CS546 Parallel and Distributing Processing

- Instructor: Professor Xian-He Sun
 - Email: sun@iit.edu, Phone: (312) 567-5260
 - Office hours: 4:30pm-5:30pm Tuesday, Thursday
 SB235C
- TA: Xiaoyang Lu
 - Email: xlu40@hawk.iit.edu
 - Office hour: SB003
- Blackboard:
 - http://blackboard.iit.edu
- Additional Web site
 - http://www.cs.iit.edu/~sun/cs546.html

What This Course Is About

- Parallelism
 - What is parallelism?
 - What can be parallelized?
 - Inhibitors and degradation of parallelism: dependences
- Different patterns of parallelism
 - Regular data parallelism
 - Irregular data parallelism
 - Task queue based parallelism
 - Pipeline parallelism
- Application and Algorithm

Question:

- What is the data-centric view?
- What is the machine?
- What is the machine layers?

The "Machine"

- Different perspectives on what the Machine is:
- OS developer

Instruction Set Architecture

- -ISA
- –Major division between hardware and software

Evolution of Computing: The biggest machine becomes even bigger

Petaflops System

72 Racks

144 TB

Rack Cabled 8x8x16

IBM BG/P

32 Node Cards 1024 chips, 4096 procs

Source: ANL ALCF

Node Board

(32 chips 4x4x2) 32 compute, 0-2 IO cards

Compute Card

1 chip, 20 DRAMs

Chip

4 cores

850 MHz 8 MB EDRAM 2.0 GB DDR Supports 4-way SMP

GF/s

3.5 PF/s 512 TB

GPFS ESSL

Loadleveler

Front End Node / Service Node
System p Servers
Linux SLES10

Multicore Add Another Dimension

IBM Multicore

- Cell
 - 1 PPE and 8 SPEs
 - Shared L2 cache
 - EIB
- Power6
 - Dual core
 - 5 GHz

Many-Core Technology is Available

Kilocore: 256-core prototype By Rapport Inc.

NVIDIA Fermi: 512 CUDA cores

GeForce RTX 2080 SUPER: 3072 CUDA cores, by NVDIA

GRAPE-DR chip: 512-core, By Japan

Quadro M6000: 3,072 cores, By NVDIA.

GRAPE-DR testboard

Nonvolatile Memories in Server Architectures

- 3D XPoint™ technology provides the benefit in the middle
- It is considerably faster than NAND Flash
- Performance can be realized on PCIe or DDR buses
- Lower cost per bit than DRAM while being considerably more dense

The View of Future Computing

Human-centered

They are connected to form 'smart space'

Devices become smaller and powerful

Cloud link 'smart spaces' to support 'global smartness'

A device is an entry of the cyber world

Cyber Physical System – extended Smart Space

Edge Computing

Mimic the electrical power grid

Evolution of Computing

X. Sun (IIT) CS546 Lecture 1 Page 12

Pervasive Computing

- ❖ Big Computer becomes even bigger, Bigger computing power
- ❖ Small Computing becomes even smaller, Smart Space
- ❖ Smart Space, Sensor Network, bigdata
- ❖ Smart Space, Cyber Physic Systems
- ❖ Context Aware, Smartness (AI)
- ❖ AI is forward by big data and bigger computing power
 - Today (software/software connection): Cloud, CPS
 - Tomorrow (machine/human): pervasive

The Perspective of AI, or any others

X. Sun (IIT)

CS550: Advanced OS

Any Questions?

