GELSON IEZZI OSVALDO DOLCE CARLOS MURAKAMI

MATEMÁTICA ELEMENTOS DE LOGARITMOS 2

54 exercícios resolvidos250 exercícios propostos com resposta234 testes de vestibular com resposta

3ª edição

Para mais, acesse: http://fuvestibular.com.br/

Capa

Roberto Franklin Rondino Sylvio Ulhoa Cintra Filho Rua Inhambu, 1235 — S. Paulo

Composição e desenhos

AM Produções Gráficas Ltda. Rua Castro Alves, 135 — S. Paulo

Artes

Atual Editora Ltda.

Fotolitos

H.O.P. Fotolitos Ltda. Rua Delmira Ferreira, 325 — S. Paulo

Impressão e acabamento

Gráfica Editora Hamburg Ltda. Rua Apeninos, 294 278-1620 — 278-2648 — 279-9776 São Paulo — SP — Brasil

> CIP-Brasil. Catalogação-na-Fonte Câmara Brasileira do Livro, SP

Fundamentos de matemática elementar (por) Gelson Tezzi (e outros) 5ão Paulo, Atual F977 Ed., 1977lv.1-2. Co-sutores: Carlos Murakami, Osvaldo Dolce e Samuel Hazzan; a autoria dos volumes individuais varia entre os 4 autores. Conteúdo: v.l. Conjuntos, funções.-v.2. Logaritmos.-v.4. Sequencias, matrizes determinantes, sistemss.-v.5. Combinatoria, probabilidade.-v.6. Complexos, polinômica, equações. 1. Matemática (29 grau) I. Dolce, Davaldo, 1938- II. Iezzi, Gelson, 1939- III. Hazzen, Samuel, 1946- IV. Murakami, Carlos, 1943-CDD-510 77-1333

> Indice para catálogo sistemático: 1. Metemática 510

Todos os direitos reservados a **ATUAL EDITORA LTDA** Rua José Antônio Coelho, 785 Telefones: 71-7795 e 549-1720 CEP 04011 — São Paulo — SP — Brasil Para mais, acesse: http://fuvestibular.com.br/

APRESENTAÇÃO

"Fundamentos de Matemática Elementar" é uma coleção em dez volumes elaborada com a pretensão de dar ao estudante uma visão global da Matemática, ao nível da escola de 2º grau. Desenvolvendo os programas em geral adotados para o curso colegial, os "Fundamentos" visam aos alunos em preparativos para exames vestibulares, aos universitários que necessitam rever a Matemática Elementar e também, como é óbvio, àqueles alunos de colegial mais interessados na "rainha das ciências".

No desenvolvimento dos inúmeros capítulos dos livros de "Fundamentos" procuramos seguir uma ordem lógica na apresentação de conceitos e propriedades. Salvo algumas exceções bem conhecidas da Matemática Elementar, as proposições e teoremas estão sempre acompanhados das respectivas demonstrações.

Na estruturação das séries de exercícios, buscamos sempre uma ordenação crescente de dificuldade. Partimos de problemas simples e tentamos chegar a questões que envolvem outros assuntos já vistos, obrigando o estudante a uma revisão. A seqüência do texto sugere uma dosagem para teoria e exercícios. Os exercícios resolvidos, apresentados em meio aos propostos, pretendem sempre dar explicação sobre alguma novidade que aparece. No final do volume o aluno pode encontrar a resposta para cada problema proposto e assim, ter seu reforço positivo ou partir à procura do erro cometido.

A última parte de cada volume é constituída por testes de vestibulares até 1.977 selecionados e resolvidos o que pode ser usado para uma revisão da matéria estudada.

Queremos consignar aqui nossos agradecimentos sinceros ao Prof. Dr. Fernando Furquim de Almeida cujo apoio foi imprescindível para que pudéssemos homenagear nesta coleção alguns dos grandes matemáticos, relatando fatos notáveis de suas vidas e suas obras.

Finalmente, como há sempre uma enorme distância entre o anseio dos autores e o valor de sua obra, gostaríamos de receber dos colegas professores uma apreciação sobre este trabalho, notadamente os comentários críticos, os quais agradecemos.

Os autores

ÍNDICE

CAPITULO I - POTÊNCIAS E RAÍZES

1.	Potência de expoente natural 1-1
Н.	Potência de expoente inteiro negativo 5-1
	Raiz enézima aritmética 8-1
۱۷.	Potência de expoente racional
	Potência de expoente irracional
	Potência de expoente real
٧,,	Totendia de expoeme real
CA	PÍTULO II – FUNÇÃO EXPONENCIAL
	•
ł.	Definição
11.	Propriedades
III,	Imagem
IV,	Gráfico29-
V.	Equações exponenciais
	Inequações exponenciais
• ••	
CA	PÍTULO III – LOGARITMOS
	Conceito de logaritmo
и.	Antilogoritmo
111	Antilogaritmo
	Consequências da definição
	Sistemas de logaritmos
٧.	Propriedades dos logaritmos
VI.	Mudança de base
.com	.br/

CAPITULO IV – FUNÇÃO LOGARÍTMICA
Para mais, acesse: http://fuvestibular.com
I. Definição
II. Propriedades
III. Imagem
IV. Gráfico
CAPÍTULO V - EQUAÇÕES EXPONENCIAIS E LOGARÍTMICAS
f. Equações exponenciais
II. Equações logarítmicas
CAPITULO VI — INEQUAÇÕES EXPONENCIAIS E LOGARITMICAS
I. Inequações exponenciais
II. Inequações logarítmicas97-B
CAPÍTULO VII – LOGARITMOS DECIMAIS
CALLIOCO VII — LOGARITIMOS DECIMAIS
I. Introdução
II. Característica e mantissa110-B
III. Regras da característica
IV. Mantissa
V. Exemplos de aplicações da tábua de logaritmos
RESPOSTAS DOS EXERCÍCIOS121-B
TESTES
RESPOSTAS DOS TESTES

Leonhard Euler (1707 - 1783)

CAPÍTULO I

POTÊNCIAS

E RAÍZES

Cego enxerga longe

Leonhard Euler nasceu em Basiléia, Suíça, onde seu pai era ministro religioso e possuía alguns conhecimentos matemáticos.

Euler foi aluno de Jean Bernoulli e amigo de seus filhos Nicolaus e Daniel, recebendo ampla instrução em Teologia, Medicina, Astronomia, Física, Línguas orientais e Matemática.

Com o auxílio de Bernoulli entrou para a Academia de S. Petersburgo, fundada por Catarina I, ocupando um lugar na seção de Medicina e Fisiologia, e em 1730 passando à seção de Filosofia por ocasião da morte de Nicolaus e afastamento de Daniel. Tornando-se o principal matemático já aos vinte e seis anos, dedicou-se profundamente à pesquisa compondo uma quantidade inigualável de artigos, inclusive para a revista da Academia.

Em 1735 perdeu a visão do olho direito mas suas pesquisas continuaram intensas chegando a escrever até mesmo enquanto brincava com seus filhos.

Conquistou reputação internacional e recebeu menção honrosa na Academia das Ciências de Paris bem como vários prêmios em concursos.

Convidado por Frederico, o Grande, Euler passou 25 anos na Academia de Berlim, voltando à Rússia em 1766.

Euler ocupou-se de quase todos os ramos da Matemática Pura e Aplicada sendo o maior responsável pela linguagem e notações que usamos hoje; foi o primeiro a empregar a letra e como base do sistema de logaritmos naturais, a letra grega π para razão entre comprimento e diâmetro da circunferência e α símbolo i para $\sqrt{-1}$. Deve-se a ele também o uso de letras minúsculas designando lados do triângulo e maiúsculas para seus ângulos opostos; simbolizou logaritmo de x por lx, usou Σ para indicar adição e f(x) para função de x, além de outras notações em Geometria, Álgebra, Trigonometria e Análise.

Euler reuniu Cálculo Diferencial e Método dos Fluxos num só ramo mais geral da Matemática que é a Análise, o estudo dos processos infinitos, surgindo assim sua principal obra, em 1748, a "Introdução à Análise Infinita", baseando-se fundamentalmente em funções, tanto algébricas como transcendentes elementares (trigonométricas, logarítmicas, trigonométricas-inversas e exponenciais).

Foi o primeiro a tratar dos logaritmos como expoentes e com idéia correta sobre logaritmo de números negativos.

Muito interessado no estudo de séries infinitas, obteve notáveis resultados que o levaram a relacionar Análise com Teoria dos Números, e para a Geometria, Euler dedicou um Apêndice da "Introdução" onde dá a representação da Geometria Analítica no espaço.

Euler escreveu em todos os níveis, em várias línguas, publicando mais de 500 livros e artigos.

Os dezessete últimos anos de sua vida passou em total cegueira mas o fluxo de suas pesquisas e publicações não diminuiu, escrevendo com giz em grandes quadros-negros ou ditando para seus filhos.

Manteve sua mente poderosa até os 76 anos quando morreu.

Euler foi descrito pelos matemáticos da época como sendo a própria "Análise encarnada".

1. POTÊNCIA DE EXPOENTE NATURAL

1. Definição

Sejam a um número real e n um número natural. Potência de base a e expoente n é o número a^n tal que:

$$\begin{cases} a^0 = 1 \\ a^n = a^{n-1} \cdot a, \ \forall \ n, \ n \geqslant 1. \end{cases}$$

Desta definição decorre que:

$$a^{1} = a^{0} \cdot a = 1 \cdot a = a$$
 $a^{2} = a^{1} \cdot a = a \cdot a$
 $a^{3} = a^{2} \cdot a = (a \cdot a) \cdot a = a \cdot a \cdot a$

e, de modo geral, para p natural e $p \ge 2$, temos que a^p é um produto de p fatores iguais a a.

2. Exemplos

19)
$$3^0 = 1$$

$$(-2)^0 = 1$$

$$3^{\circ}$$
) $5^1 = 5$

49)
$$(\frac{1}{7})^1 = \frac{1}{7}$$

$$59$$
) $(-3)^1 = -3$

60)
$$3^2 = 3 \cdot 3 = 9$$

$$7^{\circ}$$
) $(-2)^3 = (-2)(-2)(-2) = -8$

89)
$$\left(\frac{2}{3}\right)^4 = \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} = \frac{16}{81}$$

9°)
$$(-0,1)^5 = (-0,1)(-0,1)(-0,1)(-0,1)(-0,1) = -0,00001$$

$$10^{\circ}) \quad 0^3 = 0 \cdot 0 \cdot 0 = 0$$

11?)
$$0^0 = 1$$

$$12^{\circ}$$
) $0^1 = 0$

EXERCICIOS

- B.1 Calcular:
 - a) $(-3)^2$

- b) -3^2 c) -2^3 d) $-(-2)^3$

Solução

a)
$$(-3)^2 = (-3) \cdot (-3) = 9$$

b)
$$-3^2 = -(3) \cdot (3) = -9$$

c)
$$-2^3 = -(2)(2)(2) = -8$$

b)
$$-3^2 = -(3) \cdot (3) = -9$$

d) $-(-2)^3 = -(-2)(-2)(-2) = 8$

- B.2 Calcular:

- a) $(-3)^3$ b) $(-2)^1$ c) 3^4 d) 1^7 e) $(\frac{2}{3})^3$ f) $(-\frac{1}{3})^4$ g) $(\frac{1}{2})^3$ h) $(\frac{2}{3})^0$

- i) -2^2 j) $-(-\frac{3}{2})^3$ k) $(-1)^{10}$ i) $(-1)^{13}$

- m) 0⁷
- n) $(-4)^0$
- o) -5⁰
- p) $-(-1)^{15}$
- Na definição da potência aⁿ, a base a pode ser um número real positivo, nulo ou negativo.

Vejamos o que ocorre em cada um desses casos:

1º caso

$$a = 0 \Rightarrow \begin{cases} 0^n = 0 & \forall n \in \mathbb{N}, n \geqslant 1 \\ 0^0 = 1 \end{cases}$$

2º caso

$$a > 0 \Rightarrow a^n > 0 \quad \forall n \in \mathbb{N}$$

isto é, toda potência de base real positiva e expoente $n \in \mathbb{N}$ é um número real positivo.

$$a < 0 \Rightarrow \begin{cases} a^{2n} > 0 & \forall n \in \mathbb{N} \\ a^{2n+1} < 0 & \forall n \in \mathbb{N} \end{cases}$$

isto é, toda potência de base negativa e expoente par é um número real positivo e toda potência de base negativa e expoente ímpar é um número real negativo.

EXERCÍCIO

B.3 Se $n \in \mathbb{N}$, calcular o valor de $A = (-1)^{2n} - (-1)^{2n+3} + (-1)^{3n} - (-1)^n$

Propriedades

Se $a \in \mathbb{R}$, $b \in \mathbb{R}$, $m \in \mathbb{N}$ e $n \in \mathbb{N}$, então valem as seguintes propriedades:

$$P_1$$
. $a^m \cdot a^n = a^{m+n}$

$$P_2$$
. $\frac{a^m}{a^n} = a^{m-n}$, $a \neq 0$ e $m \geqslant n$

$$P_3$$
. $(a \cdot b)^n = a^n \cdot b^n$

$$P_4$$
. $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$, $b \neq 0$

$$P_s$$
. $(a^m)^n = a^{m \cdot n}$

Demonstração de P₁ (por indução sobre n).

Consideremos m fixo.

19) A propriedade é verdadeira para n = 0, pois

$$a^{m+0} = a^m = a^m \cdot 1 = a^m \cdot a^0$$

2º) Suponhamos que a propriedade seja verdadeira para n = p, isto é $a^m \cdot a^p = a^{m+p}$, e mostremos que é verdadeira para n = p + 1, isto é, $a^{m} \cdot a^{p+1} = a^{m+p+1}$. De fato

$$a^{m} \cdot a^{p+1} = a^{m} \cdot (a^{p} \cdot a) = (a^{m} \cdot a^{p}) \cdot a = a^{m+p} \cdot a = a^{m+p+1}$$

19) A propriedade é verdadeira para n = 0, pois

$$(a \cdot b)^0 = 1 = 1 \cdot 1 = a^0 \cdot b^0$$

29) Suponhamos que a propriedade seja verdadeira para n = p, isto é, $(a \cdot b)^p = a^p \cdot b^p$, mostremos que é verdadeira para n = p + 1, isto é, $(a \cdot b)^{p+1} = a^{p+1} \cdot b^{p+1}$. De fato

$$(a \cdot b)^{p+1} = (a \cdot b)^p \cdot (a \cdot b) = (a^p \cdot b^p) \cdot (a \cdot b) = (a^p \cdot a) \cdot (b^p \cdot b) =$$

= $a^{p+1} \cdot b^{p+1}$

Demonstração de P₅ (por indução sobre n).

Consideremos m fixo.

10) A propriedade é verdadeira para n = 0, pois

$$(a^m)^0 = 1 = a^0 = a^{m \cdot 0}$$

2º) Supondo que a propriedade seja verdadeira para n = p, isto é, $(a^m)^p = a^{m \cdot p}$, mostremos que é verdadeira para n = p + 1, isto é, $(a^m)^{p+1} =$ = $a^{m \cdot (p+1)}$. De fato

$$(a^m)^{p+1} = (a^m)^p \cdot (a^m) = a^m \cdot p \cdot a^m = a^m \cdot p + m = a^m (p+1)$$

As demonstrações das propriedades (P2) e (P4) ficam como exercícios.

As propriedades (P1) a (P5) têm grande aplicação nos cálculos com potências. A elas nos referiremos com o nome simplificado de propriedades (P) nos itens seguintes.

Nas "ampliações" que faremos logo a seguir no conceito de potência. procuraremos manter sempre válidas as propriedades (P), isto é, estas propriedades serão estendidas sucessivamente para potências de expoente inteiro, raciónal e real.

EXERCÍCIOS

B.4 Classificar em verdadeira (V) ou falsa (F) cada uma das sentenças abaixo:

a)
$$5^3 \cdot 5^2 = 5^6$$

b)
$$3^6 \div 3^2 = 3^3$$

c)
$$2^3 \cdot 3 = 6^3$$

d)
$$(2 + 3)^4 = 2^4 + 3^4$$

e)
$$(5^3)^2 = 5^6$$

f)
$$(-2)^6 = 2^6$$

g)
$$\frac{2^7}{2^5} = (-2)^2$$

h)
$$5^2 - 4^2 = 3^2$$

Solução

$$(a^4 \cdot b^3)^3 \cdot (a^2 \cdot b)^2 = (a^4 \cdot 3 \cdot b^3 \cdot 3) \cdot (a^2 \cdot 2 \cdot b^2) = a^{12} \cdot b^9 \cdot a^4 \cdot b^2 =$$

= $a^{12+4} \cdot b^{9+2} = a^{16} \cdot b^{11}$.

B.6 Simplificar as expressões supondo a \cdot b \neq 0.

a)
$$(a^2 \cdot b^3)^2 \cdot (a^3 \cdot b^2)^3$$
 b) $\frac{(a^4 \cdot b^2)^3}{(a \cdot b^2)^2}$ c) $[(a^3 \cdot b^2)^2]^3$

b)
$$\frac{(a^4 \cdot b^2)^3}{(a \cdot b^2)^2}$$

c)
$$[(a^3 \cdot b^2)^2]^3$$

d)
$$\left(\frac{a^4 \cdot b^3}{a^2 \cdot b}\right)^5$$

d)
$$\left(\frac{a^4 \cdot b^3}{a^2 \cdot b}\right)^5$$
 e) $\frac{(a^2 \cdot b^3)^4 \cdot (a^3 \cdot b^4)^2}{(a^3 \cdot b^2)^3}$

B.7 Se a e b são números reais, então em que condições $(a + b)^2 = a^2 + b^2$?

II. POTÊNCIA DE EXPOENTE INTEIRO NEGATIVO

Definição

Dado um número real a, não nulo, e um número n natural, define-se a potência a⁻ⁿ pela relação

$$a^{-n} = \frac{1}{a^n}$$

isto é, a potência de base real, não nula, e expoente inteiro negativo é definida como o inverso da correspondente potência de inteiro positivo.

Exemplos

19)
$$2^{-1} = \frac{1}{2^1} = \frac{1}{2}$$

$$2^{\circ}$$
) $2^{-3} = \frac{1}{2^3} = \frac{1}{8}$

$$3^{\circ}$$
) $(-2)^{-3} = \frac{1}{(-2)^3} = \frac{1}{-8} = -\frac{1}{8}$

49)
$$\left(-\frac{2}{3}\right)^{-2} = \frac{1}{\left(-\frac{2}{3}\right)^2} = \frac{1}{\frac{4}{9}} = \frac{9}{4}$$

5°) $\left(-\frac{1}{2}\right)^{-5} = \frac{1}{\left(-\frac{1}{2}\right)^5} = \frac{1}{-\frac{1}{200}} = -32$

Para mais, acesse: http://fuvestibulai8.om.bj.Com as definições de potência de expoente natural e potência de expoente inteiro negativo, podemos estabelecer a seguinte definição:

Se $a \in \mathbb{R}$ e $n \in \mathbb{Z}$ então

$$a^{n} = \begin{cases} 1 & \text{se } n = 0 \\ a^{n-1} \cdot a & \text{se } n > 0 \\ \frac{1}{a^{-n}} & \text{se } n < 0 \text{ e } a \neq 0 \end{cases}$$

Estas potências tem as propriedades (P)

$$P_1$$
. $a^m \cdot a^n = a^{m+n}$

$$P_2$$
. $\frac{a^m}{a^n} = a^{m-n}$

$$P_3$$
. $(a \cdot b)^n = a^n \cdot b^n$

$$P_4. \quad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$P_5$$
. $(a^m)^n = a^{m \cdot n}$

onde $a \in \mathbb{R}^*$, $b \in \mathbb{R}^*$, $m \in \mathbb{Z}$ e $n \in \mathbb{Z}$.

EXERCÍCIOS

- B.8 Calcular:
- b) (-2)⁻¹

- a) 3^{-1} b) $(-2)^{-1}$ c) -3^{-1} d) $-(-3)^{-1}$ e) 2^{-2} f) $(-3)^{-2}$ g) -5^{-2} h) $(\frac{1}{3})^{-2}$ i) $(\frac{2}{3})^{-1}$ j) $(-\frac{3}{2})^{-3}$ k) $-(\frac{2}{5})^{-2}$ l) $-(-\frac{2}{3})^{-3}$

- m) $(0,1)^{-2}$ n) $(0,25)^{-3}$ o) $(-0,5)^{-3}$ p) $(0,75)^{-2}$ q) $\frac{1}{2^{-3}}$ r) $\frac{1}{(0,2)^{-2}}$ s) $\frac{1}{(-3)^{-3}}$ t) $\frac{1}{(0,01)^{-2}}$
- B.9 Calcular o valor das expressões:
 - a) $\frac{2^{-1} (-2)^2 + (-2)^{-1}}{2^2 + 2^{-2}}$
 - b) $\frac{3^2 3^{-2}}{3^2 + 3^{-2}}$
 - c) $\frac{(-\frac{1}{2})^2 \cdot (\frac{1}{2})^3}{[(-\frac{1}{2})^2]^3}$

Observações

19) Com a definição de potência de expoente inteiro negativo a propriedade (P₄)

$$\frac{a^m}{a^n} = a^{m-n} \qquad (a \neq 0)$$

passa a ter significado para m < n.

29) Se a=0 e $n\in \mathbb{N}^*$, 0^{-n} é um símbolo sem significado.

EXERCÍCIOS

B.10 Classificar em verdadeira (V) ou falsa (F) cada uma das sentenças abaixo:

a)
$$(5^3)^{-2} = 5^{-6}$$

b)
$$2^{-4} = -16$$

c)
$$(\pi + 2)^{-2} = \pi^{-2} + 2^{-2}$$
 d) $3^{-4} \cdot 3^5 = \frac{1}{3}$

d)
$$3^{-4} \cdot 3^5 = \frac{1}{3}$$

e)
$$\frac{7^{-2}}{7^{-5}} = 7^{-3}$$

f)
$$\frac{5^2}{5^{-6}} = 5^8$$

g)
$$2^{-1} - 3^{-1} = 6^{-1}$$
 h) $\pi^1 + \pi^{-1} = 1$

$$\pi^{1} + \pi^{-1} - \frac{1}{2}$$

i)
$$(2^{-3})^{-2} = 2^6$$

$$) \quad 3^2 \cdot 3^{-2} = 1$$

B.11 Se $a \cdot b \neq 0$, simplificar $\frac{(a^3 \cdot b^{-2})^{-2}}{(a^{-4} \cdot b^3)^3}$.

Solução

$$\frac{(a^3 \cdot b^{-2})^{-2}}{(a^{-4} \cdot b^3)^3} = \frac{a^{3(-2)} \cdot b^{(-2)} \cdot (-2)}{a^{-4} \cdot 3 \cdot b^3 \cdot 3} = \frac{a^{-6} \cdot b^4}{a^{-12} \cdot b^9} = a^{-6} \cdot (-12) \cdot b^{4-9} = a^6 \cdot b^{-5} = \frac{a^6}{b^5}$$

B 2 Se $a \cdot b \neq 0$, simplificar as expressões:

a)
$$(a^{-2} \cdot b^3)^{-2} \cdot (a^3 \cdot b^{-2})^3$$

b)
$$\frac{(a^5 \cdot b^3)^2}{(a^{-4} \cdot b)^{-3}}$$

c)
$$[(a^2 \cdot b^{-3})^2]^{-3}$$

d)
$$(\frac{a^3 \cdot b^{-4}}{a^{-2} \cdot b^2})^3$$

e)
$$\frac{(a^3 \cdot b^{-2})^{-2} \cdot (a \cdot b^{-2})^3}{(a^{-1} \cdot b^2)^{-3}}$$
 $a^{-2} \cdot b^2$ f) $(a^{-1} + b^{-1}) \cdot (a + b)^{-1}$

f)
$$(a^{-1} + b^{-1}) \cdot (a + b)^{-1}$$

g)
$$(a^{-2} - b^{-2}) \cdot (a^{-1} - b^{-1})^{-1}$$

B.18 Se $n \in \mathbb{Z}$ e $a \in \mathbb{R}^*$, simplificar as expressões: a) $a^{2n+1} \cdot a^{1-n} \cdot a^{3-n}$ b) $\frac{a^{2n+1}}{n} \cdot a^{3-n}$

b)
$$\frac{a^{2n+3} \cdot a^{n-1}}{a^{2(n-1)}}$$

c)
$$\frac{a^{2(n+1)} \cdot a^{3-n}}{a^{1-n}}$$

d)
$$\frac{a^{n+4} - a^3 \cdot a^n}{a^4 \cdot a^n}$$

III. RAIZ ENÉZIMA ARITMÉTICA

Definição

Dados um número real $a \ge 0$ e um número natural n, demonstra-se que existe sempre um número real positivo ou nulo b tal que $b^n = a$.

Ao número b chamaremos raiz enézima aritmética de a e indicaremos pelo símbolo $\sqrt[n]{a}$ onde a é chamado radicando e n é o índice.

Exemplos

1°)
$$\sqrt[5]{32} = 2$$
 porque $2^5 = 32$

$$2^{\circ}$$
) $\sqrt[3]{8} = 2$ porque $2^3 = 8$

$$3^{\circ}$$
) $\sqrt{9} = 3$ porque $3^2 = 9$

4°)
$$\sqrt[7]{0} = 0$$
 porque $0^7 = 0$

5.9)
$$\sqrt[6]{1} = 1$$
 porque $1^6 = 1$

Observações

- 19) Da definição decorre $(\sqrt[n]{a})^n = a$.
- 2º) Observemos na definição dada que:

$$\sqrt{36} = 6$$
 e não $\sqrt{36} = \pm 6$

Para mais, acesse: http://fuvestibular.com.br/

$$\sqrt{\frac{9}{4}} = \frac{3}{2}$$
 e não $\sqrt{\frac{9}{4}} = \pm \frac{3}{2}$

mas

$$-\sqrt[3]{8} = -2$$
, $-\sqrt{4} = -2$, $\pm\sqrt{9} = \pm3$

são sentenças verdadeiras onde o radical "não é causador" do sinal que o antecede.

Devemos estar atentos no cálculo da raiz quadrada de um quadrado perfeito:

$$\sqrt{a^2} = |a|$$

Exemplos

10)
$$\sqrt{(-5)^2} = |-5| = 5$$
 e não $\sqrt{(-5)^2} = -5$

2°)
$$\sqrt{x^2} = |x|$$
 e não $\sqrt{x^2} = x$

EXERCICIOS

B.14 Classificar em verdadeira (V) ou falsa (F) cada uma das sentenças abaixo:

a)
$$\sqrt[3]{27} = 3$$

a)
$$\sqrt[3]{27} = 3$$
 b) $\sqrt{4} = \pm 2$ c) $\sqrt[4]{1} = 1$

c)
$$\sqrt[4]{1} = 1$$

d)
$$-\sqrt{9} = -3$$

d)
$$-\sqrt{9} = -3$$
 e) $\sqrt[3]{\frac{1}{8}} = \frac{1}{2}$ f) $\sqrt[3]{0} = 0$

f)
$$\sqrt[3]{0} = 0$$

B.15 Classificar em verdadeira (V) ou falsa (F) cada uma das sentenças abaixo:

a)
$$\sqrt{x^4} = x^2$$
, $\forall x \in \mathbb{R} \checkmark$

b)
$$\sqrt{x^{10}} = x^5$$
, $\forall x \in \mathbb{R}$

c)
$$\sqrt{x^6} = x^3$$
, $\forall x \in \mathbb{R}_{+}$

d)
$$\sqrt{(x-1)^2} = x-1$$
, $\forall x \in \mathbb{R} \text{ e } x \ge 1$

e)
$$\sqrt{(x-3)^2} = 3 - x$$
, $\forall x \in \mathbb{R}$ e $x \leq 3$

B.16 Determinar a raiz quadrada aritmética de $(x - 1)^2$.

Solução

$$\sqrt{(x-1)^2} = |x-1| = \begin{cases} x-1 & \text{se } x > 1 \\ 0 & \text{se } x = 1 \\ 1-x & \text{se } x < 1 \end{cases}$$

B.17 Determinar a raiz quadrada aritmética de

a)
$$(x + 2)^2$$

a)
$$(x + 2)^2$$
 b) $(2x - 3)^2$ c) $x^2 - 6x + 9$ d) $4x^2 + 4x + 1$

d)
$$4x^2 + 4x + 1$$

11. Propriedades

Para mais, acesse: http://fuvestibular $p_{s,s}^{om}$.br $\sqrt[p]{n}$ = $\sqrt[pn]{a}$

Se $a \in \mathbb{R}_+$, $b \in \mathbb{R}_+$, $m \in \mathbb{Z}$, $n \in \mathbb{N}^*$ e $p \in \mathbb{N}^*$, temos:

$$R_1$$
. $\sqrt[n]{a^m} = \sqrt[n \cdot p]{a^m \cdot p}$

$$\mathbf{R}_2$$
. $\sqrt[n]{\mathbf{a} \cdot \mathbf{b}} = \sqrt[n]{\mathbf{a}} \cdot \sqrt[n]{\mathbf{b}}$

$$\mathbf{R}_3$$
. $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ $(b \neq 0)$

$$\mathbf{R_4}$$
. $(\sqrt[n]{a})^{m} = \sqrt[n]{a^{m}}$

$$R_5$$
. $\sqrt[p]{\sqrt[n]{a}} = \sqrt[p \cdot n]{a}$

Demonstrações

$$R_1$$
. $\sqrt[n]{a^m} = \sqrt[np]{a^{np}}$

Facamos $\sqrt[n]{a^m} = x$, então:

$$x^{np} = (\sqrt[n]{a^m})^{np} = [(\sqrt[n]{a^m})^n]^p = [a^m]^p \implies x = \sqrt[np]{a^{mp}}$$

$$R_2$$
. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$

Facamos $x = \sqrt[n]{a} \cdot \sqrt[n]{b}$ então

$$x^n = (\sqrt[n]{a} \cdot \sqrt[n]{b})^n = (\sqrt[n]{a})^n \cdot (\sqrt[n]{b})^n = ab \Rightarrow x = \sqrt[n]{a \cdot b}$$

$$R_4$$
. $(\sqrt[n]{a})^m = \sqrt[n]{a^m}$

Considerando n fixo e m ≥ 0, provaremos por indução sobre m.

- 19) A propriedade é verdadeira para m = 0 nois $(\sqrt[n]{a})^0 = 1 = \sqrt[n]{1} = \sqrt[n]{a^0}$
- 29) Supondo a propriedade verdadeira para m = p, isto é $(\sqrt[n]{a})^p = \sqrt[n]{a^p}$. provemos que é verdadeira para m = p + 1, isto é

$$(\sqrt[n]{a})^{p+1} = \sqrt[n]{a^{p+1}}$$

De fato:

$$(\sqrt[n]{a})^{p+1} = (\sqrt[n]{a})^p \cdot \sqrt[n]{a} = \sqrt[n]{a^p} \cdot \sqrt[n]{a} = \sqrt[n]{a^{p+1}}$$

Se m < 0, facamos -m = q > 0, então

$$(\sqrt[n]{a})^{m} = \frac{1}{(\sqrt[n]{a})^{q}} = \frac{1}{\sqrt[n]{a^{q}}} = \frac{1}{\sqrt[n]{a^{-m}}} = \frac{1}{\sqrt[n]{\frac{1}{a^{m}}}} = \frac{1}{\sqrt[n]{a^{m}}} = \sqrt[n]{a^{m}}$$

Facamos $x = \sqrt[p]{\frac{n}{\sqrt{a}}}$. então:

$$x^p = (\sqrt[p]{\sqrt[n]{a}})^p = \sqrt[n]{a} \Longrightarrow (x^p)^n = (\sqrt[n]{a})^n \Longrightarrow x^{pn} = a \Longrightarrow x = \sqrt[pn]{a}$$

A verificação da propriedade (R₃) fica como exercício.

12. Observação

Notemos que se $b \in \mathbb{R}$ e $n \in \mathbb{N}^*$, temos:

para
$$b \ge 0$$
, $b \cdot \sqrt[n]{a} = \sqrt[n]{a \cdot b^n}$

para
$$b < 0$$
, $b \cdot \sqrt[n]{a} = -\sqrt[n]{a \cdot |b|^n}$

isto é, o coeficiente do radical (a menos do sinal) pode ser colocado no radicando com expoente igual ao índice do radical.

Exemplos

19)
$$2 \cdot \sqrt[3]{3} = \sqrt[3]{3 \cdot 2^3} = \sqrt[3]{24}$$

$$2^{\circ}$$
) $-5\sqrt{2} = -\sqrt{2 \cdot 5^2} = -\sqrt{50}$

$$3^{\circ}$$
) $-2\sqrt[4]{2} = -\sqrt[4]{2 \cdot 2^4} = -\sqrt[4]{32}$

EXERCÍCIOS

B.18 Simplificar os radicais:

a)
$$\sqrt[3]{64}$$

b)
$$\sqrt{576}$$
 c) $\sqrt{12}$

c)
$$\sqrt{12}$$

d)
$$\sqrt[3]{2^7}$$

Solução

a)
$$\sqrt[3]{64} = \sqrt[3]{2^6} = 2^2 = 4$$

b)
$$\sqrt{576} = \sqrt{2^6 \cdot 3^2} = \sqrt{2^6} \cdot \sqrt{3^2} = 2^3 \cdot 3 = 24$$

c)
$$\sqrt{12} = \sqrt{2^2 \cdot 3} = \sqrt{2^2} \cdot \sqrt{3} = 2\sqrt{3}$$

d)
$$\sqrt[3]{2^7} = \sqrt[3]{2^6 \cdot 2} = \sqrt[3]{2^6} \cdot \sqrt[3]{2} = 2^2 \cdot \sqrt[3]{2} = 4\sqrt[3]{2}$$

B.19 Simplificar os radicais:

a)
$$\sqrt{144}$$
 b) $\sqrt{324}$ c) $\sqrt[3]{729}$ d) $\sqrt{196}$

c)
$$\sqrt[3]{72}$$

f)
$$\sqrt{1}$$

a)
$$\sqrt{13}$$

h)
$$\sqrt[3]{7}$$

f)
$$\sqrt{18}$$
 g) $\sqrt{128}$ h) $\sqrt[3]{72}$ i) $\sqrt[4]{512}$

B.20 Simplificar as expressões:

a)
$$\sqrt{8} + \sqrt{32} + \sqrt{72} - \sqrt{50}$$

b)
$$5\sqrt{108} + 2\sqrt{243} - \sqrt{27} + 2\sqrt{12}$$

c)
$$\sqrt{20} - \sqrt{24} + \sqrt{125} - \sqrt{54}$$

d)
$$\sqrt{2000} + \sqrt{200} + \sqrt{20} + \sqrt{2}$$

e)
$$\sqrt[3]{128} - \sqrt[3]{250} + \sqrt[3]{54} - \sqrt[3]{16}$$

f)
$$\sqrt[3]{375} - \sqrt[3]{24} + \sqrt[3]{81} - \sqrt[3]{192}$$

g)
$$a\sqrt[3]{ab^4} + b\sqrt[3]{a^4b} + \sqrt[3]{a^4b^4} - 3ab\sqrt[3]{ab}$$

B.21 Simplificar

a)
$$\sqrt{81x^3}$$

b)
$$\sqrt{45x^3y^2}$$

c)
$$\sqrt{12x^4y^5}$$

d)
$$\sqrt{8x^2}$$

B.22 Reduzir ao mesmo índice
$$\sqrt{3}$$
, $\sqrt[3]{2}$ e $\sqrt[4]{5}$.

Solução

O mínimo múltiplo comum entre 2, 3 e 4 é 12, então reduzindo ao índice 12, temos:

$$\sqrt{3} = \sqrt[12]{3^6}$$
, $\sqrt[3]{2} = \sqrt[12]{2^4}$, $\sqrt[4]{5} = \sqrt[12]{5^3}$

B.23 Reduzir ao mesmo índice

a)
$$\sqrt{2}$$
, $\sqrt[3]{5}$, $\sqrt[5]{3}$

b)
$$\sqrt{3}$$
, $\sqrt[3]{4}$, $\sqrt[4]{2}$, $\sqrt[6]{5}$

c)
$$\sqrt[3]{2^2}$$
, $\sqrt{3}$, $\sqrt[4]{5^3}$

d)
$$\sqrt[3]{3^2}$$
, $\sqrt{2^3}$, $\sqrt[5]{5^4}$, $\sqrt[6]{2^5}$

B.24 Efetuar as operações indicadas com as raízes:

a)
$$\sqrt{3} \cdot \sqrt{12}$$
 b) $\sqrt[3]{24} : \sqrt[3]{3}$

b)
$$\sqrt[3]{24} : \sqrt[3]{3}$$

c)
$$\sqrt{\frac{3}{2}}$$
: $\sqrt{\frac{1}{2}}$

d)
$$\sqrt{3} \cdot \sqrt[3]{2}$$

e)
$$\sqrt[3]{4}$$
 : $\sqrt[4]{2}$

d)
$$\sqrt{3} \cdot \sqrt[3]{2}$$
 e) $\sqrt[3]{4} : \sqrt[4]{2}$ f) $\sqrt[3]{\frac{5}{2}} : \sqrt[5]{\frac{1}{2}}$

Solução

a)
$$\sqrt{3} \cdot \sqrt{12} = \sqrt{3 \cdot 12} = \sqrt{36} = 6$$

b)
$$\sqrt[3]{24}$$
: $\sqrt[3]{3} = \frac{\sqrt[3]{24}}{\sqrt[3]{3}} = \sqrt[3]{\frac{24}{3}} = \sqrt[3]{8} = 2$

c)
$$\sqrt{\frac{3}{2}}$$
: $\sqrt{\frac{1}{2}} = \sqrt{\frac{3}{2}} \cdot \sqrt{2} = \sqrt{\frac{3}{2} \cdot 2} = \sqrt{3}$

d)
$$\sqrt{3} \cdot \sqrt[3]{2} = \sqrt[6]{3^3} \cdot \sqrt[6]{2^2} = \sqrt[6]{3^3 \cdot 2^2} = \sqrt[6]{108}$$

e)
$$\sqrt[3]{4}$$
: $\sqrt[4]{2}$ = $\sqrt[12]{(2^2)^4}$: $\sqrt[12]{2^3}$ = $\sqrt[12]{\frac{2^8}{2^3}}$ = $\sqrt[12]{\frac{2^8}{2^3}}$ = $\sqrt[12]{2^5}$ = $\sqrt[12]{32}$

f)
$$3\sqrt{\frac{5}{2}}$$
: $5\sqrt{\frac{1}{2}} = 15\sqrt{\frac{5^5}{2^5}}$: $15\sqrt{\frac{1}{2^3}} = 15\sqrt{\frac{5^5}{2^5}}$: $15\sqrt{\frac{5}{2^5}} = 15\sqrt{\frac{5^5}{2^2}}$

B.25 Efetuar as operações indicadas com as raízes:

a)
$$\sqrt{2} \cdot \sqrt{18}$$

b)
$$\sqrt{2} \cdot \sqrt{15} \cdot \sqrt{30}$$

c)
$$\sqrt[3]{2} \cdot \sqrt[3]{6} \cdot \sqrt[3]{18}$$

f) $\sqrt[3]{4} \cdot \sqrt[3]{6}$

d)
$$\sqrt{2} \cdot \sqrt{6}$$

e)
$$\sqrt{6} \cdot \sqrt{12}$$

i)
$$\sqrt[3]{10} : \sqrt[3]{2}$$

g)
$$\sqrt{6}:\sqrt{3}$$

i) $\sqrt{2}:\sqrt[3]{2}$

h)
$$\sqrt{24}$$
: $\sqrt{6}$

i)
$$\sqrt[3]{10} : \sqrt[3]{2}$$

i) $\sqrt[3]{3} : \sqrt{2}$

m)
$$\sqrt{2}:\sqrt[3]{2}$$

k)
$$\sqrt[3]{3} \cdot \sqrt[4]{2} \cdot \sqrt{5}$$

n)
$$\frac{\sqrt{2} \cdot \sqrt[3]{2}}{\sqrt[4]{2}}$$

o)
$$\frac{\sqrt[4]{5 \cdot \sqrt[3]{6}}}{\sqrt{15}}$$

B.26 Efetuar as operações:

a)
$$(\sqrt{12} - 2\sqrt{27} + 3\sqrt{75}) \cdot \sqrt{3}$$

b)
$$(3 + \sqrt{2}) \cdot (5 - 3\sqrt{2})$$

c)
$$(5 - 2\sqrt{3})^2$$

Solução

a)
$$\sqrt{12} \cdot \sqrt{3} - 2\sqrt{27} \cdot \sqrt{3} + 3\sqrt{75} \cdot \sqrt{3} = \sqrt{36} - 2\sqrt{81} + 3 \cdot \sqrt{225} = 6 - 2 \cdot 9 + 3 \cdot 15 = 33$$

b)
$$(3 + \sqrt{2}) \cdot (5 - 3\sqrt{2}) = 15 - 9\sqrt{2} + 5\sqrt{2} - 6 = 9 - 4\sqrt{2}$$

c)
$$(5 - 2\sqrt{3})^2 = 25 - 20\sqrt{3} + 12 = 37 - 20\sqrt{3}$$

B.27 Efetuar as operações:

a)
$$2\sqrt{3} (3\sqrt{5} - 2\sqrt{20} - \sqrt{45})$$

b)
$$(\sqrt{20} - \sqrt{45} + 3\sqrt{125}) : 2\sqrt{5}$$

c)
$$(6 + \sqrt{2}) \cdot (5 - \sqrt{2})$$

d)
$$(3 + \sqrt{5}) \cdot (7 - \sqrt{5})$$

e)
$$(\sqrt{2} + 3) \cdot (\sqrt{2} - 4)$$

f)
$$(2\sqrt{3} + 3\sqrt{2}) \cdot (5\sqrt{3} - 2\sqrt{2})$$

g)
$$(2\sqrt{5} - 4\sqrt{7}) \cdot (\sqrt{5} + 2\sqrt{7})$$

h)
$$(3 + \sqrt{2})^2$$

i)
$$(4 - \sqrt{5})^2$$

j)
$$(2 + 3\sqrt{7})^2$$

k)
$$(1 - \sqrt{2})^4$$

B.28 Efetuar

a)
$$(4\sqrt{8} - 2\sqrt{18}) : \sqrt[3]{2}$$

b)
$$(3\sqrt{12} + 2\sqrt{48})$$
: $\sqrt[4]{3}$

c)
$$(3\sqrt{18} + 2\sqrt{8} + 3\sqrt{32} - \sqrt{50}) \cdot \sqrt[4]{2}$$

d)
$$(\sqrt{8} + \sqrt[3]{12} + \sqrt[4]{4}) : \sqrt{2}$$

B.29 Efetuar

a)
$$\sqrt{\sqrt{2}-1} \cdot \sqrt{\sqrt{2}+1}$$

b)
$$\sqrt{7 + \sqrt{24}} \cdot \sqrt{7 - \sqrt{24}}$$

c)
$$\sqrt{5 + 2\sqrt{6}} \cdot \sqrt{5 - 2\sqrt{6}}$$

d)
$$\sqrt{2} \cdot \sqrt{2 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2 + \sqrt{2}}} \cdot \sqrt{2 - \sqrt{2 + \sqrt{2}}}$$

B.30 Simplificar:

a)
$$\sqrt{a + \sqrt{b}} \cdot \sqrt{a - \sqrt{b}} \cdot \sqrt{a^2 - b}$$

b)
$$(2\sqrt{x \cdot y} + x\sqrt{y} + y\sqrt{x}) : \sqrt{xy}$$

c) (a
$$\cdot \sqrt{\frac{a}{b}} + 2\sqrt{ab} + b \cdot \sqrt{\frac{b}{a}}$$
) $\cdot \sqrt{ab}$

d)
$$\sqrt{p + \sqrt{p^2 - 1}} \cdot \sqrt{p - \sqrt{p^2 - 1}}$$

e)
$$\sqrt[3]{x + \sqrt{x^2 - y^3}} \cdot \sqrt[3]{x - \sqrt{x^2 - y^3}}$$

B.31 Simplificar as raízes:

a)
$$\sqrt[3]{\sqrt{64}}$$

b)
$$\sqrt{\sqrt[3]{16}}$$

c)
$$\sqrt{a\sqrt[3]{a\sqrt{a}}}$$

B.32 Racionalizar os denominadores das frações:

a)
$$\frac{1}{\sqrt{3}}$$

b)
$$\frac{1}{\sqrt[3]{2}}$$

c)
$$\frac{5}{3-\sqrt{7}}$$

a)
$$\frac{1}{\sqrt{3}}$$
 b) $\frac{1}{\sqrt[3]{2}}$ c) $\frac{5}{3-\sqrt{7}}$ d) $\frac{1}{1+\sqrt{2}-\sqrt{3}}$

a)
$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

b)
$$\frac{1}{\sqrt[3]{2}} = \frac{1}{\sqrt[3]{2}} \cdot \frac{\sqrt[3]{2^2}}{\sqrt[3]{2^2}} = \frac{\sqrt[3]{4}}{2}$$

c)
$$\frac{5}{3-\sqrt{7}} = \frac{5}{3-\sqrt{7}} \cdot \frac{3+\sqrt{7}}{3+\sqrt{7}} = \frac{5(3+\sqrt{7})}{2}$$

d)
$$\frac{1}{1+\sqrt{2}-\sqrt{3}} = \frac{1}{(1+\sqrt{2})-\sqrt{3}} \cdot \frac{(1+\sqrt{2})+\sqrt{3}}{(1+\sqrt{2})+\sqrt{3}} = \frac{1+\sqrt{2}+\sqrt{3}}{3+2\sqrt{2}-3} = \frac{1+\sqrt{2}+\sqrt{3}}{2\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{(1+\sqrt{2}+\sqrt{3})\cdot\sqrt{2}}{4}$$

B.33 Racionalizar o denominador de cada fração:

a)
$$\frac{3}{\sqrt{2}}$$
 b) $\frac{4}{\sqrt{5}}$ c) $\frac{3}{\sqrt{6}}$

b)
$$\frac{4}{\sqrt{5}}$$

c)
$$\frac{3}{\sqrt{6}}$$

d)
$$\frac{10}{3\sqrt{5}}$$

e)
$$\frac{4}{2\sqrt{3}}$$
 f) $\frac{1}{\sqrt[3]{4}}$ g) $\frac{2}{\sqrt[3]{3}}$ h) $\frac{3}{\sqrt[4]{2}}$

f)
$$\frac{1}{\sqrt[3]{4}}$$

g)
$$\frac{2}{\sqrt[3]{3}}$$

h)
$$\frac{3}{\sqrt[4]{2}}$$

i)
$$\frac{1}{2 + \sqrt{3}}$$

i)
$$\frac{1}{2+\sqrt{3}}$$
 j) $\frac{1}{\sqrt{3}-\sqrt{2}}$ k) $\frac{2}{3+2\sqrt{2}}$ l) $\frac{6}{5-3\sqrt{2}}$

$$k) \frac{2}{3 + 2\sqrt{2}}$$

1)
$$\frac{6}{5-3\sqrt{2}}$$

m)
$$\frac{1}{3\sqrt{2}-\sqrt{3}}$$

n)
$$\frac{4}{2\sqrt{5}-3\sqrt{3}}$$

m)
$$\frac{1}{3\sqrt{2}-\sqrt{3}}$$
 n) $\frac{4}{2\sqrt{5}-3\sqrt{2}}$ o) $\frac{1}{2+\sqrt{3}+\sqrt{5}}$ p) $\frac{5}{2-\sqrt{5}+\sqrt{2}}$

$$p) \frac{5}{2 - \sqrt{5} + \sqrt{2}}$$

q)
$$\frac{3}{\sqrt{3}-\sqrt{2}+1}$$
 r) $\frac{\sqrt[3]{9}-1}{\sqrt[3]{3}-1}$

(7) a)
$$\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}} + \sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}$$

c)
$$\frac{\sqrt{48} + \sqrt{27} - \sqrt{125}}{\sqrt{12} + \sqrt{108} - \sqrt{180}}$$

Simplificar:
a)
$$\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}} + \sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}$$
b) $\sqrt{\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}}$
c) $\sqrt{\frac{48+\sqrt{27}-\sqrt{125}}{\sqrt{12}+\sqrt{108}-\sqrt{180}}}$
d) $\sqrt{\frac{3-2\sqrt{2}}{17-12\sqrt{2}}} - \sqrt{\frac{3+2\sqrt{2}}{17+12\sqrt{2}}}$

B.35 Simplificar a expressão:

$$\frac{x + \sqrt{x^2 - 1}}{x - \sqrt{x^2 - 1}} - \frac{x - \sqrt{x^2 - 1}}{x + \sqrt{x^2 - 1}}$$

B.36 Simplificar a expressão
$$\frac{2a\sqrt{1+x^2}}{x+\sqrt{1+x^2}}$$
 sabendo que $x=\frac{1}{2}(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}})$
(0 < b < a).

B.37 Mostre que
$$\sqrt[3]{9(\sqrt[3]{2}-1)} = 1 - \sqrt[3]{2} + \sqrt[3]{4}$$
.

B.38 Mostre que
$$\frac{3}{\sqrt{7-2\sqrt{10}}} + \frac{4}{\sqrt{8+4\sqrt{3}}} = \frac{1}{\sqrt{11-2\sqrt{30}}}$$

B.39 Calcular o valor de:
$$x = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}}}$$

IV. POTÊNCIA DE EXPOENTE RACIONAL

13. Definicão

Dados $a \in \mathbb{R}_+^*$ e $\frac{p}{q} \in \mathbb{Q}$ ($p \in \mathbb{Z}$ e $q \in \mathbb{N}^*$) define-se potência de base a e expoente $\frac{p}{q}$ pela relação

$$a^{p/q} = \sqrt[q]{a^p}$$

Se a = 0 e $\frac{p}{q} > 0$, adotamos a seguinte definição especial

$$0^{p/q} = 0$$

Exemplos

10)
$$3^{1/2} = \sqrt{3}$$

$$2^{\circ}$$
) $2^{1/3} = \sqrt[3]{2}$

$$3^{\circ}$$
) $7^{-2/3} = \sqrt[3]{7^{-2}} = \sqrt[3]{\frac{1}{49}}$

3.9)
$$7^{-2/3} = \sqrt[3]{7^{-2}} = \sqrt[3]{\frac{1}{49}}$$
 4.9) $(\frac{2}{3})^{-1/3} = \sqrt[3]{(\frac{2}{3})^{-1}} = \sqrt[3]{\frac{3}{2}}$

Observações

19) O símbolo $0^{p/q}$ com $\frac{p}{q} < 0$ não tem significado, pois, $\frac{p}{q} \in \mathbb{Q}$ e $\alpha \in \mathbb{N}^* \Longrightarrow p < 0 \Longrightarrow 0^p$ não tem significado.

