2/2

2/2

-1/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

Nom et prénom, lisibles :	Identifiant (de haut en bas):
ROUNIER	
D-	2 0 1 1 2 13 14 15 16 17 18 19
Julien	
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. 3 J'ai lu les instructions et mon sujet est complet: les 5 entêtes sont +187/1/xx+···+187/5/xx+.	
Q.2 Un alphabet est:	
□ une suite finie □ un ensemble ordonné	
$\mathbf{Q.3}$ Si L est un language récursivement énumérable alors L est un language récursif.	
⊠ faux 💋 vrai	
Q.4 Que vaut $\{a,b\} \cdot \{a,b\}$?	
$\{aa,ab,ba,bb\}$ \square $\{\varepsilon,a,b,aa,ab,ba,ba,ba,ba,ba,ba,ba,ba,ba,ba$	$\{aa,bb\}$ \square $\{aa,ab,bb\}$ \square $\{a,b,aa,ab,ba,bb\}$
Q.5 Que vaut Pref({ab, c}):	
$\square \{b,c,\varepsilon\} \qquad \square \emptyset \qquad \square \{b\}$	$\{ab,a,c,\varepsilon\}$ $\{ab,a,c,\varepsilon\}$ $\{a,b,c\}$
Q.6 Que vaut $\overline{\{a\}\{b\}^*} \cap \{a\}^*$	
	$\{a\}$ $\{a\}$ $\{b\}$ $\{a\}$ $\{b\}$ $\{a\}$ $\{a\}$ $\{b\}$ $\{a\}$ $\{a\}$ $\{b\}$ $\{a\}$
Q.7 Pour toute expression rationnelle e , on a $e + \emptyset$	$0 \equiv \emptyset + e \equiv e.$
🕦 vrai	☐ faux
Q.8 Pour toutes expressions rationnelles e, f , on a	$a(e+f)^* \equiv (e^*f)^*e^*.$
☐ faux	vrai
Q.9 Pour toutes expressions rationnelles e, f , simple f	plifier $e^*(e+f)^*f^*$.
□ e* + f* □ e + f* \$	
Q.10 Si e et f sont deux expressions rationnelles,	quelle identité n'est pas nécessairement vérifiée?
	$\Box (e+f)^* \equiv (e^*f^*)^*$ $* \equiv (f^*(ef)^*e^*)^*$ $(ef)^* \equiv e(fe)^*f$
Q.11 L'expression Perl '([-+]*[0-9A-F]+[-+/*])*[-+]*[0-9A-F]+' n'engendre pas :
☐ '0+1+2+3+4+5+7+8+9' ☐ '-+-1+	-+-2' 3 '(20+3)*3'

Q.12 Pour un langage rationnel donné il existe un unique automate fini non-déterministe à transitions spontanées qui reconnaît ce langage

2/2

2/2

Q.13 🕏

🛮 faux 🗌 vrai

Quels états appartiennent à la fermeture avant de l'état 2 :

☐ 1 ☐ 0 ☐ 2 ☐ 3 ☐ Aucune de ces réponses n'est correcte.

Q.14 Quel automate reconnaît le langage décrit par l'expression $((ba)^*b)^*$

2/2

Q.15 $\xrightarrow{a \qquad b \qquad c \qquad c}$

Quel est le résultat d'une élimination arrière des transitions spontanées?

2/2

a,b,c

Q.16 & Parmi les 3 automates suivants, lesquels sont équivalents?

2/2

☐ Aucune de ces réponses n'est correcte.

Q.17 Le langage $\{a^nb^m \mid \forall n, m \in \mathbb{N}\}$ est

2/2 ☐ non reconnaissable par automate

] fini 🗌 vide

rationnel

Q.18 A propos du lemme de pompage

☐ Si un langage ne le vérifie pas, alors il n'est pas forcement rationnel

2/2	☐ Si un langage le vérifie, alors il est rationnel Si un langage ne le vérifie pas, alors il n'est pas rationnel Q.19 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a + b)^*a(a + b)^{n-1}$):
2/2	2^n \square $\frac{n(n+1)}{2}$ \square $n+1$ \square Il n'existe pas.
2/2	 Quelle séquence d'algorithmes teste l'appartenance d'un mot au langage d'une expression rationnelle? ☐ Thompson, déterminisation, Brzozowski-McCluskey. ☐ Thompson, déterminisation, élimination des transitions spontanées, évaluation. ☐ Thompson, élimination des transitions spontanées, déterminisation, minimisation, évaluation. ☐ Thompson, déterminimisation, évaluation.
	Q.21 Déterminiser cet automate : $\xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b}$
2/2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Q.22 & Quelle(s) opération(s) préserve(nt) la rationnalité?
1.6/2	Sous − mot Pref Fact Suff Transpose □ Aucune de ces réponses n'est correcte.
	Q.23 Soit <i>Rec</i> l'ensemble des langages reconnaissables par DFA, et <i>Rat</i> l'ensemble des langages définissables par expressions rationnelles.
2/2	\square $Rec \not\subseteq Rat$ \square $Rec \subseteq Rat$ \square $Rec \supseteq Rat$ \square $Rec \supseteq Rat$
	Q.24 & Quelle(s) opération(s) préserve(nt) la rationnalité?
1.2/2	☑ Différence symétrique ☑ Complémentaire ☑ Différence ☑ Intersection ☐ Aucune de ces réponses n'est correcte.
	Q.25 On peut tester si un automate déterministe reconnaît un langage non vide.
-1/2	 Non ☐ Seulement si le langage n'est pas rationnel ☑ Oui ⑥ Cette question n'a pas de sens
	Q.26 Si L_1 , L_2 sont rationnels, alors:
2/2	$ \Box \overline{L_1 \cap L_2} = \overline{L_1} \cap \overline{L_2} \qquad \Box L_1 \subseteq L_2 \text{ ou } L_2 \subseteq L_1 \qquad \Box \bigcup_{n \in \mathbb{N}} L_1^n \cdot L_2^n \text{ aussi} $ $ \Box L_1 \subseteq L_2 \text{ ou } L_2 \subseteq L_1 \qquad \Box \bigcup_{n \in \mathbb{N}} L_1^n \cdot L_2^n \text{ aussi} $
	Q.27 En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il
2/2	 ☐ est déterministe ☐ a des transitions spontanées ☐ accepte un langage infini

2/2

2/2

2/2

2/2

2/2

Q.29 Combien d'états a l'automate minimal qui accepte le langage {a, ab, abc}?

2/2 □ 6 **雪** 4 □ 7 □ Il n'existe pas.

Q.30 Combien d'états a l'automate minimal qui accepte le langage $\{a, b, c, \dots, y, z\}^+$?

Q.31

Q.31

Si on élimine les transitions spontanées de cet automate, puis qu'on applique

Q.32 & Quels états peuvent être fusionnés sans changer le langage reconnu.

Q.33 Considérons \mathcal{P} l'ensemble des *palindromes* (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.

2/2 \mathcal{P} ne vérifie pas le lemme de pompage \square Il existe un NFA qui reconnaisse \mathcal{P} \square Il existe un \mathcal{E} -NFA qui reconnaisse \mathcal{P}

Q.34 Sur $\{a,b\}$, quel est le complémentaire de b

Q.35 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de \xrightarrow{a} \xrightarrow{b} ?

2/2

Q.36

190

+187/6/11+

,

lacktriangle