

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТ	ET «Информатика и системы управления»	
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»	

Отчет по лабораторной работе №7 по курсу «Компьютерные сети»

Тема Изучение статической маршрутизации для сетей с поддержкой IPv4 и IPv6
Студент Кононенко С.С.
Группа <u>ИУ7-73Б</u>
Оценка (баллы)
Преподаватель Рогозин Н.О.

Задание

Вариант №6

- 1. Разделить сеть на подсети в соответствии с системой адресации IPv4. Выделить достаточно адресов для размещения 26 хостов в подсетях 1 и 2, 16 в подсети 3, по 2 адреса интерфейса на соединения «точкаточка» между маршрутизаторами.
- 2. Настроить статическую маршрутизацию так, чтобы пинг любым хостом или маршрутизатором любого другого хоста или маршрутизатора был успешным.
- 3. Выделить маршрутизаторам IPv6 адреса формата 2001:x+y::z/64 где x номер по списку в ЭУ (6), y порядковый номер подсети, z порядковый номер интерфейса.
- 4. Установить автоконфигурирование IPv6 без отслеживания состояния (SLAAC) для интерфейсов хостов в подсетях 1 и 2. В подсети 3 использовать SLAAC + DHCPv6.
- 5. Настроить статическую маршрутизацию так, чтобы пинг любым хостом или маршрутизатором любого другого хоста или маршрутизатора с использованием IPv6 адреса был успешным.

Разбиение сети на подсети

Номер	Количество			
подсети	хостов	Адрес подсети	Диапазон адресов подсети	Маска подсети
подести	в подсети			
1	26	192.168.6.0	192.168.6.1 - 192.168.6.30	255.255.255.224(/27)
2	26	192.168.6.32	192.168.6.33 - 192.168.6.62	255.255.255.224(/27)
3	16	192.168.6.64	192.168.6.65 - 192.168.6.94	255.255.255.224(/27)
4	2	192.168.6.96	192.168.6.97 - 192.168.6.98	255.255.255.252(/30)
5	2	192.168.6.100	192.168.6.101 - 192.168.6.102	255.255.255.252(/30)
6	2	192.168.6.104	192.168.6.105 - 192.168.6.106	255.255.255.252(/30)

Таблица 1 – Разбиение сети на подсети

Настройка DHCP была выполнена аналогично с предыдущей лабораторной работой. DHCP-сервера для каждой подсети были настроены на маршрутизаторах.

Router#show ip d	lhcp binding		
IP address	Client-ID/	Lease expiration	Type
	Hardware address		
192.168.6.1	0000.0CD0.17CA		Automatic
192.168.6.3	000A.41BB.4C30		Automatic
192.168.6.2	0002.4A84.2ED5		Automatic
192.168.6.4	0002.4A85.2809		Automatic
192.168.6.33	0060.3E04.0674		Automatic
192.168.6.35	00E0.F9A6.7592		Automatic
192.168.6.34	000C.8522.334C		Automatic
192.168.6.36	00D0.FF0D.3A85		Automatic

Рисунок 1 – Результат выдачи адресов в первой подсети

Router#show i			
IP address	Client-ID/	Lease expiration	Type
	Hardware address		
192.168.6.65	00E0.A3E5.A62E		Automatic
192.168.6.67	0090.2199.13AD		Automatic
192.168.6.66	0001.6369.C78D		Automatic
192.168.6.68	000B.BEA3.B86A		Automatic

