Report on the FCC and IC Testing of the Paxton Access Ltd
Keyless Door Handle, Model: Net2 Paxlock
In accordance with FCC 47 CFR Part 15C,
Industry Canada RSS-247 and
Industry Canada RSS-GEN

Prepared for: Paxton Access Ltd

Paxton House Home Farm Road

Brighton BN1 9HU

United Kingdom

FCC ID: USE900120 IC: 10217A-900120

COMMERCIAL-IN-CONFIDENCE

Date: March 2018

Document Number: 75939957-06 | Issue: 02

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Project Management	Natalie Bennett	07 March 2018	Nones
Authorised Signatory	Matthew Russell	07 March 2018	Passell

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15C, Industry Canada RSS-247 and Industry Canada RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Testing	Nandhini Mathivanan	07 March 2018	K. M. M.
Testing	Graeme Lawler	07 March 2018	Gi Nawter .

FCC Accreditation Industry Canada Accreditation

90987 Octagon House, Fareham Test Laboratory IC2932B-1 Octagon House, Fareham Test Laboratory

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15C: 2017, Industry Canada RSS-247: Issue 2 (2017-02) and Industry Canada RSS-GEN: Issue 4 (2014-11).

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written approval of TÜV SÜD Product Service. © 2018 TÜV SÜD Product Service.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD Product Service is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164 TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuv-sud.co.uk TÜV SÜD Product Service Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Contents

1	Report Summary	
1.1	Report Modification Record	
1.2	Introduction	
1.3	Brief Summary of Results	
1.4	Application Form	
1.5	Product Information	
1.6	Deviations from the Standard	1 ²
1.7	EUT Modification Record	1 ²
1.8	Test Location	12
2	Test Details	13
2.1	Maximum Conducted Output Power	13
2.2	Power Spectral Density	
2.3	Emission Bandwidth	
2.4	Authorised Band Edges	
2.5	Restricted Band Edges	
2.6	Spurious Radiated Emissions	
3	Measurement Uncertainty	40

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	05 March 2018
2	To amend the Declaration of Build Status	07 March 2018

Table 1

1.2 Introduction

Applicant Paxton Access Ltd

Manufacturer Paxton Access Ltd

Model Number(s) Net2 Paxlock

Serial Number(s) Sample Number 5
Hardware Version(s) Not Applicable

Software Version(s) 1.09 Number of Samples Tested 1

Test Specification/Issue/Date FCC 47 CFR Part 15C: 2017

Industry Canada RSS-247: Issue 2 (2017-02) Industry Canada RSS-GEN: Issue 4 (2014-11)

Order Number PO 168327
Date 03-August-2017

Date of Receipt of EUT 10-January-2018
Start of Test 10-January-2018
Finish of Test 21-February-2018

Name of Engineer(s) Nandhini Mathivanan and Graeme Lawler

Related Document(s) ANSI C63.10 (2013)

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15C, Industry Canada RSS-247 and Industry Canada RSS-GEN is shown below.

Section	Specification Clause		ıse	Test Description	Result	Comments/Base Standard
	FCC Part 15C	RSS-247	RSS-GEN			
Configuration	on and Mode: 2.	4 GHz - IEEE	802.15.4 trans	ceiver		
2.1	15.247(b)	5.4	6.12	Maximum Conducted Output Power	Pass	ANSI C63.10
2.2	15.247(e)	5.2	6.12	Power Spectral Density	Pass	ANSI C63.10
2.3	15.247 (a)	5.2	6.6	Emission Bandwidth	Pass	ANSI C63.10
2.4	15.247(d)	5.5	-	Authorised Band Edges	Pass	ANSI C63.10
2.5	15.205	-	8.10	Restricted Band Edges	Pass	ANSI C63.10
2.6	15.247(d), and 15.205	5.5	6.13	Spurious Radiated Emissions	Pass	ANSI C63.10

