Γεωμετρία Α' Λυκείου

4.1, 4.2 Παράλληλες ευθείες

"εντός": είναι η λωρίδα ανάμεσα στις δύο παράλληλες

"εκτός": είναι η περιοχή έξω από τις δύο παράλληλες "επί τα αυτά": όταν οι γωνίες βρίσκονται από την ίδια μεριά της τέμνουσας.

"εναλλάξ": όταν οι γωνίες βρίσκονται σε διαφορετικές μεριές της τέμνουσας.

Παράδειγμα:

α, β, η, θ: εκτός

γ, δ, ε, ζ: εντός

γ, ζ: εναλλάξ όπως και ε,δ ή η, β ή α, ϑ κλπ

ΘΕΩΡΗΜΑ

Αν δύο ευθείες τεμνόμενες από τρίτη σχηματίζουν δύο εντός εναλλάξ γωνίες ίσες, τότε είναι παράλληλες.

ΑΠΟΔΕΙΞΗ

Έστω ότι ω = φ. Αν οι ευθείες $ε_1$, $ε_2$ τέμνονται σε σημείο Γ, η εξωτερική γωνία φ του τριγώνου ΑΒΓ θα είναι ίση με την απέναντι εσωτερική γωνία ω, που είναι άτοπο. (§3.10)

Άρα $ε_1//ε_2$.

ΘΕΩΡΗΜΑ

Αν δύο ευθείες τεμνόμενες από τρίτη σχηματίζουν δύο εντός εναλλάξ γωνίες ίσες, τότε είναι παράλληλες.

ΠΟΡΙΣΜΑ Ι

Αν δύο ευθείες τεμνόμενες από τρίτη σχηματίζουν δύο εντός, εκτός και επί τα αυτά μέρη γωνίες ίσες ή δύο εντός και επί τα αυτά μέρη παραπληρωματικές, τότε είναι παράλληλες.

ΠΟΡΙΣΜΑ ΙΙ

Δύο ευθείες κάθετες στην ίδια ευθεία, σε διαφορετικά σημεία της, είναι μεταξύ τους παράλληλες.

Ιδιότητες παράλληλων ευθειών

ΠΡΟΤΑΣΗ Ι

Αν δυο παράλληλες ευθείες τέμνονται από τρίτη, σχηματίζουν τις εντός εναλλάξ γωνίες ίσες.

ΑΠΟΔΕΙΞΗ

Έστω ότι $\varepsilon_1//\varepsilon_2$ και ε μια τέμνουσα (σχ.5). Θα αποδείξουμε π.χ. ότι $\omega = \varphi$. Αν οι γωνίες ω και φ δεν είναι ίσες, φέρουμε την Αχ ώστε οι γωνίες χÂΒ και φ να βρίσκονται εκατέρωθεν της ε και να είναι ίσες. Τότε ε Αχ// ε γιατί τεμνόμενες από την ΑΒ σχηματίζουν δύο εντός και εναλλάξ γωνίες ίσες. Κατά συνέπεια υπάρχουν δύο παράλληλες από το Α προς την ε , που είναι άτοπο. Άρα $\omega = \varphi$.

ΠΟΡΙΣΜΑ

Αν δύο παράλληλες ευθείες τέμνονται από τρίτη σχηματίζουν

- i) τις εντός εκτός και επί τα αυτά μέρη γωνίες ίσες,
- τις εντός και επί τα αυτά μέρη γωνίες παραπληρωματικές.

ΠΡΟΤΑΣΗ ΙΙ

Αν δύο διαφορετικές ευθείες $ε_1$ και $ε_2$ είναι παράλληλες προς μία τρίτη ευθεία ε, τότε είναι και μεταξύ τους παράλληλες, δηλαδή αν $ε_1$ //ε και $ε_2$ //ε, τότε $ε_1$ // $ε_2$.

ΑΠΟΔΕΙΞΗ

Αν οι $ε_1$ και $ε_2$ τέμνονταν σε σημείο A, θα είχαμε από το A δύο παράλληλες προς την ε, που είναι άτοπο. Άρα $ε_1//ε_2$.

ΠΡΟΤΑΣΗ ΙΙΙ

Αν δύο ευθείες $ε_1$ και $ε_2$ είναι παράλληλες και μία τρίτη ευθεία ε τέμνει τη μία από αυτές, τότε η ε θα τέμνει και την άλλη.

ΑΠΟΔΕΙΞΗ

Υποθέτουμε ότι η ε τέμνει την $ε_1$ στο A. Αν η ε δεν έτεμνε την $ε_2$, θα ήταν $ε/ε_2$ και έτσι θα είχαμε από το A δύο παράλληλες προς την $ε_2$, πράγμα αδύνατο. Άρα η ε τέμνει την $ε_2$.

ΠΟΡΙΣΜΑ

Αν μια ευθεία είναι κάθετη σε μια από δύο παράλληλες ευθείες, τότε είναι κάθετη και στην άλλη.

ΠΡΟΤΑΣΗ ΙV

Αν δύο ευθείες τεμνόμενες από τρίτη σχηματίζουν τις εντός και επί τα αυτά μέρη γωνίες με άθροισμα μικρότερο από 2 ορθές, τότε οι ευθείες τέμνονται προς το μέρος της τέμνουσας που βρίσκονται οι γωνίες.

Έστω ότι η ε τέμνει τις $ε_1$, $ε_2$ στα A και B (σχ.8) αντίστοιχα και ότι $φ + ω \neq 2L$. Τότε οι $ε_1$ και $ε_2$ δεν είναι παράλληλες, αφού $φ + ω \neq 2L$ (Πόρισμα σελ. 82). Έστω ότι οι $ε_1$ και $ε_2$ τέμνονται σε σημείο K, προς το μέρος της τέμνουσας, που δεν περιέχει τις γωνίες ω και φ. Τότε, όμως, η εξωτερική γωνία ω του τριγώνου AKB είναι μεγαλύτερη από τη γωνία A_1 , δηλαδή $ω > A_1 = 2L - φ$ ή ω + φ > 2L, που είναι άτοπο. Άρα οι $ε_1$, $ε_2$ τέμνονται προς το μέρος της τέμνουσας που βρίσκονται οι γωνίες ω και φ.

Βασικό κριτήριο με το οποίο εξετάζουμε αν δύο ευθείες τέμνονται

Ερωτήσεις Κατανόησης

- i) Πώς ονομάζονται οι γωνίες α και β του παρακάτω σχήματος; Τι σχέση έχουν μεταξύ τους;
 - ii) Τι ισχύει για τις γωνίες $\hat{\gamma}$ και $\hat{\delta}$;

2. Να εξηγήσετε γιατί η AB είναι παράλληλη της ΓΔ.

3. Av $\omega = 120^{\circ} - \theta \kappa \alpha i \ \varphi = 60^{\circ} + \theta v \alpha \varepsilon \xi \eta - \gamma \eta \sigma \varepsilon \tau \varepsilon \gamma i \alpha \tau i x x' // y y'.$

Ασκήσεις Εμπέδωσης

Δίνεται ισοσκελές τρίγωνο ΑΒΓ και ευθεία ε παράλληλη προς τη βάση του ΒΓ, που τέμνει τις ΑΒ και ΑΓ στα Δ και Ε αντίστοιχα. Να αποδείζετε ότι το τρίγωνο ΑΔΕ είναι ισοσκελές.

EMBT

To ABT fivou 1500 KF
$$\chi$$
 is a each $\hat{B} = \hat{\Gamma}$. Ethnon $\epsilon \parallel B\Gamma$ da rexum $\hat{\Gamma} = \hat{\Lambda}$ kou $\hat{B} = \hat{E}$. (evios, exios kou en ta auta) apa \hat{A} \hat{A} \hat{E} (so the χ is.

2. Δίνεται γωνία xÔy και σημείο Α της διχοτόμου της. Αν η παράλληλη από το Α προς την Οχ τέμνει την Οχ στο Β, να αποδείζετε ότι το τρίγωνο ΟΑΒ είναι ισοσκελές.

Aprei va seizosque it
$$\hat{O}_1 = 0 \text{ AB}$$
 $| \epsilon \times i \epsilon_1 | \hat{o}_1 = \hat{O}_2 | (04 \text{ sixotiopos}) \text{ kou}$
 $\hat{O}_2 = 0 \text{ AB} | (\text{evis} \text{ evallo}) | Apa | \hat{O}_1 = 0 \text{ AB}$

kal anostixtyke.

3. Δίνεται γωνία χÔy και η διχοτόμος της ΟΔ. Από σημείο Α της Οy φέρουμε παράλληλη προς την ΟΔ που τέμνει την προέκταση της Οχ στο Β. Να αποδείζετε ότι ΟΑ = ΟΒ.

Γνωείσουρε ότι
$$BA//O\Delta$$
 άρα $\hat{O}_2 = \hat{B}$ (εντός εκτός και επι τα αυτά)
$$\hat{O}_1 = O\hat{A}B \quad (εντός εναλλάξ)$$
 $O\Delta$ διχοτόρος της χΟγ άρα $\hat{O}_2 = \hat{O}_1$. επομένως $\hat{B} = O\hat{A}B$. άρα το τείμωνο OAB είναι ισοσκελές οπότε $OB = OA$.

4. Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ = ΑΓ) και σημείο Δ της πλευράς ΑΒ. Αν ο κύκλος (Δ, ΔΒ) τέμνει τη ΒΓ στο Ε, να αποδείζετε ότι ΔΕ//ΑΓ.

ETERÓN
$$\Delta B$$
, ΔE artives tou rurlou $\Delta B = \Delta E$. apa to tripuvo $B\Delta E$ tival coorrelés. Fal $\Delta B E = B E \Delta$ opus $\Delta B E = \Gamma$ apa $B E \Delta = \Gamma$

DI EVZOS EXZOS kou eni za auza Eivar iots apa DE/AT

5. Στις προεκτάσεις των πλευρών ΒΑ, ΓΑ τριγώνου ΑΒΓ παίρνουμε αντίστοιχα τα τμήματα: ΑΔ = ΑΒ και ΑΕ = ΑΓ. Να αποδείζετε ότι ΔΕ//ΒΓ.

6. Δίνεται κύκλος (Ο, ρ) και Μ το μέσο χορδής του ΑΒ. Φέρουμε Οχ⊥ΟΜ. Να αποδείζετε ότι Οχ//ΑΒ.

To OM Eival το απόστημα της χορδής AB γιατι περνάει από το μέσο της AB άρα OM L AB Επίσης OM L Ox άρα Ox // AB.