Exercises

(Course: Database Management Systems)

Chapter 3

Algorithms for Query Processing and Optimization (Cost-based optimization)

Given a database schema as follows:

```
CREATE TABLE EMPLOYEE
    (FNAME
                      VARCHAR(15)
                                        NOT NULL,
     MINIT
                      CHAR,
     LNAME
                      VARCHAR(15)
                                        NOT NULL,
     SSN
                      CHAR(9)
                                        NOT NULL.
     BDATE
                      DATE,
                      VARCHAR(30),
     ADDRESS
     SEX
                      CHAR,
     SALARY
                      DECIMAL(10,2),
     SUPERSSN
                      CHAR(9) ,
     DNO
                      INT
                                        NOT NULL,
 PRIMARY KEY (SSN).
 FOREIGN KEY (SUPERSSN) REFERENCES EMPLOYEE(SSN)
 FOREIGN KEY (DNO) REFERENCES DEPARTMENT(DNUMBER));
CREATE TABLE DEPARTMENT
    ( DNAME
                       VARCHAR(15)
                                          NOT NULL,
                                          NOT NULL,
     DNUMBER
                       INT
     MGRSSN
                        CHAR(9)
                                          NOT NULL,
     MGRSTARTDATE
                       DATE .
   PRIMARY KEY (DNUMBER),
   UNIQUE (DNAME).
   FOREIGN KEY (MGRSSN) REFERENCES EMPLOYEE(SSN));
CREATE TABLE PROJECT
    ( PNAME
                       VARCHAR(15)
                                         NOT NULL.
                                         NOT NULL,
     PNUMBER
                       INT
                       VARCHAR(15),
     PLOCATION
     DNUM
                       INT
                                         NOT NULL,
    PRIMARY KEY (PNUMBER),
    UNIQUE (PNAME)
    FOREIGN KEY (DNUM) REFERENCES DEPARTMENT(DNUMBER) );
```

The **EMPLOYEE** file has $r_E = 10000$ records stored in $b_E = 2000$ disk blocks with the blocking factor $bfr_E = 5$ records/block and the following access paths:

- 1. A clustering index on SALARY, with levels $x_{SALARY} = 3$ and first-level (base level) index blocks $bl1_{SALARY} = 50$ and average selection cardinality $s_{SALARY} = 20$.
- 2. A secondary index on the key attribute SSN, with $x_{SSN} = 4$ ($s_{SSN} = 1$) and first-level (base level) index blocks bl1_{SSN} = 50.

- 3. A secondary index on the nonkey attribute DNO, with $x_{DNO} = 2$ and first-level (base level) index blocks $bl1_{DNO} = 4$. There are $d_{DNO} = 125$ distinct values for DNO, so the selection cardinality of DNO is $s_{DNO} = (r_E/d_{DNO}) = 80$.
- 4. A secondary index on SEX, with $x_{SEX} = 1$. There are $d_{SEX} = 2$ values for the SEX attribute, so the average selection cardinality is $s_{SEX} = r_E*(1/d_{SEX}) = 5000$.

The **DEPARTMENT** file consists of $r_D = 125$ records stored in $b_D = 13$ disk blocks with the blocking factor $bfr_D = 10$ records/block and the following access paths:

- 1. A primary index on DNUMBER with $x_{DNUMBER} = 1$ level ($s_{DNUMBER} = 1$).
- 2. A secondary index on MGRSSN with selection cardinality $s_{MGRSSN} = 1$ and levels $x_{MGRSSN} = 2$ and first-level (base level) index blocks $bl1_{MGRSSN} = 2$.

The **PROJECT** file has $r_P = 2000$ records stored in $b_P = 100$ blocks with the blocking factor $bfr_P = 20$ records/block and the following access paths:

1. A secondary index on PLOCATION with $x_{PLOCATION} = 2$ and first-level (base level) index blocks $bl1_{PLOCATION} = 4$. There are $d_{PLOCATION} = 200$ values for the PLOCATION attribute, so the average selection cardinality is $s_{PLOCATION} = r_P*(1/d_{PLOCATION}) = 10$.

Determine the reasonable execution plans for each query below using cost-based optimization:

E1. $\sigma_{SSN} = '123456789' (EMPLOYEE)$

Solution: use secondary index-based search with 5 block accesses.

E2. $\sigma_{DNO=5}(EMPLOYEE)$

Solution: use secondary index-based search with 82 block accesses.

E3. $\sigma_{DNO>5}(EMPLOYEE)$

Solution: use linear search with 2000 block accesses.

E4. σ_{DNUMBER>5}(DEPARTMENT)

Solution: use primary index-based search for multiple records for the comparison on the key field with 8 block accesses.

