Programação Funcional CC

Lic. Ciências da Computação - 1º Ano 2007 / 2008

Maria João Frade (mjf@di.uminho.pt)

Departamento de Informática Universidade do Minho

1

Um programa pode ser visto como algo que transforma informação

Existem 2 grandes classes de linguagens de programação:

Imperativas - um programa é uma sequências de instruções (ou seja de "ordens"). (ex: Pascal, C, Java, ...)

- -- díficil establecer uma relação precisa entre o input e o output e de raciocinar sobre os programas; ...
- + normalmente mais eficientes; ...

Declarativas - um programa é um conjunto de declarações que descrevem a relação entre o input e o output. (ex: Prolog, ML, Haskell, ...)

- + facíl de establecer uma relação precisa entre o input e o output e de raciocinar sobre os programas; ...
- -- normalmente menos eficientes (mas cada vez mais); ...

Exemplo:

A função factorial é descrita matematicamente por

Dois programas que fazem o cálculo do factorial de um número, implementados em:

C

```
int factorial(int n)
{ int i, r;

i=1;
 r=1;
 while (i<=n) {
    r=r*i;
    i=i+1;
 }
 return r;
}</pre>
```

Haskell

```
fact 0 = 1
fact n = n * fact (n-1)
```

Qual é mais facil de entender ?

3

Na programação (funcional) faremos uma distinção clara entre três grandes grupos de conceitos:

Dados - Que tipo de informação é recebida e como ela se pode organizar por forma a ser processada de forma eficiente.

Operações - Os mecanísmos para manipular os dados. As operações básicas e como contruir novas operações a partir de outras já existentes.

Cálculo - A forma como o processo de cálculo decorre.

A linguagem Haskell fornece uma forma rigorosa e precisa de descrever tudo isto.

Programa Resumido

Nesta disciplina estuda-se o paradigma funcional de programação, tendo por base a linguagem de programação *Haskell*.

- Programação funcional em Haskell.
 - *Conceitos fundamentais:* expressões, tipos, redução, funções e recursividade.
 - *Conceitos avançados:* funções de ordem superior, polimorfismo, tipos indutivos, classes, modularidade e monades.
- Estruturas de dados e algoritmos.
- Tipos abstractos de dados.

Bibliografia

- Fundamentos da Computação, Livro II: Programação Funcional. José Manuel Valença e José Bernardo Barros. Universidade Aberta, 1999.
- Introduction to Functional Programming using Haskell. Richard Bird. Prentice-Hall, 1998.
- Haskell: the craft of functional programming. Simon Thompson. Addison-Wesley.
- A Gentle Introduction to Haskell.
 Paul Hudak, John Peterson and Joseph Fasel.
- Apontamentos da aulas teóricas e fichas práticas.

Disponíveis em www.di.uminho.pt/~mjf/PFcc/2007-08

Acessíveis a partir de **Icc.di.uminho.pt**

6

Programação Funcional CC

8 ECTS = 224 horas de trabalho (150 horas de trabalho independente)

- 2 Teóricas
- 1 Teórico-Prática
- 1 Prática Laboratorial

7

Critérios de Avaliação

A avaliação tem uma componente teórica e uma componente prática, ambas obrigatórias.

Nota Final = 0.4 NP + 0.6 NT

sendo:

NT a nota teórica (NT ≥ 9.5, obrigatóriamente), obtida através da realização de uma prova individual escrita;

NP a nota prática (NP \geq 9.5, obrigatóriamente), resultante da realização de um teste laboratorial e um trabalho prático.

O trabalho prático são realizados em grupo (de 3 alunos), mas a nota prática é individual.

Datas previstas para as avaliações

Teste laboratorial = semana de **26 de Novembro**

Trabalho prático = entrega na semana 14 de Janeiro apresentação na semana 21 de Janeiro

Teste final = **29 de Janeiro** (Manhã)

9

O Paradigma Funcional de Programação

Haskell

```
fact 0 = 1
fact n = n * fact (n-1)
```

As equações que são usadas na definição da função fact são **equações matemáticas**. Elas indicam que o lado esquerdo e direito têm o mesmo valor.

C

```
int factorial(int n)
{ int i, r;
   i=1;
   r=1;
   while (i<=n) {
      r=r*i;
      i=i+1;
   }
   return r;
}</pre>
```

Isto é muito diferente do uso do = nas linguagens imperativas.

Por exemplo, a instrução **i=i+1** representa uma **atribuição** (o valor anterior de **i** é <u>destruído</u>, e o novo valor passa a ser o valor anterior mais 1). Portanto i é redefinido.

Porque = em Haskell significa "é, por definição, igual a", e não é possível redefinir, o que fazemos é raciocinar sobre equações matemáticas.

É, portanto, muito mais facil do que raciocinar sobre programas funcionais do que sobre programas imperativos.

O Paradigma Funcional de Programação

- Um **programa** é um conjunto de definições.
- Uma definição associa um nome a um valor.
- Programar é definir estruturas de dados e funções para resolver um dado problema.
- O interpretador (da linguagem funcional) actua como uma máquina de calcular:

lê uma expressão, calcula o seu valor e mostra o resultado

Exemplo: Um programa para converter valores de temperaturas em graus *Celcius* para graus *Farenheit*, e de graus *Kelvin* para graus *Celcius*.

Depois de carregar este programa no interpretador Haskell, podemos fazer os seguintes testes:

```
> celFar 25
77.0
> kelCel 0
-273
>
```

11

- A um conjunto de associações *nome-valor* dá-se o nome de **ambiente** ou **contexto** (ou *programa*).
- As expressões são avaliadas no âmbito de um contexto e podem conter ocorrências dos nomes definidos nesse contexto.
- O interpretador usa as definições que tem no contexto (programa) como regras de cálculo, para simplificar (calcular) o valor de uma expressão.

Exemplo: Este programa define três funções de conversão de temperaturas.

No interpretador ...

Transparência Referencial

- No paradigma funcional, as expressões:
 - são a representação concreta da informação;
 - podem ser associadas a nomes (definições);
 - denotam valores que s\(\tilde{a}\) determinados pelo interpretador da linguagem.
- No âmbito de um dado contexto, todos os nomes que ocorrem numa expressão têm um valor único e imotável.
- O valor de uma expressão depende *unicamente* dos valores das sub-expressões que a constituem, e essas podem ser substituidas por outras que possuam o mesmo valor.

A esta caracteristica dá-se o nome de transparência referencial.

13

Linguagens Funcionais

- O nome de *linguagens funcionais* advém do facto de estas terem como operações básicas a definição de funções e a aplicação de funções.
- Nas linguagens funcionais as funções são entidades de 1ª classe, isto é, podem ser usadas como qualquer outro objecto: passadas como parâmetro, devolvidas como resultado, ou mesmo armazenadas em estruturas de dados.

Isto dá às linguagens funcionais uma grande flexibilidade, capacidade de abstração e modularização do processamento de dados.

- As linguagens funcionais fornecem um alto nivel de abstração, o que faz com que os programas funcionais sejam mais **concisos**, mais **fáceis de entender / manter** e mais **rápidos de desenvolver** do que programas imperativos.
- No entanto, em certas situações, os programas funcionias podem ser mais penalizadores em termos de eficiência.

Um pouco de história ...

1960s Lisp (untyped, not pure)

1970s ML (*strongly typed, type inference, polymorphism*)

1980s Miranda (strongly typed, type inference, polymorphism, lazy evaluation)

1990s Haskell (strongly typed, type inference, polymorphism, lazy evaluation, ad-hoc polymorphism, monadic IO)

15

Haskell

- O Haskell é uma linguagem puramente funcional, fortemente tipada, e com um sistema de tipos extremamente evoluido.
- A linguagem usada neste curso é o Haskell 98.
- Exemplos de interpretadores e um compilador para a linguagem Haskell 98:
 - Hugs Haskell User's Gofer System
 - GHC Glasgow Haskell Compiler (é o que vamos usar ...)

www.haskell.org

Haskell

Haskell is a general purpose, purely functional programming language incorporating many recent innovations in programming language design. Haskell provides higher-order functions, non-strict semantics, static polymorphic typing, user-defined algebraic datatypes, pattern-matching, list comprehensions, a module system, a monadic I/O system, and a rich set of primitive datatypes, including lists, arrays, arbitrary and fixed precision integers, and floating-point numbers. Haskell is both the culmination and solidification of many years of research on lazy functional languages.

(The Haskell 98 Report)

17

Valores & Expressões

Os valores são as entidades básicas da linguagem Haskell. São os elementos atómicos.

As **expressões** são obtidas aplicando funções a valores ou a outras expressões.

O interpretador Haskell actua como uma *calculadora* ("read - evaluate - print loop"):

lê uma expressão, calcula o seu valor e apresenta o resultado.

Exemplos:

```
> 5
5
> 3.5 + 6.7
10.2
> 2 < 35
True
> not True
False
> not ((3.5+6.7) > 23)
True
```

Tipos

Os tipos servem para classificar entidades (de acordo com as suas caracteristicas).

Em Haskell toda a expressão tem um tipo associado.

e:: T significa que a expressão e tem tipo tem tipo

Informalmente, podemos associar a noção de "tipo" à noção de "conjunto", e a noção de "ter tipo" à noção de "pertença".

Exemplos:

58 :: Int
'a' :: Char
[3,5,7] :: [Int]
(8,'b') :: (Int,Char)
Inteiro
Caracter
Lista de inteiros
Par com um inteiro e um caracter

O Haskell é uma linguagem fortemente tipada, com um sistema de tipos muito evoluído (como veremos). Em Haskell, a verificação de tipos é feita durante a compilação.

19

Tipos Básicos

Boo1 **Boleanos:** True, False Char Caracteres: 'a', 'b', 'A', '1', '\n', '2', ... **Tnt** Inteiros de tamanho limitado: 1, -3, 234345, ... **Integer** Inteiros de tamanho ilimitado: 2, -7, 75756850013434682, ... Números de vírgula flutuante: 3.5, -6.53422, 51.2E7, 3e4, ... Float Double Núm. vírg. flut. de dupla precisão: 3.5, -6.5342, 51.2E7, ... () Unit () é o seu único elemento do tipo *Unit.*

Tipos Compostos

Produtos Cartesianos (T

```
(T1,T2,\ldots,Tn)
```

(T1, T2,...,Tn) é o tipo dos tuplos com o 1º elemento do tipo T1, 2º elemento do tipo T2, etc.

Exemplos:

Listas [T]

[T] é o tipo da listas cujos elementos $\underline{s\tilde{a}o\ todos}$ do tipo T.

Exemplos:

Funções T1 -> T2

T1 -> T2 é o tipo das funções que *recebem* valores do tipo T1 e *devolvem* valores do tipo T2.

Exemplos:

```
not :: Bool -> Bool
ord :: Char -> Int
```

21

Funções

A operação mais importante das funções é a sua aplicação.

Exemplos:

```
> not True
False :: Bool
> ord 'a'
97 :: Int
> ord 'A'
65 :: Int
> chr 97
'a' :: Char
```

Preservação de Tipos

O tipo de cada expressão é preservado ao longo do processo de cálculo.

Qual será o tipo de chr?

Novas definições de funções deverão que ser escritas num ficheiro, que depois será carregado no interpretador.

Definições

Uma definição associa um nome a uma expressão.

nome = expressão

nome tem que ser uma palavra começada por letra minúscula.

A definição de funções pode ainda ser feita por um conjunto de **equações** da forma:

nome arg1 arg2 ... argn = expressão

Quando se define uma função podemos incluir *informação sobre o seu tipo*. No entanto, essa informação não é obrigatória.

Exemplos:

23

Pólimorfismo

O tipo de cada função é inferido automáticamente pelo interpretador.

Exemplo:

Para a função g definida por:
$$g x = not (65 > ord x)$$

O tipo inferido é g :: Char -> Bool Porquê?

Mas, há funções às quais é possível associar mais do que um tipo concreto.

Exemplos:

id
$$x = x$$
 O que fazem estas funções ?
nl $y = '\n'$ Qual será o seu tipo ?

O problema é resolvido recorrendo a variáveis de tipo.

Uma variável de tipo representa um tipo qualquer.

```
id :: a -> a
nl :: a -> Char
```

Em Haskell:

- As variáveis de tipo representam-se por nomes começados por letras minúsculas (normalmente a, b, c, ...).
- Os tipos concretos usam nomes começados por letras maiúsculas (ex: Bool, Int, ...).

Quando as funções são usadas, as variáveis de tipos são substituídas pelos tipos concretos adquados.

Exemplos:

```
id True
id 'a'
nl False
nl (volCubo 3.2)
```

```
id :: Bool -> Bool
id :: Char -> Char
nl :: Bool -> Char
nl :: Float -> Char
```

25

Funções cujos tipos têm variáveis de tipo são chamadas funções polimórficas.

Um tipo pode conter diferentes variáveis de tipo.

Exemplo:

```
fst (x,y) = x
fst :: (a,b) \rightarrow a
```

Inferência de tipos

O tipo de cada função é inferido automáticamente pelo compilador de Haskell.

O compilaor infere sempre o *tipo mais preciso* de qualquer expressão *(o seu tipo principal)*.

É possivel associar a uma função um tipo *mais específico* do que o tipo inferido automaticamente.

Exemplo:

seg :: (Bool,Int)
$$\rightarrow$$
 Int seg (x,y) = y

O Haskell tem um enorme conjunto de definições (que está no módulo **Prelude**) que é carregado por omissão e que constitui a base da linguagem Haskell.

Alguns operadores:

```
Lógicos: && (e), || (ou), not (negação)
```

Numéricos: +, -, *, / (divisão de reais), ^ (exponenciação com inteiros),

div (divisão inteira), mod (resto da divisão inteira),** (exponenciações com reais), log, sin, cos, tan, ...

Relacionais: == (igualdade), /= (desigualdade), <, <=, >, >=

Condicional: if ... then ... else ...

Bool :: a

```
Exemplo:
    if (3>=5) then [1,2,3] else [3,4]
    [3,4]
    if (ord 'A' == 65) then 2 else 3
2
```

Módulos

Um programa Haskell está organizado em *módulos*.

Cada **módulo** é uma colecção de funções e tipos de dados, definidos num ambiente fechado.

Um módulo pode exportar todas ou só algumas das suas definições. (...)

```
module Nome (nomes_a_exportar) where
... definições ...
```

Ao arrancar o interpretador do GHC, **ghci**, este carrega o módulo **Prelude** (que contém um enorme conjunto de declarações) e fica à espera dos pedidos do utilizador.

O utilizador pode fazer dois tipos de pedidos ao interpretador **ghci**:

• Calcular o valor de uma expressão.

```
Prelude> 3+5
8
Prelude> (5>=7) || (3^2 == 9)
True
Prelude> fst (40/2,'A')
20.0
Prelude> pi
3.141592653589793
Prelude> aaa
<interactive>:1: Variable not in scope: `aaa'
Prelude>
```

- Executar um comando.
 - Os comandos do **ghci** começam sempre por dois pontos (:).
 - O comando :? lista todos os comandos existentes

```
Prelude> :?
  Commands available from the prompt:
```

Alguns comandos úteis:

```
:quit ou :q termina a execução do ghci.

:type ou :t indica o tipo de uma expressão.

Prelude> :t ype (2>5)
(2>5) :: Bool
Prelude> :t not
not :: Bool -> Bool
Prelude> :q
Leaving GHCi.
```

:load ou :l carrega o programa (o módulo) que está num dado ficheiro.

