Week 13: Hazard of Overfitting

Table of Contents

- 1. What is Overfitting?
- 2. The Role of Noise and Data Size in Overfitting
- 3. Deterministic and Stochastic Noise
 - Measure Overfit
 - More on Deterministic Noise
- 4. Dealing with Overfitting

What is Overfitting?

- 1. Overfitting
 - Bad generalization (large $E_{out} E_{in}$)
 - \bullet $E_{in} \downarrow, E_{out} \uparrow$
 - Compare to underfitting, $E_{in} \uparrow$, $E_{out} \downarrow$
- 2. Cause of overfitting
 - Using excessive VC dimension d_{vc} (higher model complexity than needed)
 - Noise in training data
 - Limited data size N

The Role of Noise and Data Size in Overfitting

1. Comparing performance of two models

10-th order target function 50-th order target function + noise 0 O Data O Data 2nd Order Fit 2nd Order Fit 10th Order Fit ·10th Order Fit \boldsymbol{x} x $g_2 \in \mathcal{H}_2$ $g_{10} \in \mathcal{H}_{10}$ $g_2 \in \mathcal{H}_2$ $g_{10} \in \mathcal{H}_{10}$ 0.00001 E_{in} 0.029 E_{in} 0.050 0.120 7680 E_{out} 0.127 9.00

- Given two hypotheses, one second-order \mathcal{H}_2 , another 10th-order \mathcal{H}_{10}
 - \mathcal{H}_{10} theoretically has more learning power than \mathcal{H}_2 and capable of learning more complex models
 - Given two target functions, one 10th-order, another 50th-order
 - \mathcal{H}_2 "gives up" ability to fit on both
 - \mathcal{H}_{10} capable of fitting the first target function at full capacity. Also "gives up" ability to fit the second
 - Models learned from \mathcal{H}_2 have lower E_{out} for both target functions!
- 2. Learning curves and effect of data size

- When noise is present in data set, while average out-of-sample error $\vec{E_{out}}$ for \mathcal{H}_{10} decreases as $N \to \infty$, generalization error is much larger for small N
 - \mathcal{H}_{10} always overfits in gray area: $\bar{E_{in}} \downarrow , \bar{E_{out}} \uparrow$
 - Be cautious about using complex model when training data is limited
- In the case of very complex target function (e.g. 50th-order), the additional complexity (unable to be accommodated by hypothesis) acts as noise **even if the training data is noise-free**

Deterministic and Stochastic Noise

Measure Overfit

1. Given training labels y, target function f(x) and noise ϵ as follows:

$$y = f(x) + \epsilon$$

$$\sim Gaussian(\sum_{q=0}^{Q_f} \alpha_q x^q, \sigma^2)$$

- Gaussian iid noise ϵ with level σ^2 , on top of target function f(x). The resulting training label y is an *uniform* distribution around f(x) with complexity level $Q_f(Q_t$ -th order target function)
- o Data size N
- 2. Plotting E_{out} with respect to data size and noise/model complexity

- Color measures extent of overfit: Red (extensive overfitting) → Blue (little overfit)
- **Stochastic noise**: σ^2 as a function of data size N
 - Part of training data. Randomly occurs
- **Deterministic noise**: Q_f as a function of data size N
 - Part of target function. Can be calculated.
 - Recall that *complexity of target function* has similar effect as noise in training data, when the

hypothesis does not possess enough modeling power

- 3. Four reasons of serious overfitting
 - Small data size (N ↓, overfit ↑)
 - Large stochastic noise ($\sigma^2 \uparrow$, overfit \uparrow)
 - Large deterministic noise $(Q_f \uparrow, \text{ overfit } \uparrow)$
 - Excessive fitting power (Order of $\mathcal{H} \uparrow$, overfit \uparrow)
 - Long tail at bottom of $Q_f vs N$ graph
 - When hypothesis has tendency of learning more complicated models than required for target function

More on Deterministic Noise

- 1. Given hypothesis set \mathcal{H} and target function f, deterministic noise arise when something of f cannot be captured by \mathcal{H} ($f \notin \mathcal{H}$)
- 2. Deterministic noise represents the difference between **best** $h^* \in \mathcal{H}$ and f
- 3. Deterministic noise acts like 'stochastic noise' when comes to effect on overfitting
- 4. However, unlike stochastic noise, deterministic noise is **not random**, but
 - Related to the hypothesis set used. Given a target function, more powerful hypothesis set (within order of target function), the smaller deterministic noise is
 - Still subject to overfitting if there's stochastic noise in training data
 - Deterministic noise increases if hypothesis set used is more complex than target function
 - Fixed for a given x
 - Because the hypothesis set and target function remain the same
 - Stochastic noise, on the other hand, is random and might be different when sampling multiple times against the same *x*

Dealing with Overfitting

- 1. Ways to account for/conteract overfitting
 - Start from simple model
 - Data cleaning/pruning

- Correct/remove outliers
- Data hinting
 - Add *virtual examples* by slightly altering existing samples in training set, based on domain knowledge about the use case or expected learning outcome
 - Added examples are **no longer iid** with respect to P(x, y)
 - Otherwise the virtual examples will act as noise and distort learning outcome
- Regularization
- \circ Validation