

# TEST CODE 22112020

MAY/JUNE 2008

# **FORM TP 2008167**

# CARIBBEAN EXAMINATIONS COUNCIL

# ADVANCED PROFICIENCY EXAMINATION

#### CHEMISTRY

UNIT 1 - PAPER 02

2 hours 30 minutes

# READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

- 1. This paper consists of SIX compulsory questions in TWO sections.
- Section A consists of THREE structured questions, ONE from each Module. Section B
  consists of THREE extended response questions, ONE from each Module.
- For Section A, write your answers in the spaces provided in this booklet. For Section B, write your answers in the separate answer booklet provided.
- 4. ALL working MUST be shown.
- 5. The use of non-programmable calculators is permitted.
- A data booklet is provided.

### **SECTION A**

Answer ALL questions in this section.

Write your answers in the spaces provided in this booklet.

### MODULE 1

# **FUNDAMENTALS IN CHEMISTRY**

| <b>1.</b> (a) | (i)  | Define the term 'standard enthalpy of formation', $\Delta H_f^{\theta}$ .                                                              |
|---------------|------|----------------------------------------------------------------------------------------------------------------------------------------|
|               |      |                                                                                                                                        |
|               |      |                                                                                                                                        |
|               | (ii) | [ 2 marks]  The enthalpy of formation of both carbon monoxide and aluminium oxide cannot be determined directly by experimental means. |
|               |      | Suggest ONE reason in EACH case for the above observation.  CO:                                                                        |
|               |      | Al <sub>2</sub> O <sub>3</sub> :                                                                                                       |

(b) Figure 1 shows the energy level diagram for determining the enthalpy of solution of KBr.



Figure 1. Energy level diagram for determining the enthalpy of solution of KBr

[ 2 marks]

| (i) | Write the enthalpy change represented by $\DeltaH_1,\DeltaH_2$ and | $1 \Delta H_3$ in Figure 1. |
|-----|--------------------------------------------------------------------|-----------------------------|
|     | $\Delta H_1$ :                                                     |                             |
|     | $\Delta\mathrm{H_2}$ :                                             |                             |
|     | $\Delta H_3$ :                                                     | [3 marks]                   |

(ii) Calculate the enthalpy of solution for KBr, given the following information.

$$\Delta H_1 = + 672 \text{ kJ mol}^{-1}$$
  $\Delta H_2 = -656 \text{ kJ mol}^{-1}$ 

[3 marks]

(c) Table 1 provides data comparing the theoretical and experimental (Born-Haber) lattice energies of the halides of elements, X and Y.

TABLE 1: THEORETICAL AND EXPERIMENTAL LATTICE ENERGIES

| Compound | $\begin{array}{cccc} \text{und} & & \text{Theoretical lattice} & & \text{Experimental lattice} \\ & \text{energy/kJ mol}^{-1} & & \text{energy / kJ mol}^{-1} \end{array}$ |                      |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| XCl      | <b>-</b> 766                                                                                                                                                               | <i>–</i> 776         |
| XBr      | - <b>73</b> 1                                                                                                                                                              | <b>-742</b>          |
| XI       | <b>–</b> 686                                                                                                                                                               | <i>–</i> <b>69</b> 9 |
| YCL      | <b>–</b> 768                                                                                                                                                               | <del>- 890</del>     |
| YBr      | <b>– 759</b>                                                                                                                                                               | <b>–</b> 877         |
| YI       | <b>- 736</b>                                                                                                                                                               | - 867                |

What kind of bonding is present in

| (1) | naildes of X? |      |  |
|-----|---------------|------|--|
|     |               |      |  |
|     |               |      |  |
|     |               | <br> |  |
|     |               |      |  |

(ii) halides of Y?

[2 marks]

GO ON TO THE NEXT PAGE

| (d) | A student was required to design the method to be followed in determining the enthalpy | 0 |
|-----|----------------------------------------------------------------------------------------|---|
|     | neutralisation of hydrochloric acid and sodium hydroxide.                              | 1 |

Below is a reproduction of the student's method.

Measure 25 cm<sup>3</sup> of hydrochloric acid (1M) into a plastic cup using a measuring cylinder.

Measure the temperature of the acid.

