Задачи по Дискретни структури

Ангел Димитриев

1 Логика

Задача 1

Вярно ли е, че съставното съждение е противоречие ? $(\neg(\neg p \lor q) \to \neg q) \oplus ((t \iff r) \lor (r \oplus t))$

Задача 2

Представете следните съждения използвайки само \rightarrow и \neg ?

$$\begin{array}{l} p \wedge q \\ p \vee q \\ p \iff q \\ p \oplus q \\ (p \iff q) \oplus (p \wedge q) \\ (\neg p \vee \neg q) \wedge (p \oplus (p \wedge q)) \end{array}$$

Задача 3

Ако знаем, че $p\oplus q=T$, то каква е стойността на следното съждение? $p\wedge (p\to q)\wedge (p\iff q\oplus p)\wedge (q\vee p)\wedge q\wedge (\neg p\vee \neg q)$

Задача 4

Ако знаем, че $p \wedge q = F$ и $p \vee q = T$, то каква е стойността на следното съждение?

$$(p \oplus q \iff p) \lor (q \land p) \lor q \lor (\neg p \lor \neg q) \lor p$$

Задача 5

Ако знаем, че $p\iff q=F$, то каква е стойността на следното съждение? $p\oplus q\oplus q\oplus q\oplus p\oplus p\oplus p\oplus q\oplus p\oplus p\oplus q\oplus q$

Задача 6

Ако знаем, че $\neg(p\oplus q)=F$, то каква е стойността на следното съждение? $(p\lor(p\land q))\oplus(q\lor(q\land p))$

Задача 7

Имаме дъска 9х9. Искаме да попълним всички полета на дъската с числа от 1 до 9, така че квадратът да е попълнено судоку. Дефинираме следния предикат:

 $\operatorname{placed}(n,r,c) \iff$ числото n е на ред r и колона c.

Дайте формулировка на задачата, използвайки съждителна логика, така че да са изпълнение условията за валидно судоку.

2 Множества

Задача 8

Докажете или опровергайте, че ако $x\in A\to x\in C\land x\notin B$, то: $\overline{\overline{\mathbb{B}}\cap\overline{\mathbb{C}}}\setminus B=\overline{\mathbb{B}}\cap (C\cup A).$

Задача 9

Докажете или опровергайте, че ако $x \in A \iff x \in B \land x \notin C$, то: $A \cap (B \triangle C) \setminus (C \setminus B) = B \setminus ((C \cap A) \cup C)$

Задача 10

Докажете или опровергайте, че $(A\triangle B)\cup C=A\triangle (B\cup C)$

Задача 11

Нека A и B са множества и нека |A|=n и |B|=m. Какъв е максималният и минималният брой елементи на следните множества:

 $A \cup B$

 $A \cap B$

Ако знаем, и че n>=m, то какъв е максималният и минималният брой елементи на следните множества:

 $A \setminus B$

 $A\triangle B$

Задача 12

Нека A и B са множества и нека |A|=n и |B|=m и n>=m и $A\subseteq B$. Колко са всички подмножества на B, такива че A е тяхно подмножество?

Задача 13

Нека A и B са множества и нека |A|= n и |B|= m и $A\cap B=\emptyset$. Колко са всички множества X, такива че: $X\cap A\neq\emptyset$ и $X\cap B\neq\emptyset$?

Задача 14

Нека $A=\{1,2,3,4,5,6,7\}$ и $B\subseteq A$ и $|\mathrm{B}|=3$. Вярно ли е че: $\forall X\in 2^A(|X|>=5\to X\cap A\neq\emptyset)$

Задача 15

Нека A е крайно непразно множество. Докажете, че: $|A| <= |2^A|$

3 Релации