Une amélioration d'un résultat de E. B. Davies et B. Simon

RACHID ZAROUF

Résumé

E. B. Davies et B. Simon ont montré (entre autres résultats) la chose suivante: soit T, une matrice $n \times n$ telle que son spectre $\sigma(T)$ soit inclus dans le disque $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ et soit $C = \sup_{n \geq 0} \|T^n\|_{E \to E}$, (E étant \mathbb{C}^n muni d'une certaine norme |.|). Alors $\|R(1,T)\|_{E \to E} \leq C \left(3n/\operatorname{dist}(1,\sigma(T))\right)^{3/2}$ où $R(\lambda,T)$ désigne la résolvante de T prise au point λ . Nous améliorons ici cette dernière inégalité à travers le résultat suivant: sous les mêmes conditions (portant sur la matrice T), pour tout $\lambda \notin \sigma(A)$ tel que $|\lambda| \geq 1$, on a $\|R(\lambda,T)\| \leq C \left(5\pi/3 + 2\sqrt{2}\right) n^{3/2}/\operatorname{dist}(\lambda,\sigma)$.

SHARPENING A RESULT BY E.B. DAVIES AND B. SIMON

Abstract

E. B. Davies et B. Simon have shown (among other things) the following result: if T is an $n \times n$ matrix such that its spectrum $\sigma(T)$ is included in the open unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and if $C = \sup_{k \ge 0} \left\| T^k \right\|_{E \to E}$, where E stands for \mathbb{C}^n endowed with a certain norm |.|, then $\|R(1,T)\|_{E \to E} \le C \left(3n/\text{dist}(1,\sigma(T)) \right)^{3/2}$ where $R(\lambda,T)$ stands for the resolvent of T at point λ . Here, we improve this inequality showing that under the same hypotheses (on the matrix T), $\|R(\lambda,T)\| \le C \left(5\pi/3 + 2\sqrt{2} \right) n^{3/2}/\text{dist}(\lambda,\sigma)$, for all $\lambda \notin \sigma(T)$ such that $|\lambda| \ge 1$.

Pour $C \geq 1$ et $n \in \mathbb{N}^*$ on pose

$$K_n(C) = \sup \|R(\lambda, T)\| \operatorname{dist}(\lambda, \sigma(T)),$$

où la borne supérieure est prise sur l'ensemble des $\lambda \in \mathbb{C}$ tels que $|\lambda| \geq 1$ et sur l'ensemble des opérateurs $T: E \to E$ avec $E = (\mathbb{C}^n, |.|)$ et vérifiant $\forall k \in \mathbb{N}, ||T^k||_{E \to E} \leq C$.

Le but de cette note est de démontrer le théorème suivant.

Théorème. (i) Pour tout $n \in \mathbb{N}^*$ et pour tout $C \geq 1$, on a

$$K_n(C) \le C \left(5\pi/3 + 2\sqrt{2} \right) n^{3/2}.$$

(ii) De plus, pour tout $C \ge 1$ on a

$$limsup_{n\to\infty}n^{-\frac{3}{2}}K_n(C) \le 5C\pi/3.$$

Commentaires.

- (1) Ce théorème est un résultat de nature "numérique" dans la mesure où il s'agit d'une estimation du type $||R(\lambda, T)|| \le K dist(\lambda, \sigma(T))$, où la question est d'évaluer la taille de la constante $K = K_n(C)$ en fonction des paramètres dont elle dépend, à savoir n et C.
- (2) Le résultat principal de E. B. Davies et B. Simon est le suivant, voir [2]: Soit K_n la même borne supérieure que celle donnant $K_n(C)$ en restreignant la condition $(C_1): [T: E \to E \text{ avec } E = (\mathbb{C}^n, |.|) \text{ et vérifiant } \forall k \in \mathbb{N},$ $||T^k||_{E\to E} \leq C|$ par $(C_2): [T \text{ est une contraction d'un espace de Hilbert}]$. Alors le facteur $n^{\frac{3}{2}}$ "devient" n et $K_n = \cot(\pi/4n)$.
- (3) Dans ce dernier cas (où T est une contraction d'un espace de Hilbert), la méthode appliquée ci-dessous pour montrer le Théorème faisant l'objet de cette note, donne $K_n \leq an$ où $a = (1 + max_{\lambda \in \sigma(T)} |\lambda|)$. En particulier, pour $r = max_{\lambda \in \sigma(T)} |\lambda| < 4/\pi 1$, cette majoration est plus précise que [2].
- (4) En ce qui concerne l'exactitude du véritable ordre de croissance de la constante $K_n(C)$, on sait pour l'instant que $K_n(C)/n \ge K_n/n \ge b$ où $b = (2 + \sqrt{3})/3$, voir [2] p.4.

