

# Aprendizagem - HomeWork 1

Pedro Curvo (ist1102716)

Salvador Torpes (ist1102474)

 $1^{\circ}$  Semestre - 23/24

#### 1 Dataset

Considering dataset D:

| D                     | <i>y</i> <sub>1</sub> | <i>y</i> <sub>2</sub> | <i>y</i> <sub>3</sub> | <i>y</i> <sub>4</sub> | Yout |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------|
| <i>x</i> <sub>1</sub> | 0.24                  | 1                     | 1                     | 0                     | А    |
| <i>x</i> <sub>2</sub> | 0.06                  | 2                     | 0                     | 0                     | В    |
| <i>X</i> <sub>3</sub> | 0.04                  | 0                     | 0                     | 0                     | В    |
| <i>X</i> <sub>4</sub> | 0.36                  | 0                     | 2                     | 1                     | С    |
| <i>X</i> <sub>5</sub> | 0.32                  | 0                     | 0                     | 2                     | С    |
| <i>x</i> <sub>6</sub> | 0.68                  | 2                     | 2                     | 1                     | А    |
| <i>X</i> <sub>7</sub> | 0.90                  | 0                     | 1                     | 2                     | А    |
| <i>x</i> <sub>8</sub> | 0.76                  | 2                     | 2                     | 0                     | А    |
| <i>X</i> 9            | 0.46                  | 1                     | 1                     | 1                     | В    |
| x <sub>10</sub>       | 0.62                  | 0                     | 0                     | 1                     | В    |
| x <sub>11</sub>       | 0.44                  | 1                     | 2                     | 2                     | С    |
| x <sub>12</sub>       | 0.52                  | 0                     | 2                     | 0                     | С    |

Tabela 1: Dataset D

#### 2 Exercício 1.

De modo a corretamente completar a árvore de decisão, é necessário calcular o Information gain (IG) da variável de output  $y_{out}$  condicionada a cada uma das variáveis  $y_2$ ,  $y_3$  e  $y_4$ :

# 2.1 Information Gain de $y_{out}$ condicionada a $y_2$

$$IG(y_{out}|y_2) = H(y_{out}) - H(y_{out}|y_2)$$

$$H(y_{out}) = \left(-\sum_{i=1}^{3} p_{out_i}(\log_2 p_{out_i})\right) = -\left(\frac{4}{12}\log_2\left(\frac{4}{12}\right) + \frac{4}{12}\log_2\left(\frac{4}{12}\right) + \frac{4}{12}\log_2\left(\frac{4}{12}\right)\right) = 1.58496$$

$$H(y_{out}|y_2) = \sum_{i=0}^{2} p_{y_2=i} H(y_{out}|y_2=i)$$

Tabela dividida em 3 sub-tabelas, cada uma com os dados que verificam  $y_2 = 0$ ,  $y_2 = 1$  e  $y_2 = 2$ , respetivamente:

| D                      | <i>y</i> <sub>2</sub> | Yout |
|------------------------|-----------------------|------|
| <i>X</i> 3             | 0                     | В    |
| <i>X</i> <sub>4</sub>  | 0                     | С    |
| <i>X</i> 5             | 0                     | С    |
| <i>X</i> <sub>7</sub>  | 0                     | А    |
| x <sub>10</sub>        | 0                     | В    |
| <i>x</i> <sub>12</sub> | 0                     | С    |

| D               | <i>y</i> <sub>2</sub> | Yout |
|-----------------|-----------------------|------|
| $x_1$           | 1                     | Α    |
| <i>X</i> 9      | 1                     | В    |
| x <sub>11</sub> | 1                     | С    |

| D                      | <i>y</i> <sub>2</sub> | Yout |
|------------------------|-----------------------|------|
| <i>x</i> <sub>1</sub>  | 1                     | Α    |
| <i>X</i> 9             | 1                     | В    |
| <i>x</i> <sub>11</sub> | 1                     | С    |

