CODIFICA BINARIA

Cosa vuol dire binario?

Binario ad esempio del treno? Due rotaie su cui viaggia il treno.

Binario, Bicicletta, Bipede, c'è sempre di mezzo il 2.

Il computer capisce solo ACCESO o SPENTO, di un circuito. Questa minima informazione si chiama BiT (**bi**nary digi**t**).

Per capire per noi essere umani, diciamo 0 (spento) e 1 (acceso).

Questo è l'alfabeto del computer, ha solo due 'lettere': 0 e 1.

Consideriamo invece il nostro alfabeto: a, b, c.....z, almeno 26 lettere, in più le maiuscole, A, B, ...Z.

Ma il computer è limitato a 0 e 1.

Dalla combinazione di 0 e 1 deve esprimere magari la parola 'cane' o 'gatto'.

Come fare??

Come dall'alfabeto italiano, combinando le lettere posso esprimere, nomi, verbi o aggettivi così con l'alfabeto del computer (binario, solo 0 e 1) posso esprimere le parole.

Se io volessi esprimere tutte le lettere dell'alfabeto con una sequenza di 0 e 1 come potrei fare??

Facciamo, all'inizio per semplificare che dobbiamo esprimere solo la 26 lettere miniscole: a, b, c.....z

Ragioniamo: con **1 bit** possimo esprimere solo 2 informazioni: vero/falso ad esempio. Equivale $2^1 = 2$

Con 2 bit, già possiamo esprimere di più: $2^2 = 2 * 2 = 4$ informazioni.

Infatti, abbiamo queste possibili informazioni:

- •00
- •01
- •10
- •11

andando così avanti con 3 bit abbiamo $2^3 = 2 * 2 * 2 = 8$ diverse possibilità:

- 000
- 001
- 010
- 011
- 100
- 101
- 110
- 111

Con 3 bit ad esempio potremmo esprimere tutti i giorni della settimana (sono 7 e noi con 3 bit abbiamo 8 combinazioni).

Ad esempio potremmo codificate 000 come LUNEDI', 001 come MARTEDI' fino a 110 come DOMENICA (avanzeremmo anche la sequenza 111 se i giorni della settimana fossero 8).

Se qualcun'altro conoscesse il nostro codice segreto (ci saiamo prima messi d'accordo) e scrivessimo 010, l'altra persona leggerebbe MERCOLEDI', avremmo creato un nostro linguaggio. Da notare che è una convenzione stabilita tra chi scrive e chi legge.

Tornando a bomba, se dobbiamo invece esprimere 26 lettere alfabeto quanti bit ci servono se a ogni combinazione gli possiamo assegnare una lettera dell'alfabeto?

Deve essere $2^x > di 26$, con l'X, l'intero, minore possibile, che soddisfi l'equazione: vediamo che con $2^3 = 8$ (< di 26), $2^4 = 16$ (< di 26) ma $2^5 = 32$ che è > di 26.

Quindi con 5 bit possiamo esprimere tutte le lettere dell'alfabeto. Stabiliamo ad esempio:

- 00000 -> A
- 00001 -> B
- 00010 -> C
- 00011 -> D
- 00100 -> E
- fino a *Z*

come già accennato, dobbiamo stabilire con chi legge la convenzione di questa codifica, se no chi legge non capisce nulla: se uno legge 00010 e non conosce la codifica da noi stabilita, non può sapere che si voleva significare C.

Chi legge deve avere come una tabella che associa alla sequenza **00000** la lettera **A**, e così via. E chi scrive deve conoscere la tabella e se vuole significare **B** deve scrivere **00001**.

Tutto questo poi perchè l'alfabeto dei computer è fatto di sole due lettere 0 e 1.

CODICE ASCII

I pionieri nel campo dell'informatica, parliamo dei primi anni 60 del secolo scorso, si sono travati di fronte bene o male al problema che abbiamo descritto noi, un po' esteso: dovevano codificare i la lettere dell'alfabeto (maiscole e minuscole), le cifre dei numeri (0, 1, 2....9) e tutti i segni di punteggiatura (virgola, parentesi, duepunti, ?, !....) e vari simboli, come ><. Il tutto per 128 caratteri: 2⁷ che equivale a 128, quindi con 7 bit si potrebbero codificare tutti i 128 simboli. Si è scelto di usare 8 bit, di avere altri 128 posti a disposizione per codificare altri caratteri speciali, specifici di ogni alfabeto dei paesi occidentali (nelle slide 9 c'è la tabella ASCII STANDARD, i primi 128 caratteri comuni a tutti e slide 10, gli altri 128 dell'ASCII Esteso).

