Begarec. 1.

n = 1000

1) Lasso

K = 10+1

2) Kleigrames boest njuzuand

20+1

Marenemps

bez per.

C per.

Ucsc. upuzer. 11 (12)

11(12)

Ucse+ Kb. up 21(22)

21(27)

yi = < w, x; > , \

y: = < w, >c;> + E;

e; - iid, E/E;)=0 Vov(8:) 762

bez per.

C per.

Ucsc. wouzer. 2

 \mathcal{L}, λ

Ucset Kb. up d

 \angle , \angle

Zeigerra Z.

a(21) = sign (Wo + W+ 21 + W2 x2 + W3 x3)

$$7.1 \ 7.2 \ 7.3 \ 4$$
 $0.7 \ 0.4 \ 0$
 $1)$ Chamber cyly readered

 $0.5 \ 0.3 \ 0$
 1
 $0.3 \ 0.3 \ 0$
 1
 $0.1 \ 0.8 \ 1$
 $0.1 \ 0.8 \ 1$
 $0.5 \ 0.4$
 $0.7 \ 0.9 \ 0.9 \ 1$
 $0.1 \ 0.3 \ 1$
 $0.1 \ 0.3 \ 1$
 $0.1 \ 0.3 \ 1$
 $0.1 \ 0.3 \ 1$
 $0.1 \ 0.3 \ 1$

Zergarea 3.

$$A(1) = W_0 + W_1 \times 1 + W_2 \times 2$$

$$X_1 \times 2 = 0$$

$$X_1 \times 2 = 0$$

$$1 \quad 1 \quad 0 \quad W_0 = 1$$

$$0 \quad 0 \quad 1 \quad W_1 = -0.5$$

$$0.5 \quad 0.5 \quad W_2 = -0.5$$

$$W_0 + 0 + 0 = 1$$

$$1 + W_1 + W_2 = 0$$

$$W_1 + W_2 = -1$$

$$-0.5 \quad -0.5$$

$$1 - 0.75 - 0.25 = 0.5$$

Заусена 4.

Eunopuas Klacalgoukayers a(x) - bep-mb kucca 1 L(a(x),y)= [y=+1] In a(x)+[y=-1] In(1-a(x)) $\alpha(x) = \left(P_{-1}(x), P_{+1}(x) \right)$ $(1 - P_{+}(x)(1 - P_{-}(x))$ $\prod_{i=1}^{n} = \left[P_{+1}(x) (1 - P_{-1}(x)) \right] \left[1 \in \mathcal{Y}, -1 \notin \mathcal{Y} \right] \\
\left[P_{-1}(x) (1 - P_{+1}(x)) \right] \left[1 \notin \mathcal{Y}, -1 \notin \mathcal{Y} \right] \\
\left[(1 - P_{-1}(x)) (1 - P_{+1}(x)) \right] \left[1 \notin \mathcal{Y}, -1 \notin \mathcal{Y} \right] \\
\left[(1 - P_{-1}(x)) (1 - P_{+1}(x)) \right] \left[1 \notin \mathcal{Y}, -1 \notin \mathcal{Y} \right] \\
\left[(1 - P_{-1}(x)) (1 - P_{+1}(x)) \right] \left[1 \notin \mathcal{Y}, -1 \notin \mathcal{Y} \right] \\
\left[(1 - P_{-1}(x)) (1 - P_{+1}(x)) \right] \left[1 \notin \mathcal{Y}, -1 \notin \mathcal{Y} \right] \\
\left[(1 - P_{-1}(x)) (1 - P_{+1}(x)) \right] \left[1 \notin \mathcal{Y}, -1 \notin \mathcal{Y} \right] \\
\left[(1 - P_{-1}(x)) (1 - P_{+1}(x)) \right] \left[1 \notin \mathcal{Y}, -1 \notin \mathcal{Y} \right] \\
\left[(1 - P_{-1}(x)) (1 - P_{+1}(x)) \right] \left[1 \notin \mathcal{Y}, -1 \notin \mathcal{Y} \right] \\
\left[(1 - P_{-1}(x)) (1 - P_{+1}(x)) \right] \left[1 \notin \mathcal{Y}, -1 \notin \mathcal{Y} \right] \\
\left[(1 - P_{-1}(x)) (1 - P_{+1}(x)) \right] \left[1 \notin \mathcal{Y}, -1 \notin \mathcal{Y} \right] \\
\left[(1 - P_{-1}(x)) (1 - P_{+1}(x)) \right] \left[1 \notin \mathcal{Y}, -1 \notin \mathcal{Y} \right] \\
\left[(1 - P_{-1}(x)) (1 - P_{+1}(x)) \right] \left[1 \notin \mathcal{Y}, -1 \notin \mathcal{Y} \right] \\
\left[(1 - P_{-1}(x)) (1 - P_{+1}(x)) \right] \left[1 \notin \mathcal{Y}, -1 \notin \mathcal{Y} \right] \\
\left[(1 - P_{-1}(x)) (1 - P_{+1}(x)) \right] \left[1 \notin \mathcal{Y}, -1 \notin \mathcal{Y} \right] \\
\left[(1 - P_{-1}(x)) (1 - P_{-1}(x)) (1 - P_{-1}(x)) \right] \\
\left[(1 - P_{-1}(x)) (1 - P_{-1}(x)) (1 - P_{-1}(x)) \right] \\
\left[(1 - P_{-1}(x)) (1 - P_{$ $[p_{-1}(x) p_{+1}(x)]$ $[1 \in y, -1 \in y]$

