Certain Answers meet Zero-One Laws

Leonid Libkin

University of Edinburgh

Orders

ORDER_ID	TITLE	PRICE
OrdI	"Big Data"	30
Ord2	"SQL"	35
Ord3	"Logic"	50

Pay

CUST_ID	ORDER
cl	OrdI
c2	Ord2

Customer

CUST_ID	NAME
cl	John
c2	Mary

Orders

ORDER_ID	TITLE	PRICE
OrdI	"Big Data"	30
Ord2	"SQL"	35
Ord3	"Logic"	50

Pay

CUST_ID	ORDER
cl	OrdI
c2	Ord2

Customer

CUST_ID	NAME
cl	John
c2	Mary

Typical queries, as we teach students to write them:

Orders

ORDER_ID	TITLE	PRICE
OrdI	"Big Data"	30
Ord2	"SQL"	35
Ord3	"Logic"	50

Pay

CUST_ID	ORDER
cl	OrdI
c2	Ord2

Customer

CUST_ID	NAME
cl	John
c2	Mary

Typical queries, as we teach students to write them:

Unpaid orders:

select O.order_id
from Orders O
where O.order_id not in
(select order from Pay P)

Orders

ORDER_ID	TITLE	PRICE
OrdI	"Big Data"	30
Ord2	"SQL"	35
Ord3	"Logic"	50

Pay

CUST_ID	ORDER
cl	OrdI
c2	Ord2

Customer

CUST_ID	NAME
cl	John
c2	Mary

Typical queries, as we teach students to write them:

Unpaid orders:

select O.order_id
from Orders O
where O.order_id not in
(select order from Pay P)

Customers without an order:

Orders

ORDER_ID	TITLE	PRICE
OrdI	"Big Data"	30
Ord2	"SQL"	35
Ord3	"Logic"	50

Pay

CUST_ID	ORDER
cl	OrdI
c2	Ord2

Customer

CUST_ID	NAME
cl	John
c2	Mary

Typical queries, as we teach students to write them:

Unpaid orders:

select O.order_id
from Orders O
where O.order_id not in
(select order from Pay P)

Answer: Ord3.

Customers without an order:

select C.cust_id from Customer C
where not exists
(select * from Orders O, Pay P
where C.cust_id=P.cust_id
and P.order=O.order_id)

Answer: none.

Orders

ORDER_ID	TITLE	PRICE
OrdI	"Big Data"	30
Ord2	"SQL"	35
Ord3	"Logic"	50

Pay

CUST_ID	ORDER
cl	OrdI
c2	Ord2

Customer

CUST_ID	NAME
cl	John
c2	Mary

Typical queries, as we teach students to write them:

Unpaid orders:

select O.order_id
from Orders O
where O.order_id not in
(select order from Pay P)

Customers without an order:

Orders

ORDER_ID	TITLE	PRICE
OrdI	"Big Data"	30
Ord2	"SQL"	35
Ord3	"Logic"	50

Pay

CUST_ID	ORDER
cl	OrdI
c2	Ord2

Customer

CUST_ID	NAME
cl	John
c2	Mary

Unpaid orders:

select O.order_id
from Orders O
where O.order_id not in
(select order from Pay P)

Customers without an order:

Orders

ORDER_ID	TITLE	PRICE
OrdI	"Big Data"	30
Ord2	"SQL"	35
Ord3	"Logic"	50

Pay

CUST_ID	ORDER
cl	OrdI
c2	Ord2

Customer

CUST_ID	NAME
cl	John
c2	Mary

In the real world, information is often missing

Unpaid orders:

select O.order_id
from Orders O
where O.order_id not in
(select order from Pay P)

Customers without an order:

Orders

ORDER_ID	TITLE	PRICE
Ordl	"Big Data"	30
Ord2	"SQL"	35
Ord3	"Logic"	50

Pay

Customer

CUST_ID	NAME
cl	John
c2	Mary

In the real world, information is often missing

Unpaid orders:

select O.order_id
from Orders O
where O.order_id not in
(select order from Pay P)

Customers without an order:

Orders

ORDER_ID	TITLE	PRICE
OrdI	"Big Data"	30
Ord2	"SQL"	35
Ord3	"Logic"	50

Pay

CUST_ID	ORDER
cl	OrdI
c2	

Customer

CUST_ID	NAME
cl	John
c2	Mary

In the real world, information is often missing

Unpaid orders:

select O.order_id
from Orders O
where O.order_id not in
(select order from Pay P)

Customers without an order:

Orders

ORDER_ID	TITLE	PRICE
OrdI	"Big Data"	30
Ord2	"SQL"	35
Ord3	"Logic"	50

Pay

CUST_ID	ORDER
cl	OrdI
c2	

Customer

CUST_ID	NAME
cl	John
c2	Mary

In the real world, information is often missing

Unpaid orders:

select O.order_id
from Orders O
where O.order_id not in
(select order from Pay P)

Customers without an order:

select C.cust_id from Customer C
where not exists
(select * from Orders O, Pay P
where C.cust_id=P.cust_id
and P.order=O.order_id)

Old Answer: Ord3 New: NONE! Old answer: none New: c2!

Problems

- There is a good understanding of what correctness is: certain answers
 - true in all completions (restricted validity)
- Computationally hard: coNP-hard for basic SQL
 - Hence DBMSs sacrifice correctness to ensure efficiency
 - SQL DBMSs use special rules based on 3valued logic to get query answers
 - and these answers can be very wrong...

How to solve it

For many years, the community adopted this approach

Recently, a new idea emerged: approximations of certain answers

Can be found efficiently for all relational algebra queries

Behave well in theory (L., ACM TODS 2016) and practice (Guagliardo, L. PODS'16 + followups)

- Treat nulls as new constants
- Evaluate query using standard techniques
- Heavily used: data integration/exchange, OBDA etc

Orders

ORDER_ID	TITLE	PRICE
OrdI	"Big Data"	30
Ord2	"SQL"	35
Ord3	"Logic"	50

Pay

Customer

CUST_ID	NAME
cl	John
c2	Mary

- Treat nulls as new constants
- Evaluate query using standard techniques
- Heavily used: data integration/exchange, OBDA etc

Orders

ORDER_ID	TITLE	PRICE
OrdI	"Big Data"	30
Ord2	"SQL"	35
Ord3	"Logic"	50

Pay

Customer

CUST_ID	NAME
cl	John
c2	Mary

Unpaid orders:

select O.order_id
from Orders O
where O.order_id not in
(select order from Pay P)

- Treat nulls as new constants
- Evaluate query using standard techniques
- Heavily used: data integration/exchange, OBDA etc

Orders

ORDER_ID	TITLE	PRICE
OrdI	"Big Data"	30
Ord2	"SQL"	35
Ord3	"Logic"	50

Pay

Customer

CUST_ID	NAME
cl	John
c2	Mary

Unpaid orders:

select O.order_id
from Orders O
where O.order_id not in
(select order from Pay P)

Customers without an order:

- Treat nulls as new constants
- Evaluate query using standard techniques
- Heavily used: data integration/exchange, OBDA etc

Orders

ORDER_ID	TITLE	PRICE
OrdI	"Big Data"	30
Ord2	"SQL"	35
Ord3	"Logic"	50

Pay

Customer

CUST_ID	NAME
cl	John
c2	Mary

Unpaid orders:

select O.order_id
from Orders O
where O.order_id not in
(select order from Pay P)

Answer: Ord2, Ord3.

Customers without an order:

- Treat nulls as new constants
- Evaluate query using standard techniques
- Heavily used: data integration/exchange, OBDA etc

Orders

ORDER_ID	TITLE	PRICE
OrdI	"Big Data"	30
Ord2	"SQL"	35
Ord3	"Logic"	50

Pay

Customer

CUST_ID	NAME
cl	John
c2	Mary

Unpaid orders:

select O.order_id
from Orders O
where O.order_id not in
(select order from Pay P)

Customers without an order:

- Treat nulls as new constants
- Evaluate query using standard techniques
- Heavily used: data integration/exchange, OBDA etc

Orders

ORDER_ID	TITLE	PRICE
OrdI	"Big Data"	30
Ord2	"SQL"	35
Ord3	"Logic"	50

Pay

CUST_ID	ORDER
cl	OrdI
c2	4

Customer

CUST_ID	NAME
cl	John
c2	Mary

Unpaid orders:

select O.order_id from Orders O where O.order_id not in (select order from Pay P)

Customers without an order:

```
select C.cust_id from Customer C
where not exists
(select * from Orders O, Pay P
where C.cust_id=P.cust_id
and P.order=O.order_id)
```

How bad are bad answers?

