Activation of the Transcription Factor NF-κB through TNF Receptor 2 in CT6 Cells

NF-xB Probe wt wt mt mt wt wt wt wt Competitor - - - mt mt AP-1

Immunoprecipitation of Human TNF Receptor 2

Glutathione-S-Transferase human TNF Receptor 2 Intracellular Domain Fusion Protein

3

Coprecipitation of Glutathione-S-Transferase Human TNF Receptor 2 Intracellular Domain Fusion Protein in CT6 Cell Extracts

Coprecipitation of Glutathione-S-Transferase Mutant Human TNF Receptor 2 Intracellular Domain Fusion Proteins in CT6 Cell Extracts

CT6

Figure 6

Coprecipitation of Glutathione-S-Transferase Human TNF Receptor 2 Intracellular Domain Fusion Protein in Jurkat Cell Extracts

Intracellular Localization of TNF Receptor 2 Associated Factors

Purification of TNF Receptor 2 Associated Factors

 $\tt CCCAGCCCGGTTCTCTGCCCCAAGGACGCTACCGCCCAATGCGAGCAGAAGGCGGCGCACAGATACAGAAAGT$ 74 GAGGCTCAGACATAT<u>TGA</u>AGACCGTGTGACATAGGG<u>TAG</u>CCAAATGACAGTGTGAGAAAGTGACATTTACTCAAG 149 GCCACCCAGATATCCTGGAGGACCCAGAACCCTGGAGATTCCCATCAGAAAGACCTTCTGGCCACCTGAAACCCC ${\tt MetAlaSerSerSerAlaProAspGluAsnGluPheGlnPheGlyCysProProAlaProCysGlnAspPro}$ 224 AAGATGGCCTCCAGCTCAGCCCCTGATGAAAACGAGTTTCAATTTGGTTGCCCCCCTGCTCCCTGCCCAGGACCCA 25 SerGluProArgValLeuCysCysThrAlaCysLeuSerGluAsnLeuArgAspAspGluAspArgIleCysPro 299 TCGGAGCCCAGAGTTCTCTGCTGCACAGCCTGTCTCTCTGAGAACCTGAGAGATGATGAGGATCGGATCTGTCCT 50 LysCysArgAlaAspAsnLeuHisProValSerProGlySerProLeuThrGlnGluLysValHisSerAspVal 374 AAATGCAGAGCAGACAACCTCCATCCTGTGAGCCCAGGAAGCCCTCTGACTCAGGAGGAGGAGGTTCACTCTGATGTA $75\ {\tt AlaGluAlaGluIleMetCysProPheAlaGlyValGlyCysSerPheLysGlySerProGlnSerMetGlnGluInglu} \\$ 449 GCTGAGGCTGAAATCATGTGCCCCTTTGCAGGTGTTGGCTGTTCCTTCAAGGGGAGCCCACAATCCATGCAGGAG 100 HisGluAlaThrSerGlnSerSerHisLeuTyrLeuLeuAlaValLeuLysGluTrpLysSerSerProGly 524 CATGAGGCTACCTCCCAGTCCTCCCACCTGTACCTGCTGGCGGTCTTAAAGGAGTGGAAATCCTCACCAGGC 125 SerAsnLeuGlySerAlaProMetAlaLeuGluArgAsnLeuSerGluLeuGlnLeuGlnAlaAlaValGluAla 599 TCCAACCTAGGGTCTGCACCCATGGCACTGGAGCGGAACCTGTCAGAGCTGCAGCTTCAGGCAGCTGTGGAAGCG 150 ThrGlyAspLeuGluValAspCysTyrArgAlaProCysCysGluSerGlnGluGluLeuAlaLeuGlnHisLeu 