8 Interrupts and events

Low-density value line devices are STM32F100xx microcontrollers where the flash memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

8.1 Nested vectored interrupt controller (NVIC)

Features

- 60 maskable interrupt channels in high-density value line devices and 56 in low and medium-density value line devices (not including the sixteen Cortex[®]-M3 interrupt lines)
- 16 programmable priority levels (4 bits of interrupt priority are used)
- Low-latency exception and interrupt handling
- Power management control
- Implementation of System Control registers

The NVIC and the processor core interface are closely coupled, which enables low latency interrupt processing and efficient processing of late arriving interrupts.

All interrupts including the core exceptions are managed by the NVIC. For more information on exceptions and NVIC programming, refer to *STM32F100xx Cortex*[®]-M3 *programming manual* (see *Related documents on page 1*).

8.1.1 SysTick calibration value register

The SysTick calibration value is set to 9000, which gives a reference time base of 3 ms with the SysTick clock set to 3 MHz (max HCLK/8).

8.1.2 Interrupt and exception vectors

Table 50. Vector table for STM32F100xx devices

Position	Priority	Type of priority	Acronym	Description	Address
-	-	1	-	Reserved	0x0000_0000
-	-3	fixed	Reset	Reset	0x0000_0004

Table 50. Vector table for STM32F100xx devices (continued)

			1	1 3 1 W 321 100XX devices (Continu	
Position	Priority	Type of priority	Acronym	Description	Address
-	-2	fixed	NMI_Handler	Non maskable interrupt. The RCC Clock Security System (CSS) is linked to the NMI vector.	0x0000_0008
-	-1	fixed	HardFault_Handler	All class of fault	0x0000_000C
-	0	settable	MemManage_Handl er	Memory management	0x0000_0010
-	1	settable	BusFault_Handler	Pre-fetch fault, memory access fault	0x0000_0014
-	2	settable	UsageFault_Handler	Undefined instruction or illegal state	0x0000_0018
-	-	-	-	Reserved	0x0000_001C - 0x0000_002B
1	3	settable	SVC_Handler	System service call via SWI instruction	0x0000_002C
-	4	settable	DebugMon_Handler	Debug Monitor	0x0000_0030
-	-	-	-	Reserved	0x0000_0034
-	5	settable	PendSV_Handler	Pendable request for system service	0x0000_0038
-	6	settable	SysTick_Handler	System tick timer	0x0000_003C
0	7	settable	WWDG	Window Watchdog interrupt	0x0000_0040
1	8	settable	PVD	PVD through EXTI Line detection interrupt	0x0000_0044
2	9	settable	TAMPER_STAMP	Tamper and TimeStamp through EXTI line interrupts	0x0000_0048
3	10	settable	RTC_WKUP	RTC Wakeup through EXTI line interrupt	0x0000_004C
4	11	settable	FLASH	Flash global interrupt	0x0000_0050
5	12	settable	RCC	RCC global interrupt	0x0000_0054
6	13	settable	EXTI0	EXTI Line0 interrupt	0x0000_0058
7	14	settable	EXTI1	EXTI Line1 interrupt	0x0000_005C
8	15	settable	EXTI2	EXTI Line2 interrupt	0x0000_0060
9	16	settable	EXTI3	EXTI Line3 interrupt	0x0000_0064
10	17	settable	EXTI4	EXTI Line4 interrupt	0x0000_0068
11	18	settable	DMA1_Channel1	DMA1 Channel1 global interrupt	0x0000_006C
12	19	settable	DMA1_Channel2	DMA1 Channel2 global interrupt	0x0000_0070

Table 50. Vector table for STM32F100xx devices (continued)

