目次

1		定理	3																																2
	1.1	主張																																	2
	1.2	証明				•								•	•							•													2
2	2 定理 4 および 命題 5.1															6																			
	2.1	命題	$\bar{!}$ 5.1																																6
	2.1.	1	主張																								•								6
	2.1.	2	証明																																6
	2.2	定理	4 .																																8
	2.2.	1	主張																																8
	2.2.	2	証明																																9
	2.2.	3	定理	4	内	(a	1)((a2	2)(b1	L)((b:	2)	(c))(0	(h	か	成	1	Ζl	۔ ر	7	い	る	場	合	0) .	f,	ť,	f	* ,	\check{f}_{st}	k	
			の具々	体自	匀な	な形	,																												16

(3,4)-カスプ辺における HNSUY 定理 3,4 の証明 ノート

飯野 郁

2025/10/14

1 定理3

1.1 主張

 n_f を $f, \check{f}, f_*, \check{f}_*$ の右同値類の数 (つまり, 像の数) とする. このとき, 次が成り立つ.

- (1) $n_f = 4 \iff ds_f^2$ は symmetry を持たない.
- (2) $n_f = 1 \iff ds_f^2$ は effective symmetry と non-effective symmetry の両方を持つ.

*1

1.2 証明

 $(n_f = 4 \implies ds_f^2$ は symmetry を持たない を示す)

対偶を示す. つまり, ds_f^2 がある symmetry φ を持つと仮定する.

(a) φ が effective symmetry の場合

 $f\circ \varphi$ および $\check{f}\circ \varphi$ の第一基本形式は ds_f^2 と一致し、特異曲線 $\{v=0\}$ 上では、

$$f \circ \varphi(u,0) = f(-u,0) = \mathbf{c}(-u)$$

$$\check{f} \circ \varphi(u,0) = \check{f}(-u,0) = \mathbf{c}(-u)$$

 $^{^{*1}}$ $n_f=2\iff ds_f^2$ は effective symmetry か non-effective symmetry のいずれか一方のみを持つ.

であるため, $f \circ \varphi$ および $\check{f} \circ \varphi$ はそれぞれ f_*, \check{f}_* のいずれかと一致する.

- $-f \circ \varphi = f_*$ なら, f と f_* は右同値である. (同様に, \check{f} は \check{f}_* と右同値である)
- $-f\circ\varphi=\check{f}_*$ なら, f と \check{f}_* は右同値である. (同様に, \check{f} は f_* と右同値である) $\therefore \{f,\check{f},f_*,\check{f}_*\}$ の右同値類の個数は 2 である.

(b) φ が non-effective symmetry の場合

 φ が effective symmetry である場合と同様の議論で, $f\circ\varphi$ および $\check{f}\circ\varphi$ の第一基本形式は ds_f^2 と一致し, 特異曲線 $\{v=0\}$ 上では,

$$f \circ \varphi(u,0) = f(u,0) = \mathbf{c}(u)$$
$$f_* \circ \varphi(u,0) = f_*(u,0) = \mathbf{c}(-u)$$

であるため, $f\circ\varphi$ は \check{f} と一致し, $f_*\circ\varphi$ は \check{f}_* と一致する. よって, f は \check{f} と右同値であり, f_* は \check{f}_* と右同値である.

 $\therefore \{f, \check{f}, f_*, \check{f}_*\}$ の右同値類の個数は 2 である.

 \therefore (a)(b) より, $n_f = 4 \implies ds_f^2$ は symmetry を持たない を示した.

(ds_f^2) は symmetry を持たない $\implies n_f = 4$ を示す)

対偶を示す. つまり, $n_f < 4$ であると仮定する. f と $g \in \{ \check{f}, f_*, \check{f}_* \}$ が右同値であるとして, 一般性を失わない.

(a) $g = f_*$ または \check{f}_* の場合

f と右同値であるので、 $\exists \varphi$: 微分同相写像 s.t. $g=f\circ \varphi$. それぞれの第一基本形式 ds^2 を $ds^2_q, ds^2_{f\circ \varphi}$ とすると、

$$ds_g^2 = ds_f^2$$
$$ds_{f \circ \varphi}^2 = \varphi^* ds_f^2$$

であるため, $ds_f^2 = \varphi^* ds_f^2$ であり, φ は Id か symmetry である.

もし φ が Id なら, f=g となるため, $f=f_*$ または \check{f}_* が成り立つ. しかし, これでは曲線の像 C=c(J) の向きが f と f_* で同じとなり, 矛盾.

 $\therefore \varphi \neq \text{Id}$ であり, φ は ds_f^2 の symmetry である.

(b) $g = \check{f}$ の場合

fと右同値であるので、 $\exists \varphi$: 微分同相写像 s.t. $\check{f}=f\circ \varphi.$ (a) と同様に、 $ds_f^2=$

 $\varphi^*ds_f^2$ である. もし $\varphi=\mathrm{Id}$ なら, $f=\check{f}$ である.

一方, f のカスプ角 θ_f および単位法ベクトル ν_f は f から決まるので, $f = \check{f} \Longrightarrow \theta_f = \theta_{\check{f}}$ となるが, \check{f} の性質より $\theta_{\check{f}} = -\theta_f$ であるため, $\theta = 0$ となる. しかしカスプ角の定義域は $0 < |\theta| < \pi$ であったため, この事実と矛盾する.

 $\therefore \varphi \neq \text{Id } \text{ cbh}, \varphi \text{ it } ds_f^2 \text{ on symmetry cbh}.$

 \therefore (a)(b) より, ds_f^2 は symmetry を持たない $\implies n_f = 4$ を示した.

 $(n_f=1\implies ds_f^2$ は effective symmetry と non-effective symmetry の両方を持つ を示す)

 $n_f=1\iff f$ は $\check f,f_*,\check f_*$ の 3 つすべてと右同値であるため、" ds_f^2 は symmetry を持たない $\implies n_f=4$ " の証明内の $g\in\{\check f,f_*,\check f_*\}$ について

$$g=f_*$$
 または $g=\check{f}_*$ の場合と $g=\check{f}$

の両方を満たしている場合である.

一つ目の等式について、 $g=f_*$ または $g=\check{f}_*$ \iff f と f_*,\check{f}_* が右同値である \iff $\exists \varphi:$ 微分同相写像 s.t. $f\circ\varphi=f_*$ または \check{f}_* ($\varphi\neq \mathrm{Id}$). f と f_* または \check{f}_* は特異曲線をたどる向きが逆であるため、 φ は曲線をたどる向きを反転させる. よって、 φ は effective symmetry である.

二つ目の等式について, $g=\check{f}\iff f$ と \check{f} が右同値である $\iff \exists \psi$: 微分同相写像 s.t. $f\circ\psi=\check{f}$ ($\psi\neq \mathrm{Id}$). f と \check{f} は特異曲線をたどる向きが同じであるため, ψ は曲線の向きを保つ. よって, ψ は non-effective symmetry である.

 $\therefore n_f = 1 \implies ds_f^2$ は effective symmetry と non-effective symmetry の両方を持つ を示した.

 (ds_f^2) は effective symmetry と non-effective symmetry の両方を持つ $\implies n_f = 1$ を示す)

仮定より effective symmetry φ と non-effective symmetry ψ が存在するため,

$$\varphi$$
 が存在 $\Longrightarrow f \circ \varphi = f_*$ または $\check{f}_* \Longrightarrow f$ と f_* または \check{f}_* が右同値である ψ が存在 $\Longrightarrow f \circ \psi = \check{f} \Longrightarrow f$ と \check{f} が右同値である

が成り立つ.

f と f_* が右同値の場合を考える. $\check{f}\circ \varphi$ の第一基本形式は ds_f^2 と等しく, 特異曲線

 $\{v=0\}$ 上では、

$$\check{f} \circ \varphi(u,0) = \check{f}(-u,0) = \mathbf{c}(-u)$$

であるため, $\check{f}\circ\varphi=f_*$ または \check{f}_* である. すでに $f\circ\varphi=f_*$ であるため, $\check{f}\circ\varphi=\check{f}_*$ である.

