

Plano da Apresentação

- Introdução
 - Definição de TD
 - Aplicações
- Algoritmos Euclidianos
 - Tipos de algoritmos
 - Principais algoritmos de cada tipo
- Metodologia
- Resultados
- Conclusões
- Referências

Introdução

- Para cada ponto de um domínio
 - Calcular a mínima distância ao conjunto de interesse

- Para cada ponto de um domínio
 - Calcular a mínima distância ao conjunto de interesse

- Para cada ponto de um domínio
 - Calcular a mínima distância ao conjunto de interesse

Domínio

- Para cada ponto de um domínio
 - Calcular a mínima distância ao conjunto de interesse

Domínio

$$d = \sqrt{\Delta^2 x + \Delta^2 y} \qquad \text{(euclidiana)}$$

$$d = \sqrt{\Delta^2 x + \Delta^2 y}$$
 (euclidiana)
$$= |\Delta x| + |\Delta y|$$
 (cityblock)

$$d = \sqrt{\Delta^2 x + \Delta^2 y} \qquad \text{(euclidiana)}$$

$$= |\Delta x| + |\Delta y| \qquad \text{(cityblock)}$$

$$= \max\{|\Delta x|, |\Delta y|\} \qquad \text{(chessboard)}$$

(chessboard)

Menor distância

Menor distância

Menor distância

TD para Imagens

- Domínio
 - Imagem (grade discreta)
- Conjunto de interesse
 - Pixels com valor Zero (pixels pretos)
- Objetivo
 - Para cada pixel, calcular sua distância ao conjunto de interesse

1	1	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	0	1
1	0	1	1	1	1	1
1	1	1	1	1	1	1

1	1	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	0	1
1	0	1	1	1	1	1
1	1	1	1	1	1	1

1	1	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	0	1
1	0	1	1	1	1	1
1	1	1	1	1	1	1

1	1	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	0	1
1	0	1	1	1	1	1
1	1	1	1	1	1	1

1	1	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	0	1
1	0	1	1	1	1	1
1	1	1	1	1	1	1

1	1	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	0	1
1	0	1	1	1	1	1
1	1	1	1	1	1	1

5	2	1	2	5	10	17
4	1	0	1	4	9	10
5	2	1	2	5	4	5
5	4	4	5	2	1	2
2	1	2	4	1	0	1
1	0	1	4	2	1	2
2	1	2	5	5	4	5

Mapa de distâncias

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0
		1						
0	0	1	1	1	1	1	0	0
0	0	1	1	1	1	1	0	0
0	0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	1	0	0

Mapa de distâncias

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0
0	0	1	1	1	1	1	0	0
0	0	1	1	1	1	1	0	0
0	0	1	1	1	1	1	0	0
0	0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	1	0	0

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0
0	0	1	2	4	2	1	0	0
0	0	1	4	8	4	1	0	0
0	0	1	2	4	2	1	0	0
0	0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	1	0	0

- Pontos de interesse = pixels pretos
- Em análise de formas:
 - Objeto = pixels brancos

Altura ~ distância

Brilho ~ distância

Brilho ~ distância

- Distâncias módulo n
- Curvas de nível ~ transições abruptas

Aplicações da TD

Dilatação

Dilatação

Erosão

Erosão

Separação de Objetos

Outras Aplicações

- Casamento de formas (matching)
- Navegação em Robótica
 - Caminhos mínimos
- Image Registration
- Imagens Médicas
- Esqueletos e Diagramas de Voronoi

Outras Aplicações

- Dimensão Fractal
- Medidas da forma
 - Largura máxima
- Classificação (clustering)
- Realce
- Ray-tracing
- Botânica
- Geologia

Motivação e Objetivos

Motivação

- Vários algoritmos de TDE recentes e complexos
- Não se sabe qual é o melhor
- Não se sabe ao certo quais são corretos
- Implementações pouco difundidas

Motivação

Causas:

- Algoritmos muito recentes e elaborados
- Descrições dos artigos é muito curta e abstrata
- Testes dos artigos são insuficientes e parciais
- Demonstrações não são tudo:
 - sempre podem conter erros sutis
- Pouca tradição de trabalhos de avaliação em P.I.

