2020 年春 群与代数表示论 期末考试卷 (闭卷)

(本卷中, F 为域, 群均为有限群,表示(模) 均为有限维表示(模)。从 7 道力 题中选取 5 道做,满分 100 分,多做的题不计人总分。需要有详细解题过程。) 1. 设 (V, ρ) 为群 G 的 F -表示。令 V^* := $\operatorname{Hom}_F(V, F)$ 为 V 的对偶空间。考虑映射 ρ^* : $G \to GL(V^*)$, 其中 $\rho^*(g)(f)(v)$:= $f(g^{-1}v)$, $\forall g \in G, f \in V^*, v \in V$. 证明: (1) (V^*, ρ^*) 为 G 的 F -表示,称为 (V, ρ) 的对偶表示; (4') (2) (V, ρ) 不可约当且仅当 (V^*, ρ^*) 不可约; (4') (3) $\chi_{\rho^*}(g) = \chi_{\rho}(g^{-1})$, $\forall g \in G, \text{ 其中 } \chi_{\rho^*} \chi_{\rho}$ 分别为 ρ^*, ρ 的 F -特征标; (4' (4) 者 (V_1, ρ_1) , (V_2, ρ_2) 均为 G 的不可约 F -表示,则单位表示 $(F, 1)$ V_1 与 V_2 的张量积 $(V_1 \otimes V_2, \rho_1 \otimes \rho_2)$ 的 F -子表示当且仅当有表示同核 $(V_2, \rho_2) \cong (V_1^*, \rho_1^*)$. (8') 2. n 次对称群 S_n 在集合 $X = \{x_1, \cdots, x_n\}$ 上有一自然作用,由此诱导出 S_n 的置换表示 (FX, ρ) . 令 $V = \{\sum_{i=1}^n a_i x_i \mid a_i \in F, \sum_{i=1}^n a_i = 0\}$. 证明: (1) $(V, \rho \mid V)$ 为 (FX, ρ) 的 $n-1$ 维 F -子表示; (2') (2) 著 $\operatorname{Char} F \neq 2$, 则 $\operatorname{Hom}_G(V, V) = F$; (4') (3) 著 $\operatorname{Char} F \neq 2$, 则 $\operatorname{Hom}_G(V, V) = F$; (4') (4) 求所有 6 阶群的所有不可约实表示(同构意义下). (10') 3. 设 $G = S_4$, $H = S_3$. (1) 求 H 的复特征标表; (3') (2) $\forall g \in G, h \in C_g$,证明: $ \{x \in G \mid x^{-1}gx = h\} = C_G(g) $, 其中 C_g 为 在 G 中的共轭表; (3') (3) 求 H 的每个不可约复特征标末 χ^G ; (7') (4) 在 (2) 的基础上利用行列正交关系来 G 的复特征标表. (7') 4. 设 A 是有限维 F -代数。 (14') (a) A 是中单代数(即方正则 A -模。 A 是中单模)((b) 任一左 A -模是为科模((d) 任一左 A -模是有,模员不同意((f') (a) a 是 a		姓名:	学号:	
映射 $\rho^*: G \to GL(V^*)$, 其中 $\rho^*(g)(f)(v) := f(g^{-1}v)$, $\forall g \in G, f \in V^*, v \in V$. 证明: (1) (V^*, ρ^*) 为 G 的 F -表示,称为 (V, ρ) 的对偶表示; (4') (2) (V, ρ) 不可约当且仅当 (V^*, ρ^*) 不可约; (4') (3) $\chi_{\rho^*}(g) = \chi_{\rho}(g^{-1})$, $\forall g \in G, \text{ 其中 } \chi_{\rho^*} \chi_{\rho}$ 分别为 ρ^*, ρ 的 F -特征标; (4') (4) 若 (V_1, ρ_1) , (V_2, ρ_2) 均为 G 的不可约 F -表示,则单位表示 $(F, 1)$ 为 V_1 与 V_2 的张量积 $(V_1 \otimes V_2, \rho_1 \otimes \rho_2)$ 的 F -子表示当且仅当有表示同权 $(V_2, \rho_2) \cong (V_1^*, \rho_1^*)$. (8') 2. n 次对称群 S_n 在集合 $X = \{x_1, \cdots, x_n\}$ 上有一自然作用,由此诱导出 S_n 的置换表示 (FX, ρ) . 令 $V = \{\sum_{i=1}^n a_i x_i \mid a_i \in F, \sum_{i=1}^n a_i = 0\}$. 证明: (1) $(V, \rho \mid V)$ 为 (FX, ρ) 的 $n-1$ 维 F -子表示; (2') (2) 若 $CharF \neq 2$, 则 $Hom_G(V, V) = F$; (4') (3) 若 $CharF \neq 2$, 则 $Hom_G(V, V) = F$; (4') (4) 求所有 6 阶群的所有不可约实表示(同构意义下). (10') 3. 设 $G = S_4$, $H = S_3$. (1) 求 H 的复特征标表; (3') (2) $\forall g \in G, h \in C_g$,证明: $\{x \in G \mid x^{-1}gx = h\} \mid = \mid C_G(g) \mid$, 其中 C_g 为 在 G 中的共轭类, $C_G(g)$ 为 g 在 G 中的中心化于; (3') (3) 求 H 的每个不可约复特征标 χ 的诱导复特征标 χ^G ; (7') (4) 在 (2) 的基础上利用行列正交关系求 G 的复特征标表. (7') 4. 设 A 是有限维 F -代数。 (14') (a) A 是中单代数。 (16') 4. 设 A 是有限维 F -代数。 (16') (b) 任一左 A -模是均射模; (14') (a) A 是单单代数(即左正则 A -模 A 是单单模); (b) 任一左 A -模是均射模; (c) 任一左 A -模是均,模; (d) 任一左 A -模是的,模; (e) A -和 及行乘映射 A -和 入,其中 A -和 A				
(2) (V, ρ) 不可约当且仅当 (V^*, ρ^*) 不可约; (4') (3) $\chi_{\rho^*}(g) = \chi_{\rho}(g^{-1})$, $\forall g \in G$, 其中 $\chi_{\rho^*}\chi_{\rho}$ 分别为 ρ^* , ρ 的 F -特征标; (4') (4) 若 (V_1, ρ_1) , (V_2, ρ_2) 均为 G 的不可约 F -表示,则单位表示 $(F, 1)$ 为 V_1 与 V_2 的张量积 $(V_1 \otimes V_2, \rho_1 \otimes \rho_2)$ 的 F -子表示当且仅当有表示同构 $(V_2, \rho_2) \cong (V_1^*, \rho_1^*)$. (8') 2. n 次对称群 S_n 在集合 $X = \{x_1, \cdots, x_n\}$ 上有一自然作用,由此诱导出 S_n 的置换表示 (FX, ρ) . 令 $V = \{\sum_{i=1}^n a_i x_i \mid a_i \in F, \sum_{i=1}^n a_i = 0\}$. 证明: (1) $(V, \rho \mid_V)$ 为 (FX, ρ) 的 $n-1$ 维 F -子表示; (2') (2) 若 $CharF \neq 2$, 则 $Hom_G(V, V) = F$; (4') (3) 若 $CharF \pi$ 整除 n , 则 V 是 S_n 的不可约 F -表示; (4') (4) 求所有 6 阶群的所有不可约实表示(同构意义下). (10') 3. 设 $G = S_4$, $H = S_3$. (1) 求 H 的复特征标表; (3') (2) $\forall g \in G, h \in C_g$,证明: $\{x \in G \mid x^{-1}gx = h\} \mid = \mid C_G(g) \mid$, 其中 C_g 为在 G 中的共轭类, $C_G(g)$ 为 g 在 G 中的中心化子; (3') (3) 求 H 的每个不可约复特征标 χ 的诱导复特征标 χ^G ; (7') (4) 在 (2) 的基础上利用行列正交关系求 G 的复特征标表. (7') 4. 设 A 是有限维 F -代数。 (14') (a) A 是半单代数(即左正则 A -模 AA 是半单模); (b) 任一左 A -模是半单模; (c) 任一左 A -模是性人教授,(如 A -模, A -模。 A -模。 A -模。 A -科。 A -科, A -和,	映射 $ ho^*$			
的置换表示 (FX,ρ) . 令 $V=\{\sum_{i=1}^n a_ix_i \mid a_i \in F, \sum_{i=1}^n a_i = 0\}$. 证明:	(2) (3) (4)	(V, ρ) 不可约当且仅当 $(V \chi_{\rho^*}(g) = \chi_{\rho}(g^{-1}), \forall g \in G$ 若 $(V_1, \rho_1), (V_2, \rho_2)$ 均为 V_1 与 V_2 的张量积 $(V_1 \otimes V_2)$	$(*, ho^*)$ 不可约; (4') $(*, \mathbf{其P} \ \chi_{ ho^*} \ \chi_{ ho} \ m{分别为} \ ho^*, ho \ \mathbf{n} \ F$ $(*, \mathbf{J} \ \mathbf{G} \ \mathbf{n} \mathbf{n} \mathbf{m} \mathbf{n} \mathbf{n}) \ F$ -表示,则单位 $(*, \mathbf{J} \ \mathbf{V}_2, ho_1 \otimes ho_2) \ \mathbf{n} \ F$ -子表示当且 $(*, \mathbf{J} \ \mathbf{J} $	· -特征标; (4') :表示 (F,1) 关
 (2) 若 Char F ≠ 2, 则 Hom_G(V, V) = F; (4') (3) 若 Char F 不整除 n, 则 V 是 S_n 的不可约 F-表示; (4') (4) 求所有 6 阶群的所有不可约实表示 (同构意义下). (10') 3. 设 G = S₄, H = S₃. (1) 求 H 的复特征标表; (3') (2) ∀g ∈ G, h ∈ C_g, 证明: {x ∈ G x⁻¹gx = h} = C_G(g) , 其中 C_g 为在 G 中的共轭类, C_G(g) 为 g在 G 中的中心化子; (3') (3) 求 H 的每个不可约复特征标 χ 的诱导复特征标 χ^G; (7') (4) 在 (2) 的基础上利用行列正交关系求 G 的复特征标表. (7') 4. 设 A 是有限维 F-代数。 (1) 证明下述命题等价: (14') (a) A 是半单代数 (即左正则 A-模 AA 是半单模); (b) 任一左 A-模是半单模; (c) 任一左 A-模是投射模; (d) 任一左 A-模是投射模; (2) 设 0 ≠ a ∈ A, 考虑左乘映射 l_a: A → A 及右乘映射 r_a: A → A, 其中 l_a(x) = ax, r_a(x) = xa, ∀x ∈ A. 证明: (6') 				由此诱导出 S_r
 (1) 求 H 的复特征标表; (3') (2) ∀g ∈ G, h ∈ C_g, 证明: {x ∈ G x⁻¹gx = h} = C_G(g) , 其中 C_g 为 在 G 中的共轭类, C_G(g) 为 g 在 G 中的中心化子; (3') (3) 求 H 的每个不可约复特征标 χ 的诱导复特征标 χ^G; (7') (4) 在 (2) 的基础上利用行列正交关系求 G 的复特征标表. (7') 4. 设 A 是有限维 F-代数。 (1) 证明下述命题等价: (14') (a) A 是半单代数 (即左正则 A-模 AA 是半单模); (b) 任一左 A-模是半单模; (c) 任一左 A-模是投射模; (d) 任一左 A-模是内射模; (2) 设 0 ≠ a ∈ A, 考虑左乘映射 l_a: A → A 及右乘映射 r_a: A → A, 其中 l_a(x) = ax, r_a(x) = xa, ∀x ∈ A. 证明: (6') 	$(2) \\ (3)$	若 $\operatorname{Char} F \neq 2$,则 Hom_G 若 $\operatorname{Char} F$ 不整除 n ,则 $\mathbb N$	(V,V) = F; (4') V 是 S_n 的不可约 F -表示;	, ,
 (1) 证明下述命题等价: (14') (a) A 是半单代数 (即左正则 A-模 AA 是半单模); (b) 任一左 A-模是半单模; (c) 任一左 A-模是投射模; (d) 任一左 A-模是内射模; (2) 设 0 ≠ a ∈ A, 考虑左乘映射 l_a: A → A 及右乘映射 r_a: A → A, 其中 l_a(x) = ax, r_a(x) = xa, ∀x ∈ A. 证明: (6') 	(1) (2) (3)	求 H 的复特征标表; ($\forall g \in G, h \in C_g$, 证明: - 在 G 中的共轭类, $C_G(g)$ 求 H 的每个不可约复特征	$\{x \in G \mid x^{-1}gx = h\} \mid = \mid C_G(g)$ 为 g 在 G 中的中心化子; E标 χ 的诱导复特征标 χ^G ;	(3') (7')
	(1)	证明下述命题等价: (a) A 是半单代数 (即左〕(b) 任一左 A -模是半单模(c) 任一左 A -模是投射模(d) 任一左 A -模是内射模设 $0 \neq a \in A$, 考虑左乘	正则 A -模 $_AA$ 是半单模); $\overset{(a)}{\iota};$ $\overset{(a)}{\iota};$ $\overset{(a)}{\iota};$ $\overset{(a)}{\iota};$ 映射 $l_a:A\to A$ 及右乘映射 r_a	:A ightarrow A, 其中

