Assignment #3: Wine Sales Project

PREDICT 411 Section 55

Scott M. Morgan

KAGGLE: ScottMorgan

Scott Morgan

KAGGLE: ScottMorgan

DATE: August 20, 2017

TO: Dr. Donald Wedding, Master Sommelier

President and Vineyard Manager, Opus One

FROM: Mr. Scott Morgan

Director of Sales and Vineyard Analytics, Opus One

SUBJECT: One Vision. One Wine. One Predictive Model.

EXECUTIVE SUMMARY

According to Rob McMillan, founder of Silicon Valley Bank's Wine Division, the dynamics of the wine industry within the United States are at an interesting inflection point. Per capita consumption faces crosscurrents with retiring wine-loyal baby boomers being replaced by less affluent millennials who are indecisive about their alcoholic beverage of choice. If economic conditions continue to improve, however, per capita consumption should be slightly higher in 2018 and beyond. Tangentially, millennials are beginning to affect the lower price range of premium sales, Opus One's key market segment. Their presence is most visible in the \$8 to \$11.99 red blend category, but research suggests they gradually will shift from blends to varietal wines or imports as their incomes grow. It is imperative that our organization takes a proactive approach to understanding not only our current offerings but preparing for the preferences of a younger customer base.

It has come to the attention of senior leadership the need to devise a robust system of identifying which characteristics of Opus One wine are drivers of sales. At a fundamental level, the factors that increase customers' propensity to purchase our varietals is a source of great interest to our business and stakeholders. The knowledge of the quantitative and qualitative characteristics that appeal to customers, and the development of predictive models based on those features, is important across the company, from the Tasting Room/Wine Club Manager to the Cellar Master.

Overall, this exercise is intended to ensure Opus One is utilizing forward-looking analysis in our sales and product development efforts. The following report is a detailed account of the predictive modeling process that accomplishes this.

To summarize, the **key findings** are that missing ratings, label appeal and the presence of the ratings themselves tend to be highly predictive of how much wine is purchased. The **basic managerial recommendation** is to focus marketing efforts on organizations which provide tasting reviews (Wine Spectator, Wine Enthusiast, etc.) to ensure our vintages are given ratings at a minimum. The absence of ratings is viewed negatively by consumers and can meaningfully impact sales. The firm should also consult with outside marketing experts when outlining new bottle labels. This third-party domain expertise could help safeguard against negative feedback towards future label designs as poor customer reactions in this area could also be detrimental to sales.

Scott Morgan

KAGGLE: ScottMorgan

INTRODUCTION

The purpose of this report is to build Poisson and Negative Binomial regression models to predict the number of cases of wine that will be sold given certain properties of the wine. Poisson regression is often used for modeling count data while Negative Binomial regression can be used for over-dispersed count data when a given variance is greater than its mean.

If a wine manufacturer can predict what characteristics are more important to customers, then that manufacturer will be able to adjust their wine offering to maximize sales. We use historical data provided by the course instructor and several software platforms to explore relationships and produce actionable insight. We primarily use functionality within SAS Studio to perform an end-to-end predictive modeling process which utilizes an assortment of continuous and categorical variables to predict wine sales. While the analysis uses several robust, enterprise quality analytics systems, the primary focus continues to be simplicity and interpretability. Given the abundance of continuous variables in this particular data set, we expect to find several chemical properties that have predictive power. We also anticipate at least one of the categorical variables to be useful.

RESULTS

In the subsequent sections, we generate and evaluate a series of predictive models. We first use the functionality within SAS Studio, Angoss and IBM Watson to perform a brief exploratory data analysis (EDA) to build an understanding of potential predictor variables and their relationship to the response. Following this, we examine the variables for deficiencies such as missing data and outliers as a precursor to preparing the data set for modeling through imputation and elimination. Finally, we construct a series of 5 predictive models. The first 2 models are standard Poisson and Negative Binomial regression models while the next 2 use Zero Inflated Poisson and Negative Binomial distributions. These 4 models will be generated using the PROC GENMOD functionality within SAS Studio. The fifth and final iteration uses standard linear regression which serves as a basis of comparison between the different methodologies. The primary quantitative metrics we will be using for evaluation are the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). We then recommend the most logical, effective solution for use by management.

EXPLORATORY DATA ANALYSIS (EDA). We use an assortment of tools to perform our initial EDA before cleaning the data and ultimately constructing the predictive models. I begin the analysis by examining the variables in the data set using SAS CONTENT procedure. The data set contains 12,795 observations and 16 variables; 1 variable is a unique identifier (INDEX) and thus excluded from the analysis. The variables are mostly related to the chemical properties of the wine being sold; though several of the variables appear categorical in nature. These variables are AcidIndex, LabelAppeal and STARS. The remaining candidate variables are continuous. The response variable (TARGET) is the number of sample cases of wine that were purchased by wine distribution companies after sampling a wine. These cases would be used to provide tasting samples to restaurants and wine stores around the United States. The more sample cases purchased, the more likely a wine is to be sold at a high-end restaurant.

The data set itself has a wide variety of statistics that appear analytically interesting and appropriate to build a model with to predict wine sales. While the data dictionary is usually a helpful resource, it is incomplete in this case. Luckily, the naming convention of the variables is relatively effective. Table 1 below provides an alphabetic list of the possible predictor variables, data types and theoretical effects with TARGET. The theoretical effects are particularly important, where available, as we will reference this logic during the examination of coefficients in the model building process. In the

absence of a reliable data dictionary and domain expertise to complete it, we are forced to take the data at face value and infer what effects we can as needed.

