Graph theory Glossary **Graph Representation** Adjacency matrix: Adjacency list Runtimes Algorithms Depth-First Search (DFS) Pseudocode Runtime Edge classification (post and pre numbers) Breadth-First Search (BFS) Pseudocode Runtime Find shortest path in DAG (Directed Acyclic Graph) Pseudocode Runtime Djikstra Pseudocode

Graph theory

Runtime Bellman-Ford

Glossary

- Graph G (V, E):
 - V: vertices set
 - E: edges set
- Degree: number of vertices
- Walk: series of connected vertices
- Path: walk without repeated vertices
- Closed walk: walk where $v_0 = v_n$
- Cycle: closed walk without repeating vertices
- Euler path: visit each edge exactly once
- Hamilton path: visit each vertex exactly once
- Directed graph: edges are ordered pairs
- Ancestor: v, Successor: u in

Graph Representation

Adjacency matrix:

matrix where
$$A_{uv} = \left\{egin{array}{ll} 1 & ext{if}(u,v) \in E \ 0 & ext{otherwise} \end{array}
ight.$$

Graph:

Matrix:

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Adjacency list

Array of linked lists, where Adj[u] contains a list containing all the neighbors of u.

Graph: Same as above

List:

Runtimes

	Matrix	List
Find all neighbors of \emph{v}	$\mathcal{O}(n)$	$\mathcal{O}(deg_{out}(v))$
Find $v \in V$ without neighbors	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
Check if $(v,u)\in E$	$\mathcal{O}(1)$	$\mathcal{O}(1 + min(deg_{out}(v), deg_{out}(u)))$
Insert edge	$\mathcal{O}(1)$	$\mathcal{O}(1)$
Remove edge \boldsymbol{v}	$\mathcal{O}(1)$	$\mathcal{O}(deg_{out}(v))$
Check whether an Eulerian path exists or not	$\mathcal{O}(V * E)$	$\mathcal{O}(V + E)$

Algorithms

Depth-First Search (DFS)

Used mainly to check whether a Graph can be topological sorted or not (\Leftrightarrow has a cycle). A **topological sorting** of a graph it's a sequence of all its nodes with the property that a node u comes after a node v if and only if either a walk from v to u exists or u cannot be reached starting from v.

Pseudocode

```
1 DFS(G):
2 for (v in V not marked):
3 DFS-Visit(v)
```

```
DFS-Visit(v):
    t = 0
    pre[v] = t++
    marked[v] = true
    for ((u, v) in E not marked)
        DFS_Visit(u)
    post[u] = t++
```

Runtime

Operations	$T(n)\in\Theta(E + V)$
Memory	$T(n)\in\Theta(V)$

Edge classification (post and pre numbers)

Example: DFS(A) got called

This graph generate the following tree (rotated of 90 degree to save space):

Pre and post number	Name of the edge $(v,u)\in E$
$pre(u) < pre(v) ext{ and } post(u) < post(v)$	Not possible
$pre(u) < pre(v) ext{ and } post(u) > post(v)$	forward or simply no name, since it is part of the tree
pre(u) < pre(w) and $post(u) < post(v)$ but $(u,v) otin E$	forward edge
pre(u) > pre(v) and $post(u) > post(v)$	back edge
pre(u) > pre(v) and $post(u) > post(v)$	cross edge
$pre(u) < pre(v) ext{ and } post(u) < post(v)$	Not possible

Remark: $\not\exists$ back edge \Leftrightarrow $\not\exists$ closed walk (cycle)

Breadth-First Search (BFS)

Instead of searching through the depth of a graph, one can also go first through all the successor of the root with the BFS algorithm.

Pseudocode

```
1 BFS(G):
2 for (v in V not marked):
3 DFS-Visit(v)
```

```
DFS-VIsit(v):
1
2
        Q = new Queue()
3
        active[v] = true //used to check whether a vertex is in the queue or not
4
        enqueue(v, Q)
        while (!isEmpty(Q)):
 5
6
           w = dequeue(Q)
 7
            visited[W] = true
8
            for ((w, x) in E):
9
                if(!active[x] && !visited[x]):
10
                    active[x] = true
11
                    enqueue(x, Q)
```

Runtime

Operations	$T(n)\in\Theta(E + V)$
Memory	$T(n)\in\Theta(V)$

Find shortest path in DAG (Directed Acyclic Graph)

We can compute a recurrence following the topological sorting of the graph.

Pseudocode

```
ShortestPath(V):

d[s] = 0, d[v] = inf

for (v in V \ {s}, following topological sorting):

for (u, v, s.t. (u, v) in E):

d[v] = min(d[u] + c(u,v))
```

Runtime

 $T(n) \in \mathcal{O}(|E| * |V|)$ if adjacency list is given

Djikstra

Used to find the shortest (cheapest) path between two nodes in a graph.

Remark: The graph must not have negative weights

Pseudocode

```
DIJKSTRA(G, s):
 2
        for (v in V):
3
            distance[v] = inf
            parent[v] = null
4
 5
        distance[s] = 0
6
        Q = new Queue()
 7
        insert(s, 0, Q) // insert s into the queue Q, with priority 0 (min)
8
        while(!isEmpty(Q)):
9
            u = Q.extractMin() // extract from Q the node with minimum distance
10
            for ((u, v) in E):
11
                if (parent[v] == null):
12
                     distance[v] = distance[u] + w(u, v)
                     parent[v] = u
13
14
                else if (distance[u] + w(u, v) < distance[v]):</pre>
```

```
distance[v] = distance[u] + w(u, v)
parent[v] = u
decreaseKey(v, distance[v], Q)
```

Runtime

```
T(n) \in \mathcal{O}((|E|*|V|)*log(|V|)) if implemented with a Heap. If implemented with a Fibonacci-Heap: T(n) \in \mathcal{O}((|E|+|V|*log(|V|)))
```

Bellman-Ford