第一章 行列式

一. 填空题

1. 四阶行列式中带有负号且包含 a_{12} 和 a_{21} 的项为_____.

解. $a_{12}a_{21}a_{33}a_{44}$ 中行标的排列为 1234, 逆序为 0; 列标排列为 2134, 逆序为 1. 该项符号为"一", 所以答案为 $a_{12}a_{21}a_{33}a_{44}$.

2. 排列 $i_1i_2\cdots i_n$ 可经_____次对换后变为排列 $i_ni_{n-1}\cdots i_2i_1$.

解. 排列 $i_1i_2\cdots i_n$ 可经过 $1+2+\cdots+(n-1)=n(n-1)/2$ 次对换后变成排列 $i_ni_{n-1}\cdots i_2i_1$.

3. 在五阶行列式中 $(-1)^{\tau(15423)+\tau(23145)}$ $a_{12}a_{53}a_{41}a_{24}a_{35}=$ ______ $a_{12}a_{53}a_{41}a_{24}a_{35}$.

解. 15423 的逆序为 5, 23145 的逆序为 2, 所以该项的符号为"一".

4. 在函数

$$f(x) = \begin{vmatrix} 2x & 1 & -1 \\ -x & -x & x \\ 1 & 2 & x \end{vmatrix} + x^3 \text{ in } \text{ § \pm} \text{ \pm}.$$

解. x^3 的系数只要考察 $2x\begin{vmatrix} -x & -x \\ 2 & x \end{vmatrix} = -2x^3 + 4x^2$. 所以 x^3 前的系数为 2.

5. 设 a, b 为实数,则当 $a = _____$,且 $b = _____$ 时, $\begin{vmatrix} a & b & 0 \\ -b & a & 0 \\ -1 & 0 & -1 \end{vmatrix} = 0$.

解.
$$\begin{vmatrix} a & b & 0 \\ -b & a & 0 \\ -1 & 0 & -1 \end{vmatrix} = -1 \begin{vmatrix} a & b \\ -b & a \end{vmatrix} = -(a^2 + b^2) = 0.$$
 所以 $a = b = 0$.

6. 在 n 阶行列式 $D = |a_{ij}|$ 中,当 i < j 时 $a_{ij} = 0$ $(i, j = 1, 2, \dots, n)$,则 $D = _____$.

解.
$$\begin{vmatrix} a_{11} & 0 & \Lambda & 0 \\ a_{21} & a_{22} & \Lambda & 0 \\ M & O & \\ a_{n1} & a_{n2} & \Lambda & 0 \end{vmatrix} = a_{11}a_{22}\Lambda a_{nn}$$

7. 设 A 为 3×3 矩阵, |A|=-2, 把 A 按行分块为 $A=\begin{bmatrix}A_1\\A_2\\A_3\end{bmatrix}$, 其中 A_j $(j=1,\ 2,\ 3)$ 是 A 的第 j 行, 则行列式

$$\begin{vmatrix} A_3 - 2A_1 \\ 3A_2 \\ A_1 \end{vmatrix} = \underline{\qquad}.$$

解.
$$\begin{vmatrix} A_3 - 2A_1 \\ 3A_2 \\ A_1 \end{vmatrix} = 3 \begin{vmatrix} A_3 - 2A_1 \\ A_2 \\ A_1 \end{vmatrix} = -3 \begin{vmatrix} A_1 \\ A_2 \\ A_3 \end{vmatrix} = -3 \mid A \models 6.$$

二. 计算证明题

1.
$$\mathfrak{P}|A| = \begin{vmatrix} 1 & -5 & 1 & 3 \\ 1 & 1 & 3 & 4 \\ 1 & 1 & 2 & 3 \\ 2 & 2 & 3 & 4 \end{vmatrix}$$

计算 $A_{41} + A_{42} + A_{43} + A_{44} = ?$, 其中 A_{4i} (j= 1, 2, 3, 4)是|A|中元素 a_{4i} 的代数余子式.

$$\widehat{\mathbb{R}}_{\cdot} A_{41} + A_{42} + A_{43} + A_{44} = \begin{vmatrix} 1 & -5 & 1 & 3 \\ 1 & 1 & 3 & 4 \\ 1 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -6 & 0 & 2 \\ 1 & 0 & 2 & 3 \\ 1 & 0 & 1 & 2 \\ 1 & 0 & 0 & 0 \end{vmatrix} = (-1)^{4+1} \begin{vmatrix} -6 & 0 & 2 \\ 0 & 2 & 3 \\ 0 & 1 & 2 \end{vmatrix}$$

$$\begin{vmatrix} -6 & 0 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & \frac{1}{2} \end{vmatrix} = 6$$

2. 计算元素为 $a_{ii} = |i-j|$ 的 n 阶行列式.

$$M$$
 M
 M <

每列加第n列

$$n-1$$
 $n-1$
 $n-1$
 $n-1$

 個
 $n-1$
 $n-1$
 $n-1$

 M
 $n-1$
 $n-1$

 M
 $n-1$
 $n-1$

 M
 $n-1$
 $n-1$

 M
 $n-1$
 $n-1$

3. 计算 n 阶行列式
$$D_n = \begin{vmatrix} x_1 + 1 & x_1 + 2 & \Lambda & x_1 + n \\ x_2 + 1 & x_2 + 2 & \Lambda & x_2 + n \\ \Lambda & \Lambda & \Lambda & \Lambda \\ x_n + 1 & x_n + 2 & \Lambda & x_n + n \end{vmatrix}$$
 $(n \ge 2).$

解. 当n > 2

$$D_{n} = \begin{vmatrix} x_{1} & x_{1} + 2 & \Lambda & x_{1} + n \\ x_{2} & x_{2} + 2 & \Lambda & x_{2} + n \\ \Lambda & \Lambda & \Lambda & \Lambda \\ x_{n} & x_{n} + 2 & \Lambda & x_{n} + n \end{vmatrix} + \begin{vmatrix} 1 & x_{1} + 2 & \Lambda & x_{1} + n \\ 1 & x_{2} + 2 & \Lambda & x_{2} + n \\ \Lambda & \Lambda & \Lambda & \Lambda \\ 1 & x_{n} + 2 & \Lambda & x_{n} + n \end{vmatrix}$$

$$= \begin{vmatrix} x_{1} & x_{1} & x_{1} + 3 & \Lambda & x_{1} + n \\ x_{2} & x_{2} & x_{2} + 3 & \Lambda & x_{2} + n \\ M & M & M & M & M \\ x_{n} & x_{n} & x_{n} + 3 & \Lambda & x_{n} + n \end{vmatrix} + \begin{vmatrix} x_{1} & 2 & x_{1} + 3 & \Lambda & x_{1} + n \\ x_{2} & 2 & x_{2} + 3 & \Lambda & x_{2} + n \\ M & M & M & M & M \\ x_{n} & 2 & x_{n} + 3 & \Lambda & x_{n} + n \end{vmatrix}$$

$$\begin{vmatrix} 1 & x_{1} & x_{1} + 3 & \Lambda & x_{1} + n \\ 1 & x_{2} & x_{2} + 3 & \Lambda & x_{2} + n \\ M & M & M & M & M \\ 1 & x_{n} & x_{n} + 3 & \Lambda & x_{n} + n \end{vmatrix} + \begin{vmatrix} 1 & 2 & x_{1} + 3 & \Lambda & x_{1} + n \\ 1 & 2 & x_{2} + 3 & \Lambda & x_{2} + n \\ M & M & M & M & M \\ 1 & 2 & x_{n} + 3 & \Lambda & x_{n} + n \end{vmatrix}$$

$$= - \begin{vmatrix} 1 & x_{1} & x_{1} + 3 & \Lambda & x_{1} + n \\ 1 & x_{2} & x_{2} + 3 & \Lambda & x_{2} + n \\ M & M & M & M & M \\ 1 & x_{n} & x_{n} + 3 & \Lambda & x_{n} + n \end{vmatrix}$$

$$= - \begin{vmatrix} 1 & x_{1} & x_{1} & \Lambda & x_{1} + n \\ 1 & x_{2} & x_{2} & \Lambda & x_{2} + n \\ M & M & M & M & M \\ 1 & x_{n} & x_{n} & \Lambda & x_{n} + n \end{vmatrix} - \begin{vmatrix} 1 & x_{1} & 3 & \Lambda & x_{1} + n \\ 1 & x_{2} & 3 & \Lambda & x_{2} + n \\ M & M & M & M & M \\ 1 & x_{n} & 3 & \Lambda & x_{n} + n \end{vmatrix} = 0$$

当n=2

$$\begin{vmatrix} x_1 + 1 & x_1 + 2 \\ x_2 + 1 & x_2 + 2 \end{vmatrix} = x_1 - x_2$$

4. 证明:奇数阶反对称矩阵的行列式为零.

证明: $A^T = -A$, $|A| = |A^T| = |-A| = (-1)^n |A| = -|A| (n 为奇数)$. 所以|A| = 0.

5. 试证: 如果 n 次多项式 $f(x) = C_0 + C_1 x + \Lambda C_n x^n$ 对 n+1 个不同的 x 值都是零,则此多项式恒等于零. (提示: 用范德蒙行列式证明)

证明: 假设多项式的 n+1 个不同的零点为 x_0, x_1, \dots, x_n . 将它们代入多项式, 得关于 C_i 方程组

$$C_0 + C_1 x_0 + \Lambda C_n x_0^n = 0$$

$$C_0 + C_1 x_1 + \Lambda \ C_n x_1^n = 0$$

.....

$$C_0 + C_1 x_n + \Lambda C_n x_n^n = 0$$

系数行列式为 x_0, x_1, \dots, x_n 的范德蒙行列式,不为0. 所以

$$C_0 = C_1 = \Lambda = C_n = 0$$

$$\Re F(x) = \begin{vmatrix} x & x^2 & x^3 \\ 1 & 2x & 3x^2 \\ 0 & 2 & 6x \end{vmatrix} = 2x \begin{vmatrix} 1 & x & x^2 \\ 1 & 2x & 3x^2 \\ 0 & 1 & 3x \end{vmatrix} = 2x \begin{vmatrix} 1 & x & x^2 \\ 0 & x & 2x^2 \\ 0 & 1 & 3x \end{vmatrix} = 2x^2 \begin{vmatrix} 1 & x & x^2 \\ 0 & 1 & 3x \end{vmatrix} = 2x^2 \begin{vmatrix} 1 & x & x^2 \\ 0 & 1 & 3x \end{vmatrix} = 2x^3$$

$$F'(x) = 6x^2$$

矩阵 第二章

一 填空题

1. 设 α_1 , α_2 , α_3 , α , β 均为 4 维向量, $A = [\alpha_1, \alpha_2, \alpha_3, \alpha]$, $B = [\alpha_1, \alpha_2, \alpha_3, \beta]$, 且|A| = 2, |B| = 3, 则 $|A - 3B| = _____$.

解.
$$|A-3B|=|-2\alpha_1 - 2\alpha_2 - 2\alpha_3 - \alpha - 3\beta|=-8 \times |\alpha_1 - \alpha_2 - \alpha_3 - \alpha - 3\beta|$$

$$=-8\times(|\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha|-3|\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \beta|)=-8(|A|-3|B|)=56$$

2. 若对任意 $n \times 1$ 矩阵 X, 均有 AX = 0, 则 $A = _____$

解. 假设 $A=\begin{bmatrix}\alpha_1 & \Lambda & \alpha_m\end{bmatrix}$, α_i 是 A 的列向量. 对于 $j=1,2,\cdots,m$, 令 $X_j=\begin{bmatrix}0\\M\\1\\M\\0\end{bmatrix}$, 第 j 个元素不为 0. 所以

$$\begin{bmatrix} \alpha_1 & \Lambda & \alpha_m \end{bmatrix} \begin{bmatrix} 0 \\ M \\ 1 \\ M \\ 0 \end{bmatrix} = \alpha_j = 0 \ (j=1,\,2,\,\,\cdots,\,m). \ 所以 \ A=0.$$

3. 设 A 为 m 阶方阵,存在非零的 $m \times n$ 矩阵 B,使 AB = 0 的充分必要条件是

解. 由 AB=0, 而且 B 为非零矩阵, 所以存在 B 的某个列向量 b_i 为非零列向量, 满足 $Ab_i=0$. 即方程组 AX=0 有非零解. 所以|A| = 0;

反之: 若|A|=0,则AX=0有非零解.则存在非零矩阵B,满足AB=0.

所以, AB=0 的充分必要条件是|A|=0.

4. 设 A 为 n 阶矩阵, 存在两个不相等的 n 阶矩阵 B, C, 使 AB = AC 的充分条件是

解. $B \neq C$ 且 $AB = AC \Leftrightarrow A(B-C) = 0$ 且B-C 非零 $\Leftrightarrow |A| = 0$

5.
$$\begin{bmatrix} a_1 \\ a_2 \\ M \\ a_n \end{bmatrix} \begin{bmatrix} b_1 & b_2 & \Lambda & b_4 \end{bmatrix} = \underline{\qquad}.$$

5.
$$\begin{bmatrix} a_1 \\ a_2 \\ M \\ a_n \end{bmatrix} \begin{bmatrix} b_1 & b_2 & \Lambda & b_4 \end{bmatrix} = \underline{\qquad}$$
解.
$$\begin{bmatrix} a_1 \\ a_2 \\ M \\ a_n \end{bmatrix} \begin{bmatrix} b_1 & b_2 & \Lambda & b_4 \end{bmatrix} = \begin{bmatrix} a_1b_1 & a_1b_2 & \Lambda & a_1b_n \\ a_2b_1 & a_2b_2 & \Lambda & a_2b_n \\ \Lambda & \Lambda & \Lambda & \Lambda \\ a_nb_1 & a_nb_2 & \Lambda & a_nb_n \end{bmatrix}$$

6. 设矩阵
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$
, $B = A^2 - 3A + 2E$, 则 $B^{-1} = \underline{\qquad}$.

解.
$$A^2 = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} -1 & -4 \\ 8 & 7 \end{bmatrix}$$

$$B = A^{2} - 3A + 2E = \begin{bmatrix} -1 & -4 \\ 8 & 7 \end{bmatrix} - \begin{bmatrix} 3 & -3 \\ 6 & 9 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} -2 & -1 \\ 2 & 0 \end{bmatrix}$$

$$B^{-1} = \frac{B^*}{|B|} = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ -2 & -2 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} \\ -1 & -1 \end{bmatrix}$$

7. 设 n 阶矩阵 A 满足 $A^2 + 2A + 3E = 0$, 则 $A^{-1} =$ ______.

