Ergänzungen vom 19.12.2018

 Massen- und Massenträgheitsmoment der z-Achse in den Anteil der rein bewegten Masse und den Anteil der feststehenden Basis getrennt:

<u>Ersatzmodell 3 // z-Achse: Massen und Massenträgheitsmomente</u> und

Ersatzmodell 3 // Basis: Massen und Massenträgheitsmomente

• restliche Massenträgheitsmomente um Deviationsanteile ergänzt

Ergänzungen vom 03.12.2018

- Ergebnisse zu unterschiedlichen Bestück-Stellungen hinzugefügt: Nullstellung der Achsen y und z im FEM-Modell und folgende
- Screenshots der Ansys-Steifigkeitsmatrizen (Stiffness Coefficients) geändert um konsistente Einheiten sicherzustellen (Grad → rad)
- Massen- und Massenträgheitsmoment für Ersatzmodell 3:
 <u>Ersatzmodell 3 // y-Achse: Massen und Massenträgheitsmomente</u> und folgende
- Massen- und Massenträgheitsmoment für Stirn- und Umfangsspanner hinzugefügt:
 Massen und Massenträgheitsmoment Stirnspanner und folgende

Ergänzungen vom 26.11.2018

- Koordinatensysteme der Basis vs. Bestückposition ergänzt: <u>Koordinaten Basis / Bestückposition</u>
- Eigenfrequenzen und –moden für 4 unterschiedliche z-Positionen hinzugefügt:

<u>Ersatzmodell 3: Eigenfrequenzen 1-3, z-Pos. 1 unterste z-...</u> bis

Ersatzmodell 3: Eigenfrequenzen 1-3 für alle Positionen g...

Ergänzungen vom 13.11.2018

• Steifigkeitsmatrizen der Ersatzmodell 1 bis 3 aktualisiert:

Ersatzmodell 1: Steifigkeitsmatrix

Ersatzmodell 2: Steifigkeitsmatrix

Ersatzmodell 3: Steifigkeitsmatrix

 Steifigkeitsmatrix mit Kraftangriff auf der Welle RotBody bei Lager 1 hinzugefügt:

Ersatzmodell 2b: Steifigkeitsmatrix

Ergänzungen vom 31.10.2018

- Steifigkeitsmatrix der virtuellen Schnittstelle ergänzt:
 <u>Steifigkeit Body Holder + Konusverbindung</u>
- Lagersteifigkeiten der Lager RotBody ergänzt: <u>RotBody: Vergleich CAD / FEM</u>
- Ersatzsteifigkeit des Gestells ergänzt:
 Ersatzmodell 3: Gestell Lagerung RotX
- unterschiedliche Stellungen der RotX und kinematische abhängigkeit beispielhaft dargestellt:

unterschiedliche Stellungen der RotX

3D-CSM Body Handling

• 4-Achsen mit seriellem Aufbau

• z-Achse: Spindelantrieb

• y-Achse: Spindelantrieb

• Rot x: Direktantrieb

• Rot Body: Direktantrieb

Modell für Rot x und Rot Body

Erwartungen

Input

- mechanisch: Steifigkeiten (Unterbau, Lagerung Rot Body, Dorn, Werkstückträger), Massen & Massenträgheit, Dämpfung
- regelungstechnisch: Motormodell, Modell des Reglers mit Regelparametern, Positionierrampen

Output

- mechanisch: Nachgiebigkeit bei unterschiedlichen Stellungen (Extremwertsuche), Eigenfrequenzen
- regelungstechnisch: Positionierverhalten, Positionsabweichung durch externe Kraft F, Ausschwingverhalten

Steifigkeitsdaten

- FEM-Modell ist nicht am letzten Stand; Steifigkeiten sollten zum größten Teil abgebildet sein
- berücksichtigte Steifigkeiten:
 - elastische Nachgiebigkeit der Bauteile
 - Body-Holder (siehe nächste Seite)
 - Konusverbindung Body-Holder / Body (siehe nächste Seite)
 - beide Lager der Welle RotBody (Daten von Schäffler bereitgestellt)
- nicht berücksichtigte Steifigkeiten:
 - Lagersteifigkeit der Welle RotX
 - Steifigkeit des zu bestückenden Bodys
- für nicht abgebildete Geometrien wurden Ersatzmassen berücksichtigt

Steifigkeit Body Holder + Konusverbindung

Steifigkeit von Body Holder und der Konusverbindung Body Holder / Body wurde als <u>Steifigkeitsmatrix in einer virtuellen Schnittstelle</u> unterhalb des Konus abgebildet.

