

NEW CKM-RELATED STUDIES ON b DECAYS IN THE DELPHI EXPERIMENT AT LEP

Winfried A. Mitaroff

Institute of High Energy Physics, Austrian Academy of Sciences, Vienna
(on behalf of the DELPHI Collaboration)

ABSTRACT

The e^-e^+ collider LEP, running at $\sqrt{s} = m(Z^0)$, has been a copious source of b -hadrons produced in decays $Z^0 \rightarrow b\bar{b}$. We present recent studies using up to 4×10^6 hadronic Z^0 decays acquired by the DELPHI detector between 1992 and 2000. They rely on efficient particle identification, precise track and vertex reconstruction and sophisticated data analysis algorithms.

Presented are: a new measurement of the CKM matrix element $|V_{cb}|$ in the semileptonic exclusive decays $\bar{B}_d^0 \rightarrow D^{*+}\ell^-\bar{\nu}_\ell$; a new measurement of the $B_d^0 - \bar{B}_d^0$ oscillation frequency Δm_d ; and searches by three methods for $B_s^0 - \bar{B}_s^0$ oscillations, yielding new lower limits on Δm_s .

1 $|V_{cb}|$ from s.l. exclusive decays $\bar{B}_d^0 \rightarrow D^{*+}\ell^-\bar{\nu}_\ell$

This analysis is performed on the exclusive channels $\ell^- = e^-$ or μ^- , $D^{*+} \rightarrow D^0\pi^+$, $D^0 \rightarrow K^-\pi^+$ or $K^-\pi^+\pi^+\pi^-$ or $K^-\pi^+(\pi^0)$ ¹ by measuring the differential partial width (i.e. decay rate) which is, according to HQET, given by

$$\frac{d\Gamma}{d\omega} = \frac{G_F^2}{48\pi^3} \cdot \mathcal{K}(\omega) \cdot \mathcal{F}_{D^*}^2(\omega) \cdot |V_{cb}|^2 \quad (1)$$

as a function of the D^* boost ω in the B_d^0 rest frame, defined as

$$\omega(q^2) \equiv v_{B^0} \bullet v_{D^*} = \frac{m_{B^0}^2 + m_{D^*}^2 - q^2}{2 m_{B^0} m_{D^*}}, \quad q^2 \equiv (p_{B^0} - p_{D^*})^2 \quad (2)$$

¹ the charge-conjugate states ($B_d^0 \rightarrow D^{*-}\ell^+\nu_\ell$, $D^{*-} \rightarrow \bar{D}^0\pi^-$, $\bar{D}^0 \rightarrow K^+\pi^- \dots$) are implicitly considered as well.

Its range is $1 \leq \omega \lesssim 1.5$, with the lower bound corresponding to D^* zero recoil. $\mathcal{K}(\omega)$ is a known kinematic factor, and $\mathcal{F}_{D^*}(\omega)$ is the hadronic form factor which may be expanded at $\omega = 1$. $\mathcal{F}_{D^*}(1) \cdot |V_{cb}|$ and $[\mathrm{d}\mathcal{F}_{D^*}/\mathrm{d}\omega]_{\omega=1}$ are fitted from data, using eq. (1) convoluted with the experimental resolution as a function of q^2 , and extrapolated to $\omega \rightarrow 1$. Since $\mathcal{K}(1) = 0$, a reasonably constant reconstruction efficiency is required at $\omega \approx 1$. Separation of different decay mechanisms producing D^* in the final state (notably for the exclusion of $D^{**} \rightarrow D^* X$ background) is achieved by novel algorithms and is shown in fig. 1a.

