

ZJU-UIUC Institute

Zhejiang University / University of Illinois at Urbana-Champaign Institute

ECE 470: Introduction to Robotics Lecture 16

Liangjing Yang

Assistant Professor, ZJU-UIUC Institute

liangjingyang@intl.zju.edu.cn

Wechat ID: Liangjing_Yang

Last Lecture

- We looked at
 - An overview of robot control
 - Feedback control
 - Joint control and the various components
 - 2nd Order Dynamics System (mechanical mass-spring-damper system)

Recall: Designing Control

- Design control system to achieve specific system behaviors
 - Steady state error
 - Rise time
 - Overshoot
 - Settling time
- Consider Stability

Recall: Designing Robot Control System

- The central question in designing a control system is the performance specification
 - System response
 - Stability analysis

Control of 2nd Order System

ECE 470: Introduction to Robotics

Second-Order System

From Ex 6.2-4, the systems are all **stable** where \underline{m} , \underline{b} and $\underline{k} > 0$ In free oscillation, the system has <u>natural response</u> In control applications, the system has <u>forced response</u>

Recall: Second-Order System

The Dynamics of the Mass-Spring-Damper System

$$m\ddot{x}(t) + b\dot{x}(t) + kx(t) = 0$$

can be described as an oscillatory 2nd order system

$$\ddot{x} + 2\zeta\omega_n\dot{x} + \omega_n^2x = 0$$

characterized by

Natural frequency:
$$\omega_n = \sqrt{\frac{K}{m}}$$

Damping Ratio: $\zeta = \frac{1}{2} \sqrt{\frac{b^2}{mk}}$

Recall: Second-Order System

Oscillatory 2nd order system with free response

Homogenous ODE
$$\ddot{x} + 2\zeta\omega_n\dot{x} + \omega_n^2x = 0$$

Free response

Overdamped $\zeta > 1$ Real and unequal roots: $s_1 = s_2$

Critically damped $\zeta = 1$ Real and Equal roots $s_1 \neq s_2$

Underdamped $0 < \zeta < 1$ Complex roots: $s_{1,2} = \lambda \pm \mu i$

No damping $\zeta=0$ Imaginary roots: $s_{1,2}=\pm \mu i$

Forced Second-Order System

Newton's 2nd Law

$$\sum F = m\ddot{x}$$

Net total Force = Drag force + Spring force + External Force

Free Body Diagram

Forced Second-Order System

Forced Oscillatory 2nd order system

Non-homogenous ODE
$$m\ddot{x}(t) + b\dot{x}(t) + kx(t) =$$

Forced response

Forced: Block Diagram

Block Diagram of the forced system

$$m\ddot{x}(t) + b\dot{x}(t) + kx(t) = f(t)$$

Block diagram in s-domain

Second order System can be represented as a <u>double zero-initial-value</u> <u>integrator</u> with negative feedback

$$ms^2X(s) + bsX(s) + kX(s) = F(s)$$

Recap Open-loop example:

Control the robot to achieve a desired state

Through preestablished model, generate the command that will achieve the desired state. This is known as an **open-loop system**.

Recap Closed-loop example:

Control the robot to maintain a desired state

Through sensors, we are able to **feedback** the measurement to produce the command that will minimize the error between desired and actual targeted profile. This is known as a **closed-loop system**.

In order to modify the system's behavior as desired, we can use closed-loop control, by using sensors, actuators and control system.

For example, if the position and velocity of the block can be measured, it is possible to apply a force f to the block as shown.

$$m\ddot{x} + b\dot{x} + kx = f(t)$$

Assume that we are able to sense \dot{x} and x and feedback to the controller. We can propose a control law that determine the force that the actuator should apply as a function of the feedback as shown

$$f(t) = -k_p x - k_v \dot{x}$$

$$m\ddot{x} + b\dot{x} + kx = -k_p x - k_v \dot{x},$$

Control Gains

Example 6.5: Closed loop gain

Recall example 6.3: The block mass is released from x=-1 at rest, m=1, b=1 and k=1

Determine the gains K_p and K_v such that the system is being critically damped with a closed loop stiffness of 16.0