Exemplo: Considere o seguinte programa guardado no ficheiro Temp.hs

Temp.hs

```
module Temp where

celFar c = c * 1.8 + 32

kelCel k = k - 273

kelFar k = celFar (kelCel k)
```

Os programas em Haskell têm normalmente extensão .hs (de *haskell script*)

Depois de carregar um módulo, os nomes definidos nesse módulo passam a estar disponíveis no ambiente de interpretação

```
Prelude> kelCel 300

<interactive>:1: Variable not in scope: `kelCel'
Prelude> :load Temp
Compiling Temp ( Temp.hs, interpreted )
Ok, modules loaded: Temp.
*Temp> kelCel 300
27
*Temp>
```

Inicialmente, apenas as declarações do módulo Prelude estão no ambiente de interpretação. Após o carregamento do ficheiro Temp.hs, ficam no ambiente todas a definições feitas no módulo Temp e as definições do Prelude.

Um módulo constitui um *componente de software* e dá a possibilidade de gerar bibliotecas de funções que podem ser reutilizadas em diversos programas Haskell.

Exemplo: Muitas funções sobre caracteres estão definidas no módulo Char do GHC.

Para se utilizarem declarações feitas noutros módulos, que não o Prelude, é necessário primeiro fazer a sua importação através da instrução:

import Nome_do_módulo

Exemplo.hs

32

Comentários

É possível colocar comentários num programa Haskell de duas formas:

- O texto que aparecer a seguir a -- até ao final da linha é ignorado pelo interpretador.
- O texto que estiver entre {- e -} não é avaliado pelo interpretador. Podem ser várias linhas.

```
module Temp where

-- de Celcius para Farenheit
celFar c = c * 1.8 + 32

-- de Kelvin para Celcius
kelCel k = k - 273

-- de Kelvin para Farenheit
kelFar k = celFar (kelCel k)

{- dado valor da temperatura em Kelvin, retorna o triplo com
o valor da temperatura em Kelvin, Celcius e Farenheit -}
kelCelFar k = (k, kelCel k, kelFar k)
```

As funções test e test' são muito parecidas mas há uma diferença essencial:

```
test (x,y) = [ (not x), (y || x), (x && y) ] Têm tipos diferentes!
```

A função test recebe **um único** argumento (que é um par de booleanos) e devolve uma lista de booleanos.

```
test :: (Bool,Bool) -> [Bool]
> test (True,False)
```

A função test' recebe dois argumentos, cada um do tipo Bool, e devolve uma lista de booleanos.

```
test' :: Bool -> Bool -> [Bool]
> test' True False
```

A função test' recebe um valor de cada vez. Realmente, o seu tipo é:

```
test' :: Bool -> (Bool -> [Bool])
> (test' True) False
```

• O tipo função associa à direita.

Isto é,
$$f :: T1 \rightarrow T2 \rightarrow ... \rightarrow Tn \rightarrow T$$

é uma forma abreviada de escrever

$$f :: T1 \rightarrow (T2 \rightarrow (... \rightarrow (Tn \rightarrow T)...))$$

• A aplicação de funções é associativa à esquerda.

Isto
$$\acute{e}$$
, f x1 x2 ... xn

é uma forma abreviada de escrever

35

Exercício:

Considere a seguinte declaração das funções fun1, fun2 e fun3.

fun1
$$(x,y) = (not x) || y$$

fun2 a b = $(a||b, a&&b)$
fun3 x y z = x && y && z

Qual será o tipo de cada uma destas funções ? Dê exemplos da sua invocação.

Lista e String

[a] é o tipo das listas cujos elementos <u>são todos</u> do tipo **a** .

Exemplos:

```
[2,5,6,8]
                                [Integer]
[(1+3,'c'),(8,'A'),(4,'d')] :: [(Int,Char)]
[3.5, 86.343, 1.2*5]
                             :: [Float]
['0','1','a']
                             :: [Char]
```

Não são listas bem formadas, porque os seus elementos não têm todos o mesmo tipo!

String O Haskell tem pré-definido o tipo **String** como sendo **[Char]**.

Os valores do tipo String também se escrevem de forma abreviada entre "...".

Exemplo:

37

Algumas funções sobre listas definidas no Prelude.

dá o primeiro elemento da lista (a cabeça da lista). **head** :: [a] -> a

dá a lista sem o primeiro elemento (a cauda da lista). **tail** :: [a] -> [a]

take :: Int -> [a] -> [a] dá um segmento inicial de uma lista.

dá um segmento final de uma lista. **drop** :: Int -> [a] -> [a]

reverse :: [a] -> [a] calcula a lista invertida.

dá o último elemento da lista. **last** :: [a] -> a

Exemplos:

Funções sobre String definidas no Prelude.

```
words :: String -> [String] dá a lista de palavras de um texto.
unwords :: [String] -> String constrói um texto a partir de uma lista de palavras.
lines :: String -> [String] dá a lista de linhas de um texto (i.e. parte pelo '\n').
```

Exemplos:

```
Prelude> words "aaaa bbbb cccc\tddddd eeee\nffff gggg hhhh"
["aaaa","bbbb","cccc","ddddd","eeee","ffff","gggg","hhhh"]
Prelude> unwords ["aaaa","bbbb","cccc","ddddd","eeee","ffff","gggg","hhhh"]
"aaaa bbbb cccc ddddd eeee ffff gggg hhhh"
Prelude> lines "aaaa bbbb cccc\tddddd eeee\nffff gggg hhhh"
["aaaa bbbb cccc\tddddd eeee","ffff gggg hhhh"]
```

Prelude> reverse "programacao funcional"
"lanoicnuf oacamargorp"

Listas por Compreensão

Inspirada na forma de definir conjuntos por compreensão em linguagem matemática, a linguagem Haskell tem também mecanismos para definir listas por compreensão.

= [(3,9),(3,10),(4,9),(4,10),(5,9),(5,10)]

Listas infinitas

$$\{5,10,...\}$$
 [5,10..] = [5,10,15,20,25,30,35,40,45,50,55,... $\{x^3 \mid x \in \mathbb{N} \land par(x)\}$ [$x^3 \mid x \leftarrow [0..]$, even x] = [0,8,46,216,...

Mais exemplos:

```
Prelude> ['A'..'Z']

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Prelude> ['A','C'..'X']

"ACEGIKMOQSUW"

Prelude> [50,45..(-20)]
[50,45,40,35,30,25,20,15,10,5,0,-5,-10,-15,-20]

Prelude> drop 20 ['a'..'z']

"uvwxyz"

Prelude> take 10 [3,3..]
[3,3,3,3,3,3,3,3,3,3,3]
```

41

Equações e Funções

Uma função pode ser definida por equações que relacionam os seus argumentos com o resultado pretendido.

```
triplo x = 3 * x
dobro y = y + y
perimCirc r = 2*pi*r
perimTri x y z = x+y+z
minimo x y = if x>y them y else x
```

As equações definem regras de cálculo para as funções que estão a ser definidas.

```
nome arg1 arg2 ... argn = expressão

Nome da função

Argumentos da função.

(iniciada por letra minúscula).

Cada argumento é um padrão.

(cada variável não pode ocorrer mais do que uma vez)
```

O tipo da função é *inferido* tendo por base que ambos os lados da equação têm que ter o mesmo tipo.

Padrões (patterns)

Um **padrão** é <u>uma variável</u>, <u>uma constante</u>, ou <u>um "esquema" de um valor atómico</u> (isto é, o resultado de aplicar construtores básicos dos valores a outros padrões).

No Haskell, um padrão **não** pode ter variáveis repetidas (*padrões lineares*).

Exemplos:

Padrões **Tipos** Não padrões X a [x, 'a', 1]True Bool Int (x,y,(True,b))(a,b,(Bool,c)) ('A',False,x) (Char, Bool, a) [x,'a',y] Porquê? [Char]

Quando não nos interessa dar nome a uma variável, podemos usar _ que representa uma variável anónima nova.

Exemplos:
$$snd(_,x) = x$$

 $segundo(_,y,_) = y$

43

Exemplos:

soma :: (Int,Int)
$$\rightarrow$$
 Int \rightarrow (Int,Int) soma (x,y) z = (x+z, y+z)

outro modo seria

soma w z =
$$((fst w)+z, (snd w)+z)$$

Qual é mais legível?

```
exemplo :: (Bool,Float) \rightarrow ((Float,Int), Float) \rightarrow Float exemplo (True,y) ((x,_),w) = y*x + w exemplo (False,y) _ = y
```

em alternativa, poderiamos ter

```
exemplo a b = if (fst a) then (snd a)*(fst (fst b)) + (snd b) else (snd a)
```

Redução

O cálculo do valor de uma expressão é feito usando as equações que definem as funções como regras de cálculo.

Uma **redução** é um passo do processo de cálculo (é usual usar o símbolo ⇒ denotar esse passo)

Cada redução resulta de substituir a *instância* do lado esquerdo da equação (o redex) pelo respectivo lado direito (o contractum).

Exemplos: Relembre as seguintes funções

Exemplos: triplo $7 \Rightarrow 3*7 \Rightarrow 21$

A instância de (triplo x) resulta da substituição [7/x].

snd $(9,8) \Rightarrow 8$

A instância de snd $(_,x)$ resulta da substituição $[9/_,8/x]$.

45

A expressão dobro (triplo (snd (9,8))) pode reduzir de três formas distintas:

```
dobro (triplo (snd (9,8))) \Rightarrow dobro (triplo 8)
dobro (triplo (snd (9,8))) \Rightarrow dobro (3*(snd (9,8)))
dobro (triplo (snd (9,8))) \Rightarrow (triplo (snd (9,8)))+(triplo (snd (9,8)))
```

A estratégia de redução usada para o cálculo das expressões é uma característica essencial de uma linguagem funcional.

O **Haskell** usa a estratégia *lazy evaluation* (*call-by-name*), que se caracteriza por escolher para reduzir sempre o redex mais externo. Se houver vários redexes ao mesmo nível escolhe o redex mais à esquerda (*outermost; leftmost*).

Uma outra estratégia de redução conhecida é a *eager evaluation* (*call-by-value*), que se caracteriza por escolher para reduzir sempre o redex mais interno. Se houver vários redexes ao mesmo nível escolhe o redex mais à esquerda (*innermost; leftmost*).

Lazy Evaluation (call-by-name)

```
dobro (triplo (snd (9,8))) ⇒ (triplo (snd (9,8)))+(triplo (snd (9,8)))

⇒ (3*(snd (9,8))) + (triplo (snd (9,8)))

⇒ (3*(snd (9,8))) + (3*(snd (9,8)))

⇒ (3*8) + (3*(snd (9,8)))

⇒ 24 + (3*(snd (9,8)))

⇒ 24 + (3*8)

⇒ 24 + 24

⇒ 48
```

Com a estrategia *lazy* os parametros das funções só são calculados se o seu valor fôr mesmo necessário.

nl (triplo (dobro
$$(7*45)$$
) \Rightarrow '\n'

A *lazy evaluation* faz do Haskell uma linguagem **não estrita**. Esto é, uma função aplicada a um valor indefinido pode ter em Haskell um valor bem definido.

$$nl (3/0) \Rightarrow ' n'$$

A lazy evaluation também vai permitir ao Haskell lidar com estruturas de dados infinitas.

47

Podemos definir uma função recorrendo a várias equações.

Todas as equações têm que ser bem tipadas e de tipos coincidentes.

Cada equação é usada como regra de redução. Quando uma função é aplicada a um argumento, a equação que é selecionada como regra de redução é a 1ª equação (a contar de cima) cujo padrão que tem como argumento concorda com o argumento actual (pattern matching).

Exemplos:

$$h ('a',5) \Rightarrow 3*5 \Rightarrow 15$$

$$h ('b',4) \Rightarrow 4+4 \Rightarrow 8$$

$$h ('B',9) \Rightarrow 9$$

Note: Podem existir *várias* equações com padrões que concordam com o argumento actual. Por isso, a ordem das equações é importante, pois define uma prioridade na escolha da regra de redução.

O que acontece se alterar a ordem das equações que definem h?

Funções Totais & Funções Parciais

Uma função diz-se total se está definida para todo o valor do seu domínio.

Uma função diz-se **parcial** se há valores do seu domínio para os quais ela não está definida (isto é, não é capaz de produzir um resultado no conjunto de chegada).

Exemplos:

```
conjuga :: (Bool, Bool) -> Bool
conjuga (True, True) = True
conjuga (x,y) = False
Fund
```

Função total

```
parc :: (Bool,Bool) -> Bool
parc (True,False) = False
parc (True,x) = True
```

Função parcial

Porquê?

49

Tipos Sinónimos

O Haskell pode renomear tipos através de declarações da forma:

```
type Nome p1 ... pn = tipo

parâmetros (variáveis de tipo)
```

Exemplos:

```
type Ponto = (Float,Float)
type ListaAssoc a b = [(a,b)]
```

Note que não estamos a criar tipos novos, mas apenas nomes novos para tipos já existentes. Esses nomes devem contribuir para a compreensão do programa.

```
Exemplo:
```

```
distOrigem :: Ponto -> Float
distOrigem (x,y) = sqrt (x^2 + y^2)
```

O tipo **String** é outro exemplo de um tipo sinónimo, definido no Prelude.

```
type String = [Char]
```

Definições Locais

Uma definição associa um nome a uma expressão.

Todas as definições feitas até aqui podem ser vistas como **globais**, uma vez que elas são visíveis no *módulo* do programa aonde estão. Mas, muitas vezes é útil reduzir o âmbito de uma declaração.

Em Haskell há duas formas de fazer definições **locais**: utilizando expressões **let** ... **in** ou através de cláusulas **where** junto da definição equacional de funções.

Exemplos:

```
Porquê?
let c = 10
     (a,b) = (3*c, f 2)
                                        > testa 5
     f x = x + 7*c
                                        320
                              242
in fa + fb
                                        > C
                                        Variable not in scope: `c'
testa y = 3 + f y + f a + f b
  where c = 10
                                        > f a
         (a,b) = (3*c, f 2)
                                        Variable not in scope:
        f x = x + 7*c
                                        Variable not in scope:
```

As declarações locais podem ser de funções e de identificadores (fazendo uso de padrões).

51

Layout

Ao contrário de quase todas as linguagens de programação, o Haskell não necessita de marcas para delimitar as diversas declarações que constituem um programa.

Em Haskell a *identação do texto* (isto é, a forma como o texto de uma definição está disposto), tem um significado bem preciso.

Regras fundamentais:

- 1. Se uma linha começa mais à frente do que começou a linha anterior, então ela deve ser considerada como a continuação da linha anterior.
- 2. Se uma linha começa na mesma coluna que a anterior, então elas são consideradas definições independentes.
- 3. Se uma linha começa mais atrás do que a anterior, então essa linha não pretence à mesma lista de definições.

Ou seja: definições do mesmo género devem começar na mesma coluna

Exemplo:

```
exemplo :: Float -> Float -> Float
exemplo x 0 = x
exemplo x y = let a = x*y
b = if (x>=y) then x/y
else y*x
c = a-b
in (a+b)*c
```

Operadores

Operadores infixos como o +, *, && , ..., não são mais do que funções.

Um operador infixo pode ser usado como uma função vulgar (i.e., usando notação prefixa) se estiver entre parentesis.

