Control Theory: Introduction and PID

Robotics - COMS4045A / COMS7049A

Benjamin Rosman

Over the next few weeks...

You will learn how to:

- determine where the robot is (forward kinematics)
- determine where you'd like it to be (inverse kinematics)
- determine how it may move (dynamics)

But now:

How to get it to move From where it is To where I want it (Control theory)

States

- State = robot's representation of the configuration of the world (and itself)
 - Ideally unique
 - Typically don't model things that don't change (e.g. obstacles)
- Why states?
 - We want to know (or learn) what actions (a or u) to take at each state (x or s or q)
 - In continuous systems, state is a function of time:
 - $\cdot \quad x = x(t)$
 - Then we get velocity as a derivative:

•
$$x'(t) = \dot{x}(t) = \frac{dx}{dt}$$

Examples of state

- $x = \{\phi_1, \phi_2, \phi_3\}$
- $x = \{\phi_1, \phi_2, \phi_3, \dot{\phi_1}, \dot{\phi_2}, \dot{\phi_3}\}$
- $x = \{\phi_1, \phi_2, \phi_3, isHandOpen\}$

- $x = \{xPos, yPos\}$
- $x = \{xPos, yPos, direction\}$
- $x = \{xPos, yPos, colour\}$
- $x = \{xPos, yPos, hasKey\}$
- $x = \{xAll, yAll\}$

System dynamics

- System dynamics describe how the state changes:
 - Modelled as differential equations
 - Passively: $\dot{x} = f(x)$
 - With time: $\dot{x} = f(x, t)$
 - Controlled: $\dot{x} = f(x, u)$

Examples:

- Newton's 2nd law: $\ddot{x}(t) = F/m$
- Falling under gravity: $\dot{x}(t) = gt$
- Population growth: $\dot{x}(t) = Ax(t)(1 \frac{x(t)}{B})$

Aside: systems of DEs

- General trick:
 - Any higher-order DE can be written as a first-order SYSTEM
- E.g.
 - $-\ddot{x}=3x$
 - Now let $x_1 = x$, and $x_2 = \dot{x}$
 - So: $\dot{x}_1 = x_2$
 - Then: $\dot{x}_2 = 3x_1$
 - As a system: $\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$
- In general: $\dot{x} = f(x)$
 - Question: what about x''' = 2x'' x + 1?

And now...

- What we really want is to tell the robot how to function in a specified manner
 - When this would not happen naturally
 - System subject to perturbations maintain stability
- This is control theory
 - In general, find control input u to drive the system to desired states x
 - $-\dot{\boldsymbol{x}} = f(\boldsymbol{x}) + g(\boldsymbol{x}, \boldsymbol{u})$
- Much of the core of robotics

Issues to think about: the system

System may be linear, which makes the maths easy:

$$-\dot{\boldsymbol{x}}(t) = A(t)\boldsymbol{x}(t) + B(t)\boldsymbol{u}(t)$$

System may be time invariant:

$$-A(t) = A; B(t) = B$$

- System is not always observable. Often we only have a
 partial view of the state x through some observables y:
 - i.e. it can't see everything (very common)

$$- y(t) = Cx(t) + Du(t)$$

 Does the system have delays in updates, sensing, or control?

$$-\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t-10)$$

Issues to think about: stability

- It is worth considering the steady state behaviour of the system
 - i.e. what is the asymptotic behaviour: $x(t \to \infty)$
- This relates to the notion of stability:
 - Informally, a system is stable if the behaviour converges (or in a weaker case, stays similar)
- In linear systems, consider the eigenvalues of A:
 - $-Re(\lambda_A) < 0$?

Controllability

- Controllability: is it possible to fully control the system (affect each of the n state variables of the system)?
 - E.g. $\mathbf{x} = [x, \dot{x}, \ddot{x}]^T$ (position, velocity, acceleration)
 - $-\mathbf{u} = [u, 0, 0]^T$ (we can directly affect the position)
 - $-\boldsymbol{u} = [0,0,u]^T$ (we can directly affect the acceleration)

Intuition: Does repeatedly applying

change every state independently?

the control policy allow you to

Consider continuous linear time-invariant system:

$$-\dot{x}(t) = Ax(t) + Bu(t)$$

$$-y(t) = Cx(t) + Du(t)$$

- Compute controllability matrix:
 - $R = [B AB A^2B ... A^{n-1}B]$
- System is controllable if full rank: rank(R) = n

Example

•
$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u \; ; \; y = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Controllable?

$$R = [B AB A^2B \dots A^{n-1}B]$$

• $R = \begin{pmatrix} 0 & 0 \\ 1 & 3 \end{pmatrix}$: rank(R) = 1 < n (n = 2): No!

•
$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u \; ; \; y = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

- Controllable?
- $R = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$: rank(R) = 2 = n: Yes!

Observability

- Observability: is it possible to fully observe the system (observe each state variable)?
 - E.g. $\mathbf{x} = [x, \dot{x}, \ddot{x}]^T$
 - $-x = [x, \dot{x}, \ddot{x}]^T$, y = x (we only observe position)
 - $-x = [x, \dot{x}, \ddot{x}]^T$, $y = \ddot{x}$ (we only observe acceleration)
- Consider continuous linear time-invariant system:
- Compute observability matrix:

$$\bullet \ \ O = \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix}$$

Intuition: Does repeatedly observing the system allow you to see every state variable?

