Fonctions exponentielle

I. Fonction exponentielle népérienne

Activité

- 1. Montrer que la fonction f définie par $f(x) = \ln x$ admet une fonction réciproque définie sur l'intervalle J à déterminer. La fonction réciproque de $x \mapsto \ln x$ est appelée **fonction** exponentielle népérienne et se note par exp.
- 2. Montrer que $(\forall x \in \mathbb{R}), \exp(x) > 0$.
- 3. a. Calculer $\ln(e^2)$, $\ln(e)$, $\ln(1)$ et $\ln(\frac{1}{e^2})$.
 - b. En déduire $\exp(2)$, $\exp(1)$, $\exp(0)$ et $\exp(-2)$.
- 4. a. Tracer (C_{ln}) et (C_{exp}) sur le repère (O, \vec{i}, \vec{j}) .
 - b. En déduire $\lim_{x\to+\infty} \exp(x)$ et $\lim_{x\to-\infty} \exp(x)$.

1. Définition et propriétés

Définition

On appelle **fonction exponentielle népérienne**, notée **exp**, la fonction réciproque de la fonction logarithme népérien **ln** et on a :

$$(\forall x \in \mathbb{R})(\forall y \in]0; +\infty[); \exp(x) = y \Leftrightarrow x = \ln(y).$$

Notation e^x

Soit r un rationnel. On a : $\ln(\exp(r)) = r$ et on sait que $\ln(e^r) = r \ln(e) = r$. Donc $(\forall r \in \mathbb{Q})$: $\ln(\exp(r)) = \ln(e^r)$. On prolonge cette relation de l'ensemble \mathbb{Q} sur l'ensemble \mathbb{R} , on aura :

$$(\forall x \in \mathbb{R}) : \exp(x) = e^x$$

Propriétés

- La fonction exp est continue et strictement croissante sur \mathbb{R} .
- $(\forall x \in \mathbb{R}) : e^x > 0$.
- $(\forall x \in]0; +\infty[)(\forall y \in \mathbb{R}) : e^y = x \Leftrightarrow \ln(x) = y.$
- $(\forall x \in \mathbb{R}) : \ln(e^x) = x \text{ et } (\forall x \in]0; +\infty[) : e^{\ln(x)} = x.$
- $(\forall a \in \mathbb{R})(\forall b \in \mathbb{R}) : e^a > e^b \Leftrightarrow a > b.$
- $(\forall a \in \mathbb{R})(\forall b \in \mathbb{R}) : e^a = e^b \Leftrightarrow a = b.$

Application

On considère la fonction f définie par : $f(x) = \frac{3e^x}{2e^x+4}$.

- 1. Déterminer D_f puis montrer que f est continue sur D_f .
- 2. Calculer f(0) et $f(\ln(2))$.

Application

Résoudre dans \mathbb{R} :

a.
$$e^{1-x} = e^{x-x^2}$$

c.
$$(e^x)^2 - 3e^x + 2 = 0$$

c.
$$(e^x)^2 - 3e^x + 2 = 0$$
 e. $(e^x + 2)(e^{-x+1} - 4) \ge 0$

b.
$$e^{x^2-x}=1$$

d.
$$(e^x)^2 - 3e^x + 2 < 0$$
 f. $\frac{e^x + 1}{e^{-x} - e} \le 0$

f.
$$\frac{e^x + 1}{e^{-x} - e} \le 0$$

Propriétés

Soient a et b deux réels et $r \in \mathbb{Q}$, on a :

$$\bullet \quad e^{x+y} = e^x e^y$$

•
$$e^{x-y} = \frac{e^x}{e^y}$$

•
$$e^{-x} = \frac{1}{e^x}$$

•
$$(e^x)^r = e^{rx}$$

Application

1. Simplifier les expressions suivantes :
$$A = \frac{e^{5x}e^{-x}}{(e^x)^4}; \quad B = (e^{x-2})^2 \times e^{3x-4}; \quad C = e^{2x}((e^x + e^{-x})^2 + (e^x - e^{-x})^2)$$

