CSE 373

Sorting 3: Merge Sort, Quick Sort

reading: Weiss Ch. 7

slides created by Marty Stepp http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

Merge sort

• merge sort: Repeatedly divides the data in half, sorts each half, and combines the sorted halves into a sorted whole.

The algorithm:

- Divide the list into two roughly equal halves.
- Sort the left half.
- Sort the right half.
- Merge the two sorted halves into one sorted list.
- Often implemented recursively.
- An example of a "divide and conquer" algorithm.
 - Invented by John von Neumann in 1945
- Runtime: O(N log N). Somewhat faster for asc/descending input.

Merge sort example

Merging sorted halves

-	Subarrays									Next include			١	1erge	d arra	ay						
	0	1	2	3		0	1	2	3		0	1	2	3	4	5	6	7				
	14	32	67	76		23	41	58	85	l 4 from left	14											
	il					i2					i											
	14	32	67	76		23	41	58	85	23 from right	14	23										
		il				i2				•		i										
	14	32	67	76		23	41	58	85	32 from left	14	23	32									
		il					i2						i									
	14	32	67	76		23	41	58	85	41 from right	14	23	32	41								
	il				i2					i												
	14	32	67	76		23	41	58	85	58 from right	14	23	32	41	58							
			il		i2			i2						i	i							
	14	32	67	76		23	41	58	85	67 from left	14	23	32	41	58	67						
			iÌ						i2							i						
	14	32	67	76		23	41	58	85	76 from left	14	23	32	41	58	67	76					
				il					i2								i					
	14	32	67	76		23	41	58	85	85 from right	14	23	32	41	58	67	76	85				
									i2									i				

Merge halves code

```
// Merges the left/right elements into a sorted result.
// Precondition: left/right are sorted
public static void merge(int[] result, int[] left,
                                       int[] right) {
    int i1 = 0; // index into left array
    int i2 = 0; // index into right array
    for (int i = 0; i < result.length; i++) {
        if (i2 >= right.length ||
           (i1 < left.length && left[i1] <= right[i2])) {
            result[i] = left[i1]; // take from left
            i1++;
        } else {
            result[i] = right[i2]; // take from right
            i2++;
```

Merge sort code

```
// Rearranges the elements of a into sorted order using
// the merge sort algorithm.
public static void mergeSort(int[] a) {
    if (a.length >= 2) {
        // split array into two halves
        int[] left = Arrays.copyOfRange(a, 0, a.length/2);
        int[] right = Arrays.copyOfRange(a, a.length/2,
                                             a.length);
        // recursively sort the two halves
        mergeSort(left);
        mergeSort(right);
        // merge the sorted halves into a sorted whole
        merge(a, left, right);
```

Merge sort runtime

• What is the complexity class (Big-Oh) of merge sort?

N	Runtime (ms)
1000	0
2000	0
4000	0
8000	0
16000	0
32000	15
64000	16
128000	47
256000	125
512000	250
le6	532
2e6	1078
4e6	2265
8e6	4781
1.6e7	9828
3.3e7	20422
6.5e7	42406
1.3e8	88344

Input size (N)

Recursive code and runtime

- It is difficult to look at a recursive method and estimate its runtime.
 - Let T(N) = Runtime for merge sort to process an array of size N.

```
mergeSort(a, length=N):
  if N \ge 2:
    left = copyOfRange(0, N/2) // approx. N/2 time
    right = copyOfRange(N/2, N) // approx. N/2 time
                                    //T(N/2)
    mergeSort(left)
    mergeSort(right)
                                    //T(N/2)
    merge(a, left, right)
                                    // approx. N time
 • T(N) = N/2 + N/2 + T(N/2) + T(N/2) + N
 • T(N) = 2T(N/2) + 2N,
                                when N \ge 2
 • T(1) = 1,
                                    when N = 1
```

 recurrence relation: An equation that recursively defines a sequence, specifically the runtime of a recursive algorithm.

Recurrence relations

- Intuition about recurrence relations: Use repeated substitution.
- T(N) = 2 T(N/2) + 2N
 - T(N/2) = 2 T(N/4) + 2(N/2)
- T(N) = 2 (2T(N/4) + 2(N/2)) + 2N T(N) = 4T(N/4) + 4N
 - T(N/4) = 2 T(N/8) + 2(N/4)
- T(N) = 4 (2T(N/8) + 2(N/4)) + 4NT(N) = 8T(N/8) + 6N
- T(N) = 16 T(N/16) + 8N
- T(N) = 32 T(N/32) + 10N
- ...
- $T(N) = 2^k T(N/2^k) + 2kN$
 - At what value of k will we hit T(1)?

- Let $k = \log_2 N$.
- $T(N) = 2^{\log_2 N} T(N/2^{\log_2 N}) + 2 (\log_2 N) N$
- $T(N) = N T(N/N) + 2 N \log_2 N$
- $T(N) = N T(1) + 2 N \log_2 N$
- $T(N) = 2 N \log_2 N + N$
- $T(N) = O(N \log N)$

More runtime intuition

Merge sort performs O(N) operations on each level.

(width)

Each level splits the array in 2, so there are log₂ N levels.

(height)

Product of these = $N * \log_2 N = O(N \log N)$.

Z

(area)

Example: N = 32. Performs $\sim \log_2 32 = 5$ levels of N operations each:

Quick sort

- quick sort: Orders a list of values by partitioning the list around one element called a *pivot*, then sorting each partition.
 - invented by British computer scientist C.A.R. Hoare in 1960
- Quick sort is another divide and conquer algorithm:
 - Choose one element in the list to be the pivot.
 - Divide the elements so that all elements less than the pivot are to its left and all greater (or equal) are to its right.
 - Conquer by applying quick sort (recursively) to both partitions.
- Runtime: $O(N \log N)$ average, $O(N^2)$ worst case.
 - Generally somewhat faster than merge sort.

