מתמטיקה בדידה - תרגיל בית 13 - שחר פרץ

מידע כללי

ניתן בתאריך: 14.2.2024 תאריך הגשה: 20.2.2024

מאת: שחר פרץ **ת.ז.:** תחפשו בקומיטים הקודמים

תרגיל בית 13 - יחסי סדר

שאלה 1

(א) סעיף

A imes B נניח $(A, <_B), (A, <_A)$ קבוצות סדורות חזק. נגדיר את יחס הסדר הלקסיקוגרפי על

$$\langle a, b \rangle <_{lex} \langle c, d \rangle \iff (a <_A c \lor (a = c \land b <_B d))$$

 $A \times B$ נוכיח כי $<_{lex}$ יחס סדר חזק על

- $\langle a,b \rangle <_{lex} \langle e,f \rangle$ נוכיח $\langle a,c,e \in A \land b,d,f \in B$ טרנזיטיבי: יהי $\langle a,b \rangle <_{lex} \langle c,d \rangle, \langle c,d \rangle <_{lex} \langle e,f \rangle$ נוכיח $\langle a,b \rangle <_{lex} \langle c,d \rangle$, ידוע $\langle a,b \rangle <_{lex} \langle c,d \rangle$. נפלג למקרים:
 - : נפלג למקרים: $c <_A e \lor (c = e \land d <_B f)$ נסיק ל $c, d >_{lex} \langle e, f \rangle$ נפלג למקרים: $a <_A c$
 - $\langle a,c \rangle <_{lex} \langle e,f \rangle$ אם $a<_A e$ כלומר $a<_A e$ יחס סדר חזק ובפרט טרנזיטיבי: $a<_A e$ כלומר $a<_A e$
 - $.\langle a,c
 angle <_{lex} \langle e,f
 angle$ אם $a<_A e$ אזי מהצבה אזי ב $c=e \wedge b <_B f$ אם •
 - :פלג למקרים: $c <_A e \lor (c = e \land d <_B f)$ נסיק ל $\langle c, d \rangle <_{lex} \langle e, f \rangle$ מההנחה : $a = c \land b <_B d$ אם \circ
 - $.\langle a,c
 angle <_{lex} \langle e,f
 angle$ אז מהצבה $a<_A e$ כלומר : $c<_A e$
- $b<_Bf$ אם c=e אז מטרנזיטיביות שוויון a=e ומטרנזיטיביות יחס הסדר החזק אז מטרנזיטיביות שוויון c=e אם c=e אז מטרנזיטיביות שוויון כלומר c=e
- אנטי־סימטרי חזק: יהי $\langle a,b \rangle <_{lex} \langle c,d \rangle$, נניח בשלילה בשלילה $\langle a,b \rangle <_{lex} \langle c,d \rangle$ ונראה סתירה. מההנחה נסיק אנטי־סימטרי חזק: יהי $a <_A c \lor (a = c \land b <_B d)$
- $c<_A a \wedge a<_A c$ אז $c<_A a$ שם $c<_A a$ אם במקרה ש־ $c<_A a$ אז $c<_A a$ שזו $c<_A a$ שזו $a<_A a$ שזו a<

אם $a<_A a$ אז $a<_A a$ אם $a<_A a$ אם $a<_A a$ אוז סתירה מהנחת השלילה $a<_A a$ אם $a=c\land b<_B d$ אם $a=c\land b<_B d$ סדר חזק לכך ש־ $a<_B$ אנטי־סימטרי חזק, ואם $a<_B b$ אז $a<_B b$ אז $a<_B b$ בסתירה לכך ש־ $a<_B$ יחס סדר חזק ובפרט אנטי־סימטרי חזק.

