19-3.
$$E(\hat{I}_n) = \frac{b-a}{n} E\left(\sum_{i=1}^n f(a+(b-a)U_i)\right)$$
$$= (b-a)E\left(f(a+(b-a)U_i)\right)$$
$$= (b-a)\int_0^1 f(a+(b-a)u)du$$
$$= I.$$

- 19-5. (a) 35. (b) 4.75. (c) 5 (at time 14).
- **19-7.** (a) $X_1 = 1$, $U_1 = 1/16$, $X_2 = 6$, $U_2 = 6/16$. (b) Yes. (c) $X_{150} = 2$.
- 19-9. (a) $X = -(1 = \lambda) \ln(1 U)$. (b) 0.693.
- **19-11.** (a) $X = -2\sqrt{1-2U}$, if 0 < U < 1/2, (b) X = 0.894. $= 2\sqrt{2U-1}$, if 1/2 < U < 1.
- 19-13. (a) $X = \sigma[-\ell n(1-U)]^{1/\beta}$. (b) 1.558.
- 19-15. $\sum_{i=1}^{12} U_i 6 = 1.07$. 19-17. $X = -(1 = \lambda) \ell U_1 U_2 = 0.841$.
- 19-19. X = 5 trials. 19-21. [-3:41, 4:41].
- 19-23. [80.4,119.6]. 19-25. Exponential with parameter 1; $-V(U_l) = -1/12$.