Lokalne mreže

Lokalne mreže - temeljne osobine

- lokalne mreže (LAN, Local Area Network)
 - mreže koje pokrivaju relativno malo područje, a služe za međusobno povezivanje radnih postaja, osobnih računala, pisača, poslužitelja, telefona, periferne opreme, osjetila i drugih sličnih uređaja na određenoj lokaciji
 - to su mreže računala u uredima, poslovnim zgradama i industrijskim postrojenjima gdje se povezuju računala smještena u jednoj zgradi ili više susjednih zgrada
 - mreža je u vlasništvu jedne organizacije
 - obilježja LAN: visoke brzine prijenosa, malo kašnjenje, mali BER
 - prednosti koje izgradnja lokalnih mreža donosi korisnicima računala
 - raspodjela i razmjena podataka između korisnika mreže (elektronička pošta, prijenos datoteka i sl.)
 - raspodjela i zajedničko korištenje namjenske programske podrške te uređaja i opreme (npr. printera, poslužitelja i sl.)

Lokalne mreže - temeljne osobine

- način prijenosa podataka u LAN mrežama
 - jednosmjerni prijenos (*unicast*)
 - pojedini paket se šalje od izvorišnog do odredišnog čvora u mreži
 - izvorišni čvor adresira paket pridružujući mu adresu odredišnog čvora
 - istodobni prijenos do skupine mrežnih čvorova (*multicast*)
 - izvorišni čvor adresira paket adresom koja sadrži više odredišnih čvorova
 - paket se šalje u mrežu koja ga kopira u potreban broj primjeraka i po jednu kopiju šalje u svaki čvor koji je sastavni dio adrese
 - istodobni prijenos do svih mrežnih čvorova (broadcast)
 - izvorišni čvor adresira paket adresom koja sadrži sve čvorove u mreži
 - paket se šalje u mrežu koja ga kopira i šalje po jednu kopiju svakom čvoru u mreži

Lokalne mreže - temeljne osobine

- prijenosni mediji u LAN mrežama
 - tanki i debeli koaksijalni kabeli, upletene parice ili optički kabeli
 - različite vrste prijenosnog medija unose različito gušenje signala
 - vrsta prijenosnog medija (uz brzinu prijenosa) određuje veličinu mreže
- osnovne topologije LAN mreža
 - sabirnica (bus), prsten (ring), zvijezda (star) i stablo (tree)
- normiranje LAN mreža provedeno je IEEE 802 normama (IEEE, Institute of Electrical and Electronics Engineers)
 - IEEE 802 norme odnose se na LAN i MAN mreže
 - rad na normama odvija se u okviru odbora IEEE 802 LAN/MAN Standards Committee (LMSC)

Norme za lokalne mreže

- IEEE 802 aktivne radne skupine
 - 802.1 Higher Layer LAN Protocols Working Group
 - 802.3 Ethernet Working Group
 - 802.11 Wireless LAN Working Group
 - 802.15 Wireless Personal Area Network (WPAN) Working Group
 - 802.16 Broadband Wireless Access Working Group
 - 802.17 Resilient Packet Ring Working Group
 - 802.18 Radio Regulatory TAG
 - 802.19 Coexistence TAG
 - 802.20 Mobile Broadband Wireless Access (MBWA) Working Group
 - 802.21 Media Independent Handoff Working Group
 - 802.22 Wireless Regional Area Networks
- IEEE 802 neaktivne radne skupine
 - 802.2 Logical Link Control (LLC) Working Group
 - 802.5 Token Ring Working Group

Norme za lokalne mreže

- norme IEEE 802 odnose se na mreže u kojima se prenose okviri promjenjive veličine
- usluge i protokoli sadržani u normama IEEE 802 zauzimaju prva dva sloja ISO/OSI modela
 - fizički sloj
 - sloj podatkovne veze
- nisu potrebne funkcije komutiranja i usmjeravanja paketa
 - podaci se prenose adresiranim okvirima po jednom prijenosnom mediju
- sloj podatkovne veze podijeljen je na dva podsloja
 - podsloj za upravljanje pristupom prijenosnom mediju (MAC, Medium Access Control)
 - provodi dodjelu prijenosnog medija mrežnoj postaji radi odašiljanja podataka
 - podloj za upravljanje logičkom vezom (LLC, Logical Link Control)
 - omogućava razmjenu jedinica podataka između dvije mrežne postaje

Norme za lokalne mreže

norme IEEE 802 u odnosu na referentni model OSI

- više mrežnih postaja ne može istodobno komunicirati putem mreže
- postupci upravljanja pristupom prijenosnom mediju rješavaju probleme koji se pojavljuju kada dvije ili više mrežnih postaja trebaju odašiljati podatke u isto vrijeme
 - određuju koja postaja ima pristup mreži
- u LAN mrežama rabe se dva načina upravljanja pristupom prijenosnom mediju
 - višestruki pristup osluškivanjem nosioca i detekcijom sudara (CSMA/CD, Carrier Sense Multiple Access/Collision Detect);
 - upravljanje pristupom prijenosnom mediju prosljeđivanjem pristupne riječi (token passing)

CSMA/CD

- mrežna postaja koja želi odašiljati podatke "osluškuje" da li neka druga postaja odašilje podatke i da li je medij zauzet
- ako je prijenosni medij slobodan, mrežna postaja započinje odašiljati
 - do sudara dolazi kada više postaja istodobno utvrdi da je medij slobodan i započne odašiljanje okvira
- za vrijeme odašiljanja okvira, mrežna postaja "osluškuje" medij, kako bi otkrila da li je došlo do sudara
 - rani sudar sudar koji postaja detektira za vrijeme dok odašilje okvire
 - mrežna postaja prekida emitiranje okvira i čeka slučajno odabrano vrijeme prije nego započne ponovno odašiljanje
 - u najvećem broju slučajeva istodobno odašiljanje podataka dvaju mrežnih postaja neće se ponoviti
 - kasni sudar sudar do koga dolazi nakon što je postaja prestala sa slanjem okvira
 - postaja ne može detektirati kasni sudar

- upravljanje pristupom prijenosnom mediju prosljeđivanjem pristupne riječi
 - poseban mrežni paket nazvan pristupna riječ (token) kruži mrežom od jedne mrežne postaje do druge
 - preduvjet za ovaj način upravljanja je da mrežne postaje formiraju logički prsten
 - u topologiji sabirnice oblikuje se logička topologija prstena tako da nakon posljednje mrežne postaje na sabirnici slijedi prva (token bus)
 - u topologiji prstena logička i fizička arhitektura se podudaraju (token ring)
 - kada pojedina mrežna postaja treba odašiljati podatke, mora čekati dok pristupna riječ ne dođe do nje i tada može započeti proces odašiljanja podataka
 - ako mrežna postaja do koje je pristigla pristupna riječ nema podatke za odašiljanje, prosljeđuje pristupnu riječ sljedećoj mrežnoj postaji

- fizička topologija sabirnica logička topologija - prsten
- fizička topologija prsten logička topologija - prsten

- svaka mrežna postaja može zadržati pristupnu riječ određeni maksimalni vremenski period
- ako mrežna postaja ima podatke za odašiljanje uzima pristupnu riječ, zamjenjuje 1 bit u pristupnoj riječi, dodaje podatke koje želi prenijeti mrežom i šalje ih do iduće mrežne postaje u prstenu
- dok informacije putuju mrežom, u mreži nema pristupne riječi
- ostale mrežne postaje koje žele odašiljati podatke moraju čekati
- u mreži nema sudara jer samo jedna postaja odašilje podatke
- druga mrežna postaja može započeti pristup mediju kada je prethodni prijenos podataka završen ili kada je pristupna riječ obišla sve mrežne postaje i vratila se do postaje koja ju je odaslala
- ovakav način prijenosa je pogodan za mreže u kojima kašnjenje mora biti predvidljivo
 - pristup mediju je deterministički i moguće je proračunati maksimalno vrijeme koje će proći prije nego će mrežna postaja imati mogućnost slanja podataka

- Ethernet
 - definiran IEEE 802.3 normom
 - Local and metropolitan area networks Specific requirements Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications
 - glavna LAN tehnologija
 - više od 85% računala koja su povezana u lokalne mreže rabe Ethernet
 - fizički sloj u Ethernetu sačinjavaju
 - zajednički medij na koji su spojene sve mrežne postaje
 - mrežni uređaji
 - fizički sloj je specifičan za određenu vrstu prijenosnog medija i područje brzina prijenosa podataka
 - npr. gigabitni Ethernet može za prijenos rabiti kako upletene parice, tako i različite vrste svjetlovoda ali svaka vrsta prijenosnog medija zahtijeva različitu implementaciju fizičkog sloja

- mrežni uređaji se dijele u dvije klase
 - mrežne postaje ili podatkovni krajnji uređaji (DTE, *Data Terminal Equipment*)
 - uređaji koji su izvor ili odredište paketa podataka
 - DTE su uređaji, kao npr. osobna računala, radne postaje, poslužitelji za rad s datotekama, poslužitelji za printere i slični uređaji
 - uređaji za prijenos podataka (DCE, Data Communication Equipment)
 - međuuređaji koji primaju i prosljeđuju pakete podataka kroz mrežu
 - DCE mogu biti samostalni uređaji, kao što su npr. obnavljači (repeaters), komutatori (switches) i usmjerivači (routers), ili komunikacijska sučelja kao što su mrežne kartice ili modemi

