ ക്രമനമ്പർ കൂടി ചേർത്താലോ? ഉദാഹരണത്തിന് 1-ാം ഷെല്ലിലെ s സബ്ഷെല്ലിനെ സൂചിപ്പിക്കാനായി '1s', രണ്ടാം ഷെല്ലിലെ s സബ്ഷെ ല്ലിനെ '2s' എന്നിങ്ങനെ.

പട്ടിക 1.3 പൂർത്തിയാക്കി നോക്കൂ.

ഷെൽ നമ്പർ	1	2	<u>)</u>		3			4		
സബ്ഷെൽ	s	s	p	s	р	d	s	p	d	f
സബ്ഷെല്ലു കളെ സൂചിപ്പി ക്കുന്ന രീതി	1s	-	-	-	3р	-	-	-	4d	-

പട്ടിക 1.3

സബ്ഷെല്ലിലെ ഇലക്ട്രോണുകളുടെ എണ്ണം

ഓരോ ഷെല്ലിലുമുള്ള സബ്ഷെല്ലുകൾ ഏതൊക്കെയാണെന്ന് പട്ടികയിൽ നിന്ന് നിങ്ങൾ കണ്ടെത്തിയല്ലോ?

ഓരോ ഷെല്ലിലും ഉൾക്കൊള്ളാവുന്ന പരമാവധി ഇലക്ട്രോണുകളുടെ എണ്ണം എത്രയാണെന്നും നിങ്ങൾക്കറിയാം. എങ്കിൽ ഓരോ സബ്ഷെല്ലിലും ഉൾക്കൊള്ളാവുന്ന ഇലക്ട്രോണുകളുടെ എണ്ണം എത്ര വീതമായിരിക്കും? ചർച്ചാസൂചകങ്ങളുടെ അടിസ്ഥാനത്തിൽ താഴെ കൊടുത്തിരിക്കുന്ന പട്ടിക 1.4 പൂർത്തിയാക്കൂ.

ഷെൽ നമ്പർ	1		2		3			4		
ഓരോ ഷെല്ലിലും ഉൾക്കൊള്ളാവുന്ന പരമാവധി ഇലക്ട്രോണുകളുടെ എണ്ണം.	2	8 18		18 32						
സബ്ഷെൽ	1s	2s	2p	3s	3p	3d	4s	4p	4d	4f
സബ്ഷെല്ലുകളിൽ ഉൾക്കൊള്ളാവുന്ന പരമാവധി ഇലക്ട്രോണുകളുടെ എണ്ണം.	2	2	-	-	-	-	-	-	-	-

പട്ടിക 1.4

s സബ്ഷെല്ലിൽ ഉൾക്കൊള്ളാവുന്ന പരമാവധി ഇലക്ട്രോണുകളുടെ എണ്ണം എത്ര?

രണ്ടാം ഷെല്ലിലെ 8 ഇലക്ട്രോണുകളിൽ രണ്ടെണ്ണം s സബ്ഷെല്ലിൽ ആയി രിക്കുമല്ലോ? എങ്കിൽ p സബ്ഷെല്ലിൽ നിറയുന്ന പരമാവധി ഇലക്ട്രോണു കളുടെ എണ്ണം എത്രയായിരിക്കും? പട്ടിക പൂർത്തിയാക്കി കണ്ടെത്തൂ.

s ലും p ലും പരമാവധി എത്ര ഇലക്ട്രോണുകൾ വീതം ഉൾക്കൊള്ളുന്നു വെന്ന് കണ്ടല്ലോ? എങ്കിൽ d സബ്ഷെല്ലിൽ പരമാവധി എത്ര എണ്ണം ഉൾക്കൊള്ളാൻ കഴിയുമെന്ന് മൂന്നാമത്തെ ഷെല്ലിലെ കോളങ്ങൾ പൂരിപ്പിച്ച് കണ്ടെത്തുക.

ഇതുപോലെ നാലാമത്തെ ഷെല്ലിലെ 32 ഇലക്ട്രോണുകൾ s, p, d, f സബ്ഷെല്ലുകളിലായി എങ്ങനെ വിന്യസിക്കുന്നുവെന്ന് പട്ടിക (1.4) പൂര ണത്തിലൂടെ കണ്ടെത്താമല്ലോ?

ഓരോ സബ്ഷെല്ലിലും ഉൾക്കൊള്ളാവുന്ന പരമാവധി ഇലക്ട്രോണുക ളുടെ എണ്ണം താഴെ പട്ടിക 1.5-ൽ ക്രോഡീകരിച്ചിരിക്കുന്നു.

സബ്ഷെൽ	S	p	d	f
ഉൾക്കൊള്ളാൻ കഴിയുന്ന പരമാവധി ഇലക്ട്രോണുക ളുടെ എണ്ണം.	2	6	10	14

പട്ടിക 1.5

സബ്ഷെല്ലിലെ ഇലക്ട്രോൺപൂരണം

ഊർജം കൂടിവരുന്ന ക്രമത്തിലാണ് ഷെല്ലുകളിൽ ഇലക്ട്രോണുകൾ നിറ യുന്നതെന്ന് നിങ്ങൾ മനസ്സിലാക്കിയിട്ടുണ്ട്. ഉദാഹരണത്തിന് കാർബണിന്റെ (¿C) ഇലക്ട്രോൺ വിന്യാസം 2, 4.

ആദ്യത്തെ രണ്ട് ഇലക്ട്രോൺ ഊർജം കുറഞ്ഞ K ഷെല്ലിലും ബാക്കി 4 ഇലക്ട്രോണുകൾ ഊർജം കൂടിയ L ഷെല്ലിലും ആയിരിക്കും നിറയുന്നത്. ഇതുപോലെ ആറ്റത്തിലെ ഇലക്ട്രോണുകൾ സബ്ഷെല്ലിൽ വിന്യസിക്ക പ്പെടുമ്പോൾ ഊർജം കുറഞ്ഞ സബ്ഷെല്ലിൽ നിന്ന് കൂടിയതിലേക്ക് ക്രമ മായി നിറയുന്നു. ഇതിനെ സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം (sub shell electronic configuration) എന്നു പറയുന്നു. അപ്പോൾ കാർബണിന്റെ സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം എങ്ങനെയായിരിക്കും?

സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം എഴുതുന്ന രീതി പരിചയപ്പെടാം. മൂലക ആറ്റത്തിലെ ഇലക്ട്രോണുകളുടെ എണ്ണം അതിന്റെ അറ്റോമിക നമ്പറിന് (Z) സമമാണെന്ന് അറിയാമല്ലോ? ഹൈഡ്രജന്റെ അറ്റോമിക നമ്പർ 1 ആണ്. $(_1H)$

- എത്ര ഇലക്ട്രോൺ? _ _ _ _ _ _ _ .
- ഏത് ഷെല്ലിലാണ് ഇലക്ട്രോൺ വന്നുചേരുന്നത്? _ _ _ _ _ _
- ഏത് സബ്ഷെല്ലിൽ? _ _ _ _ _ _ _ _

ഹൈഡ്രജന്റെ സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം ഇങ്ങനെ സൂചിപ്പിക്കാം. $1s^1$

(വൺ എസ് വൺ എന്നാണ് വായിക്കേണ്ടത്). ഹീലിയത്തിൽ (,He) എത്ര ഇലക്ട്രോണുകൾ ഉണ്ട്? സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം പൂർത്തിയാക്കൂ.

അടുത്ത മൂലകമായ ലിഥിയത്തിന്റെ (₃Li) സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം എഴുതുന്നതെങ്ങനെയെന്ന് നോക്കാം.

ആകെയുള്ള 3 ഇലക്ട്രോണുകളിൽ രണ്ടെണ്ണം 1s ൽ നിറഞ്ഞാൽ ഊർജം കൂടി വരുന്ന ക്രമമനുസരിച്ച് 2s ലാണ് അടുത്ത ഇലക്ട്രോൺപൂരണം നട ക്കേണ്ടത്. 2s ൽ ബാക്കി എത്ര ഇലക്ട്രോൺ നിറയും?

ലിഥിയത്തിന്റെ സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസത്തെ 'വൺ എസ് ടു' 'ടൂ എസ് വൺ' $(1s^2\ 2s^1)$ എന്നാണ് വായിക്കേണ്ടത്.

ബെറീലിയത്തിലെ ക്രമീകരണം പൂർത്തിയാക്കു.

തുടർന്നു വരുന്ന മൂലകം ബോറോൺ ആണല്ലോ? 1s ഉം 2s ഉം നിറ ഞ്ഞാൽ അടുത്ത ഊർജം കൂടിയ ക്രമം 2p ആണ്. ബോറോണിന്റെ സബ്ഷെൽ ക്രമീകരണം എഴുതി നോക്കൂ.

•
$$B[Z=5] - 1s^2 2s^2 2p^{\dots}$$

 തുടർന്ന് കാർബണിന്റെ സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം എഴു താമല്ലോ?

സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസമെഴുതുമ്പോൾ സബ്ഷെല്ലുകളുടെ ഇടതുവശത്ത് ചേർക്കുന്ന സംഖ്യ ഷെൽ നമ്പറിനേയും വലതു വശത്ത് മുകളിലെ സംഖ്യ ഇലക്ട്രോണുകളുടെ എണ്ണത്തേയും സൂചിപ്പിക്കുന്നു. ചുവടെ നൽകിയിട്ടുള്ള മൂലകങ്ങളുടെ സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം എഴുതി പട്ടിക 1.6 പൂർത്തിയാക്കൂ.

