Metode Numerik EE221

Bab 4. Solusi Sistem Persamaan Linier

Dirangkum dan diterjemahkan dari:

- Thomson Brooks Chapra, Steven and Raymond Canale. 2009. Numerical Methods for Engineers 6th Edition, **Chapter 9**- Linear Algebra A Modern Introduction 2nd Edition, **Chapter 2**

Nabila Husna Shabrina Fakultas Teknik dan Informatika, Universitas Multimedia Nusantara

Sub Bahasan:

- Sistem Persamaan Linier
- Matriks
- Eliminasi Gaussian
 - Determinan & cramer's rule
 - Elimination of unknowns
 - Eliminasi Naive gauss

Sistem Persamaan Linier

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\cdot \qquad \cdot$$

$$\cdot \qquad \cdot$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

a: koefisien

b: konstanta

Matriks

$[A] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nm} \end{bmatrix} \quad \text{Row 2}$

Notasi Matriks

Perkalian Matriks

Matriks

Menyatakan Sistem Persamaan Linier dengan Matriks

Menyelesaikan Persamaan dengan Nilai yang Kecil

Metode Grafik

$$a_{11}x_1 + a_{12}x_2 = b_1$$
$$a_{21}x_1 + a_{22}x_2 = b_2$$

Gambarkan persamaan tersebut. Perpotongan dari kedua garis merupakan solusi dari SPL

Menyelesaikan Persamaan dengan Nilai yang Kecil

Contoh 1.

Dengan metode grafik tentukan solusi dari SPL berikut.

$$3x_1 + 2x_2 = 18$$
$$-x_1 + 2x_2 = 2$$

$$x_2 = -\frac{3}{2}x_1 + 9$$

$$x_2 = \frac{1}{2}x_1 + 1$$

Lakukan pengecekan

$$3(4) + 2(3) = 18$$

 $-(4) + 2(3) = 2$

Menyelesaikan Persamaan dengan Nilai yang Kecil

FIGURE 9.2

Graphical depiction of singular and ill-conditioned systems: (a) no solution, (b) infinite solutions, and (c) ill-conditioned system where the slopes are so close that the point of intersection is difficult to detect visually.

Determinan Matrik

Determinan matrik dapat dicari dengan persamaan berikut.

$$D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \longrightarrow D = a_{11}a_{22} - a_{12}a_{21}$$

Matrik 2x2

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

Matrik 3x3

$$D = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Contoh 2.

Tentukan determinan dari Figure 9.2 a dan b

$$D = \begin{vmatrix} -1/2 & 1 \\ -1/2 & 1 \end{vmatrix} = \frac{-1}{2}(1) - 1\left(\frac{-1}{2}\right) = 0$$

$$D = \begin{vmatrix} -1/2 & 1 \\ -1 & 2 \end{vmatrix} = \frac{-1}{2}(2) - 1(-1) = 0$$

Cramer's Rule

Mengganti kolom yang memiliki koefisien yang akan dicari dengan konstanta b_1 , b_2 , dst

Bentuk umum

$$x_1 = \frac{\det(A_1)}{\det(A)}, \qquad x_2 = \frac{\det(A_2)}{\det(A)}, \dots, \qquad x_n = \frac{\det(A_n)}{\det(A)}$$

Dimana A_{ij} adalah matrik yang didapatkan dengan menukar entri pada kolom ke-j dengan entri matrik $\begin{bmatrix} b_1 \end{bmatrix}$

Contoh 3.

Dengan cramer's rule, selesaikan SPL berikut.

$$0.3x_1 + 0.52x_2 + x_3 = -0.01$$

$$0.5x_1 + x_2 + 1.9x_3 = 0.67$$

$$0.1x_1 + 0.3x_2 + 0.5x_3 = -0.44$$

Determinan

$$D = \begin{vmatrix} 0.3 & 0.52 & 1 \\ 0.5 & 1 & 1.9 \\ 0.1 & 0.3 & 0.5 \end{vmatrix}$$

Minor

$$A_{1} = \begin{vmatrix} 1 & 1.9 \\ 0.3 & 0.5 \end{vmatrix} = 1(0.5) - 1.9(0.3) = -0.07$$

$$A_{2} = \begin{vmatrix} 0.5 & 1.9 \\ 0.1 & 0.5 \end{vmatrix} = 0.5(0.5) - 1.9(0.1) = 0.06$$

$$A_{3} = \begin{vmatrix} 0.5 & 1 \\ 0.1 & 0.3 \end{vmatrix} = 0.5(0.3) - 1(0.1) = 0.05$$

$$D = 0.3(-0.07) - 0.52(0.06) + 1(0.05) = -0.0022$$

$$x_{1} = \frac{\begin{vmatrix} -0.01 & 0.52 & 1 \\ 0.67 & 1 & 1.9 \\ -0.44 & 0.3 & 0.5 \end{vmatrix}}{-0.0022} = \frac{0.03278}{-0.0022} = -14.9$$

$$x_{2} = \frac{\begin{vmatrix} 0.3 & -0.01 & 1 \\ 0.5 & 0.67 & 1.9 \\ 0.1 & -0.44 & 0.5 \end{vmatrix}}{-0.0022} = \frac{0.0649}{-0.0022} = -29.5$$

$$x_{3} = \frac{\begin{vmatrix} 0.3 & 0.52 & -0.01 \\ 0.5 & 1 & 0.67 \\ 0.1 & 0.3 & -0.44 \end{vmatrix}}{-0.0022} = \frac{-0.04356}{-0.0022} = 19.8$$