- označavanje inačica Etherneta
 - 1XXXBYYYYZ
 - 1XXX brzina prijenosa podataka
 - 1 Mbit/s, 10 Mbit/s, 100 Mbit/s, 1000 Mbit/s
 - BYYYY način prijenosa signala prijenosnim medijem
 - BASE prijenos u osnovnom pojasu
 - BROAD širokopojasni prijenos
 - Z najveća dopuštena duljina segmenta izražena u jedinicama 100 m (2, 5 ili 36)

ili

- oznaka prijenosnog medija
 - T (twisted pair) upletena parica
 - F (fiber) optički kabel
 - L (long) optički kabel, veće valne duljine
 - S (short) optički kabel, kraće valne duljine
 - X tehnologije za gigabitne Ethernet mreže

- inačice Etherneta
 - brzina prijenosa 10 Mbit/s
 - 10BASE5 debeli koaksijalni kabel, topologija sabirnica
 - 10BASE2 tanki koaksijalni kabel, topologija sabirnica
 - 10BASE-T upletena parica (UTP), topologija sabirnica
 - 10BASE-F optički kabel, topologija zvijezda
 - 10BROAD36 širokopojasni koaksijalni kabel
 - brzina prijenosa 100 Mbit/s
 - 100BASE-T Fast Ethernet, upletena parica, topologija zvijezda
 - brzina prijenosa 1000 Mbit/s
 - 1000BASE-X Gigabit Ethernet, topologija zvijezda
 - 1000BASE-T upletena parica (kategorije 5 ili 6), udaljenost do 100 m
 - 1000BASE-SX višemodni svjetlovod, udaljenost: do 500 m
 - 1000BASE-LX jednomodni svjetlovod, udaljenost: do 2 km
 - 1000BASE-LX-10 jednomodni svjetlovod, udaljenost: do 10 km
 - 1000BASE-ZX jednomodni svjetlovod (1550 nm), udaljenost: do 70 km

- podsloj MAC
 - specifično rješenje za svaku vrstu lokalnih mreža
 - u Ethernet mreži rabi se IEEE 802.3 MAC
 - izvodi se na mrežnoj kartici krajnjeg uređaja ili na priključku mrežnog uređaja
 - obavlja sljedeće funkcije:
 - upravljanje pristupom prijenosnom mediju uporabom CSMA/CD
 - formiranje okvira s adresnim poljem i poljem za upravljanje pogreškama prije odašiljanja
 - rasformiranje okvira, prepoznavanje adrese i detekcija pogrešaka tijekom i nakon prijama

- inačice struktura okvira
 - Ethernet II okvir
 - struktura Ethernet okvira predložena je od strane industrijskog konzorcija DIX (Digital Equipment Corporation, Intel, Xerox) koji je radio na razvoju i definiranju Etherneta
 - prvobitna struktura okvira usvojena 1980. godine (Ethernet I)
 - 1982. godine usvojena je izmijenjena struktura okvira koja se naziva Ethernet II okvir (*Ethernet II frame* ili *Ethernet Version 2* ili *DIX frame*)
 - najčešće korišteni oblik okvira koji se često koristi izravno od strane protokola IP
 - IEEE 802.3 okvir
 - uvažava postignuća DIX, ali unosi promjene u strukturu Ethernet II okvira radi prilagodbe drugim normama za lokalne mreže

Ethernet II okvir

	Preambula (8 okteta)	MAC adresa odredišta (6 okteta)	MAC adresa izvora (6 okteta)	Vrsta (2 okteta)	Podaci (46 do 1500 okteta)	FCS (4 okteta)	
--	-------------------------	------------------------------------	---------------------------------	---------------------	-------------------------------	-------------------	--

IEEE 802.3 okvir

Preambula SoF MAC adresa MAC adresa izvora Duljina LLC podaci FCS (7 okteta) (1) odredišta (6 okteta) (6 okteta) (2 okteta) (46 do 1500 okteta) (4 okteta)
--

- MAC adresa odredišta (48 bita od 0 do 47)
 - najviši bit (47. bit) "0" adresa krajnjeg uređaja
 - najviši bit (47. bit) "1" adresa skupine krajnjih uređaja (multicast address)
 - 46. bit jednak "0" globalne adrese
 - 46. bit jednak "1" lokalne adrese
 - svi biti jednaki "1" sveodredišna adresa (broadcast address) kada su svi krajnji uređaji odredišta

- Ethernet II okvir
 - preambula
 - označava početak okvira i služi za sinkronizaciju odašiljača i prijamnika
 - sastoji se od 8 okteta sastava 10101010
 - adresa odredišta
 - određuje jedan ili više krajnjih uređaja kojima se šalju okviri
 - adresa izvora
 - određuje krajnji uređaj koji šalje okvire
 - vrsta (EtherType)
 - određuje protokol višeg sloja čiji podaci su prebačeni u Ethernet okvir
 - ovo polje ima vrijednosti jednake ili veće od 1536 (0600 heksdecimalno)
 - protokoli viših slojeva (iznad LLC) označeni su kombinacijom bita koja se prenosi u polju EtherType (npr. EtherType za protokol IP je 0800 heksadecimalno)

- podaci
 - zauzimaju 46 do 1500 okteta
 - ukoliko je količina podataka manja od 46 okteta, provodi se punjenje do 46 okteta
 - na taj način definirana je najmanja duljina okvira (68 okteta) kojom se sprječava odašiljanje novog okvira prije nego je prethodni stigao do odredišta što djeluje na smanjivanje broja mogućih kasnih sudara
 - definiranjem najmanje veličine okvira želi se postići da krajnji uređaj ne završi slanje zadnjeg bita okvira prije nego prvi bit stigne do odredišta
- slijed za provjeru ispravnosti okvira (FCS, Frame Checksum Sequence)
 - služi za otkrivanje pogrešaka primjenom cikličkog kodiranja u odašiljaču (na temelju čega se određuju FCS okteti) i prijamniku
 - rezultat cikličkog kodiranja u prijamniku uspoređuje se s FCS primljenog okvira te ako se oni podudaraju primljeni okvir je ispravan

- IEEE 802.3 okvir
 - promjene u odnosu na Ethernet II okvir
 - preambula je smanjena na 7 okteta, a iza preambule se dodaje polje koje označava početak okvira (SoF, Start of Frame) kako bi se postigla kompatibilnost s drugim normama za lokalne mreže
 - polje "vrsta" (EtherType) zamijenjeno je poljem "duljina"
 - označava duljinu okvira ne uzimajući u obzir preambulu, FCS, MAC adrese i polje "duljina"
 - na početku polja podataka uvodi se IEEE 802.2 LLC zaglavlje (3 okteta)
 - LLC zaglavlje omogućava slojevima iznad sloja LLC da odrede u kojim međuspremnicima se nalaze podaci

- kompatibilnost okvira Ethernet II i IEEE 802.3
 - ukoliko je vrijednost polja, koje se u Ethernet II okviru naziva "vrsta", a u IEEE 802.3 okviru "duljina", manja od 1500 to polje se interpretira kao "duljina"
 - ukoliko je vrijednost polja, koje se u Ethernet II okviru naziva "vrsta", a u IEEE 802.3 okviru "duljina", jednaka ili veća od 1536 interpretira se kao "vrsta"
 - na taj način programska podrška može odrediti o kojoj vrsti okvira se radi
 - obje vrste okvira mogu koegzistirati na istom prijenosnom mediju

- podsloj LLC
 - definiran IEEE 802.2 normom
 - jednako definiran za sve vrste lokalnih mreža
 - funkcije ovog sloja su neovisne o načinu upravljanja pristupom prijenosnom mediju i o samome mediju
 - sučelje između Ethernet MAC podsloja i mrežnog sloja u OSI referentnom modelu
 - LLC omogućava protokolima mrežnog sloja da dijele podatkovnu vezu
 - LLC je izveden programski kao upravljački program ili programski modul mrežnog uređaja
 - LLC na temelju podataka iz LLC zaglavlja određuje gdje smjestiti okvir radi daljeg procesiranja
 - usluge
 - nespojna usluga bez potvrde primitka okvira
 - nespojna usluga s potvrdom primitka okvira
 - spojna usluga

