SAMB for "kagome"

Generated on 2023-06-12 23:18 by MultiPie 1.1.7

- Associated point group: No. 17 C_{3i} -3 [trigonal]
- Generation condition

 - time-reversal type: electric
 - irrep: [Ag]
 - spinful
- Unit cell:

$$a=1.0,\ b=1.0,\ c=1.0,\ \alpha=90.0,\ \beta=90.0,\ \gamma=120.0$$

• Lattice vectors:

$$\boldsymbol{a}_1 = \begin{pmatrix} 1.0 & 0 & 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -0.5 & 0.86602540378444 & 0 \end{pmatrix}$$

$$\boldsymbol{a}_3 = \begin{pmatrix} 0 & 0 & 1.0 \end{pmatrix}$$

Table 1: High-symmetry line: Γ -X.

symbol	position	symbol	position
Γ	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	X	$\begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$

• Kets: dimension = 24

Table 2: Hilbert space for full matrix.

No.	ket	No.	ket	No.	ket	No.	ket	No.	ket
 1	(s,\uparrow) @A ₁	2	(s,\downarrow) @A ₁	3	(p_x,\uparrow) @A ₁	4	(p_x,\downarrow) @A ₁	5	(p_y,\uparrow) @A ₁
6	(p_y,\downarrow) @A ₁	7	(p_z,\uparrow) @A ₁	8	(p_z,\downarrow) @A ₁	9	(s,\uparrow) @A ₂	10	(s,\downarrow) @A ₂
11	(p_x,\uparrow) @A ₂	12	(p_x,\downarrow) @A ₂	13	(p_y,\uparrow) @A ₂	14	(p_y,\downarrow) @A ₂	15	(p_z,\uparrow) @A ₂
16	(p_z,\downarrow) @A ₂	17	(s,\uparrow) @A ₃	18	(s,\downarrow) @A ₃	19	(p_x,\uparrow) @A ₃	20	(p_x,\downarrow) @A ₃
21	(p_y,\uparrow) @A ₃	22	(p_y,\downarrow) @A ₃	23	(p_z,\uparrow) @A ₃	24	(p_z,\downarrow) @A ₃		

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	pc	sitio	on	mapping
S_1	A_1	$\left(\frac{1}{2}\right)$	0	0)	[1,4]
	A_2	(0	$\frac{1}{2}$	0)	[2,5]
	A_3	$\left(\frac{1}{2}\right)$	$\frac{1}{2}$	0)	[3,6]

• Bonds in (primitive) unit cell:

Table 4: Bond-clusters.

	bond	tail	head	n	#	b@c	mapping
B_1	b_1	A_2	A_1	1	1	$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} @ \begin{pmatrix} \frac{3}{4} & \frac{1}{4} & 0 \end{pmatrix}$	[1]
	b_2	A_3	A_2	1	1	$\begin{pmatrix} -\frac{1}{2} & 0 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{3}{4} & \frac{1}{2} & 0 \end{pmatrix}$	[2]
	b_3	A_3	A_1	1	1	$\left(0 \frac{1}{2} 0\right) \otimes \left(\frac{1}{2} \frac{1}{4} 0\right)$	[-3]
	b_4	A_2	A_1	1	1	$\begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{4} & \frac{3}{4} & 0 \end{pmatrix}$	[4]
	b_5	A_3	A_2	1	1	$\begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{4} & \frac{1}{2} & 0 \end{pmatrix}$	[5]
	b_6	A_3	A_1	1	1	$ \begin{pmatrix} 0 & -\frac{1}{2} & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & \frac{3}{4} & 0 \end{pmatrix} $	[-6]

• SAMB:

No. 1
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_1 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_g)}]$$

$$\hat{\mathbb{Z}}_1(\mathbf{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_g)}]$$

No. 2
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_2 = \mathbb{X}_{17}[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_g)}]$$

$$\hat{\mathbb{Z}}_2(\boldsymbol{k}) = \mathbb{X}_{17}[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_g)}]$$

No. 3
$$\hat{\mathbb{Q}}_2^{(A_g)}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_3 = \mathbb{X}_{18}[\mathbb{Q}_2^{(a,A_g)}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_g)}]$$

$$\hat{\mathbb{Z}}_3(\mathbf{k}) = \mathbb{X}_{18}[\mathbb{Q}_2^{(a,A_g)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_g)}]$$

No. 4
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_4 = \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{Q}_{2,0}^{(a,E_g,2)}] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E_g,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{4}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{Q}_{2,0}^{(a,E_{g},2)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_{g},2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_{g},2)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_{g},2)}]}{2}$$

No. 5
$$\hat{\mathbb{G}}_{1}^{(A_g)}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_5 = -\frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{Q}_{2,0}^{(a,E_g,2)}] \otimes \mathbb{Y}_{3}[\mathbb{Q}_{2,1}^{(s,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{Y}_{2}[\mathbb{Q}_{2,0}^{(s,E_g,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{5}(\boldsymbol{k}) = -\frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{Q}_{2,0}^{(a,E_{g},2)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_{g},2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_{g},2)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_{g},2)}]}{2}$$

No. 6
$$\hat{\mathbb{G}}_3^{(A_g,2)}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_6 = \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,0}^{(a,E_g,1)}] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E_g,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{6}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,0}^{(a,E_{g},1)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_{g},2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_{g},1)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_{g},2)}]}{2}$$

No. 7
$$\hat{\mathbb{G}}_3^{(A_g,3)}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_7 = \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,0}^{(a,E_g,1)}] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E_g,2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E_g,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{7}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,0}^{(a,E_g,1)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g,2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g,2)}]}{2}$$

No. 8
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_8 = \mathbb{X}_{19}[\mathbb{Q}_0^{(a,A_g)}(1,1)] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_g)}]$$

$$\hat{\mathbb{Z}}_8(\boldsymbol{k}) = \mathbb{X}_{19}[\mathbb{Q}_0^{(a,A_g)}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_g)}]$$

No. 9
$$\hat{\mathbb{Q}}_2^{(A_g)}(1,-1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_9 = \mathbb{X}_{20}[\mathbb{Q}_2^{(a,A_g)}(1,-1)] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_g)}]$$

$$\hat{\mathbb{Z}}_9(\boldsymbol{k}) = \mathbb{X}_{20}[\mathbb{Q}_2^{(a,A_g)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_g)}]$$

No. 10
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,-1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{10} = \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{Q}_{2,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{Q}_{2,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E_g,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{10}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{Q}_{2,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_2[\mathbb{Q}_{2,0}^{(s,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{Q}_{2,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g,2)}]}{2}$$

No. 11
$$\hat{\mathbb{G}}_{1}^{(A_g)}(1,-1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{11} = -\frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{Q}_{2,0}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{Y}_{3}[\mathbb{Q}_{2,1}^{(s,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{Q}_{2,1}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{Y}_{2}[\mathbb{Q}_{2,0}^{(s,E_g,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{11}(\textbf{\textit{k}}) = -\frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{Q}_{2,0}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{Q}_{2,1}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g,2)}]}{2}$$

No. 12
$$\hat{\mathbb{G}}_3^{(A_g,2)}(1,-1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{12} = \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{Y}_{2}[\mathbb{Q}_{2,0}^{(s,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{Y}_{3}[\mathbb{Q}_{2,1}^{(s,E_g,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{12}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_2[\mathbb{Q}_{2,0}^{(s,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g,2)}]}{2}$$

No. 13
$$\hat{\mathbb{G}}_3^{(A_g,3)}(1,-1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{13} = \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{Y}_{3}[\mathbb{Q}_{2,1}^{(s,E_g,2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{Y}_{2}[\mathbb{Q}_{2,0}^{(s,E_g,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{13}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g,2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g,2)}]}{2}$$

No. 14
$$\hat{\mathbb{G}}_{1}^{(A_g)}(1,0)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{14} = \mathbb{X}_{21}[\mathbb{G}_1^{(a,A_g)}(1,0)] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_g)}]$$

$$\hat{\mathbb{Z}}_{14}(\mathbf{k}) = \mathbb{X}_{21}[\mathbb{Q}_1^{(a,A_g)}(1,0)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_g)}]$$

No. 15
$$\hat{\mathbb{G}}_3^{(A_g,2)}(1,0)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{15} = -\frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)]\otimes\mathbb{Y}_{3}[\mathbb{Q}_{2,1}^{(s,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)]\otimes\mathbb{Y}_{2}[\mathbb{Q}_{2,0}^{(s,E_g,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{15}(\boldsymbol{k}) = -\frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g,2)}]}{2}$$

No. 16
$$\hat{\mathbb{G}}_3^{(A_g,3)}(1,0)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{16} = \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E_g,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{16}(\mathbf{k}) = \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_2[\mathbb{Q}_{2,0}^{(s,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g,2)}]}{2}$$

No. 17
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{17} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A_g)}]$$

$$\hat{\mathbb{Z}}_{17}(\textbf{\textit{k}}) = \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{g},2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_{g})}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,A_{g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_{g})}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,A_{g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_{g})}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,A_{g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(u,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_{g})}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,A_{g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(u,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(u,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_$$

No. 18
$$\hat{\mathbb{G}}_1^{(A_g)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{18} = \mathbb{X}_2[\mathbb{M}_1^{(a,A_g)}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{T}_0^{(b,A_g)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{18}(\textbf{\textit{k}}) &= \frac{\sqrt{3}\mathbb{X}_{2}[\mathbb{M}_{1}^{(a,A_{g})}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{2}[\mathbb{M}_{1}^{(a,A_{g})}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{g},2)}]}{3} \\ &+ \frac{\sqrt{3}\mathbb{X}_{2}[\mathbb{M}_{1}^{(a,A_{g})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{3} \end{split}$$

No. 19
$$\hat{\mathbb{G}}_3^{(A_g,2)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{19} = -\frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{M}_{1,0}^{(a,E_{g})}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{T}_{2,1}^{(b,E_{g},2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(a,E_{g})}(1,-1)] \otimes \mathbb{Y}_{11}[\mathbb{T}_{2,0}^{(b,E_{g},2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{19}(\textbf{\textit{k}}) &= -\frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{3}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{3}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(u,E_g,2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(u,E_g,2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{T}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(u,E_g,2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(u,E_g,$$

No. 20
$$\hat{\mathbb{G}}_3^{(A_g,3)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{20} = \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{M}_{1,0}^{(a,E_{g})}(1,-1)]\otimes\mathbb{Y}_{11}[\mathbb{T}_{2,0}^{(b,E_{g},2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(a,E_{g})}(1,-1)]\otimes\mathbb{Y}_{12}[\mathbb{T}_{2,1}^{(b,E_{g},2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{20}(\boldsymbol{k}) &= \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{3}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{3}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \end{split}$$

No. 21
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{21} = \frac{\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{1,0}^{(a,E_{u})}] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,E_{u})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,E_{u})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{21}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{1,0}^{(a,E_{u})}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{Q}_{1,0}^{(a,E_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{1,0}^{(a,E_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E_{u},3)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{Q}_{1,0}^{(a,E_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{$$

No. 22
$$\hat{\mathbb{G}}_1^{(A_g)}$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{22} = \frac{\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{1,0}^{(a,E_{u})}] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,E_{u})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,E_{u})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{22}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{1,0}^{(a,E_{u})}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{Q}_{1,0}^{(a,E_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{Q}_{1,0}^{(a,E_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{1,0}^{(a,E_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{8}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{8}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q$$

No. 23
$$\hat{\mathbb{G}}_{3}^{(A_g,2)}$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{23} = \mathbb{X}_5[\mathbb{Q}_1^{(a,A_u)}] \otimes \mathbb{Y}_9[\mathbb{Q}_3^{(b,A_u,3)}]$$

$$\hat{\mathbb{Z}}_{23}(\boldsymbol{k}) = -\frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{1}^{(a,A_{u})}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{1}^{(a,A_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{1}^{(a,A_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T$$

No. 24 $\hat{\mathbb{Q}}_0^{(A_g)}(1,0)$ [M₂, B₁]

$$\hat{\mathbb{Z}}_{24} = \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{1,0}^{(a,E_u)}(1,0)] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,E_u)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_u)}(1,0)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,E_u)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{24}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{1,0}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{1,0}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{1,0}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{1,0}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{V}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \otimes \mathbb{V}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{V}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \otimes \mathbb{V}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{V}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}]}{6} \otimes \mathbb{V}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}]} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{V}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}]}{6} \otimes \mathbb{V}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}]} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{$$

