Multispecies Model

Kristin Broms, Viviana Ruiz-Guiterrez, John Tipton January 31, 2014

1 Introduction and motivation

2 Model of one season detection

2.1 Modelling assumptions

- ullet There is an ecological motivation for $oldsymbol{p}$ and $oldsymbol{\Psi}$ coming from the same distribution
- ullet There is no heterogeneity in unobserved covariates for p and Ψ
- All species are "theoretically" available to be sampled
- No seasonality
- Closed populations within the J visits
- The actual number of species N lies between the observed number of species K and the number of augmented species Ω

2.2 Data model

For $i=1,\ldots,n$ sites, $k=1,\ldots,K$ observed species (out of a total of Ω species), and for $j=1,\ldots,J$ revisits at each site

$$y_{ik} = \begin{cases} 0 & \text{if } Z_{ik} = 0\\ \text{Binom}(J, p_k) & \text{if } Z_{ik} = 1 \end{cases}$$

where y_{ik} is the number of times that species i is seen at site k out of J visits, Z_{ik} is an indicator of presence or absence of species i at site k, and p_k is the detection probability for species k.

2.3 Process

$$\begin{split} Z_{ik} &= \begin{cases} 0 & \text{if } W_k = 0 \\ \text{Bern}(\Psi_k) & \text{if } W_k = 1 \end{cases} \\ p_k &\sim \text{Beta}(\alpha_p, \beta_p) \\ \Psi_k &\sim \text{Beta}(\alpha_\Psi, \beta_\Psi) \\ W_k &\sim \text{Bern}(\lambda) \end{split}$$

where W_k is an indicator of whether an augmented species exists or not in the population and $\sum_{k=1}^{\Omega} W_k = N$, the species richness, Ψ_k is the presence probability for species k, and λ is the probability of an augmented species being real

2.4 Parameter

$$\begin{split} &\alpha_p \sim \operatorname{Gamma}(\alpha_{\alpha_p},\beta_{\alpha_p}) \\ &\beta_p \sim \operatorname{Gamma}(\alpha_{\beta_p},\beta_{\beta_p}) \\ &\alpha_\Psi \sim \operatorname{Gamma}(\alpha_{\alpha_\Psi},\beta_{\alpha_\Psi}) \\ &\beta_\Psi \sim \operatorname{Gamma}(\alpha_{\beta_\Psi},\beta_{\beta_\Psi}) \\ &\lambda \sim \operatorname{Beta}(\alpha_{\lambda},\beta_{\lambda}) \end{split}$$

3 Ideas

- model $\Psi_k = f(\Psi_{-k}) + \text{randomness}$ and species interaction
- $Z_{ik} = \begin{cases} 0 & \text{if } W_k = 0 \\ \text{Bern}(\Psi_k) & \text{if } W_k = 1 \end{cases}$ where W_k represents "ghost species"
- Let Ω represent the total number of possible species, $\Omega \geq N \geq K$
- $W_k \sim \text{Bern}(\lambda) \Leftrightarrow N \sim \text{Binom}(\Omega, \lambda) \Leftrightarrow \sum_{k=1}^{\Omega} W_k = N$
- Goal: estimate Ψ_k and predict N

4 Posterior

$$[\boldsymbol{Z}, \boldsymbol{p}, \boldsymbol{\Psi}, \boldsymbol{W}, \alpha_{p}, \beta_{p}, \alpha_{\Psi}, \beta_{\Psi}, \lambda | \boldsymbol{y}, J] \propto \prod_{i=1}^{n} \prod_{k=1}^{\Omega} [y_{ik} | J, p_{k}]^{Z_{ik}} I\{y_{ik} = 0\}^{(1-Z_{ik})} [Z_{ik} | \Psi_{k}]^{W_{k}} I\{Z_{ik} = 0\}^{(1-W_{k})} \times [p_{k} | \alpha_{v}, \beta_{p}] [\Psi_{k} | \alpha_{\Psi}, \beta_{\Psi}] [W_{k} | \lambda] [\alpha_{p}] [\beta_{p}] [\alpha_{\Psi}] [\beta_{\Psi}] [\lambda]$$

5 Full conditionals

5.1 Z_{ik}

For
$$y_{ik} = 1$$
, $Z_{ik} = 1$.