解. 由 $A^2 + 2A + 3E = 0$,得 A(A + 2E) = -3E.所以 $|A||A + 2E = -3E \neq 0$,于是 A 可逆.由 $A^2 + 2A + 3E = 0$,

得
$$A + 2E + 3A^{-1} = 0$$
, $A^{-1} = -\frac{1}{3}(A + 2E)$

8.
$$\[\[\] \mathcal{U} A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \[\] \mathbb{U}(A+3E)^{-1}(A^2-9E) = \underline{\qquad}. \]$$

$$\widetilde{\mathbb{R}}. \quad A^2 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{2} - 9E = \begin{bmatrix} -8 & 0 & 2 \\ 0 & -5 & 0 \\ 0 & 0 & -8 \end{bmatrix}, \quad A + 3E = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 5 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 0 & 1 & M & 1 & 0 & 0 \\ 0 & 5 & 0 & M & 0 & 1 & 0 \\ 0 & 0 & 4 & M & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & 1 & M & 1 & 0 & 0 \\ 0 & 5 & 0 & M & 0 & 1 & 0 \\ 0 & 0 & 1 & M & 0 & 0 & \frac{1}{4} \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & 0 & M & 1 & 0 & -\frac{1}{4} \\ 0 & 5 & 0 & M & 0 & 1 & 0 \\ 0 & 0 & 1 & M & 0 & 0 & \frac{1}{4} \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 0 & 0 & M & \frac{1}{4} & 0 & -\frac{1}{16} \\ 0 & 1 & 0 & M & 0 & \frac{1}{5} & 0 \\ 0 & 0 & 1 & M & 0 & 0 & \frac{1}{4} \end{bmatrix}, \quad (A+3E)^{-1} = \begin{bmatrix} \frac{1}{4} & 0 & -\frac{1}{16} \\ 0 & \frac{1}{5} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix}$$

$$(A+3E)^{-1}(A^2-9E) = \begin{bmatrix} \frac{1}{4} & 0 & -\frac{1}{16} \\ 0 & \frac{1}{5} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix} \begin{bmatrix} -8 & 0 & 2 \\ 0 & -5 & 0 \\ 0 & 0 & -8 \end{bmatrix} = \begin{bmatrix} -2 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

$$|\mathbf{H}| = -3 - 12 + 8 + 8 + 6 - 6 = 1$$

$$\begin{bmatrix} 1 & -1 & 2 & M & 1 & 0 & 0 \\ -2 & -1 & -2 & M & 0 & 1 & 0 \\ 4 & 3 & 3 & M & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & M & 1 & 0 & 0 \\ 0 & -3 & 2 & M & 2 & 1 & 0 \\ 0 & 7 & -5 & M & -4 & 0 & 1 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & -1 & 2 & M & 1 & 0 & 0 \\ 0 & 1 & -\frac{2}{3} & M - \frac{2}{3} & -\frac{1}{3} & 0 \\ 0 & 7 & -5 & M - 4 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & \frac{4}{3} & M & \frac{1}{3} & -\frac{1}{3} & 0 \\ 0 & 1 & -\frac{2}{3} & M - \frac{2}{3} & -\frac{1}{3} & 0 \\ 0 & 0 & -\frac{1}{3} & M & \frac{2}{3} & \frac{7}{3} & 1 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 0 & 0 & M & 3 & 9 & 4 \\ 0 & 1 & 0 & M - 2 & -5 & -2 \\ 0 & 0 & -\frac{1}{3} & M & \frac{2}{3} & \frac{7}{3} & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & M & 3 & 9 & 4 \\ 0 & 1 & 0 & M - 2 & -5 & -2 \\ 0 & 0 & 1 & M - 2 & -7 & -3 \end{bmatrix} \rightarrow$$

$$A^{-1} = \begin{bmatrix} 3 & 9 & 4 \\ -2 & -5 & -2 \\ -2 & -7 & -3 \end{bmatrix}$$

$$A^{-1} = \frac{A^*}{|A|}, \quad A^* = |A|A^{-1}, \quad (A^*)^{-1} = \frac{A}{|A|} = \begin{bmatrix} 1 & -1 & 2 \\ -2 & -1 & -2 \\ 4 & 3 & 3 \end{bmatrix}$$

$$(-2A)^* = |-2A|(-2A)^{-1} = (-2)^3 |A| \frac{A^{-1}}{(-2)} = 4A^{-1}$$

$$[(-2A)^*]^{-1} = (4A^{-1})^{-1} = \frac{A}{4} = \frac{1}{4} \begin{bmatrix} 1 & -1 & 2 \\ -2 & -1 & -2 \\ 4 & 3 & 3 \end{bmatrix}$$

10. 设矩阵
$$A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & 2 & 2 & 5 \\ 1 & -1 & 1 & 3 \end{bmatrix}$$
, 则 A 的逆矩阵 $A^{-1} = \underline{\qquad}$

解.
$$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}, \quad \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$$

使用分块求逆公式
$$\begin{bmatrix} A & 0 \\ C & B \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & 0 \\ -B^{-1}CA^{-1} & B^{-1} \end{bmatrix}$$

$$-\begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 19 & -30 \\ -7 & 11 \end{bmatrix}$$

所以
$$A^{-1} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 19 & -30 & 3 & -5 \\ -7 & 11 & -1 & 2 \end{bmatrix}$$

- 二. 单项选择题
- 1. 设A、B 为同阶可逆矩阵,则

$$(A) AB = BA$$

(B) 存在可逆矩阵
$$P$$
, 使 $P^{-1}AP = B$

(C) 存在可逆矩阵
$$C$$
, 使 $C^TAC = B$ (D) 存在可逆矩阵 $P \neq Q$, 使 $PAQ = B$

(D) 存在可逆矩阵
$$P$$
 和 O , 使 $PAO = B$

解. 因为 A 可逆, 存在可逆 P_A , Q_A 使 P_A $AQ_A = E$.

因为 B 可逆, 存在可逆 P_R , Q_R 使 $P_R B Q_R = E$.

所以
$$P_A A Q_A = P_B B Q_B$$
. 于是 $P_B^{-1} P_A A Q_A Q_B^{-1} = B$

令
$$P = P_R^{-1} P_A$$
, $Q = Q_A Q_R^{-1}$. (D)是答案.

2. 设
$$A \setminus B$$
都是 n 阶可逆矩阵,则 $-2\begin{bmatrix} A^T & 0 \\ 0 & B^{-1} \end{bmatrix}$ 等于

(A)
$$(-2)^{2n} |A| |B|^{-1}$$
 (B) $(-2)^{n} |A| |B|^{-1}$ (C) $-2 |A^{T}| |B|$ (D) $-2 |A| |B|^{-1}$

解.
$$\left| -2 \begin{bmatrix} A^T & 0 \\ 0 & B^{-1} \end{bmatrix} \right| = (-2)^{2n} |A| |B|^{-1}$$
. (A)是答案.

- 3. 设 $A \times B$ 都是n阶方阵,下面结论正确的是
- (A) 若 A、B均可逆、则 A + B 可逆.
- (B) 若 A、B 均可逆, 则 AB 可逆.
- (C) 若A+B可逆,则A-B可逆.
- (D) 若 A + B 可逆, 则 A, B 均可逆.

解. 若 $A \setminus B$ 均可逆, 则 $(AB)^{-1} = B^{-1}A^{-1}$. (B)是答案.

4. 设
$$n$$
 维向量 $\alpha = (\frac{1}{2}, 0, \Lambda, 0, \frac{1}{2})$, 矩阵 $A = E - \alpha^T \alpha$, $B = E + 2\alpha^T \alpha$ 其中 E 为 n 阶单位矩阵, 则 $AB = \frac{1}{2}$

$$(B) -E$$

(B)
$$-E$$
 (C) E (D) $E + \alpha^T \alpha$

$$\mathfrak{M}$$
. $AB = (E - \alpha^T \alpha) (E + 2\alpha^T \alpha) = E - \alpha^T \alpha + 2\alpha^T \alpha - 2\alpha^T \alpha \alpha^T \alpha$

$$= E.$$
 $(\alpha^T \alpha = \frac{1}{2})$ (C)是答案.

5. 设
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, $B = \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} - a_{21} & a_{32} - a_{22} & a_{33} - a_{23} \end{bmatrix}$, $P_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, 设有 $P_2P_1A = B$, 则 $P_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

(A)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$(C) \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(A)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 (B) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

解. P_1A 表示互换 A 的第一、二行. B 表示 A 先互换第一、二行, 然后将互换后的矩阵的第一行乘以(-1)加到第三行. 所

以
$$P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$
.(B)是答案.

6. 设 A 为 n 阶可逆矩阵,则 $(-A)^*$ 等于

- (A) $-A^*$ (B) A^* (C) $(-1)^n A^*$ (D) $(-1)^{n-1} A^*$

解.
$$(-A)^* = |-A|(-A)^{-1} = (-1)^n |A| \frac{1}{(-1)} A^{-1} = (-1)^{n-1} A^*$$
. (D)是答案.

7. 设 n 阶矩阵 A 非奇异($n \ge 2$), $A^* \ne A$ 的伴随矩阵, 则

(A) $(A^*)^* = |A|^{n-1} A$

(B) $(A^*)^* = |A|^{n+1} A$

(C) $(A^*)^* = |A|^{n-2} A$

(D) $(A^*)^* = |A|^{n+2} A$

解. $A^* = |A|A^{-1}$

$$(A^*)^* = (|A|A^{-1})^* = ||A|A^{-1}|(|A|A^{-1})^{-1} = |A|^n |A|^{-1}|A|^{-$$

- (C)是答案.
- 8. 设 A 为 $m \times n$ 矩阵, $C \in n$ 阶可逆矩阵, 矩阵 A 的秩为 r_1 , 矩阵 B = AC 的秩为 r_2 则

- (B) $r < r_1$ (C) $r = r_1$ (D) $r = r_1$ 的关系依 C 而定

解. $B = A_{m \times n} C_{n \times n}$, r(C) = n, 所以

$$r = r(AC) \ge r(A) + r(C) - n = r$$

又因为 $A = BC^{-1}$, 于是

$$r_1 = r(BC^{-1}) \ge r(B) + r(C^{-1}) - n = r$$

所以 $r_i = r_{\cdot}(C)$ 是答案.

- 9. 设 $A \setminus B$ 都是n阶非零矩阵,且AB = 0,则A和B的秩

- (A) 必有一个等于零 (B) 都小于n (C) 一个小于n, 一个等于n (D) 都等于n

解. 若r(A) = n, 则 A^{-1} 存在.由 AB = 0, 得 B = 0, 矛盾. 所以 r(A) < n. 同理r(B) < n. (B)是答案.

三. 计算证明题

1.
$$\[\[\] \mathcal{B} A = \begin{bmatrix} 3 & 1 & 0 \\ -1 & 2 & 1 \\ 3 & 4 & 2 \end{bmatrix}, \ B = \begin{bmatrix} 1 & -1 & 0 \\ 2 & -2 & 5 \\ 3 & 4 & 1 \end{bmatrix}. \] \[\] \[\] \vec{x}: i. AB - BA \] ii. A^2 - B^2 \] iii. B^T A^T$$

$$\text{ \mathbb{A}B - BA} = \begin{bmatrix} 1 & -4 & 6 \\ -17 & -17 & 3 \\ 9 & -18 & 16 \end{bmatrix}, \quad A^2 - B^2 = \begin{bmatrix} 9 & 4 & 6 \\ -15 & -15 & 9 \\ -3 & 26 & -13 \end{bmatrix}$$

$$B^T A^T = \begin{bmatrix} 5 & 6 & 17 \\ -5 & 1 & -3 \\ 5 & 11 & 22 \end{bmatrix}$$

2. 求下列矩阵的逆矩阵

ii.
$$\begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

iii.
$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

iv.
$$\begin{bmatrix} 5 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

解 i

$$\begin{bmatrix} 1 & 1 & 1 & 1 & M & 1 & 0 & 0 & 0 \\ 1 & 1 & -1 & -1 & M & 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & -1 & M & 0 & 0 & 1 & 0 \\ 1 & -1 & -1 & 1 & M & 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & M & 1 & 0 & 0 & 0 \\ 0 & 0 & -2 & -2 & M & -1 & 1 & 0 & 0 \\ 0 & -2 & 0 & -2 & M & -1 & 0 & 1 & 0 \\ 0 & -2 & -2 & 0 & M & -1 & 0 & 0 & 1 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & M & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & M & \frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & -2 & -2 & M & -1 & 1 & 0 & 0 \\ 0 & -2 & -2 & 0 & M & -1 & 0 & 0 & 1 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & M \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 1 & M \frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & -2 & -2 & M & -1 & 1 & 0 & 0 \\ 0 & 0 & -2 & 2 & M & 0 & 0 & -1 & 1 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & M & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 1 & M & \frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & 1 & M & \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -2 & 2 & M & 0 & 0 & -1 & 1 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 0 & 0 & -1 & M & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 1 & M & \frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & 1 & M & \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 4 & M & 1 & -1 & -1 & 1 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 0 & 0 & -1 & M & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 1 & M & \frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & 1 & M & \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 1 & M & \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & \frac{1}{4} \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & M & 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 1 & 0 & 0 & M & 1/4 & 1/4 & -1/4 & -1/4 \\ 0 & 0 & 1 & 0 & M & 1/4 & -1/4 & 1/4 & -1/4 \\ 0 & 0 & 0 & 1 & M & 1/4 & -1/4 & 1/4 \end{bmatrix}, \quad A^{-1} = \begin{bmatrix} 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & -1/4 & -1/4 \\ 1/4 & -1/4 & 1/4 & -1/4 \\ 1/4 & -1/4 & 1/4 & 1/4 \end{bmatrix}$$

ii.
$$\begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}^{-1} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$
. 由矩阵分块求逆公式:

$$\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & 0 \\ 0 & B^{-1} \end{bmatrix}$$

得到:
$$A^{-1} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

iii.
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
. 由矩阵分块求逆公式:
$$\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & B^{-1} \\ A^{-1} & 0 \end{bmatrix}$$

所以
$$A^{-1} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

iv. 由矩阵分块求逆公式:

$$\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & 0 \\ 0 & B^{-1} \end{bmatrix}$$

得到:
$$A^{-1} = \begin{bmatrix} 1 & -2 & 0 & 0 \\ -2 & 5 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & \frac{2}{3} \\ 0 & 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

3. 已知三阶矩阵 A 满足 $A\alpha_i=i\alpha_i(i=1,2,3)$. 其中 $\alpha_1=(1,2,2)^T$, $\alpha_2=(2,-2,1)^T$, $\alpha_3=(-2,-1,2)^T$. 试求矩阵 A .

解. 由本題的条件知:
$$A\begin{bmatrix} 1 & 2 & -2 \\ 2 & -2 & -1 \\ 2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 4 & -6 \\ 2 & -4 & -3 \\ 2 & 2 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -2 & M & 1 & 0 & 0 \\ 2 & -2 & -1 & M & 0 & 1 & 0 \\ 2 & 1 & 2 & M & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -2 & M & 1 & 0 & 0 \\ 0 & -6 & 3 & M - 2 & 1 & 0 \\ 0 & -3 & 6 & M - 2 & 0 & 1 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 2 & -2 & M & 1 & 0 & 0 \\ 0 & 1 & -2 & M & \frac{2}{3} & 0 & -\frac{1}{3} \\ 0 & -2 & 1 & M & \frac{2}{3} & \frac{1}{3} & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & M & \frac{1}{3} & 0 & \frac{2}{3} \\ 0 & 1 & -2 & M & \frac{2}{3} & 0 & -\frac{1}{3} \\ 0 & 0 & -3 & M & \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 0 & 2 & M & -\frac{1}{3} & 0 & \frac{2}{3} \\ 0 & 1 & -2 & M & \frac{2}{3} & 0 & -\frac{1}{3} \\ 0 & 0 & 1 & M & -\frac{2}{9} & -\frac{1}{9} & \frac{2}{9} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & M & \frac{1}{9} & \frac{2}{9} & \frac{2}{9} \\ 0 & 1 & 0 & M & \frac{2}{9} & -\frac{2}{9} & \frac{1}{9} \\ 0 & 0 & 1 & M & -\frac{2}{9} & -\frac{1}{9} & \frac{2}{9} \end{bmatrix} \rightarrow$$

$$A = \begin{bmatrix} 1 & 4 & -6 \\ 2 & -4 & -3 \\ 2 & 2 & 6 \end{bmatrix} \begin{bmatrix} \frac{1}{9} & \frac{2}{9} & \frac{2}{9} \\ \frac{2}{9} & -\frac{2}{9} & \frac{1}{9} \\ -\frac{2}{9} & -\frac{1}{9} & \frac{2}{9} \end{bmatrix} = \begin{bmatrix} \frac{7}{3} & 0 & -\frac{2}{3} \\ 0 & \frac{5}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & 2 \end{bmatrix}$$

4.
$$k$$
 取什么值时, $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 1 & -1 & 1 \end{bmatrix}$ 可逆,并求其逆.

解.
$$|A| = \begin{vmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 1 & -1 & 1 \end{vmatrix} = k \neq 0$$

$$\begin{bmatrix} 1 & 0 & 0 & M & 1 & 0 & 0 \\ 0 & k & 0 & M & 0 & 1 & 0 \\ 1 & -1 & 1 & M & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & M & 1 & 0 & 0 \\ 0 & 1 & 0 & M & 0 & 1/k & 0 \\ 0 & -1 & 1 & M & -1 & 0 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & M & 1 & 0 & 0 \\ 0 & 1 & 0 & M & 0 & 1/k & 0 \\ 0 & 0 & 1 & M - 1 & 1/k & 1 \end{bmatrix}$$

所以
$$A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/k & 0 \\ -1 & 1/k & 1 \end{bmatrix}$$

5. 设A是n阶方阵,且有自然数m,使 $(E+A)^m=0$,则A可逆.

