Problem Set 12 —— Linear Algebra (Spring 2024)

Dr. Y. Chen

- 1. 证明: n 阶矩阵 $\begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 0 & 2 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & n \end{bmatrix}$ 相似.
- 2. 证明: 若 n 阶矩阵 A 有 n 个互不相同的特征值, 则 AB = BA 的充要条件是 A 的特征向 量也是 B 的特征向量.
- 3. 己知

$$A = \left[\begin{array}{rrr} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{array} \right]$$

的一个特征向量是

$$\xi = \left[\begin{array}{c} 1 \\ 1 \\ -1 \end{array} \right].$$

- (a) 确定 a,b 以及 ξ 对应的特征值;
- (b) A 能否相似于对角矩阵?说明理由.
- 4. 设 A 为 2 阶矩阵, $P = (\alpha, A\alpha)$, 其中 α 是非零向量且不是 A 的特征向量.

- 5. 设

设
$$A$$
 为 2 阶矩阵, $P = (\alpha, A\alpha)$,其中 α 是非零向量且不是 A 的特征向量 (a) 证明 P 为可逆矩阵.
(b) 若 $A^2\alpha + A\alpha - 6\alpha = 0$,求 $P^{-1}AP$,并判断 A 是否相似于对角矩阵.
设
$$A = \begin{bmatrix} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{bmatrix}$$
.
 $A = \begin{bmatrix} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{bmatrix}$.

求一个正交矩阵 Q, 使得 Q^TAQ 为对角矩阵.