Suggested problems for problem solving sessions

A) COMPLEX PLANE, ELEMENTARY FUNCTIONS (SESSION 1)

1. Identify and sketch the set of	points satisfying:	
a) $ z-1-i =1$,	e) $ z-1 < z $,	i) $Re(iz + 2) > 0$,
b) $1 < 2z - 6 < 2$,	f) $0 < \text{Im } z < \pi$,	j) $ z - i ^2 + z + i ^2 < 2$.
c) $ z-1 ^2 + z+1 ^2 < 8$,	g) $-\pi < \operatorname{Re} z < \pi$,	
d) $ z-1 + z+1 \le 2$,	h) $ \text{Re } z < z ,$	

- 2. Show that the equation $|z|^2 2\operatorname{Re}(\overline{a}z) + |a|^2 = \rho^2$ represents a circle centered at a with radius ρ .
- 3. Express all values of the following expressions in both polar and cartesian coordinates, and plot them.

a)
$$\sqrt{i}$$
,
b) $(-1)^{1/4}$,
c) $(-8)^{1/3}$,
d) $(1+i)^8$.

4. Write in cartesian coordinates the following complex numbers:

a)
$$e^{2+i}$$
, c) $\cos(\frac{\pi}{4}+i)$, b) $e^{\ln 5 + \frac{3\pi i}{4}}$, d) $\log(1+i)$.

- 5. For which $n \in \mathbb{N}$ is i an nth root of unity?
- 6. Show that $\cos 2\theta = \cos^2 \theta \sin^2 \theta$ and $\sin 2\theta = 2\cos \theta \sin \theta$ using de Moivre's formula. Find formulae for $\cos 4\theta$ and $\sin 4\theta$ in terms of $\cos \theta$ and $\sin \theta$.
- 7. Show that $e^{\overline{z}} = \overline{e^z}$.
- 8. Show that $|\cos z|^2 = \cos^2 x + \sinh^2 y$, where z = x + iy. Find all zeros and periods of $\cos z$.
- 9. Compute the real and imaginary part of z^z .
- 10. Find all the solutions of the equations:

a)
$$\cos z = 2i$$
,
b) $e^{e^z} = 1$,
c) $\cot z = 2 + i$,
d) $5 \cos z - 3i \sin z = 2$,
e) $\sin(\cos z) = 1$.

Updated: 17th Jan, 2022.

1

B) ANALYTIC AND HARMONIC FUNCTIONS (SESSION 2)

- 1. Show that if f and \overline{f} are both analytic on a domain D, then f is constant.
- 2. Show that if f is analytic on a domain D and |f|, Re f, Im f or arg f is constant in D, then f is also constant in D.
- 3. Show that if v is a harmonic conjugate for u, then -u is a harmonic conjugate for v.
- 4. Show that the following functions are harmonic, and find all harmonic conjugates:
 - a) $u = x^3 3xy^2 + 2xy + x$, b) $u = x^2 y^2 + 5$,

d) $u = e^x(y\cos y + x\sin y)$, e) $u = \arctan\left(\frac{y}{x}\right)$, x > 0.

- c) $u = \sinh x \sin y$,
- 5. Find all analytic functions f such that $\operatorname{Re} f + \operatorname{Im} f = xy$.
- 6. Suppose that u is a harmonic function and that v is a harmonic conjugate of u. Show that

$$\frac{\partial}{\partial x} \left(u \frac{\partial u}{\partial x} - v \frac{\partial v}{\partial x} \right) = \frac{\partial}{\partial y} \left(v \frac{\partial u}{\partial x} + u \frac{\partial v}{\partial x} \right).$$

- 7. Suppose that f = u + iv is analytic and not identically constant.
 - a) Show that uv is the real part of an analytic function.
 - b) Show that $u^2 + v^2$ cannot be the real part of any analytic function.
- 8. Determine all analytic functions of the form

$$f(z) = a_1x + a_2y + a_3x^2 + a_4xy + a_5y^2 + a_6x^3 + a_7y^3,$$

where $a_1, \ldots, a_7 \in \mathbb{C}$.

- 9. Determine the analytic functions f = u + iv, for which $u(x,y) = x^3 + xg(y)$, where g is a twice continuously differentiable function.
- 10. Find all analytic functions such that its real part u = u(x,y) satisfies the differential equation $\frac{\partial u}{\partial x} = -u$.

