DEDP Exam 2018-2019

No.2

Exercises (18p)

- 1. Consider a random variable A with the uniform distribution $\mathcal{U}[-5,3]$.
 - a. (1p) Draw the density function.
 - b. (1p) Compute the probability that A is larger than 1
 - c. (2p) Compute the average squared value $\overline{A^2}$;
 - d. (2p) Draw the cumulative distribution function (CDF) of A, $F_A(x)$. Justify the shape.
- 2. Consider detection between two possible signals, $s_0(t) = -2$ and $s_1(t) = 4$. The signals are affected by AWGN with distribution \mathcal{N} ($\mu = 0, \sigma^2 = 3$). The probabilities of the two hypotheses are $P(H_0) = 2/3$, $P(H_1) = 1/3$. The receiver takes one sample, at time t = 2, and the obtained value is r = 2.
 - a. (1p) What are the decision regions R_0 and R_1 for the Maximum Likelihood criterion? Justify.
 - b. (3p) Compute the probability of miss, in case of the Maximum Likelihood criterion.
 - c. (2p) What is the decision taken with the Minimum Probability of Error criterion?
- 3. Consider detecting a signal $s(t) = 2\sin(\pi t)$ that can be present (hypothesis H_1) or absent (signal is equal to zero, hypothesis H_0). The signal is affected by AWGN $\mathcal{N}(0, \sigma^2 = 2)$. The receiver takes 3 samples at times $t_0 = 1$, $t_1 = 3$ and $t_2 = 5$, with values $t_0 = 0.8$, $t_1 = 0.5$ and $t_2 = 0.5$.
 - a. (2p) What is the decision according to Maximum Likelihood criterion?
- 4. (4p) Consider the received signal $r(t) = \underbrace{At 3}_{s(t)} + noise$, which is sampled at time

moments $t_i = [1, 2, 3]$, and the values are $r_i = [-0.5, 2.8, 5.5]$. The noise has Gaussian distribution $\mathcal{N}(0, \sigma^2 = 4)$. Estimate the unknown parameter A using Maximum Likelihood estimation.

Known:

•
$$F(x) = \frac{1}{2} \left(1 + \operatorname{erf} \left(\frac{x - \mu}{\sigma \sqrt{2}} \right) \right)$$

Theory (14p)

- 1. (3p) Prove the relation $\sigma^2 = E\{X^2\} (E\{X\})^2$.
- 2. (2p) Suppose we have $R_{ff}(1) < 0$ for a stationary random process f(t). What does this tell us about two samples which are 1 second apart? Explain why.
- 3. (2p) Show that the Maximum Likelihood criterion is a particular case of the Minimum Probability of Error criterion, which in turn is a particular case of the Minimum Risk criterion.
- 4. (3p) Prove that the output of a **matched filter**, taken at the end of the input signal, is equal to the inner product of the signals. It is known: the convolution of two signals x[n] and y[n] is defined as $\sum_k x[k]y[n-k]$.
- 5. (2p) Consider signal detection, with the probability of the two hypotheses being $P(H_0) = \frac{1}{2}$ and $P(H_1) = \frac{1}{2}$. How is the **Maximum Likelihood** decision criterion affected when $P(H_0)$ decreases and $P(H_1)$ increases? Explain why.
 - a. Decision D_1 becomes more likely, decision D_0 becomes less likely
 - b. Decision D_0 becomes more likely, decision D_1 becomes less likely
 - c. Decisions are not affected
- 6. (2p) What is the relation between MAP estimator and ML estimator? Argue that one of them is a particular case of the other.

Notes: 35p total, solve 30p for grade 10. 3p are awarded from start. Time available: 2h