Problem statement

$$\dot{x} = f(x, u, t)$$
 avec $x \in R^n$ et $u \in R^l$

$$k(x_0, t_0) = 0$$
 $l(x_f, t_f) = 0$

Problem statement

$$\dot{x} = f(x, u, t)$$
 avec $x \in R^n$ et $u \in R^l$

$$k(x_0, t_0) = 0$$
 $l(x_f, t_f) = 0$

Contraintes instantanées

$$p(x, u, t)dt \le 0$$
 pour $\forall t$

Problem statement

$$\dot{x} = f(x, u, t)$$
 avec $x \in R^n$ et $u \in R^l$

$$k(x_0, t_0) = 0$$
 $l(x_f, t_f) = 0$

Contraintes instantanées et/ou contraintes intégrales

$$p(x, u, t)dt \le 0 \quad pour \ \forall t \qquad \int_{t_0}^{t_f} q(x, u, t)dt \le 0$$

Problem statement

$$\dot{x} = f(x, u, t)$$
 avec $x \in R^n$ et $u \in R^l$

$$k(x_0, t_0) = 0$$
 $l(x_f, t_f) = 0$

Contraintes instantanées et/ou contraintes intégrales

$$p(x, u, t)dt \le 0 \quad pour \ \forall t \qquad \int_{t_0}^{t_f} q(x, u, t)dt \le 0$$

La fonction optimale doit minimiser le critère

$$J = \int_{t_0}^{t_f} r(x, u, t) dt + g(x_0, t_0, x_f, t_f) \quad => \quad min$$

Problem statement

$$\dot{x} = f(x, u, t)$$
 avec $x \in R^n$ et $u \in R^l$

$$k(x_0, t_0) = 0$$
 $l(x_f, t_f) = 0$

Contraintes instantanées et/ou contraintes intégrales

$$p(x, u, t)dt \le 0$$
 pour $\forall t$ $\int_{t_0}^{t_f} q(x, u, t)dt \le 0$

La fonction optimale doit minimiser le critère

$$J = \int_{t_0}^{t_f} r(x, u, t) dt + g(x_0, t_0, x_f, t_f); \implies \min$$

Partie terminale

Problem statement

$$\dot{x} = f(x, u, t)$$
 avec $x \in R^n$ et $u \in R^l$

$$k(x_0, t_0) = 0$$
 $l(x_f, t_f) = 0$

Contraintes instantanées et/ou contraintes intégrales

$$p(x, u, t)dt \le 0$$
 pour $\forall t$ $\int_{t_0}^{t_f} q(x, u, t)dt \le 0$

La fonction optimale doit minimiser le critère

7 Partie terminale

$$J = \int_{t_0}^{t_f} r(x, u, t) dt + g(x_0, t_0, x_f, t_f); \implies \min$$

En posant $x = [x^T, u^T]^T$ la trajectoire optimale x^* est celle qui minimise le critère

$$J(x) = \int_{t_0}^{t_f} r(x, \dot{x}, t) dt + g(x_0, t_0, x_f, t_f) => min$$

Variations de la trajectoire

Variations de la trajectoire

Variations de la trajectoire

$$J(x) = \int_{t_0}^{t_f} r(x, \dot{x}, t) dt + g(x_0, t_0, x_f, t_f) \implies \min$$
$$k(x_0, t_0) = 0 \qquad l(x_f, t_f) = 0$$

$$J(x) = \int_{t_0}^{t_f} r(x, \dot{x}, t) dt + g(x_0, t_0, x_f, t_f) \implies \min$$

$$k(x_0, t_0) = 0 \qquad l(x_f, t_f) = 0$$

$$\text{La trajectoire perturbée} \quad x(t_0 + \delta t_0, t_f + \delta t_f)$$

$$k(t_0 + \delta t_0, t_f + \delta t_f) = 0 \qquad l(t_0 + \delta t_0, t_f + \delta t_f) = 0$$

$$J(x) = \int_{t_0}^{t_f} r(x, \dot{x}, t) dt + g(x_0, t_0, x_f, t_f) \implies \min$$
$$k(x_0, t_0) = 0 \qquad l(x_f, t_f) = 0$$