Table 1: Alphabetic List of Variables and Theoretical Effects

Variable	Туре	Theoretical Effect
AcidIndex	Categorical	Negative assuming people don't like their wine with a lot of acid
Alcohol	Continuous	N/A
Chlorides	Continuous	N/A
CitricAcid	Continuous	N/A
Density	Continuous	N/A
FixedAcidity	Continuous	N/A
FreeSulfurDioxide	Continuous	N/A
LabelAppeal	Categorical	Higher score means more appeal, equating to more sales
ResidualSugar	Continuous	N/A
STARS	Categorical	Higher rating from experts have a positive impact on sales
Sulphates	Continuous	N/A
TotalSulfurDioxide	Continuous	N/A
VolatileAcidity	Continuous	N/A
pH	Continuous	N/A

Correlations. At this juncture, we have posited the effects of the categorical variables but need a better understanding of the relationships between the other possible independent variables and the response. Using Angoss, we begin our analysis of the independent variables using a correlation matrix. Table 2 below provides this output. It is encouraging to see that the 3 categorical variables (AcidIndex, LabelAppeal, STARS) are relatively highly correlated with TARGET and in the predicted directions. The continuous variables are largely uncorrelated with both the dependent variable and among each other. The other meaningful relationship to note is the mild positive correlation (0.33) between STARS and LabelAppeal. This suggests that bottles that are more esthetically appealing are rated higher. This makes sense as label design is likely both a conscious and unconscious factor when assigning ranks to wine.

(BINGO BONUS #1) Table 2: Correlations with Angoss

	TARGET	FixedAcidity	VolatileAcidity	CitricAcid	ResidualSugar	Chlorides	FreeSulfurDioxide	TotalSulfurDioxide	Density	pН	Sulphates	Alcohol	LabelAppeal	AcidIndex	STARS
TARGET	1	-0.04901	-0.08879	0.00868	0.01649	-0.03826	0.04382	0.05148	-0.03552	-0.00944	-0.03885	0.06206	0.3565	-0.24605	0.55879
FixedAcidity	-0.04901	1	0.01238	0.01424	-0.01885	-0.00046	0.00497	-0.0225	0.00648	-0.00898	0.03078	-0.00937	-0.00337	0.17844	-0.00663
VolatileAcidity	-0.08879	0.01238	1	-0.01695	-0.00648	0.00099	-0.00708	-0.02108	0.01473	0.01359	0.00013	0.00407	-0.01699	0.04464	-0.03443
CitricAcid	0.00868	0.01424	-0.01695	1	-0.00694	-0.00857	0.00643	0.00632	-0.01395	-0.00871	-0.01299	0.01705	0.00865	0.0657	0.00066
ResidualSugar	0.01649	-0.01885	-0.00648	-0.00694	1	-0.00559	0.01749	0.02248	0.0041	0.01212	-0.00772	-0.02	0.00232	-0.00941	0.01674
Chlorides	-0.03826	-0.00046	0.00099	-0.00857	-0.00559	1	-0.02066	-0.01399	0.02266	-0.01761	-0.00329	-0.01969	0.01051	0.02524	-0.00493
FreeSulfurDioxide	0.04382	0.00497	-0.00708	0.00643	0.01749	-0.02066	1	0.01372	0.00318	0.00605	0.01159	-0.01859	0.01029	-0.04172	-0.00908
TotalSulfurDioxide	0.05148	-0.0225	-0.02108	0.00632	0.02248	-0.01399	0.01372	1	0.01282	-0.00434	-0.00713	-0.01596	-0.00975	-0.04931	0.01393
Density	-0.03552	0.00648	0.01473	-0.01395	0.0041	0.02266	0.00318	0.01282	1	0.00577	-0.00906	-0.00721	-0.00937	0.04041	-0.01828
pH	-0.00944	-0.00898	0.01359	-0.00871	0.01212	-0.01761	0.00605	-0.00434	0.00577	1	0.00548	-0.01155	0.00414	-0.05868	-0.00049
Sulphates	-0.03885	0.03078	0.00013	-0.01299	-0.00772	-0.00329	0.01159	-0.00713	-0.00906	0.00548	1	0.00474	-0.00389	0.03445	-0.01231
Alcohol	0.06206	-0.00937	0.00407	0.01705	-0.02	-0.01969	-0.01859	-0.01596	-0.00721	-0.01155	0.00474	1	0.00103	-0.03814	0.06522
LabelAppeal	0.3565	-0.00337	-0.01699	0.00865	0.00232	0.01051	0.01029	-0.00975	-0.00937	0.00414	-0.00389	0.00103	1	0.02475	0.33479
AcidIndex	-0.24605	0.17844	0.04464	0.0657	-0.00941	0.02524	-0.04172	-0.04931	0.04041	-0.05868	0.03445	-0.03814	0.02475	1	-0.08626
STARS	0.55879	-0.00663	-0.03443	0.00066	0.01674	-0.00493	-0.00908	0.01393	-0.01828	-0.00049	-0.01231	0.06522	0.33479	-0.08626	1

Identifying Continuous Variables of Interest. Using the PROC MEANS function with the CLASS set to TARGET_FLAG (a binary variable added to the data set), we decompose the data set further and compare the mean values for all continuous variables by 0 and 1. The objective here is to identify additional predictors despite not having extensive knowledge of the data set. As a rule of thumb, a meaningful difference in average values could signal predictive power. These figures are provided in Table 3 below. While the relative change needs to be considered with regard to the respective variables, several insights can be extracted from the table. There appears to noteworthy mean differences in FreeSulfurDioxide and TotalSulfurDioxide; which makes sense as the two are likely related. Sulfur dioxide is a common preservative used in winemaking and plays two important roles (Godden, Francis, Field, Gishen, Coulter, Valente, Hoj & Robinson, 2002). First, it is an anti-microbial agent, and as such is used to help curtail the growth of undesirable yeasts and bacteria. Secondly, it acts as an antioxidant, safeguarding the wine's fruit integrity and protecting it against browning. We might infer that wines with more (free and/or total) sulfur dioxide look and taste better, resulting in more cases sold.