Table 2

COMMERCIAL-IN-CONFIDENCE Page 3 of 40

1.4 Application Form

EQUIPMENT DESCRIPTION				
Model Name/Number Net2 PaxLock & Net2 ANSI PaxLock				
Part Number	900-140WT - Net2 ANSI PaxLock - Mortise, Galaxy, white 900-140BL - Net2 ANSI PaxLock - Mortise, Galaxy, black 900-150WT - Net2 ANSI PaxLock - Mortise, Eclipse, white 900-150BL - Net2 ANSI PaxLock - Mortise, Eclipse, black 900-120WT - Net2 PaxLock - Latch, Galaxy, white 900-120BL - Net2 PaxLock - Latch, Galaxy, black 900-130WT - Net2 PaxLock - Latch, Eclipse, white 900-130BL - Net2 PaxLock - Latch, Eclipse, black			
Hardware Version	N/A			
Software Version	1.09			
FCC ID (if applicable)		USE900120		
Industry Canada ID (if applicable)		10217A-900120		
Technical Description (Please provide a brief description of the intended use of the equipment)		Net2 Paxlock is the battery powered smart electronic lock providing both access control and reader functions. The unit combines a 125kHz and 13.56 MHz proximity reader, a wireless interface 2.4GHz and a locking mechanism.		
		PaxLock is a complete standalone system, there's nothing to wire together and no mains connection is required. The unit is powered by four replaceable AA batteries.		
		The purpose of the equipment is to receive validated user input via a rad signal from a passive proximity token (card or keyfob) and then provide digital output to the internal locking mechanism for access control. A event of this process is then transmitted to the PC through the wirelest interface and stored as an archive. User's access rights are configured the PC and the PaxLock unit is then updated as required using the sam wireless method.		
		Modulation technique : DSSS transmitter		

	Types of Modulations used by the Equipment			
	FHSS			
	Other forms of modulation			
	In case of FHSS Modulation			
In case	In case of non-Adaptive Frequency Hopping equipment:			
	Number of Hopping Frequencies:			
In case	In case of Adaptive Frequency Hopping Equipment:			
	Maximum number of Hopping Frequencies:			
	Minimum number of Hopping Frequencies:			
Dwell T	Dwell Time:			

Adaptive / non-adaptive equipment:					
☐ non-adaptive Equipment					
adaptive Equipment without the possibility to switch to a non-adaptive mode					
adaptive Equipment which can also operate in a non-adaptive mode					
In case of adaptive equipment:					
The maximum Channel Occupancy Time implemented by the equipment: ms					
The equipment has implemented an LBT based DAA mechanism					
In case of equipment using modulation different from FHSS:					
☐ The equipment is Frame Based equipment					
☐ The equipment is Load Based equipment					
The equipment can switch dynamically between Frame Based and Load Based equipment					
The CCA time implemented by the equipment: µs					
☐ The equipment has implemented an non-LBT based DAA mechanism					
☐ The equipment can operate in more than one adaptive mode					
In case of non-adaptive Equipment:					
The maximum RF Output Power (e.i.r.p.): <10 dBm					
The maximum (corresponding) Duty Cycle: N/A %					
Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):					
The worst case operational mode for each of the following tests:					
RF Output Power:					
Power Spectral Density:					
Duty cycle, Tx-Sequence, Tx-gap:					
Accumulated Transmit Time, Frequency Occupation & Hopping Sequence (only for FHSS equipment):					
Hopping Frequency Separation (only for FHSS equipment):					
Medium Utilisation:					
Adaptivity & Receiver Blocking:					
Nominal Channel Bandwidth:					
Transmitter unwanted emissions in the OOB domain:					
Transmitter unwanted emissions in the spurious domain:					
Receiver spurious emissions:					

		The	different trans	smit operating modes (tick all that apply):	
☐ Operating mode 1: Single Antenna Equipment					
		Equipment with o			
		• •		nnas but only 1 antenna active at any moment in time	
		• •	•	2 or more antennas, but operating in a (legacy) mode where only 1	
				11™ [i.3] legacy mode in smart antenna systems)	
	Operating	mode 2: Smart A	ntenna System	ns - Multiple Antennas without beam forming	
		Single spatial stre	am / Standard	throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)	
	□ H	High Throughput	(> 1 spatial str	eam) using Nominal Channel Bandwidth 1	
	□ H	High Throughput	(> 1 spatial str	eam) using Nominal Channel Bandwidth 2	
	□ H	High Throughput	(> 1 spatial str	eam) using Nominal Channel Bandwidth 3	
	□ H	High Throughput	(> 1 spatial str	eam) using Nominal Channel Bandwidth 4	
	<u></u> Н	High Throughput	(> 1 spatial str	eam) using Nominal Channel Bandwidth 5	
NOTE: Ad	dd more line	es if more channe	el bandwidths a	are supported.	
	Operating	mode 3: Smart A	ntenna System	ns - Multiple Antennas with beam forming	
		Single spatial stre	am / Standard	throughput (e.g. IEEE 802.11™ [i.3] legacy mode)	
	□ H	High Throughput	(> 1 spatial str	eam) using Nominal Channel Bandwidth 1	
	□ H	High Throughput	(> 1 spatial str	eam) using Nominal Channel Bandwidth 2	
	<u></u> Н	High Throughput	(> 1 spatial str	eam) using Nominal Channel Bandwidth 3	
	<u></u> Н	High Throughput	(> 1 spatial str	eam) using Nominal Channel Bandwidth 4	
	□ H	High Throughput	(> 1 spatial str	eam) using Nominal Channel Bandwidth 5	
NOTE: Ac	dd more line	es if more channe	el bandwidths a	are supported.	
			In case	e of Smart Antenna Systems:	
The numb	er of Recei	ve chains: 15			
The numb	er of Trans	mit chains: 15			
	symmetrica	al power distributi	on		
In case of	beam form	ing, the maximur	n (additional) b	peam forming gain: dB	
NOTE: Th	ne additiona	al beam forming g	ain does not ir	nclude the basic gain of a single antenna.	
			Operating Fre	equency Range(s) of the equipment:	
Operating	Frequency	Range 1: 2405 l	MHz to 2475 N	1Hz	
Operating	Frequency	Range 2:	MHz to	MHz	
Operating	Frequency	Range 3:	MHz to	MHz	
NOTE: Ac	dd more line	es if more Freque	ncy Ranges a	re supported.	
Nominal Channel Bandwidth(s):					
Nominal C	Channel Ba	ndwidth1: 5 MHz			
Nominal C	Channel Ba	ndwidth2:	MHz		
Nominal C	Channel Ba	ndwidth3:	MHz		
Nominal C	Channel Ba	ndwidth4:	MHz		
Nominal C	Channel Ba	ndwidth5:	MHz		
NOTE: Ad	dd more line	es if more channe	el bandwidths a	are supported.	