La trajectoire perturbée $x(t_0+\delta t_0, t_f+\delta t_f)$

$$k(t_0+\delta t_0, t_f+\delta t_f) = 0$$
 $l(t_0+\delta t_0, t_f+\delta t_f) = 0$

Variation de la fonctionnelle

$$\delta J = J(x + \delta x) - J(x)$$

En notant

$$r_0 = r(x(t_0), x(\dot{t}_0), t_0)$$

$$r_f = r(x(t_f), x(\dot{t}_f), t_f)$$

$$J(x) = \int_{t_0}^{t_f} r(x, \dot{x}, t) dt + g(x_0, t_0, x_f, t_f)$$

$$\delta J = J(x + \delta x) - J(x)$$

développement limité au 1^{er} ordre en δx et $\frac{d}{dt} \delta x$

$$J(x) = \int_{t_0}^{t_f} r(x, \dot{x}, t) dt + g(x_0, t_0, x_f, t_f)$$

$$\delta J = J(x + \delta x) - J(x)$$

développement limité au 1^{er} ordre en δx et $\frac{d}{dt} \delta x$

$$\delta J = \int_{t_0}^{t_f} (r_x^T \delta x + r_{\dot{x}}^T \frac{d}{dt}(\delta x)) dt + (r_f \delta t_f - r_0 \delta t_0) + (g_{x_0}^T \delta x_0 + g_{t_0}^T \delta t_0) + (g_{x_f}^T \delta x_f + g_{t_f}^T \delta t_f)$$

$$J(x) = \int_{t_0}^{t_f} r(x, \dot{x}, t) dt + g(x_0, t_0, x_f, t_f)$$

$$\delta J = J(x + \delta x) - J(x)$$

développement limité au 1^{er} ordre en δx et $\frac{d}{dt} \delta x$

$$\delta J = \int_{t_0}^{t_f} (r_x^T \delta x + r_{\dot{x}}^T \frac{d}{dt} (\delta x)) dt + (r_f \delta t_f - r_0 \delta t_0) + (g_{x_0}^T \delta x_0 + g_{t_0}^T \delta t_0) + (g_{x_f}^T \delta x_f + g_{t_f}^T \delta t_f)$$

Intégration par parties du second terme (rappel $\int_{t_0}^{t_f} u\dot{v}dt = [uv\]_{t_0}^{t_f} - \int_{t_0}^{t_f} \frac{d}{dt}(u)vdt$ avec $\dot{v} = \frac{d}{dt}\delta x$)

$$\int_{t_0}^{t_f} r_{\dot{x}}^T \frac{d}{dt} (\delta x) dt = [r_{\dot{x}}^T (\delta x)]_{t_0}^{t_f} - \int_{t_0}^{t_f} \frac{d}{dt} (r_{\dot{x}}^T) \delta x dt = [r_{\dot{x}}^T (t_f) \delta x (t_f)] - u \dot{v}$$

$$- [r_{\dot{x}}^{T}(t_{0}) \delta x(t_{0})] - \int_{t_{0}}^{t_{f}} \frac{d}{dt} (r_{\dot{x}}^{T}) \delta x dt$$

$$J(x) = \int_{t_0}^{t_f} r(x, \dot{x}, t) dt + g(x_0, t_0, x_f, t_f)$$

$$\delta J = J(x + \delta x) - J(x)$$

développement limité au 1^{er} ordre en δx et $\frac{d}{dt} \delta x$

$$\delta J = \int_{t_0}^{t_f} (r_x^T \delta x + r_{\dot{x}}^T \frac{d}{dt} (\delta x)) dt + \underbrace{(r_f \delta t_f - r_0 \delta t_0) + (g_{x_0}^T \delta x_0 + g_{t_0}^T \delta t_0) + (g_{x_f}^T \delta x_f + g_{t_f}^T \delta t_f)}_{}$$

Intégration par parties du second terme (rappel $\int_{t_0}^{t_f} u\dot{v}dt = [uv\]_{t_0}^{t_f} - \int_{t_0}^{t_f} \frac{d}{dt}(u)vdt$ avec $\dot{v} = \frac{d}{dt}\delta x$)

$$\int_{t_0}^{t_f} r_{\dot{x}}^T \frac{d}{dt} (\delta x) dt = [r_{\dot{x}}^T (\delta x)]_{t_0}^{t_f} - \int_{t_0}^{t_f} \frac{d}{dt} (r_{\dot{x}}^T) \delta x dt = [r_{\dot{x}}^T (t_f) \delta x (t_f)] - u \dot{v}$$

$$- [r_{\dot{x}}^{T}(t_{0}) \delta x(t_{0})] - \int_{t_{0}}^{t_{f}} \frac{d}{dt} (r_{\dot{x}}^{T}) \delta x dt$$

