Equations différentielles

Fiche exercices

Exercices essentiels

Exercice 1. Pour chacune des équations différentielles suivantes, déterminer l'ensemble des solutions de l'équation homogène associée, déterminer une solution particulière, et en déduire l'ensemble des solutions.

a)
$$y'(x) - 4y(x) = 3$$
 pour $x \in \mathbb{R}$
b) $y'(x) + y(x) = 2e^x$ pour $x \in \mathbb{R}$

b)
$$y'(x) + y(x) = 2e^x$$
 pour $x \in \mathbb{R}$

c)
$$y'(x) = \frac{y(x)}{x} + x$$
 pour $x \in \mathbb{R}_+^*$

Questions facultatives supplémentaires : exercice 6

Réponse:

a) L'équation est y'(x) - 4y(x) = 3: a(x) = -4 et f(x) = 3.

1. L'équation homogène est y'(x) - 4y(x) = 0. Ici a(x) = -4 donc une primitive est A(x) = -4x. La solution générale de l'équation homogène est $y_H(x) = C e^{-A(x)} = C e^{4x}, C \in \mathbb{R}$.

2. Une solution particulière vérifie $y_0'(x) - 4y_0(x) = 3$.

Cette solution s'écrit $y_0(x) = g(x) e^{-A(x)}$ avec g(x) primitive de $f(x) e^{A(x)} = 3 e^{-4x}$

$$\Rightarrow g(x) = -\frac{3}{4} e^{-4x} \Rightarrow y_0(x) = -\frac{3}{4} e^{-4x} e^{4x} = -\frac{3}{4}$$

3. La solution générale est $y(x) = Ce^{4x} - \frac{3}{4}, C \in \mathbb{R}$

- b) L'équation est $y'(x) + y(x) = 2e^x : a(x) = 1 \text{ et } f(x) = 2e^x$.
 - 1. L'équation homogène est y'(x) + y(x) = 0. Ici a(x) = 1 donc une primitive est A(x) = x. La solution générale de l'équation homogène est $y_H(x) = C e^{-A(x)} = C e^{-x}, \ C \in \mathbb{R}$.
 - 2. Une solution particulière vérifie $y_0'(x) + y_0(x) = 2e^x$.

Cette solution s'écrit $y_0(x) = g(x) e^{-A(x)}$ avec g(x) primitive de $f(x) e^{A(x)} = 2 e^x e^x = 2 e^{2x}$ $\Rightarrow g(x) = e^{2x} \Rightarrow \boxed{y_0(x) = e^{2x} e^{-x} = e^x}$

- 3. La solution générale est $y(x) = Ce^{-x} + e^x, C \in \mathbb{R}$
- c) L'équation est $y'(x) \frac{y(x)}{x} = x : a(x) = -\frac{1}{x}$ et f(x) = x .
 - 1. L'équation homogène est $y'(x) \frac{y(x)}{x} = 0$. Ici $a(x) = -\frac{1}{x}$ donc une primitive est $A(x) = -\ln|x| = -\ln(x)$ car on est sur l'intervalle $]0, +\infty[$. La solution générale de l'équation homogène est

$$y_H(x) = C e^{-A(x)} = C e^{\ln(x)} = C x, \ C \in \mathbb{R}$$

- 2. Une solution particulière vérifie $y_0'(x) \frac{y_0(x)}{x} = x$. Cette solution s'écrit $y_0(x) = g(x)e^{-A(x)}$ avec g(x) primitive de $xe^{A(x)} = \frac{x}{x} = 1$ $\Rightarrow g(x) = x \Rightarrow \boxed{y_0(x) = x e^{\ln(x)} = x x = x^2}$
- 3. La solution générale est $y(x) = Cx + x^2, C \in \mathbb{R}$

Exercice 2. Résoudre les problèmes de Cauchy suivants :

a)
$$y'(x) - 2y(x) = 4$$
 pour $x \in \mathbb{R}$ avec $y(0) = 0$

b)
$$y'(x) = \frac{y(x) + 1}{x}$$
 $pour \ x > 0$ $avec \ y(1) = 0$
c) $y'(x) - 2y(x) = 2x$ $pour \ x \in \mathbb{R}$ $avec \ y(0) = \frac{1}{4}$

c)
$$y'(x) - 2y(x) = 2x$$
 pour $x \in \mathbb{R}$ avec $y(0) = \frac{1}{4}$

Questions facultatives supplémentaires : exercice 7

Réponse:

- a) L'équation est y'(x) 2y(x) = 4: a(x) = -2 et f(x) = 4.
 - 1. L'équation homogène est y'(x) 2y(x) = 0. Ici a(x) = -2 donc une primitive est A(x) = -2x. La solution générale de l'équation homogène est $y_H(x) = C e^{-A(x)} = C e^{2x}$, $C \in \mathbb{R}$
 - 2. Une solution particulière vérifie $y_0'(x) 2y_0(x) = 1$. Cette solution s'écrit $y_0(x) = g(x)e^{-A(x)}$ avec g(x) primitive de $f(x)e^{A(x)} = 4e^{-2x}$

$$\Rightarrow g(x) = -2 e^{-2x} \Rightarrow y_0(x) = -2 e^{-2x} e^{2x} = -2$$

- 3. La solution générale est $y(x) = C e^{2x} 2, C \in \mathbb{R}$.
- 4. $y(0) = 0 \iff C 2 = 0 \iff C = 2$. La solution est donc $y(x) = 2e^{2x} 2$
- b) L'équation est $y'(x) \frac{y(x)}{x} = \frac{1}{x} : a(x) = -\frac{1}{x}$ et $f(x) = \frac{1}{x}$
 - 1. L'équation homogène est $y'(x) \frac{y(x)}{x} = 0$.

