Poster L'AH

A Corrected Nearest Neighbor Algorithm Maximizing the F-Measure from Imbalanced Data

R. Viola^{1,2}, R. Emonet¹, A. Habrard ¹, G. Metzler¹, S. Riou² and M. Sebban¹

1. Univ. Lyon, UJM-Saint-Etienne, Laboratoire Hubert Curien UMR CNRS 5516, F-42023, Saint-Etienne, France 2. DGFiP, Ministère de l'Economie et des Finances, France

Context and Notations

About the DGFiP

- Part of the French Ministry Of Economy and Finances.
- Works on the tax return frauds detection.
- 50,000 inspections per year, 3 million companies.
- A fraud ratio between 30% and 0.05%.

→ Imbalanced setting

- Use of k-NN for decision support.
- Missing fraudsters can be more expensive than inspecting non fraudsters.
- Fraudsters try to mimic non fraudsters.

→ Moving the decision boundary

Notations

- Use a k-NN algorithm.
- d: a distance.
- γ : a positive parameter.
- (FP, FN): False Positives and False Negatives.

Voronoi regions

Our γk -Nearest Neighbors Algorithm

Modifying the distance to positive examples:

$$d_{\gamma}(\boldsymbol{x}, \boldsymbol{x}_i) = egin{cases} d(\boldsymbol{x}, \boldsymbol{x}_i) & \text{if } \boldsymbol{x}_i \in S_-, \ \gamma \cdot d(\boldsymbol{x}, \boldsymbol{x}_i) & \text{if } \boldsymbol{x}_i \in S_+. \end{cases}$$

ightarrow How to choose the best value of γ ?

- to recover frauds.
- Too small
 big Voronoi regions
 high probability of false positives.

Proposition: Let ε be the distance of a query z to its nearest neighbor x'. Suppose that $\gamma \leq 1$ and $(\boldsymbol{z}, \boldsymbol{x}') \in S_+ \times S_+$, then:

$$FN_{\gamma}(\boldsymbol{z}) = \left(1 - P(\boldsymbol{x}' \in \mathcal{S}_{\frac{\epsilon}{\gamma}}(\boldsymbol{z}))\right)^{m+} \leq \left(1 - P(\boldsymbol{x}' \in \mathcal{S}_{\epsilon}(\boldsymbol{z}))\right)^{m+} = FN(\boldsymbol{z}).$$

If $\gamma \geq 1$ and $(\boldsymbol{z}, \boldsymbol{x}') \in S_{-} \times S_{-}$, then:

$$FP_{\gamma}(\boldsymbol{z}) = (1 - P(\boldsymbol{x}' \in \mathcal{S}_{\gamma \epsilon}(\boldsymbol{z})))^{m-} \le (1 - P(\boldsymbol{x}' \in \mathcal{S}_{\epsilon}(\boldsymbol{z})))^{m-} = FP(\boldsymbol{z}).$$

Decreasing FN while keeping "reasonable" rate $FP \implies \gamma < 1$.

Algorithm

Algorithm 1: Classification of a new example with γk -NN

Input: a query x to be classified, a set of labeled samples $S = S_+ \cup S_-$, a number of neighbors k, a positive real value γ , a distance function d

Output: the predicted label of x

$$\mathcal{NN}^-, \mathcal{D}^- \leftarrow nn(k, \boldsymbol{x}, S_-)$$
 // nearest negative neighbors with their distances $\mathcal{NN}^+, \mathcal{D}^+ \leftarrow nn(k, \boldsymbol{x}, S_+)$ // nearest positive neighbors with their distances

 $\mathcal{D}^+ \leftarrow \gamma \cdot \mathcal{D}^+$ $\mathcal{NN}_{\gamma} \leftarrow$

$$firstK\left(k, sortedMerge((\mathcal{NN}^{-}, \mathcal{D}^{-}), (\mathcal{NN}^{+}, \mathcal{D}^{+}))\right)$$

 $y \leftarrow + \text{ if } |\mathcal{NN}_{\gamma} \cap \mathcal{NN}^{+}| > \frac{k}{2} \text{ else } - \text{ // majority vote}$

 $y \leftarrow + \text{ if } |\mathcal{NN}_{\gamma} \cap \mathcal{NN}^+| \geq \frac{k}{2} \text{ else } - // \text{ majority vote based}$ on \mathcal{NN}_{γ}