Si t_0 , t_f , x_0 , x_f sont fixés => δt_0 = 0, δt_f = 0, δx_0 = 0, δx_f = 0

$$\delta J = \int_{t_0}^{t_f} (r_x^T \delta x + r_{\dot{x}}^T \frac{d}{dt} (\delta x)) dt = \int_{t_0}^{t_f} (r_x^T - \frac{d}{dt} r_{\dot{x}}^T) \, \delta x \, dt$$

$$\delta J = \int_{t_0}^{t_f} (r_x - \frac{d}{dt} r_{\dot{x}})^T \delta x \ dt$$

$$\delta J = \int_{t_0}^{t_f} (r_x^T \delta x + r_{\dot{x}}^T \frac{d}{dt} (\delta x)) dt = \int_{t_0}^{t_f} (r_x^T - \frac{d}{dt} r_{\dot{x}}^T) \delta x dt$$

Pour avoir un minimum :

δ

$$\delta J = \int_{t_0}^{t_f} (r_x - \frac{d}{dt}r_{\dot{x}})^T \delta x \ dt \ge 0 \quad mais \quad \delta x > 0 \quad ou \quad \delta x < 0 \implies \delta J = 0$$

Lemme de Lagrange

Si
$$\int_{t_0}^{t_f} y^T(t)v(t) dt = 0$$
 pour tout $v(t)$ continue

Alors
$$y(t)$$
 est nulle sur $[t_0, t_f]$

Application: Condition d'Euler (eq. diff. du 2nd ordre)

$$(r_{\chi} - \frac{d}{dt}r_{\dot{\chi}}) = 0$$
 pour $x = x^*$

Condition d'Euler

$$(r_x - \frac{d}{dt}r_{\dot{x}}) = 0$$

Si
$$x$$
 n'apparaît pas dans $r => \frac{d}{dt}r_{\dot{x}} = 0$
 $r_{\dot{x}} = const$

Condition d'Euler

$$(r_x - \frac{d}{dt}r_{\dot{x}}) = 0$$

Si
$$x$$
 n'apparaît pas dans $r => \frac{d}{dt}r_{\dot{x}} = 0$
 $r_{\dot{x}} = const$

Si
$$\dot{x}$$
 n'apparaît pas dans r $r_x = 0$

Condition d'Euler

$$(r_x - \frac{d}{dt}r_{\dot{x}}) = 0$$

Si
$$x$$
 n'apparaît pas dans $r => \frac{d}{dt}r_{\dot{x}} = 0$
 $r_{\dot{x}} = const$

Si
$$\dot{x}$$
 n'apparaît pas dans r $r_x = 0$

Si t n'apparaît pas explicitement dans r $r_t = 0$

$$\frac{d}{dt}(r - r_{\dot{x}}^T \dot{x}) = r_t + (r_x - \frac{d}{dt}r_{\dot{x}})^T \dot{x} = 0$$

Condition d'Euler

=> Identité de Beltrami

$$r - r_{\dot{x}}^T \dot{x} = \text{const}$$

Problème du brachistochrone

• Etant donné deux points A et B (de hauteurs différentes), rechercher la trajectoire optimale $f^*(x)$ permettant la descente la plus rapide de A à B d'un point M, de masse m, soumis à la seule pesanteur (sorte de toboggan).

NB Ce problème (qui peut être résolu par des méthodes différentes) a donné naissance au calcul des variations!

