Workbook

1. What is the worst case time complexity for search, insert and delete operations in a general Binary Search Tree?
A.O(n) for all
B.O(Logn) for all
C.O(Logn) for search and insert, and O(n) for delete
D.O(Logn) for search, and O(n) for insert and delete
Question 2
In delete operation of BST, we need inorder successor (or predecessor) of a node when the node to be deleted has both left and right child as non-empty. Which of the following is true about inorder successor needed in delete operation?
A.Inorder Successor is always a leaf node
B.Inorder successor is always either a leaf node or a node with empty left child
C.Inorder successor may be an ancestor of the node
D.Inorder successor is always either a leaf node or a node with empty right child
Question 3
We are given a set of n distinct elements and an unlabeled binary tree with n nodes. In how many ways can we populate the tree with the given set so that it becomes a binary search tree? (GATE CS 2011)
A.0
B.1
C.n!
D.(1/(n+1)).2nCn
Question 4
How many distinct binary search trees can be created out of 4 distinct keys?
A.4
B.14
C.24

Question 5

Which of the following traversal outputs the data in sorted order in a BST?

A.Preorder

B.Inorder

C.Postorder

D.Level order

Question 6

Suppose the numbers 7, 5, 1, 8, 3, 6, 0, 9, 4, 2 are inserted in that order into an initially empty binary search tree. The binary search tree uses the usual ordering on natural numbers. What is the in-order traversal sequence of the resultant tree?

A.7510324689

B.0243165987

C.0123456789

D.9864230157