Single-view metrology

Lihi Zelnik-Manor, Computer Vision

Projective geometry

Readings

Ames Room

- Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix: Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992, (read 23.1 - 23.5, 23.10)
 - ▶ available online: http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf

Three point perspective

Vanishing lines

Multiple Vanishing Points

- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line
 - also called vanishing line
- Note that different planes (can) define different vanishing lines

Vanishing lines

Multiple Vanishing Points

- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line
 - > also called vanishing line
- Note that different planes (can) define different vanishing lines

$$\mathbf{P}_{t} = \begin{bmatrix} P_{X} + tD_{X} \\ P_{Y} + tD_{Y} \\ P_{Z} + tD_{Z} \\ 1 \end{bmatrix} \cong \begin{bmatrix} P_{X} / t + D_{X} \\ P_{Y} / t + D_{Y} \\ P_{Z} / t + D_{Z} \\ 1 / t \end{bmatrix}$$

- Properties of $\mathbf{v} = M\mathbf{P}_{\infty}$
 - \mathbf{P}_{∞} is a point at *infinity* where the parallel lines meet, \mathbf{v} is its projection
 - Depends only on line direction D
 - ▶ Parallel lines $P_0 + tD$, $P_1 + tD$ intersect at P_{∞}

Properties

- I is intersection of horizontal plane through **C** with image plane
- Compute I from two sets of parallel lines on ground plane (more on that later)
- All points at same height as C project to I
 - points higher than C project above I
- Provides way of comparing height of objects in the scene

Which is higher – the camera or the man in the parachute?

Fun with vanishing points

Perspective cues

Perspective cues

Perspective cues

Comparing heights

Measuring height

Computing vanishing points (from lines)

Intersect p_1q_1 with p_2q_2

$$v = (p_1 \times q_1) \times (p_2 \times q_2)$$

Least squares version

- Better to use more than two lines and compute the "closest" point of intersection
- See notes by <u>Bob Collins</u> for one good way of doing this:
 - http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Measuring height without a ruler

Compute Z from image measurements

Need more than vanishing points to do this

The cross ratio

▶ A Projective Invariant

 Something that does not change under projective transformations (including perspective projection)

The cross-ratio of 4 collinear points

$$\frac{\|\mathbf{P}_{3} - \mathbf{P}_{1}\| \|\mathbf{P}_{4} - \mathbf{P}_{2}\|}{\|\mathbf{P}_{3} - \mathbf{P}_{2}\| \|\mathbf{P}_{4} - \mathbf{P}_{1}\|}$$

$$\mathbf{P}_i = egin{bmatrix} X_i \ Y_i \ Z_i \ 1 \end{bmatrix}$$

$$\frac{\|\mathbf{P}_{1} - \mathbf{P}_{3}\| \|\mathbf{P}_{4} - \mathbf{P}_{2}\|}{\|\mathbf{P}_{1} - \mathbf{P}_{2}\| \|\mathbf{P}_{4} - \mathbf{P}_{3}\|}$$

• 4! = 24 different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry

Measuring height

scene points represented as

$$\frac{\|\mathbf{P}_{3} - \mathbf{P}_{1}\| \|\mathbf{P}_{4} - \mathbf{P}_{2}\|}{\|\mathbf{P}_{2} - \mathbf{P}_{1}\| \|\mathbf{P}_{4} - \mathbf{P}_{3}\|}$$

$$\frac{\|\mathbf{T} - \mathbf{B}\| \|\infty - \mathbf{R}\|}{\|\mathbf{R} - \mathbf{B}\| \|\infty - \mathbf{T}\|} = \frac{H}{R}$$

scene cross ratio

$$\frac{\|\mathbf{t} - \mathbf{b}\| \|\mathbf{v}_Z - \mathbf{r}\|}{\|\mathbf{r} - \mathbf{b}\| \|\mathbf{v}_Z - \mathbf{t}\|} = \frac{H}{R}$$

image cross ratio

image points as
$$\mathbf{p} = \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$$

Measuring height

What if the point on the ground plane $\mathbf{b_0}$ is not known?

- Here the guy is standing on the box, height of box is known
- Use one side of the box to help find **b**₀ as shown above

St. Jerome in his Study, H. Steenwick

Flagellation, Piero della Francesca

What can we do with a single image?

▶ Measure height

- Camera calibration
- 3D reconstruction ?

Lines in a 2D plane

The line equation

$$ax_1 + bx_2 + c = 0$$

- Vector notation

 - A point in homogeneous coordinates $x = \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$
- If the point lies on the line then $\begin{vmatrix} x_1 \\ x_2 \\ 1 \end{vmatrix} \cdot \begin{vmatrix} a \\ b \\ c \end{vmatrix} = 0$

Lines in a 2D plane

Intersecting lines

$$x = l \times l'$$

- Proof
 - $l \times l' \perp l \rightarrow (l \times l') \cdot l = 0 \rightarrow x \in l$
 - $l \times l' \perp l' \rightarrow (l \times l') \cdot l' = 0 \rightarrow x \in l'$

x is the intersection point

Ideal points = points at infinity

- A point $x = \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$
- At infinity $x_{\infty} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$

$$l = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \qquad l' = \begin{bmatrix} a \\ b \\ c' \end{bmatrix}$$

- The intersection between two parallel lines in 2D is a point at infinity
 - $v = l \times l' = (c c') \begin{bmatrix} b \\ -a \\ 0 \end{bmatrix}$

The line at infinity

- A set of ideal points (at infinity) lies on a line called "the line at infinity"

Let's verify this via the line equation

$$\begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 0 \text{ (dot product is } 0 \Rightarrow \text{ the point is on the line)}$$

Parallel lines on a plane in 3D

- Vanishing point: The projection onto the image of the intersection of two parallel lines in 3D
- Vanishing line: Vanishing points of parallel lines that lie on the same plane, lie on the vanishing line of that plane.

