Notation

Vectors, Matrices

Scalars are denoted by upper or lower case letters in italic type.

Vectors are denoted by lower case letters in boldface type, as the vector \mathbf{x} made up of components x_i .

Matrices are denoted by upper case letters in boldface type, as the matrix A made up of elements A_{ij} (ith row, jth column).

Random Vectors (Stochastic Processes), Realizations (Samples), and Dummy Variables

Random vectors are set in boldface sans serif type, as \mathbf{x} made up of scalar components \mathbf{x}_i .

Realizations of the random vector are set in boldface roman type, as \mathbf{x} : $\mathbf{x}(\omega_i) = \mathbf{x}$.

Dummy variables (for arguments of density or distribution functions, integrations, etc.) are denoted by the equivalent Greek letter, such as ξ being associated with \mathbf{x} : e.g., $f_{\mathbf{x}}(\xi)$. The correspondences are (\mathbf{x}, ξ) , (\mathbf{y}, ρ) , (\mathbf{z}, ζ) , $(\mathbf{Z}, \mathcal{Z})$.

Subscripts

a: augmented c: continuous-time d: discrete-time t: true, truth model

Superscripts

T: transpose (matrix) =: Fourier transform

⁻¹: inverse (matrix) : estimate

*: complement (set) or complex conjugate

Matrix and Vector Relationships

A > 0: A is positive definite.

 $A \ge 0$: A is positive semidefinite.

 $\mathbf{x} \leq \mathbf{a}$: componentwise, $x_1 \leq a_1, x_2 \leq a_2, \ldots$, and $x_n \leq a_n$.

xviii NOTATION

List of symbols and pages where they are defined or first used

A	60	Q	148; 154; 155
В	35, 36; 169	\mathbf{Q}_{d}	171
\mathbf{B}_{d}	171	R	115; 174
$\boldsymbol{c}^{"}$	246; 328	$\mathbf{R}_{\mathbf{c}}$	176; 257
D	36; 332; 392	R^n	17; 37, 62
$E\{\cdot\}$	88	r	218; 228
$E\{\cdot \cdot\}$	95	r	35; 91
e	117; 226; 328	r_{xy}	91
$\exp\{\cdot\}$	102	$\hat{\mathbf{S}}$	370
F	26, 36; 163	s	228
$F_{\mathbf{x}}$	68	\boldsymbol{S}	161
$F_{x y}$	78	T	28
f	37	T	133
$f_{\mathbf{x}}$	72	t_i	42
$f_{\mathbf{x} \mathbf{y}}$	78	U	392
${\mathscr F}$	61	u	35; 169
${\mathscr F}_{\mathtt{B}}$	62	V	370
G	36; 163	V	115; 174
$\mathbf{G}_{\mathtt{d}}$	172	\mathbf{v}_{c}	257
H	35, 36; 42	\mathbf{W}	44
h	26; 37; 42	\mathbf{W}_{D}	45
I	16; 156, 161	$\mathbf{W}_{ exttt{DTI}}$	45
I	240	\mathbf{W}_{TI}	45
J	121	\mathbf{W}_{d}	370
K	117; 217	W	153; 155
M	47	\mathbf{w}_{d}	171
$\mathbf{M}_{\mathtt{D}}$	47	X	333
$\mathbf{M}_{\mathrm{DTI}}$	48	X	65, 66; 133; 163
\mathbf{M}_{TI}	47	$\hat{\mathbf{x}}(t_i^-)$	115; 209
m	89; 136	$\mathbf{\hat{x}}(t_i^+)$	115; 207
m	35 .	$\mathbf{\hat{x}}(t_i^{+c})$	309; 333
n	26	$\hat{\mathbf{x}}(t/t_{i-1})$	219
\mathbf{P}_{xx}	90	Z	206
$\mathbf{P}_{x y}$	97	z	115; 174
$\mathbf{P}_{xx}(t)$	136	z _c	257
$\mathbf{P}_{xx}(t,t+\tau)$	136	\mathbf{z}_i	206
$\mathbf{P}_{xx}(\tau)$	140	β	148; 155
$\mathbf{P}(t_i^-)$	115; 209	σ_{2}	90
$\mathbf{P}(t_i^+)$	115; 207	σ^2	90
$\mathbf{P}(t/t_{i-1})$	219	τ	40; 140
P(A)	60; 63	Φ	40

NOTATION xix

$\phi_{\mathbf{x}}$	99	$\Psi_{xx}(\tau)$	140
Ψ_{xx}	90	$\Psi_{xx}^{(\omega)}(\omega)$	141
$\Psi_{xx}(t)$	137	Ω	60
$\Psi_{xx}(t,t+\tau)$	137	ω	60