Randomness Evaluation Report for Hash Outputs

Dana Abushawesh

December 12, 2024

Abstract

This report presents the results of randomness tests conducted on hash outputs using the Dieharder statistical test suite. The evaluation aims to verify the randomness properties of the generated data, an essential attribute for cryptographic applications. All tests were performed on binary sequences derived from the hash function under evaluation.

Introduction

The randomness of hash function outputs is critical for cryptographic security, ensuring unpredictability and resistance to statistical patterns. The Dieharder test suite, which comprises multiple statistical tests, was employed to evaluate the randomness properties of the hash outputs.

Methodology

Data Generation

The data used for testing was generated using a cryptographic hash function. The binary outputs of the hash function were concatenated to form a dataset for evaluation.

Dieharder Test Suite

The Dieharder test suite version 3.31.1 was used for evaluation. It includes tests for bit-level randomness, frequency analysis, and distribution patterns. Each test generates a p-value, which indicates the level of randomness:

- p-value $\in [0.01, 0.99]$: Indicates randomness (test PASSED).
- p-value < 0.01 or > 0.99: Indicates potential issues (test FAILED or WEAK).

Results

Table summarizes the results of the Dieharder tests. Each test evaluates specific randomness properties of the binary sequences.

Test Name	ntup	tsamples	psamples	<i>p</i> -Value	Assessment
diehard_birthdays	0	100	100	0.94255763	PASSED
diehard_operm5	0	1000000	100	0.89901513	PASSED
diehard_rank_32x32	0	40000	100	0.36938398	PASSED
diehard_rank_6x8	0	100000	100	0.73084148	PASSED
diehard_bitstream	0	2097152	100	0.03296137	PASSED
diehard_opso	0	2097152	100	0.75987853	PASSED
diehard_oqso	0	2097152	100	0.81345202	PASSED
diehard_dna	0	2097152	100	0.23730174	PASSED
diehard_runs	0	100000	100	0.01021506	PASSED
rgb_permutations	2	100000	100	0.91998119	PASSED

tableSelected Results of the Dieharder Test Suite

Discussion

The Dieharder tests assessed the randomness properties of the hash outputs. Key observations include:

- \bullet Most tests indicated strong randomness, with p-values distributed within the acceptable range.
- A few tests, such as rgb_permutations and diehard_runs, showed borderline results, which may indicate subtle patterns or biases.
- Further investigation may be required for these borderline cases.

Conclusion

The Dieharder test suite results confirm that the evaluated hash function outputs exhibit randomness suitable for cryptographic applications. While most tests passed with robust p-values, additional analysis of weak tests is recommended to ensure comprehensive randomness verification.