No. 25
$$\hat{\mathbb{G}}_1^{(A_g)}(1,0)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{25} = \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{1,0}^{(a,E_u)}(1,0)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,E_u)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_u)}(1,0)] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,E_u)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{25}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{1,0}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{1,0}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{1,0}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{1,0}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]}{6} \otimes \mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}]} \otimes \mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}]}{6} \otimes \mathbb{T}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{1,1}$$

No. 26
$$\hat{\mathbb{G}}_3^{(A_g,2)}(1,0)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{26} = \mathbb{X}_{8}[\mathbb{Q}_{1}^{(a,A_{u})}(1,0)] \otimes \mathbb{Y}_{9}[\mathbb{Q}_{3}^{(b,A_{u},3)}]$$

$$\hat{\mathbb{Z}}_{26}(\boldsymbol{k}) = -\frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{1}^{(a,A_{u})}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{1}^{(a,A_{u})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{1}^{(a,A_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{3}$$

$$\hat{\mathbb{D}}_{10} = \mathbb{E}_{20}[\mathbb{Q}_{3}^{(A_{g},3)}(1,1) \ [M_{2}, B_{1}]$$

$$\hat{\mathbb{D}}_{27} = \mathbb{E}_{9}[\mathbb{Q}_{0}^{(a,A_{u})}(1,1)] \otimes \mathbb{E}_{9}[\mathbb{Q}_{3}^{(b,A_{u},3)}]$$

$$\hat{\mathbb{Z}}_{27}(\textbf{\textit{k}}) = -\frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{G}_{0}^{(a,A_{u})}(1,1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{G}_{0}^{(a,A_{u})}(1,1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{G}_{0}^{(a,A_{u})}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{G}_{0}^{(a,A_{u})}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{G}_{0}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{T}_{1,1$$

$$\begin{split} & \boxed{\text{No. 28}} \quad \hat{\mathbb{G}}_{1}^{(A_g)}(1,-1) \ [M_2,B_1] \\ & \hat{\mathbb{Z}}_{28} = \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{2,0}^{(a,E_u,1)}(1,-1)] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,E_u)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_u,1)}(1,-1)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,E_u)}]}{2} \end{split}$$

$$\begin{split} \hat{\mathbb{Z}}_{28}(\pmb{k}) &= -\frac{\sqrt{6}\mathbb{X}_{13}[\mathbb{G}_{2,0}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{G}_{2,0}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{13}[\mathbb{G}_{2,0}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{G}_{2,0}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(u,E_{g},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{G}_{3,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{1$$

No. 29
$$\hat{\mathbb{Q}}_2^{(A_g)}(1,-1)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{29} = \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{2,0}^{(a,E_u,1)}(1,-1)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,E_u)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_u,1)}(1,-1)] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,E_u)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{29}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{13}[\mathbb{G}_{2,0}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{G}_{2,0}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{G}_{2,0}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{13}[\mathbb{G}_{2,0}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E_{u},1)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E_{u},1)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{14}[\mathbb{G}_{3,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{$$

No. 30
$$\hat{\mathbb{G}}_3^{(A_g,2)}(1,-1)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{30} = \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{2,0}^{(a,E_u,2)}(1,-1)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,E_u)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,E_u,2)}(1,-1)] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,E_u)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{30}(\textbf{\textit{k}}) &= -\frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{G}_{2,0}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{G}_{2,0}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{G}_{2,0}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{G}_{2,0}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(u,E_{g},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16$$

No. 31
$$\hat{\mathbb{G}}_3^{(A_g,3)}(1,-1)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{31} = \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{2,0}^{(a,E_u,2)}(1,-1)] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,E_u)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,E_u,2)}(1,-1)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,E_u)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{31}(\textbf{\textit{k}}) &= -\frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{G}_{2,0}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{G}_{2,0}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{G}_{2,0}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{G}_{2,0}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(u,E_{g},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(u,E_{g},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{G}_{3,1}^{(u,E_{g},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{3,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}$$

No. 32
$$\hat{\mathbb{G}}_3^{(A_g,3)}(1,-1)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{32} = -\mathbb{X}_{10}[\mathbb{G}_2^{(a,A_u)}(1,-1)] \otimes \mathbb{Y}_9[\mathbb{Q}_3^{(b,A_u,3)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{32}(\boldsymbol{k}) &= \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{G}_{2}^{(a,A_{u})}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{G}_{2}^{(a,A_{u})}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{3} \\ &+ \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{G}_{2}^{(a,A_{u})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{3} \end{split}$$

No. 33
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{33} = \frac{\sqrt{2}\mathbb{X}_{54}[\mathbb{Q}_{1,0}^{(a,E_u)}] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,E_u)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E_u)}] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,E_u)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{33}(\textbf{\textit{k}}) &= -\frac{\sqrt{6}\mathbb{X}_{54}[\mathbb{Q}_{1,0}^{(a,E_u)}] \otimes \mathbb{U}_7[\mathbb{T}_0^{(u,A_g)}] \otimes \mathbb{F}_4[\mathbb{T}_{1,0}^{(k,E_u)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{54}[\mathbb{Q}_{1,0}^{(a,E_u)}] \otimes \mathbb{U}_8[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_4[\mathbb{T}_{1,0}^{(k,E_u)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{54}[\mathbb{Q}_{1,0}^{(a,E_u)}] \otimes \mathbb{U}_8[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_5[\mathbb{T}_{3,1}^{(k,E_u)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{54}[\mathbb{Q}_{1,0}^{(a,E_u)}] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_5[\mathbb{T}_{1,1}^{(k,E_u)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E_u)}] \otimes \mathbb{U}_7[\mathbb{T}_0^{(u,A_g)}] \otimes \mathbb{F}_5[\mathbb{T}_{1,1}^{(k,E_u)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E_u)}] \otimes \mathbb{U}_8[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_5[\mathbb{T}_{1,1}^{(k,E_u)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E_u)}] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_4[\mathbb{T}_{1,0}^{(k,E_u)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E_u)}] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_6[\mathbb{T}_3^{(k,A_u,3)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E_u)}] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_9[\mathbb{T}_{1,1}^{(u,E_g,2)}] \otimes \mathbb{F}_9[\mathbb{T}_{1,1}^{(k,E_u)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E_u)}] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_9[\mathbb{T}_{1,1}^{(u,E_g,2)}] \otimes \mathbb{F}_9[\mathbb{T}_{1,1}^{(k,E_u)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E_u)}] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_9[\mathbb{T}_{1,1}^{(u,E_g,2)}] \otimes \mathbb{F}$$

No. 34 $\hat{\mathbb{G}}_{1}^{(A_g)}$ [M₄, B₁]

$$\hat{\mathbb{Z}}_{34} = \frac{\sqrt{2}\mathbb{X}_{54}[\mathbb{Q}_{1,0}^{(a,E_u)}] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,E_u)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E_u)}] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,E_u)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{34}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{54}[\mathbb{Q}_{1,0}^{(a,E_{u})}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{54}[\mathbb{Q}_{1,0}^{(a,E_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{54}[\mathbb{Q}_{1,0}^{(a,E_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{54}[\mathbb{Q}_{1,0}^{(a,E_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(u,E$$

No. 35
$$\hat{\mathbb{G}}_3^{(A_g,2)}$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{35} = \mathbb{X}_{53}[\mathbb{Q}_{1}^{(a,A_{u})}] \otimes \mathbb{Y}_{9}[\mathbb{Q}_{3}^{(b,A_{u},3)}]$$

$$\hat{\mathbb{Z}}_{35}(\boldsymbol{k}) = -\frac{\sqrt{3}\mathbb{X}_{53}[\mathbb{Q}_{1}^{(a,A_{u})}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{53}[\mathbb{Q}_{1}^{(a,A_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{53}[\mathbb{Q}_{1}^{(a,A_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{53}[\mathbb{Q}_{1}^{(a,A_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1}^{(u,E_{g},2)}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{9}[\mathbb{Q}_{1}^{(u,E_{g},2)}] \otimes \mathbb{Z}_{9}[\mathbb{Q}_{1}^{(u,E_{g},2)}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{9}[\mathbb{Q}_{1}^{(u,E_{g},2)}] \otimes \mathbb{Z}_{9}[\mathbb{Q}_{1}^{(u,E_{g},2)}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{9}[\mathbb{Q}_{1}^{(u,E_{g},2)}] \otimes \mathbb{Z}_{9}[\mathbb{Q}_{1}^{(u,E_{g},2)}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{9}[\mathbb{Q}_{1}^{(u,E_{g},2)}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{9}[\mathbb{Q}_{1}^{(u,E_{g},2)}]}{3} + \frac{\sqrt{3}\mathbb{Z}$$

No. 36
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,0) [M_4, B_1]$$

$$\hat{\mathbb{Z}}_{36} = \frac{\sqrt{2}\mathbb{X}_{59}[\mathbb{Q}_{1,0}^{(a,E_u)}(1,0)] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,E_u)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{60}[\mathbb{Q}_{1,1}^{(a,E_u)}(1,0)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,E_u)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{36}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{59}[\mathbb{Q}_{1,0}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{59}[\mathbb{Q}_{1,0}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{59}[\mathbb{Q}_{1,0}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{59}[\mathbb{Q}_{1,0}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{60}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{60}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{60}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{60}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{60}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{60}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{60}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{60}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{60}[\mathbb{Q}_{1,1}^{(a,E_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{60}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{Q}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{Q}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{Q}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{Q}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{Q}_{9}[\mathbb{Q}_{1,1}^{$$

No. 37
$$\hat{\mathbb{G}}_{1}^{(A_g)}(1,0)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{37} = \frac{\sqrt{2}\mathbb{X}_{59}[\mathbb{Q}_{1,0}^{(a,E_u)}(1,0)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,E_u)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{60}[\mathbb{Q}_{1,1}^{(a,E_u)}(1,0)] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,E_u)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{37}(\pmb{k}) &= -\frac{\sqrt{6}\mathbb{X}_{59}[\mathbb{Q}_{1,0}^{(a,E_u)}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_u)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{59}[\mathbb{Q}_{1,0}^{(a,E_u)}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_u)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{59}[\mathbb{Q}_{1,0}^{(a,E_u)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_u)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{59}[\mathbb{Q}_{1,0}^{(a,E_u)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_u,3)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{60}[\mathbb{Q}_{1,1}^{(a,E_u)}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_u)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{60}[\mathbb{Q}_{1,1}^{(a,E_u)}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_u)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{60}[\mathbb{Q}_{1,1}^{(a,E_u)}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_u,3)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{60}[\mathbb{Q}_{1,1}^{(a,E_u)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_u)}]}{6} \\ \end{split}$$

No. 38
$$\hat{\mathbb{G}}_3^{(A_g,2)}(1,0)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{38} = \mathbb{X}_{56}[\mathbb{Q}_{1}^{(a,A_{u})}(1,0)] \otimes \mathbb{Y}_{9}[\mathbb{Q}_{3}^{(b,A_{u},3)}]$$

$$\hat{\mathbb{Z}}_{38}(oldsymbol{k})$$

$$= -\frac{\sqrt{3}\mathbb{X}_{56}[\mathbb{Q}_{1}^{(a,A_{u})}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{56}[\mathbb{Q}_{1}^{(a,A_{u})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{56}[\mathbb{Q}_{1}^{(a,A_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{56}[\mathbb{Q}_{1}^{(a,A_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{56}[\mathbb{Q}_{1}^{(a,A_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}]}{3} - \frac{\mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}]}{3} - \frac{\mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}]}{3} - \frac{\mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}]}{3} - \frac{\mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}]}{3} - \frac{\mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}]}{3} - \frac{\mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}]}{3} - \frac{\mathbb{T}_{9}[\mathbb{$$

No. 39
$$\hat{\mathbb{G}}_3^{(A_g,3)}(1,1)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{39} = \mathbb{X}_{57}[\mathbb{G}_0^{(a,A_u)}(1,1)] \otimes \mathbb{Y}_9[\mathbb{Q}_3^{(b,A_u,3)}]$$

$$\hat{\mathbb{Z}}_{39}(\mathbf{k})$$

$$= -\frac{\sqrt{3}\mathbb{X}_{57}[\mathbb{G}_{0}^{(a,A_{u})}(1,1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{57}[\mathbb{G}_{0}^{(a,A_{u})}(1,1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{57}[\mathbb{G}_{0}^{(a,A_{u})}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{57}[\mathbb{T}_{0}^{(a,A_{u})}(1,1)] \otimes \mathbb{T}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E_{g},2)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{T}_{0}^{(a,A_{u})}(1,1)] \otimes \mathbb{T}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{T}_{0}^{(a,A_{u})}(1,1)] \otimes \mathbb{T}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{T}_{0}^{(a,A_{u})}(1,1)] \otimes \mathbb{T}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{$$