- What if ⊥ is a constant that is different from Ord1, Ord2, Ord3?
- Then naive evaluation actually produces correct answers!
- If we know nothing about it is not such an unreasonable assumption: there could be many orders?
- But what if we know ⊥ ∈ {Ord1,Ord2,Ord3}?
- Then answer to the first query is Ord2 with 50% chance and Ord3 with 50% chance. Answer to the second query is empty.

Questions

- Is naive evaluation always good without constraints on nulls, or we just got lucky?
 - Yes, it always is
- Can we get the second type of answers, with constraints?
 - Yes, but with more work
- Now revisit certain answers, and connect with a well know subject in logic and probability

Incomplete data and certain answers

Incomplete database D represents many complete databases D₁, D₂,

This is done by interpreting

For example, by assigning values to every null that occurs in D

Incomplete data and certain answers

A formula α over graphs; green = true; red = false

α is almost surely valid: true in almost all graphs

Examples:

- µ(has isolated node) = 0
- · μ(is a tree)=0
- μ (connected) = 1
- μ(has diameter at most 2) = 1

A formula α over graphs; green = true; red = false

α is almost surely valid: true in almost all graphs

- pick a graph G at random
- calculate the probability $\mu(\alpha)$ that α is true in G
- $\mu(\alpha) = 1 \Leftrightarrow \alpha$ is almost surely valid

Examples:

- µ(has isolated node) = 0
- · μ(is a tree)=0
- µ(connected) = 1
- µ(has diameter at most 2) = 1

Extended to many other logics: Fixed-point, Infinitary logics, Fragments of second-order logic; Other distributions too

A very active subject in logic/combinatorics

Fagin 1976: if α is first-order, then $\mu(\alpha)$ is 0 or 1

Extended to many other logics: Fixed-point, Infinitary logics, Fragments of second-order logic; Other distributions too

A very active subject in logic/combinatorics

Fagin 1976: if α is first-order, then $\mu(\alpha)$ is 0 or 1

 α is valid (true in all graphs) - undecidable. α is almost surely valid ($\mu(\alpha) = 1$) - easy to decide.

Extended to many other logics: Fixed-point, Infinitary logics, Fragments of second-order logic; Other distributions too

A very active subject in logic/combinatorics

Certainty and Zero-One Laws

For query Q:

- pick a complete database D_i at random
- $\mu(Q,D,a)$: probability that $a \in Q(D_i)$

$$\mu(Q,D,a) = 1 \Rightarrow$$

a = almost certainly true answer to Q in D

Certainty and Zero-One Laws

For query Q:

- pick a complete database Di at random
- $\mu(Q,D,a)$: probability that $a \in Q(D_i)$

$$\mu(Q,D,a) = 1 \Rightarrow$$

a = almost certainly true answer to Q in D

Questions

- 1. When is $\mu(Q,D,a) = 1$?
- 2. How easy is it to compute?
- 3. Can an answer be 50% true?
- 4. Is one tuple a better answer than another?

