Probabilidade e estatística - Aula 5 Variáveis aleatórias

Dr. Giannini Italino Alves Vieira

Universidade Federal do Ceará - Campus de Crateús

Março, 2024

- Variáveis aleatórias
- Variáveis aleatórias discretas
- § Função de probabilidade
- 4 Função de distribuição acumulada
- Média e variância de variáveis aleatórias discretas

Motivação

A fim de motivar a ideia de variáveis aleatórias, considere o seguinte exemplo:

• Exemplo: Considere o experimento aleatório de se lançar uma moeda honesta n vezes e observar a sequência de caras (c) e coroas (k) obtidas. Observe que os resultados possíveis são sequências, de tamanho n, de caras e coroas, ou seja,

$$\Omega = \{(w_1, w_2, \dots, w_n) : w_i = c \text{ ou } w_i = k; \text{ em que } i = 1, 2, \dots, n\}.$$

 Suponha que nosso interesse seja no número de caras obtidos na sequência de lançamentos, ou seja, vamos definir X como sendo o número de caras observados na sequência de n lançamentos da moeda. Formalmente

$$X(w) = \text{número de caras em } w = (w_1, w_2, \dots, w_n).$$

Motivação

A fim de motivar a ideia de variáveis aleatórias, considere o seguinte exemplo:

• Exemplo: Considere o experimento aleatório de se lançar uma moeda honesta n vezes e observar a sequência de caras (c) e coroas (k) obtidas. Observe que os resultados possíveis são sequências, de tamanho n, de caras e coroas, ou seja,

$$\Omega = \{(w_1, w_2, \dots, w_n) : w_i = c \text{ ou } w_i = k; \text{ em que } i = 1, 2, \dots, n\}.$$

 Suponha que nosso interesse seja no número de caras obtidos na sequência de lançamentos, ou seja, vamos definir X como sendo o número de caras observados na sequência de n lançamentos da moeda. Formalmente

$$X(w) = \text{número de caras em } w = (w_1, w_2, \dots, w_n).$$

Motivação

A fim de motivar a ideia de variáveis aleatórias, considere o seguinte exemplo:

• Exemplo: Considere o experimento aleatório de se lançar uma moeda honesta n vezes e observar a sequência de caras (c) e coroas (k) obtidas. Observe que os resultados possíveis são sequências, de tamanho n, de caras e coroas, ou seja,

$$\Omega = \{(w_1, w_2, \dots, w_n) : w_i = c \text{ ou } w_i = k; \text{ em que } i = 1, 2, \dots, n\}.$$

ullet Suponha que nosso interesse seja no número de caras obtidos na sequência de lançamentos, ou seja, vamos definir X como sendo o número de caras observados na sequência de n lançamentos da moeda. Formalmente

$$X(w) = \text{n\'umero de caras em } w = (w_1, w_2, \dots, w_n).$$

Motivação

A fim de motivar a ideia de variáveis aleatórias, considere o seguinte exemplo:

 Exemplo: Considere o experimento aleatório de se lançar uma moeda honesta n vezes e observar a sequência de caras (c) e coroas (k) obtidas. Observe que os resultados possíveis são sequências, de tamanho n, de caras e coroas, ou seja,

$$\Omega = \{(w_1, w_2, \dots, w_n) : w_i = c \text{ ou } w_i = k; \text{ em que } i = 1, 2, \dots, n\}.$$

 Suponha que nosso interesse seja no número de caras obtidos na sequência de lançamentos, ou seja, vamos definir X como sendo o número de caras observados na sequência de n lançamentos da moeda. Formalmente

$$X(w) = \text{n\'umero de caras em } w = (w_1, w_2, \dots, w_n).$$

Motivação

A fim de motivar a ideia de variáveis aleatórias, considere o seguinte exemplo:

• Exemplo: Considere o experimento aleatório de se lançar uma moeda honesta n vezes e observar a sequência de caras (c) e coroas (k) obtidas. Observe que os resultados possíveis são sequências, de tamanho n, de caras e coroas, ou seja,

$$\Omega = \{(w_1, w_2, \dots, w_n) : w_i = c \text{ ou } w_i = k; \text{ em que } i = 1, 2, \dots, n\}.$$

• Suponha que nosso interesse seja no número de caras obtidos na sequência de lançamentos, ou seja, vamos definir X como sendo o número de caras observados na sequência de n lançamentos da moeda. Formalmente

$$X(w) = \text{número de caras em } w = (w_1, w_2, \dots, w_n).$$

Motivação

- Note ainda que o termo "aleatória" é usado para especificar que o seu valor é, de certo modo incerto, pois pode assumir qualquer número inteiro entre 0 e n.
- Ao trabalharmos com experimentos aleatórios, em alguns casos, descrições de resultados são suficientes. Contudo, em outros é útil associar um número a cada possível resultado do experimento, ou seja, a cada resultado no espaço amostral. Essa é a ideia de variáveis aleatória.

Motivação

- Note ainda que o termo "aleatória" é usado para especificar que o seu valor é, de certo modo incerto, pois pode assumir qualquer número inteiro entre 0 e n.
- Ao trabalharmos com experimentos aleatórios, em alguns casos, descrições de resultados são suficientes. Contudo, em outros é útil associar um número a cada possível resultado do experimento, ou seja, a cada resultado no espaço amostral. Essa é a ideia de variáveis aleatória.

Definição: Uma variável aleatória é uma função que associa um numero real a cada resultado no espaço amostral de um experimento aleatório.

- Usamos letras maiúsculas para denotar uma variável aleatória, e letras minusculas para representar valores assumidos pela variável.
- Por exemplo, se X representa a corrente elétrica em um fio de cobre, então x=70 miliamperes é um exemplo de um valor que pode ser assumido pela variável aleatória X.

- Uma variável aleatória é classificada como discreta se ela assume somente um número finito ou infinito enumerável de valores.
- Uma variável aleatória é classificada como contínua se ela assume valores em um intervalo (finito ou infinito) de números reais.

Definição: Uma variável aleatória é uma função que associa um numero real a cada resultado no espaço amostral de um experimento aleatório.

- Usamos letras maiúsculas para denotar uma variável aleatória, e letras minusculas para representar valores assumidos pela variável.
- ullet Por exemplo, se X representa a corrente elétrica em um fio de cobre, então x=70 miliamperes é um exemplo de um valor que pode ser assumido pela variável aleatória X.

- Uma variável aleatória é classificada como discreta se ela assume somente um número finito ou infinito enumerável de valores.
- Uma variável aleatória é classificada como contínua se ela assume valores em um intervalo (finito ou infinito) de números reais.

Definição: Uma variável aleatória é uma função que associa um numero real a cada resultado no espaço amostral de um experimento aleatório.

- Usamos letras maiúsculas para denotar uma variável aleatória, e letras minusculas para representar valores assumidos pela variável.
- Por exemplo, se X representa a corrente elétrica em um fio de cobre, então x = 70 miliamperes é um exemplo de um valor que pode ser assumido pela variável aleatória X.

- Uma variável aleatória é classificada como discreta se ela assume somente um número finito ou infinito enumerável de valores.
- Uma variável aleatória é classificada como **contínua** se ela assume valores em um intervalo (finito ou infinito) de números reais.

Definição: Uma variável aleatória é uma função que associa um numero real a cada resultado no espaço amostral de um experimento aleatório.

- Usamos letras maiúsculas para denotar uma variável aleatória, e letras minusculas para representar valores assumidos pela variável.
- Por exemplo, se X representa a corrente elétrica em um fio de cobre, então x = 70 miliamperes é um exemplo de um valor que pode ser assumido pela variável aleatória X.

- Uma variável aleatória é classificada como discreta se ela assume somente um número finito ou infinito enumerável de valores.
- Uma variável aleatória é classificada como contínua se ela assume valores em um intervalo (finito ou infinito) de números reais.