2. Montrer que : $(\forall x \in \mathbb{R}): \frac{e^x-1}{e^x+1} = \frac{1-e^{-x}}{1+e^{-x}}$

Exercice

1. Résoudre dans \mathbb{R} :

a.
$$e^x + 6e^{-x} - 5 = 0$$

a.
$$e^x + 6e^{-x} - 5 = 0$$
 b. $(e^x)^{15} \times e^{x^2 + 5} = \frac{e^{6x}}{e^4}$ c. $\frac{e^{2x+1}}{e^{x-3}} > e^{-x+2}$

c.
$$\frac{e^{2x+1}}{e^{x-3}} > e^{-x+2}$$

2. Résoudre dans \mathbb{R}^2 le système $\begin{cases} 5e^{2x+1}+3e^{-y}=3\\ 7e^{2x+1}-4e^{-y}=2 \end{cases}.$

2. Limites usuelles

Propriétés

•
$$\lim_{x\to+\infty} e^x = +\infty$$

•
$$\lim_{x\to-\infty} e^x = 0$$

$$\bullet \quad \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

•
$$\lim_{x \to +\infty} \frac{e^x}{r^n} = +\infty$$
 $(n \in \mathbb{N}^*)$

•
$$\lim_{x \to -\infty} x^n e^x = 0$$
 $(n \in \mathbb{N}^*)$

Exemple

Calculons $\lim_{x\to +\infty} e^x - x$. On a $\lim_{x\to +\infty} e^x - x = \lim_{x\to +\infty} x(\frac{e^x}{x} - 1) = +\infty$ car $\lim_{x\to +\infty} \frac{e^x}{x} = +\infty$.

Application

Calculer les limites suivantes :

1.
$$\lim_{x\to+\infty} e^x - \sqrt{x}$$

2.
$$\lim_{x \to +\infty} (2x - 1)e^{-x}$$

3.
$$\lim_{x\to+\infty} \sqrt{x}e^{-x}$$

4.
$$\lim_{x\to+\infty} e^x \frac{x+4}{x}$$

5.
$$\lim_{x\to 0} \frac{e^{2x}-1}{x}$$

6.
$$\lim_{x\to 0} \frac{e^{2x}-1}{e^{3x}-1}$$

7.
$$\lim_{x\to+\infty} \frac{e^x-1}{e^x+1}$$

8.
$$\lim_{x \to +\infty} \frac{e^x}{x^3 + x + 1}$$

9.
$$\lim_{x\to 0} \frac{e^{x^2+2x}-1}{x}$$

3. Dérivée de la fonction exponentielle népérienne

On pose $(\forall x \in]0, +\infty[)f(x) = \ln(x)$, donc $(\forall x \in \mathbb{R})f^{-1}(x) = e^x$. Et on sait que $(\forall x \in \mathbb{R}): (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$, d'où $(\forall x \in \mathbb{R}): (e^x)' = \frac{1}{1/e^x} = e^x$.

Propriété

La fonction $x \mapsto e^x$ est dérivable sur \mathbb{R} et on a : $(\forall x \in \mathbb{R}) : (e^x)' = e^x$.

Application

On considère la fonction f définie sur \mathbb{R} par $f(x) = x - \frac{e^x - 1}{e^x + 1}$, et soit (C_f) sa représentation graphique sur le repère (O, \vec{i}, \vec{j}) .

- 1. Montrer que $(\forall x \in \mathbb{R})$: $f(x) = x + 1 \frac{2e^x}{e^x + 1}$ et déduire $\lim_{x \to -\infty} f(x)$.
- 2. Montrer que $(\forall x \in \mathbb{R}) : f(x) = x 1 + \frac{2}{e^x + 1}$ et déduire $\lim_{x \to +\infty} f(x)$.
- 3. Étudier les branches infinies de (C_f) au voisinage de $+\infty$ et $-\infty.$
- 4. Montrer de f est impaire.
- 5. Montrer que f est dérivable sur $\mathbb R$ et déterminer sa dérivée.
- 6. Donner le tableau des variations de f.
- 7. Tracer (C_f) .

Propriété

Si u est une fonction dérivable sur I, alors la fonction $x \mapsto e^{u(x)}$ est dérivable sur I et on a : $(\forall x \in I) : (e^{u(x)})' = u'(x)e^{u(x)}$.

Application

Déterminer f' dans les cas suivants :

1.
$$f(x) = e^{x^2 + 3x}$$

3.
$$f(x) = (e^{2x} - e^{-x})^2$$

2.
$$f(x) = e^{x-2\ln(x+1)}$$

$$4. \ f(x) = e^{\sqrt{x}}$$

Corollaire

Soit u une fonction dérivable sur I. Les primitives de la fonction $x \mapsto u'(x)e^{u(x)}$ sur I sont les fonctions $x \mapsto e^{u(x)} + c$ tel que $c \in \mathbb{R}$.

