

Electrical Circuits for Engineers (EC1000)

Lecture-7
AC circuits
Sinusoids and Phasor (Ch. 9)

10/17/2023 Ch.9 AC Circuits ₁

Sinusoids and Phasor

- 9.1 Motivation
- 9.2 Sinusoids' features
- 9.3 Phasors
- 9.4 Phasor relationships for circuit elements
- 9.5 Impedance and admittance
- 9.6 Kirchhoff's laws in the frequency domain
- 9.7 Impedance combinations

10/17/2023 Ch.9 AC Circuits

9.1 Motivation (1)

How to determine v(t) and i(t)?

How can we apply what we have learned before to determine i(t) and v(t)? Ch.9 AC Circuits

9.2 Sinusoids (1)

A sinusoid is a signal that has the form of the sine or cosine function.

A general expression for the sinusoid,

$$v(t) = V_m \sin(\omega t + \phi)$$

Why Sinusoidal signal?

- 1. Nature itself is sinusoidal
- 2. AC can be easily generated and transmitted
- 3. Any periodic signal can be a sum of sinusoids_Fourier Analysis.
- 4. It can be easily handled mathematically.

where

Vm = the **amplitude** of the sinusoid ω = the angular frequency in radians/s Φ = the phase ωt = the argument of the sinusiod

9.2 Sinusoids (2)

A <u>periodic function</u> is one that satisfies v(t) = v(t + nT), for all t and for all integers n.

- Only two sinusoidal values with the <u>same frequency</u> can be compared by their amplitude and phase difference.
- If phase difference is zero, they are in phase; if phase 10/17/2016 erence is not zero, they are in phase.

9.2 Sinusoids (2)

- A sinusoid can be expressed in either sine or cosine form. When comparing two sinusoids, it is expedient to express both as either sine or cosine with positive amplitudes.
- This is achieved by using the following trigonometric identities:

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin(\omega t \pm 180^{\circ}) = -\sin\omega t$$

 $\cos(\omega t \pm 180^{\circ}) = -\cos\omega t$
 $\sin(\omega t \pm 90^{\circ}) = \pm\cos\omega t$
 $\cos(\omega t \pm 90^{\circ}) = \mp\sin\omega t$

Using these relationships, we can transform a sinusoid from sine form to cosine form or vice versa.

9.2 Sinusoids (3)

Example 1

Given a sinusoid, $5\sin(4\pi t - 60^{\circ})$, calculate its amplitude, phase, angular frequency, period, and frequency.

Solution:

Amplitude = 5, phase = -60° , angular frequency = 4π rad/s, Period = 0.5 s, frequency = 2 Hz.

Given the sinusoid $30 \sin(4\pi t - 75^{\circ})$, calculate its amplitude, phase, angular frequency, period, and frequency.

Answer: 30, -75°, 12.57 rad/s, 0.5 s, 2 Hz.

9.2 Sinusoids (4)

Example 2

$$\sin(\omega t \pm 180^{\circ}) = -\sin\omega t$$

$$\cos(\omega t \pm 180^{\circ}) = -\cos\omega t$$

$$\sin(\omega t \pm 90^{\circ}) = \pm\cos\omega t$$

$$\cos(\omega t \pm 90^{\circ}) = \mp\sin\omega t$$

Find the phase angle between $i_1 = -4\sin(377t + 25^\circ)$ and $i_2 = 5\cos(377t - 40^\circ)$, does i_1 lead or lag i_2 ?

Solution:

Since $sin(\omega t + 90^\circ) = cos \omega t$

$$i_2 = 5\sin(377t - 40^\circ + 90^\circ) = 5\sin(377t + 50^\circ)$$

$$i_1 = -4\sin(377t + 25^\circ) = 4\sin(377t + 180^\circ + 25^\circ) = 4\sin(377t + 205^\circ)$$

therefore, i₁ leads i₂ 155°.

Calculate the phase angle between $v_1 = -10 \cos(\omega t + 50^\circ)$ and $v_2 = 12 \sin(\omega t - 10^\circ)$. State which sinusoid is leading.

9.3 Phasor (1)

Sinusoids are easily expressed in terms of *phasors*, which are more convenient to work with than sine and cosine functions.

A phasor is a complex number that represents the amplitude and phase of a sinusoid.