Motivação

- Desempenho dos Algoritmos Depende do Conteúdo
- Natureza dessa dependência é não-trivial
 - Número de pixels de interesse
 - Orientação
 - Espessura do objeto
 - Diversos fatores geométricos
 - Não se sabe ao certo quais fatores influenciam cada método!

Objetivos

- Estudar os recentes algoritmos de TDE
 - Organizar
 - Implementar
 - Comparar e Validar
 - Empiricamente e Teoricamente
- Principais Perguntas:
 - Quais os algoritmos mais rápidos?
 - Quais são exatos?
 - Qual a ordem de complexidade dos algoritmos?
 - Qual o algoritmo mais adequado a determinada tarefa?

Objetivos

- Pavimentar o caminho para:
 - Extensões a outras entidades
 - Diagramas de Voronoi / Esqueletos
 - Segmentação (outras métricas)
 - Correções, demonstrações
 - Novos algoritmos

Algoritmos

 Para cada pixel "1" da imagem, encontrar a mínima distância aos pixels "0"

- Número de operações:
 - $\Omega(n^2)$ e $O(n^4)$

Otimizando a TD

- Aproveitar propriedades locais
 - Deduzir distâncias de um pixel a partir dos seus vizinhos
- Algoritmos O(n²) para métricas não-euclidianas
 - Desde 1966!
- Problema:
 - Métrica euclidiana x Domínio discreto
 - Algoritmos euclidianos O(n²)
 - Apenas nos anos 90!

Tipos de Algoritmos

Tipos de Algoritmos

Varredura Independente

Tipos de Algoritmos

Propagação Ordenada

TDE por Varredura Raster

TDs Não Euclidianas

- Antepassados das TDEs eficientes
- Uso de máscaras de operação local
- Número fixo de passadas na imagem
- Rosenfeld 1966
 - Cityblock, Chessboard, Hexagonal, Octogonal
 - Úteis, porém muito distantes da Euclidiana
- Borgefors 1984
 - Métricas "Chamfer"
 - Pesos das máscaras escolhidos para aproximação ótima da TDE em 2 passadas

- Primeiro algoritmo eficiente (1980)
- O método euclidiano mais famoso
- Varredura Raster
- Trabalha com coordenadas (vetores)

 Varredura Raster 0,1 0,0 1,0 Mask 2 0,0 1,0 Mask 4 0,1 Mask 3 0,0 0,0 **Infinito** 0,0

Mask 3

888

Mask 3

Mask 3

$$(1,0) + (0,0) = (1,0)$$

0,0	1,0		
	0,0		
		0,0	

Varredura Raster

(1,0) + (1,0) = (2,0)

$$(1,0) + (1,0) = (2,0)$$

0,0	1,0	2,0		
	0,0			
			0,0	

Varredura Raster

(2,0) + (1,0) = (3,0)

Varredura Raster

0,0 1,0

Varredura Raster

||(3,0)|| < ||(1,0) + (4,0)||

Varredura Raster

||(2,0)|| < ||(1,0) + (3,0)||

Varredura Raster

||(1,0)|| < ||(1,0) + (2,0)||

Varredura Raster

||(0,0)|| < ||(1,0) + (1,0)||

	0,1
1,0	0,0

0,0	1,0	2,0	3,0	4,0
	0,0			
			0,0	

Varredura Raster

||(0,1)|| < infinito

Varredura Raster

(1,0) + (0,1) = (1,1)

$$(1,0) + (1,1) = (2,1)$$

 $(0,1) + (2,0) = (2,1)$

$$(1,0) + (1,1) = (2,1)$$

 $(0,1) + (2,0) = (2,1)$

0,0	1,0	2,0	3,0	4,0
0,1	1,1	2,1	3,1	4,1
	0,0			
			0,0	

0,0	1,0	2,0	3,0	4,0
0,1	1,1	2,1	3,1	4,1
0,2	0,0			
			0,0	

0,0	1,0	2,0	3,0	4,0
0,1	1,1	2,1	3,1	4,1
0,2	0,0	1,0	2,0	3,0
			0,0	

Varredura Raster

||(0,0) + (0,2)|| < ||(1,0) + (0,0)||

Varredura Raster

||(0,2)|| < ||(1,0)||

0,0	1,0	2,0	3,0	4,0
0,1	1,1	2,1	3,1	4,1
1,0	0,0	1,0	2,0	3,0
1,1	0,1	1,1	0,0	1,0

0,0	1,0	2,0	3,0	4,0
0,1	1,1	2,1	3,1	4,1
1,0	0,0	1,0	2,0	3,0
1,1	0,1	1,0	0,0	1,0

Máscaras 3 e 4 de baixo para cima

0,1	1,1	2,1	3,1	4,1
0,0	1,0	2,0	3,0	1,3
0,1	0,1	1,1	0,2	1,2
1,0	0,0	1,0	0,1	1,1
1,1	0,1	1,0	0,0	1,0