解. 因为
$$(E+A)^m = \sum_{i=0}^m c_m^i A^i = E + \sum_{i=1}^m c_m^i A^i = 0$$

所以
$$A(-\sum_{i=1}^{m} c_m^i A^{i-1}) = E$$
. 所以 A 可逆.

6. 设 B 为可逆矩阵, A 是与 B 同阶方阵, 且满足 $A^2 + AB + B^2 = 0$, 证明 A 和 A + B 都是可逆矩阵.

解. 因为
$$A^2 + AB + B^2 = 0$$
, 所以 $A(A+B) = -B^2$.

因为
$$B$$
 可逆, 所以 $|-B^2|=(-1)^n|B|^2\neq 0$

所以
$$|A(A+B)| = |-B^2| \neq 0$$
. 所以 A , $A+B$ 都可逆.

7. 若 A, B 都是 n 阶方阵, 且 E + AB 可逆, 则 E + BA 也可逆, 且

$$(E + BA)^{-1} = E - B(E + AB)^{-1}A$$

解.
$$(E + BA)(E - B(E + AB)^{-1}A) = E + BA - (E + BA)B(E + AB)^{-1}A$$

 $= E + BA - (B + BAB)(E + AB)^{-1}A = E + BA - B(E + AB)(E + AB)^{-1}A$
 $= E + BA - BA = E$

所以
$$(E + BA)^{-1} = E - B(E + AB)^{-1}A$$
.

8. 设 A, B 都是 n 阶方阵,已知 $|B| \neq 0, A-E$ 可逆,且 $(A-E)^{-1} = (B-E)^{T}$,求证 A 可逆.解.因为 $(A-E)^{-1} = (B-E)^{T}$,所以 $(A-E)(B-E)^{T} = E$

所以
$$A(B^T - E) - B^T + E = E$$
, $A(B^T - E) = B^T$

由 $|B| \neq 0$ 知 B^{-1} , $(B^T)^{-1}$ 存在.

所以
$$A(B^T - E)(B^T)^{-1} = E$$
. 所以 A 可逆.

9. 设 A, B, A + B 为 n 阶正交矩阵, 试证: $(A + B)^{-1} = A^{-1} + B^{-1}$.

解. 因为
$$A, B, A + B$$
 为正交矩阵, 所以 $(A + B)^T = (A + B)^{-1}, A^T = A^{-1}, B^T = B^{-1}$

所以
$$(A+B)^{-1} = (A+B)^T = A^T + B^T = A^{-1} + B^{-1}$$

10. 设
$$A, B$$
 都是 n 阶方阵, 试证明:
$$\begin{vmatrix} A & E \\ E & B \end{vmatrix} = |AB - E|.$$

解. 因为
$$\begin{bmatrix} 0 & E \\ E & 0 \end{bmatrix} \begin{bmatrix} E & -A \\ 0 & E \end{bmatrix} \begin{bmatrix} A & E \\ E & B \end{bmatrix} = \begin{bmatrix} E & B \\ 0 & E - AB \end{bmatrix}$$

所以
$$\begin{vmatrix} 0 & E | E & -A | A & E \\ E & 0 | 0 & E | E & B \end{vmatrix} = \begin{vmatrix} E & B \\ 0 & E - AB \end{vmatrix}$$

$$(-1)^{n^2} \cdot 1 \cdot \begin{vmatrix} A & E \\ E & B \end{vmatrix} = \begin{vmatrix} E & B \\ 0 & E - AB \end{vmatrix} = (-1)^n \mid AB - E \mid$$

因为
$$(-1)^{n^2} = (-1)^n$$
,所以 $\begin{vmatrix} A & E \\ E & B \end{vmatrix} = |AB - E|$

11. 设 A 为主对角线元素均为零的四阶实对称可逆矩阵, E 为四阶单位矩阵

- i. 试计算[E + AB], 并指出 A 中元素满足什么条件时, E + AB 可逆;
- ii. 当E + AB 可逆时, 试证明 $(E + AB)^{-1}A$ 为对称矩阵.

解. i.
$$A = \begin{bmatrix} 0 & a_{12} & a_{13} & a_{14} \\ a_{12} & 0 & a_{23} & a_{24} \\ a_{13} & a_{23} & 0 & a_{34} \\ a_{14} & a_{24} & a_{34} & a_{44} \end{bmatrix},$$

$$E + AB = \begin{bmatrix} 1 & 0 & ka_{13} & la_{14} \\ 0 & 1 & ka_{23} & la_{24} \\ 0 & 0 & 1 & la_{34} \\ 0 & 0 & ka_{34} & 1 \end{bmatrix}, \quad |E + AB| = 1 - kla_{34}^{2}$$

所以当 $\frac{1}{kl} \neq a_{34}^2$ 时, E + AB 可逆.

ii.
$$(E + AB)^{-1}A = [A^{-1}(E + AB)]^{-1} = (A^{-1} + B)^{-1}$$

因为A, B为实对称矩阵, 所以 $A^{-1} + B$ 为实对称矩阵, 所以 $(E + AB)^{-1}A$ 为对称矩阵.

12. 设
$$A = \begin{bmatrix} \lambda & 0 & 0 \\ 1 & \lambda & 0 \\ 0 & 1 & \lambda \end{bmatrix}$$
, 求 A^n .

解. 使用数学归纳法.

$$A^{2} = \begin{bmatrix} \lambda & 0 & 0 \\ 1 & \lambda & 0 \\ 0 & 1 & \lambda \end{bmatrix} \begin{bmatrix} \lambda & 0 & 0 \\ 1 & \lambda & 0 \\ 0 & 1 & \lambda \end{bmatrix} = \begin{bmatrix} \lambda^{2} & 0 & 0 \\ 2\lambda & \lambda^{2} & 0 \\ 1 & 2\lambda & \lambda^{2} \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} \lambda^{2} & 0 & 0 \\ 2\lambda & \lambda^{2} & 0 \\ 1 & 2\lambda & \lambda^{2} \end{bmatrix} \begin{bmatrix} \lambda & 0 & 0 \\ 1 & \lambda & 0 \\ 0 & 1 & \lambda \end{bmatrix} = \begin{bmatrix} \lambda^{3} & 0 & 0 \\ 3\lambda^{2} & \lambda^{3} & 0 \\ (1+2)\lambda & 3\lambda^{2} & \lambda^{3} \end{bmatrix}$$

假设
$$A^k = \begin{bmatrix} \lambda^k & 0 & 0 \\ k\lambda^{k-1} & \lambda^k & 0 \\ (1+\Lambda+k-1)\lambda^{k-2} & k\lambda^{k-1} & \lambda^k \end{bmatrix}$$

$$\iint A^{k+1} = \begin{bmatrix} \lambda^k & 0 & 0 \\ k\lambda^{k-1} & \lambda^k & 0 \\ (1+\Lambda+k-1)\lambda^{k-2} & k\lambda^{k-1} & \lambda^k \end{bmatrix} \begin{bmatrix} \lambda & 0 & 0 \\ 1 & \lambda & 0 \\ 0 & 1 & \lambda \end{bmatrix} \\
= \begin{bmatrix} \lambda^{k+1} & 0 & 0 \\ (k+1)\lambda^k & \lambda^{k+1} & 0 \\ (1+\Lambda+k)\lambda^{k-1} & (k+1)\lambda^k & \lambda^{k+1} \end{bmatrix}$$

所以
$$A^{n} = \begin{bmatrix} \lambda^{n} & 0 & 0 \\ n\lambda^{n-1} & \lambda^{n} & 0 \\ (1+\Lambda+n-1)\lambda^{n-2} & n\lambda^{n-1} & \lambda^{n} \end{bmatrix} = \begin{vmatrix} \lambda^{n} & 0 & 0 \\ n\lambda^{n-1} & \lambda^{n} & 0 \\ \frac{n(n-1)}{2}\lambda^{n-2} & n\lambda^{n-1} & \lambda^{n} \end{vmatrix}$$

13. $A \ge n$ 阶方阵,满足 $A^m = E$,其中 m 是正整数, $E \to n$ 阶单位矩阵.今将 A 中 n^2 个元素 a_{ij} 用其代数余子式 A_{ij} 代替,得到的矩阵记为 A_0 . 证明 $A_0^m = E$.

解. 因为 $A^m = E$, 所以 $|A|^m = 1$, 所以A可逆.

$$A_0 = (A^*)^T = [|A|A^{-1}]^T = |A|(A^T)^{-1}$$

所以
$$A_0^m = [|A|(A^T)^{-1}]^m = |A|^m [(A^m)^T]^{-1} = |A|^m E^{-1} = E$$

14. 设矩阵
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

i. 证明: $n \ge 3$ 时, $A^n = A^{n-2} + A^2 - E(E 为三阶单位矩阵)$

ii. 求 A¹⁰⁰.

解. i.
$$A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$A + A^{2} - E = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} = A^{3}$$

所以
$$A^3 = A^{3-2} + A^2 - E$$

假设
$$A^k = A^{k-2} + A^2 - E$$

所以
$$A^n = A^{n-2} + A^2 - E$$

ii.
$$A^{100} = A^{98} + A^2 - E = A^{96} + 2A^2 - 2E = \Lambda = 50A^2 - 49E$$

$$\begin{bmatrix} 50 & 0 & 0 \end{bmatrix} \begin{bmatrix} 49 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 50 & 0 & 0 \\ 50 & 50 & 0 \\ 50 & 0 & 50 \end{bmatrix} - \begin{bmatrix} 49 & 0 & 0 \\ 0 & 49 & 0 \\ 0 & 0 & 49 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 50 & 1 & 0 \\ 50 & 0 & 1 \end{bmatrix}$$

15.
$$\stackrel{\text{def}}{=} A = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$
 $\text{Itf}, A^6 = E. \text{ } \text{\vec{x}} A^{11}.$

解.
$$|A| = \begin{vmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix} = 1$$
, 所以 $A^{-1} = \frac{A^*}{|A|} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$

因为
$$A^6 = E$$
, $A^{11} = A^{12}A^{-1} = EA^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$

16. 已知 $A, B \in n$ 阶方阵, 且满足 $A^2 = A, B^2 = B$, 与 $(A - B)^2 = A + B$, 试证: AB = BA = 0.

解. 因为
$$(A-B)^2 = A + B$$
, 所以 $(A-B)^3 = (A-B)(A+B) = (A+B)(A-B)$

于是
$$A^2 - BA + AB - B^2 = A^2 + BA - AB - B^2$$
, 所以 $AB = BA$

$$(A-B)^2 = A+B$$
, $A^2 - AB - BA + B^2 = A+B$

因为 $A^2 = A, B^2 = B$, 所以 2AB = 0, 所以 AB = BA = 0.

第三章 向量

一. 填空题

1. 设 $\alpha_1 = (2,-1,0,5), \alpha_2 = (-4,-2,3,0), \alpha_3 = (-1,0,1,k), \alpha_4 = (-1,0,2,1),$ 则 k = _____时, α_1 , α_2 , α_3 , α_4 线性相关.

解. 考察行列式

$$\begin{vmatrix} 2 & -4 & -1 & -1 \\ -1 & -2 & 0 & 0 \\ 0 & 3 & 1 & 2 \\ 5 & 0 & k & 1 \end{vmatrix} = \begin{vmatrix} 2 & -8 & -1 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 3 & 1 & 2 \\ 5 & -10 & k & 1 \end{vmatrix} = - \begin{vmatrix} -8 & -1 & -1 \\ 3 & 1 & 2 \\ -10 & k & 1 \end{vmatrix}$$

$$= -8 - 3k + 20 - 10 + 16k + 3 = 13k + 5 = 0.$$
 $k = -\frac{5}{13}$

2. 设
$$\alpha_1 = (2,-1,3,0)$$
, $\alpha_2 = (1,2,0,-2)$, $\alpha_3 = (0,-5,3,4)$, $\alpha_4 = (-1,3,t,0)$, 则 $t = ____$ 时, α_1 , α_2 , α_3 , α_4 线性相关.

解. 考察行列式

$$\begin{vmatrix} 2 & 1 & 0 & -1 \\ -1 & 2 & -5 & 3 \\ 3 & 0 & 3 & t \\ 0 & -2 & 4 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 & -1 \\ -5 & 5 & -5 & 3 \\ 3 & t & 3 & t \\ 4 & -2 & 4 & 0 \end{vmatrix} = \begin{vmatrix} -5 & 5 & -5 \\ 3 & t & 3 \\ 4 & -2 & 4 \end{vmatrix}$$

$$= -20t + 60 + 30 + 20t - 30 - 60 = 0.$$

所以对任何 t, α_1 , α_2 , α_3 , α_4 线性相关.

3. 当 k = ______ 时,向量 $\beta = (1, k, 5)$ 能由向量 $\alpha_1 = (2, -3, 2), \alpha_2 = (2, -1, 1)$,线性表示.

解. 考察行列式

$$\begin{vmatrix} 1 & 1 & 2 \\ k & -3 & -1 \\ 5 & 2 & 1 \end{vmatrix} = 0$$
, 得 $k = -8$. 当 $k = -8$ 时,三个向量的行列式为 0,于是 β , α_1 , α_2 线性相关. 显然 α_1 , α_2 线性无关,

所以 β 可用 α_1,α_2 线性表示.

4. 己知 $\alpha_1 = (1,1,2,2,1), \ \alpha_2 = (0,2,1,5,-10), \ \alpha_3 = (2,0,3,-1,3), \ \alpha_4 = (1,1,0,4,-1), \ 则秩(\alpha_1,\alpha_2,\alpha_3,\alpha_4) = _____.$

解. 将 α_1 , α_2 , α_3 , α_4 表示成矩阵

$$\begin{bmatrix} 1 & 0 & 2 & 1 \\ 1 & 2 & 0 & 1 \\ 2 & 1 & 3 & 0 \\ 2 & 5 & -1 & 4 \\ 1 & -1 & 3 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & -2 & 0 \\ 0 & 1 & -1 & -2 \\ 0 & 5 & -5 & 2 \\ 0 & -1 & 1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & -2 \\ 0 & 1 & -1 & 2/5 \\ 0 & -1 & 1 & -2 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 2/5 \\ 0 & 0 & 0 & -2 \end{bmatrix} .$$
 所以 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = 3$

5. 设
$$A = \begin{bmatrix} 6 & 1 & 1 & 7 \\ 4 & 0 & 4 & 1 \\ 1 & 2 & -9 & 0 \\ -1 & 3 & -16 & -1 \\ 2 & -4 & 22 & 3 \end{bmatrix}$$
, 则秩(A) = _____.

所以 r(A) = 3.

6. 已知 $\alpha = (1,0,-1,2)^T$, $\beta = (0,1,0,2)$, 矩阵 $A = \alpha \cdot \beta$, 则秩(A) =_____.

$$\widehat{\mathbb{H}}. A = \alpha \cdot \beta = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 2 \end{pmatrix} (0 \quad 1 \quad 0 \quad 2) = \begin{bmatrix} 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & -2 \\ 0 & 2 & 0 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

所以 r(A) = 1.

7. 已知向量 $\alpha_1 = (1,2,3,4)$, $\alpha_2 = (2,3,4,5)$, $\alpha_3 = (3,4,5,6)$, $\alpha_4 = (4,5,6,t)$, 且秩 $(\alpha_1,\alpha_2,\alpha_3,\alpha_4) = 2$, 则 t =_____.

$$\widehat{\mathbb{H}}_{.} A = (\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}) = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & t \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & -2 & -4 & -6 \\ 0 & -3 & -6 & t - 16 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & t - 7 \end{bmatrix}$$

所以当 t = 7 时, r(A) = 2.