Рисунок 2 – Результат выдачи адресов в пятой подсети

Настройка статической IPv4 маршрутизации

Network Address

192.168.6.100/30 via 192.168.6.98

192.168.6.64/27 via 192.168.6.98

192.168.6.104/30 via 192.168.6.98

Рисунок 3 – Настройка маршрутизации на первом роутере

Network Address

192.168.6.0/27 via 192.168.6.97

192.168.6.32/27 via 192.168.6.97

192.168.6.64/27 via 192.168.6.102

192.168.6.104/30 via 192.168.6.102

Рисунок 4 – Настройка маршрутизации на втором роутере

Network Address

192.168.6.96/30 via 192.168.6.101

192.168.6.0/27 via 192.168.6.101

192.168.6.32/27 via 192.168.6.101

192.168.6.64/27 via 192.168.6.106

Рисунок 5 — Настройка маршрутизации на третьем роутере

Network Address

192.168.6.100/30 via 192.168.6.105

192.168.6.96/30 via 192.168.6.105

192.168.6.0/27 via 192.168.6.105

192.168.6.32/27 via 192.168.6.105

Рисунок 6 – Настройка маршрутизации на четвертом роутере

```
C:\>ipconfig
FastEthernet0 Connection: (default port)
  Connection-specific DNS Suffix..:
  Link-local IPv6 Address..... FE80::200:CFF:FED0:17CA
  IPv6 Address....: ::
  IPv4 Address..... 192.168.6.1
  Subnet Mask..... 255.255.254
  Default Gateway....::::
                                 192.168.6.30
Bluetooth Connection:
  Connection-specific DNS Suffix..:
  Link-local IPv6 Address....:::
  IPv6 Address....: ::
  IPv4 Address..... 0.0.0.0
  Subnet Mask....: 0.0.0.0
  Default Gateway....::::
                                 0.0.0.0
C:\>ping 192.168.6.66
Pinging 192.168.6.66 with 32 bytes of data:
Reply from 192.168.6.66: bytes=32 time=1ms TTL=124
Ping statistics for 192.168.6.66:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 1ms, Maximum = 1ms, Average = 1ms
C:\>tracert 192.168.6.66
Tracing route to 192.168.6.66 over a maximum of 30 hops:
     0 ms
              0 ms
                       0 ms
                               192.168.6.30
     0 ms
              0 ms
                       0 ms
                                192.168.6.98
                               192.168.6.102
     1 ms
              1 ms
                       0 ms
    1 ms
             1 ms
                      1 ms
                               192.168.6.106
              0 ms
                      0 ms
                               192.168.6.66
     0 ms
Trace complete.
```

Рисунок 7 — Проверка доступности. Соединение из первой подсети в шестую подсеть

Выделение IPv6 адресов

```
Router(config) #int GigabitEthernet0/0/1
Router(config-if) #ipv6 address 2001:7::1/64
Router(config-if) #
Router#
%SYS-5-CONFIG_I: Configured from console by console

Router#config t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #int GigabitEthernet0/0/0
Router(config-if) #ipv6 address 2001:8::1/64
Router(config-if) #exit
Router(config-if) #ipv6 address 2001:9::164
% Incomplete command.
Router(config-if) #ipv6 address 2001:9::1/64
```

Рисунок 8 – Выделение IPv6 адресов на первом роутере

```
Router(config) #int GigabitEthernet0/0/0
Router(config-if) #ipv6 address 2001:9::2/64
Router(config-if) #exit
Router(config) #int Serial0/1/0
Router(config-if) #
Router(config-if) #ipv6 address 2001:10::1/64
Router(config-if) #
```

Рисунок 9 – Выделение IPv6 адресов на втором роутере

```
Router(config) #int GigabitEthernet0/0/0
Router(config-if) #ipv6 address 2001:11::1/64
Router(config-if) #exit
Router(config) #int Serial0/1/0
Router(config-if) #ipv6 address 2001:10::2/64
Router(config-if) #
```

Рисунок 10 – Выделение IPv6 адресов на третьем роутере

```
Router(config) #int GigabitEthernet0/0/0
Router(config-if) #ipv6 address 2001:11::2/64
Router(config-if) #exit
Router(config) #int GigabitEthernet0/0/1
Router(config-if) #ipv6 address 2001:12::1/64
Router(config-if) #
```

Рисунок 11 – Выделение IPv6 адресов на четвертом роутере

Автоконфигурирование IPv6

```
Router(config)#int GigabitEthernet0/0/0
Router(config-if)#ipv6 address autoconfig
Router(config-if)#exit
Router(config)#int GigabitEthernet0/0/1
Router(config-if)#ipv6 address autoconfig
Router(config-if)#
```

