(Discrete Mathematics for Programming)

Phaphontee Yamchote

Contents

Ι	Basic Programming by Python	1
1	Fundamental of Problem Solving	3
	1.1 Problem Solving	3
	1.2	3
	1.2.1 $(decomposition) \dots \dots \dots \dots$	4
	1.2.2 (pattern recognition)	4
	1.2.3 (abstraction)	4
	1.2.4 (algorithm design) $\dots \dots \dots \dots$	4
II	Basic Mathematical Reasoning and Proving	7
3	Mathematics as a Language	9
4	Basic Objects in Mathematics	11
5	Logic, Reasoning and Proof	13
	5.1	13
	5.2	13
	5.3	13
6	Recursion and Mathematical Induction	15

ii CONTENTS

Η	ΙΙ	Discrete Mathematics with Programming	17
7	Set	Theory: with more implementation	19
8	Nui	mber Theory	21
	8.1		21
	8.2	: Division Algorithm	23
	8.3	Theory Exercise	25
	8.4	programming:	26
		8.4.1	27
		8.4.2	27
		8.4.3	28
		8.4.4	29
	8.5	programming:	30
		8.5.1	30
		$n \dots \dots$	31
		8.5.3	32
	8.6	programming:	33
		8.6.1	33
		8.6.2	35
	8.7	programming:	36
	8.8	Programming Exercise	37
9	Con	nbinations	39
	9.1		39
		9.1.1	39
		9.1.2	40
	9.2		42
		9.2.1	42
		9.2.2	44
		9.2.3	46
	9.3		46

CC	NTI	ENTS																						iii
	9.4																							48
		9.4.1																						48
		9.4.2																						48
		9.4.3																						49
	9.5		-																					49
	9.6	Progr	ammii	ng ab	out (Com	bin	ato	ric	es														50
10	Rec	currenc	ce Re	latio	n																			51
11	Rec	cursive	Algo	rithr	n - a	n a	ppi	roa	ch	ı t	0	fu	nc	tic	ona	al j	pr	og	ra	m	m	niı	ng	53
12	Gra	ph Th	eory																					55

iv CONTENTS

Part I

Basic Programming by Python

Fundamental of Problem Solving

```
\begin{array}{c} \text{(problem} \\ \text{solving)} \\ \text{(computational problem)} \end{array}
```

1.1 Problem Solving

```
4
               CHAPTER 1. FUNDAMENTAL OF PROBLEM SOLVING
         "
                                               (input)
                     (output)
       (problem solving)
(problem statement)
   (computational problem)
                      (calculation)
1.2
                                             4
             (decomposition)
  1.
  2.
             (pattern recognition)
  3.
              (abstraction)
               (algorithm design)
  4.
```

1.2.

1.2.1 (decomposition)

,

 $x + y + 12z = 30 \qquad x, y \qquad z$ (x, y, z) $30 \qquad 0 \quad 30 \qquad 31 \times 31 \times 31 = 29791$ z $1 \qquad \qquad z$ $1 \qquad \qquad z \qquad \qquad z \qquad z = 0, 1, 2$ $(\qquad 30) \qquad \qquad 3$

- 1. z = 0: x + y = 30
- 2. z = 1: x + y = 18
- 3. z = 2: x + y = 6

1 1 2

1.2.2 (pattern recognition)

- 1.2.3 (abstraction)
- 1.2.4 (algorithm design)

Basic Python Syntax

Part II

Basic Mathematical Reasoning and Proving

Mathematics as a Language

() 4 (1) $(2) \qquad (3) \qquad (4)$ $(3) \qquad (4) \qquad \qquad "a$ $a \in S \qquad \qquad S \qquad a$ $x \in S$ X

3.0.1:				
A B	A	B	$A \subseteq B$	$x x \in A$
$x \in B$				

 $(1) a \in S \qquad (2) S \subseteq X \qquad \qquad 3.0.1$

 \bullet S A X B

• $a \in S$ $x \in A$

u "

1

"x" (P(x)) x (

1

2 " "

Basic Objects in Mathematics

Logic, Reasoning and Proof

5.1

¹

5.2

5.3

Recursion and Mathematical Induction

Part III

Discrete Mathematics with Programming

Set Theory: with more implementation

Number Theory

THEORY PART

Fundamental Theorem of Arithmetic

```
(cryptography)

1 (
```

Principle of Mathematics Discrete Mathemat-

8.1

8.1.1: Divisibility					
$egin{array}{ccc} m & n & & & & & & & & & & & & & & & & &$	m	n	k	m = nk	

$$5|10 \qquad \qquad 2 \qquad \qquad 10 \qquad 5 \qquad \qquad k=2$$

$$10=5\times 2$$

Example 8.1.2. 25|300

Solution. 25 300 300/25 = 12 25

8.1.