The model

Marked nulls - common in data integration, exchange, OBDA, generalize SQL nulls

Valuations v: Nulls → Constants

A tuple of constants c is a certain answer: c ∈ Q(v(D)) for each valuation v

An arbitrary tuple a is a certain answer: $v(a) \in Q(v(D))$ for each valuation v

Definition of certain answers from Lipski 1984; unfortunately forgotten for years in favour of the constants-only definition

A tuple of constants c is a certain answer: c ∈ Q(v(D)) for each valuation v

An arbitrary tuple a is a certain answer: $v(a) \in Q(v(D))$ for each valuation v

Definition of certain answers from Lipski 1984; unfortunately forgotten for years in favour of the constants-only definition

Support of a:

Supp(Q,D,a) = {valuations $v \mid v(a) \in Q(v(D))$ }

Support of a: Supp(Q,D,a) = {valuations $v \mid v(a) \in Q(v(D))$ }

Answer a is certain ⇔ every valuation v is in Supp(Q,D,a)

Certain Answers

Support of a: Supp(Q,D,a) = {valuations $v \mid v(a) \in Q(v(D))$ }

Answer a is certain ⇔ every valuation v is in Supp(Q,D,a)

Idea: answer a is almost certainly true

⇔ a randomly chosen valuation v is in Supp(Q,D,a)

Certain Answers

Support of a: Supp(Q,D,a) = {valuations $v \mid v(a) \in Q(v(D))$ }

Answer a is certain ⇔ every valuation v is in Supp(Q,D,a)

Idea: answer a is almost certainly true

⇔ a randomly chosen valuation v is in Supp(Q,D,a)

A small problem: there are infinitely many valuations. But techniques from zero-one laws help: look at finite approximations.

Measuring Certainty

```
Constants (non-nulls) = \{c_1, c_2, c_3, \dots\}
```

 $Valuation_k = finite set of valuations with range \subseteq \{c_1, ..., c_k\}$

 $Supp_k(Q,D,a) = Supp(Q,D,a) \cap Valuation_k$

Measuring Certainty

```
Constants (non-nulls) = \{c_1, c_2, c_3, \dots, \}
```

 $Valuation_k = finite set of valuations with range \subseteq \{c_1, ..., c_k\}$

$$Supp_k(Q,D,a) = Supp(Q,D,a) \cap Valuation_k$$

$$\mu_k(Q,D,a) = \frac{|Supp_k(Q,D,a)|}{|Valuation_k|}$$
 (a number in [0,1])

Interpretation: Probability that a randomly chosen valuation with range in $\{c_1, ..., c_k\}$ witnesses that a is an answer to Q

Measuring Certainty

 $\mu(Q,D,a) = \lim_{k\to\infty} \mu_k(Q,D,a)$

Interpretation: Probability that a randomly chosen valuation witnesses that a is an answer to Q

Observation: the value $\mu(Q,D,a)$ does not depend on a particular enumeration of $\{c_1, c_2, c_3, \dots\}$

Zero-One Law

Zero-One Law

- Q: any reasonable query
 - definable in a query language such as relational algebra, datalog, second-order logic etc - formally, generic

Zero-One Law and Naive Evaluation

Zero-One Law and Naive Evaluation

- μ(Q,D,a) = 1 ⇔ a is returned by the naive evaluation of Q
 - thus almost certainly true answers are much easier to compute than certain answers
 - and naive evaluation is justified as being very close to certainty

Α	В	Α	В	Α	В
1	\perp_1	1		 4	
2	\perp_1	l l		l	- 1
2	\perp_2	2	\perp_1	2	\perp_2

Α	В	Α	В		Α	В
1	\perp_1	1			4	
2	\perp_1	I	<u>+2</u>	=	I	<u></u> 1
2	\perp_2	2	\perp_1		2	\perp_2

Certain answer is empty because of valuations $\perp_1, \perp_2 \rightarrow c$

If the range of nulls is infinite, such valuations are unlikely.

Returned tuples are almost certainly true answers - but not certain.

Α	В	A	В	Α	В
1	\perp_1	1	1 -	 1	
2	\perp_1		<u>+2</u>	·	- 1
2	\perp_2	2	\perp_1	2	\perp_2

Certain answer is empty because of valuations $\perp_1, \perp_2 \rightarrow c$

If the range of nulls is infinite, such valuations are unlikely. Returned tuples are almost certainly true answers - but not certain.