Ici $a(x) = -\frac{1}{x}$ donc une primitive est $A(x) = -\ln|x| = -\ln(x)$ car $x \in]0, +\infty[$. La solution générale de l'équation homogène est

$$y_H(x) = C e^{-A(x)} = C e^{\ln(x)} = C x, C \in \mathbb{R}$$

2. Une solution particulière vérifie $y_0'(x) - \frac{y_0(x)}{x} = \frac{1}{x}$.

Cette solution s'écrit $y_0(x) = g(x) e^{-A(x)}$ avec g(x) primitive de $f(x) e^{A(x)} = \frac{1}{x} \frac{1}{x} = \frac{1}{x^2}$

$$\Rightarrow g(x) = -\frac{1}{x} \Rightarrow y_0(x) = -\frac{1}{x}x = -1$$

- 3. La solution générale est $|y(x) = Cx 1, C \in \mathbb{R}|$.
- 4. $y(1) = 0 \iff C 1 = 0 \iff C = 1$. La solution est donc |y(x) = x 1|

- c) L'équation est y'(x) 2y(x) = 2x : a(x) = -2 et f(x) = 2x.
- 1. L'équation homogène est y'(x) 2y(x) = 0. Ici a(x) = -2 donc une primitive est A(x) = -2x. La solution générale de l'équation homogène est

$$y_H(x) = C e^{-A(x)} = C e^{2x}, \ C \in \mathbb{R}$$

2. Une solution particulière vérifie $y_0'(x) - 2y_0(x) = 2x$. Cette solution s'écrit $y_0(x) = g(x) e^{-A(x)}$ avec g(x) primitive de $f(x) e^{A(x)} = 2x e^{-2x}$

$$\Rightarrow g(x) = \int_{c}^{x} 2t e^{-2t} dt$$

Posons u(t) = t, $v'(t) = 2e^{-2t} \Rightarrow u'(t) = 1$, $v(t) = -e^{-2t}$:

$$g(x) = \left[-t e^{-2t} \right]_c^x + \int_c^x e^{-2t} dt = \left[-t e^{-2t} - \frac{1}{2} e^{-2t} \right]_c^x = -x e^{-2x} - \frac{1}{2} e^{-2x} = -\frac{2x+1}{2} e^{-2x}$$

$$\Rightarrow y_0(x) = -\frac{2x+1}{2} e^{-2x} e^{2x} = -\frac{2x+1}{2}, \ C \in \mathbb{R}$$

- 3. La solution générale est $y(x) = Ce^{2x} \frac{2x+1}{2}$.
- 4. $y(0) = \frac{1}{4} \iff C \frac{1}{2} = \frac{1}{4} \iff C = \frac{3}{4}$. La solution est donc $y(x) = \frac{3}{4}e^{2x} \frac{2x+1}{2}$

Exercice 3. Pour chacune des équations différentielles suivantes, déterminer l'ensemble des solutions :

a)
$$y''(x) - 5y'(x) + 6y(x) = 0$$

b)
$$y''(x) + 4y'(x) + 4y(x) = 0$$

a)
$$y''(x) - 5y'(x) + 6y(x) = 0$$

b) $y''(x) + 4y'(x) + 4y(x) = 0$
c) $y''(x) + 4y'(x) + 13y(x) = 0$

Questions facultatives supplémentaires : exercice 10

Réponse:

a) L'équation caractéristique est $r^2 - 5r + 6 = 0$:

$$\Delta = 1 > 0 \Rightarrow r_1 = \frac{5 - \sqrt{1}}{2} = 2 \text{ et } r_2 = \frac{5 + \sqrt{1}}{2} = 3$$

La solution générale est $y(x) = C_1 e^{2x} + C_2 e^{3x}, C_1 \in \mathbb{R}, C_2 \in \mathbb{R}$

b) L'équation caractéristique est $r^2 + 4r + 4 = 0$:

$$\Delta = 0 \Rightarrow r = \frac{-4}{2} = -2$$

La solution générale est $y(x) = (C_1 + C_2 x) e^{-2x}, C_1 \in \mathbb{R}, C_2 \in \mathbb{R}$

c) L'équation caractéristique est $r^2 + 4r + 13 = 0$:

$$\Delta = -36 < 0 \Rightarrow r = \frac{-4 \pm i\sqrt{36}}{2} = -2 \pm 3i \qquad (\alpha = -2 \text{ et } \omega = 3)$$

La solution générale est $y(x) = e^{-2x} \left(C_1 \cos(3x) + C_2 \sin(3x) \right), C_1 \in \mathbb{R}, C_2 \in \mathbb{R}$

Exercice 4. Résoudre les équations différentielles homogènes suivantes :

a)
$$y''(x) - 5y'(x) + 4y(x) = 0$$
 avec $y(0) = 5$ et $y'(0) = 8$

c)
$$y''(x) + 2y'(x) + y(x) = 0$$
 avec $y(0) = 1$ et $y'(0) = 0$

Réponse:

a) L'équation caractéristique est $r^2 - 5r + 4 = 0$:

$$\Delta = 9 > 0 \Rightarrow r_1 = 1 \text{ et } r_2 = 4$$

La solution générale est

$$y(x) = C_1 e^x + C_2 e^{4x} \Rightarrow y'(x) = C_1 e^x + 4 C_2 e^{4x}$$

$$\Rightarrow \left\{ \begin{array}{rcl} y(0) & = & C_1 + C_2 & = & 5 \\ y'(0) & = & C_1 + 4 C_2 & = & 8 \end{array} \right\} \Rightarrow \left\{ \begin{array}{rcl} C_1 & = & 4 \\ C_2 & = & 1 \end{array} \right.$$

La solution est $y(x) = 4e^x + e^{4x}$

b) L'équation caractéristique est $r^2 - 4 = 0$:

$$\Delta = 16 > 0 \Rightarrow r_1 = -2 \text{ et } r_2 = 2$$

La solution générale est

$$y(x) = C_1 \exp(-2x) + C_2 \exp(2x) \Rightarrow y'(x) = -2C_1 \exp(-2x) + 2C_2 \exp(2x)$$

$$\Rightarrow \left\{ \begin{array}{lll} y(0) & = & C_1 + C_2 & = & 1 \\ y'(0) & = & -2 \, C_1 + 2 \, C_2 & = & 6 \end{array} \right\} \Rightarrow \left\{ \begin{array}{lll} C_1 & = & -1 \\ C_2 & = & 2 \end{array} \right.$$

