TEACHERS' TRAINING MATERIALS IN PLUS TWO MATHEMATICS

DEPARTMENT OF EDUCATION IN SCIENCE AND MATHEMATICS
National Council of Educational Research and Training
NIE Campus! Sri Aurobindo Marg
New Delhi-110 016

FORE IORD

This is perhaps for the first time that the Department of Education in Science and Mathematics, NCFRT, has developed teachers' training materials mainly in the thrust areas of plus two mathematics for the benefit of the teacher-educators. After the publication of the textbooks of mathematics on the basis of the new curriculum prepared on the philosophy of the National Policy on Education, 1986, it has been felt that extensive training should be given to the teachers most of whom are not familiar with the new topics and concepts introduced in plus two mathematics. With this objective in view, the training materials have been developed particularly in the new topics in a norder to facilitate the teacher-educators.

This is only the first draft of the training materials which were developed in the workshop on the basis of a sample paper on a particular topic, prepared by Prof. S.C. Das of the Department, who is the Coordinator of the programme. These draft materials will be exposed to the teacher-educators who will be trained later by the ficulty members. After reviewing the materials thoroughly on the basis of suggestions from the experts, the materials will be revised and printed.

I am thankful to all the authors who developed different topics on this draft and my colleagues, Prof. S.C. Das and Dr. Hukum Singh who took active part in the discussion of various topics in the morkshop.

Suggestions from the readers for further improvement of this draft will be highly appreciated.

New Delha

Documber, 1990.

(B. GANGULY)
Hoad, DESM and Dean
NOTEP

INDEX

		Pagos
	FOREMORD	(1) .
1.	A Sample paper on "Theory of Haxl.u. and Minimum"	1 -
2،	Limits, Continuity and Derivatives	50
3•	Rolle's theorem and Hean value Theorem	30
4 .	Application of Drivatives	37
" ز	Theory of Complex Numbers	43
6.	Set Theory and Binary Operations	59
7.	· Voctors and Three-Dimensional Geometry	80
8.	Linear Programming	90
9.	Regression Analysis	98
10.	Numerical Methods	116
11-	Computing	137
12.	Mathematical Logic	146

A SAMPLE PAPER

 $\cup N$

THE RY WAXIMUM AND MINIMUM

Prefessor S. C. Das
(Coordinat. r of the Pregramme)

DEPARTMENT OF EDUCATION IN SCIENCE & MATHEMATICS
(NATIONAL COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING)
N I E CAMPUS - SRI AUROBINDO MARG
NEW DELHI 110016

THEORY OF MAXIMUM AND MINIMULA

1. Motivation of the topic:

The are all familiar with the literal meaning of the terms "maximum" and "minimum". We say that the maximum mark in Mathematics cobtained by the students of a school X is 100. We also say that the minimum teperature of Grinager in minter goes below 0°C. It will be emplained later on that we distinguish different kinds of maxima and minima in mathematics. Assuming for the time being the literal meaning of "maximum" and "minimum" as used in the above two examples, we may come across with some daily life problems involving "maximum" or "minimum", for the solution of which the elementary mathematics tenght up to class. XI may not be adequate. We have to take help of the theory of maxima and minima which involves calculus to rolve such problems.

For example, suppose that he want to make a nectangular box of maximum capacity out of a given rectangular sheet of tin whose length and breadth are 'a' m and 'b' m respectively by cuttin, off four equal squares from its four corners and by folding the remaining portions, which were attached with these four squares. The question is: that will be the side of each of such square so that the volume is maximum? Without going into the cetails of mathematics, if we apply our common sense we may be tempted to say that if the wastage of tin sheet is minimum, then the capacity of the box may be maximum and no the shorter will be sidesof the squares cut off, the bigger will be the volume of the box.

But "little thought, it will be clear that this conclusion may not be true, for the shorter in the side of " . : quarer cut off, the shorter will be the depth of the box although the area of the base of the box will be larger. On the other hand, if the sides of the squares cut off are larger and larger, the height of the box will be larger and larger the base of the box will be larger and larger but the area of the base of the box will be smaller and smaller and hence in any of these two cases the volume of the box may not be maximum.

If we now want to solve this problem by using elementary mathematics (pre-calculus), we may perhaps fail to solve it. It is only through the theory of maximum and minimum in Calculus that we can solve such problems.

Je thus observe that there are many daily-life problems where the theory of maximum and minimum has to be applied for their solution.

2. Brief outline of the content:

In order to find the local maximum or local minimum value of a function f(x), we find the derivative of f(x), if it exists. We then apply the necessary condition for local maximum and local minimum i.e. we equate f(x) to zero for local maximum or local minimum and solve for x. Let x_1 , x_2 be the solution of this equation. Then $x = x_1$ is the point of maximum if $f(x) = x_2$ or minimum if $f(x) = x_1$. Similarly, we test the other point $x = x_2$ for maximum or minimum. The maximum or minimum value of f(x) will thus be $f(x_1)$ or $f(x_2)$.

3. Explanation of technical/mathematical tenus not properly explained in the text books

By "maximum" and "minimum" in calculus, we generally mean "local maximum" and "local minimum" which are defined as follows:

Let y = f(x) be a continuous function. Let x = a be a point on the graph such that f(a) both f(a-h) and f(a+h)for sufficiently small +ve values

of h. Then x = a is called a

point of local maximum and f(a) is

a local maximum value of the function.

Let x = c be a point on the graph such that f (c) both f (o=h) and f (c+h) for sufficiently small ive values of h. Then x = c l. . point of local minimum and f (c) is called a local minimum value of the function. The points of local maximum and local minimum are also called the points of extremely and the maximum or minimum value of a function is called the extreme value of the function.

There is another type of maximum and minimum called "absolute maximum" and "absolute minimum" of a function by some authors. These are also called "maximum and minimum values of the function in a closed interval" or "the greatest and the least values of the function".

The greatest and the least values of the function can be determined only when the given interval is closed. The greatest value of the function in a closed interval is the greatest ordinate that can be drawn within the interval and the least value of the function is the least value of the ordinate that can be drawn within the interval.

We observe that the greatest and the least values of a function can occur either at the end points of the interval or at these points where there exist local maxima or local minima.

Hence, for the determination of the greatest and the least values of a function f(x) in a given closed interval $a \in x = b$, the first find the points, say $x = x_1 \cdot x_2$ etc. by solving f'(x) = 0, where the function may have local maxima or local minima. In then determine the ordinates f(a), f(b), $f(x_1)$, $f(x_2)$, etc. Then the greatest and the least of these ordinates will be the greatest and the least of these ordinates will be the greatest and the least of the function.

The differences between maximum (local)/minimum (local) and the greatest/the least values of a function may be tabulated at follows:

i			للصريب شدهم بالهوالية الإنهالية
Company of the same of the sam		· ·	
Maximum/Minimum values (Local)	•	Greetest/Leach	۷.mc۱۶ الس
		38.4	YP.
(Tocar)		•	داد المحاولة و المحاود
The second secon	A	CLE EXECUTION OF THE PROPERTY AND THE PERSON OF THE PERSON	We 4 Thurs as 3 4 (Car. 11 - 1 - 1

/ a

- 1. There may be many maxima & 1.
 many minima of a function t.
 , in a given interval.
- 2. The maximum and minimum values2. of a function can never occur at the end-points of an inter-
- 3. The maximum value of a funç- 3 tion may be less than its minimum value.
- A function may not have any maximum or minimum value in a given interval.

- There may be only one greatest value and only one least value of a function in a given interval.
- The greatest and the least values of a function may occur at the end-points of the interval.
- The greatest value of a function is always greater than the least value of the function.
 - A function must have the great est value and the least value' in a given closed interval unless it is a constant-function

4. Alternative easier approach, if any, in discussing some subtonics.

The usual method for own ining a point for maximum or minimum.

for a function is to apply the method of determining the sign of the 2nd order derivative of the function. But there are several other methods to examine a point for maximum or minimum. These are listed below:

(1) Direct application of the definition of maximum and minimum given in § 3.

Example: Examine the point x = 0 for maximum or minimum for the function $f(x) = \langle x \rangle$.

We note that f(0) = 0, f(0+h) = |h| > 0f(0-h) = |h| > 0.

. f(0) both f(0+h) and f(0-h).

Hence, by definition, y=0 is the point of minimum for the function f(x).

(11) Use of the concept of increasing/decreasing nature of a function.

le note that on the left side of the point of maximum, a function f(x) is increasing and it is decreasing on the right side of this point. Again, on the left side of the point of minimum a function is decreasing and on the right side, it is increasing. This phenomenon helps us to state another rule for examining a given point for maximum or minimum. This rule is stated below:

on the left to negative on the right of a point, then this point is a point of maximum and it the distributive changes sign from negative on the left to positive on the right of the point, then this point is point of minimum.

As an example, if we consider the same function f(x) = |x| for maximum or minimum at x = 0, we note that f'(h) = 1 if $h \neq 0$ and f'(h) = 1 if h > 0. Thus the derivative changes sign from negative on the left to positive on the right of the point x = 0. Hence, x = 0 is the point of minimum for f(x) = |x|.

5. Basic Concept to be emphasized in teaching the topic:

The various concepts of mixima and minima to be opphinised to the teachers in an orientation programme are listed below:

- The condition f'(a) = 0 for a function f(x) to be a maximum or a minimum at a point x = a is only necessary, but not sufficient. In other, for a function f(x), f'(a) may be zero, but still x = a may not be a point of maximum or minimum. For example, if $f(x) = x^3$, then f'(0) = 0, but it can be shown that x = 0 is neither a point of maximum nor a point of minimum.
- (i) The maximum and minimum points of a function are the points there the nature (increasing or decreasing) of a function changes. If the nature does not change at a point, then this point can not be a point of maximum or minimum,

- (111) The maximum and minimum values of a continuous function must occur alternately.
- (iv) The maximum value of a function may be less than its minimum value.
- (v) A function may have a maximum or a minimum value et a point even if the derivative of the function at this point does not exist.
- (v1) The local maximum and local minimum values of a function in a given closed interval can not occur at the end-point; of the interval.
- Analysis of conceptual errors that may be committed by teachers in teaching the topic (in this contest, mention gaps and misconception if any, in the text books) which may misguide teachers and students.

in finding maximum and minimum values of a function in a given closed interval, some teachers apply the second order derivative test i.e. they find local maximum and local minimum values and obtain grong answers. Teachers should remember that maximum or minimum values in a given closed interval are actually the greatest or least values in the interval.

Some teachers feel that the maximum value of a function is all 1873 greater than the minimum value and so they commit conceptual errors in solving a problem of maximum or minimum for a function f(x) which is such that f(x) = 0 for, say, x = a and b $f^{II}(a) > 0$, $f^{II}(b) = 0$, $f^{II}(b) = 0$, $f^{II}(b) = 0$, Such teachers may conclude that

1 is the minimum and 16 (and not -16) is the maximum value of f(x). As already pointed out that a maximum value of a function may be less than a minimum value and so the maximum value of the above function is not 16 but -16 which is the actual value of f(b) and the minimum value is 1 although 1 > -16.

some teachers conclude that the function can not have any extreme value at such a point. But this concept in grong. For example, $f(x) = \int x \Big| \text{ has a minimum value at } x = 0 \text{ all though } f = 0 \Big| \text{ does not exist.}$ The method of determining maximum or minimum values of such functions at such point where the derivatives do not exist will be discussed later.

The definitions of maximum and minimum values of a function given in the textbook of NCERT (pages 158, 161 and 167) are erroneous, and may confuse many teachers. These definitions are given belov:

I. "A function f(x) is said to have a maximum value in any interval I at ... "this in I and if f(x) > f(x) for all x in I. The number f(x) is called the maximum value of f(x) in I and xo is called a (point of) maximum of f(x) in I.

The can have a similar definition for the minimum value of ϵ function.

2. Thet f be a real function and let wo be an interior point.

In the domain of f. We say that we is a local maximum of f

(or a point of local maximum of f or simply, a maximum of f),

If there is an open interval containing we such that $f(xo) \to f(x)$ for every x in that open interval". Similar definition has been given for local minimum of f.

That the above definitions are confusing and defective can be explained as follows:

of $f(x) = x^2$ in, say, $0 \le x \le 1$, then clearly f(1) = 1 is the maximum value, but in fact local maximum can not occur at the end point of an interval.

in case se take T to be an open interval, then definitions 1 & 2 seem to be contradictory (in the first case f(xo) > f(x) and in the second case f(xo) > f(x).

The second definition may give a wrong concept to a teacher that a function increasing in an open interval may have a malimum. Besides, this definition occordinate a serion to determine maximum values of a function defined in an open interval. Both the definitional do not exphasize the neighbourhood concept of local maximum and local minimum. Within a bigger interval there may be many maxima and many minima, but the above definitions may lead one to conclude that only one maximum or only one minimum may lie in an interval however large it may be.

The correct definitions of maximum and minimum values of a function are given in ξ).

7. Discussion of some interesting question, that may be asked by the teachers to the Resource Persons

Some of the interesting quostions that can be asked by the teachers to the Resource Persons are given below:

- (a) May do we not apply the same method to determine local maximum or local minimum value of a function as well as the greatest or least value of a function ?
- (b) In solving physical problems of max, & min., may do we apply the theory of local max, and local min. and not that of abrolute max, and absolute min. ?
- (c) Can a function have a max. or min. at a point if the derivative at that point does not exist?
- (a) That can you say about the existence of max, or min, value of a function at a noint if the flist and second order derivatives of the function are zeroes at the point?
- (e) Can a function have two consocutive maxima or two consecutive maxima? If so, what kind of function can it be?

- (f) If the 1st derivative of a function is a constant and the second and higher order derivatives are all zeroes at a point, what can you say about the existence of maximum, or minimum of the function at that point?
- (g) How can you use the theory of maximum or minimum to determine the sub-intervals of a given interval, in which the function may be increasing and decreasing.

The Resource Person can explain the above questions in the following way:

- (a) The method used to find the greatest and the least values of a function cannot be used to find the mass, or min. Value of a function because a maximum value of a function may be less than a minimum value, thereas the greatest value of a function in a given closed interval is always greater than its least value.
- (b) In absence of a closed interval in a physical problem the theory of finding the greatest and least values cannot be applied. Besides, for a physical problem there cannot, in general, be more than one maximum and one minimum.
- (c) In defining maximum and minimum values of a function at a point, we have considered only the values of the function in a shall neighbourhood of the point and not the derivative of the function. Thus a function may have a maximum or minimum value at a point even if the derivative of the function at that point does not exist. The only requirement for a function to have a maximum or a minimum value is that it should be continuous at that point and in a small neighbourhood of the point.

IN addition to the more very condition viz. f'(a) = 0 for a function f(x) to have a point of extrement x = a, if f'(a) = 0, we have not conclude that f(x) has no max, or min, at x = a. This case needs further investigation. It will be explained later that if the second order derivative at a point x = a is zero, we should continue to find higher order derivatives till we find some non-zero derivative of the function at x = a. Suppose $f''(a) \neq 0$ for some value of n. Then f(a) is minimum if $f''(a) \neq 0$ and maximum if $f''(a) \neq 0$, provided n is even, otherwise there is no maximum or no minimum.

- (e) A continuous function can not have two connecutive maxima or two consecutive minima. However, if a function has two consecutive minima, it must have a point of discontinuity in between two maxima and two minima.
- (f) If the first order corrective of a function exists but it is non-zero, then the function can not have any maximum or minimum, because the necessary condition for extremum at a point in that the first order derivative of the function must be zero it that point, if the derivative exists.
- Suppose a function is defined in $\{a,b\}$. The find the points of extremum in this interval. Let x=c be the point of maximum and x=d is the point of minimum where a < c < d > b. Then the function is increasing in a < x < c and in a < x < b and decreasing in c < x < d.

This method can be easily applied in determining the sub-intervals in a given interval, in which a function of the type $f(x) = a \cos(ax + b)x$ in in its increasing and decreasing, because it is easier to find the

general solution of a trigonometric equation than to find the general solution of a trigonometric inequation.

(Please note that many other similar questions can be asked by the teachers. All such possible questions should be discussed in detail under this section.)

8. Discussion of some enrichment materials on the topic. which the teachers are supposed to know:

The maxima and minima of those functions whose derivatives exist at some points and whose second order derivatives at those points do not vanish have been directed in the textbook.

of a function at a point where the derivative does not exist or the second order derivative is zero.

If the derivative of a function f(x) at a point pay y=a, does no exist, we shall find f'(a-h) and f'(a+h) where he is a sufficiently small positive number. If f'(a-h)>0 and f'(a+h)>0, then f(a) will be maximum and if f'(a-h)<0 while f'(a+h)>0, then f(a) will be minimum.

Alternatively, we can directly apply the definition to find the extremum values of the function at such a point. We find f(a - h), f(a) and f(a + h), If f(a) is greater than both f(a - h) and f(a + h), then f(a) will be maximum. If, on the other hand, f(a) is less than both f(a - h) and f(a + h), then f(a) will be minimum. In this ray,

we cam examine the functions

(1)
$$f(x) = \{x\}$$
 for maximal or minimal eff $x = 0$

(1)
$$f(x) = |x|$$
 for maxima or minima at $x = 0$
(11) $f(x) = 2 + (x - 2)^{2/3}$ for maxima or minima at $x = 2$.

In case the second order derivative of a function f(x) at a point, sy x = a, where the first order derivative at the point , then we should find the higher order derivatives. - le should continue this process until we get some non-zero derivative of the function.

Let
$$f^n(a) \neq 0$$
 for some n.

Then f(a) is maximum if $f^n(a) < 0$ and f(a) is minimum if $f^n(a) > 0$, provided n is an even integer. If n is an addinteger, f(a) is neither a maximum nor a min mum. This result can be easily proved by using Taylor's theorem about expansion of a function. This is beyond the scope of discussion.

The reader should note carefully that all extrema can not be discussed by means of this theorem, evon then the derivatives of all orders exist. There exist some functions whose derivatives of all orders may be zero at a point, but still the function may have an extremum at that point.

For example, consider the function:

$$f(x) = e x^2 \quad \text{when } x \neq 0$$

$$= 0 \quad \text{when } x = 0.$$

It can be shown that $f^{11}(0) = 0 \sqrt{n} \in \mathbb{N}$. Again both f(-h) and f(h)are Greater than f(0) showing that the function has a minimum value at x=0 although its derivatives of all orders are zero at x=0.

Point of inflexion:

There are certain functions whose first order and second order derivatives at a point are zeroes but the third order derivative is non-zero. Such a point is called the point of inflexion for the function. This is not a point of maximum or minimum. At this point of the curve the tangent is parallel to x - axis, but it cuts the curve at that point. The increasing or decreasing nature of a curve does not change at this point.

Example: $f(x) = x^3$ has a point of inflexion at x = 0.

Concavity and Convexity:

9. Construction of one (or more) intelligent questions (if possible) to test a particular concept and its solution

le discuss below two intelligent problems.

Problem 1:

A polynomial function of degree five has maxima at points x = b and x = d and minima at points x = a and x = c. Then which of the following statements are never true?

B)
$$b > d > a > c$$

D)
$$b > a > d > c$$

G)
$$a > b > c > d$$

H)
$$d > b > a > c$$

$$K)$$
 $c > a > b > d$

$$I_{\rm a}$$
) $I_{\rm b}$ $I_{\rm a}$ $I_{\rm c}$ $I_{\rm a}$

$$\begin{array}{ccc} a & b & c & b \\ b & c & c \\ c & c \\$$

a
$$\langle 0 \rangle d \rangle d$$

P)
$$a > b > d > c$$

We observe that the choices (B), (C), (E), (H), (J), (K), (N) and (0) are never true, for in those cases consecutive maxima and consecutive minima occur, which can not be true for a polynomial function which is continuous for all values of the variables involved.

Problem 2:

Find the derivative of the function

$$y = \sin^{-1}(2x/(1-x^2)), 0/(x/1)$$

at x = 7 and x = 8 and hence discuss whether it can have any extremum point between '7 and '8.

Then $y = \sin^{-1}(2 \sin \theta + \cos \theta) = \sin^{-1} \sin \theta + 2\theta = 2 \sin^{-1} x_0$

$$\frac{dy}{dx} = \frac{2}{\sqrt{1-x^2}} \qquad (1)$$

Now, since y is defined in $-\frac{\pi}{2} \langle y \langle \frac{r}{2} \rangle$,

$$\frac{\pi}{2} \le 2 \sin^4 x \le \frac{\pi}{2} \Rightarrow -\frac{\pi}{4} \le \sin^4 x \le \frac{\pi}{4}$$

$$\Rightarrow -\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}} \qquad .71$$

Hence,
$$\frac{dy}{dx} = \frac{2}{1-x^2}$$
 is valid in $-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$.

