Beta-trees: Multivariate histograms with confidence statements

Qian Zhao

University of Massachusetts, Amherst

WNAR 2024

Beta-trees histogram

 ${\small \begin{array}{c} {\rm Multivariate~histogram}\\ {\small +}\\ {\rm Confidence~interval~of~density~in}\\ {\small \begin{array}{c} {\rm each~region} \end{array}}$

Figure: Histogram of 50 $\mathcal{N}(0,1)$ obs.

Figure: Histogram of 50 $\mathcal{N}(0,1)$ obs.

We use histograms to

- 1. Summarize data
- 2. Visualize data

Figure: Histogram of 50 $\mathcal{N}(0,1)$ obs.

We use histograms to

- 1. Summarize data
- 2. Visualize data
- 3. Estimate density

Optimal bin width to minimize Asymptotic Mean Integrated Squared Error (AMISE) is $h^* = [6/R(f')]^{1/3} n^{-1/3} (R(\cdot))$ is the ℓ_2 norm) (Freedman & Diaconis, 1981)

Figure: Two-dimensional histogram of 200 $\mathcal{N}(0, I)$ obs.

Figure: Two-dimensional histogram of 200 $\mathcal{N}(0, I)$ obs.

- If fix # bins in each dimension
 ⇒ #regions grows exponentially with d
- In higher dimensions, most bins would be empty ("Curse of dimensionality")

Figure: Two-dimensional histogram of 200 $\mathcal{N}(0, I)$ obs.

- If fix # bins in each dimension
 ⇒ #regions grows exponentially with d
- In higher dimensions, most bins would be empty ("Curse of dimensionality")

Figure: Two-dimensional histogram of 200 $\mathcal{N}(0, I)$ obs.

- If fix # bins in each dimension
 ⇒ #regions grows exponentially with d
- In higher dimensions, most bins would be empty ("Curse of dimensionality")
- Optimal bin width is $O(n^{-1/(2+d)})$ in each dimension ¹

1. Multivariate Density Estimation, Scott, D. W. (2015)

Adaptive partitioning histograms

- At step I, partition each region into into d regions.
- Choose the partition that maximizes the likelihood (call the histogram "sieve MLE")
- If for some f_I supported on these partitions, $\rho(f,f_I) \leq AI^{-r}$, then the sieve MLE converges to f at rate $n^{-\frac{r}{2r+1}}(\log n)^{\frac{1}{2}+\frac{r}{2r+1}}$,

Multivariate density estimation via adaptive partitioning (i) Sieve MLE, by Liu and Wong (2014)

Roadmap

- 1. Some theory of order statistics
- 2. Constructing the beta-trees histogram
 - 2.1 Recursive partitioning
 - 2.2 Bottom-up merging
- 3. Application of the beta-trees histogram
 - 3.1 Data visualization
 - 3.2 Mode hunting
 - 3.3 Analyzing flow cytometry data

Univariate order statistic

- $X_1, \ldots, X_n \stackrel{iid}{\sim} F$
- Order statistic $X_{(1)} < X_{(2)} < \ldots < X_{(n)}$

$$F((X_{(i)},X_{(j)})) \sim \mathsf{Beta}(j-i,n+1-(j-i))$$

Univariate order statistic

- $X_1, \ldots, X_n \stackrel{iid}{\sim} F$
- Order statistic $X_{(1)} < X_{(2)} < \ldots < X_{(n)}$

$$F((X_{(i)},X_{(j)})) \sim \mathsf{Beta}(j-i,n+1-(j-i))$$

E.g. $X_1, \ldots, X_{50} \stackrel{\textit{iid}}{\sim} \mathcal{N}(0,1)$, then $\Phi((X_{(30)}, X_{(40)})) \sim \text{Beta}(10,41)$. A 95% CI for $\Phi((X_{(30)}, X_{(40)}))$ is [0.10, 0.31].