The horizon

- How can we tell if two lines in the image are parallel in the world?
 - Find the horizon line of the corresponding plane
 - Check if the two lines intersect at the horizon

• Properties of
$$\mathbf{v} = M\mathbf{P}_{\infty}$$

- $ightharpoonup P_{\infty}$ is a point at *infinity*, \mathbf{v} is its projection
- Depends only on line direction D
- ▶ Parallel lines $P_0 + tD$, $P_1 + tD$ intersect at P_{∞}

Vanishing points

- Assume camera projection matrix is $M = K[I \quad 0]$
- ▶ Then the projection of the vanishing point is v = Kd

Angle between 2 scene lines

$$\cos \theta = \frac{v_1^T K^T K v_2}{\sqrt{v_1^T K^T K v_1} \sqrt{v_2^T K^T K v_2}}$$

If the lines are orthogonal then

$$\theta = 90$$
 and $v_1^T K^T K v_2 = 0$ Let's use this!

Angle between 2 scene lines

$$v_1^T K^T K v_2 = 0$$
 constraint on K
From two vanishing points!

Single view calibration

Mark 3 orthogonal lines, find 3 vanishing points, and solve for K

using three constraints

$$\begin{cases} v_1^T K^T K v_2 = 0 \\ v_1^T K^T K v_3 = 0 \\ v_2^T K^T K v_3 = 0 \end{cases}$$

What can we do with a single image?

- ▶ Measure height
- ▶ Camera calibration
- 3D reconstruction
 - Manhattan world

Points and planes in 3D

A point
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{bmatrix}$$

• A plane
$$\pi = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

A point that lies on a plane $x \cdot \pi = 0$

The vanishing line

- Parallel planes intersect the plane at infinity in a common line
 the vanishing line = horizon
- The normal to these planes can be computed from the horizon

$$n = K^T l_{horizon}$$
 (K is the camera calibration matrix)

Reconstruct surface normals

 \blacktriangleright If K is known we can compute plane normals

$$n = K^T l_{horizon}$$

▶ These transformations are used in single-view metrology

Single view metrology

Pros

- Cool
- Only a single image required

Cons

- Manually select vanishing points and lines
- Planar surfaces
- Occlusion boundaries
- ...

Other approaches

 Learn appearance-based models of surfaces at various orientations

Holem et al, 2005

http://www.cs.uiuc.edu/homes/dhoiem/projects/software.html

Other approaches

▶ A learning-based approach to single-view metrology

Saxena, Sun, Ng, 2005

- Input = image + corresponding depth map
- Learn how to match image patches to corresponding depth patches

http://make3d.cs.cornell.edu/

Up-to-date applications

Inserting synthetic objects into images

http://vimeo.com/28962540

Rendering synthetic objects into legacy photographs

Karsch et al SIGGRAPH 2011

Image manipulation

- http://www.cse.iitb.ac.in/~jaseem/graphicsa23.pdf
- Interactive Images: Cuboid proxies for Smart Image Manipulation,

Youyi Zheng, Xiang Chen, Ming-Ming Cheng, Kun Zhou, Shi-Min Hu and Niloy J. Mitra, SIGGRAPH 2012

3-Sweep: Extracting Editable Objects from a Single Photo

Chen et al. SIGGRAPH 2013

http://www.faculty.idc.ac.il/arik/site/3Sweep.asp https://vimeo.com/148236679

Figure 1: 3-Sweep Object Extraction. (a) Input image. (b) Extracted edges. (c) 3-Sweep modeling of one component of the object. (d) The full extracted 3D model. (e) Editing the model by rotating each arm in a different direction, and pasting onto a new background. The base of the object is transferred by alpha matting and compositing.

Augmented reality glasses (not exactly single view)

- https://www.getameta.com/
- https://www.rideonvision.com/
- https://www.microsoft.com/microsoft-hololens/en-us

End – Single-view metrology

Now you know how it works

Projection of the line at infinity

▶ Perspective projection $3D \rightarrow 2D$ can be written as

$$M = \begin{bmatrix} A & t \\ v & b \end{bmatrix}_{3 \times 4}$$

- Perspective projection of a line gives a line
 - l' = Ml
- Perspective projection of the line at infinity

$$Ml_{\infty} = \begin{bmatrix} A & t \\ v & b \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} t_x \\ t_y \\ t_z \\ b \end{bmatrix}$$
 not a line at infinity!!

This is the horizon line