Chương 3: Biến đổi Fourier nhanh (FFT-Fast Fourier Transform)

TS. Trần Văn Hưng Bộ môn: Kỹ thuật điện tử (P502-A6) Email: hungtv_ktdt@utc.edu.vn

Nội dung

- 3.1 Giới thiệu
- 3.2 Cơ sở tính toán FFT
- 3.3 FFT phân chia theo thời gian
- 3.4 FFT phân chia theo tần số
- 3.5 Giải thuật FFT composite N (đa hợp N)

Nội dung

3.1 Giới thiệu

- 3.2 Cơ sở tính toán FFT
- 3.3 FFT phân chia theo thời gian
- 3.4 FFT phân chia theo tần số
- 3.5 Giải thuật FFT composite N (đa hợp N)

3.1 Giới thiệu

- Năm 1965 Cooley đưa ra thuật toán tính nhanh biến đổi Fourier rời rạc (FFT). Đây là một thuật toán hiệu quả để tính biến đổi DFT và IDFT.
- FFT nâng cao tốc độ, tính mềm dẻo, tính chính xác của xử lý số tín hiệu;
- FFT được áp dụng vào các lĩnh vực phân tích phổ: viễn thông, thiên văn, chẩn đoán y học, ...
- FFT đặt nền móng cho việc tính toán nhanh các biến đổi khác như: biến đổi Walsh, biến đổi Hadamard, biến đổi Harr, biến đổi Wavelet.

Nội dung

3.1 Giới thiêu

3.2 Cơ sở tính toán FFT

- 3.3 FFT phân chia theo thời gian
- 3.4 FFT phân chia theo tần số
- 3.5 Giải thuật FFT composite N (đa hợp N)

3.2 Cơ sở tính toán FFT

DFT
$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn}$$
 $0 \le k \le N-1$ $W_N = e^{-j\frac{2\pi}{N}}$
IDFT $x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn}$ $0 \le n \le N-1$

Triển khai theo công thức Ơle, ta có:

$$\begin{cases} X_R(k) = \sum_{n=0}^{N-1} [x_R(n)\cos(\frac{2\pi kn}{N}) + x_I(n)\sin(\frac{2\pi kn}{N})] \\ X_I(k) = -\sum_{n=0}^{N-1} [x_R(n)\sin(\frac{2\pi kn}{N}) - x_I(n)\cos(\frac{2\pi kn}{N})] \end{cases}$$

Giải thuật tính DFT cũng được áp dụng cho việc tính IDFT

- Tính trưc tiếp
 - N² phép nhân phức
 - N(N-1) phép cộng phức
 - \rightarrow Độ phức tạp : O(N²)
- Biến đổi W_N 2N² phép tính lượng giác
 - 4N² phép nhân số thực

 - 4N(N-1) phép cộng số thực
 - Một số phép toán chỉ số và địa chỉ để nạp x(n)

 Khi N lớn thì N² rất lớn, đòi hỏi dung lượng bộ nhớ lớn và thời gian tính toán dài.

$\frac{N}{2}$	$\frac{N^2}{4}$		
4	16		
8	64		
16	256		
32	1024		
64	4096		
128	16384		
256	65536		
512	262144		
1024	1048576		
2048	4194904		
4096	16777216		
8102	67000000		

Cần tìm ra phương pháp tính nhanh DFT thì mới có thể sử dụng hiệu quả DFT trong quá trình xử lý tín hiệu.

3.2 Cơ sở tính toán FFT

Các tính chất của W_N^{kn}

- Các phép tính hiệu quả của DFT đều phải dựa trên 2 tính chất: Tuần hoàn & Đối xứng
- > Tuần hoàn

$$W_N^{kn} = W_N^{(k'n'+iN)} = W_N^{k'n'}$$

Ví du

Cho DFT với N = 8. Hãy dùng tính chất tuần hoàn để tính X(7)

Với N = 8 ta có thể tính X(7) như sau:

$$X(7) = x(0) W_8^{7.0} + x(1)W_8^{7.1} + x(2)W_8^{7.2} + x(3)W_8^{7.3} + x(4)W_8^{7.4} + x(5)W_8^{7.5} + x(6)W_8^{7.6} + x(7)W_8^{7.7}$$

$$= x(0)W_8^0 + x(1)W_8^7 + x(2)W_8^{14} + x(3)W_8^{21} + x(4)W_8^{28} + x(5)W_8^{35} + x(6)W_8^{42} + x(7)W_8^{49}$$

do tính chất tuần hoàn của W_8^{kn} ta có:

$$W_8^0 = W_8^0$$
 $W_8^{14} = W_8^{(6+8)} = W_8^6$ $W_8^{28} = W_8^{(4+3.8)} = W_8^4$ $W_8^7 = W_8^7$ $W_8^{21} = W_8^{(5+2.8)} = W_8^5$ $W_8^{35} = W_8^{(3+4.8)} = W_8^3$

