Revision Question 9 — 08/05/14

Let A be the subset of I^2 given by $\left(\frac{1}{2} \times I\right) \cup \left(I \times \frac{1}{2}\right)$.

- a) Prove that A is closed in I^2 with respect to \mathcal{O}_{I^2} . [4 marks]
- b) Give two different proofs that A is a connected subset of I^2 with respect to \mathcal{O}_{I^2} . You may quote without proof any results from the course. [6 marks]
- c) Let $\mathcal{O}_{I^2\setminus A}$ be the subspace topology on $I^2\setminus A$ with respect to (I^2,\mathcal{O}_{I^2}) . What is the connected component of $(\frac{1}{4},\frac{3}{4})$ in $I^2\setminus A$ with respect to $\mathcal{O}_{I^2\setminus A}$? Justify your answer. [6 marks]

Let \sim be the equivalence relation on I^2 given by $x \sim y$ if both x and y belong to $I^2 \setminus A$.

- d) Prove that $(I^2/\sim, \mathcal{O}_{I^2/\sim})$ is not Hausdorff. [5 marks]
- e) Find a subset B of I^2/\sim which is compact with respect to $\mathcal{O}_{I^2/\sim}$, but which is not closed in I^2/\sim with respect to $\mathcal{O}_{I^2/\sim}$. Justify why your set B has these properties. You may quote without proof any results from the course. [6 marks]
- f) Is there a compact subset of I^2 which is not closed? Justify your answer. You may quote without proof any results from the course. [4 marks]

Let \approx be the equivalence relation on I^2 given by $x \approx y$ if both x and y belong to $\partial_{(\mathbb{R}^2,\mathcal{O}_{\mathbb{R}^2})}I^2$. Let

$$I^2 \xrightarrow{\pi} I^2 \approx$$

be the quotient map.

g) Let $\mathcal{O}_{\pi(A)}$ be the subspace topology on $\pi(A)$ with respect to $(I^2/\approx, \mathcal{O}_{I^2/\approx})$. Let \mathcal{O}_A be the subspace topology on A with respect to (I^2, \mathcal{O}_{I^2}) . Is $(\pi(A), \mathcal{O}_{\pi(A)})$ homeomorphic to (A, \mathcal{O}_A) ? Justify your answer. [6 marks]