TRANSPORT PROPERTIES OF GASEOUS IONS OVER A WIDE ENERGY RANGE*

H. W. ELLIS, R. Y. PAI, and E. W. McDANIEL

School of Physics, Georgia Institute of Technology Atlanta, Georgia 30332

and

E. A. MASON and L. A. VIEHLAND

Brown University
Providence, Rhode Island 02912

A compilation of experimental data is presented for the mobilities of mass-identified ions in neutral gases at room temperature as a function of the ionic energy parameter E/N, the ratio of electric field strength to neutral gas number density. The literature has been covered to February 1976. In addition, a recently developed theory of gaseous ion mobility is used to compute, for each ion-gas combination, the zero-field reduced mobility as a function of the common ion-gas temperature. Finally, it is shown how the tabulated data can be used to estimate the ionic diffusion coefficients and to obtain information about the ion-neutral interaction potential.

^{*} Research supported by the U.S. Office of Naval Research, the National Science Foundation, and the U.S. Army Research Office (Grant numbers DAHCO4-74-G-0192, Project number P-12134-P, and DAHCO4-75-G-0116, Project number P-12761-C)

CONTENTS

INTRODUCTION
THEORY OF GASEOUS ION MOBILITY
SELECTION OF MOBILITY DATA
EXPLANATION OF TABLES
TABLES
Positive Ions in Helium
Negative Ions in Helium
Ions in Neon
Ions in Argon
Ions in Krypton
Ions in Hydrogen
Ions in Deuterium
Ions in Nitrogen
Ions in Oxygen
Ions in Carbon Monoxide
Ions in Nitric Oxide
Ions in Carbon Dioxide
REFERENCES FOR TABLES

INTRODUCTION

Research on the mobility and diffusion of trace amounts of ions through neutral gases under the influence of an electric field began more than 75 years ago. With the introduction of drift-tube mass spectrometers about 1960 and with recent improvements in experimental techniques, data of good accuracy have become available for a number of systems over a large range of electric field strength E and neutral gas number density N. It is easy to show that in the dilute gas region where only binary ion-neutral collisions occur, the ion transport coefficients depend only on the ratio E/N, since this ratio determines the balance between the energy the ions gain from the field and the energy they lose due to collisions with the neutral gas. Intuition suggests that there should also be a connection between the way the transport coefficients vary with E/N and with the gas temperature T, since both quantities affect the relative kinetic energy between the ion swarm and the neutral gas. Recently, Viehland and Mason¹ have developed a general theory of gaseous ion mobility which provides such a connection. The purpose of this paper is to update the survey of experimental mobility data given by McDaniel and Mason² while making full use of this general theory. This paper is a more extensive and more comprehensive treatment than that which was recently presented³ for K⁺ ions in various gases.

THEORY OF GASEOUS ION MOBILITY

The general kinetic theory of Viehland and $Mason^1$ leads to a series of successive approximations to the ion mobility K. When only a single neutral gas is present, this theory predicts in first approximation that NK does not vary with T and E/N separately but is instead a function only of the effective temperature corresponding to the kinetic energy between the ion swarms and the neutral gas in the center-of-mass frame. This is important from a theoretical viewpoint because values of K obtained over a wide range of relative kinetic energies can lead to accurate information about the ion-neutral interaction potential over a wide range of separation distances. For our purposes, however, the experimental implications of this prediction are more

important; it greatly simplifies the presentation and correlation of experimental results.

In first approximation the effective temperature upon which K depends is given by Eq. (1) with $\beta = 0$

$$\frac{3}{2}kT_{\text{eff}} = \frac{3}{2}kT + \frac{1}{2}M(v_d)^2(1+\beta). \tag{1}$$

Here k is Boltzmann's constant, M is the mass of the neutral molecules, and the quantity

$$v_d = KE \tag{2}$$

is the drift velocity, the terminal velocity that the ions attain as they are pulled through the neutral gas by the electrostatic field. It has been shown in Ref. 1 and verified in this work that experimental mobility data do seem to trace a single curve when plotted against $T_{\rm eff}$ as given by Eq. 1, despite the fact that such data were taken by a number of different groups at different combinations of T and E/N. It seems well established therefore that K is a function only of $T_{\rm eff}$.

Although setting $\beta = 0$ in Eq. 1 suffices for most purposes—and is used to obtain the tables to be presented in this paper—a more accurate expression for β is 1

$$\beta = \frac{mM(5 - 2A^*)}{5(m^2 + M^2) + 4mMA^*} \frac{d\ln(K)}{d\ln(E/N)}$$
(3)

where m is the ion mass. The quantity A^* is a ratio of collision integrals which varies only slowly with $T_{\rm eff}$ and which depends only weakly upon the details of the ion-neutral interaction potential; for most purposes A^* may be assumed to lie within the range 1.1-1.2, the high-field values corresponding to repulsive potentials ranging from $V(r) \propto r^{-8}$ to r^{-12} . Finally, the logarithmic derivative in Eq. 3 can be obtained from the relation

$$1 + \frac{d\ln(K)}{d\ln(E/N)} = \left[1 - 2\left(1 - \frac{T}{T_{\text{eff}}}\right) \frac{d\ln(K)}{d\ln(T_{\text{eff}})}\right]^{-1}.$$
 (4)

Since β is a small correction factor, little error arises by evaluating $d\ln(K)/d\ln(T_{\rm eff})$ from a plot of K versus the first approximation ($\beta=0$) to $T_{\rm eff}$ as given by Eq. 1.

Mobility in Mixtures of Neutral Gases

The mobility of ions in a mixture of neutral gases can be related $^{1,5-7}$ to the mobilities K_j measured in the pure neutral gases j at the same E, N, and T as in the mixture. Thus

$$\frac{1}{K} = \sum_{j} \frac{X_{j}}{K_{j}} + \frac{1}{2} \sum_{j} \frac{X_{j}}{K_{j}} (1 - \Delta_{j}) \frac{d \ln(K_{j})}{d \ln(E/N)} \times \left[1 + \frac{d \ln(K_{j})}{d \ln(E/N)} \right]^{-1}; \quad (5)$$

$$\Delta_j = (m + M_j) K_j^2 \left(\sum_i \frac{X_i}{K_i} \right) \left(\sum_i \frac{X_i}{K_i (m + M_i)} \right), \quad (6)$$

where X_j is the mole fraction of species j. When the second term is neglected, Eq. 5 reduces to the familiar expression known as Blanc's law.² Equations 5 and 6 have been shown⁸ to be in accord with experimental results.

Relation between Gaseous Ion Mobility and Diffusion

A general theory of gaseous ion diffusion in electric fields of arbitrary strength has not been developed, despite the considerable effort devoted to the subject. However, two *ad hoc* theories of moderate accuracy^{9,10} are suggested for the case where only a single neutral gas is present. Both theories relate the gaseous ion-diffusion coefficients to the ion mobility by generalized Einstein relations of the form¹¹⁻¹³

$$\frac{qD_L}{K} = kT_L \left[1 + \frac{d\ln K}{d\ln(E/N)} \right]; \tag{7}$$

$$\frac{qD_T}{K} = kT_T. (8)$$

Here q is the ionic charge and D_L and D_T are the coefficients describing diffusion parallel and perpendicular to the direction of the electrostatic field. Viehland and Mason⁹ suggest that T_L and T_T be determined by the equations

$$kT_L = kT + \left[\frac{5m - (2m - M)A^*}{5m + 3MA^*}\right] \frac{Mv_d^2}{(1 - \gamma)^2}; \quad (9)$$

$$kT_T = kT + \left[\frac{(m+M)A^*}{5m+3MA^*}\right] \frac{Mv_d^2}{(1-\gamma)^2};$$
 (10)

where v_d^0 is the value of the drift velocity at the point where the logarithmic derivative in Eq. 4 equals zero and where γ_z has the mass dependence shown in the following Table. On the other hand, Skullerud¹⁰ suggests that

$$kT_{L} = kT + \left[\frac{5m - (2m - M)A^{*}}{5m + 3MA^{*}}\right] \times \left[1 + \alpha \frac{d\ln K}{d\ln(E/N)}\right] Mv_{d}^{2}; \quad (12)$$

$$kT_T = kT + \left[\frac{(m+M)A^*}{5m+3MA^*}\right]Mv_d^2,$$
 (13)

where α depends on the mass ratio shown in the Table. These *ad hoc* theories of relation between gaseous

Mass Dependence of γ_{∞} and α as Obtained by Model Calculations^{9,10}

$\frac{M}{m+M}$	γ_{∞}	$\frac{m}{M}$	α
0	-0.12	0	0
0.1	-0.10	0.1	0.05
0.2	-0.095	0.2	0.16
0.3	-0.083	0.5	0.45
0.4	-0.071	0.8	0.64
0.5	-0.055	1.0	0.72
0.6	-0.040	1.5	0.82
0.7	-0.023	2.0	0.88
0.8	-0.007	3.0	0.94
0.9	+0.011	4.0	0.96
1.0	+0.028	∞	1.00

ion mobility and diffusion give similar results and seem to do a good job of reproducing the experimental data^{9,14-16} especially in view of the rather large experimental uncertainties and the approximate nature of the theories.

Connection with Ion-Neutral Interaction Potentials

The general theory of Viehland and Mason¹ allows the ionic mobility in a single-component neutral gas to be calculated entirely from knowledge of the ion-neutral reduced mass μ and interaction potential. In first approximation the drift velocity v_d is given by

$$v_d = \frac{3}{8} \frac{qE}{N} \left(\frac{\pi}{2\mu k T_{\text{eff}}} \right)^{1/2} \frac{1}{\Omega^{(1,1)} (T_{\text{eff}})}, \quad (14)$$

where the momentum-transfer collision integral is $\Omega^{(1,1)}\left(T_{\mathrm{eff}}\right)$

$$= \frac{1}{2} (kT_{\rm eff})^{-3} \int_0^\infty \epsilon^2 \, Q^{(1)}(\epsilon) \exp(-\epsilon/kT_{\rm eff}) \, d\epsilon, \quad (15)$$

where $Q^{(1)}$ is the momentum-transfer (diffusion) cross section

$$Q^{(1)}(\epsilon) = 2\pi \int_0^{\pi} (1 - \cos \theta) \, \sigma(\epsilon, \theta) \sin \theta \, d\theta. \quad (16)$$

In these equations ϵ and θ are the kinetic energy and scattering angle, respectively, for an ion-neutral collision in the center-of-mass system, and $\sigma(\epsilon,\theta)$ is the differential cross section for elastic scattering, a quantity which can be calculated from the ion-neutral interaction potential.² As a final note, both $\Omega^{(1,1)}$ and $Q^{(1)}$ are equal to πd^2 for the collision of classical rigid spheres of diameter d.

Equation 14 shows that values of $\Omega^{(1,1)}$ can be readily obtained from an analysis of experimental measurements of v_d . One way in which such values can be used⁴ is to assess the accuracy of ion-neutral interaction potentials obtained from an *ab initio* calculation or

from an analysis of other experimental properties. It is also possible to use these values of $\Omega^{(1,1)}$ to infer the ion-neutral potential directly; this is a well-known problem in the interpretation of transport property data and will not be discussed in detail here. We only wish to point out that the range of $T_{\rm eff}$ over which $\Omega^{(1,1)}$ values can be obtained far exceeds that usually available for the transport properties of neutral gases, and that the latter are still sufficiently good to be a major source of our present quantitative information on intermolecular forces.

SELECTION OF MOBILITY DATA

Contained in this paper is a collection of experimental data on the mobility of ions in gases. The data compilation is by no means exhaustive. In fact, an effort has been made to include only those data that are considered reliable in the light of recent developments. Omitted are the results of many experiments that were useful in the development of the subject of ionic transport but which have been superseded by later results or proved to be difficult to interpret.

The main criterion imposed on the data selected is that they refer to ions whose identity was unambiguously established in the measurement, in most cases by mass analysis of the ions at the end of their flight through the drift tube. A concomitant requirement is that ionic reactions with the drift-tube gas did not change the identity of the charge carriers in such a way as to affect the measured mobility significantly. Even though the identities of the primary ions produced by an ion source are usually known, reactions of these ions with molecules of the gas filling the drift tube can produce an unexpected assortment of ions, and the interrelationships among the drifting ions can be complicated. Usually it is impossible to disentangle the behavior of the individual species without use of mass selection and careful analysis of the shapes of the separate arrivaltime spectra. In most cases the use of a drift-tube mass spectrometer is essential if unambiguous results are to be obtained. This matter is discussed at considerable length in Ref. 17.

Another requirement imposed on the data selected for presentation is that they have reasonably high accuracy. In approximately 45% of the ion-gas combinations, the accuracy is $\pm 3\%$ or better throughout most of the E/N range covered. A final requirement was that the data be available to us before February 1, 1976.

Acknowledgment

The authors wish to express their appreciation to Dr. D. L. Albritton, who kindly provided us with a considerable amount of recent data from his laboratory, much of it in advance of publication.

References for Introduction

- L. A. Viehland and E. A. Mason, Ann. Phys. (N.Y.) 91, 499 (1975)
- 2. E. W. McDaniel and E. A. Mason, *The Mobility and Diffusion of Ions in Gases* (Wiley, New York, 1973)
- 3. E. A. Mason et al., Phys. Fluids 18, 1070 (1975)
- 4. W. F. Morrison et al., J. Chem. Phys. **63**, 2238 (1975)
- J. H. Whealton and E. A. Mason, Phys. Rev. A 6, 1939 (1972)
- J. H. Whealton, E. A. Mason, and R. E. Robson, Phys. Rev. A 9, 1017 (1974)
- 7. J. H. Whealton and E. A. Mason, Ann. Phys. (N.Y.) **84**, 8 (1974)
- 8. H. B. Milloy and R. E. Robson, J. Phys. B 6, 1139 (1973)

- 9. L. A. Viehland and E. A. Mason, J. Chem. Phys. **63**, 2913 (1975)
- 10. H. R. Skullerud, to be published
- 11. G. H. Wannier, Bell Syst. Tech. J. **32**, 170 (1953). See also Phys. Rev. **83**, 281 (1951); **87**, 795 (1952)
- 12. R. E. Robson, Aust. J. Phys. 25, 685 (1972)
- 13. G. H. Wannier, Aust. J. Phys. 26, 897 (1973)
- 14. R. Y. Pai et al., J. Chem. Phys. 63, 2916 (1975)
- 15. R. Y. Pai et al., Phys. Rev. A 12, 1781 (1975)
- 16. R. Y. Pai, H. W. Ellis, and E. W. McDaniel, to be published as a note in J. Chem. Phys., Vol. 64 (1976)
- 17. E. W. McDaniel and E. A. Mason, *The Mobility and Diffusion of Ions in Gases* (Wiley, New York, 1973), Section 2-1

EXPLANATION OF TABLES

E/N	The ratio of electric field strength to the neutral-gas number
	density. The unit employed is the Townsend (Td), 1 Td =
	10^{-17} V-cm^2

 v_d The ionic drift velocity in the neutral gas, in units of 10^4 cm/sec

 K_0 The reduced mobility of the ions in the neutral gas, in units of cm²/V-sec. The reduced mobility is related to the mobility $K = v_d/E$ by

$$K_0 = K(P/760)(273.16/T) = NK/(2.69 \times 10^{19}),$$

where P and T are the neutral gas pressure and temperature in torr and ${}^{\circ}K$, respectively

The effective ion-gas temperature in °K obtained from Eq. (1) with $\beta = 0$

 $K_0(0)$ The reduced ionic mobility as a function of $T_{\rm eff}$, in the limit of vanishing electric field strength $(E/N \rightarrow 0)$. The units are cm²/V-sec. The tabulated numbers have been read from a smooth curve drawn through experimental mobility values plotted as a function of the (calculated) effective temperature

 $\Omega^{(1,1)}$ The momentum-transfer collision integral in square angstroms (10⁻¹⁶ cm²) as obtained from v_d measurements and Eq. (14)

Structure of Tables

Each table is divided into two independent parts. The first three columns on the left present the measured drift velocities and mobilities of the ions in the neutral gas as a function of the experimental parameter E/N. Both v_d and K_0 are given merely for convenience to facilitate use of the tables as a quick reference. All these data were collected at or near room temperature. We have labeled the experimental data $T=300\,^{\circ}\mathrm{K}$ in order to stress the fixed temperature of the experimental data.

In most cases, the precision of the data was greater than the accuracy. Often the variation in the mobility as a function of E/N was significant even though the magnitude of the variation was within the limits of error. Thus, in most cases, three significant figures are given, although the estimated error may only allow two of them to be meaningful in the absolute sense.

In the four right-hand columns the independent variable is $T_{\rm eff}$, obtained from theory, in first approximation. The quantity K_0 (0) is interpreted as the reduced ionic mobility in the zero-field limit $(E/N \to 0)$, but at the ion-gas temperature $T_{\rm eff}$. Calculation of $\Omega^{(1,1)}$ ($T_{\rm eff}$) is allowed by this interpretation as explained above. The results are presented. The logarithmic derivative of K_0 (0) with respect to $T_{\rm eff}$ is included to allow the user of the tables to make higher-order corrections to the calcu-

lated effective temperature if greater accuracy is desired and to aid in the calculation of diffusion coefficients [see Eqs. (7)–(13)]. The error in the derivative is estimated at \pm 10%, although it may actually be larger (\sim 20%) at the highest and lowest values of $T_{\rm eff}$. Finally, we note that

$$\frac{d\ln(K_0)}{d\ln x} = \frac{d\ln(K)}{d\ln x}.$$

Use of Tables

The first three columns on the left of each Table, which constitute a compilation of experimental data, are intended to provide a convenient "handbook" source of mobility data on mass-identified ions in neutral gases. The numbers presented were taken from a smooth curve drawn through the experimental data and represent our best estimate of the true mobility function.

The right-hand part (four columns) of each Table presents results derived from the application of theory to the experimental data on the left. Of direct experimental interest is the ability to read the zero-field reduced mobility $K_0(E/N \rightarrow 0)$ as a function of the temperature $T_{\rm eff}$. Of theoretical interest is that, having acquired K_0 ($T_{\rm eff}$), one may obtain information about the ion-neutral potential and calculate the ionic diffusion coefficients.