Bagana 5

$$L_{\alpha}(y_{1}Z) = I_{n}(1 + exp(-yZ))$$

 $L_{b}(y_{1}Z) = max(0, 1 - yZ)$
 $L_{c}(y_{1}Z) = (yZ - 1)^{2}$

1) Murunculoblel no moggino zrecrevul Z, upu xomejzam L goemurerem murungul red y = -1

La: In (1 + exp(Z))

Marson Z me cepul

$$L_{b}$$
, $mox(0,1+Z)$
 $Z = -1$

2)
$$\alpha(x) = \text{sign} < \omega, x > 0$$

 $\widetilde{\alpha}(x) = \text{sign}(< \omega, x > -t)$

t=10, paccucupul obsekus novorcumelbroso viaca Moncen un goodelheure narond ne uzuevumb zvarenue la nu va ogno u nononcumentenan consenne.

La:
$$\ln(1 + \exp(-(< W_1 x >)))$$

 $\ln(1 + \exp(-(< W_1 x > -10)))$

Lo:
$$max(0, 1-(\leq \omega, x >))$$

$$mox(0, 1-(\angle \omega, x>-10))$$

11- <

Bergard 6.

$$L(y, Z) = Z \log_2 \frac{Z}{2y}$$
, $y > 0$, $Z >$

$$\frac{\partial L}{\partial z} = \log_z \frac{z}{zy} + \chi \frac{zy}{\chi \ln z} = \log_z z - \log_z zy +$$

$$+ \frac{2y}{107} = 0$$

$$|cg_{2}| \frac{z}{2y} = \frac{2y}{102}$$

$$|cg_{2}| \frac{z}{2y} = \frac{2y}{102}$$

$$|z| = 2y z \frac{2y}{102}$$

$$|z| = 2y z \frac{2y}{102}$$

$$\frac{L(y, Z)}{(y-z)^2} \stackrel{z > 0}{\longrightarrow} 0$$

$$\frac{L(y,Z)}{|y-Z|} \stackrel{Z\to\infty}{\to} \infty$$

X. Morecelle su necuproums suggeste mel, remo

- 1) Terrección no beet boes. uneem verlosec. Helklobl
- 2) Pazgemua nencencia,

gle perpeccelle ullebons ompuls. vecklost.

Megrena Terycca-Markola

Ecle:

1)
$$Y = X \beta + \epsilon$$

2) Oyenelbereman
$$\hat{Y} = X \hat{\beta}$$

4) X veryen Soemb algre. P(F/3 cmorSegu) = 0

$$P(F / 3 \text{ cmouSegu}) = 0$$

 $F(E(X) = G, Vor(E(X) = 6]$

MG :

1)
$$\beta$$
 cylly c begz-to 1
2) β meretined no γ , $\beta = (x^{-1}x)x^{-1}y$

4) À 2000 EXMUDIEN l'ALCICCE MULTIMON NOY MECHELS CYLLEK