Задачи к курсу «Криптография на решетках»

28 апреля 2025 г.

1. Пусть задан набор векторов $\nu=(u_1,\ldots,u_m)$, где $u_i\in\mathbb{Z}^n$. Тогда $\Lambda(\nu,q)$ — определяется как решетка всех последовательностей целых (h_1,\ldots,h_m) таких, что

$$\sum_{i=1}^{m} h_i u_i \equiv 0 \pmod{q}.$$

Доказать, что $\Lambda(\nu,q)$ является решеткой.

- 2. Определим решетку $L:b_i=2e_i$, при $i=1,\ldots,n-1$ и $b_n=\sum_{i=1}^n e_i$. При $n\geq 4$ длина кратчайшего вектора равна 2, т.е. $\lambda_1=2$. Имеются n линейно независимых векторов $2e_i$, поэтому $\lambda_1=\ldots=\lambda_n=2$. Проверить, что любой базис такой решетки содержит вектор длины не менее \sqrt{n} .
 - 3. Ранг любой подгруппы группы \mathbb{Z}^n конечен и не превосходит n.
- 4. Пусть B базис решетки и B^* соответствующий ортогональный базис, полученный с помощью процедуры ортогонализации Грамма-Шмидта. Тогда

$$\lambda_1 \ge ||b_i^*|| > 0.$$

- 5. Доказать, что в кольце $\mathbb{Z}_q[x]/(x^n-1)$ при $q=p^n$, где p простое, существует полиномиальный алгоритм нахождения обратных элементов. Описать этот алгоритм.
 - 6. $M_x=(x,\mathsf{rot} x,\ \dots,\mathsf{rot}^{n-1} x)$. Доказать равенство $M_x M_y=M_{xy}$.
- 7. При v=(pg,f) (см. определение NTRU-шифрования через многочлены) выполняется равенство

$$H = \left(\begin{array}{cc} qI & M_h \\ 0 & I \end{array}\right).$$

Иными словами, эта решетка определяется как минимальная бициклическая q-модулярная решетка, содержащая вектор (h,e_1) . **Шифрование.** Рассмотрим вектор (m,-r). При приведении этого вектора по модулю эрмитова нормального базиса H получим шифротекст (t,0), где t — многочлениз определения шифрования с помощью многочленов. Доказать это.

8. Пусть $c_i>0$, $i=1,\ldots,n$ и $A=\|a_{ij}\|$ — такая невырожденная $n\times n$ -матрица, что $c_1\cdot\ldots\cdot c_n>$ $|\det A|$. Тогда существует ненулевое целочисленное решение системы неравенств

$$\left| \sum_{j=1}^{n} a_{ij} x_j \right| < c_i, \quad i = 1, \dots, n.$$

9. Пусть a_{ij} ($1 \le j \le k$, $1 \le n$) — целые рациональные и m_i — натуральные числа. Доказать, что в пространстве \mathbb{R}^n совокупность целочисленных точек (x_1, \ldots, x_n) , для которых

$$\sum_{j=1}^{n} a_{ij} x_j \equiv 0 \pmod{m_i}, \quad 1 \le i \le k,$$

образует полную решетку, объем основного параллелипипеда которой не превосходит $m_1 \cdot \ldots \cdot m_k$. 10. Пусть x — произвольная точка решетки Λ . Ячейкой Воронова $\mathcal{V}(x,\Lambda)$ точки x называется множество точек линейной оболочки решетки Λ , находящихся ближе к этой точке чем к любой другой точке решетки. Доказать следующие свойства ячейки Вороного:

• 1. Для любой точки решетки $x \in \Lambda$ выполняется равенство

$$\mathcal{V}(x,\Lambda) = \mathcal{V}(0,\Lambda) + x.$$

- 2. Множество $\mathcal{V}(x,\Lambda)$ ограничено, выпукло и симметрично относительноx.
- 3. Каждая ячейка $\mathcal{V}(x,\Lambda)$ содержит шар радиуса $\lambda_1/2$ и содержится в шаре радиуса ρ , где ρ радиус покрытия решетки, т.е. минимальное значение, для которого шары с центрами в точках решетки радиуса ρ полностью покрывают линейную оболочку решетки.
- 4. Объем ячейки Вороного равен объему основного параллелипипеда решетки.
- 5. Для любых различных точек решетки $x \neq y$ их ячейки Вороного не пересекаются.
- 6. Выполняется равенство

$$\cup_{x \in \Lambda} \mathcal{V}(x, \Lambda) = span(\Lambda).$$