മൂലകാ	ഇലക്ട്രോണുകളുടെ എണ്ണം	സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം
₇ N	7	$1s^2 2s^2 2p^3$
₉ F	9	1s 2s
₁₁ Na	-	1s 2s 2p 3s
₁₃ A1	-	1s 2s 2p 3s 3p
₁₇ Cl	-	-
₁₈ Ar	-	-

അറ്റോമികനമ്പർ 19 ആയ പൊട്ടാസ്യത്തിന്റെ $(_{_{19}}K)$ കാര്യമെടുക്കാം. ഇതിന്റെ ഇലക്ട്രോൺ വിന്യാസത്തിലെ പ്രത്യേകത മുമ്പ് സൂചി പ്പിച്ചത് ഓർക്കുമല്ലോ.

 പൊട്ടാസ്യത്തിന്റെ ഷെൽ ക്രമത്തിലുള്ള ഇലക്ട്രോൺ വിന്യാസം എങ്ങനെയാണ് രേഖപ്പെടുത്തിയത്?

സബ്ഷെല്ലുകളും അവയുടെ ഊർജവും തമ്മിൽ ബന്ധപ്പെടുത്തിയ ചിത്രീ കരണം (ചിത്രം 1.1) ശ്രദ്ധിക്കു.

 3s, 3p എന്നീ സബ്ഷെല്ലുകളിൽ ഊർജം കൂടുതൽ ഏതി നാണ്? 3d, 4s ഇവയിലോ?

3d യെക്കാൾ ഊർജം കുറവ് 4s നാണെന്ന് കണ്ടല്ലോ?

 ഗ്രാഫിൽ സൂചിപ്പിച്ചിട്ടുള്ള സബ്ഷെല്ലുകളുടെ ഊർജം കൂടിവരുന്ന ക്രമം എഴുതി നോക്കൂ.

1s < 2s < 2p < 3s < < <

സബ്ഷെല്ലുകളുടെ ഊർജത്തിന്റെ അടിസ്ഥാനത്തിൽ പരിശോധിച്ചാൽ പൊട്ടാസൃത്തിൽ M ഷെല്ലിൽ 8 ഇല ക്ട്രോൺ നിറഞ്ഞതിനുശേഷമുള്ള ഒരു ഇലക്ട്രോൺ N ഷെല്ലിലേക്ക് പോയത് 3d യെക്കാൾ ഊർജം കുറവ് 4s ന് ആയതുകൊണ്ടല്ലേ?

വിവിധ ഷെല്ലുകളുടെ ഊർജം കൂടിവരുന്ന ക്രമം കണ്ടു പിടിക്കാൻ ചിത്രം 1.2 നിങ്ങളെ സഹായിക്കും. അമ്പടയാളത്തിന്റെ ദിശ ശ്രദ്ധിക്കുമല്ലോ? അറ്റോമിക നമ്പർ 30 വരെയുള്ള മൂലകങ്ങളുടെ സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം ചിത്രത്തിന്റെ സഹായ ത്തോടെ ഒന്ന് പരിചയപ്പെട്ടു നോക്കു.

ഇവിടെ Sc ൽ ഇലക്ട്രോൺ പൂരണം നടക്കുന്നത് $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^1\$ എന്ന ക്രമത്തിലാണ്.

എന്നാൽ ഇത് സാധാരണയായി രേഖപ്പെടുത്തുന്നത് $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^1\ 4s^2$ എന്ന രീതിയിൽ ആണ്. അതായത് ഷെൽ ക്രമത്തിൽ.

ഊർജക്രമമനുസരിച്ച് 4s കഴിഞ്ഞാൽ അടുത്ത ഇലക്ട്രോൺ നിറയുന്നത് 3d യിൽ ആണ്. അതുകൊണ്ടാണല്ലോ Sc ന്റെ ഇലക്ട്രോൺ വിന്യാസം 2,8,9,2 ആകുന്നത്.

•	തുടർന്നുവ	രുന്ന ₂	$_{22}$ I1, $_{23}$ V	എന്നീ	മൂലകങ്ങള	ുടെ ഇലക	ട്രോൺ
	വിന്യാസം ദ	എഴുതി	നോക്കൂ.				

സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം രേഖപ്പെടുത്തുന്ന മറ്റൊരു രീതികൂടി പരിചയപ്പെടാം.

അറ്റോമിക നമ്പർ കൂടിയ മൂലകങ്ങളുടെ സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം എഴുതുമ്പോൾ, ആ മൂലകത്തിന് തൊട്ടുമുമ്പുള്ള പീരിയഡിലെ ഉൽകൃഷ്ട മൂലകത്തിന്റെ പ്രതീകം ബ്രായ്ക്കറ്റിൽ കാണിച്ച്, തുടർന്നുള്ള സബ്ഷെൽ വിന്യാസം മാത്രം എഴുതിയാൽ മതിയാകും.

ഉദാഹരണത്തിന് പൊട്ടാസ്യത്തിന്റെ $(_{19}K)$ ഇലക്ട്രോൺ വിന്യാസം $1s^2\,2s^2\,2p^6\,3s^2\,3p^6\,4s^1$ എന്നാണ്.

ഇതിന്റെ തൊട്ടുമുമ്പുള്ള പീരിയഡിലെ ഉൽകൃഷ്ട മൂലകമായ ആർഗോണിന്റെ ഇലക്ട്രോൺ വിന്യാസം. $1s^2\,2s^2\,2p^6\,3s^2\,3p^6$ ആണല്ലോ? ആർഗോണിന്റെ പ്രതീകം ചേർത്ത് പൊട്ടാസ്യത്തിന്റെ സബ്ഷെൽ ഇല ക്ട്രോൺ വിന്യാസം താഴെ കൊടുത്തിരിക്കുന്ന രീതിയിൽ എഴുതാം.

[Ar] $4s^1$

സോഡിയത്തിന്റെ [₁₁ Na] തൊട്ടുമുമ്പുള്ള ഉൽകൃഷ്ടമൂലകം ഏതാണ്?
സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം എഴുതി നോക്കൂ.
₁₀ Ne
സോഡിയത്തിന്റെ സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം.
₁₁ Na

നിയേ എഴുത	()	ം ചേർത്ത് ഇലക്ട്രോൺ വിനൃാസം ചു	രുക്കി				
		ന്റെ സഹായത്തോടെ തൊട്ടു മുന്നിലെ ഉൽം ന്ടത്തി പട്ടിക 1.7 പൂർത്തിയാക്കൂ.	കൃഷ്ട				
	മൂലകാ	സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം					
	₂₁ Sc	[Ar] 3d ¹ 4s ²					
	₂₀ Ca						
	₁₂ Mg		IT @ School Edubuntu വിലെ KALZIUM				
	₂₇ Co		സോഫ്റ്റ്വെയർ ഉപയോ ഗിച്ച് പട്ടിക 1.7 ലെ				
	$_{30}$ Zn		പ്രവർത്തനം ശരിയോ എന്ന് പരിശോധിക്കുക.				
വിനു • വ 1 ഇതിന്	oസത്തിലെ പ്ര ₂₄ Cr ന്റെ സബ്ഹെ 	ലൽ ഇലക്ട്രോൺ വിന്യാസം എഴുതുക. യുള്ള സബ്ഷെൽ ഇലക്ട്രോൺ വിനു 8d⁵4s¹ എന്നാണ്. ബോക്സിൽ നൽകിയിട്ടുള്ള വിവരങ്ങൾ ര	ൃാസം				
കഴി പക മറ്റു; d ⁴ s സഥ യിര	ർ സബ്ഷെല്ലിന് പരമാവധി 10 ഇലക്ട്രോണുകൾ ഉൾക്കൊള്ളുവാൻ കഴിയും. ഈ സബ്ഷെൽ പൂർണമായി നിറഞ്ഞിരിക്കുന്നതോ (\mathbf{d}^{10}) പകുതി മാത്രം നിറഞ്ഞിരിക്കുന്നതോ (\mathbf{d}^{5}) ആയ ക്രമീകരണങ്ങൾ മറ്റുള്ളവയെക്കാൾ സ്ഥിരത കൂടിയവയാണ്. ഇതിന്റെ അടിസ്ഥാനത്തിൽ $\mathbf{d}^{4} \mathbf{s}^{2}$, $\mathbf{d}^{9} \mathbf{s}^{2}$ എന്നീ ഇലക്ട്രോൺ ക്രമീകരണം വരേണ്ട ആറ്റങ്ങളിൽ സ്ഥിരതയ്ക്കുവേണ്ടി ഇലക്ട്രോൺ പൂരണത്തിൽ ചില മാറ്റങ്ങൾ ഉണ്ടായിരിക്കും. ഇതുപോലെ \mathbf{f} സബ്ഷെല്ലിൽ \mathbf{f}^{7} , \mathbf{f}^{14} ക്രമീകരണങ്ങളും കൂടുതൽ സ്ഥിരതയുള്ളതാണ്.						
ശരിയ • 1	ൻ്റെ അടിസ്ഥാനത ായത് കണ്ടെത്തി $s^2 2s^2 2p^6 3s^2 3p^6 3p^6 3p^6 3p^6 3p^6 3p^6 3p^6 3p^6$	$3d^9 4s^2$	ങളിൽ				

ക്രോമിയം, കോപ്പർ എന്നീ ആറ്റങ്ങളുടെ സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസങ്ങളിൽ d സബ്ഷെല്ലിന് പകുതി നിറഞ്ഞതോ പൂർണമായി നിറഞ്ഞിരിക്കുന്നതോ ആയ അവസ്ഥയാണ് സ്ഥിരത കൂടുതൽ പ്രകട മാക്കുന്നത്.

