Problem: we have \neg , \wedge , and \vee , so given the specification

x_{n-1}	• • •	x_1	x_0	r
0	• • •	0	0	1
0	• • •	0	1	0
0		1	0	1
0		1	1	0
:		:	:	:
:				:
1		1	1	0

for some Boolean function

$$r = f(x_0, x_1, \ldots, x_{n-1}),$$

design a Boolean expression *e* which can compute it.

► Solution: ?

COMS10015 lecture: week #3

- Agenda: combinatorial logic design, where, crucially,
 - the output is a function of the input only,
 - computation is viewed as being continuous,

via coverage of

- 1. special-purpose design patterns,
- 2. special-purpose building blocks, and
- 3. general-purpose derivation.

- ▶ Pattern #1: decomposition.
 - ▶ Any *n*-input, *m*-output Boolean function

$$f: \mathbb{B}^n \to \mathbb{B}^m$$

can be rewritten as m separate n-input, 1-output Boolean functions, say

$$f_{0} : \mathbb{B}^{n} \to \mathbb{B}$$

$$f_{1} : \mathbb{B}^{n} \to \mathbb{B}$$

$$\vdots$$

$$f_{m-1} : \mathbb{B}^{n} \to \mathbb{B}$$

As such, we have

$$f(x) \equiv f_0(x) \parallel f_1(x) \parallel \ldots \parallel f_{m-1}(x).$$

- ► Pattern #2: sharing.
 - ► Imagine, for example, that we are given a 2-input, 1-bit AND gate.
 - ▶ If, within some larger circuit, we compute

$$r = x \wedge y$$

and then, somewhere else,

$$r' = x \wedge y$$

then we can replace the two AND gates with one: clearly

$$r=r'$$

so we can share one definition between two usage points.

- ▶ Pattern #3: independent replication.
 - ► Imagine, for example, that we are given a 2-input, 1-bit AND gate.
 - ▶ A 2-input, *m*-bit AND gate is simply replication of 2-input, 1-bit AND gates, i.e.,

$$r = x \wedge y$$

is computed via

$$r_i = x_i \wedge y_i$$

for $0 \le i < m$,

• for n = 4, as an example, this means

$$r_0 = x_0 \wedge y_0$$

 $r_1 = x_1 \wedge y_1$
 $r_2 = x_2 \wedge y_2$
 $r_3 = x_3 \wedge y_3$

- ► Pattern #4: dependent replication.
 - ▶ Imagine, for example, that we are given a 2-input, 1-bit AND gate.
 - ► An *n*-input, 1-bit AND gate is simply replication of 2-input, 1-bit AND gates, i.e.,

$$r = \bigwedge_{i=0}^{n-1} x_i$$

is computed via

$$r = x_0 \wedge (x_1 \wedge \cdots (x_{n-1})),$$

• for n = 4, as an example, this means

$$r = x_0 \wedge (x_1 \wedge x_2 \wedge (x_3))$$

= $x_0 \wedge x_1 \wedge x_2 \wedge x_3$
= $(x_0 \wedge x_1) \wedge (x_2 \wedge x_3)$

Part 2: special-purpose building blocks (1) Choice

- Concept: the following building blocks can support most forms of choice
 - 1. a multiplexer
 - has *m* inputs,
 - has 1 output,
 - uses a ($\lceil \log_2(m) \rceil$)-bit control signal input to choose which input is connected to the output, while
 - 2. a demultiplexer
 - has 1 input,
 - has m outputs,
 - uses a ($\lceil \log_2(m) \rceil$)-bit control signal input to choose which output is connected to the input,

noting that

- the input(s) and output(s) are *n*-bit, but clearly must match up,
- the connection made is continuous, since both components are combinatorial.

Part 2: special-purpose building blocks (2) Choice

- Concept: by analogy,
 - 1. the C switch statement

```
Listing

1 switch(c) {
2 case 0 : r = w; break;
3 case 1 : r = x; break;
4 case 2 : r = y; break;
5 case 3 : r = z; break;
6 }
```

acts similarly to a 4-input multiplexer,

2. the C switch statement

```
Listing

1 switch( c ) {
2   case 0 : r0 = x; break;
3   case 1 : r1 = x; break;
4   case 2 : r2 = x; break;
5   case 3 : r3 = x; break;
6 }
```

acts similarly to a 4-output demultiplexer.