Exemplo: (+) 2 3 é equivalente a 2+3

Podem-se definir novos operadores infixos.

$$(+>)$$
 :: Float -> Float -> Float $x +> y = x^2 + y$

Funções binárias podem ser usadas como um operador infixo, colocando o seu nome entre ``.

Exemplo: mod :: Int -> Int -> Int

3 'mod' 2 é equivalente a mod 3 2

53

Cada operador tem uma prioridade e uma associatividade estipulada.

Isto faz com que seja possível evitar alguns parentesis.

Exemplo:
$$x + y + z$$
 é equivalente a $(x + y) + z$
 $x + 3 * y$ é equivalente a $x + (3 * y)$

A aplicação de funções tem prioridade máxima e é associativa à esquerda.

```
Exemplo: \mathbf{f} \times \mathbf{y} é equivalente a (\mathbf{f} \times) \times \mathbf{y}
```

É possível indicar a prioridade e a associatividade de novos operadores através de declarações.

```
infixl num op
infixr num op
infix num op
```

Funções com Guardas

Em Haskell é possível definir funções com alternativas usando guardas.

Uma guarda é uma expressão booleana. Se o seu valor for True a equação correspondente será usada na redução (senão tenta-se a seguinte).

Exemplos:

é equivalente a

ou a

otherwise é equivalente a True.

55

Exemplo: Raizes reais do polinómio $\alpha x^2 + b x + c$

error é uma função pré-definida que permite indicar a mensagem de erro devolvida pelo interpretador. Repare no seu tipo

error :: String -> a

```
> raizes (2,10,3)
(-0.320550528229663,-4.6794494717703365)
> raizes (2,3,4)
*** Exception: raizes imaginarias
```

Listas

[T] é o tipo das listas cujos elementos <u>são todos</u> do tipo T -- *listas homogéneas*.

```
[3.5^2, 4*7.1, 9+0.5] :: [Float]
[(253, "Braga"), (22, "Porto"), (21, "Lisboa")] :: [(Int, String)]
[[1,2,3], [1,4], [7,8,9]] :: [[Integer]]
```

Na realidade, as listas são construidas à custa de dois construtores primitivos:

- a lista vazia []
- o construtor (:), que é um operador infixo que dado um elemento x de tipo a e uma lista 1 de tipo [a], constroi uma nova lista com x na 1ª posição seguida de 1.

```
[1,2,3] é uma abreviatura de 1:(2:(3:[])) que é igual a 1:2:3:[] porque (:) é associativa à direita.
```

```
Portanto: [1,2,3] = 1:[2,3] = 1:2:[3] = 1:2:3:[]
```

57

Os padrões do tipo lista são expressões envolvendo apenas os construtores : e [] (*entre parentesis*), ou a representação abreviada de listas.

```
head (x:xs) = x
```

Qual o tipo destas funções ?

As funções são totais ou parciais?

$$tail (x:xs) = xs$$

```
soma3 :: [Integer] -> Integer
soma3 [] = 0
soma3 (x:y:z:t) = x+y+z
soma3 (x:y:t) = x+y
soma3 (x:t) = x
```

```
> head [3,4,5,6]
3
> tail "HASKELL"
"ASKELL"
> head []
*** exception
> null [3.4, 6.5, -5.5]
False
> soma3 [5,7]
13
```

Recorrência

Como definir a função que calcula o comprimento de uma lista?

Temos dois casos:

- Se a lista fôr vazia o seu comprimento é zero.
- Se a lista não fôr vazia o seu comprimento é um mais o comprimento da cauda da lista.

```
length [] = 0
length (x:xs) = 1 + length xs
```

Esta função é **recursiva** uma vez que se invoca a si própria (aplicada à cauda da lista).

A função termina uma vez que as invocações recursivas são feitas sobre listas cada vez mais curtas, e vai chegar ao ponto em que a lista é vazia.

```
length [1,2,3] = length (1:[2,3]) \Rightarrow 1 + length [2,3] \Rightarrow 1 + (1 + length [3]) \Rightarrow 1 + (1 + (1 + length [])) \Rightarrow 1 + (1 + (1 + 0)) \Rightarrow 3
```

Em linguagens funcionais, a recorrência é a forma de obter ciclos.

Mais alguns exemplos de funções já definidas no módulo Prelude:

```
sum [] = 0

sum (x:xs) = x + sum xs
```

Qual o tipo destas funções?

São totais ou parciais?

last [x] = x
last (_:xs) = last xs

Podemos trocar a ordem das equações ?

```
(++) :: [a] -> [a] -> [a]
[] ++ 1 = 1
(x:xs) ++ 1 = x : (xs ++ 1)
```

Considere a função zip já definida no Perlude:

```
zip [] = []
zip[](y:ys) = []
zip (x:xs) [] = []
zip (x:xs) (y:ys) = (x,y) : (zip xs ys)
```

Qual o seu tipo? É total ou parcial? Podemos trocar a ordem das equações? Podemos dispensar alguma equação? Será que podemos definir zip com menos equações?

Exercícios:

Indique todos os passos de redução envolvidos no cálculo da expressão:

- Defina a função que faz o "zip" de 3 listas.
- Defina a função unzip :: [(a,b)] -> ([a],[b])

Padrões sobre números naturais.

O Haskell aceita como um padrão sobre números naturais, expressões da forma:

(variável + número_natural)

```
Exemplos:
```

```
fact 0 = 1
fact (n+1) = (n+1) * (fact n)
decTres (x+3) = x
```

```
> fact 4
24
> fact (-2)
*** Exception: Non-exhaustive patterns in function fact
```

```
> decTres 5
> decTres 10
> decTres 2
*** Exception: Non-exhaustive ...
```

```
Atenção: expressões como
   (n*5), (x-4) ou (2+n)
 não são padrões!
```

Mais alguma funções sobre listas pré-definidas no Prelude.

$$(x:_) !! 0 = x$$

 $(_:xs) !! (n+1) = xs !! n$

O que fazem estas funções?

Qual o seu tipo?

Estas funções serão totais?

Trocando a ordem das equações, será que obtemos a mesma função?

63

As funções take e drop estão pré-definidas no Prelude da seguinte forma:

```
take :: Int -> [a] -> [a]
take n _ | n <= 0 = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs</pre>
```

Estas funções serão totais?

Trocando a ordem das equações, será que obtemos a mesma função ?

Defina funções equivalentes utilizando padrões de números naturais.

nome@padrão é uma forma de fazer uma definição local ao nível de um argumento de uma função.

Exemplos:

ou

```
A função fun :: (Int,String) -> (Char,(Int,String))

pode ser definida, equivalentemente, por:

fun (n,(x:xs)) = (x,(n,(x:xs))

ou fun par@(n,(x:xs)) = (x,par)
```

fun (n,(x:xs)) = let par = (n,(x:xs))

in (x,par)

```
{- Esta função vai retirando os elementos de uma lista até encontrar um elemento não positivo -}
```

Algoritmos de Ordenação

A ordenação de um conjunto de valores é um problema muito frequente, e muito útil na organização de informação.

Para o problema de ordenação de uma lista de valores, existem diversos algoritmos:

- Insertion Sort
- Quick Sort
- Merge Sort
- •

Vamos apresentar estes algoritmos, para *ordenar uma lista de valores por ordem crescente*, de acordo com os operadores relacionais <, <=, >, e >= (que implicítamente assumimos estarem definidos para os tipos desses valores).

Insertion Sort

Algoritmo:

- 1. Seleciona-se a cabeça da lista.
- 2. Ordena-se a cauda da lista.
- 3. Insere-se a cabeça da lista na cauda ordenada, de forma a que a lista resultante continue ordenada.

```
isort [] = []
isort (x:xs) = insert x (isort xs)
```

A função insert (que faz a inserção ordenada) é o núcleo deste algoritmo.

```
isort [3,5,6,2,7,5,8] \Rightarrow insert 3 (isort [5,6,2,7,5,8])
\Rightarrow ... \Rightarrow insert 3 [2,5,5,6,7,8]
\Rightarrow ... \Rightarrow [2,3,5,5,6,7,8]
```

67

Insertion Sort

Exemplo: Esquema do cálculo de (isort [5,3,4,8,3,1,9])

Quick Sort

Algoritmo:

- 1. Seleciona-se a cabeça da lista (como *pivot*) e parte-se o resto da lista em duas sublistas: uma com os elementos inferiores ao pivot, e outra com os elementos não inferiores.
- 2. Estas sublistas são ordenadas.
- 3. Concatena-se as sublistas ordenadas, de forma adquada, conjuntamente com o pivot.

Esta versão do qsort é pouco eficiente ...

Quantas travessias da lista se estão a fazer para partir a lista?

```
qsort [5,3,4,8,3,7,1,9] \Rightarrow
... \Rightarrow (qsort [3,4,3,1])++[5]++(qsort [8,7,9])
\Rightarrow ... \Rightarrow [1,3,3,4] ++ [5] ++ [7,8,9]
\Rightarrow ... \Rightarrow [1,3,3,4,5,7,8,9]
```

69

Quick Sort

Exemplo: Esquema do cálculo de (qsort [5,3,4,8,3,1,9])

Uma *versão mais eficiente* (fazendo a partição da lista numa só passagem), pode ser:

Merge Sort

Algoritmo:

- 1. Parte-se a lista em duas sublistas de tamanho igual (ou quase).
- 2. Ordenam-se as duas sublistas.
- 3. Fundem-se as sublistas ordenadas, de forma a que a lista resultante figue ordenada.

Esta versão do msort é muito pouco eficiente ...

Quantas travessias da lista se está a fazer para partir a lista em duas ?

71

Merge Sort

Exemplo: Esquema do cálculo de (msort [5,3,4,8,3,1,9])

Uma *versão mais eficiente* (fazendo a partição da lista numa só passagem), pode ser:

```
mergesort [] = []
mergesort [x] = [x]
mergesort l = merge (mergesort l1) (mergesort l2)
  where (l1,l2) = split l
```

Acumuladores

Considere a definição da função factorial.

```
fact 0 = 1
fact n \mid n>0 = n * fact (n-1)
```

O cálculo da factorial de um número positivo n é feito multiplicando n pelo factorial de (n-1). A multiplicação fica *em suspenso* até que o valor de fact (n-1) seja sintetizado.

```
fact 3 \Rightarrow 3*(fact 2) \Rightarrow 3*(2*(fact 1)) \Rightarrow 3*(2*(1*(fact 0))) \Rightarrow 3*(2*(1*1)) \Rightarrow 6
```

Uma outra estratégia para resolver o mesmo problema, consiste em definir uma função auxiliar com um parametro extra que serve para ir guardando os resultados parciais — a este parametro extra chama-se acumulador.

```
fact n | n >=0 = factAc 1 n
where factAc ac 0 = ac
    factAc ac n = factAc (ac*n) (n-1)
```

```
fact 3 \Rightarrow factAc 1 3 \Rightarrow factAc (1*3) 2 \Rightarrow factAc (1*3*2) 1 \Rightarrow factAc (1*2*3*1) 0 \Rightarrow 1*2*3*1 \Rightarrow 6
```

Dependendo do problema a resolver, o uso de acumuladores pode ou não trazer vantagens.

Por vezes, pode ser a forma mais natural de resolver um problema.

Exemplo:

Considere as duas versões da função que faz o cálculo do valor máximo de uma lista.

Qual lhe parece mais natural?

```
maximum [x] = x

maximum (x:y:xs) \mid x > y = maximum (x:ys)

\mid otherwise = maximum (y:xs)
```

```
maximo (x:xs) = maxAc x xs
where maxAc ac [] = ac
    maxAc ac (y:ys) = if y>ac then maxAc y ys
    else maxAc ac ys
```

Em maximo o acumulador guarda o valor máximo encontrado até ao momento.

Em maximum a cabeça da lista está a funcionar como acumulador.

Considere a função que inverte uma lista.

```
reverse [] = []

reverse (x:xs) = (reverse xs) ++ [x]

reverse [1,2,3] \Rightarrow (reverse [2,3])++[1] \Rightarrow ((reverse [3])++[2])++[1]

\Rightarrow (((reverse [])++[3])++[2])++[1] \Rightarrow (([]++[3])++[2])++[1]

\Rightarrow ([3]++[2])++[1] \Rightarrow (3:([]++[2]))++[1] \Rightarrow (3:[2])++[1]

\Rightarrow 3:([2]++[1]) \Rightarrow 3:(2:([]++[1])) \Rightarrow 3:2:[1] = [3,2,1]
```

Este é um exemplo típico de uma função que implementada com um acumulador é muito mais eficiente.

```
reverse l = revAc [] l
where revAc ac [] = ac
revAc ac (x:xs) = revAc (x:ac) xs

reverse [1,2,3] ⇒ revAc [] [1,2,3] ⇒ revAc [1] [2,3]
⇒ revAc [2,1] [3] ⇒ revAc [3,2,1] [] ⇒ [3,2,1]

75
```

Funções de Ordem Superior

Em Haskell, as funções são entidades de primeira ordem, isto é, as funções podem ser passadas como parametro e/ou devolvidas como resultado de outras funções

Exemplo: A função app tem como argumento uma função f de tipo a->b.

```
app :: (a->b) \to (a,a) \to (b,b) app fact (5,4) \Rightarrow (120,24) app f (x,y) = (f x, f y) app chr (65,70) \Rightarrow ('A','F')
```

Exemplo:

A função mult pode ser entendida como tendo dois argumentos de tipo Int e devolvendo um valor do tipo Int. Mas, na realidade, mult é uma função que recebe um argumento do tipo Int e devolve uma função de tipo Int->Int.

```
mult :: Int -> Int -> Int mult x y = x * y

Em Haskell, todas a funções são unárias!

mult 2 5 \equiv (mult 2) 5 :: Int

(mult 2) :: Int -> Int
```

Assim, mult pode ser usada para *gerar novas funções*.

```
Exemplo: dobro = mult 2 Qual é o seu tipo ? triplo = mult 3
```

Os operadores infixos também podem ser usados da mesma forma, isto é, aplicados a apenas um argumento, gerando assim uma nova função.

77

map

Considere as seguintes funções:

```
distancias :: [Ponto] -> [Float]
distancias [] = []
distancias (p:ps) = (distOrigem p) : (distancias ps)

minusculas :: String -> String
minusculas [] = []
minusculas (c:cs) = toLower c : minusculas cs

triplica :: [Double] -> [Double]
triplica [] = []
triplica (x:xs) = (3*x) : triplica xs

factoriais :: [Integer] -> [Integer]
factoriais [] = []
factoriais (n:ns) = fact n : factoriais ns
```

Todas estas funções têm um *padrão de computação* comum:

aplicam uma função a cada elemento de uma lista, gerando deste modo uma nova lista.

map

Podemos definir uma função de ordem superior que aplica uma função ao longo de uma lista:

```
map :: (a \rightarrow b) \rightarrow [a] \rightarrow [b]
map f [] = []
map f (x:xs) = (f x) : (map f xs)
```

```
Note que (map f lista) é equivalente a [ f x | x < - lista ]
```

Podemos definir as funções do slide anterior à custa da função map, fazendo:

```
distancias lp = map distOrigem lp

minusculas s = map toLower s

triplica xs = map (3*) xs

factoriais ns = map fact ns

Ou então,

distancias = map distOr
```

```
distancias = map distOrigem

Porquê?

minusculas = map toLower

triplica = map (3*)

factoriais = map fact
```

79

filter

Considere as seguites funções:

Todas estas funções têm um *padrão de computação* comum:

dada uma lista, geram uma nova lista com os elementos da lista que satisfazem um determinado predicado.

filter

filter é uma função de ordem superior que filtra os elementos de uma lista que verificam um dado predicado (i.e. mantém os elementos da lista para os quais o predicado é verdadeiro).