La solution est $y(x) = -\exp(-2x) + 2\exp(2x)$

c) L'équation caractéristique est $r^2 + 2r + 1 = 0$:

$$\Delta = 0 \Rightarrow r = -1$$

La solution générale est

$$y(x) = (C_1 x + C_2) e^{-x} \Rightarrow y'(x) = C_1 e^{-x} - (C_1 x + C_2) e^{-x}$$

$$\Rightarrow \left\{ \begin{array}{lll} y(0) & = & C_2 & = & 1 \\ y'(0) & = & C_1 - C_2 & = & 0 \end{array} \right\} \Rightarrow \left\{ \begin{array}{lll} C_1 & = & 1 \\ C_2 & = & 1 \end{array} \right.$$

La solution est $y(x) = (x+1)e^{-x}$

Exercice 5. Résoudre les équations différentielles suivantes :

a)
$$y''(x) - 4y'(x) + 5y(x) = 6e^x$$
 avec $y(0) = 1$ et $y'(0) = 0$

Indication : chercher la solution particulière sous la forme $y_0(x) = A e^x$

b)
$$y''(x) + y'(x) - 2y(x) = -2x^2 + 1$$
 avec $y(0) = 3$ et $y'(0) = 0$

Indication: chercher la solution particulière sous la forme $y_0(x) = Ax^2 + Bx + C$

c)
$$y''(x) + 2y'(x) + y(x) = 4x e^x$$
 avec $y(0) = 1$ et $y'(0) = 2$

Indication : chercher la solution particulière sous la forme $y_0(x) = (Ax + B)e^x$

d)
$$y''(x) + y(x) = \cos(x)$$
 avec $y(0) = 1$ et $y'(0) = 1$

Indication : chercher la solution particulière sous la forme $y_0(x) = A x \sin(x)$

Questions facultatives supplémentaires : exercice 11

Réponse:

a)

1. L'équation homogène est y''(x) - 4y'(x) + 5y(x) = 0 l'équation caractéristique est $r^2 - 4r + 5 = 0$:

$$\Delta = 4^2 - 4 \times 5 = -4 < 0 \Rightarrow r_1 = \alpha + i \omega \text{ et } r_2 = \alpha - i \omega \text{ avec } \alpha = -(-4)/2 = 2 \text{ et } \omega = \sqrt{4}/2 = 1$$

La solution générale de l'équation homogène est

$$y_H(x) = e^{2x} \left(C_1 \cos(x) + C_2 \sin(x) \right), C_1 \in \mathbb{R}, C_2 \in \mathbb{R}$$

2.
$$y_0(x) = A e^x \Rightarrow y_0'(x) = A e^x \Rightarrow y_0''(x) = A e^x$$

$$\Rightarrow y_0''(x) - 4y_0'(x) + 5y_0(x) = Ae^x - 4Ae^x + 5Ae^x = 2Ae^x = 6e^x$$

$$\Rightarrow A = 3 \Rightarrow y_0(x) = 3 e^x$$

3. La solution générale de l'équation est

$$y(x) = e^{2x} \left(C_1 \cos(x) + C_2 \sin(x) \right) + 3 e^x, C_1 \in \mathbb{R}, C_2 \in \mathbb{R}$$

4.
$$y'(x) = 2e^{2x} \left(C_1 \cos(x) + C_2 \sin(x) \right) + e^{2x} \left(-C_1 \sin(x) + C_2 \cos(x) \right) + 3e^x$$

 $y(0) = C_1 + 3 = 1 \text{ et } y'(0) = 2C_1 + C_2 + 3 = 0$
 $\Rightarrow C_1 = -2 \text{ et } C_2 = 1 : \left[y(x) = e^{2x} \left(-2 \cos(x) + \sin(x) \right) + 3e^x \right]$

b)

1. L'équation homogène est y''(x) + y'(x) - 2y(x) = 0 l'équation caractéristique est $r^2 + r - 2 = 0$:

$$\Delta = 1^2 - 4 \times (-2) = 9 > 0 \Rightarrow r_1 = -2 \text{ et } r_2 = 1$$

La solution générale de l'équation homogène est $y_H(x) = C_1 e^{-2x} + C_2 e^x$, $C_1 \in \mathbb{R}$, $C_2 \in \mathbb{R}$

2.
$$y_0(x) = Ax^2 + Bx + C \Rightarrow y_0'(x) = 2Ax + B \Rightarrow y_0''(x) = 2A$$

$$\Rightarrow y_0''(x) + y_0'(x) - 2y_0(x) = -2Ax^2 + (2A - 2B)x + 2A + B - 2C = -2x^2 + 1$$

$$\Rightarrow \begin{cases} -2A = -2 \\ 2A - 2B = 0 \\ 2A + B - 2C = 1 \end{cases} \Rightarrow \begin{cases} A = 1 \\ B = 1 \\ C = 1 \end{cases} \Rightarrow \boxed{y_0(x) = x^2 + x + 1}$$

3. La solution générale de l'équation est

$$y(x) = C_1 e^{-2x} + C_2 e^x + x^2 + x + 1, C_1 \in \mathbb{R}, C_2 \in \mathbb{R}$$

4.
$$y'(x) = -2C_1 e^{-2x} + C_2 e^x + 2x + 1$$

 $y(0) = C_1 + C_2 + 1 = 3 \text{ et } y'(0) = -2C_1 + C_2 + 1 = 0$
 $\Rightarrow C_1 = 1 \text{ et } C_2 = 1 : y(x) = e^{-x} + e^{2x} + x^2 + x + 1$

c)

1. L'équation homogène est y''(x) + 2y'(x) + y(x) = 0 l'équation caractéristique est $r^2 + 2r + 1 = 0$:

$$\Delta = 0 \Rightarrow r = -1$$

La solution générale de l'équation homogène est $y_H(x) = (C_1 x + C_2) e^{-x}, C_1 \in \mathbb{R}, C_2 \in \mathbb{R}$

2.
$$y_0(x) = (Ax + B)e^x$$

$$\Rightarrow y_0'(x) = A e^x + (A x + B) e^x = (A x + A + B) e^x$$

$$\Rightarrow y_0''(x) = A e^x + (A x + A + B) e^x = (A x + 2 A + B) e^x$$

$$\Rightarrow y_0''(x) + 2 y_0'(x) + y_0(x) = \left((A x + 2 A + B) + 2(A x + A + B) + (A x + B) \right) e^x$$

$$= (4 A x + 4 A + 4 B) e^x = 4 x e^x$$

$$\iff 4 A x + 4 A + 4 B = 4 x$$

En identifiant les coefficients des polynomes on a 4A = 4 et 4A + 4B = 0 donc A = 1 et B = -1.