(5) L'hypothèse du théorème entraîne trivialement que $||R(\lambda,T)|| \leq C (|\lambda|-1)^{-1}, |\lambda| > 1$. Ce théorème peut donc être vu comme un analogue unilatéral du "Lemme de Domar" bien connu (voir [1], [6]): si $\sigma \subset \mathbb{D}$ et u une fonction sous-harmonique dans $\mathbb{C} \setminus \sigma$ telle que pour tout $\lambda \in \mathbb{C} \setminus \sigma$, $u(\lambda) \leq C \max \{||\lambda|-1|^{-1}, dist(\lambda,\sigma)^{-1}\}$, alors pour tout $\lambda \in \mathbb{C} \setminus \sigma$, tel que $|\lambda| \geq 1/2$, $u(\lambda) \leq 447Cdist(\lambda,\sigma)^{-1}$. Une version aussi générale pour des estimations unilatérales $(|\lambda| \geq 1)$, n'est pas vraie (exemple: $u(\lambda) = ||R(\lambda,M_{\theta})||$, où M_{θ} est l'opérateur modèle sur $K_{\theta} = H^2\Theta\theta H^2$, $\theta = exp\left(\frac{z+1}{z-1}\right)$, voir [4]), mais notre résultat montre qu'elle est correcte pour des résolvantes de matrices de taille n (avec une constante dépendant de n).

Nous avons recours en premier lieu au lemme suivant, de type principe du maximum.

Lemme. Soient $C \ge 1$, A > 0 tels que pour tout opérateur T agissant sur $(\mathbb{C}^n, |.|)$ et de spectre $\sigma(T)$, la condition suivante soit réalisée:

$$\begin{cases} \sup_{k\geq 0} \|T^k\| \leq C \\ \sigma(T) \subset \mathbb{D} \end{cases} \implies \left[\forall \lambda_{\star} \ tel \ que \ |\lambda_{\star}| = 1, \ dist \left(\lambda_{\star}, \ \sigma(T)\right) \|R\left(\lambda_{\star}, T\right)\| \leq A \right],$$

alors,

$$K_n(C) \leq A$$
.

Preuve. Soit λ tel que $|\lambda| > 1$. λ peut alors s'écrire $\lambda = \rho \lambda_{\star}$ avec $\rho > 1$ et $|\lambda_{\star}| = 1$. On pose $T_{\star} = \frac{1}{\rho}T$. Dans ces conditions, $\sup_{k \geq 0} \|T_{\star}^k\| \leq C$ et $\sigma(T_{\star}) = \frac{1}{\rho}\sigma(T) \subset \mathbb{D}$. Par conséquent, on a $\operatorname{dist}(\lambda_{\star}, \sigma(T_{\star})) \|R(\lambda_{\star}, T_{\star})\| \leq A$, ce que l'ont peut encore écrire $\operatorname{\rhodist}(\lambda_{\star}, \sigma(T_{\star})) \|\rho^{-1}R(\lambda_{\star}, T_{\star})\| \leq A$. Il suffit maintenant de remarquer que $\operatorname{\rhodist}(\lambda_{\star}, \sigma(T_{\star})) = \operatorname{dist}(\lambda, \sigma(T))$ et $\operatorname{\rho}^{-1}R(\lambda_{\star}, T_{\star}) = R(\lambda, T)$.

