IFT6135-H2019 Prof : Aaron Courville

Due Date: February 16th, 2019

Instructions

- For all questions, show your work!
- Use a document preparation system such as LaTeX.
- Submit your answers electronically via the course studium page, and via Gradescope.

Question 1. Using the following definition of the derivative and the definition of the Heaviside step function:

$$\frac{d}{dx}f(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon} \qquad H(x) = \begin{cases} 1 & \text{if } x > 0\\ \frac{1}{2} & \text{if } x = 0\\ 0 & \text{if } x < 0 \end{cases}$$

- 1. Show that the derivative of the rectified linear unit $g(x) = \max\{0, x\}$, wherever it exists, is equal to the Heaviside step function.
- 2. Give two alternative definitions of g(x) using H(x).
- 3. Show that H(x) can be well approximated by the sigmoid function $\sigma(x) = \frac{1}{1 + e^{-kx}}$ asymptotically (i.e for large k), where k is a parameter.
- *4. Although the Heaviside step function is not differentiable, we can define its **distributional derivative**. For a function F, consider the functional $F[\phi] = \int_{\mathbb{R}} H(x)\phi(x)dx$, where ϕ is a smooth function (infinitely differentiable) with compact support $(\phi(x) = 0$ whenever $|x| \ge A$, for some A > 0).

Show that whenever F is differentiable, $F'[\phi] = -\int_{\mathbb{R}} F(x)\phi'(x)dx$. Using this formula as a definition in the case of non-differentiable functions, show that $H'[\phi] = \phi(0)$. ($\delta[\phi] \doteq \phi(0)$ is known as the Dirac delta function.)

Answer 1. Write your answer here.

Question 2. Let x be an n-dimentional vector. Recall the softmax function : $S: \mathbf{x} \in \mathbb{R}^n \mapsto S(\mathbf{x}) \in \mathbb{R}^n$ such that $S(\mathbf{x})_i = \frac{e^{\mathbf{x}_i}}{\sum_j e^{\mathbf{x}_j}}$; the diagonal function : $\operatorname{diag}(\mathbf{x})_{ij} = \mathbf{x}_i$ if i = j and $\operatorname{diag}(\mathbf{x})_{ij} = 0$ if $i \neq j$; and the Kronecker delta function : $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$.

- 1. Show that the derivative of the softmax function is $\frac{dS(\boldsymbol{x})_i}{d\boldsymbol{x}_j} = S(\boldsymbol{x})_i \left(\delta_{ij} S(\boldsymbol{x})_j\right)$.
- 2. Express the Jacobian matrix $\frac{\partial S(x)}{\partial x}$ using matrix-vector notation. Use diag(·).
- 3. Compute the Jacobian of the sigmoid function $\sigma(x) = 1/(1 + e^{-x})$.
- 4. Let \mathbf{y} and \mathbf{x} be n-dimensional vectors related by $\mathbf{y} = f(\mathbf{x})$, L be an unspecified differentiable loss function. According to the chain rule of calculus, $\nabla_{\mathbf{x}} L = (\frac{\partial \mathbf{y}}{\partial \mathbf{x}})^{\top} \nabla_{\mathbf{y}} L$, which takes up $\mathcal{O}(n^2)$ computational time in general. Show that if $f(\mathbf{x}) = \sigma(\mathbf{x})$ or $f(\mathbf{x}) = S(\mathbf{x})$, the above matrix-vector multiplication can be simplified to a $\mathcal{O}(n)$ operation.

Answer 2. Write your answer here.

Question 3. Recall the definition of the softmax function : $S(x)_i = e^{x_i} / \sum_j e^{x_j}$.

1. Show that softmax is translation-invariant, that is: S(x+c) = S(x), where c is a scalar constant.

IFT6135-H2019 Prof: Aaron Courville

- 2. Show that softmax is not invariant under scalar multiplication. Let $S_c(\mathbf{x}) = S(c\mathbf{x})$ where $c \geq 0$. What are the effects of taking c to be 0 and arbitrarily large?
- 3. Let x be a 2-dimentional vector. One can represent a 2-class categorical probability using softmax $S(\mathbf{x})$. Show that $S(\mathbf{x})$ can be reparameterized using sigmoid function, i.e. $S(\mathbf{x}) = [\sigma(z), 1 - \sigma(z)]^{\top}$ where z is a scalar function of \boldsymbol{x} .
- 4. Let \boldsymbol{x} be a K-dimentional vector $(K \geq 2)$. Show that $S(\boldsymbol{x})$ can be represented using K-1parameters, i.e. $S(\boldsymbol{x}) = S([0, y_1, y_2, ..., y_{K-1}]^{\top})$ where y_i is a scalar function of \boldsymbol{x} for $i \in \{1, ..., K-1\}$ 1}.

Answer 3. Write your answer here.

Question 4. Consider a 2-layer neural network $y: \mathbb{R}^D \to \mathbb{R}^K$ of the form :

$$y(x,\Theta,\sigma)_k = \sum_{i=1}^{M} \omega_{kj}^{(2)} \sigma \left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_i + \omega_{j0}^{(1)} \right) + \omega_{k0}^{(2)}$$

for $1 \leq k \leq K$, with parameters $\Theta = (\omega^{(1)}, \omega^{(2)})$ and logistic sigmoid activation function σ . Show that there exists an equivalent network of the same form, with parameters $\Theta' = (\tilde{\omega}^{(1)}, \tilde{\omega}^{(2)})$ and tanh activation function, such that $y(x, \Theta', \tanh) = y(x, \Theta, \sigma)$ for all $x \in \mathbb{R}^D$, and express Θ' as a function of Θ .

