DEUTSH - JOZSA:

$$\forall x : f(x) = 0$$

$$\forall x : f(x) = 0$$
on half
of all x.

CLASSICAL SOLUTION:

$$f(000...0) = 1$$
 $f(000...1) = 1$

QUANTUM:

0 = 1

INPUT	$f^{\mathfrak{o}}$	٤,	f ₂	+3
0	0	O	1	١
1	O	,	0	ı

Try on:

$$2^{n-1}-1 = 2^{0}+1 = 2$$
 in puts.

f: {0,1}
$$\rightarrow$$
 {0,1}

U_f: Qubit \otimes 2

U_f |x > |b > = |x > |b \oplus f(x) >

$$V_{fb} = I$$
 V_{f} : $CNOT \rightarrow for f_1$, when $x = 0$, b be romes $b \oplus 0 = b$ when $x = 1$ b be comes $b \oplus 1 = 1b$.

So, the user has f and gives up the V_{f} of the f to us and asks up to goest f .

LEMMA 1:

PRODF:

Q = 0: LMS
$$|0 \oplus 0 > -|1 \oplus 0 > \pm |0 > -|1 >$$

RMS $(-1)^0 (|0 > -|1 >) \pm |0 > -|1 >$
Q=1: LMS $|0 \oplus 1 > -|1 \oplus 1 > \pm |1 > -|0 >$
RMS $(-1)^1 (|0 > -|1 >) \pm |1 > -|0 >$

THE 2:

$$\forall x \in \{0,1\}^{\circ}: U_{\pm} |x>|-> = (-1) |x>|->$$

$$|-> = \sqrt{2} (|0>-(1>)$$

$$= (-1) \frac{1}{4|x|} |x > 1/2 (no > - 11 > 1)$$

$$= (-1) \frac{1}{4|x|} |x > 1/2 (no > - 11 > 1)$$

$$= (\sqrt{2} |x > (-1) + (x | x > 1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$= \sqrt{2} |x > (-1) + (x | x > 1)$$

$$=$$

LEMMA 3:

=
$$\left(H \otimes I \right) / \left(\lesssim \left(-1 \right)^{f \left(x \right)} | 1 > 1 > 7 \right) \left[\text{lenne 2} \right]$$

$$x \in \left\{ 0, 1 \right\}$$

$$= (n \otimes I) / (-1)^{f(0)} (10 > + (-1)^{f(0)}) / (-1)^{f(0)}$$

$$f(v) = f(i) \ge i \qquad (-i)^{\circ} = i \qquad (-i)^{\circ} = i$$

Johnst o

MEASURE

With prob :
$$\alpha^2 = |(-1)^{f[0]}|^2$$

$$= ||^2 = |$$

prob:1, we observe

DEUTSCH - JOZEA:

LEMMA 5:
$$\forall x \in \{0,1\}$$
;

 $H \mid x \rangle = \sqrt{2} \underbrace{\{(-1)^{x} \cdot \{\}\}}_{\{x \in \{0,1\}\}}$

LEMMA 6:

$$\mu \otimes \gamma \mid x \rangle = 1/2 \qquad (-1) \qquad |x \rangle = 1/2 \qquad |x \rangle$$

$$= (H \otimes n \otimes I) \cdot (/2^{n} \times \{f_{0}, i\}^{n})$$
[LEMMA 2]
$$= (/2^{n} \times \{f_{0}, i\}^{n})$$

$$= (/2^{n} \times \{f_{0}, i\}^{n})$$
[LEMMA 2]
$$= (/2^{n} \times \{f_{0}, i\}^{n})$$
[LEMMA b]

To SEE
$$10...0-7$$
,

f constant $f(x)=0$ always

if
$$f(x)$$
: 1 and $y = 10 \cdot \cdot \cdot 0 >$
then $\frac{1}{2^n} \nleq (-1)^{\frac{1}{2^n}} = \frac{1}{2^n} (-1) \times 2^n = -1$

$$f(x) = 1$$
 always \rightarrow amplitude = -1

if
$$f$$
 is balanced, amplitude = 0 to observe $10...0>$

So if we necessive all
$$0'$$
 \rightarrow constant $00...0$