Klasifikacija oblik kubičnih Bezierjevih krivulj

Jan Pristovnik in Laura Guzelj Blatnik

Fakulteta za matematiko in fiziko

4. januar 2021

PARAMETRIČNE KUBIČNE KRIVULJE

Kubično parametrični krivuljo definiramo kot:

$$x(t) = a_1 t^3 + a_2 t^2 + a_3 t + a_4$$

$$y(t) = b_1 t^3 + b_2 t^2 + b_3 t + b_4$$

$$za - \infty < t < \infty,$$
(1)

njeno ukrivljenost K pa:

$$K = \frac{\frac{dx}{dt} \frac{d^2y}{dt^2} - \frac{dy}{dt} \frac{d^2x}{dt^2}}{\left(\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2\right)^{3/2}}.$$

Ukrivljenost

Imenovalec iz enačbe za K lahko zapišemo sledeče:

$$\frac{dx}{dt}\frac{d^2y}{dt^2} - \frac{dy}{dt}\frac{d^2x}{dt^2} = 2(At^2 + Bt + C) = 2F(t),$$

kjer velja

$$A = 3(a_2b_1 - a_1b_2)$$

$$B = 3(a_3b_1 - a_1b_3)$$

$$C = a_3b_2 - a_2b_3.$$

Označimo:

$$\Delta = B^2 - 4AC$$

Oblike Krivulj

Trditev 1

Potreben in zadosten pogoj, da bo krivulja (1) imela špico, če je $A \neq 0$, je $\Delta = 0$.

Trditev 2

Če krivulja (1) ni premica, bo vsebovala največ eno špico.

Trditev 3

Potreben in zadosten pogoj, da bo krivulja (1) bo vsebovala loop (prevod??), je $\Delta < 0$.

Krivulje na intervalu

V nadaljevanju bomo obravnavali lastnosti krivulj na nekem intervalu $[t_2,t_3]$. Za $t_2 \leq t \leq t_3$ lahko enačbo (1) zapišemo sledeče:

$$x(t) = a_1(t - t_2)^3 + a_2(t - t_2)^2 + a_3(t - t_2) + a_4$$

$$y(t) = b_1(t - t_2)^3 + b_2(t - t_2)^2 + b_3(t - t_2) + b_4$$
(2)

imenovalec v enačbi ukrivljenosti K pa se izraža kot:

$$\frac{dx}{dt}\frac{d^2y}{dt^2} - \frac{dy}{dt}\frac{d^2x}{dt^2} = 2(A(t-t_2)^2 + B_1(t-t_2) + C_1) = 2(A(t-t_3)^2 + B_2(t-t_3) + C_2) = 2F_1(t),$$

kjer velja

$$A = 3(a_2b_1 - a_1b_2)$$

$$B_1 = 3(a_3b_1 - a_1b_3)$$

$$B_2 = B_1 + 2A(t_3 - t_2)$$

$$C_1 = a_3b_2 - a_2b_3$$

$$C_2 = C_1 + A(t_3 - t_2)^2 + B_1(t_3 - t_2).$$

Klasifikacija krivulj na intervalu

Definiramo še Δ_1 kot:

$$\Delta_1 = B_1 - 4AC_1$$

Trditev 4

Potrebni in zadostni pogoji, da bo krivulja (2) vsebovala loop so:

- \bullet $\Delta_1 < 0$
- $B_1^2 \ge 3AC_1$ in $B_2^2 \ge 3AC_2$
- $F_1'(t_2)F_1'(t_3) \leq 0$.

Trditev 5

Če je $A \neq 0$, sta naslednja pogoja potrebna in zadostna, da bo krivulja (2) vsebovala špico:

- $\Delta_1 = 0$
- $F_1'(t_2)F_1'(t_3) \leq 0$.

Klasifikacija krivulj na intervalu

Trditev 6

Naslednji pogoji so potrebni in zadostni za različne vrste prevojev na krivulji (2):

- Prevoj bo na intervalu (t_2, t_3) , če bo veljalo: $F_1(t_2)F_1(t_3) < 0$.
- Prevoj bo pri parametru t_2 (oziroma t_3), če bo $\Delta_1 > 0$ in $F_1(t_2) = 0$ (oziroma $F_1(t_3) = 0$).
- Interval (t_2, t_3) bo vseboval dva prevoja, če bo $\Delta_1 > 0$, $F_1(t_2)F'_1(t_2) < 0$, $F_1(t_3)F'_1(t_3) > 0$ in $F_1(t_2)F_1(t_3) > 0$.

Trditev 7

Potrebna in zadostna pogoja, da krivulja (2) ne bo imela prevojev, sta:

- $\Delta_1 \leq 0$ ali $F_1(t_2)F_1(t_2) > 0$
- $F'_1(t_2)F'_1(t_3) > 0$ ali $F_1(t_2)A \le 0$.

HERMITSKA INTERPOLACIJA

Klasifikacija

Uvod v B-zlepke

B-zlepki reda n so bazne funkcije za špline functions"istega reda, definirane na istih vozlih. Kar pomeni, da lahko vse špline functions enolično predstavimo kot linearno kombinacijo B-zlepkov.

Definicija 1

Rekurzivna formula za B-zlepke:

$$B_{i,k}(x) = \frac{x - t_i}{t_{i+k} - t_i} B_{i,k-1}(x) + \frac{t_{i+k+1} - x}{t_{i+k+1} - t_{i+1}} B_{i+1,k-1}(x)$$

$$B_{i,k}(x) = \int 1 \quad ; \ t_i \le x \le t_{i+1}$$

$$B_{i,0}(x) = \begin{cases} 1 & \text{; } t_i \le x \le t_{i+1} \\ 0 & \text{; sicer} \end{cases}$$

HVALA ZA POZORNOST!