TABLES. Positive Ions in Helium

	IABLES. Positive	e lons in Hellum	
<u>L:</u>	i ⁺ - He		Na ⁺ - He
Experimental Data T = 300° K	Derived Quantities	Experimental Data T = 300° K	Derived Quantities
E/N K _o v _d	$\underline{\underline{T}_{eff}}$ $\underline{\underline{K}_{o}(0)}$ $\underline{\underline{\Omega^{(1,1)}}}$ $\underline{\underline{\frac{d \ln \underline{K}}{d \ln \underline{T}}}_{eff}}$	E/N K _o v _d	$\frac{T_{eff}}{M}$ $\frac{K_0(0)}{M}$ $\frac{\Omega^{(1,1)}}{M}$ $\frac{\frac{d \ln K_0}{d \ln T_{eff}}}{M}$
2.00 23.1 1.24 3.00 23.1 1.86 4.00 23.1 2.48 6.00 23.3 3.76 8.00 23.8 5.12 10.0 24.4 6.56 12.0 25.0 8.06 15.0 26.1 10.5 20.0 28.1 15.1 25.0 30.0 20.2 30.0 31.4 25.3 40.0 32.6 43.8 60.0 32.2 51.9 80.0 31.1 66.9 100 30.0 80.6 120 28.9 93.2 150 27.2 110 200 24.6 132	300 22.9 29.2 0.32 400 25.0 23.2 0.27 500 26.4 19.7 0.24 600 27.5 17.2 0.21 800 29.1 14.1 0.18 1000 30.2 12.1 0.16 1200 31.0 10.8 0.14 1500 31.9 9.39 0.10 2000 32.5 7.98 0.03 2500 32.6 6.50 -0.01 4000 32.4 5.66 -0.04 5000 32.6 6.50 -0.01 4000 32.4 5.66 -0.04 5000 32.0 5.13 -0.06 6000 31.6 4.74 -0.07 8000 30.9 4.20 -0.10 10000 30.1 3.85 -0.12 12000 29.4 3.60 -0.15 15000 28.4 3.34 -0.17 20000 26.9 3.05 -0.20 25000 24.6 2.98 -0.23	1.00 22.8 0.613 2.00 22.8 1.23 4.00 22.8 2.45 6.00 22.8 3.68 8.00 23.1 4.97 10.0 23.4 6.29 12.0 23.8 7.67 15.0 24.3 9.79 20.0 25.1 13.5 25.0 25.8 17.3 30.0 25.9 20.9 40.0 25.6 27.5 50.0 25.0 33.6 60.0 24.2 39.0 80.0 22.4 48.2 100 21.0 56.4 120 19.7 63.5 150 18,4 74.2 180 17.4 84.2	300 22.6 25.6 0.24 400 24.0 20.9 0.17 500 24.7 18.2 0.13 600 25.2 16.2 0.09 800 25.8 13.7 0.06 1000 26.0 12.2 0.02 1200 26.0 11.1 -0.03 1500 25.6 10.1 -0.06 2000 25.0 8.97 -0.11 2500 24.4 8.22 -0.14 3000 23.7 7.72 -0.16 4000 22.5 7.05 -0.21 5000 21.4 6.63 -0.23 6000 20.5 6.31 -0.25 8000 19.1 5.87 -0.26 10000 18.0 5.57 -0.25
Reference: 1		Reference: 1	
			al error in the experimental believed not to exceed + 2%
data is for E/N	l error in the experimental believed not to exceed $\pm 2\%$ ≤ 150 Td. and $\pm 5\%$ for E/N >	data 13	believed not to exceed 1 2%
data is 1	believed not to exceed ± 2%	data 13	<u>к</u> ⁺ - не
data is for E/N	believed not to exceed ± 2%	Experimental Data T = 300° K	_
data is for E/N	believed not to exceed + 2% < 150 Td. and + 5% for E/N > Rb - He Derived Quantities	Experimental Data	<u>к⁺ - не</u>
data is 1 for E/N 150 Td.	believed not to exceed $\pm 2\%$ ≤ 150 Td. and $\pm 5\%$ for $E/N >$ $\frac{Rb^+ - He}{}$	Experimental Data $T = 300^{\circ} \text{ K}$ $\frac{E/N}{\circ} \frac{K_{o}}{\circ} \frac{v_{d}}{\circ}$	$\frac{\text{K}^+ - \text{He}}{\text{Derived Quantities}}$ $\frac{\text{T}_{\text{eff}}}{\text{Mergential K}_0(0)} = \frac{\Omega^{(1,1)}}{\Omega^{(1,1)}} \frac{\frac{\text{dln K}}{\text{dlnT}}}{\frac{\text{dln T}}{\text{eff}}}$
data is for E/N 150 Td. Experimental Data T = 300° K	believed not to exceed + 2% < 150 Td. and + 5% for E/N > Rb - He Derived Quantities	Experimental Data T = 300° K	<u>К⁺ - Не</u> Derived Quantities
data is for E/N 150 Td. Experimental Data T = 300° K E/N K _O V _d 4.00 20.0 2.15 7.00 20.0 3.76 10.0 20.0 5.37 15.0 19.9 8.02 20.0 19.7 10.6 25.0 19.5 13.1 30.0 19.2 15.5 40.0 18.4 19.8 50.0 17.6 23.6 60.0 16.9 27.2 80.0 15.7 33.7 100 14.7 39.5 120 14.0 45.1 140 13.3 50.0 Reference: 33 Accuracy: The total	believed not to exceed $+ 2\%$ $< 150 \text{ Td.}$ and $+ 5\%$ for $\overline{E/N} >$ $ \underline{\text{Rb}^{+} - \text{He}} $ Derived Quantities $ \underline{T_{eff}} \underline{K_{0}(0)} \underline{\alpha^{(1,1)}} \underline{\frac{\text{dln } K_{0}}{\text{dln} T_{eff}}} $ 300 20.0 27.3 0.00 350 20.0 25.3 -0.02 400 19.9 23.8 -0.04 500 19.6 21.6 -0.07 600 19.3 20.0 -0.10 800 18.6 18.0 -0.15 1000 17.9 16.7 -0.18 1200 17.4 15.7 -0.18 1200 17.4 15.7 -0.18 1500 16.7 14.6 -0.19 2000 15.7 13.5 -0.20 2500 15.1 12.5 -0.21 3000 14.5 11.9 -0.22 3500 14.0 11.4 -0.23	Experimental Data $T = 300^{\circ}$ K $ \frac{E/N}{N} = \frac{K_{o}}{N} \frac{V_{d}}{N} $ 1.00 21.6 0.580 2.00 21.6 1.16 4.00 21.6 2.32 6.00 21.6 3.48 8.00 21.6 4.64 10.0 21.6 5.80 12.0 21.7 7.00 15.0 21.7 8.75 20.0 21.6 11.6 25.0 21.4 14.4 30.0 21.0 16.9 40.0 20.3 21.8 50.0 19.5 26.2 60.0 18.7 30.1 80.0 17.2 37.0 100 16.0 43.0 120 15.2 49.0	$\frac{\text{K}^{+} - \text{He}}{\text{Derived Quantities}}$ $\frac{\text{T}_{\text{eff}}}{\text{Mo}} = \frac{\text{K}_{\text{o}}(0)}{\text{C}} \frac{\Omega^{(1,1)} \frac{\text{dln K}}{\text{dlnT}} \frac{\text{K}_{\text{o}}}{\text{dlnT}} \frac{\text{dln K}}{\text{eff}}$ $\frac{300}{400} = 21.5 26.1 0.06$ $400 21.8 22.3 0.02$ $500 21.7 20.0 -0.03$ $600 21.6 18.4 -0.06$ $800 21.1 16.3 -0.10$ $1000 20.5 15.0 -0.13$ $1200 20.0 14.0 -0.16$ $1500 19.3 13.0 -0.18$ $1800 18.6 12.3 -0.20$ $2000 18.2 11.9 -0.22$ $2500 17.3 11.2 -0.23$ $3000 16.6 10.7 -0.25$ $3500 15.9 10.3 -0.28$ $4000 15.3 10.0 -0.29$ $5000 14.4 9.54 -0.25$ $6000 13.7 9.16 -0.26$

TABLES. Positive Ions in Helium

	IADELS. I	sitive folis in Hendin	
<u>H</u> +	- Не		He ⁺ - He
Experimental Data T = 300° K	Derived Quantities	Experimental Data $T = 300^{\circ} K$	Derived Quantities
E/N K _o v _d T _e	$\underline{\text{ff}} \underline{\text{K}}_{0}(0) \underline{\underline{\Omega}}(1,1) \underline{\frac{\text{dln I}}{\text{dln T}}}$	o <u>ff</u> <u>E/N</u> K _o v _d	$\frac{T_{eff}}{M_{o}(0)} \frac{K_{o}(0)}{M_{o}(1,1)} \frac{\frac{d \ln K_{o}}{d \ln T_{eff}}$
5.00 31.0 4.16 6.00 31.0 5.00 7.00 30.9 5.81 8.00 30.8 6.62 10.0 30.6 8.22 12.0 30.3 9.77 14.0 30.1 11.3 16.0 29.8 12.8 18.0 29.6 14.3 20.0 29.4 15.8 Reference 21 and 26 Accuracy: The total er	325 31.0 37.0 0.00 350 30.9 35.8 -0.00 375 30.8 34.7 -0.00 400 30.6 33.8 -0.00 450 30.3 32.2 -0.00 550 30.0 30.8 -0.00 550 29.8 29.6 -0.00 600 29.7 28.4 -0.00 700 29.4 26.6 -0.00	12.0 10.1 3.20 15.0 10.0 4.03 20.0 9.90 5.32 25.0 9.74 6.54 30.0 9.60 7.74 40.0 9.28 9.97 50.0 8.97 12.1 60.0 8.67 14.0 80.0 8.12 17.5 100 7.67 20.6 120 7.25 23.4 150 6.78 27.3 200 6.12 32.9 250 5.60 37.6 300 5.19 41.8	300 10.3 73.4 -0.32 350 9.84 71.1 -0.30 400 9.48 69.0 -0.26 500 9.04 64.8 -0.22 600 8.67 61.6 -0.23 800 8.08 57.3 -0.25 1000 7.62 54.3 -0.28 1200 7.22 52.3 -0.29 1500 6.79 49.8 -0.31 2000 6.20 47.2 -0.32 2500 5.75 45.5 -0.35 3000 5.39 44.3 -0.38 3500 5.08 43.6 -0.39 4000 4.80 43.1 -0.42 5000 4.37 42.4 -0.48 6000 3.99 42.4 -0.51 7000 3.67 42.6 -0.55 8000 3.40 43.0 -0.59
		700 3.57 67.1 Reference: 4 and 1	15
N_{+}	- Не	Accuracy: The to	tal error in the experimental
Experimental Data T = 300° K	Derived Quantition	for E/I	s believed not to exceed $\pm 1\%$ N ≤ 20 and $\pm 3\%$ for E/N > 20.
E/N K _o v _d T _e	$ \underbrace{\text{ff}}_{\text{O}} \underbrace{K_{\text{O}}(0)}_{\text{O}} \underbrace{\frac{\Omega(1,1)}{\text{dinT}}}_{\text{O}} \underbrace{\frac{\text{din I}}{\text{dinT}}}_{\text{O}} $	o <u>f f</u>	<u>D⁺ - He</u>
8.00 20.0 4.30 10.0 20.0 5.37	300 19.9 30.4 0.00 350 20.1 27.9 0.09 400 20.2 26.0 0.09	Experimental Data T = 300° K	Derived Quantities
15.0 20.2 8.14 20.0 20.4 11.0	500	- ($\frac{T_{eff}}{M_{o}(0)} \frac{R^{(1,1)}}{M^{(1,1)}} \frac{\frac{d \ln K}{d \ln T_{eff}}}{M^{(1,1)}}$
40.0 21.0 22.6 50.0 21.2 28.5 60.0 21.4 34.5 70.0 21.6 40.6	000 20.9 15.9 0.03 200 21.1 14.4 0.03 500 21.2 12.8 0.03 000 21.4 11.0 0.03 500 21.5 9.76 0.03 000 21.6 8.87 0.03	6.00 24.2 3.90 7.00 24.2 4.55	310 24.3 37.5 -0.10 325 24.2 36.7 -0.10 350 24.0 35.7 -0.08 375 23.9 34.6 -0.08 400 23.8 33.7 -0.08 450 23.5 32.2 -0.10
Reference: 21 Accuracy: The total er:	ror in the experimenta	14.0 23.7 8.92 16.0 23.5 10.1 18.0 23.3 11.3	500 23.3 30.8 -0.13 550 22.9 29.8 -0.20
	eved not to exceed ±		27

Accuracy:

The total error in the experimental data is believed not to exceed \pm 3%.

TABLES. Positive Ions in Helium

Ar ⁺ -	<u>He</u>	<u>0⁺ - H</u>	2
Experimental Data T = 300°K	Derived Quantities	Experimental Data T = 300° K	Derived Quantities
E/N K _o v _d Teff	$\frac{K_0(0)}{0} \frac{\Omega^{(1,1)}}{0} \frac{\frac{\mathrm{dln} K_0}{\mathrm{dlnT}}}{\mathrm{eff}}$	$\underline{E/N}$ $\underline{K_o}$ $\underline{v_d}$ $\underline{T_{eff}}$	$\frac{K_0(0)}{n} \frac{\Omega^{(1,1)}}{n} \frac{\frac{d \ln K_0}{d \ln T_{eff}}}$
5.00 20.8 2.79 30 10.0 21.3 5.72 35 15.0 21.5 8.67 40 20.0 21.6 11.6 50 25.0 21.4 14.4 60 30.0 21.2 17.1 70 35.0 20.9 19.7 80 40.0 20.6 22.1 90 45.0 20.0 24.2 100 50.0 19.6 26.3 120 60.0 18.7 30.1 150 70.0 18.0 33.9 180 80.0 17.1 36.8 200 90.0 16.4 39.7 250 100 15.7 42.2 300 110 15.2 44.9 350 120 14.6 47.1 400 130 14.3 50.0 50.0	0 21.2 24.5 0.13 0 21.5 22.6 0.07 0 21.6 20.1 0.00 0 21.5 18.4 -0.03 0 21.4 17.1 -0.06 0 21.2 16.2 -0.09 0 20.9 15.5 -0.11 0 20.7 14.8 -0.13 0 20.1 13.9 -0.16 0 19.3 13.0 -0.21 0 18.5 12.4 -0.24 0 17.0 11.4 -0.29 0 16.1 11.0 -0.33 0 15.2 10.8 -0.36	5.00 22.6 3.04 30 10.0 23.4 6.29 40 15.0 24.2 9.75 50 20.0 24.9 13.4 60 25.0 25.5 17.1 80 30.0 25.8 20.8 100 35.0 25.7 24.2 120 40.0 25.4 27.3 150 45.0 24.9 30.1 200 50.0 24.5 32.9 250 60.0 23.6 38.0 300 70.0 22.5 42.3 350 80.0 21.7 46.6 400 90.0 21.1 55.1 500 100 20.5 55.1 500 110 19.9 58.8 600 120 19.4 62.6 700 130 18.9 66.0	0 23.8 21.7 0.17 0 24.6 18.8 0.13 0 25.1 16.8 0.10 0 25.6 14.3 0.05 0 25.8 12.7 0.01 0 25.7 11.6 -0.04 0 25.3 10.6 -0.08 0 24.6 9.40 -0.14 0 23.7 8.73 -0.17 0 23.0 8.21 -0.18 0 22.3 7.84 -0.20 0 21.7 7.54 -0.21 0 21.1 7.31 -0.22 0 20.7 7.07 -0.23 0 19.8 6.75 -0.24
Reference: 19		Reference: 19	
	r in the experimental ed not to exceed \pm 7%.		r in the experimental ed not to exceed \pm 7%.

н <u></u> 8	+ - He	<u>u+ -</u>	Не
Experimental Data T = 300° K	Derived Quantities	Experimental Data T = 300° K	Derived Quantities
E/N K _o v _d	$\underline{\underline{T}_{eff}} \underline{\underline{K}_{o}(0)} \underline{\underline{\alpha}^{(1,1)}} \underline{\underline{\frac{dln \ K}{dlnT}_{eff}}}$	E/N Ko vd	$T_{\text{eff}} = \frac{K_0(0)}{0} \Omega^{(1,1)} \frac{\frac{d \ln K}{d \ln T_{\text{eff}}}}{1}$
4.00 19.7 2.12 5.00 19.7 2.65 6.00 19.6 3.16 8.00 19.6 4.21 10.0 19.5 5.24 12.0 19.5 6.29 15.0 19.4 7.82 20.0 19.2 10.3 25.0 19.2 12.9 30.0 19.2 15.5 35.0 19.3 18.2	300 19.7 27.4 -0.10 350 19.5 25.6 -0.06 400 19.4 24.1 -0.04 450 19.3 22.8 -0.03 500 19.2 21.8 -0.02 600 19.2 19.9 0.00 700 19.2 18.4 0.03 800 19.3 17.1 0.06 900 19.5 16.0 0.10	3.00 15.8 1.27 4.00 15.8 1.70 5.00 15.8 2.12 6.00 15.8 2.55 8.00 15.7 3.37 10.0 15.6 4.19 12.0 15.5 5.00 15.0 15.4 6.21 20.0 15.0 8.06 25.0 14.6 9.81 30.0 14.1 11.4 35.0 13.6 12.8 40.0 13.1 14.1	300 15.9 33.9 -0.12 325 15.7 33.0 -0.16 350 15.5 32.2 -0.19 400 15.1 30.9 -0.24 450 14.6 30.1 -0.28 500 14.1 29.6 -0.32 550 13.7 29.0 -0.34 600 13.3 28.6 -0.37 650 12.9 28.4 -0.40
Reference: 8			
Accuracy: The total	error in the experimental	Reference: 18	
	elieved not to exceed \pm 4%.	Accuracy: The total	error in the experimental

The total error in the experimental data is believed not to exceed \pm 4%.

TABLES. Positive Ions in Helium

	He ⁺ ₂ - He		H ₂ ⁺ - He
Experimental Data T = 300° K	Derived Quantities	Experimental Data T = 300° K	Derived Quantities
E/N K _O y _d 1.50 16.7 0.673 2.00 16.7 0.897 3.00 16.8 1.35 4.00 16.8 1.81 5.00 16.8 2.26 6.00 16.8 2.71 8.00 16.9 3.63 10.0 16.9 4.54 12.0 17.0 5.48 14.0 17.2 6.47 16.0 17.3 7.44 18.0 17.5 8.46 20.0 17.7 9.51	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E/N K _O v _d 3.00 24.5 1.97 4.00 24.5 2.63 5.00 24.5 3.29 6.00 24.6 3.97 7.00 24.8 4.66 8.00 25.1 5.40 10.0 25.7 6.91 12.0 26.5 8.54 14.0 27.6 10.4 16.0 28.8 12.4 18.0 30.2 14.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
22.0 18.0 10.6 24.0 18.3 11.8			l error in the experimental
Reference: 4		data is l	pelieved not to exceed \pm 7%.

Accuracy: The total error in the experimental data is believed not to exceed \pm 1%.

N ⁺ ₂ - He	<u>СО⁺ - Не</u>
Experimental Data Derived Quantities $T = 300^{\circ} K$	Experimental Data Derived Quantities $T = 300^{\circ} K$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

See page 182 for Explanation of Tables

Accuracy:

The total error in the experimental data is believed not to exceed \pm 7%.

TABLES. Positive Ions in Helium

	<u>NO⁺ - He</u>		0^+_2 - He
Experimental Data T = 300° K	Derived Quantities	Experimental Data T = 300° K	Derived Quantities
E/N K _O v _d 5.00 21.5 2.89 10.0 21.8 5.86 15.0 21.7 8.75 20.0 21.6 11.6 25.0 21.0 14.1 30.0 20.5 16.5 35.0 20.0 18.8 40.0 19.6 21.1 45.0 18.9 22.9 50.0 18.4 24.7 60.0 17.6 28.4 70.0 16.8 31.6 80.0 16.1 34.6 90.0 15.6 37.7 100 15.0 40.3 110 14.4 42.6 120 14.1 45.5 130 13.7 47.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E/N K _O V _d 5.00 21.8 2.93 10.0 21.9 5.88 15.0 21.8 8.79 20.0 21.6 11.6 25.0 21.1 14.2 30.0 20.8 16.8 35.0 20.3 19.1 40.0 19.7 21.2 50.0 18.9 25.4 60.0 17.9 28.9 70.0 17.1 32.2 80.0 16.3 35.0 90.0 15.7 38.0 100 15.3 41.1 110 14.8 43.7 120 14.2 45.8 130 13.8 48.2 Reference: 19	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Reference: 19			l error in the experimental

Accuracy: The total error in the experimental data is believed not to exceet \pm 7%.

Accuracy: The total error in the experimental data is believed not to exceed \pm 7%.

rror in the experimental data is believed not to exceed \pm 7%. ieved not to exceet \pm 7%.