- adresiranje krajnjih uređaja u lokalnoj mreži
 - odbor IEEE 802 odredio je oblik MAC adrese za krajnje uređaje, koji se odnosi na sve vrste lokalnih mreža
 - svaki krajnji uređaj ima svoju sklopovsku MAC adresu duljine 48 bita (broj mogućih adresa je 2⁴⁸=281 474 976 710 656)
 - dugačka adresa je potrebna kako bi svaki krajnji uređaj (mrežna kartica, priključak na uređaju) imao jedinstvenu MAC adresu u cijelom svijetu
 - time se onemogućuje da dva krajnja uređaja na istoj lokalnoj mreži imaju istu MAC adresu, što bi onemogućilo ispravan rad mreže
 - proizvođač mrežne opreme ugrađuje MAC adresu u ugrađeni softver (firmware) mrežnog uređaja

mrežni uređaji

- repetitor ili obnavljač (repeater)
- koncentrator ili parični obnavljač (hub)
- LAN komutator (switch)
- most (bridge)
- usmjerivač (*router*)

obnavljač

- mrežni uređaj koji se rabi za povezivanje dva ili više mrežnih segmenata
- rabi se u topologiji sabirnice koja se izvodi koaksijalnim kabelom
- prima sve signale jednog mrežnog segmenta, pojačava ih, obnavlja izvorni oblik signala i odašilje ih u drugi mrežni segment
- radi na fizičkom sloju

obnavljač

- parični obnavljač
 - radi na fizičkom sloju, a rabi se u topologiji zvijezde s upletenom paricom kao prijenosnim medijem
 - povezuje mrežne postaje u lokalnu mrežu
 - uvođenjem upletene parice kao prijenosnog medija, segment postaje dio mreže koji povezuje mrežnu postaju i priključak na paričnom obnavljaču
 - pojačava primljeni signal, obnavlja izvorni oblik signala, obnavlja preambulu primljenog signala i šalje signal na sve ostale priključke
 - otkriva sudare i nepravilnosti u radu mreže
 - nedostaci
 - povećava kašnjenje okvira s kraja na kraj mreže
 - preporučeno je rabiti najviše 4 parična obnavljača u mreži
 - ne razdvaja dijelove LAN-a na međusobno odvojene domene sudara
 - domena sudara je područje u Ethernet mreži unutar kojeg vrijedi pravilo da će istodobno odašiljanje okvira dviju postaja izazvati sudar okvira

parični obnavljač

- most
 - MAC most
 - most koji služi za povezivanje istovrsnih lokalnih mreža (npr. dva ili više Ethernet LAN-a)
 - radi na podsloju MAC sloja podatkovne veze
 - funkcije LLC-a su tada prepuštene krajnjim mrežnim uređajima
 - naziva se još i most za lokalno povezivanje (local bridge)
 - mješoviti most (*mixed bridge*, *link bridge*)
 - most pune funkcionalnosti koji rabi oba podsloja podatkovne veze (MAC i LLC)
 - omogućava povezivanje istovrsnih i raznovrsnih lokalnih mreža
 - LLC obavlja pretvorbu okvira iz jednog formata u drugi format

most

- funkcije mosta
 - djeluje kao selektivni obnavljač koji prenosi okvire iz jedne mreže u drugu samo ako su okviri ispravno oblikovani
 - most pohranjuje okvir, provjeri njegovu ispravnost i ukoliko je ispravan šalje ga na neki od priključaka
 - kašnjenje je veće nego kašnjenje u obnavljačima
 - može raditi s mrežama u kojima se rabe različite brzine prijenosa
 - okviri se prosljeđuju iz jednog LAN-a u drugi brzinom koja je jednaka brzini prijenosa u drugom LAN-u
 - razdvaja domene sudara
 - sudari i pogrešni okviri su izolirani i ne prenose se dalje
 - nema mogućnost razdvajanja domena za sveodredišne adrese
 - most tijekom rada formira dinamičku tablicu u koju upisuje MAC adrese mrežnih postaja u svakoj mreži
 - most uči kakva je topologija mreže na temelju MAC adresa izvora koje su upisane u primljene okvire

- LAN komutator (komutator drugog sloja)
 - obavlja iste funkcije kao most s većim brojem priključaka
 - razlika u odnosu na most je što su funkcije prosljeđivanja okvira implementirane hardverski što povećava brzinu rada uređaja
 - danas sve vrste lokalnih mreža rabe LAN komutatore
 - radi na sloju podatkovne veze
 - razdvaja domene sudara
 - svaki krajnji uređaj povezuje se s komutatorom s dvije parice (svaka za jedan smjer prijenosa)
 - komutacija okvira od ulaznog do izlaznog priključka provodi se na temelju tablice komutiranja u kojoj su pohranjeni parovi (MAC adresa, broj priključka)
 - komutator kao i most, uči topologiju mreže
 - komutatori međusobno razmjenjuju informacije o topologiji, tako da svaki priključak na komutatoru ima vlastitu MAC adresu

usmjerivač

- rabi se za povezivanje više LAN mreža u cjelinu ili za povezivanje LAN mreža s WAN mrežom
 - usmjerivač predstavlja kraj lokalne mreže iza kojeg započinje pristup WAN mreži ili drugoj lokalnoj mreži koja na mrežnom sloju predstavlja zasebnu mrežu
- usmjerivač radi na mrežnom sloju ako mreže koje se povezuju koriste iste protokole drugog sloja
- ako mreže koje se povezuju koriste različite protokole drugog sloja usmjerivač mora djelovati i na drugom sloju (pretvorba formata MAC okvira)
- povezivanje LAN mreža s WAN mrežom može se provesti putem zakupljenih linija i modema (128 kbit/s-2,048 Mbit/s) ili putem komutacije okvira (FR, *Frame Relay*) uz brzine prijenosa od 128 kbit/s do E3/T3

usmjerivač

- na temelju poznavanja odredišne adrese i tablica usmjeravanja, koje se formiraju u usmjerivaču, usmjerivač šalje pakete kroz mrežu optimalnim putem
- tablice usmjeravanja sadrže adrese udaljenih mreža i adrese usmjerivača kojima treba poslati pakete za tu mrežu
- usmjerivači ne prosljeđuju sveodredišnu adresu
- povećano je kašnjenje u odnosu na mostove jer obrada paketa na mrežnom sloju traje dulje od obrane okvira na sloju podatkovne veze
- usmjerivač može biti i prolaz (gateway)
 - spaja mreže koje rabe različite protokole
 - provodi pretvaranje jednog mrežnog protokola u drugi

Povezivanje lokalnih mreža

- za povezivanje LAN mreža najčešće se rabe zakupljeni kanali
 - korisniku se na određenoj fizičkoj vezi fiksno dodjeljuje jedan ili više kanala raspoređenih po frekvencijama ili po vremenu
 - korisnik koristi samo one kanale koji su mu fiksno dodijeljeni
 - ukoliko korisnici ne rabe puni kapacitet dodijeljenih kanala, način uporabe zakupljenih kanala je neučinkovit

Povezivanje lokalnih mreža

- zakupljeni kanali zajedno s mrežnim uređajima CSU/DSU (Control Service Unit/Data Service Unit) sačinjavaju privatnu ili javnu WAN mrežu
 - na svaku lokalnu mrežu usmjerivač predstavlja kraj lokalne mreže
 - ukoliko se povezuje više LAN mreža, za svaku fizičku vezu na kojoj se koriste zakupljeni kanali treba instalirati par CSU/DSU uređaja
 - ukoliko se u mreži želi postići malo kašnjenje u prijenosu informacija s kraja na kraj mreže, svaki usmjerivač je potrebno povezati sa svakim (topologija *full mesh*)
- nedostaci uporabe zakupljenih kanala
 - troškovi izgradnje i uporabe mreže su visoki
 - način uporabe kapaciteta zakupljenih kanala je nedjelotvoran
 - nije moguća dinamička promjena načina povezivanja uređaja u slučaju kvarova i preopterećenja

Povezivanje lokalnih mreža

povezivanje LAN mreža zakupljenim kanalima

- radijske lokalne mreže (WLAN, Wireless Local Area Network)
 - vrsta lokalnih mreža koje za prijenos informacije između mrežnih čvorova rabe elektromagnetske valove u radijskom ili infracrvenom frekvencijskom području
 - mreže WLAN rabe se kao proširenje fiksne lokalne mreže ili njezina alternativa na ograničenom manjem području
 - služe za pristup fiksnim lokalnim mrežama
 - kompatibilne su s Ethernet mrežama iznad sloja podatkovne veze
 - u razvoju normi za WLAN trebalo je riješiti nekoliko problema
 - odrediti frekvencijsko područje rada koje je, po mogućnosti, globalno raspoloživo
 - uvažiti činjenicu da radijski valovi imaju ograničen domet
 - osigurati privatnost korisnika
 - uzeti u obzir ograničeni kapacitet baterija u prijenosnim računalima
 - uzeti o obzir posljedice mobilnosti računala
 - postići visoke brzine prijenosa

- u WLAN-u koriste se dva osnovna prijenosna medija
 - prijenos u infracrvenom (IR, *Infared*) dijelu spektra
 - područje valnih duljina 850 950 nm
 - radijski prijenos
 - nelicencirani frekvencijski pojasevi radijskog spektra (ISM, Industrial, Scientific and Medical), za koje ne treba plaćati naknadu za uporabu frekvencije
 - noviji WLAN sistemi rabe i licencirane frekvencijske pojaseve za koje je potrebno pribaviti dozvolu za uporabu RF spektra
- razlike koje treba unijeti u WLAN u odnosu na fiksni Ethernet
 - promijeniti tehniku pristupa prijenosnom mediju
 - detekcija nosioca u CSMA postupku u WLAN-u je otežana
 - sudare nije moguće detektirati jer prijamnik može primiti isti signal više puta zbog refleksije elektromagnetskog vala od prepreka
 - provesti potrebne prilagodbe zbog pokretljivosti računala

