	На пълното решение	На частичните решения
Тагове	BFS Trie	Двоично повдигане

Анализ

Подзадача №1

Както винаги оставих подзадача с тестовите примери за обратна връзка от системата.

Подзадача №2

В подзадачата единствено се търси дължината на най-краткия път от 1 до N. Тази задача е основна и се решава чрез Обхождане в ширина (BFS).

Постигната сложност: O(N)

Имплементация: escape 11p.cpp

Подзадача №3

Нека за всеки връх освен дължината на най-краткия път търсим и лексикографски най-малкия низ, с такава дължина, по който може да се стигне до него. Нека разстоянието от 1 до връх u да е d_u . Нека podumeлите на връх u са тези върхове, които са съседи на u и са на разстояние от 1 точно равно на d_u-1 . Така, индуктивно, като трябва да изберем от кой родител v да достигнем u, ние трябва да следваме критериите:

- 1. Низът до v е лексикографски най-малкият измежду тези до всички родители на u.
- 2. При равни низове се избира този с най-малка буква на реброто до u.

Тази идея е основна за нататъчните решения. Най-наивно може да се приложи като за всеки връх директно се намери всеки кандидат-низ и се избере лексикографски най-малкият.

Постигната сложност: $O(N^2)$

Имплементация: escape_22p.cpp

Подзадача №4

За по-добри резултати, ние трябва да измислим добър начин за проверка на критерии 1 и Докато критерии 2 е директен след установяване равенство по критерии 1, другият е попредизвикателен. Може да забележим, че правейки нашето BFS обхождане, ние винаги избираме точно 1 ребро, от което да се достига връх u от негов родител v. Разглеждайки само тези ребра, ние получаваме дърво (иначе наричано BFS-дърво), което покрива всички оптимални пътища в графа. За бързо сравняване на низове S,T стандартно се използва двоично търсене по техните префиксни хешове, за да може за $O(log_2min(|S|,|T|))$ време да се намери първата позиция, в която те се различават. Подобна идея може и да се приложи в случая – като използваме еквивалента на префиксни хешове в дърво, а именно двоичното повдигане (binary lifting) и поддържаме хеша на низа, образуван от връх в дървото до всеки 2^k -ти родител, ние бихме могли отново чрез двоично търсене да намерим точно тази позиция, в която се различават. За повече подробности може да погледнете имплементацията.

Постигната сложност: $O(Nlog_2^2N)$

Имплементация: escape_59p.cpp

Escape

Подзадача №5

За хората, запознати със структурата от данни Trie

Следвайки главното правило, че намаляването на броя логаритми в решението се постига с опростяването му, ние може да достигнем до по-лесна идея. Представете си чисто идейно как добавяме всички оптимални низове в Trie и за всеки връх записваме неговата позиция в BFS-order-а на трая, като за всеки връх преминаваме първо през ребрата с по-малка буква. Така, за всички низове с равна дължина, един низ ще е по-малък от друг, когато неговата позиция в този BFS-order е по-малка. Ако успеем да приложим имплицитно идеята на трая в решението ни, ние лесно ще може да се справим с критерии 1, като го свеждаме до сравнение на две числа. Удобното е, че ние абстрактно погледнато чрез нашето BFS, ние обхождаме трая точно в този BFS-order, като за да намерим позициите в BFSorder-a, ние може като достигнем връх u на по-голямо разстояние $d_u>d_v$ от предишния обходен връх v, да съпоставим позициите на низовете в BFS-order-а на всички върхове на разстояние d_v от 1. Това може да го постигнем като си сортираме низовете на всички върхове като раіг-чета по критериите и

приложим разделяне на последователности. Готините от вас може да приложат radix sort, което ще доведе до решение с крайна сложност O(N), но това не беше нужно за 100 точки на самото състезание.

За хората, незапознати със структурата от данни Trie

Желаем за всеки низ до връх u да съпоставим номер n_u , така че за два върха x,y, за които $d_x=d_{\nu}$, низът до връх x да е по-малък до низът до y, тогава и само тогава, когато $n_x < n_y$. Индуктивно, нека да сме избрали номерата на всички върхове на разстояние d-1. За да съпоставим номерата на тези на разстояние d, ние може за всеки връх да си изберем от кой родител да бъдем достигнати по критерии 1 и 2, да сортираме върховете точно по тези критерии, и съпоставим номера чрез разделяне на последователности. По-готините от вас може да са се сетили, че сортирането в този му вид е сортиране на точки в двумерно пространство с малки координати и да са приложили radix sort, който би довел до сложност от O(N) за крайното решение, но това не беше нужно за 100 точки на самото състезание.

Постигната сложност: $O(N \log_2 N)$

Имплементация: escape_100p.cpp

Автор: Борис Михов

2