Definition

The behaviour of a 2-input, 1-bit multiplexer component

C	x	y	r
0	0	?	0
0	1	?	1
1	?	0	0
1	?	1	1

which can be used to derive the following implementation:

$$= (\neg c \land x) \lor (c \land y)$$

Definition

The behaviour of a 2-output, 1-bit demultiplexer component

is described by the truth table

С	χ	r_1	r_0
0	0	?	0
0	1	?	1
1	0	0	?
1	1	1	?

which can be used to derive the following implementation:

$$c_0 = \neg c \wedge x$$
 $c \wedge x$

Circuit

An Aside: application of design patterns

Circuit (2-input, 4-bit multiplexer via independent replication)

$$x_{0} \xrightarrow{x} x \xrightarrow{r} r_{0}$$

$$y_{0} \xrightarrow{y} \xrightarrow{r} r_{0}$$

$$x_{1} \xrightarrow{x} x \xrightarrow{y} \xrightarrow{r} r_{1}$$

$$x_{2} \xrightarrow{x} x \xrightarrow{y} \xrightarrow{r} r_{2}$$

$$x_{2} \xrightarrow{x} x \xrightarrow{x} r_{2}$$

$$x_{3} \xrightarrow{x} x \xrightarrow{x} r_{3}$$

$$x \xrightarrow{r} r_{3}$$

An Aside: application of design patterns

Circuit (4-input, 1-bit multiplexer via dependent replication) t_0 c_0 t_1 c_0

Part 2: special-purpose building blocks (7)

- Concept: the following building blocks can support most forms of arithmetic
 - 1. a half-adder
 - has 2 inputs: x and y,
 - \triangleright computes the 2-bit result x + y,
 - has 2 outputs: a sum s, and a carry-out co (which are the LSB and MSB of result),

while

- 2. a full-adder
 - has 3 inputs: *x* and *y* plus a carry-in *ci*,
 - ightharpoonup computes the 2-bit result x + y + ci,
 - has $\hat{2}$ outputs: a sum s, and a carry-out co (which are the LSB and MSB of result),

where all inputs and outputs are 1-bit.

Definition

The behaviour of a half-adder component

x	y	co	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

which can be used to derive the following implementation:

$$co = x \wedge y$$

 $s = x \oplus y$

Circuit

Definition

The behaviour of a full-adder component

is described by the truth table

ci	x	y	co	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

which can be used to derive the following implementation:

$$\begin{array}{lll} co & = & (x \wedge y) \vee (x \wedge ci) \vee (y \wedge ci) \\ & = & (x \wedge y) \vee ((x \oplus y) \wedge ci) \end{array}$$

$$s \quad = \quad x \oplus y \oplus ci$$

Part 2: special-purpose building blocks (11) Comparison

- ► Concept: the following building blocks can support most forms of comparison
 - 1. an equality comparator
 - has 2 inputs x and y,
 - computes the 1 output as

$$r = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$

while

- 2. a less-than comparator
 - has 2 inputs x and y,
 - computes the 1 output as

$$r = \begin{cases} 1 & \text{if } x < y \\ 0 & \text{otherwise} \end{cases}$$

where all inputs and outputs are 1-bit.

Definition

The behaviour of an equality comparator component

x	y	r
0	0	1
0	1	0
1	0	0
1	1	1

which can be used to derive the following implementation:

$$r = \neg(x \oplus y)$$

Circuit

Definition

The behaviour of a less-than comparator component

is described by the truth table

x	у	r
0	0	0
0	1	1
1	0	0
1	1	0

which can be used to derive the following implementation:

$$r = \neg x \wedge y$$

Circuit

Part 2: special-purpose building blocks (16) Control

Concept: informally, encoders and decoders can be viewed as translators, i.e.,

or, more formally,

- 1. an *n*-to-*m* encoder translates an *n*-bit input into some *m*-bit code word, and
- 2. an *m*-to-*n* decoder translates an *m*-bit code word back into the same *n*-bit output where if only one output (resp. input) is allowed to be 1 at a time, we call it a **one-of-many** encoder (resp. decoder).

Part 2: special-purpose building blocks (16)

- A general building block is impossible since it depends on the scheme for encoding/decoding: consider an example such that
 - 1. to encode, take n inputs, say x_i for $0 \le i < n$, and produce a unsigned integer x' that determines which $x_i = 1$,
 - 2. to decode, take x' and set the correct $x_i = 1$

where for all
$$j \neq i$$
, $x'_j = 0$.

