$B\hat{Q}$ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỰC

ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẮNG NĂM 2007 Môn: TOÁN, khối B

(Đáp án - Thang điểm gồm 04 trang)

1 Khảo sát sự biến thiên và vẽ đổ thị của hàm số $(1,00 \text{ diểm})$ Khí $m=1$ ta có $y=-x^3+3x^2-4$. • Tấp xác định: $D=\mathbb{R}$. • Sự biến thiên: $y'=-3x^2+6x, \ y'=0\Leftrightarrow x=0 \text{ hoặc } x=2.$ Bằng biến thiên: $x -\infty \qquad 0 \qquad 2 \qquad +\infty$ $y' \qquad - \qquad 0 \qquad + \qquad 0 \qquad -\infty$ $y_{CD}=y(2)=0, y_{CT}=y(0)=-4.$ • Đổ thị: $y = -3x^2+6x+3(m^2-1), y'=0\Leftrightarrow x^2-2x-m^2+1=0 \ (2).$ Hàm số (1) có cực trị $\Leftrightarrow (2)$ có 2 nghiệm phân biệt $\Leftrightarrow \Delta'=m^2>0\Leftrightarrow m\neq 0.$ Gọi A, B là 2 điểm cực trị $\Rightarrow A(1-m, -2-2m^2), B(1+m, -2+2m^2).$ O cách đều A và $B\Leftrightarrow OA=OB\Leftrightarrow 8m^3=2m\Leftrightarrow m=\pm\frac{1}{2} \ (vi\ m\neq 0).$ II	Câu	Ý	Nội dung	Điểm
Khi m = 1 ta có y = $-x^3 + 3x^2 - 4$. • Tập xác dịnh: D = \mathbb{R} . • Sự biến thiên: $y' = -3x^2 + 6x, y' = 0 \Leftrightarrow x = 0 \text{ hoặc } x = 2.$ Bằng biến thiên: $x - \infty \qquad 0 \qquad 2 \qquad + \infty$ $y' - 0 \qquad + \qquad 0 \qquad - \qquad - \qquad 0$ $y_{CD} = y(2) = 0, y_{CT} = y(0) = -4.$ • Đổ thị: 2 Tìm m để hàm số (1) có cực đại, cực tiểu (1,00 điểm) Ta có: $y' = -3x^2 + 6x + 3(m^2 - 1), y' = 0 \Leftrightarrow x^2 - 2x - m^2 + 1 = 0 (2).$ Hàm số (1) có cực tri \Leftrightarrow (2) có 2 nghiệm phân biệt \Leftrightarrow $\Delta' = m^2 > 0 \Leftrightarrow m \neq 0$. Gọi A, B là 2 điểm cực trị \Rightarrow A(1 - m; $-2 - 2m^3$), B(1 + m; $-2 + 2m^3$). O cách đều A và B \Leftrightarrow OA = OB \Leftrightarrow 8m³ = 2m \Leftrightarrow m = $\pm \frac{1}{2}$ (vì m \neq 0). II 1 Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho tương đương với:	I	1		2,00
• Tập xác định: $D = \mathbb{R}$. • Sự biến thiên: $y' = -3x^2 + 6x$, $y' = 0 \Leftrightarrow x = 0$ hoặc $x = 2$. Bằng biến thiên: $ \frac{x}{y'} = -0 + 0 $	_	1	·	
• Sự biến thiên: $y' = -3x^2 + 6x, y' = 0 \Leftrightarrow x = 0 \text{ hoặc } x = 2.$ Bằng biến thiên: $\frac{x}{y'} = -0 y = 0 2 y = 0$ $y_{CD} = y(2) = 0, y_{CT} = y(0) = -4.$ • Đổ thị: $y = -1 y = 0$ $y_{CD} = y(2) = 0, y_{CT} = y(0) = -4.$ • Đổ thị: $y = -1 y = 0$ $y = -1 y = $				
$y' = -3x^2 + 6x, y' = 0 \Leftrightarrow x = 0 \text{ hoặc } x = 2.$ Bằng biển thiên: $x = -\infty \qquad 0 \qquad 2 \qquad +\infty$ $y' = -0 \qquad +0 \qquad -$ $+\infty \qquad 0 \qquad 0 \qquad 2 \qquad +\infty$ $y = -4 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0$ $y_{CD} = y(2) = 0, y_{CT} = y(0) = -4.$ • Đồ thị: $y = -1 \qquad 0 \qquad 0$ $-2 \qquad x \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0$ $y_{CD} = y(2) = 0, y_{CT} = y(0) = -4.$ • Đồ thị: $y = -1 \qquad 0 \qquad 0$ $-1 \qquad 0 \qquad 0 \qquad 0$ $-1 \qquad 0 \qquad 0 \qquad 0 \qquad 0$ $-1 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0$ $-1 \qquad 0 \qquad 0$ $-1 \qquad 0 \qquad $				0,25