Control Law:

Closed Loop System:

CL Stiffness, Damping:

Since
$$k' = \underline{\hspace{1cm}} = 16$$
, $k_p = \underline{\hspace{1cm}}$
For Critically damped response, $b' = \underline{\hspace{1cm}}$
Hence, $k_v = \underline{\hspace{1cm}}$

Control Gains:
$$[k_p, k_v] = [\underline{\hspace{1cm}}]$$

Response

Control-Law Partitioning

The control system consist of a Model-based portion and a Servo portion

Open loop equation: $m\ddot{x} + b\dot{x} + kx = f$

Model-based portion is a control law in the form

$$f = \alpha f' + \beta$$

Hence, the system equation is written as

$$m\ddot{x} + b\dot{x} + kx = \alpha f' + \beta$$

To make the system unit mass,

$$\alpha = m$$
, $\beta = b\dot{x} + kx$

Therefore, $\ddot{x} = f'$

Proceed with servo portion of control law

$$f' = -kpx - kv \dot{x}$$

Since the model-based portion make $\ddot{x} = f'$,

$$\ddot{x} + k_p x + k_v \, \dot{x} = 0$$

Example 6.6: Control-Law Partitioning

Recall example 6.3: The block mass is released from x=-1 at rest, m=1, b=1 and k=1 Using control law partitioning, determine the α , β and gains k_p and k_v such that the system is being critically damped with a closed loop stiffness of 16.0

$$\alpha = m = 1$$
$$\beta = \dot{x} + x$$

Effective system equation

$$\ddot{x} + kv \, \dot{x} + kpx = 0$$

Hence

$$k_p =$$

For Critically damped response,

$$k_v = \underline{\hspace{1cm}}$$

Trajectory-Following

- In Example 6.5, we establish a control law that restore the mass to equilibrium (with forced response) according to our specified response behavior
- This is a form of position-regulation where we maintain the block at the desired position (equilibrium; x=0)
- More generally, we can <u>specify desired motion trajectories</u> to be followed

Trajectory-Following

Trajectory realized by a controller that minimizes **servo error**, e = xd - x with a **servo-control law**, $f' = \ddot{x}_d + kv \ \dot{e} + kpe$

i.e.
$$\ddot{x} = \ddot{x}_d + kv \, \dot{e} + kpe$$
 or
$$\ddot{e} + kv \, \dot{e} + kpe = 0$$

Disturbance Rejection

There could be disturbance $f_{\rm dist}$ from the environment making the system equation to be

$$\ddot{e} + kv \, \dot{e} + kpe = f_{\text{dist}}$$

Disturbance Rejection

In case where $f_{\rm dist}$ is a constant, performing steady state analysis at rest, setting derivatives to be zero

$$\ddot{e} + kv \dot{e} + kpe = f_{\text{dist}}$$

Disturbance Rejection

In case where $f_{\rm dist}$ is a constant, performing steady state analysis at rest, setting derivatives to be zero

$$k_p e_{ss} = f_{\text{dist}} \rightarrow e_{ss} = f_{\text{dist}}/k_p$$

Setting large k_p may reduce but cannot eliminate e_{ss}

Proportional-Integral-Derivative Control

To rectify the steady state error, an integral term can be added

Control law: $f' = \ddot{x}_d + kv \dot{e} + kpe + k_i \int edt$

Error equation: $\ddot{e} + kv \dot{e} + kpe + k_i \int e \, dt = f_{dist}$

Take time derivative, $\ddot{e} + kv\ddot{e} + kp\dot{e} + k_ie = \dot{f}_{dist}$

For constant disturbance, $\dot{f}_{dist} = 0$

$$k_i e = 0$$
 so $e = 0$

Independent Joint Control

ECE 470 Introduction to Robotics

Independent Joint Control

- The 2nd order system dealt with so far has single DOF
- Ultimately, we are interested in multibody robotic systems that involve Multi-Input, Multi-Output (MIMO) control systems
- We shall first adopt an independent joint control approach with <u>N independent Single-Input Single-Output (SISO)</u> control systems

Joint Control in Robotic System

Integrated assembly

A demand voltage u controls the current i_m flowing into the **motor (Actuator)** which generates a torque τ_m that accelerates the rotational inertia J_m and is opposed by friction $B_m \omega_m$. The **encoder (Sensor)** measures rotational speed and angle

- How to model the resultant system as a 2nd order linear system?
 - Combining the Dynamics of the electromechanical system

• How model the resultant system as a 2nd order linear system?

