# Lecture 7: Advanced Policy Gradients

Zhi Wang

Department of Control Science and Intelligent Engineering Nanjing University

2025/03/31

#### Table of Contents

- Natural policy gradient
  - Policy gradient in distribution space
  - Solve the constrained optimization problem
  - Natural gradient
- 2 Trust region policy optimization (TRPO)
- 3 Proximal policy optimization (PPO)

# Review: Vanilla policy gradient (REINFORCE)

#### REINFORCE algorithm: Loop:

- 1. sample  $\{\tau^i\}$  from  $\pi_{\theta}(a_t|s_t)$  (run the policy)
- 2.  $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s_t^i) \sum_{t'=t}^{T} \gamma^{t'-t} r(s_t^i, a_t^i)$
- 3.  $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$



# Problems of vanilla policy gradient (REINFORCE)

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) Q^{\pi}(s_{t}^{i}, a_{t}^{i})$$
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

- ullet Hard to select the step size lpha
  - Too big step: Bad policy → data collected under bad policy → we cannot recover (in Supervised Learning, data does not depend on neural network weights)
  - Too small step: Not efficient use of experience (in Supervised Learning, data can be trivially re-used)

# Problems of vanilla policy gradient (REINFORCE)







 Small changes in the policy parameters can unexpectedly lead to big changes in the policy

### Gradient descent in parameter space

 The step size in gradient descent results from solving the following optimization problem, e.g., using line search

$$d^* = \arg\max_{||d|| < \epsilon} J(\theta + d)$$

- Euclidean distance in parameter space
- Stochastic gradient descent (SGD)

$$\theta \leftarrow \theta + d^*$$

### Hard to pick the threshold $\epsilon$

- It is hard to predict the result on the parameterized distribution
  - Especially for nonlinear function approximators, e.g., neural networks





## Gradient descent in distribution space

Gradient descent in parameter space

$$d^* = \arg\max_{||d|| \le \epsilon} J(\theta + d)$$

 Natural gradient descent: the step size in parameter space is determined by considering the KL divergence in the distributions before and after the update

$$d^* = \underset{d}{\operatorname{arg max}} J(\theta + d), \quad s.t. \, D_{\mathrm{KL}}(\pi_{\theta} || \pi_{\theta + d}) \le \epsilon$$

- KL divergence in distribution space
- Easier to pick the distance threshold!!!

## Distance for probability distributions

• How to calculate the distance between two points in a 2D coordinate?

distance = 
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Euclidean distance



• How to calculate the distance between two **probability** distributions, p(x) and q(x)?

# Kullback-Leibler (KL) divergence

• A measure of how one probability distribution, p(x), is different from a second, reference probability distribution, q(x)

$$D_{KL}(p(x)||q(x)) = \sum_{i} p(x_i) \log \frac{p(x_i)}{q(x_i)}$$

$$D_{KL}(p(x)||q(x)) = \int_{x} p(x) \log \frac{p(x)}{q(x)} dx$$

• A KL divergence of 0 indicates that the two distributions are identical

# KL divergence: An example



$$\begin{split} D_{\mathrm{KL}}(P \parallel Q) &= \sum_{x \in \mathcal{X}} P(x) \ln \left( \frac{P(x)}{Q(x)} \right) \\ &= 0.36 \ln \left( \frac{0.36}{0.333} \right) + 0.48 \ln \left( \frac{0.48}{0.333} \right) + 0.16 \ln \left( \frac{0.16}{0.333} \right) \\ &= 0.0852996 \\ D_{\mathrm{KL}}(Q \parallel P) &= \sum_{x \in \mathcal{X}} Q(x) \ln \left( \frac{Q(x)}{P(x)} \right) \\ &= 0.333 \ln \left( \frac{0.333}{0.36} \right) + 0.333 \ln \left( \frac{0.333}{0.48} \right) + 0.333 \ln \left( \frac{0.333}{0.16} \right) \\ &= 0.097455 \end{split}$$