Các tính chất của W_N^{kn}

$$\begin{split} W_8^{42} &= W_8^{(2+5.8)} = W_8^2 \\ W_8^{49} &= W_8^{(1+6.8)} = W_8^1 \\ X(7) &= x(0)W_8^0 + x(1)W_8^7 + x(2)W_8^6 + x(3)W_8^5 + x(4)W_8^4 + \\ &\quad + x(5)W_8^3 + x(6)W_8^2 + x(7)W_8^1 \end{split}$$

Đối xứng:

$$\begin{split} W_N^{kn} &= W_N^{(N-k''n'')} = \underbrace{W_N^N W_N^{-k''n''}}_{N} \\ W_N^{k'n'} &= W_N^{-k''n''} = \left(W_N^{k''n''}\right)_{.}^* \end{split}$$

 $Vi d\mu$ Cho DFT với N = 8. Hãy dùng tính chất đối xứng để tính X(7)

3.2 Cơ sở tính toán FFT

Các tính chất của W_N^{kn}

$$X(7) = x(0)W_8^0 + x(1)W_8^7 + x(2)W_8^6 + x(3)W_8^5 + x(4)W_8^4 + x(5)W_8^7 + x(6)W_8^2 + x(7)W_8^1$$

$$W_8^7 = W_8^{(8-1)} = W_8^{-1} = \left(W_8^1\right)^*$$

$$W_8^6 = W_8^{(8-2)} = W_8^{-2} = \left(W_8^2\right)^*$$

$$W_8^5 = W_8^{(8-3)} = W_8^{-3} = \left(W_8^3\right)^*$$

$$W_8^4 = W_8^{(8-4)} = W_8^{-4} = \left(W_8^4\right)^*$$

$$W_8^4 = -1$$

$$W_8^0 = 1$$

Từ đây ta có giá trị của X(7) như sau:

$$X(7) = x(0) + x(1)(W_8^1)^* + x(2)(W_8^2)^* + x(3)(W_8^3)^* + x(4) + x(5)W_8^3 + x(6)W_8^2 + x(7)W_8^1$$

Nhận xét:

- Tất cả các tính toán DFT của dãy chiều dài N đều dựa trên việc phân tích thành nhiều dãy có chiều dài nhỏ hơn, dựa trên tính chất tuần hoàn và tính chất đối xứng của W_N
- Giải thuật DFT tối ưu mỗi phép toán theo cách khác nhau:

Đối xứng	$W_N^{k+N/2} = -W_N^k$
Tuần hoàn	$W_N^{k+N} = W_N^k$

3.2 Cơ sở tính toán FFT

Chia nhỏ dãy x(n) thành các dãy có độ dài nhỏ hơn: N = L.M

- Nếu N là số nguyên tố thì có thể thêm các mẫu có giá trị bằng 0.
- **L**''u $x(n)_N$ trong mảng 2 chiều: $x(n)_N \to x(l,m)$
 - l là chỉ số hàng: $0 \le l \le (L-1)$
 - m là chỉ số cột: $0 \le m \le (M-1)$
- **\Limits** Lưu kết quả $X(k)_N$ trong mảng 2 chiều: $X(k)_N \to X(p,q)$
 - p là chỉ số hàng: $0 \le p \le (L-1)$
 - q là chỉ số cột: $0 \le q \le (M-1)$

n = l.M + m \longrightarrow $x(n)_N = x(l.M + m) = x(l,m)$

1	0	1	2		M-1
0	x(0)	x(1)	x(2)	:	x(M-1)
1	x(M)	x(M+1)	x(M+2)		x(2M-1)
2	x(2M)	x(2M+1)	x(2M+2)		x(3M-1)
L-1	x((L-1)M)	x((L-1)M+1)	x((L-1)M+2)		x(LM-1)

