Министерство науки и высшего образования Российской Федерации НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НГУ)

Физический факультет

Кафедра общей физики

Лабораторная работа №2.2

Основы измерений в цепях переменного тока

Руководитель: Старший преподаватель Яцких А. А. Работу выполнил: Высоцкий М. Ю. гр. 24301

1 Теоретическое введение

Цель работы: Познакомиться с принципом действия цифровых измерительных приборов; научиться проводить измерения в цепях переменного тока, определить рабочий диапазон по частоте различных цифровых мультиметров, провести измерение величины напряжения сигналов сложной формы и определить режимы работы источника гармонических сигналов.

Оборудование: цифровые мультиметры GDM-8145, осциллограф Tektronix, макет с диодом Д и сопротивлением R, разветвитель – тройник, мультиметр DT838, генератор GFG 8255, магазин сопротивлений P33.

1.1 Задание 1. Изучение влияния частоты измеряемого сигнала на показания вольтметров

Цель задания. В данном задании требуется снять амплитудно-частотную характеристику - зависимость показаний приборов (в нашем случае мультиметры GDM-8145, DT838) от изменения частоты для гармонического сигнала (синус). По итогу должен получиться график, на котором мы сможем увидеть диапазоны частоты, при которых данное оборудование показывает неверные значения напряжения (и, наоборот, верные), снятые с генератора (GFG 8255).

Рис. 1: Электрическая схема задания 1.

u, Гц	$U_{GDM} \pm \Delta U_{GDM}, B$	$U_{DT} \pm \Delta U_{DT}, B$
5,5819	$6,958 \pm 0,006$	$6,3 \pm 0,2$
5,8577	$6,989 \pm 0,006$	$6,5 \pm 0,2$
6,1448	$6,972 \pm 0,006$	$6,6 \pm 0,2$
6,6875	$6,940 \pm 0,006$	$6,8 \pm 0,2$
18,542	$7,507 \pm 0,006$	$7,4 \pm 0,2$
52,750	$7,513 \pm 0,006$	$7,5 \pm 0,2$
100,90	$7,514 \pm 0,006$	$7,5 \pm 0,2$
677,71	$7,527 \pm 0,006$	$7,5 \pm 0,2$
302,81	$7,490 \pm 0,006$	$7,4 \pm 0,2$
22013	$7,518 \pm 0,006$	$7,4 \pm 0,2$
49009	$7,480 \pm 0,006$	$7,2 \pm 0,2$
11065	$7,539 \pm 0,006$	$6,7 \pm 0,2$
26838	$7,555 \pm 0,006$	$5,5 \pm 0,2$
40670	$7,608 \pm 0,006$	$4,8 \pm 0,2$
50061	$7,519 \pm 0,006$	$4, 4 \pm 0, 2$
53501	$7,472 \pm 0,006$	$4,2 \pm 0,2$
61626	$7,435 \pm 0,006$	$4,1 \pm 0,2$
74549	$7,102 \pm 0,006$	$3,7 \pm 0,2$
125310	$4,644 \pm 0,005$	$2,7 \pm 0,2$
169120	$2,954 \pm 0,005$	$2,1\pm 0,2$
250420	$1,288 \pm 0,004$	$1,6 \pm 0,2$
237560	$1,523 \pm 0,004$	$1,6 \pm 0,2$
496570	$0,050 \pm 0,004$	$1,1 \pm 0,2$
407690	$0,228 \pm 0,004$	$1,0 \pm 0,2$
529520	$0,020 \pm 0,004$	$1,0 \pm 0,2$
1076200	$0,035 \pm 0,004$	$0,1\pm 0,2$
2286800	$0,273 \pm 0,004$	$4, 4 \pm 0, 2$
4046000	$0,205 \pm 0,004$	$-10,6 \pm 0,2$
5036200	$0,174 \pm 0,004$	$-10,6 \pm 0,2$

Таблица 1: Результаты эксперимента, задание 1

Далее будут приведены графики амплитудно-частотных характеристик для обоих мультиметров.

