Prepared by: [Arun Konagurthu]

Source material acknowledgement

These lecture slides are built on the [source material] developed by [Lloyd Allison].

Preparatory material on topics covered in FIT1008/FIT1045

Priority Queue, Operations on Heap, Heap Sort, and Merge Sort

Faculty of Information Technology, Monash University

What is covered in these slides?

- Slides cover a few recursive sorting algorithms that were covered already FIT1045 and FIT1008, specifically $O(N \log(N))$ -time sorting algorithms: Heap and Merge sorts.
- Pseudo code supporting (operations on) these sorting algorithms.
- Will also briefly cover:
 - heap data-structure...
 - ...which also implements a data structure called the priority queue...
 - ... which will be used in Heap sort

Recommended reading

- Priority Queue and Heap data structure reference: http: //www.csse.monash.edu.au/~lloyd/tildeAlgDS/Priority-Q/ *
- Heap sort reference: http://users.monash.edu/~lloyd/tildeAlgDS/Sort/Heap/
- Merge sort reference: http://users.monash.edu/~lloyd/tildeAlgDS/Sort/Merge/

http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Queue/

^{*}Note: Priority Queue should not be confused with an ordinary Queue that you studied in FIT1029/FIT1045/FIT1008. They are different data structures. For revision of what an ordinary Queue data structure is, refer:

Priority Queue (and not to be confused with an ordinary Queue)

The operations of a [Priority Queue] are:

- create an empty Priority Queue
- insert an element having a certain priority to the Priority Queue
- remove the element having the highest priority.

Heap data structure

- The implementation of a Priority Queue is the (binary) Heap data structure.
- Heap is so common for Priority Queue implementation that, in context of Priority Queue, when the term Heap is used, it generally means an implementation of Priority Queue.

Heap's Shape property (This is necessary but NOT sufficient!)

Shape Property

- A heap is a binary tree.
- It is almost completely filled, with the possible exception of the bottom-most level.
- A heap is filled left to right.
- A heap of height h (or containing h levels) have between 2^h to $2^{h+1}-1$ nodes in it.
- Because of the regularity of the structure of heap, it can be represented as an array.

Heap's Heap property

Heap must satisfy the following additional property. (Together with the shape property, these two properties are [necessary and sufficient] for a Heap.

• The children of the element at the **i**-th position, **if they exist**, will be located at:

```
left(i) = 2*i
right(i) = 2*i + 1
```

 Any element in the i-th position is no smaller than its children (if any) This necessarily implies that a[1] must hold the largest value in a[1...N].

*Footnotes:

- We are assuming a one-based array, that is, a[1...N]. It is possible to redefine the same property with a zero-based array, a[0...N-1], but the definitions of left(i) and right(i) will change – this is an exercise for you.
- There is a similar definition for a heap with smallest value at the top (a[1])

Insertion of a new element into a heap

- Let a[1...i-1] be an existing heap.
- If a new element is inserted at a[i], it could potentially violate
 the heap property that is, it might be greater than the value in its
 parent node.
- The parent node a[parent] of the child node a[i] will be at the position parent=floor(i/2) in the array.
- If a[parent] < a[i], then a[parent] and a[i] are swapped.
- But there is still a potential problem. The new element might still be larger than its new parent.
- This implies, we will have to work our way **up** the **Heap** (or **upHeap**, in short).
- This moves small parents down until, either top, i.e., a[1], is reached or until a parent is found that is no smaller than the new element, and the new element can be placed.

Insertion of a new element into a heap

```
upHeap function
function upHeap(variable child)
  // PRECONDITION: a[1..child-1] is a Heap.
  // SETUP: New element to be inserted correctly into the heap is ...
  // ... initially placed at a[child] on which this upHeap is run.
  // POSTCONDITION: a[1..child] is a Heap
  { variable newElt = a[child]; //element to be inserted
      variable parent = Math.floor(child/2); // parent index
      while(parent >= 1) // child has a parent
     { // INVARIANT: a[child...] is a Heap
        if( a[parent] < newElt )</pre>
10
11
         { a[child] = a[parent]; // move current parent down
            child = parent;
12
13
           parent = Math.floor(child/2);
        }
14
15
        else break:
16
     // ASSERT: child == 1 || newElt <= a[parent]</pre>
17
      a[child] = newElt;
18
   }//upHeap
19
```

Complexity of insertion is $O(\log N)$ -time Worst case

Try to reason why!

Remove Highest Priority Element from heap

- Consider a Heap a[1...N]. The highest priority element is a[1].
- If this is **extracted**/**removed** from the heap, then it leaves a **hole** at position 1.
- The hole is filled by moving a[N] to a[1] and decreasing N.
- But, this rearrangement may violate that heap property in fact, it almost always will violate! – why?
- The solution is to move the element down until it is no smaller than its children (if any).

Removing element of highest priority from heap

downHeap function

```
function downHeap( a[1...N], parent, N )
  // PRECONDITION: a[parent+1..N] is a Heap, and parent >= 1
  // POSTCONDITION: a[parent ..N] is a Heap
   { variable newElt = a[parent];
      variable child = 2*parent; // left(parent)
      while( child <= N ) // parent has a child</pre>
      { // INVARIANT: a[1 .. parent] is a Heap
         if( child < N ) // has 2 children</pre>
           if( a[child+1] > a[child] )
             child++;  // right child is bigger
10
11
      if( newElt < a[child] )</pre>
       { a[parent] = a[child];
12
13
            parent = child;
            child = 2*parent;
14
15
         else break:
16
17
      // ASSERT: child > N || newElt >= a[child]
18
      a[parent] = newElt;
19
   }//downHeap
20
```

Complexity of removing is $O(\log N)$ -time worst case

Try to reason why!

