Step	Algorithm: $[C] := \text{SYRK_AC_BLK_VAR2}(A, C)$
1a	$\{C = \widehat{C}\}$
	$A \to \left(\frac{A_T}{A_B}\right)$ where A_T has 0 rows
2	$\left\{C = A_T^T A_T + \widehat{C}\right\}$
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge m(A_T) < m(A) \right\}$
5a	Determine block size b $ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right) $ where A_1 has b rows
6	$\left\{ C = A_0^T A_0 + \widehat{C} \right\}$
8	$C = A_1^T A_1 + C$
7	$\left\{ C = A_0^T A_0 + A_1^T A_1 + \hat{C} \right\}$
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right)$
2	$\left\{ \qquad C = A_T^T A_T + \widehat{C} $
	endwhile
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A)) \right\}$
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$

Step	Algorithm: $[C] := \text{SYRK_AC_BLK_VAR2}(A, C)$	
1a	{	}
4		
	where	
2	{	}
3	while do	
2,3	$\Big\{$	}
	Determine block size b	
٠		
5a		
	where	
6	\{\begin{align*} \text{ \text{\tinit}\\ \text{\tin}}\tint{\text{\text{\text{\text{\tin}\tint{\text{\text{\text{\texi}\tint{\text{\text{\ti}}\tint{\text{\text{\text{\texi}\tiint{\tex{\tiint{\text{\tin}}\tinttit{\text{\ti}\tint{\text{\tii}}\tinttin	}
8		,
7	{	}
7	{	}
	{	}
7 5b	{	}
5b		,
	{	}
5b	{ endwhile	}
5b	{	,

Step	Algorithm: $[C] := \text{SYRK_AC_BLK_VAR2}(A, C)$
1a	$\{C = \widehat{C}\}$
4	where
2	{
3	while do
2,3	{
5a	Determine block size b where
6	{
8	
7	{
5b	
2	{
	endwhile
2,3	{
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$

Step	Algorithm: $[C] := \text{SYRK_AC_BLK_VAR2}(A, C)$
1a	$\{C = \widehat{C}$
4	
	where
2	$\left\{ C = A_T^T A_T + \widehat{C} \right\}$
3	while do
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge ight.$
	Determine block size b
_	
5a	
	where
6	{
8	
7	{
5b	
2	$\left\{ C = A_T^T A_T + \widehat{C} \right\}$
	endwhile
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge \neg () \right\}$
1b	$\left\{ [C] = \operatorname{syrk_ac}(A, \widehat{C}) \right\}$
1b	$\{[C] = \operatorname{syrk_ac}(A, C)$

Step	Algorithm: $[C] := \text{SYRK_AC_BLK_VAR2}(A, C)$
1a	$\{C = \widehat{C}\}$
4	
4	1
2	$ \begin{cases} C = A_T^T A_T + \widehat{C} \end{cases} $
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge m(A_T) < m(A) \right\}$
	Determine block size b
5a	
	where
6	{
8	
7	{
5b	
2	$\left\{ \qquad C = A_T^T A_T + \widehat{C} $
	endwhile
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A)) \right\}$
1b	$\left\{ [C] = \operatorname{syrk_ac}(A, \widehat{C}) \right\}$

Step	Algorithm: $[C] := \text{SYRK_AC_BLK_VAR2}(A, C)$
1a	$\{C = \widehat{C}$
4	$A \to \left(\frac{A_T}{A_B}\right)$ where A_T has 0 rows
2	$\left\{ C = A_T^T A_T + \widehat{C} \right\}$
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge m(A_T) < m(A) \right\}$
	Determine block size b
5a	
	where
6	\{
8	
7	\ \{
5b	
2	$\left\{ \qquad C = A_T^T A_T + \widehat{C} $
	endwhile
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A)) \right\}$
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$

Step	Algorithm: $[C] := \text{SYRK_AC_BLK_VAR2}(A, C)$
1a	${C = \widehat{C}}$
4	$A \to \left(\frac{A_T}{A_B}\right)$ where A_T has 0 rows
2	$\left\{ C = A_T^T A_T + \widehat{C} \right\}$
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge m(A_T) < m(A) \right\}$
5a	Determine block size b $\left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right)$ A_2 where A_1 has b rows
6	{ }
8	
7	{
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right)$
2	$\left\{ \qquad C = A_T^T A_T + \widehat{C} $
	endwhile
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A)) \right\}$
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$

Step	Algorithm: $[C] := \text{SYRK_AC_BLK_VAR2}(A, C)$
1a	$\{C = \widehat{C}\}$
4	$A \to \left(\frac{A_T}{A_B}\right)$ where A_T has 0 rows
2	$\left\{ C = A_T^T A_T + \widehat{C} \right\}$
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge m(A_T) < m(A) \right\}$
	Determine block size b
5a	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right) $ where A_1 has b rows
6	$\left\{ C = A_0^T A_0 + \widehat{C} \right\}$
8	,
7	{
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right)$
2	$\left\{ \qquad C = A_T^T A_T + \widehat{C} $
	endwhile
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A)) \right\}$
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$

Step	Algorithm: $[C] := \text{SYRK_AC_BLK_VAR2}(A, C)$
1a	$\{C = \widehat{C}\}$
4	$A \to \left(\frac{A_T}{A_B}\right)$ where A_T has 0 rows
2	$\left\{ C = A_T^T A_T + \widehat{C} \right\}$
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge m(A_T) < m(A) \right\}$
	Determine block size b
5a	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right) $ where A_1 has b rows
6	$\left\{ C = A_0^T A_0 + \widehat{C} \right\}$
8	
7	$\left\{ C = A_0^T A_0 + A_1^T A_1 + \hat{C} \right\}$
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right)$
2	$\left\{ \qquad C = A_T^T A_T + \widehat{C} $
	endwhile
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A)) \right\}$
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$

Step	Algorithm: $[C] := \text{SYRK_AC_BLK_VAR2}(A, C)$
1a	$\{C = \widehat{C}\}$
4	$A \to \left(\frac{A_T}{A_B}\right)$ where A_T has 0 rows
2	$\left\{ C = A_T^T A_T + \widehat{C} \right\}$
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge m(A_T) < m(A) \right\}$
5a	Determine block size b $ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right) $ where A_1 has b rows
6	$\left\{ C = A_0^T A_0 + \widehat{C} \right\}$
8	$C = A_1^T A_1 + C$
7	$\left\{ C = A_0^T A_0 + A_1^T A_1 + \hat{C} \right\}$
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right)$
2	$\left\{ \qquad C = A_T^T A_T + \widehat{C} $
	endwhile
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A)) \right\}$
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$

Algorithm: $[C] := \text{SYRK_AC_BLK_VAR2}(A, C)$
$A \to \left(\frac{A_T}{A_B}\right)$ where A_T has 0 rows
while $m(A_T) < m(A)$ do
Determine block size b
$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right) $ where A_1 has b rows
$C = A_1^T A_1 + C$
$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right)$
endwhile

Algorithm: $[C] := SYRK_AC_BLK_VAR2(A, C)$

$$A o \left(\frac{A_T}{A_B}\right)$$

where A_T has 0 rows

while $m(A_T) < m(A)$ do

Determine block size b

$$\left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right)$$

where A_1 has b rows

$$C = A_1^T A_1 + C$$

$$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right)$$

endwhile