

Statistical and machine learning methods for engineering mechanics

Wengang Mao (Professor at Marine Technology)
Department of Mechanics and Maritime Sciences,
Chalmers University of Technology,
Goteborg, Sweden

1

Outline of this lecture

- Course objectives
- · Teaching format, examination and course schedule
- Definition of various terminologies (Al, ML, Data Science, Deep learning, ...)
- Overview of Machine learning techniques
- Course contents on ML methods
- Other matters

2

Course objectives

- Teach theories of statistical and machine learning methods
- Deal with two types of data, i.e., independent observations from multi-variables with uncertainties/noises, and strongly dependent observations of time series signals.
- Some practical projects to show how to use the knowledge in this course.
- Since this is a PhD course, it will rather run in a little fast pace. We hope that you should
 actively seek for literature to understand some concept by yourself. Or I can give your
 reference for further reading.

3 2023-03-28

3

Teaching format and examination

TEACHING, LANGUAGE AND EXAMINATION

LECTURE HOURS AND ROOMS

DISCUSSIONS

Teaching Format

- Composed of lectures: theory (40%) + examples (20%)
- Small tutorial exam (20% as your exercises)
- Project assignments (20% as homework)

Program/language for ML algorithms

- Python: sci-kit + several ML libraries
- R: statistical learning packages
- Others are also encouraged: Tensorflow, Pytorch, Keras

Examination and lectures

- Lectures mainly in the campus (2-4 hours with flexible times and locations)
- Examination is the presentation for the project assignment and seminars

2023-03-28

Course schedule and examination

Project assignment (homework)

- 3 projects assignments will be handed out
- You choose 2 of them to finish.
- Replace one with your own project.

Type of class	Date	Time	Room	Teachers	Contents
Week 14, 2023:	study week 1				
Lecture 1	Thu 6/4	9.00-11.00	M2/Zoom	Wengang	Course contents: Introduction to the course, learning objectives, and criteria for examination
Week 15, 2023:	study week 2				
Lecture 2	Tue 11/4	10.15-12.00	M2/Zoom	Wengang	Regression and statistical interpretation
Lecture 3	Thu 13/4	9.00-11.00	M2/Zoom	Wengang	Polynomial and Spline regression
Week 16, 2023:	study week 3				
Lecture 4	Mon 17/4	14.15-16.00	M2/Zoom	Wengang	Model parameter estimation - gradient
Lecture 5	Thu 20/4	9.00-11.00	M2/Zoom	Wengang	Generalized Linear Models and Additive models
Week 17, 2023:	study week 4				
Lecture 6	Mon 24/4	14.15-16.00	M2/Zoom	Xiao	Logistical regression and classification
Lecture 7	Thu 27/4	10.15-12.00	M2/Zoom	Xiao	ML algorithms 1 - Decision trees and boost methods
Week 18, 2023:	study week 5				
Lecture 8	Tue 2/5	14.15-16.00	M2/Zoom	Xiao	ML algorithms 2 - XGBoost for regression and examples
Lecture 9	Thu 4/5	9.00-11.00	M2/Zoom	DA	ML algorithms 3 - support vector machines
Week 18, 2023:	study week 6				
Lecture 10	Mon 8/5	14.15-16.00	M2/Zoom	DA	ML algorithms 4- neural network
Lecture 11	Thu 11/5	9.00-11.00	M2/Zoom	WM	Time Series 1, 2 – Basic properties of random process & Transformati and Gaussian process
Week 19, 2023:	study week 7				
Lecture 12	Mon 15/5	14.15-16.00	M2/Zoom	WM	Time Series 3 - Time series analysis and model exploration
Lecture 13	Thu 18/5	9.00-11.00	M2/Zoom	WM	Time Series 4 – Autoregressive integrated Moving Average model (1)
Week 20, 2023:	study week 8				
Lecture 14	Mon 22/5	14.15-16.00	M2/Zoom	WM	Time Series 5 - Autoregressive integrated Moving Average model (2)
Lecture 15	Wed 24/5	9.00-11.00	M2/Zoom	WM	Time Series 6 - A few examples of using ARIMA model applications
Week 21, 2023:	study week 9				
Lecture 16	8th June	14.15-16.00	M2/Zoom	Students	Seminars from students (presentation of their projects)
Lecture 17	31/08	14.15-16.00	M2/Zoom	Students	Seminars from students (presentation of their projects)

Definition of various terminologies (Al, ML, Data Science, Deep learning, ...)

2023-03-28

Artificial Intelligence (AI)

- Al is a field of development of intelligent machines that work and react like humans
 - See like a human: image processing;
 - Listening like a human: speech recognition
 - o Feel like human: Sensing, data collection
 - o Act like a human: autonomous driving, custom support
 - Adapt like a human: decision make, obstacle avoidance

7

Al, ML, Deeplearning, Data Science ...

- Al is a program that can sense, reason (model), act and adapt for certain applications. The process is normally done by a machine or a non-living artificial.
- ML refers to algorithms/methods that can establish models to describe performance, scenarios, systems from data
- Deep Learning, a subset or advancement of ML (neural network models), is used when ML cannot fully deliver desired outcomes, e.g., dataset/features too large.
- **Data Science** is about data, a multidisciplinary field focused on drawing INSIGHTS that can help us make better decisions. It is the basis for the AI, ML, Deep Learning, etc.

