4/1/2018 Lab 6

CCPS 844 Data Mining (Lab 6) Submit your solution as a pdf file

Q-1 Select a dataset of your choice. Apply PCA on it like we have applied in "Simple Example.ipynb". If you want, you can add further details like "plot_pca_iris.ipynb".

```
In [1]: import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 from sklearn.model_selection import train_test_split
 from sklearn.neighbors import KNeighborsClassifier
 from sklearn import metrics
 % matplotlib inline

 from IPython.core.display import display, HTML
 display(HTML("<style>.container { width:90% !important; }</style
 >"))
 pd.set_option('display.max_columns', 100)

 df = pd.read_csv('winequality-red.csv')
```

In [3]: df.sample()

Out[3]:

	fixed acidity			residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН
1260	8.6	0.635	0.68	1.8	0.403	19.0	56.0	0.99632	3.02

```
In [31]: X = df.iloc[:,0:3]
```

In [32]: | X.sample()

Out[32]:

	fixed acidity	volatile acidity	citric acid
867	6.9	0.51	0.23

```
In [34]: from sklearn import decomposition
pca = decomposition.PCA(n_components=2)
pca.fit(X)
```

In [35]: X1 = pca.transform(X)

4/1/2018 Lab 6