.
$$300 = 25 \times 12$$
 $25|300 \square$

Example 8.1.3. $25 \nmid 310$

Solution. 25 310 310/25 = 12.4 ()

.
$$n \qquad 310 = 25n \; (\qquad)$$
$$310 = 25 \times 12 + 10$$

$$25n = 25 \times 12 + 10$$
$$25n - 25 \times 12 = 10$$
$$25(n - 12) = 10$$

$$x 0 \le 25x < 25 x = 0$$

$$0 \le 10 = 25(n - 12) < 25 n - 12 = 0$$

$$10 = 25(n - 12) = 25 \times 0 = 0$$

$$n 310 = 25n \Box$$
(

Exercise 8.1.4.

)

Proof Part)

$\forall x, xRx$		
$\forall x \forall y \forall z, xRy \land yRz \rightarrow xRz$		
$\forall x \forall y, xRy \to yRx$		
$\forall x \forall y, xRy \rightarrow \neg yRx$		
$\forall x \forall y, xRy \land yRx \to x = y$		

Solution. ...

8.1.5:

m, n, p

- 1. 1|m m|m
- $2. \quad m \neq 0 \quad m|0$
- $3. \quad m|n \quad m|np$
- 4. $p \neq 0$ m|n pm|pn
- 5. m|n m|p m|(n+p)
- 6. m|n m|p m|(xn+yp) x, y
- 7. $m|n |m| \le |n|$

: 2

1. 1 1

 $1 \cdot n = n$ n

0 0 0

 $\left(\frac{n}{m}\right)$

 $\frac{np}{m}$

(divisibility is preserved under numerator multiplication)

- 4. $\frac{n}{m} = \frac{pn}{nm}$
- $5. \qquad \frac{n+p}{m} = \frac{n}{m} + \frac{p}{m}$
- 6. xn + yp (linear combination) 3 5

8.2 : Division Algorithm

8.2.1: $m \quad n \qquad n \neq 0 \qquad q \quad r \qquad m = nq + r$ $0 \leq r < |n|$

8.2.2: Division Algorithm $m \quad n \qquad n \neq 0 \quad q \quad r \qquad 8.2.1 \qquad \text{(quotient)}$ (remainder)

PROOF PART

Exercise 8.1.4

. content... \Box

8.1.5

. content... \square

8.2.1

.
$$q r m \ge 0 n > 0$$
 (?: 1)

$$m = 0 (m) \qquad n \qquad 0 = n \times 0 + 0$$

$$m \qquad m$$

$$m>0 \qquad m \qquad n>0 \qquad q \qquad r$$

$$0 \leq r < n \qquad m = nq+r \qquad m+1 \qquad \qquad 2^{-3}$$

(1)
$$0 \le r \le n-2$$
 (2) $r=n-1$

1)
$$0 \le r \le n-2$$
: $m+1 = nq+r+1 = nq+(r+1)$

$$0 < 0 + 1 \le r + 1 \le n - 2 + 1 = n - 1 \qquad \qquad q \qquad \qquad r + 1$$

2)
$$r = n-1$$
: $m+1 = nq+r+1 = nq+n-1+1 = nq+n = n(q+1)+0$
 $q+1$ 0

$$m$$
 n q r $m = nq + r$

 $0 \le r < n$

$$q' \quad r' \quad m = nq' + r' \quad 0 \le r' < n$$

$$nq + r = nq' + r' \quad n(q - q') = r' - r \quad r, r' \in \{0, 1, \dots, n - 1\}$$

$$0 \le |r' - r| < n \quad 0 \le n|q' - q| < n \quad |q' - q| = 0 \quad q = q'$$

$$r' - r = n(q - q') = n \times 0 = 0 \quad r = r' \square$$

 $[\]frac{}{3}$ 1 m m+1 n-1 n

8.3 Theory Exercise

1. (8.2.1)
$$m \ge 0$$
 $n > 0$ $m = nq + r$ $0 \le r < |n|$ q' r' $0 \le r' < |n|$ $-m = nq' + r'$ ($m = (-n)q' + r'$ $-m = (-n)q' + r'$)

2. 8.2.1

PROGRAMMING PART

8.4 programming:

Not complete divisibility checking

```
# after exiting from while-loop, k should be an integer such

→ that m = nk,
# i.e. n is a factor of m
```

$$m \nmid n \iff k \in \mathbb{Z} \qquad m \neq nk$$

$$k \qquad \qquad k$$

$$-10 \qquad 5 \qquad \text{loop}$$

$$k = 1 \qquad 1 \qquad \qquad k$$

$$m$$
 n $m|n$ $|n| \le |m|$ m $|k| \le |m|$

$$k \in \{-m, -m+1, \dots, -1, 0, 1, \dots, m-1, m\}$$

$$m|n \iff k \in \{-m, -m+1, \dots, m-1, m\}$$
 $m = nk$

8.4.1

Check divisibility

k

```
def isDivisible_ver1(m,n):
    qoutList = range(-m,m+1)
    for k in qoutList:
        if m = n*k:
            return True
```

return False

isDivisible True

False

8.4.2

$$m = nk$$

$$(-m) = nk \iff m = n(-k)$$

$$m = (-n)k \iff m = n(-k)$$

$$(-m) = (-n)k \iff m = nk$$

$$k$$

 $k \in \{1, 2, \dots, m - 1, m\}$

m

n

Check divisibility by positive

```
def isDivisible_ver2(m,n):
    if m < 0:
        m = -m
    if n < 0:
        n = -n
    qoutList = range(1,m+1)</pre>
```

```
for k in qoutList:
    if m = n*k:
        return True
return False
```

isDivisible_ver2

8.4.3

Check divisibility addition version

```
def isDivisible_ver3(m,n):
    product = 0
    while product < m:
        product += n
    if product == m:
        return True
    else:
        return False</pre>
```

Check divisibility subtraction version

n

```
def isDivisible_ver4(m,n):
    while m >= n:
        m -= n
    if m == 0:
        return True
    else:
```

return False

8.4.4

$$\text{isDivisible_ver4} \qquad m \qquad n \qquad 1 \\ m-n \qquad n$$

$$\text{isDivisible_recur(m,n) = isDivisible_recur(m-n,n)}$$

$$\text{while-loop isDivisible_ver4} \qquad m \\ n \qquad 0 \qquad \qquad 0 \\ 0 \\ \text{isDivisible_recur(m,n) = } \begin{cases} \text{True} & \text{if } m=0 \\ \text{False} & \text{if } 0 < m < n \end{cases}$$

Check divisibility recursion

```
def isDivisible_recur(m,n):
    if m < n:
        if m == 0:
            return True
        else:
            return False
    else:
        return isDivisible_recur(m-n,n)</pre>
```

35

8.5 programming:

8.5.1

Check if it is prime

```
# assume we have a list `factorList` which is a list of all

→ factors of n
factorList == [1,n]
```

True
$$n$$
 2 1 n n False

```
input n store factors List of all factors only 1,n? Prime or not
```

Figure 8.4: text

```
n (Python) 1 n
```

Create factorList

```
factorList = []
for m in range(1,n+1):
    if isDivisible(n,m):
        factorList.append(m)
```

n

Check prime

```
def isPrime(n):
    factorList = []
    for m in range(1,n+1):
        if isDivisible(n,m):
            factorList.append(m)

    prime = (factorList == [1,n])
    return prime
```

```
1 \quad n \qquad \qquad n
```

memory

built-in data

 $\begin{array}{ccc} \text{structure} & \text{Python} & \text{implement} \\ & & \text{array} \\ \text{implement} & & \text{Python} \end{array}$

8.5.2 n

Check prime version2

isPrime_ver3 while-loop

8.5.3

isPrime
$$O(n)$$
 isPrime_ver2 $O(n)$ n 2 $n-1$

n isPrime ver2

Check prime version2.1

39

8.6 programming:

Fundamental Theorem of Arithmetic

8.6.1

$$n \qquad p \\ p \\ k \qquad n = p^k \cdot A \qquad p \nmid A$$

Figure 8.6: ...