•
$$d^2 = \chi^2 + y^2$$

1	2	5	10	17
0	1	4	9	10
1	1	2	4	5
1	0	1	1	2
2	1	1	0	1

- 4 passadas em n² pixels
 - Complexidade O(n²)
- Problema:
 - Resultado Inexato!

4	5	8	13	20	29
1	2	5	10	17	20
p1	1	4	q	10	13
1	1	2	4	5	8
1	p2	1	1	2	5
2	1	1	р3	1	4

TDEs Exatas por Varredura Raster

- 1999: Cuisenaire
- Correções sobre Danielsson
- Restaura conectividade das RVs
- Não foi provado se é exato ou linear
- Apenas alguns testes empíricos

TDEs Exatas por Varredura Raster

- 2004: Shih
- Máscara 3x3
- 2 passadas
- Demonstrações de corretude e complexidade
- Nenhum teste empírico
- Nenhuma comparação com outros métodos

Algoritmos de Propagação

- A partir dos pixels pretos, propagar distâncias
- Base da Implementação:
 - Algoritmo de Dijkstra

- 1. Inicialize a distância de todo pixel branco para um valor suficientemente alto.
- 2. Inicialize um conjunto auxiliar de pixels, denominado *Conjunto de Contorno*, para armazenar os pixels de fronteira.
- 3. Enquanto o Conjunto de Contorno não está vazio, faça:
 - (a) Remova um pixel do Conjunto de Contorno, denominado pixel central.
 - (b) Para cada vizinho branco do pixel central, faça:
 - Calcule uma nova distância para o vizinho, baseando-se na distância do pixel central.
 - ii. Se esta distância nova for menor que a distância corrente do vizinho:
 - atualize sua distância corrente como sendo a menor.
 - coloque esse vizinho no Conjunto de Contorno.

- Cada pixel fonte identificado por uma cor
 - Didática apenas

- Inserir pixels de interesse em uma fila com custo 0
- Demais pixels têm custo infinito

Remova um pixel p da fila

- Remova um pixel p da fila
- Para cada vizinho q

- Remova um pixel p da fila
- Para cada vizinho q
- Deduza D'(q) usando D(p)

- Remova um pixel p da fila
- Para cada vizinho q
 - Deduza D'(q) usando D(p)
- → Se D'(q) < D(q)</p>
 - Atualize D(q)
 - Insira q na fila

- Remova um pixel p da fila
- Para cada vizinho q
 - Deduza D'(q) usando D(p)
 - Se D'(q) < D(q)
 - Atualize D(q)
 - Insira q na fila

- Remova um pixel p da fila
- Para cada vizinho q
 - Deduza D'(q) usando D(p)
 - Se D'(q) < D(q)
 - Atualize D(q)
 - Insira q na fila

- Remova um pixel p da fila
- 🖊 🔹 Para cada vizinho q
 - Deduza D'(q) usando D(p)

- Atualize D(q)
- Insira q na fila

- Remova um pixel p da fila
- Para cada vizinho q
 - Deduza D'(q) usando D(p)
 - Se D'(q) < D(q)
 - Atualize D(q)
 - Insira q na fila

- Remova um pixel p da fila
- Para cada vizinho q
 - Deduza D'(q) usando D(p)
 - Se D'(q) < D(q)
 - Atualize D(q)
 - Insira q na fila

- Remova um pixel p da fila
- Para cada vizinho q
 - Deduza D'(q) usando D(p)
 - Se D'(q) < D(q)
 - Atualize D(q)
 - Insira q na fila

- Remova um pixel p da fila
- Para cada vizinho q
 - Deduza D'(q) usando D(p)
 - Se D'(q) < D(q)
 - Atualize D(q)
 - Insira q na fila

