ПРАКТИКА ПРИМЕНЕНИЯ ТРЕБОВАНИЙ ГОСТ НА АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ ОБЯЗАТЕЛЬНОСТЬ ПРИМЕНЕНИЯ ТРЕБОВАНИЙ ГОСТ

В соответствии с Федеральным законом от 29.06.2015 №162-ФЗ (в ред. от 30.12.2020) «О стандартизации в Российской Федерации», добровольность применения документов по стандартизации — один из принципов стандартизации (статья 4).

ГОСТ становится обязательным:

- если это установлено Федеральным законом (в случае защиты государственной тайны или в отношении оборонной продукции (статья 6) что не является общим случаем для применения ГОСТ на автоматизированные системы);
- если изготовитель/исполнитель принимает на себя требования (например, требования Технического задания) о применении национального/межгосударственного стандарта (статья 26 вышеуказанного 162-Ф3).

Есть особые случаи, в которых необходимо учитывать требования ГОСТ на автоматизированные системы: создание автоматизированных систем в защищенном исполнении, создание государственных информационных систем, защита персональных данных, защита автоматизированных систем управления технологическими процессами, обеспечение безопасности критической информационной инфраструктуры, аттестация по требованиям безопасности информации. Нормативными требованиями в таких случаях предусматривается разработка:

- Технического задания на создание подсистемы безопасности;
- модели угроз безопасности информации;
- документации на систему (проектной документации);
- рабочей (эксплуатационной) документации.

В данных случаях необходимо руководствоваться требованиями ГОСТ на автоматизированные системы, даже если в современных трактовках вышеуказанных нормативных требований к разработке документации не употребляется прямая отсылка к ним, а, например, указываются цитаты из ГОСТ Р 59793–2021:

- документация на систему (проектные решения) должна быть «в объеме, необходимом для описания полной совокупности проектных решений, достаточном для дальнейшего выполнения работ по созданию системы»;
- рабочая документация должна содержать «все необходимые и достаточные сведения для обеспечения выполнения работ по вводу АС в действие и ее эксплуатации, а также для поддержания уровня эксплуатационных характеристик (качества) АС в соответствии с принятыми проектными решениями».

Так, например, на необходимость учета требований ГОСТ на автоматизированные системы при создании систем указывает действующая нормативная база, в частности:

- ГОСТ Р 51583–2014 «Защита информации. Порядок создания автоматизированных систем в защищенном исполнении. Общие положения»;
- Приказ ФСТЭК России от 11.02.2013 №17 (в ред. от 28.05.2019) «Об утверждении Требований о защите информации, не составляющей государственную тайну, содержащейся в государственных информационных системах»;
- Постановление Правительства Российской Федерации от 06.07.2015 №676 (в ред. от 12.06.2024) «О требованиях к порядку создания, развития, ввода в

эксплуатацию, эксплуатации и вывода из эксплуатации государственных информационных систем и дальнейшего хранения содержащейся в их базах данных информации».

Последний из указанных нормативных актов не содержит прямого указания на ГОСТ Р 59793—2021, но содержит цитату из него, дополненную требованиями по защите информации: «Этап разработки документации на систему и ее части включает разработку, согласование и утверждение документации в объеме, необходимом для описания полной совокупности проектных решений (в том числе по защите информации) и достаточном для дальнейшего выполнения работ по созданию системы».

ГОСТы на автоматизированные системы и связанные с ними стандарты регламентируют следующие 5 основных областей требований к проектированию систем:

- 1. Стадии проекта создания системы.
- 2. Состав проектной документации.
- 3. Содержание проектной документации.
- 4. Оформление проектной документации.
- 5. Последовательность приемки системы.

В таблице 1 обзорно приводится, какие из этих областей требований к проектированию систем по ГОСТ на автоматизированные системы обязательны.

Таблица 1 — Обязательность отдельных областей требований к документации.

