CODE

N_{cb} = nominal concrete breakout strength in tension of a single anchor, N

 N_{cbg} = nominal concrete breakout strength in tension of a group of anchors, N

 N_{cp} = basic concrete pryout strength of a single anchor, N

 N_{cpg} = basic concrete pryout strength of a group of anchors, N

 N_n = nominal strength in tension, N

 N_p = pullout strength in tension of a single anchor in cracked concrete, N

 N_{pn} = nominal pullout strength in tension of a single anchor, N

 N_{sa} = nominal strength of a single anchor or individual anchor in a group of anchors in tension as governed by the steel strength, N

 N_{sb} = side-face blowout strength of a single anchor, N

 N_{sbg} = side-face blowout strength of a group of anchors, N

 N_u = factored axial force normal to cross section occurring simultaneously with V_u or T_u ; to be taken as positive for compression and negative for tension, N

 N_{ua} = factored tensile force applied to anchor or individual anchor in a group of anchors, N

 $N_{ua,g}$ = total factored tensile force applied to anchor group,

 $N_{ua,i}$ = factored tensile force applied to most highly stressed anchor in a group of anchors, N

 $N_{ua.s}$ = factored sustained tension load, N

 N_{uc} = factored restraint force applied to a bearing connection acting perpendicular to and simultaneously with V_u , to be taken as positive for tension, N

 $N_{uc,max}$ = maximum restraint force that can be transmitted through the load path of a bearing connection multiplied by the load factor used for live loads in combinations with other factored load effects

 p_{cp} = outside perimeter of concrete cross section, mm

 p_h = perimeter of centerline of outermost closed transverse torsional reinforcement, mm

 P_a = maximum allowable compressive strength of a deep foundation member, N

 P_c = critical buckling load, N

 P_n = nominal axial compressive strength of member, N

 $P_{n,max}$ = maximum nominal axial compressive strength of a member, N

 P_{nt} = nominal axial tensile strength of member, N

 $P_{nt,max}$ maximum nominal axial tensile strength of member,

 P_o = nominal axial strength at zero eccentricity, N

 P_{pu} = factored prestressing force at anchorage device, N

P_s = unfactored axial load at the design, midheight section including effects of self-weight, N

P_u = factored axial force; to be taken as positive for compression and negative for tension, N

COMMENTARY

 $P\delta$ = secondary moment due to individual member slenderness, N·mm

