CS532100 Numerical Optimization Homework 2

109062710 Bijon Setyawan Raya

Due Dec 10

1. Consider the linear least square problem:

$$\min_{\vec{x} \in \mathbb{R}^2} ||A\vec{x} - \vec{b}||^2$$

where

$$A = \begin{bmatrix} 4 & 8 \\ 2 & 4 \\ 1 & 2 \end{bmatrix}, \vec{b} = \begin{pmatrix} 21/4 \\ 0 \\ 0 \end{pmatrix}$$

(a) (10%) Write its normal equation.

$$A^T A \vec{x} = A^T \vec{b} \tag{1}$$

$$\begin{bmatrix} 4 & 2 & 1 \\ 8 & 4 & 2 \end{bmatrix} \begin{bmatrix} 4 & 8 \\ 2 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 1 \\ 8 & 4 & 2 \end{bmatrix} \begin{bmatrix} 21/4 \\ 0 \\ 0 \end{bmatrix}$$
 (2)

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \tag{3}$$

$$x_1 + 2x_2 = 1 (4)$$

Then, we can express x_1 and x_2 as

$$\vec{x} = \begin{bmatrix} 1 - 2t \\ t \end{bmatrix} \tag{5}$$

(b) (10%) Express $\vec{b} = \vec{b}_1 + \vec{b}_2$ such that \vec{b}_1 is in the subspace spanned by A's column vectors, and \vec{b}_2 is orthogonal to A's column vectors. From matrix A, we know that its basis is its first column which is $\begin{bmatrix} 4 & 2 & 1 \end{bmatrix}^T$. From its basis column, we can express \vec{b} in $\vec{b}_1 + \vec{b}_2$. Let,

$$\vec{b}_1 = \begin{bmatrix} 4s \\ 2s \\ s \end{bmatrix}, \vec{b}_2 = \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} \tag{6}$$

Then we can express \vec{b} such as

$$\vec{b} = \vec{b}_1 + \vec{b}_2 \tag{7}$$

$$\begin{bmatrix} 21/4\\0\\0 \end{bmatrix} = \begin{bmatrix} 4s+t_1\\2s+t_2\\s+t_3 \end{bmatrix} \tag{8}$$

Since \vec{b}_1 is a column space of A, and \vec{b}_2 is orthogonal to \vec{b}_1 , then

$$\begin{bmatrix} 4s \\ 2s \\ s \end{bmatrix} \begin{bmatrix} t_1 & t_2 & t_3 \end{bmatrix} = 0 \tag{9}$$

$$4s \cdot t_1 + 2s \cdot t_2 + s \cdot t_3 = 0 \tag{10}$$

We can add $4s \cdot t_1 + 2s \cdot t_2 + s \cdot t_3 = 0$ at the last index of our matrix equality. Then

$$\begin{bmatrix} 4s + t_1 \\ 2s + t_2 \\ s + t_3 \\ 4s \cdot t_1 + 2s \cdot t_2 + s \cdot t_3 \end{bmatrix} = \begin{bmatrix} 21/4 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Solving the equality above, we then have $s=1,\,t_1=5/4,\,t_2=-2,$ and $t_3=-1.$ Thus,

$$\vec{b}_1 = \begin{bmatrix} 4s \\ 2s \\ s \end{bmatrix}, \vec{b}_2 = \begin{bmatrix} 5/4 \\ -2 \\ -1 \end{bmatrix}$$
 (11)

$$\begin{bmatrix} 21/4 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 5/4 \\ -2 \\ -1 \end{bmatrix} \tag{12}$$

(c) (10%) Show that $\vec{z} \in \mathbb{R}^2$ is a least square solution for $A\vec{x} = \vec{b}$ if and only if \vec{z} is part of a solution to the larger linear system:

$$\left[\begin{array}{cc} 0 & A^T \\ A & I \end{array}\right] \left[\begin{array}{c} \vec{z} \\ \vec{y} \end{array}\right] = \left[\begin{array}{c} 0 \\ \vec{b} \end{array}\right]$$

We are going to show that $\vec{z} \in \mathbb{R}^2$ is a least square solution for $A\vec{x} = \vec{b}$ $\iff \vec{z}$ is part of a solution to the larger linear system

i. First, we are going to show that if $\vec{z} \in \mathbb{R}^2$ is a least square solution for $A\vec{x} = \vec{b}$ then \vec{z} is part of a solution to the larger linear system.

$$A\vec{x} = \vec{b} \tag{13}$$

$$A^T A \vec{x} = A^T \vec{b} \tag{14}$$

$$\begin{bmatrix} 4 & 2 & 1 \\ 8 & 4 & 2 \end{bmatrix} \begin{bmatrix} 4 & 8 \\ 2 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 1 \\ 8 & 4 & 2 \end{bmatrix} \begin{bmatrix} 21/4 \\ 0 \\ 0 \end{bmatrix}$$
(15)

