PROBLEMES D'ANLISI COMPLEXA 2n quadrimestre del curs 2013-2014

Llista 2: Funcions de variable complexa i equacions de Cauchy-Riemann

B.1. Trobeu els punts on la funció f és derivable (en el sentit complex), en els següents casos, i calcula'n la derivada.

(a) $\cos |z|^2$

(c) e^{iz}

(e) $\frac{1}{(z-1)^2(z^2+2)}$

(b) $|z|^4$

(d) $z + \frac{1}{z}$

 $(f) \ \frac{1}{(z+\frac{1}{z})^2}$

Solució: (a) \emptyset ; (b) \emptyset ; (c) \mathbb{C} ; $f'(z) = ie^{iz}$; (d) $\mathbb{C} \setminus \{0\}$; $f'(z) = 1 - |\frac{1}{z^2}$; (e) $\mathbb{C} \setminus \{1, \pm \sqrt{2}i\}$; (f) \mathbb{C} .

B.2. Determineu si aquestes funcions poden ser la part real d'una funció holomorfa, i en cas que ho siguin calculeu la part imaginària.

(a) $e^x \cos y$

(b) $x^3 + 6xy^2$

(c) $\log(x^2 + y^2)$

Solució: (a) $e^x \sin y$; $f(z) = e^z$; (b) No ho és; (c) $2\arctan(y/x)$; $(f(z) = \log(z^2)$.

B.3. Sigui f una funció holomorfa en un obert $\Omega \subset \mathbb{C}$ i $z_0 \in \Omega$ tal que $f'(z_0) \neq 0$. Quin angle formen les corbes $\operatorname{Re} f(z) = \operatorname{Re} f(z_0)$ i $\operatorname{Im} f(z) = \operatorname{Im} f(z_0)$ en un punt z_0 ? Solució: $\pi/2$.

1. Trobeu els punts on la funció f és derivable (en el sentit complex), en els següents casos:

(a) f(z) = |z|

(d) $f(z) = z + z\bar{z}$

(b) $\cosh x \cos y + i \sinh x \sin y$

(c) $f(z) = \operatorname{Re} z$

(e) $f(z) = \operatorname{Im} e^{\overline{z}} + i \operatorname{Re} e^z$

2. Sigui $\Omega\subset\mathbb{C}$ un obert, $z_0\in\Omega$ i $f:\Omega\to\mathbb{C}$ una funció.

a) Identificant \mathbb{R}^2 amb \mathbb{C} de la forma habitual, demostreu que si f és diferenciable en z_0 , llavors

 $Df(z_0)(z) = \frac{\partial f}{\partial z}(z_0) \cdot z + \frac{\partial f}{\partial \overline{z}}(z_0) \cdot \overline{z} \qquad (z \in \mathbb{C}),$

on

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \quad \frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).$$

b) Proveu que f és holomorfa en Ω si, i només si, f és diferenciable i $\frac{\partial f}{\partial \overline{z}} = 0$ en Ω . En tal cas, $f' = \frac{\partial f}{\partial z}$.

3. Demostreu que si f és diferenciable en un obert de \mathbb{C} , llavors

$$\overline{\frac{\partial f}{\partial z}} = \frac{\partial \overline{f}}{\partial \overline{z}}$$
 i $\overline{\frac{\partial f}{\partial \overline{z}}} = \frac{\partial \overline{f}}{\partial z}$.

1

4. Demostreu que si f i g són diferenciables en un obert de \mathbb{C} , llavors

$$\begin{array}{rcl} \frac{\partial (f \cdot g)}{\partial z} & = & \frac{\partial f}{\partial z} \cdot g + f \cdot \frac{\partial g}{\partial z} \\ \frac{\partial (f \cdot g)}{\partial \overline{z}} & = & \frac{\partial f}{\partial \overline{z}} \cdot g + f \cdot \frac{\partial g}{\partial \overline{z}}. \end{array}$$

5. Demostreu la següent versió de la regla de la cadena:

Si $G, \Omega \subset \mathbb{C}$ són oberts i $g: G \to \Omega$ i $f: \Omega \to \mathbb{C}$ són diferenciables llavors

$$\begin{array}{lcl} \frac{\partial (f \circ g)}{\partial z}(z) & = & \frac{\partial f}{\partial w}(g(z)) \cdot \frac{\partial g}{\partial z}(z) + \frac{\partial f}{\partial \overline{w}}(g(z)) \cdot \frac{\partial \overline{g}}{\partial z}(z) \\ \frac{\partial (f \circ g)}{\partial \overline{z}}(z) & = & \frac{\partial f}{\partial w}(g(z)) \cdot \frac{\partial g}{\partial \overline{z}}(z) + \frac{\partial f}{\partial \overline{w}}(g(z)) \cdot \frac{\partial \overline{g}}{\partial \overline{z}}(z). \end{array}$$

- **6.** Sigui $\Omega \subset \mathbb{C}$ un obert i f una funció holomorfa en Ω . Definim $\Omega^* = \{z \in \mathbb{C} : \overline{z} \in \Omega\}$ i $f^* : \Omega^* \to \mathbb{C}$ donada per $f^*(z) = \overline{f(\overline{z})}$. Proveu que f^* és holomorfa en Ω^* .
- 7. Utilitzeu les equacions de Cauchy-Riemann per demostrar que si una funció f és holomorfa al pla complex i satisfà que Re(f(z)) + Im(f(z)) = c, on c és una constant, aleshores f és constant.
- 8. a) Determine els nombres $\lambda \in \mathbb{R}$ pels quals

$$v_{\lambda}(x,y) = 2\sin x \sinh y + x^3 - \lambda xy^2 + y$$

és la part imaginària d'una funció entera f_{λ} i calculeu f_{λ} .

b) Sigui $\lambda \in \mathbb{R}$ un nombre determinat en a). És

$$g_{\lambda} = \frac{\partial v_{\lambda}}{\partial x} - i \frac{\partial v_{\lambda}}{\partial y}$$

una funció entera? Quina relació hi ha entre g_{λ} i f_{λ} ?

- **9.** Sigui $f(z) = \frac{z+1}{z-1}$:
 - a) On és f analítica?
 - b) És f conforme en z = 0?
 - c) Calculeu les imatges dels eixos de coordenades per f.
 - d) Quin és l'angle d'intersecció d'aquestes imatges?
- **10.** Sigui f = u + iv una funció entera (holomorfa a tot \mathbb{C}) tal que $\partial_x u + \partial_y v = 0$. Proveu que existeixen $\alpha \in \mathbb{R}$ i $\beta \in \mathbb{C}$ tals que $f(z) = i\alpha z + \beta$.
- 11. Raoneu si és o no possible que existeixin funcions f enteres no constants tals que $|f|^2$ sigui la part real d'una altra funció entera.
- 12. a) Sigui $\Omega \subset \mathbb{C}$ un obert i f una funció holomorfa en Ω . Proveu que f satisfà les equacions de Cauchy-Riemann.

2

b) Doneu una descripció de les funcions enteres de la forma f(x+iy) = u(x) + iv(x,y).