- nelicencirana ili ISM frekvencijska područja
 - 2400 2483,5 MHz
 - mreže u ovom pojasu neke administracije označuju kao RLAN
 - 5725 5925 MHz
 - rijetko se koristi za WLAN u Europi
- licencirana frekvencijska područja za WLAN
 - 5150 5350 MHz
 - 5470 5725 MHz
 - 17,1 17,3 GHz

okvirna podjela frekvencijskih područja za WLAN u svijetu

- frekvencijska područja za radijske lokalne mreže u Hrvatskoj
 - ISM frekvencijski pojas 2400–2483,5 MHz
 - dopušten je rad WLAN sustava bez potrebe za pribavljanjem dozvole ako efektivna izotropna izračena snaga uređaja (EIRP, Effective Isotropic Radiated Power) ne prelazi 100 mW
 - 5150 5350 MHz
 - srednja EIRP ograničena na 200 mW
 - predviđeno za uporabu samo u zatvorenim prostorima
 - 5470 5725 MHz
 - srednja EIRP ograničena na 1 W
 - uporaba u zatvorenim i otvorenim prostorima
 - 17,1 -17,3 GHz
 - EIRP ograničen na 100 mW
 - uporaba u zatvorenim i otvorenim prostorima

Licencirani pojasevi

 potrebna je dozvola nadležnoga državnog tijela (Hrvatske agencije za telekomunikacije) za uporabu spektra

- dvije temeljne skupine normi za WLAN
 - norme IEEE 802.11
 - predviđene za rad u nelicenciranom području frekvencija od 2,4 GHz i u licenciranom području oko 5 GHz
 - radijski Ethernet je pojam koji se rabi kao sinonim za WLAN po IEEE 802.11 normi
 - HiperLAN (High Performance Radio Local Area Network) norme
 - norme Europskog instituta za telekomunikacijske norme (ETSI, European Telecommunications Standards Institute)
 - predviđene za rad u licenciranom frekvencijskom području oko 5 GHz

- krajnji korisnici pristupaju WLAN mreži preko WLAN mrežnih kartica (NIC, Network Interface Card), koje su sastavni dio osobnih računala, te pristupnih točaka (AP, Access Point)
- WLAN mrežne kartice
 - radijsko mrežno sučelje
- pristupne točke
 - služe za povezivanje radijske i fiksne LAN mreže na fiksnoj lokaciji koristeći standardni Ethernet kabel

- funkcije pristupne točke
 - služi za povezivanje WLAN mreže s fiksnom mrežom
 - prima, pohranjuje i odašilje podatke između radijske i fiksne mrežne infrastrukture
 - jednom kada je povezana na mrežu, djeluje u načelu kao most: na jednoj strani je radijska mreža, a na drugoj npr. Ethernet
 - uspostavlja komunikaciju s mrežnim postajama koje su joj u dometu pokrivanja radijskim valovima
 - jedna pristupna točka podržava malu skupinu korisnika i funkcionira unutar raspona od tridesetak metara do preko stotinu metara
- dvije temeljne arhitekture WLAN-a
 - WLAN bez pristupne točke (neovisni WLAN)
 - WLAN s pristupnom točkom (infrastrukturni WLAN)

- WLAN bez pristupne točke
 - nastaje proizvoljnim (ad hoc) povezivanjem neovisnih radijskih mrežnih postaja koje ravnopravno komuniciraju (peer-to-peer)
 - dva ili više računala opremljena WLAN mrežnim karticama mogu uspostaviti izravnu međusobnu vezu ukoliko su jedno drugom u dometu pokrivanja radijskim valovima
 - ovakav način povezivanja se u IEEE 802.11 normi naziva neovisni skup osnovne usluge (IBSS, Independent Basic Service Set)
 - mreža je fleksibilna i jeftina jer ne zahtijeva upravljanje

- WLAN s pristupnom točkom
 - korištenjem barem jedne pristupne točke u WLAN mreži dobiva se tzv. infrastrukturna topologija u kojoj pristupna točka provodi sinkronizaciju i koordinaciju, prosljeđuje okvire i povezuje WLAN mrežu s fiksnom LAN mrežom
 - način povezivanja u kome se rabi jedna pristupna točka se u IEEE 802.11 normi naziva infrastrukturni skup osnovne usluge (BSS, *Basic Service Set*)

- za pokrivanje većih područja rabi se više pristupnih točaka
 - pristupne točke ne služe samo za povezivanje WLAN mreže s fiksnom mrežom već i kao posrednici za prijenos podataka između segmenata mreže u neposrednom susjedstvu
 - ovakav način povezivanja se u IEEE 802.11 normi naziva skup proširene usluge (ESS, *Extended Service Set*)
 - ESS nastaje kada se više
 pristupnih točaka povezuje
 u jedan zajednički distribucijski
 sustav (DS, *Distribution System*)

- pokretljivost korisnika
 - mrežne postaje mogu se kretati za vrijeme dok su povezane na mrežu i tijekom kretanja mogu odašiljati podatke
 - tri su moguće vrste prijelaza u mreži ili između mreža
 - kretanje bez prijelaza, tj. zadržavanje u okviru jednog BSS
 - prijelazi između BSS segmenta ESS mreže
 - prijelazi između različitih ESS mreža
 - ukoliko se mrežna postaje kreće i prelazi iz područja pokrivanja jedne pristupne točke u područje pokrivanja druge pristupne točke, kontinuirana komunikacija će mu biti omogućena samo ako se područja pokrivanja susjednih pristupnih točaka preklapaju

 primjeri prijelaza između BSS segmenta ESS mreže i između dvije ESS mreže

Komunikacijski sustavi

IEEE 802.11

- IEEE 802.11 definira uporabu pet vrsta fizičkog sloja
 - mrežne postaje moraju rabiti isti fizički sloj ako žele komunicirati
 - svaka vrsta fizičkog sloja popraćena je vlastitim MAC podslojem
 - LLC podsloj je je zajednički za sve vrste IEEE 802 mreža
- 1997. godine usvojena je prva, tzv. izvorna verzija norme IEEE 802.11
 - propisane su tri tehnike prijenosa u fizičkom sloju
 - prijenos u infracrvenom području
 - prijenos uz proširenje pojasa izravnim slijedom (DSSS, *Direct Sequence Spread Spectrum*)
 - prijenos uz proširenje pojasa skakanjem frekvencije (FHSS, *Frequency Hopping Spread Spectrum*)
 - FHSS i DSSS
 - rad u ISM području oko 2,4 GHz uz brzine prijenosa do 2 Mbit/s

IEEE 802.11

- 1999. godine uvedena su dva dodatka normi IEEE 802.11
 - IEEE 802.11a
 - rad u frekvencijskom području od 5 GHz
 - brzine prijenosa do 54 Mbit/s
 - prijenos na fizičkom sloju primjenom OFDM tehnike
 - IEEE 802.11b
 - rad u ISM frekvencijskom području od 2,4 GHz
 - brzine prijenosa do 11 Mbit/s
 - prijenos na fizičkom sloju primjenom prijenosa uz proširenje pojasa izravnim slijedom visoke brzine (HR-DSSS, High Rate Direct Sequence Spread Spectrum)

IEEE 802.11

- 2001. godine uveden je novi dodatak normi IEEE 802.11
 - IEEE 802.11g
 - rad u ISM frekvencijskom području od 2,4 GHz
 - zadržao je sva obilježja tehnologije iz 802.11a, a koristi frekvencijsko područje rada 802.11b (2,4 GHz)
 - potpuno je povratno kompatibilan s 802.11b
 - prijenos na fizičkom sloju primjenom HR-DSSS i OFDM, ovisno o brzini prijenosa
 - brzine prijenosa do 11 Mbit/s uz primjenu HR-DSSS te do 54 Mbit/s uz primjenu OFDM

skup protokola u mreži IEEE 802.11

802.11

- prijenos u infracrvenom području
 - neusmjeren prijenos u području valnih duljina 850 950 nm
 - brzine prijenosa su 1 Mbit/s i 2 Mbit/s
 - infracrveno zračenje ne prolazi kroz zidove
 - zbog malih brzina prijenosa i jakih smetnji od djelovanja sunčeve svjetlosti ili fluorescentnih svjetiljki ovaj način prijenosa nije raširen

- prijenos uz proširenje pojasa
 - temeljna prednost u odnosu na ostale tehnike prijenosa je mogućnost održavanja veze u uvjetima slabog prijamnog signala (niski S/N) te uz prisutnost uskopojasnih ili širokopojasnih smetajućih signala
 - u uobičajenim modulacijskim postupcima frekvencijska širina pojasa moduliranog signala ovisi o širini pojasa modulacijskog signala
 - kod sustava s proširenim spektrom frekvencijska širina pojasa neovisna je širini pojasa modulacijskog signala
 - širina pojasa obično je mnogo veća od minimalno potrebne širine pojasa za prijenos informacije određene kvalitete
 - za određeni kapacitet kanala povećanje širine frekvencijskog pojasa dopušta da vrijednost *S/N* smije biti smanjena (Shannonova formula)
 - značajke prijenosa uz proširenje pojasa vrednuju se preko procesnog dobitka (G_p)
 - G_p pokazuje koliko pri ovoj tehnici S/N može biti manji u odnosu na S/N klasičnih modulacija uz ostvarenje jednake kvalitete prijamnog signala