C) CONFORMAL MAPPINGS (SESSION 3, 4)

- 1. Find the image of z=0 under the Möbius transformation which maps i, ∞ and 1 to 0, 1 and -i, respectively.
- 2. Find a Möbius transformation which maps the region |z-i| < 2 onto the upper half plane, the imaginary axis onto itself, and which fixes the point i.
- 3. A Möbius transformation T maps the upper half plane onto itself, and the circle |z-1|=1onto the imaginary axis such that the point 1+i maps to i. Compute T. Is T uniquely determined by the given conditions? What is the image of the line Im z = 1?
- 4. Find a Möbius transformation which maps the region outside the unit circle onto the lefthalf plane. What are the images of circles |z| = r > 1? And the images of lines passing through the origin?

5. Show that there exists a Möbius transformation which maps the region given by

$$|z-1+2i| < 2\sqrt{2}, \quad |z-1-2i| < 2\sqrt{2}, \quad |z| > 1,$$

onto the interior of the triangle with vertices at 0, 1 and i.

- 6. Let $\Gamma_1 = \{z : |z 2a| = a\}$, a > 0, and $\Gamma_2 = \{z : |z| = 1\}$. Determine all values of a such that we can map Γ_1 and Γ_2 onto two concentric circles with a Möbius transformation.
- 7. Find a conformal mapping which maps the region between $|z+3| < \sqrt{10}$ and $|z-2| < \sqrt{5}$ onto the interior of the first quadrant.
- 8. Find a conformal mapping which maps the region between |z-1| > 1 and |z| < 2 onto the upper half plane.
- 9. Find a conformal mapping such that the complex plane minus the positive x-axis is transformed onto the interior of the unit circle, so that the point -4 is mapped to the origin.
- 10. Find a conformal mapping which maps the half-circle $\Omega_1 = \{z : |z| < 1, \text{ Re } z > 0\}$ onto the strip $\Omega_2 = \{w : |\text{Re } w| < 1\}$.

D) DIRICHLET PROBLEMS (SESSION 4, 5)

- 1. Determine a function ϕ , which is harmonic in D(0,1) and has boundary values 1 on $\partial D(0,1) \cap \{\operatorname{Re} z > 0\}$ and 0 on $\partial D(0,1) \cap \{\operatorname{Re} z < 0\}$.
- 2. Determine a function ϕ , harmonic in the interior of the unit circle, with boundary value 1 on $\partial D(0,1) \cap \{|\arg z| < \pi/4\}$ and boundary value 0 on $\partial D(0,1) \cap \{\pi/4 < |\arg z| \le \pi\}$.
- 3. Find a function ϕ which is harmonic in $\Omega = D(0,1) \cap \{\text{Im } z > 0\}$, that takes the value 1 on the straight line portion of the boundary and the value 0 on the circle part of the boundary.
- 4. Find a function ϕ , harmonic in $\Omega = \{ \operatorname{Re} z > 0 \} \cap \{ 0 < \operatorname{Im} z < \pi \}$, with boundary values 1 for z = iy, $0 < y < \pi$; 0 for z = x, x > 0; and 0 for $z = x + i\pi$, x > 0.
- 5. Determine a function ϕ , harmonic in the first quadrant, with boundary values 1 on the interval (1,2) of the real axis and 0 otherwise.

E) INTEGRATION (SESSION 6)

- 1. Compute the integral $\int_{\gamma} |z-1| |dz|$, where γ is the positively oriented unit circle.
- 2. Compute $\int_{\gamma} \frac{dz}{1+z^2}$, where γ represents the positively oriented circle:

a)
$$|z| = 1/2$$
,

b)
$$|z - i/2| = 1$$
,

c)
$$|z| = 2$$

- 3. Compute $\int_{|z|=1} \frac{e^z}{z} dz$ (positive orientation).
- 4. Calculate for any complex number a, $|a| \neq 1$, the value of the integral $\int_{\gamma} \frac{ze^{z^2}}{z-a} dz$, where γ denotes the positively oriented unit circle.