Table 3: Mean Analysis of Continuous Variables by TARGET_FLAG

Variable	N Miss (0)	N Miss (1)	No Sale (0)	Sale (1)	Delta
Alcohol	137.00	516.00	10.43	10.51	-0.08
Chlorides	141.00	497.00	0.08	0.05	0.03
CitricAcid	0.00	0.00	0.30	0.31	-0.01
Density	0.00	0.00	1.00	0.99	0.00
FixedAcidity	0.00	0.00	7.73	6.90	0.84
FreeSulfurDioxide	139.00	508.00	17.94	34.35	-16.41
ResidualSugar	127.00	489.00	4.00	5.81	-1.81
Sulphates	279.00	931.00	0.61	0.50	0.11
TotalSulfurDioxide	140.00	542.00	85.26	130.38	-45.11
VolatileAcidity	0.00	0.00	0.45	0.29	0.16
pH	101.00	294.00	3.25	3.20	0.05

Identifying Categorical Variables of Interest. As we have established a relatively firm idea of what continuous variable(s) we will include in the models, we shift our attention to identifying categorical variables of interest (AcidIndex, LabelAppeal and STARS). Using the PROC FREQ function (not shown), we view the categorical variables by TARGET_FLAG and examine which categories sell more cases of wine (i.e. "PROC EYEBALL"). Both AcidIndex and STARS appear analytically interesting. Using IBM Watson Analytics, we generate histograms of each variable by TARGET (Exhibit 2). We can see that people purchase less wine as the amount of acid increases; the most wine appears to be purchased between AcidIndex values of 7 to 8. More interesting is the visual of STARS, which suggests that many people do not purchase any cases if there is no rating. Therefore, missing values of STARS appears highly predictive.

Exploring the relationship between AcidIndex, LabelAppeal and STARS a bit further, we again utilize the discovery tools in IBM Watson Analytics to garner insight into how these variables might simultaneously interact with TARGET (Exhibit 3). For reference, the size of the circles represents the TARGET and the coloring represents AcidIndex. We can see that greater values of STARS (y-axis) and LabelAppeal (x-axis) tend to equate to more cases of wine sold (upper right), which makes sense intuitively. A key threshold appears to be below 2 STARS and 2 LabelAppeal, where no cases of wine are sold. Additionally, no cases of wine are sold at 4 STARS and -2 LabelAppeal, though wines with worse ratings are sold at that same LabelAppeal level, which is counterintuitive. Assuming the price of the wine increases with STARS, sales in the lower left corner could represent the more price sensitive spectrum of the customer base who buy lower rated wine because they are cheaper and are indifferent to the label design. In terms of AcidIndex, there does not seem to be an obvious relationship between it and the other variables. Overall, we can infer that STARS and LabelAppeal are potentially predictive of TARGET.

(BINGO BONUS #3) Exhibit 3: What is the Relationship Between LabelAppeal and STARS by TARGET?

Lastly, we utilize functionality in SAS Enterprise Miner to complete the analysis of the categorical variables. Exhibit 4 below provides a pie chart of the number of cases sold (TARGET) with the shaded region representing the proportion of STARS values. We can see that STARS has a meaningful impact when 0 cases are sold. This is in line with earlier observations.

(BINGO BONUS #4) Exhibit 4: Frequency of STARS by TARGET

Analysis of Response Variable. Given that Poisson regression requires that the variance of a distribution is equal to the mean, this assumption is tested in Table 4 below. We see that TARGET violates the mean and variance assumption for the Poisson distribution, however, it is not in violation for the Negative Bionomial distribution which stipulates the variance to be larger than the mean.

Table 4: Equality Check

Analysis Variable : TARGET						
Mean	Variance					
3.0290739	3.7108945					

We further analyze the dependent variable in Exhibit 5 below. TARGET appears to be relatively normally distributed but is likely zero inflated. While in previous projects we have adjusted our approach based on this observation, for purposes of this exercise we will not alter the variable as we are interested in examining the differences in performance across models.

Exhibit 5: Distribution of TARGET

Outliers. As we begin to transition into the data preparation portion of the modeling process, we take a step back to identify potential outliers in the variables. Table 5 below provides a statistical summary of all variables in the data set. Variables that appear to have possible outliers are AcidIndex, Alcohol, Chlorides, CitricAcid, FixedAcidity. FreeSulfurDioxide, ResidualSugar, TotalSulfurDioxide and VolatileAcidity. Several of the variables have negative numbers but as we don't have domain expertise we cannot comment if this suggests poor data quality. Generally, there could be a number reasons for the presence outliers and poor data quality. First, the original proprietors of the data altered and scaled the data differently than what was initially measured. Additionally, having not collected these data ourselves we are forced to rely on the original practitioners in terms of collection techniques and accuracy. We discuss how to handle the presence of outliers in the subsequent section on data preparation.

Missing Data. Similar to identifying outliers, Table 5 assists in finding variables where data is missing. In the wine data set, there are several variables with missing records: Alcohol, Chlorides, FreeSulfurDioxide, ResidualSugar, STARS, Sulphates, TotalSulfurDioxide and pH. STARS in particular is missing almost 25% of the total records.

Variable N Miss Mean Variance Minimum 1st Pctl Median 99th Maximum AcidIndex 7.77 1.75 6 13 17 Alcohol 653 10.49 13.90 -4.7 0.1 20.3 10.4 26.5 Chlorides 638 0.05 0.10 -1.171 -0.859 0.046 0.957 1.351 CitricAcid 0 0.31 0.74 -3.24 -2.18 0.31 2.66 3.86 Density 0 0.99 0.00 0.88809 0.9168 0.99449 1.06981 1.09924 FixedAcidity 0 7.08 39.91 -18.1 -10.9 24.4 6.9 34.4 FreeSulfurDioxide 22116.02 -388 469 623 647 30.85 -555 30 LabelAppeal 0 -0.01 0.79 -2 -2 0 2 2 ResidualSugar 616 5.42 1139.02 -127.8 -91 3.9 99.2 141.15 STARS 3359 2.04 0.81 2 1 4 4 3.16 Sulphates 1210 0.53 0.87 -3.13 -2.13 0.5 4.24 TotalSulfurDioxide 682 120.71 53783.74 -823 -531 123 767 1057 VolatileAcidity 0.32 0.61 -2.79 -1.865 0.28 2.59 3.68 0 395 рΗ 3.21 0.46 0.48 1.32 3.2 5.125 6.13

