32.1 The electrostatic potential $V(r,\Theta)$ on the surface of a hollow, empty sphere of cadius R is maintained to be $V(R,\Theta) = \cos(\Theta)$. The potential sufficient Laplace is equation with azimuthal symmetry.

Since V substited ladgee's equation, we have that the general solution for V is given by: $V(r,\Theta) = \sum_{l=0}^{\infty} \left[A_{l} r^{l} + B_{l} r^{-ll+1} \right] P_{l} (\cos \Theta).$

a) Find Vir, 0) outside the sphere.

The voltage is not allowed to go to infinity, and since R>0, outside the sphere, the voltage may not go to instinity so the coefficients A_L for L>0 vanish. For L=0, A_0 must be zero also since $V\to0$ as $r\to0$.

Furthermore, P_{ℓ} for $\ell > 1$ has degree > 1 so it is impossible for these terms to appear (since $V(R,\Theta) = COS(O)$). Similarly, the $P_0 = 1$ term must not appear $(B_0 = 0)$.

Hence

$$V(r,\theta) = B_2 r^{-2} \cos(\theta)$$
, and with $V(R_1\theta) = \cos\theta$, $B_1 R^{-2} = 1$ so that $B_1 = R^2$. Thur $V(r,\theta) = R^2 r^{-2} \cos(\theta)$

b) Find VCGO) inside the sphere.

Since the interior of the sphere contains the origin, none of the Be terms may appear, otherwise V > 0 as r > 0. Also Ao, Pe for l ≠ 1, due to the boundary condition,

Hence

$$V(f,\theta) = A_1 \cap COS\theta$$
, and with $V(R,\theta) = COS(\theta)$, we have $A_1 A = 1$ so that A^{-1} . Thus $V(f,\theta) = R^{-1}rOS(\theta)$