Une solution particulière est donc :

$$y_0(x) = (x-1)e^x$$

3. La solution générale de l'équation est

$$y(x) = (C_1 x + C_2) e^{-x} + (x - 1) e^x, C_1 \in \mathbb{R}, C_2 \in \mathbb{R}$$

4.
$$y'(x) = -(C_1 x + C_2) e^{-x} + C_1 e^{-x} + (x - 1) e^{x} + e^{x} = (-C_1 x + C_1 - C_2) e^{-x} + x e^{x}$$

 $\Rightarrow y(0) = C_2 - 1 = 1 \iff C_2 = 2 \text{ et } y'(0) = C_1 - C_2 = 2 \iff C_1 = 4$
 $y(x) = (4x + 2) e^{-x} + (x - 1) e^{x}$

d)

1. L'équation homogène est y''(x) + y(x) = 0l'équation caractéristique est $r^2 + 1 = 0$:

$$\Delta = -4 < 0 \Rightarrow r = \pm i$$
 $(\alpha = 0 \text{ et } \omega = 1)$

La solution générale de l'équation homogène est $y_H(x) = C_1 \cos(x) + C_2 \sin(x), C_1 \in \mathbb{R}, C_2 \in \mathbb{R}$

2.
$$y_0(x) = Ax \sin(x)$$

$$\Rightarrow y_0'(x) = A\sin(x) + Ax \cos(x) \Rightarrow y_0''(x) = 2A\cos(x) - Ax \sin(x)$$

$$\Rightarrow y_0''(x) + y_0(x) = \cos(x) \iff 2A\cos(x) = \cos(x) \Rightarrow A = \frac{1}{2}$$

$$y_0(x) = \frac{x\sin(x)}{2}$$

3. La solution générale de l'équation est

$$y(x) = C_1 \cos(x) + C_2 \sin(x) + \frac{x \sin(x)}{2}, C_1 \in \mathbb{R}, C_2 \in \mathbb{R}$$

4.
$$y'(x) = -C_1 \sin(x) + C_2 \cos(x) + \frac{\sin(x)}{2} + \frac{x \cos(x)}{2}$$

 $\Rightarrow y(0) = C_1 = 1 \text{ et } y'(0) = C_2 = 1 : y(x) = \cos(x) + \sin(x) + \frac{x \sin(x)}{2}$

Exercices supplémentaires

Exercice 6. Pour chacune des équations différentielles suivantes, déterminer l'ensemble des solutions de l'équation homogène associée, déterminer une solution particulière, et en déduire l'ensemble des solutions.

- a) $y'(x) \tan(x) y(x) = \sin(x)$ pour $x \in]-\pi/2; \pi/2[$
- b) $(x^2 + 1) y'(x) + x y(x) = 0$ pour $x \in \mathbb{R}$

Réponse:

- a) L'équation est $y'(x) \tan(x) y(x) = \sin(x)$.
 - 1. L'équation homogène est $y'(x) \tan(x) y(x) = 0$: $a(x) = -\tan(x)$ et $f(x) = \sin(x)$. Ici $a(x) = -\tan(x) = -\frac{\sin(x)}{\cos(x)}$ donc une primitive est $A(x) = \ln|\cos(x)| = \ln(\cos(x))$ car on est sur l'intervalle $]-\pi/2,\pi/2[$ et donc $\cos(x)>0$. La solution générale de l'équation homogène est

$$y_H(x) = Ce^{-A(x)} = Ce^{-\ln(\cos(x))} = \frac{C}{e^{\ln(\cos(x))}} = \boxed{\frac{C}{\cos(x)}}$$

2. Une solution particulière vérifie $y'_0(x) - \tan(x)y_0(x) = \sin(x)$. Cette solution s'écrit $y_0(x) = g(x)e^{-A(x)}$ avec g(x) primitive de $\sin(x)e^{A(x)}$:

$$\sin(x)e^{A(x)} = \sin(x)\cos(x) = u'(x)u(x) \text{ avec } u(x) = \sin(x)$$

$$\Rightarrow g(x) = \frac{1}{2}\sin^2(x) \Rightarrow \boxed{y_0(x) = \frac{g(x)}{\cos(x)} = \frac{\sin^2(x)}{2\cos(x)}}$$

3. La solution générale est $y(x) = \frac{C}{\cos(x)} + \frac{\sin^2(x)}{2\cos(x)} = \frac{C_1 + \sin^2(x)}{2\cos(x)}, \ C_1 \in \mathbb{R}$

Remarque: d'autres solutions particulières sont possibles.

Par exemple, on obtient une autre solution particulière $y_0(x)$ en prenant :

$$g'(x) = \sin(x)\cos(x) = -u'(x)u(x) \text{ avec } u(x) = \cos(x) \Rightarrow g(x) = -\frac{1}{2}\cos^2(x)$$

$$\Rightarrow y_0(x) = -\frac{1}{2}\cos(x) \text{ et } y(x) = \frac{C_2}{2\cos(x)} - \frac{1}{2}\cos(x) = \frac{C_2 - \cos^2(x)}{2\cos(x)}, C_2 \in \mathbb{R}$$

et en posant $C_2 = C_1 + 1$, on retrouve la première expression pour y(x):

$$\frac{C_2 - \cos^2(x)}{2\cos(x)} = \frac{C_1 + 1 - \cos^2(x)}{2\cos(x)} = \frac{C_1 + \cos^2(x) + \sin^2(x) - \cos^2(x)}{2\cos(x)} = \frac{C_1 + \sin^2(x)}{2\cos(x)}$$

b) L'équation est $y'(x) + \frac{x}{x^2 + 1}y(x) = 0$ qui est une équation homogène.

