Connections, Stratifications, and D-Modules

To see the linearity more clearly, we explicitly write $B \otimes_{f,A,g} C$ when B (resp. C) is viewed as an A-module (algebra) via f (resp. g). If the A-module structure is clear from context, then f and/or g are/is omitted from the notation. Similarly, $\underline{\operatorname{Hom}}_{A,f}(M,N)$ indicates maps are f-linear.

Keep the notations as in [Ber74]. Suppose that $X = (A, P_X^n, d_0^n, d_1^n, \pi^n, \delta^{m,n})$ is a formal category. Set $I_n := \text{Ker}(\pi^n : P_X^n \to A)$.

For any A-modules M and N, set

$$\underline{\mathrm{Diff}}^n(M,N) := \underline{\mathrm{Hom}}_{A,d^n_0}(P^n_X \otimes_{d^n_1,A} M,N).$$

Set $(P_X^n)^{\vee} := \underline{\operatorname{Hom}}_{A,d_0^n}(P_X^n,A) \cong \underline{\operatorname{Diff}}(A,A)$. Then $\underline{\operatorname{Diff}}^n(M,A)$ has a natural P_X^n -module structure hence two different A-module structures. Set $\underline{\operatorname{Diff}}(M,N) := \cup_n \underline{\operatorname{Diff}}(M,n)$ and $\mathcal{D} := \underline{\lim}_n (P_X^n)^{\vee} = \cup_n (P_X^n)^{\vee 2}$. There is a (non-commutative) ring structure on $\underline{\operatorname{Diff}}(M,N)$. The product or composition $D_m \circ D_n$ of sections D_m of $\underline{\operatorname{Hom}}_{A,d_0^n}(P_X^m \otimes_{d_0^n,A} M,N)$ and D_n of $\underline{\operatorname{Hom}}_{A,d_0^n}(P_X^n \otimes_{d_0^n,A} L,M)$ is the composition

$$P_X^{m+n} \otimes_{d_0^n,A} L \overset{(\delta^{m,n} \otimes \operatorname{id}_L)}{\longrightarrow} P_X^m \otimes_{d_1^n,A,d_0^n} P_X^n \otimes_{d_1^n,A} L \overset{(\operatorname{id}_{P_X^m} \otimes D_n)}{\longrightarrow} P_X^m \otimes_A M \overset{D_m}{\longrightarrow} N.$$

In particular, if D_m and D_n are sections of $(P_X^n)^\vee$ and $(P_X^n)^\vee$, then $D_m \circ D_n$ is the composition

$$P_X^{m+n} \xrightarrow{\delta^{m,n}} P_X^m \otimes_{\mathcal{A}} P_X^n \xrightarrow{\operatorname{id}_{P_X^m} \otimes D_n} P_X^m \otimes_{d_1^n, \mathcal{A}} A \cong P_X^n \xrightarrow{D_m} A.$$

Recall also that any section f of $\underline{\mathrm{Hom}}_{A}(M,N)$ determines a degree 0 differential operator given by the composition

$$P_X^0 \otimes_{d_0^0,A} M \xrightarrow{\pi^0 \otimes \operatorname{id}_M} A \otimes_A M \cong M \xrightarrow{f} N.$$

In particular, a section a of A determines a degree 0 differential operator by

$$P_{\mathbf{v}}^{0} \xrightarrow{\pi^{0}} A \xrightarrow{\cdot a} A.$$

As π^0 is surjective, we have $\underline{\operatorname{Hom}}_{\mathcal{A}}(M,N)\subseteq\underline{\operatorname{Diff}}^0(M,N)$ and $A=\underline{\operatorname{End}}_{\mathcal{A}}(A)\subseteq(P_X^0)^\vee\cong\underline{\operatorname{Diff}}^0(A,A)$.

1 Connections

An *n*-connection on M by definition is a P_X^n -module homomorphism

$$\varepsilon_n: P_X^n \otimes_{d_1^n, \mathcal{A}} M \longrightarrow M \otimes_{\mathcal{A}, d_0^n} P_X^n$$

that induces id_M modulo I.

¹Sometimes it's denoted by $\mathcal{D}^{\leq n}$, $\mathcal{D}^{(n)}$ or \mathcal{D}^n , whose sections are called differential operators of orders no more than n. Moreover, sometimes we explicitly distinguish a d_0^n -linear map $P_X^n \otimes_{d_1^n, A} A \to A$ its image $P_X^n \to A$ under the isomorphism $\underline{\operatorname{Hom}}_{A, d_0^n}(P_X^n \otimes_{d_1^n, A} A, A) \cong \underline{\operatorname{Hom}}_{A, d_0^n}(P_X^n, A)$.

²Sometimes this is also denoted by \mathcal{D}^{∞} .

