U.S. National Phase of PCT/GB2004/005267

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1. (currently amended) A magnetic field sensor device comprising an oscillatory member and a current controller means, wherein the current controller means is arranged to pass an alternating current (AC) along at least first and second current paths provided through the oscillatory member, characterised in that the current controller means is arranged to provide magnetic gradiometer mode operation in which current flow through the first current path is in substantially the opposite direction to current flow through the second current path.
- 2. (currently amended) A device according to claim 1 wherein the current control<u>ler</u> means—is arranged to additionally provide magnetometer mode operation in which current flow through the first current path is in substantially the same direction as current flow through the second current path.
- 3. (currently amended) A device according to claim 1 wherein the current control<u>ler</u> means is arranged to additionally provide magnetometer mode operation in which AC is passed through only the first current path.
- 4. (currently amended) A device according to any one of claims 2 to 3 wherein the current control<u>ler means</u> comprises a mode selector for switching to either one of gradiometer mode and magnetometer mode as required.
- 5. (currently amended) A device according to any one of the preceding claim 1s and further comprising a sensor sensing means for providing an output signal dependent on the deflection of the oscillatory member.

- 6. (currently amended) A device according claim 5 wherein the sensoring means comprises at least one sensor electrode located on the substrate and having a variable capacitance with the oscillatory member.
- 7. (currently amended) A device according to claim 6 wherein the sensoring means comprises a plurality of elongate sensor electrodes located on the substrate and the oscillatory member comprises a plurality of elongate electrodes interdigitated with said plurality of elongate sensor electrodes.
- 8. (original) A device according to claim 7 wherein the electrodes of the oscillatory member are maintained at a predetermined direct current (DC) polarisation voltage.
- 9. (original) A device according to claim 7 wherein a high frequency AC polarisation voltage is applied to the electrodes of the oscillatory member.
- 10. (currently amended) A device according to any one of claims 7 to 9 wherein said plurality of sensor electrodes are electrically connected to form two electrode sets, the two electrode sets being arranged to provide differential capacitive pick-off.
- 11. (currently amended) A device according to any one of the preceding claims 5 wherein a driver is driving means are additionally provided to impart a magnetic field independent oscillatory force to the oscillatory member.
- 12. (currently amended) A device according to claim 11 wherein the oscillatory member is carried on a substrate and the drivering means-comprises at least one drive electrode formed on the substrate to electrostatically impart the oscillatory force to the oscillatory member.

- 13. (currently amended) A magnetometer according to claim 12 in which the drivering means comprises a plurality of first elongate drive electrodes formed on the substrate and the oscillatory member comprises a plurality of second elongate drive electrodes, wherein the first elongate drive electrodes are interdigitated with the second elongate drive electrodes.
- 14. (currently amended) A device according to any one of claims 11 to 13 when dependent on claim 5 wherein the drivering means comprises a positive feedback circuit for receiving the output signal produced by the sensoring means.
- 15. (currently amended) A device according to claim 14 wherein the drivering means provides an oscillatory force of fixed amplitude.
- 16. (currently amended) A device according to claim 14 in which the drivering means is arranged to impart an oscillatory force to the oscillatory member of adjustable amplitude, wherein the amplitude of the oscillatory force applied by the drivering means is adjusted during use so as to maintain a given amplitude of oscillation of the oscillatory member.
- 17. (currently amended) A device according to any one of the preceding claims_1 wherein the frequency of the AC passed through the oscillatory member by the current controller means_is substantially equal to the resonant frequency of the oscillatory member.
- 18. (currently amended) A device according to any one of the preceding claims 5 wherein the current controller means-comprises a voltage source for supplying the AC passed through the oscillatory member.