二. 单项选择题

1. 设向量组 α_1 , α_2 , α_3 线性无关,则下列向量组线性相关的是

(A)
$$\alpha_1 + \alpha_2$$
, $\alpha_2 + \alpha_3$, $\alpha_3 + \alpha_1$

(B)
$$\alpha_1$$
, $\alpha_1 + \alpha_2$, $\alpha_1 + \alpha_2 + \alpha_3$

(C)
$$\alpha_1 - \alpha_2$$
, $\alpha_2 - \alpha_3$, $\alpha_3 - \alpha_1$

(D)
$$\alpha_1 + \alpha_2, 2\alpha_2 + \alpha_3, 3\alpha_3 + \alpha_1$$

解. 由
$$k_1(\alpha_1 - \alpha_2) + k_2(\alpha_2 - \alpha_3) + k_3(\alpha_3 - \alpha_1) = 0$$

得
$$(k_1 - k_3)\alpha_1 + (k_2 - k_1)\alpha_2 + (k_3 - k_2)\alpha_3 = 0$$

因为向量组 α_1 , α_2 , α_3 线性无关, 所以得关于 k_1 , k_2 , k_3 , 的方程组

$$\begin{cases} k_1 - k_3 = 0 \\ -k_1 + k_2 = 0 \\ -k_2 + k_3 = 0 \end{cases}$$

$$k_1,k_2,k_3$$
的系数行列式为
$$\begin{vmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{vmatrix} = 1 - 1 = 0$$
. 所以 k_1,k_2,k_3 有非零解,所以 $\alpha_1-\alpha_2$, $\alpha_2-\alpha_3$, $\alpha_3-\alpha_1$ 线性

相关.(C)是答案.

- 2. 设矩阵 $A_{m \times n}$ 的秩为 R(A) = m < n, E_m 为 m 阶单位矩阵, 下列结论正确的是
- (A) A 的任意 m 个列向量必线性无关 (B) A 的任意一个 m 阶子式不等于零
- (C) 若矩阵 B 满足 BA=0,则 B=0 (D) A 通过行初等变换,必可以化为($E_{\rm m}$,0)的形式

解. (A), (B)都错在"任意"; (D)不正确是因为只通过行初等变换不一定能将 A 变成(E_m , 0)的形式; (C)是正确答案. 理由如下:

因为 BA = 0, 所以 $0 = r(BA) \ge r(B) + r(A) - m = r(B) + m - m = r(B)$. 所以 r(B) = 0. 于是 B = 0.

3. 设向量组 (I): $\alpha_1 = (a_{11}, a_{21}, a_{31})^T$, $\alpha_2 = (a_{12}, a_{22}, a_{32})^T$, $\alpha_3 = (a_{13}, a_{23}, a_{33})^T$;设向量组 (II):

$$\beta_1 = (a_{11}, a_{21}, a_{31}, a_{41})^T$$
, $\beta_2 = (a_{12}, a_{22}, a_{32}, a_{42})^T$, $\beta_3 = (a_{13}, a_{23}, a_{33}, a_{43})^T$, \emptyset

(A) (I)相关⇒(II)相关

(B) (I)无关⇒(II)无关

(C)(II)无关⇒(I)无关

- (B) (I)无关⇔ (II)无关
- 解. 由定理: 若原向量组线性无关, 则由原向量组加长后的向量组也线性无关. 所以(B)是答案.
- 4. 设 β , α ₁, α ₂线性相关, β , α ₂, α ₃线性无关, 则
- (A) α1, α2, α3 线性相关
- (B) α₁, α₂, α₃ 线性无关
- (C) α_1 可用 β , α_2 , α_3 线性表示
- (D) β可用α₁, α₂ 线性表示

解. 因为 β , α_1 , α_2 线性相关, 所以 β , α_1 , α_2 , α_3 线性相关. 又因为 β , α_2 , α_3 线性无关, 所以 α_1 可用 β , α_2 , α_3 线性表示. (C)是答案.

5. 设 $A, B \in n$ 阶方阵, 且秩(A) = 秩(B), 则

(A) 秩(A - B) = 0

- (B) 秩(A + B) = 2 秩(A)
- (C) 秩(A B) = 2 秩(A)
- (D) 秩(A + B) \leq 秩(A) + 秩(B)
- 解. (A) 取 $A \neq B$ 且 $|A| \neq 0$, $|B| \neq 0$ 则 $A B \neq 0$, 则 $r(A B) \neq 0$. 排除(A);
- (B) 取 A = −B ≠ 0, 则秩(A + B) ≠ 2 秩(A); (C) 取 A = B ≠ 0, 则秩(A B) ≠ 2 秩(A). 有如下定理: 秩(A + B) ≤秩(A) + 秩(B). 所以(D)是答案.

三. 计算证明题

1. 设有三维向量
$$\alpha_1 = \begin{bmatrix} k \\ 1 \\ 1 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 1 \\ k \\ 1 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$, $\beta = \begin{bmatrix} 1 \\ k \\ k^2 \end{bmatrix}$ 问 k 取何值时

- i. β可由 α_1 , α_2 , α_3 线性表示, 且表达式唯一;
- ii. β可由 α_1 , α_2 , α_3 线性表示, 但表达式不唯一;
- ііі. β不能由α1, α2, α3 线性表示.

解.
$$\begin{vmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & 2 \end{vmatrix} = 2k^2 - 2k = 2k(k-1)$$

i. $k \neq 0$ 且 $k \neq 1$ 时, α_1 , α_2 , α_3 线性无关, 四个三维向量一定线性相关, 所以β可由 α_1 , α_2 , α_3 线性表示, 由克莱姆法则知表达式唯一;

ii. 当 *k* = 1 时

$$\begin{bmatrix} 1 & 1 & 1 & M & 1 \\ 1 & 1 & 1 & M & 1 \\ 1 & 1 & 2 & M & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & M & 0 \\ 0 & 0 & 0 & M & 0 \\ 0 & 0 & 1 & M & 0 \end{bmatrix}.$$
 系数矩阵的秩等于增广矩阵的秩为 2. 所以所以β可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,但

表示不惟一;

iii. 当k = 0时

$$\begin{bmatrix} 0 & 1 & 1 & M & 1 \\ 1 & 0 & 1 & M & 0 \\ 1 & 1 & 2 & M & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & M & 0 \\ 0 & 1 & 1 & M & 1 \\ 1 & 1 & 2 & M & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & M & 0 \\ 0 & 1 & 1 & M & 1 \\ 0 & 1 & 1 & M & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & M & 0 \\ 0 & 1 & 1 & M & 1 \\ 0 & 0 & 0 & M & -1 \end{bmatrix}.$$
系数矩阵的秩等于 2,增广矩阵

的秩为 3, 所以所以 β 不能由 α_1 , α_2 , α_3 线性表示.

2. 设向量组 α_1 , α_2 , α_3 线性相关, 向量组 α_2 , α_3 , α_4 线性无关, 问

i. α₁能否由α₂, α₃线性表出?证明你的结论;

 $ii. \alpha_4$ 能否由 $\alpha_1, \alpha_2, \alpha_3$ 线性表出?证明你的结论

解. i. α_1 不一定能由 α_2 , α_3 线性表出. 反例: $\alpha_1 = (1,1)^T$, $\alpha_2 = (1,0)^T$, $\alpha_3 = (2,0)^T$. 向量组 α_1 , α_2 , α_3 线性相关,但 α_1 不能由 α_2 , α_3 线性表出;

ii. α_4 不一定能由 α_1 , α_2 , α_3 线性表出. 反例: $\alpha_1 = (2,0,0)^T$, $\alpha_2 = (1,0,0)^T$, $\alpha_3 = (0,1,0)^T$, $\alpha_4 = (0,0,1)^T$. α_1 , α_2 , α_3 线性相关, α_2 , α_3 , α_4 线性无关, α_4 不能由 α_1 , α_2 , α_3 线性表出.

3. 已知 m 个向量 $\alpha_1, \alpha_2, \cdots \alpha_m$ 线性相关, 但其中任意 m-1 个都线性无关, 证明:

i. 如果存在等式

$$k_1\alpha_{1+}k_2\alpha_2 + \cdots + k_m\alpha_m = 0$$

则这些系数 $k_1, k_2, \cdots k_m$ 或者全为零, 或者全不为零;

ii. 如果存在两个等式

$$k_1\alpha_{1+}k_2\alpha_2 + \cdots + k_m\alpha_m = 0$$

$$l_1\alpha_{1+}l_2\alpha_2 + \cdots + l_m\alpha_m = 0$$

其中
$$l_1 \neq 0$$
,则 $\frac{k_1}{l_1} = \frac{k_2}{l_2} = \Lambda = \frac{k_m}{l_m}$.

解. i. 假设 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m = 0$, 如果某个 $k_i = 0$. 则

$$k_1\alpha_1 + \cdots + k_{i-1}\alpha_{i-1} + k_{i+1}\alpha_{i+1} + \cdots + k_m\alpha_m = 0$$

因为任意 m-1 个都线性无关,所以 k_1 , k_2 , … k_{i-1} , k_{i+1} , …, k_m 都等于 0, 即这些系数 k_1 , k_2 , … k_m 或者全为零,或者全不为零;

ii. 因为
$$l_1 \neq 0$$
,所以 l_1, l_2 ,… l_m 全不为零. 所以 $\alpha_1 = -\frac{l_2}{l_1}\alpha_2 - \Lambda - \frac{l_m}{l_1}\alpha_m$.

代入第一式得:
$$k_1(-\frac{l_2}{l_1}\alpha_2 - \Lambda - \frac{l_m}{l_1}\alpha_m) + k_2\alpha_2 + \Lambda + k_m\alpha_m = 0$$

$$\mathbb{E} \left(-\frac{l_2}{l_1} k_1 + k_2 \right) \alpha_2 + \Lambda + \left(-\frac{l_m}{l_1} k_1 + k_m \right) \alpha_m = 0$$

所以
$$-\frac{l_2}{l_1}k_1+k_2=0$$
, …, $-\frac{l_m}{l_1}k_1+k_m=0$

$$\mathbb{R} \qquad \frac{k_1}{l_1} = \frac{k_2}{l_2} = \Lambda = \frac{k_m}{l_m}$$

4. 设向量组 α_1 , α_2 , α_3 线性无关,问常数 a, b, c 满足什么条件 $a\alpha_1-\alpha_2$, $b\alpha_2-\alpha_3$, $c\alpha_3-\alpha_1$ 线性相关.

解. 假设
$$k_1(a\alpha_1 - \alpha_2) + k_2(b\alpha_2 - \alpha_3) + k_3(c\alpha_3 - \alpha_1) = 0$$

得
$$(k_1a - k_3)\alpha_1 + (k_2b - k_1)\alpha_2 + (k_3c - k_2)\alpha_3 = 0$$

因为
$$\alpha_1, \alpha_2, \alpha_3$$
线性无关,得方程组
$$\begin{cases} ak_1 - k_3 = 0 \\ -k_1 + bk_2 = 0 \\ -k_2 + ck_3 = 0 \end{cases}$$

当行列式
$$\begin{vmatrix} a & 0 & -1 \\ -1 & b & 0 \\ 0 & -1 & c \end{vmatrix} = 0$$
 时, $k_1, k_2 k_3$ 有非零解.所以 $abc = 1$ 时, $a\alpha_1 - \alpha_2, b\alpha_2 - \alpha_3, c\alpha_3 - \alpha_1$ 线性相关.

5. 设 A 是 n 阶矩阵, 若存在正整数 k, 使线性方程组 $A^k x = 0$ 有解向量 α , 且 $A^{k-1} \alpha \neq 0$, 证明: 向量组 α , $A\alpha$, ..., $A^{k-1} \alpha$ 是 线性无关的.

解. 假设
$$a_0\alpha+a_1A\alpha+\Lambda+a_{k-1}A^{k-1}\alpha=0$$
. 二边乘以 A^{k-1} 得

$$a_0 A^{k-1} \alpha = 0, \qquad a_0 = 0$$

由
$$a_1A\alpha + \Lambda + a_{k-1}A^{k-1}\alpha = 0$$
. 二边乘以 A^{k-1} 得

$$a_1 A^{k-1} \alpha = 0, \qquad a_1 = 0$$

•••••

最后可得
$$a_{k-1}A^{k-1}\alpha = 0$$
, $a_{k-1} = 0$

所以向量组 α , $A\alpha$, ..., $A^{k-1}\alpha$ 是线性无关.

6. 求下列向量组的一个极大线性无关组, 并把其余向量用极大线性无关组线性表示.

i.
$$\alpha_1 = (1,2,1,3), \ \alpha_2 = (4,-1,-5,-6), \ \alpha_3 = (-1,-3,-4,-7), \ \alpha_4 = (2,1,2,3).$$

ii.
$$\alpha_1 = (1, -1, 2, 4), \alpha_2 = (0, 3, 1, 2), \alpha_3 = (3, 0, 7, 14), \alpha_4 = (1, -2, 2, 0), \alpha_5 = (2, 1, 5, 10).$$

$$\rightarrow \begin{bmatrix} 1 & 4 & -1 & 2 \\ 0 & 9 & 1 & 3 \\ 0 & 0 & -2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

所以 $\alpha_1,\alpha_2,\alpha_3$ 是极大线性无关组. 由 $\alpha_4=k_1\alpha_1+k_2\alpha_2+k_3\alpha_3$ 得方程组

所以
$$\alpha_4 = -\frac{3}{2}\alpha_1 + \frac{1}{2}\alpha_2 - \frac{3}{2}\alpha_3$$

ii.
$$\begin{bmatrix} 1 & 0 & 3 & 1 & 2 \\ -1 & 3 & 0 & -2 & 1 \\ 2 & 1 & 7 & 2 & 5 \\ 4 & 2 & 14 & 0 & 10 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 1 & 2 \\ 0 & 3 & 3 & -1 & 3 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 2 & 2 & -4 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 1 & 2 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 3 & 3 & -1 & 3 \\ 0 & 2 & 2 & -4 & 2 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 3 & 1 & 2 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -4 & 0 \end{bmatrix}$$

所以 $\alpha_1,\alpha_2,\alpha_4$ 是极大线性无关组. 由 $\alpha_5=k_1\alpha_1+k_2\alpha_2+k_3\alpha_4$ 得方程组

$$\begin{cases} k_1 + k_3 = 2 \\ k_2 = 1 \\ -k_3 = 0 \\ -4k_3 = 0 \end{cases}$$
 解得 $k_1 = 2$, $k_2 = 1$, $k_3 = 0$

所以
$$\alpha_5 = 2\alpha_1 + \alpha_2 + 0\alpha_4$$

由
$$\alpha_3 = k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_4$$
 得方程组

$$\begin{cases} k_1 + k_3 = 3 \\ k_2 = 1 \\ -k_3 = 0 \\ -4k_3 = 0 \end{cases}$$
解得 $k_1 = 3$, $k_2 = 1$, $k_3 = 0$

所以
$$\alpha_3 = 3\alpha_1 + \alpha_2 + 0\alpha_4$$

7. 已知三阶矩阵
$$A = \begin{bmatrix} x & y & y \\ y & x & y \\ y & y & x \end{bmatrix}$$
, 讨论秩(A)的情形.

解. i.
$$x = y = 0$$
, $r(A) = 0$

ii.
$$x = 0, y \neq 0$$
或 $x \neq 0, y = 0, r(A) = 3$

iii.
$$x = y \neq 0$$
, $r(A) = 1$

iv.
$$x = -y \neq 0$$
, $r(A) = 3$

iv.
$$x \neq 0, y \neq 0, x \neq \pm y$$

$$A = \begin{bmatrix} x & y & y \\ y & x & y \\ y & y & x \end{bmatrix} \rightarrow \begin{bmatrix} xy & y^2 & y^2 \\ xy & x^2 & xy \\ xy & xy & x^2 \end{bmatrix} \rightarrow \begin{bmatrix} xy & y^2 & y^2 \\ 0 & x^2 - y^2 & xy - y^2 \\ 0 & xy - y^2 & x^2 - y^2 \end{bmatrix} \rightarrow \begin{bmatrix} x & y & y \\ 0 & x + y & y \\ 0 & y & x + y \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} x & y & y \\ 0 & x+y & y \\ 0 & 0 & x(x+2y) \end{bmatrix}$$

所以, 当
$$x = -2y$$
 时, $r(A) = 2$; 当 $x \neq -2y$ 时, $r(A) = 3$

8. 设三阶矩阵 A 满足 $A^2 = E(E)$ 为单位矩阵), 但 $A \neq \pm E$, 试证明:

(秩(A-E)-1)(秩(A+E)-1)=0

解. 由第十一题知

$$r(A+E)+r(A-E)=3$$

又因为 $A \neq \pm E$, 所以 $r(A+E) \neq 0$, $r(A-E) \neq 0$

所以 r(A+E), r(A-E)中有一个为1

所以 (秩(A-E)-1)(秩(A+E)-1)=0

9. 设 A 为 n 阶方阵, 且 $A^2 = A$, 证明: 若 A 的秩为 r, 则 A - E 的秩为 n - r, 其中 $E \in R$ 阶单位矩阵.