674 ACAGGGGACCTGGAGGTAGACTGCTACCGGGCACCTTGCTGTGAGAGCCAGGAAGAACTGGCCCTGCAGCACTTG 175 ValLysGluLysLeuAlaGlnLeuGluGluLysLeuArgValPheAlaAsnIleValAlaValLeuAsnLys 749 GTGAAGGAGAAGCTGCTGGCTCAGCTGGAGGAGAAGCTGCGTGTGTTTGCAAACATTGTTGCTGTCCTCAACAAG 200 GluValGluAlaSerHisLeuAlaLeuAlaAlaSerIleHisGlnSerGlnLeuAspArgGluHisLeuLeuSer 225 LeuGluGlnArgValValGluLeuGlnGlnThrLeuAlaGlnLysAspGlnValLeuGlyLysLeuGluHisSer 899 TTGGAGCAGAGGGTGGTAGAATTACAGCAAACCTTGGCTCAAAAAAGACCAGGTCCTGGGCAAGCTTGAGCACAGT $250 \ \texttt{LeuArgLeuMetGluGluAlaSerPheAspGlyThrPheLeuTrpLysIleThrAsnValThrLysArgCysHis}$ 974 CTGCGACTCATGGAGGAGGCATCCTTTGATGGTACTTTCCTGTGGAAGATCACCAATGTCACCAAGCGGTGCCAC 275 GluSerValCysGlyArgThrValSerLeuPheSerProAlaPheTyrThrAlaLysTyrGlyTyrLysLeuCys 1049 GAGTCAGTGTGGGCCGGACTGTCAGCCTCTTCTCCAGCTTTCTACACTGCCAAGTATGGTTACAAGTTGTGC 300 LeuArgLeuTyrLeuAsnGlyAspGlySerGlyLysLysThrHisLeuSerLeuPheIleValIleMetArgGly 1124 CTGCGCTTGTACCTGAACGGGGATGGCTCAGGCAAGAAGACCCACCTGTCCCTCTTCATCGTGATCATGAGAGGA 325 GluTyrAspAlaLeuLeuProTrpProPheArgAsnLysValThrPheMetLeuLeuAspGlnAsnAsnArgGlu 1199 GAATACGATGCTCTCCTGCCCTGGCCTTTCAGGAACAAGGTCACCTTTATGCTACTTGACCAGAACAACCGAGAG 350 HisAlaIleAspAlaPheArgProAspLeuSerSerAlaSerPheGlnArgProGlnSerGluThrAsnValAla 1274 CATGCTATTGATGCCTTCCGGCCTGACCTGAGCTCAGCCTCCTTCCAGCGGCCACAGAGTGAGACCAACGTGGCC 375 SerGlyCysProLeuPhePheProLeuSerLysLeuGlnSerProLysEisAlaTyrValLysAspAspThrMet 1349 AGCGGCTGCCCGCTCTTCTTCCCCCTCAGCAAGCTGCAGTCACCCAAGCACGCCTACGTCAAAGATGACACAATG 400 PheLeuLysCysIleValAspThrSerAla 1499 TGGGGGACTTAGCTAGACAGCCAGGCCCTGCCCTTGGAGCCCACAGCCCACGACAAGGAGGAGCCAAGGCT 1574 GGCATGACTTCAGCGCCACAGCATGCTGGTTATGGCTGATGTGAGGCTGGAGAAACGTGTGCGTACAGAGACAGA 1649 GTGGAGGAGAAGACAGAAGTGCTCTTTTCACACAGACTACACGACACCAGGAGGCCAGCATGCCAGCAGCTTCTG 1724 AATGTTGAGACCAGCCTAGATCAGGATGAAAAGAGCCAGGCCTGAGGCTTGGACATTGAGCCAAGGCTATGGGGC 1799 CTAAGTGGAGGGCACTCCTACCAGGACATTCTCTCGAGGTCAGGGCATAACTGGAAAAATGCCCCCATCTCTCT 1874 GTTCAGACTCAAAACTAGAACCACAGGGCAGAAGGGTCAGACATTAATGTGAATTTAACCTGCCCTGGACTGAGT 1949 TCCTATGTTAACAGACACGCAAACAGGTAAACCCAGAAACTGCCCTGGGAAATGCTTTCTGGCTGCATCTGGAGA