Elimination of Unknowns

Diketahui persamaan linier berikut $a_{11}x_1 + a_{12}x_2 = b_1$ $a_{21}x_1 + a_{22}x_2 = b_2$

Dengan metode elimination of unknowns SPL tersebut dapat diselesaikan menjadi $a_{11}a_{21}x_1 + a_{12}a_{21}x_2 = b_1a_{21}$ $a_{21}a_{11}x_1 + a_{22}a_{11}x_2 = b_2a_{11}$

$$a_{22}a_{11}x_2 - a_{12}a_{21}x_2 = b_2a_{11} - b_1a_{21}$$

$$x_1 = \frac{a_{22}b_1 - a_{12}b_2}{a_{11}a_{22} - a_{12}a_{21}}$$

$$x_1 = \frac{a_{22}b_1 - a_{12}b_2}{a_{11}a_{22} - a_{12}a_{21}} \qquad x_2 = \frac{a_{11}b_2 - a_{21}b_1}{a_{11}a_{22} - a_{12}a_{21}}$$

$$x_1 = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}} = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}} \quad x_2 = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}} = \frac{a_{11} b_{22} - b_1 a_{21}}{a_{11} a_{22} - a_{12} a_{21}}$$

Elimination of Unknowns

Contoh 4.

Dengan elimination of unknows tentukan solusi dari SPL berikut.

$$3x_1 + 2x_2 = 18$$
$$-x_1 + 2x_2 = 2$$

$$x_1 = \frac{2(18) - 2(2)}{3(2) - 2(-1)} = 4$$

$$x_2 = \frac{3(2) - (-1)18}{3(2) - 2(-1)} = 3$$

Contoh 5.

Dengan eliminasi gauss tentukan solusi SPL berikut.

$$3x_1 - 0.1x_2 - 0.2x_3 = 7.85$$
 (E9.5.1)

$$0.1x_1 + 7x_2 - 0.3x_3 = -19.3 (E9.5.2)$$

$$0.3x_1 - 0.2x_2 + 10x_3 = 71.4$$
 (E9.5.3)

Forward elimination

$$7.00333x_2 - 0.293333x_3 = -19.5617$$
 Kalikan 9.51 dengan 0.1/3

Kalikan 9.51 dengan 0.3/3 dan kurangkan dengan 9.5.3

$$3x_1 -0.1x_2 -0.2x_3 = 7.85$$
 (E9.5.4)
 $7.00333x_2 - 0.293333x_3 = -19.5617$ (E9.5.5)
 $-0.190000x_2 + 10.0200x_3 = 70.6150$ (E9.5.6)

Kalikan 9.5.5 dengan -0.19/7.0033 dan kurangkan dengan 9.5.6

$$3x_1 -0.1x_2 -0.2x_3 = 7.85$$
 (E9.5.7)
 $7.00333x_2 - 0.293333x_3 = -19.5617$ (E9.5.8)
 $10.0120x_3 = 70.0843$ (E9.5.9)

Back substitution

$$x_3 = \frac{70.0843}{10.0120} = 7.0000$$

$$7.00333x_2 - 0.293333(7.0000) = -19.5617$$

$$x_2 = \frac{-19.5617 + 0.293333(7.0000)}{7.00333} = -2.50000$$

$$3x_1 - 0.1(-2.50000) - 0.2(7.0000) = 7.85$$

$$x_1 = \frac{7.85 + 0.1(-2.50000) + 0.2(7.0000)}{3} = 3.00000$$

$$3(3) - 0.1(-2.5) - 0.2(7) = 7.85$$

Nabila Husna Shabrina 21

0.1(3) + 7(-2.5) - 0.3(7) = -19.3

0.3(3) - 0.2(-2.5) + 10(7) = 71.4

Pseudocode untuk eliminasi Naive gauss

Hal-hal yang perlu diperhatikan dalam eliminasi gauss

- Pembagian dengan nol
- Round-off error
- ill-Conditioned system : perubahan kecil pada koefisien persamaan menyebabkan perubahan yang signifikan pada solusi persamaan
- Sistem singular

ill-Conditioned System

Contoh 6.