Область требований	Обязательность	Комментарии
1) Стадии проекта создания системы	рекомендательный характер	Последовательность стадий работ по ГОСТ Р 59793–2021 объединяет «лучшие практики» создания систем
2) Состав проектной документации	рекомендательный характер	ГОСТ 34.201–2020 содержит исчерпывающий перечень документов, из которого можно выбрать нужные по необходимости
3) Содержание проектной документации	обязательно	ГОСТ Р 59795–2021 устанавливает требования к содержанию документации
4) Оформление проектной документации	рекомендательный характер	Требования к оформлению документации установлены ЕСКД
5) Последовательность приемки системы	обязательно	Созданная система должна быть оформлена надлежащим образом. Общие требования к проведению испытаний установлены ГОСТ Р 59792–2021

Состав документации

Если Вы приступаете к разработке проектной документации по ГОСТ на автоматизированные системы (в рамках создания или модернизации системы) либо оформляете требования к системе для размещения заказа на портале закупок, необходимо определить и требования к разработке документации (состав, содержание и оформление разрабатываемой документации).

Полный состав документации, определенный в ГОСТ 34.201–2020, — избыточен. Среди предложенных документов могут быть выбраны наиболее подходящие исходя из специфики задачи. Если требования заказчика не вполне определены, я предлагаю

присмотреться к одному из предложенных в Таблице 2 подходу к проектированию (1...5) — набору документации, описываемой ГОСТами на автоматизированные системы. Один из таких подходов можно выбрать и применять в качестве рекомендации, от которой можно далее отталкиваться.

Таблица 2 — Рекомендуемые наборы документации.

Наименование документа	Код	1	2	3	4	5
1) Отчет об обследовании	_			V	\checkmark	✓
2) Модель угроз безопасности информации	_		~	~	V	V
3) Концепция автоматизированной системы					7	Y
4) Техническое задание	Т3	V	~	V	\checkmark	V
5) Ведомость технического проекта	ТΠ			Y	V	Y
6) Схема структурная комплекса технических средств	C1			V	Y	Y
7) Схема функциональной структуры	C2			~	V	V
8) Пояснительная записка к техническому проекту	П2		~	~	V	Y
9) Схема автоматизации	СЗ				\checkmark	V
10) Описание автоматизируемых функций	ПЗ				V	V
11) Описание информационного обеспечения системы	П5					Y
12) Описание комплекса технических средств	П9				V	V
13) Описание программного обеспечения	ПА					\checkmark
14) Схема организационной структуры	СО					\checkmark
15) Описание организационной структуры	ПВ				~	\checkmark
16) План расположения	C8				\checkmark	V
17) Схема соединений внешних проводок	C4					V

18) Таблица соединений и подключений	С6					V
19) Чертеж установки технических средств	CA				Y	V
20) Программа и методика испытаний	ПМ	V	V	V	Y	V
21) Ведомость эксплуатационных документов	ЭД			Y	\searrow	>
22) Руководство администратора (технологическая инструкция)	И2		V	Y	Y	V
23) Руководство пользователя	ИЗ			~	V	~
24) Инструкция по эксплуатации комплекса технических средств	ЕМ				>	>
25) Формуляр	ФО					~
26) Паспорт	ПС				>	

Коды документов в Таблице 4 приведены в соответствии с ГОСТ 34.201–2020. Акты, протоколы, приказы, эскизный проект, редко разрабатываемые документы из списка 55 документов по ГОСТ 34.201–2020 не учитывались в данной таблице.

Набору 1 соответствует практическое отсутствие документации технического проекта и обоснования мер защиты на основе модели угроз (но хотя бы Техническое задание и программа испытаний должны присутствовать в каком-то виде).

Набору 2 соответствует минимальный состав документации (технический проект представлен пояснительной запиской, а эксплуатационная документация – руководством пользователя).

Набору 3 соответствует оптимальный состав документации технорабочего проекта, разрабатываемой на практике в проектах создания систем.

Набору 4 соответствует расширенный состав документации, когда технорабочий проект должен быть всесторонне проработан.