 $n p_1, \dots, p_n$ n 8.7

Figure 8.7: ...

for-loop

Figure 8.8: ...

n 6

Figure 8.9: p

"
$$(n\%p == 0)$$
"
(counter += 1)
 $n = n//p$

factorization of given prime p

```
def countFactor(n,p):
    count = 0
    while n%p == 0:
```

```
count += 1
n = n//p
return count
```

Prime Factorization

```
def primeFactorize(n):
    primeList = findAllPrimeFactor(n)
    resultDict = {}
    for p in primeList:
        resultDict[p] = countFactor(n,p)
    return resultDict
```

8.6.2

$$n \qquad n \qquad (n/p)$$

$$p \qquad (p_1)$$

$$n/p_1 \qquad 1 \qquad (p_1)$$

$$n = \underbrace{p_1^{a_1}p_2^{a_2}\cdots p_n^{a_n}}_{\text{algor(n)}} = p_1 \times \underbrace{(p_1^{a_1-1}p_2^{a_2}\cdots p_n^{a_n})}_{\text{algor(n/p_1)}} = p_1 \times (n/p_1)$$

$$\underbrace{\text{dictionary}}_{\text{dictionary}} \qquad n/p_1 \qquad p_1 \qquad 1$$

$$\underbrace{\text{dict[key]}}_{\text{l}} = \underbrace{\text{dict.get(key,0)}}_{\text{l}} + 1 \left(\begin{array}{ccc} \text{key} & 0 & 1 & 1 & \text{key} \\ 1 & \text{key} & 0 & 1 & 1 & \text{key} \\ \end{array} \right)$$

43

6 minPrimeFactor

8.7 programming:

8.8 Programming Exercise

```
1.
     operation (
                             )
                                    1
2.
        isDivisible_recur
                                        8.4.4
                                   isDivisible_ver2
3.
4.
                                                  O(n^{\frac{3}{2}})
5.
                                      1 \quad n
                  n
                 O(n^2)
                                                   ver2 print
6.
                                             n
                  n
7.
                           ( countFactor)
                   n
8.
                  n
                                           n
9.
                        dictionary
                                                      n! (caution:
                 n
                    primeFactorize
                                         8.6
                                                           n
       n!
                                                    0
10.
                     9
                                                                 n!
                                     n
```

Combinations

THEORY PART

9.1

9.1.1

Example 9.1.1.

33

40

Solution. ...

Example 9.1.2.
$$A = \{a, b, c, d\}$$
 $B = \{\alpha, \beta, \gamma\}$ A

Solution. ...

9.1.2

$$A \cap B = \emptyset$$
$$|A \cup B| = |A| + |B|$$

9.1.

2

$$m \qquad r_1 \qquad r_2$$

$$\dots \qquad m \qquad r_m \qquad r_1 + r_2 + \dots + r_m$$

$$A_1, \dots, A_m \qquad A_i \cap A_j = \emptyset$$

$$i \neq j \qquad |A_1 \cup \dots \cup A_m| = |A_1| + \dots + |A_m|$$

Example 9.1.3. $|\{(x,y) \in \mathbb{Z} \times \mathbb{Z} : x^2 + y^2 \le 4\}|$

Solution. ...

9.1.2

q

Example 9.1.4.

33

40

Solution. ...

Example 9.1.5.
$$A = \{a, b, c, d\}$$
 $B = \{\alpha, \beta, \gamma\}$ 2 A

Solution. ...

$$A \quad B \qquad A \times B = \{(a,b) \colon a \in A, b \in B\}$$
$$|A \times B| = |A| \times |B|$$

Example 9.1.6. 1000 10000

Solution. ...

9.1.

$$m r_1 r_2$$

$$\dots m r_m$$

$$r_1 \times r_2 \times \dots \times r_m$$

$$A_1, \dots, A_m$$

$$|A_1 \times \dots \times A_m| = |A_1| \times \dots \times |A_m|$$

Example 9.1.7. 1000 10000

Solution. ...

Example 9.1.8. $n 2^n$

Solution. ...

Solution. ...

Solution. ...

Example 9.1.11.
$$441,000 (= 2^3 \times 3^2 \times 5^3 \times 7^2)$$

Solution. ...

Example 9.1.12. 441,000 2 ($1 \times 441,000$ 441×1000)

Solution. ...

Example 9.1.13. $X = \{1, 2, 3, ..., 10\}$ $S = \{(a, b, c) : a, b, c \in X, a < b \ a < c\}$

Solution. ...

9.2

9.2.1

$$A = \{a_1, a_2, \dots, a_n\}$$
 n $0 \le r \le n$ r A $P(n, r)$

Example 9.2.1. $A = \{a, b, c, d\}$ 3 A

Solution. ... n p(n,r)

r n

9.2.

$$P(n,r) \{(x_1, x_2, \dots, x_r) | x_i \in \{a_1, \dots, a_n\} \quad x_i \neq x_j \quad i \neq j\}$$

$$P(n,r) = \frac{n!}{(n-r)!}$$

Note

$$P(n,0) = 1$$
 $P(n,1) = n$ $P(n,n) = n!$

Example 9.2.2. 4 $\{a, b, c, d, e\}$

Solution. ...

