一、环境配置

1.1 Hadoop

```
root@hadoop01:~# start-all.sh
Starting namenodes on [101.42.45.176]
Starting datanodes
Starting secondary namenodes [hadoop02]
Starting resourcemanager
Starting nodemanagers
root@hadoop01:~# jps
11522 DataNode
12103 NodeManager
12279 Jps
```

1.2 Hive

metastore

```
root@hadoop@l:~# 2023-@l-16 19:20:27: Starting Hive Metastore Server
SLF4]: Class path contains multiple SLF4J bindings.
SLF4]: Class path contains multiple SLF4J bindings.
SLF4]: Found binding in [jar:file:/usr/local/hive/lib/log4j-slf4j-impl-2.10.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4]: Found binding in [jar:file:/usr/local/hadoop-3.1.3/share/hadoop/common/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4]: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4]: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
```

hiveserver2

```
root@hadoop01:-# 2023-01-16 19:20:39: Starting HiveServer2

SLF4J: Class path contains multiple SLF4J bindings.

SLF4J: Class path contains multiple SLF4J bindings.

SLF4J: Found binding in [jar:file:/usr/local/hive/lib/log4j-slf4j-impl-2.10.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]

SLF4J: Found binding in [jar:file:/usr/local/hadoop-3.1.3/share/hadoop/common/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]

SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.

SLF4J: Actual binding is of type [org.apache.logging.slf4j.log4jloggerFactory]

Hive Session ID = 986a0d6e-665f-4cca-8879-41d27c93ea9c

Hive Session ID = 17085be-8bad-4855-bct9-657bad-22367a

Hive Session ID = 5c2b7ca6-6d35-4a81-86ca-85c8457785b8

Hive Session ID = a07d68d2-1008-4c4f-abfe-eb558dc5b23e

OK
```

二、导入数据

2.1 建表语句

```
CREATE TABLE `human`.`aug_train` (
 1
 2
        `enrollee__id` INT,
        `city` DOUBLE,
 3
         `city_development_index` DOUBLE,
 4
 5
        `gender` DOUBLE,
 6
        `relevent_experience` DOUBLE,
 7
        `enrolled_university` DOUBLE,
        `education_level` DOUBLE,
8
9
        `major_discipline` DOUBLE,
10
        `experience` DOUBLE,
         `company_size` DOUBLE,
11
12
         `company_type` DOUBLE,
        `last_new_job` DOUBLE,
13
       `training_hours` DOUBLE, `target` DOUBLE)
14
15
        ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
16
       STORED AS TEXTFILE;
```

```
CREATE TABLE `human`.`aug_test` (
 2
        `enrollee__id` INT,
        `city` DOUBLE,
 4
         `city_development_index` DOUBLE,
 5
        `gender` DOUBLE,
        `relevent_experience` DOUBLE,
 6
        `enrolled_university` DOUBLE,
        `education_level` DOUBLE,
 8
        `major_discipline` DOUBLE,
        `experience` DOUBLE,
10
11
         `company_size` DOUBLE,
12
         `company_type` DOUBLE,
13
        `last_new_job` DOUBLE,
       `training_hours` DOUBLE)
14
15
        ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
16
       STORED AS TEXTFILE;
```

2.2 导入数据

- 1 load data local inpath '/usr/local/aug_test.csv' overwrite into table
 aug_test
- 2 load data local inpath '/usr/local/aug_train.csv' overwrite into table aug_train

											test.enrolled_university aug_test.training_hours	aug_test.educat:
27385		13.0		0.827		1.0		0.0		1.0	.+	1.0
	5.0		11.6		49.0		4.0		1.0		39.0	1
9272	5.0	90.0	1 20.6	0.698	49.0	1.0	4.0	0.0	2.0	1.0	51.0	0.0
14249		46.0		0.762		1.0	7.0	0.0		1.0		0.0
	5.0		8.0		500.0		5.0		0.0		48.0	
7865	F 0	21.0		0.624		1.0		0.0		1.0		1.0
463	5.0	13.0	4.0	0.827	500.0	1.0	4.0	0.0	1.0	1.0	4.0	1.0
	1.0	1 25.0	2.0	0.027	99.0		4.0	0.0	1.0	1.0	31.0	Ī
25202		21.0		0.624		1.0		0.0		1.0		0.0
	5.0		6.0	0.604	4999.0		4.0		3.0	1.0	33.0	
17189	5.0	21.0	17.0	0.624	10000.0	1.0	4.0	0.0	4.0	1.0	43.0	0.0
25855		103.0		0.92		0.0		0.0		1.0		0.0
	0.0		4.0		99.0		4.0		1.0		20.0	
32126	F 0	160.0		0.92		1.0		0.0		1.0		0.0
9242	5.0	21.0	16.6	0.624	500.0	1.0	4.0	0.0	4.0	1.0	130.0	1.0
	5.0	22.0	5.0		500.0		4.0	0.0	1.0		49.0	i
					·+				·+			

