Semiconductor devices

Thorbjørn Erik Køppen Christensen $\label{eq:June 21} \text{June 21, 2018}$

Part I

Fundamentals of the Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)

1 The two-terminal MOS structure

The MOS structure is similar to that of the plate capacitor:

$$C = \frac{\epsilon}{d}$$

$$Q' = C'V$$

$$E = \frac{V}{d}$$

By applying either a positive or negative voltage to the p type semiconductor, one can create an accumulation or depletion layer, the thickness of this layer is interesting (here depletion layer)

$$\phi_{fp} = V_t \ln \left(\frac{N_a}{n_i} \right)$$

$$x_d = \sqrt{\frac{2\epsilon \phi_s}{eN_a}}$$

 ϕ_s is the surface potential: difference between E_{Fi} at bulk and surface, the inversion threshold is when $\phi_s = -2\phi_{fp}$ and inversion occurs, it's the threshold voltage where the space charge region doesn't become larger, but more electrons can still go in the conducting band:

$$x_{dT} = \sqrt{\frac{4\epsilon\phi_{fp}}{eN_a}}$$

Same holds for n types, (change N_a with N_d .- Now one can find the surface charge density:

$$n = n_i \exp\left[\frac{E_F - E_{Fi}}{kT}\right]$$

$$n_s = n_i \exp\left[\frac{\phi_{fp} + \Delta\phi_s}{V_t}\right] = \underbrace{n_i \exp\left(\frac{\phi_{fp}}{V_t}\right)}_{n_{st}} \exp\left(\frac{\Delta\phi_s}{V_t}\right) \quad \Delta\phi_s > 2\phi_{fp}$$

1.1 Work function difference

santast and (h) anaras hand diagram through the

$$e\phi'_m + eV_{ox0} = e\chi' + \frac{E_g}{2} - e\phi_{s0}e\phi_{Jfp}$$

 $V_{ox}0$ is the potential drop across the oxide, ϕ_m' the modified metal work function

$$V_{ox0} + \phi_{s0} = -\left[\phi_m' - \left(\chi' + \frac{E_g}{2e} + \phi_{fp}\right)\right]$$

The metal semiconductor workfunction is then:

$$\phi_{ms} \equiv \left[\phi'_m - \left(\chi' + \frac{E_g}{2e} + \phi_{fp} \right) \right]$$

$$\phi_{ms_{np}} = \pm \left(\frac{E_g}{2e} - \phi_{fp} \right)$$

1.2 Flat-band voltage

The flat band voltage is the gate voltage that leads to no band bending.

$$V_{ox0} + \phi_{s0} = -\phi_{ms}$$

$$V_g = \Delta V_{ox} + \Delta \phi_s = (V_{ox} - V_{ox0}) + (\phi_{s0} - \phi_{s0})$$

$$= V_{ox} + \phi_s + \phi_{ms}$$

For flaatband

$$\begin{aligned} Q_m' + Q_{ss}' &= 0 \\ V_{ox} &= \frac{Q_m'}{C_{ox}} \\ V_{ox} &= \frac{-Q_{ss}'}{C_{ox}} \\ V_G &= V_{FB} = \phi_{ms} - \frac{Q_{ss}'}{C_{ox}} \end{aligned}$$

Threshold Voltage

$$\begin{aligned} Q'_{mT} + Q'_{ss} &= |Q'_{SD}(\max)| \\ |Q'_{SD}(\max)| &= eN_a x_{dT} \\ V_G &= V_{ox} + \phi_s + \phi_{ms} \end{aligned}$$

at threshold $V_G = V_{TN}$

$$\begin{split} V_{TN} &= V_{xoT} 02\phi_{fp} + \phi_{ms} \\ V_{oxT} &= \frac{Q'_{mT}}{C_{ox}} \\ &= \frac{1}{C_{ox}} \left(|Q'_{SD}(\max)| - Q'_{ss} \right) \\ V_{TN} &= \frac{1}{C_{ox}} \left(|Q'_{SD}(\max)| - Q'_{ss} \right) + \phi_{ms} + 2\phi_{fp} \\ &= \frac{t_{ox}}{\epsilon_{ox}} \left(|Q'_{SD}(\max)| - Q'_{ss} \right) + \phi_{ms} + 2\phi_{fp} \\ &= \frac{|Q'_{SD}(\max)|}{C_{ox}} + V_{FB} + 2\phi_{fp} \end{split}$$