Preuve du Théorème. Soient T une matrice de taille n vérifiant la condition (C_1) et $\sigma = \sigma(T) = \{\lambda_1, \lambda_2, ..., \lambda_n\}$ son spectre (les λ_j étant comptés avec leur multiplicité). On défini le produit de Blaschke $B = \prod_{k=1}^n b_{\lambda_i}$, où pour tout i = 1..n, $b_{\lambda_i} = \frac{\lambda_i - z}{1 - \lambda_i z}$. Tout d'abord,

$$||R(\lambda, T)|| \le C \left\| \frac{1}{\lambda - z} \right\|_{W/BW},$$

(voir [3] Théorème 3.24, p.31), où W est l'algèbre de Wiener des séries de Taylor absolument convergentes, $W = \left\{ f = \sum_{k \geq 0} \hat{f}(k) z^k : \|f\|_W = \sum_{k \geq 0} \left| \hat{f}(k) \right| < \infty \right\}$ et

$$\left\| \frac{1}{\lambda - z} \right\|_{W/BW} = \inf \left\{ \|f\|_{W} : f(\lambda_{j}) = \frac{1}{\lambda - \lambda_{j}}, j = 1..n \right\}.$$

On suppose dans un premier temps que $|\lambda| > 1$. Soit P_B la projection orthogonale de l'espace de Hardy H^2 sur $K_B = H^2 \Theta B H^2$. La fonction $f = P_B(\frac{1}{\lambda} k_{1/\bar{\lambda}})$ verifie bien $f - \frac{1}{\lambda - z} \in BW, \, \forall \, j = 1..n$. En particulier, on a

$$\left\| \frac{1}{\lambda - z} \right\|_{W/BW} \le \left\| \frac{1}{\lambda} P_B k_{1/\bar{\lambda}} \right\|_{W}.$$

Mais on sait que

$$P_B k_{1/\bar{\lambda}} = \sum_{k=1}^{n} \left(k_{1/\bar{\lambda}}, e_k \right)_{H^2} e_k$$

où la famille $(e_k)_{k=1}^n$ (appelée base de Malmquist relative à σ , voir [5] p.117) définie par,

$$e_1 = \left(1 - |\lambda_1|^2\right)^{\frac{1}{2}} f_1, \ e_k = \left(1 - |\lambda_k|^2\right)^{\frac{1}{2}} \left(\prod_{j=1}^{k-1} b_{\lambda_j}\right) f_k = \left(f_k / \|f_k\|_2\right) \prod_{j=1}^{k-1} b_{\lambda_j}, \ k \ge 2,$$

où $f_k(z) = \frac{1}{1 - \overline{\lambda_k} z}$. Du coup,

$$P_B k_{1/\bar{\lambda}} = \sum_{k=1}^{n} \overline{e_k \left(1/\bar{\lambda}\right)} e_k.$$

Nous allons maintenant appliquer l'inégalité de Hardy $||f||_W \le \pi ||f'||_{H^1} + |f(0)|$, (voir N. Nikolski, [4] p. 370 8.7.4 -(c)) à $P_B k_{1/\bar{\lambda}}$ en profitant du fait remarquable que pour k=2..n

$$e'_{k} = \sum_{i=1}^{k-1} \frac{b'_{\lambda_{i}}}{b_{\lambda_{i}}} e_{k} + \overline{\lambda_{k}} \frac{1}{\left(1 - \overline{\lambda_{k}}z\right)} e_{k}.$$

On trouve alors

$$(P_B k_{1/\bar{\lambda}})' = (k_{1/\bar{\lambda}}, e_1)_{H^2} \frac{\bar{\lambda}_1}{(1 - \overline{\lambda}_1 z)} e_1 + \sum_{i=1}^n \frac{b'_{\lambda_i}}{b_{\lambda_i}} \sum_{k=i+1}^{n-1} (k_{1/\bar{\lambda}}, e_k)_{H^2} e_k + \sum_{k=2}^n (k_{1/\bar{\lambda}}, e_k)_{H^2} \overline{\lambda_k} \frac{1}{(1 - \overline{\lambda_k} z)} e_k.$$

Comme $k_{1/\bar{\lambda}}$ est le noyau reproduisant de H^2 associé au point $1/\bar{\lambda} \in \mathbb{D}$, on trouve $\left(e_k, k_{1/\bar{\lambda}}\right)_{H^2} = e_k(1/\bar{\lambda})$, et donc

$$\left(P_B k_{1/\bar{\lambda}}\right)' = \overline{e_1\left(1/\bar{\lambda}\right)} \frac{\bar{\lambda}_1}{\left(1 - \overline{\lambda_1}z\right)} e_1 + \sum_{i=1}^n \frac{b'_{\lambda_i}}{b_{\lambda_i}} \sum_{k=i+1}^{n-1} \overline{e_k\left(1/\bar{\lambda}\right)} e_k + \sum_{k=2}^n \overline{e_k\left(1/\bar{\lambda}\right)} \overline{\lambda_k} \frac{1}{\left(1 - \overline{\lambda_k}z\right)} e_k.$$