	Type of Equipment (stand-alone, combined, plug-in radio device, etc.):					
\boxtimes	Stand-alone Stand-alone					
	Combined Equipment (Equipment where the radio part is fully integrated within another type of equipment)					
	Plug-in radio device (Equipment intended for a variety of host systems)					
	Other					
	The normal and extreme operating conditions that apply to the equipment:					
Normal o	operating conditions (if applicable):					
	Operating temperature: 0-55 °C					
	Other (please specify if applicable):					
Extreme	operating conditions:					
	Operating temperature range: Minimum °C to Maximum °C					
	Other (please specify if applicable): Minimum °C to Maximum °C					
Details p	provided are for the:					
	stand-alone equipment					
	combined (or host) equipment					
	test jig					

The intended combination(s) of the radio equipment power settings and one or more antenna assemblies and their corresponding e.i.r.p levels:						
Antenna Type:						
	Integral Antenna (information to be provided in case of conducted measurements)					
Antenna Gain: 0.5 d	Bi					
If applicable, addition	nal beamforming gain (excluding b	pasic antenna gain):	IB .			
☐ Temporary	RF connector provided					
	rary RF connector provided					
	(equipment with antenna connect	or)				
Single pov	ver level with corresponding anten	na(s)				
☐ Multiple po	ower settings and corresponding a	ntenna(s)				
Number of different I	Power Levels:					
Power Level 1:	dBm					
Power Level 2:	dBm					
Power Level 3:	dBm					
NOTE 1: Add more lines in cas	se the equipment has more power	levels.				
NOTE 2: These power levels a	re conducted power levels (at ante	enna connector).				
For each of the Power Levels, levels also taking into account	provide the intended antenna ass the beamforming gain (Y) if applica	semblies, their correspondir able	g gains (G) and the resulting e.i.r.p.			
Power Level 1: dBm						
Number of antenna	assemblies provided for this power	r level:				
Assembly #	Gain (dBi)	e.i.r.p (dBm)	Part number or model number			
1						
2						
3						
4						
NOTE: Add more rows in case	more antenna assemblies are sup	oported for this power level.				
Power Level 2: dBm						
Number of antenna	assemblies provided for this power	r level:				
Assembly #	Gain (dBi)	e.i.r.p (dBm)	Part number or model number			
1						
2						
3						
4						
NOTE: Add more rows in case more antenna assemblies are supported for this power level.						
Power Level 3: dBm						
Number of antenna assemblies provided for this power level:						
Assembly #	Gain (dBi)	e.i.r.p (dBm)	Part number or model number			
1						
2						
3						
4						
NOTE: Add more rows in case	more antenna assemblies are sup	oported for this power level.				