- proširenje pojasa može se realizirati na dva načina:
 - u DSSS postupku proširenje frekvencijskog pojasa modulacijskog signala postiže se tako da se svaki informacijski (podatkovni) impuls osnovnog pojasa proširi nizom mnogo užih impulsa (podimpulsi, u stranoj literaturi oni se označuju kao *chip*)
 - niz podimpulsa dio je tzv. PN-slijeda (*Pseudorandom Numerical*) određene duljine
 - PN-slijed trebao bi imati svojstva bliska svojstvima bijelog šuma
 - u FHSS postupku pojedini dijelovi osnovne informacije prenose se nosiocima različitih frekvencija
 - frekvencijski pojas je podijeljen na uske potpojaseve (reda veličine 1 MHz) koji se biraju prema unaprijed zadanom kodu
 - PN-slijed upravlja frekvencijama nosilaca

- IEEE 802.11 DSSS fizički sloj
 - DBPSK za prijenos podataka brzinama 1 Mbit/s
 - DQPSK za prijenos podataka brzinama 2 Mbit/s
 - frekvencija podimpulsa: 11 Mchip/s (Barkerov kod od 11 podimpulsa)

- pojas širine 83,5 MHz (2400-2483 MHz) podijeljen je u Europi na 13 kanala širine 22 MHz (u SAD raspoloživo je prvih 11 kanala)
- kanali se međusobno preklapaju, a razmak između kanala je 5 MHz

- pristupna točka na odabranoj lokaciji mora dobro pokrivati željeni prostor, a područja pokrivanja (ćelije) susjednih pristupnih točaka trebaju se preklapati
- smanjenjem snage i uporabom više pristupnih točaka bolje se pokriva željeni prostor
- svaka pristupna točka radi na jednom kanalu
- kada se više pristupnih točaka rabi za pokrivanje određenog prostora,
 radi izbjegavanja smetnji mogu rabiti samo 3–4 nepreklapajuća kanala
 - kanali: 1, 7 i 13 ili 1, 5, 9 i 13, razmak između kanala 20 MHz

 u nekim europskim zemljama preporuča se uporaba samo 3 kanala (1, 7, 13)

Fizički sloj - FHSS

FHSS

- radna frekvencija (frekvencija nosioca) skokovito se mijenja unutar određenoga frekvencijskog područja koje može biti za red veličine šire od onoga u DSSS
- promjenama frekvencije upravlja PN-slijed
- u spektru je u svakom trenutku prisutna samo jedna frekvencija
- za moduliranje nosioca skokovite promjene frekvencije najčešće se koristi postupak *M*-FSK

Fizički sloj - FHSS

- IEEE 802.11 FHSS fizički sloj
 - koristi Gaussovu diskretnu modulaciju frekvencije (GFSK)
 - 2-GFSK za prijenos podataka brzinama 1 Mbit/s
 - 4-GFSK za prijenos podataka brzinama 2 Mbit/s
 - brzina prijenosa simbola je u oba slučaja R_S = 1 MBd
 - frekvencijsko područje podijeljeno je na 79 kanala širine 1 MHz
 - redoslijed skakanja određen je na temelju pseudoslučajnog koda
 - najmanji razmak frekvencija između kojih se skače je 6 kanala (6 MHz)
 - vrijeme zadržavanja na pojedinoj frekvenciji može se podešavati
 - europskim normama je propisano najmanje 2,5 skoka/s (vrijeme zadržavanja < 400 ms)
 - 10 15 mreža može raditi u susjedstvu
 - broj mreža određen je razinom smetnji između sustava koja ovisi o vjerojatnosti da će 2 dvije mreže istodobno odabrati isti kanal

Usporedba FHSS i DSSS

- usporedba IEEE 802.11 DSSS i FHSS fizičkog sloja
 - FHSS je manje osjetljiv na smetnje i višestazno prostiranje
 - kvaliteta FHSS se postepeno kvari, dok kod DSSS pogoršanje nastupa naglo
 - uz FHSS na određenom prostoru može koegzistirati 10 do 15 mreža, dok su uz DSSS moguće samo 3 mreže
 - kod DSSS, pravilo je da faktor proširenja bude jednak 11 kako bi se ispunio uvjet o potrebnome procesnom dobitku

Tehnologija na fizičkom sloju	Frekvencijsko područje, MHz	Modulacijski postupak	Brzina prijenosa Mbit/s
DSSS	2400 – 2483,5	DBPSK	1
		DQPSK	2
FHSS		2-GFSK	1
		4-GFSK	2

IEEE 802.11b

- norma IEEE 802.11b
 - poznata kao Wi-Fi (Wireless Fidelity)
 - u početku se oznaka Wi-Fi odnosila samo na IEEE 802.11b normu, ali kasnije se termin proširio na bilo koju vrstu IEEE 802.11 mreže
 - povratno je kompatibilna s ranijim proizvodima rađenim na temelju izvorne IEEE 802.11 DSSS norme
 - proširena norma 802.11b u 2,4 GHz području omogućava brzine
 - 1 Mbit/s i 2 Mbit/s kao i izvorna IEEE 802.11 norma
 - 5,5 Mbit/s i 11 Mbit/s kao dodatne mogućnosti
 - za brzine od 5,5 i 11 Mbit/s koristi na fizičkom sloju tzv. CCK-tehniku (CCK, Complementary Code Keying)
 - CCK je oblik tehnike proširenog spektra (HR-DSSS) koja združuje DSSS postupak proširenja spektra i modulaciju

IEEE 802.11b

CCK-tehnika

- radi postizanja brzina od 5,5 i 11 Mbit/s u istom rasteru kanala širine
 22 MHz treba smanjiti faktor proširenja s 11 na 8
- za proširenje se umjesto 11-chipnog Barkerovog koda koriste 8chipne kodne riječi koje se biraju iz skupa od 64 kodne riječi
- brzina prijenosa simbola povećava se s 1 MBd na 1,375 MBd
- za postizanje $R_{\rm D}$ = 5,5 Mbit/s uz $R_{\rm S}$ = 1,375 MBd potrebno je prenositi 5,5/1,375 = 4 bit/simbol
- za postizanje $R_{\rm D}$ = 11 Mbit/s uz $R_{\rm S}$ = 1,375 MBd potrebno je prenositi 11/1,375 = 8 bit/simbol

Zašto CCK-tehnika?

- lako ju je integrirati s DSSS-om za brzine od 1 i 2 Mbit/s iz izvorne verzije IEEE 802.11
- povećava propusnost mreže

IEEE 802.11b

pregled mogućih načina rada IEEE 802.11b sustava

Brzina prijenosa Mbit/s	Broj podimpulsa	Modulacijski postupak	Brzina signaliziranja MBd	Bit/simbol
1 Mbit/s	11 (Barker kod)	BPSK	1	1
2 Mbit/s	11 (Barker kod)	QPSK	1	2
5,5 Mbit/s	8 (CCK)	(D)QPSK	1,375	4
11 Mbit/s	8 (CCK)	(D)QPSK	1,375	8

IEEE 802.11a

- sustavi po normi IEEE 802.11a rade u području 5 GHz
- na fizičkom se sloju koristi OFDM-postupak

Temeljni parametri OFDM-a u WLAN-u

Parametar	Vrijednost		
Brzina prijenosa	6; 9; 12; 18; 24; 36; 48; 54 Mbit/s		
Modulacijski postupak	BPSK; QPSK; 16-QAM; 64-QAM		
Korisnost koda (FEC)	1/2; 2/3; 3/4		
Broj podkanala	52		
Broj pilotskih kanala	4		
Broj informacijskih kanala	48		
Trajanje OFDM-simbola	4 µs		
Zaštitni interval – trajanje	800 ns		
Razmak podnosilaca	312,5 kHz		
-3 dB širina pojasa	16,56 MHz		
Širina OFDM-kanala	20 MHz		

IEEE 802.11a

- u pojasu od 5,150 5,350 GHz smješteno je 8 kanala
 - rubni kanali odmaknuti su 30 MHz od ruba pojasa

IEEE 802.11a

- primjer frekvencijskog plana za 802.11a
 - moguće je koristiti 8 frekvencija s preklapanjem područja pokrivanja pristupnih točaka (što je više od 3 kanala kod 802.11b) samo u pojasu od 5,150 do 5,350 GHz

