Lecture Notes: Stresses on Inclined Sections

Yazhuo Liu

1. Introduction to Axial Loading

Axial Loading occurs when forces are applied along the longitudinal axis of a bar, generating **normal stresses** on sections perpendicular to the axis.

Normal Stress Formula:

$$\sigma_x = \frac{P}{A} \tag{1}$$

2. Stress on Inclined Sections

When a bar is subjected to axial force **P**, stresses also act on **inclined sections** (not just on perpendicular sections). These stresses consist of:

- Normal force (N) perpendicular to the inclined plane.
- Shear force (V) parallel to the inclined plane.

Equations of Forces:

$$N = P\cos(\theta) \tag{2}$$

$$V = P\sin(\theta) \tag{3}$$

3. Calculating Normal and Shear Stresses

The normal and shear stresses on the inclined plane are derived from the forces acting on it. Since the inclined plane has a larger area than the cross-section perpendicular to the axis, we calculate its area as:

$$A_1 = \frac{A}{\cos(\theta)} \tag{4}$$

Normal and Shear Stress Equations:

• Normal Stress:

$$\sigma_{\theta} = \sigma_x \cos^2(\theta) = \frac{1}{2} \sigma_x (1 + \cos 2\theta) \tag{5}$$

• Shear Stress:

$$\tau_{\theta} = -\sigma_x \sin(\theta) \cos(\theta) = \frac{1}{2} \sigma_x \sin 2\theta \tag{6}$$

Where θ is the inclination of the plane and σ_x is the normal stress on the perpendicular cross-section.

Maximum Stresses:

• Maximum normal stress occurs when $\theta = 0$:

$$\sigma_{\max} = \sigma_x \tag{7}$$

• Maximum shear stress occurs at $\theta = 45^{\circ}$:

$$\tau_{\text{max}} = \frac{\sigma_x}{2} \tag{8}$$

4. Example Problem

Example: Stress on an Inclined Plane at 30°

A bar is subjected to axial load **P**, and we want to calculate the normal and shear stresses on an inclined section at $\theta = 30^{\circ}$.

Given: $\sigma_x = 50$ MPa.

• Normal Stress:

$$\sigma_{30} = 50 \times \cos^2(30^\circ) = 37.5 \text{ MPa}$$
 (9)

• Shear Stress:

$$\tau_{30} = 50 \times \sin(30^{\circ}) \cos(30^{\circ}) = 21.7 \text{ MPa}$$
 (10)

5. Summary

- Stresses on inclined sections are a combination of **normal** and **shear stresses**.
- Maximum normal stress occurs when $\theta = 0^{\circ}$, and maximum shear stress occurs when $\theta = 45^{\circ}$.
- Understanding these stress distributions is essential for predicting material failure, especially in **shear failure** scenarios.