4. LOGICAL CLOCK

In a Distributed System, each system has its own logical clock.

If clocks are not aligned it is not possible to order events generated by different processes

GOAL: find a way to timestamp event that follows out intuitive notion of causality

CAUSAL RELATIONSHIP

1. two events occurred at sine oricess p_i happened in the same order as p_i observes them

2. when p_i sensa a message to p_j , the send event happens before the recieve event:

Lamport introduced the happened-before relation that capture the causal decendencies between events (**causal order relation**):

- we denote with \rightarrow_i the ordering relation between events in a process p_i .
- we denote with → the happened-before relation between any pair of events.

Happened-Beore RELATION:

Two event e and e' related by happened-before relation $(e \rightarrow e')$ if:

- Local ordering: $\exists p_i | e \rightarrow_i e'$
- snd-rcv ordering: $\forall m, send(m) \rightarrow recive(m)$
 - $\circ e = send(m)$ is the event of sending a message m.
 - $\circ e' = recive(m)$ is the event of recepit of the same message m
- Transativity: $\exists e'' : (e \rightarrow e'') \land (e'' \rightarrow e') \Rightarrow e \rightarrow e'$
 - the happened-before relation is transitive

Applying these three rules is possible to define a causal ordered sequence of events e_1, e_2, \ldots, e_n .

Notes:

- the sequence e_1, e_2, \dots, e_n may not be unique.
- it may exists a couple of events such that e_1 and e_2 are not in happened before relation.
- if e_4 and e_3 are not in happened-before relation then they are concurrent $(e_4||e_3)$.

ullet for any two events e_x and e_y in the execution history of a distributed system, either

Logical/Lamport/Scalar Clock: monotonically increasing software counting register (not related to physical clock).

Each process p_i emplys its logical clock L_i to apply a timestamp to events.

 $L_i(e)$ is the **logical timestamp** assigned, using the logical clock, by a process p_i to event e.

Property:

if e o e' then L(e) < L(e')

Each process p_i initializes its logical clock $L_i=0$

- when p_i sends a message m:
 - \circ creates an event send(m)
 - \circ increases L_i
 - $\circ \hspace{0.1in}$ timestamps m with $t=L_i$
- ullet when p_i recives a message m with timestamp t
 - \circ updates its logical clock $L_i = max(t, L_i)$
 - \circ produces an event recive(m)
 - \circ increases L_i

because of the property (if $e \rightarrow e'$ then L(e) < L(e'))

Limits of Scalar Logical Clock:

Scalar Logical clocks can guarantee the property

• if
$$e \rightarrow e'$$
 then $L(e) < L(e')$

But it is not possible to guarantee:

• if L(e) < L(e') then $e \rightarrow e'$ IS not true everytime

So it is not possible to determine, analyzing only scalar clocks, if two events are concurrent or correlated by the happened-before relation.

VECTOR CLOCK

GOAL: capture causality (if L(e) < L(e') then $e \rightarrow e'$)

L(e) has not to be a single number. what if L(e) is a history of events that happened before e (including e)?

$$L(e_i) > L(e_j) \Leftrightarrow orall k: L(e_j)_{History_k} \subseteq L(e_i)_{History_k} \wedge \exists x: L(e_j)_{History_x} \subset L(e_i)_{History_x}$$

(there is a causal path form $e \to e'$ and the structure that contains e is less than the structure that contains e')

 $History_x \subset History_x' o History_x'$ is a proper prefix of $History_x'$

We can say that:

$$History_x \subset History_x'
ightarrow len(History_x) < len(History_x')$$

An event e is in happened-before relation with an event e' if in his History there is a tuple of elements that \subseteq and a tuple that is strictly \subset .

A vector clock for a set of N processes is an array of N integer counters:

- Each process p_i maintains a vector clock V_i and timestamps events by mean of it.
- Similarly to scalar clock, a vector clock is attached to message m (in this case we attach an array of integer).

Implementation:

- each process p_i initializes its clock $V_i = 0$
- p_i increases $V_i[i] + 1$ when it generates a new event e.
- when p_i sends a message m then:
 - \circ creates an event send(m).
 - $\circ V_i[i] + 1.$
 - timestamps m with $t = V_i$.
- when p_i recives a message m containing timestamp V-t then:
 - \circ updates its logical clock: $V_i[j] = max(V_t[j], V_i[j] \ \ orall j \in \{1, \dots, N\}).$
 - generates an event recive(m).
 - \circ increases V_i .

where:

- $V_i[i]$ represents the number of events produced by p_i .
- $V_i[j]$ with $i \neq j$ represents the number of events generated by p_j that p_i knows.

Properties:

- $ullet V=V'\Leftrightarrow V[j]=V'[j] \ \ orall j\in\{1,\ldots,N\}$
- $V \leq V' \Leftrightarrow V[j] \leq V'[j] \ \forall j \in \{1, ..., N\}$
- $V < V' \Leftrightarrow V \le V' \land \exists j \in \{1, \dots, N\} |V[j] < V'[j]$

Each mechanism can be used to solve different problems:

- Scalar Timestamp → Lamport's Mutual Exclusion
- Vector Timestamp → Causal Broadcast

MUTUAL EXCLUSION ABSTRACTION

Events:

- Request: from upper layer requests access to Critical Section (CS).
- Grant: to upper layer grant the access to CS.
- Release: from upper layer release the CS.
 Properties:
- (**Mutual Exclusions**) at any time t, only one process is inside the CS.