Ici
$$a(x) = \frac{x}{x^2 + 1}$$
 donc une primitive est $A(x) = \frac{1}{2} \ln(x^2 + 1)$.

La solution générale de l'équation (homogène) est donc

$$y(x) = y_H(x) = C e^{-A(x)} = C \exp\left(-\frac{1}{2}\ln(x^2+1)\right) = C(x^2+1)^{-1/2} = C\frac{1}{\sqrt{x^2+1}}, C \in \mathbb{R}$$

Exercice 7. Résoudre les problèmes de Cauchy suivants :

a)
$$x^2 y'(x) - (2x - 1) y(x) = x^2$$
 pour $x > 0$ avec $y(1) = 1$

b)
$$(x+1)y'(x) - xy(x) + 1 = 0$$
 pour $x > -1$ avec $y(0) = 2$

Réponse:

a) L'équation est
$$y'(x) - \frac{2x-1}{x^2}y(x) = 1$$
: $a(x) = -\frac{2x-1}{x^2}$ et $f(x) = 1$.

1. L'équation homogène est $y'(x) - \frac{2x-1}{r^2}y(x) = 0$. Ici $a(x) = -\frac{2x-1}{x^2} = -\frac{2}{x} + \frac{1}{x^2}$ donc une primitive est $A(x) = -2\ln|x| - \frac{1}{x} = -2\ln(x) - \frac{1}{x}$ car x > 0.

La solution générale de l'équation homogène est

$$y_H(x) = C e^{-A(x)} = C e^{2\ln(x)+1/x} = C x^2 e^{1/x}, \ C \in \mathbb{R}$$

2. Une solution particulière vérifie $y_0'(x) - \frac{2x-1}{x^2}y_0(x) = 1$. Cette solution s'écrit $y_0(x) = g(x)e^{-A(x)}$ avec g(x) primitive de $f(x)e^{A(x)} = \frac{1}{x^2}e^{-1/x}$. g'(x) est de la forme $u'(x)e^{u(x)}$ avec u(x) = -1/x :

$$\Rightarrow g(x) = e^{u(x)} = e^{-1/x} \Rightarrow y_0(x) = e^{-1/x} x^2 e^{1/x} = x^2$$

- 3. La solution générale est $y(x) = C x^2 e^{1/x} + x^2, C \in \mathbb{R}$.
- 4. $y(1) = 1 \iff Ce + 1 = 1 \iff C = 0$. La solution est donc $y(x) = x^2$
- b) L'équation est $y'(x) \frac{x}{x+1}y(x) = -\frac{1}{x+1}$: $a(x) = -\frac{x}{x+1}$ et $f(x) = -\frac{1}{x+1}$.
 - 1. L'équation homogène est $y'(x) \frac{x}{x+1}y(x) = 0$.

Ici
$$a(x) = -\frac{x}{x+1} = \frac{1}{x+1} - 1$$
 donc une primitive est $A(x) = \ln|x+1| - x = \ln(x+1) - x$

La solution générale de l'équation homogène est

$$y_H(x) = Ce^{-A(x)} = Ce^{-\ln(x+1)+x} = C\frac{e^x}{x+1}, \ C \in \mathbb{R}$$

2. Une solution particulière vérifie $y_0'(x) - \frac{x}{x+1}y_0(x) = -\frac{1}{x+1}$. Cette solution s'écrit $y_0(x) = g(x)e^{-A(x)}$

avec
$$g(x)$$
 primitive de $-\frac{1}{x+1}e^{A(x)} = -\frac{(x+1)e^{-x}}{x+1} = -e^{-x}$.

$$\Rightarrow g(x) = e^{-x} \Rightarrow y_0(x) = e^{-x} \frac{e^x}{x+1} = \frac{1}{x+1}$$

- 3. La solution générale est $y(x) = C \frac{e^x}{x+1} + \frac{1}{x+1} = \frac{Ce^x + 1}{x+1}, C \in \mathbb{R}$.
- 4. $y(0) = 2 \iff C + 1 = 2 \iff C = 1$. La solution est donc $y(x) = \frac{e^x + 1}{x + 1}$

Exercice 8. Soit λ un réel non nul, on s'intéresse aux solutions de l'équation différentielle

$$y'(x) - \lambda y(x) = f(x)$$

avec f(x) une fonction particulière.

Déterminer l'expression de la solution générale lorsque :

- a) $f(x) = c_0$ avec la constante $c_0 \in \mathbb{R}^*$
- b) $f(x) = c_1 x + c_0$ avec les constantes $c_1 \in \mathbb{R}^*$ et $c_0 \in \mathbb{R}$
- c) $f(x) = \alpha e^{\omega x}$ avec les constantes $\alpha \in \mathbb{R}^*$ et $\omega \in \mathbb{R}^*$

Réponse:

(1) Solutions de l'équation homogène associée

On a
$$a(x) = -\lambda \Rightarrow A(x) = -\lambda x \Rightarrow e^{-A(x)} = e^{\lambda x}$$
.

