МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №5

по дисциплине: исследование операций и теория игр тема: «Двойственный симплекс метод»

Выполнил: ст. группы ПВ-211 Стародубов Алексей Геннадьевич Проверили: Куртова Лилиана Николаевна Вирченко Юрий Петрович **Цель работы:** изучить элементы теории двойственности, двойственный симплекс метод для пары симметрично двойственных задач, а также метод последовательного уточнения оценок.

Вариант- 19

- 1. Изучить правило составления двойственных задач, а также формулировки и применения первой, второй и третьей теорем двойственности.
- 2. Изучить двойственный симплекс-метод для симметрично двойственных задач. Составить и отладить программу решения пары симметрично двойственных задач двойственным симплексметодом.
- 3. Изучить понятие псевдоплана, построение симплекс-таблицы, отвечающей псевдоплану. Освоить метод последовательного уточнения оценок. Составить и отладить программу решения задачи ЛП методом последовательного уточнения оценок.
- 4. Для подготовки тестовых данных решить вручную одну из следующих ниже задач двойственным симплекс-методом для пары симметрично двойственных задач, а также методом последовательного уточнения оценок.

```
2.
#include <iostream>
#include <vector>
#include <string>
#include <iomanip>

using SimplexTable = std::vector<std::pair<std::string,
std::vector<double>>>;

void outputSimplexTable(const SimplexTable &simplexTable)
{
    std::cout << "BV\tFV\t";
    for (size_t i{1}; i < simplexTable.at(0).second.size(); ++i)
    {
        std::cout << "x" << i << '\t';
    }
}</pre>
```

```
std::cout << '\n';</pre>
    for (size_t i{}; i < simplexTable.size(); ++i)</pre>
        std::cout << simplexTable.at(i).first << '\t';</pre>
        for (size_t j{}; j < simplexTable.at(i).second.size();</pre>
++j)
        {
             std::cout << simplexTable.at(i).second.at(j) << '\t';</pre>
        }
        std::cout << '\n';</pre>
    }
    std::cout << '\n';</pre>
}
bool objFunctionHasNegative(const SimplexTable &simplexTable,
size t &minNegativeIndex)
{
    size_t rowIndex{simplexTable.size() - 1};
    size t minIndex{};
    bool findNegative{false};
    for (size_t i{1}; i < simplexTable.at(0).second.size(); ++i)</pre>
    {
        if (simplexTable.at(rowIndex).second.at(i) < 0)</pre>
        {
             findNegative = true;
             if (simplexTable.at(rowIndex).second.at(i) <</pre>
simplexTable.at(rowIndex).second.at(minIndex))
             {
                 minIndex = i;
             }
        }
    minNegativeIndex = minIndex;
    return findNegative;
}
bool exHasPositiveCoeff(const SimplexTable &simplexTable, const
size t &colIndex, size t &minCoeffIndex)
{
    size t minCoeffIn{};
    double minCoeff{static cast<double>(LONG LONG MAX));
```

```
bool findPositive{false};
    for (size_t i{}; i < simplexTable.size() - 1; ++i)</pre>
        if (simplexTable.at(i).second.at(colIndex) > 0)
        {
            findPositive = true;
            const double coeff{simplexTable.at(i).second.at(0) /
simplexTable.at(i).second.at(colIndex)};
            if (coeff < minCoeff)</pre>
            {
                minCoeff = coeff;
                 minCoeffIn = i;
            }
        }
    }
    minCoeffIndex = minCoeffIn;
    return findPositive;
}
double maxValueOfTheObjFunctionWithTableDisplay(SimplexTable
