

Suzhou BOE CHATANI Electronics Co., LTD. LCM APPROVAL

Part	Name <u>:</u>	LCM
MODEL	NO :	BOEV320WX1
Part	Name:	2602802001
Effect	ive Date	: 2012.05.09

Suzhou BOE CHATANI Electronics Co., LTD									
APP	CKECK	APPV							

Approved by:

APP/DATE	CHECK/DATE	APPV/DATE

Revised record								
Ver	Date	Revision content	Page	Revised				
1.0	2012-05-09	First release	all	Cheng xiaoqing				
•								

	Contents	
No.	Item	Page
1.0	GENERAL DESCRIPTION	4
2.0	ABSOLUTE MAXIMUM RATING	5
3.0	ELECTRICAL SPECIFICATIONS	6
4.0	OPTICAL SPECIFICATION	7
5.0	INTERFACE CONNECTION	9
6.0	SIGNAL TIMING SPECIFICATION	12
7.0	SIGNAL TIMING WAVEFORMS OF INTERFACE SIGNAL	12
8.0	INPUT SIGNALS, BASIC DISPLAY COLORS&GRAY SCALE OF COLORS	13
9.0	POWER SEQUENCE	14
10.0	MECHANICAL CHARACTERISTICS	14
11.0	RELIABLITY TEST	16
12.0	HANDLING & CAUTIONS	16
13.0	OPTICAL CHARACTERISTICS	17
14.0	MECHANICAL CHARACTERTISTICS	19
15.0	PACKING	21
16.0	DEFINITION OF LABELS	21

1.0 GENERAL DESCRIPTION

1.1 Introduction

BOE320WX1 is a color active matrix TFT LCD module using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This module has a 31.5 inch diagonally measured active area with WXGA resolutions (1366 horizontal by 768 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 16.7M colors. The TFT-LCD panel used for this module is adapted for a low reflection and higher color type.

1.2 Features

- ●LVDS Interface with 1 pixel / clock
- High-speed response
- •Low color shift image quality
- ●8-bit color depth, display 16. 7M colors
- •High luminance and contrast ratio, low reflection and wide viewing angle
- ●DE (Data Enable) only
- ●AFFS technology is applied for high display qualify
- ●RoHS/Halogen Free

1.3 Application

- ●Home Alone Multimedia TFT-LCD TV
- •Display Terminals for Control System
- •High Definition TV(HD TV)
- •AV application Products

1.4 General Specification

The followings are general specifications at the model BOEV320WX1.

< Table 1, General Specifications >

Items	Specifications	Unit
Screen Diagonal	31.5	inch
Active Area	697.685(H) ×392.256(V)	mm
Pixels H x V	1366(H)×768(V)	pixels
Pixel Pitch	0.17025×RGB×0.51075	mm
Pixel Arrangement	Pixels R.G.B. Vertical Stripe	
White Luminance	350minimum , 400typical	cd/m2 (LED@120mA Per Input Pin)
Display colors	16.7M (8bit-true)	colors
Display mode	Transmission mode, Normally Black	
Outline Dimension	741.4 (W) x 435.8(H) x 15.2 (T) typical	mm
Surface Treatment	Haze 10%, 3H	
Back-light	Lower edge side, 2-LED Lighting Bar type	Note 1
	PD: 7.1 (max)	
Power Consumption	PBL: 33.6W (max)	Note 2
	Ptotal: 40.7 (max)	

Notes: 1. LED Lighting Bar (2*input pins)

2. PLED=Input pins* VPIN×IPIN

2.0 ABSOLUTE MAXIMUM RATINGS

The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2.

< Table 2. Absolute Maximum Ratings>

Item	Symbol	Min.	Max.	Unit	Conditions
Power Supply Voltage	VDD	VSS-0.3	13.2	V	Ta=25°C
Operating Temperature	TOP	0	+50	°C	1a=25 C
Operating Temperature	TSUR	0	+60	°C	
Storage Temperature	TST	-20	+60	°C	Note 1)
Operating Ambient Humidity	Нор	10	80	%RH	Note 1)
Storage Humidity	Hst	10	80	%RH	
Item	Symbol	Min.	Max.	Unit	Conditions
*LED Channel Current	IPIN	-	120	mA	
*LED Voltage	VPIN	58	70	V	

Note: 1) Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 $^{\circ}$ C max. and no condensation of water.