For
$$y_{ik} = 0$$
 and $W_k = 1$

$$[Z_{ik}|\cdot] \propto [y_{ik}|J, p_k]^{Z_{ik}} I\{y_{ik} = 0\}^{(1-Z_{ik})} [Z_{ik}|\Psi]^{W_k} I\{Z_{ik} = 0\}^{(1-W_k)}$$

$$\propto (1-p_k)^{JZ_{ik}} \Psi_k^{Z_{ik}W_k} (1-\Psi_k)^{(1-Z_{ik})W_k}$$

$$\propto ((1-p_k)^J \Psi_k)^{Z_{ik}} (1-\Psi_k)^{(1-Z_{ik})}$$

which is Bern(
$$\tilde{\Psi}_k$$
) where $\tilde{\Psi}_k = \left((1 - p_k)^J \Psi_k \right) / \left((1 - p_k)^J \Psi_k + (1 - \Psi_k) \right)$

For
$$y_{ik} = 0$$
 and $W_k = 0$

$$[Z_{ik}|\cdot] \propto [y_{ik}|J, p_k]^{Z_{ik}} I\{y_{ik} = 0\}^{(1-Z_{ik})} [Z_{ik}|\Psi]^{W_k} I\{Z_{ik} = 0\}^{(1-W_k)}$$

$$\propto (1-p_k)^{JZ_{ik}} \Psi_k^{Z_{ik}W_k} (1-\Psi_k)^{(1-Z_{ik})W_k}$$

$$\propto ((1-p_k)^J)^{Z_{ik}}$$

which is Bern $((1-p_k)^J)$

5.2 p_k

$$[p_k|\cdot] \propto \prod_{i=1}^n [y_{ik}|J, p_k]^{Z_{ik}} [p_k|\alpha_p, \beta_p]$$

$$\propto \prod_{i=1}^n (p_k^{y_{ik}} (1-p_k)^{J-y_{ik}})^{Z_{ik}} p_k^{(\alpha_p-1)} (1-p_k)^{(\beta_p-1)}$$

$$\propto p_k^{(\alpha_p-1+\sum_{i=1}^n y_{ik}Z_{ik})} (1-p_k)^{(\beta_p-1+\sum_{i=1}^n Z_{ik}(J-y_{ik}))}$$

which is Beta $(\alpha_p + \sum_{i=1}^n y_{ik} Z_{ik}, \beta_p + \sum_{i=1}^n Z_{ik} (J - y_{ik}))$

5.3 Ψ_k

When $W_k = 1$

$$\begin{split} [\Psi_k|\cdot] &\propto \prod_{i=1}^n [Z_{ik}|\Psi_k]^{W_k} [\Psi_k|\alpha_{\Psi},\beta_{\Psi}] \\ &\propto \prod_{i=1}^n \Psi_{ik}^{Z_{ik}} (1-\Psi_k)^{(1-Z_{ik})} \Psi_k^{(\alpha_{\Psi}-1)} (1-\Psi_k)^{(\beta_{\Psi}-1)} \\ &\propto \Psi_{ik}^{(\alpha_{\Psi}-1+\sum_{i=1}^n Z_{ik})} (1-\Psi_k)^{(\beta_{\Psi}-1+\sum_{i=1}^n (1-Z_{ik}))} \end{split}$$

which is Beta $(\alpha_{\Psi} + \sum_{i=1}^{n} Z_{ik}, \ \beta_{\Psi} + \sum_{i=1}^{n} (1 - Z_{ik}))$

When $W_k = 0$

$$\begin{split} [\Psi_k|\cdot] &\propto \prod_{i=1}^n [Z_{ik}|\Psi_k]^{W_k} [\Psi_k|\alpha_{\Psi},\beta_{\Psi}] \\ &\propto \prod_{i=1}^n \Psi_{ik}^{Z_{ik}} (1-\Psi_k)^{(1-Z_{ik})} \Psi_k^{(\alpha_{\Psi}-1)} (1-\Psi_k)^{(\beta_{\Psi}-1)} \\ &\propto \Psi_{ik}^{(\alpha_{\Psi}-1)} (1-\Psi_k)^{(\beta_{\Psi}-1))} \end{split}$$

