

User Profile Analysis

Team 11

OUR TEAM

Vince Pan Phoenix Wang

Peter Mankiewich

AGENDA

Project Overview

What is our goal? Where did we get the data?

Exploratory Data Analysis

What did we find out about the users?

Text Analysis & Cluster Analysis

How did the users answer the open-ended questions? What types of users can you expect to see?

Insights & Challenges

How can OkCupid benefit from our insights?

PROJECT OBJECTIVE

We aimed to understand the types of users that are on the online dating app OkCupid. By creating distinct clusters of users, we can help people make better decisions while swiping, leading to better results for match seekers.

kaggle

ABOUT THE DATASET

The dataset was taken from Kaggle.
Each row represents an anonymous user.
It contains 59,946 rows and 31 columns,
including structured personal information and
written answers to 10 open-ended questions.

EXPLORATORY DATA ANALYSIS

DATA CLEANING & PREPROCESSING

Missing Values

- Replace with mean
- Use logical answers
- Fill in "unknown"

Categorical Features

- Group values
- Convert to ordinal
- Create dummy variables

Textual Data

- Replace meaningless content (e.g., links)
- Concatenate strings

USERS OVERVIEW

GENDER

STRICTLY FOLLOWING DIET

(19.4%)

Kosher (15.7%)

AGE

TAKING RELIGION SERIOUSLY

Christianity • • • • •

Islam • • • • •

Hinduism • • • • •

INTERESTING FACTS

Relationship Status

3.4% are in a relationship 0.5% are married

Sexual Orientation

9.3% are homosexual 4.6% are bisexual

2

Education Level

52.5% - college/university 3.5% - law or med school

Language Skills

Majority of Asian, Hispanic, and Middle Eastern users are bilingual

TEXT ANALYSIS

ESSAY QUESTIONS

About me...

The six things I could never do without...

The most private thing I am willing to admit...

What do these responses tell us about a user, and their level of commitment?

How can we use this information to make intelligent matches?

NAMED-ENTITY RECOGNITION

HOBBY ANALYSIS

- What are users interested in, and are they serious about the app?
- Benefits/problems identified
 - Marks important and relevant interests
 - The algorithm could be improved for more accurate identification

'acting'	'travel'	'traveling'	'traveling'
'acting'	'arts'	'drama'	'games'
'gaming'	'internet'	'shooting'	'sports'
'traveling'			

SENTIMENT & SUBJECTIVITY

Step 1

Apply TextBlob to each column to gather sentiment & subjectivity scores

Step 2

Calculate the average sentiment & subjectivity scores

Step 3

Create two columns in the dataset to save each user's scores

CLUSTER ANALYSIS

PCA/t-SNE & K-Means

Step 1

Standardize numeric features in the dataset

Step 2

Implement **PCA** & get components for 95% explained variance ratio

Implement **t-SNE** & get back 2 output columns/variables

Record the inertia and silhouette scores for different K's

Select the optimal K value for K-Means & examine each cluster's descriptive statistics

K-MEANS CLUSTERING

Male Descriptive Statistics

AgeAbove30 Descriptive Statistics diet halal diet kosher diet_veggie -body_type_above average body_type_average body_type_fit -body_type_thin orientation_gay -orientation_straight status_available -status_married -status_seeing someone age -drinks drugs -height income job smokes strict dropped_out graduated recent education level eth_num -havekids wantkids dogs cats languages sentiment avg subjectivity_avg -ent_cardinal ent nord ent_person ent time ent_org ent_ordinal ent_gpe hobbie count count -2 5 6 0

INSIGHTS & CHALLENGES

BUSINESS VALUE FOR OKC

Internal User Rating

- Detect scam accounts
- Identify serious
 match seekers based
 on written answers

Recommendation System

- Recommend profiles to users based on their swiping behaviors
- Recommend activities based on the users' characteristics

Filter Optimization

- Combine structured information and essays to create intelligent filters
- Generate prompts to inspire profile updates

CHALLENGES

Missing Values

Users chose to not fill out certain fields when creating their profiles.

Computational Cost

The computational cost of creating a distance matrix is large.

Mixed Data Types

Future work:

 Explore alternative techniques, e.g., multiple correspondence analysis, factor analysis, etc.

THANK YOU & HAPPY SWIPING