Table 5: The MEANS Procedure

The EDA uncovered several interesting elements in the data set. The categorical variables generally seem more predictive than the continuous variables. Also, the fact that there are a large number of missing STAR variables seems highly predictive. Overall, we successfully identified several variables manually which will augment our automated variable selection in subsequent sections. Below is a summary of the variables we posit may have predictive power and will keep under consideration throughout the model building process:

- Continuous Variables: FreeSulfurDioxide and TotalSulfurDioxide
- Categorical Variables: AcidIndex, LabelAppeal and STARS

Scott Morgan

KAGGLE: ScottMorgan

DATA PREPARATION. In this section, we prepare the data by changing the original values as well as create several new variables. Before moving on to the model portion of the discussion, we present a summary of the new data set.

Outlier Resolution. In attempt to create a better fit for our models, we first modify the data set to eliminate possible outliers as they can significantly influence results. To accomplish this, we impute outlier values, replacing them with the 1st and 99th percentile breakpoints for each respective variable. The 99th percentile breakpoint is applied to AcidIndex and FixedAcidity as they have extreme high values. The majority of the variables have both extreme low and high values so we impute at both breakpoints in the case of the following: Alcohol, Chlorides, CitricAcid, FreeSulfurDioxide, ResidualSugar, Sulphates, TotalSulfurDioxide and VolatileAcidity.

Missing Data Resolution. Similar to the outlier remedy, we impute missing values in the data set by replacing them with the median values of the distribution. While there are more sophisticated replacement techniques, median imputation is used because it is a number that is already present in the data set and is less susceptible to outlier errors as compared to mean imputation. In addition to median imputation, a missing flag for each variable is generated to determine whether there is a difference in outcomes associated with missing versus complete data. We apply this methodology to Alcohol, Chlorides, FreeSulfurDioxide, ResidualSugar, STARS, Sulphates, TotalSulfurDioxide and pH.

The resultant structure of the new data set (not shown) has no missing values, 11 imputed variables, 7 missing data flags and 2 original variables. Outlier deletion and imputation are intended to improve the robustness of models and can have powerful effects on fit. While the effects are sometimes not in the desired direction, these analytical activities can be beneficial if they improve the relationship between two or more variables.

BUILD MODELS. In this section, we generate 5 regression models and discuss the findings. The first 2 models use PROC GENMOD with Poisson and Negative Binomial distributions, respectively. The next 2 models use PROC GENMOD with a Zero Inflated Poisson and Negative Binomial distributions, respectively. The final model uses PROC REG to produce a standard regression model as a basis of comparison to other techniques.

Variable Selection. Before presenting the predictive models, we briefly discuss the variable selection technique used. Table 6 below shows the variables selected by 4 different analytics platforms by order of importance for predicting TARGET. For reference, PROC HPSPLIT was also used to select variables for the 'zero models' in Models 3 and 4 (Not shown / BINGO BONUS #6).

For purposes of predicting TARGET, we use the variables from PROC HPSPLIT (i.e. a decision tree) in SAS Studio for Models 1 through 4 while Model 5 uses stepwise selection. Enterprise Miner provides too few variables while Azure provides too many. We are also not satisfied with the rankings from the Angoss decision tree as the highly ranked variables a relatively different than the other selection techniques. Lastly, it is encouraging that 3 of the 4 manually identified variables were selected by the SAS Studio decision tree.

(BINGO BONUS # 5) Table 6: TARGET Variable Selection

SAS Studio Decision Tree	Enterprise Miner	Microsoft Azure ML	Angoss Decision Tree
M_STARS	IMP_STARS	M_STARS	LabelAppeal
LabelAppeal	LabelAppeal	IMP_AcidIndex	IMP_Alcohol
IMP_STARS	IMP_AcidIndex	IMP_VolatileAcidity	IMP_Chlorides
IMP_Alcohol	IMP_VolatileAcidity	IMP_Chlorides	IMP_ResidualSugar
IMP_AcidIndex		IMP_Sulphates	IMP_STARS
IMP_VolatileAcidity		IMP_ph	M_STARS
IMP_TotalSulfurDioxide		Density	IMP_TotalSulfurDioxide
IMP_Chlorides		M_IMP_ph	IMP_ph
IMP ResidualSugar		M Sulphates	IMP AcidIndex
IMP_ph		IMP_ResidualSugar	IMP_CitricAcid
Density		M_Alcohol	IMP_VolatileAcidity
IMP FixedAcidity		M FreeSulfurDioxide	
IMP_CitricAcid		M_TotalSulfurDioxide	
		M_ResidualSugar	
		IMP_CitricAcid	
		IMP_Alcohol	
		IMP_FreeSulfurDioxide	
		IMP_TotalSulfurDioxide	
		IMP_STARS	
		LabelAppeal	

KAGGLE: ScottMorgan

Model 1: Poisson. Using the SAS GENMOD regression procedure and a Poisson distribution, we generate the following results (Table 7 and Table 8). Note we do not include IMP_AcidIndex in the CLASS statement for any of the models as it would make presenting the results unwieldy:

Table 7: Poisson Model Analysis Of Maximum Likelihood Parameter Estimates

Parameter	Set	Estimate	Wald Chi-Square	Pr > ChiSq
Intercept		1.6288	67.48	<.0001
M_STARS	0	1.0867	3550.63	<.0001
M_STARS	1	0		
LabelAppeal	-2	-0.6964	269.28	<.0001
LabelAppeal	-1	-0.4603	339.56	<.0001
LabelAppeal	0	-0.27	139.46	<.0001
LabelAppeal	1	-0.1378	35.36	<.0001
LabelAppeal	2	0		
IMP_STARS	1	-0.5579	663.31	<.0001
IMP_STARS	2	-0.2388	144.07	<.0001
IMP_STARS	3	-0.1193	34.86	<.0001
IMP_STARS	4	0		
IMP_Alcohol		0.0039	7.03	0.008
IMP_AcidIndex		-0.0814	308.4	<.0001
IMP_VolatileAcidity		-0.0315	21.73	<.0001
IMP_TotalSulfurDioxide		0.0001	12.11	0.0005
IMP_Chlorides		-0.0388	5.22	0.0223
IMP_ResidualSugar		0.0001	0.27	0.6012
IMP_ph		-0.0125	2.66	0.1027
Density		-0.2557	1.78	
IMP_FixedAcidity		-0.0001	0.01	0.9097
IMP_CitricAcid		0.0059	0.92	0.3374

Table 8: Poisson Model Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	1.30E+04	13649.285	1.0684
Scaled Deviance	1.30E+04	13649.285	1.0684
Pearson Chi-Square	1.30E+04	11277.569	0.8827
Scaled Pearson X2	1.30E+04	11277.569	0.8827
Log Likelihood		8801.5179	
Full Log Likelihood		-22795.653	
AIC (smaller is better)		45629.3067	
AICC (smaller is better)		45629.3662	
BIC (smaller is better)		45770.9861	

To begin the interpretation of Model 1, if a type of wine is not given a STAR ranking, the model suggests a significant decrease (196%) in the expected number of cases to be sold.

Given that LabelAppeal has a base level of 2, we interpret the coefficients as being rated a:

- -2: 50% decrease in the expected number of cases sold
- -1: 37% decrease in the expected number of cases sold
- 0: 24% decrease in the expected number of cases sold
- +1: 13% decrease in the expected number of cases sold

KAGGLE: ScottMorgan

Given that IMP_STARS has a base level of 4, we interpret the coefficients as being rated a:

- 1: 43% decrease in the expected number of cases sold
- 2: 21% decrease in the expected number of cases sold
- 3: 11% decrease in the expected number of cases sold

In terms of the continuous variables, we only interpret one for the sake of brevity. The effect of a one-unit increase in Density equates to a 23% decrease in the expected number of cases purchased.

The initial assessment of Model 1 is that the categorical variables are in the predicted direction and significant and the one continuous variable (IMP_TotalSulfurDioxide) we identified was significant and the correct sign. The majority of continuous variables are generally not statistically significant so we would likely remove them in future iterations however that is beyond the scope of this exercise.

Model 2: Negative Binomial. For the second model, we use the SAS GENMOD regression procedure and a Negative Binomial distribution. These results are presented in Table 9 and Table 10 below:

Table 9: NB Model Analysis Of Maximum Likelihood Parameter Estimates

Parameter	Set	Estimate	Wald Chi-Square	Pr > ChiSq
Intercept		1.6288	67.48	<.0001
M_STARS	0	1.0867	3550.63	<.0001
M_STARS	1	0		
LabelAppeal	-2	-0.6964	269.28	<.0001
LabelAppeal	-1	-0.4603	339.55	<.0001
LabelAppeal	0	-0.27	139.46	<.0001
LabelAppeal	1	-0.1378	35.36	<.0001
LabelAppeal	2	0		
IMP_STARS	1	-0.5579	663.31	<.0001
IMP_STARS	2		144.07	<.0001
IMP_STARS	3	-0.1193	34.86	<.0001
IMP_STARS	4	0		
IMP_Alcohol		0.0039	7.03	0.008
IMP_AcidIndex		-0.0814	308.39	<.0001
IMP_VolatileAcidity		-0.0315	21.73	<.0001
IMP_TotalSulfurDioxi		0.0001	12.11	0.0005
IMP_Chlorides		-0.0388	5.22	0.0223
IMP_ResidualSugar		0.0001	0.27	0.6012
IMP_ph		-0.0125	2.66	0.1027
Density		-0.2557	1.78	0.1825
IMP_FixedAcidity		-0.0001	0.01	0.9097
IMP_CitricAcid		0.0059	0.92	0.3374

Table 10: NB Model Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	1.30E+04	13649.285	1.0684
Scaled Deviance	1.30E+04	13649.285	1.0684
Pearson Chi-Square	1.30E+04	11277.569	0.8827
Scaled Pearson X2	1.30E+04	11277.569	0.8827
Log Likelihood		8801.5179	
Full Log Likelihood		-22795.6533	
AIC (smaller is better)		45629.3067	
AICC (smaller is better)		45629.3662	
BIC (smaller is better)		45770.9861	

Model 2 is very similar to Model 1 due to the similarities in mean and variance, therefore we will not repeat the interpretation of the coefficients.

Model 3: Zero Inflated Poisson (ZIP). Using the SAS GENMOD regression procedure, a Poisson distribution and a zero model, we generate the following results (Tables 11 through 13):

Table 11: ZIP Model Analysis Of Maximum Likelihood Parameter Estimates

Parameter	Set	Estimate	Wald Chi-Square	Pr > ChiSq
Intercept		2.0459	101.18	<.0001
M_STARS	0	0.1828	85.52	<.0001
M_STARS	1	0		
LabelAppeal	-2	-1.0773	557.82	<.0001
LabelAppeal	-1	-0.6363	616.86	<.0001
LabelAppeal	0	-0.348	225.72	<.0001
LabelAppeal	1	-0.1579	45.65	<.0001
LabelAppeal	2	0		
IMP_STARS	1	-0.3171	205.38	<.0001
IMP_STARS	2	-0.1956	95.7	<.0001
IMP_STARS	3	-0.0982	23.62	<.0001
IMP_STARS	4	0		
IMP_Alcohol		0.007	21.96	<.0001
IMP_AcidIndex		-0.0199	16.15	<.0001
IMP_VolatileAcidity		-0.0123	3.14	0.0763
IMP_TotalSulfurDioxide		0	0.43	0.5142
IMP_Chlorides		-0.0259	2.22	0.1359
IMP_ResidualSugar		0	0.06	0.8119
IMP_ph		0.0023	0.09	0.7641
Density		-0.2637	1.8	0.1801
IMP_FixedAcidity		0.0003	0.12	0.7251
IMP_CitricAcid		0.0015	0.06	0.8067