29) Toda potência de base positiva e expoente racional é um número real positivo

$$a > 0 \Longrightarrow a^{p/q} = \sqrt[q]{a^p} > 0$$

EXERCICIOS

B.40 Expressar na forma de potência de expoente racional os seguintes radicais

a)
$$\sqrt{5}$$

b)
$$\sqrt[3]{4}$$

c)
$$\sqrt[4]{2}$$

a)
$$\sqrt{5}$$
 b) $\sqrt[3]{4}$ c) $\sqrt[4]{27}$ d) $\sqrt{\sqrt{2}}$

e)
$$\sqrt[4]{\sqrt[3]{5}}$$

f)
$$(\sqrt[3]{2^2})^2$$
 g) $\frac{1}{\sqrt{2}}$ h) $\frac{1}{\sqrt[3]{9}}$ i) $(\frac{1}{\sqrt[3]{9}})^2$

h)
$$\frac{1}{\sqrt[3]{9}}$$

i)
$$\left(\frac{1}{\sqrt[4]{8}}\right)$$

B.41 Calcular, substituindo as potências de expoente racional pelos correspondentes radicais:

b)
$$64^{-1/2}$$

a)
$$8^{1/3}$$
 b) $64^{-1/2}$ c) $(0,25)^{-1/2}$ d) $(\frac{9}{4})^{1/2}$ e) $(\frac{1}{32})^{-1/5}$ f) $27^{-2/3}$ g) $(\frac{1}{16})^{3/4}$ h) $(0,81)^{-1/2}$ i) $(0,01)^{-0,5}$

h)
$$(0.81)^{-1/}$$

15. Propriedades

As propriedades (P) se verificam para as potências de expoente racional.

Se $a \in \mathbb{R}_+^*$, $b \in \mathbb{R}_+^*$, $\frac{p}{q} \in \mathbb{Q}$ e $\frac{r}{s} \in \mathbb{Q}$ então valem as seguintes propriedades

$$\mathbf{P}_1$$
. $\mathbf{a}^{\frac{\mathbf{p}}{\mathbf{q}}} \cdot \mathbf{a}^{\frac{\mathbf{r}}{\mathbf{s}}} = \mathbf{a}^{\frac{\mathbf{p}}{\mathbf{q}}} + \frac{\mathbf{r}}{\mathbf{s}}$

$$P_2. \quad \frac{a^{\frac{p}{q}}}{\frac{r}{a^s}} = a^{\frac{p}{q}} - \frac{r}{s}$$

$$P_3$$
. $(a \cdot b)^{\frac{p}{q}} = a^{\frac{p}{q}} \cdot b^{\frac{p}{q}}$

$$P_4. \quad \left(\frac{a}{b}\right)^{\frac{p}{q}} = \frac{\frac{p}{a^q}}{\frac{p}{b^q}}$$

Demonstrações

$$P_{1}. \quad \overline{a^{q}} \cdot \overline{a^{s}} = \sqrt[q]{a^{p}} \cdot \sqrt[5]{a^{r}} = \sqrt[qs]{a^{ps}} \cdot \sqrt[qs]{a^{rq}} = \sqrt[qs]{a^{ps} \cdot a^{rq}} = \sqrt[q$$

$$P_3$$
. $(a \cdot b)^{\frac{p}{q}} = \sqrt[q]{(a \cdot b)^p} = \sqrt[q]{a^p \cdot b^p} = \sqrt[q]{a^p} \cdot \sqrt[q]{b^p} = a^{\frac{p}{q}} \cdot b^{\frac{p}{q}}$

$$P_{5}. \quad (a^{\frac{p}{q}})^{\frac{r}{s}} = \sqrt[s]{(a^{\frac{p}{q}})^{r}} = \sqrt[s]{(\sqrt[q]{a^{p}})^{r}} = \sqrt[s]{\sqrt[q]{a^{pr}}} = \sqrt[q]{\sqrt[s]{a^{p \cdot r}}} = a^{p \cdot \frac{r}{q} \cdot s} = a^{p \cdot \frac{r}{q} \cdot s}$$

Deixamos a demonstração das propriedades P₂ e P₄ como exercício.

EXERCICIOS

B.42 Simplificar fazendo uso das propriedades (P)

a)
$$16^{3/4}$$

c)
$$(81^2)^{1/4}$$

Solução

a)
$$16^{3/4} = (2^4)^{3/4} = 2^3 = 8$$

b)
$$27^{-4/3} = (3^3)^{-4/3} = 3^{-4} = \frac{1}{81}$$

c)
$$(81^2)^{1/4} = [(3^4)^2]^{1/4} = 3^2 = 9$$

B.43 Simplificar fazendo uso das propriedades (P)

a)
$$9^{3/2}$$

c)
$$(\frac{1}{4})^{-1/2}$$
 d) $64^{-2/3}$

e)
$$81^{-0.25}$$
 f) $256^{5/4}$ g) $1.024^{1/10}$
i) $(32^2)^{-0.4}$ i) $(343^{-2})^{1/3}$ k) $(243^{-2})^{-2/5}$

h)
$$(16^{5/4})^{2/5}$$

1)
$$(216^2)^{1/3}$$

B.44 Simplificar

a)
$$2^{2/3} \cdot 2^{-1/5} \cdot 2^{4/5}$$

b)
$$3^{-1/3} \cdot 3^{1/5} \cdot 3^{1/2}$$

c)
$$\frac{5^{-1/2} \cdot 5^{1/3}}{5^{2/5} \cdot 5^{-3/2}}$$

d)
$$\frac{3^{1/2} \cdot 3^{-2/3}}{3^{1/5} \cdot 3^{1/8} \cdot 3^{1/60}}$$

e)
$$\frac{3^{1/2} + 3^{-2/3}}{3^{1/2} \cdot 3^{-2/3}}$$

f)
$$(27^{2/3} - 27^{-2/3}) \cdot (16^{3/4} - 16^{-3/4})$$

a)
$$(125^{2/3} + 16^{1/2} + 343^{1/3})^{1/2}$$

a)
$$\left(n + 3\sqrt{n - 1\sqrt{a^2} \cdot n + 1\sqrt{a^{-1}}}\right) n^2 - 1$$

b)
$$a^{5/6} \cdot b^{1/2} \cdot \sqrt[3]{a^{-1/2} \cdot b^{-1}} \cdot \sqrt{a^{-1} \cdot b^{2/3}}$$

c)
$$(a^{2/3} + 2^{1/3}) \cdot (a^3\sqrt{a} - \sqrt[3]{2a^2} + \sqrt[3]{4})$$

d)
$$\frac{b-a}{a+b} \cdot \left[a^{1/2} \cdot (a^{1/2}-b^{1/2})^{-1} - (\frac{a^{1/2}+b^{1/2}}{b^{1/2}})^{-1} \right]$$

e)
$$\sqrt{\left[\frac{1}{2}\left(\frac{a}{b}\right)^{-1/2}-\frac{1}{2}\left(\frac{b}{a}\right)^{-1/2}\right]^{-2}+1}$$

f)
$$[(a\sqrt{a} + b\sqrt{b}) (\sqrt{a} + \sqrt{b})^{-1} + 3\sqrt{ab}]^{1/2}$$

B.46 Se a > 0 mostre que

$$\frac{1}{a^{1/4} + a^{1/8} + 1} + \frac{1}{a^{1/4} - a^{1/8} + 1} - \frac{2(a^{1/4} - 1)}{a^{1/2} - a^{1/4} + 1} = \frac{4}{a + \sqrt{a} + 1}$$

V. POTÊNCIA DE EXPOENTE IRRACIONAL

16. Dados um número real a > 0 e um número irracional α , podemos construir, com base nas potências de expoente racional, um único número real positivo a^{α} que é a potência de base a e expoente irracional α .

Seia por exemplo a potência $3^{\sqrt{2}}$. Sabendo quais são os valores racionais aproximados por falta ou por excesso de $\sqrt{2}$, obtemos em correspondência os valores aproximados por falta ou por excesso de $3^{\sqrt{2}}$ (potências de base 3 e expoente racional, iá definidas):

A_1	A_2	B_1	B_2
1	2	31	3^2
1,4	1,5	31,4	31,5
1,41	1,42	31,41	31,42
1,414	1,415	31,414	31,415
1,4142	1,4143	31,4142	31,4143
	2	3'	12

Seja $a \in \mathbb{R}$, a > 0 e α um número irracional, consideremos os conjuntos

$$A_1 = \{ r \in \mathbb{Q} \mid r < \alpha \} \quad e \quad A_2 = \{ s \in \mathbb{Q} \mid s > \alpha \}.$$

Notemos que

- a) todo número de A₁ é menor que qualquer número de A₂.
- b) existem dois racionais r e s tais que $r < \alpha < s$ e a diferenca s r é menor que qualquer número positivo e arbitrário.

Em correspondência aos conjuntos A₁ e A₂ consideremos os conjuntos

$$B_1 = \{a^r \mid r \in A_1\}$$
 e $B_2 = \{a^s \mid s \in A_2\}$

Se a > 1. demonstra-se^(*) que:

- a) todo número de B₁ é menor que qualquer número de B₂.
- b) existem dois números a^r e a^s tais que a diferenca a^s a^r é menor que qualquer número positivo e arbitrário.

Nestas condições, dizemos que a^r e a^s são aproximações por falta e por excesso, respectivamente, de a^{α} e que B_1 e B_2 são classes que definem a^{α} . Se 0 < a < 1, tudo acontece de forma análoga.

Exemplos de potências com expoente irracional

$$2^{\sqrt{2}}$$
, $4^{\sqrt{3}}$, 5^{π} , $(\frac{2}{3})^{1+\sqrt{2}}$, $(7)^{-\sqrt{2}}$, $(\sqrt{2})^{\sqrt{3}}$

18. Se a = 0 e α é irracional e positivo, daremos a seguinte definição especial $n^{\alpha} = 0$

Observações

- 10) Se a = 1 então $1^{\alpha} = 1$ $\forall \alpha$ irracional
- 2º) Se a < 0 e α é irracional e positivo então o símbolo a $^{\alpha}$ não tem significado. *Exemplos*: $(-2)^{\sqrt{2}}$, $(-5)^{\sqrt{3}}$ e $(-\sqrt{2})^{\sqrt{3}}$ não tem significado.
 - 39) Se α é irracional e negativo (α < 0) então 0^{α} não tem significado.
 - 49) Para as potências de expoente irracional são válidas as propriedades (P).

^(*) A demonstração está nas páginas 24, 25 e 26.

B.47 Simplificar

a)
$$3 \cdot 2^{\sqrt{3}} \cdot 2^{-\sqrt{3}}$$

b)
$$(2^{3\sqrt{3}})^{3\sqrt{2}}$$

c)
$$(4^{\sqrt{2}})^{-\sqrt{3}}$$

d)
$$(3^{\sqrt{2}-1})^{\sqrt{2}+}$$

e)
$$2^{1+\sqrt{3}} \cdot 4^{-\sqrt{12}}$$

a)
$$3 \cdot 2^{\sqrt{3}} \cdot 2^{-\sqrt{3}}$$
 b) $(2^{\sqrt[3]{3}})^{\sqrt[3]{2}}$ c) $(4^{\sqrt{2}})^{-\sqrt{3}}$ d) $(3^{\sqrt{2}-1})^{\sqrt{2}+1}$ e) $2^{1+\sqrt{3}} \cdot 4^{-\sqrt{12}}$ f) $9^{\sqrt{2}} \cdot 3^{\sqrt{8}}$ g) $(5^{\sqrt{2}+\sqrt{3}} \cdot 25^{\sqrt{2}-\sqrt{3}})^{\sqrt{3}}$ h) $(4^{\sqrt{5}} \cdot 8^{\sqrt{20}})^{-1/\sqrt{5}}$ i) $(2^{\sqrt{27}} \cdot 8^{\sqrt{75}})^{2}$

g)
$$(5^{\sqrt{2}+\sqrt{3}}: 25^{\sqrt{2}-\sqrt{3}})^{\sqrt{3}}$$

h)
$$(4^{\sqrt{5}}:8^{\sqrt{20}})^{-1/\sqrt{5}}$$

VI. POTÊNCIA DE EXPOENTE REAL

20. Considerando que já foram definidos anteriormente as potências de base a (a $\in \mathbb{R}_+^*$) e expoente b (b racional ou irracional) então já está definida a potência a^b com $a \in \mathbb{R}^*$ e $b \in \mathbb{R}$.

21. Observações

1ª) Toda potência de base real e positiva e expoente real é um número positivo.

$$a > 0 \Longrightarrow a^b > 0$$

Para as potências de expoente real são válidas as propriedades (P), isto é,

$$P_1$$
. $a^b \cdot a^c = a^{b+c} (a \in \mathbb{R}^*_+, b \in \mathbb{R} e c \in \mathbb{R})$

$$P_2$$
. $\frac{a^b}{a^c} = a^{b-c}$ $(a \in \mathbb{R}^*_+, b \in \mathbb{R} e c \in \mathbb{R})$

$$P_3$$
. $(a \cdot b)^c = a^c \cdot b^c$ $(a \in \mathbb{R}^*_+, b \in \mathbb{R}^*_+ e c \in \mathbb{R})$

$$P_4$$
. $(\frac{a}{b})^c = \frac{a^c}{b^c}$ $(a \in \mathbb{R}_+^*, b \in \mathbb{R}_+^* e c \in \mathbb{R})$

$$P_s$$
. $(a^b)^c = a^{b \cdot c}$ $(a \in \mathbb{R}^*_+, b \in \mathbb{R} e c \in \mathbb{R})$

OS MAIORAIS EM ÁLGEBRA

Solicitado a relacionar os vinte maiores algebristas de todos os tempos, o grande matemático francês André Veil, um dos componentes do grupo Bourbaki, alinhou os seguintes nomes:

Fermat	(1601 – 1665)
Euler	(1707 – 1783)
Lagrange	(1736 – 1813)
Legendre	(1752 — 1833)
Gauss	(1777 – 1855)
Dirichlet	(1805 - 1859)
Kummer	(1810 — 1893)
Hermite	(1822 — 1901)
Eisenstein	(1823 – 1852)
Kronecker	(1823 – 1891)
Riemann	(1823 – 1891)
Dedekind	(1831 – 1921)
H. Weber	(1842 – 1913)
Hensel	(1861 – 1941)
Hilbert	(1862 — 1943)
Takagi	(1875 — 1960)
Hecke	(1887 – 1947)
Artin	(1898 — 1962)
Hasse	(1898 —)
Chevalley	(1909 –)

Esta lista é, no entanto, considerada incompleta uma vez que, por uma questão de elegância, Veil não se incluiu na relação, faltando com a verdade.

FUNÇÃO EXPONENCIAL

I. DEFINIÇÃO

22. Dado um número real a, tal que 0 < a ≠ 1, chamamos função exponencial de base a a função f de IR em IR que associa a cada x real o número ax.

Em símbolos:
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longrightarrow a^{x}$

Exemplos de funções exponenciais em R

a)
$$f(x) = 2^x$$

a)
$$f(x) = 2^x$$
 b) $g(x) = (\frac{1}{2})^x$

c)
$$h(x) = 3^x$$

d)
$$p(x) = 10^x$$

e)
$$r(x) = (\sqrt{2})^x$$

II. PROPRIEDADES

1ª) Na função exponencial $f(x) = a^{x}$, temos

$$x = 0 \Longrightarrow f(0) = a^0 = 1$$

isto é, o par ordenado (0, 1) pertence a função para todo $a \in \mathbb{R}_+^* - \{1\}$. Isto significa que o gráfico cartesiano de toda função exponencial corta o eixo y no ponto de ordenada 1.

 2^{a}) A função exponencial $f(x) = a^{x}$ é crescente (decrescente) se, e somente se, a > 1 (0 < a < 1). Portanto, dados os reais $x_1 e x_2$, temos:

I) quando a > 1:

$$x_1 < x_2 \Longrightarrow f(x_1) < f(x_2)$$

II) quando 0 < a < 1:

$$x_1 < x_2 \Longrightarrow f(x_1) > f(x_2)$$

A demonstração desta propriedade exige a seqüência de lemas e teoremas apresentadas nos itens 23 a 30.

remas 24. Lema 2 s, acesse: http://fuvestibular.com.br/

3ª.) A função exponencial $f(x) = a^x$, com $0 < a \ne 1$, é injetora pois, dados x_1 e x_2 tais que $x_1 \ne x_2$ (por exemplo $x_1 < x_2$) vem:

Se
$$a > 1$$
, temos: $f(x_1) < f(x_2)$
Se $0 < a < 1$, temos: $f(x_1) > f(x_2)$

e, portanto, nos dois casos, $f(x_1) \neq f(x_2)$.

23. Lema 1

Sendo $a \in \mathbb{R}$, a > 1 e $n \in \mathbb{Z}$, temos:

$$a^n > 1$$
 se, e somente se, $n > 0$

Demonstração

1ª Parte

Provemos, por indução sobre n, a proposição: $n > 0 \Longrightarrow a^n > 1$

- 19) é verdadeira para n = 1, pois $a^1 = a > 1$
- 20) suponhamos que a proposição seja verdadeira para n = p, isto é, $a^p > 1$ e provemos que é verdadeira para n = p + 1.

De fato, de a>1, multiplicando ambos os membros desta desigualdade por a^p e mantendo a desigualdade pois a^p é positivo, temos:

$$a > 1 \Longrightarrow a \cdot a^p > a^p \Rightarrow a^{p+1} > a^p > 1$$

2ª Parte

Provemos, por redução a absurdo, a proposição:

$$a^n > 1 \implies n > 0$$

Supondo $n \le 0$ temos, $-n \ge 0$.

Notemos que n = 0 \Longrightarrow a 0 = 1 e pela primeira parte $-n>0 \Longrightarrow$ a $^{-n}>1$ portanto

$$-n \ge 0 \Longrightarrow a^{-n} \ge 1$$

Multiplicando ambos os membros dessa desigualdade por a^n e mantendo o sentido da desigualdade pois a^n é positivo, temos

$$a^{-n} \geqslant 1 \Longrightarrow a^n \cdot a^{-n} \geqslant a^n \Longrightarrow 1 \geqslant a^n$$

o que é um absurdo, pois contraria a hipótese $a^n > 1$. Logo, n > 0.

Sendo $a \in \mathbb{R}$, a > 1 e $r \in \mathbb{Q}$, temos:

$$a^r > 1$$
 se, e somente se, $r > 0$

Demonstração

1ª Parte

Provemos a proposição r > 0 ⇒ a^r > 1

Façamos $r = \frac{p}{q}$ com $p, q \in \mathbb{N}^*$, então:

$$a^r = a^{\frac{p}{q}}$$

Pelo lema 1, se $\frac{1}{a^q}$ = $\frac{1}{(a^q)^q}$ > 1 e q > 0 então $\frac{1}{a^q}$ > 1. Ainda pelo mesmo lema, se $\frac{1}{a^q}$ > 1 e p > 0 então $(a^q)^p$ > 1, ou seja,

$$(a^{\frac{1}{q}})^{p} = a^{\frac{p}{q}} = a^{r} > 1$$

2ª Parte

Provemos agora a proposição: $a^r > 1 \Longrightarrow r > 0$

Façamos $r = \frac{p}{q}$ com $p \in \mathbb{Z}$ e $q \in \mathbb{Z}^*$, então

$$a^r = a^{\frac{p}{q}} = (a^{\frac{1}{q}})^p$$
.

Supondo, q > 0 e considerando que na 1ª parte provamos que $\overline{a^q} > 1$, temos pelo lema 1:

$$a^{\frac{1}{q}} > 1$$
 e $(a^{\frac{1}{q}})^p > 1 \Longrightarrow p > 0$

Logo

$$q > 0$$
 e $p > 0 \Longrightarrow r = \frac{p}{q} > 0$

Supondo agora, q < 0, isto é, -q > 0, pelo lema 1 temos

$$-\frac{1}{a}$$
 > 1 e $(a^q)^p = (a^{-\frac{1}{q}})^{-p} > 1 \Longrightarrow -p > 0 \Longrightarrow p < 0$

Logo

$$q < 0$$
 e $p < 0 \Longrightarrow r = \frac{p}{q} > 0$

Sendo $a \in \mathbb{R}$, a > 1, r e s racionais, temos: Para mais, acesse: http://fuvestibular.com.br.

$$a^s > a^r$$
 se, e somente se, $s > r$.

Demonstração

$$a^{s} > a^{r} \iff a^{s} \cdot a^{-r} > a^{r} \cdot a^{-r} \iff a^{s-r} > 1 \xrightarrow{\text{(lema 2)}} s - r > 0 \iff$$

26. Lema 4

Sendo $a\in\mathbb{R}$, a>1 e $\alpha\in\mathbb{R}$ - \mathbb{Q} , temos $a^{\alpha}>1$ se, e somente se. $\alpha>0$

Demonstração

Sejam os dois conjuntos que definem o número irracional α ,

$$A_1 = \{r \in \mathbb{Q} \mid r < \alpha\}$$
 e $A_2 = \{s \in \mathbb{Q} \mid s > \alpha\}$

e em correspondência os conjuntos de potências de expoentes racionais que definem a^{α} ,

$$B_1 = \{a^r \mid r \in A_1\}$$
 e $B_2 = \{a^s \mid s \in A_2\}$

1ª Parte

Provemos a proposição

$$\alpha > 0 \Longrightarrow a^{\alpha} > 1$$

Pela definição do número α irracional e positivo, existem $r\in A_1$ e $s\in A_2$ tal que $0< r<\alpha< s$.

Pelo lema 2, como a > 1, r > 0 e s > 0, temos: $a^r >$ 1 e $a^s >$ 1.

Pelo lema 3, como a > 1 e r < s, temos: 1 < a r < a s e, agora, pela definição de potência de expoente irracional, vem

$$1 < a^r < a^{\alpha} < a^s$$

isto é,

$$a^{lpha}>1$$

Provemos, por redução a absurdo, agora a proposição:

$$a^{\alpha} > 1 \Longrightarrow \alpha > 0$$

Suponhamos, $\alpha < 0$, isto é, $-\alpha > 0$.

Pela primeira parte deste teorema, temos:

Multiplicando ambos os membros da desigualdade obtida por a lpha > 0, vem:

$$a^{-\alpha} \cdot a^{\alpha} > a^{\alpha}$$

isto é,

$$1 > a^{\alpha}$$

o que contraria a hipótese, logo

$$\alpha > 0$$

27. Teorema 1

Sendo $a \in \mathbb{R}$, a > 1 e $b \in \mathbb{R}$, temos: $a^b > 1$ se, e somente se, b > 0.

Demonstração

$$b \in \mathbb{R} \iff \begin{cases} b \in \mathbb{Q} & \overset{\text{(lema 2)}}{\Longleftrightarrow} & (a^b > 1 \iff b > 0) \\ & \text{ou} \\ b \in \mathbb{R} - \mathbb{Q} & \overset{\text{(lema 4)}}{\Longleftrightarrow} & (a^b > 1 \iff b > 0) \end{cases}$$

28. Teorema 2

Sendo $a\in \mathbb{R}$, a>1, $x_1\in \mathbb{R}$ e $x_2\in \mathbb{R}$, temos: $a^{x_1}>a^{x_2} \quad \text{se, e somente se,} \quad x_1>x_2$

Demonstração

$$\begin{array}{lll} a^{x_1} > a^{x_2} & \Longleftrightarrow \frac{a^{x_1}}{a^{x_2}} > 1 & \Longleftrightarrow a^{x_1 - x_2} > 1 & \stackrel{\text{(teorema 1)}}{\Longleftrightarrow} & x_1 - x_2 > 0 & \Longleftrightarrow \\ & \Longleftrightarrow x_1 > x_2 \,. \end{array}$$

Sendo $a \in |R|, 0 < a < 1$ e $b \in |R|, temos:$ $a^b > 1 \text{ se, e somente se } b < 0.$

Demonstração

Se
$$0 < a < 1$$
 então $\frac{1}{a} > 1$.

Seja $c = \frac{1}{a} > 1$, pelo teorema 1, vem:

$$c^{-b} > 1 \iff -b > 0$$

substituindo $c = \frac{1}{a}$, temos:

$$c^{-b} = (\frac{1}{a})^{-b} = a^b > 1 \iff b < 0$$

30. Teorema 4

Sendo $a \in \mathbb{R}$, 0 < a < 1, $x_1 \in \mathbb{R}$ e, $x_2 \in \mathbb{R}$, temos: $a^{x_1} > a^{x_2}$ se, e somente se, $x_1 < x_2$.

Demonstração

$$a^{x_1} > a^{x_2} \iff \frac{a^{x_1}}{a^{x_2}} > 1 \iff a^{x_1 - x_2} > 1 \xrightarrow{\text{(teorema 3)}} x_1 - x_2 < 0 \iff x_1 < x_2$$

III. IMAGEM

31. Vimos anteriormente, no estudo de potências de expoente real que se $a \in \mathbb{R}_+^*$, então $a^x > 0$ para todo x real.

Afirmamos, então, que a imagem da função exponencial é

- 32. Com relação ao gráfico cartesiano da função $f(x) = a^{x}$, podemos dizer
- 10) a curva representativa está toda acima do eixo dos x, pois $y = a^x > 0$ para todo $x \in \mathbb{R}$.
 - 20) corta o eixo y no ponto de ordenada 1.
- 3º) se a > 1 é o de uma função crescente e se 0 < a < 1 é o de uma função decrescente.
 - 40) toma um dos aspectos da figura abaixo.

33. Exemplos

1.9) Construir o gráfico da função exponencial de base 2, $f(x) = 2^x$.

×	y = 2 ^x
-3	1 8
-2	$\frac{1}{4}$
-1	1 1 2 1 2 4 8
0	1
1	2
1 2 3	4
3	8

2º) Construir o gráfico da função exponencial de base $\frac{1}{2}$ Parfi(x) = a(esse) *http://fuvestibular.com.br/

x	$y = (\frac{1}{2})^x$
-3	8
-2	4
-3 -2 -1 0	4 2
0	1
1	$\frac{1}{2}$
2	1/2 1/4 1/8
3	<u>1</u> 8

3º) Construir o gráfico da função exponencial de base e, $f(x) = e^x$.

Um número irracional importantíssimo para a análise matemática é indicado pela letra e e definido pela relação:

$$e = \lim_{x \to 0} (1 + x)^{\frac{1}{x}}, x \in \mathbb{R}$$

A demonstração de que o citado limite existe será feita futuramente quando fizermos o estudo de limites. A tabela abaixo sugere um valor para e (com quatro casas decimais): e \cong 2,7183

×	1	0,1	0,01	0,001	0,0001	0,00001
$(1+x)^{\frac{1}{X}}$	$(1+1)^1 = 2$	(1+0,1) ¹⁰ = 2,594	$(1+0,01)^{100} = 2,705$	2,717	2,7182	2,7183

×	e×
-3	0,05
-2,5	0,08
-2	0,14
-1,5	0,22
-1	0,36
-0,5	0,60
0	1
0,5	1,65
1	2,72
1,5	4,48
2	7,39
2,5	12,18
3	20,80
	

EXERCÍCIOS

B.48 Construir os gráficos cartesianos das seguintes funções exponenciais:

b)
$$y = (\frac{1}{3})^{x}$$

c)
$$y = 4^X$$

d)
$$v = 10^{x}$$

e)
$$y = 10^{-x}$$

a)
$$y = 3^{x}$$
 b) $y = (\frac{1}{3})^{x}$ c) $y = 4^{x}$
d) $y = 10^{x}$ e) $y = 10^{-x}$ f) $y = (\frac{1}{e})^{x}$

B.49 Construir o gráfico cartesiano da função em |R| definida por $|f(x)| = 2^{2x-1}$

Solução:

Vamos construir uma tabela da seguinte maneira: atribuímos valores a 2x-1, calculamos 2^{2x-1} e finalmente x.

×	2x - 1	$y = 2^{2x-1}$
-1	-3	1 8
$-\frac{1}{2}$	-2	$\frac{1}{4}$ $\frac{1}{2}$
	-1	1/2
1/2	0	1
1	1	. 2
$\begin{array}{c c} \frac{1}{2} \\ 1 \\ \frac{3}{2} \\ 2 \end{array}$	2	4
2	3	8

a)
$$f(x) = 2^{x} - 3$$

c)
$$f(x) = 2 - 3^x$$

b)
$$f(x) = (\frac{1}{3})^{x} + \frac{1}{3}$$

Construir os gráficos das funções em IR definidas por:
a)
$$f(x) = 2^{X} - 3$$

b) $f(x) = (\frac{1}{3})^{X} + 1$
c) $f(x) = 2 - 3^{X}$
d) $f(x) = 3 - (\frac{1}{2})^{X}$

b) $f(x) = 3^{\frac{X+1}{2}}$ c) $f(x) = 2^{|x|}$

a) $f(x) = 2^{1-x}$

- d) $f(x) = (\frac{1}{2})^{2x+1}$
- e) $f(x) = (\frac{1}{2})^{1}x^{1}$
- B.51 Construir os gráficos das funções em IR definidas por:

a)
$$f(x) = 2^{x} + 2^{-x}$$

b)
$$f(x) = 2^{x} - 2^{-x}$$

B.52 Construir o gráfico da função em IR definida por $f(x) = 2^{x} + 1$.

Solução:

	_	
x	2 ^X	$y \approx 2^{x} + 1$
- 3		
-3 -2		
-1		
0		
1		
2		
3		

×	2 ^X	$y = 2^X + 1$
-3	1/8	
2	1/4	
-1	$\frac{1}{2}$	
0	1	
1 1	2	
2 3	2 4	
3	8	

х	2 ^x	y = 2 ^x + 1
-3	1 8	9 8
-2	1 1 2 1 2 4 8	9 8 5 4 3 2 2 3 5
-1	1/2	$\frac{3}{2}$
0	1	2
0 1 2 3	2	3
2	4	5
3	8	9

Notemos que o gráfico deve apresentar para cada x uma ordenada y que é o valor de 2^X mais uma unidade. Assim, se cada 2^X sofre um acréscimo de 1, tudo se passa como se a exponencial y = 2^X sofresse uma translação de uma unidade "para cima".

Para mais, acesse: http://fuvestibular.com.br/

Solução

B.54 Construir o gráfico da função em |R| definida por $f(x) = 3 \cdot 2^{x-1}$.

Vamos construir uma tabela dando valores a x - 1 e calculando 2^{x-1} , $3 \cdot 2^{x-1}$

×	x - 1	2 ^{x-1}	$y = 3 \cdot 2^{X-1}$
-2	-3	1/8	3 8
-1	-2	1 4	3 3 4 3 2 3
0	-1	1 4 1 2	$\frac{3}{2}$
1	0	1	
2	1	2	6
3 4	2	2 4 8	12
4	3	8	24

- a) $f(x) = \frac{1}{2} \cdot 3^{x}$
- b) $f(x) = 0.1 \cdot 2^{2x-3}$
- c) $f(x) = \frac{1}{x} \cdot 3^{2x-1}$
- d) $f(x) = 3 \cdot 2^{\frac{X+1}{2}}$

V. EQUAÇÕES EXPONENCIAIS

34. Definição

Equações exponenciais são equações com incógnita no expoente.

Exemplos

$$2^{x} = 64$$
, $(\sqrt{3})^{x} = \sqrt[3]{81}$, $4^{x} - 2^{x} = 2$

Existem dois métodos fundamentais para resolução das equações exponenciais.

Faremos a apresentação agora do primeiro método, sendo que o segundo será apresentado quando do estudo de logarítmos.

Método da redução a uma base comum

Este método, como o próprio nome já nos diz, será aplicado quando, ambos os membros da equação, com as transformações convenientes baseadas nas propriedades de potências, forem redutíveis a potências de mesma base a (0 < a \neq 1). Pelo fato de a função exponencial $f(x) = a^{x}$ ser injetora, podemos concluir que potências iguais e de mesma base têm os expoentes iguais, isto é:

$$a^b = a^c \iff b = c \quad (0 < a \neq 1)$$

- B.56 Resolver as seguintes equações exponenciais:
- a) $2^{X} = 64$ b) $8^{X} = \frac{1}{32}$ c) $(\sqrt{3})^{X} = \sqrt[3]{81}$

- a) $2^{x} = 64 \iff 2^{x} = 2^{6} \iff x = 6$
- b) $8^{x} = \frac{1}{23} \iff (2^{3})^{x} = \frac{1}{2^{5}} \iff 2^{3x} = 2^{-5} \iff 3x = 5 \iff x = -\frac{5}{3}$ $S = \{-\frac{5}{9}\}$
- c) $(\sqrt{3})^{x} = \sqrt[3]{81} \iff (\frac{1}{3^{2}})^{x} = \sqrt[3]{3^{4}} \iff \frac{x}{3^{2}} = \frac{4}{3^{3}} \iff \frac{x}{2} = \frac{4}{3} \iff x = \frac{8}{3}$ $S = \left\{ \frac{8}{3} \right\}$
- B.57 Resolver as seguintes equações exponenciais:

a)
$$2^{X} = 128$$

b)
$$3^{X} = 243$$

c)
$$2^{x} = \frac{1}{16}$$

d)
$$(\frac{1}{5})^{x} = 125$$

e)
$$(\sqrt[3]{2})^{x} = 8$$

f)
$$(\sqrt[4]{3})^{\times} = \sqrt[3]{9}$$

h)
$$4^{X} = \frac{1}{8}$$

i)
$$(\frac{1}{125})^{x} = 25$$

j)
$$(\sqrt[5]{4})^{\times} = \frac{1}{\sqrt{8}}$$

k)
$$100^{X} = 0.001$$

m)
$$125^{X} = 0.04$$

n)
$$(\frac{2}{3})^{x} = 2.25$$

B.58 Resolver as seguintes equações exponenciais:

a)
$$2^{3X-1} = 32$$

b)
$$7^{4x+3} = 49$$

c)
$$11^{2x+5} = 1$$

d)
$$2^{x^2-x-16}=16$$

e)
$$3^{x^2+2x} = 243$$

f)
$$5^{2x^2+3x-2} = 1$$

a)
$$81^{1-3x} = 27$$

h)
$$7^{3x+4} = 49^{2x-3}$$

i)
$$5^{3x-1} = (\frac{1}{25})^{2x+3}$$

j)
$$(\sqrt{2})^{3x-1} = (\sqrt[3]{16})^{2x-1}$$

k)
$$8^{2x+1} = \sqrt[3]{4^{x-1}}$$

1)
$$4^{x^2-1} = 8^x$$

m)
$$27^{x^2+1} = 9^{5x}$$

n)
$$8^{x^2-x} = 4^{x+1}$$

B.59 Resolver as equações exponenciais abaixo:

a)
$$(2^{x})^{x-1} = 4$$

c) $\sqrt{5^{x-2}} \cdot \sqrt[x]{25^{2x-5}} - \sqrt[2x]{5^{3x-2}} =$

b)
$$3^{2\times -1} \cdot 9^{3\times +4} = 27^{\times +1}$$
 Para mais, acesse: http://fuvestibular.com.br.

B.63 Resolver as seguintes equações exponenciais:
om.br/
a)
$$4^{x} - 2^{x} = 56$$
 b) 4^{y}

b)
$$4^{x+1} - 9 \cdot 2^x + 2 = 0$$

Solução

a)
$$(2^{x})^{x-1} = 4 \iff 2^{x^2-x} = 2^2 \iff x^2-x = 2 \iff x = 2 \text{ ou } x = -1$$
,
$$S = \{2, -1\}$$

b)
$$3^{2x-1} \cdot 9^{3x+4} = 27^{x+1} \iff 3^{2x-1} \cdot (3^2)^{3x+4} = (3^3)^{x+1} \iff 3^{2x-1} \cdot 3^{6x+8} = 3^{3x+3} \iff 3^{8x+7} = 3^{3x+3} \iff 8x+7 = 3x+3 \iff x = -\frac{4}{5}, \qquad S = \{-\frac{4}{5}\}$$

c)
$$\sqrt{5^{X-2}} \cdot \sqrt{25^{2X-5}} = \sqrt[2x]{5^{3X-2}} \iff 5^{\frac{X-2}{2}} \cdot (5^2) \xrightarrow{X} = 5^{\frac{3X-2}{2X}} \iff 5^{\frac{X-2}{2}} \cdot (5^2) \xrightarrow{X} = 5^{\frac{3X-2}{2X}} \iff 5^{\frac{X-2}{2}} \cdot (5^2) \xrightarrow{X} = 5^{\frac{3X-2}{2X}} \iff 5^{\frac{X-2}{2}} \cdot (5^2) \xrightarrow{X} = 5^{\frac{X-2}{2X}} \iff 5^{\frac{X-2}{2X}} \cdot (5^2) \xrightarrow{X} = 5^{\frac{X-2}{2X}} \implies 5^{\frac{X-2}{2X}} \mapsto 5^{$$

B.60 Resolver as seguintes equações exponenciais:

a)
$$(2^{x})^{x+4} = 32$$

b)
$$(9^{X+1})^{X-1} = 3^{X^2+X+4}$$

c)
$$2^{3x-1} \cdot 4^{2x+3} = 8^{3-x}$$

d)
$$(3^{2x-7})^3 : 9^{x+1} = (3^{3x-1})^4$$

e)
$$2^{3x+2}:8^{2x-7}=4^{x-1}$$

e)
$$2^{3x+2} \cdot 8^{2x-7} = 4^{x-1}$$

f) $\frac{3^{x+2} \cdot 9^x}{243^5x+1} = \frac{81^2x}{273-4x}$

g)
$$\sqrt[x+4]{2^{3x-8}} = 2^{x-5}$$

h)
$$8^{3x} = \sqrt[3]{32^{x}} : 4^{x-1}$$

i)
$$x-1\sqrt{3/2^{3x-1}} - 3x-7\sqrt{8^{x-3}} =$$

i)
$$x-1\sqrt{3}\frac{2}{3x-1}$$
 $-3x-7\sqrt{8^{x-3}} = 0$ i) $\sqrt{8^{x-1}} \cdot x+1\sqrt{4^{2x-3}} = 6\sqrt{2^{5x+3}}$

B.61 Resolver a equação exponencial: $2^{X-1} + 2^X + 2^{X+1} - 2^{X+2} + 2^{X+3} = 120$ Solução

Resolvemos colocando 2^{x-1} em evidência

$$2^{X-1} + 2^{X} + 2^{X+1} - 2^{X+2} + 2^{X+3} = 120 \iff 2^{X-1} (1 + 2 + 2^2 - 2^3 + 2^4) = 120 \iff 2^{X-1} \cdot 15 = 120 \iff 2^{X-1} = 8 \iff 2^{X-1} = 2^3 \iff x - 1 = 3 \iff x = 4, S = \{4\}.$$

B.62 Resolver as seguintes equações exponenciais:

a)
$$3^{X-1} - 3^X + 3^{X+1} + 3^{X+2} = 306$$

b)
$$5^{X-2} - 5^X + 5^{X+1} = 505$$

c)
$$2^{3x} + 2^{3x+1} + 2^{3x+2} + 2^{3x+3} = 240$$

d)
$$5^{4x-1} - 5^{4x} - 5^{4x+1} + 5^{4x+2} = 480$$

e)
$$3 \cdot 2^{x} - 5 \cdot 2^{x+1} + 5 \cdot 2^{x+3} - 2^{x+5} = 2$$

f)
$$2 \cdot 4^{X+2} - 5 \cdot 4^{X+1} - 3 \cdot 2^{2X+1} - 4^X \approx 20$$

Solução

a) $4^{x} - 2^{x} = 56 \iff (2^{2})^{x} - 2^{x} - 56 = 0 \iff (2^{x})^{2} - 2^{x} - 56 = 0$ empregando uma incógnita auxiliar, isto é, pondo $2^X = y$, temos: $v^2 - v - 56 = 0 \iff v = 8 \text{ ou } v = -7$

Observemos que v = -7, não convém, pois $v = 2^{x} > 0$ De y = 8, temos: $2^{x} = 8 \iff 2^{x} = 2^{3} \iff x = 3$ $S = \{3\}$

b) $4^{X+1} - 9 \cdot 2^{X} + 2 = 0 \iff 4 \cdot 4^{X} - 9 \cdot 2^{X} + 2 = 0 \iff$ $4 \cdot (2^{X})^{2} - 9 \cdot 2^{X} = 0$ pondo $2^{X} = v$, temos:

$$4y^2 - 9y + 2 = 0 \iff y = 2 \text{ ou } y = \frac{1}{4}$$

mas $y = 2^X$, então:

$$2^{X} = 2 \iff x = 1$$
 ou $2^{X} = \frac{1}{4} \iff x = -2$
 $S = \{1, -2\}$

B.64 Resolver as seguintes equações exponenciais:

a)
$$4^{x} - 2^{x} - 2 = 0$$

b)
$$9^{x} + 3^{x} = 90$$

c)
$$4^{x} - 20 \cdot 2^{x} + 64 = 0$$

d)
$$4^{x} + 4 = 5 \cdot 2^{x}$$

e)
$$9^{x} + 3^{x+1} = 4$$

f)
$$5^{2x} + 5^x + 6 = 0$$

g)
$$2^{2x} + 2^{x+1} = 80$$

h)
$$10^{2x-1} - 11 \cdot 10^{x-1} + 1 = 0$$

i)
$$4^{X+1} + 4^{3-X} = 257$$

j)
$$5 \cdot 2^{2 \times} - 4^{2 \times -\frac{1}{2}} - 8 = 0$$

B.65 Resolver a equação $25^{\sqrt{x}} - 124 \cdot 5^{\sqrt{x}} = 125$

B.66 Resolver as seguintes equações exponenciais

a)
$$3^{x} - \frac{15}{3^{x-1}} + 3^{x-3} \frac{23}{3^{x-2}}$$

b) $2^{x+1} + 2^{x-2} - \frac{3}{2^{x-1}} = \frac{30}{2^{x}}$

c)
$$16^{2x+3} - 16^{2x+1} = 2^{8x+12} - 2^{6x+5}$$

B.67 Resolver a equação exponencial

$$3^{(x^2+\frac{1}{x^2})} = \frac{81}{3^{(x+\frac{1}{x})}}$$

$$\frac{3^{X} + 3^{-X}}{3^{X} - 3^{-X}} = 2$$

- B.69 Resolver a equação exponencial

$$4^{x} - 3^{x-\frac{1}{2}} = 3^{x+\frac{1}{2}} - 2^{2x-1}$$

B.76 Resolver a equação

$$3^{X-1} - \frac{5}{3^{X+1}} = 4 \cdot 3^{1-3X}$$

B.71 Resolver a equação

$$8^{x} - 3 \cdot 4^{x} - 3 \cdot 2^{x+1} + 8 = 0$$

B.72 Resolver as equações em IR+:

a)
$$x^{x^2-5x+6} = 1$$

b)
$$x^{2x^2-7x+4} = x$$

Solução

a) Devemos examinar inicialmente se 0 ou 1 são soluções da equação. Substituindo x = 0 na equação proposta, temos:

$$0^6 = 1$$
 (falso)

logo, O não é solução.

Substituindo x = 1 na equação, ternos:

$$1^2 = 1$$
 (verdadeiro)

logo, 1 é solução da equação.

Supondo agora $0 < x \neq 1$ temos:

$$x^{x^2-5x+6} = 1 \implies x^2-5x+6=0 \implies x=2 \text{ ou } x=3$$

Os valores x = 2 ou x = 3 são soluções pois satisfazem a condição $0 \le x \ne 1$.

$$S = \{1, 2, 3\}.$$

b) Examinemos inicialmente se 0 ou 1 são soluções da equação proposta:

$$0^4 = 0$$
 (verdadeiro) $\Longrightarrow x = 0$ é solução $1^{-1} = 1$ (verdadeiro) $\Longrightarrow x = 1$ é solução.

Supondo, $0 < x \ne 1$, temos:

$$x^{2x^2-7x+4} = x \Rightarrow 2x^2 - 7x + 4 = 1 \Rightarrow 2x^2 - 7x + 3 = 0 \Rightarrow x = 3 \text{ ou } x = \frac{1}{2}$$

Os valores x = 3 ou $x = \frac{1}{2}$ são soluções pois satisfazem a condição $0 \le x \ne 1$.

$$S = \{0, 1, 3, \frac{1}{2}\}.$$

B.73 Resolver as equações em R+: Para mais, acesse: http://fuvestibular

a)
$$x^{2-3x} = 1$$

b)
$$x^{2X+5} = 1$$

c)
$$x^{x^2-2} = 1$$

d)
$$x^{x^2-7x+12} = 1$$

e)
$$x^{x^2-3x-4} = 1$$

B.74 Resolver as equações em IR+:

a)
$$x^{X} = x$$

b)
$$x^{X+1} = x$$

c)
$$x^{4-2x} = x$$

d)
$$x^{2x^2-5x+3} = x$$

e)
$$x^{x^2-2x-7} = x$$

- **B.75** Resolver em IR a equação $(x^2 x + 1)^{(2x^2 3x 2)} = 1$.
- B.76 Resolver em IR a equação $x^{2x} (x^2 + x) x^x + x^3 = 0$.
- B.77 Resolver a equação $4^{x} + 6^{x} = 2 \cdot 9^{x}$.

Solução

Dividindo por 9X, temos:

$$4^{x} + 6^{x} = 2 \cdot 9^{x} \iff \frac{4^{x}}{9^{x}} + \frac{6^{x}}{9^{x}} = 2 \iff \left(\frac{4}{9}\right)^{x} + \left(\frac{6}{9}\right)^{x} - 2 = 0 \iff \left(\frac{2}{3}\right)^{2x} + \left(\frac{2}{3}\right)^{x} - 2 = 0.$$

Fazendo
$$(\frac{2}{3})^X = y$$
, temos:

$$y^2 + y - 2 = 0 \iff \begin{cases} y = 1 \\ ou \\ y = -2 \end{cases}$$
 (não convém)

mas
$$y = (\frac{2}{3})^X$$
, então

$$\left(\frac{2}{3}\right)^{X} = 1 \iff X = 0$$

$$S = \{0\}$$

B.78 Resolver as equações:

a)
$$4^{x} + 2 \cdot 14^{x} = 3 \cdot 49^{x}$$

b)
$$2^{2x+2} - 6^x - 2 \cdot 3^{2x+2} = 0$$

B.79 Resolver os seguintes sistemas de equações:

a)
$$\begin{cases} 4^{X} = 16y \\ 2^{X+1} = 4y \end{cases}$$

b)
$$\begin{cases} 2^{2(x^2-y)} = 100 \cdot 5^{2(y-x^2)} \\ x + y = 5 \end{cases}$$

c)
$$\begin{cases} 2^{x} - 2^{y} = 24 \\ x + y = 8 \end{cases}$$

d)
$$\begin{cases} 3^{x} - 2^{(y^{2})} = 77 \\ \frac{x}{3^{2}} - 2^{(\frac{y^{2}}{2})} = 7 \end{cases}$$

B.80 Resolver o sistema de equações

$$\begin{cases} x^{y^2 - 15y + 56} \\ y - x = 5 \end{cases} = 1$$

B.81 Resolver os sistemas de equações para $x \in \mathbb{R}_+$ e $y \in \mathbb{R}_+$

a)
$$\begin{cases} x^{x+y} = y^{x-y} \\ x^2y = 1 \end{cases}$$
 b)
$$\begin{cases} x^y = y^x \\ x^3 = y^2 \end{cases}$$

b)
$$\begin{cases} x^{y} = y^{x} \\ x^{3} = y^{2} \end{cases}$$

B.82 Resolver o sistema de equações para x > 0 e y > 0 e sendo $m \cdot n > 0$

$$\begin{cases} x^y = y^x \\ x^m = y^n \end{cases}$$

B.83 Para que valores reais de m a equação 4^{x} - $(m-2)\cdot 2^{x} + 2m + 1 \approx 0$ admite pelo menos uma raiz real?

Solucão

Pondo 2^x = y, temos:

$$y^2 - (m - 2) y + (2m + 1) = 0$$

Lembrando que a equação exponencial admitirá pelo menos uma raiz real se existir $y = 2^x > 0$, a equação acima deverá ter pelo menos uma raiz real e positiva.

Sendo $f(y) = y^2 - (m - 2) y + (2m + 1)$, temos:

a) as duas raízes são positivas

$$v_1 \ge v_2 > 0 \implies \Delta \ge 0, \frac{s}{2} > 0 \text{ e a.f(0)} > 0$$

$$\Delta \ge 0 \iff \Delta = m^2 - 12m \ge 0 \implies m \le 0 \text{ ou } m \ge 12$$

$$\frac{s}{2} > 0 \implies \frac{s}{2} = \frac{m-2}{2} > 0 \implies m > 2$$

$$a \cdot f(0) > 0 \implies a \cdot f(0) = 2m + 1 > 0 \implies m > -\frac{1}{2}$$
 (II)

$$S_1 = \{m \in \mathbb{R} \mid m \geqslant 12\}$$

b) somente uma raiz é positiva

$$y_1 > 0 \ge y_2 \implies \begin{cases} y_1 > 0 > y_2 \implies a \cdot f(0) = 2m + 1 < 0 \implies m < -\frac{1}{2} \implies \\ \implies S_2 = \left\{ m \in |R| \mid m < -\frac{1}{2} \right\} \\ y_1 > 0 \quad e \quad y_2 = 0 \implies S = m - 2 > 0 \quad e \quad f(0) = \\ = 2m + 1 = 0 \implies m > 2 \quad e \quad m = -\frac{1}{2} \implies S_3 = \emptyset \end{cases}$$

O conjunto dos valores de m, para que a equação exponencial proposta, admita pelo menos uma raiz real é:

$$S = S_1 \, \cup \, S_2 \, \cup \, S_3 = \big\{ m \in |R| \, \big| \, m < - \, \frac{1}{2} \ \, \text{ou} \ \, m \geqslant 12 \big\}.$$

B.84 Determine m real, para que as equações abaixo, admita pelo menos uma raiz real.

a)
$$3^{2x} - (2m + 3) \cdot 3^{x} + (m + 3) = 0$$

b)
$$2^{2x+1} - (2m - 3) \cdot 2^{x+1} + (7 - 2m) = 0$$

c)
$$m \cdot 9^{x} - (2m + 1)3^{x} + (m - 1) = 0$$

B.85 Determine m real, para que a equação $m(2^{X}-1)^{2}-2^{X}(2^{X}-1)+1=0$ admita pelo menos uma raiz real.

