

Yr 12 METHODS TEST 1 2018

DIFFERENTIATION, APPLICATIONS AND LOGARITHMS

Time: 30 minutes Total: 28 marks

Student Name:	Teacher:

Instructions: Show all working clearly.

Sufficient detail must be shown for marks to be awarded for reasoning.
NO CALCULATOR AND NO PERSONAL NOTES ALLOWED

Question 1. (9 marks)

a) Determine the tangent of the graph of $y = 2(3x^2 + 2)^3$ at the point (1,250) [4]

b) Determine the coordinates of any stationary points on the function $y = \frac{x+7}{x-2} + x$ [5]

Question 2. (6 marks)

Given that $\log_9 5 = a$ and $\log_9 6 = b$, write the following in terms of a and b.

a) log₉ 25

[1]

b) log₉ 180

[2]

c) $\log_9 18$

[3]

Question 3. (4 marks)

A sphere is has an initial volume of $\frac{32\pi}{3}$ cm³.

Use the incremental formula to determine the change in radius if the volume of the sphere is increased by $3\,\mathrm{cm}^3$.

Question 4. (9 marks)

Consider the graph below of $f(x) = -x^2 + 30$ $0 \le x \le \sqrt{30}$

Rectangles can be created by drawing a vertical line up from any x value until that line hits the curve and then horizontally until it hits the y axis.

- a) Draw in two such rectangles. One using an x value of 1 and the other using an x value of 4. [1]
- b) Calculate the area of each of these two rectangles. [2]

Question 4 (continued)

Use calculus to determine the exact x value that would give the rectangle with the greatest area. [4]

d) State the exact maximum area of this rectangle.

Yr 12 METHODS TEST 1 2018

DIFFERENTIATION, APPLICATIONS AND LOGARITHMS

Time: 25 minutes Total: 25 marks

Student Name:	Teacher:
Instructions: Show all working clearly.	

Sufficient detail must be shown for marks to be awarded for reasoning. CALCULATOR AND 1 PAGE OF PERSONAL NOTES ALLOWED

Question 5. (9 marks)

A small body is moving in a straight line with displacement $x(t) = \frac{2t^3}{3} - \frac{19t^2}{2} + 30t$ m, where t is the time in seconds, since the body first passed through the origin.

a) Determine an expression for v(t), the velocity of the body at time t. [2]

b) Show that the body is stationary twice and find the change in displacement of the body between these two moments. [4]

c) Determine the position of the body when it's velocity is a minimum. [3]

Question 6. (8 marks)

A cylindrical oil drum, of radius r m and height h m, has circular ends constructed from material costing \$75 per square metre and sides constructed from material costing \$40 per square metre.

- a) Determine an expression for the cost of construction C, in dollars. [1]
- b) If the oil drum must be constructed for \$250, show that the volume of the oil drum is given by, $V = \frac{25r 15\pi r^3}{8}$ [3]

c) Use calculus methods to determine the dimensions that maximise the volume of the oil drum, and state this maximum volume. [4]

Question 7. (8 marks)

A polynomial function $f(x) = ax^4 + bx^2 + c$, where a, b and c are real constants, has the following features:

- f(x) = 0 only for x = -2 and x = 2
- f'(x) = 0 only for x = -1, x = 0 and x = 1
- f'(x) > 0 only for -1 < x < 0 and x > 1
- f''(0) < 0
- a) At the point where the curve intersects the *y* axis, is the graph concave up or concave down? Explain your answer. [2]
- b) Is *c* positive or negative? Explain your answer. [2]

c) Sketch a possible graph of the function on the axes below. [4]