Bằng biến thiên: $\frac{x}{y'} = -0 + 0 - \frac{y}{y'} = -0 + 0 - \frac{y}{y'} = -\infty$ $\frac{y_{CD} = y(2) = 0, y_{CT} = y(0) = -4.}{\sqrt{2}}$ $\frac{y}{\sqrt{2}} = \frac{y(2) = 0, y_{CT} = y(0) = -4.}{\sqrt{2}}$ $\frac{y}{\sqrt{2}} = \frac{y}{\sqrt{2}} = \frac{y}{2$				
$y = y(2) = 0, y_{CT} = y(0) = -4.$ $\bullet \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			Bảng biến thiên:	
$y_{CD} = y(2) = 0, y_{CT} = y(0) = -4.$ • Đổ thị: $y = -4$ • Đổ thị: $y = -4$ -4 -4 -4 -4 -4 -4 -4				
$y = y(2) = 0, y_{CT} = y(0) = -4.$ • Đồ thị: $y = -4$ • Đồ thị: $y = -4$ -4 • Đồ thị: $y = -4$ -4 -4 -4 -4 -4 -4 -4				0,50
$y_{CD} = y(2) = 0, y_{CT} = y(0) = -4.$ • Đồ thị: y_{A} -1 0 x -1 0 0 0 0 0 0 0 0 0 0			+ ∞	,
• Đồ thị: 2 Tìm m để hàm số (1) có cực đại, cực tiếu (1,00 điểm) Ta có: $y' = -3x^2 + 6x + 3(m^2 - 1)$, $y' = 0 \Leftrightarrow x^2 - 2x - m^2 + 1 = 0$ (2). Hàm số (1) có cực trị \Leftrightarrow (2) có 2 nghiệm phân biệt \Leftrightarrow $\Delta' = m^2 > 0 \Leftrightarrow m \neq 0$. Gọi A, B là 2 điểm cực trị \Rightarrow A(1 - m; -2 - 2m³), B(1 + m; -2 + 2m³). O cách đều A và B \Leftrightarrow OA = OB \Leftrightarrow 8m³ = 2m \Leftrightarrow m = $\pm \frac{1}{2}$ (vì m \neq 0). II 1 Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho tương đương với:			y	
• Đồ thị: 2 Tìm m để hàm số (1) có cực đại, cực tiếu (1,00 điểm) Ta có: $y' = -3x^2 + 6x + 3(m^2 - 1)$, $y' = 0 \Leftrightarrow x^2 - 2x - m^2 + 1 = 0$ (2). Hàm số (1) có cực trị \Leftrightarrow (2) có 2 nghiệm phân biệt \Leftrightarrow $\Delta' = m^2 > 0 \Leftrightarrow m \neq 0$. Gọi A, B là 2 điểm cực trị \Rightarrow A(1 - m; -2 - 2m³), B(1 + m; -2 + 2m³). O cách đều A và B \Leftrightarrow OA = OB \Leftrightarrow 8m³ = 2m \Leftrightarrow m = $\pm \frac{1}{2}$ (vì m \neq 0). II 1 Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho tương đương với:			$v_{CD} = v(2) = 0, v_{CT} = v(0) = -4.$	
			\mathbf{D}^{λ} \mathbf{d}^{*}	
2 Tìm m để hàm số (1) có cực đại, cực tiểu (1,00 điểm) Ta có: $y' = -3x^2 + 6x + 3(m^2 - 1)$, $y' = 0 \Leftrightarrow x^2 - 2x - m^2 + 1 = 0$ (2). Hàm số (1) có cực trị \Leftrightarrow (2) có 2 nghiệm phân biệt \Leftrightarrow $\Delta' = m^2 > 0 \Leftrightarrow m \neq 0$. Gọi A, B là 2 điểm cực trị \Rightarrow A(1 - m; -2 - 2m³), B(1 + m; -2 + 2m³). O cách đều A và B \Leftrightarrow OA = OB \Leftrightarrow 8m³ = 2m \Leftrightarrow m = $\pm \frac{1}{2}$ (vì m \neq 0). II 1 Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho tương đương với:				
