Customer Segmentation for Caravan Insurance

Ray Karpman May 10, 2022

Marketing Caravan Insurance

- Hypothetical Client: insurance company offering variety of policies.
- Goal: help design cost-effective strategy to market caravan insurance.
- Challenge: caravan insurance is a niche product.
- Strategy: customer segmentation.
 - Identify groups of customers likely to purchase Caravan insurance.
 - Design marketing campaigns targeting key groups.

Customer Segmentation with machine learning

- Divide customers into clusters which share similar characteristics, compare rates of caravan insurance ownership between clusters.
- Strategy: Use k-means algorithm to find appropriate clustering.
 - Treats customer records as points in many-dimensional space, looks for clusters of close-together points.
- Why use machine learning?
 - Can reveal non-obvious patterns in data.
 - Algorithm may avoid human biases, preconceptions.

Evaluating a clustering

- Unsupervised learning problem. No hard-and-fast accuracy metric.
- Clusters should...
 - Reflect natural patterns in the data.
 - Measure using silhouette score.
 - Be balanced in size.
 - Have meaningfully different rates of caravan insurance ownerships.
 - Have a straightforward description in terms of customer attributes.

Finding and Describing Clusters

- Step 1: Use K-means algorithm to find clustering.
 - Check for differences in caravan insurance ownership between clusters.
- Step 2: Build decision trees that predict labels for clustered data.
- Step 3: Use decision trees to give concise description of each cluster.
 - First priority: simple, interpretable trees.

The Data

- Provided by Sentient Machine Research, retrieved from kaggle.com
- Size: 9822 records, 86 variables.
- Records: Dutch postal codes.
- Features: demographics, socioeconomic status, insurance product usage.
- Target: CARAVAN.
 - 1 if at least one caravan insurance policy in postal code, otherwise 0.

Variable names and encoding

- Nominal features.
 - Customer main type: 10 categories, coded as integers.
 - Custerer subtype: 41 categories, coded as integers.
- Ordinal features.
 - Number of houses 1-10
 - Average size of household 1-6
 - Average age, binned by decade.
 - Percent of postal code in demographic groups. (38 features)
 - Binned and coded as integers 0-9.
 - Total contribution to or number of certain insurance policies in postal code. (41 features)
 - Binned and coded as integers 0-9, bins of unequal size.

Data Cleaning

- Removed duplicate rows.
- Capped ordinal features to remove categorical outliers.
 - Ensured that highest, lowest values each had at least 85 categories.
- Removed 16 features which had only one unique value after capping outliers.
- Cleaned data had 8379 records, 69 features.

Feature Selection

- Why feature selection?
 - Data contains highly correlated features.
 - Clustering algorithm may not perform well with too many features.
- featurewiz package (Ram Seshadri, 2020).
 - Removes highly-correlated features, uses MIS with target to decide which features to drop.
 - Selects from list of uncorrelated variables by repeatedly fitting LightGBM model, choosing features important in model.
- featurewiz gave 15 key features.
 - Final model uses top 5 of these predictors by MIS score.

Key Predictors

Name	Meaning	
PPERSAUT	Total contribution to car insurance policies	
MOSHOOFD	Customer type (10 options)	
MINKGEM	Average income	
MOPLAAG	Percent with a low level of education	
MAUT1	Percent owning one car	

The K-means algorithms

- Start with k randomly chosen points (means)
- Assign each point in dataset to nearest mean.
- Calculate center (mean) of each resulting cluster.
- Repeat this process, with original k points replaced by cluster centers.
- Stop when cluster centers stabilize.

Finding an optimal clustering

- Used k-means algorithm to find natural groupings in data.
- Varied number of clusters, number of features used
 - Number of clusters: 2-8.
 - Number of features: top 5-10 by MIS with target score.
- Primary metric: average silhouette score.
 - Silhouette score measures how close a point is to others in own cluster, compared to other clusters.
 - Ranges from -1 (worst) to +1 (best).

Final Clustering

- Used 5 predictors, 3 clusters.
- Second-best silhouette score of any combination tried.
 - Just 2 clusters gives slightly higher score, but less informative clustering.

Caravan ownership by cluster

Cluster	Number of zip codes	% with a Caravan policy
Cluster 0	2408	10.71%
Cluster 1	3008	2.76%
Cluster 2	2963	7.66%

• Differences in rates of Caravan ownership were statistically significant for each pair of clusters, p-value < 0.001.

Describing Cluster 0

Cluster 0 Customers:

- Moderate to high education levels.
- From "customer types" more likely to own caravan insurance.
 - Type 1: Successful hedonists
 - Type 2: Driven growers
 - Type 3: Average family.
 - Type 8: Families with grownups.
 - Type 9: Conservative families.
- Higher average income.
- Most likely to own Caravan insurance.

Describing Cluster 1

Cluster 1 Customers:

- Contribute less to car insurance policies
- Lower average income
- Least likely to own caravan insurance.

Describing Cluster 2

Cluster 2 Customers:

- Contribute more to car insurance policies
- Lower education levels
- May be from "customer types" less likely to own Caravan insurance.
- Average likelihood of owning Caravan insurance.

Summary and Recommendations

- Primary focus: Cluster 0.
 - Higher-income, better educated.
 - Advertise in venues that cater to this group.
 - Often family groups or well-off pleasure-seekers.
 - Consider ads showing happy families on vacation.
- Secondary focus: Cluster 2.
 - Contribute more to car insurance policies.
 - Consider advertising to current car policy holders.
 - Lower education levels.
 - May be successful blue-collar workers.

Limitations and further work

- Only using 5 predictors, may be missing important information.
 - Check for differences in other features between our clusters.
 - Explore clusterings with more predictors.
 - Try lower threshold for eliminating correlated features.
 - Consult domain expert on key features to retain.
- Clustering is relatively weak. (Silhouette score 0.24)
 - Try different clustering algorithms. (Ex: hierarchical clustering, mean-shift.)