Linear Algebra

Samira Hossein Ghorban s.hosseinghorban@ipm.ir

Fall, 2021

1/11

Review: Diagonalizable linear transformations

Theorem

Let $T: V \to V$ be a linear transformation where V is finite dimensional, and T has different eigenvalues $\lambda_1, \ldots, \lambda_k$. Suppose that W_i is the null space of $\lambda_i I - T$ for each $1 \le i \le k$. Then the following statements are equivalent:

- i. T is diagonalizable.
- ii. The characteristic polynomial of T is

$$f(\lambda) = (\lambda - \lambda_1)^{n_1} \cdots (\lambda - \lambda_k)^{n_k},$$

and dim $W_i = n_i$.

iii. $\sum_{i=1}^k \dim W_i = \dim V.$

Review: Cayley-Hamilton's theorem

Theorem

Let $A \in M_n(\mathbb{F})$ where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and f(x) is characteristic polynomial. Then f(A) = 0

Corollary

Let $A \in M_n(\mathbb{F})$ where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . For k > n, $A^k = g(A)$ where g(x) is a polynomial with coefficients in \mathbb{F} and its degree is less than n.

Review: Minimal polynomial

Definition

Let $A \in M_n(\mathbb{F})$ where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . The minimal polynomial p(x) of A over \mathbb{F} is the monic polynomial over \mathbb{F} of least degree such that p(A) = 0.

Corollary

Let $A \in M_n(\mathbb{F})$ where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and p(x) is minimal polynomial. Then p(x) divides the characteristics polynomial f(x).

- Let $A \in M_n(\mathbb{F})$ where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Assume that p(x) is minimal polynomial and g(x) is non-zero polynomial with coefficients in \mathbb{F} .
- Note that if g(A) = 0, then p(x)|g(x).

Minimal polynomial and characteristic polynomial

Theorem

Let T be a linear function over V with finite dimension $n < \infty$. Then the minimal polynomial and characteristic polynomial have the same roots.

Diagonalizable matrices

Theorem

Let T be a linear function over V with dimension $n < \infty$. The linear function T is diagonalizable then the minimal polynomial of T has no repeated roots.

6/11

Triangularizable matrices

Theorem

Let T be a linear function over V with dimension $n < \infty$ over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . The linear function T is triangularizable if and only if the minimal polynomial of T splits in $\mathbb{F}(x)$ into linear factors.

• • •

Thank You!