Методы оптимизации. Семинар 2. Сопряжённые конусы

Александр Катруца

Московский физико-технический институт

13 сентября 2021 г.

Напоминание

- Внутренность и относительная внутренность множества
- Аффинное множество
- ▶ Выпуклое множество
- Конус

Сопряжённое множество

Сопряжённым (двойственным) к множеству $\mathcal{G} \subseteq \mathbb{R}^n$ называют такое множество \mathcal{G}^* , что $\mathcal{G}^* = \{\mathbf{p} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle \geq -1, \ \forall \mathbf{x} \in \mathcal{G}\}.$

Сопряжённое множество

Сопряжённым (двойственным) к множеству $\mathcal{G}\subseteq\mathbb{R}^n$ называют такое множество \mathcal{G}^* , что

$$\mathcal{G}^* = \{ \mathbf{p} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle \ge -1, \ \forall \mathbf{x} \in \mathcal{G} \}.$$

Сопряжённый конус

Если $\mathcal{C}\subseteq\mathbb{R}^n$ конус, то $\mathcal{C}^*=\{\mathbf{p}\in\mathbb{R}^n\mid \langle\mathbf{p},\mathbf{x}\rangle\geq 0,\; \forall\mathbf{x}\in\mathcal{C}\}.$

Сопряжённое множество

Сопряжённым (двойственным) к множеству $\mathcal{G} \subseteq \mathbb{R}^n$ называют такое множество \mathcal{G}^* , что

$$\mathcal{G}^* = \{ \mathbf{p} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle \ge -1, \ \forall \mathbf{x} \in \mathcal{G} \}.$$

Сопряжённый конус

Если $\mathcal{C} \subseteq \mathbb{R}^n$ конус, то $\mathcal{C}^* = \{ \mathbf{p} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle \geq 0, \ \forall \mathbf{x} \in \mathcal{C} \}.$

Сопряжённое подпространство

Если \mathcal{L} линейное подпространство в \mathbb{R}^n , то $\mathcal{L}^* = \{ \mathbf{p} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle = 0, \ \forall \mathbf{x} \in \mathcal{L} \} = \mathcal{L}^\perp.$

Пример сопряжённого конуса

Пусть
$$\mathcal{G}$$
 — произвольное множество в \mathbb{R}^n . Тогда $\mathcal{G}^{**} = \overline{\operatorname{conv}\left(\mathcal{G} \cup \{0\}\right)}$.

Теорема

Пусть
$$\mathcal{G}$$
 — произвольное множество в \mathbb{R}^n . Тогда $\mathcal{G}^{**} = \overline{\operatorname{conv}\left(\mathcal{G} \cup \{0\}\right)}$.

Теорема

Пусть \mathcal{G} — замкнутое выпуклое множество, включающее 0. Тогда $\mathcal{G}^{**}=\mathcal{G}$.

Теорема

Пусть
$$\mathcal{G}$$
 — произвольное множество в \mathbb{R}^n . Тогда $\mathcal{G}^{**} = \overline{\operatorname{conv}\left(\mathcal{G} \cup \{0\}\right)}$.

Теорема

Пусть \mathcal{G} — замкнутое выпуклое множество, включающее 0. Тогда $\mathcal{G}^{**}=\mathcal{G}$.

Теорема

Пусть $\mathcal{G}_1\subset\mathcal{G}_2$, тогда $\mathcal{G}_2^*\subset\mathcal{G}_1^*$.

Найти сопряжённые к следующим множествам:

1. Неотрицательный октант: \mathbb{R}^n_+

- 1. Неотрицательный октант: \mathbb{R}^n_+
- 2. Конус положительно полуопределённых матриц: \mathbf{S}^n_+

- 1. Неотрицательный октант: \mathbb{R}^n_+
- 2. Конус положительно полуопределённых матриц: \mathbf{S}^n_+
- 3. $\{(x_1, x_2) \mid |x_1| \le x_2\}$

- 1. Неотрицательный октант: \mathbb{R}^n_+
- 2. Конус положительно полуопределённых матриц: \mathbf{S}^n_+
- 3. $\{(x_1, x_2) \mid |x_1| \le x_2\}$
- 4. $\{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}||_2 \le r \}$

- 1. Неотрицательный октант: \mathbb{R}^n_+
- 2. Конус положительно полуопределённых матриц: \mathbf{S}^n_+
- 3. $\{(x_1, x_2) \mid |x_1| \le x_2\}$
- **4**. $\{\mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}||_2 \le r\}$
- 5. Конус, порождённый некоторой нормой: $\{(\mathbf{x},t)\in\mathbb{R}^{n+1}\mid \|\mathbf{x}\|\leq t\}$

Полярный конус

Определение

Полярным конусом для конуса ${\mathcal C}$ называется следующее множество

$$C^{\circ} = \{ \mathbf{y} \in \mathbb{R}^n \mid \langle \mathbf{y}, \mathbf{x} \rangle \leq 0, \ \forall \mathbf{x} \in C \}.$$

Заметим, что $\mathcal{C}^{\circ} = -\mathcal{C}^*$.

