

Lecturer: Dr. Nguyen Hai Minh

CONTENT

- Sorting Lower Bound
 - Decision trees
- Analysis of sorting algorithms using different algorithm design methods (cont)
 - Space and Time tradeoffs: Counting Sort, Radix Sort

How fast can we sort?

- ☐ All the sorting algorithms we have seen so far are *comparison sorts*: only use comparisons to determine the relative order of elements.
 - E.g., insertion sort, merge sort, quicksort, heapsort.
- □ The best worst-case running time that we've seen for comparison sorting is $O(n \log_2 n)$.

Is $O(n\log_2 n)$ the best we can do?

■ Decision trees can help us answer this question

Asymptotic lower bound – Ω -notation

- Provides an asymptotic lower bound on a function
 - For a given function g(n), we denote by $\Omega(g(n))$ (pronounced "big-omega of g of n") the set of functions

 $\Omega(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_o \}$ such that: $0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$

- Example:
 - Explain: f is big-omega of g if there is c so that f is on or above c * g when n is large enough

$$0 \sqrt{n} = \Omega(\log_2 n) (c = 1, n = 16)$$

Asymptotic lower bound – Ω notation

 \square Running time of an algorithm is $\Omega(g(n))$ means that the running time of that algorithm is at least a constant times g(n), for sufficiently large n.

- □ Each internal node is labeled *i*:*j* for $i, j \in \{0, 1, ..., n-1\}$.
 - The left subtree shows subsequent comparisons if $a_i \le a_j$.
 - The right subtree shows subsequent comparisons if $a_i > a_j$.

- □ Each internal node is labeled *i*:*j* for $i, j \in \{0, 1, ..., n-1\}$.
 - The left subtree shows subsequent comparisons if $a_i \le a_j$.
 - The right subtree shows subsequent comparisons if

$$a_i > a_j$$
.

nhminh@FIT

- □ Each internal node is labeled *i:j* for $i, j \in \{0, 1, ..., n-1\}$.
 - The left subtree shows subsequent comparisons if $a_i \le a_j$.
 - The right subtree shows subsequent comparisons if $a_i > a_i$.

5/20/24 nhminh@FIT

- □ Each internal node is labeled *i*:*j* for $i, j \in \{0, 1, ..., n-1\}$.
 - The left subtree shows subsequent comparisons if $a_i \le a_j$.
 - The right subtree shows subsequent comparisons if

$$a_i > a_{j}$$

nhminh@FIT

11

Decision tree example

□ Each leaf contains a permutation $4 \le 6 \le 9$ $\langle \pi(0), \pi(1), ..., \pi(n-1) \rangle$ to indicate that the ordering $a_{\pi(0)} \le a_{\pi(1)} \le \cdots \le a_{\pi(n-1)}$ has been established.

5/20/24

nhminh@FIT

Decision tree model

A decision tree can model the execution of any comparison sort:

- One tree for each input size n.
- View the algorithm as splitting whenever it compares two elements.
- The tree contains the comparisons along all possible instruction traces.
- The running time of the algorithm = the length of the path taken.
- Worst-case running time = height of tree.

Lower bound for decision-tree sorting

Theorem. Any decision tree that can sort n elements must have height $\Omega(n\log_2 n)$.

Proof. The tree must contain $\geq n!$ leaves, since there are n! possible permutations. A height-h binary tree has $\leq 2^h$ leaves. Thus, $n! \leq 2^h$.

```
∴ h \ge \log_2(n!) (log<sub>2</sub>n is monotonically increasing)

\ge \log_2((n/e)^n) (Stirling's formula)

= n \log_2 n - n \log_2 e

= \Omega(n \log_2 n)
```

Lower bound for comparison sorting

Corollary. Heapsort and merge sort are asymptotically optimal comparison sorting algorithms.

Space and Time Trade-offs

- □ Space and time trade-offs are a well-known issue for both theoreticians and practitioners of computing.
- Consider the problem of computing values of a function at many points in its domain:
 - Precompute the function's values and store them in a table to speed up running time.
 - This idea is quite useful in the development of some important algorithms for other programs.

Space and Time Trade-offs

□ Input Enhancement:

- Preprocess the problem's input and store the additional information obtained to accelerate solving the problem
- E.g., Counting Sort, Boyer-Moore string matching

□ Prestructuring:

- Use extra space to facilitate faster and/or more flexible access to the data
- E.g., *Hashing, indexing with B-trees*

■ Dynamic Programming:

- Record solutions to overlapping subproblems of a given problem in a table
- E.g., the Knapsack problem

Counting Sort Idea

- One rather obvious idea is to count, for each element of a list to be sorted, the total number of elements smaller than this element and record the results in a table.
- These numbers will indicate the positions of the elements in the sorted list: e.g., if the count is 10 for some element, it should be in the 11th position
- Thus, we will be able to sort the list by simply copying its elements to their appropriate positions in a new, sorted list.