B.86 Para que valores reais de m a equação 2x + 2-x = m admite pelo menos uma raiz

B.87 Para que valores reais de m, a equação $\frac{a^{x} + a^{-x}}{a^{x} - a^{-x}} = m$, com $0 < a \ne 1$, admite raiz real?

B.88 Mostre que a equação

$$a^{2x} - (m + 1) a^{x} + (m - 1) = 0$$
, com $0 \le a \ne 1$,

admite pelo menos uma raiz real, qualquer que seja m real.

VI. INEQUAÇÕES EXPONENCIAIS

B.90 Classificar em V ou F as seguintes sentenças: Para mais, acesse: http://fuvestibular

36. Definição

Inequações exponenciais são as inequações com incógnita no expoente.

Exemplos

$$2^{x} > 32$$
, $(\sqrt{5})^{x} > \sqrt[3]{25}$, $4^{x} - 2 > 2^{x}$

Assim como em equações exponenciais, existem dois métodos fundamentais para resolução das inequações exponenciais.

Do mesmo modo, usado no estudo de equações exponenciais, faremos a apresentação agora do primeiro método e o segundo será visto no estudo de

Método da redução a uma base comum

Este método será aplicado quando ambos os membros da inequação puderem ser representados como potências de mesma base a (0 < a \neq 1).

Lembremos que a função exponencial $f(x) = a^x$ é crescente, se a > 1, ou decrescente, se 0 < a < 1, portanto:

> Se b e c são números reais então para a > 1 tem-se $a^b > a^c \iff b > c$ para 0 < a < 1 tem-se $a^b > a^c \iff b < c$.

EXERCÍCIOS

B.89 Classificar em verdadeira (V) ou falsa (F) as seguintes sentenças:

a)
$$2^{1,3} > 2^{1,2}$$

b)
$$(0.5)^{1.4} > (0.5)^{1.3}$$

c)
$$(\frac{2}{3})^{-2,3} > (\frac{2}{3})^{-1,7}$$

d)
$$(\frac{5}{4})^{3,1} < (\frac{5}{4})^{2,5}$$

e)
$$(\sqrt{2})^{\sqrt{3}} < (\sqrt{2})^{\sqrt{2}}$$

f)
$$(0,11)^{-3,4} < (0,11)^{4,2}$$

g)
$$e^{2.7} > e^{2.4}$$

h)
$$(\frac{1}{\pi})^{4,3} < (\frac{1}{\pi})^{-1,5}$$

i)
$$(\sqrt[3]{3})^{\frac{3}{4}} > (\sqrt[3]{3})^{\frac{2}{3}}$$

j)
$$\left(\frac{3}{\sqrt{2}}\right)^{-\frac{3}{5}} < \left(\frac{3}{\sqrt{2}}\right)^{-\frac{5}{7}}$$

a)
$$3^{2,7} > 1$$
 b) $(\frac{4}{5})^{-1,5} > 1$

c)
$$(0,3)^{0,2} > 1$$

d)
$$(\frac{7}{5})^{-0.32} < 1$$
 e) $\pi^{\sqrt{2}} > 1$ f) $e^{-\sqrt{3}} > 1$

e)
$$\pi^{\sqrt{2}} >$$

f)
$$e^{-\sqrt{3}} > 0$$

B.91 Classificar em V ou F as seguintes sentenças:

b)
$$8^{1,2} > 4^{1,5}$$

c)
$$9^{3,4} < 3^{2,3}$$

classificar em V ou P as seguintes sentenças.

a)
$$2^{0,4} > 4^{0,3}$$
b) $8^{1,2} > 4^{1,5}$
c) $9^{3,4} < 3^{2,3}$
d) $\left(\frac{1}{\sqrt{2}}\right)^{5,4} < (\frac{1}{8})^{1,6}$
e) $(\sqrt[3]{3})^{-0,5} < 27^{-0,1}$
f) $(\sqrt{8})^{-1,2} > (\sqrt[3]{4})^{2,1}$

e)
$$(\sqrt[3]{3})^{-0.5} < 27^{-0.1}$$

f)
$$(\sqrt{8})^{-1,2} > (\sqrt[3]{4})^{2,1}$$

g)
$$8^{-1,2} > 0.25^{2,2}$$

h)
$$(\frac{2}{3})^{2,5} < (2,25)^{-1,2}$$

B.92 Resolver as seguintes inequações exponenciais:

b)
$$(\frac{3}{5})^x \geqslant \frac{125}{27}$$
 c) $(\sqrt[3]{2})^x < \sqrt[4]{8}$

c)
$$(\sqrt[3]{2})^{x} < \sqrt[4]{8}$$

Solução

a) $2^{X} > 128 \implies 2^{X} > 2^{3}$ Como a base é major que um, vem x > 7 $S = \{x \in \mathbb{R} \mid x > 7\}$

b)
$$(\frac{3}{5})^{x} \ge \frac{125}{27} \iff (\frac{3}{5})^{x} \ge (\frac{3}{5})^{-3}$$

Como a base está compreendida entre 0 e 1, temos x ≤ -3 $S = \{x \in \mathbb{R} \mid x \leq -3\}.$

c)
$$(\sqrt[3]{2})^{x} < \sqrt[4]{8} \iff 2^{\frac{x}{3}} < 2^{\frac{3}{4}}$$
como a base é maior que 1, temos: $\frac{x}{3} < \frac{3}{4} \iff x < \frac{9}{4}$.
$$S = \left\{ x \in \mathbb{R} \mid x < \frac{9}{4} \right\}.$$

B.93 Resolver as seguintes inequações exponenciais:

a)
$$2^{x} < 32$$
 b) $(\frac{1}{3})^{x} > \frac{1}{81}$

c)
$$3^x < \frac{1}{27}$$

d)
$$(\frac{1}{5})^{x} \ge 125$$

$$(\sqrt[3]{3})^{\times} \leqslant \frac{1}{9}$$

d)
$$(\frac{1}{5})^{x} \ge 125$$
 e) $(\sqrt[3]{3})^{x} \le \frac{1}{9}$ f) $(\sqrt{2})^{x} > \frac{1}{\sqrt[3]{16}}$

h)
$$(\frac{1}{9})^{X} \le 243$$

g)
$$4^{\times} \ge 8$$
 h) $(\frac{1}{9})^{\times} \le 243$ i) $(\sqrt[5]{25})^{\times} < \frac{1}{\sqrt[4]{125}}$

j)
$$(0,01)^{X} \le \frac{1}{\sqrt{1000}}$$
 k) $(0,008)^{X} > \sqrt[3]{25}$ l) $0,16^{X} > \sqrt[5]{15,625}$

k)
$$(0.008)^{x} > \sqrt[3]{25}$$

1)
$$0.16^{\times} > \sqrt[5]{15,625}$$

-3× > 1/3 = X < -2 43-B

B.94 Resolver as seguintes inequações exponenciais:

a)
$$3^{2x+3} > 243$$

b)
$$2^{5x-1} \ge 8$$

Para mais, acesse: http://fuvestibular.com.br/ $\iff 5x^2 - 6x + 1 \leqslant 0 \iff \frac{1}{\epsilon} \leqslant x \leqslant 1$

 $S = \{x \in \mathbb{R} \mid \frac{1}{r} \leq x \leq 1\}$

c)
$$(0,1)^{3-4x} < 0.0001$$

d)
$$7^{5x-6} < 1$$

e)
$$(0.42)^{1-2x} \ge 1$$

g) $2^{x^2-x} \le 64$

f)
$$3^{x^2-5x+6} > 9$$

i)
$$4^{x^2+1} \le 32^{1-x}$$

h)
$$(0,3)^{x^2-2x-8} \ge 1$$

k)
$$(0,01)^{2x^2+1} \ge (0,001)^{3x}$$

j)
$$27^{x^2-3} > 9$$

l) $8^{3x^2-5x} > \frac{1}{16}$

m)
$$(\frac{1}{8})^{x^2-1} < (\frac{1}{32})^{2x+1}$$

n)
$$(\sqrt{0.7})^{x^2+1} \ge (\sqrt[3]{0.7})^{2x+1}$$

B.95 Resolver as seguintes inequações exponenciais:

a)
$$8 < 2^{x} < 32$$

b)
$$0.0001 < (0.1)^{\times} < 0.01$$

c)
$$\frac{1}{27}$$
 < 3^x < 81

$$d) \frac{1}{8} \leqslant 4^{x} \leqslant 32$$

e)
$$\frac{8}{27} < (\frac{4}{9})^x < \frac{3}{2}$$

f)
$$0.1 < 100^{X} < 1000$$

g)
$$4 < 8^{|x|} < 32$$

i)
$$(0,3)^{X-5} \le (0,09)^{2X+3} \le (0,3)^{X+6}$$
 j) $1 \le 7^{X^2-4X+3} \le 343$

$$11/20 < 125^{-1} < 125$$

k)
$$3^{x^2-3} < 3^{x^2-5x+6} < 9$$

B.96 Resolver as seguintes inequações exponenciais:

a)
$$(3^{x})^{2x-7} > \frac{1}{27}$$

b)
$$(\frac{1}{2^{x}})^{3x+1} \cdot 4^{1+2x-x^2} \ge (\frac{1}{8})^{x-1}$$

c)
$$^{x-1}\sqrt{7^{x+1}}$$
; $^{x+1}\sqrt{7^{x-1}} < \sqrt{343}$

Solução

a)
$$(3^{x})^{2x-7} > \frac{1}{27} \iff 3^{2x^{2}-7x} > 3^{-3} \iff 2x^{2}-7x > -3 \iff 2x^{2}-7x > 3 \iff 2x^$$

$$S = \{x \in R \mid x < \frac{1}{2} \text{ ou } x > 3\}$$

b)
$$(\frac{1}{2^{x}})^{3x+1} \cdot 4^{1+2x-x^{2}} \ge (\frac{1}{8})^{x-1} \longleftrightarrow \left[(\frac{1}{2})^{3x+1} \cdot \left[(\frac{1}{2})^{-2} \right]^{1+2x-x^{2}} \ge \left[(\frac{1}{2})^{3} \right]^{x-1} \longleftrightarrow (\frac{1}{2})^{3x^{2}+x} \cdot (\frac{1}{2})^{-2-4x+2x^{2}} \ge (\frac{1}{2})^{3x-3} \longleftrightarrow (\frac{1}{2})^{5x^{2}-3x-2} \ge (\frac{1}{2})^{3x-3} \longleftrightarrow 5x^{2}-3x-2 \le 3x-3 \longleftrightarrow$$

c)
$$x-1\sqrt{7^{x+1}}$$
; $x+1\sqrt{7^{x-1}} < \sqrt{343} \iff 7^{\frac{x+1}{x-1}}$; $7^{\frac{x-1}{x+1}} < 7^{\frac{3}{2}} \iff 7^{\frac{x+1}{x-1}} - \frac{x-1}{x+1} < 7^{\frac{3}{2}} \iff \frac{x+1}{x-1} - \frac{x-1}{x+1} < \frac{3}{2} \iff \frac{x+1}{x-1} - \frac{x-1}{x+1} - \frac{3}{2} < 0 \iff \frac{-3x^2 + 8x + 3}{2(x+1)(x-1)} < 0$

 $S = \{x \in \mathbb{R} \mid x < -1 \text{ ou } -\frac{1}{2} < x < 1 \text{ ou } x > 3\}.$

B.97 Resolver as inequações exponenciais:

a)
$$(2^{x+1})^{2x-3} < 128$$

b)
$$(27^{x-2})^{x+1} \ge (9^{x+1})^{x-3}$$

c)
$$(\frac{2}{3})^{3x-2} \cdot (\frac{4}{9})^{2x+1} \le (\frac{8}{27})^{x-3}$$

d)
$$25^{3-4x}$$
: $125^{2-x} > 5^{3x+1}$

e)
$$\frac{0.043x+2 \cdot 25^{1-4x}}{0.008^{3-x} \cdot 125^{4-3x}} > 1$$

f)
$$x - \sqrt{2^{2x} - 3}$$
: $x + \sqrt{32} > 4$

g)
$$x+1\sqrt{0.1} \cdot x+3\sqrt{0.01} < x+2\sqrt{0.001}$$

h)
$$x-1/\frac{3}{2}$$
: $x+2/\frac{3}{2} \le x/x+3/\frac{27}{8}$

B.98 Resolver a inequação

$$2^{x} - 2^{x+1} - 2^{x+2} - 2^{x+3} + 2^{x+4} < \frac{3}{4}$$

Para mais, acesse: http://fuvestibular.com.br/

Solução

$$2^{x} - 2^{x+1} - 2^{x+2} - 2^{x+3} + 2^{x+4} < \frac{3}{4} \iff 2^{x} (1 - 2 - 2^{2} - 2^{3} + 2^{4}) < \frac{3}{4} \iff 2^{x} < 3 < \frac{3}{4} \iff 2^{x} < 2^{-2} \iff x < -2$$

$$S = \{x \in \mathbb{R} \mid x < -2\}$$

B.99 Resolver as seguintes inequações exponenciais:

a)
$$2^{x-1} + 2^x + 2^{x+1} - 2^{x+2} + 2^{x+3} > 240$$

b)
$$3^{x+5} - 3^{x+4} + 3^{x+3} - 3^{x+2} \le 540$$

c)
$$4^{x+1} - 2^{2x+1} + 4^x - 2^{2x-1} - 4^{x-1} \ge 144$$

d)
$$3^{2x+1} - 9^x - 3^{2x-1} - 9^{x-1} \le 42$$

e)
$$3 \cdot 2^{2x+5} - 9 \cdot 2^{2x+3} - 5 \cdot 4^{x+1} + 7 \cdot 2^{2x+1} - 3 \cdot 4^x < 60$$

f)
$$3^{(x^2)} + 5 \cdot 3^{(x^2+1)} + 2 \cdot 3^{(x^2+2)} - 4 \cdot 3^{(x^2+3)} + 3^{(x^2+4)} < 63$$

B.100 Resolver as seguintes inequações:

a)
$$3^{2x+2} - 3^{x+3} > 3^x - 3$$

b)
$$2^{x} - 1 > 2^{1-x}$$

c)
$$4^{x+\frac{1}{2}} + 5 \cdot 2^x + 2 > 0$$

Solução

a)
$$3^{2x+2} - 3^{x+3} > 3^x - 3 \iff 3^{2x} \cdot 3^2 - 3^x \cdot 3^3 - 3^x + 3 > 0 \iff$$

$$\iff 9 (3^x)^2 - 28 \cdot 3^x + 3 > 0$$

Fazendo 3^X = v. temos:

$$9y^2 - 28y + 3 > 0 \iff y < \frac{1}{9} \text{ ou } y > 3; \text{ mas } y = 3^x, \text{ logo:}$$

$$3^{x} < \frac{1}{9}$$
 ou $3^{x} > 3 \Longrightarrow 3^{x} < 3^{-2}$ ou $3^{x} > 3 \Longrightarrow x < -2$ ou $x > 1$

$$S = \{x \in \mathbb{R} \mid x < -2 \text{ ou } x > 1\}.$$

b)
$$2^{x} - 1 > 2^{1-x} \longleftrightarrow 2^{x} - 1 > \frac{2}{2^{x}} \longleftrightarrow 2^{x}(2^{x} - 1) > 2 \longleftrightarrow (2^{x})^{2} - 2^{x} - 2 > 0$$

Fazendo $2^X = v$. temos:

$$y^2 - y - 2 > 0 \iff y < -1 \text{ ou } y > 2$$

Mas,
$$2^{x} = y$$
, logo: $2^{x} < -1$ ou $2^{x} > 2$

Lembrando que $2^{x} > 0$, $\forall x \in \mathbb{R}$, temos:

$$2^{x} > 2 \iff x > 1$$

$$S = \{x \in |R \mid x > 1\}$$

c)
$$4^{x+\frac{1}{2}} + 5 \cdot 2^x + 2 > 0 \iff 4^x \cdot 4^{\frac{1}{2}} + 5 \cdot 2^x + 2 > 0 \iff 2 \cdot (2^x)^2 + 5 \cdot 2^x + 2 > 0$$

$$2y^2 + 5y + 2 > 0 \iff y < -2 \text{ ou } y > -\frac{1}{2}; \text{ mas } y = 2^X, \text{ logo:}$$

$$2^{x} < -2$$
 ou $2^{x} > -\frac{1}{2}$

Lembrando que $2^{x} > 0$, $\forall x \in \mathbb{R}$, temos

$$2^{x} > -\frac{1}{2} \iff \forall x \in \mathbb{R}.$$

B.101 Resolver as seguintes inequações:

a)
$$4^{x} - 6 \cdot 2^{x} + 8 < 0$$

b)
$$9^{x} - 4 \cdot 3^{x+1} + 18 > 0$$

c)
$$5^{2x+1} - 26 \cdot 5^{x} + 5 \le 0$$

d)
$$2^{2x} - 2^{x+1} - 8 \le 0$$

e)
$$3^{2x} - 3^{x+1} > 3^x - 3$$

f)
$$2^{x} (2^{x} + 1) \le 2$$

q)
$$25^{x} + 6 \cdot 5^{x} + 5 > 0$$

h)
$$3^{x}(3^{x} + 6) < 3(2 \cdot 3^{x-1} - 3)$$

i)
$$2^{x+3} + 2^{-x} < 6$$

j)
$$3(3^{X} - 1) \ge 1 - 3^{-X}$$

k)
$$4^{x+\frac{3}{2}} - 2^{x+2} \ge 2^{x+1} - 1$$
 |) $e^{2x} - e^{x+1} - e^x + e \le 0$

1)
$$e^{2x} - e^{x+1} - e^{x} + e <$$

B.102 Resolver a inequação $2^{x+5} + 3^x < 3^{x+2} + 2^{x+2} + 2^x$.

B.103 Resolver a ine quação
$$x^{2X^2-9X+4} < 1$$
 em IR₊

Solução

Devemos considerar três casos:

1º caso

Devemos verificar se 0 ou 1 são soluções particulares da inequação.

Fazendo x = 0 e x = 1, temos:

$$x = 0 \implies 0^4 < 1$$
 (verdadeira) $\implies x = 0$ é solução

$$x = 1 \implies 1^{-3} \le 1$$
 (falsa) $\implies x = 1$ não é solução.

A solução neste caso é
$$S_1 = \{0\}$$

A base da potência é maior que um.

Se x > 1(I), temos:

$$x^{2x^2-9x+4} < 1 \implies 2x^2-9x+4 < 0 \implies \frac{1}{2} < x < 4 \qquad \text{(1)}$$

A solução deste caso é dado por (I) (II)

$$S_2 = \{x \in |R| \mid 1 < x < 4\}$$

3º caso

A base da potência é positiva mas menor que um.

Se
$$0 < x < 1$$
 (i) , temos:

$$x^{2x^2-9x+4} < 1 \implies 2x^2-9x+4 > 0 \implies x < \frac{1}{2} \text{ ou } x > 4$$
 (V)

A solução deste caso é dado por (II) \cap (V)

$$S_3 = \{x \in \mathbb{R} \mid 0 < x < \frac{1}{2} \}$$

A solução da inequação proposta é:

$$S = S_1 \cup S_2 \cup S_3 = \{x \in |R| \mid 0 \le x < \frac{1}{2} \text{ ou } 1 < x < 4\}$$

Para mais, acesse: http://fuvestibular.com.br/_a) $x^{5 \times -2} > 1$

b)
$$x^{4x-3} < 1$$

c)
$$x^{2X^2+X-1} < 1$$

d)
$$x^{2x^2-5x-3} > 1$$

e)
$$x^{3x^2-7x+2} \le 1$$

f)
$$x^{4x^2-11x+6} \ge 1$$

B.105 Resolver em
$$|R|$$
 a inequação $|x|^{3x^2-4x-4} > 1$

B.106 Resolver em IR+ as inequações:

a)
$$x^{2x+4} < x$$

b)
$$x^{4x-1} \ge x$$

c)
$$x^{4x^2-17x+5} < x$$

d)
$$x^{5x^2-11x+3} > x$$

e)
$$x^{X^2-5X+.7} \le x$$

B.107 Resolver em IR+ as inequações:

a)
$$x^{(x^2)} > x^2$$

a)
$$x^{(x^2)} > x^{2x}$$
 b) $x^2 < x^{x^2 - 7x + 8}$

c)
$$x^{x^2-x-2} \ge x^4$$

Autodidata cria a Análise

Gottfried Weilhelm Leibniz nasceu em Leipizig; aos quinze anos entrou na Universidade, aos dezessete já era bacharel e aos vinte doutorou-se em Nuremberg. Adquiriu grande conhecimento geral em Teologia, Direito, Filosofia e Matemática sendo considerado um dos últimos sábios. Viajou muito representando o governo como diplomata e, numa de suas visitas a Londres, em 1643, tornou-se membro do Royal Society.

Leibniz, por ser autodidata, freqüentemente redescobria teorias e as desenvolvias como é o caso de sua primeira realização em séries infinitas: $\frac{\pi}{4} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$, expansão da teoria de Gregori.

Ao estudar um problema proposto por Huygens, acabou por fazer uma descoberta, o triângulo harmônico, análogo ao triângulo de Pascal que fascinava Leibniz. Passou então a estudar as obras de Pascal sobre cilóides e séries infinitas, generalizando um método importante para soma e diferença de funções, tanto racionais como irracionais, algébricas ou transcendentes (palavra que ele criou).

Percebendo a grande importância das notações como auxiliar de pensamento, é responsável por muitas delas como dx e dy para diferenciais em x e y, ∫ydx para integral e foi o primeiro a empregar as expressões "cálculo diferencial", "cálculo integral" e "função". Usou o ponto para multiplicação e escreveu proporção na forma a : b = c : d o que nos sugeriu: para indicar divisão. Ainda criou a notação ~ para "é semelhante a" e ~ para "é congruente a". Leibniz e Newton é que persistiram no uso do sinal =, criado por Recorde, até hoje usado.

Em 1684, sob o título de "Um novo método para máximos e mínimos, e também para tangentes, que não é obstruído por quantidades irracionais", expõe, pela primeira vez, seu cálculo diferencial dando às fórmulas de derivação: dxy = xdy + ydx, $d\frac{x}{y} = \frac{ydx - xdy}{y^2}$ e $dx^n = n x^{n-1} dx$, juntamente com aplicações geométricas.

Gottfried W. Leibniz (1646 — 1716)

Sua obra mais famosa é "Acta Eruditorum" (Anotações dos eruditos) onde observou uma diferenciação e integração são operações inversas enunciando o teorema fundamental do cálculo e mostrando que as funções transcendentes são fundamentais em Análise.

Sua teoria de diferenciação, pelas notações que usou, foi mais aceita do que a Teoria dos Fluxos de Newton, embora os dois tivessem desenvolvido a Análise na mesma época.

Em 1963, numa carta a L'Hospital, chegou a dar antecipação da teoria dos determinantes.

Como filósofo pretendia reduzir as discussões lógicas a formas sistemáticas. Otimista ao extremo sempre acreditou puma futura universidad.

sões lógicas a formas sistemáticas. Otimista ao extremo, sempre acreditou numa futura universalização da linguagem, o que foi muito produtivo para a Matemática. CAPÍTULO III

LOGARITMOS

I. CONCEITO DE LOGARITMO

38. Lembremos que no estudo de equações e inequações exponenciais, feito anteriormente, só tratamos dos casos em que podíamos reduzir as potências à mesma base.

Se queremos resolver a equação $2^x = 3$, sabemos que x assume um valor entre 1 e 2, pois $2^1 < 2^x = 3 < 2^2$, mas com os conhecimentos adquiridos até aqui não sabemos qual é esse valor e nem o processo para determiná-lo.

A fim de que possamos resolver este e outros problemas, vamos iniciar agora o estudo de logarítmos.

39. Definição

Sendo a e b números reais e positivos, com $a \neq 1$, chama-se logaritmo de b na base a, o expoente que se deve dar à base a de modo que a potência obtida seja igual a b.

Em símbolos: se a, b \in IR, 0 < a \neq 1 e b > 0, então

Em $log_ab = x$, dizemos:

 \underline{a} é a base do logaritmo, \underline{b} é o logaritmando, x é o logaritmo

40. Exemplos

1.0) $\log_2 8 = 3$ pois $2^3 = 8$

2°)
$$\log_3 \frac{1}{9} = -2$$
 pois $3^{-2} = \frac{1}{9}$

 3°) $\log_5 5 = 1$ pois $5^1 = 5$

4.0) $\log_7 1 = 0$ pois $7^0 = 1$

5°) $\log_4 8 = \frac{3}{2}$ pois $4^{\frac{3}{2}} = (2^2)^{\frac{3}{2}} = 2^3 = 8$

6.9) $\log_{0,2} 25 = -2$ pois $(0,2)^{-2} = (\frac{1}{5})^{-2} = 5^2 = 25$

Com as restrições impostas (a, b \in IR, 0 < a \neq 1 e b > 0), dados a e b existe um único $x = \log_a b$.

A operação, pela qual se determina o logarítmo de b ($b \in \mathbb{R}$ e b > 0) numa dada base a ($a \in \mathbb{R}$ e $0 < a \neq 1$), chamamos logaritmação e o resultado dessa operação é o *logaritmo*.

ANTILOGARITMO

Definição

Sejam a e b números reais positivos com $a \neq 1$, se o logarítmo de b na base a é x, então b é o antilogarítmo de x na base a.

Em símbolos, se a, b $\in \mathbb{R}$, 0 < a \neq 1 e b > 0 então

Exemplos

19) anti $\log_3 2 = 9$ pois $\log_3 9 = 2$

2.9) antilog₁ $3 = \frac{1}{8}$ pois $\log_{\frac{1}{2}} \frac{1}{8} = 3$

3°) antilog₂(-2) = $\frac{1}{4}$ pois $\log_2 \frac{1}{4} = -2$

B.108 Calcular pela definição os seguintes logaritmos:

a)
$$\log_2 \frac{1}{8}$$

Soluções

a)
$$\log_2 \frac{1}{8} = x \implies 2^x = \frac{1}{8} \implies 2^x = 2^{-3} \implies x = -3$$

b)
$$\log_8 4 = x \implies 8^x = 4 \implies 2^{3x} = 2^2 \implies 3x = 2 \implies x = \frac{2}{3}$$

c)
$$\log_{0,25} 32 \implies (0,25)^{x} = 32 \implies (\frac{1}{4})^{x} = 32 \implies 2^{-2x} = 2^{5} \implies$$

 $\implies -2x = 5 \implies x = -\frac{5}{2}$

B.109 Calcular pela definição os seguintes logarítmos:

- a) log_a 16
- b) $\log_3 \frac{1}{\alpha}$ c) $\log_{81} 3$
- d) log<u>1</u>8

- e) $\log_7 \frac{1}{7}$
- f) log₂₇ 81
 - g) log₁₂₅ 25
- h) log₁ 32

- i) $\log_9 \frac{1}{27}$
- j) $\log_{0.25} 8$
- k) log₂₅ 0,008
- I) log_{0.01} 0,001

B.110 Calcular pela definição os seguintes logarítmos:

a) $\log_2 \sqrt{2}$

c) $\log_{100} \sqrt[3]{10}$

- d) $\log_{\sqrt{8}} \sqrt{32}$
- e) log_{3/5} $\sqrt[4]{5}$

f) $\log_{\sqrt{27}} \sqrt[3]{9}$

- g) $\log_1 \sqrt{27}$
- h) $\log_{\sqrt{4}} \frac{1}{\sqrt{2}}$
- i) $\log_{4/3} \frac{3}{\sqrt[3]{2}}$

B.111 Calcular a soma S nos seguintes casos:

a)
$$S = \log_{100} 0.001 + \log_{1.5} \frac{4}{9} - \log_{1.25} 0.64$$

b)
$$S = \log_8 \sqrt{2} + \log_{\sqrt{2}} 8 - \log_{\sqrt{2}} \sqrt{8}$$

c)
$$S = log_{\sqrt{9}} \sqrt{\frac{1}{27}} - log_{\sqrt{0.5}} \sqrt{8} + log_{\sqrt{100}} \sqrt{60.1}$$

B.112 Calcular o valor de S em

$$S = \log_4(\log_3 9) + \log_2(\log_{81} 3) + \log_{0.8}(\log_{16} 32)$$

B.113 Calcular:

- a) antilog₃4 b) antilog₁₆ $\frac{1}{2}$ c) antilog₃-2 d) antilog₁ -4

III. CONSEQÜÊNCIAS DA DEFINIÇÃO

Para mais, acesse: http://fuvestibular.com.bl/coes

42. Decorrem da definição de logaritmos as seguintes propriedades para $0 < a \ne 1$, b > 0.

10) "O logaritmo da unidade em qualquer base é igual a zero".

2º) "O logaritmo da base em qualquer base é igual a um".

3º) "A potência de base a e expoente $\log_a b$ é igual a b".

A justificação desta propriedade está no fato de que o logarítmo de b na base a é o expoente que se deve dar à base a para a potência obtida ficar igual a b.

4º.) "Dois logarítmos em uma mesma base são iguais se, e somente se, os logaritmandos são iguais".

$$\log_a b = \log_a c \iff b = c$$

Demonstração

$$\log_a b = \log_a c$$
 \longleftrightarrow $\log_a c = b$ \longleftrightarrow $c = b$ \longleftrightarrow $c = b$

EXERCÍCIOS

B.114 Calcular o valor de:

b)
$$3^{1+\log_3 4}$$

a)
$$8^{\log_2 5} = (2^3)^{\log_2 5} = (2^{\log_2 5})^3 = 5^3 = 125$$

b)
$$3^{1+\log_3 4} = 3^1 \cdot 3^{\log_3 4} = 3 \cdot 4 = 12$$

B.115 Calcular o valor de:

e)
$$2^{1+\log_2 5}$$

f)
$$3^{2-\log_3 6}$$

a)
$$8^{1 + \log_2 3}$$

h)
$$9^2 - \log_3 \sqrt{2}$$

B.116 Calcular:

IV. SISTEMAS DE LOGARITMOS

43. Chamamos de sistema de logaritmos de base a ao conjunto de todos os logaritmos dos números reais positivos em uma base a ($0 < a \ne 1$). Por exemplo, o conjunto formado por todos os logaritmos de base 2 dos números reais e positivos é o sistema de logaritmos na base 2.

Entre a infinidade de valores que pode assumir a base e, portanto, entre a infinidade de sistemas de logarítmos, existem dois sistemas de logarítmos particularmente importantes, que são:

- a) sistema de logaritmos decimais é o sistema de base 10 também chamado sistema de logaritmos vulgares ou de Briggs (Henry Briggs, matemático inglês (1561 1630), quem primeiro destacou a vantagem dos logaritmos de base 10, tendo publicado a primeira tábua (tabela) dos logaritmos de 1 a 1 000 em 1 617).
- Indicaremos o logarítmo decimal pela notação $log_{10}x$ ou simplesmente log x.
- b) sistema de logaritmos neperianos é o sistema de base e (e = 2,71828... número irracional), também chamado de sistema de logaritmos naturais. O nome neperiano vem de John Neper, matemático escocês (1550-1617), autor do primeiro trabalho publicado sobre a teoria dos logaritmos. O nome natural se deve ao fato de que no estudo dos fenômenos naturais geralmente aparece uma lei exponencial de base e.

Indicaremos o logarítmo neperiano pelas notações $log_e x$ ou $\ell n x$. Em algumas publicações também encontramos as notações $\ell g x$ ou ℓx .

V. PROPRIEDADES DOS LOGARITMOS

Vejamos agora as propriedades que tornam vantajoso o emprego de logaritmos nos cálculos.

44. 1^a) Logaritmo do produto

"Em qualquer base a $(0 < a \ne 1)$, o logaritmo do produto de dois fatores reais positivos é igual a soma dos logarítmos dos fatores".

Em símbolos:

Se
$$0 < a \neq 1$$
, $b > 0$ e $c > 0$, então $\log_a (b \cdot c) = \log_a b + \log_a c$

Demonstração

Fazendo $\log_a b = x$, $\log_a c = y e \log_a (b \cdot c) = z$ provemos que z = x + y.

De fato:

$$\begin{vmatrix}
\log_a b = x & \Longrightarrow a^x = b \\
\log_a c = y & \Longrightarrow a^y = c \\
\log_a (b \cdot c) & \Longrightarrow a^z = b \cdot c
\end{vmatrix}
\Rightarrow a^z = a^x \cdot a^y \Longrightarrow a^z = a^{x+y} \Longrightarrow z = x + y$$

Observações

1ª) Esta propriedade pode ser estendida para o caso do logarítmo do produto de n ($n \ge 2$) fatores reais e positivos, isto é:

Se
$$0 < a \neq 1$$
 e b_1 , b_2 , b_3 , ..., $b_n \in IR_+^*$ então $log_a (b_1 \cdot b_2 \cdot b_3 \cdot ... \cdot b_n) = log_a b_1 + log_a b_2 + log_a b_3 + ... + log_a b_n$.

Demonstração

Faremos a demonstração por indução sobre n.

i) para
$$n = 2$$
 é verdadeira, isto é

$$\log_a (b_1 \cdot b_2) = \log_a b_1 + \log_a b_2$$

iii) Suponhamos que a propriedade seja válida para $p \ge 2$ fatores, isto é:

Hipótese
$$\{\log_a (b_1 \cdot b_2 \cdot ... \cdot b_p) = \log_a b_1 + \log_a b_2 + ... + \log_a b_p \}$$

e mostremos que a propriedade é válida para (p + 1) fatores, isto é:

Tese
$$\{\log_a (b_1 \cdot b_2 \cdot ... \cdot b_p \cdot b_{p+1}) = \log_a b_1 + \log_a b_2 + ... + \log_a b_p + \log_a b_{p+1} \}$$

Temos

1? Membro da Tese =
$$\log_a (b_1 \cdot b_2 \cdot ... \cdot b_p \cdot b_{p+1}) =$$
 = $\log_a [(b_1 \cdot b_2 \cdot ... \cdot b_p) \cdot b_{p+1}] = \log_a (b_1 \cdot b_2 \cdot ... \cdot b_p) + \log_a b_{p+1} =$ = $\log_a b_1 + \log_a b_2 + ... + \log_a b_p + \log_a b_{p+1} = 2$. Membro da Tese.

2^a) Devemos observar que se b > 0 e c > 0 então $b \cdot c > 0$ e vale a identidade

$$\log_a (b \cdot c) = \log_a b + \log_a c \text{ com } 0 < a \neq 1$$

mas, se soubermos apenas que $b \cdot c > 0$ então, temos:

$$\log_a (b \cdot c) = \log_a |b| + \log_a |c| \text{ com } 0 < a \neq 1.$$

Exemplos

- 1°) $\log_5 (3 \cdot 4) = \log_5 3 + \log_5 4$
- 2° $\log_4 (2 \cdot 3 \cdot 5) = \log_4 2 + \log_4 3 + \log_4 5$
- 3.) $\log_6 3 \cdot (-4) \cdot (-5) = \log_6 3 + \log_6 |-4| + \log_6 |-5|$
- 4.) Se x > 0 então $\log_2 [x \cdot (x + 1)] = \log_2 x + \log_2 (x + 1)$
- 5°) $\log_3 [x \cdot (x 2)] = \log_3 x + \log_3 (x 2)$ se, e somente se, x > 0 e x - 2 > 0, isto é, x > 2.

2ª) Logaritmo do quociente

"Em qualquer base a $(0 < a \ne 1)$, o logaritmo do quociente de dois números reais positivos é igual a diferença entre o logaritmo do dividendo e o logarítmo do divisor".

Em símbolos

Se
$$0 < a \neq 1$$
, $b > 0$ e $c > 0$, então $\log_a \left(\frac{b}{c}\right) = \log_a b - \log_a c$

Fazendo $\log_a b = x$, $\log_a c = y e \log_a (\frac{b}{c}) = z$ mostremos que z = x - y.

De fato

$$\begin{vmatrix}
log_a b = x & \implies a^x = b \\
log_a c = y & \implies a^y = c \\
log_a (\frac{b}{c}) = z & \implies a^z = \frac{b}{c}
\end{vmatrix}$$

$$\Rightarrow a^z = \frac{a^x}{a^y} \implies a^z = a^{x-y} \implies z = x - y$$

47. Observações

 1^a) Fazendo b = 1, escrevemos

$$\log_a \frac{1}{c} = \log_a 1 - \log_a c \implies \log_a \frac{1}{c} = -\log_a c$$

2ª) Se b > 0 e c > 0 então $\frac{b}{c}$ > 0 e vale a identidade

$$\log_a \left(\frac{b}{c}\right) = \log_a b - \log_a c \text{ com } 0 < a \neq 1$$

mas se soubermos apenas que $\frac{b}{c} > 0$ então temos:

$$\log_a \left(\frac{b}{c}\right) = \log_a |b| - \log_a |c| \quad \text{com} \quad 0 < a \neq 1.$$

Exemplos

1.0)
$$\log_5(\frac{2}{3}) = \log_5 2 - \log_5 3$$

$$2^{\circ}$$
 log $(\frac{2 \cdot 3}{5}) = \log (2 \cdot 3) - \log 5 = \log 2 + \log 3 - \log 5$

3.9)
$$\log \left(\frac{2}{3 \cdot 5}\right) = \log 2 - \log (3 \cdot 5) = \log 2 - [\log 3 + \log 5] = \log 2 - [\log 3 - \log 5]$$

4°.) Se x > 0 então
$$\log_2 (\frac{x}{x+1}) = \log_2 x - \log_2 (x+1)$$

5°)
$$\log_3 \frac{x+1}{x-1} = \log_3 (x+1) - \log_3 (x-1)$$
 se, e somente se $x+1>0$ e $x-1>0$, isto é, $x>1$.

Chama-se cologarítmo de um número b ($b \in \mathbb{R}$ e b > 0), numa base a ($a \in \mathbb{R}$ e $0 < a \ne 1$), ao oposto do logarítmo de b na base a.

Em símbolos

Se
$$0 < a \neq 1$$
 e b > 0 , então colog_a b = $-\log_a$ b

Considerando que $\log_a b = -\log_a \frac{1}{b}$, temos: se $0 < a \ne 1$ e b > 0 então

$$colog_a b = log_a \frac{1}{b}$$

Exemplos

1.0)
$$colog_2 5 = -log_2 5 = log_2 \frac{1}{5}$$

2.0)
$$\operatorname{colog}_2 \frac{1}{3} = -\log_2 \frac{1}{3} = \log_2 3$$

3.)
$$\log(\frac{2}{3}) = \log 2 - \log 3 = \log 2 + \log 3$$

$$4^{\circ}_{1}$$
) Se x > 1 então $\log_{3} x - \log_{3} (x - 1) = \log_{3} x + \operatorname{colog}_{3} (x - 1)$

49. 3ª) Logaritmo da potência

"Em qualquer base a (0 < a \ne 1), o logaritmo de uma potência de base real positiva e expoente real é igual ao produto do expoente pelo logaritmo da base da potência."

Em símbolos

Se
$$0 < a \neq 1$$
, $b > 0$ e $\alpha \in \mathbb{R}$, então $\log_a b^{\alpha} = \alpha \cdot \log_a b$

Fazendo $\log_a b = x$ e $\log_a b^{\alpha} = y$, provemos que $y = \alpha \cdot x$.

De fato:

50. Observações

1ª) Como colorário desta propriedade, decorre:

"Em qualquer base a (0 < a \neq 1), o logaritmo da raiz enézima de um número real positivo é igual ao produto do inverso do índice da raiz pelo logaritmo do radicando".

Em símbolos:

Se
$$0 < a \ne 1$$
, $b > 0$ e $n \in \mathbb{N}^*$, então $\log_a \sqrt[n]{b} = \log_a b^{\frac{1}{n}} = \frac{1}{n} \log_a b$

2ª) Se b > 0 então b $^{\alpha}$ > 0 para todo α real e vale a identidade $\log_a b^{\alpha} = \alpha \cdot \log_a b$

mas se soubermos apenas que $b^{lpha}>0$ então temos:

$$\log_a b^{\alpha} = \alpha \cdot \log_a |b|$$
.

Exemplos

19)
$$\log_3 2^5 = 5 \cdot \log_3 2$$

2°)
$$\log_5 \sqrt[3]{2} = \log_5 2^{\frac{1}{3}} = \frac{1}{3} \cdot \log_5 2$$

3.)
$$\log_2 \frac{1}{3^4} = \log_2 3^{-4} = -4 \cdot \log_2 3$$

4°)
$$\log (x - 1)^4 = 4 \cdot \log (x - 1)$$
 se, e somente se $x - 1 > 0$, isto é $x > 1$

5°) Se
$$x \neq 0$$
 então $\log x^2 = 2 \cdot \log |x|$

1.) $\log_a (b \cdot c) = \log_a b + \log_a c$

2^a)
$$\log_a \left(\frac{b}{c}\right) = \log_a b - \log_a c$$

$$3^a$$
) $\log_a b^\alpha = \alpha \cdot \log_a b$

válidas com as devidas restrições para a, b, e c, nos permitem obter o logarítmo de um produto, de um quociente ou de uma potência, conhecendo somente os logarítmos dos termos do produto, dos termos do quociente ou da base de potência.

Notemos a *impossibilidade* de obter o logaritmo de uma soma ou de uma diferença, por meio de regras análogas as dadas. Assim para encontrarmos

$$log_a (b + c) e log_a (b - c)$$

devemos, respectivamente, calcular inicialmente (b + c) e (b - c).

52. As expressões que envolvem somente as operações de multiplicação, divisão e potenciação são chamadas expressões logarítmicas, isto é, expressões que podem ser calculadas com uso de logaritmos, dentro das restrições já conhecidas. Assim, por exemplo, a expressão

$$A = \frac{a^{\alpha} \cdot \sqrt[n]{b}}{c^{\beta}}$$

onde a, b, c $\in \mathbb{R}_+^*$, α , $\beta \in \mathbb{R}$ e n $\in \mathbb{N}^*$, pode ser calculada aplicando logaritmos.

$$A = \frac{a^{\alpha} \cdot \sqrt[n]{b}}{c^{\beta}} \implies \log A = \log \frac{a^{\alpha} \cdot \sqrt[n]{b}}{c^{\beta}} \implies \log A = \log (a^{\alpha} \cdot b^{\frac{1}{n}}) -$$

$$-\log c^{\beta} \implies \log A = \alpha \cdot \log a + \frac{1}{n} \log b - \beta \log c$$

Dispondo de uma tabela que dê log a, log b e log c (veja nas páginas 113 e 114) calculamos log A e, então, pela mesma tabela obtemos P.

B.117 Desenvolver aplicando as propriedades dos logaritmos (a, b e c são reais positivos):

a)
$$\log_2(\frac{2ab}{c})$$

b)
$$\log_3 (\frac{a^3b^2}{c^4})$$

b)
$$\log_3(\frac{a^3b^2}{c^4})$$
 c) $\log(\frac{a^3}{b^2\sqrt{c}})$

Solução

a)
$$\log_2(\frac{2ab}{c}) = \log_2(2ab) - \log_2 c = \log_2 2 + \log_2 a + \log_2 b - \log_2 c =$$

= 1 + \log_2 a + \log_2 b - \log_2 c

b)
$$\log_3(\frac{a^3b^2}{c^4}) = \log_3(a^3b^2) - \log_3 c^4 = \log_3 a^3 + \log_3 b^2 - \log_3 c^4 =$$

= $3\log_3 a + 2\log_3 b - 4\log_3 c$

c)
$$\log \left(\frac{a^3}{b^2 \sqrt{c}} \right) = \log a^3 - \log (b^2 \sqrt{c}) = \log a^3 - (\log b^2 + \log c^{\frac{1}{2}}) =$$

= $3 \log a - 2 \log b - \frac{1}{2} \log c$

B.118 Desenvolver aplicando as propriedades dos logaritmos (a, b e c são reais positivos):

a)
$$\log_5 \left(\frac{5a}{bc}\right)$$

b)
$$\log_3(\frac{ab^2}{c})$$

c)
$$\log_2\left(\frac{a^2\sqrt{b}}{\sqrt[3]{c}}\right)$$

d)
$$\log_3\left(\frac{a \cdot b^3}{c \cdot \sqrt[3]{a^2}}\right)$$

e)
$$\log \sqrt{\frac{ab^3}{c^2}}$$

f)
$$\log \sqrt[3]{\frac{a}{b^2 \cdot \sqrt{c}}}$$

g)
$$\log_2 \sqrt{\frac{4a\sqrt{ab}}{b\sqrt[3]{a^2b}}}$$

h)
$$\log \left(\sqrt[3]{\frac{a^4 \sqrt{ab}}{b^2 \sqrt[3]{bc}}} \right)^2$$

B.119 Desenvolver aplicando as propriedades dos logarítmos (a > b > c > 0):

a)
$$\log_2 \frac{2a}{a^2 - b^2}$$

b)
$$\log_3\left(\frac{a^2\sqrt{bc}}{\sqrt[5]{(a+b)^3}}\right)$$

c)
$$\log \left(c \cdot \sqrt[3]{\frac{a(a+b)^2}{\sqrt{b}}} \right)$$

d)
$$\log \left(\frac{\sqrt[5]{a(a-b)^2}}{\sqrt{a^2+b^2}} \right)$$

B.120 Qual é a expressão cujo desenvolvimento logarítmico é:

Solução

62-B

1 +
$$\log_2 a - \log_2 b - 2 \log_2 c = \log_2 2 + \log_2 a - (\log_2 b + 2 \log_2 c) = \log_2 (2a) - \log_2 (b \cdot c^2) = \log_2 \left(\frac{2a}{b \cdot c^2}\right)$$

A expressão é
$$\frac{2a}{bc^2}$$

a)
$$\log_2 a + \log_2 b - \log_2 c$$

c)
$$2 - \log_3 a + 3 \log_3 b - 2 \log_3 c$$
 d) $\frac{1}{2} \log a - 2 \log b - \frac{1}{3} \log c$

d)
$$\frac{1}{2} \log a - 2 \log b - \frac{1}{3} \log a$$

e)
$$\frac{1}{3} \log a - \frac{1}{2} \log c - \frac{3}{2} \log b$$

e)
$$\frac{1}{3}\log a - \frac{1}{2}\log c - \frac{3}{2}\log b$$
 f) $2 + \frac{1}{3}\log_2 a + \frac{1}{6}\log_2 b - \log_2 c$

g)
$$\frac{1}{4} (\log a - 3 \log b - 2 \log c)$$

B.122 Qual é a expressão cujo desenvolvimento logarítmico é dado abaixo (a > b > c > 0)?

a)
$$1 + \log_2 (a + b) - \log_2 (a - b)$$

b) $2 \log (a + b) - 3 \log a - \log (a - b)$

c)
$$\frac{1}{2} \log (a - b) + \log a - \log (a + b)$$

d)
$$\frac{1}{2} \log (a^2 + b^2) - [\frac{1}{3} \log (a + b) - \log (a - b)]$$

e)
$$\frac{3 \log (a - b) - 2 \log (a + b) + 4 \log b}{5}$$

a)
$$\log 6$$

d) $\log \sqrt{2}$

g) log 5 (Sugestão 5 =
$$\frac{10}{2}$$
) h) log 15

VI. MUDANÇA DE BASE

53. Há ocasiões em que logaritmos em bases diferentes necessitam serem transformados para uma única base conveniente.

Por exemplo:

- 1º) na aplicação das propriedades operatórias os logaritmos devem estar todos numa mesma base.
- 20) mais adiante (*) falaremos da tábua de logaritmos, uma tabela de valores que possibilita determinar o valor do logaritmo decimal de qualquer número real positivo. Se quisermos determinar o valor de um logaritmo não decimal, devemos antes transformá-lo em logaritmo decimal para depois procurar o valor na tabela.

^(*) Ver capítulo VII.

Vejamos o processo que permite transformar o logaritmo de umareúmero esse: http://fuvestibul56om.lObservação positivo em uma certa base para outro em base conveniente.

54. Propriedade

Se a, b e c são números reais positivos e a e c diferentes de um, então tem-se:

$$\log_a b = \frac{\log_c b}{\log_c a}$$

Demonstração

Consideremos $\log_a b = x$, $\log_c b = y$ e $\log_c a = z$ e notemos que $z \neq 0$ pois a $\neq 1$.

Provemos que $x = \frac{y}{z}$.