Note que (filter p lista) é equivalente a $[x \mid x < -lista, p x]$

Podemos definir as funções do slide anterior à custa da função **filter**, fazendo:

Funções anónimas

Em Haskell, é possível definir novas funções através de *abstrações lambda* (λ) da forma:

representando uma função com argumento formal x e corpo da função e (a notação e inspirada no λ -calculus aonde isto se escreve $\lambda x.e$)

Exemplos:

Funções com mais do que um argumento podem ser definidas de forma *abreviada* por:

Além disso, os argumentos p1 ... pn podem ser padrões.

Exemplos:

Note que: $\xy \rightarrow x+y \equiv \xy \rightarrow (\yy \rightarrow x+y)$ Justifique com base no tipo.

Como ao definir estas funções não lhes associamos um nome, elas dizem-se **anónimas**.

Funções anónimas

É possível utilizar funções anónimas na definição de outras funções.

```
Exemplos: dobro = \x-\x+\x > dobro 5
10 > cauda = \(-\x+\x+\x+\x | [3,4,5]
```

As funções anónimas são úteis para evitar a declaração de funções auxiliares.

trocaPares xs = map troca xs where troca (x,y) = (y,x) trocaPares xs = map (\((x,y)->(y,x))\) xs primQuad = filter (\((x,y)->0<x && 0<y)\)</pre>

Os operadores infixos aplicados apenas a um argumento são uma forma abreviada de escrever funções anónimas.

Exemplos:
$$(+y) \equiv \langle x - \rangle x + y$$

$$(x+) \equiv \langle y - \rangle x + y$$

$$(*5) \equiv \langle x - \rangle x * 5$$

83

foldr

Considere as seguintes funções:

```
sum [] = 0

sum (x:xs) = x + (sum xs)

product [] = 1

product (x:xs) = x * (product xs)

and [] = True

and (b:bs) = b && (and bs)

concat [] = []

concat (1:1s) = 1 ++ (concat 1s)
```

Todas estas funções têm um *padrão de computação* comum:

aplicar um operador binário ao primeiro elemento da lista e ao resultado de aplicar a função ao resto da lista.

O que se está a fazer é a extensão de uma operação binária a uma lista de operandos.

foldr

Podemos capturar este padrão de computação fornecendo à função **foldr** o operador binário e o resultado a devolver para a lista vazia.

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
```

```
Note que (foldr f z [x1,...,xn]) é igual a (f x1 (... (f xn z)...)) ou seja, (x1 `f` (x2 `f` (... (xn `f` z)...))) (associa à direita)
```

Podemos definir as funções do slide anterior à custa da função **foldr**, fazendo:

```
sum xs = foldr (+) 0 xs
product xs = foldr (*) 1 xs
and bs = foldr (&&) True bs
concat ls = foldr (++) [] ls
```

Exemplos:

```
(product [4,3,5]) \Rightarrow 4 * (3 * (5 * 1)) \Rightarrow 60
(concat [[3,4,5],[2,1],[7,8]]) \Rightarrow [3,4,5] ++ ([2,1] ++ ([7,8]++[]))
\Rightarrow [3,4,5,2,1,7,8]
```

foldl

Podemos usar um padrão de computação semelhante ao do foldr, mas *associando* à *esquerda*, através da função foldl.

```
foldl :: (a \rightarrow b \rightarrow a) \rightarrow a \rightarrow [b] \rightarrow a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs
```

```
Note que (foldl f z [x1,...,xn]) é igual a (f (...(f z x1) ...) xn) ou seja, ((...(z `f` x1) `f` x2)...) `f` xn) (associa à esquerda)
```

Exemplos:

```
concat ls = foldl (+) 0 xs

concat ls = foldl (++) [] ls

reverse xs = foldl (\t h -> h:t) [] xs

sum [1,2,3] \Rightarrow ((0 + 1) + 2) + 3 \Rightarrow 6

concat [[2,3],[8,4,7],[1]] \Rightarrow (([]++[2,3]) ++ [8,4,7]) ++ [1]

\Rightarrow [2,3,8,4,7,1]

reverse [3,4] \Rightarrow ((\t h -> h:t) ((\t h -> h:t) [] 3) 4)

\Rightarrow 4: ((\t h -> h:t) [] 3) \Rightarrow 4:3:[] \Rightarrow [4,3]
```

foldr vs foldl

Note que (foldr f z xs) e (foldl f z xs) só darão o mesmo resultado se a função f for comutativa e associativa, caso contrário dão resultados distintos.

Exemplo:

foldr (-) 8 [4,7,3,5]
$$\Rightarrow$$
 4 - (7 - (3 - (5 - 8))) \Rightarrow 3

foldl (-) 8 [4,7,3,5]
$$\Rightarrow$$
 (((8 - 4) - 7) - 3) - 5 \Rightarrow -11

As funções foldr e foldl estão formemente relacionadas com as estratégias para contruir funções recursivas sobre listas que vimos atrás.

foldr está relacionada com a recursividade primitiva.

foldl está relacionada com o uso de acumuladores.

Exercício: Considere as funções

sumR xs = foldr
$$(+)$$
 0 xs
sumL xs = foldl $(+)$ 0 xs

Escreva a cadeia de redução das expressões (sumR [1,2,3]) e (sumL [1,2,3]) e compare com o funcionamento da função somatório definida sem e com e acumuladores.

87

Outras funções de ordem superior

Composição de funções

Trocar a ordem dos argumentos

Obter a versão curried de uma função

Obter a versão *uncurried* de uma função

quocientes $[(3,4),(23,5),(7,3)] \Rightarrow$

uncurry ::
$$(a \rightarrow b \rightarrow c) \rightarrow (a,b) \rightarrow c$$

uncurry f $(x,y) = f x y$

[0,4,2]

Exemplos:

Novos Tipos de Dados

Para além dos *tipos básicos*, dos *tipos compostos* e dos *tipos sinónimos*, o Haskell dá ainda a possibilidade de definir **novos tipos de dados**, através de declarações da forma:

Estas declarações definem *tipos algébricos*, eventualmente, *polimórficos*.

Cada *construtor de dados* funciona como uma função (eventualmente, constante) que recebe argumentos (do tipo indicado para o construtor) e *constroi* um valor do novo tipo de dados.

Tipos Algébricos

Exemplos: data Cor = Azul | Amarelo | Verde | Vermelho

O tipo Cor está a ser definido à custa de 4 construtores constantes: Azul, Amarelo, Verde e Vermelho, que serão os únicos valores deste tipo.

Azul :: Cor Amarelo :: Cor Verde :: Cor

A este género de tipo algébrico dá-se o nome de tipo enumerado.

O tipo Bool já pré-definido é também um exemplo de um tipo enumerado.

data Bool = False | True

Podemos agora definir funções envolvendo estes tipos algébricos:

fria :: Cor -> Bool
fria Azul = True
fria Verde = True
fria _ = False
quente :: Cor -> Bool
quente Amarelo = True
quente Vermelho = True
quente _ = False

Tipos Algébricos

Exemplo: data (

data CCart = Coord Float Float

Os valores do tipo $\frac{CCart}{s}$ são expressões da forma $\frac{Coord}{x}$ y), em que x e y são valores do tipo $\frac{CCart}{s}$ são expressões da forma $\frac{CCoord}{x}$ y), em que x e y são valores do tipo $\frac{CCart}{s}$ são expressões da forma $\frac{CCoord}{s}$ y), em que x e y são valores do tipo $\frac{CCart}{s}$ são expressões da forma $\frac{CCOOrd}{s}$ y), em que x e y são valores do tipo $\frac{CCart}{s}$ são expressões da forma $\frac{CCOOrd}{s}$ y), em que x e y são valores do tipo $\frac{CCart}{s}$ são expressões da forma $\frac{CCOOrd}{s}$ y).

Coord pode ser vista como uma função cujo tipo é

Coord :: Float -> Float -> CCart

mas os *construtores são funções especiais*, pois não têm nenhuma definição associada.

Expressões como (Coord 1 3.1) ou (Coord 3 0.7), não podem ser reduzidas, e são exemplos de valores atómicos do tipo CCart.

Exemplo:

Função que soma de dois vectores:


```
somaVect :: CCart -> CCart -> CCart
somaVect (Coord x1 y1) (Coord x2 y2) = Coord (x1+x2) (y1+y2)
```

91

Tipos Algébricos

Exemplo:

```
data Hora = AM Int Int
| PM Int Int
```

Os valores do tipo Hora são expressões da forma (AM x y) ou (PM x y), em que x e y são valores do tipo Int.

Os construtores do tipo Hora são:

```
AM :: Int -> Int -> Hora
PM :: Int -> Int -> Hora
```

e podem ser vistos como uma "etiqueta" que indica de que forma os argumentos a que são aplicados devem ser entendidos.

Os *data types* implementam o **co-produto** (ou a **união disjunta**) de tipos.

NOTA: <u>Erradamente</u>, pode parecer que termos como (AM 5 10), (PM 5 10) ou (5,10) contêm a mesma informação, mas não! Os construtores AM e PM têm aqui um papel essencial na interpretação que fazemos destes termos.

Exemplo: As funções sobre tipos algébricos geralmente definiem-se por *pattern matching*.

```
totalMinutos :: Hora -> Int
totalMinutos (AM h m) = h*60 + m
totalMinutos (PM h m) = (h+12)*60 + m
```

Tipos Algébricos

Exemplo: Um tipo de dados para representar as seguintes figuras geométricas.

Cálculo da área de uma figura:

```
area :: Figura -> Float
area (Rectangulo a1 a2) = a1 * a2
area (Circulo r) = pi * r^2
area (Triangulo c1 c2) = c2 * c1 / 2
```

Uma lista com figuras geométricas:

```
lfig = [(Rectangulo 5 3.2), (Circulo 5.7), (Triangulo 4 3)]
```

Note que é o facto de termos definido o tipo de dados Figura que nos permite construir esta lista, uma vez que só são aceites *listas homegéneas*.

Tipos Algébricos

As definições de tipos também podem ser *recursivas*.

Exemplo: O tipo dos números naturais pode ser definido por

```
data Nat = Zero | Suc Nat
```

O tipo Nat é definido à custa dos construtores isto é, Zero :: Nat Suc :: Nat -> Nat

Zero é um valor do tipo Nat, e se n é um valor do tipo Nat, (Suc n) é também um valor do tipo Nat.

A este género de tipo algébrico dá-se o nome de **tipo recursivo**.

Exemplos:

Zero São números naturais. Suc Zero Suc (Suc Zero)

```
fromNatToInt :: Nat -> Int
fromNatToInt Zero = 0
fromNatToInt (Suc n) = 1 + (fromNatToInt n)
```

somaNat :: Nat -> Nat -> Nat
somaNat Zero n = n
somaNat (Suc n) m = Suc (somaNat n m)

Tipos Algébricos

O tipo pré-definido [a] das listas é um outro exemplo de um *tipo recursivo*.

Exemplo: Poderiamos definir o tipo das listas, através da seguinte definição:

O tipo (Lista a) é aqui definido à custa dos contrutores

```
Nil :: Lista a
Cons :: a -> Lista a -> Lista a
```

A lista [3, 7, 1] seria representada pela expressão

```
Cons 3 (Cons 7 (Cons 1 Nil))
```

(Lista a) é um exemplo de um tipo polimórfico.

Lista está parameterizada com uma variável de tipo **a**, que poderá ser substituida por <u>um tipo qualquer</u>. (É neste sentido que se diz que Lista é um construtor de tipos.)

Exemplo:

```
comprimento :: Lista a -> Int
comprimento Nil = 0
comprimento (Cons _ xs) = 1 + comprimento xs
```

95

Expressões Case

O Haskell tem ainda uma forma construir expressões que permite fazer **análise de casos** sobre a estrutura dos valores de um tipo. Essas expressões têm a forma:

Exemplos:

Expressões Case

Exemplos:

Exercícios:

- Defina duas versões da função impar (com e sem expressões case).
- Defina uma outra versão da função takeWhile utilizando várias equações.

Nota: As expressões if-then-else são equivalentes à análise de casos no tipo Bool.

97

A construção de tipos algébricos dá à linguagem Haskell um enorme poder expressivo, pois permite a implemetação de:

- tipos enumerdos;
- co-produtos (união disjunta de tipos);
- tipos recursivos;
- uma certa forma de *encapsulamento de dados*.

Além disso, os tipos algébricos:

(falaremos destes aspectos mais tarde)

- podem ter uma apresentação escrita própria
- podem ser declarados como instâncias de classes

Nota: Se quiser experimentar os exemplos apresentados atrás, será melhor acrescentar às declarações dos tipos algébricos a indicação: **deriving Show**, para que os valores dos novos tipos possam ser escritos (no formato usual).

Exemplo:

```
data Nat = Zero | Suc Nat
    deriving Show
```

O construtor de tipos Maybe

Um tipo algébrico importante, já pré-definido no Prelude é o tipo polimórfico

```
data Maybe a = Nothing | Just a
```

que permite representar a *parcialidade*, podendo ser usado para lidar com situações de excepções e erros.

Exemplos:

Funções que trabalham sobre um tipo t terão que ser adaptadas para trabalhar com o tipo Maybe t.

Exemplo:

```
soma (Just x) (Just y) = Just (x+y)
soma \_ = Nothing
```

99

Exemplo:

A seguinte função que procura o nome associado a um dado número de BI, numa tabela implementada como uma lista de pares.

A função procura termina em <u>erro</u> caso o BI não exista na tabela. Ou seja, <u>procura</u> é uma função parcial.

Podemos totalizar a função de procura usando o tipo (Maybe Nome).

Desta forma, se o BI não existir na tabela a função proc devolve Nothing e nunca termina em erro. Ou seja, proc é uma função total.

A função proc só consegue concluir que um dado BI não ocorre na tabela, ao fim de pesquisar toda a lista.

Esta conclusão poderia ser tirada mais cedo, se que a lista estivesse *ordenada* por BI.

Exemplo: Tendo a garantia de que a lista está ordenada por ordem crescente de BI, podemos definir a função de procura da seguinte forma:

Nos casos de insucesso, esta versão de proc é bastante *mais eficiente* do que a versão do slide anterior.

Exercício: Compare o funcionamento das duas versões da função proc para o seguinte exemplo:

```
proc 3 [ (bi,"xxxxx") | bi <- [1,5..1000] ]</pre>
```

101

Árvores Binárias

Uma estrutura de dados muito útil para organizar informação são as **árvores binárias**. O tipo polimórfico das árvores binárias pode definido pelo seguite tipo recursivo:

```
data ArvBin a = Vazia
| Nodo a (ArvBin a) (ArvBin a)
```

Ou seja, uma árvore binária: ou é vazia; ou é um nodo com um valor e duas sub-árvores.

de tipo (ArvBin Int).

As funções definidas sobre tipos de dados recursivos, são geralmente funções recursivas, com *padrões de recursividade semelhantes aos dos tipos de dados*.

Exemplo:

```
somaL :: [Int] -> Int
somaL [] = 0
somaL (x:xs) = x + (somaL xs)
```

```
somaA :: ArvBin Int -> Int
somaA Vazia = 0
somaA (Nodo x esq dir) = x + (somaA esq) + (somaA dir)
```

Terminologia

O nodo A é a *raiz* da árvore Os nodos B e C são *filhos* (ou *descendentes*) de A O nodo C é *pai* de D

O *caminho* (*path*) de um nodo é a sequência de nodos da raiz até esse nodo.

A *altura* é o comprimento do caminho mais longo.

103

Funções sobre árvores binárias

Exemplos:

```
altura :: ArvBin a -> Integer
altura Vazia = 0
altura (Nodo _ e d) = 1 + max (altura e) (altura d)
```

```
mapAB :: (a -> b) -> ArvBin a -> ArvBin b
mapAB f Vazia = Vazia
mapAB f (Nodo x e d) = Nodo (f x) (mapAB f e) (mapAB f d)
```

Exercício: Defina as funções

```
contaNodos :: ArvBin a -> Integer
zipAB :: ArvBin a -> ArvBin b -> ArvBin (a,b)
```

Travessias de árvores binárias

Para converter uma árvore binária numa lista podemos usar diversas estratégias, como por exempo:

Preorder:R E DR - visitar a raizInorder:E R DE - atravessar a sub-árvore esquerdaPostorder:E D RD - atravessar a sub-árvore direita

```
preorder :: ArvBin a -> [a]
preorder Vazia = []
preorder (Node x e d) = [x] ++ (preorder e) ++ (preorder d)
```

```
inorder :: ArvBin a -> [a]
inorder Vazia = []
inorder (Node x e d) = (inorder e) ++ [x] ++ (inorder d)
```

```
postorder :: ArvBin a -> [a]
postorder Vazia = []
postorder (Node x e d) = (postorder e) ++ (postorder d) ++ [x]
```


preorder arv \Rightarrow [5,7,3,2,10,1,12,4,8]

inorder arv \Rightarrow [3,7,10,2,5,12,1,4,8]

postorder arv \Rightarrow [3,10,2,7,12,8,4,1,5]

Ánvores Binárias de Procura

Uma árvore binária diz-se de **procura**, se é <u>vazia</u>, ou se verifica todas as seguintes condições:

- a raiz da árvore é maior do que todos os elementos da sub-árvore esquerda;
- a raiz da árvore é menor do que todos os elementos da sub-árvore direita;
- ambas as sub-árvores são árvores binárias de procura.

Exemplo: O seguinte predicado para testar se uma dada árvore binária é de procura, está errado. Porquê?

Exemplo:

A árvore seguinte é uma árvore binária de procura.

Qual é o termo que a representa ?

111

Exemplo: Acrescentar um elemento à árvore binária de procura.

Note que os elementos repetidos não estão a ser acrescentados à árvore de procura.

O que alteraria para, relaxando a noção de árvore binária de procura, aceitar elementos repetidos na árvore ?

Exercício: Qual é a função de travessia que aplicada a uma árvore binária de procura retorna uma lista ordenada com os elementos da árvore ?

O formato da árvore depende da ordem pela qual os elementos vão sendo inseridos.

Exercício: Desenhe as árvores resultantes das seguintes sequências de inserção numa árvore inicialmente vazia.

a) 7, 4, 9, 6, 1, 8, 5 b) 1, 4, 5, 6, 7, 8, 9 c) 6, 4, 1, 8, 9, 5, 7

Exercício: Defina uma função que recebe uma lista e constoi uma árvore binária de procura com os elementos da lista.

Árvores Balanceadas

Uma árvore binária diz-se *balanceada* (ou, *equilibrada*) se é <u>vazia</u>, ou se verifica as seguintes condições:

- as alturas da sub-árvores esquerda e direita diferem <u>no máximo</u> em uma unidade;
- ambas as sub-árvores são árvores balancedas.

Exemplo: Predicado para testar se uma dada árvore binária é balanceada.

As árvores binárias de procura são estruturas de dados que possibilitam pesquisas potencialmente mais eficientes da informação, do que as pesquisas em listas.

Exemplo:

A tabela de associações BI - Nome, pode ser guardada numa árvore binária de procura com o tipo ArvBin (BI, Nome).

A função de pesquisa nesta árvores binária de procura organizada por BI pode ser definida por

Chama-se **chave** ao componente de informação que é <u>único</u> para cada entidade. Por exemplo: o nº de BI é chave para cada cidadão; nº de aluno é chave para cada estudante universitário; nº de contribuinte é chave para cada empresa.

Uma medida da <u>eficiência</u> de uma pesquisa é o número de comparações de chaves que são feitas até que se encontre o elemento a pesquisar. É claro que isso depende da posição da chave na estrutura de dados.

O número de comparações de chaves numa pesquisa:

- *numa lista*, é no máximo igual ao comprimento da lista;
- numa árvore binária de procura, é no máximo igual à altura da árvore.

Assim, a pesquisa em árvores binárias de procura são especialmente mais eficientes se as árvores forem balanceadas.

Porquê?

111

Existem algoritmos de inserção que mantêm o equilibrio das árvores (mas não serão apresentados nesta disciplina).

Exemplo: A partir de uma lista ordenada por ordem crescente de chaves podemos construir uma árvore binária de procura balanceada, através da função

Exercícios:

- Defina uma função que dada uma árvore binária de procura, devolve o seu valor mínimo.
- Defina uma função que dada uma árvore binária de procura, devolve o seu valor máximo.
- Como poderá ser feita a remoção de um nodo de uma árvore binária de procura, de modo a que a árvore resultante continue a ser de procura ?
 Defina uma função que implemente a estratégia que indicou.

Outras Árvores

Árvores Irregulares

data Tree a = Node a [Tree a]

(finitely branching trees)

Esta árvore do tipo (Tree Int) é representada pelo termo:

113

Outras Árvores

Full Trees

Árvores com *nós* (intermédios) do tipo a e *folhas* do tipo b.

Esta árvore do tipo (ABin Int Char) é representada pelo termo:

"Records"

Numa declaração de um tipo algébrico, os construtores podem ser declarados associando a cada um dos seus parâmetros um nome (uma *etiqueta*).

Exemplo:

```
data PontoC = Pt {xx :: Float, yy :: Float, cor :: Cor}
```

desta forma, para além do construtor de dados

```
Pt :: Float -> Float -> Cor -> PontoC
```

também ficam definidos os nome dos *campos*xx, yy e cor, e 3 *selectores* com o mesmo nome:

xx :: PontoC -> Float
cor :: PontoC -> Cor

Os valores do novo tipo PontoC podem ser construidos da forma usual, por aplicação do construtor aos seus argumentos.

Além disso, o nome dos campos podem agora também ser usados na construção de valores do novo tipo.

```
p2 = Pt {xx=3.1, yy=8.0, cor=Vermelho} :: PontoC
p3 = Pt {cor=Verde, yy=2.2, xx=7.1} :: PontoC
```

115

"Records"

```
Note que  \left\{ \begin{array}{l} (\text{Pt } 3.2 \ 5.5 \ \text{Azul}) \\ \text{Pt } \{xx=3.2, \ yy=5.5, \ \text{cor=Azul}\} \\ \text{Pt } \{yy=5.5, \ \text{cor=Azul}, \ xx=3.2\} \end{array} \right\}  são exactamente o mesmo valor.
```

Aos tipos com um único construtor e com os campos etiquetados dá-se o nome de *records*.

Os padrões podem também usar o nome dos campos (todos ou alguns, por qualquer ordem).

Exemplo: Três versões equivalentes da função que calcula a distância de um ponto à origem.

```
dist0 :: PontoC -> Float
dist0 p = sqrt ((xx p)^2 * (yy p)^2)

dist0' :: PontoC -> Float
dist0' Pt {xx=x, yy=y} = sqrt (x^2 * y^2)

dist0'' :: PontoC -> Float
dist0'' (Pt x y c) = sqrt (x^2 * y^2)
```

"Records"

Sendo p um valor do tipo PontoC, p $\{xx=0\}$ é um novo valor com o campo xx=0 e os restantes campos com o valor que tinham em p.

Exemplos:

```
p1 {cor = Amarelo} = Pt {xx=3.2, yy=5.5, cor=Amarelo}
p3 {xx=0, yy=0} = Pt {xx=0, yy=0, cor=Verde}

simetrico :: PontoC -> PontoC
simetrico p = p {xx=(yy p), yy=(xx p)}
```

É possível ter campos etiquetados em tipos com mais de um construtor. Um campo não pode aparecer em mais do que um tipo, mas dentro de um tipo pode aparecer associado a mais de um construtor, desde que tenha o mesmo tipo.

Exemplo:

117

Polimorfismo paramétrico

Com já vimos, o sistema de tipos do Haskell incorpora tipos polimórficos, isto é, tipos com variáveis (*quantificadas universalmente*, de forma implícita).

Exemplos:

Para qualquer tipo a, [a] é o tipo das listas com elementos do tipo a.

Para qualquer tipo a, (ArvBin a) é o tipo das árvores binárias com nodos do tipo a.

As variáveis de tipo podem ser vistas como *parâmetros* (dos constructores de tipos) que podem ser substituídos por tipos concretos. Esta forma de polimorfismo tem o nome de *polimorfismo paramétrico*.

Exemplo:

```
length :: [a] -> Int
length [] = 0
length (_:xs) = 1 + (length xs)

Prelude> :t length
length [3,True),(7,False)] ⇒ 2
Prelude> :t length
length [3,True]
```

O tipo [a] -> Int não é mais do que uma abreviatura de $\forall a. [a] -> Int$:

"para todo o tipo a, [a]->Int é o tipo das funções com domínio em [a] e contradomínio Int".

Polimorfismo *ad hoc* (sobrecarga)

O Haskell incorpora ainda uma outra forma de polimorfismo que é a *sobrecarga de funções*. Um mesmo identificador de função pode ser usado para designar funções computacionalmente distintas. A esta característa também se chama *polimorfismo ad hoc*.

Exemplos:

O operador (+) tem sido usado para somar, tanto valores inteiros como valores decimais.

O operador (==) pode ser usado para comparar inteiros, caracteres, listas de inteiros, strings, booleanos, ...

```
Afinal, qual é o tipo de (+) ? E de (==)?
```

A sugestão (+) :: a -> a -> a (==) :: a -> a -> Bool

Faria com que fossem aceites espressões como, por exemplo:

```
('a' + 'b') , (True + False) , ("esta'" + "errado") ou (div == mod) ,
```

e estas expressões resultariam em **erro**, pois estas operações não estão preparadas para trabalhar com valores destes tipos.

Em Haskell esta situação é resolvidas através de **tipos qualificados** (qualified types), fazendo uso da noção de **classe**.

Tipos qualificados

Conceptualmente, um tipo qualificado pode ser visto como um tipo polimórfico só que, em vez da quantificação universal da forma "para todo o tipo a, ..." vai-se poder dizer "para todo o tipo a que pertence à classe C, ...". Uma classe pode ser vista como um conjunto de tipos.

Exemplo:

Sendo **Num** uma classe *(a classe dos números)* que tem como elementos os tipos: Int, Integer, Float, Double, ..., pode-se dar a (+) o tipo preciso de:

$$\forall a \in Num. a \rightarrow a \rightarrow a$$

o que em Haskell se vai escrever: (+) :: Num $a \Rightarrow a \rightarrow a \rightarrow a$

e lê-se: "para todo o tipo a que pertence à classe Num, (+) tem tipo a->a->a".

Uma classe surge assim como uma forma de classificar tipos (quanto às funcionalidades que lhe estão associadas). Neste sentido as classes podem ser vistas como os *tipos dos tipos*.

Os tipos que pertencem a uma classe também serão chamados de *instâncias* da classe.

A capacidade de *qualificar* tipos polimórficos é uma característica inovadora do Haskell.

120

Classes & Instâncias

Uma *classe* estabelece um conjunto de assinaturas de funções (os *métodos da classe*). Os tipos que são declarados como *instâncias* dessa classe têm que ter definidas essas funções.

Exemplo: A seguinte declaração (simplificada) da classe Num

```
class Num a where
    (+) :: a -> a -> a
    (*) :: a -> a -> a
```

impõe que todo o tipo a da classe Num tenha que ter as operações (+) e (*) definidas.

Para declarar Int e Float como elementos da classe Num, tem que se fazer as seguintes declarações de instância

```
instance Num Int where
  (+) = primPlusInt
  (*) = primMulInt
  instance Num Float where
  (+) = primPlusFloat
  (*) = primMulFloat
```

Neste caso as funções *primPlusInt*, *primMulInt*, *primPlusFloat* e *primMulFloat* são funções primitivas da linguagem.

```
Se x::Int e y::Int então x + y \equiv x \primPlusInt \y
Se x::Float e y::Float então x + y \equiv x \primPlusFloat \y
```

Tipo principal

O **tipo principal** de uma expressão ou de uma função é o tipo mais geral que lhe é possível associar, de forma a que todas as possíveis instâncias desse tipo constituam ainda tipos válidos para a expressão ou função.

Qualquer expressão ou função válida tem um tipo principal *único*. O Haskell *infere* sempre o tipo principal das expressões ou funções, mas é sempre possível associar tipos mais específicos (que são instância do tipo principal).

Exemplo: O tipo principal inferido pelo haskell para o operador (+) é

```
(+) :: Num a => a -> a -> a
```

```
Mas, (+) :: Int -> Int -> Int (+) :: Float -> Float -> Float como Float são instâncias da classe Num, e portando podem substituir a variável a.
```

Note que Num a não é um tipo, mas antes uma restrição sobre um tipo. Diz-se que (Num a) é o *contexto* para o tipo apresentado.

- sum::[a]->a seria um tipo demasiado geral. Porquê?
- Qual será o tipo principal da função product ?

Definições por defeito

Relembre a definição da função pré-definida elem:

```
elem x [] = False
elem x (y:ys) = (x==y) || elem x ys Qual será o seu tipo ?
É necessário que (==) esteja definido para o
tipo dos elementos da lista.
```

Existe pré-definida a classe **Eq**, dos tipos para os quais existe uma operação de igualdade.

```
class Eq a where
    (==) :: a -> a -> Bool
    (/=) :: a -> a -> Bool
    -- Minimal complete definition: (==) or (/=)
    x == y = not (x /= y)
    x /= y = not (x == y)
```

Esta classe establece as funções (==) e (/=) e, para além disso, fornece também **definições por defeito** para estes métodos (*default methods*).

Caso a definição de uma função seja omitida numa declaração de instância, o sistema assume a definição por defeito feita na classe. Se existir uma nova definição do método na declaração de instância, será essa definição a ser usada.

Exemplos de instâncias de Eq

O tipo Cor é uma instância da classe Eq com (==) definido como se segue:

O método (/=) está definido por defeito.

```
instance Eq Cor where
  Azul == Azul = True
  Verde == Verde = True
  Amarelo == Amarelo = True
  Vermelho == Vermelho = True
  _ == _ = False
```

O tipo Nat também pode ser declarado como instância da classe Eq:

(==) de Float

O tipo PontoC com instância de Eq:

```
instance Eq PontoC where

(Pt x1 y1 c1) == (Pt x2 y2 c2) = (x1==x2) && (y1==y2) && (c1==c2)

(==) de Cor
```

Nota: (==) é uma função recursiva em Nat, mas não em PontoC.

123

Instâncias com restrições

Relembre a definição das árvores binárias.

