

"PROYECTO MAT. DISCRETAS"

Docente: Lic. Eduardo flores Gallegos

Alumna: Yesenia vega esparza

Ing. En Tecnologías de la Información y la

Comunicación.

Materia: Mat. Discretas

06/15/2019

INDICE.

1. Unidad uno

- ¿Qué es un sistema numérico?
- ↓ ¿Cuáles son los métodos para agregar signo a los números binarios?
- Mencione una aplicación de los sistemas numéricos binarios, octales o hexadecimales
- Ejercicios

2. Unidad dos

- ¿Qué es una proposición?
- ♣ ¿Qué es una tabla de verdad?
- ♣ ¿Cómo se denota la conjunción de p y q?
- ♣ ¿Cómo se denota la disyunción de Py q?
- ¿Cómo se denota la proposición condicional p y q?

3. Unidad tres

- ♣ ¿Qué es algebra booleana?
- ♣ escriba las reglas del algebra de Boole
- escriba los teoremas de Morgan
- escriba leyes del algebra de Boole

4-Unidad cuatro

- ♣ ¿Qué es un conjunto?
- ♣ ¿Cómo se puede describir un conjunto?
- ♣ ¿Qué es un subconjunto?
- ♣ ¿Qué es un diagrama de Hasse?

> ¿Qué es matemáticas discretas?

Son un área de las matemáticas encargadas del estudio de los conjuntos discretos: finitos o infinitos numerables. son fundamentales para la ciencia de la computación

Unidad 1

¿Qué es un sistema numérico?

Es un conjunto de símbolos y reglas de generación que permiten construir todos los números válidos.

> ¿Cuáles son los métodos para agregar signo a los números binarios?

Los números negativos en cualquier base se representan del modo habitual prediciéndolos con un signo << - >>

Mencione una aplicación de los sistemas numéricos binarios, octales o hexadecimales.

Binario: se utiliza (0) y (1) y es empleado en ordenadores (computadoras)

Octal: es de numeración posicional cuya base es 8 (del 0 al 7) y utiliza los dígitos indio arábicos

Conversiones

- Decimal a binario 4786 255
- =10010010000100001001111
- > Decimal a Octal 252 2067
- =11475723
 - Binario a hexadecimal 10111111 01111101
 - =BF7D
 - Hexadecimal a Decimal AFDC1001 DDBBCEF
 - =792001315732176111
 - Decimal a Hexadecimal 252 36
 - =312500

Binario a Octal 10100111 10000001

=123601

> Binario a Decimal 11111111 11111000

=65528

> Hexadecimal a Binario 2102550A 100CB001

=100001000000100101010100001010

11001101	11001101	10111011	100110001/101
+10110001	-10110001	* 101	
101111110	11101	1110100111 111101	
56721542	56721542	56721542	37568651
+36547122	-36547122	* 562	* 3
115470664 POSIBLE	20152420	41714421644	NO ES

Unidad 2

¿Qué es una proposición?

Toda expresión lingüística que se afirma si es (verdadero (v) o falso (f)) pero no ambas.

Las proposiciones son los bloques de cualquier teoría lógica

¿Qué es una tabla de verdad?

De una proposición "p" formada por las proposiciones individuales enumeran todas las posibles combinaciones de los valores de verdad y denotado falso.

Da la lista de combinación para cada combinación

> ¿Cómo se denota la conjunción de p y q?

•	р		q	(• ^
•	V	•	V	•	• V

•	V	•	F	•	F
•	F	•	V	•	F
•	F	•	f	•	f

> ¿Cómo se denota la disyunción de Py q?

•	р		q	•	٧
•	V	•	V	•	V
•	V	•	F	•	V
•	F	•	V	•	V
•	F	•	f	•	f

> ¿Cómo se denota la proposición condicional p y q?

•	р		q	•	\Rightarrow
•	V	•	V	•	V
•	V	•	F	•	F
•	F	•	V	•	V
•	F	•	f	•	٧

> ¿Como se denota la proposición bidireccional de p y q?

•	р		q	←	\Rightarrow
•	V	•	V	•	V
•	V	•	F	•	F
•	F	•	V	•	F
•	F	•	f	•	٧

> Encuentre el valor de verdad si p=V, q=V y r=F (Valor 15 %).

1.
$$(q \lor p \lor \neg (q \land p)) = v$$

2.
$$(p \land r) \longleftrightarrow (r \multimap (q \land p) \lor p) = F$$

3.
$$p \lor q \Leftrightarrow \neg r = V$$

. $P = (p \rightarrow q) \land (q \rightarrow r), Q = p \rightarrow r = NO$

•	р	q		r		•	
•	V	•	V	•	V	•	V
•	V	•	V	•	F	•	VF
•	V	•	F	•	V	•	F
•	V	•	F	•	F	•	VF
•	F	•	V	•	V	•	V
•	F	•	V	•	F	•	V
•	F	•	F	•	V	•	VF
•	F	•	F	•	f	•	V

. P= $p \land (\neg q \lor r)$, Q= $p \lor (q \land \neg r)$ = SI

•	р		q	r		•	
•	V	•	V	•	V	•	V
•	V	•	V	•	F	•	F
•	V	•	F	•	V	•	V
•	V	•	F	•	F	•	F
•	F	•	V	•	V	•	F
•	F	•	V	•	F	•	F
•	F	•	F	•	V	•	F
•	F	•	F	•	f	•	f

