MAC0113 - Introdução à Computação para Ciências Humanas

Prof. Roberto Hirata Jr.

Primeiro Exercício Programa (EP1) – Data de entrega: 20/6/2021

1 Introdução

A disciplina de Introdução à Programação para Ciências Humanas do curso de Bacharelado em Administração é a primeira disciplina da área de programação do curso. Examinando a página da FEA para a graduação em Administração, encontramos o seguinte texto (os grifos são meus): "O Curso de Administração da FEA-USP é um curso multidisciplinar que qualifica o aluno para **trabalhar em todas as áreas**, com capacidades de **gerenciar** cada uma, bem como, o que é característica única do curso de Administração, **integrar o conhecimento de todas as áreas**. Dessa forma pode-se dizer que o foco do Curso de Administração é **desenvolver a capacidade do aluno para ter uma visão sistêmica na atividade de gestão possibilitando a implementação de técnicas e instrumentos de forma sustentável nos níveis ambiental, social e econômico-financeiro."**

A disciplina de programação ajuda a alcançar os objetivos acima de várias formas, principalmente no que tange a desenvolver a capacidade do estudante em organizar seu pensamento de forma lógica, exercitando os raciocínios abdutivo, indutivo e dedutivo. Através da programação, o estudante aprende a pensar num problema e a encontrar uma forma de resolvê-lo de forma algorítmica, resolvendo-o por partes, verificando que cada parte está correta, que parte consome mais recursos etc.

Na disciplina, usualmente o estudante precisa aprender a fazer um algoritmo a partir de uma especificação matemática de um problema. Além disso, o estudante vai aprender e treinar a a escrever um código claro e bem documentado. E a eficiência? Bem, isso é um dos objetivos de outra disciplina, por exemplo, MAC0121, o que não significa que não vamos abordar o assunto. Porém, neste primeiro momento, não vamos cobrar fortemente que as soluções sejam eficientes.

A disciplina tem uma parte teórica e uma prática e é essa que nos interessa neste documento. Parte da prática é cobrada a partir de exercícios programa (*EPs*) que são feitos pelo estudante **individualmente** no seu computador pessoal, ou em algum computador a que tenha acesso. A especificação do exercício será sempre divulgada no *e-disciplinas*, assim como a data de entrega e o "link" para a entrega.

Para esta disciplina, para efeitos de avaliação, serão considerados:

- Funcionamento do código. Este item é de fundamental importância para um exercício programa ser considerado entregue. Por funcionamento, entenda-se: o código apresentado implementa o que foi especificado no enunciado? Existem várias formas de avaliar este quesito. Uma delas é executar o programa com uma bateria de testes e verificar se o programa passou nos testes, isto é, verificar se os resultados são iguais aos esperados.
- Organização e clareza do código. O código é fácil de ler e entender?
- Documentação do código. As passagens mais difíceis do algoritmo tem frases que ajudem o seu entendimento? As variáveis e constantes estão associadas a frases que dizem para que elas servem?

2 O exercício programa (EP)

Especificação matemática: dadas várias medidas de circunferência e diâmetro de objetos cilíndricos sólidos, calcule a média e a variância amostrais das medidas de circunferência, a média e a variância amostrais das medidas de diâmetro. Calcule também o valor de π para cada medida usando a fórmula:

$$\pi = \frac{C}{D}$$

Onde C é o valor da circunferência e D é o valor do diâmetro de cada medida. Calcule a média e a variância amostrais das medidas de π . A média é uma estatística importante para sabermos sobre uma distribuição de dados. Se a média é diferente do que esperamos, um "sinal amarelo" deve ser acionado em nossas análises dos dados. A variância nos dá uma ideia de quão dispersas estão a medida em relação à média. Quando a variância é pequena, sabemos que a precisão é alta. Se a dispersão for alta, sabemos que a precisão é baixa.

O valor da média amostral de uma distribuição de N medidas m_i , $i \in [1, N]$ é dado por:

$$\hat{m} = \frac{1}{N} \sum_{i=1}^{N} m_i$$

O valor da variância amostral de uma distribuição de N medidas m_i , $i \in [1, N]$ é dado por:

$$\hat{s}^2 = \frac{1}{N} \sum_{i=1}^{N} (m_i - \hat{m})^2$$

Na primeira parte do EP1, você mediu a circunferência e o diâmetro de vários objetos circulares e usou os formulários do Google para enviar os dados. A tabela 2 apresenta algumas medidas enviadas por vocês.