Dadurch können externe Lasten direkt auf den Kontaktflächen des Konus aufgebracht werden

Stiffness Coefficient

Stiffness	Per Unit X (mm)	Per Unit Y (mm)	Per Unit Z (mm)	Per Unit θx (rad)	Per Unit θy (rad)	Per Unit θz (rad)
Δ Force X (N)	32661					
Δ Force Y (N)	0,	32661				
Δ Force Z (N)	0,	0,	6069,6			
Δ Moment X (N⋅mm)	0,	0,	0,	3,4899e+007		
Δ Moment Y (N⋅mm)	0,	0,	0,	0,	3,4899e+007	
Δ Moment Z (N·mm)	0,	0.	0.	0,	0,	3,4899e+007

RotBody: Vergleich CAD / FEM

RotX: Vergleich CAD / FEM

Ersatzmodell 1: Lagerung RotBody - Body

- Fixierung RotBody-Gehäusebohrung bei Lager 1 (Ansys: Remote Displacement mit allen FG gesperrt)
- Bei der Motorwelle RotBody wird zur Berücksichtigung der Torsion an der Stelle des Rotors Rotation um z = 0 definiert
- Aufbringen von Einheitslasten am Konus in allen Raumrichtungen zur Bestimmung der Steifigkeitsmatrix (Fx, Fy, Fz, Mx, My, Mz)
- Für Modalanalyse gleiche Einspannbedingung

Einheitslasten am Konus

Position des Kraftangriffes am Konus entspricht der untersten möglichen Kraftangriffsposition.

Der Arbeitsraum erstreckt sich auf einem Zylinder mit Durchmesser 150mm und Höhe 75mm, d.h. in diesem Arbeitsraum können die Kraftangriffe theoretisch auftreten

Ersatzmodell 1: Steifigkeitsmatrix

C: Ersatzmodell 1 Static Structural

Time: 1, s 18.07.2018 15:09

A RotBody_Rotor

B y_Achse_Motor + Lager + 1/2 Spindel

C Torque_RotY

D y_Lager + 1/2 Spindel

E y_Spindelmutter

F Remote Displacement

G Remote Displacement 2

H Remote Force: 1, N

Moment: 0, N-mm

J Remote Displacement 3

Steifigke	eit	х	У	Z	Фх	Фу	Фz
N/mm &	Nmm/rad	mm	mm	mm	rad	rad	rad
Fx	N	16670	0	0	49	-364834	-7
Fy	N	0	16670	0	364931	-25	16
Fz	N	0	0	5995	-3	-8	0
Mx	Nmm	50	364942	-3	26429877	-2363	931
My	Nmm	-364824	-24	-8	-2333	26421338	225
Mz	Nmm	-7	16	0	929	227	8874261

Ersatzmodell 1: Eigenfrequenzen

Torsion: 395 Hz

Biegung um x bzw. y: 404 Hz

Nachgiebigkeit in z: 534 Hz

Ersatzmodell 1: Massen und Massenträgheitsmomente

- Ergebnisse um Lagermittelpunkt von Lager 1 von RotBody Koordinatensystem KS1 (XC, YC, ZC)
- Vektor von KS1 zur Unterseite vom Artikelraum:
 v1 = (0 | 0 | 60) mm

2,37	kg	
XC	YC	ZC
0,00	0,00	53,55
XC	YC	ZC
13826	0	-1
0	13826	C
-1	0	4992
	XC 0,00 XC 13826 0	0,00 0,00 XC YC 13826 0 0 13826

Ersatzmodell 2: Lagerung RotX - Lagerung RotBody

- Fixierung RotX-Gehäusebohrung bei Lager 1 & 2
- Bei der Motorwelle RotX wird zur Berücksichtigung der Torsion an der Stelle des Rotors Rotation um x = 0 definiert
- Aufbringen von Einheitslasten an der in Modell 1 fixierten Gehäusebohrung von RotBody in allen Raumrichtungen zur Bestimmung der Steifigkeitsmatrix (Fx, Fy, Fz, Mx, My, Mz)
- Für Modalanalyse gleiche Einspannbedingung und Bauteile oberhalb der Lagerung RotBody deaktiviert (keine Ersatzmasse)

Ersatzmodell 2: Steifigkeitsmatrix

Steifigkeit		x	У	Z	Фх	Фу	Фz
N/mm & Nr	mm/rad	mm	mm	mm	rad	rad	rad
Fx	N	16625	11602	-3908	102523	-651983	-1095643
Fy	N	11602	126295	-29379	2266641	-1227495	-2656075
Fz	N	-3908	-29379	56204	2488814	1258904	1291259
Mx	Nmm	102522	2266629	2488864	315513727	48479370	12788802
My	Nmm	-651983	-1227492	1258896	48478426	351031069	192287575
Mz	Nmm	-1095639	-2656037	1291243	12788883	192287307	717868440