return y

Experimental Results with k=3

DATASETS	3-NN	DUPk-NN	Wk-NN	CW k - NN	LMNN	γk -NN
BALANCE	0.954(0.017)	0.954(0.017)	0.957(0.017)	0.961(0.010)	0.963 (0.012)	0.954(0.029)
AUTOMPG	0.808(0.077)	0.826(0.033)	0.810(0.076)	0.815(0.053)	0.827(0.054)	0.831 (0.025)
IONOSPHERE	0.752(0.053)	0.859(0.021)	0.756(0.060)	0.799(0.036)	0.890(0.039)	0.925 (0.017)
PIMA	0.500(0.056)	0.539(0.033)	0.479(0.044)	0.515(0.037)	0.499(0.070)	0.560 (0.024)
WINE	0.881(0.072)	0.852(0.057)	0.881(0.072)	0.876(0.080)	0.950 (0.036)	0.856(0.086)
GLASS	0.727(0.049)	0.733(0.061)	0.736(0.052)	0.717(0.055)	0.725(0.048)	0.746 (0.046)
GERMAN	0.330(0.030)	0.449(0.037)	0.326(0.030)	0.344(0.029)	0.323(0.054)	0.464 (0.029)
VEHICLE	0.891(0.044)	0.867(0.027)	0.891(0.044)	0.881(0.021)	0.958 (0.020)	0.880(0.049)
HAYES	0.036(0.081)	0.183(0.130)	0.050(0.112)	0.221(0.133)	0.036(0.081)	0.593 (0.072)
SEGMENTATION	0.859(0.028)	0.862(0.018)	0.877(0.028)	0.851(0.022)	0.885 (0.034)	0.848(0.025)
ABALONE8	0.243(0.037)	0.318(0.013)	0.241(0.034)	0.330(0.015)	0.246(0.065)	0.349 (0.018)
YEAST3	0.634(0.066)	0.670(0.034)	0.634(0.066)	0.699 (0.015)	0.667(0.055)	0.687(0.033)
PAGEBLOCKS	0.842(0.020)	0.850(0.024)	0.849(0.019)	0.847(0.029)	0.856 (0.032)	0.844(0.023)
SATIMAGE	0.454(0.039)	0.457(0.027)	0.454(0.039)	0.457(0.023)	0.487 (0.026)	0.430(0.008)
LIBRAS	0.806 (0.076)	0.788(0.187)	0.806 (0.076)	0.789(0.097)	0.770(0.027)	0.768(0.106)
WINE4	0.031(0.069)	0.090 (0.086)	0.031(0.069)	0.019(0.042)	0.000(0.000)	0.090 (0.036)
YEAST6	0.503(0.302)	0.449(0.112)	0.502(0.297)	0.338(0.071)	0.505(0.231)	0.553 (0.215)
ABALONE17	0.057(0.078)	0.172 (0.086)	0.057(0.078)	0.096(0.059)	0.000(0.000)	0.100(0.038)
ABALONE20	0.000(0.000)	0.000(0.000)	0.000(0.000)	0.067 (0.038)	0.057(0.128)	0.052(0.047)
MEAN	0.543(0.063)	0.575(0.053)	0.544(0.064)	0.559(0.046)	0.560(0.053)	0.607 (0.049)

- standard version
- DUPk-NN: with duplicated positives
- Wk-NN: weights w.r.t. distance
- cwk−NN: weights w.r.t. class
- LMNN: metric learning [1]
- γk -NN: our approach

Combining γk -NN with Sampling

Using sampling strategies to create synthetic positives:

- Modify the distribution
- Not controllable : similar to add noise
- and one for synthetic.

- sampling Coupling improves the strategy results.
- 1.75 0.12 1.25 -0.08 ك 1.00 -- 0.04 γ on reals
- γ values are as expected.
 - $\gamma < 1$ for real positives
 - \bullet $\gamma > 1$ for synthetic ones (may be considered as noise)

Experimental Results (DGFiP)

DATASETS	3-NN	γk -NN	SMOTE	$SMOTE + \gamma k - NN$
DGFIP19 2	0,454(0,007)	0,528(0,005)	0,505(0,010)	0,529 _(0,003)
DGFIP9 2	0,173(0,074)	$\overline{0,396}_{(0,018)}$	0,340(0,033)	0,419 _(0,029)
DGFIP4 2	0,164(0,155)	$\overline{0,373}_{(0,018)}$	0,368(0,057)	0,377 _(0,018)
DGFIP8 1	0,100(0,045)	0,299 (0,010)	0,278(0,043)	0,299 _(0,011)
DGFIP8 2	$0,140_{(0,078)}$	$0,292_{(0,028)}$	0,313 _(0,048)	0,312(0,021)
DGFIP9 1	0,088(0,090)	0,258(0,036)	$0,270_{(0,079)}$	0,288 (0,026)
DGFIP4 1	0,073(0,101)	0,231(0,139)	$\overline{0,199}_{(0,129)}$	0,278 _(0,067)
DGFIP16 1	$0,049_{(0,074)}$	0,166(0,065)	$0,180_{(0,061)}$	0,191 _(0,081)
DGFIP16 2	$0,210_{(0,102)}$	0,202(0,056)	$\overline{0,220}_{(0,043)}$	0,229 _(0,026)
DGFIP20 3	0,142(0,015)	$0,210_{(0,019)}$	$\overline{0,199}_{(0,015)}$	0,212 _(0,019)
DGFIP5 3	0,030(0,012)	0,105(0,008)	0,110 _(0,109)	0,107(0,010)
MEAN	0,148(0,068)	0,278(0,037)	0,271(0,057)	0,295 _(0,028)

Impact of combining our approach, γk -NN, with a SMOTE sampling strategy [2] on the DGFiP datasets.

Perspectives

- Making our γ non stationary, i.e. having a γ which depends on the region in the feature space.
- Generalizing our algorithm using a metric learning approach.
- Derive generalization guarantees.

References

- [1] Weinberger, K. Q., & Saul, L. K. (2009). Distance metric learning for large margin nearest neighbor classification.
- [2] Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). *SMOTE:* synthetic minority over-sampling technique.