群論 (第9回)の解答

問題 9-1 の解答

写像 f を次で定める.

$$f: \mathbb{C} \to G \left(x \mapsto \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \right).$$

(i) $x, y \in \mathbb{C} \$ とする.

$$f(x+y) = \begin{pmatrix} 1 & x+y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} = f(x)f(y)$$

より f は準同型.

(ii) $x, y \in \mathbb{C}$ (f(x) = f(y)) とする. このとき,

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = f(x) = f(y) = \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix}$$

より x = y. 従って f は単射.

$$(iii) \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \in G \; (x \in \mathbb{C}) \; \text{をとる.} \; \text{このとき}, \, f(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}. \; 従って f \; は全射.$$

以上 (i)-(iii) より f は同型写像である. 従って, $\mathbb{C} \simeq G$.

問題 9-2 の解答

定理 9-1 より ⇒ のみ示せばよい. G_1 は巡回群より, $G_1 = \langle x \rangle$ $(x \in G_1)$ と表せる. $G_1 \simeq G_2$ より, 同型写像 $f:G_1 \to G_2$ が存在する. このとき, $G_2 = \langle f(x) \rangle$ を示す. $b \in G_2$ とする. f は全射より, f(a) = b を満たす $a \in G_1$ をとれる. $a \in G_1 = \langle x \rangle$ より $a = x^n \ (n \in \mathbb{Z})$ とかけるので,

$$b = f(a) = f(x^n) = f(x)^n \in \langle f(x) \rangle$$
.

よって $G_2 = \langle f(x) \rangle$. 従って G_2 は巡回群である.

問題 9-3 の解答

 $\mathbb{C}^{\times} \simeq \mathbb{R}^{\times}$ と仮定する. このとき, 同型写像 $f: \mathbb{C}^{\times} \to \mathbb{R}^{\times}$ が存在する. i の \mathbb{C}^{\times} での位数は 4 より, 定理 9-3 (3) から f(i) の \mathbb{R}^{\times} における位数も 4 である. 一方,

$$f(i)^4 = f(i^4) = f(1) = 1$$

であり, f(i) は実数だから $f(i)=\pm 1$. どちらの場合も f(i) の \mathbb{R}^{\times} における位数は 2 以下となり矛盾. 従って \mathbb{C}^{\times} と \mathbb{R}^{\times} は同型でない.

copyright ⓒ 大学数学の授業ノート