Теорема

▶ Для любого линейного подпространства \mathcal{L} и любого вектора \mathbf{x} выполнено $\mathbf{x} = \pi_{\mathcal{L}}(\mathbf{x}) + \pi_{\mathcal{L}^{\perp}}(\mathbf{x})$, где $\pi_{\mathcal{G}}(\mathbf{x})$ — проекция точки \mathbf{x} на множество \mathcal{G}

- ▶ Для любого линейного подпространства \mathcal{L} и любого вектора \mathbf{x} выполнено $\mathbf{x} = \pi_{\mathcal{L}}(\mathbf{x}) + \pi_{\mathcal{L}^{\perp}}(\mathbf{x})$, где $\pi_{\mathcal{G}}(\mathbf{x})$ проекция точки \mathbf{x} на множество \mathcal{G}

- ▶ Для любого линейного подпространства \mathcal{L} и любого вектора \mathbf{x} выполнено $\mathbf{x} = \pi_{\mathcal{L}}(\mathbf{x}) + \pi_{\mathcal{L}^{\perp}}(\mathbf{x})$, где $\pi_{\mathcal{G}}(\mathbf{x})$ проекция точки \mathbf{x} на множество \mathcal{G}
- lacktriangle Для выпуклого конуса ${\mathcal C}$ и вектора ${f x}$ справедливо

$$\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{x}) + \pi_{\mathcal{C}^{\circ}}(\mathbf{x})$$

- ▶ Для любого линейного подпространства \mathcal{L} и любого вектора \mathbf{x} выполнено $\mathbf{x} = \pi_{\mathcal{L}}(\mathbf{x}) + \pi_{\mathcal{L}^{\perp}}(\mathbf{x})$, где $\pi_{\mathcal{G}}(\mathbf{x})$ проекция точки \mathbf{x} на множество \mathcal{G}
- lacktriangle Для выпуклого конуса ${\mathcal C}$ и вектора ${f x}$ справедливо

$$\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{x}) + \pi_{\mathcal{C}^{\circ}}(\mathbf{x})$$

Сопряжение для композиций конусов

Пусть \mathcal{C}_1 , \mathcal{C}_2 замкнутые выпуклые конусы, тогда

- $(\mathcal{C}_1 \times \mathcal{C}_2)^* = \mathcal{C}_1^* \times \mathcal{C}_2^*$
- $(\mathcal{C}_1 + \mathcal{C}_2)^* = \mathcal{C}_1^* \cap \mathcal{C}_2^*$
- $(\mathcal{C}_1 \cap \mathcal{C}_2)^* = \mathcal{C}_1^* + \mathcal{C}_2^*$

Сопряжение для композиций конусов

Пусть \mathcal{C}_1 , \mathcal{C}_2 замкнутые выпуклые конусы, тогда

$$(\mathcal{C}_1 \times \mathcal{C}_2)^* = \mathcal{C}_1^* \times \mathcal{C}_2^*$$

$$(\mathcal{C}_1 + \mathcal{C}_2)^* = \mathcal{C}_1^* \cap \mathcal{C}_2^*$$

$$(\mathcal{C}_1 \cap \mathcal{C}_2)^* = \mathcal{C}_1^* + \mathcal{C}_2^*$$

Q: почему именно такие композиции интересны?

 Исторически первым хорошо изученным классом задач были задачи линейного программирования (LP)

- Исторически первым хорошо изученным классом задач были задачи линейного программирования (LP)
- Q: как перейти от линейных задач к нелинейным с минимальными потерями?