It can be represented in one of the following three forms:

a. Rectangular
$$z = x + jy = r(\cos \phi + j\sin \phi)$$

b. Polar
$$z = r \angle \phi$$

c. Exponential
$$z = re^{j\phi}$$

$$z = x + jy = r/\phi,$$
 $z_1 = x_1 + jy_1 = r_1/\phi_1$
 $z_2 = x_2 + jy_2 = r_2/\phi_2$

Addition:

where
$$r = \sqrt{x^2 + y^2}$$

$$\phi = \tan^{-1} \frac{y}{x}$$

$$z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2)$$

9.3 Phasor (3)

Mathematic operation of complex number:

- 1. Addition
- 2. Subtraction
- 3. Multiplication
- 4. Division
- 5. Reciprocal
- 6. Square root
- 7. Complex conjugate
- 8. Euler's identity

$$z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2)$$

$$z_1 - z_2 = (x_1 - x_2) + j(y_1 - y_2)$$

$$z_1 z_2 = r_1 r_2 \angle \phi_1 + \phi_2$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \angle \phi_1 - \phi_2$$

$$\frac{1}{z} = \frac{1}{r} \angle -\phi$$

$$\sqrt{z} = \sqrt{r} \angle \phi/2$$

$$z^* = x - jy = r \angle - \phi = re^{-j\phi}$$

$$e_{h.9}^{\pm j\phi} \equiv \cos \phi \pm j \sin \phi$$

9.3 Phasor (2)

Example 9.3

Evaluate the following complex numbers:

Evaluate these complex numbers:

(a)
$$(40/50^{\circ} + 20/-30^{\circ})^{1/2}$$

Solution:

(a) Using polar to rectangular transformation,

$$40/50^{\circ} = 40(\cos 50^{\circ} + j \sin 50^{\circ}) = 25.71 + j30.64$$
$$20/-30^{\circ} = 20[\cos(-30^{\circ}) + j \sin(-30^{\circ})] = 17.32 - j10$$

Adding them up gives

$$40/50^{\circ} + 20/-30^{\circ} = 43.03 + j20.64 = 47.72/25.63^{\circ}$$

Taking the square root of this,

$$(40/50^{\circ} + 20/-30^{\circ})^{1/2} = 6.91/12.81^{\circ}$$

10/17/2023 Circuits

Example 9.3

Practice Problem

Evaluate the following complex numbers:

(a)
$$[(5 + j2)(-1 + j4) - 5/60^{\circ}]$$
*

(b)
$$\frac{10 + j5 + 3/40^{\circ}}{-3 + j4} + 10/30^{\circ} + j5$$

Answer: (a)
$$-15.5 - j13.67$$
, (b) $8.293 + j7.2$.

9.3 Phasor (4)

Transform a sinusoid to and from the time domain to the phasor domain:

$$v(t) = V_m \cos(\omega t + \phi) \longrightarrow V = V_m \angle \phi$$
 (time domain) (phasor domain)

- <u>Amplitude</u> and <u>phase difference</u> are two principal concerns in the study of voltage and current sinusoids.
- Phasor will be defined from the <u>cosine function</u> in all our proceeding study. If a voltage or current expression is in the form of a sine, it will be changed to a cosine by subtracting from the phase.

9.3 Phasor (5)

Example 4

Transform the following sinusoids to phasors:

$$i = 6\cos(50t - 40^{\circ}) A$$

v = -4sin(30t + 50°) V

$$\sin(\omega t \pm 180^{\circ}) = -\sin\omega t$$

 $\cos(\omega t \pm 180^{\circ}) = -\cos\omega t$
 $\sin(\omega t \pm 90^{\circ}) = \pm\cos\omega t$
 $\cos(\omega t \pm 90^{\circ}) = \mp\sin\omega t$

Solution:

a.
$$I = 6 \angle -40^{\circ}$$
 A

b. Since
$$-\sin(A) = \cos(A+90^{\circ});$$

$$v(t) = 4\cos(30t+50^{\circ}+90^{\circ}) = 4\cos(30t+140^{\circ}) \text{ V}$$

Transform to phasor = $\frac{V}{2}$ $\frac{4}{140}$ ° V

9.3 Phasor (6)

Example 5:

Transform the sinusoids corresponding to phasors:

a.
$$V = -10 \angle 30^{\circ} V$$

b.
$$I = j(5 - j12)$$
 A

Solution:

a)
$$v(t) = 10\cos(\omega t + 210^{\circ}) \text{ V}$$

b) Since
$$I = 12 + j5 = \sqrt{12^2 + 5^2} \angle \tan^{-1}(\frac{5}{12}) = 13\angle 22.62^\circ$$

 $i(t) = 13\cos(\omega t + 22.62^\circ) A$

9.3 Phasor (7)

The differences between v(t) and V:

- v(t) is instantaneous or <u>time-domain</u> representation

 <u>V is the frequency</u> or phasor-domain representation.
- v(t) is time dependent, V is not.
- v(t) is always real with no complex term, V is generally complex.