Como vocês aprenderam no ensino Fundamental II, há uma relação entre o perímetro (C)e o diâmetro (D) de um objeto circular dado por:

$$C = \pi * D$$

Em outras palavras, se fizermos um gráfico de valores de C em função de D, teremos o gráfico de uma reta com inclinação cuja tangente é π . A figura 1 apresenta a distribuição dos valores apresentados na tabela 2 e o cálculo do valor estimado de π via um modelo linear (estimação da reta que melhor se ajusta aos pontos da tabela por mínimos quadrados).

Infelizmente, o método dos mínimos quadrados não pertence ao conteúdo desta disciplina e, por isso, não vamos usar esse método. O que vamos fazer é usar o fato que temos muitas medidas e estimar o π calculando o valor médio de π . Além disso, vamos fazer vários gráficos para treinar a visualização de dados.

Nome do objeto	circunferência	diâmetro
abajur	55.2	17.5
adesivo	7.53	2.4
	25.3	8.0
álcool em gel	46.0	14.0
Balança		
Baleiro	38.0	12.0
Banco de madeira	87.5	27.8
boia de rede de cerco	19.0	6.2
bola	69.2	22.0
branquinho	8.6	2.6
caixa de som	28	7.5
caneca	23,7	8,6
caneca	25.6	8.2
caneca	25.9	8.0
caneca	26.7	8.5
carretel de linha	5.0	1.5
Cofre	9.3	2.7
соро	17.0	5.5
Соро	20.0	6.0
соро	21,8	7,9
соро	22.2	8.3
	22.2	
copo	24.5	7.6 7.8
Соро		
copo	29.8	9.5
Соро	31.5	10.0
Copo de plástico	26.7	8.5
desodorante	14.3	4.3
durex	12.5	3.9
embalagem de bala	17,9	5,5
Fone	23,5	7,65
Fone Headset	21.038	6.7
garrafa	22.4	7.0
garrafa	37.68	12
garrafa de champagne	25.0	7.0
garrafa termica	21.4	6.4
Garrafinha d'água	22	7.0
Lanterna	12.26	3.9
lata	26.1	8.0
Lata de Nescau	22.9	7.3
Lata de Wafes	30.5	9.7
lixeirinha	38.9	12.2
pandeiro	80.4	25.4
panela	86.9	28.0
porta canetas	22.7	7.2
Porta palitos de dente	13.2	4.2
pote de alcool gel	22.6	7.2
Pote de arroz	61.3	19.5
Pote de Café	45.9	14.7
pote de whey	35.9	11.2
prato	56.5	18.0
prato	60.0	19.5
ring light	83.0	26.0
roda de skate de silicone	18.0	5.4
Saleiro	16.7	5.3
Tampa	20.5	6.0
Tampa da garrafa térmica	29.2	9.3
tigela	40.0	13.0
tubo de cola	9.5	3.1
vaso	32.5	10.2
vaso		5.1
Vela Vela	16.0	
37. 411. 1.	23.1	7.5
Ventilador Ventilador	23.1 144.4 193.0	7.5 46 61.0

As tarefas propostas para este exercício programa são:

E1. leia o arquivo com os dados da tabela fornecida com os nomes dos objetos, as medidas de circunferência e de diâmetro. Para isso, veja a ajuda do comando read.csv e preste atenção no uso do separador (sep). O arquivo fornecido não é "commasepareted values" (csv) e, sim, "semicolon-separeted values". A leitura deve ser atribuída a uma varíavel chamada dados. Por exemplo:

dados = read.csv(<nome do arquivo>, sep=<separador>)

- E2. Crie dois vetores de nomes circunferencia e diametro (assim mesmo sem acentos). O arquivo tem três colunas: o nome do objeto (coluna 1), a circunferência (coluna 2) e o diâmetro (coluna 3). Para atribuir, por exemplo, a coluna dois ao vetor dados, faça: circunferencia = dados[,2].
- E3. Crie um novo vetor vazio de nome meupi e, varrendo os vetores circunferencia e diametro usando o comando while, vá colocando os valores calculados no vetor meupi com a razão do valor da circunferência sobre o diâmetro para cada objeto.
- **E4.** Crie uma nova variável piMedio e varrendo o vetor meupi usando o comando while, calcule o valor médio de π .
- **E5.** Crie uma nova variável piVar e varrendo o vetor meupi usando o comando while, calcule a variância não-viciada de π usando a fórmula:

$$S_{n-1}^2 = \frac{\sum_{i=1}^n (\texttt{meupi}[\texttt{i}] - \texttt{piMedio})^2}{n-1},$$

- **E6.** Faça um gráfico (olhe o help da função plot) dos valores da circunferência (ordenadas) em função do diâmetro (abscissas). Não esqueça de colocar os rótulos dos eixos e um título para o gráfico (olhe as opções ylab,xlab e main). Faça uma análise visual do gráfico para explicar o resultado ruim da estimativa de π e escreva a análise no seu relatório.
- E7. Faça um gráfico dos valores de meupi em função do seu índice. Não esqueça de colocar os rótulos dos eixos e um título para o gráfico (olhe as opções ylab,xlab e main). Faça uma análise visual do gráfico e pense numa forma de melhorar a estimativa de π. Escreva essa análise e sua solução no seu relatório.
- **E8.** Escreva o código para implementar a sua forma de melhorar o valor de π e calcule novamente uma estimativa para π . Faça uma análise da sua solução e escreva ela no seu relatório.
- E9. Faça uma análise crítica deste EP. Sua análise deve ser ampla, desde a forma como foram coletados os dados, como foi sua experiência para fazê-lo etc, até mesmo a avaliação da dificuldade dos exercícios pedidos no EP.

A entrega do EP consistirá no envio ("upload"), via e-disciplinas, do código em R para resolver o problema e do relatório em formato PDF. Não esqueça de colocar seu nome e número USP tanto no EP, quanto no relatório. Trabalhos sem essas informações não serão corrigidos.

Figura 1: Distribuição de algumas medidas de circunferência e seus respectivos diâmetros. O valor de π foi calculado usando uma técnica chamada modelo linear.

3 Plágio

Plágio é a cópia/modificação não autorizada e/ou sem o conhecimento do autor original. O plágio é um problema grave que pode levar até a expulsão do aluno da universidade.

4 Observações:

- 1. A endentação correta do programa será considerada.
- 2. O exercício é **individual**. Exercícios que indiquem o contrário serão tratados como quebra do código de ética discente da USP, receberão nota 0 (zero) e o caso será levado ao conhecimento da Câmara de Graduação da FEA.
- 3. O cabeçalho do programa e do relatório deve ser **obrigatoriamente** como abaixo. Não esqueça de colocar o seu nome completo, o seu número USP, e a sua turma (21 ou 22).

```
AO PREENCHER ESSE CABEÇALHO COM O MEU NOME E O MEU NÚMERO USP,
   DECLARO QUE SOU O ÚNICO AUTOR E RESPONSÁVEL POR ESSE PROGRAMA.
##
   TODAS AS PARTES ORIGINAIS DESSE EXERCÍCIO PROGRAMA (EP) FORAM
##
   DESENVOLVIDAS E IMPLEMENTADAS POR MIM SEGUINDO AS INSTRUÇÕES
##
##
   DESSE EP E QUE PORTANTO NÃO CONSTITUEM DESONESTIDADE ACADÊMICA
##
   OU PLÁGIO.
   DECLARO TAMBÉM QUE SOU RESPONSÁVEL POR TODAS AS CÓPIAS
   DESSE PROGRAMA E QUE EU NÃO DISTRIBUI OU FACILITEI A
   SUA DISTRIBUIÇÃO. ESTOU CIENTE QUE OS CASOS DE PLÁGIO E
##
## DESONESTIDADE ACADÊMICA SERÃO TRATADOS SEGUNDO OS CRITÉRIOS
   DIVULGADOS NA PÁGINA DA DISCIPLINA.
   ENTENDO QUE EPS SEM ASSINATURA NÃO SERÃO CORRIGIDOS E,
##
   AINDA ASSIM, PODERÃO SER PUNIDOS POR DESONESTIDADE ACADÊMICA.
##
   Nome:
##
   NUSP :
##
   Turma:
   Prof.: Roberto Hirata Jr.
##
   Referências: Com exceção das rotinas fornecidas no enunciado
##
   e em sala de aula, caso você tenha utilizado alguma refência,
   liste-as abaixo para que o seu programa não seja considerado
   plágio ou irregular.
```