基底に関する座標ベクトル

V を線形空間とし、 $\mathcal{V} = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n \}$ をその基底とする V の任意のベクトル \boldsymbol{v} は、

 $oldsymbol{v} = \sum_{i=1}^n x_i oldsymbol{v}_i$

と一意的に書ける

ここで、Φν を座標写像とすると、その定義から、

$$\Phi_{\mathcal{V}}^{-1}(oldsymbol{v}) = egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix} \in \mathbb{R}^n$$

このベクトルを $\boldsymbol{\mathcal{V}}$ に関する $\boldsymbol{\mathcal{V}}$ の座標ベクトルあるいは成分表示と呼び、

$$oldsymbol{v} = egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}_{\mathcal{N}}$$

と書くことにする

一般の基底に関する表現行列

V, W をそれぞれ次元が n, m の線形空間とし、f を V から W への線形写像とする

また、V. W をそれぞれ V. W の基底とする

座標写像が線形同型写像であることは、任意の部分空間が数ベクトル空間 と同型であることを意味していた ref: 行列と行列式の基

ref: 行列と行列式の基

ref: 図で整理!例題で

納得!線形空間入門 p95

礎 p10

礎 p104~106

ref: 図で整理!例題で

納得!線形空間入門 p95

~96

よって、V から W への線形写像 f は、数ベクトル空間との線形同型写像 (座標写像) $\Phi_{\mathcal{V}}$, $\Phi_{\mathcal{W}}$ を合成すれば、

$$f' = \Phi_{\mathcal{W}}^{-1} \circ f \circ \Phi_{\mathcal{V}} : \mathbb{R}^n \to \mathbb{R}^m$$

として、数ベクトル空間の間の写像と考えることができる

この合成を図で整理して、次のように表す

$$\begin{array}{ccc}
V & \xrightarrow{f} & W \\
 & & & & \downarrow \\
 & & & & \downarrow \\
 & & & & \downarrow \\
 & & \downarrow$$

このような図を図式という

下辺の矢印は、合成写像

$$\Phi_{\mathcal{W}}^{-1} \circ f \circ \Phi_{\mathcal{V}} : \mathbb{R}^n \to \mathbb{R}^m$$

を表していて、この写像は \mathbb{R}^n から \mathbb{R}^m への線形写像である

左下の \mathbb{R}^n から右上の W への 2 通りの合成写像が一致するという意味で、この図式は可換であるという

数ベクトル空間の間の写像は、行列が定める線形写像であることから、この写像 f は $m \times n$ 型行列 A により表現される

$$\begin{array}{ccc}
V & \xrightarrow{f} & W \\
& & & & \downarrow \\
& & & & \downarrow \\
\mathbb{R}^n & \xrightarrow{A} & \mathbb{R}^m
\end{array}$$

座標ベクトルの記法を用いると、写像 f は次で与えられる

$$f: egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}_{\mathcal{V}} \mapsto egin{pmatrix} A egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}_{\mathcal{W}}$$

このように、座標写像を用いることで、V から W への線形写像 f から、 $m \times n$ 型行列が得られる

この行列 A を、基底 V, W に関する f の表現行列という

つまり、

基底 \mathcal{V} , \mathcal{W} を固定して考えるときは、f を A と同一視できる

ということになり、このとき、

表現行列は線形写像の「成分表示」

と解釈できる

表現行列の構成

数ベクトル空間の間の線形写像を定める行列は、各基本ベクトル $m{e}_j$ の $m{f}$ による像

$$f(m{e}_j) = m{a}_j = egin{pmatrix} a_{1j} \ a_{2j} \ dots \ a_{mj} \end{pmatrix} \quad (1 \leq j \leq n)$$

を用いて、

$$(f(\boldsymbol{e}_1),\ldots,f(\boldsymbol{e}_n))=(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)=A$$

のように構成された

この表現行列の構成を、部分空間 V, W の基底をそれぞれ $V = \{ \boldsymbol{v}_1, \ldots, \boldsymbol{v}_n \}$, $W = \{ \boldsymbol{w}_1, \ldots, \boldsymbol{w}_m \}$ として一般化する

このとき、 \boldsymbol{a}_j は座標写像 Φ_W によって、

$$\Phi_{\mathcal{W}}(\boldsymbol{a}_j) = \sum_{i=1}^m a_{ij} \boldsymbol{w}_i \quad (1 \leq j \leq n)$$

ref: 行列と行列式の基 礎 p105

ref: 図で整理!例題で 納得!線形空間入門 p96

 \sim 97

のように W に写される

また、 e_i は座標写像 Φ_{ν} によって、

$$\Phi_{\mathcal{V}}(oldsymbol{e}_j) = \sum_{i=1}^n e_{ij} oldsymbol{v}_i \quad (1 \leq j \leq n)$$

のように V に写されるが、これは $oldsymbol{v}_j$ そのものであるたとえば、j=1 のときは、

$$\Phi_{\mathcal{V}}(oldsymbol{e}_1) = \sum_{i=1}^n e_{i1} oldsymbol{v}_i = oldsymbol{v}_1$$

となる

よって、 $e_j \mapsto a_j$ という写像は、

$$\boldsymbol{v}_j \mapsto \Phi_{\mathcal{W}}(\boldsymbol{a}_j)$$

という V から W への写像 f に対応する (この対応は、可換図式からも明らか)

記号を書き換えると、

$$f(oldsymbol{v}_j) = \Phi_{\mathcal{W}}(oldsymbol{a}_j) = \sum_{i=1}^m a_{ij} oldsymbol{w}_i$$

となり、右辺はさらに、

$$\sum_{i=1}^m a_{ij} oldsymbol{w}_i = (oldsymbol{w}_1, \ldots, oldsymbol{w}_m) egin{pmatrix} a_{1j} \ dots \ a_{mj} \end{pmatrix}$$

と変形できるので、まとめると、

$$(f(\boldsymbol{v}_1),\ldots,f(\boldsymbol{v}_n))=(\boldsymbol{w}_1,\ldots,\boldsymbol{w}_m)\,A$$

と表せる