

IEL - Semestrální projekt 2019/2020

Obsah

1	Příklad 1	3
2	Příklad 2	7
3	Příklad 3	10
4	Příklad 4	12
5	Příklad 5	13
6	Shrnutí výsledků	14

Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
F	125	65	510	500	550	250	300	800	330	250

1) Paralelne zapojené rezistory R7, R8 zjednotíme Sériovo zapojené rezistory R4, R5 zjednotíme

$$R_{78} = \frac{R_7 R_8}{R_7 + R_8} = \frac{330.250}{330 + 250} = \frac{82500}{580} = 142,2414\Omega$$

$$R_{45} = R_4 + R_5 = 250 + 300 = 550 \,\Omega$$

2) Obvod trans formujeme na hviezdu. Dopočítame Ra, Rb, Rc

$$R_A = \frac{R_1 R_2}{R_1 + R_2 + R_3} = \frac{510 \cdot 500}{510 + 500 + 550} = \frac{255000}{1560} \doteq 163,4615\Omega$$

$$R_B = \frac{R_1 R_3}{R_1 + R_2 + R_3} = \frac{510 \cdot 550}{510 + 500 + 550} = \frac{280500}{1560} \doteq 179,8077\Omega$$

$$R_C = \frac{R_2 R_3}{R_1 + R_2 + R_3} = \frac{650 \cdot 410}{510 + 500 + 550} = \frac{266500}{1560} \doteq 176,2821\Omega$$

3) Sériovo zapojené rezistory Rb a R45, Rc a R6 sčítame

$$R_{B_45} = R_B + R_45 = 179,8077 + 550 = 729,8077\Omega$$

 $R_{C_6} = R_C + R_6 = 176,2821 + 800 = 976,2821\Omega$

4) Rezistory Rb45 a Rc6 sú paralelne, preto ich môžeme zjednotiť

$$R_{B_{45}C_6} = \frac{R_{B_{45}}R_{C_6}}{R_{B_{45}} + R_{C_6}} = \frac{729,8077 \cdot 976,2821}{729,8077 + 976,2821} \doteq 417,6206\Omega$$

5) Rezistory Rb45c6 a Ra sú sériovo, preto ich môžeme zjednotiť

$$R_{AB_{45}C_6} = R_A + R_{B_{45}C_6} = 163,4615 + 417,6206 \doteq 581,0821\Omega$$

6) Rezistory Rab45c6 a R78 sú sériovo, preto ich môžeme zjednotiť, čím dostaneme Rekv

$$R_{EKV} = R_{78} + R_{AB_{45}C_6} = 142,2414 + 581,0821 \doteq 723,3235\Omega$$

Napätia U1 a U2 sú zapojené sériovo, preto platí:

$$U = U_1 + U_2 = 125 + 65 = 190 \text{ V}$$

Celkový prúd sa preto rovná:

$$I = \frac{U}{R_{EKV}} = \frac{190}{723,3235} \doteq 0,2627A$$

7) Prúd I prechádza odpormi Rab45c6 a R78, ktoré sú zapojené sériovo.

Z toho vieme vypočítať napätie na týchto odporoch:

$$U_R78 = R78 \cdot I = 142,2414 \cdot 0,2627 = 37,3668 \text{ V}$$

8) Prúd I prechádza odpormi Rb45c6 a Ra, ktoré sú zapojené sériovo.

Z toho vieme vypočítať napätie na týchto odporoch:

9) Rezistory Rb45 a Rc6 sú zapojené paralelne, preto platí:

$$U_Rb45 = U_Rc6 = 109,7089 V$$

Prúd I_Rb45 z toho dopočítam ako:

$$I_{R_{B45}} = \frac{U_{R_B45}}{R_{B45}} = \frac{109,7089}{729,8077} = 0,1503A$$

10) Rezistory R45 a Rb sú zapojené sériovo, preto platí:

$$I_Rb = I_R45 = 0,1503A = 150,3258 \text{ mA}$$

$$U_R45 = R45 \cdot I_R45 = 550 \cdot 0,1503 = 82,665 \text{ V}$$

11) Rezistory R4 a R5 sú zapojené sériovo, preto platí:

$$I_R5 = I_R4 = 0,15033A = 150,3258 \text{ mA}$$

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu Théveninovy věty.

sl	ζ.	U[V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
	G	180	250	315	615	180	460	350
U		R ₁	R ₂	R ₃	R ₄	R ₆	6 U _{R6}	

- 1) Vypočítame Ri:
- Prekreslíme obvod bez R6
- Napäťové zdroje nahradíme "skratom"
- Vypočítame odpor medzi bodmi A a B

Použijeme metódu zjednodušovania:

$$R12 = R1 + R2 = 250 + 315 \Omega$$

Rezistory R12 a R3 sú paralelne, preto platí: R123 = 208,3065 Ω

Metodou zjednodušovania získaváme vzorec pre Ri:

$$R_{i} \equiv R_{AB} = \frac{R_{5}(\frac{(R_{1}+R_{2})\cdot R_{3}}{R_{1}+R_{2}+R_{3}} + R_{4})}{R_{5} + (\frac{(R_{1}+R_{2})\cdot R_{3}}{R_{1}+R_{2}+R_{3}} + R_{4})} = \frac{460(\frac{(250+315)\cdot 615}{250+315+615} + 180)}{460 + (\frac{(250+315)\cdot 615}{250+315+615} + 180)} \doteq 233,5616\Omega$$