2023-03-28

Al (history)

CHALMERS

The Turing Test (1950s)

- If a machine exhibits intelligent behavior equivalent to, or indistinguishable from, that of a human.
 - o For example, a three-person game "imitation game": Can the evaluator "C" distinguish the human and the machine.
- Google Al Duplex: who is talking to you?

Alan

a

Al, ML, Deep Learning (history)

2023-03-28

Overview of Machine learning techniques

11

2023/80/9-32/2023

11

Examples of Machine learning (3) Measurements in seaway Ballast condition M₂10 Design load condition in test P Time MAE Propulsion Linear Regression 0.01 s 460 kW 0.75 XGBoost 18.67 s 147 kW Neural Network 3.15 s 276 kW Ship speed V_s [kn] Based on mechanics data, ML can help us build models to predict performance and estimate responses 2023-03-28

Machine learning definition

- Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed (Arthur Samuel 1959).
- Well-posed Learning Problem: A computer program is said to *learn* from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E (Tom Mitchell 1998).

- Data types and randomness
 - Data/observations are often random variables
 - · Categorical, logical or numerical data
 - · Correlated or independent
 - Retrain your model (with train/test splits) you want to generate a new prediction.
 - The uncertainty of the forecast is just as important as, or even more so, than the forecast.

2023-03-28

15

Types of machine learning

The ML types depends on:

- Learning task of the ML methods
- Discrete the task into mathematical notations
- Information → data
- Input data types (logistic data, categorical data,
- Required output/prediction

2023-03-28

19

ML – supervised machine learning

In particular, we will focus on

- Supervised machine learning with clear learning outcome/objectives as numbers
- o Formulate the learning problem by mathematical models includes:
 - ✓ Input parameters and data
 - √ Possible formulas, relationship either as explicit or black box
 - ✓ Clear output variables and values
- Data be of the numerical values (forces, coefficients in a mechanics system)
- Data (values) can be collected independently or in time series format

2023-03-28

20

Two supervised ML problems

Establish a model to predict of an engineering mechanics model

- o Supervised Learning: "right answers" given (or measured)
- o ML Regression: to establish a model
- o Prediction: use the model and new input to get new output

Two examples of supervised ML methods:

- Predict a ship speed-power model
- Predict a ship's motion (parametric rolling)

-

21

Exmample 1: ML for power prediction

- X: ship speed
- Y: ship resistance/power measured
- Both variable may contain errors (random variables)

2023-03-28

23

Course contents on ML methods

24

2023/80/3/3/2023

Course contents with focus on ML (1)

- Part I: Basic terminologies of Machine Learning
 - oAl, Machine Learning, Data Science, statistical learning
 - oSupervised machine learning, Unsupervised, classification, data mining, Clustering
 - oUseful toolbox (Python sci-kit learning, R, Tensorflow, Skaggle, etc.)
- Part II: Common supervised learning (independent data)
 - oLinear regression, Polynominal regression
 - Spline regression, Logistical regression
 - Support vector machine
 - oDecision trees, XGBoost, Neural network

2023-03-28

25

Course contents with focus on ML (2)

- Part III: Practical issues to use the common ML methods
 - ○Feature selection
 - oModel selection
 - oLearning diagnostics
 - oCross validation, learning rate, training/test/CV dataset
- Part IV: Some more advanced statistical learning methods
 - oGeneralized additive models (GAM)
 - oGeneralized linear models (GLM)
 - OMixed effect models (MEM)

2023-03-28

Course contents with focus on ML

oPart V: ML for time series signals (correlated data signal)

- oBasic statistics and correlation
- o Transformation (to Gaussian): Lognormal, exponential, Hermite polynomials
- Moving average, AR, ARIMA

oPart VI: Spatial-temporal modelling of Random field (optional)

- oPrepare for data
- oTransformation to Gaussian
- Model the correlation structure
- Conditional prediction and simulation

2023-03-28

27

Course literature

- Hastie T., Ribshirani R. and Friedman J. (2003). The elements of statistical learning, Data mining, inference and prediction. Springer.
- Shalizi, C.R. (2019). Advanced data analysis from an Elementary point of view. Preprint.
- Shumway, R.H. and Stoffer, D.S. (2016). Time series analysis and its applications with R examples, Fourth edition. Springer.
- Wei, W.W.S. (2006). Time series analysis Univariate and multivariate models, Second edition. Pearson Addison Wesley.

28

2023/80/3/3/8023

Other ML algorithms/methods

- 1. Linear regression
- 2. Kernel ridge regression
- 3. Support Vector Machines
- 4. Stochastic Gradient Descent
- 5. Nearest Neighbors
- 6. Decision Trees (XGboost)
- 7. Ensemble methods
- 8. Multiclass and multilabel algorithms
- 9. Neural network models (supervised)

2023/80/33/2023

___ 29

Statistical learning algorithms

- Generalized linear model
- Spline models
- Generalized additive model
- Mixed effect model
- Gaussian processes/fields
- Autoregressive model
- Moving average model

30

Other matters

3-0/9-3/2023