• $X_1, \dots, X_{50} \stackrel{iid}{\sim} \mathcal{N}(0, I_2) := F$

- $X_1, \ldots, X_{50} \stackrel{iid}{\sim} \mathcal{N}(0, I_2) := F$
- Order statistics along x-axis $X_{(1),1} \leq \dots X_{(50),1}$

- $X_1, \ldots, X_{50} \stackrel{iid}{\sim} \mathcal{N}(0, I_2) := F$
- Order statistics along x-axis $X_{(1),1} \leq \dots X_{(50),1}$
- Let $R = \{x \in \mathbb{R}^2 : x_1 < X_{(25),1}\}$
- F(R) ∼ Beta(25, 26)

- $X_1, \ldots, X_{50} \stackrel{iid}{\sim} \mathcal{N}(0, I_2) := F$
- Order statistics along x-axis $X_{(1),1} \leq \dots X_{(50),1}$
- Let $R = \{x \in \mathbb{R}^2 : x_1 < X_{(25),1}\}$
- F(R) ~ Beta(25, 26)

This is our first split!

Multivariate case

- $R = \{x \in \mathbb{R}^2 : x_1 < X_{(25),1}\}$
- Denote the obs. inside R as $\{Y_1, \ldots, Y_{24}\}.$

Lemma

Conditional on $X_{(25),1}=t,$ $\{Y_1,\ldots,Y_{24}\}$ are i.i.d. from G,

$$G(\cdot) = \frac{F(\cdot \cap R)}{F(R)}$$

• Let $S = \{x \in R : x_2 < Y_{(12),2}\}$

- Let $S = \{x \in R : x_2 < Y_{(12),2}\}$
- Conditional on the first split,

$$G(S) = \frac{F(S)}{F(R)} \sim \mathsf{Beta}(12, 13)$$

and is independent of R.

- Let $S = \{x \in R : x_2 < Y_{(12),2}\}$
- Conditional on the first split,

$$G(S) = \frac{F(S)}{F(R)} \sim \mathsf{Beta}(12, 13)$$

and is independent of R.

•
$$F(S) = G(S) \cdot F(R) \sim$$
Beta(12, 39)

This is our second split!

- Let $S = \{x \in R : x_2 < Y_{(12),2}\}$
- Conditional on the first split,

$$G(S) = \frac{F(S)}{F(R)} \sim \mathsf{Beta}(12, 13)$$

and is independent of R.

•
$$F(S) = G(S) \cdot F(R) \sim$$

Beta(12, 39)

Summary: Recursive partitioning (k-d tree)

- 1. Partition at the median along x-axis
- 2. For each region R_i ,
 - 2.1 Pick a coordinate
 - 2.2 Partition along the median of obs. inside R_i .
- 3. Stop when # obs. inside is less than $4 \log n$.

Summary: Recursive partitioning (k-d tree)

Theorem

 $F(R_i) \sim \text{Beta}(n_i + 1, n - n_i)$, n_i is the number of obs. inside R_i .

Summary: Recursive partitioning (k-d tree)

Theorem

 $F(R_i) \sim \text{Beta}(n_i + 1, n - n_i)$, n_i is the number of obs. inside R_i .

Confidence intervals

Theorem

 $F(R_i) \sim \text{Beta}(n_i + 1, n - n_i)$, n_i is the number of obs. inside R_i .

• We can compute $(1 - q_i)$ confidence interval for $F(R_i)$.

Confidence intervals

Theorem

 $F(R_i) \sim \text{Beta}(n_i + 1, n - n_i), n_i \text{ is the number of obs. inside } R_i.$

- We can compute $(1 q_i)$ confidence interval for $F(R_i)$.
- If $\sum_i q_i = \alpha$, then the CIs cover all regions **simultaneously** at level (1α) .

