

$NFA \rightarrow DFA$

Даден: NFA $A = (Q, \Sigma, \delta, s, F)$

Теорема: (Детерминизация на NFA)[Рабин, Скот 1959] DFA $A' := (2^Q, \Sigma, \bar{\delta}, \{s\}, \{M \subseteq Q : M \cap F \neq \emptyset\})$ разпознава L(A).

Упражнение: Дайте алгоритъм, който по даден NFA A и дума w да изчислява $\hat{\delta}(\{s\}, w)$ за време $\mathcal{O}(|w| \cdot |\delta|)$. Тук $|\delta|$ е броят на преходите от вида $p \in \delta(q, a)$, достатъчни да дефинираме δ .

Cockoba: EAM October 5, 2010

Детерминизация на NFA

$$A=(Q,\Sigma,oldsymbol{\delta},s,F)$$
 $A':=(2^Q,\Sigma,oldsymbol{\delta},\{s\}\,,F'),\,F':=\{M\subseteq Q:M\cap F
eq\emptyset\},\,$ където $oldsymbol{\delta}(M,a):=igcup_{p\in M}\delta(p,a)$

Твърдим: L(A') = L(A)

Д-во: Първо да отбележим, че $\hat{\overline{\delta}}(\{s\},w) = \hat{\delta}(\{s\},w).$ Тогава

$$L(A) = \left\{ w \in \Sigma^* : \hat{\boldsymbol{\delta}}(\{s\}, w) \cap F \neq \emptyset \right\}$$
 Деф. L(A)
$$= \left\{ w \in \Sigma^* : \hat{\boldsymbol{\delta}}(\{s\}, w) \in F' \right\}$$
 Деф. F'
$$= L(A')$$
 Деф. L(A')

 $(\hat{\delta}$ играе двойна роля!)

Cockoba: EAИ October 5, 2010

Пример

$\frac{q}{\delta}(q,0) \frac{\bar{\delta}(q,1)}{\delta} 0,1 0$	١ 1
s s t),1 3
s, 1 $s, 1, 2$ $s, 2$	
s,2 $s,1,3$ $s,3$	
s,3 $s,1$ s	٦
s,1,2 $s,1,2,3$ $s,2,3$	6 0
s, 1, 3 $s, 1, 2$ $s, 2$ $s = 2$	s 3
s,2,3 $s,1,3$ $s,3$ $s,1$	s1 3
s, 1, 2, 3 $s, 1, 2, 3$ $s, 2, 3$	 1
s 23 s 123	<u> </u>

Cockoba: EAИ October 5, 2010

По-общ пример

Твърдение:

$$\exists \text{DFA } A' = (Q, \Sigma, \delta, s, F) : L(A') = L(A) \land (|Q| < 2^k)$$

Д-во: Да предположим, че: $\exists A'$ и $|Q| < 2^k$

$$\longrightarrow \exists x \neq y \in \{0,1\}^k : \hat{\boldsymbol{\delta}}(s,x) = \hat{\boldsymbol{\delta}}(s,y) (Принцип на Дирихле)$$

където i: $x[i] \neq y[i]$,

Нека
$$x[i] = 0$$
, $y[i] = 1$.

Тогава $x0^{i-1} \in L(A)$

и
$$y0^{i-1} \not\in L(A)$$
.

Ho,
$$\hat{\delta}(s, x0^{i-1}) = \hat{\delta}(\hat{\delta}(s, x), 0^{i-1})$$

= $\hat{\delta}(\hat{\delta}(s, y), 0^{i-1}) = \hat{\delta}(s, y0^{i-1}).$

Така или и двете думи $x0^{i-1}$ и $y0^{i-1}$ се приемат, или и двете не се приемат. Противоречие.

Cockoba: EAM October 5, 2010

// състояния на A'

Прилагане на алгоритъма за детерминизация

Разглеждаме само подмножествата достижими от $\{s\}$:

```
Q' := \{\{s\}\}
Queue todo:= Q'
while \exists M \in \text{todo do}
      todo:=todo \ M
      for each a \in \Sigma do
            if M' = \overline{\delta}(M, a) \notin Q' then
                  insert M' into Q'
                  insert M' into todo
Често |Q'| \ll 2^{|Q|}!
```