Note: Phasor analysis applies only when frequency is constant; when it is applied to two or more sinusoid signals only if they have the same frequency.

9.3 Phasor (8)

Relationship between differential, integral operation in phasor listed as follow:

$$v(t) \longleftrightarrow V = V \angle \phi$$

$$\frac{dv}{dt} \longleftrightarrow j\omega V$$

$$\int v dt \longleftrightarrow \frac{V}{j\omega}$$

9.4 Phasor Relationships for Circuit Elements (1)

9.4 Phasor Relationships for Circuit Elements (2)

Summary of voltage-current relationship		
Element	Time domain	Frequency domain
R	v = Ri	V = RI
L	$v = L \frac{di}{dt}$	$V = j\omega LI$
C	$i = C \frac{dv}{dt}$	$V = \frac{I}{j\omega C}$

Example Problem

The voltage $v = 12 \cos(60t + 45^{\circ})$ is applied to a 0.1-H inductor. Find the steady-state current through the inductor.

Solution:

For the inductor, $V = j\omega LI$, where $\omega = 60$ rad/s and $V = 12/45^{\circ} V$. Hence,

$$I = \frac{V}{j\omega L} = \frac{12/45^{\circ}}{j60 \times 0.1} = \frac{12/45^{\circ}}{6/90^{\circ}} = 2/-45^{\circ} A$$

Converting this to the time domain,

$$i(t) = 2\cos(60t - 45^{\circ}) \text{ A}$$

9.4 Phasor Relationships for Circuit Elements (3)

Example 7

If voltage $v(t) = 6\cos(100t - 30^\circ)$ is applied to a 50 µF capacitor, calculate the current, i(t), through the capacitor.

Answer: $i(t) = 30 \cos(100t + 60^{\circ}) \text{ mA}$

9.5 Impedance and Admittance (2)

The <u>impedance Z</u> of a circuit is the <u>ratio of the phasor</u>
 <u>voltage V to the phasor current I</u>, measured in ohms Ω.

$$Z = \frac{V}{I} = R + jX$$

where R = Re, Z is the resistance and X = Im, Z is the reactance. Positive X is for L and negative X is for C.

 The admittance Y is the <u>reciprocal</u> of impedance, measured in siemens (S).

$$Y = \frac{1}{Z} = \frac{I}{V}$$

9.5 Impedance and Admittance (2)

Impedances and admittances of passive elements

Element	Impedance	Admittance
R	Z = R	$Y = \frac{1}{R}$
L	$Z = j\omega L$	$Y = \frac{1}{j\omega L}$
C	$Z = \frac{1}{j\omega C}$	$Y = j\omega C$

9.5 Impedance and Admittance (3)

9.5 Impedance and Admittance (4)

After we know how to convert RLC components from time to phasor domain, we can <u>transform</u> a time domain circuit into a phasor/frequency domain circuit.

Hence, we can apply the KCL laws and other theorems to <u>directly</u> set up phasor equations involving our target variable(s) for solving.

Impedance and Admittance

Find v(t) and i(t) in the circuit shown in Fig. 9.16.

Solution:

From the voltage source 10 cos 4t, $\omega = 4$,

$$V_s = 10/0^{\circ} V$$

The impedance is

$$\mathbf{Z} = 5 + \frac{1}{j\omega C} = 5 + \frac{1}{j4 \times 0.1} = 5 - j2.5 \,\Omega$$

Hence the current

$$\mathbf{I} = \frac{\mathbf{V}_s}{\mathbf{Z}} = \frac{10/0^{\circ}}{5 - j2.5} = \frac{10(5 + j2.5)}{5^2 + 2.5^2}$$
$$= 1.6 + j0.8 = 1.789/26.57^{\circ} \,\text{A}$$

The voltage across the capacitor is

$$\mathbf{V} = \mathbf{IZ}_C = \frac{\mathbf{I}}{j\omega C} = \frac{1.789/26.57^{\circ}}{j4 \times 0.1}$$
$$= \frac{1.789/26.57^{\circ}}{0.4/90^{\circ}} = 4.47/-63.43^{\circ} \text{ V}$$

$$i(t) = 1.789 \cos(4t + 26.57^{\circ}) \text{ A}$$

 $v(t) = 4.47 \cos(4t - 63.43^{\circ}) \text{ V}$

Notice that i(t) leads v(t) by 90° as expected.

