BIMM143class07

A15827934

#Clustering

We will start today's lab with clustering methods, in particular K-means. The main function for this in R is kmeans()

Let's try it on some made up data where we know what the answer should be.

```
x<-rnorm(1000)
hist(x)</pre>
```

Histogram of x


```
y<-rnorm(1000, mean=3)
hist(y)
```

Histogram of y

60 points

```
tmp<-c(rnorm(30, mean=3), rnorm(30, -3))
x<-cbind(x=tmp, y=rev(tmp))
head(x)</pre>
```

```
x y
[1,] 2.448100 -3.336455
[2,] 1.969925 -1.901378
[3,] 4.848208 -3.139536
[4,] 1.954332 -3.111344
[5,] 3.533507 -3.479908
[6,] 3.251091 -2.985956
```

We can pass this to the base R plot() function for a quick

```
plot(x)
```


k<-kmeans(x, centers=2, nstart=20)

k

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

x y 1 3.081835 -2.766415 2 -2.766415 3.081835

Clustering vector:

Within cluster sum of squares by cluster:

[1] 47.36105 47.36105 (between_SS / total_SS = 91.5 %)

Available components:

```
[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
```

[6] "betweenss" "size" "iter" "ifault"

Q1. How many points are in each cluster?

k\$size

[1] 30 30

Q2. Cluster Membership?

k\$cluster

Q3. Cluster centers?

k\$centers

x y 1 3.081835 -2.766415 2 -2.766415 3.081835

Q4. Plot my clustering results

plot(x, col=k\$cluster, pch=16)

Q5. Clustering the data again with kmeans() into 4 groups and plot the results

```
k4<-kmeans(x, centers=4, nstart=20)
k</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

Clustering vector:

Within cluster sum of squares by cluster:
[1] 47.36105 47.36105
(between_SS / total_SS = 91.5 %)

Available components:

```
[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"
```

```
plot(x, col=k4$cluster, pch=16)
```


K-means is very popular mostly because it is fast and relatively straightforward to run and understand. It has a big limitation in that you need to tell it how many groups(k, or centers) you want.

#Hierarchhical clustering The main function in base R is called hclust(). You have to pass it in a "distance matrix" not just your input data.

You can generate a distance matrix with the dist() function.

```
hc<-hclust(dist(x))
hc</pre>
```

Call: hclust(d = dist(x))

Cluster method : complete

Distance : euclidean

Number of objects: 60

```
plot(hc)
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

To find clusters (cluster membership vector) from a $\verb|hclust()|$ results we can "cut" the tree at a certain height that we like

```
plot(hc)
abline(h=8, col="red")
```

Cluster Dendrogram

dist(x) hclust (*, "complete")

```
grps<-cutree(hc, h=8)
table(grps)

grps
1 2
30 30</pre>
```

Q6. Plot our hclust results.

```
plot(x, col=grps)
```


#Principal Component Analysis

##PCA of UK food data

```
url<- "https://tinyurl.com/UK-foods"
x<-read.csv(url)
x</pre>
```

	Х	England	Wales	${\tt Scotland}$	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	Fresh_potatoes	720	874	566	1033
8	Fresh_Veg	253	265	171	143
9	Other_Veg	488	570	418	355
10	Processed_potatoes	198	203	220	187
11	Processed_Veg	360	365	337	334
12	Fresh_fruit	1102	1137	957	674
13	Cereals	1472	1582	1462	1494

```
47
14
             Beverages
                             57
                                   73
                                             53
15
          Soft_drinks
                           1374
                                1256
                                           1572
                                                      1506
16
     Alcoholic_drinks
                            375
                                   475
                                            458
                                                       135
17
        Confectionery
                             54
                                   64
                                             62
                                                        41
```

##Q1. How many rows and columns are in your new data frame named x? What R functions could $\dim(x)$

[1] 17 5

head(x)

```
X England Wales Scotland N.Ireland
                      105
                            103
                                      103
                                                  66
1
          Cheese
2
                      245
                            227
                                      242
                                                 267
   Carcass_meat
3
     Other_meat
                      685
                            803
                                      750
                                                 586
            Fish
                      147
                            160
                                      122
                                                 93
5 Fats_and_oils
                      193
                            235
                                      184
                                                 209
          Sugars
                      156
                            175
                                      147
                                                 139
```

