UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i MAT1110 — Kalkulus og lineær algebra

Eksamensdag: Onsdag 14. juni 2017

Tid for eksamen: 15:00-19:00

Oppgavesettet er på 3 sider.

Vedlegg: Formelsamling.

Tillatte hjelpemidler: Godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgave 1

La \mathcal{C} være kurven

$$\mathbf{r}(t) = t\cos(t)\,\mathbf{i} + t\sin(t)\,\mathbf{j}, \quad t \in [0, 2\pi],$$

og la ${\bf F}$ være vektorfeltet

$$\mathbf{F}(x,y) = -y\,\mathbf{i} + x\,\mathbf{j}.$$

1a (10 poeng)

Regn ut

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}.$$

1b (10 poeng)

Regn ut arealet av området avgrenset av \mathcal{C} og den rette linja fra $(2\pi,0)$ til (0,0).

Oppgave 2

La A være matrisen

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 0 \end{pmatrix}.$$

2a (10 poeng)

For hvilke $\mathbf{b}=\begin{pmatrix}b_1\\b_2\\b_3\end{pmatrix}\in\mathbb{R}^3$ har ligningen $A\mathbf{x}=\mathbf{b}$ entydig løsning $\mathbf{x}=\begin{pmatrix}x\\y\end{pmatrix}\in\mathbb{R}^2$?

2b (10 poeng)

Sett

$$\mathbf{b} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Da har $A\mathbf{x} = \mathbf{b}$ ingen løsning, men vi ønsker vi å finne $\mathbf{x} \in \mathbb{R}^2$ slik at vi er "nærmest mulig en løsning". Sett

$$f(\mathbf{x}) = |A\mathbf{x} - \mathbf{b}|^2.$$

Forklar hvorfor f har ett entydig globalt minimum, og finn (x, y) slik at f(x, y) er minimal.

Oppgave 3

$3a \quad (10 \text{ poeng})$

Avgjør om denne rekka konvergerer eller divergerer:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \ln(n)}{n}.$$

3b (10 poeng)

Finn summen av rekka

$$\sum_{n=0}^{\infty} \frac{\pi^n}{(n+1)4^{n+1}}.$$

Oppgave 4 (10 poeng)

Finn det største volumet til kassen med hjørner (0,0,0), (x,0,0), (0,y,0), (0,0,z), (x,y,0), (x,0,z), (0,y,z) og (x,y,z), der x>0, y>0 og z>0, og (x,y,z) ligger på ellipsoiden

$$x^2 + y^2 + \frac{z^2}{4} = 1.$$

Oppgave 5

$5a \quad (10 \text{ poeng})$

Vis at dersom D er en $n \times n$ diagonalmatrise med ikke-negative tall på diagonalen, så fins det en matrise S slik at $S^2 = D$.

(Fortsettes på side 3.)

5b (10 poeng)

Anta at A er en $n \times n$ matrise med n lineært uavhengige egenvektorer og at alle egenverdiene til A er ikke-negative. Vis at det fins en matrise B slik at $B^2 = A$.

5c (10 poeng)

Sett

$$A = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 4 & 5 \\ 0 & 0 & 9 \end{pmatrix}.$$

Finn en matrise B slik at $B^2 = A$.

SLUTT