MECS E4510: Evolutionary Computation and Design Algorithms

Term Project: Evolving Soft Robots

Zena-Marie Gonzalez (zg2326)

Fastest Robot: Evolutionary Algorithm

Speed: 0.025719 meters/s

Parallel Hillclimber

Speed: 0.02555 meters/s

Random Search

Speed: 0.01755 meters/s

Encoding

Encoding

Encoding - Materials

- 1. "Tissue" (cyan): k=1,000, b=c=0
 - soft, connects masses without generating force
- 2. "Bone" (white): k=20,000, b=c=0
 - stiff, rigidly connects masses and does not bend or change length
- 3. "Muscle " 1 (red): k=5,000, b=0.02 c=0
 - expands, then contracts in a cycle
- 4. "Muscle " 2 (magenta): k=5,000, b=0.02, $c=\pi$
 - contracts, then expands in a cycle
- 5. "Air" (no image): empty space. Springs with this material are deleted

Mutation

- Add
- Delete
- Swap
- Change type
- Change radius
- Change position

Crossover

Insights

Biological Approximation: Snake-like movement

Biological Approximation: Worm-like movement

Biological Approximation: Caterpillar-like movement

Evolutionary Algorithm, 0.02492 m/s

Complexity: Evolutionary Algorithm vs. Hillclimber

Speed: 0.025719 meters/s

Encoding length: 6

Speed: 0.02555 meters/s

Encoding length: 46

Thank you!