Again, to find $\frac{dy}{dx}$ at $x = .8$, we put

$$y = \sin^{-1}(\cos \theta + \sin \theta) = \sin^{-1}\sin \theta = 2\theta = 2\theta = 2\cos^{-1}x$$

$$\frac{dy}{dx} = \sqrt{\frac{2}{1-x^2}} \cdot \text{Now, } 0 \le \cos^{-1}x \le 77$$

$$\Rightarrow 0 \leq 2 \cos^{-1} x \leq 2 \pi \dots$$
 (2)

Also
$$-\frac{11}{2} \le y = \sin^{-1}(2 \times \sqrt{1-x^2}) \le \frac{71}{2} \dots$$
 (3)

From (2) and (3) we see that

 $y = \cos^{-1} x$ will be in the common interval of (2) and (3)

$$0 \leq 2 \cos^{-1} x \leq \frac{11}{2}$$

$$\Rightarrow 0 \leq \cos^{-1} x \leq \frac{71}{4}$$

$$\Rightarrow 1 = \frac{1}{2}$$

$$\Rightarrow \frac{1}{\sqrt{2}} \leq x \leq 1$$

is valid in
$$\frac{1}{\sqrt{2}}$$
 $x < 1$.

$$\frac{1}{100} = \frac{1}{100} = \frac{1}$$

$$\frac{dy}{dx} = .7 \qquad 0 \quad \text{and} \quad \frac{dy}{dx} = .6 \qquad 0.$$

Hence, the given fire its has a maximum at a point between $\kappa = \sqrt[n]{r} \quad \text{and} \quad \kappa = \sqrt[n]{r}.$

- 10. References (of easy, cheap and easily available bokks).
 - (a) Differential and Integral calculus ~ Piscunov, theage Publishers, Noscow.
 - (b) Calculus of one variable = Haron, Mir Publishers, Moscow.
 - (c) Problems of Mathematical analysis -- Demidovich, Peace Publishers, Moscow.

LIMIT, CONTINUITY AND DERIVATIVES

Prepared by

- Department of Mathematics
 B. K. C. College
 111/2, B. T. Road
 Calcutta 700035
- 2. Mrs S. Mahapatra
 PGT Mathematics
 Hue Bells School
 New Delhi 110048

•

LIMIT, CONTINUITY AND DERIVATIVE

1. MOTIVATION OF THE TOPIC

Limiting Process is known ... the fifth fundamental process in Mathematics. The whole structure of calculus is based on the concept of limit. While the other processes are taught in the earliest stages of schooling, Limiting process is taught only at a mature stage. This clearly offers the motivation for learning limit, continuity and derivative The motivation for studying limit is intrinsic to the basic development of mathematics itself. Nevertheless the physical world offers motivation for studying the calculus of limit. In nature we find infinitesinal changes taking place in a quantity causing an infiniteural change in another quantity. Sometimes the ratio of the latter to the former however remains finite. Thus determination of this rate of change of variable quantities assumes greatest importance in the scientific study of cocial and physical situation. In determining instantaneous velocity we have to take the limit of the ratio of two infinitesimal quantities and not the sample ratio $\frac{1}{16} = \frac{0}{0}$. The happeof a curve gradually changes with the direction of the tangent. Therefore, the shape of the curve can be defined as the rate of change of the direction of the tangent. Numerous similar examples can be cited to describe the motivation for studying the topic.

The intrinsic mathematical motivation dictates that greatest care has to be adopted in imparting the concept of limit to the first Learners. This should however be preceded by an elucidation of what has been tormed as Functions. Question may be asked: Is it essential for a function to be expressible by a mathematical form always? This and various other types of functions including functions of several variables are required to be studied through real-life examples. A set approach to defining functions will be meaningful and effective only if pursued through numerous illustrations. Once this has been done, the concept of limit, even C - C concept, can be introduced by considering a simple function and then

painstakingly showing what exactly is meant by the process expressed by the words "tends to ". Let $f(x) = x^2$. Then the somespt of f(x) is explainable through the following calculation (the intrinsic sathematical motivation in studying the fifth fundamental process is also immediately realisable from this explicit calculation):

From this calculation, the meanings of () S. a, I, are conticity discernible. At this level there is no reason why () definitions cannot be discussed in the classroom pointing out that Right and Left limits are intrinsically implied in the criteria () S = x < a. The concept of the neighbourhood steps are easily at this stage consequent to mathematical notivation.

The analytical or limiting criteria of continuity of a function cannot but be initiated by geometrical thehnique. A graph of a function which has no jump or any other break in a continuous curve. Dreading graphs of continuous and discontinuous curves constitutes the first step in explaining continuity and discontinuity of a function at some points. Thereafter comes the question of understanding continuity in terms of limits. On acquiring a clear conception of limit of a function can one study the other limit known as the Infferential Coefficient.

2. Brief Outline of the content

Alongside the brief outline of the content is being mentioned come topics not included in the book. This will give an integrated view of the topic being studied. The object is to define functions by Set Approach and then to acquaint readers with various types of functions. Graphs of some important functions such as and in the cussed in detail. (Bounded functions, monotone functions are not discussed in detail. (Bounded functions, monotone functions are not discussed, whereas inverse functions has been discussed only briefly). Then limit

damental facts about limits such as f(x) + f

Then comes differentiation by first principle, i.c. by evaluating limits directly and then by using formulas. n th order differentiation has been thown. Rules of differentiation; of product and quotients of two functions have been shown.

3. Explanation of Technical /Mathematical Terms not properly explained ,

I. Calculus, it is not desirable to use results without proofs. Expansions of e^{X} , in x, cos x etc. have been freely assumed to construct problems meant for problem-selving exercises (In page 99, the expansion of $(1+\frac{n}{x})^{-3/2}$, in Page 80, the expansion of e^{X} oto). The students will get used to these result/without ever seriously going through their mathematical validity. The removable discontinuity, though discussed briefly, need elaboration. The infinite discontinuity of the type $f(x) = e^{-x}$ at x = a or oscillatory discontinuity f(x) = /x in $\frac{1}{x}$ at x = 0, have not been discussed at all. —neighbourhood has not been discussed even roughly. That not every continuous function is differentiable has been demonstrated by most cuthors by considering the function f(x) = |x| only (p. 98). Examples like (1) f(x) = x /x in $\frac{1}{x}$, $x \neq 0$, f(0) = 0, (11) If f(x) = 3 + 2x for $\frac{1}{2} = x /x$.

Show that f(x) is continuous at x = 0 but f'(0) does not exist, and some others must be cited to drive the point home. Functions having one-sided derivative or unequal one-sided derivatives (Ex: f(x) = |x|) and four-otions having infinite derivative bay he alted to illustrate the complex a count of infinite derivative bay he alted to illustrate the complex and one-sided problem. For the tasking

personnel are:

- Let f (x) = 0 when $0 \le x \le \frac{1}{2}$, f $(\frac{1}{2})$ = 1, f (x) = 2 when $\frac{1}{2} < x < 1$. Show that f (x) is discontinuous at $x = \frac{1}{2}$. $f^{I}(\frac{1}{2})$ exists and its value is infinite;
- If f (x) = x for 0 x $\frac{1}{2}$, f (x) = 1 x for $\frac{1}{2}$ \angle x \leq 1, does f (1) exist?

Solutioni

1) if f(x) = 2, Lut f(x) = 0 $x \rightarrow 2 + 0$ $x \rightarrow \frac{1}{2} + 0$.. f(x) is discontinuous at $x = \frac{1}{2}$.

$$Rf\left(\frac{1}{2}\right) = Lot
h \rightarrow 0+0$$

$$\left(\frac{1}{2}+h\right)-1\left(\frac{1}{2}\right) = Lt
h \rightarrow 0-0$$

$$f\left(\frac{1}{2}+h\right)-+\left(\frac{1}{2}\right) = Lt
h \rightarrow 0-0$$

f $(\frac{1}{2})$ is infinite.

11) R f
$$(\frac{1}{2})$$
 = Lt $f(\frac{1}{2}+h) - f(\frac{1}{2})$ = Lt $\frac{1-\frac{1}{2}-h-\frac{1}{2}}{h}$

L f $(\frac{1}{2})$ = Lt $\frac{f(\frac{1}{2}+h)-f(\frac{1}{2})}{h}$ = Lt $\frac{1-\frac{1}{2}-h-\frac{1}{2}}{h}$

i. f $(\frac{1}{2})$ does not exist.

Although the exponential ••• has been freely used in the book (Pages 80 - 83) $(1+\frac{1}{n})^n$ has not been mentioned. The expansion of 106(1+2) has $\mathcal{N} \Rightarrow \mathcal{A}$ been assumed and freely used to solve problems. The question of McLaurin's conditions of validity need be emphasised even when the assumptions are being made (P. 82).

- 4. Some Conceptual errors . '
- The limit Lt $e^{X} 1 = 1$ in page 81, has been evaluated by taking a) recourse to the McLaurin expansion of cx, completely forgetting that the same limiting value was employed in Mc Laurin's expansion where $\frac{d}{dx} (e^{x}) \text{ was involved.} \qquad \frac{d}{dx} (e^{x}) = Lt \qquad e^{x} + h \qquad e^{x}$ $\frac{d}{dx} (e^{x}) \text{ was involved.} \qquad \frac{d}{dx} (e^{x}) = Lt \qquad e^{x} + h \qquad e^{x}$ $\frac{d}{dx} (e^{x}) \text{ was involved.} \qquad \frac{d}{dx} (e^{x}) = Lt \qquad e^{x} + h \qquad e^{x}$ $\frac{d}{dx} (e^{x}) \text{ was involved.} \qquad \frac{d}{dx} (e^{x}) = Lt \qquad e^{x} + h \qquad e^{x}$ $\frac{d}{dx} (e^{x}) \text{ was involved.} \qquad \frac{d}{dx} (e^{x}) = Lt \qquad e^{x} + h \qquad e^{x}$ $\frac{d}{dx} (e^{x}) \text{ was involved.} \qquad \frac{d}{dx} (e^{x}) = Lt \qquad e^{x}$ $\frac{d}{dx} (e^{x}) \text{ was involved.} \qquad \frac{d}{dx} (e^{x}) = Lt \qquad e^{x}$ $\frac{d}{dx} (e^{x}) \text{ was involved.} \qquad \frac{d}{dx} (e^{x}) = Lt \qquad e^{x}$ $\frac{d}{dx} (e^{x}) \text{ was involved.} \qquad \frac{d}{dx} (e^{x}) = Lt \qquad e^{x}$ $\frac{d}{dx} (e^{x}) \text{ was involved.} \qquad \frac{d}{dx} (e^{x}) = Lt \qquad e^{x}$ $\frac{d}{dx} (e^{x}) \text{ was involved.} \qquad \frac{d}{dx} (e^{x}) = Lt \qquad e^{x}$ $\frac{d}{dx} (e^{x}) \text{ was involved.} \qquad \frac{d}{dx} (e^{x}) = Lt \qquad e^{x}$ $\frac{d}{dx} (e^{x}) \text{ was involved.} \qquad \frac{d}{dx} (e^{x}) = Lt \qquad e^{x}$ $\frac{d}{dx} (e^{x}) \text{ was involved.} \qquad \frac{d}{dx} (e^{x}) = Lt \qquad e^{x}$ $\frac{d}{dx} (e^{x}) \text{ was involved.} \qquad \frac{d}{dx} (e^{x}) = Lt \qquad e^{x}$ $\frac{d}{dx} (e^{x}) \text{ was involved.} \qquad \frac{d}{dx} (e^{x}) = Lt \qquad e^{x}$ $\frac{d}{dx} (e^{x}) \text{ was involved.} \qquad \frac{d}{dx} (e^{x}) = Lt \qquad e^{x}$ $\frac{d}{dx} (e^{x}) \text{ was involved.} \qquad \frac{d}{dx} (e^{x}) = Lt \qquad e^{x}$

b) Similar error may occur if Lt $x \to 0$ $\frac{\sin x}{x}$ be evaluated by by L Hospital's Rule; for $\frac{d}{dx}$ (Sin x) = Cos x has already been derived by using the Limit L. $x \to 0$ x = 1

Lt
$$0 \times 10^{-1}$$
 0×10^{-1} 0×10^{-1}

- 5. Some Enrichment Materials for Resource Personnel
- Fundamental Theorems on Limits cannot be applied mechanically. For example Lt $\begin{cases} f(x) + g(x) \\ x \end{cases} = Lt \qquad f(x) + Lt \qquad g(x)$ is not applicable for evaluating (taking term by term limits)

 Lt $\begin{cases} \frac{x^2}{1+x^2} + \frac{x^2}{1+x^2} + \dots \end{cases}$.

An erroneous application of the gives the limit

= Lt
$$\frac{x^2}{1+x^2}$$
 + Lt $\frac{x^2}{(1+x^2)^2}$ + ...

= 0 + 0 + = 0

Correct Limit = Lt
$$x^2 \left(\frac{1}{1+x^2} \right) + \frac{1}{1+x^2}$$

- The theorem Lt f(x) g(x) = Lt f(x) [-9(x) 3]1s valid only when Lt f(x) and Lt g(x) both exist. It

 would be wrong to write $Lt \wedge \Delta u = Lt \times Lt \wedge u \wedge u = 0$. $Lt \wedge \Delta u = Lt \times Lt \wedge u \wedge u = 0$.
- By a function f from (or on) a set X to (or into) a set Y

 we mean a rule that assigns to each x in X a unique element of f (x)

 in Y. The collection G of pairs of the form (x, f (x)) in X x Y

 is called the GRAPH of the FUNCTION f. A subset G of X x Y is the

 Graph of a function on X if and only if for each x (X there is a

 unique pair in G whose first of event is x.

Since a function is determined by its graph, it is advisable to define the graph in terms of sets. In the book only function but not graph of the function has been defined in terms of sets.

- 4) Limit of a sequence may be considered taking a simple case. The word sequence is not in the Book.
- 6. Some Suggestions and Problems based on Atternative Approach
- L'Hospital's Rule is not mentioned in the book. The proof requires a knowledge of Mean Value Theorem. Since Lagrange's Mean Value Theorem is already in the Book, these two theorems may be described to get the students acquainted with Application of L'Hospital's Rule in finding limits. Problems suggested:
 - Find a, b such that

 Lt $x (1+a \cos x) b \sin x$ $x \rightarrow 0$ $x \rightarrow 0$
 - b) Evaluate: Lt (tc.) Lt (1-Si) $x \to 0$, $x \to 0$

Lt
$$x \to 0$$
 coseo $x - \frac{1}{3}$ etc. (apply L.H. Ruce)

Removable discontinuity has been defined as (P.91). "If a is a point of discontinuity such that Lt f(x) exists, then by changing $n \rightarrow a$ the value of f at a, we can make it continuous at a. We say then that a is a memovable discontinuity of f ". This definition should be replaced by: "If $f(a+0) = f(a-0) \neq f(a)$, or f(a) is not defined, then f(n) is said to have a removable discontinuity at

An example: $f(x) = (x^2 - \epsilon^2)$ $(x - \epsilon)$ has a removable discontinuity at x = (a), for f'(a) is undefined here, though Lt f'(a) exists and Lt $f'(a) = \frac{1}{2}$ $f'(a) = \frac{1}{2}$ $f'(a) = \frac{1}{2}$ $f'(a) = \frac{1}{2}$ $f'(a) = \frac{1}{2}$

Another example: Let $f(x) = e^{-(x-a)^{-2}}$, $x \neq a$

Here Lt
$$f(x) = 0$$
 and $f(a) = 1$

So x = a is a removable discontinuity of f(M).

Example f $(x) = \begin{bmatrix} x \\ + \end{bmatrix} + \begin{bmatrix} -x \\ -x \end{bmatrix}$ at x = 0, has a simple non-removable discontinuity at x = 0.

- In Page 90, a sentence runs as : "Let a = 1. Then the nearby points can be either > 1 or < 1, " meaning probably the points in the neighbourhood. The 'neighbourhood' concept be used by writing the word NEIGHBOURHOOD in a straightforward manner.
- 15) The Word : infinitesinal has to be used and its meaning caplained.
- In Page 83, a sentence runs as "We shall later prove the stronger result that every polynomial function is continuous at every point".

 The word "Stronger" may be replaced by the word "general".
- In the case of derivative awerse Trigonometric functions care must be taken to explain the existence or otherwise of derivatives at the end points:

Example:
$$\frac{d}{dx} (\cos^{-1} x) = \frac{1}{|x|\sqrt{x^2 - 1}}$$
 for $|x| > 1$ and for $0 < \sqrt{3}$ example: $\frac{d}{dx} (\cos^{-1} x) = \frac{1}{|x|\sqrt{x^2 - 1}}$ for $|x| > 1$

The derivative of Sec 7 x does not exist at end points although sec 7 x defined at the end points.

- 7. Basic Concepts to be Emphasized in Teaching the topic . .
- Since the students have some good knowledge of set theory and since FUNCTION of a real variable has been defined in terms of Set, it would be advisable to impress upon the students the set theoretical definition of CRAPH and other terms. This will help them to pursue mathematical analysis at the Degree Level.

- 2), we also the standard on the continuity of a function at the end point of the domain should be made. A function defined in the closed interval [a, b] is not continuous at the end point of the left limit will exist only if a domain be extended beyond a to the left. Similarly for continuity at b the right limit will exist if the domain be extended beyond to to the This question will also help understand conditions of Rolle's Theorem properly.
 - 3) It is to be impressed that computation of derivative is actually finding limits . This fact should not be root sight of while computing derivative mechanically by using formulas.
 - 8. Alternative Method of Solving some Problems
 - 1). In Page 68, Lt 1— can be solved exactly a follows:

 (1) In Page 68, Lt 1— can be solved exactly a follows:

 (1) In Page 68, Lt 1— in the follows:

 (2) The given limit = Lt 1 1 1 2.

 (3) x = 0 —
 - In Page 124, $y = b \tan^{-1} \left\{ \frac{x}{a} + \tan^{-1} y \right\}$ should be differentiated from the step

 $\tan y = b \left(\frac{x}{a} + \tan^{-1} \frac{y}{x} \right)$ and not as done in the Book.

References

- 1. Differential Calculus B.C. Das & B.N. Mukherjee (Calcutta)
- 2. Differential Calculus K.C. Maity & R.K. Chosh (Calcutte)
- 3. Roal Analysis H.L. Royden, Maxwell McMillan International Edition, New Delhi
- 4. Principles of Real Analysis S. C. Malik (N was te (hi)

ROLLES THEORIM AND LAGRLINGE'S MEAN VALUE THEOREM

Prepared by

- 1. Or (Mrs) Mira Sarkar
 Lady Brabourne College
 Department of Mathematics
 P 1/2, Suhrawardy Avenue
 Calcutta 700001
- 2. Mrs S. N. Shantha Ramana C. G. H. S. School Wotler's Street Madras - 600112

•

ROLLE'S THEOREM AND LAGRANGE'S ALAS VALUE TREOREM

Motivation of the topic

1)

hit a vertical fall at the point B situal at a height different from A, is it ever possible that its velocity is horizontal some point of the parabolic path it describes? That happens if A and B are

at the same height?

In it over possible that the velocity is never horizontal in any of the above situations. Or is it possible that the aircotion of its velocity at a point C is ever parallel to the line AB, even if A and B are at different heights and C lies between A and B

Or, if on the occasion of a festival, a decorator bends a thin metal sheet a number of times (as is shown in the figure) so that it touches a horizontal bar CD on the top of the gate placed between its

two vertical pillars, where (1) no overlapping of the sheet takes place between A and B.

(11) the portion between A and B is a smooth curve without any break or sharp bend, should there be, any restriction on the heights of A and B?

Ļ

Polle's Theorem and Mean Value Theorem help us to solve these problems.

In the first example, if A and B are at the same height, Rolle's Theorem says that the velocity of the stone will be horizontal at least once before it hits the wall. But if they are at different heights, the direction of velocity will be parallel to the line AB at least once before the stone reaches B, a result given by the Mean Value Theorem. The possibility of it being zero, cannot be ensured no second.

In the second example, there theorems suggest that A and B can lie at any height.

Many other situations may arise in our daily lives, which can be analyzed best by Rolle's and hear Value Theorems.

- Brief Outline of the Content.

 Statement of Rolle's Theorem. If a function f(x) defined over the closed interval [a, b] is such that
- (1) It is continuous in [a, b]
- (11) f'(x) exists in the open interval [a,b] and
- (z) f(z) = f(b)

then there exists at least one roint c, a < c < b, such that f^{*}

The geometrical significance of at in in follows:

If the portion of the graph of the function y = f(x) between the ordinates x = x and x = b as such that

() It is a continuous curve from the point (, f(a)) to (b, f(b)

(11) It has a clear tangent everywhere but mon those two points.

and (111) the line joining these points

ic paraller to the x-axis,

point on the curve oction these

it is

Statement of the Mean Value Theorem

to the x-axis.