Le lettere dell'alfabeto della tabella ASCII sono quelle dell'alfabero Inglese (non cisono ad esempio le nostre 'à' o 'ò' ad esempio). Gli bastavano 128

caratteri e quindi 7 bit, ma un altro bit (l'ottavo) è stato utilizzato per codificare le lettere di altri alfabeti, che avevano dei propri caratteri speciali, come le a accentate dell'italiano, o caratteri speciali del francese o tedesco, per un totale di 256 caratteri (di qui gli 8 bit necessari = 2⁸ = 256). I primi 128 comuni a tutti (con il primo bit a 0), gli altri 128 (quelli con il primo bit = 1) specifici per ogni alfabeto dei paesi occidentali (ITALIANO, TEDESCO, FRANCESE, OLANDESE).

Per il fatto di utilizzare 8 bit come base per codificare i caratteri, ha fatto si che l'insieme di 8 bit, chiamato **Byte**, sia il formato l'unità di base per l'architettura del computer.

-> Byte sta per "BinarY octetTE", ovvero "ottetto binario".

Come potete vedere ad ogni carattere corrisponde un byte

Se devo scrivere "gatto", diventa:

Questo è quello che viene salvato su disco fisso, cioè la sequenza di 0 e 1 di 5 byte.

Quando un programma come world, legge un file da disco fisso, legge la sequenza di 0 e 1, e semplicisticamente possiamo dire che li raggruppa in sequenze di 8 bit, cioè di byte, e converte queste parole di 0 e 1 nel corrispettivo carattere che viene poi presentato a video. Ad esempio, la sequenza di bit (4 byte, 32 bit):

01000011 01100001 01101110 01100101 -> C a n e

viene decodificata nella stringa, 'Cane'.

Per un po' di anni, tutto questo è bastato, poi con la difffusione dell'informatica in tutti i paesi e quindi non solo quelli iniziali (principalmente Stati Uniti e altri paesi dell'Europa Occidentale) ma in tutti i continenti, l'alfabeto dello **standard ASCII** (che sta infatti per *American Standard Code for Information Interchange*) non basta più: non sono codificate le lettere ad esempio dell'alfabeto arabo o quelle del cinese.

Con un byte come abbiamo già detto codificare solo, 2⁸, 256 possibili carateri, oramai troppo pochi.

Un ente di standarizzazione internazionale si occupa attualmente di stardardizzare tutti i caratteri dei vari alfabeti e si chiama UNICODE e utilizza 2 byte (cioè 16 bit e quindi 2¹⁶ possibili caratteri 65.536 (2^16).

E' importante capire che i codici UNICODE sono un'estensione della tabella ASCII, i primi 256 caratteri della tabella ASCII sono uguali a quelli della tabella UNICODE.

Codice ASCII <u>STANDARD</u>

Byte	Cod.	Char	Byte	Cod.	Char	Byte	Cod.	Char	Byte	Cod.	Char
00000000	0	Null	00100000	32	Spc	01000000	64	@	01100000	96	`
00000001	1	Start of heading	00100001	33	!	01000001	65	Ā	01100001	97	a
00000010	2	Start of text	00100010	34	33	01000010	66	В	01100010	98	b
00000011	3	End of text	00100011	35	#	01000011	67	C	01100011	99	С
00000100	4	End of transmit	00100100	36	\$	01000100	68	D	01100100	100	d
00000101	5	Enquiry	00100101	37	%	01000101	69	E	01100101	101	e
00000110	6	Acknowledge	00100110	38	&	01000110	70	F	01100110	102	f
00000111	7	Audible bell	00100111	39	,	01000111	71	G	01100111	103	g
00001000	8	Backspace	00101000	40		01001000	72	Н	01101000	104	h l
00001001	9	Horizontal tab	00101001	41)	01001001	73	Ι	01101001	105	i
00001010	10	Line feed	00101010	42	*	01001010	74	J	01101010	106	i
00001011	11	Vertical tab	00101011	43	+	01001011	75	K	01101011	107	k
00001100	12	Form Feed	00101100	44	١, ١	01001100	76	L	01101100	108	1
00001101	13	Carriage return	00101101	45		01001101	77	\mathbf{M}	01101101	109	m
00001110	14	Shift out	00101110	46		01001110	78	N	01101110	110	n
00001111	15	Shift in	00101111	47	1	01001111	79	0	01101111	111	o
00010000	16	Data link escape	00110000	48	0	01010000	80	P	01110000	112	p
00010001	17	Device control 1	00110001	49	1	01010001	81	Q	01110001	113	q
00010010	18	Device control 2	00110010	50	2	01010010	82	Ř	01110010	114	r
00010011	19	Device control 3	00110011	51	3	01010011	83	S	01110011	115	s
00010100	20	Device control 4	00110100	52	4	01010100	84	T	01110100	116	t
00010101	21	Neg. acknowledge	00110101	53	5	01010101	85	U	01110101	117	u
00010110	22	Synchronous idle	00110110	54	6	01010110	86	v	01110110	118	v
00010111	23	End trans. block	00110111	55	7	01010111	87	W	01110111	119	w
00011000	24	Cancel	00111000	56	8	01011000	88	X	01111000	120	x
00011001	25	End of medium	00111001	57	9	01011001	89	Y	01111001	121	y
00011010	26	Substitution	00111010	58	:	01011010	90	Z	01111010	122	z
00011011	27	Escape	00111011	59		01011011	91	1	01111011	123	{
00011100	28	File separator	00111100	60	, <	01011100	92	Ň	01111100	124	i
00011101	29	Group separator	00111101	61	=	01011101	93	i	01111101	125	}
00011110	30	Record Separator	00111110	62	>	01011110	94	Á	01111110	126	~
00011111	31	Unit separator	00111111	63	?	01011111	95		01111111	127	Del