5. Determine the value of the integral

$$\int_{\gamma} \left(z^2 \sin z + \left| z + \frac{3}{4} \right| + e^{\sin z} \cos z + \frac{1}{z(z+1)} \right) dz,$$

where γ is the curve defined by $z(t) = (2e^{2\pi it} - 3)/4$, $0 \le t \le 1$.

- 6. Calculate $\int_{\gamma} \frac{dz}{z(z+1)}$, where γ is the curve defined by $z(t) = e^{(1+i)t}$, $0 \le t \le 2\pi$.
- 7. Compute the integral $\int_{\gamma} \frac{dz}{z^2 4}$, where γ is the curve defined by $z(t) = e^{it}$, $0 \le t \le 3\pi/2$.
- 8. Calculate

$$\int_{\gamma} \left(\cos^2 z \sin z + \frac{2}{2z^2 + z - 1} + e^{z^2} \right) dz,$$

where γ is the curve defined by $z(t) = (t^2 - t + 1)e^{2\pi it}$, $0 \le t \le 1$.

- 9. Suppose that f is analytic and $|f(z)| \leq M$, $|z| \leq R$. Determine an upper bound for $|f^{(n)}(z)|$ for |z| < r < R.
- 10. Show that if u is harmonic in the whole plane and bounded from above, then u is constant.

F) SEQUENCES AND SERIES OF FUNCTIONS (SESSION 7)

1. Find the subsets of \mathbb{R} where the following sequences of functions converge pointwise resp. uniformly:

a)
$$f_n(x) = x^n$$
, $n \in \mathbb{N}$,

c)
$$f_n(x) = n^3 \sin^3\left(\frac{x}{n}\right), \quad n \in \mathbb{N}$$

b)
$$f_n(x) = (1 - x^2)^n$$
, $n \in \mathbb{N}$,

d)
$$f_n(x) = \frac{e^{n^2x} + 1}{e^{n^2x} - 1}, \quad n \in \mathbb{N}.$$

a)
$$f_n(x) = x^n$$
, $n \in \mathbb{N}$, c) $f_n(x) = n^3 \sin^3\left(\frac{x}{n}\right)$, $n \in \mathbb{N}$,
b) $f_n(x) = (1 - x^2)^n$, $n \in \mathbb{N}$, d) $f_n(x) = \frac{e^{n^2x} + 1}{e^{n^2x} - 1}$, $n \in \mathbb{N}$.
2. For which $z \in \mathbb{C}$ does $\{f_n(z)\}_{n=1}^{\infty}$, where $f_n(z) = \frac{1}{1 + z + z^2 + \dots + z^n}$, converge?

3. Show that $f_n(z) = e^{-nz}$, $n \in \mathbb{N}$, converges uniformly to 0 when $\operatorname{Re} z \geq a$, for each a > 0. Is the convergence uniform when Re z > 0?

4. Let
$$f_n(x) = \frac{nx}{nx+1}$$
, $n \in \mathbb{N}$.

a) Does $\{f_n\}_{n=0}^{\infty}$ converge uniformly on [0,1]? What about on $[1,\infty)$?

b) Is it true that
$$\lim_{n\to\infty} \int_0^1 f_n(x) dx = \int_0^1 \lim_{n\to\infty} f_n(x) dx$$
?

5. Determine when the following series of functions are uniformly convergent:

a)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^3 + x^{2n}}$$
,

b)
$$\sum_{n=1}^{\infty} x^2 (1-x^2)^n$$
.

6. Show that each of the following series represents a function analytic in the right half-plane:

a)
$$\sum_{n=1}^{\infty} e^{-n^2 z}$$
,

b)
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^{z+1}}$$
.

G) POWER SERIES (SESSION 8)

c) $\sum_{n=0}^{\infty} n^2 z^n$,

1. Find the radius of convergence of the following power series:

a)
$$\sum_{n=0}^{\infty} 2^n z^n$$
, d) $\sum_{n=0}^{\infty}$
b) $\sum_{n=0}^{\infty} \frac{n}{6^n} z^n$, e) $\sum_{n=0}^{\infty} \frac{n}{6^n} z^n$

$$f) \sum_{n=1}^{\infty} \frac{z^{2n}}{4^n n^n},$$

d)
$$\sum_{n=0}^{\infty} \frac{3^n z^n}{4^n + 5^n}$$
, g) $\sum_{n=1}^{\infty} \frac{n^n}{1 + 2^n n^n} z^n$,
e) $\sum_{n=1}^{\infty} \frac{2^n z^{2n}}{n^2 + n}$, h) $\sum_{n=3}^{\infty} (\ln n)^{n/2} z^n$,
f) $\sum_{n=1}^{\infty} \frac{z^{2n}}{4^n n^n}$, i) $\sum_{n=1}^{\infty} \frac{n! z^n}{n^n}$.