Tabela 2: Dataset D com  $y_2 = 0$ 

Tabela 3: Dataset D com  $y_2 = 1$ 

Tabela 4: Dataset D com  $y_2 = 1$ 

$$H(y_{out}|y_2 = 0) = -\left(\frac{1}{6}\log_2\left(\frac{1}{6}\right) + \frac{2}{6}\log_2\left(\frac{2}{6}\right) + \frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) = 1.45915$$

$$H(y_{out}|y_2 = 1) = -\left(\frac{1}{3}\log_2\left(\frac{1}{3}\right) + \frac{1}{3}\log_2\left(\frac{1}{3}\right) + \frac{1}{3}\log_2\left(\frac{1}{3}\right)\right) = 1.58496$$

$$H(y_{out}|y_2 = 2) = -\left(\frac{1}{3}\log_2\left(\frac{1}{3}\right) + \frac{2}{3}\log_2\left(\frac{2}{3}\right)\right) = 0.9183$$

Assim, podemos calcular a entropia de yout condicionada a y2:

$$H(y_{out}|y_2) = \frac{6}{12}H(y_{out}|y_2 = 0) + \frac{3}{12}H(y_{out}|y_2 = 1) + \frac{3}{12}H(y_{out}|y_2 = 2) =$$

$$= \frac{6}{12} \times 1.45915 + \frac{3}{12} \times 1.58496 + \frac{3}{12} \times 0.9183 = 1.35538$$

Por fim, podemos calcular o Information Gain:

$$IG(y_{out}|y_2) = H(y_{out}) - H(y_{out}|y_2) = 1.58496 - 1.35538 = 0.22958$$

# 2.2 Information Gain de $y_{out}$ condicionada a $y_3$

$$IG(y_{out}|y_3) = H(y_{out}) - H(y_{out}|y_3)$$

$$H(y_{out}|y_3) = \sum_{i=0}^{2} p_{y_3=i} H(y_{out}|y_3=i)$$

Tabela dividida em 3 sub-tabelas, cada uma com os dados que verificam  $y_3 = 0$ ,  $y_3 = 1$  e  $y_3 = 2$ , respetivamente:

| D                     | <i>y</i> <sub>3</sub> | Yout |
|-----------------------|-----------------------|------|
| <i>x</i> <sub>2</sub> | 0                     | В    |
| <i>X</i> 3            | 0                     | В    |
| <i>X</i> 5            | 0                     | С    |
| x <sub>10</sub>       | 0                     | В    |

Tabela 5: Dataset D com 
$$y_3 = 0$$

| D                     | <i>y</i> <sub>3</sub> | Yout |
|-----------------------|-----------------------|------|
| <i>x</i> <sub>1</sub> | 1                     | Α    |
| X7                    | 1                     | Α    |
| <i>X</i> 9            | 1                     | В    |

Tabela 6: Dataset D com  $y_3 = 1$ 

| D                     | <i>y</i> <sub>3</sub> | Yout |
|-----------------------|-----------------------|------|
| <i>x</i> <sub>4</sub> | 2                     | С    |
| <i>x</i> <sub>6</sub> | 2                     | А    |
| <i>x</i> <sub>8</sub> | 2                     | Α    |
| x <sub>11</sub>       | 2                     | С    |
| x <sub>12</sub>       | 2                     | С    |

Tabela 7: Dataset D com  $y_3 = 2$ 

$$H(y_{out}|y_3 = 0) = -\left(\frac{3}{4}\log_2\left(\frac{3}{4}\right) + \frac{1}{4}\log_2\left(\frac{1}{4}\right)\right) = 0.81128$$

$$H(y_{out}|y_3 = 1) = -\left(\frac{2}{3}\log_2\left(\frac{2}{3}\right) + \frac{1}{3}\log_2\left(\frac{1}{3}\right)\right) = 0.9183$$

$$H(y_{out}|y_3 = 2) = -\left(\frac{2}{5}\log_2\left(\frac{2}{5}\right) + \frac{3}{5}\log_2\left(\frac{3}{5}\right)\right) = 0.97095$$

Assim, podemos calcular a entropia de yout condicionada a y3:

$$H(y_{out}|y_3) = \frac{4}{12}H(y_{out}|y_3 = 0) + \frac{3}{12}H(y_{out}|y_3 = 1) + \frac{5}{12}H(y_{out}|y_3 = 2) =$$

$$= \frac{4}{12} \times 0.81128 + \frac{3}{12} \times 0.9183 + \frac{5}{12} \times 0.97095 = 0.90456$$