Ánh xạ theo hàng

3.2 Cơ sở tính toán FFT

n = m.L + l \longrightarrow $x(n)_N = x(m.L + l) = x(l,m)$

1	0	1	2	:	M-1
0	x(0)	x(L)	x(2L)		x((M-1)L)
1	x(1)	x(L+1)	X(2L+1)		x((M-1)L+1)
2	x(2)	x(L+2)	x(2L+2)		X((M-1)L+2)
L-1	x(L-1)	x(2L-1)	x(3L-1)		x(LM-1)

Ánh xạ theo cột

Thuật toán

Chia nhỏ quá trình tính toán thành 3 bước:

- Tính DFT với M điểm: $F(l,q) = \sum_{m=0}^{M-1} x(l,m) W_M^{qm} \quad 0 \le q \le M-1$ với mỗi hàng: l=0,1,2,...,(L-1)
- \rightarrow cần thực hiện $LM^2=NM$ phép nhân và LM(M-1)=N(M-1)phép cộng
- Tính mảng hai chiều mới: G(l,q) được xác định:

$$G(l,q) = F(l,q)W_N^{ql}$$
 $0 \le q \le M-1$
 $0 \le l \le L-1$

 \rightarrow cần thực hiện (L.M=N) phép nhân

3.2 Cơ sở tính toán FFT

■ Tính toán DFT L điểm

$$X(p,q) = \sum_{l=0}^{L-1} G(l,q) W_L^{pl} \quad 0 \le l \le L - 1$$

với mỗi cột: q=0,1,2,...,M-1 của mảng G(l,q)

- \rightarrow cần thực hiện $ML^2=NL$ phép nhân và ML(L-1)=N(L-1)phép cộng
- * Kết luận:

Qua 3 bước thì quá trình tính toán cần thực hiện:

- N(M+L+1) phép nhân số phức
- N(M+L-2) phép cộng số phức < Khi tính trực tiếp với N lớn

- ❖ Thuật toán
 - Lưu tín hiệu x(n) theo kiểu cột
 - Tính toán DFT M điểm lần lượt với từng hàng W_N^{ql}
 - Nhân mảng kết quả với hệ số pha:
 - Tính toán DFT L điểm lần lượt cho mỗi cột
 - Đọc kết quả theo kiểu hàng

Nội dung

- 3.1 Giới thiệu
- 3.2 Cơ sở tính toán FFT
- 3.3 FFT phân chia theo thời gian
- 3.4 FFT phân chia theo tần số
- 3.5 Giải thuật FFT composite N (đa hợp N)

3.3 FFT phân chia theo thời gian

• Chọn: M=N/2 và L=2—chia dãy x(n) thành 2 dãy nhỏ: g(n)=x(2n) và h(n)=x(2n+1)

Vậy:

$$X(k)_{N} = \sum_{n=0}^{N-1} x(n)_{N} W_{N}^{kn}$$

$$= \sum_{m=0}^{(N/2)-1} x(2m) W_{N}^{k,2m} + \sum_{m=0}^{(N/2)-1} x(2m+1) W_{N}^{k(2m+1)}$$

$$W_N^{k,2m} = e^{-j\frac{2\pi}{N}k.2m} = e^{-j\frac{2\pi}{N/2}km} = W_{N/2}^{km}$$

$$X(k) = \sum_{m=0}^{(N/2)-1} g(m)W_{N/2}^{km} + W_N^k \sum_{m=0}^{(N/2)-1} h(m)W_{N/2}^{km}$$

3.3 FFT phân chia theo thời gian

$$X(k) = G(k) + W_N^k H(k)$$
 $k = 0, 1, 2, ...(N-1)$

Do G(k) và H(k) tuần hoàn với chu kỳ (N/2) nên:

$$G(k) = G(k + N/2)$$
 và $H(k) = H(k + N/2)$

$$W_N^{k+\frac{N}{2}} = e^{-j\frac{2\pi}{N}(k+\frac{N}{2})} = e^{-j\frac{2\pi}{N}k} \cdot e^{-j\pi} = e^{-j\frac{2\pi}{N}k} (\cos\pi - j\sin\pi)$$
$$= -e^{-j\frac{2\pi}{N}k} = -W_N^k$$

