Bayesian Thinking: Fundamentals, Regression and Multilevel Modeling

Jim Albert and Monika Hu

1/1/23

Webinar 2-2: Multilevel Models for Continuous Data

- 1 Introduction: observations in groups
- 2 A multilevel model with random σ
- MCMC estimation and diagnostics
- Additional Bayesian inferential questions

Section 1

Introduction: observations in groups

Review: the normal model & normal regression

• When you have continuous outcomes, you can use a normal model:

$$Y_i \mid \mu, \sigma \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma), i = 1, \dots, n.$$

• When you have predictor variables available, $\{x_{i1}, \dots, x_{in}\}$; you can specify an observation specific mean:

$$Y_i \mid \mu_i, \sigma \stackrel{ind}{\sim} \text{Normal}(\mu_i, \sigma), \ i = 1, \dots, n,$$

where

$$\mu_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots, \beta_p x_{ip}.$$

- Predictors can be continuous, binary, and categorical (interpretation differs).
- Observations are assumed independent.

When observations are not necessarily independent

- Observations can be dependent in several ways.
- Observations are nested in groups:
 - Students' test scores from multiple schools;
 - Ratings of movies of different genres;
 - Ratings of dramas of different schedules;
 - Death rates of hospitals.
- We will focus on a movie rating dataset to explore modeling approaches for dependent data.

Example: ratings of animation movies

- MovieLens: personalized movie recommendation for users.
- In one study, a sample on movie ratings for 8 animation movies released in 2010, total 55 movies.
- Each rating is for a movie completed by a user; some movies have many ratings while others have few.
- A natural grouping of these 55 ratings: by movie title.

Example: ratings of animation movies cont'd

Example: ratings of animation movies cont'd

Movie Title	Mean	SD	Ν
Batman: Under the Red Hood	5.00		
Despicable Me	3.72	0.62	9
How to Train Your Dragon	3.41	0.86	11
Legend of the Guardians	4.00		1
Megamind	3.38	1.31	4
Shrek Forever After	4.00	1.32	3
Tangled	4.20	0.89	10
Toy Story 3	3.81	0.96	16

Modeling challenges

Approach 1 - separate estimates for each movie j:

$$Y_{1j}, \cdots, Y_{n_j j} \overset{i.i.d.}{\sim} \operatorname{Normal}(\mu_j, \sigma_j).$$

- No relation among groups; groups with small sample size might suffer (e.g. $n_i = 1$)
- Approach 2 combined estimates for all J movies:

$$Y_{ij} \overset{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$

- Differences in groups are ignored.
- Something in between multilevel modeling
 - Pooling information across groups.
 - Achieved through a two-stage prior.

Section 2

A multilevel model with random σ

The sampling model

 Without loss of generality, assume a group-specific normal model for movie j:

$$Y_{ij} \overset{i.i.d.}{\sim} \text{Normal}(\mu_j, \sigma),$$
 (1)

where $i=1,\cdots,n_j$ and n_j is the number of observations in group j.

- ullet Is a commonly shared σ reasonable? If not, σ can be group-specific.
- Model parameters: $\{\mu_1, \cdots, \mu_J, \sigma\}$.

A two-stage prior for $\{\mu_1, \cdots, \mu_J\}$: stage 1

- All movies are animation movies, we could assume that the mean ratings are similar across movies
- ullet First stage: the same normal prior distribution for each mean μ_j

$$\mu_j \mid \mu, \tau \sim \text{Normal}(\mu, \tau).$$
 (2)

- This prior allows information pooled across movies (groups).
 - If τ is large, the μ_j 's are very different a priori \to modest pooling in parameter estimation.
 - If τ is small, the μ_j 's are very similar a priori \to large pooling in parameter estimation.
- μ and τ : hyperparameters, and treated random.

A two-stage prior for $\{\mu_1, \dots, \mu_J\}$: stage 2

Second stage: weakly informative hyperpriors for hyperparameters

$$\mu \sim \text{Normal}(3,1),$$
 (3)

$$\tau \sim \text{Cauchy}(0,1).$$
 (4)

- After posterior inference:
 - The posterior of μ is informative about an average mean rating.
 - The posterior of τ is informative about the variation among the μ_i 's.

