Automated Deduction Compendium SS2023

Ida Hönigmann

May 8, 2023

1 Introduction, SAT Solving

1.0.1 Proposition, Formulas

Def (Proposition). Proposition is a statement that can be either true or false.

Def (Propositional formula, Atom, Connective). Atoms are boolean variables (e.g. p,q).

- 1. Atoms are formulas.
- 2. \top , \perp are formulas.
- 3. If A is a formula, then $\neg A$ is a formula.
- 4. If $A_1,...,A_n$ are formulas, then $(A_1 \wedge ... \wedge A_n)$ and $(A_1 \vee ... \vee A_n)$ are formulas.
- 5. If A and B are formulas, then $A \to B$ and $A \leftrightarrow B$ are formulas.

The symbols $\top, \bot, \land, \lor, \neg, \rightarrow, \leftrightarrow$ are called logical connectives.

1.0.2 Precedence

Connective	Name	Precedence
Т	verum	
	falsum	
_	negation	5
\wedge	conjunction	4
V	disjunction	3
\rightarrow	implication	2
\leftrightarrow	equivalence	1

1.0.3 Boolean Values, Interpretation

Def (Boolean values, Interpretation). There are two boolean vales: true (1) and false (0). An interpretation for a set P of boolean variables is a mapping $I: P \to \{0,1\}$.

1.0.4 Interpreting formulas

- 1. $I(\top) = 1$ and $I(\bot) = 0$
- 2. $I(A_1 \wedge ... \wedge A_n) = 1$ iff $I(A_i) = 1$ for all i
- 3. $I(A_1 \vee ... \vee A_n) = 1$ iff $I(A_i) = 1$ for some i
- 4. $I(\neg A) = 1$ iff I(A) = 0
- 5. $I(A_1 \to A_2) = 1$ iff $I(A_1) = 0$ or $I(A_2) = 1$
- 6. $I(A_1 \leftrightarrow A_2) = 1 \text{ iff } I(A_1) = I(A_2)$

1.0.5 Safisfiable, Valid, Model

Def (Satisfiable, Model, Valid). If I(A) = 1 then I satisfies A and I is a model of A, denoted by $I \models A$. A is satisfiable if some interpretation is a model of A. A is valid if every interpretation is a model of A. A and B are equivalent, denoted by $A \equiv B$, if they have the same models.

1.0.6 Connection valid, satisfiable

- 1. A is valid iff $\neg A$ is unsatisfiable.
- 2. A is satisfiable iff $\neg A$ is not valid.

1.0.7 Equivalent replacement

Def (Equivalent replacement). A[B] is a formula A with a fixed occurrence of subformula B. A[B'] is the formula A where every occurrence of B is replaced by B'.

```
Lemma 1 (Equivalent Replacement). Let I be an interpretation and I \models A_1 \leftrightarrow A_2. Then I \models B[A_1] \leftrightarrow B[A_2].
Let A_1 \equiv A_2. Then B[A_1] \equiv B[A_2].
```

1.0.8 Evaluating a formula

```
Algorithm 1. procedure evaluate(G,I)
input: formula G, interpretation I
output: the boolean value I(G)
begin
  forall atoms p occurring in G
   if I models p
      then replace all occurrences of p in G by 1;
      else replace all occurrences of p in G by 0;
  rewrite G into a normal form using the rewrite rules
  if G = 1 then return 1 else return 0
end
```

2 Splitting, Polarities

2.0.1 Soundness of Splitting

 A_p^{\perp} and A_p^{\perp} are obtained by replacing in A all occurrences of p by \perp and \top respectively.

Lemma 2. Let p be an atom, A be a formula, and I be an interpretation.

```
    If I ≠ p, then A is equivalent to A<sub>p</sub><sup>⊥</sup> in I.
    If I ⊨ p, then A is equivalent to A<sub>p</sub><sup>⊤</sup> in I.
```

Lemma 3. Let A be a formula and p an atom. Then A is satisfiable iff at least one of the formulas A_p^{\top} and A_p^{\perp} is satisfiable.

2.0.2 Splitting

```
Algorithm 2. procedure split(G)
parameters: function select
input: formula G
output: ''satisfiable'' or ''unsatisfiable''
begin
   G := simplify(G) # rewrite rules
   if G = 1 then return ''satisfiable''
   if G = 0 then return ''unsatisfiable''
```

```
(p,b) := select(G)
case b of
1 =>
   if split(replace(G,p,1)) = ''satisfiable''
      then return ''satisfiable''
      else return split(replace(G,p,0))
0 =>
   if split(replace(G,p,0)) = ''satisfiable''
      then return ''satisfiable''
      else return split(replace(G,p,1))
end
```

2.0.3 Polarities

- 1. $A|_{\epsilon} = A$ and $pol(A, \epsilon) = 1$
- 2. If $A|\pi = B_1 \wedge ... \wedge B_n$ or $A|\pi = B_1 \vee ... \vee B_n$ then $A|_{\pi,i} = B_i$ and $pol(A, \pi, i) = pol(A, \pi)$.
- 3. If $A|_{p}i = \neg B$ then $A|_{\pi,1} = B$ and $pol(A, \pi, 1) = -pol(A, \pi)$.
- 4. If $A|_{\pi} = B_1 \to B_2$ then $A|_{\pi,1} = B_1$, $A|_{\pi,2} = B_2$ and $pol(A, \pi, 1) = -pol(A, \pi)$, $pol(A, \pi, 2) = pol(A, \pi)$.
- 5. If $A|_{\pi} = B_1 \leftrightarrow B_2$ then $A|_{\pi,1} = B_1$, $A|_{\pi,2} = B_2$ and $pol(A, \pi, 1) = 0 = pol(A, \pi, 2)$.