Набор 5 редко требуется в настолько широком составе, даже для аттестации систем.

Содержание документации

Требования к содержанию документации установлены ГОСТ Р 59795–2021, на который (вместо РД 50–34.698–90) следует ссылаться при определении технических требований на проектирование системы.

Разработчику технической документации необходимо вести несколько справочников, отражающих проектные характеристики, и на которых будет основываться разрабатываемая документация:

• Справочник объектов автоматизации (объектов защиты). Должен содержать перечни физических адресов, помещений (площадок), сегментов сети, оборудования, адресов и сетевых имен.

- Таблицы актуальных угроз, мер защиты, соответствующих им мероприятий и подсистем защиты информации.
- Справочник функциональных требований. Должен быть четко описан переход конкретных требований к результатам. Предпроектные технические требования после запуска проекта должны превратиться в Техническое задание (внесением уточнений по результатам обследования и определения угроз), а решения технического проекта должны стать подтверждением перехода от требований «должен» к «решено»: [Технические требования (предпроектный этап)] → [Техническое задание (описывает, как должно быть)] → [Технический проект (решения, принятые при проектировании)] → [Рабочая документация (описывает реализованные решения и настройки)].
- Номенклатурный справочник. Должен содержать принятую в рамках проекта единую терминологию, правила наименования объектов автоматизации, перечень применимых нормативных документов и требований.
- Перечни решений и изменений. Должны содержать категории защищаемой информации, списки автоматизируемых бизнес-процессов, списки ролей и полномочий (должностных обязанностей) пользователей, списки подразделений и организаций, их роли в проекте.

Созданная система справочных данных должна лечь в основу разрабатываемой документации. Это поможет избежать типичной ошибки при проектировании, когда структура документации пере-согласовывается и переделывается многократно по ходу проекта.

На рынке стали доступны среды автоматического формирования комплектов документации по ГОСТ на автоматизированные системы, включая модель угроз по новым требованиям ФСТЭК. Такие среды опираются в своей работе на систему справочных данных по проекту. Для предприятий мелкого и среднего бизнеса подобная услуга может сэкономить время на подготовку документации, если заказчиком предъявляются только базовые требования к содержанию и оформлению документации.

Оформление документации

Стандартом оформления технической документации принято считать ЕСКД (ГОСТ 2) «Единая система конструкторской документации». Требования к тестовым документам установлены ГОСТ 2.105–2019.

Согласно ГОСТ Р 59795–2021 (строки 4-26 в Таблице 2) оформление технической документации выполняют по ГОСТ 2.105 и ГОСТ 2.106, которыми установлены требования к оформлению текстовых документов и чертежей, включая рамку по границам листа, с надписью внизу рамки по ГОСТ 2.104 и с кодом документа по ГОСТ 34.201–2020.

Ранее требованиями ГОСТ 34.602–89 указывалось, что «ТЗ на АС оформляют... без рамки, основной надписи и дополнительных граф к ней». Однако, вступившим в силу ГОСТ 34.602–2020 данная оговорка заменена на «ТЗ на АС оформляют в виде текстового документа». Таким образом, Техническое задание на систему должно оформляться аналогично технорабочему проекту, в рамке по границам листа (если в заказе на разработку документации не будет указано обратное).

Оформление документов в рамке по границам листа формата по ГОСТ 2.301 — в свое время было замечательным решением для обеспечения бумажного документооборота (всегда можно было определить принадлежность листа документа к конструкторской документации и место любого листа по уникальной комбинации кода документа и номера

листа). Но с переходом к электронному документообороту требования к наличию рамок стали менее актуальными. Если заказчик разработки документации считает, что рамки по границе листа затрудняют восприятие документа, от них можно отказаться, не нарушая требований ГОСТ. Для этого в заказе на разработку документации необходимо указать: «без рамки», — например, в такой формулировке: «Документация оформляется в виде текстового документа без рамки, основной надписи и дополнительных граф к ней».