Definição: Uma variável aleatória é uma função que associa um numero real a cada resultado no espaço amostral de um experimento aleatório.

- Usamos letras maiúsculas para denotar uma variável aleatória, e letras minusculas para representar valores assumidos pela variável.
- Por exemplo, se X representa a corrente elétrica em um fio de cobre, então x = 70 miliamperes é um exemplo de um valor que pode ser assumido pela variável aleatória X.

- Uma variável aleatória é classificada como discreta se ela assume somente um número finito ou infinito enumerável de valores.
- Uma variável aleatória é classificada como contínua se ela assume valores em um intervalo (finito ou infinito) de números reais.

Exemplos de variáveis aleatórias discretas

- X é o número de conexões soldadas não conformes em uma placa de circuito impresso com 1000 conexões;
- Y número de falhas na superfície em uma grande serpentina de aço galvanizado;
- Z número de bits transmitidos que foram recebidos com erro.

Exemplos de variáveis aleatórias contínuas

- X é a corrente elétrica em um fio de cobre;
- Y é o tempo que um projetil gasta para retornar à Terra;
- Z é o volume de gasolina perdido, por evaporação, durante o enchimento de um tanque.

6/25

Exemplos de variáveis aleatórias discretas

- X é o número de conexões soldadas não conformes em uma placa de circuito impresso com 1000 conexões;
- Y número de falhas na superfície em uma grande serpentina de aço galvanizado;
- Z número de bits transmitidos que foram recebidos com erro.

- X é a corrente elétrica em um fio de cobre;
- Y é o tempo que um projetil gasta para retornar à Terra;
- ullet Z é o volume de gasolina perdido, por evaporação, durante o enchimento de um tanque.

Exemplos de variáveis aleatórias discretas

- X é o número de conexões soldadas não conformes em uma placa de circuito impresso com 1000 conexões;
- Y número de falhas na superfície em uma grande serpentina de aço galvanizado;
- Z número de bits transmitidos que foram recebidos com erro.

- X é a corrente elétrica em um fio de cobre;
- Y é o tempo que um projetil gasta para retornar à Terra;
- Z é o volume de gasolina perdido, por evaporação, durante o enchimento de um tanque.

Exemplos de variáveis aleatórias discretas

- X é o número de conexões soldadas não conformes em uma placa de circuito impresso com 1000 conexões;
- Y número de falhas na superfície em uma grande serpentina de aço galvanizado;
- Z número de bits transmitidos que foram recebidos com erro.

- X é a corrente elétrica em um fio de cobre;
- Y é o tempo que um projetil gasta para retornar à Terra;
- Z é o volume de gasolina perdido, por evaporação, durante o enchimento de um tanque.

Exemplos de variáveis aleatórias discretas

- X é o número de conexões soldadas não conformes em uma placa de circuito impresso com 1000 conexões;
- Y número de falhas na superfície em uma grande serpentina de aço galvanizado;
- Z número de bits transmitidos que foram recebidos com erro.

- X é a corrente elétrica em um fio de cobre;
- Y é o tempo que um projetil gasta para retornar à Terra;
- Z é o volume de gasolina perdido, por evaporação, durante o enchimento de um tanque.

Exemplos de variáveis aleatórias discretas

- X é o número de conexões soldadas não conformes em uma placa de circuito impresso com 1000 conexões;
- Y número de falhas na superfície em uma grande serpentina de aço galvanizado;
- Z número de bits transmitidos que foram recebidos com erro.

- X é a corrente elétrica em um fio de cobre;
- Y é o tempo que um projetil gasta para retornar à Terra;
- ullet Z é o volume de gasolina perdido, por evaporação, durante o enchimento de um tanque.

Inicialmente, faremos um estudo sobre variáveis aleatórias discretas e, posteriormente, focaremos nas variáveis aleatórias contínuas.

Função de probabilidade

Definição: Seja X uma variável aleatória discreta assumindo os valores x_1, x_2, \ldots, x_n função de probabilidade é uma função tal que

- (i) $f(x_i) \geq 0$;
- (ii) $\sum_i f(x_i) = 1$;
- (iii) $f(x_i) = P(X = x_i)$.

Inicialmente, faremos um estudo sobre variáveis aleatórias discretas e, posteriormente, focaremos nas variáveis aleatórias contínuas.

Função de probabilidade

Definição: Seja X uma variável aleatória discreta assumindo os valores x_1, x_2, \ldots, A função de probabilidade é uma função tal que

- (i) $f(x_i) \ge 0$;
- (ii) $\sum_i f(x_i) = 1$;
- (iii) $f(x_i) = P(X = x_i)$

Inicialmente, faremos um estudo sobre variáveis aleatórias discretas e, posteriormente, focaremos nas variáveis aleatórias contínuas.

Função de probabilidade

Definição: Seja X uma variável aleatória discreta assumindo os valores x_1, x_2, \ldots . A função de probabilidade é uma função tal que

- (i) $f(x_i) \geq 0$;
- (ii) $\sum_i f(x_i) = 1$;
- (iii) $f(x_i) = P(X = x_i)$.

Inicialmente, faremos um estudo sobre variáveis aleatórias discretas e, posteriormente, focaremos nas variáveis aleatórias contínuas.

Função de probabilidade

Definição: Seja X uma variável aleatória discreta assumindo os valores x_1, x_2, \ldots . A função de probabilidade é uma função tal que

- (i) $f(x_i) \geq 0$;
- (ii) $\sum_i f(x_i) = 1$;
- (iii) $f(x_i) = P(X = x_i)$.

Exemplo 1: Seja X uma variável aleatória assumindo valores -2, -1, 0, 1, 2 e com função de probabilidade dada por

- (a) $P(X \le 2)$;

Exemplo 1: Seja X uma variável aleatória assumindo valores -2,-1,0,1,2 e com função de probabilidade dada por

- (a) $P(X \le 2)$;
- (b) P(X > -2);
- (c) $P(-1 \le X \le 1)$
- (d) $P(X \le -1 \text{ ou } X = 2)$

Exemplo 1: Seja X uma variável aleatória assumindo valores -2,-1,0,1,2 e com função de probabilidade dada por

- (a) $P(X \le 2)$;
- (b) P(X > -2);
- (c) $P(-1 \le X \le 1)$
- (d) $P(X \le -1 \text{ ou } X = 2)$

Exemplo 1: Seja X uma variável aleatória assumindo valores -2,-1,0,1,2 e com função de probabilidade dada por

- (a) $P(X \le 2)$;
- (b) P(X > -2);
- (c) $P(-1 \le X \le 1)$
- (d) $P(X \le -1 \text{ ou } X = 2)$

- Sol.: (a) Note que $P(X \le 2) = P(X = -2) + P(X = -1) + P(X = 0) + P(X = 1) + P(X = 2) =$ f(-2) + f(-1) + f(0) + f(1) + f(2) = 1.
- Sol.: (b) Observe que
- Sol.: (c) Temos que
- Sol.: (d) Temos que

- Sol.: (a) Note que $P(X \le 2) = P(X = -2) + P(X = -1) + P(X = 0) + P(X = 1) + P(X = 2) = f(-2) + f(-1) + f(0) + f(1) + f(2) = 1.$
- Sol.: (b) Observe que $P(X > -2) = P(X = -1) + P(X = 0) + P(X = 1) + P(X = 2) = f(-1) + f(0) + f(1) + f(2) = \frac{2}{8} + \frac{2}{8} + \frac{2}{8} + \frac{1}{8} = \frac{7}{8}.$
- Sol.: (c) Temos que $P(-1 \le X \le 1) = P(X = -1) + P(X = 0) + P(X = 1) = \frac{2}{8} + \frac{2}{8} + \frac{2}{8} = \frac{6}{8}$
- Sol.: (d) Temos que $P(X \le -1)$ ou X = 2) = $P(X \le -1) + P(X = 2) P((X \le -1) \cap (X = 2)) = P(X = -2) + P(X = -1) + P(X = 2) = \frac{1}{8} + \frac{2}{8} + \frac{1}{8} = \frac{1}{2}$.