- 19. (currently amended) A device according to claim 18 when dependent on claim 5 wherein the current control<u>ler means</u>-comprises a feedback circuit arranged to receive the output signal produced by the sens<u>oring means</u>.
- 20. (currently amended) A device according to any one of the preceding claim 1s wherein the first and second current paths of the oscillatory member comprise substantially straight conductive tracks.
- 21. (original) A device according to claim 20 wherein the conductive track forming the first current path is substantially parallel to the conductive path forming the second current path
- 22. (currently amended) A device according to any one of the preceding claims 1 wherein the length of the first current path through the oscillatory member is substantially equal to the length of the second current path through the oscillatory member.
- 23. (currently amended) A device according to any one of the preceding claims 1 wherein the first current path through the oscillatory member is spatially separated from the second current path through the oscillatory member by more than 5mm.
- 24. (currently amended) A device according to any one of the preceding claims_1 wherein the oscillatory member comprises at least first and second flexible leg portions, the first leg portion comprising a conductive portion defining the first current path and the second leg portion comprising a conductive portion defining the second current path.
- 25. (original) A device according to claim 24 wherein the oscillatory member comprises a substantially rigid cross-beam, a first end of the crossbeam being attached to the first

U.S. National Phase of PCT/GB2004/005267

flexible leg portion and the second end of the crossbeam being attached to the second flexible leg portion.

- 26. (original) A device according to claim 25 wherein one or more additional flexible leg portions are attached to the crossbeam.
- 27. (currently amended) A device according to any one of claims 25 to 26 wherein one or more elongate electrodes protrude from the cross-beam.
- 28. (currently amended) A device according to any one of claims 25 to 27 wherein the cross beam is maintained at a given polarisation voltage during use.
- 29. (currently amended) A device according to any one of the preceding claims 1 wherein the oscillatory member comprises at least one stress reliever f means.

Claim 30. (Cancelled)

- 31. (currently amended) A device according to any one of the preceding claim 1s formed as a micro-electromechanical system (MEMS).
- 32. (currently amended) A device according to any one of the preceding claims 1 wherein the oscillatory member is suspended on a substrate.
- 33. (original) A device according to claim 32 wherein the oscillatory member is arranged to oscillate along an axis in a plane substantially parallel to the plane of the substrate.
- 34. (currently amended) A device according to any one of claims 32 to 33-wherein the substrate and oscillatory member are formed from any one of a silicon-on-insulator (SOI) wafer and a silicon-on-glass (SOG) wafer.

- 35. (currently amended) A compass comprising at least one magnetic field sensor device according to any one of the preceding-claims_1.
- 36. (currently amended) A compass comprising at least one magnetic field sensor device according to any one of claim 4. and claims 5 to 34 when dependent directly or indirectly on claim 4.
- 37. (original) A compass according to claim 36 comprising three magnetic field sensing devices, each of the three magnetic field sensing devices being arranged to acquire magnetic field measurements along mutually orthogonal axes.
- 38. (currently amended) A compass according to claim 37 and further comprising a processoring means, the processoring means being arranged to switch each magnetic field sensor device between magnetometer mode and gradiometer mode as required and to determine therefrom a compass bearing that is corrected for any localised magnetic field anomalies.
- 39. (currently amended) An inertial measurement unit comprising a compass according to any one of claims 35 to 38.
- 40. (currently amended) A compass comprising <u>means_a device_for_measuring</u> magnetic field strength characterised in that the compass additionally comprises <u>means_a device_for_measuring_for_measuri</u>
- 41. (original) A compass according to claim 40 and further comprising a processor, the processor being arranged to take magnetic field strength and magnetic field gradient measurements and provide compass bearings corrected for localised magnetic field anomalies.

U.S. National Phase of PCT/GB2004/005267

42. (original) A method of operating a magnetic field sensor device comprising the steps of taking a magnetic field sensor device comprising an oscillatory member and passing an alternating current (AC) through the oscillatory member, characterised in that the oscillatory member comprises at least first and second current paths and in that, during use, an AC is passed along the at least first and second current paths.

43. (original) A method according to claim 42 wherein AC is passed along the first current path in a substantially opposite direction to the second current path.