Why deal with missing data?

DEALING WITH MISSING DATA IN PYTHON

Suraj Donthi

Deep Learning & Computer Vision Consultant

Why does missing data exist?

Real world data is messy data

Did you know that 72% of organizations believe that data quality issues hinder customer trust and perception?

¹ [Top 9 Benefits of Data Cleansing for Businesses](https://bit.ly/2QwMrab)

Why does missing data exist?

- Values are missed during data acquisition process
 - Faulty weather sensors during weather analysis
 - Incomplete patient information for medical diagnosis etc.
- Values deleted accidentally
 - Data loss
 - Mistakenly deleted due to human error

In this course, you'll learn

- the significance of treating missing values
- to detect missing values in your messy data
- analyze the types for missingness
- treat the missing values appropriately for
 - numerical
 - time-series
 - categorical values

In this course, you'll learn

- to impute(replace) missing values using simple techniques
- to impute using advanced techniques
- to finally evaluate the best method of treating missing values

Workflow for treating missing values

- 1. Convert all missing values to null values.
- 2. Analyze the amount and type of missingness in the data.
- 3. Appropriately delete or impute missing values.
- 4. Evaluate & compare the performance of the treated/imputed dataset.

NULL value Operations

None

```
None or True # Same for False
True
```

```
None + True # For all operators
TypeError: unsupported operand
None / 3 # For all operators
TypeError: unsupported operand
```

```
type(None)
NoneType
```

np.nan

```
import numpy as np
np.nan or True # Same for False
nan
```

```
np.nan * True # For all operators
nan
np.nan - 3 # For all operators
nan
```

```
type(np.nan)
float
```

NULL value operations

None

None == None

True

np.isnan(None)

False

np.nan

np.nan == np.nan

False

np.isnan(np.nan)

True

Let's practice!

DEALING WITH MISSING DATA IN PYTHON

Handling missing values

DEALING WITH MISSING DATA IN PYTHON

Suraj Donthi

Deep Learning & Computer Vision Consultant

Missing values

• Usually filled with values like 'NA', '-' or '.' etc.

Detect missing values in College dataset College Dataset

```
college = pd.read_csv('college.csv')
college.head()
```

```
lenroll rmbrd
 gradrat
                              private stufac csat act
                                      10.8
    59.0
             5.1761497326 3.75
                                 1.0
                                                . 21.0
0
    52.0
                                      17.7
                                                . 21.0
             4.7791234931 3.74
                                 1.0
    75.0
        6.122492809500001
                                 1.0
                                      11.4 1052.0 24.0
3
    56.0
             5.3181199938 4.1
                                 1.0
                                      11.6 940.0 23.0
        5.631211781799999
                                      18.3 . 17.0
    71.0
                                 1.0
```

Detect missing values in College dataset

```
college.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 7 columns):
gradrat 200 non-null object
lenroll
          200 non-null object
rmbrd
          200 non-null object
          200 non-null float64
private
stufac
          200 non-null object
          200 non-null object
csat
          200 non-null object
act
dtypes: float64(1), object(6)
```


Detect missing values in College dataset

```
csat_unique = college.csat.unique()
np.sort(csat_unique)
```

```
array(['.', '1000.0', '1006.0', '1010.0', '1013.0', '1020.0', '1024.0', '1026.0', '1028.0', '1036.0', '1039.0', '1040.0', '1044.0', '1045.0', '1050.0', '1052.0', '1060.0', '1070.0', '1080.0', '1092.0', '1096.0', '1109.0', '1111.0', '1120.0', '1139.0', ... ... ... ... '940.0', '943.0', '947.0', '950.0', '951.0', '964.0', '970.0', '979.0', '980.0', '989.0', '992.0', '994.0', '996.0', '997.0', '998.0'], dtype=object)
```

Replace missing values in College dataset

```
college = pd.read_csv('college.csv', na_values='.')
college.head()
```

```
gradrat
           lenroll
                   rmbrd
                         private
                                  stufac
                                         csat
                                                act
                                           NaN 21.0
          5.176150
     59.0
                    3.75
                             1.0
                                   10.8
0
     52.0
          4.779123
                    3.74
                             1.0 17.7
                                            NaN
                                               21.0
     75.0
                             1.0 11.4
                                         1052.0
          6.122493
                    NaN
                                               24.0
                             1.0
                                         940.0 23.0
     56.0 5.318120
                    4.10
                                   11.6
     71.0
          5.631212
                             1.0
                     NaN
                                   18.3
                                            NaN 17.0
```

Replace missing values in College dataset

```
college.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 7 columns):
           187 non-null float64
gradrat
lenroll
           199 non-null float64
           114 non-null float64
rmbrd
          200 non-null float64
private
stufac
           199 non-null float64
csat
           105 non-null float64
act
           104 non-null float64
dtypes: float64(7)
```


Detect missing values in Diabetes dataset Pima Indian Diabetes dataset

• contains various clinical diagnostic information of the patients from the Pima community

```
diabetes = pd.read_csv('pima-indians-diabetes.csv')
```