Maintenant,

$$\left\| e_1\left(1/\overline{\lambda}\right) \frac{\lambda_1}{\left(1-\overline{\lambda_1}z\right)} e_1 \right\|_{H^1} \le \left| e_1\left(1/\overline{\lambda}\right) \right| \left\| \frac{\lambda_1}{\left(1-\overline{\lambda_1}z\right)} \right\|_{H^2} \left\| e_1 \right\|_{H^2} \le |\lambda| \frac{1}{\operatorname{dist}\left(\lambda,\,\sigma\right)}$$

en utilisant à la fois l'inégalité de Cauchy-Schwarz et le fait que e_1 est de norme 1 dans H^2 . Par la même raison (la famille $(e_k)_{k=1}^n$ est orthonormale dans H^2), on trouve

$$\left\| \sum_{k=2}^{n} \overline{\lambda_{k}} \overline{e_{k} \left(1/\overline{\lambda} \right)} \frac{1}{\left(1 - \overline{\lambda_{k}} z \right)} e_{k} \right\|_{H^{1}} \leq \sum_{k=2}^{n} \left| e_{k} \left(1/\overline{\lambda} \right) \right| \left\| \lambda_{k} \frac{1}{\left(1 - \overline{\lambda_{k}} z \right)} \right\|_{H^{2}} \left\| e_{k} \right\|_{H^{2}} \leq$$

$$\leq \sum_{k=2}^{n} \left| \frac{\left(1 - \left| \lambda_{k} \right|^{2} \right)^{\frac{1}{2}}}{1 - \overline{\lambda_{k}}/\overline{\lambda}} \right| \frac{1}{\sqrt{1 - \left| \lambda_{k} \right|^{2}}} \leq \left| \lambda \right| \frac{(n-1)}{\operatorname{dist}(\lambda, \sigma)}.$$

Finalement,

$$\left\| \sum_{i=1}^{n-1} \frac{b_{\lambda_i}'}{b_{\lambda_i}} \sum_{k=i+1}^n \overline{e_k \left(1/\bar{\lambda} \right)} e_k \right\|_{H^1} \leq \sum_{i=1}^{n-1} \left\| \frac{b_{\lambda_i}'}{b_{\lambda_i}} \right\|_{L^2} \left(\sum_{k=i+1}^n \left| e_k \left(1/\bar{\lambda} \right) \right|^2 \right)^{\frac{1}{2}}.$$

Comme en outre on a $b'_{\lambda_i}/b_{\lambda_i} = 1/(\lambda_i - z) + \overline{\lambda_i}/(1 - \overline{\lambda_i}z)$, on en déduit que $\|b'_{\lambda_i}/b_{\lambda_i}\|_{L^2} \le 2/\sqrt{1 - |\lambda_i|^2}$, et que

$$\left\| \sum_{i=1}^{n-1} \frac{b'_{\lambda_i}}{b_{\lambda_i}} \sum_{k=i+1}^{n} \overline{e_k \left(1/\bar{\lambda} \right)} e_k \right\|_{H^1} \le 2 \sum_{i=1}^{n-1} \frac{1}{\left(1 - |\lambda_i|^2 \right)^{\frac{1}{2}}} \left(\sum_{k=i+1}^{n} \left| \frac{\left(1 - |\lambda_k|^2 \right)}{\left(1 - \overline{\lambda_k}/\bar{\lambda} \right)^2} \right| \right)^{\frac{1}{2}}.$$

Maintenant, sans perte de généralité on peut supposer que la suite $(|\lambda_i|)_{i=1}^n$ est croissante (quitte à réordonner la séquence σ). Dans ce cas, pour $k \geq i+1 > i$ on a $1-|\lambda_k|^2 \leq 1-|\lambda_i|^2$ ce qui donne

$$\left\| \sum_{i=1}^{n-1} \frac{b'_{\lambda_i}}{b_{\lambda_i}} \sum_{k=i+1}^n \overline{e_k \left(1/\overline{\lambda} \right)} e_k \right\|_{H^1} \le 2 \sum_{i=1}^{n-1} \left(\sum_{k=i+1}^n \left| \frac{1}{\left(1 - \overline{\lambda_k}/\overline{\lambda} \right)^2} \right| \right)^{\frac{1}{2}} \le$$