The same can be done with an n type conductor

$$V_{TP} = \frac{t_{ox}}{\epsilon_{ox}} \left(-|Q'_{SD}(\max)| - Q'_{ss} \right) + \phi_{ms} + 2\phi_{fn}$$

with

$$\phi_{ms} = \phi'_m - \left(\chi' + \frac{E_g}{2e} - \phi_{fn}\right)$$
$$|Q'_{SD}(\max)| = eN_d x_{dT}$$
$$x_{dT} = \sqrt{\frac{4\epsilon_s \phi_{fn}}{eN_d}}$$
$$\phi_{fn} = V_t \ln\left(\frac{N_d}{n_i}\right)$$

2 Capacitance-voltage characteristics

dQ is the magnitude of differential change in charge

$$C'(acc) = C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$$

$$\frac{1}{C'(depl)} = \frac{1}{C'_{ox}} + \frac{1}{C'_{SD}}$$

$$C'(depl) = \frac{C_{ox}C'_{SD}}{C_{ox} + C'_{SD}}$$

$$= \frac{C_{ox}}{1 + \frac{C_{ox}}{C'_{SD}}}$$

$$= \frac{\epsilon_{ox}}{t_{ox} + \frac{\epsilon_{ox}}{\epsilon_{s}}x_{d}}$$

$$C'_{min} = \frac{\epsilon_{ox}}{t_{ox} + \frac{\epsilon_{ox}}{\epsilon_{s}}x_{dT}}$$

$$C'(inv) = C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$$

$$C'_{FB} = \frac{\epsilon_{ox}}{t_{ox} + \frac{\epsilon_{ox}}{\epsilon_{s}}\sqrt{V_{t}\frac{\epsilon_{s}}{\epsilon_{Na}}}}$$

2.1 Frequency effects

Two sources of electrons changing the charge density of the inversion layer: Diffusion of minority carrier electrons and thermal generation of electron hole pairs inside the space charge region.

2.2 Fixed oxide and interface charge effects

 $V_{FB} = \phi_{ms} - \frac{Q_{SS}'}{C_{ox}}$ This can move and smear out the C-V curve

3 The basic MOSFET operation

There are four MOSFET types: n and p types and each can be in either enhancement(auto off) mode and depletion(auto on).

$$I_d = g_d V_{DS}$$

$$g_d = \frac{W}{L} \mu_n |Q'_n|$$

$$V_{DS}(sat) = V_{GS} - V_T$$

for an n-chanel type in depletion

$$I_{D} = \frac{W \mu_{n} C_{ox}}{2L} \left[2 \left(V_{GS} - V_{T} \right) V_{DS} - V_{DS}^{2} \right]$$

$$= \frac{k'_{n}}{2} \frac{W}{L} \left[2 \left(V_{GS} - V_{T} \right) V_{DS} - V_{DS}^{2} \right]$$

$$= K_{n} \left[2 \left(V_{GS} - V_{T} \right) V_{DS} - V_{DS}^{2} \right]$$

When the transistor is biased in the saturation region

$$I_D = \frac{W\mu_n C_{ox}}{2L} (V_{GS} - V_T)^2$$
$$= \frac{k'_n}{2} \frac{W}{L} (V_{GS} - V_T)^2$$
$$= K_n (V_{GS} - V_T)^2$$

Part II Optical devices

4 Optical absorption

$$\lambda?\frac{c}{\nu} = \frac{hc}{E}$$

When light goes thorugh a solar cell, if $E_{textup} < E_g$ The light is not absorbbed, otherwise an electron is forced into the conduting band.

$$E_{ads} = \alpha I_v(x) dx$$

Is the energy adsorbed pr time. Iv is the photon flux, α the adsorption coeficcient., from fig 14.2

$$I_{\nu}(x+dx) - I_{\nu}(x) = \frac{dI_{\nu}(x)}{dx} \cdot dx = -\alpha I_{\nu}(x)dx$$
$$\frac{dI_{\nu}(x)}{dx} - \alpha I_{\nu}(x)$$

