$$A-B-(CH2)n N R4$$

$$R2 R3$$
(I)

wherein:

m is 1 or 2

each R^1 is independently hydroxy; (C_{1-6}) alkoxy optionally substituted by (C_{1-6}) alkoxy, amino, piperidyl, guanidino or amidino optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups, NH₂CO, hydroxy, thiol, (C_{1-6}) alkylthio, heterocyclylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C_{1-6}) alkylsulphonyloxy; (C_{1-6}) alkoxy-substituted (C_{1-6}) alkyl; halogen; (C_{1-6}) alkylthio; nitro; azido; acyl; acyloxy; acylthio; (C_{1-6}) alkylsulphonyl; (C_{1-6}) alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups; either R^2 is hydrogen; and

 R^3 is in the 2- or 3-position and is hydrogen or (C_{1-6}) alkyl or (C_{2-6}) alkenyl optionally substituted with 1 to 3 groups selected from:

thiol; halogen; (C₁₋₆)alkylthio; trifluoromethyl; azido; (C₁₋ 6)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; (C₂₋₆)alkenyloxycarbonyl; (C₂₋₆) 6) alkenylcarbonyl; hydroxy optionally substituted by (C₁₋₆) alkyl, (C₂₋₆) alkenyl, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl, (C₂₋₁ 6)alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylcarbonyl or (C₂₋ 6)alkenylcarbonyl; amino optionally mono- or disubstituted by (C₁₋ 6) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) 6)alkenylcarbonyl, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylsulphonyl, (C₂₋ 6) alkenyl sulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl(C_{1-6})alkyl, (C_{2-6})alkenyl, (C_{1-6})alkoxycarbonyl, (C_{1-6}) 6)alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl or (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl(C_{1-6})alkyl or (C_{2-6})alkenyl; oxo; (C_{1-6})alkylsulphonyl; (C_{2-6})

6)alkenylsulphonyl; or aminosulphonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; or

 R^3 is in the 3-position and R^2 and R^3 together are a divalent residue = $CR^5^1R^6^1$ where R^5^1 and R^6^1 are independently selected from H, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, aryl (C_{1-6}) alkyl and aryl (C_{2-6}) alkenyl, any alkyl or alkenyl moiety being optionally substituted by 1 to 3 groups selected from those listed above for substituents on R^3 ;

 R^4 is a group -CH₂- R^5 in which R^5 is selected from:

 $(C_{3-12}) \text{alkyl}; \ \text{hydroxy}(C_{3-12}) \text{alkyl}; \ (C_{1-12}) \text{alkoxy}(C_{3-12}) \text{alkyl}; \ (C_{1-12}) \text{alkoxy}(C_{3-12}) \text{alkyl}; \ (C_{1-12}) \text{alkyl}; \ (C_{1-12}) \text{alkyl}; \ \text{hydroxy-}, \ (C_{1-12}) \text{alkoxy-} \ \text{or} \ (C_{1-12}) \text{alkanoyloxy-}(C_{3-6}) \text{cycloalkyl}(C_{3-12}) \text{alkyl}; \ \text{cyano}(C_{3-12}) \text{alkyl}; \ (C_{2-12}) \text{alkynyl}; \ \text{tetrahydrofuryl}; \ \text{mono-} \ \text{or} \ \text{di-}(C_{1-12}) \text{alkyl-} \ \text{or} \ \text{acylamino}(C_{3-12}) \text{alkyl}; \ (C_{1-12}) \text{alkyl-} \ \text{or} \ \text{acylaminocarbonyl}(C_{3-12}) \text{alkyl}; \ \text{mono-} \ \text{or} \ \text{di-}(C_{1-2}) \text{alkylamino}(\text{hydroxy}) \ (C_{3-12}) \text{alkyl}; \ \text{optionally substituted phenyl}(C_{1-2}) \text{alkyl}, \ \text{phenoxy}(C_{1-2}) \text{alkyl}; \ \text{optionally substituted benzoyl} \ \text{or} \ \text{benzoylmethyl}; \ \text{optionally substituted heteroaryl}(C_{1-2}) \text{alkyl}; \text{and optionally substituted heteroaroyl} \ \text{or} \ \text{heteroaroylmethyl}; \ \text{optionally substituted heteroaroyl} \ \text{or} \ \text{heteroaroylmethyl}; \ \text{optionally substituted heteroaroyl} \ \text{or} \ \text{heteroaroylmethyl}; \ \text{optionally} \ \text{substituted heteroaroyl} \ \text{or} \ \text{heteroaroylmethyl}; \ \text{optionally} \ \text{substituted heteroaroyl} \ \text{or} \ \text{heteroaroylmethyl}; \ \text{optionally} \ \text{optionally$

n is 0, 1 or 2;

