

Testes de hipótese para médias, proporções e variâncias

Prof. Paulo Justiniano Ribeiro Junior

Departamento de Estatística Universidade Federal do Paraná

Tópicos

- ► Fundamentos de testes de hipóteses.
- Testes para uma população.
 - Teste para média.
 - Teste para proporção.
 - ► Teste para variância.
- Outros testes

- Testes para comparar duas populações.
 - Teste para duas médias.
 - Teste para duas proporções.
 - Teste para duas variâncias.

Testes de hipótese para uma população

Quando queremos fazer inferência para um parâmetro de uma única população.

- ▶ Testar se a média de altura dos estudantes da UFPR é igual a 170 cm ($\mu = 170$ de uma distribuição normal).
 - ► Testes para a **média** de uma população.
 - $ightharpoonup \sigma^2$ conhecido.
 - $ightharpoonup \sigma^2$ desconhecido.
- ▶ Testar se a proporção de peixes fêmeas em uma lagoa é de 50% (p = 0.5 de uma distribuição Bernoulli).
 - ► Teste para a **proporção** de uma população.
- ▶ Testar se a variabilidade do diâmetro de um lote de parafusos se mantém em torno de 0.02 mm ($\sigma = 0.02$ de uma distribuição normal).
 - ► Teste para a **variância** de uma população.

Testes de hipótese para duas populações

Quando queremos comparar parâmetros de duas populações.

- ▶ Testar se IRA dos estudantes da UFPR difere entre alunos e alunas ($\mu_M = \mu_F$ de distribuições normais).
 - ► Testes para comparar **médias** de duas populações.
 - \triangleright σ^2 conhecidos.
 - $ightharpoonup \sigma^2$ desconhecido(s) (pareadas/independentes: iguais/diferentes).
- ▶ Testar se as proporções de pacientes recuperados são distintas entre dois tratamentos ($p_1 = p_2$ de distribuições Bernoulli).
 - ► Teste para comparar duas **proporções**.
- ► Testar se a variabilidade do diâmetro parafusos difere entre dois fornecedores $(\sigma_1^2 = \sigma_2^2)$ de duas distribuições normais).
 - ► Teste para comparar variâncias de uma população.

Procedimentos gerais para um teste de hipótese

Em qualquer tipo de teste, os passos serão sempre os mesmos

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir um nível de significância α , que irá determinar o nível de confiança $100(1 - \alpha)\%$ do teste.
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- 4. Calcular a **estatística de teste**, com base na sua distribuição amostral sob a hipótese $nula \rightarrow valor calculado$
- 5. Determinar a região crítica (região de rejeição) na sua distribuiçõa amostral, sob hipótese nula, com base no nível de significância $\alpha \rightarrow$ valor crítico.
- 6. Conclusão.

Testes de hipótese para a média μ : (σ^2 conhecido)

Condições para o teste

Quando temos os seguintes requisitos:

- ► Temos uma AAS.
- σ^2 é conhecido.
- A população tem distribuição Normal ou n > 30.

Podemos usar o Teorema do Limite Central para afirmar que a média segue distribuição Normal $N(\mu, \sigma^2/n)$ e a **estatística de teste** dada por

$$z = \frac{\overline{y} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1),$$

em que μ_0 é o valor de teste sob a hipótese nula.

Etapas do teste

Procedimentos gerais para um teste de hipótese para a média μ com σ^2 conhecido:

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir o nível de significância α .
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- 4. Calcular a estatística de teste

$$z = \frac{\overline{y} - \mu_0}{\sigma / \sqrt{n}}.$$

- 5. Determinar a região crítica (região de rejeição), com base no nível de significância α .
- 6. Conclusões.

Exercício: enchimento de embalagens

- ► Uma máquina de encher embalagens de café está funcionando adequadamente se colocar 700 g em cada embalagem.
- Para verificar a calibração da máguina. foi coletada uma amostra de 40 embalagens, que resultou em uma média de 698 g.
- ► Sabe-se que o desvio-padrão do enchimento da máquina é de 10 g.
- ► Teste a hipótese de o peso médio das embalagens na população ser 700 g. com um nível de significância de 5%.

Figura 1. Foto de cottonbro no Pexels.

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) : H_0 : $\mu = 700$ vs H_a : $\mu \neq 700$.
- 2. Definir o nível de significância: $\alpha = 0.05$.
- 3. Definir o tipo de teste, com base na hipótese alternativa: teste bilateral.
- 4. Calcular a estatística de teste

$$z = \frac{\overline{y} - \mu_0}{\sigma/\sqrt{n}} = \frac{698 - 700}{10/\sqrt{40}} = -1.265.$$

5. Determinar a região crítica (região de rejeição), com base no nível de significância α .

$$RC = \{z < -1.96 \text{ ou } z > 1.96\}.$$

6. Conclusão: $z \notin RC$, portanto **não rejeita** H_0 .

Nível descritivo do teste

p-valor do teste:

$$2 \times P(Z < -1.265) = 2 \times 0.103 = 0.206.$$

Figura 2. Região de rejeição da hipótese nula e nível descritivo.

Exercício: resistência das lajotas

- ▶ Um fabricante de lajotas introduz um novo material em sua fabricação e acredita que aumentará a resistência média, que é de 206 kg.
- ► A resistência das lajotas tem distribuição normal com desvio-padrão de 12 kg.
- ▶ Retirou-se uma amostra de 30 lajotas, e obteve-se uma média amostral de 210 kg.
- ► Ao nível de 10%, pode o fabricante afirmar que a resistência média de suas lajotas tenha aumentado?

