Mathematische Grundlagen/Grundlagen der Mathematik

Bitte lesen Sie die folgenden Hinweise sorgfältig durch:

- 1. Prüfen Sie Ihre Klausur auf Vollständigkeit.
- Bearbeiten Sie jede Aufgabe auf dem zur Aufgabe gehörigen Blatt. Wenn nötig, dürfen Sie auch die Rückseite verwenden. Dies ist dann auf dem entsprechenden Aufgabenblatt deutlich kenntlich zu machen.
- 3. Geben Sie numerische Ergebnisse stets ganzzahlig beziehungsweise durch Brüche an (keine Dezimalzahlen). Eventuell auftretende Wurzeln sollen nur aufgelöst werden, wenn dies ganzzahlig möglich ist.
- 4. Die Klausur ist geheftet, in geordneter Reihenfolge wie bei der Ausgabe und vollständig (samt Deckblatt) abzugeben.
- 5. Die Klausur ist mit einem dokumentenechten Stift zu bearbeiten.
- 6. Es sind keine Hilfsmittel zugelassen.
- 7. Lösungen, die nicht lesbar sind können nicht gewertet werden.
- 8. Tragen Sie Ihren Namen und die Matrikelnummer leserlich in der folgenden Tabelle ein:

Name	
Vorname	
Matrikelnummer	

Dies ist eine Beispielklausur, es entstehen hieraus keine Ansprüche bezüglich des Stoffs und der Art der Aufgaben in der eigentlichen Klausur.

Aufgabe 1 Mengen:

Es seien $M = \{-1, 7\}, N = \{2, 3\}.$

a) Schreiben Sie folgende Menge durch Aufzählen all ihrer Elemente

$$M \times N = \{$$

b) Schreiben Sie folgende Menge durch Aufzählen all ihrer Elemente

$$M^2 \cup N^2 = \{$$

c) Bestimmen Sie $|\mathcal{P}(M) \times \mathcal{P}(N)|$.

d) Schreiben Sie folgende Menge in der Mengenschreibweise (d.h. Mengenklammern, etc.): Die Menge aller Teilmengen der reellen Zahlen, die alle negativen Zahlen enthalten.

Aufgabe 2 Abbildungen:

Es sei $f, g: \mathbb{Z} \to \mathbb{R}$ definiert durch

$$f(x) = x + 1, g(x) = \frac{1}{2}x^{2}.$$

a) Skizzieren Sie die Graphen von f, g und $g \circ f$ jeweils für die Eingabewerte $\{-2, -1, 0, 1, 2\}$

Prof. Dr. Hans-Peter Beise Fachbereich Informatik

Beispielklausur 3 $90~\mathrm{min}$

Hochschule Trier **b)** Es sei $f:[0,2] \to \mathbb{R}$ definiert durch $f(x)=-2x^2$. Bestimmen Sie folgende Urbilder $f^{-1}(\{1\}), f^{-1}([-8,-2]), f^{-1}([0,1])$.

Aufgabe 3 Logik

a) Zeigen Sie, dass $F_1(A, B, C) := A \Rightarrow (B \vee C)$ und $F_2(A, B, C) := \neg (A \wedge \neg (B \vee C))$ gleichwertig sind, indem Sie folgende Wahrheitstabelle ausfüllen:

A	В	C	$B \vee C$	F_1	$\neg (B \lor C)$	$A \land \neg (B \lor C)$	F_2	$F_1 \Leftrightarrow F_2$
W	W	W						
W	W	f						
W	f	W						
W	f	f						
f	W	W						
f	W	f						
f	f	W						
f	f	f						

Die zweite Tabelle nur verwenden, falls Ihre obere Lösung nicht mehr lesbar ist !!!

A	B	C	$B \vee C$	F_1	$\neg (B \lor C)$	$A \land \neg (B \lor C)$	F_2	$F_1 \Leftrightarrow F_2$
W	W	W						
W	W	f						
W	f	W						
W	f	f						
f	W	W						
f	W	f						
f	f	W						
f	f	f						

b) Nehmen Sie an, sie möchten das Folgende für stetige Funktionen mittels Beweis durch Widerspruch beweisen: Für alle stetigen Funktionen $f: \mathbb{R} \to \mathbb{R}$ mit f(x) > 0, für alle $x \in \mathbb{Q}$, gilt auch f(x) > 0 für alle $x \in \mathbb{R}$. Formulieren Sie die Annahme, die dazu zu widerlegen ist.

Aufgabe 4 Rechnen mit Restklassen

Berechnen Sie folgende Aufgaben und geben Sie das Ergebnis jeweils in Standardrepräsentanten an (Zwischenergebnisse müssen nicht angegeben werden).

a)
$$[7]_3 + [-4]_3 =$$

b)
$$[7]_{13} \cdot [3]_{13} \cdot [12]_{13} =$$

c)
$$[5]_{11} + ([7]_{11} + [7]_{11})^{-1} =$$

d)
$$[3]_7 \cdot [3]_7^{-1} \cdot [23]_7 \cdot [23]_7^{-1} =$$

Aufgabe 5 Induktion:

Zeigen Sie durch vollständige Induktion, dass für $n \in \mathbb{N}$ folgendes gilt:

$$\prod_{k=1}^{n} 4^k = 2^{n(n+1)}.$$

Aufgabe 6 Komplexe Zahlen

a) Es seien u = 3 + 2i und w = 2 + i. Berechnen Sie das Folgende:

$$|\overline{u} \cdot w| =$$

$$\frac{wu+\overline{u}}{u} =$$

b) Skizzieren Sie die Menge

$$M := \{ z \in \mathbb{C} : |\text{Re}(z)| \ge 1 \text{ und } |z| \le 2 \}$$

in der komplexen Ebene.

c) Es seien $z_1,...,z_n\in\mathbb{C}$ mit $z_1\neq -1$ und $\sum_{k=2}^n z_k\neq 0$. Lösen Sie die folgende Gleichung nach z_1 auf

$$\frac{1}{1+z_1} \left(\sum_{k=2}^n z_1 z_k + \sum_{k=2}^n z_1^2 z_k \right) = 9.$$

Aufgabe 7 Folgen u. Reihen

a) Zeigen Sie, dass $(a_n)_{n\in\mathbb{N}}$ mit $a_n = \frac{1}{n} - \frac{1}{n+1}$ streng monoton fallend ist.

b) Es sei $(a_n)_{n\in\mathbb{N}}$ definiert durch $a_{n+1} = \frac{3^n + 4n^2 - 1}{(4^n + 2)^2}$ Berechnen Sie den Grenzwert.

c) Zeigen Sie, dass folgende Reihe konvergiert.

$$\sum_{\nu=0}^{\infty} \frac{1}{3^{\nu} + 4}.$$

Aufgabe 8 Wissen:

Vervollständigen Sie die Aussagen, so dass ein korrekte (sinnvolle) mathematische Aussage entsteht.

1. Es seien A, B zwei Aussagenvariablen. Nach den De Morganschen Gesetzen gilt

$$\neg (A \lor B) \Leftrightarrow$$

- 2. Eine Abbildung $f: X \to Y$ (mit X, Y zwei Mengen) ist injektiv, wenn gilt:
- 3. Ein Polynom ist eine Funktion der Form

$$P(z) =$$

4. Für $a, b \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt nach dem binomischen Satz

$$(a+b)^n =$$

- 5. Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen den Grenzwert c, wenn gilt:
- 6. Die Exponentialfunktion ist definiert durch

$$e^z =$$