Table 12: ZIP Model Analysis Of Maximum Likelihood Zero Inflation Parameter Estimates

Parameter	Set	Estimate	Wald Chi-Square	Pr > ChiSq
Intercept		-21.2536	5259.87	<.0001
M_STARS	0	-5.7345	293.44	<.0001
M_STARS	1	0		
IMP_AcidIndex		0.4389	287.5	<.0001
IMP_STARS	1	23.0651	4708.35	<.0001
IMP_STARS	2	19.4109		
IMP_STARS	3	0.2251	0	1
IMP_STARS	4	0		
LabelAppeal	-2	-3.3582	76.33	<.0001
LabelAppeal	-1	-1.8823	74.99	<.0001
LabelAppeal	0	-1.1353	28.99	<.0001
LabelAppeal	1	-0.4322	3.95	0.0468
LabelAppeal	2	0		
IMP_VolatileAcidity		0.196	19.09	<.0001
IMP_TotalSulfurDioxi		-0.001	42.05	<.000

KAGGLE: ScottMorgan

Table 13: ZIP Model Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance		40726.2302	
Scaled Deviance		40726.2302	
Pearson Chi-Square	1.30E+04	5680.556	0.445
Scaled Pearson X2	1.30E+04	5680.556	0.445
Log Likelihood		11234.0562	
Full Log Likelihood		-20363.1151	
AIC (smaller is better)		40788.2302	
AICC (smaller is better)		40788.3856	
BIC (smaller is better)		41019.3913	

To begin the interpretation of Model 3, if a type of wine is not given a STAR ranking, the model suggests a 20% decrease in the expected number of cases to be sold.

Given that LabelAppeal has a base level of 2, we interpret the coefficients as being rated a:

- -2: 66% decrease in the expected number of cases sold
- -1: 47% decrease in the expected number of cases sold
- 0: 29% decrease in the expected number of cases sold
- +1: 15% decrease in the expected number of cases sold

Given that IMP STARS has a base level of 4, we interpret the coefficients as being rated a:

- 1: 27% decrease in the expected number of cases sold
- 2: 18% decrease in the expected number of cases sold
- 3: 9% decrease in the expected number of cases sold

In terms of the continuous variables, we only interpret one. The effect of a one-unit increase in Density equates to a 23% decrease in the expected number of cases purchased, the same as Models 1 and 2.

The zero inflation portion of the model uses logistic regression to predict the likelihood that the number of cases is 0 (i.e. not sold). If a type of wine does not have a rating there is a 99% increase in the odds that the wine will not be purchased. The interpretation for the remaining variables is similar and thus only interpret one for the sake of brevity.

The initial assessment of Model 3 is that the categorical variables are in the predicted direction and significant and the one continuous variable (IMP_TotalSulfurDioxide) we identified was not significant and had no impact. The majority of continuous variables were again not statistically significant, corroborating the earlier notion of removing them from future iterations.

Model 4: Zero Inflated Negative Binomial (ZINB). Using the SAS GENMOD regression procedure, a Negative Binomial distribution and a zero model, we generate the following results (Tables 14 through16):

Table 14: ZINB Model Analysis Of Maximum Likelihood Parameter Estimates

Parameter	Set	Estimate	Wald Chi-Square	Pr > ChiSq
Intercept		2.047	100.52	<.0001
M_STARS	0	0.1824	85.39	<.0001
M_STARS	1	0		
LabelAppeal	-2	-1.073	557.95	<.0001
LabelAppeal	-1	-0.6373	615.36	<.0001
LabelAppeal	0	-0.3491	225.84	<.0001
LabelAppeal	1	-0.1583	45.61	<.0001
LabelAppeal	2	0		
IMP_STARS	1	-0.3156	201.84	<.0001
IMP_STARS	2	-0.1913	91.02	<.0001
IMP_STARS	3	-0.0981	23.35	<.0001
IMP_STARS	4	0		
IMP_Alcohol		0.007	21.83	<.0001
IMP_AcidIndex		-0.0187	14.22	0.0002
IMP_VolatileAcidity		-0.0119	2.92	0.0874
IMP_TotalSulfurDioxi		0	0.53	0.4646
IMP_Chlorides		-0.0248	2.04	0.1534
IMP_ResidualSugar		0	0.08	0.7818
IMP_ph		0.0028	0.13	0.7206
Density		-0.2744	1.93	0.1649
IMP_FixedAcidity		0.0003	0.15	0.6956
IMP_CitricAcid		0.0011	0.03	0.8574

Table 15: ZINB Model Analysis Of Maximum Likelihood Zero Inflation
Parameter Estimates

Parameter	Set	Estimate	Wald Chi-Square	Pr > ChiSq
Intercept		-2.8464	29	<.0001
M_STARS	0	-4.647	834.72	<.0001
M_STARS	1	0		
IMP_AcidIndex		0.4179	296.11	<.0001
IMP_STARS	1	3.6253	66.03	<.0001
IMP_STARS	2	1.023	4.81	0.0283
IMP_STARS	3	0.2061	0.17	0.6784
IMP_STARS	4	0		
LabelAppeal	-2	-3.0125	82.42	<.0001
LabelAppeal	-1	-1.7098	77.36	<.0001
LabelAppeal	0	-0.9891	27.98	<.0001
LabelAppeal	1	-0.3445	3.22	0.0727
LabelAppeal	2	0		
IMP_VolatileAcidity		0.1892	19.37	<.0001
IMP_TotalSulfurDioxi		-0.001	41.36	<.0001
Intercept		-2.8464	29	<.0001

Scott Morgan KAGGLE: ScottMorgan

Table 16: ZINB Model Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance		40853.0116	
Scaled Deviance		40853.0116	
Pearson Chi-Square	1.30E+04	5523.758	0.4328
Scaled Pearson X2	1.30E+04	5523.758	0.4328
Log Likelihood		-20426.5058	
Full Log Likelihood		-20426.5058	
AIC (smaller is better)		40917.0116	
AICC (smaller is better)		40917.1771	
BIC (smaller is better)		41155.6295	

Model 4 is very similar to Model 3 despite a notable difference in Intercept values, therefore, we will not repeat the interpretation of the coefficients.

