캡스톤디자인(I) 시나리오 및 Usecase 옵션

Motus+er

SLAM의 원리

Simultaneous localization and mapping

항해하는 배가 별자리를 관찰하여 배의 위치를 파악하는 것처럼 SLAM은 여러 특징점의 정보를 수식으로 계산하여 자기 위치를 알아낸다. 이렇게 특징점으로 계산된 위치 정보를 기반으로 케어버디는 집 안의 지도를 그릴 수 있다.

LIDAR 데이터 수집

데이터는 로봇 주변의 물체까지의 거리를 나타내며, 이를 통해 주변 환경의 지도를 만든다.

특징 추출 및 매칭

수집된 LIDAR 데이터에서 주요 지형지물이나 특징들이 추출된다. 이는 특정 점, 모서리, 평면 등이 될 수 있다. 새로 수집된 특징들은 이전에 수집된 데이터 또는 이미 알려진 지도 정보와 비교(매칭)된다.

그 외 : 오류 최소화 및 보정

모든 센서 데이터와 위치 추정 과정은 오류를 포함할 수 있다. 따라서 SLAM 시스템은 오류를 최소화하기 위해 다양한 알고리즘과 필터(예: 칼만 필터)를 사용하여데이터를 정제하고 보정한다.

SLAM

SLAM은 해당 맵 내에서 로봇이 자신의 위치를 추적하는 동시에 주변 환경의 맵을 구축하는 과정즉, 동시적 "위치 추정" 및 "지도 작성"

RPLIDAR 패키지 사용시 들어오는 데이터 형태

TIME

스캔하여 데이터를 획득한 시간

FLOAT32 ANGLE_INCREMENT [RAD]

측정되는 각의 단위

FLOAT32 RANGE_MAX [M]

최대 거리 값

FLOAT32 ANGLE_MIN [RAD]

스캔의 시작 각도

FLOAT32 SCAN_TIME [SEC]

측정되는 시간 간격

FLOAT32[] RANGES [M]

최소 거리(RANGE_MIN) 이상, 최대 거리(RANGE_MAX) 이하의 거리 값들 FLOAT32 ANGLE_MAX [RAD]

스캔의 끝 각도

FLOAT32 RANGE_MIN [M]

최소 RANGE(거리) 값

FLOAT32[] INTENSITIES

레이저가 부딪혀 돌아오는 강도

LiDAR에서 제공하는 Data로 위치 계산

LiDAR에서 제공하는 Data는 Distance와 Angle을 이용해 공간에서의 Object의 위치를 계산하는 과정

위 이미지에서의 빨간 점이 OBJECT의 위치라고 할 때 간단한 수학 식을 통해 좌표를 측정할 수 있다.

LIDAR의 0도 LINE을 LIDAR를 설치할 때 정확하게 배치할 수 없다면 CALIBRATION을 수행하는 프로그램을 하나 만들어 설치된 방향을 저장하고 좌표 값을 회전 변환시켜 다음과 같은 계산을 통해 MAPPING 해주면 된다.

(X, Y)를 Θ 만큼 회전시키면 (X', Y')를 얻을 수 있게 된다. 이때 Θ 는 CALIBRATION을 수행할 때 설정해주어야 하는 값이다.

각도 및 거리의 표기

- Z축 양의 방향으로(반시계방향, 오른손 엄지를 위로 했을 때 손가락이 감아지는 방향) 각도를 증가시킨다.
- 0°는 X축을 따라 뻗어진다

LiDAR에서 제공하는 Data로 위치 계산

LiDAR에서 제공하는 Data는 Distance와 Angle을 이용해 공간에서의 Object의 위치를 계산하는 과정

RPLIDAR의 SLAM을 위한 기본적인 소프트웨어 패키지에는 복잡한 수식과 알고리즘이 이미 구현되어 있다. (github에서 다운 가능) 즉, 이러한 패키지를 사용하여 직접 수식을 계산할 필요 없이

위 이미지에서의 빨간 점이 OBJECT의 위치라고 할 때 간단한 수학 식을 통해 좌표를 측정할 수 있다. LIDAR의 0도 LINE을 LIDAR를 설치할 때 정확하게 배치할 수 없다면 CALIBRATION을 수행하는 프로그램을 하나 만들어 설치된 방향을 저장하고 좌표 값을 회전 변환시켜 다음과 같은 계산을 통해 MAPPING 해주면 된다.

센서 데이터를 처리하고 케어버디의 위치를 추정할 수 있다.

(X, Y)를 Θ 만큼 회전시키면 (X', Y')를 얻을 수 있게 된다. 이때 Θ 는 CALIBRATION을 수행할 때 설정해주어야 하는 값이다

- Z축 양의 방향으로(반시계방향, 오른손 엄지를 위로 했을 때 소가락이 감아지는 방향) 각도록 증가시킨다
- 0°는 X축을 따라 뻗어진다

시각화 방법 RoS - rviz

RoS에서 제공하는 시각화툴

센서에서 수집되는 값 시각화 가능

경로 및 특정 공간에 대한 설정 가능

옵션으로 변경할 Usecase

1

장애물 감지 및 제동

다른 메인 기능들을 우선적으로 하고 나중에 여유가 생기면 추가하기로 하였다.

다른 메인 기능들을 우선적으로 하고 나중에 여유가 생기면 추가하기로 하였다. 이에 제어는 자동적으로 혹은 디스플레이를 통해 이루어진다.

최적 위치

삼성에서 공기청정기 개발자에게 물어본 결과, 벽이나 다른 가구에 흡입구나 센서가 막히면 공기청정 효과와 먼지농도 센싱 성능이 떨어질 수 있다고 하였다. 이에 좌/우 60CM, 벽과 25CM 이상의 충분한 공간을 확보해야 한다고 하였다.

즉, 측정을 하며 최적의 위치를 찾는 것이 아니라 보편적인 최적의 위치로 USECASE를 작성하고자 한다.

Thank you