Soluciones #3

Espacios vectoriales

Problema 3.1 Demostrar que \mathbb{P}_3 es un espacio vectorial se sigue de la definición. Para demostrar que $P^{(3)}$ no es un espacio vectorial basta con dar un contra-ejemplo: $p_1(x) = 1 - x^3$ y $p_2(x) = 1 + x^3$ pertenecen a $P^{(3)}$, pero su suma $(p_1 + p_2)(x) = 2 \not\in P^{(3)}$.

Problema 3.2 El resultado es:

- 1. $\{(x,0,z)^t : x,z \in \mathbb{R}\}$ es un espacio vectorial.
- 2. $\{(x,y,z)^t\colon x=2y\,,\,x,y,z\in\mathbb{R}\}$ es un espacio vectorial.
- 3. $\{(x,y,z)^t\colon x=2y+5\,,\,x,y,z\in\mathbb{R}\}$ no es un espacio vectorial ya que no contiene al vector $(0,0,0)^t$.

Problema 3.3 *Indicación:* basta probar las propiedades de clausura para la suma y para el producto por escalares.

Problema 3.4 El conjunto $S_1 = \{p(x) = bx^2\}$ sí es un subespacio de \mathbb{P}_2 al ser cerrado bajo la suma y el producto por un escalar. El conjunto $S_2 = \{p(x) = x + bx^2\}$ no es un subespacio vectorial de \mathbb{P}_2 al no ser cerrado bajo las operaciones anteriormente citadas.

Problema 3.5 El conjunto S_1 no es un subespacio de $\mathbb{R}^{2\times 2}$ ya que no es cerrado bajo la multiplicación por escalares reales. El conjunto S_2 tampoco es subespacio vectorial de $\mathbb{R}^{2\times 2}$ ya que no es cerrado bajo la suma. Si A y B son dos matrices con determinante nulo, no es cierto en general que $\det(A+B)=0$. Por ejemplo,

$$A = \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \quad A + B = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$$

 $con \ det(A+B) = -2 \neq 0.$

Problema 3.6

- a) Falso. Si $S_1 = \mathcal{C}((1,1)^t)$, $S_2 = \mathcal{C}((1,0)^t)$ y $S_3 = \mathcal{C}((0,1)^t)$, entonces $S_2 + S_3 = \mathbb{R}^2$ y $S_1 \cap \mathbb{R}^2 = S_1$. Por otra parte, $S_1 \cap S_2 = \{0\}$ y $S_1 \cap S_3 = \{0\}$, de manera que el miembro de la derecha consta sólo del elemento nulo 0.
- b) Cierto. Si $v \in (S_1 \cap S_2) + (S_1 \cap S_3)$, entonces $v = v_1 + v_2$, donde $v_1 \in S_1 \cap S_2$ y $v_2 \in S_1 \cap S_3$; esto implica que $v_1, v_2 \in S_1$ y en consecuencia $v \in S_1$. Por otra parte, puesto que también $v_1 \in S_2$ y $v_2 \in S_1 \cap S_3$, concluimos que $v \in S_2 + (S_1 \cap S_3)$. Por tanto, $v \in S_1 \cap (S_2 + (S_1 \cap S_3))$. En sentido inverso, si $w \in S_1 \cap (S_2 + (S_1 \cap S_3))$ entonces $w \in S_1$ y también $w \in S_2 + (S_1 \cap S_3)$. A partir de esta segunda expresión podemos escribir $w = w_1 + w_2$, con $w_1 \in S_2$ y $w_2 \in S_1 \cap S_3$; en particular $w_2 \in S_1$. Además, sabemos que $w = w_1 + w_2 \in S_1$. Puesto que S_1 es un espacio vectorial, concluimos que también $w_1 \in S_1$. Por ello, $w_1 \in S_1 \cap S_2$, y podemos escribir finalmente: $w = (S_1 \cap S_2) + (S_1 \cap S_3)$.

Problema 3.7 Dadas dos matrices $A, B \in \mathbb{R}^{n \times n}$ tales que tr(A) = 0 y tr(B) = 0, entonces $tr(\alpha A) = \alpha tr(A) = 0$ (para todo escalar $\alpha \in \mathbb{R}$) y tr(A + B) = tr(A) + tr(B) = 0. Luego T es un subespacio vectorial de $\mathbb{R}^{n \times n}$.