Ep. 10: Jordan Normal Form

LetsSolveMathProblems: Navigating Linear Algebra

Problem 1. If A and B are 3×3 complex matrices that have the same minimal polynomial, as well as the same characteristic polynomial, are A and B necessarily similar? Does the answer change for the 4×4 complex matrices?

Problem 2. Given that a 5×5 complex matrix A has the minimal polynomial of λ^3 , what are all possible Jordan normal forms of A? (Write these Jordan forms as partitions of 5.)

Problem 3. If a complex matrix's minimal polynomial and characteristic polynomial are the same, what can we say about the matrix's Jordan normal form?

Problem 4. Show that if A is an $n \times n$ complex matrix, then A and A^T are similar.¹

Problem 5. Do there exist 5×5 nilpotent complex matrices A and B such that $rank(A^i) = rank(B^i)$ for i = 2, 3, 4, yet A and B are not similar?

¹I learned this fascinating fact from a StackExchange post, like https://math.stackexchange.com/questions/62497/matrix-is-conjugate-to-its-own-transpose, which argues that the given statement is true for matrices over any field!