

Final Project Report

Subject: OPS-640-01: Data Analysis

Project: Flight Price Prediction

Introduction:

The flight prediction dataset is a collection of information encompassing various aspects of air travel, including airline details, journey dates, source and destination cities, specific routes, departure and arrival times, total stops, and ticket prices. The dataset captures the complexity and diversity of flight itineraries, providing a rich landscape for analysis. Particularly intriguing are the patterns that may emerge from examining the relationships between key variables, such as impact of flight duration and total number of stops on ticket prices.

As a recommendation for the business, a thorough analysis of the dataset can inform airlines and travel agencies about the factors influencing the pricing and customer decision-making. This understanding can guide targeted marketing efforts, optimize route planning, and contribute to the development of competitive pricing strategies, ultimately improving overall business performance and customer satisfaction

Data Overview:

The flight prediction dataset exhibits a structured format with 10,683 records, each capturing a unique flight itinerary.

Key columns include:

Airline, Date of journey, Source, Destination, Route, Duration, Total stops, Price.

Furthermore, the dataset has been strategically divided into separate datasets, each focusing on flights operated by the airline. This way of splitting the data helps us look at the details and patterns specific to airline.

To split the dataset into different datasets we used Python programming, The code can be viewed in

https://colab.research.google.com/drive/1MCy8EBTXuQOGB2UtOpdCHhoUjs 9qnYS_?usp=sharing

Descriptive Statistics:

In examining flight prediction dataset, we dive into descriptive statistics to gain comprehensive understanding of key numerical variables. The mean price provides insight into average cost, while median provides robust measure unaffected by extreme values. Additionally standard deviation illuminates the variability in prices. Visual representations including histograms and boxplots gives distribution of flight prices.

The results are shown in the table below.

Airline	Mean	Median	Standard Deviation	Covarience	Corelation
AirAsia	5590.26	5162	2027.36		
Air India	9611.21	9443	3900.95		
Go air	5861.05	5135	2703.58		
Indigo	5673.68	5000	2264.14		
Jet Airways	11643.92	11467	4258.94		
Jet Airways Business	58358.66	54747	11667.59		
Multiple Carriers	10902.67	10197	3721.23		
Multiple Carriers Premium	11418.84	11269	1717.15		
Multiple Carriers Economy	4338.28	3873	1849.92		
Vistara	7796.34	7980	2914.3		
Total				1189048	0.5069

Hypothesis Testing:

In our exploration of the flight prediction dataset, we set out to examine whether there is a significant difference in the mean ticket prices between short-duration and long duration flights. The null hypothesis (H0) posited that the mean prices for short-duration flights are equal to the mean prices for long-duration flights. Conversely, the alternative hypothesis (H1) suggested that the mean prices for short-duration flights are different from the mean prices for long-duration flights. Through statistical analysis, utilizing an appropriate test at a significance level of 0.05, we evaluated the evidence to either accept or reject the null hypothesis, shedding light on the potential impact of flight duration on ticket prices.

we explored the mean flight price, obtaining a sample mean of \$9086.443 with a standard deviation of \$44.619. The test, comparing against a null hypothesis

of \$9000, yielded a p-value of 0.0527, suggesting insufficient evidence to reject the hypothesis at a 0.05 significance level. The 95% confidence interval for the true mean price is [\$8998.991, \$9173.895]."

Linear Regression:

We conducted linear regression to understand the relationship between flight prices and the predictor variables—Duration and Total Stops for 10 different airline datasets. The results are as follows:

Airline	Intercept	Duration	Total Stops
AirAsia	2692.76	+1.022 per minute	+1739.50 per stop
Air India	2852.48	+0.2502 per minute	+2914.06 per stop
GoAir	1945.37	-8.308 per minute	+4198.64 per stop
IndiGo	2905.37	+2.302 per minute	+1502.55 per stop
Jet Airways	4574.00	+0.09361 per minute	+3464.00 per stop
Jet Airways Business	90284.78	+84.33 per minute	-27686.60 per stop
Multiple Carriers	4369.72	-1.845 per minute	+3753.26 per stop
Premium Carriers	12392.51	-1.601 per minute	NA (Not Available)
SpiceJet	2148.58	+19.22 per minute	-1051.74 per stop
Vistara	2550.49	-0.4917 per minute	+3824.03 per stop

Airline	Interce	Duration	Total Stops
	pt		
AirAsia	Base	Increase in flight duration	More stops->High
	price	adds to ticket price	price
Air India	Base	Slight increase in price with	More stops->High
	price	long duration	price
GoAir	Base	Longer durations result	More stops->High
	price	lower price	price
Indigo	Base	Longer durations add to	More stops->High
	price	ticket price	price
Jet Airways	Base	Slight increase in price with	More stops->High
	price	long duration	price
Jet Airways	Base	Significant increase in price	More stops->High
Business	price	with long duration	price
Multiple	Base	slight decrease in price with	More stops->High
Carriers	price	long duration	price
Premium	Base	slight decrease in price with	Impact on stops
Carriers	price	long duration	not available
Spice Jet	Base	Longer durations add toi	More stops
	price	ticket price	decrease price

Vistara	Base price	slight decrease in price with long duration	More stops increase ticket
	1		prce