(ב) סעיף

נפריך. נבחר $B=\emptyset$ יחס סדר חזק (טרנזיטיבי הטענה מתקיימת לכל $B\neq\emptyset$. נבחר $A=\{1,2\}, B=\emptyset$ ומענה מתקיימת לכל $A=\{1,2\}, B=\emptyset$ יחס סדר חזק באופן ריק) ואת אנטי־סימטרי חזק באופן ריק) ואת איבר $A=\{\langle 1,2\rangle\}$ וואנטי־סימטרי חזק באופן ריק) ואת איבר $A\times B=\emptyset$ יחס סדר שלילה שקיים מינימלי $A\times B=\emptyset$ ונסיק שזו סתירה. על יחס הסדר $A\times B=\emptyset$, ונניח בשלילה שקיים מינימלי

שאלה 2

(א) סעיף

 $R_f = \{\langle A,B \rangle \mid f(A) \subseteq f(B) \}$ יהי $f \in \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ יהי $f \in \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$

:נוכיח f יחס סדר אמ"מ R_f חח"ע

- R_f יחס סדר גורר חח"ע. יהי ($F(\mathbb{N}) \to \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ ונניח בשלילה R_f יחס סדר גורר חח"ע. מההנחה, f(A) = f(B) אך $A \neq B$ ער כן קיימות $A, B \in \mathcal{P}(\mathbb{N})$ מהכלה דו־כיוונית $A, B \in \mathcal{P}(\mathbb{N})$ ובפרט $A, B \subseteq \mathcal{P}(\mathbb{N})$ מתקיים שאם $A, B \subseteq \mathcal{P}(\mathbb{N})$ ובפרט $A, B \subseteq \mathcal{P}(\mathbb{N})$ מתקיים שאם $A, B \subseteq \mathcal{P}(\mathbb{N})$ ובפרט $A, B \subseteq \mathcal{P}(\mathbb{N})$ שמתקיים לפי האמור לעיל) אז A = B בסתירה לכך ש $A, B \subseteq \mathcal{P}(\mathbb{N})$
 - :חח"ע גורר יחס סדר: \Longrightarrow
- רפלקסיבי: יהי f(A)=f(A), נוכיח AR_fA , באופן שקול $A\in\mathcal{P}(\mathbb{N})$ ובפרט $A\in\mathcal{P}(\mathbb{N})$ המהווה פסוק אמת.

(ב) סעיף

נגדיר $f\in F$ מתקיים $f\in F$ מתקיים $f\in F$ מתקיים לכלומר לכל $\mathcal{P}(\mathbb{N})\to \mathcal{P}(\mathbb{N})\to \mathcal{P}(\mathbb{N})$ נשלול $f=\lambda N\in \mathcal{P}(\mathbb{N}).\{1\}$ חח"ע. נניח בשלילה שהיא חח"ע ונראה דוגמה נגדית. נבחר $f=\lambda N\in \mathcal{P}(\mathbb{N}).\{1\}$ חח"ע. נניח בשלילה שהיא חח"ע ונראה דוגמה הנגדית. נניח בשלילה $f=\lambda N\in \mathcal{P}(\mathbb{N})\times \mathcal{P}(\mathbb{N})\times \mathcal{P}(\mathbb{N})$ כדי להשלים את הדוגמה הנגדית. נניח בשלילה $f=\lambda N\in \mathcal{P}(\mathbb{N}).\{2\}$ כלומר $f=\lambda N\in \mathcal{P}(\mathbb{N})$ כך ש־ $f=\lambda N\in \mathcal{P}(\mathbb{N})$ כלומר סה"כ $f=\lambda N\in \mathcal{P}(\mathbb{N})$ כלומר סה"כ $f=\lambda N\in \mathcal{P}(\mathbb{N})$ כלומר סה"כ $f=\lambda N\in \mathcal{P}(\mathbb{N})$ כדרוש $f=\lambda N\in \mathcal{P}(\mathbb{N})$

(א) סעיף

. על A, נוכיח קיום $a_M \in A$ כך ש־ a_M איבר מקסימלי. A איבר מקסימלי.

משום שהקבוצה A סופית, נוכל לסמן $\mathbb{N}=n\in\mathbb{N}$. נניח בשלילה שאין מקסימום, כלומר נשלול לוגית ונקבל A בשום שהקבוצה A נוכיח באינדוקציה על A גודל הקבוצה שמתקיימת סתירה: A

