Circularly Polarized Microstrip Antennas

Prof. Girish Kumar
Electrical Engineering Department
IIT Bombay

gkumar@ee.iitb.ac.in (022) 2576 7436

Circularly Polarized (CP) Dual Feed MSA

Dual-feed (a) SMSA and (b) CMSA

Square MSA with Dual Feed

 $L=3~cm,~~\epsilon_r=2.55,~h=0.159~cm~and~tan\delta=0.001$ Two Feeds at x = 0.5 cm with 1/00 and at y = 0.5 cm with 1/900 for LHCP

Square MSA with Dual Feed for Different Substrate Parameters

(----)
$$\varepsilon_r = 2.55$$
 and $h = 0.159$ cm, $L = 3$ cm, $x = y = 0.5$ cm (----) $\varepsilon_r = 2.55$ and $h = 0.318$ cm, $L = 3$ cm, $x = y = 0.6$ cm (----) $\varepsilon_r = 1$ and $h = 0.5$ cm, $L = 4.5$ cm, $x = y = 1.4$ cm

SMSA Integrated with Dual Feed

SMSA with (a) offset feed and (b) 3-dB 2-branch line coupler

CP Suspended CMSA with Dual Feed

Frequency Range: 2.7-2.9GHz (7%)
Patch diameter = 52mm
Ground plane diameter = 90mm
Substrate - RT Duroid 5870 $(\varepsilon_r = 2.33, h = 0.8 \text{ mm}, \tan \delta = 0.0012)$

Smith-Chart Display

CP Suspended CMSA – S₁₁ and AR

BW for $|S_{11}| \le -15 dB$ = 2.62 - 3.10GHz (17%)

BW for AR \leq 3dB = 2.56 - 3.15GHz (21%)

CP CMSA – Gain and Radiation Pattern

Max Gain = 6.2dBi

LHCP Radiation
Pattern at 2.8GHz

Various Single Feed CP MSAs

(a) Diagonal fed nearly square. Square with (b) two stubs, (c) two notches, (d) two corners chopped, (e) square notches at two corners, and (f) diagonal slot.

Diagonal Fed Nearly Square MSA

Input impedance, VSWR and AR plots for three values of L_2 : (---) 2.9, (---) 2.92, and (---) 2.95 cm - LHCP

Nearly Square Ring MSA

Nearly square ring MSA with (a) coaxial feed and (b) quarter-wave transformer.

Variations of CMSAs and ETMSAs

(a) Elliptical MSA and CMSA with (b) two notches, (c) two stubs, and (d) a rectangular slot in the centre.

(a) Nearly ETMSA, (b) tip-truncated ETMSA, (c)ETMSA with a rectangular slot, and (d) ETMSA with a notch.

Compact CP Square MSA with Slits

(a) SMSA with two pairs of unequal slits and (b) SMSA with corners chopped and four bent slits Application – GPS (1575 \pm 10 MHz) antenna, RHCP

Compact CP CMSA with Slits

Compact CMSA with (a) cross slot and (b) curved slot with tuning stub. Annular ring MSA with (c) an internal offset polarizer and slits in the (d) outer and (e) inner circles

Gap-Coupled Broadband CP MSA

(a) Three gap-coupled and (b) five gap-coupled square patches with orthogonal feeds for CP

Stacked Broadband CP SMSA

(a) Top and (b) side views of two stacked square patches

Aperture- Coupled Broadband CP MSA

(a) Square patch with two orthogonal cross slots of unequal lengths and (b) its measured input impedance plot.

CP Array using Linearly Polarized Elements

Two linearly polarized rectangular patches with 90° rotation and phase difference of 0°, 90°, 180°, and 270°

2-Elements Sequentially Rotated Array using CP MSAs

(a) Sequentially rotated array of two CP circular elements and (b) superimposed CP response of the two elements

4-Elements Sequentially Rotated Array using CP MSAs

Sequential array of four CP elements with 90° rotation and phase difference of 0°, 90°, 180°, and 270°.

CP Array using CP Elements – VSWR and AR

2 × 4 arrays of circular patches with two notches: conventional and sequentially rotated.

Measured VSWR and AR plots

(---) conventional and (——) sequentially rotated.