De fato:

$$\begin{vmatrix}
\log_a b = x & \implies a^x = b \\
\log_c b = y & \implies c^y = b \\
\log_c a = z & \implies c^z = a
\end{vmatrix} \implies (c^z)^x = a^x = b = c^y \implies zx = y \implies x = \frac{y}{z}.$$

55. Exemplos

19) log₃ 5 transformado para a base 2 fica

$$\log_3 5 = \frac{\log_2 5}{\log_2 3}$$

2. log₂ 7 transformado para a base 10 fica

$$\log_2 7 = \frac{\log_{10} 7}{\log_{10} 2}$$

3º) log₁₀₀ 3 transformado para a base 10 fica

$$\log_{100} 3 = \frac{\log_{10} 3}{\log_{10} 100} = \frac{\log_{10} 3}{2} = \frac{1}{2} \log_{10} 3$$

A propriedade da mudança de base pode também ser assim apresentada:

Se a, b e c são números reais positivos e a e c diferentes de um, então tem-se:

$$\log_a b = \log_c b \cdot \log_a c$$

Demonstração

A demonstração é bastante simples, basta que transformemos o $\log_{\rm c}$ b para a base a:

$$\log_{c} b \cdot \log_{a} c = \frac{\log_{a} b}{\log_{a} c} \cdot \log_{a} c = \log_{a} b$$

- 57. Conseqüências
 - 1º) Se a e b são reais positivos e diferentes de um, então tem-se:

$$\log_a b = \frac{1}{\log_b a}$$

Demonstração

Transformando $\log_a b$ para a base b, temos: $\log_a b = \frac{\log_b b}{\log_b a} = \frac{1}{\log_b a}$

2º) Se a e b são reais positivos com a diferente de um e β é um real não nulo, então tem-se:

$$\log_{a}\beta b = \frac{1}{\beta}\log_{a}b$$

Demonstração

Devemos considerar dois casos:

10 caso:

Se b = 1, temos:

Se b \neq 1, temos:

$$\log_{a\beta} b = \frac{1}{\log_b a\beta} = \frac{1}{\beta} \cdot \frac{1}{\log_b a} = \frac{1}{\beta} \cdot \log_a b$$

Exemplos

10)
$$\log_8 3 = \log_{2^3} 3 = \frac{1}{3} \log_2 3$$

$$2^{\circ}$$
) $\log_{\frac{1}{5}} 6 = \log_{5^{-1}} 6 = -\log_5 6$

3.)
$$\log_{\frac{1}{9}} 5 = \log_{3^{-2}} 5 = -\frac{1}{2} \log_3 5$$

EXERCÍCIOS

B.124 Sabendo que $\log_{30} 3 = a + \log_{30} 5$ b, call far $\log_{10} 2$

Solução

Notando que 2 =
$$\frac{30}{3 \cdot 5}$$
 e 10 = $\frac{30}{3}$ temos

$$\log_{10} 2 = \frac{\log_{30} 2}{\log_{30} 10} = \frac{\log_{30} \left(\frac{30}{3 \cdot 5}\right)}{\log_{30} \left(\frac{30}{3}\right)} = \frac{\log_{30} 30 - \log_{30} 3 - \log_{30} 5}{\log_{30} 30 - \log_{30} 3} = \frac{1 - a - b}{1 - a}$$

B.125 Sabendo que $\log_{20} 2 = a e \log_{20} 3 = b$, calcular $\log_6 5$

B.126 Se
$$\log_{ab} a = 4$$
, calcule $\log_{ab} \frac{\sqrt[3]{a}}{\sqrt[]{b}}$.

B.127 Se $\log_{12} 27 = a$, calcule $\log_6 16$.

B.128 Demonstrar que a relação entre os logarítmos de dois números positivos e diferentes de um independe da base considerada.

B.129 Calcular A = $\log_3 5 \cdot \log_4 27 \cdot \log_{25} \sqrt{2}$

B.130 Simplificar a loga b · logb c · logc d

B.131 Simplificar a log (log a)

B.132 Se a, b e c são reais positivos com a \neq 1 e ac \neq 1, prove que: $\log_a b = \log_{ac} b (1 + \log_a c)$

$$\frac{1}{\log_{\mathbf{c}} \mathbf{c}} = 1 + \frac{1}{\log_{\mathbf{b}} \mathbf{c}}$$

3.134 Se **a**, **b** e **c** são reais positivos, diferentes de um e a \cdot b \neq 1, prove que: $\frac{\log_a c \cdot \log_b c}{(\log_{ab} c)^2} = \frac{(1 + \log_a b)^2}{\log_a b}$

B.135 Se a, b, c e d são reais positivos, diferentes de um e abc \neq 1, prove que: $\log_a d \cdot \log_b d + \log_b d \cdot \log_c d + \log_c d \cdot \log_a d = \frac{\log_a d \cdot \log_b d \cdot \log_c d}{\log_{abc} d}$

B.136 Se a e b são reais positivos, prove que: $a^{log}b = b^{log}a$

B.137 Se a, b, c e d são reais positivos, a e c diferentes de 1, prove que:

$$\log_a b^{(\log_C d)} = \log_C d^{(\log_a b)}$$

B.138 Se $x = \log_c$ (ab), $y = \log_b$ (ac) e $z = \log_a$ (bc), prove que: $\frac{1}{x+1} + \frac{1}{v+1} + \frac{1}{z+1} = 1$

/B.139 Se a, b, c e d são reais positivos, diferentes de um e dois a dois distintos, prove a $\frac{\log_{8} d}{\log_{6} d} = \frac{\log_{8} d - \log_{6} d}{\log_{6} d - \log_{6} d} \Longleftrightarrow b^{2} = ac.$

B.140 Se a e b são raízes da equação x^2 - px + q = 0 (p > 0 e 0 \leq q \neq 1), demonstre que: $\log_{\Omega} a^a + \log_{\Omega} b^b + \log_{\Omega} a^b + \log_{\Omega} b^a = p$

B.741 Se a, b e c são as medidas dos lados de um triângulo retângulo de hipotenusa de medida a e sabendo que a - b \neq 1 e a + b \neq 1, demonstre que

$$\log_{a+b} c + \log_{a-b} c = 2 \log_{a+b} c \cdot \log_{a-b} c$$

B.142 Se a, b e c são reais positivos, prove a igualdade: $(\frac{a}{b})^{\log c} \cdot (\frac{b}{c})^{\log a} \cdot (\frac{c}{a})^{\log b} = 1$

B.148 Se x =
$$10^{\frac{1}{1 - \log z}}$$
 e y = $10^{\frac{1}{1 - \log x}}$, prove que: $z = 10^{\frac{1}{1 - \log y}}$

B.144 Se a, b e c são reais positivos, diferentes de um e $a^b \cdot b^a = c^b \cdot b^c = a^c \cdot c^a$, prove que: $\frac{a(b+c-a)}{\log a} = \frac{b(a+c-b)}{\log b} = \frac{c(a+b-c)}{\log c}$

B.145 Se $0 \le x \ne 1$, demonstre que: $\frac{1}{\log_{x} 2 \cdot \log_{x} 4} + \frac{1}{\log_{x} 4 \cdot \log_{x} 8} + ... + \frac{1}{\log_{x} 2^{n-1} \cdot \log_{x} 2^{n}} = (1 - \frac{1}{n}) \cdot \frac{1}{\log_{x}^{2} 2}$ Sugestão: $\frac{1}{n(n-1)} = \frac{1}{n-1} - \frac{1}{n}$

Joseph Louis Lagrange nasceu em Turin, Itália.

Bem jovem tornou-se professor na Escola Real de Artilharia em Turin, fazendo sua primeira publicação em 1759 na "Micelânea", revista da Academia.

Lagrange substituiu Euler na Academia de Berlim, por convite de Frederico, o Grande, aí passando vinte anos. Em Berlim publicou importantes obras sobre Mecânica, problema dos três corpos, primeiras idéias de funções e importantes trabalhos sobre teoria das equações. Após a morte de Frederico, foi para a França, convidado por Louis XVI, onde tomou parte no Comitê de Pesos e Medidas.

Foi o primeiro professor da Escola Politécnica onde ensinava Análise, escrevendo notas de curso em vários níveis mais tarde publicadas no clássico "Teoria das Funções Analíticas", marcante em seu rigor e tentando tornar o Cálculo mais lógico do que prático. Nesta obra impulsionou a teoria das funções de variável real que a partir daí ocuparia a atenção dos matemáticos, utilizando-se nela da notação para derivadas de várias ordens.

Na Escola Normal, Lagrange preparou e ministrou aulas, hoje equivalentes às do curso colegial ou pré-universitário, em Álgebra avançada.

Lagrange muito contribuiu para o estudo do Cálculo das Variações, um ramo novo da Matemática no século XVIII, resolvendo com esta teoria vários problemas de isometria, chegando a ser considerado superior mesmo por Euler.

Em Teoria dos Números fez importantes demonstrações, provando, por exemplo, que todo inteiro positivo é a soma de no máximo quatro quadrados perfeitos.

Joseph L. Lagrange (1736 - 1813)

Em 1788, Lagrange publicou sua "Mecânica Analítica" considerada um poema científico pela perfeição e grandeza de sua estrutura, associando-se mais à Matemática Pura do que à Aplicada. Sua idéia fundamental influiria muito nas reformas educacionais da Revolução Francesa e, como dizia o próprio Lagrange: "parece-me que as soluções que vou apresentar serão de interesse para os geômetras tanto pelos métodos quanto pelos resultados. Essas soluções serão puramente analíticas e podem ser entendidas mesmo sem figuras", e realmente não há um único diagrama em seu trabalho.

Lagrange era uma pessoa muito melancólica, com poucas participações em política e movimentos revolucionários, sendo que para ele a Matemática era uma arte sublime, sua própria razão para existir, acesse: http://fuvestibular.com.br/ CAPÍTULO IV

FUNÇÃO LOGARÍTMICA

I. DEFINIÇÃO

58. Dado um número real a $(0 < a \ne 1)$ chamamos função logarítmica de base a a função f de IR+ em IR que associa a cada x o número loga x.

Em símbolos:

$$f: \mathbb{R}_+^* \to \mathbb{R}$$

 $x \to \log_a x$

Exemplos de funções logarítmicas em IR*

a)
$$f(x) = \log_2 x$$

b)
$$g(x) = log_1 x$$

c)
$$h(x) = \log x$$

d)
$$p(x) = ln x$$

II. PROPRIEDADES

1.0) Se $0 < a \ne 1$ então as funções f de $|R_+^*|$ em |R| definida por f(x) == $\log_a x$ e g de R em R^* definida por $g(x) = a^x$ são inversas uma da outra.

Demonstração-

Para provarmos esta propriedade basta provarmos que fog = l_{IR} e gof = l_{IR}.

De fato

$$(f \cup g)(x) = f(g(x)) = \log_a g(x) = \log_a a^x = x$$
 e
 $(g \cup f)(x) = g(f(x)) = a^{f(x)} = a^{\log_a x} = x$

somente se, a > 1 (0 < a < 1).

Demonstração

Provemos inicialmente a implicação

$$a > 1 \implies (\forall x_2 \in R_+^*, \forall x_1 \in R_+^*, x_2 > x_1 \implies \log_a x_2 > \log_a x_1)$$

De fato:

Quaisquer que sejam x_1 e x_2 positivos e $x_2 > x_1$ tem-se pela terceira consegüência da definição de logaritmos

$$a^{\log_a x_2} > a^{\log_a x_1}$$

e agora pelo teorema 2 (página 27) concluímos que:

$$\log_a x_2 > \log_a x_1$$

Provemos agora a implicação

$$(\forall x_1 \in R_+^*, \forall x_2 \in R_+^*, \log_a x_2 > \log_a x_1 \implies x_2 > x_1) \implies a > 1.$$

Considerando

$$\log_a x_2 = y_2 \implies x_2 = a^{y_2}$$

$$\log_a x_1 = y_1 \implies x_1 = a^{y_1}$$
 temos:

$$y_2 > y_1 \implies a^{y_2} > a^{y_1}$$

Pelo fato da função exponencial ser crescente para base maior que um concluímos que a > 1.

A demonstração de que a função logarítmica é decrescente se, e somente se, a base é positiva e menor que um ficará como exercício.

Observações

1ª) Quando a base é major que um, a relação de desigualdade existente entre os logaritmos de dois números positivos tem mesmo sentido que a relação entre esses números.

Exemplos

10)
$$4 > 2 \implies \log_2 4 > \log_2 2$$

2°)
$$15 > 4 \implies \log_3 15 > \log_3 4$$

3°)
$$\sqrt{5} > 7 \implies \log \sqrt{5} < \log 7$$

4°)
$$0.42 < 6.3 \implies \log_7 0.42 < \log_7 6.3$$

50)
$$4 > 0.3 \implies \ln 4 > \ln 0.3$$

2º) A função logarítmica $f(x) = log_a x$ é crescente (decrescente) sejseacesse: http://fuvestibular.com 2º) Quando a base é positiva e menor que um, a relação de desigualdade existente entre os logaritmos de dois números positivos é de sentido contrário à que existe entre esses números.

Exemplos

10)
$$8 > 2 \implies \log_{\frac{1}{2}} 8 < \log_{\frac{1}{2}} 2$$

2°)
$$12 > 5 \implies \log_{\frac{1}{3}} 12 < \log_{\frac{1}{3}} 5$$

$$3^{\circ}$$
) $\sqrt{3} < 7 \implies \log_{0.1} \sqrt{3} > \log_{0.1} 7$

$$4^{\circ}$$
) 0.3 < 2.4 $\implies \log_{0.2} 0.3 > \log_{0.2} 2.4$

3ª) Se a base é maior que um, então os números positivos menores que um têm logaritmos negativos e os números maiores que um têm ogaritmos positivos.

De fato, se a > 1:

$$0 < x < 1 \implies \log_a x < \log_a 1 \implies \log_a x < 0$$

 $x > 1 \implies \log_a x > \log_a 1 \implies \log_a x > 0$

Exemplos

- 1°) $\log_2 0.25 < 0$
- 2°) log 0.02 < 0
- 3°) $\log_2 32 > 0$
- 40) $\log_3 \sqrt{5} > 0$
- 4ª) Se a base é positiva e menor que um, então os números positivos menores que um têm logaritmos positivos e os números maiores que um têm logaritmos negativos.

De fato, se 0 < a < 1:

$$0 < x < 1 \implies \log_a x > \log_a 1 \implies \log_a x > 0$$

 $x > 1 \implies \log_a x < \log_a 1 \implies \log_a x < 0$

Exemplos

- 19) $\log_{0.5} 0.25 > 0$
- 2°) $\log_{0.1} 0.03 > 0$
- 3°) $\log_{0.5} 4 < 0$
- 49) $\log_{0.2} \sqrt{3} < 0$

Se $0 < a \ne 1$ então a função f de $|R_+^*|$ em |R| definida por $f(x) = \log_a x$ admite a função inversa g de |R| em $|R_+^*|$ definida por $g(x) = a^x$. Logo f é bijetora e, portanto, a imagem de f é

$$Im = IR.$$

IV. GRÁFICO

Com relação ao gráfico cartesiano da função $f(x) = log_a x$ (0 $< a \ne 1$), podemos dizer:

- 1°) está todo a direita do eixo y (x > 0):
- 2°) corta o eixo x no ponto de abscissa 1 ($log_a 1 = 0$ para todo $0 < a \ne 1$);
- 30) se a > 1 é de uma função crescente e se 0 < a < 1 é de uma função decrescente;
- 4.º) é simétrico em relação a reta y = x (bissetriz dos quadrantes ímpares) do gráfico da função $g(x) = a^x$;
 - 50) toma um dos aspectos da figura abaixo:

1.9) Construir o gráfico cartesiano da função $f(x) = \log_2 x$ (x > 0). Construímos a tabela dando valores inicialmente a y e depois calculamos x.

x	$y = log_2 x$		x	$y = \log_2 x$
	-3		1 8	-3
	-2		$\frac{1}{4}$	-2
	-1		$\begin{array}{c c} 1 \\ \hline 8 \\ \hline 1 \\ \hline 4 \\ \hline 1 \\ \hline 2 \\ \hline 1 \end{array}$	–1
	0		1	0
	1		0	1
	2		1	2
	3		2	3
		•		,

-	У									
4										
3						f(x) = I c	g ₂ x		
2										
1										
	l .							!		L
- 1	I	1	2	3	4	5	6	7	8	×.
-1 -2	/	1	2	3	4	5	6	7	8	×
-1 -2	₩	1	2	3	4	5	6	7	8	×
	₩	1	2	3	4	5	6	7	8	×
-3	₩	1	2	3	4	5	6	7	8	×

Uma alternativa para construirmos o gráfico de $f(x) = \log_2 x$ (x > 0) seria construirmos inicialmente o gráfico da função inversa $g(x) = f^{-1}(x) = 2^x$ e lembrar que se (b, a) $\in f^{-1} = g$, então (a, b) $\in f$.

 f^{-1}

f

20) Construir o gráfico cartesiano da função $f(x) = \log_{\frac{1}{2}} x$ (x > 0) Para mais, acesse: http://fuvestibula 8:150 Construir os gráficos das funções:

f-1

f

×	$y = (\frac{1}{2})^x$
-3	8
-2	4
-3 -2 -1 0	2
0	8 4 2 1
1	1/2
2	1/2 1/4 1/8
3	1/8

×	$y = \log_{\frac{1}{2}} x$					Y					I				/	
8	-3		-		8 7				ļ <u>.</u>		ļ		/	y=>		
4	-3 -2 -1		1,1	_	6					+ <i></i> -		\angle	Ĺ			
2	-1	f ⁻¹ (x)=	(2)^\	<u> </u>	5	L	-			-	K	⊢		<u>.</u>	\vdash	
1	0			\downarrow	3	╂┈	-		2	K	 	1				
$\frac{1}{2}$	1				2		Z	/								_
$\frac{1}{4}$	2		-3 -	2 -1	Z.	-1 ¹	7	2	3	4	5	6	7	8		×
1 8	3					-3					fb	()=1	og ₁ :		,	_

EXERCICIOS

B.146 Assinale em cada proposição V (verdadeira) ou F (falsa):

a) ()
$$\log_2 3 > \log_2 0.2$$

b) ()
$$\log_3 5 < \log_3 7$$

c) ()
$$\log_{\frac{1}{2}} 6 > \log_{\frac{1}{2}} 3$$

d) ()
$$\log_{0,1} 0.13 > \log_{0,1} 0.32$$

f) ()
$$\log_{0,2} 2.3 < \log_{0,2} 3.5$$

g) ()
$$\log \frac{1}{2} < \log \frac{1}{3}$$

e) ()
$$\log_4 0.10 > \log_4 0.9$$
 f) () $\log_{0.2} 2.3 < \log_{0.2} 3.5$ g) () $\log \frac{1}{2} < \log \frac{1}{3}$ h) () $\log_{0.5} \frac{2}{3} > \log_{0.5} \frac{3}{4}$

i) ()
$$\log_5 \sqrt{2} > \log_5 \sqrt{3}$$

j) ()
$$\log(\sqrt{2}-1)$$
 (1 + $\sqrt{2}$) $< \log(\sqrt{2}-1)$ 6

B.147 Construir os gráficos das funções:

a)
$$f(x) = log_3 x$$

b)
$$f(x) = \log_{\frac{1}{3}} x$$

c)
$$f(x) = \log x$$

d)
$$f(x) = log_{\frac{1}{10}} x$$

B.148 Construir os gráficos das funções:

a)
$$f(x) = log_2 |x|$$

b)
$$f(x) = \lfloor \log_2 x \rfloor$$

c)
$$f(x) = \lfloor \log_2 |x| \rfloor$$

B.149 Construir os gráficos das funções:

a)
$$f(x) = \log_2 (x - 1)$$

b)
$$f(x) = log_3 (2x - 1)$$

c)
$$f(x) = \log_2 x^2$$

d)
$$f(x) = \log_2 \sqrt{x}$$

a)
$$f(x) = 2 + \log_2 x$$

b)
$$f(x) = 1 + \log_{\frac{1}{2}} x$$

B.151 Determine o domínio da função $f(x) = log_3 (x^2 - 4)$.

Solução

Para que o logaritmo seja real devemos ter logaritmando positivo e base positiva e diferente de um.

Assim

$$\log_3 (x^2 - 4) \in |R \iff x^2 - 4 > 0 \iff x < -2 \text{ ou } x > 2$$

 $D = \{x \in |R \mid x < -2 \text{ ou } x > 2\}$

B.152 Determine o domínio das funções:

a)
$$f(x) = \log_2 (1 - 2x)$$

b)
$$f(x) = log_3 (4x - 3)^2$$

a)
$$f(x) = \log_2 (1 - 2x)$$

c) $f(x) = \log_5 \frac{x+1}{1-x}$
d) $f(x) = \log_1 (x^2 + x - 12)$

d)
$$f(x) = log(x^2 + x - 12)$$

B.153 Determine o domínio da função $f(x) = \log_{(x+1)} (2x^2 - 5x + 2)$.

Solução

$$\log_{\{x+1\}} (2x^2 - 5x + 2) \in IR \Longleftrightarrow \begin{cases} 2x^2 - 5x + 2 > 0 & (I) \\ 0 < x + 1 \neq 1 & (II) \end{cases} e$$

Resolvendo separadamente as inequações (I) e (II), temos:

(I)
$$2x^2 - 5x + 2 > 0 \implies x < \frac{1}{2}$$
 ou $x > 2$

(II)
$$0 < x + 1 \neq 1 \implies -1 < x \neq 0$$

Fazendo a intersecção destes conjuntos:

$$D = \{x \in |R| \mid -1 < x < \frac{1}{2} \text{ ou } x > 2 \text{ e } x \neq 0\}$$

- B.154 Determine o domínio das funções:
 - a) f(x) = log(3-x)(x + 2)
 - b) $f(x) = \log_x (x^2 + x 2)$
 - c) $f(x) = log(2x-3) (3 + 2x x^2)$

Liberada publicação de segredo militar

Gaspard Monge, francês, filho de um pobre negociante, por influência de um tenentecoronel assistiu às aulas na Escola Militar de Mezière onde seria professor mais tarde.

De grande capacidade, foi um dos matemáticos da Revolução Francesa, contribuindo com muitos artigos para as "Memórias da Academia de Ciências".

Tornou-se um dos mais notáveis cientistas franceses tendo talvez maior reputação como físico e químico do que matemático. Participou junto a Lavoisier de experiências que revolucionariam a Química em 1789.

Monge foi membro do Instituto Nacional que ocupou o lugar da Academia na época da Revolução.

Como matemático, sua principal obra foi "Geometria Descritiva", mantida secretamente guardada por seus superiores até 1794 pois achavam de interesse da defesa nacional. Neste trabalho se utilizou muito de diagramas mas pareceu finalmente ter concordado com Lagrange em evitá-los na Geometria Analítica elementar.

Monge, tanto quanto Carnot e Condorcet, participou ativamente de campanhas revolucionárias, chegando a ser Ministro da Marinha e responsável pela assinatura do relatório oficial do julgamento e execução do rei. Depois de um ano se afastou desse cargo, mantendo-se sempre ativo em operações políticas e militares e publicou importante trabalho com o título "Descrição da Arte de Fabricar os Canhões".

Foi o principal defensor das instituições de ensino. Membro de uma comissão de obras públicas, em 1794, estimulou a fundação da Escola Politécnica especializada no preparo de engenheiros, da qual foi professor e administrador.

Gaspard Monge (1746 — 1818)

Ensinava o que chamamos de Geometria Descritiva e também aplicação da Análise a Geometria, tendo impressionado tanto Lagrange com seus resultados que se diz este ter exclamado: "Com sua aplicação da Análise à Geometria o diabo do homem se tornará imortal".

Deve-se a Monge o ressurgimento da Geometria no espaço, com um tratamento totalmente algébrico. Em 1975 publicou "Folhas de Análise" dando forma à Geometria Analítica em três dimensões que se inclue em textos de cursos universitários atuais e chegou até nós, graças à preocupação dos alunos em publicá-la.

No fim da Revolução recebeu muitas honrarias, pois sempre apoiou Napoleão. Com a restauração da monarquia francesa boi banido, perdeu até mesmo no posto na Escola Politécnica e no Instituto Nacionał, morrendo logo adepois, acesse: http://fuvestibular.com.br/

EQUAÇÕES EXPONENCIAIS E LOGARÍTMICAS

I. EQUAÇÕES EXPONENCIAIS

61. Como havíamos dito quando do primeiro estudo de equações exponenciais, voltamos novamente a esse assunto.

Abordaremos agora, as equações exponenciais que não podem ser reduzidas a uma igualdade de potências de mesma base, através de simples aplicação das propriedades das potências.

A resolução de uma equação deste tipo baseia-se na definição de logarítmo, isto é, se $0 \le a \ne 1$ e b > 0 tem-se:

$$a^{x} = b \iff x = \log_{a} b$$

EXERCÍCIOS

B.155 Resolver as equações

a)
$$2^x = 3$$

b)
$$5^{2x-3} = 3$$

Soluções

a)
$$2^{x} = 3 \implies x = \log_{2} 3$$

 $S = \{\log_{2} 3\}$
b) $5^{2x-3} = 3 \implies \frac{5^{2x}}{5^{3}} = 3 \implies 25^{x} = 375 \implies x = \log_{25} 375$
 $S = \{\log_{25} 375\}$

a)
$$5^{x} = 4$$

b)
$$3^{X} = \frac{1}{2}$$

c)
$$7^{\sqrt{x}} = 2$$

d)
$$3^{(x^2)} = 5$$

e)
$$5^{4x-3} = 0.5$$

f)
$$3^{2X+1} = 2$$

g)
$$7^{2-3}x = 5$$

B.157 Resolver a equação $2^{3X-2} = 3^{2X+1}$.

Solução

$$2^{3X-2} = 3^{2X+1} \implies \frac{2^{3X}}{2^2} = 3^{2X} \cdot 3 \implies \frac{(2^3)^X}{(3^2)^X} = 2^2 \cdot 3 \implies \frac{8^X}{9^X} = 12 \implies$$

$$\implies (\frac{8}{9})^X = 12 \implies x = \log_{\frac{8}{9}} 12$$

$$S = \{\log_{\frac{8}{9}} 12\}$$

B.158 Resolver as equações:

a)
$$2^{x} = 3^{x+2}$$

b)
$$7^{2X-1} = 3^{3X+4}$$
 c) $5^{X-1} = 3^{4-2X}$

c)
$$5^{X-1} = 3^{4-2X}$$

B.159 Resolver as equações:

a)
$$3^{X} = 2^{X} + 2^{X+1}$$

b)
$$5^{x} + 5^{x+1} = 3^{x} + 3^{x+1} + 3^{x+2}$$

c)
$$2^{x+1} - 2^x = 3^{x+2} - 3^x$$

B.160 Resolver a equação $2^{3X+2} \cdot 3^{2X-1} = 8$.

B.161 Resolver as equações:

a)
$$4^{x} - 5 \cdot 2$$

a)
$$4^{x} - 5 \cdot 2^{x} + 6 = 0$$
 b) $4^{x} - 6 \cdot 2^{x} + 5 = 0$

c)
$$9^{X} - 3^{X+1} - 4 = 0$$

d)
$$3^{2\times+1} - 3^{\times+1} + 2 = 0$$

e)
$$4^{x+1} - 2^{x+4} + 15 = 0$$
 f) $3^{x+1} + \frac{18}{2^x} = 29$

f)
$$3^{x+1} + \frac{18}{3^x} = 29$$

B.162 Resolver a equação $4^{X} + 6^{X} = 9^{X}$.

B.163 Resolver a equação $4^{X} = 2 \cdot 14^{X} + 3 \cdot 49^{X}$.

B.164 Resolver a equação $a^{4X} + a^{2X} = 1$, supondo $0 \le a \ne 1$.

B.165 Resolver o sistema de equações:

$$\begin{cases} 64^{2x} + 64^{2y} = 40 \\ 64^{x+y} = 12 \end{cases}$$

II. EQUAÇÕES LOGARÍTMICAS

Podemos classificar as equações logarítmicas em três tipos:

62. 1.0 Tipo: $\log_a f(x) = \log_a g(x)$

É a equação que apresenta ou é redutível a uma igualdade entre dois logaritmos de mesma base a (0 < a \neq 1).

A resolução de uma equação deste tipo baseia-se na quarta conseqüência da definição.

Não nos devemos esquecer das condições de existência do logaritmo, isto é, a base do logaritmo deverá ser positiva e diferente de um e o logaritmando deverá ser positivo. Assim sendo, os valores encontrados na resolução da equação só serão considerados soluções da equação logarítmica proposta se for um valor que satisfaz as condições de existência do logaritmo.

Esquematicamente, temos:

Se
$$0 < a \neq 1$$
 então $\log_a f(x) = \log_a g(x) \Longrightarrow f(x) = g(x) > 0$

63. Exemplos

1º) Resolver a equação $log_2 (3x - 5) = log_2 7$.

Solução

$$\log_2 (3x - 5) = \log_2 7 \implies 3x - 5 = 7 > 0$$

Resolvendo

$$3x - 5 = 7 \implies x = 4$$

x = 4 é solução da equação proposta e não há necessidade de verificarmos pois 7 > 0 é satisfeita para todo x real.

$$S = \{4\}.$$

Solução

$$\log_3 (2x - 3) = \log_3 (4x - 5) \implies 2x - 3 = 4x - 5 > 0.$$

Resolvendo

$$2x - 3 = 4x - 5 \Longrightarrow x = 1$$

x=1 não é solução da equação proposta pois fazendo x=1 em 4x-5 encontramos $4\cdot 1-5=-1<0$, logo a equação proposta não tem solução. Chegaríamos a mesma conclusão se ao invés de fazer x=1 em 4x-5, o fizéssemos em 2x-3, já que 2x-3=4x-5.

$$S = \emptyset$$
.

3°) Resolver a equação $\log_5 (x^2 - 3x - 10) = \log_5 (2 - 2x)$

Solução

$$\log_5 (x^2 - 3x - 10) = \log_5 (2 - 2x) \implies x^2 - 3x - 10 = 2 - 2x > 0$$

Resolvendo

$$x^2 - 3x - 10 = 2 - 2x \implies x^2 - x - 12 = 0 \implies x = 4 \text{ ou } x = -3$$

x = 4 não é solução, pois, fazendo x = 4 em 2 - 2 encontramos

$$2 - 2 \cdot 4 = -6 < 0$$
.

x = -3 é solução, pois, fazendo x = -3 em 2 - 2x encontramos

$$2 - 2 \cdot (-3) = 8 > 0$$
.

$$S = \{-3\}$$

64. 20 Tipo: $\log_a f(x) = \alpha$.

É a equação logarítmica que apresenta ou é redutível a uma igualdade entre um logaritmo e um número real.

A resolução de uma equação deste tipo é simples, basta aplicarmos a definição de logaritmo.

Esquematicamente, temos:

Se
$$0 < a \neq 1$$
 e $\alpha \in |R|$ então $\log_a f(x) = \alpha \implies f(x) = a^{\alpha}$

Não precisamos nos preocupar com a condição de existência do logaritmo, sendo $0 < a \ne 1$, temos $a^{\alpha} > 0$ para todo α real e consequentemente $f(x) = a^{\alpha} > 0$.

1º) Resolver a equação $log_2 (3x + 1) = 4$.

Solução

$$\log_2 (3x+1) = 4 \implies 3x+1 = 2^4 \implies 3x = 15 \implies x = 5$$

S = {5}.

2°) Resolver a equação $log_3 (x^2 + 3x - 1) = 2$.

Solução

$$\log_3 (x^2 + 3x - 1) = 2 \implies x^2 + 3x - 1 = 3^2 \implies x^2 + 3x - 10 = 0 \implies x = 2 \text{ ou } x = -5.$$

 $S = \{2, -5\}.$

3.) Resolver a equação $\log_2 [1 + \log_3 (1 - 2x)] = 2$.

Solução

$$\log_2 [1 + \log_3 (1 - 2x)] = 2 \Longrightarrow 1 + \log_3 (1 - 2x) = 2^2 \Longrightarrow \log_3 (1 - 2x) = 3 \Longrightarrow 1 - 2x = 3^3 \Longrightarrow x = -13.$$

$$S = \{-13\}$$

66. 3º Tipo: incógnita auxiliar

São as equações que resolvemos fazendo inicialmente uma mudança de incógnita.

67. Exemplos

1.º) Resolver a equação $\log_2^2 x - \log_2 x = 2$.

Solução

A equação proposta é equivalente à equação

$$(\log_2 x)^2 - \log_2 x - 2 = 0$$

Fazendo $\log_2 x = y$ temos: $y^2 - y - 2 = 0 \implies y = 2$ ou y = 1.

Mas,
$$y = log_2 x$$
, então:

$$\log_2 x = 2 \implies x = 2^2 = 4'$$
 $\log_2 x = -1 \implies x = 2^{-1} = \frac{1}{2}$
 $S = \{4, \frac{1}{2}\}.$

2. Resolver a equação
$$\frac{2 + \log_3 x}{\log_3 x} + \frac{\log_3 x}{1 + \log_3 x} = 2.$$

Solução

Fazendo $log_3 x = y$, temos:

$$\frac{2+y}{y} + \frac{y}{1+y} = 2 \Longrightarrow (2+y)(1+y) + y^2 = 2y(1+y) \Longrightarrow$$

$$\Longrightarrow 2y^2 + 3y + 2 = 2y^2 + 2y \Longrightarrow y = -2.$$

$$\text{Mas } y = \log_3 x, \text{ então: } \log_3 x = -2 \Longrightarrow x = 3^{-2} = \frac{1}{9}$$

$$S = \left\{\frac{1}{9}\right\}$$

EXERCÍCIOS

B.166 Resolver as equações:

- a) $\log_4 (3x + 2) = \log_4 (2x + 5)$
- b) $\log_3 (5x 6) = \log_3 (3x 5)$
- c) $\log_2 (5x^2 14x + 1) = \log_2 (4x^2 4x 20)$
- d) $\log_{\frac{1}{2}}(3x^2 4x 17) = \log_{\frac{1}{3}}(2x^2 5x + 3)$
- e) $\log_4 (4x^2 + 13x + 2) = \log_4 (2x + 5)$
- f) $\log_{\frac{1}{2}} (5x^2 3x 11) = \log_{\frac{1}{2}} (3x^2 2x 8)$

B.167 Resolver as equações:

a)
$$\log_5(4x - 3) = 1$$

b)
$$\log_1(3 + 5x) = 0$$

c)
$$\log_{1/2}(3x^2 + 7x + 3) = 0$$

d)
$$\log_4^{\frac{2}{2}} (2x^2 + 5x + 4) = 2$$

e)
$$\log_1(2x^2 - 9x + 4) = -2$$

f)
$$\log_3(x-1)^2=2$$

g)
$$\log_4(x^2 - 4x + 3) = \frac{1}{2}$$

B.168 Resolver as equações:

- a) $log_3 (log_2 x) = 1$
- b) $\log_1[\log_3(\log_4 x)] = 0$
- c) $\log_{\frac{1}{4}} \{ \log_3 [\log_2 (3x 1)] \} = 0$
- d) $\log_2 \left[1 + \log_3 \left(1 + \log_4 x \right) \right] = 0$
- e) $\log_{\sqrt{2}} \{2 \cdot \log_3 [1 + \log_4 (x + 3)]\} = 2$
- f) $\log_3 [1 + 2 \cdot \log_2 (3 \log_4 x^2)] = 1$
- g) $\log_2 \{2 + 3 \cdot \log_3 [1 + 4 \cdot \log_4 (5x + 1)]\} = 3$

B.169 Resolver a equação: $log_3 [log_2 (3x^2 - 5x + 2)] = log_3 2$. Para mais, acesse: http://fuvestibular.com.br/

B.170 Resolver as equações:

a)
$$x^{\log_X (x+3)} = 7$$

b)
$$x^{\log_X}(x-5)^2 = 9$$

c)
$$x^{\log_X}(x+3)^2 = 16$$

d)
$$(\sqrt[3]{x})^{\log_x (x^2+2)} = 2 \cdot \log_3 \sqrt{27}$$

B.171 Resolver o sistema de equações:

$$\begin{cases} 2x^{y} - x^{-y} = 1\\ \log_2 y = \sqrt{x} \end{cases}$$

B.172 Resolver as equações:

a)
$$\log_4^2 x - 2 \cdot \log_4 x - 3 = 0$$

b)
$$6 \cdot \log_2^2 x - 7 \cdot \log_2 x + 2 = 0$$

c)
$$\log x (\log x - 1) = 6$$

d)
$$\log_2 x (2 \cdot \log_2 x - 3) = 2$$

e)
$$2 \cdot \log_{4}^{2} x + 2 = 5 \cdot \log_{4} x$$

f)
$$\log^3 x = 4 \cdot \log x$$

B.173 Resolver as equações:

a)
$$\frac{1}{5 - \log x} + \frac{2}{1 + \log x} = 1$$

b)
$$\frac{3 + \log_2 x}{\log_2 x} + \frac{2 - \log_2 x}{3 - \log_2 x} = \frac{5}{2}$$

c)
$$\frac{\log_3 x}{1 + \log_3 x} + \frac{\log_3 x + 2}{\log_3 x + 3} = \frac{5}{4}$$

d)
$$\frac{1 - \log x}{2 + \log x} - \frac{1 + \log x}{2 - \log x} = 2$$

e)
$$\frac{1 - \log_2 x}{2 - \log_2 x} - \frac{2 - \log_2 x}{3 - \log_2 x} = \frac{4 - \log_2 x}{5 - \log_2 x} - \frac{5 - \log_2 x}{6 - \log_2 x}$$

B.174 Resolver a equação $\log_x (2x + 3) = 2$.

Solução

$$\log_{\mathbf{X}} (2\mathbf{x} + 3) = 2 \Longrightarrow \begin{cases} 0 < \mathbf{x} \neq 1 & \text{(I)} \\ \mathbf{e} \\ 2\mathbf{x} + 3 = \mathbf{x}^2 & \text{(II)} \end{cases}$$

Resolvendo (II), temos:

$$x^2 = 2x + 3 \implies x^2 - 2x - 3 = 0 \implies x = 3 \text{ ou } x = -1.$$

Somente x = 3 é solução, pois deve satisfazer (1).

$$S = \{3\}.$$

B.175 Resolver as equações:

a)
$$\log_{x} (3x^2 - 13x + 15) = 2$$

b)
$$\log_{x} (4 - 3x) = 2$$

c)
$$\log_{(x-2)} (2x^2 - 11x + 16) = 2$$

d)
$$\log \sqrt{(2x^2 + 5x + 6)} = 4$$

e)
$$\log_{(x-1)}(x^3 - x^2 + x - 3) = 3$$

f)
$$\log_{(x+2)}(x^3 + 7x^2 + 8x + 11) = 3$$

g)
$$\log_{(2-x)} (2x^3 - x^2 - 18x + 8) = 3$$

B.176 Resolver a equação $\log_{(x+1)} (x^2 + x + 6) = 3$.

B.177 Resolver a equação $\log_{(x+3)} (5x^2 - 7x - 9) = \log_{(x+3)} (x^2 - 2x - 3)$.

Solução

$$\log_{(x+3)} (5x^2 - 7x - 9) = \log_{(x+3)} (x^2 - 2x - 3)$$

$$\begin{cases}
0 < x + 3 \neq 1 \\
e \\
5x^2 - 7x - 9 = x^2 - 2x - 3 > 0
\end{cases}$$

Resolvendo

$$5x^2 - 7x - 9 = x^2 - 2x - 3 \implies 4x^2 - 5x - 6 = 0 \implies x = 2$$
 ou $x = -\frac{3}{4}$

x = 2 não é solução, pois, fazendo x = 2 em $x^2 - 2x - 3$, encontramos $2^2 - 2 \cdot 2 - 3 = -3 \le 0$

 $x = -\frac{3}{4}$ é solução, pois, fazendo $x = -\frac{3}{4}$ em $x^2 - 2x - 3$ e em x + 3 en-

contramos, respectivamente

$$(-\frac{3}{4})^2 - 2 \cdot (-\frac{3}{4}) - 3 = \frac{3}{4} > 0$$
 e $0 < -\frac{3}{4} + 3 \neq 1$

$$S = \left\{-\frac{3}{4}\right\}$$

B.178 Resolver as equações:

a)
$$\log_x (4x - 3) = \log_x (2x + 1)$$

b)
$$\log_{y} (5x + 2) = \log_{y} (3x + 4)$$

c)
$$\log_{(x+1)} (3x + 14) = \log_{(x+1)} (2 - x)$$

d)
$$\log_{(x+5)} (3x^2 - 5x - 8) = \log_{(x+5)} (2x^2 - 3x)$$

e)
$$\log_{(2x-4)} (5x^2 - 15x + 7) = \log_{(2x-4)} (x^2 - 3x + 2)$$

f)
$$\log_{(x+2)} (3x^2 - 8x - 2) = \log_{(x+2)} (2x^2 - 5x + 2)$$

B.179 Resolver as equações:

Para mais, acesse: http://fuvestibular.co

$$\int_{0}^{br/} \log_{x}^{2} (5x - 6) - 3 \cdot \log_{x} (5x - 6) + 2 = 0$$

b)
$$\log_x^2 (x + 1) = 2 + \log_x (x + 1)$$

c)
$$2 \cdot \log_{(3x-2)}^{2} (4 - x) - 5 \cdot \log_{(3x-2)} (4 - x) + 2 = 0$$

B.180 Resolver as equações:

a)
$$\log_2(x + 1) + \log_2(x - 1) = 3$$

b)
$$\log_3(2x - 1)^2 - \log_3(x - 1)^2 = 2$$

Solução

 a) Antes de aplicarmos qualquer propriedade operatória, devemos estabelecer as condições de existência para os logaritmos.

Assim sendo, devemos ter

$$\left\{
\begin{array}{l}
x+1>0 & \Longrightarrow x>-1 \\
e & \\
x-1>0 & \Longrightarrow x>1
\end{array}
\right\} \Longrightarrow x>1$$
(1)

Resolvendo a equação proposta para x > 1, temos:

$$\log_2(x + 1) + \log_2(x - 1) = 3 \implies \log_2[(x + 1)(x - 1)] = 3 \implies (x + 1)(x - 1) = 2^3 \implies x^2 - 9 = 0 \implies x = 3 \text{ ou } x = -3.$$

Somente x = 3 é solução, pois satisfaz a condição (1).

$$S = \{3\}$$

b) Estabelecendo a condição de existência dos logaritmos, temos

$$\begin{array}{c} (2x-1)^2 > 0 \\ e \\ (x-1)^2 > 0 \end{array} \right\} \implies x \neq \frac{1}{2} \quad e \quad x \neq 1$$
 (I

Resolvendo a equação proposta para $x \neq \frac{1}{2}$ e $x \neq 1$, temos:

$$\log_3 (2x - 1)^2 - \log_3 (x - 1)^2 = 2 \implies \log_3 \frac{(2x - 1)^2}{(x - 1)^2} = 2 \implies$$

$$\implies \frac{(2x - 1)^2}{(x - 1)^2} = 3^2 \implies \left| \frac{2x - 1}{x - 1} \right| = 3 \implies$$

$$\Rightarrow \begin{cases} \frac{2x-1}{x-1} = 3 \Longrightarrow 2x-1 = 3(x-1) \Longrightarrow x = 2 \\ \text{ou} \\ \frac{2x-1}{x-1} = -3 \Longrightarrow 2x-1 = -3(x-1) \Longrightarrow x = \frac{4}{5} \end{cases}$$

Os dois valores encontrados são soluções, pois, satisfazem a condição (I).

$$S = \{2, \frac{4}{5}\}$$

B.181 Resolver as equações:

a)
$$\log_2(x-3) + \log_2(x+3) = 4$$

b)
$$\log_2(x + 1) + \log_2(x - 2) = 2$$

c)
$$\log x + \log(x - 21) = 2$$

d)
$$\log_2 (5x - 2) - \log x - \log_2 (x - 1) = 2$$

e)
$$\log_2 (5x + 4) - \log_2 x - \log_3 (x - 2) = 1$$

f)
$$\log_{\frac{1}{2}}(3x + 2)^2 - \log_{\frac{1}{2}}(2x - 3)^2 = -4$$

g)
$$\log_{36}(x+2)^2 + \log_{36}(x-3)^2 = \frac{1}{2}$$

B.182 Resolver a equação
$$(0,4)^{\log^2 x + 1} = (6,25)^{2 - \log x^3}$$
.

B.183 Resolver a equação
$$\log_2 (9^{x-1} + 7) - \log_2 (3^{x-1} + 1) = 2$$
.

B.184 Resolver as equações:

a)
$$\frac{\log_3{(2x)}}{\log_2{(4x - 15)}} = 2$$

b)
$$\frac{\log_2{(35 - x^3)}}{\log_2{(5 - x)}} = 3$$

c)
$$\frac{\log (\sqrt{x+1}+1)}{\log \sqrt[3]{x-40}} = 3$$

B.185 Resolver a equação
$$\frac{1}{2} \log_3(x - 16) - \log_3(\sqrt{x} - 4) = 1$$
.

B.186 Resolver a equação
$$\log_3(4^x + 15 \cdot 2^x + 27) = 2 \cdot \log_3(2^{x+2} - 3)$$
.

B.187 Resolver a equação
$$\log_2(x-2) + \log_2(3x-2) = \log_2 7$$
.

Solução

Vamos estabelecer inicialmente, a condição de existência dos logaritmos, isto é:

$$\begin{vmatrix}
x - 2 > 0 & \Longrightarrow x > 2 \\
3x - 2 > 0 & \Longrightarrow x > \frac{2}{3}
\end{vmatrix}$$

$$\Rightarrow x > 2 \qquad (1)$$

Resolvendo a equação, temos:

$$\log_2(x-2) + \log_2(3x-2) = \log_2 7 \implies \log_2[(x-2)(3x-2)] = \log_2 7 \implies (x-2)(3x-2) = 7 \implies x = 3 \text{ ou } x = -\frac{1}{2}$$

Somente x = 3 é solução, pois satisfaz a condição (1) $S = \{3\}$

B.188 Resolver as equações: Para mais, acesse: http://fuvestibular.co

a)
$$\log_2(x + 4) + \log_2(x - 3) = \log_2 18$$

b)
$$\log_5 (1 - x) + \log_5 (2 - x) = \log_5 (8 - 2x)$$

c)
$$\log_{\frac{1}{2}}(x + 1) + \log_{\frac{1}{2}}(x - 5) = \log_{\frac{1}{2}}(2x - 3)$$

d)
$$\log (2x + 1) + \log (4x - 3) = \log (2x^2 - x - 2)$$

e)
$$\log_2(4-3x) - \log_2(2x-1) = \log_2(3-x) - \log_2(x+1)$$

f)
$$\log_{\frac{1}{3}}(x^2 + 13x) + \operatorname{colog}_{\frac{1}{3}}(x + 3) = \log_{\frac{1}{3}}(3x - 1)$$

q)
$$\log (2x^2 + 4x - 4) + \cos (x + 1) = \log 4$$

h)
$$\log \sqrt{7x+5} + \frac{1}{2} \log (2x+7) = 1 + \log \frac{9}{2}$$

B.189 Resolver a equação
$$2 \cdot \log (\log x) = \log (7 - 2 \cdot \log x) - \log 5$$
.

B.190 Resolver a equação
$$x + \log (1 + 2^X) = x \cdot \log 5 + \log 6$$

B.191 Resolver as equações:

a)
$$\sqrt{\log x} = \log \sqrt{x}$$

b)
$$\log^{-1} x = 2 + \log x^{-1}$$

c)
$$\log_8 x^3 = 5 + \frac{12}{\log_8 x}$$

B.192 Resolver a equação $\log_3 (3^x - 1) \cdot \log_3 (3^{x+1} - 3) = 6$.

B.193 Resolver as equações:

a)
$$\log^2 x^3 - 20 \cdot \log \sqrt{x} + 1 = 0$$
 b) $\log_x 5 \sqrt{5} - 1.25 = \log_x^2 \sqrt{5}$

b)
$$\log 5 \sqrt{5} - 125 = \log^2 \sqrt{}$$

$$c) \frac{\log_8 \left(\frac{8}{x^2}\right)}{\log_8^2 x} = 3$$

B.194 Resolver a equação
$$x^2 + x \cdot \log 5 - \log 2 = 0$$

B.195 Resolver o sistema de equações

$$\begin{cases} x + y = 7 \\ \log_2 x + \log_2 y = \log_2 12 \end{cases}$$

Aplicando a propriedade dos logaritmos na segunda equação temos:

$$\log_2 x + \log_2 y = \log_2 12 \implies \log_2 (xy) = \log_2 12 \implies xy = 12.$$

O sistema proposto fica então reduzido às equações

$$\begin{cases} x + y = 7 \\ xy = 12 \end{cases}$$

cujas soluções são
$$x = 3$$
 e $y = 4$ ou $x = 4$ e $y = 3$.
 $S = \{(3, 4), (4, 3)\}$

B.196 Resolver os seguintes sistemas de equações:

a)
$$\begin{cases} x + y = 6 \\ \log_2 x + \log_2 y = \log_2 8 \end{cases}$$

b)
$$\begin{cases} 4^{X-Y} = 8 \\ \log_2 x - \log_2 y = 2 \end{cases}$$

c)
$$\begin{cases} x^2 + y^2 = 425 \\ \log x + \log y = 2 \end{cases}$$

d)
$$\begin{cases} 2x^2 + y = 75 \\ 2 \cdot \log x - \log y = 2 \cdot \log 2 + \log 3 \end{cases}$$

e)
$$\begin{cases} 2^{\sqrt{x} + \sqrt{y}} = 512 \\ \log \sqrt{xy} = 1 + \log 2 \end{cases}$$

B.197 Resolver o sistema de equações:

$$\begin{cases} 2^{\log_{\frac{1}{2}}(x + y)} = 5^{\log_{5}(x - y)} \\ \log_{2} x + \log_{2} y = \frac{1}{2} \end{cases}$$

B.198 Resolver o sistema de equações:

$$\begin{cases} \log_3 x + \log_3 y = 3 \\ \log_3 x + \cos\log_3 y = 1 \end{cases}$$

Solução

Lembrando que $colog_3 y = -log_3 y$ e fazendo a substituição $log_3 x = a$ e $log_3 y = b$ no sistema proposto, temos:

$$\begin{cases} a+b=3 \\ a-b=1 \end{cases} \implies a=2 \quad e \quad b=1$$

mas $a = \log_3 x$ e b = $\log_3 y$, então

$$\log_3 x = 2 \implies x = 9$$

$$\log_3 y = 1 \implies y = 3$$

$$S = \{(9, 3)\}$$

B.199 Resolver os seguintes sistemas de equações:

a)
$$\begin{cases} 3 \cdot \log x - 2 \cdot \log y = 0 \\ 4 \cdot \log x + 3 \cdot \log y = 17 \end{cases}$$

a)
$$\begin{cases} 3 \cdot \log x - 2 \cdot \log y = 0 \\ 4 \cdot \log x + 3 \cdot \log y = 17 \end{cases}$$
 b)
$$\begin{cases} 2 \cdot \log_2 x + 3 \cdot \log_2 y = 27 \\ 5 \cdot \log_2 x - 2 \cdot \log_2 y = 1 \end{cases}$$

B.200 Resolver o sistema de equações:

$$\begin{cases} \log_2(xy) \cdot \log_2(\frac{x}{y}) = -3 \\ \log_2^2 x + \log_2^2 y = 5 \end{cases}$$

Para mais, acesse: http://fuvestibular.com.hi//

Solução

Aplicando logaritmo de base 2 a ambos os membros, temos

$$4 \cdot x^{\log_2 x} = x^3 \Longrightarrow \log_2 (4 \cdot x^{\log_2 x}) = \log_2 x^3 \Longrightarrow \log_2 4 + (\log_2 x) \cdot (\log_2 x) =$$

=
$$3 \cdot \log_2 x \Longrightarrow (\log_2 x)^2 - 3 \cdot \log_2 x + 2 = 0$$

Fazendo $\log_2 x = y$, temos:

$$y^2 - 3y + 2 = 0 \implies y = 1$$
 ou $y = 2$.

$$\log_2 x = 1 \implies x = 2$$

$$\log_2 x = 2 \implies x = 4$$

$$S = \{2, 4\}$$

B.202 Resolver as equações:

a)
$$9 \cdot x^{\log_3 x} = x^3$$

b)
$$x^{\log x} = 100 \cdot x$$

c)
$$16^{\log_{x} 2} = 8x$$

d)
$$9^{\log_{\sqrt{x}} 3} = 27x$$

e)
$$3^2 \cdot \log_X 3 = x^{\log_X 3x}$$

B.203 Resolver a equação $2^{\log_X (x^2 - 6x + 9)} = 3^{2 \cdot \log_X \sqrt{x} - 1}$

B.204 Resolver as equações:

a)
$$\log(x^{\log x}) = 1$$

b)
$$x^{\log x - 1} = 100$$

c)
$$\sqrt{x^{\log \sqrt{x}}} = 10$$

B.205 Resolver as equações:

a)
$$x = \frac{3 \cdot \log^2 x - \frac{2}{3} \cdot \log x}{100 \cdot \sqrt{10}}$$

b)
$$x \log_3^3 x - \log_3 x^3 = 3^{-3 \cdot \log_2 \sqrt{2}} 4 + 8$$

c)
$$x^{\log^2 x - 3 \cdot \log x + 1} = 1000$$

B.206 Resolver a equação $\log_x (2 \cdot x^{X-2} - 1) = 2x - 4$.