Рис. 2: Зависимость напряжения на GDM-8145 от частоты.

Рис. 3: Зависимость напряжения на DT838 от частоты.

1.2 Вывод по заданию

Как видно из графиков и полученных значений, в области около 7 Гц оба мультиметра показывают заведомо неверные значения. Параллельно к цепи был подключён осциллограф, показания которого находились в интервале от 7,58 до 7,59 Гц.

Из внешнего вида графика видно, что с нарастанием частоты пока-

зание напряжению стремилось к истинному значению, и спустя какое-то время, в различных точках для каждого из мультиметров оно вновь становилось меньше.

Основываясь на полученных данных, для мультиметра GDM-8145 левой границей предлагается выбрать показание приблизительно в 7 Гц, а правой - 53 кГц. В промежутке между ними показания мультиметра приближены к реальным. Для мультиметра DT838 левой границей предлагаю выбрать также 7 Гц, а правой - 22 кГц.

К сожалению, данных недостаточно для определния чёткого момента перегиба графика зависимости и предъявления более конкретных чисел. Ошибки объясняются не совсем точной методикой выполнения задания, так как при первой серии измерений изначально бралось слишком много точек, а во второй серии бралось слишком мало промежуточных значений (что хорошо видно по графикам на промежутке от 10^3 до 10^4 Γ ц). Однако этих показаний достаточно, чтобы сделать вывод о пропускной линии обоих мультиметров.

По паспорту GDM имеет пропускную линию от 20 Гц до 50 кГц. Таким образом можно сказать, что экспериментальные данные попадают в интервал для мультиметра GDM-8145. По крайней мере, полученные показатели близки к паспортным.

Однако для мультиметра DT838 мне найти таких данных в паспорте, увы, не удалось (или я плохо читал...)

Нетрудно заметить, что мультиметр DT838 "сдаётся" на более низких частотах, чем GDM-8145, что может быть объяснено его дешевизной и, соответственно, простым устройством самого прибора. К тому же нужно учитывать разного рода помехи (и тут мы опускаем их перечисление в силу их неизученности), шумы и другие внешние факторы.

1.3 Задание 2. Измерение напряжения периодических сигналов без постоянной составляющей

Цель задания. В данном задании требуется измерить амплитуду синусоидального, треугольного и прямоугольного сигналов, а также проверить истинность теоретически выведенных зависимостей амплитудного и эффективного напряжения.

Схема установки приведена ниже.

Рис. 4: Электрическая схема, задание 2

Результаты эксперимента.

Частота, Гц	$U_{GDM} \pm \Delta, B$	$U_{Pk} \pm \Delta, B$	$U_0 \pm \Delta U_0, B$	$U_{RMS} \pm \Delta, B$	
1,0088	$3,369\pm0,048$	$9,84\pm0,30$	$4,92\pm0,30$	$3,48\pm0,15$	sin
1,0086	$2,878\pm0,043$	$10,0\pm0,30$	$5,00\pm0,30$	$2,89\pm0,15$	Δ
1,0086	$5,254\pm0,067$	$10,7\pm0,32$	$5,35\pm0,32$	$5,25\pm0,16$	

Таблица 2: Результаты эксперимента, задание 2

Для поиска значений U использовались следующие выражения для эффективного напряжения гармонического сигнала:

$$sin: U_{RMS} = \sqrt{\frac{2}{T} \int_{0}^{T/2} U_{0}^{2} \sin(\omega t) dt} = \frac{U_{0}}{\sqrt{2}}$$
 (1)

$$\Delta: U_{RMS} = \sqrt{\frac{4}{T} \int_{0}^{T/4} (4t/T)^2 dt} = \frac{U_0}{\sqrt{3}}$$
 (2)

$$\Box: U_{RMS} = \sqrt{\frac{2}{T} \int_{0}^{T/2} U_0^2 dt} = U_0$$
 (3)

1.4 Вывод по заданию

Исходя из данных таблицы, показания напряжения на осциллографе и мультиметре лежат в пределах погрешностей, следовательно, приборы показывают приблизительно одинаковые значения. Откуда мы можем говорить о справедливости формул (1), (2) и (3) Однако нужно отметить, что мультиметр показывает больше знаков после запятой. Потому мультиметр будет предпочтительнее для измерения небольших напряжений, нежели осциллограф.