E5. σ_{PLOCATION='Stafford'}(PROJECT)

Solution: use linear search with 100 block accesses.

E6. σ_{DNO=5 and SALARY>30000 and SEX=F}(EMPLOYEE)

Solution: use secondary index-based search on DNO with 82 block accesses and the other conditions are checked later.

E7. σ_{DNO=5 or SALARY>30000}(EMPLOYEE)

Solution: use the union the results from the approach on DNO and from the approach on SALARY with the total block accesses = 1085 block accesses.

E8. EMPLOYEE ⋈_{DNO=DNUMBER}DEPARTMENT

<u>Given</u>: the join selectivity is $js_{E8} = 1/|DEPARTMENT| = 1/r_D = 1/125$ because DNUMBER is a key of DEPARTMENT; the blocking factor for the resulting join file is $bfr_{ED} = 4$ records per block.

Solution: use J2b. Single-loop join with DEPARTMENT for outer loop and a secondary index on the nonkey attribute DNO of EMPLOYEE with the total number of block accesses = 12763 block accesses.

E9. DEPARTMENT ⋈_{MGRSSN=SSN}EMPLOYEE

<u>Given</u>: the join selectivity is $js_{E9} = 1/|EMPLOYEE| = 1/r_E = 1/10000$ because SSN is a key of EMPLOYEE; the blocking factor for the resulting join file is $bfr_{ED} = 4$ records per block.

<u>Solution</u>: use J2b. Single-loop join with DEPARTMENT for outer loop and a secondary index on the key attribute SSN of EMPLOYEE with the total number of block accesses = 670 block accesses.

E10. SELECT *

FROM EMPLOYEE, DEPARTMENT
WHERE DNAME = 'Research' and DNUMBER = DNO;

<u>Given</u>: the join selectivity is $js_{E10} = 1/|DEPARTMENT| = 1/r_D = 1/125$ because DNUMBER is a key of DEPARTMENT; the blocking factor for the resulting join file is $bfr_{ED} = 4$ records per block.

Solution: the execution plan for the query is as follows:

- use linear search approach for an equality condition on the unique attribute DNAME to retrieve a single record (in DEPARTMENT*) with the total number of block accesses = 7 block accesses;
- use J2. Single-loop join with DEPARTMENT* for outer loop and a secondary index on the nonkey attribute DNO of EMPLOYEE with the total number of block accesses = 2583 block accesses;
- the total number of block accesses at the end is 7 + 2583 = 2590 block accesses.

E11. SELECT *

FROM EMPLOYEE as E, EMPLOYEE as S WHERE E.SUPERSSN = S.SSN;

<u>Given</u>: the join selectivity is $js_{E11} = 1/|EMPLOYEE| = 1/r_E = 1/10000$ because SSN is a key of EMPLOYEE; the blocking factor for the resulting join file is $bfr_{EE} = 2$ records per block; the available buffer space in main memory is $n_B = 7$ blocks.

<u>Solution</u>: use J3. Sort-merge join with the assumption that the ordering (sorting) of records is obtained via the secondary index on the key attribute SSN of EMPLOYEE as E and external sorting is required for the ordering of records based on values of the nonkey attribute SUPERSSN of EMPLOYEE as S with the total number of block accesses = 39054 block accesses.

E12. SELECT *

FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM = DNUMBER and MGRSSN = SSN and LNAME = 'Smith';

<u>Given</u>: the join selectivity with the join condition DNUM = DNUMBER is $js_1 = 1/|DEPARTMENT| = 1/r_D = 1/125$ because DNUMBER is a key of DEPARTMENT; the join selectivity with the join condition MGRSSN = SSN is $js_2 = 1/|EMPLOYEE| = 1/r_E = 1/10000$ because SSN is a key of EMPLOYEE; the blocking factor for the resulting join file as well as for the intermediate join file is $bfr_{join} = 2$ records per block.

Solution: Refer to [1], 15.8.6, pp. 530-532.

E13. SELECT *

FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM = DNUMBER and MGRSSN = SSN and PLOCATION = 'Stafford';

<u>Given</u>: the join selectivity with the join condition DNUM = DNUMBER is $js_1 = 1/|DEPARTMENT| = 1/r_D = 1/125$ because DNUMBER is a key of DEPARTMENT; the join selectivity with the join condition MGRSSN = SSN is $js_2 = 1/|EMPLOYEE| = 1/r_E = 1/10000$ because SSN is a key of EMPLOYEE; the blocking factor for the resulting join file as well as for the intermediate join files is $bfr_{join} = 2$ records per block.

Solution: Refer to [1], 15.8.6, pp. 530-532.