2 Tìm m để hàm số (1) có cực đại, cực tiểu (1,00 điểm) Ta có: $y' = -3x^2 + 6x + 3(m^2 - 1)$, $y' = 0 \Leftrightarrow x^2 - 2x - m^2 + 1 = 0$ (2). Hàm số (1) có cực trị \Leftrightarrow (2) có 2 nghiệm phân biệt \Leftrightarrow $\Delta' = m^2 > 0 \Leftrightarrow m \neq 0$. Gọi A, B là 2 điểm cực trị \Rightarrow A(1 - m; -2 - 2m³), B(1 + m; -2 + 2m³). O cách đều A và B \Leftrightarrow OA = OB \Leftrightarrow 8m³ = 2m \Leftrightarrow m = $\pm \frac{1}{2}$ (vì m \neq 0). II 1 Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho tương đương với:				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\langle O \rangle = \langle X \rangle$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Ta có: $y' = -3x^2 + 6x + 3(m^2 - 1)$, $y' = 0 \Leftrightarrow x^2 - 2x - m^2 + 1 = 0$ (2). Hàm số (1) có cực trị \Leftrightarrow (2) có 2 nghiệm phân biệt $\Leftrightarrow \Delta' = m^2 > 0 \Leftrightarrow m \neq 0$. Gọi A, B là 2 điểm cực trị \Rightarrow A(1 - m; $-2 - 2m^3$), B(1 + m; $-2 + 2m^3$). O cách đều A và B \Leftrightarrow OA = OB \Leftrightarrow 8 $m^3 = 2m \Leftrightarrow m = \pm \frac{1}{2}$ (vì m \neq 0). II Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho tương đương với:				0,25
Ta có: $y' = -3x^2 + 6x + 3(m^2 - 1)$, $y' = 0 \Leftrightarrow x^2 - 2x - m^2 + 1 = 0$ (2). Hàm số (1) có cực trị \Leftrightarrow (2) có 2 nghiệm phân biệt $\Leftrightarrow \Delta' = m^2 > 0 \Leftrightarrow m \neq 0$. Gọi A, B là 2 điểm cực trị \Rightarrow A(1 - m; $-2 - 2m^3$), B(1 + m; $-2 + 2m^3$). O cách đều A và B \Leftrightarrow OA = OB \Leftrightarrow 8 $m^3 = 2m \Leftrightarrow m = \pm \frac{1}{2}$ (vì m \neq 0). II Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho tương đương với:				
Ta có: $y' = -3x^2 + 6x + 3(m^2 - 1)$, $y' = 0 \Leftrightarrow x^2 - 2x - m^2 + 1 = 0$ (2). Hàm số (1) có cực trị \Leftrightarrow (2) có 2 nghiệm phân biệt $\Leftrightarrow \Delta' = m^2 > 0 \Leftrightarrow m \neq 0$. Gọi A, B là 2 điểm cực trị \Rightarrow A(1 - m; $-2 - 2m^3$), B(1 + m; $-2 + 2m^3$). O cách đều A và B \Leftrightarrow OA = OB \Leftrightarrow 8 $m^3 = 2m \Leftrightarrow m = \pm \frac{1}{2}$ (vì m \neq 0). II Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho tương đương với:			-4	
Ta có: $y' = -3x^2 + 6x + 3(m^2 - 1)$, $y' = 0 \Leftrightarrow x^2 - 2x - m^2 + 1 = 0$ (2). Hàm số (1) có cực trị \Leftrightarrow (2) có 2 nghiệm phân biệt $\Leftrightarrow \Delta' = m^2 > 0 \Leftrightarrow m \neq 0$. Gọi A, B là 2 điểm cực trị \Rightarrow A(1 - m; $-2 - 2m^3$), B(1 + m; $-2 + 2m^3$). O cách đều A và B \Leftrightarrow OA = OB \Leftrightarrow 8 $m^3 = 2m \Leftrightarrow m = \pm \frac{1}{2}$ (vì m \neq 0). II Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho tương đương với:				
