Optimization 1 — Homework 9

December 24, 2020

Problem 1

Prove Motzkin's lemma: Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{k \times n}$. Prove that the system

$$(I) \quad \begin{cases} \mathbf{A}\mathbf{x} < \mathbf{0} \\ \mathbf{B}\mathbf{x} \le \mathbf{0} \end{cases}$$

has a solution $\mathbf{x} \in \mathbb{R}^n$ if and only if the system

(II)
$$\begin{cases} \mathbf{A}^T \mathbf{u} + \mathbf{B}^T \mathbf{v} = \mathbf{0}_n \\ \mathbf{u} \neq \mathbf{0}, \quad \mathbf{u}, \mathbf{v} \geq \mathbf{0} \end{cases}$$

does not have a solution for any $\mathbf{u} \in \mathbb{R}^m$ and $\mathbf{v} \in \mathbb{R}^k$.

Problem 2

For any set $C \subseteq \mathbb{R}^n$ define the set $C^* = \{\mathbf{y} \in \mathbb{R}^n \colon \mathbf{x}^T \mathbf{y} \ge 0 \text{ for all } \mathbf{x} \in C\}$ to be its dual cone.

- (a) Prove that C^* is a closed and convex cone (even if C is a non-convex set).
- (b) Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Show that the dual cone of $M = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \geq \mathbf{0}\}$ is $M^* = \{\mathbf{A}^T\mathbf{v} \in \mathbb{R}^m : \mathbf{v} \geq \mathbf{0}\}$. Hint: use the second formulation of Farkas' lemma.

Problem 3

Consider the problem

min
$$x^2 + y^2 + z^2 + xy + yz - 2x - 4y - 6z$$

s.t. $x + y + z \le 1$.

- (a) Is the problem convex?
- (b) Find all KKT points of the problem.
- (c) Find the optimal solution of the problem.

Problem 4

Consider the problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{b}^T \mathbf{x}$$
s.t. $\mathbf{c}^T \mathbf{x} \le p_1$,
$$\mathbf{d}^T \mathbf{x} = p_2$$
,

where $n \geq 3$, $\mathbf{Q} \succ 0$, \mathbf{b} , \mathbf{c} , $\mathbf{d} \in \mathbb{R}^n$, $p_1, p_2 \in \mathbb{R}$. Assume that $\mathbf{c}^T \mathbf{Q}^{-1} \mathbf{c} = \mathbf{d}^T \mathbf{Q}^{-1} \mathbf{d}$, $\mathbf{d}^T \mathbf{Q}^{-1} \mathbf{c} = 0$ and \mathbf{c} , $\mathbf{d} \neq \mathbf{0}_n$.

- (a) Are the KKT conditions necessary for optimality ($\{\text{optimal points}\}\subseteq \{\text{KKT points}\}$)? Are they sufficient ($\{\text{KKT points}\}\subseteq \{\text{optimal points}\}$)? Explain your answer.
- (b) Prove that the problem is feasible.Hint: start by showing that c and d are linearly independent.
- (c) Write the KKT conditions explicitly.
- (d) Find the optimal solution of the problem.

Problem 5

Consider the problem

$$(P_{\alpha})$$
 min $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{e} = (1, 1, ..., 1)^T \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ is a parameter.

- (a) Prove that (P_{α}) has a unique solution if and only if $\operatorname{Ker}(\mathbf{A}) \cap \operatorname{Ker}(\mathbf{e}^{T}) = \{\mathbf{0}_{n}\}$.
- (b) Assume that **A** has a full column rank. Employ the KKT conditions in order to solve (P_{α}) .
- (c) Let $f: \mathbb{R} \to \mathbb{R}_+$ be defined such that $f(\alpha)$ is the optimal value of (P_α) . Without assuming any assumption on \mathbf{A} , prove that f is a convex function (you can assume that problem (P_α) attains a solution for every α).
- (d) Assume that $\operatorname{Ker}(\mathbf{A}) \cap \operatorname{Ker}(\mathbf{e}^T) = \{\mathbf{0}\}$. Employ the KKT conditions in order to solve (P_{α}) .

2