IEEE 802.11g

- norma je zadržala sva obilježja tehnologije iz 802.11a, a koristi frekvencijsko područje rada 802.11b (2,4 GHz)
- 802.11g potpuno je povratno kompatibilan s 802.11b
 - za brzine: 1, 2, 5,5 i 11 Mbit/s koristi se DSSS tehnologija i CCK te QPSK/BPSK modulacijska shema (potpuno jednako kao i kod 802.11b)
 - za brzine: 6; 9; 12; 18; 24; 36; 48 i 54 Mbit/s koristi se OFDM tehnologija i modulacijska shema ovisna o brzini prijenos
- omogućen je prijelaz iz mreže, koja zahtijeva veliku širinu prijenosnog pojasa i visoku brzinu prijenosa, u mrežu u kojoj se rabe niže brzine prijenosa, bez prekidanja usluge
 - korisnici opremljeni 802.11b uređajima mogu se kretati i koristiti usluge pristupnih točaka "g" mreže (uz brzinu od 11 Mbit/s) kao da su u području s pristupnom "b" točkom

IEEE 802.11g

• brzine prijenosa, tehnologija i modulacijske sheme

Brzina prijenosa [Mbit/s]	Tehnologija na PHY sloju	Modulacijski postupak
54	OFDM	64 QAM
48	OFDM	64 QAM
36	OFDM	16 QAM
24	OFDM	16 QAM
18	OFDM	QPSK
12	OFDM	QPSK
11	DSSS	CCK
9	OFDM	BPSK
6	OFDM	BPSK
5,5	DSSS	CCK
2	DSSS	QPSK
1	DSSS	BPSK

IEEE 802.11g

- prednosti mreže po normi 802.11g
 - zadržana brzina prijenosa kao u 802.11a
 - moguć je neprimjetni prijelaz (roaming) između 802.11g i 802.11b
 - postojeći korisnici sustava po normi 802.11b mogu koristiti pristupne točke mreže 802.11g
 - korisnici 802.11g mreže mogu se vezati na pristupne točke 802.11b mreže (najviše uz brzinu od 11 Mbit/s)
 - bolje je pokrivanje nego kod 802.11a uz istu brzinu podataka
 - koristi se u cijelom svijetu
- nedostaci mreže po normi 802.11g
 - isti su izvori smetnji kao i kod 802.11b (ISM pojas)
 - povećana je potrošnja snage
 - visoka su početna ulaganja

- MAC podsloj specifičan je za WLAN i normu 802.11.
 - MAC podsloj mreže određuje pravila za pristupanje zajedničkom radijskom prijenosnom mediju uključujući prioritete i određivanje frekvencije kanala
- funkcije MAC protokola zajedničke su za sve vrste fizičkog sloja koje su predviđene normom IEEE 802.11 i neovisne su o brzinama prijenosa
- različit način upravljanja pristupom mediju u odnosu na fiksne Ethernet mreže
 - u WLAN mreži mrežni čvorovi ne mogu samostalno odrediti da li je prijenosni medij slobodan i ne mogu pouzdano odrediti da li je došlo do sudara

- mogućnosti osluškivanja nosioca u fiksnom i radijskom Ethernetu se razlikuju
 - kada u radijskom Ethernetu pojedini mrežni čvor želi odašiljati podatke i u isto vrijeme osluškivati stanje drugih čvorova u mreži koji rade na istom kanalu, podaci koje taj čvor odašilje zaglušuju sve ostale signale i nemoguće je provesti detekciju sudara
- u WLAN mrežama rabi se CSMA s izbjegavanjem sudara (CSMA/CA, CSMA with Collision Avoidance)
 - kao dio mehanizma izbjegavanja sudara, koji je dio IEEE 802.11
 MAC, mrežni čvorovi odgađaju odašiljanje svojih podataka sve dok prijenosni medij ne postane slobodan
 - različiti razmaci između okvira omogućuju uspostavljanje različitih razina prioriteta za različite vrste prometa

- CSMA s izbjegavanjem sudara (CSMA/CA)
 - izvorišni čvor prvo odašilje kratki okvir sa zahtjevom za slanje (RTS, Request to Send) u kojem se nalazi adresa odredišnog čvora i duljina okvira s korisničkim podacima koji slijedi
 - ako odredišni čvor primi RTS i može odgovoriti, tada odašilje kratki paket s porukom slobodan za slanje (CTS, Clear to Send)
 - nakon što primi CTS izvorišni čvor odašilje okvire, a odredišni čvor potvrđuje prijam svakog odaslanog okvira vraćanjem paketa s potvrdom (ACK, Acknowledgement)
 - u slučaju da izvorišna postaja ne primi ACK paket pretpostavlja da se dogodio sudar ili gubitak okvira
 - izvorišna postaja nakon određenog sigurnosnog intervala ponovno šalje RTS paket

- detekcija nosioca
 - rabi se radi utvrđivanja da li je prijenosni medij slobodan
 - funkcija za fizičku detekciju nosioca
 - provodi se u fizičkom sloju, ovisna je o vrsti fizičkog sloja
 - složena je i skupa jer zahtijeva ugradnju uređaja i opreme za detekciju
 - funkcija za virtualnu detekciju nosioca
 - provodi se uz pomoć vektora dodjeljivanja kapaciteta mreže (NAV, Network Allocation Vector)
 - prenosi se u zaglavlju RTS i CTS okvira
 - postaja postavlja NAV na vrijeme za koje očekuje da će rabiti medij
 - druge postaje broje vrijeme od NAV do 0
 - kada je NAV različit od 0, funkcija za virtualnu detekciju nosioca pokazuje da je medij zauzet
 - kada NAV postane jednak 0, funkcija za virtualnu detekciju nosioca pokazuje da je medij slobodan

- u Europi su razvijene norme pod nazivom lokalne radijske mreže visokih performansi (*High Performance Radio Local Area Network*) tzv. HiperLAN/1 i HiperLAN/2 norme
- HiperLAN/1 i HiperLAN/2 razvijeni su unutar Europskog instituta za telekomunikacijske norme (ETSI, European Telecommunications Standards Institute) u okviru Projekta za širokopojasne radijske pristupne mreže (BRAN, Broadband Radio Access Network)
- HiperLAN norme nisu kompatibilne s IEEE 802.11a normom
- HiperLAN/1 nije u komercijalnoj primjeni

- HiperLAN/2 služi za pristup ATM- (Asynchronous Transfer Mode), IP- (Internet Protocol) i UMTS-mrežama (Universal Mobile Telecommunications System)
- HiperLAN/2 namijenjen je i za fleksibilnu aplikaciju unutar poslovnih prostora i mjesta stanovanja osiguravajući pri tome multimedijski prijenos do 54 Mbit/s

- norme HiperLAN/2 i IEEE 802.11a su na fizičkom sloju gotovo jednake
 - obje koriste OFDM tehnologiju i jednake brzine prijenosa
 - razlika je u višim slojevima mreže koji su u normi IEEE 802.11a
 prilagođeni Ethernet mrežama, a u normi HiperLAN/2 ATM mrežama,
 UMTS-u i dr.
- frekvencijska područja predviđena za rad HiperLAN sustava su: 5150 – 5350 MHz i 5470 – 5725 MHz
 - najveći dopušteni EIRP za prvo frekvencijsko područje iznosi 200 mW (unutar zgrada) te 1000 mW (vanjski prostor)
 - razmak kanala je 20 MHz

- parametri OFDM-a
 - broj podnosilaca je 52, od kojih se 48 koristi za podatke, a ostali za pilotske signale
 - zaštitni interval je trajanja 800 ns za 16 vremenskih uzoraka (može biti i 400 ns kao dodatna mogućnost)
 - modulacija podnosilaca: BPSK, QPSK, 16QAM i kao dodatna mogućnost 64 QAM
 - brzine prijenosa: 6, 9, 12, 18, 27, 36, 54 Mbit/s
 - ispreplitanje na razini jednog OFDM simbola

- MAC podlsoj
 - u HiperLAN/2 normi protokol MAC podsloja je dinamički TDMA/TDD (Time Division Multiple Access / Time Division Duplex)
 - svakome mrežnom čvoru koji koristi isti RF kanal dodjeljuje se određeni vremenski odsječak i čvor odašilje samo u dodijeljenom vremenskom odsječku u specificiranom RF kanalu
 - TDMA je posebno prikladan za
 - interaktivne govorne ili osobne komunikacije kao što su: govor, telefaks, podaci, SMS i sl. te za aplikacije koje zahtijevaju veće širine pojasa npr: multimedija i videokonferencije
 - struktura vremenskih odsječaka omogućuje istodobnu dvosmjernu komunikaciju (dupleks)
 - omogućeno je upravljanje parametrima kvalitete usluge (QoS) kao što su: brzina, BER, vrijeme čekanja, treperenje faze (jitter)
 - onemogućeno je da drugi terminali ometaju prijenos koji je u toku
 - mreža detektira interferenciju od drugih sustava i izbjegava rad na zauzetom kanalu