3.0 ELECTRICAL SPECIFICATIONS

3.1 Electrical Specifications

< Table 3. Electrical specifications >

[Ta= 25 ± 2 °C]

Parameter		Cumbal		Values	11616	Domonic	
		Symbol	Min	Тур	Max	Unit	Remark
Power Sup	oply Input Voltage	VDD	10.8	12	13.2	Vdc	
Power Sup	oply Ripple Voltage	VRP			300	mV	
Power Sup	oply Current	IDD	-	333	592	mA	Nata 4
Power Co	nsumption	PDD		4.0	7.1	Watt	Note 1
Rush curre	ent	IRUSH		10.73	3.0	Α	Note 2
11/100	Differential Input High Threshold Voltage	VLVTH	+100		+300	mV	
LVDS Interface	Differential Input Low Threshold Voltage	VLVTL	-300		-100	mV	
	Common Input Voltage	VLVC	1.0	1.2	1.4	V	
CMOS	Input High Threshold Voltage	VIH	2.7	-	3.3	V	
Interface	Input Low Threshold Voltage	VIL	0		0.6	٧	

Note 1: The supply voltage is measured and specified at the interface connector of LCM.

The current draw and power consumption specified is for VDD=12.0V,

Frame rate fV=60Hz and Clock frequency = 75.4MHz.

Test Pattern of power supply current

a) Typ : Mosaic 8 x 6 Pattern(L0/L255) Pattern(L0/L255)

b) Max : Skip 1H2V Sub Dot

Note 2: The duration of rush current is about 2ms and rising time of Power Input is 1ms(min)

3.2 Backlight Unit

< Table 4. Backlight Unit >

Symbol	Parameter	Min.	Тур.	Max.	Units	Condition
VPIN	LED Light Bar Input Voltage	58	64	70	V	Duty 1000/
	Per Input Pin					Duty 100%
IPIN	LED Light Bar Input Current	-	120*4	-	mA	Note1, 2
	Per Input Pin					
PBL	LED Power Consumption	-	30.72	-	W	Note3
-	the single lm rank	30	-	-	lm	
-	LED color Rank	1C、1D、1E、1F、1	ABF, ABG,	-		
		ABH、ABI、AB				
-	LED Life-Time	30,000	-	-	Hrs	Note4

Note1: There are one light bar, and the specified current is input LED chip 100% duty current

Note2: The sense current of each input pin is 120mA

Note3: PBL=4 Input pins*VPIN ×IPIN

Note4: The lifetime is determined as the time at which luminance of LED become 50% of the initial brightness or not normal lighting at IPIN=120mA*4 on condition of continuous operating at 25 ± 2 °C

4.0 OPTICAL SPECIFICATION

4.1 Overview

The test of optical specifications shall be measured in a dark room (ambient luminance < 1 lux and temperature= $25\pm2^{\circ}$ C) with the equipment of Luminance meter system (Goniometer system and PR730) and test unit shall be located at an approximate distance 50cm from the LCD surface at a viewing angle of θ and Φ equal to 0 . We refer to $\theta\emptyset=0(=\theta3)$ as the 3 o"clock direction (the "right"), $\theta\emptyset=90(=\theta12)$ as the 12 o"clock direction ("upward"), $\theta\emptyset=180(=\theta9)$ as the 9 o"clock direction ("left") and $\theta\emptyset=270(=\theta6)$ as the 6 o"clock direction ("bottom"). While scanning θ and/or \emptyset , the center of the measuring spot on the Display surface shall stay fixed. The measurement shall be executed after 30 minutes warm-up period. VDD shall be 12.0V +/-10% at 25 °C. Optimum viewing angle direction is 6 "clock.

