Feature engineering

$$f_{\vec{w},b}(\vec{x}) = w_1 x_1 + w_2 x_2 + b$$

frontage depth

 $area = frontage \times depth$

$$x_3 = x_1 x_2$$

new feature

$$f_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

Feature engineering:
Using intuition to design
new features, by
transforming or combining
original features.

Make sure gradient descent is working correctly

Automatic convergence test Let ε "epsilon" be 10^{-3} . 0.001 If $J(\vec{w}, b)$ decreases by $\leq \varepsilon$ in one iteration, declare convergence. (found parameters \vec{w}, b to get close to global minimum)

Values of α to try:

...
$$0.001$$
 0.003 0.01 0.03 0.1 0.3 1 ... 3χ $\approx 3\chi$ 3χ $\approx 3\chi$ 3χ

Polynomial regression

Feature scaling

aim for about
$$-1 \le x_j \le 1$$
 for each feature x_j
 $-3 \le x_j \le 3$
 $-0.3 \le x_j \le 0.3$ acceptable ranges

$$0 \le x_1 \le 3$$
 Okay, no rescaling $-2 \le x_2 \le 0.5$ Okay, no rescaling $-100 \le x_3 \le 100$ too large \rightarrow rescale $-0.001 \le x_4 \le 0.001$ too small \rightarrow rescale $98.6 \le x_5 \le 105$ too large \rightarrow rescale

or learning rate is too large

$$w_1 = w_1 + \alpha d_1$$

use a minus sign
 $w_1 = w_1 - \alpha d_1$

Adjust learning rate

With a small enough α , $J(\vec{w}, b)$ should decrease on every iteration

If α is too small, gradient descent takes a lot more iterations to converge

Mean normalization

x₁ size in feet² normalized

 $0 \le x_2 \le 5$

 $-0.67 \le x_1 \le 3.1 -1.6 \le x_2 \le 1.9$