&simplexTable)
{
    size t minIndex{};
    size_t minCoeffIndex{};
    unsigned simplexTableIndex{1};
    while (objFunctionHasNegative(simplexTable, minIndex))
    {
        std::cout << simplexTableIndex << " simplex table :\n";</pre>
        outputSimplexTable(simplexTable);
        if (exHasPositiveCoeff(simplexTable, minIndex,
minCoeffIndex))
        {
            const double
divider{simplexTable.at(minCoeffIndex).second.at(minIndex)};
            for (size t i{}; i <</pre>
simplexTable.at(minCoeffIndex).second.size(); ++i)
                 simplexTable.at(minCoeffIndex).second.at(i) /=
divider;
            }
            for (size_t i{}; i < simplexTable.size(); ++i)</pre>
```

```
{
                 if (i != minCoeffIndex)
                     const double divide{-
simplexTable.at(i).second.at(minIndex) /
simplexTable.at(minCoeffIndex).second.at(minIndex)};
                     for (size t j{}; j <</pre>
simplexTable.at(i).second.size(); ++j)
                     {
                         simplexTable.at(i).second.at(j) +=
(divide * simplexTable.at(minCoeffIndex).second.at(j));
                 }
            simplexTable.at(minCoeffIndex).first = "x" +
std::to string(minIndex);
        }
        else
        {
            std::cout << "The problem does not have solution(The</pre>
objective function is unbounded on the range of admissible values
of solutions)";
            std::exit(0);
        ++simplexTableIndex;
    }
    std::cout << "Final simplex table :\n";</pre>
    outputSimplexTable(simplexTable);
    return simplexTable.at(simplexTable.size() - 1).second.at(0);
}
int main(int argc, char **argv)
    size_t numberOfRows{};
    size t numberOfCols{};
    std::cout << "Number of rows in simplex table = ";</pre>
    std::cin >> numberOfRows;
    std::cout << "Number of cols in simplex table = ";</pre>
    std::cin >> numberOfCols;
    std::cout << "Enter simplex table(with the names of basic</pre>
variables) : \n";
```

```
SimplexTable simplexTable(numberOfRows);
    for (size t i{}; i < numberOfRows; ++i)</pre>
    {
        std::string basisVarName{};
        std::cin >> basisVarName;
        simplexTable.at(i).first = basisVarName;
        for (size_t j{}; j < numberOfCols; ++j)</pre>
        {
             double value{};
             std::cin >> value;
             simplexTable.at(i).second.push_back(value);
        }
    }
    std::cout << std::setprecision(2);</pre>
    double
maxFunctValue{maxValueOfTheObjFunctionWithTableDisplay(simplexTab
le)};
    std::cout << "Max function value = " << maxFunctValue;</pre>
    return 0;
}
3.
#include <iostream>
#include <vector>
#include <string>
#include <iomanip>
using SimplexTable = std::vector<std::pair<std::string,</pre>
std::vector<double>>>;
void outputSimplexTable(const SimplexTable &simplexTable)
{
    std::cout << "BV\tFV\t";</pre>
    for (size_t i{1}; i < simplexTable.at(0).second.size(); ++i)</pre>
    {
```

```
std::cout << "x" << i << '\t';</pre>
    }
    std::cout << '\n';</pre>
    for (size_t i{}; i < simplexTable.size(); ++i)</pre>
    {
         std::cout << simplexTable.at(i).first << '\t';</pre>
        for (size t j{}; j < simplexTable.at(i).second.size();</pre>
++j)
         {
             std::cout << simplexTable.at(i).second.at(j) << '\t';</pre>
         std::cout << '\n';</pre>
    std::cout << '\n';</pre>