- Исторически первым хорошо изученным классом задач были задачи линейного программирования (LP)
- Q: как перейти от линейных задач к нелинейным с минимальными потерями?
- **A**: если в задаче LP $\mathbf{x} \in \mathbb{R}^n_+$, то в задаче выпуклой оптимизации $\mathbf{x} \in \mathcal{C}$, где \mathcal{C} некоторый конус

- Исторически первым хорошо изученным классом задач были задачи линейного программирования (LP)
- Q: как перейти от линейных задач к нелинейным с минимальными потерями?
- ${f A}$: если в задаче LP ${f x}\in \mathbb{R}^n_+$, то в задаче выпуклой оптимизации ${f x}\in \mathcal{C}$, где \mathcal{C} некоторый конус
 - Все нелинейности кодируются с помощью конусов и их декартовых произведений

- Исторически первым хорошо изученным классом задач были задачи линейного программирования (LP)
- Q: как перейти от линейных задач к нелинейным с минимальными потерями?
- ${f A}$: если в задаче LP ${f x}\in \mathbb{R}^n_+$, то в задаче выпуклой оптимизации ${f x}\in \mathcal{C}$, где \mathcal{C} некоторый конус
 - Все нелинейности кодируются с помощью конусов и их декартовых произведений
 - ▶ Теория для задач LP с небольшими изменениями переносится на случай конических задач

- Исторически первым хорошо изученным классом задач были задачи линейного программирования (LP)
- Q: как перейти от линейных задач к нелинейным с минимальными потерями?
- ${f A}$: если в задаче LP ${f x}\in \mathbb{R}^n_+$, то в задаче выпуклой оптимизации ${f x}\in \mathcal{C}$, где \mathcal{C} некоторый конус
 - Все нелинейности кодируются с помощью конусов и их декартовых произведений
 - ▶ Теория для задач LP с небольшими изменениями переносится на случай конических задач
 - ▶ Детальное обсуждение будет далее в курсе...

Определение

Гиперплоскость $\{\mathbf{x} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle = \beta \}$ называется опорной к множеству \mathcal{G} в граничной точке \mathbf{x}_0 , если $\langle \mathbf{p}, \mathbf{x} \rangle \geq \beta = \langle \mathbf{p}, \mathbf{x}_0 \rangle$ для всех $\mathbf{x} \in \mathcal{G}$.

Определение

Гиперплоскость $\{\mathbf{x} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle = \beta \}$ называется опорной к множеству $\mathcal G$ в граничной точке \mathbf{x}_0 , если $\langle \mathbf{p}, \mathbf{x} \rangle \geq \beta = \langle \mathbf{p}, \mathbf{x}_0 \rangle$ для всех $\mathbf{x} \in \mathcal G$.

Собственно опорная гиперплоскость

Гиперплоскость $\{\mathbf{x} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle = \beta \}$ называется собственно опорной к множеству $\mathcal G$ в точке \mathbf{x}_0 , если она опорная и $\exists \tilde{\mathbf{x}} \in X \colon \langle \mathbf{p}, \tilde{\mathbf{x}} \rangle > \beta$.

Определение

Гиперплоскость $\{\mathbf{x} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle = \beta \}$ называется опорной к множеству $\mathcal G$ в граничной точке \mathbf{x}_0 , если $\langle \mathbf{p}, \mathbf{x} \rangle \geq \beta = \langle \mathbf{p}, \mathbf{x}_0 \rangle$ для всех $\mathbf{x} \in \mathcal G$.

Собственно опорная гиперплоскость

Гиперплоскость $\{\mathbf{x} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle = \beta \}$ называется собственно опорной к множеству \mathcal{G} в точке \mathbf{x}_0 , если она опорная и $\exists \tilde{\mathbf{x}} \in X \colon \langle \mathbf{p}, \tilde{\mathbf{x}} \rangle > \beta$.

Теорема об опорной гиперплоскости

В любой граничной (относительно граничной) точке выпуклого множества существует опорная (собственно опорная) гиперплоскость.

Как искать опорную гиперплоскость?

- ▶ Проверить множество на выпуклость
 - если множество выпукло, то опорная гиперплоскость существует и является касательной к границе
 - если множество невыпукло, то нужно дополнительно исследовать в каких точках границы опорная гиперплоскость существует
- Если граница задана в виде уравнения $F(\mathbf{x})=0$, то нормальный вектор касательной гиперплоскости в точке \mathbf{x}_0 равен $\nabla F(\mathbf{x}_0)$

Зачем нужны сопряжённые конусы?

Зачем нужны сопряжённые конусы?

Способы описания множества

Способы описания множества

▶ Задать элементы

Способы описания множества

- Задать элементы
- Определить границу

Способы описания множества

- Задать элементы
- Определить границу

Способы описания множества

- Задать элементы
- Определить границу

Сопряжённый конус и опорные гиперплоскости

▶ По определению \mathcal{C}^* состоит из нормалей опорных гиперплоскостей для \mathcal{C} в нуле

Способы описания множества

- Задать элементы
- Определить границу

Сопряжённый конус и опорные гиперплоскости

- ▶ По определению C^* состоит из нормалей опорных гиперплоскостей для C в нуле
- Сопряжённый конус задаёт альтернативное описание исходного конуса

Способы описания множества

- Задать элементы
- Определить границу

Сопряжённый конус и опорные гиперплоскости

- ▶ По определению C^* состоит из нормалей опорных гиперплоскостей для C в нуле
- Сопряжённый конус задаёт альтернативное описание исходного конуса
- ▶ Более наглядные приложения будут далее в курсе...

