Factors Associated with Mortality Following Admission to a Hospital for a Gun Shot Wound

Department of Mathematics and Statistics

University of Vermont

Burlington, Vermont, USA

Zihao Huang

Zhuang12@uvm.edu

Abstract:

Each year there are about 30,000 deaths from gunshot wounds. To identify fatal gunshot wounds, in this paper, we focus on the data GSW, that we choose several variables from GSW and simulate the data into logistic regression, then we found the interactions among the variables. Next, we improved the model and then assessed the fit of goodness for this model, finally we display some outliers to discuss.

Keywords: Gunshot wound (GSW), Stata, Logistic Regression

Introduction

"A gunshot wound, also known as (GSW), ballistic trauma, or bullet wound, is a form of physical trauma sustained from the discharge of arms or munitions." (Wiki)

There 30,000 deaths from gunshot wounds in United States. The accidents are common and recently it becomes a popular topic. To assess the factors of gunshot wounds, we met the trouble first that the gunshot wound data is difficult to obtain. Because since 1994, it is prohibited to collect data of guns and gun control. However, we are able to get the data related to gunshot wounds. Thus, we could obtain the information of patients who shot by guns.

In this paper, we afford to figure out the factors which may be fatal to humans. Firstly, we focus on the data GSW, that we choose several variables from GSW and simulate the data into logistic regression, then we found the interactions among the variables. Next, we improved the model and then assessed the fit of goodness for this model, finally we display some outliers to discuss and we have a conclusion and discussion.

Method

Data

Using the data of GSW, there are approximately 60,000 observations. According to the data, we consider the variables: DIED, AGE, FEMALE, SHOCK, TMPM, AWEEKEND, YEAR, GUN_INT for the study. DIED is

binary variable, "0" represents alive after gunshot wound while "1" shows dead. AGE, a continuous variable, is the age of patient while the accident is recorded. FEMALE is a binary variable showing "0" is male and "1" us female. SHOCK is "life-threatening medical condition of low blood perfusion to tissues" (shock, wiki), and "0" represents patient suffered a shock from gunshot, while "1" didn't. TMPM is a continuous variable to show the severity of gunshot wound. It is a log-likelihood figures with the range -12.77 to 3.54. AWEEKEND is a binary variable, "1" means the gunshot happened at weekend but "0" didn't. YEAR is a continuous variable recording the year of the accident. In the paper, DIED is used as an outcome.

Statistical Model – logistic regression

"logistic regression, or logit regression" (David A. Freedman, 2009), or logit model is a regression model where the dependent variable (DV) is categorical. "This article covers the case of a binary dependent variable—that is, where it can take only two values, "0" and "1", which represent outcomes such as pass/fail, win/lose, alive/dead or healthy/sick. Cases where the dependent variable has more than two outcome categories may be analyzed in multinomial logistic regression, or, if the multiple categories are ordered, in ordinal logistic regression" (Walker, SH; Duncan, DB, 1967).

Procedure and Result

Firstly, by using code "drop if(variable =.)" and 42,015 observations reserved in the dataset we use univariate model to check each variable we chose. According to the univariate test, we found the variables AGE, FEMALE, TMPM, SHOCK and GSW_INT are significant. We applied these variables into a new model after collapsing YEAR and AWEEKEND (from Table 1.1 to Table 1.3).

For AGE and TMPM are the continuous variables, we would figure out how well they may be applied into this new model. Here we use fractional polynomials for AGE and TMPM. According to the result of Table 1.4, we found m=1 is the best result for AGE, thus, we generate a new variable "AGE1" for AGE.

 $AGE1=(AGE/10)^3$

For TMPM, they have a range from -12.77 to 3.54, (TMPM) ^3 * ln(TMPM/10) cannot be used. we applied AGE1 into the model.

We explore possible interaction, we add each of the interaction into the model and test the chi-square with df=1 and its p-value listed in Table 1.7. From the result of Table 1.7, we found some interactions are 10 percent significant, then we applied those into the model (Table 1.8). We fit the model by eliminating the non-significant interactions, thus, we got the revised logistic regression model (Table 1.9) and its estimated odds ratio (Table 1.9-1). We check the linearity of continuous variables AGE and TMPM by using Lowess smoother (Table 1.10).

The model is shown below:

```
Y = \beta_0 + \beta_1 \times AGE1 + \beta_2 \times TMPM + \beta_3 \times FEMALE + \beta_4 \times SHOCK + \beta_5 \times GSW_INT1 + \beta_6 \times GSW_INT2 + \beta_7 \times GSW_INT3 + \beta_8 \times GSW_INT4 + \beta_9 \times AGE1 \times TMPM + \beta_{10} \times TMPM \times SHOCK + \beta_{11} \times TMPM \times GSW_INT4 + \beta_{12} \times SHOCK \times GSW_INT2
```

 $\pi = e^Y = e^{-(\beta 0 + \beta 1 \times AGE1 + \beta 2 \times TMPM + \beta 3 \times FEMALE + \beta 4 \times SHOCK + \beta 5 \times GSW_INT1 + \beta 6 \times GSW_INT2 + \beta 7 \times GSW_INT3 + \beta 8 \times GSW_INT4 + \beta 9 \times AGE1 \times TMPM + \beta 10 \times TMPM \times SHOCK + \beta 11 \times TMPM \times GSW_INT4 + \beta 12 \times SHOCK \times GSW_INT2)$

Assess the goodness of fit: For table 1.11, the cutpoint is.5 it shows the classification has a 98.55% specificity but it has a 45.02% sensitivity, the model has a good fit and shows that fewer people were predicted to be dead for the gunshot wound. From the table 1.12, this model has a good specificity curve but a weak sensitivity curve. It shows p=.1 may have a good classification. Thus, we tried cutpoint p=.1 and found that with cutpoint=.1 it shows the classification has a 89.26% specificity but it has a 86.09% sensitivity, the model has a good fit but it shows that more people were predicted to be dead for the gunshot wound. In table 1.14, the area under the ROC curve is 0.9422>0.9, we consider the discrimination is outstanding. Hosmer-Lemeshow goodness of fit is conducted and each group contain 1000 observations. P-value=.8706 from the Chi-square with df=998 shows that it has a good fit for this model.