### KL divergence: A test

• Suppose two Gaussian distributions:

$$p(x) \sim \mathcal{N}(\mu_1, \sigma_1^2), \quad q(x) \sim \mathcal{N}(\mu_2, \sigma_2^2)$$

• What is  $D_{KL}(p(x)||q(x))$ ?

$$\log \frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2}$$

# KL divergence between two Gaussians

$$p(x) \sim \mathcal{N}(\mu_1, \sigma_1^2), \quad \mathbb{E}_{p(x)}[x] = \mu_1, \quad var_{p(x)}[x] = \mathbb{E}[(x - \mu_1)^2] = \sigma_1^2$$

$$\begin{split} \mathrm{D_{KL}}(p(x)||q(x)) &= \mathbb{E}_{p(x)} [\log p(x) - \log q(x)] \\ &= \mathbb{E}_{p(x)} \left[ -\log(\sqrt{2\pi\sigma_1}) - \frac{(x-\mu_1)^2}{2\sigma_1^2} + \log(\sqrt{2\pi\sigma_2}) + \frac{(x-\mu_2)^2}{2\sigma_2^2} \right] \\ &= \log \frac{\sigma_2}{\sigma_1} - \frac{\mathbb{E}_{p(x)} [(x-\mu_1)^2]}{2\sigma_1^2} + \frac{\mathbb{E}_{p(x)} [(x-\mu_1+\mu_1-\mu_2)^2]}{2\sigma_2^2} \\ &= \log \frac{\sigma_2}{\sigma_1} - \frac{\sigma_1^2}{2\sigma_1^2} + \frac{\mathbb{E}_{p(x)} [(x-\mu_1)^2 + 2(x-\mu_1)(\mu_1-\mu_2) + (\mu_1-\mu_2)^2]}{2\sigma_2^2} \\ &= \log \frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2 + (\mu_1-\mu_2)^2}{2\sigma_2^2} - \frac{1}{2} \end{split}$$

#### Table of Contents

- Natural policy gradient
  - Policy gradient in distribution space
  - Solve the constrained optimization problem
  - Natural gradient
- 2 Trust region policy optimization (TRPO)
- 3 Proximal policy optimization (PPO)

#### Back to natural gradient descent

• How to solve this constrained optimization problem?

$$d^* = \underset{d}{\operatorname{arg\,max}} J(\theta + d), \quad s.t. \, D_{\mathrm{KL}}(\pi_{\theta} || \pi_{\theta + d}) \le \epsilon$$

- What tool to use?
  - Turn the constrained optimization problem to an unconstrained one?

# Lagrangian multiplier

• How to solve this constrained optimization problem?

$$d^* = \underset{d}{\operatorname{arg max}} J(\theta + d), \quad s.t. \, D_{\mathrm{KL}}(\pi_{\theta} || \pi_{\theta + d}) \le \epsilon$$

• Use the Lagrangian multiplier  $\lambda$ , turn to the unconstrained penalized objective

$$d^* = \arg\max_{d} J(\theta + d) - \lambda(\mathrm{D_{KL}}(\pi_{\theta}||\pi_{\theta+d}) - \epsilon)$$

# Taylor expansion for the unconstrained penalized objective

$$d^* = \arg\max_{d} J(\theta + d) - \lambda(\operatorname{D}_{\mathrm{KL}}(\pi_{\theta}||\pi_{\theta+d}) - \epsilon)$$

First-order Taylor expansion for the loss

$$J(\theta + d) \approx J(\theta) + \nabla_{\theta'} J(\theta')|_{\theta' = \theta} \cdot d$$

Second-order Taylor expansion for the KL

$$D_{\mathrm{KL}}(\pi_{\theta}||\pi_{\theta+d}) \approx \frac{1}{2} d^T \cdot \nabla_{\theta'}^2 D_{\mathrm{KL}}(\pi_{\theta}||\pi_{\theta'})|_{\theta'=\theta} \cdot d$$

