МГУ лаба №103 Измерение скорости полета пули с помощью баллистического маятника

Сергей Слепышев 109 группа

Ноябрь 2022 (последний день до дедлайна)

0.1 Вступление

Идея эксперимента

Состоит в измерении периода колебаний физического маятника при изменении расстояния от точки повеса до центра масс маятника. Используются два физических маятника: цилиндрический стержень с передвижной призмой и оборотный маятник, в виде цилиндрического стержня с двумя закрепленными призмами и двумя дополнительными массами (чечевицами). Колебания маятников происходят вокруг горизонтальной оси, проходящей через ребро призмы.

0.2 Эксперимент и обработка

0.2.1 Упражнение 1. Изучение колебаний физического маятника (используется маятник в виде цилиндрического стержня).

Измерил данные установки, записал в таблицу:

L	Sigma L	d	sigma d
sm	sm	sm	sm
120,5	0,5	2,93	0,005

где L - длина маятника, d - расстояние от ребра призмы до верхнего конца стержня. Произвел основные замеры по инструкции:

d	tn	Т	а
mm	s	s	mm
	n = 5		
29	17,87	3,574	573,5
79	17,596	3,5192	523,5
129	17,224	3,4448	473,5
179	16,988	3,3976	423,5
229	16,849	3,3698	373,5
279	16,848	3,3696	323,5
329	17,056	3,4112	273,5
379	17,052	3,4104	223,5
429	17,651	3,5302	173,5
479	18,736	3,7472	123,5

Минимальное значение лежит около d=279 мм, произвел более точные замеры в этой области (интересуемые значения обведены в квадратик):

d	tn	Т	а	a 0	mean Tmin
mm	S	S	mm	mm	S
	n = 5				
219	16,902	3,3804	383,5	353,5	3,3651
229	16,846	3,3692	373,5		
239	16,828	3,3656	363,5		
249	16,826	3,3652	353,5		
249	16,824	3,3648	353,5		
249	16,827	3,3654	353,5		
259	16,838	3,3676	343,5		
269	16,851	3,3702	333,5		

Определил теоретическое значение a_0 и погрешность T_{exp} :

exp a0	Sigma exp a0	exp Tmin	sigma exp Tmin	teor a0
mm	mm	S	S	mm
				:)
353,5	0,5	3,36513	0,00009	347,9

Сошлось!)

Проверю соотношения для трех наборов значений:

$$a_1 + a_2 = l_{\rm np}$$

$$a_1 * a_2 = a_0^2$$

Записал в таблицу:

a1	a2	Іпр 1	Іпр 2	a1 + a2	a0	sqrt(a1 * a2)
mm	mm	mm	mm	mm	mm	mm
510	190	755	848	700	353,5	311
420	280	718	726	700		343
382	312	709	713	694		345

И наконец график зависимости T(a) (Более светлая прямая - теоретическая зависимость, приблизил зону серого квадратика на экспериментальной зависимости чтобы было лучше видно):

см. след страницу!

Вывод

Прошу пожалуйста не пугаться! Причиной сильного расхождения теоретической модели от экспериментальной является не **перекошенная установка**, во время практикума я заметил, что маятник висит на его левом ребре, в то время как правое было в воздухе. Конечно без уровня я не смог отрегулировать должным образом и получил из-за наклона другое значение g. Повезло, что этот множитель лишь сжимает или растягивает график по вертикали и поэтому не влияет на проводимые измерения. Модельные зависимости были проверены, и они оказались близкими к действительности!

Для справки:

$$T = 2\pi \sqrt{\frac{a_0^2 + a^2}{ag}}$$

0.2.2 Упражнение 2. Определение g с помощью оборотного физического маятника с учетом разницы в периодах колебаний T1 и T2.

Сделал замеры по инструкции (интересующие значения выделил):

d	t1	T1	t2	T2
mm	S	S	S	S
	n = 10		n = 10	
0	15,508	1,551	16,415	1,642
10	15,675	1,568	16,497	1,650
20	15,830	1,583	16,595	1,660
30	16,014	1,601	16,688	1,669
40	16,184	1,618	16,772	1,677
50	16,418	1,642	16,861	1,686
60	16,577	1,658	16,953	1,695
70	16,780	1,678	17,091	1,709
80	17,007	1,701	17,129	1,713
90	17,240	1,724	17,218	1,722
90	17,236	1,724	17,214	1,721
90	17,225	1,723	17,223	1,722
100	17,480	1,748	17,310	1,731

где индекс 1 означает прямое положение, 2 - обратное. Сделал обработку:

d1	T1	T2	mean T1	SE of T1	mean T2	SE of T2	T0	SE of T0
mm	S	S	s	s	s	S	s	s
90	1,724	1,722	1,7234	0,0004	1,7218	0,0003	1,7226	0,0003
90	1,724	1,721						
90	1,723	1,722						

L	Sigma L	а	mean a	SE of mean a	mean b	Sigma of B	
sm	sm	sm	sm	sm	sm	sm	
73,5	0,1	20,5	20,43	0,07	53,07	0,12	g
		20,5					m/s^2
		20,3					9,78

Построил зависимость T(d):

Видно что значение д получилось очень точным! Балдежс!

0.2.3 Упражнение 3. Определение ускорения свободного падения с помощью оборотного физического маятника при одинаковых значениях T1 и T2.

Вычислил d_0 :

$$d_0 = d_2 + \frac{(d_1 - d_2)(T_2(d_2) - T_1(d_2))}{(T_2(d_2) - T_1(d_2)) + (T_1(d_1) - T_2(d_1))} = 88.5 \text{cm}$$

Провел измерения и записал в таблицу:

d0		tn1	tn2	mean T	g	Sigma g	Sigma T
mm		s	s	s	m / s^2		
		n = 10	n = 10				
8	38,5	16,970	17,016	1,698	10,1	0,2	0,014
		16,966	16,952				

Получил значение д и его погрешность по формулам:

$$g = 4\pi^2 \frac{L}{T_0^2}$$

$$\sigma_g = g * \sqrt{\left(\frac{\sigma_L}{L}\right)^2 + \left(2\frac{\sigma_{T_0}}{T_0}\right)^2}$$

Табличным значением g является:

$$g = 9.82 \text{m/c}^2$$

Вывод

Изучив свойства физического маятника, я получил во 2-м и 3-м упражнениях значения д очень похожие на табличные. В 1-м упражнении я получил значения близкие к предполагаемым.

Эксперимент удачный!

Все расчетные таблицы (файл формата originlab), как и остальное, что мне понадобилось при выполнении, находятся на моем гитхабе:

https://github.com/serega-drakon/msu-labs