Then we plot four graphs (table 1.17 and table 1.18) to show the relationship among estimated probability, deviation of Distance, deviation of Beta and deviation of Chi-Square. The observations 35397, 2754, 26953, 26858 and 10637 (table 1.19) are detected as outlying. We eliminate the outlier one by one: by eliminating the No. 26858 observation, change of coefficient is -.24819028%; by eliminating the No. 2754 observation,

change of coefficient is -.27576698%; by eliminating the No. 35397 observation, change of coefficient is .2964495%; by eliminating the No. 26953 observation, change of coefficient is -.15856601% by eliminating the No. 10637 observation, change of coefficient is -.50327473% and table 2 show the model without 5 outliers and its estimated odds ratio.

Conclusion and Limitations

We found the factors related to gunshot wounds are AGE, FEMALE, TMPM, SHOCK and GSW INT, and model is:

```
Y = \beta_0 + \beta_1 \times AGE1 + \beta_2 \times TMPM + \beta_3 \times FEMALE + \beta_4 \times SHOCK + \beta_5 \times GSW_INT1 + \beta_6 \times GSW_INT2 + \beta_7 \times GSW_INT3 + \beta_8 \times GSW_INT4 + \beta_9 \times AGE1 \times TMPM + \beta_{10} \times TMPM \times SHOCK + \beta_{11} \times TMPM \times GSW_INT4 + \beta_{12} \times SHOCK \times GSW_INT2
```

The estimated odds ratio is shown in table 1.16 and the model with reducing 5 observations in table 2. We found the model has good specificity but weak sensitivity in cutpoint .5, but it is great at cut point .1. The model has an excellent discrimination and a good fit when observations are grouped. Then we cancel the outlying observation one by one, and we found it has a good fit for each model. (See table 2) And after canceling 5 outliers it performs better. Finally, the estimated odd ratio tables (Table 2.1) will identify the odds ratio with 4 interactions in this model. And Table 3 will show the 95% confident interval of estimating odd ratios for each of variables and interactions.

However, this paper has several limitations: Firstly, not all the variables in GSW are discussed. For example, GUN_TYP is essential that it may be related to fatal event. Secondly, the model has a poor performance in sensitivity, which means that in general it will predict less people is dead from the gunshot. Thirdly, Examination of outliers are not reliable. The author tried to detect the outlier from high Delta D and Delta Chi-square and Delta Beta, which may be subjective. Finally, it lacks a complete test after eliminating outliers, which may leave for future research.

Reference

- 1. David Hosmer and Stanley Lemeshow (2016). Applied Logistic Regression (Second Edition)
- 2. Silverman, Adam (Oct 2005). "Shock: A Common Pathway For Life-Threatening Pediatric Illnesses And Injuries". Pediatric Emergency Medicine Practice. 2 (10).
- 3. David A. Freedman (2009). Statistical Models: Theory and Practice. Cambridge University Press. p. 128.

APENDIX

. logit died

Iteration 0: log likelihood = -11488.397

Iteration 1: log likelihood = -11488.397 (backed up)

Logistic regression Number of obs = 42,015

LR chi2(0) = -0.00 Prob > chi2 = . Pseudo R2 = -0.0000

died Coef. Std. Err. z P>|z| [95% Conf. Interval]
_cons -2.472212 .0182104 -135.76 0.000 -2.507904 -2.43652

Table 1.1: logistic regression of dependent variable

"Logit died" is stored as "A"

. logit died age

Iteration 0: log likelihood = -11488.397
Iteration 1: log likelihood = -11279.513
Iteration 2: log likelihood = -11259.844
Iteration 3: log likelihood = -11259.779
Iteration 4: log likelihood = -11259.779

Logistic regression Number of obs = 42,015

Number of obs = 42,015 LR chi2(1) = 457.24 Prob > chi2 = 0.0000 Pseudo R2 = 0.0199

died	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
age _cons					.023328 -3.386318	

. estimates store A1

. lrtest A A1

Likelihood-ratio test LR chi2(1) = 457.24 (Assumption: A nested in A1) Prob > chi2 = 0.0000

Table 1.2-1: univariate logistic regression of DIED and AGE

. logit died tmpm

```
Iteration 0: log likelihood = -11488.397
Iteration 1: log likelihood = -8667.752
Iteration 2: log likelihood = -6711.5025
Iteration 3: log likelihood = -6571.8311
Iteration 4: log likelihood = -6570.4165
Iteration 5: log likelihood = -6570.4162
```

Number of obs = 42,015 LR chi2(1) = 9835.96 Prob > chi2 = 0.0000 Pseudo R2 = 0.4281 Logistic regression

Log likelihood = -6570.4162

died	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
tmpm _cons		.0157704 .0351344			1.105252 .2084411	

. estimates store A2

. 1rtest A A2

Likelihood-ratio test LR chi2(1) = 9835.96Prob > chi2 = 0.0000 (Assumption: A nested in A2)

Table 1.2-2: univariate logistic regression of DIED and TMPM

. logit died shock

```
Iteration 0: log likelihood = -11488.397
Iteration 1: log likelihood = -10980.502
Iteration 2: log likelihood = -10965.574
Iteration 3: log likelihood = -10965.549
Iteration 4: log likelihood = -10965.549
```

Number of obs = 42,015 LR chi2(1) = 1045.70 Prob > chi2 = 0.0000 Pseudo R2 = 0.0455 Logistic regression = 0.0455 Log likelihood = -10965.549Pseudo R2

died	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
shock _cons					1.70 4 119 -2.703727	

. estimates store A3

. 1rtest A A3

Likelihood-ratio test LR chi2(1) = 1045.70Prob > chi2 = 0.0000 (Assumption: A nested in A3)

