$$\Lambda_c(2765)^+$$
 or $\Sigma_c(2765)$

$$I(J^P) = ?(?^?)$$
 Status: *

OMITTED FROM SUMMARY TABLE

A broad, statistically significant peak (997 $^{+141}_{-129}$ events) seen in $\Lambda_c^+\pi^+\pi^-$. However, nothing at all is known about its quantum numbers, including whether it is a Λ_c^+ or a Σ_c , or whether the width might be due to overlapping states.

$\Lambda_{c}(2765)^{+}$ MASS

The mass is obtained from the $\Lambda_c(2765)^+$ - Λ_c^+ mass-difference measurement below.

VALUE (MeV)

DOCUMENT ID

2766.6 ± 2.4 OUR FIT

$\Lambda_c(2765)^+ - \Lambda_c^+$ MASS DIFFERENCE

VALUE (MeV) DOCUMENT ID TECN COMMENT

480.1±2.4 OUR FIT

 480.1 ± 2.4

997 $^{+141}_{-129}$ ARTUSO 01 CLE2 $e^+e^- \approx \Upsilon(4S)$

(CLEO Collab.)

Created: 5/30/2017 17:20

$\Lambda_{c}(2765)^{+}$ WIDTH

DOCUMENT ID TECN COMMENT VALUE (MeV) 01 CLE2 $e^+e^-\approx \Upsilon(4S)$ **50 ARTUSO**

$\Lambda_c(2765)^+$ DECAY MODES

Fraction (Γ_i/Γ) $\Gamma_1 \qquad \Lambda_c^+ \pi^+ \pi^-$

$\Lambda_c(2765)^+$ REFERENCES

ARTUSO 01 PRL 86 4479 M. Artuso et al.