- בסיס (n=1): נסמן $A=\{A\}$, ולכן $A=\{A\}$ בהכרח משתווה ל־ $R=\{\langle a,a\rangle\}$, מהנחת השלילה קיים $a=\{A\}$ כך ש־ פרים $a=\{a,b\}$ אך זו סתירה באופן מידי.
- עעד (n>1): נניח בישנה סתירה על קבוצה בגודל n, ונוכיח שהסתירה מתקיימת על קבוצה בגודל n>1. אם n>1: עעד n>1: נניח בישנה סתירה על קבוצה בגודל n>1: עליה קיים מקסימום. נתבונן באיבר n>1: מתקיימת סתירה על קבוצה בגודל n>1: שעליה קיים מקסימום. a_{M-1} : a_{M-1} :

(ב) סעיף

נראה דוגמה נגדית. נבחר את הקבוצה $A=\{1,2\}$ ואת יחס הסדר $R=\{\langle 1,1\rangle,\langle 1,2\rangle\}$ בעל שני איברים מקסימליים $A=\{1,2\}$ בעל שני איברים בחר את הקבוצה $A=\{1,2\}$

שאלה 4

(א) סעיף

 \mathbb{Z} נגדיר על X קבוצת כל חלוקות \mathbb{R} . נגדיר על ע"י:

$$\pi_1 \sqsubset \pi_2 \iff \forall Z \in \pi_2 \exists Y \in \pi_1(Z \subseteq Y)$$

:X נוכיח ש $^-$ יחס סדר חלש על

- רפלקסיביות: תהי $X\in X$, כלומר π חלוקה של \mathbb{R} , ונוכיח π כלומר יהי $Z\in \pi$, ונוכיח קיום $Y\in \mathcal{X}$ כך ש־ $Z\subseteq Y$ ונחה"כ Z=Y וסה"כ בתר יהי $Z\subseteq Y$
- סרנזיטיביות: יהי π_1 π_2 חלוקות של \mathbb{R} , נניח π_2 ב π_3 נוכיח π_1 בוכיח. נכיח π_1 של. ע.ל. קיום π_1 בל. π_2 ביה π_3 חלוקות של π_1 , π_2 , π_3 יהי π_1 ב π_2 מההנחה π_2 ב π_3 קיימת π_2 ב π_3 קיימת π_2 ב π_3 ומהנחה π_2 ב π_3 ומהנחה ערב ביר ב π_3 בבחר π_3 ומטרנזיטיביות הכלה π_2 בבחר π_3 בבחר π_3 ומטרנזיטיביות הכלה π_3 בבחר π_3 בבחר π_3 ומטרנזיטיביות הכלה π_3 בדרוש.

 $Z=Y_1$ משום שהוא בחלוקה אז X
eq Y כלומר קיים X בער קיים X בחלוקה אז X בער כלומר קיים X בער מהטענות לעיל X בער מהצבה במה שכתבנו X בער בער מהכלה דו כיוונית Y_2 בער בער מהצבה במה שכתבנו Z בער בער מהכלה דו כיוונית Y_2 בער מהצבה במה שכתבנו Z בער מהכלה דו כיוונית בער מהצבה במה שכתבנו Z בער מהצבה בער מבי בער מהצבה בער מבי בער מבי בער מבי בער מבי בער מבי

(ב) סעיף

 $:\pi_1 \sqsubset \pi_2 \sqsubset \pi_3$ ־דוגמה ל־ $\pi_1,\pi_2,\pi_3 \in X$ דוגמה ל

$$\pi_1 = \{\{r\} \mid r \in \mathbb{R}\}, \pi_2 = \{[r, r+1) \mid r \in \mathbb{Z}\}, \pi_3 = \{[r, r+2) \mid r \in \mathbb{Z}_{\text{even}}\}$$

(ג) סעיף

קווי

היחס לא יחס סדר קווי. לדוגמה, בעבור החלוקות:

$$\pi_1 = \{ [r, r+2) \mid r \in \mathbb{Z}_{\text{even}} \}, \pi_2 = \{ [r, r+2) \mid r \in \{ r \in \mathbb{R} : r \in \mathbb{Z}_{\text{odd}} \}$$

מתקיים $\pi_1 \not\sqsubset \pi_2$ (כי בעבור $\pi_1 \not\sqsubset \pi_2$ לא קיים $r \in \mathbb{Z}_{\mathrm{odd}}$ כך ש־ $r \in \mathbb{Z}_{\mathrm{odd}}$ ולכו $\pi_1 \not\sqsubset \pi_2 \land \pi_2 \not\sqsubset \pi_1$ ובאופן דומה $\pi_1 \not\sqsubset \pi_2 \land \pi_2 \not\sqsubset \pi_1$ למרות ש־ $\pi_1 \not\vdash \pi_2 \not\vdash \pi_2$