Ersatzmodell 2b: Steifigkeitsmatrix

F: Steifigkeitsmatrix 1b

Static Structural 4 Time: 0,70494 s 13.11.2018 15:51

B y_Achse_Motor + Lager + 1/2 Spindel

C Torque_RotY

D y_Lager + 1/2 Spindel

E y_Spindelmutter

F Remote Displacement

G Remote Displacement 2

H Remote Displacement 3

Remote Force: 0,70494 N

Moment: 0, N·mm

Steifigkeit		x	У	z	Фх	Фу	Фz
N/mm & Nm	nm/rad	mm	mm	mm	rad	rad	rad
Fx	N	13029	3203	-899	29960	-121294	-7
Fy	N	3203	57597	-17872	507662	-144025	-44
Fz	N	-899	-17872	33759	1005126	217238	-48
Mx	Nmm	29959	507639	1005134	113666461	7640925	-6300
My	Nmm	-121292	-144027	217239	7640908	116243946	-1856
Mz	Nmm	-7	-44	-48	-6298	-1856	16652846

Ersatzmodell 2: Eigenfrequenzen

Nicken um RotX: 367 Hz

Loslagerschwingung im Lager 2 Taumeln: 785 Hz

von RotX: 370 Hz

Ersatzmodell 2: Massen und Massenträgheitsmomente

- Ergebnisse um Lagermittelpunkt von Lager 1 von RotX: Koordinatensystem KS2 (XC, YC, ZC)
- Vektor von KS2 zu KS1 RotBody:
 v2 = (79 | 16 | 39) mm
- Abstand Lagermittelpunkt 1 / Lagermittelpunkt 2: 97 mm

Masse [kg]	4,87	kg	
	XC	YC	ZC
Massensschwerpunkt [mm]	45,33	29,82	4,14
Massenträgheitsmoment um Schwerpunkt [kg*mm²]	XC	YC	ZC
XC	16699	-1083	520
YC	-1083	12638	154
ZC	520	154	20242

Ersatzmodell 3: Gestell - Lagerung RotX

• Modellierung der Ersatzsteifigkeit des Gestells an der Flanschfläche

vom Body Handling

	<u> </u>					
Stiffness	Per Unit X (mm)	Per Unit Y (mm)	Per Unit Z (mm)	Per Unit θx (rad)	Per Unit θy (rad)	Per Unit θz (rad)
Δ Force X (N)	4,1883e+005					
Δ Force Y (N)	-25227	3,4643e+005				
Δ Force Z (N)	-1787,	7487,	2,6251e+005			
Δ Moment X (N⋅mm)	-6,2206e+006	6,9938e+007	-4,8121e+006	3,0842e+010		
Δ Moment Y (N⋅mm)	-4,462e+007	3,8786e+006	7,6414e+006	-6,3303e+008	3,2736e+010	
Δ Moment Z (N⋅mm)	2,2364e+006	-3,56e+006	-1,1437e+006	1,2897e+009	-1,1383e+009	2,2592e+010

- Aufbringen von Einheitslasten an der in Modell 2 RotX-Gehäusebohrung bei Lager 1 & 2 in allen Raumrichtungen zur Bestimmung der Steifigkeitsmatrix (Fx, Fy, Fz, Mx, My, Mz)
- Für Modalanalyse gleiche Einspannbedingung und Bauteile oberhalb der Lagerung RotX deaktiviert (keine Ersatzmasse)

Ersatzmodell 3: Steifigkeitsmatrix

Steifigkei	it	х	У	Z	Фх	Фу	Фz
N/mm &	Nmm/rad	mm	mm	mm	rad	rad	rad
Fx	N	6012	-62	-51	-14315	-2121092	198911
Fy	N	-62	11008	8489	1691528	55757	-147658
Fz	N	-52	8497	36425	51385	290490	-62701
Mx	Nmm	-14284	1694202	47491	811870127	-7163376	-47792777
My	Nmm	-2121103	55669	290479	-7205487	1364057697	-32719574
Mz	Nmm	198907	-147919	-62468	-47844003	-32719881	175965058

unterste z-Position; z-Koordinate RotX: 526,5 mm (vgl. Koordinaten Basis / Bestückposition)

z-Koordinate RotX: 640,5 mm (vgl. Koordinaten Basis / Bestückposition)