Model 5: Linear Regression. For the fifth and final model, we use the PROC REG procedure for linear regression and stepwise selection. These results are presented in Table 17 and Table 18 below:

Table 17: Parameter Estimates for Linear Regression

Variable	Parameter Estimate	Standard Error	F Value	Pr > F	VIF
Intercept	4.4531	0.44503	100.13	<.0001	0
Density	-0.7939	0.43715	3.3	0.0694	1.00322
LabelAppeal	0.46657	0.01367	1165.27	<.0001	1.10577
IMP_Alcohol	0.0125	0.00331	14.25	0.0002	1.00637
IMP_Chlorides	-0.11967	0.03856	9.63	0.0019	1.00267
IMP_STARS	0.77826	0.01568	2464.76	<.0001	1.10103
M_STARS	-2.24462	0.02696	6934.09	<.0001	1.04874
IMP_Sulphates	-0.03137	0.01352	5.39	0.0203	1.00215
IMP_TotalSulfurDioxide	0.00023137	0.00005315	18.95	<.0001	1.00418
IMP_ph	-0.03191	0.01735	3.38	0.0659	1.00488
IMP_AcidIndex	-0.20984	0.00926	513	<.0001	1.05421
IMP_CitricAcid	0.0203	0.01397	2.11	0.1461	1.00615
IMP_VolatileAcidity	-0.09955	0.01534	42.1	<.000	1.00642

Table 18: Linear Regression ANOVA Table

Source	DF	Sum of Squares		F Value	Pr > F
Model	12	25540	2128.31	1240.1	<.0001
Error	12782	21938	1.71628		
Corrected Total	12794	47477			

Root MSE	1.31007 R-Square	0.5379
AIC	6926.37 Adj R-Sq	0.5375
BIC	6924.35	

In terms of Model 5, all of the variables we identified during the EDA are in the predicted direction and statistically significant. The interpretation of Model 5 is simple given the absence of transformations. Within the context of this model, if all of the independent variables were equal to 0, then we expect 4 cases to be sold, which is reasonable given the mean of 3 for TARGET. Additionally, for every increase of 1 unit across all of the independent variables, we expect the average number of cases sold to decrease to 2. The F Value is relatively large and statistically significant. R-Squared and Adjusted R-Squared are 55% and 51%, respectively, which is reasonable. Multicollinearity is not an issue. Overall, the diagnostics suggest Model 5 is sound.

KAGGLE: ScottMorgan

MODEL SELECTION. We have presented 5 different predictive models and now must chose the "Best Model." For purposes of this exercise we used a combination of quantitative and qualitive measures to assess the best model. Table 19 below provides metrics for each of the 5 models. The main quantitative criteria we will be evaluating on are the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Our guiding rule is to minimize the AIC and BIC. It is important to note that AIC and BIC metrics cannot be compared between count models (i.e. Poisson, NB, etc.) and standard linear regression models.

Table 19: Model Comparison Statistics

Criteria	Model 1	Model 2	Model 3	Model 4	Model 5
Method	Poisson	NB	ZIP	ZINB	OLS
AIC	45629.3067	45629.3067	40788.2302	40917.0116	6926.37
BIC	45770.9861	45770.9861	41019.3913	41155.6295	6924.35

The different regression techniques produced highly similar results between Model 1 and Model 2 as well as Model 3 and Model 4. In terms of the Poisson and Negative Binomial distributions, all of the models are relatively sound, however the zero inflated models appear superior. The outsized impact of M_STAR in Model 1 and Model 2 brings up concern over the quality of the models. Between Model 3 and Model 4, the ZIP model metrics are slightly more appealing, however, recall that the distribution of TARGET violates the assumptions of a Poisson distribution. For this reason, the recommendation is to use Model 4 or the Zero Inflated Negative Binomial model. This is the iteration that has been submitted to Kaggle for deployment. Lastly, from a business standpoint, we find the standard linear regression model (Model 5) the simplest to explain given that interpretation of the coefficients is in cases of wine instead of percent change. While linear regression might not be completely appropriate given the structure of this data set, if the results makes sense to decisions makers - use it.

Scott Morgan

KAGGLE: ScottMorgan

CONCLUSION

Building sound regression models is a cornerstone of predictive analytics and to creating a culture of proactive data-driven decision making. For this project, a data set containing quantitative and qualitative properties of wine was used to generate Poisson regression models to predict wines sales. Predicting preference in this case is inherently difficult given the subjectivity of individual taste but the potential value for the winemaking industry is evident. The results suggest, at least within the context of this data set, that casual ambiguity and brand management may be more important to selling wine than its chemical properties. This is slightly contrary to our original expectations as we thought a wine's chemical compounds would have had more predictive power. We also did not anticipate missing variables to be so highly predictive. Overall, this exercise reinforces the notion that not all data is equally valuable and there are insights to be drawn from both categorical and continuous variables.