}
bool objFunctionHasNegative(const SimplexTable &simplexTable,
size_t &minNegativeIndex)
{
    size_t rowIndex{simplexTable.size() - 1};
    size t minIndex{};
    bool findNegative{false};
    for (size_t i{1}; i < simplexTable.at(0).second.size(); ++i)</pre>
         if (simplexTable.at(rowIndex).second.at(i) < 0)</pre>
         {
             findNegative = true;
             if (simplexTable.at(rowIndex).second.at(i) <</pre>
simplexTable.at(rowIndex).second.at(minIndex))
             {
                 minIndex = i;
             }
         }
    }
    minNegativeIndex = minIndex;
    return findNegative;
}
bool exHasPositiveCoeff(const SimplexTable &simplexTable, const
size_t &colIndex, size_t &minCoeffIndex)
{
```

```
size t minCoeffIn{};
    double minCoeff{static_cast<double>(LONG_LONG_MAX));
    bool findPositive{false};
    for (size_t i{}; i < simplexTable.size() - 1; ++i)</pre>
    {
        if (simplexTable.at(i).second.at(0) /
simplexTable.at(i).second.at(colIndex) > 0)
        {
            findPositive = true;
            const double coeff{simplexTable.at(i).second.at(0) /
simplexTable.at(i).second.at(colIndex)};
            if (coeff < minCoeff)</pre>
            {
                minCoeff = coeff;
                minCoeffIn = i;
            }
        }
    }
    minCoeffIndex = minCoeffIn;
    return findPositive;
}
void maxValueOfTheObjFunctionWithTableDisplay(SimplexTable
&simplexTable)
{
    size t minIndex{};
    size t minCoeffIndex{};
    while (objFunctionHasNegative(simplexTable, minIndex))
        std::cout << "Simplex table :\n";</pre>
        outputSimplexTable(simplexTable);
        if (exHasPositiveCoeff(simplexTable, minIndex,
minCoeffIndex))
        {
            const double
divider{simplexTable.at(minCoeffIndex).second.at(minIndex)};
            for (size_t i{}; i <</pre>
simplexTable.at(minCoeffIndex).second.size(); ++i)
                simplexTable.at(minCoeffIndex).second.at(i) /=
divider;
```

```
for (size_t i{}; i < simplexTable.size(); ++i)</pre>
                if (i != minCoeffIndex)
                 {
                     const double divide{-
simplexTable.at(i).second.at(minIndex) /
simplexTable.at(minCoeffIndex).second.at(minIndex)};
                     for (size_t j{}; j <</pre>
simplexTable.at(i).second.size(); ++j)
                         simplexTable.at(i).second.at(j) +=
(divide * simplexTable.at(minCoeffIndex).second.at(j));
                     }
                 }
            }
            simplexTable.at(minCoeffIndex).first = "x" +
std::to_string(minIndex);
        }
        else
        {
            std::cout << "The problem does not have solution(The</pre>
objective function is unbounded on the range of admissible values
of solutions)";
            std::exit(1);
        }
    }
    std::cout << "Simplex table :\n";</pre>
    outputSimplexTable(simplexTable);
}
bool hasNegativeFree(const SimplexTable &simplexTable, size_t
&minFreeIndex)
{
    size t minFreeIn{};
    double minFree{static_cast<double>(LONG_LONG_MAX));
    bool findNegative{false};
    for (size t i{}; i < simplexTable.size() - 1; ++i)</pre>
    {
        if (simplexTable.at(i).second.at(0) < 0)</pre>
        {
```

```
findNegative = true;
            if (simplexTable.at(i).second.at(0) < minFree)</pre>
            {
                minFree = simplexTable.at(i).second.at(0);
