第九章 数模模数转换 Digital Analog Conversions

- §9.1 数模转换电路 DAC
- §9.2 数模转换电路 ADC

典型加热炉闭环实时控制系统

典型电子系统——语音的存储与回放系统

§ 9.1 数模转换电路

(Digital Analog Convertor, DAC)

§ 9.1.1 D/A 转换关系 Relationships of D/A conversions

将数字量转化成与其成正比的模拟量

$$v_{O} = K \times D = K \sum_{i=0}^{n-1} D_{i} \times 2^{i}$$

以三位DAC为例,设K=1,可得出 ν_0 和D的关系

$D_2D_1D_0$	$v_{ m O}$	
0 0 0	0 V	
0 0 1	1 V	
0 1 0	2 V	
0 1 1	3 V	
1 0 0	4 V	
1 0 1	5 V	
1 1 0	6 V	
1 1 1	7 V	

最小分辨率电压 V_{LSB} :两个相邻数码转换输出的电压差,可用最低有效位1LSB表示

最大输出电压 $(2^{n}-1)V_{LSB}$

将数字量表示成满量程(Full Scale Range, FSR) 电压 的分数

$$V_{\rm LSB} = \frac{1}{2^{\rm n}} \rm FSR$$

$$\frac{()}{2^3}$$
 FSR

$$\longrightarrow \frac{()}{2^3} \text{ FSR} \qquad 001 \text{ } \cancel{\Sigma} \cancel{\Sigma} \stackrel{1}{2^3} \text{ FSR}$$

练习:
$$1001 \rightarrow \frac{9}{2^4}$$
FSR $0011 \rightarrow \frac{3}{2^4}$ FSR

$$0011 \quad \longrightarrow \quad \frac{3}{2^4} \text{FSR}$$

§ 9.1.2 权电阻型DAC Binary-Weighted DAC

Weighted-Resistance DAC

电路 (3位)

MSB X_1 X_2 X_3 LSB

V_{ref}:参考电压

S_i: 模拟开关

 $X_i:3$ 位数字

 S_i 由 X_i 决定

$$X_i = 1, S_i \rightarrow V_{ref}$$

$$X_i = 0$$
, $S_i \rightarrow$ 地

支路电阻值:

 $2^{0}R$, $2^{1}R$, $2^{2}R$...

R_f 反馈电阻

分析: 输入数字量 $X_1X_2X_3$ \longrightarrow 输出模拟量 V_0

$$egin{aligned} X_1 & extbf{单独作用} & (X_1=1,X_2=X_3=0): & i_1=X_1 rac{V_{ref}}{R} \ X_2 & extbf{单独作用} & (X_2=1,X_1=X_3=0): & i_2=X_2 rac{V_{ref}}{2R} \ X_3 & extbf{单独作用} & (X_3=1,X_1=X_2=0): & i_3=X_3 rac{V_{ref}}{4R} \end{aligned}$$

输出总电流: $I_0 = i_1 + i_2 + i_3 =$

$$X_1 \frac{V_{ref}}{R} + X_2 \frac{V_{ref}}{2R} + X_3 \frac{V_{ref}}{4R} = \frac{2V_{ref}}{R} \cdot \frac{X_1 2^2 + X_2 2^1 + X_3 2^0}{2^3}$$

 X_1 的权是 X_2 的2 倍,与二进制数的权相对应,称为权电阻网络

模拟输出电压:
$$V_0 = i_f R_f = -I_0 R_f$$

$$V_O = -\frac{2V_{ref}}{R}R_f \frac{X_1 2^2 + X_2 2^1 + X_3 2^0}{2^3}$$

$$V_0 \propto X_1 X_2 X_3$$

3位数字量 $\frac{()}{2^3}$ FSR

n 位 权电阻 DAC 模拟输出电压 V_0

$$V_0 = -\frac{2V_{ref}}{R}R_f \cdot \frac{X_1 2^{n-1} + X_2 2^{n-2} + \dots + X_n 2^0}{2^n}$$

FSR

优点: 简单 直观

缺点: 电阻值太多不易准确

§9.1.3 R-2R 梯形DAC (Ladder)

电路

 X_1 MSB X_3 LSB 位置与权电阻相反

特点:

- 1) 整个网络只有 2 种电阻。 网络由相同的电路环节组成, 每节有 2 个电阻, 一个开关, 每节对应二进制一位数。
- 2) 每个节点 (C, B, A) 对地等效电阻都是 R。