MetAlaAlaAlaSerValThrSerPro GCGCGAAGACCGTTGGGGCTTTGTGGTGTGTGGGGGGTTGTAACTCACATGGCTGCAGCCAGTGTGACTTCCCCT 10 GlySerLeuGluLeuLeuGlnProGlyPheSerLysThrLeuLeuGlyThrArgLeuGluAlaLysTyrLeuCys 75 GGCTCCCTAGAACTGCTACAGCCTGGCTTCTCCAAGACCCTCCTGGGGACCAGGTTAGAAGCCAAGTACCTCTGT 35 SerAlaCysLysAsnIleLeuArgArgProPheGlnAlaGlnCysGlyEisArgTyrCysSerPheCysLeuThr 150 TCAGCCTGCAAAAACATCCTGCGGAGGCCTTTCCAGGCCCAGTGTGGGCACCGCTACTGCTCCTTCTGCCTGACC 60 SerIleLeuSerSerGlyProGlnAsnCysAlaAlaCysValTyrGluGlyLeuTyrGluGlyIleSerIle 225 AGCATCCTCAGCTCTGGGCCCCAGAACTGTGCTGCCTGTGTCTATGAAGGCCTGTATGAAGAAGGCATTTCTATT ${\tt 85\ LeuGluSerSerSerAlaPheProAspAsnAlaAlaArgArgGluValGluSerLeuProAlaValCysProAsn}$ 110 AspGlyCysThrTrpLysGlyThrLeuLysGluTyrGluSerCysHisGluGlyLeuCysProPheLeuLeuThr 375 GATGGATGCACTTGGAAGGGACCTTGAAAGAATACGAGAGCTGCCACGAAGGACTTTGCCCATTCCTGCTGACG 135 GluCysProAlaCysLysGlyLeuValArgLeuSerGluLysGluHisHisThrGluGlnGluCysProLysArg 450 GAGTGTCCTGCATGTAAAGGCCTGGTCCGCCTCAGCGAGAAGGAGCACCACACTGAGCAGGAATGCCCCCAAAAGG 160 SerLeuSerCvsGlnHisCvsArgAlaProCysSerHisValAspLeuGluValHisTyrGluValCvsProLys 525 AGCCTGAGCTGCCAGCACTGCAGAGCACCCTGTAGCCACGTGGACCTGGAGGTACACTATGAGGTCTGCCCCAAG 185 PheProLeuThrCvsAspGlyCvsGlyLysLysLysIleProArgGluThrPheGlnAspHisValArgAlaCvs 600 TTTCCCTTAACCTGTGATGGCTGTGGCAAGAAGAAGATCCCTCGGGAGACGTTTCAGGACCATGTTAGAGCATGC 210 SerLysCysArgValLeuCysArgPheHisThrValGlyCysSerGluMetValGluThrGluAsnLeuGlnAsp 675 AGCAAATGCCGGGTTCTCTGCAGATTCCACACCGTTGGCTGTTCAGAGATGGTGGAGACTGAGAACCTGCAGGAT 235 HisGluLeuGlnArgLeuArgGluHisLeuAlaLeuLeuLeuSerSerPheLeuGluAlaGlnAlaSerProGly 750 CATGAGCTGCAGCGGCTACGGGAACACCTAGCCCTACTGCTGAGCTCATTCTTGGAGGCCCAAGCCTCTCCAGGA 260 ThrLeuAsnGlnValGlyProGluLeuLeuGlnArgCysGlnIleLeuGluGlnLysIleAlaThrPheGluAsn 825 ACCTTGAACCAGGTGGGCCAGAGCTACTCCAGCGGTGCCAGATTTTGGAGCAGAAGATAGCAACCTTTGAGAAC 285 IleValCysValLeuAsnArgGluValGluArgValAlaValThrAlaGluAlaCysSerArgGlnHisArgLeu 