# Taylor series/expansion

 A representation of a function as an infinite sum of terms that are calculated from the values of the function's derivatives at a single point

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$
  
=  $f(a) + f'(a)(x - a) + \frac{f''(a)}{2} (x - a)^2 + \dots$ 

Examples

$$e^x = ?$$

$$\frac{1}{1-x} = ?$$

# Taylor series/expansion

 A representation of a function as an infinite sum of terms that are calculated from the values of the function's derivatives at a single point

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$
  
=  $f(a) + f'(a)(x-a) + \frac{f''(a)}{2} (x-a)^2 + \dots$ 

Examples

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$
$$\frac{1}{1 - x} = 1 + x + x^{2} + x^{3} + \dots$$

# Taylor expansion of $J(\theta + d)$

- Let  $\theta' = \theta + d$  is the independent variable
- That is,  $x = \theta'$ ,  $a = \theta$ , x a = d
- What is the Taylor expansion of  $J(\theta + d)$ ?

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$
  
=  $f(a) + f'(a)(x - a) + \frac{f''(a)}{2} (x - a)^2 + \dots$ 

# Taylor expansion of $J(\theta + d)$

- Let  $\theta' = \theta + d$  is the independent variable
- That is,  $x = \theta'$ ,  $a = \theta$ , x a = d
- What is the Taylor expansion of  $J(\theta + d)$ ?
- First-order Taylor expansion for the loss:

$$J(\theta + d) \approx J(\theta) + \nabla_{\theta'} J(\theta')|_{\theta' = \theta} \cdot d$$

- Let  $\theta' = \theta + d$  is the independent variable
- That is,  $x = \theta'$ ,  $a = \theta$ , x a = d
- What is the Taylor expansion of  $\mathrm{D_{KL}}(\pi_{\theta}||\pi_{\theta+d})$ ?

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$
  
=  $f(a) + f'(a)(x - a) + \frac{f''(a)}{2} (x - a)^2 + \dots$ 

- Let  $\theta' = \theta + d$  is the independent variable
- That is,  $x = \theta'$ ,  $a = \theta$ , x a = d
- What is the Taylor expansion of  $D_{KL}(\pi_{\theta}||\pi_{\theta+d})$ ?
- Second-order Taylor expansion for  $D_{KL}(\pi_{\theta}||\pi_{\theta'})$ :

$$D_{KL}(\pi_{\theta}||\pi_{\theta'}) \approx D_{KL}(\pi_{\theta}||\pi_{\theta}) + d^{T}\nabla_{\theta'} D_{KL}(\pi_{\theta}||\pi_{\theta'})|_{\theta'=\theta} + \frac{1}{2}d^{T}\nabla_{\theta'}^{2} D_{KL}(\pi_{\theta}||\pi_{\theta'})|_{\theta'=\theta}d$$

$$D_{\mathrm{KL}}(\pi_{\theta}||\pi_{\theta'}) \approx D_{\mathrm{KL}}(\pi_{\theta}||\pi_{\theta}) + d^T \nabla_{\theta'} D_{\mathrm{KL}}(\pi_{\theta}||\pi_{\theta'})|_{\theta'=\theta} + \frac{1}{2} d^T \nabla_{\theta'}^2 D_{\mathrm{KL}}(\pi_{\theta}||\pi_{\theta'})|_{\theta'=\theta} d^T \nabla_{\theta'}^2 D_{\mathrm{KL}}(\pi_{\theta'})|_{\theta'=\theta} d^T \nabla_{\theta'}^2 D_{\mathrm{KL}}(\pi_{\theta'})|_{\theta'=\theta} d^T \nabla_{\theta'}^2 D_{\mathrm{KL}}(\pi_{\theta'})|_{\theta'=\theta} d^T \nabla_{\theta'}^2 D_{\mathrm{KL}}(\pi_{\theta'})|_{\theta'}^2 D_{\mathrm{KL}}(\pi_{\theta'})|_{\theta'=\theta} d^T \nabla_{$$