Transfer 35 cm<sup>3</sup> of sodium hydroxide (1M) into the plastic cup containing the hydrochloric acid. Stir gently with the thermometer and note the resulting temperature of the mixture.

| i)       |    |         |
|----------|----|---------|
| <u> </u> |    |         |
| )        |    |         |
|          |    |         |
| )        | XV |         |
|          |    |         |
|          |    | [ 3 mar |

NOTHING HAS BEEN OMITTED

GO ON TO THE NEXT PAGE

## KINETICS AND EQUILIBRIA

2. In order to determine the effect of concentration on reaction rates the reaction between butyl chloride (C<sub>4</sub>H<sub>o</sub>Cl) and water is investigated.

$$C_4H_9Cl(aq) + H_2O(l) \rightarrow C_4H_9OH(aq) + HCl(aq)$$

A 0.100 mol dm<sup>-3</sup> aqueous solution of butyl chloride is reacted with water and the concentration measured at various time intervals to produce the results in Table 2.

TABLE 2: RESULTS OF REACTION OF BUTYL CHLORIDE WITH WATER

| Time, t (s) | [C <sub>4</sub> H <sub>9</sub> Cl] (mol dm <sup>-3</sup> ) | Reaction rate (mol dm <sup>-3</sup> s <sup>-1</sup> ) |
|-------------|------------------------------------------------------------|-------------------------------------------------------|
| 0.0         | 0.100                                                      | _                                                     |
| 50.0        | 0.090                                                      | 1.91 x 10 <sup>-4</sup>                               |
| 100.0       | 0.081                                                      | 1.70 x 10 <sup>-4</sup>                               |
| 150.0       | 0.074                                                      | 1.59 x 10 <sup>-4</sup>                               |
| 200.0       | 0.067                                                      | 1.41 x 10 <sup>-4</sup>                               |
| 300.0       | 0.055                                                      | 1.22 x 10 <sup>-4</sup>                               |
| 500.0       | 0.037                                                      | 0.801 x 10 <sup>-4</sup>                              |
| 600.0       | 0.030                                                      | 0.620 x 10 <sup>-4</sup>                              |
| 800.0       | 0.020                                                      | 0.561 x 10 <sup>-4</sup>                              |

- On the grid provided on page 7, plot a graph of the concentration of butyl chloride,  $[C_4H_9Cl]$  on the y-axis against time in seconds, on the x-axis. [4 marks]
- (b) Using your graph, estimate the concentration of butyl chloride at t = 400 s.

[ 1 mark ]



| (c)      | In add       | ition to concentration, catalysts and temperature also affect reaction rates.       |
|----------|--------------|-------------------------------------------------------------------------------------|
|          | Using rates: | suitable well-labelled diagrams, explain how EACH of the following affects reaction |
|          | (i)          | Catalysts                                                                           |
|          |              |                                                                                     |
|          |              |                                                                                     |
|          | æ            |                                                                                     |
|          |              |                                                                                     |
|          |              |                                                                                     |
|          |              |                                                                                     |
|          |              |                                                                                     |
|          |              |                                                                                     |
|          | <b>A</b>     | [4 marks]                                                                           |
|          |              |                                                                                     |
| <b>~</b> | (2)          |                                                                                     |
|          |              |                                                                                     |

| (ii)    | Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\rightarrow$  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|         | Land to the state of the state |                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [ 4 marks]     |
| d) Name | TWO industrial processes in which catalysts are used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| d) Hame | 1 110 maistral processes in which catalysis are used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [2 monto]      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [ 2 marks]     |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total 15 marks |
|         | 80 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |

# CHEMISTRY OF THE ELEMENTS

| 3. | (a) | (i)  | Insert arrows in EACH of the boxes in Figure 2 to show the electronic configuration of the species. |
|----|-----|------|-----------------------------------------------------------------------------------------------------|
|    |     |      | 3d 4s                                                                                               |
|    |     |      | Fe <sup>2+</sup> (Ar)                                                                               |
|    |     |      | Mn <sup>2+</sup> (Ar)                                                                               |
|    |     |      | Cr (Ar)                                                                                             |
|    |     |      | Cu (Ar)                                                                                             |
|    |     |      | Zn <sup>2+</sup> (Ar)                                                                               |
|    |     |      | Figure 2. Electronic configuration of different species  (5 marks)                                  |
|    |     | (ii) | Explain EACH of the following statements in terms of electronic configurations.                     |
|    |     |      | a) Fe <sup>2+</sup> ions are readily oxidized to Fe <sup>3+</sup> ions.                             |
|    |     |      |                                                                                                     |
|    |     |      | b) Mn <sup>2+</sup> ions are NOT readily oxidized to Mn <sup>3+</sup> ions.                         |
|    |     |      |                                                                                                     |
|    |     |      |                                                                                                     |
|    |     |      | c) Zn is NOT considered to be a transition element.                                                 |
|    |     |      |                                                                                                     |
|    | •   | 01   |                                                                                                     |

GO ON TO THE NEXT PAGE

22112020/CAPE/F 2008

(b) Figure 3 refers to the following reaction scheme.