```
data ArvBin a = Vazia
| Nodo a (ArvBin a) (ArvBin a)
```

Como poderemos fazer o teste de igualdade para árvores binárias ?

Duas árvores são iguais se tiverem a mesma estrutura (a mesma forma) e se os valores que estão nos nodos também forem iguais.

Portanto, para fazer o teste de igualdade em (ArvBin a), necessariamente, tem que se saber como testar a igualdade entre os valores que estão nos nodos, i.e., em a.

Só poderemos declarar (ArvBin a) como instância da classe Eq se a for também uma instância da classe Eq.

Este tipo de *restrição* pode ser colocado na declaração de instância, fazendo:

Instâncias derivadas de Eq

O testes de igualdade definidos até aqui implementam a **igualdade estrutural** (dois valores são iguais quando resultam do mesmo construtor aplicado a argumentos também iguais).

Quando assim é <u>pode-se evitar</u> a declaração de instância se na declaração do tipo for acrescentada a instrução **deriving Eq**.

Exemplos: Com esta declarações, o Haskell deriva automáticamente declarações de instância de Eq (iguais às que foram feitas) para estes tipos.

Mas, nem sempre a igualdade estrutural é a desejada.

Exemplo: Relembre o tipo de dados **Figura**:

Neste caso queremos que duas figuras sejam consideradas iguais ainda que a ordem pela qual os valores são passados possa ser diferente.

Exercícios:

 Considere a seguinte definição de tipo, para representar horas nos dois formatos usuais.

Declare Time como instância da classe Eq de forma a que (==) teste se dois valores representam a mesma hora do dia, independentemente do seu formato.

• Qual o tipo principal da seguinte função:

• Considere a seguinte declaração:

```
type Assoc a b = [(a,b)]
```

Será que podemos declarar (Assoc a b) como instância da classe Eq?

Herança

O sistema de classes do Haskell também suporta a noção de herança.

Exemplo: Podemos definir a classe Ord como uma extensão da classe Eq.

-- isto é uma simplificação da classe Ord já pré-definida

```
class (Eq a) \Rightarrow Ord a where
    (<), (<=), (>=), (>) :: a -> a -> Bool
    max, min
                          :: a -> a -> a
```

A classe Ord herda todos os métodos de Eq e, além disso, establece um conjunto de operações de comparação e as funções máximo e mínimo.

Diz-se que Eq é uma *superclasse* de Ord, ou que Ord é uma *subclasse* de Eq.

Todo o tipo que é instância de Ord tem necessáriamente que ser instância de Eq.

Exemplo:

```
estaABProc :: Ord a => a -> ArvBin a -> Bool
estaABProc _ Vazia = False
estaABProc x (Nodo y e d) | x < y = estaABProc x e
                          | x > y = estaABProc x d
                          | x == y = True
```

A restrição (Eq a) não é necessária. Porquê?

129

Herança múltipla

O sistema de classes do Haskell também suporta herança múltipla. Isto é, uma classe pode ter mais do que uma superclasse.

Exemplo: A classe Real, já pré-definida, tem a seguinte declaração

```
(Num \ a, \ Ord \ a) \Rightarrow Real \ a
class
                                          where
    toRational :: a -> Rational
```

A classe Real herda todos os métodos da classe Num e da classe Ord e establece mais uma função.

NOTA: Na declaração dos tipos dos métodos de uma classe, é possível colocar restrições às variáveis de tipo, excepto à variável de tipo da classe que está a ser definida.

Exemplo:

```
class C a where
   m1 :: Eq b => (b,b) -> a -> a
   m2 :: Ord b => a -> b -> b -> a
```

O método m1 impõe que b pertença à classe Eq, e o método m2 impõe que b pertença a Ord. Restrições à variável a, se forem necessárias, terão que ser feitas no contexto da classe, e nunca ao nível dos métodos.

A classe Ord

```
class (Eq a) => Ord a where
    compare
                        :: a -> a -> Ordering
    (<), (<=), (>=), (>) :: a -> a -> Bool
   max, min
                         :: a -> a -> a
    -- Minimal complete definition: (<=) or compare
    -- using compare can be more efficient for complex types
    compare x y \mid x==y = EQ
\mid x<=y = LT
                | otherwise = GT
                           = compare x y /= GT
   x <= y
                           = compare x y == LT
   x < y
                          = compare x y /= LT
   x >= y
   x > y
                          = compare x y == GT
   \max x y \mid x \le y
                        = y
              | otherwise = x
             | x \le y = x
   min x y
              | otherwise = y
```

131

Exemplos de instâncias de Ord

Exemplo:

```
instance Ord Nat where
   compare (Suc _) Zero = GT
   compare Zero (Suc _) = LT
   compare Zero Zero = EQ
   compare (Suc n) (Suc m) = compare n m
```

Instâncias da classe Ord podem ser derivadas automaticamente. Neste caso, a relação de ordem é establecida com base na ordem em que os construtores são apresentados e na relação de ordem entre os parâmetros dos construtores.

Exemplo:

```
data AB a = V | NO a (AB a) (AB a)
    deriving (Eq,Ord)
```

```
ar1 = N0 1 V V

ar2 = N0 2 V V

Será que poderiamos não

derivar Eq?

> V < ar1

True

> (N0 4 ar1 ar2) < (N0 5 ar2 ar1)

True

> (N0 4 ar1 ar2) < (N0 3 ar2 ar1)

False

> (N0 4 ar1 ar2) < (N0 4 ar2 ar1)

True
```

As restrições às variáveis de tipo que são impostas pelo contexto, *propagam-se* ao logo do processo de inferência de tipos do Haskell.

Exemplo: Relembre a definição da função quicksort.

Note como o contexto (Ord a) do tipo da função parte se propaga para a função quicksort.

A classe Show

A classe Show establece métodos para converter um valor de um tipo qualquer (que lhe pertença) numa string.

O interpretador Haskell usa o método show para apresentar o resultado dos seu cálculos.

```
type ShowS = String -> String
shows :: Show a => a -> ShowS
shows = showsPrec 0
```

A função showsPrec usa uma string como acumulador. É muito eficiente.

Exemplos de instâncias de Show

Exemplo:

```
natToInt :: Nat -> Int
natToInt Zero = 0
natToInt (Suc n) = 1 + (natToInt n)

instance Show Nat where
    show n = show (natToInt n)
2
> Suc (Suc Zero)
```

Instâncias da classe Show podem ser derivadas automaticamente. Neste caso, o método show produz uma string com o mesmo aspecto do valor que lhe é passado como argumento.

Exemplo: Se, em alternativa, tivessemos feito

```
data Nat = Zero | Suc Nat teriamos Suc (Suc Zero)

deriving Show teriamos Suc (Suc Zero)
```

Exemplo:

A classe Num

A classe Num está no topo de uma *hierarquia de classes (numéricas)* desenhada para controlar as operações que devem estar definidas sobre os diferentes tipos de números.

Os tipos Int, Integer, Float e Double, são instâncias desta classe.

A função fromInteger converte um Integer num valor do tipo Num $a \Rightarrow a$.

```
Prelude> :t 35
35 é na realidade (fromInteger 35)
Prelude> 35 + 2.1
37.1
```

136

Exemplos de instâncias de Num

```
Exemplo:
```

```
instance Num Nat where
                                                      Note que Nat já pertence
               (+) = somaNat
                                                      às classes Eq e Show.
               (*) = prodNat
               (-) = subtNat
               fromInteger = deInteger
               abs = id
               signum = sinal
              negate n = error "indefinido ..."
prodNat :: Nat -> Nat -> Nat
prodNat Zero _ = Zero
prodNat (Suc n) m = somaNat m (prodNat n m)
subtNat :: Nat -> Nat -> Nat
subtNat n Zero
subtNat (Suc n) (Suc m) = subtNat n m
subtNat Zero _ = error "indefinido ..."
                                   deInteger :: Integer -> Nat
sinal :: Nat -> Nat
                                   deInteger 0 = Zero
sinal Zero = Zero
sinal (Suc _) = Suc Zero
                                   deInteger (n+1) = Suc (deInteger n)
                                   deInteger _ = error "indefinido ..."
somaNat :: Nat -> Nat -> Nat
somaNat Zero n = n
somaNat (Suc n) m = Suc (somaNat n m)
                                                                         137
```


Nota: Não é possível derivar automaticamente instâncias da classe Num.

A classe Enum

A classe Enum establece um conjunto de operações que permitem sequências aritméticas.

```
class Enum a where
    succ, pred
                            :: a -> a
    toEnum
                            :: Int -> a
    fromEnum
                            :: a -> Int
                                                        -- [n..]
    enumFrom
                            :: a -> [a]
                           :: a -> a -> [a]
:: a -> a -> [a]
                                                       -- [n,m..]
    enumFromThen
                                                       -- [n..m]
    enumFromTo
    enumFromThenTo :: a \rightarrow a \rightarrow [a]
                                                         -- [n,n'..m]
    -- Minimal complete definition: toEnum, fromEnum
    succ
                             = toEnum . (1+) . fromEnum
                             = toEnum . subtract 1 . fromEnum
    pred
    enumFrom x = map toEnum [ fromEnum x ..]
enumFromThen x y = map toEnum [ fromEnum x, fromEnum y ..]
enumFromTo x y = map toEnum [ fromEnum x .. fromEnum y ]
    enumFromThenTo x y z = map toEnum [fromEnum x, fromEnum y .. fromEnum z]
```

Entre as instâncias desta classe contam-se os tipos: Int, Integer, Float, Char, Bool, ...

Exemplos:

139

Exemplos de instâncias de Enum

Exemplo:

```
instance Enum Nat where
    toEnum = intToNat
    where intToNat :: Int -> Nat
        intToNat 0 = Zero
        intToNat (n+1) = Suc (intToNat n)

fromEnum = natToInt
```

```
> [Zero, tres .. (tres * tres)]
[0,3,6,9]
> [Zero .. tres]
[0,1,2,3]
> [(Suc Zero), tres ..]
[1,3,5,7,9,11,13,15,17,19,21,23,25, ...
```

É possível derivar automaticamente instâncias da classe Enum, apenas em tipos enumerados.

Exemplo:

```
data Cor = Azul | Amarelo | Verde | Vermelho
     deriving (Enum, Show)
```

```
> [Azul .. Vermelho]
[Azul, Amarelo, Verde, Vermelho]
```

A classe Read

A classe Read establece funções que são usadas na conversão de uma string num valor do tipo de dados (instância de Read).

```
class Read a where
    readsPrec :: Int -> ReadS a
    readList :: ReadS [a]

-- Minimal complete definition: readsPrec
    readList = ...
```

```
type ReadS a = String -> [(a,String)]
```

```
reads :: Read a => ReadS a
reads = readsPrec 0
```

lex é um *analisador léxico* definido no Prelude.

141

Podemos definir instâncias da classe Read que permitam fazer o *parser* do texto de acordo com uma determinada sintaxe. *(Mas isso não é tópico de estudo nesta disciplina.)*

Instâncias da classe Read podem ser derivadas automaticamente. Neste caso, a função read recebendo uma string que obedeça às regras sintácticas de Haskell produz o valor do tipo correspondente.

Exemplos:

data Nat = Zero | Suc Nat
 deriving Read

```
> read "Am 8 30" :: Time  
Am 8 30
> read "(Total 17 15)" :: Time  
Total 17 15

> read "Suc (Suc Zero)" :: Nat  
2

> read "[2,3,6,7]" :: [Int]  
[2,3,6,7]  
> read "[Zero, Suc Zero]" :: [Nat]  
[0,1]
```

É necessario indicar o tipo do valor a produzir.

Quase todos os tipos pré-definidos pertencem à classe Read.

Porquê?

Declaração de tipos polimórficos com restrições nos parâmetros

Na declaração de um tipo algébrico pode-se <u>exigir</u> que os parâmetros pertençam a determinadas classes.

Exemplo:

```
minSTree (Branch x Null _) = x
minSTree (Branch _ e _) = minSTree e
```

Na declaração de tipos sinónimos também se podem impôr restricões de classes.

Exemplo:

```
type TAssoc a b = (Eq a) \Rightarrow [(a,b)]
```

143

Hierarquia de classes pré-definidas do Haskell

Prelude> :i Nome_da_Classe

Classes de Construtores de Tipos

Relembre os tipos paraméticos (Maybe a), [a], (ArvBin a), (Tree a) ou (ABin a b).

Maybe, [], ArvBin, Tree e ABin, não são tipos, mas podem ser vistos como operadores sobre tipos – são construtores de tipos.

Exemplo: Maybe não é um tipo, mas (Maybe Int) é um tipo que resulta de aplicar o construtor de tipos Maybe ao tipo Int.

Em Haskell é possível definir classes de construtores de tipos. Um exemplo disso é a classe Functor:

```
class Functor f where
fmap :: (a -> b) -> (f a -> f b)
```

Exemplos:

```
instance Functor [] where

fmap = map
```

```
instance Functor Maybe where
  fmap f Nothing = Nothing
  fmap f (Just x) = Just (f x)
```

Note que o que se está a declarar como instância da classe Functor são construtores de tipos.

Note que f não é um tipo.

```
instance Functor ArvBin where
   fmap = mapAB
```

145

Definição de novas classes

Para além da hierarquia de classes pré-definidas, o Haskell permite definir novas classes.

Exemplo: Podemos definir a classe das *ordens parciais* da seguinte forma

```
class (Eq a) => OrdParcial a where
    comp :: a -> a -> Maybe Ordering -- basta definir comp
    lt, gt, eq :: a -> a -> Maybe Bool
    lt x y = case (comp x y)
       of { Nothing -> Nothing ; (Just LT) -> Just True ; _ -> Just False }
    gt x y = case (comp x y)
       of { Nothing -> Nothing ; (Just GT) -> Just True ; _ -> Just False }
    eq x y = case (comp x y)
       of { Nothing -> Nothing ; (Just EQ) -> Just True ; _ -> Just False }
    maxi, mini :: a -> a -> Maybe a
    \max x y = \text{case (comp } x y) \text{ of}
                    Nothing -> Nothing
                    Just GT -> Just x
                             -> Just v
    mini x y = case (comp x y) of Nothing -> Nothing
                                   Just LT -> Just x
                                            -> Just y
```

Nota: Repare nos diversos modos de escrever expressões case.

A relação de *inclusão de conjuntos* é um bom exemplo de uma relação de ordem parcial.

Exemplo: A noção de conjunto pode ser implementada pelo tipo

```
data (Eq a) => Conj a = C [a] deriving Show

É necessário que se consiga fazer o teste de pertença.
```

```
> (C [2,1]) `gt` (C [7,1,5,2])
Just False
> (C [2,1,2,1]) `lt` (C [7,1,5,5,2])
Just True
> (C [3,3,5,1]) `eq` (C [5,1,5,3,1])
Nothing
Just True
```

A noção de *função finita* establece um conjunto de associações entre *chaves* e *valores*, para um conjunto finito de chaves.

Exemplo: Podemos agrupar numa <u>classe de construtores de tipos</u> as opereções que devem estar definidas sobre funções finitas.

Exemplo: Tabelas implementando listas de associações (chave,valor) podem ser declaradas como instância da classe FFinita.

