Syed Saad Karim

Baton Rouge, LA, 70820 | skarim 5@lsu.edu | (469)-835-3052 | www.linkedin.com/in/saadkarim 165

EDUCATION

Louisiana State University, Department of Electrical and Computer Engineering

Baton Rouge, LA December 2021

Major: Master of Science in Electrical Engineering

Graduate Minor: Computer Science

NED University of Engineering and Technology

Karachi, Pakistan

Bachelor of Engineering in Electrical Engineering

Jan 2016

TECHNICAL SKILLS

Programming Languages: Python, R, C, **Deep Learning Frameworks:** Keras, TensorFlow MATLAB, Octave, SAS, and SQL Tools/Packages: NumPy, Pandas, Scikit-Learn Microsoft Office: Excel, Outlook, PowerPoint, Power System Software: ETAP, Power World

Access, Word, and Adobe Acrobat Big Data Frameworks: Hadoop Data Visualization: Tableau **Optimization Toolbox:** YALMIP, GAMS

WORK EXPERIENCE

Graduate Assistant - Louisiana State University, Baton Rouge, LA

Sept 2019 – Dec 2021

- Worked on a daily basis with LSU Ticketing System for IT support.
- Troubleshooting of queries to resolve 10 to 15 tickets per day generated for all number of devices across department.

Electrical Engineer - Metro Power Company Limited, Jhimpir, Pakistan

Dec 2016 – Aug 2019

- Reduced the downtime of wind turbine generators by more than 50% by assisting the Nordex Team (Original Equipment Manufacturer) during scheduled maintenance in high-wind season.
- Increased total generation by more than 5 % by assisting the inspectors during end of warranty inspections after two years from the commercial-operation date.

PROJECTS

Optimal Power flow with Machine Learning

- Applied different models (which includes Decision Tree, Random Forest, SVM, GBD, CNN and Neural networks) regression on different bus networks to test model's performance and predict results.
- Implemented hyperparameters tuning using gridsearch CV to find best parameters and reduce error.

Designed ResNet Structure for Image Classification

Implemented CNN layers to design the model and test the trained model to evaluate model accuracy.

Direct Current Optimal Power Flow using Machine Learning

Increased the accuracy from 72% with Linear Regression algorithm, to 92% of the predicted output by incorporating Multi-Layer Perceptron algorithm using python libraries.

Clustering on Cryotherapy dataset from UCI Machin Learning data repository

• Implemented K-Means and Hierarchical Clustering algorithms using feature selection to analyze

Implementation of non-parametric regression technique in R

• Performed Gaussian Regression on engineering dataset.

Used Character level LSTM to generate English Names

COURSEWORK

Machine Learning | Data Mining | Deep Learning | Experimental Statistics 1 | Power System Optimization | Optimization approaches in CSC |Software in Power Systems | Harmonics | Renewable Energy | Electric Vehicles (EVs) and Hybrid EVs

TRAINING AND CERTIFICATIONS

- University of Michigan's Applied Plotting, Charting & Data Representation in Python COURSERA
- University of California, SQL for Data Science
- Certified University of Michigan's Python Programming Course from COURSERA