1 Primitives d'une fonction

1.1 équation différentielle y' = f

Définition 1.

Soit f une fonction définie sur un intervalle I de \mathbb{R} .

• On dit qu'une fonction F est une solution de l'équation différentielle y' = f sur I si et seulement si F est dérivable sur I et, pour tout réel x de I:

$$F'(x) = f(x)$$

• Résoudre sur I l'équation différentielle y' = f, c'est trouver les fonctions F dérivables sur I telles que F'(x) = f(x).

1.2 Primitive d'une fonction

Définition 2.

Soit f une fonction définie sur un intervalle I.

On appelle **primitive** de f sur I toute fonction F dérivable sur I dont la dérivée est égale à f.

C'est à dire
$$F'(x) = f(x)$$
 pour tout $x \in I$.

Exemples: Exprimer une primitive de chacune des fonctions suivantes :

- a) f(x) = 2x + 1 définie sur \mathbb{R} .
- b) $g(x) = 2\sin x$ définie sur \mathbb{R} .

Propriétés :

- Toute fonction continue sur I admet des primitives sur I.
- Soit f une fonction continue sur I et G une primitive de f sur I.
 Les primitives de f sur I (c'est à dire les solutions de l'équation y' = f) sont les fonctions F définies sur I par

$$F(x) = G(x) + C$$
, où C est une constante réelle.

2 Recherche des primitives d'une fonction

2.1 Tableau des primitives des fonctions de références

Fonction f	Primitive $F(x)$	f définie sur
f(x) = k(k = constante)	F(x) = kx	R
$f(x) = x^n$	$F(x) = \frac{x^{n+1}}{n+1}$	$\mathbb{R} \text{ si } n \geq 1 \text{ et }]-\infty;0[$
avec $n \le -2$ ou $n \ge 1$		ou $]0; +\infty[$ si $n \le -2$
f(x) = x	$F(x) = \frac{x^2}{2}$	\mathbb{R}
$f(x) = \frac{1}{x}$	$F(x) = \ln(x)$	$]0;+\infty[$
$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x}$	$]-\infty;0[\text{ ou }]0;+\infty[$
$f(x) = e^x$	$F(x) = e^x$	\mathbb{R}
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x}$	$]0;+\infty[$
$f(x) = \cos(x)$	$F(x) = \sin(x)$	\mathbb{R}
$f(x) = \sin(x)$	$F(x) = -\cos(x)$	\mathbb{R}

2.2 Primitives de fonction ayant des formes remarquables

Propriétés :

Soient f et g deux fonctions admettant respectivement les fonctions F et G comme primitives sur un intervalle I.

- F + G est une primitive de f + g sur I.
- Pour tout réel k, kF est une primitive de kf sur I.

2.3 Tableau récapitulatif.

Fonction f	Primitive F	Condition
$u'u^n$	$\frac{u^{n+1}}{n+1}$	si $n < -1$, $u(x) \neq 0$ pour tout réel x de I
$\frac{u'}{u^2}$	$-\frac{1}{u}$	$u(x) \neq 0$ pour tout réel x de I
$\frac{u'}{u}$	$\ln(\mid u\mid)$	u(x) > 0 pour tout réel x de $Iou u(x) < 0 pour tout réel x de I$
$\frac{u'}{2\sqrt{u}}$	\sqrt{u}	u(x) > 0 pour tout réel x de I
$u'e^u$	e^u	pour tout réel x de $\mathbb R$
$(v' \circ u) \times u'$	$v \circ u$	v est une fonction dérivable sur J et $u(x) \in J$ pour tout réel x de I

Exemples: Trouver les primitives F et G des fonction suivantes:

- a) $f(x) = (2x 1)^3$ définie sur \mathbb{R} .
- b) $g(x) = \frac{1}{(x-1)^2} \frac{1}{(x+1)^2}$ telle que G(2) = 2 définie sur $]1 + \infty[$.

A faire:

- exercices 1, 2, 3 et 4 pages 297-299 (capacités résolues)
- les exercices 53, 54, 55, 56, 69 et 81 pages 306-307 (entrainement ; corrigés en classe)
 - exercices 131, 134 et 135 page 312 (en autonomie, réponses en fin de livre)

3 Équations différentielles

Une **équation différentielle**, souvent appelée équa.diff., est une égalité où il y a une fonction avec ses dérivées. C'est aussi une égalité ou l'inconnue est une fonction.