```
data (Eq a) => Tab a b = Tab [(a,b)]
  deriving Show
```

É possível usar o mesmo nome para o <u>construtor de tipo</u> e para o <u>construtor de valores</u>.

Exercício:

- Defina um tipo de dados polimórfico que implemente listas de associações em árvores binárias e que possa ser instância da classe FFinita.
- Declare o construtor do tipo que acabou de definir como instância da classe FFinita.

Mónades

Na programação funcional, conceito de **mónade** é usado para sintetizar a ideia de computação.

Uma computação é vista como algo que se passa dentro de uma "caixa negra" e da qual conseguimos apenas ver os resultados.

Em Haskell, o conceito de mónade está definido como uma classe de construtores de tipos.

- O termo (return x) corresponde a uma computação nula que retorna o valor x.
- O operador (>>=) corresponde de alguma forma à composição de computações.

A classe Monad

- O termo (return x) corresponde a uma computação nula que retorna o valor x. return faz a transição do mundo dos valores para o mundo das computações.
- O operador (>>=) corresponde de alguma forma à composição de computações.
- O operador (>>) corresponde a uma composição de computações em que o valor devolvido pela primeira computação é ignorado.

t:: ma significa que t é uma computação que retorna um valor do tipo a.
Ou seja, t é um valor do tipo a com um <u>efeito adicional</u> captado por m.

Este efeito pode ser: uma acção de *input/output*, o tratamento de excepções, uma acção sobre o estado, etc.

151

Input / Output

Como conciliar o princípio de "computação por cálculo" com o input/output ? Que tipos poderão ter as funções de input/output ?

Será que funções para ler um caracter do tecado, ou escrever um caracter no écran, podem ter os seguintes tipos ?

Em Haskell, existe pré-definido o **construtor de tipos 10**, e é uma instância da classe Monad.

Os tipos acima sugeridos estão <u>errados</u>. Essas funções estão pré-definidas e têm os seguintes tipos:

```
getChar :: 10 Char getChar é um valor do tipo Char que pode resultar de alguma acção de input/output.
```

putChar :: Char -> 10 ()
putChar é uma função que recebe um caracter e
executa alguma acção de input/output, devolvendo ().

O mónade IO

O mónade IO agrupa os tipos de todas as computações onde existem acções de input/output.

return :: a -> 10 a é a função que recebe um argumento x, não faz qualquer operação de IO, e retorna o mesmo valor x.

```
(>>=) :: I0 a -> (a -> I0 b) -> I0 b é o operador que recebe como argumento um programa p, que faz alguma operações de IO e retorna um valor x, e uma função f que "transporta" esse valor para a próxima sequência de operações de IO.
```

 $p \gg f$ é o programa que faz as operações de IO correspondentes a p seguidas das operações de IO correspondentes a f x, retornando o resultado desta última computação.

Exemplo: As seguintes funções já estão pré-definidas.

A notação "do"

O Haskell fornece uma construção sintática (do) para escrever de forma simplificada cadeias de operações mónadicas.

```
do { e1; e2 }
                                                  ou
                                                         do e1
            pode ser escrito como
 e1 >> e2
                                                            e2
 e1 >>= (\x -> e2)
                      pode ser escrito como
                                           do x <- e1
                                              e2
c1 >= (x1-> c2 >= (x2-> ... cn >= (xn-> return y) ...))
                                                       do x1 <- c1
                                pode ser escrito como
                                                          x2 < -c2
                                                          xn <- cn
Mais formalmente:
                                                          return y
                                     e
do e
                                     e1 >> do e2;...; en
do e1; e2;...; en
                                     e1 >>= \ x -> do e2;...; en
do x <- e1; e2;...; en
do let declarações; e2;...; en
                                     let declarações in do e2;...; en
```

A notação "do"

Exemplo: As funções pré-definidas putStr e getLine, usando a notação "do".

Exemplo: Misturando "do" e "let".

```
> test
aEIou
AEIOU aeiou
>
```

155

Exemplos com IO

Exemplo:

```
> expTrig
Indique um numero: 2.5
0 seno de 2.5 e' 0.5984721.
0 coseno de 2.5 e' -0.8011436.
```

```
> expTrig
Indique um numero: 3.4.5
0 seno de 3.4.5 e' *** Exception: Prelude.read: no parse
```

Exemplo:

Uma função que recebe uma listas de questões e vai recolhendo respostas para uma lista.

Ou, de forma equivalente:

```
dialogo' :: String -> IO String
dialogo' s = (putStr s) >> (getLine >>= (\r -> return r))
```

Funções de IO do Prelude

Para ler do standard input (por defeito, o teclado):

```
getChar :: IO Char lê um caracter;
getLine :: IO String lê uma string (até se primir enter).
```

Para escrever no *standard ouput* (por defeito, o écran):

Para lidar com ficheiros de texto:

```
writeFile :: FilePath -> String -> IO () escreve uma string no ficheiro; appendFile:: FilePath -> String -> IO () acrescenta no final do ficheiro; readFile :: FilePath -> IO String lê o conteúdo do ficheiro para uma string.
```

```
type FilePath = String é o nome do ficheiro (pode incluir a path no file system).
```

O módulo IO contém outras funções mais sofisticadas de manipulação de ficheiros.

```
roots :: (Float,Float,Float) -> Maybe (Float,Float)
roots (a,b,c)
    | d >= 0 = Just ((-b + (sqrt d))/(2*a), (-b - (sqrt d))/(2*a))
    | d < 0 = Nothing
where d = b^2 - 4*a*c</pre>
```

```
calcRoots :: IO ()
calcRoots =
  do putStrLn "Calculo das raizes do polimomio a x^2 + b x + c"
      putStr "Indique o valor do ceoficiente a: "
      a <- getLine
      a1 <- return ((read a)::Float)</pre>
      putStr "Indique o valor do ceoficiente b: "
      b <- getLine
      b1 <- return ((read b)::Float)
      putStr "Indique o valor do ceoficiente c: "
      c <- getLine
      c1 <- return ((read c)::Float)</pre>
      case (roots (a1,b1,c1)) of
         Nothing -> putStrLn "Nao ha' raizes reais."
         (Just (r1,r2)) -> putStrLn ("As raizes sao "++(show r1)
                                               ++" e "++(show r2))
```

O Prelude tem já definida a função readIO

```
calcROOTS :: IO ()
calcROOTS =
  do putStrLn "Calculo das raizes do polimomio a x^2 + b x + c"
     putStr "Indique o valor do ceoficiente a: "
     a <- getLine
     a1 <- readIO a
     putStr "Indique o valor do ceoficiente b: "
     b <- getLine
     b1 <- readIO b
     putStr "Indique o valor do ceoficiente c: "
     c <- getLine
     c1 <- readIO c
     case (roots (a1,b1,c1)) of
                  -> putStrLn "Nao ha' raizes reais"
        Nothing
        (Just (r1,r2)) -> putStrLn ("As raizes sao "++(show r1)
                                             ++" e "++(show r2))
```

```
Exemplo:
```

leFich :: IO ()

```
type Notas = [(Integer, String, Int, Int)]
```

texto = $"1234\tPedro\t15\t17\n1111\tAna\t16\t13\n"$

```
leFich = do file <- dialogo "Qual o nome do ficheiro?"
             s <- readFile file
            let 1 = map words (lines s)
                 notas = geraNotas 1
            print notas
geraNotas :: [[String]] -> Notas
geraNotas ([x,y,z,w]:t) = let x1 = (read x)::Integer
                                z1 = (read z)::Int
                                w1 = (read w)::Int
                            in (x1,y,z1,w1):(geraNotas t)
geraNotas _ = []
escFich :: Notas -> IO ()
escFich notas = do file <- dialogo "Qual o nome do ficheiro ? "
                    writeFile file (geraStr notas)
geraStr :: Notas -> String
geraStr [] = ""
geraStr ((x,y,z,w):t) = (show x) ++ ('\t':y) ++ ('\t':(show z)) ++ ('\t':(show w)) ++ "\n" ++ (geraStr t)
                                                                       161
```

O mónade Maybe

A declaração do construtor de tipos Maybe como instância da classe Monad é muito util para trabalhar com computações parciais, pois permite fazer a propagação de erros.

```
instance Monad Maybe where
  return x = Just x
  (Just x) >>= f = f x
  Nothing >>= _ = Nothing
  fail _ = Nothing
```

Exemplo:

Podemos simplificar?

```
divide :: Int -> Int -> Maybe Int
divide _ 0 = Nothing
divide x y = Just (div x y)
```

```
soma :: Int \rightarrow Int \rightarrow Maybe Int soma x y = Just (x+y)
```

Módulos

Um programa Haskell é uma colecção de **módulos**. A organização de um programa em módulos cumpre dois objectivos:

- criar componentes de software que podem ser usadas em diversos programas;
- dar ao programador algum control sobre os identificadores que podem ser usados.

Um módulo é uma declaração "gigante" que obedece à seguinte sintaxe:

module Nome (entidades_a_exportar) where

declarações de importações de módulos

declarações de: tipos, classes, instâncias, assinaturas, funções, ... (por qualquer ordem)

Cada módulo está armazenado num ficheiro, geralmente com o mesmo nome do módulo, mas isso não é obrigatório.

163

Na declaração de um módulo:

• pode-se indicar explicitamente o conjunto de tipos / construtores / funções / classes que são exportados (i.e., visíveis do exterior)

Aos vários items que são exportados ou importados chamaremos entidades.

- por defeito, se nada for indicado, todas as declarações feitas do módulo são exportadas;
- é possível exportar um tipo algébrico com os seus construtores fazendo, por exemplo: ArvBin(Vazia, Nodo), ou equivalentemente, ArvBin(..);
- também é possível exportar um tipo algébrico e não exportar os seus construtores, ou exportar apenas alguns;
- os métodos de classe podem ser exportados seguindo o estilo usado na exportação de construtores, ou como funções comuns;
- declarações de instância são sempre exportadas e importadas, por defeito;
- é possível exportar entidades que não estão directamente declaradas no módulo, mas que resultam de alguma importação de outro módulo.

Qualquer entidade visível no módulo é passível de ser exportada por esse módulo.

Na importação de um módulo por outro módulo:

• é possível fazer a importação de todas as entidades exportadas pelo módulo fazendo

```
import Nome_do_módulo
```

• é possível indicar explicitamente as entidades que queremos importar, fazendo

```
import Nome_do_módulo (entidades a importar)
```

• é possível indicar selectivamente as entidades que <u>não</u> queremos importar (importa-se tudo o que é exportado pelo outro módulo excepto o indicado)

```
import Nome_do_módulo hiding (entidades a não importar)
```

• é possível fazer com que as entidades importadas sejam referenciadas indicando o módulo de onde provêm como prefixo (seguido de '.') fazendo

```
import qualified Nome_do_módulo (entidades a importar)
```

(Pode ser util para evitar colisões de nomes, pois é ilegal importar entidades diferentes que tenham o mesmo nome. Mas se for o mesmo objecto que é importado de diferentes módulos, não há colisão. Uma entidade pode ser importada via diferentes caminhos sem que haja conflitos de nomes.)

165

Um exemplo com módulos

Considere os módulos: Listas, Arvores, Tempo, Horas e Main, que pretendem ilustrar as diferentes formas de exportar e importar entidades.

module Main where

test = map toLower "tesTAnDo"

Após carregar o módulo Main, analise o comportamento do interpretador.

```
*Main> soma arv1
15
*Main> mult arv1
   Variable not in scope: `mult'
*Main> conta arv1
   Variable not in scope: `conta'
*Main> Listas.soma lis1
10
*Main> mult lis1
   Variable not in scope: `mult'
*Main> Listas.mult lis1
24
```

```
*Main> testeC
[2,3,4]
*Main> hValida meioDia
   Variable not in scope: `hValida'
```

```
*Main> isDigit 'e'
   Variable not in scope: `isDigit'
*Main> isAlpha 'e'
True
*Main> toUpper arv1
Nodo 25 (Nodo 9 Vazia (Nodo 16 Vazia Vazia))
       (Nodo 4 (Nodo 1 Vazia Vazia) Vazia)
*Main> test
"testando"
```

```
*Main> minTotal meioDia
720
*Main> minTotal (Am 9 30)
  Data constructor not in scope: `Am'
*Main> manha (AM 9 30)
True
*Main> tarde (PM 17 15)
  Variable not in scope: `tarde'
```

171

Compilação de programas Haskell

Para criar programas *executáveis* o compilador Haskell precisa de ter definido um módulo Main com uma função main que tem que ser de tipo IO.

A função main é o ponto de entrada no programa, pois é ela que é invocada quando o programa compilado é executado.

A compilação de um programa Haskell, usando o *Glasgow Haskell Compiler*, pode ser feita executando na shell do sistema operativo o seguinte comando:

```
ghc -o nome_do_executável --make nome_do_ficheiro_do_módulo_principal
```

Exemplo: Usando o último exemplo para testar a compilação de programas definidos em vários módulos, podemos acrescentar ao módulo Main a declaração

```
main = putStrLn "OK"
```

Assumindo que este módulo está guardado no ficheiro Main.hs podemos fazer a compilação assim: ghc -o testar --make Main

Exemplo: Assumindo que o módulo do próximo slide está no ficheiro **roots.hs**, podemos gerar um executável (chamado raizes) fazendo

```
ghc -o raizes --make roots
```

```
module Main where
main IO ()
main = do calcRoots
           putStrLn "Deseja continuar (s/n) ? "
           x <- getLine
           case (head x) of
                 's' -> main
                 'S' -> main
                    -> putStrLn "\n FIM."
calcRoots :: IO ()
calcRoots = do putStrLn "Calculo das raizes do polimomio a x^2 + b x + c" putStrLn "Indique o valor do ceoficiente a: "
                a1 <- getLine >>= readI0
                putStrLn "Indique o valor do ceoficiente b: "
                b1 <- getLine >>= readI0
                putStrLn "Indique o valor do ceoficiente c: "
                c1 <- getLine >>= readI0
                case (roots (a1,b1,c1)) of
                                 -> putStrLn "Nao ha' raizes reais"
                      Nothing
                      (Just (r1,r2)) -> putStrLn ("As raizes do polinomio sao "++ (show r1)++" e "++(show r2))
roots :: (Float,Float,Float) -> Maybe (Float,Float)
roots (a,b,c)
       | d >= 0 = Just ((-b + (sqrt d))/(2*a), (-b - (sqrt d))/(2*a))
      | d < 0 = Nothing
  where d = b^2 - 4*a*c
```

Tipos Abstractos de Dados

A quase totalidade dos tipos de dados que vimos até aqui são **tipos concretos de dados**, dado que se referem a uma estrutura de dados concreta fornecida pela linguagem.

(ArvBin a) e TB são dois tipos concretos. Sabemos como são constituídos os valores destes tipos e podemos extrair informação ou construir novos valores, por manipulação directa dos construtores de valores destes tipos.

Em contraste, os **tipos abstractos de dados** não estão ligados a nenhuma representação particular. Em vez disso, eles são definidos implicitamente através de um conjunto de operações utilizadas para os manipular.

Exemplo: O tipo (IO a) é um tipo abstracto de dados. Não sabemos de que forma são os valores deste tipo. Apenas conhecemos um conjunto de funções para os manipular.

Tipos Abstractos de Dados

As assinaturas das funções do tipo abstracto de dados e as suas especificações constituem o *interface* do tipo abstracto de dados. Nem a estrutura interna do tipo abstracto de dados, nem a implementação destas funções são visíveis para o utilizador.

Dada a especificação de um tipo abstracto de dados, as operações que o definem poderão ter *diferentes implementações*, dependendo da estrutura usada na representação interna de dados e dos algoritmos usados.

A utilização de tipos abstractos de dados traz benefícios em termos de **modularidade** dos programas. Alterações na implementação das operações do tipo abstracto não afecta outras partes do programa desde que as operações mantenham o seu tipo e a sua especificação.

Em Haskell, a construção de tipos abstractos de dados é feita utilizando módulos.

O módulo onde se implementa o tipo abstracto de dados deve exportar apenas o nome do tipo e o nome das operações que constituem o seu interface. A representação do tipo fica assim escondida dentro do módulo, não sendo visível do seu exterior.

Deste modo, podemos mais tarde alterar a representação do tipo abstracto sem afectar os programas que utilizam esse tipo abstracto.

Stacks (pilhas)

Uma **Stack** é uma colecção homegénea de itens que implementa a noção de pilha, de acordo com o seguinte interface:

push :: a -> Stack a -> Stack a

pop :: Stack a -> Stack a

remove o item do topo da pilha

top :: Stack a -> a

dá o item que está no topo da pilha

stackEmpty :: Stack a -> Bool

testa se a pilha está vazia

newStack :: Stack a

cria uma pilha vazia

Os itens da stack são removidos de acordo com a estratégia LIFO (Last In First Out).