Для производства профессионально составленной документации разработчикам (техническим писателям) рекомендуется применять соответствующие ГОСТ рекомендации специализированных руководств, одним из наиболее заслуженных среди которых считается <u>0</u> (Мильчин А.Э, Чельцова Л.К.), — шестое издание 2021 года.

Отдельных комментариев заслуживает ситуация с санкционными ограничениями и отзывом в 2022 году компанией Monotype возможности доступа на загрузку распространенных шрифтов Times New Roman, Arial с российских IP-адресов. Данное ограничение не запрещает использовать указанные шрифты на территории Российской Федерации, однако подталкивает разработчиков документации к установке и переходу к использованию шрифтов отечественного производства, из которых наибольшую известность заслужили шрифты компании «Паратайп» (Paratype):

- PT Astra Serif на смену Times New Roman;
- PT Astra Sans на смену Arial.

Из системы стандартов по информации, библиотечному и издательскому делу (ГОСТ Р 7.0.97-2016) исключены рекомендации по использованию проприетарных шрифтов из состава ОС Windows (Times New Roman, Arial, Courier New, Verdana), а в ГОСТ 2.105-2019 добавлено примечание о том, что применение таких шрифтов может привести к искажениям при отображении этих документов в других операционных системах (например, при переходе на отечественное ПО), в которых эти шрифты отсутствуют в связи с санкционными и лицензионными ограничениями.

ЛАБОРАТОРНАЯ РАБОТА № 1 СТАНДАРТЫ И МЕТОДОЛОГИИ СОЗДАНИЯ И ЭКСПЛУАТАЦИИ ИНФОРМАЦИОННЫХ СИСТЕМ

Цель работы: Изучение российских и международных стандартов, регламентирующих создание, эксплуатацию и аудит ИС.

Порядок выполнения работы

1. Систематизировать комплекс государственных и международных стандартов, регламентирующих процессы разработки ИС, заполнив таблицу 1.1.

Таблица 1.1 - Стандарты по разработке информационных систем

Обозначение стандарта	Наименование стандарта
Российские (стандарты СССР)	
Российские, идентичные международн	ЫМ

2. Дать краткую характеристику основных международных методологий и стандартов, применяющихся при создании, эксплуатации и аудите ИС, заполнив таблицу 1.2.

Таблица 1.2 – Международные методологии и стандарты

Наименование	Расшифровка (анг.)	Назначение
IDEF		
ITSM, ITIL		
ИСО/МЭК 15504		
ИСО/МЭК 12207		
Cobit		

3. Изучить ГОСТ 34.602-2020 Информационные технологии. Комплекс стандартов на автоматизированные системы. Техническое задание на создание автоматизированной системы

Описать виды и назначение документов, разрабатываемых на стадиях «Эскизный проект», «Технический проект», «Рабочая документация», заполнив таблицу 1.3.

Таблица 1.3 - Виды и назначение документов по ГОСТ 34.201-2020

Вид документы	Код документа	Назначение документа

4. Изучить ГОСТ Р 59793–2021 «Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания» (принят взамен ГОСТ 34.601–90). Составить таблицу 1.4.

Таблица 1.4 – Стадии и этапы создания ИС

Стадии	Этапы работ
1	1.1
	1.2
2	2.1
	2.2

5. Классифицировать законодательные акты в области информационных систем и технологий в соответствии с критериями, обозначенными в таблице 1.5.

Таблица 1.5 – Нормативно-правовое обеспечение информационной деятельности

Раздел	Перечень документов
Основные нормативно-правовые	
акты в области информационного	
права	
Основное законодательство о	
программах для ЭВМ (и БД)	
Законодательство, связанное с	
Интернет-деятельностью	
Подзаконные акты	

6. В справочно-правовой системе «Гарант», «КонсультантПлюс» найти Гражданский кодекс (ч. 4), изучить Главу 69. «Общие положения» Раздела VII. «Права на результаты интеллектуальной деятельности и средства индивидуализации».