Problème du brachistochrone

 Fait au tableau (« tip » : utiliser l'équation d'Euler-Lagrange)

Problèmes isoparamétriques

- Problème de Didon: si on dispose d'une corde de longueur fixée, disons L, quelle est la plus grande surface qu'on puisse entourer avec cette corde?
- Du point de vue de l'optimisation fonctionnelle: Trouver la fonction optimale $f^*(x)$ qui maximise l'aire sous la courbe

Problèmes isoparamétriques

Problème de Didon, formalisation

• La longueur est définie par la formule

$$L = \int_{a}^{b} ds \; ; \; ds = \sqrt{dx^{2} + dy^{2}}$$
$$=> L = \int_{a}^{b} \sqrt{1 + y'^{2}} \; dx$$

• Problème : rechercher une courbe y = f(x) qui maximise l'aire

$$A = \int_{a}^{b} f(x) dx \Rightarrow max$$

Problèmes isoparamétriques Problème de Didon, formalisation

 Fait au tableau (« tip « : utiliser l'identité de Beltrami)

Principe du maximum

$$r_{\chi} - rac{d}{dt} r_{\dot{\chi}} = 0 \iff r_{\chi} = rac{d}{dt} r_{\dot{\chi}}$$
 sur la trajectoire optimale

posons
$$r_{\dot{x}} = \lambda(t) \Leftrightarrow r_{x} = \dot{\lambda}(t)$$
, et $\dot{x} = \Phi(x, u, t)$

Définissons
$$H(x, u, \lambda, t) = -r + \lambda^T \Phi$$

La fonction sous l'intégrale à optimiser $J(x) = \int_{t_0}^{t_f} r(x, \dot{x}, t) dt$

Principe du maximum

La commande optimale u^* d'un processus continu

$$\begin{cases} \dot{x} = \Phi(x, u, t) \\ x \in \Upsilon, u \in U \end{cases}$$

Qui minimise l'intégrale $J = \int_{t_0}^{t_f} r(x, u, t) dt => min$

est celle qui maximise le Hamiltonien, les contraintes étant satisfaites

$$H(x, u, \lambda, t) = -r(x, u, t) + \lambda^{T} \Phi(x, u, t)$$

$$H(x^*, u^*, \lambda, t) = \max_{u \in U} H(x, u, \lambda, t)$$
 pour $\forall t$

$$H(x,\lambda,t) = -r + \lambda^T \Phi \qquad \text{rappel } r(x,\dot{x},t)$$

$$H_{\chi} = \Phi_{\chi}^T \dot{\lambda} - r_{\chi} - \Phi_{\chi}^T \dot{r}_{\dot{\chi}} = -r_{\chi}$$

$$H(x,\lambda,t) = -r + \lambda^T \Phi \qquad \text{rappel } r(x,\dot{x},t)$$

$$H_{\chi} = \Phi_{\chi}^T \chi - r_{\chi} - \Phi_{\chi}^T x = -r_{\chi}$$

$$\text{soit} \qquad H_{\chi} = -\dot{\lambda}$$

$$H(x,\lambda,t) = -r + \lambda^{T} \Phi \qquad \text{rappel } r(x,\dot{x},t)$$

$$H_{\chi} = \Phi_{\chi}^{T} \lambda - r_{\chi} - \Phi_{\chi}^{T} r_{\dot{\chi}} = -r_{\chi}$$

$$\text{soit } H_{\chi} = -\dot{\lambda}$$

$$H_{\lambda} = \Phi + \Phi_{\lambda}^{T} \lambda - \Phi_{\lambda}^{T} r_{\dot{\chi}} = \Phi = \dot{\chi}$$

$$H(x,\lambda,t) = -r + \lambda^T \Phi \qquad \text{rappel } r(x,\dot{x},t) \\ \dot{x} = \Phi(x,u,t)$$

$$H_{\chi} = \Phi_{\chi}^T \dot{\lambda} - r_{\chi} - \Phi_{\chi}^T \dot{r}_{\dot{\chi}} = -r_{\chi}$$

$$\text{soit} \qquad H_{\chi} = -\dot{\lambda}$$

$$H_{\lambda} = \Phi + \Phi_{\lambda}^T \dot{\lambda} - \Phi_{\lambda}^T \dot{r}_{\dot{\chi}} = \Phi = \dot{x}$$

$$H_{t} = -r_{t} - \Phi_{t}^T \dot{r}_{\dot{\chi}} + \lambda^T \Phi_{t} = -r_{t}$$

$$\text{comme} \qquad \frac{dH}{dt} = H_{\chi}^T \dot{\chi} + H_{\lambda}^T \dot{\lambda} + H_{t}$$