- Sol.: (a) Note que $P(X \le 2) = P(X = -2) + P(X = -1) + P(X = 0) + P(X = 1) + P(X = 2) = f(-2) + f(-1) + f(0) + f(1) + f(2) = 1.$
- Sol.: (b) Observe que $P(X > -2) = P(X = -1) + P(X = 0) + P(X = 1) + P(X = 2) = f(-1) + f(0) + f(1) + f(2) = \frac{2}{8} + \frac{2}{8} + \frac{2}{8} + \frac{1}{8} = \frac{7}{8}.$
- Sol.: (c) Temos que $P(-1 \le X \le 1) = P(X = -1) + P(X = 0) + P(X = 1) = \frac{2}{8} + \frac{2}{8} + \frac{2}{8} = \frac{6}{8}$.
- Sol.: (d) Temos que $P(X \le -1)$ ou X = 2) = $P(X \le -1) + P(X = 2) P((X \le -1) \cap (X = 2)) = P(X = -2) + P(X = -1) + P(X = 2) = \frac{1}{8} + \frac{2}{8} + \frac{1}{8} = \frac{1}{2}$.

- Sol.: (a) Note que $P(X \le 2) = P(X = -2) + P(X = -1) + P(X = 0) + P(X = 1) + P(X = 2) = f(-2) + f(-1) + f(0) + f(1) + f(2) = 1.$
- Sol.: (b) Observe que $P(X > -2) = P(X = -1) + P(X = 0) + P(X = 1) + P(X = 2) = f(-1) + f(0) + f(1) + f(2) = \frac{2}{8} + \frac{2}{8} + \frac{2}{8} + \frac{1}{8} = \frac{7}{8}.$
- Sol.: (c) Temos que $P(-1 \le X \le 1) = P(X = -1) + P(X = 0) + P(X = 1) = \frac{2}{8} + \frac{2}{8} + \frac{2}{8} = \frac{6}{8}$.
- Sol.: (d) Temos que $P(X \le -1 \text{ ou } X = 2) = P(X \le -1) + P(X = 2) P((X \le -1) \cap (X = 2)) = P(X = -2) + P(X = -1) + P(X = 2) = \frac{1}{8} + \frac{2}{8} + \frac{1}{8} = \frac{1}{2}.$

Independência de múltiplos eventos

Antes de irmos para outro exemplo, veremos o conceito de eventos independentes.

Definição: Os eventos E_1, E_2, \ldots, E_n são ditos serem independentes se, e somente se, para qualquer subconjunto $E_{i_1}, E_{i_2}, \ldots, E_{i_k}$ tivermos

$$P(E_{i_1} \cap E_{i_2} \cap ... \cap E_{i_k}) = P(E_{i_1}) \cdot P(E_{i_2}) \cdot ... \cdot P(E_{i_k})$$

Independência de múltiplos eventos

Antes de irmos para outro exemplo, veremos o conceito de eventos independentes.

Definição: Os eventos E_1, E_2, \ldots, E_n são ditos serem independentes se, e somente se, para qualquer subconjunto $E_{i_1}, E_{i_2}, \ldots, E_{i_k}$ tivermos

$$P(E_{i_1} \cap E_{i_2} \cap \ldots \cap E_{i_k}) = P(E_{i_1}) \cdot P(E_{i_2}) \cdot \ldots \cdot P(E_{i_k})$$

Exemplo 2: Em um processo de fabricação de semicondutores, três pastilhas de um lote são testadas. Cada pastilha é classificada como passa ou falha. Suponha que a probabilidade de uma pastilha passar no teste seja 0.8 e que as pastilhas sejam independentes. Determine a função de probabilidade do numero de pastilhas de um lote que passa no teste.

- Sol.: Seja X a variável aleatória definida como o numero de pastilhas de um lote que passa no teste.
- Note que X pode assumir os valores 0, 1, 2 e 3. Logo, como queremos determinar a função de probabilidade de X, então devemos determinar f(0) = P(X = 0), f(1) = P(X = 1), f(2) = P(X = 2) e f(3) = P(X = 3).
- Vamos definir alguns eventos. Seja E_i o evento em que a i-ésima pastilha passa no teste, para i=1,2,3.

11 / 25

Exemplo 2: Em um processo de fabricação de semicondutores, três pastilhas de um lote são testadas. Cada pastilha é classificada como passa ou falha. Suponha que a probabilidade de uma pastilha passar no teste seja 0.8 e que as pastilhas sejam independentes. Determine a função de probabilidade do numero de pastilhas de um lote que passa no teste.

- Sol.: Seja X a variável aleatória definida como o numero de pastilhas de um lote que passa no teste.
- Note que X pode assumir os valores 0, 1, 2 e 3. Logo, como queremos determinar
- Vamos definir alguns eventos. Seja E_i o evento em que a i-ésima pastilha passa no

Exemplo 2: Em um processo de fabricação de semicondutores, três pastilhas de um lote são testadas. Cada pastilha é classificada como passa ou falha. Suponha que a probabilidade de uma pastilha passar no teste seja 0.8 e que as pastilhas sejam independentes. Determine a função de probabilidade do numero de pastilhas de um lote que passa no teste.

- Sol.: Seja X a variável aleatória definida como o numero de pastilhas de um lote que passa no teste.
- Note que X pode assumir os valores 0, 1, 2 e 3. Logo, como queremos determinar a função de probabilidade de X, então devemos determinar f(0) = P(X = 0), f(1) = P(X = 1), f(2) = P(X = 2) e f(3) = P(X = 3).
- Vamos definir alguns eventos. Seja E_i o evento em que a i-ésima pastilha passa no

Exemplo 2: Em um processo de fabricação de semicondutores, três pastilhas de um lote são testadas. Cada pastilha é classificada como passa ou falha. Suponha que a probabilidade de uma pastilha passar no teste seja 0.8 e que as pastilhas sejam independentes. Determine a função de probabilidade do numero de pastilhas de um lote que passa no teste.

- Sol.: Seja X a variável aleatória definida como o numero de pastilhas de um lote que passa no teste.
- Note que X pode assumir os valores 0, 1, 2 e 3. Logo, como queremos determinar a função de probabilidade de X, então devemos determinar f(0) = P(X = 0), f(1) = P(X = 1), f(2) = P(X = 2) e f(3) = P(X = 3).
- Vamos definir alguns eventos. Seja E_i o evento em que a i-ésima pastilha passa no teste, para i = 1, 2, 3.