<u>A</u>	<u>rH⁺ - He</u>	Н ₃ + - Не
Experimental Data T = 300° K	Derived Quantities	Experimental Data Derived Quantities $T = 300^{\circ} \text{ K}$
E/N Ko vd	$\underline{\underline{T_{eff}}} \underline{\underline{K_0(0)}} \underline{\underline{\Omega^{(1,1)}}} \underline{\underline{\frac{dln \ \underline{K_0}}{dlnT_{eff}}}}$	$\frac{E/N}{K_o} \frac{V_d}{V_d} \qquad \frac{T_{eff}}{V_o(0)} \frac{\kappa_o(0)}{\kappa_o(1,1)} \frac{d\ln K_o}{d\ln T_{eff}}$
10.0 19.5 5.24 15.0 19.6 7.90 20.0 19.7 10.6 25.0 19.5 13.1 30.0 19.1 15.4 35.0 18.8 17.7 40.0 18.5 19.9 50.0 17.7 23.8 60.0 16.8 27.1 70.0 16.1 30.3 80.0 15.5 33.3 90.0 14.9 36.0 100 14.4 38.7 110 13.9 41.1 120 13.5 43.5	350 19.5 26.6 0.07 400 19.6 24.7 0.03 450 19.7 23.2 -0.01 500 19.6 22.1 -0.03 600 19.4 20.4 -0.07 700 19.1 19.2 -0.11 800 18.8 18.2 -0.13 900 18.5 17.5 -0.15 1000 18.2 16.8 -0.17 1200 17.6 15.9 -0.20 1500 16.8 14.9 -0.23 1800 16.0 14.3 -0.25 2000 15.6 13.9 -0.27 2500 14.7 13.2 -0.29 3000 13.9 12.7 -0.31	5.00 31.6 4.25 300 30.8 26.5 0.27 10.0 33.1 8.89 350 32.1 23.5 0.22 15.0 34.5 13.9 400 32.9 21.5 0.17 20.0 34.6 18.6 500 33.9 18.6 0.11 25.0 34.4 23.1 600 34.4 16.8 0.06 30.0 33.6 27.1 700 34.7 15.4 0.03 35.0 32.8 30.8 800 34.7 14.4 0.00 40.0 31.9 34.3 1000 34.6 12.9 -0.04 45.0 30.9 37.4 1500 33.6 10.9 -0.11 55.0 29.5 43.6 1800 32.8 10.2 -0.14 60.0 28.4 45.8 2000 32.3 9.79 -0.15 65.0 27.8 48.6 2500 31.2 9.06 -0.19 3000 30.0 8.60 -0.22 3500 29.0
Reference: 19		Reference: 19

See page 182 for Explanation of Tables

Accuracy: The total error in the experimental data is believed not to exceed \pm 7%.

TABLES.	Positive Ions in Helium	
COH ⁺ - He		0 ₂ H ⁺ - He
Experimental Data Derived Quantity $T = 300^{\circ} \text{ K}$	ities Experimental Data $T = 300^{\circ} K$	Derived Quantities
$\underline{E/N} \underline{K_o} \underline{v_d} \qquad \underline{T_{eff}} \underline{K_o(0)} \; \underline{\Omega^{(1,1)}} \; \underline{dd}$	ln Ko lnT _{eff} E/N K _o v _d	$\underline{T_{\text{eff}}}$ $\underline{K_0(0)}$ $\underline{\alpha^{(1,1)}}$ $\frac{\text{dln }\underline{K_0}}{\text{dln }\underline{T_{\text{eff}}}}$
10.0 20.4 5.48 350 20.4 25.9 0 15.0 20.3 8.18 400 20.4 24.2 -0 20.0 19.9 10.7 500 20.1 22.0 -0 25.0 19.7 13.2 600 19.7 20.5 -0 30.0 19.4 15.6 700 19.3 19.3 -0 35.0 18.9 17.8 800 18.9 18.5 -0 40.0 18.5 19.9 900 18.5 17.8 -0 45.0 18.0 21.8 1000 18.2 17.2 -0 50.0 17.5 23.5 1200 17.5 16.3 -0 60.0 16.7 26.9 1500 16.5 15.4 -0 70.0 15.9 29.9 1800 15.7 14.8 -0 80.0 15.3 32.9 2000 15.3 14.4 -0 90.0 14.3 38.4 3000 13.8 13.1 -0	0.10 0.03 10.0 19.4 2.61 0.03 10.0 19.4 5.21 0.08 15.0 19.4 7.86 0.12 20.0 19.4 10.4 0.14 25.0 19.4 13.0 0.16 30.0 18.9 15.2 0.18 35.0 18.7 17.6 0.20 0.24 60.0 16.9 27.2 0.27 0.27 0.27 0.27 0.27 0.27 0.27	300 19.4 29.2 0.04 350 19.5 26.9 0.01 400 19.5 25.1 -0.01 500 19.3 22.7 -0.05 600 19.1 20.9 -0.07 700 18.9 19.6 -0.10 800 18.6 18.6 -0.12 900 18.3 17.8 -0.14 1000 18.0 17.2 -0.16 1200 17.5 16.2 -0.18 1500 16.7 15.2 -0.20 1800 16.1 14.3 -0.23 2000 15.7 14.0 -0.24 2500 14.8 13.2 -0.26 3000 14.1 12.7 -0.28 3500 13.5 12.3 -0.30
Reference: 19	Reference: 19	
Accuracy: The total error in the experimental data is believed not to exceed	ental data is	al error in the experimental believed not to exceed ± 7%.
Accuracy: The total error in the experimental data is believed not to exceed $\frac{\text{CO}_2^+ - \text{He}}{2}$	ental data is	
data is believed not to exceed	data is	believed not to exceed ± 7%.
data is believed not to exceed CO_2^+ - He Experimental Data Derived Quantit	ties Experimental Data T = 300° K	NH3 - He
Experimental Data $T = 300^{\circ}$ K $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ties Experimental Data $T = 300^{\circ} \text{ K}$	NH ⁺ ₃ - He Derived Quantities

The total error in the experimental data is believed not to exceed \pm 7%.

Accuracy:

The total error in the experimental data is believed not to exceed \pm 7%.

TABLES. Positive Ions in Helium

	TIDEED. TOOLIT.	o tone in tionam	
	NH ₄ - He	N ₂ OH ⁺	- He
Experimental Data T = 300° K	Derived Quantities	Experimental Data T = 3000 K	Derived Quantities
E/N K _o v _d	$\underline{\underline{T}_{eff}}$ $\underline{\underline{K}_{o}(0)}$ $\underline{\underline{\Omega}^{(1,1)}}$ $\underline{\underline{\frac{d \ln K_{o}}{d \ln T_{eff}}}}$	E/N K _o v _d	$\underline{T_{\tt eff}} \underline{K_{\tt o}(0)} \underline{\Omega^{(1,1)}} \underline{\frac{d \ln K_{\tt o}}{d \ln T_{\tt eff}}}$
5.00 21.9 2.94 10.0 21.8 5.86 15.0 21.6 8.71 20.0 21.2 11.4 25.0 20.8 14.0 30.0 20.3 16.4 35.0 19.8 18.6 40.0 19.3 20.7 45.0 18.7 22.6 50.0 18.3 24.6 60.0 17.4 28.1 70.0 16.7 31.4 80.0 15.9 34.2 90.0 15.4 37.2 100 14.9 40.0 110 14.5 42.9 120 14.1 45.5 130 13.7 47.9	300 21.9 27.0 -0.03 350 21.8 25.1 -0.05 400 21.6 23.7 -0.07 500 21.2 21.6 -0.10 600 20.8 20.1 -0.12 700 20.4 19.0 -0.14 800 20.0 18.1 -0.16 900 19.6 17.4 -0.17 1000 19.2 16.9 -0.19 1200 18.5 16.0 -0.21 1500 17.6 15.0 -0.25 1800 16.8 14.4 -0.27 2000 16.3 14.0 -0.27 2500 15.4 13.3 -0.27 3000 14.7 12.7 -0.24 3500 14.2 12.2 -0.23 4000 13.8 11.7 -0.19	5.00 17.2 2.31 10.0 17.3 4.65 15.0 17.3 6.97 20.0 17.1 9.19 25.0 16.8 11.3 30.0 16.4 13.2 35.0 16.1 15.1 45.0 15.3 18.5 50.0 15.0 20.2 60.0 14.3 23.1 70.0 13.7 25.8 80.0 13.1 28.2 90.0 12.7 30.7 100 12.3 33.1 110 11.9 35.2 120 11.6 37.4	300 17.2 32.4 0.06 350 17.3 29.8 0.00 400 17.2 28.1 -0.05 500 16.8 25.7 -0.14 600 16.3 24.2 -0.18 700 15.9 23.0 -0.18 800 15.5 22.0 -0.19 1000 14.8 20.6 -0.21 1200 14.2 19.6 -0.24 1500 13.5 18.5 -0.26 1800 12.8 17.8 -0.28 2000 12.4 17.4 -0.29 2500 11.6 16.6 -0.32
Reference: 19		Accuracy: The total	error in the experimental

Accuracy: The total error in the experimental data is believed not to exceed \pm 7%.

Accuracy: The total error in the experimental data is believed not to exceed \pm 7%.

$0_2H_2^+$	- He	NO T	•H ₂ O - He
Experimental Data T = 300° K	Derived Quantities	Experimental Data T = 300° K	Derived Quantities
E/N K _o v _d 5.00 18.5 2.49	$\frac{T_{\text{eff}}}{300} \frac{K_0(0)}{18.5} \frac{\Omega^{(1,1)}}{20.5} \frac{\frac{d \ln K_0}{d \ln T_{\text{eff}}}}{0.15}$	E/N K vd	$\underline{\underline{T}_{eff}}$ $\underline{\underline{K}_{o}(0)}$ $\underline{\underline{\Omega}^{(1,1)}}$ $\underline{\underline{dln}} \underline{\underline{K}_{o}}$
10.0 18.8 5.05 15.0 18.9 7.62 20.0 18.8 10.1 25.0 18.8 12.6 30.0 18.4 14.8 35.0 17.9 16.8 40.0 17.6 18.9 45.0 17.3 20.9 50.0 17.0 22.8 60.0 16.2 26.1	350 18.8 27.8 0.08 400 18.9 25.9 0.00 500 18.8 23.3 -0.05 600 18.5 21.6 -0.09 700 18.2 20.3 -0.12 800 17.9 19.3 -0.14 900 17.6 18.5 -0.16 1000 17.3 17.9 -0.17 1200 16.7 16.9 -0.21 1500 15.9 15.9 -0.26	4.00 16.8 1.81 6.00 16.8 2.71 8.00 16.8 3.61 10.0 16.7 4.49 12.0 16.7 5.38 15.0 16.5 6.65 20.0 16.1 8.65 25.0 15.7 10.5 30.0 15.2 12.3	300 16.8 33.1 -0.08 325 16.7 32.0 -0.11 350 16.6 31.0 -0.14 400 16.2 29.7 -0.18 450 15.8 28.7 -0.21 500 15.5 27.8 -0.24 550 15.1 27.2 -0.26
70.0 15.5 29.2 80.0 14.8 31.8 90.0 14.2 34.3 100 13.8 37.1 110 13.5 39.9	1800 15.1 15.3 -0.30 2000 14.6 15.0 -0.29 2500 13.8 14.2 -0.21 3000 13.4 13.3 -0.14		error in the experimental believed not to exceed <u>+</u> 7%.

Reference: 19

The total error in the experimental data is believed not to exceed \pm 7%. Accuracy:

TABLES. Positive and Negative Ions in Helium

СН ⁺ - но	: :	<u>H - He</u>	
Experimental Data T = 300° K	Derived Quantities	Experimental Data $T = 300^{\circ} K$	Derived Quantities
E/N K _o v _d T _{eff}	$K_0(0)$ $\underline{\Omega^{(1,1)}} \frac{\text{dln } K_0}{\text{dln } T_{\text{eff}}}$	$\underline{E/N} \underline{K_0} \underline{v_d} \underline{T_{eff}}$	$\underline{K_0(0)} \underline{\underline{\Omega^{(1,1)}}} \underline{\frac{d \ln K_0}{d \ln T_{eff}}}$
5.00 21.0 2.82 300 10.0 20.8 5.59 350 15.0 20.4 8.22 400 20.0 19.9 10.7 500 25.0 19.4 13.0 600 30.0 19.0 15.3 700 35.0 18.4 17.3 800 40.0 18.0 19.3 900 45.0 17.4 21.0 1000 50.0 17.0 22.8 1200 60.0 16.2 26.1 1500 70.0 15.3 28.8 1800 80.0 14.6 31.4 2000	20.7 26.6 -0.10 20.4 25.2 -0.12 19.9 23.1 -0.14 19.3 21.8 -0.17 18.8 20.7 -0.18 18.3 19.9 -0.20 17.9 19.2 -0.21 17.5 18.6 -0.23 16.7 17.8 -0.26 15.7 16.9 -0.30 14.8 16.4 -0.33	4.00 38.8 4.17 325 5.00 38.6 5.19 350 6.00 38.3 6.17 400 7.00 37.9 7.13 450 8.00 37.4 8.04 500 10.0 36.7 9.86 600 12.0 36.2 11.7 700 15.0 35.5 14.3 800 20.0 34.6 18.6 1000 25.0 33.9 22.8 1200 30.0 33.3 26.8 1400	38.8 29.6 -0.17 38.3 28.9 -0.16 37.5 27.6 -0.15 36.8 26.5 -0.14 36.3 25.5 -0.13 35.5 23.8 -0.11 35.0 22.3 -0.09 34.6 21.1 -0.08 34.1 19.2 -0.07 33.7 17.7 -0.06 33.3 16.6 -0.06 33.1 15.6 -0.06
Reference: 19		Reference: 21	in the everytmental
	in the experimental d not to exceed \pm 7%.		in the experimental d not to exceed \pm 7%.

СН	30^{+}_{2} - He	<u>C1 - He</u>
Experimental Data T = 300° K	Derived Quantities	Experimental Data Derived Quantities $T = 300^{\circ} K$
E/N K _o v _d	$\frac{T_{\text{eff}}}{T_{\text{eff}}}$ $\frac{K_0(0)}{M_0(1,1)}$ $\frac{d\ln K_0}{d\ln T_{\text{eff}}}$	$\underline{E/N} \underline{K_o} \underline{v_d} \qquad \underline{T_{eff}} \underline{K_o(0)} \underline{\Omega^{(1,1)}} \underline{\frac{d \ln K_o}{d \ln T_{eff}}}$
4.00 17.0 1.83 6.00 16.9 2.72 7.00 16.9 3.18 10.0 16.8 4.51 12.0 16.7 5.38 15.0 16.6 6.69 20.0 16.3 8.76 25.0 16.0 10.7 30.0 15.6 12.6 40.0 14.9 16.0 50.0 14.2 19.1 60.0 13.5 21.8 70.0 12.8 24.1 80.0 12.2 26.2 90.0 11.6 28.1	300 17.0 32.7 -0.09 350 16.7 30.9 -0.11 400 16.4 29.4 -0.13 450 16.1 28.2 -0.15 500 15.9 27.1 -0.17 600 15.4 25.6 -0.19 700 14.9 24.5 -0.22 800 14.5 23.5 -0.23 1000 13.7 22.3 -0.27 1200 13.0 21.4 -0.32 1400 12.3 20.9 -0.41 1600 11.5 21.0 -0.59	4.00 20.3 2.18 300 20.3 27.8 -0.05 7.00 20.3 3.27 350 20.0 26.1 -0.19 10.0 20.1 5.40 400 19.5 25.0 -0.22 12.0 19.8 6.38 450 19.0 24.2 -0.20 15.0 19.5 7.86 500 18.6 23.5 -0.19 20.0 18.9 10.2 600 18.0 22.2 -0.20 25.0 18.3 12.3 700 17.4 21.2 -0.20 30.0 17.8 14.3 800 16.9 20.4 -0.21 40.0 16.9 18.2 1000 16.2 19.1 -0.22 50.0 16.0 21.5 1200 15.5 18.2 -0.23 60.0 15.3 24.7 1500 14.7 17.2 -0.25 70.0 14.7 27.6 1800 14.1 16.3 -0.26 80.0 14.1 30.3 200 13.7 15.9
	l error in the experimental believed not to exceed ± 7%.	Reference: 10 Accuracy: The total error in the experimental

Accuracy:

The total error in the experimental data is believed not to exceed \pm 7%.

TABLES. Negative Ions in Helium

	<u>0 - He</u>	0 ₂	- He
Experimental Data T = 300° K	Derived Quantities	Experimental Data T = 300° K	Derived Quantities
E/N K _o v _d	$\underline{T_{eff}} \underline{K_o(0)} \underline{\Omega^{(1,1)}} \underline{\frac{d \ln K_o}{d \ln T_{eff}}}$	$\underline{E/N}$ $\underline{K_o}$ $\underline{v_d}$ $\underline{T_o}$	$\frac{K_0(0)}{\text{eff}} \frac{\kappa_0(1,1)}{\text{eff}} \frac{\frac{d \ln K_0}{d \ln T_{\text{eff}}}}{\frac{d \ln K_0}{d \ln T_{\text{eff}}}}$
3.00 28.2 2.27 4.00 27.8 2.99 5.00 27.6 3.71 6.00 27.4 4.42 8.00 26.9 5.78 10.0 26.5 7.12 12.0 26.0 8.38 15.0 25.3 10.2 20.0 24.2 13.0 25.0 23.2 15.6 30.0 22.3 18.0 40.0 20.9 22.5 50.0 19.8 26.6 60.0 19.0 30.6 80.0 17.8 38.3 100 16.8 45.1 120 16.1 51.9 140 15.5 58.3 160 14.9 64.1	300 28.2 20.1 -0.32 400 26.0 18.9 -0.24 500 24.8 17.7 -0.22 600 23.8 16.8 -0.21 700 23.1 16.1 -0.21 800 22.4 15.5 -0.20 1000 21.4 14.5 -0.21 1200 20.7 13.7 -0.20 1500 19.8 12.8 -0.20 2000 18.7 11.7 -0.21 2500 17.8 11.0 -0.20 3000 17.2 10.4 -0.19 4000 16.3 9.52 -0.17 5000 15.8 8.79 -0.18 6000 15.5 8.18 -0.17 7000 15.3 7.67 -0.14	30.0 18.6 15.0 40.0 17.5 18.8 50.0 16.6 22.3 60.0 15.8 25.5	300 21.5 26.4 -0.15 350 21.0 25.0 -0.17 400 20.5 23.9 -0.18 500 19.7 22.3 -0.19 600 19.0 21.1 -0.21 700 18.4 20.2 -0.22 800 17.8 19.5 -0.22 1000 16.9 18.4 -0.24 1200 16.2 17.5 -0.26 1500 15.3 16.6 -0.28 1800 14.5 16.0 -0.29 2000 14.0 15.7 -0.30 2400 13.3 15.1 -0.32
Reference: 21			rror in the experimental ieved not to exceed \pm 7%.

Accuracy: The total error in the experimental data is believed not to exceed \pm 7%.