קיום איבר גדול ביותר

קיים איבר גדול ביותר $\mathbb{R} = \pi$, כי יהי $X = \pi$, נניח $\pi = \pi$ ונניח בשלילה ש $\pi_- = \pi$ כלומר נניח בשלילה שקיים $\pi = \pi$, כי יהי $\pi = \pi$, כי יהי $\pi = \pi$, נניח $\pi = \pi$, ולפיכך לכל $\pi = \pi$ ש $\pi = \pi$ כלומר $\pi \neq \pi$ בסתירה לכך בעבור $\pi \neq \pi$ בעבור $\pi \neq \pi$ בעבור ש $\pi = \pi$ חלוקה של $\pi = \pi$.

שאלה 5

(א) סעיף

יהיו X o X קבוצות, ונניח X o X יחס סדר חלש על X. נגדיר את יחס הסדר ב מעל קבוצת הפונקציות יהיו X o X באופן X o X o X באופן X o X o X יהיו Y o X o X

נניח $g\in Y\to X$ יהי $Y\to X$ יהי $f:=\lambda y\in Y.x_0$ נוכיח נניח $g\in Y\to X$ יהי $f:=\lambda y\in Y.x_0$ נוכיח נניח $g\in Y\to X$ איבר מקסימלי ב־ $g\neq f$ שקול לוגית $g=f\lor g\leq x$ ולפי הגדרת איבר מקסימלי באופן שקול לוגית מקסימלי ב- $g=f\lor g$ ולפי הגדרת איבר מקסימלי ב- $g=f\lor g$ אמת בהתאם להנחה מקסימלי ב- $g=f\lor g$

(ב) סעיף

יהיו קבוצות סדורות $(B,\leq_B
angle,\langle A,\leq_A
angle,$, נגדיר פונקציה B:A o B שומרת סדר:

 $\forall a_1, a_2 \in A.a_1 \leq_A a_2 \iff h(a_1) \leq_B h(a_2)$

נוכיח ש־h המוגדרת באופן לפי $X \to (Y \to X), h = \lambda x \in X.$ שומרת סדר (בעבור הקבוצות הסדורות $h: X \to (Y \to X), h = \lambda x \in X.$ נוכיח ש $x_1 \le x \le X.$ הריו $x_1 \le x \le X.$ נוכיח ($(X, \le X), (X \to Y, \preceq)$

$$h(x_1) \le h(x_2) \tag{1}$$

$$\iff f := \lambda y \in Y.x_1 \leq g := \lambda y \in Y.x_2 \qquad (\beta \text{ rule})$$

$$\iff \forall y \in Y. f(y) \leq_X g(y)$$
 (\(\preceq\) definition) (3)

$$\iff \forall y \in Y. x_1 \le_X x_2 \tag{β rule}$$

$$\iff x_1 \leq_X x_2 \tag{5}$$

כמבוקש ■

(ג) סעיף

 $(Y \to \{0,1\}, \preceq), (\mathcal{P}(Y), \subseteq)$ נניח $X = \{0,1\}, Y \neq \emptyset$ נניח $X = \{0,1\}, Y \neq \emptyset$ נניח

$$\leq_X = \{\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 0, 1 \rangle\} \lor \leq_X = \{\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 1, 0 \rangle\}$$

 $(0 \le X 1$ בה"כ בה האפשרות הראשונה (ובפרט

נוכיח ש ^+h חח"ע ושומרת סדר, בעבור h המוגדרת באופן הבא:

$$h: (Y \to \{0,1\}) \to \mathcal{P}(Y).h = \lambda f \in Y \to \{0,1\}.\{y \in Y: f(y) = 1\}$$