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \tag{16}$$

$$x_1 + 2x_2 = 1 (17)$$

Then, we can express x_1 and x_2 as

$$\vec{x} = \begin{bmatrix} 1 - 2t \\ t \end{bmatrix} \tag{18}$$

Plugging \vec{x} into \vec{z} in the larger linear system, we then have

$$\begin{bmatrix} 0 & A^T \\ A & I \end{bmatrix} \begin{bmatrix} \vec{z} \\ \vec{y} \end{bmatrix} = \begin{bmatrix} 0 \\ \vec{b} \end{bmatrix}$$
 (19)

$$\begin{bmatrix} 0 & 0 & 4 & 2 & 1 \\ 0 & 0 & 8 & 4 & 2 \\ 4 & 8 & 1 & 0 & 0 \\ 2 & 4 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 - 2t \\ t \\ \vec{y_1} \\ \vec{y_2} \\ \vec{y_3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 21/4 \\ 0 \\ 0 \end{bmatrix}$$
(20)

Solving \vec{y} , we have

$$\vec{y} = \begin{bmatrix} 5/4 \\ -2 \\ -1 \end{bmatrix} \tag{21}$$

From \vec{y} , we can tell that $\vec{z} \in \mathbb{R}^2$ is a least square solution for $A\vec{r} = \vec{b}$

Thus, the premise, if $\vec{z} \in \mathbb{R}^2$ is a least square solution for $A\vec{x} = \vec{b}$ then \vec{z} is part of a solution to the larger linear system, holds.

ii. Second, we are going to show that if \vec{z} is a part of the solution to the larger linear system then $\vec{z} \in \mathbb{R}^2$ is a least square solution for $A\vec{x} = \vec{b}$.

The larger linear system can be expressed as

$$\begin{bmatrix} 0 & A^T \\ A & I \end{bmatrix} \begin{bmatrix} \vec{z} \\ \vec{y} \end{bmatrix} = \begin{bmatrix} 0 \\ \vec{b} \end{bmatrix}$$
 (22)

$$\begin{bmatrix}
A & I \\
0 & 0 & 4 & 2 & 1 \\
0 & 0 & 8 & 4 & 2 \\
4 & 8 & 1 & 0 & 0 \\
2 & 4 & 0 & 1 & 0 \\
1 & 2 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\vec{z}_1 \\
\vec{z}_2 \\
\vec{y}_1 \\
\vec{y}_2 \\
\vec{y}_3
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
21/4 \\
0 \\
0
\end{bmatrix}$$
(23)

Solving $y_1, y_2,$ and $y_3,$ we express them as

$$\vec{y} = \begin{bmatrix} 5/4 \\ -2 \\ -1 \end{bmatrix} \tag{24}$$

After acquiring \vec{y} , we can acquire \vec{z} with the third, the fourth, and the fifth row in the matrix. Thus,

$$4\vec{z}_1 + 8\vec{z}_2 + \vec{y}_1 = \frac{21}{4} \tag{25}$$

$$2\vec{z}_1 + 4\vec{z}_2 + \vec{y} + 2 = 0 \tag{26}$$

$$\vec{z}_1 + 2\vec{z}_2 + \vec{y}_3 = 0 \tag{27}$$

Solving the equalities above, we have

$$\vec{z}_1 + 2\vec{z}_2 = 1 \tag{28}$$

We can express the equality above in matrix as,

$$\vec{z} = \begin{bmatrix} 1 - 2t \\ t \end{bmatrix} \tag{29}$$

Clearly, \vec{z} is a part of the solution to the larger linear system. Thus, the premise, if \vec{z} is a part of the solution to the larger linear system then $\vec{z} \in \mathbb{R}^2$ is a least square solution for $A\vec{x} = \vec{b}$, holds.

By showing the premises above, we can conclude that the statement, $\vec{z} \in \mathbb{R}^2$ is a least square solution for $A\vec{x} = \vec{b}$ if and only if \vec{z} is part of a solution to the larger linear system, holds.

2. In Note05 (Page 16), memoryless BFGS iteration matrix H_{k+1} can be derived from considering the Hestenes–Stiefel form of the nonlinear conjugate gradient method. Recalling that $\vec{s}_k = \alpha_k \vec{p}_k$, we have that the search direction for this method is given by

$$\vec{p}_{k+1} = -\nabla f_{k+1} + \frac{\nabla f_{k+1}^T \vec{y}_k}{\vec{y}^T \vec{p}_k} \vec{p}_k$$
 (30)

$$= -\nabla f_{k+1} + \frac{\nabla f_{k+1}^T \vec{y}_k}{\vec{y}^T \vec{s}_k} \vec{s}_k \tag{31}$$

$$= -\left(I - \frac{\vec{s}_k \vec{y}_k^T}{\vec{y}^T \vec{s}_k}\right) \nabla f_{k+1} \tag{32}$$

$$= -\hat{H}_{k+1} \nabla f_{k+1} \tag{33}$$

However, the matrix \hat{H}_{k+1} is neither symmetric nor positive definite.

