REC'D 0 2 SEP 2004

WIPO

PCT

12. 7. 2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 7月10日

出 願 番 号 Application Number:

特願2003-273123

[ST. 10/C]:

[JP2003-273123]

出 願 人 Applicant(s):

日亜化学工業株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年 8月19日

特許庁長官 Commissioner, Japan Patent Office 1) 11

【書類名】 特許願 【整理番号】 12003101 【あて先】 特許庁長官殿

【国際特許分類】 H01L 33/00

【発明者】

【住所又は居所】 徳島県阿南市上中町岡491番地100 日亜化学工業株式会社

内

【氏名】 松村 拓明

【発明者】

【住所又は居所】 徳島県阿南市上中町岡491番地100 日亜化学工業株式会社

内

【氏名】 落合 真尚

【特許出願人】

【識別番号】 000226057

【氏名又は名称】 日亜化学工業株式会社

【代表者】 小川 英治

【手数料の表示】

【予納台帳番号】 010526 【納付金額】 21,000円

【提出物件の目録】

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

【物件名】 特許請求の範囲 1

【書類名】特許請求の範囲

【請求項1】

窒化物半導体基板と、その上にn型半導体層、活性層及びp型半導体層が積層されてなる 窒化物半導体層を備え、該窒化物半導体層にストライプ状のレーザ光の導波路領域を有す ると共に、その導波路領域と略垂直な両端面に端面保護膜を有する窒化物半導体レーザ素 子であって、

前記窒化物半導体基板は、前記活性層からの発光を吸収し、その発光波長よりも長波長の励起光を発光する励起領域を有し、

前記端面保護膜は、前記励起領域からの発光波長に対して高反射率を有することを特徴とする窒化物半導体レーザ素子。

【請求項2】

前記端面保護膜は、出射側端面と、リア側端面の両方に設けられている請求項1記載の窒化物半導体レーザ素子。

【請求項3】

前記端面保護膜は、前記活性層からの発光波長に対して、低反射率を有する請求項1記載の窒化物半導体レーザ素子。

【請求項4】

前記端面保護膜は、単層又は多層構造である請求項1乃至請求項3記載の窒化物半導体レーザ素子。

【請求項5】

窒化物半導体基板と、その上にn型半導体層、活性層及びp型半導体層が積層されてなる 窒化物半導体層を備え、該窒化物半導体層にストライプ状のレーザ光の導波路領域を有す ると共に、その導波路領域と略垂直な端面に、出射側端面保護膜及びその反対のリア側端 面保護膜を有する窒化物半導体レーザ素子であって、

前記窒化物半導体基板は、前記活性層からの発光を吸収し、その発光波長よりも長波長の励起光を発光する励起領域を有し、

前記リア側端面保護膜は、前記励起光の波長に対して高反射率を有する第1の端面保護 膜と、前記活性層からの発光波長に対して高反射率を有する第2の端面保護膜とを備え、

前記出射側端面保護膜は、前記励起光の波長に対して高反射率を有する第3の端面保護膜を備え、てなることを特徴とする窒化物半導体レーザ素子。

【請求項6】

前記第1の端面保護膜及び/又は前記第3の端面保護膜は、前記活性層からの発光波長に対して、低反射率を有する請求項5記載の窒化物半導体レーザ素子。

【請求項7】

前記出射側端面保護膜は、前記活性層からに発光波長に対して高反射率を有する第4の端 面保護膜を有する請求項5又は請求項6記載の窒化物半導体レーザ素子。

【請求項8】

前記第1の端面保護膜、第2の端面保護膜、第3の端面保護膜、第4の端面保護膜は、それぞれ単層又は多層構造である請求項5乃至請求項7記載の窒化物半導体レーザ素子。

【請求項9】

前記第1の端面保護膜と、前記第2の端面保護膜は、少なくとも一部が重なるよう積層されている請求項5乃至請求項8記載の窒化物半導体素子。

【請求項10】

前記第3の端面保護膜と、前記第4の端面保護膜は、少なくとも一部が重なるよう積層されている請求項8記載の窒化物半導体レーザ素子。

【請求項11】

前記第2の端面保護膜は、前記半導体層に接して形成されている請求項5又は請求項6記載の窒化物半導体レーザ素子。

【請求項12】

前記第4の端面保護膜は、前記半導体層に接して形成されている請求項7記載の窒化物半

導体レーザ素子。

【請求項13】

前記励起領域は、その周辺領域に比して転位密度が低い請求項1乃至請求項12記載の窒 化物半導体レーザ素子。

【請求項14】

前記励起領域は、その周辺領域に比して不純物濃度が高い請求項1乃至請求項13記載の 窒化物半導体レーザ素子。

【請求項15】

前記不純物は、H、O、C、Siのうちの少なくとも一種である請求項14記載の窒化物 半導体レーザ素子。

【請求項16】

前記活性層からの発光波長は、390~420 nmである請求項1乃至請求項15記載の窒化物半導体レーザ素子。

【請求項17】

前記励起光の波長は、550~600nmである請求項1乃至請求項16記載の窒化物半導体レーザ素子。

【請求項18】

前記励起領域は、前記導波路領域と略平行なストライプ状に形成されている請求項1万至 請求項17記載の窒化物半導体レーザ素子。

【請求項19】

前記導波路領域は、前記励起領域の上方に形成されている請求項1乃至請求項18記載の 窒化物半導体レーザ素子。

【請求項20】

前記導波路領域は、前記励起領域から離間する領域に形成されている請求項1乃至請求項19記載の窒化物半導体レーザ素子。

【書類名】明細書

【発明の名称】窒化物半導体レーザ素子

【技術分野】

[0001]

本発明は、窒化物半導体を用いた半導体層の端面に誘電体保護膜が形成された半導体レーザ素子に関し、特に、窒化物半導体基板を用いた高出力の半導体レーザ素子に関するものである。半導体素子の具体的な組成としては、GaN、AlN、若しくはInN、又はこれらの混晶であるAlGaN系、InGaN系、AlInGaN系を含むIII-V族窒化物半導体が挙げられる。

【背景技術】

[0002]

窒化物半導体素子は、比較的短波長の紫外線領域から赤色を含む可視光領域までの広い 波長領域の発光を有しており、半導体レーザダイオード(LD)や発光ダイオード(LE D)などを構成する材料として広く用いられている。近年は、小型化、長寿命化、高信頼 性、かつ高出力化が進み、主にパーソナルコンピュータ、DVDなどの電子機器、医療機 器、加工機器や光ファイバ通信の光源などに利用されている。

[0003]

このような窒化物半導体素子は、主としてサファイア基板上にバッファ層、n型コンタクト層、クラック防止層、n型クラッド層、n型光ガイド層、活性層、p型電子閉じ込め層、p型光ガイド層、p型クラッド層、p型コンタクト層などが順に積層された積層構造体からなっている。また、エッチングによりストライプ状のリッジを形成したり、あるいは、電流狭窄層を形成したりすることによりストライプ状の導波路領域が形成されている。n型コンタクト層とp型コンタクト層にはそれぞれn側電極、p側電極が設けられ、通電により活性層から発光させているものである。さらに所定の共振器長で導波路領域の両端面に共振器面が形成されており、この共振器面からレーザ光が放出される。