9.5 Impedance and Admittance (5)

Example 9.9 and practice problem 9.9

Refer to Figure below, determine v(t) and i(t).

Answers: $i(t) = 1.118\cos(10t - 26.56^{\circ}) A$; $v(t) = 2.236\cos(10t + 63.43^{\circ}) V$

9.6 Kirchhoff's Laws in the Frequency Domain (1)

- Both KVL and KCL are hold in the <u>phasor</u> domain or more commonly called <u>frequency</u> domain.
- Moreover, the variables to be handled are <u>phasors</u>, which are <u>complex numbers</u>.
- All the mathematical operations involved are now in complex domain.

10/17/2023 Ch.9 AC Circuits 27

9.7 Impedance Combinations (1)

 The following principles used for DC circuit analysis all apply to AC circuit.

- For example:
 - a. voltage division
 - b. current division
 - c. circuit reduction
 - d. impedance equivalence
 - e. Y-Δ transformation

10/17/2023 Ch.9 AC Circuits 28

9.7. Impedance Combinations – Series

$$\mathbf{Z}_{\text{eq}} = \frac{\mathbf{V}}{\mathbf{I}} = \mathbf{Z}_1 + \mathbf{Z}_2 + \cdots + \mathbf{Z}_N$$

$$\mathbf{Z}_{eq} = \mathbf{Z}_1 + \mathbf{Z}_2 + \cdots + \mathbf{Z}_N$$

Figure 9.19 Voltage division.

$$I = \frac{V}{Z_1 + Z_2}$$

Since $V_1 = Z_1I$ and $V_2 = Z_2I$, then

$$V_1 = \frac{Z_1}{Z_1 + Z_2} V, \qquad V_2 = \frac{Z_2}{Z_1 + Z_2} V$$

Impedance CombinationsParallel

$$\mathbf{I} = \mathbf{I}_1 + \mathbf{I}_2 + \dots + \mathbf{I}_N = \mathbf{V} \left(\frac{1}{\mathbf{Z}_1} + \frac{1}{\mathbf{Z}_2} + \dots + \frac{1}{\mathbf{Z}_N} \right)$$

The equivalent impedance is

$$\frac{1}{\mathbf{Z}_{eq}} = \frac{\mathbf{I}}{\mathbf{V}} = \frac{1}{\mathbf{Z}_1} + \frac{1}{\mathbf{Z}_2} + \dots + \frac{1}{\mathbf{Z}_N}$$

and the equivalent admittance is

$$\mathbf{Y}_{\mathrm{eq}} = \mathbf{Y}_1 + \mathbf{Y}_2 + \dots + \mathbf{Y}_N$$

Figure 9.21 Current division.

$$\mathbf{Z}_{eq} = \frac{1}{\mathbf{Y}_{eq}} = \frac{1}{\mathbf{Y}_1 + \mathbf{Y}_2} = \frac{1}{1/\mathbf{Z}_1 + 1/\mathbf{Z}_2} = \frac{\mathbf{Z}_1\mathbf{Z}_2}{\mathbf{Z}_1 + \mathbf{Z}_2}$$

30

9.7 Impedance Combinations (2)

Example 9.10

Determine the input impedance of the circuit in figure below at $\omega = 50$ rad/s.

<u>Answer</u>: $Z_{in} = 3.22 - j11.07$ Ohm

10/17/2023 Ch.9 AC Circuits 31

Solution:

Let

 Z_1 = Impedance of the 2-mF capacitor

 \mathbf{Z}_2 = Impedance of the 3-Ohm resistor in series with the 10-mF capacitor

 \mathbf{Z}_3 = Impedance of the 0.2-H inductor in series with the 8-Ohm resistor

$$\mathbf{Z}_{1} = \frac{1}{j\omega C} = \frac{1}{j50 \times 2 \times 10^{-3}} = -j10 \,\Omega$$

$$\mathbf{Z}_{2} = 3 + \frac{1}{j\omega C} = 3 + \frac{1}{j50 \times 10 \times 10^{-3}} = (3 - j2) \,\Omega$$

$$\mathbf{Z}_{3} = 8 + j\omega L = 8 + j50 \times 0.2 = (8 + j10) \,\Omega$$

The input impedance is

$$\mathbf{Z}_{in} = \mathbf{Z}_1 + \mathbf{Z}_2 \| \mathbf{Z}_3 = -j10 + \frac{(3 - j2)(8 + j10)}{11 + i8}$$
$$= -j10 + \frac{(44 + j14)(11 - j8)}{11^2 + 8^2} = -j10 + 3.22 - j1.07 \Omega$$

$$\mathbf{Z}_{in} = 3.22 - j11.07 \,\Omega$$

Determine the input impedance of the circuit in Figure at W = 10 rad/s.