BINGO BONUS SECTION

BINGO BONUS #1 <5 points>: Table 2: Correlations with Angoss

	TARGET	FixedAcidity	VolatileAcidity	CitricAcid	ResidualSugar	Chlorides	FreeSulfurDioxide	TotalSulfurDioxide	Density	pН	Sulphates	Alcohol	LabelAppeal	AcidIndex	STARS
TARGET	1	-0.04901	-0.08879	0.00868	0.01649	-0.03826	0.04382	0.05148	-0.03552	-0.00944	-0.03885	0.06206	0.3565	-0.24605	0.55879
FixedAcidity	-0.04901	1	0.01238	0.01424	-0.01885	-0.00046	0.00497	-0.0225	0.00648	-0.00898	0.03078	-0.00937	-0.00337	0.17844	-0.00663
VolatileAcidity	-0.08879	0.01238	1	-0.01695	-0.00648	0.00099	-0.00708	-0.02108	0.01473	0.01359	0.00013	0.00407	-0.01699	0.04464	-0.03443
CitricAcid	0.00868	0.01424	-0.01695	1	-0.00694	-0.00857	0.00643	0.00632	-0.01395	-0.00871	-0.01299	0.01705	0.00865	0.0657	0.00066
ResidualSugar	0.01649	-0.01885	-0.00648	-0.00694	1	-0.00559	0.01749	0.02248	0.0041	0.01212	-0.00772	-0.02	0.00232	-0.00941	0.01674
Chlorides	-0.03826	-0.00046	0.00099	-0.00857	-0.00559	1	-0.02066	-0.01399	0.02266	-0.01761	-0.00329	-0.01969	0.01051	0.02524	-0.00493
FreeSulfurDioxide	0.04382	0.00497	-0.00708	0.00643	0.01749	-0.02066	1	0.01372	0.00318	0.00605	0.01159	-0.01859	0.01029	-0.04172	-0.00908
TotalSulfurDioxide	0.05148	-0.0225	-0.02108	0.00632	0.02248	-0.01399	0.01372	1	0.01282	-0.00434	-0.00713	-0.01596	-0.00975	-0.04931	0.01393
Density	-0.03552	0.00648	0.01473	-0.01395	0.0041	0.02266	0.00318	0.01282	1	0.00577	-0.00906	-0.00721	-0.00937	0.04041	-0.01828
pH	-0.00944	-0.00898	0.01359	-0.00871	0.01212	-0.01761	0.00605	-0.00434	0.00577	1	0.00548	-0.01155	0.00414	-0.05868	-0.00049
Sulphates	-0.03885	0.03078	0.00013	-0.01299	-0.00772	-0.00329	0.01159	-0.00713	-0.00906	0.00548	1	0.00474	-0.00389	0.03445	-0.01231
Alcohol	0.06206	-0.00937	0.00407	0.01705	-0.02	-0.01969	-0.01859	-0.01596	-0.00721	-0.01155	0.00474	1	0.00103	-0.03814	0.06522
LabelAppeal	0.3565	-0.00337	-0.01699	0.00865	0.00232	0.01051	0.01029	-0.00975	-0.00937	0.00414	-0.00389	0.00103	1	0.02475	0.33479
AcidIndex	-0.24605	0.17844	0.04464	0.0657	-0.00941	0.02524	-0.04172	-0.04931	0.04041	-0.05868	0.03445	-0.03814	0.02475	1	-0.08626
STARS	0.55879	-0.00663	-0.03443	0.00066	0.01674	-0.00493	-0.00908	0.01393	-0.01828	-0.00049	-0.01231	0.06522	0.33479	-0.08626	1

BINGO BONUS #2 <5 points>: Histograms for AcidIndex and STARS by TARGET

Created with IBM Watson. Useful tool, great visualizations and having the software ask me what I'd like to know was just crazy.

BINGO BONUS #3 < 5 points>: What is the Relationship Between LabelAppeal and STARS by TARGET?

Another IBM Watson visual for my EDA.

BINGO BONUS #4 <5 points> Frequency of STARS by TARGET

Another great sample from SAS Enterprise Miner.

BINGO BONUS #5 <40 points>: Used 4 different analytics platforms for TARGET variable selection.

SAS Studio Decision Tree (PROC HPSPLIT)

SAS Enterprise Miner Variable Selection Node

Microsoft Azure ML Poisson Feature Selection

Angoss Decision Tree

BINGO BONUS #6 <10 points>: Used PROC HPSPLIT for TARGET_FLAG selection for zero model variable selection.

Variable Importance							
	Tra	Training					
Variable	Relative	Importance	Count				
M_STARS	1.0000	37.5141	1				
IMP_AcidIndex	0.3424	12.8430	3				
IMP_STARS	0.3177	11.9183	1				
LabelAppeal	0.2170	8.1394	2				
IMP_VolatileAcidity	0.1268	4.7563	3				
IMP_TotalSulfurDioxide	0.1037	3.8898	1				

BINGO BONUS #7 <10 points>: Created SQL Function for Angoss Decision Tree

I use SQL a ton every day for my job so I thought it would be interesting to create a decision tree function for this exercise. Very cool to know this can be done.

BINGO BONUS #7 <20 points>: Setting up a Web based service for a model in Microsoft Azure ML

Created a web based interface for a trained Azure model / Predictive Experiment. You enter the values and it provides the predicted TARGET. Definitely some exciting applications for this type of user interface in my current and future roles. I was impressed overall with how easy Azure was to use.

BINGO BONUS #8 <10 points>: You'll notice that I used SAS Macros in my file titled Homework_03_Scott_Morgan_ANALYSIS_Code.sas. I even included the periods to look like a pro.

KAGGLE: ScottMorgan

BINGO BONUS #9 <1000 points??>: Sitting back and enjoying a glass of wine after finishing this paper. Opus One was a little expensive so I made my decision based on the label appeal (clearly). Turns out the models are right! The wine is actually pretty good too; first time trying Scott Family Estate Pinot Noir. Stick with the Arroyo Seco Monetery over the Russian River.

Scott Morgan

KAGGLE: ScottMorgan

REFERENCE(S)

Godden, P.W., Francis, I.L., Field, J.B.F., Gishen, M., Coulter, A.D., Valente, P.J., Hoj, P.B. and Robinson, E.M.C. (2002) An evaluation of the technical performance of wine bottle closures. Proceedings of the 11th Wine Industry Technical Conference. Eds. R. Blair, P. Williams and P. Hoj (AWITC: Glen Osmond, South Australia) pp. 44-52.