[0004]

このような共振器面には、絶縁性の保護膜などが形成されており、これによって半導体層を外気から保護すると共に、出射側とリア側との反射率差を設けている。リア側の保護膜は、出射側の保護膜に比して反射率の高い保護膜とすることで出力を向上させることができる。

[0005]

また、リア側と出射側との反射率差の大きい保護膜を有する半導体レーザ素子は、導波路領域から漏れだす光(迷光)がリア側から放出されにくく、出射側の端面から放出されるようになる。そのため、その迷光によってファーフィールドパターン(FFP)にノイズ(凹凸)が生じ、非ガウス分布になってしまう場合がある。これらの迷光が外部に放出されるのを防ぐために、基板の端面などを被覆するように金属膜などからなる不透明膜を形成することができる。

[0006]

【特許文献1】特開2002-280663号公報

【発明の開示】

【発明が解決しようとする課題】

[0007]

しかしながら、出射側共振面の一部に不透明膜を設けようとすると、そのためにマスク 形成工程などの工程が増やす必要がある。特に、ウエハをバー状に分割し、そのバー状レ ーザの端面に端面保護膜を形成する場合は、位置精度よくマスクを形成すること自体が困 難であるので、そのマスクによって端面保護膜の形成領域を制御するのはさらに困難であ る。特に不透明膜として金属材料を用いる場合は、位置精度の制御性が低いと短絡の原因 となるなどの問題がある。また、不透明膜を広い領域に渡って形成させると、金属材料と 半導体層との熱膨張係数差によって、材料によっては不透明膜と半導体層、あるいは他の 保護膜等との密着性が低下して剥がれやすくなるなどの問題が生じる。

[0008]

そこで、本発明は、出射側端面から放出される迷光によるFFPの悪化を抑制して、良好なビーム特性が得られ、かつ、素子駆動時において誤動作が少なく、また、寿命特性に優れた窒化物半導体レーザ素子を提供することを目的とする。

【課題を解決するための手段】

[0009]

上記問題を解決するために、本発明の窒化物半導体レーザ素子は、窒化物半導体基板と、その上にn型半導体層、活性層及びp型半導体層が積層されてなる窒化物半導体層を備え、該窒化物半導体層にストライプ状のレーザ光の導波路領域を有すると共に、その導波路領域と略垂直な両端面に端面保護膜を有する窒化物半導体レーザ素子であって、窒化物半導体基板は、活性層からの発光を吸収し、その発光波長よりも長波長の励起光を発光する励起領域を有し、端面保護膜は、励起光からの発光波長に対して高反射率を有することを特徴とする。

[0010]

活性層から発光される光は、縦方向(積層面に対して略垂直な方向)においては活性層よりも屈折率の低いクラッド層に挟まれた領域(活性層及びガイド層)内に閉じ込められ、また、横方向(積層面に対して水平な方向)においては、電流注入領域と対応するようストライプ状に閉じ込められている。このように活性層からの光が閉じ込められた領域に共振器面を形成することで、ストライプ状の導波路領域が形成されている。しかし、導波路領域内から、それ以外の領域にも光は漏れ出している。本願では、このような導波路領域から漏れ出した光(迷光)を透過しないような不透明膜を設けるのではなく、迷光を異なる波長に変換してその変換された波長に対して高反射率の端面保護膜を形成させることで、レーザ光にノイズが混ざるのを抑制している。

[0011]

本発明の請求項2に記載の窒化物半導体レーザ素子は、端面保護膜は、出射側端面とリア側端面の両方に設けられていることを特徴とする。

[0012]

このような構成とすることで、迷光が外部に放出されるのを、効率よく抑制することができる。

[0013]

本発明の請求項3に記載の窒化物半導体レーザ素子は、端面保護膜は、活性層からの発 光波長に対して、低反射率を有することを特徴とする。

[0014]

このような構成とすることで、レーザ光が発振可能で、且つ、迷光を吸収して励起された励起光の外部への放出を抑制可能な端面保護膜とすることができる。

[0015]

本発明の請求項4に記載の窒化物半導体レーザ素子は、端面保護膜は、単層又は多層構造であることを特徴とする。

[0016]

このような構成とすることで、所望の反射率の端面保護膜となるように調整することができる。端面保護膜は、反射率や屈折率、或いは透過率を考慮するだけでなく、熱膨張係数や応力等も考慮して材料を選択する必要があるが、多層構造とすることで種々の組み合わせを選択することができ、より優れた機能を有する端面保護膜とすることができる。

[0017]

また、本発明の窒化物半導体レーザ素子は、窒化物半導体基板と、その上にn型半導体層、活性層及びp型半導体層が積層されてなる窒化物半導体層を備え、該窒化物半導体層にストライプ状のレーザ光の導波路領域を有すると共に、その導波路領域と略垂直な端面に、出射側端面保護膜及びその反対のリア側端面保護膜を有する窒化物半導体レーザ素子であって、窒化物半導体基板は、活性層からの発光を吸収し、その発光波長よりも長波長の励起光を発光する励起領域を有し、リア側端面保護膜は、励起光の波長に対して高反射

率を有する第1の端面保護膜と、活性層からの発光波長に対して高反射率を有する第2の端面保護膜とを備え、出射側端面保護膜は、励起光の波長に対して高反射率を有する第3の端面保護膜を備えてなることを特徴とする。

[0018]

このような構成とすることで、リア側から励起光が外部に放出されるのを抑制することができるので、リア側に検出器(フォトダイオード)を設けて駆動制御する場合等の誤作動を抑制することができる。特に、活性層からの発光波長よりも励起光の発光波長が長いので、弱い光でも認識し易くなる。図4は一般的なフォトダイオード(PD)であるSiの分光感度曲線であるが、感度のピークが赤外領域にあり、長波長の発光を認識し易い。そのため、窒化物半導体を用いたレーザ素子のように、波長が比較的短く、例えば390~420nm付近の発光波長を有する場合、その光を吸収して、550~600nm付近の波長の励起光を発光する場合、PDの感度は3倍近くまで高くなる。そうなると、例えレーザ光ではない弱い光であっても認識しやすくなる。リア側から放出される光が、励起光ではなく、レーザ光と同じ波長の弱い光である迷光の場合、PDの感度についてはレーザ光と同じであるため、迷光によってPDの感度に大きく影響与えることはない。本発明では、迷光を吸収させて励起光とし、その励起光に対して高い反射率の端面保護膜を形成することで、出射側からもリア側からも励起光が放出されるのを抑制して、優れたレーザ素子特性を得ることができる。

[0019]

本発明の請求項6に記載の窒化物半導体レーザ素子は、第1の端面保護膜及び/又は第3の端面保護膜は、活性層からの発光波長に対して、低反射率を有することを特徴とする

[0020]

このような構成とすることで、レーザ光が第1及び第3の端面保護膜によって反射率が 低下するのを抑制し、閾値を低下させることができる。

[0021]