- **1.1.** An *n*-connection ε induces the following maps
- (CI) A d_1^n -linear map $\theta_n: M \to M \otimes_{A,d_0^n} P_X^n$ that induces id_M modulo I. In fact, θ_n is induced as the composition

$$M \xrightarrow{d_1^n \otimes \operatorname{id}_M} P_X^n \otimes_{d_1^n,A} M \xrightarrow{\varepsilon_n} M \otimes_{A,d_0^n} P_X^n.$$

(C2) A P_X^n -linear map $\nabla_n: \underline{\mathrm{Diff}}^n(E,F) \longrightarrow \underline{\mathrm{Diff}}^n(M \otimes_A E, M \otimes_A F)$ that induces $M \otimes_A \underline{\mathrm{Hom}}_A(E,F) \to \underline{\mathrm{Hom}}_A(M \otimes_A E, M \otimes_A F)$ (recall that $\underline{\mathrm{Hom}}_A(E,F) \subset \underline{\mathrm{Diff}}^0(E,F)$ induced by the surjective ring homomorphism π^0 , see [Ber74, II, (2.1.4)]). In particular ∇_n is is d_0^n -linear. Actually, given any $D: P_X^n \otimes_{d_1^n,A} E \to F$, the map $\nabla_n(D)$ is defined as the composition

$$P_X^n \otimes_{d_1^n,\mathcal{A}} M \otimes_{d_1^n,\mathcal{A}} E \xrightarrow{\varepsilon_n \otimes \operatorname{id}_{\overline{E}}} M \otimes_{\mathcal{A},d_0^n} P_X^n \otimes_{d_1^n,\mathcal{A}} E \xrightarrow{\operatorname{id}_M \otimes D} M \otimes_{\mathcal{A}} F.$$

The data in (C2) also implies the following.

- (C3) A P_X^n -linear map $\nabla_n': \underline{\mathrm{Diff}}^n(A,A) \longrightarrow \underline{\mathrm{Diff}}^n(M,M)$ that induces the natural map $A \to \underline{\mathrm{Hom}}_A(M,M)$ viewing any section a as multiplication on M (order 0 differential operator).
- **1.2.** Only under some extra conditions, the above two maps also determine ε_n . Consider the following assumptions.
- (AI) X is a formal groupoid: there is a map $\sigma^n: P_X^n \to P_X^n$ such that ... (See [Ber74, II, Définition I.I.3].)
- (A2) I_n is locally *nilpotent*.
- (A3) P^n is locally free of finite type.
 - **1.2.1.** If (AI) and (A2) is satisfied, then ε_n can be recovered from (CI).

Actually, by universal property for the tensor product $P_X^n \otimes_{d_1^n,\mathcal{A}} M$, a d_1^n -linear map θ_n as in (C1) determines a P_X^n -linear map ε_n that induces id_M modulo I. Then the existence of σ^n determines σ^n -isomorphism $\sigma_M^n: M \otimes_{\mathcal{A},d_0^n} P_X^n \to P_X^n \otimes_{d_0,\mathcal{A}} M$ such that $(\sigma_M^n \circ \varepsilon_n)^2$ is P_X^n -linear and induces identity on M modulo a nilpotent ideal I. This implies that $(\sigma_M^n \circ \varepsilon_n)^2$ is an isomorphism hence ε .

1.2.2. If (A1), (A2) and (A3) are satisfied, then ε_n can be recovered from (C3) or from (C2). In fact, consider the composition

$$P_X^n \otimes_{d_1^n, A} M \longrightarrow \underline{\operatorname{Hom}}_{A, d_0^n} \left(\underline{\operatorname{Hom}}_{A, d_0^n} (P_X^n \otimes_{d_1^n, A} M, M), M \right) \longrightarrow \underline{\operatorname{Hom}}_{A, d_0^n} \left(\underline{\operatorname{Hom}}_{A, d_0^n} (P_X^n, A,), M \right),$$

where the first map is the natural map $M \to (M^{\vee})^{\vee}$, and the second one is induced by ∇_n given in (C2). Note that here we only use the fact that ∇_n is d_0^n -linear. Moreover, due to (A3), we have natural isomorphisms

$$M \otimes_{\mathcal{A},d_0^n} P_X^n \stackrel{\sim}{\longrightarrow} M \otimes_{\mathcal{A},d_0^n} \underline{\mathrm{Hom}}_{\mathcal{A},d_0^n} \left(\underline{\mathrm{Hom}}_{\mathcal{A},d_0^n} (P_X^n,A),A \right) \stackrel{\sim}{\longrightarrow} \underline{\mathrm{Hom}}_{\mathcal{A},d_0^n} \left(\underline{\mathrm{Hom}}_{\mathcal{A},d_0^n} (P^n,A),M \right)$$

Then we obtain a P_X^n -linear map $\varepsilon_n: P_X^n \otimes_{d_1^n, A} M \to M \otimes_{A, d_0^n} P_X^n$, which reduces to id_M modulo I. Then use the same argument as the previous proof, we can conclude that ε_n is a P_X^n -isomorphism using (A1) and (A2).