900 ATTGTCTGCGTCTTGAACCGTGAAGTAGAGAGGGTAGCAGTGACTGCAGAGGCTTGTAGCCGGCAGCACCGGCTA 310 AspGlnAspLysIleGluAlaLeuSerAsnLysValGlnGlnLeuGluArgSerIleGlyLeuLysAspLeuAla 975 GACCAGGACAAGATTGAGGCCCTGAGTAACAAGGTGCAACAGCTGGAGAGGAGCATCGGCCTCAAGGACCTGGCC 335 MetAlaAspLeuGluGlnLysValSerGluLeuGluValSerThrTyrAspGlyValPheIleTrpLysIleSer 1050 ATGGCTGACCTGGAGCAGAAGGTCTCCGAGTTGGAAGTATCCACCTATGATGGGGTCTTCATCTGGAAGATCTCT ${\tt 360~AspPheThrArgLysArgGInGluAlaValAlaGlyArgThrProAlaIlePheSerProAlaPheTyrThrSer}$ 1125 GACTTCACCAGAAAGCGTCAGGAAGCCGTAGCTGGCCGGACACCAGCTATCTTCTCCCCAGCCTTCTACACAAGC 385 ArgTyrGlyTyrLysMetCysLeuArgValTyrLeuAsnGlyAspGlyThrGlyArgGlyThrHisLeuSerLeu 1200 AGATATGGCTACAAGATGTGTCTACGAGTCTACTTGAATGGCGACGGCACTGGGCGGGAACTCATCTGTCTCTC 410 PhePheValValMetLysGlyProAsnAspAlaLeuLeuGlnTrpProPheAsnGlnLysValThrLeuMetLeu 1275 TTCTTCGTGGTGATGAAAGGCCCCAATGATGCTCTGTTGCAGTGGCCTTTTAATCAGAAGGTAACATTGATGTTG 435 LeuAspHisAsnAsnArgGluHisValIleAspAlaPheArgProAspValThrSerSerSerPheGlnArgPro 1350 CTGGACCATAACAACCGGGAGCATGTGATCGACGCATTCAGGCCCGATGTAACCTCGTCCTCCAGAGGCCT 460 ValSerAspMetAsnIleAlaSerGlyCysProLeuPheCysProValSerLysMetGluAlaLysAsnSerTyr 1425 GTCAGTGACATGACATCGCCAGTGGCTGCCCCCTCTTCTGCCCTGTGTCCAAGATGGAGGCCAAGAATTCCTAT 485 ValArgAspAspAlaIlePheIleLysAlaIleValAspLeuThrGlyLeu 1500 GTGCGGGATGATGCGATCTTCATCAAAGCTATTGTGGACCTAACAGGACTCTAGCCACCCCTGCTAAGAATAGCA 1575 GCTCAGTGAGGAGCTGTCACATTAGGCCAGCCCAGGCCTGCCACACACGGGTGGGCAGGCTTGGTGTAAATGCTG 1650 GGGAGGGCCTCAGCCTAGAGCCAATCACCATCACACAGAAAGGCAGGAAGAAGCCTCCAGTTGGCCTTCAGCTGG 1725 CAAACTGAGTTGGACGGTCCACTGAGCTCAAGGGCCTGGTGGAGCCCGCTGGGGAGCTTCTCAGCTTTCCAATAG 1875 GAGAGTCTCAAGAGCTGCAGCAGGAGCAAAGTGACTGGCCTTCCCCACCCCATCCTTTGGAAAAGAGGTAGCGGC 1950 TACACAGGAGAAGGCATGCGCCTGCAGGGTGTAGCCCAAGAGAAGCTCTCTGAGACATAGGCCCTCACTGGAG 2025 AAGGGCCTGCCTGGGCTGCACAGCCTTGCCAGGTGGCCTGTATGGGGGAGAAGTGATTAAATGTTGAGATGTCAC 2100 ACGACAAAAAAAAAAAAAAAA

