Compêndio CIIM

Igor Albuquerque Araujo Thiago Ribeiro Tergolino Rafael Filipe dos Santos

2 de março de $2022\,$

"A mathematician is a machine for turning coffee into theorems." Alfréd Rényi

Sumário

1 Provas	2
CIIM 2009	2
CIIM 2010	4
CIIM 2011	6
CIIM 2012	8
CIIM 2013	10
CIIM 2014	12
CIIM 2015	14
II Soluções	16
CIIM 2009	16
CIIM 2010	19
CIIM 2011	22
CIIM 2012	26
CIIM 2013	29
CIIM 2014	34
CIIM 2015	37
CIIM 2016	41
CIIM 2017	42
CIIM 2019	43

Parte I

Provas

CIIM 2009

Primeiro Dia

Problema 1. Demonstrar que para qualquer inteiro positivo n, o número $(\frac{3+\sqrt{17}}{2})^n + (\frac{3-\sqrt{17}}{2})^n$ é um número inteiro ímpar.

Problema 2. Determinar se para todo natural n existe uma matriz $n \times n$ de números reais tal que seu determinante é 0 e ao mudar qualquer elemento se pode obter outra matriz com determinante diferente de zero.

Problema 3. Sejam r > n inteiros positivos. Uma palavra boa é uma n-upla $\langle a_1, \ldots, a_n \rangle$ de inteiros positivos diferentes entre 1 e r. Uma jogada consiste em mudar um inteiro a_i de uma palavra boa, de modo que a palavra resultante também seja boa. A distância entre duas palavras boas $A = \langle a_1, \ldots, a_n \rangle$ e $B = \langle b_1, \ldots, b_n \rangle$ é a menor quantidade de jogadas necessárias para chegar de A a B. Calcule a máxima distância possível entre duas palavras boas.

 $Segundo\ Dia$

Problema 4. Sejam m uma reta no plano e M um ponto que não pertence a m. Encontre o lugar geométrico dos focos das parábolas com vértice M que sejam tangentes a m.

Problema 5. Seja $f: \mathbb{R} \to \mathbb{R}$, tal que:

- i) Para todo $a \in \mathbb{R}$ e todo $\varepsilon > 0$, existe $\delta > 0$ tal que $|x-a| < \delta \Rightarrow f(x) < f(a) + \varepsilon$
- ii) Para todo $b \in \mathbb{R}$ e todo $\varepsilon > 0$, existem $x,y \in \mathbb{R}$, com $b-\varepsilon < x < b < y < b+\varepsilon$, tal que $|f(x)-f(b)|<\varepsilon$ e $|f(y)-f(b)|<\varepsilon$.

Demonstrar que se f(a) < d < f(b), então existe c com a < c < b ou b < c < a tal que f(c) = d.

Problema 6. Seja ε uma raíz n-ésima da unidade. Suponhamos que $z=p(\varepsilon)$ é um número real para algum polinômio p (não constante) com coeficientes inteiros. Demonstrar que existe um polinômio q com coeficientes inteiros tal que $z=q(2\cos 2\pi/n)$.

Primeiro Dia

Problema 1. Dados dois vetores $v = (v_1, \ldots, v_n)$ e $w = (w_1, \ldots, w_n)$ em \mathbb{R}^n , definimos a matriz v*w cujo elemento na linha i e coluna j é $v_i w_j$. Suponha que v e w são linearmente independentes. Determine o posto da matriz v*w - w*v.

Obs.: O posto de uma matriz é o número máximo de colunas linearmente independentes.

Problema 2. Num lado de um corredor existem 2N quartos igualmente espaçados numerados sucessivamente de 1 até 2N. Em cada quarto i entre 1 e N existem p_i camas. Deseja-se transportar todas as camas aos quartos de N+1 a 2N, de modo que ao final, para cada j entre N+1 e 2N haja p_j camas no quarto j. Suponha que cada cama pode ser transportada uma única vez e que o custo de transportar uma cama entre o quarto j é $(i-j)^2$.

Determine uma maneira de mover cada cama de tal forma que se minimize o custo total.

Obs.: Os números p_i são dados e satisfazem $p_1 + p_2 + \cdots + p_N = p_{N+1} + p_{N+2} + \cdots + p_{2N}$.

Problema 3. Um conjunto $X \subset \mathbb{R}$ tem dimensão zero se, para qualquer $\varepsilon > 0$, existem um inteiro positivo k e intervalos limitados I_1, I_2, \dots, I_k tais que $X \subset I_1 \cup I_2 \cup \dots \cup I_k$ e $\sum_{j=1}^k |I_j|^{\varepsilon} < \varepsilon$.

Mostre que existem conjuntos $X,Y\subset [0,1]$, ambos de dimensão zero, tais que X+Y=[0,2], onde $X+Y:=\{x+y|x\in X,y\in Y\}$.

Obs.: |I| denota o comprimento do intervalo I.

Segundo Dia

Problema 4. Seja $f:[0,1] \to [0,1]$ uma função crescente, contínua em [0,1], diferenciável em (0,1) e com derivada menor que 1 em cada ponto. Definimos a sequência de conjuntos A_1, A_2, A_3, \ldots da seguinte maneira: $A_1 = f([0,1])$, e para $n \geq 2$, $A_n = f(A_{n-1})$. Demonstre que $\lim_{n \to +\infty} d(A_n) = 0$, onde d(A) é o diâmetro so conjunto A.

Obs.: O diâmetro de um conjunto X se define como $d(X) = \sup_{x,y \in X} |x-y|$, ou em outras palavras como o comprimento do intervalo [a,b] que contém X para o qual b-a é mínimo.

Problema 5. Sejam n e d inteiros maiores que 1 com mdc(n, d!) = 1. Prove que n e n + d são primos se e somente se

$$d!d((n-1)!+1) + n(d!-1) \equiv 0 \pmod{n(n+d)}.$$

Problema 6. Dizemos que um grupo é localmente cíclico se cada um de seus subgrupos finitamente gerados é cíclico. Prove que um grupo localmente cíclico é isomorfo a um de seus subgrupos próprios se e somente se é isomorfo a um subgrupo próprio do grupo dos números racionais com a operação de soma.

Obs.:

- Um grupo é finitamente gerado se contém um subconjunto finito de elementos tal que com estes e seus inversos é possível obter qualquer outro elemento do grupo usando a operação do grupo um número finito de vezes.
 - Um grupo é cíclico se é gerado por um único elemento.
 - Um subgrupo próprio é um subgrupo estritamente contido no grupo.

Primeiro Dia

Problema 1. Encontre todos números reais a para os quais existem números reais b, c e d diferentes entre si e diferentes de a tais que as quatro tangentes traçadas a curva y = sen(x) nos pontos (a, sen(a)), (b, sen(b)), (c, sen(c)) e (d, sen(d)) formam um retângulo.

Problema 2. Seja k um inteiro positivo e seja a um inteiro tal que a-2 é múltiplo de 7 e a^6-1 é múltiplo de 7^k . Prove que $(a+1)^6-1$ também é múltiplo de 7^k .

Problema 3. Seja f(x) uma função racional com coeficientes complexos cujo denominador não tem raízes múltiplas. Sejam u_0, u_1, \ldots, u_n as raízes complexas de f e w_1, w_2, \ldots, w_m as raízes de f'. (Cada raíz está considerada tantas vezes quanto sua multiplicidade). Suponha que u_0 é uma raíz com multiplicidade um de f. Prove que

$$\sum_{k=1}^{m} \frac{1}{w_k - u_0} = 2 \sum_{k=1}^{n} \frac{1}{u_k - u_0}.$$

Nota: Uma função racional é o quociente de dois polinômios.

Segundo Dia

Problema 4. Para $n \geq 3$, seja $(b_0, b_1, \ldots, b_{n-1}) = (1, 1, 1, 0, \ldots, 0)$. Seja $C_n = (c_{i,j})_{n \times n}$ a matriz definida por $c_{i,j} = b_{(j-i) \mod n}$. Demonstre que $\det(C_n) = 3$ se n não é múltiplo de 3 e $\det(C_n) = 0$ se n é múltiplo de 3.

Nota: $m \mod n$ é o resíduo da divisão de m por n.

Problema 5. Seja n um inteiro positivo com d dígitos, todos distintos de zero. Para $k=0,\ldots,d-1$, definimos n_k como o número que se obtem ao mover os últimos k dígitos de n ao início. Por exemplo, se n=2184 então $n_0=2184$, $n_1=4218$, $n_2=8421$ e $n_3=1842$. Para m um inteiro positivo, definimos $s_m(n)$ como a quantidade de valores k tais que n_k é múltiplo de m. Finalmente definimos a_d como a quantidade de inteiros n com d dígitos, todos diferentes de zero, para os quais $s_2(n)+s_3(n)+s_5(n)=2d$. Encontre

 $\lim_{d\to\infty}\frac{a_d}{5^d}.$

Problema 6. Seja Γ o ramo x>0 da hipérbole $x^2-y^2=1$. Sejam $P_0,P_1,\ldots,P_n,\ldots$ pontos distintos de Γ com $P_0=(1,0)$ e $P_1=(13/12,5/12)$. Seja t_i a reta tangente a Γ em P_i . Suponha que para todo $i\geq 0$ a área da região limitada por t_i , t_{i+1} e Γ é uma constante que não depende de i. Encontre as coordenadas dos pontos P_i em função de i.

Primeiro Dia

Problema 1. Para cada inteiro positivo n se define A_n como a matriz de tamanho $n \times n$ tal que sua entrada a_{ij} é igual a $\binom{i+j-2}{j-1}$ para todos $1 \le i, j \le n$. Calcule o valor do determinante de A_n .

Problema 2. Um conjunto $A \subset \mathbb{Z}$ (esta padre) se sempre que $x,y \in A$ com $x \leq y$ também temos $2y-x \in A$. Demonstrar que se A (esta padre), $0,a,b \in A$ com 0 < a < b e d = mdc(a,b) então

2.Traduzir 'esta padre' d jeito certo

$$a + b - 3d$$
, $a + b - 2d \in A$.

Problema 3. Sejam a, b, c os tamanhos dos lados de um triângulo. Demonstrar que

$$\sqrt{\frac{(3a+b)(3b+a)}{(2a+c)(2b+c)}} + \sqrt{\frac{(3b+c)(3c+b)}{(2b+a)(2c+a)}} + \sqrt{\frac{(3c+a)(3a+c)}{(2c+b)(2a+b)}} \geq 4.$$

 $Segundo\ Dia$

Problema 4. Seja $f(x) = \frac{sen(x)}{x}$. Calcule

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \sqrt{1 + f'(x)^2} dx$$

Problema 5. Seja $D = \{0, 1, \dots, 9\}$. Uma função de direção para D é uma função $f: D \times D \to \{0, 1\}$. Um real $r \in [0, 1]$ é compatível com f se pode ser escrito na forma

$$r = \sum_{j=1}^{\infty} \frac{d_j}{10^j}$$

com $d_j \in D$ e $f(d_j, d_{j+1}) = 1$ para todo inteiro positivo j.

Determinar o menor inteiro k tal que para toda função de direção f, se existem k reais compatíveis com f então há infinitos reais compatíveis com f.

Problema 6. Sejam $n \ge 2$ e $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ um polinômio com coeficientes reais. Demonstrar que se existe um inteiro positivo k tal que $(x-1)^{k+1}$ divide p(x) então

$$\sum_{j=0}^{n-1} |a_j| > 1 + \frac{2k^2}{n}.$$

Primeiro Dia

Problema 1. Dados os números naturais m e n denotamos por $\overline{m}, \overline{n}$ o número que resulta se a m escrevemos n depois da vírgula decimal.

- a Demonstrar que existem infinitos naturais k tais que para cada um deles a equação $\overline{m}, \overline{n} \times \overline{n}, \overline{m} = k$ não possui solução.
- b Demonstrar que existem infinitos naturais k tais que para cada um deles a equação $\overline{m}, \overline{n} \times \overline{n}, \overline{m} = k$ possui solução.

Problema 2. Consideremos um polinômio $p \in \mathbb{R}$ de grau n sem raízes reais. Demonstre que

$$\int_{-\infty}^{\infty} \frac{(p'(x))^2}{(p(x))^2 + (p'(x))^2} dx$$

Converge e é menor ou igual a $n^{3/2}\pi$.

Problema 3. Dado um conjunto de meninos e meninas, chamaremos amigável um par (A, B) de pessoas se A e B são amigos. A relação de amizade é simétrica. Um conjunto de pessoas é afetuoso se se cumprem as seguintes três condições:

- i O conjunto tem o mesmo número de meninos e meninas.
- ii Para cada quatro pessoas distintas A, B, C, D, se os pares (A, B), (B, C), (C, D) e (D, A) são todas amigáveis, então pelo menos um dos pares (A, C) e (B, D) é também amigável.
- iii Pelo menos $\frac{1}{2013}$ de todos os pares menino-menina são amigáveis.

Seja m um inteiro positivo. Demonstre que existe um inteiro N(m) tal que se um conjunto afetuoso tem N(m) pessoas ou mais, então existem m meninos que são todos amigos entre si ou m meninas que são todos amigas entre si.

Segundo Dia

Problema 4. Sejam $a_1, b_1, c_1, a_2, b_2, c_2$ números reais positivos e $F, G: (0, \infty) \times (0, \infty) \longrightarrow (0, \infty)$ duas funções diferenciáveis e positivas que cumpram as identidades

$$\frac{x}{F} = 1 + a_1 x + b_1 y + c_1 G$$

$$\frac{y}{G} = 1 + a_2 x + b_2 y + c_2 F$$

Demosntre que se $0 < x_1 \le x_2$ e $0 < y_2 \le y_1$, então $F(x_1, y_1) \le F(x_2, y_2)$ e $G(x_1, y_1) \ge G(x_2, y_2)$.

Problema 5. Sejam A e B matrizes de tamanho $n \times n$ com entradas complexas. Demonstre que existem uma matriz T e uma matriz invertível S tais que

$$B = S(A+T)S^{-1} - T$$

se e somente se tr(A) = tr(B), onde tr denota o traço da matriz.

Problema 6. Seja (X,d) um espaço métrico com $d: X \times X \to \mathbb{R}_{\geq 0}$. Suponhamos que X é conexo e compacto. Demonstre que existe um $\alpha \in \mathbb{R}_{\geq 0}$ que cumpre a seguinte propriedade: para todo inteiro n > 0 e quaisquer $x_1, \ldots, x_n \in X$, existe $x \in X$ tal que a média das distâncias de x_1, \ldots, x_n a $x \in \alpha$, ou seja:

$$\frac{d(x,x_1) + d(x,x_2) + \dots + d(x,x_n)}{n} = \alpha$$

Primeiro Dia

Problema 1. Seja $g:[2013,2014] \to \mathbb{R}$ uma função que satisfaz as duas seguintes condições:

- g(2013) = g(2014) = 0,
- $\bullet\,$ para quaisquer $a,b\in[2013,2014],$ tem-se que $g(\frac{a+b}{2})\leq g(a)+g(b)$

Demonstre que g possui zeros em qualquer subintervalo aberto $(c,d) \subset [2013,2014]$.

