Homework 2

(+2) Create Database 'trip_db', Schema 'trip_schema' and Table 'trip_data' in Snowflake. Make sure
the schema of trip_data should matches the structure of the file. Use the warehouse of size
XSMALL

```
ACCOUNTADMIN
                                                                                                          COMPUTE_WH (X-Small)
         TRIP_DB.TRIP_SCHEMA V
                                    Settings
        CREATE DATABASE trip_db;
        CREATE SCHEMA trip_schema;
       -- Create Table
CREATE OR REPLACE TABLE trip_schema.trip_data (
            column1 INTEGER,
            column2 TIMESTAMP,
column3 TIMESTAMP,
            column4 INTEGER,
column5 STRING,
            column6 FLOAT,
             column8 INTEGER, column9 STRING,
             column10 FLOAT,
             column12 INTEGER,
21
22
             column13 INTEGER,
             column14 STRING,
             column15 INTEGER,
             column16 INTEGER
```

- Creating database trip_db and schema trip_schema is pretty straight forward, I took a slightly different approach inorder to match the schema to the given S3 database. First using the link I printed out the first 10 rows of the database in snowflake, and using the first row, I concurred that there are 16 columns with different data types which I matched with the columns while creating the table as seen in the screenshot.
- 2. (+1) Create Stage 'trip_stage' in Snowflake and it can be any stage type of your choice (internal or external)

```
CREATE OR REPLACE FILE FORMAT my_csv_format
TYPE = 'CSV'
FIELD_OPTIONALLY_ENCLOSED_BY = '"'
SKIP_HEADER = 1
NULL_IF = ('', 'null');
```

3. (+1) Create File Format 'trip file format' in Snowflake.

```
34
35 CREATE OR REPLACE STAGE citibike_stage
36 URL = 's3://snowflake-workshop-lab/citibike-trips-csv/'
37 FILE_FORMAT = my_csv_format;
```

4. (+1) Load Data into the 'trip data' table (COPY INTO)

```
COPY INTO trip_schema.trip_data

FROM @citibike_stage/trips_2013_0_5_0.csv.gz

FILE_FORMAT = (TYPE = 'CSV', FIELD_OPTIONALLY_ENCLOSED_BY = '"', SKIP_HEADER = 1, NULL_IF = ('', 'null'))

ON_ERROR = 'CONTINUE';
```

→ Results ~ Chart					
	COLUMN1	COLUMN2	COLUMN3	COLUMN4	COLUMN5
1	1717	2013-06-28 18:08:27.000	2013-06-28 18:37:04.000	349	Rivington St & Ridge St
2	838	2013-06-28 18:08:27.000	2013-06-28 18:22:25.000	2012	E 27 St & 1 Ave
3	972	2013-06-28 18:08:30.000	2013-06-28 18:24:42.000	358	Christopher St & Greenwick
4	602	2013-06-28 18:08:30.000	2013-06-28 18:18:32.000	540	Lexington Ave & E 29 St
5	542	2013-06-28 18:08:31.000	2013-06-28 18:17:33.000	521	8 Ave & W 31 St N
6	1344	2013-06-28 18:08:32.000	2013-06-28 18:30:56.000	477	W 41 St & 8 Ave
7	443	2013-06-28 18:08:34.000	2013-06-28 18:15:57.000	515	W 43 St & 10 Ave
8	903	2013-06-28 18:08:35.000	2013-06-28 18:23:38.000	400	Pitt St & Stanton St
9	525	2013-06-28 18:08:37.000	2013-06-28 18:17:22.000	484	W 44 St & 5 Ave
10	1176	2013-06-28 18:08:39.000	2013-06-28 18:28:15.000	454	E 51 St & 1 Ave
◀					•

- As you can see the data has been loaded using COPY INTO
- 5. (+4) Write an SQL query to produce a report that shows, for each hour of the day, the following:
 - 1. The total number of trips that started during that hour.
 - 2. The average duration of these trips in mins.
 - 3. The average distance traveled during these trips in kms.


```
CREATE OR REPLACE WAREHOUSE trip_warehouse
WITH
WAREHOUSE_SIZE = 'XLARGE'
AUTO_SUSPEND = 600
AUTO_RESUME = TRUE;

USE WAREHOUSE trip_warehouse;
```

7. (+3) Rerun the same query from step 4 & 5 using the XLARGE warehouse **after dropping trip_data table**, Analyze the performance of the node upon changing configurations from x-small to x-large in Snowflake.

x-small:

x-large:

We can see that x-small took 214ms to load the data into the schema whereas after dropping the table and loading the data in x-large took half as much time.

We can see that on the x-small warehouse the query took 428ms to run whereas in the x-large warehouse the same query took just 81ms which is 5x faster.