QoS-aware Mobile Edge Computing System: Multi-user Multi-server Scenario

Presenter: Te-Yi Kan

Te-Yi Kan, Yao Chiang, and Prof. Hung-Yu Wei Dept. of Electrical Engineering National Taiwan University

2018/12/09

Abstract

- * Mobile Edge Computing (MEC) System
 - Provide computational resources at the edge of RAN.
- * Construct a QoS-aware MEC system
 - * Task offloading
 - * Resource Allocation
 - Load Distribution

System Model

***** Three major parts:

* Multiuser system

+ Each base station serves a different number of mobile devices.

Multi-channel system

Each base station provides multiple sub-channels.

* Multi-server system

- Servers are controlled by our MEC Controller.
- Servers are interconnected with each other.

Problem Description

* Offloading Decision Problem

* Each device can select either *local execution* or **remote execution** (*offloading*).

*** Resource Allocation**

- * Each offloading device should pick one sub-channel to transmit its task.
- * Each offloading device should acquire computational resources on MEC system for execution.

Problem Description – (cont.)

***** Load Distribution

- * MEC servers can divide a task into some instructions.
 - + There will be one additional instruction for gathering the output results.
- * Each task or instruction can be executed on *Local MEC Server* or be further distributed to other servers (*Nearby MEC Server*)
 - **Local MEC Server**: the server directly connected to the BS which serves the device.
 - + Nearby MEC Server: the server connected with Local MEC Server.

Definition of QoS

* The QoS in our work is related to the following three features:

* Execution Delay

Lower execution delay implies better QoS.

* Delay Tolerance

→ Different tasks have different delay tolerance.

* Residual Energy

Many mobile devices do not have much energy to run applications.

Cost Function

*** Cost function:**

Completion time: T_n Delay tolerance: T_n^{max} Energy consumption: E_n

Residual energy: E_n^R

- * The lower the cost is, the better QoS is achieved.
- * The cost of failed task φ is much greater than normal cost.
- * The weight β_n is negatively correlated with delay tolerance.

Proposed Algorithm

* Three steps in our algorithm:

Inside each MEC Server

Devices Classification & Priority Assignment Radio Resource Allocation Among multiple MEC Servers

Load Distribution & Computation Resource Allocation

Devices Classification & Priority Determination

* Devices Classification

- * Two subsets: $S_{mec,s}$ and $S_{other,s}$
- * The devices belong to $S_{mec,s}$ don't have enough resources or energy.

* Priority Determination

* The devices with lower \emptyset_n values have higher priority to offload their tasks.

Radio Resource Allocation

* Radio Resource Allocation

- * Firstly, assign sub-channels to the devices in $S_{mec,s}$
- * After assignment for $S_{mec,s}$, we'll next consider $S_{other,s}$.

Load Distribution & Computation Resource Allocation

* Load Distribution

- (1) Full Task Assignment: Assign tasks to their Local MEC Server in ascending order of Δ_n
- (2) Full Task Distribution: Distribute unserved tasks to other server with adequate resources.
- (3) Partial Task Distribution: Divide unserved tasks into small instruction and distribute them to server with adequate resources.

* Computation Resource Allocation

* Adopt Lagrange Multiplier.

Load Distribution – sub-step 1

* Full Task Assignment

lpha First, assigning tasks to their Local MEC Server in ascending order of Δ_n

 Δ_n is the minimum required resources to complete the task within its delay

tolerance.

QoS-aware Mobile Edge Computing System: Multi-user Multi-server Scenario

Te-Yi Kan, Yao Chiang, and Prof. Hung-Yu Wei; National Taiwan University

Load Distribution – sub-step 2

*** Full Task Distribution**

* After assignment in each server, we'll distribute unserved tasks to other servers with adequate resources.

Load Distribution – sub-step 3

* Partial Task Distribution

* After Full Task Distribution, MEC will divide unserved tasks into instructions and distributed them to servers with adequate resources.

Load Distribution & Computation Resource Allocation

* Load Distribution

- (1) Full Task Assignment: Assign tasks to their Local MEC Server in ascending order of Δ_n
- (2) Full Task Distribution: Distribute unserved tasks to other server with adequate resources.
- (3) Partial Task Distribution: Divide unserved tasks into small instruction and distribute them to server with adequate resources.

*** Computation Resource Allocation**

* Adopt Lagrange Multiplier.

Simulation Settings

*** Scenario:**

- \gg Number of the BSs M=5
- * Number of the sub-channel H = 15

*** Comparison schemes:**

- ***** Local execution
 - Tasks would be executed only on local mobile device
- **Remote execution**
 - → Tasks would be always offloaded to MEC system.
- **No Load Distribution**
 - Tasks would be executed on local mobile devices or their Local MEC Server.

Simulation Results (Execution Cost)

- * Execution cost of a task is defined by our cost function.
- * Following Uniform Distribution $unif\{x-10,x\}, x=maximal\ number.$

QoS-aware Mobile Edge Computing System: Multi-user Multi-server Scenario Te-Yi Kan, Yao Chiang, and Prof. Hung-Yu Wei; National Taiwan University

Simulation Results (User Satisfaction)

* User satisfaction: The percentage of complete tasks.