4.2 LCM Optical Specifications

Parame	eter	Symbol	Condition	Min	Тур	Max	Unit	Remark	
		θ_3			89		Deg.		
Viewing Angel	Horizontal	θ_9	CR>10		89		Deg.	Note1	
Viewing Anger		θ_{12}	CR>10		89		Deg.	Note1	
	Vertical	θ_6			89		Deg.		
Color Temp	perature			-	9,000		K		
Color G	amut			-	72		%		
Contrast	ratio	CR		900:1	1200:1	-		Note2	
Luminance	of White	$Y_{\rm w}$		350	400	-	cd/m ²	Note3	
				70	75		%	Note4	
		$\mathbf{W}_{\mathbf{x}}$			0.305				
	White	\mathbf{W}_{y}	θ=0°		0.315				
		R_x	(Center)Normal		0.630				
Reproduction	Red	R_y	Viewing Angel	TYP.	0.340	TYP.		Note5	
of color		G_{x}		-0.03	0.300	+0.03		Notes	
	Green	G_{y}			0.630				
		$\mathbf{B}_{\mathbf{x}}$			0.148				
	Blue	\mathbf{B}_{y}			0.068				
Response Time	G to G	T_{g}		-	8	10	ms	Note6	
Gamma S	Scale			2.0	2.2	2.4		Note7	

Note:

- 1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing are determined for the horizontal or 3, 9 o"clock direction and the vertical or 6, 12 o"clock direction with respect to the optical axis which is normal to the LCD surface.
- 2. Contrast measurements shall be made at viewing angle of = 0 and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (See Figure 1 shown in Appendix) Luminance Contrast Ratio (CR) is defined mathematically.

CR = Luminance when displaying a white raster Luminance when displaying a black raster

- 3.Center Luminance of white is defined as the LCD surface. Luminace shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in Figure 2 for a total of the measurement per display.
- 4. The White luminance uniformity on LCD surface is then expressed as :

 $\Delta Y = (Minimum Luminance of 5points / Maximum Luminance of 5points) * 100 (See Figure 2 shown in$

Appendix).

- 5. The color chromaticity coordinates specified in Table 5.shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.
- 6. Response time Tg is the average time required for display transition by switching the input signal as below table and is based on Frame rate fV = 60Hz to optimize. Each time in below table is defined as Figure 2and shall be measured by switching the input signal for "any level of gray(bright)" and "any level of gray(dark)".

Meas			v .		200	29 11	<i>8</i> 1 8			Target	9	dia.	166		221	201	20 S	
Response Time		0	15	31	47	62	79	95	111	127	143	159	175	191	207	223	239	255
	0	1	1		1	8 1	8 8								3		8 5	
	15	-			10 - 1											0		
	31				1													
	47			/	_	_												
	63				_	_	1			1		-	10	7	-		9 7	
	79			8		_	-	/				8		2 1	9		9 8	
	95						_	_	1									
	111									1								
Start	127										1							
	142				ğ 5	§	3 3					_	Š.	1	9	8	3 3	
	159												1	0.				
	175											_	_	/				
	191		7											1	1			
	207	1					100					0			-	1		
	223			Š.	g 3	8 - 8	8 3					ŝ	į.			1	1	
	239																-	1
	255											-					1	1

7. Definition of Transmittance (T%):

Module is with white(L255) signal input

5.0 INTERFACE CONNECTION.

5.1 Electrical Interface Connection

5.1.1 LED Light Bar

< Table 6. LED Light Bar>

Pin No	Symbol	Description				
1	IRLED1	Channel Current Feedback				
2	IRLED2 Channe2 Current Feedback					
3	VLED	LED power supply				
4	VLED	LED power supply				
5	IRLED3	Channe3 Current Feedback				
6	IRLED4	Channe4 Current Feedback				
	CONNECTOR	CI0106S0000				

5.1.2 Module Input Signal & Power

-Connector : IS100-L30B-C23(Manufactured by UJU) or Equivalent.

< Table 7. Open Cell Input Connector Pin Configuration >

Pin No	Symbol	Description	Pin No	Symbol	Description
1	VDD	Power Supply +12.0V	16	RX1+	LVDS Receiver Signal(+)
2	VDD	Power Supply +12.0V	17	GND	Ground
3	VDD	Power Supply +12.0V	18	RX2-	LVDS Receiver Signal(-)
4	VDD	Power Supply +12.0V	19	RX2+	LVDS Receiver Signal(+)
5	GND	Ground	20	GND	Ground
6	GND	Ground	21	RCLK-	LVDS Receiver Clock Signal(-)
7	GND	Ground	22	RCLK+	LVDS Receiver Clock Signal(+)
8	GND	Ground	23	GND	Ground
9	LVDS_SEL	'L'=JEIDA, 'H'or NC= VESA	24	RX3-	LVDS Receiver Signal(-)
10	NC	No Connection	25	RX3+	LVDS Receiver Signal(+)
11	GND	Ground	26	GND	Ground
12	RX0-	LVDS Receiver Signal(-)	27	BIST	'L' or NC=Free run mode , 'H'= BIST mode
13	RX0+	LVDS Receiver Signal(+)	28	NC	No Connection
14	GND	Ground	29	NC	No Connection
15	RX1-	LVDS Receiver Signal(-)	30	GND	Ground

Notes: 1. NC(Not Connected): This pins are only used for BOE internal operations.