Homework: Read through CS546 web site, especially the project part

Overview of Parallel Computing

Serial Computing

- Traditional, software has been written for serial computation
 - A problem is broken into a discrete series of inst.
 - Inst. are executed sequentially (one after another)
 - Executed on a single processor
 - Only one inst. executes at any moment in time

What is Parallel Processing

- Parallel Processing
 - Several working entities work together toward a common goal
- Parallel Processing
 - A kind of information processing that emphasizes the concurrent manipulation of data elements belonging to one or more processes solving a single problem
- Parallel Computer
 - A computer designed for parallel processing

- Supercomputer (high performance computer, high end computer, advanced computer)
 - A general-purpose computer capable of solving individual problems at extremely high computation speed
- New Terms
 - Cloud computing, Date intensive computing
 - Big computing (supercomputing and super data processing)

What is Parallel Computing

The Need for Parallel Processing

- The Fastest Computer Is Never Fast Enough
- Applications
 - Numerical computation: weather modeling, fluid flows, simulation, life science & medical applications
 - Real time multifaceted problems: speech recognition, image processing, computer vision
 - Large memory and I/O intensive problems: database
 & transaction systems, data mining, Web search
 - Graphics and design systems: CAD, virtual world
 - AI: knowledge based systems, inferencing engines
 - New applications, e.g. life science, remote surgery

Application of Supercomputers

Physical Sciences

Technology

Biology and Medical Science

Energy

Meteorology and Climate

Materials and Nanotechnology

National Security

Parallel Computers

- ~25 years ago
 - 1*10⁶ Floating Point Ops/sec (Mflop/s)
 - Scalar based
- ~15 years ago
 - 1*10⁹ Floating Point Ops/sec (Gflop/s)
 - Vector & shared memory computing, bandwidth aware
 - Block partitioned, latency tolerant
- ~5 years ago
 - 1*10¹² Floating Point Ops/sec (Tflop/s)
 - Highly parallel, distributed processing, message passing, network based
 - Data decomposition, communication/computation
- Today
 - 1*10¹⁵ Floating Point Ops/sec (Pflop/s) (in fact, 100 Pflop/s)
 - Many more levels MH, combination/grids &HPC
 - More adaptive, LT and BW aware, fault tolerant, extended precision, ...

Evolution of HPC

TOP 10 Machines (6/2019)

Rank	Site	Computer	cores	TFlop/s Country
1	Oak Ridge National Laboratory	Summit - IBM Power System	2414592	148600 United States
2	Lawrence Livermore National Laboratory	Sierra - IBM Power System	1572480	94640 United States
3	National Supercomputing Center in Wuxi	Sunway TaihuLight - Sunway MPP	10649600	93014.6 China
4	National Super Computer Center in Guangzhou	Tianhe-2A - TH-IVB-FEP Cluster	4981760	61444.5 China
5	Texas Advanced Computing Center/Univ. of Texas	Frontera - Dell C6420,	448448	23516.4 United States
6	Swiss National Supercomputing Centre (CSCS)	Piz Daint - Cray XC50	387872	21230 Switzerland
7	Los Alamos National Lab	Trinity - Cray XC40	979072	20158.7 United States
8	National Institute of Advanced Industrial Science and Technology (AIST)	Al Bridging Cloud Infrastructure (ABCI) Fujitsu	391680	19880 Japan
9	Leibniz Rechenzentrum	SuperMUC-NG - ThinkSystem	305856	19476.6 Germany
10	DOE/NNSA/LLNL	Lassen - IBM Power System	288288	18200 United States

http://www.top500.org/list/2019/06/

Where Does Performance Come From?

- Device Technology
 - Logic switching speed and device density
 - Memory capacity and access time
 - Communications bandwidth and latency
- Computer Architecture
 - Instruction issue rate
 - Execution pipelining
 - Reservation stations
 - Branch prediction
 - Cache management
 - Parallelism
 - Parallelism number of operations per cycle per processor
 - Instruction level parallelism (ILP)
 - Vector processing
 - Parallelism number of processors per node
 - Parallelism number of nodes in a system

Gordon Moore's Law

"the number of transistors that can be fabricated on a single integrated circuit at a reasonable cost doubles every year..."

• How?

