EndSem Solutions Wednesday Nov 4

Q1 [Total 13 marks + 2 extra credit]

Q1 a) i)Flow graph

Q1 a) ii)XY transfer function

Q1 a) iii) Output plot

Marking Scheme Q1 a (3 marks)

3 marks if transfer function is correct.

If transfer function is wrong, 1 mark for correct flowgraph and 1 mark for proper output plot.

Q1 b) Input and Output signals

X Y plot

For input sinusoidal signal of $0.2~\mathrm{V}$ (peak to-peak), output peak to peak amplitude is $3.45\text{-}0.65 = 2.8~\mathrm{V}$

Gain = 2.8/0.2 = 14. Any value in (12 - 16) can be awarded marks. (Or) = 22.9 dB Any value in (21.5 dB - 24 dB) can be accepted

Marking Scheme Q1 b (2 marks)

2 marks if correct, 0 if wrong

Q1 c) For $A_{in} = 50* 10^{-3}$ V, fundamental is at -12 dB. Third harmonic is at -58 dB. Δ = (-58- (-12)) = 46 dB

Also at this value of input amplitude A_{in}, if amplitude is changes by a factor of 2, ie by 6 dB, the third harmonic changes by 18 dB. Implies the amplitude is not close to saturation.

Signal at amplitude A_{in} =50 mV

Signal at amplitude A_{in}=100 mV

(IP3) in dB = (
$$P_{in}$$
 + Δ /2) dB = 50*10⁻³ in dB +23 dB 20 log (IP3) = 20 log (50*10⁻³) +23 dB IP3 = .706 V

Marking Scheme Q1 c (2 marks + Extra credit 2 marks)

- 2 marks for correct approach (using low voltage level, and finding change in dB for input variation)
- 2 marks extra credit for calculating IP3.

Q 1d) Flowgraph

Reason: The inphase and quadrature components are dripped off at the amplifier output. So we observe a rectangle in XY mode.

Marking scheme Q1 d (3 marks)

2 marks for correct figure

1 mark for reason

Q1e) Flowgraph

Differential output is always in range (-6, 6).

The XY plot should be antisymmetric. (Mirrored image also acceptable.)

Marking scheme Q1e (3 marks)

1 mark if flowgraph is correct and XY plot is wrong due to wrong input. (The correct differential input is $(\sin \Theta, -\sin \Theta)$ or $(\cos \Theta, -\cos \Theta)$).

³ marks if correct XY plot

Q2 (Total 12 marks)

a) Flowgraph

Spectrum before removing frequency offset.

Spectrum after removing frequency offset.

Marking Scheme Q2 a (2 marks)

2 marks if flowgraph is correct

Deduct 1 mark if frequency scale is wrong

Deduct 1 mark if spectrum is not properly centered.

Q2 b)

Marking Scheme Q2 b (2 marks)

2 marks if correct

Q2 c) i) Equalization

$$y(t) = x(t) + \alpha *x (t-\tau)$$

$$\tau = 7.5 \ \mu \ sec$$
 No. Of samples delayed = 7.5 \ \mu \ sec * 400 \ KHz = 3

$$y(n) = x(n) + \alpha *x (n-3)$$

 $H(z) = 1 + \alpha z^{-3}$

Equalizer transfer function
$$E(z) = H(z)^{-1} = 1/(1+\alpha z^{-3})$$

= $1/(1-(-\alpha z^{-3}))$
= $1 + (-\alpha z^{-3}) + (-\alpha z^{-3})^2 +$
= $1 - \alpha z^{-3} + (\alpha^2)z^{-6}$

Q2 c) ii) Resultant Constallation

Q2 c) iii) CMA Error

alpha: 315m

Marking scheme Q2 c (4 marks)

2 marks for correct constallation.

1 mark for correct CMA error.

1 mark for proper use of low pass filter to find CMA error.

Q2 d) $\alpha \approx 0.315$

Marking scheme Q2 d (2 marks)

2 marks if correct, 0 marks is wrong.

Q2 e) (2 marks)

Reason 1:

Phase fluctuations due to remaing frequency offset. (1 mark)

Reason 2:

Phase fluctuations due to input file discontinuity. (1 mark)