Topics in Discrete Mathematics - Cryptography Problem Sheet 3

Daniel P. Martin

University of Bristol 2018-2019

1 Part A

For this part of the question let \mathcal{E} be the elliptic curve $y^2 = x^3 + 2x + 1$ over \mathbb{F}_{11} .

Question 1. Show that \mathcal{E} is non-singular.

Question 2. Compute x^2 for all $x \in \mathbb{F}_{11}$.

Question 3. Compute x^3 for all $x \in \mathbb{F}_{11}$.

Question 4. Compute $x^3 + 2x + 1$ for all $x \in \mathbb{F}_{11}$.

Question 5. Hence give all the points on \mathcal{E} .

Question 6. The list of points should include (0,1). Find the tangent to \mathcal{E} at (0,1) and identify another point on \mathcal{E} which also lies on the tanget. Hence, or otherwise, compute (0,1)+(0,1)

Question 7. The list of points should include (8,1). Find the tangent to \mathcal{E} at (8,1) and identify another point on \mathcal{E} which also lies on the tanget. Hence, or otherwise, compute (8,1)+(8,1)

Question 8. The list of points should include (10,3) and (5,9) which are on the line y=x+4. Find a third point on \mathcal{E} which is also on the line. Hence, or otherwise calculate (10,3)+(5,9).

2 Part B

For this part of the question let \mathcal{E} be the elliptic curve $y^2 = x^3 + x + 1$ over \mathbb{F}_{13} .

Question 9. Show that \mathcal{E} is non-singular.

Question 10. Compute x^2 for all $x \in \mathbb{F}_{13}$.

Question 11. Compute x^3 for all $x \in \mathbb{F}_{13}$.

Question 12. Compute $x^3 + x + 1$ for all $x \in \mathbb{F}_{13}$.

Question 13. Hence give all the points on \mathcal{E} .

Question 14. The list of points should include (12, 8), compute the point 2(12, 8) on \mathcal{E} .

3 Part C

This part of the exercise sheet will go through and show that the elliptic curve group is indeed a group.

Question 15. Prove the elliptic curve group satisfies the following group axioms:

- Identity
- Inverse
- Closure

The harder one to prove is associativity. We give a few examples before proving it for arbitrary groups.

Question 16. Consider the elliptic curve from Part A of this worksheet. Choose five examples and show that the group operation is associative.

To prove associativity you may assume the following theorem.

Theorem 1 (Cayley-Bacharach Theorem). Let $X_1, X_2 \subset \mathbb{P}^2$ be cubic plane curves meeting in nine points p_1, \ldots, p_9 . If $X \subset \mathbb{P}^2$ is any cubic containing p_1, \ldots, p_8 , then X contains p_9 as well.

Question 17. Using the Cayley-Bacharach Theorem, or otherwise, prove that the elliptic curve group is associative.