Praca domowa 3 - Wstęp do uczenia maszynowego

Oliwia Trzcińska

1 Wstęp

Celem pracy domowej jest implementacja oraz przetestowanie metody k najbliższych sąsiadów.

2 Implementacja

Do stosowania metody k najbliższych sąsiadów służy funkcja \mathtt{knn} (). Przyjmuje ona jako argumenty kolejno:

- zbiór treningowy macierz rzeczywistą \mathbb{X} rozmiaru $n \times c$, która reprezentuje n punktów w \mathbb{R}^c ,
- y n elementowy obiekt taki, że y_i to etykieta odpowiadająca obserwacji $\mathbb{X}[i,]$,
- \bullet zbiór testowy macierz rzeczywistą $\mathbb Z$ rozmiaru $m\times c,$ która reprezentuje mpunktów w $\mathbb R^c,$
- k liczbę całkowitą z przedziału [1, n], która oznacza liczbę najbliższych sąsiadów biorących udział w poszukiwaniu etykiety odpowiadającej punktom ze zbioru testowego,
- p wartość rzeczywistą nie mniejszą od 1 lub wartość 'infty' określającą, która metryka Minkowskiego L_p będzie używana do poszukiwania najbliższych sąsiadów (domyślna wartość p to 2).

Funkcja zwraca m-elementowy obiekt w taki, że w_i to etykieta odpowiadająca obserwacji $\mathbb{Z}[i,]$. Funkcja knn() działa przy założeniu, że w wejściowych zbiorach treningowym i testowym nie ma braków danych oraz dane są odpowiednio przeskalowane. Korzysta z funkcji pomocniczych:

- check_params(), która sprawdza zgodność wprowadzonych parametrów z powyższą definicją,
- lp_distance(a, b, p), która oblicza odległość między wektorami a i b w metryce L_p .

Mechanizm działania funkcji knn() jest następujący:

- 1. sprawdzamy poprawność argumentów wejściowych, w przypadku jakichkolwiek niezgodności kończymy działanie funkcji
- 2. tworzymy pustą listę w, do której będziemy później zapisywać przewidywane etykiety
- 3. dla $i=1,2,3,\ldots m$ tworzymy listę odległości i-tego wiersza zbioru testowego od każdego z wierszy zbioru treningowego $\mathbb X$ w metryce L_p
- 4. dla danej obserwacji ze zbioru testowego znajdujemy indeksy k najbliższych obserwacji ze zbioru treningowego
- 5. wyznaczamy ciąg etykiet k najbliższych sąsiadów tej obserwacji i szukamy wartości najczęściej występującej (jeśli jest ich kilka, losowo wybieramy jedną, każdą z tym samym prawdopodobieństwem)
- 6. zapisujemy przewidywaną etykietę do listy w
- 7. po przeprowadzeniu tej procedury dla każdej obserwacji ze zbioru $\mathbb Z$ zwracamy listę w.

3 Testy

3.1 Test 1

Najpierw sprawdzimy działanie funkcji knn() w przypadku, gdy k=1 oraz zbiory treningowy i testowy są takie same. Przy pomocy funkcji make_classification() generujemy losowy problem klasyfikacji. Liczba naszych obserwacji to 50, a macierz $\mathbb X$ ma 2 kolumny. Zmieniamy typ danych na listy i wywołujemy trzy razy funkcję knn(), kolejno z parametrami p=1,2, 'infty'. Okazuje się, że przy takich założeniach za każdym razem jest zwrócony idealnie odtworzony wektor prawdziwych etykiet.

3.2 Test 2

W tym eksperymencie patrząc na wykres danych sprawdzimy, czy funkcja knn() poprawnie przewidzi etykietę. Generujemy zbiór treningowy losując z rozkładu jednostajnego 10 punktów w dwuwymiarowej przestrzeni, o współrzędnych z przedziału (0,10). Następnie każdemu z nich losowo wybieramy etykietę 0 lub 1, każdą z prawdopodobieństwem 0,5. Ustalamy także losowo jeden punkt testowy, dla którego etykietę będziemy chcieli przewidzieć przy pomocy metody 3 najbliższych sąsiadów. Do obliczania odległości stosujemy metrykę L_2 .

