Variant calling using local referencehelped assemblies

Martin Dráb

The Task

Problem

- We are unable of reading the whole DNA at once
- The usual approach is to chop it into a set of short sequences (reds) that we are able to read
- The short sequences are then assembled into the original one
- The reference sequence may help with this process
- Read length: 150 bp, genome length (3 Gbp, 40 Mbp for the tested region)

Input

- A set of reads (short strings) extracted from the target DNA and covering the regions of interest
- The reads usually contain sequencing errors
- Multiple reads may cover the smae part of the sequence
- A reference sequence

Output

- A set of differences (SNPs, indels) from the reference, so-called variants

Major Approaches

De Bruijn graphs (DBG)

- Decompose each read into k-mers
- Build a de Bruijn graph
 - (k-mers = nodes, edges = k-mer order)
- Optimize its structure
- Extract the sequence
- HaploCall (used in GATK)

Overlap-layout-consensus (OLC)

- Compute overlaps between reads
- Build an overlap graph (nodes = reads, edges = overlaps)
- Optimize its structure
- Extract the seuquice(s)
- Fermi

Our Algorithm

TATCGTATATATG

- Divide into regions
 - Uniformly
 - Same size (2000 bases)
 - Processed independently and in parallel
- Transform the reference into a DBG,
- Add reads assigned into the region
- Optimize graph structure
- Detect variants
- Filter them

Problems with the k-mer size

TATCGTATATATG

Variant Detection

Results

	Fermikit	Fermikit (regions)	mpileup	Our algorithm
True positives (SNP)	45,241 (89.3%)	47,630 (94%)	49,201 (97.1%)	48,172 (95%)
False Negatives (SNP)	5,432 (10.7%)	3,043 (6%)	1,472 (2.9%)	2,501 (5%)
False Positives (FP)	385 (0.76%)	1,441 (2.84%)	2,090 (4.12%)	816 (1.61%)
True Positives (INDEL)	7,853 (71.6%)	9,602 (87.55%)	8,707 (79.39%)	9,476 (86.4%)
False Negatives (INDEL)	3,114 (28.4%)	1,365 (13.45%)	2,260 (20.61%)	1,491 (13.6%)
False Positives (INDEL)	250 (2.28%)	835 (7.61%)	1,412 (12.95%)	1,255 (11.4%)

Different Parameters

K = 21	2	3	4	5	6	7	8
SNP TP	48464	48427	48172	47774	47156	46409	45342
SNP FN	2209	2246	2501	2899	3517	4264	5331
SNP FP	1364	1117	816	650	513	403	351
INDEL TP	10004	9851	9476	9265	8906	8474	7948
INDEL FN	963	1116	1491	1702	2061	2493	3019
INDEL FP	2581	1982	1255	905	684	532	431
K = 31	2	3	4	5	6	7	8
I/ - 2T		J	7	J	O	1	O
SNP TP	48353	48182	47733	47123	46250	45108	43555
			-				
SNP TP	48353	48182	47733	47123	46250	45108	43555
SNP TP SNP FN	48353 2320	48182 2491	47733 2940	47123 3550	46250 4423	45108 5565	43555 7118
SNP TP SNP FN SNP FP	48353 2320 1252	48182 2491 1011	47733 2940 735	47123 3550 585	46250 4423 456	45108 5565 360	43555 7118 308

Genotypic Results

	Fermi.kit	Fermi (regions)	mpileup	Our algorithm
SNP TP	44085	47735	48203	47024
SNP FN	6588	2938	2470	3649
SNP FP	1484	3408	3167	1808
INDEL TP	6375	8092	6864	7566
INDEL FN	4592	2875	4103	3401
INDEL FP	1343	2339	4462	3415