分析

X_1 单独作用 $(X_1 X_2 X_3 = 100)$

X_2 单独作用: $(X_1X_2X_3=010)$

X_3 单独作用: $(X_1X_2X_3=001)$

叠加:总电压

$$V_{i} = X_{1} \frac{V_{ref}}{2} + X_{2} \frac{V_{ref}}{4} + X_{3} \frac{V_{ref}}{8} = V_{ref} \frac{X_{1} 2^{2} + X_{2} 2^{1} + X_{3} 2^{0}}{2^{3}}$$

从图中有

$$I_0 = -i_f$$

$$\frac{V_i}{R} = -\frac{V_o}{R_f}$$

$$\therefore V_o = -\frac{V_i}{R} R_f$$

R-2R 梯形 DAC 模拟输出电压:

$$\therefore V_o = -\frac{V_i}{R} R_f$$

$$V_o = -\frac{V_{ref}}{R} R_f \cdot \frac{X_1 2^2 + X_2 2^1 + X_3 2^0}{2^3}$$

FSR

$$FSR = \frac{V_{ref}}{R} R_f$$

最大值

$$V_{o \max} = -\frac{V_{ref}}{R} R_f \cdot \frac{7}{2^3} = -\frac{7}{2^3} FSR$$

最小值

$$V_{o \min} = -\frac{V_{ref}}{R} R_f \cdot \frac{1}{2^3} = -\frac{1}{2^3} FSR$$

$$s = \left| V_{O\min} \right| = \frac{1}{2^3} FSR$$

R-2R 梯形 DAC 优点:

与权电阻DAC比, 电阻种类少, 易集成;开关工作条件相同。

缺点: 开关接1、0换向时, 有动态尖峰电流, 影响工作速度

§ 9.1.4 R-2R 倒梯形DAC (Inverted Ladder)

所有节点等效电阻为R, 等效于

R-2R 梯形 DAC

V_{ref} ⟨⇒⟩ 运放A 换位

此网络是电流输出型,开关1端经运放和R_f,把电流转换成电压输出

$$I = \frac{V_{ref}}{R}$$

倒梯形网络和梯形网络在工作原理, 模拟输出电压公式,分辨率等都相同

$$V_o = -\frac{V_{ref}}{R} R_f \cdot \frac{X_1 2^{n-1} + X_2 2^{n-2} + \dots + X_n 2^0}{2^n}$$

优点: 动态尖峰电流小, 转换速度快

缺点: 忽略模拟开关的导通电阻,产生转换误差

§ 9.1.6 集成 DAC (Integrated DAC)

3种 DAC: 二进制有权码 单极性 $V_0 > 0$

有的物理量需要表示方向, 即正负, 需要双极性码。

正数: +13 → 0,1101 负数: 原码表示 1,1101 反码表示 1,0010 补码表示 1,0011

另一种常用的双极性码为偏移码

实际应用中偏移码是最容易实现的双极性码

常用的双极性码表 (三位)

FSR	十进制分数	原码表示	补码表示	偏移码表示
$+\frac{1}{2}FSR$	+ 3/4	0 11	0 11	1 11
	+ 2/4	0 10	0 10	1 10
	+ 1/4	0 01	0 01	1 01
	+ 0	0 00	0 00	1 00
$-\frac{1}{2}FSR$	- 0	1 00	(0 00)	(1 00)
	- 1/4	1 01	1 11	0 11
	- 2/4	1 10	1 10	0 10
	- 3/4	1 11	1 01	0 01
	- 4/4		1 00	0 00

偏移码的构成:补码的符号位取反

偏移码是自然加权二进制码偏移而得名

用偏移码时,输出 模拟电压的动态范 围不变=FSR

Vo: 动态范围

单极性码: 0~10V,

双极性码: -5~+5V.