2.Input Level of LVDS signal is based on the IEA 664 Standard.

3. LVDS_SEL: This pin is used for selecting LVDS signal data format.

If this Pin: High (3.3V) or Open (NC) Normal NS LVDS format

Otherwise: Low(GND) JEIDA LVDS format

4. BIST: This pin is used for selecting display pattern mode when input DE or input CLOCK quits toggling.

If this Pin: Low (GND) or Open (NC) Free run mode(Black Pattern)

Otherwise: High(3.3V) BIST mode(BIST Pattern)

Sequence : On = VDD ≥LVDS Option , BIST Option ≥Interface signal

Off = Interface signal \geq LVDS Option , BIST Option \geq VDD

Rear view of LCM

BIST Pattern

PTE White (2 sec)	PT2: Black (2 sec)	PTX Red (2 sec)	PT4: Green (2 sec)	PTS: Bine (2 sec)
(2.44)	(2.44)	(2.75)	(2 700)	(2 101)

5.2 LVDS Interface

	LVDS Pin	Vesa Data format	JEIDA Data format	Remark
	TxIN/RxOUT0	Red0 [LSB]	R2	
	TxIN/RxOUT1	Red1	R3	
	TxIN/RxOUT2	Red2	R4	
TxOUT/RxIN0	TxIN/RxOUT3	Red3	R5	
	TxIN/RxOUT4	Red4	R6	
1	TxIN/RxOUT6	Red5	R7 [MSB]	
	TxIN/RxOUT7	Green0 [LSB]	G2	
	TxIN/RxOUT8	Green1	G3	
	TxIN/RxOUT9	Green2	G4	
	TxIN/RxOUT12	Green3	G5	
TxOUT/RxIN1	TxIN/RxOUT13	Green4	G6	
	TxIN/RxOUT14	Green5	G7 [MSB]	
	TxIN/RxOUT15	Blue0 [LSB]	B2	
	TxIN/RxOUT18	Blue1	B3	
	TxIN/RxOUT19	Blue2	B4	
	TxIN/RxOUT20	Blue3	B5	
	TxIN/RxOUT21	Blue4	B6	
TxOUT/RxIN2	TxIN/RxOUT22	Blue5	B7 [MSB]	
	TxIN/RxOUT24	HSYNC	HSYNC	
	TxIN/RxOUT25	VSYNC	VSYNC	
	TxIN/RxOUT26	DEN	DEN	
	TxIN/RxOUT27	Red6	R0 [LSB]	
9	TxIN/RxOUT5	Red7 [MSB]	R1	
	TxIN/RxOUT10	Green6	G0 [LSB]	
TxOUT/RxIN3	TxIN/RxOUT11	Green7 [MSB]	G1	
9	TxIN/RxOUT16	Blue6	B0 [LSB]	
	TxIN/RxOUT17	Blue7 [MSB]	B1	
	TxIN/RxOUT23	Reserved	Reserved	

6.0 SIGNAL TIMING SPECIFICATION

6.1 Timing Parameters (DE only mode)

< Table 9. Timing Table >

ITEM	Symbo	ol	Min	Тур	Max	Unit	Note
0114	Period	t _{CLK}	11.8	13.3	17.9	ns	
CLK	Frequency	-	56	75.4	85.0	MHz	
	Period	t _{HP}	1450	1560	2000	t _{CLK}	
Hsync	Frequency	f _H	39.4	48.4	55	KHz	
	Period	t _{VP}	778	806	1200	t _{HP}	
Vsync	Frequency	f _V	47	60	65	Hz	
Horizontal	Valid	t _{HV}	-	1366	-	t _{CLK}	
Active Display Term	Total	t _{HP}	1450	1560	2000	t _{CLK}	
Vertical Active	Valid	t _{vv}		768	-	t _{HP}	
Display Term	Total	t _{VP}	778	806	1200	t _{HP}	

Notes: This product is DE only mode. The input of Hsync & Vsync signal does not have an effect on normal operation.