Example 9.2.3. 6

Solution. ...

Example 9.2.4. 3 (1)

Solution. ...

Example 9.2.5.

7

0 5 6

Solution. ...

Example 9.2.6.

$$P(n,n) = P(n,k) \times P(n-k,n-k)$$

Solution. ...

Note

9.2.6 combinatorial proof

S

double counting

Example 9.2.7.

20000 70000

Solution. ...

Example 9.2.8.

 $\{1, 3, 5, 7\}$

1. |S|

2. $\sum_{n \in S} n$

Solution. ...

9.2.

9.2.2

• (

•

Example 9.2.9. $4 A = \{a, b, c, d\} 4! = 24$

Solution. ...

n

Example 9.2.10. 5 3

1.

 $2. B_1 G_1$

3.

Solution. ...

Example 9.2.11.

n

1.

2.

Solution. ...

Example 9.2.12.

9.3.1

 $3 \qquad \qquad A = \{a,b,c,d\}$ ()

P(4,3) = 24

Solution. ...

n

r Q(n,r)

 $Q(n,r) = \frac{P(n,r)}{r}$

9.3.

$$n \qquad k \qquad n_1$$

$$n_2 \quad \dots \quad k \quad n_k \qquad n_1 + n_2 + \dots + n_k = n$$

$$n$$

$$P(n; n_1, n_2, \dots, n_k) =$$

Example 9.2.13.

MISSISSIPPI

Solution. ...

9.3

$$A = \{a_1, a_2, \dots, a_n\}$$
 n $0 \le r \le n$ r A $(r\text{-combination})$ r A $C(n,r)$ $\binom{n}{r}$

Example 9.3.1. $A = \{a, b, c, d\}$

A

Solution. ...

$$C(n,r) \qquad r \qquad n$$

$$C(n,r) = \{\{x_1, x_2, \dots, x_r\} | x_i \in \{a_1, \dots, a_n\} \quad x_i \neq x_j \quad i \neq j\}$$

$$C(n,r) =$$

1

Example 9.3.2.

9 1

Solution. ...

Example 9.3.3.

MISSISSIPPI (

Solution. ...

Example 9.3.4.

7

2

Solution. ...

Example 9.3.5.

6 10

10 2

Solution. ...

Example 9.3.6.

$$\binom{n}{r} = \binom{n}{n-r}$$

Solution. ...

Example 9.3.7.

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$

9.4.

Solution. ...

9.4

$$\binom{n}{r} \quad C(n,r) \qquad \qquad r \qquad \qquad n$$

$$r < 0 \qquad r > n$$

$$\binom{n}{r} = \begin{cases} \frac{n!}{r!(n-r)!} & 0 \le r \le n \\ 0 & r > n \qquad r < 0 \end{cases}$$

$$\binom{n}{r}$$

$$\binom{n}{r}$$

$$\binom{n}{r}$$
(binomial coefficient)

9.4.1

$$n$$

$$(x+y)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}y^n$$

Example 9.4.1. (easy exercise)

1.
$$x^2y^6$$
 $(2x+y^2)^5$

$$2. \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n}$$

Solution. ...

9.4.2

Example 9.4.2.

- 1. $\sum_{r=0}^{n} (-1)^r \binom{n}{r} = 0$
- 2. $\binom{n}{0} + \binom{n}{2} \cdots + \binom{n}{2k} + \cdots = \binom{n}{1} + \binom{n}{3} \cdots + \binom{n}{2k+1} + \cdots = 2^{n-1}$
- 3. $\sum_{r=1}^{n} r \binom{n}{r} = n \cdot 2^{n-1}$
- 4. *** $\sum_{i=0}^{r} {m \choose i} {n \choose r-i} = {m+n \choose r}$

Solution. ...

9.4.3

Example 9.4.3. 1.

1

(0,0) (11,5)

- 2. 1
- (4, 3)

3.

(2,3) (3,3)

Solution. ...

9.5

PROGRAMMING PART

9.6 Programming about Combinatorics

Recurrence Relation

Recursive Algorithm - an approach to functional programming

64 <i>CHAPTER 11.</i>	RECURSIVE ALGOR	RITHM - AN APPROA	ACH TO FUNCTIO	NAL PROGR

Graph Theory

Index

additive rule, 46	,55
binomial coefficient, 57	, 50 , 55
combination, 55	, 57
multiplicative rule, 47	, 47 , 46
permutation, 50	, 50