                minFreeIn = i;
            }
        }
    }
    minFreeIndex = minFreeIn;
    return findNegative;
}
bool hasNegativeCoeff(const SimplexTable &simplexTable, const
size t &rowIndex, size t &minColIndex)
{
    bool hasNegative{false};
    double minimum{static_cast<double>(LONG_LONG_MAX));
    size t minIndex{0};
    for (size t i{1}; i <</pre>
simplexTable.at(rowIndex).second.size(); ++i)
    {
        if (simplexTable.at(rowIndex).second.at(i) < 0)</pre>
        {
            hasNegative = true;
            const double coeff{-
simplexTable.at(simplexTable.size() - 1).second.at(i) /
simplexTable.at(rowIndex).second.at(i)};
            if (coeff < minimum)</pre>
            {
                minimum = coeff;
                minIndex = i;
            }
        }
    }
    minColIndex = minIndex;
    return hasNegative;
}
double generalizedSimplexMethod(SimplexTable &simplexTable)
{
    maxValueOfTheObjFunctionWithTableDisplay(simplexTable);
```

```
size_t minFreeIndex{};
    while (hasNegativeFree(simplexTable, minFreeIndex))
    {
        size t minColIndex{};
        if (hasNegativeCoeff(simplexTable, minFreeIndex,
minColIndex))
        {
            const double
divide{simplexTable.at(minFreeIndex).second.at(minColIndex)};
            for (size_t i{}; i <</pre>
simplexTable.at(minFreeIndex).second.size(); ++i)
            {
                simplexTable.at(minFreeIndex).second.at(i) /=
divide;
            }
            for (size_t i{}; i < simplexTable.size(); ++i)</pre>
                if (i != minFreeIndex)
                     const double divider{-
simplexTable.at(i).second.at(minColIndex) /
simplexTable.at(minFreeIndex).second.at(minColIndex)};
                    for (size_t j{}; j <</pre>
simplexTable.at(i).second.size(); ++j)
                         simplexTable.at(i).second.at(j) +=
(divider * simplexTable.at(minFreeIndex).second.at(j));
                }
            simplexTable.at(minFreeIndex).first = "x" +
std::to string(minColIndex);
        }
        else
            std::cout << " the problem has no solution due to the</pre>
absence of admissible solutions to the system of constraints\n";
            std::exit(1);
        }
        std::cout << "Simplex table :\n";</pre>
```

```
outputSimplexTable(simplexTable);
    }
    return simplexTable.at(simplexTable.size() - 1).second.at(0);
}
int main(int argc, char **argv)
    size_t numberOfRows{};
    size t numberOfCols{};
    std::cout << "Number of rows in simplex table = ";</pre>
    std::cin >> numberOfRows;
    std::cout << "Number of cols in simplex table = ";</pre>
    std::cin >> numberOfCols;
    std::cout << "Enter simplex table(with the names of basic</pre>
variables) : \n";
    SimplexTable simplexTable(numberOfRows);
    for (size_t i{}; i < numberOfRows; ++i)</pre>
    {
        std::string basisVarName{};
        std::cin >> basisVarName;
        simplexTable.at(i).first = basisVarName;
        for (size_t j{}; j < numberOfCols; ++j)</pre>
        {
            double value{};
            std::cin >> value;
            simplexTable.at(i).second.push back(value);
        }
    }
    std::cout << std::setprecision(2);</pre>
    double maxFunctValue{generalizedSimplexMethod(simplexTable)};
    std::cout << "Max function value = " << maxFunctValue;</pre>
    return 0;
}
```

