

KLASIFIKASI

- Klasifikasi adalah algoritma yang menggunakan data dengan target/class/label berupa nilai kategorikal (nominal).
- Contoh, apabila target/class/label adalah pendapatan, maka bisa digunakan nilai nominal (kategorikal) sbb: pendapatan besar, menengah, kecil.
- Contoh lain adalah rekomendasi contact lens, apakah menggunakan yang jenis soft, hard atau none.
- Algoritma klasifikasi yang biasa digunakan adalah: Naive Bayes, K-Nearest Neighbor, C4.5, ID3, CART, Linear Discriminant Analysis, etc.

BAYESIAN CLASSIFICATION

- Bayesian Classification adalah pengklasifikasian statistik yang dapat digunakan untuk memprediksi probabilitas keanggotaan suatu class.
- Bayesian Classification didasarkan pada teorema Bayes yang memiliki kemampuan klasifikasi serupa decision tree dan neural network.
- Bayesian Classification terbukti memiliki akurasi dan kecepatan yang tinggi saat diaplikasikan ke dalam database dengan data yang besar.

RUMUS TEOREMA BAYES

Teorema Bayes memiliki bentuk umum sbb:

$$P(H|X) = \frac{P(X|H) P(H)}{P(X)}$$

Keterangan:

X : data dengan class yang belum diketahui

H : hipotesis data X merupakan suatu *class* spesifik

P(H|X): probabilitas hipotesis H berdasar kondisi X

(posteriori probability)

P(H) : probabilitas hipotesis H (*prior probability*)
P(X|H) : probabilitas X berdasar kondisi hipotesis H

P(X) : probabilitas dari X

Contoh Perhitungan

Klasifikasi menggunakan Naive Bayes

Income

Student

Class:

DATA TRAINING

Terdapat dua class dari klasifikasi yang dibentuk yaitu :

C1 => buys_computer = yes C2 => buys_computer = no Id

Age

Nilai X yang belum diketahui Label / Kelas :

```
X =
(
age="<=30", \\ income="Medium", \\ student="Yes", \\ credit_rating="Fair";)
P(C_i|X)=P(C_i)\prod_{k=1}^{N}P(X_k=x_k|C_i)
```

						buys_computer	
Ob	1	<=30	High	No	Fair	No	
	2	<=30	High	No	Excellent	No	
	3	3140	High	No	Fair	Yes	
	4	>40	Medium	No	Fair	Yes	
	5	>40	Low	Yes	Fair	Yes	
	6	>40	Low	Yes	Excellent	No	
	7	3140	Low	Yes	Excellent	Yes	
	8	<=30	Medium	No	Fair	No	
	9	<=30	Low	Yes	Fair	Yes	
	10	>40	Medium	Yes	Fair	Yes	
	11	<=30	Medium	Yes	Excellent	Yes	
	12	3140	Medium	No	Excellent	Yes	
	13	3140	High	Yes	Fair	Yes	
	14	>40	Medium	No	Excellent	No	SU

Credit_rating

PENYELESAIAN (1)

Dibutuhkan untuk memaksimalkan P(X | Ci) P(Ci) untuk i=1, 2

- P(Ci) merupakan prior probability untuk setiap class berdasar data contoh P(buys_computer="yes") = 9/14 = 0.643 P(buys_computer="no") = 5/14 = 0.357
- Hitung P(X | Ci) untuk i=1, 2

```
P(age="<=30"|buys_computer="yes") = 2/9= 0.222
P(age="<=30"|buys_computer="no") = 3/5 = 0.600
P(income="medium"|buys_computer="yes")=4/9=0.444
P(income="medium"|buys_computer="no")=2/5=0.400
P(student="yes"|buys_computer="yes") = 6/9= 0.667
P(student="yes"|buys_computer="no") = 1/5= 0.200
P(credit_rating="fair"|buys_computer="yes")=6/9= 0.667
P(credit_rating="fair"|buys_computer="no")=2/5= 0.400
```

PENYELESAIAN (2)

```
P(X|buys_computer="yes") = 0.222*0.444*0.677*0.677
= 0.044
P(X|buys_computer="no") = 0.600*0.400*0.200*0.400
= 0.019
```

- P(X|buys_computer="yes") P(buys_computer="yes")
 = 0.044 * 0.643 = 0.028
- P(X|buys_computer="no") P(buys_computer="no")
 = 0.019 * 0.357 = 0.007

Kesimpulan: buys_computer = "yes"