A is NR^{11} , O, $S(O)_X$ or CR^6R^7 and B is NR^{11} , O, $S(O)_X$ or CR^8R^9 where x is 0, 1 or 2 and wherein:

each of R^6 and R^7 R^8 and R^9 is independently selected from: H; thiol; (C_{1-6}) alkylthio; halo; trifluoromethyl; azido; (C_{1-6}) alkyl; (C_{2-6}) alkenyl; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkenylcarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R^3 ; (C_{1-6}) alkylsulphonyl; (C_{2-6}) alkenylsulphonyl; or (C_{1-6}) aminosulphonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{1-6}) alkenyl;

or \mathbb{R}^6 and \mathbb{R}^8 together represent a bond and \mathbb{R}^7 and \mathbb{R}^9 are as above defined;

or R^6 and R^8 together represent -0- and R^7 and R^9 are both hydrogen; or R^6 and R^7 or R^8 and R^9 together represent oxo;

and each R^{11} is independently H, trifluoromethyl, (C_{1-6}) alkyl, (C_{1-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{1-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{1-6}) alkyl

International Application No: PCT/EP99/00333

International Filing Date: 21 January 1999

or (C_{1-6}) alkenyl and optionally further substituted by (C_{1-6}) alkyl or (C_{1-6}) alkenyl;

provided that A and B cannot both be selected from NR^{11} , O and $S(O)_X$ and when one of A and B is CO the other is not CO, O or $S(O)_X$.

- 18. A compound of formula (IA) which is a compound of formula (I) wherein \mathbb{R}^3 is hydroxy(\mathbb{C}_{1-6})alkyl or 1,2-dihydroxy(\mathbb{C}_{2-6})alkyl optionally substituted on the hydroxy group(s).
- 19. A compound of formula (IB) which is a compound of formula (I) wherein at least one R^1 is (C_{2-6}) alkoxy substituted by optionally N-substituted amino, guanidino or amidino or C_{1-6} alkoxy substituted by piperidyl, A is CH₂, CHOH, CH(NH₃), C(Me)(OH) or CH(Me) and B is CH₂, CHOH or CO.
- 20. A method according to claim 17 wherein R^1 is in the 6-position on the quinoline nucleus and is methoxy, amino(C_{3-5})alkyloxy, nitro or fluoro and m is 1.
- 21. A method according to claim 17 or 20 wherein R^3 is (C_{1-6}) alkyl, (C_{1-6}) alkenyl, optionally substituted 1-hydroxy- (C_{1-6}) alkyl.
- 22. A method according to claim 21 wherein R³ is hydroxymethyl, 1-hydroxyethylor 1,2-dihydroxyethyl wherein the 2-hydroxy group is optionally substituted with alkylcarbonyl or aminocarbonyl where the amino group is optionally substituted.
- 23. A method according to claim 17 wherein R3 is in the 3-position.
- 24. A method according to claim 17 wherein A is NH, NCH₃, O, CH₂, CHOH, CH(NH₃), C(Me)(OH) or CH(Me) and B is CH₂, CHOH, CO or S or A is CR^6R^7 and B CR^8R^9 and R^6 and R^8 together represent -O- and R^7 and R^9 are both hydrogen, and n is 0 or 1.
- 25. A method according to claim 24 wherein:

A is NH, B is CO and n is 1 or 0;

A is O, B is CH2 and n is 1 or 0;

A is CH2 or CH2OH, B is CH2, and n is 1 or 0;

A is NCH₃, CH(NH₃), C(Me)(OH) or CH(Me), B is CH₂ and n is 1

A is CR^6R^7 and B CR^8R^9 and R^6 and R^8 together represent -O- and R^7 and R^9 are both hydrogen and n is 1.