7.0 Signal Timing Waveform

8.0 Input Signals, Basic Display Colors and Gray Scale of Colors < Table 10. Input Signal and Display Color Table >

Color & Gray Scale										Inp	ut	Da	ta s	Sig	nal										
Color & Gi	ray Scale			R	ed	Da	ta			6		Gr	eer	ı D	ata	1	, (S			В	lue	Da	ita		
		R7	R6					R1	R0	G7	G6					G1	G0	В7	B6					B1	В
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Qyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Colors	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
001013	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Δ	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Darker	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	Δ	30		700° -	25 3	1	9 ,9		Çer .		3 - 3	ş. 35	116	1	24 - 2	0			(2)	24)	24 1	1	5	(4)	200
of Red	∇			88	es - 4		8 17		985	8 8	8 8	8 17		Į .	83 3	sa - 8			50.	85 7	0 1	1		501	885
	Brighter	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	∇	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Δ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray Scale	Darker	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
of Green	Δ			900		1	8 73		300	1	22 - 23	8 75		1	87 7	22 - 23	2 97		24	87 -	9	1	8	201	901
Of Orecit	∇	3		S0-			3	_	80.			3	- 5%	1			- 8		(c)	5: <u></u>	3 4		2	(c)	80.
	Brighter	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	∇	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Δ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0 0 1	Darker	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray Scale	Δ.													1								1			
of Blue			_	_	_	_	_		_	_	_	_		-	_	_	_							_	
4	Brighter	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
Gray Scale	Darker	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
of White					-									1_			- 3				-	1			
	∇ Deletes											-				-			- 4		-		0.4		
	Brighter	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1
-		1	1	1	1	1	1	1	0	1	1	1	1		1	1	0	1	1	1	1	1	1	1	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

9.0 POWER SEQUENCE

To prevent a latch-up or DC operation of the Open Cell, the power on/off sequence shall be as shown in below

< Table 11. Sequence Table >

		Values				
Parameter		Units				
rarameter	Min	Typ	Max	UIIIIS		
T1	0.5	-	20	ms		
T2	0	-	50	ms		
T3	200	-	-	ms		
T4	200	-	-	ms		
T5	0	-	50	ms		
T6	1	•	-	S		

Notes: 1. Even though T1 is over the specified value, there is no problem if I2T spec of fuse is satisfied.

10.0 MECHANICAL CHARACTERISTICS

10.1 Dimensional Requirements

FIGURE 6 (located in Appendix) shows mechanical outlines for the opencell HV320WX2-201. Other parameters are shown in Table 12.

Item Min Max Unit Note Typ Horizontal 740.8 741.4 742.0 mm Module Vertical 435.3 435.8 436.3 mm Size **Thickness** 14.9 15.2 15.5 mm Horizontal 705.4 mm Bezel Vertical 399.8 mm Horizontal 697.685 mm Active Area Vertical 392.256 mm Weight 5700 g D/B Wire length 550 mm

< Table 12. Dimensional Parameters>

Back Light must be turn on after power for logic and interface signal are valid.

10.2 Mounting

See FIGURE 5. (shown in Appendix)

10.3 Anti-Glare and Polarizer Hardness.

The surface of the LCD has an anti-glare coating to minimize reflection and a coating to reduce scratching.

10.4 Light Leakage

There shall not be visible light from the back-lighting system around the edges of the screen as seen from a distance 50cm from the screen with an overhead light level of 300lux.

11.0 RELIABLITY TEST

The Reliability test items and its conditions are shown in below.

< Table 13. Reliability Test Condition >

ltem	Test Condition
High-Temp/STG	Ta = 60 ℃, 240 hrs
Low-Temp/STG	Ta = -20 ℃, 240 hrs
High-Temp/HMD	Ta = 50 ℃, 80%RH, 240hrs
High-Temp/OP	Ta = 50 ℃, 240hrs
Low-Temp/OP	Ta = 0 ℃, 240hrs
TST	Ta = -20 °C ↔ 60 °C (0.5 hr), 100 cycle
Vibration	Frequency:10-300 Hz Gravity / AMP : 1.0 G rms Period : X, Y, Z 30 min
Shock	Gravity : 50G Pulse width : 11msec, Half Sine ±X, ±Y, ±Z Once for each direction
ESD	Air: \pm 15kV,150pF/330 Ω ,100Point,1time/Point Contact: \pm 8kV,150pF/330 Ω ,100Point, 1time/Point

This test condition is based on BOE module.