No. 40
$$\hat{\mathbb{G}}_1^{(A_g)}(1,-1)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{40} = \frac{\sqrt{2}\mathbb{X}_{61}[\mathbb{G}_{2,0}^{(a,E_u,1)}(1,-1)] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,E_u)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(a,E_u,1)}(1,-1)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,E_u)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{40}(\textbf{\textit{k}}) &= -\frac{\sqrt{6}\mathbb{X}_{61}[\mathbb{G}_{2,0}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{61}[\mathbb{G}_{2,0}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{61}[\mathbb{G}_{2,0}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{61}[\mathbb{G}_{2,0}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{T}_{3}^{(u,$$

No. 41
$$\hat{\mathbb{Q}}_2^{(A_g)}(1,-1)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{41} = \frac{\sqrt{2}\mathbb{X}_{61}[\mathbb{G}_{2,0}^{(a,E_u,1)}(1,-1)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,E_u)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(a,E_u,1)}(1,-1)] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,E_u)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{41}(\pmb{k}) &= -\frac{\sqrt{6}\mathbb{X}_{61}[\mathbb{G}_{2,0}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{61}[\mathbb{G}_{2,0}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{61}[\mathbb{G}_{2,0}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{61}[\mathbb{G}_{2,0}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(a,E_{u},1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{62}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes$$

No. 42
$$\hat{\mathbb{G}}_3^{(A_g,2)}(1,-1)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{42} = \frac{\sqrt{2}\mathbb{X}_{63}[\mathbb{G}_{2,0}^{(a,E_u,2)}(1,-1)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,E_u)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{64}[\mathbb{G}_{2,1}^{(a,E_u,2)}(1,-1)] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,E_u)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{42}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{63}[\mathbb{G}_{2,0}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{63}[\mathbb{G}_{2,0}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{63}[\mathbb{G}_{2,0}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{63}[\mathbb{G}_{2,0}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{64}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{64}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{64}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{64}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{64}[\mathbb{G}_{2,1}^{(u,E_{g},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{64}[\mathbb{G}_{2,1}^{(u,E_{g},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{64}[\mathbb{G}_{2,1}^{(u,E_{g},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{3,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{64}[\mathbb{G}_{3,1}^{(u,E_{g},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{3,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{64}[\mathbb{G}_{3,1}^{(u,E_{g},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{3,1}^{(u$$

No. 43
$$\hat{\mathbb{G}}_3^{(A_g,3)}(1,-1)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{43} = \frac{\sqrt{2}\mathbb{X}_{63}[\mathbb{G}_{2,0}^{(a,E_u,2)}(1,-1)] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,E_u)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{64}[\mathbb{G}_{2,1}^{(a,E_u,2)}(1,-1)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,E_u)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{43}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{63}[\mathbb{G}_{2,0}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{63}[\mathbb{G}_{2,0}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{63}[\mathbb{G}_{2,0}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{63}[\mathbb{G}_{2,0}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{64}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{64}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{64}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{64}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{64}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{64}[\mathbb{G}_{2,1}^{(a,E_{u},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{64}[\mathbb{G}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9}[\mathbb{T}_{3}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{64}[\mathbb{G}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{$$

No. 44
$$\hat{\mathbb{G}}_{3}^{(A_g,3)}(1,-1)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{44} = -\mathbb{X}_{58}[\mathbb{G}_2^{(a,A_u)}(1,-1)] \otimes \mathbb{Y}_9[\mathbb{Q}_3^{(b,A_u,3)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{44}(\boldsymbol{k}) &= \frac{\sqrt{3}\mathbb{X}_{58}[\mathbb{G}_{2}^{(a,A_{u})}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{u},3)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{58}[\mathbb{G}_{2}^{(a,A_{u})}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{3} \\ &+ \frac{\sqrt{3}\mathbb{X}_{58}[\mathbb{G}_{2}^{(a,A_{u})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{3} \end{split}$$

No. 45
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{45} = \mathbb{X}_{17}[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A_g)}]$$

$$\hat{\mathbb{Z}}_{45}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{0}^{(a,A_g)}] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{0}^{(a,A_g)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{0}^{(a,A_g)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{0}^{(u,E_g,2)}] \otimes \mathbb{E}_{19}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes$$

No. 46
$$\hat{\mathbb{Q}}_{2}^{(A_g)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{46} = \mathbb{X}_{18}[\mathbb{Q}_2^{(a,A_g)}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A_g)}]$$

$$\hat{\mathbb{Z}}_{46}(\textbf{\textit{k}}) = \frac{\sqrt{3}\mathbb{X}_{18}[\mathbb{Q}_{2}^{(a,A_g)}] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{18}[\mathbb{Q}_{2}^{(a,A_g)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{18}[\mathbb{Q}_{2}^{(u,E_g,2)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{18}[\mathbb{Q}_{2}^{(u,E_g,2)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{E}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{18}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{E}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{E}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{18}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{E}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{18}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{18}[\mathbb{Q}_{2,1}^{(u,E_g,2)$$

No. 47
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{47} = \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{Q}_{2,0}^{(a,E_g,2)}] \otimes \mathbb{Y}_7[\mathbb{Q}_{2,0}^{(b,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{Y}_8[\mathbb{Q}_{2,1}^{(b,E_g,2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{47}(\textbf{\textit{k}}) &= \frac{\sqrt{6}\mathbb{X}_{24}[\mathbb{Q}_{2,0}^{(a,E_g,2)}] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{24}[\mathbb{Q}_{2,0}^{(a,E_g,2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{24}[\mathbb{Q}_{2,0}^{(a,E_g,2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &- \frac{\sqrt{3}\mathbb{X}_{24}[\mathbb{Q}_{2,0}^{(a,E_g,2)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{E}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{E}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{E}_{1}[\mathbb{Q}_{0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{E}_{1}[\mathbb{Q}_{0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{E}_{1}[\mathbb{Q}_{0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{E}_{1}[\mathbb{Q}_{0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(k,E_g,2)}] \otimes \mathbb{E}_{1}[\mathbb{Q}_{0}^{(k,E_g,2)}]}{6}$$

No. 48
$$\hat{\mathbb{G}}_{1}^{(A_g)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{48} = -\frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{Q}_{2,0}^{(a,E_g,2)}] \otimes \mathbb{Y}_{8}[\mathbb{Q}_{2,1}^{(b,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,0}^{(b,E_g,2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{48}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{24}[\mathbb{Q}_{2,0}^{(a,E_g,2)}] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{24}[\mathbb{Q}_{2,0}^{(a,E_g,2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{24}[\mathbb{Q}_{2,0}^{(a,E_g,2)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{24}[\mathbb{Q}_{2,0}^{(a,E_g,2)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{Q}_{2,0}^{(a,E_g,2)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(a,E_g,2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{$$

No. 49
$$\hat{\mathbb{G}}_{3}^{(A_g,2)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{49} = \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,0}^{(a,E_g,1)}] \otimes \mathbb{Y}_7[\mathbb{Q}_{2,0}^{(b,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{Y}_8[\mathbb{Q}_{2,1}^{(b,E_g,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{49}(\boldsymbol{k}) = \frac{\sqrt{6}\mathbb{X}_{22}[\mathbb{Q}_{2,0}^{(a,E_g,1)}] \otimes \mathbb{U}_4[\mathbb{Q}_0^{(u,A_g)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{22}[\mathbb{Q}_{2,0}^{(a,E_g,1)}] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_g)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,0}^{(a,E_g,1)}] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,0}^{(a,E_g,1)}] \otimes \mathbb{U}_6[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{U}_4[\mathbb{Q}_0^{(u,A_g)}] \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ + \frac{\sqrt{6}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{U}_6[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{U}_6[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ + \frac{\sqrt{6}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{U}_6[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_g)}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{U}_6[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ + \frac{\sqrt{6}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{U}_6[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ + \frac{\sqrt{6}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} \\ + \frac{\sqrt{6}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} \\ + \frac{\sqrt{6}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} \\ + \frac{\sqrt{6}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{$$

No. 50 $\hat{\mathbb{G}}_3^{(A_g,3)}$ [M₃, B₁]

$$\hat{\mathbb{Z}}_{50} = \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,0}^{(a,E_g,1)}] \otimes \mathbb{Y}_{8}[\mathbb{Q}_{2,1}^{(b,E_g,2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,0}^{(b,E_g,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{50}(\boldsymbol{k}) = \frac{\sqrt{6}\mathbb{X}_{22}[\mathbb{Q}_{2,0}^{(a,E_g,1)}] \otimes \mathbb{U}_4[\mathbb{Q}_0^{(u,A_g)}] \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,0}^{(a,E_g,1)}] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{22}[\mathbb{Q}_{2,0}^{(a,E_g,1)}] \otimes \mathbb{U}_6[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_g)}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,0}^{(a,E_g,1)}] \otimes \mathbb{U}_6[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{U}_4[\mathbb{Q}_0^{(u,A_g)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_g)}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{U}_6[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{U}_6[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{U}_6[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(a,E_g,1)}] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{23}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{23$$

No. 51 $\hat{\mathbb{Q}}_0^{(A_g)}(1,1)$ [M₃, B₁]

$$\hat{\mathbb{Z}}_{51} = \mathbb{X}_{19}[\mathbb{Q}_0^{(a,A_g)}(1,1)] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A_g)}]$$

 $\hat{\mathbb{Z}}_{51}(\mathbf{k})$

$$=\frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)]\otimes\mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}]\otimes\mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{3}+\frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)]\otimes\mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}]\otimes\mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{3}+\frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)]\otimes\mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{P}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{P}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{P}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{P}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{P}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{P}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{P}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{Q}_{$$

No. 52 $\hat{\mathbb{Q}}_2^{(A_g)}(1,-1)$ [M₃, B₁]

$$\hat{\mathbb{Z}}_{52} = \mathbb{X}_{20}[\mathbb{Q}_2^{(a,A_g)}(1,-1)] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A_g)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{52}(\textbf{\textit{k}}) &= \frac{\sqrt{3}\mathbb{X}_{20}[\mathbb{Q}_{2}^{(a,A_g)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{20}[\mathbb{Q}_{2}^{(a,A_g)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{3} \\ &+ \frac{\sqrt{3}\mathbb{X}_{20}[\mathbb{Q}_{2}^{(a,A_g)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{3} \end{split}$$

No. 53
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{53} = \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{Q}_{2,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,0}^{(b,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{Q}_{2,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{Y}_{8}[\mathbb{Q}_{2,1}^{(b,E_g,2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{53}(\textbf{\textit{k}}) &= \frac{\sqrt{6}\mathbb{X}_{28}[\mathbb{Q}_{2,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{28}[\mathbb{Q}_{2,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{Q}_{2,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{Q}_{2,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{29}[\mathbb{Q}_{2,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{29}[\mathbb{Q}_{2,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{29}[\mathbb{Q}_{2,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{29}[\mathbb{Q}_{2,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \end{split}$$

No. 54
$$\hat{\mathbb{G}}_1^{(A_g)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{54} = -\frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{Q}_{2,0}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{Y}_{8}[\mathbb{Q}_{2,1}^{(b,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{Q}_{2,1}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{Y}_{7}[\mathbb{Q}_{2,0}^{(b,E_g,2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{54}(\textbf{\textit{k}}) &= -\frac{\sqrt{6}\mathbb{X}_{28}[\mathbb{Q}_{2,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{Q}_{2,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{28}[\mathbb{Q}_{2,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{Q}_{2,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{29}[\mathbb{Q}_{2,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{29}[\mathbb{Q}_{2,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{29}[\mathbb{Q}_{2,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &- \frac{\sqrt{3}\mathbb{X}_{29}[\mathbb{Q}_{2,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \end{split}$$

No. 55
$$\hat{\mathbb{G}}_3^{(A_g,2)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{55} = \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,0}^{(b,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{Y}_{8}[\mathbb{Q}_{2,1}^{(b,E_g,2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{55}(\textbf{\textit{k}}) &= \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{Q}_{2,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{Q}_{2,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{Q}_{2,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{Q}_{2,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \end{split}$$

No. 56
$$\hat{\mathbb{G}}_3^{(A_g,3)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{56} = \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{Y}_{8}[\mathbb{Q}_{2,1}^{(b,E_g,2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,0}^{(b,E_g,2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{56}(\textbf{\textit{k}}) &= \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{Q}_{2,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{Q}_{2,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{Q}_{2,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{Q}_{2,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &- \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &- \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(u,E_g,2)}(1,-1)] \otimes \mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(u,E_g,2)}(1,-1)] \otimes \mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{Q}_{2,1}^{(u,E_g,2)}(1,-1)] \otimes \mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{27}[$$