Определение

Разделяющей гиперплоскостью для множеств $\mathcal{G}_1, \mathcal{G}_2$ является такая гиперплоскость $\{\mathbf{x} \mid \langle \mathbf{p}, \mathbf{x} \rangle = \beta\}$, что $\langle \mathbf{p}, \mathbf{x}_1 \rangle \geq \beta$ для всех $\mathbf{x}_1 \in \mathcal{G}_1$ и $\langle \mathbf{p}, \mathbf{x}_2 \rangle \leq \beta$ для всех $\mathbf{x}_2 \in \mathcal{G}_2$

Определение

Разделяющей гиперплоскостью для множеств $\mathcal{G}_1, \mathcal{G}_2$ является такая гиперплоскость $\{\mathbf{x} \mid \langle \mathbf{p}, \mathbf{x} \rangle = \beta\}$, что $\langle \mathbf{p}, \mathbf{x}_1 \rangle \geq \beta$ для всех $\mathbf{x}_1 \in \mathcal{G}_1$ и $\langle \mathbf{p}, \mathbf{x}_2 \rangle \leq \beta$ для всех $\mathbf{x}_2 \in \mathcal{G}_2$

Существование

Пусть \mathcal{G}_1 и \mathcal{G}_2 выпуклые непересекающиеся множества, тогда существует разделяющая их гиперплоскость.

Определение

Разделяющей гиперплоскостью для множеств $\mathcal{G}_1, \mathcal{G}_2$ является такая гиперплоскость $\{\mathbf{x} \mid \langle \mathbf{p}, \mathbf{x} \rangle = \beta\}$, что $\langle \mathbf{p}, \mathbf{x}_1 \rangle \geq \beta$ для всех $\mathbf{x}_1 \in \mathcal{G}_1$ и $\langle \mathbf{p}, \mathbf{x}_2 \rangle \leq \beta$ для всех $\mathbf{x}_2 \in \mathcal{G}_2$

Существование

Пусть \mathcal{G}_1 и \mathcal{G}_2 выпуклые непересекающиеся множества, тогда существует разделяющая их гиперплоскость.

Критерий для выпуклых множеств

Два выпуклых множества, таких что по крайней мере одно из них открыто, не пересекаются тогда и только тогда, когда существует разделяющая гиперплоскость.

▶ Проверить множества на выпуклость

- ▶ Проверить множества на выпуклость
 - если **оба множества выпуклы**, можно пользоваться теоремами

- Проверить множества на выпуклость
 - если оба множества выпуклы, можно пользоваться теоремами
 - если **невыпукло хотя бы одно множество**, нужно придумать обоснование для конкретного случая

- ▶ Проверить множества на выпуклость
 - если оба множества выпуклы, можно пользоваться теоремами
 - если **невыпукло хотя бы одно множество**, нужно придумать обоснование для конкретного случая
- ▶ Проверить пересекаются ли множества

- ▶ Проверить множества на выпуклость
 - если оба множества выпуклы, можно пользоваться теоремами
 - если **невыпукло хотя бы одно множество**, нужно придумать обоснование для конкретного случая
- Проверить пересекаются ли множества
 - если множества пересекаются, то разделяющей гиперплоскости нет

- ▶ Проверить множества на выпуклость
 - если оба множества выпуклы, можно пользоваться теоремами
 - если **невыпукло хотя бы одно множество**, нужно придумать обоснование для конкретного случая
- Проверить пересекаются ли множества
 - если множества пересекаются, то разделяющей гиперплоскости нет
 - если множества не пересекаются, найти максимально близкие точки, то есть решение задачи

$$\min_{\mathbf{x}_1 \in \mathcal{G}_1, \mathbf{x}_2 \in \mathcal{G}_2} \|\mathbf{x}_1 - \mathbf{x}_2\|_2^2$$