Marco, 2024

Temos que

•
$$f(0) = P(X = 0) = P(E_1^c \cap E_2^c \cap E_3^c) = P(E_1^c) \cdot P(E_2^c) \cdot P(E_3^c) = (0.2)^3 = 0.008.$$

•
$$f(1) = P(X = 1) = P(E_1 \cap E_2^c \cap E_3^c) + P(E_1^c \cap E_2 \cap E_3^c) + P(E_1^c \cap E_2^c \cap E_3) = 3(0.8)(0.2)^2 = 0.096.$$

•
$$f(2) = P(X = 2) = P(E_1 \cap E_2 \cap E_3^c) + P(E_1 \cap E_2^c \cap E_3) + P(E_1^c \cap E_2 \cap E_3) = 3(0.2)(0.8)^2 = 0.384.$$

•
$$f(3) = P(X = 3) = P(E_1 \cap E_2 \cap E_3) = (0.8)^3 = 0.512.$$

X	1		
f(x)		0.384	0.512

Temos que

•
$$f(0) = P(X = 0) = P(E_1^c \cap E_2^c \cap E_3^c) = P(E_1^c) \cdot P(E_2^c) \cdot P(E_3^c) = (0.2)^3 = 0.008.$$

•
$$f(1) = P(X = 1) = P(E_1 \cap E_2^c \cap E_3^c) + P(E_1^c \cap E_2 \cap E_3^c) + P(E_1^c \cap E_2^c \cap E_3) = 3(0.8)(0.2)^2 = 0.096.$$

•
$$f(2) = P(X = 2) = P(E_1 \cap E_2 \cap E_3^c) + P(E_1 \cap E_2^c \cap E_3) + P(E_1^c \cap E_2 \cap E_3) = 3(0.2)(0.8)^2 = 0.384.$$

•
$$f(3) = P(X = 3) = P(E_1 \cap E_2 \cap E_3) = (0.8)^3 = 0.512.$$

X	1		
f(x)		0.384	0.512

Temos que

- $f(0) = P(X = 0) = P(E_1^c \cap E_2^c \cap E_3^c) = P(E_1^c) \cdot P(E_2^c) \cdot P(E_3^c) = (0.2)^3 = 0.008.$
- $f(1) = P(X = 1) = P(E_1 \cap E_2^c \cap E_3^c) + P(E_1^c \cap E_2 \cap E_3^c) + P(E_1^c \cap E_2^c \cap E_3) = 3(0.8)(0.2)^2 = 0.096.$
- $f(2) = P(X = 2) = P(E_1 \cap E_2 \cap E_3^c) + P(E_1 \cap E_2^c \cap E_3) + P(E_1^c \cap E_2 \cap E_3) = 3(0.2)(0.8)^2 = 0.384.$
- $f(3) = P(X = 3) = P(E_1 \cap E_2 \cap E_3) = (0.8)^3 = 0.512.$

X	1		
f(x)		0.384	0.512

Temos que

- $f(0) = P(X = 0) = P(E_1^c \cap E_2^c \cap E_3^c) = P(E_1^c) \cdot P(E_2^c) \cdot P(E_3^c) = (0.2)^3 = 0.008.$
- $f(1) = P(X = 1) = P(E_1 \cap E_2^c \cap E_3^c) + P(E_1^c \cap E_2 \cap E_3^c) + P(E_1^c \cap E_2^c \cap E_3) = 3(0.8)(0.2)^2 = 0.096.$
- $f(2) = P(X = 2) = P(E_1 \cap E_2 \cap E_3^c) + P(E_1 \cap E_2^c \cap E_3) + P(E_1^c \cap E_2 \cap E_3) = 3(0.2)(0.8)^2 = 0.384.$
- $f(3) = P(X = 3) = P(E_1 \cap E_2 \cap E_3) = (0.8)^3 = 0.512.$

X	1		
f(x)		0.384	0.512

Temos que

- $f(0) = P(X = 0) = P(E_1^c \cap E_2^c \cap E_3^c) = P(E_1^c) \cdot P(E_2^c) \cdot P(E_3^c) = (0.2)^3 = 0.008.$
- $f(1) = P(X = 1) = P(E_1 \cap E_2^c \cap E_3^c) + P(E_1^c \cap E_2 \cap E_3^c) + P(E_1^c \cap E_2^c \cap E_3) = 3(0.8)(0.2)^2 = 0.096.$
- $f(2) = P(X = 2) = P(E_1 \cap E_2 \cap E_3^c) + P(E_1 \cap E_2^c \cap E_3) + P(E_1^c \cap E_2 \cap E_3) = 3(0.2)(0.8)^2 = 0.384.$
- $f(3) = P(X = 3) = P(E_1 \cap E_2 \cap E_3) = (0.8)^3 = 0.512.$

X	1		
f(x)		0.384	0.512

Temos que

•
$$f(0) = P(X = 0) = P(E_1^c \cap E_2^c \cap E_3^c) = P(E_1^c) \cdot P(E_2^c) \cdot P(E_3^c) = (0.2)^3 = 0.008.$$

•
$$f(1) = P(X = 1) = P(E_1 \cap E_2^c \cap E_3^c) + P(E_1^c \cap E_2 \cap E_3^c) + P(E_1^c \cap E_2^c \cap E_3) = 3(0.8)(0.2)^2 = 0.096.$$

•
$$f(2) = P(X = 2) = P(E_1 \cap E_2 \cap E_3^c) + P(E_1 \cap E_2^c \cap E_3) + P(E_1^c \cap E_2 \cap E_3) = 3(0.2)(0.8)^2 = 0.384.$$

•
$$f(3) = P(X = 3) = P(E_1 \cap E_2 \cap E_3) = (0.8)^3 = 0.512.$$

X	0	1	2	3
f(x)	0.008	0.096	0.384	0.512

Em algumas situações é útil expressar probabilidades cumulativas, ou seja, probabilidades do tipo $P(X \leq x)$. Essas probabilidade podem ser utilizadas para determinar a função de probabilidade de uma variável aleatória, ou seja, o uso de probabilidades cumulativas é um método alternativo para se descrever a distribuição de probabilidade de uma variável aleatória discreta.

Definição: A função de distribuição acumulada de uma variável aleatória X discreta assumindo valores x_1, x_2, \dots é

$$F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i).$$

Para uma variável aleatória discreta X, F(x) satisfaz as seguintes propriedades:

- (i) $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i)$
- (ii) $0 \le F(x) \le 1$
- (iii) Se $x \le y$, então $F(x) \le F(y)$

Em algumas situações é útil expressar probabilidades cumulativas, ou seja, probabilidades do tipo $P(X \leq x)$. Essas probabilidade podem ser utilizadas para determinar a função de probabilidade de uma variável aleatória, ou seja, o uso de probabilidades cumulativas é um método alternativo para se descrever a distribuição de probabilidade de uma variável aleatória discreta.

Definição: A função de distribuição acumulada de uma variável aleatória X discreta assumindo valores x_1, x_2, \ldots é

$$F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i).$$

Para uma variável aleatória discreta X, F(x) satisfaz as seguintes propriedades:

- (i) $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i)$;
- (ii) $0 \le F(x) \le 1$
- (iii) Se $x \le y$, então $F(x) \le F(y)$

40 > 40 > 42 > 42 > 2 9 9 9

Em algumas situações é útil expressar probabilidades cumulativas, ou seja, probabilidades do tipo $P(X \leq x)$. Essas probabilidade podem ser utilizadas para determinar a função de probabilidade de uma variável aleatória, ou seja, o uso de probabilidades cumulativas é um método alternativo para se descrever a distribuição de probabilidade de uma variável aleatória discreta.

Definição: A função de distribuição acumulada de uma variável aleatória X discreta assumindo valores x_1, x_2, \dots é

$$F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i).$$

Para uma variável aleatória discreta X, F(x) satisfaz as seguintes propriedades:

- (i) $F(x) = P(X \le x) = \sum_{x_i < x} f(x_i)$;
- (ii) $0 \le F(x) \le 1$;
- (iii) Se $x \le y$, então $F(x) \le F(y)$

Em algumas situações é útil expressar probabilidades cumulativas, ou seja, probabilidades do tipo $P(X \leq x)$. Essas probabilidade podem ser utilizadas para determinar a função de probabilidade de uma variável aleatória, ou seja, o uso de probabilidades cumulativas é um método alternativo para se descrever a distribuição de probabilidade de uma variável aleatória discreta.

Definição: A função de distribuição acumulada de uma variável aleatória X discreta assumindo valores x_1, x_2, \ldots é

$$F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i).$$

Para uma variável aleatória discreta X, F(x) satisfaz as seguintes propriedades:

- (i) $F(x) = P(X \le x) = \sum_{x_i < x} f(x_i)$;
- (ii) $0 \le F(x) \le 1$;
- (iii) Se $x \le y$, então $F(x) \le F(y)$.

