b. Analyze the difference between external and internal time synchronization and illustrate atleast one concrete example for each type of synchronization.	10	4	2	2,3
28. a. Outline the approach of S-MAC protocol and infer the method used to reduce collisions, duty cycles and address hidden terminal problem. Name atleast three disadvantages of the S-MAC protocol.	10	4	2	1
(OR)				
b. Analyze the problem with the energy-ware cluster head election policy in LEACH protocol and state how it considers the available energy on each node in the election process. Further, LEACH uses TDMA within a cluster,	10	4	2	2,4
outline the advantages and disadvantages of this approach.				
	10	3	3	1,2
29. a. Examine the three challenges faced by flooding method and show the solution provided by the SPIN family of protocols. Determine the	10	-		-,-
disadvantages of a negotiation based protocol such as SPIN.				
(OR)				
b. Determine the classifications of routing protocols based on the network	10	3	3	1,2
structure, route discovery and protocol operations. What is the difference				
between a proactive and reactive routing protocol and provide examples for each category.				
30. a. Outline the principles of WSN middle ware and categorize the middle ware approaches based on the programming models.	10	4	4	1,2
	.,			
(OR)	10	4	4	2,3
b. Analyze the challenges of security in wireless sensor networks and outline the attacks against the security mechanisms in wireless sensor networks.				 -

		_		-		_			
Reg. No.									

B.Tech. DEGREE EXAMINATION, MAY 2022

Sixth & Seventh Semester

18CSE451T – WIRELESS SENSOR NETWORKS

	(For the candidates admitted from	n the a	cademic year 2018-2019 to 2019-2020	リ					
Note:	5	1 ,	'.1.' C' . 40 ' 10MD 1	4 1 . 1	(11.	1	1 . 1		
(i)	Part - A should be answered in OMR s			t snoul	a be	nan	aea		
(**)	over to hall invigilator at the end of 40th								
(ii)	Part - B should be answered in answer b	ookie							
Time: 2 ¹	½ Hours			Max.	Ma	rks:	75		
	$PART - A (25 \times 1)$	= 25 1	Marks)	Marks	BL	СО	PO		
	Answer ALL Q)uesti	ons						
1.	An architecture that provides a sing	gle me	emory space for storing program	1	2	1	1		
	instructions and data.								
	(A) Harvard architecture	(B)	Von Neumann architecture						
	(C) SHARC architecture	(D)	Analog architecture						
2.	Example for a protocol that has bee	n des	igned specifically for short range	1	1	1	1		
	communications.								
	(A) IEEE 801.3	(B)	IEEE 802.2						
	(C) IEEE 802.15.4	(D)	IEEE 802.11a						
3.	A type of deployment of sensors	that	are done without any particular	1	2	1	2		
	design.								
	(A) On-demand mesh deployment	(B)	Table-driven deployment						
	(C) Ad-hoc deployment	(D)	Star deployment						
		*							
4.	4. Which of the following is the ability to adapt configuration parameters								
	based on system and environment sta	ate?							
	(A) Self-healing	(B)	Self-optimization						
	(C) Self-protection	(D)	Self-organization						
5.	Name the prototype that defines	tasks,	, commands and events as the	1	1	1	1		
	fundamental building block in runtin	ne env	vironment.						
	(A) Lite FS	(B)	Contiki MAC						
	(C) System-On-board	(D)	Tiny OS						
6.	A node that is aware of its locat	tion e	either through GPS and manual	1	2	2	2		
	preprogramming during deployment								
	(A) Range based node	(B)	Proximity node						
	(C) Anchor node	(D)	Unknown node						
	*								
7.	Which of the following metho	d pr	ovide more accurate distance	1	1	2	2		
	measurements?	_							
	(A) Range free localization	(B)	Hop count localization						
	(C) Traffic based localization	(D)	Range based localization						