Minus can also be used on table data, rows, columns

```
##rownames(x) <- x[,1]
##x <- x[,-1]
##head(x)
##it consistently remove column everytime.
##dangerous!

dim(x)

[1] 17 5

x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

##Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and ##The latter in the former if you keep putting -1 in the column and running the code it we

barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))

##Q3: Changing what optional argument in the above barplot() function results in the followable to FALSE

barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))

pairs(x, col=rainbow(10), pch=16)

##Q5: Generating all pairwise plots may help somewhat. Can you make sense of the following ##basically if you want to compare say between North Ireland and England you either look of ##Q6. What is the main differences between N. Ireland and the other countries of the UK in ##it seems North Ireland has move outliers numbers outside the diagonal straight line compares.

##Principal Component Analysis (PCA)

PCA can help us make sense of these types of datassets. Let us see how it works

The main function in "base" R is called prcomp().

In this case, we want to first take the transpose of our input x

head(t(x))

	Cheese	Carcass_	meat	Other_	meat	Fish	Fats_and_	oils	Sugars
England	105		245		685	147		193	156
Wales	103		227		803	160		235	175
Scotland	103		242		750	122		184	147
N.Ireland	66		267		586	93		209	139
	Fresh_p	otatoes	Fresl	h_Veg	Other_	_Veg	Processed	l_potat	coes
England		720)	253		488			198
Wales		874	Ŀ	265		570			203
Scotland		566	5	171		418			220
N.Ireland		1033	3	143		355			187
	Process	sed_Veg	Fresh	_fruit	Cerea	als l	Beverages	Soft_c	drinks
England		360		1102) 1	1472	57		1374
Wales							٠.		
Wales		365		1137		1582	73		1256
Scotland		365 337			7 1	1582 1462			1256 1572
				957	7 1		73		
Scotland		337		957 674	7 1 7 1 1 1	1462	73 53		1572
Scotland		337 334 Lic_drink		957 674	7 1 7 1 1 1	1462	73 53		1572
Scotland N.Ireland		337 334 Lic_drink 3	s Coi	957 674	y 1 y 1 l 1 onery	1462	73 53		1572
Scotland N.Ireland England		337 334 Lic_drink 3	s Coi 375	957 674	7 1 7 1 1 1 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1462	73 53		1572

pca<-prcomp(t(x))
summary(pca)</pre>

Importance of components:

```
PC1 PC2 PC3 PC4
Standard deviation 324.1502 212.7478 73.87622 3.176e-14
Proportion of Variance 0.6744 0.2905 0.03503 0.000e+00
Cumulative Proportion 0.6744 0.9650 1.00000 1.000e+00
```

pca\$x

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -4.894696e-14
Wales -240.52915 -224.646925 -56.475555 5.700024e-13
Scotland -91.86934 286.081786 -44.415495 -7.460785e-13
N.Ireland 477.39164 -58.901862 -4.877895 2.321303e-13
```

```
##Q7. Complete the code below to generate a plot of PC1 vs PC2. The second line adds text plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500)) text(pca$x[,1], pca$x[,2], colnames(x))
```



```
##Q8. Customize your plot so that the colors of the country names match the colors in our
country_cols<-c("Orange", "Red", "Blue", "darkgreen")
plot(pca$x[,1], pca$x[,2], col=c("Orange", "Red", "Blue", "darkgreen"), , pch=16)
text(pca$x[,1], pca$x[,2], colnames(x), col=country_cols)</pre>
```


The "loadings' tells us how much the original variables (in our case the foods) contribute to the new variables i.e. PCs

```
a <- round( pca$sdev^2/sum(pca$sdev^2) * 100 )
a

[1] 67 29 4 0

b <- summary(pca)
b$importance

PC1 PC2 PC3</pre>
```

PC1 PC2 PC3 PC4
Standard deviation 324.15019 212.74780 73.87622 3.175833e-14
Proportion of Variance 0.67444 0.29052 0.03503 0.000000e+00
Cumulative Proportion 0.67444 0.96497 1.00000 1.000000e+00

head(pca\$rotation)

```
PC1
                                    PC2
                                               PC3
                                                            PC4
Cheese
               -0.056955380
                            0.01601285 0.02394295 -0.694538519
Carcass_meat
               0.047927628 0.01391582 0.06367111
                                                    0.489884628
Other_meat
               -0.258916658 -0.01533114 -0.55384854
                                                    0.279023718
Fish
               -0.084414983 -0.05075495 0.03906481 -0.008483145
Fats_and_oils -0.005193623 -0.09538866 -0.12522257
                                                    0.076097502
               -0.037620983 -0.04302170 -0.03605745 0.034101334
Sugars
```

barplot(a, xlab="Principal Component", ylab="Percent Variation")

Principal Component

```
## Lets focus on PC1 as it accounts for > 90% of variance

##Q9: Generate a similar 'loadings plot' for PC2. What two food groups feature prominantel

##It still tels us soft drinks and fresh potatoes stand out. That is, former pushes positive
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```



```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,2], las=2 )
```