The nominal voltages of the stand-alone radio equipment or the nominal voltages of the combined (host) equipment or test jig in case of plug-in devices:				
Details provided are for the:				
⊠ stand-alone equipment				
combined (or host) equipment				
☐ test jig				
Supply Voltage				
In case of DC, indicate the type of power source				
☐ Internal Power Supply				
☐ External Power Supply or AC/DC adapter				
Battery				
Other:				
Describe the test modes availa	ble which can facilitate testing:			
See document attached for more information:				
Ability to change channel				
Ability to adjust transmit power				
Continuous 2.4GHz transmission of unmodulated carrier				
Continuous 2.4GHz transmission of modulated carrier.				
The equipment type (e.g. Bluetooth®, IEEE 802.	11™ [i.3] IEEE 802.15.4™ [i.4], proprietary, etc.):			
IEEE 802.15.4				
If applicable, the statistical ana	lysis referred in clause 5.4.1 q)			
To be provided as separate attachment				
If applicable, the statistical ana	llysis referred in clause 5.4.1 r)			
To be provided as separate attachment				
Geo-location capability su	pported by the equipment:			
☐ Yes				
The geographical location determined by the econot accessible to the user.	quipment as defined in clause 4.3.1.13.2 or clause 4.3.2.12.2 is			
□ No				
Describe the minimum performance criteria that apply	y to the equipment (see clause 4.3.1.12.3 or 4.3.2.11.3)			
Combination for testing (see cla	use 5.3.2.3 of EN 300 328 V21.1)			
From all combinations of conducted power settings and intended antenna assembly(ies) specified in clause 5.4.1 m), specify the combination resulting in the highest e.i.r.p. for the radio equipment.				
Unless otherwise specified in ETSI EN 300 328, this power setting is to be used for testing against the requirements of ETSI EN 300 328. In case there is more than one such conducted power setting resulting in the same (highest) e.i.r.p. level, the highest power setting is to be used for testing. See also ETS EN 300 328, clause 5.3.2.3				
Highest overall e.i.r.p. value: dBm				
Corresponding Antenna assembly gain: Unknown dBi	Antenna Assembly #:			
Corresponding conducted power setting: Unknown dBm (also the power level to be used for testing)	Listed as Power Setting #:			

Additional information provided by the applicant							
Modulation							
ITU Class(es) of emission: G1D							
Can the transmitter operate unmodulated? ⊠ Yes □ No							
Duty Cycle							
The transmitter is intended for:							
☐ Continuous duty							
☐ Continuous operation possible for testing purposes							
About the UUT							
☐ The equipment submitted are representative production models							
☐ If not, the equipment submitted are pre-production models?							
If pre-production equipment are submitted, the final production equipment will be identical in all respects with the equipment tested							
☐ If not, supply full details							
☐ The equipment submitted is CE marked							
Additional items and/or supporting equipment provided							
Spare batteries (e.g. for portable equipment)							
☐ Battery charging device							
☐ External Power Supply or AC/DC adapter							
☐ Test Jig or interface box							
RF test fixture (for equipment with integrated antennas)							
☐ Host System							
Manufacturer Paxton Access Ltd							
Model Net2 Paxlock Pro Euro							
Model Name							
Manufacturer							
Model							
Model Name							
☐ User Manual							
Technical documentation (Handbook and circuit diagrams)							

I hereby declare that the information supplied is correct and complete.

Name: Kevin Feeney Position held: Compliance-Engineer

Date: 09.01.2018

1.5 Product Information

1.5.1 Technical Description

Net2 Paxlock is the battery powered smart electronic lock providing both access control and reader functions. The unit combines a 125kHz and 13.56 MHz proximity reader, a wireless interface 2.4GHz and a locking mechanism.

PaxLock is a complete standalone system, there's nothing to wire together and no mains connection is required. The unit is powered by four replaceable AA batteries. The purpose of the equipment is to receive validated user input via a radio signal from a passive proximity token (card or keyfob) and then provide a digital output to the internal locking mechanism for access control. An event of this process is then transmitted to the PC through the wireless interface and stored as an archive. User's access rights are configured at the PC and the PaxLock unit is then updated as required using the same wireless method.

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted			
Serial Number: Sample Number 5						
0	As supplied by the customer	Not Applicable	Not Applicable			

Table 3

1.8 Test Location

TÜV SÜD Product Service conducted the following tests at our Fareham Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation				
Configuration and Mode: 2.4 GHz - IEEE 802.15.4 transceiver						
Maximum Conducted Output Power	Nandhini Mathivanan	UKAS				
Power Spectral Density	Nandhini Mathivanan	UKAS				
Emission Bandwidth	Nandhini Mathivanan	UKAS				
Authorised Band Edges	Graeme Lawler	UKAS				
Restricted Band Edges	Graeme Lawler	UKAS				
Spurious Radiated Emissions	Graeme Lawler	UKAS				

Table 4

Office Address:

Octagon House Concorde Way Segensworth North Fareham Hampshire PO15 5RL United Kingdom

2 Test Details

2.1 Maximum Conducted Output Power

2.1.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247(b), Industry Canada RSS-247 Clause 5.4 Industry Canada RSS-GEN, Clause 6.12

2.1.2 Equipment Under Test and Modification State

Net2 Paxlock, S/N: Sample Number 5 - Modification State 0

2.1.3 Date of Test

21-February-2018

2.1.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 11.9.2.2.2.