	1	ì	
٠			

consensus	c-cbl	RFP .	RPT-1	RING1	SS-A/Ro (human)	RAG-1	UVS-2	RAD-18 (EFP (COP1 (TRAF2 (
-	(human)	(human)	(mouse)	(human)	human)	(human)	(N. crassa)	(S. cerevisiae)	(human)	(A. thaliana)	(mouse)
	378	13	12	16	13	290	31	25	10	49	31
X11-12 X:	FQLCKICAENDKDVKIE PCGHLMCTSCLTS WQESEGQ GSSGCPFCRCE	ETTCPVCLQYFAEPMML DCGHNICCACLARCWGTA	EVTCPICLELLKEPVSA DCNHSFCRACITLNYESNRNTDGKGNCPVCRVP	ELMCPICLDMLKNTMTTKECL H RFCSDCIVTA	EVTCPICLDPFVEPVSI ECGHSFCQECISQV	SISCQICEHILADPVET NCKHVFCRVCILRC	AFRCHVCKDFYDSPMLT SCNHTFCSLCIRRC	LLRCHICKDFLKVPVLT PCGHTFCSLCIRTH	elsCsiClepfkepvtt pCgHnfCgsClnetwa vqg	DLLCPICMQIIKDAFLT ACGHSFCYMCIITH	KYLCSACKNILRRPFQA QCGHRYCSFCLTSI
X10-16	esego		SNRNT	LRS	GKG	LKV	LSV :	LINN	VQG	LRN	SST
CC	GSSG C PF C RCE	etnvs C pq C ret	DGKGN C PV C RVP	GNKE C PT C RKK	GGSV C AV C RQR	MGSY C PS C RYP	LSV DSK CPLCRAT	QPN C PL C LFE	SPYL C PQ C RAV	KSD C PC C SQH	GPQN C AA C VYE

Figure 12a

OSI	PDDGLVACPICLTRM KEQQVDRHLDTSC	182	N. crassa)	(N.	UVS-2
Ç	PNEQMAQCPICQQFYPLKALEKT H LD	183	(S. cerevisiae)	S)	RAD18
HI	seekpfe C ee C gkkfrtarhlvk H qr	293	(mouse)	m (iii	MFG2
VH	RKKFPHI C GE C GKGFRHPSALKK H IR	521	(mouse)	E	ZFY1/2
TH.	TGEKPYT C TV C GKKFIDRSSVVK H SR	1225	(X. laevis)	(x	XFIN
VΗ	TGKYPFICSECGKSFMDKRYLKI H SN	μ	(X. laevis)		XLCOF14
HT	QD LAV C DV C NRKFRHKDYLRD H QK T H	189	K. laevis)	îx.	TFIIIA
Ö	ggfklvt C df C krddikkkelet H yk	171	(D. discoideum)	â	DG17
Ω	pkfplt C dg C gkkkIpretfqd H vr	182			
ģ	CPKRSLSCQHC RAPCSHVDLEVHYE	157	(mouse)	(B)	TRAF2

Figure 13

Wed May 11 18:23:38 1994

/home/oz/va/Molbio/rothe/p1.TRAF1 (length: 409)

kyte (hydropathy); window: 20

33

34

35

1.5

1.5

Figure 14a

Figure 14b

TRAF Expression in CT6 Cells

Figure 15a

heart
brain
spleen
lung
liver
skeletal muscle
kidney
testis

heart
brain
spleen
lung
liver
skeletal muscle
kidney
testis

<u>ب</u>

TRAF

A Glutathione-S-Transferase TRAF2 Fusion Protein Coprecipitates the Human TNF-R2 in 293 Cell Extracts