Considere novamente o problema anterior. Obtenha a função de distribuição acumulada da variável aleatória \boldsymbol{X} definida como o numero de pastilhas de um lote que passa no teste.

ullet Sol.: Note que no problema anterior obtivemos que a função de probabilidade de X é

- Como f é definida nos pontos 0, 1, 2 e 3, para determinar a função de distribuição acumulada F, vamos considerar os seguintes intervalos:
- Se x < 0. Note que se x < 0, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = 0$;
- Se $0 \le x < 1$, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = f(0) = 0.008$;
- Se $1 \le x < 2$, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = f(0) + f(1) = 0.008 + 0.096 = 0.104.$

4 D > 4 D > 4 E > 4 E > E 9040

Considere novamente o problema anterior. Obtenha a função de distribuição acumulada da variável aleatória \boldsymbol{X} definida como o numero de pastilhas de um lote que passa no teste.

ullet Sol.: Note que no problema anterior obtivemos que a função de probabilidade de X é

- Como f é definida nos pontos 0, 1, 2 e 3, para determinar a função de distribuição acumulada F, vamos considerar os seguintes intervalos:
- Se x < 0. Note que se x < 0, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = 0$;
- Se $0 \le x < 1$, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = f(0) = 0.008$;
- Se $1 \le x < 2$, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = f(0) + f(1) = 0.008 + 0.096 = 0.104$.

4 D > 4 A > 4 B > 4 B > B 9 9 9

Considere novamente o problema anterior. Obtenha a função de distribuição acumulada da variável aleatória \boldsymbol{X} definida como o numero de pastilhas de um lote que passa no teste.

ullet Sol.: Note que no problema anterior obtivemos que a função de probabilidade de X é

- Como f é definida nos pontos 0, 1, 2 e 3, para determinar a função de distribuição acumulada F, vamos considerar os seguintes intervalos:
- Se x < 0. Note que se x < 0, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = 0$;
- Se $0 \le x < 1$, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = f(0) = 0.008$;
- Se $1 \le x < 2$, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = f(0) + f(1) = 0.008 + 0.096 = 0.104$.

4 D > 4 B > 4 B > 4 B > 9 Q (

Considere novamente o problema anterior. Obtenha a função de distribuição acumulada da variável aleatória \boldsymbol{X} definida como o numero de pastilhas de um lote que passa no teste.

ullet Sol.: Note que no problema anterior obtivemos que a função de probabilidade de X é

- Como f é definida nos pontos 0, 1, 2 e 3, para determinar a função de distribuição acumulada F, vamos considerar os seguintes intervalos:
- Se x < 0. Note que se x < 0, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = 0$;
- Se $0 \le x < 1$, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = f(0) = 0.008$;
- Se $1 \le x < 2$, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = f(0) + f(1) = 0.008 + 0.096 = 0.104$.

4 D > 4 A > 4 B > 4 B > B = 990

Considere novamente o problema anterior. Obtenha a função de distribuição acumulada da variável aleatória \boldsymbol{X} definida como o numero de pastilhas de um lote que passa no teste.

ullet Sol.: Note que no problema anterior obtivemos que a função de probabilidade de X é

- Como f é definida nos pontos 0, 1, 2 e 3, para determinar a função de distribuição acumulada F, vamos considerar os seguintes intervalos:
- Se x < 0. Note que se x < 0, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = 0$;
- Se $0 \le x < 1$, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = f(0) = 0.008$;
- Se $1 \le x < 2$, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = f(0) + f(1) = 0.008 + 0.096 = 0.104$.;

4 D > 4 A > 4 B > 4 B > B = 900

- Se $2 \le x < 3$, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = f(0) + f(1) + f(2) = 0.008 + 0.096 + 0.384 = 0.488$.;
- Se $x \ge 3$, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = f(0) + f(1) + f(2) + f(3) = 0.008 + 0.096 + 0.384 + 0.512 = 1..$

Logo, a função de distribuição acumulada de X é

$$F(x) = \begin{cases} 0, & \text{se } x < 0; \\ 0.008 & \text{se } 0 \le x < 1; \\ 0.104 & \text{se } 1 \le x < 2; \\ 0.488 & \text{se } 2 \le x < 3; \\ 1 & \text{se } x > 3. \end{cases}$$

Graficamente, temos que

- Se $2 \le x < 3$, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = f(0) + f(1) + f(2) = 0.008 + 0.096 + 0.384 = 0.488$.;
- Se $x \ge 3$, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = f(0) + f(1) + f(2) + f(3) = 0.008 + 0.096 + 0.384 + 0.512 = 1..$

Logo, a função de distribuição acumulada de X é

$$F(x) = \begin{cases} 0, & \text{se } x < 0; \\ 0.008 & \text{se } 0 \le x < 1; \\ 0.104 & \text{se } 1 \le x < 2; \\ 0.488 & \text{se } 2 \le x < 3; \\ 1 & \text{se } x \ge 3. \end{cases}$$

Graficamente, temos que

- Se $2 \le x < 3$, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = f(0) + f(1) + f(2) = 0.008 + 0.096 + 0.384 = 0.488$.; Se $x \ge 3$, então $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i) = f(0) + f(1) + f(2) + f(3) = 0.008$
- 0.008 + 0.096 + 0.384 + 0.512 = 1...

Logo, a função de distribuição acumulada de X é

$$F(x) = \begin{cases} 0, & \text{se } x < 0; \\ 0.008 & \text{se } 0 \le x < 1; \\ 0.104 & \text{se } 1 \le x < 2; \\ 0.488 & \text{se } 2 \le x < 3; \\ 1 & \text{se } x \ge 3. \end{cases}$$

Graficamente, temos que

Como mencionado acima, podemos obter a função de probabilidade de uma variável aleatória discreta por meio da função de distribuição acumulada.

Seja F(x) a função de distribuição acumulada da variável X discreta. Então temos que

$$f(x_i) = F(x_i) - F(x_i^-)$$

em que a notação $F(x_i^-)$ representa o limite de F tendendo a x_i pela esquerda, ou seja, por valores inferiores a x_i .

- $f(0) = F(0) F(0^{-}) = 0.008;$
- $f(1) = F(1) F(1^{-}) = 0.104 0.008 = 0.096;$
- $f(2) = F(2) F(2^{-}) = 0.488 0.104 = 0.384;$
- $f(3) = F(3) F(3^{-}) = 1 0.488 = 0.512$.

Como mencionado acima, podemos obter a função de probabilidade de uma variável aleatória discreta por meio da função de distribuição acumulada. Seja F(x) a função de distribuição acumulada da variável X discreta. Então temos que

$$f(x_i) = F(x_i) - F(x_i^-),$$

em que a notação $F(x_i^-)$ representa o limite de F tendendo a x_i pela esquerda, ou seja, por valores inferiores a x_i .

- $f(0) = F(0) F(0^{-}) = 0.008;$
- $f(1) = F(1) F(1^{-}) = 0.104 0.008 = 0.096$;
- $f(2) = F(2) F(2^{-}) = 0.488 0.104 = 0.384;$
- $f(3) = F(3) F(3^{-}) = 1 0.488 = 0.512$.

Como mencionado acima, podemos obter a função de probabilidade de uma variável aleatória discreta por meio da função de distribuição acumulada.

Seja F(x) a função de distribuição acumulada da variável X discreta. Então temos que

$$f(x_i) = F(x_i) - F(x_i^-),$$

em que a notação $F(x_i^-)$ representa o limite de F tendendo a x_i pela esquerda, ou seja, por valores inferiores a x_i .

