

Correction to Muscadine Grape (*Vitis rotundifolia*) and Wine Phytochemicals Prevented Obesity Associated Metabolic Complications in C57BL/6J Mice

Vishnupriya Gourineni, Neil F. Shay, Soonkyu Chung, Amandeep K. Sandhu, and Liwei Gu* *J. Agric. Food Chem.* **2012**, *60* (31), 7674–7681. DOI: 10.1021/jf3013663

A recent review of the data related to this publication indicated several errors. Figure 3 and Table 5 in the original paper had typographical errors and should be replaced with the following.

Figure 3. (A) Blood glucose levels in intraperitoneal glucose tolerance tests at week 12; (B) area under curve of blood glucose for 2 h after a glucose challenge (n = 5).

Corrected Figure 3B shows that the AUC of glucose levels in the LF group was 47.4% lower (p < 0.001) compared to HF controls. AUC levels in mice fed HF+MGP and HF+MWP were significantly lower than that of the HF group by 36.3 and 22.2%, respectively. AUC levels in mice fed HF+MGP were similar to those of mice receiving the low-fat diet. These data

Table 5. Effects of Muscadine Grape Phytochemicals (MGP) and Muscadine Wine Phytochemicals (MWP) on Plasma C-Reactive Protein (CRP) and Glutathione Peroxidase Activity^a

group	plasma CRP (ng/mL)	plasma glutathione peroxidase activity (nmol/min/mL)
low fat (LF)	$23.2 \pm 0.4 d$	1.1 ± 0.5
high fat (HF)	$62.0 \pm 0.2 a$	0.3 ± 0.07
HF+MGP	$30.1 \pm 0.6 \text{ c}$	1.2 ± 0.3
HF+MWP	$47.6 \pm 0.8 \text{ b}$	0.7 ± 0.2

^aValues are the mean \pm SEM n=9. Columns not sharing a common letter (a-d) are significantly different ($p \le 0.05$).

suggested that muscadine grape and wine phytochemicals improved glucose tolerance in mice fed a high-fat diet.

Corrected values in Table 5 showed that muscadine grape or wine phytochemicals did not affect plasma glutathione peroxidase in mice; therefore, we cannot conclude that muscadine grape or wine phytochemicals alleviated oxidative stress.

Furthermore, there were, we believe, arithmetic errors in Table 4. Therefore, we withdraw the data in that table. As a result, we cannot conclude that muscadine grape or wine phytochemicals affect plasma insulin levels or insulin resistance in mice.

These corrections do not affect other conclusions in this paper.

Published: October 20, 2014

LowFatILF

0