Mathematical Tripos Part IB: Lent 2010

Numerical Analysis – Lecture 5¹

We commence our construction of Gaussian quadrature by choosing pairwise-distinct nodes $c_1, c_2, \ldots, c_{\nu} \in [a, b]$ and define the interpolatory weights

$$b_k := \int_a^b w(x) \prod_{\substack{j=1\\j \neq k}}^{\nu} \frac{x - c_j}{c_k - c_j} dx, \qquad k = 1, 2, \dots, \nu.$$

Theorem The quadrature formula with the above choice is exact for all $f \in \mathbb{P}_{\nu-1}[x]$. Moreover, if $c_1, c_2, \ldots, c_{\nu}$ are the zeros of p_{ν} then it is exact for all $f \in \mathbb{P}_{2\nu-1}[x]$.

Proof. Every $f \in \mathbb{P}_{\nu-1}[x]$ is its own interpolating polynomial, hence by Lagrange's formula

$$f(x) = \sum_{k=1}^{\nu} f(c_k) \prod_{\substack{j=1\\j\neq k}}^{\nu} \frac{x - c_j}{c_k - c_j}.$$
 (2.7)

The quadrature is exact for all $f \in \mathbb{P}_{\nu-1}[x]$ if $\int_a^b w(x)f(x) dx = \sum_{k=1}^{\nu} b_k f(c_k)$, and this, in tandem with the interpolating-polynomial representation, yields the stipulated form of b_1, \ldots, b_{ν} . Let c_1, \ldots, c_{ν} be the zeros of p_{ν} . Given any $f \in \mathbb{P}_{2\nu-1}[x]$, we can represent it uniquely as $f = qp_{\nu} + r$, where $q, r \in \mathbb{P}_{\nu-1}[x]$. Thus, by orthogonality,

$$\int_{a}^{b} w(x)f(x) dx = \int_{a}^{b} w(x)[q(x)p_{\nu}(x) + r(x)] dx = \langle q, p_{\nu} \rangle + \int_{a}^{b} w(x)r(x) dx$$
$$= \int_{a}^{b} w(x)r(x) dx.$$

On the other hand, the choice of quadrature knots gives

$$\sum_{k=1}^{\nu} b_k f(c_k) = \sum_{k=1}^{\nu} b_k [q(c_k) p_{\nu}(c_k) + r(c_k)] = \sum_{k=1}^{\nu} b_k r(c_k).$$

Hence the integral and its approximation coincide, because $r \in \mathbb{P}_{\nu-1}[x]$ and the quadrature is exact for all polynomials in $\mathbb{P}_{\nu-1}[x]$.

Example Let $[a,b] = [-1,1], w(x) \equiv 1$. Then the underlying orthogonal polynomials are the Legendre polynomials: $P_0 \equiv 1$, $P_1(x) = x$, $P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$, $P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x$, $P_4(x) = \frac{35}{8}x^4 - \frac{15}{4}x^2 + \frac{3}{8}$ (it is customary to use this, non-monic, normalisation). The nodes of Gaussian quadrature are

$$n=1$$
: $c_1=0$;

$$n=2$$
: $c_1=-\frac{\sqrt{3}}{3}, c_2=\frac{\sqrt{3}}{3}$;

$$n = 2$$
: $c_1 = -\frac{\sqrt{3}}{3}$, $c_2 = \frac{\sqrt{3}}{3}$;
 $n = 3$: $c_1 = -\frac{\sqrt{15}}{5}$, $c_2 = 0$, $c_3 = \frac{\sqrt{15}}{5}$;

$$n=4$$
: $c_1=-\sqrt{\frac{3}{7}+\frac{2}{35}\sqrt{30}}, c_2=-\sqrt{\frac{3}{7}-\frac{2}{35}\sqrt{30}}, c_3=\sqrt{\frac{3}{7}-\frac{2}{35}\sqrt{30}}, c_4=\sqrt{\frac{3}{7}+\frac{2}{35}\sqrt{30}}.$

3 The Peano kernel theorem

3.1 The theorem

Our point of departure is the Taylor formula with an integral remainder term,

$$f(x) = f(a) + (x-a)f'(a) + \frac{(x-a)^2}{2!}f''(a) + \dots + \frac{(x-a)^k}{k!}f^{(k)}(a) + \frac{1}{k!}\int_a^x (x-\theta)^k f^{(k+1)}(\theta) d\theta, \quad (3.1)$$

¹Corrections and suggestions to these notes should be emailed to A.Iserles@damtp.cam.ac.uk. All handouts are available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartIB/Handouts.html

which can be verified by integration by parts for functions $f \in C^{k+1}[a,b]$, a < b. Suppose that we are given an approximation (e.g. to a function, a derivative at a given point, an integral etc.) which is *exact* for all $f \in \mathbb{P}_k[x]$. The Taylor formula produces an expression for the error that depends on $f^{(k+1)}$. This is the basis for the *Peano kernel theorem*.