$$\mathrm{D_{KL}}(\pi_{\theta}||\pi_{\theta'}) = \int \pi_{\theta}(x) \log \frac{\pi_{\theta}(x)}{\pi_{\theta'}(x)} \, \mathrm{d}x = \underbrace{\int \pi_{\theta}(x) \log \pi_{\theta}(x) \, \mathrm{d}x}_{\text{independent of } \theta'} - \int \pi_{\theta}(x) \log \pi_{\theta'}(x) \, \mathrm{d}x$$

$$\nabla_{\theta'} \operatorname{D}_{\mathrm{KL}}(\pi_{\theta}||\pi_{\theta'})|_{\theta'=\theta} = -\nabla_{\theta'} \int \pi_{\theta}(x) \log \pi_{\theta'}(x) \, \mathrm{d}x|_{\theta'=\theta}$$

$$= -\int \pi_{\theta}(x) \nabla_{\theta'} \log \pi_{\theta'}(x) \, \mathrm{d}x|_{\theta'=\theta}$$

$$= -\int \frac{\pi_{\theta}(x)}{\pi_{\theta'}(x)} \nabla_{\theta'} \pi_{\theta'}(x) \, \mathrm{d}x|_{\theta'=\theta}$$

$$= -\nabla_{\theta'} \int \pi_{\theta'}(x) \, \mathrm{d}x|_{\theta'=\theta}$$

$$= 0$$

$$D_{\mathrm{KL}}(\pi_{\theta}||\pi_{\theta'}) \approx D_{\mathrm{KL}}(\pi_{\theta}||\pi_{\theta}) + d^T \nabla_{\theta'} D_{\mathrm{KL}}(\pi_{\theta}||\pi_{\theta'})|_{\theta'=\theta} + \frac{1}{2} d^T \nabla_{\theta'}^2 D_{\mathrm{KL}}(\pi_{\theta}||\pi_{\theta'})|_{\theta'=\theta} d$$

$$\nabla_{\theta'}^{2} \operatorname{D}_{\mathrm{KL}}(\pi_{\theta}||\pi_{\theta'})|_{\theta'=\theta} = -\int \pi_{\theta}(x) \nabla_{\theta'}^{2} \log \pi_{\theta'}(x) \, \mathrm{d}x|_{\theta'=\theta}$$

$$= -\int \pi_{\theta}(x) \frac{\pi_{\theta'}(x) \nabla_{\theta'}^{2} \pi_{\theta'}(x) - \nabla_{\theta'} \pi_{\theta'}(x) \nabla_{\theta'} \pi_{\theta'}(x)^{T}}{\pi_{\theta'}(x)^{2}} \, \mathrm{d}x|_{\theta'=\theta}$$

$$= \underbrace{-\nabla_{\theta'}^{2} \int \pi_{\theta'}(x) dx|_{\theta'=\theta}}_{0} + \int \pi_{\theta}(x) \nabla_{\theta} \log \pi_{\theta'}(x) \nabla_{\theta} \log \pi_{\theta'}(x)^{T} \mathrm{d}x|_{\theta'=\theta}$$

$$= \mathbb{E}_{x \sim \pi_{\theta}} \left[ \nabla_{\theta'} \log \pi_{\theta'}(x) \nabla_{\theta'} \log \pi_{\theta'}(x)^{T}|_{\theta'=\theta} \right]$$

# Hessian of KL = Fisher information matrix (FIM)

 Hessian: A square matrix of second-order partial derivatives of a scalar-valued function, which describes the local curvature of a function of many variables

$$\boldsymbol{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

ullet Fisher information: a way of measuring the amount of information that an observable random variable X carries about an unknown parameter  $\theta$  upon which the probability of X depends

$$\boldsymbol{F}(\theta) = \mathbb{E}_{x \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(x) \nabla_{\theta} \log \pi_{\theta}(x)^{T}]$$

