Digital Logic Design :

Lecture 17

* Asynchronous clocked modulous-12 counter with asynchronous recycling.

On the 12th clock pulse the counter is to be forced to count from 'o'. This can be done by decoding 1100.

State sequence:

Clock pulse	Q3	Q2	Q,	Q.		
Initially	0	0	0	0	Jo = k	(o = 1
1	0	0	0	1	J, =	K1 = Q0
2	0	0	1	0		= K2 = Q0Q
3	0	0	1	1		
4	0	1	0	0	J3 =	= K3 = Q0Q1
5	0	1	0	1		+ 0,010
6	0	1	1	0		
7	0	1	1	1		
8	1	0	0	0		
9	1	D	C	1		
10	ı	0	ı	0		
TH.	1	0	1	1		
(recycles)	100	40	> (0		
(recycles)		,				

Synchronous Counter:

The flip flops within synchronous counters are all clocked at the same time by a common clock pulse.

A 2 Bit synchronous Binary Counter:

Clock pulse	Q,	Qo
Initially	0	0
I	05	1 6
2	12	0
3	15	1 6
4 (recycles)	0	0

A 3-Bit Synchronous Binary Counters:

state sequency:	
eloek pulse	Q2 Q1 Q0
Initially	0 0 0
1	0 0 1 0
2	
3	0)
4	IN ON O
. 5	1 0 1 /
6	1 1 0
7	17
8 (recycles)	04 04 0

$$J_1 = K_1 = Q_0$$

A	4-Bit	Synchronous	Binary	Counter
---	-------	-------------	--------	---------

State sequence:

	1/20	
Clock pulse	Qz	Q2 Q, Q0
Initially	0	0 0 0
1	0	0 0, 1,
2	0	0 12 0
3	0	0, 1,1
4	0	1000
5	0	1 0, 1
6	6	1 12 0
7	0	[]
8	1×	0 0 0
9	t	0 07 1
10	ı	0 10
И	1	0, 50
12	t	1 0 0
13	(1 07 1
14	1	1 10
15	1_	1, 50
16	64	0 0 0
(recycles)		

$$J_1 = K_1 = Q_0$$
 $J_2 = K_2 = Q_1Q_0$

$$J_3 = K_3 = Q_2(Q_1Q_0)$$

Fig: Synchronous 4-Bit Binary counter

synchronous decode counters:

state sequence:

Clock pulse	Q3 Q	2 Q, Qo
Initially	0	0 0 0
1	0	0 0 1
2	0	0 1 0
3	0	0 1 1
4	0	1 0 0
5	0	1 0 1
6	0	1 1 0
7	0	i i f
8	1	0 0 0
9	ι	0 0 1
(necycles)	0	0 0 0
(recycles)	,	

$$J_0 = K_0 = I$$

Fig: A synchronous BED decode counter

Modulus - 12 synchronous counter

State sequence:

Clock pulse	Qz	Q2	Q, Q.
Initially	0	0	0 0
1	0	0	0 1
2	0	0	120
3	0	0	(1)
4	0	18	OK O
5	0	ı	07 1
6	0	ι	1 0
7	07	(1)	(5)
8	1 1	OR	000
9	1	0	0, 1
10	1	0	10
t i	1_	0	1 1
12 (recycles)	2	0	00

$$J_0 = K_0 = 1$$
 $J_1 = K_1 = Q_0$
 $J_2 = K_2 = \overline{Q_3}Q_1Q_0$
 $J_3 = K_3 = Q_2Q_1Q_0$
 $+ Q_3Q_1Q_0$