Material techniques such as extreme ultraviolet lithography (<100 nm)

• Impact:

- Increase in manufacturing yield, more dies per wafer
- Smaller transistors consume less power => Higher speed for same power per unit area
- More complex devices can be created in same die area

Corollary

Processor speed doubles at same rate

CPUs: Archaic (Nostalgic) v. Modern (Newfangled)

- 1982 Intel 80286
- 12.5 MHz
- 2 MIPS (peak)
- Latency 320 ns
- 134,000 xtors, 47 mm²
- 16-bit data bus, 68 pins
- Microcode interpreter, separate FPU chip
- (no caches)

- 2001 Intel Pentium 4
- 1500 MHz (120X)
- 4500 MIPS (peak) (2250X)
- Latency 15 ns (20X)
- 42,000,000 xtors, 217 mm²
- 64-bit data bus, 423 pins
- 3-way superscalar, Dynamic translate to RISC, Superpipelined (22 stage), Out-of-Order execution
- On-chip 8KB Data caches,
 96KB Instr. Trace cache,
 256KB L2 cache

Parallelism within a Processor

Clock Rate

Why the Clock Flattening? POWER

Courtesy of Peter Kogge, UND

What Are We Doing with the Total System Silicon?

Silicon Area Distribution

Power Distribution

Courtesy of Peter Kogge, UND

Multi-Core

- Motivation for Multi-Core
 - Exploits improved feature-size and density
 - Increases functional units per chip (spatial efficiency)
 - Limits energy consumption per operation
 - Constrains growth in processor complexity
- Challenges resulting from multi-core
 - Aggravates memory wall
 - Memory bandwidth
 - Way to get data out of memory banks
 - Way to get data into multi-core processor array
 - Memory latency
 - · Fragments L3 cache
 - Relies on effective exploitation of multiple-thread parallelism
 - Need for parallel computing model and parallel programming model
 - Pins become strangle point
 - Rate of pin growth projected to slow and flatten
 - Rate of bandwidth per pin (pair) projected to grow slowly
 - Requires mechanisms for efficient inter-processor coordination
 - Synchronization
 - Mutual exclusion
 - · Context switching

X. Sun (IIT)

CS546

Basic Uni-Processor Architecture elements

- Cache hierarchy
- Arithmetic Logic Units
- Register Sets
- Control
- Memory Interface
- I/O Interface
- Execution pipeline

Multicore CPUs

Most of current Intel and AMD multicore
 CPUs just put multiple cores

8 Processor Module

L3 cache shared across all processors

Single-threaded Multicore CPUs

X. Sun (IIT) CS546 Lecture 2 Page 41

Multi-threaded Multicore CPUs

X. Sun (IIT) CS546 Lecture 2 Page 42

Evolution of Parallelism

According to Intel

Source: Intel Website

Challenges of Parallelism

- "Automatic" parallelism in modern machines
 - Bit level parallelism within floating point operations
 - Instruction level parallelism (ILP) multiple instructions per clock cycle
 - Memory system parallelism overlap of memory accesses with computation, concurrent data access
 - OS parallelism multiple jobs run in parallel on SMPs
- There are limitations to all of these!
- To achieve high performance, the programmer needs to identify, schedule and coordinate parallel tasks and data!

Challenges of Parallelism

- Applications are often very sophisticated
 - E.g., adaptive algorithms may require dynamic load balancing
- Algorithm development is harder
 - Complexity of specifying and coordinating concurrent activities
 - Algorithmic scalability losses
 - Serialization and load imbalance
 - Computing and data access
- Software development is much harder
 - Lack of development tools and programming models
 - Subtle program errors: race conditions
 - Multilevel parallelism is difficult to manage
 - Communication and/or IO bottlenecks
- Rapid pace of change in computer system architecture
 - A parallel algorithm for one machine may not be a good match for another
 - Homogeneous multicore processors vs GPGPU
- Extreme scale exacerbates inefficiencies

Summary

- What is parallel computing
- Why parallel computing
- Different levels of parallelism
- Challenge and opportunities of parallelism

- Reading:
 - Kumar ch 1; ch 2