(1) $\forall M \in A$ -mod, 有左 A-模同构: $M \cong M^{**}$; (4')

证明:

(2) (-)* 是 fully faithful 函子, 即有 F-同构: (4')

 $\operatorname{Hom}_A(M,N) \stackrel{\sim}{\to} \operatorname{Hom}_A(M^*,N^*); \quad f \mapsto f^*;$

(b) 若 F 是代数闭域且 A 是交换代数,则 A 上的单模必是 1 维的.

5. 设 A 是有限维 F-代数。考虑函子 $(-)^* := \operatorname{Hom}_F(-,F) : A\operatorname{-mod} \to \operatorname{mod-}A$.

- (3) (-)* 将投射模变成内射模;将内射模变成投射模; (4')
- (4) S 是单模当且仅当 S^* 是单模; (4')
- (5) 设 $e \in A$ 为幂等元, $M \in A$ -mod. 则有左 eAe-模同构: $Hom_A(Ae, M) \cong$ eM. (4')
- 6. 证明:有限维半单代数是对称代数。 (20')
- 7. 设 H 是 Frobenius 群 G 的 Frobenius 补。证明:
- (1) $\forall g \in G$, gH 也是 G 的 Frobenius 补; 且 G 的任一 Frobenius 补为某个 ^{g}H ; (6')
- (2) 若 $\theta \in \mathrm{cf}_{\mathbb{C}}(H)$ 且 $\theta(1) = 0$,则 $(\theta^G)_H = \theta$; (4') (3) 若 $\theta = \varphi \varphi(1)\mathbf{1}_H$,其中 $\varphi \in \mathrm{Irr}_{\mathbb{C}}(H), \mathbf{1}_H$ 为 H 的单位复特征标,则 $\theta^G + \varphi(1)\mathbf{1}_{\mathbf{G}} \in \operatorname{Irr}_{\mathbb{C}}(\mathbf{G}); \quad (5')$
- (4) 若 N 是相应的 Frobenius 核, $(V, \rho) \in Irr_F(G)$ 且 U 是 (V, ρ_N) (即 (V, ρ) 在 N 上的限制表示) 的不可约 F-子表示,则 $gU \in \overline{\mathrm{Irr}_F(N)}$, $\forall g \in G$. (5')