- □ ഒരാറ്റത്തിന്റെ സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം $1s^2 2s^2 2p^6 3s^2$ എന്നാണ്. എങ്കിൽ താഴെ കൊടുത്തിരിക്കുന്നവയ്ക്ക് ഉത്തരം കണ്ടെത്തു.
- ഈ ആറ്റത്തിൽ എത്ര ഷെല്ലുകൾ ഉണ്ട്?
- ഓരോ ഷെല്ലിലെയും സബ്ഷെല്ലുകൾ ഏതെല്ലാം?
- അവസാന ഇലക്ട്രോൺ പൂരണം നടന്നത് ഏത് സബ്ഷെല്ലിലാണ്?
- ആറ്റത്തിലെ ആകെ ഇലക്ട്രോണുകളുടെ എണ്ണമെത്ര?
- അറ്റോമിക നമ്പർ എത്രയാണ്?
- സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം എങ്ങനെ ചുരുക്കി എഴുതാം?

സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസവും ബ്ലോക്കും

മൂലകങ്ങളുടെ സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസത്തിന്റെ അടിസ്ഥാനത്തിൽ മോഡേൺ പീരിയോഡിക്ടേബിളിൽ അവയെ ${
m s}, {
m p}, {
m d}, {
m f}$ എന്നിങ്ങനെ വിവിധ ബ്ലോക്കുകളിലായി ക്രമീകരിച്ചിട്ടുണ്ട്.

ഇത്തരത്തിൽ രേഖപ്പെടുത്തിയ പീരിയോഡിക് ടേബിളാണ് ചിത്രം 1.3 ൽ നൽകിയിരിക്കുന്നത്. ഇത് വിശകലനം ചെയ്ത് പട്ടിക 1.8 പൂർത്തിയാക്കു.

IT @ School Edubuntu വിലെ KALZIUM സോഫ്റ്റ്വെയർ ഉപയോ ഗിച്ച് കൂടുതൽ വ്യക്തത വരുത്തു.

s-ബ്ലോക്ക് p-ബ്ലോക്ക് 1 18 14 15 16 17 13 2 Η He d-ബ്ലോക്ക് C O F Li Be В N Ne 3 5 6 8 10 11 12 4 Al Si P S C1 Ar Na Mg K Ca Sc V Mn Co Ni Ti Cr Fe Cu Zn Ge As Ga Se Br Kr Ag Y Rh Pd Zr Nb Mo Tc Ru Cd Rb Sr In Te Sn Sb I Xe Hg W Os Ir Pt Au Hf Ta Re La Cs Ba T1 Pb Bi Po Rn At Sg Bh Mt Ds Cn Fr Ac Rf Db Hs Rg Nh Og Ra Fl Mc Lv Ts f-ബ്ലോക്ക് Ce Pr Nd Pm Sm Eu Gd Tb Dy Но Er Tm Yb Lu Th U Am Bk Cf Fm Np Pu Cm Es Md No Lr

ചിത്രം 1.3

മൂലകം	അറ്റോമിക നമ്പർ	സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം	അവസാന ഇലക്ട്രോൺ പൂരണംനടന്ന	ബ്ലോക്ക്
			സബ്ഷെൽ	
₃ Li				•••••
$_{12}$ Mg				
$_{7}N$				•••••
₂₁ Sc				

പട്ടിക 1.8

• ലിതിയത്തിൽ അവസാന ഇലക്ട്രോൺപൂരണം നടന്നത് ഏത് സബ്ഷെല്ലിലാണ്?
-----• നെട്രജനിൽ അവസാന ഇലക്ട്രോൺപൂരണം നടന്നതോ?
-----• അവസാന ഇലക്ട്രോൺപൂരണം നടന്ന സബ്ഷെല്ലും ആ മൂലകം ഉൾപ്പെട്ട ബ്ലോക്കും തമ്മിലുള്ള ബന്ധമെന്താണ്?

IT @ School
Edubuntu വിലെ
KALZIUM
സോഫ്റ്റ്വെയർ ഉപയോ
ഗിച്ച് പട്ടിക 1.8 ലെ
പ്രവർത്തനം ശരിയോ
എന്ന് പരിശോധിക്കുക.

 താഴെ കൊടുത്തിരിക്കുന്ന മൂലകങ്ങളുടെ സബ്ഷെൽ ക്രമത്തിലുള്ള ഇലക്ട്രോൺ വിന്യാസമെഴുതി ബ്ലോക്ക് കണ്ടെത്തു.

a.	$_{4}$ Be	
b.	₂₆ Fe	
c.	₁₈ Ar	

അവസാന ഇലക്ട്രോൺപൂരണം നടക്കുന്നത് ഏത് സബ്ഷെല്ലിലാണോ അതായിരിക്കും ആ മൂലകം ഉൾപ്പെടുന്ന ബ്ലോക്ക്. പീരിയോഡിക് ടേബി ളിൽ 1,2 ഗ്രൂപ്പുകളിൽ ഉൾപ്പെട്ട മൂലകങ്ങളെ s ബ്ലോക്കിലും, 13 മുതൽ 18 വരെ ഗ്രൂപ്പുകളിലുള്ളവയെ p ബ്ലോക്കിലും 3 മുതൽ 12 വരെ ഗ്രൂപ്പുകളിലുള്ളവയെ p ബ്ലോക്കിലും p മെറ്റിയിരിക്കുന്നു. p ബ്ലോക്കുമൂല കങ്ങളെ പീരിയോഡിക് ടേബിളിൽ ചുവടെ രണ്ട് പ്രത്യേക നിരകളിലായാണ് ക്രമീകരിച്ചിരിക്കുന്നത്.

സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസത്തിന്റെ അടിസ്ഥാനത്തിൽ പീരിയഡ്, ഗ്രൂപ്പ് എന്നിവ കണ്ടെത്താം

മൂലകങ്ങളുടെ ഷെൽ ഇലക്ട്രോൺ വിന്യാസത്തിന്റെ അടിസ്ഥാനത്തിൽ പീരിയഡ് നമ്പർ കണ്ടെത്തുവാൻ നിങ്ങൾക്കറിയാമല്ലോ? സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസത്തിൽ നിന്ന് എങ്ങനെ പീരിയഡ് കണ്ടെത്താമെന്ന് നോക്കാം. പട്ടിക 1.9 പൂർത്തിയാക്കൂ.

മൂലകാ	സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം	ബാഹ്യതമ ഷെല്ലിന്റെ നമ്പർ	പീരിയഡ് നമ്പർ
₄ Be	$1s^2 2s^2$	2	2
₆ C	$1s^2 2s^2 2p^2$	2	2
₁₁ Na	$1s^2 2s^2 2p^6 3s^1$	3	-
₁₉ K	$1s^22s^22p^63s^23p^64s^1$	-	-

പട്ടിക 1.9

ഒരു മൂലകത്തിന്റെ സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസത്തിൽ ബാഹ്യ തമ ഷെല്ലിന്റെ നമ്പർ തന്നെയാണ് അത് ഉൾക്കൊള്ളുന്ന പീരിയഡ് നമ്പർ.

s ബ്ലോക്ക് മൂലകങ്ങളുടെ ഗ്രൂപ്പുനമ്പർ

സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസത്തിന്റെ അടിസ്ഥാനത്തിൽ മൂലകങ്ങ ളുടെ ഗ്രൂപ്പുനമ്പർ കണ്ടെത്തുവാൻ കഴിയും. ചില മൂലകങ്ങൾ പട്ടിക 1.10 ൽ നൽകിയിരിക്കുന്നു.

പീരിയോഡിക് ടേബിളിന്റെ (ചിത്രം 1.4) സഹായത്തോടുകൂടി പട്ടിക പൂർത്തി യാക്കുക.

മൂലകം	സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം കളുടെ എണ്ണം	അവസാന S സബ്ഷെ ല്ലിലെ ഇലക്ട്രോണു കളുടെ എണ്ണം	ഗ്രൂപ്പു നമ്പർ
Li	$1s^2 \ 2s^1$	1	1
Na	$1s^2 2s^2 2p^6 3s^1$	-	1
Mg	$1s^2 2s^2 2p^6 3s^2$	-	2
Ca	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²	-	-

പട്ടിക 1.10

1 ഉം 2 ഉം ഗ്രൂപ്പ് മൂലകങ്ങൾ ആണ് s ബ്ലോക്കിൽ വരുന്നതെന്ന് കണ്ടല്ലോ?