Selesaikan SPL berikut.

$$x_1 + 2x_2 = 10$$
$$1.1x_1 + 2x_2 = 10.4$$

Kemudian selesikan kembali persamaan di atas dengan koefisien x_1 pada baris kedua diganti menjadi 1.05

Penyelesaian persamaan ketika koefisien $x_1 = 1.1$

$$x_1 = \frac{2(10) - 2(10.4)}{1(2) - 2(1.1)} = 4$$
$$x_2 = \frac{1(10.4) - 1.1(10)}{1(2) - 2(1.1)} = 3$$

Penyelesaian persamaan ketika koefisien x₁ berubah menjadi 1.05

$$x_1 = \frac{2(10) - 2(10.4)}{1(2) - 2(1.05)} = 8$$
$$x_2 = \frac{1(10.4) - 1.1(10)}{1(2) - 2(1.05)} = 1$$

Subsitusi pada persamaan awal

$$8 + 2(1) = 10 = 10$$

 $1.1(8) + 2(1) = 10.8 \approx 10.4$

Efek pengskalaan pada determinan

Contoh 7.

a.
$$3x_1 + 2x_2 = 18$$

 $-x_1 + 2x_2 = 2$

b.
$$x_1 + 2x_2 = 10$$

 $1.1x_1 + 2x_2 = 10.4$

c. Ulangi b dengan mengalikan terlebih dahulu dengan faktor 10

a.
$$D = 3(2) - 2(-1) = 8$$

b.
$$D = 1(2) - 2(1.1) = -0.2$$

C.
$$10x_1 + 20x_2 = 100$$

 $11x_1 + 20x_2 = 104$
 $D = 10(20) - 20(11) = -20$

Scaling

Contoh 8.

Lakukan scaling untuk soal pada contoh 7 untuk maksimum nilai setiap koefisien adalah 1

a.
$$x_1 + 0.667x_2 = 6$$

 $-0.5x_1 + x_2 = 1$
 $D = 1(1) - 0.667(-0.5) = 1.333$

b.
$$0.5x_1 + x_2 = 5$$

 $0.55x_1 + x_2 = 5.2$
 $D = 0.5(1) - 1(0.55) = -0.05$

Untuk meningkatkan solusi yang diperoleh dari SPL dapat digunakan beberapa teknik yaitu

- Gunakan lebih banyak angka penting
- Pivoting
- Scaling

Partial Pivoting

Contoh 8.

Selesaikan SPL berikut dengan eliminasi gauss

$$0.0003x_1 + 3.0000x_2 = 2.0001$$
$$1.0000x_1 + 1.0000x_2 = 1.0000$$

$$x_1 + 10,000x_2 = 6667$$

 $-9999x_2 = -6666$

Significant Figures	<i>x</i> ₂	<i>x</i> ₁	Absolute Value of Percent Relative Error for x ₁
3	0.667	-3.33	1099
4	0.6667	0.0000	100
5	0.66667	0.30000	10
6	0.666667	0.330000	1
7	0.6666667	0.3330000	0.1

$$x_2 = \frac{2}{3}$$

$$x_1 = \frac{2.0001 - 3(2/3)}{0.0003}$$

Significant Figures	x ₂	<i>x</i> ₁	Absolute Value of Percent Relative Error for x ₁
3	0.667	0.333	0.1
4	0.6667	0.3333	0.01
5	0.66667	0.33333	0.001
6	0.666667	0.333333	0.0001
7	0.6666667	0.3333333	0.00001

$$1.0000x_1 + 1.0000x_2 = 1.0000$$

$$0.0003x_1 + 3.0000x_2 = 2.0001$$

$$x_1 = \frac{1 - (2/3)}{1}$$

Efek pivoting pada scaling dan round-off

Contoh 9.

Selesaikan SPL berikut

a.
$$2x_1 + 100,000x_2 = 100,000$$

 $x_1 + x_2 = 2$

- b. Ulangi perhitungan sampai koefisien variable maksimum di setiap baris adalah 1
- c. Gunakan koefisien yang telah diskalakan untuk menentukan apakah pivoting perlu untuk dilakukan (catatan : jawaban seharusnya adalah

$$x_1 = 1.00002$$
 dan $x_2 = 0.99998$)

a.
$$2x_1 + 100,000x_2 = 100,000$$
 $x_2 = 1.00$
 $-50,000x_2 = -50,000$ $x_1 = 0.00$

b.
$$0.00002x_1 + x_2 = 1$$
 $x_1 + x_2 = 2$ $x_2 = 1.00$

$$x_1 + x_2 = 2$$
 $x_1 = x_2 = 1$
0.00002 $x_1 + x_2 = 1$

c.
$$x_1 + x_2 = 2$$

 $2x_1 + 100,000x_2 = 100,000$

$$x_1 + x_2 = 2$$

 $100,000x_2 = 100,000$

Latihan

Thomson Brooks Chapra, Steven and Raymond Canale. 2009. Numerical Methods for Engineers 6th Edition

Problems Chapter 9

Nomor 9,10,11