# Hessian of KL = Fisher information matrix (FIM)

• The FIM is exactly the Hessian matrix of KL divergence

$$\underbrace{\nabla^2_{\theta'} \operatorname{D}_{\mathrm{KL}}(\pi_{\theta} || \pi_{\theta'})|_{\theta' = \theta}}_{\text{Hessian of KL}} = \underbrace{\mathbb{E}_{x \sim \pi_{\theta}} \left[ \nabla_{\theta'} \log \pi_{\theta'}(x) \nabla_{\theta'} \log \pi_{\theta'}(x)^T |_{\theta' = \theta} \right]}_{\text{FIM}}$$

$$D_{KL}(\pi_{\theta}||\pi_{\theta'}) \approx \underbrace{D_{KL}(\pi_{\theta}||\pi_{\theta})}_{0} + d^{T} \underbrace{\nabla_{\theta'} D_{KL}(\pi_{\theta}||\pi_{\theta'})|_{\theta'=\theta}}_{0} + \frac{1}{2} d^{T} \underbrace{\nabla_{\theta'}^{2} D_{KL}(\pi_{\theta}||\pi_{\theta'})|_{\theta'=\theta}}_{\mathbf{F}(\theta)} d$$

$$= \frac{1}{2} d^{T} \mathbf{F}(\theta) d$$

$$= \frac{1}{2} (\theta' - \theta)^{T} \mathbf{F}(\theta) (\theta' - \theta)$$

# Back to Taylor expansion of KL

$$\mathrm{D_{KL}}(\pi_{\theta}||\pi_{\theta+d}) \approx \frac{1}{2} d^T \boldsymbol{F}(\theta) d$$

- KL divergence is roughly analogous to a distance measure between distributions
- Fisher information serves as a local distance metric between distributions: how much you change the distribution if you move the parameters a little bit in a given direction

# Back to solving the KL constrained problem

$$d^* = \underset{d}{\arg\max} J(\theta + d) - \lambda (D_{\text{KL}}(\pi_{\theta}||\pi_{\theta+d}) - \epsilon)$$

$$\approx \underset{d}{\arg\max} J(\theta) + \nabla_{\theta'}J(\theta')|_{\theta'=\theta} \cdot d - \lambda (\frac{1}{2}d^T\nabla_{\theta'}^2 D_{\text{KL}}(\pi_{\theta}||\pi_{\theta'})|_{\theta'=\theta}d - \epsilon)$$

$$= \underset{d}{\arg\max} \nabla_{\theta'}J(\theta')|_{\theta'=\theta} \cdot d - \frac{1}{2}\lambda d^T F(\theta)d$$

Set the gradient to 0:

$$0 = \frac{\partial}{\partial d} \left( \nabla_{\theta'} J(\theta')|_{\theta'=\theta} \cdot d - \frac{1}{2} \lambda d^T \mathbf{F}(\theta) d \right)$$
$$= \nabla_{\theta'} J(\theta')|_{\theta'=\theta} - \lambda \mathbf{F}(\theta) d$$

$$d^* = \frac{1}{\lambda} \mathbf{F}^{-1}(\theta) \nabla_{\theta'} J(\theta')|_{\theta' = \theta} = \frac{1}{\lambda} \mathbf{F}^{-1}(\theta) \nabla_{\theta} J(\theta)$$

#### Table of Contents

- Natural policy gradient
  - Policy gradient in distribution space
  - Solve the constrained optimization problem
  - Natural gradient
- 2 Trust region policy optimization (TRPO)
- 3 Proximal policy optimization (PPO)

### Natural gradient descent

• The natural gradient:

$$\widetilde{\nabla}_{\theta} J(\theta) = \mathbf{F}^{-1}(\theta) \underbrace{\nabla_{\theta} J(\theta)}_{\widehat{q}}$$