- $f(0) = F(0) F(0^{-}) = 0.008;$
- $f(1) = F(1) F(1^{-}) = 0.104 0.008 = 0.096$;
- $f(2) = F(2) F(2^{-}) = 0.488 0.104 = 0.384$;
- $f(3) = F(3) F(3^{-}) = 1 0.488 = 0.512$.

Como mencionado acima, podemos obter a função de probabilidade de uma variável aleatória discreta por meio da função de distribuição acumulada. Seja F(x) a função de distribuição acumulada da variável X discreta. Então temos que

$$f(x_i) = F(x_i) - F(x_i^-),$$

em que a notação $F(x_i^-)$ representa o limite de F tendendo a x_i pela esquerda, ou seja, por valores inferiores a x_i .

- $f(0) = F(0) F(0^{-}) = 0.008;$
- $f(1) = F(1) F(1^{-}) = 0.104 0.008 = 0.096;$
- $f(2) = F(2) F(2^{-}) = 0.488 0.104 = 0.384;$
- $f(3) = F(3) F(3^{-}) = 1 0.488 = 0.512$.

Como mencionado acima, podemos obter a função de probabilidade de uma variável aleatória discreta por meio da função de distribuição acumulada.

Seja F(x) a função de distribuição acumulada da variável X discreta. Então temos que

$$f(x_i) = F(x_i) - F(x_i^-),$$

em que a notação $F(x_i^-)$ representa o limite de F tendendo a x_i pela esquerda, ou seja, por valores inferiores a x_i .

- $f(0) = F(0) F(0^{-}) = 0.008;$
- $f(1) = F(1) F(1^{-}) = 0.104 0.008 = 0.096$;
- $f(2) = F(2) F(2^{-}) = 0.488 0.104 = 0.384;$
- $f(3) = F(3) F(3^{-}) = 1 0.488 = 0.512$.

Como mencionado acima, podemos obter a função de probabilidade de uma variável aleatória discreta por meio da função de distribuição acumulada. Seja F(x) a função de distribuição acumulada da variável X discreta. Então temos que

$$f(x_i) = F(x_i) - F(x_i^-),$$

em que a notação $F(x_i^-)$ representa o limite de F tendendo a x_i pela esquerda, ou seja, por valores inferiores a x_i .

- $f(0) = F(0) F(0^{-}) = 0.008;$
- $f(1) = F(1) F(1^{-}) = 0.104 0.008 = 0.096;$
- $f(2) = F(2) F(2^{-}) = 0.488 0.104 = 0.384$;
- $f(3) = F(3) F(3^{-}) = 1 0.488 = 0.512$.

Motivação

Veremos agora duas importantes quantidades utilizadas para resumir uma distribuição de probabilidade de uma variável aleatória X. Essas quantidades são bem simples e são chamadas de média (ou valor esperado) e variância da variável aleatória X.

- Intuitivamente, a média de uma variável aleatória X pode ser pensada como sendo uma medida central, ou no meio da distribuição de probabilidade da variável.
- A variância pode ser interpretada como sendo uma medida de dispersão ou de variabilidade na distribuição de probabilidade da variável.
- Iremos ver, a seguir, como essas quantidades podem ser obtidas para variáveis aleatórias discretas

Motivação

Veremos agora duas importantes quantidades utilizadas para resumir uma distribuição de probabilidade de uma variável aleatória X. Essas quantidades são bem simples e são chamadas de média (ou valor esperado) e variância da variável aleatória X.

- Intuitivamente, a média de uma variável aleatória X pode ser pensada como sendo uma medida central, ou no meio da distribuição de probabilidade da variável.
- A variância pode ser interpretada como sendo uma medida de dispersão ou de
- Iremos ver, a seguir, como essas quantidades podem ser obtidas para variáveis

Motivação

Veremos agora duas importantes quantidades utilizadas para resumir uma distribuição de probabilidade de uma variável aleatória X. Essas quantidades são bem simples e são chamadas de média (ou valor esperado) e variância da variável aleatória X.

- Intuitivamente, a média de uma variável aleatória X pode ser pensada como sendo uma medida central, ou no meio da distribuição de probabilidade da variável.
- A variância pode ser interpretada como sendo uma medida de dispersão ou de variabilidade na distribuição de probabilidade da variável.
- Iremos ver, a seguir, como essas quantidades podem ser obtidas para variáveis aleatórias discretas.

19 / 25

Motivação

Veremos agora duas importantes quantidades utilizadas para resumir uma distribuição de probabilidade de uma variável aleatória X. Essas quantidades são bem simples e são chamadas de média (ou valor esperado) e variância da variável aleatória X.

- Intuitivamente, a média de uma variável aleatória X pode ser pensada como sendo uma medida central, ou no meio da distribuição de probabilidade da variável.
- A variância pode ser interpretada como sendo uma medida de dispersão ou de variabilidade na distribuição de probabilidade da variável.
- Iremos ver, a seguir, como essas quantidades podem ser obtidas para variáveis aleatórias discretas

Vamos primeiro considerar o caso de variáveis aleatórias discretas.

Média e variância de variáveis aleatórias discretas

Definição: Seja X uma variável aleatória discreta assumindo valores x_1, x_2, \ldots e com função de probabilidade f. A média (ou valor esperado) de X, denotado por μ ou por E(X), é definida como

$$\mu = E(X) = \sum_{x_i} x_i f(x_i).$$

A variância de X, denotada por σ^2 ou por Var(X), é definida como

$$\sigma^2 = Var(X) = E(X - \mu)^2 = \sum_{x_i} (x_i - \mu)^2 f(x_i)$$

• A raiz quadrada da variância é chamada de desvio-padrão, ou seja, $\sigma=\sqrt{\sigma^2}$ é o desvio-padrão da variável aleatória X

20 / 25

Vamos primeiro considerar o caso de variáveis aleatórias discretas.

Média e variância de variáveis aleatórias discretas

Definição: Seja X uma variável aleatória discreta assumindo valores x_1, x_2, \ldots e com função de probabilidade f. A média (ou valor esperado) de X, denotado por μ ou por E(X), é definida como

$$\mu = E(X) = \sum_{x_i} x_i f(x_i).$$

A variância de X, denotada por σ^2 ou por Var(X), é definida como

$$\sigma^2 = Var(X) = E(X - \mu)^2 = \sum_{x_i} (x_i - \mu)^2 f(x_i)$$

• A raiz quadrada da variância é chamada de desvio-padrão, ou seja, $\sigma=\sqrt{\sigma^2}$ é o desvio-padrão da variável aleatória X.

4 D > 4 B > 4 B > 3 P 9 Q P

Vamos primeiro considerar o caso de variáveis aleatórias discretas.

Média e variância de variáveis aleatórias discretas

Definição: Seja X uma variável aleatória discreta assumindo valores x_1, x_2, \ldots e com função de probabilidade f. A média (ou valor esperado) de X, denotado por μ ou por E(X), é definida como

$$\mu = E(X) = \sum_{x_i} x_i f(x_i).$$

A variância de X, denotada por σ^2 ou por Var(X), é definida como

$$\sigma^2 = Var(X) = E(X - \mu)^2 = \sum_{x_i} (x_i - \mu)^2 f(x_i)$$

• A raiz quadrada da variância é chamada de desvio-padrão, ou seja, $\sigma=\sqrt{\sigma^2}$ é o desvio-padrão da variável aleatória X

4 D > 4 D > 4 E > 4 E > E 9040

Vamos primeiro considerar o caso de variáveis aleatórias discretas.

