

Introduction to Machine Learning

The Perceptron

Perceptron

- Supervised learning algorithm
- Regression or classification
- Allows us to weight features

Biological inspiration

Perceptron neuron

Input to neuron

Impact of weights

$$a = \sum_{d=1}^{D} w_d x_d$$

Activation function

- If a > 0 then output 1 (positive example) $a = \sum_{d=1}^{\nu} w_d x_d$
- Else output -1 (negative example)
- Use non-zero threshold
 - If $a > \theta$ output 1, else output -1
 - Can accomplish the same thing through bias term

$$a = \sum_{d=1}^{D} w_d x_d + b$$

Class labels

- Binary classifier
- Classes are + and -
- Denote by y=+1 and y=-1
- Once activation is computed, output is sign of a

$$a = \sum_{d=1}^{D} w_d x_d + b$$

Training a Perceptron

- Intuition
 - If output -1 but should have output +1, need to increase weights
 - If output +1 but should have output -1, need to decrease weights

$$a = \sum_{d=1}^{D} w_d x_d + b$$

Algorithm 5 PerceptronTrain(D, MaxIter)

 $w_d \leftarrow o$, for all $d = 1 \dots D$

// initialize weights $b \leftarrow 0$ // initialize bias

// compute activation for this example

// update weights

// update bias

 $_{3:}$ for iter = 1 ... MaxIter do

for all $(x,y) \in D$ do

 $a \leftarrow \sum_{d=1}^{D} w_d x_d + b$

if $ya \leq o$ then

 $w_d \leftarrow w_d + yx_d$, for all $d = 1 \dots D$

 $b \leftarrow b + y$ end if

end for

11: end for

return
$$w_0, w_1, ..., w_D, b$$

Algorithm 6 PerceptronTest($w_0, w_1, \ldots, w_D, b, \hat{x}$)

1: $a \leftarrow \sum_{d=\tau}^{D} w_d \hat{x}_d + b$ // compute activation for the test example 2: return SIGN(a)

Example: Logical AND

 $a' = \sum_{d=1}^{D} w'_d x_d + b'$

 $= \sum_{d=1}^{-} (w_d + x_d)x_d + (b+1)$

 $= \sum_{d=1}^{D} w_d x_d + b + \sum_{d=1}^{D} x_d x_d + 1$

 $= a + \sum_{i=1}^{D} x_d^2 + 1 \quad > \quad a$

Let's try this out

Number of iterations

- Too many, overfit
- Too little, underfit

Decision boundary

• Decision boundary is where sign(a) changes from -1 to +1

Let's try this out

Decision boundary

• Decision boundary is where sign(a) changes from -1 to +1

Dot products

Decision boundary

• Plane perpendicular to w

Role of bias

How to interpret weights?

Linearly separable

- If the classes can be separated by a hyperplane, then they are linearly separable
- Perceptron can learn any linearly separable function

Margin

- Large margin -> easy
- Small margin -> hard

Margin

Margin of w, b on D

$$margin(\mathbf{D}, w, b) = \begin{cases} \min_{(x,y) \in \mathbf{D}} y(w \cdot x + b) & \text{if } w \text{ separates } \mathbf{D} \\ -\infty & \text{otherwise} \end{cases}$$

Margin of a dataset

$$margin(\mathbf{D}) = \sup_{w, h} margin(\mathbf{D}, w, b)$$

Averaged Perceptron

- Voting
- Average

Algorithm 7 AVERAGEDPERCEPTRONTRAIN(**D**, MaxIter)

 $w \leftarrow \langle o, o, \ldots o \rangle$, $b \leftarrow o$ // initialize weights and bias $u \leftarrow \langle 0, 0, \ldots 0 \rangle$, $\beta \leftarrow 0$ // initialize cached weights and bias // initialize example counter to one $3: C \leftarrow 1$ 4: **for** iter = 1 ... MaxIter**do** for all $(x,y) \in D$ do if $y(w \cdot x + b) \le o$ then // update weights $w \leftarrow w + y x$ $b \leftarrow b + y$ // update bias // update cached weights $u \leftarrow u + y c x$ $\beta \leftarrow \beta + y c$ // update cached bias 10: end if 11: // increment counter regardless of update $c \leftarrow c + 1$ 12: end for 13: 14: end for 15: **return** $w - \frac{1}{6}u, b - \frac{1}{6}\beta$ // return averaged weights and bias

Perceptron Pros and Cons

XOR

У	x1	x2
-1	0	0
+1	0	1
+1	1	0
-1	1	1

XOR decision boundary

