What's catching your eye? #spa-attention

Akwasi Akwaboah Ernst Niebur Joubert Damien Paul Kirkland Giulia D'Angelo

An event-based implementation of saliency-based visual attention for rapid scene analysis

Camille Simon Chane¹, Ernst Niebur², Ryad Benosman³, Sio-Hoi Ieng³ ¹ETIS UMR 8051, CY Cergy Paris University, ENSEA, CNRS ²Dept. of Electrical and Computer Engineering and Dept. of Neuroscience, Johns Hopkins University ³Dept. of electrical engineering, Sorbonne University

$$S_{u,v}(x, y, t) = \sum_{i} \frac{\mathbb{1}_{\sigma}(x_i, y_i, t_i)}{(1 + 2r_v)}$$

$$\sigma = \{e_i | |x - x_i| + |y - y_i| \le r_u \text{ and } t - t_i \le t_u\}$$

$$\mathbb{1}_{\sigma} = \begin{cases} 1 & \text{if } (x_i, y_i, t_i) \in \sigma \ge 0, \\ 0 & \text{otherwise} \end{cases}$$

$$r_v \in \{2^v\}_{0 \le v \le \lambda} \quad t_u \in \{10 \times 2^u\}_{0 \le u \le \tau}$$

Functionally solubult - stop boung solubult because of adaptation

frames events saliency

Remote folks....

Riccardo Pignari

Andrea Pignata

Slower movement

Faster movement

Politecnico di Torino