B.207 Resolver a equação
$$3 + \log_x (\frac{x^{4x-6} + 1}{2}) = 2x$$
.

B,208 Resolver os sistemas de equações:

B.212 Resolver as equações:

a)
$$\begin{cases} x \cdot y = 16 \\ \log_2 x = 2 + \log_2 y \end{cases}$$
 b) $\begin{cases} x \cdot y = 32 \\ x^{\log_2 y} = 64 \end{cases}$ c) $\begin{cases} \log_5 x + 3^{\log_3 y} = 7 \end{cases}$

$$\frac{\text{m.br/}}{\text{a)}} \log_3^2 x - 5 \cdot \log_9 x + 1 = 0$$

B.209 Resolver a equação
$$\log_2(x-2) = \log_2(x^2-x+6) + \log_{\frac{1}{2}}(2x+1)$$
.

b)
$$\log_2^2 x - \log_8 x^8 = 1$$

c) $\log_2^2 x = 2 + \log_9 x^2$

Solução

B.213 Resolver as equações:

Estabelecendo inicialmente a condição de existência dos logaritmos, temos:

a)
$$\sqrt{\log_2 x^4} + 4 \cdot \log_4 \sqrt{\frac{2}{x}} = 2$$

b)
$$\sqrt{1 + \log_2 x} + \sqrt{4 \cdot \log_4 x - 2} = 4$$

Aplicando as propriedades e transformando os logaritmos à base 2, temos:

$$\log_2(x-2) = \log_2(x^2 - x + 6) + \log_2(x + 1) \implies$$

$$\Rightarrow \log_2(x-2) = \log_2(x^2 - x + 6) - \log_2(2x + 1) \implies$$

$$\frac{1 + \log_2(x - 4)}{\log_{\sqrt{2}}(\sqrt{x + 3} - \sqrt{x - 3})} = 1$$

$$\Rightarrow \log_2(x-2) = \log_2 \frac{x^2 - x + 6}{2x + 1} \implies x - 2 = \frac{x^2 - x + 6}{2x + 1} \implies$$

B.215 Resolver os sistemas de equações:

$$\Rightarrow 2x^2 - 3x - 2 = x^2 - x + 6 \implies x^2 - 2x - 8 = 0 \implies \begin{cases} x = 4 \\ x = -2 \end{cases} (n\tilde{a}o)$$

a)
$$\begin{cases} \log_{\frac{1}{2}}(y - x) + \log_{2} \frac{1}{y} = -2 \\ x^{2} + y^{2} = 25 \end{cases}$$

$$S = \{4\}$$

b)
$$\begin{cases} \log_9(x^2 + 1) - \log_3(y - 2) = 0 \\ \log_2(x^2 - 2y^2 + 10y - 7) = 2 \end{cases}$$

$$\log_2(x^2 - 2y^2 + 10y - 7) = 2$$

$$(\log_2(x^2 + 2) + \log_2(y^2 + 9) = 2$$

a)
$$\log_3(x + 2) - \log_{\frac{1}{3}}(x - 6) = \log_3(2x - 5)$$

c)
$$\begin{cases} \log_9(x^2 + 2) + \log_{81}(y^2 + 9) = 2\\ 2 \cdot \log_4(x + y) - \log_2(x - y) = 0 \end{cases}$$

b)
$$\log_2(x + 2) + \log_{\frac{1}{2}}(5 - x) + \operatorname{colog}_{\frac{1}{2}}(x - 1) = \log_2(8 - x)$$

c) $\log_3(x^2 - 2x + 2) + \log_{\frac{1}{2}}(2x + 1) = \log_3(x - 4)$

d)
$$\begin{cases} \log_3(\log_2 x) + \log_{\frac{1}{3}}(\log_{\frac{1}{2}}y) = 1 \\ xy^2 = 4 \end{cases}$$

B.211 Resolver a equação
$$\log_2^2 x - 9 \cdot \log_8 x = 4$$
.

e)
$$\begin{cases} \log_2 x - \log_4 y = a \\ \log_4 x - \log_8 y = b \end{cases}$$

Solução

B.216 Resolver a equação $\log_2 x + \log_x 2 = 2$.

 $\log_2^2 x - 9 \cdot \log_8 x = 4 \implies \log_2^2 x - 9 \cdot \log_2 3 x - 4 = 0 \implies \log_2^2 x - 3 \cdot \log_2 x - 4 = 0.$ Fazendo $\log_2 x = y$ temos;

Solução

$$y^2 - 3y - 4 = 0 \implies y = 4$$
 ou $y = -1$ mas $y = \log_2 x$, então

Lembrando que
$$\log_x 2 = \frac{1}{\log_2 x}$$
 temos: $\log_2 x + \frac{1}{\log_2 x} = 2$

$$\log_2 x = 4 \implies x = 16$$

Fazendo
$$\log_2 x = y$$
, vem:

$$\log_2 x = -1 \Longrightarrow x = \frac{1}{2}$$

$$y + \frac{1}{y} = 2 \implies y = 1$$

$$S = \{16, \frac{1}{2}\}$$

mas
$$y = \log_2 x$$
, então $\log_2 x = 1 \implies x = 2$

$$S = \{2\}$$

B.217 Resolver as equações:

a)
$$\log_2 x = \log_2 2$$

b)
$$\log_3 x = 1 + \log_x 9$$

a)
$$\log_2 x = \log_x 2$$

c) $\log_2 x - 8 \cdot \log_{x^2} 2 = 3$

d)
$$\log_{1/2} 2 + 4 \cdot \log_{4} x^{2} + 9 \approx 0$$

B.218 Resolver as equações:

a)
$$\log_{\sqrt{5}} x \cdot \sqrt{\log_x 5\sqrt{5} + \log_{\sqrt{5}} 5\sqrt{5}} = -\sqrt{6}$$

b)
$$\sqrt{1 + \log_2 \sqrt{27}} \cdot \log_2 x + 1 = 0$$

B.219 Resolver a equação
$$1 + 2 \cdot \log_{X} 2 \cdot \log_{4} (10 - x) = \frac{2}{\log_{4} x}$$

B.220 Resolver os sistemas de equações:

a)
$$\begin{cases} \log_y x + \log_x y = \frac{5}{2} \end{cases}$$

a)
$$\begin{cases} \log_{y} x + \log_{x} y = \frac{5}{2} \\ xy = 8 \end{cases}$$
 b)
$$\begin{cases} 3 \cdot (2 \cdot \log_{y} 2 x - \log_{\frac{1}{X}} y) = 10 \\ xy = 81 \end{cases}$$

B.221 Resolver a equação
$$\frac{1}{\log_6 (x + 3)} + \frac{2 \cdot \log_{0,25} (4 - x)}{\log_2 (3 + x)} = 1.$$

B.222 Resolver a equação
$$\log_X 2 \cdot \log_X 2 = \log_X \frac{1}{16}$$
 $0 = \log_X \frac{2}{64}$.

Solução

$$\log_{\mathbf{X}} 2 \cdot \log_{\mathbf{X}} 2 = \log_{\mathbf{X}} 2 \implies \frac{1}{\log_2 \mathbf{X}} \cdot \frac{1}{\log_2 \frac{\mathbf{X}}{16}} = \frac{1}{\log_2 \frac{\mathbf{X}}{64}} \implies$$

$$\Longrightarrow \log_2 x \cdot \log_2 \frac{x}{16} = \log_2 \frac{x}{64} \Longrightarrow \log_2 x \cdot (\log_2 x - 4) = \log_2 x - 6$$

Fazendo $\log_2 x = y$ vem:

$$y(y - 4) = y - 6 \implies y^2 - 5y + 6 = 0 \implies y = 2 \text{ ou } y = 3$$

mas, $y = \log_2 x$, então

$$\log_2 x = 2 \implies x = 4$$

$$\log_2 x = 3 \implies x = 8$$

$$S = \{4, 8\}$$

B.223 Resolver as equações:

a)
$$\log_X 3 \cdot \log_X 3 + \log_X 3 = 0$$

b)
$$\log_{3x}(\frac{3}{x}) + \log_3 2x = 1$$

c)
$$\frac{1}{\log_2 8} + \frac{1}{\log_{2} 8} + \frac{1}{\log_{4} 8} = 2$$

d)
$$\log_{x} x^{2} - 14 \cdot \log_{16x} x^{3} + 40 \cdot \log_{4x} \sqrt{x} = 0$$

B.224 Resolver a equação Para mais, acesse: http://fuvestibu

$$\log_{\frac{1}{\sqrt{1+x}}} 10 \cdot \log_{16} (x^2 - 3x + 2) = -2 + \log_{\frac{1}{\sqrt{1+x}}} 10 \cdot \log_{10} (x - 3).$$

B.225 Resolver a equação

$$\log_2^2 x^2 - \log_2 (2x) - 2 + (x+2) \log_{(x+2)^2} 4$$

B.226 Resolver as equações, sabendo que $0 \le a \ne 1$:

a)
$$\log_a (ax) \cdot \log_x (ax) = \log_{a^2} \frac{1}{a}$$

b)
$$2 \cdot \log_x a + \log_{ax} a + 3 \cdot \log_{a2x} a = 0$$

c)
$$\log_{\mathbf{x}} (a\mathbf{x}) \cdot \log_{a} \mathbf{x} = 1 + \log_{\mathbf{x}} \sqrt{a}$$

d)
$$\frac{\log_a 2\sqrt{x}}{\log_{2x} a}$$
 + $\log_{ax} a \cdot \log_{\frac{1}{a}} 2x = 0$

B.227 Resolver a equação sabendo que a e b são reais positivos e diferentes de um:

$$\frac{\log_2 x}{\log_2^2 a} - \frac{2 \cdot \log_a x}{\log_1 a} = \log_{\sqrt[3]{a}} x \cdot \log_a x$$

B.228 Resolver a equação
$$\log_2 x + \log_3 x + \log_4 x = 1$$
.

B.229 Resolver a equação sabendo que
$$0 < a \ne 1$$
: $10^{\log_a (x^2 - 3x + 5)} = 3^{\log_a 10}$.

B.230 Resolver a equação:

$$1 + \frac{\log (a - x)}{\log (x + b)} = \frac{2 - \log_{(a - b)} 4}{\log_{(a - b)} (x + b)}$$

sabendo que a > b > 0 e $a - b \neq 1$.

B.231 Resolver os sistemas de equações:

a)
$$\begin{cases} x^2 + 4y^3 = 96 \\ \log_{v} 2 = \log_{v} 4 \end{cases}$$

b)
$$\begin{cases} y \cdot x^{\log_y x} = x^{\frac{5}{2}} \\ \log_a y \cdot \log_y (y - 3x) = 1 \end{cases}$$

c)
$$\begin{cases} x \cdot \log_2 y \cdot \log_{\frac{1}{X}} 2 = y \sqrt{y} (1 - \log_X 2) \\ \log_{y^3} 2 \cdot \log_{\sqrt{2}} x = 1 \end{cases}$$

B.232 Resolver o sistema:
$$\begin{cases} \log_2{(x + y)} - \log_3{(x - y)} = 1 \\ x^2 - y^2 = 2 \end{cases}$$

$$\begin{cases} \log_2 x + \log_4 y + \log_4 z = 2 \\ \log_3 y + \log_9 z + \log_9 x = 2 \\ \log_4 z + \log_{16} x + \log_{16} y = 2 \end{cases}$$

B.234 Sendo a e b reais positivos e diferentes de 1, resolver o sistema:

$$\begin{cases} a^{X} \cdot b^{Y} = ab \\ 2 \cdot \log_{a} x = \log_{\frac{1}{b}} y \cdot \log_{\sqrt{a}} b \end{cases}$$

B.235 Resolver o sistema de equações:

$$\begin{cases} \log_{12} x \cdot (\log_2 x + \log_2 y) = \log_2 x \\ \log_2 x \cdot \log_3 (x + y) = 3 \cdot \log_3 x \end{cases}$$

B.236 Resolver os sistemas de equações para x > 0 e y > 0:

a)
$$\begin{cases} x^{x+y} = y^{12} \\ y^{x+y} = x^3 \end{cases}$$
 b)
$$\begin{cases} x^{x+y} = y^3 \\ y^{x+y} = x^6 y^3 \end{cases}$$
 c)
$$\begin{cases} x^y = y^x \\ 2^x = 3^y \end{cases}$$

$$\begin{cases} x^{x+y} = y^3 \\ y^{x+y} = x^6 y^3 \end{cases}$$

c)
$$\begin{cases} x^{V} = y^{X} \\ 2^{X} = 3^{V} \end{cases}$$

B.237 Resolver os sistemas de equações:

a)
$$\begin{cases} x^{\log y} + y^{\log x} = 200 \\ \sqrt{x^{\log y} \cdot y^{\log x}} = y \end{cases}$$

b)
$$\begin{cases} x^{\log y} + y^{\log x} = 200 \\ x^{\sqrt{(\log x \cdot \log y)^{y}}} = 1024 \end{cases}$$

c)
$$\begin{cases} x^{\log y} + y^{\log x} = 20 \\ \log \sqrt{xy} = 1 \end{cases}$$

CAPÍTULO VI

INEQUAÇÕES **EXPONENCIAIS** E LOGARÍTMICAS

I. INEQUAÇÕES EXPONENCIAIS

Como havíamos prometido do primeiro estudo de inequações exponenciais, voltamos novamente a esse assunto.

Enfocaremos agora as inequações exponenciais que não podem ser reduzidas a uma desigualdade de potências de mesma base, através de simples aplicações das propriedades de potências.

68. A resolução de uma inequação deste tipo baseia-se no crescimento ou decrescimento da função logarítmica, isto é, se $\, {\rm a}^{\rm x} > \, {\rm 0}, \, {\rm b} > {\rm 0} \,$ e $\, {\rm 0} < {\rm c} \neq {\rm 1} \,$ temse:

(1)
$$a^x > b \iff$$

$$\begin{cases} \log_c a^x > \log_c b \text{ se } c > 1 \\ \log_c a^x < \log_c b \text{ se } 0 < c < 1 \end{cases}$$

(II)
$$a^x < b \iff \begin{cases} \log_c a^x < \log_c b \text{ se } c > 1 \\ \log_c a^x > \log_c b \text{ se } 0 < c < 1 \end{cases}$$

B.238 Resolver as inequações:

a)
$$3^{x} > 2$$

b)
$$2^{3x-1} \leq \frac{1}{5}$$

Solução

a) Tomando os logaritmos de ambos os membros da desigualdade na base 3 e mantendo a desigualdade pois a base do logaritmo é major que um, temos:

Por exemplo, tomando os logaritmos na base $\frac{1}{5}$ e invertendo a desigualdade, temos:

$$3^{x} > 2 \Longrightarrow \log_3 3^{x} > \log_3 2 \Longrightarrow x \cdot \log_3 3 > \log_3 2 \Longrightarrow x > \log_3 2$$

A escolha da base 3 para o logaritmo visou obter uma simplificação na resolução. Obteríamos o mesmo resultado se tomássemos os logaritmos em qualquer outra

base.
$$3^{X} > 2 \Rightarrow \log_{\frac{1}{5}} 3^{X} < \log_{\frac{1}{5}} 2 \Rightarrow x \cdot \log_{\frac{1}{5}} 3 < \log_{\frac{1}{5}} 2 \xrightarrow{\frac{1}{5}}$$

$$\Rightarrow x > \frac{\log_1 2}{\log_1 3} \Rightarrow x > \log_3 2$$

$$S = \{x \in \mathbb{R} \mid x > \log_3 2\}$$

b)
$$2^{3x-1} \leqslant \frac{1}{5} \Rightarrow \frac{2^{3x}}{2} \leqslant \frac{1}{5} \Rightarrow 8^x \leqslant \frac{2}{5} \Rightarrow \log_8 8^x \leqslant \log_8 \frac{2}{5} \Rightarrow x \leqslant \log_8 \frac{2}{5}$$

$$S = \{x \in \mathbb{R} \mid x < \log_8 \frac{2}{5}\}$$

B.239 Resolver as inequações;

b)
$$(\frac{1}{3})^{X} \leq !$$

c)
$$2^{3x+2} > 8$$

a)
$$4^{x} > 7$$
 b) $(\frac{1}{2})^{x} \le 5$ c) $2^{3x+2} > 9$ d) $5^{4x-1} < 3$

e)
$$3^{2-3x} < \frac{1}{4}$$
 f) $3^{\sqrt{x}} > 4$ g) $2^{(x^2)} \le 5$

f)
$$3^{\sqrt{x}} > 4$$

g)
$$2^{(x^2)} \le 9$$

B.240 Resolver a inequação $3^{2X-1} > 2^{3X+1}$

Solução

$$3^{2X-1} > 2^{3X+1} \Longrightarrow \frac{3^{2X}}{3} > 2^{3X} \cdot 2 \Longrightarrow \frac{(3^2)^X}{(2^3)^X} > 2 \cdot 3 \Longrightarrow \frac{9^X}{8^X} > 6 \Longrightarrow$$
$$\Longrightarrow (\frac{9}{8})^X > 6 \Longrightarrow \log_{\frac{9}{8}} (\frac{9}{8})^X > \log_{\frac{9}{8}} 6 \Longrightarrow x > \log_{\frac{9}{8}} 6$$
$$S = \{x \in \mathbb{R} \mid x > \log_{\frac{9}{2}} 6\}$$

$$\frac{c}{5}$$

b)
$$2^{3x-1} \le (\frac{1}{3})^{2x-3}$$

c)
$$(\frac{1}{5})^{2x+3} > 2^{4x-3}$$

d)
$$2^{x-2} > 3^{2x-1}$$

B.242 Resolver as inequações:

a) $2^{X} > 3^{X-1}$

a)
$$5^{x} > 3^{x} + 3^{x+1}$$

b)
$$3^{x} + 3^{x+1} \le 2^{x} - 2^{x-1}$$

c)
$$2^{x} + 2^{x+1} + 2^{x+2} > 3^{x+1} - 3^{x}$$
 d) $3^{x} + 3^{x+1} + 3^{x+2} < 2^{x-2} - 2^{x}$

e)
$$2^{x} + 2^{x+1} - 2^{x+3} \le 5^{x+2} - 5^{x-1}$$

a)
$$2^{3x+1} \cdot 5^{2x-3} > 6$$

b)
$$3^{2x-1} \cdot 2^{5-4x} > 5$$

a)
$$9^{x} - 5 \cdot 3^{x} + 6 > 0$$

b)
$$4^{x} - 2^{x+2} + 3 \le 0$$

c)
$$25^x - 5^x - 6 \ge 0$$

c)
$$25^{x} - 5^{x} - 6 \ge 0$$
 d) $4^{x + \frac{1}{2}} - 2^{x} - 3 \le 0$

e)
$$25^{x} + 5^{x+1} + 4 \le 0$$

f)
$$2 \cdot 9^{x} + 3^{x+2} + 4 > 0$$

B.245 Resolver a inequação $9^x - 6^x - 4^x > 0$

B.246 Resolver a inequação $4^x - 6 \cdot 10^x + 8 \cdot 25^x \le 0$

B.247 Resolver a inequação $4^{x+1} - 8 \cdot 6^x + 9^{x+\frac{1}{2}} \ge 0$

II. INEQUAÇÕES LOGARITMICAS

Assim como classificamos as equações logarítmicas em três tipos básicos, vamos também classificar as inequações logarítmicas em três tipos

69. 19 Tipo: $\log_a f(x) > \log_a g(x)$

É a inequação que é redutível a uma desigualdade entre dois logaritmos de mesma base a (0 < a \neq 1).

Como a função logaritmo é crescente se $a>1\,$ e decrescente se 0< a<1,devemos considerar dois casos

Quando a base é maior que 1, a relação de desigualdade existente entre os logaritmandos é de mesmo sentido que o dos logaritmos. Não nos devemos esquecer que, para existirem os logaritmos em IR, os logaritmandos deverão ser positivos.

Esquematicamente, temos:

Se a > 1, então
$$\log_{a} f(x) > \log_{a} g(x) \iff f(x) > g(x) > 0$$

2º caso

Quando a base é positiva e menor que 1, a relação de desigualdade existente entre os logaritmandos é de sentido contrário a dos logaritmos. Também, não nos podemos esquecer que os logaritmandos deverão ser positivos para que os logaritmos sejam reais.

Esquematicamente, temos:

Se
$$0 < a < 1$$
, então $\log_a f(x) > \log_a g(x) \iff 0 < f(x) < g(x)$

Agrupando os dois casos num só esquema temos:

$$\log_a f(x) > \log_a g(x) \iff \begin{cases} f(x) > g(x) > 0 & \text{se } a > 1 \\ & \text{ou} \\ 0 < f(x) < g(x) & \text{se } 0 < a < 1 \end{cases}$$

10) Resolver a inequação $\log_2 (2x - 1) < \log_2 6$.

Solução

Observe que a base é maior que um, logo a desigualdade entre os logaritmandos tem mesmo sentido que a dos logaritmos.

$$\log_2 (2x - 1) < \log_2 6 \implies 0 < 2x - 1 < 6 \implies \frac{1}{2} < x < \frac{7}{2}$$

$$S = \{x \in \mathbb{R} \mid \frac{1}{2} < x < \frac{7}{2}\}$$

2°) Resolver a inequação $\log_{\frac{1}{3}}(x^2-4x)>\log_{\frac{1}{3}}5$.

Solução

Observe que agora a base é menor que um, logo a desigualdade entre os logaritmandos tem sentido contrário à dos logaritmos.

$$\log_{\frac{1}{3}}(x^{2} - 4x) > \log_{\frac{1}{3}}5 \implies 0 < x^{2} - 4x < 5 \implies$$

$$\begin{cases} x^{2} - 4x > 0 \implies x < 0 \text{ ou } x > 4 & (1) \\ e \\ x^{2} - 4x < 5 \implies x^{2} - 4x - 5 < 0 \implies -1 < x < 5 & (11) \end{cases}$$

$$(11) \qquad 0 \qquad 4 \qquad x < 0 \qquad 0 \qquad 4 \qquad x < 0$$

$$(12) \qquad 0 \qquad 4 \qquad 5 \qquad 0$$

$$(13) \qquad 0 \qquad 4 \qquad 5 \qquad 0$$

$$(14) \qquad 0 \qquad 4 \qquad 5 \qquad 0$$

$$(15) \qquad 0 \qquad 4 \qquad 5 \qquad 0$$

$$(17) \qquad 0 \qquad 4 \qquad 5 \qquad 0$$

$$(18) \qquad 0 \qquad 4 \qquad 5 \qquad 0$$

$$(19) \qquad 0 \qquad 4 \qquad 5 \qquad 0$$

$$(19) \qquad 0 \qquad 4 \qquad 5 \qquad 0$$

$$(19) \qquad 0 \qquad 4 \qquad 5 \qquad 0$$

3.0) Resolver a inequação $\log_5 (x^2 - 2x - 6) \ge \log_5 2$.

Solução

$$\log_5 (x^2 - 2x - 6) \ge \log_5 2 \implies x^2 - 2x - 6 \ge 2 \implies$$

$$\ge 0 \implies x \le -2 \text{ ou } x \ge 4$$

Para mais, acesse: http://fuvestibular.com.br/
$$S = \{x \in \mathbb{R} \mid x \leq -2 \text{ ou } x \geq 4\}$$

71. 2º Tipo: $\log_a f(x) \ge k$

É a inequação logarítmica que é redutível a uma desigualdade entre um logaritmo e um número real.

Para resolvermos uma inequação deste tipo, basta notarmos que o número real k pode ser assim expresso

$$k = k \cdot \log_a a = \log_a a^k$$

Portanto, são equivalentes as inequações:

$$\log_a f(x) > k \iff \log_a f(x) > \log_a a^k$$

е

$$\log_a f(x) < k \iff \log_a f(x) < \log_a a^k$$

Pelo estudo já feito no tipo anterior, temos, esquematicamente:

$$\begin{aligned} \log_{\mathbf{a}} f(\mathbf{x}) > \mathbf{k} &\iff \begin{cases} f(\mathbf{x}) > \mathbf{a}^{\mathbf{k}} & \text{se } \mathbf{a} > 1 \\ 0 < f(\mathbf{x}) < \mathbf{a}^{\mathbf{k}} & \text{se } 0 < \mathbf{a} < 1 \end{cases} \\ \log_{\mathbf{a}} f(\mathbf{x}) < \mathbf{k} &\iff \begin{cases} 0 < f(\mathbf{x}) < \mathbf{a}^{\mathbf{k}} & \text{se } \mathbf{a} > 1 \\ f(\mathbf{x}) > \mathbf{a}^{\mathbf{k}} & \text{se } 0 < \mathbf{a} < 1 \end{cases} \end{aligned}$$

72. Exemplos

1.0) Resolver a inequação $\log_3 (3x + 2) < 2$.

Solução

$$\log_3 (3x + 2) < 2 \Longrightarrow 0 < 3x + 2 < 3^2 \Longrightarrow -\frac{2}{3} < x < \frac{7}{3}$$

$$S = \{ x \in \mathbb{R} \mid -\frac{2}{3} < x < \frac{7}{3} \}$$

2º) Resolver a inequação $\log_{\frac{1}{2}}(2x^2-3x)>-1.$

Solução

$$\log_{\frac{1}{2}}(2x^2 - 3x) > -1 \implies 0 < 2x^2 - 3x < (\frac{1}{2})^{-1} \implies$$

$$\implies \begin{cases} 2x^2 - 3x > 0 \implies x < 0 \text{ ou } x > \frac{3}{2} & \text{(I)} \\ e \end{cases}$$

$$= 2x^2 - 3x < 2 \implies 2x^2 - 3x - 2 < 0 \implies -\frac{1}{2} < x < 2 & \text{(II)}$$
Para mais a

Para mais, acesse: http://fuvestibular.com.b

Para mais, acesse: http://fuvestibular.com.br/

$$S = \{x \in |R| - \frac{1}{2} < x < 0 \text{ ou } \frac{3}{2} < x < 2\}$$

3.º) Resolver a inequação $\log_{\frac{1}{3}}(2x^2 - 7x + 5) \le -2$.

Solução

$$\log_{\frac{1}{3}}(2x^2 - 7x + 5) \le -2 \Longrightarrow 2x^2 - 7x + 5 \ge (\frac{1}{3})^{-2} \Longrightarrow$$

$$\Longrightarrow 2x^2 - 7x + 5 \ge 9 \Longrightarrow 2x^2 - 7x - 4 \ge 0 \Longrightarrow$$

$$\Longrightarrow x \le -\frac{1}{2} \text{ ou } x \ge 4$$

$$S = \{x \in \mathbb{R} \mid x \le -\frac{1}{2} \text{ ou } x \ge 4\}$$

73. 3º Tipo: "incógnita auxiliar"

São as inequações que resolvemos fazendo inicialmente uma mudança de incógnita.

74. Exemplo

Resolver a inequação $\log_3^2 x - 3 \cdot \log_3 x + 2 > 0$.

Solução

Fazendo $log_3 x = y$, temos:

$$y^2 - 3y + 2 > 0 \longrightarrow y < 1$$
 ou $y > 2$, mas $y = log_3 x$ então

$$\log_3 x < 1 \implies 0 < x < 3^1$$
 ou $\log_3 x > 2 \implies x > 3^2 = 9$

$$S = \{x \in \mathbb{R} \mid 0 < x < 3 \text{ ou } x > 9\}$$

B.248 Resolver as inequações:

a)
$$\log_3 (5x - 2) < \log_3 4$$

b)
$$\log_{0.3} (4x - 3) \le \log_{0.3} 5$$

c)
$$\log_{\frac{1}{2}}(3x - 1) \ge \log_{\frac{1}{2}}(2x + 3)$$

d)
$$\log_2 (2x^2 - 5x) \le \log_2 3$$

e)
$$\log_{\frac{1}{2}}(x^2 - 1) > \log_{\frac{1}{2}}(3x + 9)$$

f)
$$\log_{\frac{1}{10}} (x^2 + 1) < \log_{\frac{1}{10}} (2x - 5)$$

g)
$$\log (x^2 - x - 2) < \log (x - 4)$$

B.249 Resolver as inequações:

a)
$$\log_5 (x^2 - x) > \log_{0,2} \frac{1}{6}$$

b)
$$\log_{\frac{1}{2}}(x^2 - x - \frac{3}{4}) > 2 - \log_2 5$$

B.250 Resolver as inequações:

a)
$$\log_2 (2 - x) < \log_{\frac{1}{2}} (x + 1)$$

b)
$$\frac{1}{\log_2 x} \leqslant \frac{1}{\log_2 \sqrt{x+2}}$$

B.251 Resolver as inequações:

a)
$$\log_2 (3x + 5) > 3$$

b)
$$\log_{\frac{1}{2}}(4x - 3) \ge 2$$

c)
$$\log_2 (x^2 + x - 2) \le 2$$

d)
$$\log_{\frac{1}{2}}(2x^2 - 6x + 3) < 1$$

e)
$$\log_{\frac{1}{2}}(x^2 + 4x - 5) > -4$$

f)
$$\log_{\frac{5}{8}}(2x^2 - x - \frac{3}{8}) \ge 1$$

g)
$$\log (x^2 + 3x + 3) > 0$$

h)
$$\log_{0.3}(x^2 - 4x + 1) \ge 0$$

B.252 Resolver as inequações:

a)
$$2 < \log_2 (3x + 1) < 4$$

b)
$$2 < \log_2 (3 - 2x) \le 3$$

c)
$$\frac{1}{2} < \log_{\frac{1}{2}} (2x) < 1$$

d)
$$0 < \log_3 (x^2 - 4x + 3) < 1$$

B.253 Resolver as inequações:

a)
$$|\log_2 x| > 1$$

b)
$$|\log_3(x-3)| \ge 2$$

c)
$$|\log x| < 1$$

d)
$$|2 + \log_2 x| \ge 3$$

e)
$$|\log_3(x^2 - 1)| < 1$$

B.254 Resolver as inequações:

a)
$$3 \cdot \log_3^2 x + 5 \cdot \log_3 x - 2 \le 0$$

a)
$$3 \cdot \log_3^2 x + 5 \cdot \log_3 x - 2 \le 0$$
 b) $\log_{\frac{1}{2}}^2 x - 3 \cdot \log_{\frac{1}{2}} x - 4 > 0$

c)
$$\log_2^2 x < 4$$

d)
$$1 < \log^2 x < 3$$

e)
$$\log^4 x - 5 \cdot \log^2 x + 4 < 0$$

f)
$$\frac{1}{\log_2 x} - \frac{1}{\log_2 x - 1} < 1$$

a) $\log_2 x - 6 \cdot \log_x 2 + 1 > 0$

b)
$$\log_2 x - \log_x 8 - 2 \geqslant 0$$

c)
$$(\log_2 x)^4 - (\log_{\frac{1}{2}} \frac{x^5}{4})^2 - 20 \cdot \log_2 x + 148 < 0$$

B.256 Resolver a inequação
$$1 - \sqrt{1 - 8 \left(\log_{\frac{1}{4}} x\right)^2} < 3 \cdot \log_{\frac{1}{4}} x$$
.

B.257 Resolver a inequação:
$$\log_{\frac{x}{2}} 8 + \log_{\frac{x}{4}} 8 < \frac{\log_2 x^4}{\log_2 x^2 - 4}$$

B.258 Resolver a inequação:
$$\frac{1 + \log_a^2 x}{1 + \log_a x} > 1$$
 para $0 < a < 1$.

B.259 Resolver a inequação
$$\log_2(x-3) + \log_2(x-2) \le 1$$

Solução

Antes de aplicarmos as propriedades operatórias dos logaritmos devemos estabelecer a condição para a existência dos logaritmos, isto é

$$\begin{vmatrix} x - 3 > 0 & \Longrightarrow x > 3 \\ e & e \\ x - 2 > 0 & \Longrightarrow x > 2 \end{vmatrix} \Longrightarrow x > 3$$
 (1)

Resolvendo a inequação, temos:

$$\log_2(x-3) + \log_2(x-2) \le 1 \implies \log_2(x-3)(x-2) \le 1 \implies$$

$$\implies$$
 $(x - 3)(x - 2) \le 2 \implies x^2 - 5x + 4 \le 0 \implies 1 \le x \le 4$ (II)

A solução da inequação proposta são os valores de x que satisfazem simultaneamente (1) e (11), portanto

B.260 Resolver as inequações:

a)
$$\log_3 (3x + 4) - \log_3 (2x - 1) > 1$$

b)
$$\log_2(x) + \log_2(x+1) < \log_2(2x+6)$$

c)
$$\log_2 (3x + 2) - \log_2 (1 - 2x) > 2$$

d)
$$\log (2x - 1) - \log (x + 2) \le \log 3$$

e)
$$\log_3(x^2 + x - 6) - \log_3(x + 1) > \log_3 4$$

f)
$$\log_{\frac{1}{2}}(x-1) + \log_{\frac{1}{2}}(3x-2) \ge -2$$

B.261 Resolver as inequações:

a)
$$\log_2 \sqrt{6x+1} + \log_2 \sqrt{x+1} > \log_4 3$$

b)
$$\log_4 (8x) - \log_2 \sqrt{x-1} - \log_2 \sqrt{x+1} < \log_2 3$$

B.262 Resolver a inequação: $\log_4 (2x^2 + x + 1) - \log_2 (2x - 1) \le 1$.

B.263 Resolver a inequação $\log_2[\log_{\frac{1}{x}}(\log_3 x)] > 0$.

Solução

$$\log_{2} \left[\log_{\frac{1}{2}} (\log_{3} x) \right] > 0 \implies \log_{\frac{1}{2}} (\log_{3} x) > 1 \implies 0 < \log_{3} x < \frac{1}{2} \implies 1 < x < \sqrt{3}$$

$$S = \left\{ x \in \mathbb{R} \mid 1 < x < \sqrt{3} \right\}$$

B.264 Resolver as inequações:

a)
$$\log_{\frac{1}{3}}(\log_2 x) < 0$$

b)
$$\log_{\frac{1}{2}}(\log_{\frac{1}{2}}x) \geqslant 0$$

c)
$$\log_2(\log_{\frac{1}{2}}x) \geqslant 1$$

d)
$$\log_2[\log_3(\log_5 x)] > 0$$

e)
$$\log_{\frac{1}{2}}[\log_3(\log_{\frac{1}{2}}x)] <$$

e)
$$\log_{\frac{1}{2}} \left[\log_3 \left(\log_{\frac{1}{2}} x\right)\right] < 0$$
 f) $\log_2 \left[\log_{\frac{1}{2}} \left(\log_3 x\right)\right] > 1$

B.265 Resolver a inequação $\log_a \left[\log_{\frac{1}{2}} (\log_a x)\right] \ge 0$ para a > 1.

B.266 Resolver a inequação: $\log_{\underline{1}} [\log_a (\log_a x)] \le 0$ para 0 < a < 1.

B.267 Resolver as inequações:

a)
$$\log_2 \{1 + \log_3 [\log_2(x^2 - 3x + 2)]\} \ge 0$$

b)
$$\log_{\frac{1}{3}}[\log_4(x^2 - 5)] > 0$$

c)
$$\log_2 (\log_{\frac{1}{3}} \frac{1}{x-1}) < 0$$

d)
$$\log_{\frac{1}{2}}(\log_8 \frac{x^2 - 2x}{x - 3}) \le 0$$

B.268 Determine o domínio das funções:

a)
$$f(x) = \sqrt{\log_2 x}$$

b)
$$f(x) = \sqrt{\log_{\frac{1}{2}} x}$$

c)
$$f(x) = \sqrt{\log_2(\log_{\frac{1}{2}}x)}$$

c)
$$f(x) = \sqrt{\log_2 \{\log_{\frac{1}{2}} x\}}$$
 d) $f(x) = \sqrt[3]{\log_{\frac{1}{2}} \{\log_2 x\}}$

e)
$$f(x) = \sqrt{\log_3 \frac{x^2 + 2x - 7}{x - 1}}$$
 f) $f(x) = \sqrt{\log_{\frac{1}{2}} \frac{x}{x^2 - 1}}$

f)
$$f(x) = \sqrt{\log_{\frac{1}{2}} \frac{x}{x^2 - 1}}$$

Para mais, acesse: http://fuvestibul **8.269** | **Résolver** a inequação $\sqrt{\log_a \frac{3-2x}{1-x}} < 1$.

B.270 Resolver as inequações:

a)
$$(\frac{1}{2})^{\log_{\frac{1}{3}}(4x^2 - 9x + 5)} > 2$$
 b) $3^{\log_{\frac{1}{2}}(x^2 + 6x)} \le \frac{1}{81}$

b)
$$3^{\log_{\frac{1}{2}}(x^2 + 6x)} \leqslant \frac{1}{81}$$

c)
$$(\frac{1}{2})^{\log_3[\log_{\frac{1}{2}}(x-\frac{1}{x})]} < 1$$

c)
$$(\frac{1}{2})^{\log_3[\log_{\frac{1}{2}}(x-\frac{1}{x})]} < 1$$
 d) $(1,25)^{1-\log_2^2 x} < (0,64)^{2+\log_{\sqrt{2}} x}$

B.271 Resolver a inequação
$$x^{2-\log_2^2 x - \log_2 x^2} > \frac{1}{x}$$

B.272 Determine os valores de a para que a equação $x^2 - 4x + \log_2 a = 0$ admita raízes reais.

Solução

A equação admitirá raízes reais se o discriminante da equação não for negativo

$$\Delta = 16 - 4 \cdot \log_2 a \ge 0 \Longrightarrow \log_2 a \le \frac{1}{4} \Longrightarrow 0 < a < \sqrt[4]{2}$$
Resposta: $0 < a < \sqrt[4]{2}$

B.273 Determinar os valores de a para os quais as raízes da equação são reais:

a)
$$x^2 - 2x - \log_2 a = 0$$
 b) $3x^2 - 6x + \log a = 0$

b)
$$3x^2 - 6x + \log a = 0$$

c)
$$x^2 - x \cdot \log_3 a + 4 = 0$$

c)
$$x^2 - x \cdot \log_3 a + 4 = 0$$
 c) $x^2 - x \cdot \log_2 a + \log_2 a = 0$

B.274 Determinar a para que a equação $3x^2 - 5x + \log(2a^2 - 9a + 10) = 0$ admita raízes de sinais contrários.

B.275 Resolver as inequações:

a)
$$(4 - x^2) \cdot \log_2 (1 - x) \le$$

a)
$$(4 - x^2) \cdot \log_2 (1 - x) \le 0$$
 b) $(5x^2 + x - 6) \cdot \log_{\frac{1}{2}} (3x - 4) \ge 0$

B.276 Resolver a inequação
$$x^{\frac{1}{\log x}} \cdot \log x < 1$$
.

B.277 Resolver a inequação
$$\log_x (2x^2 - 5x + 2) > 1$$
.

Solução

Antes de resolvermos a inequação, devemos levantar a condição para a existência

$$\left\{
\begin{array}{l}
2x^2 - 5x + 2 > 0 \Longrightarrow x < \frac{1}{2} \text{ ou } x > 2 \\
e \\
0 < x \neq 1
\end{array}
\right\} \Longrightarrow 0 < x < \frac{1}{2} \text{ ou } x > 2$$
(1)

Como a base x pode ser maior ou menor que um, devemos examinar dois casos:

1°) Se
$$x > 1$$
 (II), temos:

Para mais, acesse: http://fuvestibua.278n Résolver as inequações:

$$\log_2 (2x^2 - 5x + 2) > 1 \implies 2x^2 - 5x + 2 > x \implies 2x^2 - 6x + 2 > 0 \implies$$

$$\implies x < \frac{3 - \sqrt{5}}{2} \quad \text{ou} \quad x > \frac{3 + \sqrt{5}}{2} \qquad (III)$$

A solução neste caso é dado por

2°.) Se
$$0 \le x \le 1$$
 (IV) temos:
 $\log_2 (2x^2 - 5x + 2) > 1 \Longrightarrow 2x^2 - 5x + 2 \le x \Longrightarrow 2x^2 - 6x + 2 \le 0$

$$\frac{3 - \sqrt{5}}{2} \le x \le \frac{3 + \sqrt{5}}{2}$$
 (V)

A solução neste caso é dado por

(I)
$$\frac{\frac{1}{2}}{0} \qquad 2$$
(IV)
$$\frac{0}{3-\sqrt{5}} \qquad \frac{3+\sqrt{5}}{2}$$
(V)
$$\frac{3-\sqrt{5}}{2} \qquad \frac{1}{2}$$
(I) \cap (IV) \cap (V)
$$0 \qquad 0 \qquad 0$$

$$S_2 = \left\{x \in \mathbb{R} \mid \frac{3-\sqrt{5}}{2} < x < \frac{1}{2}\right\}$$

A solução da inequação proposta é:

$$S = S_1 \cup S_2 = \{x \in \mathbb{R} \mid \frac{3 - \sqrt{5}}{2} < x < \frac{1}{2} \quad \text{ou} \quad x > \frac{3 + \sqrt{5}}{2} \}$$

a)
$$\log_{x^2}(x+2) \le 1$$

b)
$$\log_{2x+3} x^2 < 1$$

c)
$$\log_{x^2} (x^2 - 5x + 4) < 1$$

c)
$$\log_{x^2} (x^2 - 5x + 4) < 1$$
 d) $\log_x \frac{4x + 5}{6 - 5x} < -1$

e)
$$\log_{(3x^2+1)} 2 < \frac{1}{2}$$

f)
$$\log_x \frac{x+3}{x-1} > 1$$

g)
$$\log_{(x+6)}(x^2-x-2) \ge 1$$

h)
$$\log_{\left(\frac{2x+5}{2}\right)} \left(\frac{x-5}{2x-3}\right)^2 > 0$$

i)
$$\log_{\sqrt{2x^2-7x+6}}(\frac{x}{3}) > 0$$

B.279 Para que valores de a e b se tem a desigualdade:

$$\log_a (a^2b) > \log_b (\frac{1}{a^5})$$
?

B.280 Resolver a inequação $\log_2(x-1) \cdot \log_{\frac{1}{2}}(3x-4) > 0$.

B.281 Resolver a inequação

$$x^{\log_a x + 1} > a^2 x$$
 para $a > 1$

B.282 Resolver a inequação $\log_{\underline{1}} x + \log_3 x > 1$.

B.283 Resolver a inequação $\log_2 (2^{X} - 1) \cdot \log_{\frac{1}{X}} (2^{X+1} - 2) > -2$.

CAPÍTULO VII

LOGARÍTMOS **DECIMAIS**

(1,0)

I. INTRODUÇÃO

Após o estudo da teoria dos logaritmos, veremos agora algumas aplicações aos cálculos numéricos.

Os logaritmos, quando da sua invenção, foram saudados alegremente por Kepler (Johann Kepler (1571-1630) astrônomo alemão) pois aumentavam enormemente a capacidade de computação dos astrônomos.

Notemos que, com as propriedades operatórias dos logaritmos, podemos transformar uma multiplicação em uma soma, uma divisão em uma subtração e uma potenciação em uma multiplicação, isto é, com o emprego da teoria de logaritmos podemos transformar uma operação em outra mais simples de ser realizada. f(x) = 10g x

Dentre os diversos sistemas de logaritmos estudaremos com particular interesse o sistema de logaritmos de base 10.

Lembremos as principais propriedades da função logarítmica de base 10:

$$1) \log 1 = 0$$

2)
$$\log 10 = 1$$

3)
$$x > 1 \Rightarrow \log x > 0$$

Para mais, acesse: http://fuvestibular.com.br/
$$0 < x < 1 \Rightarrow \log x < 0$$

Para mais, acesse: http://fuvestibular.com.br/ Regra I (x > 1)

II. CARACTERÍSTICA E MANTISSA

75. Qualquer que seja o número real positivo x que consideremos, estará necessariamente compreendido entre duas potências de 10 com expoentes inteiros consecutivos.

Exemplos

10)
$$x = 0.04 \implies 10^{-2} < 0.04 < 10^{-1}$$

2°)
$$x = 0.351 \implies 10^{-1} < 0.351 < 10^{0}$$

$$3^{\circ}$$
) $x = 3.72 \implies 10^{\circ} < 3.72 < 10^{\circ}$

$$4^{\circ}$$
) x = $45.7 \implies 10^1 < 45.7 < 10^2$

$$5^{\circ}$$
) x = 573 \implies $10^2 < 573 < 10^3$

Assim, dado x > 0, existe $c \in \mathbb{Z}$ tal que:

$$10^c \leqslant x < 10^{c+1} \Longrightarrow \log 10^c \leqslant \log x < \log 10^{c+1} \Longrightarrow c \leqslant \log x < c+1.$$

Podemos afirmar que

$$\log x = c + m$$
 onde $c \in \mathbb{Z}$ e $0 \le m < 1$

isto é, o logaritmo decimal de x é a soma de um número inteiro c com um número decimal m não negativo e menor que 1.

O número inteiro c é por definição a característica do logaritmo de x e o número decimal m ($0 \le m < 1$) é por definição a mantissa do logaritmo decimal de x.

III. REGRAS DA CARACTERÍSTICA

A característica do logaritmo decimal de um número x real positivo será calculada por uma das duas regras seguintes.

A característica do logaritmo decimal de um número x>1 é igual ao número de algarismos de sua parte inteira, menos 1.

Justificação

Seja x > 1 e x tem (n + 1) algarismos na sua parte inteira, então temos: $10^n \leqslant x < 10^{n+1} \Longrightarrow \log 10^n \leqslant \log x < \log 10^{n+1} \Longrightarrow n \leqslant \log x < n + 1$ isto é, a característica de $\log x$ é n.

Exemplos

logaritmo	característica
log 2,3	c = 0
log 31,421	c = 1
log 204	c = 2
log 6542,3	c = 3

77. Regra II (0 < x < 1)

A característica do logaritmo decimal de um número 0 < x < 1 é o oposto da quantidade de zeros que precedem o primeiro algarismo significativo.

Justificação

Seja 0 < x < 1 e x tem n algarismos zeros precedendo o primeiro algarismo não nulo, temos então:

$$10^{-n} \le x < 10^{-n+1} \Longrightarrow \log 10^{-n} \le \log x < \log 10^{-n+1} \Longrightarrow -n \le \log x < -n + 1$$
 isto é, a característica do $\log x$ é $-n$.

Exemplos

logaritmo	característica
log 0,2	c = -1
log 0,035	c = -2
log 0,00405	c = -3
log 0,00053	c = -4

A mantissa é obtida nas tábuas (tabelas) de logaritmos.

Em geral, a mantissa é um número irracional e por esse motivo as tábuas de logaritmos são tabelas que fornecem os valores aproximados dos logaritmos dos números inteiros, geralmente de 1 a 10 000.

Nas páginas 113 e 114 temos uma tabela de mantissas dos logaritmos dos números inteiros de 100 a 999.

Ao procurarmos a mantissa do logaritmo decimal de x, devemos lembrar a seguinte propriedade

78. Propriedade da mantissa

A mantissa do logaritmo decimal de x não se altera se multiplicarmos x por uma potência de 10 com expoente inteiro.

Demonstração

Para demonstrarmos essa propriedade mostremos que se $p \in \mathbb{Z}$ então a diferença

$$(\log(x \cdot 10^p) - \log x) \in \mathbb{Z}.$$

De fato:

$$\log(10^p \cdot x) - \log x = \log(\frac{10^p \cdot x}{x}) = \log 10^p = p \in \mathbb{Z}.$$

Uma consequência importante é:

"Os logaritmos de dois números cujas representações decimais diferem apenas pela posição da vírgula têm mantissas iguais."

