MAT 1375, Classwork9, Fall2024

ID:_____ Name:

1. The definition of a **Vertical Asymptote**:

The line x = a is a _____ of the graph of a function f if f(x) increases

or decreases without bound as x approaches a.

As $x \rightarrow \underline{\hspace{1cm}}, f(x) \rightarrow \underline{\hspace{1cm}};$

As $x \to f(x) \to .$

2. How to locate Vertical Asymptotes: Let $f(x) = \frac{p(x)}{q(x)}$ be a rational function.

If p(x) and q(x) have no _____

and \boldsymbol{a} is a **zero** of q(x) which makes f(x) _______,

then ______ is a vertical asymptote of the graph of f(x).

If \boldsymbol{a} is a **zero** of both p(x) and q(x) ($p(a) = \underline{\hspace{1cm}}$, $q(a) = \underline{\hspace{1cm}}$.) which means $\underline{\hspace{1cm}}$

is the common factor of p(x) and q(x), then there is a

at x = a.

3. Find the vertical asymptotes of the graph of each rational function:

a)
$$f(x) = \frac{x}{x^2 - 1}$$
 b) $g(x) = \frac{x - 1}{x^2 - 1}$ c) $h(x) = \frac{x - 1}{x^2 + 1}$

b)
$$g(x) = \frac{x-1}{x^2-1}$$

c)
$$h(x) = \frac{x-1}{x^2+1}$$

4. The definition of a Horizontal Asymptote:

The line ${m y}={m b}$ is a ______ the graph of a function f if f(x) approaches ${m b}$

as x increases or decreases without bound.

5. What is the difference of Vertical Asymptote and Horizontal Asymptote?

6. How to locate Horizontal Asymptotes: Let $f(x) = \frac{p(x)}{q(x)}$ be a rational function given by

$$f(x) = \frac{p_n x^n + p_{n-1} x^{n-1} + \dots + p_1 x + p_0}{q_m x^m + q_{m-1} x^{m-1} + \dots + q_1 x + q_0}, p_n \neq 0, q_m \neq 0.$$

The degree of the numerator is _____. The degree of the denominator is _____.

- 1) If n > m, the graph of f has _____ horizontal asymptote.
- 2) If n=m, the line _____ (which is the ration of two _____) is the horizontal asymptote of the graph of f.
- 3) If n < m, the _____ (which is_____) is the horizontal asymptote of the graph of f.

$$f(x) = \frac{6x^2 - 5}{3x^2 + 1}$$

deg(p(x))____deg(q(x))

 $deg(p(x)) ___ deg(q(x))$

deg(p(x))___deg(q(x))