If the function f(x) defined over [a, b] is such that

(1) It is continuous in [a,b]
(11) derivable in [a, b]

then there will exist at least one point c, a < c < b, such that $f'(x) = \frac{f(b) - f(a)}{b - a}$

This is proved by constructing a function $\phi(x) = f(x) + Ax$, where A is some constant. Details of it is given in the next article.

Geometrical significance

The hypothesis of the theore: i plies the conditions (i) and (ii) of Rolle's Theorem.

Then it implies that there will exist at least one point between the points (a, f(x)) and (b, f(b)), the tangent at which is parallel to the chord joining these points.

3. Emplanation of topics not included in the book.

Mean Value theorem has not been proved in the NCERT book, though it is included in the syllabus. This is given as follows:

Proof of Mean Value Theorem '

Let $\psi(x) = f(x) + Ax$ where A is a constant so chosen that $\psi(a) = \psi(b)$. That is f(a) + A(a) = f(b) + Ab

$$\frac{1}{b}, A = -[f(b) - f(a)]$$

But this choice of A makes ϕ (x) satisfy all the conditions of Rolle's Theorem.

So
$$\phi^{1}(c) = 0$$
 for some 0 in (a, b) .

Therefore, $f'(c) + A = 0$ \Rightarrow $A = -f'(c)$.

Equating the values of A, the proof is completed.

Analysis of possible conceptual errors.

I. The conditions of Rolle's Theorem may be misunderstood by some as necessary. The following examples will show that they are only sufficient.

Example (1) If $f(x) = \frac{1}{x} + \frac{1}{1-x}$, it is neither continuous nor differentiable in $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$. In fact both f(0) and f(1) are undefined.

But $f'(x) = \frac{2x-1}{x^2(1-x)^2}$, which exists in (0, 1). So the conditions of Rolle's Theorem are not all satisfied here.

But still f'(x) = 0 at $x = \frac{1}{2}$, a point in the open interval [0, 1].

- Example (11) If f(x) = |x| it is continuous in -1, 1, but f'(0) does not exist while f(-1) = f(1). Here also the conditions of Rolle's Theorem are not all satisfied in the interval. This function of course, does not have a zero derivative anywhere, so that for it, the conclusion of the theorem also is not true.
- (a) Again, existence of only one point in the open interval [a, b] be thought to be necessary in the case of both these theorems.

 The following example: ill configura that this is not so.
- Thample (1) If $f(x) = x(x-1)^2 (x-2)^2$, a = 0, b = 2, it is continuous in [a, b].
 - $f'(x) = (x-1)^{2} (x-2)^{2} + 2x (x-1) (x-2)^{2} + 2x (x-1)^{2} (x-2)$ = (x-1) (x-2) [(x-2) (x-2) + 2x (x-2) + 2x (x-1)] $= (x-1) (x-2) (5x^{2} 9x + 2)$

So f'(x) exists in (0, 2) and vanishes at x = .26, 1, 1.54 and 2. of these, the first three points lie in (0, 2).

(11) If
$$f(x) = |x|$$
, $a = 0$ and $b = 1$, it is continuous in

[a, b] while $f'(x)$ exists in [0, 1] because $f'(x) = 1$, $x > 0$

=1, $x < 0$

[1] $f(x) = |x|$, $f'(x)$ for all x in [0, 1],

[1] $f(x) = |x|$, $f'(x)$ for all x in [0, 1],

[2] So the 'c' of Mean Value Theorem can be any there in [a, b].

- 5. Some Probable questions on the tepic.
 - 1. If f(x) is continuous in only the open interval \int_a^a , $b \int_a^a$ will the theorem hold?

Ans: No. f'(p) = 0 may not always be true.

This can be illustrated by the following example:

- (1) If $f(x) = \frac{1}{x}$ a = 0, b = 1, it is continuou, and differentiable in $\int a$, b [. But no .c. exists for which fi(c) = 0.
- (1i) If $f(a) \neq f(b)$, there may not be any c between $\int a$, b such that f'(c) = 0.

For example: if $f(x) = x^2$, a = 1, b = 2, it is continuous and differentiable in $\begin{bmatrix} 1 & 2 \end{bmatrix}$ but there is no (c) in $\begin{bmatrix} 1 & 2 \end{bmatrix}$ for which f'(c) = 0, for here $f(1) \neq f(2)$.

(11i) The curve on the left satisfies all the conditions of Rolle's

Theorem but no tangent can be drawn parallel to
the x-axis. Why?

Answer: Because this is not the graph of a function. (it is not single valued.)

- (1v) In proving the Mean Value Theorem, My hour of (a) be taken in that particular :..
- ANS: This may be only because it gives the delired result. In fact, for proving ilean Value Theorems of higher order, say the one of order \hat{n} , $C^{\flat}(...)$ is taken as

$$f(x) + (b-x) f'(x) + \frac{(b-x)^2 f''(x) + \dots}{2!} + \frac{(b-x)^{n-1} f^{n-1}(x) + (b-x)^n A}{(n-1)!}$$

there A is a constant so chosen that

From this the final result, namely,

$$f(b) = f(a) + (b-a) f'(a) + (b-a)^{2} f''(a) + (b-a)^{n-1} f''(a) + (b$$

Necessary modifications are to be made depending on the order of the theorem.

6. Enrichment Naternal.

in the Mean Value Theorem, if b = a+h the theorem reads:

$$\frac{f(a+h) \cdot f(a)}{h} = f'(c)$$
, where $a < c < a + h$.

So ici can be replaced by ## h, where 0 < 4 < 1.

Hence f(a + h) = f(a) + h fi(a + Θ h). 0 < E < 1 which is an equivalent well-known form of Mean Value Theorem.

APPLICATION OF DERIVATIVES

Prepared by

- 1. Dr (Mrs) Mira Sarkar Lady Brabourne College Department of Mathematics P1/2, Suh rawardy Avenue Calcutta - 700017
- 2. Mrs S. N. Shantha Ramana C. G. H. S. School Rotler's Street Madras - 600112

Application of Derivettives

1) Mottivation of the topic

In our daily life, we come and it which are enumerated in the following:

- i) The height of a person increases upto a certain are an then remains constant;
- ii) The physical strength of a man increase upto a certain age and starts decreasing;
- and then falls downwards till it reaches the grounds
- iv) When a train starts from a station, it valority practially increases, after which it moves with constant speed for comptime and then gradually flows down and stops;

In all these we find that a particular quantity increases, decreases or remains constant as some other quantity changes. In the just two cases, the age of the person is the second quantity which produces, changes in the first, while in the last two, time is the second producing effects on the first.

These changes in the behaviour patterns of the quantity effected by changes in the second can all be explained if the line is looked upon as a function of the second and its derivatives with respect to the second are carefully analysed at various points.

2) Brief Outline of the Content

Dem vatives have been applied in the following cares:

To determine the equations of tangents and normals to a curve at a point since $\frac{dy}{dx}$ measures the stope of the tangent; the tangent at (x_0, y_0) to the curve y = f(x) has equation

$$\lambda - \lambda^0 = t(x^0)(x - x^0)$$

while the normal is given by

- To determine whether a function is increasing or decreasing.

 If f'(c) > 0, the function f(x) increases at x = c, L, C, f(c-h) < f(c) < f(c+h) for small positive values of h.

 Similarly, if f'(c) < h, f(x) decreases at x = c in f(c-h) > f(c) (f(c+h) for small positive values of h.
- value of its variable.

Thus in problems of mechanics, $\frac{dx}{dt}$ measures the velocity, in the rate of displacement at time 't', while $\frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{u^2 d}{dt^2}$, the acceleration, where x mea ures the distance described by a particle in time 't'. So the velocity increases T decreases at a point according as $\frac{d^2x}{dt^2}$ 0 there.

- In tracing a curve, the sign of $\frac{dy}{dx}$ at a point determines the upward of downwards trend of the curve at the point. It also ndicates whether the curve has a tangent parallel to any of the coordinate axes.
- 3. Explanations of topics not mentioned in the book
- The differential of a function y = f(x) is defined as $\underline{dy} = f'(x) \triangle x$, where $\triangle x$ is a small change in the independent variable x. If f(x) = x, in particular, this gives dx = 1. $\triangle x$. In the NCERT book (Page 184), it is only stated that dx is also used to denote a small increment $\triangle x$, but no reason has been given for it.

Derivative of y with respect to x is therefore, $\frac{dy}{dx} = \frac{\text{differential of y}}{\text{differential of}}$ i.e. $\frac{d}{dx}(y) = \frac{dy}{dx}$

This is not indicated in the book.

Similarly, the relation dy = f'(x) dx, explains why f'(x) is called the differential coefficient. This also is not included in the book.

Page 162, NCERT book). But this determines the tampent only if (x) is finite, i.e. when the tangent is not parallel to the y - axis. Times curves do have tangents parallel to the y - axis. The equation (1) should be rewritten as

or $(y - y_0) \frac{1}{f'(x_0)} = (x - x_0)$, so that if the tangent is parallel to the y axis, when $\frac{1}{f'(x_0)} = 0$, it has equation $x = x_0 = 0$. This is in line with equation of a line parallel to the y - axis in coordinate Geometry.

For the equation of the normal, however, the case of $(x_{ij}) = 0$ has been considered.

In dealing with curve-tracing (NCERT book page 156 ctc), symmetry at ut only the origin has been considered, this many of the standard curves are symmetrical about the coor space ax., the tracing of which is not very difficult. This requires a curve to closed or has an infinite branch, has also not been discussed.

Examples: i)
$$x^2 + y^2 = a^2$$
 (ii) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

11i) $y^2 = 4ax$ etc.

For this, we add the following

For the curve (1) $y = + \sqrt{\frac{2}{a^2 - x^2}}$

Again for any admissable value of x, y has two values, equal in magnitude and opposite in sign. This means that the curve is symmetrical about the x - axis.

Similarly, from the same equation we obtain $x = + \sqrt{\frac{2}{3^2 - y^2}}$, so that the curve is symmetrical about the y = axis and - |a| < y < |a| = 0 and y = -|a| < |a| <

wholly within the lines $x = \pm a$ and $y = \pm a$.

The curve (11) will similarly be a closed one having symmetry about both the coordinate axe:.

For the curve (iii), (o, o) is a point on it. We have $x = \frac{y^2}{4a}$, so $\frac{\sqrt{2}}{2}$ this curve lies entirely on one side of the y-axis.

Again, $y = \pm 2\sqrt{ax}$ implies, as above, that the curve has symmetry about the x - axis. Y has a real value for all these values of x. Hence, the curve extends to infinity.

4. Analysis of possible conceptual errors

The fact that f (x) 0 implies increasing nature of f (x), may be misunderstood as a necessary condition. But there are functions which increase at a point, even though f (x) 0 there.

Example 1: If $f(x) = x^2$, we find $f'(x) = 3x^2$ which vanishes at x = 0. But f(x) increases at x = 0.

Example 2: If $f(x) = 3\sqrt{x}$, $f'(x) = \frac{1}{3}x^{\frac{3}{2}}$, which does not exist at x = 0. There also f(x) increases at x = 0. Similarly, if $f(x) = x^3$, f(x) decreases at x = 0, though f'(0) = 0.

1i) Though dy is taken to measure an approximate change in y, it never measures the actual change.

5. Discussion of questimes that may be raised from the topic

i) If $\frac{dy}{dx}$ is neither positive nor negative, what happens?

Ans: The point where this occurs has a stationary ordinate, as it can neither increase nor decrease, if $\frac{dy}{dx}$ exists there. In fact $\frac{dy}{dx}$ must then be zero. These are the points where the function may have an extremum or a point of inflexion (depending on the values of the higher order derivatives). Geometrically the tangent to the curve at this point must be parallel to the x - axis.

If however, $\frac{dy}{dx}$ does not exist at the point no tangent can be drawn to the curve y = f(x) at the point. But the nature of the curve before or after the point cannot be accertained.

- ii) If $\frac{dy}{dx}$ is non-existent at a point but undergoes a change of sign as x passes through this point, what happens ?
- Ans: The function will have an extremim at this point. It is maximum or minimum according as the change of sign is from positive to negative or from negative to positive.

The function of course must have a definite value at this point now.

THEORIT OF CO PLIES NUMBERL

Prepared by

- 1) Prof. A. Chakraborty
 Department of Hathematics
 Jadavpur University
 Cal cutta 700 032
- Dr. G.P. nukhorjee SOERT 25/3, Barlygunge Circubar Road Calcutta - 700 019
- Dr. (Ars.) S. Bukherjee

 In J. Brahoum. College

 Department of Mathematics

 P1/2, Suhraman. Avenue

 1, 700 017
 - br. N.L. Lahiri
 B.K.C. College
 Department of Nathematics
 111/2, B.T. Road
 Calcutta 700 035

THEORY OF COMPLEX MULLIMINE

1. Motivation of the Topic

bludents have learned in their previous classes has to find the solutions of linear equations such which is a the same time of the equations 2x + 5y = 7 or even the parameters equations of the 3x + 5y = 8) type $x^2 - 5x + 6 = 0$ (grying solutions x = y,). However, in the case of equations of the type $x^2 + 25 = 0$, $x^2 + 16 = 0$ or x + 1 = 0, $x^3 + 1 = 0$ they are unable to find the complete solution (or solutions) at all as real numbers. By solving $x^2 + 1 = 0$, we have

$$x^2 = ...$$

$$\Rightarrow x = \pm \sqrt{x}$$

Students are not familiar with the square root of a negative. In fact it is because the solution of the help of this symbol is $=\sqrt{-1}$. With the help of this symbol it became notable to express the colutions of the equation $a_1 = 1$, in The introduction of this symbol is has thus led to the development of the theory of complex numbers.

2. Brief Outline of the contents

For any two real numbers a and bowe can form a number x + xb known as a complex number. The set of all complex numbers as denoted by c. Usually a complex number as denoted by Z = a + 1b, a and called the real part, denoted by Re (Z) and to the amaginary part of Z denoted by In (Z). Carl Fredrich Gauss (1777-1855) introduced the tenu "complex numbers".

If in Z, x = 0 then x = 0, then the number x = 0 and x = 0 then the number x = 0 and x = 0 then the number x = 0 + x = 0.

outpoly root, (). In bispersion we, complex number; Thus k \subset C.

The conjugate of $\nabla = a + b$ is defined at $\bar{E} = a - b$.

in what is seen in the argume energies as a point (x, y) referred to the property of the cut are the y and as the language axis. Thus the counter many or any be completed as an ordered pairs. A polar representation y if y is obtained of putting $x = x \cos(x)$, $y = x \sin(x)$ where $y = x \cos(x)$ is $y = x \sin(x)$.

there is an array the mornton of home a denoted by |Z|, and |Z| are denoted by arg. Z. It is evaluated that $|Z| = \sqrt{2^2 + 3^2}$ and $|Z| = \sqrt$

not explained in the text book.

while introducing the polar representation. For example, numbers for the polar coordinates (r, r_*) , the same f is each that $0 \le f \le 2\pi$ (art 2.3 of HCERT text book). However, further on in the text the value of G for the principal value of G_{r} , G is such that $-\pi \in G \subseteq \pi$. The ranges for the value of G at eather case do not differ. The choice of G_{r} , G the principal value such that $-\pi \in G \subseteq \pi$ are the choice of G in G. The principal value such that $-\pi \in G \subseteq \pi$ are the choice of G in G in G and G are such that G is a function of G in G

- 4. Altomative easier approach, if any, in ensuming
 - Instead of using x_i y_i as independent variables we may introduce Z and \overline{Z} as two independent variables. All results may be obtained in terms of Z and \overline{Z} .
 - 2. To find the square roots of a complex number of the form a + 1b instead of applying De Morgret, theorem we can extract the aquare root by mental arthmetic only. The method will be clear from the following examples.

Example: Ex. 1 Find the square root of

$$7 + 241$$

$$27 + 241 = 7 + 2.4.31 = 4^{2} - 3^{2} + 2.4.51$$

$$= 4^{2} + (31)^{2} + 2.31$$

$$= (4 + 31)^{2}$$

$$\frac{7 + 241}{7 + 241} = \pm (4 + 31)$$

Another in they of extraorting the quere root:

Figu. title "to at all and and are any monthly

..
$$x + x + y + y$$
... (2) (Since both x' and y'' are $+ vv$)

Adding (1)
$$f_{xx}$$
 () $f_{xx}^{2} = 16$

Subtracting $f_{xx}^{2} = f_{xx}^{2}$
 $f_{xx}^{2} = 16$
 $f_{xx}^{2} = f_{xx}^{2}$
 $f_{xx}^{2} = f_{xx}^{2}$

But xy = 1.

Is take x, y to here the same eight.

Entire x = 1, y = -3.

$$\therefore \sqrt{7+2^{2},1} = \pm (. + 3i).$$

5. Basic concept to be complained in the filling the topic:

embasized to the teacher, in what the market to be probable below:

- (11) If a + ib = c + id, where a, b, c, d are real numbers, then a = c and b = a.
- (iii) If a + ib = 0 where a and b are real number, thus a = 0, b = 0.
- (iv) The modulest of complex number A = x + xy then in teach to be the positive value of $\sqrt{x^2 + y}$.
- (v) (a) The modulus of the sum of the number of complex numbers is less than or equal to the tum of their module.
 - (b) The modules of the difference of the complex numbers

 15 greater than or equal to the difference of their module.
 - (c) The modules of the product of any mumber of complex numbers is equal to the product of their module and the amplitude of the product is equal to the sum of their amplitudes.

- (d) The moduli of the quotient of two complex numbers

 13 cause to the quotient of their moduli (provided the denominator # 0) and the amplitude of the quotient is equal to the difference of their amplitudes.
- (vi) The principal value of the argument Θ should be as $-\pi(\Theta \leq \pi)$.
 Unless other use: tated we mean the principal value of the argument.

If $Z = \pi + iy$ is a complex number, then $r = +\sqrt{x^2 + y^2}$ and the amplitude Θ should be determined by the equations $\cos \Theta = \frac{x}{r} \quad \text{and sin } \Theta = \frac{y}{r} \quad \text{if we consider}$ $\Theta = \tan^{-1}(y/x)$ only, sometimes we may have a wrong answer.

- (viii) Any integral power of a in either 41 or -1 or +1 or -1.
- (1x) Any integral power of (1) must have the value either 1, Wor (1)2.
- The real numbers are ordered. But the complex numbers are not ordered i.e. if Z_1 and Z_2 be two complex numbers, we cannot say whether $Z_1 > Z_2$ or, $Z_1 < Z_2$ (the case of equality has been discussed in (111)).
- There is a one—Ane correspondence between ordered pairs in the Argand plane and complex numbers, but with a polar representation the one—one correspondence between the points (r, θ) in the polar plane and the complex numbers does not exist unless the principal values of θ are considered.

- 6. Analysis of conceptual early in traching the topic (if the conceptions, in traching the textle is a subject of the textle is the textle is
 - In finding the mornios of a croping washing by the formula $|Z| = +\sqrt{x^2 + y^2}$, ometimes they may an arrange and a single are find the modulus of 1 + 1 tan 3/5%.

If we take $Z = 1 + 1 \tan 3/5 T$, then x = y1, y = t in $\sqrt{3}T$.

If we take $|Z| = + \sqrt{1 + t_{cm}^2} \cdot 3T/5$, then $|Z| = + -ec \cdot 3/5T$

which is a negative quantity. But |Z| is not not tive. Hence the correct answer should be - can 3 TV 5.

Hence to find the operact value of $|\mathbf{Z}|$, we ripuld the $|\mathbf{Z}| = \sqrt{x^2 + y^2}$.

- b) Again to find the real and im in ry parts of the complex number $3 + i\sqrt{-2}$, one may think the war real part is 3, but it is not. It should first be expressed in the form a high.
 - ie. $3+i\sqrt{-2} = 3+i\sqrt{2(-1)} = 3+i\sqrt{2}$ i (Tuking $i=\sqrt{-1}$) = $(3-\sqrt{2})+i$. 0
 - Real part of $3 + i \sqrt{-2} = 3 \sqrt{2}$ and imaginary part = 0.

- To find the argument f of a complex number Z = x + iy if we consider only $f = tan^{-1} (y/x)$, then we may have a wrong answer.

 Trum if L is better to consider $\cos (L = x/r)$ and $\sin (r = y/r)$ simultaneously where r is the modules of Z. This will be clear from the following example:
 - (1) Fine the principal value of the argument of $-\sqrt{37}$, i.