Heap Sort – basic ideas

Heap sort's basic idea:

- If a[1....N] are a list of numbers (say!) to be sorted
- Convert a[1...N] into a heap.
- Remove **biggest** element (found at **a[1]**) from the heap.
- Put the removed element in a[N]
- Remove the next biggest from the heap (again found at a[1])
- Put this in a[n-1]
- : (and so on)

Heap Sort – more details

- Make a[1...N] into a heap
- So the biggest element is at a[1]
- Move a[1] to a[N]
 - by swapping a[1] and a[N], but...
 - this may destroy heap property, so ...
 - ▶ ... use downHeap on a[1...N-1] to restore the heap property.
 - ▶ Now we have the 2nd largest element at a[1]
- •

Is the general agenda similar to a sort we have already studied?

Heap Sort

```
_1 heapSort(a[1...N])
2 /* PRECONDITION: a[1...N] may not be sorted */
3 /* POSTCONDITION: a[1...N] is sorted */
4 { int i, temp;
5 /* First make a[1...N] into a heap */
for (i = N/2; i >= 1; i--)
7 downHeap(a, i, N);
8 // a[1...N] is now a heap at this stage
9
  // iteratively remove biggest of a[1...i] and insert
10
   // ...correctly in a[i]
  for (i = N; i > 1; i--)
12
13 \qquad \{ \text{ temp } = \mathbf{a[i]};
14
       \mathbf{a}[\mathbf{i}] = \mathbf{a}[1]; // biggest of a[1...i]
       a[1] = temp;
15
downHeap(a,1,i-1); // restore a[1..i-1] into a heap
17
18 } /*heapSort*/
```

Merge Sort

```
merge_sort(a[...])}
   if (length of a[...] is "small") {
       //sort a[...] by some simple method
       //N.B. a single element is sorted
       . . .
   else {
       part1 = merge_sort( 1st half of a[...] )
       part2 = merge_sort( 2nd half of a[...] )
       //merge part1 and part2
       . . .
```

Top-down Merge sort, e.g. merge_sort([1 .. 8])

```
merge_sort [1 .. 4]
     merge_sort [1 .. 2]
          merge_sort [1...1] // trivial
          merge_sort [2...2] // trivial
          /* merge step */
          merge [1...1] and [2...2] into [1...2]
     merge_sort [3...4]
          merge_sort [3...3] // trivial
          merge_sort [4...4] // trivial
          /* merge step */
          merge [3...3] and [4...4] into [3...4]
     /* merge step */
     merge [1...2] and [3...4] into [1...4]
merge_sort([5...8])
   //. . . similarly . . .
merge [1...4] and [5...8] into [1...8]
```

Merge Sort Wrapper Routine

```
Wrapper routine
1 function mergeSort(int a[], int N) /* wrapper routine */
2 /* NB sorts a[1..N] */
4 { int i;
   int b[N]; /* -- the O(N) workspace */
   for(i=1; i <= N; i++)</pre>
      b[i]=a[i]; /* -- copy */
8
   merge(b, 1, N, a); /* -- does the real work . . . */
10
11 }
```

Merge Sort – routine where real work is done

```
1 function merge(int inpA[], int lo, int hi, int outA[])
2 /* sort (input) inpA[lo...hi] into (output) outA[lo...hi] */
3 { int i, j, k, mid;
5
   if(hi > lo) /* at least 2 elements */
   \{ int \ mid = (lo+hi)/2; /* lo <= mid < hi */
8
      merge(outA, lo, mid, inpA); /* sort the ... */
9
      merge(outA, mid+1, hi, inpA); /* ... 2 halfs */
10
    /* and now merge them */
11
    i = lo; j = mid+1; k = lo;
12
      while( ... )
13
14
         ... merge the sorted inpA[lo...mid] and inpA[mid+1...hi]
15
         ... into outA[lo...hi]
16
       }/*while */
17
    }/*if */
18
19 } /*merge */
```

Time and Space complexity

Time Complexity

- Merging N elements takes O(N)-time
- There are $log_2(N)$ levels of recursion
- N elements are merged at each level...
- ...therefore $O(N \log(N))$ -time in total, always!

Space complexity

O(N)-space, for the extra work-space array

Stability

merge sort is stable (with care)

There is also a bottom-up merge sort, e.g. merge sort a[1...8]

```
copy a[ ] into b[ ]
section_length := 1
    merge b[1...1] and b[2...2] into a[1...2]
    merge b[3...3] and b[4..4] into a[3..4]
    merge b[5...5] and b[6...6] into a[5...6]
    merge b[7...7] and b[8...8] into a[7...8]
section_length := 2
    merge a[1...2] and a[3...4] into b[1...4]
    merge a[5...6] and a[7...8] into b[5...8]
section_length := 4
    merge b[1..4] and b[5..8] into a[1..8]
```

By the way! (For the curious among you)

- In-situ merging is possible in
 - ▶ O(1) extra space and
 - ► O(N)-time
- That algorithm is "difficult"
- For those of you who really want to push your learning:

Nicholas Pippenger "Sorting and Selecting in Rounds", Society for Industrial and Applied Mathematics Journal on Computing, 16, 1032 (1987).