- Remova um pixel p da fila
- Para cada vizinho q
 - Deduza D'(q) usando D(p)
 - Se D'(q) < D(q)
 - Atualize D(q)
 - Insira q na fila

- Remova um pixel p da fila
- Para cada vizinho q
 - Deduza D'(q) usando D(p)
 - Se D'(q) < D(q)
 - Atualize D(q)
 - Insira q na fila

- Remova um pixel p da fila
- Para cada vizinho q
- Deduza D'(q) usando D(p)
 - Se D'(q) < D(q)
 - Atualize D(q)
 - Insira q na fila

- Remova um pixel p da fila
- Para cada vizinho q
 - Deduza D'(q) usando D(p)
 - Se D'(q) < D(q)
 - Atualize D(q)
 - Insira q na fila

- Remova um pixel p da fila
- Para cada vizinho q
 - Deduza D'(q) usando D(p)
 - Se D'(q) < D(q)
 - Atualize D(q)
 - Insira q na fila

- Remova um pixel p da fila
- Para cada vizinho q
 - Deduza D'(q) usando D(p)
 - Se D'(q) < D(q)
 - Atualize D(q)
 - Insira q na fila

- Remova um pixel p da fila
- Para cada vizinho q
 - Deduza D'(q) usando D(p)
 - Se D'(q) < D(q)
 - Atualize D(q)
 - Insira q na fila

0	1	4	2	1
1	2	4	1	0
4	5	5	2	1

- Remova um pixel p da fila
- Para cada vizinho q
 - Deduza D'(q) usando D(p)
 - Se D'(q) < D(q)
 - Atualize D(q)
 - Insira q na fila

0	1	4	2	1
1	2	4	1	0
4	5	5	2	1

- Remova um pixel p da fila
- Para cada vizinho q
 - Deduza D'(q) usando D(p)
 - Se D'(q) < D(q)
 - Atualize D(q)
 - Insira q na fila

0	1	4	2	1
1	2	4	1	0
4	5	5	2	1

- Remova um pixel p da fila
- Para cada vizinho q
 - Deduza D'(q) usando D(p)
 - Se D'(q) < D(q)
 - Atualize D(q)
 - Insira q na fila

- Gargalo:
 - Escolher pixel de menor custo da lista
- Em imagens, os custos são:
 - Inteiros positivos
 - Limitados
- Solução:
 - Utilizar bucket sort
- Denota-se PSN:
 - Essa TDE com vizinhança fixa

- Problema:
 - Uso de visinhança fixa acarreta erros!
- Solução Eficiente:
 - Usar visinhanças maiores onde necessário
 - Método de Cuisenaire, 1999

Método de Cuisenaire

- Problemas:
 - Eficiência não demonstrada
 - Acredita-se: O(n²)
 - Exatidão não demonstrada
- Foram realizados testes empíricos
 - Porém insuficientes
- Detalhes omissos ou errados no artigo

Outros Métodos de Propagação

- Image Foresting Transform (IFT)
 - -2002
- Abstração de vários problemas de imagens usando grafos
- Resolvidos eficientemente por Dijkstra
- TDE por IFT
 - Atualmente é o PSN
 - Logo, é inexato
- Vantagem: Teoria sólida e código eficiente e unificado

Outros Métodos de Propagação

- Eggers 1998
- Utiliza duas listas
- O(n³)
 - Mas pode ser rápido em média
- Exatidão demonstrada
- Testes empíricos
 - Apenas uma idéia geral
 - Seriam necessários mais testes

TDE por Varredura Independente

Método de Maurer

Primeiro passo: TDE 1D

```
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
```


- Provado ser linear
- Análise Empírica
 - Relatada brevemente
 - Nada mostrado
- Extensível a n-D
- Paralelizável

Varredura Independente:

Outros algoritmos

- Saito 1994
- 2a etapa:
 - Restringe pixels a serem buscados usando TDE 1D da 1a etapa
 - Propriedades baseadas em interseção de parábolas restringem ainda mais a busca
- Fácil de implementar
- Extensível a n-D
- O(n³), mas parece ser rápido na média

Varredura Independente:

Outros algoritmos

- Lotufo-Zampirolli, 2001
- Morfologia Matemática
- Decomposição de elemento estruturante euclidiano em elementos 1D
- Erosões eficientes usando filas 1D
- Acredita-se:
 - $O(n^3)$
- Testes publicados são extremamente positivos

