# **Embedding Efficiency**

The average number of embedded bits per unit distortion.

- LSB: 2 = 1/0.5.
  - 1 bit: for a uniform distribution binary sequence.
  - Change: 50% of chance to change.
  - Efficiency:

$$\frac{1}{0.5} \Rightarrow \text{embed 17bit}$$

# **Embedding Efficiency**

The average number of embedded bits per unit distortion.

- LSB: 2 = 1/0.5.
- Model Based:
  - Information:

$$H(p_0) = -p_0 \log_2 p_0 - (1 - p_0) \log(1 - p_0).$$

Change:

$$p_0(1-p_0) + (1-p_0)p_0 = 2p_0(1-p_0).$$

• Efficiency:

$$\frac{-p_0 \log_2 p_0 - (1 - p_0) \log(1 - p_0)}{2p_0(1 - p_0)}$$

## Illustration



Notice the arithmetic decompress.

# Masking Embedding as Natural Processing

- Preserving statistics
  - Losing capacity.
- Mimicked some natural process
  - F3, F4, F5, ...

# **Jsteg**





# F3 Algorithm





## What Is the Problem in F3?

In normal work

Decreasing

$$P(2i-1) > P(2i).$$

In Steganographic work

More on even.

$$P(2i-1) < P(2i).$$

## **Defects of F3**



### Reason

Repeated embedding after shrinkage.

- Happens for embedding 0 only.
- Equivalent to add more 0 into the message code.



# F4 Algorithm

- Steganographic interpretation
  - Positive coefficients: LSB
  - Negative coefficients: inverted LSB
- Skip 0, adjust coefficients to message bit
  - Decrement positive coefficients
  - Increment negative coefficients
  - Repeat if shrinkage occurs



## **F4 Defects**





Compare similar blocks or reverse fitting GCD.

# Random Walk









# More Efficiency?

F4: 1157 changes.

- F5: 459 changes by matrix encoding.
  - Embedding efficiency: 3.8 bits per change.

# **Matrix Encoding**

Embedding  $b_1, b_2$  to  $x_1, x_2, x_3$  with at most 1 change.

$$b_1 = LSB(x_1) \text{ XOR } LSB(x_2)$$
  
 $b_2 = LSB(x_2) \text{ XOR } LSB(x_3)$ 

- Four equal probability cases.
- Change  $x_i$  accordingly.

# **Example**

$$b_1 = LSB(x_1) \text{ XOR } LSB(x_2)$$
  
 $b_2 = LSB(x_2) \text{ XOR } LSB(x_3)$ 

| 0,0 | 1,0         | 0,1         | 1,1         |
|-----|-------------|-------------|-------------|
| /   | $\bar{x}_1$ | $\bar{x}_3$ | $\bar{x}_2$ |

#### Efficiency:

$$2/(3/4) = 8/3 > 2.$$

# **A Hamming Code**

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

## **Presentation: Matrix Embedding**

- The idea of parity matrix.
- Efficiency.

# Upper Bound on Embedding Efficiency

For a message set  $\mathcal{M}$ , in a n-pixel image, what is the minimal number of change R (in the sense of expectation).

- The bound of  $\frac{\log_2 |\mathcal{M}|}{R}$ : efficiency.
  - Larger means better efficiency.
  - The upper bound indicates the optimal situation.

## Just Some Math 75%

$$\log_2 |\mathcal{M}| \leq \log_2 \sum_{i=0}^R \binom{n}{i} \, 2^i$$
 
$$\leq nH(R/n) \quad \text{information theory}$$

## H(x)

#### Binary entropy function

$$H(x) = -x \log_2 x - (1 - x) \log_2 (1 - x).$$



## **Continue the Math**

$$\alpha = \frac{\log_2 |\mathcal{M}|}{n} \le H(R/n)$$

$$\frac{n}{R} \le 1/H^{-1}(\alpha), \quad H^{-1} \in [0, 0.5]$$

$$\frac{\log_2 |\mathcal{M}|}{R} \frac{n}{\log_2 |\mathcal{M}|} \le 1/H^{-1}(\alpha)$$

$$e = \frac{\log_2 |\mathcal{M}|}{R} \le \frac{\alpha}{H^{-1}(\alpha)}.$$

- $\alpha$ : relative message length.
- e embedding efficiency.

## Illustration



## **Selection Rule**

Choose the parts/locations to change.

- Known for both side: shared.
- Only known for sender: nonshared.

## **Nonshared Selection Rule**

#### Motivation:

- In JPEG compress:
  - DCT: float value.
  - Round into integer.
- To minimize the change:
  - Choose values have largest rounding error to change, e.g. 5.47:
    - to embed 0:  $5.47 \rightarrow 6, +0.53$ .
    - to embed 1:  $5.47 \rightarrow 5, -0.47$ .
- More like normal compress procedure, but
  - How recipient detect the message?

### Other Cases

- Adaptive steganography
  - If the neighborhood has certain property ...
  - But embedding may change the property.
- Eg. using the pixels with largest neighbor variance.