Diameter of Binary Trees

Let's define an infinite **unweighted** binary tree where nodes are numbered with natural numbers and each node numbered **i** has 2 children numbered **2*i** and **2*i+1**.

So, tree looks somewhat like this:

and so on...

You are given N queries Q_1 , $Q_2 \cdots Q_N$. For each query Q_i output the diameter of binary tree consisting only of nodes numbered from 1 to Q_i .

Diameter of a binary tree is the maximum distance between any two nodes in the tree.

<u>Input</u>

- First line contains **N**, the number of queries.
- Each of the next **N** lines contain integers denoting the queries.

<u>Output</u>

For each query, print the required answer in a single line.

Constraints

- $0 \le N \le 10^5$
- $1 \le \mathbf{Q_i} \le 10^9$

<u>Example</u>

Input:

2

3

4

Output:

2

3

Explanation

For $Q_1 = 3$, the tree is:

and the longest path is between nodes 2 and 3.

For $Q_2 = 4$, the tree is:

```
1
/\
2 3
/
4
```

and the longest path is between nodes 4 and 3.