双极性码:

$$FSR_{(bi)} = \frac{1}{2}FSR_{(mono)}$$

用双极性码时,满刻 度值为单极性输出时 的 1/2

数字量
$$00...0$$
 ,输出为 $-\frac{1}{2}FSR$,
数字量 $11...1$,输出为 $(\frac{1}{2}FSR-LSB)$,

数字量 10...0,输出为 0

10位 CMOS集成DAC —AD7533

1. AD7533结构

10位数字量: X₁X₂X₃X₄X₅X₆X₇X₈X₉X₁₀

等效电阻 R (10 kΩ)

AD7533: 两个互补电流输出 *I*_{out1} 和 *I*_{out2}

$$X_i$$
=1, 开关向左侧, I_{out1} $I_{out1} = X_1 \frac{I_{ref}}{2} + X_2 \frac{I_{ref}}{2^2} + ... + X_{10} \frac{I_{ref}}{2^{10}}$

$$X_i$$
=0, 开关向右侧, I_{out2} $I_{out2} = \overline{X}_1 \frac{I_{ref}}{2} + \overline{X}_2 \frac{I_{ref}}{2^2} + ... + \overline{X}_{10} \frac{I_{ref}}{2^{10}}$

$$I_{out1} + I_{out2} = \frac{I_{ref}}{2^{1}} + \frac{I_{ref}}{2^{2}} + \ldots + \frac{I_{ref}}{2^{10}} = I_{ref} \frac{2^{10} - 1}{2^{10}} = \frac{1023}{1024} I_{ref} \approx I_{ref}$$

灌入电流 I_{ref}

2. AD7533 接收自然加权二进制码(单极性应用)

AD7533使用说明:

- 1) I_{out1} 和 I_{out2} 可以用一个或两个,使用一个时, 另一端接地
- 2) 通过接运放,可得到模拟输出电压 V_0

$$\begin{split} V_0' &= i_f R_{FB} = -I_{out1} R = -(X_1 \frac{I_{ref}}{2} + X_2 \frac{I_{ref}}{2^2} + \dots + X_{10} \frac{I_{ref}}{2^{10}}) R \\ &= -I_{ref} R \frac{X_1 2^9 + X_2 2^8 + \dots + X_{10} 2^0}{2^{10}} \end{split}$$

AD7533接收自 然加权二进制码 的模拟输出电压

$$V_0 = -V_0' = V_{ref} \frac{X_1 2^9 + X_2 2^8 + \dots + X_{10} 2^0}{2^{10}}$$

$$V_{ref} = I_{ref}R = FSR$$

3. AD7533 接收偏移码电路(双极性应用)

偏移电路, 形成偏移电流, 可直接接收偏移码

偏移电路:

外接一个负参考电源,产生一个与最高权电流数量相等,极性相反的电流 (I_{ref} / 2). 由运放得到双极性模拟输出.

$$V_0' = i_f R_{FB}^{\ =} - (I_{out1} - \frac{I_{ref}}{2})R_{FB} = - (I_{out1} - \frac{I_{ref}}{2})R$$

$$V_0 = -V_0' = (I_{ou1} - \frac{I_{ref}}{2})R = (X_1 \frac{I_{ref}}{2} + X_2 \frac{I_{ref}}{2^2} + \dots + X_{10} \frac{I_{ref}}{2^{10}} - \frac{I_{ref}}{2})R$$

AD7533 接收偏移码:

$$V_0 = V_{ref} \frac{X_1 2^9 + X_2 2^8 + \dots + X_{10} 2^0 - 2^9}{2^{10}}$$

$$V_{ref} = I_{ref} R$$

分子前部分是十位二进制数按权展开,不再考虑符号位(已在偏移电流中考虑了)。 28

4. AD7533 接收补码 (双极性应用)

将偏移码电路的符号位取反,就可以接收补码。

模拟输出 V_0

$$V_0 = V_{ref} \frac{\overline{X}_1 2^9 + X_2 2^8 + \dots + X_{10} 2^0 - 2^9}{2^{10}}$$

注意: X₁

主要技术参数

1.最小分辨电压 V_{LSR}

数字量变化一个单位时,输出电压的变化量。

2.分辨率:最小分辨电压与最大输出电压的 $F = \frac{V_{LSB}}{V_{ESV}} = \frac{1}{2^n - 1}$ 比值来表示;也常用最小分辨电压 V_{LSB} 表示。 $V_{ESV} = \frac{1}{2^n - 1}$

$$F = \frac{V_{LSB}}{V_{ESV}} = \frac{1}{2^n - 1}$$

3.转换精度

转换误差: 稳态工作时,实际模拟输出值和理想输出的最大偏 差,通常用火,的倍数表示。

4.转换速度

建立时间:从输入数据改变到输出进入规定的误差范围内所需 的最大时间。