10.9 数学作业

1. 已知集合 $A = \{-4, -2, 0, 2, 4\}$, $B = \{x \mid x^2 + 2x - 3 < 0\}$, 则图中阴影部分表示的集合为______.

 $\{-4,2,4\}$.

2. 若集合 $A = \{1,3,x\}$, $B = \{1,x^2\}$, 且 $A \cup B = \{1,3,x\}$, 则满足条件的实数 x 的个数为______.

3个

3. 若集合 $M = \{(x,y) | y = \sqrt{1-x} \}$, $N = \{(x,y) | x = 1\}$, 则 $M \cap N =$ ______.

 $\{(1,0)\}$

- 4. 已知集合 $A = \{(x,y) | x+1 | + (y-2)^2 = 0, x \in R, y \in R \}$, $B = \{(x,y) | xy \le 0, x \in R, y \in R \}$, 则集合 A 和 B 满足的关系为______.
- 6. 不等式" $x^2 \le 3x$ "是不等式"|x-2| < 1"的_____条件.

必要不充分

7. 不等式x-1 < |2x-1| < x的解集为_____

 $\left(\frac{1}{3},1\right)$

- 9. 若关于x的不等式 $x^2 (2a+1)x + 2a < 0$ 恰有两个整数解,则a的取值范围是______.

【答案】
$$\left\{ a \middle| -1 \le a < -\frac{1}{2}$$
或 $\frac{3}{2} < a \le 2 \right\}$

当 2a > 1,即 $a > \frac{1}{2}$ 时,不等式 $x^2 - (2a + 1)x + 2a < 0$ 解得 1 < x < 2a,

则不等式中的两个整数解为 2 和 3,有 3 < 2a ≤ 4,解得 $\frac{3}{2}$ < a ≤ 2;

当 2a=1,即 $a=\frac{1}{2}$ 时,不等式 $x^2-(2a+1)x+2a<0$ 无解,所以 $a=\frac{1}{2}$ 不符合题意;

当 2a < 1,即 $a < \frac{1}{2}$ 时,不等式 $x^2 - (2a + 1)x + 2a < 0$ 解得 2a < x < 1,

则不等式中的两个整数解为 0 和-1,有 $-2 \le 2a < -1$,解得 $-1 \le a < -\frac{1}{2}$

综上, a的取值范围是 $\left\{a \middle| -1 \le a < -\frac{1}{2}$ 或 $\frac{3}{2} < a \le 2\right\}$.

故答案为: $\left\{ a \middle| -1 \le a < -\frac{1}{2}$ 或 $\frac{3}{2} < a \le 2 \right\}$.

10. 已知 a < 0,若 $(4x^2 + a)(2x + b) \ge 0$ 在 $x \in (a,b)$ 上恒成立,则 0______(a,b) (用" \in "、" \notin "、"关系不能确定"填空); b-a 的最大值为_____.

【答案】 \notin $\frac{1}{4}$

【详解】如果 $0 \in (a,b)$,则x = 0时不等式成立,即 $ab \ge 0$,

因为a < 0, 可得 $b \le 0$,

与0∈(a,b)矛盾,故0∉(a,b);

法一:

因为0∉(a,b), 所以 $b \le 0$,

所以不等式的解集为 $\left(-\frac{\sqrt{-a}}{2},\frac{\sqrt{-a}}{2}\right)$ $\cup \left(-\frac{b}{a},+\infty\right)$ 或 $\left(-\frac{\sqrt{-a}}{2},\frac{b}{2}\right)$ $\cup \left(\frac{\sqrt{-a}}{2},+\infty\right)$,

因为 $-\frac{b}{2} \ge 0$, $\frac{\sqrt{-a}}{2} > 0$,

所以要使得 $(4x^2 + a)(2x + b) \ge 0$ 在 $x \in (a,b)$ 上恒成立,

只需
$$-\frac{\sqrt{-a}}{2} \le a$$
,

解得 $-\frac{1}{4} \le a$,所以 $b-a \le \frac{1}{4}$.

法二:

因为 $(4x^2+a)(2x+b) \ge 0$ 在 $x \in (a,b)$ 上恒成立,

所以 x = a 时可得 $(4a^2 + a)(2a + b) \ge 0$,

因为 $2a+b \le 0$, 所以 $4a^2+a \le 0$,

解得 $-\frac{1}{4} \le a$, 所以 $b-a \le \frac{1}{4}$,

经检验, $a=-\frac{1}{4}$, b=0时符合条件.

11. 已知方程 $x^2 + (m-2)x + 5 - m = 0$ 的两根都大于 2, 则实数m的取值范围是_____

【详解】根据题意,二次函数 $f(x) = x^2 + (m-2)x + 5 - m$ 的图象与 x 轴的两个交点都在 2 的右侧,

根据图象可得
$$\begin{cases} \Delta \ge 0 \\ f(2) > 0 \\ -\frac{m-2}{2} > 2 \end{cases} \quad \text{即} \begin{cases} (m-2)^2 - 4(5-m) \ge 0 \\ 4 + 2(m-2) + 5 - m > 0 \\ -\frac{m-2}{2} > 2 \end{cases}$$

解得-5< m ≤ -4.

12. 已知集合 $A = \{x | (x-3)(x^2 - ax + 1) = 0, a \in \mathbb{R} \}$,若集合 A 只有两个元素,则实数 a 可取的一个值为_______; 若集合 $B = \{1,4\}$,集合 $C = A \cup B$,当集合 C 有 8 个子集时,实数 a 的取值范围为_______.

【答案】 2 (答案不唯一, 另一个值为-2) -2<a≤2

【详解】由 $(x-3)(x^2-ax+1)=0$, 得 x=3 或 $x^2-ax+1=0$,

由集合 A 只有两个元素,得方程 $x^2 - ax + 1 = 0$ 有两个相等的实根,且该实根不为 3,

因此 $\Delta = a^2 - 4 = 0$,解得 $a = \pm 2$,此时方程的根为 1 或 -1,符合题意,

所以 $a = \pm 2$. 取a = 2;

由集合 C 有 8 个子集,得集合 C 中有 3 个元素,而 $B = \{1,4\}$, $3 \in A$,

则 $A = \{3\}$ 或 $A = \{1,3\}$ 或 $A = \{3,4\}$ 或 $A = \{1,3,4\}$,

当 $A = \{3\}$ 时,方程 $x^2 - ax + 1 = 0$ 无实根, $\Delta = a^2 - 4 < 0$,解得 -2 < a < 2,

当 $A = \{1,3\}$ 时, 方程 $x^2 - ax + 1 = 0$ 有两个相等的实根 1, 则 a = 2,

当 $A = \{3,4\}$ 时,方程 $x^2 - ax + 1 = 0$ 有两个相等的实根 4,

而方程 $x^2 - ax + 1 = 0$ 有实根时,两根之积为1,因此无解,

当 $A = \{1,3,4\}$ 时,方程 $x^2 - ax + 1 = 0$ 的两根分别为 3,4 ,同上无解,

实数 a 的取值范围为 $-2 < a \le 2$.

故答案为: 2; -2 < a ≤ 2

- 13. 若0<b<a<1,则下列不等式一定成立的是()
 - A. $ab < b^2$

B. $\frac{1}{h} < \frac{1}{a}$

C. 2a < 1+b

D. $\sqrt{b} < \sqrt{a} < 1$

【答案】D

【分析】利用不等式的基本性质判断 A,B,D, 反例判断 C 即可.

【详解】因为0 < b < a < 1,所以 $b^2 < ab < 1$,所以A不正确;

且 $1 < \frac{1}{a} < \frac{1}{b}$,所以 B 不正确;

对于 C, 取 a = 0.8, b = 0.4, 不等式不成立, 所以 C 不正确;

显然 \sqrt{b} < \sqrt{a} < 1, 满足不等式的基本性质, 所以 D 正确;

故选: D.

- 14. 下列命题是假命题的为()

 - B. $ac^2 > bc^2$, 则 a > b
 - C. 若a > b > 0且c < 0,则 $\frac{c}{a^2} > \frac{c}{b^2}$

【答案】A

15. 已知关于x不等式 $\frac{(x-2)(ax+b)}{x-c} \ge 0$ 的解集为 $(-\infty, -2] \cup (1,2]$,则 ()

- A. c = 2
- B. 点(a,b)在第二象限
- C. $y = ax^2 + bx 2a$ 的最大值为 3a
- D. 关于x的不等式 $ax^2 + ax b \ge 0$ 的解集为[-2,1]

【答案】D

【详解】原不等式等价于 $\begin{cases} (x-2)(ax+b)(x-c) \ge 0\\ x-c \ne 0 \end{cases}$

因为解集为 $(-\infty, -2] \cup (1,2]$,所以x=1和x=-2分别是x-c=0和ax+b=0的实数根,

故a < 0且c = 1, -2a + b = 0, 故A错误;

因为a < 0, b = 2a < 0, 所以点(a,b)在第三象限, 故 B 错误;

 $y = ax^2 + bx - 2a = ax^2 + 2ax - 2a = a(x^2 + 2x - 2) = a(x + 1)^2 - 3a$,由于开口向下,故最大值为 -3a, 故 C 错误,

由 $ax^2 + ax - b \ge 0$ 得 $ax^2 + ax - 2a \ge 0$ 即 $x^2 + x - 2 \le 0$ 解集为 [-2,1] ,故 D 正确.

故选: D.

16. 解下列不等式.

$$(1)x(x+2) > x(3-x)+1;$$

(1)
$$x(x+2) > x(3-x)+1;$$
 (2) $-\frac{1}{2}x^2 + 3x - 5 > 0;$

$$(3)\frac{x+2}{3x-1} \ge 1$$
.

【答案】
$$(1)\left(-\infty, -\frac{1}{2}\right) \cup \left(1, +\infty\right)$$
 (2)无实数解

$$(3)\left(\frac{1}{3},\frac{3}{2}\right)$$

17. 解不等式

$$(1)\left(x^2 - 4x - 5\right)\left(x^2 + 1\right) < 0 \qquad (2)\frac{x + 2}{3x - 1} \ge 1;$$

$$(2)\frac{x+2}{3x-1} \ge 1;$$

【答案】(1)-1<
$$x$$
<5 (2) $\frac{1}{3}$ < $x \le \frac{3}{2}$

$$(2)\frac{1}{3} < x \le \frac{3}{2}$$

- 18. 若不等式 $(1-a)x^2-4x+6>0$ 的解集是 $\{x|-3< x<1\}$.
- (1) 求 a 的值, 并求不等式 $2x^2 + (2-a)x a > 0$ 的解集;
- (2)一元二次不等式 $kx^2 ax + k \le 0$ 的解集为**R**, 求k的范围.

【答案】(1)3; $\{x \mid x > \frac{3}{2}$ 或 $x < -1 \}$

$$(2)\left(-\infty,-\frac{3}{2}\right]$$

【详解】(1) 由题意可知: 方程 $(1-a)x^2-4x+6=0$ 的两根为-3,1,且1-a<0,即a>1,

则
$$\begin{cases} \frac{4}{1-a} = -2 \\ \frac{6}{1-a} = -3 \end{cases}$$
 解得 $a = 3$;

不等式 $2x^2 + (2-a)x - a > 0$,即为 $2x^2 - x - 3 > 0$,解得 $x > \frac{3}{2}$ 或 x < -1,

所以不等式 $2x^2 + (2-a)x - a > 0$ 的解集为 $\{x \mid x > \frac{3}{2}$ 或 $x < -1\}$.

(2) 由题意可得: 一元二次不等式 $kx^2 - 3x + k \le 0$ 的解集为 R,

若k=0,则-3x≤0不恒成立,不合题意;

综上所述: k 的范围是 $\left(-\infty, -\frac{3}{2}\right)$.

19. 已知关于 x 的方程 $x^2 + 2(m-1)x + 2m + 6 = 0$ 至少有一个正根, 求实数 m 的取值范围.

【答案】 *m* ≤ -1.

【详解】设
$$f(x) = x^2 + 2(m-1)x + 2m + 6$$
,

方程至少有一个正根,则有三种可能:

①有两个正根,可得
$$\begin{cases} \Delta \geq 0, \\ f(0) > 0, & \text{即} \\ \frac{2(m-1)}{-2} > 0, \end{cases} m \leq -1 \text{或} m \geq 5, \\ m > -3, & \text{所以} -3 < m \leq -1. \end{cases}$$

②有一个正根,一个负根,可得f(0) < 0,得m < -3.

③有一个正根,另一根为 0,可得
$$\begin{cases} 6+2m=0, \\ 2(m-1)<0, \end{cases}$$
所以 $m=-3$.

综上所述, *m* ≤ -1.

- 20. 关于x的方程 $x^2+(m-3)x+m=0$ 满足下列条件, 求m的取值范围.
- (1)有两个正根;
- (2)一个根在(-2,0)内,另一个根在(0,4)内;

【答案】(1)0 < m ≤ 1

$$(2) - \frac{4}{5} < m < 0$$

(2) 根据方程 $x^2 + (m-3)x + m = 0$ 一个根在 (-2,0) 内,另一个根在 (0,4) 内,得到不等式,求出答案.

【详解】(1) 令 $f(x) = x^2 + (m-3)x + m$, 设 f(x) = 0的两个根为 x_1, x_2 .

由题得
$$\begin{cases} x_1 + x_2 = 3 - m > 0 \\ x_1 x_2 = m > 0 \\ \Delta = (3 - m)^2 - 4m \ge 0 \end{cases}$$
, 解得 $0 < m \le 1$.

若方程 $x^2+(m-3)x+m=0$ 一个根在(-2,0)内,另一个根在(0,4)内,

结合
$$f(x) = x^2 + (m-3)x + m$$
 开口向上,

则
$$\begin{cases} f(-2) = 10 - m > 0 \\ f(0) = m < 0 \\ f(4) = 5m + 4 > 0 \end{cases}, \quad \text{解得} -\frac{4}{5} < m < 0.$$