Reinforcement Learning

Introduction

Stefano Albrecht, Pavlos Andreadis 14 January 2020

Lecture Outline

- Course details and admin
- What is reinforcement learning?
- Examples

Course Details

Lecturers:

- Dr. Stefano Albrecht, s.albrecht@ed.ac.uk
- Dr. Pavlos Andreadis, pavlos.andreadis@ed.ac.uk

TAs:

- Arrasy Rahman, arrasy.rahman@ed.ac.uk
- Filippos Christianos, f.christianos@ed.ac.uk
- Lukas Schäfer, 1.schaefer@ed.ac.uk

Lectures:

• Tuesdays & Fridays, 14.10–15.00, Lecture Theatre 5, Appleton Tower

Course Details

- Course page: http://learn.ed.ac.uk → search "Reinforcement Learning"
- Announcements: via mailing list rl-students@inf.ed.ac.uk
 - \Rightarrow Check spam filter
- Piazza forum: online forum to post and discuss questions (peer-support)
 - ⇒ Link to forum is on course page
- Lecture video recording: available on "Media Hopper Replay" (on course page)

The RL Book

Course book:

Reinforcement Learning: An Introduction (2nd edition)

by Richard Sutton & Andrew Barto

Download free PDF:

http://incompleteideas.net/book/the-book-2nd.html

Course Content

- Multi-armed bandits*
- Markov decision processes*
- Dynamic programming*
- Monte Carlo methods*
- Temporal-difference learning*
- Planning*

- Value function approximation*
- Eligibility traces*
- Policy gradient methods*
- Deep reinforcement learning
- Multi-agent learning

Highly recommended to read chapter/slides before lecture!

[•] Tutorial lecture: build a RL system

^{*}Examined - based on chapter in RL book

Notation

A note on notation:

- Book uses notation S_t , A_t , p(s', r|s, a), R_{t+1} (reward received at t+1) We will stick to this notation for lectures based on the book
- Other notation also widely used, e.g. s^t , a^t , r^t , T(s, a, s'), R(s, a)

Tutorials

Tutorials:

- Bi-weekly, in weeks 2, 4, 6, 8, 10
- Optional attendance not graded
- Tutorial sheets released Tuesday noon of previous week (on course page)
- Solutions released in following week

Assignment to tutorial slots is done automatically by ITO

⇒ Contact ITO if you need to change your slot

Assessment

Coursework:

- Implement and test various RL algorithms in Python
- 30% of final grade
- Out: mid-Feb / Due: end of March
- Coursework introduction in extra lecture

Exam:

- Testing theoretical and applied knowledge
- 70% of final grade
- Any material covered in required readings and associated lectures is examinable

Course Prerequisites

Prerequisites:

- Basic statistics and probability theory
- Linear algebra and calculus (vectors, derivatives, limit analysis)
- Programming skills for coursework (in Python)
 - ⇒ Course is <u>not</u> an introduction to programming!

See also last year's exam for maths requirements (course page)

Reading Group

Reading group meetings to discuss recent research papers

- Open to all students, but basic RL knowledge assumed
- Expectation is that people will read paper before meeting
- To get updates about future meetings:

e-mail "subscribe" to rl-reading-group-request@inf.ed.ac.uk

What is Reinforcement Learning?

Reinforcement learning (RL):

Learning to solve sequential decision problems via repeated interaction with environment (trial and error)

- What is a sequential decision problem?
- What does it mean to "solve" the problem?
- What is learning by interaction?

What is Reinforcement Learning?

Agent takes actions in environment

- Take action, observe new state and reward from environment
- Goal is to maximise total rewards received
 - ⇒ Learning: find best actions by *trying* them

What is Reinforcement Learning?

Example: human infant learning

- Agent: baby
- Environment: physical workspace with coloured rings and stacking pole
- Actions: motor control of arms, legs, ...
- Reward: curiosity, satisfaction upon completion (rings stacked)

Does not know what actions to take

⇒ Must discover!

Video: ring stacker

Reward Hypothesis

Reward hypothesis:

All goals can be described by the maximisation of the expected value of cumulative scalar rewards.

Examples:

- Reach target state s^* : reward is 1 if $S_t = s^*$, else 0 (or -1? what's the difference?)
- Win Chess game: reward is +1 if won, -1 if lost, 0 otherwise
- Manage investment portfolio: reward?
- Make humanoid robot walk: reward?

RL is a type of machine learning (ML):

• Learning = improving performance with experience (data)

RL is a type of **machine learning** (ML):

• Learning = improving performance with experience (data)

Supervised learning:

• Discover unknown function f(x) = y given examples of (x, y = f(x)) pairs

 \Rightarrow RL not supervised: correct actions are not provided

RL is a type of **machine learning** (ML):

• Learning = improving performance with experience (data)

Supervised learning:

- Discover unknown function f(x) = y given examples of (x, y = f(x)) pairs
 - \Rightarrow RL not supervised: correct actions are not provided

Unsupervised learning:

- Discover hidden structure in data $x_1, x_2, x_3, ...$ (no y given)
 - \Rightarrow RL not unsupervised: reward signal informs correct action

RL is a type of **machine learning** (ML):

• Learning = improving performance with experience (data)

Supervised learning:

- Discover unknown function f(x) = y given examples of (x, y = f(x)) pairs
 - \Rightarrow RL not supervised: correct actions are not provided

Unsupervised learning:

- Discover hidden structure in data $x_1, x_2, x_3, ...$ (no y given)
 - \Rightarrow RL not unsupervised: reward signal informs correct action

Reinforcement learning is third category of ML: learning to act to maximise rewards

Reinforcement Learning Challenges

Key challenges in RL

Unknown environment:
 How do actions affect environment state and rewards?

Reinforcement Learning Challenges

Key challenges in RL

- Unknown environment:
 How do actions affect environment state and rewards?
- Exloration-exploitation dilemma:
 When to try new actions (explore)?
 When to stick with what we think is best (exploit)?

Reinforcement Learning Challenges

Key challenges in RL

- Unknown environment:
 How do actions affect environment state and rewards?
- Exloration-exploitation dilemma:
 When to try new actions (explore)?
 When to stick with what we think is best (exploit)?
- Delayed rewards:
 Actions may have long-term consequences and affect future rewards
 When we get reward, which prior actions led to it? (credit assignment)

Learning to play Backgammon (Tesauro, 1992-1995)

Start with a random Network

Play millions of games against itself

Learn a value function from this simulated experience

Six weeks later it's the best player of backgammon in the world Originally used expert handcrafted features, later repeated with raw board positions

Learning to play Atari games (Mnih, 2013, 2015)

Video: DQN in Atari games

Learning to keep the ball in team (Stone et al., 2005)

Video: 4v3 keepaway soccer

 $\verb|Source: http://www.cs.utexas.edu/~AustinVilla/sim/keepaway| \\$

Learning to walk and jump (DeepMind, 2017)

Video: learning to walk

Source: https://www.youtube.com/watch?v=gn4nRCC9TwQ

Reading

Required:

• RL book, Chapter 1 (1.1–1.6)

Optional:

- Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig Search on Google...
- The Quest for Artificial Intelligence
 by Nils J. Nilson
 Free download: https://ai.stanford.edu/~nilsson/QAI/qai.pdf