Definition (example encoder)

The example encoder is described by the truth table

<i>x</i> ₃	x_2	x_1	x_0	x_1'	x'_0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

which can be used to derive the following implementation:

$$\begin{array}{rcl} x'_0 & = & x_1 \lor x_3 \\ x'_1 & = & x_2 \lor x_3 \end{array}$$

Circuit (example encoder)

Definition (example decoder)

The example decoder is described by the truth table

x'_1	x'_0	х3	x_2	x_1	x_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

which can be used to derive the following implementation:

$$\begin{array}{rclrcl} x_0 & = & \neg x_0' & \wedge & \neg x_1' \\ x_1 & = & x_0' & \wedge & \neg x_1' \\ x_2 & = & \neg x_0' & \wedge & x_1' \\ x_3 & = & x_0' & \wedge & x_1' \end{array}$$

Circuit (example decoder)

Part 3: general-purpose derivation (1) Method #1

Algorithm

Input: A truth table for some Boolean function f, with n inputs and 1 output **Output:** A Boolean expression e that implements f

First let I_j denote the j-th input for $0 \le j < n$ and O denote the single output:

- 1. Find a set *T* such that $i \in T$ iff. O = 1 in the *i*-th row of the truth table.
- 2. For each $i \in T$, form a term t_i by AND'ing together all the variables while following two rules:
 - 2.1 if $I_i = 1$ in the *i*-th row, then we use

 I_j

as is, but

2.2 if $I_j = 0$ in the *i*-th row, then we use

 $\neg I_j$.

3. An expression implementing the function is then formed by OR'ing together all the terms, i.e.,

$$e = \bigvee_{i \in T} t_i$$

which is in SoP form.

Consider the example of deriving an expression for XOR, i.e.,

$$r=f(x,y)=x\oplus y,$$

a function described by the following truth table:

	f	
х	у	r
0	0	0
0	1	1
1	0	1
1	1	0

Consider the example of deriving an expression for XOR, i.e.,

$$r=f(x,y)=x\oplus y,$$

a function described by the following truth table:

	f			
x	у	r		
0	0	0		
0	1	1	\sim	i = 1
1	0	1	\sim	i = 2
1	1	0		

Following the algorithm produces:

- 1. Looking at the truth table, it is clear there are
 - n = 2 inputs that we denote $I_0 = x$ and $I_1 = y$, and
 - one output that we denote O = r.

Clearly $T = \{1, 2\}$ since O = 1 in rows 1 and 2, while O = 0 in rows 0 and 3.

Consider the example of deriving an expression for XOR, i.e.,

$$r = f(x, y) = x \oplus y,$$

a function described by the following truth table:

	f			
x	y	r		
0	0	0	ĺ	
0	1	1	~	$t_1 = \neg x \wedge y$
1	0	1	~	$t_2 = x \land \neg y$
1	1	0		

Following the algorithm produces:

- 2. Each term t_i for $i \in T = \{1, 2\}$ is formed as follows:
 - For i = 1, we find
 - I₀ = x = 0 and so we use $\neg x$,
 - I₁ = y = 1 and so we use y

and hence form the term $t_1 = \neg x \land y$.

- For i = 2, we find
 - In $I_0 = x = 1$ and so we use x,
 - I₁ = y = 0 and so we use $\neg y$

and hence form the term $t_2 = x \land \neg y$.

Consider the example of deriving an expression for XOR, i.e.,

$$r = f(x, y) = x \oplus y$$
,

a function described by the following truth table:

	f			
х	у	r		
0	0	0	ĺ	
0	1	1	~	$t_1 = \neg x \wedge y$
1	0	1	~	$t_2 = x \wedge \neg y$
1	1	0		
	0 0 1 1	$ \begin{array}{c cccc} f \\ \hline x & y \\ \hline 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array} $		1 0 1

Following the algorithm produces:

3. The expression implementing the function is therefore

$$e = \bigvee_{i \in T} t_i$$

$$= \bigvee_{i \in \{1,2\}} t_i$$

$$= (\neg x \land y) \lor (x \land \neg y)$$

which is in SoP form.

