2) Logistic Regression

Useful for binary classification. Should NOT be used for regression

If we will use simple linear regression, it can misclassify data (cause of points/outliers far away) like so:

If model result > 0.5: predict churned
If model result < 0.5: predict not churned

So we need to weight the samples (that are far away) much lower. Thats where the logistic function (ie sigmoid function) comes into play

Sigmoid function

It looks as follows:

Customer status after one year

Amount of usage

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

So rather than the slope being [mx+b], it is $1/(1 + e^{-(mx+b)})$

 $1/(1 + e^{-(mx+b)})$ can be further represented as

$$P(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}} \qquad \qquad P(x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

Logistic Function

$$\frac{P(x)}{1 - P(x)} = e^{(\beta_0 + \beta_1 x)}$$

Odds Ratio

and the odds ratio can further be represented as

$$\log \left[\frac{P(x)}{1 - P(x)} \right] = \beta_0 + \beta_1 x$$

Odds Ratio

One vs all

This is a method used when we are not dealing with binary classes. Here, for every class, we put that class's points in a separate class and all the other points in another class

So for example, suppose we have 3 classes (a,b,c). So first, we will train a model with all points of a being put in class1 and points of b and c being put in class2. This model will represent the probability that a given point will be of the a class. Similarly, we will train two more models, one representing the probability of a point being of class b and the other representing the probability of a point being of class c. We will then make our final prediction based on which model gave us the highest probability

For example, in a dataset like this:

We end up with the following models:

(blue vs purple+pink)

(pink vs blue+purple)

Code

In code, we can pass hyper parameters like penalty, c, and solver

penalty is wether we want to use l1, l2, or elastic net regularisation

 ${\color{red}c}$ is the inverse of λ

 $There \ is \ also \ the \ \boxed{\textbf{LogisticRegressionCV}} \ class \ which \ tunes \ regularisation \ parameters \ via \ cross \ validation$