La solution de l'équation homogène $y'(x) - \lambda y(x) = 0$ est $y_H(x) = C e^{\lambda x}, C \in \mathbb{R}$

(2) Calcul d'une solution particulière

$$y_0(x) = g(x) e^{-A(x)} = g(x) e^{\lambda x}$$
 avec $g(x)$ primitive de $f(x) e^{A(x)} = f(x) e^{-\lambda x}$

a) $f(x) = c_0 : g(x)$ primitive de $c_0 e^{-\lambda x}$

$$g(x) = -\frac{c_0}{\lambda} e^{-\lambda x} \Rightarrow y_0(x) = -\frac{c_0}{\lambda} e^{-\lambda x} e^{\lambda x} = -\frac{c_0}{\lambda}$$

b) $f(x) = c_1 x + c_0 : g(x)$ primitive de $(c_1 x + c_0) e^{-\lambda x}$ On intégre par parties :

$$u(x) = c_1 x + c_0 \text{ et } v'(x) = e^{-\lambda x} \Rightarrow u'(x) = c_1(\neq 0) \text{ et } v(x) = -\frac{1}{\lambda} e^{-\lambda x}$$

$$g(x) = u(x) v(x) - \int u'(x) v(x) \, dx = -\frac{1}{\lambda} (c_1 x + c_0) e^{-\lambda x} + \frac{c_1}{\lambda} \int e^{-\lambda x} \, dx$$

$$= -\frac{1}{\lambda} (c_1 x + c_0) e^{-\lambda x} + \frac{c_1}{\lambda} \left(-\frac{1}{\lambda} e^{-\lambda x} \right) = -\frac{1}{\lambda} (c_1 x + c_0) e^{-\lambda x} - \frac{c_1}{\lambda^2} e^{-\lambda x}$$

$$= -\left(\frac{c_1}{\lambda} x + \frac{c_0}{\lambda} + \frac{c_1}{\lambda^2} \right) e^{-\lambda x}$$

$$\Rightarrow y_0(x) = -\left(\frac{c_1}{\lambda} x + \frac{c_0}{\lambda} + \frac{c_1}{\lambda^2} \right) e^{-\lambda x} e^{\lambda x} = \left[-\left(\frac{c_1}{\lambda} x + \frac{c_0}{\lambda} + \frac{c_1}{\lambda^2} \right) \right]$$

c) $f(x) = \alpha e^{\omega x} : g(x)$ primitive de $\alpha e^{(\omega - \lambda) x}$ — si $\omega = \lambda$, g(x) primitive de α :

$$g(x) = \alpha x \Rightarrow y_0(x) = \alpha x e^{\lambda x}$$

— si $\omega \neq \lambda$,

$$g(x) = \frac{\alpha}{\omega - \lambda} e^{(\omega - \lambda) x} \Rightarrow y_0(x) = \frac{\alpha}{\omega - \lambda} e^{(\omega - \lambda) x} e^{\lambda x} = \frac{\alpha}{\omega - \lambda} e^{\omega x}$$

Récapitulatif :

a)
$$y(x) = C e^{\lambda x} - \frac{c_0}{\lambda}, C \in \mathbb{R}$$

b)
$$y(x) = C e^{\lambda x} - \left(\frac{c_1}{\lambda}x + \frac{c_0}{\lambda} + \frac{c_1}{\lambda^2}\right), C \in \mathbb{R}$$

c) Deux cas à distinguer :

- si
$$\omega = \lambda$$
: $y(x) = C e^{\lambda x} + \alpha x e^{\lambda x}, C \in \mathbb{R}$

$$-\operatorname{si} \omega \neq \lambda : y(x) = C e^{\lambda x} + \frac{\alpha}{\omega - \lambda} e^{\omega x}, C \in \mathbb{R}$$

Exercice 9. On considère l'équation différentielle $|x| y'(x) + (x-1) y(x) = x^3$.

- a) Donner l'ensemble des solutions de l'équation précédente pour $x \in \]\ 0\ ;\ +\infty\ [\ .$
- b) Donner l'ensemble des solutions de l'équation précédente pour $x \in]-\infty; 0[$.

Réponse:

a) pour $x \in]0, +\infty[$, l'équation est

$$xy'(x) + (x-1)y(x) = x^3 \iff y'(x) + \frac{x-1}{x}y(x) = x^2$$

1. l'équation homogène est $y'(x) + \frac{x-1}{x}y(x) = 0$

$$a(x) = \frac{x-1}{x} = 1 - \frac{1}{x} \Rightarrow A(x) = x - \ln|x| = x - \ln(x)$$

Les solutions de l'équation homogène sont
$$y_H(x) = C e^{-A(x)} = C e^{\ln(x) - x} = C x e^{-x}, \ C \in \mathbb{R}$$

- 2. une solution particulière est $y_0(x) = g(x) e^{-A(x)}$ avec g(x) primitive de $f(x) e^{A(x)} = x^2 \frac{e^x}{x} = x e^x$ Avec une intégration par parties, on obtient $g(x) = (x-1) e^x$ et $y_0(x) = (x-1) e^x x e^{-x} = x (x-1)$
- 3. les solutions sont $y(x) = C x e^{-x} + x (x 1), C \in \mathbb{R}$

b) pour $x \in]-\infty, 0[$, l'équation est

$$-xy'(x) + (x-1)y(x) = x^{3} \iff y'(x) + \frac{1-x}{x}y(x) = -x^{2}$$

1. l'équation homogène est $y'(x) + \frac{1-x}{x}y(x) = 0$

$$a(x) = \frac{1-x}{x} = \frac{1}{x} - 1 \Rightarrow A(x) = \ln|x| - x = \ln(-x) - x$$

Les solutions de l'équation homogène sont

$$y_H(x) = C e^{-A(x)} = C e^{x-\ln(-x)} = C e^x e^{-\ln(-x)} = C \frac{e^x}{e^{\ln(-x)}} = C \frac{e^x}{-x} = -C \frac{e^x}{x}, \ C \in \mathbb{R}$$

- 2. une solution particulière est $y_0(x) = g(x) e^{-A(x)}$ avec g(x) primitive de $f(x) e^{A(x)} = -x^2 (-x e^{-x}) = x^3 e^{-x}$ Avec trois intégrations par parties, on obtient $g(x) = -(x^3 + 3x^2 + 6x + 6) e^{-x}$ et $y_0(x) = -(x^3 + 3x^2 + 6x + 6) e^{-x} \left(-\frac{e^x}{x}\right) = \frac{x^3 + 3x^2 + 6x + 6}{x}$
- 3. les solutions sont $y(x) = \frac{x^3 + 3x^2 + 6x + 6 Ce^x}{x}, C \in \mathbb{R}$

