

Proyectos de investigación en Inteligencia Artificial en el Espacio de Innovación UNAM - HUAWEI

Convocatoria 2022

Motivación y problema a resolver

Alteraciones en el ritmo cardíaco fetal

Las alteraciones en el ritmo cardíaco del feto debido a anomalías congénitas es una de las **cinco causas** principales de muertes fetales.¹

En el mundo, alrededor del 98% de las muertes fetales ocurren **en países en vías de desarrollo** o de escasos recursos.²

En México, se registran en promedio 20,000 muertes fetales al año, la tasa incrementa en 20% por déficit en los servicios de salud.³

¹ Zhong W, Liao L, Guo X, Wang G. "A deep learning approach for fetal QRS complex detection". Physiol Meas. 2018 Apr 20;39(4):045004.

² Bhutta ZA, Yakoob MY, Lawn JE, Rizvi A, Friberg IK, Weissman E, Buchmann E, Goldenberg RL, "Stillbirths Series steering committee. Stillbirths: what difference can we make and at what cost?" Lancet. 2011 Apr 30;377(9776):1523-38.

³ Características de las defunciones fetales registradas en México durante 2020, INEGI, Comunicado de prensa Num. 504/21, 30 de Agosto de 2021, URL: https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2021/EstSociodemo/DefuncionesFetales2020.pdf, consultado el 30 de Agosto de 2022.

Detección y control oportuno

Durante el embarazo, es normal que se realicen **estudios de control** como electrocardiogramas de la madre y del feto.

La detección temprana de patrones anormales del ritmo cardíaco **reduce la mortalidad**, además, un control oportuno ayuda a establecer un **pronóstico favorable a largo plazo**.^{4,5}

⁴R. Vullings, "Fetal Electrocardiography and Deep Learning for Prenatal Detection of Congenital Heart Disease," 2019 Computing in Cardiology (CinC), 2019, pp. Page 1-Page 4.

⁵ Garrido-García LM y Delgado-Onofre MG. Trastornos del ritmo en el recién nacido. Acta Pediat Mex 2014;35:148-158.

Procedimiento clásico

Puede tomar varios días, además requiere de centros especializados y personal médico altamente capacitado

Análisis por expertos

Reporte médico

Objetivo general

Desarrollar una estrategia basada en aprendizaje profundo para la identificación de las frecuencias cardíacas de la mujer y del feto en señales NI-FECG generadas de manera sintética

Fases del proyecto, productos esperados y calendario de actividades

Fases del proyecto

- 1. Capacitación de los miembros del grupo de trabajo.
- Generación de señales NI-FECG en rangos válidos con base en la etapa de embarazo de la mujer.
- Diseño e implementación de red neuronal en ambiente de prueba (MatLab/Keras/Pytorch).
- 4. Implementación de la red neuronal con *MindSpore* para uso de los recursos de hardware proporcionados por UNAM-HUAWEI.
- 5. Entrenamiento de la red neuronal y pruebas en los servidores de cómputo Altas 800 9010/3010.

Fases del proyecto

Capacitación de los miembros del grupo de trabajo.

Generación de señales NI-FECG en rangos válidos con base en la etapa de embarazo de la mujer.

Diseño e implementación de red neuronal en ambiente de prueba (MatLab/Keras/Pytorch).

- 4. Implementación de la red neuronal con *MindSpore* para uso de los recursos de hardware proporcionados por UNAM-HUAWEI.
- 5. Entrenamiento de la red neuronal y pruebas en los servidores de cómputo Altas 800 9010/3010.

Productos

- Diseño e implementación de red neuronal para trabajar con señales NI-FECG
- Señales NI-FECG sintéticas
- Artículo de divulgación con resultados parciales del proyecto
- Artículo científico con resultados finales del proyecto

Productos

Diseño e implementación de red neuronal para trabajar con señales NI-FECG

Señales NI-FECG sintéticas

Artículo de divulgación con resultados parciales del proyecto

Artículo científico con resultados finales del proyecto

Calendario de trabajo

Actividades/Mes	1	2	3	4	5	6	7	8	9	10	11	12
Capacitación del equipo de trabajo (fase 1)	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
Revisión de literatura científica procesamiento de señales NI-FECG	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х
Rangos para los ritmos cardíacos de la madre y del bebé (fase 2)	Х	Х										
Generación de señales sintéticas con simulador PhysioNet (fase 2)		Х	Х	Х			Х	Х	Х			
Diseño de red neuronal para procesamiento señal NI-FECG (fase 3)		Х	Х	Х	Х							
Implementación de la red neuronal en Matlab/Keras/Pytorch para pruebas con un número reducido de señales NI-FECG (fase 3)			Х	Х	Х	Х						
Implementación de la red neuronal en MindSpore (fase 4)						Х	Х	Х	Х			
Entrenamiento en servidores Huawei Atlas 800 9010 (fase 5)								Х	Х	Х	Х	
Evaluación en los servidores Huawei Atlas 3010 (fase 5)								Х	Х	Х	Х	
Documentación técnica del proyecto			Х	Х		Х	Х		Х	Х	Х	х
Redacción de artículos científicos para divulgación y difusión de los resultados del proyecto							Х	Х	Х	Х	Х	Х