Position	Priority	Type of priority	Acronym	Description	Address
13	20	settable	DMA1_Channel3	DMA1 Channel3 global interrupt	0x0000_0074
14	21	settable	DMA1_Channel4	DMA1 Channel4 global interrupt	0x0000_0078
15	22	settable	DMA1_Channel5	DMA1 Channel5 global interrupt	0x0000_007C
16	23	settable	DMA1_Channel6	DMA1 Channel6 global interrupt	0x0000_0080
17	24	settable	DMA1_Channel7	DMA1 Channel7 global interrupt	0x0000_0084
18	25	settable	ADC1	ADC1 global interrupt	0x0000_0088
-	-	-	-	Reserved	0x0000_008C - 0x0000_0098
23	30	settable	EXTI9_5	EXTI Line[9:5] interrupts	0x0000_009C
24	31	settable	TIM1_BRK_TIM15	TIM1 Break and TIM15 global interrupt	0x0000_00A0
25	32	settable	TIM1_UP_TIM16	TIM1 Update and TIM16 global interrupts	0x0000_00A4
26	33	settable	TIM1_TRG_COM_T IM17	TIM1 Trigger and Commutation and TIM17 global interrupts	0x0000_00A8
27	34	settable	TIM1_CC	TIM1 Capture Compare interrupt	0x0000_00AC
28	35	settable	TIM2	TIM2 global interrupt	0x0000_00B0
29	36	settable	TIM3	TIM3 global interrupt	0x0000_00B4
30	37	settable	TIM4	TIM4 global interrupt	0x0000_00B8
31	38	settable	I2C1_EV	I ² C1 event interrupt	0x0000_00BC
32	39	settable	I2C1_ER	I ² C1 error interrupt	0x0000_00C0
33	40	settable	I2C2_EV	I ² C2 event interrupt	0x0000_00C4
34	41	settable	I2C2_ER	I ² C2 error interrupt	0x0000_00C8
35	42	settable	SPI1	SPI1 global interrupt	0x0000_00CC
36	43	settable	SPI2	SPI2 global interrupt	0x0000_00D0
37	44	settable	USART1	USART1 global interrupt	0x0000_00D4
38	45	settable	USART2	USART2 global interrupt	0x0000_00D8
39	46	settable	USART3	USART3 global interrupt	0x0000_00DC
40	47	settable	EXTI15_10	EXTI Line[15:10] interrupts	0x0000_00E0
41	48	settable	RTC_Alarm	RTC Alarms (A and B) through EXTI line interrupt	0x0000_00E4
42	49	settable	CEC	CEC global interrupt	0x0000_00E8

134/709 RM0041 Rev 6

Table 50. Vector table for STM32F100xx devices (continued)

Position	Priority	Type of priority	Acronym	Description	Address
43	50	settable	TIM12	TIM12 global interrupt	0x0000_00EC
44	51	settable	TIM13	TIM13 global interrupt	0x0000_00F0
45	52	settable	TIM14	TIM14 global interrupt	0x0000_00F4
-	1	-	-	Reserved	0x0000_00F8 - 0x0000_00FC
48	55	settable	FSMC	FSMC global interrupt	0x0000_0100
-	-	-	-	Reserved	0x0000_0104
50	57	settable	TIM5	TIM5 global interrupt	0x0000_0108
51	58	settable	SPI3	SPI3 global interrupt	0x0000_010C
52	59	settable	UART4	UART4 global interrupt	0x0000_0110
53	60	settable	UART5	UART5 global interrupt	0x0000_0114
54	61	settable	TIM6_DAC	TIM6 global and DAC underrun interrupts	0x0000_0118
55	62	settable	TIM7	TIM7 global interrupt	0x0000_011C
56	63	settable	DMA2_Channel1	DMA2 Channel1 global interrupt	0x0000_0120
57	64	settable	DMA2_Channel2	DMA2 Channel2 global interrupt	0x0000_0124
58	65	settable	DMA2_Channel3	DMA2 Channel3 global interrupt	0x0000_0128
59	66	settable	DMA2_Channel4_5	DMA2 Channel4 and DMA2 Channel5 global interrupts	0x0000_012C
60	67	settable	DMA2_Channel5 ⁽¹⁾	DMA2 Channel5 global interrupt	0x0000_0130

For High-density value line devices, the DMA2 Channel 5 is mapped at postion 60 only if the MISC_REMAP bit in the AFIO_MAPR2 register is set and DMA2 Channel 2 is connected with DMA2 Channel 4 at position 59 when the MISC_REMAP bit in the AFIO_MAPR2 register is reset.

RM0041 Rev 6 135/709

8.2 **External interrupt/event controller (EXTI)**

The external interrupt/event controller consists of up to 18 edge detectors for generating event/interrupt requests. Each input line can be independently configured to select the type (event or interrupt) and the corresponding trigger event (rising or falling or both). Each line can also masked independently. A pending register maintains the status line of the interrupt requests

8.2.1 Main features

The EXTI controller main features are the following:

- Independent trigger and mask on each interrupt/event line
- Dedicated status bit for each interrupt line
- Generation of up to 18 software event/interrupt requests
- Detection of external signal with pulse width lower than APB2 clock period. Refer to the electrical characteristics section of the datasheet for details on this parameter.

8.2.2 **Block diagram**

The block diagram is shown in Figure 18.

