Математическая модель транспортной задачи:

$$F = \sum \sum c_{ij} x_{ij}, \qquad (1)$$

при условиях:

$$\sum x_{ij} = a_i, \quad i = 1, 2, ..., m,$$
 (2)

$$\sum x_{ij} = b_j, \quad j = 1, 2, ..., n,$$
 (3)

Стоимость доставки единицы груза из каждого пункта отправления в соответствующие пункты назначения задана матрицей тарифов

	1	2	3	4	Запас		
					Ы		
1	6	2	3	5	12		
2	5	2	5	2	16		
3	4	7	4	7	11		
Потре	15	7	10	7			
Потре бност							
И							

Проверим необходимое и достаточное условие разрешимости задачи.

$$\Sigma a = 12 + 16 + 11 = 39$$

$$\sum b = 15 + 7 + 10 + 7 = 39$$

Занесем исходные данные в распределительную таблицу.

				- ''	
	1	2	3	4	Запас
					Ы
1	6	2	3	5	12
2	5	2	5	2	16
3	4	7	4	7	11
Потре	15	7	10	7	
бност					
И					

Этап I. Поиск первого опорного плана.

1. Используя метод наименьшей стоимости, построим первый опорный план транспортной задачи.

	1	2	3	4	Запас
					Ы
1	6	2[7]	3[5]	5	12
2	5[4]	2	5[5]	2[7]	16
3	4[11]	7	4	7	11
Потре	15	7	10	7	
бност					
И					

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность магазинов удовлетворена, а план соответствует системе ограничений транспортной задачи.

2. Подсчитаем число занятых клеток таблицы, их 6, а должно быть m + n - 1 = 6.

Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$F(x) = 2*7 + 3*5 + 5*4 + 5*5 + 2*7 + 4*11 = 132$$

Этап II. Улучшение опорного плана.

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ii}$, полагая, что $u_1 = 0$.

	$v_1 = 3$	$v_2 = 2$	$v_3 = 3$	$v_4 = 0$
$u_1 = 0$	6	2[7]	3[5]	5

$u_2 = 2$	5[4]	2	5[5]	2[7]
$u_3=1$	4[11]	7	4	7

Опорный план не является оптимальным, так как существуют оценки свободных клеток, для которых $u_i + v_i > c_{ii}$

Выбираем максимальную оценку свободной клетки (2;2): 2

Для этого в перспективную клетку (2;2) поставим знак «+», а в остальных вершинах многоугольника чередующиеся знаки «-», «+», «-».

_	gneen snakn « //, « · //, « //.							
		1	2	3	4	Запас		
						Ы		
	1	6	2[7][-]	3[5][+	5	12		
]				
	2	5[4]	2[+]	5[5][-]	2[7]	16		
	3	4[11]	7	4	7	11		
	Потре	15	7	10	7			
	бност							
	И							

Цикл приведен в таблице (2,2; 2,3; 1,3; 1,2;).

Из грузов x_{ij} стоящих в минусовых клетках, выбираем наименьшее, т.е. y = min(2, 3) = 5. Прибавляем 5 к объемам грузов, стоящих в плюсовых клетках и вычитаем 5 из X_{ij} , стоящих в минусовых клетках. В результате получим новый опорный план.

y sibitate mesty miss medalii emepitatii itsian:						
	1	2	3	4	Запас	
					Ы	
1	6	2[2]	3[10]	5	12	
2	5[4]	2[5]	5	2[7]	16	
3	4[11]	7	4	7	11	
Потре	15	7	10	7		
бност						
И						

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ii}$, полагая, что $u_1 = 0$.

	$v_1 = 5$	$v_2 = 2$	v ₃ =3	$v_4 = 2$
$u_1 = 0$	6	2[2]	3[10]	5
$u_2 = 0$	5[4]	2[5]	5	2[7]
$u_3 = -1$	4[11]	7	4	7

Опорный план является оптимальным, так все оценки свободных клеток удовлетворяют условию $u_i + v_i <= c_{ii}$.

Минимальные затраты составят:

$$F(x) = 2*2 + 3*10 + 5*4 + 2*5 + 2*7 + 4*11 = 122$$

Все вычисления и комментарии к полученным результатам доступны в расширенном режиме. Также приведено решение двойственной транспортной задачи.