BIOL 343 Applied Bioinformatics I

Alignment/Mapping

Learning Objectives

You will be able to:

1.

Alignment is the most important step in RNA-seq analysis Counting (also important) and DEG ID relies on high-confidence mapping

- Recall the goal of our RNA-seq experiments...
 - Treatment vs Control
 - Mutant vs Wild type
 - Identify differentially expressed genes (DEGs)
- DEGs will be identified using statistical tests comparing *expression values* of transcripts/genes
- Expression values will be calculated based on the number of reads that align/ map to a given genomic locus

Types of alignment algorithms Needleman-Wunsch and...

- Needleman-Wunsch (global alignment)
 - Dynamic programming
 - Mismatch penalty (transitions or transversions)
 - Gap penalty
- Problems not global alignment, reference genomes are *huge* strings with lots
 of repetition, reads are likely to align many locations, and reads will align with
 massive gaps if spanning an intron
- Solution Suffix array (STAR) or Burrow-Wheelers transform and FM-index (HISAT)

Splice-aware alignment Gaps are large and encouraged

But, reads aren't aligned to a transcriptome (mRNAs), but a genome

Splice-aware alignment Gaps are large and encouraged

But, reads aren't aligned to a transcriptome (mRNAs), but a genome

Splice-aware alignment Gaps are large and encouraged

Large gaps - representing introns - and reads from poly(A) tails don't align

STAR

Spliced Transcripts Alignment to a Reference

Published in 2013

40574 citations

Requires a lot of RAM; ultra fast

HISAT

Hierarchical Indexing for Spliced Alignment of Transcripts

Published in 2015

17667 citations

Less RAM needed; still fast

- 1. Find the Maximal Mappable Prefix of the read
 - MMP 1 will map to a splice donor
- 2. Find the MMP of the remainder of the read
 - MMP 2 will map to a splice acceptor
- Uses a suffix array of the reference genome

- Uses a suffix array of the reference genome
 - Every substring of the genome sorted lexicographically
 - Given a search string *P*, two binary searches to find the boundaries
 - gtg binary search to find boundary 1 at index 5, binary search to find boundary 2 at index 9
- Many developments (ongoing) in 1)
 generating the SA and 2) searching the SA

- Only two binary searches ultrafast!
- Suffix array of a large genome very big RAM!
- Generating suffix array kinda slow!

- Other advantages to this approach:
 - Robust to mismatches MMPs can be extended
 - Can trim (*soft clip*) if extension of MMP results in many mismatches

