LA COMPRESSION DES IMAGES

PRÉSENTÉE PAR ZAKI AKRAM

SOMMAIRE

- INTRODUCTION
- DÉCOMPOSITION EN VALEURS SINGULIÈRES
- TRONCATURE ET APPROXIMATION
- SIMULATION PYTHON
- DÉCOMPOSITION RANDOMISÉE
- SIMULATION PYTHON

INTRODUCTION

- Dans de nombreux domaines, les systèmes génèrent des données naturellement organisées dans des grandes matrices, ou plus généralement dans des tableaux.
- Par exemple, les valeurs des pixels dans une image en niveaux de gris peuvent être stockées dans une matrice.

Problème

Les images contiennent généralement un grand nombre de mesures(pixels) et sont donc des éléments d'un espace vectoriel de très grande dimension.

Solution

Les images sont compressibles, ce qui signifie que les informations pertinentes peuvent être représentées dans un sous-espace de dimension beaucoup plus faible.

Méthode étudiée

Décomposition en valeurs singulières

Matrice (image)

Matrice décomposée

Matrice Approximée

Décomposition en valeurs singulières

▶ Valeurs singulières:

Soit A une matrice de taille nxm et de rang r,

Soient $\sigma_1^2, \dots, \sigma_m^2$ les valeurs propres de la matrice A^TA:

Alors les r premières sont strictement positives, les m-r suivantes sont nulles.

 $\sigma_1, \dots, \sigma_m$ sont les valeurs singulières de A

Décomposition en valeurs singulières

► Théorème:

Soit A une matrice de taille nxm:

Il existe deux matrices orthogonales U ($n \times n$) et V($m \times m$), une matrice Σ ($n \times m$) telles que:

 $A=U \Sigma V^T$

Décomposition réduite

Soit A une matrice de rang r:

on suppose que n>m,

donc $r \le m$ d'où la décomposition s'écrit:

$$A=U\begin{bmatrix} & \widehat{\Sigma} \\ & & \\ & 0 \end{bmatrix} V^{\mathsf{T}}$$

C'est-à-dire:

$$A = \widehat{U} \widehat{\Sigma} V^{\mathsf{T}} = \sigma_1 U_1 V_1^{\mathsf{T}} + \dots + \sigma_r U_r V_r^{\mathsf{T}}$$

Troncature

► Troncature au rang k:

On suppose que

$$A = \sigma_1 U_1 V_1^T + \dots + \sigma_r U_r V_r^T$$

La troncature au rang k de A est:

$$\mathbf{A}_{k} = \sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{\mathsf{T}} + \dots + \sigma_{k} \mathbf{u}_{k} \mathbf{v}_{k}^{\mathsf{T}}$$

Approximation du rang faible d'Eckart-Young

Soit A une matrice réelle de taille n×m,

 $\sigma_1, \dots, \sigma_m$ les valeurs singulières de A:

▶ La norme de Frobenius:

$$||A||_{\mathsf{F}} = \sqrt{\sum_{\substack{1 \le i \le n \\ 1 \le j \le m}} \mathsf{Q}_{\mathsf{i}\mathsf{j}}^2}$$

► La norme spectrale:

$$||A||_2 = \sigma_1$$

Approximation d'Eckart-Young

► Théorème:

Soit A une matrice de taille nxm, on a:

$$\inf_{\substack{B \ tq}} \|A - B\|_{\mathsf{F}} = \mathsf{A}_{\mathsf{k}}$$

$$rang(B) = \mathsf{k}$$

$$\inf_{\substack{B \ tq}} \|A - B\|_{2} = \mathsf{A}_{\mathsf{k}}$$

$$rang(B) = \mathsf{k}$$

Simulation python

image originale

Graphes des valeurs singulières

Contribution des valeurs singulières Taux de compression

Erreur d'approximation

Décomposition en valeurs singulières randomisée

Soit A une matrice de taille nxm:

- ► Etape 1: Construction d'une matrice aléatoire P de taille m×r
 On note Z=AP.
- ► Etape 2: Décomposition de Z: Z=QR où Q est orthogonale et R est triangulaire supérieure.
- **Etape 3:** On pose $Y=Q^TA$, on décompose Y en valeurs singulières : $Y=U_1\Sigma V^T$.
- **Etape 4:** on trouve $U=QU_1$