Counting Sort

COUNTING-SORT(A[0n-1],k) //Input: An array A[0n - 1] of integers between [0,k] //Output: Array S[0n - 1] of A's elements sorted in nondecreasing ord	Cost times
1 for j ← 0 to k do	
2	k+1
3 for i ← 0 to n - 1 do	
$4 \qquad \frac{C[A[i]] \leftarrow C[A[i]] + 1}{C[A[i]] + 1}$	n
5 for j ← 1 to k do	
$6 \qquad \frac{C[j] \leftarrow C[j-1] + C[j]}{C[j-1]}$	k
7 for i ← n-1 to 0 do	
$8 \qquad S[C[A[i]] - 1] \leftarrow A[i]$	n
9 $\frac{C[A[i]] \leftarrow C[A[i]] - 1}{C[A[i]]}$	n
10 return S	

Counting Sort Analysis

- 1. Input size: n, k
- 2. Basic operation: assignment & addition inside 4 loops
- 3. The number of key comparisons depends on the array size and the max value of the array.
- 4. Sum of number of times the basic operations is: C(n,k) = k+1+n+k+n+n=2k+3n+1
- 5. Order of growth: O(n + k)

Counting sort – Illustration

 0
 1
 2
 3
 4

 A:
 3
 0
 2
 3
 2

0 1 2 3

S:

for
$$j \leftarrow 0$$
 to k do $C[j] \leftarrow 0$

for
$$i \leftarrow 0$$
 to $n-1$
do $C[A[i]] \leftarrow C[A[i]] + 1$ $\triangleleft C[i] = |\{\text{key} = i\}|$

$$\triangleleft$$
 $C[i] = |\{\text{key} = i\}|$

for
$$i \leftarrow 0$$
 to $n-1$
do $C[A[i]] \leftarrow C[A[i]] + 1$ $\triangleleft C[i] = |\{\text{key} = i\}|$

$$\triangleleft$$
 $C[i] = |\{\text{key} = i\}|$

for
$$i \leftarrow 0$$
 to $n-1$
do $C[A[i]] \leftarrow C[A[i]] + 1$ $\triangleleft C[i] = |\{\text{key} = i\}|$

$$\triangleleft$$
 $C[i] = |\{\text{key} = i\}|$

for
$$i \leftarrow 0$$
 to $n-1$
do $C[A[i]] \leftarrow C[A[i]] + 1$ $\triangleleft C[i] = |\{\text{key} = i\}|$

$$\triangleleft$$
 $C[i] = |\{\text{key} = i\}|$

for
$$i \leftarrow 0$$
 to $n-1$
do $C[A[i]] \leftarrow C[A[i]] + 1$ $\triangleleft C[i] = |\{\text{key} = i\}|$

$$\triangleleft$$
 $C[i] = |\{\text{key} = i\}|$

$$C: \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 2 & 2 \end{bmatrix}$$

for
$$j \leftarrow 1$$
 to k
do $C[j] \leftarrow C[j] + C[j-1]$

$$\triangleleft$$
 $C[j] = |\{\text{key } \leq j\}|$

for
$$j \leftarrow 1$$
 to k
do $C[j] \leftarrow C[j] + C[j-1]$

$$\triangleleft$$
 $C[j] = |\{\text{key } \leq j\}|$

$$C: \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 2 & 2 \end{bmatrix}$$

for
$$j \leftarrow 1$$
 to k
do $C[j] \leftarrow C[j] + C[j-1]$

$$\triangleleft$$
 $C[j] = |\{\text{key } \leq j\}|$

for
$$i \leftarrow n-1$$
 down to 0
do $S[C[A[i]] - 1] \leftarrow A[i]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

for
$$i \leftarrow n-1$$
 down to 0
do $S[C[A[i]] - 1] \leftarrow A[i]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

for
$$i \leftarrow n-1$$
 down to 0
do $S[C[A[i]] - 1] \leftarrow A[i]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

for
$$i \leftarrow n-1$$
 down to 0
do $S[C[A[i]] - 1] \leftarrow A[i]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

for
$$i \leftarrow n-1$$
 down to 0
do $S[C[A[i]] - 1] \leftarrow A[i]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

Counting Sort – Running time

If k = O(n), then counting sort takes O(n) time.

- But, sorting takes $\Omega(n\log_2 n)$ time!
- Where's the fallacy?