2.1.5 Environmental Conditions

Ambient Temperature 22.9 °C Relative Humidity 24.5 %

2.1.6 Test Results

2.4 GHz - IEEE 802.15.4 transceiver

Frequency (MHz)	Conducted Output Power				
	dBm mW				
2405	0.03	1.0069			
2440	0.09	1.0209			
2475	0.27	1.0641			

Table 5

FCC 47 CFR Part 15, Limit Clause 15.247 (b)(3)

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

Industry Canada RSS-247, Limit Clause 5.4 (d)

For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e) of the specification.

2.1.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Multimeter	White Gold	WG022	190	12	24-Nov-2018
Dual Power Supply Unit	Hewlett Packard	6253A	271	-	O/P Mon
Attenuator (30dB, 25W)	Weinschel	46-30-34	2776	12	16-Feb-2018
Hygrometer	Rotronic	I-1000	3220	12	30-Aug-2018
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	2-Oct-2018
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	19-Sep-2018
2 metre SMA Cable	Florida Labs	SMS-235SP-78.8- SMS	4518	12	19-Sep-2018
EXA	Keysight Technologies	N9010B	4968	12	21-Dec-2018

Table 6

2.2 Power Spectral Density

2.2.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247(e) Industry Canada RSS-247, Clause 5.2 Industry Canada RSS-GEN, Clause 6.12

2.2.2 Equipment Under Test and Modification State

Net2 Paxlock, S/N: Sample Number 5 - Modification State 0

2.2.3 Date of Test

21-February-2018

2.2.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 11.10.3.

2.2.5 Environmental Conditions

Ambient Temperature 22.8 °C Relative Humidity 24.7 %

2.2.6 Test Results

2.4 GHz - IEEE 802.15.4 transceiver

Frequency(MHz)	Power Spectral Density (dBm)
2405	-12.68
2440	-11.92
2475	-13.01

Table 7

FCC 47 CFR Part 15, Limit Clause 15.247(e)

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Industry Canada RSS-247, Limit Clause 5.2(b)

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

2.2.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Multimeter	White Gold	WG022	190	12	24-Nov-2018
Dual Power Supply Unit	Hewlett Packard	6253A	271	-	O/P Mon
Attenuator (30dB, 25W)	Weinschel	46-30-34	2776	12	16-Feb-2018
Hygrometer	Rotronic	I-1000	3220	12	30-Aug-2018
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	2-Oct-2018
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	19-Sep-2018
2 metre SMA Cable	Florida Labs	SMS-235SP-78.8- SMS	4518	12	19-Sep-2018
PXA Signal Analyser	Keysight Technologies	N9030A	4653	12	01-Feb-2018
EXA	Keysight Technologies	N9010B	4968	12	21-Dec-2018

Table 8

2.3 Emission Bandwidth

2.3.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247(a) Industry Canada RSS-247, Clause 5.2 Industry Canada RSS-GEN, Clause 6.6

2.3.2 Equipment Under Test and Modification State

Net2 Paxlock, S/N: Sample Number 5 - Modification State 0

2.3.3 Date of Test

21-February-2018

2.3.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 11.8.2.

2.3.5 Environmental Conditions

Ambient Temperature 22.9 °C Relative Humidity 24.3 %

2.3.6 Test Results

2.4 GHz - IEEE 802.15.4 transceiver

Frequency (MHz)	6 dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
2405	1.529	2.315
2440	1.535	2.341
2475	1.670	2.400

Table 9

Figure 1 - 2405 MHz - 6 dB Bandwidth & 99% Occupied Bandwidth

Figure 2 - 2440 MHz - 6 dB Bandwidth & 99% Occupied Bandwidth

Figure 3 - 2475 MHz - 6 dB Bandwidth& 99% Occupied Bandwidth

FCC 47 CFR Part 15, Limit Clause 15.247(a)(2) and Industry Canada RSS-247, Clause 5.2(a)

The minimum 6 dB Bandwidth shall be at least 500 kHz.

2.3.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Multimeter	White Gold	WG022	190	12	24-Nov-2018
Dual Power Supply Unit	Hewlett Packard	6253A	271	-	O/P Mon
Attenuator (30dB, 25W)	Weinschel	46-30-34	2776	12	16-Feb-2018
Hygrometer	Rotronic	I-1000	3220	12	30-Aug-2018
2 metre SMA Cable	Florida Labs	SMS-235SP-78.8- SMS	4518	12	19-Sep-2018
EXA	Keysight Technologies	N9010B	4968	12	21-Dec-2018

Table 10

O/P Mon – Output Monitored using calibrated equipment

2.4 Authorised Band Edges

2.4.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247(d) Industry Canada RSS-247, Clause 5.5

2.4.2 Equipment Under Test and Modification State

Net2 Paxlock, S/N: Sample Number 5 - Modification State 0

2.4.3 Date of Test

10-January-2018

2.4.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 6.10.4.