$$\leq 2 \frac{|\lambda|}{dist(\lambda, \sigma)} \sum_{i=1}^{n-1} \left(\sum_{k=i+1}^{n} 1 \right)^{\frac{1}{2}} \leq \frac{4}{3} |\lambda| \frac{1}{dist(\lambda, \sigma)} \left(n^{\frac{3}{2}} - 1 \right),$$

puisque $\sum_{i=1}^{n-1} \sqrt{j} \le \int_1^n \sqrt{x} dx$. Finalement,

$$\left\| \left(\frac{1}{\lambda} P_B k_{1/\bar{\lambda}} \right)' \right\|_{H^1} \le \frac{1}{\operatorname{dist}(\lambda, \sigma)} + \frac{(n-1)}{\operatorname{dist}(\lambda, \sigma)} + \frac{4}{3} \frac{n^{\frac{3}{2}} - 1}{\operatorname{dist}(\lambda, \sigma)} =$$

$$= \frac{1}{\operatorname{dist}(\lambda, \sigma)} \left(-\frac{4}{3} + n + \frac{4}{3} n^{\frac{3}{2}} \right) \le \frac{5}{3} \frac{n^{\frac{3}{2}}}{\operatorname{dist}(\lambda, \sigma)},$$

la dernière inégalité reposant sur le fait que pour tout $x \ge 0$, $\frac{1}{3}x^{\frac{3}{2}} - x + \frac{4}{3} \ge 0$. Ceci donne

$$\left\| \frac{1}{\lambda} P_B k_{1/\bar{\lambda}} \right\|_W \le \frac{5}{3} \pi \frac{n^{\frac{3}{2}}}{\operatorname{dist}(\lambda, \sigma)} + \left| \frac{1}{\lambda} \right| \sum_{k=1}^n \left| e_k \left(1/\bar{\lambda} \right) \right| \left| e_k(0) \right| \le \frac{5}{3} \pi \frac{n^{\frac{3}{2}}}{\operatorname{dist}(\lambda, \sigma)} + 2n.$$

En particulier, (ii) est démontré. Pour résumer, on a pour $n \geq 1$,

$$||R(\lambda, T)|| \le C \left(5\pi/3 + \frac{2}{\sqrt{n}} dist(\lambda, \sigma)\right) \frac{n^{\frac{3}{2}}}{dist(\lambda, \sigma)}.$$

Faisons maintenant tendre radialement λ vers sa projection λ_{\star} sur le tore \mathbb{T} et remarquons qu'alors, (puisque $dist(\lambda_{\star}, \sigma) \leq 2$),

$$||R(\lambda_{\star}, T)|| \le C \left(5\pi/3 + 2\sqrt{2}\right) \frac{n^{\frac{3}{2}}}{dist(\lambda_{\star}, \sigma)}.$$

Il reste alors à appliquer le lemme avec $A = (5\pi/3 + 2\sqrt{2}) n^{\frac{3}{2}}$ pour achever la preuve de (i).

Remerciements

Je tiens à remercier infiniment le Professeur Nikolai Nikolski pour ses conseils ô combien précieux.

References

- [1] Y. Domar, On the existence of a largest subharmonic minorant of a given function, On the existence of a largest subharmonic minorant of a given function, 3 (1958), 429-440
- [2] E. B. Davies and B. Simon, Eigenvalue estimates for non-normal matrices and the zeros of random orthogonal polynomials on the unit circle, J. Approx. Theory 141-2, (2006), 189-213.
- [3] N.Nikolski, Condition Numbers of Large Matrices and Analytic Capacities, St. Petersburg Math. J., 17 (2006), 641-682.
- [4] N.Nikolski, Operators, Function, and Systems: an easy reading, Vol.1. AMS, Providence, 2002.
- [5] N.Nikolski, Treatise on the shift operator, Springer-Verlag, Berlin etc., 1986.
- [6] N. Nikolski, and S. A. Khrushchev, function model and some problems in the spectral theory of functions, Trudy Mat. Inst. Steklov. 176, (1987), 97-210 (Russian). English transl.: Proc. Steklov Inst. Math. (1988), 101-214.

Equipe d'Analyse et Géométrie, Institut de Mathématiques de Bordeaux, Université Bordeaux, 351 Cours de la Libération, 33405 Talence, France. E-mail address: rzarouf@math.u-bordeaux1.fr