

# 'LWFA-DRIVEN' FREE ELECTRON LASER FOR ELI-BEAMLINES



Alexander Molodozhentsev

ELI-Beamlines
Institute of Physics of CAS (Prague, Czech Republic)

ICFA Future Light Source 2018 Workshop / Shanghai / China / March 6, 2018











- European Light Infrastructure (ELI) and ELI-beamlines
- 'Demo' FEL and 'Water-window' FEL in ELI-beamlines
- Dedicated electron beamline for 'laser-driven' FEL:
   main concepts and possible realization







#### **European Light Infrastructure (ELI)**



- European Light Infrastructure (ELI) will be the world's first international laser research infrastructure, pursuing unique science and research applications
- **ELI** will be implemented as a distributed research infrastructure based initially on 3 specialized and complementary facilities, located in the Czech Republic, Hungary and Romania







Date: 06.03.2018

Attosecond Laser Science – ELI-ALPS, Szegen, Hungary

High-Energy Beam Facility: development and use of ultra-short pulses of high-energy particles and radiation stemming from the ultra-relativistic interaction – ELI-Beamlines, Prague, CZ

Nuclear Physics Facility with ultra-intense laser and brilliant gamma beams (up to 19MeV) enabling also brilliant neutron beam generation with variety of energies – ELI-NP, Magurele, RO











#### Location: Dolni Brezany (near Prague)



- Lasers Experiments

- Site area 65,000 m<sup>2</sup>
- Building(s) 28,645 m<sup>2</sup>
- Building volume 170,000 m<sup>3</sup>
- Experimental building 16,500 m<sup>2</sup>
- Laboratories 4,500 m<sup>2</sup>
- 4,400 m<sup>2</sup> Offices
- Multifunction areas 2,300 m<sup>2</sup>
- Total estimated construction costs of €65M
- Foundation raft slab thickness
- 1.6m shielded reinforced concrete walls in the underground;

#### **ELI-BEAMLINES**



| Parameters of FOCUSED laser pulses |    |           |        |                                        |  |  |  |
|------------------------------------|----|-----------|--------|----------------------------------------|--|--|--|
| 200mJ / 10fs                       | *  | 1 kHz     | 20 TW  | < 6×10 <sup>20</sup> W/cm <sup>2</sup> |  |  |  |
| 10J / 20fs                         |    | 10 Hz     | 500 TW | < 3×10 <sup>21</sup> W/cm <sup>2</sup> |  |  |  |
| 50J / 25fs                         | ** | 10 Hz     | 2 PW   | < 1×10 <sup>22</sup> W/cm <sup>2</sup> |  |  |  |
| 300J / 30fs                        |    | 0.1<br>Hz | 10 PW  | < 3×10 <sup>23</sup> W/cm <sup>2</sup> |  |  |  |

Installation in progress: (\*) available during 2018 (\*\*) available during 2019









#### **ELI-BEAMLINES**

#### Underground experimental Hall



#### Fundamental and applied research

## Generation femtosecond secondary sources of radiation and particles:

- XUV and X-ray sources
- Accelerated electrons (< 2GeV/10Hz, >10GeV low rep-rate)
- Accelerated protons ( < 400MeV/10Hz, >3GeV low rep-rate)
- Gamma-ray sources (broadband)

#### Applications of rep-rated femtosecond secondary sources

- Medical research including proton therapy
- Molecular, biomedical and material sciences
- Physics of dense plasmas, laser fusion, laboratory astrophysics

### High-field physics experiments with focused intensities 10<sup>23</sup>-10<sup>24</sup>Wcm<sup>-2</sup>

"Exotic" physics, non-linear QED

# Development & testing new technologies for multi-PW laser systems

 Generation and compression of 10-PW ultrashort pulses, coherent superposition etc.









The principal of the 'laser-wake-field-acceleration' (LWFA) is based on an ultra-high longitudinal electric gradient, created by the high-intensity laser pulse focused in dense plasma



#### The plasma wavelength

$$\lambda_p[\mu m] \approx 3.3 \times 10^{10}/\sqrt{n_e[cm^{-3}]}$$
 ,

where  $n_e$  is the electron density of the plasma. The plasma wavelength <u>limits</u> the bunch length which can be accelerated by the laser-wave.

#### The longitudinal field

$$E_0[V/m] = 96\sqrt{n_e[cm^{-3}]}$$
.

