BioArm

Февруари:

Февруари месец ние, Михаела и Иван, стартирахме с идеята за пневматична ръка. Идеята бе недоизпипана и това си пролича още на първият месец, но въпреки това с наши средства закупихме силиконови тръбички, ширмовки и други необходими части за демо. Какво се случи – при създаването на изкуственият мускул, за който ни бяха необходими тези части, имахме нестъбилни връзки между компонентите. Това го разбрахме след като ,надухме мускула' и той не се сви както го изчислявахме.

Relaxed A B 25% contraction

When muscle is pressurized (B), it can contract up to about 75% of it's relaxed length

Март:

През март месец ние се опитахме това да редактираме нашият модел. Изпробвахме други методи за закрепване, други материали. Краят на месеца преценихме, че резултатите, които отчетохме, не са с желаният резултат и започнахме да се чудим дали да продължаваме с тази концепция.

Април:

На една от сбирките ни с Иван се повдигна въпроса за предишните концепции на робо-ръката, тоест предните години на какво задвижване сме разчитали. Главата концепция преди беше движенията да се реапизират с помощта на електромеханични устройства – постояннотокови безчеткови двигатели с вграден енкодер – серва. Преразгледахме и преценихме, че би било по-подходящо в рамките на ПАРА Инкубатора да се приложи концепция, която знаем че е работеща. Вземането на това решение отне доста време и мога да кажа, че до средата на месеца се занимавахме с тази дейност.

След като решихме, че ще се връщаме стъпки назад трябваше да направим модел по който реално ръката ще се превърне в протеза. Да разберем какво ни е необходимо, да се свържем с пара и да поръчаме частите.

Май:

Май месец, въпреки че беше ,отпускарски' ние свършихме следните тежки задачи : Разбрахме какво искаме и го описахме на фаза — части. Прилагам таблица с всички поискани и доставени части за BioArm от ПАРА, като не се фокусирам върху това кое кога е поискано. Към края на месеца започнаха да пристигат част от поръчаните компоненти.

Юни:

Работата ми, с изготвяне на софтуера и електроника, се забавяше заради доставките. Въпреки това на лице бяха микроконтролера и двигателите и можех да изчистя евентуални проблеми с тях.

От партьори на ПАРА получихме Raspberry Pi Zero, което започнах да разучавам през този месец. Параметрите му, според наши сметки, би трябвало да бъдат достатъчни да има директна комуникация между входовете/изходите и математическите модели. Но вече имахме подготовка за работа с друг микроконтролер — Arduino Uno. Използвах времето за изготвяне на математически модел при отчитане на сигналите.

Level	Number	It. Number	Item Description	L. Phase
Drives	1	1000-0000	Разширителна платка за упр. 16 серво мотора	3
Drives	2	1000-0001	Серво моторче с метални зъбчатки	3
Sensors	3	1000-0010	DEV-18427	4
Sensors	4	1000-0011	DEV-18387	4
Sensors	5	1000-0012	DEV-18426	4
Sensors	6	1000-0013	CAB-19244	4
Sensors	7	1000-0014	DEV-18425	4
Sensors	8	1000-0015	DEV-18977	4
Sensors	9	1000-0016	DEV-18386	4
Sensors	10	1000-0017	SEN-12969	4
Sensors	19	1000-0021	Muscle signal sensor EMG Sensor for Arduino	4
Power supply	11	1000-1000	MEAN WELL; G3; RS-25-12 25W 12V 2,1A	1
Power supply	20	1000-1002	MEAN WELL; LRS; LRS-75-5 70W 5V 14,0A	1
Consumables	13	1000-1010	Raise3D Premium PETG Filament	5
Consumables	14	1000-1011	Грес силиконова СХ80 за пластмаса и гума	5
Consumables	25	1000-1015	Creality PEI Гъвкава плоча за печат	5
Consumables	26	1000-1016	Fillamentum PLA Extrafill Turquoise Blue	5
Microcontrollers	15	1000-1100	Arduino Uno Rev3	2
Microcontrollers	16	1000-1101	Raspberry Pi Zero WH	2

Проблемите при Иван бяха доста сериозни: материалът PETG не се принтираше качествено с 3D принтера, с който той разполага. Бяхме обедени, че PETG като материал е по-добре да бъде на частите от протезата, които мислим че ще са подложени на поголяма амортизация, защото спряло PLA – PETG-то е по-издръжлив материал.

Края на месеца, след като видяхме, че времето ни накъсява, а работата се уселичава прогресивно решихме, че ще се разширим с един член. Така Михаил влезе в BioArm и казахме : "Добре дошъл, Мишо, айде да свършиш това и това ..."

Юли:

Юли месец започнаха да идват компоненти, с които можехме да започнем изграждането на част от системата, чисто електронно и софтуерно погледнато. Имах проблеми с разширителният шилд – той комуникира с микроконтролера по І2С шина, което означаваше, че трябва да пренаписвам кода за управлението на двигателите заради шилда.

Това нещо ми се стори по-трудоемко от колкото да си направя шилд и за една седмица имах разширителен модул за Arduino Uno.

Иван имаше обозрим напредък с принтирането с

РЕТG, въпреки че при принтирането на по-големи stl файлове се наблюдаваше отлепване от основата и се започваше отново процеса. След това подложката на 3D принтера се отлепи внезапно, следователно не можехме да принтираме. Поръчахме нов материал: PLA, и разбира се подложка.

Михаил прегледа обстойно състоянието на старият ни модел. Забеляза вкопавания на кордата в пластмасата и започна да мисли по какъв начин да намали триенето между ,сухожилието и корпуса на протезата. Той избра тефлонова лента с която ще се облепят отворите и ще се намали триенето по този начин.

ABTVCT:

Михаил направи фейсбук страница и инстраграм акаунт и ги мениджира. Стреми се да пуска ангажиращи сторита и да има грабващо послание. Той набави пружини и задвижва изработката на визитки за изложението. Миахил и Михаела направиха презентацията.

Иван приключи с всички части, изпринтира ги. До края на месеца се очаква да ги сглоби като комуникират с Михаил за изчистване на проблемите в зародиш.

Михаела завърши сайта, който може да се види тук: https://bioarmprosthesis.weebly.com/

Съдържанието ще бъде подменено след като сглобим прототипа и го снимаме. Софтуера, който пише Михаела може да се види ето тук: https://github.com/mishaelaaa/BioArm

Като може да се покаже схематично модела ни:

сензори и изпълнителни механизми(серва) <-> микроконтролер(Arduino) <-> COM port <-> Python file (<-> Jupyter Notebook)

Септември:

- Иван и Михаил ще завършат модела, ще го сглобят и ще тестват.
- Михаил ще подготви снимков материал за сайта и презентацията.
- Михаела трябва да направи последни тестове със сглобения макет.

