Классификация изображений с помощью сверточных нейронных сетей Курсовая работа

Нефедов Д.А.

МГТУ им. Н.Э. Баумана

Научный руководитель: Фетисов Д.А.

Москва, 2025 г.

Постановка задачи

- Дано: набор данных с изображениями 10 видов животных: бабочка, паук, собака, слон, овца, кот, корова, белка, лошадь, курица.
- Обьем данных: 26 тысяч изображений.
- Задача: построение классификатора на основе модели сверточной нейронной сети.
- Средства: язык **Python** и библиотека глубокого обучения **pytorch**.

Распределение данных

Вывод: изображения приведены к разрешению 256×256

Рисунок 1 – Распределение данных по разрешениям

Распределение данных (продолжение)

Вывод: учитывался баланс классов

Рисунок 2 – Распределение данных по классам

Сверточная нейронная сеть

Две интерпретации свертки:

- ullet Классическая: $(X*Y)(t,s) = \sum_{i,j} X_{i,j} \cdot Y_{t-i,s-j}$
- ullet Взаимная корреляция: $(X \otimes Y)(t,s) = \sum_{i,j} X_{i,j} \cdot Y_{i+t,j+s}$

Рисунок 3 – Сверточный слой

Сверточная нейронная сеть (продолжение)

Рисунок 4 — Визуализация свертки

Модель AlexNet

Рисунок 5 – Модель AlexNet

Результаты обучения AlexNet

Вывод: получена желаемая точность (> 0.85%)

Рисунок 6 – График точности AlexNet по эпохам

Визуализация AlexNet

Рисунок 7 – Результаты применения Grad-CAM к модели AlexNet

Визуализация AlexNet (продолжение)

Вывод: паук предсказывается по окружению, слабая классификация собаки.

Рисунок 8 – Результаты применения Grad-CAM к модели AlexNet (продожение)

Модель VGG13

Рисунок 9 - Модель VGG13

Модификация модели VGG13

Рисунок 10 - Модификация VGG13

Результаты обучения CVGG13

Вывод: получена лучшая точность ($\approx 0.92\%$)

Рисунок 11 – График точности CVGG13 по эпохам

Визуализация CVGG13

Рисунок 12 — Результаты применения Grad-CAM к модели CVGG13

Визуализация CVGG13 (продолжение)

Вывод: корректно выделенные признаки, в отличие от AlexNet

Рисунок 13 – Результаты применения Grad-CAM к модели CVGG13 (продолжение)

Заключение

В рамках работы были решены следующие задачи:

- Был изучен принцип работы сверточной нейронной сети
- Были изучены и реализованы архитектуры AlexNet и VGG
- Классификаторами была достигнута желаемая точность (>80%)
- Проведен анализ поведения модели (Grad-CAM)

Таким образом, была достигнута цель работы.