No. 57
$$\hat{\mathbb{G}}_1^{(A_g)}(1,0)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{57} = \mathbb{X}_{21}[\mathbb{G}_1^{(a,A_g)}(1,0)] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A_g)}]$$

$$\hat{\mathbb{Z}}_{57}(\boldsymbol{k})$$

$$=\frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{G}_{1}^{(a,A_g)}(1,0)]\otimes\mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}]\otimes\mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{3}+\frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{G}_{1}^{(a,A_g)}(1,0)]\otimes\mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}]\otimes\mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{3}+\frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{G}_{1}^{(a,A_g)}(1,0)]\otimes\mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]\otimes\mathbb{P}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]\otimes\mathbb{P}_{$$

No. 58
$$\hat{\mathbb{G}}_3^{(A_g,2)}(1,0)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{58} = -\frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)]\otimes\mathbb{Y}_{8}[\mathbb{Q}_{2,1}^{(b,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)]\otimes\mathbb{Y}_{7}[\mathbb{Q}_{2,0}^{(b,E_g,2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{58}(\textbf{\textit{k}}) &= -\frac{\sqrt{6}\mathbb{X}_{30}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{30}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{30}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{30}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{Q}_{1,1}^{(u,E_g,2)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{Q}_{1,1}^{(u,E_g,2)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{Q}_{1,1}^{(u,E_g,2)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{Q}_{1,1}^{(u,E_g$$

No. 59 $\hat{\mathbb{G}}_3^{(A_g,3)}(1,0)$ [M₃, B₁]

$$\hat{\mathbb{Z}}_{59} = \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,0}^{(b,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{8}[\mathbb{Q}_{2,1}^{(b,E_g,2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{59}(\textbf{\textit{k}}) &= \frac{\sqrt{6}\mathbb{X}_{30}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{30}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{30}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{30}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{Q}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(u,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{Q}_{1,1}^{(u,E_g,2)}(1,0)] \otimes \mathbb{Q}_{1,1}^{(u,E_g,2)}}{6} - \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{Q}_{1,1}^{(u,E_g,2)}(1,0)] \otimes \mathbb{Q}_{1,1}^{(u,E_g,2)}}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{Q}_{1,1}^{(u,E_g,2)}(1,0)] \otimes \mathbb{Q}_{1,1}^{(u,E_g,2)}}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{Q}_{1,1}^{(u,E_g,2)}(1,0)] \otimes \mathbb{Q}_{1,1}^{(u,E_g,2)}}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{Q}_{1,1}^{(u,E_g,2)}($$

No. 60
$$\hat{\mathbb{G}}_{1}^{(A_g)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{60} = \mathbb{X}_{32}[\mathbb{M}_1^{(a,A_g)}] \otimes \mathbb{Y}_{10}[\mathbb{T}_0^{(b,A_g)}]$$

$$\hat{\mathbb{Z}}_{60}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{1}^{(a,A_g)}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{1}^{(a,A_g)}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{1}^{(a,A_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{1}^{(a,A_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}]}{3} \otimes \mathbb{F}_{9}[\mathbb{Q}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}$$

No. 61
$$\hat{\mathbb{G}}_{3}^{(A_g,2)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{61} = -\frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{Y}_{12}[\mathbb{T}_{2,1}^{(b,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{Y}_{11}[\mathbb{T}_{2,0}^{(b,E_g,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{61}(\boldsymbol{k}) = -\frac{\sqrt{6}\mathbb{X}_{33}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{33}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{33}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ + \frac{\sqrt{3}\mathbb{X}_{33}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ + \frac{\sqrt{3}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{$$

$$\begin{split} \hat{\mathbb{Z}}_{62} &= \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{Y}_{11}[\mathbb{T}_{2,0}^{(b,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{Y}_{12}[\mathbb{T}_{2,1}^{(b,E_g,2)}]}{2} \\ \hat{\mathbb{Z}}_{62}(k) &= \frac{\sqrt{6}\mathbb{X}_{33}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{33}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{33}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &- \frac{\sqrt{3}\mathbb{X}_{33}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(u,E_g,2)}] \otimes \mathbb{T}_{1}[\mathbb{Q}_{0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{1,1}^{(u,E_g,2)}] \otimes \mathbb{T}_{1}[\mathbb{Q}_{0}^{(u,E_g,2)}] \otimes \mathbb{T}_{1}[\mathbb{Q}_{0}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb$$

No. 63
$$\hat{\mathbb{G}}_{1}^{(A_g)}(1,1)$$
 [M₃, B₁] $\hat{\mathbb{Z}}_{63} = \mathbb{X}_{35}[\mathbb{M}_{1}^{(a,A_g)}(1,1)] \otimes \mathbb{Y}_{10}[\mathbb{T}_{0}^{(b,A_g)}]$

 $\hat{\mathbb{Z}}_{62}(oldsymbol{k})$

$$=\frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{M}_{1}^{(a,A_{g})}(1,1)]\otimes\mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}]\otimes\mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{g})}]}{3}+\frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{M}_{1}^{(a,A_{g})}(1,1)]\otimes\mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}]\otimes\mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{g},2)}]}{3}+\frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{M}_{1}^{(a,A_{g})}(1,1)]\otimes\mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{3}+\frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{M}_{1}^{(a,A_{g})}(1,1)]\otimes\mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{3}+\frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{M}_{1}^{(a,A_{g})}(1,1)]\otimes\mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{3}+\frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{M}_{1}^{(a,A_{g})}(1,1)]\otimes\mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{3}+\frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{M}_{1}^{(a,A_{g})}(1,1)]\otimes\mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{3}+\frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{M}_{1}^{(a,A_{g})}(1,1)]\otimes\mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{3}+\frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{M}_{1}^{(a,A_{g})}(1,1)]\otimes\mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{3}+\frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{M}_{1}^{(a,A_{g})}(1,1)]\otimes\mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{3}+\frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{M}_{1}^{(a,A_{g})}(1,1)]\otimes\mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{3}+\frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{M}_{1}^{(a,A_{g})}(1,1)]\otimes\mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(u,E_{g},2)}]}{3}+\frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{M}_{1}^{(u,E_{g},2)}(1,1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{2,1}^{(u,E_{g},2)}]\otimes\mathbb{P}_{3}[\mathbb{Q}_{2,1}^{(u,E_{g},2)}]}{3}+\frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{Q}_{2,1}^{(u,E_{g},2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_{g},2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_{g},2)}]}{3}+\frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{Q}_{2,1}^{(u,E_{g},2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_{g},2)}]}{3}+\frac{\sqrt{3}\mathbb{Z}_{35}[\mathbb{Q}_{2,1}^{(u,E_{g},2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_{g},2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_{g},2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_{g},2)}]}$$

$$\hat{\mathbb{Z}}_{64} = -\frac{\sqrt{2}\mathbb{X}_{41}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{Y}_{12}[\mathbb{T}_{2,1}^{(b,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{Y}_{11}[\mathbb{T}_{2,0}^{(b,E_g,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{64}(\mathbf{k}) = -\frac{\sqrt{6}\mathbb{X}_{41}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{41}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6}$$

$$-\frac{\sqrt{6}\mathbb{X}_{41}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{41}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6}$$

$$+\frac{\sqrt{6}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6}$$

$$+\frac{\sqrt{3}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6}$$

No. 65
$$\hat{\mathbb{G}}_3^{(A_g,3)}(1,1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{65} = \frac{\sqrt{2}\mathbb{X}_{41}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{Y}_{11}[\mathbb{T}_{2,0}^{(b,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{Y}_{12}[\mathbb{T}_{2,1}^{(b,E_g,2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{65}(\boldsymbol{k}) &= \frac{\sqrt{6}\mathbb{X}_{41}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{41}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{41}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{41}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(u,E_g)}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(u,E_g)}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{M}_{1,1}^{(u,E_g)}]}{6} \otimes \mathbb{U}_{1,1}^{(u,E_g)} \otimes \mathbb{U}_{1,1$$

No. 66
$$\hat{\mathbb{G}}_1^{(A_g)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{66} = \mathbb{X}_{36}[\mathbb{M}_{1}^{(a,A_g)}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{T}_{0}^{(b,A_g)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{66}(\boldsymbol{k}) &= \frac{\sqrt{3}\mathbb{X}_{36}[\mathbb{M}_{1}^{(a,A_g)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{36}[\mathbb{M}_{1}^{(a,A_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{3} \\ &+ \frac{\sqrt{3}\mathbb{X}_{36}[\mathbb{M}_{1}^{(a,A_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{3} \end{split}$$

No. 67
$$\hat{\mathbb{G}}_3^{(A_g,2)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{67} = -\frac{\sqrt{2}\mathbb{X}_{43}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{T}_{2,1}^{(b,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{11}[\mathbb{T}_{2,0}^{(b,E_g,2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{67}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{43}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{43}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{43}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{43}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{T}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(u,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{T}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(u,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}$$

No. 68
$$\hat{\mathbb{G}}_3^{(A_g,3)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{68} = \frac{\sqrt{2}\mathbb{X}_{43}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)]\otimes\mathbb{Y}_{11}[\mathbb{T}_{2,0}^{(b,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)]\otimes\mathbb{Y}_{12}[\mathbb{T}_{2,1}^{(b,E_g,2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{68}(\pmb{k}) &= \frac{\sqrt{6}\mathbb{X}_{43}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_7[\mathbb{T}_0^{(u,A_g)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{43}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_8[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{43}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_8[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{43}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_7[\mathbb{T}_0^{(u,A_g)}] \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_8[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_2[\mathbb{Q}_2^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(u,E_g)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(u,E_g)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(u,E_g)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{44}[\mathbb{M}_{1,1}^{(u,E_g)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{M}_{1,1}^{(u,E_g,2)$$

No. 69
$$\hat{\mathbb{G}}_3^{(A_g,1)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{69} = \mathbb{X}_{37} [\mathbb{M}_{3}^{(a, A_g, 1)}(1, -1)] \otimes \mathbb{Y}_{10} [\mathbb{T}_{0}^{(b, A_g)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{69}(\boldsymbol{k}) &= \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{M}_{3}^{(a,A_g,1)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{M}_{3}^{(a,A_g,1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{3} \\ &+ \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{M}_{3}^{(a,A_g,1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{3} \end{split}$$

No. 70
$$\hat{\mathbb{G}}_3^{(A_g,2)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{70} = \mathbb{X}_{38}[\mathbb{M}_{3}^{(a,A_g,2)}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{T}_{0}^{(b,A_g)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{70}(\textbf{\textit{k}}) &= \frac{\sqrt{3}\mathbb{X}_{38}[\mathbb{M}_{3}^{(a,A_{g},2)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{38}[\mathbb{M}_{3}^{(a,A_{g},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{g},2)}]}{3} \\ &+ \frac{\sqrt{3}\mathbb{X}_{38}[\mathbb{M}_{3}^{(a,A_{g},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{3} \end{split}$$

No. 71
$$\hat{\mathbb{G}}_3^{(A_g,3)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{71} = \mathbb{X}_{39} [\mathbb{M}_{3}^{(a, A_g, 3)}(1, -1)] \otimes \mathbb{Y}_{10} [\mathbb{T}_{0}^{(b, A_g)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{71}(\textbf{\textit{k}}) &= \frac{\sqrt{3}\mathbb{X}_{39}[\mathbb{M}_{3}^{(a,A_g,3)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{39}[\mathbb{M}_{3}^{(a,A_g,3)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{3} \\ &+ \frac{\sqrt{3}\mathbb{X}_{39}[\mathbb{M}_{3}^{(a,A_g,3)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{3} \end{split}$$

No. 72 $\hat{\mathbb{G}}_{1}^{(A_g)}(1,-1)$ [M₃, B₁]

$$\hat{\mathbb{Z}}_{72} = \frac{\sqrt{2}\mathbb{X}_{47}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{Y}_{11}[\mathbb{T}_{2,0}^{(b,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{48}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{T}_{2,1}^{(b,E_g,2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{72}(\boldsymbol{k}) &= \frac{\sqrt{6}\mathbb{X}_{47}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{47}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{47}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{47}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{48}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{48}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{48}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{48}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{48}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{48}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{48}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{48}[\mathbb{M}_{3,1}^{(u,E_g,2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{T}_{1}[\mathbb{Q}_{0}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{48}[\mathbb{M}_{3,1}^{(u,E_g,2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1}$$