Physics Law:

Lenz Force, $F = qV \times B$

Motor Torque, $\tau_m = k_m i_a$

Back emf, $v = k_e \dot{\theta}_m$

Model the Motor

Kirchoff Law:

$$v_A = l_A \dot{l}_A + r_A i_A + k_e \dot{\theta}_m$$

$$v_A - k_e \dot{\theta}_m = l_A \dot{l}_A + r_A i_A$$

Model the Motor

Motor Torque, $\tau_m = k_m i_A$ Back emf, $v = k_e \dot{\theta}_m$

Kirchoff Law:

$$v_A = l_A \dot{l_A} + r_A i_A + k_e \dot{\theta}_m$$

$$v_A - k_e \dot{\theta}_m = l_A \dot{l_A} + r_A i_A$$

$$au_m - au_L - b\dot{ heta} = I\ddot{ heta}$$
 $k_m i_A - b\dot{ heta}_m - I\ddot{ heta}_m = au_L$

Model the Motor-Gearing-Load

$$\tau_m = I_m \ddot{\theta}_m + bm\dot{\theta}_m + \left(\frac{1}{\eta}\right)(I\ddot{\theta} + b\dot{\theta})$$

$$\tau_m = \left((Im + \frac{I}{\eta^2}) \right) \ddot{\theta}_m + \left(b_m + \left(\frac{b}{\eta^2} \right) \right) \dot{\theta}_m$$

$$\tau = \underbrace{\left((\eta^2 I_m + I) \right)}_{\theta} \ddot{\theta} + \underbrace{\left(\eta^2 b_m + b \right)}_{\theta} \dot{\theta}$$
Effective damping Effective inertia

Gear Ratio, η :

$$\tau = \eta \tau_m$$
,

Robot Control Scheme

ECE 470 Introduction to Robotics

Motor

115

Joint Control for Robot

Example of industrial Robotic Arm: PUMA 560

Joint based vs. Cartesian based

Textbok Chapter 10.8 (Craig 3rd Ed, 2005)

Computation before the control loop

FIGURE 10.10: A joint-based control scheme with Cartesian-path input.

Computation within the control loop

FIGURE 10.11: The concept of a Cartesian-based control scheme.

Joint based vs. Cartesian based

Question: As an engineering designing the control scheme, which ones will you choose for the following robots?

Multi-joint Snake Robot

https://www.gizbot.com/news/indian-scientists-developing-snake-robot-027613.html

 $\begin{array}{c} X_d \longrightarrow \\ \dot{X}_d \longrightarrow \\ \ddot{X}_d \longrightarrow \\ \end{array} \begin{array}{c} \text{Trajectory} \\ \vdots \\ \ddot{\theta}_d \longrightarrow \\ \end{array} \begin{array}{c} \delta\theta \\ \longrightarrow \\ \vdots \\ \partial d \longrightarrow \\ \end{array} \begin{array}{c} \delta\theta \\ \longrightarrow \\ \end{array} \begin{array}{c} Arm \end{array} \begin{array}{c} \theta \\ \longrightarrow \\ \vdots \\ \longrightarrow \\ \end{array}$

FIGURE 10.10: A joint-based control scheme with Cartesian-path input.

FIGURE 10.11: The concept of a Cartesian-based control scheme.

Cartesian Control Scheme

Textbok Chapter 10.8 (Craig 3rd Ed, 2005)

Both are doing coordinate conversation. Which is doing in force domain?

Coordinate Conversion in Spatial Domain

FIGURE 10.12: The inverse-Jacobian Cartesian-control scheme.

Coordinate Conversion in Force Domain

FIGURE 10.13: The transpose-Jacobian Cartesian-control scheme.