Usporedba normi za WLAN

	WLAN norma			
	802.11	802.11b	802.11a	HiperLAN/2
Područje frekvencija, GHz	2,4	2,4	5	5
Razmak kanala, MHz	22 za DSSS 1 za FHSS	22	20	20
Najveća brzina na PHY, Mbit/s	2	11	54	54
Vrsta nosioca	FHSS ili DSSS	DSSS	OFDM	OFDM
Modulacijski postupak	GFSK (FHSS), DBPSK ili DQPSK (DSSS)	CCK	BPSK i QPSK, 16-QAM ili 64-QAM	BPSK i QPSK, 16-QAM ili 64-QAM
Broj nosilaca po kanalu		1 (DSSS)	48 podaci i 4 pilot	48 podaci i 4 pilot
MAC		CSMA/CA	CSMA/CA	TDMA/TDD
Podrška za fiksnu mrežu		Ethernet	Ethernet	Ethernet, IP, ATM, UMTS, FireWire
Upravljanje kvalitetom veze		Ne	Ne	Adaptacija veze

Mobilne komunikacije

Mobilne komunikacije

- korisnici usluga prilikom komunikacije s dugim korisnicima mogu mijenjati svoj položaj unutar područja pokrivanja pojedinog operatora (davatelja usluga)
- promjena položaja podrazumijeva da je pristup sustavu ostvaren preko tzv. radijskog sučelja (bežično)
 - mobilni korisnik sa svojim korisničkim uređajem mobilnom postajom,
 predstavlja jedan kraj, a bazna postaja drugi kraj radijskog kanala
- mobilni komunikacijski sustav je obično povezan sa javnim fiksnim mrežama čineći tako globalnu komunikacijsku mrežu
- ukoliko se usluge pružaju unutar zatvorenog sustava bez mogućnosti javnog pristupa, tada se govori o privatnima mobilnim sustavima

- javni mobilnih komunikacijski sustavi su ćelijske vrste
 - bazna postaja (BS, Base Station) sadrži odašiljačku/prijamnu opremu za odašiljanje/prijam signala do/od korisničke opreme te uređaje koji omogućavaju povezivanje sustava na jezgrenu mrežu
 - ćelija je područje koje bazna postaja pokriva radijskim signalom
 - oblik i veličina ćelije ovise o frekvencijskom području, dijagramu zračenja antenskog sustava i izračenoj snazi bazne postaje
 - oblik ćelije aproksimira se krugom ili češće šesterokutom
 - domet radijskog signala približno je jednak u svim smjerovima oko bazne postaje (100 m do 30 km) ako nema zemljopisnih prepreka
 - tipični domet u mobilnim komunikacijskim sustavima iznosi nekoliko km

- za pokrivanje većih područja rabi se više baznih postaja
- rubna se područja susjednih ćelija preklapaju
 - omogućeno je prekapčanje veze (*handover*) i kontinuirana komunikacija pri prijelazu mobilne postaje (MS, *Mobile Station*) iz jedne ćelije u drugu

- ograničenje u planiranju ćelijskog sustava je istokanalna smetnja (interferencija)
 - javlja se između ćelija koje rabe istu frekvenciju (kanal)
 - korisni signal iz jedne ćelije, u drugoj ćeliji djeluje kao smetajući signal
 - ćelije koje rade na istom kanalu ne smiju biti prostorno smještene jedna blizu druge
- radi povećanja kapaciteta sustava ograničava se snaga baznih postaja (ćelije postaju manje)
 - dopušteno je ponavljanje frekvencija (kanala) u prostorno udaljenim ćelijama bez opasnosti od pojave istokanalnih smetnji
- skup ćelija kod kojeg su jednom iskorišteni svi raspoloživi kanali naziva se grozd ćelija (cell cluster)

- zadatak ćelijskog planiranja
 - dodijeliti kanale ćelijama u grozdu te grozdovima pokriti određeno područje pazeći da razmak istokanalnih ćelija bude dovoljno velik kako bi istokanalna interferencija ostala u prihvatljivim granicama

Dvosmjerni (dupleksni) prijenos

- omogućava kontinuiranu i istodobnu komunikaciju u silaznoj vezi (DL, down-link), od bazne postaje prema korisničkim mobilnim uređajima i uzlaznoj vezi (UL, up-link), od korisničkog uređaja prema baznoj postaji (full duplex)
 - bazna postaja i mobilni uređaji moraju imati i odašiljač i prijamnik
- · u realizaciji dupleksnog prijenosa mogu se rabiti dva pristupa
 - frekvencijski dupleks (FDD, Frequency Division Duplex)
 - silazna i uzlazna veza odvojene su frekvencijski
 - uzlazna veza je uvijek na nižoj frekvenciji od silazne veze
 - koriste se dva odijeljena bloka frekvencija između kojih se nalazi zaštitni interval (guard interval)
 - vremenski dupleks (TDD, Time Division Duplex)
 - uzlazna i silazna veza odijeljene su u vremenu
 - može se koristiti samo jedan blok frekvencija koji se dijeli na vremenske odsječke (slots) za uzlaznu vezu i za silaznu vezu

Dvosmjerni (dupleksni) prijenos

- zajednički prijenos signala koji dolaze iz različitih izvora u dodijeljenom bloku frekvencija uz mogućnost njihova razdvajanja na odredištu
 - u silaznom smjeru bazna postaja odašilje signal do svih korisničkih uređaja unutar sektora ili ćelije
 - u uzlaznom smjeru rabe se tehnike višestrukog pristupa (*multiple* access) kako bi se izbjegle smetnje između signala koji dolaze od različitih korisničkih uređaja do iste bazne postaje
- tri temeljna postupka za višestruki pristup
 - višestruki pristup s frekvencijskom raspodjelom (FDMA, Frequency Division Multiple Access)
 - višestruki pristup s vremenskom raspodjelom (TDMA, *Time Division Multiple Access*)
 - višestruki pristup s kodnom raspodjelom (CDMA, Code Division Multiple Access)

FDMA

- svakom korisniku dodjeljuje se dio frekvencijskog područja
- za odašiljanje signala u silaznoj vezi rabe se frekvencije f_1^* , f_2^* , f_3^* i f_4^* koje su u paru s frekvencijama u uzlaznoj vezi f_1 , f_2 , f_3 i f_4
- korisnički uređaj izdvaja frekvenciju koja mu je unaprijed dodijeljena

TDMA

- raspoloživi frekvencijski spektar podijeljen je na uske frekvencijske pojaseve ili kanale
- pojedini kanal se dijeli na određeni broj vremenskih odsječaka (slot)
- korisniku se dodjeljuje vremenski odsječak za pristup kanalu

CDMA

- korisnik ima svoj određeni kod, a skup kodova, koji se koristi u CDMA sustavu, sadrži međusobno ortogonalne kodove
- u uzlaznom smjeru digitalna informacija, koja dolazi od pojedinog korisnika, modulirana je uz uporabu jedinstvenog koda za proširenje (SC, Spreading Code)
 - signali različitih korisnika zajedno se prenose u istom frekvencijskom području i pri tome zauzimaju cijelo frekvencijsko područje koje je dodijeljeno za rad CDMA sustava
 - na prijamnoj strani signal se rekonstruira uz uporabu slijeda za sažimanje postupkom koji je inverzan postupku za raspršenje (despreading process)
- u silaznom smjeru također se rabe kodovi za proširenje, a korisnički uređaj određenog korisnika prepoznaje i izdvaja samo informacije namijenjene tom korisniku

CDMA

- kodovi za raspršenje SC1, SC2, SC3 i SC4 se dodjeljuju korisnicima u trenutku uspostavljanja veze
- u silaznom smjeru informacije korisnicima se proširuju uz uporabu skupa kodova za proširenje SC*1, SC*2, SC*3 i SC*4 koji je različit od skupa kodova za proširenje u uzlaznom smjeru

- prva generacija mobilnih komunikacijskih sustava (1G)
 - uvedena je kasnih sedamdesetih godina prošlog stoljeća
 - ćelijski sustavi namijenjen prijenosu analognih govornih signala
 - rabili su modulaciju frekvencije (FM) za prijenos govornih signala
 - osnivali su se na FDMA tehnologiji
 - u Hrvatskoj je bio u uporabi nordijski mobilni telefonski sustav (NMT, Nordic Mobile Telephone)
- druga generacija mobilnih komunikacijskih sustava (2G)
 - globalni sustav mobilnih komunikacija (GSM, Global System for Mobile Communications)
 - Interim Standard 54/136 (IS-54/136) i Interim Standard 95 (IS-95)
 - osobni digitalni ćelijski sustav (PDC, Personal Digital Cellular System)

Pregled mreža u području 900 MHz

Sustav	GSM	IS-54	PDC	IS-95
Područje	Europa/Azija	SAD	Japan	SAD/Azija
Pristup	TDMA/FDD	TDMA/FDD	TDMA/FDD	CDMA/FDD
Modulacija	GMSK	π/4-DQPSK	π/4-DQPSK	QPSK
Frekvencija, MHz (DL)	935 – 960	869 – 894	810 – 826	869 – 894
(UL)	890 – 915	824 – 849	940 – 956	824 – 849
Razmak kanala, kHz	200	30	25	1250
Fizički kanal/nosilac	8	3	3	promjenljivo
Brzina prijenosa, kbit/s	270,833	48,6	42	1228,8
Kodiranje govora, kbit/s	13	8	8	1 – 8 promjenljivo
Trajanje okvira, ms	4,615	40	20	20

