K 11/15

ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

1 Представления классической механики

$$t$$
, l , a , m — абсолютно v , s — абсолютно

Механические явления при одинаковых начальных условиях протекают одинаково во всех ИСО

2) Справедливо ли ↑ для других физических процессов?

Противоречия электродинамики и классич. з-на сложения скоростей

По классич. механике v=u+c>c По законам электродинамики v=c

Постулаты ТО

- 1. Все процессы природы протекают одинаково во всех ИСО
- 2. Скорость света в вакууме одинакова для всех ИСО. Она не зависит от $v_{источн}$ и $v_{приемн}$ светового сигнала

3 * Относительность одновременности

Одновременно ли откроются двери А и В?

(4)* Относительность расстояний

примечание

• ------

5) Относительность промежутков времени

$$t=rac{t_0}{\sqrt{1-rac{v^2}{c^2}}}$$

В движущемся вагоне явления протекают медленнее

(6) Релятивистский з-н сложения скоростей

 v^\prime — скорость тела относит. СО K^\prime v — скорость тела относит. СО K u — скорость СО K^\prime относительно СО K

$$v = \frac{v' + u}{1 + \frac{v' \cdot u}{c^2}}$$

Если $v' \ll c$ и $u \ll c$, то $\dfrac{v' \cdot u}{c^2} o 0 \Rightarrow v = v' + u$

Если
$$v'=c$$
 , то $v=rac{c+u}{1+rac{cu}{c^2}}=rac{c+u}{1+rac{u}{c}}=rac{(c+u)c}{c+u}=c$ Если $v'=u=c$, то $v=rac{2c}{2}=c$

7 Релятивистская динамика

$$m=rac{m_0}{\sqrt{1-rac{v^2}{c^2}}}$$

8 Связь между массой и энергией

$$\sqrt{1 - \frac{v^2}{c^2}} = \sqrt{1 - \frac{v^2}{c^2} + \frac{1}{4} \frac{v^4}{c^4} - \frac{1}{4} \frac{v^4}{c^4}} = \sqrt{\left(1 - \frac{1}{2} \frac{v^2}{c^2}\right)^2 - \underbrace{\frac{1}{4} \frac{v^4}{c^4}}_{\rightarrow 0}} = 1 - \frac{1}{2} \frac{v^2}{c^2}$$

Итак:
$$m=rac{m_0}{1-rac{1}{2}rac{v^2}{c^2}}=rac{m_0\Big(1+rac{1}{2}rac{v^2}{c^2}\Big)}{\Big(1-rac{1}{2}rac{v^2}{c^2}\Big)\Big(1+rac{1}{2}rac{v^2}{c^2}\Big)}=rac{m_0+rac{1}{2}m_0rac{v^2}{c^2}}{1-rac{1}{4}rac{v^4}{c^4}}$$

$$m = m_0 + rac{1}{2} m_0 rac{v^2}{c^2} \Rightarrow \Delta m = m - m_0 = rac{1}{2} m_0 \cdot rac{v^2}{c^2} = rac{\Delta E}{c^2} \quad \boxed{E = mc^2}$$