Problema 2. Sejam n um inteiro positivo e p um primo maior que 2. Mostre que:

$$(p-1)^n n! | (p^n-1)(p^n-p)(p^n-p^2) \dots (p^n-p^{n-1}).$$

Problema 3. Dado $n \geq 2$, seja \mathcal{A} uma família de subconjuntos do conjunto com n elementos $\{1,...,n\}$ tal que, para quaisquer $A_1,A_2,A_3,A_4 \in \mathcal{A}$, se verifica que $|A_1 \cup A_2 \cup A_3 \cup A_4| \leq n-2$. Mostre que $|A| \leq 2^{n-2}$. Nota: |X| designa a cardinalidade do conjunto X.

Segundo Dia

Problema 4. Seja (a_i) uma sequência estritamente crescente de inteiros positivos. Definimos a sequência (s_k) :

$$s_k = \sum_{i=1}^k \frac{1}{[a_i, a_{i+1}]}$$

onde $[a_i, a_{i+1}]$ denota o mínimo múltiplo comum de a_i e a_{i+1} .

Mostre que a sequência (s_k) é convergente.

Problema 5. Uma função analítica $f: \mathbb{C} \to \mathbb{C}$ se chama interessante se f(z) é real ao longo da parábola Re $z = (\operatorname{Im} z)^2$.

- a Encontre um exemplo de uma função interessante que não seja constante.
- b Prove que todas as funções interessantes f satisfazem f'(-3/4) = 0.

Problema 6.

a Seja $\{x_n\}$ uma sequência com $x_n \in [0,1]$ para todo n. Prove que existe C > 0 tal que, para todo inteiro positivo r, exitem $m \ge 1$ e n > m + r que cumprem

$$(n-m)|x_n - x_m| \le C$$

b Prove que para todo C>0 existem uma sequência $\{x_n\}$, com $x_n\in[0,1]$ para todo n, e um inteiro positivo r tais que, se $m\geq 1$ e n>m+r, então

$$(n-m)|x_n - x_m| > C$$

Primeiro Dia

Problema 1. Encontre o número real a tal que a integral definida

$$\int_{a}^{a+8} e^{-x} e^{-x^2} dx$$

alacança seu valor máximo.

Problema 2. Ache todos os polinômios P(x) com coeficientes reais que satisfazem a identidade

$$P(x^3 - 2) = P(x)^3 - 2$$

para todo número real x.

Problema 3. Considere as matrizes

$$A = \left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right) \ e \ B = \left(\begin{array}{cc} 1 & 0 \\ 2 & 1 \end{array}\right)$$

Seja $k \ge 1$ um inteiro. Prove que para inteiros não nulos quaisquer $i_1, i_2, \dots, i_{k-1}, j_1, j_2, \dots, j_k$ e inteiros quaisquer i_0, i_k , se verifica

$$A^{i_0}B^{j_1}A^{i_1}B^{j_2}\dots A^{i_{k-1}}B^{j_k}A^{i_k} \neq I$$

Nota: I denota a matriz identidade $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Segundo Dia

Problema 4. Sejam $f: \mathbb{R} \to \mathbb{R}$ uma função contínua e α um número real tais que

$$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = \alpha$$

Mostre que para qualquer r > 0, existem $x, y \in \mathbb{R}$ tais que x - y = r e f(x) = f(y).

Problema 5. Há n pessoas sentadas em uma mesa circular que tem os lugares numerados de 1 a n no sentido horário. Seja k um inteiro fixo com $2 \le k \le n$. As pessoas podem trocar de lugar. Há dois tipos de movimentos permitidos:

- a Cada pessoa se move para o lugar vizinho no sentido horário.
- b Somente trocam de lugar as pessoas que se encontram nos lugares 1 e k.

Determine, em função de n e k, o número de possíveis configurações de pessoas na mesa que podem ser obtidas, usando alguma sequência de movimentos permitidos.

Problema 6. Prove que existe um real C>1 que satisfaz a seguinte propriedade: se n>1 e $a_0< a_1<\cdots< a_n$ são inteiros postivos tais que $\frac{1}{a_0},\frac{1}{a_1},\ldots \frac{1}{a_n}$ estão em progressão aritmética, então $a_0>C^n$.

Parte II

Soluções

CIIM 2009

Problema 1. Seja $x_n = \left(\frac{3+\sqrt{17}}{2}\right)^n + \left(\frac{3-\sqrt{17}}{2}\right)^n$. Como $\left(\frac{3+\sqrt{17}}{2}\right)$ e $\left(\frac{3-\sqrt{17}}{2}\right)$ são raízes da equação $x^2 - 3x - 2 = 0$, temos que $x_{n+2} = 3x_{n+1} + 2x_n$ (para todo $n \ge 0$) e $x_0 = 2$, $x_1 = 3$ e $x_2 = 13$. Por indução, x_1 e x_2 são inteiros ímpares e, se x_n e x_{n+1} são inteiros ímpares, então $x_{n+2} = 3x_{n+1} + 2x_n$ é inteiro ímpar, pois $3x_{n+1}$ é inteiro ímpar, $2x_n$ é inteiro par e a soma de um inteiro ímpar com um inteiro par é um inteiro ímpar. Logo, x_n é inteiro ímpar para todo $n \ge 1$.

Problema 2. Seja $\{v_1,\ldots,v_{n-1}\}$ um conjunto linearmente independente de \mathbb{R}^n . Considere a matriz com vetores coluna $v_1,v_2,\ldots,v_{n-1},v_1+\cdots+v_{n-1}$. Essa matriz tem determinante nulo e, escolhendo qualquer entrada (i,j) dela, temos que os vetores coluna $v_1,\ldots,v_{i-1},v_{i+1},\ldots,v_{n-1},v_1+\cdots+v_{n-1}$ geram o espaço gerado por $\{v_1,\ldots,v_{n-1}\}$. Basta então provarmos que alterando a entrada j de v_i podemos obter $\widetilde{v_i}$ que não pertence ao espaço gerado por $\{v_1,\ldots,v_{n-1}\}$ e alterando qualquer entrada de $v_1+\cdots+v_{n-1}$ também podemos obter um vetor que não está no espaço gerado por $\{v_1,\ldots,v_{n-1}\}$. Para isso tome $v_i=e_i+e_n$ e $\widetilde{v_i}=e_j+e_i+e_n$ se $j\neq i$ e $\widetilde{v_i}=e_n$ se j=i. Tome também $\widetilde{v_n}$ como v_n trocando a entrada j por 0. $(e_k$ é o k-ésimo vetor da base canônica de \mathbb{R}^n)

Concluímos que a matriz
$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 1 \\ 0 & 1 & 0 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & n-1 \end{pmatrix} \text{ tem determinante nulo e alterando qualquer}$$

entrada diferente de zero para zero ou qualquer entrada nula para 1 a matriz obtida tem determinante diferente de zero.

Problema 3. Com r = n + 1, n par, $A = \langle 1, 2, \ldots, n \rangle$ e $B = \langle 2, 1, \ldots, n, n - 1 \rangle$ não podemos mudar a_i para b_i para nenhum i na primeira jogada. E devemos ter pelo menos 3 jogadas para mudar cada par (a_1, a_2) para (b_1, b_2) , (a_3, a_4) para (b_3, b_4) e assim por diante. Dessa maneira a distância entre A e B é pelo menos 3n/2.

Problema 4. Antes vamos resolver a seguinte questão: Qual deve ser o valor do parâmetro p para que a reta y=mx+q seja tangente a parábola $y^2=2px$ e qual seria o foco dessa parábola? Como a reta tangente a $y^2=2px$ no ponto (x_0,y_0) é $yy_0=p(x+x_0)$, devemos ter $m=\frac{p}{y_0}$ e $q=\frac{px_0}{y_0}$, então $y_0=\frac{p}{m}$, $x_0=\frac{q}{m}$ e de $y_0^2=2px_0$ obtemos $(\frac{p}{m})^2=2p(\frac{q}{m})\to p=2mq$. Assim o foco da parábola seria o ponto (mq,0).

Suponha, sem perdas, que a reta m seja y=-1 e o ponto M=(0,0). O que vamos fazer é calcular o foco da parábola que tem m como reta tangente e o eixo da parábola fazendo ângulo θ com a horizontal (diferenciamos θ de $\theta+\pi$ considerando que o foco está na semi-reta que sai da origem com ângulo θ). Perceba que precisamos considerar apenas $0<\theta<\pi$, pois nos outros casos a reta y=-1 não pode ser tangente a parábola. Mudando os eixos em cada caso para a parábola ser $(y')^2=2px'$, temos que a reta y=-1 é $y'=-\tan(\theta)x'-\sec(\theta)$ e o foco da parábola nessas novas coordenadas é $(\frac{sen(\theta)}{cos(\theta)^2},0)$. Passando para as coordenadas anteriores o foco é $(\tan(\theta),\tan(\theta)^2)$ e fazendo θ variar entre 0 e π obtemos a curva $y=x^2$ (uma parábola com vértice M, eixo perpendicular a m e foco a distância de M sendo 1/4 da

distância entre $m \in M$).

Problema 5. Sem perda de generalidade vamos assumir que a < b. Seja $S = \{x \in [a, b] : f(x) > d\}$. Sabemos que $b \in S$ e que a é um limite inferior de S. Seja $c = \inf S$ (existe pois [a, b] é um intervalo fechado, S é não vazio e sabemos que existe um limite inferior do conjunto). Vamos mostrar que f(c) = d. Seja $\epsilon > 0$ qualquer. Das hipóteses temos que existe $\delta > 0$ tal que

$$\forall x \in (c, c + \delta), f(x) < f(c) + \epsilon$$

Temos que, da definição de ínfimo, existe $y \in (c, c + \delta) \cap S$. Portanto

$$f(c) > f(y) - \epsilon > d - \epsilon$$

Também temos que existem w e z com $c - \epsilon < w < c < z < c + \epsilon$ tais que

$$|f(w) - f(c)| < \epsilon, |f(z) - f(c)| < \epsilon$$

Como $c-\epsilon < w < c$ temos que ϵ é pequeno suficiente de forma que $w \in [a,c) \subset [a,b]$ e $f(w) \leq d$. Portanto

$$|f(w) - f(c)| < \epsilon \Rightarrow f(c) < f(w) + \epsilon \le d + \epsilon$$

Então temos que

$$\forall \epsilon > 0 : d - \epsilon < f(c) < d + \epsilon$$

E portanto f(c) = d.

Problema 6. Vamos usar as seguintes fórmulas para polinômios de Chebyshev de primeiro (T_n) e segundo (U_n) tipo

$$T_n(x) = U_n(x) - xU_{n-1}(x)$$

$$\sin x U_{n-1}(\cos x) = \sin nx$$

$$T_n(\cos x) = \cos nx$$

Sejam $\phi = \frac{2\pi}{n}$ e $p(x) = \sum_{k=0}^{n} a_k x^k$. Seja $t \in \mathbb{Z}$ tal que $\epsilon = e^{it\phi}$. Da hipótese do problema temos que

$$p(\epsilon) = z \in \mathbb{R}$$

Como os coeficientes de p são inteiros, temos que

$$z = \sum_{k=0}^{n} a_k \cos kt\phi$$

$$0 = \sum_{k=0}^{n} a_k \sin kt\phi$$

Substituindo nas expressões os polinômios de Chebyshev e observando que $\sin\phi\neq0$ temos que

$$\sum_{k=0}^{n} a_k T_{kt}(\cos \phi) = z \Rightarrow \sum_{k=0}^{n} a_k (U_{kt}(\cos \phi) - \cos \phi U_{kt-1}(\cos \phi)) = z$$

$$\sum_{k=0}^{n} a_k U_{kt-1}(\cos \phi) = 0$$

Juntando as duas últimas igualdades obtemos

$$\sum_{k=0}^{n} a_k U_{kt}(\cos \phi) = z$$

Como $U_n(x) = h(2x)$, para algum polinômio h com coeficientes inteiros, concluímos que

$$z = q(2\cos\phi) = q(2\cos\frac{2\pi}{n})$$

Observação: Para mostrar que U_n é um polinômio em 2x basta usarmos a fórmula $U_{n+1}(x)=2xU_n(x)-U_{n-1}(x)$ e concluirmos por indução forte. De fato, $U_0(x)=1$ e $U_1(x)=2x$. Vamos agora supor que $U_k(x)=h_k(2x)$ para algum h_k , com k entre 0 e n. Pela fórmula de recorrência obtemos

$$U_{n+1}(x) = 2xh_n(2x) - h_{n-1}(2x)$$

Como 2x é um polinômio em 2x temos que $U_{n+1}(x)$ é um polinômio em 2x, o que conlui a indução.

Problema 1. Repare que v*w é a matriz v^Tw (considerando v e w como vetores coluna), que possui imagem contida no espaço gerado por v. Logo a imagem de v*w - w*v está contida no espaço gerado por v e w e $posto(v*w - w*v) \le 2$. Além disso, os vetores coluna da matriz v*w - w*v são os vetores $w_iv - v_iw$. Como v e w são linearmente independentes, dois vetores $w_iv - v_iw$ e $w_jv - v_jw$ só são linearmente dependentes se os vetores $(w_i, -v_i)$ e $(w_j, -v_j)$ (de \mathbb{R}^2) são linearmente dependentes.

Como v e w são linearmente independentes, existem índices i e j tais que (w_i, v_i) e (w_j, v_j) são linearmente independentes e, então, $(w_i, -v_i)$ e $(w_j, -v_j)$ são linearmente independentes, $w_i v - v_i w$ e $w_j v - v_j w$ são linearmente independentes e a matriz v*w - w*v tem posto 2.

Problema 2. Sendo $1 \le i_1 \le i_2 \le n \le j_1 \le j_2 \le 2n$, temos que $(j_1-i_1)^2+(j_2-i_2)^2 \le (j_2-i_1)^2+(j_1-i_2)^2$ pois, tomando $x=i_2-i_1, y=j_1-i_2$ e $z=j_2-j_1, (j_2-i_1)^2+(j_1-i_2)^2-(j_1-i_1)^2-(j_2-i_2)^2=(x+y+z)^2+y^2-(x+y)^2-(y+z)^2=2xz\ge 0$. Concluímos que o custo é menor quando levamos uma cama de i_1 para j_1 e de i_2 para j_2 e o custo será reduzido se levarmos primeiro todas camas possíveis do quarto 1 para os quartos com menor índice (primeiro levamos para n+1 e, se esgotarmos n+1, levamos para n+2 e assim por diante), depois fazemos o mesmo com as camas do quarto 2 e assim até o quarto n.

