# Entregable 2

Contador aleatorio

Rafael Gómez Guillén alu0101462578@ull.edu.es 1º Grado Informática Universidad de La Laguna 13/5/2022

# Índice

- 1. Introducción y objetivos1
- 2. Tabla de transiciones1
- 3. Mapas de Karnaugh2
- 4. Circuito del contador implementado3
- 5. Código VHDL del contador3
- 6. Cronograma de simulación5

## 1.- Introducción y objetivos

El contador aleatorio asignado es el siguiente:

| Alumno                  | Secuencia          | Flip-flops |   |   | Cíclico |    |
|-------------------------|--------------------|------------|---|---|---------|----|
|                         | 4,5,0,6,7,9,3,2,1, | Т          | D | D | Т       | No |
| 86 Rafael Gómez Guillén | 8                  |            |   |   |         |    |

#### 2.- Tabla de transiciones

La tabla de transiciones del contador aleatorio asignado es:

|    | E              | stado   | actu           | al               | Estado siguiente |         |                       |         |                |                |                |                |
|----|----------------|---------|----------------|------------------|------------------|---------|-----------------------|---------|----------------|----------------|----------------|----------------|
|    | Q <sub>A</sub> | $Q_{B}$ | Q <sub>C</sub> | $Q_{\mathrm{D}}$ | $Q_A^+$          | $Q_B^+$ | $Q_{\mathcal{C}}^{+}$ | $Q_D^+$ | T <sub>A</sub> | D <sub>B</sub> | D <sub>C</sub> | T <sub>D</sub> |
| 0  | 0              | 0       | 0              | 0                | 0                | 1       | 1                     | 0       | 0              | 1              | 1              | 0              |
| 1  | 0              | 0       | 0              | 1                | 1                | 0       | 0                     | 0       | 1              | 0              | 0              | 1              |
| 2  | 0              | 0       | 1              | 0                | 0                | 0       | 0                     | 1       | 0              | 0              | 0              | 1              |
| 3  | 0              | 0       | 1              | 1                | 0                | 0       | 1                     | 0       | 0              | 0              | 1              | 1              |
| 4  | 0              | 1       | 0              | 0                | 0                | 1       | 0                     | 1       | 0              | 1              | 0              | 1              |
| 5  | 0              | 1       | 0              | 1                | 0                | 0       | 0                     | 0       | 0              | 0              | 0              | 1              |
| 6  | 0              | 1       | 1              | 0                | 0                | 1       | 1                     | 1       | 0              | 1              | 1              | 1              |
| 7  | 0              | 1       | 1              | 1                | 1                | 0       | 0                     | 1       | 1              | 0              | 0              | 0              |
| 8  | 1              | 0       | 0              | 0                | 1                | 0       | 0                     | 0       | 0              | 0              | 0              | 0              |
| 9  | 1              | 0       | 0              | 1                | 0                | 0       | 1                     | 1       | 1              | 0              | 1              | 0              |
| 10 | 1              | 0       | 1              | 0                | X                | X       | X                     | X       | X              | X              | X              | X              |
| 11 | 1              | 0       | 1              | 1                | X                | X       | X                     | X       | X              | X              | X              | X              |
| 12 | 1              | 1       | 0              | 0                | X                | X       | X                     | X       | X              | X              | X              | X              |
| 13 | 1              | 1       | 0              | 1                | X                | X       | X                     | X       | X              | X              | X              | X              |
| 14 | 1              | 1       | 1              | 0                | X                | X       | X                     | X       | X              | X              | X              | X              |
| 15 | 1              | 1       | 1              | 1                | X                | X       | X                     | X       | X              | X              | X              | X              |

#### 3.- Mapas de Karnaugh

Los mapas de Karnaugh de las entradas de los biestables son:

Ta = (not Qb and not Qc and Qd) or (Qb and Qc and Qd)

- Rojo = (not Qb and not Qc and Qd)
- Azul = (Qb and Qc and Qd)

| Qa,Qb/Qc,Qd | 00 | 01 | 11 | 10 |
|-------------|----|----|----|----|
| 00          | 0  | 1  | 0  | 0  |
| 01          | 0  | 0  | 1  | 0  |
| 11          | x  | x  | x  | x  |
| 10          | 0  | 1  | x  | х  |

Db = (not Qa and not Qc and not Qd) or (Qb and not Qd)

