3.3: Aplicaciones del diezmado y la interpolación

- Cambio de frecuencia de muestreo
- Simplificación de la conversión A/D y D/A
- ◆ Traslación en frecuencia
- Retardo no entero

Diezmado e interpolación permiten cambiar la frecuencia de muestreo en las aplicaciones en tiempo real

Aumento de la frecuencia de muestreo

Disminución de la frecuencia de muestreo

Cambio de la frecuencia de muestreo (I)

$$F'_{M} = \alpha \cdot F_{M}, \quad \alpha = N/M \longrightarrow \begin{array}{c} \text{interpolación factor N} \\ \text{diezmado factor M} \end{array}$$
 ¿orden?

Cambio de la frecuencia de muestreo (II)

Simplificación de la conversión A/D

Simplificación de la conversión D/A

Traslación en frecuencia

- ◆ Ejemplo: múltiplex de telefonía analógica
 - \triangleright canal vocal: 0-3,4kHz (F_M= 8kHz)
 - > transmisión: desplazado en banda a 16kHz (F'_M= 48kHz)

Requiere una interpolación 8kHz → 48kHz (factor N=6)

Retardo no entero

Nota: se considera el filtro interpolador con retardo nulo

Resumen

Aplicaciones del diezmado y la interpolación

Cambio de frecuencia de muestreo

◆ Simplificación conversión analógica—digital

 \triangleright A/D: conversión a MF_M + diezmado \downarrow M

 \triangleright D/A: interpolación \uparrow N + conversión a NF_M

◆ Traslación en frecuencia

> interpolación + filtrado paso banda

Retardo no entero

> interpolación + retardo + diezmado