本発明の請求項7に記載の窒化物半導体レーザ素子は、出射側端面保護膜は、活性層からに発光波長に対して高反射率を有する第4の端面保護膜を有することを特徴とする。また、本発明の請求項8に記載の窒化物半導体レーザ素子は、第1の端面保護膜、第2の端面保護膜、第3の端面保護膜、第4の端面保護膜は、それぞれ単層又は多層構造であることを特徴とする。

[0022]

このような構成とすることで、出射側とリア側の反射率を所望の値に調整し易くなり、 用途に応じた反射率を得ることができる。

[0023]

本発明の請求項9に記載の窒化物半導体レーザ素子は、第1の端面保護膜と、第2の端面保護膜は、少なくとも一部が重なるよう積層されていることを特徴とする。また、本発明の請求項10に記載の窒化物半導体レーザ素子は、第3の端面保護膜と、第4の端面保護膜は、少なくとも一部が重なるよう積層されていることを特徴とする。

[0024]

第1の端面保護膜と第2の端面保護膜は、それぞれ反射する発光波長が異なるため、積層させたとしても、それぞれ目的の波長の光に対して高反射率を保持することができる。 第3の端面保護膜と第4の端面保護膜についても同様である。

[0025]

本発明の請求項11に記載の窒化物半導体レーザ素子は、第2の端面保護膜は、半導体層に接して形成されていることを特徴とする。また、本発明の請求項12に記載の窒化物半導体レーザ素子は、第4の端面保護膜は、前記半導体層に接して形成されていることを特徴とする。

[0026]

励起光は、活性層からの発光波長よりも長波長であるため、エネルギー的にも低く、ま 出証特2004-3074555

た、導波路領域から漏れだした迷光によって励起された光であるため、導波路領域のレーザ光に比して、光密度も低い。そのため、活性層からの発光に対して高反射率の端面保護膜を半導体層に接するように設けることで、励起光に対する端面保護膜の劣化を抑制するとともに、モードの安定したレーザ光を得ることができる。

[0027]

本発明の請求項13に記載の窒化物半導体レーザ素子は、励起領域は、その周辺領域に 比して転位密度が低いことを特徴とする。

[0028]

本発明の請求項14に記載の窒化物半導体レーザ素子は、励起領域は、その周辺領域に 比して不純物濃度が高いことを特徴とする。

[0029]

本発明の請求項15に記載の窒化物半導体レーザ素子は、不純物は、H、O、C、Siのうちの少なくとも一種であることを特徴とする。

[0030]

本発明の請求項16に記載の窒化物半導体レーザ素子は、活性層からの発光波長は、390~420nmであることを特徴とする。

[0031]

本発明の請求項17に記載の窒化物半導体レーザ素子は、励起光の波長は、550~60nmであることを特徴とする。

[0032]

本発明の請求項18に記載の窒化物半導体レーザ素子は、励起領域は、導波路領域と略平行なストライプ状に形成されていることを特徴とする。

[0033]

本発明の請求項19に記載の窒化物半導体レーザ素子は、導波路領域は、励起領域の上 方に形成されていることを特徴とする。

[0034]

本発明の請求項20に記載の窒化物半導体レーザ素子は、導波路領域は、励起領域から 離間する領域に形成されていることを特徴とする。

【発明の効果】

[0035]

本発明の窒化物半導体レーザ素子は、基板内で迷光を吸収させることでレーザ光に迷光が混ざってFFPを悪化させるのを抑制するとともに、その迷光を吸収して励起光を発生させてその励起光を外部に放出されないよう高反射率の端面保護膜を形成することで、より安定したレーザ光とすることができる。また、リア側においても、活性層からの発光波長より長波長の励起光が検出器を誤作動させないように高反射率の端面保護膜を形成することで、制御性よく駆動させることができ、信頼性に優れた半導体レーザ素子とすることができる。

【発明を実施するための最良の形態】

[0036]

以下、本発明について説明するが、本発明の窒化物半導体レーザ素子は、実施の形態に示された素子構造に限定されるものではない。

[0037]

本発明の窒化物半導体レーザ素子は、活性層からの発光を吸収し、その発光波長よりも 長波長の励起光を発光する励起領域を有する窒化物半導体基板を用いることで、レーザ光 の導波路領域から漏れ出す光(迷光)が、外部に放出されるのを抑制するものである。こ れによって、良好な素子特性とすることができる。

[0038]

図1は、本発明の実施の形態に係る窒化物半導体素子の構成を表すものであって、窒化物半導体基板101上に、n型窒化物半導体層102、活性層104、p型窒化物半導体層103が積層され、p型窒化物半導体層にストライプ状のリッジが設けられた窒化物半

導体レーザ素子である。リッジは、p型窒化物半導体層の一部をエッチング等の手段により除去することで形成することができ、これにより実効屈折率型の導波路を形成することができる。また、リッジとしては、p型窒化物半導体層からn型窒化物半導体層までの一部をエッチングすることで形成して、屈折率型の導波路としてもよく、又は、選択成長によりリッジを形成してもよい。リッジは、底面側の幅が広く上面に近づくに従ってストライプ幅が小さくなる順メサ形状に限らず、逆にリッジ底面に近づくにつれてストライプの幅が小さくなる逆メサ形状でもよく、また、積層面に垂直な側面を有するストライプであってもよく、これらが組み合わされた形状でもよい。また、ストライプ状の導波路は、その幅がほぼ同じである必要はない。また、このようなリッジを形成した後にリッジ表面やリッジ両脇に半導体層を再成長させた埋め込み型のレーザ素子であってもよい。また、リッジを有しない利得導波型の導波路としてもよい。

[0039]

リッジの側面及びそのリッジから連続するp型窒化物半導体層の上面にかけて第1の絶縁膜109が形成されている。リッジ上面及び第1の絶縁膜の上面にはp側オーミック電極105が、また、窒化物半導体基板の裏面にはn側電極107が設けられている。また、半導体層の側面を被覆する第2の絶縁膜110が、第1の絶縁膜の上部にまで連続するよう設けられている。p型窒化物半導体層の上部には、第2の絶縁膜及びp側オーミック電極と接するp側パッド電極106が設けられている。

[0040]

(窒化物半導体基板)

用いられる基板の組成としては、GaN、AlN、若しくはInN、又はこれらの混晶であるAlGaN系、InGaN系、AlInGaN系をあげることができる。これらの基板は、次のような方法で作製することができる。

[0041]

基板となる前記窒化物半導体は、例えばハライド気相成長法(以下、HVPE法)により異種基板上に窒化物半導体を 100μ m以上に厚膜成長させ、その後異種基板を除去することによって形成する。ここで、異種基板を除去した面は窒化物半導体の(000-1)面であって、(000-1)面以外の傾斜面はドライエッチングやウェットエッチング、ケミカルメカニカルポリッシュ(以下、CMPという。)によって形成される。さらに、前記窒化物半導体の2 軸結晶法による(0002)回折 X線ロッキングカーブの半値幅が 3 分以内、さらに望ましくは2 分以内の窒化物半導体とすれば、異種基板を除去する工程においても、窒化物半導体にダメージを与えにくく、 100μ m以上の窒化物半導体を良好な結晶性を保ったまま得ることができる。その後、前記窒化物半導体の(0001)面上に新規な窒化物半導体素子を作製する。また、窒化物半導体の裏面には第1 の電極が形成されている。