Part 3: general-purpose derivation (3) Method #2: Karnaugh map

Part 3: general-purpose derivation (3)

Method #2: Karnaugh map

► Idea:

$$(x \land y) \lor (x \land \neg y) \equiv x \land (y \lor \neg y)$$
 (distribution)
 $\equiv x \land 1$ (inverse)
 $\equiv x$ (identity)

Part 3: general-purpose derivation (4) Method #2: Karnaugh map

Algorithm

Input: A truth table for some Boolean function *f* , with *n* inputs and 1 output **Output:** A Boolean expression *e* that implements *f*

- 1. Draw a rectangular $(p \times q)$ -element grid, st.
 - 1.1 $p \equiv q \equiv 0 \pmod{2}$, and
 - 1.2 $p \cdot q = 2^n$
- and each row and column represents one input combination; order rows and columns according to a Gray code.
- 2. Fill the grid elements with the output corresponding to inputs for that row and column.
- Cover rectangular groups of adjacent 1 elements which are of total size 2^m for some m; groups can "wrap around" edges of the grid and overlap.
- 4. Translate each group into one term of an SoP form Boolean expression e where
 - 4.1 bigger groups, and
 - 4.2 less groups

mean a simpler expression.

Part 3: general-purpose derivation (5) Method #2: Karnaugh map

Example			
	Natural sequence	Gray code sequence	
	$\begin{array}{ccccc} \langle 0,0,0,0\rangle & \mapsto & 0_{(10)} \\ \langle 1,0,0,0\rangle & \mapsto & 1_{(10)} \\ \langle 0,1,0,0\rangle & \mapsto & 2_{(10)} \\ \langle 1,1,0,0\rangle & \mapsto & 3_{(10)} \\ \langle 0,0,1,0\rangle & \mapsto & 4_{(10)} \\ \langle 1,0,1,0\rangle & \mapsto & 5_{(10)} \\ \langle 0,1,1,0\rangle & \mapsto & 6_{(10)} \\ \langle 1,1,1,0\rangle & \mapsto & 7_{(10)} \\ & \vdots & & \vdots \\ \end{array}$	$\begin{array}{cccccc} \langle 0,0,0,0\rangle & \mapsto & 0_{(10)} \\ \langle 1,0,0,0\rangle & \mapsto & 1_{(10)} \\ \langle 1,1,0,0\rangle & \mapsto & 3_{(10)} \\ \langle 0,1,0,0\rangle & \mapsto & 2_{(10)} \\ \langle 0,1,1,0\rangle & \mapsto & 6_{(10)} \\ \langle 0,0,1,0\rangle & \mapsto & 4_{(10)} \\ \langle 1,0,1,0\rangle & \mapsto & 5_{(10)} \\ \langle 1,1,1,0\rangle & \mapsto & 7_{(10)} \\ & \vdots & \vdots & \vdots & \vdots \\ \end{array}$	

Part 3: general-purpose derivation (6) Method #2: Karnaugh map

Example

Consider an example 4-input, 1-output function:

w	χ	y	z	r
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Part 3: general-purpose derivation (6) Method #2: Karnaugh map

Example

Consider an example 4-input, 1-output function:

w	х	у	Z	r
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1
1	1	1	1	1

Part 3: general-purpose derivation (6)

Method #2: Karnaugh map

Example

Consider an example 4-input, 1-output function:

w	х	у	z	r
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Consider an example 4-input, 1-output function:

				_
w	х	y	Z	r
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Consider an example 4-input, 1-output function:

w	χ	y	z	r
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Part 3: general-purpose derivation (7) Method #2: Karnaugh map

Example

Consider an example 3-input, 1-output function:

\boldsymbol{x}	y	z	r
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	?
1	1	0	1
1	1	1	?

Part 3: general-purpose derivation (7)

Method #2: Karnaugh map

Example

Consider an example 3-input, 1-output function:

x	у	Z	r
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	?
1	1	0	1
1	1	1	?

ietilou #2. Karilaugii

Example

Consider an example 3-input, 1-output function:

ſ	х	у	Z	r
ſ	0	0	0	0
۱	0	0	1	0
۱	0	1	0	1
	0	1	1	1
	1	0	0	0
۱	1	0	1	?
	1	1	0	1
l	1	1	1	?

$$r = (\neg x \wedge y)$$

Consider an example 3-input, 1-output function:

ĺ	х	у	Z	r
ĺ	0	0	0	0
١	0	0	1	0
١	0	1	0	1
١	0	1	1	1
١	1	0	0	0
١	1	0	1	?
١	1	1	0	1
l	1	1	1	?