Codice ASCII <u>ESTESO</u> (per Windows in Italiano)

Byte	Cod.	Char	Byte	Cod.	Char	Byte	Cod.	Char	Byte	Cod.	Char
10000000	128	Ç	10100000	160	á	11000000	192	+	11100000	224	Ó
10000001	129	ü	10100001	161	í	11000001	193	-	11100001	225	ß
10000010	130	é	10100010	162	ó	11000010	194	4	11100010	226	ô
10000011	131	â	10100011	163	ú	11000011	195	+	11100011	227	Ò
10000100	132	ä	10100100	164	ñ	11000100	196		11100100	228	ő
10000101	133	à	10100101	165	Ñ	11000101	197	+	11100101	229	Õ
10000110	134	å	10100110	166	a	11000110	198	ã	11100110	230	щ
10000111	135	ç	10100111	167	0	11000111	199	Ã	11100111	231	þ
10001000	136	ê	10101000	168	3	11001000	200	+	11101000	232	Ď
10001001	137	ë	10101001	169	®	11001001	201	+	11101001	233	Ú
10001010	138	è	10101010	170		11001010	202	2	11101010	234	Û
10001011	139	ï	10101011	171	1/2	11001011	203		11101011	235	Ù
10001100	140	î	10101100	172	3/4	11001100	204	1	11101100	236	ý
10001101	141	ì	10101101	173	i	11001101	205	2	11101101	237	Ý
10001110	142	Ä	10101110	174	«	11001110	206	+	11101110	238	-
10001111	143	Å	10101111	175	»	11001111	207	Ø	11101111	239	
10010000	144	É	10110000	176	(A)	11010000	208	ŏ	11110000	240	-
10010001	145	æ	10110001	177		11010001	209	Đ	11110001	241	±
10010010	146	Æ	10110010	178		11010010	210	Ê	11110010	242	
10010011	147	ô	10110011	179	Ī	11010011	211	Ë	11110011	243	3/4
10010100	148	ö	10110100	180	i	11010100	212	È	11110100	244	¶
10010101	149	ò	10110101	181	À	11010101	213	i	11110101	245	Š
10010110	150	û	10110110	182	Â	11010110	214	Í	11110110	246	÷
10010111	151	ù	10110111	183	À	11010111	215	Î	11110111	247	
10011000	152	ÿ	10111000	184	©	11011000	216	Ï	11111000	248	ó
10011001	153	Ö	10111001	185	1	11011001	217	+	11111001	249	***
10011010	154	Ü	10111010	186	i	11011010	218	+	11111010	250	
10011011	155	ø	10111011	187	+	11011011	219	51,75	11111011	251	1
10011100	156	£	10111100	188	+	11011100	220	_	11111100	252	3
10011101	157	Ø	10111101	189	¢	11011101	221	Ī	11111101	253	2
10011110	158	×	10111110	190	¥	11011110	222	Ì	11111110	254	
10011111	159	f	10111111	191	+	11011111	223		11111111	255	

SOMMARIO

Ricapitolando i concetti visti:

- il bit, che cos'è e che valori può assumere;
- il problema di codificare le informazioni dato un alfabeto di soli 0 e 1;
- •che cos'è il byte, e come ci si è arrivati;
- come codificare una stringa di caratteri alfanumerici in 0 e 1;
- come decodificare da una sequenza di 0 e 1 in una stringa alfanumerica;

Vedete lezione 4 del testo con esercizi su codifiche.