Worksheet 1 Solution

March 9, 2020

Question 1

- a) $A = \{2, 5\}$ $A^c = \{1, 3, 4, 6\}$
- b) $A^c = U \setminus A$
- c) $A^c \cap B^c = \{ x \mid x \in U, x \le 0 \text{ and } x \ge 4 \}$ $A^c \cap B^c = \{ x \mid x \in U, x < 1 \text{ and } x > 2 \}$ $(A \cap B)^c = \{ x \mid x \in U, x < 1 \text{ and } x > 2 \}$ $(A \cup B)^c = \{ x \mid x \in U, x \le 0 \text{ and } x \ge 4 \}$

Question 2

- a) $T_0 \to 0, 3, 6$
 - $T_1 \to 1, 4, 7$
 - $T_2 \rightarrow 2, 5, 8$
 - $T_3 \to 12, 18, 24$
- b) $\mathbb{Z}^+ = \{ T_0, T_1, T_2 \}$

 T_3 not included. A partition of a set must not have any common elements.

Question 3

- a) 000, 110, 001, 010, 011, 100, 101, 111
- b) $S_1 = \{aa, bb, cc, ab, ca, ba, ac, bc, cb\}$ $S_2 = \{a, b, c, aa, bb, cc, ab, ca, aaa, aba, aca, bab, bbb, bcb, cac, cbc, ccc...\}$ $S_1 \cap S_2 = \{aa, bb, cc\}$ $S_1 \setminus S_2 = \{ab, ca, ba, ac, bc, cb\}$
- c) $S_1 = (S_1 \cap S_2) \cup (S_1 \setminus S_2)$

Question 4

a)	x	$\lfloor x \rfloor$	$ \lceil x \rceil$
	$\frac{25}{4}$	6	7
	0.999	0	1
	-2.01	-3	-2

b) Domain: \mathbb{R}

Codomain: \mathbb{Z}

c) False. Consider the following example.

$$1 = \lfloor 0.75 + 0.25 \rfloor$$

$$0 = \lfloor 0.75 \rfloor + \lfloor 0.25 \rfloor$$

Question 5

a)
$$\sum_{k=1}^{3} (k+1) = (1+1) + (2+1) + (3+1)$$

$$\sum_{m=0}^{1} \frac{1}{2^{m}} = \frac{1}{2^{0}} + \frac{1}{2^{1}}$$

$$\sum_{k=0}^{2} (k^{2} + 3) = (1^{2} + 3) + (2^{2} + 3)$$

$$\sum_{k=0}^{4} \frac{(-1)^{j} \cdot j}{j+1} = \frac{(-1)^{0} \cdot 0}{0+1} + \frac{(-1)^{1} \cdot 1}{1+1} + \frac{(-1)^{2} \cdot 2}{2+1} + \frac{(-1)^{3} \cdot 3}{3+1} + \frac{(-1)^{4} \cdot 4}{4+1}$$

$$\sum_{k=1}^{5} (2k) = (2 \cdot 1) + (2 \cdot 2) + (2 \cdot 3) + (2 \cdot 4) + (2 \cdot 5)$$

$$\prod_{k=1}^{4} \frac{i \cdot (i+2)}{(i-1) \cdot (i+1)} = \frac{1 \cdot (1+2)}{(1-1) \cdot (1+1)} \times \frac{2 \cdot (2+2)}{(2-1) \times (2+1)} \times \frac{3 \cdot (3+2)}{(3-1) \times (3+1)} \times \frac{4 \cdot (4+2)}{(4-1) \cdot (4+1)}$$

b)
$$3+6+12+24+48+96 = \sum_{i=0}^{6} (3 \cdot 2^k)$$

 $0+1-2+3-4+5 = \sum_{i=0}^{6} (-1)^i + 1$
 $\frac{(1\cdot 2)}{(3\cdot 4)} + \frac{(2\cdot 3)}{(4\cdot 5)} + \frac{(3\cdot 4)}{(5\cdot 6)} = \prod_{i=1}^{3} \frac{i\cdot (i+1)}{(i+2)\cdot (i+3)}$
 $\frac{1}{3} + \frac{4}{9} + \frac{9}{27} + \frac{16}{81} + \frac{25}{243} + \frac{36}{729} = \sum_{i=1}^{6} \frac{i^2}{3^i}$
 $\frac{1}{(1+1)} \times \frac{2}{(2+1)} \times \frac{3}{(3+1)} \dots \frac{k}{(k+1)} = \prod_{i=1}^{k} \frac{k}{k+1}$

Question 6

a)
$$3 \cdot \sum_{i=1}^{n} (2i+3) + \sum_{i=1}^{n} = (4-5i) = \sum_{i=1}^{n} [2 \cdot (2i+3) + (4-5i)]$$

 $(\prod_{i=1}^{n} \frac{i}{i+1}) \cdot (\prod_{i=1}^{n} \frac{i+1}{i+2}) = \prod_{i=1}^{n} (\frac{i}{i+1}) \cdot (\frac{i+1}{i+2})$

$$\sum_{i=10}^{15} 2^i + \sum_{i=101}^{106} (i-1) = \sum_{i=0}^{5} [2^{i+10} + (i+100)]$$