 ട ബ്ലോക്ക് മൂലകങ്ങളുടെ ബാഹ്യ s സബ്ഷെല്ലിലെ ഇലക്ട്രോണുക ളുടെ എണ്ണം അവയുടെ ഗ്രൂപ്പ് നമ്പറുമായി എങ്ങനെ ബന്ധിപ്പിക്കാം?

s ബ്ലോക്ക് മൂലകങ്ങളുടെ ബാഹ്യ s സബ്ഷെല്ലിലെ ഇലക്ട്രോണുക ളുടെ എണ്ണമായിരിക്കും ഗ്രൂപ്പ് നമ്പർ.

പീരിയോഡിക് ടേബിൾ

ആവർത്തനപ്പട്ടിക

× ×	
Heilum 2 2 10 Neon 2.8.8 Neon 2.8.18.3 Xe	Oganesson 28,18,32,32,18,6
72 73	TS Tennessine 2,8,18,32,32,18,7
Sulphur 2.8,6 Sulphur 2.8,6 Sulphur 2.8,6 Tellurium 2.8,18,6 Polonium 2.8,18,52,18,6	
P P	Moscovium 28,18,32,32,18,5
min 4, (4)	Flerovium 28.18.32.32.18,4
	Nihonium 28.183232.183
	Kg Cn Roentgenium Copernicium 2.8.18.32,32,18,1 28,1832,32,182
Cu Copper (Cup	Ds Rg Cn Darmstadflum Roentgenium Copernicium 28.18.32.32.18.1 28.18.32.32.18.1 28.18.32.32.18.2
(B) വിശ്യാമിക നമ്പർ പ്രത്യാമിക നമ്പർ പ്രവിശ്യാമിക നമ്പർ പ്രവിശ്യാമയിലെ പേർ പ്രവിശ്യാ വിശ്യാമയിലെ പേർ പ്രവിശ്യാ വിശ്യാ വി	DS Darmstadfium 28,18,32,32,16,1
(ആവർത്തന് പ്രത്യീക് ഭാഷയിലെ പേര് പ്രത് / ഗ്രീക്ക് ഭാഷയിലെ ഭ പ്രത് / ഗ്രീക്ക് ഭാഷയിലെ പേര് വന്ന് / ഗ്രീക്ക് ഭാഷയിലെ പേര് വന്ന് / ഗ്രീക്ക് ഭാഷയിലെ ഭ പ്രത്യേത്ത് / ഗ്രീക്ക് ഭാഷയിലെ ഭ പ്രത്യ / ഗ്രീക്ക് ദ്രീക്ക് ഭ	Meitnerium 28,18,32,32,152
(BJ) (BJ) (BJ) (BJ) (BJ) (BJ) (BJ) (BJ)	Hassium 28.18.32.32.142
7.8. A. 2.9. A.	Bo hrium 28.183232.132
CF Chromium 2.8.13.11 Mo Woybdenum 2.8.18.13.1 V V V V V V V V V V V V V V V V V V V	Sg Seaborgium 28,18,32,32,122
23 C Vanadium 2.8.11,2 Nb Niobium 2.8.18,12,1 T 3 T 3 T 3 T 3 T 3 T 3 T 3 T 3 T 3 T	Dubnium 28,18,32,32,11,2
	AC-Lr Rt Actinium Rutherfordium 2,8,18,32,18,92 2,8,18,32,32,102
Scandium 2,8,9,2 Yetrium 2,8,9,2 Yetrium 2,8,18,9,2 Lanthanum 2,8,18,18,9,2	AC-Lr Actinium 2,8,18,32,18,9,2
	Fr Ra Francium Radium 2,8,18,32,18,8,1
gen m m m m m m m m m m m m m m m m m m m	Fr Francium 2,8,18,32,18,8,1

71 Lu Lutetium 2,8,18,32,9,2	103 Lr Lawrencium 2,8,18,32,32,92
Yb Ytterbium 2,8,18,32,8,2	Nobelium 28,18,32,32,82
Tm Thulium 2,8,18,31,8,2	Md Mendelevium 2,8,18,32,31,8,2
Erbium 2,8,18,30,8,2	Fm Fermium 2,8,18,32,30,8,2
Holmium 2,8,18,29,8,2	99 Einsteinium 2,8,18,32,29,8,2
Dy Dysprosium 2,8,18,28,8,2	98 Californium 2,8,18,32,28,8,2
Tb Terbium 2,8,18,27,8,2	97 Bk Berkelium 2,8,18,32,27,8,2
Gd Gadolinium 2,8,18,25,9,2	Cm Curium 28,18,32,25,92
63 Eu Europium 2,8,18,25,8,2	Am Americium 2,8,18,32,25,8,2
Sm Samarium 2,8,18,24,8,2	Pu Plutonium 2,8,18,32,24,8,2
Pm Promethium 2,8,18,23,8,2	Np Neptunium 2,8,18,32,22,9,2
Neodymium 2,8,18,22,8,2	92 Uranium 2,8,18,32,21,9,2
Pr Praseodymium 2,8,18,21,8,2	91 Pa Protactinium 2,8,18,32,20,9,2
Cerium Cerium 2,8,18,19,9,2	90 Th Thorium ² 2,8,18,32,18,10,2
57 La 2,8,18,18,9,2	89 AC 2,8,18,32,18,9,2

ചിത്രം 1.4

 IUPAC തീരുമാനപ്രകാരം ലൻഥാനം ($_{\mathrm{S7}}\mathrm{La}$) ലാൻഥനോയിഡും ആക്ടിനിയം ($_{\mathrm{89}}\mathrm{Ac}$) ആക്ടിനോയിഡും ആണ്.

ഇനി s ബ്ലോക്ക് മൂലകങ്ങളുടെ ചില പൊതുവായ സവിശേഷതകൾ നമുക്ക് പരിചയപ്പെടാം.

ആൽക്കലി ലോഹങ്ങളും ആൽക്കലൈൻ എർത്തു ലോഹങ്ങളും ഉൾപ്പെട്ടവ യാണ് s ബ്ലോക്ക് മൂലകങ്ങൾ എന്ന് നിങ്ങൾ മനസ്സിലാക്കിയിട്ടുണ്ട്. ഇവയുടെ ഓക്സൈഡുകളും ഹൈഡ്രോക്സൈഡുകളും ബേസിക സ്വഭാവമാണ് കാണി ക്കുന്നത്.

 ട ബ്ലോക്ക് മൂലകങ്ങൾ രാസപ്രവർത്തനത്തിൽ ഏർപ്പെടുമ്പോൾ ഇല ക്ട്രോണുകളെ വിട്ടുകൊടുക്കുകയാണോ സ്വീകരിക്കുകയാണോ ചെയ്യു ന്നത്?

• സാധാരണ രൂപീകരിക്കുന്ന ബന്ധനം ഏതായിരിക്കും?

അയോണികബന്ധനം / സഹസംയോജകബന്ധനം s ബ്ലോക്ക് മൂലകങ്ങൾ സാധാരണയായി അയോണികസംയുക്തങ്ങളാണ് നിർമിക്കുന്നതെന്ന് മനസ്സിലാക്കാമല്ലോ?

• 1-ാം ഗ്രൂപ്പ് മൂലകങ്ങൾ രാസപ്രവർത്തനവേളയിൽ എത്ര ഇലക്ട്രോണു കളെ വിട്ടുകൊടുക്കും?

• 2-ാം ഗ്രൂപ്പ് മൂലകങ്ങളോ?

• ഒന്നും രണ്ടും ഗ്രൂപ്പ് മൂലകങ്ങളെ യഥാക്രമം X, Y എന്നീ പ്രതീകങ്ങൾ കൊണ്ട് സൂചിപ്പിക്കുന്നുവെന്ന് കരുതുക.

താഴെ കൊടുത്ത പട്ടിക പൂർത്തിയാക്കുക.

	ഗ്രൂപ്പ്	സംയോജകത (Valency)	ഓക്സീകരണാവസ്ഥ	അയോണുകളുടെ പ്രതീകം	ഓക്സൈഡുകളുടെ രാസസൂത്രം
1-0	ാം ഗ്രൂപ്പ് [X]	1	+1	-	X ₂ O
2-0	ാം ഗ്രൂപ്പ് [Y]	2	-	Y ²⁺	-

പട്ടിക 1.11

s ബ്ലോക്ക് മൂലകങ്ങൾ നിശ്ചിത വാലൻസിയും ഓക്സീകരണാവസ്ഥയും കാണിക്കുന്നവയാണെന്ന് പട്ടിക പൂരണത്തിലൂടെ ബോധ്യമായല്ലോ?

പീരിയോഡിക് ടേബിളിൽ ഏറ്റവും ഇടതുഭാഗത്തുള്ളവയാണ് s ബ്ലോക്ക് മൂലകങ്ങൾ. ഇവയുടെ സ്ഥാനവുമായി ബന്ധപ്പെടുത്തി മറ്റെന്തൊക്കെ സവിശേഷതകൾ നമുക്ക് ലിസ്റ്റ് ചെയ്യാം.

- ലോഹസ്വഭാവം കൂടുതൽ
- അയോണീകരണ ഊർജം കുറവ്
- ഇലക്ട്രോനെഗറ്റിവിറ്റി കുറവ്

•

•

s ബ്ലോക്ക് മൂലകങ്ങളുടെ സവിശേഷതകൾ ലിസ്റ്റ് ചെയ്ത് ഒരു കുറിപ്പ് തയാ റാക്കുക.

p ബ്ലോക്ക് മൂലകങ്ങൾ

• ഏതെല്ലാം ഗ്രൂപ്പുകളാണ് p ബ്ലോക്കിൽ ഉൾപ്പെട്ടിരിക്കുന്നത്?