Table 1.2-3: univariate logistic regression of DIED and SHOCK

. logit died female

Iteration 0: log likelihood = -11488.397 Iteration 1: log likelihood = -11483.885
Iteration 2: log likelihood = -11483.867
Iteration 3: log likelihood = -11483.867

42,015 Logistic regression Number of obs = LR chi2(1) 9.06

0.0026 Prob > chi2 Log likelihood = -11483.867 Pseudo R2 0.0004

Coef. Std. Err. z P>|z| [95% Conf. Interval] died .1710546 .0558219 3.06 0.002 .0616456 .2804635 female -2.49168 .0194269 -128.26 0.000 -2.529756 -2.453604 _cons

. estimates store A4

. 1rtest A A4

Likelihood-ratio test LR chi2(1) =9.06 Prob > chi2 = (Assumption: A nested in A4) 0.0026

Table 1.2-4: univariate logistic regression of DIED and FEMALE

. logit died gsw_int1 gsw_int2 gsw_int3 gsw_int4

Iteration 0: log likelihood = -11488.397 Iteration 1: log likelihood = -10322.575 Iteration 2: log likelihood = -10240.119 Iteration 3: log likelihood = -10239.844 Iteration 4: log likelihood = -10239.844

Number of obs = Logistic regression 42,015 LR chi2(**4**) = 2497.11

= Prob > chi2 0.0000 Log likelihood = -10239.844 Pseudo R2 0.1087

died	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
gsw_int1	-1.088773	.0801455	-13.58	0.000	-1.245855	9316906
gsw_int2	1.390088	.0712733	19.50	0.000	1.250394	1.529781
gsw_int3	8665442	.0676654	-12.81	0.000	9991659	7339225
gsw_int4	6484366	.1643671	-3.95	0.000	9705902	3262831
cons	-2.036152	.0615932	-33.06	0.000	-2.156873	-1.915432

. estimates store A5

. 1rtest A A5

Likelihood-ratio test LR chi2(4) = 2497.11(Assumption: A nested in A5) Prob > chi2 = 0.0000

Table 1.2-5: univariate logistic regression of DIED and GSWINT

. logit died aweekend

Iteration 0: log likelihood = -11488.397
Iteration 1: log likelihood = -11485.686
Iteration 2: log likelihood = -11485.684

Logistic regression Number of obs = 42,015

Number of obs = 42,015 LR chi2(1) = 5.42 Prob > chi2 = 0.0199 Pseudo R2 = 0.0002

Log likelihood = -11485.684

died	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
aweekend _cons					1634209 -2.484705	

. estimates store A6

. lrtest A A6

Likelihood-ratio test LR chi2(1) = 5.42 (Assumption: A nested in A6) Prob > chi2 = 0.0199

Table 1.2-6: univariate logistic regression of DIED and AWEEKEND

. logit died year

Iteration 0: log likelihood = -11488.397
Iteration 1: log likelihood = -11488.181
Iteration 2: log likelihood = -11488.181

Logistic regression Number of obs = 42,015

Number of obs = 42,015 LR chi2(1) = 0.43 Prob > chi2 = 0.5110 Pseudo R2 = 0.0000

Log likelihood = -11488.181

died	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
year _cons					0167094 -19.17668	.0083162 31.09153

. estimates store A7

. lrtest A A7

Likelihood-ratio test LR chi2(1) = 0.43 (Assumption: A nested in A7) Prob > chi2 = 0.5110

Table 1.2-7: univariate logistic regression of DIED and YEAR

. logit died age female tmpm shock gsw_int1 gsw_int2 gsw_int3 gsw_int4

Iteration 0: log likelihood = -11488.397
Iteration 1: log likelihood = -8897.286
Iteration 2: log likelihood = -6342.2774
Iteration 3: log likelihood = -6041.3173
Iteration 4: log likelihood = -6038.8375
Iteration 5: log likelihood = -6038.8366
Iteration 6: log likelihood = -6038.8366

Logistic regression Number of obs = 42,015LR chi2(8) = 10899.12Prob > chi2 = 0.0000Log likelihood = -6038.8366 Pseudo R2 = 0.4744

died	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
age	.0172032	.0016926	10.16	0.000	.0138858	.0205207
female	2505775	.0778501	-3.22	0.001	4031608	0979942
tmpm	1.071244	.0163761	65.42	0.000	1.039147	1.10334
shock	1.059737	.0655743	16.16	0.000	.9312133	1.18826
gsw int1	7404383	.1037683	-7.14	0.000	9438203	5370562
gsw int2	.5964517	.0992372	6.01	0.000	.4019503	.790953
gsw int3	8455968	.0889687	-9.50	0.000	-1.019972	6712214
gsw int4	8970008	.1990463	-4.51	0.000	-1.287124	5068773
_cons	0303966	.1007803	-0.30	0.763	2279223	.1671291
	1					

Table 1.3: Preliminary logistic model

Deviance: 12024.66. Best powers of age among 44 models fit: 0 3.

Fractional polynomial model comparisons:

age	df	Deviance	Dev. dif.	P (*)	Powers
Not in model	0	12178.971	154.313	0.000	
Linear	1	12077.673	53.015	0.000	1
m = 1	2	12028.961	4.303	0.116	3
m = 2	4	12024.658	_	_	0 3

Table 1.4 Fractional Polynomial for AGE

Deviance: 11999.39. Best powers of tmpm among 44 models fit: 3 3.