No. 73
$$\hat{\mathbb{Q}}_2^{(A_g)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{73} = -\frac{\sqrt{2}\mathbb{X}_{47}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{T}_{2,1}^{(b,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{48}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{Y}_{11}[\mathbb{T}_{2,0}^{(b,E_g,2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{73}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{47}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{47}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{47}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{47}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{48}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}]\otimes\mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{48}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}]\otimes\mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{48}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}]\otimes\mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{48}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{48}[\mathbb{M}_{3,1}^{(u,E_g,2)}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{T}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{T}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{T}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]\otimes\mathbb{Q}_{3}[\mathbb{Q}_{2,1}^{$$

No. 74
$$\hat{\mathbb{G}}_{3}^{(A_g,2)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{74} = \frac{\sqrt{2}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{T}_{2,1}^{(b,E_g,2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{46}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{Y}_{11}[\mathbb{T}_{2,0}^{(b,E_g,2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{74}(\textbf{\textit{k}}) &= \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{46}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{46}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &- \frac{\sqrt{3}\mathbb{X}_{46}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{46}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &- \frac{\sqrt{3}\mathbb{X}_{46}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{46}[\mathbb{M}_{3,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{46}[\mathbb{M}_{3,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{6$$

No. 75
$$\hat{\mathbb{G}}_3^{(A_g,3)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{75} = -\frac{\sqrt{2}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)]\otimes\mathbb{Y}_{11}[\mathbb{T}_{2,0}^{(b,E_g,2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{46}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)]\otimes\mathbb{Y}_{12}[\mathbb{T}_{2,1}^{(b,E_g,2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{75}(\textbf{\textit{k}}) &= -\frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &- \frac{\sqrt{3}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{46}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{46}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{46}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{46}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \end{split}$$

No. 76
$$\hat{\mathbb{Q}}_2^{(A_g)}(1,0)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{76} = \mathbb{X}_{40}[\mathbb{T}_2^{(a,A_g)}(1,0)] \otimes \mathbb{Y}_{10}[\mathbb{T}_0^{(b,A_g)}]$$

$$\hat{\mathbb{Z}}_{76}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{40}[\mathbb{T}_{2}^{(a,A_g)}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{40}[\mathbb{T}_{2}^{(a,A_g)}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{40}[\mathbb{T}_{2}^{(a,A_g)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{40}[\mathbb{T}_{2}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{40}[\mathbb{T}_{2}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{40}[\mathbb{T}_{2}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{40}[\mathbb{T}_{2}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{40}[\mathbb{T}_{2}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{40}[\mathbb{T}_{2}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(u,E_g,2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{40}[\mathbb{T}_{2}^{(u,E_g,2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{40}[\mathbb{$$

No. 77
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,0)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{77} = \frac{\sqrt{2}\mathbb{X}_{51}[\mathbb{T}_{2,0}^{(a,E_g,2)}(1,0)] \otimes \mathbb{Y}_{11}[\mathbb{T}_{2,0}^{(b,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{52}[\mathbb{T}_{2,1}^{(a,E_g,2)}(1,0)] \otimes \mathbb{Y}_{12}[\mathbb{T}_{2,1}^{(b,E_g,2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{77}(\boldsymbol{k}) &= \frac{\sqrt{6}\mathbb{X}_{51}[\mathbb{T}_{2,0}^{(a,E_g,2)}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{51}[\mathbb{T}_{2,0}^{(a,E_g,2)}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{51}[\mathbb{T}_{2,0}^{(a,E_g,2)}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{51}[\mathbb{T}_{2,0}^{(a,E_g,2)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{52}[\mathbb{T}_{2,1}^{(a,E_g,2)}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{52}[\mathbb{T}_{2,1}^{(a,E_g,2)}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{52}[\mathbb{T}_{2,1}^{(a,E_g,2)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{52}[\mathbb{T}_{2,1}^{(a,E_g,2)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \end{split}$$

No. 78 $\hat{\mathbb{G}}_1^{(A_g)}(1,0) [M_3, B_1]$

$$\hat{\mathbb{Z}}_{78} = -\frac{\sqrt{2}\mathbb{X}_{51}[\mathbb{T}_{2,0}^{(a,E_g,2)}(1,0)]\otimes\mathbb{Y}_{12}[\mathbb{T}_{2,1}^{(b,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{52}[\mathbb{T}_{2,1}^{(a,E_g,2)}(1,0)]\otimes\mathbb{Y}_{11}[\mathbb{T}_{2,0}^{(b,E_g,2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{78}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{51}[\mathbb{T}_{2,0}^{(a,E_g,2)}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{51}[\mathbb{T}_{2,0}^{(a,E_g,2)}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{51}[\mathbb{T}_{2,0}^{(a,E_g,2)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{51}[\mathbb{T}_{2,0}^{(a,E_g,2)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{52}[\mathbb{T}_{2,1}^{(a,E_g,2)}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{52}[\mathbb{T}_{2,1}^{(a,E_g,2)}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{52}[\mathbb{T}_{2,1}^{(a,E_g,2)}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{52}[\mathbb{T}_{2,1}^{(a,E_g,2)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ \end{split}$$

No. 79 $\hat{\mathbb{G}}_3^{(A_g,2)}(1,0)$ [M₃, B₁]

$$\hat{\mathbb{Z}}_{79} = \frac{\sqrt{2}\mathbb{X}_{49}[\mathbb{T}_{2,0}^{(a,E_g,1)}(1,0)] \otimes \mathbb{Y}_{11}[\mathbb{T}_{2,0}^{(b,E_g,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{50}[\mathbb{T}_{2,1}^{(a,E_g,1)}(1,0)] \otimes \mathbb{Y}_{12}[\mathbb{T}_{2,1}^{(b,E_g,2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{79}(\textbf{\textit{k}}) &= \frac{\sqrt{6}\mathbb{X}_{49}[\mathbb{T}_{2,0}^{(a,E_g,1)}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{49}[\mathbb{T}_{2,0}^{(a,E_g,1)}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{49}[\mathbb{T}_{2,0}^{(a,E_g,1)}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{49}[\mathbb{T}_{2,0}^{(a,E_g,1)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{50}[\mathbb{T}_{2,1}^{(a,E_g,1)}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{50}[\mathbb{T}_{2,1}^{(a,E_g,1)}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g,2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{50}[\mathbb{T}_{2,1}^{(a,E_g,1)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{50}[\mathbb{T}_{2,1}^{(a,E_g,1)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g,2)}]}{6} \end{split}$$

$$\begin{split} & \boxed{ \begin{bmatrix} \text{No. 80} \end{bmatrix} } \quad \hat{\mathbb{G}}_{3}^{(Ag,3)}(1,0) \; [\text{M}_{3},\text{B}_{1}] \\ \\ \hat{\mathbb{Z}}_{80} &= \frac{\sqrt{2}\mathbb{X}_{49} [\mathbb{T}_{2,0}^{(a,E_{g},1)}(1,0)] \otimes \mathbb{Y}_{12} [\mathbb{T}_{2,1}^{(b,E_{g},2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{50} [\mathbb{T}_{2,1}^{(a,E_{g},1)}(1,0)] \otimes \mathbb{Y}_{11} [\mathbb{T}_{2,0}^{(b,E_{g},2)}]}{2} \\ \hat{\mathbb{Z}}_{80}(\textbf{\textit{k}}) &= \frac{\sqrt{6}\mathbb{X}_{49} [\mathbb{T}_{2,0}^{(a,E_{g},1)}(1,0)] \otimes \mathbb{U}_{7} [\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{3} [\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{49} [\mathbb{T}_{2,0}^{(a,E_{g},1)}(1,0)] \otimes \mathbb{U}_{8} [\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{3} [\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{49} [\mathbb{T}_{2,0}^{(a,E_{g},1)}(1,0)] \otimes \mathbb{U}_{9} [\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{1} [\mathbb{Q}_{0}^{(k,A_{g})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{49} [\mathbb{T}_{2,0}^{(a,E_{g},1)}(1,0)] \otimes \mathbb{U}_{9} [\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{2} [\mathbb{Q}_{2,0}^{(k,E_{g},2)}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{50} [\mathbb{T}_{2,1}^{(a,E_{g},1)}(1,0)] \otimes \mathbb{U}_{7} [\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{2} [\mathbb{Q}_{2,0}^{(k,E_{g},2)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{50} [\mathbb{T}_{2,1}^{(a,E_{g},1)}(1,0)] \otimes \mathbb{U}_{8} [\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{1} [\mathbb{Q}_{0}^{(k,A_{g})}]}{6} \\ &- \frac{\sqrt{3}\mathbb{X}_{50} [\mathbb{T}_{2,1}^{(a,E_{g},1)}(1,0)] \otimes \mathbb{U}_{8} [\mathbb{T}_{2,0}^{(u,E_{g},2)}] \otimes \mathbb{F}_{2} [\mathbb{Q}_{2,0}^{(k,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{50} [\mathbb{T}_{2,1}^{(a,E_{g},1)}(1,0)] \otimes \mathbb{U}_{9} [\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{3} [\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{6} \\ &- \frac{\sqrt{3}\mathbb{X}_{50} [\mathbb{T}_{2,1}^{(a,E_{g},1)}(1,0)] \otimes \mathbb{U}_{9} [\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{3} [\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{50} [\mathbb{T}_{2,1}^{(a,E_{g},1)}(1,0)] \otimes \mathbb{U}_{9} [\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{3} [\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{50} [\mathbb{T}_{2,1}^{(a,E_{g},1)}(1,0)] \otimes \mathbb{U}_{9} [\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{3} [\mathbb{Q}_{2,1}^{(k,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{50} [\mathbb{T}_{2,1}^{(u,E_{g},2)}(1,0)] \otimes \mathbb{U}_{9} [\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{F}_{3} [\mathbb{Q}_{2,1}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{50} [\mathbb{T}_{2,1}^{(u,E_{g},2)}(1,0)] \otimes \mathbb{U}_{9} [\mathbb{T}_{2,1}^{(u,E_{g},2)}] \otimes \mathbb{T}_{9} [\mathbb{Q}_{2,0}^{(u,E_{g},2)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{50} [\mathbb{T}_{2,1}^{(u,E_{g$$

Table 5: Atomic SAMB group.

group	bra	ket
M_1	$(s,\uparrow),(s,\downarrow)$	$(s,\uparrow),(s,\downarrow)$
M_2	$(s,\uparrow),(s,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$
M_3	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$
M_4	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$	$(s,\uparrow),(s,\downarrow)$

Table 6: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_g)}$	M_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{X}_2	$\mathbb{M}_1^{(a,A_g)}(1,-1)$	M_1	$\left(\frac{\sqrt{2}}{2} 0\right)$
\mathbb{X}_3	$\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)$	M_1	$\begin{pmatrix} 0 & -\frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 0 \end{pmatrix}$