Prior for σ and graphical representation

• Weakly informative prior for σ :

$$\sigma \sim \text{Cauchy}(0,1).$$
 (5)

Section 3

MCMC estimation and diagnostics

Fitting the model

- Use the brm() function with family = gaussian.
- Use rating 1 + 1 | Title expression for model specification.

Saving posterior draws

post_ml <- as_draws_df(ml_fit)</pre>

- Save post as a matrix of simulated posterior draws.
- The model parameters: $\{\mu, \tau, \mu_1, \cdots, \mu_8, \sigma\}$

```
head(post_ml)
 A draws_df: 6 iterations, 1 chains, and 13 variables
  b_Intercept sd_Title__Intercept sigma r_Title[Batman,Intercept]
          3.8
                             0.24 1.00
                                                             0.381
          4.2
                                                            -0.202
                             0.29 0.90
3
          3.7
                             0.24 0.95
                                                             0.134
          3.8
                             0.39 0.92
                                                            -0.381
5
          3.6
                             0.27 0.95
                                                             0.025
6
          3.7
                             0.30 0.85
                                                            -0.012
 r_Title[Despicable.Me,Intercept] r_Title[Dragon,Intercept]
                             0.038
                                                        0.152
1
                             0.023
                                                       -0.544
                            -0.103
                                                       -0.021
                            -0.329
                                                       -0.631
```

Posterior plots

 Function mcmc_areas() displays a density estimate of the simulated posterior draws with a specified credible interval.

```
library(bayesplot)
mcmc_areas(post_ml,
           pars = c("b_Intercept", "r_Title[Batman,Intercept]"),
           prob = 0.95)
```


Posterior plots cont'd

Posterior plots cont'd

• Within group variability tau vs between group variability σ .

```
library(bayesplot)
mcmc_areas(post_ml,
           pars = c("sd_Title__Intercept", "sigma"),
           prob = 0.95)
```


MCMC diagnostics: overview

- Theory proves that if a Gibbs sampler iterates enough, the draws will be from the joint posterior distribution (called the target or stationary distribution).
 - Do initial values matter? Should they matter?
 - Markov chain indicate dependence of draws. How to create independent parameter draws?
 - How long do we need to run the MCMC to adequately explore the posterior distribution?
 - How can we tell if the chain is not converging?

MCMC diagnostics: overview cont'd

- iter: total number of iterations.
- warmup: the number of iterations to be discarded (beginning iterations are not converged).
- thin: the number of draws to thin for saving.
- chains: the number of MCMC chains (some diagnostics can only be done for more than one chain).

MCMC diagnostics: traceplot

Function mcmc trace() displays a traceplot of the simulated posterior draws for each chain.

```
mcmc_trace(ml_fit, pars = c("sd_Title__Intercept"))
```


MCMC diagnostics: autocorrelation plot

 Function mcmc_acf() displays an autocorrelation plot of the simulated posterior draws.

```
mcmc_acf_bar(ml_fit, pars = c("sd_Title__Intercept"))
```


Section 4

Additional Bayesian inferential questions

Shrinkage / pooling effects

Sources of variability

• Two sources of variability in $Y_{i,i}$:

$$\begin{array}{ll} Y_{ij} & \overset{i.i.d.}{\sim} & \operatorname{Normal}(\mu,\sigma) \text{ [within-group variability]} \\ \mu_{j} & \sim & \operatorname{Normal}(\mu,\tau) \text{ [between-group variability]} \end{array}$$

• To compare these two sources of variability, one can compute the fraction

$$R = \frac{\tau^2}{\tau^2 + \sigma^2}$$

from the posterior draws of τ and σ .

• If $R \to 1$, the higher the between-group variability.

Sources of variability: results

```
tau_draws <- post_ml$sd_Title__Intercept
sigma_draws <- post_ml$sigma
R <- tau_draws^2/(tau_draws^2 + sigma_draws^2)
quantile(R, c(0.025, 0.975))</pre>
```

2.5% 97.5% 0.0001146342 0.4024477749

Wrap-up

- Bayesian multilevel modeling:
 - A two-stage prior; interpretation of parameters and hyperparameters.
 - Using the brms package; prior choices.
- Additional Bayesian inferences:
 - Shrinkage / pooling effects.
 - Sources of variability.