Formally, let L(f) be the approximation error. Thus, L maps $C^{k+1}[a,b]$, say, to \mathbb{R} . We assume that it is linear, i.e. $L(\alpha f + \beta g) = \alpha L(f) + \beta L(g) \ \forall \alpha, \beta \in \mathbb{R}$, and that L(f) = 0 for all $f \in \mathbb{P}_k[x]$. In general, a linear mapping from a function space (e.g. $C^{k+1}[a,b]$) to \mathbb{R} is called a linear functional. The formula (3.1) implies

$$L(f) = \frac{1}{k!} L\left\{ \int_{a}^{x} (x - \theta)^{k} f^{(k+1)}(\theta) d\theta \right\}, \qquad a \le x \le b.$$

To make the range of integration independent of x, we introduce the notation

$$(x-\theta)_+^k := \left\{ \begin{array}{ll} (x-\theta)^k, & x \geq \theta, \\ 0, & x \leq \theta, \end{array} \right. \quad \text{whence} \quad L(f) = \frac{1}{k!} L \left\{ \int_a^b (x-\theta)_+^k f^{(k+1)}(\theta) \, \mathrm{d}\theta \right\}.$$

Let $K(\theta) := L[(x-\theta)_+^k]$ for $x \in [a,b]$. [Note: K is independent of f.] The function K is called the Peano kernel of L. Suppose that it is allowed to exchange the order of action of \int and L. Because of the linearity of L, we then have

$$L(f) = \frac{1}{k!} \int_a^b K(\theta) f^{(k+1)}(\theta) d\theta.$$
 (3.2)

The Peano kernel theorem Let L be a linear functional such that L(f) = 0 for all $f \in \mathbb{P}_k[x]$. Provided that $f \in \mathbb{C}^{k+1}[a,b]$ and the above exchange of L with the integration sign is valid, the formula (3.2) is true.

3.2 An example and few useful formulae

We approximate a derivative by a linear combination of function values, $f'(0) \approx -\frac{3}{2}f(0) + 2f(1) - \frac{1}{2}f(2)$. Therefore, $L(f) := f'(0) - [-\frac{3}{2}f(0) + 2f(1) - \frac{1}{2}f(2)]$ and it is easy to check that L(f) = 0 for $f \in \mathbb{P}_2[x]$. (Verify by trying $f(x) = 1, x, x^2$ and using linearity of L.) Thus, for $f \in \mathbb{C}^3[0, 2]$ we have

$$L(f) = \frac{1}{2} \int_0^2 K(\theta) f'''(\theta) d\theta.$$

To evaluate the Peano kernel K, we fix θ . Letting $g(x) := (x - \theta)_+^2$, we have

$$\begin{split} K(\theta) &= L(g) = g'(0) - \left[-\frac{3}{2}g(0) + 2g(1) - \frac{1}{2}g(2) \right] \\ &= 2(0 - \theta)_{+} - \left[-\frac{3}{2}(0 - \theta)_{+}^{2} + 2(1 - \theta)_{+}^{2} - \frac{1}{2}(2 - \theta)_{+}^{2} \right] \\ &= \begin{cases} -2\theta + \frac{3}{2}\theta^{2} + (2\theta - \frac{3}{2}\theta^{2}) \equiv 0, & \theta \leq 0, \\ -2(1 - \theta)^{2} + \frac{1}{2}(2 - \theta)^{2} = 2\theta - \frac{3}{2}\theta^{2}, & 0 \leq \theta \leq 1, \\ \frac{1}{2}(2 - \theta)^{2}, & 1 \leq \theta \leq 2, \\ 0, & \theta \geq 2. \end{cases} \end{split}$$

[Note: It is obvious that $K(\theta) = 0$ for $\theta \notin [0,2]$, since then L acts on a quadratic polynomial.] This gives the form of the Peano kernel for our example.