Lehrstuhl für Informatik 1 Prof. Dr. Gerhard Woeginger Jan Böker, Tim Hartmann

Übung zur Vorlesung Berechenbarkeit und Komplexität

Lösung Blatt 4

Hausaufgabe 4.1 (3 Punkte)

Sei

 $L:=\{1^i\mid i\in\mathbb{N},\; M_i\; ext{akzeptiert}\; 1^i\; ext{nicht}\}.$

Zeigen Sie durch Diagonalisierung, dass L nicht entscheidbar ist.

Angenommen es gibt eine TM M_j , die L entscheidet. Wir unterscheiden, ob 1^j in L ist oder nicht.

• Fall 1:

$$1^j \in L \stackrel{\text{Def. } M_j}{\Rightarrow} M_j \text{ akz. } 1^j \stackrel{\text{Def. } L}{\Rightarrow} 1^j \notin L.$$

• Fall 2:

$$1^j \notin L \stackrel{\text{Def. } M_j}{\Rightarrow} M_j \text{ verw. } 1^j \Rightarrow M_j \text{ akz. } 1^j \text{ nicht } \stackrel{\text{Def. } L}{\Rightarrow} 1^j \in L.$$

Beide Fälle führen zu einem Widerspruch. Es gibt also keine solche TM M_j , und damit ist L nicht entscheidbar.

Hausaufgabe 4.2 (3+2 Punkte)

Formulieren Sie folgende Probleme als Sprache (z.B. $H := \{\langle M \rangle w \mid M$ terminiert bei Eingabe $w\}$ für das Halteproblem). Zeigen oder widerlegen Sie, welche der folgende Probleme entscheidbar sind. (Zeigen Sie insbesondere die Korrektheit.)

(a) Eingabe: Eine TM M und ein Wort w.

Frage: Schreibt die TM M bei Eingabe w jemals ein # auf das Band?

 $L_c = \{ \langle M \rangle w \mid M \text{ schreibt bei Eingabe } w \text{ irgendwann ein } \# \text{ auf das Band} \}.$

Nicht entscheidbar. (Beweis mit Unterprogramm-Technik:) Für einen Widerspruch, nehmen wir an das Problem ist entscheidbar. Sei M_c eine TM, die das Problem entscheidet. Wir konstruieren eine TM M_H , die das Halteproblem H entscheidet. Sei w' die Eingabe von M. Falls w' nicht die Form hat $\langle M \rangle w$ mit M TM, verwirft M die Eingabe.

Die TM M^* verhalte sich wie TM M (nur, dass sie statt # als Symbol #' verwendet) und vor vor dem erreichen des Endzustands ein # aufs Band schreibt. Die Konstruktion von $\langle M^* \rangle$ ist berechenbar. Dann startet M die TM M_c mit der Eingabe $\langle M^* \rangle$, und übernehme die Ausgabe von M_c .

Korrektheit:

Sei w' die Eingabe der TM M_H . Falls w' nicht die Form $\langle M \rangle w$ hat, verwirft TM M_H die Eingabe. Sei also $w' = \langle M \rangle w$.

Angenommen $\langle M \rangle w \in H$. Dann hält TM M hält auf der Eingabe w. Dann hält auch M^* auf Eingabe w und schreibt zudem ein # auf das Band. Somit akzeptiert M_H die Eingabe $\langle M^* \rangle w$.

Angenommen $\langle M \rangle w \notin H$. Dann hält M^* nie und schreibt auch nie ein # auf das Band. Somit verwirft M_b die Eingabe $\langle M^* \rangle$ und somit auch M_H die Eingabe $\langle M^* \rangle$.

Damit ist das Halteproblem H entscheidbar. Widerspruch.

(b) Eingabe: Eine TM M.

Frage: Schreibt M jemals einen Buchstaben $a \in \Gamma$ mit $a \neq B$ aufs Band, wenn M mit dem leeren Eingabewort gestartet wird?

 $L := \{ \langle M \rangle \mid M \text{ schreibt irgendwann einen Buchstaben } a \in \Gamma \setminus \{B\} \text{ auf das Band} \}$

Entscheidbar. Betrachte die möglichen Konfigurationen einer TM M, die bei leerer Eingabe nie einen Buchstaben $a \in \Gamma$ mit $a \neq B$ auf das Band schreibt. Mögliche Konfigurationen sind nur BqB für Zustände $q \in Q$. Daher gibt es für eine solche TM nur $\leq |Q|$ Konfigurationen.

Um zu entscheiden, ob M auf ε jemals einen Buchstaben $a \in \Gamma$ mit $a \neq B$ aufs Band schreibt, simulieren wir M auf ε für t := |Q| + 1 viele Schritte. Falls M in einem der ersten t Schritte einen Buchstaben $a \in \Gamma$ mit $a \neq B$ aufs Band schreibt, dann akzeptieren wir. Andernfalls verwerfen wir. Falls M nach t Schritten nicht terminiert ist, so befindet sich M in diesem Fall in einer Endlosschleife und schreibt somit nur B auf das Band.

Hausaufgabe 4.3 (3+3 Punkte)

Für $\gamma \in \Gamma^*$ mit $\gamma = \gamma_1 \dots \gamma_n$ sei $||\gamma||$ der maximale Differenz von Positionen $i, j \in \{1, \dots, n\}$ mit $\gamma_i \neq B$ und $\gamma_j \neq B$ (z.B. gilt ||BabcB|| = ||abc|| = 2).

