Analyzing Massive Data Sets

Exercise 1: Effectiveness Metrics (homework)

- a) A database D and a query Q with following properties is given:
 - D contains 1000 documents.
 - Query Q returns 150 documents.
 - 120 of the returned documents are relevant for the user.
 - 810 documents that were not returned are not relevant for the user.

Calculate the **fallout** considering the given properties.

b) Calculate the **recall** R of a query Q if F-Measure $F_1(p,r) = 1/2$ and Precision P = 1/2?

Exercise 2: nDCG (homework)

Consider the following ranking of documents with **non-binary relevance 0-3**:

Calculate **normalized DCG** (**nDCG**) for all documents in the list.

Exercise 3: Transition Matrices (homework)

The following graph G is given:

- a) Specify the compact representation of the **transition matrix** for the graph G.
- b) Assume only the blocks of size s=2 fit into main memory. Specify the compact representation of the **transition matrix** for the graph G with this restriction.

Exercise 4: TrustRank (live)

Compute the **TrustRank** of each page of the following graph, assuming only B is a **trusted** page. Use $\beta=0.8$.

Exercise 5: PageRank with MapReduce (homework)

In this exercise you should implement **PageRank** algorithm using MapReduce approach. You can again rely on our simulator, which will provide means for a fixed number of iterations. Note that your MapReduce implementation should also handle the **dead ends**.

Exercise 6: HITS: Hubs and Authorities (live)

- a) Given the Graph G from above. First of all determine the adjacency matrix A and A^T for the graph G.
- b) Compute now the ranks for Hubs $h_j^{(t)}$ and Authorities $a_j^{(t)}$ using the HITS algorithm. You can rely on matrices from the previous step. Perform the iterations $t_i \mid i \in \{1,...,3\}$ and show the values for $h_j^{(t)}$ and $a_j^{(t)}$.

Note: Use following formulas for the normalization of $h_j^{(t)}$ and $a_j^{(t)}$: $\lambda = \frac{1}{\sqrt{\sum h_i^2}}$, $\mu = \frac{1}{\sqrt{\sum a_i^2}}$ as stated in the original HITS paper.

2