- 26. A method according to claim 17 wherein R^4 is (C_{5-10}) alkyl, unsubstituted phenyl (C_{2-3}) alkyl or unsubstituted phenyl (C_{3-4}) alkenyl.
- 27. A method according to claim 17 wherein R^5 is unbranched at the α and, where appropriate, β positions.
- 28. A compound of formula (I) as defined in claim 17 selected from:

[3R,4R]-3-Ethyl-1-hexyl-4-[3-oxo-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-3-Ethyl-1-hexyl-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R] 3-Ethyl-1-heptyl-4-[3-oxo-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R] 3-Ethyl-1-octyl-4-[3-oxo-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-3-Ethyl-1-octyl-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-3-Ethyl-1-decyl-4-[3-oxo-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-3-Ethyl-1-decyl-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-3-Ethyl-1-dodecyl-4-[3-oxo-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R] 3-Ethyl-1-dodecyl-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-3-Ethyl-1-cinnamyl-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-3-Ethyl-1-heptyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-3-Ethenyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-hydroxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-1-Heptyl-3-(2-hydroxyethyl)-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-[5-phthalimidopentyloxy]-quinolin-4-yl)propyl]piperidine;

[3R,4R]-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-[5-aminopentyloxy]-quinolin-4-yl)propyl]piperidine;

```
International Application No: PCT/EP99/00333
International Filing Date: 21 January 1999
[3R,4R]-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-[2-Amino-2-oxo-1,1-
dimethyl]ethoxyquinolin-4-yl)propyl]piperidine;
[3R,4R]-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-[2-hydroxy-2-methyl-
propionamido]quinolin-4-yl)propyl]piperidine;
[3R,4R]-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-aminoquinolin-4-
yl)propyl]piperidine;
[3R,4R]-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-azidoquinolin-4-
yl)propyl]piperidine;
[3R,4R]-3-Ethyl-1-heptyl-4-[3-(6-hydroxyquinolin-4-yl)propyl]piperidine;
[3R,4R]-3-Ethyl-1-heptyl-4-[3-(6-propyloxyquinolin-4-yl)propyl]piperidine;
[3R,4R]-3-Ethyl-1-heptyl-4-[3-(6-(5-Phthalimidopentyloxy)-quinolin-4-
yl)propyl]piperidine;
[3R,4R]-3-Ethyl-1-heptyl-4-[3-(6-(5-aminopentyloxy)-quinolin-4-
yl)propyl]piperidine;
[3R,4R]-3-Ethenyl-1-(2-t-butyloxycarbonylaminoethyl)-4-[3-(6-methoxyquinolin-
4-yl)propyl]piperidine;
[3R,4R]-3-Ethenyl-1-(2-phenoxyethyl)-4-[3-(6-methoxyquinolin-4-
yl)propyl]piperidine;
[3R,4R]-3-Ethyl-1-(4-ethylbenzyl)-4-[3-(6-methoxyquinolin-4-
yl)propyl]piperidine;
[3S,4R]-3-Ethenyl-1-heptyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;
[3R,4R]-3-Ethenyl-1-heptyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;
[3R,4R]-1-Heptyl-3-(2-hydroxyethyl)-4-[3-(6-methoxyquinolin-4-
yl)propyl]piperidine;
[3R,4R]-1-Heptyl-3-(2-acetoxyethyl)-4-[3-(6-methoxyquinolin-4-
yl)propyl]piperidine;
[3R,4R]-1-Heptyl-3-(3-hydroxypropyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;
[3R,4R]-1-Heptyl-3-(1-hydroxyethyl)-4-[3-(6-methoxyquinolin-4-
yl)propyl]piperidine;
[3R,4R]-3-Ethyl-1-(2-phenylethyl)-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-
yl)propyl]piperidine;
[3R,4R]-3-Ethyl-1-(3-phenylpropyl)-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-
```

[3R,4R]-3-Ethyl-1-(3-phenylpropyl)-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

Heptyl-4-[2-(R,S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

 $1\hbox{-Heptyl-}4\hbox{-}[3\hbox{-}(6\hbox{-methoxyquinolin-}4\hbox{-}yl)prop-2\hbox{-enyl}] piperidine;$