which is $Beta(\alpha_{\Psi}, \beta_{\Psi})$

5.4 W_k

Only sample for $\sum_{i=1}^{n} y_{ik} = 0$

$$\begin{split} [W_k|\cdot] &\propto \prod_{i=1}^n [Z_{ik}|\Psi_k]^{W_k} [W_k|\lambda] \\ &\propto \prod_{i=1}^n \Psi_k^{(Z_{ik}W_k)} (1-\Psi_k)^{((1-Z_{ik})W_k)} \lambda^{W_k} (1-\lambda)^{(1-W_k)} \\ &\propto \prod_{i=1}^n \left(\Psi_k^{Z_{ik}} (1-\Psi_k)^{(1-Z_{ik})} \lambda \right)^{W_k} (1-\lambda)^{(1-W_k)} \end{split}$$

which is
$$\operatorname{Bern}(\tilde{\lambda})$$
 where $\tilde{\lambda} = \left(\Psi_k^{\sum_{i=1}^n Z_{ik}} (1 - \Psi_k)^{\sum_{i=1}^n (1 - Z_{ik})} \lambda\right) / \left(\Psi_k^{\sum_{i=1}^n Z_{ik}} (1 - \Psi_k)^{\sum_{i=1}^n (1 - Z_{ik})} \lambda + (1 - \lambda)\right)$

5.5 α_p

$$[\alpha_p|\cdot] \propto \prod_{k=1}^{\Omega} [p_k|\alpha_p, \beta_p][\alpha_p] I\{W_k = 1\}$$

where $[p_k|\alpha_p,\beta_p]$ is $Beta(\alpha_p,\beta_p)$ and $[\alpha_p]$ is $Gamma(\alpha_{\alpha_p},\beta_{\alpha_p})$. This can be sampled using Metropolis-Hastings

5.6 β_p

$$[\beta_p|\cdot] \propto \prod_{k=1}^{\Omega} [p_k|\alpha_p,\beta_p] [\beta_p] I\{W_k = 1\}$$

where $[p_k|\alpha_p,\beta_p]$ is $\text{Beta}(\alpha_p,\beta_p)$ and $[\beta_p]$ is $\text{Gamma}(\alpha_{\beta_p},\beta_{\beta_p})$. This can be sampled using Metropolis-Hastings

5.7 α_{Ψ}

$$[\alpha_{\Psi}|\cdot] \propto \prod_{k=1}^{\Omega} [\Psi_k|\alpha_{\Psi}, \beta_{\Psi}][\alpha_{\Psi}]I\{W_k = 1\}$$

where $[\Psi_k | \alpha_{\Psi}, \beta_{\Psi}]$ is Beta $(\alpha_{\Psi}, \beta_{\Psi})$ and $[\alpha_{\Psi}]$ is Gamma $(\alpha_{\alpha_{\Psi}}, \beta_{\alpha_{\Psi}})$. This can be sampled using Metropolis-Hastings

5.8 β_{Ψ}

$$[\beta_{\Psi}|\cdot] \propto \prod_{k=1}^{\Omega} [\Psi_k|\alpha_{\Psi}, \beta_{\Psi}][\beta_{\Psi}]I\{W_k = 1\}$$

where $[\Psi_k | \alpha_{\Psi}, \beta_{\Psi}]$ is $\text{Beta}(\alpha_{\Psi}, \beta_{\Psi})$ and $[\beta_{\Psi}]$ is $\text{Gamma}(\alpha_{\beta_{\Psi}}, \beta_{\beta_{\Psi}})$. This can be sampled using Metropolis-Hastings

5.9 λ

$$[\lambda|\cdot] \propto \prod_{k=1}^{\Omega} [W_k|\lambda][\lambda]$$
$$\propto \prod_{k=1}^{\Omega} \lambda^{W_k} (1-\lambda)^{(1-W_k)} \lambda^{(\alpha_{\lambda}-1)} (1-\lambda)^{(\beta_{\lambda}-1)}$$

which is Beta $(\alpha_{\lambda} + \sum_{k=K+1}^{\Omega} W_k, \beta_{\lambda} + \sum_{k=K+1}^{\Omega} (1 - W_k))$

6 Next Steps

• Include a probit link function