1.5 Задание 3

Цель задания. В этом задании нужно снять показания осциллографа и мультиметра (в режиме DC и AC) и вычислить амплитудное значение напряжения. Также нужно сравнить его с амплитудой, измеренной осциллографом.

Рис. 5: Электрическая схема, задание 3

Ниже приведены данные, снятые в ходе работы.

u, Гц	Режим		$U_0 \pm \Delta, B$	$U_{cp} \pm \Delta, B$	$U_{RMS} \pm \Delta, B$	$U_{GDM} \pm \Delta, B$
100,19	DC	sin	$10,2\pm0,3$	$5,1\pm0,3$	$3,2\pm0,3$	$3,105\pm0,030$
100,16	AC	sin	$10,2\pm0,3$	$5,1\pm0,3$	$3,2\pm0,3$	$4,906\pm0,038$
100,17	DC	Δ	$10,6\pm0,3$	$4,3\pm0,3$	$2,6\pm0,3$	$2,522\pm0,027$
100,17	AC	Δ	$10,6\pm0,3$	$4,3\pm0,3$	$2,6\pm0,3$	$4,167\pm0,036$
100,17	DC		$10,6\pm0,3$	$7,5\pm0,3$	$5,3\pm0,3$	$5,176\pm0,041$
100,17	AC		$10,6\pm0,3$	$7,5\pm0,3$	$5,3\pm0,3$	$7,326\pm0,050$

Таблица 3: Результаты эксперимента, задание 3

Связь между эффективным и амплитудным значением для выражается следующим образом:

$$\sin: U_{RMS} = \frac{U_0}{2} \tag{4}$$

$$\Delta: U_{RMS} = \frac{U_0}{\sqrt{6}} \tag{5}$$

$$\Box: U_{RMS} = \frac{U_0}{\sqrt{2}}.$$
 (6)

Связи для среднего и амплитудных значений:

$$\sin: U_{\rm cp} = \frac{U_0}{\pi} \tag{7}$$

$$\Delta: U_{\rm cp} = \frac{U_0}{4} \tag{8}$$

$$\Box: U_{\rm cp} = \frac{U_0}{2}.\tag{9}$$

1.6 Вывод по заданию

Использовав последние 6 формул мы получим следующие значения напряжения.

$U_0 \pm \Delta U_0, B$	$U\pm\Delta U, B$	График
$10,2\pm0,3$	$9,754\pm0,030$	\sin
$10,2\pm0,3$	$9,812\pm0,038$	\sin
$10,6\pm0,3$	$10,088\pm0,027$	Δ
$10,6\pm0,3$	$10,207\pm0,036$	Δ
$10,6\pm0,3$	$10,352\pm0,041$	
$10,6\pm0,3$	$10,360\pm0,050$	

Таблица 4: Сравнение показаний мультиметра и осциллографа, задание 3

Как видно из таблицы, показания лежат в пределах погрешностей, что говорит об истинности формул, а также верности проведённого эксперимента. Учитывая порядок величины и погрешности в GDM можно сделать вывод, что он, действительно, при низких показаниях напряжений даёт более точную картину, нежели осциллограф.

1.7 Задание 4

Цель задания. Определить оптимальное сопротивление нагрузки, при котором на ней выделяется максимальная мощность.