 $(::\check{f}\circ\varphi=f_*$ だと, $f\circ\varphi=\check{f}\circ\varphi$ つまり $f=\check{f}$ となり矛盾.)

f と \check{f}_* が右同値の場合、同様の議論で $\check{f}\circ\varphi=f_*$ である.

以上より、いずれの場合でも f が $\check{f}, f_*, \check{f}_*$ と右同値になる.

 $\therefore ds_f^2$ は effective symmetry と non-effective の両方を持つ $\implies n_f = 1$ である.

以上より, 定理 3 の (1)(2) を示した. ■

定理 4 および 命題 5.1 2

2.1 命題 5.1

2.1.1 主張

f と \check{f} が合同である \iff 次のいずれかが成り立つ.

- (a) C が平面曲線である
- (b) ds_f^2 が non-effective symmetry をもつ
 (c) 特異曲線 C が正の orientation-reversing symmetry をもち, ds_f^2 が向きを反転させる (つまり,ヤコビアンが負) effective symmetry をもつ
- (d) 特異曲線 C が負の orientation-reversing symmetry をもち, ds_f^2 が向きを保つ (つまり、ヤコビアンが正) effective symmetry をもつ

2.1.2 証明

 $(f \ E \ \check{f} \ \text{が合同である} \implies (a)(b)(c)(d) \ O いずれかが成り立つ を示す)$ f と \check{f} が合同であると仮定する. つまり $\exists T \in O(3), \exists \varphi$: 微分同相写像 s.t.

$$T \circ f \circ \varphi = \check{f} \quad \cdots (*)$$

と表せる.

- (あ) T = Id の場合 与式 (*) は $f \circ \varphi = \check{f}$ と表せる. これは φ が non-effective symmetry であるため, (b) に該当する.
- (い) T が orientation-preserving symmetry の場合 平面曲線に関する同値条件より, f の特異曲線 C は平面曲線である. これは (a) に 該当する.
- (う) T が orientation-reversing symmetry の場合 Prop 2.1 (20250725.pdf) より、
 - T が正であり, effective symmetry φ のヤコビアンが負である
 - T が負であり, effective symmetry φ のヤコビアンが正である のいずれかに該当する. これは (c) または (d) に該当する.

$\therefore f$ と \check{f} が合同である \Longrightarrow (a)(b)(c)(d) のいずれかが成り立つ を示した.

((a)(b)(c)(d) のいずれかが成り立つ $\Longrightarrow f \wr \check{f}$ が合同である を示す)

• (a) が成立すると仮定する. Remark 5.2 (20250807.pdf) より, 平面に関する折返し $S \in O(3)$ を用いて

$$\check{f} = S \circ f$$

が成り立つ. よって f と \check{f} は合同である.

• (b) が成立すると仮定する. $\varphi \text{ σ non-effective symmetry } \text{ σ v } \text{ σ } \text{ $\sigma$$

 φ を non-effective symmetry として、 $g:=f\circ\varphi$ とする. g と f の第一基本形式は一致し、 さらに f と g の特異曲線 $\{v=0\}$ 上では

$$f(u,0) = \mathbf{c}(u)$$
$$f \circ \varphi(u,0) = f(u,0) = \mathbf{c}(u)$$

であるため, $f\circ\varphi=f$ または \check{f} が成り立つ. ν_g (resp. ν_f) を g (resp. f) の 単位法ベクトル場とする. 向きを同調した g の単位法ベクトル場を求める. J を $\varphi(u,v)$ のヤコビ行列, $\varepsilon:=\mathrm{sgn}(\det J), \, \nu_g=\varepsilon\nu_f\circ\varphi, \, \lambda:=\det(f_u,f_v,\nu_f)\geq 0$ と すると,

$$\det(g_u, g_v, \nu_g)(u, v) = \det((f \circ \varphi(u, v))_u, (f \circ \varphi(u, v))_v, \varepsilon \nu_f \circ \varphi(u, v))$$

$$= \varepsilon(\det J)(\lambda \circ \varphi)(u, v)$$

$$= \underbrace{|\det J|}_{>0} \underbrace{(\lambda \circ \varphi)(u, v)}_{\geq 0} \geq 0.$$

よって、 $\nu_g = \varepsilon \nu_f \circ \varphi$ は向きを同調した g の単位法ベクトル場である. 次に, g (resp. f) のカスプ方向を \mathbf{x}_g (resp. \mathbf{x}_f) とすると,

$$\mathbf{x}_g(u) := \hat{\nu}_g(u) \times \mathbf{c}'(u)$$

$$= \varepsilon \nu_f \varphi(u, 0) \times \mathbf{c}'(u)$$

$$= \varepsilon \nu_f(u, 0) \times \mathbf{c}'(u)$$

$$= \varepsilon \mathbf{x}_f(u) \cdots (**)$$

となる. g のカスプ角 θ_g を用いると $\mathbf{x}_g(u) = \cos \theta_g(u) \mathbf{n}(u) - \sin \theta_g(u) \mathbf{b}(u)$ と表せることに注意して, 式 (**) に $\mathbf{x}_f(u)$ を代入すると,

$$\mathbf{x}_g(u) = \varepsilon(\cos\theta_f(u)\mathbf{n}(u) - \sin\theta_f(u)\mathbf{b}(u))$$

と表せる. φ は non-effective symmetry であるため, $\varepsilon=-1$ の場合のみを考えればよい*2.

 $\varepsilon = -1$ の場合, $\mathbf{x}_g(u) = \cos(\pi + \theta_f(u))\mathbf{n}(u) - \sin(\pi + \theta_f(u))\mathbf{b}(u)$ であるため, $\theta_g(u) = \pi + \theta_f(u)$ が成り立つ. これを満たすのは $\theta_g(u) = -\theta_f(u)$ であるため,

$$f \circ \varphi = \check{f}$$

が成り立つ. よって, f と \check{f} は合同である.

• (c) が成立すると仮定する.

これは Prop 2.1 (1) に該当するため、正の orientation-reversing symmetry T と ヤコビアンが負である effective symmetry φ を用いて

$$T\circ f\circ \varphi=\check{f}$$

が成り立つ. よって f と \check{f} は合同である.

• (d) が成立すると仮定する.

これは Prop 2.1 (4) に該当するため、負の orientation-reversing symmetry T と ヤコビアンが正である effective symmetry φ を用いて

$$T \circ f \circ \varphi = \check{f}$$

が成り立つ. よって f と \check{f} は合同である.

 \therefore (a)(b)(c)(d) のいずれかが成り立つ $\implies f$ と \check{f} が合同である を示した.

以上より, 命題 5.1 の同値条件を示した. ■

2.2 定理 4

2.2.1 主張

 $m{N_f}$ を $f, \check{f}, f_*, \check{f}_*$ の合同類の数とする. このとき, 次が成り立つ.

- (1) $N_f = 4 \iff ds_f^2$ と C はいずれも symmetry を持たない.
- (2) $N_f \neq 3$.
- (3) $N_f = 1 \iff$ 次のいずれかが成り立つ.
 - (a1) C は平面曲線 かつ C に orientation-reversing symmetry が存在する.

 $^{^{*2}~\}varepsilon=1$ を満たすような non-effective symmetry は存在しない. HNSUY の Lemma 3.14 参照.

- (a2) C は平面曲線 かつ ds_f^2 に effective symmetry が存在する.
- (b1) ds_f^2 に non-effective symmetry が存在して、かつ C に orientation-reversing symmetry が存在する.
- (b2) ds_f^2 に non-effective symmetry が存在して、かつ ds_f^2 に effective symmetry が存在する
 - (c) C に正の orientation-reversing symmetry が存在して、かつ ds_f^2 に向き を反転させる effective symmetry が存在する.
 - (d) C に負の orientation-reversing symmetry が存在して、かつ ds_f^2 に向きを保つ effective symmetry が存在する.

*3

2.2.2 証明

対偶を示す. つまり, symmetry が 1 個でも存在してしまうと, $N_f < 4$ となってしまうことを示せばよい.