Formule la expresión simbólica de los siguientes ejercicios usando (Valor 15%):

p: Hoy es lunes q: Está nublado r: Hace frio

$$\neg p \rightarrow (q \lor r)$$

Hoy no es lunes implica que esta nublado o hace frio

 $\neg q \rightarrow (r \lor \neg p)$ No esta nublado implica que hace frio o no es lunes

 $(p\lor(q\lor r))\rightarrow (r\lor(q\lor p))$ Hoy es lunes o esta nublado o hace frio implica que hace frio o esta nublado o hace frio

Unidad 3

¿Qué es algebra booleana?

Es una expresión algebraica que dio lugar a uno de los posibles valores (verdadero) (falso) conocido como valores booleanos

- > Escriba las reglas del algebra de Boole
- Descripción de las leyes del álgebra booleana

Ley de anulacion : un término AND ´ed con un "0" es igual a 0 u OR eded con un "1" será igual a 1

Ley de identidad : un término OR ´ed con un "0" o AND ´ed con un "1" siempre será igual a ese término.

A + 0 = A Una variable OR'ed con 0 es siempre igual a la variable

A . 1 = A Una variable AND'ed con 1 es siempre igual a la variable

Ley idempotente - una entrada que está Y 'ed o OR 'ed con ella misma es igual a la entrada.

A + A = A variable OR'ed consigo misma es siempre igual a la variable

A . A = A variable AND'ed consigo misma es siempre igual a la variable

Complemento Ley - Término Y 'ed con su complemento es igual a "0" y un término O 'ed con su complemento es igual a "1".

$$A.\overline{A}=0$$
 igual a O Una variable AND'ed con su complemento es siempre igual a O Una variable OR'ed con su complemento es siempre igual a O

Ley conmutativa : el orden de aplicación de dos términos separados no es importante.

A.B=B.A El orden en el que dos variables son AND'ed no hace ninguna diferencia

A+B=B+A El orden en el que dos variables están ORedidas no hace ninguna diferencia

> Ley de doble negación : un término que se invierte dos veces es igual al términooriginal.

A = A Un complemento doble de una variable es siempre igual a la variable

- Escriba los teoremas de Morgan
- Leyes de Morgan
- Las leyes de Morgan consisten en dos equivalencias lógicas entre dos formas proposicionales.

- > Escriba leyes del algebra de Boole
- > Leyes asociativas

$$(a \lor b) \lor c = a \lor (b \lor c)$$

 $(a \lor b) \lor c = a \lor (b \lor c)$

> Leyes conmutativas

a^b= b^a avb= bva

> Leyes distributivas

$$av(bvc)=(avb) \wedge (avc)$$

 $a\wedge(b\wedge c)=(a\wedge b) \vee (a\wedge c)$

> Leyes de identidad

a∧0=a a∨1=a

> Leyes de complementos

a∨¬a=1 a∧¬a=0

- Simplifique los siguientes circuitos y elabore las tablas de verdad y los circuitos lógicos (valor 20%) antes y después de la simplificación. Compruebe que la simplificación es correcta con las tablas de verdad (valor 60%).
- 1. $\underline{A}BC + \underline{A}\underline{B}C + \underline{A}BC$
- 2. <u>BC</u> + <u>B</u>
- 3. A + AB + A + AB

> Código del proyecto de la U3.

```
booleanos =
[falso
verdadero]
                 p = int (input ('dame el valor de p'))
                 q = int ( input ( ' dame el valor de q ' ))
                 r = int ( input ( ' dame el valor de r ' ))
                 print ()
                 si p > q y q > r y p > r:
                     print ( ' el valor es verdadero ' )
                 si p > q y q < r y p > r:
                   print ( ' el valor es falso ' )
                 print('p\tq\tpyq')
                 print ('-'* 10)
                 para x en booleanos:
                   para y en booleanos:
                     print (x, y, x e y, sep = ' \ t')
                     print ()
                     print('K\tM\tKoM')
                 print ( ' - ' * 10 )
                 para x en booleanos:
                   para y en booleanos:
                     print (x, y, x \circ y, sep = ' \setminus t')
                 print ()
                 print('k\t no k')
                 print ( ' - ' * 10 )
```

```
para x en booleanos:
    print (x, no x, sep = '\t')

print ()

# Tabla de verdad de ^

print ('K\t M\t k ^ M')

print ('-'*10)

para x en booleanos:
    para y en booleanos:
    print (x, y, x ^ y, sep = '\t')
```

Unidad 4

> Qué es un conjunto?

Es una colección desordenada de datos

¿Cómo se puede describir un conjunto?

Son varios objetos agrupados como, por ejemplo

A= contiene 2 números

B=contiene 5 números

Entonces si a y b se agrupan serian un conjunto de números.

¿Qué es un subconjunto?

Conjunto de elementos que tienen en las mismas características y que está incluido dentro de otro conjunto mas amplio

> ¿Qué es un diagrama de Hasse?

Es una representación grafica de un conjunto parcialmente ordenado finito. Esto se consigue eliminando información redundante.