Table 6

Table 6			
symbol	type	group	form
\mathbb{X}_4	$\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)$	M_1	$\begin{pmatrix} 0 & -\frac{\sqrt{2}i}{2} \\ \frac{\sqrt{2}i}{2} & 0 \end{pmatrix}$
\mathbb{X}_5	$\mathbb{Q}_1^{(a,A_u)}$	M_2	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{X}_6	$\mathbb{Q}_{1,0}^{(a,E_u)}$	M_2	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{X}_7	$\mathbb{Q}_{1,1}^{(a,E_u)}$	M_2	$\begin{pmatrix} 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 \end{pmatrix}$
\mathbb{X}_8	$\mathbb{Q}_1^{(a,A_u)}(1,0)$	M_2	$egin{pmatrix} 0 & -rac{1}{2} & 0 & rac{i}{2} & 0 & 0 \ rac{1}{2} & 0 & rac{i}{2} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_9	$\mathbb{G}_0^{(a,A_u)}(1,1)$	M_2	$\begin{pmatrix} \frac{2}{6} & 0 & \frac{2}{6} & 0 & 0 \\ \frac{\sqrt{6}i}{6} & 0 & -\frac{\sqrt{6}}{6} & \frac{\sqrt{6}i}{6} & 0 \\ \frac{\sqrt{6}i}{6} & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}i}{6} \end{pmatrix} \\ \begin{pmatrix} 0 & -\frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}i}{6} & \frac{\sqrt{3}i}{3} & 0 \\ -\frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}i}{3} \end{pmatrix}$
\mathbb{X}_{10}	$\mathbb{G}_2^{(a,A_u)}(1,-1)$	M_2	$\begin{pmatrix} 0 & -\frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & \frac{\sqrt{3}i}{3} & 0 \\ -\frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}i}{3} \end{pmatrix}$
\mathbb{X}_{11}	$\mathbb{Q}_{1,0}^{(a,E_u)}(1,0)$	M_2	$\begin{pmatrix} 0 & 0 & -\frac{i}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & \frac{i}{2} & -\frac{1}{2} & 0 \end{pmatrix}$
\mathbb{X}_{12}	$\mathbb{Q}_{1,1}^{(a,E_u)}(1,0)$	M_2	$\begin{pmatrix} \frac{i}{2} & 0 & 0 & 0 & 0 & -\frac{i}{2} \\ 0 & -\frac{i}{2} & 0 & 0 & -\frac{i}{2} & 0 \end{pmatrix}$
\mathbb{X}_{13}	$\mathbb{G}_{2,0}^{(a,E_u,1)}(1,-1)$	M_2	$ \begin{pmatrix} \frac{i}{2} & 0 & 0 & 0 & 0 & \frac{i}{2} \\ 0 & -\frac{i}{2} & 0 & 0 & \frac{i}{2} & 0 \end{pmatrix} $
\mathbb{X}_{14}	$\mathbb{G}_{2,1}^{(a,E_u,1)}(1,-1)$	M_2	$\begin{pmatrix} 0 & 0 & \frac{i}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & -\frac{i}{2} & -\frac{1}{2} & 0 \end{pmatrix}$
\mathbb{X}_{15}	$\mathbb{G}_{2,0}^{(a,E_u,2)}(1,-1)$	M_2	$ \begin{pmatrix} 0 & \frac{i}{2} & 0 & -\frac{1}{2} & 0 & 0 \\ \frac{i}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_{16}	$\mathbb{G}_{2,1}^{(a,E_u,2)}(1,-1)$	M_2	$\begin{pmatrix} 2 & \sqrt{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{2} & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{2} & 2 & 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & -\frac{1}{2} & 0 & \frac{i}{2} & 0 & 0 \\ \frac{1}{2} & 0 & \frac{i}{2} & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{i}{2} & 0 & 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & \frac{\sqrt{6}i}{6} & 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}i}{6} & 0 \\ \frac{\sqrt{6}i}{6} & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}i}{6} \end{pmatrix} \\ \begin{pmatrix} 0 & -\frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & \frac{\sqrt{3}i}{3} & 0 \\ -\frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}i}{3} \end{pmatrix} \\ \begin{pmatrix} 0 & 0 & -\frac{i}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & \frac{i}{2} & -\frac{1}{2} & 0 \end{pmatrix} \\ \begin{pmatrix} \frac{i}{2} & 0 & 0 & 0 & 0 & -\frac{i}{2} \\ 0 & -\frac{i}{2} & 0 & 0 & 0 & \frac{i}{2} \\ 0 & -\frac{i}{2} & 0 & 0 & \frac{i}{2} & 0 \end{pmatrix} \\ \begin{pmatrix} \frac{i}{2} & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & -\frac{i}{2} & -\frac{1}{2} & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & \frac{i}{2} & 0 & -\frac{1}{2} & 0 & 0 \\ \frac{i}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & \frac{i}{2} & 0 & -\frac{1}{2} & 0 & 0 \\ \frac{i}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \end{pmatrix} \\ \begin{pmatrix} \frac{1}{2} & 0 & -\frac{i}{2} & 0 & 0 & 0 \\ \frac{1}{2} & 0 & -\frac{i}{2} & 0 & 0 & 0 \end{pmatrix} \\ \begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \end{pmatrix}$
\mathbb{X}_{17}	$\mathbb{Q}_0^{(a,A_g)}$	M_3	$\begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \end{pmatrix}$

Table 6

symbol	type	group	form
\mathbb{X}_{18}	$\mathbb{Q}_2^{(a,A_g)}$	$ m M_3$	$\begin{pmatrix} -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} \end{pmatrix}$
\mathbb{X}_{19}	$\mathbb{Q}_0^{(a,A_g)}(1,1)$	M_3	$ \begin{pmatrix} 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}}{6} & 0 \\ \frac{\sqrt{3}i}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & -\frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_{20}	$\mathbb{Q}_2^{(a,A_g)}(1,-1)$	M_3	$ \begin{bmatrix} 0 & -\frac{6}{6} & 0 & 0 & \frac{12}{12} & 0 \\ 0 & \frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 \\ -\frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & 0 \end{bmatrix} $
\mathbb{X}_{21}	$\mathbb{G}_{1}^{(a,A_g)}(1,0)$	$ m M_3$	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_{22}	$\mathbb{Q}_{2,0}^{(\alpha,E_g,1)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$

Table 6

symbol	type	group	form
\mathbb{X}_{23}	$\mathbb{Q}_{2,1}^{(a,E_g,1)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{X}_{24}	$\mathbb{Q}_{2,0}^{(a,E_g,2)}$	$ m M_3$	$\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
\mathbb{X}_{25}	$\mathbb{Q}_{2,1}^{(\alpha,E_g,2)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$
\mathbb{X}_{26}	$\mathbb{Q}_{2,0}^{(a,E_g,1)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{X}_{27}	$\mathbb{Q}_{2,1}^{(a,E_g,1)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}i}{4} & 0\\ 0 & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4}\\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0\\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0\\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0\\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

Table 6

symbol	type	group	form
X ₂₈	$\mathbb{Q}_{2,0}^{(a,E_g,2)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & \frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{29}	$\mathbb{Q}_{2,1}^{(a,E_g,2)}(1,-1)$	$ m M_3$	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & 0 \\ 0 & \frac{\sqrt{2}i}{2} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 \end{pmatrix} $
\mathbb{X}_{30}	$\mathbb{G}_{1,0}^{(a,E_g)}(1,0)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}i}{4} & 0\\ 0 & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & \frac{\sqrt{2}i}{4}\\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0\\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0\\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0\\ 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{31}	$\mathbb{G}_{1,1}^{(a,E_g)}(1,0)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0\\ 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0\\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4}\\ 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \end{pmatrix}$
\mathbb{X}_{32}	$\mathbb{M}_{1}^{(a,A_{g})}$	M_3	$\begin{pmatrix} 0 & 0 & -\frac{i}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{i}{2} & 0 & 0 \\ \frac{i}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{i}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$

Table 6

symbol	type	group	form
X ₃₃	$\mathbb{M}_{1,0}^{(a,E_g)}$	M_3	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{X}_{34}	$\mathbb{M}_{1,1}^{(a,E_g)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{i}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{i}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
\mathbb{X}_{35}	$\mathbb{M}_{1}^{(a,A_g)}(1,1)$	$ m M_3$	$\begin{bmatrix} 30 & \frac{\sqrt{30}}{30} & 0 & 0 & \frac{\sqrt{30}}{20} & 0\\ 0 & 0 & -\frac{\sqrt{30}}{30} & 0 & 0 & -\frac{\sqrt{30}i}{20}\\ 0 & 0 & 0 & \frac{\sqrt{30}}{30} & \frac{\sqrt{30}i}{20} & 0\\ 0 & \frac{\sqrt{30}}{20} & 0 & -\frac{\sqrt{30}i}{20} & \frac{\sqrt{30}}{15} & 0\\ \frac{\sqrt{30}}{20} & 0 & \frac{\sqrt{30}i}{20} & 0 & 0 & -\frac{\sqrt{30}i}{15} \end{bmatrix}$
\mathbb{X}_{36}	$\mathbb{M}_{1}^{(a,A_g)}(1,-1)$	$ m M_3$	$\begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} \end{pmatrix}$
X 37	$\mathbb{M}_{3}^{(a,A_g,1)}(1,-1)$	$ m M_3$	$\begin{pmatrix} -\frac{\sqrt{5}}{10} & 0 & 0 & 0 & 0 & -\frac{\sqrt{5}}{10} \\ 0 & \frac{\sqrt{5}}{10} & 0 & 0 & -\frac{\sqrt{5}}{10} & 0 \\ 0 & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & \frac{\sqrt{5}i}{10} \\ 0 & 0 & 0 & \frac{\sqrt{5}}{10} & -\frac{\sqrt{5}i}{10} & 0 \\ 0 & -\frac{\sqrt{5}}{10} & 0 & \frac{\sqrt{5}i}{10} & \frac{\sqrt{5}}{5} & 0 \\ -\frac{\sqrt{5}}{10} & 0 & -\frac{\sqrt{5}i}{10} & 0 & 0 & -\frac{\sqrt{5}}{5} \end{pmatrix}$

Table 6

symbol	type	group	form
X ₃₈	$\mathbb{M}_{3}^{(a,A_{g},2)}(1,-1)$	M ₃	$\begin{pmatrix} 0 & -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0\\ \frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0\\ 0 & \frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0\\ \frac{\sqrt{2}}{4} & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 &$
χ_{39}	$\mathbb{M}_{3}^{(a,A_{g},3)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & \frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0\\ \frac{\sqrt{2}}{4} & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & \frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 & 0\\ -\frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 &$
\mathbb{X}_{40}	$\mathbb{T}_2^{(a,A_g)}(1,0)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{41}	$\mathbb{M}_{1,0}^{(a,E_g)}(1,1)$	$ m M_3$	$\begin{bmatrix} 0 & \frac{\sqrt{30}}{15} & 0 & -\frac{\sqrt{30}}{20} & \frac{\sqrt{30}}{20} & 0\\ \frac{\sqrt{30}}{15} & 0 & \frac{\sqrt{30}i}{20} & 0 & 0 & -\frac{\sqrt{30}}{20}\\ 0 & -\frac{\sqrt{30}i}{20} & 0 & -\frac{\sqrt{30}}{30} & 0 & 0\\ \frac{\sqrt{30}i}{20} & 0 & -\frac{\sqrt{30}}{30} & 0 & 0 & 0\\ \frac{\sqrt{30}}{20} & 0 & 0 & 0 & 0 & -\frac{\sqrt{30}}{30}\\ 0 & -\frac{\sqrt{30}}{20} & 0 & 0 & -\frac{\sqrt{30}}{30} & 0 \end{bmatrix}$
\mathbb{X}_{42}	$\mathbb{M}_{1,1}^{(a,E_g)}(1,1)$	$ m M_3$	$ \begin{pmatrix} 0 & \frac{\sqrt{30}i}{30} & 0 & \frac{\sqrt{30}}{20} & 0 & 0 \\ -\frac{\sqrt{30}i}{30} & 0 & \frac{\sqrt{30}}{20} & 0 & 0 & 0 \\ 0 & \frac{\sqrt{30}}{20} & 0 & -\frac{\sqrt{30}i}{15} & \frac{\sqrt{30}}{20} & 0 \\ \frac{\sqrt{30}}{20} & 0 & \frac{\sqrt{30}i}{15} & 0 & 0 & -\frac{\sqrt{30}i}{20} \\ 0 & 0 & \frac{\sqrt{30}}{20} & 0 & 0 & \frac{\sqrt{30}i}{30} \\ 0 & 0 & 0 & -\frac{\sqrt{30}}{20} & -\frac{\sqrt{30}i}{30} & 0 \end{pmatrix} $

Table 6

symbol	type	group	form
Symbol	type	group	
\mathbb{X}_{43}	$\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)$	M_3	$ \begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \end{pmatrix} $
\mathbb{X}_{44}	$\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0\\ \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0\\ 0 & 0 & \frac{\sqrt{6}i}{6} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}i}{6}\\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & 0 \end{pmatrix}$
\mathbb{X}_{45}	$\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & -\frac{\sqrt{30}}{20} & 0 & \frac{\sqrt{30}i}{60} & \frac{\sqrt{30}}{15} & 0\\ -\frac{\sqrt{30}}{20} & 0 & -\frac{\sqrt{30}i}{60} & 0 & 0 & -\frac{\sqrt{30}}{15} \\ 0 & \frac{\sqrt{30}i}{60} & 0 & -\frac{\sqrt{30}}{60} & 0 & 0\\ -\frac{\sqrt{30}i}{60} & 0 & -\frac{\sqrt{30}}{60} & 0 & 0 & 0\\ \frac{\sqrt{30}}{15} & 0 & 0 & 0 & 0 & \frac{\sqrt{30}}{15} \\ 0 & -\frac{\sqrt{30}i}{15} & 0 & 0 & \frac{\sqrt{30}}{15} & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & \frac{\sqrt{30}i}{60} & 0 & -\frac{\sqrt{30}}{60} & 0 & 0\\ \sqrt{30}i & 0 & \sqrt{30} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{46}	$\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)$	$ m M_3$	$\begin{bmatrix} -\frac{60}{60} & 0 & -\frac{\sqrt{30}}{60} & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{30}}{60} & 0 & \frac{\sqrt{30}i}{20} & \frac{\sqrt{30}}{15} & 0 \\ -\frac{\sqrt{30}}{60} & 0 & -\frac{\sqrt{30}i}{20} & 0 & 0 & -\frac{\sqrt{30}i}{15} \\ 0 & 0 & \frac{\sqrt{30}}{15} & 0 & 0 & -\frac{\sqrt{30}i}{15} \\ 0 & 0 & 0 & -\frac{\sqrt{30}}{15} & \frac{\sqrt{30}i}{15} & 0 \end{bmatrix}$
\mathbb{X}_{47}	$\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)$	$ m M_3$	$\begin{pmatrix} \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & 0 \end{pmatrix}$