2–ാം പീരിയഡിലെ p ബ്ലോക്ക് മൂലകങ്ങൾ അടങ്ങുന്ന പീരിയോഡിക് ടേബി ളിന്റെ ഒരു ഭാഗം നൽകിയിരിക്കുന്നത് ശ്രദ്ധിക്കുക.

ഗ്രൂപ്പ് നമ്പർ	13	14	15	16	17	18
മൂലകം	В	С	N	О	F	Ne
ബാഹ്യതമഷെല്ലിലെ സബ്ഷെൽ ഘടന	5 $2s^2 2p^1$	6 2s ² 2p ²	7 $2s^2 2p^3$	8 2s ² 2p ⁴	9 2s² 2p⁵	10 2s ² 2p ⁶

പട്ടിക 1.12

• അവസാന ഇലക്ട്രോൺ പൂരണം നടന്നത് ഏത് സബ്ഷെല്ലിലാണ്?

p സബ്ഷെല്ലിൽ ഒന്നു മുതൽ ആറ് വരെ ഇലക്ട്രോണുകളാണ് കാണപ്പെ ടുന്നത്.

പീരിയോഡിക് ടേബിളിൽ 12 ഗ്രൂപ്പുകൾ കഴിഞ്ഞ ശേഷമാണ് p ബ്ലോക്ക് തുടങ്ങുന്നത്. ബാഹൃതമ p ഇലക്ട്രോണുകളുടെ എണ്ണത്തോടൊപ്പം 12 കൂട്ടിയാൽ ഗ്രൂപ്പ് നമ്പർ കണ്ടെത്താൻ കഴിയുന്നുണ്ടോ? പട്ടികയുമായി ബന്ധപ്പെടുത്തി പരിശോധിച്ച് നോക്കൂ.

മൂലകാ	p ഇലക്ട്രോണിന്റെ എണ്ണം	ഗ്രൂപ്പ് നമ്പർ
₅ B	1	1+12 = 13
₇ N	-	+ 12 =
₁₀ Ne	-	- + - =

പട്ടിക 1.13

Y എന്ന മൂലകത്തിന്റെ (പ്രതീകം യഥാർഥമല്ല). ബാഹ്യതമ സബ്ഷെൽ ഘടന $3s^23p^4$ എന്നാണ്.

 ഈ മൂലകം ഏത് പീരിയഡിലും ഗ്രൂറ്റ 	പ്പിലു	മാണ	ന് വ	രുന്ന	ത്?		
	. 		_	Ü			
 ഇതേ ഗ്രൂപ്പിൽ തൊട്ടുതാഴെയുള്ള മൂലം ഘടന എഴുതി നോക്കൂ. 	കത്ത	റിന്റെ	ബാ	ഹൃ	തമ (സബ്	ഷെൽ
			-				
ഇലക്ട്രോൺ വിന്യാസത്തിലുള്ള സമാ എഴുതാൻ കഴിയുന്നത്.	നത	കാ	രണ	മാണ	റല്ലോ	ാ ഇെ	തല്ലാം
p ബ്ലോക്ക് മൂലകങ്ങളുടെ ചില സവിശേഹ	ഷതം	കൾ	നേ	ാക്ക	Oo		
പീരിയോഡിക് ടേബിളിൽ p ബ്ലോക്ക് മൂല	കങ്ങ	3ൾ (അട	ങ്ങുറ	ന ഭ	ാഗം	താഴെ
കൊടുത്തത് ശ്രദ്ധിക്കുക.		<i>p</i> -(ണ്ലോം	ക്ക്		18	
	13	6515	15		-0.00	Не	
ലോഹങ്ങൾ	В	С	N	О	F	Ne	
GEIO(E/OGI)OO	Al	Si	P	S	Cl	Ar	
അലോഹങ്ങൾ	Ga	Ge	As	Se	Br	Kr	
ഉപലോഹങ്ങൾ	In	Sn	Sb	Те	I	Xe	
ഉത്കൃഷ്ടമൂലകങ്ങൾ	T1	Pb	Bi	Po	At	Rn	
	Nh	Fl	Mc	Lv	Ts	Og	
ചിത്രം 1.5	;						
വൃതൃസ്ത വിഭാഗങ്ങളെ പ്രതിനിധാ					മൂല	ക ങ	зф р
ബ്ലോക്കിലുണ്ടെന്ന് ചിത്രത്തിൽ നിന്ന് മന					າ		
സാധാരണ താപനിലയിൽ ഖരം, ദ്രാവകം ലുള്ള മൂലകങ്ങളും ഇതിൽ ഉൾപ്പെടും. പീ							
1.4) സഹായത്തോടെ ഉദാഹരണങ്ങൾ ക				00012	ە،چ،د	/\ ' 8 \	
			_				
			_				
			-				
• s ബ്ലോക്ക് മൂലകങ്ങളെ അപേക്ഷിച്ച് p							
ഉയർന്ന അയോണീകരണ ഊർജമാദ			•				
യഡിലേയും അയോണീകരണ ഊർജം	-		-				ിക്കും?
ഇലക്ട്രോൺ വിന്യാസത്തിന്റെ അടി	IOLIO	10)(1)	U) I(U))الد	io)Id	رره.	

•	ഇലക്ട്രോ നെഗറ്റിവിറ്റി ഏറ്റവും കൂടിയ മൂലകം p ബ്ലോക്കിൽ ആണ്.
	ഇതിന്റെ പേരും സ്ഥാനവും നിർണയിക്കൂ.
	P ബ്ലോക്ക് മൂലകങ്ങളുടെ പൊതുവായ സവിശേഷതകൾ വിശകലനം ചെയ്ത്
	ഒരു കുറിപ്പ് തയാറാക്കുക.

പട്ടിക 1.14 പൂർത്തിയാക്കുക. (X,Y) എന്നിവ യഥാർഥ പ്രതീകങ്ങൾ അല്ല.

മൂലകം	ബാഹ്വതമ ഇലക്ട്രോൺ വിന്വാസം	പൂർണമായ സബ്ഷെൽ ഇലക്ട്രോൺ വിന്വാസം	അറ്റോമിക നമ്പർ Z	പീരിയഡ്	ഗ്രൂഷ്	ബ്ലോക്ക്
Х	$3s^2$					
Y	$3s^23p^5$					

പട്ടിക 1.14

- ഇതിൽ സംയോജകത 1 ആയ മൂലകം ഏതാണ്?
- ലോഹസ്വഭാവം പ്രകടിപ്പിക്കുന്ന മൂലകം ഏത്?
- അയോണീകരണ ഊർജം കൂടിയ മൂലകം ഏത്?
- X ഉം Y യും ചേർന്ന് രൂപീകരിക്കാൻ സാധ്യതയുള്ള സംയുക്തത്തിന്റെ രാസസൂത്രം എഴുതി ഓക്സീകരണാവസ്ഥകൾ രേഖപ്പെടുത്തുക.

d ബ്ലോക്ക്മൂലകങ്ങൾ

•	പീരിയോഡിക് ടേബിളിൽ d ബ്ലോക്ക് മൂലകങ്ങളുടെ സ്ഥാനം എവിടെയാണ്?
•	 ഏത് പീരിയഡ് മുതലാണ് d ബ്ലോക്ക് തുടങ്ങുന്നത്?

4-ാം പീരിയഡിൽ വരുന്ന d ബ്ലോക്ക് മൂലകങ്ങളുടെ പട്ടിക താഴെ കൊടുക്കുന്നു. അവസാനത്തെ രണ്ട് സബ്ഷെല്ലുകളായ 3d, 4s എന്നിവയിലെ ഇലക്ട്രോൺ ഘടനയാണ് പട്ടികയിൽ രേഖപ്പെടുത്തിയിരിക്കുന്നത്.

ഗ്രൂപ്പ്	3	4	5	6	7	8	9	10	11	12
	21	22	23	24	25	26	27	28	29	30
മൂലകാ	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
	$3d^14s^2$	$3d^24s^2$	$3d^34s^2$	$3d^54s^1$	$3d^54s^2$	$3d^64s^2$	$3d^74s^2$	$3d^84s^2$	$3d^{10}4s^{1}$	$3d^{10}4s^2$

പട്ടിക 1.15

3d, 4s ഇലക്ട്രോണുകളുടെ ആകെ എണ്ണവും ഗ്രൂപ്പ് നമ്പറും തമ്മിൽ ബന്ധ മുണ്ടോ? പരിശോധിക്കൂ.

ബാഹ്യതമ s സബ്ഷെല്ലിലെ ഇലക്ട്രോണുകളുടെ എണ്ണവും തൊട്ടു മുമ്പുള്ള d സബ്ഷെല്ലിലെ ഇലക്ട്രോണുകളുടെ എണ്ണവും കൂട്ടുന്ന തിന് തുല്യമായിരിക്കും d ബ്ലോക്കുമൂലകങ്ങളുടെ ഗ്രൂപ്പുനമ്പർ.