• ds_f^2 に symmetry φ が存在する場合

定理 3 ((3,4)-カスプ辺バージョン)より,右同値類の数は $n_f \leq 2$. また,f と \check{f} が右同値であるとして一般性を失わない.右同値の定義より, $\exists \varphi$:diffeo s.t. $f \circ \varphi = \check{f}$. これは f と \check{f} が合同であるので, $N_f < 4$ である.

C に orientation-preserving symmetry T が存在する場合
 平面曲線に関する補題より、次の同値条件

C が平面曲線である \iff

 $\exists T \in O(3) \ s.t. \ T$ は C の orientation-preserving symmetry である

が成り立つ. C が平面曲線であるため, Prop 5.1 より f と \check{f} は合同である. よって, $N_f < 4$ である.

• C に orientation-reversing symmetry T が存在する場合 $T\circ f$ を考える. $T\circ f$ の第一基本形式は ds_f^2 と一致し、さらに $T\circ f(u,0)=\mathbf{c}(-u)$

^{*} 3 C が平面曲線 \iff C κ orientation-preserving symmetry が存在する.

であることから,

$$T \circ f = f_* \sharp \hbar \ \check{f}_*$$

となる. よって, f は f_* か \check{f}_* のいずれかと合同となるため, $N_f < 4$ となる.

 $\therefore N_f = 4 \implies ds_f^2$ と C はいずれも symmetry を持たない

$(ds_f^2 \ {\it C} \$

 $\{f,\check{f},f_*,\check{f}_*\}$ のいずれか 2 つが合同であると仮定する. f と $g\in\{\check{f},f_*,\check{f}_*\}$ が合同であるとして一般性を失わない. また, Prop 5.1 の (a)(b)(c)(d) いずれも満たさないため, f と \check{f} は合同ではない. すなわち $g\neq\check{f}$ である (\star) .

f と g が合同であるため、 $\exists T \in O(3), \exists \varphi : \text{diffeo s.t.}$

$$g = T \circ f \circ \varphi \quad \cdots (*)$$

と書ける.(*)の左辺と右辺それぞれの第一基本形式について、

(左辺)
$$ds_g^2 = ds_f^2$$
.
(右辺) $ds_{T \circ f \circ \varphi}^2 = \varphi^* ds_f^2$.

であるため, $ds_f^2=\varphi^*ds_f^2$ である. 仮定より φ は symmetry ではないので, $\varphi=\mathrm{Id}$ となる. よって, 式 (*) は $g=T\circ f$ と書ける。特異曲線 $\{v=0\}$ 上を考えると

(左辺)
$$g(u,0) = \mathbf{c}(-u)$$
.
(右辺) $T \circ f(u,0) = T\mathbf{c}(u)$.

 $(:: \star$ より, g は f_* または \check{f}_*) よって, $\mathbf{c}(-u) = T\mathbf{c}(u)$. これは T が orientation-reversing symmetry でなければいけないため, C が symmetry を持たないことに矛盾する.

 $\therefore ds_f^2$, C が symmetry を持たない $\implies N_f = 4$.

$(N_f = 1 \implies (3)$ の 6 条件のいずれかを満たす を示す)

仮定より $f, \check{f}, f_*, \check{f}_*$ が合同であり、特に f と \check{f} が合同であるため、Prop 5.1 より (a)(b)(c)(d) のいずれかを満たしている.

• Prop 5.1(a) を満たしている場合 まず, f と f_* も合同であるため, $\exists T \in O(3), \varphi$: 微分同相写像 s.t.

$$T \circ f \circ \varphi = f_* \quad \cdots (**)$$

である. (**) の両辺それぞれの第一基本形式は,

(左辺)
$$ds_{T \circ f \circ \varphi}^2 = \varphi^* ds_f^2$$

(右辺) $ds_{f_*}^2 = ds_f^2$.

であるため, $\varphi^*ds_f^2=ds_f^2$. よって, φ は 恒等写像か symmetry のいずれかである. つまり, $\varphi(u,0)=(\pm u,0)$.

- T が orientation-reversing symmetry の場合, 定理 4 の (a1) に該当する.
- -T が orientation-reversing symmetry ではない場合, v=0 を式 (**) に代入 すると,

$$T \circ f \circ \varphi(u,0) = egin{cases} T \circ f(u,0) & (\varphi \, ilde{\sigma} \, ext{ non-effective または 恒等写像)} \\ T \circ f(-u,0) & (\varphi \, ilde{\sigma} \, ext{ effective)} \end{cases}$$

$$= egin{cases} T\mathbf{c}(u) \\ T\mathbf{c}(-u) \\ \end{bmatrix}$$

$$= egin{cases} \mathbf{c}(u) \\ \mathbf{c}(-u) \\ \end{bmatrix}.$$

となる. f_* は特異曲線をたどる向きが f と逆であるため, $f_*(u,0)=\mathbf{c}(-u)$ である. よって, φ は effective でなければならず, これは 定理 4 の (a2) に該当する.

Prop 5.1(b) を満たしている場合
 (Prop 5.1(a) の場合と同様) f と f* も合同であるため、∃T ∈ O(3)、φ: 微分同相写像 s.t.

$$T \circ f \circ \varphi = f_* \quad \cdots (**)$$

である. (**) の両辺それぞれの第一基本形式は,

(左辺)
$$ds_{T \circ f \circ \varphi}^2 = \varphi^* ds_f^2$$

(右辺) $ds_{f_*}^2 = ds_f^2$.

であるため, $\varphi^*ds_f^2=ds_f^2$. よって, φ は 恒等写像か symmetry のいずれかである. つまり, $\varphi(u,0)=(\pm u,0)$.

- -T が orientation-reversing symmetry の場合, 定理 4 の (b1) に該当する.
- -T が orientation-reversing symmetry ではない場合, v=0 を式 (**) に代入 すると,

$$T \circ f \circ \varphi(u,0) = egin{cases} T \circ f(u,0) & (\varphi \, \mbox{is non-effective または 恒等写像)} \\ T \circ f(-u,0) & (\varphi \, \mbox{is effective}) \end{cases}$$

$$= egin{cases} T \mathbf{c}(u) \\ T \mathbf{c}(-u) \\ \end{bmatrix}$$

$$= egin{cases} \mathbf{c}(u) \\ \mathbf{c}(-u) \\ \end{bmatrix}.$$

となる. f_* は特異曲線をたどる向きが f と逆であるため, $f_*(u,0) = \mathbf{c}(-u)$ である. よって, φ は effective でなければならず, これは 定理 4 の (b2) に該当する.

- Prop 5.1(c) を満たしている場合
 定理 4(c) も同じ条件であるため, 満たされている.
- Prop 5.1(d) を満たしている場合
 定理 4(d) も同じ条件であるため, 満たされている.

 $\therefore N_f = 1 \implies (3) \text{ o } 6$ 条件のいずれかを満たす.

((3) の 6 条件のいずれかを満たす $\implies N_f = 1$ を示す)

• (a1) が成り立っていると仮定する. つまり、 $\exists S \in O(3)$: orientation-preserving symmetry、 $\exists T \in O(3)$: orientation-reversing symmetry. Prop 5.1(a) より、f と \check{f} は合同である ($\check{f} = S \circ f$). S, T はともに O(3) であるため、 $S \circ T \circ f$ と $T \circ f$ は共に第一基本形式が ds_f^2 と等しい. また、それぞれの特異曲線 $\{v=0\}$ 上を考えると

$$S \circ T \circ f(u,0) = \mathbf{Sc}(-u) = \mathbf{c}(-u).$$

 $T \circ f(u,0) = \mathbf{c}(-u).$

であるため, $S \circ T \circ f = f_*$ または \check{f}_* , $T \circ f = \check{f}_*$ または f_* となる. よって,

 $N_f = 1.^{*4}$

• (a2) が成り立っていると仮定する. つまり, $\exists S \in O(3)$: orientation-preserving symmetry, $\exists \varphi$: effective symmetry. Prop 5.1(a) より, f と \check{f} は合同である $(\check{f} = S \circ f)$. $S \in O(3)$ および φ は symmetry であることより, $S \circ f \circ \varphi$ と $f \circ \varphi$ は共に第一基本形式が ds_f^2 と等しい. また, それぞれの特異曲線 $\{v=0\}$ 上を考えると

$$S \circ f \circ \varphi(u,0) = S \circ f(-u,0) = S\mathbf{c}(-u) = \mathbf{c}(-u).$$

$$f \circ \varphi(u,0) = f(-u,0) = \mathbf{c}(-u).$$

であるため, $f\circ\varphi=f_*$ または \check{f}_* , $S\circ f\circ\varphi=\check{f}_*$ または f_* となる. よって, $N_f=1$.