解. 因为 $A^2 = A$, 所以 A(A - E) = 0

所以
$$0 = r(A(A-E)) \ge r(A) + r(A-E) - n$$

所以 $r(A) + r(A - E) \le n$

又因为
$$r(A) + r(A - E) = r(A) + r(E - A) \ge r(A + E - A) = r(E) = n$$

所以
$$r(A) + r(A - E) = n$$
. 所以 $r(A - E) = n - r$

10. 设 A 为 n 阶方阵, 证明: 如果 $A^2 = E$, 则秩(A + E) + 秩(A - E) = n.

解. 因为 $A^2 = E$, 所以 0 = (A - E)(A + E)

所以
$$0 = r((A+E)(A-E)) \ge r(A+E) + r(A-E) - n$$

所以
$$r(A+E)+r(A-E) \le n$$

又因为
$$r(A+E)+r(A-E)=r(A+E)+r(E-A) \ge r(A+E+E-A)=r(2E)=n$$

所以 r(A+E)+r(A-E)=n.

第四章 线性方程组

一. 填空题

1. 在齐次线性方程组 $A_{m \times n} x = 0$ 中,若秩(A) = k 且 η_1 , η_2 , …, η_r 是它的一个基础解系,则 $r = _____$; 当 $k = _____$ 时,此 方程组只有零解.

解. r = n - k, 当k = n 时, 方程组只有零解.

2. 若 n 元线性方程组有解, 且其系数矩阵的秩为 r, 则当 时, 方程组有唯一解; 当 时, 方程组有无穷多解.

解. 假设该方程组为 $A_{m \times n} x = b$, 矩阵的秩 r(A) = r.

当r = n, 方程组有惟一解; 当r < n, 方程组有无穷多解.

3. 齐次线性方程组
$$\begin{cases} x_1 + kx_2 + x_3 = 0 \\ 2x_1 + x_2 + x_3 = 0 \end{cases}$$
 只有零解,则 k 应满足的条件是_____.
$$kx_2 + 3x_3 = 0$$

解.
$$\begin{vmatrix} 1 & k & 1 \\ 2 & 1 & 1 \\ 0 & k & 3 \end{vmatrix} \neq 0, \quad 3 + 2k - k - 6k \neq 0, \quad k \neq \frac{3}{5} \text{ 时, 方程组只有零解.}$$

4. 设 A 为四阶方阵,且秩(A) = 2,则齐次线性方程组 $A^*x = 0$ (A^* 是 A 的伴随矩阵)的基础解系所包含的解向量的个数为

解. 因为矩阵 A 的秩 r(A) = 2 < n-1 = 4-1 = 3,所以 $r(A^*) = 0$, $A^*x = 0$ 的基础解系所含解向量的个数为 4-0 = 4.

$$A = \begin{bmatrix} -1 & 2 & -1 \\ 1 & -1 & 0 \\ -2 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

r(A) = 2, 基础解系所含解向量个数为 3-2=1.

$$\begin{cases} x_1 - x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$
 取 $x_3 = 1$, 则 $x_2 = x_1 = 1$. 基础解系为 $(1, 1, 1)^{\mathsf{T}}$.

Ax = 0 的通解为 $k(1, 1, 1)^{T}$, k 为任意常数.

6. 设 $\alpha_1, \alpha_2, \dots \alpha_s$ 是非齐次线性方程组 Ax = b 的解,若 $C_1\alpha_{1+}C_2\alpha_2 + \dots + C_s\alpha_s$ 也是 Ax = b 的一个解,则 $C_{1+}C_2 + \dots + C_s =$ _____.

解. 因为 $A\alpha_i = b$, 且 $A(C_1\alpha_{1+}C_2\alpha_2 + \cdots + C_s\alpha_s) = b$, 所以 $(C_1 + \Lambda + C_s)b = b$, $C_1 + \Lambda + C_s = 1$.

7. 方程组 Ax = 0 以 $\eta_1 = (1,0,2)^T$, $\eta_2 = (0,1,-1)^T$ 为其基础解系,则该方程的系数矩阵为____.

解. 方程组 $\mathbf{A}x=0$ 的基础解系为 $\eta_1=(1,0,2)^T$, $\eta_2=(0,1,-1)^T$, 所以n-r(A)=2, 即 3-r(A)=2, r(A)=1.

所以
$$A = \begin{bmatrix} \alpha_1 \\ k_1 \alpha_1 \\ k_2 \alpha_2 \end{bmatrix}$$
, 假设 $\alpha_1 = (a_{11}, a_{12}, a_{13})$.

由
$$A\eta_1 = 0$$
,得 (a_{11}, a_{12}, a_{13}) $\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = a_{11} + 2a_{13} = 0$

曲
$$A\eta_2 = 0$$
, 得 (a_{11}, a_{12}, a_{13}) $\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} = a_{12} - a_{13} = 0$

取
$$a_{13}=0$$
,得 $a_{12}=1$, $a_{11}=-2$.所以 $\alpha_1=(-2,1,1)$, $A=\begin{bmatrix}\alpha_1\\k_1\alpha_1\\k_2\alpha_2\end{bmatrix}$ (其中 k_1,k_2 为任意常数).

8. 设
$$Ax = b$$
, 其中 $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix}$, 则使方程组有解的所有 b 是_____.

解.
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix}$$
, $|A| = \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & -1 & 1 \end{vmatrix} = 5 \neq 0$,所以 $r(A) = 3$.

因为
$$Ax = b$$
 有解,所以 $r\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & -1 & 1 \end{pmatrix} = r\begin{pmatrix} 1 & 2 & 3 & M \\ 0 & 1 & 2 & M & b \\ 2 & -1 & 1 & M \end{pmatrix}$

所以
$$b = k_1 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + k_2 \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} + k_3 \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$
, 其中 k_1, k_2, k_3 为任意常数.

9. 设 A, B 为三阶方阵, 其中
$$A = \begin{bmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & -1 & 3 \\ 2 & k & 0 \\ 2 & -1 & 1 \end{bmatrix}$, 且已知存在三阶方阵 X , 使得 $AX = B$, 则 $k = \begin{bmatrix} 4 & -1 & 3 \\ 2 & k & 0 \\ 2 & -1 & 1 \end{bmatrix}$

解. 由题设
$$A_{3\times 3}X_{3\times 3}=B$$
,又因为 $|A|=\begin{vmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 1 \end{vmatrix}=0$,

所以
$$|B|=|A||X|=0$$
, 即 $\begin{vmatrix} 4 & -1 & 3 \\ 2 & k & 0 \\ 2 & -1 & 1 \end{vmatrix} = 4k-6-6k+2=0$, $k=-2$.

二. 单项选择题

1. 要使 $\xi_1 = (1, 0, 1)^T$, $\xi_2 = (-2, 0, 1)^T$ 都是线性方程组 Ax = 0 的解, 只要系数矩阵 A 为

(A)
$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix}$$
 (B) $\begin{bmatrix} -1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ (C) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 2 & 0 \\ 3 & 2 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 0 & -1 & 0 \\ 0 & 2 & 0 \end{bmatrix}$

解. 因为 ξ_1,ξ_2 的对应分量不成比例,所以 ξ_1,ξ_2 线性无关. 所以方程组Ax=0的基础解系所含解向量个数大于 2.

(A)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix}$$
, $|A| = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \neq 0$, $r(A) = 3$. 因为 A 是三阶矩阵,所以 $Ax = 0$ 只有零解,排除(A);

(B)
$$A = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
, $r(A) = 2$. 所以方程组 $Ax = 0$ 的基础解系所含解向量个数:

$$3-r(A)=1$$
. 排除(B);

(C)
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 2 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
, $r(A) = 2$.所以方程组 $Ax = 0$ 的基础解系所含解向量个数:

3-r(A)=1. 排除(C);

(D)
$$A = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 2 & 0 \end{bmatrix}$$
, $r(A) = 1$.所以方程组 $Ax = 0$ 的基础解系所含解向量个数:

3-r(A)=2, (D) 是答案.

- 2. 设 ξ_1, ξ_2, ξ_3 是Ax = 0的基础解系,则该方程组的基础解系还可以表成
- (A) ξ_1, ξ_2, ξ_3 的一个等阶向量组 (B) ξ_1, ξ_2, ξ_3 的一个等秩向量组
- (C) $\xi_1, \xi_1 + \xi_2, \xi_1 + \xi_2 + \xi_3$
- (C) $\xi_1 \xi_2, \xi_2 \xi_3, \xi_3 \xi_1$

解. 由 $k_1\xi_1 + k_2(\xi_1 + \xi_2) + k_3(\xi_1 + \xi_2 + \xi_3) = 0$, 得

 $(k_1 + k_2 + k_3)\xi_1 + (k_2 + k_3)\xi_2 + \xi_3k_3 = 0$. 因为 ξ_1, ξ_2, ξ_3 是Ax = 0的基础解系, 所以 ξ_1, ξ_2, ξ_3 线性无关. 于是

$$\begin{cases} k_1+k_2+k_3=0\\ k_2+k_3=0 \end{cases}, 所以 k_1=k_2=k_3=0, 则 \xi_1, \xi_1+\xi_2, \xi_1+\xi_2+\xi_3$$
 线性无关. 它也可以是方程组的基础解系. (C)是 $k_3=0$

答案.

- (A) 不是答案. 例如 ξ_1, ξ_2, ξ_3 和 $\xi_1, \xi_2, \xi_3, \xi_1 + \xi_2$ 等价,但 $\xi_1, \xi_2, \xi_3, \xi_1 + \xi_2$ 不是基础解系.
- 3. n 阶矩阵 A 可逆的充分必要条件是
- (A) 任一行向量都是非零向量
- (B) 仟一列向量都是非零向量

(C) Ax = b 有解

(D) 当 $x \neq 0$ 时, $Ax \neq 0$, 其中 $x = (x_1, \Lambda, x_n)^T$

解. 对(A), (B): 反例 $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$, 不可逆;

对于(C) 假设 A 为 n×n 矩阵, \overline{A} 为 A 的增广矩阵. 当 $r(A) = r(\overline{A}) < n$ 时, Ax = b 有无穷多解, 但 A 不可逆;

- (D) 是答案, 证明如下: 当 $x \neq 0$ 时, $Ax \neq 0$, 说明 Ax = 0 只有零解. 所以 $|A| \neq 0$, A^{-1} 存在.
- 4. 设 n 元齐次线性方程组 Ax = 0 的系数矩阵 A 的秩为 r, 则 Ax = 0 有非零解的充分必要条件是
- (A) r = n
- (B) $r \ge n$
- (C) r < n
- (D) r > n

解.(C)为答案.

- 5. 设 A为 $m \times n$ 矩阵、B为 $n \times m$ 矩阵、则线性方程组(AB)x = 0
- (A) 当n > m 时仅有零解.
- (B) 当n > m 时必有非零解.
- (C) 当m > n 时仅有零解.
- (D) 当m > n 时必有非零解.

解.因为AB矩阵为 $m \times m$ 方阵、所以未知数个数为 m 个.又因为 $r(AB) \le r(A) \le n$ 、所以,当m > n 时,

 $r(AB) \le r(A) \le n < m$,即系数矩阵的秩小于未知数个数,所以方程组有非零解.(D)为答案.

- 6. 设 n 阶矩阵 A 的伴随矩阵 $A^* \neq 0$,若 ξ_1 , ξ_2 , ξ_3 , ξ_4 是非齐次线性方程组 Ax = b 的互不相等的解,则对应的齐次线性 方程组 Ax = 0 的基础解系
- (A) 不存在

- (B) 仅含一个非零解向量
- (C)含有二个线性无关解向量 (D)含有三个线性无关解向量

解. 因为
$$r(A^*) = \begin{cases} n, & r(A) = n \\ 1, & r(A) = n-1 \\ 0, & r(A) < n-1 \end{cases}$$

因为 $A^* \neq 0$, 所以 $r(A) \geq n-1$; 又因为 $\xi_1, \xi_2, \xi_3, \xi_4$ 是非齐次线性方程组 Ax = b 的互不相等的解, 所以 Ax = b的解不唯一, 所以 $r(A) \le n-1$, 所以 r(A) = n-1. 于是:

基础解系所含解向量个数 = n-r(A) = n-(n-1) = 1

(B)为答案.

三. 计算证明题

1. 求方程组
$$\begin{cases} x_1 - 5x_2 + 2x_3 - 3x_4 = 11 \\ -3x_1 + x_2 - 4x_3 + 2x_4 = -5 \end{cases}$$
 的通解,并求满足方程组及条件 $5x_1 + 3x_2 + 6x_3 - x_4 = -1$ 的全部解.
$$-x_1 - 9x_2 - 4x_4 = 17$$

解. 将条件方程与原方程组构成矩阵

$$\begin{bmatrix} 1 & -5 & 2 & -3 & M & 11 \\ -3 & 1 & -4 & 2 & M - 5 \\ -1 & -9 & 0 & -4 & M & 17 \\ 5 & 3 & 6 & -1 & M - 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -5 & 2 & -3 & M & 11 \\ 0 & -14 & 2 & -7 & M & 28 \\ 0 & -14 & 2 & -7 & M & 28 \\ 0 & 28 & -4 & 14 & M & 56 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & -5 & 2 & -3 & M & 11 \\ 0 & -14 & 2 & -7 & M & 28 \\ 0 & 0 & 0 & M & 0 \\ 0 & 0 & 0 & M & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 9 & 0 & 4 & M - 17 \\ 0 & -14 & 2 & -7 & M & 28 \\ 0 & 0 & 0 & M & 0 \\ 0 & 0 & 0 & M & 0 \end{bmatrix}$$

- i. 条件方程与原方程组兼容, 即加上条件后的方程组与原方程组有相同的通解;
- ii. $r(A) = r(\overline{A}) = 2$, 方程组有解. 齐次方程组的基础解系含解向量的个数为4 r(A) = 2;

iii. 齐次方程的基础解系:
$$\begin{cases} x_1 + 9x_2 + 4x_4 = 0 \\ -14x_2 + 2x_3 - 7x_4 = 0 \end{cases}$$

基础解系为: $(-4,0,\frac{7}{2},1)^T$, $(-9,1,7,0)^T$

iv. 非齐次方程的通解:
$$\begin{cases} x_1 + 9x_2 + 4x_4 = -17 \\ -14x_2 + 2x_3 - 7x_4 = 28 \end{cases}$$

所以全部解为:
$$\begin{bmatrix} 1 \\ -2 \\ 0 \\ 0 \end{bmatrix} + k_1 \begin{bmatrix} -9 \\ 1 \\ 7 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} -4 \\ 0 \\ \frac{7}{2} \\ 1 \end{bmatrix}$$

2. 设有线性方程组
$$\begin{cases} x_1 + 3x_2 + x_3 = 0 \\ 3x_1 + 2x_2 + 3x_3 = -1 \text{ , in m, k 为何值时, 方程组有惟一解? 有无穷多组解? 有无穷多组解时, 求
$$-x_1 + 4x_2 + mx_3 = k \end{cases}$$$$

出一般解.

$$M$$
 M
 M

i. 当
$$m \neq -1$$
时, $r(A) = r(A) = 3$, 方程组有惟一解;

ii. 当
$$m = -1$$
, $k \neq 1$ 时, $r(A) \neq r(A)$, 方程组无解;

iii. 当
$$m = -1$$
, $k = 1$ 时, $r(A) = r(A) = 2 < 3$, 方程组有无穷多解. 此时基础解系含解向量个数为 $3 - r(A) = 1$

齐次方程组:
$$\begin{cases} x_1 + 3x_2 + x_3 = 0 \\ 7x_2 = 0 \end{cases}$$
, 所以 $x_2 = 0$.

令
$$x_3 = 1$$
, 得 $x_1 = -1$. 基础解系解向量为: $(-1,0,1)^T$.

非齐次方程组:
$$\begin{cases} x_1 + 3x_2 + x_3 = 0 \\ 7x_2 = 1 \end{cases}$$
, 所以 $x_2 = \frac{1}{7}$.