In general, naive evaluation \(\neq \) certain answers. Exceptions:

- unions of conjunctive queries
- their extension with Q + R where R is a relation

Α	В	Α	В		Α	В
1	\perp_1	4			1	ı
2	\perp_1	<u> </u>		=	l	<u></u> 1
2	\perp_2	2	\perp_1		2	\perp_2

What if:

- 1. A is a key of the second relation (which forces $\perp_1 = \perp_2$), or
- 2. there is a restriction on the range of B?

The reasoning that valuations $\perp_{1,\perp_{2}} \rightarrow c$ are unlikely no longer works

This is due to the presence of constraints.

Certainty with constraints

- Only interested in databases satisfying integrity constraints ∑ - for example, keys or foreign keys
- Standard approach: find certain answers to $\Sigma \rightarrow Q$
- Not very informative (because Σ → Q is ¬Σ ∨ Q)
 - if $\mu(\Sigma,D) = 0$, then $\mu(\Sigma \rightarrow Q,D,a) = 1$
 - if $\mu(\Sigma,D) = 1$, then $\mu(\Sigma \rightarrow Q,D,a) = \mu(Q,D,a)$

Certainty with constraints

- A better idea: use conditional probability $\mu(Q \mid \Sigma, D, a)$
 - probability that a randomly chosen valuation that satisfies Σ also witnesses that a is an answer to Q
- Still defined as a limit since there are infinitely many valuations

Measuring certainty with constraints

 $Supp_k(Q,D,a) = \{valuations v \in Valuation_k \mid v(a) \in Q(v(D)) \}$

$$\mu_k(\mathbf{Q} \mid \Sigma, D, a) = \frac{|Supp_k(\mathbf{Q} \wedge \Sigma, D, a)|}{|Supp_k(\Sigma, D, a)|}$$

Interpretation: Probability that a randomly chosen valuation with range in $\{c_1, ..., c_k\}$ that witnesses constraints Σ also witnesses that a is an answer to Q

Measuring certainty with constraints

$$\mu(Q \mid \Sigma, D, a) = \lim_{k\to\infty} \mu_k(Q \mid \Sigma, D, a)$$

Interpretation: Probability that a randomly chosen valuation that witnesses constraints Σ also witnesses that α is an answer to Ω

Observation: the value $\mu(Q \mid \Sigma, D, a)$ does not depend on a particular enumeration of $\{c_1, c_2, c_3, \dots\}$

Zero-One Law fails with constraints

- Database D: $R = \{\bot\}$, $S = \{1\}$, $U = \{1,2\}$
- Constraint: R ⊆ U
- Query Q: is R ⊆ S?
- $\mu(Q \mid \Sigma, D, a) = 0.5$

What if zero-one fails?

- The best next thing: convergence
- Consider, for example, ordered graphs.
- Zero-one law fails: μ(edge between the smallest and the largest element) = 0.5
- But μ(α) exists for every first-order α
 - and is a rational of the form n/2^m (Lynch 1980)

 Q: any reasonable query, Σ: any reasonable constraints (both generic)

- Q: any reasonable query, Σ: any reasonable constraints (both generic)
- Theorem: $\mu(Q \mid \Sigma, D, a)$ always exists
 - μ(Q | Σ, D, a) is a rational number between 0 and 1

- Q: any reasonable query, Σ: any reasonable constraints (both generic)
- Theorem: $\mu(Q \mid \Sigma, D, a)$ always exists
 - μ(Q Σ, D, a) is a rational number between 0 and 1
- Every rational number in [0,1] can appear as
 μ(Q | Σ, D, a) for a conjunctive query Q and inclusion constraints Σ

• Computing $\mu(Q \mid \Sigma, D, a)$

- Computing $\mu(Q \mid \Sigma, D, a)$
- It is a rational number, so need a function complexity class

- Computing $\mu(Q \mid \Sigma, D, a)$
- It is a rational number, so need a function complexity class
- It can be computed in FP^{#P}
 - functions computable in polynomial time with access to #P oracle

- Computing $\mu(Q \mid \Sigma, D, a)$
- It is a rational number, so need a function complexity class
- It can be computed in FP^{#P}
 - functions computable in polynomial time with access to #P oracle
- Computing μ(Q | Σ, D, a) could be hard for FP^{#P}
 - under the appropriate definition of hardness for function classes