Exemple : f'(x) - 3f(x) = 5 simplifiée par l'écriture y'(x) - 3y(x) = 5 puis par y' - 3y = 5.

3.1 Équation différentielle y' = ay

Propriété :

Les solutions de l'équation différentielle y' = a y, où a est un nombre réel et y est une fonction de x sur \mathbb{R} , sont les **fonctions**:

 $y = C e^{ax}$, où C est une constante réelle.

Exemple 1: Résoudre l'équation différentielle y' - 5y = 0.

3.2 Équation différentielle y' = ay + b

Propriété :

Soient a et b deux nombres réels non nuls. On considère l'équation (E): y' = ay + b.

• (E) admet une unique solution particulière constante, qui est la fonction

$$f_0 = -\frac{b}{a}$$
 notée aussi $p(x) = -\frac{b}{a}$.

- Les solutions sur \mathbb{R} de (E) sont les fonctions $y = Ce^{ax} \frac{b}{a}$, où C est une constante réelle.
- Quels que soient les nombres réels x_0 et y_0 , l'équation (E) admet une unique solution g vérifiant la condition initiale $g(x_0) = y_0$.

3.3 Équation différentielle y' = ay + f

Propriété :

Soit a un réel et f une fonction définie sur un intervalle I.

Toute solution dans I de l'équation différentielle (E): y' = ay + f est la somme d'une solution quelconque de l'équation y'ay et d'une solution particulière de (E).

Exemple 2:

Résoudre l'équation différentielle y' - 3y = 5.

A faire:

- exercices 5, 6 et 7 page 301 (capacités résolues)
- les exercices 106, 115 et 124 pages 309-311 (entrainement ; corrigés en classe)
- exercices 140, 141, 143 et 147 page 313 (en autonomie, réponses en fin de livre)

Primitives et équations différentielles

Synthèse page 312

Primitives d'une fonction

Si F est une primitive de f sur I, toutes les primitives de f sur I sont de la forme $x \mapsto F(x) + C$, où C est une constante.

Toute fonction continue sur I admet des primitives sur I.

Primitive d'une fonction f sur I: fonction F telle que F'(x) = f(x) opour tout x de I.

Équations différentielles

- L'équation y' = f a pour solutions les fonctions $x \mapsto F(x) + C$, où F est une primitive de f et C une constante.
- L'équation y' = ay a pour solutions les fonctions $x \mapsto ke^{ax}$, où $k \in \mathbb{R}$.
- L'équation y'=ay+b ($a\neq 0$) a pour solutions les fonctions $x\mapsto k\mathrm{e}^{ax}+f_0(x)$, où $k\in\mathbb{R}$ et f_0 est la solution constante de cette équation.
- L'équation (E) y' = ay + f a pour solutions les fonctions $x \mapsto ke^{ax} + p(x)$, où $k \in \mathbb{R}$ et p est une solution particulière de (E).

Primitives des fonctions de référence

Fonction f	Primitive F
f(x) = a	F(x) = ax
$f(x)=x^n$ pour $n \in \mathbb{Z} \setminus \{-1; 0\}$	$F(x) = \frac{1}{n+1} x^{n+1}$
$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x}$
$f(x) = \frac{1}{x}$	$F(x) = \ln(x)$
$f(x) = e^x$	$F(x) = e^x$
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x}$
$f(x) = \cos(x)$	$F(x) = \sin(x)$
$f(x) = \sin(x)$	$F(x) = -\cos(x)$

Primitives des fonctions composées

Fonction	Primitive
u'e ^u	eu
$u'u^n$ où $n \in \mathbb{Z} \setminus \{-1; 0\}$	$\frac{1}{n+1}u^{n+1}$
$\frac{u'}{u}$ (u>0)	ln(u)
$\frac{u'}{\sqrt{u}}$ (u>0)	2√ <i>u</i>
u'cos(u)	sin(u)
u'sin(u)	-cos(u)