Média e variância de variáveis aleatórias discretas

Definição: Seja X uma variável aleatória discreta assumindo valores x_1, x_2, \ldots e com função de probabilidade f. A média (ou valor esperado) de X, denotado por μ ou por E(X), é definida como

$$\mu = E(X) = \sum_{x_i} x_i f(x_i).$$

A variância de X, denotada por σ^2 ou por Var(X), é definida como

$$\sigma^2 = Var(X) = E(X - \mu)^2 = \sum_{x_i} (x_i - \mu)^2 f(x_i)$$

• A raiz quadrada da variância é chamada de desvio-padrão, ou seja, $\sigma=\sqrt{\sigma^2}$ é o desvio-padrão da variável aleatória X.

4 D > 4 A > 4 B > 4 B > B = 900

Média e variância de variáveis aleatórias discretas

Interpretações

- Note que a média de uma variável aleatória discreta é uma média ponderada dos valores possíveis que a variável aleatória pode assumir, sendo que os pesos são iguais às probabilidades.
- Observe ainda que a variância de uma variável aleatória X discreta é uma medida

Média e variância de variáveis aleatórias discretas

Interpretações

- Note que a média de uma variável aleatória discreta é uma média ponderada dos valores possíveis que a variável aleatória pode assumir, sendo que os pesos são iguais às probabilidades.
- Observe ainda que a variância de uma variável aleatória X discreta é uma medida de dispersão dos valores que a variável assume em relação à média. Note que na variância é usado o peso $f(x_i)$ como o multiplicador de cada desvio quadrático $(x_i - \mu)^2$.

Média e variância de variáveis aleatórias discretas

Alternativa ao cálculo da variância

Note que uma maneira alternativa, que em alguns casos pode simplificar os cálculos, de se obter a variância de uma variável aleatória discreta é a seguinte:

$$Var(X) = \sum_{x_i} (x_i - \mu)^2 f(x_i) = \sum_{x_i} (x_i^2 - 2x_i\mu + \mu^2) f(x_i)$$

ou seja,

$$Var(X) = \sum_{x_i} x_i^2 f(x_i) - 2\mu \sum_{x_i} x_i f(x_i) + \mu^2 \sum_{x_i} f(x_i)$$

ou ainda

$$Var(X) = \sum_{x_i} x_i^2 f(x_i) - 2\mu^2 + \mu^2 = \sum_{x_i} x_i^2 f(x_i) - \mu^2.$$

Ou seja, a variância de uma variável aleatória X discreta também pode ser calculada da forma

$$Var(X) = \sum_{x_i} x_i^2 f(x_i) - \mu^2.$$

Ex.: Considere novamente o exemplo: Em um processo de fabricação de semicondutores, três pastilhas de um lote são testadas. Cada pastilha é classificada como passa ou falha. Suponha que a probabilidade de uma pastilha passar no teste seja 0.8 e que as pastilhas sejam independentes. Determine o número médio e a variância do numero de pastilhas de um lote que passa no teste.

- Sol.: Seja X a variável aleatória definida como o numero de pastilhas de um lote que passa no teste.
- ullet Já obtivemos a função de probabilidade de X, ou seja,

• Note que queremos calcular E(X) e Var(X). Temos que

$$\mu = E(X) = \sum_{x_i} x_i f(x_i) = 0 f(0) + 1 f(1) + 2 f(2) + 3 f(3)$$

ou seja

$$\mu = E(X) = 0(0.008) + 1(0.096) + 2(0.384) + 3(0.512) = 2.4$$

Ex.: Considere novamente o exemplo: Em um processo de fabricação de semicondutores, três pastilhas de um lote são testadas. Cada pastilha é classificada como passa ou falha. Suponha que a probabilidade de uma pastilha passar no teste seja 0.8 e que as pastilhas sejam independentes. Determine o número médio e a variância do numero de pastilhas de um lote que passa no teste.

- Sol.: Seja X a variável aleatória definida como o numero de pastilhas de um lote que passa no teste.
- ullet Já obtivemos a função de probabilidade de X, ou seja,

• Note que queremos calcular E(X) e Var(X). Temos que

$$\mu = E(X) = \sum_{x_i} x_i f(x_i) = 0 f(0) + 1 f(1) + 2 f(2) + 3 f(3)$$

ou seja,

$$\mu = E(X) = 0(0.008) + 1(0.096) + 2(0.384) + 3(0.512) = 2.4$$

Ex.: Considere novamente o exemplo: Em um processo de fabricação de semicondutores, três pastilhas de um lote são testadas. Cada pastilha é classificada como passa ou falha. Suponha que a probabilidade de uma pastilha passar no teste seja 0.8 e que as pastilhas sejam independentes. Determine o número médio e a variância do numero de pastilhas de um lote que passa no teste.

- Sol.: Seja X a variável aleatória definida como o numero de pastilhas de um lote que passa no teste.
- Já obtivemos a função de probabilidade de X, ou seja,

X	0	1	2	3
f(x)	0.008	0.096	0.384	0.512

• Note que queremos calcular E(X) e Var(X). Temos que

$$\mu = E(X) = \sum_{x_i} x_i f(x_i) = 0 f(0) + 1 f(1) + 2 f(2) + 3 f(3)$$

ou seja

$$\mu = E(X) = 0(0.008) + 1(0.096) + 2(0.384) + 3(0.512) = 2.4$$

Ex.: Considere novamente o exemplo: Em um processo de fabricação de semicondutores, três pastilhas de um lote são testadas. Cada pastilha é classificada como passa ou falha. Suponha que a probabilidade de uma pastilha passar no teste seja 0.8 e que as pastilhas sejam independentes. Determine o número médio e a variância do numero de pastilhas de um lote que passa no teste.

- Sol.: Seja X a variável aleatória definida como o numero de pastilhas de um lote que passa no teste.
- Já obtivemos a função de probabilidade de X, ou seja,

X	0	1	2	3
f(x)	0.008	0.096	0.384	0.512

• Note que queremos calcular E(X) e Var(X). Temos que

$$\mu = E(X) = \sum_{x_i} x_i f(x_i) = 0 f(0) + 1 f(1) + 2 f(2) + 3 f(3)$$

ou seja

$$\mu = E(X) = 0(0.008) + 1(0.096) + 2(0.384) + 3(0.512) = 2.4$$

Ex.: Considere novamente o exemplo: Em um processo de fabricação de semicondutores, três pastilhas de um lote são testadas. Cada pastilha é classificada como passa ou falha. Suponha que a probabilidade de uma pastilha passar no teste seja 0.8 e que as pastilhas sejam independentes. Determine o número médio e a variância do numero de pastilhas de um lote que passa no teste.

- Sol.: Seja X a variável aleatória definida como o numero de pastilhas de um lote que passa no teste.
- Já obtivemos a função de probabilidade de X, ou seja,

• Note que queremos calcular E(X) e Var(X). Temos que

$$\mu = E(X) = \sum_{x_i} x_i f(x_i) = 0 f(0) + 1 f(1) + 2 f(2) + 3 f(3)$$

ou seja,

$$\mu = E(X) = 0(0.008) + 1(0.096) + 2(0.384) + 3(0.512) = 2.4$$

Temos ainda que a variância de X é dada por

$$\sigma^2 = \sum_{x_i} (x_i - \mu)^2 f(x_i) = (0 - 2.4)^2 f(0) + (1 - 2.4)^2 f(1) + (2 - 2.4)^2 f(2) + (3 - 2.4)^2 f(3).$$

ou seja,

$$\sigma^2 = 0.04608 + 0.18816 + 0.06144 + 0.18432 = 0.48.$$

- Portanto, temos que a média e a variância da variável aleatória X desse problema são E(X)=2.4 e Var(X)=0.48.
- Note que as unidades de medidas da média e da variância não são as mesmas, o que torna difícil a interpretação. Contudo, note que as unidades do desvio-padrão são as mesmas unidades da variável aleatória, o que torna o desvio-padrão ser fácil de se interpretar. No exemplo acima, temos que o desvio de X, em relação à sua média, é de $\sqrt{0.48} \approx 0.6928$.

