Lämpötilamittaukset

Mallin sovittaminen

Tulevaisuuden ennustaminen

Menneisyyden "ennustaminen"

Mittauslukemat punaisella, taustalämpö sinisellä

Lämpötilamittaukset

Mallin sovittaminen

Tulevaisuuden ennustaminen

Menneisyyden "ennustaminen"

Teen yksinkertaisen mallin vesilasin lämpötilalle

Olkoon L(t) lämpötila ajan t funktiona. Kirjoitetaan

$$L(t) = 26 + Ce^{-bt},$$

missä vakioiden b > 0 ja C arvot on määritettävä mittausten avulla.

Siirretään taustalämpö 26 yhtälön vasemmalle puolelle ja otetaan kummastakin puolesta logaritmi:

$$\ln(L(t) - 26) = \ln(Ce^{-bt}) = \ln C + \ln(e^{-bt}) = a - bt.$$

Yllä merkitsimme $a = \ln C$.

Johtopäätös: jos mallimme on tarkka, taustakorjattujen mittauspisteiden logaritmit käyttäytyvät lineaarisesti.

Vähennetään mittauksista 26 ja otetaan logaritmi

Sovitamme pisteisiin suoran käyttäen pienimmän neliösumman keinoa.

Tässä on eksponentiaalinen mallimme.

Lämpötilamittaukset

Mallin sovittaminen

Tulevaisuuden ennustaminen

Menneisyyden "ennustaminen"

Lämpötilan kehityksen ennustaminen 15 minuutin kohdalla saadun mittauksen perusteella

Aikaisempi mallimme $L(t)=26+53\,e^{-0.034t}$ oli sovitettu kulkemaan kaikkien mittauspisteiden kautta niin hyvin kuin mahdollista. Silloin siis C=53 ja b=0.034 kaavassa $L(t)=26+Ce^{-bt}$.

Nyt pidämme jäähtymisen nopeutta kuvaavan vakion b samana ja säädämme vakiota C niin, että malli kulkee 15 minuutin kohdalla mitatun datapisteen kautta. Etsimme siis vakiota C', jolla funktiolle $L_{15}(t)=26+C'\,e^{-0.034t}$ pätee $L_{15}(15)=57$ C°. Saamme

$$57 = 26 + C' e^{-0.034 \cdot 15}$$

ja edelleen

$$C' = \frac{57 - 26}{e^{-0.034 \cdot 15}} \approx \frac{31}{0.6004955} \approx 52.$$

Punainen piste: mittaus 15 minuutin kohdalla. Musta piste: ennuste 90 minuutin kohdalle.

Virheiden vaikutus

Entä jos mittauksessamme on hiukan virhettä sekä ajan että lämpötilan suhteen? Kuinka ennuste muuttuu silloin?

Tutkitaan asiaa laskemalla vastaavat ennusteet kuin yllä kahdelle hiukan virheelliselle mittaukselle.

Pieni virhe ajassa ja alkulämmössä muuttaa ennustetta vain hiukan.

Toisenkinlainen virhe ajassa ja alkulämmössä muuttaa ennustetta vain hiukan.

Tässä on 90 minuutin kohdalla mitattu lämpötila. Ennusteet olivat aika hyviä virheistä huolimatta.

Lämpötilamittaukset

Mallin sovittaminen

Tulevaisuuden ennustaminen

Menneisyyden "ennustaminen"

Punaisella 90 minuutin kohdalla tehty mittaus. Ennustetaan siitä taaksepäin lämpötila hetkellä 0.

Takaperin ennustaminen ei mene ihan nappiin. Olihan vesi hetkellä 0 kiehuvaa eli sata-asteista.

Entä jos mittauksessa hetkellä 90 on virhettä?

Entä jos mittauksessa hetkellä 90 on virhettä?

Menneisyyden ennustaminen on vaikeaa!

Lämpötilamittaukset

Mallin sovittaminen

Tulevaisuuden ennustaminen

Menneisyyden "ennustaminen"

Milloin vesi kiehui? Lukemalla mallia takaperin 90 minuutin mittauksesta saamme kello 11:57.

Pikkuisen virheellinen mittaus puolentoista tunnin kohdalla muuttaa kiehumisajan arvioksi 11:44.

Virhe toiseen suuntaan muuttaa kiehumisajan arvioidun kellonajan lukemaan 12:06.

Mittausvirheen rajoissa voimme siis todeta, että vesi kiehui jollakin hetkellä 11:44 ja 12:06 välillä.