$$\sum_{n=3}^{\infty} \frac{n! z^n}{z^n}.$$

2. Determine where the following series converge.

a)
$$\sum_{n=1}^{\infty} (z-1)^n$$
, c) $\sum_{n=0}^{\infty} 2^n (z-2)^n$, e) $\sum_{n=1}^{\infty} n^n (z-3)^n$, b) $\sum_{n=1}^{\infty} \frac{(z-i)^n}{n!}$, d) $\sum_{n=1}^{\infty} \frac{(z+i)^n}{n^2}$, f) $\sum_{n=3}^{\infty} \frac{2^n}{n^2} (z-2-i)^n$.

3. What functions are represented by the following series when |z| < 1?

a)
$$\sum_{n=1}^{\infty} nz^n,$$
 b)
$$\sum_{n=1}^{\infty} n^2 z^n.$$

4. Calculate the first three (non-vanishing) coefficients of the power series expansion about the origin of the functions:

$$\begin{array}{ll} \mathrm{a)} & f(z) = \sin\left(\frac{1}{1-z}\right), \\ \mathrm{b)} & f(z) = e^{z/(1-z)}, \end{array} \qquad \begin{array}{ll} \mathrm{c)} & f(z) = e^{z\sin z}, \\ \mathrm{d)} & f(z) = \mathrm{Log}(1+e^z). \end{array}$$

5. Determine the radius of convergence of the power series expansion of $\frac{z^2-1}{z^3-1}$ about z=2.

H) ZEROS AND UNIQUENESS (SESSION 9)

1. Specify the order of the zero z=0 of the following functions:

a)
$$f(z) = z^2(e^z - 1)$$
, b) $f(z) = e^{\sin z} - e^{\tan z}$

2. Find the zeros and orders of zeros of the following functions:

a)
$$f(z) = \frac{z^2 + 1}{z^2 - 1}$$
, c) $f(z) = z^2 \sin z$, d) $f(z) = \cos z - 1$, b) $f(z) = \frac{1}{z} + \frac{1}{z^5}$, e) $f(z) = \sinh^2 z + \cosh^2 z$,

- 3. Show that $\sin^2 z + \cos^2 z = 1$, $z \in \mathbb{C}$, assuming the corresponding identity for $z \in \mathbb{R}$ and using the uniqueness principle.
- 4. Show that if f and g are analytic on a domain D and f(z)g(z) = 0 for all $z \in D$, then either f or g must be identically zero in D.
- 5. Is there any function f, analytic in |z| < 1, such that

$$f\left(\frac{1}{2k}\right) = \frac{1}{2k}$$
 and $f\left(\frac{1}{2k+1}\right) = \frac{1}{2k}$, $k = 1, 2, 3, \dots$?

6. Determine all functions f analytic in |z| < 1 and satisfying

$$f\left(\frac{1}{k}\right) = \frac{k+k^2}{1+k^2}, \quad k = 2, 3, 4, \dots$$

I) LAURENT SERIES EXPANSIONS AND ISOLATED SINGULARITIES (SESSION 10)

- 1. Determine the Laurent series expansions of $f(z) = \frac{1}{z(1+z^2)(4-z^2)}$ in the regions:
 - a) 0 < |z| < 1,
- b) 1 < |z| < 2,
- c) |z| > 2
- 2. Expand $f(z) = \frac{1}{z^2 + 2z}$ in a Laurent series in the region $1 < |z i| < \sqrt{5}$.
- 3. Find the Laurent series of $f(z) = \text{Log}\left(\frac{z-i}{z+i}\right)$ for |z| > 1.
- 4. Find the isolates singularities of the following functions, and determine whether they are removable, poles or essential.
 - a) $\frac{e^z}{1+z^2}$,
- $d) \frac{1 \cos z}{z},$
- g) $z^2 \sin\left(\frac{1}{z}\right)$,

- b) $\frac{e^z}{z(1-e^{-z})}$,
- e) $e^{z/(z-2)}$,
- h) $\frac{z^4}{1+z^4}$,

- c) $\frac{z \sin z}{z^3}$,
- f) $\frac{e^{2z}}{(z-1)^3}$,
- i) $\frac{1}{z^3 z^5}$.