[0042]

[0043]

窒化物半導体基板を成長させるための成長基板としてGaAs基板又はサファイア基板、SiC基板、Si基板、スピネル基板、NdGaO3基板、ZnO基板、GaP基板、GaN基板等種々の基板を用いることができる。

6/

[0044]

上記のように横方向成長を伴う成長方法によって窒化物半導体層を成長させ、それを基板とすることで、転位密度(欠陥密度)等が、成長起点の形状に対応するような位置で不均一となる基板とすることができる。また、不純物をドープしながら成長させるのが好ましく、上記転位密度の分布状態に対応するように不純物濃度の不均一領域も形成させる。

[0045]

上記のような低転位密度領域は、成長起点の形状によってその分布状態を選択する事ができるが、レーザ光の導波路領域をストライプ状に形成するので、それに対応してストライプ状に成長起点を形成するのが好ましい。そして、ストライプ状に周期的に配列された成長起点から窒化物半導体層を成長させることで、転位密度が低く結晶性に優れた領域と、それとは逆に、転位が多く、結晶性が悪い領域(転位束)とが、周期的に形成された窒化物半導体基板とすることができる。この転位束は、その上に窒化物半導体層を成長しにくく、成長された層の結晶性もよいとはいえない。そのため、素子駆動時に悪影響を与えやすいので、導波路領域などの動作領域は、転位束以外の領域に形成させるのが好ましく、例えば、図1(b)に示すように、素子の分割位置近傍になるように調整することで、素子特性の悪化を抑制することができる。

[0046]

また、窒化物半導体基板は、不純物をドープするなどして導電性とすることで、図1に示すように、基板裏面側にn電極を設けることができる。また、絶縁性もしくは低導電性の基板でもよく、その場合は、p電極と同一面側にn電極を設ける。また、窒化物半導体基板の膜厚としては、ハンドリング時の強度等を考慮して、約 100μ m程度あればよい

[0047]

(励起領域)

上記のように成長基板上に成長される窒化物半導体基板は、横方向成長によって成長される領域を有しており、結晶の特性が面内で均一にはなりにくく、転位密度や不純物濃度が、異なる領域が形成される。特に、転位密度が低い領域は、活性層からの発光波長を吸収しやすいため、励起領域となる。励起領域は、用いる成長基板の種類や、窒化物半導体層の成長条件(温度、ガス流量、圧力、不純物の種類及び濃度等)等によって、形成された状態が異なる。そのため、励起領域と非励起領域との境界があまりなく、ほぼ全面にわたって弱い励起光を有する励起領域とすることもできるし、図1(b)に示すように局所的に強い励起光を有するような励起領域112を形成させることができる。これらは、目的や用途に応じて好ましい形態を選択することができる。

[0048]

また、このような励起領域は、レーザ光の導波路領域と対応するようにストライプ状に 形成するのが好ましい。

[0049]

また、このような励起領域の上に成長される窒化物半導体層に導波路領域を形成することで、良好なレーザ光の導波路領域を得ることができる。励起領域を導波路領域と対応するような位置となるように形成することで、迷光の吸収効率が向上するので、導波路領域近傍に設けるのが好ましい。ただし、吸収があまり多いと、閾値低下の原因となる場合があるので、そのような場合は、励起領域から離間する位置に成長された窒化物半導体に導波路領域を形成させることができる。また、励起領域は、活性層からの発光波長を吸収し、かつ、それによって励起光を発光可能であればよいので、上記のような窒化物半導体基板の成長方法によって転位密度や不純物の調整によって形成させることのほかに、後行程でイオンを注入するなどの方法で励起領域を形成することもできる。

[0050]

(端面保護膜)

本発明において、端面保護膜は、励起領域からの発光波長に対して高反射率を有するものである。この端面保護膜は、単層構造でもよく、或いは多層構造でもよい。導波路領域

から漏れ出した迷光を吸収して発生する励起光であるため、導波路領域から外部に出射さ れるレーザ光に比して、強度は低い。そのため、レーザ光の出射の妨げにならない程度の 反射率とするのが好ましい。波長が異なるためレーザ光は反射されにくいが、材料によっ ては吸収されることもあり、また、透過するといっても多少のロスを生じるため、膜厚は 薄くするのが好ましい。

[0051]

端面保護膜として、励起光の波長に対しての端面保護膜だけでなく、レーザ光の波長に 対しての端面保護膜も合わせて設けることで、より効率よくレーザ光を出射させることが できる。リア側端面に設ける保護膜のうち、励起光に対して高反射率の保護膜を第1の端 面保護膜とし、導波路領域の発光波長に対して高反射率の保護膜を第2の端面保護膜とす る。また、出射側の端面に設ける保護膜のうち、励起光に対して高反射率の保護膜を第3 の端面保護膜とし、導波路領域の発光波長に対して高反射率の保護膜を第4の端面保護膜 とする。

[0052]

第1及び第2の端面保護膜は、どちらが半導体層に接していてもよいが、好ましくは、 第2の端面保護膜が半導体層に接するように設ける。これによって、第1の端面保護膜の 劣化を抑制することができる。

出射側の端面に第3の端面保護膜のみを設ける場合は、励起光の波長に対して高反射率 となるよう膜厚を設定し、それを出射側端面の全面に設ける。励起光が外部に放出される 領域のみに設けることでもよいが、レーザ光出射部の端面に設けることで、活性層等の半 導体層が外気に曝されるのを防ぐ保護膜として機能させることができる。励起光とレーザ 光とは波長が異なるので、レーザ光を遮られにくい。

[0053]

また、出射側の端面に、第3の端面保護膜に加えて第4の端面保護膜を設けることがで きる。この場合、第4の端面保護膜を半導体層と接するように設けることで、光密度の高 いレーザ光によって第3の端面保護膜が劣化するのを抑制できる。また、出射側にも保護 膜を設けて反射率を調整することで、レーザ光を効率よく出射させることができ、閾値を 低下させることが可能となる。励起光は、第4の保護膜で反射されずに透過し、第1の保 護膜で反射され、外部には放出されない。

[0054]

端面保護膜の具体的な材料としては、導体材料としては、Si、Mg、Al、Hf、N b、Zr、Sc、Ta、Ga、Zn、Y、B、Ti、更にはこれらの酸化物、窒化物、フ ッ化物などの化合物から選ばれたいずれかから選ばれたものを用いることができる。これ らは、単独で用いてもよいし、複数を組み合わせた化合物或いは多層膜として用いてもよ い。好ましい材料としてはSi、Mg、Al、Hf、Zr、Y、Gaを用いた材料である 。また、また、半導体材料としてはAIN、AIGaN、BNなどを用いることができる 。絶縁体材料としてはSi、Mg、Al、Hf、Nb、Zr、Sc、Ta、Ga、Zn、 Y、Bの酸化物、窒化物、フッ化物等などの化合物を用いることができる。

[0055]

第1~第4の端面保護膜の好ましい材料としては、例えば、以下のような組み合わせを あげることができる。

[0056]

