University of Mumbai

Program: First Year (All Branches) Engineering

QP code: 95371

Curriculum Scheme: Rev2019 Examination: FE Semester II

28/6/2022

Course Code: _FEC201

Course Name: Engineering Mathematics II

Max. Marks: 80

Time: 2 hour 30 minutes The first part was been as a second of the first part of the first

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry TWO marks (20 Marks)
1.	Particular Integral of DE $(D^3 + 3D^2 - 4)y = e^x$ is
Option	$xe^{x}/9$
A:	
Option	$xe^{x}/2$
B:	
Option	$-xe^x/9$
C:	
Option	$xe^x/6$
D:	
	·
2.	The solution of the differential equation
	$\left(x + \frac{e^x}{y}\right)dx - \frac{e^x}{y^2}dy = 0 \text{is}$ $\frac{x^2}{y^2} + \frac{e^x}{y^2} = c$
Option	$\frac{x^2}{1-x^2} + \frac{e^x}{1-x^2} = C$
A:	
Option	$\frac{x^2}{3} + \frac{e^x}{y} = c$
B:	
Option	$\frac{x^3}{2} + \frac{e^x}{y} = c$
C:	· ·
Option	$\frac{x^2}{2} + \frac{xe^x}{y} = c$
D:	2 y
3.	The value of $\int_0^\infty x^5 e^{-x^2} dx$ is
Option	0
A:	
Option	1
B:	
Option	1/2
C:	

Option	$\mid \pi \mid$		
D:			
<u>U.</u>			
4.	The value of $I = \int_0^1 \int_x^{\sqrt{x}} (x^2 + y^2) dy dx$ is		
Option	3		
A:	35		
Option	$\frac{3}{15}$		
B:			
Option C:	$\frac{1}{35}$		
Option	3_		
D:	5		
5.	The value of $\int_0^{\pi/2} \int_0^{a\cos\theta} \int_0^{r/\cos\theta} dz \ dr \ d\theta$ is		
Option	0 az ar a θ is		
A:			
Option	$\frac{a^2}{8}$		
B:	8		
Option	$\frac{a^3}{}$		
C:	3		
Option	$\frac{a^2}{2}$		
D:	2		
6.	The Integrating Easter of DE (2 min		
	The Integrating Factor of DE $(x^2 e^x - my)dx + mx dy = 0$ is given by		
Option	1		
A:	y^2		
Option B:	$\frac{1}{x^2}$		
Option C:	$-\frac{1}{y^2}$		
Option	$-\frac{1}{2}$		
D:	x^2		
7.	Find the complement		
Option	Find the complementary function of $\frac{d^4y}{dx^4} + \frac{5 d^2y}{dx^2} + 4 = x \sin x$ $y = C_1 \cos x + C_2 \sin x + C_3 \cos 3x + C_3 \sin 3x$		
A:	$y = C_1 \cos x + C_2 \sin x + C_3 \cos 3x + C_4 \sin 3x$ $y = C_1 \cos x + C_2 \sin x + C_3 \cos 3x + C_4 \sin 3x$		
Option	$y = C_1 \cos x + C_2 \sin x + C_3 \cos 2x + C_4 \sin 2x$		
B:	$C_2 \sin x + C_3 \cos 2x + C_4 \sin 2x$		

Option C:	$y = C_1 \cos xi + C_2 \sin xi + C_3 \cos 2xi + C_4 \sin 2xi$
Option D:	$y = (C_1 + C_2 x) \cos x + (C_3 + C_4 x) \sin 2x$
8.	Changing the order of integration in double integral $\int_0^2 \int_0^{4-x^2} f(x,y) dy dx$ leads to $\int_a^b \int_c^d f(x,y) dx dy$ then value of 'd' is
Option	4-y
A:	
Option B:	2-y
Option C:	$\sqrt{4-y}$
Option D:	0
9.	The length of the straight line $y = 2x + 5$ from $x = 1$ to $x = 3$ is given by
Option A:	$\sqrt{5}$ units
Option B:	$3\sqrt{5}$ units
Option C:	$4\sqrt{5}$ units
Option D:	$2\sqrt{5}$ units
10.	Evaluate: $\int_0^{\log 2} \int_0^x \int_0^{x-y} e^{x+y+z} dz dy dx$
Option A:	$2\log 2 - \frac{5}{4}$
Option B:	$2\log 2 + \frac{5}{8}$
Option C:	$\log 2 - \frac{5}{4}$
Option D:	$2\log 2 - \frac{1}{4}$

(civ. (E marks each)				
Q2.	Solve any Four out of Six (5 marks each)			
	(20 Marks) Solve the DE $(2xy\cos x^2 - 2xy + 1) dx + (\sin x^2 - x^2) dy = 0$			
Α	Solve the DE $(2xy\cos x^2 - 2xy + 1)$ and			
В	Solve $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = \sin(e^x)$ Prove that $\int_0^\infty \frac{1-\cos ax}{x} e^{-x} dx = \frac{1}{2}\log(1+a^2)$, assuming the			
С	validity of differentiation under the way			
D	Change the order of integration and evaluate $\int_{0}^{1} \int_{0}^{-y^{2}} xy dx dy$			
E	Evaluate $\int \int \int z dz dy dx$, over the tetrahedron bounded by $x = 0$, $y = 0$, $z = 0$ and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.			
F	Find the length of the cardioid $r=a(1-\cos\theta)$ lying outside the circle $r=a\cos\theta$.			

Q3.	Solve any Four out of Six 5 marks each	
	(20 Marks)	
А	Solve $\tan y \frac{dy}{dx} + \tan x = \cos y \cdot \cos^3 x$	
В	Solve the DE $(D^2 - 2D + 1)y = x^2 e^{3x}$, where $D \equiv \frac{d}{dx}$	
С	Evaluate $\int_0^\infty x^2 5^{-4x^2} dx$	
D	Evaluate the integral $I = \int \int xy(x+y) dx dy$ over the region	
U	bounded by the curves $y = x^2 \& y = x$.	
Ε	Evaluate $\iiint dxdydz$ over the solid of the paraboloid $x^2 + y^2 =$	
	4z cut off by the plane $z = 4$	
F	Find the area common to $r = a(1 + \cos \theta) \& r = a(1 - \cos \theta)$	

Q4.	Solve any Four out of Six (20 Marks)	5 marks each
А	Solve $xy - \frac{dy}{dx} = y^3 e^{-x^2}$	
В	Solve $\frac{d^2y}{dx^2} - y = x \sin x + \cos x$	
С	Change the order of $\int_0^1 \int_x^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2+y^2}} dy dx$	integration and evaluate
D	Evaluate $\int_0^\infty \frac{x^2}{(1+x^6)^{5/2}} dx$	
E	Change to polar co-ordinates and	evaluate $\int_{0}^{1} \int_{0}^{x} x + y dy dx$