Homework 10

Frederick Robinson

6 May 2011

1 Question 1

1.1 Question

Let $\{A_i\}_{i\in I}$ be a collection of rings. Show that the following are equivalent:

- 1. The natural embedding $\coprod_{i \in I} \operatorname{Spec} A_i \to \operatorname{Spec} A$ has dense image.
- 2. The inclusion $\operatorname{nil}(A) \subset \prod_{i \in I} \operatorname{nil}(A_i)$ is an equality.
- 3. There exists n > 0 and a cofinite subset¹ J of I such that $a^n = 0$ for all $a \in \text{nil}(A_i)$ and all $i \in J$.

1.2 Answer

2 Question 2

2.1 Question

Let $A = \prod_{n=1}^{\infty} \mathbb{Z}/p^n \mathbb{Z}$.

- 1. Prove that $\mathfrak{p} \in \operatorname{Spec} A$ is a closed point (i.e. \mathfrak{p} is a maximal ideal) if and only if $\kappa(\mathfrak{p})$ is of characteristic p. Furthermore, for such \mathfrak{p} prove that $A/\mathfrak{p} \cong \mathbb{Z}/p\mathbb{Z}$.
- 2. Prove that if $\mathfrak{p} \in \operatorname{Spec} A$, then $\kappa(\mathfrak{p})$ is of characteristic zero if and only if \mathfrak{p} is not closed.

2.2 Answer

 $^{^{1}}$ i.e. a subset with finite complement