Дать письменный ответ на вопрос: Какие объекты интеллектуальной собственности, касающиеся области ИТ, являются объектом правового регулирования гл. 69 Гражданского колекса?

- 7. В справочно-правовой системе «Гарант», «КонсультантПлюс» найти Федеральный закон от 27 июля 2006 г. № 149-ФЗ «Об информации, информационных технологиях и о защите информации». Дать письменный ответ на вопрос: Какие виды ответственности за правонарушения в сфере информации, информационных технологий и защиты информации предусмотрены данным Федеральным законом?
 - 8. Составить отчет.

Содержание отчета 1.

Заголовок, содержащий № ЛР, тему, цель работы.

Таблица 1.1, Таблица 1.2, Таблица 1.3, Таблица 1.4, Таблица 1.5.

Ответ на вопрос п.6.

Ответ на вопрос п.7.

Выводы по работе.

2 ЛАБОРАТОРНЫЕ РАБОТЫ №2-5

2.1. Цели и задачи выполнения лабораторных работ

- 1. Исследовать предприятие (оргструктура, миссия. стратегия).
- 2. Разработать стратегический план автоматизации.
- 3. Исследовать бизнес-процессы предприятия.
- 4. Исследовать информационные потоки предприятия.
- 5. Исследовать исходные документы, классификаторы, используемые на предприятии.
 - 6. Выделить процессы для автоматизации.
 - 7. Сформировать постановку задачи.
 - 8. Разработать оперативный план.

В результате выполнения лабораторных работ студент должен реализовать определенный набор знаний, умений и навыков.

Знания:

- виды ИС, их функциональные возможности и структуру, преимущества и недостатки внедрения;
 - преимущества и недостатки различных подходов к автоматизации предприятия;
- преимущества и недостатки заказных, уникальных и тиражируемых информационных систем;
 - способы приобретения ИС, их преимущества и недостатки;
 - составляющие цены приобретения и совокупной стоимости владения ИС;
 - основные критерии выбора ИС.

Умения:

- анализировать преимущества и недостатки существующих способов автоматизации для конкретного предприятия;
- определять преимущества и недостатки различных способов приобретения ИС для конкретного предприятия;

- определять состав затрат на внедрение ИС;
- составлять договор на закупку ИС;
- анализировать требования к ИС, предъявляемые фирмами-потребителями и фирмами-производителями ИС;
 - составлять договор на разработку ИС.

Навыки:

- выбор класса ИС для автоматизации предприятия в соответствии с требованиями к ИС и ограничениями;
 - выбор способа автоматизации для конкретного предприятия;
- выбор информационной системы для конкретных применений на основании анализа общих свойств, функциональных возможностей и особых требований;
- выбор способа приобретения ИС на основании преимуществ и недостатков существующих способов, возможностях и потребностях конкретного предприятия;
 - расчет совокупной стоимости владения ИС;
 - организация стратегического и оперативного планирования ИС;
 - организация выбора ИС для закупки;
 - организация анализа требований к ИС.

Общие представления:

- о стратегиях внедрения ИС;
- о деятельности ІТ-менеджера фирмы-потребителя при внедрении ИС;
- о проблемах внедрения ИС и перспективах реорганизации и реинжиниринга действующей системы управления.

Задание 1: Обследование предметной области

- 1. Содержание и цели предпроектного обследования.
- 2. Функциональная структура объекта автоматизации.
- 3. Методы обследования управленческих процедур.
- 4. Исследования потоков и структуры информации.

1.1 Содержание и цели предпроектного обследования

Предпроектное обследование предшествует процессу проектирования (разработки) автоматизированной информационной системы (АИС).

<u>Цель предпроектного обследования</u> — изучение задач управления, решаемых вручную, анализ недостатков существующей системы управления, разработка мероприятий по устранению недостатков и формирование перечня новых задач, решаемых автоматизированным способом.