1-Heptyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine:

[3R,4R]-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-yl)butyl]piperidine:

```
International Application No: PCT/EP99/00333
International Filing Date: 21 January 1999
```

```
[3R,4R]-3-Ethenyl-1-heptyl-4-[3-(R,S)-azido-3-(6-methoxyquinolin-4-yl)propyl]piperidine;
```

[3R,4R]-3-Ethenyl-1-heptyl-4-[3-(R,S)-amino-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-3-Ethyl-1-heptyl-4-(3-(R,S)-amino-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-3-Ethyl-1-heptyl-4-[3-(6-methoxyquinolin-4-yl)butyl]piperidine;

[3R,4R]-3-Ethenyl-1-heptyl-4-(3-(R,S)-acetamido-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-1-Heptyl-3-(2-(R,S)-Hydroxypropyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-1-Heptyl-3-(1-(R,S),2-dihydroxyethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-1-Heptyl-3-aminocarbonyloxyethyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-3-Ethyloxycarbonylaminocarbonyloxyethyl-1-heptyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-3-(1-(R,S)-2-Dihydroxyethyl)-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R, 4R]-3-Ethyl-1-heptyl-4-[(6-methoxyquinolinyl-4-oxy)methyl]piperidine;

[3R,4S]-3-Ethenyl-1-heptyl-4-[2-(6-methoxyquinolin-4-yl)-oxyethyl] piperidine;

 $1\hbox{-}Heptyl\hbox{-}4\hbox{-}[(6\hbox{-}methoxyquinolin\hbox{-}}4\hbox{-}yl)oxymethyl] piperidine;$

[3R,4R]-3-Ethyl-1-heptyl-4-[(6-methoxyquinolin-4-

yl)methylthiomethyl]piperidine;

[3R,4R]-1-Heptyl-3-ethenyl-4-[{(6-methoxyquinoline-4-

yl)carbonylamino}methyl]piperidine;

[3R,4R]-3-Ethenyl-1-heptyl-piperidine-4-[N-(6-methoxyquinolin-4-yl)]propionamide;

[3R,4R]-3-Ethenyl-1-heptyl-piperidine-4-[N-(6-methoxyquinolin-4-yl)]propylamine;

[3R,4S]-3-Ethenyl-1-heptyl-piperidine-4-[N-(6-methoxyquinolin-4-yl)] acetamide;

[3R,4R]-3-Ethenyl-1-heptyl-piperidine-4-[N-(6-methoxyquinolin-4-yl)]ethylamine;

[3R,4S]-3-Ethenyl-1-heptyl-4-[2-(R,S)-hydroxy-2-(6-methoxyquinolin-4-yl)ethyl]piperidine;

[3R,4R]-3-Ethenyl-1-heptyl-4-[2-(6-methoxyquinolin-4-yl)ethyl]piperidine;

[3R.4R]-3-Ethyl-1-heptyl-4-[2-(6-methoxyquinolin-4-yl)ethyl]piperidine;

1-Heptyl-4-[2(*R*,*S*)-hydroxy-2-(6-methoxy-4-quinolinyl)ethyl]-piperidine;

[3S,4R]-3-Ethenyl-1-heptyl-4-[2-(6-methoxyquinolin-4-yl)ethyl]piperidine;

N-(6-Methoxy-4-quinolinyl)-1-heptyl-4-piperidinecarboxamide;

(3Z)-(4R)-3-Ethylidene-1-heptyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4S] -1-Cinnamyl-4-[2-(6-methoxyquinolin-4-yl)-oxyethyl]piperidine;

[3R,4R]-3-(2-Acetoxyethyl)-1-heptyl-4-[3-(6-methoxy-quinolin-4-yl)propyl]piperidine;

[3R,4R]-3-Ethyl-1-heptyl-4-[3-(6-{2-hydroxyethyloxy}quinolin-4-yl)propyl]piperidine;

[3R,4R]-3-(Ethylaminocarbonyloxyethyl)-1-heptyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-3-Ethenyl-1-heptyl-4-[3-(R,S)-aminocarbonylamino-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-3-Ethyl-1-heptyl-4-[3-(6-(4-aminobutyloxy)-quinolin-4-yl)propyl]piperidine;