12-ാം ഗ്രൂപ്പിൽ വരുന്ന Zn, Cd, Hg എന്നിവ സംക്രമണ മൂലകങ്ങളുടെ എല്ലാ പൊതു ഗുണങ്ങളും കാണിക്കുന്നവ യല്ല. അതി നാൽ ഇവ കപടസംക്രമണമൂലകങ്ങൾ (pseudo transition elements) എന്നറിയപ്പെടു ന്നു.

ഇവ ലോഹങ്ങളാണ്.

d ബ്ലോക്ക് മൂലകങ്ങളുടെ ചില പ്രത്യേകതകൾ പരി ശോധിക്കാം

അവസാന ഇലക്ട്രോൺപൂരണം ബാഹ്യതമഷെല്ലിന്റെ തൊട്ടു ള്ളിലുള്ള ഷെല്ലിലെ (penultimate shell) d സബ്ഷെല്ലിൽ നട ക്കുന്നവയാണ് d ബ്ലോക്കുമൂലകങ്ങളെന്ന് നിങ്ങൾ തിരിച്ചറിഞ്ഞി ട്ടുണ്ട്. ഇവ സംക്രമണ മൂലകങ്ങൾ (Transition elements) എന്നും അറിയപ്പെടുന്നു.

താഴെ കൊടുത്തിരിക്കുന്ന പ്രസ്താവനകളിൽ d ബ്ലോക്കുമൂല കങ്ങൾക്ക് യോജിക്കുന്നവയ്ക്ക് ' \checkmark ' അടയാളം നൽകൂ.

അവസാന ഇലക്ട്രോൺ പൂരണം നടക്കുന്നത് ബാഹ്യതമഷെല്ലിന് തൊട്ടുമുമ്പുള്ള ഷെല്ലിലാണ്.
4-ാം പീരിയഡിലെ ഇത്തരം മൂലകങ്ങളുടെ അവസാന ഇലക്ട്രോൺ പൂരണം നടക്കുന്നത് 4s ൽ ആണ്.
ഇവ പീരിയോഡിക് ടേബിളിലെ 3 മുതൽ 12 വരെ ഗ്രൂപ്പുകളിൽ കാണ പ്പെടുന്നു.
s, p എന്നീ ബ്ലോക്കിൽ ഉൾപ്പെടുന്ന പ്രാതിനിധ്യമൂലകങ്ങൾ ഗ്രൂപ്പിൽ സാദൃശ്യം കാണിക്കുന്നുവെന്ന് നിങ്ങൾ മനസ്സിലാക്കിയിട്ടുണ്ടല്ലോ. ഇവ യിൽ ഒരേ ഗ്രൂപ്പിൽ ഉൾപ്പെട്ട മൂലകങ്ങളുടെ ബാഹ്യതമഷെല്ലിലെ ഇല ക്ട്രോണുകളുടെ എണ്ണം ഒരുപോലെ ആയതുകൊണ്ടാണല്ലോ ഇങ്ങനെ സംഭവിക്കുന്നത്.
4-ാം പീരിയഡിലെ d ബ്ലോക്ക് മൂലകങ്ങളുടെ 3d, 4s സബ്ഷെല്ലുകളിലെ ഇലക്ട്രോൺ ഘടന പട്ടികയിൽ (പട്ടിക 1.15) നൽകിയിരിക്കുന്നത് ഒന്നു കൂടി ശ്രദ്ധിക്കൂ.
ബാഹ്യതമ 4s സബ്ഷെല്ലിലെ ഇലക്ട്രോണുകളുടെ എണ്ണത്തിലുള്ള പ്രത്യേ

കത എന്താണ്? സംക്രമണ മൂലകങ്ങൾ പീരിയഡിലും സാദൃശ്യം കാണി ക്കുമോ? പരിശോധിക്കൂ. ഇതുപോലെ തുടർന്നു വരുന്ന പീരിയഡുകളിലും ബാഹ്യതമ സബ്ഷെല്ലുകളിലെ ഇലക്ട്രോൺ ഘടനയിൽ സമാനത ഉണ്ടായിരി ക്കുമെന്ന് ഊഹിക്കാമല്ലോ? സ്കാൻഡിയത്തിന്റെ ($_{21}$ Sc) തൊട്ട് താഴെ വരുന്ന മൂല കത്തിന്റെ ബാഹ്യതമ ഇലക്ട്രോൺ ഘടന എഴുതി നോക്കൂ.

സംക്രമണമൂലകങ്ങളുടെ ബാഹ്യതമ ഇലക്ട്രോൺ വിന്യാസം ഒരേ ഗ്രൂപ്പിലും പീരിയഡിലും സാധാരണ ഒരുപോലെയാണ്. അതുകൊണ്ട് ഇവ ഗ്രൂപ്പിൽ മാത്രമല്ല പീരിയഡിലും ഗുണങ്ങളിൽ സാദൃശ്യം കാണിക്കുന്നു.

d ബ്ലോക്ക് മൂലകങ്ങളുടെ ഓക്സീകരണാവസ്ഥ

രാസബന്ധനത്തിൽ ഏർപ്പെടുന്ന ആറ്റങ്ങൾ വിട്ടുകൊടുക്കുകയോ സ്വീകരിക്കുകയോ പങ്കുവയ്ക്കുകയോ ചെയ്യുന്ന ഇലക്ട്രോണുകളുടെ എണ്ണമാണ് അവയുടെ സംയോ ജകത (valency) എന്ന് നിങ്ങൾക്കറിയാമല്ലോ. ഓക്സീകരണാവസ്ഥയെക്കുറിച്ചും നിങ്ങൾക്ക് ധാരണയുണ്ട്.

അയണിന്റെ (Fe) രണ്ട് ക്ലോറൈഡുകളുടെ പേരും രാസസൂത്രവും എഴുതിയിരിക്കു ന്നത് ശ്രദ്ധിക്കു.

- □ ഫെറസ് ക്ലോറൈഡ് FeCl₂
- □ ഫെറിക് ക്ലോറൈഡ് FeCl₃

ക്ലോറിന് (-1) ഓക്സീകരണാവസ്ഥയാണല്ലോ.

ഈ സംയുക്തങ്ങളിലെ Fe യുടെ ഓക്സീകരണാവസ്ഥകൾ കണ്ടെത്തി പട്ടിക 1.16 പൂർത്തിയാക്കൂ.

സംയുക്തം	Fe യുടെ ഓക്സീകരണാവസ്ഥ	Fe യുടെ അയോണുകളുടെ പ്രതീകം
FeCl ₂		
FeCl ₃		

പട്ടിക 1.16

d ബ്ലോക്ക് മൂലകങ്ങൾ രാസപ്രവർത്തനത്തിൽ പങ്കെടുക്കുമ്പോൾ ബാഹ്യതമഷെ ല്ലിലെ ഇലക്ട്രോണുകളോടൊപ്പം ബാഹ്യതമഷെല്ലിന് തൊട്ടുമുമ്പുള്ള ഷെല്ലിലെ d ഇലക്ട്രോണുകളും പങ്കെടുക്കുന്നു. ഇലക്ട്രോൺപൂരണം നടക്കുന്ന ക്രമത്തി ലല്ല d ബ്ലോക്ക് മൂലകങ്ങളുടെ ഇലക്ട്രോണുകൾ നഷ്ടപ്പെടുന്നത്. അതായത് ബാഹ്യ തമ ഷെല്ലിലെ s സബ്ഷെല്ലിൽ നിന്നാണ് ഇലക്ട്രോണുകൾ ആദ്യം നഷ്ടപ്പെടുന്നത്.

 $_{26}\mathrm{Fe}$ ന്റെ സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം ശ്രദ്ധിക്കൂ.

• Fe എങ്ങനെയാണ് Fe²+ ആയി മാറിയത്?

ഇതിന്റെ വിവിധ സംയുക്തങ്ങളാണ് $\mathrm{MnCl_2}$, $\mathrm{MnO_2}$, $\mathrm{Mn_2O_3}$, $\mathrm{Mn_2O_7}$. ഇവയിൽ ഓരോന്നിലും മാംഗനീസിന്റെ ഓക്സീകരണാവസ്ഥയും അയോണുകളുടെ സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസവും എഴുതിപട്ടിക 1.17 പൂർത്തിയാക്കുക.

സംയുക്തം	Mn ന്റെ ഓക്സീകരണാവസ്ഥ	Mn അയോണുകളുടെ സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം
MnCl ₂	-	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵
MnO_2	+4	-
Mn_2O_3	-	-
Mn ₂ O ₇	-	-

പട്ടിക 1.17

s, p എന്നീ ബ്ലോക്കുകളിലെ മൂലകങ്ങൾ രാസപ്രവർത്തനത്തിൽ ഏർപ്പെടുമ്പോൾ ബാഹ്യതമഷെല്ലിലെ ഇലക്ട്രോണുകളാണ് പങ്കെടുക്കുന്നത്. എന്നാൽ സംക്രമണ മൂലകങ്ങളുടെ ബാഹ്യഷെല്ലിലെ s സബ് ഷെല്ലിന്റെയും തൊട്ടടുത്തുള്ള ആന്തരികഷെല്ലിലെ d സബ്ഷെല്ലിന്റെയും ഊർജങ്ങൾ തമ്മിൽ വലിയ വ്യത്യാസം ഇല്ലാത്തതിനാൽ അനുയോജ്യമായ സാഹചര്യത്തിൽ d സബ്ഷെല്ലിലെ ഇലക്ട്രോണുകൾ കൂടി രാസപ്രവർത്തനത്തിൽ പങ്കെടുക്കും. അതുകൊണ്ടാണ് സംക്രമണമൂലകങ്ങൾ വ്യത്യസ്ത ഓക്സീകരണാവസ്ഥ കാണിക്കുന്നത്.

