

Path Planning via Reinforcement Learning for Robotic Catheters Performing Percutaneous Coronary Interventions in a Deformable Environment

Advisor: Prof. Elena De Momi

Co-advisor: Zhen Li, Ph.D. candidate

Author: Chiara Lambranzi 944336

Academic Year 2021/22

Department of Electronics, Information and Bioengineering Master of Science – Biomedical Engineering

Introduction

Clinical scenario

- Cardiovascular diseases main cause of death in developed countries^[1]
- 147.438 PCIs in Italy in 2021^[2]

Risks

- X-ray and constrast dye exposure
- Collision with delicate anatomy

Solution

- Aortic model from MRI
- Guidance with path planning in PCI procedure to reduce collision

State of the art

Path planning: find a collision-free motion between an initial and a final configuration within a specified environment

Aim of the work

Modeling

CATHETER

- Follow the leader model
- DOF: insertion, x-z rotation

Modeling

Methods

CATHETER

Results

BENDING CONSTRAINT

$$\theta_{max}^{i} = \frac{\theta_{max} * \Delta_{l}}{L}$$

State of the art

 θ_{max} : maximum bending angle

 θ_{χ} : x-bending input

Reinforcement Learning

REWARD FUNCTION

$$r_t = r_{end} + r_{in}$$

$$r_{end} = \begin{cases} r_{obst} & if \ q_i \in C_{obst} \\ r_{target} & if \ ||p_i - p_t|| < \epsilon \end{cases}$$

$$r_{in} = r_{step} + r_{centerline} + r_{bending}$$

 r_{step} : time-step reward

 $r_{bending}$: high angle reward

Reinforcement Learning

State of the art

Methods

Results

observations

actions

AGENT

POLICY reward function

REWARD FUNCTION

$$r_t = r_{end} + r_{in}$$

$$r_{end} = \begin{cases} r_{obst} & if \ q_i \in C_{obst} \\ r_{target} & if \ ||p_i - p_t|| < \epsilon \end{cases}$$

$$r_{in} = r_{step} + r_{centerline} + r_{bending}$$

ACTIONS

$$A = [\alpha, \gamma, \Delta_l]$$

OBSERVATIONS

target distance pose q_i

target direction raycast $o_{dir} = p_t - p_i$ o_{ray}

Network Architecture

Performance metrics

Success rate

$$\delta = n_s/n$$

Collision number

$$\varepsilon = \sum_{i=t_0}^{i=t_f} c(i), c(i) = \begin{cases} 0, & if \ q_i \in C_{free} \\ 1, & otherwise \end{cases}$$

Targeting error

$$T_a = \min ||q_t - q_i||$$

Duration

$$T = t_f - t_0$$

 n_s : successful tests

n: total tests

 t_0 , t_f : start time, stop time

c(i): permitted collisions

 q_i : agent pose at time i

 q_t : target pose

Experimental protocol

- 60 demonstrations from 1 expert (student)
- 5 million steps training
- 100 tests with the trained network
- 3 possible starting poses
- 5 possible target positions

Ablation study

Methods

Results

Ablation study

	δ	
CGN	68%	
no_BC	8%	
no_GAIL	41%	
PPO_only	0%	

p < 0.05 using Kruskal-Wallis test

module	symbol	value
PPO	K	0.2
ВС	μ	0.7
GAIL	λ	0.8
curiosity	V	0.02

Network loss function

$$L_{tot} = \kappa (1 - \mu) L_{PPO} + \lambda L_{GAIL} + \kappa \mu L_{BC} + \nu L_{curiosity}$$

Replanning

Graphical user interface: external view and catheter view

Conclusions and future work

Results

- Viable path and replanning
- Validation in a deformable environment
- Respect of physical constraints

Limitations

- Cumbersome model
- Limited precision for replanning

Future work

- Test on different aortic models
- Improve duration and precision of replanning

Thank you for your attention! Questions?

Department of Electronics, Information and Bioengineering

Master of Science – Biomedical Engineering

In vitro validation