Por fim, podemos calcular o Information Gain:

$$IG(y_{out}|y_3) = H(y_{out}) - H(y_{out}|y_3) = 1.58496 - 0.90456 = 0.6804$$

## 2.3 Information Gain de $y_{out}$ condicionada a $y_4$

$$IG(y_{out}|y_4) = H(y_{out}) - H(y_{out}|y_4)$$

$$H(y_{out}|y_4) = \sum_{i=0}^{2} p_{y_4=i} H(y_{out}|y_4=i)$$

Tabela dividida em 3 sub-tabelas, cada uma com os dados que verificam  $y_4 = 0$ ,  $y_4 = 1$  e  $y_4 = 2$ , respetivamente:

| D                     | <i>y</i> <sub>4</sub> | Yout |
|-----------------------|-----------------------|------|
| $x_1$                 | 0                     | Α    |
| <i>x</i> <sub>2</sub> | 0                     | В    |
| <i>x</i> <sub>3</sub> | 0                     | В    |
| <i>x</i> <sub>8</sub> | 0                     | Α    |
| x <sub>12</sub>       | 0                     | С    |

| D                     | <i>y</i> <sub>4</sub> | Yout |
|-----------------------|-----------------------|------|
| <i>X</i> <sub>4</sub> | 1                     | С    |
| <i>x</i> <sub>6</sub> | 1                     | А    |
| <i>X</i> 9            | 1                     | В    |
| x <sub>10</sub>       | 1                     | В    |

Tabela 8: Dataset D com  $y_4 = 0$ 

Tabela 9: Dataset D com  $y_4 = 1$ 

Tabela 10: Dataset D com  $y_4 = 2$ 

$$H(y_{out}|y_4 = 0) = -\left(\frac{2}{5}\log_2\left(\frac{2}{5}\right) + \frac{2}{5}\log_2\left(\frac{2}{5}\right) + \frac{1}{5}\log_2\left(\frac{1}{5}\right)\right) = 1.52193$$

$$H(y_{out}|y_4 = 1) = -\left(\frac{1}{4}\log_2\left(\frac{1}{4}\right) + \frac{2}{4}\log_2\left(\frac{2}{4}\right) + \frac{1}{4}\log_2\left(\frac{1}{4}\right)\right) = 1.5$$

$$H(y_{out}|y_4 = 2) = -\left(\frac{1}{3}\log_2\left(\frac{1}{3}\right) + \frac{2}{3}\log_2\left(\frac{2}{3}\right)\right) = 0.9183$$

Assim, podemos calcular a entropia de yout condicionada a y4:

$$H(y_{out}|y_4) = \frac{5}{12}H(y_{out}|y_4 = 0) + \frac{4}{12}H(y_{out}|y_4 = 1) + \frac{3}{12}H(y_{out}|y_4 = 2) =$$

$$= \frac{5}{12} \times 1.52193 + \frac{4}{12} \times 1.5 + \frac{3}{12} \times 0.9183 = 1.3637$$

Por fim, podemos calcular o Information Gain:

$$IG(y_{out}|y_4) = H(y_{out}) - H(y_{out}|y_4) = 1.58496 - 1.3637 = 0.22126$$

## 2.4 Construção da árvore de decisão

Ordenando os IG por ordem decrescente obtemos:

$$IG(y_{out}|y_3) > IG(y_{out}|y_2) > IG(y_{out}|y_4)$$

Assim, o nó com  $y_1 > 0.4$  corresponde a  $y_3$ . A variável  $y_3$  tem 3 possíveis valores, pelo que a árvore de decisão terá 3 ramos: como estamos condicionados a  $y_1 > 0.4$ , temos as seguintes ocorrências em cada ramo:

$$\#(y_3 = 0|y_1 > 0.4) = 1$$
  
 $\#(y_3 = 1|y_1 > 0.4) = 2$   
 $\#(y_3 = 2|y_1 > 0.4) = 4$ 

Assim, apenas o nó  $y_3 = 2$  tem pelo menos 4 ocorrências, logo, é o único que é expandido para a variável  $y_2$ .

Nenhum dos ramos da variável  $y_2$  tem pelo menos 4 ocorrências, pelo que nenhum deles é expandido para a variável  $y_4$  e termina a árvore de decisão.

A árvore de decisão final é:

