Ph.D. Working Notes

February 24, 2024

Contents

1	Crescent Labelled Trees	2
2	Polynomial Method	4
3	Distance Multiplicities in Unweighted Graphs 3.1 Conjectures	5
4	Construction with Large Gap Between Max Multiplicity and $\operatorname{mult}(2)$	8
5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 10 18 19 20
6	Finding Graph Distances From Vertex Distances (Global from Local) 6.1 Eccentricity and Distance Multisets of Connected Graphs	21 21
7	Graph Distance Multiplicity Vector Space	22
8	Key Paper Ideas 8.1 Determine Distance Multisets of Particular Graph Classes 8.1.1 Grids, Tori, and Their Products 8.1.2 Trees 8.1.3 Other Graph Classes? 8.2 Express Graph Distance Multiplicities in Terms of Degree Sequence and Minimal Substructure 8.2.1 Generalized Handshaking and Symmetry 8.2.2 Small Diameter Trees 8.3 Uniform Multiplicity Graph Classification 8.3.1 Extend Result on Trees 8.4 Probing Various Graph Distance Multiplicity Parameters: Max Multiplicity, Number of Distinct Multiplicities, and Number of Graphs Realizing a Distance Multiset	25 25 25 25 25 25 25 25 25 25 25 25
9	Extremal Numbers for Distance Multiplicities in Trees 9.1 More General Approach	26 28 29 30 33
10	O Diameter Distance Removal Algorithm	37

11 Distance Multiplicities Projects (June 2023)	41
11.1 Crescent Sets in Graphs	41
11.2 Minimal Tree Distance Multiset Covering	41
11.3 Classifying Winograd Families	42
11.4 Classify AP Pairs based on Multiplicity Conditions	43
11.5 Distance Max Multiplicity Games	43
19 Mki-ki-ki M-4-i V4 Du-du-4 i Tu (NI 2022)	4.4
12 Multiplicities as Matrix Vector Product in Trees (Nov 2023)	44
13 Nullstellensatz Revisited	44

1 Crescent Labelled Trees

Let T be a tree of order n. A crescent labelling of T is a map $L: E(T) \mapsto \{1, 2, \ldots, t\}$, such that the distance multiset of L(T) is of the form $\{d_1^1, d_2^2, \ldots, d_{n-1}^{n-1}\}$. The diameter of T, denoted Diam(T), is the length of the (u, v)-path in T. The max degree of T is denoted $\Delta(T)$.

Lemma 1 (Basic Diameter Lower Bound). Let t be a positive integer. If L(T) is a crescent labelling of the tree T with weights $\{1, 2, ..., t\}$, then $Diam(T) \ge \frac{n-1}{t}$.

Proof. Since there are at least n-1 distinct distances, there is a distance d with value at least n-1. Let $u,v\in V(T)$ such that d(u,v)=d, then since t is the max edge weight, this means that the number of edges on a (u,v)-path is at least $\frac{d}{t}\geq \frac{n-1}{t}$.

For a pair of vertices $u, v \in V(T)$, we denote the (u, v)-path in T as P(u, v). Lemma 2 below generalizes the observation underlying the maximum degree upper bound of $\sim \sqrt{2n}$.

Lemma 2. Let T be a tree of order n. For every $i \in [1, n-1]$, $M \in V(T)$, and $j \in \mathcal{N}(M)$, define

$$D_j := \{ u \in V(T) \setminus \{M\} : d(u, M) = d_i, j \in P(u, M) \}.$$

Then distance $2d_i$ occurs with multiplicity at least $\sum_{j < k}^{\deg(M)} |D_j| \cdot |D_k|$.

Proof. Let $M \in V(T)$ and $i \in [1, n-1]$. Since T is a tree, there is always a unique (u, v)-path for all $u, v \in V(T)$. So, for each $u \in D_j$ and $v \in D_k$, the (u, v)-path must go through M, which means $d(u, v) = d(u, M) + d(M, v) = 2d_i$. There are $|D_j| \cdot |D_k|$ such u and v pairs, so indeed $2d_i$ has multiplicity at least $\sum_{j < k}^{\deg(M)} |D_j| \cdot |D_k|$.

Now we apply the lemma to get a condition on crescent labelled trees.

Proposition 1.1 (Max Multiplicity Condition). Let L(T) be a crescent labelling of a tree T. Then for every $i \in [1, n-1]$, $M \in V(T)$, and $j \in \mathcal{N}(M)$,

$$\sum_{j < k}^{\deg(M)} |D_j| \cdot |D_k| < n.$$

Proof. Since L(T) is a crescent labelling of T, no distance can have multiplicity greater than n-1 and T is a tree. Since T is a tree, it follows by Lemma 2 that for each vertex $M \in V(T)$, $i \in [1, n-1]$, $\sum_{j < k}^{\deg(M)} |D_j| \cdot |D_k| < n$.

Next is a general lemma on $\{1, 2, \dots, t\}$ -words containing subwords with t-1 consecutive 1s.

Lemma 3 (Arithmetic Condition). Let $k \geq 2t$. Let **w** be a $\{1, 2, ..., t\}$ -word with length k. If $w_{a-t+2} = w_{a-t+3} = \cdots = w_a = 1$ for some $a \in \{1, 2, ..., k\}$, then each value

$$1, 2, \dots, \max \left\{ \sum_{i=1}^{a} w_i, \sum_{i=a-t+2}^{k} w_i \right\}$$

occurs as a partial sum in w.

Proof. Suppose without loss of generality that $\sum_{i=1}^{a}w_{i}\leq\sum_{i=a-t+2}^{k}w_{i}$. Then it is sufficient to show that every value $1,2,\ldots,\sum_{i=a-t+2}^{k}w_{i}$ occurs as a partial sum in \mathbf{w} . Call $w_{a-t+2},w_{a-t+3},\ldots,w_{a}$ the unit segment of \mathbf{w} and $w_{a+1},w_{a+2},\ldots,w_{k}$ the non-unit segment of \mathbf{w} . We proceed by induction on the number of terms r in the non-unit segment of \mathbf{w} . When $r=1,w_{a+r}\in\{1,\ldots,t\}$, and since the unit segment has t-1 1s, for each $j\in\{1,2,\ldots,t-1\}$, we have the partial sums $j=\sum_{i=0}^{j-1}w_{a-i}$. Then the values between w_{a+r} and $\sum_{i=a-t+2}^{a+r}w_{i}$ are of the form $w_{a+r}+\sum_{i=0}^{j-1}w_{a-i}$. For the inductive step, the values $1,2,\ldots,\sum_{i=a-t+2}^{a+r-1}w_{i}$ occur at least once by inductive hypothesis. We have that $w_{a+r}\in\{1,2,\ldots,t\}$ and the values between $\sum_{i=a+1}^{a+r-1}w_{i}$ and $\sum_{i=a+1}^{a+r}w_{i}$ can be obtained from $\sum_{i=a+1-j}^{a+r-1}w_{i}$ for each $j\in\{1,2,\ldots,t-1\}$. Then similarly the values between $\sum_{i=a+1}^{a+r}w_{i}$ and $\sum_{i=a+1}^{a+r}w_{i}$ and $\sum_{i=a+1-j}^{a+r}w_{i}$ for $j\in\{1,2,\ldots,t-1\}$.

We now apply this arithmetic lemma to crescent labelled trees to show that when there are many consecutive 1s on a path, the path cannot be too long with many large weight edges.

Proposition 1.2. Let L(T) be a crescent labelling of a tree T with edge weights in $\{1, 2, ..., t\}$. Then for every path $P = (v_1v_2, v_2v_3, ..., v_{t-1}v_t)$ in T such that $w(v_iv_{i+1}) = 1$ for $i \in \{1, 2, ..., t-1\}$, it follows that $\max\{d(v_1, u) : u \in V(T)\} < n$.

Proof. Let T be a tree with a path P specified in the proposition statement and L(T) a crescent labelling. It is sufficient to show that $\max\{d(v_1,u):u\in V(T)\}< n$ since the case for v_t is similar. Let $u'\in V(T)$ such that $d(v_1,u')=\max\{d(v_1,u):u\in V(T)\}$. By Lemma 3, every distance $1,2,\ldots,d(v_1,u')$ occurs at least once. Since L(T) is a crescent labelling, there can be at most n-1 distinct distances, so $d(v_1,u')< n$ as desired.

The implication for when t = 2 is quite strong since this imposes a max distance condition on vertices incident to edges with weight 1.

Corollary 1.3. Let L(T) be a crescent labelling of a tree T. If t = 2, then every vertex incident to an edge with weight 1 has max distance at most n - 1.

What follows is a basic lemma about trees that may turn out to be useful in case parameterizing by number of leaves becomes sensible.

Lemma 4 (From Chartrand and Lesniak's text "Graphs and Digraphs" 4th edition). Let T be a tree with n_i vertices with degree i, where $i \in \{1, 2, ..., \Delta(T)\}$. Then $n_1 = n_3 + 2n_4 + 3n_5 + \cdots + (\Delta(T) - 2)n_{\Delta(T)} + 2$.

Proof. Note that $n = \sum_{i=1}^{\Delta(T)} n_i$. Since T is a tree,

$$\sum_{i=1}^{\Delta(T)} i n_i = \sum_{v \in V(T)} \deg(v) = 2(n-1) = 2\left(\sum_{i=1}^{\Delta(T)} n_i\right) - 2.$$

Rearranging gives $2 + \sum_{i=1}^{\Delta(T)} (i-2)n_i = 0$.

Corollary 1.4. If T is a tree, then $\sum_{i=3}^{\Delta(T)} (i-2)n_i < n_1$

2 Polynomial Method

Let L(G) be a crescent labelling of a graph G with corresponding distance multiset $\{d_1^1, d_2^2, \ldots, d_{n-1}^{n-1}\}$. Consider the bipartite multigraph $\mathcal{M} := \mathcal{M}(G)$ where $V(\mathcal{M}) = X \cup Y$, where X consists of the distinct distances $d_1, d_2, \ldots, d_{n-1}$ and Y consists of the vertices of G, v_1, v_2, \ldots, v_n . For $d_k \in X$ and $v_i \in Y$, an edge $d_k v_i \in E(\mathcal{M})$ is included for every $j \in [n]$ such that $d(v_i, v_j) = d_k$. Note that since L(G) is a crescent labelling, for each $k \in [n-1]$, $\deg(d_k) = 2k$. Observe also that the multiset neighbourhood of v_i is the multiset of the n-1 distances between v_i and the other vertices in G.

We show a variation of a result from Alon (see proof of Theorem 6.1 in [1]) about the existence of p-regular subgraphs of a multigraph whose average degree is very close to its max degree. If we relax this strong average degree condition, we can still obtain a rather powerful result whereby a subgraph U of \mathcal{M} has vertex degrees in $\{p, 2p, 3p, 4p, 5p, 6p, 7p\} \cap [2(n-1)]$, where $p \in [\frac{n}{4}, \frac{n}{2}]$, which is significant because \mathcal{M} is bipartite and so the structure of U can tell us some things about how the distances relate to the vertices in G. This subgraph U likely can't be too small, since then there would be a vertex $v \in G$ with too many other vertices at some distance d from v.

Remark 2.1. Relating the size of this U to the structure of G might be a fruitful way to proceed. For instance, paths require |U| to be quite large (no vertex is at distance d with more than 2 other vertices for each d). I think stars might be similar in that they require |U| to be rather large. Perhaps if $p \sim n/4$, or even asymptotically when $p \sim n/2 - (n/2)^{0.525}$ or so, U being large with min degree p forces convergence of crescent labelled trees to paths and stars. But I admit, I'm not really sure right now what to do when |U| is big.

The proof applies Alon's combinatorial nullstellensatz [1]. The corollary of the nullstellensatz that we use is as follows:

Lemma 5 (Combinatorial Nullstellensatz). Let \mathbb{F} be a field and let $f \in \mathbb{F}[x_1, x_2, \ldots, x_n]$ be a polynomial such that $\deg(f) = \sum_{i=1}^n t_i$ and the coefficient of $\prod_{i=1}^n x_i^{t_i}$ is non-zero. Let S_1, S_2, \ldots, S_n be subsets of \mathbb{F} such that $|S_i| > t_i$ for all $i \in [n]$. Then there exists $(s_1, s_2, \ldots, s_n) \in S_1 \times S_2 \times \cdots \times S_n$ such that $f(s_1, s_2, \ldots, s_n) \neq 0$.

Proposition 2.2 (Variation of Theorem 6.1 in [1]). Let p be a prime number in $[\frac{n}{4}, \frac{n}{2}]$. Then $\mathcal{M}(G)$ contains a subgraph U such that for every $u \in V(U)$, $\deg(u) \in \{p, 2p, 3p, 4p, 5p, 6p, 7p\} \cap [2(n-1)]$.

Proof. We define a polynomial f with degree $|E(\mathcal{M})|$ over \mathbb{F}_2 , and using the fact that $a^{p-1} \pmod{p} \equiv 1$ for all $a \not\equiv 0 \pmod{p}$, we show the existence of the desired subgraph using the nullstellensatz directly.

Define the polynomial

$$f(x_e: e \in E(\mathcal{M})) = \prod_{v \in V(\mathcal{M})} \left[1 - \left(\sum_{\substack{e \in E(\mathcal{M}) \\ v \in e}} x_e \right)^{p-1} \right] - \prod_{\substack{e \in E(\mathcal{M})}} (1 - x_e).$$

The degree of f is $|E(\mathcal{M})|$ because

$$|V(\mathcal{M})|(p-1) = (2n-1)(p-1) \le (2n-1)(\frac{n}{2}-1) = n(n-\frac{5}{2}) + 1 < n(n-1) = |E(\mathcal{M})|.$$

Note that the max degree term, $(-1)^{|E(\mathcal{M})|}\prod_{e\in E(\mathcal{M})}x_e$ has a non-zero coefficient. To apply the nullstellensatz, we consider solutions to f of the form $(s_1,s_2,\ldots,s_{|E(\mathcal{M})|})\in\{0,1\}^{|E(\mathcal{M})|}$ (where $t_i=1$ for all $i\in[|E(\mathcal{M})|]$). Thus by Lemma 5, there exists a vector, call it $r=(r_e:e\in E(\mathcal{M}))$, such that $f(r)\neq 0$. By the definition of $f,r\neq 0$ because f(0)=0, so some of its entries are 1. This means that the latter product in f vanishes when evaluated at f. The former product in f can be non-zero only when $\left(\sum_{e\in E(\mathcal{M})}r_e\right)^{p-1}\equiv 0\pmod{p}$. It follows that f corresponds to a subgraph f of f of f whose vertex degrees are congruent to f (mod f). Since f in f in f and f in f is the degree of the vertices in the neighbourhood of f are all at least 1, f contains at least one vertex in each part of f with degree at least f.

3 Distance Multiplicities in Unweighted Graphs

Let G be a tree. Define T(G) to be G without its leaves, and on each vertex v of T(G) assign it a weight equal to the degree of v in G, $\deg(v)$. Define m(k) to be the multiplicity of distance k in a graph G.

The following expresses m(k) in terms of the degrees of the vertices of G, or equivalently, the vertex weights in T(G).

Lemma 6 (Characterizing Distance Multiplicities in Terms of Vertex Degrees). It holds that m(1) = |E(G)|, $m(2) = \sum_{v \in V(G)} \binom{\deg(v)}{2}$, and when $3 \le k \le \text{Diam}(G)$,

$$m(k) = \sum_{\substack{\{x,y\} \subset T(G)\\ d(x,y) = k-2}} (\deg(x) - 1)(\deg(y) - 1).$$

Proof sketch. The cases k=1 and k=2 are straightforward and no distance can be larger than the diameter of G. Suppose $3 \le k \le \operatorname{Diam}(G)$. Let $x,y \in T(G)$ where d(x,y)=k-2 and let P(x,y) be the unique path of length k-2 between x and y. There are $\deg(x)-1$ and $\deg(y)-1$ neighbours of x and y in G that are not in P(x,y). Let w be such a neighbour of x and y such a neighbour of y. Then the unique (w,z)-path contains P(x,y) and has length k. Thus d(w,z)=k and there are $(\deg(x)-1)(\deg(y)-1)$ such pairs. So, each pair $x,y\in T(G)$ satisfying d(x,y)=k-2 contributes a multiplicity for k in G of $(\deg(x)-1)(\deg(y)-1)$.

It is because G is a tree that this method counts all instances of distance k; if G has a cycle, then some distances can be over counted and this sum is an upper bound for m(k).

3.1 Conjectures

Conjecture 3.1. Let d be the largest distance that attains maximum multiplicity in a tree T. Then for every $i \in \{d, d+1, ..., \operatorname{Diam}(T) - 1\}$, $m(i) \geq m(i+1)$.

Remark 3.2. I suspect it is possible to prove this by induction on the path lengths k. That is, every path of length k+1 corresponds to at least 1 distinct path of length k. But I think things get a bit tricky because somehow the maximality of d needs to come into play.

Remark 3.3. There are counter-examples to the related claim that $m(i) \ge m(i-1)$ for all $i \in \{d, d-1, \ldots, 2\}$.

The remaining conjectures are all about upper bounding m(d). The following proposition handles the lower bound.

Proposition 3.4. Let d be the largest distance with max multiplicity in a tree T. If $1 \le d \le \lceil \frac{n}{3} \rceil$, then $m(d) \ge n - 1$.

Proof. It is sufficient to construct a tree T such that m(d) = |E(T)| = n - 1. Let u be a root vertex. Append two paths X and Y of length d-1 to u. Then for the remaining n-2(d-1)-1 vertices, append them as a length n-2(d-1)-1 path to u. There are 3(d-1) distinct paths of length d with endpoints in $X \cup Y$. There are n-2(d-1)-d paths of length d with endpoints in $V(T) \setminus (X \cup Y)$.

Altogether, there are n-2d+2-d+3d-3=n-1 paths of length d in T. Note that since $d \leq \lceil n/3 \rceil$,

$$n - 2(d - 1) - d \ge n - 3\lceil n/3 \rceil + 2 = \begin{cases} 0, & \text{if } n \equiv 1 \pmod{3} \\ 1, & \text{if } n \equiv 2 \pmod{3}, \end{cases}$$

and in either case, m(d) = n - 1. Observe that in fact $m(1) = m(2) = \cdots = m(d) = n - 1$.

Example 1. Figure 1 shows a tree with maximum multiplicity m(d) = n - 1 where d = 6 is the largest distance with max multiplicity and n = 20.

Figure 1: Extremal tree example minimizing m(d).

Remark 3.5. Below I conjecture that $d \leq \lceil n/3 \rceil + 2$. I have not yet looked for extremal trees that minimize m(d) when $d \in \{\lceil n/3 \rceil + 1, \lceil n/3 \rceil + 2\}$.

Conjecture 3.6. Let d be the largest distance with max multiplicity in a tree T.

1. If $d \leq C_1 \frac{n}{3} + C_2$ and even, then $m(d) \leq (3-a-b) \lceil \frac{r}{3} \rceil \lfloor \frac{r}{3} \rfloor + \lfloor \frac{r}{3} \rfloor^{2a} \lceil \frac{r}{3} \rceil^{2b}$, where $r = n - \frac{3}{2}d + 2$

$$(a,b) = \begin{cases} (1,0), & \text{if } r \equiv 1 \pmod{3} \\ (0,1), & \text{if } r \equiv 2 \pmod{3} \\ (0,0), & \text{otherwise.} \end{cases}$$

2. If $C_1 \frac{n}{3} + C_2 < d \leq \lceil \frac{n}{3} \rceil + 2$, then $m(d) \leq a \lfloor \frac{r'}{4} \rfloor^2 + (2-a) \lceil \frac{r'}{4} \rceil^2 + 2 \lfloor \frac{r'}{4} \rfloor \lceil \frac{r'}{4} \rceil$, where r' = n - d - 1 and

$$a = \begin{cases} 2, & \text{if } r' \equiv 1 \pmod{4} \\ 1, & \text{if } r' \equiv 2 \pmod{4} \\ 0, & \text{otherwise.} \end{cases}$$

Remark 3.7. My experimentation suggests that $C_1 \sim 1$ and $-1 \leq C_2 \leq 1$; however, I have not yet examined these values carefully.

Remark 3.8. I believe there are 3 extremal trees that maximize m(d); one unknown when $d \le C_1 \frac{n}{3} + C_2$ and odd, and the other two are described below.

Proposition 3.9 (Construction 1). Refer to Figure 2a for an example. When $d \le C_1 \frac{n}{3} + C_2$ and even, do the following:

- 1. First we use $3(\frac{d}{2}-1)+1$ vertices by making 3 branch paths with length $\frac{d}{2}-1$ from a root vertex u.
- 2. Let v, w, x be the vertices at the ends of each branch.
- 3. For the remaining $n-3(\frac{d}{2}-1)-1$ vertices, append them to v,w,x so that the number of leaf neighbours of v,w, and x differ from one another by at most 1.

Remark 3.10. Trees with large m(d) when $d \leq C_1 \frac{n}{3} + C_2$ often tend to have a triple branching structure. The structure of T becomes much more constrained the larger d gets, and I think this is probably because it is most common for d = 2. When d > 2, then for $m(2) \leq m(d)$ to hold, (1) the degrees of the vertices of T cannot be too high, and (2) there needs to be enough branching in T to ensure enough distinct length d paths. Somehow the triple branching pattern in Construction 1 satisfies (1) and (2) while also maximizing m(d); but I doubt that this extremal structure is fragile. That is, I think even when d is odd and $d \leq C_1 \frac{n}{3} + C_2$, an extremal tree has a similar triple branching structure.

Construction 2: Refer to Figure 2b for an example. When $d > C_1 \frac{n}{3} + C_2$, do the following:

- 1. Form a path of length d-4 and call its leaves x and y.
- 2. Append two vertices x_1 and x_2 to x and similarly y_1 and y_2 to y.
- 3. Append the remaining n-d-1 vertices to x_1, y_1, x_2 , and y_2 so that the number of leaf neighbours on each differ from one another by at most 1. If $r' \equiv 2 \pmod{4}$, then ensure that both x_1 and y_1 are each adjacent to $\lceil r'/4 \rceil$ leaves.

Figure 2: Extremal tree examples that maximize m(d).

Example 2. Figure 2 shows examples from Constructions 1 and 2, which are mentioned above. In Figure 2a, n = 20, d = 6, and m(6) = 56. In Figure 2b, n = 24, $d = \lceil \frac{n}{3} \rceil + 2 = 10$, and m(d) = 42.

Conjecture 3.11. Let d be the largest distance with max multiplicity. Then $d \leq \lceil \frac{n}{3} \rceil + 2$.

Remark 3.12. I have not yet found a counter-example to this conjecture. Please let me know if you find one! I have searched $n \le 25$ without finding a CE, but it may well be that $d \le \lceil n/3 \rceil + C\sqrt{n}$ or something. If so, then there would probably still be a sensible case division at $d \sim n/3$.

4 Construction with Large Gap Between Max Multiplicity and mult(2)

Let G be a tree of order n and max degree Δ . Let d be an even distance in $\{2,4,\ldots,n-1\}$ with maximum multiplicity in G. Given Δ and d, the following construction attempts to maximize $\operatorname{mult}(d)$ while minimizing $\operatorname{mult}(2)$. The idea is to create a tree G where all vertices either have degree 1 or Δ and each path of length d has end-vertices with degree 1 in G. Note that these conditions determine a value of $n=n(d,\Delta)$. Recall from Proposition 3.4 and corresponding Figure 1 that we can minimize $\operatorname{mult}(d)$ at $\operatorname{mult}(2)=n-1$. Similarly, in the construction from Proposition 3.9, we had $\operatorname{mult}(2)=\mathcal{O}((\frac{n}{3}-\frac{3d}{2})^2)$ with $\operatorname{mult}(d)=\mathcal{O}(n^2)$, which are asymptotically equivalent when d is not a function of n. The purpose of the following construction is to show that $\operatorname{mult}(d)$ need not be close to $\operatorname{mult}(2)$; in fact, we will see that it is possible for $\operatorname{mult}(d)=\mathcal{O}(n^2)$ while $\operatorname{mult}(2)=\mathcal{O}(n\Delta)$.

Construction. Let d and Δ be positive integers such that d is even. We construct a graph $G(d, \Delta)$ as follows:

- 1. Let r be a vertex with neighbours $v_1, v_2, \ldots, v_{\Delta}$.
- 2. For each $j \in [\Delta]$, identify v_j with the root of a $(\Delta 1)$ -ary tree with depth $\frac{d}{2} 1$.

Example 3. Let $(d, \Delta) = (6, 4)$. Then the following tree of order 53 results from the above construction:

Figure 3: Example of a tree satisfying $(n, d, \Delta) = (53, 6, 4)$ where $\operatorname{mult}(2) = 102$ and $\operatorname{mult}(d) = 486$.

Let n_1 and n_{Δ} denote the numbers of vertices with degrees 1 and Δ , respectively. We can express both n_1 and n_{Δ} as functions of Δ and d, and since $n = n_1 + n_{\Delta}$, we can do the same for n. Note that the eccentricity of the root vertex is $\frac{d}{2}$. We can count the number of vertices by summing the number of vertices at distance $i \in \{0, 1, \dots, \frac{d}{2}\}$ from the root. We have:

$$n = 1 + \Delta + \Delta(\Delta - 1) + \dots + \Delta(\Delta - 1)^{\frac{d}{2} - 1}$$
$$= 1 + \Delta \sum_{i=0}^{\frac{d}{2} - 1} (\Delta - 1)^{i}.$$

Note that from this we have $n_1 = \Delta(\Delta-1)^{\frac{d}{2}-1} = \mathcal{O}(\Delta^{\frac{d}{2}})$, and since $n_1 > n_{\Delta}$, we have $n = n_1 + n_{\Delta} = \mathcal{O}(\Delta^{\frac{d}{2}})$ as well. The paths with length d always have end-vertices being leaves of G in the Δ distinct branches from the root of G. There are $(\Delta-1)^{\frac{d}{2}-1}$ leaves in each of these Δ branches, so $\operatorname{mult}(d) = \binom{\Delta}{2}(\Delta-1)^{d-2} = \mathcal{O}(\Delta^d)$. For $\operatorname{mult}(2)$, we sum the $\binom{\Delta}{2}$ distinct paths of length 2 at each of the $1 + \Delta \sum_{i=0}^{\frac{d}{2}-2}(\Delta-1)^i$ non-leaf vertices. So, $\operatorname{mult}(2) = \binom{\Delta}{2}(1+\Delta\sum_{i=0}^{\frac{d}{2}-2}(\Delta-1)^i) = \mathcal{O}(\Delta^{\frac{d}{2}+1})$, and putting all these in terms of n, we have $\operatorname{mult}(d) = \mathcal{O}(n^2)$ and $\operatorname{mult}(2) = \mathcal{O}(n\Delta)$, which is quite a large distance. Thus it is possible to construct trees where the largest distance with maximum multiplicity has multiplicity much larger than the multiplicity of 2.

The following conjecture reflects the intuition that if distances 2 and d = Diam(G) have similar multiplicities, then there are few vertices with high degree and little branching.

Conjecture 4.1. Let G be a tree with even diameter d where d is the largest distance with maximum multiplicity. If $\operatorname{mult}(2) \sim \operatorname{mult}(d)$, then there are at most 3 vertex disjoint paths between the centre and periphery of G.

5 Distance Multisets of Specific Graphs

5.1 Paths, Cycles, and Grid Graphs

Observation 1. Paths of order n have distance multiset $\{1^{n-1}, 2^{n-2}, \dots, (n-1)^1\}$.

Observation 2. Odd cycles of order n have distance multiset $\{1^n, 2^n, \dots, \lfloor \frac{n}{2} \rfloor^n\}$. Even cycles of order n have distance multiset $\{1^n, 2^n, \dots, (\frac{n}{2} - 1)^n, (\frac{n}{2})^{\frac{n}{2}}\}$.

Proposition 5.1. Let a and b be positive integers such that $a \ge b$. Then the multiplicity of each distance x in the a by b grid graph is given by

$$\mathrm{mult}(x) = \begin{cases} (2bx - x^2)a + 2\binom{x+1}{3} - bx^2, & \text{if } x \in [1, b-1]; \\ b^2(a-x) + 2\binom{b+1}{3}, & \text{if } x \in [b, a-1]; \\ 2\binom{b+1-(x-a)}{3}, & \text{if } x \in [a, a-1+b-1]. \end{cases}$$

Proof. Let $G_{a,b}$ be the grid graph with dimensions a and b. We first find a recurrence relation by calculating the distances between two vertex disjoint induced subgraphs of $G_{a,b}$: $G_{a,b-1}$ and a path of length a-1, which we call P_a . We call such distances "external distances", and the distances between vertices within $G_{a,b-1}$ and within P_a are called "internal distances". Throughout this proof, for a distance $x \in [1, a-1+b-1]$, we often distinguish between the internal and external multiplicities of x. It is straightforward to see that the distances of $G_{a,b}$ are the union of external and internal distances between $G_{a,b-1}$ and P_a . Once we know how to find these external distances, we will use this relation in a proof by induction to obtain the closed form expression for the distance multiset of $G_{a,b}$.

Let v_1, v_2, \ldots, v_a be the vertices of P_a , and let P(j) denote the path subgraph of $G_{a,b}$ with length b-1 such that v_j is one of its end-vertices. Note that $\{P(j): j \in [a]\}$ partitions $V(G_{a,b})$ and there are a^2 ways to pair these paths with the vertices of P_a .

For a distance $x \in [1, b-1]$, there are 2(a-d) ordered pairs $(i, j) \in [a]^2$ such that |i-j| = d, and each of these corresponds to an external distance x. The external multiplicity of x is given by $a + \sum_{d=1}^{x-1} 2(a-d)$, where the upper limit of x-1 ensures that we are ignoring internal distances within P_a . The a term comes from the a pairs (i, j) such that |i-j| = 0.

within P_a . The a term comes from the a pairs (i,j) such that |i-j|=0. When $x \in [b,a-1]$, the external multiplicity is given by $\sum_{d=x-(b-1)}^{x-1} 2(a-d)$. In this case, we have to ignore smaller differences (i.e., those less than x-(b-1) in P_a since $x \ge b-1$. When $x \in [a,a-1+b-1]$, the external multiplicity of x is $\sum_{d=x-(b-1)}^{a-1} 2(a-d)$. [Probably should include pictures to illustrate these three cases] We can simplify these expressions as follows:

Case 1: When $x \in [1, b - 1]$,

$$a + \sum_{d=1}^{x-1} 2(a-d) = a + 2a(x-1) - x(x-1) = a + (x-1)(2a-x).$$

Case 2: When $x \in [b, a - 1]$,

$$\sum_{d=x-(b-1)}^{x-1} 2(a-d) = 2a(b-1) - 2(b-1)(x-(b-1)) - (b-1)(b-2) = (b-1)(2a-2x+b).$$

Case 3: When $x \in [a, a - 1 + b - 1]$,

$$\sum_{d=x-(b-1)}^{a-1} 2(a-d) = 2a(a-x+b-1) - 2(a-x+b-1)(x-(b-1)) - (a-x+b-1)(a-x+b-2)$$

$$= (a-x+b-1)(2a-2(x-b+1)-a+x-b+2)$$

$$= (a+b-x-1)(a+b-x)$$

Altogether, the external distances between $G_{a,b-1}$ and P_a are:

$$\operatorname{mult}(x)_{Ext} = \begin{cases} a + (x-1)(2a-x), & \text{if } x \in [1,b-1]; \\ (b-1)(2a-2x+b), & \text{if } x \in [b,a-1]; \\ 2\binom{a+b-x}{2}, & \text{if } x \in [a,a-1+b-1]. \end{cases}$$

Now we use this to find the distances in $G_{a,b}$. Below are the distance multisets of $G_{a,2}$, $G_{a,3}$, $G_{a,4}$, and $G_{a,5}$.

$$\begin{split} G_{a,2} &\Rightarrow \{1^{3a-2}\} \cup \{x^{4(a-x)+2} : x \in [2,a-1]\} \cup \{a^2\}. \\ G_{a,3} &\Rightarrow \{1^{5a-3},2^{8a-10}\} \cup \{x^{9(a-x)+8} : x \in [3,a-1]\} \cup \{a^8,(a+1)^2\}. \\ G_{a,4} &\Rightarrow \{1^{7a-4},2^{12a-14},3^{15a-28}\} \cup \{x^{16(a-x)+20} : x \in \{4,a-1\}\} \cup \{a^{20},(a+1)^8,(a+2)^2\}. \\ G_{a,5} &\Rightarrow \{1^{9a-5},2^{16a-18},3^{21a-37},4^{24a-60}\} \cup \{x^{25(a-x)+40} : x \in [5,a-1]\} \cup \{a^{40},(a+1)^{20},(a+2)^8,(a+3)^2\}. \end{split}$$

We claim that the distance multiset of $G_{a,b}$ is given by

$$\operatorname{mult}(x) = \begin{cases} (2bx - x^2)a + 2\binom{x+1}{3} - bx^2, & \text{if } x \in [1, b - 1]; \\ b^2(a - x) + 2\binom{b+1}{3}, & \text{if } x \in [b, a - 1]; \\ 2\binom{b+1-(x-a)}{3}, & \text{if } x \in [a, a - 1 + b - 1]. \end{cases}$$

This is our inductive hypothesis. Note that the base cases are satisfied by our claimed solution. We now begin the inductive step of the proof. By the inductive hypothesis, the cumulative internal distance multiplicities of $G_{a,b-1}$ and P_a for distance x are

$$\operatorname{mult}(x)_{Int} = \begin{cases} (2(b-1)x - x^2)a + 2\binom{x+1}{3} - (b-1)x^2 + (a-x), & \text{if } x \in [1, b-2]; \\ (b-1)^2(a-x) + 2\binom{b}{3} + (a-x), & \text{if } x \in [b-1, a-1]; \\ 2\binom{b-(x-a)}{3}, & \text{if } x \in [a, a-1+b-2]. \end{cases}$$

Note that we simply add (a-x) (the internal multiplicity of x within P_a) to the internal multiplicities of $G_{a,b-1}$ when $x \in [1, a-1]$. We showed earlier that the external distance multiplicities between $G_{a,b-1}$ and P_a are

$$\operatorname{mult}(x)_{Ext} = \begin{cases} a + (x-1)(2a-x), & \text{if } x \in [1,b-1]; \\ (b-1)(2a-2x+b), & \text{if } x \in [b,a-1]; \\ 2\binom{a+b-x}{2}, & \text{if } x \in [a,a-1+b-1]. \end{cases}$$

Now all we do is add these multiplicities together. When $x \in [a, a-1+b-1]$, we have

$$\begin{split} & \mathrm{mult}(x) = 2 \binom{b - (x - a)}{3} + 2 \binom{a + b - x}{2} \\ &= \frac{(b - x + a)(b - x + a - 1)(b - x + a - 2)}{3} + (b - x + a)(b - x + a - 1) \\ &= (b - x + a)(b - x + a - 1)(\frac{b - x + a - 2}{3} + 1) \\ &= (b - x + a)(b - x + a - 1)(\frac{b - x + a + 1}{3}) \\ &= 2 \binom{b + 1 - (x - a)}{3}, \end{split}$$

as desired.