(a) Zeigen Sie, dass folgendes Problem entscheidbar ist: (Zeigen Sie insbesondere die Korrektheit.)

Eingabe: Eine TM M; ein Wort w; eine natürliche Zahl k.

Frage: Falls die TM M auf dem Eingabewort w gestartet wird, erreicht M dann jemals eine Konfiguration $\alpha q\beta$ mit $||\alpha\beta|| \geq k$?

Für Konfigurationen mit $||\alpha\beta|| < k$ gibt es nur höchstens $|\Gamma|^k$ verschiedene Bandbeschriftungen. Ohne dass M in eine Endlosschleife geht, kann die Kopfposition maximal |Q| viele Schritte entfernt von der Bandbeschriftung sein. Es gibt also höchstens $t := |Q| \cdot |\Gamma|^k \cdot (k+2|Q|)$ viele Konfigurationen $\alpha q\beta$ mit $||\alpha\beta|| < k$ und ohne, dass die TM in einer Endlosschleife ist. Nach mehr als t ist M in einer Endlosschleife oder eine Konfiguration $\alpha q\beta$ mit $||\alpha\beta|| \ge k$.

TM M' entscheidet das Problem wie folgt. TM M' simuliert die Turingmaschine M auf w für t Schritte. Falls eine Konfiguration $\alpha q\beta$ mit $||\alpha\beta|| \ge k$ erreicht wird, so akzeptiere. Ansonsten verwerfe.

Dazu schreibe initial vor und hinter die Eingabe ein Symbol #, welche nicht von M verwendet werden. Falls bei der Simulation von M der Kopf nach links/rechts auf # bewegt, verschiebe mit einer Subroutine # um eine Position nach links/rechts. In jedem Schritt testet M', ob für die aktuelle Konfiguration $||\alpha q\beta|| \geq k$ gilt, indem sie die Bandzellen zwischen den zwei # zählt, wobei initiale und finale B ignoriert werden.

Korrektheit:

Fall, es wird nie eine Konfiguration $\alpha q \beta$ mit $||\alpha \beta|| \ge k$ erreicht. Dann beobachtet M' nie eine Konfiguration $\alpha q \beta$ von M mit $||\alpha q \beta|| \ge k$. Nach höchstens t Simulationsschritten verwirft M'.

Fall, eine Konfiguration $\alpha q\beta$ mit $||\alpha\beta|| \geq k$ wird von M in $m \in \mathbb{N}$ Schritten erreicht. Dann besucht M nie eine Konfiguration $\alpha q\beta$ mit $||\alpha\beta|| < k$ doppelt in den ersten m Schritten und bewegt nie den Kopf auf eine Position weiter als |Q| Zellen entfernt von der Bandbeschriftung. Daher gilt $m \leq t$ und M' akzeptiert nach m Simulations-Schritten der TM M.

(b) Zeigen Sie, dass folgendes Problem unentscheidbar ist. (Zeigen Sie insbesondere die Korrektheit.)

Eingabe: Eine TM M; ein Wort w.

Frage: Gibt es eine Zahl k mit folgender Eigenschaft: Falls die TM M auf dem Eingabewort w gestartet wird, so erreicht M nie eine Konfiguration $\alpha q\beta$ mit $||\alpha\beta|| \geq k$?

Nicht entscheidbar. (Beweis mit Unterprogramm-Technik:) Für einen Widerspruch, nehmen wir an das Problem ist entscheidbar. Sei M_b eine Turingmaschine, die das Problem entscheidet. Wir konstruieren eine Turingmaschine M_H , die das Halteproblem H löst.

Sei w' die Eingabe von M_H . Falls w' nicht die Form $v = \langle M \rangle w$ hat, dann verwirft M_H die Eingabe. Sei also $w' = \langle M \rangle w$. Die TM M^* verhalte sich wie M, nur das sie bei jedem Schritt M auf einer zusätzlichen Spur eine 1 schreibt und ein Schritt nach rechts geht. Die Konstruktion von $\langle M^* \rangle$ ist berechenbar. Dann startet M_H die TM M_b mit der Eingabe $\langle M^* \rangle w$, und übernehme die Ausgabe von M_b .

Korrektheit:

Sei w' die Eingabe von M_H . Falls w nicht die Form $v = \langle M \rangle w$ hat, dann verwirft M_{ε} die Eingabe. Sei also $w' = \langle M \rangle w$.

Angenommen $\langle M \rangle w \in H$. Dann gibt es ein $k \in \mathbb{N}$ so dass M auf w in k Schritten hält. Damit existiert auch ein k^* , sodass M^* auf w in k^* Schritten hält. Da man in k^* höchstens k^* leere Bandzellen beschreiben kann, akzeptiert M_b die Eingabe $\langle M^* \rangle w$, uns somit akzeptiert auch M_H .

Angenommen $\langle M \rangle w \notin H$. Dann gilt für alle $k \in \mathbb{N}$, dass M auf w in k Schritten nicht hält. Nach Konstruktion, gilt für alle $k \in \mathbb{N}$, dass M^* mindestens k Zeichen auf die zweite Spur schreibt. Somit verwirft M_b die Eingabe $\langle M^* \rangle w$, uns somit verwirft auch M_H .

Somit entscheidet M_H das Halteproblem. Widerspruch. Daher ist das Problem nicht entscheidbar.