A:第1の端面保護膜(励起光に対するリア側端面保護膜)

 $GaN/ZrO_2 + (SiO_2/ZrO_2) O1 ~7 ~3 ~7$

GaN/TiO2+(SiO2/TiO2)の1ペア~3ペア

B:第2の端面保護膜(活性層からの発光に対するリア側端面保護膜)

 $GaN/ZrO_2 + (SiO_2/ZrO_2) o3 d7 \sim 6 d7$

 $GaN/TiO_2 + (SiO_2/TiO_2) o3 d7 \sim 6 d7$

C:第3の端面保護膜(励起光に対する出射側端面保護膜)

GaN/(SiO2/Nd2O5)の1ペア~2ペア

GaN/(Al₂O₃/Nd₂O₅) <math>O1 \sim 7 \sim 2 \sim 7

GaN/(Al2O3/TiO2) の1ペア~2ペア

GaN/Al2O3+(SiO2/Nd2O5)の1ペア~3ペア

D:第4の端面保護膜(活性層からの発光に対する出射側端面保護膜)

 $GaN/ZrO_2 + (SiO_2/ZrO_2) ol ~7 \sim 3 \sim 7$

 $GaN/TiO_2 + (SiO_2/TiO_2) \sigma 1 \sim 7 \sim 3 \sim 7$

上記の組み合わせで、それぞれ波長に応じた膜厚とすることで、優れた特性を有するレーザ素子とすることができる。

[0057]

(電極)

p型窒化物半導体層に設けられるp側オーミック電極の電極材料としては、p型窒化物 半導体層とオーミック性及び密着性が高い材料を選択することができ、具体的には、Ni 、Co、Fe、Cr、Al、Cu、Au、W、Mo、Ta、Ag、Pt、Pd、Rh、I r、Ru、Os及びこれらの酸化物、窒化物等があげられ、これらの単層、合金、或いは 多層膜を用いることができる。好ましくは、Ni、Co、Fe、Cu、Au、Alから選 択される少なくとも1種、及びこれらの酸化物、窒化物等である。

[0058]

p側オーミック電極は熱処理によって良好なオーミック性を実現できる。熱処理温度としては、350 ℃~1200 ℃の温度範囲とするのが好ましく、更に好ましくは400 ℃~750 ℃で、特に好ましくは500 ℃~650 ℃である。

[0059]

また、p側パッド電極の電極材料としては、Ni、Co、Fe、Ti、Cu、Au、W、Zr、Mo、Ta、Ag、Pt、Pd、Rh、Ir、Ru、Os 及びこれらの酸化物、窒化物等があげられ、これらの単層、合金、或いは多層膜を用いることができる。最上層はワイヤ等を接続させるのでAu を用いるのが好ましい。そして、このAu が拡散しないようにその下層には拡散防止層として機能する比較的高融点の材料を用いるのが好ましい。例えば、Ti、Pt、W、Ta、Mo、Ti N 等が挙げられ、特に好ましい材料としてはTi が挙げられる。膜厚としては、総膜厚として3000Å~20000Åが好ましく、更に好ましくは7000Å~13000Åの範囲である。

[0060]

n型窒化物半導体層に設けられるn電極は、窒化物半導体基板が導電性である場合は、その基板の裏面に設けるのが好ましい。或いは、エッチング等で露出させた面に形成させてもよい。また、n型コンタクト層に設けることもできる。p電極と同一面側に設ける場合は、オーミック電極とパッド電極とを、同一工程で形成してもよく、或いは別工程で形成してもよい。また、材料によっては熱処理を省略することもできる。

[0061]

n側オーミック電極としては、n型窒化物半導体層とオーミック性及び密着性が高い材料を選択することができ、具体的には、Ni、Co、Fe、Ti、Cu、Au、W、V、Zr、Mo、Ta、Al、Ag、Pt、Pd、Rh、Ir、Ru、Os等があげられ、これらの単層、合金、或いは多層膜を用いることができる。好ましくは、Ti、Alを順に積層した多層構造である。n側オーミック電極形成後は、半導体層とのオーミック性を良くするために、材料によっては熱処理を行うことが好ましい場合がある。また、n側オーミック電極の膜厚としては、総膜厚として100Å~30000Å程度が好ましく、更に3000Å~15000Å程度が好ましく、特に好ましくは5000Å~10000Åである。この範囲内で形成することで、接触抵抗の低い電極とすることができるので好ましい。

[0062]

また、n側パッド電極の電極材料としては、Ni、Co、Fe、Ti、Cu、Au、W、Zr、Mo、Ta、Al、Ag、Pt、Pd、Rh、Ir、Ru、Os等があげられ、これらの単層、合金、或いは多層膜を用いることができる。好ましくは多層膜とし、最上

層はワイヤ等を接続させるのでAuを用いるのが好ましい。そして、このAuが拡散しないようにその下層には拡散防止層として機能する比較的高融点の材料を用いるのが好ましい。例えば、Ti、Pt、W、Mo、Ti N等が挙げられる。膜厚としては、総膜厚として3000Å~2000Åが好ましく、更に好ましくは7000Å~13000Åの範囲である。

[0063]

n側電極は、上記のようにオーミック電極とパッド電極とを別工程で設けるのではなく、連続して形成して両方の機能を兼ねる、すなわち、半導体層とオーミック接触するオーミック電極で、且つ、ワイヤを形成させる取り出し電極(パッド電極)とを兼用する n 電極とすることもできる。これは、p 側電極に比して n 型半導体層とのオーミック接触が比較的容易であり、しかも、導波路領域からやや離間する領域であるため、光学特性をあり考慮する必要がないため材料の自由度が大きいためである。このような n 電極の膜厚しては、総膜厚として3000Å~20000Åが好ましく、更に好ましくは7000Å~13000Åの範囲である。好ましい組み合わせとしては、T i / A 1、H f / A 1、T i / P t / A u、T i / M o / T i / P t / A u、T i / W / T i / P t / A u、T i / W o / P t / A u、M o / T i / P t / A u、C r / W / P t / A u、V / P t / A u、C r / W / P t / A u、C r / M o / P t / A u、S n を 用いてボンディングさせることで、電流を流すことができる。

[0064]

第1の絶縁膜は、電流の注入領域をリッジ上面に限定するために設けているものであるが、導波路領域に近接して設けられているため光の閉じ込め効率にも作用するものであるので、用いる絶縁膜材料によって好ましい膜厚を選択することができる。第1の絶縁膜は、窒化物半導体層とほぼ同一幅となるように形成させることもできる。p側オーミック電極よりも前に形成される第1の絶縁膜は、オーミック電極の熱処理時に、共に熱処理される。熱処理されることで、単に堆積された膜に比して膜の強度(膜内の原子レベルでの結合力)が増し、半導体層との界面における接合強度も向上する。そのような第1の絶縁膜を、特に第2の絶縁膜が形成される半導体層上面の端部にまで形成することで、第2の絶縁膜の密着性も向上させることができる。

[0065]