• (b1) が成り立っていると仮定する. つまり、 $\exists \varphi$: non-effective symmetry、 $\exists T \in O(3)$: orientation-reversing symmetry. Prop 5.1(b) より、f と \check{f} は合同である $(\check{f} = f \circ \varphi)$. $T \in O(3)$ および φ は symmetry であることより、 $T \circ f \circ \varphi$ と $T \circ f$ は共に第一基本形式が ds_f^2 と等しい. また、それぞれの特異曲線 $\{v=0\}$ 上を考えると

$$T \circ f \circ \varphi(u,0) = T \circ f(u,0) = T\mathbf{c}(u) = \mathbf{c}(-u).$$

 $T \circ f(u,0) = T\mathbf{c}(u) = \mathbf{c}(-u).$

であるため, $T\circ f=f_*$ または \check{f}_* , $T\circ f\circ \varphi=\check{f}_*$ または f_* となる. よって, $N_f=1$.

• (b2) が成り立っていると仮定する. つまり、 $\exists \varphi_1$: non-effective symmetry, $\exists \varphi_2$: effective symmetry. Prop 5.1(b) より、f と \check{f} は合同である ($\check{f} = f \circ \varphi$). φ_1 と φ_2 はいずれも symmetry であることより、 $f \circ \varphi_2$ と $f \circ \varphi_1 \circ \varphi_2$ は共に第一基本 形式が ds_f^2 と等しい. また、それぞれの特異曲線 $\{v=0\}$ 上を考えると

$$f \circ \varphi_2(u, 0) = f(-u, 0) = \mathbf{c}(-u).$$

 $f \circ \varphi_1 \circ \varphi_2(u, 0) = f \circ \varphi_1(-u, 0) = f(-u, 0) = \mathbf{c}(-u).$

であるため, $f\circ\varphi_1=f_*$ または \check{f}_* , $f\circ\varphi_1\circ\varphi_2=\check{f}_*$ または f_* となる. よって, $N_f=1$.

^{*} 4 $T \circ f$ が f_* または \check{f}_* になり, $S \circ T \circ f$ が \check{f}_* または f_* になる条件は別セクションで調べる ((a2)(b1)(b2)(c)(d) の場合についても同様).

• (c) が成り立っていると仮定する. つまり、 $\exists T$: 正の orientation-reversing symmetry、 $\exists \varphi$: ヤコビアンが負の effective symmetry. Prop 5.1(c) より、f と \check{f} は合同である ($\check{f}=T\circ f\circ \varphi$). $T\in O(3)$ および φ は symmetry であることより、 $T\circ f$ と $f\circ \varphi$ は共に第一基本形式が ds_f^2 と等しい. また、それぞれの特異曲線 $\{v=0\}$ 上を考えると

$$T \circ f(u,0) = T\mathbf{c}(u) = \mathbf{c}(-u).$$

 $f \circ \varphi(u,0) = f(-u,0) = \mathbf{c}(-u).$

であるため, $T \circ f = f_*$ または \check{f}_* , $f \circ \varphi = \check{f}_*$ または f_* となる. よって, $N_f = 1$.

• (d) が成り立っていると仮定する. つまり、 $\exists T$: 負の orientation-reversing symmetry、 $\exists \varphi$: ヤコビアンが正の effective symmetry. Prop $5.1(\mathrm{d})$ より、f と \check{f} は合同である ($\check{f}=T\circ f\circ \varphi$). $T\in O(3)$ および φ は symmetry であることより、 $T\circ f$ と $f\circ \varphi$ は共に第一基本形式が ds_f^2 と等しい. また、それぞれの特異曲線 $\{v=0\}$ 上を考えると

$$T \circ f(u,0) = T\mathbf{c}(u) = \mathbf{c}(-u).$$
$$f \circ \varphi(u,0) = f(-u,0) = \mathbf{c}(-u).$$

であるため, $T \circ f = f_*$ または \check{f}_* , $f \circ \varphi = \check{f}_*$ または f_* となる. よって, $N_f = 1$.

 \therefore (3) の 6 条件のいずれかを満たす $\implies N_f = 1$.

$(N_f \neq 3$ を示す)

symmetry が 1 個でも存在してしまうと, $N_f < 3$ となってしまうことを示せばよい.

- ds_f^2 に symmetry φ が存在する場合
 - φ ℬ non-effective

Prop 5.1 (b) より, f と \check{f} が合同である. $\check{f}=f\circ\varphi$ を示したときの同様の議論で,

$$\check{f}_* = f_* \circ \varphi$$

となる. よって f と \check{f}, f_* と \check{f}_* がそれぞれ合同であるため, $N_f=2$. 特に, $N_f<3$ が成り立つ.

 $-\varphi$ が effective $f\circ\varphi$ に関する等式

$$f\circ \varphi = egin{cases} f_* & (arphi \ \mbox{or} \ \mbox{or} \ \mbox{var} \mbox{var} \ \mbox{var} \mbox{var} \ \mbox{var} \mbox{var} \ \mbox{var} \mbox{var} \mbox{var} \ \mbox{var} \ \mbox{var} \ \mbox{var} \ \mb$$

を示すとき ((a2) が成立 $\implies N_f = 1$ の証明部分) の同様の議論で, $\check{f}\circ\varphi$ は

$$\check{f}\circ \varphi = egin{cases} \check{f}_* & (\varphi \ \mathcal{O}$$
ヤコビアンが正)
$$f_* & (\varphi \ \mathcal{O}$$
ヤコビアンが負)

となる. よって, $N_f < 3$ である.

- C に symmetry T が存在する場合
 - T が orientation-preserving symmetry Prop 5.1(a) より, f と \check{f} が合同である. $\check{f}=T\circ f$ を示したときの同様の議論で,

$$\check{f}_* = T \circ f_*$$

となる. よって f と \check{f} , f_* と \check{f}_* がそれぞれ合同であるため, $N_f=2$. 特に, $N_f<3$ が成り立つ.

-T が orientation-reversing symmetry $T \circ f$ に関する等式

$$T \circ f = \begin{cases} f_* & (\det T = 1) \\ \check{f}_* & (\det T = -1) \end{cases}$$

を示すとき ((a1) が成立 $\implies N_f = 1$ の証明部分) の同様の議論で, $T \circ \check{f}$ は

$$T \circ \check{f} = \begin{cases} \check{f}_* & (\det T = 1) \\ f_* & (\det T = -1) \end{cases}$$

となる. よって, $N_f < 3$ である.

 $\therefore N_f \neq 3$ が成り立つ.

以上より, 定理 4 の (1)(2)(3) を示した. ■

2.2.3 定理 4内 (a1)(a2)(b1)(b2)(c)(d) が成立している場合の $f, \check{f}, f_*, \check{f}_*$ の具体的な形

- (a1) が成立している場合
 - $-T \circ f$ が f_* または \check{f}_* になる条件を調べる.