2.4.5 Environmental Conditions

Ambient Temperature 19.4 °C Relative Humidity 33.0 %

2.4.6 Test Results

2.4 GHz - IEEE 802.15.4 transceiver

Mode	Frequency (MHz)	Measured Frequency (MHz)	Level (dBc)
Static	2405	2400.0	-40.24
Static	2475	2483.5	-43.35

Table 11

Figure 4 - Static MHz - Measured Frequency 2400 MHz

Figure 5 - Static MHz - Measured Frequency 2483.5 MHz

FCC 47 CFR Part 15, Limit Clause 15.247 (d)

20 dB below the fundamental measured in a 100 kHz bandwidth using a peak detector. If the transmitter complies with the conducted power limits, based on the use of RMS averaging over a time interval, the attenuation required shall be 30 dB below the fundamental instead of 20 dB.

Industry Canada RSS-247, Limit Clause 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

2.4.7 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Screened Room (5)	Rainford	Rainford	1545	36	20-Jan-2018
Turntable Controller	Inn-Co GmbH	CO 1000	1606	-	TU
Cable (N-N, 8m)	Rhophase	NPS-2302-8000- NPS	3248	12	02-May-2018
EMI Test Receiver	Rohde & Schwarz	ESU40	3506	12	22-Nov-2018
Tilt Antenna Mast	maturo Gmbh	TAM 4.0-P	3916	-	TU
Mast Controller	maturo Gmbh	NCD	3917	-	TU
Hygropalm Temperature and Humidity Meter	Rotronic	HP21	4410	12	04-May-2018
Cable (Rx, Km-Km 2m)	Scott Cables	KPS-1501-2000- KPS	4526	6	22-May-2018
Double Ridge Broadband Horn Antenna	Schwarzbeck	BBHA 9120 B	4848	12	17-Feb-2018

Table 12

TU - Traceability Unscheduled

2.5 Restricted Band Edges

2.5.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.205 Industry Canada RSS-GEN, Clause 8.10

2.5.2 Equipment Under Test and Modification State

Net2 Paxlock, S/N: Sample Number 5 - Modification State 0

2.5.3 Date of Test

10-January-2018

2.5.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 6.10.5.

Plots for average measurements were taken in accordance with ANSI C63.10 clause 4.1.4.2.3. These are shown for information purposes and were used to determine the worst case measurement point. Final average measurements were then taken in accordance with ANSI C63.10 clause 4.1.4.2.2. to obtain the measurement result recorded in the test results tables.

The following conversion can be applied to convert from $dB\mu V/m$ to $\mu V/m$: $10^{(Field Strength in }dB\mu V/m/20)$.

2.5.5 Environmental Conditions

Ambient Temperature 19.4 °C Relative Humidity 33.0 %

2.5.6 Test Results

2.4 GHz - IEEE 802.15.4 transceiver

Mode	Frequency (MHz)	Measured Frequency (MHz)	Peak Level (dBµV/m)	Average Level (dBµV/m)
Static	2405	2390.0	56.58	45.49
Static	2475	2483.5	58.61	47.43

Table 13

Figure 6 - 2405 MHz - Measured Frequency 2390 MHz - Peak

Figure 7 - 2405 MHz - Measured Frequency 2390 MHz - Average

Figure 8 - 2475 MHz - Measured Frequency 2483.5 MHz - Peak

Figure 9 - 2475 MHz - Measured Frequency 2483.5 MHz - Average

FCC 47 CFR Part 15, Limit Clause 15.209

Frequency (MHz)	Field Strength (μV/m at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

Table 14

Industry Canada RSS-GEN, Limit Clause 8.9

Frequency (MHz)	Field Strength (µV/m at 3 metres)
30-88	100
88-216	150
216-960	200
Above 960*	500

Table 15

^{*}Unless otherwise specified, for all frequencies greater than 1 GHz, the radiated emission limits for licence-exempt radio apparatus stated in applicable RSSs (including RSS-Gen) are based on measurements using a linear average detector function having a minimum resolution bandwidth of 1 MHz. If an average limit is specified for the EUT, then the peak emission shall also be measured with instrumentation properly adjusted for such factors as pulse desensitization to ensure the peak emission is less than 20 dB above the average limit.