J) RESIDUE CALCULUS (SESSION 11, 12)

- 1. Calculate $\int_{\gamma} z^k e^{1/z} dz$, $k \in \mathbb{N}$, where γ is any positively oriented circle centered at the origin.
- 2. Compute the integral $\int_{\gamma} \frac{dz}{(z^2+1)^4}$, where γ represents the positively oriented rectangle with vertices at 2, 2+2i, -2+2i and -2.
- 3. Determine the value of the integral $\oint_{|z|=4} \frac{e^{iz}}{z(z^2-1)^2} dz$.
- 4. Compute the following integrals of rational functions:
 - a) $\int_{-\infty}^{\infty} \frac{2x^2 1}{x^4 + 5x^2 + 4} dx$,

- b) $\int_0^\infty \frac{dx}{(1+x^2)^3}$.
- 5. Calculate the following trigonometric integrals:
 - a) $\int_0^{2\pi} \frac{\cos \theta}{\sqrt{3} + \cos \theta} d\theta,$

c) $\int_0^{2\pi} \frac{d\theta}{2 + \sin\theta + \cos\theta},$

b) $\int_0^{2\pi} \frac{d\theta}{(2+\cos\theta)^2},$

d) $\int_0^{2\pi} \cos^{2k}(\theta) d\theta$, $k \in \mathbb{N}$.

6. Compute the following integrals:

a)
$$\int_{-\infty}^{\infty} \frac{x \sin x}{1 + x^4} dx,$$

b)
$$\int_{-\infty}^{\infty} \frac{\cos(ax)}{x^2 + b^2} dx$$
, $a, b > 0$.

7. Calculate the following integrals of functions with branch points:

a)
$$\int_0^\infty \frac{\sqrt{x}}{x^2 + 4} dx,$$

c)
$$\int_0^\infty \frac{dx}{x^a(1+x)}$$
, $0 < a < 1$

b)
$$\int_0^\infty \frac{\sqrt{x}}{x^3 + 1} dx,$$

c)
$$\int_0^\infty \frac{dx}{x^a(1+x)}$$
, $0 < a < 1$,
d) $\int_0^\infty \frac{x^a}{1+x+x^2} dx$, $-1 < a < 1$.

8. Compute the following integrals:

a)
$$\int_0^\infty \frac{\ln x}{x^2 + 9},$$

$$c) \int_0^\infty \frac{\sqrt{x} \ln x}{x^2 + 16}.$$

b)
$$\int_0^\infty \frac{\ln x}{x^2 - 1},$$

K) THE ARGUMENT PRINCIPLE AND ROUCHÉ'S THEOREM (SESSION 13)

- 1. Show that all zeros of the polynomial $p(z) = z^4 2iz^3 + 16$ are contained in the disk |z| < 3. How many of the zeros have both negative real part and negative imaginary part?
- 2. Show that all zeros of the polynomial $p(z) = z^5 z + 16$ are contained in the annulus 1 < |z| < 2. How many of the zeros have positive real part?
- 3. Show that the equation $2(z-1)^{17} = e^{-z}$ has exactly 17 distinct roots in the disk |z-1| < 1.
- 4. In which quadrants are the roots of the equation $z^4 + z^3 + 4z^2 + 2z + 3 = 0$?
- 5. Determine the number of zeros of the function $f(z) = z^2 + e^{z-1}$ in the region |z| < 1.
- 6. Determine the number of zeros of the function $z^2 + 4 3e^{iz}$ in the open square with vertices at 2, -2, 2+4i and -2+4i.
- 7. Find the number of zeros of the function $f(z) = 2 2z^2 + z^4 + e^{-z}$ in the right half-plane.
- 8. Calculate the number of zeros of the polynomial $p(z) = z^7 + 3z^5 6z^2 + 1$ in the regions:

a)
$$|z| < 1$$
,

b)
$$1 < |z| < 2$$
,

c) Re
$$z > 0$$
.