 $g:=T\circ f$ として、 ν_g (resp. ν_f) を g (resp. f) の単位法ベクトル場とする. 向きを同調した g の単位法ベクトル場を求める. $\sigma_T:=\det T, \, \nu_g=\sigma_T T \nu_f,$ $\lambda:=\det (f_u,f_v,\nu_f)\geq 0$ とすると、

$$\det(g_u, g_v, \nu_g)(u, v) = \det((T \circ f(u, v))_u, (T \circ f(u, v))_v, \nu_g(u, v))$$

$$= \det(T \circ (f(u, v))_u, T \circ (f(u, v))_v, \nu_g(u, v))$$

$$= \underbrace{\sigma_T(\det T)}_{1} \det(f_u, f_v, \nu_f)(u, v)$$

$$= \lambda(u, v) > 0.$$

よって, $\nu_g = \sigma_T T \nu_f$ は向きを同調した g の単位法ベクトル場である. 次に, g (resp. f) のカスプ方向を \mathbf{x}_g (resp. \mathbf{x}_f) とすると,

$$\mathbf{x}_{g}(u) := \hat{\nu}_{g}(u) \times \mathbf{c}'_{*}(u) \quad (\mathbf{c}_{*}(u) := \mathbf{c}(-u))$$

$$= \sigma_{T} T \nu_{f}(u, 0) \times (T \mathbf{c}'(u))$$

$$= \underbrace{\sigma_{T}(\det T)}_{1} T(\hat{\nu}_{f}(u) \times \mathbf{c}'(u)) \quad (\hat{\nu}_{f}(u) := \nu_{f}(u, 0))$$

$$= T \mathbf{x}_{f}(u) \quad \cdots \quad (a1.1)$$

となる. g のカスプ角 θ_g を用いると $\mathbf{x}_g(u) = \cos\theta_g(u)\mathbf{n}(-u) + \sin\theta_g(u)\mathbf{b}(-u)$ と表せることに注意して、式 (a1.1) に $\mathbf{x}_f(-u)$ を代入すると、

$$\mathbf{x}_g(u) = \cos \theta_f(u) T \mathbf{n}(u) - \sin \theta_f(u) T \mathbf{b}(u)$$

$$\therefore \mathbf{x}_g(0) = \cos \theta_f(0) \mathbf{n}(0) + \sigma_T \sin \theta_f(0) \mathbf{b}(0)$$

$$= \cos(\sigma_T \theta_f(0)) \mathbf{n}(0) + \sin(\sigma_T \theta_f(0)) \mathbf{b}(0)$$

と表せる $(:T\mathbf{n}(0) = \mathbf{n}(0), T\mathbf{b}(0) = -\sigma\mathbf{b}(0))$. $\theta_a(0) = \sigma_T\theta_f(0)$ より、

$$egin{cases} \sigma_T = 1 \text{ ならば}, & (g =) T \circ f = f_* \ \sigma_T = -1 \text{ ならば}, & T \circ f = \check{f}_* & \cdots (a1.2) \end{cases}$$

である.

 $-\frac{S\circ T\circ f}{g:=S\circ T\circ f}$ だ f_* または \check{f}_* になる条件を調べる. $g:=S\circ T\circ f$ として、 ν_g (resp. ν_f) を g (resp. f) の単位法ベクトル

場とする。向きを同調した g の単位法ベクトル場を求める。 $\sigma_T := \det T$, $\sigma_S = \det S = -1$ (∵ orientatoin-preserving symmetry は負のみ), $\nu_g = \sigma_S \sigma_T S T \nu_f$, $\lambda := \det (f_u, f_v, \nu_f) \geq 0$ とすると,

$$\det(g_u, g_v, \nu_g)(u, v) = \det((S \circ T \circ f(u, v))_u, (S \circ T \circ f(u, v))_v, \nu_g(u, v))$$

$$= \det(S \circ T \circ f_u, S \circ T \circ f_v, \sigma_S \sigma_T S T \nu_f)(u, v)$$

$$= \underbrace{\sigma_S \sigma_T(\det S)(\det T)}_{1} \det(f_u, f_v, \nu_f)(u, v)$$

$$= \lambda(u, v) \geq 0.$$

よって、 $\nu_g = \sigma_S \sigma_T ST \nu_f$ は向きを同調した g の単位法ベクトル場である. 次 に、g (resp. f) のカスプ方向を \mathbf{x}_g (resp. \mathbf{x}_f) とすると、

$$\mathbf{x}_{g}(u) := \hat{\nu}_{g}(u) \times \mathbf{c}'_{*}(u) \quad (\mathbf{c}_{*}(u) := \mathbf{c}(-u))$$

$$= \sigma_{S}\sigma_{T}ST\nu_{f}(u,0) \times (ST\mathbf{c}'(u))$$

$$= \underbrace{\sigma_{S}\sigma_{T}(\det S)(\det T)}_{1}ST(\hat{\nu}_{f}(u) \times \mathbf{c}'(u)) \quad (\hat{\nu}_{f}(u) := \nu_{f}(u,0))$$

$$= ST\mathbf{x}_{f}(u) \quad \cdots (a1.3)$$

となる. g のカスプ角 θ_g を用いると $\mathbf{x}_g(u) = \cos\theta_g(u)\mathbf{n}(-u) + \sin\theta_g(u)\mathbf{b}(-u)$ と表せることに注意して、式 (a1.3) に $\mathbf{x}_f(-u)$ を代入すると、

$$\mathbf{x}_g(u) = \cos \theta_f(u) ST \mathbf{n}(u) - \sin \theta_f(u) ST \mathbf{b}(u)$$

$$\therefore \mathbf{x}_g(0) = \cos \theta_f(0) \mathbf{n}(0) + \sigma_S \sigma_T \sin \theta_f(0) \mathbf{b}(0)$$

$$= \cos(\sigma_S \sigma_T \theta_f(0)) \mathbf{n}(0) + \sin(\sigma_S \sigma_T \theta_f(0)) \mathbf{b}(0)$$

$$= \cos(-\sigma_T \theta_f(0)) \mathbf{n}(0) + \sin(-\sigma_T \theta_f(0)) \mathbf{b}(0)$$

と表せる*5. $\theta_g(0) = -\sigma_T \theta_f(0)$ と表せることから,

$$\begin{cases} \sigma_T = 1 \text{ ならば}, & (g =) S \circ T \circ f = \check{f}_* \\ \sigma_T = -1 \text{ ならば}, & S \circ T \circ f = f_* & \cdots \text{(a1.4)} \end{cases}$$

である.

^{*5} S が orientation-preserving symmetry の場合, $S\mathbf{e}(0) = \mathbf{e}(0)$, $S\mathbf{n}(0) = \mathbf{n}(0)$, $S\mathbf{b}(0) = \sigma_S\mathbf{b}(0)$, T が orientation-reversing symmetry の場合, $T\mathbf{e}(0) = -\mathbf{e}(0)$, $T\mathbf{n}(0) = \mathbf{n}(0)$, $T\mathbf{b}(0) = -\sigma_T\mathbf{b}(0)$ である.

以上の式 (a1.2)(a1.4) より, $T \circ f$ と $S \circ T \circ f$ はそれぞれ

$$\left\{egin{aligned} \sigma_T = 1 \text{ ならば}, & T \circ f = f_* \text{ および } S \circ T \circ f = \check{f}_* \ \sigma_T = -1 \text{ ならば}, & T \circ f = \check{f}_* \text{ および } S \circ T \circ f = f_* \end{aligned}
ight.$$

が成り立つ.

- (a2) が成立している場合
 - $-f\circ\varphi$ が f_* または \check{f}_* になる条件を調べる.