[3R, 4R]-1-Heptyl-3-(1-(R)- and 1-(S)-hydroxy-2-methoxyethyl)-4-[3-(6-methoxyquinolin-4-yl) propyl] piperidine;

[3R, 4R]-1-Heptyl-3-(1-(R)- and 1-(S)-hydroxy-2-methylthioethyl)-4-[3-(6-methoxyquinolin-4-yl) propyl]piperidine;

[3R, 4R]-1-(5-Methylhexyl)-3-(1-(R)- and 1-(S)-2-dihydroxyethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R, 4R]-3-Ethyl-1-heptyl-4-[3-(6-(3-aminopropyl)oxyquinolin-4-yl) propyl]piperidine;

[3R, 4R]-3-Ethyl-1-heptyl-4-[3-(6-(2-aminoethyl)oxyquinolin-4-yl) propyl]piperidine;

[3R,4R]-3-Ethyl-1-heptyl-4-[3-(6-(3-guanidinopropyl)oxyquinolin-4-yl) propyl] piperidine;

[3R, 4R]-3-Ethyl-1-heptyl-4-[3-(6-(piperidine-4-yl) methoxyquinolin-4-yl) propyl]piperidine;

[3R, 4S]-1-Heptyl-3-vinyl-4-[3-(6-methoxyquinolin-4-yl)-(R,R)-oxiran-2-ylmethyl]piperidine;

[3R, 4S]-1-Heptyl-4-[(2S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]-3-vinylpiperidine;

[3R, 4S]-1-Heptyl-3-vinyl-4-[3-(6-methoxyquinolin-4-yl)-(S,S)-oxiran-2-yl-methyl]piperidine;

[3R, 4S]-3-Ethyl-1-heptyl-4-[2-(S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R, 4S]-1-Heptyl-4-[N-methyl-N-(6-methoxyquinolin-4-yl)aminoethyl]-3-vinylpiperidine;

[3R,4R]-1-Heptyl-3-(1-(R,S)-hydroxyethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-1-Heptyl-3-(1-(R,S)-hydroxy-1-methylethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-1-Heptyl-3-hydroxymethyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-1-(6-Methylheptyl)-3-(1-(R) and 1-(S),2-dihydroxyethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R, 4S]-1-Heptyl-4-[(2S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]-3-(2-hydroxyethyl)piperidine;

[3R, 4S]-1-Heptyl-3-aminocarbonyloxymethyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperdine and

[3R, 4R]-1-Heptyl-4-[3-(6-methoxyquinolin-4-yl)propyl]-3-(2-carbamoylethyl)piperidine;

or a pharmaceutically acceptable derivative of any of the foregoing compounds.

- 29. A process for preparing a compound of formula (IA), or a pharmaceutically acceptable derivative thereof, according to claim 18 which process comprises:
 - (a) reacting a compound of formula (IV) with a compound of formula (V):

wherein m, n, R^1 , R^2 , R^3 and R^4 are as defined in formula (I), and X and Y may be the following combinations:

- (i) X is M and Y is $CH_2CO_2R^X$
- (ii) $X \text{ is } CO_2R^y \text{ and } Y \text{ is } CH_2CO_2R^x$
- (iii) one of X and Y is CH=SPh₂ and the other is CHO
- (iv) X is CH₃ and Y is CHO
- (v) X is CH₃ and Y is CO_2R^X
- (vi) X is CH₂CO₂R^y and Y is CO₂R^x
- (vii) X is CH=PRZ3 and Y is CHO
- (viii) X is CHO and Y is CH=PRZ₃
- (ix) X is halogen and Y is CH=CH₂
- (x) one of X and Y is COW and the other is NHR¹¹ or NCO

- (xi) one of X and Y is $(CH_2)_p$ -V and the other is $(CH_2)_qNHR^{11}$, $(CH_2)_qOH$, $(CH_2)_qSH$ or $(CH_2)_qSCOR^x$ where p+q=1
- (xii) one of X and Y is CHO and the other is NHR¹¹
- (xiii) one of X and Y is OH and the other is $-CH=N_2$

in which V and W are leaving groups, R^x and R^y are (C_{1-6}) alkyl and R^z is aryl or (C_{1-6}) alkyl;