Problema 3.

Problema 4. Como f é crescente e $0 \le f' < 1$, f é contração, tem único ponto fixo e as sequências $x_n = f^n(0)$ e $y_n = f^n(1)$ convergem para esse único ponto fixo. Logo (como $A_{n+1} = [x_n, y_n]$) $d(A_{n+1}) = y_n - x_n \to 0$.

Agora, se n é composto, $d!d((n-1)!+1)+n(d!-1)\equiv d!d\pmod{n}$ e, como mdc(n,d!)=1, n não divide d!d. Se n+d for composto, $d!d((n-1)!+1)+n(d!-1)\equiv d(1+(-1)^{n-1}(n+d-1)!)\equiv d\pmod{(n+d)}$ e n+d não divide d pois d< n+d. Assim, se $d!d((n-1)!+1)+n(d!-1)\equiv 0\pmod{n(n+d)}$, então n e n+d são primos.

Problema 6. A demonstração segue em algumas etapas

a Um grupo G localmente cíclico é periódico (todo elemento tem ordem finita) ou livre de torção (todo elemento tem ordem infinita).

Prova: Sejam $q, h \in G$ dois elementos quaisquer. Como o grupo é localmente cíclico, temos que

$$< q, h > = < a >, a \in G$$

Se a é de ordem finita, como g e h são potências de a, temos que g e h também são de ordem finita. Agora vamos supor que existam elementos em G, x e y, o primeiro de ordem finita e o segundo de ordem infinita. Seja $a \in G$ tal que < x, y> = < a>. Sejam $n, m \in \mathbb{N}$ tais que $a^n = x, a^m = y$. Como x tem ordem finita, temos que existe α tal que $x^{\alpha} = e$, e portanto $a^{n\alpha} = e$ e assim a tem ordem finita. Como vimos antes isso implica que y também é de ordem finita, o que é um absurdo.

b Um grupo é localmente cíclico e livre de torção se, e somente se é isomorfo a um subgrupo do grupo dos racionais.

Prova: (\Rightarrow) :

Seja $g \in G, g \neq e$. Tomemos a seguinte função

$$\phi:G\to\mathbb{Q}$$

$$\phi(g)=1$$

$$\forall h\in G, m,n\in\mathbb{N}:h^m=g^n\Rightarrow\phi(h)=\frac{n}{m}$$

Observemos que tais m e n existem pois o subgrupo $\langle g, h \rangle$ é cíclico.

A função ϕ está bem definida. De fato, vamos supor que existam inteiros m_1, n_1, m_2 e n_2 com $m_1 n_2 \neq m_2 n_1$ com $h^{m_1} = g^{n_1}$ e $h^{m_2} = g^{n_2}$. Temos então que vale $g^{m_1 n_2 - m_2 n_1} = e$ e como $g \neq e$ temos que $m_1 n_2 - m_2 n_1 = 0$, o que contradiz $m_1 n_2 \neq m_2 n_1$

Vamos agora verficar que ϕ é um homomorfismo. De fato, sejam a e b dois elementos em G com

$$\phi(a) = \frac{n_1}{m_1}, \phi(b) = \frac{n_2}{m_2}$$

Agora observemos que das definições anteriores vale que

$$(ab)^{m_1m_2} = q^{m_1n_2 + m_2n_1}$$

E portanto

$$\phi(ab) = \frac{m_1 n_2 + m_2 n_1}{m_1 m_2} = \frac{n_1}{m_1} + \frac{n_2}{m_2} = \phi(a)\phi(b)$$

Por fim vamos verificar que ϕ é injetiva. De fato, vamos supor que existam a e b distintos tais que $\phi(a) = \phi(b) = \frac{n}{m}$. Temos então que vale

$$a^m = b^m = g^n \Rightarrow (ab^{-1})^m = e$$

Como o grupo é livre de torção temos que $(ab^{-1}) = e$, o que implica a = b, o que é um absurdo. (\Leftarrow) :

Temos que o grupo dos racionais é localmente cíclico e livre de torção. Além disso é claro que subgrupos de grupos localmente cíclicos são localmente cíclicos e também subgrupos de grupos livres de torção também são livre de torção. Com o dado isomorfismo que assume-se por hipótese existir obtemos o resultado desejado junto com as propriedades ditas anteriormente.

c Um grupo G localmente cíclico periódico é isomorfo a um produto direto de grupos cíclicos de ordem potência de um primo ou p-quasicíclico (grupo onde os elementos têm ordem potência de um primo), onde p é um primo.

 P_{rona}

Para cada primo p seja G_p o subgrupo de G onde todos os seus elementos têm ordem potência de um primo (é um subgrupo pois as condições de inverso, produto e identidade valem para ele). Primeiro observemos que G é um produto dos G_p . De fato, cada elemento de G tem ordem finita e portanto gera um subgrupo cíclico. Observemos que esse subgrupo é um produto direto de grupos cíclicos de ordem potência de um primo. De fato, seja x o elemento e $\alpha=p_1^{\gamma_1}\dots p_k^{\gamma_k}$ a ordem dele. Como os p_i são primos e em particular primos entre si e portanto a sequência definida por $t_i = \prod_{j \neq i} p_j^{\gamma_j}$, temos pelo Teorema de Bachet-Bézout que existem a_1, \ldots, a_k inteiros tais que $\sum_{i=1}^k a_i t_i = 1$. Portanto $\prod_{i=1}^k x^{a_it_i} = x^{\sum_{i=1}^k a_it_i} = x$. Por fim observemos que o subgrupo gerado por esse elemento é isomorfo ao produto direto dos subgrupos gerados por $x^{a_it_i}$, que são isomorfos aos grupos cíclicos de ordem $p_i^{\gamma_i}$, respectivamente. Agora sejam dois elementos de ordem p^k , digamos $a \in b$. Temos que o subgrupo gerado pelos dois elementos é o grupo gerado por x. Temos em particular que $x^i = a e x^j = b$. Podemos supor que m.d.c.(i,j) = 1 pois caso contrário teríamos que esse grupo é gerado por $x^{m.d.c.(i,j)}$, com m.d.c.(i,j) > 1, o que contradiz ele ser gerado por x. Temos então que x tem ordem uma potência de p menor ou igual a p^k . Se tomarmos outro elemento com ordem p^k , digamos c, teremos que a e c são potências de um elemento y que possui ordem uma potência de um primo. Mais que isso, teremos que x e y serão representados como potência de um elemento em G cuja ordem é uma potência de um primo. Por fim concluímos que existe um elemento de ordem divisor de p^k que suas potências podem representar todos os elementos de ordem p^k (o processo deve terminar pois geramo um elemento com ordem no máximo p^k , em particular finita, que representa todos os números de ordem p^k até aquela etapa, e portanto poderemos ter no máximo p^k elementos diferentes de ordem p^k). Então os G_p geram o grupo G. Além disso, os grupos G_p se intersectam apenas na identidade.

Como os G_p são subgrupos de G, eles são localmente cíclicos e periódicos. Se G_p for finito, então ele é cíclico. Se for infinito, é o grupo p-quasicíclico.

d Um grupo localmente cíclico é isomorfo a um subgrupo próprio se, e somente se é livre de torção *Prova*:

 (\Leftarrow) :

Seja a função $h: G \longrightarrow G$ definida como $h(x) = x^2$. Primeiro observemos que h é injetiva. De fato, se tivermos dois elementos tais que $a^2 = b^2$, temos que vale $(ab^{-1})^2 = e$ pois os elementos do grupo comutam já que ele é localmente cíclico. Como ele é livre de torção temos que $ab^{-1} = e \Rightarrow a = b$. Agora verifiquemos que h é um homomorfismo. Sejam $x, y \in G$. Temos que

$$h(x)h(y) = x^2y^2 = (xy)^2 = h(xy)$$

O que termina a prova. Se tomarmos o homorfismo sobrejetivo $g:G\longrightarrow h(G)$ temos o isomorfismo desejado.

 (\Rightarrow) :

Vamos usar a e c para provar o desejado. Vamos supor que o grupo G não é livre de torção. Portanto ele é periódico. Seja ϕ o isomorfismo no subgrupo próprio de G. Seja a um elemento de ordem m. Seja A_m o conjunto de todos so elementos de G com ordem m. Claramente ϕ leva A_m num subconjunto de A_m . Porém, como para um valor específico de m existe um número finito de possibilidades de elementos de ordem m, temos que A_m é finito. Como ϕ é uma bijeção, temos que leva A_m em A_m . Como isso vale para todo m, temos que ϕ leva G em G.

Vamos provar a ida. Por d temos que o grupo é livre de torção. Por b temos que o grupo é isomorfo a um subgrupo dos racionais. Para terminar basta mostrarmos que esse subgrupo não é o grupo dos racionais. Vamos supor que o grupo G fosse isomorfo a \mathbb{Q} . Seja H o subgrupo próprio de G isomorfo a G. Seja ϕ_1 o isomorfismo de G para H e ϕ_2 o isomorfismo de G para \mathbb{Q} . Como H é um subgrupo próprio de G e esse grupo é isomorfo a \mathbb{Q} , temos que ϕ_2 é um isomorfismo de G para um subgrupo próprio de G. Dessa forma temos que $\phi_2^{-1} \circ \phi_1 \circ \phi_2$ é um isomorfismo de G para um subgrupo próprio de G0. Isso porém é um absurdo pois G0 não é isomorfo a um subgrupo próprio (de fato, se fosse teríamos G0, o que termina a prova de que G0 é isomorfo a um subgrupo próprio dos racionais.

Vamos agora provar a volta. Por b temos que o grupo é livre de torção. Por c temos que o grupo é isomorfo a um subgrupo próprio, o que termina a prova.

Problema 1. A inclinação da tangente a curva y = sen(x) em x = t é cos(t). Para o ângulo entre duas retas ser reto o produto dos coeficientes angulares das retas deve ser -1. Assim, devemos ter cos(a)cos(b) = -1, cos(b)cos(c) = -1, cos(c)cos(d) = -1 e cos(d)cos(a) = -1, logo cos(a) = cos(c) = 1 e cos(b) = cos(d) = -1 ou cos(a) = cos(c) = -1 e cos(b) = cos(d) = 1. Todos os a desejados são os tais que cos(a) = 1 ou cos(a) = -1, ou seja, $a = \{k\pi | k \in \mathbb{Z}\}$.

Problema 2. Temos que $a^6 - 1 = (a+1)(a-1)(a^2 - a + 1)(a^2 + a + 1)$ e $(a+1)^6 - 1 = a(a+2)(a^2 + a + 1)(a^2 + 3a + 3)$. Como $a \equiv 2 \pmod{7}$, $(a+1)(a-1)(a^2 - a + 1) \equiv 2 \pmod{7}$ e, portanto, 7^k divide $a^2 + a + 1$ e 7^k divide $(a+1)^6 - 1$.

Problema 3. Tomemos $f(x) = \frac{p(x)}{q(x)}$. Temos que

$$f'(x) = \frac{p'(x)q(x) - p(x)q'(x)}{q^2(x)}$$

Para um polinômio qualquer g com raízes x_1, x_2, \ldots, x_t vale

$$\frac{g'(x)}{g(x)} = \sum_{i=1}^{t} \frac{1}{x - x_i}$$

Seja h(x) = p'(x)q(x) - p(x)q'(x). Temos que h'(x) = p''(x)q(x) - p(x)q''(x). Como u_0 é uma raiz de multiplicidade 1 de f, é uma raiz de multiplicidade 1 de p. Portanto temos que

$$\sum_{k=1}^{m} \frac{1}{x - w_k} = \frac{h'(x)}{h(x)}$$

Temos que u_0 não é raiz de f' pois é raiz de multiplicidade 1. Temos então que

$$\sum_{k=1}^{m} \frac{1}{u_0 - w_k} = \frac{h'(u_0)}{h(u_0)} = \frac{p''(u_0)}{p'(u_0)}$$

Agora observemos que

$$\frac{p'(x)}{p(x)} = \sum_{k=0}^{n} \frac{1}{x - u_k}$$

Portanto

$$\frac{p'(x)}{p(x)} - \frac{1}{x - u_0} = \sum_{k=1}^{n} \frac{1}{x - u_k}$$
$$\frac{p'(x)}{p(x)} - \frac{1}{x - u_0} = \frac{-(p(x) + (u_0 - x)p'(x))}{(x - u_0)p(x)}$$

Agora observemos que pela fórmula de Taylor para o polinômio p no ponto x, obtemos

$$p(u_0) = \frac{p(x)}{0!} + \frac{(u_0 - x)}{1!}p'(x) + \frac{(u_0 - x)^2}{2!}p''(x) + \dots$$

E portanto

$$\frac{-(p(x) + (u_0 - x)p'(x))}{(x - u_0)p(x)} = \frac{\frac{(u_0 - x)^2 p''(x)}{2} + \dots}{(x - u_0)p(x)}$$

Onde na última expressão o numerador possui os demais termos com potências de $(x-u_0)$ maiores que 2. Como p tem uma vez o fator $x-u_0$, no denominador existe exatamente o termo $(x-u_0)$ com potência 2. Além disso, como $p'(x) = \sum_{i=0}^{n} \frac{p(x)}{x-u_i}$, temos que, sendo $g(x) = \frac{p(x)}{x-u_0}$, vale $p'(u_0) = g(u_0)$. Portanto

$$\sum_{k=1}^{n} \frac{1}{u_0 - u_k} = \frac{p''(u_0)}{2p'(u_0)}$$

Juntando a última expressão com a obtida anteriormente concluímos o resultado desejado.

Problema 4. Vamos considerar as seguintes matrizes $n \times n$ auxiliares:

- A_n definida por $a_{ij} = 1$ se $1 \le i \le n-1$ e $|i-j| \in \{0,1\}$ ou se i = n e j = 1 ou j = n e $a_{ij} = 0$ nos outros casos.
- B_n definida por $b_{ij}=1$ se $1 \le i \le n-1$ e $j-i \in \{0,1,2\}$ ou se i=n e j=1 ou j=n e $b_{ij}=0$ nos outros casos
- T_n a matriz tridiagonal definida pra $t_{ij} = 1$ se $|i j| \in \{0, 1\}$ e $t_{ij} = 0$ caso $|i j| \ge 2$.

