Mathematik für Physiker 1 Hausaufgabenserie 8

Aufgabe 4

Beweisen Sie dass jede Menge aus 4 verschiedenen Vektoren des $\mathbb R$ Vektorraumes $\mathbb R^3$ linear abhängig ist.

Bemerkung: Der Sachverhalt gilt allgemeiner für jede d+1 elementige Vektormenge eines d-dimensionalen Raumes.

Aufgabe 2

Es sei V ein Vektorraum und $M\subseteq V$ eine linear unabhängige Menge. Zeigen Sie, dass für jeden Vektor $b\in V$ gilt:

 $M \cup \{b\}$ ist linear unabhängig $\Leftrightarrow b \notin span(M)$

Tipp: Zeigen Sie die äquivalente Aussage: $M \cup \{b\}$ ist linear abhängig $\Leftrightarrow b \in span(M)$

Aufgabe 3

Es sei U der Unterraum der Folgen (a_n) , die der Rekursionsvorschrift $a_{n+2} = a_{n+1} + a_n$ genügen (vergleiche Hausaufgabenserie 7 Aufgabe 3). Untersuchen Sie ob es Folgen der Form $a_n = x^n$ für ein passendes $x \in \mathbb{R}$ gibt.

Hinweis: Mit der Rekursionsvorschrift erhalten Sie 2 Lösungen neben der trivialen Lösung x = 0.

Stellen Sie die Fibonacci-Folge als Linearkombination der erhaltenen Folgen dar und erhalten Sie damit eine explizite Darstellung (Formel) für die Fibonacci Folge.

Hinweis: Sie können die Koeffizienten mit der Anfangsbedingung $a_1 = a_2 = 1$ bestimmen.

Aufgabe 4

Wir betrachten den Vektorraum $V = Abb(\mathbb{R}, \mathbb{R})$ der Funktionen von \mathbb{R} nach \mathbb{R} , Weiterhin seien a, b zwei verschiedene reelle Zahlen. Zeigen Sie dass die Menge $\{f, g\}$ mit $f(x) = e^{ax}$ und $g(x) = e^{bx}$ linear unabhängig ist.