

SEQUENCE LISTING

> Allen, Keith D.
Leviton, Michael W.

<120> TRANSGENIC MICE CONTAINING TRYPTASE GENE
DISRUPTIONS

<130> R-372

<140> US 09/900,754
<141> 2001-07-06

<150> US 60/216,109
<151> 2000-07-06

<150> US 60/223,172
<151> 2000-08-07

<150> US 60/244,111
<151> 2000-10-26

<160> 4

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1122
<212> DNA
<213> Mus musculus

<400> 1
atggctctgg ggcccaactg tggcatccta ctgtttctgg ctgtttctgg gtgtggccat 60
ccccaggtt ccaaactcgaa aagtcaatac gtggggaggggc atgctccccc agcaggcaca 120
tggccgtggc aggcttagcct ccgtctgcac aagggtgcacg tgtgtggagg ctccctgctc 180
agtccagaat gggtgctcac agcagcccac tgcttctctg ggtctgtgaa ctcgtctgat 240
tatcaggtgc acttgggaga gcttacggtc acactgtctc cccacttctc cactgtaaaa 300
cgatcatca tgtacactgg ctctccagga ccacccgggtt ccagtgggaa cattgccctg 360
gtcagctgt cctcccccgtt ggccctttcc agccagggtcc agcctgtgtg cctcccaagag 420
gcctcagctg acttctaccc tgggatgcag tgctgggtga ctggctgggg ctatacaggg 480
gagggagagc ctctgaagcc cccatacaac cttcaggagg ccaaagtctc tgggtggat 540
gtaaagacct gcagccaggc ttacaatagt cccaatggca gcctcatcca gccagacatg 600
ctatgcggcc gggccctgg ggtgcctgc caggatgact ctggaggggcc actagtctgc 660
caggtggctg gaacctggca gcaggccggc gttgtcagct ggggtgaggg ctgtggccgc 720
cctgaccgccc ctggcgtcta tgccccgggtt actgcctatg taaaactggat ccaccac 780
atcccggaaag cagggggctc aggaatgcaa gggcttcctt gggctcctct cctggctgcc 840
ctttctggc caagcctttt cctgctgtc gtctctggag tcctgtatggc caagtactgg 900
ctgagctctc cctcccaacgc ggccctggaa ctctgaatgaa ggtgttagcaa ccaacccaag 960
tgtctttttt aaataagttt gtgtttattt agtttgcattt gcccccccccc tcccccttagc 1020
tttgacttag gaagccaaag ttttctgcattt cagattattt caacatttaa cctgaatttg 1080
tagaacggat gacataaaagc aaatggatgt caaaaaaaaaaa aa 1122

<210> 2
<211> 311
<212> PRT
<213> Mus musculus

<400> 2
Met Ala Leu Gly Pro Asn Cys Gly Ile Leu Leu Phe Leu Ala Val Ser
1 5 10 15

Gly Cys Gly His Pro Gln Val Ser Asn Ser Gly Ser Arg Ile Val Gly
 20 25 30
 Gly His Ala Ala Pro Ala Gly Thr Trp Pro Trp Gln Ala Ser Leu Arg
 35 40 45
 Leu His Lys Val His Val Cys Gly Gly Ser Leu Leu Ser Pro Glu Trp
 50 55 60
 Val Leu Thr Ala Ala His Cys Phe Ser Gly Ser Val Asn Ser Ser Asp
 65 70 75 80
 Tyr Gln Val His Leu Gly Glu Leu Thr Val Thr Leu Ser Pro His Phe
 85 90 95
 Ser Thr Val Lys Arg Ile Ile Met Tyr Thr Gly Ser Pro Gly Pro Pro
 100 105 110
 Gly Ser Ser Gly Asp Ile Ala Leu Val Gln Leu Ser Ser Pro Val Ala
 115 120 125
 Leu Ser Ser Gln Val Gln Pro Val Cys Leu Pro Glu Ala Ser Ala Asp
 130 135 140
 Phe Tyr Pro Gly Met Gln Cys Trp Val Thr Gly Trp Gly Tyr Thr Gly
 145 150 155 160
 Glu Gly Glu Pro Leu Lys Pro Pro Tyr Asn Leu Gln Glu Ala Lys Val
 165 170 175
 Ser Val Val Asp Val Lys Thr Cys Ser Gln Ala Tyr Asn Ser Pro Asn
 180 185 190
 Gly Ser Leu Ile Gln Pro Asp Met Leu Cys Ala Arg Gly Pro Gly Asp
 195 200 205
 Ala Cys Gln Asp Asp Ser Gly Gly Pro Leu Val Cys Gln Val Ala Gly
 210 215 220
 Thr Trp Gln Gln Ala Gly Val Val Ser Trp Gly Glu Gly Cys Gly Arg
 225 230 235 240
 Pro Asp Arg Pro Gly Val Tyr Ala Arg Val Thr Ala Tyr Val Asn Trp
 245 250 255
 Ile His His His Ile Pro Glu Ala Gly Gly Ser Gly Met Gln Gly Leu
 260 265 270
 Pro Trp Ala Pro Leu Leu Ala Ala Leu Phe Trp Pro Ser Leu Phe Leu
 275 280 285
 Leu Leu Val Ser Gly Val Leu Met Ala Lys Tyr Trp Leu Ser Ser Pro
 290 295 300
 Ser His Ala Ala Ser Glu Leu
 305 310

<210> 3
 <211> 200
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Targeting Vector

<400> 3
 ggagtcatgg agggctccca gagaaagggc attgagcaga atgccggtct ccagattccc 60
 tcaccaacag tgtctcctct ggtatcagggt gtggccatcc ccaggtttca aactcgggaa 120
 gtcgaatcgt gggagggcat gctccccag caggcacatg gccgtggcag gctagcctcc 180
 gtctgcacaa ggtgacgtgt 200

<210> 4
 <211> 200
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Targeting Vector

<400> 4

ctccactgta aaacggatca tcatgtacac tggctctcca ggaccaccgg ggtccagtgg 60
ggacattgcc ctggtgcagc tgtcctcccc ggtggccctt tccagccagg tccagcctgt 120
gtgcctccca gaggcctcag ctgacttcta ccctgggatg cagtgctggg tgactggctg 180
gggctataaca ggggagggag 200