Assignment 2 Avinash Iyer

Solution (19.1):

(a) There is a simple pole at z = 0. The residue at this pole is 0.

(b) There is a pole of order 4 at z = 0. The residue at this pole is 0.

(c) There is a pole of order 4 at z = 0. The residue at this pole is $\frac{1}{120}$.

(d) There is an essential singularity at z = 0.

(e) There is a removable singularity at z = 0.

Solution (19.2): The poles of $\frac{e^z}{\sin z}$ occur when $\sin z = 0$, which happens when $z = n\pi$.

Solution (19.4): There are no residues within |z| < 1.

For 1 < |z| < 2, evaluating the a_{-1} term, we have the residue of $\frac{1}{3}$.

For |z| > 2, evaluating the a_{-1} term, we have a residue of $\frac{1}{3}$.

Solution (19.5):

- (a) There is a pole of order 2 at z = 1 and a pole of order 1 at z = 0.
- (b) Around z = 0, we have the expansion

$$\begin{split} \frac{1}{z(z-1)^2} &= \frac{1}{z(1-z)^2} \\ &= \frac{1}{z} \left(\sum_{k=1}^{\infty} k z^{k-1} \right) \\ &= \sum_{k=1}^{\infty} k z^{k-2}, \end{split}$$

which converges for all 0|z| < 1. Around z = 1, we have the expansion

$$\frac{1}{(z-1)^2 z} = \frac{1}{(z-1)^2 (1+z-1)}$$
$$= \frac{1}{(z-1)^2} \left(\sum_{k=0}^{\infty} (-1)^k (z-1)^k \right)$$
$$= \sum_{k=0}^{\infty} (-1)^k (z-1)^{k-2}.$$

This series converges for all 0 < |z - 1| < 1.

(c) The residue at z = 0 is 1, and the residue at z = 1 is -1.

Solution (19.9): If a is not a singularity of w(z), the Laurent expansion collapses into the Taylor expansion.

| **Solution** (19.11):

| **Solution** (19.13):

| **Solution** (19.18):

Solution (19.24): We must move $e^{2\pi i}$ back into the principal branch to evaluate the square root.

Solution (19.28):

(a) We have

$$e^{iz} = \cos(z) + i\sin(z)$$
$$= \left(1 - \sin^2(z)\right)^{1/2} + i\sin(z).$$

Assignment 2 Avinash Iyer

Thus, defining $w = \sin(z)$, we have

$$iz = \ln\left(iw + \left(1 - w^2\right)^{1/2}\right)$$
$$z = -i\ln\left(iw + \left(1 - w^2\right)^{1/2}\right).$$

Similarly, defining $w = \cos(z)$, we have

$$\begin{split} e^{iz} &= \cos(z) + i \Big(1 - \cos^2(z) \Big)^{1/2} \\ iz &= \ln \Big(w + i \Big(1 - w^2 \Big)^{1/2} \Big) \\ &= \ln \Big(w + i \Big((-1) \Big(w^2 - 1 \Big) \Big)^{1/2} \Big) \\ &= \ln \Big(w + i (-i) \Big(w^2 - 1 \Big)^{1/2} \Big) \\ &= \ln \Big(w + \Big(w^2 - 1 \Big)^{1/2} \Big). \end{split}$$