Exercice 10. Pour chacune des équations différentielles suivantes, déterminer l'ensemble des solutions :

a)
$$y''(x) - y(x) = 0$$

b)
$$y''(x) - y'(x) = 0$$

Réponse:

a) L'équation caractéristique est $r^2 - 1 = 0$:

$$\Delta = 4 > 0 \Rightarrow r_1 = -1 \text{ et } r_2 = 1$$

La solution générale est $y(x) = C_1 e^{-x} + C_2 e^x, C_1 \in \mathbb{R}, C_2 \in \mathbb{R}$

b) L'équation caractéristique est $r^2 - r = 0$:

$$\Delta = 1 > 0 \Rightarrow r_1 = 0$$
 et $r_2 = 1 \Rightarrow e^{r_1 x} = e^0 = 1$

La solution générale est $y(x) = C_1 + C_2 e^x, C_1 \in \mathbb{R}, C_2 \in \mathbb{R}$

Exercice 11. Résoudre les équations différentielles suivantes :

a)
$$y''(x) + 4y(x) = 0$$
 avec $y(0) = 0$ et $y(\pi/4) = 2$

b)
$$y''(x) + y'(x) - 2y(x) = 9e^x \text{ avec } y(0) = 1 \text{ et } y'(0) = 1$$

Indication: chercher la solution particulière sous la forme $y_0(x) = A x e^x$

c)
$$y''(x) + y'(x) = x$$
 avec $y(0) = 0$ et $y'(0) = 2$

Indication: revenir à une équation différentielle d'ordre 1 en posant z(x) = y'(x)

Réponse:

a) L'équation caractéristique est $r^2 + 4 = 0$:

$$\Delta = -16 < 0 \Rightarrow \alpha = 0 \text{ et } \omega = 2$$

La solution générale est

$$y(x) = e^{0x} \left(C_1 \cos(2x) + C_2 \sin(2x) \right) = C_1 \cos(2x) + C_2 \sin(2x)$$

$$\Rightarrow \left\{ \begin{array}{rcl} y(0) & = & C_1 \cos(0) + C_1 \sin(0) & = & C_1 & = & 0 \\ y(\pi/4) & = & C_1 \cos(\pi/2) + C_1 \sin(\pi/2) & = & C_2 & = & 2 \end{array} \right\}$$

La solution est $y(x) = 2 \sin(2x)$

b)

1. L'équation homogène est y''(x) + y'(x) - 2y(x) = 0 l'équation caractéristique est $r^2 + r - 2 = 0$:

$$\Delta = 9 > 0 \Rightarrow r_1 = -2 \text{ et } r_2 = 1$$

La solution générale de l'équation homogène est $y_H(x) = C_1 e^{-2x} + C_2 e^x$, $C_1 \in \mathbb{R}$, $C_2 \in \mathbb{R}$

$$2. \ y_0(x) = A x \exp(x)$$

$$\Rightarrow y_0'(x) = A e^x + A x e^x$$

$$\Rightarrow y_0''(x) = A e^x + A e^x + A x e^x = 2 A e^x + A x e^x$$

$$\Rightarrow y_0''(x) + y_0'(x) - 2 y_0(x) = 3 A e^x \text{ et } y_0''(x) + y_0'(x) - 2 y_0(x) = 9 e^x \Rightarrow A = 3$$
On a donc $y_0(x) = 3 x e^x$

3. La solution générale de l'équation est donc

$$y(x) = C_1 e^{-2x} + C_2 e^x + 3x e^x, C_1 \in \mathbb{R}, C_2 \in \mathbb{R}$$

4. On détermine C_1 et C_2 avec les conditions initiales :

$$y(0) = C_1 + C_2 = 1$$

$$y'(x) = -2C_1 e^{-2x} + C_2 e^x + 3x e^x + 3e^x \Rightarrow y'(0) = -2C_1 + C_2 + 3 = 1$$

$$\begin{cases} C_1 + C_2 &= 1 \\ -2C_1 + C_2 &= -2 \end{cases} \iff C_1 = 1 \text{ et } C_2 = 0 : \boxed{y(x) = e^{-2x} + 3x e^x}$$

c) On peut se ramener à une équation différentielle du 1er ordre en posant z(x) = y'(x) et donc z'(x) = y''(x):

$$y''(x) + y'(x) = x \iff z'(x) + z(x) = x$$

On résout z'(x) + z(x) = x:

1. solution de l'équation homogène z'(x) + z(x) = 0:

$$a(x) = 1 \Rightarrow A(x) = x \text{ et } z_H(x) = C_1 e^{-A(x)} = C_1 e^{-x}, C_1 \in \mathbb{R}$$

- 2. solution particulière $z_0(x) = g(x) e^{-x}$ avec $g'(x) = f(x) e^{+x} = x e^x$. En intégrant par parties, on trouve $g(x) = (x-1) e^x$ d'où $\boxed{z_0(x) = x-1}$.
- 3. Les solutions de z'(x) + z(x) = x sont $z(x) = C_1 e^{-x} + x 1, C_1 \in \mathbb{R}$ et donc les solutions y(x) sont les primitives de z(x):

$$y(x) = -C_1 e^{-x} + \frac{x^2}{2} - x + C_2, C_1 \in \mathbb{R}, C_2 \in \mathbb{R}$$

4. On détermine les constantes C_1 et C_2 pour que y(0) = 0 et y'(0) = 2:

$$y(0) = -C_1 + C_2 = 0$$
 et $y'(0) = z(0) = C_1 - 1 = 2 \Rightarrow C_1 = C_2 = 3$

La solution est
$$y(x) = -3e^{-x} + \frac{x^2}{2} - x + 3$$

Exercice 12. Soit l'équation différentielle (E) :

$$y''(x) + ay'(x) + by(x) = f(x)$$

avec a, b constantes réelles, et f fonction définie et continue sur un intervalle I. Quelles que soient les constantes a et b, les solutions de l'équation homogène associée (H):

$$y''(x) + ay'(x) + by(x) = 0$$

sont toujours de la forme $y_H(x) = C_1 y_1(x) + C_2 y_2(x)$ avec C_1 , C_2 constantes réelles. Soient g_1 et g_2 deux fonctions dérivables sur I et vérifiant :

pour tout
$$x \in I$$
,
$$\begin{cases} g'_1(x) y_1(x) + g'_2(x) y_2(x) = 0 \\ g'_1(x) y'_1(x) + g'_2(x) y'_2(x) = f(x) \end{cases}$$