Usando Laplace na primeira coluna de C_n , obtemos

$$\det(C_n) = (-1)^{n+1} \det(T_{n-1}) + (-1)^n \det(A_{n-1}) + \det(B_{n-1})$$

Usando Laplace na última linha de A_n e de B_n , na primeira coluna e depois na primeira linha de T_n , obtemos

$$\det(A_n) = \det(T_{n-1}) + (-1)^{n+1}$$
$$\det(B_n) = (-1)^{n+1} \det(T_{n-1}) + 1$$
$$\det(T_n) = \det(T_{n-1}) - \det(T_{n-2})$$

Assim, temos $\det(C_n) = (-1)^{n+1} \det(T_{n-1}) + 2(-1)^n \det(T_{n-2}) + 2$ e o resultado segue (ao analisarmos cada congruência de n módulo 6) do fato que $\det(T_n) = 1$ se $n \equiv 0$ ou $1 \pmod{6}$, $\det(T_n) = 0$ se $n \equiv 2$ ou $1 \pmod{6}$ e $\det(T_n) = -1$ se $n \equiv 3$ ou $1 \pmod{6}$ (que pode ser facilmente percebido a partir de $\det(T_1) = 1$, $\det(T_2) = 0$ e $\det(T_n) = \det(T_{n-1}) - \det(T_{n-2})$

Problema 5. Primeiro repare que $s_2(n)$ é a quantidade de dígitos pares em n, $s_5(n)$ é a quantidade de 5 em n e $s_3(n) = 0$ se n não é múltiplo de 3 e $s_3(n) = d$ se n é múltiplo de 3. Assim, se n não é múltiplo de 3, $s_2(n) + s_3(n) + s_5(n) = 2d$ se e só se $s_2(n) + s_5(n) = 2d$ e devemos ter todos d dígitos de n ao mesmo tempo pares e sendo 5, um absurdo. Logo os números contados em a_d são todos múltiplos de 3 e tais que $s_2(n) + s_5(n) = d$, ou seja, todos dígitos de n pertencem a $\{2,4,5,6,8\}$. Basta então contarmos o número de escolhas de d-uplas de números em $\{2,4,5,6,8\}$ cuja soma é múltipla de 3.

Sejam b_d e c_d a quantidade de d-uplas com soma congrua a 1 e 2, respectivamente, módulo 3. Assim, $a_d + b_d + c_d = 5^d$, (separando em cada caso de escolha de primeiro dígito)

$$\begin{array}{l} a_d = b_{d-1} + c_{d-1} + b_{d-1} + a_{d-1} + b_{d-1} \; ; \\ b_d = c_{d-1} + a_{d-1} + c_{d-1} + b_{d-1} + c_{d-1} \; ; \\ c_d = a_{d-1} + b_{d-1} + a_{d-1} + c_{d-1} + a_{d-1} \\ e \; a_d = 5^{d-1} + 2b_{d-1} \; ; \\ b_d = 5^{d-1} + 2c_{d-1} \; ; \\ c_d = 5^{d-1} + 2a_{d-1} \\ \text{Logo} \; a_d = 5^{d-1} + 2.5^{d-2} + 4.5^{d-3} + 8a_{d-3} \Rightarrow \end{array}$$

$$\frac{a_d}{5^d} = \frac{1}{5} + \frac{2}{25} + \frac{4}{125} + \frac{8a_{d-3}}{125.5^{d-3}}$$

Sendo $x_d = \frac{a_d}{5d}$, temos

$$x_{d} = \frac{1}{5} + \frac{2}{25} + \frac{4}{125} + \frac{8}{125}x_{d-3} = \frac{1}{5} + \frac{2}{25} + \frac{4}{125} + \frac{8}{125}(\frac{1}{5} + \frac{2}{25} + \frac{4}{125} + \frac{8}{125}x_{d-6}) =$$

$$\sum_{i=0}^{5} \frac{2^{i}}{5^{i+1}} + \frac{2^{6}}{5^{6}}x_{d-6} = \dots = \sum_{i=0}^{3k-1} \frac{2^{i}}{5^{i+1}} + \frac{2^{3k}}{5^{3k}}x_{d-3k}$$

Contas simples mostarm que $x_1=1/5,\ x_2=7/25$ e $x_3=47/125$. Assim, $\lim_{d\to\infty}\frac{2^d}{5^d}x_i=0$ para i=1,2,3. Tomando $k=\lfloor\frac{d}{3}\rfloor$ na equação acima, obtemos

$$x_d = \sum_{i=0}^{3\lfloor \frac{d}{3} \rfloor - 1} \frac{2^i}{5^{i+1}} + \frac{2^{3\lfloor \frac{d}{3} \rfloor}}{5^{3\lfloor \frac{d}{3} \rfloor}} x_{d-3\lfloor \frac{d}{3} \rfloor} \Rightarrow$$

$$\lim_{d \to \infty} x_d = \lim_{d \to \infty} \sum_{i=0}^{3 \lfloor \frac{d}{3} \rfloor - 1} \frac{2^i}{5^{i+1}} = \frac{1}{5} \sum_{i=0}^{\infty} \frac{2^i}{5^i} = \frac{1}{5} \frac{1}{1 - \frac{2}{5}} = \frac{1}{3}$$

Obs.: Podíamos ter definido $A_d = \frac{a_d}{5^d}$, $B_d = \frac{b_d}{5^d}$ e $C_d = \frac{c_d}{5^d}$ e usar $|A_d - B_d| = \frac{2}{5}|B_{d-1} - C_{d-1}|$ (e outra equações análogas) para provar que $A_d - B_d \to 0$, $A_d - C_d \to 0$, $C_d - B_d \to 0$ e junto com $A_d + B_d + C_d = 1$ concluir que $A_d \to \frac{1}{3}$.

Problema 6. Vamos calcular a área desejada somando a área de dois trapézios e depois tirando a área sob o ramo da hipérbole. Vamos chamar o encontro das tangentes entre os pontos $P_i = (x_i, y_i)$ e $P_{i+1} = (x_{i+1}, y_{i+1})$ de P = (x, y). Os trapézios que vamos observar são os formados pelos pontos $(x_i, 0), (x, 0), P$ e P_i e $(x, 0), (x_{i+1}, 0), P_{i+1}$ e P. A área abaixo da curva é dada por $\int_{x_i}^{x_{i+1}} \sqrt{x^2 - 1} dx = \frac{x\sqrt{x^2-1}}{2} - \frac{\log x + \sqrt{x^2-1}}{2} |_{x_i}^{x_{i+1}}$. A área A obtida é

$$A = \frac{(x - x_i)(y + y_i)}{2} + \frac{(x_{i+1} - x)(y_{i+1} + y)}{2} + \frac{x_{i+1}y_{i+1} - x_iy_i + \log\frac{x_{i+1} + y_{i+1}}{x_i + y_i}}{2}$$
$$A = \frac{(x_{i+1} - x_i)^2 - (y_{i+1} - y_i)^2}{2(x_iy_{i+1} - x_{i+1}y_i)} + \frac{\log\frac{x_{i+1} + y_{i+1}}{x_i + y_i}}{2}$$

Vamos chamar $r = \frac{x_{i+1} + y_{i+1}}{x_i + y_i}$. Agora observemos que

$$(x_{i+1} - x_i)^2 - (y_{i+1} - y_i)^2 = 2(1 - x_{i+1}x_i + y_{i+1}y_i)$$

E também

$$(x_{i+1} - x_i)^2 - (y_{i+1} - y_i)^2 = (x_{i+1} - x_i + y_{i+1} - y_i)(x_{i+1} - x_i - y_{i+1} + y_i)$$

$$(x_{i+1} - x_i)^2 - (y_{i+1} - y_i)^2 = ((x_{i+1} + y_{i+1}) - (x_i + y_i))((x_{i+1} - y_{i+1}) - (x_i - y_i))$$

$$(x_{i+1} - x_i)^2 - (y_{i+1} - y_i)^2 = (r - 1)(x_i + y_i)((x_{i+1} - y_{i+1}) - (x_i - y_i))$$

$$(x_{i+1} - x_i)^2 - (y_{i+1} - y_i)^2 = (r - 1)(\frac{1}{r} - 1) = \frac{-(r - 1)^2}{r}$$

Temos então que

$$x_{i+1}x_i - y_{i+1}y_i = 1 + \frac{(r-1)^2}{2r} = \frac{r}{2} + \frac{1}{2r}$$

Além disso

$$r = \frac{x_{i+1} + y_{i+1}}{x_i + y_i} = (x_i - y_i)(x_{i+1} + y_{i+1})$$
$$r = x_i y_{i+1} - x_{i+1} y_i + x_i x_{i+1} - y_i y_{i+1}$$

E portanto

$$x_i y_{i+1} - x_{i+1} y_i = \frac{r}{2} - \frac{1}{2r}$$

Logo

$$A = \frac{1-r}{1+r} + \log r$$

Agora observemos a função

$$f(x) = \frac{1-x}{1+x} + \log x$$

Temos que

$$f'(x) = \frac{-2}{(1+x)^2} + \frac{1}{x} = \frac{1+x^2}{x(1+x)^2} > 0$$

Portanto f é estritamente crescente e em particular injetiva. Logo, para a área A ser constante temos que r é constante. Dos casos iniciais concluímos que $r = \frac{3}{2}$. Por fim temos que, dado os casos iniciais

$$x_n = \frac{1}{2} \left(\left(\frac{3}{2} \right)^n + \left(\frac{2}{3} \right)^n \right)$$
$$y_n = \frac{1}{2} \left(\left(\frac{3}{2} \right)^n - \left(\frac{2}{3} \right)^n \right)$$

Observação 1: Vamos calcular a seguinte integral $\int \sqrt{x^2 - 1} dx$ para a variável maior ou igual a 1

$$\int \sqrt{x^2 - 1} dx = x\sqrt{x^2 - 1} + K - \int \frac{x^2}{\sqrt{x^2 - 1}} dx$$

$$\Rightarrow \int \sqrt{x^2 - 1} dx = \frac{1}{2} x\sqrt{x^2 - 1} + K' + \frac{1}{2} \int \frac{(x^2 - 1) - x^2}{\sqrt{x^2 - 1}} dx$$

Agora observemos que

$$(\log(x+\sqrt{x^2-1}))' = \frac{1+\frac{x}{\sqrt{x^2-1}}}{x+\sqrt{x^2-1}} = \frac{1}{\sqrt{x^2-1}}$$

Portanto

$$\int \sqrt{x^2 - 1} dx = \frac{x\sqrt{x^2 - 1}}{2} - \frac{\log(x + \sqrt{x^2 - 1})}{2} + C$$

Observação 2: A integral $\int \frac{1}{\sqrt{x^2-1}} dx$ pode ser calculada através da substituição trigonométrica $x = \sec \theta$:

$$\int \frac{1}{\sqrt{x^2 - 1}} dx = \int \frac{\tan \theta \sec \theta}{\tan \theta} d\theta = \log|\tan \theta + \sec \theta| + K_1$$

$$\Rightarrow \int \frac{1}{\sqrt{x^2 - 1}} dx = \log(x + \sqrt{x^2 - 1}) + K_1$$

Problema 1.

Primeira Solução

Substituindo cada linha por ela menos a anterior a primeira coluna se torna $(1,0,\ldots,0)$ e o determinante de A_n é o mesmo que o determinante da matriz $n-1\times n-1$ que resta ao retirar a primeira linha e primeira coluna da nova matriz. A entrada (i,j) da nova matriz será $\binom{(i+1)+(j+1)-2}{(j+1)-1} - \binom{(i+(j+1)-2)}{(j+1)-1} =$ $\binom{i+j-1}{i-1}$. Fazendo as mesmas operações obtemos a matriz $n-2\times n-2$ com entrada (i,j) dada por $\det(A_n) = 1.$

Segunda Solução

Seja B a matriz dada por $b_{ij} = \binom{i-1}{j-1}$. Temos então que, sendo $C = BB^T$, vale que $c_{ij} = \sum_{k=1}^{n} \binom{i-1}{k-1} \binom{j-1}{k-1} = \sum_{k=1}^{n} \binom{i-1}{k-1} \binom{j-1}{(j-1)-(k-1)}$. Pela fórmula de Euler temos que $c_{ij} = \binom{(i-1)+(j-1)}{j-1}$ e portanto $A = BB^T$. Observando que B é uma matriz triangular superior com diagonal composta de 1's e det $A = \det B \det B^T = (\det B)^2$, temos que det A = 1.

Problema 2. Vamos provar por indução em b. Primeiro observemos que se A é "padre", então A-ttambém é para qualquer $t \in \mathbb{Z}$. Agora vamos analisar alguns casos:

Se b=2a temos que m.d.c.(a,b)=a e portanto a+b-3d=0 e a+b-2d=a e portanto o resultado segue. Observemos que esse caso inclui o caso base da indução, a = 1, b = 2.

Vamos supor agora que $b \neq 2a$. Temos que $2a - 0 \in A$ e portanto $0, a, b - a \in A - a$. Logo, existem 3 elementos distintos em A-a. Observemos que m.d.c.(a,b)=m.d.c.(a,b-a) e assim podemos aplicar a hipótese de indução para o par (a, b - a), caso b - a > a, ou para o par (b - a, a), caso b - a < a. Em ambos os casos obtemos que

$$a + (b - a) - 3d \in A - a$$
$$a + (b - a) - 2d \in A - a$$

E portanto

$$a+b-3d \in A$$
$$a+b-2d \in A$$

O que conclui a demonstração.

Problema 3.

Como a,b e c são lados de triângulos, podemos fazer $a=x+y,\,b=x+z,\,c=y+z.$ Logo, o problema equivale a $\sum_{cic} \sqrt{\frac{(4x+3y+z)(4x+3z+y)}{(2x+3y+z)(2x+3z+y)}} \geq 4.$ Vamos mostrar que $\sqrt{\frac{(4x+3y+z)(4x+3z+y)}{(2x+3y+z)(2x+3z+y)}} \geq \frac{2x+y+z}{x+y+z}.$ Elevando ao quadrado e abrindo tudo queremos mostrar que

$$(2x + 2x + 3y + z)(2x + 2x + 3z + y)(x + y + z)^{2} - (x + x + y + z)^{2}(2x + 3y + z)(2x + 3z + y) \ge 0$$

$$\iff 2x(2x)(x + y + z)^{2} + 2x(2x + 3z + y)(x + y + z)^{2} + 2x(2x + 3y + z)(x + y + z)^{2} - x^{2}(2x + 3y + z)(2x + 3z + y) - 2x(x + y + z)(2x + 3y + z)(2x + 3z + y) \ge 0.$$

Veja que cancelamos a parcela $(2x+3y+z)(2x+3z+y)(x+y+z)^2$. Dividindo por x>0, queremos mostrar que:

$$4x(x+y+z)^{2} + 2(x+y+z)^{2}(4x+4y+4z) - (2x+3y+z)(2x+3z+y)(x+2(x+y+z)) \ge 0$$

$$\iff 4x(x+y+z)^{2} + 8(x+y+z)^{3} - (2x+3y+z)(2x+3z+y)(3x+2z+2y) \ge 0$$

$$\iff 4(x+y+z)^{2}(3x+2y+2z) - (2x+3y+z)(2x+3z+y)(3x+2z+2y) \ge 0$$

$$\implies (3x+2y+2z)(y^{2}+z^{2}-2yz) \ge 0 \iff (3x+2y+2z)(y-z)^{2} \ge 0 \text{ of any 6 sempre worded on } x$$

 $\iff (3x + 2y + 2z)(y^2 + z^2 - 2yz) \ge 0 \iff (3x + 2y + 2z)(y - z)^2 \ge 0, \text{ o que \'e sempre verdade pois } x > 0, y > 0 \text{ e } z > 0 \text{ e } (y - z)^2 \ge 0.$ Logo, segue que $\sum_{cic} \sqrt{\frac{(4x + 3y + z)(4x + 3z + y)}{(2x + 3y + z)(2x + 3z + y)}} \ge \sum_{cic} \frac{2x + y + z}{x + y + z} = 4, \text{ como quer\'amos.}$

Problema 4. Veja que $\lim_{T\to\infty}T=\infty$. Note também que: $\int_0^T\sqrt{1+f'(x)^2}dx\geq \int_0^T\sqrt{1}dx=T$. Logo $\lim_{T\to\infty}\int_0^T\sqrt{1+f'(x)^2}dx=\infty$. Então, podemos usar a regra de L'Hôpital. Derivando a integral em relação a T, pelo teorema fundamental do Cálculo, obtemos $\sqrt{1+f'(T)^2}$ e derivando o denominador em relação a T, temos que o resultado é 1.

Então, se existir $\lim_{T\to\infty} \sqrt{1+f'(T)^2}$, vale que

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \sqrt{1 + f'(x)^2} dx = \lim_{T \to \infty} \sqrt{1 + f'(T)^2}.$$

Temos que $f'(T) = \frac{cos(T).T - sen(T)}{T^2}$. Pelo teorema do Sanduíche, tanto $\frac{cos(T)}{T}$ como $\frac{sen(T)}{T^2}$ tendem a zero quando $T \to \infty$. Logo, $\lim_{T \to \infty} f'(T) = 0$. Portanto, $\lim_{T \to \infty} \sqrt{1 + f'(T)^2} = 1$. Concluímos que $\lim_{T \to \infty} \frac{1}{T} \int_0^T \sqrt{1 + f'(x)^2} dx = 1.$

Problema 5. Vamos considerar uma função de direção f_d , num universo com d dígitos. Seja k_d o menor inteiro tal que para toda função de direção se existem k_d reais compatíveis com f_d então existem infinitos. É fácil perceber que $k_2 = 3$. Queremos encontrar $k = k_{10}$.

Vamos considerar uma função de direção $f=f_{10}$, tal que existam apenas finitos reais compatíveis com f. Denotaremos por g(i) a quantidade de reais compatíveis com f que começam por i. Desse modo temos que $g(i) = \sum_{i=0}^{9} f(i,j)g(j)$ pois um real que começa com i pode ter como segundo dígito todo j tal que f(i,j) = 1 e a partir do segundo dígito a escolha dos próximos é equivalente a quando o real começa com j.

Repare que se, para algum i, f(i, j) = 0 para todo j então g(i) = 0 e reciprocamente se g(i) = 0 então podemos fazer f(j,i) = f(i,j) = 0 sem diminuirmos o número de reais compatíveis. Vamos supor então que f(i,j) = 1 apenas quando $g(i) \neq 0$ e $g(j) \neq 0$.

Temos dois casos:

- i) Se para cada j existe i tal que f(i,j)=1, então só poderemos ter f(i,j)=1 para esses 9 valores de (i,j) (senão $\sum\limits_{i=0}^9 g(i)=\sum\limits_{i=0}^9 \sum\limits_{j=0}^9 f(i,j)g(j)>\sum\limits_{j=0}^9 g(j)$) e então g(i)=1 $\forall i$ e existem exatamente 10 reais compatíveis, logo $k_{10} \ge 11$. (Com argumento análogo para o caso com d dígitos obtemos $k_d \ge d+1$)
- ii) Existe j tal que para todo i vale f(i,j) = 0 e o dígito j só aparece na primeira casa decimal. Sem perdas supomos j = 9. Temos dois tipos de reais compatíveis: os x que não possuem 9 na representação decimal e os da forma (9+x)/10, assim $(k_{10}-1) \leq max\{2(k_{9}-1), 10+1\}$.

Com argumento análogo para o caso com d dígitos obtemos $(k_d-1) \leq max\{2(k_{d-1}-1), d+1\}$. Como $k_{d-1} \ge d$, $2(k_{d-1}-1) \ge 2d-2 \ge d+1$ para $d \ge 3$ e $(k_d-1) \le 2(k_{d-1}-1)$ para $d \ge 3$. Concluímos que $(k_{10}-1) \le 2^8(k_2-1)$ e $k_{10} \le 2^9+1=513$. Para mostrar a igualdade basta mostrar

que existe um função de direção f com exatamente 2^9 reais compatíveis.

Se $f: D \times D \to \{0,1\}$ é tal que f(i,j) = 1 se e só se j < i ou j = i = 0 então para todo subconjunto de $\{1, \ldots, 9\}$ existe um real compatível com f associado a esse subconjunto (por exemplo, 0,9743 está associado a $\{3,4,7,9\}$) e é fácil perceber que esses são os únicos reais compatíveis. Então para essa função de direção temos exatamente 2⁹ reais compatíveis.

Obs.: Para obter $k_2 = 3$ podemos usar que se $f_2(i, j) = 1$ para pelo menos 3 valores de (i, j) então f_2 tem infinitos reais compatíveis e se $f_2(i,j) = 1$ para dois valores, f_2 tem exatamente 2 reais compatíveis. Por exemplo a função $f_2:\{0,1\}\times\{0,1\}\to\{0,1\}$ dada por $f_2(0,0)=f_2(1,0)=1$ e $f_2(0,1)=f_2(1,1)=0$ tem somente 0 e 0,1 como reais compatíveis e se mudarmos $f_2(1,1)$ para 1 temos que 0,11...1 é compatível com f_2 para qualquer quantidade de uns.

Problema 6. Como $(x-1)^{k+1}$ divide p(x) temos que $p^{(i)}(1) = 0$ para $0 \le i \le k$, onde $p^{(i)}$ representa a i-ésima derivada de p. Seja $f_0(x)=1$ e $f_i(x)=(x-(i-1))f_{i-1}(x)$, para $1\leq i\leq k$. Temos que $\sum_{j=0}^{n} a_j f_m(j) = 0$, para $0 \le m \le k$. Observemos que todo polinômio de grau k pode ser escrito como combinação linear de f_i . De fato, igualando uma combinação linear de f_i com um polinômio qualquer nos pontos 0, 1, ..., k obtemos um sistema linear possível e determinado nos coeficientes da combinação

Sendo g um polinômio qualquer de grau k temos, pela conclusão acima, que

$$\sum_{j=0}^{n} a_j g(j) = 0$$

Sabemos que o polinômio de Chebyshev T_{2k} é par de grau 2k. Tomemos então o polinômio de grau k dado por $T_{2k}(\sqrt{\frac{x}{n-1}})$. Temos então que

$$\sum_{j=0}^{n} a_j T_{2k} (\sqrt{\frac{j}{n-1}}) = 0$$

Temos então que

$$|T_{2k}(\sqrt{\frac{n}{n-1}})| = |\sum_{j=0}^{n-1} a_j T_{2k}(\sqrt{\frac{j}{n-1}})|$$

$$|T_{2k}(\sqrt{\frac{n}{n-1}})| \le \sum_{j=0}^{n-1} |a_j T_{2k}(\sqrt{\frac{j}{n-1}})|$$

$$|T_{2k}(\sqrt{\frac{n}{n-1}})| \le \sum_{j=0}^{n-1} |a_j|$$

Temos que

$$T_{2k}(\sqrt{\frac{n}{n-1}}) = \frac{(\sqrt{\frac{n}{n-1}} - \sqrt{\frac{1}{n-1}})^{2k} + (\sqrt{\frac{n}{n-1}} + \sqrt{\frac{1}{n-1}})^{2k}}{2}$$

$$T_{2k}(\sqrt{\frac{n}{n-1}}) \ge (1 + \frac{1}{n-1})^k + \binom{2k}{2} \frac{1}{n-1} (1 + \frac{1}{n-1})^{k-1}$$

$$T_{2k}(\sqrt{\frac{n}{n-1}}) \ge 1 + \frac{k}{n} + \frac{k(2k-1)}{n} = 1 + \frac{2k^2}{n}$$

Portanto

$$\sum_{j=0}^{n-1} |a_j| \ge 1 + \frac{2k^2}{n}$$

Problema 1. (a) Seja c o número de algarismos de n e d o número de algarismos de n. Então, queremos mostrar que existem infinitos inteiros k tais que:

$$(m+n.10^{-c})(n+m.10^{-d}) = k \iff (10^{c}m+n)(10^{d}n+m) = 10^{c+d}k$$

Analisando a equação acima módulo 3, como $10 \equiv 1 \pmod{3}$, seque que $(m+n)^2 \equiv k \pmod{3}$. Como $(\frac{2}{3}) = -1$, basta escolher $k \equiv 2 \pmod{3}$ que não teremos solução.

(b) Sejam a e b impares e t tal que

$$10^{a-1} < 2^t < 10^a$$

$$10^{b-1} < 5^t < 10^b$$

Sabemos que existem infinitas ternas (a,b,t) satisfazendo essa propriedade. Temos também que

$$10^{a+b-2} < 10^t < 10^{a+b}$$

Portanto t = a + b - 1. Assim precisamos achar os pares (a, b) satisfazendo

$$10^{a-1} < 2^{a+b-1} < 10^a$$

$$10^{b-1} < 5^{a+b-1} < 10^b$$

Que é equivalente a

$$2 \times 5^{a} > 2^{b} > 5^{a-1}$$

$$\Leftrightarrow a \log 5 > (b-1) \log 2, (a-1) \log 5 < b \log 2$$

$$\Leftrightarrow a \frac{\log 5}{\log 2} + 1 > b > (a-1) \frac{\log 5}{\log 2}$$

Como $a\frac{\log 5}{\log 2} + 1 - (a-1)\frac{\log 5}{\log 2} > 1$, temos que para qualquer a inteiro, existe um número inteiro no intervalo $((a-1)\frac{\log 5}{\log 2}, a\frac{\log 5}{\log 2} + 1)$ e portanto existe o b inteiro desejado. Tomemos $m = 2^t 10^{a-1}$ e $n = 5^t 10^{b-1}$. Temos então que

$$\overline{m}, \overline{n} = 2^t 10^{a-1} + 5^t 10^{-b}$$

 $\overline{n}, \overline{m} = 5^t 10^{b-1} + 2^t 10^{-a}$

Assim temos que

$$\overline{n,m} \times \overline{m,n} = (2^t 10^{a-1} + 5^t 10^{-b})(5^t 10^{b-1} + 2^t 10^{-a})$$
$$\overline{n,m} \times \overline{m,n} = 10^t 10^{a+b-1} + \frac{4^t + 25^t + 1}{10}$$

Observemos que t é impar e portanto $4^t \equiv 4 \pmod{5}$ e $25^t \equiv 1 \pmod{2}$. Dessa forma vemos que $\frac{4^t + 25^t + 1}{10}$ é inteiro. Portanto temos que para os números da forma

$$k = 10^t 10^{a+b-1} + \frac{4^t + 25^t + 1}{10}$$

A equação $\overline{n}, \overline{m} \times \overline{m}, \overline{n} = k$ possui solução. Fazendo a e b variarem dentre todos os inteiros ímpares possíveis satisfazendo as condições estabelecidas inicialmente obtemos infinitos valores para k satisfazendo a condição desejada.

Problema 2. Observemos que

$$\int_{-\infty}^{\infty} \frac{1}{\frac{(x-m)^2}{n} + 1} dx = \sqrt{n\pi}, m \in \mathbb{R}$$

Sejam x_1, x_2, \ldots, x_n as raízes de p. Temos por Cauchy-Schwarz

$$\left(\sum_{k=1}^{n} \frac{1}{x - x_k}\right)^2 \le n \sum_{k=1}^{n} \frac{1}{|x - x_k|^2}$$

Agora observemos que a função $f(x) = \frac{x^2}{1+x^2}$ é crescente nos reais positivos. Temos então que

$$\int_{-\infty}^{\infty} \frac{(p'(x))^2}{(p'(x))^2 + (p(x))^2} = \int_{-\infty}^{\infty} \frac{(\frac{p'(x)}{p(x)})^2}{(\frac{p'(x)}{p(x)})^2 + 1}$$
$$\int_{-\infty}^{\infty} \frac{(p'(x))^2}{(p'(x))^2 + (p(x))^2} \le \int_{-\infty}^{\infty} \frac{\sum_{k=1}^{n} \frac{n}{|x - x_k|^2}}{n \sum_{k=1}^{n} \frac{1}{|x - x_k|^2} + 1}$$

Além disso temos que

$$\frac{\frac{n}{|x-x_j|^2}}{n\sum_{k=1}^n\frac{1}{|x-x_k|^2}+1} \leq \frac{\frac{n}{|x-x_j|^2}}{n\frac{1}{|x-x_j|^2}+1} = \frac{n}{n+|x-x_j|^2} < \frac{n}{n+(x-\Re x_j)^2}$$

Juntando tudo temos

$$\int_{-\infty}^{\infty} \frac{(p'(x))^2}{(p'(x))^2 + (p(x))^2} < \sum_{k=1}^{n} \sqrt{n\pi} = n^{3/2}\pi$$

Problema 3. Vamos olhar o seguinte problema que implica o resultado desejado:

Seja G um grafo com vértices $V(G) = A \cup B, |A| = |B| = n$ que não possui C_4 induzido. Suponha que $e(G) > cn^2$ para alguma constante c > 0. Vale então que w(G) > kn para alguma constante k > 0, onde w(G) é o tamanho do maior clique que existe em G.

De fato esse problema implica o desejado pois tomando $N(m) = \frac{2m}{k}$ temos que existe K_{2m} em G. Como os vértices desse K_{2m} pertencem a $A \cup B$ temos que pelo menos uma das partes possui pelo menos m vértices na interseção com esse K_{2m} .

Vamos agora provar o resultado. Primeiro precisamos de um

Lema 0.1. Para um grafo G sem C_4 induzido vale que $w(G) \ge c_1 d_{avg}(G)^2 n^{-1}$ para alguma constante $c_1 > 0$, onde n = |V(G)|.

