Tecnica del raddoppio per tabelle hash

Supponiamo che la dimensione iniziale della tabella sia 7. Successione delle dimensioni assunte dalla tabella:

- 7
- 14
- 28
-
- $7 \cdot 2^i$ a seguito dell'inserimento di $7 \cdot 2^{i-1}$ chiavi

Si noti che i è il numero di rehashing e che l'i-esimo rehashing ha costo proporzionale a $7 \cdot 2^{i-1}$.

Quanti rehashing? Questo numero si calcola considerando il più piccolo i (chiamiamolo i^*) tale che $7 \cdot 2^i \ge n$, da cui otteniamo $i^* \le \log_2 \frac{n}{7}$.

Costo complessivo dei rehashing? Basta fare la somma:

$$Costo \leq \sum_{i=1}^{\log_2(n/7)} 7 \cdot 2^{i-1} = 7 \sum_{i=1}^{\log_2(n/7)} 2^{i-1} = 7 \sum_{i=0}^{\log_2(n/7)-1} 2^i = 7 \frac{2^{\log_2(n/7)}-1}{2-1} = 7 \left(\frac{n}{7}-1\right) = n-7$$

Nota bene: il docente non ha prestato particolare attenzione alle costanti (ad esempio, i costi sono assunti unitari nel calcolo della funzione Costo) e la descrizione è molto sintetica. Ci si aspetta che gli studenti usino questi appunti come traccia per ricavare un'analisi rigorosa (anche se quella data lo è abbastanza) e capire bene il problema.