שומרת סדר

 $f \preceq g \iff h(f) \subseteq h(g)$ נוכיח. $f,g \in Y \to \{0,1\}$ יהי

- נניח $\forall y \in Y. f(y) \leq_X g(y)$, מתוך ההנחה, $h(f) \subseteq h(g)$ נוכיח בשלילה קיים m נוכיח $f \leq g$ מתוך ההנחה, $f(y) \leq_X g(y)$ לפי הטווח של $f(y) \leq_X g(y)$ המוגדר לעיל, $f(y) \leq_X g(y)$ כלומר נסיק $f(y) \leq_X g(y)$ ידוע $g(y) = 0 \lor g(y) = 1$
 - . אם g(y)=0, אזי g(y)=0 לפי הגדרת הגדרת יחס הסדר לפי הגדרה וזו סתירה. f(y)=0 אם סתירה און סתירה.
 - . אם q(y) = 1 אזי אזי $y \in h(q)$ אזי אזי q(y) = 1 אם q(y) = 1

וסה"כ הגענו לסתירה בכל המקרים כלומר $g(f) \subseteq h(g)$ כדרוש.

- כלומר $\forall y \in h(f).y \in h(g)$ מתוך ההנחה, $f \leq g$ נניח נוכיח $h(f) \subseteq h(g)$ נוכיח $f \leq g$ נוכיח לפי הצבה בהגדרת $f \leq g$ לפי הצבה בהגדרת $f \leq g$ לפי הצבה בהגדרת f(y) = 0 לפי הצבה בהגדרת f(y) = 0 נניח בשלילה $f(y) = 0 \lor f(y) = 1$ נניח בשלילה $f(y) = 0 \lor f(y) = 1$ נוכא סתירה. ידוע
 - $. \leq_X$ או ש־ $f(y) = 0 \leq_X g(y)$ מתקיים g(y) = 0 או ש־g(y) = 0 לפי הגדרת, f(y) = 0
- $f(y)=1\leq_X 1=g(y)$ אם f(y)=1, אז לפי הטענה שהנחנו g(y)=1, כלומר לפי הגדרת, אז לפי הטענה שהנחנו g(y)=1

 \blacksquare . כדרוש. $f \prec g$ סה"כ הגענו לסתירה בכל המקרים כלומר

:נבחר h(f)=Y' כך ש־ $f\in Y o \{0,1\}$ נוכיח קיום $Y'\subseteq Y$. נוכיח נניח גניח $Y'\in \mathcal{P}(Y)$.

$$f = \lambda y \in Y.$$

$$\begin{cases} 1 & \text{if } y \in Y' \\ 0 & \text{else} \end{cases}$$

lacktriangle כדרוש. $h(f) = \{y \in Y \mid f(y) = 1\} = \{y \in Y \mid y \in Y'\} = Y'$ כדרוש. לפיכך, לפי תחשיב למדא:

חחייע

יהיו $f(\tilde{y}) \neq g(\tilde{y})$ כך ש־ $\tilde{y} \in Y$ כך ש- $\tilde{y} \in Y$ יהיו $h(f) \neq h(g)$ ונוכיח ונוכיח $f \neq g$ ונוכיח $f \neq g$ כך ש- $f(\tilde{y}) \neq g(\tilde{y})$. נניח בשלילה בשלילה h(f) = h(g) לפיכך:

$$h(f) = h(g) \tag{1}$$

$$\iff \{y \in Y \mid f(y) = 1\} = \{y \in Y \mid g(y) = 1\} \qquad (\beta \text{ rule})$$

$$\iff \forall y \in Y. f(y) = 1 \iff g(y) = 1$$
 (= definition)

ובפרט עבור g(y)=1 אזי g(y)=1 אזי g(y)=1 ומטרנזיטיביות נפלג למקרים: אם g(y)=1 אזי g(y)=1 וזו g(y)=g(y) אזי g(y)=0 וזו סתירה. אם g(y)=0 אז g(y)=1 אז וועם ש־g(y)=0 אזי g(y)=0 וזו סתירה. לכן, בכל המקרים הגענו לסתירה כלומר g(y)=1 כדרוש.

