BÀI TẬP 4 THỐNG KÊ MÁY TÍNH VÀ ỨNG DỤNG

Câu 1. (3 điểm) Dữ liệu của 3 đại lượng X, Y, Z được cho trong bảng sau

X	0.55	0.72	0.60	0.54	0.42	0.65	0.44	0.89	0.96	0.38	0.79	0.53	0.57
Y	1.85	0.14	0.17	0.04	1.67	1.56	1.74	1.96	1.60	0.92	1.56	0.24	1.28
Z	12.80	15.19	14.68	14.57	12.46	13.49	12.47	14.05	14.69	13.05	14.05	14.33	13.45

Phần I.

- a) Tính hệ số tương quan mẫu giữa X và Z.
- b) Kiểm định giả thuyết "X và Z có tương quan" bằng kiểm định hệ số tương quan trong scipy (https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html).
- c) Dùng kĩ thuật lấy mẫu lại hoán vị, kiểm định giả thuyết "X và Z có tương quan" và so sánh kết quả với Câu (b).

Phần II. Xét mô hình hồi qui tuyến tính

$$Z = aX + bY + c + \varepsilon$$
.

với a, b, c là các hệ số và ε là lỗi.

- a) Ước lượng các hệ số hồi qui a, b, c.
- b) Dùng kĩ thuật bootstrapping, xây dựng khoảng tin cậy 95% cho a, b, c.
- c) Giả sử ta dùng mô hình hồi qui trên để dự đoán giá trị cho Z là z_0 tại $x_0=0.5, y_0=1$. Dùng kĩ thuật bootstrapping, ước lượng sai số dự đoán và xây dựng khoảng tin cậy 95% cho z_0 .

Câu 2. (3 điểm) Nếu X có phân phối Poisson với tham số $\lambda>0$ thì X có kì vọng và phương sai đều là λ , còn yếu vị (mode) xấp xỉ $\lambda-\frac{1}{2}$. Từ đó, khi có mẫu dữ liệu của X ta có thể dùng các ước lượng sau để ước lượng λ

$$T_1 = \overline{X}, \quad T_2 = S^2, \quad T_3 = \widehat{m} + \frac{1}{2}$$

với \bar{X} , S^2 , \hat{m} lần lượt là trung bình, phương sai và yếu vị mẫu.

Bảng sau đây là một mẫu dữ liệu cỡ n=40 sinh từ phân phối Poissson với tham số λ .

4	3	3	1	5	4	0	2	3	3
5	3	6	2	1	3	5	2	5	2
6	3	3	6	6	3	3	4	3	2
2	1	6	4	2	4	3	5	4	2

- a) Tính các giá trị ước lượng T_1, T_2, T_3 cho λ từ mẫu dữ liệu đã cho.
- b) Dùng kĩ thuật bootstrapping, so sánh sai số chuẩn của các ước lượng trên.

- c) Giả sử ta có thêm thông tin là $3 \le \lambda \le 4$. Dùng kĩ thuật suy diễn Bayes để ước lượng λ . So sánh sai số của ước lượng này với các ước lượng trên.
- **Câu 3.** (4 điểm) Từ bộ dữ liệu California Housing trên trang scikit-learn (https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset), dùng kĩ thuật kiểm tra chéo, chọn ra mô hình "tốt nhất" giải thích giá nhà (target) theo các đặc trưng (feature).

Lưu ý: Trình bày bài làm (lời giải, công thức Toán, mã Python, kết quả, ...) trong tập tin notebook.