Assim os logaritmos decimais dos números 2, 200, 2000, 0,2; 0,002 tem todos a mesma mantissa 0,3010; mas as características são respectivamente 0, 2, 3, -1, -3.

com.br/ Mantissas										
Ν	0	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316
54	7324	7332	7340	7348	7356	7464	7372	7380	7388	7396
N	0	1	2	3	4	5	6	7	8	9

Mantissas N -8 Ν

V. EXEMPLOS DE APLICAÇÕES DA TÁBUA DE LOGARITMOS acesse: http://fuvestibular.com.br/

1º) Calcular log 23,4

A característica é 1 e a mantissa é 0,3692 que é a mesma do número 234. Temos, então:

$$\log 23.4 = 1.3692.$$

2º) Calcular log 0,042

A característica é -2 e a mantissa é 0,6232 que é a mesma de 420. Temos, então:

$$\log 0.042 = -2 + 0.6232 = -1.3768.$$

Entretanto, é usual escrevermos -2 + 0,6232 sob a forma $\overline{2},6232$; onde figura explicitamente a mantissa do logaritmo e a característica -2 é substituída pela notação $\overline{2}$.

Dizemos que $\overline{2}$,6232 é a forma mista ou preparada do log 0,042 e que -1,3768 é a forma negativa de log 0,042.

3º) Calcular log 314,2

Para calcularmos o $\log 314,2$; consideremos parte da representação cartesiana da função $f(x) = \log x$.

×	y = log x
$x_1 = 314$ $x_3 = 314,3$ $x_2 = 315$	$y_1 = \log 314 = 2,4969$ $y_3 = \log 314,3 = (?)$ $y_2 = \log 315 = 2,4983$

A variação da função logarítmica não é linear, mas podemos aceitar como uma boa aproximação de log 314,3 a ordenada y do ponto D sobre a reta AB.

Para determinarmos o valor de y, consideremos os triângulos AEB e AFD. Como os triângulos AFD e AEB são semelhantes, temos:

$$\frac{\mathsf{DF}}{\mathsf{BE}} = \frac{\mathsf{AF}}{\mathsf{AE}} \Rightarrow \frac{\mathsf{d}}{\log 315 - \log 314} = \frac{0.3}{1} \Rightarrow$$

 \Rightarrow d = 0,3 · (log 315 - log 314) \Rightarrow

$$\Rightarrow$$
 d = 0,3 · (2,4983 - 2,4969) \Rightarrow

 \Rightarrow d \cong 0,0004

Portanto,

$$log 314,3 = log 314 + d$$

ou seja,

$$\log 314.3 = 2.4969 + 0.0004 = 2.4973.$$

O processo pelo qual calculamos o log 314,3 é chamado interpolação linear.

49) Calcular antilog 1,7952

Fazendo x = antilog 1,7952 temos:

$$\log x = 1,7952.$$

Com a mantissa 0,7952 encontramos na tábua o número 624, mas como a característica do log x é 1, então temos:

$$x = 62.4.$$

59) Calcular antilog -1,3716

Fazendo x = antilog -1,3716; temos:

$$\log x = -1,3716.$$

Devemos transformar o logaritmo na forma negativa para a forma mista ou preparada, pois na tábua a mantissa é sempre positiva.

Essa transformação é obtida adicionando-se 1 à sua parte decimal e subtraindo-se 1 da parte inteira, o que evidentemente não altera o número negativo.

Assim, temos:

$$-1,3716 = -1 - 0,3716 = -1 - 1 + 1 - 0,3716 = -2 + 0,6284 = \overline{2},6284$$

е

$$\log x = -1.3716 = \overline{2.6284}$$

Com a mantissa 0,6284 encontramos o número 425, mas como a característica do $log \times \acute{e}$ -2, temos:

$$x = 0.0425.$$

6º) Calcular antilog 3,2495

Paga mais, acesse: http://fuvestibular.com.br/

$$x = antilog 3,2495 \Rightarrow log x = 3,2495.$$

A mantissa 0,2495 não aparece na tábua, porém, está compreendida entre as mantissas 0,2480 e 0,2504.

Considerando novamente a função $f(x) = \log x$, temos:

Lembrando, a variação da função logarítmica não é linear, mas podemos aceitar como uma boa aproximação de antilog 3,2495 a abscissa x do ponto D sobre a reta AB.

Para determinarmos o valor de x, consideremos os triângulos AED e AFB. Como os triângulos AED e AFB são semelhantes, temos:

$$\frac{AE}{AF} = \frac{DE}{BF} \Rightarrow$$

$$\Rightarrow \frac{d}{10} = \frac{\log x - \log 1770}{\log 1780 - \log 1770} \Rightarrow d = 10 \cdot \frac{0,0015}{0,0024} \Rightarrow d \cong 6,3.$$

Portanto,

$$x = 1770 + d = 1770 + 6.3 \Rightarrow x = 1776.3.$$

B.284 Calcular:

a) log 3 210

b) log 25,4

c) log 5,72

d) log 0.74

e) log 0.00357

B.285 Calcular:

- a) antilog 3,8768 d) antilog 1,5145
- b) antilog 1,8035 e) antilog 3,6693
- c) antilog 0,9175 f) antilog 2,1271

B.286 Calcular:

a) antilog -2,0899

b) antilog -3,2147 d) antilog -1,6517

- c) antilog -0,4473
- B.287 Calcular:

b) log 23,72

c) log 0,04576

- a) log 3 275 d) log 0.8358
- e) log e

B 288 Calcular:

a) antilog 1,3552

b) antilog 0.4357

c) antilog 1,7383

d) antilog -1,6336

B.289 Achar o maior valor de n para o qual a₁, a₂, a₃, ..., a_n são números reais verificando a igualdade

$$log 12 345 = a_1$$

 $log a_1 = a_2$
 $log a_2 = a_3$

$$log a_{n-1} = a_n$$

B.290 Calcular log₂ 3

Solução

$$\log_2 3 = \frac{\log 3}{\log 2} = \frac{0.4771}{0.3010} = 1.585$$

B.291 Calcular:

- a) $\log_3 2$
- b) log₂ 5 c) log₅ 3
- d) log_s 6
- e) log₆ 4

B.292 Resolver as equações (aproximações em centésimos): a) $5^{x} = 100$ b) $3^{x} = 20$ c) $2^{x} = 30$ d) $7^{x} = 0.3$ e) $e^{x} = 50$

B.293 Resolver as equações (aproximações em centésimos):

- a) $2^{2x} 8 \cdot 2^{x} + 15 = 0$
- b) $3^{2x} 5 \cdot 3^x + 4 = 0$
- c) $10^{2x} 7 \cdot 10^{x} + 10 = 0$
- d) $e^{2x} 5 \cdot e^{x} + 6 = 0$

Solução

$$x = \sqrt[5]{2} \Rightarrow \log x = \log \sqrt[5]{2} \Rightarrow \log x = \frac{1}{5} \log 2 \Rightarrow \log x = \frac{1}{5} \times 0.3010 \Rightarrow \log x = 0.0602$$

Por interpolação linear obtemos: x = 1.149

B.295 Calcular com aproximação de milésimos o valor de:

- b) $\sqrt[4]{10}$
- c) $2^{3,4}$
- d) $5^{2,3}$

B.296 O volume de uma esfera é dado por $V = \frac{4}{3}\pi R^3$ onde R é o raio da esfera. Calcular o raio da esfera de volume 20 cm³.

- **B.297** Calcular o valor de A = $\sqrt[5]{(3,4)^3 \cdot (1,73)^2}$ com aproximação de centésimos.
- # 8,298 O valor de um capital Co empregado a uma taxa i de juros, capitalizados periodicamente e ao fim do período é dado, após t períodos por $C(t) = C_0 \cdot (1 + i)^t$. Determinar qual é o tempo necessário para que um capital empregado a taxa de 2% ao mês de juros, que são capitalizados mensalmente, dobre de valor.

Sendo C(t) = $2 \cdot C_0$ e i = 0,02 temos: $2C_0 = C_0(1 + 0.02)^{\frac{1}{2}} \Rightarrow 2 = (1.02)^{\frac{1}{2}}$

Tomando logaritmos decimais, temos:

$$\log (1,02)^{t} = \log 2 \implies t \cdot \log (1,02) = \log 2 \implies t = \frac{\log 2}{\log 1,02} \implies t = \frac{0,3010}{0,0086} \implies t = 35 \text{ meses.}$$

Resposta: 35 meses.

- f B.299 Determinar qual é o tempo necessário para que um capital empregado a taxa de 3%ao mês, com juros capitalizados mensalmente, triplique de valor.
- B.300 Determinar qual é o tempo necessário para que um capital empregado a taxa de 10,5% ao trimestre, com juros capitalizados ao fim de cada trimestre, dobre de valor.
- B.301 Qual é o montante de Cr\$ 10 000,00 empregado a taxa de 3% ao mês, capitalizados mensalmente, ao fim de 18 meses?
- B.302 Qual é o montante de Cr\$ 5 000,00 empregado a uma taxa de 4% ao trimestre, capitalizados trimestralmente, ao fim de 12 anos?
- **B.303** Uma certa cultura de bactérias cresce segundo a lei N(t) = $2.000 \cdot 10^{36}$, onde N(t) é número de bactérias após t horas. Quantas bactérias haverá após 3 horas?
- B.304 A desintegração de certo material radioativo é dado por: Q(t) = Q₀ 10^{-kt}. Se Q(20) = 400 gramas e $Q_0 = 500$ gramas, então calcular k.

RESPOSTAS

CAPÍTULO I

B.2 a) -27; b) -2; c) 81; d) 1; e)
$$\frac{8}{27}$$
; f) $\frac{1}{81}$; g) $\frac{1}{8}$; h) 1; i) -4; j) $\frac{27}{8}$; k) 1; i) -1; m) 0; n) 1; o) -1; p) 1

- B.3 2.
- B.4 a) F; b) F; c) F; d) F; e) V; f) V; g) V; h) V.
- **B.6** a) $a^{13} \cdot b^{12}$; b) $a^{10} \cdot b^2$; c) $a^{18} \cdot b^{12}$; d) $a^{10} \cdot b^{10}$; e) $a^5 \cdot b^{14}$.
- **B.7** a = 0 ou b = 0.

B.8 a)
$$\frac{1}{3}$$
; b) $-\frac{1}{2}$; c) $-\frac{1}{3}$; d) $\frac{1}{3}$; e) $\frac{1}{4}$; f) $\frac{1}{9}$; g) $-\frac{1}{25}$; h) 9; i) $\frac{3}{2}$; j) $\frac{-8}{27}$; k) $\frac{-25}{4}$; i) $\frac{27}{8}$; m) 100; n) 64; o) -8; p) $\frac{16}{9}$; q) 8; r) $\frac{1}{25}$; s) -27; t) 0,0001.

B.9 a)
$$\frac{-16}{17}$$
; b) $\frac{40}{41}$; c) 2.

B.12 a)
$$a^{13} \cdot b^{-12}$$
; b) $a^{-2}b^9$; c) $a^{-12} \cdot b^{18}$; d) $a^{15} \cdot b^{-18}$; e) $a^{-6}b^4$; f) $a^{-1} \cdot b^{-1}$; g) $\frac{a+b}{ab}$.

B.13 a)
$$a^5$$
; b) a^{n+4} ; c) a^{2n+4} ; d) $\frac{a-1}{a}$.

B.17 a)
$$\begin{cases} x + 2 \text{ se } x > -2 \\ 0 \text{ se } x = -2 \\ -x - 2 \text{ se } x < -2 \end{cases}$$

c)
$$\begin{cases} x - 3 \text{ se } x > 3 \\ 0 \text{ se } x = 3 \\ 3 - x \text{ se } x < 3 \end{cases}$$

b)
$$\begin{cases} 2x - 3 \text{ se } x > \frac{3}{2} \\ 0 & \text{se } x = \frac{3}{2} \\ 3 - 2x \text{ se } x < \frac{3}{2} \end{cases}$$

b)
$$\begin{cases} 2x - 3 \text{ se } x > \frac{3}{2} \\ 0 \text{ se } x = \frac{3}{2} \\ 3 - 2x \text{ se } x < \frac{3}{2} \end{cases}$$
d)
$$\begin{cases} 2x + 1 \text{ se } x > -\frac{1}{2} \\ 0 \text{ se } x = -\frac{1}{2} \\ -2x - 1 \text{ se } x < -\frac{1}{2} \end{cases}$$

wais, acesse: http://fuvestibular.com/bc/

B.19 a) 12; b) 18; c) 9; d) 14; e) 5; f) $3\sqrt{2}$; g) $8\sqrt{2}$; h) $2\sqrt[3]{9}$; i) $4\sqrt[4]{2}$. **B.20** a) $7\sqrt{2}$; b) $49\sqrt{3}$; c) $7\sqrt{5} - 5\sqrt{6}$; d) $22\sqrt{5} + 11\sqrt{2}$; e) 0; f) $2\sqrt[3]{3}$;

B.21 a) $9x\sqrt{x}$; b) $3x|y|\sqrt{5x}$; c) $2x^2y^2\sqrt{3y}$; d) $2|x|\sqrt{2}$.

B.23 a) $\sqrt[30]{2^{15}}$, $\sqrt[30]{5^{10}}$, $\sqrt[30]{3^6}$; b) $\sqrt[34]{3^{12}}$, $\sqrt[34]{2^{16}}$, $\sqrt[34]{2^6}$, $\sqrt[34]{5^4}$; c) $\sqrt[12]{2^8}$, $\sqrt[12]{3^6}$, $\sqrt[12]{5^9}$; d) $\sqrt[30]{3^{20}}$, $\sqrt[30]{2^{45}}$, $\sqrt[30]{5^{24}}$, $\sqrt[30]{2^{25}}$.

B.25 a) 6; b) 30; c) $6\sqrt{2}$; d) $2\sqrt{3}$; e) $6\sqrt{2}$; f) $2\sqrt[3]{3}$; g) $\sqrt{2}$; h) 2; i) $\sqrt[3]{5}$; j) $\sqrt[6]{2^5}$; k) $\sqrt[12]{3^4 \cdot 2^3 \cdot 5^6}$; 1) $\sqrt[6]{\frac{3^2}{2^3}}$; m) $\sqrt[6]{2}$; n) $\sqrt[12]{2^7}$; o) $\sqrt[12]{\frac{2^4}{3^2 \cdot 5^3}}$

B.27 a) $-8\sqrt{15}$; b) 7; c) $28 - \sqrt{2}$; d) $16 + 4\sqrt{5}$; e) $-10 - \sqrt{2}$; f) $18 + 11\sqrt{6}$; g) -46; h) $11 + 6\sqrt{2}$; i) $21 - 8\sqrt{5}$; j) $67 + 12\sqrt{7}$; k) $17 - 12\sqrt{2}$.

B.28 a) $2\sqrt[6]{2}$; b) $14\sqrt[4]{3}$; c) $20\sqrt[4]{2^3}$; d) $3+\sqrt[6]{18}$.

B.29 a) 1; b) 5; c) 1; d) 2.

8.30 a) $a^2 - b$; b) $2 + \sqrt{x} + \sqrt{y}$; c) $(a + b)^2$; d) 1; e) v.

B.31 a) 2; b) $\sqrt[3]{4}$: c) $\sqrt[4]{a^3}$.

B.33 a) $\frac{3\sqrt{2}}{2}$; b) $\frac{4\sqrt{5}}{5}$; c) $\frac{\sqrt{6}}{2}$; d) $\frac{2\sqrt{5}}{3}$; e) $\frac{2\sqrt{3}}{3}$; f) $\frac{\sqrt[3]{2}}{2}$; g) $\frac{2\sqrt[3]{9}}{3}$; h) $\frac{3\sqrt[4]{8}}{2}$; i) $2-\sqrt{3}$; j) $\sqrt{3}+\sqrt{2}$; k) $6-4\sqrt{2}$; l) $\frac{30+18\sqrt{2}}{7}$;

m) $\frac{3\sqrt{2}+\sqrt{3}}{15}$; n) $4\sqrt{5}+6\sqrt{2}$; o) $\frac{4+3\sqrt{3}+\sqrt{5}-2\sqrt{15}}{22}$;

p) $\frac{30-5\sqrt{5}+35\sqrt{2}+20\sqrt{10}}{31}$; q) $\frac{6-3\sqrt{2}+3\sqrt{6}}{4}$; r) $1+\sqrt[3]{3}$.

B.34 a) 4; b) $\sqrt{2}$; c) $\frac{9 + \sqrt{15}}{6}$; d) 2.

B.35 $4x\sqrt{x^2-1}$.

B.36 a + b.

B.39 x = 2

B.40 a) $5^{\frac{1}{2}}$; b) $2^{\frac{3}{3}}$; c) $3^{\frac{3}{4}}$; d) $2^{\frac{1}{4}}$; e) $5^{\frac{1}{12}}$; f) $2^{\frac{4}{3}}$; a) $2^{-\frac{1}{2}}$; h) $3^{-\frac{2}{3}}$; i) $2^{-\frac{3}{2}}$

B.41 a) 2; b) $\frac{1}{8}$; c) 2; d) $\frac{3}{2}$; e) 2; f) $\frac{1}{9}$; g) $\frac{1}{8}$; h) $\frac{10}{9}$; i) 10.

B.43 a) 3^3 ; b) 2^4 ; c) 2; d) 2^{-4} ; e) 3^{-1} ; f) 2^{10} ; g) 2; h) 2^2 ; i) 2^{-4} ; j) 7^{-2} ; k) 34: 1) 62

B.44 a) $2^{\frac{19}{15}}$; b) $3^{\frac{11}{30}}$; c) $5^{\frac{14}{55}}$; d) $3^{-\frac{61}{120}}$; e) $3^{\frac{2}{3}} + 3^{-\frac{1}{2}}$ f) 70; a) 6.

B.45 a) a; b) $a^{\frac{1}{6}} \cdot b^{\frac{1}{2}}$; c) $a^2 + 2$; d) -1; e) $\frac{a + b}{|a - b|}$; f) $\sqrt{a} + \sqrt{b}$

B.47 a) 3; a) $2\sqrt[3]{6}$; c) $4-\sqrt[6]{6}$; d) 3; e) $2^{1-3\sqrt{3}}$; f) 1; g) $5^{9-\sqrt{6}}$; h) 2^4 ; i) 2^{15} .

B.48

Para mais, acesse: http://fuvestibular.com.br/

B.80 S =
$$\{7\}$$
; b) S = $\{5\}$; c) S = $\{-4\}$; d) S = $\{-3\}$; e) S = $\{9\}$; f) S Pare $\frac{8}{3}$ is, accesse: http://fuvestibular.com.br/

B.80 S = $\{(1, 6), (2, 7), (3, 8)\}$

g) S = $\{\frac{3}{2}\}$; h) S = $\{-\frac{3}{2}\}$; i) S = $\{-\frac{15}{4}\}$; k) S = $\{-\frac{3}{2}\}$;
l) S = $\{-\frac{2}{3}\}$; m) S = $\{-\frac{2}{3}\}$; n) S = $\{-2\}$.

B.58 a)
$$S = \{2\}$$
; b) $S = \{-\frac{1}{4}\}$; c) $S = \{-\frac{5}{2}\}$; d) $S = \{5, -4\}$;
e) $S = \{\sqrt{6} - 1, -\sqrt{6} - 1\}$; f) $S = \{-2, \frac{1}{2}\}$; g) $S = \{\frac{1}{12}\}$; h) $S = \{10\}$;
i) $S = \{-\frac{5}{7}\}$; j) $S = \{\frac{5}{7}\}$; k) $S = \{-\frac{11}{16}\}$; l) $S = \{2, -\frac{1}{2}\}$; m) $S = \{3, \frac{1}{3}\}$;
n) $S = \{2, -\frac{1}{3}\}$

B.60 a)
$$S = \{-5, 1\}$$
; b) $S = \{3, -2\}$; c) $S = \{\frac{2}{5}\}$; d) $S = \{-\frac{19}{8}\}$; e) $S = \{5\}$;
f) $S = \{\frac{1}{7}\}$; g) $S = \{6, -2\}$; h) $S = \{\frac{3}{14}\}$; i) $S = \{\frac{5}{3}\}$; j) $S = \{-6, 2\}$;

B.62 a)
$$S = \{3\}$$
; b) $S = \{3\}$; c) $S = \{\frac{4}{3}\}$; d) $S = \{\frac{1}{2}\}$; e) $S = \{1\}$; f) $S = \{1\}$

B.64 a)
$$S = \{1\}$$
; b) $S = \{2\}$; c) $S = \{2, 4\}$; d) $S = \{0, 2\}$; e) $S = \{0\}$; f) $S = \emptyset$; g) $S = \{3\}$; h) $S = \{0, 1\}$; i) $S = \{3, -1\}$; j) $S = \{\frac{1}{2}, \frac{3}{2}\}$.

B.65
$$S = \{9\}$$

8.66 a)
$$S = \left\{\frac{5}{2}\right\}$$
; b) $S = \left\{2\right\}$; c) $S = \left\{\frac{1}{2}\right\}$.

B.67
$$S = \{1, \frac{-3 + \sqrt{5}}{2}, \frac{-3 - \sqrt{5}}{2}\}.$$

B.68 S =
$$\{\frac{1}{2}\}$$

B.69 S =
$$\{\frac{3}{2}\}$$

B.71
$$S = \{0, 2\}$$

B.73 a)
$$S = \{1, \frac{2}{3}\}$$
; b) $S = \{1\}$; c) $S = \{1, \sqrt{2}\}$; d) $S = \{1, 3, 4\}$; e) $S = \{1, 4\}$.

B.74 a)
$$S = \{1\}$$
; b) $S = \{0, 1\}$; c) $S = \{0, 1, \frac{3}{2}\}$; d) $S = \{0, 1, 2, \frac{1}{2}\}$; e) $S = \{1, 4\}$.

B.75 S =
$$\{0, 1, 2, -\frac{1}{2}\}$$

B.76 S =
$$\{1, 2\}$$

B.78
$$S = \{0\}; b) S = \{-2\}$$

B.79 a)
$$S = \{(3, 4)\};$$
 b) $S = \{(2, 3), (-3, 8)\};$ c) $S = \{(5, 3)\};$ d) $S = \{(4, \sqrt{2}), (4, -\sqrt{2})\}$

B.80
$$S = \{(1, 6), (2, 7), (3, 8)\}$$

lar.com.br/
B.81 a)
$$S = \{(1, 1), (3^{-1/3}, 3^{2/3})\};$$
 b) $S = \{(0, 0), (1, 1), (\frac{9}{4}, \frac{27}{8})\}$

B.82 S =
$$\left\{ (1, 1), \left(\left(\frac{n}{m} \right)^{\frac{n}{n-m}}, \left(\frac{n}{m} \right)^{\frac{n}{n-m}} \right) \right\}$$

B.84 a) m < -3 ou m
$$\geqslant \frac{-2 + \sqrt{7}}{2}$$
; b) m $\geqslant \frac{5}{2}$; c) m > 0.

8.85 m
$$\leq \frac{5}{4}$$

B.87 m
$$<$$
 -1 ou m $>$ 1

B.93 a)
$$S = \{x \in \mathbb{R} \mid x < 5\};$$
 b) $S = \{x \in \mathbb{R} \mid x < 4\};$ c) $S = \{x \in \mathbb{R} \mid x < -3\};$ d) $S = \{x \in \mathbb{R} \mid x \leq -3\};$

e)
$$S = \{x \in \mathbb{R} \mid x \le -6\};$$
 f) $S = \{x \in \mathbb{R} \mid x > -\frac{8}{3}\};$

g)
$$S = \{x \in |R| \mid x \ge \frac{3}{2}\};$$
 h) $S = \{x \in |R| \mid x \ge -\frac{5}{2}\};$

i)
$$S = \{x \in \mathbb{R} \mid x < -\frac{15}{8}\};$$
 j) $S = \{x \in \mathbb{R} \mid x \ge \frac{3}{4}\};$

k)
$$S = \{x \in \mathbb{R} \mid x < -\frac{2}{9}\};$$
 1) $S = \{x \in \mathbb{R} \mid x < \frac{-3}{10}\};$

B.94 a)
$$S = \{x \in |R| \mid x > 1\};$$
 b) $S = \{x \in |R| \mid x \ge \frac{4}{5}\}.$
c) $S = \{x \in |R| \mid x < -\frac{1}{5}\};$ d) $S = \{x \in |R| \mid x < \frac{6}{5}\};$

c)
$$S = \{x \in \mathbb{R} \mid x < -\frac{1}{4}\};$$
 d) $S = \{x \in \mathbb{R} \mid x < \frac{6}{5}\};$

e)
$$S = \{x \in \mathbb{R} \mid x \ge \frac{1}{2}\};$$
 f) $S = \{x \in \mathbb{R} \mid x < 1 \text{ ou } x > 4\};$

g)
$$S = \{x \in \mathbb{R} \mid -2 \leqslant x \leqslant 3\};$$
 h) $S = \{x \in \mathbb{R} \mid -2 \leqslant x \leqslant 4\};$

i)
$$S = \{x \in \mathbb{R} \mid -3 \le x \le \frac{1}{2}\};$$
 j) $S = \{x \in \mathbb{R} \mid x < -\sqrt{\frac{11}{3}} \text{ ou } x > \sqrt{\frac{11}{3}}\};$

k)
$$S = \{x \in \mathbb{R} \mid \frac{1}{4} \le x \le 2\};$$
 1) $S = \{x \in \mathbb{R} \mid x < \frac{1}{3} \text{ ou } x > \frac{4}{3}\};$

m)
$$S = \{x \in \mathbb{R} \mid x < -\frac{2}{3} \text{ ou } x > 4\}$$
, n) $S = \{x \in \mathbb{R} \mid \frac{1}{3} \leqslant x \leqslant 1\}$.

B.95 a)
$$S = \{x \in \mathbb{R} \mid 3 < x < 5\};$$
 b) $S = \{x \in \mathbb{R} \mid 2 < x < 4\};$

c)
$$S = \{x \in \mathbb{R} \mid -3 < x < 4\};$$
 d) $S = \{x \in \mathbb{R} \mid -\frac{3}{2} < x < \frac{5}{2}\};$

e)
$$S = \{x \in \mathbb{R} \mid -\frac{1}{2} < x < \frac{3}{2}\};$$
 f) $S = \{x \in \mathbb{R} \mid -\frac{1}{2} < x < \frac{3}{2}\};$

g)
$$S = \{x \in \mathbb{R} \mid -\frac{5}{3} < x < -\frac{2}{3} \text{ ou } \frac{2}{3} < x < \frac{5}{3}\};$$

h),
$$S = \{x \in \mathbb{R} \mid \frac{5}{6} < x < 1\};$$
 i) $S = \emptyset;$

CAPITULO III

j)
$$S = \{x \in \mathbb{R} \mid 0 \le x \le 1 \text{ ou } 3 \le x \le 4\};$$

k)
$$S = \{x \in \mathbb{R} \mid 1 < x < \frac{9}{5}\}.$$

B.97 a)
$$S = \{x \in \mathbb{R} \mid -2 < x < \frac{5}{2}\};$$
 b) $S =$

$$\{x < \frac{5}{2}\};$$
 b) $S = \{x \in \mathbb{R} \mid x \le -1 \text{ ou } x \ge 0\};$

c)
$$S = \{x \in \mathbb{R} \mid x \ge -\frac{9}{4}\};$$

c)
$$S = \{x \in \mathbb{R} \mid x \ge -\frac{9}{4}\};$$
 d) $S = \{x \in \mathbb{R} \mid x < -\frac{1}{8}\};$

e)
$$S = \{x \in \mathbb{R} \mid x < \frac{-5}{8}\};$$

f)
$$S = \{x \in |R| \mid x < -1 \text{ ou } \frac{2}{3} < x < 1\};$$

g)
$$S = \{x \in \mathbb{R} \mid -3 < x < -2 \text{ ou } -1 < x < 1\};$$

h)
$$S = \{x \in \mathbb{R} \mid -2 < x \le -1 \text{ ou } 0 \le x \le 1 \text{ ou } x \le -3\}.$$

$$\mathbf{B.99} \quad \text{af} \quad \mathbf{S} = \{\mathbf{X} \subset \mathbf{M} \mid \mathbf{X} > \mathbf{S}\},$$

B.99 a)
$$S = \{x \in \mathbb{R} \mid x > 5\};$$
 b) $S = \{x \in \mathbb{R} \mid x < 1\};$

c)
$$S = \{x \in \mathbb{R} \mid x \ge 3\};$$

c)
$$S = \{x \in \mathbb{R} \mid x \ge 3\};$$
 d) $S = \{x \in \mathbb{R} \mid x \le \frac{3}{2}\};$

e)
$$S = \{x \in \mathbb{R} \mid x < 1\};$$

e)
$$S = \{x \in \mathbb{R} \mid x < 1\};$$
 f) $S = \{x \in \mathbb{R} \mid -\sqrt{2} < x < \sqrt{2}\}.$

B.101 a)
$$S = \{x \in |R| \mid 1 < x < 2\};$$
 b) $S = \{x \in |R| \mid x < 1 \text{ ou } x > 2\};$

b)
$$S = \{x \in \mathbb{R} \mid x < 1 \text{ ou } x > 2$$

c)
$$S = \{x \in |R| -1 \le x \le 1\};$$
 d) $S = \{x \in |R| | x \le 2\};$

d)
$$S = \{x \in \mathbb{R} \mid x \leq 2\}$$

e)
$$S = \{x \in \mathbb{R} \mid x < 0 \text{ ou } x > 1\};$$
 f) $S = \{x \in \mathbb{R} \mid x < 0\};$ g) $S = \mathbb{R};$

f)
$$S = \{x \in |R| | x < 0\};$$
 g) $S = 1$

h)
$$S = \emptyset$$
;

i)
$$S = \{x \in \mathbb{R} \mid -2 < x < -1\};$$

j)
$$S = \{x \in \mathbb{R} \mid x \le -1 \text{ ou } x \ge 0\}$$
; k) $S = \{x \in \mathbb{R} \mid x \le -2 \text{ ou } x \ge -1\}$;

k)
$$S = \{x \in \mathbb{R} \mid x \leq -2 \text{ ou } x \geq -1\};$$

1)
$$S = \{x \in |R| \mid 0 < x < 1\}.$$

B.102 S =
$$\{x \in \mathbb{R} \mid x > 3\}$$
.

B.104 a)
$$S = \{x \in \mathbb{R} \mid 0 < x < \frac{2}{5} \text{ ou } x > 1\};$$

b)
$$S = \{x \in \mathbb{R} \mid \frac{3}{4} < x < 1\};$$
 c) $S = \{x \in \mathbb{R} \mid \frac{1}{2} < x < 1\};$

c)
$$S = \{x \in \mathbb{R} \mid \frac{1}{2} < x < 1\}$$
;

d)
$$S = \{x \in \mathbb{R} \mid 0 < x < 1 \text{ ou } x > 3\};$$

e)
$$S = \{x \in \mathbb{R} \mid 0 \le x \le \frac{1}{2} \text{ ou } 1 \le x \le 2\};$$

f)
$$S = \{x \in \mathbb{R} \mid \frac{3}{4} \le x \le 1 \text{ ou } x \ge 2\}.$$

B.105 S =
$$\{x \in \mathbb{R} \mid x < -1 \text{ ou } -\frac{2}{3} < x < 1 \text{ ou } x > 2 \text{ e } x \neq 0\}.$$

B.106 a)
$$S = \{x \in \mathbb{R} \mid 0 < x < 1\}$$

B.106 a)
$$S = \{x \in \mathbb{R} \mid 0 < x < 1\};$$
 b) $S = \{x \in \mathbb{R} \mid 0 < x \le \frac{1}{2} \text{ ou } x \ge 1\};$

b)
$$S = \{x \in \mathbb{R} \mid 0 < x \le \frac{1}{2} \text{ ou } x \ge 1\};$$

c)
$$S = \{x \in \mathbb{R} \mid 0 < x < \frac{1}{4} \text{ ou } 1 < x < 4\};$$

d)
$$S = \{x \in \mathbb{R} \mid \frac{1}{E} < x < 1 \text{ ou } x > 2\};$$

e)
$$S = \{x \in \mathbb{R} \mid 0 \le x \le 1 \text{ ou } 2 \le x \le 3\}.$$

B.107 a)
$$S = \{x \in \mathbb{R} \mid 0 < x < 1 \text{ ou } x > 2\};$$

b)
$$S = \{x \in \mathbb{R} \mid x > 6\}$$

c)
$$S = \{x \in \mathbb{R} \mid 0 < x \le 1 \text{ ou } x \ge 3\};$$

B.108 S =
$$-\frac{5}{2}$$

B.109 a) 2; b) -2; c)
$$\frac{1}{4}$$
; d) -3; e) -1; f) $\frac{4}{3}$; g) $\frac{2}{3}$; h) $-\frac{5}{2}$; i) $-\frac{3}{2}$; j) $-\frac{3}{2}$; k) $-\frac{3}{2}$; l) $\frac{3}{2}$.

B.110 a)
$$\frac{1}{2}$$
; b) 6; c) $\frac{1}{6}$; d) $\frac{5}{3}$; e) $\frac{3}{4}$; f) $\frac{4}{9}$; g) -3; h) $-\frac{9}{4}$; i) $\frac{8}{3}$.

B.111 a)
$$S = -\frac{3}{2}$$
; b) $S = \frac{19}{6}$; c) $S = 2$.

B.112 S =
$$-\frac{5}{2}$$

B.113 a) 81; b) 4; c)
$$\frac{1}{9}$$
; d) 16.

B.115 a) 2; b) 9; c)
$$\sqrt{2}$$
; d) $5\sqrt{5}$; e) 10; f) $\frac{3}{2}$; g) 216; h) $\frac{81}{2}$.

B.118 a)
$$1 + \log_5 a - \log_5 b - \log_5 c$$
; b) $\log_3 a + 2 \cdot \log_3 b - \log_3 c$;

c)
$$2 \cdot \log_2 a + \frac{1}{2} \log_2 b - \frac{1}{3} \log_2 c$$
; d) $\frac{1}{3} \log_3 a + 3 \cdot \log_3 b - \log_3 c$;

e)
$$\frac{1}{2} \log a + \frac{3}{2} \log b - \log c;$$

e)
$$\frac{1}{2} \log a + \frac{3}{2} \log b - \log c$$
; f) $\frac{1}{3} \log a - \frac{2}{3} \log b - \frac{1}{6} \log c$;

g) 2 +
$$\frac{5}{12} \log_2 a - \frac{5}{12} \log_2 b$$
;

g)
$$2 + \frac{5}{12} \log_2 a - \frac{5}{12} \log_2 b$$
; h) $3 \cdot \log a - \frac{11}{9} \log b - \frac{2}{9} \log c$.

B.119 a)
$$1 + \log_2 a - \log_2 (a + b) - \log_2 (a - b)$$
;

b)
$$2 \cdot \log_3 a + \frac{1}{2} \log_3 b + \frac{1}{2} \log_3 c - \frac{3}{5} \log_3 (a + b)$$
;

c)
$$\log c + \frac{1}{3} \log a + \frac{2}{3} \log (a + b) - \frac{1}{6} \log b$$
;

d)
$$\frac{1}{5}\log a + \frac{2}{5}\log (a - b) - \frac{1}{2}\log (a^2 + b^2)$$
.

B.121 a)
$$\frac{ab}{c}$$
; b) $\frac{a^2}{bc^3}$; c) $\frac{9b^3}{ac^2}$; d) $\frac{\sqrt{a}}{b^2\sqrt[3]{c}}$; e) $\frac{\sqrt[3]{a}}{\sqrt{b^3c}}$; f) $\frac{4\sqrt[3]{a\sqrt{b}}}{c}$; g) $4\sqrt{\frac{a}{b^3\cdot c^2}}$.

B.122 a)
$$\frac{2(a+b)}{a-b}$$
; b) $\frac{(a+b)^2}{a^3(a-b)}$; c) $\frac{a\sqrt{a-b}}{a+b}$; d) $\frac{(a-b)\sqrt{a^2+b^2}}{\sqrt[3]{a+b}}$; e) $\sqrt[5]{\frac{(a-b)^3 \cdot b^4}{(a+b)^2}}$.

8.123 a)
$$a + b$$
; b) 2a; c) 2a + b; d) $\frac{a}{2}$; e) -a; f) 1 + a; g) 1 - a; h) 1 - a + b.

B.125
$$\frac{1-2a}{a+b}$$
.

B.126
$$\frac{17}{6}$$

B.127
$$\frac{4(3-a)}{a+3}$$
.

B.129
$$\frac{3}{8}$$

B.130 d.

B.131 log a

CAPITULO IV

B.146 a) V; b) V; c) F; d) V; e) F; f) F; g) F; h) V; i) F; j) F.

B.147 a)

c)

B.150 a)

B.148 a)

B.152 a)
$$D = \{x \in \mathbb{R} \mid x < \frac{1}{2}\}$$

b) $D = \mathbb{R} - \{\frac{3}{4}\}$
c) $D = \{x \in \mathbb{R} \mid -1 < x < 1\}$
d) $D = \{x \in \mathbb{R} \mid x < -4 \text{ ou } x > 3\}$

B.154 a) D =
$$\{x \in \mathbb{R} \mid -2 < x < 3 \text{ e } x \neq 2\}$$

b)
$$D = \{x \in \mathbb{R} \mid x > 1\}$$

c) D =
$$\{x \in \mathbb{R} \mid \frac{3}{2} < x < 3 \text{ e } x \neq 2\}$$

CAPÍTULO V

Para mais, acesse: http://fuvestibula**B.d76**.b\$/ = {1}

B.156 a)
$$S = \{\log_5 4\}$$
 b) $S = \{\log_3 \frac{1}{2}\}$ c) $S = \{(\log_7 2)^2\}$ d) $S = \{\sqrt{\log_3 5}, -\sqrt{\log_3 5}\}$ e) $S = \{\log_{625} 62, 5\}$ f) $S = \{\log_9 \frac{2}{3}\}$ g) $S = \{\log_{343} \frac{49}{5}\}$

B.158 a)
$$S = \{\log_{\frac{2}{3}}9\}$$
 b) $S = \{\log_{\frac{49}{27}}567\}$ c) $S = \{\log_{45}405\}$

B.159 a)
$$S = \{\log_{\frac{3}{2}} 3\}$$
 b) $S = \{\log_{\frac{5}{3}} \frac{13}{6}\}$ c) $S = \{\log_{\frac{2}{3}} 8\}$

B.160 S =
$$\{\log_{72} 6\}$$

B.161 a)
$$S = \{1, \log_2 3\}$$
 b) $S = \{0, \log_2 5\}$ c) $S = \{\log_3 4\}$ d) $S = \emptyset$ e) $S = \{\log_2 \frac{3}{2}, \log_2 \frac{5}{2}\}$ f) $S = \{2, \log_3 \frac{2}{3}\}$

B.162 S =
$$\left\{ \log_{\frac{2}{3}} \left(\frac{-1 + \sqrt{5}}{2} \right) \right\}$$

B.163 S =
$$\left\{\log_{\frac{2}{7}} 3\right\}$$

B.164 S =
$$\left\{ \frac{1}{2} \log_a \frac{-1 + \sqrt{5}}{2} \right\}$$

B.165 S =
$$\{(\log_{64} 6, \frac{1}{6}), (\frac{1}{6}, \log_{64} 6)\}$$

B.166 a)
$$S = \{3\}$$
; b) $S = \emptyset$; c) $S = \{3, 7\}$; d) $S = \{4, -5\}$; e) $S = \{\frac{1}{4}\}$; f) $S = \emptyset$.

B.167 a)
$$S = \{2\}$$
 b) $S = \{-\frac{2}{5}\}$ c) $S = \{-2, -\frac{1}{3}\}$ d) $S = \{-4, \frac{3}{2}\}$ e) $S = \{5, -\frac{1}{2}\}$ f) $S = \{4, -2\}$ g) $S = \{2 + \sqrt{3}, 2 - \sqrt{3}\}$

B.168 a)
$$S = \{8\}$$
 b) $S = \{64\}$ c) $S = \{3\}$ d) $S = \{1\}$ e) $S = \{13\}$ f) $S = \{2, -2\}$ g) $S = \{3\}$

B.169 S =
$$\left\{2, -\frac{1}{3}\right\}$$

B.170 a)
$$S = \{4\}$$
 b) $S = \{8, 2\}$ c) $S = \emptyset$ d) $S = \{5\}$

B.171 S =
$$\{(1, 2)\}$$

B.172 a)
$$S = \{64, \frac{1}{4}\}$$
 b) $S = \{\sqrt{2}, \sqrt[3]{4}\}$ c) $S = \{1 000, \frac{1}{100}\}$ d) $S = \{4, \frac{1}{\sqrt{2}}\}$ e) $S = \{2, 16\}$ f) $S = \{1, 100, \frac{1}{100}\}$

B.173 a)
$$S = \{100, 1000\}$$
 b) $S = \{4, 512\}$ c) $S = \{3, 3^{-7/3}\}$ d) $S = \{10^4, 10^{-1}\}$ e) $S = \{16\}$

B.175 a)
$$S = \{5, \frac{3}{2}\}$$
 b) $S = \emptyset$ c) $S = \{4\}$ d) $S = \emptyset$
e) $S = \{\frac{1 + \sqrt{5}}{2}\}$ f) $S = \{1, 3\}$ g) $S = \{0, -\frac{2}{3}\}$

B.178 a)
$$S = \{2\}$$
; b) $S = \emptyset$; c) $S = \emptyset$; d) $S = \{-2, 4\}$; e) $S = \emptyset$; f) $S = \{4\}$.

B.179 a)
$$S = \{2, 3, \frac{3}{2}\}$$
 b) $S = \{\frac{\sqrt{5} + 1}{2}, \frac{\sqrt{5} - 1}{2}\}$ c) $S = \{2, \frac{11}{9}\}$

B.181 a)
$$S = \{5\}$$
 b) $S = \{3\}$ c) $S = \{25\}$ d) $S = \{2\}$ e) $S = \{4\}$ f) $S = \{\frac{14}{5}, \frac{10}{11}\}$ g) $S = \{-3, 0, 1, 4\}$

B.182 S =
$$\{10, 10^5\}$$

B.183 S =
$$\{1, 2\}$$

B.184 a)
$$S = \left\{\frac{9}{2}\right\}$$
 b) $S = \left\{2, 3\right\}$ c) $S = \left\{48\right\}$

B.186 S =
$$\{\log_2 3\}$$

B.188 a)
$$S = \{5\}$$
 b) $S = \{-2\}$ c) $S = \{3 + \sqrt{11}\}$ d) $S = \emptyset$ e) $S = \{1\}$ f) $S = \{3\}$ g) $S = \{2\}$ h) $S = \{10\}$

B.189 S =
$$\{10\}$$

B.190 S =
$$\{1\}$$

B.191 a)
$$S = \{1, 10^4\}$$
 b) $S = \{10\}$ c) $S = \{512, \frac{1}{16}\}$

B.192 S =
$$\{\log_3 10, \log_3 \frac{28}{27}\}$$

8.193 a)
$$S = \{10, \sqrt[9]{10}\}$$
 b) $S = \{5, \sqrt[5]{5}\}$ c) $S = \{\frac{1}{8}, 2\}$

B.194 S =
$$\{-1, \log 2\}$$

B.196 a)
$$S = \{(4, 2), (2, 4)\}$$
 b) $S = \{(2, \frac{1}{2})\}$ c) $S = \{(20, 5), (5, 20)\}$ e) $S = \{(25, 16), (16, 25)\}$

B.197 S =
$$\{(\sqrt{2}, 1)\}$$

B.199 a)
$$S = \{(100, 1000)\}$$
 b) $S = \{(8, 128)\}$

B.200 S =
$$\{(2, 4), (\frac{1}{2}, \frac{1}{4}), (2, \frac{1}{4}), (\frac{1}{2}, 4)\}$$

B.202 a)
$$S = \{3, 9\}$$
 b) $S = \{100, \frac{1}{10}\}$ c) $S = \{2, \frac{1}{16}\}$ d) $S = \{3, \frac{1}{21}\}$ e) $S = \{3, \frac{1}{21}\}$

B.203 S =
$$\{2, 4\}$$

B.204 a)
$$S = \{10, \frac{1}{10}\}$$
 b) $S = \{100, \frac{1}{10}\}$ c) $S = \{100, \frac{1}{100}\}$
B.205 a) $S = \{10\}$ b) $S = \{9, \frac{1}{100}\}$ c) $S = \{1000\}$

B.205 a)
$$S = \{10\}$$
 b) $S = \{9, \frac{1}{9}\}$ c) $S = \{1000\}$

B.206 S =
$$\{2\}$$

B.207 S =
$$\{\frac{3}{2}\}$$

B.208 a) $S = \{(8, 2)\}$

b)
$$S = \{(4, 8), (8, 4)\}$$

b)
$$S = \{(4, 8), (8, 4)\}$$
 c) $S = \{(125, 4), p\{625, mi3\}\}$ cosse; http://fuvestibular.com.br/

B.210 a)
$$S = \{7\}$$

b)
$$S = \{3\}$$

$$S = \{(125, 4), Para hais, acesse: http://fuvesti$$

$$3.212 \text{ at } S = \{9, \sqrt{3}\}$$

$$S = \{3\}$$

c)
$$S = \{6\}$$

B.212 a)
$$S = \{9, \sqrt{3}\}$$
 b) $S = \{8, 2^{-1/3}\}$

c)
$$S = \{9, \frac{1}{3}\}$$

B.213 a)
$$S = \{2\}$$

b)
$$S = \{8\}$$

B.214 S =
$$\{5\}$$

B.215 a)
$$S = \{(3, 4), (\frac{-7}{\sqrt{2}}, \frac{1}{\sqrt{2}})\}$$
 b) $S = \{(\sqrt{3}, 4), (-\sqrt{3}, 4)\}$

b)
$$S = \{(\sqrt{3}, 4), (-\sqrt{3}, 4)\}$$

c)
$$S = \{(5, 0)\}$$

)
$$S = \{(64, \frac{1}{4})\}$$

c)
$$S = \{(5, 0)\}$$
 d) $S = \{(64, \frac{1}{4})\}$ e) $S = \{(2^{4a-6b}, 2^{6a-12b})\}$

B.217 a)
$$S = \{2, \frac{1}{2}\}$$
 b) $S = \{9, \frac{1}{3}\}$ c) $S = \{16, \frac{1}{2}\}$ d) $S = \{\frac{1}{4}, \frac{1}{\sqrt[4]{2}}\}$

b)
$$S = \{9, \frac{1}{2}\}$$

$$S = \{(2^{4a-60}, 2^{6a-120})\}$$

B.218 a)
$$S = \left\{\frac{1}{5}\right\}$$

b)
$$S = \{\frac{1}{9}\}$$

B.219 S =
$$\{2, 8\}$$

B.220 a)
$$S = \{(4, 2), (2, 4)\}$$
 b) $S = \{(3, 27), (27, 3)\}$

B.221 S =
$$\{3\}$$

B.223 a)
$$S = \{9, \frac{1}{9}\}$$
 b) $S = \{\frac{1}{9}, 1, 3\}$ c) $S = \{2\}$ d) $S = \{4, 1, \frac{1}{\sqrt{2}}\}$

$$= \{\frac{1}{2}, 1, 3\}$$

c)
$$S = \{2\}$$

d) S =
$$\{4, 1, \frac{1}{\sqrt{2}}\}$$

B.224 S =
$$\{5\}$$

B.225 S =
$$\{1, 2, 2^{-\frac{3}{4}}\}$$

B.226 a)
$$S = \left\{a^{-2}, a^{-\frac{1}{2}}\right\}$$

B.226 a)
$$S = \{a^{-2}, a^{-\frac{1}{2}}\}$$
 b) $S = \{a^{\frac{4}{3}}, a^{-\frac{1}{2}}\}$ c) $S = \{a^{\frac{1}{\sqrt{2}}}, a^{\frac{-1}{\sqrt{2}}}\}$ d) $S = \{a^2\}$

$$\frac{1}{\sqrt{2}}$$

B.227 S = $\{1, \sqrt[3]{2b^2}\}$

B.228 S =
$$\{2^{\log_{108} 9}\}$$

B.229 S =
$$\{1, 2\}$$

B.230 S =
$$\left\{ \frac{a-b}{2} + \sqrt{ab}, \frac{a-b}{2} - \sqrt{ab} \right\}$$

B.231 a)
$$S = \{(8, 2), (-12, -\sqrt[3]{12})\}$$
 b) $S = \{(4, 16)\}$ c) $S = \{2^{\frac{3}{5}}, 2^{\frac{2}{5}}\}$

b)
$$S = \{(4, 16)\}$$

c)
$$S = \{2^{\frac{3}{5}}, 2^{\frac{2}{5}}\}$$

B.232 S =
$$\left\{ \left(\frac{3}{2}, \frac{1}{2} \right) \right\}$$

B.233 S =
$$\left\{ \left(\frac{2}{3}, \frac{27}{8}, \frac{32}{3} \right) \right\}$$

B.234 S =
$$\{(1, 1), (\log_a b, \log_b a)\}$$

B.235 S =
$$\{(6, 2), (2, 6)\}$$

B.236 a)
$$S = \{(1, 1), (4, 2)\}$$

b)
$$S = \{(1, 1), (2, 4)\}$$

B.236 a)
$$S = \{(1, 1), (4, 2)\}$$
 b) $S = \{(1, 1), (2, 4)\}$ c) $S = \{(a^{\frac{1}{a-1}}, a^{\frac{1}{a-1}}) \text{ onde } a = \log_2 3\}$