In t
$$\frac{7}{2} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i = x + iy$$

$$x = -\frac{13}{2}$$

If we have $y = t_{1} = \frac{1}{3} = \frac$

the principal value in 71/3, which is incorrect.

How
$$||\cdot||_{-1} = |(-1)^2 + (15/2)^2 = 1$$
.

- ... The argament is (71+11/3) > TC
- . . The principal value of the argument is

which is the correct principal value of the argument.

d) Some to where may have the idea that -1 is negative of 1.

This is a conceptually wrong idea as i is neither positive nor mightive.

6. Gaps in the NCERT text book.

- (1) Although 'Laplace is 'learned' the been show.

 to be valid for integral immires one ht has been writter.

 in the NCERT text book (Art 25 pages 15 16) it is desirable that clear statement of that theorems may be given.
- in linear factors as given below any be introduced

$$a^{3} + b^{3} = (a + b) (a + wb) (a + w^{3} b)$$

$$a^{3} - b^{3} = (a - b) (a + wb) (a + w^{2} b)$$

$$a^{3} + b^{3} + c^{3} - 3abc = (a + b + c) (a + bc + cw^{2})$$

$$(a + cw^{2} + cw)$$

- 7. Discussions of some interesting questions that may be arked by the teachers to the resource pursons.
 - why T < C < 7 1 to in a the principal value of the argument? What is the harm in takeing the principal value of the argument to be _ // < (- </->
 This can be treated as a convention. There is no harm in takeing the principal value of the argument to be _ T < C < T.
 - (2) If $\frac{1}{2} = x_1 + iy_1$ and $\frac{1}{2} = x_2 + iy_2$ such that $x_1 > x_2$. $y_1 > y_2$, then can we say that $\frac{1}{2} > \frac{1}{2} > \frac{1}{2}$.

 The answer is "No ".

 The complex numbers are not ordered.

- The argument of x + iy is defined to be $*an^{-1}(y/x)$, then what is the the least resument of 0 + i0?

 In fact it is undefined.
- 8. Discussions of some enrichment autorials in the topic which the teachers are supported to know.
- (1) If we rester $\sqrt{-16}$, $\sqrt{-4} = \sqrt{(-16)} \times (-4) = \sqrt{64} = 8$, an error is committed. This is an incorrect result in applying the formul: $\sqrt{-16}$, $\sqrt{b} = \sqrt{ab}$, which hold good only if a and b are both positives or one is negative. If does not hold good if a mean are both negative, i.e. if \sqrt{a} and \sqrt{b} are imaginary members. To avoid this difficulty, we should write the expressions of the form $\sqrt{-b}$, b > 0 in the form i \sqrt{b} before any methom stread operation in that, with
- (2) Real number . yet a 1: ordered. Complex numbers are not ordered.

 and in the system is reported. We can not say that one

 complex number is greater than or less than another complex number
- (3) The integral powers of 1 may have the values ± 1 or, ± 1 only.

$$1^{1} = 1$$
 $1^{-4n} = 1$ $1^{-4n} = 1$ $1^{2} = -1$ $1^{4n+1} = 1$ $1^{-2} = -1$ $1^{-4n+1} = -1$ $1^{3} = -1$ $1^{4n+2} = -1$ $1^{4n+2} = -1$ $1^{4n+3} = 1$ $1^{4n+3} = 1$ $1^{4n+3} = 1$

where m is an integer

- 9. Construction of one (or word) 1.1 11.2 * (...* 1...* 1...*)

 (if possible) to test a particular constitution.
- 1. Explain the fallery of the fill with profit.

de have an identity

$$\sqrt{x-y} = \left(-(y-x) - 1/y - x\right)$$

We put x = 0, y = 0, w = 0 (where x = 0 are unequal $\sqrt{u - b} = x \sqrt{v - 1} \qquad (2)$

Again in (1) we put

$$\sqrt{b-1} = \sqrt{3-b} \qquad (3)$$

Multiplying (2) and (3) together

or,
$$1 = i^2$$
 (case 111...)

or, $1 = -1$. (from 15th. :1...)

Answer (1) When a, b are real number:,
then either a > b or b > 1 10-2

and
$$\sqrt{b-3} = 1/1-b$$

cannot hold simultaneourly.

Hence, the fallacy.

- both (2) and it is given multiple values.

 Hence the fallacy.
- 2. Prove that for my two complex numbers \$\mu_1, \frac{1}{2}.

$$\frac{Rc}{21+2} + \frac{72}{21+2} = 1$$

Solution :

$$R.\left(\frac{1}{z_{1}+z_{2}}\right) = \frac{1}{2}\left(\frac{z_{1}}{z_{1}+z_{2}}+\frac{z_{1}}{z_{1}+z_{2}}\right)$$

$$\frac{R_{3}\left(\frac{z_{2}}{z_{1}+z_{2}}\right)}{\left(\frac{z_{1}+z_{2}}{z_{1}+z_{2}}\right)} = \frac{1}{2}\left(\frac{z_{2}}{z_{1}+z_{2}}+\frac{\overline{z}_{2}}{\overline{z}_{1}+\overline{z}_{2}}\right)$$

$$: Re \left(\frac{z_1}{z_1 + z_2} \right) = \left(\frac{z_2}{z_1 + z_2} \right)$$

$$= \frac{1}{2} \left(\frac{7_{1}}{7_{1} + 7_{2}} + \frac{7_{1}}{7_{1} + 7_{2}} + \frac{1}{2} \left(\frac{7_{2}}{7_{1} + 7_{2}} + \frac{7_{2}}{7_{1} + 7_{2}} \right) + \frac{1}{2} \left(\frac{7_{2}}{7_{1} + 7_{2}} + \frac{7_{2}}{7_{1} + 7_{2}} \right)$$

$$= \frac{1}{2} \left(\frac{z_1 + z_2}{z_1 + z_2} + \frac{z_1 + z_2}{z_1 + z_2} \right)$$

= 1.

Problem: Prove that the triangle where vertices are the points Z_1 , Z_2 , Z_3 on the Arrana diagram is an equilateral triangle if and onto Z_1 , Z_2 , Z_3 , Z_3 , Z_4 , Z_5

Taking first two, $|z_1 - z_2|^2 = |z_1 - z_2|^2$ 1.e. $(\bar{z}_1 - \bar{z}_2) (z_1 - z_2) = (\bar{z}_2 - \bar{z}_1) /z_1 - z_2$

or,
$$\frac{7 - Z_2}{\overline{Z}_2 - \overline{Z}} = \frac{Z_2 - Z_3}{\overline{Z}_1 - \overline{Z}_2}$$
 or, $\frac{Z_1 - Z_2}{\overline{Z}_2 - \overline{Z}_3} = \frac{Z_1 - Z_3}{\overline{Z}_1 - \overline{Z}_3}$ (1)

Also we have (from (A)) $(z_2 - z_3)^2 = (z_3 - z_3)^2$ $(z_2 - z_3)(\overline{z}_2 - z_3) = (z_3 - z_3)(\overline{z}_3 - \overline{z}_3) \dots (2)$

Multiplying (1) and (2) together, we get

$$(z_1 - z_2) (z_2 - z_3) = (z_3 - z_1)^2$$
or,
$$z_1 z_2 - z_2^2 - z_1 z_3 + z_2 z_3 = z_3^2 + z_2^2 - 2z_3 z_1$$
or,
$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1 .$$

$$\underline{conversely}, \quad \underline{given} \quad z_1^2 + z_2^2 + z_2 z_3 = z_1 z_2 + z_2 z_3 + z_3 z_1 .$$
or,
$$\underline{conversely}, \quad \underline{conversel}, \quad \underline{conversel},$$

Multiplying (3) and (4) together, ich 104

$$(z_{1} - z_{2}) (\overline{z}_{1} - \overline{z}_{2}) (z_{2} - z_{3}) (\overline{z}_{2} - \overline{z}_{3}) = (z_{3} - z_{1})^{2} (\overline{z}_{3} - \overline{z}_{3})^{2} (\overline{z}_{3} - \overline{z}_{3})$$

Substituting in (6)
$$|z_2 - z_3|^4 |z_3 - z_1| = |z_2 - z_3|^4 |z_3 - z_1|$$
or, $|z_3 - z_1|^3 = |z_2 - z_3|^4 |z_3 - z_1| = |z_2 - z_3|^4 |z_3 - z_1|^4 |z$

Similarly it can be shown from (5) and (6) that

Hence $|z_1 - z_2| = |z_2 - z_3| = |z_3 - z_1|$

i.e. the triangle with vertices \mathbf{Z}_1 , \mathbf{Z}_2 , \mathbf{Z}_3 is an equitateral triangle.

- 10. References (of easy, cheap and easily available books)

 The following books can be referred to teach re:
 - 1. College Algebra and Trigonowetry by J.S. Ratti
 (MacMillan Publishing Co., Inc. New York)
 - 2. Higher Algebba by A. Kuroch (ar Publishers)
 - 3. Higher Algebra by Ghowh and Chakraborty (U.N. Linux & Co., Calcutta)
 - 4. Higher Algebra by Marty and Choth (Central Book Agency, Calcutta)

_ X ___

SETS, RELATIONS AND FUNCTIONS

Propered by

- 1. Dr S. R. Joshi
 Department of Mathematics
 Yogeshwari Mahavidyalaya
 Ambagogar, Distt. Beed
 Maharashtra 431517
- 2. Dr (Mrs) Indira Datta
 Lady Brabourne College
 Department of Mathematics
 P 1/2, Suhrawardy Avenue
 Calcutta 700017

SETS, RELATIONS AND FUNCTIONS

1. : btivation of the topic:

The concept of set may be motivated by conditions usily life altuations. Many times we talk about surfamily, club, political parties, organizations, institutions and so un. All their are examples of sets from a thematical point of vist. A person can be a member of a political party and also a surfer of an organization. All these examples motivate not only the concept of a set but also the concept of membership, intermention of two sets, disjoint acts etc.

Sometimes on talk about a set of books, bunch of papers, teaset ato. In such cases the meaning of set 1, 10me whit afferent from the usual meaning of set we consider from mathematical point of view.

The concept of 'Relation' may be not vater by considering the would relations in family. If x and y are too members of a family then x can be a sister of y or y can be a daughter of wand so on. If there are, say, 200 families in a village, we may define the relationship between two persons if they belong to a unique family. This relation in fact is an equivalence relation and the equivalence classes are the families of that village.

The idea of a function may be motivated by considering a set of colours and a set of birds. Every bird has a unique colour. Thus if x is a bird then the colour of x may be denoted by f(x) or c(x) or any other convenient symbol.

The concept of binary operation on a set may be motivated by concluering the usual operations of addition, multiplication etc. The following to a set may be useful to understand the concept.

- Ex.1:

 Let U be a universal set so that the other sets are mit museth of U. Given any the sets A and B he obtain third not may A \(\beta \) B. Then intersection, \(\) is a binary operation on U. The afunction from U X U to U.
- that every attrement in either true or false but not both.

 If a line, are to statement, then a or q is also a statement.

 Thus top! is a binary operation on S. It is generally denoted by V.

2. Brief Outline of the content

results concerning then, like resultation on sets are defined and some of union the intersection of sets, De Lorgan's Law etc are mentioned.

Next, the definitions of 'a binary relation R from a non-empty set A to another non-empty set B and a binary relation R on a non-empty set A have been given. The definition of equivalence relation on a set comes thereafter.

The inea of functions or mappings comes next as a particular case of a relation. Here the difference between a relation $R:A \longrightarrow B$ and a function $f:A \longrightarrow B$ has been made clear.

Next, the ties of binary operations on a set has been dealt

#.Z Explanation of technical/mathematical terms not properly explained in the text books.

The definition of binary operation is given on page 13 of the book as "a map: A x A — B is called a binary operation in A and if B CA, then it is said to be closed with reference to the operation."

But, this definition is confusing and to think that the definition of binary operation on a non-compty set A can be given as a mapping from A X A \longrightarrow A.

4. Alternative easier approach, if any, in discussing some subtopics.

On page 9 of the book, the definition of injective map $f: A \longrightarrow B$ is given as follows:

If
$$x_1$$
, $x_2 \in A$, and $x_1 \neq x_2$ implies $f(x_1) \neq f(x_1)$, then $f(x_2) \neq f(x_1)$ function or one-one function.

Here we like to mention that in solving problems where injectivity of a function is to be tested, it is more useful if we follow the definition as: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

For example
$$f(x) = 3x-7$$
 is injective, since $f(x_1) = f(x_2) \Rightarrow 3x_1 - 7 = 3x_2 - 7$

$$\Rightarrow 3x_1 = 3x_2$$

$$\Rightarrow x_1 = x_2$$

Note that in or the table that a certain men is not injective or not instance, then it is suff signification tave one counter example:

e.u. $f(x) = x^2$ 1 not one one. Because f(x) = f(x) and f(x) = f(x)

- 5. The various concern about set , retations, functions and binary on rations and thick need such it are listed below in brief:
- (1) A set a sum eliment term and it can be described with the bein of the eliment court sort take collection, family, etc.
- (11) A not a new his and to be a subset of it soif since this collone iron the affinition of subset.
- (iii, a universal of and the set of all things in the universal act aced not be unique. There can be inflavour and act accounts, when we gent to have plane process, the universal set is the plane itself.
- (iv) The concept of "complement of a net" can be thought only then we have to a universal set at our disposal.
- (v) B only when A is the universal set.
- (VI) Given a relation R in A, it is not necessary that it should be either resterive, symmetric or transitive. This follows fro the relation of a relation that it can be any subset of a z A.

- (VII) Given a set A em can have a ifferent equivalence relations on A.
- $\forall viii)$ a function $f:A \longrightarrow B$ is a particular kind of relation from A to B and that if f(a) = 0 in f() = 0, then b = 0. Thus is the came as saying that

a R b and a R c, then - - c

- (1x) A binary operation on a 1- a function from A = A to a.

 The image of (a, b) under a binary operation any f 1.

 Cenerally denoted by a o b, a + b or 1- b otc. . . .

 The usual balls operation on numbers 1.e. midition, multiplication etc. are all familiar examples of binary operations.
 - (x) A binary operation need not be if my commutative, i.e. given a and b in A and + is a binary operation, it need not be always true that a + b = b + ... n.g. in the let of vector. the operation of cross product is not commutative.

 'i.e. A x B + B x A.
 - 6. Misconceptions about some points and certain gaps.

Some teachers think that there is only one universal set as the name itself suggests. But this is not the case. There can be different universal sets according to different situations.

Some teachers feel that a set A can not be a subset of itself. This happens so because they think that A \subset B means that A in a proper subset of B and that A \neq B. Infact in the definition of A \subset B the case A = B is blso taken into account.

Noither the net { o } not the set { ф } is a null set. The first is a set consisting of a single element zero while the second is a set consisting of an annul f which is the null set. A member of a set can be a set also. In such a case it is called a family.

Note that a set was not be a member of staclf inc. A CA is meaningless. Because if such a set and this is impossible.

Given a relation R in A and if a, b (A, then it is not necessary that a R) or b R a holder e.g. consider the relation of divisibility and the act R of all positive integers, then 3 R 8 does not hold since a securet divide 8.

one conviting relations are equivalence relations.

It hould be noted that at for an the accord relation is concerned, there are at many equivalence classes as there are natural numbers.

Some teacher feel that for a given function f if f(a) = f(b), then a = b. But this not the asse alrays. Infact this happens only then if a uniquetive map. For example, for the function

$$f: R \longrightarrow R$$
 given by $f(x) = x^2$.

we see that
$$I(4) = f(-1) = 16$$

But 1 # -- *: *

Many teachers don't appreciate the paint that a binary operation is a kind of function. This happens because while dealing with binary operations we coult use the usual symbols such as f, g, f₁, F etc. Instead, we use symbols such as +, -, . X etc.

For example consider addition of two mulbers in R. lo use a + b to denote the image of (a, b). In fact the function

+ : $R \times R \longrightarrow R$ it solf ... known as addition. Further + (a, b) is written as a + b.

Every binary operation need not be commutative. For example, the operation of matrix product in the met of the matrices is not commutative.

Another practical example is the foliousne :

The father of a brother of the fatichr.

On page 16 of the NCERT book in proble. I, the word partition is mentioned, assuming that the concerned teachers already know the definition of partition. Unless one has a clear cut idea about partition, one can not solve the problems regarding partition. For the sake of completeness, we have given the definition of partition in section 8 of this topic along with other related material.

7. Some Interesting Questions for Thorough Understanding:

The following questions may be usoful for teachers for their thorough understanding of different points in the chapter.

- (1) Does there exact a not a much that A = A ? If so, what L the universal set ?
- (11) Can to define a set ? If not my? Are there any terms in mathematical which are unusliked ! If yes what are they?
- (ini) If a(B A) and $A \cap B = B$, that is the relation between A and B?
- (1v) If a ot he develor into subjoint subsets, is it possible to define an equivarance relation in A: Justify your answer.
- (v) that is the usual and immiliar relation in the family of sets?
- (v1) How many rotations can be define in a set $A = \begin{cases} a, b, c \end{cases}$?

 How many term equivalence, resistions?
- (V11) Prove that every function if $A \rightarrow A$ in a relation. Is the converte true : Justify your annier.

- (1) A = 10 noich: true only when A is a null set and the universal ..et .. alice the null cet.
- (11) bet 1. an undefined term since in the definition of a set, we use synonimous words. In Geometry, point, plane and line are undefined terms.

- (111) B _ A.
- (1V) If A = A_1 \(A_2 \) A_3, define a R b to mean that a & b belong to A_1 for come 1 = 1, 2, ... inth respect to this relation R (R is an equivalence relation) A_1, A_2 and A_3 are equivalence classes.
- (v) ARB means A is a subset of B. Ali. not symmetric.
- (VI) There are 9 order pairs in A x A. Hence there are 3 1
 nonempty subsets of A x A. Hence there are 511 relations
 which can be defined in A. There are 5 equivalence relations
 that can be defined on A. The of the five are as follo :::

$$R_{2} = \left\{ (a, a), (b, b), (c, a) \right\}$$

$$R_{2} = \left\{ (a, a), (b, b), (c, c), (b, a), (c, b) \right\}$$

(vii) According to the definition of a function, every function is The a relation converse is not true. The following example justifies the claim.

Here f is a relation since f $A \times A$ but f is not a function because b has two images under f i.e. f(b) = c and f (b) a which is impossible for a function.

(vili) In order to divide N into 3 disjoint substite, it is not necessary to use the concept of equivalence relation. But in every such division the idea of equivalence relation is involved.

Consider the relation R defined by a R b ...can. ; divide, a · b.

Then R is an approximate the same only 3 equivalence classes one they are

$$A_{2} = i : \{1, i, 7, 10, 13, \dots \}$$

$$A_{2} = i : \{1, i, 7, 10, 13, \dots \}$$

$$A_{3} = i : \{1, i, 7, 10, 13, \dots \}$$

$$A_{3} = i : \{1, i, 7, 10, 13, \dots \}$$

(1x) Consider the act of vectors in a three dimensional space and the operation as the cross product of two vectors. Then this banary operation is not appointive. i.e.

 $A \times (B \times C) = (A \times B) \times C$ when not hold always, e.g.

8. Diner. n is now enrichment stering on the topio:

kinds of relation: on a set. There are two important types of relations on a set (1) Equivalence relation and (11) Partial order relation.

The concept of an equivalence relation is an extremely important one, and play a control role in all of mathematics. The definition of equivalence relation can be given precisely as follows:

Let A be a given non-empty set.

A subset R of A x A is said to be an equivalence relation on A, if

111) (a, b)
$$\in R$$
 and (b, c) $\in R$ i.n.y that

These three properties are respectively reserved to as reflexivity, symmetry and transitivity.

Thenever an equivalence relation in refiner on a nonempty set A, there arise, the concept of equivalence class of an element a (A. le define it as follom :

Let A be a nonempty set and Let R be an equivalence relation on the set A. Then the equivalence class of a - A is the Thus $\begin{bmatrix} a \end{bmatrix}$ or $\begin{bmatrix} a \end{bmatrix}$ is the set of it those elements of A shich are equivalent to a

We not state the most fundamental theorem in this connection.

The distinct equivalence classes of an equivalence relation on A provides us with a decomposition of A as a union of mutually disjoint subsets. Conversely, given a decomposition of A as a union of mutually disjoint, nonempty subsets, we can define an equivalence relation on A for which these subsets are the distinct equivalence classes.