Constraints and zero-one laws

- Zero-one law still holds for some constraints, e.g., functional dependencies
- **\(\Sigma\)**: a set of functional dependencies.
- Known: if Q is a conjunctive query, then certain answers under $\Sigma = Q(\text{chase}(D,\Sigma))$
- If Q is an arbitrary query, then
 almost certainly true answers under Σ = Q(chase(D,Σ))
 - $\mu(\mathbf{Q} \mid \Sigma, \mathbf{D}, \mathbf{a}) = \mu(\mathbf{Q}, \mathbf{chase}(\mathbf{D}, \Sigma), \mathbf{a})$

 We can also use supports Supp(Q,D,a) to define qualitative measures:

- We can also use supports Supp(Q,D,a) to define qualitative measures:
 - a is at least as good an answer as b, to query Q if Supp(Q,D,b) ⊆ Supp(Q,D,a)

- We can also use supports Supp(Q,D,a) to define qualitative measures:
 - a is at least as good an answer as b, to query Q if Supp(Q,D,b) ⊆ Supp(Q,D,a)
 - a is a better answer than b, to query Q if Supp(Q,D,b) ⊆ Supp(Q,D,a)

- We can also use supports Supp(Q,D,a) to define qualitative measures:
 - a is at least as good an answer as b, to query Q if Supp(Q,D,b) ⊆ Supp(Q,D,a)
 - a is a better answer than b, to query Q if Supp(Q,D,b) ⊆ Supp(Q,D,a)
 - a is a best answer to Q if there is no better answer

Qualitative measure: example

Α	В
1	\perp_1
2	\perp_1
2	\perp_2

Qualitative measure: example

Α	В
1	\perp_1
2	\perp_1
2	\perp_2

- No certain answers
- Naive evaluation gives (1, \perp_1) and (2, \perp_2)
- (2, \perp_2) is a better answer than (1, \perp_1)
- Best answer = $(2, \perp_2)$

Qualitative measure: example

Α	В		_
1	\perp_1	Α	В
2	\perp_1	1	⊥2
2	\perp_2	2	\perp_1

- No certain answers
- Naive evaluation gives (1, \perp_1) and (2, \perp_2)
- (2, \perp_2) is a better answer than (1, \perp_1)
- Best answer = $(2, \perp_2)$

Unlike certain answers, best answers always exist

- Fix a query Q of relational algebra/calculus
- Input: database D, tuples a and b

- Fix a query Q of relational algebra/calculus
- Input: database D, tuples a and b
- Is a at least as good as b?

coNP-complete

- Fix a query Q of relational algebra/calculus
- Input: database D, tuples a and b
- Is a at least as good as b? coNP-complete
- Is a better than b?

 DP-complete

- Fix a query Q of relational algebra/calculus
- Input: database D, tuples a and b
- Is a at least as good as b?
- Is a better than b?
- Identify the set of best answers:

coNP-complete

DP-complete

P^{NP[log n]}-complete

- Fix a query Q of relational algebra/calculus
- Input: database D, tuples a and b
- Is a at least as good as b? coNP-complete
- Is a better than b?
- Identify the set of best answers: PNP[log n]-complete
- For unions of conjunctive queries, all in PTIME.
 - Does not go via naive evaluation; the algorithm is of very different nature

Quantitative vs qualitative

- Quantitative: $\mu(Q,D,a) = 0$ or $\mu(Q,D,a) = 1$
- Qualitative: best or not best
- All 4 combinations are possible, even for first-order queries

Summary

Almost certainly true answers to queries on incomplete databases

- Very good though not always perfect
- Much better than certain answers computationally

Summary

Almost certainly true answers to queries on incomplete databases

- Very good though not always perfect
- Much better than certain answers computationally

Future

Summary

Almost certainly true answers to queries on incomplete databases

- Very good though not always perfect
- Much better than certain answers computationally

Future

- Other data models
- SQL nulls and SQL evaluation
- Other distributions
- Applications of certain answers (integration, exchange, etc)