2) Vypočítame Ui:

- Prekreslíme obvod bez R6
- Určíme napätie "naprázdno" medzi bodmi A, B

Použijeme napr. metódu smyčkových prúdov:

$$\begin{bmatrix} R_1 + R_2 + R_3 & -R_3 \\ -R_3 & R_3 + R_4 + R_5 \end{bmatrix} \cdot \begin{bmatrix} I_A \\ I_B \end{bmatrix} = \begin{bmatrix} U \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 1180 & -615 \\ -615 & 1255 \end{bmatrix} \cdot \begin{bmatrix} I_A \\ I_B \end{bmatrix} = \begin{bmatrix} 180 \\ 0 \end{bmatrix}$$

$$|D| = \begin{vmatrix} 1180 & -615 \\ -615 & 1255 \end{vmatrix} = 1102675$$

$$|D1| = \begin{vmatrix} 180 & -615 \\ 0 & 1255 \end{vmatrix} = 225900$$

$$|D2| = \begin{vmatrix} 1180 & 180 \\ -615 & 0 \end{vmatrix} = 110700$$

$$I_A = \frac{|D1|}{|D|} = \frac{225900}{1102675} \doteq 0,2049 A$$

$$I_B = \frac{|D2|}{|D|} = \frac{110700}{1102675} \doteq 0,10039 A$$

$$U_i = U_{R_5} = I_B.R_5 = \doteq 46,1804 V$$

3) Získané Ri a Ui dosadíme do základného obvodu:

$$I_{R_6} = \frac{U_i}{R_i + R_6} = \frac{46,1804}{583,5616} \doteq 79,14mA$$

 $U_{R_6} = I_{R_6}.R_6 \doteq 27,70V$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
A	120	0.9	0.7	53	49	65	39	32

Uzly napätia si označíme ako 1,2,3:

Podľa KZ zostavíme rovnice prúdov, ktoré vstupujú a vystupujú do/z jednotlivých uzlov:

3.
$$I_2 + I_R4 - I_R5 - I_R3 = 0$$

Pričom platí:

$$I_{R1} = \frac{U_A}{R_1}$$

$$I_{R2} = \frac{U_B - U_A}{R_2}$$

$$I_{R3} = \frac{U_C}{R_3}$$

$$I_{R4} = \frac{U_B - U_C}{R_4}$$

$$I_{R5} = \frac{U + U_C - U_B}{R_5}$$

Dosadením vzťahov dostávame sústavu:

$$1.)0.9 + \frac{U_B - U_A}{49} - \frac{U_A}{53} = 0$$

$$2.)\frac{120 - U_B}{32} - \frac{U_B - U_A}{49} - \frac{U_B - U_C}{39} = 0$$

$$3.)0.7 + \frac{U_B - U_C}{39} - \frac{120 - U_B}{32} - \frac{U_C}{65} = 0$$

Vyriešime sústavu 3 lineárnych rovníc:

- z prvej rovnice si vyjadríme premennú U_A:

$$U_A = \frac{53(10U_B + 441)}{1020}$$

- dosadením tohto vzťahu do 2. rovnice dostávame:

$$U_B = \frac{6035Uc + 447408}{7075}$$

- dosadením predchádzajúcich vzťahov do 3. rovnice dostávame:

$$U_C = \frac{46497}{710} \doteq \frac{46497}{710} V \doteq 65,4887 V$$

Spätným dosadením U_C do predchádzajúcich vzťahov dostaneme U_B a nakoniec U_A

$$U_B = 119, 1V$$

$$U_A = 84, 8V$$

Z toho výsledný prúd a napätie:

$$I_{R_4} = \frac{U_B - U_C}{R4} = \frac{119, 1 - 65, 4887}{39} \doteq 1,3746A$$

$$U_{R_4} = R_4 \cdot I_{R_4} = 39.1, 3746 \doteq 53,6094V$$

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{C_2} = U_{C_2} \cdot \sin(2\pi f t + \varphi_{C_2})$ určete $|U_{C_2}|$ a φ_{C_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$L_1 [mH]$	L_2 [mH]	C_1 [μ F]	C_2 [µF]	f [Hz]
F	20	35	12	10	170	80	150	90	65

V obvodu na obrázku níže v čase $t=0[\mathbf{s}]$ sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$

sk.	U[V]	C[F]	$R [\Omega]$	$u_C(0)$ [V]
G	20	50	25	8

Shrnutí výsledků

Příklad	Skupina	Výsledky			
1	F	$U_{R5} = 45.10 \text{ V}$	$I_{R5} = 150.33 \text{ mA}$		
2	G	$U_{R6} = 27.70 \text{ V}$	$I_{R6} = 79.14 \text{ mA}$		
3	A	$U_{R4} = 53.61 \text{ V}$	$I_{R4} = 1.37 \text{ A}$		
4	F	$ U_{C_2} =$	$\varphi_{C_2} =$		
5	G	$u_C =$			