Scaling, Encoding & Feature Creation

6 Aim

Apply scaling (Min-Max, Standardization) and encoding (One-Hot, Label) to numerical and categorical

Create a **new feature** by combining or transforming existing columns.

Overview

This project demonstrates the preprocessing steps required before building a machine learning model. It covers:

- Handling numerical and categorical data
- Applying scaling techniques
- Performing **encoding methods**
- Creating **new features** through transformation or combination

Problem Statement

Raw datasets contain numerical and categorical values in different formats. Without preprocessing:

- Machine learning models may misinterpret the data
- Feature scales may affect performance
- Categorical columns may be unreadable for algorithms

This project solves these issues through structured preprocessing.

X Tools and Technologies

- **Python**
- Pandas Data manipulation
- **NumPy** Numerical operations
- Scikit-learn Scaling & Encoding
- Jupyter Notebook / VS Code (optional)

Methods Used

- 1. Scaling (Numerical Features)
 - Min-Max Scaling
 - Standardization (Z-score)
- 2. Encoding (Categorical Features)
 - Label Encoding
 - One-Hot Encoding
- 3. Feature Engineering
 - Create a new column by combining or transforming existing ones
 - o Example: Total_Score = Marks1 + Marks2
 - Example: Age_Group = Age // 10 * 10

Key Insights

- ✓ Scaling brings all numerical values to a comparable range
- √ Encoding helps convert categories into machine-readable format
- ✓ New feature creation improves data richness and prediction power
- Results & Conclusion
 - All numerical features are scaled properly
 - Categorical values are encoded correctly
 - A **new feature** is created using transformation
 - Data is now ready for model training or EDA