1º Semestre de 2011/2012

Bernardo Cunha, José Luís Azevedo, Arnaldo Oliveira, Tomás Oliveira e Silva

Aula 1 - 1

Arquitectura de Computadores I

- "Pré-história"
 - 1642 Blaise Pascal (1623-1662) desenvolveu uma máquina de somar mecânica ("Pascalene")

- "Pré-história"
 - 1823 Charles Babbage (1792-1871) desenhou a 1^a máquina computacional. Previa mecanismos para:
 - leitura de dados de entrada
 - execução de operações
 - armazenamento de resultados
 - reprodução de dados de saída
 - controlo automático da operação da máquina
 - (dada a sua complexidade e a natureza primitiva da tecnologia desse tempo, nunca foi construída, na época)
 - George Boole (1815-1864) desenvolveu a álgebra, conhecida depois por Álgebra de Boole

Arquitectura de Computadores I

- 1890 Máquina de Hollerith
 - Electromecânica, baseada em cartões perfurados
 - Utilizada para contagem no recenseamento nos USA
- Anos 30
 - George Stibitz (Bell Labs) desenhou e implementou um somador com recurso a relés
 - Konrad Zuse (Alemão)
 construiu vários
 computadores também com
 recurso a relés trabalho
 mantido em segredo (2ª
 guerra mundial)

Arquitectura de Computadores I

2012/13

- O progresso em hardware de computadores é muitas vezes analisado em termos de gerações
 - 1ª geração, 1946-59: válvulas, relés
 - · Computador comercial
 - 2ª geração, 1959-64: transistores discretos
 - Computadores mais baratos
 - O transistor foi inventado em 1948, e estava em produção em larga escala em 1958
 - O circuito integrado (IC) foi inventado em 1958; ICs disponíveis comercialmente a partir de 1964
 - 3ª geração, 1964-75: ICs, SSI e MSI (< 100 gates)
 - Minicomputadores
 - 4ª geração, 1975- : LSI (>100 gates) e VLSI (>100.000)
 - Computadores pessoais

Aula 1 - 5

Arquitectura de Computadores I

- 1946 ENIAC (Electronic Numerical Integrator and Computer), Universidade da Pensilvânea
- Desenvolvido durante a 2ª guerra mundial para calcular a trajectória de projécteis balísticos
 - 18000 válvulas
 - 1500 relés
 - 30 toneladas
 - 200 kw
 - 20 registos de 10 bits
 - 5000 somas / s
 - 357 multiplicações / s
 - 38 divisões / s
 - Program. "hardwired"

Arquitectura de Computadores I

2012/13

• ENIAC – programação "hardwired"

- 1947 EDVAC (Electronic Discrete Variable Automatic Computer), Universidade da Pensilvânea
 - A equipa do ENIAC (à qual se juntou John Von Neumann) propôs a construção de um computador que incluía um conceito revolucionário:
 - "Memory Stored Program" programas armazenados na memória do computador da mesma forma que os dados numéricos
 - Ficou operacional em 1951
- 1949 EDSAC (Electronic Delay Storage Automatic Calculator), Universidade de Cambridge, Maurice Wilkes
 - 1º computador construído, baseado no conceito "memory stored program"

Arquitectura de Computadores I

2012/13

- 1951 –UNIVAC
 - Preço: \$1.000.000
 - 1º Computador comercial (*)
 - 48 unidades vendidas

(*) Conseguiu prever com rigor os resultados das eleições americanas de 1952

- 1965 PDP-8 da DEC
 - 1º Mini-computador
 - < \$10.000

Arquitectura de Computadores I

- 1971 Intel 4004
 - CI com 2300 transistores
 - Microprocessador de 4 bits o 1º a ser vendido como um componente em mercado aberto

Arquitectura de Computadores I

2012/13

- 1976 Cray I
 - 1º super computador vectorial
 - 133 MFLOPS
 - Consumo: 115 kw

Aula 1 - 13

Arquitectura de Computadores I

- 1993 MIPS R4000
 - Microprocessador RISC 32 bits
 - 1,3 Milhões de transistores

- 2004 Pentium 4 (90nm) 103Watts. 70A @ 3.4GHz
 - Microprocessador x86 32 bits
 - 125 Milhões de transistores

Arquitectura de Computadores I

2012/13

- 2006 -Core 2 Duo (65nm) 75W @ 2.93GHz *
 - Microprocessador x86 32/64 bits
 - 210 Milhões de transistores

(*) 17W, 14A @ 1.8GHz Low Voltage mobile

- 2008 Penryn Core 2 Quad (45nm) 130W @ 3GHz
 - Microprocessador x86 64 bits
 - 820 Milhões de transistores

Arquitectura de Computadores I

2012/13

 Evolução da densidade lógica na família 80x86 da INTEL

Ano	Processador	# transistores
1971	4004 (4 bits)	2.3 kt
1978	8086 (16 bits)	29 kt
1982	80286 (16 bits)	120 kt
1985	80386 (32 bits)	275 kt
1989	80486 (FPU)	1,2 Mt
1993	Pentium	3,1 Mt
1997	Pentium II	7,5 Mt
1998	Pentium III	24 Mt
2000	Pentium 4	125 Mt
2007	Multicores	>1Gt