<u>01</u>	Н - Не	0 ₃ - He	
Experimental Data $T = 300^{\circ} K$	Derived Quantities	Experimental Data I	Derived Quantities
E/N Ko vd	$\underline{\mathbf{T}_{eff}}$ $\underline{\mathbf{K}_{0}(0)}$ $\underline{\mathbf{G}^{(1,1)}}$ $\underline{\frac{d\ln\mathbf{K}_{0}}{d\ln\mathbf{T}_{eff}}}$	$\frac{E/N}{c}$ $\frac{K_o}{c}$ $\frac{v_d}{d}$ $\frac{T_{eff}}{c}$	$\underline{K_0(0)} \underline{\underline{\Omega^{(1,1)}}} \underline{\underline{\frac{d \ln K}{d \ln T}}_{eff}}$
7.00 24.5 4.61 10.0 24.1 6.48 15.0 23.3 9.39 20.0 22.4 12.0 30.0 20.9 16.8 40.0 19.6 21.1 60.0 17.7 28.5 80.0 16.4 35.3 100 15.3 41.1 120 14.4 46.4 140 13.7 51.5	350 24.3 22.6 -0.21 400 23.6 21.8 -0.21 500 22.6 20.4 -0.21 600 21.8 19.3 -0.21 800 20.5 17.7 -0.21 1000 19.6 16.6 -0.21 1500 18.0 14.8 -0.22 2000 16.8 13.7 -0.24 3000 15.3 12.3 -0.25 4000 14.2 11.5 -0.26 5000 13.4 10.9 -0.27	3.00 18.6 1.50 300 5.00 18.6 2.50 350 8.00 18.3 3.93 400 10.0 18.2 4.89 450 12.0 18.0 5.80 500 15.0 17.8 7.17 600 20.0 17.3 9.30 700 25.0 16.7 11.2 800 30.0 16.2 13.1 900 40.0 15.3 16.4 1000 50.0 14.5 19.5 1100 60.0 13.8 22.2	18.6 29.9 -0.23 18.0 28.6 -0.21 17.5 27.5 -0.22 17.1 26.6 -0.22 16.7 25.8 -0.22 16.1 24.4 -0.23 15.5 23.5 -0.24 15.0 22.7 -0.25 14.5 22.1 -0.27 14.1 21.6 -0.28 13.7 21.2 -0.29
Reference: 21		Reference: 10	
	l error in the experimental believed not to exceed + 7%.		in the experimental I not to exceed ± 7%.

TABLES. Negative Ions in Helium

NC ==	0 ₂ - He		CO ₃ - He
Experimental Data T = 300° K	Derived Quantities	Experimental Data T = 300° K	Derived Quantities
E/N K _O v _d 4.00 18.6 2.00 7.00 18.4 3.46 10.0 18.2 5.87 15.0 17.9 7.21 20.0 17.4 9.35 25.0 16.9 11.4 30.0 16.4 13.2 40.0 15.5 16.7 50.0 14.8 19.9 60.0 14.0 22.6 70.0 13.4 25.2 80.0 12.9 27.7 90.0 12.5 30.2 100 12.1 32.5 110 11.7 34.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E/N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
120 11.4 36.8 Reference: 10		110 10.6 31.3 120 10.2 32.9 Reference: 10	

Accuracy:

The total error in the experimental data is believed not to exceed \pm 7%.

The total error in the experimental data is believed not to exceed \pm 7%.

The total error in the experimental data is believed not to exceed \pm 7%. Accuracy:

S =	О ₂ F¯ - Не	C =	<u>2</u> Н ₂ - Не
Experimental Data T = 300° K	Derived Quantities	Experimental Data T = 300° K	Derived Quantities
E/N K _o v _d	$\underline{T_{\text{eff}}}$ $\underline{K_0(0)}$ $\underline{\Omega^{(1,1)}}$ $\frac{\text{dln } K_0}{\text{dln } T_{\text{eff}}}$	E/N K _o v _d	$\frac{T_{eff}}{M_{o}}$ $\frac{K_{o}(0)}{M_{o}}$ $\frac{\Omega^{(1,1)}}{M_{o}}$ $\frac{\frac{d \ln K}{d \ln T_{eff}}}{M_{o}}$
3.00 14.9 1.20 5.00 14.9 2.00 8.00 14.8 3.18 10.0 14.8 3.98 12.0 14.7 4.74 15.0 14.6 5.88 20.0 14.3 7.68 25.0 14.0 9.40 30.0 13.6 11.0 35.0 13.2 12.4 40.0 12.9 13.9 50.0 12.2 16.4 60.0 11.6 18.7 70.0 11.1 20.9	300 14.9 36.7 -0.11 325 14.8 35.5 -0.12 350 14.6 34.7 -0.16 400 14.3 33.1 -0.19 450 13.9 32.1 -0.22 500 13.6 31.2 -0.24 550 13.3 30.4 -0.25 600 13.0 29.8 -0.27 700 12.4 28.9 -0.30 800 11.9 28.1 -0.33 900 11.5 27.5 -0.35 1000 11.0 27.2 -0.36	5.00 17.4 2.34 7.00 17.3 3.25 10.0 17.2 4.62 12.0 17.0 5.48 15.0 16.8 6.77 20.0 16.8 8.76 25.0 15.8 10.6 30.0 15.4 12.4 35.0 14.9 14.0 40.0 14.5 15.6 50.0 13.8 18.5 60.0 13.1 21.1 70.0 12.3 23.1 Reference: 10	300 17.5 32.8 -0.18 325 17.2 32.1 -0.19 350 17.0 31.3 -0.20 400 16.5 30.1 -0.21 450 16.1 29.1 -0.22 500 15.7 28.3 -0.23 550 15.4 27.5 -0.24 600 15.1 26.9 -0.24 700 14.5 25.9 -0.26 800 14.0 25.1 -0.27 900 13.6 24.4 -0.30 1000 13.1 24.0 -0.36 1100 12.6 23.8 -0.46
Reference: 10			l error in the experimental believed not to exceed \pm 7%.

See page 182 for Explanation of Tables

Accuracy:

TABLES. Ions in Helium, Neon

so ₃ -	He	!	SF ₆ - He
Experimental Data T = 300° K	Derived Quantities	Experimental Data $T = 300^{\circ} K$	Derived Quantities
$\underline{E/N} \underline{K}_{o} \underline{v}_{d}$	$T_{eff} = K_0(0) = \Omega^{(1,1)} \frac{d \ln K_0}{d \ln T_{eff}}$	E/N K vd	$\frac{T_{\text{eff}}}{M_{\text{o}}}$ $\frac{K_{\text{o}}(0)}{M_{\text{o}}}$ $\frac{\Omega^{(1,1)}}{M_{\text{o}}}$ $\frac{\dim K_{\text{o}}}{\dim K_{\text{eff}}}$
4.00 15.4 1.66 7.00 15.3 2.88 10.0 15.1 4.06 12.0 15.0 4.84 15.0 14.8 5.97 20.0 14.5 7.79 25.0 14.1 9.47 30.0 13.8 11.1 40.0 13.0 14.0 50.0 12.3 16.5 60.0 11.8 19.0 70.0 11.3 21.3 80.0 10.9 23.4 90.0 10.6 25.6 100 10.2 27.4 110 9.9 29.3 120 9.6 31.0	300 15.4 35.6 -0.24 350 14.8 34.2 -0.24 400 14.4 32.9 -0.24 450 14.0 31.9 -0.24 500 13.6 31.2 -0.24 600 13.0 29.8 -0.25 700 12.5 28.7 -0.26 800 12.1 27.7 -0.26 1000 11.4 26.3 -0.27 1200 10.9 25.1 -0.28 1400 10.4 24.4 -0.29 1600 10.0 23.7 -0.29 1800 9.7 23.0 -0.29	2.00 12.9 0.693 4.00 12.8 1.38 7.00 12.7 2.39 10.0 12.6 3.39 12.0 12.4 4.00 15.0 12.3 4.96 20.0 12.1 6.50 25.0 11.8 7.93 30.0 11.5 9.27 35.0 11.2 10.5 40.0 11.0 11.8 50.0 10.5 14.1 60.0 10.0 16.1 70.0 9.6 18.1 80.0 9.2 19.8	300 12.9 42.0 -0.44 325 12.5 41.6 -0.34 350 12.2 41.1 -0.27 400 11.8 39.7 -0.28 450 11.4 38.8 -0.27 500 11.1 37.8 -0.28 550 10.8 37.0 -0.28 600 10.5 36.5 -0.28 700 10.1 35.1 -0.29 800 9.7 34.2 -0.30 900 9.3 33.6 -0.30 1000 9.0 33.0 -0.31
D. C. 10		Reference: 10	

Reference: 10

Accuracy: The total error in the experimental data is believed not to exceed \pm 7%.

The total error in the experimental data is believed not to exceed \pm 7%. Accuracy:

$\frac{SF_5^-}{}$ - He	Ne ⁺ ₂ - Ne
Experimental Data Derived Quantities $T = 300^{\circ} K$	Experimental Data Derived Quantities $T = 300^{\circ} K$
$\underline{E/N}$ $\underline{K_o}$ $\underline{v_d}$ $\underline{T_{eff}}$ $\underline{K_o(0)}$ $\underline{\Omega^{(1,1)}}$ $\underline{\frac{d\ln K}{d\ln T_{eff}}}$	$\underline{E/N}$ $\underline{K_0}$ $\underline{v_d}$ $\underline{T_{eff}}$ $\underline{K_0(0)}$ $\underline{\Omega^{(1,1)}}$ $\underline{\frac{d \ln K_0}{d \ln T_{eff}}}$
10.0 13.1 3.52 325 13.0 40.1 -0.30 12.0 13.0 4.19 350 12.7 39.6 -0.27 15.0 12.8 5.16 400 12.3 38.2 -0.24 20.0 12.6 6.77 450 12.0 36.9 -0.22 25.0 12.3 8.26 500 11.7 35.9 -0.23 30.0 12.0 9.67 550 11.5 34.8 -0.24 35.0 11.8 11.1 600 11.2 34.3 -0.25 40.0 11.5 12.4 700 10.8 32.9 -0.28 50.0 11.0 14.8 800 10.4 32.0 -0.31 60.0 10.5 16.9 900 10.0 31.3 -0.33 70.0 10.1 19.0 1000 9.6 31.0 -0.33 80.0 9.7 20.9	6.00 6.16 0.993 300 6.13 47.5 0.30 7.00 6.17 1.16 350 6.40 42.1 0.23 8.00 6.20 1.33 400 6.54 38.6 0.15 10.0 6.26 1.68 500 6.71 33.6 0.09 12.0 6.32 2.04 600 6.80 30.3 0.05 15.0 6.42 2.59 700 6.84 27.9 0.02 20.0 6.56 3.53 800 6.85 26.0 -0.01 25.0 6.66 4.47 1000 6.77 23.6 -0.11 30.0 6.74 5.43 1200 6.58 22.1 -0.17 40.0 6.83 7.34 1400 6.38 21.1 -0.24 50.0 6.84 9.19 1600 6.16 20.5 -0.27 60.0 6.58 10.6 1800 5.97 19.9 -0.26 70.0 6.31 11.9 80.0 6.05 13.0
Accuracy: The total error in the experimental data is believed not to exceed ± 7%.	Reference: 5

See page 182 for Explanation of Tables

Accuracy:

The total error in the experimental data is believed not to exceed \pm 1%.

TABLES. Ions in Neon

	IADLES. 10	iis III IACOII
	<u>H</u> ⁺ - Ne	Li ⁺ - Ne
Experimental Data T = 300° K	Derived Quantities	Experimental Data Derived Quantities $T = 300^{\circ} K$
E/N K vd	$\frac{T_{\text{eff}}}{M_{\text{o}}} = \frac{K_{\text{o}}(0)}{M_{\text{o}}} = \frac{\Omega^{(1,1)}}{M_{\text{o}}} \frac{\frac{\text{dln } K_{\text{o}}}{\text{dln } T_{\text{eff}}}}{M_{\text{o}}}$	$\underline{E/N} \underline{K_o} \underline{v_d} \qquad \underline{T_{\tt eff}} \underline{K_o(0)} \underline{\Omega^{(1,1)}} \underline{\frac{d\ln K_o}{d\ln T_{\tt eff}}}$
	325 22.2 47.4 -0.05 350 22.1 45.9 -0.05 400 21.9 43.3 -0.06 450 21.8 41.0 -0.06 500 21.6 39.3 -0.07 600 21.3 36.3 -0.08 700 21.1 34.0 -0.09 800 20.8 32.2 -0.11 900 20.5 30.8 -0.15 1000 20.1 29.8 -0.20	3.00 10.7 0.863 300 10.6 44.2 0.30 4.00 10.7 1.15 400 11.4 35.6 0.27 6.00 10.7 1.73 500 12.0 30.3 0.24 8.00 10.8 2.32 600 12.5 26.5 0.22 10.0 11.0 2.96 800 13.2 21.7 0.18 12.0 11.2 3.61 1000 13.7 18.7 0.16 15.0 11.8 4.76 1200 14.1 16.6 0.14 20.0 12.8 6.88 1500 14.5 14.5 0.12 25.0 13.8 9.72 2000 14.9 12.2 0.08 30.0 14.5 11.7 2500 15.1 10.8 0.05 40.0 15.1 16.2 3000 15.2 9.75 0.02 50.0 15.0 20.2 4000 15.1 8.50 -0.04 60.0 14.5 31.2 6000 14.8 7.08
		Reference: 1
		Meterence. 1
		Accuracy: The total error in the experimental data is believed not to exceed $\pm 2\%$.
	<u>Rb⁺ - Ne</u>	
Experimental Data T = 300° K	Derived Quantities	+
	a a dln K	<u>Na⁺ - Ne</u>
E/N K _o v _d	$\frac{T_{\text{eff}}}{M_{\text{o}}} = \frac{K_{\text{o}}(0)}{M_{\text{o}}} = \frac{\Omega^{(1,1)}}{M_{\text{o}}} \frac{\frac{d \ln K}{d \ln T_{\text{o}}}}{eff}$	Experimental Data Derived Quantities T = 300° K
3.00 6.50 0.524 5.00 6.50 0.873 7.00 6.53 1.23 10.0 6.55 1.76	300 6.50 40.7 0.13 350 6.59 37.2 0.09 400 6.66 34.4 0.06	$\underline{E/N} \underline{K_o} \qquad \underline{v_d} \qquad \underline{T_{eff}} \underline{K_o(0)} \underline{\underline{\Omega}} \underline{(1,1)} \underline{\frac{d \ln K_o}{d \ln T_{eff}}}$
15.0 6.60 2.66 20.0 6.66 3.58 25.0 6.72 4.51 30.0 6.75 5.44 40.0 6.73 7.23 50.0 6.66 8.95 60.0 6.51 10.5 80.0 6.12 13.2 100 5.79 15.6 120 5.53 17.8 150 5.20 21.0 200 4.78 25.7 250 4.45 29.9 300 4.18 33.7 400 3.76 40.4 500 3.45 46.4	500 6.72 30.5 0.03 600 6.75 27.7 0.01 700 6.74 25.7 -0.02 800 6.71 24.1 -0.04 1000 6.62 21.9 -0.07 1200 6.51 20.3 -0.11 1500 6.30 18.8 -0.18 2000 5.96 17.2 -0.19 2500 5.70 16.1 -0.21 3000 5.49 15.2 -0.21 4000 5.16 14.0 -0.22 5000 4.90 13.2 -0.24 6000 4.69 12.6 -0.24 8000 4.36 11.7 -0.27 10000 4.10 11.2 -0.28 12000 3.89 10.8 -0.30 15000 3.63 10.3 -0.32	4.00 8.25 0.887 300 8.16 39.9 0.25 6.00 8.25 1.33 400 8.69 32.5 0.19 8.00 8.27 1.78 500 9.02 28.0 0.15 10.0 8.34 2.24 600 9.23 25.0 0.12 12.0 8.43 2.72 800 9.48 21.0 0.07 15.0 8.58 3.46 1000 9.61 18.6 0.04 20.0 8.87 4.77 1200 9.65 16.9 0.01 25.0 9.19 6.17 1500 9.64 15.1 -0.02 30.0 9.46 7.63 2000 9.53 13.2 -0.05 40.0 9.67 10.4 2500 9.38 12.0 -0.09 50.0 9.62 12.9 3000 9.22 11.2 -0.11 60.0 9.48 15.3 4000 8.90 10.0 -0.14 80.0 9.12 19.6 5000 8.58 9.30 </td

Reference: 33

Accuracy: The total error in the experimental data is believed not to exceed \pm 2%.

Reference: 1

Accuracy: The total error in the experimental data is believed not to exceed ± 2%.

TABLES. Ions in Neon

<u> </u>	e ⁺ - Ne		<u>K⁺ - Ne</u>
Experimental Data T = 300° K	Derived Quantities	Experimental Data T = 300° K	Derived Quantities
E/N K v _d	$\frac{T_{\text{eff}}}{M}$ $\frac{K(0)}{M}$ $\frac{\Omega^{(1,1)}}{M}$ $\frac{d \ln K_0}{d \ln T_{\text{eff}}}$	E/N K _o v _d	\underline{T}_{eff} $\underline{K}_{o}(0)$ $\underline{\Omega}^{(1,1)}$ $\underline{\frac{d \ln K}{d \ln T_{eff}}}$
6.00	300 4.08 82.5 -0.36 350 3.84 81.1 -0.37 400 3.67 79.4 -0.36 500 3.40 76.6 -0.32 600 3.21 74.1 -0.32 800 2.93 70.3 -0.31 1000 2.73 67.5 -0.32 1200 2.58 65.2 -0.33 1500 2.40 62.7 -0.34 2000 2.18 59.8 -0.34 2500 2.01 58.0 -0.37 3000 1.89 56.3 -0.37 4000 1.69 54.5 -0.41 5000 1.53 53.9 -0.41 6000 1.41 53.3 -0.47 8000 1.24 52.5 -0.51 10000 1.10 53.0 -0.53 12000 1.00 53.2 -0.61 15000 0.87 54.7 -0.70		300 7.43 39.5 0.10 400 7.62 33.3 0.08 500 7.75 29.3 0.07 600 7.82 26.5 0.04 800 7.84 22.9 -0.02 1000 7.78 20.6 -0.05 1200 7.69 19.1 -0.08 1500 7.36 16.3 -0.14 2000 7.25 15.7 -0.15 2500 6.98 14.6 -0.18 3000 6.72 13.8 -0.23 3500 6.48 13.2 -0.24 4000 6.28 12.8 -0.24 4000 5.70 11.5 -0.23 8000 5.40 10.5 -0.16

Reference: 15 and 5

The total error in the experimental data is believed not to exceed + 1% for E/N \leq 60 Td. and \pm 3% for E/N > 60 Td. Accuracy:

The total error in the experimental data is believed not to exceed $\pm 3\%$.

		Hg ⁺ - Ne
	D ⁺ - Ne	Experimental Data Derived Quantities $T = 300^{\circ} K$
Experimental Data $T = 300^{\circ} K$	Derived Quantities	$\underline{E/N}$ $\underline{K_0}$ $\underline{v_d}$ $\underline{T_{eff}}$ $\underline{K_0(0)}$ $\underline{n^{(1,1)}}$ $\underline{\frac{d \ln K_0}{d \ln T_{eff}}}$
$\underline{E/N}$ \underline{K}_{0} \underline{v}_{d}	$\underline{\underline{T}_{\text{eff}}} \underline{\underline{K}_{0}(0)} \underline{\underline{\Omega}^{(1,1)}} \underline{\underline{\frac{\text{dln } \underline{K}}{\text{dln} \underline{T}_{\text{eff}}}}}$	9.00 5.96 1.44 325 5.97 40.1 0.06 10.0 5.96 1.60 350 5.99 38.6 0.04 12.0 5.97 1.92 400 6.00 36.0 0.01
4.00 16.1 1.73 5.00 16.1 2.16 6.00 16.1 2.60 7.00 16.0 3.01 8.00 16.0 3.44 10.0 15.9 4.27 12.0 15.7 5.06 14.0 15.5 5.83 16.0 15.3 6.58 17.0 15.2 6.94	325 16.1 47.3 -0.04 350 16.0 45.8 -0.04 400 16.0 42.9 -0.05 450 15.9 40.7 -0.06 500 15.7 39.1 -0.07 600 15.5 36.1 -0.11 700 15.2 34.1 -0.18	15.0 5.98 2.41 450 6.00 33.9 -0.01 20.0 6.00 3.22 500 5.98 32.3 -0.03 25.0 6.00 4.03 550 5.96 30.9 -0.04 30.0 5.98 4.82 600 5.94 29.7 -0.06 35.0 5.95 5.60 700 5.88 27.8 -0.08 40.0 5.91 6.35 800 5.81 26.3 -0.09 45.0 5.87 7.10 900 5.75 25.0 -0.10 50.0 5.81 7.81 55.0 5.76 8.51
17.0 13.2 0.74		Reference: 8
Reference: 28 Accuracy: The total	l error in the experimental	Accuracy: The total error in the experimental data is believed not to exceed \pm 4%.

See page 182 for Explanation of Tables

TABLES. Ions in Argon

	Ar - Ar	<u>Li⁺ - Ar</u>					
Experimental Data T = 300° K	Derived Quantities	Experimental Data $T = 300^{\circ} K$	Derived Quantities				
$\frac{E/N}{Q}$ $\frac{K_0}{Q}$ $\frac{v_d}{Q}$	$\frac{T_{eff}}{M_{o}}$ $\frac{K_{o}(0)}{M_{o}}$ $\frac{\Omega^{(1,1)}}{M_{o}}$ $\frac{d \ln K_{o}}{d \ln T_{eff}}$	E/N Ko vd	$\frac{T_{\text{eff}}}{T_{\text{eff}}} = \frac{K_0(0)}{N_0(1,1)} \frac{\frac{\text{dln } K}{\text{dln} T_{\text{eff}}}}{N_0(1,1)}$				
8.00 1.53 0.329 10.0 1.53 0.411 12.0 1.53 0.493 15.0 1.52 0.613 20.0 1.51 0.811 25.0 1.49 1.00 30.0 1.47 1.18 40.0 1.44 1.55 50.0 1.41 1.89 60.0 1.38 2.22 80.0 1.32 2.84 100 1.27 3.41 120 1.22 3.93 150 1.16 4.68 200 1.06 5.70 250 0.99 6.65 300 0.95 7.66 400 0.85 9.14 500 0.72 11.6 800 0.63 13.5 1000 0.56 15.0 1200 0.46 18.5 2000 0.40 21.5	300 1.52 157 -0.43 350 1.41 157 -0.41 400 1.35 153 -0.36 500 1.25 148 -0.34 600 1.17 145 -0.33 800 1.07 137 -0.34 1200 0.99 132 -0.34 1200 0.93 129 -0.36 1500 0.86 124 -0.36 2000 0.77 120 -0.39 2500 0.71 117 -0.41 3000 0.66 115 -0.45 4000 0.57 115 -0.50 5000 0.51 115 -0.55 6000 0.46 116 -0.59 7000 0.42 118 -0.65 8000 0.38 122 -0.69 9000 0.35 125 -0.74	Reference: 1 Accuracy: The total of	300 4.59 95.4 0.04 400 4.64 81.7 0.07 500 4.72 71.9 0.09 600 4.82 64.2 0.12 800 5.04 53.2 0.18 1000 5.26 45.6 0.20 1200 5.47 40.0 0.20 1500 5.71 34.3 0.21 2000 6.08 27.9 0.21 2500 6.39 23.7 0.22 3000 6.60 21.0 0.15 4000 6.86 17.5 0.13 5000 7.03 15.3 0.11 6000 7.15 13.7 0.09 8000 7.29 11.6 0.04 10000 7.31 10.4 -0.01 12000 7.27 9.52 -0.05 15000 7.15 8.66 -0.09 20000 6.91 7.76 -0.14				
Reference: 15 and 3	3						

Reference: 15 and 3

The total error in the experimental data is believed not to exceed $\pm~1\%$ for E/N <~250 Td. and $\pm~3\%$ for $\overline{\rm E/N}$ >~250 Td. Accuracy:

++		
Ar	-	Ar

										dla V
	mental Data	Derived	Quantities	E/N	K _o	$\frac{v_d}{}$	$\underline{^{T}_{\texttt{eff}}}$	K _O (0)	$\Omega^{(1,1)}$	$\frac{d\ln K_0}{d\ln T_{eff}}$
E/N 1 40.0 2 50.0 3 60.0 2 70.0 2 80.0 2	= 300° K Ko Vd 2.49 2.68 2.47 3.32 2.45 3.95 2.42 4.55 2.39 5.14	T _{eff} K _o (0) 400 2.50 450 2.48 500 2.46 600 2.43 700 2.40	$ \frac{\Omega^{(1,1)}}{\frac{\text{dln K}_{0}}{\text{dlnT}_{eff}}} $ $ \frac{166}{157} -0.06 $ $ 157 -0.06 $ $ 151 -0.07 $ $ 139 -0.08 $ $ 130 -0.09 $	6.00 8.00 10.0 12.0 15.0 25.0 30.0 40.0 50.0	3.08 3.08 3.08 3.08 3.08 3.09 3.12 3.23 3.36 3.50	0.497 0.662 0.828 0.993 1.24 2.08 2.52 3.47 4.51 5.64	300 400 500 600 800 1200 2500 3000	3.07 3.15 3.23 3.31 3.46 3.71 3.84 3.99 4.08 4.13	91.1 76.9 67.1 59.8 49.5 37.7 32.6 27.1 23.7 21.4	0.08 0.10 0.12 0.15 0.15 0.17 0.15 0.12 0.08
100 120 140 160 180	2.37 5.73 2.34 6.29 2.28 7.35 2.23 8.39 2.19 9.42 2.15 10.4 2.11 11.3	800 2.37 900 2.34 1000 2.32 1200 2.27 1400 2.23 1600 2.20 1800 2.17 2000 2.14 2500 2.08	124 -0.10 118 -0.10 113 -0.11 105 -0.11 99.3 -0.11 94.1 -0.12 90.0 -0.12 86.5 -0.12 79.6 -0.12	80.0 100 120 150 200 250 300 400 500	3.79 4.04 4.14 4.14 4.01 3.86 3.70 3.42 3.15	8.15 10.9 13.3 16.7 21.5 25.9 29.8 36.8 42.3	4000 5000 6000 8000 10000 12000 15000 20000 25000 30000	4.17 4.15 4.10 3.99 3.89 3.80 3.68 3.52 3.37 3.23	18.4 16.5 15.3 13.6 12.5 11.6 10.7 9.73 9.09 8.66	0.01 -0.04 -0.07 -0.11 -0.12 -0.13 -0.15 -0.17 -0.21 -0.27

Reference: 3

The total error in the experimental data is believed not to exceed \pm 1%. Accuracy:

See page 182 for Explanation of Tables

Reference: 1

Experimental Data $T = 300^{\circ} K$

The total error in the experimental data is believed not to exceed \pm 2%. Accuracy:

Derived Quantities

TABLES. Ions in Argon

	.E.S. 10BS III AIgui
$\frac{K^+ - Ar}{}$	$\underline{Rb}^+ - \underline{Ar}$
Experimental Data Derived Quantit $T = 300^{\circ} K$	ies Experimental Data Derived Quantities $T = 300^{\circ} K$
$\underline{E/N}$ $\underline{K_o}$ $\underline{v_d}$ $\underline{T_{eff}}$ $\underline{K_o(0)}$ $\underline{\Omega^{(1,1)}}$ $\underline{\frac{dln}{dln}}$	$\frac{K_0}{T_{eff}}$ $\frac{E/N}{M_0}$ $\frac{K_0}{M_0}$ $\frac{v_d}{M_0}$ $\frac{T_{eff}}{M_0}$ $\frac{K_0}{M_0}$ $\frac{\Omega^{(1,1)}}{M_0}$
2.00 2.66 0.143 400 2.74 76.0 0. 4.00 2.66 0.286 500 2.85 65.4 0. 6.00 2.66 0.429 600 2.96 57.4 0. 8.00 2.66 0.572 800 3.09 47.7 0. 10.0 2.66 0.715 1000 3.18 41.4 0. 12.0 2.67 0.861 1200 3.23 37.2 0. 15.0 2.68 1.08 1500 3.29 32.7 0.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Reference: 16, 9 and 30	Accuracy: The total error in the experimental data is believed not to exceed \pm 2%.
Accuracy: The total error in the experimen data is believed not to exceed ±	
Hg ⁺ - Ar	Experimental Data Derived Quantities $T = 300^{\circ} \text{ K}$
Experimental Data Derived Quantit $T = 300^{\circ} K$	
$\frac{E/N}{\sqrt{O}} \frac{V_{d}}{\sqrt{O}} \qquad \frac{T_{eff}}{\sqrt{O}} \frac{K_{O}(0)}{\sqrt{O}} \frac{\Omega^{(1,1)}}{\sqrt{O}} \frac{d\ln n}{d\ln n}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
90.0 1.86 4.50 800 1.89 60.0 0. 100 1.87 5.02 1000 1.93 52.5 0. 120 1.91 6.16 1200 1.97 47.0 0. 140 1.96 7.37 1400 2.01 42.6 0. 160 2.03 8.73 1600 2.05 39.1 0.	08 12.0 3.40 1.10 1000 3.18 43.7 -0.03 04 15.0 3.39 1.37 1200 3.17 40.0 -0.01 01 20.0 3.38 1.82 1500 3.17 35.8 0.02 03 25.0 3.36 2.26 2000 3.22 30.5 0.07 05 30.0 3.34 2.69 2500 3.28 26.8 0.09 07 40.0 3.30 3.55 3000 3.33 24.1 0.10 08 50.0 3.26 4.38 4000 3.45 20.1 0.12 11 60.0 3.22 5.19 5000 3.55 17.5 0.13 13 80.0 3.19 6.86 6000 3.63 15.6 0.12 13 100 3.17 8.52 7000 3.70 14.2 0.11 14 120 3.22 10.4 8000 3.75 13.1 0.09 15 150 3.34 13.5 10000 3.81 11.5 0.07

Reference: 8 Reference: 10

Accuracy: The total error in the experimental data is believed not to exceed \pm 4%.

Accuracy: The total error in the experimental data is believed not to exceed \pm 7%.

TABLES. Ions in Argon

	$\frac{O_2^+ - Ar}{-}$	$\frac{\operatorname{Ar}_{2}^{+}-\operatorname{Ar}_{2}^{-}}{=}$	
Experimental Data T = 300° K	Derived Quantities	Experimental Data T = 300° K	Derived Quantities
E/N K _o v _d	$\underline{T_{eff}}$ $\underline{K_0(0)}$ $\underline{\Omega^{(1,1)}}$ $\frac{\underline{d \ln K_0}}{\underline{d \ln T_{eff}}}$	$\underline{\text{E/N}} \underline{\text{K}}_{\underline{o}} \underline{\text{v}}_{\underline{d}} \qquad \underline{\text{T}}_{\underline{\text{eff}}}$	$\underline{K_0(0)} \underline{\underline{\alpha^{(1,1)}}} \underline{\underline{\frac{d \ln K_0}{d \ln T_{eff}}}}$
8.00 2.57 0.552 10.0 2.57 0.691 15.0 2.57 1.04 20.0 2.57 1.38 25.0 2.58 2.11 40.0 2.68 2.88 50.0 2.79 3.75 60.0 2.92 4.71 70.0 3.05 5.74 80.0 3.15 6.77 100 3.26 8.76 120 3.29 10.6 140 3.27 12.3 160 3.22 13.8 180 3.14 15.2 200 3.06 16.4 220 2.96 17.5 240 2.85 18.4	300 2.57 98.6 0.00 350 2.58 91.0 0.08 400 2.63 83.5 0.17 450 2.69 76.9 0.20 500 2.75 71.4 0.21 600 2.86 62.7 0.21 700 2.95 56.3 0.20 800 3.03 51.2 0.18 1000 3.13 44.4 0.13 1200 3.20 39.6 0.10 1500 3.26 34.8 0.06 2000 3.29 29.8 0.01 2500 3.28 26.8 -0.03 3000 3.25 24.7 -0.08 4000 3.14 22.1 -0.17 5000 2.99 20.8 -0.29 6000 2.80 20.2 -0.42	5.00 1.83 0.246 300 6.00 1.83 0.295 350 8.00 1.83 0.295 500 10.0 1.83 0.492 500 12.0 1.83 0.590 600 15.0 1.83 0.738 700 20.0 1.83 0.983 800 25.0 1.84 1.24 900 30.0 1.85 1.99 1100 50.0 1.86 2.50 1200 60.0 1.88 3.03 1300 80.0 1.91 4.11 100 1.93 5.19 120 1.93 5.29 140 1.90 7.15 160 1.86 8.00 170 1.80 8.22	1.83 113 0.04 1.85 104 0.06 1.86 96.4 0.08 1.90 84.4 0.07 1.92 76.3 0.04 1.93 70.2 0.02 1.93 65.7 0.01 1.93 61.9 -0.01 1.92 59.1 -0.07 1.90 56.9 -0.13 1.88 55.1 -0.20 1.84 54.1 -0.30
Reference: 10		Reference: 3	

Accuracy: The total error in the experimental data is believed not to exceed \pm 7%.

The total error in the experimental data is believed not to exceed \pm 1%. Accuracy:

<u> </u>	DH ⁺ - Ar	$\frac{\text{CO}_2^+ - \text{Ar}}{}$					
Experimental Data T = 300° K	Derived Quantities	Experimental Data T = 300° K	Derived Quantities				
E/N K _o v _d	$\underline{\underline{T}_{eff}} \underline{\underline{K}_{o}(0)} \underline{\underline{\Omega}^{(1,1)}} \underline{\underline{\frac{d \ln \underline{K}_{o}}{d \ln \underline{T}_{eff}}}}$	E/N K _o v _d	$r_{\text{eff}} = \frac{K_0(0)}{0} \frac{\Omega^{(1,1)}}{1} \frac{\frac{d \ln K_0}{d \ln T_{\text{eff}}}}$				
10.0 2.50 0.672 20.0 2.53 1.36 30.0 2.59 2.09 40.0 2.67 2.87 50.0 2.77 3.72 60.0 2.90 4.68 70.0 3.01 5.66 80.0 3.11 6.69 90.0 3.18 7.69 100 3.23 8.68 110 3.25 9.61 120 3.26 10.5 130 3.23 11.3 140 3.19 12.0 150 3.15 12.7 160 3.09 13.3	300 2.49 105 0.17 350 2.56 94.3 0.19 400 2.63 85.8 0.20 500 2.75 73.4 0.21 600 2.86 64.4 0.19 700 2.94 58.0 0.18 800 3.01 53.0 0.16 900 3.06 49.2 0.15 1000 3.11 45.9 0.14 1200 3.18 41.0 0.11 1500 3.24 36.0 0.06 1800 3.26 32.6 0.01 2000 3.26 31.0 -0.03 2500 3.21 28.1 -0.11 3000 3.12 26.4 -0.21	10.0 2.14 0.575 20.0 2.14 1.15 30.0 2.15 1.73 40.0 2.19 2.35 50.0 2.23 3.00 60.0 2.29 3.69 70.0 2.38 4.48 80.0 2.47 5.31 90.0 2.60 6.29 100 2.73 7.34 110 2.83 8.36 120 2.88 9.29 130 2.90 10.1 140 2.92 11.0 150 2.93 11.8 160 2.93 12.6	300 2.14 109 0.05 350 2.16 100 0.09 400 2.19 92.3 0.13 500 2.27 79.7 0.18 600 2.36 69.9 0.21 700 2.44 62.6 0.22 800 2.51 57.0 0.23 900 2.58 52.2 0.23 1000 2.64 48.4 0.22 1200 2.74 42.6 0.19 1500 2.85 36.6 0.12 1800 2.90 32.9 0.07 2000 2.90 31.2 0.05 2500 2.92 27.7 0.02 3000 2.93 25.2 0.00				
Reference: 19		Reference: 19					
	l error in the experimental pelieved not to exceed \pm 7%.		error in the experimental lieved not to exceed \pm 7%.				

TABLES. Ions in Argon and Krypton

N,	2 ^{OH⁺} - Ar		0 ₃ - Ar
Experimental Data $T = 300^{\circ} K$	Derived Quantities	Experimental Data $T = 300^{\circ} K$	Derived Quantities
E/N K _o v _d	$\underline{\underline{T}_{eff}} \underline{\underline{K}_{0}(0)} \underline{\underline{\Omega}^{(1,1)}} \underline{\underline{\frac{dln K}{dlnT}_{eff}}}$	$\frac{E/N}{Q}$ $\frac{K_0}{Q}$ $\frac{V_d}{Q}$	$\frac{T_{\text{eff}}}{T_{\text{eff}}}$ $\frac{K_0(0)}{M_0(1,1)} \frac{\frac{d \ln K_0}{d \ln T_{\text{eff}}}}{M_0(1,1)}$
20.0 2.12 1.14 30.0 2.15 1.73 40.0 2.19 2.35 50.0 2.25 3.02 60.0 2.31 3.72 70.0 2.37 4.46 80.0 2.44 5.25 90.0 2.53 6.12 100 2.57 6.91 110 2.59 7.66 120 2.60 8.38 130 2.60 9.08 140 2.58 9.71 150 2.56 10.3 160 2.49 10.7 170 2.43 11.1 180 2.36 11.4 190 2.25 11.5	300 2.10 111 0.19 350 2.16 99.5 0.18 400 2.21 91.0 0.18 500 2.29 78.5 0.17 600 2.36 69.6 0.16 700 2.43 62.6 0.16 800 2.49 57.1 0.15 900 2.53 53.0 0.14 1000 2.56 49.7 0.12 1200 2.59 44.8 0.06 1500 2.60 39.9 0.00 1800 2.59 36.6 -0.11 2000 2.54 35.4 -0.24 2400 2.31 35.5 -0.85	2.00 2.42 0.130 5.00 2.42 0.325 8.00 2.42 0.520 10.0 2.43 0.653 15.0 2.44 0.983 20.0 2.46 1.32 25.0 2.48 1.67 30.0 2.51 2.02 40.0 2.59 2.78 50.0 2.68 3.60 60.0 2.77 4.47 70.0 2.86 5.38 80.0 2.90 6.23 90.0 2.92 7.06 100 2.91 7.82 120 2.84 9.16	300 2.42 94.6 0.16 325 2.46 89.4 0.18 350 2.49 85.1 0.19 400 2.56 77.4 0.22 450 2.62 71.3 0.20 500 2.68 66.1 0.18 600 2.76 58.6 0.16 700 2.82 53.1 0.14 800 2.87 48.8 0.11 900 2.90 45.6 0.07 1000 2.91 43.1 0.03 1200 2.92 39.2 -0.02 1400 2.89 36.7 -0.09 1600 2.85 34.8 -0.13 1800 2.80 33.4 -0.18
Reference: 19			

Reference: 19

The total error in the experimental Accuracy: data is believed not to exceed + 7%.

The total error in the experimental data is believed not to exceed \pm 7%. Accuracy:

$Kr^{T} - K$

		<u>Kr - Kr</u>
C	0 ₃ - Ar	Experimental Data Derived Quantities $T = 300^{\circ} K$
Experimental Data T = 300° K E/N K vd 4.00 2.40 0.258 7.00 2.40 0.451	Derived Quantities $ \frac{T_{eff}}{300} = \frac{K_0(0)}{350} = \frac{\Omega^{(1,1)}}{2.44} = \frac{\frac{d \ln K}{d \ln T_{eff}}}{0.02} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
10.0 2.40 0.645 15.0 2.40 0.967 20.0 2.41 1.30 25.0 2.43 1.63 30.0 2.45 1.97 40.0 2.52 2.71 50.0 2.62 4.22 70.0 2.67 5.02 80.0 2.69 5.78 100 2.68 7.20 120 2.63 8.48 140 2.56 9.63 160 2.47 10.6 180 2.39 11.6	400 2.50 75.6 0.17 450 2.54 70.1 0.15 500 2.58 65.5 0.13 600 2.64 58.4 0.10 700 2.67 53.5 0.07 800 2.69 49.7 0.04 1000 2.70 44.3 -0.02 1200 2.68 40.7 -0.06 1400 2.64 38.3 -0.10 1600 2.60 36.3 -0.14 1800 2.57 34.7 -0.17 2000 2.50 33.8 -0.21 2200 2.45 32.9 -0.23 2500 2.38 31.8 -0.25	120 0.743 2.40 1500 0.515 143 -0.36 150 0.711 2.87 2000 0.463 138 -0.39 200 0.666 3.58 2500 0.423 135 -0.42 250 0.627 4.21 3000 0.391 134 -0.45 300 0.592 4.77 4000 0.342 132 -0.48 400 0.546 5.87 5000 0.308 131 -0.50 500 0.491 6.60 6000 0.280 132 -0.52 600 0.453 7.30 7000 0.260 131 -0.51 800 0.398 8.56 8000 0.244 131 -0.52 1000 0.359 9.65 10000 0.219 131 -0.45 1200 0.329 10.6 1500 0.294 11.8 2000 0.259 13.9 2500 0.234 15.7 3000 0.220 17.7
Reference: 10		Reference: 6 and 35

See page 182 for Explanation of Tables

Accuracy: The total error in the experimental

data is believed not to exceed ± 7%.