12.0 HANDLING & CAUTIONS

- (1) Cautions when taking out the module
 - Pick the pouch only, when taking out module from a shipping package.
- (2) Cautions for handling the module
 - •As the electrostatic discharges may break the LCD module, handle the LCD module with care. Peel a protection sheet off from the LCD panel surface as slowly as possible.
- As the LCD panel and back light element are made from fragile glass material, impulse and pressure to the LCD module should be avoided.
 - As the surface of the polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
 - •Do not pull the interface connector in or out while the LCD module is operating.

- Put the module display side down on a flat horizontal plane.
- Handle connectors and cables with care.
- (3) Cautions for the operation
- When the module is operating, do not lose CLK, ENAB signals. If any one of these signals is lost, the LCD panel would be damaged.
 - •Obey the supply voltage sequence. If wrong sequence is applied, the module would be damaged.
- (4) Cautions for the atmosphere
 - •Dew drop atmosphere should be avoided.
- •Do not store and/or operate the LCD module in a high temperature and/or humidity atmosphere. Storage in an electro-conductive polymer packing pouch and under relatively low temperature atmosphere is recommended.
- (5) Cautions for the module characteristics
 - •Do not apply fixed pattern data signal to the LCD module at product aging.
 - Applying fixed pattern for a long time may cause image sticking.
- (6) Other cautions
 - •Do not disassemble and/or re-assemble LCD module.
 - •Do not re-adjust variable resistor or switch etc.
- When returning the module for repair or etc., Please pack the module not to be broken. We recommend to use the original shipping packages.

13.0 LCM Optical Characteristics

	Item	Symbol	Min.	Typ.	Max.	Unit	Note								
Luminan	ice Of White (central)	Lc	Lc 350 400 nit												
Brightne (<u>9</u> pts)	ss Uniformity	Lu	70	Note 1											
Control	Chromoticity of White	X	0.275	CIE 1931(x, y)											
Central	Central Chromaticity of White		y 0.285 0.315 0.345				[Base On BM-7]								
	Temperature 25±3°C														
	Humidity	65±20%													
	Environment	Under 10 Lux													
	Test distance	50±3 cm □others(cm)													
	Viewing cone	$\Box 0.2^{\circ}$													
Test Condit ions	Electricity (Max. luminance)	□ Lamp CurrentmA _{rms} ■ LED Driving Current Per Input Pin120mA ■ Power consumption30.7Watt													
	Test equipment	BM-7 Should be		(<u>BM-7</u>) (using SR-3.	Corrective va	llue for Brigh	ntness and Color (x; y)								
	Measured Area	LCM Mod	ule open ligl	nting area											
	Method	See attachr	nent "test	detail-1, -2											
	Others	Measureme	ent should b	e done after	lighting for a	nt least 30 mi	ns								

Note :Brightness Uniformity = $Lmin / Lmax \times 100\%$

The centre point should be the maximal brightness of 9 measuring points.

Note:

(1)Measurement Setup

The LCD module should be stabilized at 25° C for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 30 minutes in a windless room.

Figure 10 Measurement Setup flat ■ vertical **Insulation plastics** Equipment **BM-7** Wall Viewing cone Viewing cone Equipment LCM Module Distance **BM-7** Insulation L=50±3cm plastics Distance L⊨50±3cm **Table** Note: The BLU must be grounded.

(2)Definition of Viewing Angle

Figure 11 Definition of Viewing Angle

Measurements are performed perpendicular to the display screen surface.

(3)The position of measured points

14.0 Mechanical Characteristics

TFT-LCD Module Outline Dimensions (Front view)

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

15.0 PACKING

15.1 CARTON

15.2 PALLET

Packed cartons will be placed on the pallet, each layer 4box, three horizontal and one vertical placed, each pallet placed 3 layer. Pallet first use of stretch film packaging layer 3 to 5, then use the sealing belted with #-shaped package.

16.0 DEFINITION OF LABELS 16.1 LOT NO. LABEL

16.2 BOECT MODULE LABEL

16.3 CARTON LABEL

