Causal Class Activation Map for Weakly-Supervised Semantic Segmentation

Yiping Wang https://yipingwang.ca 2022.08.05

I am available for a PhD position!

Semantic Segmentation

Supervision: pixel-level labels

Goal: pixel-level semantic segmentation, i.e., classifying each pixel to a class

Weakly-Supervised Semantic Segmentation

Supervision: only image-level labels

Goal: pixel-level semantic segmentation, i.e., classifying each pixel to a class

Popular Pipeline

Supervision: only image-level labels

Goal: pixel-level semantic segmentation, i.e., classifying each pixel to a class

Class Activation Map

Figure Credit: B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning Deep Features for Discriminative Localization. CVPR'16

CAMs in Out-Of-Distribution dataset

Prediction: Bird

Prediction: Bird

Front-Door Adjustment

x denotes images with shape 3 * H * W, z denotes image-level label, y denotes CAM with shape H * W

Assumptions

$$P(Y = y | do(X = x)) = \sum_{z} P(Z = z | X = x) \sum_{x'} P(Y = y | X = x', Z = z) P(X = x')$$
 (3)

x denotes images with shape 3 * H * W, z denotes image-level label, y denotes CAM with shape H * W

Assumptions

$$P(Y = y | do(X = x)) = \sum_{z} P(Z = z | X = x) \sum_{x'} P(Y = y | X = x', Z = z) P(X = x')$$
 (3)

$$P(Y|do(X)) = \sum_{z} P(Y_{z}|do(X)) = \sum_{z} \underbrace{P(Z|X=x)}_{P(Z|X=x)} \underbrace{\sum_{x_{z} \in X_{z}} P(Y|X=x_{z}, Z=z) P(X=x_{z})}_{P(X|do(X))}$$
Global CAM for z over training set

 $P(Y_z|do(X))$: Class-specific adjusted map for z of x

Assumptions

$$P(Y = y | do(X = x)) = \sum_{z} P(Z = z | X = x) \sum_{x'} P(Y = y | X = x', Z = z) P(X = x')$$
 (3)

$$P(Y|do(X)) = \sum_{z} P(Y_{z}|do(X)) = \sum_{z} \underbrace{P(Z|X=x)}_{x_{z} \in X_{z}} \underbrace{\sum_{x_{z} \in X_{z}} P(Y|X=x_{z},Z=z) P(X=x_{z})}_{P(Y_{z}|do(X)): \text{ Class-specific adjusted map for } z \text{ of } x$$

- P(Z = z|X): the probability of an image x for class z can be computed by the classifier.
- $P(X = x_z)$: assuming that each training sample is equiprobable, the probability of an image x of class z occurs is approximately $\frac{1}{N_z}$.
- $P(Y = y_z | X = x_z, Z = z)$: the probability distribution for the localization $y_z \in \mathbb{R}^{1 \times H \times W}$ can be computed by Eq. 1 with a trained classifier.

Training

Implementation – one liner!

```
# Classification forward pass
x = classification_model(images) # x.shape == B * 20
# Multiply with Global CAM
\# x.shape == B * 20 * H * W
\# x = x.unsqueeze(2).unsqueeze(2) * global cam
# Mean Pooling
\# x = torch.mean(x, dim=(2, 3)) \# x.shape == B * 20
# Ours
x = torch.mean(x.unsqueeze(2).unsqueeze(2) *
              global_cam, dim=(2, 3)
# Loss
loss = torch.nn.BCELoss()(x, labels)
```

Qualitative

(a)Original Image (b)CAM (c)Causal CAM (d)Pseudo-Masy by CAM (e)Pseudo-Mask by Causal CAM (f) GT

Quantitative

Method	Type	Backbone	Seed	Pseudo-Mask	val	test
$CAM[72]_{CVPR'16}$	/	ResNet50	48.3	65.9	63.5	64.8
$CONTA[70]_{NeurIPS'20}$	\mathcal{A},\mathcal{C}	ResNet50	48.8	67.9	65.3	66.1
CONTA+SEAM [64]	\mathcal{A},\mathcal{C}	ResNet38	56.2	65.4	66.1	66.7
C ² AM (Ours)	\mathcal{C}	ResNet50	52.1	69.6	67.5	67.7
$AdvCAM[36]_{CVPR'21}$	\mathcal{I}	ResNet50	55.6	69.9	68.1	68.0
$ReCAM[11]_{CVPR'22}$	\mathcal{A}	ResNet50	54.8	70.8	68.7	68.5
RCA[73] _{CVPR'22}	\mathcal{M}	ResNet38	/	74.1	72.2	72.8

Thanks!