Table 6

symbol	type	group	form
X48	$\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)$	M ₃	$\begin{pmatrix} 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}i}{6} & 0 \\ -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{6} \\ 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 \\ 0 & \frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 \\ -\frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & \frac{\sqrt{6}i}{6} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 \\ -\frac{\sqrt{6}i}{6} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 & 0 \\ 0 & \frac{\sqrt{6}}{12} & 0 & 0 & -\frac{\sqrt{6}}{12} & 0 \end{pmatrix}$
\mathbb{X}_{49}	$\mathbb{T}_{2,0}^{(a,E_g,1)}(1,0)$	$ m M_3$	$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{X}_{50}	$\mathbb{T}_{2,1}^{(a,E_g,1)}(1,0)$	$ m M_3$	$ \begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{6}i}{12} & \frac{\sqrt{6}i}{12} & 0\\ 0 & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & -\frac{\sqrt{6}}{12}\\ 0 & \frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{6} & 0 & 0\\ -\frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0\\ \frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{6}\\ 0 & -\frac{\sqrt{6}}{12} & 0 & 0 & -\frac{\sqrt{6}}{6} & 0 \end{pmatrix} $
\mathbb{X}_{51}	$\mathbb{T}_{2,0}^{(a,E_g,2)}(1,0)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}i}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}i}{12} & 0 \\ -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{12} \\ 0 & \frac{\sqrt{6}}{6} & 0 & 0 & \frac{\sqrt{6}}{12} & 0 \\ 0 & -\frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 \\ \frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{52}	$\mathbb{T}_{2,1}^{(a,E_g,2)}(1,0)$	$ m M_3$	$\begin{pmatrix} -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & \frac{\sqrt{6}}{12} \\ 0 & \frac{\sqrt{6}}{6} & 0 & 0 & \frac{\sqrt{6}}{12} & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & \frac{\sqrt{6}i}{12} \\ 0 & 0 & 0 & -\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}i}{12} & 0 \\ 0 & \frac{\sqrt{6}}{12} & 0 & \frac{\sqrt{6}i}{12} & 0 & 0 \\ \frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & 0 \end{pmatrix}$

Table 6

	I		
symbol	type	group	form
\mathbb{X}_{53}	$\mathbb{Q}_1^{(a,A_u)}$	$ m M_4$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{X}_{54}	$\mathbb{Q}_{1,0}^{(a,E_u)}$	$ m M_4$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$ $\begin{pmatrix} \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$
\mathbb{X}_{55}	$\mathbb{Q}_{1,1}^{(a,E_u)}$	$ m M_4$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$
\mathbb{X}_{56}	$\mathbb{Q}_{1}^{(a,A_{u})}(1,0)$	$ m M_4$	$\begin{pmatrix} 0 & 0 \\ \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & \frac{1}{2} \\ -\frac{1}{2} & 0 \\ 0 & -\frac{i}{2} \\ -\frac{i}{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$
\mathbb{X}_{57}	$\mathbb{G}_0^{(a,A_u)}(1,1)$	$ m M_4$	$\begin{pmatrix} 0 & -\frac{\sqrt{6}i}{6} \\ -\frac{\sqrt{6}i}{6} & 0 \\ 0 & -\frac{\sqrt{6}}{6} \\ \frac{\sqrt{6}}{6} & 0 \\ -\frac{\sqrt{6}i}{6} & 0 \\ 0 & \frac{\sqrt{6}i}{6} \end{pmatrix}$

Table 6

Table 6	4		f
symbol X ₅₈	type $\mathbb{G}_2^{(a,A_u)}(1,-1)$	group M4	form $ \begin{pmatrix} 0 & \frac{\sqrt{3}i}{6} \\ \frac{\sqrt{3}i}{6} & 0 \\ 0 & \frac{\sqrt{3}}{6} \\ -\frac{\sqrt{3}}{6} & 0 \\ -\frac{\sqrt{3}i}{6} & 0 \\ -\frac{\sqrt{3}i}{3} & 0 \\ 0 & \frac{\sqrt{3}i}{3} \end{pmatrix} $
\mathbb{X}_{59}	$\mathbb{Q}_{1,0}^{(a,E_u)}(1,0)$	$ m M_4$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ \frac{i}{2} & 0 \\ 0 & -\frac{i}{2} \\ 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}$
\mathbb{X}_{60}	$\mathbb{Q}_{1,1}^{(a,E_u)}(1,0)$	$ m M_4$	$egin{pmatrix} -rac{i}{2} & 0 \ 0 & rac{i}{2} \ 0 & 0 \ 0 & 0 \ 0 & rac{i}{2} \ rac{i}{2} & 0 \ \end{pmatrix}$
\mathbb{X}_{61}	$\mathbb{G}_{2,0}^{(a,E_u,1)}(1,-1)$	$ m M_4$	$egin{pmatrix} -rac{-2}{2} & 0 \ 0 & rac{i}{2} \ 0 & 0 \ 0 & 0 \ 0 & -rac{i}{2} \ -rac{i}{2} & 0 \end{pmatrix}$
\mathbb{X}_{62}	$\mathbb{G}_{2,1}^{(a,E_u,1)}(1,-1)$	$ m M_4$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ -\frac{i}{2} & 0 \\ 0 & \frac{i}{2} \\ 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}$

Table 6

symbol	type	group	form
\mathbb{X}_{63}	$\mathbb{G}_{2,0}^{(a,E_u,2)}(1,-1)$	$ m M_4$	$\begin{pmatrix} 0 & -\frac{i}{2} \\ -\frac{i}{2} & 0 \\ 0 & \frac{1}{2} \\ -\frac{1}{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$
\mathbb{X}_{64}	$\mathbb{G}_{2,1}^{(a,E_u,2)}(1,-1)$	$ m M_4$	$\begin{pmatrix} 0 & \frac{1}{2} \\ -\frac{1}{2} & 0 \\ 0 & \frac{i}{2} \\ \frac{i}{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$

Table 7: Cluster SAMB.

symbol	type	cluster	form
\mathbb{Y}_1	$\mathbb{Q}_0^{(s,A_g)}$	S_1	$\begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \end{pmatrix}$
\mathbb{Y}_2	$(s, E_g, 2)$	S_1	$\left(-\frac{\sqrt{6}}{6} \frac{\sqrt{6}}{3} -\frac{\sqrt{6}}{6}\right)$
\mathbb{Y}_3	$\mathbb{Q}_{2,1}^{(s,E_g,2)}$	S_1	$\left(-\frac{\sqrt{2}}{2} 0 \frac{\sqrt{2}}{2}\right)'$
\mathbb{Y}_4	$\mathbb{Q}_0^{(b,A_g)}$	B_1	$\begin{pmatrix} \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \end{pmatrix}$
\mathbb{Y}_5	$\mathbb{Q}_{1,0}^{(b,E_u)}$	B_1	$\left(-\frac{\sqrt{3}}{6} \frac{\sqrt{3}}{3} -\frac{\sqrt{3}}{6} \frac{\sqrt{3}}{6} -\frac{\sqrt{3}}{3} \frac{\sqrt{3}}{6}\right)$
\mathbb{Y}_6	$\mathbb{Q}_{1,1}^{(b,E_u)}$	B_1	$\left(-\frac{1}{2} 0 \frac{1}{2} \frac{1}{2} 0 -\frac{1}{2} \right)$
\mathbb{Y}_7	$\mathbb{Q}_{2,0}^{(b,E_g,2)}$	B_1	$ \left(-\frac{\sqrt{3}}{6} \frac{\sqrt{3}}{3} -\frac{\sqrt{3}}{6} -\frac{\sqrt{3}}{6} \frac{\sqrt{3}}{3} -\frac{\sqrt{3}}{6} \right) $
\mathbb{Y}_8	$\bigcap^{(b,E_g,2)}$	B_1	$\left(-\frac{1}{2} 0 \frac{1}{2} -\frac{1}{2} 0 \frac{1}{2} \right)$
\mathbb{Y}_9	$\mathbb{Q}_3^{(b,A_u,3)}$	B_1	$\left(\begin{array}{cccc} \sqrt{6} & \sqrt{6} & \sqrt{6} & \sqrt{6} & -\sqrt{6} & -\sqrt{6} & -\sqrt{6} & -\sqrt{6} \end{array}\right)$
\mathbb{Y}_{10}	$\square(b, A_g)$	B_1	$\begin{pmatrix} \sqrt{6}i & \sqrt{6}i & -\sqrt{6}i & \sqrt{6}i & \sqrt{6}i & \sqrt{6}i & -\sqrt{6}i \\ 6 & 6 & 6 & 6 & -\sqrt{6}i \end{pmatrix}$
\mathbb{Y}_{11}	$\mathbb{T}_{2,0}^{(b,E_g,2)}$	B_1	$\left(-\frac{\sqrt{3}i}{6} \frac{\sqrt{3}i}{3} \frac{\sqrt{3}i}{6} -\frac{\sqrt{3}i}{6} \frac{\sqrt{3}i}{3} \frac{\sqrt{3}i}{6} \right)$
\mathbb{Y}_{12}	$\mathbb{T}_{2,1}^{(b,E_g,2)}$	B_1	$\begin{pmatrix} -\frac{i}{2} & 0 & -\frac{i}{2} & -\frac{i}{2} & 0 & -\frac{i}{2} \end{pmatrix}$

Table 8: Uniform SAMB.

symbol	type	cluster	form
\mathbb{U}_1	$\mathbb{Q}_0^{(s,A_g)}$	S_1	$\begin{pmatrix} \frac{\sqrt{3}}{3} & 0 & 0\\ 0 & \frac{\sqrt{3}}{3} & 0\\ 0 & 0 & \frac{\sqrt{3}}{3} \end{pmatrix}$
\mathbb{U}_2	$\mathbb{Q}_{2,0}^{(s,E_g,2)}$	S_1	$\begin{pmatrix} -\frac{\sqrt{6}}{6} & 0 & 0\\ 0 & \frac{\sqrt{6}}{3} & 0\\ 0 & 0 & -\frac{\sqrt{6}}{6} \end{pmatrix}$
\mathbb{U}_3	$\mathbb{Q}_{2,1}^{(s,E_g,2)}$	S_1	$\begin{pmatrix} -\frac{\sqrt{2}}{2} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{U}_4	$\mathbb{Q}_0^{(u,A_g)}$	В1	$ \begin{array}{c cccc} 0 & 0 & \frac{\sqrt{2}}{2} \\ \hline \begin{pmatrix} 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \\ \frac{\sqrt{6}}{6} & 0 & \frac{\sqrt{6}}{6} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & 0 \end{pmatrix} $
\mathbb{U}_5	$\mathbb{Q}_{2,0}^{(u,E_g,2)}$	B_1	$\begin{pmatrix} 0 & -\frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{6} \\ -\frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} & 0 \end{pmatrix}$
\mathbb{U}_6	$\mathbb{Q}_{2,1}^{(u,E_g,2)}$	B ₁	$\begin{pmatrix} 0 & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix}$
\mathbb{U}_7	$\mathbb{T}_0^{(u,A_g)}$	B ₁	$ \begin{pmatrix} 0 & -\frac{\sqrt{6}i}{6} & \frac{\sqrt{6}i}{6} \\ \frac{\sqrt{6}i}{6} & 0 & -\frac{\sqrt{6}i}{6} \\ -\frac{\sqrt{6}i}{6} & \frac{\sqrt{6}i}{6} & 0 \end{pmatrix} $
\mathbb{U}_8	$\mathbb{T}_{2,0}^{(u,E_g,2)}$	B ₁	$ \begin{pmatrix} 0 & \frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}i}{6} \\ -\frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}i}{3} \\ \frac{\sqrt{3}i}{6} & \frac{\sqrt{3}i}{3} & 0 \end{pmatrix} $
\mathbb{U}_9	$\mathbb{T}_{2,1}^{(u,E_g,2)}$	В1	$\begin{pmatrix} 0 & \frac{i}{2} & \frac{i}{2} \\ -\frac{i}{2} & 0 & 0 \\ -\frac{i}{2} & 0 & 0 \end{pmatrix}$