שאלה 6

(א) סעיף

נגדיר על הקבוצה $\mathbb{N} o \mathbb{N}$ את היחס הבא:

$$f \leq^* g \iff \exists n \in \mathbb{N}. \forall m \geq n. f(m) \leq_{\mathbb{N}} g(m)$$

. כאשר \le הוא יחס הסדר הסטנדרטי על הטבעיים. נפריך \le יחס סדר אנטי־סימטרי חלש, ע"י הפרכת אנטי־סימטריות. נפחר:

$$f = \lambda n \in \mathbb{N}. egin{cases} 1 & \text{if } n = 0 \\ 0 & \text{if } n = 1 \ , g = id_{\mathbb{N}} \\ n & \text{else} \end{cases}$$

כי $f \neq g$ אך $f \leq^* g \land g \leq^* f$ כלומר א $m \geq n_1. f(n) \leq_{\mathbb{N}} g(m) \land g(m) \leq_{\mathbb{N}} f(n)$ בעבור $f \neq g \land g \leq^* f$ מתקיים $f \in g \land g \leq^* f$ אר אינו יחס סדר חלש. $f \in g \land g \leq^* f \land g \leq$

(ב) סעיף

:באופן הבא $\mathbb{N} o \mathbb{N}$ באופן הבא

$$fRg \iff \exists n \in \mathbb{N}. \forall m \ge n. f(m) = g(m)$$

R וחס שקילות.

- רפלקסיביות: יהי $m\in\mathbb{N}. f(n)=f(n)$ לפי הגדרה, $f\in\mathbb{N}\to\mathbb{N}$, ובפרט בעבור $f\in\mathbb{N}\to\mathbb{N}$, ובפרט בעבור $m\in\mathbb{N}. f(n)=f(n)$ כדרוש. $m\geq n. f(n)=f(n)$
- סימטריות: יהי $m\geq n_1.$ ונניח fRg, כלומר קיים n_1 כך ש־ n_1 כך ש־fRg, ונניח fRg ומקומוטטיביות n_1 סימטריות: יהי $m\geq n_1.$ ונניח $m\geq n_1$, כלומר אשר צ.ל. מתקיים בעבור $m\geq n_1$
- טרנזיטיביות: יהי n_1,n_2 נניח $fRg \wedge gRf$ נניח $fRg \wedge gRf$ ונוכיח $fRg \wedge gRf$ טרנזיטיביות: יהי $fRg \wedge gRf$ נניח $fRg \wedge gRf$ נניח $fRg \wedge gRf$ טרנזיטיביות: יהי $fRg \wedge gRf$ וגם $fRg \wedge gRf$ וגם $fRg \wedge gRf$ בה"כ $fRg \wedge gRf$ בה"כ $fRg \wedge gRf$ וגם $fRg \wedge gRf$ ובח"כ $fRg \wedge gRf$ ובח"כ $fRg \wedge gRf$ ובחר $fRg \wedge gRf$ ובחר fR

(ג) סעיף

נתבונן בקבוצה \mathbb{N}/R , עליה נגדיר את היחס באופן הבא:

$$[f]_R \le [g]_R \iff f \le^* g$$

בלתי תלוי בנציגים

יהי $f'Rf \wedge g'Rg$ ונניח $f' \leq^* g'$ ונניח $f' \leq^* g \wedge f' \in [f]_R \wedge g' \in [g]_R$ ונניח $f'Rf \wedge g'Rg$ ונניח $f' \leq^* g'$ ונניח $f'Rf \wedge g'Rg$ וניח $f'Rf \wedge g'Rg$ ווניח $f'Rf \wedge g'Rg$ וניח $f'Rf \wedge g'Rg$ וניח $f'Rf \wedge g'Rg$ וניח

$$\forall m \ge n_1. f(n) = f'(n) \land \forall m \ge n_2. g(n) = g'(n) \land \forall m \ge n_3. g(n) = f(n)$$

 $m \geq n_1$ בה"כ $n_1 \geq n_2$, ומטרנזיטיביות יחס הסדר הסטנדרטי על $\mathbb N$ נקבל שכל הטענות מתקיימות בעבור, ומטרנזיטיביות יחס הסדר הסטנדרטי או

$$\forall m > n_1. f'(m) = f(m) \land q'(m) = q(m) \land q(m) = f(m)$$

 \blacksquare כדרוש. $\forall m \geq n_1.f'(m) = g'(m)$ כלומר ע"פ טרנזיטיביות יחס הזהות על $\forall m \geq n_1.f'(m) = g'(m)$