Principe du maximum Equations canoniques de Hamilton

Exemple: commande en temps minimum

$$H_{x} = -\dot{\lambda}$$

$$H_{\lambda} = \dot{x}$$

$$\frac{dH}{dt} = -r_{t}$$

Ex. Ramener à l'origine le système $\ddot{y}=u$ avec la contrainte $|u|\leq 1$ en temps minimum i.e. $J=t_f-t_0=\int_{t_0}^{t_f}dt => \min$

Commande en temps minimum

formulation du problème

- $\ddot{y} = u$ éq. diff. 2^{nd} degré <=> deux éq. diff. 1^{er} degré
- Posons $x_1 = y$; $x_2 = \dot{y} = x_1 = x_2$; $\dot{x_2} = u$
- La contrainte $|u| \le 1 => u^2 1 \le 0$
- Le critère $J = t_f t_0 = \int_{t_0}^{t_f} dt => min$ donc r(.) = 1
- Conditions terminales $x_1(t_0) = y_0$; $x_2(t_0) = \dot{y}_0$

$$x_1(t_f) = 0$$
 ; $x_2(t_f) = 0$ (ramener le système à l'origine)

Hamiltonien
$$H = -r + \lambda^T \Phi = -1 + \lambda^T \begin{bmatrix} x_2 \\ u \end{bmatrix} = -1 + \lambda_1 x_2 + \lambda_2 u$$

$$rappel \quad \dot{x} = \Phi(x, \lambda, t) \qquad dépend de la dynamique du système$$

dépend du critère à optimiser

Commande en temps minimum

conditions du 1er ordre

$$\dot{x} = H_{\lambda} \quad \Rightarrow \quad \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} \frac{\partial H}{\partial \lambda_1} \\ \frac{\partial H}{\partial \lambda_2} \end{bmatrix} = \begin{bmatrix} x_2 \\ u \end{bmatrix} = \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} = \phi$$

$$\dot{\lambda} = -H_{\chi} \Rightarrow \begin{bmatrix} \dot{\lambda}_1 \\ \dot{\lambda}_2 \end{bmatrix} = -\begin{bmatrix} \frac{\partial H}{\partial x_1} \\ \frac{\partial H}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 0 \\ -\lambda_1 \end{bmatrix}$$

D'où $\dot{\lambda}_1$ =0 et $\dot{\lambda}_2$ = $-\lambda_1$ => λ_1 = c_1 et λ_2 = c_2 $-\lambda_1 t$ = c_2 $-c_1 t$

 $H = -1 + \lambda_1 x_2 + \lambda_2 u = > linéaire en u = > u = sign(\lambda_2)$ pour maximiser H!

Mais $\lambda_2(t)$ est linéaire => change de signe une seule fois au maximum

Comme $\lambda_2(t)$ est linéaire en $t \Rightarrow \lambda_2$ change de signe au plus une seule fois :

 $u = u_0$ qd $t \in [t_0, t_c[$ et $u = -u_0$ qd $t \in [t_c, t_f]$

Commande en temps minimum

$$u = u_0$$
 qd $t \in [t_0, t_c[$ et $u = -u_0$ qd $t \in [t_c, t_f]$

Deux types de trajectoires :

$$t \in [t_0, t_c] \qquad \frac{dx_1}{dt} = x_2$$

$$\frac{dx_2}{dt} = u_0 \qquad \Rightarrow u_0 \frac{dx_1}{dt} = x_2 \frac{dx_2}{dt}$$

$$u_0(x_1 - x_1(t_0)) = \frac{1}{2}(x_2^2 - x_2^2(t_0))$$

$$x_1 = \frac{1}{2u_0}x_2^2 + C_1$$

$$t \in [t_c, t_f]$$

$$x_1 = -\frac{1}{2u_0}x_2^2 + C_2$$

Commande en temps minimum Bang-bang control

La commande change de signe sur la courbe de séparation On a droit à une seule commutation maxi => de la condition initiale $\{x_1(t_0), x_2(t_0)\}$ il faut suivre la parabole qui intersecte la courbe de séparation, pas celle qui s'éloigne (en pointillé) => u = -1 si $t \in [t_0, t_c[$ après u = 1 si $t \in [t_c, t_f[$ pour des Cl au-dessus de la courbe