- Rojo = (not Qa and not Qc and not Qd)
- Azul = (Qb and not Qd)

| Qa,Qb/Qc,Qd | 00 | 01 | 11 | 10 |
|-------------|----|----|----|----|
| 00          | 1  | 0  | 0  | 0  |
| 01          | 1  | 0  | 0  | 1  |
| 11          | x  | x  | x  | х  |
| 10          | 0  | 0  | x  | x  |

Dc = (not Qa and not Qb and not Qc and not Qd) or (not Qb and Qc and Qd) or (Qb and Qc and not Qd) or (Qa and Qd)

Rojo = (not Qa and not Qb and not Qc and not Qd)

Azul = (Qb and Qc and not Qd)

Amarillo = (not Qb and Qc and Qd)

Verde = (Qa and Qd)

| Qa,Qb/Qc,Qd | 00 | 01 | 11 | 10 |
|-------------|----|----|----|----|
| 00          | 1  | 0  | 1  | 0  |
| 01          | 0  | 0  | 0  | 1  |
| 11          | x  | x  | x  | x  |
| 10          | 0  | 1  | x  | x  |

Td = (not Qa and not Qb and Qd) or (Qc and not Qd) or (Qb and not Qc)

Rojo = (Qc and not Qd)

Azul = (Qb and not Qc)

Verde = (not Qa and not Qb and Qd)

| Qa,Qb/Qc,Qa | 00 | 01 | 11 | 10 |
|-------------|----|----|----|----|
| 00          | 0  | 1  | 1  | 1  |
| 01          | 1  | 1  | 0  | 1  |
| 11          | x  | x  | х  | х  |
| 10          | 0  | 0  | x  | х  |

### 4.- Circuito del contador implementado

A continuación, se muestra el circuito del contador que se ha implementado:



#### 5.- Código VHDL del contador

En este apartado se muestra el código VHDL del contador implementado:

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity contador86 is
    Port ( ce : in STD LOGIC;
           reset : in STD LOGIC;
           count : out STD LOGIC VECTOR (3 downto 0);
           clk : in STD LOGIC);
end contador86;
architecture Behavioral of contador86 is
     COMPONENT ffT reset
     PORT (
          reset : IN STD LOGIC;
          clk: IN STD LOGIC;
          ce : IN STD LOGIC;
          t : IN STD LOGIC;
          q : OUT STD LOGIC
          );
     END COMPONENT;
     COMPONENT ffD preset
     PORT (
          clk: IN STD LOGIC;
          preset : IN STD LOGIC;
          ce : IN STD LOGIC;
          d : IN STD LOGIC;
          q : OUT STD LOGIC
          );
     END COMPONENT;
     COMPONENT ffD reset
     PORT (
          clk: IN STD LOGIC;
          reset : IN STD LOGIC;
          ce : IN STD LOGIC;
          d : IN STD LOGIC;
          q : OUT STD LOGIC
          );
     END COMPONENT;
     signal ta, db, dc, td : STD LOGIC;
     signal qa, qb, qc, qd : STD LOGIC;
begin
     unitA: ffT reset PORT MAP(
```

```
reset => reset,
           clk => clk,
           ce => ce
           t \Rightarrow ta,
           q \Rightarrow qa
     );
     unitB: ffD preset PORT MAP(
           clk => clk,
          preset => reset,
           ce => ce,
           d \Rightarrow db,
           q => qb
     );
     unitC: ffD reset PORT MAP(
          clk => clk,
           reset => reset,
          ce => ce,
           d \Rightarrow dc
           q \Rightarrow qc
     );
     unitD: ffT reset PORT MAP(
           reset => reset,
           clk => clk,
          ce => ce,
          t => td
           q \Rightarrow qd
     );
     ta <= (not qb and not qc and qd) or (qb and qc and
qd);
     db <= (not qa and not qc and not qd) or (qb and not
qd);
     dc <= (not qa and not qb and not qc and not qd) or
(not qb and qc and qd) or (qb and qc and not qd) or (qa and
     td <= (not qa and not qb and qd) or (qc and not qd) or
(qb and not qc);
     count <= qa & qb & qc & qd;
end Behavioral;
```

### 6.- Cronograma de simulación

A continuación, se muestra el cronograma de simulación del sistema implementado con las salidas del contador y del decodificador de 7 segmentos.



No se inserta ningún video, porque el profesor ya vio la implementación del contador.