Department of Mathematics N.K.U.A.

Some Huge Title

Author
For the mathematics group
Winter semester 3429-30

Contents

1	A preview	5
	1.1 Preview	5
Bi	bliography	7

A preview

Abstract

This is an abstract this is an abstract.

1.1 Preview

Παρακάτω υπάρχουν μερικά περιβάλλοντα που μπορείτε να χρησιμοποιήσετε.

Theorem 1.1 (Προαιρετικό όνομα θεωρήματος). Εάν τα θεωρήματα μιλούσαν, το θεώρημα των ολοκληρωτικών υπολοίπων θα έλεγε:

$$\int_{\gamma} f(z) dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{Res}(f, \omega_k)$$

Σχόβιο: Δείτε πώς ορίζουμε το Res στο notation.tex

Theorem 1.2. Εάν τα θεωρήματα μιβούσαν, το θεώρημα των οβοκβηρωτικών υποβοίπων θα έβεγε:

$$\int_{\gamma} f(z) dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{Res}(f, \omega_k)$$

Proof. Εδώ μπαίνει η απόδειξη.

Definition 1.1 (Όνομα). Σύνοβο είναι ένα σύνοβο.

Definition 1.2. Σύνοβο είναι ένα σύνοβο.

Proposition 1.1 (Όνομα). Εάν τα θεωρήματα μιβούσαν, το θεώρημα των οβοκβηρωτικών υποβοίπων θα έβεγε:

$$\int_{\gamma} f(z) dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{Res}(f, \omega_k)$$

Proposition 1.2. Εάν τα θεωρήματα μιβούσαν, το θεώρημα των οβοκβηρωτικών υποβοίπων θα έβεγε:

$$\int_{\gamma} f(z) dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{Res}(f, \omega_k)$$

Remark 1.1 (Όνομα). Εάν τα θεωρήματα μιβούσαν, το θεώρημα των οβοκβηρωτικών υποβοίπων θα έβεγε:

$$\int_{\gamma} f(z) dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{Res}(f, \omega_k)$$

Remark 1.2. Εάν τα θεωρήματα μιβούσαν, το θεώρημα των οβοκβηρωτικών υποβοίπων θα έβεγε:

$$\int_{\gamma} f(z) dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{Res}(f, \omega_k)$$

Lemma 1.1 (Όνομα). Εάν τα θεωρήματα μιβούσαν, το θεώρημα των οβοκβηρωτικών υποβοίπων θα έβεγε:

$$\int_{\gamma} f(z) dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{Res}(f, \omega_k)$$

Lemma 1.2. Εάν τα θεωρήματα μιβούσαν, το θεώρημα των οβοκβηρωτικών υποβοίπων θα έβεγε:

$$\int_{\gamma} f(z) dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{Res}(f, \omega_k)$$

Corollary 1.1 (Όνομα). Εάν τα θεωρήματα μιβούσαν, το θεώρημα των οβοκβηρωτικών υποβοίπων θα έβεγε:

$$\int_{\gamma} f(z) dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{Res}(f, \omega_k)$$

Corollary 1.2. Εάν τα θεωρήματα μιβούσαν, το θεώρημα των οβοκβηρωτικών υποβοίπων θα έβεγε:

$$\int_{\gamma} f(z) dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{Res}(f, \omega_k)$$

Conjecture 1.1 ('Ονομα). Εάν τα θεωρήματα μιβούσαν, το θεώρημα των οβοκβηρωτικών υποβοίπων θα έβεγε:

$$\int_{\gamma} f(z) dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{Res}(f, \omega_k)$$

Conjecture 1.2. Εάν τα θεωρήματα μιλούσαν, το θεώρημα των ολοκληρωτικών υπολοίπων θα έλεγε:

$$\int_{\gamma} f(z) dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{Res}(f, \omega_k)$$

Exercise 1.1 (Όνομα). Εάν τα θεωρήματα μιβούσαν, το θεώρημα των οβοκβηρωτικών υποβοίπων θα έβεγε:

$$\int_{\gamma} f(z) dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{Res}(f, \omega_k)$$

1.1 Preview 7

Exercise 1.2. Εάν τα θεωρήματα μιβούσαν, το θεώρημα των οβοκβηρωτικών υποβοίπων θα έβεγε:

$$\int_{\gamma} f(z) dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{Res}(f, \omega_k)$$

Κάνω citation στο [1]. Διάφορα καλλιγραφικά \mathcal{A} , \mathcal{A} και γοτθικά \mathfrak{A} .

Bibliography

[1] Halvas Amigdalopoulos, *On the art of becoming overweight*. Sphincter-Verlag, 2013.