2.0.4 Monotonic replacement

Denote with $A[B]_{\pi}$ formula A with the subformula at the position π replaced by B.

Lemma 4 (Monotonic Replacement). Let A, B, B' be formulas, I be an interpretation, and $I \models B \rightarrow B'$. If $pol(A, \pi) = 1$, then $I \models A[B]_{\pi} \rightarrow A[B']_{\pi}$. Likewise, if $pol(A, \pi) = -1$ then $I \models A[B']_{\pi} \rightarrow A[B]_{\pi}$.

2.0.5 Pure Atom

Def. Atom p is pure in a formula A, if either all occurrences of p in A are positive or all occurrences of p in A are negative.

Lemma 5 (Pure Atom). Let p have only positive occurrences in A and $I \models A$. Define $I' = I + (p \mapsto 1)$. Then $I' \models A$. Likewise, let p have only negative occurrences in A and $I \models A$. Define $I' = I + (p \mapsto 0)$. Then $I' \models A$.

Lemma 6 (Pure Atom). Let an atom p have only positive (respectively, only negative) occurrences in A. Then A is satisfiable iff A_p^{\top} (respectively, A_p^{\perp}) is satisfiable.

2.0.6 Splitting with pure atom optimization

```
Algorithm 3. procedure split(G)
parameters: function select
input: formula G
output: ''satisfiable'' or ''unsatisfiable''
begin
   G := simplify_with_pure_atoms(G)
   if G = 1 then return ''satisfiable''
   if G = 0 then return ''unsatisfiable''
    (p,b) := select(G)
   case b of
   1 =>
    if split(replace(G,p,1)) = ''satisfiable''
        then return ''satisfiable''
        else return split(replace(G,p,0))
   0 =>
```

```
if split(replace(G,p,0)) = ''satisfiable''
    then return ''satisfiable''
    else return split(replace(G,p,1))
end
```

3 CNF, DPLL, MiniSat

3.0.1 Clause

Def (Literal, Clause, Empty clause, Unit clause, Horn clause). A literal is either an atom p or its negation $\neg p$.

A clause is a disjunction of literals $L_1 \vee ... \vee L_n$.

The empty clause \square is false in every interpretation.

If n = 1 then the clause is called unit clause.

A horn clause is a clause with at most one positive literal.

3.0.2 CNF

Def (CNF). A formula A is in conjenctive normal form if it is \top , \bot or a conjunction of disjunctions of literals $\bigwedge_i \bigvee_j L_{i,j}$.

3.0.3 Naming

If A is a non-trivial subformula A. Introduce a new name n for it. Add formula $n \leftrightarrow A$ and replace subformula by its name in the original formula.

Lemma 7 (Naming). Let S be a set of formulas and A a formula. Let n be a boolean variable not occurring in S, nor in A.

Then S is satisfiable iff the set of formulas $S \cup \{n \leftrightarrow A\}$ is satisfiable.

3.0.4 Optimized CNF Transformation

Introduce a new name n every subformula B and replace it with the name. If the subformula occurs only positively then add $n \to B$. If it occurs only negatively then add $B \to n$ and if it does not occur only positively or negatively than add $n \leftrightarrow B$.

Lemma 8. A set of formulas is satisfiable iff the optimized CNF transformation of these formulas is satisfiable.

3.0.5 Unit propagation

Let S be a set of clauses. If S contains a unit clause L then remove from S every clause of the form $L \vee C$ and replace in S every clause of the form $\bar{L} \vee C$ by the clause C.

3.0.6 DPLL = splitting + unit propagation

```
Algorithm 4. procedure DPLL(S)
input: set of clauses S
output: satisfiable or unsatisfiable
parameters: function select_literal
begin
S := propagate(S) # unit propagation
if S is empty then return satisfiable
if S contains 0 then return unsatisfiable
L := select_literals(S) # splitting
if DPLL(S union {L}) = satisfiable
then return satisfiable
else return DPLL(S union {not L})
end
```

Tautologies (e.g. $p \vee \neg p \vee C$) can be removed.

3.0.7 Pure literals

Def (Pure literal). A literal L in S is called pure if S contains no clauses of the form $\bar{L} \vee C$.

If L is a pure literal in S then all clauses containing this literal can be removed.

- 4 Random SAT, Horn clauses
- 5 First-Order Logic, Theories
- 6 SMT, Theory of Equality, DPLL(T)
- 7 Theory of Arrays, Theory Combination, Nelson-Oppen, Z3
- 8 First-Order Theorem Proving, TPTP, Inference Systems
- 9 Selection functions, Saturation, Fairness and Redundancy
- 10 Redundancy, First-Order Reasoning with Equality
- 11 Ground Superposition, Term Orderings
- 12 Unification and Lifting
- 13 Non-Ground Superposition