Avaliação Comparativa

Algoritmos testados

- Varredura Independente
 - Maurer 2003
 - Saito 1994
 - Lotufo-Zampirolli 2001
- Propagação Ordenada
 - PMN de Cuisenaire 1999
 - Eggers 1998

- Um pixel no canto da imagem
 - Maior distância possível
- Círculo branco inscrito
- Imagem meia-preenchida
- Pixels pretos aleatórios
 - Desempenho relativo ao nro. de pontos de interesse

Imagens Teste

Uma linha girando de 0° a 90°

- Uma linha girando de 0° a 90°
- Imagens Binarizadas de Objetos Reais
 - Bordas binarizadas

- Quadrados Aleatórios. Exemplo:
 - Porcentagem p de quadrados pretos
 - Rotacionados de um ângulo θ
 - Tamanhos dos quadrados sorteados em um intervalo

- Quadrados Aleatórios. Exemplo:
 - Porcentagem p de quadrados pretos
 - Rotacionados de um ângulo θ
 - Tamanhos dos quadrados sorteados em um intervalo

Pixel no canto

- Quadrados Aleatórios. Exemplo:
 - Surpresa: Cuisenaire

Círculo

Bordas de Lenna

Imagem meia-preenchida

- Surpresa:
 - Maurer

Pixels Aleatórios

Pixels Aleatórios

Linha giratória

Linha giratória

- Ângulos fixos
- 100x100

- Ângulos fixos
- 3000x3000

- Porcentagem fixa
- 100x100

- Porcentagem fixa
- 3000x3000

Exatidão

- Único inexato: Cuisenaire
 - Quadrados aleatórios
 - Círculo 300x300
 - Lenna a partir de 500x500
 - Reta giratória (exceto ângulo reto)
- Ainda não determinamos se o erro está na teoria ou na implementação

Observações

- Comportamento bastante variado
- Velocidade proporcional à quantidade de pixels de interesse
- Também depende muito da geometria
- Exemplo:
 - Imagens com 50% de pixels
 - Comportamentos bem diferentes!

Cuisenaire

- Pior caso para imagens com muitos pixels brancos
- O método mais dependente do número de pixels de interesse
- Relativamente estável à inclinação
- Linear relativo ao tamanho da imagem para imagem da reta e quadrados

Maurer

- O mais estável relativo ao conteúdo
- Mais rápido para a maioria dos casos
- Relativamente lento para imagens com muitos pixels de interesse
 - Mas nunca ficou mais que 6 vezes mais lento que Saito

Saito

- Bem na média
- Nunca foi o mais lento
- O mais fácil de implementar
- Pior caso: reta inclinada a 60°
 - 40 vezes mais lento que Maurer
- Bastante dependente ao conteúdo

Lotufo-Zampirolli

- Desempenho mediano
- Não foi o melhor para nenhuma imagem testada
- Estável ao número de pixels de interesse
- Depende muito da orientação

Eggers

- O mais dependente do conteúdo
- Foi o melhor para:
 - Imagem meia-preenchida
 - Imagem de quadrados 50% a 0°
 - Um ponto no canto
- Foi o pior para:
 - Bordas de Lenna
 - Círculo inscrito
 - Algumas porcentagens e inclinações das outras imagens

Conclusões e Perspectivas

Principais conclusões

- Maurer e Saito parecem ser os melhores algoritmos
 - Saito mais fácil que Maurer
 - Maurer se mostrou linear e estável, Saito não
- A implementação de Cuisenaire utilizada não é linear nem exata
- Eggers e Lotufo-Zampirolli, no geral, mostraram desempenho relativo inferior e uma dependência grande ao conteúdo
- O desempenho dos algoritmos avançados de TDE dependem muito do conteúdo da imagem

Contribuições

- Levantamento bibliográfico atualizado e organizado
- Descrição inédita dos métodos
 - Uniformidade
 - Ênfase nos conceitos-chave
 - Elucida passagens obscuras dos originais
- Validação dos algoritmos de TDE
- Implementação confiável e acessível
 - Será disponibilizada em software livre
 - Extensivamente testada
 - Interface com Scilab