• Natural gradient ascent:

$$\theta' = \theta + \alpha \cdot \mathbf{F}^{-1}(\theta)\hat{g}$$

• How to determine the learning rate  $\alpha$ :

$$D_{KL}(\pi_{\theta}||\pi_{\theta} + d) \approx \frac{1}{2}(\theta' - \theta)^{T} \boldsymbol{F}(\theta)(\theta' - \theta) \leq \epsilon$$
$$\frac{1}{2}(\alpha \hat{g})^{T} \boldsymbol{F}(\alpha \hat{g}) = \epsilon$$
$$\alpha = \sqrt{\frac{2\epsilon}{\hat{g}^{T} \boldsymbol{F} \hat{g}}}$$

## Geometric interpretation of natural policy gradient

• Find the steepest direction for parameter updating



# Natural gradient descent → Natural policy gradient (NPG)

#### Algorithm 1 Natural Policy Gradient

Input: initial policy parameters  $\theta_0$ 

for k = 0, 1, 2, ... do

Collect set of trajectories  $\mathcal{D}_k$  on policy  $\pi_k = \pi(\theta_k)$ 

Estimate advantages  $\hat{A}_t^{\pi_k}$  using any advantage estimation algorithm

Form sample estimates for

- policy gradient  $\hat{g}_k$  (using advantage estimates)
- ullet and KL-divergence Hessian / Fisher Information Matrix  $\hat{H}_k$

Compute Natural Policy Gradient update:

$$heta_{k+1} = heta_k + \sqrt{rac{2\,oldsymbol{\epsilon}}{\hat{oldsymbol{g}}_k^T\hat{oldsymbol{H}}_k}}\hat{oldsymbol{eta}_k^{-1}\hat{oldsymbol{g}}_k$$

end for

- Originated from natural gradient descent in supervised learning
- Very expensive to compute the inverse of Hessian matrix for a large number of parameters

## Review of natural policy gradient

- The gradient
  - Constrain parameter update in parameter space (using Euclidean distance)
- The natural gradient
  - Constrain parameter update in distribution space (using KL divergence)
  - The meaning of "natural": the distance metric is invariant to function parameterization
- Fisher information matrix (FIM)
  - Second-order information: a local distance metric between distributions
  - The FIM is exactly the Hessian matrix of KL divergence
  - Expensive to compute for a large number of parameters

#### Table of Contents

- Natural policy gradient
  - Policy gradient in distribution space
  - Solve the constrained optimization problem
  - Natural gradient
- 2 Trust region policy optimization (TRPO)
- 3 Proximal policy optimization (PPO)

# Trust region policy optimization (TRPO)

- John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel, Trust Region Policy Optimization, ICML, 2015.
- The family of statistical learning
  - ullet John Schulman o Pieter Abbeel o Andrew Ng o Michael Jordan

#### John Schulman's Homepage

I'm a research scientist at OpenAI. I co-lead the reinforcement learning (RL) team, where we work on (1) designing better RL algorithms that enable agents to learn much faster in novel situations; (2) designing better training environments that teach agents transferrable skills. We mostly use games as a testbed.

Previously, I received my PhD in Computer Science from UC Berkeley, where I had the good fortune of being advised by Pieter Abbeel. Prior to my recent work in RL, I spent some time working on robotics, enabling robots to tie knots and stitches and plan movement using trajectory optimization.



- Publications
- Presentations
- Code
- Awards

Email: joschu@openai.com.

# Trust region policy optimization (TRPO)



Neural computation 3 (1), 79-87

#### Michael I. Jordan

Professor of EECS and Professor of Statistics, <u>University of California, Berkeley</u> Verified email at cs.berkeley.edu - <u>Homepage</u>

machine learning statistics computational biology artificial intelligence optimization

| TITLE                                                                                                                                        | CITED BY | YEAR |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------|------|
| Latent dirichlet allocation DM Blei, AY Ng, MI Jordan Journal of machine Learning research 3 (Jan), 993-1022                                 | 29247    | 2003 |
| On spectral clustering: Analysis and an algorithm<br>AY Ng, MI Jordan, Y Weiss<br>Advances in neural information processing systems, 849-856 | 7927     | 2002 |
| Adaptive mixtures of local experts. RA Jacobs, MI Jordan, SJ Nowlan, GE Hinton                                                               | 4089     | 1991 |

| Cited by  |        | VIEW AL   |
|-----------|--------|-----------|
|           | All    | Since 201 |
| Citations | 165762 | 8468      |
| h-index   | 160    | 11-       |
| i10-index | 540    | 42        |