Demonstração. Primeiro relembremos que para todo grafo G existe um subgrafo induzido H com $\delta(H) \geq \frac{d_{avg}(G)}{2}$ e $d_{avg}(H) \geq d_{avg}(G)$. Com esse resultado podemos supor que o próprio grafo G possui a propriedade $\delta(G) \geq \frac{d_{avg}}{2}$. De fato, suponha que o resultado vale para o subgrafo induzido H. Então vale

$$w(G) \ge w(H) \ge \frac{c_1 d_{avg}(H)^2}{|V(H)|} \ge \frac{c_1 d_{avg}(G)}{|V(G)|}$$

Vamos a partir de agora então assumir que $\delta(G) \geq d_{avg}(G)$. Fizemos um conjunto S independente com |S| = t. Escrevamos $S = \{x_1, x_2, \dots, x_t\}$ e A_i os vizinhos de x_i . Seja $k = \max_{i \neq j} A_i \cap A_j$. Como G não possui C_4 induzido temos que $G[A_i \cap A_j]$ é um grafo completo pois $(x_i, x_j) \notin E(G)$. Portanto $k \leq w(G)$. Como $|A_i| \geq \frac{d_{avg}(G)}{2}$ temos que

$$t \frac{d_{avg}(G)}{2} - \binom{t}{2}k \le \sum_{1 \le i \le t} |A_i| - \sum_{1 \le i < j \le t} |A_i \cap A_j| \le |\cup_{1 \le i \le t} A_i| \le n$$

o que implica

$$w(G) \ge k \ge \frac{t^{\frac{d_{avg(G)}}{2}}}{\binom{t}{2}}$$

Vamos separar agora em dois casos:

Se $\alpha(G) \geq \frac{4n}{d_{avg}(G)}$, então, tomando t o menor inteiro maior ou igual a $\frac{4n}{d_{avg}(G)}$, vale

$$w(G) \geq \frac{n}{\binom{4n/d_{avg}(G)+1}{2}} = \frac{nd_{avg}(G)^2}{(4n+d_{avg}(G))(2n)} \geq \frac{d_{avg}(G)^2}{(5n)(2)} = 0.1d_{avg}(G)^2n^{-1}$$

Se $\alpha(G) \leq \frac{4n}{d_{avg}(G)}$, então $\alpha(G)$ é menor ou igual que o piso de $\frac{4n}{d_{avg}(G)}$. Vamos mostrar que $w(G) \geq \frac{n}{\binom{\alpha(G)+1}{2}}$. Selecionemos um conjunto independente S de tamanho $\alpha(G)$. Temos então que os conjuntos $A_i \cap A_j$ e $B_i \cup \{x_i\}$ cobrem V(G), onde B_i é o conjunto de vértices que possuem apenas x_i como vizinho em S. Como vimos antes $A_i \cap A_j$ espande um subgrafo completo. Temos que $B_i \cup \{x_i\}$ também é um grafo completo pois caso não fosse poderiamos tomar dois vértices em B_i que não são vizinhos e substituir x_i por esses dois vértices em S e obter um conjunto independente de tamanho $\alpha(G) + 1$, o que é um absurdo. Temos então que

$$w(G) \ge \frac{n}{\binom{\alpha(G)+1}{2}} \ge \frac{n}{\binom{4n/d_{avg}(G)+1}{2}}$$

E, como antes, concluímos que

$$w(G) \ge 0.1 d_{avg}(G)^2 n^{-1}$$

Como $e(G) > cn^2$ e $d_{avg}(G) = \frac{2e(G)}{2n} = \frac{e(G)}{n}$ temos que $d_{avg}(G) > cn$ e pelo Lema concluímos que $w(G) > \frac{c^2c_1n}{2}$.

Problema 4. Vamos mostrar que $\frac{dF}{dx} \ge 0$, $\frac{dF}{dy} \le 0$, $\frac{dG}{dx} \le 0$, $\frac{dG}{dy} \ge 0$ que claramente implica o resultado desejado.

$$\begin{split} &\frac{1}{F} - x \frac{dF}{dx} \frac{1}{F^2} = a_1 + c_1 \frac{dG}{dx} \\ &- x \frac{dF}{dy} \frac{1}{F^2} = b_1 + c_1 \frac{dG}{dy} \\ &- y \frac{dG}{dx} \frac{1}{G^2} = a_2 + c_2 \frac{dF}{dx} \\ &\frac{1}{G} - y \frac{dG}{dy} \frac{1}{G^2} = b_2 + c_2 \frac{dF}{dy} \end{split}$$

Observemos das equações iniciais do problema, lembrando que $a_1, b_1, c_1, a_2, b_2, c_2, F, G > 0$, temos que

$$\frac{1}{G} - b_2 > 0$$

$$\frac{1}{F} - a_1 > 0$$

Multiplicando as duas equações sobtemos também que

$$\frac{xy}{FG} > c_1 c_2 FG$$

Usando as equações diferenciais e fazendo as devidas substituições obtemos

$$[c_1 - \frac{xy}{c_2 F^2 G^2}] \frac{dG}{dy} = \frac{-x}{F^2} \left[\frac{1}{c_2} (\frac{1}{G} - b_2) \right] - b_1 < 0 \Rightarrow \frac{dG}{dy} > 0$$

Da segunda equação diferencial temos que $\frac{dF}{dy} < 0$

$$[c_2 - \frac{xy}{c_1 F^2 G^2}] \frac{dF}{dx} = \frac{-y}{G^2} [\frac{1}{c_1} (\frac{1}{F} - a_1)] - a_2 < 0 \Rightarrow \frac{dF}{dx} > 0$$

Da terceira equação diferencial temos que $\frac{dG}{dx} < 0$

Problema 5. Para a questão usaremos o seguinte

Teorema 0.2. Seja C uma matriz. Então tr(C) = 0 se, e somente se, existem matrizes X e Y tais que

$$C = XY - YX$$

(⇒): Aplicando traço dos dois lados da igualdade, obtemos

$$tr(B) = tr(S(A+T)S^{-1} - T) = tr(S(A+T)S^{-1}) - tr(T)$$
$$tr(A+T) - tr(T) = tr(A) + tr(T) - tr(T) = tr(A)$$

 (\Leftarrow) : Tomemos no Teorema C=A-B. Logo tr(A-B)=0 e portanto existem matrizes X e Y tais que

$$(A - B) = XY - YX \Leftrightarrow XY - A = YX - B = T$$

Como trocar X por $X-\lambda I$ não altera XY-YX, podemos assumir que X é invertível. Obtemos que

$$A + T = XY$$
$$B + T = YX$$

E portanto

$$X^{-1}(A+T)X = (B+T)$$

Tomando $X = S^{-1}$ obtemos o resultado na forma desejada.

Problema 6. Primeira Solução: Seja X^n o conjunto de todas as n-uplas em X. Seja $\mathcal{F} = \bigcup_{n \in \mathbb{N}} X^n$. Seja $F \in \mathcal{F}$, com $F = (x_1, x_2, \dots, x_n)$. Vamos definir $f_F(x) = \frac{1}{n} \sum_{i=1}^n d(x_i, x)$. Como X é conexo e compacto temos que a imagem de f_F é um intervalo fechado, digamos $[a_F, b_F]$. Queremos então provar que $\cap_{F \in \mathcal{F}} [a_F, b_F] \neq \emptyset$. Vamos mostrar que $\forall F, G \in \mathcal{F}, G = (y_1, \dots, y_m)$ vale $a_F \leq b_G$, o que claramente é suficiente para mostrarmos o resultado desejado.

Da definição de a_F e b_F temos que

$$a_F \le \frac{1}{n} \sum_{k=1}^n d(x_k, y_i) \le b_F, \forall i$$

Portanto basta provarmos que existem i e j tais que

$$\frac{1}{n} \sum_{k=1}^{n} d(x_k, y_i) \le \frac{1}{m} \sum_{k=1}^{m} d(y_k, x_j)$$

Vamos assumir por absurdo que não existam tais $i \in j$. Temos então que

$$\frac{1}{n} \sum_{k=1}^{n} d(x_k, y_i) > \frac{1}{m} \sum_{k=1}^{n} d(y_k, x_j), \forall i, j$$

Somando as desigualdades de i, j = 1 até i = m, j = n obtemos

$$\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{1}{n} \sum_{k=1}^{n} d(x_k, y_i) > \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{1}{m} \sum_{k=1}^{n} d(y_k, x_j)$$

$$\Leftrightarrow \sum_{i=1}^{m} \sum_{k=1}^{n} d(x_k, y_i) > \sum_{j=1}^{n} \sum_{k=1}^{n} d(y_k, x_j)$$

Como d é simétrico chegamos a um absurdo. Portanto existem tais $i \in j$, o que termina a prova.

Segunda Solução: Consideremos um jogo de soma zero de dois jogadores onde cada um escolhe independentemente um ponto do espaço e o ganho é a distância entre eles. Pelo Teorema de Glicksberg o jogo tem um valor e uma estratégia ótima. Chamemos esse valor de α . Seja $\{x_1,\ldots,x_n\}$ uma coleção finita qualquer de pontos em X. Considere a estratégia mista do minimizador que dá peso 1/n a cada um desses pontos. Temos então, quando a estratégia é ótima ou não, por continuidade, compacidade e definição de valor de um jogo

$$\max_{P} \frac{1}{n} \sum_{i=1}^{n} d(x_1, P) \ge \alpha$$

Claramente o maximizador pode usar a mesma estratégia e portanto

$$\min_{P} \frac{1}{n} \sum_{i=1}^{n} d(x_1, P) \le \alpha$$

As funções em P nas duas desigualdades são a mesma e como a imagem de uma função contínua de um conjunto conexo é conexo, temos que existe um ponto x onde a igualdade é atingida. Portanto

$$\frac{1}{n}\sum_{i=1}^{n}d(x_1,x)=\alpha$$

Problema 1. Por simplicidade vamos considerar $f:[0,1]\to\mathbb{R}$ dada por f(x):=g(x+2013). É claro que assim obtemos f(0) = f(1) = 0 e $f(\frac{a+b}{2}) \le f(a) + f(b)$ para quaisquer $a, b \in [0, 1]$.

Por indução em n, temos que $f(\frac{k}{2^n}) \le 0$ para todo k inteiro $(1 \le k \le 2^n)$. Pois $f(\frac{1}{2}) \le f(0) + f(1) = 1$ $0, f(\frac{1}{4}) \le f(0) + f(\frac{1}{2}) \le 0$ e $f(\frac{3}{4}) \le f(\frac{1}{2}) + f(1) \le 0$. Supondo a hipótese de indução válida pra n, então a hpótese para n+1 é óbvia para k par e com k ímpar (k=2t+1) temos $f(\frac{2t+1}{2^n+1}) \le f(\frac{t}{2^n}) + f(\frac{t+1}{2^n}) \le 0$.

Por outro lado, pondo b=0 na inequação original, obtemos $f(\frac{a}{2}) \leq f(a)$ para todo $a \in [0,1]$. E, para todo $x \in [0, \frac{2}{3}]$, $f(\frac{3x}{2}) + f(\frac{x}{2}) \ge f(x) \Rightarrow f(\frac{3x}{2}) \ge f(x) - f(\frac{x}{2}) \ge 0$. Escolhendo $\frac{3x}{2} = \frac{k}{2^n}$ temos que $f(\frac{k}{2^n}) \ge 0$ para todo n inteiro e todo k inteiro com $1 \le k \le 2^n$.

Como $f(\frac{k}{2^n}) \le 0$ e $f(\frac{k}{2^n}) \ge 0$, então $f(\frac{k}{2^n}) = 0$ e o conjunto dos $\frac{k}{2^n}$ é claramente denso em [0,1],

donde o resultado segue.

Problema 2. Seja F o corpo $\mathbb{Z}/p\mathbb{Z}$. Vamos analisar os conjuntos de n elementos de F^n (aqui visto como espaço vetorial sobre F) que formam uma base. A ideia é simples: existem $(p^n - 1)(p^n - p)(p^n$ como espaço vetorial sobre F) que formam uma base. A ideia e simples: existem $(p^n-1)(p^n-p)(p^n-p^n)$ p^n-1 $p^$

 $\alpha_i \in \{1, \dots, p-1\}$) também é base. Assim, temos os $(p-1)^n$ conjuntos que formam base e estão na mesma "classe" que $\{v_1, \ldots, v_n\}$ e o resultado segue.

Problema 3. Dizemos que um conjunto $A \in \mathcal{A}$ possui uma cobertura de tamanho 2 se existem $A_i, A_i \in \mathcal{A}$ tais que $A \subset A_i \cup A_i$ (não necessariamente $A_i \neq A_i$). Tomemos $A \subset \{1, 2, \dots, n\}$ tal que Anão possui cobertura de tamanho 2 com |A| é mínimo. Consideremos agora a família de subconjuntos de $\{1,2,\ldots,n\}$ dada por $\mathcal{F}=\mathcal{A}\cap A$. Como A não possui cobertura de tamanho 2, temos que se $X\in\mathcal{F}$, então $A - X \notin \mathcal{F}$. Portanto $|\mathcal{F}| \leq 2^{|A|-1}$.

Seja agora o conjunto $B=\{1,2,\ldots,n\}-A$ e tomemos a família $\mathcal{G}=\mathcal{A}\cap B$. Vamos mostrar que se $X \in \mathcal{G}$, então B - X não pertence a \mathcal{G} . Vamos supor por absurdo que existe $X = A_l \cap B \in \mathcal{G}$ tal que $B-X=A_m\cap B\in\mathcal{G}$. Da definição de A temos que existem i,j,k tais que $A_i\cup A_j=A-\{k\}$. Temos então que $|A_i \cup A_j \cup A_l \cup A_m| = n - 1$, o que é um absurdo. Temos então que $|\mathcal{G}| \leq 2^{n-|A|-1}$.

Como cada conjunto em $\{1, 2, ..., n\}$ pode ser unicamente determinado pela intersecção com A e B, temos que $|\mathcal{A}| \leq |\mathcal{F}||\mathcal{G}| \leq 2^{|A|-1}2^{n-|A|-1} = 2^{n-2}$.

Problema 4. Ao longo desta solução [a,b] irá denotar o mmc entre a e b, enquanto (a,b), o mdc entre a e b. Um fato bastante conhecido é que a,b=ab. Além disso, pelo Teorema de Bezout,

(a,b) é a menor (em módulo) das combinações lineares de a e b. Em particular, $(a,b) \le |b-a|$. Assim, $\frac{1}{[a,b]} = \frac{(a,b)}{ab} \le \frac{|b-a|}{ab}$ e, se b > a, $\frac{1}{[a,b]} \le \frac{1}{a} - \frac{1}{b}$. Desse modo $s_k = \sum_{i=1}^k \frac{1}{[a_i,a_{i+1}]} \le \sum_{i=1}^k \left(\frac{1}{a_i} - \frac{1}{a_{i+1}}\right) = \frac{1}{a_1} - \frac{1}{a_{k+1}}$ e $s_k \le \frac{1}{a_1}$, donde concluímos que s_k converge, pois é uma sequência estritamente crescente e limitada.

