04.09.2025

8

5 (0-10)

Re-Wind Analyse zum Produkt: sdg

Annahmen zu den Produkteigenschaften

Anzahl Re-Assemblys je linearem Lebenszyklus	2
Ökonomie spezifisch	
Fußabdruck der 1. kleinen Re-Assembly bezogen auf den, einer Neuproduktion	15 %
Steigung des Fußabdrucks von einer kleinen Re-Assembly zur nächsten	10 %-punkte
Fußabdruck der 1. großen Re-Assembly bezogen auf den, einer Neuproduktion	45 %
Steigung des Fußabdrucks von einer großen Re-Assembly zur nächsten	15 %-punkte
Fußabdruck der Nutzung bezogen auf den Fußabdruck einer Neuproduktion	100 %
Grad der vorzeitigen Effizienzsteigerung durch Re-Assembly	5 (0-10)
Ökologie spezifisch	
Kosten der 1. kleinen Re-Assembly bezogen auf die, einer Neuproduktion	15 %
Steigung der Kosten von einer kleinen Re-Assembly zur nächsten	10 %-punkte
Kosten der 1. großen Re-Assembly bezogen auf die, einer Neuproduktion	45 %
Steigung der Kosten von einer großen Re-Assembly zur nächsten	15 %-punkte
Anteil der Herstellungskosten am Verkaufspreis	60 (0-10)
Höhe der Subskriptionserlöse in einem linearen Lebenszyklus	120 %
bezogen auf einen linearen Verkaufserlös	
Kundennutzen spezifisch	

Gesamtergebnis in den drei Dimensionen

Grad des Innovationsrückgangs

Ökologie Diagramm

Ökonomie Diagramm

Kundennutzen Diagramm