B.237 a)
$$S = \{(10, 100)\}$$
 b) $S = \{(10, 100), (\frac{1}{100}, \frac{1}{10})\}$ c) $S = \{(10, 10)\}$

b)
$$S = \{(10, 100), ($$

c)
$$S = \{(10, 10)\}$$

CAPITULO VI

B.239 a)
$$S = \{x \in \mathbb{R} \mid x > \log_4 7\}$$

b)
$$S = \{x \in \mathbb{R} \mid x \ge \log_{\frac{1}{3}} 5\}$$

c)
$$S = \{x \in \mathbb{R} \mid x > \log_8 \frac{9}{4} \}$$

d)
$$S = \{x \in IR \mid x < log_{625} 15\}$$

e)
$$S = \{x \in \mathbb{R} \mid x \ge \log_{27} 36\}$$

f)
$$S = \{x \in |R| \mid x > \log_3^2 4\}$$

g)
$$S = \{x \in \mathbb{R} \mid -\sqrt{\log_2 5} \leq x \leq \sqrt{\log_2 5}\}$$

B.241 a)
$$S = \{x \in \mathbb{R} \mid x > \log_{\frac{2}{3}} \frac{1}{3} \}$$

b)
$$S = \{x \in R \mid x \leq \log_{72} 54\}$$

c)
$$S = \{x \in |R| \mid x < \log_{400} \frac{8}{125}\}$$

d)
$$S = \{x \in |R| \mid x < \log_{\frac{1}{9}} \frac{4}{9} \}$$

B.242 a)
$$S = \{x \in \mathbb{R} \mid x > \log_5 4\}$$

b)
$$S = \{x \in |R| \mid x \le \log_{\frac{3}{2}} \frac{1}{8} \}$$

c)
$$S = \{x \in \mathbb{R} \mid x < \log_{\frac{2}{3}} \frac{2}{7} \}$$

B.243 a)
$$S = \{x \in |R| \mid x > \log_{200} 375\}$$
 b) $S = \{x \in |R| \mid x < \log_{\frac{9}{27}} \frac{45}{32}\}$

$$S = \{x \in |R| \mid x < \log_{\frac{9}{16}} \frac{45}{32} \}$$

B.244 a)
$$S = \{x \in |R| \mid x < \log_3 2 \text{ ou } x > 1\}$$

b)
$$S = \{x \in \mathbb{R} \mid 0 < x < \log_2 3\}$$
 c) $S = \{x \in \mathbb{R} \mid x \ge \log_5 3\}$

c)
$$S = \{x \in \mathbb{R} \mid x \geqslant \log_5 3$$

d)
$$S = \{x \in \mathbb{R} \mid x \leq \log_2 \frac{3}{2}\}$$
 e) $S = \emptyset$

f)
$$S = IR$$

B.245 S =
$$\{x \in |R| \mid x > \log_{\frac{3}{2}} \frac{1 + \sqrt{5}}{2} \}$$

B.246 S =
$$\{x \in \mathbb{R} \mid \log_{\frac{2}{5}} 4 \le x \le \log_{\frac{2}{5}} 2\}$$

B.247 S =
$$\{x \in \mathbb{R} \mid x \leq -1 \text{ ou } x \geq \log_{\frac{2}{3}} \frac{1}{2} \}$$

B.248 a)
$$S = \{x \in R \mid \frac{2}{5} < x < \frac{6}{5}\}$$
 b) $S = \{x \in R \mid x > 2\}$

c)
$$S = \{x \in \mathbb{R} \mid \frac{1}{3} < x \leq 4\}$$

d)
$$S = \{x \in \mathbb{R} \mid -\frac{1}{2} \le x < 0 \text{ ou } \frac{5}{2} < x \le 3\}$$

e)
$$S = \{x \in \mathbb{R} \mid -2 < x < -1 \text{ ou } 1 < x < 5\}$$

f)
$$S = \{x \in \mathbb{R} \mid x > \frac{5}{2}\}$$
 g) $S = \emptyset$

B.249 a)
$$S = \{x \in \mathbb{R} \mid x < -2 \text{ ou } x > 3\}$$

b)
$$S = \{x \in \mathbb{R} \mid -1 < x < -\frac{1}{2} \text{ ou } \frac{3}{2} < x < 2\}$$

B.250 a)
$$S = \{x \in R \mid -1 < x < \frac{1 - \sqrt{5}}{2} \text{ ou } \frac{1 + \sqrt{5}}{2} < x < 2\}$$

b)
$$S = \{x \in \mathbb{R} \mid 0 < x < 1 \text{ ou } x \ge 2\}$$

8.251 a)
$$S = \{x \in \mathbb{R} \mid x > 1\}$$
 b) $S = \{x \in \mathbb{R} \mid \frac{3}{4} < x \leqslant \frac{7}{9}\}$ para main, scenare improvious bib **8.261** b) $S = \{x \in \mathbb{R} \mid x > \frac{-7 + \sqrt{97}}{12}\}$ c) $S = \{x \in \mathbb{R} \mid 1.3 \leqslant x < -2 \text{ out } 1 < x \leqslant 2\}$ d) $S = \{x \in \mathbb{R} \mid 1.3 \leqslant x < -2 \text{ out } 1 < x \leqslant 3\}$ e) $S = \{x \in \mathbb{R} \mid 1.3 \leqslant x < -2 \text{ out } 1 < x \leqslant 3\}$ e) $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2\}$ of $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2\}$ of $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2\}$ of $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2\}$ of $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2\}$ of $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2\}$ of $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2\}$ of $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2\}$ of $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2\}$ b) $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ b) $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ b) $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ d) $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ d) $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ d) $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4 \leqslant 2 \leqslant 2\}$ or $S = \{x \in \mathbb{R} \mid 1.4$

f) $S = \{x \in \mathbb{R} \mid 1 < x \le 2\}$

8.261 a)/
$$S = \{x \in \mathbb{R} \mid x > \frac{-7 + \sqrt{97}}{12}\}$$
 b) $S = \{x \in \mathbb{R} \mid x > \frac{4 + \sqrt{97}}{9}\}$
8.262 $S = \{x \in \mathbb{R} \mid x \geqslant 1\}$
8.264 a) $S = \{x \in \mathbb{R} \mid x > 2\}$ b) $S = \{x \in \mathbb{R} \mid \frac{1}{3} \leqslant x < 1\}$
c) $S = \{x \in \mathbb{R} \mid 0 \leqslant x \leqslant \frac{1}{4}\}$ d) $S = \{x \in \mathbb{R} \mid 1 < x < \frac{4}{3}\}$
8.265 $S = \{x \in \mathbb{R} \mid 1 < x < a^{1/3}\}$
8.266 $S = \{x \in \mathbb{R} \mid 1 < x < a^{1/3}\}$
8.267 a) $S = \{x \in \mathbb{R} \mid 1 < x < a^{1/3}\}$
8.268 a) $S = \{x \in \mathbb{R} \mid x < 0 \text{ ou } x > 3\}$
c) $S = \{x \in \mathbb{R} \mid 2 < x < 4\}$ d) $S = \{x \in \mathbb{R} \mid 3 < x \leqslant 4 \text{ ou } x \geqslant 6\}$
8.268 a) $S = \{x \in \mathbb{R} \mid x \geqslant 1\}$ b) $S = \{x \in \mathbb{R} \mid 0 < x \leqslant 1\}$
e) $S = \{x \in \mathbb{R} \mid 0 < x \leqslant \frac{1}{2}\}$ d) $S = \{x \in \mathbb{R} \mid 0 < x \leqslant 1\}$
e) $S = \{x \in \mathbb{R} \mid -3 \leqslant x < 1 \text{ ou } x \geqslant 2\}$
f) $S = \{x \in \mathbb{R} \mid -3 \leqslant x < 1 \text{ ou } x \geqslant 2\}$
f) $S = \{x \in \mathbb{R} \mid 1 < x < \frac{1}{2} < x < 2\}$

$$1 < a < 2 \Rightarrow S = \{x \in \mathbb{R} \mid x \geqslant 2\}$$

$$a > 2 \Rightarrow S = \{x \in \mathbb{R} \mid x < \frac{1}{4} \text{ ou } x > 2\}$$
b) $S = \{x \in \mathbb{R} \mid -1 < x < \frac{1}{4} \text{ ou } x > 2\}$
b) $S = \{x \in \mathbb{R} \mid -1 < x < \frac{1}{4} \text{ ou } x > 2\}$
c) $S = \{x \in \mathbb{R} \mid -1 < x < \frac{1}{4} \text{ ou } x > 2\}$
d) $S = \{x \in \mathbb{R} \mid -1 < x < \frac{1}{4} \text{ ou } x > 2\}$
b) $S = \{x \in \mathbb{R} \mid -1 < x < \frac{1}{4} \text{ ou } x > 2\}$
d) $S = \{x \in \mathbb{R} \mid -1 < x < \frac{1}{4} \text{ ou } x > 2\}$
d) $S = \{x \in \mathbb{R} \mid -1 < x < \frac{1}{4} \text{ ou } x > 2\}$
d) $S = \{x \in \mathbb{R} \mid -1 < x < \frac{1}{4} \text{ ou } x > 2\}$
d) $S = \{x \in \mathbb{R} \mid -1 < x < \frac{1}{4} \text{ ou } x > 2\}$
d) $S = \{x \in \mathbb{R} \mid -1 < x < \frac{1}{4} \text{ ou } x > 2\}$
d) $S = \{x \in \mathbb{R} \mid -1 < x < \frac{1}{4} \text{ ou } x > 32\}$

8.271 $S = \{x \in \mathbb{R} \mid -1 < x < \frac{1}{4} \text{ ou } x > 81$
d) $S = \{x \in \mathbb{R} \mid -1 < x < \frac{1}{4} \text{ ou } x > 16$

8.273 a) $S = \{x \in \mathbb{R} \mid -1 < x < \frac{1}{4} \text{ ou } x > 16$

8.274 $\frac{3}{3} < a < 2$ ou $\frac{5}{3} < a < 3$

B.275 a) $S = \{x \in \mathbb{R} \mid x \le -2 \text{ ou } 0 \le x < 1\}$ b) $S = \{x \in \mathbb{R} \mid \frac{4}{3} < x \leq \frac{5}{3}\}$

Para mais, acesse: http://fuvestibular.com.br/

e) $S = \{x \in \mathbb{R} \mid x > 5\}$

B.278 a)
$$S = \{x \in \mathbb{R} \mid -2 < x < 1 \text{ ou } x > 2 \text{ e } x \neq -1 \text{ e } x \neq 0\}$$

b)
$$S = \{x \in \mathbb{R} \mid -\frac{3}{2} < x < 3 \text{ e } x \neq -1 \text{ e } x \neq 0\}$$

c)
$$S = \{x \in \mathbb{R} \mid -1 < x < \frac{4}{5} \text{ ou } x > 4 \text{ e } x \neq 0\}$$

d)
$$S = \{x \in \mathbb{R} \mid \frac{1}{2} < x < 1\}$$
 e) $S = \{x \in \mathbb{R} \mid x < -1 \text{ ou } x > 1\}$
f) $S = \{x \in \mathbb{R} \mid 1 < x < 3\}$ g) $S = \{x \in \mathbb{R} \mid -5 < x \leqslant -2 \text{ ou } x \geqslant 4\}$

e)
$$S = \{x \in \mathbb{R} \mid x < -1 \text{ ou } x > 1\}$$

f)
$$S = \{x \in \mathbb{R} \mid 1 < x < 3\}$$

a)
$$S = \{x \in |B| - 5 < x \le -2 \text{ on } x \ge 4\}$$

h) S =
$$\{x \in \mathbb{R} \mid -\frac{5}{2} < x < -2 \text{ ou } -\frac{3}{2} < x < \frac{8}{3} \text{ e } x \neq \frac{3}{2}\}$$

i)
$$S = \{x \in \mathbb{R} \mid 1 < x < \frac{3}{2} \text{ ou } 2 < x < \frac{5}{2} \text{ ou } x > 3\}$$

B.279 (a > 1 e b > 1) ou
$$(0 < a < 1 e 0 < b < 1)$$

B.280 S =
$$\{x \in \mathbb{R} \mid \frac{5}{3} < x < 2\}$$

B.281 S =
$$\{x \in \mathbb{R} \mid 0 < x < a^{-\sqrt{2}} \text{ ou } x > a^{\sqrt{2}}\}$$

B.282 S =
$$\{x \in \mathbb{R} \mid 0 < x < 3^{\log_{\frac{2}{3}} 2}\}$$

B.283 S =
$$\{x \in \mathbb{R} \mid \log_2 \frac{5}{4} < x < \log_2 3\}$$

CAPITULO VII

- **B.284** a) 3,5065
- b) 1.4048
- c) 0,7574
- d) 1.8692
- e) 3.5527

- **B.285** a) 7 530 b) 63.6
- **B.286** a) 0,00813
- c) 8,27 b) 0.00061
- d) 0.327 c) 0,357
- d) 0.0223

e) 0,00467

- **B.287** a) 3,5152
- b) 1,3751
- c) 2.6605
- d) 1.9221
- e) 0,4343

f) 0.0134

- B.288 a) 22,65
- b) 2.727
- c) 0.5474
- d) 0,02325

B.289 3

- B.291 a) 0.6309
- b) 2,3219
- c) 0.6825
- d) 1,1133
- e) 0,7737
- d) -0,62 **B.292** a) 2,86 ы) 2,73 c) 4.91
- **B.293** a) $S = \{1,58; 2,32\}$ b) $S = \{0; 1,26\}$ c) $S = \{0,30; 0,60\}$ d) $S = \{0,69; 1,10\}$
- B.295 a) 1,201
- b) 1,778
- c) 10,554
- d) 40.520

- B,296 1,68 cm
- B.297 2.60
- **B.299** 38 meses
- B.300 7 trimestres
- B.301 Cr\$ 17 000,00
- B.302 Cr\$ 32 730.00
- B.303 2 422 bactérias
- B.304 k = 0.004845

TESTES

POTÊNCIAS E RAÍZES

- **TB.1** (FEI-65) O valor da expressão $y = 5 \cdot 10^8 \cdot 4 \cdot 10^{-3}$ é:
- b) $2 \cdot 10^6$
- c) 2 · 10⁹
- d) $20 \cdot 10^{-4}$

- e) nenhuma das respostas anteriores,
- **TB.2** (PUC-69) Depois de simplificar $\frac{2^{n+4}-2\cdot 2^n}{2\cdot 2^{n+3}}$ encontramos:

- a) $2^{n+1} \frac{1}{8}$ b) -2^{n+1} c) $1 2^n$ d) $\frac{7}{8}$ e) nada disso.
- **TB.3** (FCESP-74) Para todo n, $(2^n + 2^{n-1})(3^n 3^{n-1})$ é igual a:

- a) 6^{n} b) 1 d) $2^{n} \cdot 3^{n-1} + 3^{n} \cdot 2^{n-1}$ e) $2^{n} \cdot 3 + 2 \cdot 3^{n}$
- **TB.4** (EPUSP-68) Se $2^{X} + 2^{-X} = e$, então $8^{X} + 8^{-X}$ é igual a

- d) $e^3 3e$
- e) nenhuma das anteriores.
- TB.5 (CESCEM-70) Chamam-se cosseno hiperbólico de x e seno hiperbólico de x, e representam-se respectivamente por cosh x e senh x aos números:

$$senh x = \frac{e^x - e^{-x}}{2}$$

- Então: $(\cosh x)^2 (\sinh x)^2$ vale:
- a) cosh 2x
- b) senh 2x
- c) -1
- d) 1

- e) nenhuma das anteriores.
- TB.6 (PUC-68) Remover os expoentes negativos e simplificar

$$\frac{x^{-1} + y^{-1}}{(xy)^{-1}}$$

- a) x y
- b) x
- c) y + x

- e) nenhuma das respostas anteriores.
- TB.7 (EESCUSP-69) A expressão $\frac{a^{-2} + b^{-2}}{a^{-1} + b^{-1}}$ é equivalente a:

 - a) $\frac{b^2 + a^2}{b + a}$ b) $\frac{b^2 + a^2}{ab(b + a)}$ c) $\frac{b + a}{ab}$ d) $\frac{1}{a} + \frac{1}{b}$ e) a + b

TB.8 (MACK-77) Se $f(x) = -x^2 + 2x - 3$, então o menor valor de $(\frac{1}{3})^{f(x)}$ eara mais, acesse: http://fuvestibular.com.br/. $\sqrt[5]{3} > \sqrt[3]{2}$

TB.17 (CESCEM-76) Considere as proposições:

- a) 3
- b) 9
- c) 27
- d) 81
- e) não sei.

TB.9 (CESCEM-74) Comparando-se os números 10⁻⁴⁹ e 2 · 10⁻⁵⁰, pode-se afirmar que

- a) o 1° excede o 2° em $8 \cdot 10^{-1}$
- b) o 10 excede o 20 em 2 · 10-1
- c) o 1° excede o 2° em 8 · 10⁻⁴⁹
- d) o 10 é igual a 5 vezes o 20
- e) o 10 excede o 20 em 5.

TB.10 (MACK-74) O número 14^(14¹⁴) tem como último algarismo (algarismo das unidades):

- a) 2
- b) 3
- c) 4
- d) 6

TB.11 (PUC-68) Simplificando $\sqrt{\frac{75}{12}}$ obtemos:

a)
$$\sqrt{\frac{5}{2}}$$

- a) $\sqrt{\frac{5}{2}}$ b) $\frac{5}{3}$ c) $\sqrt{\frac{5}{3}}$ d) $\frac{5}{2}$

TB.12 (MACK-77) Dos valores abaixo, o que está mais próximo de $\sqrt{\frac{0.04}{\sqrt{2}}}$, é:

- a) 0.0015
- b) 0.015
- c) 0.15
- d) 1.5
- e) não sei.

TB.13 (CESCEA-75) Simplificando-se a expressão

$$\frac{2\sqrt{50} - \sqrt[3]{8} - 3\sqrt{2} - \sqrt{8}}{\sqrt{2}}$$

obtém-se:

- a) $3\sqrt{2}$
- b) $5 2\sqrt{2}$ c) $5 \sqrt{2}$ d) $4\sqrt{2}$ e) $5 + \sqrt{2}$

TB.14 Qual das afirmações é falsa para $x \in \mathbb{R}$?

- a) $\sqrt{(x-1)^2} = x 1$ se $x \ge 1$ b) $\sqrt{(x-1)^2} = 1 x$ se x < 1
- c) $\sqrt{(x-1)^2} = \pm (x-1)$ qualquer que seia x
- d) $\sqrt{(x-1)^2} = |x-1|$ qualquer que seja x.

TB.15 (MACK-74) Dadas as afirmações

- I) 10²⁰ é maior que 90¹⁰
- II) 0,110 é menor que 0,320
- III) os dois últimos algarismos de 5⁽⁴³⁾ são 2 e 5
- IV) $2\sqrt{5}$ é major que $3\sqrt{2}$

temos:

- a) só uma certa
- b) só duas certas
- c) só três certas

- d) quatro certas
- e) todas erradas.

TB.16 (FEI-66) A soma $\sqrt[3]{a} + \sqrt[4]{a}$ é igual a

- a) $\sqrt[7]{a}$

- b) $\sqrt[12]{a^7}$ c) $\sqrt[7]{2a}$ d) $\sqrt[12]{a^3 + a^4}$
- e) nenhuma das anteriores.

- 11. $\frac{\sqrt{2}}{\sqrt{8-2}} = 1 + \frac{\sqrt{2}}{2}$
- 111 $\sqrt[4]{5} \sqrt[3]{6} = \sqrt[12]{30}$

então:

- a) somente I é correta
- b) somente II é correta
- c) somente III é correta
- d) somente III é falsa e) somente I é falsa.
- **TB.18** (FUVEST-77) $\frac{\sqrt{2} + \sqrt{3}}{\sqrt{3}} =$
 - a) $\frac{2+2\sqrt{6}+\sqrt{3}}{3}$ b) $\frac{5+2\sqrt{6}}{3}$

- d) $\frac{3+\sqrt{6}}{2}$ e) $\frac{\sqrt{6}+3}{6}$

TB.19 (EAESP-GV-77) A expressão $\left[\frac{\sqrt{a+b}-\sqrt{a}}{b}\right]^{-1}$, onde a e b são números positivos

- a) $\frac{1}{b}$ b) b c) $\frac{b+\sqrt{a}}{\sqrt{a-b}}$ d) \sqrt{b} e) $\sqrt{a+b}+\sqrt{a}$

TB.20 (MACK-69) Subtraindo-se $\frac{5}{8-3\sqrt{7}}$ de $\frac{12}{\sqrt{7}+3}$ obtém-se

- a) 81 $4\sqrt{7}$ b) 22 + 21 $\sqrt{7}$ c) -22 21 $\sqrt{7}$ d) 41 $\sqrt{7}$ 81
- e) nenhuma das respostas acima é correta

TB.21 (PUC-69) Os números $\sqrt[4]{5}$, $\sqrt[3]{3}$ e $\sqrt{2}$ são colocados:

- a) em ordem decrescente
- b) em ordem crescente
- c) em ordem não decrescente
- d) o último número vale a semi-soma dos dois primeiros
- e) nada disso.

TB.22 (PUC-70) A expressão $\sqrt{3-2\sqrt{2}}$ é equivalente à:

- a) $\sqrt{2 + \sqrt{2} + \sqrt{2} \sqrt{2}}$ b) $\sqrt{3} \sqrt{2}$

- d) $\sqrt{2} \sim 1$
- e) $\sqrt{3} + \sqrt{2}$

TB.23 (FEI-67) A expressão $\frac{\sqrt[3]{4-1}}{\sqrt[3]{2-1}}$ é igual a:

- a) $1 + \sqrt[3]{2}$ b) $1 \sqrt[3]{2}$ c) $1 + \sqrt[3]{4}$ d) $1 \sqrt[3]{4}$

TB.24 (EAESP-GV-77) A expressão b onde a e b são números positivos esse: http://fuvestibular.com.br/

a)
$$\frac{1}{\sqrt[3]{b}}$$

b)
$$\sqrt[3]{a^2} + \sqrt[3]{a^2 + ab} + \sqrt[3]{(a + b)^2}$$

c)
$$\sqrt[3]{b^2} + \sqrt[3]{a^2 + ab} + \sqrt[3]{a^2 + b^2}$$

d)
$$\sqrt[3]{b^2} + \sqrt[3]{a+b} + \sqrt[3]{(a+b)^2}$$

e)
$$\sqrt[3]{b} + \sqrt[3]{a+b} + \sqrt[3]{a^2+b^2}$$

TB.25 (MACK-76) Se n é número natural maior que 1, a expressão

$$\sqrt[n]{\frac{20}{4^{n+2}+2^{2n+2}}}$$

é igual a:

a)
$$\frac{4}{n}$$
 b) $\frac{1}{4\sqrt[n]{2n}}$ c) $\frac{1}{2n}$ d) $\sqrt[n]{2n+1}$ e) $\frac{1}{4}$

c)
$$\frac{1}{2n}$$

d)
$$\sqrt[n]{2n+1}$$

TB.26 (FFCLUSP-66) $\frac{(0,0081)^{-3/2} (0,005)^{1/3}}{5^{-2/3}}$ é igual a:

a)
$$\frac{1}{2} \cdot (\frac{10}{2})^6$$
 b) $1,0125 \cdot 10^{-14}$ c) $\sqrt[3]{2} \cdot 10^{-1/3}$ d) $0,00123123...$

e) nenhuma das respostas anteriores

TB.27 (CESCEA-74) Assinale a afirmação verdadeira:

a)
$$\sqrt{a^2 + b^2} = a + b$$
 quaisquer que sejam a e b reais

b)
$$4^{-5/2} + (\frac{1}{5})^0 - \sqrt[3]{-1} = \frac{65}{32}$$

c)
$$8^{-1/3} - (-1)^0 + \sqrt[5]{-1} = \frac{1}{2}$$

- d) $(a + b)^2 = a^2 + b^2$ quaisquer que sejam a e b reais
- e) não sei

TB.28 (MACK-76) O valor de $5x^0 + 3x^{\frac{3}{4}} + 4x^{-\frac{1}{2}}$ guando x = 16. é:

- a) 30
- b) 33
- c) 75
- d) 105
- e) 215

TB.29 (CESCEA-75) Assinalar a afirmação falsa:

a)
$$(\frac{1}{2})^{-3} - (-8)^{\frac{1}{3}} + 4^{\frac{3}{2}} = 18$$
 b) $-(-5)^2 - 16^{\frac{1}{2}} = 21$

b)
$$-(-5)^2 - 16^{\frac{1}{2}} = 2$$

c)
$$(5 + 3)^2 - (\frac{2}{3})^{-3} = \frac{485}{8}$$
 d) $\frac{2}{3} : \frac{1}{5} + \frac{3}{4} \cdot \frac{8}{2} = \frac{19}{3}$

d)
$$\frac{2}{3} : \frac{1}{5} + \frac{3}{4} : \frac{8}{2} = \frac{19}{3}$$

e)
$$\frac{2 + \frac{1}{3}}{5 - \frac{1}{4}} = \frac{28}{57}$$

TB.30 (GV-74) O valor da expressão $\{0,064^{\frac{1}{3}}\}(0.0625^{\frac{1}{4}})$ é:

- a) 0.1
- b) 0,2
- c) 0,01
- d) 0.02
- e) 1

TB.31 (CESCEA-75) Considere a função f: $\mathbb{R} \to \mathbb{R}$ tal que $f(x) = e^{-x^2}$. Então, f(0) + f(-1) - f(1)

a)
$$1 + e - e^{-1}$$

- b) 0
- c) $1 + 2e^{-1}$
- d) 1
- e) 1 + e.

TB.32 (CESCEA-75) Se $f(x) = 8 \cdot 2^{x}$, então:

a)
$$f(x + 3) = f(0)$$

a)
$$f(x + 3) = f(0) \cdot f(x)$$
 b) $f(x - 1) = f(x) \cdot f(-1)$ c) $f(-\pi\sqrt{2}) < 0$

c)
$$f(-\pi\sqrt{2}) \le 0$$

d)
$$f(x - 3) = f(x) \cdot f(0)$$

d)
$$f(x-3) = f(x) \cdot f(0)$$
 e) $f(x-4) = \frac{1}{2}f(-4) \cdot f(x)$

TB.33 (CESCEA-76) Dada a função $f(x) = 1 - e^{2x}$, assinale a afir, mação correta:

a)
$$f(0) \cdot f(\frac{1}{2}) = 1$$
 b) $f(\frac{1}{2}) \cdot f(1) = e$ c) $f(1) \cdot f(0) = 0$

b)
$$f(\frac{1}{2}) \cdot f(1) = e$$

c)
$$f(1) \cdot f(0) = 0$$

d)
$$f(1) - f(-1) = e^2 - e$$

d)
$$f(1) - f(-1) = e^2 - e^{-2}$$
 e) $f(\frac{1}{2}) \cdot f(-\frac{1}{2}) = 1 - e^2$

TB.34 (PUC-75) Dado o gráfico da função exponencial $f(x) = a^{X}$, tem-se:

- a) o conjunto imagem de f é I = IR
- b) o conjunto imagem de f é l = IR*
- c) o domínio de f é D = IR*
- d) o domínio de f é D = IR+
- e) este é o gráfico de f(x) = 3x.

TB.35 (CONSART-74) O gráfico que mais bem representa a função $f:\mathbb{R} \to \mathbb{R}$, tal que f(x) == e-x² é:

TB.36 (CESCEM-71) A função real f é tal que: $2^{f(x)} = a2^x + b$;	f(0) = 0;	Pf(1) = 1.1 PB.42 (PUC-69) Para mais, acesse: http://fuvestibular.com.br/	9) A solução da	a equação 4× ² +4×	$= 4^{12} \text{ \'e}$:
concluímos que:		a) 3	b) 5		

- a) para $x \le 0$, f(x) é decrescente
- b) para x > 2, f(x) é decrescente
- c) para x > 2a, f(x) > x
- d) para x < 2b, f(x) < x
- e) f(x) é a função identidade
- TB.37 (FEI-68) Sendo a > 0, para a função $f(x) = a^{x}$ tem-se:
 - 1) $[f(x)]^n = f(x^n)$
 - 2) $f(x_1) \cdot f(x_2) = f(x_1 + x_2)$
 - 3) $f(nx) = [f(x)]^n$
 - então:
 - a) todas são faisas

- b) somente 1 e 2 são verdadeiras
- c) somente 1 e 3 são verdadeiras
- d) somente 2 e 3 são verdadeiras
- e) todas são verdadeiras
- TB.38 (ITA-73) A lei de decomposição do radium no tempo t ≥ 0, é dada por M(t) = Ce-kt, onde M(t) é a quantidade de radium no tempo t; C, K são constantes positivas (e é a base do logaritmo neperiano). Se a metade da quantidade primitiva M(0), desaparece em 1 600 anos, qual a quantidade perdida em 100 anos?

 - a) $(1 100^{-1})$ da quantidade inicial b) $(1 2\frac{-6}{1})$ da quantidade inicial
 - c) (1 2⁻¹⁶) da quantidade inicial
- d) (1 216) da quantidade inicial
- e) nenhuma das respostas anteriores
- TB.39 (CESGRANRIO-76) Uma substância radioativa está em processo de desintegração, de modo que no instante t, a quantidade não desintegrada é

$$A(t) - A(0) \cdot e^{-3t}$$

onde A(0) indica a quantidade de substância no instante t = 0. O tempo necessário para que a metade da quantidade inicial se desintegre é:

- a) $\frac{1}{3}$ b) $2e^{-3}$ c) $\frac{1}{2}\sqrt{e}$
- d) determinável somente se for conhecido o valor de A(0)
- e) $\frac{1}{3} \log_e (2)$.
- TB.40 (ITA-73) O crescimento de uma certa cultura de bactérias obedece a função X(t) = = Cekt, onde X(t) é o número de bactérias no tempo t ≥0; C, k são constantes positivas, (e é a base do logaritmo neperiano). Verificando-se que o número inicial de bactérias X(0), duplica em 4 horas, quantas se pode esperar no fim de 6 horas?
 - a) 3 vezes o número inicial
- b) 2,5 vezes o número inicial
- c) $2\sqrt{2}$ vezes o número inicial
- d) $2\sqrt[3]{2}$ vezes o número inicial
- e) nenhuma das respostas anteriores.
- TB.41 (MACK-76) O número de soluções de $2^{x} = x^{2}$ é: (Sugestão: Faça os gráficos de $f(x) = x^2 e g(x) = 2^x$. Observe que $2^{100} > 100^2$)
 - a) 0
- b) 1

ŧ

- c) 2
- d) 3
- e) major que 3

- d) 2 e -6
- e) nada disso
- **TB.43** (CESCEA-72) Se $(0.0625)^{x+2} = 0.25$, então, $(x + 1)^6$ vale:

 - a) $\frac{1}{2}$ b) $\frac{1}{38}$ c) 64 d) $\frac{1}{64}$
- e) não sei.
- TB.44 (PUC-73) Se $3x^2-3x = \frac{1}{9}$, então os valores de x são:
 - a) 1 e 3
- b) 2 e 3 c) 1 e 2 d) 1 e 4
- e) 2 e 4
- TB.45 (CESGRANRIO-73) Os valores de x que satisfazem à equação $(4^{3-x})^{2-x} = 1$ são dados por:
 - a) -3 e -2
- b) -1 e -6
- d) -1 e 6
- e) nenhuma das respostas anteriores
- **TB.46** (MACK-74) Se $4^{(2^X)} = 256$, então:
 - a) $-0.5 \le x \le 0.5$
- b) $0.5 \le x \le 1.5$
- c) $1.5 \le x \le 2.5$
- d) 2.5 < x < 3.5 e) x > 3.5
- **TB.47** (PUC-76) Os valores de x que satisfazem a equação $100 \cdot 10^{x} = \sqrt[X]{1000^{5}}$ são:
 - a) 2 e -3
- b) 3 e -4
- c) -5 e 3
- d) 5 e -2 e) 5 e -3
- TB.48 (CESCEM-72) Os zeros da função ex7-2x5+1 são:
 - a) todos complexos

b) todos imaginários puros

c) inexistentes

- d) em número de sete
- e) impossíveis de se calcular
- **TB.49** (CONSART-73) O valor de x na equação $\frac{1-2x}{a^2} = a^{\frac{1-7x}{5}}$
 - é dado por:
- a) $\frac{3}{4}$ b) $\frac{5}{7}$ c) $-\frac{5}{4}$ d) $\frac{2}{3}$
- e) nenhuma das respostas anteriores
- TB.50 (GV-74) A equação 3^X 4 = a, com a real, só terá solução real para:

- a) a > -4 b) a < 4 c) a > -3 d) a < 3 e) $a > \frac{3}{4}$
- **TB.51** (GV-76) A equação $5^{x} \frac{3}{a} = a$, onde a é um número real não nulo, terá solução somente se:
 - a > 0
- b) a = 0 c) a < 0 d) $a > \sqrt{3}$ e) $a < -\sqrt{3}$

TB.52 (GV-70) O conjunto solução da equação $x^{x^3-8} = 1$ é:

- b) {1}
- c) {0}
- d) {2}
- e) {1, 2} Para mais, acesse: http://fuvestibul**TB.62.UTA-74) Sobre a raiz da equação**

 $3x - \frac{15}{2x-1} + 3x^{-3} = \frac{23}{2x-2}$

TB.53 (CESCEA-73) No sistema $\begin{cases} 5^{3x-2y} = 3125 \\ 116x-7y = 14641 \end{cases}$ o produto xy vale:

- a) 6
- b) 5
- d) -5

TB.54 (CESCEM-77) Se $\begin{cases} 3^{x+y} = 1 \\ 2^{x+2y} = 2 \end{cases}$ então o valor de x - y é:

- a) -2
- b) -1 c) 0
- d) 1
- e) 2

TB.55 (CESCEM-74) A solução da equação: $3^{x+2} - 3^{x+1} + 3^x + 3^{x-1} + 3^{x-3} = 16119$ és

- a) x = 3
- b) x = 4
 - c) x = 5
- d) x = 6

T8.56 (CONSART-73) O valor real de x na equação 3x+2 + 9x+1 = 810 é dado por:

- a) um número menor do que 3
- b) um número maior do que 7
- c) um número não inferior a 5
- d) um número (mpar
- e) nenhuma das respostas anteriores

TB.57 (CESCEA-73) A equação $\frac{25^{x} + 125}{5} = 5^{(x+1)}$, admite como soluções os números a e b. Então:

- a) $\frac{a}{b} = 1$ b) a + b = 0 c) $a \cdot b = 2$ d) não sei.

TB.58 (GV-72) O triplo do valor de x que satisfaz a equação $\frac{4^{\frac{11}{2}}}{2} - \frac{2^{x-1}}{2} = \frac{4}{2}$ é:

- a) 2
- b) 6
- c) 0
- d) 9
- e) 3

TB.59 (ITA-72) Todas as raízes reais da equação $x^{-1} - 4x^{-\frac{1}{2}} + 3 = 0$ são:

- a) $x_1 = 1$ e $x_2 = 1$ b) $x_1 = \frac{1}{2}$ e $x_2 = \frac{1}{2}$
- c) $x_1 = 3$ e $x_2 = 3$
- d) não tem raízes reais
- e) nenhuma das respostas anteriores

TB.60 (GV-75) Se $2^{x+1} - 2^{3-x} = 6$, então $x^2 + 20$ vale:

- a) 20
- b) 29
- c) 24
- e) 21

TB.61 (CESCEA-74) O produto das raízes da equação $4x - \frac{2}{5} 4^{(2x-1)} - \frac{8}{5} = 0$ é:

- a) 0,75
- b) 0.15
- c) 2,25
- d) 0,25°
- e) não sei

podemos afirmar:

a) não é real

- h) é menor que -1
- c) está no intervalo [0, 6]
- d) é um número primo
- e) nenhuma das respostas anteriores

TB.63 (FEI-68) A igualdade $7^{x} + 7^{x-1} = 8^{x}$ se verifica

- a) apenas para valores irracionais de x
- b) apenas para x = 1

c) para x = 0 e x = 1

- d) para x = 1 e x = -1
- e) nenhuma das anteriores

TB.64 (GV-73) O produto das soluções da equação $4^{x^2+2} - 3 \cdot 2^{x^2+3} = 160$ é:

- a) -2
- b) -1
- c) -4) d) -3

TB.65 (ITA-70) A equação $3e^{x^2} - 2e^{-x^2} = -1$ apresenta solução:

- b) x > 1
- c) $-1 \le x \le 1$
- d) $-1 \le x \le \frac{2}{3}$

e) nenhuma das respostas anteriores é válida

TB.66 (MACK-73) A solução real da equação 4x - 6x = 2 · 9x está no intervalo

- c) $3 \le x \le 4$

TB.67 (MACK-77) A equação ex + e-x = k admite solução real:

- (e é a base do sistema de logaritmos neperianos)
- a) para todo k real
- b) para todo k ≥ e
- c) somente para 2 < k < e
- d) somente se k for inteiro e) não sei

TB.68 (GV-73) A equação $25^{x} - 2m5^{x} + 3m + 1 = 0$ admite solução, se e somente se:

- a) m $< -\frac{1}{2}$ e m ≥ 3
- b) $m < -\frac{1}{3}$ ou $m \ge \frac{3 + \sqrt{13}}{2}$
- c) $m < -\frac{1}{3}$
- $d) -\frac{1}{3} \le m \le \frac{\sqrt{13}}{3}$

e) $m \geqslant \frac{3 + \sqrt{13}}{2}$

TB.69 (CESCEA-70) O conjunto de todos os n para os quais a equação

$$(n-1)a^{2x} + 2(1-n)a^{x} - 3n = 0, a > 0$$

possa ter solução é:

- a) $\{n \in |R| \mid 0 < n < \frac{1}{2}\}$
- b) $\{n \in \mathbb{R} \mid -\frac{1}{2} \leq n < 1\}$
- c) $\{n \in |R| \mid n \geq 0\}$
- d) $\{n \in \mathbb{R} \mid n < 1\}$
- e) $\{n \in \mathbb{R} \mid -\frac{1}{n} < n < 1\}$

TB.70 (PUC-76) A solução da equação $4^{x} - 3^{x-\frac{1}{2}} = 3^{x+\frac{1}{2}} - 2^{2x-1}$ é:

- a) $\frac{3}{4}$ b) $\frac{2}{3}$ c) $\frac{1}{3}$ d) $\frac{2}{3}$ e) $\frac{3}{2}$

TB.71 (MACK-76) Se a e b são constantes tais que, para todo $x \neq 0$,

$$\frac{a}{e^{X}-1}+\frac{b}{e^{X}+2}=\frac{2e^{X}+3}{(e^{X}-1)(e^{X}+2)}$$

então a + b é igual a:

- a) -2 b) $-\frac{4}{3}$ c) $\frac{2}{3}$ d) $\frac{4}{3}$
- e) 2

TB.72 (ITA-76) Seja A uma função real de variável real x, tal que:

$$e^{2x} - 2e^{x} \cdot A(x) + 1 = 0$$

para todo número real x. Nestas condições, temos:

- a) A(0) = 1, A(x) = A(-x), para todo número real x e não existe um número real x ≠ 0, satisfazendo a relação A(x) = 1
- b) A(0) = 1 e A(x) = 0, para algum púmero real x
- c) $A(1) \le 0$ e A(x) = A(-x), para todo número real x
- d) não existe um número real x, não nulo, satisfazendo a relação A(x) = 1 e não existe um número real x, satisfazendo A(x) = A(-x)
- e) nenhuma das respostas anteriores

TB.73 (MACK-76) Assinale a única afirmação correta:

- a) $0.21^2 > 0.21^3$
- b) $0.21^7 < 0.21^8$
- c) $0.21^4 > 0.21^3$
- d) $0.21^{0.21} > 0.21^{0.20}$ e) $0.21^{-2} < 1$

TB.74 (CESCEM-74) O valor de n para o qual $(0,5)^n < (0,5)^{n-1}$ é:

- a) negativo
- b) 0
- c) 1
- d) 3
- e) 4

TB.75 (GV-73) A solução da inequação $(\frac{1}{2})^{\chi^2+5\chi+1} \geqslant \frac{1}{2}$ é:

- a) $x \le 0$ b) $-5 \le x \le 0$ c) $x \ge 0$ d) $x \le -5$ ou $x \ge 0$ e) nenhuma das alternativas

TB.76 (CESCEA-73) O conjunto de todos os valores reais de x para os quais $(\sqrt[5]{1.1})x^2 + x + 1 < 1$ é:

- a) IR = conjunto de todos os números reais
- b) $\{x \in \mathbb{R} \mid x \ge -1\}$
- c) Ø
- d) não sei

TB.77 (MACK-77) O menor número natural n tal que $\frac{1}{2^n-1} < 10^{-6}$, é:

(Dado: $\log 2 \equiv 0.301$)

- a) 12
- b) 18
- c) 20
- d) 21
- e) não sei

TB.78 (CESCEA-73) Assinate a afirmação verdadeira:

- Para mais, acesse: http://fuvestibular.com.br/s Se 0 < a < 1, então, $a^{\sqrt{x}} < a^x$ para todo x tal que 0 < x < 1
 - b) Se $0 \le a \le 1$, então, $a^{|x|} \ge a^{x}$, para todo x real
 - c) Se a \geq 1, então, $a\sqrt{x} \geq a |x|$, para todo x real
 - d) não sei.

TB.79 (MACK-75) O conjunto solução da inequação 2^{2X+2} - 0,75 \cdot 2^{X+2} \leq 1 é:

- a) $\{x \in |R| \mid x > 0\}$ b) \emptyset c) $\{x \in |R| \mid -\frac{1}{4} < x < 1\}$
- d) $\{x \in |R| \mid x < 0\}$ e) nenhuma das anteriores

TB.80 (GV-77) Seja a um número positivo e diferente de 1. A solução da inequação $a^{x^3-1} \leqslant a^{x^2-1}$ é o conjunto dos números reais x tais que:

- a) $0 \le x \le 1$ se $a \ge 1$ b) $x \ge 1$ se $a \ge 1$
- c) x > 1 se a < 1
- d) $0 \le x \le 1$ ou $x \le 0$ se $a \ge 1$
- e) $x \le 1$ se a > 1

TB.81 (ITA-73) A designaldade $\sqrt[x-3]{x} \cdot \sqrt{x} \le \frac{1}{x}$ é válida para

- a) qualquer x positivo
- b) $1 \le x \le 3$
- c) $0 \le x \le 1$ ou $2 \le x \le 3$
- d) $0 \le x \le 1$ ou $2 \le x \le 3$
- e) nenhuma das alternativas anteriores

TB.82 (CESCEA-76) O conjunto de todos os números reais x para os quais $\frac{e^{x}+1}{1-x^{2}} < 0$.

- a) $\{x \in |B| | x \ge 1 \text{ ou } x \le -1\}$ b) $\{x \in |B| | -1 < x < 1\}$

- c) $\{x \in |R| \mid x \neq 0\}$ d) $\{x \in |R| \mid x \neq 1 \text{ e } x \neq -1\}$
- e) $\{x \in \mathbb{R} \mid x < -1 \text{ on } x > 1\}$

TB.83 (ITA-76) Considere a seguinte função real de variável real

$$M(x) = \frac{e^{X} - e^{-X}}{e^{-X} + e^{X}}$$

Então:

- a) para todo x > 1, ocorre: M(x) > 1
- b) para todo número real x ocorrem, simultaneamente, M(-x) = -M(x) e $0 \le M(x) < 1$
- c) existem; um a (número real positivo) e um b (número real negativo), tais que:
- d) M(x) = 0, somente quando x = 0 e M(x) > 0 apenas quando x < 0.
- e) nenhuma das alternativas anteriores

TB.84 (MACK-74) Se $\log_3 \frac{1}{27} = x$, então o valor de x é:

- a) -9 b) -3 c) $-\frac{1}{3}$ d) $\frac{1}{3}$
- e) 3

TB.85 (PUC-77) O valor do $\log_{0.04}$ 125 é igual a:

- a) $-\frac{2}{3}$ b) $-\frac{4}{3}$ c) $-\frac{3}{3}$ d) $\frac{2}{3}$

TB.86 (PUC-76) Se $\log_2 \sqrt{2} 512 = x$, então x vale:

- a) 6
- b) $\frac{3}{2}$ c) 9 d) 3 e) $\frac{2}{3}$

TB.87 (PUC-75) O conjunto verdade da equação $\log_{\frac{3}{2}} \sqrt[3]{\frac{25}{9}} = x$, é

- a) $V = \emptyset$ b) $V = \{\frac{2}{3}\}$ c) $V = \{-\frac{2}{3}\}$ d) $V = \{-\frac{3}{2}\}$ e) $V = \{\frac{3}{2}\}$

TB.88 (CESGRANRIO-74) Dado que a¹² = b, com a e b números reais maiores que 1, então:

a) $\log_a b = 12$ b) $\log_{12} a = b$ c) $\log_a 12 = b$ d) $\log_{12} b = a$ e) $\log_b a = 12$

TB.89 (CESCEM-73) A base do sistema de logaritmos no qual o logaritmo de $\sqrt{2}$ vale -1

- a) é √2
- b) é $\frac{1}{2}\sqrt{2}$
- c) é 2^{√2}
- e) não existe, pois o logaritmo não pode ser negativo

TB.90 (PUC-77) O número, cujo logaritmo na base a é 4 e na base $\frac{a}{3}$ é 8, é:

- a) 3
- b) 81
- c) 27
- d) 6 561
- e) 243

TB.91 (MACK-75) O logaritmo de 144 no sistema de base $2\sqrt{3}$ é igual a:

- b) $2\sqrt{3}$
- c) 2

TB.92 (GV-72) Seja x o número cujo logaritmo na base $\sqrt[3]{9}$ vale 0,75. Então $x^2 - 1$ vale:

- b) $\sqrt{2}$ 1 c) $\sqrt{3}$ 1 d) 0.75

e) nenhuma das alternativas.