Problema 5. Vamos usar os seguintes fatos:

 \bullet cos \sqrt{z} é uma função inteira (analítica em todo o plano complexo). Podemos verificar isso pelas equações de Cauchy-Riemann:

$$\frac{idf}{dx} = \frac{df}{dy}$$

Para $f = \cos\sqrt{z} = \frac{e^{i\sqrt{z}} + e^{-i\sqrt{z}}}{2}$ temos

$$\frac{idf}{dx} = i\left[\frac{i}{4\sqrt{x+iy}}e^{i\sqrt{z}}i - \frac{i}{\sqrt{x+iy}}e^{-i\sqrt{z}}\right]$$

$$\frac{df}{dy} = \frac{i^2}{4\sqrt{x+iy}}e^{i\sqrt{z}}i - \frac{i^2}{\sqrt{x+iy}}e^{-i\sqrt{z}}$$

De onde se verificam as equações de Cauchy-Riemann.

- $\cos 2\pi i x = \cosh 2\pi x$
- Se f é uma função inteira (holomorfa em todo o plano complexo), então $\overline{f(\overline{z})}$ também é uma função inteira, o que segue das equações de Cauchy-Riemann.
- a) Vamos usar que $x^2+ix-1/4=(x+i/2)^2$. Temos que $f(z)=\cos 2\pi \sqrt{1/4-z}$ é uma função inteira. Para $w=x^2+ix$ temos que

$$f(w) = \cos 2\pi \sqrt{-(x+i/2)^2} = \cos 2\pi i (x+i/2) = \cos (2\pi i x - \pi) = -\cos 2\pi i x = -\cosh 2\pi x$$

que é um número real para todo $x \in \mathbb{R}$.

b) Seja f uma função interessante. Tomemos a função $g(z)=\overline{f(-z-z^2)}$. Como $\underline{f(-z-z^2)}$ é uma função inteira, temos que g(z) também é. Vamos observar agora $h(z)=f(z-z^2)-\overline{f(-z-z^2)}$. Pelas observações anteriores temos que h é uma função inteira. Tomemos $z\in\mathbb{I}, z=ix, x\in\mathbb{R}$. Temos que $h(ix)=f(x^2+ix)-\overline{f(x^2-ix)}=f(x^2+ix)-\overline{f(x^2+ix)}$ e como f na parábola $\Re x=(\Im z)^2$ é real temos que h(ix)=0. Isso implica que f é uma função inteira e limitada pois tomando $x\to\infty$ temos que a função tende a zero, e pelo Teorema de Liouville temos que ela é constante. Logo vale a igualdade $f(z-z^2)=\overline{f(-z-z^2)}$, para todo $z\in\mathbb{C}$. Temos então que

$$(1-2z)f'(z-z^2) = \overline{(-1-2z)}\overline{f'(\overline{-z-z^2})}$$

Para z = -1/2 obtemos

$$2f'(-3/4) = 0 \Rightarrow f'(-3/4) = 0$$

Problema 6.

- a Temos duas possibilidades
 - i Para todo $\delta > 0$ existem n, k inteiros positivos tais que

$$|\{1 \le s \le k | \exists j, 1 \le j \le k, x_{n+j} \in [\frac{s-1}{k}, \frac{s}{k}]\}| < \delta k$$

Nesse caso tomaremos C=1. De fato, dado $r\geq 1$ tomamos $\delta=1/r$. Dados n,k inteiros positivos tais que $|\{1\leq s\leq k|\exists j,1\leq j\leq k,x_{n+j}\in [\frac{s-1}{k},\frac{s}{k}]\}|<\delta k=k/r$, para algum s com $1\leq s\leq k$ existirão mais que r valores de j com $1\leq j\leq k$ tais que $x_{n+j}\in [\frac{s-1}{k},\frac{s}{k}]$. Portanto existem $1\leq j_1< j_1+r\leq j_2\leq k$ tais que $x_{n+j_1},x_{n+j_2}\in [\frac{s-1}{k},\frac{s}{k}]$. Logo $(n+j_2)-(n+j_1)=j_2-j_1\geq r$ e $|x_{n+j_2}-x_{n+j_1}|\leq 1/k\leq 1/(j_2-j_1)$ e portanto

$$((n+j_2)-(n+j_1))|x_{n+j_2}-x_{n+j_1}| \le 1 = C$$

ii Existe $\delta \in (0,1)$ tal que para quaisquer n,k inteiros positivos temos

$$|\{1 \le s \le k | \exists j, 1 \le j \le k, x_{n+j} \in \left[\frac{s-1}{k}, \frac{s}{k}\right]\}| \ge \delta k$$

Nesse caso tomaremos $C=1+2/\delta$. Seja v o maior inteiro menor ou igual a $1/\delta$. Dado $r\geq 1$ inteiro consideremos, para $0\leq i\leq v$, os conjuntos $A_i:=\{2ir+j,1\leq j\leq r\}$ e $X_i=\{1\leq s\leq r|\exists t\in A_i,x_t\in [\frac{s-1}{r},\frac{s}{r}]\}$. Como $|X_i|\geq \delta r$ e $(v+1)\delta r>r$, existem $0\leq i_1< i_2\leq v$ tais que $X_{i_1}\cap X_{i_2}\neq\emptyset$. Se $s\in X_{i_1}\cap X_{i_2}$, então existem $t_1\in A_{i_1}$ e $t_2\in A_{i_2}$ tais que $x_{i_1},x_{i_2}\in [\frac{s-1}{r},\frac{s}{r}]$ e portanto $|x_{i_2}-x_{i_1}|\leq 1/r$. Por outro lado, $r\leq t_2-t_1\leq (2v+1)r$ e portanto

$$(t_2 - t_1)|x_{t_2} - x_{t_1}| \le 2v + 1 \le 1 + 2/\delta = C$$

b Tomemos $r = \lceil 6C \rceil$. Definamos a seguinte sequência:

$$x_n = \left\lfloor \frac{n}{r} \right\rfloor \sqrt{2} - \left\lfloor \frac{n}{r} \sqrt{2} \right\rfloor$$

Observemos que $x_n \in [0,1)$ $(0 \le \left\lfloor \frac{n}{r} \right\rfloor \sqrt{2} - \left\lfloor \frac{n}{r} \sqrt{2} \right\rfloor < \frac{n}{r} \sqrt{2} - \left(\frac{n}{r} \sqrt{2} - 1 \right) = 1)$ e que se p é inteiro e q inteiro positivo, então $|q\sqrt{2}-p| > \frac{1}{3q}$. De fato, para q=1 temos $|\sqrt{2}-p| > |\sqrt{2}-1| > \frac{1}{3}$. Para $q \ge 2$ observemos que $|q\sqrt{2}-p||q\sqrt{2}+p| = |2q^2-p^2| \ge 1$. Vamos agora supor por absurdo que $|q\sqrt{2}-p| \le \frac{1}{3q}$. Temos que $|q\sqrt{2}+p| \le 2q\sqrt{2}+|q\sqrt{2}-p| \le 2q\sqrt{2}+\frac{1}{3q}$ que é menor que 3q para $q \ge 2$. Dessa forma concluímos que $|q\sqrt{2}-p||q\sqrt{2}+p| < 3q\frac{1}{3q} = 1$, o que é um absurdo.

Temos então que, para $n \geq m+r,$ $1 \leq \left\lfloor \frac{n}{r} \right\rfloor - \left\lfloor \frac{m}{r} \right\rfloor < \frac{n-m}{r} + 1 < \frac{2(n-m)}{r}.$

Portanto $(n-m)|x_n-x_m|=(n-m)|(\lfloor \frac{n}{r}\rfloor-\lfloor \frac{m}{r}\rfloor)\sqrt{2}-(\lfloor \lfloor \frac{n}{r}\sqrt{2}\rfloor\rfloor-\lfloor \lfloor \frac{m}{r}\sqrt{2}\rfloor\rfloor)|>\frac{n-m}{3(\lfloor \frac{n}{r}\rfloor-\lfloor \frac{m}{r}\rfloor)}>\frac{r}{6}\geq C.$

Problema 1. A função $g(x) = -x - x^2$ é simétrica com respeito ao ponto -0, 5. Essa função cresce até x=-0,5 e decresce depois. Como a função exponencial é crescente, o mesmo vale para $f(x)=e^{g(x)}$. Assim, a integral atinge seu máximo quando o intervalo [a, a + 8] é centrado em $-\frac{1}{2}$, ou seja, quando $a = -\frac{9}{2}$.

Problema 2. Seja $f(x) = x^3 - 2$. Queremos achar os polinômios P que comutam com f. Claramente os polinômios $f^{(n)}(x) = f \circ f \circ \cdots \circ f(x)$, com n natural, satisfazem a essa relação. Vamos mostrar que esses são os únicos polinômios possíveis além de um possível polinômio constante. Para tal vamos primeiro mostrar que $P(x) = Q(x^3)$ para algum polinômio Q, quando P não é constante.

Primeiro, chamando $P(x) = \sum_{k=0}^{n} a_k x^k, a_n \neq 0$, temos

$$\sum_{k=0}^{n} a_k (x^3 - 2)^k = (\sum_{k=0}^{n} a_k x^k)^3 - 2$$

Do lado esquerdo da equação temos um polinômio em x^3 , então do lado direito todos coeficientes de x^t com t não múltiplo de 3 tem que ser nulos. Igualando os coeficientes dos dois lados temos que, supondo $a_0 \neq 0$, o coeficiente de x^1 é $3a_1a_0^2 = 0$, logo $a_1 = 0$. Por indução, se $a_t = 0$ para todos t de 1 a k não múltiplos de 3, então para o próximo t não múltiplo de 3 também teremos $a_t = 0$ pois o coeficiente de x^t será $3a_ta_0^2 = 0$ (não há como fazer aparecer x^t apenas como produto de potências múltiplas de 3). Assim, os coeficientes não nulos de P(x) são apenas os múltiplos de 3 e $P(x) = Q(x^3)$.

Se $a_0 = 0$, então P(0) = 0 e $P \circ f^{(n)}(0) = f^{(n)} \circ P(0) = f^{(n)}(0)$ e teremos $P(x_n) = x_n$ para todos os valores de $x_n = f^{(n)}(0)$, que é uma sequência estritamente decrescente de reais $(x_0 = 0, x_1 = -2,$ $x_2 = -10, \ldots$). Como dois polinômios distintos só podem coincidir para um número finito de valores então P(0)=0 só se P(x)=x.

Podemos então supor que $P(x) = H(x^3 - 2) = H \circ f(x)$, caso P não seja identidade ou constante. De fato, tomemos H(x) = Q(x+2). Dessa forma concluímos que se P comuta com f, então existe polinômio H_1 tal que $P=H_1\circ f$. Logo, vale que $f\circ H_1\circ f=H_1\circ f\circ f$ e como f é bijetiva, $f\circ H_1=H_1\circ f$. Temos então que H_1 satisfaz à condição inicial do problema e portanto é da forma $H_1 = H_2 \circ f$ para algum polinômio H_2 . Repetindo até chegarmos a um polinômio H_n de grau 1 concluimos que $P(x) = f^{(n)}(x)$.

Vamos agora analisar o caso $P(x)=c, c\in\mathbb{R}$. Valeria então $c=c^3-2\Leftrightarrow h(c)=c^3-c-2=0$. Essa equação do terceiro grau tem que ter um número ímpar de raízes reais e se tivesse 3 raízes teríamos derivada nula duas vezes entre suas raízes e então a equação terias sinais opostos nos dois pontos de derivada nula. Como a sua derivada $3c^2-1$ se anula para $\sqrt{\frac{1}{3}}$ e $-\sqrt{\frac{1}{3}}$, e $h(\sqrt{\frac{1}{3}})=-2(1+\frac{\sqrt{3}}{9})<0$ e $h(-\sqrt{\frac{1}{3}}) = -2(1-\frac{\sqrt{3}}{9}) < 0$, h
 tem apenas uma raíz e existe um único c tal que P(x)=c é solução de $P \circ \dot{f}(x) = f \circ P(x)$

Podemos resolver essa equação substituindo $c=a+\frac{1}{3a}$ e obtendo $a^3+\frac{1}{27a^3}-2=0$. Substituindo $a^3=b$ a equação se torna $b^2-2b+\frac{1}{27}=0$

As raízes dessa equação são $\frac{2\pm\sqrt{4-\frac{4}{27}}}{2}=1\pm\sqrt{\frac{26}{27}}$. Para calcularmos c as duas raízes acima são equivalentes e com ambas obtemos $c = \sqrt[3]{1 + \sqrt{\frac{26}{27}} + \frac{1}{3\sqrt[3]{1 + \sqrt{\frac{26}{67}}}}}$

Problema 3.

Vamos olhar as matrizes como transformções de Möbius

$$\phi_A(z) = z + 2; \phi_B(z) = \frac{z}{2z + 1}$$

Vamos dividir o semiplano complexo superior Π^+ em 5 regiões

 $A^-\colon$ circunferência centrada em $-\frac{1}{2}$ com raio $\frac{1}{2}.$ $A^+\colon$ circunferência centrada em $\frac{1}{2}$ com raio $\frac{1}{2}.$

 B^- : conjunto dos pontos tais que $\Re z \leq -1$.

 B^+ : conjunto dos pontos tais que $\Re z \geq 1$.

C: o conjunto $\Pi^+ - (A^- \cup A^+ \cup B^- \cup B^+)$

Observemos agora que

$$\phi_A(A^- \cup A^+ \cup B^+ \cup C) = B^+$$

$$\phi_A^{-1}(A^- \cup A^+ \cup B^- \cup C) = B^-$$

$$\phi_B(C \cup A^+ \cup B^+ \cup B^+) = A^+$$

$$\phi_B^{-1}(C \cup A^- \cup B^- \cup B^+) = A^-$$

Para as duas últimas conclusões usamos a seguinte observação

$$j(z) = \frac{z}{2z+1} = \frac{1}{2} - \frac{1}{2(2z+1)} \Leftrightarrow (j(z) - \frac{1}{2})(z + \frac{1}{2}) = -\frac{1}{4}$$

Essa transformação é semelhante à inversão no plano euclidiano na circunferência de centro $-\frac{1}{2}$ e raio $\frac{1}{2}$. Porém ela leva os vetores que teriam origem em $(-\frac{1}{2},0)$ (na inversão usual) nos vetores com origem em $(\frac{1}{2},0)$ e simétricos em relação à reta $\Re z = \frac{1}{2}$.

