

Outline

- What is database tuning
- What is changing
 - The trends that impact database systems and their applications
- What is NOT changing
 The principles that underly our approach
- What these lectures are about

Definition

- Database tuning is the activity of making database applications run faster
 - Faster means higher throughput or/and lower response time
 - Avoiding transactions that create bottlenecks or avoiding queries that run for hours unnecessarily is a must

Why database tuning

- Troubleshooting:
 - Make managers and users happy given an application as well as DBMS/OS/Hardware
- Capacity Sizing:
 - Buy the right DBMS/OS/Hardware given application requirements
- Application Programming:
 - Code your application for performance given DBMS/OS/Hardware

Why do we teach database tuning?

Simple case study:

The following query runs too slowly

```
select *
from R
where R.a > 5;
```

What do you do?

Trends

- Data
 - Sense making and the data deluge
- Hardware
 - Towards dark silicon
 - The age of semiconductor based persistence
 - The importance of parallelism

Data Growth #2: Data Complexity

Sense making #1: Current Paradigm

Sense making #2: Paradigm shift

Sense making #3: New Paradigm

@ Dennis Shasha and Philippe Bonnet, 2013

Towards Dark Silicon

From "New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies" – Fred Pollack, Intel Corp. Micro32 conference key note - 1999.

The End of Multicore Scaling

 Utilization Wall: With each successive process generation, the percentage of a chip that can actively switch drops exponentially due to power constraints.

Hardware Acceleration

Slotnik's Law of Effort #1: Heterogeneous Systems

LOOK UP: Slotnik vs. Amdahl (AFIPS'67), Michael Flynn's talk on dataflow machines, Ryan Johnson's paper on bionic databases.

Slotnik's Law of Effort #2: The emergence of SSDs

LOOK UP: The necessary death of the block device interface

Warehouse-Scale Computer

THE DATACENTER AS A COMPUTER

FIGURE 1.1: Typical elements in warehouse-scale systems: 1U server (left), 7' rack with Ethernet switch (middle), and diagram of a small cluster with a cluster-level Ethernet switch/router (right).

LOOK UP: Werner Voegels on virtualization.

Database Appliances

Database Grid

 8 Dual-processor x64 database servers

OR

 2 Eight-processor x64 database servers

InfiniBand Network

- Redundant 40Gb/s switches
- Unified server & storage network

Intelligent Storage Grid

 14 High-performance low-cost storage servers

- 100 TB **High Performance** disk, or 336 TB **High Capacity** disk
- 5.3 TB PCI Flash
- Data mirrored across storage servers

Trends and Database Systems

Trends and Database Applications

Trends & Database Tuning

- Compression is of the essence
- Different classes of systems adapted to different classes of applications
- Data outgrows any well-defined model
- Time to insight is impacting all applications
- Energy is a key metric
- Dealing with parallelism requires efforts
 - RAM locality is king
 - Incorporating hardware acceleration
 - Emergence of utility computing/storage
 - Vertical integration removes abstraction layers

Database Systems Invariants

- The power of transactions
 - LOOK UP: <u>Virtues and limitations</u> by Jim Gray,
 reflections on the CAP theorem by Eric Brewer.
- The primacy of data independence
 - LOOK UP: <u>System R</u>
- The beauty of declarative queries
 - LOOK UP: The birth of SQL
- A success story for parallelism
 - LOOK UP: <u>Parallel Database Systems</u>

Tuning Invariants

- 1. Think globally; fix locally
- 2. Partitioning breaks bottlenecks
- 3. Start-up costs are high; running costs are low
- 4. Render unto server what is due unto server
- 5. Be prepared for trade-off

Classes of Applications/Systems

- OLAP + OLTP applications
- Relational systems:
 - Oracle 12g
 - IBM DB2 10.1
 - SQL Server 2012
 - MySQL 6 & InnoDB 5
 - Exadata

Lectures

- Troubleshooting techniques
- Tuning the guts
- Tuning transactions
- Tuning the writes
- Index tuning
- Schema tuning
- Query tuning
- Tuning the application interface
- Tuning across instances
- OLAP tuning
- OLTP tuning