നിറമുള്ള സംയുക്തങ്ങൾ

സംക്രമണമൂലകങ്ങളുടെ ചില സംയുക്തങ്ങളെ ലിസ്റ്റു ചെയ്തിരിക്കുന്നത് ശ്രദ്ധിക്കൂ.

- കോപ്പർ സൾഫേറ്റ്
- കോബാൾട്ട് നൈട്രേറ്റ്
- പൊട്ടാസ്യം പെർമാംഗനേറ്റ്
- ഫെറസ് സൾഫേറ്റ്

•

സയൻസ് ലാബിൽ ലഭ്യമായ ഈ സംയുക്തങ്ങൾ പരി ശോധിച്ച് ഇവയുടെ നിറങ്ങൾ കണ്ടെത്തൂ. നിറമുള്ള കൂടുതൽ സംയുക്തങ്ങൾ കണ്ടുപിടിച്ച് ലിസ്റ്റ് വിപുലീകരിക്കൂ.

സംക്രമണമൂലകങ്ങളുടെ സംയുക്തങ്ങൾ മിക്കവയും നിറമുള്ളവയാണ്. അവയിലെ സംക്രമണമൂലകങ്ങളുടെ അയോണുകളുടെ സാന്നിധ്യമാണ് നിറത്തിന് കാര ണം.

 ഗ്ലാസ്സിന് നിറം നൽകാനും ഓയിൽ പെയിന്റിം ഗിനും മറ്റും സംക്രമണ മൂലകസംയുക്തങ്ങൾ ഉപ യോഗിക്കാറുണ്ട്. കൂടുതൽ വിവരങ്ങൾ റഫറൻസി ലൂടെ കണ്ടെത്തുക.

f ബ്ലോക്കുമൂലകങ്ങളുടെ പ്രത്യേകതകൾ

ലൻഥാനത്തിനും ആക്ടീനിയത്തിനും ശേഷം വരുന്ന 14 മൂലകങ്ങളെ വീതം താഴെ രണ്ട് നിരക ളായി ക്രമീകരിച്ചിരിക്കുന്നവയാണ് f ബ്ലോക്ക് മൂല കങ്ങൾ.

ഇവയിൽ ഇലക്ട്രോൺപൂരണം നടക്കുന്നത് ബാഹൃതമ ഷെല്ലിന് തൊട്ടുള്ളിലുള്ള ഷെല്ലി ന്റെയും ഉള്ളിലുള്ളതിലാണ് (Antepenultimate shell). ഒന്നാമത്തെ നിരയിലുള്ളവ ലാൻഥനോയിഡുകൾ എന്നും രണ്ടാമത്തെ നിരയിൽ ക്രമീ കരിച്ചവ ആക്റ്റിനോയിഡുകൾ എന്നുമാണ് അറിയപ്പെടുന്നത്. ഇവ 6,7 പീരിയഡുകളിലായി ക്രമീ കരിച്ചിരിക്കുന്നു. അവസാനത്തെ ഇലക്ട്രോൺ വന്നു ചേരുന്നത് f സബ്ഷെല്ലിലാണെന്ന് സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം പരിശോധിച്ചാൽ കാണാൻ കഴിയും.

f ബ്ലോക്കുമൂലകങ്ങളുടെ ചില പ്രത്യേകതകളും ഉപയോഗങ്ങളും ചുവടെ നൽകിയിരിക്കുന്നത് ശ്രദ്ധിക്കുക.

സംക്രമണമുലകങ്ങളുടെ ഉൽപ്രേരക സ്വഭാവം

സ്വയം സ്ഥിരമായ രാസമാറ്റത്തിന് വിധേ യമാകാതെ രാസപ്രവർത്തനവേഗതയെ സ്വാധീനിക്കാൻ കഴിയുന്ന പദാർഥങ്ങ ളാണ് ഉൽപ്രേരകങ്ങൾ (Catalysts). സാധാരണമായി സംക്രമണമൂലകങ്ങളും അവയുടെ സംയുക്തങ്ങളും ഉൽപ്രേരക ങ്ങളായി ധാരാളം ഉപയോഗിക്കപ്പെടുന്നു ണ്ട്. സമ്പർക്കപ്രക്രിയയിൽ വനേഡിയം പെന്റോക്സൈഡ് (V_2O_5) , ഹേബർ പ്രക്രിയയിൽ സ്പോഞ്ചീ അയൺ, സസ്യ എണ്ണകളുടെ ഹൈഡ്രോജനേഷൻ വഴി വനസ്പതിയുടെ നിർമാണത്തിൽ നിക്കൽ (Ni) എന്നിവ ഇവയിൽ ചില ഉദാഹരണ ങ്ങളാണ്. വൃതൃസ്ത ഓക്സീകരണാ കാണിക്കുന്ന d ബ്ലോക്ക് മൂലകങ്ങൾക്ക് ഓക്സീകാരിയായും നിരോക്സീകാരിയായും ഒരേ സമയം പ്രവർത്തിക്കുവാൻ കഴിയുന്നതാണിതിന് ഒരു കാരണം.

കേരളത്തിന്റെ ധാതുസമ്പത്ത്

ലോക ത്തെ ല്ലാ യി ടത്തും ധാതുക്കളുടെ വിന്യാസം ഒരുപോലെയല്ല. നമ്മുടെ കേരളം ചില പ്രത്യേക ധാതുക്കളുടെ സമ്പന്ന ശേഖര ത്താൽ അനുഗ്രഹീതമാണ്. മോണസൈറ്റ്, ഇൽമനൈറ്റ്, സിർക്കോൺ, റൂടൈൽ, തുട ങ്ങിയ വിവിധങ്ങളായ ധാതുക്കളുടെ കലവറ യാണ് കേരളത്തിലെ തീപ്രേദശത്തെ മണൽ ശേഖരം. നിതൃജീവിതത്തിൽ വളരെയധികം ഉപയോഗമുള്ള ടൈറ്റാനിയം ഡയോക്സൈഡ് (TiO_2) ഉൽപ്പാ ദ നത്തിലെ അസം സ് കൃത വസ്തുവാണ് ഇൽമനൈറ്റ്. ബ്രീഡർ ന്യൂക്ലിയർ റിയാക്റ്ററുകളിൽ ഉപയോഗിക്കുന്ന തോറിയ ത്തിന്റെ (Th) ഉറവിടം മോണസൈറ്റ് എന്ന

222222222222222

ധാതുവാണ്. നിയോഡിമിയം (Nd) ലോഹം ഉൽപ്പാദിപ്പിക്കുവാനുള്ള അസംസ്കൃത വസ്തുവും മോണസൈറ്റ് തന്നെ. ശക്തിയേ റിയതും ഭാരമില്ലാത്തതുമായ കാന്തങ്ങൾ നിർമിക്കാൻ ഇന്ന് വ്യാപകമായി ഉപയോഗിക്കപ്പെടുന്ന ലോഹമാണ് നിയോഡിമിയം. ഉരകല്ലുകൾ (Flint stones) നിർമിക്കാനാവശ്യമായ സീറിയം (Ce) ലോഹത്തിന്റെ ധാതുവും മോണസൈറ്റ് ആണ്. അമൂല്യമായ ഈ ധാതു ശേഖരം നാം വേണ്ടവിധം പ്രയോജനപ്പെടു ത്തേണ്ടതുണ്ട്.

- d ബ്ലോക്കുമൂലകങ്ങളെ പോലെ ഇവയിൽ മിക്ക വയും വ്യത്യസ്ത ഓക്സീകരണാവസ്ഥകൾ പ്രകടിപ്പിക്കുന്നു.
- ആക്റ്റിനോയിഡുകൾ ഭൂരിഭാഗവും റേഡിയോ ആക്ടീവ് മൂലകങ്ങളാണ്. ഇവ പലതും കൃത്രിമ മൂലകങ്ങളാണ്.
- യൂറേനിയം (U), തോറിയം (Th), പ്ലൂട്ടോണിയം
 (Pu) തുടങ്ങിയവ ന്യൂക്ലിയർ റിയാക്ടറുകളിൽ ഇന്ധനമായി ഉപയോഗിക്കുന്നു.
- ഇവയിൽ പലതും ഉൽപ്രേരകങ്ങളായി പെട്രോ ളിയം വൃവസായത്തിൽ ഉപയോഗിക്കുന്നു.

പീരിയോഡിക് ടേബിളിന്റെ ഒരു ഭാഗം താഴെ കൊടുത്തിരിക്കുന്നത് ശ്രദ്ധി ക്കുക. (പട്ടിക 1.18) കോളത്തിൽ സൂചിപ്പിച്ച മൂലകങ്ങളുടെ പ്രതീകങ്ങൾ യഥാർഥമല്ല.