Assuming  $n_e \sim 5 \times 10^{19} \text{ cm}^{-3}$ :

$$\lambda_p \sim$$
 14.8  $\mu m \rightarrow$  < 3 fs RMS pulse length  $E_0 \sim$  215 GV/m

 $W_{kin}$ = 1GeV ... 4.7 mm accelerating channel.







#### Recent experimental achievement in LWFA [1]

Through manipulating electron injection, quasi-phase-stable acceleration, electron seeding in different periods of the wake-field, as well as controlling the energy chirp the high-quality electron beams have been obtained. The electron beams with energies in the range of 200÷600 MeV, with the RMS energy spread of 0.4÷1.2 %, the RMS transverse beam divergence of 0.2 mrad with the bunch charge of 10÷80 pC have been demonstrated experimentally for the new cascaded acceleration scheme.

Using recent experimental achievements one can define the parameters of the LWFA electron beam at the exit of the plasma channel as following:

```
\begin{aligned} W_{kin} &= 300 \div 1000 \text{ MeV}; \\ \sigma_{x,y} &\sim 1 \text{ } \mu\text{m} \text{ } ; \sigma_{x',y'} \sim 0.2 \div 0.5 \text{ } \text{mrad}; \\ \sigma_z &\sim 1 \text{ } \mu\text{m}; \\ \sigma_{\Delta p/p} &< 1\% \text{ } (\sim 0.5 \text{ } \%) \\ \epsilon_n &\sim 0.2 \text{ } \pi \text{ } \text{mm.mrad}; \\ Q_b &\sim 20 \div 50 \text{ } p\text{C}. \end{aligned}
```

Date: 06.03.2018

[1] W.T.Wang et al., Phys.Rev.Lett 117, 124801 (2016)









# 'Cryogenic' permanent magnet <u>PLANAR</u> undulator *HZ (Berlin) and University of Hamburg [2]*



| PLANAR undulator                              |                        |    |       |
|-----------------------------------------------|------------------------|----|-------|
| Normalized 'peak' <u>undulator</u> parameters | K                      | -  | 3.0   |
| Normalized RMS <u>undulator</u> parameter     | $a_{w0}$               | -  | 2.121 |
| Undulator period                              | $\lambda_{\mathrm{u}}$ | mm | 15    |
| Peak <u>undulator</u> field                   | $B_p$                  | T  | 2.141 |
| Number of periods                             | $N_u$                  | -  | 133   |
| Undulator gap                                 | gu                     | mm | 2     |
| <u>Undulator</u> length                       | $L_{\rm u}$            | mm | 1995  |

Date: 06.03.2018

[2] J.Bahrdt, in Proc. FEL2011 Conference, p.435, 2011

#### Goal of the 'demo' FEL experiment:

- demonstrate the amplification of radiation;
- reach the saturation in the short undulator (2m).
- $\rightarrow$  W<sub>kin</sub> = 350MeV, Gap  $\approx$  4.5mm (K<sub>0</sub>=1.77)

... next step -> 'laser-driven' 'water-window' FEL

Table 1: Main parameters of (A) 'demo' FEL and (B) 'water-window' FEL

|                                                      | Α                                                                                                                               | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| hogen in The                                         |                                                                                                                                 | Б                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                      |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| MeV                                                  | 350                                                                                                                             | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| $\mathbf{pC}$                                        | 20                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| fs                                                   | 2                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| kA                                                   | 4                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| μm                                                   | ~ 30                                                                                                                            | ~ 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| π mm.mrad                                            | 0.3                                                                                                                             | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| %                                                    | 0.2                                                                                                                             | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Photon coherent radiation in Undulator at saturation |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| eV                                                   | 30.1                                                                                                                            | 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| nm                                                   | 41                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| ×10 <sup>-2</sup>                                    | 0.85                                                                                                                            | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| π mm.mrad                                            | 2.24                                                                                                                            | 0.785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                      |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| m                                                    | 0.30                                                                                                                            | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                      |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| m                                                    | 0.107                                                                                                                           | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| m                                                    | ~ 2.1                                                                                                                           | ~ 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| ×10 <sup>13 #</sup>                                  | 1.23                                                                                                                            | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| %                                                    | 0.72                                                                                                                            | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| ×10 <sup>12#</sup>                                   | 1.6                                                                                                                             | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| ×10 <sup>30#</sup>                                   | 0.44                                                                                                                            | 7.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| GW                                                   | 10.8                                                                                                                            | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| μJ                                                   | 60                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                      | MeV  pC fs kA  μm π mm.mrad % fation in Undi eV  nm ×10-2 π mm.mrad m  m ×10-12 π mm.mrad σ c c c c c c c c c c c c c c c c c c | beam in Undulator   MeV   350   pC   20   fs   2   kA   4   μm   ~ 30   π   mm.mrad   0.3   %   0.2   dation in Undulator at sate   eV   30.1   nm   41   ×10-2   0.85   π   mm.mrad   2.24   m   0.30   m   0.107   m   ~ 2.1   ×10 <sup>13 #</sup>   1.23   %   0.72   ×10 <sup>12 #</sup>   1.6   ×10 <sup>30 #</sup>   0.44   GW   10.8   μJ   60   data   data   GW   10.8   μJ   60   data   data |  |  |  |  |  |