Ta có: $y' = -3x^2 + 6x + 3(m^2 - 1)$, $y' = 0 \Leftrightarrow x^2 - 2x - m^2 + 1 = 0$ (2). Hàm số (1) có cực trị \Leftrightarrow (2) có 2 nghiệm phân biệt $\Leftrightarrow \Delta' = m^2 > 0 \Leftrightarrow m \neq 0$. Gọi A, B là 2 điểm cực trị \Rightarrow A(1 - m; $-2 - 2m^3$), B(1 + m; $-2 + 2m^3$). O cách đều A và B \Leftrightarrow OA = OB \Leftrightarrow 8 $m^3 = 2m \Leftrightarrow m = \pm \frac{1}{2}$ (vì m \neq 0). II Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho tương đương với:				
Hàm số (1) có cực trị \Leftrightarrow (2) có 2 nghiệm phân biệt \Leftrightarrow $\Delta' = m^2 > 0 \Leftrightarrow m \neq 0$. Gọi A, B là 2 điểm cực trị \Rightarrow A(1 - m; -2 - 2m³), B(1 + m; -2 + 2m³). O cách đều A và B \Leftrightarrow OA = OB \Leftrightarrow 8m³ = 2m \Leftrightarrow m = \pm $\frac{1}{2}$ (vì m \neq 0). II 1 Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho tương đương với:		2		
Gọi A, B là 2 điểm cực trị \Rightarrow A(1 - m; -2 - 2m³), B(1 + m; -2 + 2m³). O cách đều A và B \Leftrightarrow OA = OB \Leftrightarrow 8m³ = 2m \Leftrightarrow m = $\pm \frac{1}{2}$ (vì m \neq 0). II 1 Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho tương đương với:				0,50
$O \text{ cách đều A và B} \Leftrightarrow OA = OB \Leftrightarrow 8m^3 = 2m \Leftrightarrow m = \pm \frac{1}{2} \text{ (vì m} \neq 0).$ II $O \text{ Giải phương trình lượng giác (1,00 điểm)}$ $O \text{ Phương trình đã cho tương đương với:}$				0,20
O cách đều A và B \Leftrightarrow OA = OB \Leftrightarrow 8m ³ = 2m \Leftrightarrow m = \pm — (vì m \neq 0). II 1 Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho tương đương với:			1	0,50
1 Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho tương đương với:			O cách đều A và B \Leftrightarrow OA = OB \Leftrightarrow 8m ³ = 2m \Leftrightarrow m = $\pm \frac{1}{2}$ (vì m \neq 0).	3,20
Phương trình đã cho tương đương với:	II			2,00
	Ī	1		
$\sin 7v = \sin v + 2\sin^2 2v + 1 = 0 \Rightarrow \cos 4v + (2\sin 2v + 1) = 0$			1	0,50
				0,50
• $\cos 4x = 0 \Leftrightarrow x = \frac{\pi}{8} + k\frac{\pi}{4} (k \in \mathbb{Z}).$			• $\cos 4x = 0 \Leftrightarrow x = \frac{\pi}{8} + k \frac{\pi}{4} (k \in \mathbb{Z}).$	
				0,50
• $\sin 3x = \frac{1}{2} \Leftrightarrow x = \frac{\pi}{18} + k \frac{2\pi}{3} \text{ hoặc } x = \frac{5\pi}{18} + k \frac{2\pi}{3} \text{ (} k \in \mathbb{Z}\text{)}.$			$\bullet \sin 3x = \frac{1}{2} \Leftrightarrow x = \frac{1}{18} + k \frac{1}{3} \text{ hoặc } x = \frac{1}{18} + k \frac{1}{3} \text{ (k } \in \mathbb{Z}).$	

	2	Chứng minh phương trình có hai nghiệm (1,00 điểm)	
		Điều kiện: x ≥ 2. Phương trình đã cho tương đương với	
		$(x-2)(x^3+6x^2-32-m)=0 \Leftrightarrow \begin{bmatrix} x=2\\ x^3+6x^2-32-m=0. \end{bmatrix}$	
		$(x-2)(x^{2}+6x^{2}-32-m)=0$ $x^{3}+6x^{2}-32-m=0$.	0,50
		Ta chứng minh phương trình: $x^3 + 6x^2 - 32 = m$ (1) có một nghiệm trong	3,2 3
		khoảng $(2;+\infty)$.	