പട്ടിക 1.18

- s ബ്ലോക്ക്മൂലകങ്ങൾ ലിസ്റ്റ് ചെയ്യുക.
 - ______
- +2 ഓക്സീകരണാവസ്ഥ കാണിക്കുന്ന മൂലകം ഏത്?
- ബാഹ്യതമഷെല്ലിൽ 5 ഇലക്ട്രോൺ വരുന്ന മൂലകം ഏത്?
- ബാഹൃതമ p സബ്ഷെല്ലിൽ 5 ഇലക്ട്രോൺ വരുന്ന മൂലകം ഏത്?
- d സബ്ഷെല്ലിൽ അവസാന ഇലക്ട്രോൺ പൂരണം നടക്കുന്ന മൂലകങ്ങൾ ഏതെല്ലാം?
- അയോണീകരണ ഊർജം കൂടിയ മൂലകം ഏതായിരിക്കും?
- ഏറ്റവും ക്രിയാശീലം കൂടിയ അലോഹം ഏതാണ്?
- -2 ഓക്സീകരണാവസ്ഥ കാണിക്കുന്ന മൂലകം ഏത്?

- ഇതിൽ ഒരു മൂലകത്തിന്റെ അവസാന സബ്ഷെൽ ഘടന $2s^2 \ 2p^6$
 - (i) മൂലകം ഏത്?
 - (ii) പൂർണമായ സബ്ഷെൽ വിന്യാസം എഴുതുക.
 - (iii) ഈ മൂലകത്തിന്റെ ഏതെങ്കിലും 2 സവിശേഷതകൾ എഴുതുക.
- ${
 m A}$ യും ${
 m G}$ യും ചേർന്ന് രൂപീകരിക്കുന്ന സംയുക്തത്തിന്റെ രാസസൂത്രം എഴുതുക.

പട്ടികയിലെ ഓരോ മൂലകവും ഉത്തരമായി വരുന്ന പരമാവധി ചോദ്യ ങ്ങൾ ഇതുപോലെ കണ്ടെത്തുക.

രസതന്ത്രപഠനത്തിൽ പീരിയോഡിക് ടേബിൾ ഉപയോഗപ്പെടുത്തി മൂലകങ്ങ ളുടെ സവിശേഷതകൾ വിശകലനം ചെയ്യാനും താരതമ്യപ്പെടുത്താനുമുള്ള സാധ്യതകളാണ് നാം ഈ പാഠഭാഗത്തിലൂടെ പരിചയപ്പെട്ടത്. പദാർഥ സ്വഭാ വത്തെക്കുറിച്ചുള്ള തുടർപഠനങ്ങളിലും പീരിയോഡിക് ടേബിളിന്റെ സഹായം നിങ്ങൾക്ക് ഉപയോഗപ്പെടുത്താവുന്നതാണ്.

വിലയിരുത്താം

- താഴെ കൊടുത്ത സൂചനകളുടെ അടിസ്ഥാനത്തിൽ അറ്റോമിക നമ്പർ കണ്ടെത്തി സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം എഴുതുക. (പ്രതീകങ്ങൾ യഥാർഥമല്ല.
 - (i) A 3-ാം പിരിയഡ് 17-ാം ഗ്രൂപ്പ്
 - (ii) B 4-ാം പിരിയഡ് 6-ാം ഗ്രൂപ്പ്
- ഒരാറ്റത്തിന്റെ അവസാന ഇലക്ട്രോൺ പൂരണം 3d സബ്ഷെല്ലിൽ നടന്നപ്പോൾ ആ സബ്ഷെല്ലിലെ ഇലക്ട്രോൺ വിന്യാസം $3d^8$ എന്ന് രേഖപ്പെടുത്തി. ഈ ആറ്റത്തെ സംബന്ധിക്കുന്ന ചോദ്യങ്ങൾക്ക് ഉത്തരം കണ്ടെത്തു.
 - പൂർണ സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം
 - അറ്റോമികനമ്പർ
 - ബ്ലോക്ക്
 - പീരിയഡ്നമ്പർ
 - ഗ്രൂപ്പ്നമ്പർ
- താഴെ കൊടുത്തിരിക്കുന്ന സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസത്തിൽ ശരി യല്ലാത്തവ ഏതെല്ലാം.
 - a) $1s^2 2s^2 2p^7$
- b) $1s^2 2s^2 2p^2$
- c) $1s^2 2s^2 2p^5 3s^1$ d) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 4s^1$
- e) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 4s^2$

- 4. ഗ്രൂപ്പുനമ്പർ 17 ആയ X എന്ന മൂലകത്തിന് 3 ഷെല്ലുകൾ ഉണ്ട്. എങ്കിൽ
 - a) ഈ മൂലകത്തിന്റെ സബ്ഷെൽ ഇലക്ടോൺ വിന്യാസം എഴുതുക.
 - b) പീരിയഡ് നമ്പർ എത്രയാണ്?
 - c) p സബ് ഷെല്ലിൽ ഒരു ഇലക്ട്രോണുള്ള മൂന്നാം പീരിയഡിലെ Y എന്ന മൂലകത്തിന്റെ ആറ്റവുമായി X പ്രവർത്തിച്ചാൽ ഉണ്ടാകുന്ന സംയു ക്തത്തിന്റെ രാസസൂത്രം എന്തായിരിക്കും?
- 5. അറ്റോമിക നമ്പർ 29 ആയ Cu എന്ന മൂലകം രാസപ്രവർത്തനത്തിൽ ഏർപ്പെ ടുമ്പോൾ +2 ഓക്സീരണാവസ്ഥയുള്ള അയോൺ ആയി മാറുന്നു.
 - മൗ അയോണിന്റെ പ്രതീകവും സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസവും എഴുതുക.
 - b) ഈ മൂലകം വ്യത്യസ്ത ഓക്സീകരണാവസ്ഥ കാണിക്കുവാൻ സാധ്യ തയുണ്ടോ? എന്തുകൊണ്ട്?
 - c) ക്ലോറിനുമായി (₁₇Cl) ഈ മൂലകം പ്രവർത്തിച്ചാൽ ഉണ്ടാകുന്ന ഒരു സംയുക്തത്തിന്റെ രാസസൂത്രം എഴുതുക.
- ആറ്റത്തിലെ ചില സബ്ഷെല്ലുകൾ താഴെകൊടുക്കുന്നു.
 2s, 2d, 3f, 3d, 5s, 3p
 - a) ഇതിൽ സാധ്യതയില്ലാത്ത സബ്ഷെല്ലുകൾ ഏതൊക്കെ?
 - b) സാധ്യതയില്ലാത്തതിന്റെ കാരണം എന്താണ്?

തുടർപ്രവർത്തനം

 1 മുതൽ 36 വരെ ആറ്റോമികനമ്പർ വരുന്ന മൂലകങ്ങളുടെ പേര്, പ്രതീകം, ഷെൽ, ഇലക്ട്രോൺ വിന്യാസം, സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം എന്നിവ സൂചിപ്പിക്കുന്ന സമഗ്രമായ പട്ടിക തയാറാക്കുക.

ആറ്റോമിക നമ്പർ	മൂലകാ	പ്രതീകം	ഇലക്ട്രോൺ വിന്യാസം	സബ്ഷെൽ ഇലക്ട്രോൺ വിന്യാസം

2. പീരിയോഡിക് ടേബിളിലെ P ബ്ലോക്കിൽ 17-ാം ഗ്രൂപ്പിൽ വരുന്ന മൂല കങ്ങളുമായി ബന്ധപ്പെട്ട ചില വിവരങ്ങളാണ് പട്ടികയിൽ നൽകിയി രിക്കുന്നത്. പട്ടിക പൂർത്തിയാക്കി താഴെ കൊടുത്ത കാര്യങ്ങൾ വിശ കലനം ചെയ്യുക.

മുലകം നമ്പർ	പ്രതീകം	STP യിലെ അവസ്ഥ	ഹൈഡ്രജനുമായുള്ള രാസപ്രവർത്തനശേഷി	സാധാരണ ഓക്സീക രണാവസ്ഥ	ഹൈഡ്രൈഡു കളുടെ രാസസൂത്രം
ഫ്ളൂറിൻ			തീവ്രമായ പ്രവർത്തനം	-1	HF
	Cl		തീവ്രമായ പ്രവർത്തനം	-1	
ബ്രോമിൻ		ദ്രാവകം	സാവധാനത്തിലുള്ള പ്രവർത്തനം	-	
അയഡിൻ			വളരെ സാവധാനത്തിലുള്ള പ്രവർത്തനം	-	

- (a) 17-ാം ഗ്രൂപ്പിൽ വരുന്ന മൂലക കുടുംബത്തിന് പറയുന്ന പേരെന്ത്?
- (b) ഇവയുടെ പൊതുവായ വാലൻസി എത്ര?
- (c) ഇതിൽ ഇലക്ട്രോ നെഗറ്റിവിറ്റി കൂടിയ മൂലകം ഏത്?
- (d) അയോണീകരണ ഊർജം കൂടിയ മൂലകം ഏത്?
- (e) ഇവ s ബ്ലോക്ക് മൂലകങ്ങളുമായി ചേർന്നുണ്ടാക്കുന്ന പരിചിത സംയുക്തങ്ങളുടെ പേരും രാസസൂത്രവും ലിസ്റ്റ് ചെയ്യുക.