<sup>#</sup> corresponding units are shown in the text

[3] M.Xie, LBNL-44381, CBP Note-323, 1999









**Estimation of the saturation length** for different parameters of the electron beam, passing through the CPMU undulator  $(K_0=1.77)$ 

$$W_{kin}$$
= 350 MeV,  $I_{peak}$ = 4kA,  $\sigma_{x,y}$ = 30 $\mu$ m



 $L_{sat, 3D} \sim 20 Lg_{1D}(1 + \Delta),$  where  $\Delta$  is defined according to the Xie parametrization,  $L_{a,1D}$  is the 1D gain length.

In order to obtain the saturation length (3D) of 2m for the energy spread of 0.3%, the normalized RMS transverse emittance of the electron beam should be less than 0.3  $\pi$  mm.mrad  $\rightarrow$  'SLICE' parameters of the electron beam ( $L_{slice} < L_{coop}$ ).





#### Conceptual solutions for a dedicated beamline for a 'laser-driven' FEL

| WHAT                                          | HOW                             | Effects                                                                                                           | Pros                                                                                | Cons                                                              |
|-----------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Capture of the<br>'laser-driven'<br>electrons | Triplet of permanent quads      | <ul> <li>Minimize normalized emittance growth</li> <li>Allow a long drift space for outcoupling optics</li> </ul> | <ul> <li>Compact setup</li> <li>High gradient<br/>(~450T/m<sup>#1</sup>)</li> </ul> | <ul><li>Radiation damage</li><li>Position control</li></ul>       |
| 'Momentum' filter #2                          | Set of EM-<br>quadrupoles       | <ul> <li>Eliminate effects of 'chromatic<br/>aberrations', caused by large<br/>energy spread</li> </ul>           | <ul><li>Compact setup</li><li>Without bending dispersive elements</li></ul>         | <ul><li>Required collimator</li><li>Secondary particles</li></ul> |
| Beam manipulations#3                          | Magnetic chicane (decompressor) | Electron beam manipulation in<br>the longitudinal plane                                                           | <ul> <li>Control of 'slice'<br/>parameters</li> </ul>                               | Effect of CSR                                                     |
| Beam matching with undulator#4                | Additional set of quad-magnets  | <ul> <li>Matching to the undulator<br/>Twiss parameters</li> </ul>                                                | Matching for FEL                                                                    | <ul> <li>Triplet or<br/>quadruplet of<br/>QMs</li> </ul>          |

<sup>#1</sup> P.Winkler et al, in Proc. IPAC17 Conf., p.4145







<sup>&</sup>lt;sup>#2</sup> I.Hofmann, Phys.Rev.STAB, 16, 0413302 (2013); A.Molodozhentsev et al, in Proc. IPAC16 Conf, p.4005, 2016

<sup>#3</sup> A.Maier et al., Phys.Rev. X 2, 031019 (2012)

<sup>&</sup>lt;sup>#4</sup> A.Loulergue et al., New J.Phys. 17, 023028 (2015)



#### Electron beamline for a 'laser-driven' the 'demo' FEL (W<sub>k</sub>=350 MeV)



(2) 'Out-coupling' drift

(3) 'Momentum' filter (4EQMs)

 $\varepsilon_{n,x} = 0.2\pi \text{ mm.mrad *}$   $\varepsilon_{n,y} = 0.2 \pi \text{ mm.mrad}$   $\sigma_x = \sigma_y = 1.1 \mu \text{m}$   $\sigma_{x'} = \sigma_{y'} = 0.55 \text{ mrad}$   $\sigma_{\Delta p/p} = 1.05\%$ 

