Multiclass Classification of Global Water Bodies in ReaLSAT

Tanisha Shrotriya, Master's Student in Computer Science

College of Science and Engineering

Presented at: American Association of Geographers Conference

Introduction

Classify the bodies of water in the ReaLSAT dataset into their type such as farm lake, river etc. and learn hidden structure in the data.

Challenges:

- Available labelled data may not be a good representation of the entire unlabelled dataset.
- Finding hidden structure in the larger unlabelled data of ReaLSAT.
- Remote Sensing Dataset Challenges.

Uses:

• Answer questions related to urbanization and water shortage

Methodology

Objective: Validate if the clusters generated using KMeans algorithm on the feature embeddings of a multi-class classifier, can be used as pseudo-labels for unsupervised curriculum learning.

Experiment 1: Train Supervised Classifier using Transfer Learning on the Resnet50V2 pre-trained model.

Input Data: Normalized aggregated fraction maps of size 64X64X3

Data Split: Train:80%, Validation:10%, Test:10%

Process: Freeze Resnet50V2 module weights, train all other layers, test on an unseen set of images.

Stopping Criteria: When validation and training losses converge

Experiment 2: Cluster the feature embeddings obtained at Dense_3 layer.

Architecture Diagram

Process:

- Fit KMeans for k=2,3,4,5 on feature size of 50.
- Visualize results in 2D using PCA on input features.

Dataset

ReaLSAT: A global dataset that contains the location and surface area variations of 681,137 bodies of water over 32 years.

Data Description: The aggregated fraction map shows the percentage of times a pixel was a water pixel over the timeframe of 32 years. Color in the dataset depicts water-life of a pixel and not depth.

Table 1: Data Analysis			
Class	Reason For Exclusion		
Reservoir	Over-represented, highly variable.		
Highly Seasonal Lakes	Low count (52)		
Oxbow Lakes	Low count (12)		

Table 2: Final Classes		
Class	Count	
Farm Lakes	427	
Stable Lakes	143	
Seasonal Lakes	288	
Ephemeral Lakes	255	
Rivers	317	

Results

Table 3: Experiment 1 Results			
Data	Categorical Cross Entropy Loss	Accuracy	
Train	0.49	0.78	
Validation	0.59	0.78	
Test	0.46	0.79	

Table 4: Observations Based on Plots 1 to 4			
Clusters	Observations	Optimal Cluster	
2	Centroids are centered for each cluster	Yes	
3	Centroids are centered for each cluster	Yes	
4	Centroids are not centered	No	
5	Centroids cross over the cluster borders	No	

Experiment 1: Train-Validation Convergence

Conclusion

- The supervised classifier trained with transfer learning works well for the labelled data.
- KMeans does not provide significant insight into the hidden structure of the data.
- There is no one-to-one mapping between KMeans clusters and the discrete classes so the work in [2] cannot be successfully extended to solve this problem for the larger dataset.

Future Scope

- Use additional information such as geographical location and weather data.
- Find ways to check the relationship between labelled and unlabelled data.
- Better clustering algorithm, or self-supervised learning approach.

References

[1] N. Abid *et al.*, "UCL: Unsupervised Curriculum Learning for water body classification from remote sensing imagery,"