2.3 测试idea连接

三、SparkMllib建模

3.1 连接hive, 读取数据

```
var data_test = spark.read.table("human.aug_test")
var data_train_source = spark.read.table("human.aug_train")
```

3.2 提取需要的字段

```
var df =
data_train_source.select("target","city","city_development_index","gender",

"relevent_experience","enrolled_university","education_level","major_discipline"

,"experience","company_size","company_type","last_new_job","training_hours")
```

3.3 转成labeledPoint类型

```
1
          var labeledPointRDD = df.rdd.map(row=>{
 2
            var label = row.getAs[Double]("target")
 3
            var city = row.getAs[Double]("city")
            var city_development_index = row.getAs[Double]
    ("city_development_index")
 5
            var gender = row.getAs[Double]("gender")
 6
            var relevent_experience = row.getAs[Double]("relevent_experience")
            var enrolled_university = row.getAs[Double]("enrolled_university")
 8
            var education_level = row.getAs[Double]("education_level")
 9
            var major_discipline = row.getAs[Double]("major_discipline")
10
            var experience = row.getAs[Double]("experience")
11
            var company_size = row.getAs[Double]("company_size")
12
            var company_type = row.getAs[Double]("company_type")
            var last_new_job = row.getAs[Double]("last_new_job")
13
            var training_hours = row.getAs[Double]("training_hours")
14
15
16
            LabeledPoint(label, Vectors.dense(city,city_development_index,gender
17
    , relevent_experience, enrolled_university, education_level, major_discipline,
18
              experience,company_size,company_type,last_new_job,training_hours))
19
          })
```

3.4 持久化

1 labeledPointRDD.cache()

3.5 建模部分

3.5.1 支持向量机

```
1
    var svmModel:SVMModel = SVMWithSGD.train(trainRDD,100)
2
    var symPredictAndActualRDD:RDD[(Double,Double)] = testRDD.map{
      case LabeledPoint(label,features)=>(svmModel.predict(features),label)
4
5
   }
6
   // 评价roc
7
    var svmMetrics = new BinaryClassificationMetrics(svmPredictAndActualRDD)
    var svmRoc = svmMetrics.areaUnderROC()
8
9
10
    val nbTotalCorrect = testRDD.map { point =>
     if (svmModel.predict(point.features) == point.label) 1 else 0
11
12
    }.sum
```

```
val numData = testRDD.count()
val sympre = nbTotalCorrect/numData
```

3.5.2 逻辑回归

```
var lr = new LogisticRegressionWithLBFGS().setNumClasses(2)
 2
 3
   var lrModel:LogisticRegressionModel = lr.run(trainRDD)
    var lrPredictAndActualRDD:RDD[(Double,Double)] = testRDD.map{
      case LabeledPoint(label, features) => (lrModel.predict(features), label)
 5
 6 }
    var lrMetrics = new BinaryClassificationMetrics(lrPredictAndActualRDD)
 8
    var lrRoc = lrMetrics.areaUnderROC()
    val LrnbTotalCorrect = testRDD.map { point =>
10
11
     if (lrModel.predict(point.features) == point.label) 1 else 0
12
    }.sum
    val LrnumData = testRDD.count()
13
    val LrAuc = LrnbTotalCorrect/LrnumData
```

3.5.3 决策树

```
var dtModel:DecisionTreeModel = DecisionTree.trainClassifier(trainRDD,2
 2
        ,Map[Int,Int](),"gini",6,2)
 3
 4
        var dtPredictAndActualRDD:RDD[(Double, Double)] = testRDD.map{
          case LabeledPoint(label,features) =>(dtModel.predict(features),label)
 6
        }
        val dtMetrics = new BinaryClassificationMetrics(dtPredictAndActualRDD)
 8
        val dtRoc = dtMetrics.areaUnderROC()
 9
10
        val DtnbTotalCorrect = testRDD.map { point =>
11
          if (dtModel.predict(point.features) == point.label) 1 else 0
12
        }.sum
13
        val DtnumData = testRDD.count()
        val Dtauc = DtnbTotalCorrect/DtnumData
14
```