### TRPO - The KL constrained problem

• The objective function:

$$\begin{split} & \underset{\theta}{\text{maximize}} \quad \hat{\mathbb{E}}_t \left[ \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)} \hat{A}_t \right] \\ & \text{subject to} \quad \hat{\mathbb{E}}_t \left[ \mathrm{D_{KL}}[\pi_{\theta_{old}}(\cdot|s_t), \pi_{\theta}(\cdot|s_t)] \right] \leq \delta \end{split}$$

Also worth considering using a penalty instead of a constraint:

$$\underset{\theta}{\text{maximize}} \quad \hat{\mathbb{E}}_t \left[ \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)} \hat{A}_t \right] - \beta \hat{\mathbb{E}}_t \left[ D_{\text{KL}} \left[ \pi_{\theta_{old}}(\cdot|s_t), \pi_{\theta}(\cdot|s_t) \right] \right]$$

• Again the KL penalized problem!

#### TRPO = NPG + Line search + Monotonic improvement theorem

#### Algorithm 3 Trust Region Policy Optimization

Input: initial policy parameters  $\theta_0$ 

for k = 0, 1, 2, ... do

Collect set of trajectories  $\mathcal{D}_k$  on policy  $\pi_k = \pi(\theta_k)$ 

Estimate advantages  $\hat{A}^{\pi_k}_t$  using any advantage estimation algorithm Form sample estimates for

- policy gradient  $\hat{g}_k$  (using advantage estimates)
- and KL-divergence Hessian-vector product function  $f(v) = \hat{H}_k v$

Use CG with  $n_{cg}$  iterations to obtain  $x_k pprox \hat{H}_k^{-1} \hat{g}_k$ 

Estimate proposed step  $\Delta_k pprox \sqrt{rac{2\delta}{x_k^T \hat{H}_k x_k}} x_k$ 

Perform backtracking line search with exponential decay to obtain final update

$$\theta_{k+1} = \theta_k + \alpha^j \Delta_k$$

end for

### Line search with monotonic policy improvement

#### Algorithm 2 Line Search for TRPO

```
Compute proposed policy step \Delta_k = \sqrt{\frac{2\delta}{\hat{g}_k^T \hat{H}_k^{-1} \hat{g}_k}} \hat{H}_k^{-1} \hat{g}_k for j = 0, 1, 2, ..., L do  
Compute proposed update \theta = \theta_k + \alpha^j \Delta_k if \mathcal{L}_{\theta_k}(\theta) \geq 0 and \bar{D}_{KL}(\theta||\theta_k) \leq \delta then accept the update and set \theta_{k+1} = \theta_k + \alpha^j \Delta_k break end if end for
```

• Still very **expensive** to compute the **inverse of Hessian matrix** for a large number of parameters

### Table of Contents

- Natural policy gradient
  - Policy gradient in distribution space
  - Solve the constrained optimization problem
  - Natural gradient
- 2 Trust region policy optimization (TRPO)
- 3 Proximal policy optimization (PPO)

# Proximal policy optimization (PPO): Clipped objective

• The surrogate objective function:

$$\mathcal{L}^{\mathsf{IS}}(\theta) = \hat{\mathbb{E}}_t \left[ \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)} \hat{A}_t \right] = \hat{\mathbb{E}}_t[r_t(\theta)\hat{A}_t]$$

Form a lower bound via clipped importance ratios

$$\mathcal{L}^{\mathsf{CLIP}}(\theta) = \hat{\mathbb{E}}_t \left[ \min \left( r_t(\theta) \hat{A}_t, \mathsf{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right) \right]$$

- Prevent large changes of policies, constrain the policy update
- Achieve similar performance to TRPO without second-order information (no Fisher matrix!)





