Useful constants, functions, properties

Last modified: 9/11/2016

Some Useful Constants and Functions

symbol	value
е	2.71828
γ (gamma)	0.57721
φ (phi)	$(1+\sqrt{5})/2=1.61803$

These tables are for reference. We may use such symbols and functions as we discuss specific algorithms.

function	name	approximation		
[x]	floor function	x		
[x]	ceiling function	x		
F_N	Fibonacci numbers	$\phi^N / \sqrt{5}$		
H_N	harmonic numbers	In(N) + γ		
N!	factorial function	(N / e) ^N		
lg(N!)		N lg(N) - 1.44N		

Summation of Geometric Series

• Summation of consecutive terms: 1+2+3+...+n

$$-\sum_{k=1}^{n} k = \frac{(n+1)*n}{2} = \Theta(n^2)$$

- Summation of Geometric Series: $1 + x + x^2 + ... + x^n$
 - x > 1:

•
$$\sum_{k=0}^{n} x^k = \frac{x^{n+1}-1}{x-1} = \Theta(x^n)$$

-0 < x < 1:

•
$$\sum_{k=0}^{n} x^k \le \sum_{k=0}^{\infty} x^k = \frac{1}{1-x} = \Theta(1)$$

- x = 1

$$\bullet \ \sum_{k=0}^n 1^k = n+1 = \Theta(n)$$

Approximation by Integrals

- If f(x) is a monotonically increasing function:
 - This means that $x \le y \Rightarrow f(x) \le f(y)$.
- Then, we can approximate the summation $\sum_{k=m}^{n} f(k)$ using integral $\int_{m}^{n+1} f(x) dx$.
- Reason:

$$\int_{m-1}^{n} f(x) dx \le \sum_{k=m}^{n} f(k) \le \int_{m}^{n+1} f(x) dx$$

Other

- $a^{\log_b(n)} = n^{\log_b(a)}$ (note \log_b in the exponent)
- $a^n \neq n^a$

Perfect Binary Trees

A **perfect binary tree** with N nodes has:

- $\lfloor \lg N \rfloor$ +1 levels
- height $\lfloor \lg N \rfloor$

$\sum_{k=0}^{n} 2^k = 2^{n+1} - 1$	L
------------------------------------	---

Level Nodes per Sum of nodes

$\lfloor N/2 \rfloor$ internal nodes (half the nodes are internal)		level		from root up to this level	
	0	2 ⁰	(=1)	$2^1 - 1$	(=1)
	- 1	2 ¹	(=2)	$2^2 - 1$	(=3)
	_2	2 ²	(=4)	$2^3 - 1$	(=7)
4 5 6 7	•••	•••			
• • • • • • • • • • • • • • • • • • •	i	2 ⁱ		$2^{i+1}-1$	
	•••	•••			
$\bigcirc \bigcirc \bigcirc \bigcirc \cdots \bigcirc \bigcirc \bigcirc \bigcirc$	n	2 ⁿ		$2^{n+1}-1$	

Properties of Full Trees

- A full binary tree (0/2 children) with N internal nodes has:
 - N+1 external nodes.
 - 2N edges (links).
 - height at least lg N and at most N:
 - Ig N if all external nodes are at the same level (complete or perfect tree)
 - N if each internal node has one external child.