Suppose that $c_{-}(x_{-})$ and $c_{-}(x_{-})$ are not disjoint, i.e. there is an element, if $x_{-}(x_{-}(x_{-}), y_{-}(x_{-}(x_{-}), y_{-}(x_{-}), y_{-}(x_{-}(x_{-}), y_{-}(x_{-}), y_{-}(x_{-}(x_{-}), y_{-}(x_{-}(x_{-}), y_{-}(x_{-}(x_{-}), y_{-}(x_{-}(x_{-}), y_{-}(x_{-}(x_{-}), y_{-}(x_{-}(x_{-}), y_$

again x (CL(3) also.

No. (., w) (h : (x, b) (-R as R 16 symmetric

" R is transitive

Let # no law element of el(b). Then (b, y) CR

Hence cl(b) < cl(a)

Similarly to cit move al (a) (a) (b)

We have thus shown that the distinct ch (a) are autually disjoint and that their union is A. Hanco, the first part of the
theorem is proved. Conversely, suppose that

A - UA here L are attually disjoint non-compty nets.

Now, for any a $\{A_i\}$, we can say that a in an exactly one A_i of the family $\{A_i\}$. We now define a binary relation K for a_i , $b\in A$ as $(a_i,b) \in R$ if a_i,b are in the same a_i . Then it can be easily verified that this binary relation K is an equivalence relation.

The fundamental theorem about equivalence relation can be stated in a sample: way with the introduction of the tear partition which we define as follows:

Let $\left\{B_{1}\right\}_{i}$ where I is the inverse of a family, of non-empty subsets of a set A. Then $\left\{B_{1}\right\}_{i}$ is called a partition of A if (i) tells $\left\{B_{1}\right\}_{i}$ and $\left\{B_{1}\right\}_{i}$ or any subsets $\left\{B_{1}\right\}_{i}$ and $\left\{B_{1}\right\}_{i}$ cither $\left\{B_{1}\right\}_{i}$ and $\left\{B_{2}\right\}_{i}$ or $\left\{B_{1}\right\}_{i}$ is the null set

Then alternative statement of the previous theorem can be given as:

An equivalence that ation R on a set A determine: a partition of A. Conversely, each partition of A yield, an equivalence relation on A.

Next, re deal in detail with the other type of relation known as partial order relation.

A relation if in a set A is called a partial order relation (or only an order relation) if

- (a) and a man 1 12 at 1 a (A
- (b) and ... it a amplies a = b

 for a, b (- i...

de day a relation if in A is entisymmetric if the property (b) is national.

That a reflexive, antisymmetric and transitive.

Notation:

It is a general practice to express the relation a let by writing a _ b. Note that a _ b does not always mean that a in let than or equal to b. a _ b means not of the analysis and the constant and the constant and the constant and a co

The unum examples of partial order relation are as follows:

- (1) In the let of real numbers R_1 , we define a $\leq b$ to mean that a 1. Let than or equal to b. \leq is a partial order relation.
- (11) Let a pe the not of integers. Then by a \(\) we mean a \(\nabla \) or b in avisible by a) for a \(\) b.

- (111) In the family of pets U so have the usual relation ACB where A, BCU. It can be verified that C is a partial order relation in U.
- (iv) Let R^n be the set of n-tunion of root numbers. Let $x = (a_1 + a_2 + \cdots + a_n)$ and $y = (b_1 + b_2 + \cdots + b_n)$

Then by $x \le y$ we maps that $a_1 \le b_1$ for all 1 = 1, 2, ... n.

Abere $a_1 \le b_1$ is mean that a_1 is less than or equal to b_1 . It can be werified that the relation defined above in a partitum order relation.

A set P equipped with a partial erder relation _ is called a partial order set or simply a POSET.

If S is a subset of a poset $(P_* \leq)_*$ then an element a $\in P$ is called an unper bound of S if $x \leq a \checkmark x \in S$.

Note that we also write $b \ge c$ to indicate $a \le b$ ($b \ge c$ may be read as b in greator than opequal to c).

Similarly an element $b \in P$ is called a lower bound of s if $b \leq x \neq x \in s$.

Note that an upper bound or a lover bound a set of need not be unique. Further an upper bound or lover bound of a set may not exist in certain cases. For instance if P = set of all positive integers and E is the set of even positive integers, then E P Define a \(\) b to mean that a divides b. Then E has no upper bound and that 1 is the only lower bound of E.

If a haren, to be the emillect among all upper bounds of a set in them are called the least upper bound of it.

Similarly the greatest among all the lover bounds of S is called the greatest lower bound of S. It can be noted that if the least upner bound (lub) on greatest lower bound (glb) of a set S exists them it is unique.

Bor execute, consider the partial order relation of divisibility in the set II of all natural numbers.

of S since x 10 dx (s) lote all it the least common multiple of the integers in S. Note that 210 ds Similarly 1 is the 61b of S.

If U_1 is any subfamily of a given family U of sets. Then the suit set is the glo of U_1 and the union of all sets in U_1 is the fus of U_2 .

an element $x \in x$, where x is a subset of a poset (P, \leq) is said to be a maximal element of x if there does not exist y a satisfying $x \in y$.

brankering x & > is called a minimal element of > if there does not exist any element y & S patiefying y \(\) x. The following two examples will illustrate the concept of maximal and minimal elements of a let.

Ex.1: Let u: consider the divisibility relation in N.

Then 10 and 14 are maximal elements of Spines both of them satisfy the condition of maximality. Similarly 3, 1 5 and 14 are minimal elements of S.

Ex.2: Consider the relation (is a subset of) in the Yamly U of sets given by

Here A = 2 a, o & B = b, o cre daramat elements, and

) a i) b & are minimal elements.

The concept of maximal element is very asportant in many mathematical situations. Related to this there I; one important axiom known as AXIOM OF CHOICE or also known as Zorn's Longe.

Before tatating the Axiom of Choice we first Live the definition of a chain.

a subset S in a POSET (P, \angle) is said to be a chain if a $\angle b$ holds or $b \angle a$ holds for every $a, b \angle S$.

e.g. $S = \begin{cases} 3, 6, 12, 24, 120, 360 \end{cases}$ at a chain in N with respect to the relation of divisibility.

Similarly, \{a, b, \{a, b, d\}\} is a chain of 3 elements in a family of sets with respect to the relation of "subset of".

Axion of choice If every chain in S has the Least upper bound in S, then maximal element of S exists.

This result is used in some branches of Mathematics. For instance, we apply this in proving certain theorems of Topology, Linear Algebra, Austional Analysis and other branches of mathematics.

9. Some Interesting Problems

(1) Let $A = \{3, 5, 6, 10\}$

In A define a relation a R b to mean that a divides b.

!e .ay that $x \in A$ in a maximal algorith of A if there
does not exist, any $y \in A$ such that $x \in A$. Find all
the maximal elements of A.

Solution : de chierve that

Hence 6 and 10 much maximal elements.

(11) In a family of sets define two binary operations . and \triangle

$$OA' A \triangle B = (A - B) \bigcup (B - A)$$

Then prove that

- Hint: Mathematical proof of this problem is some what difficult.

 But with the help of Venn Diagram, it becomes easier to get a solution. It is known that a family of set: equipped with the two binary operations . and A is a ring and this concept of ring is used in the study of measure Theory.
- (a, b) (ii) of an equivalence relation states that

 (a, b) (b, a) (R; property (iii) states that

 (a, b) (R and (b, c) (R (c) (R) (hat is wrong with the following proof that properties (ii) and (iii) imply property (i) ?

Let $(a, b) \subset R$; then $(b, a) \in R$ (by Prop (11)) whence by property (111) $(a, a) \in R$.

Solution: In the proof it is assumed that $(a, b) \in \mathbb{R}$ holds without mentioning any restriction on a and b. In other words, it is assumed that a & b are related for any two clements $a, b \in A$. This basic assumption leads that $(a, a) \in \mathbb{R}$. Hence the follow lies in the assumption that $(a, b) \in \mathbb{R}$ holds for every pair (a, b).

10. Reference.

The fello int book . . be exclus for teachers and resource persons !

- (1) Finite ... the autica by Kenney Thompson and Smell.
- (ii) Set Theory and Lagie by Robert Stall.
- (111) Topil in Aldebra by L.N. Herstein published by Vani Educational Books.
- (iv) Modern Medobra by Lauderahap Project, Booksy University, Banbay.
- (v) Nodern Algebra by Need H. Mccoy.
- (va) Schaum ... uniques of Theory and Proluces of Set Theory on Rule ate . Tople: ... eynour Lipschutz pullimbed by a Modern Bull International Book Company.
- (vii) Higher at John to Tona
 Publisher by Anose Prokanon, Calcutta.

VECTORS AND THATEL-ALANSIONAL TECHNICAL

Prepared by

- 1. Dr A. K. Pal
 Department of Mathematics
 Jadavpur University
 Calcutta 780032
- Shri Harihar Ghosh
 Department of Mathematics
 Presidency College
 College Street
 Coloutta 700073

1. Motivation

In nature, there are some quantities which can be completely defined by a single number. These quantities are called scalars. In contrast to these, there are quantities which are not fully defined by such single number but need something more. For instance, let us consider displacement of a particle from a point A to a distance of 5 Cms. When the point A remains fixed in space. This displacement through a distance of 5 Cms may occur in an infinitely many ways. All such points specifying displacements of a distance of 5 Cms from A in an arbitrary manner lie on a uphere of radius 5 Cms with the point A as centre. Hence to specify this displacement what we need in addition to the length 5 Cms, is the caraction of such displacement. We thus find that the displacement in an example of quantities which need both magnitudes and direction for their complete definition. We call such quantities as Vectors. Displacements, velocities, accelerations, forces are vector quantities with a secretary waste att.

For the definition of a vector quantity, we take the help of displacement as an example, de thall devulop different appeats of vectors with the help
of the idea of unplanes, at of a particle.

2. Brief Outline of the content
The definition of a vector, different types of vectors, algebra-of
vectors etc. have been discussed in the textbook. The dot product and cross
products of two vectors have also been discussed. The scalar triple product
and the vector triple product of three vectors are also included. The application of vectors in finding the equation of a plane, straight line and sphere
and the related topics in three dimensional geometry has also been included
in the textbook.

Explanation of technical/mathematical tenns not properly explained in the textbooks

Zero or Null Vector

In the book submitted by the MCERT, the term zero or the Null vector has not been used by the authors. They have used the phrase identity element for vector addition to represent a zero vector. The resumme person should know that there two are the rank. It was 15, it is wrongly written that an implication of a solution (Inll) soro vector) to person.

An entity having no direction may mean that it is a realer quantity. It is a vector whose magnitude is zero and can have any direction.

Negative Vector

If the sum of two vectors is a null vector then each of the two vectors is the negative of the other.

Unit Vector

A vector having unit magnitude is called a. anti-vector. If a vector is divided by it's modulus, we find a unit vector.

Free Vector and localized Vector

Free vectors have no restriction regarding their initial or termual points, while a localized vector occupies a definite position in space.

Unless otherwise stated, we mean a free vector when we are the tens vector.

Coinitial Vector

Vectors originating from the same point 2 vectors having the same base point are called Coinitial Vectors.

In coordinated geometry, it does not writter which from 1 used the right handed or the 1. It hundred from 1. But in vectors, it matters much. The correct definition of right handed from 1: ar follows: Let a right handed screw (a screw that may be arriven by the right hand) be placed along 0 so that the pointed and (the tin) maints in the positive direction of the Z-axis. If a rotation of the acrow in the sense that carried 0x to 0y in a rotation of 1 right in mains the rerow advance along 0Z, then the frame is called a right handed frame.

In Page 473 the textbook, Notes 2 and 3 say that the section formula is not defined for m = -n. But it is very important to observe that, when R is an between P and Q, m + n is positive. When R is on PQ produced or on QP produced, PR and RQ are clearly different in magnitude. So m: n cannot be -- 1: 1 and consequently m + n = 0. Thun wherever R may be, m + n = 0. So the section formula is defined for all positions of R without any restriction. The restriction imposed in the book is exactly similar to the restriction in this statement: 6:- 3 = 2, provided 3 does not vanish!

Since the denominator never vanisher, a convenient section formula can be obtained by taking the ratio as $1--\lambda$: λ for all λ .

4. Alternative approach, if any in discussing some subtopics

Vector triple Product

An alternative proof ;

This proof is more general and straight-forward than the proof given in the book of NCERT.

5. Basic Concepts to be emphasized in teaching the tonic

The various concepts that challe is a character to the teachers engaged in teaching yesters and three dimensional grow or through vectors are the following:

- i) Vectors and scalars and their distinction.
- ii) Concept of null vector.
- 111) Triangle law of vectors.
- iv) Coplanarity of vectors.
- v) Different types of vector products.
 - a) Dot product or scalar product of two vectors and their commutative property.
 - b) Cross product or vector product of two vectors and their noncommutative nature.
 - c) Triple product of vectors

$$\frac{1}{a}$$
, $\frac{1}{a}$, $\frac{1}{a}$ $\frac{$

- vi) Coordinates of a point
- vii) Distance between two points
- viii) Direction ratios and Direction Cosiner
- 6. Analysis of conceptual errors that may be commutted by teachers in teaching the topic (1)4. this context, mention gaps and misconception, if any in the textbook) which may misguide the teachers and students

Equality of two vectors and Null vector

Two vectors are called equal only when they are equal in magnitude and possess the same direction. But in case of Null vectors, this may not be true. Null vector possesses some unique properties which are not found in case of other vectors.

Callinear and Parallel Vector,

Two Vectors are called parallel when they have same direction but their lines of action and differ a the range of collinear vectors, their lines of action and sirection toth are identical.

Correct proof for the Gretn's div law for sultiplication of Vectors by real number_

The proof for the antributive law for multiplication of vectors by real numbers (it n in the seek of NOLM is confusing and not correct. The correct proof is private a law:

Let OA = a and AB = b

Let 'm runpoon 'm' be any positive real number.

Here in the advaining figure m a = m OA = OA.

Mayor the currections of OA and OA are the rums but magnitude of OA is m times that of

Let A' B' b. arwa parallel to AB. A. youn 0, B and extend it to meet A' B' at B' (aw). Time A' at a A' and a millar, we find

Hence A' B' = m AB , tanger A' B' and AB are parallel and length of the side A' B' = m timer true of AB.

The above relation is valid even when m is a negative scalar.

Section Formula

The coordinates of some point R which divides the line PQ in a certain ratio m : n has been a rived twice in the chapter on Algebra of Vectors, Page 415 and in three-dimensional geometry, Page 472. The proof given in Page 415 is very round about and contains several our covery steps. So this proof may be deleted.

Condition of Collinearity of three points

If the position Vectors of the points P and Q be r, and r referred to O as origin, then the position Vector of any point R which mivides the regnent Pa in the ratio m: n has been derived in the form

From the above relation, we find

$$(m+n)$$
 \overrightarrow{r} $-n$ $\overrightarrow{r_1}$ $-m$ $\overrightarrow{r_2}$ $=0$

Here we find that the sum of the coefficients of r, r_1 r_2 is zero. If R is distinct from P and Q and at a finite distance from them, none of the coefficients in the above relation in Zero. Hence we can conclude that for three distinct collinear points R, P, Q there exists numbers 1, m and n different from Zero, such that

$$1r + mr_1 + nr_2 = 0, 1 + m + n = 0$$

Conversely, when there relations hold, the three points are Collinear.

This condition of Collinerally of three counts has not been discussed in the book of NCERT.

Uniqueness of resolution of a vector in terms of it a component:

Where (x, y, z) are the components of Vector r and i, j and k are unit Vectors along three mutually perpendicular directions. If possible, let $r = x^{1} + y^{1}j + z^{1}k$. Then we have

$$x \hat{i} + y \hat{j} + z \hat{k} = x^{1} \hat{i} + y^{1} \hat{j} + z^{1} \hat{k}$$
or
$$(x - x^{1}) \hat{i} + (y - y^{1}) \hat{j} + (z - z^{1}) \hat{k} = 0$$

The right hand side is a null vector having components each equal to Zero. Again, since two Vectors are equal when their corresponding components are equal, we find from above

$$x - x^{1} = 0$$
, $y = y^{2} = 0$ and $z = z^{2} = 0$. $x = x^{2}$, $y = y^{2}$ $z = z^{2}$

establishes the uniqueness of representation.

In connection with symmetrical form of equations (10.5), (10.7) to a line, one thing that requires clarification is the following. When Zero appears in one of the first two denominators, what will be the meaning of (10.5)? To explain this consider the simultaneous equations

$$3x + 4y - 9 = 0$$

$$x + 2y - 4 = 0$$
(1)

The equations (2) are not faulty in any way. They may be expressed as

or in symmetrical form as

$$\frac{z}{3} = \frac{z}{4} + \frac{z}{4}$$
 (3)

provided that by $\frac{V}{0}$ we do not mean y = 0 and that (3) stands for (2). Thu $\frac{V}{3} = 0$ stands for 0.x = 7.y, when no denominator is 0, each ratio may be given the meaning in the sense of division. (3) can be obtained from (1) by erors multiplication. In molving equation by cross multiplication, or in writing equations in symmetrical form, relations of the form $\frac{a}{A} = \frac{b}{B}$ are to be interpreted as an alternative way of expressing the relation B. a = A.b. With this prior agreement, we write equations in symmetrical form. One very useful form of such equations in

In the textbook, 3 -dim. geometry is treated after rector algebra. In the development of vectors, the idea of 3-dim, geometry has been used to some extent. The results arrived at in vectors by use of these concepts are being used again in 3-dim, geometry to explain the same soncepts. This will no doubt, put the student in great difficulty. They will find themselves in a visious circle. What has been written here is like this. To prove a = b in vector, we borrow the result A and to be established later in 3-dim, geometry Again to prove A = B subsequently in 3-dim, geometry, the argument that is given in the book is this: Single a = b in vectors, therefore A = B.

It is perhaps better to teach y-almenatonal geometry first, vectors next and then to show that geometry can be handled in a very next and compact form by vectors. The lithuid. When then wonder in boundless pleasure.

However, the minimum change that is necessary in the order of treatment is the following Goordinates, distance between two moints, section ratio, direction cosines, angle between planes and like r in indimensional geometry are to be treated first and then vectors. Equationate plane, lime, circle in 3-dimensional space may be derived through vectors and are to be included in the chapter on vectors. But it is better for the students if they (i.e. plane, line, etc) are given independent treatment also in indimensional geometry. The formulae for distance OP or Pu in Page A71 in the textbook of NGERT hawknot been established in vectors. The formula op = x + y + x 2 can be established by 3-mimensional geometry only. Vector can define op as the positive square root of the scalar root of the scalar product if . P.
But one has to take recourse to coordinate geometry to show that this scalar represents the distance OP in the sense used in geometry. In example 9.10-9.12, Page 421-423, the book has used the distance. Formula without a ducing it.

The formula for d.c's (Page 473) because the results obtained in Page 427-428. But the second line of Page 420 is wrong because distribution law of scalar product has not been established earlier.

- 7. Discussion of some interesting questiones that may be asked by teachers to the resource persons.
- 1. Can you divide a Vector by another Vector >
- 2. Does moment of a free Vector about a point make Lenne?
- 3. Can we add or subtract scalar zero to a Zero Vector
- 4. What is the resolved part of Vector b in the direction of Vector 2?

 Is it a Vector or a Scalar?
- 5. A line, is drawn in a given direction to meet each of two . lines.

 What, will be the number of the points of intersection with each of the lines?

Aufurence!

- 1. Elementary V. otor Analyrir C.E. Weatherburn, Orient Longman
- 2. Vector and owner Assignation of the Mogram Hill .
- 3. Venter Analysist. (Senion Suries) B. Spigel :

LINE LANGE PROGRAMMENT

I'm sared by

Shri S. P. Dos
Department of Mathematics
Bengal Engineering College, Howrak
Pin: 711103 (West Bengal)

•

1. Stavation of the topic

Now the question is: How much of each kind of pen should to be be purchase? Naturally, he will try to design his purchase in such a way that within his limitations, can get a maximum profit out of his investment.

It becomes a problem of maximulation or minimization of some mathematical functions. Linear, Programming Problem (LPP) deals with such type of problems.

The concentral feature of LPP is that of linear inequality (or equality construction: and the linearity of the function to be maximized or to be minimized.

The term 'programming' means to set a plan or to design a plan in order to get a maximum or minimum functional value satisfying all the physical conditions involved in the problem.

In practice, we come across problems in which the number of constraints is not equal to the number of variables and in most of the cases. The constraining relations are in the form of inequations, so the problem ultimately reduces to solving a system of inequations.

2. Bricf outline of the Context

down a function to be maximized or to be minimized. Hinder certain constraints. Constraints will appear either in the form of inequations or equations and along with objective function, they appear in linear form.