- Проверить множества на выпуклость
 - если оба множества выпуклы, можно пользоваться теоремами
 - если невыпукло хотя бы одно множество, нужно придумать обоснование для конкретного случая
- Проверить пересекаются ли множества
 - если множества пересекаются, то разделяющей гиперплоскости нет
 - если множества не пересекаются, найти максимально близкие точки, то есть решение задачи

$$\min_{\mathbf{x}_1 \in \mathcal{G}_1, \mathbf{x}_2 \in \mathcal{G}_2} \|\mathbf{x}_1 - \mathbf{x}_2\|_2^2$$

▶ Разделяющая гиперплоскость — это гиперплоскость ортогональная отрезку, который соединяет $\mathbf{x}_1^*, \mathbf{x}_2^*$

Лемма Фаркаша

Лемма Фаркаша

Лемма

Пусть даны $\mathbf{A} \in \mathbb{R}^{m \times n}$ и $\mathbf{b} \in \mathbb{R}^m$. Тогда имеет решение одна и только одна из следующих двух систем:

- 1. $Ax = b, x \ge 0$
- 2. $\mathbf{p}^{\mathsf{T}} \mathbf{A} \ge 0$, $\langle \mathbf{p}, \mathbf{b} \rangle < 0$

Лемма Фаркаша

Лемма

Пусть даны $\mathbf{A} \in \mathbb{R}^{m \times n}$ и $\mathbf{b} \in \mathbb{R}^m$. Тогда имеет решение одна и только одна из следующих двух систем:

- 1. $Ax = b, x \ge 0$
- $\mathbf{2}. \ \mathbf{p}^{\top} \mathbf{A} \ge 0, \ \langle \mathbf{p}, \mathbf{b} \rangle < 0$

Важное следствие

Пусть даны $\mathbf{A} \in \mathbb{R}^{m \times n}$ и $\mathbf{b} \in \mathbb{R}^m$. Тогда имеет решение одна и только одна из следующих двух систем:

- 1. $\mathbf{A}\mathbf{x} \leq \mathbf{b}$
- 2. $\mathbf{p}^{\top} \mathbf{A} = 0, \ \langle \mathbf{p}, \mathbf{b} \rangle < 0, \ \mathbf{p} \ge 0$

 $\mathbf{A}\mathbf{x} = \mathbf{b}$ при $\mathbf{x} \ge 0$ означает, что \mathbf{b} лежит в конусе, натянутом на столбцы матрицы \mathbf{A}

- $\mathbf{A}\mathbf{x} = \mathbf{b}$ при $\mathbf{x} \geq 0$ означает, что \mathbf{b} лежит в конусе, натянутом на столбцы матрицы \mathbf{A}
- ▶ $\mathbf{p}^{\top} \mathbf{A} \ge 0$, $\langle \mathbf{p}, \mathbf{b} \rangle < 0$ означает, что существует разделяющая гиперплоскость между вектором \mathbf{b} и конусом из столбцов матрицы \mathbf{A} .

- $\mathbf{A}\mathbf{x} = \mathbf{b}$ при $\mathbf{x} \geq 0$ означает, что \mathbf{b} лежит в конусе, натянутом на столбцы матрицы \mathbf{A}
- ▶ $\mathbf{p}^{\top} \mathbf{A} \ge 0$, $\langle \mathbf{p}, \mathbf{b} \rangle < 0$ означает, что существует разделяющая гиперплоскость между вектором \mathbf{b} и конусом из столбцов матрицы \mathbf{A} .
- ▶ Разделяющая гиперплоскость существует, так как множества $\{{\bf b}\}$ и $\{{\bf y}\mid {\bf y}={\bf A}{\bf x},\; {\bf x}\geq 0\}$ выпуклы

- $\mathbf{A}\mathbf{x} = \mathbf{b}$ при $\mathbf{x} \ge 0$ означает, что \mathbf{b} лежит в конусе, натянутом на столбцы матрицы \mathbf{A}
- ▶ $\mathbf{p}^{\top} \mathbf{A} \ge 0$, $\langle \mathbf{p}, \mathbf{b} \rangle < 0$ означает, что существует разделяющая гиперплоскость между вектором \mathbf{b} и конусом из столбцов матрицы \mathbf{A} .
- ▶ Разделяющая гиперплоскость существует, так как множества $\{{\bf b}\}$ и $\{{\bf y}\mid {\bf y}={\bf A}{\bf x},\; {\bf x}\geq 0\}$ выпуклы

Применение леммы Фаркаша

- Разрешимость задачи линейного программирования
- Существование равновесного распределения в Марковской цепи
- Теоремы об арбитраже в финансах

Главное

- Сопряжённые конусы
- ▶ Свойства сопряжённых конусов
- ▶ Самосопряжённые конусы
- ▶ Опорная гиперплоскость
- Разделяющая гиперплоскость