When $x \in [b, a - 1]$, we have

as desired.

When x = b - 1, we have

$$\operatorname{mult}(x) = (b-1)^{2}(a-x) + 2\binom{b}{3} + (a-x) + a + (x-1)(2a-x)$$

$$= (b-1)^{2}(a-x) + 2\binom{b}{3} + a - x + a + 2ax - x^{2} - 2a + x$$

$$= (b-1)^{2}(a-x) + 2\binom{b}{3} + 2ax - x^{2}$$

$$= x^{2}(a-x) + 2\binom{x+1}{3} + 2ax - x^{2}$$

$$= a(x^{2} + 2x) + 2\binom{x+1}{3} - x^{2}(x+1)$$

$$= (x^{2} + 2x)a + 2\binom{x+1}{3} - bx^{2}$$

$$= (2(x+1)x - x^{2}) + 2\binom{x+1}{3} - bx^{2}$$

$$= (2bx - x^{2})a + 2\binom{x+1}{3} - bx^{2},$$

as desired.

When $x \in [1, b-2]$, we have

$$\begin{aligned} & \mathrm{mult}(x) = (2(b-1)x - x^2)a + 2\binom{x+1}{3} - (b-1)x^2 + a + (x-1)(2a-x) + (a-x) \\ &= a(2(b-1)x - x^2) + 2\binom{x+1}{3} - bx^2 + x^2 + a + 2ax - x^2 - 2a + x + a - x \\ &= a(2(b-1)x - x^2) + 2\binom{x+1}{3} - bx^2 + 2ax \\ &= a(2(b-1)x - x^2 + 2x) + 2\binom{x+1}{3} - bx^2 \\ &= a(2bx - x^2) + 2\binom{x+1}{3} - bx^2, \end{aligned}$$

as desired. Thus the proposition holds.

I suspect the distance multisets of $C_a \times P_b$ and $C_a \times C_b$ are actually simpler to determine than $P_a \times P_b$ above. These would be fun next steps. It should be doable to find the distance multisets of a d dimensional grid, certainly for d=3, but maybe even general d. The expressions would be pretty nasty, but I think it's doable by a more general recursion and induction approach.

Proposition 5.2. For each distance $x \in [1, n]$, the multiplicity of x in the n-dimensional hypercube Q_n is $\text{mult}(x) = 2^{n-1} \binom{n}{x}$.

Proof. Consider the distance multisets for the first few values of n:

$$\begin{split} n &= 1 \Rightarrow \{1^1\} \\ n &= 2 \Rightarrow \{1^4, 2^2\} \\ n &= 3 \Rightarrow \{1^{12}, 2^{12}, 3^4\} \\ n &= 4 \Rightarrow \{1^{32}, 2^{48}, 3^{32}, 4^8\} \\ n &= 5 \Rightarrow \{1^{80}, 2^{160}, 3^{160}, 4^{80}, 5^{16}\} \\ n &= 6 \Rightarrow \{1^{192}, 2^{480}, 3^{640}, 4^{480}, 5^{192}, 6^{32}\} \\ n &= 7 \Rightarrow \{1^{448}, 2^{1344}, 3^{2240}, 4^{2240}, 5^{1344}, 6^{448}, 7^{64}\}. \end{split}$$

Based on these examples for small n, it seems reasonable to expect $\binom{n}{x}$ to be a factor in $\operatorname{mult}(x)$. Given this as a supposition, the other factor would need to be 2^{n-1} . We show that this is indeed the case in general. Let Y and Z be the two copies of Q_{n-1} in Q_n . Index the vertices $V(Y) = \{y_1, y_2, \ldots, y_{2^{n-1}}\}$ and $V(Z) = \{z_1, z_2, \ldots, z_{2^{n-1}}\}$ so that $y_i z_i \in E(Q_n)$.

 $\{y_1,y_2,\ldots,y_{2^{n-1}}\}$ and $V(Z)=\{z_1,z_2,\ldots,z_{2^{n-1}}\}$ so that $y_iz_i\in E(Q_n)$. The external multiplicity of x between Y and Z is $\operatorname{mult}_{ext}(x)=2\operatorname{mult}_{Q_{n-1}}(x-1)$. Observe that for each $(i,j)\in[2^{n-1}]^2$, $d(y_i,z_j)=d(z_i,z_j)+1$ and $d(y_j,z_i)=d(z_j,z_i)+1$. So we first sum the multiplicities of x-1 for each $y_i\in V(Y)$ involving z_i in Z, and this sum is $\operatorname{mult}_{Q_{n-1}}(x)$. To count both $d(y_i,z_j)$ and $d(y_j,z_i)$, we can treat $d(z_i,z_j)$ and $d(z_j,z_i)$ as separate distances. Thus to count $\operatorname{mult}_{ext}(x)$, we need to double count $\operatorname{mult}_{Q_{n-1}}(x-1)$. The internal multiplicity of x in Q_n is the sum of multiplicities of x in both Y and Z, so $\operatorname{mult}_{int}(x)=2\operatorname{mult}_{Q_{n-1}}(x)$. It follows that

$$\operatorname{mult}_{Q_n}(x) = 2(\operatorname{mult}_{Q_{n-1}}(x-1) + \operatorname{mult}_{Q_{n-1}}(x)).$$

We claim that $\operatorname{mult}_{Q_n}(x) = 2^{n-1} \binom{n}{x}$. The above cases for small n satisfy the claim. Using our recursive relation, applying the inductive hypothesis for distance multiplication of hypercubes of order less than n, and Pascal's binomial identity, we have

$$\operatorname{mult}_{Q_n}(x) = 2(\operatorname{mult}_{Q_{n-1}}(x-1) + \operatorname{mult}_{Q_{n-1}}(x)) = 2^{n-1} \left[\binom{n-1}{x-1} + \binom{n-1}{x} \right] = 2^{n-1} \binom{n}{x}.$$
 as desired.

Direct Proof. Each vertex of Q_n corresponds to an n-bit string, and graph distance in Q_n is equivalent to Hamming distance where d(u, v) = x means that u and v have x different bit entries. For each $v \in Q_n$, there are $\binom{n}{x}$ other strings at distance x from v. Since $|V(Q_n)| = 2^n$, $2 \text{ mult}(x) = 2^n \binom{n}{x}$. \square

Denote the r-ary tree with root z and depth $d \ge 1$ by $T_d(r)$. By depth, we mean the eccentricity of z. So, $T_1(r) = K_1, r$.

Proposition 5.3. Let $T_d(r)$ be the r-ary tree with root z and depth $d \ge 1$. Then for each $x \in [1, 2d]$ the multiplicity of x is mult(x) =

Proof. We'll start with the case when r=2. When d=1, the distances are $\{1^2,2^1\}$,

$$d = 1 \Rightarrow \{1^2, 2^1\}$$

$$d = 2 \Rightarrow \{1^6, 2^7, 3^4, 4^4\}$$

$$d = 3 \Rightarrow \{1^{14}, 2^{19}, 3^{16}, 4^{16}, 5^{16}, 6^{16}\}.$$

We claim that the multiplicities of distance $x \in [1, 2d]$ are as follows:

$$\operatorname{mult}(x) = \begin{cases} 2^{d+1} - 2, & \text{if } x = 1; \\ (n - 2^d - 1)\binom{3}{2} + \binom{2}{2}, & \text{if } x = 2; \\ 2^{2(d-1)}, & \text{if } x \in [3, 2d]. \end{cases}$$

Set $T = T_d(r)$. Note mult(1) = $|E(T_d(2))| = 2^{d+1} - 2$. Let $L \subset V(T)$ be the leaves of T. When x = 2,

$$\operatorname{mult}(2) = \binom{\deg(z)}{2} + \sum_{v \in V(T) \setminus L \setminus \{z\}} \binom{\deg(v)}{2} = \binom{2}{2} + (n - 2^d - 1) \binom{3}{2}.$$

For the case when $x \in [3, 2d]$, we show a recurrence relation.

Let's try the general case for $T_d(r)$. Note that $T_{d-1}(r)$ results by removing the leaves of $T_d(r)$. Let L_d be the leaves of $T_d(r)$. Then the external distances are those between L_d and $T_{d-1}(r)$. Since L is an orbit of $T_d(r)$, each of its vertices have the same distances. Let $v \in L$ and let u be a leaf in $T_{d-1}(r)$. Then for each $y \in T_{d-1}(r)$, we have that d(v, y) = d(u, y) + 1. So, since there are r leaves in L for each leaf in $T_{d-1}(r)$, we have for $x \in [2, 2d]$,

$$\operatorname{mult}_{ext}(x) = r \operatorname{mult}_{T_{d-1}(r), ext}(x-1).$$

The internal multiplicity of x is $\operatorname{mult}_{T_{d-1}(r)}(x)$ plus the distances between vertices in L. Observe that there are no odd distances between vertices in L. Set x=2i where $i\in[1,d]$. Then the multiplicity of x between vertices of L is

$$\operatorname{mult}_{L}(x) = \frac{r^{d}(r-1)r^{i-1}}{2} = \frac{r^{d+\frac{x}{2}-1}(r-1)}{2}.$$

For each of the r^d leaves in L, there are $(r-1)r^{i-1}$ ways to pair each of these vertices with other leaves in L such that their distance is x; these are ordered pairs, so we divide by 2 to get the distance multiplicity. Altogether we have the following recursive relation when $x \in [2, 2d]$:

$$\mathrm{mult}(x) = \begin{cases} r \, \mathrm{mult}_{T_{d-1}(r), ext}(x-1) + \mathrm{mult}_{T_{d-1}(r)}(x) + \frac{1}{2}r^{d+\frac{x}{2}-1}(r-1), & \text{if } x \equiv 0 \text{ (mod 2)}; \\ r \, \mathrm{mult}_{T_{d-1}(r), ext}(x-1) + \mathrm{mult}_{T_{d-1}(r)}(x), & \text{if } x \equiv 1 \text{ (mod 2)}. \end{cases}$$

We want to find a closed form expression. First we find $\operatorname{mult}_{T_d(r),ext}(x)$. Note that $\operatorname{mult}_{T_1(r),ext}(2) = 0$, $\operatorname{mult}_{T_2(r),ext}(2) = rr^{d-1}$ so $\operatorname{mult}_{T_d(r),ext}(x) = r^{d-1}$. $r^{d} \cdot r^{\min(d-x,2d-x)}$

Let r = 2, then we have:

$$1^{2}, 2^{1}$$
 $1^{6}, 2^{7}, 3^{4}, 4^{4}$
 $1^{14}, 2^{19}, 3^{20}, 4^{20}, 5^{16}, 6^{16}$
 $1^{30}, 2$

The recursive formula given by:

$$\text{mult}_{ext,d}(x) = r(2 \text{ mult}_{L,d-1}(x-1) + \text{mult}_{ext,d-1}(x-1)),$$

and

$$\operatorname{mult}_{int,d}(x) = \operatorname{mult}_{L,d}(x) + \operatorname{mult}_{d-1}(x).$$

Since $\operatorname{mult}_{L,d}(x) = \frac{r^{d+x/2-1}(r-1)}{2}$, we have altogether that

$$\begin{aligned} \operatorname{mult}_{d}(x) &= r \bigg(2 \frac{r^{d-1+(x-1)/2-1}(r-1)}{2} + \operatorname{mult}_{ext,d-1}(x-1) \bigg) + \frac{r^{d+x/2-1}(r-1)}{2} + \operatorname{mult}_{d-1}(x) \\ &= \frac{r^{d-1+(x-1)/2}(r-1)}{2} + r \operatorname{mult}_{ext,d-1}(x-1) + \frac{r^{d+x/2-1}(r-1)}{2} + \operatorname{mult}_{d-1}(x) \end{aligned}$$

First, we need to sort out the recursion on the external distances. We have

$$\operatorname{mult}_{ext,d}(x) = \begin{cases} 2^{\frac{r^{d-1+(x-1)/2}(r-1)}{2}} + r \operatorname{mult}_{ext,d-1}(x-1), & \text{if } x \equiv 1 \pmod{2} \\ r \operatorname{mult}_{ext,d-1}(x-1), & \text{if } x \equiv 0 \pmod{2} \end{cases}$$

We now try to obtain a closed form expression for $\operatorname{mult}_{ext,d}(x)$.

Let d=1, then $x\in[1,2]$, and we have $\operatorname{mult}_{ext,1}(1)=2$ and $\operatorname{mult}_{ext,1}(2)=0$.

When d=2, then $x\in[1,4]$, and we have

$$\begin{aligned} & \text{mult}_{ext,2}(1) = r^2 = 4 \\ & \text{mult}_{ext,2}(2) = r \, \text{mult}_{ext,1}(1) = 4 \\ & \text{mult}_{ext,2}(3) = 2 \frac{r^{2-1+(3-1)/2}(r-1)}{2} + r \, \text{mult}_{ext,2-1}(3-1) = 4 + 0 = 4 \\ & \text{mult}_{ext,2}(4) = r \, \text{mult}_{ext,1}(3) = 0 \end{aligned}$$

When d = 3, then $x \in [1, 6]$, and we have

$$\begin{aligned} & \text{mult}_{ext,3}(1) = r^3 = 8 \\ & \text{mult}_{ext,3}(2) = r \text{ mult}_{ext,2}(1) = 8 \\ & \text{mult}_{ext,3}(3) = r^{2+1} + r \text{ mult}_{ext,2}(2) = 8 + 8 = 16 \\ & \text{mult}_{ext,3}(4) = r \text{ mult}_{ext,2}(3) = 8 \\ & \text{mult}_{ext,3}(5) = r^4 + r \text{ mult}_{ext,2}(4) = 16 + 0 = 16 \\ & \text{mult}_{ext,3}(6) = r \text{ mult}_{ext,2}(5) = 0 \end{aligned}$$

It looks like

$$\mathrm{mult}_{ext,d}(x) = \begin{cases} r^d, & \text{if } x \in \{1\} \cup \{j \in [2,2(d-1)] : j \equiv 0 \pmod 2\} \\ r^{d+1}, & \text{if } x \in \{j \in [3,2d-1] : j \equiv 1 \pmod 2\} \\ 0, & \text{otherwise.} \end{cases}$$

If 1 < x < 2d and even, then $\operatorname{mult}_{ext,d}(x) = r \operatorname{mult}_{ext,d-1}(x-1) = r \cdot r^{d-1} = r^d$. If x = 2d, then

$$\operatorname{mult}_{ext,d}(x) = r \cdot \operatorname{mult}_{ext,d-1}(x-1) = 0.$$

If $3 \le x < 2d - 2$ and odd, then

$$\operatorname{mult}_{ext,d}(x) = 2 \frac{r^{d-1+(x-1)/2}(r-1)}{2} + r \operatorname{mult}_{ext,d-1}(x-1)$$
$$= r^{d-1+\frac{x-1}{2}}(r-1) + r^{d}$$

If x = 2d - 1, then $\operatorname{mult}_{ext,d}(x) = r \operatorname{mult}_{ext,d-1}(x-1)$ (no counting leaf paths of length 2d - 2 as well because $\operatorname{mult}_{ext,d-1}(2d-2)$ is already counting these leaf paths)

OKAY. The recursive relation for $\operatorname{mult}_{ext,d}(x)$ is:

$$\operatorname{mult}_{ext,d}(x) = \begin{cases} r \operatorname{mult}_{ext,d-1}(1), & \text{if } x = 1; \\ r^{d-1+(x-1)/2}(r-1) + r \operatorname{mult}_{ext,d-1}(x-1), & \text{if } x \in \{j \in [3,2d-3] : j \equiv 1 \pmod{2}\}; \\ r \operatorname{mult}_{ext,d-1}(x-1), & \text{otherwise.} \end{cases}$$

For all $x \in [2, 2d]$, $r \operatorname{mult}_{ext, d-1}(x-1)$ is always a term in the external multiplicity of x; this is because there are r leaves in $T_d(r)$ joined to a single leaf in $T_{d-1}(r)$, so the external multiplicity of x includes $\operatorname{mult}_{ext, d-1}(x-1)$ for each leaf of $T_d(r)$. The only other possible external multiplicity for x would be 2r times $\operatorname{mult}_{L,d-1}(x-1)$, where we multiply by r because there are r leaves in $T_d(r)$ joining each leaf of $T_{d-1}(r)$, and we multiply by 2 because each distance counted by $\operatorname{mult}_{L,d-1}(x-1)$ corresponds to 2 different distances in $\operatorname{mult}_{ext,d}(x)$. Observe that $\operatorname{mult}_{L,d-1}(x-1)=0$ if and only if x is even or x=2d-1. Note that when x=2d-1, $2r \operatorname{mult}_{L,d-1}(x-1)$ is already counted by $r \operatorname{mult}_{ext,d-1}(x-1)$.

We claim that the following closed-form expression holds:

$$\mathrm{mult}_{ext,d}(x) = \begin{cases} r^d, & \text{if } x \in \{1,2d-1\} \cup \{j \in [2,2d-2] : j \equiv 0 \text{ (mod 2)}\}; \\ r^{d-1+(x-1)/2}(r-1) + r^d, & \text{if } x \in \{j \in [3,2d-3] : j \equiv 1 \text{ (mod 2)}\}; \\ 0, & \text{if } x = 2d. \end{cases}$$

Now for the induction proof.

Now for the induction proof.
$$\begin{aligned} & \text{mult}_{ext,d}(x) = \begin{cases} r \, \text{mult}_{ext,d-1}(1), & \text{if } x = 1; \\ r^{d-1+(x-1)/2}(r-1) + r \, \text{mult}_{ext,d-1}(x-1), & \text{if } x \in \{j \in [3,2d-3]: j \equiv 1 \; (\text{mod } 2)\}; \\ r \, \text{mult}_{ext,d-1}(x-1), & \text{otherwise.} \end{cases} \\ & = \begin{cases} rr^{d-1}, & \text{if } x = 1; \\ r^{d-1+(x-1)/2}(r-1) + rr^{d-1}, & \text{if } x \in \{j \in [3,2d-3]: j \equiv 1 \; (\text{mod } 2)\}; \\ r \, \text{mult}_{ext,d-1}(x-1), & \text{otherwise.} \end{cases} \\ & = \begin{cases} rr^{d-1}, & \text{if } x = 1; \\ r(r^{d-2+(x-2)/2}(r-1) + r \, \text{mult}_{ext,d-2}(x-2)) & \text{if } x \in \{j \in [4,2d-2]: j \equiv 0 \; (\text{mod } 2)\}; \\ r \, \text{mult}_{ext,d-1}(x-1), & \text{otherwise.} \end{cases} \\ & = \begin{cases} rr^{d-1}, & \text{if } x = 1; \\ r^{d-1+(x-1)/2}(r-1) + rr^{d-1}, & \text{if } x \in \{j \in [3,2d-3]: j \equiv 1 \; (\text{mod } 2)\}; \\ r \, \text{mult}_{ext,d-1}(x-1), & \text{otherwise.} \\ r^{d-1+(x-2)/2}(r-1) + r^d & \text{if } x \in \{j \in [4,2d-2]: j \equiv 0 \; (\text{mod } 2)\} \end{cases} \end{aligned}$$

Proposition 5.4. Let $T_r(d)$ be the complete r-ary tree with depth d. The multiplicity of distance x is mult(x) = .

Proof.

Only K_2 and $K_{1,3}$ have Uniform Distance Multiplicities

Below is a quick result about trees with uniform multiplicities, that is, where each distance multiplicity is the same.

Proposition 5.5. The only trees with uniform distance multiplicities are K_2 and $K_{1,3}$, which have distance multisets $\{1^1\}$, and $\{1^3, 2^3\}$, respectively.

Proof. Let T be a tree with diameter d such that m is the multiplicity of each of its distances. Then $\binom{n}{2} = md$. Since T is a tree, mult(1) = n-1, so m=n-1 and thus $d=\frac{n}{2}$. Let $T_0=(v_1,v_2,\ldots,v_d)$ be a diametrical path in T. Order the vertices of $V(T) \setminus T_0 = (u_1, u_2, \dots, u_{n-d})$ in a way so that for all $i \in \{1, 2, \ldots, n-d\}$, each graph T_i , which is induced by $T_0 \cup \{u_1, u_2, \ldots, u_i\}$, is connected. Since T_0 is a diametrical path, u_1 in T_1 has to be adjacent to a vertex in T_0 with degree 2; thus both distances 1 and 2 in T_1 have multiplicity $\frac{n}{2}$. Note that u_i has a unique neighbour in T_i . Since T_{i-1} is connected, the neighbour of u_i in T_i has degree at least 1 in T_{i-1} , so mult(2) in T_i increases by at least 1 compared to mult(2) in T_{i-1} . Observe that if for some $i \in \{2, 3, ..., n-d\}$, the neighbour of u_i in T_{i-1} has degree at least 2, then mult(2) > mult(1) in T, which would contradict T having the uniform multiplicity property. So the only way for mult(2) = mult(1) in T is if every added vertex gets joined with a leaf such that the resulting tree has diameter d. But in this case T has exactly 3 leaves, which means T has at most 3 diametrical paths and so $n-1=m=\mathrm{mult}(d)\leq 3$. Since $n \leq 4$, it is straightforward to check that the only solutions are K_2 and $K_{1,3}$.

5.3 Finding Distance Multisets of Small Diameter Trees

The next two observations are simple facts about distance multiplicities for small diameter trees.

Observation 3. The distance multiset of any tree of order n with diameter $d \leq 3$ can be expressed in terms of its degree sequence.

Proof. Let T be a tree with diameter $d \leq 3$. If d = 2, then since T is a tree, $\operatorname{mult}(1) = n - 1$ and so $\operatorname{mult}(2) = \binom{n}{2} - (n-1) = (n-1)(\frac{n}{2}-1) = \binom{n-1}{2}$. Note that $T = K_{1,n-1}$ in this case, which means it has exactly one vertex v with degree at least 2, so $\operatorname{mult}(2) = \sum_{u \in V(T)} \binom{\deg(u)}{2} = \binom{\deg(v)}{2}$. If d = 3, then $\operatorname{mult}(2) = \sum_{u \in V(T)} \binom{\deg(u)}{2}$ and

$$\operatorname{mult}(3) = \binom{n}{2} - \operatorname{mult}(2) - \operatorname{mult}(1) = \binom{n}{2} - \sum_{u \in V(T)} \binom{\deg(u)}{2} - (n-1).$$

Observation 4. Note that to count using the method above when $d \ge 4$, the edges of T must be known to determine $\operatorname{mult}(x)$, when $x \ge 3$. In particular,

$$\operatorname{mult}(3) = \sum_{u_1 u_2 \in E(T)} (\deg(u_1) - 1)(\deg(u_2) - 1).$$

So for the case when d=4, we have $\operatorname{mult}(3)=\sum_{u_1u_2\in E(T)}(\deg(u_1)-1)(\deg(u_2)-1)$, and so

$$\operatorname{mult}(4) = \binom{n}{2} - \sum_{u_1 u_2 \in E(T)} (\deg(u_1) - 1)(\deg(u_2) - 1) - \sum_{u \in V(T)} \binom{\deg(u)}{2} - (n - 1).$$

However, we can express diameter 4 trees in terms of their degree sequences if we also know which of its vertices forms its centre.

Proposition 5.6. If T is a tree with diameter 4, then its distance multiset can be expressed in terms of its degree sequence and its centre.

Proof. Let c be the centre vertex of T. Since T is a tree with diameter 4, c is the unique centre vertex, and it has eccentricity 2. Note that all leaves of T must be either in N(c) or a neighbour of a vertex in N(c); call the former inner leaves, and the latter outer leaves. Observe that every path of length 3 in T must include exactly one outer leaf as an end-vertex u_1 with (since there are no triangles) the other end-vertex u_2 being in N(c) such that $u_1u_2 \notin E(T)$. So, the number of such length 3 paths beginning at an outer vertex u_1 is $\deg(c) - 1$. The number of outer leaves is $n - \deg(c) - 1$ since every vertex that is not in the closed neighbourhood of c is an outer leaf. So

$$\text{mult}(3) = (n - \deg(c) - 1)(\deg(c) - 1).$$

Finally, we know what deg(c) must be because c is assumed to be the centre of T and so we know its degree in the degree sequence. Thus the distance multiset of T is

$$\{1^{n-1}, 2^{\sum_{v \in V(T)} \binom{\deg(v)}{2}}, 3^{(n-\deg(c)-1)(\deg(c)-1)}, 4^{\binom{n}{2} - \sum_{i=1}^{3} \operatorname{mult}(i)}\}.$$

Corollary 5.7. If T is a tree with diameter 4, then its distance multiset can be expressed in terms of its degree sequence and any one of the following:

- 1. the centre vertex, which has eccentricity 2;
- 2. a diametrical path;
- 3. the common neighbourhood of any two non-adjacent non-leaf vertices.

Proof. Since T has even diameter, it has a unique vertex with minimum eccentricity. In this case its centre is the unique vertex with eccentricity 2. Since T is a tree, the centre has no common neighbours with any other vertex, but every other non-leaf is adjacent only to the centre and leaves. The centre vertex is the unique vertex in the middle of every diametrical path. The result follows by the previous proposition.

5.3.1 Discussion on Larger Diameter Trees

It might be possible to characterize distance multisets of trees with diameter at most some larger small constant like 5 or 6 in terms of the degree and eccentricity sequences. Note that knowing the distance multiset in the diameter 4 case hinges on the fact that there's a special subset of vertices (the singleton centre) that tells us a lot about mult(3). Perhaps when the diameter is 5, knowing the 2-subset centre tells us about mult(3) as well. In general, I wonder about the following question:

Question 1. Let T be a tree with diameter d. What is the minimum positive integer k such that there exists a k-subset $X \subset V(T)$ whereby the distance multiset of T can be expressed in terms of the degree sequence of T and eccentricities of only the vertices in X?

We know that k=0 when d<4 and $k\leq 1$ when d=4 (I think k=1, but I don't believe I've proven this). Does k=2 when d=5? If I had to guess, I would say k should be equal to the number of vertices with at most some eccentricity. That is, let $r=e(1)< e(2)< \cdots < e(d-r)=d$ be the distinct eccentricities of V(T) (where r is the radius of T). Then if we partition V(T) based on eccentricity into sets $V_{e(1)}, V_{e(2)}, \ldots, V_{e(d-r)}$, I would guess $X=\cup_{i=1}^{\ell} V_{e(i)}$ for some $1\leq \ell \leq d-r$ and k=|X|.

Brief Thoughts on Efficiency of Calculating Distances: Supposing k is much smaller than n and that X can be found quickly, it might be possible to find the distance multiset of a small diameter tree pretty efficiently. The degree sequence can be found in n steps, so most of the distance multiset computation would come from finding the eccentricities of vertices in X. When d=4, we know the distance multiset as soon as we find the centre vertex, which can be done very quickly: take a pair of non-leaves with non-empty common neighbourhood, then their unique common neighbour is the centre.

A More General Question: A much more approachable problem is to determine what minimium amount of information is needed about T (i.e. a "small" subset of eccentricities, distances, or edges, etc.), besides the degree sequence, to find $\operatorname{mult}(3)$. It's very possible that Question 1 should be posed more generally as Question 2 below. By the way, since the degree sequence is so easy to determine in any graph, I think we're okay assuming we have it in these types of problems.

Question 2. Let T be a tree with diameter d. For each $i \in [1, d]$, define k_i to be the minimum size subset $X_i \subseteq V(T)$ such that knowing information about vertices in X (i.e. eccentricities, distances, or edges, etc.) allows one to express the distance multiset of T in terms of this information and the degree sequence of T. What is k_i , and what information about X is needed?

Question 1 is when the known information is the eccentricities of all vertices in $X = \bigcup_{i=1}^{d} X_i$ and k = |X|. I think work has been done on counting P_4 s (paths of length 3) in various graph classes, but we want to count paths with distinct end-point pairs rather than homomorphisms or finding path decompositions, which I think are probably more popular. In any case, it's possible Question 2 has been solved for k_3 or k_4 .

6 Finding Graph Distances From Vertex Distances (Global from Local)

A related line of investigation would be to determine distance multisets for diameter d graphs given the distances at each vertex. That is, we know the **local** information of the n-1 distances from each vertex (but we don't know which vertex pairs produce which distance), and the goal is to find the **global** information of the $\binom{n}{2}$ distances in the graph. Good places to start here are probably (1) caterpillars because vertices can probably be located in the graph more easily based on their distances (I believe you had some good early thoughts on this a while back); and (2) vertex transitive graphs because all vertices are similar and so have the same distances.

For (2), here's a quick and silly example about a certain type of vertex transitive graph that cannot exist. Let G be a graph of odd order n. We show that not all vertices of G have distances $\{1, 2, \ldots, n-1\}$. Suppose otherwise. Define K(G) to be the edge-weighted clique of order n such that $v_i v_j \in E(K(G))$ has weight $d(v_i, v_j)$. Note that the edge-weights correspond to a proper edge-colouring of K(G), which means that K_n has a proper Δ -edge-colouring, which is a contradiction. So, we know that at least one distance happens at least twice at each vertex in a vertex transitive graph.

6.1 Eccentricity and Distance Multisets of Connected Graphs

Here's a lower bound on the distance multiplicities in a graph that is proven using local distances from each vertex. We underestimate the distances from each vertex, sum the multiplicities together, and then divide by 2 because we are double counting.

Proposition 6.1 (A non-tight lower bound on multiplicities given eccentricities). Let G be a connected graph with diameter d and radius r. For $i \in [r, d]$, let e_i be the number of vertices in V(G) with eccentricity i. Then for each distance $x \in [2, d]$, we have

$$\operatorname{mult}(x) \geq \begin{cases} \frac{n}{2}, & \text{if } x \in [2, r]; \\ \frac{\sum_{i=x}^{d} e_i}{2}, & \text{if } x \in [r+1, d]. \end{cases}$$

Proof. Let u be one of the e_i vertices with eccentricity i. We first show that for each $j \in [1, i]$, u is at distance j from at least one other vertex in G. This follows from the fact that since G is connected, there is a spanning tree of G that connects u to every other vertex $v \in G \setminus \{u\}$ with shortest paths between u and each v (can use Dijkstra's algorithm). Let v be a vertex in $G \setminus \{u\}$

such that d(u, v) = i, and define P to be the (u, v)-path in the spanning tree. Then the distances from u to every vertex in P are precisely $\{1, 2, ..., i\}$. There are e_i vertices with eccentricity i, so the distances $\{1, 2, ..., i\}$ each occur from each of these e_i vertices. Since these distances occur with exactly one other vertex, we are double counting. Thus for each $i \in [r, d]$ the distances $\{1, 2, ..., i\}$ occur at least $\frac{e_i}{2}$ (I think we can take the ceiling here, but not sure) times. So we have the following lower bounds on the multiplicities of G:

$$\operatorname{mult}(x) \ge \begin{cases} \frac{n}{2}, & \text{if } x \in [2, r]; \\ \frac{\sum_{i=x}^{d} e_i}{2}, & \text{if } x \in [r+1, d]. \end{cases}$$

7 Graph Distance Multiplicity Vector Space

In this section, I introduce some initial ideas for comparing distance multisets in a diameterdimensional vector space \mathbb{R}^d whereby we represent the multisets as multiplicity vectors. This model might help us probe into the graph structure that causes some multiplicity vectors to be realized by more graphs than other multiplicity vectors. Once this graph structure is understood, we can use the vector space to compare the structure of a pair of isodiametric graphs by only looking at the relative positions/angles of their correspond multiplicity vectors in \mathbb{R}^d . At the very least, it would probably be a useful lens through which to study multiplicity lists.

We consider multiplicity lists of all connected graphs with diameter d as vectors in \mathbb{R}^d . Since every graph distance in [1,d] must occur at least once, we assume all multiplicity vectors are in the positive orthant of \mathbb{R}^d . Our main goal with this model is to derive a concrete parameter with which to compare multiplicity vectors of isodiametric graphs. The hope is that we can glean insight into graph structure by comparing multiplicity vectors.

A concern/drawback regarding many graphs realizing the same multiplicity vector:

There is a significant drawback here in that many graphs with quite different structure can realize the same multiplicity vector. However, I believe it may be possible to discern the number of graphs that a given multiplicity vectors can realize. Note that it is important for the graphs to be connected since many disconnected graphs can easily share the same distance multiset regardless of the structure within components. For connected graphs, it appears to usually be the case that a multiplicity vector can be realized by many connected graphs; however, I believe (but I haven't sorted this out yet) connected graphs with the same multiplicity vector have (1) some common structure like similar degree sequences and (2) some graph parameters seem to correlate with the number of graphs that realize a given multiplicity vector, but I haven't found one that reliably isolates vectors with few realizing graphs.

Back to the geometric model for multiplicity vectors: The approach is to determine a set of special standard graph classes whose multiplicity vectors are well understood and use these as landmarks by which to compare multiplicity vectors of other graphs. Let \mathbf{g} and \mathbf{h} be multiplicity vectors for the isodiametric graphs G and H, respectively. Suppose G is considered to be a "standard" graph. We compare H with G by considering the inner product of their multiplicity vectors

$$\langle \mathbf{g}, \mathbf{h} \rangle = \|\mathbf{g}\| \|\mathbf{h}\| \cos(\theta)$$

and solving for θ . Note that in general, $0 \le \theta \le \frac{\pi}{2}$, because all vectors are in the positive orthant of \mathbb{R}^d . The parameter θ is a measure of how similar \mathbf{g} and \mathbf{h} are because \mathbf{h} is within a cone centred about \mathbf{g} in \mathbb{R}^d with angle θ . How or whether this vector similarity corresponds to graph structure similarity is yet to be determined.

Square Grid and Path Example: If H is the a by a grid graph and G is the path with length 2(a-1), then as $a \to \infty$, $\theta(G,H)$ seems to tend to around 27 degrees (0.47 radians), which is relatively small. Full disclosure, I actually only searched all $a \le 100000$ using the grid graph multiplicity result from the previous section, I didn't evaluate a limit.

Remark About Cycles: Recall from the previous section that odd cycles have the distance multiset $\{1^{2d+1}, 2^{2d+1}, \dots, d^{2d+1}\}$, which means that if $G = C_{2d+1}$, then $\mathbf{g} = (2d+1)(\mathbb{I}_d)$. Thus $\theta(C_{2d+1}, H) \leq \frac{\pi}{4}$ for all graphs H with diameter d. Since the cycle multiplicity vector is a scalar multiple of \mathbb{I} , cycles could be a good standard graph class. However, this framing is not so justified because there are many graphs (but not trees:D) with the same multiplicity vector as C_{2d+1} .

Finding Graph Structure Similarity Given Small Theta: I think the main question I'm curious to explore here is: supposing $\theta(G, H)$ is small, then what properties do G and H share (if any)? For example, if $\theta(C_{2d+1}, H)$ is small, does this mean that the degree sequences of the two graphs are similar or maybe the eccentricity sequences?

Embracing the Fact That Many Graphs Have Identical Multiplicity Vectors: If many graphs have the same multiplicity vector \mathbf{v} , then this might suggest that \mathbf{v} is rather significant for some graph theoretic reason. Perhaps it is best to imagine such a multiplicity vector in \mathbb{R}^d as a kind of "graph gravity well" that absorbs many distinct graphs towards it. More concretely, while few graphs uniquely associate with a multiplicity vector, it's worth asking what common graph structure permits so many graphs to have the same multiplicity vector \mathbf{v} .

Calculating the Angle When G is a Path: Let G be a path of length d, then we say that $\mathbf{g} = (d, d-1, \ldots, 1)$ is the multiplicity vector of G. Let H be a graph of order n with multiplicity vector $\mathbf{h} = (m_1, m_2, \ldots, m_d)$, where m_i is the multiplicity of distance i in H. Note that $\sum_{i=1}^d m_i = \binom{n}{2}$ and $\sum_{i=1}^d i m_i = W(H)$, where W(H) is the sum of all distances in H (also known as the Wiener index of H). Then

$$\langle \mathbf{g}, \mathbf{h} \rangle = \sum_{i=1}^{d} (d+1-i) \cdot m_i$$
$$= (d+1) \sum_{i=1}^{d} m_i - \sum_{i=1}^{d} i m_i$$
$$= (d+1) \binom{n}{2} - W(H).$$

By the definition of the inner product in \mathbb{R}^d ,

$$\langle \mathbf{g}, \mathbf{h} \rangle = \|\mathbf{g}\| \|\mathbf{h}\| \cos(\theta),$$

where θ is the angle between **g** and **h** in \mathbb{R}^d . Note that

$$\|\mathbf{g}\| = \sqrt{\sum_{i=1}^{d} (d+1-i)^2} = \sqrt{\sum_{i=1}^{d} i^2} = \sqrt{\frac{d(d+1)(2d+1)}{6}}.$$

So altogether we have

$$(d+1)\binom{n}{2} - W(H) = \sqrt{\frac{d(d+1)(2d+1)}{6}} \cdot ||\mathbf{h}|| \cdot \cos(\theta).$$

Why is this interesting? Note n, W(H), and $\|\mathbf{h}\|$ are parameters that depend only on H, so they determine the angle θ , which can be seen as a measure of how similar H and G are. For example, let $H = K_{1,n-1}$; since H has diameter 2, we assume d = 2. Then it is straightforward to see that $\|\mathbf{h}\| = \sqrt{\binom{n-1}{2}^2 + (n-1)^2}$ and $W(K_{1,n-1}) = 2\binom{n-1}{2} + (n-1)$. Thus we have

$$3\binom{n}{2} - \left(2\binom{n-1}{2} + (n-1)\right) = \sqrt{5} \cdot \sqrt{\binom{n-1}{2}^2 + (n-1)^2} \cdot \cos(\theta)$$

$$\Leftrightarrow 2\binom{n}{2} - \binom{n-1}{2} = \sqrt{5\left(\binom{n-1}{2}^2 + (n-1)^2\right)} \cdot \cos(\theta)$$

$$\Leftrightarrow \cos(\theta) = \frac{\binom{n+1}{2}}{\sqrt{5\left(\binom{n-1}{2}^2 + (n-1)^2\right)}}$$

Note that as $n \to \infty$, $\cos(\theta)$ tends to $\frac{1}{\sqrt{5}}$. This means that $\lim_{n\to\infty} \theta(n) \sim 1.1071$, which is about 63.43 degrees. While we might expect the angle to be closer to $\frac{\pi}{2}$ (since paths and stars have very different, almost oppositional, multiplicity structure in trees), it is still the case that **g** and **h** are very dissimilar in both angle and (especially) norm.

8 Key Paper Ideas

8.1 Determine Distance Multisets of Particular Graph Classes

8.1.1 Grids, Tori, and Their Products

8.1.2 Trees

- Complete r-ary trees
- Caterpillars
- Others

8.1.3 Other Graph Classes?

- Planar Graphs?
- Interval Graphs?

8.2 Express Graph Distance Multiplicities in Terms of Degree Sequence and Minimal Substructure

8.2.1 Generalized Handshaking and Symmetry

Lemma 7 (Generalized Handshaking Lemma). Let v_1, v_2, \ldots, v_n be the vertices of a graph G and for each $x \in [1, d]$, let $m_i(x)$ be the multiplicity of distance x involving vertex v_i . Then

$$\text{mult}(x) = \frac{1}{2} \sum_{i=1}^{n} m_i(x).$$

The above lemma shows that the distance multiplicities at each vertex generalize vertex degrees, and that the graph multiplicities generalize edges. Indeed if G_x is the graph constructed by joining all pairs of vertices at distance x and then removing all the edges of G, then $m_i(x) = \deg_{G_x}(v_i)$ and $|E(G_x)| = \text{mult}_G(x)$.

Corollary 8.1. If G is vertex transitive, and $m(1), m(2), \ldots, m(d)$ are the multiplicities of distances involving an arbitrary fixed vertex, then for each distance $x \in [1, d]$, we have $\operatorname{mult}(x) = m(x) \frac{n}{2}$.

Indeed if we know the orbits of the graph, and we know all the distances at a vertex from each orbit, then we can similarly express the distance multiset of the graph in terms of these known distances.

8.2.2 Small Diameter Trees

8.3 Uniform Multiplicity Graph Classification

- 8.3.1 Extend Result on Trees
- 8.4 Probing Various Graph Distance Multiplicity Parameters: Max Multiplicity, Number of Distinct Multiplicities, and Number of Graphs Realizing a Distance Multiset

9 Extremal Numbers for Distance Multiplicities in Trees

Define L(k, d) to be the smallest order of a tree with diameter d whose distance multiset contains every distance multiset of the trees of order k. Similarly define S(k, d) to be largest order of a tree with diameter d whose distance multiset is contained in every distance multiset of the trees of order k. Note that $S(k, d) \le k \le L(k, d)$ and equality holds when d = 2 with extremal example $K_{1,k-1}$. Also, S(k, k-2) = k-1 with extremal example P_{k-1} .

The main motivation for these extremal numbers is the following: tight example trees probably have similar structure, so if we can classify tight examples, then upper/lower bounding the multiplicity distributions of trees of order k amounts to calculating the distance multisets of tight examples for these extremal numbers. These bounds are likely not to be best possible, because the distance multiset with smallest/largest multiplicities that contains/(is contained by) all distance multisets of all trees of order k probably isn't realizable as the distances in a tree. However, this problem seems easier to approach if we assume a smallest/largest all-containing/contained distance multiset is realized by a graph (tree). By "easier" I mean that we can search for bounds on L(k,d) and S(k,d) by looking for constructions of particular graphs, and then get multiplicity distribution bounds by calculating distance multisets of these constructed graphs.

Below we show by construction that $L(k,d) \leq 2k$. This bound is certainly not tight, but it's a start showing that $L(k,d) \leq O(k)$ and also just introducing the method. The main idea is very simple, since $\operatorname{mult}(1) = k - 1$, it is sufficient to construct a tree that has $\operatorname{mult}(x) \geq {k-1 \choose 2}$ for each $x \in [2,d]$. The construction is a particular type of caterpillar that biases higher degree vertices towards the periphery.

Proposition 9.1. The distance multiset of every tree of order k is contained within the distance multiset of a tree of order $L(k,d) \leq O(k\sqrt{d})$.

Proof. We construct a caterpillar graph T that satisfies the property that each distance $2,3,\ldots,d$ has multiplicity at least $\binom{k-1}{2}$, which is the largest multiplicity that any distance in a tree of order k can have. We begin with a diametrical path $P=(v_{-1},v_0,\ldots,v_{d-1})$, and then we will place leaves on the vertices of P to ensure the desired multiplicities. For each $i\in[0,d-2]$, define $\lceil a_i\rceil$ to be the number of leaves to append to vertex v_i ; and set $a_{-1}=a_{d-1}=0$. We will assume that $a_i=a_{d-2-i}$ (perhaps a better bound is achievable without this assumption, but it makes things nice below). Observe that for $\operatorname{mult}(d)=\binom{k-1}{2},\ a_0=a_{d-2}=\sqrt{\binom{k-1}{2}}$, because all paths of length d are between leaves of v_0 and those of v_{d-2} and there are at least a_1^2 of each as well as the (v_{-1},v_{d-1}) -path. The paths of length d-1 can only occur between neighbours of v_1 and v_{d-2} , as well as those of v_0 and v_{d-3} ; there are $a_0a_{d-3}+a_1a_{d-2}=a_0a_1+a_1a_0$ such paths involving leaves as well as 2 within P. In general, for each $r\in[0,d-3]$ there are $\sum_{j=0}^r a_j a_{r-j}$ paths of length d-r involving leaves as end vertices, plus r+1 such paths whose endpoints are in P. Note that when r=d-1, we are counting paths of length 1, which is at least k-1 in T because $|V(T)| \geq k$. When r=d-2, we are counting the number of paths of length 2, which is $\sum_{v\in V(T)} \binom{\deg(v)}{2}$, and we will show later that this quantity is much larger than $\binom{k-1}{2}$. So, our goal is to find (possibly real) values a_0,a_1,\ldots,a_{d-1} such that for each $r\in[0,d-3]$,

$$\sum_{j=0}^{r} a_j a_{r-j} = \binom{k-1}{2}.$$

Claim. It holds that $a_r = \frac{\binom{2r}{r}}{4r} \binom{k-1}{2}^{1/2}$.

Given the claim we have that $\lceil a_r \rceil \leq \frac{\binom{2r}{r}}{4^r} \frac{k}{\sqrt{2}} + 1$, and so the number of vertices in the caterpillar is at least

$$|P| + \sum_{i=0}^{d-2} \lceil a_i \rceil \leq d+1 + \sum_{i=0}^{d-2} \left(\frac{\binom{2i}{i}}{4^i} \frac{k}{\sqrt{2}} + 1 \right) = 2d + \frac{k}{\sqrt{2}} \sum_{i=0}^{d-2} \frac{\binom{2i}{i}}{4^i}.$$

Claim (Claim 2). It holds that

$$\sum_{i=0}^{d-2} \frac{\binom{2i}{i}}{4^i} \le \frac{2}{\pi} \sqrt{d} (1 + O(\frac{1}{d})).$$

So, there exists a caterpillar of order $2d + \sqrt{\frac{2}{\pi}}k\sqrt{d}(1+O(\frac{1}{q}))$ such that every distance in $\{3,4,\ldots,d\}$ occurs at least $\binom{k-1}{2}$ times. Note that $\sum_{j=0}^r a_j a_{r-j} = \binom{k-1}{2}$ Note that

$$\begin{aligned} & \operatorname{mult}(2) = \sum_{v \in P \setminus \{v_{-1}, v_d\}} \binom{\deg(v)}{2} \\ &= \sum_{i=0}^{d-2} \binom{a_i + 2}{2} \\ &\geq \frac{1}{2} \sum_{i=0}^{d-2} a_i a_i \\ &\geq \frac{a_{\lfloor (d-2)/2 \rfloor}^2}{2} + \frac{1}{2} \binom{\lfloor (d-2)/2 \rfloor - 1}{2} a_i a_{i+1} + \sum_{i=\lfloor (d-2)/2 \rfloor + 1}^{d-2} a_i a_{i-1} \right) \\ &> \frac{1}{2} \binom{\lfloor (d-2)/2 \rfloor - 1}{2} a_i a_{i+1} + \sum_{i=\lfloor (d-2)/2 \rfloor}^{d-2} a_{i+1} a_i \right) \\ &= \frac{1}{2} \binom{\lfloor (d-2)/2 \rfloor - 1}{2} a_i a_{d-3-i} + \sum_{i=\lfloor (d-2)/2 \rfloor}^{d-2} a_{d-3-i} a_i \right) \\ &= \frac{1}{2} \sum_{i=0}^{d-3} a_i a_{d-3-i} \\ &= \frac{1}{2} \operatorname{mult}(3) \end{aligned}$$

[and the rest of the distances $2, 3, \ldots, \lfloor d/2 \rfloor$ also occur this many times]. Thus $L(k, d) \leq O(k\sqrt{d})$.

Proof of Claim 1. The unique sequence of real numbers x_0, x_1, \ldots, x_n that satisfies the property $\sum_{j=0}^r x_j x_{r-j} = 1$ is $x_r = \binom{2r}{r} 4^{-r}$ (see Richard Stanley's Enumerative Combinatorics Volume 1 (2nd Ed.) Page 11). Since our sequence $a_0, a_1, \ldots, a_{d-1}$ satisfies the property

$$\sum_{j=0}^{r} a_j a_{r-j} = \binom{k-1}{2} \Leftrightarrow \sum_{j=0}^{r} \left(a_j \binom{k-1}{2}^{-1/2} \right) \left(a_{i-j} \binom{k-1}{2}^{-1/2} \right) = 1,$$

it follows that
$$a_r {k-1 \choose 2}^{-1/2} = \frac{{2r \choose r}}{4r} \Leftrightarrow a_r = \frac{{2r \choose r}}{4r} {k-1 \choose 2}^{1/2}$$
, as desired.

Proof of Claim 2. First we show that $\sum_{i=0}^{d-2} \frac{\binom{2i}{i}}{4^i} = \binom{d-3/2}{d-2}$. Then we bound this quantity. Induction. Prove and apply the identity $\binom{n+1/2}{n} = \binom{2n}{n} \frac{2n+1}{4^n}$. Set q := d-2. Given Claim 2, we can use a property of the Gamma function and Stirling's

approximation to do the following:

Since
$$\lim_{q\to\infty} (\frac{q+3/2}{q+1})^{q+1/2} = \sqrt{e}$$
, it follows that $\binom{q+1/2}{q} \leq \frac{2\sqrt{q+3/2}}{\sqrt{\pi}}(1+O(\frac{1}{q}))$, which means that $\binom{q+1/2}{q} \leq O(\sqrt{q})$.

We need not restrict our constructions to trees, but it is often easier to calculate the distance multiset of trees since each distance result from a unique path. Also, there might turn out to be something interesting to say about a chain of tight example trees of orders L(k,d), L(k+1) $1, d, \ldots, L(k+b, d)$; that is, it seems kind of "natural" to restrict constructions to the same class defined by the extremal number.

9.1More General Approach

Let $b = (b_2, b_3, \ldots, b_d)$ be a sequence of real numbers greater than or equal to 1 and d a positive integer. Define D to be the multiset $D = \{2^{b_2}, 3^{b_3}, \dots, d^{b_d}\}$ (Note we allow partial inclusion of the integers $2, 3, \ldots, d$ here). Then there exists a tree with diameter d whose distance multiset contains D and has smallest order $L(d,b) \leq O(b_{ave}\sqrt{d})$.

Proof. We construct a caterpillar graph T that satisfies the property that each distance $2, 3, \ldots, d$ has multiplicity at least b. We begin with a diametrical path $P = (v_{-1}, v_0, \dots, v_{d-1})$, and then we will place leaves on the vertices of P to ensure the desired multiplicities. For each $i \in [0, d-2]$, define $[a_i]$ to be the number of leaves to append to vertex v_i ; and set $a_{-1} = a_{d-1} = 0$. We will assume that $a_i = a_{d-2-i}$ (perhaps a better bound is achievable without this assumption, but it makes things nice below). Observe that for $\operatorname{mult}(d) = b$ to hold, it is sufficient for $a_0 = a_{d-2} = \sqrt{b}$, because all paths of length d are between leaves of v_0 and those of v_{d-2} and there are at least a_1^2 of each as well as the (v_{-1}, v_{d-1}) -path. The paths of length d-1 can only occur between neighbours of v_1 and neighbours of v_{d-2} , as well as those of v_0 and v_{d-3} ; there are $a_0a_{d-3} + a_1a_{d-2} = a_0a_1 + a_1a_0$ such paths involving leaves as well as 2 within P. In general, for each $r \in [0, d-3]$ there are $\sum_{j=0}^{d-r} a_j a_{d-r-j}$ paths of length d-r involving leaves as end vertices, plus r+1 such paths whose endpoints are in P. Note that when r = d-1, we are counting paths of length 1, which is |V(T)|-1. When r = d-2, we are counting the number of paths of length 2, which is

So this means that

$$\sum_{d-2 \ge 0} 2 \operatorname{mult}(2) x^{d-2} \ge \sum_{d-2 \ge 0} \left(\sum_{i=0}^{d-2} a_i a_{d-2-i} \right) x^{d-2}$$

So, our goal is to find (possibly real) values $a_0, a_1, \ldots, a_{d-1}$ such that for each $r \in [0, d-3]$,

$$\sum_{j=0}^{r} a_j a_{r-j} = \binom{k-1}{2}.$$

9.2 Restarting the Proof

Proof. First, we show that $\sum_{i=0}^{d-r} a_i a_{d-r-i} \leq \sum_{i=0}^{d-(r-1)} a_i a_{d-(r-1)-i}$ for each $r \in [3,d]$, which implies that $\operatorname{mult}(r) \leq \operatorname{mult}(r-1)$. Then we show that $a_r = \binom{2(d-r)}{d-r} 4^{-(d-r)} \sqrt{b}$. Then $\operatorname{mult}(2) \geq \operatorname{mult}(d) = b$. Altogether, it follows that T is a tree satisfying $\operatorname{mult}(r) \geq b$ for each $r \in [2,d]$. Finally, we estimate |V(T)| and calculate the number of extraneous distances in D(T) to achieve this b-uniform multiplicity property.

Remark: This convolution sum comes from the caterpillar structure. Ideally, we could specify that $\operatorname{mult}(r)$ be around b_r rather than the constant b. There are probably other distributions b_2, b_3, \ldots, b_d that are relatively easy to work with as well – for example, what if $b_r = (d - r + 1)g$ for some $g \in \mathbb{Z}^+$?.

The broad question here is: given a multiset M with positive integer support $\{1, 2, ..., d\}$, find a graph G (tree in this case) with small (ideally smallest) order such that $M \subseteq D(G)$.

The above result has a neat corollary: Setting $b := \binom{k-1}{2}$, it holds that T contains the distance multiset of every tree of order k and diameter d, and $|V(T)| \le O(k\sqrt{d})$.

9.3 Technique for Constructing Caterpillar with Half its Multiplicities Specified by the Square of a Known Generating Function

In this section, we show a technique that allows one to specify a sequence of multiplicities and construct a graph such that the larger half of its distances attain (approximately) the specified multiplicities. The problem amounts to whether or not the sequence associated with the square root of the generating function for the specified sequence is known.

Let $P=(v_0,\ldots,v_{d-2})$ be a path such that for each $i\in[0,d-2],v_i$ has a_i leaves joined to it. Let $b=(b_0,b_1,\ldots,b_{\lfloor\frac{d-2}{2}\rfloor})$ be a sequence of reals greater than or equal to 1. Define D to be an integer multiset where for each $r\in[d-\lfloor\frac{d-2}{2}\rfloor,d]$, $\mathrm{mult}_D(r)=b_{r-(d-\lfloor\frac{d-2}{2}\rfloor)}$. Then we show below that there exists a caterpillar graph T whose distance multiset D(T) satisfies the property that for each $r\in[d-\lfloor\frac{d-2}{2}\rfloor,d]$, $\mathrm{mult}_{D(T)}(r)\approx\mathrm{mult}_D(r)$. Note the same cannot be said for the multiplicities of the smaller half of distances.

The idea is to first assume that $a_i = a_{d-2-i}$, which ensures that $\operatorname{mult}(r) \approx \sum_{i=0}^{d-r} a_i a_{d-r-i}$ (this will be explained shortly) and also that there are $\lfloor \frac{d-2}{2} \rfloor + 1$ unknowns

$$a_0 = a_{d-2}, a_1 = a_{d-3}, \dots, a_{\lfloor \frac{d-2}{2} \rfloor} = a_{d-2-\lfloor \frac{d-2}{2} \rfloor}.$$

Then we solve for these unknowns using the following system of $\lfloor \frac{d-2}{2} \rfloor + 1$ equations: for each $r \in [d - \lfloor \frac{d-2}{2} \rfloor, d]$, we have

$$\sum_{i=0}^{d-r} a_i a_{d-r-i} = b_{r-(d-\lfloor \frac{d-2}{2} \rfloor)}.$$
 (1)

Note that $\operatorname{mult}(r)$ also includes distances between leaves and vertices in P, and there are $\sum_{i=0}^{d-1-r} 2a_i$ of such distances for each $r \in [d-\lfloor \frac{d-2}{2} \rfloor, d-1]$, but these terms are all linear in a_i , and so contribute much less than the quadratic terms in the convolution sum above; so for this reason and simplicity, we do not emphasize these distances going forward. Also observe that there are d-1-r occurrences of distance $r \in [3, d-2]$ within P. So in general,

$$\operatorname{mult}(r) = \sum_{i=0}^{d-r} a_i a_{d-r-i} + \sum_{i=0}^{d-1-r} 2a_i + \sum_{i=0}^{d-1-r} 1.$$

Now back to developing the technique for working with the quadratic terms in the convolution. Since

$$F(x)^{2} := \left(\sum_{d-r\geq 0} a_{d-r} x^{d-r}\right)^{2} = \sum_{d-r\geq 0} \left(\sum_{i=0}^{d-r} a_{i} a_{d-r-i}\right) x^{d-r},$$

if b is given by a generating function G(x), then $F(x) = \sqrt{G(x)}$. Thus if $\sqrt{G(x)}$ is known, then we know F(x) and can construct a caterpillar whose larger half of distances closely attain the

multiplicities specified by b. For example, if for some constant $C, b = (C, C, \dots, C)$, then

$$\sum_{d-r\geq 0} \left(\sum_{i=0}^{d-r} a_i a_{d-r-i}\right) x^{d-r} = \sum_{d-r\geq 0} C x^{d-r}$$

$$\Leftrightarrow \sum_{d-r\geq 0} \left(\sum_{i=0}^{d-r} \left(\frac{a_i}{\sqrt{C}}\right) \left(\frac{a_{d-r-i}}{\sqrt{C}}\right)\right) x^{d-r} = \sum_{d-r\geq 0} x^{d-r}$$

$$\Leftrightarrow \sum_{i=0}^{d-r} \left(\frac{a_i}{\sqrt{C}}\right) \left(\frac{a_{d-r-i}}{\sqrt{C}}\right) = 1,$$

which implies that $\frac{a_{d-r}}{\sqrt{C}} = {2(d-r) \choose d-r} 4^{-(d-r)}$, since this is the unique sequence of reals (with $a_0/\sqrt{C} = 1$) that has convolutions always equalling 1. Thus setting a_{d-r} and a_{r-2} to $\lceil {2(d-r) \choose d-r} 4^{-(d-r)} \sqrt{C} \rceil$ for each $r \in [d-\lfloor \frac{d-2}{2} \rfloor, d]$ ensures that $\operatorname{mult}_T(r) \approx \operatorname{mult}_D(r) = b_{r-(d-\lfloor \frac{d-2}{2} \rfloor)} = C$. In fact, if we allow for real number multiplicities, where the distances from one of the appended leaves at each internal path vertex are possibly included only partially, then we can remove the ceiling function and get that $\operatorname{mult}_T(r) = \operatorname{mult}_D(r) + \sum_{i=0}^{d-1-r} 2a_i + \sum_{i=0}^{d-1-r} 1$.

Here is an example of such a caterpillar:

Example 4. Let
$$d = 9$$
 and $C = 78 = \binom{13}{2}$. Then

$$(a_0, a_1, \dots, a_7) \approx (8.832, 4.416, 3.312, 2.760, 2.760, 3.312, 4.416, 8.832),$$

and if we denote the quadratic terms in $\operatorname{mult}(r)$ as $\operatorname{mult}_Q(r)$, then we have

$$\begin{split} \operatorname{mult}_Q(6) &= \operatorname{mult}_Q(7) = \operatorname{mult}_Q(8) = \operatorname{mult}_Q(9) = 78.004224 \\ \operatorname{mult}_Q(5) &= 84.098304 \\ \operatorname{mult}_Q(4) &= 101.161728 \\ \operatorname{mult}_Q(3) &= 133.155648 \\ \operatorname{mult}(2) &= 96.772224 \\ \operatorname{mult}(1) &= 46.64. \end{split}$$

Remark 9.2. When pursuing this caterpillar idea, I was originally motivated by the following problem: Find a smallest order tree with diameter d whose distance multiset contains *all* distance multisets of trees of order k and diameter d (There's an analogous problem for finding a largest order tree whose distance multiset is contained by all trees of order k and diameter d). Looking at the previous example, since no tree of order 14 can have distance multiplicities larger than $\binom{13}{2}$ (extremal example is $K_{1,13}$ for mult(2)), this caterpillar is actually a (definitely not smallest order) solution to the extremal problem. By the way, when b is a constant sequence, it is relatively easy to show that $\text{mult}_Q(r) \leq \text{mult}_Q(r-1)$ for all $r \in [4, d]$, so it isn't a fluke that the smaller distance multiplicities in the example are also large.

We can represent the fractional multiplicities in a graph using the following terminology. A vertex v labelled with a number x indicates that the distances involving the vertex v should be

considered with partial multiplicity; we call x the multiplicity scalar of v. If x and y are multiplicity scalars of v and u, then d(v, u) is counted with multiplicity xy. If a multiplicity scalar is unspecified, then assume it is 1.

Figure 4: Caterpillar with larger multiplicities close to 78, where "close" means the quadratic terms sum to ≈ 78 .

This technique can be applied so long as the choice of b enables the system of equations in (1) to be solved. That is, we need to be able to find a non-negative sequence of reals a_0, a_1, \ldots, a_n such that

$$\sum_{n\geq 0} a_n x^n = \sqrt{\sum_{n\geq 0} b_n x^n}.$$

The trade off here is that the order of T could be very large, and it is not necessarily the case that it is minimal with respect to the property of its large half of distances having the specified multiplicities. Put another way, T could have a lot of extraneous small distances.

For another example, geometric progressions are also suitable choices for b. If $b_i = \alpha^i$, then a simple calculation shows that we should set $a_{d-r} = {2(d-r) \choose d-r} 4^{-(d-r)} \alpha^{d-r}$. Here's the calculation:

$$\begin{split} \sum_{d-r \geq 0} \left(\sum_{i=0}^{d-r} a_i a_{d-r-i} \right) x^{d-r} &= \sum_{d-r \geq 0} \alpha^{d-r} x^{d-r} \\ \left(\sum_{d-r \geq 0} a_{d-r} x^{d-r} \right)^2 &= \frac{1}{1 - \alpha x} \\ \sum_{d-r \geq 0} a_{d-r} x^{d-r} &= (1 - \alpha x)^{-1/2} \\ &= \sum_{d-r \geq 0} \binom{-1/2}{d-r} (-1)^{d-r} \alpha^{d-r} x^{d-r} \\ &= \sum_{d-r > 0} \binom{2(d-r)}{d-r} 4^{-(d-r)} \alpha^{d-r} x^{d-r}. \end{split}$$

I'm hoping this is an early version of a class of techniques that allows us to construct graphs such that *all* (or nearly all) of its distance multiplicities closely resemble those specified. The two main drawbacks to the above approach are (1) only half the multiplicities can be specified and (2) this can cause the order of the constructed graph to be quite large (though this varies depending on

the choice of b), which means it might not be a minimal order construction (which would probably be a more cool thing to find).

What makes this technique work is that convolutions relate to squares of generating functions, and convolutions account for the majority of multiplicities in caterpillars with number of leaves symmetric about the center of the graph. However, many, if not most, of the distances are not accounted for by this caterpillar construction (though it's neat that nearly half of the distance multiplicities essentially are!). Ideally, there would be a way to get a system of maybe just less than d equations so that the same number of unknowns $a_0, a_1, a_2, \ldots, a_{d-2}$ (describing number of leaves (or some other "gadgets") to be appended to specified vertices) could be solved for, given a list of $\sim d$ specified multiplicities.

I tried playing with cycles for a bit to see if convolutions could be applied there to count multiplicities, but had no luck. I think the convolution = square observation can only be leveraged in cases where only half the distance multiplicities are specified. However, it might be possible to find a way to get a system of $\sim d$ equations using a caterpillar (i.e. where we don't assume $a_i = a_{d-2-i}$). In this case, what we would need to do is figure out how to solve the following: for each $r \in [3, d]$, we have the following system of equations:

$$\operatorname{mult}_{Q}(r) = \sum_{i=0}^{d-r} a_{i} a_{i+r-2} = b_{r-3}, \tag{2}$$

but I don't currently have any good ideas about how to work with this sum to find $a_0, a_1, \ldots, a_{d-2}$ (also, it looks like there's an extra unknown here). Anyway, I think this section has sufficiently established that it is worth looking into this type of problem!

