$$(A - \lambda I)\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{x}$$
 (8.6.7)

Sea $B = A - (\lambda + c_2)I$. Entonces de (8.6.7)

$$B\mathbf{x} = [A - (\lambda + c_2)I]\mathbf{x} = c_1\mathbf{v}_1$$
 (8.6.8)

Si se supone que $c_2 \neq 0$, entonces $\lambda + c_2 \neq \lambda$ y $\lambda + c_2$ no es un valor característico de A (ya que λ es el único valor característico de A). Así, det $B = \det [A - (\lambda + c_2)I] \neq 0$, lo que significa que B es invertible. Por lo tanto, (8.6.8) se puede escribir como

$$\mathbf{x} = B^{-1} c_1 \mathbf{v}_1 = c_1 B^{-1} \mathbf{v}_1 \tag{8.6.9}$$

Entonces, multiplicando ambos lados de (8.6.9) por λ se tiene

$$\lambda \mathbf{x} = \lambda c_1 B^{-1} \mathbf{v}_1 = c_1 B^{-1} \lambda \mathbf{v}_1 = c_1 B^{-1} A \mathbf{v}_1$$
 (8.6.10)

Pero $B = A - (\lambda + c_2)I$, de manera que

$$A = B + (\lambda + c_2)I$$
 (8.6.11)

Al insertar (8.6.11) en (8.6.10) se obtiene

$$\lambda \mathbf{x} = c_1 B^{-1} [B + (\lambda + c_2) I] \mathbf{v}_1$$

$$= c_1 [I + (\lambda + c_2) B^{-1}] \mathbf{v}_1$$

$$= c_1 \mathbf{v}_1 + (\lambda + c_2) c_1 B^{-1} \mathbf{v}_1$$
(8.6.12)

Pero utilizando (8.6.9), $c_1B^{-1}\mathbf{v}_1 = \mathbf{x}$, de manera que (8.6.12) se convierte en

$$\lambda \mathbf{x} = c_1 \mathbf{v}_1 + (\lambda + c_2) \mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{x} + \lambda \mathbf{x}$$

o bien

$$\mathbf{0} = c_1 \mathbf{v}_1 + c_2 \mathbf{x} \tag{8.6.13}$$

Pero \mathbf{v}_1 y x son linealmente independientes, lo que hace que $c_1 = c_2 = 0$. Esto contradice la suposición de que $c_2 \neq 0$. Entonces $c_2 = 0$, y por (8.6.6), w es un múltiplo de \mathbf{v}_1 , por lo que $\mathbf{w} = c_1 \mathbf{v}_1$ es un vector característico de A. Más aún, $\mathbf{w} \neq \mathbf{0}$ ya que si $\mathbf{w} = \mathbf{0}$, entonces (8.6.5) dice que x es un vector característico de A. Por lo tanto, $c_1 \neq 0$. Sea

$$\mathbf{v}_2 = \frac{1}{c_1} \mathbf{x} \tag{8.6.14}$$

Entonces $(A - \lambda I)\mathbf{v}_2 = \left(\frac{1}{c_1}\right)(A - \lambda I)\mathbf{x} = \left(\frac{1}{c_1}\right)\mathbf{w} = \mathbf{v}_1$. Esto prueba el teorema.

Definición 8.6.2

Vector característico generalizado

Sea A una matriz de 2×2 con un solo valor característico λ que tiene multiplicidad geométrica 1. Sea \mathbf{v}_1 un vector característico de A. Entonces el vector \mathbf{v}_2 definido por $(A - \lambda I)\mathbf{v}_2 = \mathbf{v}_1$ se denomina vector característico generalizado de A correspondiente al valor característico λ .