\* 'projected' emittance



- (4) C-Chicane (4DMs)
- (5) Matching quads (3EQMs)
- (6) Undulator
- (eD) T&L diagnostics

 $\varepsilon_{n,x} = 0.64 \pi \text{ mm.mrad}^*$   $\varepsilon_{n,y} = 0.33 \pi \text{ mm.mrad}$   $\sigma_x = 22.4 \mu \text{m}$   $\sigma_y = 21.5 \mu \text{m}$  $\sigma_{\Delta p/p} = 0.9\%$ 

\* 'projected' value





Date: 06.03.2018



Collimation (H&V): beam-halo cut in undulator with propagation efficiency



#### Control of the 'slice' beam parameters for the 'demo' FEL (W<sub>k</sub>=350 MeV)

The 'slice' beam parameters for the 'demo' FEL experiment should meet the requirements:

- o the relative energy spread < 1/2 of the Pierce parameter ...  $\sigma_{\Delta p/p,S}$  < 0.4%;
- o the transverse normalized emittance  $\varepsilon_{n,S} < 0.3\pi$  mm.mrad;
- o the bunch charge  $Q_b$ < 40pC, providing the peak current of 4kA for different  $R_{56}$ .



Initial 'projected' RMS relative energy spread should be 0.5% Initial RMS transverse divergence should be less 0.5mrad









#### Electron beamline for a 'laser-driven' the 'demo' FEL (W<sub>k</sub>=350 MeV)



<sup>\* &#</sup>x27;projected' emittance



 $\varepsilon_{n,x}$  = **0.51**  $\pi$  mm.mrad \*  $\varepsilon_{n,y}$  = **0.23**  $\pi$  mm.mrad  $\sigma_x$  = 21  $\mu$ m  $\sigma_y$  = 21  $\mu$ m  $\sigma_{\Delta p/p}$  = 0.48 % \*

\* 'projected' value

Propagation efficiency ~ 96%

[#] Reachable experimentally:

W.T.Wang et al., Phys.Rev.Lett 117, 124801 (2016)













#### **FEL ANALYSIS:**

#### FEL demonstration experiment → W<sub>kin</sub>=350MeV

Goal: ... saturation in the 2m 'cryogenic' undulator

Date: 06.03.2018

Photon pulse energy for different decompressor setup

The bending angle in the C-chicane:

Case1: 0.2 degree;

Case2: 0.4 degree;

Case3: 0.6 degree.

#### After the decompressor:

The 'slice' RMS energy spread: (1) 0.44%; (2) 0.35%; (3) 0.24%

The 'slice' RMS norm. (H/V) emittance: (1) 0.6/0.25; (2) 0.4/0.22; (3) 0.3/0.2

To keep the peak current of 4kA for each set of the chicane magnets the bunch charge for each case is: (1) 23pC; (2) 27pC; (3) 43pC, respectively.









#### **FEL ANALYSIS:**

'water-window' FEL  $\rightarrow$  W<sub>kin</sub>=1000MeV ( $\lambda_{r,1}$  = 5nm, E<sub>ph,1</sub>=250eV)

- 'Cryogenic' undulator segments (K=1.8): L<sub>seq</sub>=2.5m
- Space separation: 0.75m
- FODO focusing structure
- Main beam parameters in Table 1



LWFA-based' water-window FEL in ELI-BL experimental hall E5











#### CONCLUSION

- ✓ The analyzed dedicated beamline to transport the 'laser-driven' electrons
  up to an undulator allows us to provide required parameters of the electron beam for
  the 'demo' FEL experiment.
- ✓ The required initial parameters of the 'laser-driven' electron beam are reachable experimentally.
- ✓ Dependence of the 'demo' FEL parameters on different strength of the 'decompessor' C-chicane has been discussed.
- ✓ Performed analysis of the 'water-window' FEL parameters, based on the 1GeV 'laser-driven' electron beam, shows that the total length of the whole setup (including the dedicated electron beamline and 3÷4 segments of the undulator) is ~ 30m. The peak photon brilliance is 7.05×10³0 photons/pulse/mm²/mrad²/0.1%bw.

#### **ACKNOWLEDGEMENT**

Date: 06.03.2018

This work has been supported by the project Advanced research using high intensity laser produced photons and particles (CZ.02.1.01/0.0/0.0/16\_019/0000789) from European Regional Development Fund.









# Thank you for your attention!