Simulation python

Randomisée

Normale

Erreur de l'approximation

Annexe

```
import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.image import imread
    def decomposition(A):
         return np.linalg.svd(A, full_matrices=True)
    def decomposition_reduite(A):
         return np.linalg.svd(A,full_matrices=False)
    def troncature(A,k):
        U, Sigma, VT=decomposition reduite(A)
 9
10
        Sigma=np.diag(Sigma)
        Ak=U[:,:k]@Sigma[0:k,:k]@VT[:k,:]
11
        return Ak
12
13
    def Frobenius (A):
        return np.linalg.norm(A,ord='fro')
14
15
    def norme2(A):
16
         return np.linalg.norm(A,ord=2)
    def erreur approx(A,k):
18
        Ak=troncature(A,k)
        return Frobenius (A-Ak)/Frobenius (A)
19
20
    def taux comp(A,k):
21
        n=A.shape[0]
22
        m=A.shape[1]
        return (m*n)/(k*(m+n+1))
23
```

```
def aleatoire(A,k):
24
25
         return np.random.randn(A.shape[1],k)
26
    def qr(A):
27
         return np.linalg.qr(A,mode='reduced')
28
    def decomposition_rapide(A,k):
         P=aleatoire(A,k)
29
30
         Z=A@P
31
         Q,R=qr(Z)
32
         Y=np.transpose(Q)@A
33
         Ul, Sigma, VT=decomposition reduite(Y)
34
         U=Q@U1
35
         return U, Sigma, VT
36
    def troncature rapide(A,k):
         U, Sigma, VT=decomposition_rapide(A,k)
37
38
         Sigma=np.diag(Sigma)
         Ak=U[:,:k]@Sigma[0:k,:k]@VT[:k,:]
39
40
         return Ak
41
    def erreur_rapide(A,k):
42
         Ak=troncature rand(A,k)
43
         return Frobenius (A-Ak)/Frobenius (A)
44
```

```
A=imread(r'C:\Users\Akram\Desktop\test.jpg')
50 B=imread(r'C:\Users\Akram\Desktop\photo.jpg')
51 B=np.mean(B,-1)
   A=np.mean(A,-1)
53 plt.imshow(A)
54 plt.set_cmap('gray')
55 plt.axis('off')
   plt.title('image originale')
57
   plt.show()
58
59
60
    #décomposition normale
62
    1=0
63
    for k in (1,5,10,20,100,300):
64
        Ak=troncature(A,k)
65
       plt.figure(j+1)
66
       1+=1
       plt.imshow(Ak)
67
68
       plt.set_cmap('gray')
69
       plt.axis('off')
70
       plt.title('k='+str(k))
71
       plt.show()
72
    # décomposition rapide:
74
75
    for k in (1,5,10,20,100,300):
76
        Ak=troncature rapide(A,k)
77
        plt.figure(j+1)
78
       1+=1
79
       plt.imshow(Ak)
       plt.set_cmap('gray')
       plt.axis('off')
81
82
       plt.title('k='+str(k))
        plt.show()
9.4
```

```
plt.plot(np.cumsum(np.diag(Sigma))/np.sum(np.diag(Sigma)))
 95
     plt.grid()
     plt.xlabel('rang de troncature k')
     plt.ylabel('% des k valeurs singulières')
     plt.title('Contribution des valeurs singulières')
 99
     plt.show()
100
101
     *****************************
102
103
     plt.plot(np.diag(Sigma))
104
     plt.grid()
105
     plt.xlabel('k')
106
     plt.ylabel('k-ième valeur singulière')
107
     plt.title('valeurs singulières')
108
     plt.show()
109
110
     *************
111
112
     plt.semilogy(np.diag(Sigma))
113
     plt.grid()
114
     plt.xlabel('k')
     plt.ylabel('k-ième valeur singulière')
115
     plt.title('valeurs singulières')
116
117
     plt.show()
118
119
     ************
120
121
     L=[50,60,70,80,90,100,150,200,250,300]
122
     T=[]
123
     for elt in L:
124
         T.append(taux comp(A,elt))
125
     plt.plot(L,T,'bo')
126
     plt.title('Taux de compression')
127
     plt.xlabel('Rang de troncature k')
     plt.ylabel('taux')
128
129
     plt.grid()
130
     plt.show()
131
```

```
133
134
      L=[50,60,70,80,90,100,150,200,250,300,350,400,500,600,700,800]
135
     T=[]
     for elt in L:
136
          T.append(erreur approx(A,elt))
137
138
139 plt.plot(L,T,'ro'))
140 plt.grid()
plt.xlabel('rang de troncature k')
plt.ylabel('erreur')
plt.title('erreur approximation')
144 plt.show()
145
146
147
148
     L=[50,60,70,80,90,100,150,200,250,300,350,400,500,600,700,800]
    T=[]
149
    for elt in L:
150
T1.append(erreur_rapide(A,elt))
plt.plot(L,T,'ro')
153 plt.grid()
154 plt.xlabel('rang de troncature k')
155 plt.ylabel('erreur')
156 plt.title('erreur approximation')
157 plt.show()
158
```