2.5.7 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Screened Room (5)	Rainford	Rainford	1545	36	20-Jan-2018
Turntable Controller	Inn-Co GmbH	CO 1000	1606	-	TU
Cable (N-N, 8m)	Rhophase	NPS-2302-8000- NPS	3248	12	02-May-2018
EMI Test Receiver	Rohde & Schwarz	ESU40	3506	12	22-Nov-2018
Tilt Antenna Mast	maturo Gmbh	TAM 4.0-P	3916	-	TU
Mast Controller	maturo Gmbh	NCD	3917	-	TU
Hygropalm Temperature and Humidity Meter	Rotronic	HP21	4410	12	04-May-2018
Cable (Rx, Km-Km 2m)	Scott Cables	KPS-1501-2000- KPS	4526	6	22-May-2018
Double Ridge Broadband Horn Antenna	Schwarzbeck	BBHA 9120 B	4848	12	17-Feb-2018

Table 16

TU - Traceability Unscheduled

2.6 Spurious Radiated Emissions

2.6.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247(d) and 15.205 Industry Canada RSS-247, Clause 5.5 Industry Canada RSS-GEN, Clause 6.13

2.6.2 Equipment Under Test and Modification State

Net2 Paxlock, S/N: Sample Number 5 - Modification State 0

2.6.3 Date of Test

10-January-2018 to 14-January-2018

2.6.4 Test Method

This test was performed in accordance with ANSI C63.10-2013 clause 6.3, 6.5 and 6.6.

For frequencies > 1 GHz, plots for average measurements were taken in accordance with ANSI C63.10 clause 4.1.4.2.3 to characterize the EUT. Where emissions were detected, final average measurements were taken in accordance with ANSI C63.10 clause 4.1.4.2.2.

The plots shown are the characterization of the EUT. The limits on the plots represent the most stringent case for restricted bands, (74/54 dBuV/m) when compared to 20 dBc outside restricted bands. The limits shown have been used as a threshold to determine where further measurements are necessary. Where results are within 10 dB of the limits shown on the plots, further investigation was carried out and reported in results tables.

The following conversion can be applied to convert from $dB\mu V/m$ to $\mu V/m$: $10^{(Field Strength in }dB\mu V/m/20)$.

For frequencies > 18 GHz, the measurement distance was reduced to 1 meter and the limit line was increased by 20*LOG(3/1) = 9.54 dB.

2.6.5 Environmental Conditions

Ambient Temperature 19.4 °C Relative Humidity 33.0 %

2.6.6 Test Results

2.4 GHz - IEEE 802.15.4 transceiver

Frequency (MHz)	QP Level (dBuV/m)	QP Limit (dBuV/m)	QP Margin (dBuV/m)	Angle(Deg)	Height(m)	Polarity
30.070	30.7	40.0	-9.3	0	1.00	Horizontal
31.722	30.0	40.0	-10.0	0	1.00	Vertical
33.796	29.2	40.0	-10.8	0	1.00	Horizontal
825.509	32.9	46.0	-13.1	0	1.00	Horizontal
914.434	33.6	46.0	-12.4	0	1.00	Vertical
960.000	34.2	46.0	-11.8	0	1.00	Horizontal

Table 17 - 2405 MHz - 30 MHz to 1 GHz Emissions Results

Figure 10 - 2405 MHz - 30 MHz to 1 GHz - Horizontal and Vertical

Frequency (GHz)	Result (dBµV/m)		Limit (dBµV/m)		Margin (dBμV/m)	
	Peak	Average	Peak	Average	Peak	Average
*						

Table 18 - 2405 MHz - 1 GHz to 25 GHz Emissions Results

^{*}No emissions were detected within 10 dB of the limit.

Figure 11 - 2405 MHz - 1 GHz to 3 GHz - Horizontal and Vertical

Figure 12 - 2405 MHz - 3 GHz to 8 GHz - Horizontal and Vertical

Figure 13 - 2405 MHz - 8 GHz to 18 GHz - Horizontal and Vertical

Figure 14 - 2405 MHz - 18 GHz to 25 GHz - Horizontal and Vertical

Proc	HIGH	CON	1100
Proc	III.I	DEI /	/11.15

Frequency (MHz)	QP Level (dBuV/m)	QP Limit (dBuV/m)	QP Margin (dBuV/m)	Angle(Deg)	Height(m)	Polarity
30.009	30.7	40.0	-9.3	0	1.00	Vertical
32.326	29.7	40.0	-10.3	0	1.00	Vertical
34.929	28.2	40.0	-11.8	0	1.00	Vertical
745.004	32.6	46.0	-13.4	0	1.00	Vertical
884.168	33.5	46.0	-12.5	0	1.00	Vertical
960.000	34.1	46.0	-11.9	0	1.00	Vertical

Table 19 - 2440 MHz - 30 MHz to 1 GHz Emissions Results

Figure 15 - 2440 MHz - 30 MHz to 1 GHz - Horizontal and Vertical

Frequency (GHz)	Result (dBμV/m)		Limit (dBµV/m)		Margin (dBμV/m)	
	Peak	Average	Peak	Average	Peak	Average
7.318841	54.49	44.81	73.98	53.98	19.49	9.17

Table 20 - 2440 MHz - 1 GHz to 25 GHz Emissions Results

No other emissions were detected within 10 dB of the limit.