(b) rearranging a compound of formula (II):

$$R^{3}$$
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{2}

to give a compound of formula (III) which is a compound of formula (I) where R^3 is in the 3-position, n is 1, A-B is COCH₂ or disubstituted epoxide and R^2 is H, and thereafter optionally reducing to a compound of formula (VII) which is a compound of formula (I) where n is 1, A-B is CHOHCH₂ or CH₂CHOH and R^2 is H;

(c) photooxygenating a compound of formula (VI):

$$(R^1)_m$$
 $N-R^4$
 (VI)

or

 $\mbox{(d) reacting a compound of formula (IV) with a compound of formula} \mbox{(Vb):} \\$

$$X$$
 Y $(CH_2)_{n-1}$ NR^4 $(R^1)_m$ R^3 (IV) (Vb)

wherein m, n, R^1 , R^2 , R^3 and R^4 are as defined in formula (I), X is CH_2NHR^{11} and Y is CHO or COW or X is CH_2OH and Y is -CH= N_2 ;

in which R¹¹', R¹', R²', R³' and R⁴' are R¹¹, R¹, R², R³ and R⁴ or groups convertible thereto, and thereafter optionally or as necessary converting R¹¹', R¹', R²', R³' and R⁴' to R¹¹', R¹, R², R³ and R⁴, converting A-B to other A-B, interconverting R¹¹, R¹, R², R³ and/or R⁴ and forming a pharmaceutically acceptable derivative thereof.

- 30. A process for preparing a compound of formula (IB), or a pharmaceutically acceptable derivative thereof, according to claim 19 which process comprises:
 - (a) reacting a compound of formula (IV) with a compound of formula (V):

$$(R^{1'})_{m}$$

$$(R^{2'})_{n}$$

$$(IV)$$

$$(CH_{2})_{n}$$

$$(R^{3'})_{n}$$

$$(V)$$

wherein m, n, R^1 , R^2 , R^3 and R^4 are as defined in formula (I), and X and Y may be the following combinations:

- (i) X is M and Y is $CH_2CO_2R^X$
- (ii) X is CO_2R^y and Y is $CH_2CO_2R^x$
- (iii) one of X and Y is CH=SPh₂ and the other is CHO
- (iv) X is CH₃ and Y is CHO
- (v) X is CH₃ and Y is CO_2R^X
- (vi) X is $CH_2CO_2R^y$ and Y is CO_2R^x
- (vii) X is CH=PR^Z₃ and Y is CHO
- (viii) X is CHO and Y is CH=PRZ3
- (ix) X is halogen and Y is CH=CH₂
- (x) one of X and Y is COW and the other is NHR^{11} or NCO
- (xi) one of X and Y is $(CH_2)_p$ -V and the other is $(CH_2)_qNHR^{11}$, $(CH_2)_qOH$, $(CH_2)_qSH$ or $(CH_2)_qSCOR^x$ where p+q=1
- (xii) one of X and Y is CHO and the other is NHR¹¹
- (xiii) one of X and Y is OH and the other is -CH=N₂

in which V and W are leaving groups, R^x and R^y are (C_{1-6}) alkyl and R^z is aryl or (C_{1-6}) alkyl;

(b) rearranging a compound of formula (II):

$$(R^{1'})_m$$
(II)

to give a compound of formula (III) which is a compound of formula (I) where R³ is in the 3-position, n is 1, A-B is COCH₂ or disubstituted epoxide and R² is H, and thereafter optionally reducing to a compound of formula (VII) which is a compound of formula (I) where n is 1, A-B is CHOHCH₂ or CH₂CHOH and R² is H;

(c) photooxygenating a compound of formula (VI):

$$(R^1)_m$$
 $N-R^4$
 (VI)

or

 $\mbox{(d) reacting a compound of formula (IV) with a compound of formula} \mbox{(Vb):} \\$

$$(R^{1})_{m}$$

$$(CH_{2})_{\overline{n+1}}$$

$$R^{3}$$

$$(IV)$$

$$(Vb)$$

wherein m, n, R^1 , R^2 , R^3 and R^4 are as defined in formula (I), X is CH_2NHR^{11} and Y is CHO or COW or X is CH_2OH and Y is $-CH=N_2$;

in which R¹¹', R¹', R²', R³' and R⁴' are R¹¹, R¹, R², R³ and R⁴ or groups convertible thereto, and thereafter optionally or as necessary converting R¹¹', R¹', R²', R³' and R⁴' to R¹¹', R¹, R², R³ and R⁴, converting A-B to other A-B, interconverting R¹¹, R¹, R², R³ and/or R⁴ and forming a pharmaceutically acceptable derivative thereof.