(**Ans:** 149.52-j195)

10/17/2023 Ch.9 AC Circuits

Example Problem

1. Determine v_0 (t) in the circuit of Figure.

 $v_o(t) = 17.15 \cos(4t + 15.96^\circ) \text{ V}$

Convert parameters in Phasor Domain

$$v_s = 20 \cos(4t - 15^\circ)$$
 \Rightarrow $V_s = 20/-15^\circ \text{V}, \quad \omega = 4$
 10 mF \Rightarrow $\frac{1}{j\omega C} = \frac{1}{j4 \times 10 \times 10^{-3}}$
 $= -j25 \Omega$
 5 H \Rightarrow $j\omega L = j4 \times 5 = j20 \Omega$

Lct

 $\mathbf{Z}_1 = \text{Impedance of the } 60\text{-}\Omega \text{ resistor}$

Z₂ = Impedance of the parallel combination of the 10-mF capacitor and the 5-H inductor

Then $Z_1 = 60 \Omega$ and

$$\mathbf{Z}_2 = -j25 \parallel j20 = \frac{-j25 \times j20}{-j25 + j20} = j100 \Omega$$

By the voltage-division principle,

$$\mathbf{V}_o = \frac{\mathbf{Z}_2}{\mathbf{Z}_1 + \mathbf{Z}_2} \mathbf{V}_x = \frac{j100}{60 + j100} (20 / -15^\circ)$$

= $(0.8575 / 30.96^\circ)(20 / -15^\circ) = 17.15 / 15.96^\circ \text{ V}$

2. Find current i in the circuit of Figure, when $vs(t) = 50 \cos 200t \text{ V}$.

Solution

20 mH
$$v_s(t) = 50 \cos 200t$$
 \longrightarrow $V_s = 50 < 0^{\circ}, \omega = 200$

$$5mF \longrightarrow \frac{1}{j\omega C} = \frac{1}{j200x5x10^{-3}} = -j$$

$$20mH \longrightarrow j\omega L = j20x10^{-3}x200 = j4$$

$$Z_{in} = 10 - j + j4 = 10 + j3$$

$$I = \frac{V_s}{Z_{in}} = \frac{50 < 0^{\circ}}{10 + j3} = 4.789 < -16.7^{\circ}$$

$$i(t) = 4.789\cos(200t-16.7^{\circ}) A$$

9.41 Find v(t) in the RLC circuit of Fig. 9.48.

Figure 9.48 For Prob. 9.41.

$$\omega = 1,$$

$$1 \text{ H } \longrightarrow j\omega L = j(1)(1) = j$$

$$1 \text{ F } \longrightarrow \frac{1}{j\omega C} = \frac{1}{j(1)(1)} = -j$$

$$\mathbf{Z} = 1 + (1+j) \parallel (-j) = 1 + \frac{-j+1}{1} = 2 - j$$

$$\mathbf{I} = \frac{\mathbf{V}_s}{\mathbf{Z}} = \frac{10}{2 - \mathbf{j}}, \quad \mathbf{I}_c = (1 + \mathbf{j})\mathbf{I}$$

$$\mathbf{V} = (-\mathbf{j})(1+\mathbf{j})\mathbf{I} = (1-\mathbf{j})\mathbf{I} = \frac{(1-\mathbf{j})(10)}{2-\mathbf{j}} = 6.325 \angle -18.43^{\circ}$$

Thus,

$$v(t) = 6.325\cos(t - 18.43^{\circ}) V$$

Calculate v_o in the circuit

Answer: $v_o(t) = 35.36 \cos(10t - 105^\circ) \text{ V}.$

9.47 In the circuit of Fig. 9.54, determine the value of i_z(t).

Figure 9.54

For Prob. 9.47.

9.48 Given that v_s(t) = 20 sin(100t - 40°) in Fig. 9.55, determine i_s(t).

Figure 9.55

For Prob. 9.48.

9.49 Find v_x(t) in the circuit of Fig. 9.56 if the current i_x through the 1-Ω resistor is 0.5 sin 200t A.

Figure 9.56 For Prob. 9.49.

All the materials extracted from Fundamentals of Electric Circuits by Charles K. Alexander, Matthew N.O. Sadiku, 5th Edition, McGraw Hill, for the purpose of Teaching and Learning only.