<u>Предметная область пользователя</u> — отдельная задача или сравнительно небольшой комплекс задач, но предпроектное обследование проводится в составе работ по изучению системы и объекта управления в целом с единых организационных и методических позиций.

В процессе обследования вскрываются организационная и функциональная структура объекта и разрабатываются предложения для их оптимизации. Сбор данных об объекте автоматизации и осуществляемых видах деятельности позволяет досконально изучить и вскрыть слабые места в прохождении информационных потоков с целью их последующей доработки.

Применяются два подхода к обследованию информационных потоков:

- организационный, когда анализируются потоки информации по подразделениям предприятия (рабочим местам специалистов, производственным цехам, секторам, лабораториям, отделам и т.д.);
- функциональный, когда исследуются информационные потоки по отдельным процедурам, задачам, комплексам задач, функциям или подсистемам управления.

В процессе предпроектного обследования формируются наборы процедур, задач и комплексов задач для создаваемой АИС.

Предпроектное обследование затрагивает операции управления (управленческие процедуры, задачи, функции) и потоки информации. Обследование проводится по специальной программе с использованием определенных методик и документированием результатов. В методическом плане обследование управленческих процедур и информационных потоков удобнее рассматривать раздельно. Предпроектное обследование согласуется с принятой стратегией создания системы.

<u>Децентрализованная стратегия</u> (функциональный подход) — последовательное проектирование функциональных подсистем. Для каждой из них создается автономная информационная база. Такая стратегия обеспечивает быстрое внедрение функциональных подсистем, но оптимальная организация информационного обеспечения и АИС в целом достигается с меньшей вероятностью.

<u>Централизованная стратегия</u> (информационный подход) — создается, в первую очередь, интегрированная БД, являющаяся основой разработки функций и задач автоматизированного управления.

Децентрализованная стратегия

Предпроектное обследование предприятия может производиться путем исследования его организационной и/или функциональной структуры.

Звенья организационной структуры – подразделения предприятия:

- отделы;
- производства;
- цехи;
- участки;
- рабочие места.

Функциональные звенья:

- функции управления;
- функциональные подсистемы;
- задачи;
- процедуры.

Централизованная стратегия

Упор на информационный анализ предметной области, изучение состава и структуры информационных потоков с целью их интеграции.

Рекомендации по созданию АИС выбираются обобщением всех выводов и рекомендаций, полученных в результате предпроектного обследования предприятия.

Основные направления в совершенствовании управления:

- упрощение организационной структуры благодаря устранению излишних промежуточных звеньев и сокращению многоступенчатости;

- повышение централизации отдельных функций управления и ликвидация самостоятельных подразделений в небольших и средних цехах (техническое бюро, бухгалтерия и т.д.);
 - внедрение безцеховой структуры управления на небольших предприятиях;
 - высвобождение отдельных работников управления;
- совершенствование существующей системы документооборота (устранение излишних документов и реквизитов; сокращение маршрутов движения документов; применение стандартных бланков).

Существенным моментом является совершенствование методов управления, повышение достоверности и своевременности получения необходимой информации работниками системы управления, уменьшение трудоемкости управленческих процедур.

Предложения по совершенствованию управления, намеченные в результате предпроектного обследования, делятся на две группы.

Первая группа – рекомендации, которые могут быть реализованы в производстве до внедрения АИС.

Вторая группа — рекомендации и предложения, которые требуют внедрения различного рода средств автоматизированного управления.

2.2 Функциональная структура объекта автоматизации

В процессе предпроектного обследования и анализа материалов обследования изучается функциональная структура объекта автоматизации — состав обеспечивающих и функциональных подсистем, состоящих из комплексов задач, отдельных задач и процедур управления. Задачи и их комплексы функционально и информационно взаимосвязаны друг с другом. Решение задач организуется на системных принципах в составе АИС с единым информационным, математическим, программным и другими видами обеспечения.