## Proximal policy optimization (PPO): Adaptive KL penalty

```
Input: initial policy parameters \theta_0, initial KL penalty \beta_0, target KL-divergence \delta
for k = 0, 1, 2, ... do
   Collect set of partial trajectories \mathcal{D}_k on policy \pi_k = \pi(\theta_k)
   Estimate advantages \hat{A}_{t}^{\pi_{k}} using any advantage estimation algorithm
   Compute policy update
                                   \theta_{k+1} = \arg\max_{\theta} \mathcal{L}_{\theta_k}(\theta) - \beta_k \bar{D}_{KL}(\theta||\theta_k)
   by taking K steps of minibatch SGD (via Adam)
   if \bar{D}_{KL}(\theta_{k+1}||\theta_k) > 1.5\delta then
      \beta_{k+1} = 2\beta_k
   else if \bar{D}_{KL}(\theta_{k+1}||\theta_k) \leq \delta/1.5 then
      \beta_{k+1} = \beta_k/2
                                                 Don't use second order approximation for KI which is
   end if
                                                 expensive, use standard gradient descent
end for
```

- ullet Penalty coefficient eta changes between iterations to approximately enforce KL-divergence constraint
- Achieve similar performance to TRPO without second-order information (no Fisher matrix!)

#### Review

- TRPO: again the KL penalty problem
  - Natural policy gradient + Monotonic policy improvement + Line search
  - Still need to compute the natural gradient with Hessian matrix
- PPO
  - Achieve TRPO-like performance without second-order computation
  - Clipped objective, adaptive KL penalty

$$\underset{\theta}{\text{maximize}} \quad \hat{\mathbb{E}}_t \left[ \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)} \hat{A}_t \right]$$

subject to 
$$\hat{\mathbb{E}}_t \left[ \mathrm{D_{KL}}[\pi_{\theta_{old}}(\cdot|s_t), \pi_{\theta}(\cdot|s_t)] \right] \leq \delta$$

### Learning objectives of this lecture

- You should be able to...
  - Know how to derive the natural policy gradient
  - Be aware of several advanced algorithms, e.g., TRPO, PPO
  - Enhance your mathematical skills

#### References

- Lecture 9 of CS285 at UC Berkeley, Deep Reinforcement Learning, Decision Making, and Control
  - http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-9.pdf
- Classic papers
  - Peters & Schaal (2008). Reinforcement learning of motor skills with policy gradients: very accessible overview of optimal baselines and natural gradient.
- DRL policy gradient papers
  - Schulman, L., Moritz, Jordan, Abbeel (2015). Trust region policy optimization: deep RL with natural policy gradient and adaptive step size.
  - Schulman, Wolski, Dhariwal, Radford, Klimov (2017). Proximal policy optimization algorithms: deep RL with importance sampled policy gradient.
  - Y. Duan, et al., Benchmarking Deep Reinforcement Learning for Continuous Control, ICML, 2016.

### Homework 1

- Study the policy gradient algorithm in detail
- ullet Implement the series of policy gradient algorithms on problems 1 & 2
  - Problem 1: the point maze navigation, continuous state-action space  $(s, a \in \mathbb{R}^2, s \in [-0.5, 0.5]^2, a \in [-0.1, 0.1]^2)$
  - Problem 2: the MuJoCo HalfCheetah, make the robot run forward
  - Must use vanilla policy gradient and natural policy gradient, encourage to use TRPO and PPO
- Write a report introducing the algorithms and your experimentation
  - Explanations, steps, evaluation results, visualizations...
  - Submit the code and the report to lizhang@smail.nju.edu.cn





# THE END