3.5.4 朴素贝叶斯

```
1
        var nbModel = NaiveBayes.train(trainRDD,1.0)
 2
        var nbPredictAndActualRDD:RDD[(Double, Double)] = testRDD.map{
 3
          case LabeledPoint(label,features)=>(nbModel.predict(features),label)
        }
 4
 5
        var nbMetrics = new BinaryClassificationMetrics(nbPredictAndActualRDD)
 6
        val nbRoc = nbMetrics.areaUnderROC()
 7
        val NbnbTotalCorrect = testRDD.map { point =>
 8
9
          if (nbModel.predict(point.features) == point.label) 1 else 0
10
        }.sum
11
        val NbnumData = testRDD.count()
12
        var nbauc = NbnbTotalCorrect/NbnumData
```

```
"C:\Program Files\Java\jdk1.8.0_131\bin\java.exe" "-javaagent:F:\IntelliJ IDEA 26 SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/F:/maven_repository/org/slf4j/slf4j-log4j12/1. SLF4J: Found binding in [jar:file:/F:/maven_repository/org/apache/logging/log4j/l SLF4J: Found binding in [jar:file:/F:/maven_repository/ch/qos/logback/logback-cla SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] 支持向量机 准确度 = 0.8022508038585209 支持向量机 ROC = 0.5140573284206582

逻辑回归 准确度 = 0.8303858520900321
逻辑回归 ROC = 0.6016299256853807

决策树 准确度 = 0.8062700964630225
决策树 ROC = 0.49900497512437814

朴素贝叶斯 准确度 = 0.6254019292604501

朴素贝叶斯 ROC = 0.4954932450717126
```

1 我们发现:四个模型的ROC都接近0.5,其中决策树的准确度和roc都是不错的

3.6 模型评估

为了避免模型偶然性造成的损失,我们对每个模型进行10次训练求每个模型的平均准确度和ROC

3.6.1 支持向量机

```
SLF4J: Found binding in [jar:file:/root/.m2/repository/org/apache/logging/log4j/log4j-slf4j-in SLF4J: Found binding in [jar:file:/root/.m2/repository/ch/qos/logback/logback-classic/1.2.3/lostf4J: See <a href="http://www.slf4j.org/codes.html#multiple_bindings">http://www.slf4j.org/codes.html#multiple_bindings</a> for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] 支持向量机10次平均 ROC = 0.5 支持向量机10次平均准确度 = 0.815970386039133

Process finished with exit code 0
```

3.6.2 逻辑回归

```
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/root/.m2/repository/org/slf4j/slf4j-log4j12/1.7.36
SLF4J: Found binding in [jar:file:/root/.m2/repository/org/apache/logging/log4j/log4j
SLF4J: Found binding in [jar:file:/root/.m2/repository/ch/qos/logback/logback-classic
SLF4J: See <a href="http://www.slf4j.org/codes.html#multiple_bindings">http://www.slf4j.org/codes.html#multiple_bindings</a> for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
逻辑回归10次平均 ROC = 0.5276959860673766
逻辑回归10次平均准确度 = 0.8125714285714286

Process finished with exit code 0
```

3.6.3 决策树

```
/usr/java/jdk1.8.0_281-amd64/bin/java ...

SLF4J: Class path contains multiple SLF4J bindings.

SLF4J: Found binding in [jar:file:/root/.m2/repository/org/slf4j/slf4

SLF4J: Found binding in [jar:file:/root/.m2/repository/org/apache/log

SLF4J: Found binding in [jar:file:/root/.m2/repository/ch/qos/logback

SLF4J: See <a href="http://www.slf4j.org/codes.html#multiple_bindings">http://www.slf4j.org/codes.html#multiple_bindings</a> for an e

SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]

决策树10次平均 ROC = 0.6077480009265518

决策树10次平均准确度 = 0.8080752212389382
```