Confidence intervals

Theorem

 $F(R_i) \sim \text{Beta}(n_i + 1, n - n_i), n_i \text{ is the number of obs. inside } R_i.$

- We can compute $(1 q_i)$ confidence interval for $F(R_i)$.
- If $\sum_i q_i = \alpha$, then the CIs cover all regions **simultaneously** at level (1α) .

Which histogram should we choose?

Merging regions (bottom-up)

If $f(R_i)$ lies in the confidence intervals of both of its children, then pick R_i .

Data visualization: 2-d Gaussian mixture

- (a) Fixed bin width (15 bins in each dimension)
- (b) Kernel density estimate (select bandwidth by cross validation)

(c) Beta-trees histogram

Data visualization: 3-d Gaussian mixture

We plot the density along z = 1 and obs. inside a slab of $0.8 \le z \le 1.2$.

Mode hunting

A mode is where density is a local maximum.

(g) Density contours

Mode hunting

A mode is where density is a local maximum.

- (j) Density contours
- (k) A path between the two modes

Mode hunting

A mode is where density is a local maximum.

Mode hunting using Beta-trees histogram

(p) Beta-trees histogram ($n = 2,000, \alpha = 0.1$)

Mode hunting using Beta-trees histogram

- (s) Beta-trees histogram (t) A path between the $(n = 2,000, \alpha = 0.1)$
 - two identified modes
- (u) Confidence interval of the density along the path

If A and B are two distinct modes, then there should exist a point along any path connecting A and B whose density is lower than **both** A and B.

Application: Flow cytometry

Figure: Illustration of a flow cytometer

Application: Flow cytometry

Figure: Illustration of a flow cytometer

- Data set RvHD from the R package mclust (Brinkman et al. 2007).
- Goal: Identify biomarkers associated with graft-versus-host disease (GvHD).
- 4 biomarkers.
- 9083 obs from a case patient and 6809 obs from a control patient.

Visualizing a flow cytometry data set

(a) A two-dimensional histogram. Two identified modes are indicated by red stripes.

(b) A slice of a 3-dim histogram of CD4, CD8b, CD3 at the slice CD3 = 1.

Researchers identified the CD3+ CD4+ CD8b+ population to be associated with GvHD (Brinkman et al. 2007).

Conclusion

- Beta-trees histogram
 - Automatically adapt to location of the obs.
 - $F(R_i) \sim \text{Beta}(n_i + 1, n n_i) \implies \text{simultaneous CI for every region.}$
 - Compact representation of data (merge regions based on a goodness-of-fit test)

Conclusion

- Beta-trees histogram
 - Automatically adapt to location of the obs.
 - $F(R_i) \sim \text{Beta}(n_i + 1, n n_i) \implies \text{simultaneous CI for every region.}$
 - Compact representation of data (merge regions based on a goodness-of-fit test)
- Using beta-trees histogram to identify modes in the distribution

Conclusion

- Beta-trees histogram
 - Automatically adapt to location of the obs.
 - $F(R_i) \sim \text{Beta}(n_i + 1, n n_i) \implies \text{simultaneous CI for every region.}$
 - Compact representation of data (merge regions based on a goodness-of-fit test)
- Using beta-trees histogram to identify modes in the distribution
- Future directions
 - Still cannot handle high-dimensions (each split reduces sample size by half)

 can we leverage information about the distribution?
 - Can we use Beta-trees histogram to identify changes in the distribution?

Thank you! Questions?

https://arxiv.org/abs/2308.00950

Mode hunting using the Beta-trees histogram (algorithm)

- 1. Order regions in decreasing order of density. Assign the region with highest density as a mode.
- 2. Iterate through every region R
 - 2.1 Iterate through M in the current list of modes
 - 2.1.1 Iterate through every path connecting R and M
 - 2.1.2 Is there a region whose CI intersects that of either R and M? If "yes", R is **not** a mode; continue to next region If "no", continue to check the next path.
 - 2.2 Add R to the list of modes.
- 3. Report the list of modes.