יחס סדר חלש

- רפלקסיביות: יהי $f \leq m$ לפי שוויון פונקציות, נוכיח $f \leq m$ לפי שוויון פונקציות, קור פונקטיביות: יהי $f \leq m$ נוכיח $f \leq m$ נוכי
- טרנזיטיביות: יהי $[f]_R \leq [g]_R$ ונוכיח $[f]_R \leq [g]_R$ ונוכיח $[f]_R \in \mathbb{N} \to \mathbb{N}$. ובאופן שקול $[f]_R \leq [g]_R$ ונוכיח $[f]_R \leq [g]_R$ ונוכיח $[f]_R \leq [g]_R$ מההנחה $[f]_R \in \mathbb{N} \to \mathbb{N}$ קיימים $[f]_R \leq [g]_R$ ע"פ חוקי $[f]_R \leq [g]_R$ ובחים $[f]_R \leq [g]_R$ ע"פ חוקי $[f]_R \leq [g]_R$ ובה"כ $[f]_R \leq [g]_R$ ובפרט הטענה האחרונה מתקיימת בעבור $[f]_R \leq [g]_R$ ע"פ חוקי $[f]_R \leq [g]_R$ ובה"כ $[f]_R \leq [g]_R$ ובפרט הטענה האחרונה מתקיים הדרוש בעבור $[f]_R \leq [g]_R$ ונכיח $[f]_R \leq [g]_R$ ובאופן $[f]_R \in [g]_R$
- $[f]_R = [g]_R$ נוכיח, $[f]_R \le [g]_R \wedge [g]_R \le [f]_R$ נניח $[f]_R, [g]_R \in (\mathbb{N} \to \mathbb{N})/R$ נוכיח, $[f]_R = [g]_R$ אנטי־סימטריות: יהי $[f]_R = [g]_R$ נסיק קיום $[f]_R = [g]_R$ כך ש־ $[f]_R = [g]_R$, ומהאנטי־סימטריות יחס הסדר $[f]_R = [g]_R$, באופן שקול, $[f]_R = [g]_R$, כלומר $[f]_R = [g]_R$ כדרוש.

הזהות חסם מלעיל על הפונקציות הקבועות

נגדיר $(c_n)_R \leq [id_{\mathbb{N}}]_R$ נוכיח $(c_n)_R \leq [id_{\mathbb{N}}]_R$ באופן שקול $(c_n)_R \leq [id_{\mathbb{N}}]_R$ ונגדיר $(c_n)_R \leq [id_{\mathbb{N}}]_R$ נוכיח $(c_n)_R \leq [id_{\mathbb{N}}]_R$ באופן שקול $(c_n)_R \leq [id_{\mathbb{N}}]_R$ ונגדיר $(c_n)_R \leq [id_{\mathbb{N}}]_R$ נוכיח $(c_n)_R \leq [id_{\mathbb{N}}]_R$ באופן שקול $(c_n)_R \leq [id_{\mathbb{N}}]_R$ ונגדיר $(c_n)_R \leq [id_{\mathbb{N}}]_R$

האם מחלקת השקילות של הזהות נמצאת ב־ B?

לא. נניח בשלילה שכן. לפיכך, נסיק מהנחת השלילה:

$$[id_{\mathbb{N}}] \in B$$

$$\iff \exists n \in \mathbb{N}. [c_n]_R = [id_{\mathbb{N}}]_R$$

$$\iff \exists n \in \mathbb{N}. c_n R d_{\mathbb{N}}$$

$$\iff \exists n \in \mathbb{N}. \exists a \in \mathbb{N}. \forall m \geq a. c_n(m) = g(m)$$

$$\iff \exists n \in \mathbb{N}. \exists a \in \mathbb{N}. \forall m \geq a. n = m$$

$$(c_n, id_{\mathbb{N}} \text{ definition})$$

$$(5)$$

נתבונן ב־a=0 אגפים ונקבל a=0, ותחת הנחת השלילה מתקיים a=n+n=m, נחסר אגפים ונקבל a=0, ותחת הנחת השלילה מתקיים m=a+n=m, נחסר אגפים ונקבל m=n+1 סתירה. m=m=m