[SAG.A] Dokumentacja końcowa projektu Protokół MAS z wykorzystaniem ontologii

Michał Aniserowicz <michalaniserowicz@gmail.com>

Jakub Turek <jkbturek@gmail.com>

2 czerwca 2013r.

1 Temat projektu

Tematem projektu jest implementacja protokołu wykorzystującego ontologię w systemie wieloagentowym. W ramach projektu opracowana została symulacja ruchu drogowego w kwadratowej sieci ulic przypominającej plan Manhattanu. Symulacja składa się z następujących elementów:

miasto określa ilość przecznic (wielkość przestrzeni),

kodeks ruchu drogowego definiuje zasady poruszania się na drodze,

sygnalizacja świetlna określa pierwszeństwo na części skrzyżowań,

samochód porusza się po mieście zgodnie z zasadami ruchu drogowego znajdującymi się w kodeksie.

Projekt obejmuje również przygotowanie graficznego interfejsu użytkownika, który pełni dwojaką funkcję:

- ukazuje aktualny stan miasta w rzucie z góry,
- pozwala na dynamiczną zmianę kodeksu ruchu drogowego.

2 Technologia

Projekt został zaimplementowany na platformie JADE¹. Interfejs graficzny został stworzony z użyciem natywnych bibliotek języka Java (AWT oraz Swing). Implementacja tworzona była w środowisku Eclipse i testowana w systemie operacyjnym Windows 7 64-bit.

¹Java Agent DEvelopment Framework - jade.tilab.org.

3 Ontologia

Wykorzystanie ontologii umożliwiło opisanie zmiennych zasad ruchu drogowego, do których stosują się samochody. Ontologia jest wykorzystywana głównie przez trzy typy agentów:

Samochód nie zna autonomicznie topologii miasta. Stosuje się do obowiązujących zasad ruchu drogowego narzuconych przez kodeks.

Miasto posiada informację, w których kierunkach można przejechać przez dane skrzyżowanie.

Kodeks ruchu drogowego posiada informacje o obowiązujących przepisach ruchu drogowego.

3.1 Koncepcje

Tabela 1 przedstawia koncepcje zdefiniowane w ontologii ruchu drogowego.

T/	Parametr			
Koncepcja	Nazwa	Typ	Dozwolone wartości	
Pozycja	Współrzędna x	Integer	$[0; city_size)$	
	Współrzędna y	Integer	$[0; city_size)$	
Kierunek	Kierunek	Integer	0 (północ),	
			1 (wschód),	
			2 (południe),	
			3 (zachód)	
Samochód	Pozycja	Pozycja	-	
	Kierunek	Kierunek	-	
	Тур	Integer	0 (normalny),	
			1 (uprzywilejowany),	
	Status	Integer	0 (jedzie),	
			1 (przed skrzyżowaniem),	
			2 (na skrzyżowaniu)	
Sygnalizacja	Pozycja	Pozycja	-	
	Kolor światła	Integer	0 (czerwone),	
	(północ)	Integer	1 (zielone)	
	Kolor światła	Integer	0 (czerwone),	
	(wschód)	Integer	1 (zielone)	
	Kolor światła	Integer	0 (czerwone),	
	(południe)	11100801	1 (zielone)	
	Kolor światła	Integer	0 (czerwone),	
	(zachód)	Integer	1 (zielone)	

Tabela 1: Koncepcje zdefiniowane w ontologii ruchu drogowego.

3.2 Predykaty

Samochody komunikują się z innymi agentami głównie przy użyciu predykatów. Tabela 2 przedstawia zdefiniowane w ontologii miasta predykaty.

	Parametr			
Predykat	Nazwa	Тур	Dozwolone wartości	
Czy można	Pozycja skrzyżowania	Pozycja	-	
skręcić?	Kierunek	Kierunek	-	
Czy można przejechać?	Kolor światła	Integer	0 (czerwone), 1 (zielone)	
Czy ma pierwszeństwo?	Samochód	Samochód	-	
Czy ma	Pozycja 1	Pozycja	-	
pierwszeństwo?	Pozycja 2	Pozycja		
Czy jeździ po stronie?	Strona	Integer	0 (lewa), 1 (prawa)	

Tabela 2: Predykaty zdefiniowane w ontologii ruchu drogowego.

W dziedzinie predykatów, algorytm przejeżdżania przez skrzyżowanie można przedstawić następująco:

- Sprawdź, w jakich kierunkach można pokonać skrzyżowanie. Prześlij do miasta predykat "czy można skręcić?" z niewiadomą typu kierunek, wypełniając jednocześnie pozycję skrzyżowania, przez które chcesz przejechać. Oczekuj na listę predykatów, które spełniają zadany warunek.
- Sprawdź, czy Twój samochód posiada bezwzględne pierwszeństwo. Prześlij do kodeksu ruchu drogowego predykat "czy ma pierwszeństwo?" z pojedynczym parametrem i oczekuj na potwierdzenie jego prawdziwości.
 - (a) Jeżeli predykat jest prawdziwy, wjedź na skrzyżowanie i zakończ algorytm.
 - (b) Jeżeli predykat nie jest prawdziwy, kontynuuj algorytm.
- 3. Sprawdź, czy na skrzyżowaniu znajdują się światła. Jeżeli nie, kontynuuj algorytm od kolejnego punktu. Jeżeli tak, sprawdź kolor świateł i wyślij do kodeksu ruchu drogowego predykat "czy można przejechać?" uzupełniony kolorem światła. Oczekuj na potwierdzenie spełnienia predykatu.

- (a) Jeżeli predykat jest prawdziwy, wjedź na skrzyżowanie i zakończ algorytm.
- (b) Jeżeli predykat nie jest prawdziwy, kontynuuj algorytm.
- 4. Sprawdź, czy w pobliżu skrzyżowania znajdują się inne samochody. Jeżeli nie, wjedź na skrzyżowanie i zakończ algorytm. Jeżeli tak, dla każdego samochodu wypełnij predykat "czy ma pierwszeństwo?" z dwoma parametrami i oczekuj na potwierdzenie jego prawdziwości.
 - (a) Jeżeli wszystkie predykaty są fałszywe, wjedź na skrzyżowanie i zakończ algorytm.
 - (b) Jeżeli chociaż jeden z predykatów jest prawdziwy, oczekuj na przejechanie samochodu przez skrzyżowanie, a następnie powtórz algorytm od punktu 4.