

STA 426: Statistical Analysis of High-Throughput Genomic and Transcriptomic Data

- Learning outcomes
- Administrative: course structure and organization, presentations
- Course materials: via github
- Intro to: {Unix, Bioconductor, Molecular Biology}

Mark D. Robinson, Statistical Genomics, IMLS

Today's structure

9.00-9.45: Ice Breakers, Surveys

10.00-10.45: Course structure, evaluations, Introduction to Molecular Biology (Hubert)

11.00-11.45: Troubleshooting computing/logins; Introduction to Bioconductor exercise

Survey 1: A bit of background on you

movo.ch

Token:

DE ZA NY GY

Survey 2: Statistical Insight

movo.ch

Token:

GO CI DO RA

Question 1

Question 3

$$X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Question 5

$$\frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\hat{p}(1-\hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}}$$

$$\frac{2}{\sum_{k=0}^{k} \frac{(\text{observed} - \text{expected})^2}{\text{expected}}}$$

$$\frac{(\overline{x}_1 - \overline{x}_2) - d_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}},$$

Rough structure of Monday mornings

We will run X.00-X.45; X in {9,10,11}

- Lecture/journal club presentation (9.00whenever)
- Remaining time: in the computer lab (Y11-J-05) doing exercises/project

M.Sc. thesis projects

If you are:

- in a M.Sc. programme (ETHZ or UZH)
- have a solid background in mathematics / statistics
- have an interest in research in this field ("statistical bioinformatics")
- looking for a thesis project
- → Discuss a project in my lab

Critical skills needed by statisticians (Jeffrey Leek's words):

With all the excitement going on around statistics, there is also increasing diversity. It is increasingly hard to define "statistician" since the definition ranges from <u>very mathematical</u> to <u>very applied</u>. An obvious question is: what are the most critical skills needed by statisticians?

So just for fun, I made up my list of the top 5 most critical skills for a statistician by my own definition. They are by necessity very general (I only gave myself 5).

- The ability to manipulate/organize/work with data on computers whether
 it is with excel, R, SAS, or Stata, to be a statistician you have to be able to work with
 data.
- A knowledge of exploratory data analysis how to make plots, how to discover patterns with visualizations, how to explore assumptions
- 3. **Scientific/contextual knowledge** at least enough to be able to abstract and formulate problems. This is what separates statisticians from mathematicians.
- Skills to distinguish true from false patterns whether with p-values, posterior probabilities, meaningful summary statistics, cross-validation or any other means.
- 5. The ability to communicate results to people without math skills a key component of being a statistician is knowing how to explain math/plots/analyses.

Learning outcomes (in my words)

- Understand the fundamental "scientific process" in the field of Statistical Bioinformatics
- Be equipped with the skills/tools to preprocess genomic data (Unix, Bioconductor, mapping, etc.) and ensure reproducible research (R/markdown)
- Have a general knowledge of (some) types of data and biological applications encountered with high throughput genomic data
- Have the general knowledge of the range of statistical methods that get used with microarray and sequencing data
- Gain the ability to apply statistical methods/knowledge/software to a collaborative biological project
- Gain the ability to critical assess the statistical bioinformatics literature
- Write a coherent summary of a bioinformatics problem and it's solution in statistical terms

Course evaluation

1. Journal cl	b presentation	20%

2. Project 50%

3. Exercises 30%

4. Technology day (participation) 0% or -10%

The semester-long course structure (subject to change)

Tentative Schedule

Date	Lecturer	Topic	JC1	JC2
19.09.2016	Mark; Hubert	admin, mol. biology basics, R markdown		
26.09.2016	Hubert	exploratory data analysis		
03.10.2016	Mark; Hubert	interactive technology session		
10.10.2016	Hubert	NGS intro; mapping		
17.10.2016	Charlotte	hands-on RNA-seq session		
24.10.2016	Mark	limma 1		
31.10.2016	Mark	limma 2		
07.11.2016	Hubert	RNA-seq quantification	x	x
14.11.2016	Mark	edgeR+friends 1	x	x
21.11.2016	Mark	edgeR+friends 2	x	x
28.11.2016	Hubert	classification	x	x
5.12.2016	Mark	epigenomics, DNA methylation	x	x
12.12.2016	Mark	gene set analysis	x	x
19.12.2016	Mark	single-cell		

Expectations: journal club presentation

- 20 minutes (+5 minutes discussion)
- MUST be a paper about a statistical method in genomics paper + MUST be approved by Mark/Hubert
- Should describe the biological context
- Should describe the (new) model used
- Should describe comparisons to existing methods
- Should not be one of the papers discussed in detail in lectures: limma, edgeR, DEXSeq, etc.

Expectations: project

- ~10-15 page report, with R code in line (e.g. knitR)
- Describe the biological setting, statistical analysis, exploratory analysis with publication-quality graphics embedded
- Three possibilities:
 - Comparison of statistical methods (simulation/independent reference data + metrics)
 - Reproduce an analysis from a paper from the raw data
 - Real collaborative project with FGCZ or a local laboratory
- Be strategic: work on something related to your interests!

Soft technical skills needed (developed) in this course ...

- Use unix-like operating system to run command-line programs
- Options are:
 - Use your own Linux/MacOSX computer; N.B.: you may be able to do everything from Windows (e.g., cygwin)
 - Use the Macs in Y11-J-05
- R: from the command line or R studio; know how to get help; how to make plots in R, pipe them to a file
- knitr/Rmarkdown
- Bioconductor <u>www.bioconductor.org</u>

All submissions occur via github

Main repo for course: https://github.com/sta426hs2016/material

Homework for today (part 1):

- 1. Acquaint yourself with the idea of github [1]
- 2. Create a github account at github.com
- Make sure you know to check in / check out files (git clone ..) from the command line or from an app [2]
- 4. Create a new public repository, add a README.md (learn a bit of markdown [3]) and add some content
 - Include an image
 - Include a web link
 - add an issue to the materials repo to let me know that you've done it (https://github.com/sta426hs2016/material/issues)
 - (you can delete the repo after, if you want)
- [1] https://gist.github.com/andrewpmiller/9668225
- [2] https://confluence.atlassian.com/stash/basic-git-commands-278071958.html
- [3] http://markdowntutorial.com/

Rmarkdown / knitR for executable documents / reproducibility

Homework for today (part 2):

- 1. Acquaint yourself with **knitR** PDF/HTML Rmarkdown documents [1], perhaps both in R studio and from command prompt
- 2. Create an HTML/PDF document that samples 100 values from a log-normal distribution (say, mu=1, sigma=.25); create a histogram of the distribution and the distribution on the log scale; report the mean and variance of the sample in line in the text.
 - Do not just dump the R code and plots in the HTML/PDF document; add some text and headings and make it into a readable story (i.e., the document should be self-explanatory)

A Slack channel (trial for 2016)

https://sta426hs2016.slack.com/messages/general/

(Or, you can use the Slack app)