	Pregnant	Glucose	Diastolic_BP	Skin_Fold	Serum_Insulin	BMI	Diabetes_Pedigree	Age	Class
0	6.0	148.0	72.0	35.0	NaN	33.6	0.627	50	1.0
1	1.0	85.0	66.0	29.0	NaN	26.6	0.351	31	0.0
2	8.0	183.0	64.0	NaN	NaN	23.3	0.672	32	1.0
3	1.0	89.0	66.0	23.0	94.0	28.1	0.167	21	0.0
4	0.0	137.0	40.0	35.0	168.0	43.1	2.288	33	1.0

Detect missing values in Diabetes dataset

diabetes.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
Pregnant
                    768 non-null float64
Glucose
                    763 non-null float64
Diastolic_BP
                     733 non-null float64
Skin_Fold
                     541 non-null float64
Serum_Insulin
                     394 non-null float64
BMI
                     768 non-null float64
Diabetes_Pedigree
                     768 non-null float64
                     768 non-null int64
Age
Class
                     768 non-null float64
dtypes: float64(8), int64(1)
```


Detect missing values in Diabetes dataset

diabetes.describe()

	Pregnant	Glucose	Diastolic_BP	Skin_Fold	Serum_Insulin	BMI	Diabetes_Pedigree	Age	Class
count	768.000000	763.000000	733.000000	541.000000	394.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	121.686763	72.405184	29.153420	155.548223	31.992578	0.471876	33.240885	0.348958
std	3.369578	30.535641	12.382158	10.476982	118.775855	7.884160	0.331329	11.760232	0.476951
min	0.000000	44.000000	24.000000	7.000000	14.000000	0.000000	0.078000	21.000000	0.000000
25%	1.000000	99.000000	64.000000	22.000000	76.250000	27.300000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	29.000000	125.000000	32.000000	0.372500	29.000000	0.000000
75%	6.000000	141.000000	80.000000	36.000000	190.000000	36.600000	0.626250	41.000000	1.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

Detect missing values in Diabetes dataset

```
diabetes.BMI[diabetes.BMI == 0]
```

```
0.0
      0.0
49
      0.0
60
      0.0
81 l
145
      0.0
371
      0.0
426
      0.0
494
      0.0
522
      0.0
684
      0.0
706
      0.0
Name: BMI, dtype: float64
```

Replace missing values with NaN

```
diabetes.BMI[diabetes.BMI == 0] = np.nan
diabetes.BMI[np.isnan(diabetes.BMI)]
```

```
NaN
49 |
       NaN
60 l
      NaN
81 l
      NaN
145
      NaN
371
      NaN
426
      NaN
494
      NaN
522
      NaN
684
      NaN
706
       NaN
Name: BMI, dtype: float64
```


Summary

- detect missing value characters like '.' etc.
- detect the inherent missing values within the data like '0'.
- replace them values with NaN

Let's practice!

DEALING WITH MISSING DATA IN PYTHON

Analyze the amount of missingness

DEALING WITH MISSING DATA IN PYTHON

Suraj Donthi

Deep Learning & Computer Vision Consultant

Load Air Quality dataset Air Quality dataset

contains the sensor recordings of Ozone, Solar, Temperature and Wind

```
Date

1976-05-01 41.0 190.0 7.4 67

1976-05-02 36.0 118.0 8.0 72

1976-05-03 12.0 149.0 12.6 74

1976-05-04 18.0 313.0 11.5 62

1976-05-05 NaN NaN 14.3 56
```

Nullity DataFrame

• Use either .isnull() or .isna() methods on the DataFrame

```
airquality_nullity = airquality.isnull()
airquality_nullity.head()
```

```
Ozone Solar Wind Temp
Date

1976-05-01 False False False False
1976-05-02 False False False False
1976-05-03 False False False False
1976-05-04 False False False False
1976-05-05 True True False False
```

Total missing values

```
airquality_nullity.sum()
```

```
Ozone 37
Solar 7
Wind 0
Temp 0
dtype: int64
```

Percentage of missingness

```
airquality_nullity.mean() * 100
```

```
Ozone 24.183007
Solar 4.575163
Wind 0.000000
Temp 0.000000
```

dtype: float64

Nullity Bar

Missingno package

Package for graphical analysis of missing values

import missingno as msno

Nullity Matrix for time-series data

msno.matrix(airquality, freq='M')

Nullity Matrix for time-series data

msno.matrix(airquality, freq='M')

Fine tuning the matrix

```
msno.matrix(airquality.loc['May-1976': 'Jul-1976'], freq='M')
```


Summary

In this lesson we learned to analyze

- the amount of missingness numerically
- the amount of missingness graphically
- the percentage of missingness
- the nullity matrix for regular datasets
- the nullity matrix for time-series datasets

Let's practice!

DEALING WITH MISSING DATA IN PYTHON