Figure 3. Reaction scheme

(i) Complete the table below by writing the colour of the species labelled A, B, C and D.

| Species | A | В | C | D |
|---------|---|---|---|---|
| Colour  |   |   |   |   |

[ 4 marks]

(ii) State the reagent used for the conversion in Reaction 1 (D  $\rightarrow$  B).

[ 1 mark ]

(c) Iron forms a complex ion with cyanide ions (CN<sup>-</sup>). The formula of the complex is  $[Fe(CN)_6]^{4-}$ .

Explain how an aqueous solution of iron(II) sulphate functions as an antidote for cyanide poisoning.

[ 2 marks]

#### SECTION B

Answer ALL questions in this section.

Write your answers in the answer booklet provided.

#### MODULE 1

### FUNDAMENTALS IN CHEMISTRY

(a) List THREE assumptions made about gas molecules in the kinetic theory.

[3 marks]

(b) The ideal gas equation is

PV = nRT.

- (i) State the TWO conditions under which the ideal gas equation adequately describes the behaviour of gases. [2 marks]
- (ii) Carefully explain the deviations produced by real gases. [3 marks]
- (c) Sketch a graph of volume (V) against the inverse of pressure (1/P) for a constant number of moles of an ideal gas at constant temperature. [1 mark]
- (d) (i) An organic compound, Y. contains carbon, hydrogen and oxygen only. When vapourised at 101 kPa and 373 K, 1.00 g of Y occupies a volume of 667 cm<sup>3</sup>.

Calculate the mass in grams of 1 mole of Y. (Gas constant,  $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ ).

[4 marks]

(ii) On combustion in excess oxygen, 1 mole of Y produces carbon dioxide and water in the mole ratio 2:3. Deduce the formula of Y. [2 marks]

## KINETICS AND EQUILIBRIA

5. Buffer solutions are prepared by mixing a weak acid or a weak base with a salt of that acid or base. A buffer solution is prepared using 0.14 mol dm<sup>-3</sup> lactic acid ( $HC_3H_5O_3$ ) and 0.12 mol dm<sup>-3</sup> sodium lactate ( $NaC_3H_5O_3$ ).  $K_a = 1.4 \times 10^{-4}$  for lactic acid.

- (a) With reference to the Bronsted-Lowry theory, explain EACH of the following:
  - (i) Weak acid
  - (ii) Strong acid

[2 marks]

- (b) Describe the significance of pH (- log [H<sup>+</sup>]) and K<sub>a</sub> (acid dissociation constant) values.

  [ 2 marks]
- (c) Calculate the pH of the  $HC_3H_5O_3/C_3H_5O_3$  buffer solution. [4 marks]
- (d) With the aid of balanced equations, explain how the  $HC_3H_5O_3/C_3H_5O_3^-$  buffer works in maintaining its pH. [6 marks]
- (e) When preparing a buffer solution of a specific pH, state ONE consideration to be taken into account in selecting a suitable weak acid. [1 mark]

### CHEMISTRY OF THE ELEMENTS

6. (a) Table 3 gives the atomic radii and melting points of the elements in Period 3.

### TABLE 3: SOME PROPERTIES OF ELEMENTS IN PERIOD 3

|                    | Na    | Mg    | Al    | Si    | P     | s     | Cl    |
|--------------------|-------|-------|-------|-------|-------|-------|-------|
| Atomic radius / nm | 0.157 | 0.136 | 0.125 | 0.117 | 0.110 | 0.104 | 0.099 |
| Melting point / °C | 98    | 651   | 660   | 1410  | 44    | 114   | -101  |

- (i) State and account for the trend in the values of the atomic radii across the period from Na to Cl. [4 marks]
- (ii) The trend in the melting points of the elements in Table 3 is related to structure and bonding.

Describe the trend in the structure of the elements, and the trend in the bonding of the elements in Table 3. [5 marks]

(b) (i) Compare the reaction of the Group II elements, Be and Ca, with water.

[2 marks]

- (ii) Describe what happens when barium is treated with water and write the equation for the reaction. [3 marks]
- (c) State ONE use of calcium carbonate.

[1 mark]

Total 15 marks

END OF TEST