In next step, draw the feasible megion out of the given constraints. Find the vertices or of the feasible region by solving the corresponding

equations of the sides of the featible region. Obtain the value of the objective function at the vertical one by one. The maximum (or minimum) of thepse will give the maximum (or minimum) tolerant of the LPP. The coordinates of the corresponding vertex (or vertical) is the almost the decision variable in the extreme case.

Students or teachers may tak one question - We are we nearthing only the vertices of the feasible region for it. extr a vale and not all points within it? This may be explained in the following way:

Let us consider a problem of maximum value of the objective functions point which will correspond to a maximum value of the objective functions and at the same time satisfices all the constraints, i.e. to find a point within the feasible region which corresponds to maximum value of objective function. For that purpose, draw the objective function for a particular value of Z. It will be a straight line. Now which the attracht line may from the origin parallel to itself by gaving a correspond to increasing value of Z. As it is chifted away from the origin, the value of the objective function will increase. Continue this process and it will be seen that this moving straight line will just leave the invible region by teaching a single vertex or a side, i.e. two vertices. That particular rount or points will be the desired solution.

For an illustration, let us take the problem :

Here OAPB is the feasible region. For fixed value of Z, objective function is parallel to 5x + 7y = 0 (5). Plot a serier of straight lines parallel to (cay, $X_1 Y_1$, $X_2 Y_2$ etc. All points on $X_1 Y_1$ and within feasible regionstriph the constraints but not correspond to a maximum value of the objective function because any point on $X_2 Y_2$ gives a greater value of objective function

through P, the vertex intrinent iron the origin. On the line, only the P (2,3) is a disfyring all the constraints. Now, if it be chifted little more, none of the part . On it will note it in a training.

Hence f, the vertices of the featible region, is the solution of the f f f

The sequence of the sequence to minimization problems also.

3. Annial stable of athemselves to mai.

of the cotton of

A Convey . x

That is the state with

Not a convex set

Mathematically, if it is all introduces $x^2 + y^2 \le 4$ is an example of converge. While this satisfying $1 \le x^2 + y^2 \le 4$ is an example that this set is a forest.

along with non-newativity of the variables is called feasible region. Every point of or water, the transfer will satisfy the constraints.

Objective function: 1: I anction to be maximized or to be minimized. The Variable: pro 1.1 in the objective function are known as decision variables.

Alt. Pastive approprie in discussing some subtopic

How to draw - regard corresponding to some inequations

x-y > 2.

The corresponding equation is x - y = 2.

It can be drawn very eachly. Let As be the line clearly, it divides the entire xy plane into two halves.

Now in next aten verify whether the inequation. In this case 0 - 0 = 0 \(\frac{1}{2} \). The unique was a set of the inequation. Hence origin is not lying in the regime. Live it is which have at AB origin lies. Then other has if AB including the limit will denote the require region.

of origin, (M. com unaw the region in the case were

5. Basic concept to be emphracia an a sching the topic

In case of colving a LPP, there may be an indicate number of solutions. This call happen if the line obtained by equating the objective function to a few of least, as parallel to that represents a by the equation of a constraint.

For example, consider the problem:

Here 2x + y = constant is parallel to <math>2x + y = 16 obtained from the third constraint, i.e. parallel to CD. So the line 2x + y = constant when shifts away from the origin keeping parallel to it self, will leave the feasible region touching each point on the line CD.

It can be vertiled very enally that the objective function will give maximum value at any maint on the fartion of the line CD including C and D.

- 2. A LPP that that the following cases:
- a) When "To do it, has it was the response.
- b) Samether, it to be a the region is unbounded.
- 3. Some process a new to a have a teachble region:

is an example in the state of this nature.

4. Some proof of the a point regular : For example

is a mount regramme.

6. Analysi, to the truly of the committed by teachers in the result of the truly of the committee of the com

This paint will be all regression the following example:

As shown in the figure, the problem has an unbounded fearable region. But at the vertex B (3,2) the objective function is maximum.

B (3,2)

It can be verified very analy "intil we have along any line of feasible region towards limitely, "he had at the abjective function will decrease at analy as the constant of the first of the abjective functions

7. Discussion of come engineers me material as the topic which the teachers are express of to know

Any LPP with two variables can be solved an ily by graphical method, we may also smally the one of those in the state of realism with 3 variables, by as the constraints are summinused, they will reserved plance. Therefore it will be difficult for students, a articularly at this stage, to find the feasible region. Homeshy, a LPP with over them two variables are solved by simplex method.

In some LPP it is abserved that some constraints impose no extra restriction on the idealbility of the solution and hence does not effect the solution. Such a constraint, if there is may, it called a redundant and can be neglected.

Exampl ::

The 4th constraint, i.a. 3x + y 3 has no impact to the feasible region hence it is redundant.

8. Construction of a me intelligent question

Problem April 2 retrenationally the nortion of the bineum fractice $x^2 + y^2 = x^2$ lyange 1 and $x = x^2 + y^2 = x^2$ lyange 2 and $x = x^2 + y^2 = x^2$ lyange 2 and x = x^2 + y^2 = x^2 l

 $(\frac{1}{2})^{3}$

Actually it is the partial All of the circumference of the circle. Mathematicall

9. Survey to have called

- 1. Late in Programming warmen . H. Haules
- 2. Lim at Print it is a Mannohan, Gupta & Sharma
- 3. Carried at a state of attitude and an amount of the Carried at the Carried attitude attitude at the Carried attitude attitude attitude attitude at the Carried attitude attitude
- / Min of her .. die Ghoch & Chakraborty :

RIMBILLIN MARKER

Property: 13

- E.G. (Cib's Office)
 P.U Dishez h
 Distt. Birdsen
 Nest Bongal 713333
- 2. In D. P. Shama Department of Mathematics D. M. College of Science Imphal Manipur - 795001

hotivation of the subject

Suppose We want complete informations of the students of a class. possible informations we may have of a student are:

- Name 1)
- Date of Birth 11)
- Nationality i11)
- Religion iv)
- 5ex v)
- Weight vi)
- Height vil)
- Income ntatus of parentr (LELV
 - Bloom pressure ίχζ
 - Performances in the examinations and extra-curricular activities eta. x'

Now if we visualise the above, we will find certain informations in terms of measurable, maits and the rest in the form of grading or Ceategory because a low are in quantitative form and the others in qualitative nature. Consider the following Table:

Non-measurable characteristics

Characteristics in measurable units

a) --- -- Age -- . a) Nationality Weight ; b) Religion Height c) c) Sex status Parents income status d) d) Performantes in the exa-Blood pressure mination e)

Now while analysing the above tabular set of informations it is sometimes desential that alaberate statistical study of only cone of the charact ristics is carried on in regard to its central tendency, scatter, shape of data distribution, nature of the distribution etc. by the statistical tools Mean, Meanan, Mode, Range, Quartile deviation, Mean deviation, Standard Well with the nt, Skewness, Kurtesis etc., This type of analysis is known as Univariate analysis as only on characteristic/feature/information/variable is nurtured of the population of students of the class.

each other by some way or other, which will lead to estimate or predict one characteristic when the other is known. When such type of mutual relationship is studied, it is called "Bivariat Analyzis". Similarly when more than two characteristics are involved it is called "Multivariate Analyzis".

Now, from the above set of informations the study of mutual associationship or interdependance may be tried in the following manner:

- i) relationship between age and height
- ii) relationship between height and weight
- iii) relationship between marks scored in Mathematics and statistics in an examination
 - iv) relationship between age and blood pressure.

Now (i) and (ii) comes under the purview of correlation analysis; (iii) under the purview of Rank Correlation Analysis and (iv) under the purview of Regression Analysis.

Now the students may be sumplifed a few examples from the subjects or topics already known to them, where the variables are interrelated, e.g. established equations on Boyle's law, Charle's law, Ohm's law, Hooke's law, Newton's become law of motion, etc.

Brief outline of the content

a) Correlation Analysis

If 5 in two parts, the nature of correlation and degree of correlation. The nature of correlation can be found out drawing scatter line and observing the slope of the line with the x axis.

- i) When the slope is positive the correlation is positive.
- ii) When the slope is positive and the points are along a straight line the correlation is +1.
- iii) When the slope is negative the correlation is negative.
- When the slope is negative and the points are along a line, the correlation is -1.

Again when nature and degree of correlation both are to be found out; Warl Pearson's compriance mathod in applied, which follows following steps:

- i) Covariance (joint variation) of two variables has to be calculated (say COV (x, J)
- Respective standard deviation of the variables are found out (say a and ay)
- iii) Then the formula is

$$x = \frac{\text{Cov}(x, y)}{a_x a_y}$$

Analysis of calculated r has to be done with proper comment, i.e. whether correlation between the variables is positive or negative; highly significant, significant, moderate or insignificant.

b) Regression Analysis

By least square methed:

equations viz y on x and x on y. For y on x the steps are:

i) 1, Consider a Line y=cutbol (we lead (it line))

i) To solve the parameters a and b from the normal equations

$$\sum xy = a \sum x + b \sum x^2$$

- (11) Then the values of a and b are put in y = a + bx to get the best fit line.
- iii) Then the estimated values are calculated and the variations from the respective observed values are found out to get an idea about the fluctuations and thus fitness of the line.

Similar steps will be followed for the best fit line x on: . y.

- c) Using formulae involving regression coefficients:
 - i) For the line y on x the formula $15\sqrt{y} \frac{y}{y} = \text{byx}(x x)$ There by $x = \frac{\text{Cov}(x,y)}{\sqrt{x}} = \frac{y}{x} = \frac{\sum xy}{n} = \frac{\sum x}{n} = \frac{\sum x}{n}$

- For the line x on y, the formula ii) x - x = bxy 4y = 5 7 Where bxy $\frac{C_1(x,y)}{C_2} = \frac{C_1(x,y)}{C_2(x,y)}$ $=\frac{\sum_{n}\frac{1}{n}\frac{1}{n}\frac{1}{n}}{1:\frac{1}{n}\frac{2}{n}}$
- Explanation of technical/mathematical terms not properly explained in the З.
 - While stating the formula for coefficient of correlation as "Karl i) Pearson's Product Moment Correlation Coefficient", the term Product Moment must be explained. What is Moment ' What is Product Moment ?

for a univariate wata. If (. (1 = 1,, n) be the Moment: It values of a curtable x, then) the lowest of x_i about an arbitrary landly $\sum_{i=1}^{n} (x_i' - i+)^{n}$.

Now i' A is replaced by \bar{x} (tr A.M of x_i) then it will be called rth central moment $m_r = \frac{\sum (x_i - x_i)^{t_i}}{2}$?

Again if r = 1, then it is called 15st central moment of x_1 and denoted as $m_1 = \frac{\sum (x_1 - x_1)}{x_1}$.

Now in case of bivariate series (x1, y1), the rth product moment about when r = 1, we get first product moment as $rn_1 = \frac{\sum (x_i - \overline{x})^{\gamma} (y_i - \overline{y})^{\gamma}}{\sum (x_i - \overline{x})(y_i - \overline{y})}$

This first product moment m 11 is called the covariance of x and y and hence the formula is also stated as Product Moment method.

11) Thterpretation of 'r'

The discussions in the textbook may not lead to a systematic conclusion on the interpretation of 'r'.

The following table will help to conceive as a whole:

Values of r

Interpretation on the existence of correlation between two variables

 $1) \qquad r = +1$

Perfect positive correlation

1i) r= -1

Perfect negative correlation

iii) r = 0

No correlation

iv) r > 0.36

High degree of correlation (estimation can be relied)

v) r 0.75

Decided amount of correlation (rough estimation can be done)

v1) r > θ. /0

- Fair degree of correlation (estimation cannot be relied)
- while dealing with Regression Analysis, at the outset the literal meaning of the word Regression must be known to the students. A few terms must be stressed on viz Trend Analysis, Linear trend, Non-linear trend, Dependent variable, Independent variable.

Regression: It means stepping back to its average value. Average relationship between two variables is meant by regression.

Trend line: The line representing regression equation is known as Trend line.

Trend: It means movement of the line with respect to the axes i.e. whether the line has an upward movement or downward movement etc. when such moment is linear it is having linear trend and otherwise it shows a non-linear trend.

Dependent and Independent variable & ;

As there is a relation between yield of creps and r, we may say that the yield of the crops is dependent on in the a regression relation may be established as

Yiera + f (Manuec)

Here the variable yield is the dependent variable which can be forecasted from the above relation. Plantage is independent variable.

4. Alternative easier approach to any militaria

Both in correlation and regression while tackling problems the prime and important task is to choose the proper formula and method.

a) Correlation: As for example, if only nature of correlation is to be studied only seatter diagram is sufficient.

On the other hand if both nature and degree of correlation are asked for, the proper method '5 Karl Pearson's coefficient of correlation formula. ... Now this formula can be utilised in its short-cut form which is

$$r = \frac{\sum u x^{\alpha}}{\sqrt{\sum u^{2}} \sqrt{\sum v^{2}} anu v = y - y}$$

- b) Regression: To find out the best fit line by least square method, we take help of normal equations. These normal equations can he used in simplified form by applying change of origin as per suitability of the problem. Viz. In a bivarrate series where the independent variable (say x) are in A.P. the following changes may be done.
 - When n is odd,
 x mrd-value of x series
 commendation of x series
 - ii) When n is even,

Su ch type of change simplify the normal equations as

5. Basic concept to be emphasized in teaching the topic

As it is an applied tool the students must have a clear conception about when, where and why the correlation as well as regression analysis are to be applied. Further, . what we want and dements of the formulae must be well explained.

a) Correlation

The follo ing bacic concepts must be with the students -

i) Cause and effect relationship: Although associationship is found between two variables, should be always go for correlation shelyele.

Examples:

- 1) There may be a porfect correlation found between the growth of a particular plant in a garden and the price hike of a particular commodity in the market. Now this has happened by chance.

 Here neither growth of the plant is cause nor price hike is the effect or vice-verse.
- ii) Again another example is the relation between the variables height of living being and its age.

It may be found that there exists a correlation between the height and age till the maximum height is attained. Upto this stage cause and effect relationship is explained. But after attainment of maximum height correlation will not exist and hence cause and effect relationship no longer exists.

b) Regression

First, one must have a clear conception about the applicability of correlation and regression in different situations. If only fair degree of correlation exicts between two variables, will it justify a proper linear regression equation by which estimation of dependent variable can be done ascinst an independent variable, that is to say whether proper functional relation between two variables exists or not?

Overall the lies must be clear that the best fit regression will only occur when there is a perfect corpolation between two valuables. For an ideal best fit regression line, the value of the currention coefficient $r=\pm 1$.

In applying formulae for correlation and request lon while tackling problems, clear conception of the problem while he performed

have an idea whether (1) the scatter line has a langer time of the found and effect relationship is/between the variables? Into (11.) a sunduly inflated or extreme values are exacting in the biv. The live of the facting the value of "r".

- 6. Analysis of conceptual error, that may be committee of the hour in teaching the topic (including gaps/misconception in the listlewis):
 - a) The concept of correlation and regression will be existinct if it is studied side by side as folion:

Corrol ation

- i) It means relationship between two variables
- 11) Here mutual associationship
 1s considered, i.e. the varightes are mutually dependent
 on each other
- between two variable; but cause and effect relationship is not defined. So non-sense correlation exists.
 - iv) The coefficient of correlation "r" measures nature and degree of associationship.

in all in the second of

- to it were temping back to average vitue. Average relationship between two viriables is stre-
- in) Here the functional relation with between two variables where one is aspendent variable and the other in independent variable.
- between the vertables one dependent and other independent, cause and effect relationship is always defined.
 - iv! Here prediction of one variable

- The coefficient of correlation between two variables (say x and y); symmetric, i.e.

 r = r . Here it does not matter which variable ; suependent and which one is independent.
- vi) "r" is a relative measure and a pure number. It is independent of units of measurement.
- vii) Linear relationship between two variables is studied.

v) The regression coefficients are hot symmetric, i.e.

Here one variable id dependent and the other is independent.

- yx and b are absolute measures.

 Its units are sence as that of
 the respective series.
- vii) Both linear as well as non-linear relationships are studied
- b) Relation between correlation coefficient r and regression coefficients by byx and b must be studied.

So r is the geometric mean of the two regression coefficients. From the above, it is clear that by and by always have the same sign and further r, by and by also bear the same sign.

- c) A few important property rulating to r, b, and b, w:
 - 1) Two regression lines are perpendicular to each other if the product of the alopes = -1.

So r = 0 is the condition of perpendicularity of two regression lines.

ii) Two regression lines will be identical if the slopes are equal, 1.c.

So r = † 1 is the condition of parallelism of two regression lines.

- The common points of two regrecation lines y = a.4 by and x = a + by (5 the point (x, y), where x and y are the A.M. of respective series.

Both regression Lines

Both regression lines

Both regression lines perpondicular

More degree of ara

e) Angle between two regression lines:

Angle between two regression lines

$$y-y=r \frac{\partial y}{\partial y}(x-x)$$
and
$$x-x=r \frac{\partial y}{\partial y}(x-x)$$
is given as

$$\frac{1}{\sqrt{1-x^2}} = \frac{1-x^2}{\sqrt{1-x^2}} = \frac{1-x^2}{\sqrt{$$

From the . b.v. the . attom r = 0 for perpendicularity of two regression lines and r = 1 for comminment of two regression lines may be established.

f) Cilculation : Hermal Frustions by Least Square Method:

For the law y + bx to be a best fit line for the observed values (x_1, y_1) (x_2, y_2) , -, (x_n, y_n) , the normal equations are calculated as: follows:

Calmilation of jubicated y - forecasted y)

X	Observacy	forecasted y	D=(observed y - forecasted y)	5 = 1
x , 1 ; x	7 1 2 1	$c + bx_1$ $c + bx_n$	$y_1 - (a+bx_1)$ $y_n - (a+bx_n)$	$(y_1 - a - bx_1)^2$ $(y_n - a - bx_n)^2$
y] 	y 2-	2 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		$= \sum_{k=1}^{\infty} S^{k}$
SHLX	t		w the method 's the valu	of a and b wi

Vertical difference between between between velue of y and estimated value of y

Now the method of the values of a and b will be such that the sum of the squares of the differences between observed and forecasted values of y become least 1.e. S to be least.

Now here x, y are known quantities and so S depends on a, b i.e. S in this case will be treated as function of a and b. So when S is to be minimum

will be treated as innertial of a and b. So when S is to be minimum

$$\frac{\partial S}{\partial x} = 0 \text{ and } \frac{\partial S}{\partial x} = 0 \qquad \text{Principle of Maxima and Minima of}$$

So
$$\frac{\partial S}{\partial x} = \frac{\partial S}{\partial x} =$$

From (1)

$$-2 \quad \sum (y_1 - a - bx_1) = 0$$

$$A, \quad \sum (y_1 - a - bx_1) = 0$$

$$A, \quad \sum y_1 - \sum a - b \sum x_1 = 0$$

$$Ax, \quad \sum y_1 = \sum a + b \sum x_1$$

$$Ax, \quad \sum y_1 = a + b \sum x_1$$
or,
$$\sum y_1 = a + b \sum x_1$$
and the first normal equation.

From (2)

Which is the second normal equation

Similarly, we will get the normal equations of the other regression line x = a + by

as
$$\sum x_i = na + b \sum y_i$$

and $\sum x_i y_i = a \sum y_i + b \sum y_i^2$

g) Rank correlation has not been mentioned in the textbook. But it is essential when comparative study between qualitative data is done e.g. comparing the comparative tests, intelligence etc.

or stome and numbers programs to any series or seffectively in the to-

a) For where the the rank of the confident works and the

D are the real of the factor of the second and the employer of

b) Portage at a second of the second of the

There to take, for any set of an arrange fively of an article Restantion the areatons of $\leq R \leq 2$.

7. Michigan of the interpretate partitions that may be maked by the teachers to the Recourse Person:

The following prestrumes by the anke in

1) whether the representation that are consorred not?

1.6. whether 5 - 2 + 19 65.1 - 2 a 4 by will help in predicting the name value.

The an are in the or the real emitted applicable than

In the regression line y = a + bx, we minimize the vertical difference between the plant we want of y and the estimated value of y. In doing so we get the normal equation from which a and b are found out.

Now in the regression line x = a + by the minimisation of differences between observed value of x and estimated value of x are done. These are horizontal displacements and the normal equations from these will give the value of a and b different from the provious a and b.

a+La,

Vertical differ now between observed

9+631 x3 9+631 x

Horn outel differences between observed.

Another juention of interest in shother any two siven equations sould (ri represent the two regression lines ?