- (**Liveness**) if a process p requests access, then it eventually enters the CS.
- (**Fairness**) if the request of process p happens before the request of process q, then q cannot access the CS before p.

The algorithm assumes **no crashes** (F = 0):

when a process wants to enter the CS (critical section) it sends a request message to all the oteher (using **scalar clocks**). The algorithm assume a FIFO link.

```
Lamport's Algorithm:
Algorithm 1 Lamport's ME Algorithm on process p_i - MSGS are REQ, ACK, RLS
 1: upon event Init
      Requests = Acks = \emptyset
 2:
       scalar\_clock = 0
 3:
 4:
       my\_req = \bot
     \Pi = \{p_0, p_1, \dots, p_{n-1}\}
                                                                                                ▷ Set of all processes
 5:
 6: ▷ Request access to CS from upper layer
 7: upon event Request
 8: scalar\_clock = scalar\_clock + 1
 9:
     my\_req = (REQ, ts = < i, scalar\_clock >)
10:
     for all p_j \in \Pi do
11:
           Send FIFOPerfectLink(p<sub>i</sub>, req_msg) ▷ Send a REQ containing my ID (i) and ts (scalar_clock) to all
    p \in \Pi
12: ▷ Release CS from upper layer
13: upon event Release
14: my\_req = \bot
15: scalar\_clock = scalar\_clock + 1
16:
     for all p_j \in \Pi do
         Send FIFOPerfectLink(p_j, (RLS, ts = < i, scalar\_clock >))
17:
18: \triangleright ts(x) < ts(y) when scalar\_clock of x is less than the one of y, or they are equal and the id that sent x is less
    than the id that sent y
19: upon event \nexists req \in Requests : ts(req) < ts(my\_req) \land \forall p \in \Pi : \exists m \in Acks | ts(m) > ts(my\_req) \land sender(m) = p
      trigger event Granted
21: upon event Deliver Message(m)
     scalar\_clock = max(clock(m), scalar\_clock) + 1
23: if m is a REQ then
         Request\_set = Request\_set \cup \{m\}
25:
          scalar\_clock = scalar\_clock + 1
26:
          Send FIFOPerfectLink(sender(m), (ACK, ts = < i, scalar\_clock >))
27:
      else if m is a ACK then
         Acks = Acks \cup \{m\}
28:
       else if m is a RLS \land \exists req \in Request\_set : sender(req) = sender(m) then
           Requests = Requests \setminus \{req\}
```

^{**}Local data structures to each process p_i :

- ck is the counter for process p_i .
- Request: a set mainteines by p_i where CS access requests are stored.
 - **Algorithm rules for a process p_i :
- access the CS:
 - \circ p_i sends a **request message** (attaching ck) to all the other processes.
 - \circ p_i adds its request to Requests structure.
- request reception from process p_i :
 - o p_i puts p_i request (including the timestamp) in its Requests.
 - p_i sends back an ACK message to p_j including its local timestamp ck.

• p_i enters the CSS iff:

- the request of p_i is the one with smallest timestamp in its Requests.
- p_i has already recived an ACK with timestamp t' from any other processes and t' > t.
- release of the CS:
 - \circ p_i send a Release message to all the other processes.
 - \circ p_i deletes its request from Requests.
- reception of release message from a process p_i:
 - $\circ p_i$ deletes p_j request from Requests.

DEMOSTRATION (by contraddiction): why only one can enter the CS:

- 1. **Mutual Exclusion**: assume that p_1 and p_2 enter CS at the same time.
 - you cannot enter CS if you have not received acks from everyone, and such acks
 happened after your request (when you create a new request its ts is greater then the
 tss of all old acks).
 - \Rightarrow both the process have received an ACK from any other process and each my_req is the smallest in the respective queue:
 - p_i received the ack from p_j . When p_j sends the ack to p_i it inserts in its set the req of p_i .
 - p_j received the ack from p_i . When p_i sends the ack to p_j it inserts in its set the req of p_i .

- \circ if p_j Requests after acking p_i , then $ts(req,p_j)>ts(req,p_i)$ and that's a **contradiction**. (The same for p_i)
- So p_j Requests before acking p_i , then by FIFO the (req, p_j) reaches p_i before the ack of p_j . Thus p_i has (req, p_j) in its set and p_j has (req, p_i) in its set. Since request are total ordered then we have a contradiction.
- 2. **Fairness**: different requests are satisfied in the same order as they are generated (such order comes from the happened-before relation).
 - **Proof**: suppose p_i enters before p_j , even if (req,p_i) happened after (req,p_j) . Since p_i enters only after the ack of p_j , by FIFO it sees (req,p_j) before receiving the ack that allows him to enter. Since (req,p_j) happens before (req,p_i) we have $ts((req,p_j)) < ts((req,p_i))$, thus (req,p_i) is not the request with minimal timestamp in the set of p_i .

Algorithm Cost:

Number of operation for a CS execution: 3(N-1):

- N-1 requests.
- N-1 acks.
- N-1 releases

Deelay to enter the CS: $2 \le deelay \le N+2$:

- $\Omega(2)$
- O(N+2)