31. A process for preparing a compound of formula (I), or a pharmaceutically acceptable derivative thereof, according to claim 28 which process comprises:

(a) reacting a compound of formula (IV) with a compound of formula (V):

$$(R^{1})_{m}$$

$$(CH_{2})_{n}$$

$$R^{3}$$

$$R^{3}$$

$$(IV)$$

$$(V)$$

wherein m, n, R^1 , R^2 , R^3 and R^4 are as defined in formula (I), and X and Y may be the following combinations:

- (i) X is M and Y is $CH_2CO_2R^X$
- (ii) $X \text{ is } CO_2R^y \text{ and } Y \text{ is } CH_2CO_2R^x$
- (iii) one of X and Y is CH=SPh2 and the other is CHO
- (iv) X is CH₃ and Y is CHO
- (v) $X \text{ is CH}_3 \text{ and } Y \text{ is CO}_2 R^X$
- (vi) $X \text{ is } CH_2CO_2R^y \text{ and } Y \text{ is } CO_2R^x$
- (vii) X is CH=PRZ3 and Y is CHO
- (viii) X is CHO and Y is CH=PRZ3
- (ix) X is halogen and Y is CH=CH2
- (x) one of X and Y is COW and the other is NHR¹¹ or NCO
- (xi) one of X and Y is $(CH_2)_p$ -V and the other is $(CH_2)_qNHR^{11}$, $(CH_2)_qOH$, $(CH_2)_qSH$ or $(CH_2)_qSCOR^x$ where p+q=1
- (xii) one of X and Y is CHO and the other is NHR¹¹
- (xiii) one of X and Y is OH and the other is -CH=N₂

in which V and W are leaving groups, R^X and R^Y are (C_{1-6}) alkyl and R^Z is aryl or (C_{1-6}) alkyl;

(b) rearranging a compound of formula (II):

$$(R^{T})_{m}$$

$$(II)$$

to give a compound of formula (III) which is a compound of formula (I) where R³ is in the 3-position, n is 1, A-B is COCH₂ or disubstituted epoxide and R² is H.

and thereafter optionally reducing to a compound of formula (VII) which is a compound of formula (I) where n is 1, A-B is CHOHCH₂ or CH₂CHOH and R² is H:

(c) photooxygenating a compound of formula (VI):

$$(R^{1'})_m$$
 $N-R^4$
 (VI)

or

 $\mbox{(d) reacting a compound of formula (IV) with a compound of formula} \label{eq:vb} \mbox{(Vb):}$

$$(R^1)_m$$
 $(CH_2)_{n-1}$
 $(CH_2)_{n$

wherein m, n, R^1 , R^2 , R^3 and R^4 are as defined in formula (I), X is CH_2NHR^{11} ' and Y is CH_3 or COW or X is CH_2OH and Y is CH_3 .

in which R¹¹', R¹', R²', R³' and R⁴' are R¹¹, R¹, R², R³ and R⁴ or groups convertible thereto, and thereafter optionally or as necessary converting R¹¹', R¹', R²', R³' and R⁴' to R¹¹', R¹, R², R³ and R⁴, converting A-B to other A-B, interconverting R¹¹, R¹, R², R³ and/or R⁴ and forming a pharmaceutically acceptable derivative thereof.

- 32. A pharmaceutical composition comprising a compound according to claim 18, and a pharmaceutically acceptable carrier.
- 33. A pharmaceutical composition comprising a compound according to claim 19, and a pharmaceutically acceptable carrier.
- 34. A pharmaceutical composition comprising a compound according to claim 18, and a pharmaceutically acceptable carrier.