

UNIVERSIDADE FEDERAL DE OURO PRETO - UFOP INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS -ICEB

ELETRÔNICA PARA COMPUTAÇÃO - BCC265 TURMA 31 - GRUPO 1

RELATÓRIO DE ATIVIDADE LABORATÓRIO 1

Leandro Augusto Ferreira Santos Luiz Eduardo Fugliaro Raul de Oliveira Gonçalves

Ouro Preto - Minas Gerais 2022

INTRODUÇÃO:

Com o objetivo de entender somadores completos e divididos, além de melhor compreender a aplicação de portas lógicas, construímos e interligamos, nessa aula prática, meio-somadores e somadores completos no laboratório da UFOP. Para uma melhor simulação e auxílio na construção física, simulamos o circuito no Tinkercad, simulador online de sistemas eletrônicos. No laboratório, com auxílio de "jumpers" e circuitos integrados, construímos, no Protoboard, todo o circuito requisitado: somador de bits, além de fotografar as etapas para registro no relatório. Esta atividade é uma continuação dos conteúdos vistos anteriormente, sendo assim, conhecimentos serão reforçados e, também, adquiridos.

ATIVIDADE 1

a) Na primeira atividade, foi-nos proposto a construção de um somador completo utilizando dois meio-somadores. Partindo deste objetivo, identificamos, no circuito, os CI's necessários junto aos seus datasheets. As portas lógicas encontradas foram a AND, XOR e OR que, associadas devidamente, colocarão em funcionamento o nosso somador de bits.

Com estas informações em mãos, elaboramos o circuito digital, que pode ser visto na imagem abaixo:

Circuito esquematizado

Figura 1

Agora, com a concretização do circuito, elaboramos a tabela-verdade, construindo todas as possibilidades de entrada e saída. Assim, poderemos simular os resultados e compará-los às informações da tabela.

c)

	ENTRADAS			SAÍDAS				
	cin	X	Υ	S'	C'	S	С	
0	0	0	0	0	0	0	0	
1	0	0	1	1	0	1	0	
2	0	1	0	1	0	1	0	
3	0	1	1	0	1	0	1	
4	1	0	0	0	0	1	0	
5	1	0	1	1	0	0	1	
6	1	1	0	1	0	0	1	
7	1	1	1	0	1	1	1	

As simulações podem ser vistas a seguir:

$0\ 0\ 1 = 1\ 0$

0 1 1 = 0 1

 $0\ 1\ 0 = 1\ 0$

1 0 0 = 1 0

1 0 1 = 0 1

1 1 0 = 0 1

Com estas aplicações, podemos perceber o comportamento do somador de bits, onde a saída curry out armazena o "vai um" da soma quando (1 + 1 = 0 e "vai um"). Assim, quando o circuito capta uma soma (1+1), a saída C armazena o 1 de "acréscimo", acendendo o LED.

d) Como pedido no enunciado, montamos o circuito proposto e realizamos as substituições que se mostraram equivalentes.

1 0 = 1 0

1 1 = 0 1

e) O comportamento do circuito foi verificado nos testes acima.

f)

Α	В	С	S		SAÍDA S			SAÍDA C			
				С	AB/C	0	1	AB/C	0		
0	0	0	0	0	00	0	1	00	0		
0	0	1	1	0	01	1	0	01	0		
0	1	0	1	0	11	0	1	11	1		
0	1	1	0	1	10	1	0	10	0		
1	0	0	1	0		1100000					
1	0	1	0	1	☐ A.B.C	S = ABC + ~A~BC + A~B~C + ~AB~C		☐ A.B			
1	1	0	0	1	□ ~A.~B.C □ A.~B.~C			☐ B.C			
1	1	1	1	1	□ ~A.B.~C	OL		☐ A.C			
						S = A ⊕ E	3 ⊕ C				

Estes são a tabela-verdade, o mapa de Karnaugh e as expressões lógicas. Com a extração desses artificios, podemos comprovar o circuito, suas portas lógicas, suas entradas e devidas saídas.

CONCLUSÃO:

Ao final desta atividade, podemos ampliar o nosso olhar acerca do mundo da eletrônica digital e seus componentes. Assim como, retiramos a soma de bits do papel e implementamos em um circuito real, absorvendo conhecimento sobre o funcionamento dos circuitos digitais aplicados à vida real. Outros conhecimentos, previamente necessários, também puderam ser reforçados e ampliados.