令
$$x_3 = 0$$
, 得 $x_1 = -\frac{3}{7}$. 非齐次方程特解为: $(-\frac{3}{7}, \frac{1}{7}, 0)^T$.

通解为:
$$x = \begin{bmatrix} -\frac{3}{7} \\ \frac{1}{7} \\ 0 \end{bmatrix} + k \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

3. 问
$$\lambda$$
 为何值时,线性方程组
$$\begin{cases} x_1 + x_3 = \lambda \\ 4x_1 + x_2 + 2x_3 = \lambda + 2 \end{cases}$$
 有解,并求出解的一般形式.
$$6x_1 + x_2 + 4x_3 = 2\lambda + 3$$

iii. 当 $-\lambda+1=0$, $\lambda=1$ 时, $r(A)=r(\overline{A})=2<3$, 方程组有无穷多解. 此时基础解系含解向量个数为3-r(A)=1

齐次方程组:
$$\begin{cases} x_1 + x_3 = 0 \\ x_2 - 2x_3 = 0 \end{cases}$$

令 $x_3 = 1$, 得 $x_2 = 1$, $x_1 = 0$. 基础解系解向量为: $(-1, 2, 1)^T$.

非齐次方程组:
$$\begin{cases} x_1 + x_3 = 1 \\ x_2 - 2x_3 = -1 \end{cases}$$

令 $x_3 = 0$, 得 $x_1 = 1$, $x_2 = -1$. 非齐次方程特解为: $(1, -1, 0)^T$.

通解为:
$$x = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + k \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

4. 己知 $\alpha_1 = (1,2,0)$, $\alpha_2 = (1,a+2,-3a)$, $\alpha_3 = (-1,b+2,a+2b)$ 及 $\beta = (1,3,-3)$.

i. a, b 为何值时, β不能表示成 $\alpha_1, \alpha_2, \alpha_3$ 的线性组合.

ii. a, b 为何值时, β有 $\alpha_1,\alpha_2,\alpha_3$ 的惟一线性表示, 并写出该表示式.

解. 假设 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = \beta$, 求解方程组, 求 x_1, x_2, x_3 .

$$\begin{pmatrix} 1 & 1 & -1 & M & 1 \\ 2 & a+2 & b+2 & M & 3 \\ 0 & -3a & a+2b & M-3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 & M & 1 \\ 0 & a & b+4 & M & 1 \\ 0 & -3a & a+2b & M-3 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & -1 & M & 1 \\ 0 & a & b+4 & M & 1 \\ 0 & 0 & a+5b+12 & M-3 \end{pmatrix}$$

i. $a=0, b \neq -4$ 时, $r(A)=2 < r(\overline{A})=3$,方程组无解,即β不能表示成 $\alpha_1,\alpha_2,\alpha_3$ 的线性组合;

 $a = 0, b = -\frac{12}{5}$ 时,r(A) = 2 = r(A),方程组有无穷多解,即β有无穷多种方法可表示成 $\alpha_1, \alpha_2, \alpha_3$ 的线性组合.

ii. $a \neq 0$, $a + 5b + 12 \neq 0$ 时, $r(A) = 3 = r(\overline{A})$,方程组有惟一解,即β能表示成 $\alpha_1, \alpha_2, \alpha_3$ 的线性组合,且表示法惟一.

此时得方程组
$$\begin{cases} x_1 + x_2 - x_3 = 1\\ ax_2 + (b+4)x_3 = 1\\ (a+5b+12)x_3 = 0 \end{cases}$$

解得:
$$x_3 = 0$$
, $x_2 = \frac{1}{a}$, $x_1 = 1 - \frac{1}{a}$, 表示式为: $\beta = (1 - \frac{1}{a})\alpha_1 + \frac{1}{a}\alpha_2 + 0\alpha_3$.

5. 知方程组
$$\begin{cases} x_1 + ax_2 + x_3 + x_4 = 2 \\ 2x_1 + x_2 + bx_3 + x_4 = 4 \end{cases} = \begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ -x_2 + 2x_3 - x_4 = 2 \\ x_3 + 2x_4 = -1 \end{cases}$$

同解, 试确定 a, b, c.

解. 在第二个方程组中求一组特解. 令 $x_3 = 1$, 解得 $x_4 = -1$, $x_2 = 1$, $x_1 = 0$. 将该组特解代入第一个方程组中得:

$$a = 2, b = 4, c = 4$$
.

6. 已知下列非齐次线性方程组(I)、(II)

(I)
$$\begin{cases} x_1 + x_2 - 2x_4 = -6 \\ 4x_1 - x_2 - x_3 - x_4 = 1 \\ 3x_1 - x_2 - x_3 = 3 \end{cases}$$
 (II)
$$\begin{cases} x_1 + mx_2 - x_3 - x_4 = -5 \\ nx_2 - x_3 - 2x_4 = -11 \\ x_3 - 2x_4 = -t + 1 \end{cases}$$

i. 求解方程组(I), 用其导出组的基础解系表示通解;

ii. 当方程组(Π)中的参数 m, n, t 为何值时, 方程组(Π)与(Π)同解.

解.i. 由第一个方程组

$$\begin{pmatrix} 1 & 1 & 0 & -2 & M-6 \\ 4 & -1 & -1 & -1 & M & 1 \\ 3 & -1 & -1 & 0 & M & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & -2 & M-6 \\ 0 & -5 & -1 & 7 & M & 25 \\ 0 & -4 & -1 & 6 & M & 21 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix}
1 & 1 & 0 & -2 & M - 6 \\
0 & 1 & \frac{1}{5} & -\frac{7}{5} & M - 5 \\
0 & -4 & -1 & 6 & M & 21
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & 1 & 0 & -2 & M - 6 \\
0 & 1 & \frac{1}{5} & -\frac{7}{5} & M - 5 \\
0 & 0 & -\frac{1}{5} & \frac{2}{5} & M & 1
\end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 0 & -2 & M & -6 \\ 0 & 5 & 1 & -7 & M & -25 \\ 0 & 0 & -1 & 2 & M & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & -2 & M & -6 \\ 0 & 5 & 0 & -5 & M & -20 \\ 0 & 0 & -1 & 2 & M & 5 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 0 & -2 & M - 6 \\ 0 & 1 & 0 & -1 & M - 4 \\ 0 & 0 & -1 & 2 & M & 5 \end{pmatrix}$$

 $r(A) = r(\overline{A}) = 3$,齐次方程基础解系所含解向量个数为: 4 - r(A) = 1.

齐次方程组:
$$\begin{cases} x_1+x_2-2x_4=0\\ x_2-x_4=0\\ -x_3+2x_4=0 \end{cases} . \ \diamondsuit \ x_4=1, \ 解得x_3=2, \ x_2=1, \ x_1=1.$$

基础解系为: (1,1,2,1)^T.

所以第一个方程组的通解为:
$$x = \begin{bmatrix} -2 \\ -4 \\ -5 \\ 0 \end{bmatrix} + k \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}$$

ii. 将
$$\begin{bmatrix} -2\\ -4\\ -5\\ 0 \end{bmatrix}$$
代入第二个方程组:

$$\begin{cases}
-2 - 4m + 5 = -5 & m = 2 \\
-4n + 5 = -11 & n = 4 \\
-5 = -t + 1 & t = 6
\end{cases}$$

7. 设 A 是 m×n 矩阵, R 是 m×n 矩阵, $\mathbf{x} = (x_1, x_2, \Lambda_1, x_n)^T$, B 是 m×m 矩阵, 求证: 若 B 可逆且 BA 的行向量都是方程组 Rx = 0 的解,则 A 的每个行向量也都是该方程组的解.

解. 假设
$$B = \begin{bmatrix} b_{11} & b_{12} & \Lambda & b_{1m} \\ b_{21} & b_{22} & \Lambda & b_{2m} \\ \Lambda & \Lambda & \Lambda & \Lambda \\ b_{m1} & b_{m2} & \Lambda & b_{mm} \end{bmatrix}, \quad A = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ M \\ \alpha_m \end{bmatrix}, \quad \sharp + \alpha_i \ (i = 1, 2, \Lambda, m) \, \text{为 A 的行向量}.$$

$$BA = \begin{bmatrix} b_{11} & b_{12} & \Lambda & b_{1m} \\ b_{21} & b_{22} & \Lambda & b_{2m} \\ \Lambda & \Lambda & \Lambda & \Lambda \\ b_{m1} & b_{m2} & \Lambda & b_{mm} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ M \\ \alpha_m \end{bmatrix} = \begin{bmatrix} b_{11}\alpha_1 + \Lambda + b_{1m}\alpha_m \\ b_{21}\alpha_1 + \Lambda + b_{2m}\alpha_m \\ M \\ \alpha_m \end{bmatrix}$$

因为 BA 的行向量都是方程组 Rx = 0 的解,所以: $R(\sum_{k=1}^{m} b_{ik}\alpha_k)^T = 0$, $(i = 1, 2, \Lambda, m)$.

所以:
$$\sum_{k=1}^{m} b_{ik} R \alpha_k^T = 0$$
, $(i = 1, 2, \Lambda, m)$, 即 $B(R \alpha_i^T) = 0$, $(i = 1, 2, \Lambda, m)$.

因为 B 可逆, 所以 $R\alpha_i^T=0$, $(i=1,2,\Lambda,m)$. 即 A 的每个行向量为 Rx=0 的解.

8. $A \neq n$ 阶矩阵, $\exists A \neq 0$. 证明:存在一个 n 阶非零矩阵 B, 使 AB = 0 的充分必要条件是 |A| = 0.

解. 必要性:

(反证法) 反设 $|A| \neq 0$,则 A^{-1} 存在.所以当AB = 0时,二边右乘 A^{-1} 得B = 0,和存在一个n阶非零矩阵B,使AB = 0矛盾.所以|A| = 0;

充分性:

设 |A|=0, 则方程组 Ax=0 有非零解 $x=(b_1,b_2,\Lambda b_n)$. 构造矩阵

$$B = \begin{bmatrix} b_1 & 0 & \Lambda & 0 \\ b_2 & 0 & \Lambda & 0 \\ \Lambda & \Lambda & \Lambda & \Lambda \\ b_n & 0 & \Lambda & 0 \end{bmatrix}$$

则 $B \neq 0$,且 AB = 0.

9. 假设 $A \in m \times n$ 阶矩阵,若对任意 n 维向量 x, 都有 Ax = 0, 则 A = 0.

解. 假设 $A = (\alpha_1, \alpha_2, \Lambda, \alpha_n)$, α_i 为 A 的列向量 $(i = 1, 2, \Lambda, n)$. 取 $\beta_i = (0, \Lambda, 1, \Lambda, 0)^T$ $(i = 1, 2, \Lambda, n)$, 只有第 i 个分量为 1,其余都为 0. 则

$$A\beta_{i} = A \begin{pmatrix} 0 \\ M \\ 1 \\ M \\ 0 \end{pmatrix} = \alpha_{i} = 0, \quad (i = 1, 2, \Lambda, n)$$

所以 A=0.

10. 假设
$$A = \begin{bmatrix} 2 & 1 & 1 & 2 \\ 0 & 1 & 3 & 1 \\ 1 & a & c & 1 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \eta = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$$
. 如果 η 是方程组 $Ax = b$ 的一个解,试求 $Ax = b$ 的通解.

$$\begin{bmatrix} 2 & 1 & 1 & 2 & M & 0 \\ 0 & 1 & 3 & 1 & M & 1 \\ 1 & a & a & 1 & M & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 1 & 2 & M & 0 \\ 0 & 1 & 3 & 1 & M & 1 \\ 0 & a - \frac{1}{2} & a - \frac{1}{2} & 0 & M & 0 \end{bmatrix}$$

i.
$$a = c = \frac{1}{2}$$

$$\begin{bmatrix} 2 & 1 & 1 & 2 & M & 0 \\ 0 & 1 & 3 & 1 & M & 1 \\ 1 & \frac{1}{2} & \frac{1}{2} & 1 & M & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 1 & 2 & M & 0 \\ 0 & 1 & 3 & 1 & M & 1 \\ 0 & 0 & 0 & M & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & -2 & 1 & M & -1 \\ 0 & 1 & 3 & 1 & M & 1 \\ 0 & 0 & 0 & M & 0 \end{bmatrix}$$

于是 $r(A) = r(\overline{A}) = 2$, 基础解系所含解向量个数为: 4 - r(A) = 2.

齐次方程:
$$\begin{cases} 2x_1 - 2x_3 + x_4 = 0 \\ x_2 + 3x_3 + x_4 = 0 \end{cases}$$

令 $x_3 = 1$, $x_4 = 0$, 解得 $x_2 = -3$, $x_1 = 1$, 解向量为: $(1, -3, 1, 0)^T$

令
$$x_3 = 0$$
, $x_4 = 2$, 解得 $x_2 = -2$, $x_1 = -1$, 解向量为: $(1, -2, 0, 2)^T$

所以通解为:
$$\begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix} + k_1 \begin{bmatrix} 1 \\ -3 \\ 1 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} -1 \\ -2 \\ 0 \\ 2 \end{bmatrix}$$

i.
$$a = c \neq \frac{1}{2}$$

$$\begin{bmatrix} 2 & 1 & 1 & 2 & M & 0 \\ 0 & 1 & 3 & 1 & M & 1 \\ 1 & a & a & 1 & M & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 1 & 2 & M & 0 \\ 0 & 1 & 3 & 1 & M & 1 \\ 0 & a - \frac{1}{2} & a - \frac{1}{2} & 0 & M & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix}
2 & 0 & -2 & 1 & M & -1 \\
0 & 1 & 3 & 1 & M & 1 \\
0 & 0 & 1-a & \frac{1}{2}-a & M & \frac{1}{2}-a
\end{bmatrix}$$

于是 $r(A) = r(\overline{A}) = 3$, 基础解系所含解向量个数为: 4 - r(A) = 1.

齐次方程:
$$\begin{cases} 2x_1 - 2x_3 + x_4 = 0 \\ x_2 + 3x_3 + x_4 = 0 \end{cases},$$

$$(1-a)x_3 + (\frac{1}{2} - a)x_4 = 0$$

令 $x_4 = 2$, 解得 $x_3 = -1$, $x_2 = 1$, $x_1 = -2$, 解向量为: $(-2,1,-1,2)^T$

所以通解为:
$$\begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix} + k \begin{bmatrix} -2 \\ 1 \\ -1 \\ 2 \end{bmatrix}$$

11. 假设
$$A = \begin{bmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 4 \\ 1 & -2 \\ -2 & -2 \end{bmatrix}$$
. 如果矩阵方程 $AX = B$ 有解,但解不惟一,试确定参数 a .

$$\rightarrow \begin{bmatrix}
1 & 1 & a & M & 1 & 4 \\
0 & a-1 & 1-a & M & 0 & -6 \\
0 & 0 & (1-a)(2+a) & M-2-a & -8-4a
\end{bmatrix}$$

当 a=-2 时,对于 B 的任一列向量,都有 $r(A)=r(\overline{A})=2<3$,所以矩阵方程 AX=B 有解,但解不惟一.

第五章 特征值和特征向量

一. 填空题

1. 设 A 是 n 阶方阵, A^* 为 A 的伴随矩阵, |A| = 5, 则方阵 $B = AA^*$ 的特征值是______, 特征向量是_____.

解. 因为 $AA^* = A^*A = A \mid A \mid E$,所以对于任意 n 维向量 α 有 $AA^*\alpha = A \mid E\alpha = A \mid \alpha$.所以|A| = 5 是 $B = AA^*$ 的特征 值,任意 n 维向量 α 为对应的特征向量.

2. 三阶方阵 A 的特征值为 1, -1, 2, 则 $B = 2A^3 - 3A^2$ 的特征值为 .

解. $B = 2A^3 - 3A^2$ 的特征值为:

$$2 \cdot 1^3 - 3 \cdot 1^2 = -1$$
, $2 \cdot (-1)^3 - 3 \cdot (-1)^2 = -5$, $2 \cdot 2^3 - 3 \cdot 2^2 = 4$

3. 设
$$A = \begin{bmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & -4 & 1 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ 且 A 的特征值为 2 和 1(二重),那么 B 的特征值为_____.