Answer 4. Write your answer here.

Question 5. Given $N \in \mathbb{Z}^+$, we want to show that for any $f: \mathbb{R}^n \to \mathbb{R}^m$ and any sample set $\mathcal{S} \subset \mathbb{R}^n$ of size N, there is a set of parameters for a two-layer network such that the output $y(\boldsymbol{x})$ matches f(x) for all $x \in \mathcal{S}$. That is, we want to interpolate f with y on any finite set of samples \mathcal{S} .

- 1. Write the generic form of the function $y:\mathbb{R}^n\to\mathbb{R}^m$ defined by a 2-layer network with N-1 hidden units, with linear output and activation function ϕ , in te(rmsofitsweightsandbiases($\mathbf{W}^{(1)}, \mathbf{b}^{(1)}$) and $(\mathbf{W}^{(2)}, \mathbf{b}^{(2)})$.
- 2. In what follows, we will restrict $\mathbf{W}^{(1)}$ to be $\mathbf{W}^{(1)} = [\mathbf{w}, \cdots, \mathbf{w}]^T$ for some $\mathbf{w} \in \mathbb{R}^n$ (so the rows of $W^{(1)}$ are all the same). Show that the interpolation problem on the sample set $\mathcal{S}=$ $\{ \boldsymbol{x}^{(1)}, \cdots \boldsymbol{x}^{(N)} \} \subset \mathbb{R}^n$ can be reduced to solving a matrix equation : $\boldsymbol{M} \tilde{\boldsymbol{W}}^{(2)} = \boldsymbol{F}$, where $\tilde{\boldsymbol{W}}^{(2)}$ and \mathbf{F} are both $N \times m$, given by

$$\tilde{\boldsymbol{W}}^{(2)} = [\boldsymbol{W}^{(2)}, \boldsymbol{b}^{(2)}]^{\top}$$
 $\boldsymbol{F} = [f(\boldsymbol{x}^{(1)}), \cdots, f(\boldsymbol{x}^{(N)})]^{\top}$

Express the $N \times N$ matrix \boldsymbol{M} in terms of \boldsymbol{w} , $\boldsymbol{b}^{(1)}$, ϕ and $\boldsymbol{x}^{(i)}$.

- *3. Proof with Relu activation. Assume $x^{(i)}$ are all distinct. Choose w such that $w^{\top}x^{(i)}$ are also all distinct (Try to prove the existence of such a \boldsymbol{w} , although this is not required for the assignment - See Assignment 0). Set $\boldsymbol{b}_{j}^{(1)} = -\boldsymbol{w}^{\top}\boldsymbol{x}^{(j)} + \epsilon$, where $\epsilon > 0$. Find a value of ϵ such that \boldsymbol{M} is triangular with non-zero diagonal elements. Conclude. (Hint: assume an ordering of $oldsymbol{w}^{ op} oldsymbol{x}^{(i)}.)$
- *4. Proof with sigmoid-like activations. Assume ϕ is continuous, bounded, $\phi(-\infty) = 0$ and $\phi(0) > 0$. Decompose \boldsymbol{w} as $\boldsymbol{w} = \lambda \boldsymbol{u}$. Set $\boldsymbol{b}_{j}^{(1)} = -\lambda \boldsymbol{u}^{\top} \boldsymbol{x}^{(j)}$. Fixing \boldsymbol{u} , show that $\lim_{\lambda \to +\infty} \boldsymbol{M}$ is triangular with non-zero diagonal elements. Conclude. (Note that doing so preserves the distinctness of $\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)}$.)

Answer 5. Write your answer here.

IFT6135-H2019 Prof : Aaron Courville

Question 6. Compute the *full*, *valid*, and *same* convolution (with kernel flipping) for the following 1D matrices: [1, 2, 3, 4] * [1, 0, 2]

Answer 6. Write your answer here.

Question 7. Consider a convolutional neural network. Assume the input is a colorful image of size 256×256 in the RGB representation. The first layer convolves 64.8×8 kernels with the input, using a stride of 2 and no padding. The second layer downsamples the output of the first layer with a 5×5 non-overlapping max pooling. The third layer convolves 128.4×4 kernels with a stride of 1 and a zero-padding of size 1 on each border.

- 1. What is the dimensionality (scalar) of the output of the last layer?
- 2. Not including the biases, how many parameters are needed for the last layer?

Answer 7. Write your answer here.

Question 8. Assume we are given data of size $3 \times 64 \times 64$. In what follows, provide the correct configuration of a convolutional neural network layer that satisfies the specified assumption. Answer with the window size of kernel (k), stride (s), padding (p), and dilation (d), with convention d = 0 for no dilation). Use square windows only (e.g. same k for both width and height).

- 1. The output shape of the first layer is (64, 32, 32).
 - (a) Assume k = 8 without dilation.
 - (b) Assume d = 6, and s = 2.
- 2. The output shape of the second layer is (64, 8, 8). Assume p = 0 and d = 0.
 - (a) Specify k and s for pooling with non-overlapping window.
 - (b) What is output shape if k = 8 and s = 4 instead?
- 3. The output shape of the last layer is (128, 4, 4).
 - (a) Assume we are not using padding or dilation.
 - (b) Assume d = 1, p = 2.
 - (c) Assume p = 1, d = 0.

Answer 8. Write your answer here.