Example: Let the two equations be

$$3x + 7y = 4$$
 (1)
 $3y - 7x = 4$ (1)

and
$$3y = 2x = (1)$$

Equation (1) is expressed as y us. a

or

and equation (2) in example of as x on y

1.6.
$$3y - 7x = 4$$

or $x = \frac{2}{3}y - 7$

Now the coefficient of x in (3) is - and the coefficient of y in (2) h

Not be the two regression coefficients and of opposite organ hence we cannot consider the given the equations. In region and equations.

iii) Another interesting question is given in the lulidents examples Example: The there 3y - 4x - 7 = 0 and 3y - x - 4 = 0 are regression lines? Let the line y on x be

or
$$y = \frac{4}{3} \times + \frac{2}{3}$$
 (1)

and the Line x on y be

$$3y - x - 6 = 0$$
or $x = 3y - 6$

Now both the coefficients of (1) and (2) are positive i.e. of the same sign but the product of the coefficients

$$\frac{4}{3} \times 3 = 4 > 1$$
 ---- (3)

But we know that by $x \times b = r^2$ and $-1 \le r \le +1$

Hence (3) states that our assumption of taking y on x and x on y are wrong. If we consider the line.

$$3y = 4x - 2 = 0$$
 as x on y

Now both the coefficients $\frac{3}{4}$ and $\frac{1}{3}$ are positive and at the same time $\frac{1}{4} \times \frac{1}{3} = \frac{1}{4} < 1$

11
$$3y - 4x - 2 = 0$$
 and $3y - x - 6 = 0$ are taken

as x on y and y on x respectively, then these will be regression lines.

- 8. Discussion of some enrichment materials on the topic which the teachers are supposed to know '
- a) NonLinear trend in regression analysis:
- 1) Method of fitting a parabolic curve;

If $y = a + bx + cx^2$ be the equation of the parabola to be fitted to the parabola walues $(x_1, y_1), (x_2, y_2), ---, (x_n, y_n)$, then the best square method may also be applied here to get three normal equations involving a, b, c as

$$\sum x^{2}y = a \sum x^{2} + b \sum x^{3} + c \sum x^{3}$$

$$\sum x^{2}y = a \sum x^{2} + b \sum x^{3} + c \sum x^{3}$$

From the above a, b, c are calculated and put in the equation $y = a + bx + cx^2$ to get the best fit parabolic equation.

11) Method of fitting exponential curves of the type $y = ab^{x}$ and $y = ae^{bx}$ as best fit.

We get the equation (1) in the form

Y = A + Bx which is linear in form and can be tackled as linear best fit line.

Similarly for Y = a ebx, the bove with a is possed.

b) Teachers may have an idea about the analysis of the trop in correlation.

Similarly the idea of classic error of estillate and in the fit line.

9. Construction of intulligent question, the transfer concept and its

Proper application of Regionary Appetitude and the section technique

Problem 1

lkan

The following is , set of data where your and in crops to broke and on confoll.

Stinderd deviation 36

Here the coefficient of correlation between your same infinitely of the same the yield of crops when remaining a constant the same all when yield is 515.2 Kgs.

Solution: Let yield of crops is y variable and $x = 2(x^2 + y^2) = 0.000$

The regression equation of y on x 1:.

$$y \cdot y = by_{X}(x \cdot \overline{x}) \text{ where } by_{X} = x$$
or, $y = 508 = 0.5 \times \frac{36}{5} (x - 36)$
or, $y = 3.6 \times + 414.4$

Now then x = 28 Cms

Now taking the regression equation of x on y i.e.

or,
$$x = 0.069 \text{ y} = 9.052$$
 when $0xy = x = 520$ or, $x = 0.069 \text{ y} = 9.052$

so when writted it is the year is torceasted as 515.2 Kgs but when yield is taken on 512.7 Mgs, then the rainfall forecasted as 26.5 Cms.

This wants jurisfication about the applicability of the equation.

Here as yield in dependent variable and rainfall is independent, the forecasting of dependent variable is justified. The justified relation is $y=f\left(x\right)$,

Problem 2

Thether regression times become parallel to x and y axes and can be taken as estimating lines?

Ans: Then regression lines are parallel to axes they are perpendicular to each

The condition for the same is in this ir regression equations

and
$$x - \overline{x} = 0$$
 or, $x = \overline{x}$ — (2)

So equations (1) and (2) are equations of parallel straightlines to x and y axes respectively and it is quite understandable that $\mathbf{x} = \mathbf{x}$ or $\mathbf{x} = \mathbf{x}$ cannot give prediction for any variable.

10. Reference Books

A) Kitchler & Smith Statistics - A beginning

B) Loroy Folks, J Ideas of Statistics

O) Nonnacott, R.J & Statistics discovering its power Womiacott, T.H.

D) - do - Introductory statistics

E) Dag, N.G. Statistics

Teach Yourself - Statistics

- X

	,	

MUMBALOM IMPRODS

Ų.

Frepared by :

- Pref. M. Mitra
 Presidency College
 Department of Mathematics
 College Street
 Calcutta 700 073
- Department of Applied Science M.M.M. Engineering College Corakhpur 273 010 (U.P.)

NUITERICAL LETHODS

1. LOTIVATION

In most of the practical problems of Physics and engineering, so need a solution in numerical terms. This is achieved, in general, from the analytic solution by substituting numerical values of the asta and applying the ordinary rules of arithmetic. These are number of problems where ordinary analytical methods fails to yield solutions. Also there are problems where it is simpler to obtain direct numerical solutions than to obtain the analytical solutions first and then to evaluate it for the given data. Various examples of such nature can be seen in finding the roots of transcedental equations or in solving nonlinear differential equations.

(no of the simplest method is to draw a straight interaction and a straight in a parabola fix) = 0

by drawing the curve y = f(x), and noting down the values of x at the points where y vanishes. A third is to obtain the integral of f(x) by plotting the curve y = f(x) on a graph paper and counting the number of squares between the curve and x-axis. These simple methods give results with loss accuracy. Numerical methods can be derived from such graphical methods and they give more accurate results.

The results obtained by using mimerical methods are not exact.

However, calculations are performed several times to obtain a result very close to the exact value. For instance, one starts with a known

approximate solution, say, so. It is used to obtain a performantian, say, \$1. Then, then solution is in used to obtain a still better approximation \$5.; and this process its repeated till a result of secured accuracy is readled. There are, the result obtained by numerical method is not exact and this method is repetitive in nature.

exact and approximate. For example, the number i, 1, 1, ...;

exact and approximate. For example, the number i, 1, 1, ...;

e, \frac{1}{3}, \frac{1}{2}, \ldots \frac{

Again, the rapid development of high spec. in the computers and the increasing decire for numerical are were to applied problems have enhanced the domand of method. But techniques of the numerical analysis.

2. BRIDE OUTLINE OF THE COUTLINE

There are neveral methods to notive the equations of the type f(x) = 0, system of linear equations and the integration of f(x)

numerically. However, with in the present scope of the book, it is limited to the following:

A. SOLUTION OF f(x) = 0.

Here $f(\pi)$ is assumed to be continuous and the following methods fill by discussed. They are

- L. The Bisection Method
- 2. The Method of False Position
- 3. Ne:rton Rapideon Method

B. SOLUTION OF SYSTEM OF LINEAR EQUATIONS

Here the system of equations are assumed to be considered and the number of equations and unknown variables are same. However, the following methods are discussed taking three equations and three unknowns.

- 1. Gamman Eli ination Mothod
- Z. Gauss Seidal . Method

C. NUTERICAL INTEGRATION

Here again the function is assumed to be continuous, and we limit our consideration to the following two methods.

- 1. Trapeziodal rules
- 2. Simpson's rule.

3. A BRIEF WILINE OF NULLELICAL METHOD

It is desirable to mention here work features of numerical methods, for instance, the against lague, more this method is applied and so on.

Consider, for example, the following value.

Velocity of light, o = 299300 h../:مدر المناها of Light, o = 299300 h../:مدر المناها المناها

The zero: in C and D insirate only the magnitude of the mumbers and not their accuracy. The figure that remains after removing such zeros from the beginning or on are known as the significant figures. Thus T contains have enquirisent figures that C and D contains four each (299) and [49].

Further suppose an experience of the value of C = 299793.7 km/sec and the possible error as that value is a km/sec. Then, it serves no purpose to arite the velocity to seven figures. Only the first four figures are alguificant in this case. Ic, therefore, drop the remaining figures and round off the value to 299800.

Notice turn our attention towards the problem. A frequently occurring problem is to find the roots of the equation of the form

$$f(x) = 0. (1)$$

If f(x) is quadratic, cubic or biquadratic expression, then algebraic formulae are available to express the root. In terms of the

or an expression involving algebraic and transedentals functions or so, for example,

1 + row x · 5x , x tan x · cosh x , x in x , eta., the algebraic methods are not available. Here one has recourse to approximate (numerical) methods to find the roots of such equations.

The following methods can be explayed:

- 1. The graphical method
- The interastion method
- 3. The Bisection method
- .. The method of false-position,
- . Neuton-Rap tann Method
- 6. Generalized No ston-Mathod
- 7. Buller's method
- 8. The potrent difference method.
- SALIENT FEATURES OF THE HETHODS MENTIONED IN THE CONTENT AND MOT PROPERLY EXPLAINED IN THE BOOK PAGE 619 653.

Bisection in thou: Here we get successive intervals where the root lies. The length of the successive intervals is reduced to half of the length of the preceding intervals. Here it should be remembered that in each case the root lies the interval.

Heuristically speaking one can make a rough a transfer of the number of interactions to be inclining as a result. For example, if we declare an accuracy of three praces of declars and choose the langth of a rest interval to be unit, then

the length of interval after a intera trons should be less than .001. That it,

$$\frac{1}{2^n} < 001$$
or, $n > 10$.

So it needs to perform unto 10 and a tion in this case.

Further one should not use this a though charactery as evident from the book. For, consider the curve shown in the assure.

The root x is close to x_1 and lies in (x_0, x_1) . The method will take several steps to reach it, because the interval is divided every time. Also, even if the root is close to $x_0 + x_1$, it requires several steps to perform to reach it.

This is evident from the figure 2. Therefore, it is advise able that x_0 and x_1 should be choosen close to x_1' to its left and right respectively so that the process proceeds such faster. It is evidently clear tross the example Land of the book, if we follow as under:

in sixth, iteration:

$$f(x) = 0.00.77$$
 (This is close to %).

Then, re culculate

This weans that we should choose

for the next: ..., and it gives the result of tenth

of the book. So, work of four iterations can be saved. Further, if

we had choosen

se would have for the next iteration

$$x_0 = 1.796135, x_1 = 1.796$$

and this leads to a somewhat better result than the 11th iteration could of the book.

Remarks

- 1. The theorem (1 -1) is used to get the first interval (x_0, x_1) if there is only one root otherwise the more calculations are necessary to determine (x_0, x_1) .
- 2. The remark 1 on p. 675; hould correctly be combacised. It is mid-cading. It should, for instance, be that i(1.796) = -0.00279 fails to satisfy the equation by -0.0079 which i. a quantity close to zero.

Method of Falce-Foirtion

Here the curve between two point. In emproximated by the line joining these points. It is better that the Bisection method as the values on the curve are used. Walls, the choice of the point, are important. Consider, for example, the following curves.

the curve is running; thought parallel to the arms of x; in this case the bisection method converges more rapidly.

NEITON-RAPIBON LETHOD

It is an improvement of method of false-position. Here we in the curve is approximated by a straight line but this straight line is the tangent at one point on the curve. This method is unjustable than the derivative at the point is small. Consider the following curve, to have this point fully appreciated.

GAUSS FLIMINATION METHOD

In equations (1:1) - (1:1), it should be remembered that the coefficients in the top left corner is not zero and is large compared to other coefficients of that equation, that is, (1:1). If it is zero or small we write the trial of the interpretation of the equations in different order. For instance, if a = 0 or small and b is fairly large, then the equations should be written as

$$v_1 y + z_1 x + c_1 z = d_1$$
 etc.

This means that we should check and arrange the given equations in this fashion first before proceeding to obtain the solution. Following the method equations (1..1), (1...), (1...), (1...)

But, $c_3^{11} \neq 0$ for unique modution. If $c_3^{11} = 0$ and $c_3^{11} \neq 0$, the equation $(1...3)^{11}$ is incommission that the other two. Hence there is no solu.

Again, if $c_3^{11} = 0$ and $d_3^{11} = 0$, the equations are consistent and the values of x and y are obtained in terms of z. Z can take any arbitrary finite values. The solution is not unique.

A similar argument can be applied to the second equations, if necessary.

Remark

1. Then the coefficients become too small, it is difficult to obtain the desired result. For example, equation (14.3) 11 if assumes the form as

we get an answer correct to only two places of decimals inspite of the fact that it is seen worked up to five places of decimals.

2. This method can also be used when the number of equations and variables are unequal.

GAUSS-SELDEL METHOD

The leading diagonal terms should be fairly large. Having arranged the equations in this fashion we obtain from (14.7), (1..8), (1..9), the following:

$$x = \frac{1}{a_{1}} (a_{1} - b, y - c_{1} z)$$

$$y = \frac{1}{b_{2}} (a_{2} - a_{2} x - c_{2} z)$$

$$z = \frac{1}{c_{1}} (a_{3} - a_{3} x - b_{3} y).$$
(2)

No, the iteration begins as given in the book. However, it will lead to true results if the following conditions are satisfied:

$$\begin{vmatrix} a_{1} \\ b_{2} \end{vmatrix} > \begin{vmatrix} b_{1} \\ + \begin{vmatrix} c_{1} \\ c_{2} \end{vmatrix} > \begin{vmatrix} a_{2} \\ + \begin{vmatrix} c_{2} \\ b_{3} \end{vmatrix} > \cdots$$

$$\begin{vmatrix} a_{3} \\ + \begin{vmatrix} b_{3} \\ b_{3} \end{vmatrix} > \cdots$$
(3)

Thus, the diagonal elements of the coefficients matrix must be fairly large compared to other elements (coefficients). If they are not, the order of the equations and variables should be changed so that the conditions (3) are satisfied.

TRAPEZOIDAL HULE

1. If the number of interval, are sufficiently large then the trapezoid by which the area in that particular interval is approximated, in getting more accurate. For example, consider

$$\begin{pmatrix}
\frac{dx}{1+x'} & \frac{71}{1+x'} & \frac{785.96}{1+x'}, & \text{(6 places of dboringls)} \\
 & \frac{dx}{1+x'} & \frac{785.96}{1+x'}, & \frac{6}{1+x'} & \frac{785.96}{1+x'}, & \frac{6}{1+x'} & \frac{1}{1+x'}
\end{pmatrix}$$

If (4) is evaluated with a equal interval: then

$$\int_{0}^{1} \frac{dx}{1+x^{2}} = \frac{1}{8} \left[6.767. \right]$$

$$= .7828$$
(5)

and it evaluated with 8 equal interval; them

$$\int_{0}^{1} \frac{\cos x}{1 + x^{2}} = \frac{1}{10} \left[\frac{10.9560}{10.9560} \right]$$

$$= .78.3$$
(6)

Times (6) is more close to () inc. (5) :

2. The graph of the curve should approximate to straight line, in order to find the exact result: by this method. For illustration, please see the following figure:

SI. PSON'S RULE

Here the curve is approximated by different parabolas.

Also the result comes close to accurate value if the numbers of intervals are sufficiently more. For example, consider equation (), by taking ; and 8 intervals respectively, one obtains

(1) 1
$$\int_{0}^{1} \frac{dx}{1+x^{2}} = 0.785392$$
(7)
(4) intervals)

(1i) 1
$$\int \frac{dx}{1+x^2} = 0.785398$$
 (8) (8)

A comparison can give the idea more clearly.

Rewirk

The interval [a, b] need not be divided into equal subintervals. For example, consider

$$\int \frac{dx}{x} = \cdot \int \frac{dx}{x} + \int \frac{dx}{x} \cdot (9)$$

In the interval (4, 1), the integrand varies rapidly where is in (1, 1) it is not varying so rapid. In such case, the interval should not be divided into equal length. Obviously, the Simoson rule all be applied to obtain the integral in two intervals (4, 1) and (1, 2) with different h.

5. ALTERNATIVE AND EASIER METHODS

(a) The graphical method.

Here fine functions are plotted and the point of intersection can be taken as the solution of the problem. For example,
consider

$$x' + \sin x = 0. \tag{10}$$

We can plot $f_1 = x^2$ and $f_2 = \sin x$ and note the point of intersection to have the approximate roots. That is,

Again, along get the commande value of can resplot the curve in the vicinity of this value of large some to have more accurate values.

(b) Iteration method.

The equation (1) can be expressed in the form

$$x = \phi(x) \tag{11}$$

Let x be an approximate value of the desired root. Then,

$$x^{J} = \langle \psi(x^{0}) \rangle \tag{15}$$

Hence, the successive approximations are

$$x_2 = (x_1)$$

$$x_n = (x_{n-1})$$

Here arises several questions, for example

- al ways convergent, say, to Limit,
- 1i) If it is so, will $\frac{1}{2}$ be a root of the equation $x = \frac{1}{2}(x)$?
- How should we choose in order that the sequence x_0, \dots, x_n converges to the root ?

It is out of the present scope to answer these questions, however, a sufficient condition for the sequence of approximations to converge is

$$|\varphi^{l}(\mathbf{x})| < \omega < 1$$
 (12)

in the neighbourhood of the loot.

However, the reader may look these questions by considering the equation

$$x^3 + x^2 - 1 = 0 (1.)$$

which can be put in the form (L2) as

(a)
$$x = (1 + x)^{-\frac{1}{2}}$$

b)
$$x = (1 - x^3)^{\frac{1}{2}}$$

c)
$$x = (1 - x^2)^{1/3}$$

7. JESTIONS TO TEST A PARTICULAR CONCEPT

1. Does Newton-Rankeron Method allows give the root of f(x) is large in the neighbourhood of the root but f(x) does not exist at one point only in this neighbourhood?

The method may fail to the initial approximation x is not sufficiently close to the root. A case are the following graph:

Coincide as also x_2 , x_4 , x_5 , ... Hence the process will never converge. This will happen on any point on RC. But the process will converge if the point lies on AB. Here it should be mentioned that similar examples can be constructed oven if the curve is slightly curved at B and D points.

2. How can we evaluate integrals such as

$$\begin{cases} \frac{dx}{1-x^2} & i \end{cases}$$

Here the integrand tends to infinity as x approaches unity. Trapezoidal rule and Simpson's rule are prohibited because the value of the function at x = 1 does not exist. Again, the graph is

If it is finite, we calculate

$$I_1 = \int_0^{9} \frac{dx}{1-x^2}$$

$$I_2 = \int_{9}^{9} \frac{dx}{\sqrt{1-x^2}}$$

$$I_3 = \int_{99}^{999} \frac{dx}{1-x^2}$$

If we find that l_2 and l_3 become progressively smaller, we say l_1 is an approximate value of the integral; but l_1+l_2 , $l_1+l_2+l_3$ are better approximations.

Remark Since the power of (1-x) in _____ is ½, it can be shown from the theoretical 1-x2 considerations that 1 is finite.

$$\int_{0}^{\infty} \frac{dx}{1-x^{2}}$$

REFERENCE

(Indian Authors)

- 1. Chandrika Prapad Engineering Lathematics/Mathematics for engineers.

 (Relevant portion)
- 2. S.S. Sastry Introduction to Numerical Method.

COMPUTING

Prepared by

Dr.R.K.Bera
Department of Mathematics
A.B.N. Seal College
Coochbehar
West Bengal

COMPUTING, ALGORITHMS AND FLOW CHARTS

1. Motivation of the topic

All of us know that for one set of values of three sides of a triangle, the area of a triangle can be easily determined by some standard formula within a very short time. But if we want to calculate the areas of 100 triangles with 100 different sets of values of three sides, then the task is not very easy to do it in a very short time by the earlier methods. But now-a-days, the areas of these friangles can be computed within a time which cannot be simply conceived of a few years ago.

Another example we can cite that if we want to find the value of $F = X + Y^3$ for a net of values of (X, Y), then it can be very satily done within a very short time. But if we want to find the values of F corresponding to 1000 sets of values of (X, Y), then this cannot be done within a very short time by the earlier techniques. Once again we can say that the values of F corresponding to the 1000 sets of values of (X, Y) can be computed in an unconceivably small time, at present.

The third example, we consider, is that if we want to evaluate the integral $\int \frac{dx}{1+x^2}$ by Simpson's One-Third rule taking only three ordinates, thus can be done without much effort within a short time. But if we want to compute the same problem for 101 ordinates, then the task is not very easy and at the same time it requires much labour and time in the earlier systems. But, in the present time, this has become so easy as regards labour and time.

Hence, from the above discussions, it is clear that the computation plays a vital role in the solution of Mathematical and Scientific problems within a very short time and without giving much labour.

