

Biostatistics for Med Students

Lecture 1

John J. Chen, Ph.D.

Professor & Director of Biostatistics Core

UH JABSOM

JABSOM MD7

February 13, 2019

Lecture note: http://biostat.jabsom.hawaii.edu/Education/training.html

Lecture Objectives

- To understand basic research design principles and data presentation approaches
- To build a foundation which will facilitate the active participation in clinical research
- To fully grasp descriptive statistics
- To introduce key concepts of inferential statistics
- To survey some commonly used statistical approaches
- To be prepared for the USMLE Step 1 biostat/epi questions

Outline

Lecture 1 (02/13/2019)

- The goal of statistics
- Introduction to descriptive biostatistics
- Basic research design principles and data presentation approaches

Lecture 2 (02/20/2019)

- Introduction to inferential statistics
- Commonly used statistical approaches

Definition of Statistics

The theory and methodology for research (study) design, and for describing, analyzing, and interpreting information (data) generated from such studies, in which the data is subject to chance variation.

Population & Sample

- <u>Population</u>: the set of all subjects of interest having a common observable characteristic. For example, all newborns in US.
- <u>Sample:</u> a subset of a population, e.g., all newborns at KMC in 2018.
- <u>Parameter.</u> a summary measure of the population, e.g., the average birth weight of the above population.
- <u>Statistic:</u> a summary measure of the sample, e.g., the average birth weight of the above sample.

Properties of A "Good" Sample

- Adequate sample size (statistical power)
- Random selection (representative)

Commonly used sampling techniques

- 1. Simple random sample
- 2. Stratified sample
- 3. Systematic sample
- 4. Cluster sample
- 5. Convenience sample

Types of Data & Scales of Measurement

1. Qualitative variables - categorical

- Nominal: Categories, names (e.g., gender, eye color)
- Ordinal: Ordered data, intervals are not equal (e.g., satisfaction scores, grades of tumor)

2. Quantitative variables - numerical

- Discrete no intermediate values (e.g., number of children per family)
- Continuous intermediate values (e.g., temperature, birth weight)

Types of Variables

Notes:

Dependent (response) versus Independent (explanatory) variables

In linear regression analysis:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

Sources of Data (Types of Studies)

Two major types of investigations:

Surveys versus experiments

<u>Major difference:</u> whether the investigator has control over which subjects enter each study group.

Some examples of survey researches

Prospective (cohort) studies Retrospective (case-control) studies Cross-sectional studies

Some examples of experimental studies:

Lab experiments
Clinical trials

Descriptive Statistics

Qualitative data:

- Frequencies
- Percentages

Quantitative data:

- Measures of central tendency
 Mean, Median, Mode
- Measures of variability (dispersion)
 Standard deviation, Variance, Range, Interquartile range

Measures of Central Tendency

Mean - The average

$$\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n}$$
(sample mean)

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$$
(population mean)

Median - 50th percentile point (the middle value)

- If values are in ascending order, the median is the (n+1)/2 term (if n is an odd number) or the average of (n/2) and (n/2+1) (if n is an even number)
- · The median is not affected by outliers

Mode - The value that occurs most frequently

Measures of Variability

1. Variance:

Sample variance =
$$s^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$$

2. Standard deviation (SD):

Sample SD =
$$s = \sqrt{s^2}$$

3. Range:

Range =
$$\max$$
 - \min

Data Dictionary

An example:

Variable	Education		
Description/Label	Education Level		
Data Type	Num – Categorical variable		
Length	8		
Allowable Values	1=none 2=primary 3=intermediate 4=senior high 5=technical school 6=university or above		
Notes	Required field. No missing allowed.		

Ways of Presenting Data (cont.)

Summary table: one categorical variable

Statistics

Educational Level

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	none	25	25.0	25.0	25.0
	primary	32	32.0	32.0	57.0
	intermediate	24	24.0	24.0	81.0
	senior high	9	9.0	9.0	90.0
	technical school	10	10.0	10.0	100.0
	Total	100	100.0	100.0	

Ways of Presenting Data (cont.)

Cross-tabulation: two categorical variables

Physical Activity at Home * Smoking Status Crosstabulation

			Smoking Status		
			no	yes	Total
Physical Activity at Home	mostly sitting	Count	31	18	49
		% within Physical Activity at Home	63.3%	36.7%	100.0%
		% within Smoking Status	49.2%	48.6%	49.0%
	moderate	Count	32	19	51
		% within Physical Activity at Home	62.7%	37.3%	100.0%
		% within Smoking Status	50.8%	51.4%	51.0%
Total		Count	63	37	100
		% within Physical Activity at Home	63.0%	37.0%	100.0%
		% within Smoking Status	100.0%	100.0%	100.0%

Basic Principles of Experimental Design

- Replications
- Randomization
- Blocking (stratification)
- Blinding
- Factorial experiments

Handling A Confounding Variable (Z)

- If you can, fix a variable.
- If you can't, stratify it.
- If can't fix or stratify a variable, randomize it.

$$Y = \beta_0 + \beta_1 X + \beta_2 Z + \varepsilon$$

Warning Signs

Data consumption

MSCTR Curriculum

- BIOM 640 Introduction to Clinical Research (3 credits)
- BIOM 641 Legal & Regulatory Issues and Bioethics (2 credits; cross-listed with CMB626)
- BIOM 644 Translational Research Methods (2 credits)
- BIOM 645 Clinical Protocol Development (3 credits)
- BIOM 654 Medical Genetics (2 credits)
- QHS 601 Biomedical Statistics I (3 credits; cross-listed with TRMD 655)
- QHS 602 Biomedical Statistics II (3 credits)
- QHS 610 Bioinformatics I (3 credits; cross-listed with TRMD 653)
- QHS 611 Bioinformatics II (3 credits)
- QHS 620 Introduction to Clinical Trials (2 credits)
- QHS 621 Design and Analysis of Clinical Trials (2 credits)
- QHS 650 Secondary Data Analysis (2 credits)
- QHS 651 Secondary Data Analysis Practicum (2 credits)
- · QHS 675 Biostatistical Consulting (2 credits)
- QHS 676 Biostatistical Consulting Practicum (1 2 credits)

MSCTR Graduate Program Website: msctr.jabsom.hawaii.edu

Collaboration with A Biostatistician

- 1. Early and often
- 2. Start the discussion when you have the initial idea
- 3. It is an iterative process
- 4. A collaborative effort: equal and fair
- 5. Ask questions so you can discuss about the general statistical approach without the statistician
- 6. Education and training in research design and biostatistics

http://biostat.jabsom.hawaii.edu

Outline

Lecture 1 (02/13/2019)

- The goal of statistics
- Introduction to descriptive biostatistics
- Basic research design principles and data presentation approaches

Lecture 2 (02/20/2019)

- Introduction to inferential statistics
- Commonly used statistical approaches