TB.93 (PUC-72) Se $f(x) = \log_e \frac{1}{x}$, então $f(e^3)$ é igual à:

- a) 1
- b) -1

- e) 4

TB.94 (CESCEM-73) Seja f a função que a cada quadrado perfeito associa seu logaritmo na base 2. Então, se $f(x^2) = 2$, temos:

- a) $x = \pm \log_2 2$ b) $x = \pm \sqrt{\log_2 10}$ c) $x = \pm 2$ d) $x = \pm 4$ e) $x = \pm \frac{1}{2}$

 $pH = \log_{10} \left(\frac{1}{11+} \right)$

onde H^+ é a concentração de hidrogênio em íons-grama por litro de solução. O pH de uma solução tal que $H^+=1.0\times 10^{-8}$ é

- a) 7
- b) 10⁻⁸
- d) 8
- e) 0

TB.96 (CESGRANRIO-77) As indicações R₁ e R₂, na escala Richter, de dois terremotos estão relacionadas pela fórmula

$$R_1 - R_2 = \log_{10} \left(\frac{M_1}{M_2} \right)$$

onde M₁ e M₂ medem a energia liberada pelos terremotos sob a forma de ondas que se propagam pela crosta terrestre. Houve dois terremotos: um correspondente a R₁ = 8 e outro correspondente a $R_2 = 6$. A razão $\frac{M_1}{M_2}$ é:

- a) 2 b) $\log_2 10$ c) $\frac{4}{3}$ d) 10^2 e) $\log_{10} (\frac{4}{3})$

TB.97 (FEI-66) Se ab = 1, então $\log_h \sqrt{a}$ é

- a) 2 b) $\frac{1}{2}$ c) $-\frac{1}{2}$ d) $\frac{1}{2}$ e) nenhuma das anteriores

TB.98 (CESCEA-75) Para que valores de b a equação

$$x^2 - 3x + \log(b^2 - 4b) = 0$$

admite uma raiz nula?

a) $b \neq 0$ e $b \neq 4$

- b) $b \neq 2 + \sqrt{20}$ e $b \neq 2 \sqrt{20}$
- c) $b = 2 \sqrt{5}$ e $b = 2 + \sqrt{5}$ d) b < 0 ou b > 4

e) para todo b real

TB.99 (GV-74) Na equação $y = 2^{\log_3(x+4)}$ y será igual a 8 quando x for igual a:

- a) 13
- b) -3 c) -1 d) 5

TB.100 (CESCEM-67) A expressão e loge x pode também ser escrita:

- a) $-x^{\log_{\mathbf{X}}e}$ b) $\frac{1}{x}$ c) x^{-e} d) $\log_{e}(-\frac{x}{e})$ e) -e

TB.101 (MACK-76) A expressão $5^{3\log_5 x}$ para x > 0, é equivalente a:

- b) 5^{x²} c) 5^{3x}
 - d) x5

TB.102 (MACK-77) O valor de A tal que $4^{\log_2 A} + 2A - 2 = 0$, é:

- a) $\sqrt{3} 1$ b) $\sqrt{3} + 1$ c) $\sqrt{2} 1$ d) $\sqrt{2} + 2$ e) não sei

TB.103 (MACK-75) O gráfico ao lado representa a função:

b)
$$y = 2^{\frac{1}{x}}$$

c)
$$y = \log_2 x$$

a)
$$y = 2^{x}$$
 b) $y = 2^{\frac{1}{x}}$
c) $y = \log_{2} x$ d) $y = \log_{\frac{1}{2}} x$

e)
$$y = (\frac{1}{2})^{x}$$

TB.104 (CESGRANRIO-73) Nos gráficos abaixo, representam-se, no eixo horizontal, os valores de x e, no eixo vertical, seus logaritmos em uma base a < 1. O que melhor representa a função log_ax é:

- a) II
- b) 1
- c) III
- d) IV
- e) nenhum dos gráficos acima é representativo da função loga x

TB.105 (CESGRANRIO-74) O gráfico que mais bem representa a função $f(x) = \log_{10} |x|$, definida para todo $x \neq 0$, é:

Para mais, acesse: http://fuvestibular.com.br/

TB.106 (MACK-74) O gráfico cartesiano da função f definida por:

$$f(x) = \begin{cases} 0 & \text{se} \quad |x| > 1 \\ \sqrt{\log_a |x|} & \text{se} \quad |x| \geqslant 1 \quad e \quad a > 1 \end{cases}$$

pode ser:

e) nenhum dos anteriores

(1) $y = \log_4(4x - 7)$; (11) $y = \log_{\frac{1}{2}}(3x - 2)$ e os gráficos

As únicas associações corretas estão na alternativa:

TB.108 (CESCEM-74) Qual das funções seguintes pode ser representada pelo gráfico abaixo?

a)
$$y = \log_a \frac{1}{x}$$
, $a > 1$, $x \neq 0$ b) $y = \lfloor \log_a x \rfloor$, $a > 1$, $x > 0$

b)
$$y = |\log_a x|, a > 1, x > 0$$

c)
$$y = |a^X|, 0 < a < 1$$

d)
$$y = \log_a x$$
, $0 < a < 1$, $x > 0$

e)
$$y = |a^{x}|, a > 1$$

TB.109 (CESGRANRIO-76) Sejam G: $(-1, 1) \rightarrow (-1, 1)$ e F: $(-1, 1) \rightarrow \mathbb{R}$ definidas por:

$$F(x) = \log \left(\frac{1+x}{1-x} \right)$$
 e $G(x) = \frac{2x}{1+x^2}$

A função composta

$$F \circ G: (-1, 1) \rightarrow \mathbb{R}$$

 $x \mapsto F(G(x))$

é igual a:

a) eles não se interceptam

- b) se interceptam num único ponto
- c) se interceptam em apenas dois pontos d) coincidem
- e) são simétricos em relação ao eixo das abscissas
- TB.111 (MACK-75) O número de pontos comuns aos gráficos das funções definidas por $y = e^{X} e y = -\log |x|, x \neq 0, e$:
 - a) 1
- b) 2
- c) 3
- e) nenhuma das anteriores
- TB.112 (CESGRANRIO-73) Sendo y = e^X para x pertencente a IR, sua função inversa é expressa por:
 - a) $x = \log_{\alpha} y$ para y > 0
- b) x = logo y para y pertencente a IR
- c) $x = \log_{e} y$ para $y \ge 0$
- d) $x = \log_{\theta} y$ para y < 0
- e) nenhuma das respostas anteriores
- TB.113 (CESCEM-74) O domínio da função inversa da função y = 1 2^{-X} é o conjunto dos números reais z tais que:
 - a) z < 1
- b) z > 1

- c) z < -1 d) z > 2 e) $z \neq 0$
- TB.114 (CESGRANRIO-73) O campo de definição da função $y = log (10 + 3x x^2)$
 - é dado por:
 - a) x < -2
- b) -2 < x < 5
- c) x > 5 d) $\{x < -2\} \cup \{x > 5\}$
- e) nenhuma das respostas anteriores
- TB.115 (PUC-76) O domínio da função definida por log (x2 6x + 9) é dado pelo conjunto:
 - a) $\{x \in IR \ e \ (x < -3) \ ou \ (x > 3)\}$ b) $\{x \in IR \ e \ -3 < x < 3\}$
 - c) $\{x \in \mathbb{R} \mid e -3 \le x \le 3\}$.
- d) IR*

- e) IR {3}
- **TB.116** (PUC-72) O domínio da função $f(x) = \log_{10}(x^2 4x + 13)$ é:
 - a) x > 0
- b) x < 0
- c) ∀ x (qualquer que seja x)

- d) -1 < x < 3
- e) nenhuma das anteriores
- **TB.117** (GV-77) O conjunto de todos os números reais x para os quais $y = log(\frac{2^x 1}{2})$ é um número real, é o conjunto dos números reais x tais que:
 - a) x < 0

- b) $0 \le x < 2$ c) x > 2

- d) -1 < x < 2
- e) 0 < x < 2
- TB.118 (PUC-69) Se $y = \log_{x-2}(x^2 4x)$ para que y exista devemos ter x:
 - a) igual a 4
- b) menor que 4
- c) major que 4

- d) iqual a 2
- e) nada disso

TB.119 (CESCEA-74) O domínio de definição da função

$$f(x) = \log (x^2 - 1) + \sqrt{-x^2 + 3x + 10}$$
 é:

- a) x < -3 ou x > 8 b) -1 < x < 1
- c) $x \le -2$ ou $x \ge 5$

d) $-2 \le x < -1$ ou $1 < x \le 5$

- TB.120 (CESCEA-71) O conjunto de todos os números reais x para os quais a expressão

$$\log (-x^2 + 6x + 16) + \log (x^2 - 6x + 8)$$

está definida é:

- a) $\{x \in |R| \ 2 < x < 4 \text{ ou } x < -2 \text{ ou } x > 8\}$
- b) $\{x \in |R| 1 < x < 1 \text{ ou } 5 < x < 7\}$
- c) $\{x \in |R| 2 < x < 2 \text{ ou } 4 < x < 8\}$
- d) $\{x \in \mathbb{R} \mid x < 1 \text{ ou } x > 4\}$

- e) não sei
- **TB.121** (GV-73) Para que a expressão $f(x) = \log [m^2 x^2 + (2m + 1)x + 1]$ esteja definida para todo x real, é suficiente que:
 - a) m > $-\frac{1}{4}$ e m \neq 0 b) m > 0 c) m $\neq -\frac{1}{4}$
- d) m < $-\frac{1}{4}$ e) m = $-\frac{1}{4}$
- TB.122 (CESCEM-77) Considere as afirmações
 - 1. $\log 1 = 0$
 - 11. $\log 0.01 = -2$
 - III. $\log (a + b) = \log a + \log b$
 - e associe a cada uma delas a letra V se for verdadeira e F caso seja falsa. Na ordem apresentada, temos
- a) V, F, V b) V, V, F c) F, V, V d) V, V, V e) V, F, F

- TB.123 (GV-72) Seja $x = \frac{\sqrt{a}}{ba}$. Então, $\log x$ é igual a
 - a) $\frac{1}{2}\log a \log b \cdot \log c$ b) $\frac{1}{2}\log a \log b + \log c$ c) $\frac{1}{2}\log a \log b \log c$
- d) $\sqrt{\log a} \log b \cdot \log c$ e) $\frac{\sqrt{\log a}}{\log b \cdot \log c}$
- **TB.124** (PUC-69) Se $m = \frac{b \cdot c}{d^2}$ então log m é:
 - a) log b · log c 2 log d

- b) log b + log c + log 2 log d
- c) $\log b + \log c + 2 \cos \log d$
- d) log 2 + log b log c + log d

- e) nada disso
- TB.125 (CESCEA-69) Considere as proposições

1.
$$\log \sqrt[3]{x} \sqrt{x^2 + a^2} = \frac{1}{3} \log x + \frac{1}{6} \log (x^2 + a^2), x > 0.$$

- Para mais, acesse: http://fuvestibular.com.br/2. Se '0 < a \neq 1, então, b = $\log_a x \iff x^b$ = a
 - $3\sqrt[3]{x-1} \cdot \sqrt[7]{x+1} = \sqrt[10]{x^2-1}$

então:

a) todas são falsas

- b) somente 1 é verdadeira
- c) somente 2 é verdadeira
- d) somente 3 é verdadeira

- e) todas são verdadeiras
- **TB.126** (MACK-69) Se $\log x = \log b + 2 \log c \frac{1}{2} \log a$, então
 - a) $x = \frac{b\sqrt{c}}{\sqrt[3]{a}}$ b) $x = \frac{2bc}{a}$ c) $x = \frac{b\sqrt{c}}{a^3}$

- d) $x = \frac{bc^2}{3/2}$
- e) nenhuma das respostas acima é correta
- TB.127 (FEI-68) Para quaisquer números reais positivos x e y tem-se:
 - a) $\log_a(x + y) = \log_a x + \log_a y$
- b) $\log_a(x y) = \log_a x \cdot \log_a y$
- c) $\log (\frac{2a}{b}) = 2 + \log_2 a + \frac{1}{\log_2^b}$ d) $x^{\log_a^y} = y^{\log_a^x}$
- e) nenhuma das anteriores
- TR.128 (CONSART-75) O valor de 3 log 3 + log 5 é
 - a) log 30
- b) log 135 c) log 14
- d) log 24
- e) log 45
- TR 129 (CESCEA-71) Sabendo-se que log a = m, o valor da expressão

$$\log \sqrt{\frac{a^3 \sqrt{a}}{3\sqrt{a} 4\sqrt{a}}} \quad \text{\'e}:$$

- a) $\frac{41}{24}$ m b) $\frac{35}{24}$ m c) $\frac{32}{24}$ m d) $\frac{27}{24}$ m
- **TB.130** (PUC-77) Se $\log_a x = n$ e $\log_a y = 6n$, então, $\log_a \sqrt[3]{x^2 y}$ é igual a:
- a) $\frac{8n}{3}$ b) $\frac{4n}{3}$ c) $\frac{2n}{3}$ d) $\frac{6n}{2}$ e) $\frac{n}{3}$
- **TB.131** (CESCEA-74) Sendo $colog_2 \frac{1}{32} = x e log_y 256 = 4$, então, x + y é:
 - a) -1
- b) 1 c) 9
- d) 3
- e) não sei
- **TB.132** (FEI-66) A soma dos logaritmos de dois números na base 9 é $\frac{1}{2}$. O produto desses números é
 - a) 3

- b) $\frac{9}{2}$ c) 81 d) -81 e) nenhuma das anteriores
- **TB.133** (EPUSP-67) Se $\log_2(a-b) = m$ e (a+b) = 8, então, $\log_2(a^2-b^2)$ é igual a
- b) 3 + m c) $m^2 9$ d) m^2

- e) nenhuma das respostas anteriores

TB.134 (EPUSP-66) Se $\log_{10} m = b - \log_{10} n$, então m é igual a:

TB.143 (CESCEM-75) A solução da equação $a^X = b$, com a > 1 e b > 1, é Para mais, acesse: http://fuvestibular.com.br/

a) <u>b</u>

b) b · n

c) $10^{b} \cdot n$ d) b - 10^{n}

e) nenhuma das respostas anteriores

TB.135 (GV-70) Se $\log_{10} 2 = 0.301$; então o valor da expressão $\log_{10} 20 + \log_{10} 40 + \log_{10} 800$ é

b) 120.806

c) 4.806

d) 5,806

e) nenhuma das respostas anteriores

TB.136 (CESCEM-72) Sabendo que $\log 2 = 0.3010300$; quanto vale $\log 2^{20} = \log 1048576$?

a) 6,0206

b) 7.60206

c) 13.0206

d) 20.30103

e) faltam dados para o cálculo

TB.137 (CESCEM-76) Dados $\log 2 = 0.30103$ e $\log 3 = 0.47712$; o $\log 7.2$ é

a) 0.00634

b) 0,85733

c) 0.86176

d) 1,85733

e) 1.86176

TB.138 (MACK-76) Se log 8 = 0,9031 e log 9 = 0,9542; o único logaritmo que não pode ser encontrado sem o uso das tabelas, é:

a) log 17

b) $\log \frac{5}{4}$ c) $\log 15$ d) $\log 600$

e) log 0,4

TB.139 (MACK-76) Sabe-se que $\log_m 2 = a$ e $\log_m 3 = b$. O valor de

$$\log_{\rm m} \frac{64}{2.7} - \log_{\rm m} 60$$

é igual a:

a) 5a - 4b

b) 6a - 3b - 6

c) 3a - 4b + m

d) 4a + b

e) 6a - 2h

TB.140 (CESCEA-75) Sabendo que log 2 = 0,3010, determinar o valor da expressão $\log \frac{125}{5/2}$

a) 2.0368

b) 3,9164

c) 3.9632

d) 2.4369

e) 2.5786

TB.141 (PUC-74) Sendo $\log_{10} 2 \cong 0.3$; então o menor número natural n que verifica a relação $2^{n} > 10^{4}$ é:

a) 9

b) 10

c) 11

d) 12

e) 14

TB.142 (CESCEA-73) Sejam as afirmações:

1. Se $\log a = m$ e $\log b = n$, então, $\log (a + b) = m + n$

2. Sejam a e b números reais positivos e diferentes de 1. Então: logab · logha = 1

3. $\log \frac{a}{bc} = \log a - \log b + \log c$

então

a) todas são verdadeiras

b) somente 1 é verdadeira c) somente 2 é verdadeira

d) somente 3 é verdadeira e) todas são falsas

a) $x = \log a - \log b$ b) $x = \log \frac{a}{b}$ c) $x = \frac{\log a}{\log b}$

d) $x = \frac{\log b}{\log a}$ e) $x = \log b - \log a$

TB.144 (CESGRANRIO-73) A razão entre os logaritmos de 16 e 4 numa base qualquer é:

b) 0.5

d) 2

e) um número que depende da base escolhida

TB.145 (PUC-76) Se $\log_2 m = k$, então $\log_8 m$ será:

a) 2k

b) $\frac{k}{3}$ c) 3k d) $\frac{k}{3}$

e) k + 6

TB.146 (MACK-75) O valor de

 $\log_3 2 \cdot \log_4 3 \cdot \log_5 4 \cdot \log_6 5 \cdot \log_7 6 \cdot \log_8 7 \cdot \log_9 8 \cdot \log_{10} 9$ é:

b) log₃10 c) 1

d) 2

TB.147 (CESCEM-76) O logaritmo de um número na base 16 é $\frac{2}{3}$. Então, o logaritmo deste número na base $\frac{1}{4}$ é

a) $-\frac{4}{3}$ b) $-\frac{3}{4}$ c) $\frac{3}{8}$ d) 3

e) 6

TB.148 (MACK-74) Seja A = $\log_3 15 \cdot \log_{\frac{7}{2}} 3 \cdot \log_4 \frac{7}{8}$. Então:

a) A < 0

b) 0 < A < 1 c) 1 < A < 2 d) A > 3

e) nenhuma das afirmações anteriores é verdadeira

TB.149 (CESCEA-70) A expressão (1 + log_am) log_{ma}n é equivalente a:

a) logan

b) log_na c) log_am d) log_man

e) log_a mn

TB.150 (CESCEA-69) Sendo $\log_a r = n \log_b r$, a relação entre a e b é:

a) $b^n = a$ b) $a^n = b$ c) a = b d) $b = \frac{1}{a}$ e) a = -b

TB.151 (MACK-75) Se $X = \log_{27} 169$ e $Y = \log_3 13$, então:

a) $X = \frac{2}{3}Y$ b) $X = \frac{3}{2}Y$ c) X = 3Y d) $X = \frac{Y}{3}$

e) nenhuma das anteriores

TB.152 (ITA-70) Dados $\log_{10} 2 = a$ e $\log_{10} 3 = b$, então $\log_9 20$ é igual à:

a) $\frac{b}{(1+2a)}$ b) $\frac{a}{(1+b)}$ c) $\frac{(1+a)}{2b}$ d) $\frac{b}{2a}$

e) nenhuma das respostas acima é válida

TB.153 (GV-75) Se $\log_a x = m$ e $\log_b x^2 = n$, então, $\log_a \sqrt{ab}$ vale:

a)
$$\frac{n + 2m}{n}$$

b)
$$\frac{m+}{2n}$$

c)
$$\frac{m+2}{2n}$$

d)
$$\sqrt{n+n}$$

e)
$$\frac{1}{2} + \frac{n}{m}$$

a)
$$\frac{n+2m}{2n}$$
 b) $\frac{m+n}{2n}$ c) $\frac{m+2n}{2n}$ d) $\sqrt{n+m}$ e) $\frac{1}{2} + \frac{n}{m}$

- **TB.154** (MACK-75) Sabendo-se que $\log_{14} 7 = a$ e $\log_{14} 5 = b$, o valor de $\log_{35} 28$ é: Sugestão: $28 = \frac{14^2}{7}$

 - a) $\frac{2+a}{a+b}$ b) $\frac{a-b}{a+b}$ c) $\frac{2-a}{a+3b}$ d) $\frac{2-a}{a+b}$ e) a+b

- **TB.155** (GV-76) Se $\log_5 8 = 1,2920$; então a solução de $8^X = 1,6$ é, aproximadamente:
 - a) 0,774
- ь) 0.5
- c) 0.226
- d) 0.4
- e) 0.635
- TB.156 (MACK-74) A soma $\frac{1}{\log_2 N} + \frac{1}{\log_3 N} + \dots + \frac{1}{\log_{30} N}$, onde N é um número inteiro maior que 1 é:
 - a) $\frac{1}{N}$
 - b) $\frac{1}{\log_{201} N}$ (Sugestão: $\frac{1}{\log_2 b} = \log_b a$)
 - c) $\frac{1}{\log_{N}(20!)}$
 - d) $10 \left(\frac{1}{\log_{10} N} + \frac{1}{\log_{10} N} \right)$
 - e) impossível de escrever em forma condensada
- **TB.157** (PUC-73) Se $\frac{x \log 2}{x + \log 2} = \frac{\log 8}{\log 4}$, então:
 - a) $x = 5 \log 2$
- b) $x = 5 \log 3$
- c) $x = 5 \operatorname{colog} 3$

- d) $x = 5 \infty \log 2$
- e) $x = 5 \log 4$
- TB.158 (ITA-68) Sejam a e b dois números reais, a > 0 e b > 0, a $\neq 1$, b $\neq 1$. Que relação devem satisfazer a e b para que a equação $x^2 - x (log_h a) + 2 log_a b = 0$ tenha duas raízes reais e iguais?
 - a) $a = b^2$
- b) a = b
- c) $a^2 = b$ d) a = 2b
- **TB.159** (CONSART-74) Uma solução da equação $\log_{10} \frac{(10x)^3}{100^2} = 8$ é:
 - a) 1000
- b) 100
- c) 10
- d) 8
- e) 1
- **TB.160** (CESCEA-72) O valor de x para que $\left(\log_{\frac{1}{2}} x\right) \cdot \log_{\frac{1}{2}} \frac{1}{32} = \frac{5}{3}$ é:

160-B

- a) $-\frac{1}{2}$ b) $\frac{1}{3}$ c) $\frac{3}{5}$ d) $\frac{1}{9}$ e) não sei

- TB.161 (CONSART-73) A solução da equação: $\log_8 x + \log_8 (3x 2) = 1$ é dada por: Para mais, acesse: http://fuvestibular.com.br/
 - a) $-\frac{4}{2}$ b) $\frac{1}{2}$ c) -2
- d) 2

- e) nenhuma das respostas anteriores
- TB.162 (PUC-77) O conjunto verdade da equação $2 \log x = \log 4 + \log (x + 3)$ é:
 - a) {-2, 6} b) {-2}
- c) {2, -6}
- а) Ø
- e) {6}

TB.163 (PUC-72) As raízes da equação

$$\log(x + \frac{1}{3}) + \log(x - \frac{1}{3}) = \log \frac{24}{9}$$
 são:

- a) $\pm \frac{2}{3}$ b) $\pm \frac{5}{3}$ c) $\pm \frac{4}{5}$ d) $\pm \frac{3}{5}$ e) nenhuma das anteriores
- **TB.164** (GV-76) A equação $\log_2(x^2 + 2) = \log_{\underline{1}}(x^2 2) + 2$, admite duas soluções reais cuia soma vale:

- a) $4\sqrt{2}$ b) $\frac{1}{\sqrt{2}}$ c) 0 d) $-\frac{1}{\sqrt{2}}$ e) 4
- **TB.165** (MACK-75) A solução da equação $\log [2^{(3^X)}] + \log [2^{(3^{X-1})}] = \log [2^{(4^X)}]$ está no intervalo:

 - a) x < -2 b) -2 < x < 0 c) 0 < x < 2 d) 2 < x < 4 e) x > 4.

- **TB.166** (CESCEA-74) A afirmação $\log (x + 2) + 2 = \log (4x^2 400)$ (base 10)
 - é verdadeira se, e somente se:

c) x = -5 ou x = 30

- a) x = 10 b) x = 30 d) x = -10 ou x = 10 e) não sei
- TB.167 (PUC-70) As soluções da equação $\log (x^2 3x + 1) \log (2x 3) = \log \sqrt{5}$ são:

- a) $4 + \sqrt{5}$ b) $4 + \sqrt{5}$ e $\sqrt{5} 1$ c) $\sqrt{5} 1$ d) $4 \sqrt{5}$ e $\sqrt{5} 4$
- e) nenhuma das anteriores
- TB.168 (PUC-72) Aumentando um número x de 16 unidades, seu logaritmo na base 3 aumenta de 2 unidades. Então, x é:
 - a) 2
- **b**) 1
- c) 3
- e) 4
- d) 5
- TB.169 (GV-75) Num sistema de logaritmos, o logaritmo de 101,44 supera de 5 o logaritmo de 3,17. Qual é a base?
 - a) 3
- b) 10
- c) 4 d) 1,025

- e) 2
- TB.170 (GV-73) Se a e b são soluções do sistema: $\begin{cases} x + y = 27,5 \\ \log x \log y = 1 \end{cases}$ então ab vale:
 - a) 16.9
 - b) 22,5
- c) 62,5
- d) 19.6

e) nenhuma das alternativas anteriores

TB.171 (EAESP-GV-77) A solução do sistema: $\begin{cases} 2^{X} = \frac{1}{2^{4+y}} \\ \log_{2} (2x + y) = \frac{1}{2^{4+y}} \end{cases}$

$$\begin{cases} 2^{x} = \frac{1}{2^{4+y}} \\ \log_{2}(2x + y) = \end{cases}$$

TB.178 (ITA-69) Considere a equação $a^{2x} + a^{x} - 6 = 0$, com a > 1. Uma das afirmações Para mais, acesse: http://fuvestibular.com.b abaixo, relativamente à equação proposta, está correta. Assinale-a.

- a) $a^{X} = 2 e a^{X} = -3$
 - b) $x = \log_a 2$
- c) $x = \log_a 2 e x = -3$

- d) x = 2 e $x = \log_2 3$
- e) nenhuma das opções anteriores é verdadeira.

a) -16 b) 16 c) 4

e) 2

TB.172 (CESCEA-70) Seja x = a e y = b a solução do sistema

$$\begin{cases} \log x - \log y = 1 \\ x^2 - 91y^2 = 81 \end{cases}$$

Então, o valor de $\frac{a}{2}$ + b é:

a) 18 ou -18 b)
$$\frac{63}{2}$$
 c) 15 d) 18

b)
$$\frac{63}{2}$$

TB.173 (GV-72) A solução da equação $2 \cdot 3^X = \frac{5^X}{4^X}$ é:

a)
$$x = \log_2 \frac{1}{r}$$

a)
$$x = \log_2 \frac{12}{5}$$
 b) $x = \log_2 \frac{5}{12}$ c) $x = \log_{\frac{5}{2}} 2$

c)
$$x = \log_{\frac{5}{12}} 2$$

d)
$$x = log_{12} 2$$
 e) $x = log_{12} 5$

e)
$$x = \log_{12} \xi$$

TB.174 (MACK-74) A solução real da equação $\sqrt[X]{3} - \sqrt[2x]{3} = 2$ é:

a)
$$\log 2$$
 b) $\log 7$ c) $\frac{\log 3}{\log 4}$ d) 2

e)
$$\frac{1}{2 \log 2}$$

TB.175 (MACK-68) Se $4x^{\log_2 x} = x^3$ então as soluções serão:

- a) dois números inteiros coincidentes
- b) dois números inteiros positivos
- c) dois números inteiros negativos
- d) dois números fracionários positivos
- e) dois números fracionários negativos

TB.176 (MACK-74) A solução real da equação $x^{(x^5)} = 5$ está no intervalo:

- a) [1, 2] b) [2, 3] c) [3, 4] d) [4, 5]

- e) [5, 6]

TB.177 (ITA-75) A respeito da equação exponencial $4^{X} + 6^{X} = 9^{X}$ podemos afirmar que:

a)
$$x = 9 \log_{10} (\frac{1 + \sqrt{3}}{2})$$
 é uma raiz

b)
$$x = [\log_{10}(\frac{3}{2})]^{-1} \cdot \log_{10}(\frac{1+\sqrt{5}}{2})$$
 é uma raiz

c)
$$x = [\log_{10}(\frac{3}{2})]^{-1} \cdot \log_{10}(\frac{1+\sqrt{3}}{2})$$
 é uma raiz

d)
$$x = \left[\log_{10}\left(\frac{3}{2}\right)\right]^{-1} \cdot \log_{10}\left(\frac{1+\sqrt{6}}{2}\right)$$
 é uma raiz

e) nenhuma das alternativas anteriores.

$$x - x \log_a x = 0$$
, $a > 0$ e $a \neq 1$, é:

- a) $\{0\}$ b) $\{a\}$ c) $\{0, a\}$ d) \emptyset e) $\{0, \frac{1}{4}\}$

TB.180 (ITA-76) Em relação à equação $x^{\log_4 \sqrt{x}} = x^{\log_4 x} - 2$, x > 0, temos:

- a) admite apenas uma raiz, a qual é um número inteiro positivo
 - b) não admite uma raiz inteira satisfazendo a relação 0 < x < 35
 - c) todas as suas raízes são números irracionais
 - admite uma raiz inteira x_1 e admite uma raiz fracionária x_2 tais que:

$$x_1^3 + x_2^3 = \frac{4097}{64}$$

e) nenhuma das respostas anteriores

TB.181 (MACK-75) O conjunto solução da equação $\log_4 (x - 3) - \log_{16} (x - 3) = 1$, x > 3, é:

- a) {11, 12}
- b) {16}
- c) {19}
- d) {21, 24}

e) nenhuma das anteriores

TB.182 (MACK-75) Se $\log_{a^2} x + \log_{x^2} a = 1$, a > 0, $a \ne 1$, $x \ne 1$, então o valor de x é:

- a) a b) $\frac{1}{a}$ c) a^2 d) $\frac{1}{a^2}$ e) \sqrt{a}

TB.183 (CESCEM-68) Se $\log_2 x = \log_{\sqrt{x}} x^2 + \log_x 2$, então x vale: a) $\sqrt[4]{2}$ b) $\sqrt{2}$ c) 2 d) 4 e) nenhum dos valores anteriores.

TB.184 (CESCEM-68) A solução da equação $\log_a (\log_{a^2} x) = \log_{a^2} (\log_a x)$ é:

- a) x = a b) $x = a^2$ c) $x = a^3$ d) $x = a^4$ e) $x = \sqrt{a}$

b) tem uma única solução igual a $\frac{-1+\sqrt{5}}{2}$ c) tem uma única solução igual a $\frac{1+\sqrt{2}}{2}$ d) tem duas $\frac{-1}{2}$ TB.185 (MACK-74) A equação $\log_x (x + 1) = \log_{x+1} x$, onde x é um número real:

- d) tem duas soluções

TB.186 (MACK-69) Se $\log_{x} 25 > \log_{x} 16$ então

- ы) x < 0 a) x > 0
- c) x > -1 d) x > 1
- e) nenhuma das respostas acima é correta

TB.187 (MACK-69) x e y são números reais positivos; x > y implica

a)
$$(\frac{1}{2})^{x} < (\frac{1}{2})^{y}$$

b) $\log_{\underline{1}} x > \log_{\underline{1}} y$

- c) qualquer que seja a, $a^{X} > a^{Y}$
- d) qualquer que seja a, log_a x > log_a y
- e) $(-2)^{x} > (-2)^{y}$
- TB.188 (ITA-72) Assinale a sentença correta

$$\log_2 x \leq 0$$

$$\log_a x \le 0$$
 se $x \ge 1$, $\log_a x \ge 0$ se $x \le 1$

$$\log_a x > 0$$

b)
$$0 \le a \le 1$$
 $\log_a x \ge 0$ se $x \le 1$, $\log_a x \le 0$ se $x \ge 1$

c)
$$a > 1$$

$$\log_a x_1 < \log_a x_2$$

c)
$$a > 1$$
 $\log_a x_1 < \log_a x_2$ se e só se $x_1 > x_2$

$$\log_a x_1 < \log_a x_2$$

d)
$$0 \le a \le 1$$
 $\log_a x_1 \ge \log_a x_2$ se e só se $x_1 \le x_2$

- e) nenhuma das respostas anteriores
- TB.189 (CESCEA-74) Se os logaritmos decimais dos números reais a, b e c forem definidos e se a + b + c = 1. então:

a)
$$\log a + \log b + \log c > 0$$

b)
$$1 < a^2 < b^2 < c^2 < 10$$

c)
$$\log a \cdot \log b \cdot \log c > 0$$

e) nenhuma das anteriores

d)
$$0 < abc < 1$$

- e) não sei
- **TB.190** (EPUSP-68) Dadas as funções $f(x) = \sqrt{x-1}$ e $g(x) = \frac{1}{|x|} \log_{10} |x|$, o campo de definição da função composta f(g(x)) é

a)
$$x > 0$$
 b) $x \ge 1$

c)
$$x \neq 0$$

- d) vazio
- TB.191 (MACK-74) Os pontos P = (x, y) cujas coordenadas satisfazem o sistema

$$\begin{cases} y - \ln(x - 1) \leq 0 \\ y = x^2 - 6x + 8 \end{cases}$$

- a) são todos pontos do primeiro quadrante
- b) são em número finito
- c) são pontos de um arco de parábola
- d) são colineares
- e) são pontos de uma curva logarítmica
- TB.192 (MACK -73) Em qual das passagens abaixo foi cometido um êrro?

$$\frac{25}{200} < \frac{12}{48} \xrightarrow{\text{(a)}} \frac{1}{8} < \frac{1}{4} \xrightarrow{\text{(b)}} (\frac{1}{2})^3 < (\frac{1}{2})^2 \xrightarrow{\text{(c)}}$$

$$\xrightarrow{\text{(c)}} \log_{10} \left(\frac{1}{2} \right)^3 < \log_{10} \left(\frac{1}{2} \right)^2 \xrightarrow{\text{(d)}}$$

$$\stackrel{\text{(d)}}{\Longrightarrow} 3\log_{10}(\frac{1}{2}) < 2\log_{10}(\frac{1}{2}) \stackrel{\text{(e)}}{\Longrightarrow} 3 < 2$$

TB.193 (GV-75) Para que a desigualdade $\log_1 (3x + 2) > 3$, x real, seja verdadeira, deve-

a)
$$x \ge -\frac{2}{3}$$
 ou $x \le -\frac{5}{8}$ b) $x < -\frac{5}{8}$ c) $-\frac{2}{3} \le x \le -\frac{5}{8}$

b)
$$x < -\frac{1}{3}$$

c)
$$-\frac{2}{3} \le x \le -\frac{8}{8}$$

d)
$$x > -\frac{5}{8}$$

d)
$$x > -\frac{5}{8}$$
 e) $-\frac{2}{3} < x < -\frac{5}{8}$

Para mais, acesse: http://fuvestibulal-confl.or/ (CESCEA - 72) A solução da inequação $\ln(x^2 - 3x - 9) > 0$ ($\ln = \log_e$) é:

a)
$$-2 < x < 5$$

a)
$$-2 < x < 5$$
 b) $x < -2$ ou $x > 5$ c) $-2 \le x \le 5$

TB.195 (MACK-77) Os valores de x para os quais $\log_c (x^2 - \frac{3}{2}x) < 0$, são:

a)
$$-\frac{1}{2} < x < 0$$
 ou $\frac{3}{2} < x < 2$ b) $0 < x < \frac{3}{2}$

c)
$$-\frac{1}{2} < x < 2$$
 d) $x < 0$ ou $x > \frac{3}{2}$ e) não sei

TB.196 (GV-73) O conjunto $\{x \in |R| \log_{\frac{1}{2}} (\frac{x-1}{x+1}) > 1\}$ é igual a:

a)
$$\{x \in \mathbb{R} | x < 1 \text{ ou } x > 3\}$$

a)
$$\{x \in |R| | x < 1 \text{ ou } x > 3\}$$
 b) $\{x \in |R| | x < -1 \text{ ou } x > 1\}$

d)
$$\{x \in |R| - 1 < x < 1\}$$

e)
$$\{x \in |R| | 1 < x < 3\}$$

TB.197 (ITA-69) O conjunto dos pares de números reais x e y, que satisfazem à desigualdade $\log_{x+1} (y-2) > 0$ está entre as opções abaixo:

a)
$$-1 < x < 0$$
 e y > 3

a)
$$-1 < x < 0$$
 e y > 3 b) x > 0 e 2 < y < 3

c)
$$x > 0$$
 e $y > 3$ ou $-1 < x < 0$ e $2 < y < 3$

d)
$$x > -1$$
 e $y > 2$

e)
$$x < 0$$
 e $2 < y < 3$

TB.198 (CESCEA-70) O conjunto de todos os x para os quais

$$\log_{\frac{1}{2}}(-x^2 + 5x + 24) > \log_{\frac{1}{2}}18$$
 é

a)
$$\{x \in |R| | x < -1 \text{ ou } x > 6\}$$
 b) $\{x \in |R| | x < -3 \text{ ou } x > 8\}$

c)
$$\{x \in \mathbb{R} \mid -3 < x < -1 \text{ ou } 6 < x < 8\}$$

d)
$$\{x \in |R| - 4 < x < 2 \text{ ou } 7 < x < 9\}$$

e)
$$\{x \in \mathbb{R} \mid 2 < x < 7\}$$

TB.199 (GV-74) Para que $\log_2 (x - 3) + \log_2 (x - 2) < 1$, devemos ter:

a)
$$2 < x < 4$$
 b) $x < 2$ ou $x > 4$ c) $x < 3$ ou $x > 4$

$$c > 4$$
 c) x

c)
$$x < 3$$
 ou $x > 4$

- d) 3 < x < 4 e) 2 < x < 3
- **TB.200** (GV-70) A solução da inequação $\log_{\frac{1}{2}}(x+1) + \log_{\frac{1}{2}}(1-x) \le 2$ é o conjunto:

a)
$$\{x \in |R| - 1 < x < \frac{-\sqrt{3}}{2} \lor \frac{\sqrt{3}}{2} < x < 1\}$$

b)
$$\{x \in \mathbb{R} \mid -\frac{\sqrt{3}}{2} < x < \frac{\sqrt{3}}{2}\}$$
 c) \emptyset

- d) $\{x \in |R| | x < -1 \lor x > 1\}$
- e) nenhuma das respostas anteriores

e) não sei

b)
$$x > 0$$
 c) $x > -1$ d) $x > 3$ ou $x < -4$

TB.202 (CESCEA-71) O conjunto de todos os x para os quais

$$x \log_{\frac{1}{2}} (x - 1) \le 0$$
 é:

a)
$$\{x \in |R| \mid x > 2\}$$

b)
$$\{x \in \mathbb{R} \mid 1 < x < 2\}$$

c)
$$\{x \in |R| | x > 1\}$$

d)
$$\{x \in |R| | \frac{1}{2} < x < 2\}$$

TB.203 (GV-71) A solução da inequação $x^3 \cdot \ln(x^2 - 9) > 0$ é o conjunto dos números reais x tais que:

a)
$$x < -\sqrt{10}$$
 ou $x > \sqrt{10}$

b)
$$x > 3$$

c)
$$x > \sqrt{10}$$
 ou $-\sqrt{10} < x < -3$ d) $3 < x < \sqrt{10}$

e)
$$-\sqrt{10} < x < \sqrt{10}$$

TB.204 (GV-71) O conjunto dos x para os quais x $\log_{10} (x^2 + 1) > \log_{10} (x^2 + 1)$ é:

a)
$$x \neq 0$$

b)
$$-1 < x < 1$$
 e $x \neq 0$

c)
$$x \le -1$$
 ou $x \ge 0$

e)
$$-1 < x < 1$$
 e $x \ne 0$, ou $x > 1$

TB.205 (GV-72) O domínio da função f dada por $f(x) = \sqrt{\log_1(x-1)}$ é:

a)
$$\{x \in |R| | x \leq 2\}$$

b)
$$\{x \in |R| | x > 2\}$$

a)
$$\{x \in |R| | x \le 2\}$$
 b) $\{x \in |R| | x > 2\}$ c) $\{x \in |R| | x > 1\}$

d)
$$\{x \in |R| | 1 < x \le \frac{3}{2} \}$$
 e) $\{x \in |R| | 1 < x \le 2 \}$

e)
$$\{x \in |R| | 1 < x \le 2\}$$

TB.206 (CESCEM -68) Qual é o campo de definição da função

$$y = \sqrt{\frac{1}{\sqrt{\log_{10} x} - 1}}$$

- a) x ≥ 1
- b) x > 1
- c) x > 0 d) x > 10
- e) todo o campo de números reais

TB.207 (CESCEA -75) A designal dade - $(\log x)^2 + 2 \log x + 3 > 0$, é verdadeira para:

- a) x > 0 e x < 1 b) 0.1 < x < 1000 c) 0 < x < 100

- d) 0.001 < x < 10
- e) $0 \le x \le 0.1$

TB.208 (ITA-71) Seja a desigualdade

$$2(\log_{e} x)^{2} - \log_{e} x > 6$$

Determinando-se as soluções desta desigualdade obtemos:

a)
$$0 < x < \frac{1}{e}$$
 e $x > 10$

a)
$$0 \le x \le \frac{1}{e}$$
 e $x > 10^2$ b) $0 \le x \le e^{-\frac{3}{2}}$ e $x > e^2$

c)
$$0 \le x \le e \ e \ x \le 10$$

d)
$$\frac{1}{e} < x < 1 \ e \ x > e$$

e) nenhuma das respostas anteriores

 $\frac{1}{\log x} + \frac{1}{\log x} > 1$ são:

c)
$$0 \le x \le e$$
 d) $1 \le x \le e$

TB.210 (MACK-73) O conjunto solução da inequação $\log_{\frac{1}{2}} [\log_{\frac{1}{2}} x] \ge 0$ é:

a)
$$\{x \in |R| \mid x \ge \frac{1}{3}\}$$
 b) $\{x \in |R| \mid x > 0\}$

b)
$$\{x \in \mathbb{R} \mid x > 0\}$$

c)
$$\{x \in |R| \mid 0 < x \le \frac{1}{3}\}$$
 d) $\{x \in |R| \mid \frac{1}{3} \le x < 1\}$

d)
$$\{x \in |R| \mid \frac{1}{3} \le x < 1\}$$

TB.211 (ITA-77) No conjunto dos números reais, a desigualdade $\log_{\frac{1}{2}} (\log_4 (x^2 - 5)) > 0$ é

b)
$$\sqrt{5} < |x| < \sqrt{6}$$

$$\sqrt{6} < |x| < 3$$

d)
$$|x| >$$

a)
$$\sqrt{5} < |x| < 3$$
 b) $\sqrt{5} < |x| < \sqrt{6}$ c) $\sqrt{6} < |x| < 3$ d) $|x| > 3$ e) nenhuma das respostas anteriores.

TB.212 (CESCEA-67) Sendo a > 1, a solução da inequação $\log_a (\log_a x) \le 0$ é:

a)
$$x > 0$$
 b) $x > a$ c) $1 < x < a$ d) $0 < x < 1$ e) $0 < x < a$

TB.213 (CESCEA-73) Se $0 \le a \le 1$, a solução da inequação $\log_a (\log_1 x) \le 0$ é:

a)
$$x \ge \frac{1}{a}$$

a)
$$x \ge \frac{1}{a}$$
 b) $1 < x \le \frac{1}{a}$ c) $x \ge 1$ d) não sei

TB.214 (ITA-74) O conjunto de todos os valores de x para os quais existe um y real de modo que

$$y = log_{10} [log_{10} (\frac{7 - 2x - x^2}{3 - 4x^2})]$$

é dado por:

a) intervalo aberto A, de extremos $-\sqrt{2}$ e $\sqrt{2}$

b) intervalo aberto A, de extremos
$$-\sqrt{3}$$
 e $\sqrt{3}$

c) intervalo aberto A, de extremos 0 e $\frac{\sqrt{3}}{2}$

d) intervalo aberto A, de extremos $-\frac{\sqrt{3}}{2}$ e 1

e) nenhuma das respostas anteriores

TB.215 (CESCEM-67) A condição para que a equação $x^2 - 2x - \log_{10} m = 0$ não tenha raízes

a)
$$m > 0$$
 b) $0 < m < \frac{1}{10}$ c) $m \ne 1$ d) $m < \frac{1}{10}$ e) $m > \frac{1}{10}$

e) m
$$> \frac{1}{10}$$

TB.216 (GV-75) Para que valores de K a equação $x^2 - \sqrt{2}x + \log_{10} K = 0$ tem duas raízes

Para mais, acesse: http://fuvestibular.com. $\frac{1}{2}\sqrt{\log a} = \frac{1}{2}\log a$, para todo a > 0

a)
$$0 < K < \frac{17}{5}$$
 b) $0 < K < \frac{1}{2}$ c) $0 < K < \sqrt{2}$

b)
$$0 < \kappa < \frac{1}{2}$$

c)
$$0 < \kappa < \sqrt{2}$$

d)
$$0 < \kappa < 4$$

e)
$$0 < \kappa < \sqrt{10}$$

TB.217 (ITA-71) Determinado-se a condição sobre t para que a equação

$$4x - (\log_e t + 3)2x - \log_e t = 0$$

admita duas raízes reais e distintas, obtemos:

a)
$$e^{-3} \le t \le 1$$

c)
$$e^{-1} < t < 1$$

d)
$$3 < t < e^2$$

e) nenhuma das respostas anteriores

TB.218 (MACK-77) A equação $x^2 - 4x + 3 + \log(k - 1) = 0$ tem raízes reais e de sinais contrários, se e somente se:

a)
$$1 \le k \le 1 + 10^{-3}$$

b)
$$0 \le k \le 10^{-1}$$

b)
$$0 \le k \le 10^{-3}$$
 c) $k \ge 1 + 10^{-3}$

d)
$$0 \le k \le 1 + 10^{-3}$$

TB.219 (MACK-76) Se x > 0, e "log" indica o logaritmo decimal, então:

a)
$$\log (1 + x) = \frac{x}{1 + x}$$

a)
$$\log (1 + x) = \frac{x}{1 + x}$$
 b) $\log (1 + x) < \frac{x}{1 + x}$ c) $\log (1 + x) > x$

c)
$$\log (1 + x) > x$$

d)
$$\log (1 + x) < x$$

e) nenhuma das alternativas anteriores é correta

TB.220 (CESCEM-73) O valor da expressão $\frac{7{,}34215 \times 3}{0.5}$ é

TB.221 (CESCEM-74) As características, no sistema decimal, de log 7, log 0,032, log 10⁵ e log 0.00010 são, respectivamente.

TB.222 (CESGRANRIO-73) A característica do logaritmo de 800 no sistema de base 3 é dada por:

- a) 2
- b) 4
- c) 3
- d) 7

e) nenhuma das respostas anteriores

TB.223 (GV-73) Se N é um número positivo, expresso na forma 10ⁿ · K, onde n é um número ro inteiro e $1 \le K \le 10$, então:

- a) a mantissa de logio N é K
- b) a característica de log₁₀ N é K
- c) a característica de log 10 N é n
- d) a mantissa de log₁₀ N é n
- e) a característica de log₁₀ N = n K

TB.224 (CESCEA-71) Assinale, entre as afirmações abaixo, a verdadeira:

- a) $\log na = n \log a$, para todo a > 0 e todo natural n
- b) $\log a = 2.350 \implies 0.1 \le a \le 1$

d) $\log a = \overline{2}.350 \implies 0.01 \le a \le 0.1$

e) não sei

TB.225 (CESCEA-72) Se log 0,701648 = 1,8460993, então, colog 0,701648 vale:

a) 0.1539007 b) 1.1360993 c) 0,1399007 d) 1,1539007 e) não sei

TB.226 (CESCEM-73) Se $\log \cos x = 1.870900$ então, o valor de $\log \sec x$ é:

- a) 0.129100 b) $\overline{1}$,12910 c) $1 \div \overline{1}$,870900 d) 1,12910 e) -0,129100

TB.227 (MACK-74) Se $\log_{10} \frac{1}{6} = \overline{1},221$; então $\log_{10} 36$ é igual a:

- a) 1,558
- b) 1,442
- c) 2.442
- d) 1.034
- e) nenhuma das respostas anteriores

TB.228 (CESCEA-74) Se $\log 0.4321 = \overline{1}.63558$, $\log 0.3625 = -0.44069$ e $\log 0.3219 = -0.49227$, então:

$$\frac{\log 0,4321 + \log 0,3625 + \log 0,3219}{3}$$
 é igual a:

- a) 1.76577
- b) 1,29739 c) 1,57754
- d) 1.56754
- e) nenhuma das respostas anteriores

TB.229 (CESCEA-75) Sabendo que $\log_{10} 2 = 0.301030$ e $\log_{10} 3 = 0.477121$; o valor de x na expressão:

$$x = \log_{10} \sqrt[3]{\frac{10}{15}}$$
 é:

- a) -0.058796 b) 1.941404 c) 1.941303 d) -0.058976 e) 1.941504

TB.230 (ITA-74) Sendo a₁, a₂, ..., a_n números reais, o maior valor de n tal que as igualdades ao lado são verdadeiras é:

- a) n = 3

 $log_{10} 123478 = a_1$

bin = 4c) n = 5 $log_{10} a_1 = a_2$

d) n = 6

- $\log_{10} a_{n-1} = a_n$
- e) nenhuma das respostas anteriores

TB.231 (MACK-75) Sabendo que $\log_{10} 2 \cong 0.301$ e que x = 2^{30} , podemos afirmar:

- a) x é um número menor que um bilhão porém maior que cem milhões
- b) x é um número que, em notação decimal, tem mais que 31 algarismos
- c) x é um número entre 9030 e 9331
- d) a característica do logaritmo de x é 30
- e) x é maior que um bilhão porém menor que um trilhão

a) 2 500 d) 250

b) 85 e) 50

c) 100

(Dado: $\log 2 = 0.301$)

TB.233 (GV-74) Numa tabela lê-se que $\log_{10} 615.4 = 2.789157$ e que $\log_{10} 6.153 = 0.789087$. Pode-se determinar que log10 6153,4 vale aproximadamente:

a) 3,789115 b) 2,789098 c) 3,789012 d) 3,789098 e) 2,789012

TB.234 (GV-73) Sejam $\log 1,220 = 0,0863598$ e $\log 1,221 = 0,0867157$. Então, o valor de x tal que $\log x = 2,0865260 \text{ \'e}$:

a) 122,04

b) 12,204

c) 0,012204 d) 0,001204

e) nenhuma alternativa anterior

RESPOSTAS

TB.1 b	TB.36 e	TB.71 e	TB.106 d
TB.2 d	TB.37 d	TB.72 a	TB.107 d
TB.3 a	TB.38 d	TB.73 a	TB.108 b
TB.4 d	TB.39 e	TB.74 e	TB.109 e
TB.5 d	TB.40 c	TB.75 b	TB.110 b
TB.6 c	TB.41 d	TB.76 c	TB.111 b
TB.7 b	TB.42 d	TB.77 c	TB.112 a
TB.8 b	TB.43 d	TB.78 a	TB.113 a
TB.9 d	TB.44 c	TB.79 d	TB.114 b
TB .10 d	TB.45 e	TB.80 e	TB.115 e
TB .11 d	TB.46 b	TB.81 e	TB.116 c
TB.12 c	⊤B.47 c	TB.82 e	TB.117 e
TB.13 c	ТВ.48 с	′ ТВ.83 e	TB.118 c
TB.14 c	Т В.49 е	TB.84 b	TB .119 d
TB.15 c	TB.50 a	TB.85 c	TB.120 c
TB.16 e	TB.51 a	TB.86 a	TB .121 d
TB.17 b	TB.52 e	TB.87 c	TB.122 b
TB.18 d	TB.53 a	TB.88 a	TB.123 c
TB.19 e	TB.54 a	TB.89 b	TB.124 c
TB.20 c	TB.55 e	TB.90 d	TB.125 b
TB.21 a	TB.56 a	TB.91 e	TB.126 d
TB.22 d	TB.57 c	TB.92 a	TB.127 d
TB.23 a	TB.58 b	TB.93 d	TB.128 ხ
TB.24 b	TB.59 e	TB.94 c	TB.129 b
TB.25 e	TB.60 c⋅	TB.95 d	TB.130 a
TB.26 a	TB.61 a	TB.96 d	TB.131 c
TB.27 b	TB.62 c	TB.97 c	TB.132 a
TB.28 a	ТВ.63 b	TB.98 c	TB.133 b
TB.29 b	TB.64 a	TB.99 e	TB.134 e
ТВ.30 b	TB.65 e	ТВ.100 b	TB.135 d
TB.31 d	TB.66 a	TB.101 e	TB.136 a
TB.32 a	TB.67 b	TB.102 a	TB.137 b
TB.33 c	TB.68 e	TB.103 e	TB.138 a
TB.34 b	TB.69 b	TB.104 c	TB.139 a
TB.35 e	TB.70 e	TB.105 b	TB.140 a

TB.141 e	TB.165 c	TB.189 d	TB.212 c
TB.142 c	TB.166 b	TB.190 d	TB.213 a
TB.143 c	TB.167 a	TB.191 c	TB.214 e
TB.144 d	TB.168 a	TB.192 e	TB.215 b
TB.145 b	TB.169 e	TB.193 e	TB.216 e
TB.146 a	TB.170 c	TB.194 b	TB.217 c
TB.147 a	ТВ.171 b	TB.195 a	TB.218 a
TB.148 c	TB.172 d	TB.196 e	TB.219 d
TB.149 a	TB.173 c	TB.197 c	TB.220 b
TB.150 b	TB,174 c	TB.198 c	TB.221 d
TB.151 a	TB.175 c	TB.199 d	TB.222 e
TB.152 c	TB.176 a	TB.200 b	TB.223 c
TB.153 a	TB.177 b	TB.201 a	TB.224 d
TB.154 d	ТВ.178 b	TB.202 a	TB.225 a
TB.155 c	TB.179 b	TB.203 c	TB.226 a
TB.156 b	TB.180 d	TB.204 d	TB.227 a
TB.157 d	TB.181 c	TB.205 e	TB.228 d
TB.158 a	TB.182 a	TB.206 d	TB.229 c
TB.159 a	TB.183 e	TB.207 b	TB.230 a
TB.160 a	TB, 184 d	TB.208 b	TB.231 e
TB.161 d	TB.185 b	TB.209 d	TB.232 b
TB.162 e	TB.186 d	TB.210 d	TB.233 a
TB.163 b	TB.187 a	TB.211 c	TB.234 c
TB.164 c	TB.188 e		

Para mais, acesse: http://fuvestibular.com.br/