- System is observable if full rank: rank(0) = n

Example

•
$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u ; y = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

- Observable?
- $O = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$: $rank(O) = 1 < n \ (n = 2)$: No!

$$O = \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix}$$

•
$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u \; ; \; y = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

- Observable?
- $O = \begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix}$: rank(O) = 2 = n: Yes!

Issues to think about: the controller

- What kind of control strategy to use?
- Is the strategy efficient?
 - Optimal control theory (later)
- Can the controller sense some aspect of the system?
 Can it respond to changes?
 - Open loop vs closed loop control
- Can the controller make predictions about the environment/system?
 - Model free vs model based control

Open loop control

- Open loop control:
 - Policy set and pre-determined (function of time, NOT state)

- Pros:
 - Cheap, simple
 - Fast (feedback and sensing may be too slow)
 - Can be calibrated
- Cons:
 - Policy doesn't take disturbances into account

Closed loop (feedback) control

- Feedback control:
 - Measure disturbance (error) and use this to adjust control

Closed loop (feedback) control

Pros:

- Simple
- Doesn't require process model
- Robust output for unpredictable disturbances

Cons:

- Requires sensors to measure output
- Requires tuning: low gain slow, high gain unstable
- Delays in feedback produce oscillations

Model based control

- Model predictive control:
 - Maintain a process model, make predictions and act accordingly

Model based control

Pros:

- Anticipate disturbances and effects of actions, plan to account for these
- Plan long action sequences
- Prevent potential problems
- Robust responses to disturbances

Cons:

- Slow
- Difficult to acquire and maintain a model
 - Traditionally provided by expert
 - Learning system (more on this later)

e.g. Room heating

- Heater to increase room temperature
- Open loop:
 - Switch heater on, after some pre-defined time, switch off
- Feedback:
 - Use thermometer in room to switch off at desired temperature
- Model based:
 - Make predictions based on the number of people in the room, outside temperature, doors and windows

Example – line following

- Bang-bang control (on-off control)
 - Switch between extremes
- Controller:
 - Turn left if line is to the left
 - Turn right if line is to the right

- Idea: move proportionally left or right
 - Proportional control
- Let the desired state (setpoint) be x_{goal}
- Then, error $e(t) = x_{goal} x(t)$
- Response output: $K_P e(t)$
- K_P is the proportional gain
 - Too low: slow response
 - Too high: overshoot (unstable)
 - Problem: undershoots (steady state error) when there is a steady disturbance!

Simple first order system

- Steady constant disturbance (droop problem)
 - (think of "wind")

- Second order system (with damping)
- Droop and oscillations

Proportional integral control

- Account for undershoot of P controller?
- Accumulate history of error
 - Increase response at history increases
- Then, error history $\int_0^t e(\tau)d\tau$
- Response output: $K_I \int_0^t e(\tau) d\tau$
- K_I is the integral gain
 - Tends to overshoot and cause oscillatory behaviour!

Proportional integral control

Accounts for steady state error

Proportional integral control

Introduce or amplify oscillations

Proportional derivative control

- Correct for (damp) oscillations?
 - Often caused by inertia, delays, and rapid overcorrecting
- Want to resist change: the faster the system changes, the harder it resists (artificial friction)
 - "Predictive" corrections
- Rate of change of error $\frac{d}{dt}e(t)$
- Response output: $K_D \frac{d}{dt} e(t)$
- K_D is the derivative gain
 - Improves settling time and stability
 - Can amplify noise, so not always used
 - Can slow control

Oscillation damping

- Combine: PID control
- Control law: $U = K_P e(t) + K_I \int_0^t e(\tau) d\tau + K_D \frac{d}{dt} e(t)$

- No knowledge of the plant dynamics
 - Only: current and desired behaviours
- Factors to tune for:
 - Responsiveness
 - Setpoint offset
 - Oscillation
- Tuning is often a fine art
- Different parameters may be needed in different regions of state space (tracking)
- D-term not often used in practice (noise amplifying)
- Not optimal

Tuning the parameters

Manually:

- 1. Set K_I and K_D to 0
- 2. Increase K_P until oscillations
- 3. Halve K_P
- 4. Increase K_I until any offset corrected sufficiently fast (too high will be unstable)
- 5. Increase K_D until quick recovery from perturbation (too high will overshoot)

Tuning the parameters

- Ziegler-Nichols method:
 - 1. Set K_I and K_D to 0
 - 2. Increase K_P until oscillations (at ultimate gain K_U) with oscillation period P_U
 - 3. Then set:

Ziegl	er-Nichols	method
-------	------------	--------

Control Type	K_p	K_i	K_d
P	$0.50K_u$	_	-
PI	$0.45K_u$	$1.2K_p/P_u$	12
PID	$0.60K_u$	$2K_p/P_u$	$K_p P_u / 8$

Illustrated parameter tuning