Fractional polynomial model comparisons:

tmpm	df	Deviance	Dev. dif.	P (*)	Powers
Not in model	0	19426.409	7427.024	0.000	
Linear	1	12077.673	78.288	0.000	1
m = 1	2	12034.221	34.836	0.000	0
m = 2	4	11999.385			3 3

Table 1.5 Fractional Polynomial for TMPM

. logit died tmpm age1 female shock gsw_int1 gsw_int2 gsw_int3 gsw_int4

```
Iteration 0: log likelihood = -11488.397
Iteration 1: log likelihood = -8884.4004
Iteration 2: log likelihood = -6325.0023
Iteration 3: log likelihood = -6016.9451
Iteration 4: log likelihood = -6014.3044
Iteration 5: log likelihood = -6014.3032
Iteration 6: log likelihood = -6014.3032
```

Logistic regression Number of obs = 42,015LR chi2(8) = 10948.19Prob > chi2 = 0.0000Log likelihood = -6014.3032 Pseudo R2 = 0.4765

died	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
tmpm	1.072762	.0164116	65.37	0.000	1.040596	1.104928
age1	.0030099	.0002391	12.59	0.000	.0025412	.0034786
female	237344	.0777513	-3.05	0.002	3897337	0849543
shock	1.065509	.0656519	16.23	0.000	. 9368336	1.194184
gsw int1	7592492	.1040193	-7.30	0.000	9631233	555375
gsw int2	.5750286	.0991012	5.80	0.000	.3807939	.7692633
gsw int3	8419181	.0891342	-9.45	0.000	-1.016618	6672182
gsw int4	8655799	.1990511	-4.35	0.000	-1.255713	4754469
_cons	.3476166	.0887935	3.91	0.000	.1735845	.5216486

Table 1.6: another preliminary model

INTERACTION	Chi-square (1)	P
age1xtmpm	22.30	<0.0001
age1xfemale	2.38	0.1226
age1xshock	1.95	0.1626
age1xgsw_int1	1.68	0.1945

age1xgsw_int2	0.20	0.6516
age1xgsw_int3	0.03	0.8631
age1xgsw_int4	0.00	0.9470
tmpmxfemale	0.20	0.6557
tmpmxshock	<mark>56.05</mark>	0.0000
tmpmxgsw_int1	1.87	0.1715
tmpmxgsw_int2	<mark>7.87</mark>	0.0050
tmpmxgsw_int3	2.30	0.1292
tmpmxgsw_int4	<mark>9.93</mark>	<mark>0.0016</mark>
femalexshock	3.01	0.0829
femalexgsw_int1	1.93	0.1645
femalexgsw_int2	<mark>6.64</mark>	0.0100
femalexgsw_int3	0.56	0.4545
femalexgsw_int4	0.08	0.7791
shockxgsw_int1	0.48	0.4880
shockxgsw_int2	<mark>8.86</mark>	0.0029
shockxgsw_int3	6.37	0.0116
shockxgsw_int4	0.19	0.6612

Table 1.7: Interactions

died	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
age1	.0015831	.0003873	4.09	0.000	.000824	.0023423
tmpm	1.181331	.0218087	54.17	0.000	1.138587	1.224075
female	0464265	.101031	-0.46	0.646	2444437	.1515907
shock	. 6394478	.0975835	6.55	0.000	.4481876	.8307079
gsw int1	7693518	.1053833	-7.30	0.000	9758992	5628043
gsw int2	.5714336	.1261092	4.53	0.000	.3242641	.8186032
gsw int3	8501177	.090339	-9.41	0.000	-1.027179	6730564
gsw int4	-1.468518	.2746755	-5.35	0.000	-2.006872	9301642
age1xtmpm	0005945	.0001399	-4.25	0.000	0008688	0003202
tmpmxshock	3472609	.0430886	-8.06	0.000	4317129	2628088
tmpmxgsw int2	0793051	.0408816	-1.94	0.052	1594315	.0008213
tmpmxgsw int4	3446125	.1052304	-3.27	0.001	5508603	1383647
femalexshock	2352791	.2000347	-1.18	0.240	62734	.1567817
femalexgsw int2	4095404	.1618064	-2.53	0.011	7266751	0924056
shockxgsw int2	5012552	.1692929	-2.96	0.003	8330631	1694472
_cons	.5144881	.0939902	5.47	0.000	.3302706	.6987056
	I					

Table 1.8: preliminary model with interactions

From table 1.8, we found some interactions are not significant and they made FEMALE not significant, hence, we remove several interactions.

died	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
age1	.0014505	.0003789	3.83	0.000	.0007079	.0021932
tmpm	1.170753	.0207879	56.32	0.000	1.130009	1.211496
female	2265152	.0773656	-2.93	0.003	3781491	0748814
shock	.6188678	.0952579	6.50	0.000	.4321658	.8055698
gsw int1	7733576	.1047922	-7.38	0.000	9787465	5679686
gsw_int2	. 6434062	.1015107	6.34	0.000	.444449	.8423634
gsw_int3	8509295	.0898339	-9.47	0.000	-1.027001	6748582
gsw_int4	-1.448569	.2741221	-5.28	0.000	-1.985839	9112999
age1xtmpm	0006777	.0001323	-5.12	0.000	0009371	0004183
tmpmxshock	3470057	.0430519	-8.06	0.000	4313859	2626256
tmpmxgsw int4	3274893	.1048273	-3.12	0.002	5329472	1220315
shockxgsw int2	5471816	.1692899	-3.23	0.001	8789837	2153795
_cons	.5147329	.0924672	5.57	0.000	.3335006	. 6959653

Table 1.9: revised logistic regression model

Logistic regression	Number of obs	=	42,015
	LR chi2(12)	=	11046.43
	Prob > chi2	=	0.0000
Log likelihood = -5965.1823	Pseudo R2	=	0.4808

died	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
age1	1.001452	.0003795	3.83	0.000	1.000708	1.002196
tmpm	3.224419	.067029	56.32	0.000	3.095685	3.358506
female	.7973072	.0616842	-2.93	0.003	.6851284	. 9278536
shock	1.856824	.1768772	6.50	0.000	1.54059	2.237971
gsw int1	.4614611	.0483575	-7.38	0.000	.3757818	.5666754
gsw int2	1.902952	.1931699	6.34	0.000	1.559631	2.321848
gsw int3	.4270178	.0383607	-9.47	0.000	.3580793	.5092286
gsw int4	.2349061	.064393	-5.28	0.000	.1372654	.4020013
age1xtmpm	. 9993225	.0001322	-5.12	0.000	.9990634	.9995818
tmpmxshock	.7068013	.0304291	-8.06	0.000	.6496082	.7690298
tmpmxgsw int4	.720731	.0755523	-3.12	0.002	.5868728	.8851204
shockxgsw int2	.5785782	.0979474	-3.23	0.001	.4152047	.8062354
_cons	1.673192	.1547153	5.57	0.000	1.395846	2.005644

Table 1.9-1: Estimated Odds Ratio for covariate variables

Now, we check the linearity of continuous variables:

Table 1.10: Lowess smoother of AGE1 and TMPM

. estat classification

Logistic model for died

	True		
Classified	D	~D	Total
+	1472	563	2035
-	1798	38182	39980
Total	3270	38745	42015

Classified + if predicted Pr(D) >= .5True D defined as died != 0

Sensitivity Specificity	Pr(+ D) Pr(- ~D)	45.02% 98.55%	
Positive predictive value	Pr(D +)	72.33%	
Negative predictive value	Pr(~D -)	95.50%	
False + rate for true ~D	Pr(+ ~D)	1.45%	
False - rate for true D	Pr(- D)	54.98%	
False + rate for classified +	Pr(~D +)	27.67%	
False - rate for classified -	Pr(D -)	4.50%	
Correctly classified	94.38%		

Table 1.11: Classification table with cutpoint=.5

Table 1.12: plot of ROC curve

Logistic model for died

	True	=	
Classified	D	~D	Total
+	2815	4161	6976
-	455	34584	35039
Total	3270	38745	42015

Classified + if predicted Pr(D) >= .1True D defined as died != 0

Pr(+ D)	86.09%			
Pr(- ~D)	89.26%			
Pr(D +)	40.35%			
Pr(~D -)	98.70%			
Pr(+ ~D)	10.74%			
Pr(- D)	13.91%			
Pr(~D +)	59.65%			
Pr(D -)	1.30%			
Correctly classified				
	Pr(- ~D) Pr(D +) Pr(~D -) Pr(+ ~D) Pr(- D) Pr(~D +)			

Table 1.13: Classification table with cutpoint=.1

Table 1.14: Plot of sensitivity versus 1-specificity

```
number of observations = 42015
    number of groups = 1000
Hosmer-Lemeshow chi2(998) = 947.76
    Prob > chi2 = 0.8706
```

Table 1.15: goodness of fit with 1000 groups

Measures of Fit for logi	stic of died		
Log-Lik Intercept Only: D(42002):	-11488.397 11930.365	Log-Lik Full Model: LR(12): Prob > LR:	-5965.182 11046.429 0.000
McFadden's R2:	0.481	McFadden's Adj R2:	0.480
Maximum Likelihood R2:	0.231	Cragg & Uhler's R2:	0.549
McKelvey and Zavoina's R	2: 0.594	Efron's R2:	0.426
Variance of y*:	8.101	Variance of error:	3.290
Count R2:	0.944	Adj Count R2:	0.278
AIC:	0.285	AIC*n:	11956.365
BIC:	- 4 352 1 3.770	BIC':	-10918.680

. logistic died	age1 tmpm fem	male shock g	sw_int1	gsw_int2 gs	w_int3	gsw_	int4 age1xt
Logistic regress	sion			Number of o	bs	=	42,015
				LR chi2(12)		=	11046.43
				Prob > chi2	2	=	0.0000
Log likelihood =	-5965.1823			Pseudo R2		=	0.4808
	I						
died	Odds Ratio	Std. Err.	Z	P> z	[95% (Conf.	Interval]
age1	1.001452	.0003795	3.83	0.000	1.000	708	1.002196
tmpm	3.224419	.067029	56.32	0.000	3.095	685	3.358506
female	.7973072	.0616842	-2.93	0.003	. 68512	284	.9278536
shock	1.856824	.1768772	6.50	0.000	1.540	059	2.237971
gsw_int1	.4614611	.0483575	-7.38	0.000	. 37578	318	.5666754
gsw_int2	1.902952	.1931699	6.34	0.000	1.559	531	2.321848
gsw_int3	.4270178	.0383607	-9.47	0.000	.3580	793	.5092286
gsw_int4	.2349061	.064393	-5.28	0.000	.1372	654	.4020013
age1xtmpm	. 9993225	.0001322	-5.12	0.000	. 9990	534	.9995818
tmpmxshock	.7068013	.0304291	-8.06	0.000	. 64960	082	.7690298
tmpmxgsw_int4	.720731	.0755523	-3.12	0.002	.5868	728	.8851204
shockxgsw_int2	.5785782	.0979474	-3.23	0.001	. 41520	147	.8062354
_cons	1.673192	.1547153	5.57	0.000	1.395	346	2.005644

Table 1.16: estimated odds ratio for each covariate

Table 1.17: plot of Chi-square versus probility of died and plot of Deviance versus probability of died

Table 1.18: plot of Distance (delta beta) versus probability of died and plot of Pearson chi-square versus probability of died

We found 5 observations are the outlying n=35397,2754,26953,26858,10637, which have large value of dx (Delta Chi-square) or dd (Delta D) and db (Delta Beta)

41898.	died	age1 195.112	tmpm -4.602164	female	shock 0	gsw_int1		gsw_int3	gsw_int4	age1xtmpm -897.9374	tmpmxs~k
	tmpm3		shockx~2	n 35397	.019	p 93953	db .1040313	50.66276	- I	dd 01643	h .0020492
41968.	died 1	age1 4.913	tmpm -4.664587	female 0	shock 0	gsw_int1		gsw_int3	gsw_int4 1	age1xtmpm -22.91712	tmpmxs~k
	tmpm:	- 1	shockx~2	n 2754	. 007	p 78089	db .109228	127.1685	-	dd 13325	h .0008582
41971.	died 1	age1 46.656	tmpm -4.929499	female 0	shock 0	gsw_int1		gsw_int3	gsw_int4	age1xtmpm -229.9907	tmpmxs~k
	tmpm:	- 1	shockx~2	n 26953	.007	p 76364	db .1248648	130.0768		dd 59022	h .000959
42013.	died	age1	tmpm -6.834318	female	shock 0	gsw_int	1 gsw_int2		gsw_int4	age1xtmpm -318.8619	tmpmxs~k
	tmpmx	_	shockx~2	n 26858	.00:	p 16371	db . 2895994	610.133	-	dd 83577	h .0004744
											_
42015.	died 1	age1 10.648	tmpm -6.742759	female 0	shock 0	gsw_int	gsw_int2		gsw_int4	age1xtmpm -71.7969	tmpmxs~k
	tmpmx	gs~4 0	shockx~2	n 10637	.000	p 03069	db . 0149617	d 3257.22	-	dd 17794	h 4.59e-06

Table 1.19: covariate pattern of 5 observations

Goodness-of-fit Test by eliminating No.10637 observation:

Logistic model for died, goodness-of-fit test

```
42014
                 1000
                 928.91
                  0.9416
```

Change of AGE1 is -.50327473%

Goodness-of-fit Test by eliminating No.35397 observation:

Logistic model for died, goodness-of-fit test

```
number of observations =

number of observations =

number of covariate patterns =

Pearson chi2(37328) =

Prob > chi2 =

1.0000

number of observations =

1.0000

number of observations =

number of observations =

1.0000
                                                                                                                                                                                                                                     42014
                                                                                                                                                                                                                               1000
                                                                                                                                                                                                                                  1003.38
                                                                                                                                                                            Prob > chi2 =
                                                                                                                                                                                                                                              0.4462
```

Change of AGE1 is .2964495%

Goodness-of-fit Test by eliminating No.2754 observation:

Logistic model for died, goodness-of-fit test

```
number of observations = 42014 number of groups = 1000

number of covariate patterns = 37341 Hosmer-Lemeshow chi2(998) = 966.02

Prob > chi2 = 1.0000 Prob > chi2 = 0.760
                                                                                                                                                  0.7607
```

Change of AGE1 is -.27576698%

Goodness-of-fit Test by eliminating No.26953 observation:

Logistic model for died, goodness-of-fit test

number of observations =	42014	number of observations =	42014
number of covariate patterns =	37341	number of groups =	1000
Pearson chi2(37328) =	35756.52	Hosmer-Lemeshow chi2(998) =	978.98
* *		Prob > chi2 =	0.6604
Prob > chi2 =	1.0000		

Change of AGE1 is -.15856601%

Goodness-of-fit Test by eliminating No.26858 observation:

Logistic model for died, goodness-of-fit test

		number of observations =	42014
number of observations =	42014	number of groups =	1000
number of covariate patterns = Pearson chi2(37328) =	37341 35206.73	Hosmer-Lemeshow chi2(998) =	994.47
Prob > chi2 =	1.0000	Prob > chi2 =	0.5256

Change of AGE1 is -.24819028%

Logistic regression	Number of obs	=	42,014
	LR chi2(12)	=	11054.45
	Prob > chi2	=	0.0000
Log likelihood = -5958.6177	Pseudo R2	=	0.4812

died	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
age1	.0014469	.0003788	3.82	0.000	.0007045	.0021893
tmpm	1.171404	.0208038	56.31	0.000	1.13063	1.212179
female	2263135	.0773768	-2.92	0.003	3779692	0746577
shock	.6160511	.0952319	6.47	0.000	. 4293999	.8027022
gsw_int1	7735087	.104801	-7.38	0.000	9789149	5681025
gsw_int2	. 6433869	.1015226	6.34	0.000	.4444063	.8423675
gsw_int3	850991	.0898411	-9.47	0.000	-1.027076	6749056
gsw_int4	-1.373177	.2760003	-4.98	0.000	-1.914127	832226
age1xtmpm	0006805	.0001323	-5.14	0.000	0009399	0004211
tmpmxshock	3494579	.0430575	-8.12	0.000	4338491	2650667
tmpmxgsw int4	2722176	.1090255	-2.50	0.013	4859036	0585315
shockxgsw int2	5480296	.1692124	-3.24	0.001	8796798	2163794
_cons	.5155281	.0924788	5.57	0.000	.334273	. 6967832

Table: logistic regression model eliminating observation No. 26858

Logistic regression	Number of obs	=	42,010
	LR chi2(12)	=	11079.91
	Prob > chi2	=	0.0000
Log likelihood = -5935.6718	Pseudo R2	=	0.4828

died	Coef.	Std. Err.	Z	P> z	[95% Conf.	<pre>Interval]</pre>
age1	.0014375	.0003787	3.80	0.000	.0006952	.0021798
tmpm	1.174337	.020868	56.27	0.000	1.133436	1.215237
female	2251146	.0774418	-2.91	0.004	3768978	0733313
shock	.6108352	.0952181	6.42	0.000	.424211	.7974593
gsw_int1	7780113	.1049181	-7.42	0.000	9836469	5723756
gsw_int2	. 6435514	.1016001	6.33	0.000	.4444188	.8426839
gsw_int3	8515932	.0899027	-9.47	0.000	-1.027799	6753871
gsw_int4	-1.268011	.2824793	-4.49	0.000	-1.821661	7143623
age1xtmpm	0006872	.0001325	-5.19	0.000	0009469	0004276
tmpmxshock	355557	.0430849	-8.25	0.000	4400019	2711121
tmpmxgsw_int4	1600619	.120078	-1.33	0.183	3954105	.0752866
shockxgsw_int2	5522522	.1690869	-3.27	0.001	8836564	2208479
cons	.5195326	.0925562	5.61	0.000	.3381257	.7009395
	I					
died	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
died age1	Odds Ratio 1.001439	Std. Err.	z 3.80	P> z	[95% Conf.	Interval]
age1	1.001439	.0003793	3.80	0.000	1.000695	1.002182
age1	1.001439 3.235996	.0003793	3.80 56.27	0.000	1.000695	1.002182
age1 tmpm female	1.001439 3.235996 .7984247	.0003793 .0675287 .0618315	3.80 56.27 -2.91	0.000 0.000 0.004	1.000695 3.106312 .6859862	1.002182 3.371093 .9292929
age1 tmpm female shock	1.001439 3.235996 .7984247 1.841969	.0003793 .0675287 .0618315 .1753889	3.80 56.27 -2.91 6.42	0.000 0.000 0.004 0.000	1.000695 3.106312 .6859862 1.528384	1.002182 3.371093 .9292929 2.219894
age1 tmpm female shock gsw_int1	1.001439 3.235996 .7984247 1.841969 .4593186	.0003793 .0675287 .0618315 .1753889	3.80 56.27 -2.91 6.42 -7.42	0.000 0.000 0.004 0.000 0.000	1.000695 3.106312 .6859862 1.528384 .3739449	1.002182 3.371093 .9292929 2.219894 .5641836
age1 tmpm female shock gsw_int1 gsw_int2	1.001439 3.235996 .7984247 1.841969 .4593186 1.903228	.0003793 .0675287 .0618315 .1753889 .0481908 .1933682	3.80 56.27 -2.91 6.42 -7.42 6.33	0.000 0.000 0.004 0.000 0.000	1.000695 3.106312 .6859862 1.528384 .3739449 1.559584	1.002182 3.371093 .9292929 2.219894 .5641836 2.322592
age1 tmpm female shock gsw_int1 gsw_int2 gsw_int3	1.001439 3.235996 .7984247 1.841969 .4593186 1.903228 .4267345	.0003793 .0675287 .0618315 .1753889 .0481908 .1933682 .0383646	3.80 56.27 -2.91 6.42 -7.42 6.33 -9.47	0.000 0.000 0.004 0.000 0.000 0.000	1.000695 3.106312 .6859862 1.528384 .3739449 1.559584 .3577935	1.002182 3.371093 .9292929 2.219894 .5641836 2.322592 .5089594
age1 tmpm female shock gsw_int1 gsw_int2 gsw_int3 gsw_int4	1.001439 3.235996 .7984247 1.841969 .4593186 1.903228 .4267345 .2813906	.0003793 .0675287 .0618315 .1753889 .0481908 .1933682 .0383646 .079487	3.80 56.27 -2.91 6.42 -7.42 6.33 -9.47 -4.49	0.000 0.000 0.004 0.000 0.000 0.000 0.000	1.000695 3.106312 .6859862 1.528384 .3739449 1.559584 .3577935 .1617569	1.002182 3.371093 .9292929 2.219894 .5641836 2.322592 .5089594 .4895042
age1 tmpm female shock gsw_int1 gsw_int2 gsw_int3 gsw_int4 age1xtmpm	1.001439 3.235996 .7984247 1.841969 .4593186 1.903228 .4267345 .2813906 .999313	.0003793 .0675287 .0618315 .1753889 .0481908 .1933682 .0383646 .079487	3.80 56.27 -2.91 6.42 -7.42 6.33 -9.47 -4.49	0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000	1.000695 3.106312 .6859862 1.528384 .3739449 1.559584 .3577935 .1617569	1.002182 3.371093 .9292929 2.219894 .5641836 2.322592 .5089594 .4895042 .9995725
age1 tmpm female shock gsw_int1 gsw_int2 gsw_int3 gsw_int4 age1xtmpm tmpmxshock tmpmxgsw_int4 shockxgsw_int2	1.001439 3.235996 .7984247 1.841969 .4593186 1.903228 .4267345 .2813906 .999313 .700783 .852091	.0003793 .0675287 .0618315 .1753889 .0481908 .1933682 .0383646 .079487 .0001324 .0301932 .1023174	3.80 56.27 -2.91 6.42 -7.42 6.33 -9.47 -4.49 -5.19 -8.25 -1.33 -3.27	0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000	1.000695 3.106312 .6859862 1.528384 .3739449 1.559584 .3577935 .1617569 .9990536 .6440352	1.002182 3.371093 .9292929 2.219894 .5641836 2.322592 .5089594 .4895042 .9995725 .762531 1.078193
age1 tmpm female shock gsw_int1 gsw_int2 gsw_int3 gsw_int4 age1xtmpm tmpmxshock tmpmxgsw_int4	1.001439 3.235996 .7984247 1.841969 .4593186 1.903228 .4267345 .2813906 .999313 .700783 .852091	.0003793 .0675287 .0618315 .1753889 .0481908 .1933682 .0383646 .079487 .0001324 .0301932 .1023174	3.80 56.27 -2.91 6.42 -7.42 6.33 -9.47 -4.49 -5.19 -8.25 -1.33	0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.000695 3.106312 .6859862 1.528384 .3739449 1.559584 .3577935 .1617569 .9990536 .6440352	1.002182 3.371093 .9292929 2.219894 .5641836 2.322592 .5089594 .4895042 .9995725 .762531 1.078193

Table 2: logistic regression model eliminating 5 observations

Logistic model for died, goodness-of-fit test

```
number of observations =
    number of groups =
number of covariate patterns = 42010

number of covariate patterns = 37337
     number of observations =
                                     42010
                                                                                      1000
                                                                                       902.25
                                                     Hosmer-Lemeshow chi2(998) =
        Pearson chi2(37324) = 31827.95
                                                                    Prob > chi2 =
                                                                                            0.9861
                Prob > chi2 =
                                      1.0000
```

Age1	TMPM	Logit(p=1)	Odds ratio
X	y	$\beta_0 + \beta_1 x + \beta_2 y + \beta_9 xy$	1
x-1	y	$\beta_0 + \beta_1 (x-1) + \beta_2 y + \beta_9 (x-1)y$	Exp $(\beta_1 + \beta_9 y)$
X	y-1	$\beta_0 + \beta_1 + \beta_2 (y-1) + \beta_9 (y-1)x$	Exp $(\beta_2 + \beta_9 x)$
x-1	y-1	$\beta_0 + \beta_1(x-1) + \beta_2(y-1) + \beta_9(y-1)(x-1)$	Exp $(\beta_1 + \beta_2 + \beta_9 (x+y+1))$

TMPM	SHOCK	Logit(p=1)	Odds ratio
X	1	$\beta_0 + \beta_2 x + \beta_4 + \beta_{10} x$	1
x-1	1	$\beta_0 + \beta_2 (x-1) + \beta_4 + \beta_{10} (x-1)$	$\operatorname{Exp}\left(\beta_{2}+\beta_{10}\right)$
X	0	$\beta_0 + \beta_2 x$	Exp $(\beta_4 + \beta_{10} x)$
x-1	0	$\beta_0 + \beta_2(x-1)$	Exp $(\beta_2 + \beta_4 + \beta_{10} x)$

TMPM	GSW_INT4	Logit(p=1)	Odds ratio
X	1	$\beta_0 + \beta_2 x + \beta_8 + \beta_{11} x$	1
x-1	1	$\beta_0 + \beta_2 (x-1) + \beta_8 + \beta_{11} (x-1)$	$\text{Exp} (\beta_2 + \beta_4)$
X	0	$\beta_0 + \beta_2 x$	Exp $(\beta_4 + \beta_{11} x)$
x-1	0	$\beta_0 + \beta_2(x-1)$	Exp $(\beta_2 + \beta_8 + \beta_{11} x)$

SHOCK	GSW_INT4	Logit(p=1)	Odds ratio
1	1	$\beta_0 + \beta_4 + \beta_8 + \beta_{12}$	1
0	1	$\beta_0 + \beta_8$	Exp $(\beta_4 + \beta_{12})$
1	0	$\beta_0 + \beta_4$	Exp $(\beta_4 + \beta_8)$
0	0	β_0	Exp $(\beta_4 + \beta_8 + \beta_{12})$

Table 2.1 Estimated Odds Ratio Tables for interactions

Hence, the Estimated Odds Ratio Tables with confident interval is shown below:

	1			1071 7 71
Variable		Odds I		95% Confident Interval
age1		1.001439		1.000695, 1.002182
tmpm		3.235996		3.106312, 3.371093
female		.79842	47	.6859862, .9292929
shock		1.8419	69	1.528384, 2.219894
gsw_int1		.45931	86	.3739449, .5641836
gsw_int2		1.9032	28	1.559584, 2.322592
gsw_int3		.42673	45	.3577935, .5089594
gsw_int4		.28139	06	.1617569, .4895042
age1	tmp	om	Odds Ratio	95% Confident Interval
1	1		3.240651	3.111481 3.375182
1	0		1.001439	1.000695 1.002182
0	1		3.235996	3.106312 3.371093
0	0		1	
tmpm	sho	ck	Odds Ratio	95% Confident Interval
1	1		5.960604	4.979907 7.13443
1	0		3.235996	3.106312 3.371093
0	1		1.841969	1.528384 2.219894
0	0		1	
tmpm	gsv	v_int4	Odds Ratio	95% Confident Interval
1	1		.9105788	.5243269 1.581368
1	0		3.235996	3.106312 3.371093
0	1		.2813906	.1617569 .4895042
0	0		1	
shock	gsv	v_int2	Odds Ratio	95% Confident Interval
1	1		3.505687	2.645147 4.646186
1	0		1.841969	1.528384 2.219894
0	1		1.903228	1.559584 2.322592
0	0		1	
	•		i .	

Table 3: Estimated Odds Ratio with interactions

```
APENDIX2:
STATA code:
For univariate test:
Logit died
Estimates store A
(we then add single variable in the model, for example
Logit died age
Estimates store A1
Lrtest A A1)
For revised model:
logit died age1 tmpm female shock gsw_int1 gsw_int2 gsw_int3 gsw_int4
age1xtmpm tmpmxshock tmpmxgsw_int4 shockxgsw_int2
predict p
predict dx, dx2
graph twoway scatter dx p, xlabel(0(.2)1) ylabel(0(10)30)
predict dd, dd
graph twoway scatter dd p, xlabel(0(.2)1) ylabel(0 3.5 7)
predict db, db
graph twoway scatter db p, xlabel(0(.2)1) ylabel(0 .15 .3)
graph twoway scatter dx p [weight=db], xlabel(0(.2)1) ylabel(0 15 30)
msymbol(oh)
predict h, h
predict n, n
```

list died age1 tmpm female shock gsw_int1 gsw_int2 gsw_int3 gsw_int4 age1xtmpm tmpmxshock tmpmxgsw_int4 shockxgsw_int2 n p db dx dd h if n==2754 | n==26953 | n==26858 | n==10637 | n==35397

logit died age1 tmpm female shock gsw_int1 gsw_int2 gsw_int3 gsw_int4 age1xtmpm tmpmxshock tmpmxgsw_int4 shockxgsw_int2 if n!= 10637

estat gof

estat gof, group(1000) table

logit died age1 tmpm female shock gsw_int1 gsw_int2 gsw_int3 gsw_int4 age1xtmpm tmpmxshock tmpmxgsw_int4 shockxgsw_int2 if n!= 2754

estat gof

estat gof, group(1000) table

logit died age1 tmpm female shock gsw_int1 gsw_int2 gsw_int3 gsw_int4 age1xtmpm tmpmxshock tmpmxgsw_int4 shockxgsw_int2 if n!= 26953

estat gof

estat gof, group(1000) table

logit died age1 tmpm female shock gsw_int1 gsw_int2 gsw_int3 gsw_int4 age1xtmpm tmpmxshock tmpmxgsw_int4 shockxgsw_int2 if n!= 35397

estat gof

estat gof, group(1000) table

di ((.0014469-.0014505)/.0014505*100)

di ((.0014465-.0014505)/.0014505*100)

logit died age1 tmpm female shock gsw_int1 gsw_int2 gsw_int3 gsw_int4 age1xtmpm tmpmxshock tmpmxgsw_int4 shockxgsw_int2 if n!=26858 & n!=2754 & n!=35397 & n!=26953 & n!=10637

logistic died age1 tmpm female shock gsw_int1 gsw_int2 gsw_int3 gsw_int4 age1xtmpm tmpmxshock tmpmxgsw_int4 shockxgsw_int2 if n!=26858 & n!=2754 & n!=35397 & n!=26953 & n!=10637

estat gof

estat gof, group(1000) table