また、p側パッド電極は、第2の絶縁膜と接しないように形成することもできる。特に、ジャンクションダウンで用いる場合、p側パッド電極に熱が加わるが、その際に、熱膨張によって体積が大きくなって素子の側面方向(p型半導体層の端方向)に流出し易くなる。また、熱だけでなく、圧力も加わるので、それによっても電極材料が側面方向に流出しやすくなる。そのため第2の絶縁膜と離間させるようにすることで、p側パッド電極の電極材料が側面方向に流出して短絡が生じるのを防ぐことができる。

[0066]

第1の絶縁膜の材料としてはSi、Ti、V、Zr、Nb、Hf、Taよりなる群から選択された少なくとも一種の元素を含む酸化物、SiN、BN、SiC、AlN、AlG aN O P AlN AlG AlN AlN AlG AlN AlN AlG AlN AlN AlG AlN AlN

[0067]

また、第1の絶縁膜の膜厚としては、具体的には、10A以上10000A以下の範囲、好ましくは100A以上5000A以下の範囲とすることである。なぜなら、10A以下であると、電極の形成時に、十分な絶縁性を確保することが困難で、10000A以上であると、かえって保護膜の均一性が失われ、良好な絶縁膜とならないからである。また、前記好ましい範囲にあることで、リッジ側面において、リッジとの間に良好な屈折率差を有する均一な膜が形成される。

[0068]

第2の絶縁膜は、p側オーミック電極の、リッジ上部を除く全面に設けることができ、エッチングによって露出されたp型半導体層及び活性層の側部端面にも連続するように設けるのが好ましい。好ましい材料としては、Si、Ti、V、Zr、Nb、Hf、Ta よりなる群から選択された少なくとも一種の元素を含む酸化物、SiN、BN、SiC、AlN、AlGaNの内の少なくとも一種で形成することが望ましく、その中でも特に好ましい材料として、SiO2、Al2O3、ZrO2、TiO2 などの単層膜または多層膜を挙げることができる。

[0069]

また、上記リッジのストライプ方向を共振器方向とするために、端面に設けられている一対の共振器面は、劈開又はエッチング等によって形成することができる。劈開で形成させる場合は、基板や半導体層が劈開性を有していることが好ましく、その劈開性を利用すると優れた鏡面を容易に得ることができる。また、劈開性がなくても、エッチングによって共振器面を形成させることができ、この場合は n 電極形成面を露出させる際に同時に行うことで、少ない工程で得ることができる。また、リッジ形成と同時に形成することもできる。このように各工程と同時に形成させることで工程を少なくすることができるが、より優れた共振器面を得るためには、別工程を設けるのがよい。

【実施例1】

[0070]

以下、実施例を説明するが、本発明において、窒化物半導体層を構成するn型窒化物半導体層、活性層、p型窒化物半導体層のデバイス構造としては特に限定されず、種々の層構造を用いることができる。デバイスの構造としては、例えば後述の実施例に記載されているレーザのデバイス構造が挙げられるが、他のレーザ構造についても適用できる。窒化物半導体の具体的な例としては、GaN、AIN、若しくはInNなどの窒化物半導体や、これらの混晶であるIII-V族窒化物半導体、更には、これらにB、P等が含まれるもの等を用いることができる。窒化物半導体の成長は、MOVPE、MOCVD(有機金属化学気相成長法)、HVPE(ハライド気相成長法)、MBE(分子線気相成長法)等、窒化物半導体を成長させるのに知られている全ての方法を適用できる。

[0071]

(窒化物半導体基板)

[0072]

(n型コンタクト層)

[0073]

(クラック防止層)

次に、TMG、TMI(トリメチルインジウム)、アンモニアを用い、温度を800 にしてSi ドープのn-I no. 05 Gao. 95 Nよりなるクラック防止層を0.15 μ mの膜厚で成長させる。

[0074]

なお、窒化物半導体基板を導電性の基板とし、成長用基板を後で除去し、基板の裏面側に n 電極を形成する場合は、窒化物半導体基板上に以下に述べる n 型クラッド層から積層

させることもできる。

[0075]

(n型クラッド層)

次に、温度を1050 ℃にして、原料ガスにTMA(トリメチルアルミニウム)、TM G及びアンモニアを用い、アンドープのA10.05 Ga0.095 NよりなるA層と、Sie ドープしたGaN よりなるB層をそれぞれ50 Aの膜厚で成長させる。そして、この操作をそれぞれ110 回繰り返してA層とB層を交互に積層して総膜厚 1.1μ mの多層膜(超格子構造)よりなるn 型クラッド層を成長させる。この時、アンドープA1GaN のA1 の混晶比としては、0.02 以上0.3 以下の範囲であれば、十分にクラッド層として機能する屈折率差を設けることができる。

[0076]

(n型光ガイド層)

次に、同様の温度で原料ガスにTMG及びアンモニアを用い、アンドープのGaNよりなるn型光ガイド層を 0.15μ mの膜厚で成長させる。この層は、n型不純物をドープさせてもよい。

[0077]

(活性層)

次に、温度を800 ℃にして、原料にTMI(トリメチルインジウム)、TMG及びアンモニアを用い、不純物ガスとしてシランガスを用い、SiドープのIno.o2 Gao.9 8 Nよりなる障壁層を140 Åの膜厚で成長させる。続いてシランガスを止め、アンドープのIno.1 Gao.9 Nよりなる井戸層を70 Åの膜厚で成長させる。この操作を2 回繰り返し、最後にSiドープのIno.o2 Gao.9 8 Nよりなる障壁層を140 Åの膜厚で成長させて総膜厚 560 Åの多重量子井戸構造(MQW)の活性層を成長させる。

[0078]

(p型電子閉じ込め層)

同様の温度で、 N_2 雰囲気中で、 M_g ドープの $A_{10.25}$ $G_{a0.75}$ N_s りなる p型電子閉じ込め層を 30 A の膜厚で成長させる。次いで、 H_2 雰囲気中で、 M_g ドープの $A_{10.25}$ $G_{a0.75}$ N_s N_s

[0079]

(p型光ガイド層)

次に、温度を1050 ℃にして、原料ガスにTMG 及びアンモニアを用い、アンドープのGaN よりなる p 型光ガイド層を 0.15μ mの膜厚で成長させる。この p 型光ガイド層はアンドープとして成長させるが、Mg をドープさせてもよい。

[0080]

(p型クラッド層)

続いて、アンドープのA10.08Ga0.92NよりなるA 層をB0A0 膜厚で成長させ、その上にMgドープのGaNよりなるB 層をB0A0 膜厚で成長させる。これを B0 経り返してA 層とB 層とを交互に積層させて、総膜B0.45 μ 0 mの多層膜(超格子構造)よりなるB0 型クラッド層を成長させる。B0 型クラッド層は少なくとも一方がB1 を含む窒化物半導体層を含み、互いにバンドギャップエネルギーが異なる窒化物半導体層を積層した超格子で作製した場合、不純物はいずれも一方の層に多くドープして、いわゆる変調ドープを行うと結晶性がよくなる傾向にあるが、両方に同じようにドープさせてもよい。

[0081]

(p型コンタクト層)