Accuracy:

The total error in the experimental

data is believed not to exceed + 5%.

TABLES. Ions in Krypton, Hydrogen

TABLES. 1008 III P	rrypion, rrydrogen
$\frac{Kr_2^+ - Kr}{=}$	$\frac{\text{H}_3^+ - \text{H}_2}{\text{H}_2}$
Experimental Data Derived Quantities $T = 300^{\circ} K$	Experimental Data Derived Quantities $T = 300^{\circ} K$
$\underline{E/N}$ $\underline{K_o}$ $\underline{v_d}$ $\underline{T_{eff}}$ $\underline{K_o(0)}$ $\underline{\Omega^{(1,1)}}$ $\underline{\frac{d \ln K_o}{d \ln T_{eff}}}$	$\underline{E/N}$ $\underline{K_o}$ $\underline{v_d}$ $\underline{T_{eff}}$ $\underline{K_o(0)}$ $\underline{\mathfrak{g}^{(1,1)}}$ $\underline{\frac{dln\ K_o}{dlnT_{eff}}}$
35.0 1.22 1.15 40.0 1.22 1.31 50.0 1.23 1.65 60.0 1.24 2.00 80.0 1.24 2.67 100 1.23 3.31 120 1.19 3.84 140 1.13 4.25 160 1.05 4.51	5.00 11.3 1.52 300 11.3 86.3 0.02 6.00 11.3 1.82 400 11.4 74.1 0.09 8.00 11.3 2.43 500 11.7 64.6 0.14 10.0 11.3 3.04 600 12.0 57.5 0.18 12.0 11.3 3.64 800 12.8 46.7 0.22 15.0 11.3 4.55 1000 13.5 39.6 0.25 20.0 11.3 6.07 1200 14.1 34.6 0.23 25.0 11.3 7.59 1500 14.7 29.7 0.18 30.0 11.3 9.11 2000 15.3 24.7 0.12
Reference: 6	40.0 11.4 12.3 2500 15.7 21.5 0.08 50.0 11.7 15.7 3000 15.8 19.5 0.05
Accuracy: The total error in the experimental data is believed not to exceed ± 5%.	60.0 12.1 19.5 4000 16.0 16.7 0.00 80.0 13.4 28.8 5000 15.8 15.1 -0.09 100 14.7 39.5 6000 15.4 14.2 -0.22 120 15.5 50.0 8000 14.4 13.1 -0.22 150 16.0 64.5 10000 13.8 12.2 -0.09 200 15.5 83.3 12000 13.7 11.3 -0.04 250 14.3 96.1 15000 13.7 10.1 0.02 300 13.8 111 20000 13.9 8.60 0.11 400 13.9 149
н ⁺ - н ₂	Reference: 14 and 2
Experimental Data Derived Quantities T = 300° K	Accuracy: The total error in the experimental data is believed not to exceed $+ 2\%$ for E/N < 100 Td. and $+ 6\%$ for E/N > 100 Td.
$\underline{\text{E/N}} \underline{\text{K}_{o}} \underline{\text{v}_{d}} \qquad \underline{\text{T}_{eff}} \underline{\text{K}_{o}(0)} \underline{\underline{\Omega^{(1,1)}}} \underline{\frac{\text{dln K}_{o}}{\text{dln T}_{eff}}}$	н - н ₂
4.00 16.0 1.72 300 16.0 81.8 -0.10	2
5.00 16.0 2.15 400 15.6 72.7 -0.11 6.00 16.0 2.58 500 15.2 66.7 -0.12 8.00 16.0 3.44 600 14.9 62.1 -0.12	Experimental Data Derived Quantities $T = 300^{\circ} K$
10.0 16.0 4.30 800 14.4 55.7 -0.13 12.0 16.0 5.16 1000 13.9 51.6 -0.15 15.0 15.9 6.41 1200 13.6 48.1 -0.13 20.0 15.8 8.49 1500 13.3 44.0 -0.08	$\underline{\text{E/N}}$ $\underline{\text{K}}_{\text{o}}$ $\underline{\text{v}}_{\text{d}}$ $\underline{\text{T}}_{\text{eff}}$ $\underline{\text{K}}_{\text{o}}(0)$ $\underline{\text{n}}^{(1,1)}$ $\underline{\frac{\text{dln K}}{\text{dln T}}_{\text{eff}}}$
25.0 15.7 10.5 2000 13.1 38.7 -0.04 30.0 15.5 12.5 2500 13.0 34.9 -0.03 40.0 15.2 16.3 3000 13.0 31.8 -0.02 50.0 14.9 20.0 4000 12.9 27.8 -0.01 60.0 14.5 23.4 5000 12.9 24.9 0.00 80.0 13.9 29.9 6000 12.9 22.7 0.03 100 13.4 36.0 8000 13.1 19.3 0.04 120 13.2 42.6 10000 13.2 17.2 0.06 150 13.1 52.8 12000 13.4 15.4 0.06 200 13.1 70.4 15000 13.6 13.6 0.07 300 13.3 107 400 13.7 147	3.00 42.7 3.44 300 42.7 30.6 0.05 4.00 42.8 4.60 400 43.1 26.3 0.00 6.00 43.0 6.93 500 42.9 23.6 -0.04 8.00 43.1 9.26 600 42.5 21.8 -0.05 10.0 43.1 11.6 700 42.1 20.4 -0.06 12.0 43.0 13.9 800 41.8 19.2 -0.06 15.0 42.7 17.2 1000 41.2 17.4 -0.06 20.0 42.2 22.7 1200 40.7 16.1 -0.07 25.0 41.5 27.9 1500 40.1 14.6 -0.07 30.0 40.9 33.0 2000 39.3 12.9 -0.08 40.0 39.7 42.7 2500 38.6 11.7 -0.08 50.0 38.7 52.0 3000 38.1 10.9 -0.08 60.0 37.8 60.9 4000 37.2 9.63 -0.09
Reference: 14 and 2	70.0 37.0 69.6
Accuracy: The total error in the experimental data is believed not to exceed + 2%	Reference: 14
for $E/N < 100$ Td. and $+6\%$ for E/N > 100 Td.	Accuracy: The total error in the experimental data is believed not to exceed \pm 3%.

Li⁺ - H₂

 ${\rm Na}^+$ - ${\rm H}_2$

TABLES. Ions in Hydrogen, Nitric Oxide

	ntal Data 300° K		Der	ived Q	uantities		imenta = 300	l Data	E	erived	Quant	ities
E/N K _O	$\frac{v_d}{d}$	$\frac{\text{T}_{\texttt{eff}}}{}$	K ₀ (0)	$\Omega^{(1,1)}$	dln KodlnTeff	E/N	<u>K</u> 0	<u>v</u> d	$\frac{^{\mathrm{T}}}{\mathrm{eff}}$	K _O (0)	$\Omega^{(1,1)}$	$\frac{\frac{d\ln K}{o}}{\frac{d\ln T_{eff}}{}}$
5.00 12 10.0 12 15.0 12 20.0 12 30.0 12 40.0 12 50.0 12 60.0 13	4 3.33 4 5.00 4 6.66 4 10.0 4 13.3 6 16.9 0 21.0	300 400 500 600 800 1000 1200 1500 2000	12.4 12.6 12.9 13.5 14.2 14.9 15.9	69.1 59.8 52.7 47.0 38.9 33.0 28.8 24.1	-0.01 0.00 0.10 0.14 0.20 0.24 0.32 0.35	4.00 6.00 8.00 10.0 12.0 15.0 20.0 25.0	12.2 12.2 12.3 12.3 12.4 12.5 12.6	1.31 1.97 2.62 3.31 3.97 5.00 6.72 8.46 10.2	300 400 500 600 800 1000 1200 1500 2000	12.2 12.6 13.1 13.6 14.5 15.3 16.1 17.0 18.2	64.6 54.1 46.6 41.0 33.3 28.2 24.5 20.7 16.8	0.06 0.13 0.18 0.22 0.25 0.26 0.26 0.24
80.0 14. 90.0 16. 100 18.	6 31.4 2 39.2	2500 3000 4000	18.9 19.9 21.3	15.7 13.6 11.0	0.35 0.31 0.27 0.20	40.0 50.0 60.0	13.0 13.4 14.1	14.0 18.0 22.7	2500 3000 4000	19.0 19.4 19.5	14.4 12.8 11.1	0.21 0.17 0.07 -0.01

80.0

100

120

140

160

180

200

220

240

16.2

18.5

19.3

19.4

19.2

18.8

18.4

18.1

17.8

34.8

49.7

62.2

73.0 82.5

90.9

98.9

107

115

Reference: 12 and 22

69.6

85.8

100

114

128

141

153

163

174

183

193

201

21.6

22.8

23.3

23.6 23.8

23.8

23.7

23.4

23.1

22.7

22.4

22.0

120

140

160

180

200

220

240

260

280

300

320

340

Accuracy: The total error in the experimental data is believed not to exceed + 2%.

5000

6000

8000

10000

12000

15000

20000

25000

30000

35000

22.2 22.7

23.3

23.6 23.7

23.7

23.5

23.1

22.6

22.0

9.45

8.44

7.12

6.29 5.72

5.11

4.47

4.06

3.79

3.61

0.16

0.03 0.16

0.04

0.02

-0.01

-0.06

-0.10

-0.14

-0.19

Reference: 12 and 22

The total error in the experimental data is believed not to exceed \pm 2% for E/N < 100 Td. and \pm 3% for E/N Accuracy:

5000

6000

7000

8000

9000

10000

19.4

19.0

18.7

18.4

18.0

9.95 9.27

8.72

8.29 7.99

7.71

-0.06

-0.10

-0.13

-0.15

-0.17

-0.19

> 100 Td.

Experimental Data $T = 300^{\circ} K$

Derived Quantities

E/N	K _o	$\frac{\mathbf{v}_{\mathbf{d}}}{\mathbf{d}}$	T _{eff}	K ₀ (0)	$\Omega^{(1,1)}$	dln K _o
8.00 9.00 10.0 12.0 15.0 20.0 25.0 30.0 35.0 40.0	1.78 1.78 1.78 1.78 1.78 1.78 1.79 1.80 1.82 1.84	0.383 0.430 0.478 0.574 0.717 0.957 1.20 1.45 1.71	300 310 320 330 340 350	1.77 1.78 1.80 1.81 1.82 1.84	135 132 129 126 123 120	0.26 0.27 0.27 0.27 0.27 0.26

Reference: 36

Accuracy: The total error in the experimental

data is believed not to exceed +3%.

TABLES. Ions in Hydrogen, Deuterium

v ⁺ - H	Na ⁺ - D ₂				
$\frac{K^{+} - H_2}{=}$	Ma - D ₂				
Experimental Data Derived Quantities $T = 300^{\circ}$ K	Experimental Data Derived Quantities $T = 300^{\circ} K$				
$\underline{E/N}$ $\underline{K_o}$ $\underline{v_d}$ $\underline{T_{eff}}$ $\underline{K_o(0)}$ $\underline{\Omega^{(1,1)}}$ $\underline{\frac{d \ln K}{d \ln T}} \underline{eff}$	$\underline{E/N}$ $\underline{K_o}$ $\underline{v_d}$ $\underline{T_{eff}}$ $\underline{K_o(0)}$ $\underline{\alpha^{(1,1)}}$ $\underline{\frac{d \ln K_o}{d \ln T_{eff}}}$				
2.00 13.1 0.704 300 13.1 59.1 0.06 4.00 13.1 1.41 400 13.5 49.7 0.13 6.00 13.1 2.11 500 14.0 42.9 0.19 10.0 13.1 3.52 600 14.5 37.8 0.21 12.0 13.1 4.22 800 15.4 30.8 0.19 15.0 13.2 5.32 1000 16.0 26.5 0.18 20.0 13.3 7.15 1200 16.5 23.5 0.15 25.0 13.4 9.00 1500 17.0 20.4 0.07 30.0 13.5 10.9 1800 17.1 18,5 0.04 40.0 14.0 15.0 2000 17.2 17.4 0.00 60.0 15.3 24.7 2500 17.1 15.7 -0.05 80.0 16.8 36.1 3000 16.8 14.6 -0.10 100 17.3 46.5 35.00 16.5 13.7 -0.12 120 16.9 54.5 4000 16.2 13.1 -0.16 150 16.3 65.7 5000 15.6 12.2 -0.21 200 15.3 82.2 6000 15.0 11.5 -0.24 250 14.1 94.7 8000 13.8 10.9 -0.29 300 13.2 106 10000 13.1 10.2 -0.23 400 12.2 131 12000 12.6 9.72 -0.19 15000 12.2 8.98 -0.12 18000 12.0 8.33 -0.03	3.00 8.8 0.709 300 8.8 65.8 0.11 4.00 8.8 0.946 400 9.2 54.5 0.15 5.00 8.8 1.18 500 9.5 47.2 0.18 6.00 8.8 1.42 600 9.8 41.8 0.21 8.00 8.8 1.89 800 10.5 33.8 0.23 10.0 8.9 2.39 1000 11.0 28.8 0.24 12.0 8.9 2.87 1200 11.5 25.2 0.25 15.0 8.9 3.59 1500 12.1 21.2 0.22 20.0 9.0 4.84 2000 12.9 17.4 0.18 25.0 9.1 6.11 2500 13.3 15.1 0.12 30.0 9.2 7.42 3000 13.3 13.8 0.03 40.0 9.5 10.2 4000 13.2 12.0 -0.12 50.0 9.8 13.2 5000 13.0 10.9 -0.20 60.0 10.3 16.6 6000 12.8 10.1 -0.24 80.0 11.7 25.2 8000 12.3 9.11 -0.13 100 13.2 35.5 10000 11.9 8.43 -0.08 120 13.5 43.5 12000 11.4 8.03 -0.05 150 13.1 52.8 15000 10.9 7.51 -0.03 200 12.0 64.5 250 11.4 76.6 300 10.9 87.9 400 10.3 111				
Reference: 17 and 22	Reference: 22				
Accuracy: The total error in the experimental data is believed not to exceed $+$ 2% for E/N \leq 300 Td. and $+$ 6% for E/N $>$ 300 Td.	Accuracy: The total error in the experimental data is believed not to exceed \pm 5% for E/N \leq 50 Td. and \pm 10% for E/N > 50 Td.				
$\frac{D_3^+ - D_2}{2}$	$\frac{p^+ - p_2}{p^+}$				
Experimental Data Derived Quantities $T = 300^{\circ} K$	Experimental Data Derived Quantities T = 300° K				
$\underline{\text{E/N}}$ $\underline{\text{K}}_{\text{o}}$ $\underline{\text{v}}_{\text{d}}$ $\underline{\text{T}}_{\text{eff}}$ $\underline{\text{K}}_{\text{o}}(0)$ $\underline{\underline{\Omega}^{(1,1)}} \frac{\underline{\text{dln K}}_{\text{o}}}{\underline{\text{dln T}}_{\text{eff}}}$					
F 00 0 00 1 00 000 0 00 0 0 0 0 0 0 0 0					
5.00 8.06 1.08 300 8.06 85.6 0.03 6.00 8.06 1.30 400 8.17 73.1 0.10 8.00 8.06 1.73 500 8.40 63.6 0.15 10.0 8.06 2.17 600 8.64 56.5 0.18 12.0 8.06 2.60 800 9.17 46.1 0.22 15.0 8.06 3.25 1000 9.65 39.2 0.25 20.0 8.06 4.33 1200 10.1 34.1 0.25 25.0 8.06 5.41 1500 10.7 28.8 0.21 30.0 8.09 6.52 2000 11.1 24.1 0.12 40.0 8.25 8.87 2500 11.3 21.1 0.06 50.0 8.52 11.4 3000 11.4 19.1 0.01 60.0 8.88 14.3 4000 11.4 16.6 -0.04 80.0 9.72 20.9 5000 11.2 15.1	6.00 11.7 1.89 300 11.7 79.1 -0.06 8.00 11.7 2.52 400 11.4 70.3 -0.14 10.0 11.7 3.14 500 11.0 65.2 -0.15 12.0 11.7 3.77 600 10.7 61.2 -0.14 15.0 11.7 4.72 800 10.3 55.0 -0.13 20.0 11.7 6.29 1000 10.1 50.2 -0.12 25.0 11.5 7.73 1200 9.9 46.7 -0.11 30.0 11.4 9.19 1500 9.6 43.1 -0.09 40.0 11.0 11.8 2000 9.4 38.1 -0.06 50.0 10.7 14.4 2500 9.3 34.5 -0.03 60.0 10.4 16.8 3000 9.3 37.3 0.01 80.0 10.0 21.5 4000 9.3 27.3 0.01 80.0 10.0 21.5 5000 9.3 24.4				
Reference: 14 and 22	Reference: 14 and 22				
Accuracy: The total error in the experimental data is believed not to exceed + 4% for E/N < 50 Td. and + 6% for E/N > 50 Td.	Accuracy: The total error in the experimental data is believed not to exceed + 4% for E/N \leq 50 Td. and \pm 6% for E/N $>$ 50 Td.				

TABLES. Ions in Deuterium, Nitrogen

$\frac{\kappa^+ - D_2}{2}$	$\frac{N_2^+ - N_2}{}$
Experimental Data Derived Quantities $T = 300^{\circ} K$	Experimental Data Derived Quantities $T = 300^{\circ} K$
$\underline{E/N}$ $\underline{K_o}$ $\underline{v_d}$ $\underline{T_{eff}}$ $\underline{K_o(0)}$ $\underline{\Omega^{(1,1)}}$ $\underline{\frac{d \ln K_o}{d \ln T_{eff}}}$	$\underline{E/N}$ \underline{K}_{O} $\underline{v}_{\underline{d}}$ $\underline{T}_{\underline{eff}}$ $\underline{K}_{\underline{O}(0)}$ $\underline{\Omega^{(1,1)}}$ $\underline{\frac{d \ln K}{d \ln T}}_{\underline{eff}}$
3.00 9.40 0.758 300 9.35 60.0 0.08 4.00 9.40 1.01 400 9.60 50.6 0.12 6.00 9.40 1.52 500 9.90 43.9 0.17 8.00 9.45 2.55 800 11.0 31.2 0.25 12.0 9.49 3.06 1000 11.6 26.5 0.25 15.0 9.54 3.83 1200 12.1 23.2 0.19 20.0 9.65 5.16 1500 12.5 20.1 0.10 25.0 9.76 6.58 1800 12.6 18.2 0.05 30.0 9.88 7.98 2000 12.7 17.1 0.02 40.0 10.1 10.9 2500 12.6 15.4 -0.03 60.0 11.4 18.4 3000 12.5 14.2 -0.07 80.0 12.6 27.1 3500 12.3 13.4 -0.12 100 12.9 34.7 4000 12.1 12.7 -0.18 120 12.8 41.3 5000 11.5 11.9 -0.25 150 12.2 49.2 6000 10.9 11.5 -0.33 200 10.8 54.8 8000 9.8 11.1 -0.45 250 9.7 65.2 10000 8.8 11.0 -0.47 400 8.0 86.0	6.00 1.90 0.306 300 1.90 150 -0.44 8.00 1.89 0.406 400 1.70 145 -0.32 10.0 1.88 0.505 500 1.59 139 -0.29 12.0 1.88 0.606 600 1.51 134 -0.28 15.0 1.87 0.754 800 1.40 125 -0.28 20.0 1.85 0.994 1000 1.32 119 -0.28 25.0 1.84 1.24 1200 1.25 114 -0.29 30.0 1.83 1.48 1500 1.17 109 -0.29 40.0 1.80 1.93 2000 1.07 103 -0.31 50.0 1.76 2.36 2500 1.00 98.9 -0.31 60.0 1.72 2.77 3000 0.94 96.1 -0.34 80.0 1.66 3.57 4000 0.86 90.9 -0.37 150 1.47 5.92 200 1.37 7.36<
Accuracy: The total error in the experimental data is believed not to exceed $+4\%$ for E/N \leq 80 Td. and $+$ 6% for E/N $>$	Reference: 24 Accuracy: The total error in the experimental
80 Td. Li ⁺ - D ₂	data is believed not to exceed ± 3%.
Experimental Data Derived Quantities $T = 300^{\circ} K$	$\frac{N_2H^+ - N_2}{}$
$\frac{E/N}{E}$ K_0 V_d T_{eff} $K_0(0)$ $\frac{\Omega^{(1,1)}}{\Omega^{(1,1)}} \frac{d \ln K_0}{d \ln T_{eff}}$	Experimental Data Derived Quantities $T = 300^{\circ} K$

$T = 300^{\circ} K$	·	
E/N K _o v _d	$\frac{T_{eff}}{M_{o}(0)} \frac{R_{o}(1,1)}{R_{o}(1,1)} \frac{\frac{d \ln K_{o}}{d \ln T_{eff}}}{\frac{d \ln K_{o}}{M_{o}(1,1)}}$	Experimental Data Derived Quantities $T = 300^{\circ} K$
3.00 9.6 0.774 4.00 9.6 1.03 6.00 9.6 1.55	300 9.6 69.8 0.00 400 9.7 59.8 0.09 500 10.0 51.9 0.16 600 10.3 46.0 0.20	$\underline{\text{E/N}}$ $\underline{\text{K}}_{\underline{\text{o}}}$ $\underline{\text{v}}_{\underline{\text{d}}}$ $\underline{\text{T}}_{\underline{\text{eff}}}$ $\underline{\text{K}}_{\underline{\text{o}}}(0)$ $\underline{\Omega}^{(1,1)}$ $\underline{\frac{\text{dln K}}{\text{dlnT}}}_{\underline{\text{eff}}}^{\underline{\text{o}}}$
8.00 9.6 2.06 10.0 9.6 2.58 12.0 9.6 3.10 15.0 9.6 5.16 25.0 9.6 6.45 30.0 9.7 7.82 40.0 9.9 10.6 50.0 10.3 13.8 60.0 10.8 17.4 80.0 12.9 27.7 100 15.0 40.3	800 11.0 37.3 0.24 1000 11.6 31.6 0.27 1200 12.2 27.4 0.28 1500 13.0 23.0 0.26 2000 13.9 18.7 0.23 2500 14.6 15.9 0.21 3000 15.2 13.9 0.19 4000 15.9 11.5 0.16 5000 16.5 9.94 0.14 6000 16.9 8.86 0.13 8000 17.5 7.41 0.09	6.00 2.12 0.342 300 2.12 134 -0.33 8.00 2.12 0.456 325 2.08 131 -0.23 10.0 2.12 0.570 350 2.05 128 -0.11 15.0 2.12 0.854 400 2.04 120 -0.02 20.0 2.10 1.13 450 2.04 113 0.00 25.0 2.08 1.40 500 2.04 108 0.00 30.0 2.07 1.67 600 2.04 98.1 0.00 40.0 2.04 2.19 700 2.04 90.9 0.01 50.0 2.04 2.74 800 2.04 85.0 0.01 60.0 2.04 3.29 900 2.04 80.1 0.01 80.0 2.04 4.39 1000 2.05 75.6 0.01
120 16.4 52.9 150 17.4 70.1 200 17.8 95.7 250 16.6 112 300 14.5 117	10000 17.8 6.52 0.05 12000 17.8 5.95 -0.02 15000 17.5 5.41 -0.14 20000 16.1 5.10 -0.51	100 2.04 5.48 1200 2.05 69.1 0.02 120 2.04 6.58 1400 2.06 63.6 0.03 140 2.04 7.67 160 2.05 8.81 180 2.06 9.96
Reference: 22		Reference: 10

Accuracy:

The total error in the experimental data is believed not to exceed + 5% for E/N \leq 50 Td. and \pm 10% for \overline{E}/N > 50 Td.

The total error in the experimental data is believed not to exceed \pm 7%. Accuracy:

See page 182 for Explanation of Tables

TABLES. Ions in Nitrogen

	$\frac{K^+ - N_2}{-}$	$\frac{\text{co}_2^+ - \text{N}_2}{}$
Experimental Data T = 300° K	Derived Quantities	Experimental Data Derived Quantities $T = 300^{\circ} \text{ K}$
E/N K _o v _d	$\frac{T_{eff}}{M}$ $\frac{K_0(0)}{M}$ $\frac{\Omega^{(1,1)}}{M}$ $\frac{d \ln K_0}{d \ln T_{eff}}$	$\underline{\text{E/N}} \underline{\text{K}}_{\text{o}} \underline{\text{v}}_{\text{d}} \qquad \underline{\text{T}}_{\text{eff}} \underline{\text{K}}_{\text{o}}(0) \underline{\text{\Omega}}^{(1,1)} \underline{\frac{\text{dln K}}{\text{dlnT}_{\text{eff}}}}$
4.00 2.53 0.272 6.00 2.53 0.408 8.00 2.53 0.544 10.0 2.54 0.819 15.0 2.54 1.02 20.0 2.55 1.37 25.0 2.55 2.06 40.0 2.58 2.77 50.0 2.59 3.48 60.0 2.62 4.22 80.0 2.68 5.76 100 2.76 7.42 120 2.84 9.16 150 2.95 11.9 200 3.04 16.3 250 3.05 20.5 300 3.00 24.2 400 2.86 30.7 500 2.71 36.4 600 2.56 41.3	300 2.53 105 0.07 400 2.58 88.8 0.06 500 2.62 78.3 0.08 600 2.66 70.4 0.08 800 2.72 59.6 0.10 1200 2.84 46.6 0.10 1500 2.89 41.0 0.08 1800 2.93 36.9 0.07 2000 2.95 34.8 0.07 2500 2.99 30.7 0.06 3000 3.02 27.7 0.04 3500 3.03 25.6 0.04 4000 3.05 23.8 0.01 5000 3.04 21.3 -0.02 6000 3.03 19.5 -0.05 8000 2.96 17.3 -0.09 10000 2.89 15.9 -0.12 12000 2.82 14.8 -0.15 15000 2.72 13.8 -0.17 18000 2.63 13.0 -0.21 20000 2.57 12.6 -0.22	6.00 2.15 0.347 300 2.15 120 -0.28 8.00 2.15 0.462 325 2.12 117 -0.17 10.0 2.15 0.578 350 2.10 114 -0.06 15.0 2.15 0.867 400 2.10 107 0.01 20.0 2.14 1.15 450 2.11 100 0.08 30.0 2.11 1.70 500 2.14 93.5 0.14 40.0 2.10 2.26 600 2.20 83.0 0.16 50.0 2.10 2.82 700 2.25 75.2 0.17 60.0 2.10 3.39 800 2.30 68.8 0.17 70.0 2.12 30.99 900 2.35 63.5 0.17 80.0 2.16 4.64 1000 2.39 59.2 0.17 100 2.26 6.07 1200 2.47 52.3 0.18 120 2.38 7.67 1500 2.56 45.1 0.14 140 2.50 9.40 2000 2.64 37.9 0.08 160 2.60 11.2 2500 2.68 33.4 0.04 180 2.66 12.9 3000 2.70 30.3 0.02 200 2.69 14.5 3500 2.70 28.0 0.00 Reference: 10
Reference: 34		Accuracy: The total error in the experimental data is believed not to exceed \pm 7%.

Accuracy:

The total error in the experimental data is believed not to exceed \pm 2%.

	<u>n⁺ - n₂</u>		$\frac{N_3^+ - N_2}{}$			
Experimental Data T = 300° K	Derived Quantities	Experimental Data T = 300° K	Derived Quantities			
E/N K _o v _d	$\frac{T_{eff}}{M_{o}(0)} \frac{\Omega^{(1,1)}}{M_{o}} \frac{\frac{d \ln K_{o}}{d \ln T_{eff}}}{M_{o}}$	E/N K vd	$\underline{\underline{T}_{eff}} \underline{\underline{K}_{o}(0)} \underline{\underline{\Omega}^{(1,1)}} \underline{\underline{\frac{dln K}{dlnT}}_{eff}}$			
7.00 3.01 0.566 8.00 3.01 0.647 10.0 3.01 0.809 12.0 3.00 0.967 15.0 2.99 1.21 20.0 2.98 1.60 25.0 2.97 2.00 30.0 2.96 2.39 40.0 2.94 3.16 50.0 2.92 3.92 60.0 2.91 4.69 80.0 2.89 6.21 100 2.88 7.74 120 2.87 9.25 150 2.87 11.6 200 2.86 15.4 250 2.86 19.2 300 2.86 23.1 400 2.83 30.4 500 2.79 37.5	300 3.01 116 -0.07 400 2.95 103 -0.05 500 2.92 92.8 -0.05 600 2.90 85.3 -0.03 800 2.88 74.4 -0.02 1000 2.87 66.8 -0.01 1200 2.86 61.2 -0.01 1500 2.86 54.7 0.00 2000 2.86 47.4 0.00 2500 2.86 47.4 0.00 2500 2.86 38.7 0.00 4000 2.86 38.7 0.00 4000 2.86 33.5 0.00 5000 2.86 33.5 0.00 5000 2.86 30.0 -0.01 6000 2.85 27.4 -0.01 8000 2.84 23.9 -0.02 10000 2.83 21.4 -0.02 12000 2.82 19.6 -0.03 15000 2.80 17.7 -0.03 20000 2.77 15.5 -0.03	2.00 2.26 0.121 4.00 2.26 0.243 10.0 2.26 0.607 20.0 2.26 1.21 30.0 2.27 1.83 40.0 2.28 2.45 50.0 2.31 3.10 60.0 2.35 3.79 70.0 2.40 4.51 80.0 2.48 5.33 90.0 2.57 6.22 100 2.66 7.15 120 2.77 8.93 140 2.82 10.6 160 2.86 12.3 180 2.86 13.8 200 2.83 13.8 200 2.80 16.6 240 2.75 17.7	300 2.26 115 0.01 350 2.27 106 0.06 400 2.30 98.2 0.10 450 2.33 91.4 0.15 500 2.37 85.2 0.19 600 2.47 74.6 0.23 700 2.56 66.7 0.20 800 2.62 60.9 0.18 900 2.67 56.4 0.15 1000 2.71 52.7 0.13 1200 2.77 47.1 0.10 1500 2.81 41.5 0.07 2000 2.86 35.3 0.03 2500 2.86 31.6 -0.03 3000 2.83 29.1 -0.08 3500 2.78 27.5 -0.13			
Reference: 24		Reference: 20 and 2	4			

The total error in the experimental data is believed not to exceed \pm 3%. Accuracy:

See page 182 for Explanation of Tables

The total error in the experimental data is believed not to exceed \pm 7%. Accuracy:

TABLES. Ions in Nitrogen, Oxygen

TABLES. Ions in	Nitrogen, Oxygen				
$\frac{N_4^+ - N_2}{}$	<u>K⁺ - O₂</u>				
Experimental Data Derived Quantities $T = 300^{\circ} K$	Experimental Data Derived Quantities $T = 300^{\circ} K$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	Reference: 17				
$\frac{\circ_2^+ - \circ_2}{}$	Accuracy: The total error in the experimental data is believed not to exceed \pm 2%.				
Experimental Data Derived Quantities $T = 300^{\circ} K$					
$\underline{E/N}$ $\underline{K_o}$ $\underline{v_d}$ $\underline{T_{eff}}$ $\underline{K_o(0)}$ $\underline{\Omega^{(1,1)}}$ $\underline{\frac{d \ln K_o}{d \ln T_{eff}}}$					
4.00 2.23 0.240 300 2.23 120 -0.12 5.00 2.23 0.300 400 2.17 107 -0.13 6.00 2.23 0.360 500 2.11 98.1 -0.14 8.00 2.23 0.479 600 2.05 92.1 -0.14 10.0 2.23 0.599 800 1.97 83.0 -0.16 12.0 2.23 0.719 1000 1.90 77.0 -0.17 15.0 2.23 0.899 1200 1.84 72.6 -0.18 20.0 2.23 1.20 1500 1.76 67.9 -0.21 25.0 2.23 1.50 2000 1.65 62.7 -0.23 30.0 2.23 1.80 2500 1.56 59.3 -0.26	$\frac{O_4^+ - O_2}{T}$ Experimental Data $T = 300^{\circ} \text{ K}$ Derived Quantities				
40.0 2.21 2.38 3000 1.49 56.7 -0.29 50.0 2.18 2.93 4000 1.36 53.8 -0.33 60.0 2.14 3.45	$\underline{E/N}$ $\underline{K_o}$ $\underline{v_d}$ $\underline{T_{eff}}$ $\underline{K_o(0)}$ $\underline{\Omega^{(1,1)}}$ $\underline{\frac{dln\ K_o}{dlnT_{eff}}}$				
80.0 2.08 4.47 100 2.02 5.43 120 1.96 6.32 150 1.88 7.58 200 1.77 9.51 250 1.67 11.2 300 1.59 12.8 400 1.45 15.6 500 1.34 18.0	2.00 2.08 0.112 300 2.08 111 0.00 4.00 2.08 0.224 305 2.08 110 0.00 6.00 2.08 0.335 310 2.08 109 0.00 8.00 2.08 0.447 10.0 2.08 0.559 12.0 2.08 0.671 15.0 2.08 0.838 20.0 2.08 1.12				
Reference: 32	Reference: 23 and 32				
Accuracy: The total error in the experimental data is believed not to exceed ± 3%.	Accuracy: The total error in the experimental data is believed not to exceed ± 4%.				

TABLES. Ions in Oxygen

	<u>0 - 0</u> 2		$0_{3}^{2} - 0_{2}$			
Experimental Data T = 300° K	Derived Quantities	Experimental Data T = 300° K	Derived Quantities			
E/N K _o v _d	$\frac{T_{eff}}{M_{o}(0)} \underline{\Omega^{(1,1)}} \frac{d \ln K_{o}}{d \ln T_{eff}}$	E/N K vd	$\frac{T_{\text{eff}}}{M_{\text{o}}} = \frac{K_{\text{o}}(0)}{M_{\text{o}}} = \frac{\Omega^{(1,1)}}{M_{\text{o}}} = \frac{\frac{\text{dln } K}{\text{dln } T_{\text{eff}}}}{M_{\text{o}}}$			
4.00 3.20 0.344 5.00 3.20 0.430 6.00 3.20 0.516 8.00 3.20 0.688 10.0 3.20 1.03 15.0 3.20 1.03 15.0 3.20 1.29 20.0 3.23 1.74 25.0 3.31 2.22 30.0 3.40 2.74 40.0 3.60 3.87 50.0 3.81 5.12 60.0 4.04 6.51 80.0 4.43 9.52 100 4.73 12.7 120 4.82 15.5 150 4.70 18.9 200 4.41 23.7	300 3.20 102 0.29 400 3.43 82.6 0.25 500 3.62 70.0 0.24 600 3.77 61.4 0.22 800 3.99 50.2 0.19 1000 4.16 43.1 0.17 1200 4.32 37.9 0.17 1500 4.44 33.0 0.15 2000 4.62 27.4 0.14 2500 4.75 23.9 0.09 3000 4.80 21.6 0.04 4000 4.77 18.8 -0.07 5000 4.67 17.2 -0.11 6000 4.57 16.0 -0.14	5.00 2.56 0.344 6.00 2.56 0.413 7.00 2.56 0.482 8.00 2.57 0.552 10.0 2.57 0.691 12.0 2.58 0.832 15.0 2.59 1.04 20.0 2.62 1.41 25.0 2.65 1.78 30.0 2.68 2.16 35.0 2.72 2.56 40.0 2.77 2.98 50.0 2.89 3.88 60.0 3.01 4.85 70.0 3.12 5.87 80.0 3.22 6.92 100 3.31 8.89 120 3.30 10.6	300 2.56 95.3 0.26 350 2.66 84.9 0.25 400 2.75 76.8 0.24 500 2.89 65.4 0.23 600 3.01 57.3 0.19 700 3.09 51.7 0.17 800 3.15 47.4 0.15 1000 3.24 41.2 0.10 1200 3.29 37.1 0.06 1400 3.31 34.1 0.02 1600 3.31 31.9 -0.02 1800 3.29 30.3 -0.08			

Reference: 32 and 7 Reference: 11, 32 and 7

Accuracy: The total error in the experimental data is believed not to exceed \pm 3 %.

Accuracy: The total error in the experimental data is believed not to exceed \pm 1%.

	0 ₂ - 0 ₂	CO ₃ - O ₂				
Experimental Data T = 300° K	Derived Quantities	Experimental Data Deri T = 300° K	Derived Quantities			
$\underline{E/N} \underline{K_o} \underline{v_d}$	$\frac{T_{eff}}{M_{o}}$ $\frac{K_{o}(0)}{M_{o}}$ $\frac{\Omega^{(1,1)}}{M_{o}}$ $\frac{\frac{d \ln K_{o}}{d \ln T_{eff}}}{M_{o}}$	E/N Ko vd Teff Ko(C	$0) \underline{\Omega^{(1,1)}} \frac{\text{dln } K}{\text{dln } T_{\text{eff}}}$			
3.00 2.17 0.175 4.00 2.17 0.233 5.00 2.17 0.292 6.00 2.17 0.350 8.00 2.17 0.583 12.0 2.17 0.700 15.0 2.17 0.875 20.0 2.17 1.17 25.0 2.17 1.46 30.0 2.16 2.32 50.0 2.16 2.32 50.0 2.15 2.89 60.0 2.14 3.45 80.0 2.11 4.54 100 2.06 5.54 120 2.01 6.48 140 1.93 7.26	300 2.17 123 -0.02 400 2.15 108 -0.03 500 2.13 97.2 -0.06 600 2.10 90.0 -0.09 700 2.07 84.5 -0.13 800 2.02 81.0 -0.17 900 1.98 77.9 -0.19 1000 1.94 75.4 -0.19	3.00 2.51 0.202 300 2.5 4.00 2.51 0.270 325 2.5 5.00 2.51 0.337 350 2.6 6.00 2.51 0.405 400 2.6 7.00 2.51 0.472 450 2.7 8.00 2.52 0.542 500 2.7 10.0 2.52 0.677 550 2.7 12.0 2.53 0.816 600 2.8 15.0 2.54 1.02 700 2.8 20.0 2.56 1.38 25.0 2.58 1.73 30.0 2.61 2.10 35.0 2.64 2.48 40.0 2.67 2.87 50.0 2.72 3.65 60.0 2.76 4.45 70.0 2.80 5.27	7 87.4 0.23 1 83.0 0.21 8 75.6 0.18 3 70.0 0.14 7 65.4 0.11 9 61.9 0.08 1 58.9 0.05			
Reference: 32 and 7		Reference: 11 and 31				

See page 182 for Explanation of Tables

The total error in the experimental data is believed not to exceed \pm 3%.