Commande en temps minimum Bang-bang control

La commande change de signe sur la courbe de séparation On a droit à une seule commutation maxi => de la condition initiale $\{x_1(t_0), x_2(t_0)\}$ il faut suivre la parabole qui intersecte la courbe de séparation =>

u = 1 si $t \in [t_0, t_c[$ après u = -1 si $t \in [t_c, t_f[$ pour des Cl au-dessous de la courbe

Commande en temps minimum Bang-bang control

La commande change de signe sur la courbe de séparation

Commande en temps minimum Généralisation pour des systèmes linéaires

•
$$\dot{x}=Ax+Bu$$
 avec $J=t_f-t_0=\int_{t_0}^{t_f}dt=>min$ $u(t)\in\omega=\left(\begin{array}{cc} & \in R^m \\ & \in R^m \end{array}\right)$ (polyhèdre) $H=-1+\lambda^TAx+\lambda^TBu$ linéaire par rapport à u

Pb de programmation linéaire $\max \lambda^T B u$ Solution **unique** sur les sommets du polyhèdre (simplexe)

NB Si les valeurs propres de A sont réelles $=> \le n-1$ commutations avec n=dim(A) Si les valeurs propres de A sont complexes => nombre de commutations fini non borne cad peut être <math>> n (voir exemple pendule linéarisé)

Commande en temps minimum

pendule linéarisé

- $\ddot{y} + y = u$ éq. diff. 2^{nd} degré <=> deux éq. diff. 1^{er} degré
- Posons $x_1 = y$; $x_2 = \dot{y} \Rightarrow \dot{x_1} = x_2$; $\dot{x_2} = -y + u = -x_1 + u$
- La contrainte $|u| \le 1 \implies u^2 1 \le 0$
- Le critère $J = t_f t_0 = \int_{t_0}^{t_f} dt => min$ donc r(.) = 1
- Conditions terminales $x_1(t_0) = y_0$; $x_2(t_0) = \dot{y}_0$

$$x_1(t_f) = 0$$
 ; $x_2(t_f) = 0$ (ramener le système à l'origine)

Hamiltonien Max
$$H = -r + \lambda^T \Phi = -1 + \lambda^T \begin{bmatrix} x_2 \\ -x_1 + u \end{bmatrix} = -1 + \lambda_1 x_2 + \lambda_2 (-x_1 + u)$$

Commande en temps minimum

pendule linéarisé

$$\dot{\lambda} = -H_{\chi} \Rightarrow \begin{bmatrix} \dot{\lambda}_{1} \\ \dot{\lambda}_{2} \end{bmatrix} = -\begin{bmatrix} \frac{\partial H}{\partial x_{1}} \\ \frac{\partial H}{\partial x_{2}} \end{bmatrix} = \begin{bmatrix} \lambda_{2} \\ -\lambda_{1} \end{bmatrix}$$

D'où
$$\dot{\lambda}_1 = \lambda_2$$
 et $\dot{\lambda}_2 = -\lambda_1 = \lambda_2 = -\lambda_1 = -\lambda_2$ et $\lambda_2 = A \sin(t - \varphi)$

$$H = -1 + \lambda_1 x_2 + \lambda_2 (-x_1 u) = > linéaire en u = > u = sign(\lambda_2) = sign(A sin(t - \varphi)) pour maximiser H!$$

La fonction est sinusoïdale => change de signe toutes les π (secondes) et $u^*=\{1, -1\}$

$$\frac{dx_1}{dt} = x_2 \quad \Rightarrow \quad dx_1 = x_2 dt$$

$$\frac{dx_2}{dt} = -x_1 + u_0 \implies dx_2 = (-x_1 + u_0)dt$$

$$(x_1 - u_0)^2 + x_2^2 = \rho^2 \implies \text{les trajectoires sont des cercles parcourus en}$$

 2π (secondes) et centrées en $u_0 = +1$ ou -1

Trajectoires finales

Courbe de commutation

 \boldsymbol{u} change de signe toutes les π secondes

 \underline{u} change de signe toutes les π secondes => M' symétrique à M par rapport à \underline{O}_1

 \boldsymbol{u} change de signe toutes les π secondes => trajectoires optimales