- a) Montrer que la fonction y_0 définie par $y_0(x) = g_1(x) y_1(x) + g_2(x) y_2(x)$ est une solution particulière de (E).
- b) Application : déterminer l'ensemble des solutions de l'équation différentielle :

$$y''(x) - y(x) = 2e^x, \qquad x \in \mathbb{R}$$

Réponse:

a) Démontrons que pour tout $x \in I$, $y_0''(x) + a y_0'(x) + b y_0(x) = f(x)$. Dans un premier temps, on peut remarquer que les deux fonctions y_1 et y_2 sont solutions de l'équation homogène associée (H) car :

$$\begin{cases} y_1(x) = C_1 y_1(x) + C_2 y_2(x) & \text{avec } C_1 = 1 \text{ et } C_2 = 0 \\ y_2(x) = C_1 y_1(x) + C_2 y_2(x) & \text{avec } C_1 = 0 \text{ et } C_2 = 1 \end{cases}$$

Ensuite, on a:

$$y_{0}(x) = g_{1}(x) y_{1}(x) + g_{2}(x) y_{2}(x)$$

$$\Rightarrow y'_{0}(x) = g'_{1}(x) y_{1}(x) + g_{1}(x) y'_{1}(x) + g'_{2}(x) y_{2}(x) + g_{2}(x) y'_{2}(x)$$

$$= g'_{1}(x) y_{1}(x) + g'_{2}(x) y_{2}(x) + g_{1}(x) y'_{1}(x) + g_{2}(x) y'_{2}(x)$$

$$= g_{1}(x) y'_{1}(x) + g_{2}(x) y'_{2}(x)$$

$$\Rightarrow y''_{0}(x) = g'_{1}(x) y'_{1}(x) + g_{1}(x) y''_{1}(x) + g'_{2}(x) y'_{2}(x) + g_{2}(x) y''_{2}(x)$$

$$= g'_{1}(x) y''_{1}(x) + g'_{2}(x) y''_{2}(x) + g_{1}(x) y''_{1}(x) + g_{2}(x) y''_{2}(x)$$

$$= g_{1}(x) y''_{1}(x) + g_{2}(x) y''_{2}(x) + f(x)$$

Puis:

$$y_0''(x) + a y_0'(x) + b y_0(x)$$

$$= g_1(x) y_1''(x) + g_2(x) y_2''(x) + f(x)$$

$$+ a g_1(x) y_1'(x) + a g_2(x) y_2(x)$$

$$+ b g_1(x) y_1(x) + b g_2(x) y_2(x)$$

$$= g_1(x) y_1''(x) + a g_1(x) y_1'(x) + b g_1(x) y_1(x)$$

$$+ g_2(x) y_2''(x) + a g_2(x) y_2'(x) + b g_2(x) y_2(x)$$

$$+ f(x)$$

$$= g_1(x) \underbrace{\left(y_1''(x) + a y_1'(x) + b y_1(x)\right)}_{=0 \text{ car } y_1 \text{ solution de } (H)} + g_2(x) \underbrace{\left(y_2''(x) + a y_2'(x) + b y_2(x)\right)}_{=0 \text{ car } y_2 \text{ solution de } (H)} + f(x)$$

$$= f(x)$$

Donc y_0 est bien une solution particulière de (E).

- b) Ici on a a = 0, b = -1 et $f(x) = 2e^x$.
 - 1. On résout l'équation homogène associée y''(x) y(x) = 0. L'équation caractèristique est $r^2 - 1 = 0$ avec deux racines réelles distinctes $r_1 = -1$ et $r_2 = 1$.

Donc les solutions de l'équation homogène associée sont :

$$y_H(x) = C_1 e^{-x} + C_2 e^x$$

2. On a donc $y_1(x) = e^{-x}$ et $y_2(x) = e^x$. On résout le système dont les "inconnues" sont $g'_1(x)$ et $g'_2(x)$:

$$\begin{cases}
g'_{1}(x)y_{1}(x) + g'_{2}(x)y_{2}(x) = 0 \\
g'_{1}(x)y'_{1}(x) + g'_{2}(x)y'_{2}(x) = f(x)
\end{cases}
\iff
\begin{cases}
g'_{1}(x)e^{-x} + g'_{2}(x)e^{x} = 0 \\
-g'_{1}(x)e^{-x} + g'_{2}(x)e^{x} = 2e^{x}
\end{cases}$$

$$\begin{cases}
(1) - (2) : 2g'_{1}(x)e^{-x} = -2e^{x} \Rightarrow g'_{1}(x) = -e^{2x} \\
(1) + (2) : 2g'_{2}(x)e^{x} = 2e^{x} \Rightarrow g'_{2}(x) = 1
\end{cases}$$

En intégrant, on obtient $g_1(x) = -\frac{1}{2} e^{2x}$ et $g_2(x) = x$.

Donc une solution particulière de (\tilde{E}) est :

$$y_0(x) = g_1(x) y_1(x) + g_2(x) y_2(x) = -\frac{1}{2} e^{2x} e^{-x} + x e^x = \boxed{-\frac{1}{2} e^x + x e^x}$$

3. Les solutions de (E) sont $y(x) = y_H(x) + y_0(x)$:

$$y(x) = \boxed{C_1 e^{-x} + C_2 e^x - \frac{1}{2} e^x + x e^x} = C_1 e^{-x} + \underbrace{\left(C_2 - \frac{1}{2}\right)}_{\text{constante } C_3} e^x + x e^x = \boxed{C_1 e^{-x} + C_3 e^x + x e^x}$$

avec C_1 , C_2 et C_3 des constantes réelles.