4.

$$z = -2x_1 + 9x_2 + x_3 + 5x_4 \rightarrow \min$$

$$\begin{cases}
-3x_1 + x_2 - 4x_3 + x_4 = 14 \\
-x_1 + 2x_2 + 5x_3 + 2x_4 \ge 30 \\
6x_1 + 5x_2 + 2x_3 - 3x_4 = 28
\end{cases}$$

$$x_i \ge 0 (i = \overline{1,4})$$

$$\begin{split} z_1 &= 2x_1\text{-}9x_2\text{-}x_3\text{-}5x_4 \ \to \ \text{max} \\ \begin{cases} -3x_1 + x_2\text{-}4x_3 + x_4 \ \leq \ 14 \\ 3x_1\text{-}x_2 + 4x_3\text{-}x_4 \ \leq \ -14 \\ x_1\text{-}2x_2\text{-}5x_3\text{-}2x_4 \ \leq \ -30 \\ 6x_1 + 5x_2 + 2x_3\text{-}3x_4 \ \leq \ 28 \\ -6x_1\text{-}5x_2\text{-}2x_3 + 3x_4 \ \leq \ -28 \\ \end{cases} \\ x_i &\geq 0 \big(i \ = \ \overline{1,4} \big) \end{split}$$

$$z_{1} = 2x_{1}-9x_{2}-x_{3}-5x_{4} \rightarrow \text{max}$$

$$\begin{cases}
-3x_{1} + x_{2}-4x_{3} + x_{4} + x_{5} = 14 \\
3x_{1}-x_{2} + 4x_{3}-x_{4} + x_{6} = -14 \\
x_{1}-2x_{2}-5x_{3}-2x_{4} + x_{7} = -30 \\
6x_{1} + 5x_{2} + 2x_{3}-3x_{4} + x_{8} = 28 \\
-6x_{1}-5x_{2}-2x_{3} + 3x_{4} + x_{9} = -28
\end{cases}$$

$$x_{i} \ge 0 (i = \overline{1,4})$$

Решаем полученную задачу обобщенным двойственным симплекс методом:

Таблица 1

Б	С	x1 ↓	x2	x3	x4	x5	x 6	x7	x8	x9	Отн коэфф
x 5	14	-3	1	-4	1	1	0	0	0	0	
x 6	-14	3	-1	4	-1	0	1	0	0	0	
x7	-30	1	-2	-5	-2	0	0	1	0	0	
← x8	28	6	5	2	-3	0	0	0	1	0	4 2/3
x9	-28	-6	-5	-2	3	0	0	0	0	1	4 2/3
Z	0	-2	9	1	5	0	0	0	0	0	

Таблица 2

Б	C		x1	x2		хз↓		x4		x 5	х6	x7	x8		x 9
x 5	28		0	3	1/2	-3		-	1/2	1	0	0		1/2	0
х6	-28		0	-3	1/2	3			1/2	0	1	0	-	1/2	0
← x7	-34	2/3	0	-2	5/6	-5	1/3	-1	1/2	0	0	1	-	1/6	0
x1	4	2/3	1		5/6		1/3	-	1/2	0	0	0		1/6	0
x 9	0		0	0		0		0		0	0	0	1		1
Z	9	1/3	0	10	2/3	1	2/3	4		0	0	0		1/3	0
Отн				3	13/17		5/16	2	2/3				2		

Таблица 3

Б	C		x1	x2	x3	x4	x 5	x 6	x7	x8↓	x9
x5	47	1/2	0	5 3/32	0	11/32	1	0	- 9/16	19/32	0
← x6	-47	1/2	0	-5 3/32	0	- 11/32	0	1	9/16	- 19/32	0
x3	6	1/2	0	17/32	1	9/32	0	0	- 3/16	1/32	0
x1	2	1/2	1	21/32	0	- 19/32	0	0	1/16	5/32	0
x9	0		0	0	0	0	0	0	0	1	1
Z	-1	1/2	0	9 25/32	0	3 17/32	0	0	5/16	9/32	0
Отн				1 150/163		10 3/11				9/19	

Таблица 4

Б	С	x1	x2↓	x 3	x4	x 5	х6	x7	x8	x9
x5	0	0	0	0	0	1	1	0	0	0
x8	80	0	8 11/19	0	11/19	0	-1 13/19	- 18/19	1	0
x3	4	0	5/19	1	5/19	0	1/19	- 3/19	0	0
x1	-10	1	- 13/19	0	- 13/19	0	5/19	4/19	0	0
← x9	-80	0	-8 11/19	0	- 11/19	0	1 13/19	18/19	0	1
Z	-24	0	7 7/19	0	3 7/19	0	9/19	11/19	0	0
Отн			140/163		5 9/11					0

Таблица 5

Б	C	x1	x2	x 3	x4↓	x5	x6	x7	x8	x9
x5	0	0	0	0	0	1	1	0	0	0
x8	0	0	0	0	0	0	0	0	1	1
x 3	1 89/163	0	0	1	40/163	0	17/163	- 21/163	0	5/163
← x1	-3 101/163	1	0	0	- 104/163	0	21/163	22/163	0	- 13/163
x2	9 53/163	0	1	0	11/163	0	- 32/163	- 18/163	0	- 19/163
Z	-92 116/163	0	0	0	2 142/163	0	1 150/163	1 64/163	0	140/163
Отн					4 1/2					10 10/13