最後に1050 Cでp型クラッド層の上にMgドープのGaNよりなるp型コンタクト層を150 Aの膜厚で成長させる。p型コンタクト層はp型のInx Aly Gal-x-y N($x \le 0$ 、 $y \le 0$ 、 $x+y \le 1$) で構成することができ、好ましくはMgをドープしたGaNとすればp電極と最も好ましいオーミック接触が得られる。反応終了後、反応容

器内において窒素雰囲気中でウエハを700℃でアニーリングして、p型層を更に低抵抗化する。

[0082]

(n型層露出)

以上のようにして窒化物半導体を成長させて積層構造体を形成した後、ウエハを反応容器から取り出し、最上層のp型コンタクト層の表面にSiO2よりなる保護膜を形成してRIE(反応性イオンエッチング)を用いてCl2ガスによりエッチングし、n型コンタクト層の表面を露出させる。また、このとき、エッチングにより共振器面を形成させてもよい。

[0083]

(リッジ形成)

次に、ストライプ状の導波路領域を形成するために、最上層のp型コンタクト層のほぼ全面にCVD装置により、Si酸化物(主としてSiO2)よりなる保護膜を 0.5μ mの膜厚で形成した後、フォトリソグラフィ技術により保護膜の上に所定の形状のマスクを形成し、RIE装置によりCHF3 ガスを用いたエッチングによりストライプ状のSi酸化物からなる保護膜を形成する。このSi酸化物の保護膜をマスクとしてSiCl4 ガスを用いて半導体層をエッチングして、活性層よりも上にリッジストライプが形成される。このとき、リッジの幅は 1.6μ mとなるようにする。

[0084]

(第1の絶縁膜)

 SiO_2 マスクを形成させた状態で、p型半導体層表面に ZrO_2 よりなる第1の絶縁膜を膜厚約550Åで形成する。この第1の絶縁膜は、n側のオーミック電極形成面をマスクして半導体層の全面に設けてもよい。また、後に分割され易いように絶縁膜を形成させない部分を設けることもできる。

[0085]

第1の絶縁膜形成後、ウエハを600℃で熱処理する。このように、SiO2 以外の材料を第1の絶縁膜として形成する場合、第1の絶縁膜形成後に、300℃以上、好ましくは400℃以上、窒化物半導体の分解温度以下(1200℃)で熱処理することにより、絶縁膜材料を安定化させるコトができる。特に、第1の絶縁膜形成後の工程において、主としてSiO2 をマスクとして用いてデバイス加工を施すような場合は、そのSiO2 マスクを後で除去する際に用いるマスク溶解材料に対して溶解しにくくすることができる。この第1の絶縁膜の熱処理工程は、第1の絶縁膜の材料や工程等によっては省略することもできるし、また、オーミック電極の熱処理と同時に行うなど、工程順序等についても適宜選択することができる。熱処理後、バッファード液に浸漬して、リッジストライプの上面に形成したSiO2 を溶解除去し、リフトオフ法によりSiO2 と共に、p型コンタクト層上(更にはn型コンタクト層上)にあるZrO2 を除去する。これにより、リッジの上面は露出され、リッジの側面はZrO2 で覆われた構造となる。

(オーミック電極)

次に、p型コンタクト層上のリッジ最表面及び第1の絶縁膜上にp側オーミック電極をスパッタにより形成させる。このp側オーミック電極は、Ni/Au(100Å/1500Å)を用いる。また、n型コンタクト層上面にもn側オーミック電極を形成させる。n側オーミック電極はTi/A1(200Å/5500Å)からなり、リッジと平行で、かつ、同程度の長さのストライプ状に形成されている。これら電極形成後、酸素と窒素の混合雰囲気中で、600で熱処理する。

(第2の絶縁膜)

次いで、リッジ上のp側オーミック電極の全面と、n側オーミック電極の上部の一部を覆うレジストを形成する。次いで、 SiO_2 からなる第2の絶縁膜を、ほぼ全面に形成し、リフトオフすることで、p側オーミック電極の上面全面とn側オーミック電極の一部が露出された第2の保護膜が形成される。第2の絶縁膜とp側オーミック電極とは離間するように形成してもよく、また、一部が重なるように形成されていてもよい。また、後の分

割を考慮して、分割位置を挟んで幅10μm程度のストライプ状の範囲には、第1及び第 2の絶縁膜や電極を形成しないようにしておいてもよい。

[0086]

第2の絶縁膜は、p側及びn側のオーミック電極上部を除く全面に渡るように設けるものである。好ましい材料としては、Si、Ti、V、Zr、Nb、Hf、Taよりなる群から選択された少なくとも一種の元素を含む酸化物、SiN、BN、SiC、AlN、AlGaNの内の少なくとも一種で形成することが望ましく、その中でも特に好ましい材料として、 SiO_2 、 Al_2O_3 、 ZrO_2 、 TiO_2 などの単層膜または多層膜を挙げることができる。

(パッド電極)

次に、上記のオーミック電極を覆うようにパッド電極を形成する。このとき、第2の絶縁膜を覆うように形成させるのが好ましい。p側パッド電極は、Pt/Ti/Pt/Au (1000Å/50Å/1000Å/6000Å)の順に積層される。また、n側パッド電極は、下からNi/Ti/Au (1000Å/1000Å/8000Å) で形成される。これらパッド電極は、第2の絶縁膜を介してp側オーミック電極及びn側オーミック電極にそれぞれストライプ状に接している。

(劈開及び共振器面形成)

次いで、基板を研磨して約 100μ mの膜厚になるよう調整後、基板裏面にスクライブ溝を形成し、窒化物半導体層側からプレーキングして、劈開することでバー状のレーザとする。窒化物半導体層の劈開面は、窒化物半導体のM面(11-00面)となっており、この面を共振器面とする。

(端面保護膜形成)

上記のように形成された共振器面には、ECRスパッタ装置等のスパッタ装置を用いて端面保護膜を設ける。出射側端面には、第3の端面保護膜として、(SiO_2 (917Å)/ Nd_2O_5 (550Å))の2ペアからなる第3の端面保護膜を設ける。リア側端面には、 ZrO_2 (440Å)+(SiO_2 (667Å)/ ZrO_2 (440Å))の6ペアからなる第2の保護膜を設ける。その上にさらに ZrO_2 (440Å)+(SiO_2 (917Å)/ ZrO_2 (605Å))の6ペアからなる第1の保護膜を設ける。これらの膜厚は、活性層からの発光波長を400nm、その波長を吸収して発光される励起光を550nmとしてその波長(λ)に対して λ /4n(nは屈折率)となるように設定したものである。このような設定で設けられた端面保護膜の透過率をグラフに示す。出射側の透過率を図3に、また、リア側の透過率を図2に示す。出射側、リア側とも、励起光の波長域の透過率が低くなっており、外部に放出されにくくしている。

[0087]

最後に、リッジストライプと略平行になるようにスクライブにより溝を形成し、その溝部でバーを切断して本発明の半導体レーザ素子を得る。スクライブの方法としては、カッター等の刃を用いた機械的又は物理的スクライブや、YAGレーザなどを用いた光学的又は熱的スクライブ等を用いることができる。また、スクライブの方向は、半導体層側からでもあるいは基板側からでもよく、素子の形状や、基板の種類等によって最適な方法を種々選択することができる。

