Пластмасса

Номенклатура и методика определения частных показателей технологичности деталей, получаемых из пластмасс.

Таблица 1

Наименования частных показателей	Обозначение
Показатель сложности детали	К _{с.д.}
Показатель разнотолщинности стенок	K _{p.c.}
Показатель соотношения толщины ребер жесткости и	К _{р.ж.}
Показатель сложности линии разъема	$K_{n,p}$
Показатель использования пластмассы	К _{и.п.}
Показатель технологичности в сборке	Кс.б.

Анализ технологичности конструкции

Показатель сложности детали

Показатель сложности детали определяется по формуле:

$$K_{\text{c.d.}} = 1 - h \cdot p - m \cdot q - f \cdot c,$$

где h - количество поднутрений в детали, m - количество отверстий, f - количество отверстий, направления которых отличаются от направления прессования, p,q,c-эмпирические коэффициенты, приведенные в табл.2

Таблица 2

Вид усложняемого элемента	Обозначение коэффициента	Значение коэффициента на один усложняющий элемент
Поднутрение	р	0.020
Отверстие, направление которого отличается от	C	0.015
Отверстие с резьбой и без резьбы	q	0.010

$$K_{c.d.} = 1 - 0 \cdot 0.020 - 0 \cdot 0.010 - 0 \cdot 0.015 = 1$$

Показатель разнотолщинности стенок

$$S_{\max} = 2 \text{ mm}; S_{\min} = 1.5 \text{ mm};$$

$$\frac{S_{\text{max}}}{S_{\text{min}}} = 1.33$$

Таблица 3

Значение отношения $S_{\rm max}/S_{\rm min}$	Значение К _{р.с.}
От 1.00 до 1.05 включ.	1.0
Св. 1.05 до 1.10 включ.	0.9
Св. 1.10 до 1.2 включ.	0.8
Св. 1.20 до 1.3 включ.	0.7
Св. 1.30	0.0

$$K_{\text{p.c.}} = 0$$

Показатель соотношение толщины рёбер жёсткости и стенок

Таблица 4

Значение отношения S_p / S_{cm}	Значение К _{р.ж.}
До 0.58	0.00
От 0.58 до 0.60 включ.	0.70
Св. 0.60 до 0.62 включ.	0.75
Св. 0.62 до 0.66 включ.	0.80
Св. 0.66 до 0.70 включ.	0.85
Св. 0.70 до 0.74 включ.	0.90
Св. 0.74 до 0.78 включ.	0.95
Св. 0.78 до 0.80 включ.	1.00
Св. 0.80 до 0.82 включ.	0.90
Св. 0.82 до 0.84 включ.	0.80
Св. 0.84	0.00

$$S_{\rm p}=0; S_{\rm ct}=2;$$

 $K_{\text{р.ж.}}$ — не учитывается;

Показатель сложности линии разъёма

$$K_{\pi.p.} = 1.1 - 0.1 \cdot Z = 1$$

Z - число плоскостей разъемов в пресс-форме.

Показатель использования пластмассы

Таблица 5

Значение отношения $\frac{m}{m}$	Значение Кил.	
Термопласты		
До 0.80	0.0	
От 0.80 до 0.85 включ.	0.8	
Св. 0.85 до 0.90 включ.	0.9	
Св. 0.90 до 0.93 включ.	1.0	
Реактопласты		
До 0.40	0.0	
Св. 0.40 до 0.55 включ.	0.6	
Св. 0.55 до 0.65 включ.	0.7	
Св. 0.65 до 0.75 включ.	0.8	
Св. 0.75 до 0.85 включ.	0.9	
Св. 0.85	1.0	

Прессование прямое К_{и.п.} = 1

Показатель технологичности в сборке

$$K_{\text{д}} = \frac{K_{\text{с.д.}} + K_{\text{р.с.}} + K_{\text{л.р.}} + K_{\text{и.п.}}}{4} = \frac{1 + 0 + 1 + 1}{4} = \frac{3}{4} = 0.75$$

Увеличим тонкое ребро, до 1.6 мм, тогда получим показатель разнотолщинности стенок $K_{p.c.}=0.7$ и показатель технологичности в сборке:

$$K_{\text{д}} = \frac{K_{\text{с.д.}} + K_{\text{р.с.}} + K_{\text{л.р.}} + K_{\text{и.п.}}}{4} = \frac{1 + 0.7 + 1 + 1}{4} = \frac{3.7}{4} = 0.925$$

Тогда явно полученный показатель технологичности будет явно больше допустимого $[K_{\scriptscriptstyle T}] > 0.7$, тогда даже в случае последующей механической обработки деталь можно будет считать достаточно технологичной

$$K_{\rm d} = \frac{K_{\rm c.d.} + K_{\rm p.c.} + K_{\rm n.p.} + K_{\rm u.n.}}{4} \cdot f_{\rm m.o.} = 0.925 \cdot 0.85 = 0.786 > [K_{\rm T}] = 0.7$$