Application

Déterminer l'ensemble des primitives de f dans les cas suivants :

1.
$$f(x) = 2e^{2x} - e^{-x}$$

3.
$$f(x) = (x^2 + 1)e^{x^3 + 3x}$$

2.
$$f(x) = e^{5x+4}$$

4.
$$f(x) = \frac{2x+1}{e^{x^2+x+1}}$$

II. Fonction exponentielle de base a $(a \neq 1; a > 0)$

Définition

Soit a un réel strictement positif et différent de 1. La fonction réciproque de $x \mapsto \log_a(x)$ est appelée fonction exponentielle de base a qui est définie sur \mathbb{R} et notée par $exp_a(x)$ ou a^x .

Soient $x \in \mathbb{R}$ et $y \in \mathbb{R}^*_+$, on a : $a^x = y \Leftrightarrow x = \log_a(y) \Leftrightarrow x = \frac{\ln(y)}{\ln(a)} \Leftrightarrow x \ln(a) = \ln(y) \Leftrightarrow e^{x \ln(a)} = y$. D'où : $a^x = e^{x \ln(a)}$.

Exemples

$$\bullet \quad 2^x = e^{x \ln(2)}$$

•
$$4^{\sqrt{2}} = e^{\sqrt{2}\ln(4)} = e^{2\sqrt{2}\ln(2)}$$

•
$$(\sqrt{3})^x = e^{x \ln(\sqrt{3})} = e^{\frac{x}{2} \ln(3)}$$

Remarque

$$(\forall x \in \mathbb{R}) : 1^x = 1.$$

Propriétés

Soient x et y deux réels et $r \in \mathbb{Q}$, on a :

$$\bullet \quad a^{x+y} = a^x a^y$$

$$\bullet \quad a^{-x} = \frac{1}{a^x}$$

$$\bullet \quad a^{x-y} = \frac{a^x}{a^y}$$

•
$$a^{rx} = (a^x)^r$$

Application

Montrer que :
$$\frac{9^{\ln(3)} \times 8^{\ln(4)}}{25^{\ln(5)}} = \sqrt{e}$$
.

Exercice

1. Résoudre dans \mathbb{R} :

a.
$$(\frac{1}{2})^x \le \frac{1}{4}$$

b.
$$3^x > 9^x$$

c.
$$10^{2x} + 2 \times 10^x - 3 > 0$$

2. Calculer la dérivée des fonctions f et g telles que $f(x) = 2^{x^2+2x+2}$ et $g(x) = x^x$.

3. Calculer les limites suivantes :

a.
$$\lim_{x\to+\infty} \left(\frac{1}{3}\right)^x$$

c.
$$\lim_{x\to 0} \frac{4^x - 2^x}{x}$$

b.
$$\lim_{x \to +\infty} \frac{4^x - 2^x}{3^x}$$

d.
$$\lim_{x\to+\infty} (1+\frac{1}{x})^x$$

Exercice

I. On considère la fonction g définie sur \mathbb{R} par : $g(x) = e^{2x} - 2x$.

1. Déterminer g'(x) for tout x de \mathbb{R} puis donner le tableau des variations de g.

2. En déduire que pour tout x de \mathbb{R} , g(x) > 0.

II. Soit la fonction f qui définie sur \mathbb{R} par: $f(x) = \ln(e^{2x} - 2x)$ et soit (C_f) sa représentation graphique sur le repère (O, \vec{i}, \vec{j}) .

1.a. Montrer que $\lim_{x\to-\infty} f(x) = +\infty$.

b. Vérifier que : $\frac{f(x)}{x} = (\frac{e^{2x}}{x} - 2) \frac{\ln(e^{2x} - 2x)}{e^{2x} - 2x}$.

c. Montrer que $\lim_{x\to+\infty}\frac{f(x)}{x}=0$ puis interpréter géométriquement le résultat obtenu.

2.a. Vérifier que $(\forall x\geq 0): 1-\frac{2x}{e^{2x}}>0$ et que $2x+\ln(1-\frac{2x}{e^{2x}})=f(x).$

b. En déduire que $\lim_{x\to+\infty} f(x) = +\infty$.

3. c. Montrer que la droite d'équation (D): y=2x est une asymptote oblique de (C_f) au voisinage de $+\infty$.

d. Montrer que $(\forall x \geq 0)$: $f(x) - 2x \leq 0$ puis déduire la position relative de (C_f) et (D) sur $[0, +\infty[$.

4. a. Montrer que $(\forall x \in \mathbb{R}) : f'(x) = \frac{2(e^{2x}-1)}{g(x)}$.

b. Donner le tableau des variations de f.

5. Tracer (C_f) et (D) sur le repère (O, \vec{i}, \vec{j}) .