			. !	; ;	r
		00	01	11	10
	0	。0	1	₅ 1	40
zΤ	1	2 0	1	, ?	?
_					

$$r = (\neg x \wedge y) \vee (y \wedge \neg z)$$

Consider an example 3-input, 1-output function:

х	у	Z	r
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	?

Each group translates into one term of the SoP form expressions

$$r = (\neg x \land y) \lor (y \land \neg z)$$
 $r = y$

where effective use of don't care states yields a clear improvement!

Part 3: general-purpose derivation (8) Method #2: Karnaugh map

Example

Consider an example 3-input, 1-output function:

x	y	Z	r
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Part 3: general-purpose derivation (8) Method #2: Karnaugh map

Example

Consider an example 3-input, 1-output function:

х	y	Z	r
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Part 3: general-purpose derivation (8) Method #2: Karnaugh map

Example

Consider an example 3-input, 1-output function:

х	у	Z	r
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Part 3: general-purpose derivation (8) Method #2: Karnaugh map

Example

Consider an example 3-input, 1-output function:

х	у	Z	r
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

$$r = \begin{pmatrix} x & \wedge & z \end{pmatrix} \lor \begin{pmatrix} x & \wedge & y \end{pmatrix}$$

Part 3: general-purpose derivation (8) Method #2: Karnaugh map

Example

Consider an example 3-input, 1-output function:

х	y	Z	r
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Part 3: general-purpose derivation (9) Method #2: Karnaugh map

Example

Consider an example 4-input, 2-output function:

w	х	у	Z	r_1	r_0
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0		0
0	0	1	1	1 ?	1 0 ?
0	1	0	0	0	
0	1	0	1	1	0
0	1	1	0	1 0	0
0	1	1	1	?	?
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	0	1
1	0	1	1	0 0 ? ?	?
1	1	0	0	?	?
1	1	0	1	?	?
1	1	1	0	?	1 0 0 ? 0 0 1 ? ?
1	1	1	1	?	?

Consider an example 4-input, 2-output function:

w	х	у	Z	r_1	r_0
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	?	?
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	0	0
0	1	1	1	1 ? 0 1 0 ?	?
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	0	1
1	0	1	1	?	?
1	1	0	0	?	?
1	1	0	1	?	?
1	1	1	0	1 0 0 ? ? ?	1 0 ? 1 0 0 ? 0 0 1 ? ?
1	1	1	1	?	?

Consider an example 4-input, 2-output function:

w	х	у	Z	r_1	r_0
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	?	?
0	1	0	0	1 ? 0	1
0	1	0	1	1	0
0	1	1	0	0	0
0 0 0 0 0 0	1	1	1	?	?
1	0	0	0	1	0
1 1 1 1	0	0	1	0	0
1	0	1	0	0	1
1	0	1	1	?	?
1	1	0	0	?	?
1	1	0	1	?	?
1	1	1	0	1 0 ? 1 0 0 ? ? ?	1 0 ? 1 0 0 ? 0 0 1 ? ?
1	1	1	1	?	?

$$r_1 = (w \wedge \neg y \wedge \neg z)$$

Consider an example 4-input, 2-output function:

w	х	у	Z	r_1	r_0
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	?	?
0	1	0	0	1 ? 0	1
0	1	0	1	1	0
0	1	1	0	0	0
0 0 0 0 0 0	1	1	1	?	?
1	0	0	0	1	0
1 1 1 1	0	0	1	0	0
1	0	1	0	0	1
1	0	1	1	?	?
1	1	0	0	?	?
1	1	0	1	?	?
1	1	1	0	1 0 ? 1 0 0 ? ? ?	1 0 ? 1 0 0 ? 0 0 1 ? ?
1	1	1	1	?	?

$$r_1 = \begin{pmatrix} w & \wedge & \neg y & \wedge & \neg z \end{pmatrix} \lor \begin{pmatrix} y & \wedge & \neg w & \wedge & \neg x \end{pmatrix}$$

Consider an example 4-input, 2-output function:

w	х	у	Z	r_1	r_0
0	0	0	0	0	0
0	0	0	1	0	
0	0	1	0	1	0
0	0	1	1	?	1 0 ?
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	0	0
0 0 0 0 0 1	1	1	1	?	?
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	0	1
1 1 1	0	1	1	?	?
1	1	0	0	?	?
1	1	0	1	?	?
1	1	1	0	0 1 ? 0 1 0 ? 1 0 0 ? ? ? ? ? ? ? ?	1 0 0 ? 0 0 1 ? ?
1	1	1	1	?	?

