Duplicate Questions Detection P21

Darpan Dodiya (dpdodiya) Mohit Vinchoo (mvincho) Shantanu Sharma (ssharm34) Shrijeet Joshi (sjoshi22) Why, this problem is important to solve

What, experiments we performed

How, details of the implementation

Given questions (Q1 | Q2)

- How to exit the Vim editor?
- Why can't I exit Vim, I hit escape and tried :q :x :qx?

Are these questions Duplicates?

- Juplicate] "!q" and "wq!" failed to quit vim [duplicate] I cannot exit Vim, I hit Exit vi editor in L How to exit the Vim editor? ! tried :q :x :qx [duplicate]

How to quit/exit all windows/buffers/splits/tabs at once in vim or ... "Pilicate] [duplicate]

Introduction | Why is it a problem

- Information duplication
- Bad user experience for both question seekers and writers
- Moderators are required to scrutinize posted questions

Introduction | Data Description

We have used dataset provided by Quora on Kaggle platform

Data Description	Comments	
Question Distribution	404,290 (Duplicates 149,263, Non Duplicates 255,027)	
Features	Tuple (qid1, qid2, question 1 text, question 2 text) Class: Label Binary (1/0)	
Mean question length	Question 1 = 59, Question 2 = 60	
Median question length	Question 1 = 52, Question 2 = 51	
# rows with missing data	3	
Duplicate rows	0	

P21 | Shantanu Sharma

- Bogdanova, Dasha et al. "Detecting Semantically Equivalent Questions in Online User Forums." CoNLL (2015)
- Jeffrey Pennington, Richard Socher, and Christopher D. Manning **GloVe: Global Vectors for Word Representation**. (2014)
- Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, Kilian Q. Weinberger, From word embeddings to document distances (2015)
- Jonas Mueller. Aditya Thyagarajan, From Siamese Recurrent Architectures for Learning Sentence Similarity, Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16).

Duplicate questions have more **cosine similarity** than non-duplicate questions

P21 | Darpan Dodiya

Duplicate questions have more **cosine similarity** than non-duplicate questions: 63% accuracy

Question Type	Median Cosine Similarity	
Duplicate	0.69	
Non-duplicates	0.48	

Missing data, Duplicates, Non-alpha Tokenize, Stop words Stemming, Lemmatization Remove data with Tokenize words Stemming of words missing values Remove duplicate Remove stop words Lemmatization of words rows Remove non-alphanumeric Vectorizing words characters

P21 | Darpan Dodiya

K-NN Classifier	Feature Engineering	N-grams	WordNet
Apply KNN classifier 3-NN has the most	Created feature such as noun count similarity	Use n-grams while vectorizing questions	Find semantic similarity of two questions using WordNet
favorable results	This simple feature had improvements		Use Word2Vec for vectorization

11 Methods | LSTM Neural Network

- What are LSTM Networks
- Motivation behind using LSTM
- LSTM implementation approach in current problem space

HYPERPARAMETER	VALUE	
Number of Hidden Layers	50	
Number of epochs	10	
Optimizer	Adadelta	
loss	mean_squared_error	
Gradient clipping norm	1.25	

Methods | LSTM Neural Network

LSTM Network Graph

Performance vs Epochs | LSTM Neural Network

Method	Accuracy	F1 Score
Cosine Similarity	63%	0.59
3NN + Feature Engineering	67%	0.46
SVM	65%	0.50
Semantic Similarity Wordnet	72%	0.51
Word2Vec + WMD	67%	0.61
MaLSTM Neural Network	82%	0.72

16 Future Scope

- Neural Network have used pre-trained word vectors
- It can be fine tuned further as follows
 - With more data
 - Train word embeddings
 - Explore other Gradient Descent Optimizers

17 Discussions / Learning

- Explored and gained insight into many classification algorithms
- Even simple feature engineering can improve accuracy
- How to implement Neural Networks
- How to tune and select hyper parameters
- Usage of Google Colab, TPU and CUDA for computational intensive tasks

Thank You