Results of the fit, a calculation of $|V_{cb}|$ using $\mathcal{F}_{D^*}(1) = 0.91 \pm 0.04$ ², and the corresponding decay branching fraction are [1]:

$$\begin{aligned}\mathcal{F}_{D^*}(1) \cdot |V_{cb}| &= (38.0 \pm 1.8 \pm 2.1) \times 10^{-3} \\ |V_{cb}| &= (41.8 \pm 2.0 \pm 2.3 \pm 1.7_{\text{theor}}) \times 10^{-3} \\ \mathcal{BR}(\bar{B}_d^0 \rightarrow D^{*+} \ell^- \bar{\nu}_\ell) &= (5.54 \pm 0.20 \pm 0.41)\%\end{aligned}$$

Figure 1: (a) $|V_{cb}|$ analysis: distribution of q^2 for D^* candidate events (dots) with their fitted contributions (shaded). (b) Δm_d analysis: fraction of like-sign tagged events as a function of the reconstructed proper time (data and fit).

2 Studies of $B_d^0 - \bar{B}_d^0$ and $B_s^0 - \bar{B}_s^0$ oscillations

Mixing of $B_q^0 - \bar{B}_q^0$ ($q = d$ or s) proceeds via 2nd order weak transitions (box graphs) which are dominated by t -quark exchange. The probabilities $\mathcal{P}_{\text{nomix}}^{\text{mix}}$ of a B_q^0 (\bar{B}_q^0)

² in the heavy quark limit, $\mathcal{F}_{D^*}(1) \rightarrow 1$; non-perturbative QCD corrections yield the value cited.

to have, after some time t , mixed or not mixed into a \bar{B}_q^0 (B_q^0) state are

$$\mathcal{P}_{nomix}^{mix} = \frac{1}{2\tau_q} \cdot e^{-\frac{t}{\tau_q}} \cdot \left[\cosh \frac{\Delta\Gamma_q}{2} t \mp \cos \Delta m_q t \right] \quad (3)$$

The SM predicts $\Delta\Gamma_q \ll \Delta m_q$, thus the cosh term is approximated by 1.

The oscillation frequencies Δm_d and Δm_s are directly related to $|V_{td}|$ and $|V_{ts}|$, respectively. Their measurements in a time-dependent analysis rely on two basic requirements: precise measurement of the proper decay time of the B meson, achieved by precise track momentum and vertex reconstruction; and efficient tagging of the B meson's flavour, both at production and decay.

2.1 Δm_d from $B_d^0 - \bar{B}_d^0$ oscillations

A high-statistics analysis, based on inclusive secondary vertex reconstruction and fitting Δm_d (fig. 1b) as well as an upper limit of $|\Delta\Gamma_d|/\Gamma_d$ [2]:

$$\begin{aligned} \Delta m_d &= 0.531 \pm 0.025 \pm 0.007 \text{ ps}^{-1} \\ |\Delta\Gamma_d|/\Gamma_d &< 0.18 \text{ at 95\% c.l.} \end{aligned}$$

2.2 Search for $B_s^0 - \bar{B}_s^0$ oscillations

(a) An analysis using the same method as that for Δm_d (see section 2.1 above) [2]; and two analyses using new sophisticated algorithms, based on (b) inclusive high- p_t leptons or (c) reconstructed $\bar{B}_s^0 \rightarrow D_s^+ \ell^- \bar{\nu}_\ell X$ events [3] yield:

- (a) $\Delta m_s > 5.0 \text{ ps}^{-1}$ (sensitivity = 6.6 ps^{-1}) at 95% c.l.
- (b) $\Delta m_s > 8.0 \text{ ps}^{-1}$ (sensitivity = 9.1 ps^{-1}) at 95% c.l.
- (c) $\Delta m_s > 4.9 \text{ ps}^{-1}$ (sensitivity = 8.6 ps^{-1}) at 95% c.l.

Acknowledgements

Thanks are due to Franz Mandl (HEPHY Vienna) for his assistance in the poster presentation session at the conference.

References

1. J. Abdallah *et al.* (DELPHI): CERN-EP/2003-057 and Eur.Phys.J. C (in print).
2. J. Abdallah *et al.* (DELPHI): Eur.Phys.J. C **28**, 155 (2003).
3. J. Abdallah *et al.* (DELPHI): in preparation, to be submitted to Eur.Phys.J. C.