Answer:

- **Comparison sorting** takes $\Omega(n \log_2 n)$ time.
- Counting sort is not a comparison sort.
- In fact, not a single comparison between elements occurs!

Counting Sort – Pros and Cons

☐ Pros:

- It performs particularly well when the range of the input is small compared to the number of elements.
- Stable sort
- There is no comparison operation. Instead, it uses integer counting and index-based placement to sort the elements, resulting in faster execution.

Cons:

- Limited to sorting integers
- Not in-place. It requires additional memory space proportional to the range of the input.
- The input range must be known in advance.

Stable sorting

☐ Counting sort is a *stable* sort: it preserves the input order among equal elements.

☐ Exercise: What other sorts have this property?

5/20/24 nhminh@FIT 38

Radix Sort

- Origin: Herman Hollerith's card-sorting machine for the 1890 U.S. Census.
 - The cards have 80 columns, each has 12 places to punch by a machine.

The sorter can examine a given column of each card in a deck and distribute the card into one of 12 bins depending on which place has been punched.

Radix Sort Idea

- ☐ For decimal digits, each column uses only 10 places.
 - → A *d*-digit number occupies a field of *d* columns.
- □ Since the card sorter can look at only one column at a time, the problem of sorting *n* cards on a *d*-digit number requires a sorting algorithm:
 - Intuitively: Sort numbers on their most significant (leftmost) digit first.
 - Better idea: Sort numbers on their least significant (rightmost) digit first with auxiliary stable sort.
 - □ Then, it sorts the entire deck again on the second-least significant digit and recombines the deck.
 - Only d passes through the deck are required to sort.

Radix Sort – Algorithm & Analysis

		 _
RADIX-SORT(A[0n-1],c //Input: An array A[0n - //Output: Array A[0n - 1	Cost times	
1 for i ← 0 to d-1 do		
2 Use a stable sort	$d \cdot C(n)$	
Sort: C	each has k possible values if d is constant	> O(n)
5/20/24	nhminh@FIT	42

5/20/24

nhminh@FIT

Operation of LSD Radix sort

Radix sort on a "deck" of seven 3-digit numbers:

Operation of LSD Radix sort

Radix sort on a "deck" of seven 3-digit numbers.

Operation of LSD Radix sort

Radix sort on a "deck" of seven 3-digit numbers.

2rd naga												
3 rd pass	3 2	9	7	2	0		7 2	2	0	3	29	
	4 5	7	3	5	5		3 2	2	9	3	5 5	
	6 5	7	4	3	6		43	3	6	4	3 6	
	8 3	9	4	5	7		83	3	9	4	5 7	
	4 3	6	6	5	7		3 5	5	5	6	5 7	
	7 2	0	3	2	9		4 5	5	7	7	2 0	
	3 5	5	8	3	9		6.5	5	7	8	3 9	Finish!
))		٩
5/20/24					nhm	ninh@FIT						45

Radix Sort – Pros and Cons

☐ Pros:

- In practice, radix sort is fast for large inputs, as well as simple to code and maintain.
- Can be used to sort records of information that are keyed by multiple fields.

Cons:

- The digit sorts must be stable.
- Unlike quicksort, radix sort displays little locality of reference, and thus a well-tuned quicksort far better on modern processors.

Radix Sort – Lemma

Lemma: Given $n \, b$ -bit numbers and any positive integer $r \leq b$, RADIX-SORT correctly sorts these numbers in $((b/r)(n+2^r))$ time if the stable sort it uses takes 0(n+k) time for inputs in the range 0 to k.

☐ Proof:

See Textbook 1, page 295~

Most significant digit Radix sort

- Use lexicographic order, which is suitable for sorting strings, such as words, or fixed-length integer representations.
- No need to preserve the order of duplicate keys
- Example:
 - car, bar, care, bare → bar, bare, car, care
 - \blacksquare 9, 8, 10, 1, 3 \rightarrow 1, 10, 3, 8, 9

More Reading

- Stirling's approximation
 - Textbook 1 Page 57

A weak upper bound on the factorial function is $n! \leq n^n$, since each of the *n* terms in the factorial product is at most *n*. Stirling's approximation,

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right) , \qquad (3.18)$$

where e is the base of the natural logarithm, gives us a tighter upper bound, and a lower bound as well. As Exercise 3.2-3 asks you to prove,

$$n! = o(n^n),$$

$$n! = \omega(2^n),$$

$$\lg(n!) = \Theta(n \lg n),$$
(3.19)

What's next?

☐ After today:

- Read textbook 1 Chapter 8
- Read textbook 3 7.1
- Do Homework 2