Звеном высшего уровня функциональной структуры предприятия является функция управления. В теории управления различают функции управления:

- планирование;
- нормирование;
- учет;
- контроль;
- анализ;
- регулирование.

При создании АИС функции управления реализуются через функциональные Функциональная подсистема представляет собой подсистемы. часть системы, признаку включающую выделенную ПО определенному совокупность задач, характеризуемых единством использования результатов в процессе управления.

Предложения по совершенствованию управления, намеченные в результате предпроектного обследования, делятся на две группы.

Первая группа – рекомендации, которые могут быть реализованы в производстве до внедрения АИС.

Вторая группа — рекомендации и предложения, которые требуют внедрения различного рода средств автоматизированного управления.

2.3 Методы обследования управленческих процедур

Изучению управленческих процедур предшествует ознакомление с предметной областью в целом. При этом рассматриваются:

- существующие производственные и технологические процессы, а также материальные потоки;
- организационная структура управления (состав подразделений, их назначение и подчиненность друг другу);
 - цели, функции и задачи управления.

В зависимости от вида экономического объекта – промышленное предприятие, банковская сфера, торговля – оцениваются технико-экономические показатели, отражающие специфику деятельности предметной области.

Для промышленного предприятия:

- номенклатура выпускаемой продукции (число видов продукции, объемы выпуска);
 - тип и характер производства (единичное, мелкосерийное, массовое);
 - масштаб предприятия (малое, среднее, крупное);
 - численность работающих, количество и виды массовых профессий;
 - количество групп и единиц оборудования;
 - количество видов технологических процессов изготовления продукции;
- номенклатура материальных ресурсов (количество видов, объемы запасов и оборот материальных ресурсов, покупателей продукции и др.).

Реализация управленческих функций осуществляется через решение <u>задач</u> <u>управления</u>. Функции и задачи управления связаны с деятельностью управленческого персонала и отражают принятую <u>организационную структуру органа управления</u> (состав структурных подразделений или отдельных лиц, принимающих решение).

Обследуется система управления:

- состав, периодичность и условия выполнения каждой управленческой функции или задач;
- число исполнителей функций управления, трудоемкость и сложность работы управленческого персонала;
- применяемые технические средства обработки информации для выполнения управленческих функций;
- должностные инструкции, штатное расписание и организационная структура управления состав подразделений, сфера их деятельности, взаимосвязи по выполняемым функциям управления;
- состояние информационного обеспечения управления и нормативносправочного хозяйства.

В результате обследования:

- устанавливаются цели деятельности (обеспечение стабильного дохода, конкурентоспособности выпускаемой продукции, ритмичности производства, сокращение непроизводительных потерь рабочего времени и т.п.) и критерии оценки их достижения;
- определяются функциональные подсистемы системы управления и состав их задач.

Наиболее важные методы для обследования всех функциональных звеньев предприятия:

- метод наблюдения;
- метод опроса исполнителей (метод интервью);

- метод анализа материалов;
- метод личного участия.

Эти методы предполагают личное участие проектировщика в обследовании.

<u>Метод наблюдения</u> – применим, когда изучаемый вопрос не является трудным для понимания и требуется лишь уточнить некоторые детали. (Например: при исследовании документооборота).

Метод опроса исполнителей – наиболее распространен. Недостатки:

- 1) приходится отвлекать людей от работы;
- 2) сведения могут быть не точными.

<u>Метод анализа материалов</u> – наиболее точный и научно-обоснованный. Материалы собираются различными способами, затем обрабатываются и анализируются по определенным научно-разработанным методикам. (Например: анализ информационных потоков).

<u>Метод личного участия</u> — наиболее достоверный. Предполагает выполнение производственных операций лично проектировщиком. Наиболее желателен для применения.

ЗАДАНИЕ:

1. Разработать документ «Описание организационной структуры». Документ разработать на основе ГОСТ 34.201-2020 «Межгосударственный стандарт. Информационные технологии. Комплекс стандартов на автоматизированные системы. Виды, комплектность и обозначение документов при создании автоматизированных систем», ГОСТ Р 59795–2021 «Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Требования к содержанию документов» (см. Приложение А).