Detalles de actividades realizadas

Capacitación de los miembros del grupo de trabajo

Nombre del curso	Número de miembros del equipo que asistieron
Introducción a las herramientas del espacio UNAM Huawei para investigación en IA	5/5
Desarrollo de modelos de IA con MindSpore	3/5
Entrenamiento de datos en servidor UNAM-HUAWEI	2/5
Introducción al uso de las API en MindSpore	2/5
Taller Customer Discovery	2/5

Taller Customer Discovery

Presentación de la solución heart beating como producto del taller

Solución heart beating

Generación de señales NI-FECG sintéticas

Ritmos cardíacos para la madre: 6,7

• 65 bpm - 120 bpm

Ritmos cardíacos para el feto: 8,9

80 bpm - 180 bpm (para las semanas 6, 7 y 8)

Clasificación de la señal	Ritmo cardíaco de la madre (mhr)	Ritmo cardíaco del feto (fhr)
Normal	70bpm < mhr < 90bpm	100bpm < fhr < 160bpm
Anomaliá cardíaca	mhr < 70bpm o mhr > 90 bpm	fhr < 100bpm o fhr > 160bpm

⁶ What is a normal heart rate during pregnancy?, Medical News Today 2020, URL:

https://www.medicalnewstoday.com/articles/heart-rate-during-pregnancy#normal-heart-rate

⁷ Physical Changes During Pregnancy, Raul Artal-Mittelmark, MD, Sant Lous University of Medicine, Healthy Living, 2022, URL: https://www.msdmanuals.com/home/women-s-health-issues/normal-pregnancy/physical-changes-during-pregnancy

⁸ What is fetal heart monitoring?,, JH Medicine, URL: https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/fetal-heart-monitoring

⁹ How fetal heart rate changes during pregnancy? Robin Elise Weiss, PhD, MPH, 2022, URL; https://www.verywellfamily.com/what-is-a-normal-fetal-heart-rate-2758733

Generación de señales NI-FECG sintéticas

Más de 5,000 señales generadas 10

- Frecuencia de muestreo de 1000Hz
- Las señales se encuentran en el servidor de la UNAM-HUAWEI

PhysioNet

The Research Resource for Complex Physiologic Signals

Revisión de modelos en *ModelZoo*

Modelos del repositorio que podrían adaptarse para trabajar con las señales NI-FECG

- VGG16
- Inception v4
- FasterRCNN Resnet101
- YOLOv3
- <u>U-Net Medical</u>

Red neuronal para pruebas locales

¹ Zhong W, Liao L, Guo X, Wang G. "A deep learning approach for fetal QRS complex detection". Physiol Meas. 2018 Apr 20;39(4):045004.

Descripción de la red neuronal

Сара	Descripción
Convolución	Operación de convolución a la señal de entrada
Batch Normalization	Normalización de datos
ReLU	Función de activación ReLU
Convolución	Operación de convolución a la señal
Dropout	Eliminación de datos en la señal para evitar sobre-muestreo
Maxpool	Extracción de valores máximos en las "características"
ReLU	Función de activación ReLU
Convolución	Operación de convolución a la señal
Dropout	Eliminación de datos en la señal para evitar sobre-muestreo
Maxpool	Extracción de valores máximos en las "características"
ReLU	Función de activación ReLU
Dense	Capa densa para preparar datos para la capa de selección
Softmax	Calcula el porcentaje de pertenencia de la señal a las clases de salida

Artículo de divulgación

Aprendizaje profundo para detectar anomalías del ritmo cardíaco fetal en señales NI-FECG

por Julio César Pérez Sansalvador, Arelly Ornelas Vargas, Alejandro Barreiro Valdez, Kernel Enrique Prieto Moreno, Juan Carlos Pérez Hernández

Revista indexada en:

Actividades por realizar

Trabajo por desarrollar

- Implementación de red neuronal para servidores Ascend
- Entrenamiento de la red neuronal
- Pruebas de la red neuronal

Impacto del proyecto

- Desarrollo de tecnologías para la atención de grupos vulnerables.
- Atención directa al PRONACE salud.

Impacto del proyecto

Atención a los objetivos de desarrollo sostenible identificados por la ONU:

