LLM pre-training and scaling laws

▼ Pre-training Large Language models

- Foundation model vs Train your own model
- model architectures and pre-training objectives

Autoencoding models (architecture - encoder only)

Good use cases: BERT, ROBERTA

- sentiment analysis
- NER name entity recognition
- word classification

Autoregressive Models (architecture - decoder only)

Causal language Modeling (CLM)

mask token, then forecast the next token, this means unidirectional context

Good Use cases: GBT, BLOOM

• text generation

Sequence-to-Sequence Models (architecture - encoder-decoder)

mask and replace tokens

• objective: reconstruct span

Good use cases: T5, BART

translation

- text summarization
- · question answering

Model architectures and pre-training objectives

▼ Computational challenges of training LLMs

- · Common problem: Out of Memory
- Approximate GPU RAM needed to store 1B parameters
 - 1 parameter = 4 bytes (32-bit float)
 model parameters (weights), Adam optimizers (2 states), Gradients, activations and temp memory → 24 bytes per paramaters
 - o eg, 24G RAM for training
- **Quantization** the goal of quantization is to reduce the memory required to store and train models by reducing the precision off the model weights.

- reduce from 32-bit floating point to, in the order of reducing precision
 - FP16 in most cases are acceptable
 - BFLOAT16 is even better in speeding up calculation.
 - INT8

Quantization: Summary

	Bits	Exponent	Fraction	Memory needed to store one value	
FP32	32	8	23	4 bytes	FLAI T5
FP16	16	5	10	2 bytes	
BFLOAT16	16	8	7	2 bytes	
INT8	8	-/-	7	1 byte	

- Reduce required memory to store and train models
- Projects original 32-bit floating point numbers into lower precision spaces
- Quantization-aware training (QAT) learns the quantization scaling factors during training
- BFLOAT16 is a popular choice

▼ Distributed Data Parallel (DDP) in Pytorch

- Use dataloader to distribute data to each GPU, then synchronize gradients,
 then update the model full model copy data on each GPU, waste memory
- Fully Sharded Data Parallel, ZeRO subset of parameters for each GPU, no repeat

ZeRO stage 1: shard only optimizer states

ZeRO stage 2: shard optimizer states, gradients

ZeRO stage 3: shard optimizer states, gradients, and parameters

Fully Sharded Data Parallel (FSDP)