Rotation um x: 80 Hz

Rotation um y, z: 92 Hz

z-Koordinate RotX: 746,5 mm (vgl. Koordinaten Basis / Bestückposition)

oberste z-Position; z-Koordinate RotX: 886,5 mm (vgl. Koordinaten Basis / Bestückposition)

Rotation um y, z: 47 Hz

Rotation um x: 56 Hz

Rotation um y, z : 57 Hz

Ersatzmodell 3: Eigenfrequenz 4

für alle z-Positionen ergibt sich die gleiche Eigenfrequenz

Nachgiebigkeit der z-Spindel: 128 Hz

Ersatzmodell 3 // y-Achse: Massen und Massenträgheitsmomente

 Ergebnisse um Lagermittelpunkt von Lager 1 von RotX: Koordinatensystem KS2 (XC, YC, ZC)

7,39	kg	
XC	YC	ZC
5,37	37,16	-100,15
XC	YC	ZC
69472	-5814	-2311
-5814	63029	2671
-2311	2671	37851
	XC 5,37 XC 69472 -5814	5,37 37,16 XC YC 69472 -5814 -5814 63029

Ersatzmodell 3 // z-Achse: Massen und Massenträgheitsmomente

 Ergebnisse von Basis (Befestigungsflansch) aus:

Koordinatensystem KS3 (XC, YC, ZC)

Masse [kg]	77,29	kg	
	XC	YC	ZC
Massensschwerpunkt [mm]	3,73	-1,70	90,32
Massenträgheitsmoment um Schwerpunkt [kg*mm²]	XC	YC	ZC
XC	3634567	17358	57815
YC	17358	7191075	-15381
ZC	57815	-15381	3836487

Ersatzmodell 3 // Basis: Massen und Massenträgheitsmomente

 Ergebnisse von Basis (Befestigungsflansch) aus:

Koordinatensystem KS3 (XC, YC, ZC)

Masse [kg]	40,92	kg	
	XC	YC	ZC
Massensschwerpunkt [mm]	-0,29	0,27	42,49
Massenträgheitsmoment um Schwerpunkt [kg*mm²]	XC	YC	ZC
XC	677245	128	110
YC	128	758293	1267
ZC	110	1267	251918

Koordinaten Basis / Bestückposition

unterschiedliche Stellungen der RotX

Nullstellung der Achsen y und z im FEM-Modell

Position RotX für RotX=0° (alpha), dy=0, dz=0

y: 119 mm z: 726,5 mm

Koordinatensystem der Basis (Mitte Flanschplatte)

y: 0 mm z: -4,9 mm

Die Achsen y und z werden entsprechend der kinematischen Abhängigkeit für eine vorgegebene Bestück-Position und - Orientierung (x, y, z im Artikelraum und RotX) gestellt

Ergebnisse aus der FEM für die Gesamtbaugruppe

maximale Deformation und die ersten beiden Moden bei unterschiedlichen Stellungen

- dx, dy und dz Achse im Bezug auf Nullstellung (siehe vorherige Seite)
- Total Deformation
 Maximum ist die
 maximale Deformation
 im Artikelraum (Zylinder
 mit ø150mm und Höhe
 75mm)
- dxy Maximum ist die max. Verformung in der xy-Ebene im Artikelraum
- dxy P ist die Deformation in der xy-Ebene im Bestückpunkt
- dx P, dy P und dz P sind die richtungsabhängigen Komponenten der Deformation

Anteile der Deformation für die Stellung mit der max. Deformation dxy P (DP 11)*

Verteilung der ersten beiden Eigenmoden in Abhängigkeit der Stellung

Massen und Massenträgheitsmoment Stirnspanner

 Ergebnisse um Lagermittelpunkt von Lager 1 von RotX:

Koordinatensystem KS2 (XC, YC, ZC)

Masse [kg]	0,024	kg	
	XC	YC	ZC
Massensschwerpunkt [mm]	0,033	0,630	88,616
Massenträgheitsmoment um Schwerpunkt [kg*mm²]	XC	YC	ZC
X	7,732	0,002	-0,013
Y	0,002	7,609	0,216
Z	-0,013	0,216	1,749

Massen und Massenträgheitsmoment Umfangsspanner

• Ergebnisse um Lagermittelpunkt von Lager 1 von RotX:

Koordinatensystem KS2 (XC, YC, ZC)

Masse [kg]	0,463	kg	
	XC	YC	ZC
Massensschwerpunkt [mm]	0,342	0,218	64,831
Massenträgheitsmoment um Schwerpunkt [kg*mm²]	XC	YC	ZC
XC	458,004	-5,353	1,222
YC	-5,353	455,812	0,687
ZC	1,222	0,687	748,754