

Bachelorarbeit 2024

Studiengang Informatik

A2C2 – Natural Language-Instructed Autonomous Agent for Computer Control

Diplomanden
Gabriel Nobel
Rebekka von Wartburg-Kottler

Supervisor
Prof. Thilo Stadelmann
Pascal Sager

Institut / Zentrum
Center for Artificial Intelligence

Recent advances in artificial intelligence (AI) have boosted progress across various domains, particularly enabling breakthroughs in the discipline of **Natural Language-Instructed Autonomous Agents for Computer Control (A2C2s).** Due to their capabilities of understanding natural language and executing actions the same way a human would, these agents have the potential to significantly simplify human-machine interaction, reduce resource requirements in business, and empower non-technical users to operate computer systems effortlessly.

Problem Statement

- What does the research landscape look like, and how can it be categorized to gain a clear and valuable overview?
- What are the strengths and potentials of existing systems, and how can they be exploited?
- Which challenges are known to be unsolved and could lead to breakthroughs in the field if solved?
- What does the look like proposed system, based on well-founded knowledge in this field and ideally representing a further step towards A2C2?

Input

Instruction space – what is the user instruction? – can be affected by wording, precision and completeness.

Observation space – what does the agent perceive?

- Pixel-based (Screenshot, Video):
 generalizable, large possible action space
- Textual (API, HTML): structured, interpretable, domain-dependent
- Multimodal (Text+Image): structured, generalizable, domain-dependent
- Preprocessed (Minecraft): clear action space, not generalizable

Background

The research area has made a clear transition from reinforcement learning to language models to more advanced multimodal models.

The impact of generative models is highly visible.

Learning

Neural learning – how can the model weights be adjusted?

- RL: predefined policy, no generalizable
- Fine-tuning: iterative, few examples, highly available

Memory – how is an external knowledge base built?

- Natural Language: comprehensible, difficult to query
- Embedding: semantic query,
 flexible, integrated in models,
 resource-intensive
- Symbolic DB: structured, stable, static schema

Taxonomy

- Input providing information to the agent
- Learning refining skills and building knowledge
- Input Decomposition ensuring task comprehensibility
- Plan Refinement debating and refining subtasks
- System Output interacting with the environment

Input Decomposition

	Size (KB)	Actions	tokens
raw HTML	224	1331 tags	76485
raw image	530	2400 x 1080px	425
filtered HTML	20	41 tags	6178
processed image	530	91 elements	425
inferred representation	2	48 elements	797

Input decomposition can be divided into **dynamic action inference** – how can the observation

space be simplified? – and **subtask inference** –

how can a complex instruction be partitioned?

Input Input Decomposition Learning System Output Plan Refinement

Conclusion

Our proposed architecture, contains identified strengths and further research areas like security, performance, and personalization optimizations.

System Output

IO peripherals: generalizable, large action space

Executable code: execute actions independently (task & domain), less interpretable

Tool usage: reduces complexity, determining the appropriate tool and its parameters

Pinnacle Methods

SYNAPSE

Plan Refinement

Open loop reasoning – how good is the plan in itself? – can correct a plan through few-shot examples without feedback.

Multiagent reasoning – how good is the plan if compared? – introduces debating and independent control agents.

Closed loop reasoning – what if an unexpected behavior occurs? – adds refinement via environment- and human feedback.