- (a) (10%) Please show that the matrix \hat{H}_{k+1} is singular. (You can only prove it for the case $\nabla f_k, \vec{p}_k, \vec{y}_k, \vec{s}_k \in \mathbb{R}^2$ for all $k \in \mathbb{N}$.) Your answer here!
- (b) (0%) Please read the reference book (Page 180) to understand the derivation of the inverse hessian formula in Note05 (Page 16). (you don't need to write anything in this subproblem.)

$$H_{k+1} = (I - \frac{\vec{s}_k \vec{y}_k^T}{\vec{y}_k^T \vec{s}_k}) (I - \frac{\vec{y}_k \vec{s}_k^T}{\vec{y}_k^T \vec{s}_k}) + \frac{\vec{s}_k \vec{s}_k^T}{\vec{y}_k^T \vec{s}_k}$$

3. (10%) The total least square problem is to solve the following problem

$$\min_{\vec{x}, ||\vec{x}|| = 1} \vec{x}^T A^T A \vec{x}$$

where A is an $m \times n$ matrix. Here we assume m > n. Let $A = U\Sigma V^T$ be the SVD of A, where U is the matrix of left singular vectors, V is the matrix of right singular vectors, and Σ is a diagonal matrix with diagonal elements $\sigma_1, \sigma_2, \ldots, \sigma_n$. Moreover, U and V are orthogonal matrices, and $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$. Show the solution of the above problem is the σ^2 .

Your answer here!

4. Consider the following linear programming problem:

$$\max_{x_1, x_2} \quad z = x_1 + x_2$$
s.t. $x_1 + 2x_2 \le 4$

$$4x_1 + 2x_2 \le 12$$

$$-x_1 + x_2 \le 1$$

$$x_1, x_2 \ge 0$$
(34)

(a) (10%) Please refer Note08 (Page 2) to draw the figure of the constraints by any means, and use that to solve the problem.

Figure 1: Feasible region of \vec{z} .

- (b) (10%) Derive its dual problem and solve the dual problem by any means. Compare the solutions of the primal and the dual problems.
 - i. The primal problem is as follow:

Let z be the optimal value, x_i be the variables that we are planning to maximize, and ω_i be the slack variables.

To solve the primal problem, we then convert it into a table. The initial state

The first iteration

The second iteration

$$\zeta = \frac{10}{3} - \frac{1}{6}\omega_2 - \frac{1}{3}\omega_1$$

$$x_2 = \frac{2}{3} + \frac{1}{6}\omega_2 - \frac{2}{3}\omega_1$$

$$x_1 = \frac{8}{3} - \frac{1}{3}\omega_2 + \frac{1}{3}\omega_1$$

$$\omega_3 = 3 - \frac{1}{2}\omega_2 + \omega_1$$

From the table above, we can see that the values of $x_1, x_2, \text{and} z$ to be

$$x_1 = \frac{8}{3}, x_2 = \frac{2}{3}, z = x_1 + x_2 = \frac{10}{3}$$

The values of the slack variables are

$$\omega_1 = 0, \omega_2 = 0, \omega_3 = 3 \tag{35}$$

ii. The dual problem is

$$\min_{y_1, y_2, y_3} \quad z = 4y_1 + 12y_2 + y_3$$
s.t.
$$y_1 + 4y_2 - y_3 \ge 1$$

$$2y_1 + 2y_2 + y_3 \ge 1$$

$$y_1, y_2, y_3 \ge 0$$
(36)

Let s_i be the surplus variables and a_i be the artificial variables. Including these variables in the dual problem, we then have

$$\begin{aligned} & \text{min} \quad z = 4y_1 + 12y_2 + y_3 + 0s_1 + 0s_2 + Ma_1 + Ma_2 \\ & \text{s.t.} \quad y_1 + 4y_2 - y_3 - s_1 + a_1 = 1 \\ & \quad 2y_1 + 2y_2 + y_3 - s_2 + a_2 = 1 \\ & \quad y_1, y_2, y_3, s_1, s_2, a_1, a_2 \geq 0 \end{aligned} \tag{37}$$

Since we want to solve the dual problem above, we then convert the equations above into a table and 5 iterations are needed to find the optimal solution.

		Уı	Yz	73	51	Sz	$a_{\mathfrak{l}}$	ar		bi
Basīs	CB	-ψ	-12	-1	0	D	-M	-M	bá	امَم
aı	-M	ι	4	-1	-	0	l	0	1	4) → leave
az	- M	z	2	(0	-[0	١	ı	ž
Z	3	-3M	-6M	0	М	М	-М	-М	-zM	
Cz-	. ZJ	-4+3M	-12+61 enter		-M	-М	0	0		

Figure 2: The initial state.