		Xét hàm $f(x) = x^3 + 6x^2 - 32 \text{ v\'oi } x > 2$. Ta c\'o:	
		$f'(x) = 3x^2 + 12x > 0, \forall x > 2.$	
		Bảng biến thiên:	
		x 2 +∞	
		f'(x) +	0,50
		$f(x)$ $+\infty$	
		Từ bảng biến thiên ta thấy với mọi $m>0$, phương trình (1) luôn có một nghiệm trong khoảng $(2;+\infty)$.	
		Vậy với mọi m > 0 phương trình đã cho luôn có hai nghiệm thực phân biệt.	
III	1	Viết phương trình mặt phẳng (Q) (1,00 điểm)	2,00
	1	(S): $(x-1)^2 + (y+2)^2 + (z+1)^2 = 9$ có tâm $I(1;-2;-1)$ và bán kính $R=3$.	0,25
		Mặt phẳng (Q) cắt (S) theo đường tròn có bán kính $R = 3$ nên (Q) chứa I.	0,25
		(Q) có cặp vectơ chỉ phương là: $\overrightarrow{OI} = (1; -2; -1)$, $\overrightarrow{i} = (1; 0; 0)$.	·····
		$\Rightarrow \text{Vector pháp tuyến của (Q) là: } \vec{n} = (0; -1; 2).$	0,25
		Phương trình của (Q) là: $0.(x-0)-1.(y-0)+2(z-0)=0 \Leftrightarrow y-2z=0$.	0,25
	2	Tìm tọa độ điểm M thuộc mặt cầu sao cho khoảng cách lớn nhất (1,00 điểm)	0,23
		Gọi d là đường thẳng đi qua I và vuông góc với (P). Đường thẳng đ cắt (S) tại	
		hai điểm A,B . Nhận xét: nếu $d(A;(P)) \ge d(B;(P))$ thì $d(M;(P))$ lớn nhất khi $M \equiv A$.	0,25
		Phương trình đường thẳng d: $\frac{x-1}{2} = \frac{y+2}{-1} = \frac{z+1}{2}$.	0,25
		Tọa độ giao điểm của d và (S) là nghiệm của hệ	
		$\left((x-1)^2 + (y+2)^2 + (z+1)^2 = 9 \right)$	
		$\begin{cases} (x-1)^2 + (y+2)^2 + (z+1)^2 = 9\\ \frac{x-1}{2} = \frac{y+2}{1} = \frac{z+1}{2}. \end{cases}$	0,25
		Giải hệ ta tìm được hai giao điểm $A(-1;-1;-3), B(3;-3;1)$.	
		Ta có: $d(A;(P)) = 7 \ge d(B;(P)) = 1$.	
		Vậy khoảng cách từ M đến (P) lớn nhất khi $M(-1;-1;-3)$.	0,25
IV			2,00
	1	Tính thể tích vật thể tròn xoay (1, 00 điểm)	, -
		Phương trình hoành độ giao điểm của các đường $y = x \ln x$ và $y = 0$ là:	0,25
		$x \ln x = 0 \Leftrightarrow x = 1.$	•

		Thể tích khối tròn xoay tạo thành khi quay hình H quanh trục hoành là:	
		$V = \pi \int_{1}^{e} y^{2} dx = \pi \int_{1}^{e} (x \ln x)^{2} dx.$	0,25
		Đặt $u = \ln^2 x$, $dv = x^2 dx \Rightarrow du = \frac{2 \ln x}{x} dx$, $v = \frac{x^3}{3}$. Ta có:	0,25
		$\int_{1}^{e} (x \ln x)^{2} dx = \frac{x^{3}}{3} \ln^{2} x \Big _{1}^{2} - \frac{2}{3} \int_{1}^{e} x^{2} \ln x dx = \frac{e^{3}}{3} - \frac{2}{3} \int_{1}^{e} x^{2} \ln x dx.$	
		Đặt $u = \ln x, dv = x^2 dx \Rightarrow du = \frac{dx}{x}, v = \frac{x^3}{3}$. Ta có:	
		$\int_{1}^{e} x^{2} \ln x dx = \frac{x^{3}}{3} \ln x \bigg _{1}^{e} - \frac{1}{3} \int_{1}^{e} x^{2} dx = \frac{e^{3}}{3} - \frac{x^{3}}{9} \bigg _{1}^{e} = \frac{2e^{3} + 1}{9}.$	0,25
		Vậy V = $\frac{\pi(5e^3 - 2)}{27}$ (đvtt).	