8.		e radio path between transmitter and	1	2	2 3	3	19		dentify the odd one out of the follo			1	2	3	1
	receiver is obstructed by surface that							•	A) Directed diffusion	` ,	TEEN				-
	(A) Diffraction	(B) Scattering						((C) LEACH	(D)	PEGASIS				
	(C) Reflection	(D) Diffusion													
							20). T	The routing strategy that established	s route	es to a limited set of destinations	1	2	3	3
9	The parameter that defines the diffe	rence between the local times of two	1	1	2 1	1			n demand.	_					
٠.	nodes.	rence between the local times of two							A) Reactive	(D)	Toblo drivon				
		(D) C1 1 4						`	,	` '	Table-driven				
	(A) Phase rate	(B) Clock rate						((C) Pro-active	(D)	Hyper-active				
	(C) Clock skew	(D) Clock offset													
							21	L. A	A software infrastructure that glue	s toge	ther hardware, operating system.	1	1	4	3
10	Which of the range based localization	technique has high accuracy?	1	1 = :	2 2	2			etwork stacks and applications.		,,,,				
10.	(A) Time of arrival	(B) Time difference of arrival								(D)	Molyyono				
								•	A) Security	` /	Malware				
	(C) Angle of arrival	(D) Received signal strength						((C) Middleware	(D)	Data centre				
		indicator													
							22	2. N	Name the method that proves that	a per	son and device has performed a	-1	2	4	2
11	IEEE 802 reference model divides da	ata link layer into two layers	1	1	2 1	1			ransaction or transmission.	1	1				
11.		(B) Logical link control and MAC							A) Denial of service	(D)	Non roundiation				
	(A) Network and transport layer							`		. ,	Non repudiation				
		layer						. ((C) Sybil	(D)	Encryption				
	(C) Network control and MAC	(D) Physical layer and MAC layer													
	layer						23	3.	refers to the reception	of a	message by an unauthorized	1	2	4	3
12.	Which one of the following is a conte	ention-based MAC protocol?	1	1	2 1	1		ir	ndividual.		2				
12.	(A) ALOHA	(B) FDMA							A) Eavesdropping	(D)	Digital giamaturas				
											Digital signatures				
	(C) Token passing	(D) Polling						(0	C) Analysis	(D)	Crypto technique				
13.	In which mode does devices commun	nicate directly with each other?	1	2	2 3	3	24	1. V	Which of the middleware approach	provi	ides concepts and abstractions of	1	1	4	4
	(A) Point coordination function	(B) Token passing mode						S	ensor nodes and sensor data?	_	-				
	mode								A) Programming abstraction	(B)	Programming support				
	(C) Power saving mode	(D) Distributed coordination													
	(C) Tower saving mode							(1	C) Data aggregation	(D)	Data dissemination				
		function mode													
					_		25		An attempt of an adversary to stop	a netwo	ork from functioning or to disrupt	1	1	4	1
14.	Name the mechanism that build sche	dules that adapt to amount of traffic in	i	2	2 1	1		tŀ	ne services a network provides.						
	neighbourhood.							(1	A) Denial-of-service attack	(B)	Privacy attack				
	(A) Pattern MAC	(B) Sensor MAC						ì	C) Key establishment attack	` '	Spoofing				
	(C) Timeout MAC	(D) Y-MAC						(,	c) Rey establishment attack	(D)	Spooring				
	(C) Timcout MAC	(D) 1-WAC	n												
1.5	T1 (10 11 (1) (1) (1) (1)	1	1	1	2 1	1									
15.	Identify the two types of MAC proto-		1	1	د ک	1			$PART - B (5 \times 10$	= 50 I	Marks)	Marks	BL	CO	PO
	(A) Duty cycle and FDMA	(B) Null MAC and CSMA							Answer ALL	Questi	ons				
	(C) Wakeup and phase lock	(D) Sense MAC and two phase								*					
	•	1					26.2	9 5	how the different subsystems of a	wirel	ess sensor node and illustrate the	10	3	1	3
16	A class of routing protocol that ador	ots an architecture where all nodes are	1	1	3 2	2	±0. a								
10.	<u> </u>	ots an architecture where an nodes are						П	ntegration techniques on the design	and 11	inplementation of a node.				
	considered as peers.														
	(A) Location based	(B) Hierarchical based	67						(OR)						
	(C) Data based	(D) Flat based					b). E	Examine the unique challenges and	consti	raints of wireless sensor networks	10	3	1	2
	· ·								hat impact its design leading to pr						
17.	A routing protocol that balance	between data quality and energy	1	2	3 2	2			2 0 1	OLOCOI	s and digoriums that differ from				
	consumption.							0	ther distributed systems.		* * * * * * * * * * * * * * * * * * * *				
	(A) Multipath routing	(B) Negotiation based routing													
							= 27. a	a. C	Categorize the various localization	techni	ques and infer the pros and cons	10	4	2	2,3
	(C) QoS based routing	(D) Query based routing						0	f each method based on its distinct	featur	re.				
1 2	Which of the following approach add	tresses the short comings of flooding!	1	1	3 1	1									
10.									(OR)						
	(A) Diffusion	(B) Negotiation							(OR)						
	(C) Gossiping	(D) Resource blindness													

Page 2 of 4