 $g:=f\circ\varphi$ として、 ν_g (resp. ν_f) を g (resp. f) の単位法ベクトル場とする。向きを同調した g の単位法ベクトル場を求める。 $\varepsilon:=\mathrm{sgn}(\det D\varphi),$ $\nu_g=\varepsilon\nu_f\circ\varphi,\,\lambda:=\det(f_u,f_v,\nu_f)\geq 0$ とすると、

$$\det(g_u, g_v, \nu_g)(u, v) = \det((f \circ \varphi(u, v))_u, (f \circ \varphi(u, v))_v, \nu_g(u, v))$$

$$= \det((f \circ \varphi(u, v))_u, (f \circ \varphi(u, v))_v, \varepsilon \nu_f \circ \varphi(u, v))$$

$$= \varepsilon(\det J)(\lambda \circ \varphi)(u, v) \quad (: 合成関数の微分より)$$

$$= \underbrace{|\det J|}_{>0} \underbrace{(\lambda \circ \varphi)(u, v)}_{\geq 0} \geq 0.$$

よって、 $\nu_g = \varepsilon \nu_f \circ \varphi$ は向きを同調した g の単位法ベクトル場である. 次に、g (resp. f) のカスプ方向を \mathbf{x}_g (resp. \mathbf{x}_f) とすると、

$$\mathbf{x}_{g}(u) := \hat{\nu}_{g}(u) \times \mathbf{c}'_{*}(u) \quad (\mathbf{c}_{*}(u) := \mathbf{c}(-u))$$

$$= \varepsilon \nu_{f} \circ \varphi(u, 0) \times (-\mathbf{e}(-u))$$

$$= \varepsilon \hat{\nu}_{f}(-u) \times (-\mathbf{e}(-u)) \quad (\hat{\nu}_{f}(u) := \nu_{f}(u, 0))$$

$$= -\varepsilon \mathbf{x}_{f}(-u) \quad \cdots \quad (a2.1)$$

となる. g のカスプ角 θ_g を用いると $\mathbf{x}_g(u) = \cos\theta_g(u)\mathbf{n}(-u) + \sin\theta_g(u)\mathbf{b}(-u)$ と表せることに注意して、式 (a2.1) に $\mathbf{x}_f(-u)$ を代入すると、

$$\mathbf{x}_g(u) = -\varepsilon(\cos\theta_f(-u)\mathbf{n}(-u) - \sin\theta_f(-u)\mathbf{b}(-u))$$

$$\therefore \mathbf{x}_g(0) = -\varepsilon(\cos\theta_f(0)\mathbf{n}(0) - \sin\theta_f(0)\mathbf{b}(0))$$

と表せる.

 $\varepsilon = 1$ の場合, $\mathbf{x}_g(0) = \cos(\pi - \theta_f(0))\mathbf{n}(0) + \sin(\pi - \theta_f(0))\mathbf{b}(0)$ であるため, $\theta_g(0) = \pi - \theta_f(0)$ であり、これを満たすのは

$$\theta_a(0) = \theta_f(0) \cdots (a2.2)$$

である (特に,
$$\theta_f(0) = \frac{\pi}{2}$$
).
$$\varepsilon = -1 \text{ の場合, } \mathbf{x}_g(0) = \cos(-\theta_f(0))\mathbf{n}(0) + \sin(-\theta_f(0))\mathbf{b}(0) \text{ であるため,}$$

$$\theta_g(0) = -\theta_f(0) \cdots (a2.3)$$

である.

 $-S \circ f \circ \varphi$ が f_* または \check{f}_* になる条件を調べる.

 $g:=S\circ f\circ \varphi$ として、向きを同調した g の単位法ベクトル場 ν_g を求める. $\sigma:=\det S,\, \nu_g=\varepsilon\sigma\nu_f\circ \varphi$ とすると、

$$\det(g_{u}, g_{v}, \nu_{g})(u, v) = \det((S \circ f \circ \varphi(u, v))_{u}, (S \circ f \circ \varphi(u, v))_{v}, \nu_{g}(u, v))$$

$$= \det((S \circ f \circ \varphi(u, v))_{u}, (S \circ f \circ \varphi(u, v))_{v}, \varepsilon \sigma \nu_{f} \circ \varphi(u, v))$$

$$= \underbrace{(\det S)\sigma}_{1} \det((f \circ \varphi(u, v))_{u}, (f \circ \varphi(u, v))_{v}, \varepsilon \nu_{f} \circ \varphi(u, v))$$

$$= \underbrace{|\det J|}_{>0} \underbrace{(\lambda \circ \varphi)(u, v)}_{>0} \ge 0.$$

よって、 $\nu_g = \varepsilon \sigma \nu_f \circ \varphi$ は向きを同調した g の単位法ベクトル場である. 次に、g (resp. f) のカスプ方向を \mathbf{x}_g (resp. \mathbf{x}_f) とすると、

$$\mathbf{x}_{g}(u) := \hat{\nu}_{g}(u) \times \mathbf{c}'_{*}(u) \quad (\mathbf{c}_{*}(u) := \mathbf{c}(-u))$$

$$= \varepsilon \sigma S \nu_{f} \circ \varphi(u, 0) \times (-S \mathbf{c}'(-u))$$

$$= -\varepsilon \underbrace{\sigma(\det S)}_{1} S(\hat{\nu}_{f}(-u) \times \mathbf{c}'(-u))$$

$$= -\varepsilon S \mathbf{x}_{f}(-u) \quad \cdots \quad (a2.4)$$

となる. g のカスプ角 θ_g を用いると $\mathbf{x}_g(u) = \cos\theta_g(u)\mathbf{n}(-u) + \sin\theta_g(u)\mathbf{b}(-u)$ と表せることに注意して、式 (a2.4) に $\mathbf{x}_f(-u)$ を代入すると、

$$\mathbf{x}_g(u) = -\varepsilon(\cos\theta_f(-u)S\mathbf{n}(-u) - \sin\theta_f(-u)S\mathbf{b}(-u))$$

$$\therefore \mathbf{x}_g(0) = -\varepsilon(\cos\theta_f(0)\mathbf{n}(0) + \sin\theta_f(0)\mathbf{b}(0))$$

と表せる (S が負の orientation-preserving symmetry の場合, $S\mathbf{n}(0) = \mathbf{n}(0)$, $S\mathbf{b}(0) = -\mathbf{b}(0)$) *6.

^{*6} S が orientation-preserving symmetry の場合, $S\mathbf{e}(0) = \mathbf{e}(0)$, $S\mathbf{n}(0) = \mathbf{n}(0)$, $S\mathbf{b}(0) = \sigma_S\mathbf{b}(0)$, T が orientation-reversing symmetry の場合, $T\mathbf{e}(0) = -\mathbf{e}(0)$, $T\mathbf{n}(0) = \mathbf{n}(0)$, $T\mathbf{b}(0) = -\sigma_T\mathbf{b}(0)$ である.

 $\varepsilon = 1$ の場合, $\mathbf{x}_g(0) = \cos(\pi + \theta_f(0))\mathbf{n}(0) + \sin(\pi + \theta_f(0))\mathbf{b}(0)$ であるため $\theta_g(0) = \pi + \theta_f(0)$ であり、これを満たすのは

$$\theta_q(0) = -\theta_f(0) \quad \cdots \quad (a2.5)$$

である.

$$\varepsilon = -1$$
 の場合, $\mathbf{x}_g(0) = \cos(\theta_f(0))\mathbf{n}(0) + \sin(\theta_f(0))\mathbf{b}(0)$ であり,
$$\theta_g(0) = \theta_f(0) \quad \cdots \quad (a2.6)$$

である.

以上の式 (a2.2)(a2.3)(a2.5)(a2.6) より, $f \circ \varphi$ と $S \circ f \circ \varphi$ はそれぞれ,

$$\begin{cases} \varepsilon = 1 \text{ のとき}, & f \circ \varphi = f_* \text{ および } S \circ f \circ \varphi = \check{f}_* \\ \varepsilon = -1 \text{ のとき}, & f \circ \varphi = \check{f}_* \text{ および } S \circ f \circ \varphi = f_* \end{cases}$$

が成り立つ.

- (b1) が成立している場合
 - $-T \circ f$ が f_* または \check{f}_* になる条件を調べる.