	2	Tìm giá trị nhỏ nhất của P (1,00 điểm)	
		Ta có: $P = \frac{x^2}{2} + \frac{y^2}{2} + \frac{z^2}{2} + \frac{x^2 + y^2 + z^2}{xyz}$.	
		Do $x^2 + y^2 + z^2 = \frac{x^2 + y^2}{2} + \frac{y^2 + z^2}{2} + \frac{z^2 + x^2}{2} \ge xy + yz + zx$	0,50
		nên $P \ge \left(\frac{x^2}{2} + \frac{1}{x}\right) + \left(\frac{y^2}{2} + \frac{1}{y}\right) + \left(\frac{z^2}{2} + \frac{1}{z}\right).$	
		Xét hàm số $f(t) = \frac{t^2}{2} + \frac{1}{t}$ với $t > 0$. Lập bảng biến thiên của $f(t)$ ta suy ra	
		$f(t) \ge \frac{3}{2}, \forall t > 0$. Suy ra: $P \ge \frac{9}{2}$. Dấu bằng xảy ra $\iff x = y = z = 1$.	0,50
		Vậy giá trị nhỏ nhất của P là $\frac{9}{2}$.	
V.a		2	2,00
	1	Tìm hệ số trong khai triển (1,00 điểm)	
		Ta có: $3^n C_n^0 - 3^{n-1} C_n^1 + 3^{n-2} C_n^2 + (-1)^n C_n^n = (3-1)^n = 2^n$. Từ giả thiết suy ra $n = 11$.	0,50
		Hệ số của số hạng chứa x^{10} trong khai triển Niuton của $(2+x)^{11}$ là: $C_{11}^{10}.2^{1} = 22.$	0,50
	2	Xác định tọa độ điểm B, C sao cho(1,00 điểm)	
		Vì $B \in d_1$, $C \in d_2$ nên $B(b; 2-b)$, $C(c; 8-c)$. Từ giả thiết ta có hệ:	
		$ \begin{cases} \overrightarrow{AB}.\overrightarrow{AC} = 0 \\ AB = AC \end{cases} \Leftrightarrow \begin{cases} bc - 4b - c + 2 = 0 \\ b^2 - 2b = c^2 - 8c + 18 \end{cases} \Leftrightarrow \begin{cases} (b-1)(c-4) = 2 \\ (b-1)^2 - (c-4)^2 = 3. \end{cases} $	0,50
		Đặt $x = b - 1$, $y = c - 4$ ta có hệ $\begin{cases} xy = 2 \\ x^2 - y^2 = 3. \end{cases}$	
		Giải hệ trên ta được $x = -2$, $y = -1$ hoặc $x = 2$, $y = 1$.	0,50
		Suy ra: $B(-1;3), C(3;5)$ hoặc $B(3;-1), C(5;3)$.	

V.b			2,00
	1	Giải phương trình mũ (1,00 điểm)	
		Đặt $\left(\sqrt{2}-1\right)^x=t\ (t>0)$, ta có phương trình $t+\frac{1}{t}-2\sqrt{2}=0 \Leftrightarrow t=\sqrt{2}-1, t=\sqrt{2}+1.$	0,50
		Với $t = \sqrt{2} - 1$ ta có $x = 1$. Với $t = \sqrt{2} + 1$ ta có $x = -1$.	0,50
	2	(1,00 điểm)	
		Gọi P là trung điểm của SA. Ta có MNCP là hình bình hành nên MN song song với mặt phẳng (SAC). Mặt khác, BD \(\preceq (SAC) \) nên BD \(\preceq MNC).	0,50
		Vì MN (SAC) nên $d(MN;AC) = d(N;(SAC)) = \frac{1}{2}d(B;(SAC)) = \frac{1}{4}BD = \frac{a\sqrt{2}}{4}.$ Vậy $d(MN;AC) = \frac{a\sqrt{2}}{4}$.	0,50

Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì được đủ điểm từng phần như đáp án quy định.

-----Hết-----