Contribuições

- Algoritmos mais confiáveis comprovadamente eficientes
- Potencial para futuros avanços teóricos
 - Experimentos forneceram evidência para propriedades a serem provadas futuramente
 - Insight para novos algoritmos
- Metodologia aplicável a outros problemas correlatos

Contribuições

- Validações futuras facilitadas
- Utilidade do trabalho é ampla
 - A TDE é base de diversos outros operadores, técnicas e aplicações

Trabalho Futuro

- Extensão dos métodos para outros problemas
 - Eixos mediais multi-escala
 - Diagramas de Voronoi
- Tratar outros domínios
 - 3D
 - Domínios não-convexos
- Extensão para outras métricas
 - Segmentação
- Incluir métodos baseados em EDPs
- Estudo teórico aprofundado

Trabalho Futuro

- Incorporar mais imagens teste
- Analisar formalmente o método de Shih2004

- A. Rosenfeld and J. Pfaltz, "Sequential operations in digital picture processing," *Journal of the ACM*, vol. 13, no. 4, 1966.
- G. Borgefors, "Distance transformations in arbitrary dimensions," Computer Vision, Graphics, and Image Processing, vol. 27, pp. 321–345, 1984.
- G. Borgefors, "Distance transformations in digital images," Computer Vision, Graphics, and Image Processing, vol. 34, pp. 344–371, 1986.
- P.-E. Danielsson, "Euclidean distance mapping," Computer Graphics and Image Processing, vol. 14, pp. 227–248, 1980.
- D. W. Paglieroni, "Distance transforms: Properties and machine vision applications," *Graphical Models and Image Processing*, vol. 54, no. 1, pp. 56–74, 1992.
- T. Saito and J. Toriwaki, "New algorithms for Euclidean distance transformations of an n-dimensional digitised picture with applications," *Pattern Recognition*, vol. 27, no. 11, pp. 1551–1565, 1994.
- H. Eggers, "Two fast Euclidean distance transformations in \mathbb{Z}^2 based on sufficient propagation," Computer Vision and Image Understanding, vol. 69, pp. 106–116, jan 1998.

- O. Cuisenaire, Distance Transformations: Fast Algorithms and Applications to Medical Image Processing. PhD thesis, Université Catholique de Louvain, Belgique, oct 1999.
- O. Cuisenaire and B. Macq, "Fast Euclidean distance transformation by propagation using multiple neighborhoods," *Computer Vision and Image Understanding*, vol. 76, no. 2, pp. 163–172, 1999.
- O. Cuisenaire and B. Macq, "Fast and exact signed Euclidean distance transformation with linear complexity," in *ICASSP99 IEEE Intl Conference on Acoustics, Speech and Signal Processing*, vol. 6, (Phoenix, USA), pp. 3293–3296, mar 1999.
- C. Maurer, R. Qi, and V. Raghavan, "A linear time algorithm for computing the Euclidean distance transform in arbitrary dimensions," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 25, pp. 265–270, feb 2003.

- F. Y. Shih and Y.-T. Wu, "Fast Euclidean distance transformation in two scans using a 3 × 3 neighborhood," Computer Vision and Image Understanding, vol. 93, pp. 195 205, feb 2004.
- R. Lotufo and F. Zampirolli, "Fast multi-dimensional parallel Euclidean distance transform based on mathematical morphology," in *Proceedings of SIBGRAPI*, XIV Brazilian Symposium on Computer Graphics and Image Processing, pp. 100–105, IEEE Computer Society, 2001.
- R. A. Lotufo and F. A. Zampirolli, "Multidimensional parallel EDT using 1d erosions by propagation," march 2003. submetido.
- F. A. Zampirolli, Transformada de Distância por Morfologia Matemática. PhD thesis, UNICAMP, Campinas, Brasil, jun 2003.
- A. Falcao, J. Stolfi, and R. A. Lotufo, "The image foresting transform: theory, algorithms, and applications," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 26, pp. 19–29, jan 2004.

Implementações

- SIP- Scilab Image Processing Toolbox
 - http://siptoolbox.sourceforge.net
- Animal An Imaging Library
 - http://animal.sourceforge.net

Futuramente:

- Referências categorizadas:
 - www.hotreference.com
- Resultados completos:
 - http://cyvision.if.sc.usp.br/~rfabbri/edt