 $g:=T\circ f$ として、 ν_g (resp. ν_f) を g (resp. f) の単位法ベクトル場とする。向きを同調した g の単位法ベクトル場を求める。 $\nu_g=\sigma T\nu_f$ 、 $\lambda:=\det(f_u,f_v,\nu_f)\geq 0$ とすると、

$$\det(g_u, g_v, \nu_g)(u, v) = \det((T \circ f(u, v))_u, (T \circ f(u, v))_v, \sigma T \nu_f(u, v))$$

$$= \det(T \circ f_u, T \circ f_v, \sigma T \nu_f)(u, v)$$

$$= \underbrace{\sigma(\det T)}_{1} \det(f_u, f_v, \nu_f)(u, v)$$

$$= \lambda(u, v) \ge 0.$$

よって、 $\nu_g = \sigma T \nu_f$ は向きを同調した g の単位法ベクトル場である. 次に, g (resp. f) のカスプ方向を \mathbf{x}_g (resp. \mathbf{x}_f) とすると,

$$\mathbf{x}_{g}(u) := \hat{\nu}_{g}(u) \times \mathbf{c}'_{*}(u) \quad (\mathbf{c}_{*}(u) := \mathbf{c}(-u))$$

$$= \sigma T \nu_{f}(u, 0) \times (T \mathbf{c}'(u))$$

$$= \underbrace{\sigma(\det T)}_{1} T(\hat{\nu}_{f}(u) \times \mathbf{c}'(u)) \quad (\hat{\nu}_{f}(u) := \nu_{f}(u, 0))$$

$$= T \mathbf{x}_{f}(u) \quad \cdots \quad (b1.1)$$

となる. g のカスプ角 θ_g を用いると $\mathbf{x}_g(u) = \cos\theta_g(u)\mathbf{n}(-u) + \sin\theta_g(u)\mathbf{b}(-u)$ と表せることに注意して, 式 (b1.1) に $\mathbf{x}_f(u)$ を代入すると,

$$\mathbf{x}_g(u) = \cos \theta_f(u) T \mathbf{n}(u) - \sin \theta_f(u) T \mathbf{b}(u)$$

$$\therefore \mathbf{x}_g(0) = \cos \theta_f(0) T \mathbf{n}(0) - \sin \theta_f(0) T \mathbf{b}(0)$$

$$= \cos \theta_f(0) \mathbf{n}(0) + \sigma \sin \theta_f(0) \mathbf{b}(0)$$

$$= \cos(\sigma \theta_f(0)) \mathbf{n}(0) + \sin(\sigma \theta_f(0)) \mathbf{b}(0).$$

と表せる. $\theta_g(0) = \sigma \theta_f(0)$ であることから,

$$\begin{cases} \sigma = 1 \text{ のとき}, & T \circ f = f_* \\ \sigma = -1 \text{ のとき}, & T \circ f = \check{f}_* & \cdots \text{(b1.2)} \end{cases}$$

である.

 $-T \circ f \circ \varphi$ が f_* または f_* になる条件を調べる.

 $g := T \circ f \circ \varphi$ として、 ν_g (resp. ν_f) を g (resp. f) の単位法ベクトル場とする。向きを同調した g の単位法ベクトル場を求める。J を $\varphi(u,v)$ のヤコビ行列、 $\varepsilon := \operatorname{sgn}(\det J)$ 、 $\nu_g = \varepsilon \sigma T \nu_f \circ \varphi$ 、 $\lambda := \det (f_u, f_v, \nu_f) \geq 0$ とすると、

$$\det(g_{u}, g_{v}, \nu_{g})(u, v) = \det((T \circ f \circ \varphi(u, v))_{u}, (T \circ f \circ \varphi(u, v))_{v}, \varepsilon \sigma T \nu_{f} \circ \varphi(u, v))$$

$$= \varepsilon \underbrace{(\det T)\sigma}_{1} \det((f \circ \varphi(u, v))_{u}, (f \circ \varphi(u, v))_{v}, \nu_{f} \circ \varphi(u, v))$$

$$= \varepsilon (\det J)(\lambda \circ \varphi)(u, v)$$

$$= \underbrace{|\det J|}_{1} \underbrace{(\lambda \circ \varphi)(u, v)}_{2} \ge 0.$$

よって、 $\nu_g = \varepsilon \sigma T \nu_f \circ \varphi$ は向きを同調した g の単位法ベクトル場である. 次 に, g (resp. f) のカスプ方向を \mathbf{x}_g (resp. \mathbf{x}_f) とすると,

$$\mathbf{x}_{g}(u) := \hat{\nu}_{g}(u) \times \mathbf{c}'_{*}(u) \quad (\mathbf{c}_{*}(u) := \mathbf{c}(-u))$$

$$= \varepsilon \sigma T \nu_{f} \circ \varphi(u, 0) \times (T \mathbf{c}'(u))$$

$$= \varepsilon \underbrace{\sigma(\det T)}_{1} T(\hat{\nu}_{f}(u) \times \mathbf{c}'(u)) \quad (\hat{\nu}_{f}(u) := \nu_{f}(u, 0))$$

$$= \varepsilon T \mathbf{x}_{f}(u) \quad \cdots (b1.3)$$

となる. g のカスプ角 θ_g を用いると $\mathbf{x}_g(u) = \cos\theta_g(u)\mathbf{n}(-u)$ +

 $\sin \theta_q(u) \mathbf{b}(-u)$ と表せることに注意して、式 (b1.3) に $\mathbf{x}_f(u)$ を代入すると、

$$\mathbf{x}_g(u) = \varepsilon(\cos\theta_f(u)T\mathbf{n}(u) - \sin\theta_f(u)T\mathbf{b}(u))$$

$$\therefore \mathbf{x}_g(0) = \varepsilon(\cos\theta_f(0)T\mathbf{n}(0) - \sin\theta_f(0)T\mathbf{b}(0))$$

$$= \varepsilon(\cos\theta_f(0)\mathbf{n}(0) + \sigma\sin\theta_f(0)\mathbf{b}(0)).$$

と表せる. $\varepsilon=1$ の non-effective symmetry は存在しないため, $\varepsilon=-1$ の場合のみを考えればよい.

 $\varepsilon = -1$ の場合, $\mathbf{x}_g(0) = \cos(\pi + \sigma \theta_f(0))\mathbf{n}(0) + \sin(\pi + \sigma \theta_f(0))\mathbf{b}(0)$ であるため、

$$\theta_a(0) = \pi + \sigma \theta_f(0)$$

であり, σ の値によって

$$\begin{cases} \sigma = 1 \text{ ならば}, & T \circ f \circ \varphi = \check{f}_* \\ \sigma = -1 \text{ ならば}, & T \circ f \circ \varphi = f_* & \cdots \text{(b1.4)} \end{cases}$$

である.

以上の式 (b1.2)(b1.4) より, $T \circ f$ と $T \circ f \circ \varphi$ はそれぞれ

$$\begin{cases} \sigma = 1 \text{ ならば}, & T \circ f = f_*, \ T \circ f \circ \varphi = \check{f}_* \\ \sigma = -1 \text{ ならば}, & T \circ f = \check{f}_*, \ T \circ f \circ \varphi = f_* \end{cases}$$

が成り立つ.

- (b2) が成立している場合
 - $-f\circ\varphi_2$ が f_* または \check{f}_* になる条件を調べる.

 $g:=f\circ\varphi_2$ として、 ν_g (resp. ν_f) を g (resp. f) の単位法ベクトル場とする. 向きを同調した g の単位法ベクトル場を求める. J_2 を $\varphi_2(u,v)$ のヤコビ行列、 $\varepsilon_2:=\operatorname{sgn}(\det J_2)\ \nu_g=\varepsilon_2\nu_f\circ\varphi_2,\ \lambda:=\det(f_u,f_v,\nu_f)\geq 0$ とすると、

$$\det(g_u, g_v, \nu_g)(u, v) = \det((f \circ \varphi_2(u, v))_u, (f \circ \varphi_2(u, v))_v, \varepsilon_2 \nu_f \circ \varphi_2(u, v))$$

$$= \varepsilon_2(\det J_2)(\lambda \circ \varphi)(u, v)$$

$$= \underbrace{|\det J_2|}_{>0} \underbrace{(\lambda \circ \varphi)(u, v)}_{>0} \ge 0.$$

よって、 $\nu_g = \varepsilon_2 \nu_f \circ \varphi_2$ は向きを同調した g の単位法ベクトル場である. 次

に, g (resp. f) のカスプ方向を \mathbf{x}_q (resp. \mathbf{x}_f) とすると,

$$\mathbf{x}_{g}(u) := \hat{\nu}_{g}(u) \times \mathbf{c}'_{*}(u) \quad (\mathbf{c}_{*}(u) := \mathbf{c}(-u))$$

$$= \varepsilon_{2}\nu_{f} \circ \varphi_{2}(u,0) \times (-\mathbf{c}'(-u))$$

$$= \varepsilon_{2}\hat{\nu}_{f}(-u) \times (-\mathbf{c}'(-u)) \quad (\hat{\nu}_{f}(u) := \nu_{f}(u,0))$$

$$= -\varepsilon_{2}\mathbf{x}_{f}(-u) \quad \cdots \quad (b2.1)$$

となる. g のカスプ角 θ_g を用いると $\mathbf{x}_g(u) = \cos\theta_g(u)\mathbf{n}(-u) + \sin\theta_g(u)\mathbf{b}(-u)$ と表せることに注意して、式 (b2.1) に $\mathbf{x}_f(-u)$ を代入すると、

$$\mathbf{x}_g(u) = -\varepsilon_2(\cos\theta_f(-u)\mathbf{n}(-u) - \sin\theta_f(-u)\mathbf{b}(-u))$$

$$\therefore \mathbf{x}_g(0) = -\varepsilon_2(\cos\theta_f(0)\mathbf{n}(0) - \sin\theta_f(0)\mathbf{b}(0))$$

と表せる.

