Algorithm 1 Spatial Entropy Calculation for Feature Maps

```
Input: \mathbf{F} \in \mathbb{R}^{B \times C \times H \times W} {Feature map}
   1: Preprocess and reshape \mathbf{F} to \mathbf{F} \in \mathbb{R}^{\hat{B} \times C \times N} where N =
           H \times W \{N: \text{ spatial dimensions}\}
   2: \mu \leftarrow \mathbb{E}[\mathbf{F}]_N
   3: \boldsymbol{\sigma} \leftarrow \sqrt{\mathbb{V}[\mathbf{F}]_N}
   4: \varepsilon \leftarrow \max(\min(\boldsymbol{\sigma}) \cdot 10^{-2}, 10^{-6})
   5: \hat{\mathbf{F}} \leftarrow \frac{\mathbf{F} - \boldsymbol{\mu}}{\boldsymbol{\sigma} + \varepsilon}
  7: \mathbf{P} \leftarrow \frac{-\max(\mathbf{F}')_N}{\sum_{n=1}^N \exp(\mathbf{F}^*) + \varepsilon} {Normalized probability distribution}
  8: \mathbf{P} \leftarrow \frac{\max(\mathbf{P}, \varepsilon)}{\sum_{n=1}^{N} \max(\mathbf{P}_{n}, \varepsilon)}

9: \mathbf{H} \leftarrow -\sum_{n=1}^{N} \mathbf{P}_{n} \log(\mathbf{P}_{n}) {Entropy per channel}
 10: \mathbf{P}_{sort} \leftarrow \operatorname{sort}(\mathbf{P})_N
11: \mathbf{L} \leftarrow \operatorname{cumsum}(\mathbf{P}_{sort})_{N}
12: \mathbf{G} \leftarrow 1 - \frac{2}{N} \sum_{i=1}^{N} \frac{i \cdot \mathbf{L}_{i}}{\sum_{j=1}^{N} \mathbf{P}_{sort,j}} {Gini coefficient}
 13: \rho \leftarrow \mathbf{0}_B {Channel correlation}
 14: if C > 1 then
                for b = 1 to B do
 15:
                     \mathbf{R}_b \leftarrow \operatorname{corr}(\mathbf{P}_b) \\ \boldsymbol{\rho}_b \leftarrow \frac{1}{C(C-1)} \sum_{i \neq j} \mathbf{R}_{b,i,j}
 16:
 17:
                end for
 18:
 19: end if
 20: \bar{H} \leftarrow \frac{1}{BC} \sum_{b=1}^{B} \sum_{c=1}^{C} \mathbf{H}_{b,c} {Mean spatial entropy}
 21: if \bar{H} \notin \mathbb{R} then
 22:
                 \bar{H} \leftarrow 0
 23: end if
Output: \bar{H}
```