Table 9: Structure SAMB.

symbol	type	cluster	form
\mathbb{F}_1	$\mathbb{Q}_0^{(k,A_g)}$	B_1	$\frac{\sqrt{6}c_{001}}{3} + \frac{\sqrt{6}c_{002}}{3} + \frac{\sqrt{6}c_{003}}{3}$
\mathbb{F}_2	$\mathbb{Q}_{2,0}^{(k,E_g,2)}$	B_1	$-\frac{\sqrt{3}c_{001}}{3} + \frac{2\sqrt{3}c_{002}}{3} - \frac{\sqrt{3}c_{003}}{3}$
\mathbb{F}_3	$\mathbb{Q}_{2,1}^{(k,E_g,2)}$	B_1	$-c_{001} + c_{003}$
\mathbb{F}_4	$\mathbb{T}_{1,0}^{(k,E_u)}$	B_1	$-\frac{\sqrt{3}s_{001}}{3} + \frac{2\sqrt{3}s_{002}}{3} + \frac{\sqrt{3}s_{003}}{3}$
\mathbb{F}_5	$\mathbb{T}_{1,1}^{(k,E_u)}$	B_1	$-s_{001} - s_{003}$
\mathbb{F}_6	$\mathbb{T}_3^{(k,A_u,3)}$	B_1	$\frac{\sqrt{6}s_{001}}{3} + \frac{\sqrt{6}s_{002}}{3} - \frac{\sqrt{6}s_{003}}{3}$

Table 10: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_g)}$	0	A_g	_	_	1
2	$\mathbb{Q}_1^{(A_u)}$	1	A_u	_	_	z
3	$\mathbb{Q}_{1,0}^{(E_u)}$	1	E_u	_	0	x
4	$\mathbb{Q}_{1,1}^{(E_u)}$	1	E_u	_	1	y
5	$\mathbb{Q}_2^{(A_g)}$	2	A_g	-	_	$-\frac{x^2}{2} - \frac{y^2}{2} + z^2$
6	$\mathbb{Q}_{2,0}^{(E_g,1)}$	2	E_g	1	0	$\sqrt{3}xz$
7	$\mathbb{Q}_{2,1}^{(E_g,1)}$	2	E_g	1	1	$\sqrt{3}yz$
8	$\mathbb{Q}_{2,0}^{(E_g,2)}$	2	E_g	2	0	$\frac{\sqrt{3}\left(x^2-y^2\right)}{2}$
9	$\mathbb{Q}_{2,1}^{(E_g,2)}$	2	E_g	2	1	$-\sqrt{3}xy$
10	$\mathbb{Q}_3^{(A_u,3)}$	3	A_u	3	_	$\frac{\sqrt{10}x(x^2-3y^2)}{4}$

Table 11: Axial harmonics.

$\begin{array}{ c c c c c c c c } \hline No. & symbol & rank & irrep. & mul. & comp. & form \\ \hline 1 & \mathbb{G}_{0}^{(A_{u})} & 0 & A_{u} & - & - & 1 \\ \hline 2 & \mathbb{G}_{1}^{(A_{g})} & 1 & A_{g} & - & - & Z \\ 3 & \mathbb{G}_{1,0}^{(E_{g})} & 1 & E_{g} & - & 0 & X \\ 4 & \mathbb{G}_{1,1}^{(E_{g})} & 1 & E_{g} & - & 1 & Y \\ \hline 5 & \mathbb{G}_{2}^{(A_{u})} & 2 & A_{u} & - & - & -\frac{X^{2}}{2} - \frac{Y^{2}}{2} + Z^{2} \\ 6 & \mathbb{G}_{2,0}^{(E_{u},1)} & 2 & E_{u} & 1 & 0 & \sqrt{3}XZ \\ 7 & \mathbb{G}_{2,1}^{(E_{u},1)} & 2 & E_{u} & 1 & 1 & \sqrt{3}YZ \\ 8 & \mathbb{G}_{2,0}^{(E_{u},2)} & 2 & E_{u} & 2 & 0 & \frac{\sqrt{3}(X^{2}-Y^{2})}{2} \\ 9 & \mathbb{G}_{2,1}^{(E_{u},2)} & 2 & E_{u} & 2 & 1 & -\sqrt{3}XY \\ \hline 10 & \mathbb{G}_{3}^{(A_{g},1)} & 3 & A_{g} & 1 & - & -\frac{Z(3X^{2}+3Y^{2}-2Z^{2})}{2} \\ 11 & \mathbb{G}_{3}^{(A_{g},3)} & 3 & A_{g} & 3 & - & \frac{\sqrt{10}Y(3X^{2}-Y^{2})}{4} \\ 12 & \mathbb{G}_{3,0}^{(A_{g},3)} & 3 & A_{g} & 3 & - & \frac{\sqrt{6}X(-X^{2}-Y^{2}+4Z^{2})}{4} \\ 13 & \mathbb{G}_{3,0}^{(E_{g},1)} & 3 & E_{g} & 1 & 0 & \frac{\sqrt{6}X(-X^{2}-Y^{2}+4Z^{2})}{4} \\ 14 & \mathbb{G}_{3,1}^{(E_{g},1)} & 3 & E_{g} & 1 & 1 & \frac{\sqrt{6}Y(-X^{2}-Y^{2}+4Z^{2})}{4} \\ 15 & \mathbb{G}_{3,1}^{(E_{g},2)} & 3 & E_{g} & 2 & 0 & \frac{\sqrt{10}X(X^{2}-Y^{2})}{4} \\ \end{array}$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No.	symbol	rank	irrep.	mul.	comp.	form
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	$\mathbb{G}_0^{(A_u)}$	0	A_u	_	_	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	$\mathbb{G}_1^{(A_g)}$	1	A_g	_	_	Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	$\mathbb{G}_{1,0}^{(E_g)}$	1	E_g	_	0	X
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	$\mathbb{G}_{1,1}^{(E_g)}$	1	E_g	_	1	Y
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	$\mathbb{G}_2^{(A_u)}$	2	A_u	_	_	$-\frac{X^2}{2} - \frac{Y^2}{2} + Z^2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	$\mathbb{G}_{2,0}^{(E_u,1)}$	2	E_u	1	0	$\sqrt{3}XZ$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	$\mathbb{G}_{2,1}^{(E_u,1)}$	2	E_u	1	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8		2	E_u	2	0	$\frac{\sqrt{3}(X^2-Y^2)}{2}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	$\mathbb{G}^{(E_u,2)}$	2	E_u	2	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	$\mathbb{C}_{\mathbb{T}_0}^{(A_g,1)}$	3	A_g	1	_	$-\frac{Z(3X^2+3Y^2-2Z^2)}{2}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	$\mathbb{G}_2^{(A_g,2)}$	3	A_g	2	_	$\frac{\sqrt{10}Y(3X^2-Y^2)}{4}$
13 $\mathbb{G}_{3,0}^{(E_g,1)}$ 3 E_g 1 0 $\frac{\sqrt{6X(-X^2-Y^2+4Z^2)}}{\sqrt{6Y(-X^2-Y^2+4Z^2)}}$ 14 $\mathbb{G}_{3,1}^{(E_g,1)}$ 3 E_g 1 1 $\frac{\sqrt{6Y(-X^2-Y^2+4Z^2)}}{\sqrt{6Y(-X^2-Y^2+4Z^2)}}$	12	$\mathbb{G}_{3}^{(A_g,3)}$	3		3	_	$\frac{\sqrt{10}X(X^2-3Y^2)}{4}$
14 $\mathbb{G}_{3,1}^{(E_g,1)}$ 3 E_g 1 1 $\frac{\sqrt{6}Y(-X^2-Y^2+4Z^2)}{4}$	13	$\mathbb{G}_{3,0}^{(E_g,1)}$	3		1	0	$\frac{\sqrt{6}X(-X^2 + 4Z^2)}{4}$
	14		3		1	1	
10 U2 0 D4 Z 0	15	$\mathbb{G}_{3,0}^{(E_g,2)}$	3	E_g	2	0	$\frac{\sqrt{15}Z\left(\stackrel{4}{X^2}-Y^2\right)}{2}$
16 $\mathbb{G}_{3,1}^{(E_g,2)}$ 3 E_g 2 1 $-\sqrt{15}XYZ$	16	$\mathbb{G}_{3,1}^{(E_g,2)}$	3		2	1	$-\sqrt{15}XYZ$

Table 12: Conjugacy class (point-group part).

rep. SO	symmetry operations
{1 0}	{1 0}
$\{3^{+}_{001} 0\}$	$\{3^{+}_{001} 0\}$
$\{3^{-}_{001} 0\}$	$\{3^{-}_{001} 0\}$
$\{-1 0\}$	{-1 0}

Table 12

rep. SO	symmetry operations
$\{-3^{+}_{001} 0\}$	$\left\{-3^{+}_{001} 0\right\}$
$\{-3^{-}_{001} 0\}$	$\{-3^{-}_{001} 0\}$

Table 13: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
1	$\{1 0\}$	2	$\{3^{+}_{001} 0\}$	3	$\{3^{-}_{001} 0\}$	4	$\{-1 0\}$	5	$\{-3^{+}_{001} 0\}$
 6	$\{-3^{-}_{001} 0\}$								

Table 14: Character table (point-group part).

	1	3 ⁺ ₀₀₁	3-001	-1	-3^{+}_{001}	-3^{-}_{001}
A_g	1	1	1	1	1	1
$E_g^{(a)}$	1	ω^*	ω	1	ω^*	ω
$E_g^{(b)}$	1	ω	ω^*	1	ω	ω^*
A_u	1	1	1	-1	-1	-1
$E_u^{(a)}$	1	ω^*	ω	-1	$-\omega^*$	$-\omega$
$E_u^{(b)}$	1	ω	ω^*	-1	$-\omega$	$-\omega^*$

Table 15: Parity conversion.

\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
$A_g(A_u)$	$E_g^{(a)} (E_u^{(a)})$	$E_g^{(b)} (E_u^{(b)})$	$A_u (A_g)$	$E_u^{(a)} (E_g^{(a)})$
$E_u^{(b)} (E_g^{(b)})$				

Table 16: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_g	$E_g^{(a)}$	$E_g^{(b)}$	A_u	$E_u^{(a)}$	$E_u^{(b)}$
A_g	A_g	$E_g^{(a)}$	$E_g^{(b)}$	A_u	$E_u^{(a)}$	$E_u^{(b)}$
$E_g^{(a)}$		$E_g^{(b)}$	A_g	$E_u^{(a)}$	$E_u^{(b)}$	A_u
$E_g^{(a)}$ $E_g^{(b)}$			$E_g^{(a)}$	$E_u^{(b)}$	A_u	$E_u^{(a)}$
A_u			J	A_g	$E_g^{(a)}$	$E_g^{(b)}$
$E_u^{(a)}$				J	$E_g^{(b)}$	$\overset{\circ}{A_g}$
$E_u^{(b)}$						$E_g^{(a)}$

Table 17: Anti-symmetric product, $[\Gamma \otimes \Gamma]_-$.

A_g	$E_g^{(a)}$	$E_g^{(b)}$	A_u	$E_u^{(a)}$	$E_u^{(b)}$
_	_	_	_	_	_

Table 18: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} -1 & -1 & 0 \end{pmatrix}$	2	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$	3	$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$	4	$\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$
5	$\begin{pmatrix} -1 & 0 & 0 \end{pmatrix}$	6	$\begin{pmatrix} 0 & -1 & 0 \end{pmatrix}$				

Table 19: Virtual-cluster basis.

symbol	1	2	3	4	5	6
$\mathbb{Q}_0^{(A_g)}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$
$\mathbb{Q}_{1,0}^{(E_u)}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{3}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{3}$	$\frac{\sqrt{3}}{6}$
$\mathbb{Q}_{1,1}^{(E_u)}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$
$\mathbb{Q}_{2,0}^{(E_g,2)}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{3}$	$-\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{3}$	$-\frac{\sqrt{3}}{6}$
$\mathbb{Q}_{2,1}^{(E_g,2)}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$
$\mathbb{Q}_3^{(A_u,3)}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$