Таблица 6

Б	С	x1	x2	x 3	x4	x 5	x6	x7	x8	x 9
x5	0	0	0	0	0	1	1	0	0	0
x8	0	0	0	0	0	0	0	0	1	1
x3	2/13	5/13	0	1	0	0	2/13	- 1/13	0	0
x4	5 35/52	-1 59/104	0	0	1	0	- 21/104	- 11/52	0	1/8
x2	8 49/52	11/104	1	0	0	0	- 19/104	- 5/52	0	- 1/8
Z	-109	4 1/2	0	0	0	0	2 1/2	2	0	1/2

В последней симплекс таблице псевдоплан является допустимым планом, а, следовательно, оптимальным планом задачи. $z_{1max} = -109$

Решение исходной задачи:

$$z_1 = -z \rightarrow z_{min} = 109$$

Тестовые данные:

```
PS D:\VS CODE CPlusPlus> .\rooster.exe
Number of rows in simplex table = 6
Number of cols in simplex table = 10
Enter simplex table(with the names of basic variables) :
x5 14 -3 1 -4 1 1 0 0 0 0
x6 -14 3 -1 4 -1 0 1 0 0 0
x7 -30 1 -2 -5 -2 0 0 1 0 0
x8 28 6 5 2 -3 0 0 0 1 0
x9 -28 -6 -5 -2 3 0 0 0 0 1
z 0 -2 9 1 5 0 0 0 0 0
Simplex table :
BV
        FV
                                   x3
                                           x4
                                                    x5
                                                             x6
                                                                     x7
                                                                              x8
                                                                                       x9
                 x1
                          x2
x5
        14
                 -3
                          1
                                   -4
                                           1
                                                    1
                                                             0
                                                                      0
                                                                              0
                                                                                       0
х6
        -14
                 3
                          -1
                                   4
                                            -1
                                                    0
                                                             1
                                                                      0
                                                                              0
                                                                                       0
x7
        -30
                 1
                          -2
                                   -5
                                            -2
                                                    0
                                                             0
                                                                      1
                                                                              0
                                                                                       0
                                                             0
        28
                 6
                          5
                                            -3
                                                    0
                                                                              1
                                                                                       0
x8
                                   2
                                                                      0
x9
        -28
                 -6
                          -5
                                   -2
                                           3
                                                    0
                                                             0
                                                                      0
                                                                              0
                                                                                       1
Z
        0
                 -2
                          9
                                   1
                                           5
                                                    0
                                                             0
                                                                      0
                                                                              0
                                                                                       0
Simplex table :
BV
        FV
                                   x3
                                           x4
                                                    x5
                                                                                       x9
                 x1
                          x2
                                                             x6
                                                                     x7
                                                                              X8
                                   -3
x5
        28
                 0
                          3.5
                                           -0.5
                                                    1
                                                             0
                                                                      0
                                                                              0.5
                                                                                       0
x6
        -28
                 0
                          -3.5
                                   3
                                           0.5
                                                    0
                                                             1
                                                                      0
                                                                              -0.5
                                                                                       0
        -34.7
                          -2.83
                                   -5.33
                                            -1.5
                                                             0
x7
                 0
                                                    0
                                                                      1
                                                                              -0.167
                                                                                       0
        4.67
                          0.833
                                   0.333
                                            -0.5
                                                    0
                                                             0
                                                                      0
x1
                 1
                                                                              0.167
                                                                                       0
x9
        0
                 0
                          0
                                   0
                                           0
                                                    0
                                                             0
                                                                      0
                                                                              1
                                                                                       1
                          10.7
                                                             0
                                                                      0
        9.33
                 0
                                   1.67
                                           4
                                                    0
                                                                              0.333
                                                                                       0
Z
Simplex table :
BV
        FV
                 х1
                          x2
                                   x3
                                           x4
                                                    x5
                                                             х6
                                                                      x7
                                                                              x8
                                                                                       x9
        47.5
                                                                      -0.562
x5
                 0
                          5.09
                                   0
                                           0.344
                                                    1
                                                             0
                                                                              0.594
                                                                                       0
                          -5.09
                                            -0.344
x6
        -47.5
                 0
                                   0
                                                    0
                                                             1
                                                                      0.562
                                                                              -0.594
                                                                                       0
        6.5
                 -0
                          0.531
                                   1
                                           0.281
                                                    -0
                                                             -0
                                                                      -0.188
                                                                              0.0312
                                                                                       -0
x3
x1
        2.5
                 1
                          0.656
                                   0
                                            -0.594
                                                    0
                                                             0
                                                                      0.0625
                                                                              0.156
                                                                                       0
x9
        0
                 0
                          0
                                   0
                                           0
                                                    0
                                                             0
                                                                      0
                                                                              1
                                                                                       1
                          9.78
                                                             0
        -1.5
                 0
                                   0
                                           3.53
                                                    0
                                                                      0.312
                                                                              0.281
                                                                                       0
Z
Simplex table :
BV
        FV
                          x2
                                   х3
                                           x4
                                                    x5
                                                             х6
                                                                      x7
                                                                              8x
                                                                                       x9
                 х1
x5
        0
                 0
                          0
                                   0
                                           0
                                                    1
                                                             1
                                                                      0
                                                                              0
                                                                                       0
x8
        80
                 -0
                          8.58
                                   -0
                                           0.579
                                                    -0
                                                             -1.68
                                                                      -0.947
                                                                              1
                                                                                       -0
x3
        4
                 0
                          0.263
                                   1
                                           0.263
                                                    0
                                                             0.0526
                                                                      -0.158
                                                                              0
                                                                                       0
x1
        -10
                 1
                          -0.684
                                   0
                                            -0.684
                                                    0
                                                             0.263
                                                                      0.211
                                                                              0
                                                                                       0
x9
        -80
                 0
                          -8.58
                                   0
                                            -0.579
                                                    0
                                                             1.68
                                                                      0.947
                                                                              0
                                                                                       1
Z
        -24
                 0
                          7.37
                                   0
                                           3.37
                                                    0
                                                             0.474
                                                                      0.579
                                                                              0
                                                                                       0
```