```
module Stack(Stack, push, pop, top, stackEmpty, newStack) where
         :: a -> Stack a -> Stack a
push
          :: Stack a -> Stack a
pop
top :: Stack a -> a
stackEmpty :: Stack a -> Bool
newStack :: Stack a
data Stack a = EmptyStk
            | Stk a (Stack a)
push x s = Stk x s
pop EmptyStk = error "pop em stack vazia."
pop (Stk _ s) = s
top EmptyStk = error "top em stack vazia."
top (Stk x _) = x
newStack = EmptyStk
stackEmpty EmptyStk = True
stackEmpty _
              = False
instance (Show a) => Show (Stack a) where
    show (EmptyStk) = "#"
    show (Stk x s) = (show x) ++ "|" ++ (show s)
```

Exemplos:

```
*Main> ex1
2|7|3|#

*Main> ex2
"abc"|"xyz"|#
```

```
*Main> listTOstack [1,2,3,4,5]
1|2|3|4|5|#
*Main> stackTOlist ex2
["abc","xyz"]
*Main> stackTOlist (listTOstack [1,2,3,4,5])
[1,2,3,4,5]
```

```
module Stack(Stack, push, pop, top, stackEmpty, newStack) where
           :: a -> Stack a -> Stack a
push
           :: Stack a -> Stack a
pop
          :: Stack a -> a
top
stackEmpty :: Stack a -> Bool
           :: Stack a
newStack
data Stack a = Stk [a]
push x (Stk s) = Stk (x:s)
pop (Stk []) = error "pop em stack vazia."
pop (Stk (\_:xs)) = Stk xs
top (Stk []) = error "top em stack vazia."
top (Stk (x:_)) = x
newStack = Stk []
stackEmpty (Stk []) = True
stackEmpty _
                    = False
instance (Show a) => Show (Stack a) where
    show (Stk []) = "#"
    show (Stk (x:xs)) = (show x) ++ "|" ++ (show (Stk xs))
```

Queues (filas)

Uma **Queue** é uma colecção homegénea de itens que implementa a noção de fila de espera, de acordo com o seguinte interface:

```
enqueue :: a -> Queue a -> Queue a coloca um item no fim da fila de espera dequeue :: Queue a -> Queue a remove o item do início da fila de espera dá o item que está à frente na fila de espera queueEmpty :: Queue a -> Bool testa se a fila de espera está vazia newQueue :: Queue a coloca um item no fim da fila de espera remove o item do início da fila de espera dá o item que está à frente na fila de espera cria uma fila de espera vazia
```

Os itens da queue são removidos de acordo com a estratégia **FIFO** (First In First Out).

Exemplo:


```
module Queue (Queue, enqueue, dequeue, front, queueEmpty, newQueue) where
enqueue
         :: a -> Queue a -> Queue a
dequeue
front
         :: Queue a -> Queue a
          :: Queue a -> a
queueEmpty :: Queue a -> Bool
         :: Queue a
newQueue
data Queue a = Q [a]
enqueue x (Q q) = Q (q++[x])
dequeue (Q (:xs)) = Q xs
dequeue _ = error "Fila de espera vazia."
front (Q(x:\_)) = x
front _
              = error "Fila de espera vazia."
queueEmpty (Q []) = True
queueEmpty _ = False
newQueue = (Q [])
instance (Show a) => Show (Queue a) where
    show (Q []) = "."
    show (Q(x:xs)) = "<"++(show x)++(show (Qxs))
```

```
module Main where
import Stack
import Queue
queueTOstack :: Queue a -> Stack a
queueTOstack q = qts q newStack
 where qts q s
      | queueEmpty q = s
      | otherwise = qts (dequeue q) (push (front q) s)
stackTOqueue :: Stack a -> Oueue a
stackTOqueue s = stq s newQueue
 where stq s q
      | stackEmpty s = q
      | otherwise = stq (pop s) (enqueue (top s) q)
invQueue :: Queue a -> Queue a
invQueue q = stackTOqueue (queueTOstack q)
invStack :: Stack a -> Stack a
invStack s = queueTOstack (stackTOqueue s)
q1 = enqueue 3 (enqueue 6 (enqueue 1 newQueue))
s1 = push 2 (push 8 (push 9 newStack))
```

Exemplos:

```
*Main> q1
<1<6<3.
*Main> queueTOstack q1
3|6|1|#
*Main> invQueue q1
<3<6<1.
```

```
*Main> s1
2|8|9|#
*Main> stackTOqueue s1
<2<8<9.
*Main> invStack s1
9|8|2|#
```

183

Sets (conjuntos)

Um **Set** é uma colecção homegénea de itens que implementa a noção de conjunto, de acordo com o seguinte interface:

```
emptySet :: Set a cria um conjunto vazio

setEmpty :: Set a -> Bool

inSet :: (Eq a) => a -> Set a -> Bool

testa se um conjunto é vazio

testa se um item pertence a um conjunto

addSet :: (Eq a) => a -> Set a -> Set a

acrescenta um item a um conjunto

delSet :: (Eq a) => a -> Set a -> Set a

remove um item de um conjunto

pickSet :: Set a -> a

escolhe um item de um conjunto
```

É necessário testar a igualdade entre itens, por isso o tipo dos itens tem que pertencer à classe Eq. Mas certas implementações do tipo Set podem requerer outras restrições de classe sobre o tipo dos itens.

É possível establecer um interface mais rico para o tipo abstracto Set, por exemplo, incluindo operações de união, intersecção ou diferença de conjuntos, embora se consiga definir estas operações à custa do interface actual.

A seguir apresentam-se duas implementações para o tipo abstracto Set.

```
module Set(Set, emptySet, setEmpty, inSet, addSet, delSet) where
emptySet :: Set a
setEmpty :: Set a -> Bool
         :: (Eq a) => a -> Set a -> Bool
addSet :: (Eq a) \Rightarrow a \rightarrow Set a \rightarrow Set a
delSet :: (Eq a) \Rightarrow a \rightarrow Set a \rightarrow Set a
pickSet :: Set a -> a
data Set a = S [a] -- listas com repetições
emptySet = S []
setEmpty (S []) = True
setEmpty _ = False
inSet \underline{\ } (S []) = False
inSet \underline{\ } (S (\underline{\ })) | \underline{\ } \underline{\ } \underline{\ } = \underline{\ } True
                       | otherwise = inSet x (S ys)
addSet x (S s) = S (x:s)
delSet x (S s) = S (delete x s)
delete x [] = []
delete x (y:ys) | x == y = delete x ys
                   | otherwise = y:(delete x ys)
pickSet (S []) = error "Conjunto vazio"
pickSet (S (x:\_)) = x
```

```
module Set(Set, emptySet, setEmpty, inSet, addSet, delSet) where
emptySet :: Set a
setEmpty :: Set a -> Bool
inSet
        :: (Eq a) => a -> Set a -> Bool
addSet :: (Eq a) \Rightarrow a \rightarrow Set a \rightarrow Set a
delSet :: (Eq a) \Rightarrow a \rightarrow Set a \rightarrow Set a
pickSet :: Set a -> a
data Set a = S [a] -- listas sem repetições
emptySet = S []
setEmpty (S []) = True
            = False
setEmpty _
inSet _ (S [])
inSet x (S (y:ys)) | x == y = True
                    | otherwise = inSet x (S ys)
addSet x (S s) | (elem x s) = S s
                | otherwise = S (x:s)
delSet x (S s) = S (delete x s)
delete x [] = []
delete x (y:ys) | x == y = ys
                 | otherwise = y:(delete x ys)
pickSet (S []) = error "Conjunto vazio"
pickSet (S (x:\_)) = x
```

Tables (tabelas)

(Table a b) é uma colecção de associações entre chaves do tipo a e valores do tipo b, implementando assim uma função finita, com domínio em a e co-domínio em b, através de uma determinada estrutura de dados.

O tipo abstracto tabela poderá ter o seguinte interface:

```
newTable :: Table a b
findTable :: (Ord a) => a -> Table a b -> Maybe b
updateTable :: (Ord a) => (a,b) -> Table a b -> Table a b
removeTable :: (Ord a) => a -> Table a b -> Table a b
```

Para permitir implementações eficientes destas operações, está-se a exigir que o tipo das chaves pertença à classe Ord.

A seguir apresentam-se duas implementações distintas para o tipo abstracto tabela:

- usando uma lista de pares (chave, valor) ordenada por ordem crescente das chaves;
- usando uma árvore binária de procura com pares (chave, valor) nos nodos da árvore.

module Table (Table, newTable, findTable, updateTable, removeTable) where newTable :: Table a b $:: (Ord a) \Rightarrow a \rightarrow Table a b \rightarrow Maybe b$ findTable updateTable :: (Ord a) => (a,b) -> Table a b -> Table a b removeTable :: (Ord a) => a -> Table a b -> Table a b data Table a b = Tab [(a,b)] -- lista ordenada por ordem crescente newTable = Tab [] findTable _ (Tab []) = Nothing findTable x (Tab ((c,v):cvs)) | x < c = Nothing| x == c = Just v| x > c = findTable x (Tab cvs)updateTable (x,z) (Tab []) = Tab [(x,z)]updateTable (x,z) (Tab ((c,v):cvs)) | x < c = Tab ((x,z):(c,v):cvs) $\mid x == c = Tab ((c,z):cvs)$ | x > c = let (Tab t) = updateTable (x,z) (Tab cvs)in Tab ((c,v):t)

{- -- continuação do slide anterior -- -}

Evita-se derivar o método show de forma automática, para não revelar a implementação do tipo abstracto.

```
module Table(Table, newTable, findTable, updateTable, removeTable) where
newTable
            :: Table a b
findTable
            :: (Ord a) => a -> Table a b -> Maybe b
updateTable :: (Ord a) => (a,b) -> Table a b -> Table a b
removeTable :: (Ord a) => a -> Table a b -> Table a b
                         -- Arvore binaria de procura
data Table a b = Empty
               | Node (a,b) (Table a b) (Table a b)
newTable = Empty
findTable _ Empty = Nothing
findTable x (Node (c,v) e d)
                    | x < c = findTable x e
                    | x == c = Just v
                    | x > c = findTable x d
updateTable (x,z) Empty = Node (x,z) Empty Empty
updateTable (x,z) (Node (c,v) e d)
                    | x < c = Node (c,v) (updateTable (x,z) e) d
                    | x == c = Node (c,z) e d
                    | x > c = Node (c,v) e (updateTable (x,z) d)
```

{- -- continua -- -}

190

{- -- continuação do slide anterior -- -}

191

Exemplos:

```
*Main> pauta info

1111 ("Mario",14)

2222 ("Rui",17)

3333 ("Teresa",12)

5555 ("Helena",15)

7777 ("Pedro",15)

9999 ("Pedro",10)
```

```
*Main> findTable 5555 (pauta info)
Just ("Helena",15)

*Main> findTable 8888 (pauta info)
Nothing

*Main> removeTable 9999 (pauta info)
1111 ("Mario",14)
2222 ("Rui",17)
3333 ("Teresa",12)
5555 ("Helena",15)
7777 ("Pedro",15)
```

Sequência de Fibonacci

O n-ésimo número da sequência de Fibonacci define-se matematicamente por

$$fib\ n=0$$
 , $se\ n=0$
 $fib\ n=1$, $se\ n=1$
 $fib\ n=fib\ (n-2)+fib\ (n-1)$, $se\ n\geq 2$

```
fib 0 = 0
fib 1 = 1
fib n | n>=2 = fib (n-2) + fib (n-1)
```

O cálculo do fib de um número pode envolver o cálculo do fib de números mais pequenos, repetidas vezes.

```
fib 5 \Rightarrow (fib 3)+(fib 4) \Rightarrow ((fib 1)+(fib 2))+((fib 2)+(fib 3)) \Rightarrow (1+((fib 0)+(fib 1)))+((fib 2)+(fib 3)) \Rightarrow ... \Rightarrow 5
```

A sequência de Fibonnacci pode ser definida por

```
seqFibonnacci = [fib n | n \leftarrow [0,1..]]
```

193

Uma versão mais eficiente dos números de Fibonnacci utiliza um parametro de acumulação.

Neste caso o acumulador é um par que regista os dois últimos números de Fibonnacci calculados até ao momento.

```
fib n = fibAc (0,1) n
where fibAc (a,b) 0 = a
fibAc (a,b) 1 = b
fibAc (a,b) (n+1) = fib (b,a+b) n
```

```
fib 5 \Rightarrow fibAc (0,1) 5 \Rightarrow fibAc (1,1) 4 \Rightarrow fibAc (1,2) 3 \Rightarrow fibAc (2,3) 2 \Rightarrow fibAc (3,5) 1 \Rightarrow 5
```

A sequência de Fibonnacci pode ser definida por

```
seqFib = 0 : 1 : [ a+b | (a,b) <- zip seqFib (tail seqFib) ]
```

Note que é a lazy evaluation que faz com que este género de definição seja possível.

Funções e listas por compreensão

Pedem-se usar listas por compreensão na definição de funções.

Exemplo: Máximo divisor comum de dois números.

divisores
$$n = [x \mid x \leftarrow [1..n], (n \mod x) == 0]$$

divisoresComuns
$$x y = [n \mid n \leftarrow divisores x, (y \mod n) == 0]$$

mdc n m = maximum (divisoresComuns n m)

O crivo de Eratosthenes

Esta função deixa ficar numa lista o primeiro elemento e todos os que não são múltiplos desse argumento, repetindo em seguida esta operação para a restante lista.

```
crivo [] = []
crivo (x:xs) = x : (crivo ys)
  where ys = [ n | n <- xs , n `mod` x /= 0 ]</pre>
```

A lista dos números primos não superiores a um dado número.

```
primos_ate' x = crivo [2..x]
```

Lista dos números primos.

```
seqPrimos = crivo [2..]
```

Calcular os n primeiros primos.

```
primeirosPrimos n = take n seqPrimos
```