Figure 16 - 2440 MHz - 1 GHz to 3 GHz - Horizontal and Vertical

Figure 17 - 2440 MHz - 3 GHz to 8 GHz - Horizontal and Vertical

Figure 18 - 2440 MHz - 8 GHz to 18 GHz - Horizontal and Vertical

Figure 19 - 2440 MHz - 18 GHz to 25 GHz - Horizontal and Vertical

Frequency (MHz)	QP Level (dBuV/m)	QP Limit (dBuV/m)	QP Margin (dBuV/m)	Angle(Deg)	Height(m)	Polarity
30.755	30.4	40.0	-9.6	0	1.00	Horizontal
32.698	29.4	40.0	-10.6	0	1.00	Horizontal
33.998	29.2	40.0	-10.8	0	1.00	Horizontal
827.838	33.0	46.0	-13.0	0	1.00	Horizontal
894.938	33.6	46.0	-12.4	0	1.00	Horizontal
960.000	34.1	46.0	-11.9	0	1.00	Horizontal

Table 21 - 2475 MHz - 30 MHz to 1 GHz Emissions Results

Figure 20 - 2475 MHz - 30 MHz to 1 GHz - Horizontal and Vertical

Frequency (GHz)	Result (dBµV/m)		Limit (dBµV/m)		Margin (dBμV/m)	
	Peak	Average	Peak	Average	Peak	Average
7.423877	56.25	46.86	73.98	53.98	17.73	7.12

Table 22 - 2475 MHz - 1 GHz to 25 GHz Emissions Results

No other emissions were detected within 10 dB of the limit.

Figure 21 - 2475 MHz - 1 GHz to 3 GHz - Horizontal and Vertical

Figure 22 - 2475 MHz - 3 GHz to 8 GHz - Horizontal and Vertical

Figure 23 - 2475 MHz - 8 GHz to 18 GHz - Horizontal and Vertical

Figure 24 - 2475 MHz - 18 GHz to 25 GHz - Horizontal and Vertical

FCC 47 CFR Part 15, Limit Clause 15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)

Industry Canada RSS-247, Limit Clause 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

2.6.7 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Antenna (Bilog)	Schaffner	CBL6143	287	24	18-Apr-2018
Antenna 18-40GHz (Double Ridge Guide)	Q-Par Angus Ltd	QSH 180K	1511	24	07-Dec-2018
Pre-Amplifier	Phase One	PS04-0086	1533	12	12-Jan-2019
18GHz - 40GHz Pre- Amplifier	Phase One	PSO4-0087	1534	12	23-Jan-2018
Screened Room (5)	Rainford	Rainford	1545	36	20-Jan-2018
Turntable Controller	Inn-Co GmbH	CO 1000	1606	-	TU
Comb Generator	Schaffner	RSG1000	3034	-	TU
Cable (N-N, 8m)	Rhophase	NPS-2302-8000- NPS	3248	12	02-May-2018
EMI Test Receiver	Rohde & Schwarz	ESU40	3506	12	22-Nov-2018
Tilt Antenna Mast	maturo Gmbh	TAM 4.0-P	3916	-	TU
Mast Controller	maturo Gmbh	NCD	3917	-	TU
Cable 1503 2M 2.92(P)m 2.92(P)m	Rhophase	KPS-1503A-2000- KPS	4293	12	23-Jan-2018
Hygropalm Temperature and Humidity Meter	Rotronic	HP21	4410	12	04-May-2018
Suspended Substrate Highpass Filter	Advance Power Components	11SH10- 3000/X18000-O/O	4412	12	03-Apr-2018
Cable (Rx, Km-Km 2m)	Scott Cables	KPS-1501-2000- KPS	4526	6	22-May-2018
Cable (Rx, SMAm-SMAm 0.5m)	Scott Cables	SLSLL18-SMSM- 00.50M	4528	6	03-Feb-2017
Double Ridged Waveguide Horn Antenna	ETS-Lindgren	3117	4722	12	17-Feb-2018
Double Ridge Broadband Horn Antenna	Schwarzbeck	BBHA 9120 B	4848	12	17-Feb-2018

Table 23

TU - Traceability Unscheduled

3 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Maximum Conducted Output Power	± 3.2 dB
Power Spectral Density	± 3.2 dB
Emission Bandwidth	± 16.740 kHz
Authorised Band Edges	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 40 GHz: ± 6.3 dB
Restricted Band Edges	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 40 GHz: ± 6.3 dB
Spurious Radiated Emissions	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 40 GHz: ± 6.3 dB

Table 24