Vậy:
$$X(k) = G(k) + W_N^k H(k)$$
 $k = 0, 1, 2, ... (\frac{N}{2} - 1)$

$$X(k + \frac{N}{2}) = G(k) - W_N^k H(k)$$
 $k = 0, 1, 2, ... (\frac{N}{2} - 1)$

$$X(k + \frac{N}{2}) = G(k) - W_N^k H(k)$$
 $k = 0, 1, 2, ...(\frac{N}{2} - 1)$

3.3 FFT phân chia theo thời gian

• Thực hiện phân chia theo cơ số 2 một lần nữa:

3.3 FFT phân chia theo thời gian

 Nếu N là hàm mũ của 2 thì lại chia tiếp, đến khi chỉ còn DFT hai điểm:

Nội dung

- 3.1 Giới thiệu
- 3.2 Cơ sở tính toán FFT
- 3.3 FFT phân chia theo thời gian

3.4 FFT phân chia theo tần số

3.5 Giải thuật FFT composite N (đa hợp N)

3.4 FFT phân chia theo tần số

Chọn: M=2 và L=N/2→chia dãy x(n) thành 2 dãy nhỏ:

$$X(k)_{N} = \sum_{n=0}^{N-1} x(n)_{N} W_{N}^{kn}$$

$$= \sum_{n=0}^{(N/2)-1} x(n) W_{N}^{kn} + \sum_{n=\frac{N}{2}}^{N-1} x(n) W_{N}^{kn} = \sum_{n=0}^{(N/2)-1} x(n) W_{N}^{kn} + W_{N}^{k\frac{N}{2}} \sum_{m=0}^{\frac{N}{2}-1} x(m + \frac{N}{2}) W_{N}^{km}$$

$$V_N^{k\frac{N}{2}} = (-1)^k$$

$$X(k) = \sum_{n=0}^{(N/2)-1} x(n)W_N^{kn} + (-1)^k \sum_{n=0}^{(N/2)-1} x(n + \frac{N}{2})W_N^{kn}$$

Tách X(k) thành các mẫu chẵn và các mẫu lẻ

$$X(2k) = \sum_{n=0}^{(N/2)-1} \left[x(n) + x(n + \frac{N}{2}) \right] W_{N/2}^{kn}$$

$$X(2k+1) = \sum_{n=0}^{(N/2)-1} \left\{ \left[x(n) - x(n + \frac{N}{2}) \right] W_N^n \right\} W_{N/2}^{kn}$$

Định nghĩa các dãy:

$$g_1(n) = x(n) + x(n + \frac{N}{2})$$

$$g_2(n) = \left[x(n) - x(n + \frac{N}{2})\right]W_N^n$$

$$X(2k) = \sum_{n=0}^{(N/2)-1} g_1(n) W_{N/2}^{kn}$$

$$X(2k+1) = \sum_{n=0}^{(N/2)-1} g_2(n)W_{N/2}^{kn}$$

3.4 FFT phân chia theo tần số

• Giống như FFT phân chia theo thời gian, thực hiện phân chia theo tần số cho đến khi chỉ còn 2 điểm FFT.

Nội dung

- 3.1 Giới thiệu
- 3.2 Cơ sở tính toán FFT
- 3.3 FFT phân chia theo thời gian
- 3.4 FFT phân chia theo tần số
- 3.5 Giải thuật FFT composite N (đa hợp N)

3.5 Giải thuật FFT composite N (đa hợp N)

$$\mathbf{x} = \begin{bmatrix} x(0) & x(N_2) & \cdots & x(N_2(N_1 - 1)) \\ x(1) & x(N_2 + 1) & \cdots & x(N_2(N_1 - 1) + 1) \\ \vdots & \vdots & & \vdots \\ x(N_2 - 1) & x(2N_2 - 1) & \cdots & x(N_1N_2 - 1) \end{bmatrix}$$

Ví dụ: Dãy x(n) dài N=15, tách thành N_1 =3 và N_2 =5. Có thể sắp xếp x(n) thành mảng 2 chiều như sau:

$$\mathbf{x} = \begin{bmatrix} x(0) & x(5) & x(10) \\ x(1) & x(6) & x(11) \\ x(2) & x(7) & x(12) \\ x(3) & x(8) & x(13) \\ x(4) & x(9) & x(14) \end{bmatrix}$$

Hoặc
$$\mathbf{x} = \begin{bmatrix} x(0) & x(3) & x(6) & x(9) & x(12) \\ x(1) & x(4) & x(7) & x(10) & x(13) \\ x(2) & x(5) & x(8) & x(11) & x(14) \end{bmatrix}$$

3.5 Giải thuật FFT composite N (đa hợp N)