Accuracy: The total error in the experimental data is believed not to exceed \pm 2%.

TABLES. Ions in Carbon Monoxide, Oxygen

			<u>K</u> + - CO						<u>cc</u>	0 ⁺ - co			
Experin T =	menta = 300°			Derive	d Quan	tities		imenta = 300	al Data) ^o K	D	erived	Quant	ities
E/N F	K _o	<u>v</u> d	$\frac{\mathrm{T}_{ t eff}}{ t}$	K ₀ (0)	$\Omega^{(1,1)}$	dln Ko dlnT _{ef} r	E/N	K _o	<u>v</u> d	T _{eff}	K ₀ (0)	$\Omega^{(1,1)}$	$\frac{d \ln K}{d \ln T_{eff}}$
6.00 2 8.00 2 10.0 2 15.0 2 20.0 2 25.0 2 30.0 2 40.0 2 50.0 2 60.0 2 100 2 150 2 200 2 25.0 2 30.0 2 40.0 3 100 2 100 2	2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30	0.247 0.371 0.494 0.618 0.742 0.927 1.24 1.55 1.85 2.49 3.12 3.77 5.12 6.53 8.06 10.4 14.6 18.4 22.1 28.8 34.9 40.1	300 400 500 600 800 1200 1500 1800 2000 3500 4000 5000 6000 8000 12000 15000 18000 20000	2.31 2.33 2.35 2.38 2.48 2.52 2.57 2.62 2.75 2.76 2.77 2.76 2.77 2.76 2.77 2.63 2.52 2.44	115 98.4 87.2 78.6 66.7 58.5 46.1 41.2 38.7 34.0 30.7 28.2 26.3 23.4 21.4 17.2 15.9 14.7 13.3	0.02 0.03 0.05 0.07 0.08 0.09 0.10 0.10 0.10 0.08 0.06 0.04 0.02 0.00 -0.03 -0.06 -0.08 -0.11 -0.15 -0.15	15.0 20.0 25.0 30.0 40.0 50.0 80.0 100 120 120 250 300 400 500 600 700 Refer	1.74 1.73 1.72 1.71 1.68 1.65 1.56 1.50 1.45 1.38 1.20 1.14 1.01 0.95 0.84	0.701 0.930 1.16 1.38 1.81 2.22 2.61 3.35 4.03 4.68 5.56 6.93 8.06 9.19 10.9 12.8 14.3 15.8	300 400 500 600 800 1000 1200 2500 3000	1.75 1.59 1.48 1.41 1.30 1.21 1.07 0.98 0.91 0.85	163 156 149 143 135 129 124 119 113 109 106	-0.35 -0.32 -0.30 -0.29 -0.30 -0.30 -0.31 -0.33 -0.35 -0.35
Referer	nce: 3	34						•	data is l				

Accuracy: The total error in the experimental data is believed not to exceed \pm 2%.

The total error in the experimental

data is believed not to exceed ± 2%. Accuracy:

		c ₂ (0 ₂ ⁺ - co						;	CO ₄ - O ₂	<u> </u>		
Experin T =	menta: = 300		De	rived	Quanti	ties	Exper T	imenta = 300	l Data K		Derive	d Quan	tities
E/N R 8.00 1 10.0 1 12.0 1 15.0 1 20.0 1 25.0 1 40.0 1 50.0 1 70.0 1 80.0 2	300 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.93 1.93 1.93 1.96 1.90 1.90	vd 0.408 0.511 0.613 0.766 1.02 1.28 1.53 2.05 2.05 2.59 3.16 3.74 4.32 4.32 4.91 5.54	Teff 300 350 400 450 550 600	K _o (0) 1.90 1.92 1.95 1.98 2.01 2.03 2.04	130 119 110 102 95.3 90.0 85.7	0.03 0.09 0.12 0.15 0.03 0.09	E/N 3.00 4.00 5.00 6.00 8.00 10.0 12.0 25.0 30.0 40.0 50.0 80.0	K _o 2.38 2.38 2.38 2.38 2.38 2.39 2.39 2.40 2.42 2.44 2.49 2.56 2.62 2.85	vd 0.192 0.256 0.320 0.384 0.512 0.640 0.771 0.963 1.29 1.63 1.97 2.68 3.41 4.22 6.13	Teff 300 350 400 450 500 600 800 900 1000 1200	K ₀ (0) 2.38 2.45 2.50 2.55 2.59 2.87 2.96 2.98 2.99	94.6 85.1 78.0 72.1 67.3 648.0 43.9 41.4 37.7	0.17 0.17 0.16 0.16 0.15 0.19 0.27 0.17
Referen	nce: 2	29					100 Refer	2.99 ence:	8.03 11 and 3	1			

See page 182 for Explanation of Tables

Accuracy:

The total error in the experimental data is believed not to exceed \pm 2%.

TABLES. Ions in Carbon Monoxide, Nitric Oxide, Carbon Dioxide

c ⁺ - co	NO ⁺ - NO

Experimental Data T = 300° K	Derived Quantities	Experimental Data $T = 300^{\circ} K$	Derived Quantities
E/N K _o v _d	$\underline{\underline{T}_{eff}} \underline{\underline{K}_{o}(0)} \underline{\underline{\Omega}^{(1,1)}} \underline{\underline{\frac{d \ln K}{d \ln T}}_{eff}}$	E/N K _o v _d	$\underline{T_{eff}}$ $\underline{K_o(0)}$ $\underline{\Omega^{(1,1)}}$ $\frac{\underline{dln K_o}}{\underline{dlnT_{eff}}}$
20 2.73 1.47 25 2.72 1.83 30 2.71 2.18 40 2.69 2.89 50 2.66 3.57 60 2.64 4.26 80 2.60 5.59 100 2.56 6.88 120 2.52 8.13 150 2.50 10.1 200 2.48 13.3 250 2.47 16.6 300 2.48 20.0 350 2.50 23.5 400 2.55 27.4 500 2.65 35.6 600 2.76 44.5 700 2.86 53.8	300 2.72 136 -0.06 400 2.67 120 -0.06 500 2.63 109 -0.06 600 2.60 100 -0.06 800 2.56 88.2 -0.05 1000 2.54 79.5 -0.04 1200 2.52 73.2 -0.04 1500 2.50 66.0 -0.03 2000 2.48 57.6 -0.02 2500 2.47 51.7 -0.01 3000 2.47 40.9 0.01 6000 2.50 33.0 0.05 8000 2.54 28.1 0.06 10000 2.57 24.8 0.07 12000 2.61 22.3 0.08 15000 2.66 19.6 0.09 20000 2.73 16.5 0.10 30000 2.84 13.0 0.10	10.0 1.90 0.511 15.0 1.90 0.766 20.0 1.90 1.02 30.0 1.89 1.52 40.0 1.87 2.01 50.0 1.83 2.95 70.0 1.81 3.40 80.0 1.79 3.85 100 1.74 4.68 120 1.70 5.48 150 1.63 6.57 200 1.53 8.22 250 1.45 9.74 300 1.38 11.1 Reference: 36	300 1.91 144 -0.19 350 1.86 137 -0.18 400 1.82 131 -0.17 500 1.76 121 -0.16 600 1.71 114 -0.15 700 1.67 108 -0.15 800 1.63 104 -0.16 1000 1.57 96.3 -0.20 1200 1.51 91.4 -0.22 1500 1.44 85.7 -0.25 1700 1.39 83.4 -0.27
Reference: 29			l error in the experimental believed not to exceed \pm 3%.

The total error in the experimental Accuracy:

data is believed not to exceed + 4%.

K⁺ - NO

Experimental T = 3000		Deriv	ed Quantities	R ==	b ⁺ - co ₂
E/N K _o	$\frac{v_d}{d}$	T _{eff} K _o (0)	$\frac{\Omega^{(1,1)}}{2} \frac{\frac{\mathrm{dln} \ K_0}{\mathrm{dlnT}_{ef}}$	Experimental Data T = 300° K	Derived Quantities
2.00 2.28 4.00 2.28 6.00 2.28 8.00 2.28 10.0 2.28 12.0 2.28 20.0 2.28 20.0 2.28 20.0 2.28 20.0 2.28 40.0 2.28 40.0 2.28 60.0 2.30 80.0 2.37 100 2.46 120 2.56 150 2.69 200 2.84 250 2.89 300 2.88 400 2.77 500 2.67 600 2.57 700 2.48 Reference: 1	0.123 0.245 0.368 0.490 0.613 0.735 0.919 1.23 1.53 1.84 2.45 3.06 3.71 5.09 6.61 8.25 10.8 15.3 19.4 23.8 35.9 41.4 46.6	300 2.28 400 2.29 500 2.33 600 2.37 800 2.44 1000 2.56 1500 2.63 1800 2.70 2000 2.73 3500 2.87 4000 2.88 5000 2.88 5000 2.88 6000 2.88 8000 2.84 10000 2.75 15000 2.58	114 0.01 98.1 0.04 86.3 0.08 77.4 0.11 65.1 0.11 56.9 0.11 50.7 0.13 44.1 0.13 39.2 0.12 36.8 0.11 32.2 0.09 29.0 0.08 26.5 0.06 24.7 0.04 22.0 -0.01 20.1 -0.03 17.7 -0.06 16.1 -0.10 14.9 -0.11 13.7 -0.12 12.8 -0.14	E/N	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

The total error in the experimental data is believed not to exceed \pm 2%. Accuracy:

See page 182 for Explanation of Tables See page 201 for other Ions in Nitric Oxide

The total error in the experimental data is believed not to exceed \pm 2%. Accuracy:

TABLES. Ions in Carbon Dioxide

	Na ⁺ - CO ₂	$\frac{\kappa^+ - co_2}{}$
Experimental Data T = 300°	Derived Quantities	Experimental Data Derived Quantities $T = 300^{\circ}$
E/N K _o v _d	$\underline{T_{\text{eff}}}$ $\underline{K_0(0)}$ $\underline{\Omega^{(1,1)}}$ $\underline{\frac{\text{dln } K_0}{\text{dln } T_{\text{eff}}}}$	$\underline{\text{E/N}} \underline{\text{K}}_{\text{o}} \underline{\text{v}}_{\text{d}} \qquad \underline{\text{T}}_{\text{eff}} \underline{\text{K}}_{\text{o}}(0) \underline{\underline{\Omega}}^{(1,1)} \underline{\frac{\text{dln K}_{\text{o}}}{\text{dln T}_{\text{eff}}}}$
50 1.63 2.19 60 1.62 2.61 70 1.61 3.03 80 1.60 3.44 100 1.56 4.19 120 1.52 4.90 150 1.47 7.90 250 1.50 10.1 300 1.60 12.9 350 1.75 16.5 400 1.91 20.5 500 2.11 28.4 600 2.22 35.8 700 2.29 43.1	400 1.63 146 -0.11 500 1.59 134 -0.12 600 1.55 125 -0.12 800 1.50 112 -0.09 1000 1.48 102 -0.06 1200 1.47 93.5 -0.04 1500 1.46 84.2 0.00 1800 1.47 76.4 0.05 2000 1.48 72.0 0.08 2500 1.52 62.7 0.15 3000 1.56 55.7 0.17 3500 1.61 50.0 0.19 4000 1.65 45.6 0.21 5000 1.73 38.9 0.23 6000 1.81 34.0 0.23 8000 1.92 27.7 0.18 10000 1.99 23.9 0.16 12000 2.04 21.3 0.15 15000 2.11 18.4 0.13 18000 2.16 16.4 0.12 20000 2.18 15.4 0.11 25000 2.23 13.5 0.09 30000 2.27 12.1 0.08 40000 2.31 10.3 0.04	10 1.45 0.390 300 1.45 162 -0.06 15 1.45 0.585 400 1.42 143 -0.08 20 1.45 0.779 500 1.39 131 -0.10 25 1.45 0.974 600 1.37 121 -0.07 30 1.45 1.17 800 1.35 107 -0.04 40 1.44 1.55 1000 1.34 87.7 0.02 60 1.42 2.29 1500 1.36 77.3 0.04 80 1.40 3.01 1800 1.37 70.0 0.09 100 1.38 3.71 2000 1.39 65.5 0.10 120 1.37 4.42 2500 1.43 56.9 0.12 150 1.36 5.48 3000 1.46 50.9 0.12 250 1.39 9.34 4000 1.51 42.6 0.13 300 1.44 11.6 5000 1.56 36.9 0.13 400 1.57 16.9 6000 1.60 32.8 0.14 500 1.68 22.6 8000 1.66 27.4 0.12 600 1.72 27.7 10000 1.70 23.9 0.09 700 1.74 32.7 12000 1.73 19.2 0.02 18000 1.73 17.5 0.00 20000 1.73 17.5 0.00 20000 1.73 17.5 0.00

Accuracy:

Reference: 1

Accuracy:

The total error in the experimental data is believed not to exceed \pm 2%.

The total error in the experimental data is believed not to exceed \pm 7%.

Experimental Data T = 300° K	Derived Quantities	$\frac{\cos_3^2 - \cos_2}{\cos_3^2}$	
E/N K _o v _d 25.0 1.92 1.29 30.0 1.92 1.55 40.0 1.92 2.06	$\begin{array}{cccc} \frac{T_{eff}}{2} & \frac{K_{o}(0)}{2} & \frac{\Omega^{(1,1)}}{2} & \frac{\frac{d \ln K}{d \ln T_{eff}}}{2} \\ & 325 & 1.92 & 162 & -0.04 \\ 350 & 1.91 & 151 & -0.04 \\ 400 & 1.91 & 141 & -0.02 \end{array}$	$T = 300^{\circ} \text{ K}$ $\frac{E/N}{5.00} \frac{K_0}{1.29} \frac{v_d}{0.173} \frac{T_{eff}}{300} \frac{K_0(0)}{1.29}$	d Quantities $\frac{\Omega^{(1,1)}}{\frac{\text{dln } K}{\text{dln Teff}}}$ 164 0.15
50.0 1.91 2.57 60.0 1.91 3.08 80.0 1.92 4.13 100 1.93 5.19 120 1.96 6.32 140 1.99 7.49 160 2.03 8.73 180 2.07 10.0 200 2.11 11.3 220 2.16 12.8 240 2.23 14.4	500 1.91 127 0.01 600 1.92 115 0.02 700 1.92 106 0.03 800 1.93 99.0 0.04 1000 1.95 87.6 0.05 1200 1.98 78.8 0.07 1500 2.01 69.4 0.08 2000 2.06 58.7 0.10 2500 2.11 51.2 0.10 3000 2.15 45.9 0.11 3500 2.19 41.7 0.11 4000 2.22 38.5 0.12	10.0 1.29 0.347 400 1.34 15.0 1.29 0.520 450 1.37 20.0 1.29 0.693 500 1.39 25.0 1.29 0.867 600 1.43 30.0 1.30 1.05 700 1.46 40.0 1.31 1.41 800 1.49 50.0 1.32 1.77 900 1.52 60.0 1.34 2.16 1000 1.55 80.0 1.37 2.94 100 1.41 3.79 120 1.46 4.71	150 0.16 137 0.15 126 0.16 118 0.16 105 0.15 95.1 0.16 87.2 0.16 80.6 0.16 74.9 0.16
Reference: 25		140 1.52 5.72 150 1.55 6.25 Reference: 13 and 25	

See page 182 for Explanation of Tables

Accuracy:

Accuracy:

The total error in the experimental data is believed not to exceed \pm 5%.

The total error in the experimental data is believed not to exceed \pm 2%.

REFERENCES FOR TABLES

- 1. G. R. Akridge, H. W. Ellis, R. Y. Pai and E. W. McDaniel, J. Chem. Phys. 62, 4578 (1975).
- 2. D. L. Albritton, T. M. Miller, D. W. Martin and E. W. McDaniel, Phys. Rev. 171, 94 (1968).
- E. C. Beaty, Proc. Fifth Int. Conf. Ionization Phenomena Gases (Munich, 1961), Vol. 1, p. 183, North Holland, Amsterdam.
- 4. E. C. Beaty and P. L. Patterson, Phys. Rev. <u>137</u>, A346 (1965).
- 5. E. C. Beaty and P. L. Patterson, Phys. Rev. 170, 116 (1968).
- 6. M. A. Biondi and L. M. Chanin, Phys. Rev. 94, 910 (1954).
- 7. D. S. Burch and R. Geballe, Phys. Rev. 106, 183 (1957).
- 8. L. M. Chanin and M. A. Biondi, Phys. Rev. <u>107</u>, 1219 (1957).
- 9. R. P. Creaser, J. Phys. B 7, 529 (1974).
- 10. I. Dotan, W. Lindinger and D. L. Albritton, to be published.
- 11. M. T. Elford and J. A. Rees, Aust. J. Phys. 27, 333 (1974).
- 12. H. W. Ellis, R. Y. Pai and E. W. McDaniel, to be published as a note in J. Chem. Phys.
- 13. H. W. Ellis, R. Y. Pai, E. W. McDaniel, R. Wernlund and M. J. Cohen, to be published in J. Chem. Phys.
- E. Graham IV, D. R. James, W. C. Keever, D. L. Albritton and E. W. McDaniel, J. Chem. Phys. <u>59</u>, 3477 (1973).
- 15. J. A. Hornbeck, Phys. Rev. 84, 615 (1951).
- D. R. James, E. Graham, G. M. Thomson, I. R. Gatland and E. W. McDaniel, J. Chem Phys. 58, 3652 (1973).
- 17. D. R. James, E. Graham, G. R. Akridge and E. W. McDaniel, J. Chem. Phys. 62, 740 (1975).
- 18. R. Johnsen and M. A. Biondi, J. Chem. Phys. <u>57</u>, 5292 (1972).
- 19. W. Lindinger and D. L. Albritton, J. Chem. Phys. <u>62</u>, 3517 (1975).
- 20. W. Lindinger, to be published in J. Chem. Phys.
- 21. M. McFarland, D. L. Albritton, F. C. Fehsenfeld, E. E. Ferguson and A. L. Schmeltekopf, J. Chem. Phys. <u>59</u>, 6610 (1973).
- 22. T. M. Miller, J. T. Moseley, D. W. Martin and E. W. McDaniel, Phys. Rev. 173, 115 (1968).
- 23. H. B. Milloy, Aust. J. Phys. 28, 307 (1975).
- 24. J. T. Moseley, R. M. Snuggs, D. W. Martin and E. W. McDaniel, Phys. Rev. <u>178</u>, 240 (1969).
- 25. J. T. Moseley, P. C. Cosby and J. R. Peterson, to be published in J. Chem. Phys.
- 26. O. J. Orient, J. Phys. B 4, 1257 (1971).
- 27. O. J. Orient, J. Phys. B 5, 1056 (1972).
- 28. O. J. Orient, J. Phys. D 7, 2266 (1974).
- J. H. Schummers, G. M. Thomson, D. R. James, I. R. Gatland and E. W. McDaniel, Phys. Rev. A 7, 683 (1973).
- 30. H. Skullerud, J. Phys. B <u>6</u>, 918 (1973).
- 31. R. M. Snuggs, PhD Thesis, Georgia Institute of Technology (1970).
- 32. R. M. Snuggs, D. J. Volz, J. H. Schummers, D. W. Martin and E. W. McDaniel, Phys. Rev. A 3, 447 (1971).
- 33. M. G. Thackston, H. W. Ellis, R. Y. Pai and E. W. McDaniel, to be published.
- 34. G. M. Thomson, J. H. Schummers, D. R. James, E. Graham, I. R. Gatland, M. R. Flannery and E. W. McDaniel, J. Chem. Phys. <u>58</u>, 2402 (1973).
- 35. R. N. Varney, Phys. Rev. 88, 362 (1952).
- 36. D. J. Volz, J. H. Schummers, R. D. Laser, D. W. Martin and E. W. McDaniel, Phys. Rev. A $\frac{4}{1}$, 1106 (1971).