9.4 Constructing Trees That Maximize Multiplicity for a Given Distance

Our goal here is to set up and state Conjecture 9.4 (which I think is mostly proven below) on a tight upper bound for the multiplicities of even distances in trees of order k and diameter d. That is, let $\mathcal{T}(k,d)$ denote the set of all trees of order k and diameter d, then we want to find $\max_{T \in \mathcal{T}(k,d)} (\operatorname{mult}_T(i))$, where $\operatorname{mult}_T(i)$ is the multiplicity of distance i in the tree T. We begin by finding the tight example for distance d (when d is even), and then we argue that this example can be slightly altered to maximize the multiplicity of any even distance. What follows is a technical lemma that is necessary to prove the optimality of the construction in the diameter multiplicity case.

Lemma 8. Let $\{a_1, a_2, \ldots, a_n\}$ be a set of positive reals such that $\sum_{i=1}^n a_i = k - rn \ge n$, where $k, r \in \mathbb{Z}^+$ and $k \ge r/2$. Then the sum $\sum_{i < j \le n} a_i a_j$ is maximized at $f(n, k, r) = \binom{n}{2} \frac{(k-rn)^2}{n^2}$ (with $a_i = \frac{k-rn}{n}$), when $n = \lceil n_0(k,r) \rceil$, where n_0 is the solution to the following cubic such that $n_0 \in [n_{\max} - 1, n_{\max}]$, where $\frac{\partial}{\partial n} f(n_{\max}, k, r) = 0$ and $2 \le n_{\max} < k - rn$:

$$n^{3}(2r^{2}) + n^{2}(2r^{2} - 2kr) + n(-2kr) + k^{2} = 0.$$

Proof Sketch. Observe that $\sum_{1=i < j \le n} a_i a_j$ is maximized when $a_1 = a_2 = \cdots = a_n = \frac{k-rn}{n}$. Thus

$$\sum_{i < j \le n} a_i a_j \le \binom{n}{2} \frac{(k - rn)^2}{n^2} = \frac{(n - 1)(k - rn)^2}{2n},$$

which is the function f(n,k,r) in the lemma statement. Now we find integers n that maximize f(n,k,r). Note that f(n,k,r) is maximized at $n=\frac{1}{4}\left(\sqrt{\frac{8k}{r}+1}+1\right)=n_{\max}$ when $k-rn\geq n$. To find nearest integer values that maximize f(n,k,r), we need to consider f(n,k,r) within the interval I within which f is concave and $n_{\max}\in I$. This interval I is [1,b] where b is the unique real number satisfying $\frac{\partial^2}{\partial n^2}f(b,k,r)=0$, whereby the concavity of f fails when n>b. Since $\frac{\partial^2}{\partial n^2}f(n,k,r)=r^2-\frac{k^2}{n^3}$, $b=\frac{k^2/3}{r^2/3}$ and so $I=[1,(\frac{k}{r})^{2/3}]$. Thus within this interval I, f(n,k,r) is concave. To find the integer(s) that maximize f(n,k,r), we find n_0 for which $f(n_0,k,r)=f(n_0+1,k,r)$ (such an n_0 exists and is unique by continuity and concavity of f within I, respectively), and then the maximal integer solution(s) will be $\{\lceil n_0 \rceil, \lfloor n_0 + 1 \rfloor\}$. Note that f(n,k,r) has only two local extrema in \mathbb{R}^+ , one local maximum at $f(n_{\max},k,r)$ in I and one local minimum at f(k/r) in $\mathbb{R}\setminus I$, so we solve the following equation for n and choose the root within I:

$$\frac{(n-1)(k-rn)^2}{2n} = \frac{(n)(k-r(n+1))^2}{2(n+1)}$$

$$\Leftrightarrow 2(n+1)(n-1)(k-rn)^2 = 2n^2(k-r(n+1))^2$$

$$\Leftrightarrow n^3(2r^2) + n^2(2r^2 - 2kr) + n(-2kr) + k^2 = 0.$$

We want the solution within the interval $[x_{\text{max}} - 1, x_{\text{max}}]$; denote this number by $n_0(k, r)$. This $n_0(k, r)$ can be easily found for a given k and r using a computer solver like Sage. Thus $f(\lceil n_0(k, r) \rceil, k, r)$ is the maximum of f(n, k, r) over I restricted to the integers.

In particular, we have the following expression for $n_0(k,r)$ [wow, simplification needed! The root is real, so it should be possible to simplify out the $\sqrt{-1}$ s somehow]:

$$n_0(k,r) = -\frac{1}{24} \cdot 4^{\frac{2}{3}} \left(i\sqrt{3} + 1 \right) \left(\frac{4(k-r)^3}{r^3} + \frac{18(k-r)k}{r^2} - \frac{27k^2}{r^2} + \frac{3\sqrt{3}k\sqrt{-\frac{8k^3 - 11k^2r - 4kr^2 - 4r^3}{r}}}{r^2} \right)^{\frac{1}{3}} + \frac{4^{\frac{1}{3}} \left(i\sqrt{3} - 1 \right) \left(\frac{(k-r)^2}{r^2} + \frac{3k}{r} \right)}{6\left(\frac{4(k-r)^3}{r^3} + \frac{18(k-r)k}{r^2} - \frac{27k^2}{r^2} + \frac{3\sqrt{3}k\sqrt{-\frac{8k^3 - 11k^2r - 4kr^2 - 4r^3}{r}}}{r^2} \right)^{\frac{1}{3}} + \frac{k-r}{3r}.$$

This is the end of the proof. [But like clearly I need to stare at the Sage output for $n_0(k, r)$ above for a while to figure out how to simplify it...]

Now back to the graph problem. We want to find a tree of order k and diameter d that maximizes the multiplicity of d across all such trees. We will use Lemma 8 with r = d/2 - 1 and $n_0(k-1,d/2-1)$. Since a distance d is counted as a sum of products of the form $(\deg(v_i)-1)(\deg(v_j)-1)$ where $\{v_i,v_j\}\in\binom{V(T)}{2}$ such that $d(v_i,v_j)=d-2$, we have for some $S\subseteq\binom{V(T)}{2}$ that $\operatorname{mult}(d)\leq\sum_{\{v_i,v_j\}\in S}(\deg(v_i)-1)(\deg(v_j)-1)$. By Lemma 8, the largest this sum can be is when there are vertices $v_1,v_2,\ldots,v_{\lceil n_0(k-1,d/2-1)\rceil}$ with balanced degree and degree sum $k-1-(d/2-1)\lceil n_0(k-1,d/2-1)\rceil$ each at distance d-2 from one another. We construct a graph with such structure presently, denote it using G(k,d), and call it a balanced-broom tree of order k and even diameter d.

Here is the construction for a balanced-broom tree G(k,d) with order k and even diameter d. Begin with a centre vertex v. Then append $\lceil n_0(k-1,d/2-1) \rceil$ length d/2-1 paths to v by identifying an end vertex of each path to v. Now for the other end vertices (equivalently, the leaves of the tree built so far), call them $v_1, v_2, \ldots, v_{\lceil n_0(k-1,d/2-1) \rceil}$, we append $k-1-(d/2-1)\lceil n_0(k-1,d/2-1) \rceil$ leaves to these end vertices in a balanced way so that their degrees differ by at most one. Let $S = \{\{v_i, v_j\} : 1 \le i < j \le \lceil n_0(k-1,d/2-1) \rceil\}$, and notice that each pair $\{v_i, v_j\} \in S$ satisfies $d(v_i, v_j) = d-2$. Then by Lemma 8, we have

$$\sum_{\substack{\{v_i, v_j\} \in S}} (\deg(v_i) - 1)(\deg(v_j) - 1) = \max_{\substack{T \in \mathcal{T}(k, d) \\ S' \subseteq \binom{V(T)}{2} \\ \{v_i, v_j\} \in S' \\ d(v_i, v_i) = d - 2}} (\deg(v_i) - 1)(\deg(v_j) - 1) = \max_{T \in \mathcal{T}(k, d)} (\operatorname{mult}_T(d)).$$

That is, any tree that maximizes the multiplicity of distance d must, by Lemma 8, maximize the sum on the LHS; G(k, d) does this, therefore G(k, d) maximizes the multiplicity of d across *all* trees of order k and diameter d.

It is straightforward to count $\operatorname{mult}_{G(k,d)}(d)$, so we have the following proposition.

Proposition 9.3. Let T be a tree of order k and diameter d such that d is even. Set $n_0 := n_0(k-1,d/2-1)$ as defined above and set $\ell := k-1-(d/2-1)\lceil n_0 \rceil$. Let $\ell = q\lceil n_0 \rceil + s$, where $0 \le s < \lceil n_0 \rceil$. Then the following bound holds with tight example G(k,d):

$$\operatorname{mult}_{T}(d) \leq \binom{s}{2} \left\lceil \frac{\ell}{\lceil n_{0} \rceil} \right\rceil^{2} + \binom{\lceil n_{0} \rceil - s}{2} \left\lfloor \frac{\ell}{\lceil n_{0} \rceil} \right\rfloor^{2} + s(\lceil n_{0} \rceil - s) \left\lceil \frac{\ell}{\lceil n_{0} \rceil} \right\rfloor \left\lfloor \frac{\ell}{\lceil n_{0} \rceil} \right\rfloor.$$

I am quite sure that a similar graph to G(k,d) maximizes the multiplicity for all even distances $2 \le i \le d$. The construction is simply to create a G(k-(d-i),i) and then identify an end-vertex of a path of length d-i to any leaf of G(k,i). This results in a graph with order k and diameter d, which we denote by G(k,d,i). It is straightforward to see that $\operatorname{mult}_{G(k,d,i)}(i) = \operatorname{mult}_{G(k-(d-i),i)}(i) + d-i$. I think a proof that $\operatorname{mult}_{G(k,d,i)}(i) = \operatorname{max}_{T \in \mathcal{T}(k,d)}(\operatorname{mult}_T(i))$ should follow from the truth of $\operatorname{mult}_{G(k-(d-i),i)}(i) = \operatorname{max}_{T \in \mathcal{T}(k-(d-i),i)} \operatorname{mult}_T(i)$ and showing (probably by appealing to Lemma 8) that G(k,d,i) is an optimal way to maximize the number of vertex pairs $\{v_i,v_j\}$ satisfying $d(v_i,v_j)=i-2$ while also having order d. We just need to show that appending the path of length d-i doesn't undermine optimality of G(k,d,i). I'm pretty sure that this should be easy. Anyway, so I think the following generalization of Proposition 9.3 is true and our discussion thus far is at least a mostly complete proof sketch.

Conjecture 9.4. Let T be a tree of order k and diameter d (d not necessarily even). Let $2 \le i \le d$ be an even integer. Set $n_0^{(i)} := n_0(k - (d-i) - 1, i/2 - 1)$ and set $\ell^{(i)} := k - (d-i) - 1 - (i/2 - 1) \lceil n_0^{(i)} \rceil$. Let $\ell^{(i)} = q \lceil n_0^{(i)} \rceil + s^{(i)}$, where $0 \le s^{(i)} < \lceil n_0^{(i)} \rceil$. Then the following bound holds with tight example G(k, d, i):

$$\mathrm{mult}_{T}(i) \leq \binom{s^{(i)}}{2} \left\lceil \frac{\ell^{(i)}}{\lceil n_{0}^{(i)} \rceil} \right\rceil^{2} + \binom{\lceil n_{0}^{(i)} \rceil - s^{(i)}}{2} \left\lfloor \frac{\ell^{(i)}}{\lceil n_{0}^{(i)} \rceil} \right\rfloor^{2} + s^{(i)} (\lceil n_{0}^{(i)} \rceil - s^{(i)}) \left\lceil \frac{\ell^{(i)}}{\lceil n_{0}^{(i)} \rceil} \right\rceil \left\lfloor \frac{\ell^{(i)}}{\lceil n_{0}^{(i)} \rceil} \right\rfloor.$$

If we can prove this last optimality step (showing there is no $T \in \mathcal{T}(k,d)$ such that $\operatorname{mult}_T(i) > \operatorname{mult}_{G(k,d,i)}(i)$), then we have a tight upper bound on the multiplicities of even distances in trees,

which would be pretty cool! I haven't thought much about odd distances yet – this case seems less nice because of the lack of symmetry in the branches; but perhaps it's not too bad given the even case.

Also, I believe the *lower bound* problem is approachable as well, and contrary to the upper bound tight examples, which are very starry, tight examples for the lower bound should be very pathy like in long legged spiders. Note that the lower bound tight example isn't trivially a path of length k-1, because k can be arbitrarily larger than d. So, the construction needs to have branching; but where must this branching occur, and how many branches are there?

10 Diameter Distance Removal Algorithm

Proposition 10.1. Let T be a tree with distance multiset $\{1^{m_1}, 2^{m_2}, \dots, d^{m_d}\}$. Then there exists a sequence of graphs

$$T = G_d \subset G_{d-1} \subset \cdots \subset G_2$$
,

such that for every $i \in [2, d]$, G_i has distance multiset $\{1^{m_1 + \sum_{k=i+1}^d m_k}, 2^{m_2}, 3^{m_3}, \dots, i^{m_i}\}$.

Proof. Let $T = G_d$ be a tree with diameter d and distance multiset $\{1^{m_1}, 2^{m_2}, \ldots, d^{m_d}\}$. Let P(T) be the periphery of T and let $v \in P(T)$. Observe that for every pair $\{x,y\} \subseteq P(T)$ it holds that if d(x,y) = d then either d(v,x) = d or d(v,y) = d. This means that every diametrical path has an end vertex at distance d from v. Thus if $D_v = \{u \in V(T) : d(v,u) = d\}$, then the graph G_{d-1} produced by joining each $u \in D_v$ with the unique vertex u' such that d(v,u') = d-2 and d(u,u') = 2 has diameter d-1. Note we do not include multiple edges here, the edge uu' can only occur once. Since $|D_v| = m_d$, exactly m_d edges are added to produce G_{d-1} .

A very nice fact about G_{d-1} is that it has distance multiset $\{1^{m_1+m_d}, 2^{m_2}, 3^{m_3}, \dots, (d-1)^{m_{d-1}}\}$. This fact is explained presently: Let T_{d-1} be the graph induced by all vertices with distance at most d-2 from v. Observe that T_{d-1} is a tree such that $T_{d-1} \subset T$, so the distances between vertices in T_{d-1} are unchanged from those in T. The distances that are changed (by adding the m_d edges above) are

- 1. Class 1: Those between vertices at distance exactly d from v and those with distance at most d-2 from v;
- 2. Class 2: Let x, y be at distance exactly d from v such that $2 \le d(x, y) < d$ and let $P(x, y) = (x, x', \dots, y', y)$ be the unique (x, y)-path in G_d , then the only distances that are changed when producing G_{d-1} are $d(x, y) \to d(x, y) 2$, and $d(x', y) = d(x, y') = d(x, y) 1 \to d(x, y) 2$.

For Class 2 distances: Note that if there is a pair of vertices x, y at distance d from v such that $2 \le d(x, y) = t < d$ in G_d , then.... If T is a caterpillar, then $t \le 2$, and so x and y are still at distance 2 in G_{d-1} because they are not joined together in G_{d-1} , and x' = y' where d(x, y') = d(x', y) = 1 is also unchanged.

For Class 1 distances: Each added edge uu' is at the end of one of the m_d diametrical paths with v as end-vertex, call them $P_{u'}$. So for each of these m_d diametrical paths from v, for each pair of vertices $a, b \in P_{u'}$, d(a, b) decreases by exactly 1; thus if $\{1^d, 2^{d-1}, \dots, d^1\}$ was the distance multiset of $P_{u'}$ before adding uu', the distance multiset after adding uu' is $\{1^{d+1}, 2^{d-1}, 3^{d-2}, \dots, (d-1)^2\}$. Of course, several of these paths must intersect, but each of them reduces the multiplicity of d by 1 and increases the multiplicity of 1 by 1, and all other multiplicities are left unchanged. Since there are no other distances, we have finished proving the case for caterpillars.