 $\varepsilon_2 = 1$ の場合, $\mathbf{x}_g(0) = \cos(\pi - \theta_f(0))\mathbf{n}(0) + \sin(\pi - \theta_f(0))\mathbf{b}(0)$ であるため, $\theta_g(0) = \pi - \theta_f(0)$ である. これを満たすのは $\theta_g(0) = \theta_f(0)$ であり, $f \circ \varphi_2$ は

$$f \circ \varphi_2 = f_* \quad \cdots (b2.2)$$

と表される.

 $\varepsilon_2 = -1$ の場合, $\mathbf{x}_g(0) = \cos(-\theta_f(0))\mathbf{n}(0) + \sin(-\theta_f(0))\mathbf{b}(0)$ であるため $\theta_g(0) = -\theta_f(0)$ であり, $f \circ \varphi_2$ は

$$f \circ \varphi_2 = \check{f}_* \quad \cdots (b2.3)$$

と表される.

 $-f\circ\varphi_1\circ\varphi_2$ が f_* または \check{f}_* になる条件を調べる.

 $g:=f\circ\varphi_1\circ\varphi_2$ として、 ν_g (resp. ν_f) を g (resp. f) の単位法ベクトル場とする。向きを同調した g の単位法ベクトル場を求める。 J_{12} を $\varphi_1\circ\varphi_2(u,v)$ のヤコビ行列、 $\varepsilon_{12}:=\mathrm{sgn}(\det J_{12}),\, \nu_g=\varepsilon_{12}\nu_f\circ\varphi_1\circ\varphi_2,\, \lambda:=\det\left(f_u,f_v,\nu_f\right)\geq 0$ とすると、

$$\det(g_{u}, g_{v}, \nu_{g})(u, v)$$

$$= \det((f \circ \varphi_{1} \circ \varphi_{2}(u, v))_{u}, (f \circ \varphi_{1} \circ \varphi_{2}(u, v))_{v}, \varepsilon_{12}\nu_{f} \circ \varphi_{1} \circ \varphi_{2}(u, v))$$

$$= \varepsilon_{12}(\det J_{12})(\lambda \circ \varphi_{1} \circ \varphi_{2})(u, v)$$

$$= \underbrace{|\det J_{12}|}_{>0}\underbrace{(\lambda \circ \varphi_{1} \circ \varphi_{2})(u, v)}_{>0} \geq 0.$$

よって、 $\nu_g = \varepsilon_{12}\nu_f \circ \varphi_1 \circ \varphi_2$ は向きを同調した g の単位法ベクトル場である. 次に、g (resp. f) のカスプ方向を \mathbf{x}_g (resp. \mathbf{x}_f) とすると、

$$\mathbf{x}_{g}(u) := \hat{\nu}_{g}(u) \times \mathbf{c}'_{*}(u) \quad (\mathbf{c}_{*}(u) := \mathbf{c}(-u))$$

$$= \varepsilon_{12}\nu_{f} \circ \varphi_{1} \circ \varphi_{2}(u,0) \times (-\mathbf{c}'(-u))$$

$$= \varepsilon_{12}\hat{\nu}_{f}(-u) \times (-\mathbf{c}'(-u)) \quad (\hat{\nu}_{f}(u) := \nu_{f}(u,0))$$

$$= -\varepsilon_{12}\mathbf{x}_{f}(-u) \quad \cdots \quad (b2.4)$$

となる. g のカスプ角 θ_g を用いると $\mathbf{x}_g(u) = \cos\theta_g(u)\mathbf{n}(-u) + \sin\theta_g(u)\mathbf{b}(-u)$ と表せることに注意して、式 (b2.4) に $\mathbf{x}_f(-u)$ を代入すると、

$$\mathbf{x}_g(u) = -\varepsilon_{12}(\cos\theta_f(-u)\mathbf{n}(-u) - \sin\theta_f(-u)\mathbf{b}(-u))$$

$$\therefore \mathbf{x}_g(0) = -\varepsilon_{12}(\cos\theta_f(0)\mathbf{n}(0) - \sin\theta_f(0)\mathbf{b}(0))$$

と表せる. $\varepsilon_{12}=\varepsilon_1\varepsilon_2$ であることおよび non-effective symmetry φ_1 について $\varepsilon_1(=\mathrm{sgn}(\det J_1))=1$ は矛盾することから, 次のように場合分けする. $\varepsilon_{12}=1$, つまり $\varepsilon_1=-1$, $\varepsilon_2=-1$ の場合, $\theta_g(0)=\pi-\theta_f(0)$ であり, これを満たすのは

$$\theta_g(0) = \theta_f(0) \quad \cdots \quad (b2.5)$$

である.

 $\varepsilon_{12} = -1, \, \text{つまり} \, \varepsilon_1 = -1, \, \varepsilon_2 = 1 \, \text{の場合},$

$$\theta_q(0) = -\theta_f(0) \quad \cdots \quad (b2.6)$$

である.

以上の式 (b2.2)(b2.3)(b2.5)(b2.6) より, $f \circ \varphi_2$ および $f \circ \varphi_1 \circ \varphi_2$ はそれぞれ

$$\begin{cases} \varepsilon_2 = 1 \text{ ならば}, & f \circ \varphi_2 = f_*, \ f \circ \varphi_1 \circ \varphi_2 = \check{f}_* \\ \varepsilon_2 = -1 \text{ ならば}, & f \circ \varphi_2 = \check{f}_*, \ f \circ \varphi_1 \circ \varphi_2 = f_* \end{cases}$$

が成り立つ.

- (c) が成立している場合
 - $-f \circ \varphi$ が f_* または f_* になる条件を調べる.

(a2) が成り立つ \Longrightarrow $N_f=1$ の証明より, $\epsilon(:=\operatorname{sgn}(\det D\varphi))=-1$ \Longrightarrow $f\circ\varphi=\check{f}_*$ である.

- $T\circ f$ が f_* または \check{f}_* になる条件を調べる. (a1) が成り立つ \Longrightarrow $N_f=1$ の証明より, $\sigma(:=\det T)=1$ \Longrightarrow $T\circ f=f_*$ である.
- (d) が成立している場合

である.

- $-f\circ\varphi$ が f_* または \check{f}_* になる条件を調べる.
 - (a2) が成り立つ \Longrightarrow $N_f=1$ の証明より, $\epsilon(:=\mathrm{sgn}(\det D\varphi))=1$ \Longrightarrow $f\circ\varphi=f_*$ である.
- $T\circ f$ が f_* または \check{f}_* になる条件を調べる. $(\mathbf{a1}) \, \check{\mathsf{m}}\, \mathsf{k}\, \mathsf{b}\, \dot{\mathtt{m}} \, \mathsf{o} \Longrightarrow \, N_f = 1 \,\, \mathsf{o} \mathbb{E} \mathsf{H}\, \mathsf{k}\, \mathsf{b}\, \mathsf{o} \, (:= \det T) = -1 \,\, \Longrightarrow \,\, T\circ f = \check{f}_*$