- treća generacija mobilnih komunikacijskih sustava (3G)
 - svrha: objedinjavanje postojećih različitih mobilnih sustava za prijenos govora i podataka u jedinstvenu mrežu te povećanje kapaciteta mreže, kvalitete usluge i brzine prijenosa
 - GSM, kao sustav druge generacije, ima svoj razvojni put prema sustavu UMTS kao sustavu treće generacije (2,5G)
 - prijenos podataka visokim brzinama uz komutaciju kanala (HSCSD, *High Speed Circuit Switched Data*)
 - opća usluga paketskog radijskog prijenosa (GPRS, General Packet Radio Service)
 - poboljšane brzine prijenosa za razvoj GSM-a (EDGE, *Enhanced Data Rate for the GSM Evolution*)
 - UMTS se temelji na tehnologiji širokopojasnoga višestrukog pristupa s kodnom raspodjelom (WCDMA, Wideband Code Division Multiple Access)

 razvoj prema trećoj generaciji mobilnih komunikacijskih sustava

- GSM osigurava jednoliku brzinu prijenosa podataka od približno 10 kbit/s bez obzira na pokrivanje i mobilnost
- GPRS osigurava brzinu prijenosa informacije reda veličine 144 kbit/s neovisno o pokrivanju i mobilnosti
- daljnja nadogradnja GSM sustava pruža promjenjivu brzinu prijenosa informacija
- kod sustava EDGE se kod niske mobilnosti mogu očekivati brzine prijenosa informacije reda veličine 384 kbit/s, a kako se mobilnost i pokrivanje povećavaju brzina opada
- treća generacija osigurava brzine do 2 Mbit/s kod niskog stupnja mobilnosti (kvazistacionarni sustavi) dok brzina opada porastom mobilnosti i područja pokrivanja

- rabi se za komunikaciju između mobilnih telefona
 - fiksna širina pojasa za govornu komunikaciju između dvaju korisnika (13 kbit/s)
 - prijenos podataka (300 9600 kbit/s) i telefaksa
 - komunikacija kratkim porukama (SMS, Short Message Service)
- inačice GSM sustava
 - GSM900
 - radi u frekvencijskom području oko 900 MHz
 - E-GSM (Extended GSM)
 - GSM900 koji radi u proširenom dijelu frekv. područja na 900 MHz
 - GSM/DCS1800 (DCS, Digital Cellular System)
 - radi u frekvencijskom području oko 1800 MHz
 - PCS1900 (PCS, Personal Communications Service)
 - istovjetan DCS1800, ali radi u frekvencijskom području oko 1900 MHz

- modulacijski postupak: GMSK
- širina kanala: 200 kHz

900 MHz – 2 X 25 MHz, dupleksni razmak 45 MHz, 125 kanala (+50 kanala);

1800 MHz – 2 X 75 MHz, dupleksni razmak 95 MHz, 374 kanala;

1900 MHz – 2 X 60 MHz, dupleksni razmak 80 MHz, 300 kanala.

- radne frekvencije RF kanala u silaznoj vezi
 - GSM900 ⇔ 125 kanala (kanali: 0 124)
 - radna frekvencija n-tog kanala: $F_D(n)$ = 935 MHz + (0,2 MHz) · n, $0 \le n \le 124$
 - E-GSM ⇔ 50 kanala (kanali: 974 1023)
 - radna frekvencija n-tog kanala: $F_{\rm D}(n) = 935~{\rm MHz} + (0.2~{\rm MHz}) \cdot (n-1024), \qquad 974 \le n \le 1023$
 - GSM/DCS1800 ⇔ 374 kanala (kanali: 512 885)
 - radna frekvencija n-tog kanala: $F_D(n)$ = 1805 MHz + (0,2 MHz) · (n – 511), 512 ≤ n ≤ 885
- radne frekvencije RF kanala u uzlaznoj vezi
 - određuju se dodavanjem dupleksnog razmaka na $F_D(n)$
 - dupleksni razmak je razlika između početnih frekvencija silazne i uzlazne veze (GSM900: 45 MHz, GSM/DCS1800: 95 MHz)

- GSM koristi FDMA/TDMA pristup gdje je svakoj frekvenciji pridružen vremenski okvir (frame) koji se sastoji od 8 vremenskih odsječaka
 - nastala matrica frekvencija/vrijeme daje sveukupno 124 x 8 = 992 moguća korisnika (jedan kanal se rabi kao zaštitni pojas)

GSM ćelijski koncept

- svakoj baznoj postaji dodjeljuje se određeni broj raspoloživih prijenosnih frekvencija, a unutar grozda iskorištene su sve raspoložive frekvencije
- u GSM sustavu koriste se grozdovi od N = 3, 7 ili 12 ćelija
 - u GSM900 raspoložive su 124 prijenosne frekvencije
 - podjelom raspoloživih frekvencija u 12 ćelija, svaka ćelija bi mogla koristiti 10 prijenosnih frekvencija
 - na svakoj prijenosnoj frekvenciji možemo imati 8 TDMA kanala što daje kapacitet od 80 istodobnih poziva unutar ćelije
 - ako u sustavu radi više operatora, npr. 3, svaka ćelija bi mogla koristiti tri prijenosne frekvencije (24 istodobna poziva unutar ćelije)
- uz definirani broj frekvencija po ćeliji, ukupni kapacitet sustava na određenom području može se povećati smanjenjem ćelija

GSM ćelijski koncept

pokrivanje istog područja različitim brojem ćelija

1 ćelija, 10 frekvencija 10x8x1=80 istodobnih poziva

19 ćelija, svaka ćelija po 3 frekvencije (ukupno 10 različitih frekvencija)

3x8x19=456 istodobnih poziva

manje ćelije → povećanje kapaciteta

Veliki broj ćelija, svaka ćelija po 3 frekvencije (ukupno 10 različitih frekvencija)

Broj istodobnih poziva određen je brojem ćelija,

npr. broj ćelija = 126 3x8x126=3024 istodobna poziva

GSM ćelijski koncept

stvarni oblik ćelija ovisi o konfiguraciji terena

Raspodjela GSM spektra u Hrvatskoj

	Frekvencijski pojasevi [MHz]	Blokovi radijskih frekvencija	Način pristupa	
GSM 900	925 - 960/ 880 - 915	925,3 - 930,3/880,3 - 885,3 MHz Tele 2 d.o.o.		
		930,3 - 932,7/885,3 - 887,7 MHz T-Mobile Hrvatska d.o.o.		
		941,1 - 953,1/896,1 - 908,1 MHz T-Mobile Hrvatska d.o.o.	TDMA/ FDD	
		932,7 - 940,9/887,7 - 895,9 MHz VIP NET d.o.o.		
		953,3 - 959,5/908,3 - 914,5 MHz VIP NET d.o.o.		
GSM/ DCS-1800	1805 - 1880/ 1710 - 1785	1805,1 - 1817,1/1710,1 - 1722,1 MHz Tele 2 d.o.o.	TDMA/	
		1835,1 - 1843,5/1740,1 - 1748,5 MHz T-Mobile Hrvatska d.o.o.	FDD	

Raspodjela GSM spektra u Hrvatskoj

Osobine UMTS tehnologije

- UMTS sustav temelji se na WCDMA pristupu i FDD ili TDD
- širina kanala iznosi 5 MHz bez obzira na vrstu dupleksa

- u sustavima s WCDMA pristupom svi korisnici dijele isti pojas frekvencija i iste vremenske odsječke
- korisnici se razlikuju po M različitih ortogonalnih kodova
- u domeni signala, snage pojedinih korisnika slažu " se sloj po sloj"
- da bi se maksimirao broj korisnika za ukupnu razinu snage, potrebno je da svaki sloj ima jednaku širinu (snagu)
- zbog toga je kontrola snage u CDMA sustavima izrazito važna

Osobine UMTS tehnologije

Frekvencijski plan za UMTS

UTRA (UMTS Terrestrial Radio Access)

- frekvencijsko područje od 1900 do 1920 MHz se koristi za rad s vremenskim dupleksom TDD (tzv. neupareni frekvencijski pojas)
- frekvencije od 1920 do 1980 MHz koriste se za za uzlazni dio veze, a od 2110 do 2170 MHz se za silazni dio veze (tzv. upareni frekvencijski pojasevi (FDD s dupleksnim razmakom 190 MHz)

Raspodjela spektra za UMTS u Hrvatskoj

	Frekvencijski pojasevi [MHz]	Blokovi radijskih frekvencija	Način pristupa
UMTS	1900-1920	1900 - 1905 MHz T-Mobile Hrvatska d.o.o.	CDMA / TDD
		1905 - 1910 MHz Tele 2 d.o.o.	
		1910 - 1915 MHz VIP NET d.o.o.	
	2110 - 2170/ 1920 - 1980	2110 - 2125/1920 - 1935 MHz T-Mobile Hrvatska d.o.o.	CDMA / FDD
		2125 - 2140/1935 - 1950 MHz Tele 2 d.o.o.	
		2140 - 2155/1950 - 1965 MHz VIP NET d.o.o.	

frekvencija (silazna/uzlazna)

širina (MHz)