[0088]

上記のようにして得られる窒化物半導体レーザ素子は、窒化物半導体基板のほぼ全面に励起領域を有している。これは、転位密度の差が極端に大きくならなりように成長させているためであり、そのために局部的に励起光強度の高い領域が存在していない。また、室温において閾値電流密度2.5 k A/c m²、60 mWの高出力において発振波長405 n mの連続発振可能なものである。リア側に設けた検出器に励起光が照射されるのを低減することで、制御よく駆動させることができるとともに、出射側端面から放出されるレーザ光はノイズ(凹凸)が少なく良好なFFPを有している。

【実施例2】

[0089]

実施例2は、出射側端面には、第3の端面保護膜として、A12O3(1800A)/ (SiO₂ (917Å) / Nd₂O₅ (550Å)) の3ペアからなる第3の端面保護膜 を設ける。リア側端面には、 Z r O 2 (4 4 0 Å) + (S i O 2 (6 6 7 Å) / T i O 2 (370A))の6ペアからなる第2の保護膜を設ける。その上にさらに2r02(44 0Å) + (SiO2 (917Å) / TiO2 (509Å)) の6ペアからなる第1の保護 膜を設ける。これらの膜厚は、実施例1と同様に、活性層からの発光波長を400nm、 その波長を吸収して発光される励起光を550nmとしてその波長(A)に対してA/4 n(nは屈折率)となるように設定したものである。また、n電極を窒化物半導体基板の 裏面に設ける。 n 電極の材料としては、 V / P t / A u (150 Å / 2000 Å / 330 0Å)で設ける。n電極を設けた後は、熱処理を行わない。上記以外については実施例1 と同様に行い、本発明の窒化物半導体レーザ素子を得る。このようにして得られる窒化物 半導体レーザ素子は、実施例1と同様に励起領域を基板のほぼ全領域に備え、弱い励起光 を有する。室温において閾値電流密度2.5 k A/c m²、60 mWの高出力において発 振波長405nmの連続発振可能なものである。リア側に設けた検出器に励起光が照射さ れるのを低減することで、制御よく駆動させることができるとともに、出射側端面から放 出されるレーザ光はノイズ(凹凸)が少なく良好なFFPを有している。

【実施例3】

[0090]

実施例3においては、窒化物半導体基板として、以下のようにして得られる基板を用い る。成長基板として、GaAs基板を用いる。基板上面に、窒化物半導体のM面と平行な ストライプ状のSiО2よりなる保護膜を形成し、これを種としてファセット面が表出す るように成長させる。これによって、膜厚約300μmの窒化物半導体基板を得る。この ようにして得られる窒化物半導体基板は、ストライプ状に低転位密度領域と、転位束を有 する窒化物半導体基板であって、リッジを低転位密度領域の上部に形成させる。低転位密 度領域は励起領域であって、導通と共に活性層からの発光波長 (405 nm) を吸収して 、励起光(560nm)を有する。実施例3では、n電極を窒化物半導体基板の裏面に形 成させているが、リッジ形成前にはn型半導体層を露出するようにエッチングを行う。特 に、結晶性の悪い転位束の上部に形成されているn型半導体層~p型半導体層は、成長状 態がその周辺部と異なっている。そのため、膜厚も周辺部に比して薄くなっている。その ような領域では、pnジャンクションの形成が十分ではないと考えられる。そのため、ス トライプ状の転位束の幅よりもやや広い範囲のn型半導体層~p型半導体層をエッチング によって除去することで、素子機能の低下を抑制することができる。また、出射側端面に (Al₂O₃ (823Å)/TiO₂ (509Å))の2ペアからなる第3の端面保護膜 を設ける以外は、実施例1と同様に行い、本発明の窒化物半導体レーザ素子を得る。尚、 実施例3においても、第3の端面保護膜の膜厚は、実施例1と同様に、活性層からの発光 波長を400nm、その波長を吸収して発光される励起光を550nmとしてその波長(λ) に対して λ / 4 n (nは屈折率) となるように設定したものである。このようにして 得られる窒化物半導体レーザ素子は、室温において閾値電流密度 2.5 k A/c m²、6 0mWの高出力において発振波長405nmの連続発振可能なものである。リア側に設け た検出器に励起光が照射されるのを低減することで、制御よく駆動させることができると ともに、出射側端面から放出されるレーザ光はノイズ(凹凸)が少なく良好なFFPを有 している。

【産業上の利用可能性】

[0091]

本発明は、レーザ素子を応用することができる全てのデバイス、例えば、CDプレーヤ、MDプレーヤ、各種ゲーム機器、DVDプレーヤ、電話回線や海底ケーブル等の基幹ライン・光通信システム、レーザメス、レーザ治療器、レーザ指圧機等の医療機器、レーザビームプリンタ、ディスプレイ等の印刷機、各種測定器、レーザ水準器、レーザ測長機、レーザスピードガン、レーザ温度計等の光センシング機器、レーザ電力輸送等の種々の分野において利用することができる。

【図面の簡単な説明】

[0092]

【図1】(a)本発明の半導体レーザ素子を説明する模式斜視図

(b) 図

1 (a)のA-A断面図

(c)図1 (a)のB-B断面図

【図2】本発明の実施の形態の端面保護膜の透過率を示すグラフ

【図3】本発明の実施の形態の端面保護膜の透過率を示すグラフ

【図4】 フォトダイオードの分光感度曲線

【符号の説明】

[0093]

101・・・窒化物半導体基板

102···n型窒化物半導体層

103・・・p型窒化物半導体層

104 · · · 活性層

105・・・p側オーミック電極

106·・・p側パッド電極

107 · · · n 側電極

108・・・第1の絶縁膜

109・・・第2の絶縁膜

110・・・端面保護膜

111・・・転位束

112・・・低転位密度領域

【書類名】図面 【図1】

【図2】

【図3】

【図4】

【書類名】要約書

【要約】

【課題】 誤作動が少なく、また、良好なFFPを有する窒化物半導体レーザ素子を提供する。

【解決手段】 窒化物半導体基板と、その上に n 型半導体層、活性層及び p 型半導体層が積層されてなる窒化物半導体層を備え、該窒化物半導体層にストライプ状のレーザ光の導波路領域を有すると共に、その導波路領域と略垂直な両端面に端面保護膜を有する窒化物半導体レーザ素子であって、

前記窒化物半導体基板は、前記活性層からの発光を吸収し、その発光波長よりも長波長の励起光を発光する励起領域を有し、

前記端面保護膜は、前記励起領域からの発光波長に対して高反射率を有することを特徴とする窒化物半導体レーザ素子。

【選択図】 図1

認定・付加情報

特許出願の番号 特願2003-273123

受付番号 50301149297

書類名 特許願

担当官 第五担当上席 0094

作成日 平成15年 7月11日

<認定情報・付加情報>

【提出日】 平成15年 7月10日

特願2003-273123

出願人履歴情報

識別番号

[000226057]

1. 変更年月日

1990年 8月18日

[変更理由]

新規登録

住 所

徳島県阿南市上中町岡491番地100

氏 名 日亜化学工業株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.