Рисунок 12 – Настройка SLAAC для подсетей 1 и 2

```
Router(config)#int GigabitEthernet0/0/1
Router(config-if)#ipv6 unicast-routing
Router(config)#int GigabitEthernet0/0/1
Router(config-if)#ipv6 enable
Router(config-if)#ipv6 address autoconfig
```

Рисунок 13 – Настройка SLAAC для подсети 6

Рисунок 14 – Настройка DHCPv6 для подсети 6

Настройка статической IPv6 маршрутизации

```
Router(config)#ipv6 unicast-routing
Router(config)#ipv6 route 2001:10::0/64 2001:9::2
Router(config)#ipv6 route 2001:11::0/64 2001:9::2
Router(config)#ipv6 route 2001:12::0/64 2001:9::2
```

Рисунок 15 — Настройка маршрутизации на первом роутере

```
Router(config)#ipv6 unicast-routing
Router(config)#ipv6 route 2001:7::0/64 2001:9::1
Router(config)#ipv6 route 2001:8::0/64 2001:9::1
Router(config)#ipv6 route 2001:11::0/64 2001:11::1
Router(config)#ipv6 route 2001:12::0/64 2001:11::1
```

Рисунок 16 – Настройка маршрутизации на втором роутере

```
Router(config)#ipv6 unicast-routing
Router(config)#ipv6 route 2001:9::0/64 2001:10::1
Router(config)#ipv6 route 2001:8::0/64 2001:10::1
Router(config)#ipv6 route 2001:7::0/64 2001:10::1
Router(config)#ipv6 route 2001:12::0/64 2001:12::1
```

Рисунок 17 – Настройка маршрутизации на третьем роутере

```
Router(config)#ipv6 unicast-routing
Router(config)#ipv6 route 2001:10::0/64 2001:11::1
Router(config)#ipv6 route 2001:9::0/64 2001:11::1
Router(config)#ipv6 route 2001:8::0/64 2001:11::1
Router(config)#ipv6 route 2001:7::0/64 2001:11::1
```

Рисунок 18 – Настройка маршрутизации на четвертом роутере

```
C:\>ipconfig
FastEthernet0 Connection: (default port)
  Connection-specific DNS Suffix..:
  Link-local IPv6 Address..... FE80::202:4AFF:FE84:2ED5
  IPv6 Address...... 2001:7::202:4AFF:FE84:2ED5
  IPv4 Address..... 192.168.6.2
  Subnet Mask..... 255.255.254
  Default Gateway...... FE80::260:5CFF:FE0A:2702
                                 192.168.6.30
Bluetooth Connection:
  Connection-specific DNS Suffix..:
  Link-local IPv6 Address....:::
  IPv6 Address....: ::
  IPv4 Address..... 0.0.0.0
  Subnet Mask..... 0.0.0.0
  Default Gateway....::::
                                 0.0.0.0
C:\>ping 2001:12::201:63FF:FE69:c78D
Pinging 2001:12::201:63FF:FE69:c78D with 32 bytes of data:
Request timed out.
Reply from 2001:12::201:63FF:FE69:C78D: bytes=32 time=2ms TTL=124
Reply from 2001:12::201:63FF:FE69:C78D: bytes=32 time=1ms TTL=124
Reply from 2001:12::201:63FF:FE69:C78D: bytes=32 time=1ms TTL=124
Ping statistics for 2001:12::201:63FF:FE69:C78D:
   Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
   Minimum = 1ms, Maximum = 2ms, Average = 1ms
C:\>tracert 2001:12::201:63FF:FE69:c78D
Tracing route to 2001:12::201:63FF:FE69:c78D over a maximum of 30 hops:
     0 ms
              0 ms
                       0 ms
                                2001:7::1
                                2001:9::2
     0 ms
              0 ms
                       0 ms
    1 ms
                       0 ms
                                2001:10::2
              1 ms
     0 ms
              1 ms
                       0 ms
                                2001:11::2
                                2001:12::201:63FF:FE69:C78D
     0 ms
              0 ms
                       7 ms
Trace complete.
```

Рисунок 19 — Проверка доступности. Соединение из первой подсети в шестую подсеть