

Matricula: 2017 13225 Data: / /

II Trabalho Avaliativo - Derivadas (Valor 3,0)

Calcule as derivadas das funções:

a)
$$g(x) = \frac{e^{2x+1}+2x}{\ln(x^2)}$$

b)
$$h(x) = e^{\sqrt{e^x + 5x}} = \int_{0}^{\infty} (x)^{\frac{1}{2}} e^{\sqrt{e^x + 5x}}$$
.

a) $g(x) = \frac{e^{2x+1}+2x}{\ln(x^2)}$ $g'(x) = (a e^{2x+1}+2)$. In (x^2) b) $h(x) = e^{\sqrt{e^x+5x}} = (x) = e^{\sqrt{e^x+5x}}$.

2) Faça o que se pede:

- a) Encontre a reta tangente a função $f(x) = \frac{1}{x+2}$ no ponto $x_0 = 2$.
- b) Calcule a derivada da função $f(x) = x^3 + 2x$, usando a definição de derivada.
- 3) Um balão esférico é inflado com gás à razão de 20 cm³/min. Com que rapidez o raio do balão está variando no instante em que é de 2 cm?
- 4) Encontre $\frac{d^2y}{dx^2}$ para a expressão $7x^2 6y^2 = \pi$.
- 5) Calcule os limites:
 - a) $\lim_{x\to 0} (1 + sen(2x))^{1/x}$
 - b) $\lim_{x \to 0} x^2 e^{1/x^2}$
- 6) Encontre o intervalo em que a função $f(x) = \frac{4}{3}x^3 + \frac{x^4}{3}$ é crescente, decrescente, côncava para cima côncava para baixo, os pontos de inflexão e os pontos críticos, dizendo se os pontos críticos encontrados são máximos ou mínimos relativos e se são máximos ou mínimos absolutos.