解. A, A^T 具有相同的特征值. $B = A^T$, 所以 B 和 A 具有相同的特征值. B 的特征值为: 2 和 1(二重).

4. 已知矩阵
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{bmatrix}$$
与 $B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{bmatrix}$ 相似,则 $x = \underline{\qquad}$, $y = \underline{\qquad}$.

解. 因为
$$A, B$$
 相似, 所以 $|A| = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{vmatrix} = -2 = |B| = \begin{vmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{vmatrix} = -2y, y = 1.$

相似矩阵的迹相等: tr(A) = 2 + x = tr(B) = 2 + y - 1 = 2. 于是x = 0.

5. 设 A, B 为 n 阶方阵, 且 $|A| \neq 0$, 则 AB 与 BA 相似, 这是因为存在可逆矩阵 $P = _____$, 使得 $P^{-1}ABP = BA$.

解. 因为 $|A| \neq 0$,所以A可逆. 令P = A,则 $P^{-1}ABP = A^{-1}ABA = BA$. 即 AB 与 BA 相似.

二、单项选择题

- 1. 零为矩阵 A 的特征值是 A 为不可逆的
- (A) 充分条件 (B) 必要条件 (C)充要条件 (D) 非充分、非必要条件
- 解. 假设 $\lambda_1, \lambda_2, \Lambda_1, \lambda_n$ 为 A 的所有特征值, 则 $|A| = \lambda_1 \lambda_2 \Lambda_1$ 所以:

0为 A 的特征值 ⇔ A 可逆

(C)为答案.

2. 设 λ_1, λ_2 是矩阵 A 的两个不同的特征值, ξ, η 是 A 的分别属于 λ_1, λ_2 的特征向量,则

(A) 对任意 $k_1 \neq 0, k_2 \neq 0$, $k_1\xi + k_2\eta$ 都是 A 的特征向量.

- (B) 存在常数 $k_1 \neq 0, k_2 \neq 0$, $k_1 \xi + k_2 \eta$ 是 A 的特征向量.
- (C) 当 $k_1 \neq 0, k_2 \neq 0$ 时, $k_1 \xi + k_2 \eta$ 不可能是 A 的特征向量.
- (D) 存在惟一的一组常数 $k_1 \neq 0, k_2 \neq 0$,使 $k_1\xi + k_2\eta$ 是 A 的特征向量.

解. $\lambda_1 \neq \lambda_2$ 为 A 的二个相异的特征值, 所以存在非零向量 ξ , η , 满足 $A\xi = \lambda_1 \xi$, $A\eta = \lambda_2 \eta$. 而且 ξ , η 线性无关.

假设存在 λ 满足: $A(k_1\xi + k_2\eta) = \lambda(k_1\xi + k_2\eta)$

所以
$$\lambda_1 k_1 \xi + \lambda_2 k_2 \eta = \lambda k_1 \xi + \lambda k_2 \eta$$
, 即 $(\lambda_1 k_1 - \lambda k_1) \xi + (\lambda_2 k_2 - \lambda k_2) \eta = 0$

因为 ξ , η 线性无关, 所以 $\lambda_1 k_1 - \lambda k_1 = 0$, $\lambda = \lambda_1$; $\lambda_1 k_2 - \lambda k_3 = 0$, $\lambda = \lambda_2$.

和 $\lambda_1 \neq \lambda_2$ 矛盾. 所以(C)为答案.

3. 设 λ_0 是 n 阶矩阵 A 的特征值, 且齐次线性方程组($\lambda_0 E - A$)x = 0 的基础解系为 η_1 和 η_2 , 则 A 的属于 λ_0 的全部特征 向量是

(A) η_1 和 η_2

- (B) η_1 或 η_2
- (C) $C_1\eta_1 + C_2\eta_2$ (C_1, C_2 为任意常数) (D) $C_1\eta_1 + C_2\eta_2$ (C_1, C_2 为不全为零的任意常数)

解. 因为齐次线性方程组 $(\lambda_0 E - A)x = 0$ 的基础解系为 η_1 和 η_2 , 所以方程组 $(\lambda_0 E - A)x = 0$ 的全部解为 $C_1\eta_1 + C_2\eta_2$ (C_1, C_2)为任意常数). 但特征向量不能为零,则 A 的属于 λ_0 的全部特征向量是: $C_1\eta_1 + C_2\eta_2$ (C_1, C_2)为不 全为零的任意常数),(D)为答案.

- 4. 设 λ_1, λ_2 , 是矩阵 A 的两个不同的特征值, $\alpha = \beta$ 是 A 的分别属于 λ_1, λ_2 , 的特征向量, 则有 $\alpha = \beta$ 是
- (A) 线性相关 解.(B)是答案.
- (B) 线性无关
- (C) 对应分量成比例
- (D) 可能有零向量

5. 与 n 阶单位矩阵 E 相似的矩阵是

- (A) 数量矩阵 $kE(k \neq 1)$
- (B) 对角矩阵 D(主对角元素不为 1)

(C) 单位矩阵 E

(D) 任意n阶矩阵A

解. 令 P = E, 则 $P^{-1} = E$. 所以 $P^{-1}EP = EEE = E$. 所以(C)是答案.

- 6. $A, B \neq n$ 阶方阵, 且 $A \sim B$, 则
- (A) A, B 的特征矩阵相同
- (B) A, B 的特征方程相同
- (C) A, B 相似于同一个对角阵 (D) 存在正交矩阵 T, 使得 $T^{-1}AT = B$

解. $A \sim B$,则存在可逆方阵 P,使得 $P^{-1}AP = B$.所以

$$|\lambda E - B| = |\lambda E - P^{-1}AP| = |P^{-1}| |\lambda E - A| |P| = |\lambda E - A|$$

所以A,B的有相同的特征方程,(B)是答案.

三. 计算证明题

1. 设
$$\lambda = 1$$
 是矩阵 $A = \begin{bmatrix} -3 & -1 & 2 \\ 0 & -1 & 4 \\ t & 0 & 1 \end{bmatrix}$ 的特征值,求: i. t 的值; ii. 对应于 $\lambda = 1$ 的所有特征向量.

解.
$$|A - \lambda E| = \begin{vmatrix} -3 - \lambda & -1 & 2 \\ 0 & -1 - \lambda & 4 \\ t & 0 & 1 - \lambda \end{vmatrix} = (3 + \lambda)(1 - \lambda^2) - 4t + 2t(1 + \lambda) = 0$$

当 $\lambda = 1$ 时, -4t + 4t = 0. 所以 t 为任意实数.

i. $t \neq 0$, $\lambda = 1$ 时

$$A - \lambda E = \begin{bmatrix} -4 & -1 & 2 \\ 0 & -2 & 4 \\ t & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -4 & -1 & 2 \\ 0 & -2 & 4 \\ 1 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 \\ 0 & -2 & 4 \\ 1 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & -2 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

所以 $r(A-\lambda E)=2$. 方程组 $(A-\lambda E)x=0$ 基础解系所含解向量个数为

$$3 - r(A - \lambda E) = 3 - 2 = 1$$

相应的方程组为
$$\begin{cases} x_2-2x_3=0 \\ x_1=0 \end{cases}$$
. 取 $x_3=1$, 得 $x_2=2$. 所以解向量为 $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$, 对应于 $\lambda=1$ 的全部特征向量为 $k \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$;

ii. t = 0, $\lambda = 1$ 时

$$A - \lambda E = \begin{bmatrix} -4 & -1 & 2 \\ 0 & -2 & 4 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 1 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

所以 $r(A-\lambda E)=2$. 方程组 $(A-\lambda E)x=0$ 基础解系所含解向量个数为

$$3 - r(A - \lambda E) = 3 - 2 = 1$$

相应的方程组为
$$\begin{cases} x_1=0 \\ x_2-2x_3=0 \end{cases}$$
. 取 $x_3=1$, 得 $x_2=2$. 所以解向量为 $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$, 对应于 $\lambda=1$ 的全部特征向量为 $k \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$.

$$\begin{aligned}
Recolor & R$$

所以方程组 $(A - \lambda E)x = Ax = 0$ 的基础解系所含解向量个数为 n - (n-1) = 1.

相应的方程组为
$$\begin{cases} x_2 = 0 \\ x_3 = 0 \\ \Lambda \Lambda \Lambda \\ x_n = 0 \end{cases}$$
 令 $x_1 = 1$,得解向量 $\begin{bmatrix} 1 \\ 0 \\ M \\ 0 \end{bmatrix}$

于是对应于 $\lambda = 0$ 的全部特征向量为 $k \begin{bmatrix} 1 \\ 0 \\ M \\ 0 \end{bmatrix}$ $(k \neq 0)$.

3. 假定 n 阶矩阵 A 的任意一行中, n 个元素的和都是 a, 试证 $\lambda = a$ 是 A 的特征值,且 $(1, 1, \dots, 1)^T$ 是对应于 $\lambda = a$ 的特征向量,又问此时 A^{-1} 的每行元素之和为多少?

解. 假设
$$A = \begin{bmatrix} a_{11} & a_{12} & \Lambda & a_{1n} \\ a_{21} & a_{22} & \Lambda & a_{2n} \\ \Lambda & \Lambda & \Lambda & \Lambda \\ a_{n1} & a_{n2} & \Lambda & a_{nn} \end{bmatrix}$$
, 且 $\sum_{k=1}^{n} a_{ik} = a \ (i = 1, 2, \Lambda, n)$

$$A\begin{bmatrix} 1\\1\\M\\1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \Lambda & a_{1n}\\ a_{21} & a_{22} & \Lambda & a_{2n}\\ \Lambda & \Lambda & \Lambda & \Lambda\\ a_{n1} & a_{n2} & \Lambda & a_{nn} \end{bmatrix} \begin{bmatrix} 1\\1\\M\\1 \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^{n} a_{1k}\\ \sum_{k=1}^{n} a_{2k}\\ M\\ \sum_{k=1}^{n} a_{nk} \end{bmatrix} = \begin{bmatrix} a\\a\\M\\a \end{bmatrix} = a\begin{bmatrix} 1\\1\\M\\1 \end{bmatrix}$$

所以 $\lambda = a$ 为 A 的特征值, 对应的特征向量为 $(1, 1, \dots, 1)^T$.

因为 A 可逆,所以 $\frac{1}{a}$ 为 A^{-1} 的特征值,对应的特征向量也是 $(1, 1, \dots, 1)^{T}$.

即
$$A^{-1}\begin{bmatrix} 1\\1\\M\\1 \end{bmatrix} = \frac{1}{a}\begin{bmatrix} 1\\1\\M\\1 \end{bmatrix}$$
. 所以 A^{-1} 的每行和为 $\frac{1}{a}$.

4. 设A, B均是n阶方阵,且r(A)+r(B)< n,证明A, B有公共的特征向量.

解. 考察方程组
$$\begin{cases} Ax = 0 \\ Bx = 0 \end{cases}$$
. $r \binom{A}{B} \le r(A) + r(B) < n$. 所以方程组有非零解 α

则解向量 α 为 A, B 的公共特征向量, 对应的特征值为 $\lambda = 0$.

$$\begin{bmatrix} 1 & 2 & -2 & M & 1 & 0 & 0 \\ 2 & -2 & -1 & M & 0 & 1 & 0 \\ 2 & 1 & 2 & M & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -2 & M & 1 & 0 & 0 \\ 0 & -6 & 3 & M - 2 & 1 & 0 \\ 0 & -3 & 6 & M - 2 & 0 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix}
1 & 2 & -2 & M & 1 & 0 & 0 \\
0 & -3 & 6 & M - 2 & 0 & 1 \\
0 & 0 & -9 & M & 2 & 1 & -2
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 2 & -2 & M & 1 & 0 & 0 \\
0 & 1 & -2 & M & \frac{2}{3} & 0 & -\frac{1}{3} \\
0 & 0 & 1 & M - \frac{2}{9} & -\frac{1}{9} & \frac{2}{9}
\end{bmatrix}$$

$$\rightarrow \begin{bmatrix}
1 & 0 & 2 & M - \frac{1}{3} & 0 & \frac{2}{3} \\
0 & 1 & -2 & M & \frac{2}{3} & 0 & -\frac{1}{3} \\
0 & 0 & 1 & M - \frac{2}{9} & -\frac{1}{9} & \frac{2}{9}
\end{bmatrix}
\rightarrow \begin{bmatrix}
1 & 0 & 0 & M & \frac{1}{9} & \frac{2}{9} & \frac{2}{9} \\
0 & 1 & 0 & M & \frac{2}{9} & -\frac{2}{9} & \frac{1}{9} \\
0 & 0 & 1 & M - \frac{2}{9} & -\frac{1}{9} & \frac{2}{9}
\end{bmatrix}$$

所以
$$P^{-1} = \frac{1}{9} \begin{bmatrix} 1 & 2 & 2 \\ 2 & -2 & 1 \\ -2 & -1 & 2 \end{bmatrix}$$
, $P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

所以
$$A = P \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} P^{-1} = \frac{1}{9} \begin{bmatrix} 1 & 2 & -2 \\ 2 & -2 & -1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & -2 & 1 \\ -2 & -1 & 2 \end{bmatrix}$$

$$= \frac{1}{9} \begin{bmatrix} 1 & 2 & -2 \\ 2 & -2 & -1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 4 & -4 & 2 \\ -6 & -3 & 6 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 21 & 0 & -6 \\ 0 & 15 & -6 \\ -6 & -6 & 18 \end{bmatrix} = \begin{bmatrix} \frac{7}{3} & 0 & -\frac{2}{3} \\ 0 & \frac{5}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & 2 \end{bmatrix}$$

6. 设矩阵
$$A 与 B$$
 相似,其中 $A = \begin{bmatrix} -1 & -2 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & x \end{bmatrix}$, $B = \begin{bmatrix} y & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,

i. 求 x 和 y 的值; ii. 求可逆矩阵 P, 使得 $P^{-1}AP = B$.

解. 因为 A 相似于 B, 所以 A|=|B|, 所以 -x=y; 且 tr(A)=tr(B), 所以 x=y+2.

得
$$x = 1, y = -1.$$

由 B 的表达式知: A 的二个特征值为 $\lambda = \pm 1$

i. $\lambda = -1$

$$(A+E)x = 0, \ \mathbb{H} \begin{bmatrix} 0 & -2 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} x = 0,$$

$$\begin{bmatrix} 0 & -2 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad r(A+E) = 2$$

方程组(A+E)x=0的基础解系只有一个解向量.

相应的方程组为 $\begin{cases} x_2 = 0 \\ x_3 = 0 \end{cases}$ 取 $x_1 = 1$

ii. $\lambda = 1$

方程组(A+E)x=0的基础解系有二个解向量.

相应的方程组为 $x_1 + x_2 - x_3 = 0$,

取
$$x_1 = 1, x_2 = 0, 得x_3 = 1,$$
 取 $x_1 = 0, x_2 = 1, 得x_3 = 1$

得二个线性无关的特征向量: $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

所以矩阵
$$P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

7. 设矩阵 $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, 矩阵 $B = (kE + A)^2$, 其中 k 为实数, E 为单位矩阵, 求对角矩阵 Λ , 使得 B 与 Λ 相似, 并求 k

为何值时, B 为正定矩阵.

$$= [(k+1)^{2} + 1 - \lambda]^{2} [(k+2)^{2} - \lambda] - 4(k+1)^{2} [(k+2)^{2} - \lambda] = 0$$

解得 $\lambda_1 = k^2$, $\lambda_{2,3} = (k+2)^2$. 其中 $\lambda_{2,3} = (k+2)^2$ 为二重根.

当
$$\lambda = (k+2)^2$$
 时, $(k+1)^2 + 1 - \lambda = k^2 + 2k + 1 + 1 - k^2 - 4k - 4 = -2k - 2$

$$B - \lambda E = \begin{bmatrix} (k+1)^2 + 1 - \lambda & 0 & 2k+2 \\ 0 & (k+2)^2 - \lambda & 0 \\ 2k+2 & 0 & (k+1)^2 + 1 - \lambda \end{bmatrix}$$
$$= \begin{bmatrix} -2k-2 & 0 & 2k+2 \\ 0 & 0 & 0 \\ 2k+2 & 0 & -2k-2 \end{bmatrix} = \begin{bmatrix} -2k-2 & 0 & 2k+2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 $r(B-\lambda E)=1$, 所以方程组 $(B-\lambda E)x=0$ 的基础解系有二个解向量, 所以 B 可以对角化. 即 B 相似于对角矩阵:

$$\begin{bmatrix} (k+2)^2 & 0 & 0 \\ 0 & (k+2)^2 & 0 \\ 0 & 0 & k^2 \end{bmatrix}.$$

 $k \neq 2$, $k \neq 0$ 时, B 的特征值都为正, 此时, B 为正定阵.