Na wykresie kropkami są zaznaczone obserwacje ze zbioru treningowego. Odpowiednio kolorem żółtym te, które mają etykietę 1 i fioletowym te, które mają etykietę 0. Czerwony krzyżyk oznacza punkt testowy. Korzystając z wcześniej opisanej funkcji lp_distance() obliczamy odległości punktu testowego od każdej obserwacji ze zbioru treningowego, wybieramy 3 najbliższe punkty i oznaczamy je trójkacikiem.

Widzimy, że dwoje najbliższych sąsiadów jest oznaczonych kolorem żółtym, a jeden fioletowym. Funkcja knn() poprawnie więc zaklasyfikowała obserwację testową do klasy 1.

Przeprowadzimy teraz analogiczny eksperyment, tym razem dla k=5. Zbiorem treningowym będzie losowo (z rozkładu jednostajnego) wygenerowane 30 punktów w dwuwymiarowej przestrzeni, o współrzędnych z przedziału (0,10). Ponownie kolorem fioletowym oznaczone są obserwacje z etykietą 0.

Trzy spośród pięciu najbliższych punktów mają etykietę 0, taka jest też wartość zwrócona przez naszą funkcję.

3.3 Test 3

Sprawdzimy teraz jaka jest dokładność zaimplementowanej metody k najbliższych sąsiadów. Ponownie generujemy losowy problem klasyfikacji. Tym razem mamy 1000 obserwacji 2 cech. Dzielimy dane na zbiory treningowy i testowy w proporcji 7:3. Sprawdzamy dokładność na obu tych zbiorach w zależności od parametrów k oraz p. Rozpatrujemy $k \in \{1,3,5,7\}$ oraz metryki L_1, L_2 i L_∞ . Wyniki zostały przedstawione w poniższej tabeli.

Parametry	Wartość na zbiorze treningowym	Wartość na zbiorze testowym
$k=1,L_1$	1,000	0,957
$k=1,L_2$	1,000	0,957
$k=1,L_{\infty}$	1,000	0,953
$k=3,L_1$	0,964	0,970
$k=3,L_2$	0,966	0,973
$k=3,L_{\infty}$	0,963	0,973
$k=5, L_1$	0,957	0,967
$k=5, L_2$	0,959	0,970
$k=5, L_{\infty}$	0,957	0,973
$k = 7, L_1$	0,966	0,970
$k = 7, L_2$	0,964	0,967
$k = 7, L_{\infty}$	0,964	0,973

Przeprowadzimy ten sam test jeszcze raz, teraz na mniejszym zbiorze danych. Analogicznie generujemy problem klasyfikacji z 50 obserwacjami, dzielimy dane na zbiory treningowy i testowy w proporcji 7:3. Sprawdzamy działanie funkcji knn() dla tych samych parametrów co wcześniej. Wyniki prezentują się następująco.

Parametry	Wartość na zbiorze treningowym	Wartość na zbiorze testowym
$k=1,L_1$	1,000	0,867
$k = 1, L_2$	1,000	0,867
$k=1,L_{\infty}$	1,000	0,933
$k = 3, L_1$	0,943	0,933
$k=3,L_2$	0,943	0,933
$k=3,L_{\infty}$	0,971	0,933
$k=5, L_1$	0,914	0,867
$k=5, L_2$	0,886	0,867
$k=5, L_{\infty}$	0,857	0,867
$k = 7, L_1$	0,829	0,867
$k = 7, L_2$	0,886	0,867
$k = 7, L_{\infty}$	0,886	0,800

4 Podsumowanie

Zaimplementowana metoda k najbliższych sąsiadów osiągnęła dobre wyniki w problemie klasyfikacji na wygenerowanych przez nas danych. Nawet przy małym zbiorze treningowym jakość predykcyjna okazała się zadowalająca.