Queremos provar que as composições de transformações do tipo do enunciado não podem ser iguais à identidade. Para tal podemos observar aonde transformações desse tipo levam o número i. Chamemos de ϕ a transformação em questão. Observemos que se $i_0 > 0$, então $\phi(C) = B^+$, se $i_0 < 0$, então $\phi(C) = B^-$ e se $i_0 = 0$, então $\phi(C) = A^-$ ou $\phi(C) = A^+$. Como $i \in C$ temos que $\phi(i) \neq i$ e portanto $\phi \equiv id$ não pode acontecer.

Problema 4. Seja g(x) = f(x+r) - f(x), que é contínua para todo r > 0. Suponhamos que $g(x) \neq 0$ $\forall x \in \mathbb{R}$. Pela continuidade de g, ou temos g(x) > 0 para todo x, ou g(x) < 0 para todo x.

Se g(x)>0, então $f(nr)>f((n-1)r)>\cdots>f(r)>f(0)>f(-r)>\cdots>f(-(n-1)r)>f(-nr)$ para todo inteiro positivo n e $\alpha=\lim_{n\to\infty}f(nr)\geq f(r)>f(0)>f(-r)\geq \lim_{n\to\infty}f(-nr)=\alpha$, uma contradição. (O caso g(x)<0 é análogo)

Dessa forma g(x) deve ser zero para algum x e, então, f(x+r) = f(x) para algum x.

Problema 5. As operações possíveis nos permitem rodar as pessoas sentadas de 1 a n para colocarmos quem quisermos na posição 1 e nos deixam trocar de lugar as pessoas vizinhas no polígono estrelado de "tamanho" k-1. Isto é, sendo P_1, \ldots, P_n os vértices do n-ágono regular, o poligono estrelado é $P_1P_kP_{2k-1}\ldots P_{m(k-1)+k}$ onde os índices são tomados modulo n e m é o menor tal que $m(k-1)+k\equiv 1\pmod n$. Repare que isso ocorre para o menor t tal que m(k-1)+k=tn+1, ou seja, $t=\frac{k-1}{mdc(n,k-1)}$.

A ideia é que podemos girar (k-1)u vezes no sentido horário e trocar as posições 1 e k. Isso gera as transposições do polígono estrelado entre vizinhos e, portanto, gera todas permutações possíveis dentro de cada polígono estrelado e é fácil ver que o segundo movimento permitido só nos permite fazer essas permutações. Mas também podemos girar algumas vezes antes de considerar o polígono estrelado (assim consideramos todos polígonos estrelados de tamanho k-1) e também é claro que a permutaçõe que podemos fazer em um polígono não interfere nas permutações que fazemos em outros polígonos.

Então, sendo L o número de polígonos estrelados distintos, temos $\frac{n}{L}$ vértices em cada polígono estrelado e o número de permutações que podemos fazer é $L((\frac{n}{L})!)^L$, pois temos L maneiras de escolher qual será a classe de polígono que estará na posição 1 e $(\frac{n}{L})!$ maneiras de permutarmos dentro de cada classe.

Como o número de vértices em cada polígono estrelado é $m+1=\frac{nt}{k-1}=\frac{n}{mdc(n,k-1)}=\frac{n}{L},\ L=mdc(n,k-1)$ e temos $mdc(n,k-1)((\frac{n}{mdc(n,k-1)})!)^{mdc(n,k-1)}$ configurações distintas de pessoas na mesa.

Problema 6. Sejam $a_0 = a$ e $a_1 = a + x$, onde $a, x \in \mathbb{Z}$. Como $\frac{1}{a_0}, \frac{1}{a_1}, \dots, \frac{1}{a_n}$ formam uma progressão aritmética, temos que

$$\frac{1}{a_0} - \frac{1}{a_1} = \frac{x}{a(a+x)}$$
$$\frac{1}{a_2} = \frac{a-x}{a(a+x)}$$

E portanto

$$\frac{1}{a_k} = \frac{a - (k-1)x}{a(a+x)}$$

Seja a progressão aritmética de inteiros $b_i = a - (n - i)x$. Temos então que $b_i | a_0 a_1$ e portanto $m.m.c.(b_1, b_2, \ldots, b_n) | a_0 a_1$. Observe que como a_i é um inteiro positivo para $0 \le i \le n$ temos que

$$a > (n-1)x \Rightarrow a + x < \frac{n}{n-1}a$$
$$a_0 a_1 < \frac{n}{n-1}a^2 < 2a^2$$

Da desigualdade acima também concluímos que a > n-1 e portanto $a \ge n$ e em particular $a_0 a_1 < a^3$ Vamos agora usar um resultado que diz que $m.m.c.(b_1,b_2,\ldots,b_n) \ge b_n(x+1)^{n-2}$. Primeiro verificamos que com esse resultado resolvemos o problema. De fato

$$a^{3} > m.m.c.(b_{1}, b_{2}, ..., b_{n}) \ge b_{n}(x+1)^{n-2} \ge 2^{n-2}$$

$$4a^{3} > 2^{n} \Rightarrow a^{5} \ge 4a^{3} > 2^{n}$$

$$a > (2^{\frac{1}{5}})^{n}$$

E então basta tomarmos $C = 2^{\frac{1}{5}}$.

Para provarmos o resultado desejado vamos provar, por simplicidade de notação, na seguinte forma: Seja (u_0, u_1, \ldots, u_n) uma progressão aritmética crescente de inteiros positivos de razão r primo relativo com u_0 .

Lema 0.3. Sejam $\{\alpha_i\}_{i\in\mathbb{N}}$ e $\{\beta_i\}_{i\in\mathbb{N}}$ sequência de inteiros e γ um inteiro tal que

$$\sum_{i=1}^{n} \frac{1}{\alpha_i} \frac{1}{\beta_i} = \frac{1}{\gamma}$$

Então vale que

$$\gamma | m.m.c.(\alpha_1, \alpha_2, \dots, \alpha_n) m.m.c.(\beta_1, \beta_2, \dots, \beta_n)$$

Demonstração. É trivialmente verdade, basta olhar os denominadores.

Agora observemos que

$$\sum_{i=k}^{n} \frac{1}{u_i} \prod_{i \neq i} \frac{1}{u_i - u_j} = \frac{1}{u_k \dots u_n}, 0 \le k \le n$$

Temos então como corolário do Lema que

$$u_k u_{k+1} \dots u_n | m.m.c.(u_k, \dots, u_n) r^{n-k} (n-k)!$$

Como assumimos u_0 e r primos relativos temos que r e $u_0 \dots u_n$ são primos relativos. Portanto

$$\frac{u_k \dots u_n}{(n-k)!} | m.m.c.(u_k, \dots, u_n)$$

Agora vamos mostrar a seguinte fórmula

$$\frac{u_k \dots u_n}{(n-k)!} = \frac{r^{n-k+1}}{\int_0^1 x^{k+\frac{u_0}{r}-1} (1-x)^{n-k} dx}$$

Ela segue da seguinte expressão

$$\frac{r^{n-k+1}\frac{u_k}{r}(\frac{u_k}{r}+1)\dots(\frac{u_k}{r}+(n-k))}{(n-k)!} = r^{n-k+1}\frac{\Gamma(\frac{u_k}{r}+n-k+1)}{\Gamma(\frac{u_k}{r})\Gamma(n-k+1)}$$
$$\frac{u_k\dots u_n}{(n-k)!} = \frac{r^{n-k+1}}{\beta(\frac{u_k}{r},n-k+1)}$$

E substituindo a fórmula da função β o resultado segue.

Vamos usar a expressão acima para $k = \left\lfloor \frac{n-1}{r+1} + 1 \right\rfloor$. Tal k satisfaz $\frac{n-1}{r+1} < k \le \frac{n-1}{r+1} + 1 = \frac{n+r}{r+1}$. Portanto

$$r^{n-k+1} \geq r^{\frac{(n-1)r}{r+1}+1}$$

Além disso, para $x \in [0,1]$ vale

$$x^{k + \frac{u_0}{r} - 1} (1 - x)^{n - k} \le x^{\frac{n - 1}{r + 1} + \frac{u_0}{r} - 1} (1 - x)^{\frac{(n - 1)r}{r + 1}}$$

Observando que $x(1-x)^r \leq \frac{r^r}{(r+1)^{r+1}}$ e integrando a última desigualdade de 0 até 1 obtemos

$$\int_0^1 x^{k + \frac{u_0}{r} - 1} (1 - x)^{n - k} \le \left(\frac{r^r}{(r+1)^{r+1}}\right)^{\frac{n-1}{r+1}} \frac{r}{u_0}$$

Juntando com a fórmula acima e a primeira desigualdade com r, obtemos:

$$\frac{u_k \dots u_n}{(n-k)!} \ge u_0(r+1)^{n-1}$$

O que conclui a demonstração.

Se o termo inicial e a razão da progressão aritmética não forem primos relativos obtemos a cota inferior acima multiplicada pelo m.d.c. desses.

Problema 2.

Inicialmente, podemos tomar $\epsilon_1 > 0$ tal que para todo x com $0 < x < \epsilon_1$ temos f(x) com o mesmo sinal (podendo haver pontos nos quais f é nula). Suponha, sem perda de generalidade que $f(x) \ge 0$ para $0 < x < \epsilon_1$. Como f(0) = 0 e f é contínua, existe $\epsilon_2 > 0$ tal que $0 \le |f(x)| < 1/2$ para $0 < x < \epsilon_2$. Tomando $0 < \epsilon < \min\{\epsilon_1, \epsilon_2\}$, temos que $0 \le f(x) < 1/2$ para $x \in (0, \epsilon)$.

Logo, para $x \in (0, \epsilon)$ tal que f(x) > 0, vale que:

$$|f'(x)| \le |f(x)\log|f(x)|| = -f(x)\log f(x) \Rightarrow f'(x) \le -f(x)\log f(x) \Rightarrow$$

$$\Rightarrow \frac{f'(x)}{f(x)} + \log f(x) \le 0 \Rightarrow \frac{f'(x)}{f(x)} e^x + \log f(x) e^x \le 0 \Rightarrow (e^x \log f(x))' \le 0.$$

Logo, para qualquer intervalo $(a,b) \subset (0,\epsilon)$ no qual f(x) > 0 para todo x nele, temos que

$$g(x) = e^x \log f(x)$$

é decrescente. Veja também que $g(x) = e^x \log f(x)$ é tal que g(x) < 0, já que 0 < f(x) < 1/2.

Vamos mostrar que existe um intervalo (a,b) como acima tal que f(a)=0. Se f não é 0 em todos os pontos do intervalo $(0,\epsilon)$ existe t tal que f(t)>0. Agora, considere o conjunto

$$C = \{x | x \in [0, t) \in f(x) \le 0\}.$$

Como f(0) = 0, temos que C é não vazio e limitado. Logo, C tem supremo e seja $c = \sup C$.

Vamos mostrar que (c,t) satisfaz o desejado. De fato, se $x \in (c,t)$, como $x \in [0,t)$ e x > c, então f(x) > 0. Além disso, é fácil ver que existe uma sequência de pontos de C que tende a c. Portanto, por continuidade $f(c) \le 0$. Mas se f(c) < 0, existe um ponto u em (c,t) próximo de c tal que f(u) < 0, absurdo, pois $c = \sup C$ e teríamos $u \in C$. Logo f(c) = 0 e temos o desejado.

Agora, considere o limite de g(x) quando x tende a c pelos positivos. Temos que g(x) é decrescente em (c,t) e, como f(x) > 0, temos g(x) < 0 para todo x em (c,t). Logo, g(x) é limitada superiormente e por isso existe

$$\lim_{x \to c^+} g(x)$$

Mas, como f(c) = 0, temos que $\log f(x)$ vai para $-\infty$ e e^x vai para e^c . Logo g(x) vai para $-\infty$ e portanto o limite não existe, absurdo.

Portanto, f(x) = 0 para todo $x \in (0, \epsilon)$.

Podemos então repetir o argumento começando de ϵ . Vamos então cobrindo os reais positivos com intervalos nos quais f(x) = 0. Seja $(d_k)_{k \in \mathbb{N}}$ a sequência dos tamanhos desse intervalo. Veja que de fato os intervalos devem cobrir todos os reais positivos, pois caso contrário, teríamos que a soma

$$d_1 + d_2 + d_3 + \dots = c$$

iria convergir e, por continuidade, teríamos f(x)=0 para $x\leq c$. Em particular, poderíamos repetir o argumento para c, aumentando a união de intervalos, absurdo. Repetindo o argumento para x<0, temos que f(x)=0 para todo $x\in\mathbb{R}$, como desejado.

Problema 1.

Note que não podemos ter nenhuma solução com z=0, pois 0^0 é indefinido e $n^0=1$ caso contrário. Tendo em mente que o lado esquerdo cresce muito mais rápido que o lado direito, pois $2^z>z$ para todo inteiro z, nós vamos separar em diversos casos, com respeito a |x| e |y|.

- (i) x = 0: Então temos a equação $y^z = z$, que tem como única solução y = 1 e z = 1 (z > 0, caso contrário x^z não estaria definido), que nos dá a tripla (0, 1, 1).
- (ii) y=0: Analogamente ao caso acima, encontramos a solução (1,0,1)
- (iii) |x| = |y| = 1: Nós podemos separar nos casos x = 1 e y = 1; x = 1 e y = -1; x = -1 e y = 1; x = -1 e y = -1. Em todos eles, nós concluímos que z = 2, o que nos dá as triplas (1, 1, 2), (1, -1, 2), (-1, 1, 2) e (-1, -1, 2).
- (iv) $|x| \ge 2 e |x| \ge |y|$: Se

Problema 2.

A cada $X = (x_1, x_2, ..., x_n)$, nós associamos o vetor $v(X) = (x_1, x_1 + x_2, ..., x_1 + x_2 + ... + x_n)$. Note que se $X \neq Y$, então $v(X) \neq v(Y)$. Mais ainda, podemos associar a cada X a soma das coordenadas de v(X), i.e.

$$s(X) = x_1 + (x_1 + x_2) + \cdots + (x_1 + x_2 + \cdots + x_n).$$

Note que, se X < Y, então s(X) < s(Y). Além disso, toda cadeia maximal $Z_1 > Z_2 > \cdots > Z_k$ deve ter elemento maximal $Z_1(1,1,\ldots,1)$ e como como elemento minimal $Z_k = (0,0,\ldots,0)$, que têm como somas associadas os valores $\frac{n(n+1)}{2}$ e 0, respectivamente. Como a cada outro $Z_1 > Z_i > Z_k$ temos associado um número

$$0 < s(Z_i) < \frac{n(n+1)}{2},$$

temos, no máximo, tantos elementos em nossa cadeia quanto inteiros em $\left\{0,1,2,\ldots,\frac{n(n+1)}{2}\right\}$. Isto é, $k \leq \frac{n(n+1)}{2} + 1$. Por outro lado, esta função também nos dá uma cadeia máxima. Basta associar a cada número k nesse intervalo um vetor X_k tal que $s(X_k)$ =k

Problema 3.