2. Brief outline of the content

For the computation of Mathematical. Scientific and other types of problems within a very short time and without giving much effort, the high speed computers are being used. The use of computers requires the Knowledge of Binary, octal and Hexadecimal systems of numbers and their operations

tions to the docinal gratem.

The computer, being a machine, cannot understand our intention and language. It has its own language known as Machine language which, again, cannot be very easy to cope with for our purpose. To make the computer understand our intention and purpose we have to know nowe languages which computer can understand. For the sake of computer, in course of computation, we must have some knowledge of flowcharts and algorithms so that our intention and purpose may be clearly and effectively communicated to the computer to achieve our goal.

Although the computation does not require any knowledge of the computer machine, a curious reader may want to know attempt the major components of a computer.

3. Explanation of technical/mathematical term not properly explained

The term hypothetical computer should be dropped to evoid confusion as me have already discussed the design of a computer. It is better to write a computer of 16 bits or 32 bits etc.

The difference between fixed point representation and floating point representation should be clarified. In fixed point, the name suggests has the position of the decimal point fixed. But in the case of floating point according to its name, we can change the position of the decimal point to write it in exponent form as discussed in the book.

Natural language is the language used by the human beings but, as already mentioned, the computer being a machine cannot understand, till today, the meaning of such languages as used by us. This should be explained clearly to the readers.

High level language: As the level of communication is not at per with us, a different type of language or languages will be necessary for communication to the computer machine which operates in high speed also.

This languages are FORTRAN, BASIC, PASCAL, COBOL etc.

Pacudo language: The literal meaning of the word recude is false, that is, this language cannot be used for computer programming for communication to the computer we convey our motive and purpose. But it is helpful

for imiting algorithm.

4. Alternative easier approach, if any, in discussing some subtopics

In my opinion, as our title is computation or computing, it is found that we are very much burdened with basic ideas without going much into the computation itself and the actual intention of computation is lost. It would have been better for the young mind if some examples in programming languages (not in pseudo language) are written to show how the computations are being performed. As is actually seen during computation, we do not use pseudo language.

5. Basic concept to be emphasised in teaching the topic

The concept of Binary, octal and Hexadecimal number systems is very important in relevance with switching circuits. The knowledge of Boolean Algebra is also essential. The idea of rounding off errors in numerical computation is important.

6. At Lysis of conceptual errors that may be committed by teachers in teaching the topic

The relevance of reading Binary, octal and Hexadecimal system of numbers for the use of computer is not mentioned anywhere in the book.

Binary system has an application in the design of switching circuits, since a switch also has the binary characteristic of being either ON (1) or OFF (0) and since a digital computer happens to be a wiring of the switches, we can well appreciate the contribution of the binary system towards computer designing. Number is represented in the computer by a group of electrical switches which can be OFF or ON. It is, therefore, the combination of OFF (0) and ON (1) which represents a number and the fantastic computing speed of the computer is basically due to this fact. When a binary number is very large, its conversion to decimal form is time consuming and so now the provision is being made in the ultra machines to first connect binary to Ootal or Hexadecimal form and then to decimal. As radix (or base) 8 is 2³ and radix 16 is 2⁴, so we first group the binary digits three at a time for conversion to Octal system and four at a time for Hexadecimal system from the

left and then we go over to the decimal system.

For example, the binary number is converted to Octal system as follows:

$$000$$
 001 111 10

خريتي با

Now the Octal number 30176 can be converted to decimal number as usual.

The idea of Binary addition and subtraction as is being done within computers . . are not discussed anywhere in the books.

Binary addition

We can find the sum of binery numbers keeping in mind the following addition rules:

$$1 + 0 = 1$$

$$0 + 1 = 11$$

$$1+1 = 0$$
 and 1 to carry.

Let us explain why de do so.

As in the decimal number system, when we come serous a situation 9 + 1 which is 10, we write 0 an the corresponding place and carry 1 to the next phase (right to left). Similarly, in the binary case, re don't have a symbol 2 (which is 1 + 1), as we don't have a symbol 10 in the decimal system, so we carry 1 to the next place situated on the left of it, where spill over occurs. For example, let us add 111 to 101, we have

Explanation (From right to left),

$$1 + 1 = 0$$
 with 1 to carry

$$1 + 1 = 0$$
 with 1 to carry

We can verify this as follows: We have $1.11 = 1 \times 2^2 + 1 \times 2^2$

In most of the computers, subtraction is carried out by adding in the minuend the complement of the number to be subtrated. This method simplifies the subtraction procedure in computers because it allows both addition and subtraction to be done by the same circuitory (the binary added). To see as how it works, let us take an example of decimal system first.

By this method, we first find the 9's complement of the mumber to be subtracted). The complement of a number is obtained by subtracting it from the next highest power of the radix (called 10's complementing if the radix is 10) or from the next highest power of the base less 4 (called 9's complementing if the base is 10). If the base is 2, there complements are called 2's complements and 1's complements respectively.

Thus 9's complement of 125 1: $(10^4 - 1) - 125 = 999 - 125 = 874$ or in other words, we can say that if we subtract each digit of the number whose 9's complement, we are interested to find, from 9; then the outcome is the desired 91s complements. For example, 9's complements of 7465 = 2534.

Now our problem was to subtract 125 from 135.

Step I

Find the 9's complements of 125 (the subtahend and it comes out to be 874. Subtracing each digit from 9).

Sten II

Add this to minuend which in this case is 135. Thus 135+87/=1009.

Stop III

Shift the leading digit of the sum, which is in this case 1, to the units place and find the sum; thus 1009 is now 009

This is the required enswer: Thus, we get the same result, viz., 10 both ways.

This when applied to binary system, makes the problem highly simplified.

Now, instead of finding the 9's complement as we did in the case of decimal system, we have to find 1's complement of the number which is to be subtracted and this is obtained by subtracting each digit of the number whome 1's complement we are interested to find from 1. Since in the binary system we have the digits either 1 or 0 and when we have to subtract 1 from 1, the result is 0 and when we have to subtract 0 from 1, we get 1. Thus for example, 1's complement of 100011 is 011100 which we get by simply investing the digits, i.e. by changing 0 to 1 and 1 to 0 and this, in the computer, is done by an automatic complementor electronically.

Example: Lot us for example, subtract 001101 (13) from 011100 (28)
Step I

1's complement of 001101 is 110010.

Step II

Adding the complement to the innuend

Step III

Shift the leading digit of the sum obtained in step II to the unit's place and find the sum which is

which is the required result which when converted to decimal is 15 and we know 28 -13 = 15.

Major advantage of binary system is that it is applicable to most of the physical systems as they too have the binary characteristics. For example, in an electric circuit, 1 can be represented by voltage pulse and 0 by no pulse.

Another advantage of binary-notation is that, with only two symbols, a limited number of addition and multiplication laws suffice and this is a big advantage over the multiplication laws in decimal system. For binary multiplication we have only to remember that $0 \times 0 = 0$, $0 \times 1 = 0$, $1 \times 0 = 0$ and $1 \times 1 = 1$.

The only disadvantage we have with the system is that we require a good large number of bits (Binary digits) even for the representation of a number of moderate size.

An N bit binary number is roughly equivalent to +3 N digit decimal number. For example, a 15 digit binary number 011000001111110 is required to represent 5-digit decimal number 12414 (= .3 x 15 = 4.5 \simeq 5).

- 7. Discussion of some interesting questions that may be asked by the teachers to the resource persons
- a) With reference to Example 13.14, a question may be asked while additing the normalised floating point numbers, we connect some numbers using its normalised form to make the exponent equal, why?
- b) 11th reference to Example 12.20, a question may be asked, why the final result is not round off?
- c) What is an end correction?
- d) Is the floating point arithmetic exact?
- e) Are the operations of floating point addition and multiplication associative?
- 8. Discussion of some enrichment materials on the topic which the teachers are supposed to know

In Brooken Algebra logical statements are converted to numerical forms. Since logical propositions are either true or felse and so if we represent truth by no '1' and falsehood by no. '0', then by this it will be possible to represent logical statements in numerical form. Boolean algebra is widely u 'c' in switching circuit analysis and design and in particular, in the design of logical circuits of digital computers. From 1 (T) and 0 (F) states, certain logic statements are evolved for the circuits used in digital computers.

In Boolean Algebra, addition sign.is indicated by the OR logical function. For example, if we say that Z is true if either x is true or if y is true, this in Boolean Algebra becomes Z = x + y. An OR logical circuit designed as follows:

->C 1 = >

It states that a signal on the output line will appear if there is a signal on either of the <u>input lines</u> (1 in the circle is taken to indicate this). The algebraic expression for the operation of this OR circuit is $\overline{Z} = x + y$ (i.e. Z = XIY in set theory). We can have more than two inputs also.

Other types of logical elecuits are AND and NOT.

Example: Consider the quadratic equation:

1.0000000 $x^2 \sim 4.0000000 x + 3.9999999 = 0$. If $x_1 = x_2 = 2.0000000$ are the computed roots, then it can be verified that these are the exact roots of the equation:

0.999999992 $x^2 - 3.999999968 \times + 3.999999968 = 0.$ Since the coefficients in this equation differ from those in the former by not more than one unit in the last decimal place, we can say that the appropriate roots are fairly good roots for the former equation.

The policy of normalizing all floating point numbers can sometimes be favourable to attempt the maximum possible accuracy obtainable for a given precision and can sometimes be potentially dangerous in that it tends to imply that the results are more accurate than they really are. For example, if the result of A - B is normalised where A = +.413256E + 01 and B = +.413145 E + 01, then A - B = +.111000 E - 02. In this case, the information about the possibly greater in accuracy of the result is suppressed. This information would be retained if the result were +.000111 E + 01. In order to preserve this information, unnormalized arithmetic has been syggested as has been pointed out earlier (Ashenhurst and Metropolis, 1965) in 7.

9. Suggested Reading

- a) Numerical Algorithms (E.V.Krishnewurthy & S.K.Son)-Affiliated East-West Press Pvt Ltd.
- b) No merical Analysis Amritava Cupta

MATHEMATICAL LOGIC AND BOOLEAN ALGEBRA

Prepared by:

Dr. M.K. Sen
North Rengal University
Denautment of Mathematics
Raja Ram Makungur
Dist. Parjeeling
West Bengal

1. Motivation of the topic

Symbolic logic and classical logic are that disciplines included in the currifulum of Philosophy. May then has symbolic logic taken a least out of a text book of Philosophy and is being treated as a discipline in Mathematics? Are symbolic-logic and classical logic two different subjects? Previously, symbolic logicians criticized classical logic as out dated and defective which philosophical logicians trained in classical logic criticised symbolic logic on the ground that it involved misconceptions about the nature of logic.

This dispute is now resolved. The logicians are now unanimous that modern symbolic logic is a development of concepts and technique which were implicit in the work of Aristotle. The three features of symbolic logic are that:

- (1) it uses symbol s ;
- (2) it uses variables;
- (3) It uses deductive method.

Now these three characteristics of symbolic logic are also characteristics of any discipline in Mathematics. Thus the development of symbolic logic has been tied up with Mathematics and it is significant that the pioneers of the subject were either mathematiciant or philosophers with a mathematical training and frame of mind.

Apart from the proneering contribution of George Boole, an English mathematician, the other name that must be mentioned as Bertrand Russ II., in 1910 in collaboration with D.N. Whitehead; he published "Principle Mathematics", a monumental work, in which symbolic logic is disborated and made to herve at the foundation of whole of mathematics.

Maile the reason for studying symbolic logic in Mathematics has been outlined, again the question arise. has it then sowered its connection with Philosophy and classical logic? The answer is no. It shares with the same traditional logic the functions of providing a method of testing the valuaity of arguments of ordinary language and does all the tests of classical logics in a precise way. In this respect we can say that symbolic logic is a nevel oped form of classical logic.

One last question. My 12 witching circuit theory and Boolean algebra, apparently so diverge a field of study included in this chapter? Historically, George Boole introduced in his book, "The law of thought" developed an algebraic system for a systematic treatment of logic, called Boolean algebra. But summaningly afterwards Boolean algebra has found two important applications, one is that the theory of sets along inth its operations of union, interaction and compliment fit in nicely as an example of a Boolean algebra. And then in the second quarter of this century, it is found that the basic properties of switching circuits along with its series and parallel methorks could be adequately represented by the same algebra.

Since that time, Boolean algebra has played a significant role in the important and complicated task of designing telephone circuits and electronic computers which have entered into our daily life.

The resource person may motivate the topic by concluding with a modified remark made by Bussell. England can be proud of having produced two personalities who in turn were instrumental to two revolutions in the history of mankind.

One is Isaac Newton because of whose there was the industrial revolution in the past centuries and the other one is George Boole to whose credit goes the computer revolutions that the present century is witnessing.

A resource person may again ask the teachers to find a fallacy in the following argument and say that the primary aim of logic is to that whether an argument is valid or not.

1. Hypothesis

Dear is the fastest numer P.T. Usha is the fastest numer (in India).

Conclusion

.. P.T. Usha is a dear

2. Hypothesis

The fastest runner will be awarded the President's gold medal.

Dear is the fastest runner.

Therefore Dear will be awarded the President's gold medal.

3. 2 Mathematical terms not explained

Symbolic logic and switch algebra are treated here as particular cases of a Boolean algebra. So the attempts should be made to make the symbols and the terms more uniform.

In order to emphasize to the students that they are practically doing the same mathematics, it is desirable that the same symbol be used in both the topics. Moreover, as we shall later see, calculations become very handy and a student of mathematics with feel at home if we resort to the symbols

1. 0, + and . on both the topics.

Again in order to have a parity with the terms of Boolean algebra, and that the correct message is reached, the terms connectives, simple proposition and compound proposition should be replaced by logical constant, propositional variables and propositional functions respectively. In Boolean algebra, we use the terms constant, Boolean variable and Boolean function, and there is no reason why the students are not made familiar with the corresponding terms in symbolic logic.

In the book truth tables of compound propositions such as coniin
jection, disjunction etc. are given all right but it should be highlighted that these are the alternative and often convenient way of
defining a function.

Lastly, the definition of Boolean algebra is given in a very casual manner. They have first cited the example of the algebra of satisfied the operations of addition and multiplication in the satisfied algebra and explained the different lass that they satisfy and then said that such a set is called a Boolean algebra.

But it is desired that while defining a Boolean algebra, it should be made independent of all shackles, as we do in the case of theory of groups, etc. and it should then be shown that the switch algebra, the algebra of propositions are all example of a Boolean algebra.

Alternative easier approach

For all practical purposes, there are three mathematical approaches to tackle the all-important problem of determining the validity of an argument.

- (1) by truth table
- (11) by contradiction
- (iii) straightaway salculating with the help of different powerful operational laws and shecking if the function

"down to the form

If so then it is a tartelogy and the argument is valid; otherince not. The method (ii) also involves mathematical calculation but
the method (iii) may initially be Below are the two
examples splived mathematically.

q

So f is a tartology and the argument is valid.

Ex.

$$f = ((p \rightarrow q) \land q) \rightarrow p$$

$$= ((p \rightarrow q) \cdot q) \rightarrow p$$

$$= (p + q) \cdot q \rightarrow p$$

$$= (q \rightarrow p) \quad (absorption)$$

$$= q + p \quad (defn_*)$$

So f is not a tattology and the argument is not valid.

Ex. proof by contradiction

b A. d.

This is equivalen to

so f is a tartology and the argument is valid.

5. Basic concepto to be emphasized

(a) Proposition

A proposition or a statement is a basic entity around which any dismension of logic revolves. Proposition, 'true', 'false' are undefined terms, and are primitive concepts as is true of any formal system like sets in set theory, points and lines in geometry. By a proposition is understood a sentence which has the property that it is either true or false but can not be both; it must be free of ambiguity and grammatically it is declarative in nature. Since the requirement to be free of ambiguity is relative and varies from

person to person, one may even question the existence of Euclic (can a proposition. Analogy can be drawn from the right geometry where a line is supposed to have no midth, although no such line can be drawn on a paper with a pencil. So we will come across a knotty position, if we want to make the concept too much precise and as such it is better if the reador is suked to be a little tolerant about if and not for very that it.

(b) Validity of argument

One of the main purposes of a togician is to test the validity of a conclusion set of premates and not the truth of it. This may apparently to a beginner seem a little surprising. It may be thought that as we debate and reason only in order to arrive at a true conclusion the main instrument of the logician should be truth rather than validity. But it should be noted that the guarantee of the truth of a conclusion requires two conditions. First, the premises from which we come to the conclusion must be true that becondly the addictions must be valid of these two, logic guarantees only the second. Je are not concerned at all with the truth or falsity of a proposition much are not formally deducible from other propositions. Thege have to be established by means which lies outside the scope of formal logic. These two conditions are totally exclusive and there is no interconnection between these two questions. It is quite likely that we can reach a true conclusion from one or two false premises and still the argument is valid and the duty of a logician is to treat only this part of valiuity.

W1.

Ex. 1

Premises

- 1. Moon is made of dramond (F)
- 2. Diamond is beautiful (T)
- Therefore, Moon is beautiful (T)

Ex. 2

Any integor greater than 10 is even

6 > 10 (F)

- .. 6 ... an even integer (T)
- 6. Conceptual error/gaps

In example 5.2, p.193 a problem is given to state the truth values of a number of simple statements. One is:

(i) There are only finite number of rational mumber.

It should be clear from the outset that determination of the truth value of a simple proposition is a subject that does not fall within the purview of symbolic logic and indeed it is a matter of other disciplinary study. So we can very well take the truth value of the statement "The sun rises in the Nest" as (T) (1) and proceed to build a consistent logical system.

7. Interesting questions

Thile going through the definition of the material implication p -> q, one may get stuck:

Truth table of p - q 10 es follow:

The first two rows of the above table are intuitively evident at they arise most commonly in mathematics and we use it everywhere. But they are the third and the fourth rows necessary? A satisfactory answer to this question is that a material implication "If p, then q" is a compound proposition, that is a proposition function, and in order that the function is well defined, all the possible combination of values of the involved variables p and q must be taken into consideration. In other words the function must be defined for all possible values of p and q.

Incidentally the truth table of $p \longrightarrow q$ shows that it is equivalent to the function p + q. So it may be pertinent very well to define $p \longrightarrow q$ as the function p + q. Thus the proposition $p \longrightarrow q$, does not mean, as the common sense goes, that q can be logically deduced from p. The proposition only means "not p or q" and nothing more should be read from this definition.

Examples:

1.
$$p : \frac{3}{3} + 3 = 6$$
 (F)

q: The sun rises in the east (T)

 $p \longrightarrow q$ is a true proposition.

2. p 2+3 = 6 (F)
q : The sum risco in the west (F)

p -> q is again a true proposition.

8. Enrichment Material

(a) Truth mets for propositions

In the Book by NCERT, there is an article ouse of Venn chagram in logic. In this article some examples are taken to find out the truth sets of some propositions, without going into details about it.

Truth set should be of special interest to a student of liathematics which deal with propositions that describe properties of a given universal set by. Such propositions are called propositions over U. For example, if the universal set by is the set of all + We integers, then " x is a multiple of 5 " and " x² ~ 16 = 0 " are propositions over U.

Generally, if p is a proposition over U, describing some property of the element u & U, then p is either true or false, depending on the particular u & U substituted in the proposition.

Thus p unduces on U a partition consisting of the subsets T and T , where T consists of all elements u & U for which p is true and T = U - T .

That is T = { u | u \in U; p is true }

The set T is called the truth set of p.

For example , the truth set of "x is a multiple of 5 " over the sot of all +ve integers is

 $T_{D} = \begin{cases} 5, & 10, & 15, & 20, & 25, & \dots \end{cases}$ and the truth set of " $x^2 - 16 = 0$ " over the set of all +ve integers is

$$T_p = \left\{ \begin{array}{c} 1 \\ 1 \end{array} \right\}.$$

The following are the truth sets for different propositions: (b)

Alternatively a truth set of a proposition p is set of all logical pass, but full for which p is true.

(c) @ relations in Mathematical logic

In the Language of sets there are :

(a)
$$\dot{A} = B$$

more n & B are truth sets of a and b respectively.

Different forms of valid arguments

Modus poneus

3.
$$p \cdot q$$

$$p \cdot q$$

$$p \cdot q$$

$$p \cdot q$$

2. Law of syllogism

7.
$$p$$
 8. q

$$p+q$$

$$p \to q$$

The valid argument of the form (7) is interesting and deserve attention.

" If Rai in watching T.V. then Ram is either watching T.V. or playing football ", is a valid argument.

REFERENCE

- 1. Whitegiti, Boolean algebra and its applications
- 2. Kememy, Small & Thomson, Finite mathematics
- 3. K. Stoll . Set theory and logic
- . P. Suppose, Hathematical Logic.