ASAP Boosts Document and Code Creation with AI-Powered Natural Language Search in an Integrated Workspace v0.1

Author Name

19/06/2024

Executive Summary

This document provides an overview of how ASAP leverages AI-powered natural language search to enhance document and code creation within an integrated workspace.

Revision History

Revision Date Author(s) Description v0.1 21/03/2024 Author First draft

¹ Contents

2	Ţ	Introduction	3
3		1.1 Semantic Search	3
4		1.2 Query Efficiency	3
5	2	Automation and Productivity	3
6		2.1 User Accessibility	3
7	3	Integration of AI Copilots	3
8		3.1 Retrieval Augmented Generation (RAG)	3
9		3.2 Workspace and Chat Sessions	3
.0	4	Overcoming AI Limitations	4
.1		4.1 Lifelong Learning Agents	4
.2	5	Domain-Specific Copilots	4
.3		5.1 Tech Docs and Code Gen	4
.4	6	Customized Settings	4

5 1 Introduction

ASAP enhances efficiency and accuracy by integrating AI-powered natural language search in a seamless workspace.

18 1.1 Semantic Search

Semantic search ensures precise data retrieval via Microsoft Graph, accessing vast corporate data stored in a vectorized format in Cosmos DB.

21 1.2 Query Efficiency

Natural language queries streamline efficiency and accuracy.

1 Discuss the role of natural language queries.

3 2 Automation and Productivity

Automation of document and code generation significantly boosts productivity.

25 2.1 User Accessibility

Designed to make advanced AI accessible and user-friendly for non-experts.

2 Consider user-friendliness in design.

²⁷ 3 Integration of AI Copilots

Integrates several AI copilots, including Code-Generation and Document-Generation Agents.

3.1 Retrieval Augmented Generation (RAG)

Utilizes Retrieval Augmented Generation (RAG) to enhance performance in knowledge-

32 intensive tasks.

3.2 Workspace and Chat Sessions

Each copilot has its own workspace with chat sessions stored in a database for semantic search retrieval.

Created: 19/06/2024 at 06:42:00 Footer Page-3

4 Overcoming AI Limitations

Overcomes AI limitations by leveraging contextual data through retrieval-augmented techniques, utilizing Cosmos DB and vectorization.

39 4.1 Lifelong Learning Agents

Implements Lifelong Learning Agents based on Cosmos DB and vectorization for continuous improvement.

5 Domain-Specific Copilots

Copilots are already trained and ready for use in domain expertise they are designed for.

5.1 Tech Docs and Code Gen

Tech Docs Copilot uses software documentation ontologies, while Code Gen Copilot uses software ontologies for languages and platforms like Blazor, Fluent UI, and Kubernetes.

⁴⁹ 6 Customized Settings

Copilots are designed with customized settings (e.g., target audience, response length, and level of creativity) stored with each interaction for easy recreation of original chats.

3 Highlight importance of customizable settings.

Created: 19/06/2024 at 06:42:00 Footer Page-4