Digital Logic Design

Lecture # 1

Objective: Digital Logic design Overview

Number systems Boolean algebra Switch and CMOS design (A brief) Combinational logic

Logic gates Building blocks: de/mux, de/encoder, shifters, adder/subtractor, multiplier Logic minimization Mixed logic

Sequential logic

Latches, Flip-flops
State machine: Mealy/Moore machines

Course Logistics & Administration

TEXTBOOK:

A. M. Morris Mano and Charles R. Kime, Logic and Computer Design Fundamentals,

Pearson Education Inc.

B. Introduction to Logic And Computer Design by Alan B Marcovitz (For Examples)

HOMEWORK:

Regular homework will be assigned on regular basis. Work handed in must be original and not a duplicate.

DIGITAL & COMPUTER SYSTEMS - Digital System

 Takes a set of discrete information <u>inputs</u> and discrete internal information <u>(system state)</u> and generates a set of discrete information <u>outputs</u>.

Types of Digital Systems

- No state present
 - Combinational Logic System
 - Output = Function(Input)
- State present
 - State updated at discrete times
 - => Synchronous Sequential System
 - State updated at any time
 - =>Asynchronous Sequential System
 - State = Function (State, Input)
 - Output = Function (State) or Function (State, Input)

Digital System Example:

A Digital Counter (e. g., odometer):

Inputs: Count Up, Reset Outputs: Visual Display

State: "Value" of stored digits

Synchronous or Asynchronous?

Digital Computer Example

And Beyond - Embedded Systems

- Computers as integral parts of other products
- Examples of embedded computers
 - Microcomputers
 - Microcontrollers
 - Digital signal processors

Embedded Systems

- Examples of Embedded Systems Applications
 - · Cell phones
 - Automobiles
 - · Video games
 - Copiers
 - Dishwashers
 - Flat Panel TVs
 - Global Positioning Systems

INFORMATION REPRESENTATION - Signals

- Information variables represented by physical quantities.
- For digital systems, the variables take on discrete values.
- Two level, or binary values are the most prevalent values in digital systems.
- Binary values are represented abstractly by:
 - digits 0 and 1
 - words (symbols) False (F) and True (T)
 - words (symbols) Low (L) and High (H)
 - and words On and Off.
- Binary values are represented by values or ranges of values of physical quantities

Signal Examples Over Time

Signal Example - Physical Quantity: Voltage

Binary Values: Other Physical Quantities

- What are other physical quantities represent 0 and 1?
 - CPU Voltage
 - Disk Magnetic Field Direction
 - CD Surface Pits/Light
 - Dynamic RAM Electrical Charge