For general trees, Class 2 distances are more complicated because t can be larger than 2. However, we can account for the Class 2 distances. For each $t \in [3, d-1]$, define

$$S_t := \{ \{x, y\} \in \binom{P(G_d)}{2} : d(x, v) = d(y, v) = d, d(x, y) = t \}.$$

Observe that S_t is empty when t is odd because any (x, y)-path intersects the (v, x)-path and (v, y)-path at exactly one point and this means that for d(v, x) = d(v, y) = d, t must be even. Then the

multiset of Class 2 distances is

$$C_2 = \bigcup_{\substack{t=4\\t\equiv 0 \pmod{2}}}^{d-1} \{(t-2)^{3|S_t|}, (t-1)^{-2|S_t|}, t^{-|S_t|}\}.$$

Altogether, the distance multiset of G_{d-1} is

$$\{1^{m_1+m_d}, 2^{m_2}, 3^{m_3}, \dots, (d-1)^{m_{d-1}}\} \cup \mathcal{C}_2.$$

Since $t \leq d-1$ and even, and $|S_t| \leq |P(T)|$, with each pair in S_t altering 6 distances, it follows that C_2 alters at most $\frac{6d|P(T)|}{2} = 3d|P(T)|$ distances, which means that if the C_2 distances were ignored, we can assume the distance multisets of G_2 and G_d are equal up to an error of 3d|P(t)| distances.

Another nice fact is that the set of vertices at distance at most d-2 from v in G_{d-1} induces a tree, which allows us to recursively add new edges to obtain the sequence of graphs $(G_d, G_{d-1}, \ldots, G_2)$ satisfying the following two properties:

- 1. For each $i \in [3, d]$ and $j \in [2, i 1]$, it holds that $\operatorname{mult}_{G_i}(j) = \operatorname{mult}_{G_{i-1}}(j)$ and $\operatorname{mult}_{G_i}(1) = m_1 + \sum_{k=0}^{i} m_{d-k}$;
- 2. For each $i \in [3, d]$, $G_i \subset G_{i-1}$.

To produce G_i from G_{i+1} , we join the following vertices: for every vertex $u \in V(T)$ at distance i+1 from v, join u with the unique vertex u' such that d(v, u') = i-1 and d(u, u') = 2; there is such a unique vertex because the graph induced by all vertices at distance at most i from v in G_{i+1} is a tree. Let T_{i+1} be this tree. Note that every distance in T_{i+1} is unchanged after adding the edges to form G_i . The only altered distances are those involving vertices distance at most i-1 from v and those at distance i+1 from v; for each added edge, each of these distances were reduced by 1; these distances occur along a (u,v)-path such that each added edge uu' causes all distances $2,3,\ldots,i+1$ to decrease in multiplicity by exactly 1. Since there are m_{i+1} such edges, there are m_{i+1} such (u,v)-paths, which means that while distances do change in this process, the multiplicities m_2, m_3, \ldots, m_i are unchanged with $\text{mult}_{G_i}(1) = \text{mult}_{G_{i+1}}(1) + m_{i+1}$.

Proposition 10.2. Let T be a caterpillar with diameter d and distance multiset $\{1^{m_1}, 2^{m_2}, \ldots, d^{m_d}\}$. Let $P = (v = v_0, v_1, \ldots, v_d)$ be a diametrical path of T with end vertex v. For each $j \in [1, d-1]$, let $a_i = \deg(v_i) - 1$. Then there exists a sequence of graphs

$$T = G_d \subset G_{d-1} \subset \cdots \subset G_2$$
,

such that for each ... G_{d-1} has distance multiset

$$\begin{aligned} &\{1^{m_1}, 2^{m_2}, \dots, d^{m_d}\} \\ &\cup \{1^{a_{d-1}}, 2^{a_{d-1}a_{d-2}}, 3^{a_{d-1}a_{d-3}}, \dots, (d-1)^{a_{d-1}a_1}\} \\ &\cup \{2^{-a_{d-1}}, 3^{-a_{d-1}a_{d-2}}, 4^{-a_{d-1}a_{d-3}}, \dots, d^{-a_{d-1}a_1}\} \\ &= \{1^{m_1 + a_{d-1}}, 2^{m_2 + a_{d-1}(a_{d-2} - a_{d-1})}, 3^{m_3 + a_{d-1}(a_{d-3} - a_{d-2})}, \dots, (d-1)^{m_{d-1} + a_{d-1}(a_1 - a_2)}\}. \end{aligned}$$

Then G_{d-2} has distance multiset:

$$\left\{1^{m_1+a_{d-1}+a_{d-2}}, 2^{m_2+a_{d-1}(a_{d-2}-a_{d-1})+a_{d-2}(a_{d-3}-a_{d-2})}, 3^{m_3+a_{d-1}(a_{d-3}-a_{d-2})+a_{d-2}(a_{d-4}-a_{d-3})}, \dots, (d-2)^{m_{d-2}+a_{d-2}(a_{1}-a_{2})}\right\}$$

Let T be a tree and $d \in [1, \text{Diam}(T)]$. Then the distance graph of T for distance d is defined to be the graph with vertex set V(T) and for every $u, v \in V(T)$, uv is an edge iff d(u, v) = d. Denote this graph D(T, d).

Define a clique graph to be a graph consisting of cliques that either share a single

Lemma 9. Let T be a tree and $d \in [1, Diam(T)]$. Then

- 1. If d is even and does not contain an $S_{k,d/2}$ for some $k \geq 3$, then D(T,d) is a clique graph.
- 2. If d is odd, then D(T,d) is a biclique graph.
- 3. If d is even and contains an $S_{k,d/2}$ for some $k \geq 3$, then D(T,d) is a union of clique and biclique graphs.

11 Distance Multiplicities Projects (June 2023)

11.1 Crescent Sets in Graphs

A crescent set is a subset of vertices whose distances have an interval of multiplicities. We consider graphs with order $n-1=\binom{k}{2}+(k-1)b$ where the smallest multiplicity is b+1 for some $k\geq 1$ and $b\geq 0$ so that the n-1 distances at crescent vertices can have the interval pattern. Note the smallest multiplicity is 1 when b=0.

11.2 Minimal Tree Distance Multiset Covering

Let τ be the set of all trees of order n and diameter d. We wish to construct a tree T with minimum order N(n,d) and diameter d such that the distance multiset of T contains all distance multisets of trees in τ .

Approach: Prove sharp upper bound on multiplicities of even distances of trees. Using this with the sharp upper bound on multiplicities of odd distances in trees from Dankelman, construct a smallest order tree that realizes these upper bounds. That is, new results are: sharp bound for even distance multiplicities, and this construction.

Proposition 11.1. A tree with order n and even diameter d that maximizes $\operatorname{mult}(d)$ is a spider with k := k(n,d) legs of length d/2 - 1 and a balanced number of leaves at the end of each leg; that is, the floor and ceiling of $\frac{n-k(d/2-1)-1}{k} = (n-1)/k - d/2 + 1$.

Proof. The proof is in 3 parts:

- 1. Show that the optimal tree contains spiders of the form $S_{k,d/2-1}$ with leaves appended to the ends of the legs.
- 2. Show that the optimal tree contains exactly one $S_{k,d/2-1}$ and that the leaves are balanced across all the legs.
- 3. Find the optimal number of legs k(n, d) that maximizes mult(d).

Parts 1 and 2. Consider the distance d graph of a tree T, denoted D(T,d). Since d is even and at least 4, D(T,d) consists of only cliques and bicliques. A j-clique in D(T) corresponds to a spider of the form $S_{j,d/2}$ in T. Bicliques in D(T) correspond to length d-2 paths in T whose end vertices are not leaves. It is easy to see that a clique and biclique in D(T) cannot intersect at more than 2 vertices. To maximize $\operatorname{mult}(d)$, we want to ensure that the independent sets in the bicliques of D(T) are both large and part of many large balanced bicliques. Since d is the diameter, a part in a biclique of D(T) corresponds to a set of leaves, each with the same neighbour in T. Given this, we want D(T) to consist of $\binom{k}{2}$ bicliques, where there are exactly k biclique parts with balanced size such that each biclique part is in exactly k-1 bicliques. Note that the size of each biclique part is a function of n, d, and k, where n and d are fixed and k is variable. So, can find a k that maximizes the number of edges in D(T,d), which is equal to $\operatorname{mult}(d)$. The tree T with this specified distance d graph is a spider with k (to be determined) legs, each of length d/2-1, and appended to the end of each leg are a balanced number of the remaining n-k(d/2-1)-1 vertices.

of each leg are a balanced number of the remaining
$$n - k(d/2 - 1) - 1$$
 vertices.
Part 3. Find an integer k that maximizes $\binom{k}{2} \binom{n - k(d/2 - 1) - 1}{k}^2$.

Proposition 11.2. Let T be a tree with order n and odd diameter d. If T is a double broom, then T maximizes mult(d).

Proof. This follows immediately when considering the distance d graph of T. Since d is odd, D(T,d) consists of only bicliques, so to maximize the number of edges in D(T,d), there must be a single biclique with balanced parts. The tree T corresponding to this distance graph is a double broom with d-2 internal vertices and the floor and ceiling of $\frac{n-d+1}{2}$ leaves at each end.

Proposition 11.3. Let T be a tree with order n and d an odd integer less than Diam(T). If T is a double broom with a path of length Diam - d appended to a leaf, then T maximizes mult(d).

Proof. We show that

$$\operatorname{mult}(d) \le \left\lfloor \frac{n - (d - 1 - (\operatorname{Diam} - d))}{2} \right\rfloor \left\lceil \frac{n - (d - 1 - (\operatorname{Diam} - d))}{2} \right\rceil$$
$$= \left\lfloor \frac{n - (2d - 1 - \operatorname{Diam})}{2} \right\rfloor \left\lceil \frac{n - (2d - 1 - \operatorname{Diam})}{2} \right\rceil$$

Consider the distance graph of T. If $\operatorname{Diam} -d \geq d$, then D(T,d) it has a large biclique with $\operatorname{Diam} -d -1$ $K_{1,1}$ s and one $K_{\lceil \frac{n-(2d-1-\operatorname{Diam})}{2} \rceil,1}$. This means that

$$\begin{aligned} \operatorname{mult}(d) &= \lfloor \frac{n - (2d - 1 - \operatorname{Diam})}{2} \rfloor \lceil \frac{n - (2d - 1 - \operatorname{Diam})}{2} \rceil + \operatorname{Diam} - d - 1 + \lceil \frac{n - (2d - 1 - \operatorname{Diam})}{2} \rceil \\ &= \left\lceil \frac{n - (2d - 1 - \operatorname{Diam})}{2} \right\rceil^2 + \operatorname{Diam} - d - 1 \end{aligned}$$

Alternatively, when $\operatorname{Diam} -d < d$, there are $\operatorname{Diam} -d \ K_{1,1}$ s and the same large biclique. So

$$\operatorname{mult}(d) = \left\lfloor \frac{n - (2d - 1 - \operatorname{Diam})}{2} \right\rfloor \left\lceil \frac{n - (2d - 1 - \operatorname{Diam})}{2} \right\rceil + \operatorname{Diam} - d.$$

The idea here is that the distance d graph of a tree that maximizes $\operatorname{mult}(d)$ should have large balanced bicliques, and the case that maximizes the size of a large biclique is the double broom with length d. Given that T must contain the double broom of length d and must also have diameter Diam, we show optimality by inductively adding vertices until the tree has the desired diameter. Suppose T is the double broom of length d, we wish to extend the diameter, so we must add a new vertex u to a leaf v (on the ceiling side). Now for the second added vertex w, note that joining w to v increases the multiplicity of d less than if we just appended w to the end of the broom, thus it is sub-optimal to add vertices to a biclique in D(T,d) that isn't the largest one corresponding to the double broom. But if we added w to the large biclique, then the biclique would have x(x+2) edges, and the tree with diameter d+1 with double broom having each side of size x+1 has distance d graph with more edges. Thus the most optimal choice for which vertex to join with w is to join w with u. By induction, optimality holds for each added vertex, so that a path of length Diam -d is made and the resulting tree has diameter Diam. This proves the exact upper bound for odd distances.

11.3 Classifying Winograd Families

Proving non-existence of infinite families. Show first that there are none for small families. Then see if can generalize. I think the result probably follows by focusing on why the modular Winograd families only work when $k-1 \in \{\lfloor n/2 \rfloor - 2, \lfloor n/2 \rfloor - 1, \lfloor n/2 \rfloor\}$. Idea: there must exist a largest element in an AP that is reduced modulo n.

11.4 Classify AP Pairs based on Multiplicity Conditions

Classify AP pairs with distinct multiplicities. Try to extend methods from Erdős-deep AP pairs results from Masters. Maybe use edge weighted cycle interpretation.

11.5 Distance Max Multiplicity Games

There are 4 types of distance games on trees. Study

Multiplicities as Matrix Vector Product in Trees (Nov 2023)

Observation 5. Let T be a tree with diameter d. Then for each $x \in [3, d]$, the multiplicity of distance x is given by:

$$m(x) = \sum_{\substack{\{u,v\} \in \binom{V}{2} \\ d(u,v) = x-2}} (\deg(u) - 1)(\deg(v) - 1).$$

Let M be the vector of multiplicities for distances $3, 4, \ldots, d$. Then the above observation means that each entry in M can be expressed as a sum of products of degrees of the internal vertices (non-leaves) of the tree. Let $\mathbb{T}_{d,r}$ be the set of all trees of diameter d with r internal vertices. If we order the internal vertices v_1, v_2, \ldots, v_r in a standardized way for all trees in $\mathbb{T}_{d,r}$, then there exists a $(d-2) \times r$ matrix A such that $M = (A - \mathbf{J})(v - \mathbf{1})$, where v is the standard internal vertex degree vector $[\deg(v_1), \deg(v_2), \ldots, \deg(v_r)]^T$ and $\mathbf{1}$ is the all ones vector. Each entry in A has value either 1 or $\deg(v_i)$ for some $i \in [1, r]$.

I think it would be interesting to figure out, for a fixed d and r, what variety of matrices A are possible. Since the structure of T can be completely retrieved from A, we can ask work exclusively with the matrix $A - \mathbf{J}$. Indeed we have the following lemma, which shows we can obtain $A - \mathbf{J}$ by specifying only its first row:

Lemma 10. Let $T \in \mathbb{T}_{d,r}$. Then $A - \mathbf{J}$ is completely determined by the values in its first row.

13 Nullstellensatz Revisited

Proposition 13.1 (Variation of Theorem 6.1 in [1]). Let X be a set of n points in a metric space, and d the number of distinct distances in $\Delta(X)$. Let p be a prime number satisfying $p-1 < \frac{n(n-1)}{n+d}$. Then $\mathcal{M}(X)$ contains a non-empty subgraph U such that for every $u \in V(U)$, $\deg(u) \in \{kp : k \in \mathbb{Z}^+\}$.

Proof. We define a polynomial f with degree $|E(\mathcal{M})|$ over \mathbb{F}_2 , and using the fact that $a^{p-1} \pmod{p}$ $\equiv 1$ for all $a \not\equiv 0 \pmod{p}$, we show the existence of the desired subgraph using the nullstellensatz directly.

Define the polynomial

$$f(x_e : e \in E(\mathcal{M})) = \prod_{v \in V(\mathcal{M})} \left[1 - \left(\sum_{\substack{e \in E(\mathcal{M}) \\ v \in e}} x_e \right)^{p-1} \right] - \prod_{\substack{e \in E(\mathcal{M})}} (1 - x_e).$$

The degree of f is $|E(\mathcal{M})|$ because every other term has degree at most

$$|V(\mathcal{M})|(p-1) = (n+d)(p-1) < n(n-1) = |E(\mathcal{M})|.$$

Note that the max degree term of f, $(-1)^{|E(\mathcal{M})|+1}\prod_{e\in E(\mathcal{M})}x_e$, has a non-zero coefficient. To apply the nullstellensatz, we consider solutions to f of the form $(s_1, s_2, \ldots, s_{|E(\mathcal{M})|}) \in \{0, 1\}^{|E(\mathcal{M})|}$

(where $t_i = 1$ for all $i \in [|E(\mathcal{M})|]$). Thus by Lemma 5, there exists a vector $r = (r_e : e \in E(\mathcal{M}))$ such that $f(r) \neq 0$. By the definition of f, $r \neq 0$ because f(0) = 0, so some of its entries are 1. This means that the latter product in f vanishes when evaluated at r. The former product in f can be non-zero only when $\left(\sum_{e \in E(\mathcal{M})} r_e\right)^{p-1} \equiv 0 \pmod{p}$. It follows that r corresponds to a subgraph U of $\mathcal{M}(X)$ whose vertex degrees are congruent to $0 \pmod{p}$. Since $r \neq 0$, there exists a vertex $u \in U$ such that $\deg(u) \in \{kp : k \in \mathbb{Z}^+\}$. Note that since U is a subgraph of \mathcal{M} , which is bipartite, the degree sums in each part need to be equal; therefore, the vertices of U all have degrees being a positive multiple of p, and are in both parts.

References

[1] Alon, N. (1999). Combinatorial Nullstellensatz. Combinatorics, Probability and Computing, 8(1-2), 7-29. doi:10.1017/S0963548398003411