Simplex	<pre></pre>									
BV	FV	x1	x2	x 3	x4	x5	хб	x7	x8	x 9
x5	0	0	0	0	0	1	1	0	0	0
x8	0	0	0	0	0	0	0	0	1	1
x 3	1.55	0	0	1	0.245	0	0.104	-0.129	0	0.0307
x1	-3.62	1	0	0	-0.638	0	0.129	0.135	0	-0.0798
x2	9.33	-0	1	-0	0.0675	-0	-0.196	-0.11	-0	-0.117
Z	-92.7	0	0	0	2.87	0	1.92	1.39	0	0.859
Simplex	<pre>table :</pre>	:								
BV	FV	x1	x2	x 3	x4	x5	хб	x7	x8	x 9
x5	0	0	0	0	0	1	1	0	0	0
x8	0	0	0	0	0	0	0	0	1	1
x 3	0.154	0.385	0	1	0	0	0.154	-0.0769	0	6.94e-18
x4	5.67	-1.57	-0	-0	1	-0	-0.202	-0.212	-0	0.125
x2	8.94	0.106	1	0	0	0	-0.183	-0.0962	a	-0.125
	0.54	0.100	_	0	0	0	0.105	0.0302	0	0.123

Max function value = -109
PS D:\VS CODE CPlusPlus>
■

Результат, полученный при решении задачи «вручную», совпал с результатом, полученным программой.

Вывод: изучил элементы теории двойственности, двойственный симплексметод для пары симметрично двойственных задач, а также метод последовательного уточнения оценок.