3.6.4 朴素贝叶斯

1 我们发现:经过10次模型训练,朴素贝叶斯不适合上述数据集,其他三个均取得不错的效果

3.7 模型优化: 决策树

• maxDepth: 决策树最大深度

• maxBins: 决策树每个节点的最大分支数

根据决策树的最大深度和每个节点的最大分支数进行调参,每个参数运行30次求准确度的平均值

```
"C:\Program Files\Java\jdk1.8.0_131\bin\java.exe" "-javaagent:F:\IntelliJ
IDEA 2020.3.1\lib\idea_rt.jar=56251:F:\IntelliJ IDEA 2020.3.1\bin" -
Dfile.encoding=UTF-8 -classpath
C:\Users\DELL\AppData\Local\Temp\classpath61966627.jar
com.program.DTModelPlus

SLF4J: Class path contains multiple SLF4J bindings.

SLF4J: Found binding in [jar:file:/F:/maven_repository/org/slf4j/slf4j-
log4j12/1.7.30/slf4j-log4j12-
1.7.30.jar!/org/slf4j/impl/StaticLoggerBinder.class]

SLF4J: Found binding in
[jar:file:/F:/maven_repository/org/apache/logging/log4j/log4j-slf4j-
impl/2.10.0/log4j-slf4j-impl-
2.10.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
```

```
5 | SLF4J: Found binding in
    [jar:file:/F:/maven_repository/ch/qos/logback/logback-classic/1.2.3/logback-
    classic-1.2.3.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an
    explanation.
7
    SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
    maxDepth is : 3 maxBins is : 2
8
    决策树30次平均准确度 = 0.8125530110262933
9
10
11
    maxDepth is: 3 maxBins is: 3
12
     决策树30次平均准确度 = 0.8142493638676845
13
    maxDepth is : 3 maxBins is : 4
14
15
    决策树30次平均准确度 = 0.8320610687022904
16
17
    maxDepth is: 3 maxBins is: 5
    决策树30次平均准确度 = 0.8371501272264628
18
19
20
    maxDepth is: 3 maxBins is: 6
21
    决策树30次平均准确度 = 0.8439355385920277
22
23
    maxDepth is: 4 maxBins is: 2
24
     决策树30次平均准确度 = 0.8125530110262933
25
26
    maxDepth is: 4 maxBins is: 3
27
    决策树30次平均准确度 = 0.815945716709076
28
    maxDepth is : 4 maxBins is : 4
29
30
    决策树30次平均准确度 = 0.8227311280746398
31
    maxDepth is: 4 maxBins is: 5
32
    决策树30次平均准确度 = 0.8227311280746398
33
34
35
    maxDepth is: 4 maxBins is: 6
    决策树30次平均准确度 = 0.8396946564885501
36
37
38
    maxDepth is : 5 maxBins is : 2
39
    决策树30次平均准确度 = 0.8125530110262933
40
41
    maxDepth is : 5 maxBins is : 3
    决策树30次平均准确度 = 0.8193384223918575
42
43
44
    maxDepth is : 5 maxBins is : 4
45
    决策树30次平均准确度 = 0.8210347752332484
46
47
    maxDepth is : 5 maxBins is : 5
    决策树30次平均准确度 = 0.8269720101781174
48
49
50
    maxDepth is: 5 maxBins is: 6
51
    决策树30次平均准确度 = 0.8379983036471581
52
53
    maxDepth is: 6 maxBins is: 2
54
    决策树30次平均准确度 = 0.8100084817642069
55
    maxDepth is : 6 maxBins is : 3
56
```

```
57
   决策树30次平均准确度 = 0.8184902459711622
58
59 maxDepth is: 6 maxBins is: 4
    决策树30次平均准确度 = 0.8320610687022904
60
61
62
   maxDepth is : 6 maxBins is : 5
63
    决策树30次平均准确度 = 0.8329092451229851
64
65
   maxDepth is : 6 maxBins is : 6
66
    决策树30次平均准确度 = 0.8337574215436805
67
   maxDepth is : 7 maxBins is : 2
68
69
    决策树30次平均准确度 = 0.8057675996607294
70
   maxDepth is : 7 maxBins is : 3
71
72
    决策树30次平均准确度 = 0.8074639525021208
73
74
   maxDepth is : 7 maxBins is : 4
    决策树30次平均准确度 = 0.8235793044953351
75
76
77
   maxDepth is : 7 maxBins is : 5
78
    决策树30次平均准确度 = 0.8320610687022904
79
80 maxDepth is : 7 maxBins is : 6
81
    决策树30次平均准确度 = 0.825275657336726
82
83
84 Process finished with exit code 0
85
```