(2018)

设2阶矩阵A有两个不同特征值, α_1,α_2 是A的线性无关的特征向量,且满足 $A^2(\alpha_1+\alpha_2)=\alpha_1+\alpha_2$,

则|A|=_____

(2017) 设矩阵
$$A = \begin{pmatrix} 4 & 1 & -2 \\ 1 & 2 & a \\ 3 & 1 & -1 \end{pmatrix}$$
的一个特征向量为 $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$,则 $a =$ ______

(2015)设 3 阶矩阵 A 的特征值为 2,-2,1, $B = A^2 - A + E$,其中 E 为 3 阶单位矩阵,则行列式|B|=______.

(2009) 若 3 维列向量 α , β 满足 $\alpha^T\beta=2$, 其中 α^T 为 α 的转置, 则矩阵 $\beta\alpha^T$ 的非零特征值为

设 A 是 2 阶矩阵,且满足 $A^2 + A - 6 = O$. 则 $|A + 5E| = ______$.

求矩阵
$$A = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
的特征值和特征向量.

设(1)
$$A = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
,(2) $B = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, 求 A,B 的特征值.

