CLAIMS

What is claimed is:

1

2

3

1.

supplying a structure having an exposed last metalization layer; cleaning said last metalization layer; forming a silicide in a top portion of said ast metalization layer; and forming a terminal over said silicide.

A method for forming a semiconductor/structure/comprising:

- The method in claim 1, wherein said last metalization layer comprises 2. copper.
- The method in claim 1, wherein said cleaning comprises applying one of 3. an ammonia plasma and a hydrogen plasma to said last metalization layer.
- The method in claim 1, wherein said forming of said silicide comprises 4. forming said silicide in a top 10% to 20% of a thickness of said last metalization layer.
- The method in claim 1, wherein said forming of said terminal comprises 5. 1 forming one of a lead and tin solder terminal electrically connected to said 2

BU9-98-110

- 3 silicide.
- 1 6. The method in claim 1, wherein said forming of said terminal comprises
- 2 forming a silicon nitride layer physically connected to said silicide, said silicon
- 3 nitride layer including an opening allowing direct electrical contact with said
- 4 silicide.

m

₩ ₩2

03 104 105

- 7. The method in claim 6, wherein said structure includes insulating layers
 □ 2 above said silicon nitride layer.
 - 8. A method for forming a contact comprising:
 supplying a structure having an exposed metalization layer;
 cleaning said metalization layer;
 forming a silicide in a top portion of said metalization layer; and
 forming a connection to said silicide.
 - 1 9. The method in claim 8, wherein said metalization layer comprises copper.
 - 1 10. The method in/claim 8, wherein said cleaning comprises applying one of
 - an ammonia plasma and a hydrogen plasma to said metalization layer.
 - 1 11. The method in claim 8, wherein said forming of said silicide comprises

2	forming said silicide in a top 20% of a thickness of said metalization layer.
1	12. The method in claim 8, wherein said forming of said terminal comprises
2	forming one of a lead and tin solder terminal electrically connected to said
3	silicide.
-	
1	13. The method in claim 8, wherein said forming of said terminal comprises
2	forming a silicon nitride layer physically connected to said silicide, said silicon
□ 3	nitride layer including an opening allowing direct electrical contact with said
다3 © 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1	silicide.
	14. The method in claim 13, wherein said structure includes insulating layers
	above said silicon hitride layer.
EC/	
	15. A semiconductor device having at least two levels of interconnecting
2	metallurgy, said semiconductor device comprising:
3	a first level of substantially silicide free metallurgy; and
4	an uppermost layer of metallurgy including a bonding pad, wherein a top
5	of said uppermost layer comprises a silicided surface.
1	16. The semiconductor device in claim 15, wherein said interconnecting

2

metallurgy comprises copper.

- 1 17. The semiconductor device in claim 15, wherein, prior to formation of said
- 2 silicided surface, said uppermost layer is cleaned by applying one of an ammonia
- 3 plasma and a hydrogen plasma.
- 1 18. The semiconductor device in claim 15, wherein said silicided surface
- 2 comprises a top 10% to 20% of a thickness of said uppermost layer.
 - 19. The semiconductor device in claim 15, further comprising one of a lead and tin solder terminal electrically connected to said silicided surface.
 - 20. The semiconductor device in claim 19, further comprising a silicon nitride layer physically connected to said silicide and including an opening allowing direct electrical contact with said silicided surface.

add b'