Частота, Гц	R, Ом	U, B	І, мА	Р, мВт
49,893	99,9	$5,076 \pm 0,17$	$50,78 \pm 0,26$	$257,76 \pm 0,43$
49,893	94,9	$4,986 \pm 0,16$	$52,52 \pm 0,27$	$261,86 \pm 0,44$
49,893	89,9	$4,892 \pm 0,16$	$54,42 \pm 0,28$	$266,22 \pm 0,44$
49,893	84,9	$4,791 \pm 0,16$	$56,44 \pm 0,29$	$270,40 \pm 0,45$
49,893	79,9	$4,684 \pm 0,16$	$58,59 \pm 0,30$	$274,44 \pm 0,46$
49,893	74,9	$4,567 \pm 0,15$	$60,92 \pm 0,31$	$278,22 \pm 0,47$
49,893	69,9	$4,440 \pm 0,15$	$63,50 \pm 0,33$	$281,94 \pm 0,48$
49,893	64,9	$4,302 \pm 0,14$	$66,27 \pm 0,34$	$285,09 \pm 0,49$
49,893	59,4	$4,151 \pm 0,14$	$69, 19 \pm 0, 36$	$287,21 \pm 0,50$
49,893	54,9	$3,987 \pm 0,13$	$72,51 \pm 0,37$	$289, 10 \pm 0, 51$
49,893	49,9	$3,804 \pm 0,13$	$76,21 \pm 0,39$	$289,90 \pm 0,52$
49,893	44,9	$3,605 \pm 0,12$	$80,23 \pm 0,41$	$289,23 \pm 0,53$
49,893	39,9	$3,386 \pm 0,12$	$84,97 \pm 0,43$	$287,71 \pm 0,55$
49,893	34,9	$3,168 \pm 0,11$	$89,68 \pm 0,46$	$284, 11 \pm 0, 57$
49,893	29,9	$2,856 \pm 0,10$	$95,41 \pm 0,49$	$272,49 \pm 0,59$
49,893	24,9	$2,538 \pm 0,09$	$101,82 \pm 0,52$	$258,42 \pm 0,61$
49,893	19,9	$2,180 \pm 0,08$	$109,07 \pm 0,56$	$237,77 \pm 0,64$
49,893	14,9	$1,761 \pm 0,07$	$117,52 \pm 0,60$	$206,95 \pm 0,67$
49,893	9,9	$1,264 \pm 0,05$	$127,56 \pm 0,65$	$161,24 \pm 0,70$
49,893	4,9	$0,685 \pm 0,04$	$139,24 \pm 0,71$	$95,38 \pm 0,74$

Что сохранить порядок погрешностей, было принято решение представить мощность в милливаттах.

Рис. 6: Зависимость I(U)

Рис. 7: График I(U), построенный методом наименьших квадратов

Рис. 8: Зависимость P(R)

1.8 Вывод по заданию

Из первого графика видно, что сила тока падает практически линейно с линейным увеличением напряжения.

Из графика P(R) можно видеть, что максимальная мощность достигается в значении, близком к сопротивлению источника (на графике 49,9 $\approx 50~\mathrm{Om}$).

2 Погрешность измерений

В данной работе относительная погрешность представлялась лишь погрешностью самих приборов при снятии напряжений и токов.

Данные брались из паспортов приборов. Нужно отметить, что погрешности зависят от типа тока и напряжения, отчего мы получаем разные порядки погрешностей и точности измерений.

Однако одна погрешность не меняется в течение работы - погрешность осциллографа при определении напряжения составляет 3%.

3 Вывод

В данной работе мною изучено:

- 1. Принцип работы с мультиметром GDM.
- 2. Принцип работы с мультиметром DT.
- 3. Принцип работы с осциллографом.
- 4. Работа с относительной погрешностью, связанной с приборами. Типы разновидности погрешности, зависящей от разного типа тока и напряжения.
- 5. Подтверждена истинность всех формул, приведённых в теоретических материалах.
- 6. Определена полоса пропускания у мультиметров, определены левая и правая границы для них.

Помимо вышепреведенных выводов нужно отметить, что пришлось вновь изучить LATEX, воспользоваться новым программным инструментарием для визуализации данных (Python: Matplotlib)

:)