Formale Grundlagen der Informatik II - Blatt 09

Vincent Dahmen 6689845 Mirco Tim Jammer 6527284

14. Dezember 2015

09.3

1.

$$B = \left\{ \begin{pmatrix} 0 \\ 0 \\ 3 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 3 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 3 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 2 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 2 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

Die Ersten Beiden Zeilen Beschreiben die Markierungern, bei denen c für unbeschränktheit in p_4 sorgt.

Die Letzte Zeile Beschreibt die möglichkeiten, bei denen der Zyklus a,b für unbeschränktheit z.b. in p_3 sorgt.

2.

3.

PSchnitt: p_6, p_7 TSchnitt: t_1

Allgemeiner Schnitt: t_2, p_2

Einen Schnitt mit mehr als drei Elementen anzugeben ist nicht möglich, da es nicht mehr als drei Nebenläufige "Aktionslinien" gibt.

4.

Der Angegebene Prozess ist ein Verzweigungsprozess

09.4

1.

Um Die Reihenfolge der einträge eindeutig zu machen mit zeilen bzw. spalten beschriftung

$$\begin{pmatrix} t_1 & t_2 & t_3 & t_4 & t_5 & t_6 \\ pa & -1 & 0 & 1 & -1 & 0 & 1 \\ p_1 & +1 & -1 & 0 & 0 & 0 & 0 \\ p_2 & 0 & 1 & -1 & 0 & 0 & 0 \\ p_3 & 0 & 0 & 0 & 1 & -1 & 0 \\ p_4 & 0 & 0 & 0 & 0 & 1 & -1 \\ pp & 0 & -1 & 1 & 0 & -4 & 4 \end{pmatrix}$$

Lösen des Gleichnugssystems

$$\begin{pmatrix} -1 & 0 & 1 & -1 & 0 & 1 \\ +1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & -1 & 1 & 0 & -4 & 4 \end{pmatrix} * i = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Ergibt als Lösung für die S-Invarianten-Vektoren

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ x \\ x \\ x \end{pmatrix} mit \ x \in \mathbb{N}$$

Für Die T-Invarianten gilt:

$$p * \begin{pmatrix} -1 & 0 & 1 & -1 & 0 & 1 \\ +1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & -1 & 1 & 0 & -4 & 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}^{T}$$

$$(0 \quad 0 \quad 0 \quad x \quad 4x \quad x) \ mit \ x \in \mathbb{N}$$

2.

$$p_2 + p_9 + p_8 = 1$$

$$p_3 + p_{10} + p_7 = 2$$

$$p_4 + p_{11} + p_6 = 1$$

Diese 3 Invarianten sthehen dafür, dass der jeweilige abschnitt nur von einer bzw 2 marken gleichzeitigt belegt sein darf.

Außerdem gilt:

$$p_1 + p_2 + p_3 + p_4 = 1$$

$$p_5 + p_6 + p_7 + p_8 = 1$$

Was dafür steht, dass in jedem der Beiden Moddelierten Prozesse nur eine Make sein kann.

Als Gesamtinvariante ergibt sich:

$$p_1 + 2p_2 + 2p_3 + 2p_4 + 2p_5 + 2p_6 + 2p_7 + p_8 + p_9 + p_{10} + p_{11} = 6$$

4.

(Reihenfolge nach Aufsteigenden Platznummern und Alphabetisheen Transitionen)

$$\begin{pmatrix}
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & -2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 1 \\
0 & 1 & 0 & 0 & -1 & 0
\end{pmatrix}$$

5.

Lösen des Gleichugssystems gibt

$$\begin{pmatrix} x \\ x \\ y \\ y \\ x \\ x \end{pmatrix} mit \ x, y \in \mathbb{N}$$

als mögliche lösungen