Figure 18. External interrupt/event controller block diagram

RM0041 Interrupts and events

8.2.3 Wakeup event management

The STM32F100xx is able to handle external or internal events in order to wake up the core (WFE). The wakeup event can be generated either by:

- enabling an interrupt in the peripheral control register but not in the NVIC, and enabling
 the SEVONPEND bit in the Cortex[®]-M3 System Control register. When the MCU
 resumes from WFE, the peripheral interrupt pending bit and the peripheral NVIC IRQ
 channel pending bit (in the NVIC interrupt clear pending register) have to be cleared.
- or configuring an external or internal EXTI line in event mode. When the CPU resumes
 from WFE, it is not necessary to clear the peripheral interrupt pending bit or the NVIC
 IRQ channel pending bit as the pending bit corresponding to the event line is not set.

To use an external line as a wakeup event, refer to Section 8.2.4: Functional description.

8.2.4 Functional description

To generate the interrupt, the interrupt line should be configured and enabled. This is done by programming the two trigger registers with the desired edge detection and by enabling the interrupt request by writing a '1' to the corresponding bit in the interrupt mask register. When the selected edge occurs on the external interrupt line, an interrupt request is generated. The pending bit corresponding to the interrupt line is also set. This request is reset by writing a '1' in the pending register.

To generate the event, the event line should be configured and enabled. This is done by programming the two trigger registers with the desired edge detection and by enabling the event request by writing a '1' to the corresponding bit in the event mask register. When the selected edge occurs on the event line, an event pulse is generated. The pending bit corresponding to the event line is not set

An interrupt/event request can also be generated by software by writing a '1' in the software interrupt/event register.

Hardware interrupt selection

To configure the 18 lines as interrupt sources, use the following procedure:

- Configure the mask bits of the 18 Interrupt lines (EXTL IMR)
- Configure the Trigger Selection bits of the Interrupt lines (EXTI_RTSR and EXTI_FTSR)
- Configure the enable and mask bits that control the NVIC IRQ channel mapped to the External Interrupt Controller (EXTI) so that an interrupt coming from one of the 18 lines can be correctly acknowledged.

Hardware event selection

To configure the 18 lines as event sources, use the following procedure:

- Configure the mask bits of the 18 Event lines (EXTLEMR)
- Configure the Trigger Selection bits of the Event lines (EXTI_RTSR and EXTI_FTSR)

4

RM0041 Rev 6 137/709

Software interrupt/event selection

The 18 lines can be configured as software interrupt/event lines. The following is the procedure to generate a software interrupt.

- Configure the mask bits of the 18 Interrupt/Event lines (EXTI_IMR, EXTI_EMR)
- Set the required bit of the software interrupt register (EXTI_SWIER)

8.2.5 External interrupt/event line mapping

The 112 GPIOs are connected to the 16 external interrupt/event lines in the following manner:

138/709 RM0041 Rev 6

Figure 19. External interrupt/event GPIO mapping

To configure the AFIO_EXTICRx for the mapping of external interrupt/event lines onto GPIOs, the AFIO clock should first be enabled. Refer to Section 6.3.7: APB2 peripheral clock enable register (RCC_APB2ENR).

The two other EXTI lines are connected as follows:

- EXTI line 16 is connected to the PVD output
- EXTI line 17 is connected to the RTC Alarm event

577

RM0041 Rev 6 139/709

8.3 EXTI registers

Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

8.3.1 Interrupt mask register (EXTI_IMR)

Address offset: 0x00 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Posc	erved							MR17	MR16
						Nesc	ei veu							rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MR15	MR14	MR13	MR12	MR11	MR10	MR9	MR8	MR7	MR6	MR5	MR4	MR3	MR2	MR1	MR0
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bits 31:18 Reserved, must be kept at reset value (0).

Bits 17:0 MRx: Interrupt Mask on line x

0: Interrupt request from Line x is masked1: Interrupt request from Line x is not masked

8.3.2 Event mask register (EXTI_EMR)

Address offset: 0x04 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Posc	erved							MR17	MR16
						Rese	erveu							rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MR15	MR14	MR13	MR12	MR11	MR10	MR9	MR8	MR7	MR6	MR5	MR4	MR3	MR2	MR1	MR0
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bits 31:18 Reserved, must be kept at reset value (0).

Bits 17:0 MRx: Event mask on line x

0: Event request from Line x is masked1: Event request from Line x is not masked

8.3.3 Rising trigger selection register (EXTI_RTSR)

Address offset: 0x08 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
						Door	am ra d							TR17	TR16	
						Reserved										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
TR15	TR14	TR13	TR12	TR11	TR10	TR9	TR8	TR7	TR6	TR5	TR4	TR3	TR2	TR1	TR0	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bits 31:18 Reserved, must be kept at reset value (0).

