NEURAL NETWORK

Why Neural Networks now?

- Better activation functions for neural layers
- Better weight-initialization schemes
- Better optimization schemes
- Faster computations

- Optimization ~ change the weights and learning rate in order to reduce the loss function.
- More than one way ~ Why do we need more?

- Gradient Decent ~ The Most Basic
- Stochastic Gradient Descent
- Mini Batch SGD
- Momentum
 - GD: $\theta = \theta \alpha \cdot \nabla J(\theta)$
 - Mom: $V(t)=\gamma V(t-1)+\alpha.\nabla J(\theta), \theta=\theta-V(t).$

Nesterov Accelerated Gradient

Learning Rate

- Gradient Decent ~ Learning Rate
- Optimal value for the learning rate, eta (η).
 - too small ~ too slow
 - too large ~ overshoot, no convergence
- No "optimal" solution

Learning rate selection

Learning Rate

- Fixed Learning Rate (usually small, say 0.1 or 0.01)
- Annealing Learning Rate
- Cyclical Learning Rate
- Adaptive Learning Rate

Learning Rate

- How to determine?
- Start with a traditional default value
- Use Diagnostic plots
- Sensitivity Analysis (Hyperparameter tuning)
- Adaptive Learning Rate

Momentum

- Including an exponentially weighted average of the prior updates while updating weights
- Motivation is to cause updating in the same direction in the future.
- Momentum is set to a value greater than 0.0 and less than one, where common values such as 0.5, 0.9 and 0.99 are used in practice.

- Adagrad
 - Non-constant learning rate
- AdaDelta
 - Improvement of Adagad
 - Nondecaying learning rate

- RMSProp
- Adam
 - Adaptive Moment Estimation

Batch Size Selection

- Batch size controls the accuracy of the estimate of the error gradient
- Batch, Stochastic, and Minibatch gradient descent
- Tradeoff in determining the batch size ~ the speed and stability of the learning process.

Batch Size Selection

Network Structure

- Number of layers and size of each layer in NN is important
- Used to have shallow networks but recently deep networks are popular
- Too large networks (both size and number of layers) tend to overfit, why?

Weight Initialization

- Weight initialization ~ updating the parameters normally
- Vanishing or exploding gradients

Weight Initialization

- Zero Initialization
- Random Initialization
- Xavier Initialization
- He Initialization

- Scaling the input data is important
- Large Values ~ Large Weights ~ Unstable model
- Rule of Thumb ~ range 0-1 or standardized with zero mean and stan. dev. of 1.

Scaling the Data

(Assume X [NxD] is data matrix, each example in a row)

Data Normalization

Data Standardization

Overfitting

- Deep neural networks require lots of data, and can overfit easily
- The more weights you need to learn, the more data you need
- That's why with a deeper network, you need more data for training than for a shallower network
- Ways to prevent overfitting include:
 - Using a validation set to stop training or pick parameters
 - Regularization
 - Data Augmentation

Over-training prevention

Running too many epochs can result in over-fitting.

 Keep a hold-out validation set and test accuracy on it after every epoch. Stop training when additional epochs actually increase validation error.

Determining best number of hidden units

- Too few hidden units prevents the network from adequately fitting the data.
- Too many hidden units can result in over-fitting.

Use internal cross-validation to empirically determine an optimal number of hidden units.

Effect of number of neurons

Effect of regularization

Do not use size of neural network as a regularizer. Use stronger regularization instead:

(you can play with this demo over at ConvNetJS: http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

Weight Regularization λ = regularization strength

(hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Simple examples

<u>L2 regularization</u>: $R(W) = \sum_{k} \sum_{l} W_{k,l}^2$

L1 regularization: $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$

Elastic net (L1 + L2): $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$

More complex:

Dropout

Batch normalization

Why regularize?

- Express preferences over weights
- Make the model *simple* so it works on test data

Weight Regularization

Regularization pushes against fitting the data too well so we don't fit noise in the data

Dropout

- Dropout
 - Randomly turn off some neurons
 - Allows individual neurons to independently be responsible for performance

Dropout: A simple way to prevent neural networks from overfitting

Batch Normalization

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};

Parameters to be learned: \gamma, \beta

Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}
\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}
```

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Acts as a form of regularization

Horizontal Flips

- Get creative for your problem!
- Random mix/combinations of :
 - translation
 - rotation
 - stretching
 - shearing,
 - lens distortions
 - ...

Callbacks

CPU vs GPU

	Cores	Clock Speed	Memory	Price	Speed
CPU (Intel Core i7-7700k)	4 (8 threads with hyperthreading)	4.2 GHz	System RAM	\$385	~540 GFLOPs FP32
GPU (NVIDIA RTX 2080 Ti)	3584	1.6 GHz	11 GB GDDR6	\$1199	~13.4 TFLOPs FP32
TPU NVIDIA TITAN V	5120 CUDA, 640 Tensor	1.5 GHz	12GB HBM2	\$2999	~14 TFLOPs FP32 ~112 TFLOP FP16
TPU Google Cloud TPU	?	?	64 GB HBM	\$4.50 per hour	~180 TFLOP

CPU: Fewer cores, but each core is much faster and much more capable; great at sequential tasks

GPU: More cores, but each core is much slower and "dumber"; great for parallel tasks

TPU: Specialized hardware for deep learning

CPU vs GPU in practice

(CPU performance not well-optimized, a little unfair)

Data from https://github.com/jcjohnson/cnn-benchmarks

CPU / GPU Communication

Model is here

Data is here

If you aren't careful, training can bottleneck on reading data and transferring to GPU!

Solutions:

- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads to prefetch data

Training: Best practices

- Center (subtract mean from) your data
- To initialize weights, use "Xavier or He initialization"
- Use RELU or leaky RELU or ELU, don't use sigmoid
- Use mini-batch
- Use data augmentation
- Use regularization
- Use batch normalization
- Use cross-validation for your parameters
- Learning rate: too high? Too low?