		Уı	y2	73	51	Sz	ar	
Basīs	Crs	-4	-12	-1	0	D	-M	
Yz	-12	4	./1	-4	- 4	0	0	4
az	-M	Z *(:	2	(0	-1	١	ı

Figure 3: The first iteration.

		Уı	Уz	73	Sı	Sz	ar		
Basis	Co	-4	-12	-1	0	D	-M	bá	bi azı
Уz	-12	4	1	-4 H12=32	- 4	0	0	4	1
az	-M	2-2=3	0	14=====================================	ž	-1	l	1 2	(1 1 3 × 3) → leav
Z	J	-3 - ² M	-12	3-3-M	3-21	4 M	-M		
Cz-	77	-1+3/	enter 0	-4+}M	-3f2	H-N	(0		

Figure 4: The second iteration.

1 -4	0 - 4	0	14
1 -4	- 4	0	14
0 [3	- 3	1 2 x 3 = 3
	0 [0 [3	0 3 -3

Figure 5: The third iteration.

		Уι	Уz	73	51	Sz	
Basis	Co	-ψ	-12	-1	0	D	
Уz	-12	0	l	- 7	- }	16	(7) -> 1/2=1/6
Υı	-4	l	0	l	1	- 3	3) -> 1/2 = 3
2-	J	-4	-12	2	8/3	3	
Cz-	-Zz	0	0	-3	$-\frac{P}{3}$	- 3	
							or equal to (
			Rea	ch o	ptimo	l sol	ution

Figure 6: The last iteration.

(c) (10%) Verify the complementarity slackness condition. Answer here!

(d) (10%) Transform the problem to the standard form.

$$\max_{x_1, x_2} z = x_1 + x_2$$
s.t.
$$x_1 + 2x_2 + x_3 = 4$$

$$4x_1 + 2x_2 + x_4 = 12$$

$$-x_1 + x_2 + x_5 = 1$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$
(38)

(e) (10%) Solve it by the simplex method, as provided in Figure 1, using $\vec{x}_0 = (0,0)$. Indicate $B_k, N_k, \vec{s}_k, \vec{d}_k, p_k, q_k, \gamma_k$ in each step. Answer here!

```
(1)
             Given a basic feasible point \vec{x}_0 and the corresponding index set
             \mathcal{B}_0 and \mathcal{N}_0.
 (2)
             For k = 0, 1, ...
                         Let B_k = A(:, \mathcal{B}_k), N_k = A(:, \mathcal{N}_k), \vec{x}_B = \vec{x}_k(\mathcal{B}_k), \vec{x}_N = \vec{x}_k(\mathcal{N}_k),
 (3)
                         and \vec{c}_B = \vec{c}_k(\mathcal{B}_k), \vec{c}_N = \vec{c}_k(\mathcal{N}_k).
                         Compute \vec{s}_k = \vec{c}_N - N_k^T (B_k^{-1})^T \vec{c}_B (pricing) If \vec{s}_k \geq 0, return the solution \vec{x}_k. (found optimal solution)
 (4)
 (5)
 (6)
                         Select q_k \in \mathcal{N}_k such that \vec{s}_k(i_q) < 0,
                          where i_q is the index of q_k in \mathcal{N}_k
                         Compute \vec{d}_k = B_k^{-1} A_k(:, q_k). (search direction)
 (7)
                         If \vec{d_k} \leq 0, return unbounded. (unbounded case)
 (8)
                         Compute [\gamma_k, i_p] = \min_{\substack{i, \vec{d_k}(i) > 0 \\ i \neq i}} \frac{\vec{x_B}(i)}{\vec{d_k}(i)} (ratio test)
 (9)
                          (The first return value is the minimum ratio;
                         the second return value is the index of the minimum ratio.)
                         x_{k+1} \begin{pmatrix} \mathcal{B} \\ \mathcal{N} \end{pmatrix} = \begin{pmatrix} \vec{x}_B \\ \vec{x}_N \end{pmatrix} + \gamma_k \begin{pmatrix} -\vec{d}_k \\ \vec{e}_{i_q} \end{pmatrix}
(\vec{e}_{i_q} = (0, \dots, 1, \dots, 0)^T \text{ is a unit vector with } i_q \text{th element 1.})
(10)
                         Let the i_pth element in \mathcal{B} be p_k. (pivoting) \mathcal{B}_{k+1} = (\mathcal{B}_k - \{p_k\}) \cup \{q_k\}, \ \mathcal{N}_{k+1} = (\mathcal{N}_k - \{q_k\}) \cup \{p_k\}
(11)
```

Figure 7: The simplex method for solving (minimization) linear programming