

_8(1) 排放21.8 (gK性) YY71101, D≤t1< ··· < tr < t < t+8, 单调上升非负电報 O≤ k1 ≤ ··· ≤ kr ≤ k.
有 P(X++8=l X+=k, X+=k,) X+r=kr)
$=P(X_{t+s}=L \mid X_t=k)=P(X_s=L-k)$
が明: P(X++5= L X+= k, X+= k, w, X+= kr)
= P(Xt+5=l, Xt=k, Xt=k,, Xtr=kr)
P(Xt=k, Xt1=k1, w, Xtr=kr) 利用加速量性质
1 - P(Xt=k, Xtr=ky,, Xtr=k1) = P(Xt=k, Xt-tr=k-ky, Xtr-tr-k-ky, Xtr-tr-k-ky)
= P(X+=k) P(X+=kyomo X+=k) X+=k) = P(X+=k) P(X+-X+v=k-kyo X+v-X+v=ky-ky-1=ky-ky-10 mo
$X_{tr}-X_{t1}=R_{r}-R_{1}$
= P(Xt=k) P(Xt-ty=k-ky) P(Xty-ty=ky-ky-1) ··· P(Xty-ty=ky-k1)
同程有:分子=P(Xt+s=L, Xt=k,, Xtr=kr)
= P(Xz+s=l, Xz=k)P(Xt-tr=k-kr) P(Xz-t1=k-k1)
因此分數 = $P(X_{t+6}=L \mid X_{t=k}) = \frac{P(X_{t+8}=kL_0 \times t=k)}{P(X_{t=k})} = P(X_{t+8}-X_{t=2}-k) = P(X_{s=2}-k)$
<u>决上第一个定理的证明</u> 。
反理: 计数过程 X= {X4 +70Y ~ PP(X) ⇔ X 满足,X0=0,且为 独立平稳情量。具有普遍性,简单性。
证明: (冬)即证明 Xt~P(xt) 润涨分布。记录(七)= P(Xt=k)。
$P_0(t+h)=P(X_{t+h}=0)=P(X_{t}=0, X_{t+h}-X_{t}=0)$ 4位性 $P(X_{t}=0)P(X_{t+h}-X_{t}=0)$
= Po(t)[1->h+o(h)]
Pr(t+h) = P(X+h=R) = P(X+=R, X+h-X+=0) + P(X+=R-1 > X++h-X+=1) + in + P(X+=0, X++h-X+=R)
= Pr(t) (1->h+och) + Pr-1(t) (>h+o(h)) + o(h)[Pr->1+)++ Po(t)]
故令的→0有: 你(も)=-1~?(も)+入你(し),也值条件的(0)=0(∀k)
\Rightarrow $\frac{1}{k}(t) = \frac{1}{k}(x_t = k) = \frac{k(x_t)^k}{k!}e^{-\lambda t}$
(辛) X为 PP(A),当锅满是如锅件.

T-SR 15.4

分数: xke-xt.15...Y. k! ext = k! 15...Y 1

GS 扫描全能王 644 3亿人都在用的扫描App

定理 2.12(2)条处 XS1 . XS2-XS1 XSn-XSn-1 Strt , P(A)(SN-S) Ysi, , Ysn-Ysn-引放了~PP(),, 引作了~PP(),则 引生作了~PP()+入り → X51+ T51, (X5>+ T5) - (X5) + T51), ... , ..., 也为民户, ~ P(人)+入)(SR-SR-1) Week11 作业 ⇒ Rt)~PP(>1+A~) 1. Komolgrov 后退方程 S= {1,24, Q= (-x x) Ph(t), Prolt) = [-x x] [Pilt) Prolt)] = [-x x] [Pilt) Prolt)] 27=-(x+/n), 1/= (x/-//) $\Rightarrow c_1\begin{pmatrix} 1\\1 \end{pmatrix} + c_1e^{-1\lambda+\mu} + \begin{pmatrix} \lambda\\-\mu \end{pmatrix} + p_1(0) = 1, p_1(0) = 0$ 有 別(も)= M + A e- (ハ+ル)も $P_{21}(t) = \frac{M}{\lambda + \mu} - \frac{M}{\lambda + \mu} e^{-(\lambda + \mu)t}$ 因程,有= Porto = Daym - Dayme e-(A+/M)t Proleti = xxm + xm e-1xxme $= (P(t)Q)_{ij}$ $= \lim_{\Delta t \to 0^+} \frac{P_{ij}(t-\Delta t) - P_{ij}(t)}{-\Delta t} = \lim_{\Delta t \to 0^+} \frac{\sum_{k \in S} P_{ij}(t-\Delta t)(S_{ij} - P_{ij}(\Delta t))}{-\Delta t}$ 由将性质。P(t-at)P(at)=P(t) $\frac{2!}{2!}\frac{P(t-\Delta t)P(\Delta t)=\lim_{\Delta t \to 0^{+}}P(t-\Delta t)\cdot I}{\Delta t \to 0^{+}}\frac{\lim_{\Delta t \to 0^{+}}P(t-\Delta t)=P(t)}{\Delta t \to 0^{+}}$ $\frac{2!}{2!}\frac{P(t-\Delta t)P(\Delta t)=\lim_{\Delta t \to 0^{+}}P(t-\Delta t)=P(t)}{\Delta t \to 0^{+}}$ $\frac{2!}{2!}\frac{P(t-\Delta t)P(\Delta t)=P(t)}{\Delta t \to 0^{+}}$ $\frac{2!}{2!}\frac{P(t-\Delta t)P(\Delta t)=P(t-\Delta t)\cdot I}{\Delta t \to 0^{+}}$ $\frac{2!}{2!}\frac{P(t-\Delta t)P(\Delta t)=P(t-\Delta t)\cdot I}{\Delta t \to 0^{+}}$

	D. H. Lake - Pailtel		5 /Pab	1-st) - Siz) Pe	Pate	No.	
市 [ij(t) = lim	Pij(t+ot) - Pij(t) Ot Gik Prj(t) t)	= lim	RES	et	- =	Des giktri(s)	
Δt-70	9-12-11	2000		•			
RES	Jik Prile	+				!	
=== P1+0 = QP1	b)						
			,				
						•	