8. 设 n 阶矩阵 A 的特征值为 1, 2, ..., n, 试求 |2A + E|.

解. 因为 A 的特征值为 $1, 2, \dots, n$,所以 2A + E 的特征值为 2i + 1 $(i = 1, 2, \Lambda, n)$. 所以 $|2A + E| = \prod_{i=1}^{n} (2i + 1)$.

9. 某试验性生产线每年一月份进行熟练工与非熟练工的人数统计,然后将 $\frac{1}{6}$ 熟练工支援其它生产部门,其缺额由招收新的非熟练工补齐. 新、老非熟练工经过培训及实践至年终考核有 $\frac{2}{5}$ 成为熟练工,设第n年一月份统计的熟练工和非熟

练工所占百分比分别为 x_n 和 y_n ,记成向量 $\begin{bmatrix} x_n \\ y_n \end{bmatrix}$

i. 求
$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix}$$
与 $\begin{bmatrix} x_n \\ y_n \end{bmatrix}$ 的关系式并写出矩阵形式: $\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = A \begin{bmatrix} x_n \\ y_n \end{bmatrix}$;

ii. 验证 $\eta_1 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$, $\eta_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ 是 A 的两个线形无关的特征向量,并求出相应的特征值;

iii. 当
$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$$
时,求 $\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix}$.

解.i. 由题设可得以下递推关系:

第 n 年一月份统计的熟练工和非熟练工所占百分比分别为 x_n 和 y_n ,熟练工的 $\frac{1}{6}$,即 $\frac{1}{6}x_n$ 支援其它生产部门,缺额招收新的非熟练工,所以总的非熟练工为 $\frac{1}{6}x_n+y_n$. 到第 n+1 年,其中的 $\frac{2}{5}$ 成为熟练工, $\frac{3}{5}$ 还是非熟练工. 所以得到

$$\begin{cases} x_{n+1} = \frac{5}{6}x_n + \frac{2}{5}(\frac{1}{6}x_n + y_n) \\ y_{n+1} = \frac{3}{5}(\frac{1}{6}x_n + y_n) \end{cases}, \quad \exists \exists \quad \begin{cases} x_{n+1} = \frac{9}{10}x_n + \frac{2}{5}y_n \\ y_{n+1} = \frac{1}{10}x_n + \frac{3}{5}y_n \end{cases}$$

所以
$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} \frac{9}{10} & \frac{2}{5} \\ \frac{1}{10} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} x_n \\ y_n \end{bmatrix}, \qquad A = \begin{bmatrix} \frac{9}{10} & \frac{2}{5} \\ \frac{1}{10} & \frac{3}{5} \end{bmatrix}$$

ii.
$$\eta_1 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$
, $\eta_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

$$A\eta_1 = \begin{vmatrix} \frac{9}{10} & \frac{2}{5} \\ \frac{1}{10} & \frac{3}{5} \end{vmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \quad \text{所以} \eta_1 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$
是 A 的特征向量,相应的特征值为 $\lambda_1 = 1$;

$$A\eta_2 = \begin{bmatrix} \frac{9}{10} & \frac{2}{5} \\ \frac{1}{10} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
, 所以 $\eta_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ 是 A 的特征向量,相应的特征值为 $\lambda_2 = \frac{1}{2}$.

iii. 假设
$$P = \begin{bmatrix} 4 & -1 \\ 1 & 1 \end{bmatrix}$$
,则 $P^{-1} = \frac{1}{5} \begin{bmatrix} 1 & 1 \\ -1 & 4 \end{bmatrix}$, $P^{-1}AP = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$

所以
$$A^n = P \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}^n P^{-1} = \frac{1}{5} \begin{bmatrix} 4 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & (\frac{1}{2})^n \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 4 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 4 + (\frac{1}{2})^n & 4 - 4(\frac{1}{2})^n \\ 1 - (\frac{1}{2})^n & 1 + 4(\frac{1}{2})^n \end{bmatrix}$$

所以
$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = A \begin{bmatrix} x_n \\ y_n \end{bmatrix} = A^2 \begin{bmatrix} x_{n-1} \\ y_{n-1} \end{bmatrix} = \Lambda = A^n \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = A^n \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$

$$=\frac{1}{5}\begin{bmatrix} 4+(\frac{1}{2})^n & 4-4(\frac{1}{2})^n \\ 1-(\frac{1}{2})^n & 1+4(\frac{1}{2})^n \end{bmatrix}\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \frac{1}{10}\begin{bmatrix} 8-3(\frac{1}{2})^n \\ 2+3(\frac{1}{2})^n \end{bmatrix}$$

12. 设 λ_1, λ_2 是方阵 A 的两个不同的特征值, η_1, Λ , η_r 是 A 的对应于 λ_1 的线性无关的特征向量, ξ_1, Λ , ξ_s 是 A 的对应于 λ_2 的线性无关的特征向量,证明 η_1, Λ , η_r, ξ_1, Λ , ξ_s 线性无关.

解. 由题设知:
$$A\eta_i = \lambda_1\eta_i$$
 $(i = 1,2,\Lambda,r)$; $A\xi_i = \lambda_2\xi_i$ $(j = 1,2,\Lambda,s)$

假设
$$k_1\eta_1 + \Lambda + k_r\eta_r + k_{r+1}\xi_1 + \Lambda + k_{r+s}\xi_s = 0$$
,

所以
$$A(k_1\eta_1 + \Lambda + k_r\eta_r) + A(k_{r+1}\xi_1 + \Lambda + k_{r+s}\xi_s) = 0$$

于是
$$\lambda_1(k_1\eta_1 + \Lambda + k_r\eta_r) + \lambda_2(k_{r+1}\xi_1 + \Lambda + k_{r+s}\xi_s) = 0$$

所以
$$\lambda_1(k_1\eta_1 + \Lambda + k_r\eta_r) - \lambda_2(k_1\eta_1 + \Lambda + k_r\eta_r) = 0$$

所以
$$(\lambda_1 - \lambda_2)(k_1\eta_1 + \Lambda + k_r\eta_r) = 0$$

因为
$$\lambda_1 \neq \lambda_2$$
, 所以 $k_1\eta_1 + \Lambda + k_r\eta_r = 0$

因为
$$\eta_1, \eta_2, \Lambda, \eta_r$$
 线性无关, 所以 $k_1 = k_2 = \Lambda = k_r = 0$

所以
$$k_{r+1}\xi_1 + \Lambda + k_{r+s}\xi_s = 0$$

因为
$$\xi_1,\xi_2,\Lambda$$
, ξ_s 线性无关, 所以 $k_{r+1}=k_{r+2}=\Lambda=k_{r+s}=0$

即
$$\eta_1, \Lambda, \eta_r, \xi_1, \Lambda, \xi_s$$
 线性无关.

第六章 二次型

一. 填空题

1. 二次型
$$f(x_1, x_2, x_3, x_4) = x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_2x_3$$
 的矩阵是______.

$$M$$
 $A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 2 & 1 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

2. 矩阵
$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & -1 \\ 4 & -1 & 3 \end{bmatrix}$$
对应的二次型是_____.

$$\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }f(x_1,x_2,x_3)=x_1^2+2x_2^2+3x_3^2+4x_1x_2+8x_1x_3-2x_2x_3$$

3. 当______时,实二次型 $f(x_1,x_2,x_3) = x_1^2 + x_2^2 + 5x_3^2 + 2tx_1x_2 - 2x_1x_3 + 4x_2x_3$ 是正定的.

解.
$$A = \begin{bmatrix} 1 & t & -1 \\ t & 1 & 2 \\ -1 & 2 & 5 \end{bmatrix}$$
, $\begin{vmatrix} 1 & t \\ t & 1 \end{vmatrix} = 1 - t^2 > 0$, 所以 $|t| < 1$

所以, 当 $-\frac{4}{5} < t < 0$ 时, 二次型

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + 5x_3^2 + 2tx_1x_2 - 2x_1x_3 + 4x_2x_3$$

是正定的.

4. 设 A 是实对称可逆矩阵,则将 $f = x^{T} A x$ 化为 $f = y^{T} A^{-1} y$ 的线性变换为_____.

解. 假设
$$x = A^{-1}y$$
, 则 $x^{T} = y^{T}(A^{-1})^{T} = y^{T}(A^{T})^{-1} = y^{T}A^{-1}$

所以
$$f = x^T A x = y^T A^{-1} A A^{-1} y = y^T A^{-1} y$$

5. 设n 阶实对称矩阵A 的特征值分别为 $1, 2, \dots, n$, 则当t 时, tE - A 是正定的.

解. tE-A 的特征值为 t-1, t-2, Λ , t-n. 若 tE-A 是正定的, 则

$$t-1 > 0, t-2 > 0, \Lambda, t-n > 0$$

所以 t > n 时, tE - A 是正定的.

二. 单项选择题

1. 设 A,B 均为 n 阶方阵, $x=(x_1,x_2,\Lambda_1,x_n)^T$,且 $x^TAx=x^TBx$,当()时,A=B

(A) 秩(A) = 秩(B) (B)
$$A^T = A$$
 (C) $B^T = B$ (D) $A^T = A \perp B = B$

解. 可以证明 A 为实对称矩阵时, 若对任何向量 x $x^T A x = 0$, 则 A = 0.

证明:令 $x = (0, \Lambda, 0, 1, \Lambda, 1, 0, \Lambda, 0)^T$ (只有第i, j位置的元素为 1, 其余都是 0). 则 $x^T Ax = 2a_{ij} = 0$,对任何i, j成立. 所以 A = 0.

所以当 $A^T = A \perp B^T = B$ 时, $(A - B)^T = A^T - B^T = A - B$,A - B为实对称矩阵.

若对任何向量 x, $x^T A x = x^T B x$, 则 $x^T (A - B) x = 0$, 所以 A - B = 0, 即 A = B.

(D)是答案.

对于(A): 令
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, 则 $A \neq B$, $r(A) = r(B)$. 但是,对于任何三维向量 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$,

 $x^{T}Ax = x^{T}Bx = x_{1}x_{2}$, (A)不是答案;

对于(B): 取反例
$$A = \begin{bmatrix} 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

对于 C): 取反例
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

2. 下列矩阵为正定的是

(A)
$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 (B) $\begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ (D) $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 5 \end{bmatrix}$

解. (D)是答案. 一阶主行列式为
$$2$$
, 二阶主行列式为 $\begin{vmatrix} 2 & 0 \\ 0 & 1 \end{vmatrix} = 2$, 三阶主行列式为 $\begin{vmatrix} 2 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 5 \end{vmatrix} = 10 - 8 = 2$.

3. 设A, B均为n阶正定矩阵,则()是正定矩阵.

(A)
$$A^* + B^*$$
 (B) $A^* - B^*$ (C) A^*B^* (D) $k_1A^* + k_2B^*$

(C)
$$A^*B$$

(D)
$$k_1 A^* + k_2 B^*$$

解. 因为A, B均为n阶正定矩阵,则 A^*, B^* 均为n阶正定矩阵,所以 $A^* + B^*$ 为n阶正定矩阵.(A)是答案.

三. 计算证明题

1. 用配方法将下列二次型化为标准形

$$f(x_1, x_2, \Lambda, x_{2n}) = x_1 x_{2n} + x_2 x_{2n-1} + \Lambda + x_n x_{n+1}$$

$$f(x_1, x_2, \Lambda, x_{2n}) = x_1 x_{2n} + x_2 x_{2n-1} + \Lambda + x_n x_{n+1}$$

$$= (y_1 - y_{2n})(y_1 + y_{2n}) + (y_2 - y_{2n-1})(y_2 + y_{2n-1}) + \Lambda + (y_n - y_{n+1})(y_n + y_{n+1})$$

$$= y_1^2 + \Lambda + y_n^2 - y_{n+1}^2 - \Lambda - y_{2n}^2$$

2. 用正交变换将下列实二次型化为标准形

i.
$$f(x_1, x_2, x_3) = 11x_1^2 + 5x_2^2 + 2x_3^2 + 16x_1x_2 + 4x_1x_3 - 20x_2x_3$$

ii.
$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

解. i.
$$A = \begin{bmatrix} 11 & 8 & 2 \\ 8 & 5 & -10 \\ 2 & -10 & 2 \end{bmatrix}$$

$$|A - \lambda E| = \begin{vmatrix} 11 - \lambda & 8 & 2 \\ 8 & 5 - \lambda & -10 \\ 2 & -10 & 2 - \lambda \end{vmatrix} = -\lambda^3 + 18\lambda^2 + 81\lambda - 1458 = 0$$

解得: $\lambda_1 = 9$, $\lambda_2 = 18$, $\lambda_3 = -9$

所以可用正交变换将原二次型化成以下标准型:

$$f(y_1, y_2, y_3) = 9y_1^2 + 18y_2^2 - 9y_3^2$$

ii.
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

$$|A - \lambda E| = \begin{vmatrix} 1 - \lambda & 2 & 2 \\ 2 & 1 - \lambda & 2 \\ 2 & 2 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^3 - 12(1 - \lambda) + 16 = 0$$

解得: $\lambda_{1,2} = -1$, $\lambda_3 = 5$

所以可用正交变换将原二次型化成以下标准型:

$$f(y_1, y_2, y_3) = -y_1^2 - y_2^2 + 5y_3^2$$

3. 设 A 为 n 阶实对称矩阵,且满足 $A^3 + A^2 + A = 3E$,证明 A 是正定矩阵.

解. 假设 λ 为 A 的特征值,因为 $A^3+A^2+A=3E$,所以 $\lambda^3+\lambda^2+\lambda-3=0$. 解得, $\lambda=1$,

$$\lambda = \frac{-2 \pm \sqrt{4-12}}{2} = -1 \pm 2\sqrt{2}i$$
. 因为 A 为实对称矩阵, 所以只能 $\lambda = 1$. 所以 A 为正定矩阵.

4. 设实对称矩阵 A 的特征值全大于 a, 实对称矩阵 B 的特征值全大于 b, 证明 A+B 的特征值全大于 a+b. 解. 因为实对称矩阵 A 的特征值全大于 a, 所以 A-aE 为正定阵; 因为实对称矩阵 B 的特征值全大于 b, 所以 A-bE 为正定阵. 所以 (A-aE)+(A-bE)为正定阵.

假设λ 为 A + B 的特征值,相应的特征向量为 x,即 $(A + B)x = \lambda x$.

于是
$$[(A-aE)+(B-bE)]x = (A+B)x-(a+b)Ex = (\lambda-(a+b))x$$

所以 $\lambda - (a+b)$ 为(A-aE)+(A-bE)的特征值. 又因为(A-aE)+(A-bE)为正定阵, 所以 $\lambda - (a+b) > 0$, 即 $\lambda > a+b$.

5. 设 A 为 n 阶实对称矩阵, 证明: 秩(A) = n 的充分必要条件为存在一个 n 阶实矩阵 B, 使 AB + B^T A 是正定矩阵. 解. "充分性"(反证法)

反设 r(A) < n,则A = 0. 于是 $\lambda = 0$ 是 A 的特征值,假设相应的特征向量为 x,即 Ax = 0 ($x \ne 0$),所以

 $x^T A^T = 0.$

所以 $x^T(AB+B^TA)x = x^TABx + x^TB^TAx = 0$, 和 $AB+B^TA$ 是正定矩阵矛盾;

"必要性"

因为 r(A) = n, 所以 A 的特征值 $\lambda_1, \lambda_2, \Lambda$, λ_n 全不为 0.

取 B=A,则 $AB+B^TA=AA+AA=2A^2$,它的特征值为 $2\lambda_1^2$, $2\lambda_2^2$, λ_3^2 全部为正,所以 $AB+B^TA$ 是正定矩阵.