Valószínűségszámítás

9. gyakorlat

Nemkin Viktória $\label{eq:nemkin} $\operatorname{http://cs.bme.hu/}{\sim} \text{viktoria.nemkin/} $$ 2016. nov. 9.$

- 9.1 Választunk 2 számot egymástól függetlenül egyenletes eloszlással a [-1,1] intervallumról. Mennyi a valószínűsége, hogy valamelyik szám kisebb, mint a másik négyzete? 1.PZH 2. feladat
- 9.2 Lovas gátversenyen a lovasok körpályán versenyeznek és a ló a pályán elhelyezett sok akadály mindegyikét egymástól függetlenül azonos valószínűséggel veri le. Ha 5% annak a valószínűsége, hogy a lovas hibátlanul teljesít egy kört, mennyi az esélye, hogy egy körben legfeljebb 3 akadályt ver le?

 1.PZH 3. feladat
- 9.3 Háromszor dobunk egy szabályos dobókockával. X a kapott 6-osok száma, Y a kapott páros értékek száma. Adja meg X és Y együttes eloszlását, kovariancia mátrixukat. Függetlenek X és Y? Fgy. III.15
- 9.4 X és Y valószínűségi változók együttes sűrűségfüggvénye: $f_{X,Y} = \frac{4}{23}(x^2y + 3xy + x^2 + 3x + 2y + 2)$ 0 < x < 1 és 0 < y < 1. Számolja ki a perem-sűrűségfüggvényeket! Függetlenek?
- 9.5 Legyenek $X \in E(3)$ és $Y \in N(-1,2)$, független valószínűségi változók. Adja meg az alábbi mennyiségeket:
 - a.) cov(X 2Y, X + 2Y)
 - b.) E(2X 4Y)
 - c.) $\sigma^2(2X 4Y + 153)$

Fgy. III.152

- 9.6 Legyenek X és Y független valószínűségi változók, $Y \in U(0,1)$ és X sűrűségfüggvénye $f_X(x) = 2x, x \in [0,1]$. Számolja ki az $f_{X+Y}(t)$ konvolúciós sűrűségfüggvényt! Fau. III.167
- 9.7 Legyenek $X \in G(\frac{1}{2})$ és $Y \in G(\frac{1}{4})$ függetlenek! Mennyi $\mathbf{P}(X+Y=k)$ (k=2,3,4,...)? Fgy. III.30
- 9.8 Legyenek $X,Y\in G(p)$ függetlenek. Adja meg a $\mathbf{P}(\mathbf{X}=\mathbf{Y})$ valószínűséget! Fgy. III.1
- 9.9 Legyenek $X \in Po(0,5)$ és $Y \in Po(0,1)$ függetlenek! Mennyi $\mathbf{P}(X+Y=2)$? Fgy. III.29
- 9.10 Legyenek $X \in U(0,3)$ és $Y \in U(-1,4)$ független valószínűségi változók. Határozza meg a $\mathbf{P}(X < Y)$ és a $\mathbf{P}(XY < 1)$ valószínűségeket! Fgy.~III.17
- 9.11 Legyenek $X,Y\in E(1)$ függetlenek. Bizonyítsa be, hogy $min\{X,Y\}\in E(2)$ és, hogy $max\{X,Y\}$ eloszlása megegyezik $X+\frac{1}{2}Y$ eloszlásával! Fqy. III.3
- 9.12 Legyenek $X \in N(5,2)$ és $Y \in N(4,3)$ függetlenek. Adja meg a $\mathbf{P}(X < Y)$ valószínűséget! ($\Phi(0.5774) = 0.7182$) Fqy. III.37
- 9.13 Legyenek $X,Y\in N(0,1)$ függetlenek, és Z=|X+Y|. Határozza meg Z sűrűségfüggvényét! Fgy. III.9

IMSC Házi Feladat (10 pont) Legyenek $X,Y \in U(0,1)$ függetlenek! Mekkora valószínűséggel lehet az $a=X,\ b=1-X,$ c=1-Y véletlen szakaszokból háromszöget szerkeszteni?