Initially $I_{\nu}(0) = I_{\nu 0}$

$$I_{\nu}(x) = I_{\nu 0}e^{-\alpha x}$$

Electron-Hole pair generation:

$$g' = \frac{\alpha I_{\nu}(x)}{h\nu}$$

5 Solar cells

A solar cell is a pn junction, with no voltage apllied. Consider a pn junction with a load:

$$I = I_L - I_F = I_L - I_S \left[\exp\left(\frac{V}{V_t}\right) - 1 \right]$$

Where I_L is the photocurrent generated by the junction sweeping out the electrons generated in the space charge region, I_F is the forward bias generated by I_L going over the resistor. There are two limiting cases, Short circuit (R=0, V=0):

$$I = I_{SC}$$
 = I_L

And $R \to \infty$

$$\begin{split} I &= 0 = I_L - I_S \left[\exp \left(\frac{V}{V_t} \right) - 1 \right] \\ V_{OC} &= V_t \ln \left(1 + \frac{I_L}{I_S} \right) \\ P &= IV = I_L V - I_S \left[\exp \left(\frac{V}{V_t} \right) - 1 \right] V \\ \frac{dP}{dV} &= 0 = I_L - I_S \left[\exp \left(\frac{V_m}{V_t} \right) - 1 \right] V - I_S \frac{V_m}{V_t} \exp \left(\frac{V_m}{V_t} \right) \\ 1 &+ \frac{I_L}{I_S} &= \left(1 + \frac{V_m}{V_t} \right) \exp \left(\frac{V_m}{V_t} \right) \end{split}$$

The efficiency in solar cells is:

$$\begin{split} \eta &= \frac{P_m}{P_{in}} \times 100\,\% \\ &= \frac{I_m V_m}{P_{in}} \times 100\,\% \\ \text{fillfactor} &= \frac{I_m V_m}{I_{SC} V_{OV}} \approx 0.7 - -0.8 \end{split}$$

To increase efficiency the solar cells multiple band gaps must be used. The real efficiency $\approx 10\,\% - -15\,\%$

5.1 Nonuniform absorption effects:

number of adsorped photons = $\alpha \Phi_0$

$$G_L = \alpha(\lambda)\Phi_0(\lambda) \left[1 - R(\lambda)\right] e^{-\alpha(\lambda)x}$$

6 Photoluminescence and Electroluminescence

Electrons And holes can recombine in many ways, through doners/accepters, inbetween them nand through traps. As well as directly. The emmision range is:

$$I(\nu) \propto \nu^2 (h\nu - E_g)^{\frac{1}{2}} \exp\left[-\frac{h\nu - E_g}{kT}\right]$$

Efficiency:

$$\eta_q = \frac{R_r}{R}$$

 R_r is the radiating recombination rate

$$=\frac{\tau_{nr}}{\tau_{nr}+\tau_{r}}$$

 τ_{nr} is nonradiative and τ_r is radiative

$$R_r = Bnp$$

7 Light emitting diodes

$$\lambda = \frac{hc}{E_g}$$

With applied voltage, minority excess carriers are injected and spewt to the natural area. If it's direct band to band light is emitted. (Ga is on p side). Internal quantum efficiency is the fraction of diode current that produces luminecence. three components are important:

$$J_n = \frac{eD_n n_{p0}}{L_n} \left[\exp\left(\frac{V}{V_t}\right) - 1 \right]$$

$$J_p = \frac{eD_p p_{n0}}{L_p} \left[\exp\left(\frac{V}{V_t}\right) - 1 \right]$$

$$J_r = \frac{en_i W}{2\tau_0} \left[\exp\left(\frac{V}{2V_t}\right) - 1 \right]$$

$$\gamma = \frac{J_n}{J_n + J_p + J_R}$$

 γ is the injection efficiency, now use a n^+p diode to make J_n largest

$$R_r = \frac{\delta n}{\tau_r}$$

$$R_{nr} = \frac{\delta n}{\tau_{nr}}$$

$$R = R_r + R_{nr} = \frac{\delta n}{\tau} = \frac{\delta n_r}{\tau_r} + \frac{\delta n_{nr}}{\tau_{nr}}$$

$$\eta = \frac{R_r}{R_r + R_{nr}} = \frac{\tau}{\tau_r}$$

$$\eta_i = \gamma \eta$$

External quantum efficiency: The fraction of generated photons that are $\mathit{emitted}$

$$\Gamma = \left(\frac{\bar{n}_2 - \bar{n}_1}{\bar{n}_2 + \bar{n}_1}\right)^2$$

Is the Fresnel loss, and describes the light lost through reflaction (\bar{n}_1 refraction index of air, \bar{n}_2 of the semiconductor). The critical angle:

$$\Theta_c = \sin^{-1} \left(\frac{\bar{n}_1}{\bar{n}_2} \right)$$