Bits 17:0 TRx: Rising trigger event configuration bit of line x

0: Rising trigger disabled (for Event and Interrupt) for input line 1: Rising trigger enabled (for Event and Interrupt) for input line

Note:

The external wakeup lines are edge triggered, no glitches must be generated on these lines. If a rising edge on external interrupt line occurs during writing of EXTI_RTSR register, the pending bit will not be set.

Rising and Falling edge triggers can be set for the same interrupt line. In this configuration, both generate a trigger condition.

8.3.4 Falling trigger selection register (EXTI_FTSR)

Address offset: 0x0C Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Door	d							TR17	TR16
		Reserved												rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TR15	TR14	TR13	TR12	TR11	TR10	TR9	TR8	TR7	TR6	TR5	TR4	TR3	TR2	TR1	TR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:18 Reserved, must be kept at reset value (0).

Bits 17:0 TRx: Falling trigger event configuration bit of line x

0: Falling trigger disabled (for Event and Interrupt) for input line 1: Falling trigger enabled (for Event and Interrupt) for input line

Note:

The external wakeup lines are edge triggered, no glitches must be generated on these lines. If a falling edge on external interrupt line occurs during writing of EXTI_FTSR register, the pending bit will not be set.

Rising and Falling edge triggers can be set for the same interrupt line. In this configuration, both generate a trigger condition.

141/709

8.3.5 Software interrupt event register (EXTI_SWIER)

Address offset: 0x10 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Rese	erved							SWIER 17	SWIER 16
														rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SWIER 15	SWIER 14	SWIER 13	SWIER 12	SWIER 11	SWIER 10	SWIER 9	SWIER 8	SWIER 7	SWIER 6	SWIER 5	SWIER 4	SWIER 3	SWIER 2	SWIER 1	SWIER 0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:18 Reserved, must be kept at reset value (0).

Bits 17:0 **SWIERx:** Software interrupt on line x

If the interrupt is enabled on this line in the EXTI_IMR, writing a '1' to this bit when it is at '0' sets the corresponding pending bit in EXTI_PR resulting in an interrupt request generation. This bit is cleared by clearing the corresponding bit of EXTI_PR (by writing a 1 into the bit)

8.3.6 Pending register (EXTI_PR)

Address offset: 0x14 Reset value: undefined

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Poor	erved							PR17	PR16
						Rest	erveu							rc_w1	rc_w1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PR15	PR14	PR13	PR12	PR11	PR10	PR9	PR8	PR7	PR6	PR5	PR4	PR3	PR2	PR1	PR0
rc_w1															

Bits 31:18 Reserved, must be kept at reset value (0).

Bits 17:0 PRx: Pending bit

0: No trigger request occurred

1: selected trigger request occurred

This bit is set when the selected edge event arrives on the external interrupt line. This bit is cleared by writing a '1' into the bit.

8.3.7 EXTI register map

The following table gives the EXTI register map and the reset values.

Table 51. External interrupt/event controller register map and reset values

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	74	± !	13	12	11	10	6	8	7	9	5	4	ဘ	2	-	- 0
0x00	EXTI_IMR						Re	ese	erve	ed														М	R[′	17:	0]							
	Reset value															0	0	0	(0	0	0	0	0	0	0	0	0	0	0	0	0	C	0 0
0x04	EXTI_EMR				Reserved																	ΕN	/IR	[17	:0]									
	Reset value				Neserveu									0	0	0	(۱۵	0	0	0	0	0	0	0	0	0	0	O	0	0	0 0		
0x08	EXTI_RTSR						Re	ese	erve	ed														RT	SR	[17	7:0]						
	Reset value															0	0	0	1	۱۵	0	0	0	0	0	0	0	0	0	0	O	0	C	0 0
0x0C	EXTI_FTSR						Re	ese	erve	ed														FT	SR	[17	' :0]]						
	Reset value															0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0 0
0x10	EXTI_SWIER						Re	ese	erve	ed													9	SW	IEF	R[1	7:0)]						
	Reset value															0	0	0	1	٦	0	0	0	0	0	0	0	0	0	0	0	0	C	0 0
0x14	EXTI_PR						Re	ese	erve	ed														Р	R[1	17:0	0]							_
	Reset value															0	0	0	(ן כ	0	0	0	0	0	0	0	0	0	0	0	0	C	0 0

Refer to Table 1 on page 37 and Table 2 on page 38 for the register boundary addresses.