1.3. As under conditions (A1) and (A2), an *n*-connection is equivalent to a d_1^n -linear map $\theta_n: M \to \mathbb{R}$ $M \otimes_{A,d_0^n} P_X^n$. Now we can see how this datum determine the map ∇_n as in (C2).

Given a d_1^n -linear map θ_n as in (CI) and a section D of $\underline{\operatorname{Hom}}_{A,d_0^n}(P_X^n\otimes_{d_1^n,A}E,F)$. Consider the composition

$$M\otimes_A E \xrightarrow[d_1^n\text{-linear}]{\theta \otimes \operatorname{id}_E} M\otimes_{A,d_0^n} P_X^n \otimes_{d_1^n,A} E \xrightarrow[d_0^n\text{-linear}]{\operatorname{id}_M \otimes D} M\otimes_A F.$$

This composition is neither d_0^n -linear nor d_1^n -linear. But this map determines a d_0^n -linear map ∇_n as it factors as follows due to the previous equivalence.

2 (Pseudo-)Stratifications

A pseudo-stratification is a collection of compatible n-connections $\varepsilon_n: P^n \otimes_{d_1^n, A} A \to A \otimes_{A, d_0^n} P_X^n$.

$$\begin{array}{cccc} P_X^n \otimes_{d_1^n, A} M & \stackrel{\varepsilon_n}{\longrightarrow} M \otimes_{A, d_0^n} P_X^n \\ & \downarrow & & \downarrow \\ P_X^m \otimes_{d_1^n, A} M & \stackrel{\varepsilon_m}{\longrightarrow} M \otimes_{A, d_0^n} P_X^m \end{array}$$

A stratification is a pseudo-stratification that satisfies the cocycle condition. More precisely, consider the following data.

(SI) (in terms of n-connection) a pseudo-stratification

$$P_X^m \otimes_{d_1^n, A, d_0^n} P^n \otimes_{A, d_1^n} M \xrightarrow{(\delta^{m,n})^*(\varepsilon_{m+n})} M \otimes_{A, d_0^n} P_X^m \otimes_{d_1^n, A, d_0^n} P_X^n$$

$$id_{P_X^m} \otimes_{\varepsilon_n} P_X^m \otimes_{d_1^n, A} M \otimes_{A, d_0^n} P_X^n$$

where $(\delta^{m,n})^*(\varepsilon_{m+n})$ is the pullback of the P_X^{m+n} -module morphism $\varepsilon_{m+n}: P_X^{m+n} \otimes_{d_1^n, A} M \to M \otimes_{A, d_0^n} P_X^{m+n}$ along $\delta^{m,n}: P_X^{m+n} \to P_X^m \otimes_{d_1^n, A, d_0^n} P_X^n$. (S2) (in terms of (CI)) a collection of θ_n making the following diagram commutative

$$M \xrightarrow{\theta_{m+n}} M \otimes_{A,d_0^n} P_X^{m+n}$$

$$\downarrow^{\theta_n} \qquad \qquad \downarrow^{\operatorname{id}_M \otimes \delta^{m+n}}$$

$$M \otimes_{A,d_0^n} P_X^n \xrightarrow{\overset{\theta_m \otimes \operatorname{id}_{P^n}}{\longrightarrow}} M \otimes_{A,d_0^n} P_X^m \otimes_{d_1^n,A,d_0^n} P_X^n.$$

(S3) (in terms of (C3)) a ring homomorphism $\nabla: \underline{\mathrm{Diff}}(A,A) \to \underline{\mathrm{Diff}}(M,M)$ that induces P_X^n -linear map $\nabla_n : \underline{\mathrm{Diff}}^n(A, A) \to \underline{\mathrm{Diff}}^n(M, M)$.

3 D-Modules

A \mathcal{D} -module M is an A-module M together with a ring homomorphism

$$\varphi: \mathcal{D} \longrightarrow \operatorname{End}(M)$$

extending the natural map $A \hookrightarrow (P_X^0)^{\vee} \to \underline{\operatorname{End}}(M)$ ([Ber74, II, (2.1.4)]), where $\underline{\operatorname{End}}(M)$ is understood as group endomorphisms. This map is equivalent to a map

$$\varphi': \mathcal{D} \times M \longrightarrow M$$

such that the usual module axioms are satisfied.

Under some conditions, a \mathcal{D} -module structure on an A-module M, that extends the A-module structure of M, is equivalent to a stratification.

3.1. Suppose that we have a ring homomorphism $\varphi : \mathcal{D} \to \underline{\operatorname{End}}(M)$ extending the natural ring homomorphism $A \to \underline{\operatorname{End}}(M)$, $a \mapsto (m \mapsto am)$. For each n, these data determine a group homomorphism $\varphi_n : (P_X^n)^{\vee} \to \underline{\operatorname{End}}(M)$, that is d_0^n -linear and d_1^n -linear.

To see the linearity, observe that the A-module structure on $(P_X^n)^\vee$ that is induced by d_0^n (resp. d_1^n) coincides with the left (resp. right) multiplication (composition) of A with $(P_X^n)^\vee$ in the ring \mathcal{D} , where A is viewed as a subgroup of $\underline{\mathrm{Hom}}_{A,d^0}(P_X^0,A)$, Take a differential operator D of order no more than n and a section a of A. Observing that for each $m,n\in\mathbb{N}$,

- $(\pi^m \otimes \mathrm{id}_{P_X^n}) \circ \delta^{m,n}: P_X^{m+n} \to P^n$ and $(\mathrm{id}_{P_X^m} \otimes \pi^n) \circ \delta^{m,n}: P_X^{m+n} \to P^m$ are the transition maps. ([Ber74, II, (1.1.10)]),
- $\pi^n \circ d^n_0 = \pi^n \circ d^n_1 = \mathrm{id}_{\mathcal{A}}$ ([Ber74, II, (i.i.8)]),
- π^n is a ring homomorphism, and
- D is d_0^n -linear,

we obtain the following commutative diagrams

and

$$P_X^n \xrightarrow{\delta^{n,0}} P_X^n \otimes_{d_1^n, A, d_0^n} P_X^0 \xrightarrow{\operatorname{id}_{P_X^n} \otimes \pi^0} P_X^n \otimes_{d_1^n, A} A \xrightarrow{\operatorname{id}_{P_X^n} \otimes (\cdot a)} P_X^n \otimes_{d_1^n, A} A \xrightarrow{\sim} P_X^n \xrightarrow{D} A.$$

This two diagrams indicate that for each section p of P_X^n and a of A, we have $(a \circ D)(p) = D(d_0^n(a)p) = a \cdot (D(p))$ and $(D \circ a)(p) = D(d_1^n(a)p)$.

Now assuming that (A3) holds, we can recover θ_n as in 1.2.2:

$$M \longrightarrow \underline{\operatorname{Hom}}_{\mathcal{A}}(\underline{\operatorname{End}}(M), M) \longrightarrow \underline{\operatorname{Hom}}_{\mathcal{A}, d_0^n}((P_X^n)^\vee, M) \xleftarrow{\ \ \, } M \otimes_{\mathcal{A}, d_0^n} P_X^n,$$

where the second map is induced by the d_0^n -linear map φ_n and the last isomorphism is due to (A3). This composition is d_n^1 -linear as φ_n is.

4

How is each φ_n related to each other?

3.2. Conversely. Suppose that we have a d_1^n -linear morphism θ_n as in (C1). Then it gives rise to a $(P_X^n)^\vee$ -module as follows. For any section D of $(P_X^n)^\vee$, define $\varphi_n(D)$ to be the composition (not A-linear but additive)⁴

$$M \xrightarrow{\theta_n} M \otimes_{A,d_0^n} P_X^n \xrightarrow{\operatorname{id}_M \otimes \delta} M \otimes A \cong M$$

This defines a group homomorphism $\varphi_n: (P_X^n)^{\vee} \to \underline{\operatorname{End}}(M), D \mapsto \varphi_n(D).$

How to get a ring homomorphism $\mathcal{D} \to \underline{\operatorname{End}}(M)$?

4 Flat connections

References

- [Ber74] Pierre Berthelot. Cohomologie cristalline des schemas de caractéristique p > 0. French. Lecture Notes in Mathematics. 407. Berlin-Heidelberg-New York: Springer-Verlag. 604 p. 1974.
- [BO78] Pierre Berthelot and Arthur Ogus. Notes on crystalline cohomology. English. Mathematical Notes. Princeton, New Jersey: Princeton University Press. Tokyo: University of Tokyo Press. VI, not consecutively paged. 1978.
- [Kat70] Nicholas M. Katz. "Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin." English. In: *Publ. Math., Inst. Hautes Étud. Sci.* 39 (1970), pp. 175–232.

³Recall [Kat70]. The equivalence of a connection $E \to E \otimes \Omega$ and $Der(X/S) \to End(E)$ is discussed.

⁴Compare with the map in 1.3. In case $f: X \to S$ and P^n is the *n*-the principal part, this map can be shown to be $f^{-1}\mathcal{O}_S$ -linear.