				μ- 7 τ	<u></u>
	r_1	00	01	11	10
	00	0	1 0	?	1
_ z	01	2 0	1	, ?	6
, [11	?	?	.?	?
1	10	1	9 0	?	12

Consider an example 4-input, 2-output function:

w	х	у	z	r_1	r_0
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	?	?
0	1	0	0	1 ? 0	1
0	1	0	1	1	0
0	1	1	0	0	0
0 0 0 0 0 0	1	1	1	?	?
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	0	1
1	0	1	1	?	?
1	1	0	0	?	?
1	1	0	1	?	?
1	1	1	0	1 0 ? 1 0 0 ? ? ?	1 0 ? 1 0 0 ? 0 0 1 ? ?
1	1	1	1	?	?

$$r_0 = (x \land \neg y \land \neg z)$$

Consider an example 4-input, 2-output function:

w	х	у	z	r_1	r_0
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	?	?
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	0	0
0	1	1	1	?	?
1	0	0	0	1	0
1		0	1	0	0
1	0 0 0	1	0	0	1
1	0	1	1	?	?
1	1	0	0	?	?
1	1	0	1	?	?
0 0 0 0 0 0 0 1 1 1 1 1	1	1	0	0 1 ? 0 1 0 ? 1 0 ? ? ? ? ? ? ? ?	1 0 ? 1 0 0 ? 0 0 1 ? ?
1	1	1	1	?	?

$$r_1 = \left(\begin{array}{ccccc} w & \wedge & \neg y & \wedge & \neg z \end{array} \right) \lor \left(\begin{array}{ccccc} y & \wedge & \neg z & \wedge & \neg x \end{array} \right) \lor \left(\begin{array}{ccccc} x & \wedge & z \end{array} \right) \lor$$

$$r_0 = \begin{pmatrix} x & \wedge & \neg y & \wedge & \neg z \end{pmatrix} \vee \begin{pmatrix} z & \wedge & \neg w & \wedge & \neg x \end{pmatrix}$$

Consider an example 4-input, 2-output function:

w	х	у	z	r_1	r_0
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	?	?
0	1	0	0	1 ? 0	1
0	1	0	1	1	0
0	1	1	0	0	0
0 0 0 0 0 0	1	1	1	?	?
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	0	1
1	0	1	1	?	?
1	1	0	0	?	?
1	1	0	1	?	?
1	1	1	0	1 0 ? 1 0 0 ? ? ?	1 0 ? 1 0 0 ? 0 0 1 ? ?
1	1	1	1	?	?

Conclusions

► Take away points:

- 1. There are a *huge* number of challenges, even with (relatively) simple problems, e.g.,
 - how do we describe what the design should do?
 - how do we structure the design?
 - what sort of standard cell library do we use?
 - do we aim for the fewest gates?
 - do we aim for shortest critical path?
 - how do we cope with propagation delay and fan-out?
- 2. The three themes we've covered. i.e..
 - high-level design patterns,
 - low-level, mechanical derivation and optimisation of Boolean expressions,
 - building-block components,

allows us to address such challenges: in combination, they support development of effective (combinatorial) design and implementation.

3. In many cases, use of appropriate Electronic Design Automation (EDA) tools can provide (semi-)automatic solutions.

Additional Reading

- Wikipedia: Combinational logic. URL: https://en.wikipedia.org/wiki/Combinational_logic.
- D. Page. "Chapter 2: Basics of digital logic". In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.
- ▶ W. Stallings. "Chapter 11: Digital logic". In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.
- A.S. Tanenbaum and T. Austin. "Section 3.2.2: Combinatorial circuits". In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012.

References

- [1] Wikipedia: Combinational logic. URL: https://en.wikipedia.org/wiki/Combinational_logic (see p. 59).
- D. Page. "Chapter 2: Basics of digital logic". In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009 (see p. 59).
- [3] W. Stallings. "Chapter 11: Digital logic". In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013 (see p. 59).
- [4] A.S. Tanenbaum and T. Austin. "Section 3.2.2: Combinatorial circuits". In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012 (see p. 59).