Temos ainda que a variância de X é dada por

$$\sigma^2 = \sum_{x_i} (x_i - \mu)^2 f(x_i) = (0 - 2.4)^2 f(0) + (1 - 2.4)^2 f(1) + (2 - 2.4)^2 f(2) + (3 - 2.4)^2 f(3).$$
ou seja,

$$\sigma^2 = 0.04608 + 0.18816 + 0.06144 + 0.18432 = 0.48.$$

- Portanto, temos que a média e a variância da variável aleatória X desse problema são E(X)=2.4 e Var(X)=0.48.
- Note que as unidades de medidas da média e da variância não são as mesmas, o que torna difícil a interpretação. Contudo, note que as unidades do desvio-padrão são as mesmas unidades da variável aleatória, o que torna o desvio-padrão ser fácil de se interpretar. No exemplo acima, temos que o desvio de X, em relação à sua média, é de $\sqrt{0.48} \approx 0.6928$.

24 / 25

• Temos ainda que a variância de X é dada por

$$\sigma^2 = \sum_{x_i} (x_i - \mu)^2 f(x_i) = (0 - 2.4)^2 f(0) + (1 - 2.4)^2 f(1) + (2 - 2.4)^2 f(2) + (3 - 2.4)^2 f(3).$$
 ou seja,

$$\sigma^2 = 0.04608 + 0.18816 + 0.06144 + 0.18432 = 0.48.$$

- Portanto, temos que a média e a variância da variável aleatória X desse problema são E(X) = 2.4 e Var(X) = 0.48.
- Note que as unidades de medidas da média e da variância não são as mesmas, o

• Temos ainda que a variância de X é dada por

$$\sigma^2 = \sum_{x_i} (x_i - \mu)^2 f(x_i) = (0 - 2.4)^2 f(0) + (1 - 2.4)^2 f(1) + (2 - 2.4)^2 f(2) + (3 - 2.4)^2 f(3).$$
 ou seja,

$$\sigma^2 = 0.04608 + 0.18816 + 0.06144 + 0.18432 = 0.48.$$

- Portanto, temos que a média e a variância da variável aleatória X desse problema são E(X) = 2.4 e Var(X) = 0.48.
- Note que as unidades de medidas da média e da variância não são as mesmas, o que torna difícil a interpretação. Contudo, note que as unidades do desvio-padrão são as mesmas unidades da variável aleatória, o que torna o desvio-padrão ser fácil de se interpretar. No exemplo acima, temos que o desvio de X, em relação à sua média, é de $\sqrt{0.48} \approx 0.6928$.

ullet Se X for uma variável aleatória discreta com função de probabilidade f, temos que

$$E(h(X)) = \sum_{x_i} h(x_i) f(x_i)$$

- Note que, por exemplo, a variância de X pode ser vista como o valor esperado de uma particular função da variável X, a saber: $h(X) = (X \mu)^2$.
- Por exemplo, se no exemplo anterior estivéssemos interessados em calcular o valor esperado de $h(X)=X^2$, então

$$E(h(X)) = \sum_{x_i} x_i^2 f(x_i) = 0^2 f(0) + 1^2 f(1) + 2^2 f(2) + 3^2 f(3).$$

ou seja

$$E(h(X)) = 0^{2}(0.008) + 1^{2}(0.096) + 2^{2}(0.384) + 3^{2}(0.512) = 6.24.$$

Dr. Giannini Italino

ullet Se X for uma variável aleatória discreta com função de probabilidade f, temos que

$$E(h(X)) = \sum_{x_i} h(x_i) f(x_i).$$

- Note que, por exemplo, a variância de X pode ser vista como o valor esperado de uma particular função da variável X, a saber: $h(X) = (X \mu)^2$.
- Por exemplo, se no exemplo anterior estivéssemos interessados em calcular o valor esperado de $h(X)=X^2$, então

$$E(h(X)) = \sum_{x_i} x_i^2 f(x_i) = 0^2 f(0) + 1^2 f(1) + 2^2 f(2) + 3^2 f(3).$$

ou seja

$$E(h(X)) = 0^{2}(0.008) + 1^{2}(0.096) + 2^{2}(0.384) + 3^{2}(0.512) = 6.24.$$

Dr. Giannini Italino

ullet Se X for uma variável aleatória discreta com função de probabilidade f, temos que

$$E(h(X)) = \sum_{x_i} h(x_i) f(x_i).$$

- Note que, por exemplo, a variância de X pode ser vista como o valor esperado de uma particular função da variável X, a saber: $h(X) = (X \mu)^2$.
- Por exemplo, se no exemplo anterior estivéssemos interessados em calcular o valor esperado de $h(X) = X^2$, então

$$E(h(X)) = \sum_{x_i} x_i^2 f(x_i) = 0^2 f(0) + 1^2 f(1) + 2^2 f(2) + 3^2 f(3).$$

ou seja

$$E(h(X)) = 0^{2}(0.008) + 1^{2}(0.096) + 2^{2}(0.384) + 3^{2}(0.512) = 6.24.$$

(ロ) (個) (意) (意) (意) (の)

Dr. Giannini Italino

Probabilidade e estatística

Março, 2024

25 / 25

• Se X for uma variável aleatória discreta com função de probabilidade f, temos que

$$E(h(X)) = \sum_{x_i} h(x_i) f(x_i).$$

- Note que, por exemplo, a variância de X pode ser vista como o valor esperado de uma particular função da variável X, a saber: $h(X) = (X - \mu)^2$.
- Por exemplo, se no exemplo anterior estivéssemos interessados em calcular o valor esperado de $h(X) = X^2$, então

$$E(h(X)) = \sum_{x_i} x_i^2 f(x_i) = 0^2 f(0) + 1^2 f(1) + 2^2 f(2) + 3^2 f(3).$$

$$E(h(X)) = 0^{2}(0.008) + 1^{2}(0.096) + 2^{2}(0.384) + 3^{2}(0.512) = 6.24.$$

Marco, 2024

25 / 25

Dr. Giannini Italino Probabilidade e estatística

ullet Se X for uma variável aleatória discreta com função de probabilidade f, temos que

$$E(h(X)) = \sum_{x_i} h(x_i) f(x_i).$$

- Note que, por exemplo, a variância de X pode ser vista como o valor esperado de uma particular função da variável X, a saber: $h(X) = (X \mu)^2$.
- Por exemplo, se no exemplo anterior estivéssemos interessados em calcular o valor esperado de $h(X) = X^2$, então

$$E(h(X)) = \sum_{x_i} x_i^2 f(x_i) = 0^2 f(0) + 1^2 f(1) + 2^2 f(2) + 3^2 f(3).$$

ou seja

$$E(h(X)) = 0^{2}(0.008) + 1^{2}(0.096) + 2^{2}(0.384) + 3^{2}(0.512) = 6.24.$$

Dr. Giannini Italino

ullet Se X for uma variável aleatória discreta com função de probabilidade f, temos que

$$E(h(X)) = \sum_{x_i} h(x_i) f(x_i).$$

- Note que, por exemplo, a variância de X pode ser vista como o valor esperado de uma particular função da variável X, a saber: $h(X) = (X \mu)^2$.
- Por exemplo, se no exemplo anterior estivéssemos interessados em calcular o valor esperado de $h(X) = X^2$, então

$$E(h(X)) = \sum_{x_i} x_i^2 f(x_i) = 0^2 f(0) + 1^2 f(1) + 2^2 f(2) + 3^2 f(3).$$

ou seja,

$$E(h(X)) = 0^{2}(0.008) + 1^{2}(0.096) + 2^{2}(0.384) + 3^{2}(0.512) = 6.24.$$

Dr. Giannini Italino

Probabilidade e estatística

Março, 2024

25 / 25