Comparing Neural Population Responses Based on Pairwise p-Wasserstein Distance between Topological Signatures

Liu Zhang 1 Fei Han 2 Kelin Xia 3

 1 Princeton University, Iz1619@princeton.edu. 2 National University of Singapore, mathanf@nus.edu.sg. 3 Nanyang Technological University, xiakelin@ntu.edu.sg.

Main Contribution

We develop and evaluate a topology-based approach to compare neural population activities as high-dimensional point-clouds. As a demonstration, we apply the approach to compare neural population responses in the mouse retina to different visual stimuli. With the proposed approach, one can

- quantitatively compare between neural population responses arising from artificial and biological neural networks, and
- perform statistical inference on a distribution of topological signatures for the respective neural population responses.

Preliminaries

The topological and statistical constructions in the proposed approach build on the following mathematical concepts.

• Simplicial complex: a pair (V, \triangle) , where V is a finite set, and \triangle is a family of non-empty subsets of V such that $\tau \in \triangle$ and $\sigma \subseteq \tau \implies \sigma \in \triangle$, where $\tau \in \triangle$ is face of \triangle .

- (a) Simplicial complex.
- (b) Simplicial chain complex.
- Simplicial homology in degree k of \triangle is the quotient group $H_k(\Delta; \mathbb{F}) = ker(\partial_k)/im(\partial_{k+1}) = Z_k(\Delta; \mathbb{F})/B_k(\Delta; \mathbb{F})$, where
 - $Z_k(\Delta; \mathbb{F}) = ker(\partial_k) = \{Z \in \widetilde{C}_k(\Delta; \mathbb{F}) : \partial_k(Z) = 0\}$ is the \mathbb{F} -module of the cycle group,
- $B_k(\Delta; \mathbb{F}) = im(\partial_{k+1}) = \{Z \in \widetilde{C}_k(\Delta; \mathbb{F}) : \partial_{k+1}(x), x \in \widetilde{C}_{k+1}(\Delta; \mathbb{F})\}$ is the \mathbb{F} -module of the boundary group.
- Filtered simplicial complex: A subcomplex of \triangle is a subset $\triangle^i \subseteq \triangle$ that is also a simplicial complex. Let \triangle be a finite simplicial complex and let $\triangle^1 \subset \triangle^2 \subset \cdots \subset \triangle^m = \triangle$ be a finite sequence of nested subcomplexes of \triangle . The simplicial complex \triangle with such a sequence of subcomplexes, $\emptyset \subseteq \triangle^1 \subseteq \triangle^2 \subseteq \cdots \subseteq \triangle^m = \triangle$, is called filtered simplicial complex.
- <u>p-persistent k-th homology group:</u> Given a filtered complex, for the *i*-th subcomplex Δ^i we compute the associated boundary maps ∂_k^i for all dimensions k, boundary matrices M_k^i for all dimensions k, C_k^i , Z_k^i (cycle group), B_k^i (boundary group), and H_k^i (homology group). Then the *p*-persistent k-th homology group $H_k^{i,p}$ of Δ^i is $Z_k^i/(B_k^{i+p} \cap Z_k^i)$.

(c) Persistence homology.

- Barcode and persistent diagrams: The rank of $H_k^{i\to j}(C;\mathbb{F})$ gives the number of intervals in the <u>barcode</u> of $H_k^{i\to j}(C;\mathbb{F})$ spanning the parameter interval [i,j] (i,j) represent the "birth" and "death" of a feature respectively). <u>Persistent diagram</u> is an equivalent representation of barcode, with x-coordinate and y-coordinate representing the "birth" and "death" of a feature respectively.
- <u>p-Wasserstein distance between persistent diagrams:</u> Given $p \ge 1$, the <u>p-Wasserstein distance</u> between a pair of persistence diagrams dgm_1 and dgm_2 is defined by

$$W_p(dgm_1, dgm_2) = \left(\inf_{M} \Sigma_{(x,y) \in M} ||x - y||_{\infty}^p\right)^{1/p},$$

where the infimum is taken over all possible matchings M. A matching M between dgm_1 and dgm_2 is a subset $M \subseteq \operatorname{dgm}_1 \times \operatorname{dgm}_2$ such that every point in dgm_1 and dgm_2 appears exactly once in M.

• Statistical inference on the space of persistent diagrams: The space of persistent diagrams is defined as $D_p = \{d|W_p(d,d') < \infty\} = \{d|\operatorname{Pers}_p(d) < \infty\}$. Given a probability space $(D_p, \mathcal{B}(D_p), \mathcal{P})$, the Fréchet variance and Fréchet expectation are defined as

Introduction

Real-world data are often encoded in high-dimensional representations. Moreover, it is often unclear which coordinates and metrics can be meaningfully justified.

- **Topological properties are well-suited:** they are generalized to high-dimensional surfaces and are invariant under different coordinates and metrics.
- Aim: compare data point-clouds in terms of their topological properties.
- **Motivation:** analyze the high-dimensional output of a population of neurons in response to some stimulus (neural population response).
- A crucial gap: prior works have not considered how these neural population responses can be appropriately compared.

Methods and Results

The steps in our approach are summarized in the flowchart.

Figure: Summary of the proposed approach.

- Visual stimuli are flashed in front of the mouse. Neuron output is recorded with electrodes and encoded in peristimulus (PSTH) diagrams: 698 neurons, 6 types of visual stimuli, 264 number of pixels in the PSTH diagram
- Six point clouds each corresponds to the neural population response towards one type of stimuli, which we denote as X_1, X_2, \ldots, X_6 . Each point cloud X_i consists of 698 points in \mathbb{R}^{264} .

Based on the results, we have the following hypotheses:

- 1 The neural population response evoked by the low-frequency stimulus (X_1) is significantly different from the other stimulus types in terms of topological signatures. It might be interesting to conduct further lab experiments to investigate this selective preference.
- 2 The pairwise p-Wasserstein distances between persistence diagrams for H_2 are nearly negligible. This suggests that the intrinsic dimensionality of this neural data might even be lower than three-dimensional. It would be interesting to compare the results with the hypothesis that if we are given an oriented stimulus, and if the orientation is a circular variable, then the neural population response must be topologically equivalent to a circle.

Conclusion and Discussion

- Advantage 1: When there is little knowledge about the underlying coordinates/metrics, topology-based methods are more suitable than geometric methods.
- Advantage 2: If one wishes to analyze the probability distributions of neural population responses, this approach allows for standard statistical analysis.
- **Future Direction 1:** To extend this approach analogously to analyze the neural population responses arising from artificial neural networks under numerical simulations.
- Future Direction 2: To apply this approach to compare neural population responses across different brain regions.
- **Future Direction 3:** To consider whether it is possible without the dimensionality reduction step still a challenge in Topological Data Analysis!