Choosing a "pivot"

- The algorithm will work correctly no matter which element you choose as the pivot.
 - A simple implementation can just use the first element.
- But for efficiency, it is better if the pivot divides up the array into roughly equal partitions.
 - What kind of value would be a good pivot? A bad one?

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
value	8	18	12	-4	27	30	36	50	7	68	91	56	2	85	42	98	25

Partitioning an array

- Swap the pivot to the last array slot, temporarily.
- Repeat until done partitioning (until i,j meet):
 - Starting from i = 0, find an element $a[i] \ge pivot$.
 - Starting from j = N-1, find an element $a[j] \le pivot$.
 - These elements are out of order, so swap a[i] and a[j].
- Swap the pivot back to index *i* to place it between the partitions.

index	0	1	2	3	4	5	6	7	8	9
value	6	1	4	9	0	3	5	2	7	8
	8 i							\leftarrow	j	6
	2	i	\rightarrow	\rightarrow			j	8		
				5	i	\rightarrow	9			
							6			9
	2	1	4	5	0	3	6	8	7	9

Quick sort example

index	0	1	2	3	4	5	6	7	8	9	
value	65	23	81	43	92	39	57	16	75	32	
	32	23	81	43	92	39	57	16	75	65] 9
	32	23	16	43	92	39	57	81	75	65	٤
	32	23	16	43	57	39	92	81	75	65	9
	32	23	16	43	57	39	92	81	75	65	
	32	23	16	43	57	39	65	81	75	92	٤

choose pivot=65
swap pivot (65) to end
swap 81, 16
swap 57, 92

swap pivot back in

recursively quicksort each half

32	23	16	43	57	39
39	23	16	43	57	32
16	23	39	43	57	32
16	23	32	43	57	39

pivot=32 swap to end swap 39, 16 swap 32 back in

81	75	92
92	75	81
75	92	81
75	81	92

pivot=81 swap to end swap 92, 75 swap 81 back in

Quick sort code

```
public static void quickSort(int[] a) {
    quickSort(a, 0, a.length - 1);
private static void quickSort(int[] a, int min, int max) {
    if (min >= max) { // base case; no need to sort
       return;
    // choose pivot; we'll use the first element (might be bad!)
    int pivot = a[min];
    swap(a, min, max);  // move pivot to end
    // partition the two sides of the array
    int middle = partition(a, min, max - 1, pivot);
    swap(a, middle, max); // restore pivot to proper location
    // recursively sort the left and right partitions
    quickSort(a, min, middle - 1);
    quickSort(a, middle + 1, max);
```

Partition code

```
// partitions a with elements < pivot on left and
// elements > pivot on right;
// returns index of element that should be swapped with pivot
private static int partition(int[] a, int i, int j, int pivot) {
    while (i \le i)
        // move index markers i, j toward center
        // until we find a pair of out-of-order elements
        while (i <= j && a[i] < pivot) { i++; }
        while (i <= j && a[j] > pivot) { j--; }
        if (i <= j) {
            swap(a, i, j);
            i++;
            j--;
    return i;
```

Quick sort runtime

- Best-case analysis: If partition divides the array fairly evenly.
 - Let T(N) = Runtime for quick sort to process an array of size N.

```
quickSort(a, length=N):

swap pivot to end.  // O(1)

mid = partition(a, pivot).  // approx. N time

swap pivot to mid.  // O(1)

quickSort(min, mid-1).  // T(N/2) if left size \approx N/2

quickSort(mid+1, max).  // T(N/2) if right size \approx N/2

• T(N) = 2T(N/2) + k_1N + k_2(1) for some constants k_1, k_2

• T(N) = O(N \log N)
```

Worst-case: What if the pivot is chosen poorly?
 What is the runtime?

•
$$T(N) = T(N-1) + T(1) + k_1N + k_2(1) = O(N^2)$$

Choosing a better pivot

- Choosing the first element as the pivot leads to very poor performance on certain inputs (ascending, descending)
 - does not partition the array into roughly-equal size chunks
- Alternative methods of picking a pivot:
 - random: Pick a random index from [min .. max]
 - median-of-3: look at left/middle/right elements and pick the one with the medium value of the three:
 - •a[min], a[(max+min)/2], and a[max]
 - better performance than picking random numbers every time
 - provides near-optimal runtime for almost all input orderings

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
value	8	18	91	-4	27	30	86	50	65	78	5	56	2	25	42	98	31

Stable sorting

- stable sort: One that maintains relative order of "equal" elements.
 - important for secondary sorting, e.g.
 - sort by name, then sort again by age, then by salary, ...
- All of the N^2 sorts shown are stable, as is shell sort.
 - bubble, selection, insertion, shell
- Merge sort is stable.
- Quick sort is not stable.
 - The partitioning algorithm can reverse the order of "equal" elements.
 - For this reason, Java's Arrays/Collections.sort() use merge sort.

Unstable sort example

Suppose you want to sort these points by Y first, then by X:

```
\blacksquare [(4, 2), (5, 7), (3, 7), (3, 1)]
```

A stable sort like merge sort would do it this way:

```
■ [(3, 1), (4, 2), (5, 7), (3, 7)] sort by y
■ [(3, 1), (3, 7), (4, 2), (5, 7)] sort by x
```

- Note that the relative order of (3, 1) and (3, 7) is maintained.
- Quick sort might leave them in the following state:

```
    [(3, 1), (4, 2), (5, 7), (3, 7)] sort by y
    [(3, 7), (3, 1), (4, 2), (5, 7)] sort by x
```

■ Note that the relative order of (3, 1) and (3, 7) has reversed.