Метод функционально-информационного анализа — позволяет проследить и проверить обратную цепочку формирования функциональной структуры автоматизируемого объекта управления — от процедур к подсистемам. Метод предназначен для обследования информационных потоков в разрезе функциональных задач или операций (процедур) для разных организационных звеньев предприятия.

Для проведения обследования применяется опросный лист или анкета обследования. В анкете по каждому документу указываются:

- наименование,
- код,
- вид документа (входной или выходной, разовый или накопительный),
- откуда и куда направляется,
- срок поступления (отправления),
- количество экземпляров,
- количество документострок,
- перечень и размерность всех реквизитов.

<u>Пример</u>: Последовательность обследования функциональной подсистемы "Управление материально-техническим снабжением" на промышленном предприятии.

Группой обследования в подразделениях службы заполняются анкеты обследования задач.

На основании анализа заполненных анкет составляется перечень задач и входящих в них процедур (см. таблицу 3).

Таблица 3 - Задачи и процедуры управления

Функциональная	Код задачи	Процедура	Код
задача			
Оперативный учет		Формирование	
движения	У04	оперативной	У0401
материалов на		сводки движения	
складе		материалов на	
		складе	
Оперативный учет	У04	Ввод учетных	У0402
движения		данных по	
материалов на		движению	
складе		материалов на	
		складе	

Каждому документу присваивается код (идентификатор) в соответствии с принадлежностью его к задаче, составляется перечень документов (см. таблицу 4), перечисляются реквизиты, определяется тип каждого реквизита и его длина. Формируется альбом форм входных и выходных документов.

Описывается принятая система классификации и кодирования (обозначение материалов, единиц измерения, структурных подразделений, поставщиков и потребителей).

Изображаются процедуры преобразования входных документов в выходные – в матричном (табличном) виде или в виде структурно-функциональной схемы.

Таблица 4 - Документы управления

$N_{\underline{0}}$	Код	Документ	Код	Реквизит
п./п.	задачи		документа	
1	У04	Приходный	0303	Номер ордера
		ордер		Дата заполнения
				Код операции
				Код материала
				Количество
2	У04	Требование	0304	Номер требования
				Дата заполнения
				Код операции
				Код материала
				Количество
2	7601	0	7621	11
3	7621	Оперативная	7621	Номер сводки
		сводка движения		Дата составления
		материалов на		Код операции
		складе		Код материала
				Количество

Структурно-функциональная диаграмма процедуры У0401 "Формирование оперативной сводки движения материалов по складу" представлена на рисунке 3.1.

Рисунок 3.1 - Структурно-функциональная диаграмма процедуры У0401 "Формирование оперативной сводки движения материалов по складу"

Помимо кодов указываются места возникновения входных документов и адреса для выходных документов.

После объединения всех процедур строится функционально-информационная схема решения задачи.

Соединение всех задач в одну схему позволяет получить функционально-информационную структуру подсистемы и всего предприятия.

Метод функционально-информационного анализа позволяет исследовать потоки информации на уровне документов и реквизитов.

Когда будет создана внутримашинная информационная база и на основании анализа материалов предпроектного обследования будут сформированы задачи и процедуры, подлежащие автоматизации, произойдет трансформация функциональных схем процедур и задач. Большинство входных данных вместо входных документов будет выбираться из БД. Процесс преобразования входной информации в выходные документы (сообщения) можно выразить с помощью аналитических процедур, представляющих собой укрупненный алгоритм решения задачи.

ЗАДАНИЕ:

- 2. Сформировать перечень функциональных задач автоматизируемого объекта и оформить их в виде таблицы (таблица 3).
- 3. Сформировать таблицу документов сопровождающих выполнение функциональных задач (таблица 4).
- 4. Разработать структурно-функциональные диаграммы выделенных процедур. Для моделирования используйте нотации DFD.