Figura 3. Foto de Rodolfo Quirós no Pexels.

- 1. Hipóteses: $H_0: \mu = 206$ vs $H_a: \mu > 206$ (teste unilateral à direita).
- 2. Estatística de teste

$$z = \frac{\overline{y} - \mu_0}{\sigma / \sqrt{n}} = \frac{210 - 206}{12 / \sqrt{30}} = 1.826.$$

3. Nível de significância $\alpha = 0.1 \rightarrow RC = \{z > 1.282\}$.

média das lajotas tenha aumentado.

- 4. Conclusão do teste:
 - $ightharpoonup z \in RC$, portanto **rejeita** H_0 .
 - **p-valor** = P(Z > 1.826) = 0.034: probabilidade muita baixa de valor tão ou mais extremo que a média amostral ocorrer por acaso. Portanto, existem evidências de que a resistência

Figura 4. Região de rejeição da hipótese nula e nível descritivo.

Testes de hipótese para a média μ : (σ^2 desconhecido)

Condições para o teste

Quando temos os seguintes requisitos:

- Temos uma AAS.
- $ightharpoonup \sigma^2$ é desconhecido.
- ightharpoonup A população tem distribuição Normal ou n > 30.

Podemos usar o Teorema do Limite Central para afirmar que a média segue uma distribuição Normal $N(\mu, \sigma^2/n)$ e a **estatística de teste** dada por

$$t = \frac{\overline{y} - \mu_0}{s/\sqrt{n}} \sim t_{v},$$

com v = n - 1 graus de liberdade e u_0 é o valor de teste na hipótese nula.

Etapas do teste

Procedimentos gerais para um teste de hipótese para a média μ com σ desconhecido:

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir o nível de significância α .
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- 4. Calcular a estatística de teste

$$t = \frac{\overline{y} - \mu_0}{s/\sqrt{n}}.$$

- 5. Determinar a região crítica (região de rejeição), com base no nível de significância α .
- 6. Conclusões.

Exercício: uso do cartão de crédito

Um estudo foi idealizado para estimar a média anual dos débitos de cartão de crédito da população de famílias brasileiras. Uma amostra de n=15 famílias forneceu média de saldos de R\$ 5200.00 e o desvio padrão foi de R\$ 3058.00.

- 1. Obtenha um intervalo com 95% de confiança.
- Teste a hipótese de que a média anual de débitos é de R\$ 6000.00, com o mesmo nível de confiança.

Figura 5. Foto de Norma Mortenson no Pexels.

O intervalo de confiança é obtido por

$$IC_{1-0.95}(\mu) = \left(5200 \pm 2.145 \cdot \frac{3058}{\sqrt{15}}\right) \approx (3506.4, 6893.6).$$

Figura 6. Quantis da distribuição t-Student e intervalo de confiança para a média supondo $\mu = \overline{y}$.

- 1. Hipóteses: H_0 : $\mu = 6000$ vs H_a : $\mu \neq 6000$ (teste bilateral).
- 2. Estatística de teste

$$t = \frac{5200 - 6000}{3058/\sqrt{15}} = -1.013.$$

3. Nível de significância $\alpha = 0.05$

$$RC = \{t < -2.145 \text{ ou } t > 2.145\}.$$

Figura 7. Resultado do teste de hipótese.

4. Conclusão do teste:

- ▶ $t \notin RC$, portanto **não rejeita** H_0 .
- ▶ p-valor = 2 × P(T < -1.013) = 2 × 0.164 = 0.328: probabilidade alta de ocorrência de um valor médio tão ou mais extremo do que o obtido nesta amostra (assumindo que o valor populacional é de R\$ 6000.00).

Portanto, não existe evidência de que a média de débitos seja diferente de R\$ 6000.00.

Note que o IC_{1- α}(μ) contém o valor sob hipótese nula, ou seja, $H_0: \mu=6000$.

Figura 8. Representação do intervalo de confiança para a média supondo $\mu = \overline{y}$.

A distribuição amostral

Se $Y \sim \text{Ber}(p)$, então a proporção amostral

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

é a **melhor estimativa** para a proporção populacional ρ .

Já vimos que, quando ambas condições são satisfeitas,

- np ≥ 5
- ▶ $n(1-p) \ge 5$,

a distribuição amostral de \hat{p} pode ser aproximada (pelo TLC) por

$$\hat{p} \stackrel{\mathsf{aprox}}{\sim} \mathsf{N}\left(p, \frac{p(1-p)}{n}\right).$$

Condições para o teste

Quando temos os seguintes requisitos:

- Temos uma AAS.
- ► As condições para a distribuição Binomial são satisfeitas:
 - As tentativas são independentes.
 - ► Há duas categorias de resultado ("sucesso", "fracasso").
 - ► A probabilidade de sucesso p permanece constante.
- ▶ $np_0 \ge 5$ e $n(1-p_0) \ge 5$.

Podemos usar a distribuição Normal como aproximação da Binomial e, portanto, usamos a estatística de teste

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

em que p_0 é o valor de proporção de teste na hipótese nula.

Etapas do teste

Procedimentos gerais para um teste de hipótese para a proporção p

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir o nível de significância α .
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- 4. Calcular a estatística de teste

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

- 5. Determinar a região crítica (região de rejeição), com base no nível de significância α .
- 6. Conclusão.

Exemplo

- Uma empresa desenvolveu uma nova vacina para uma doença, e afirma que a proporção de imunizados é maior do que 50%.
- ► Em uma amostra de 726 pessoas que tomaram a vacina, 668 estavam imunizadas.
- Use este resultado, com um nível de significância de 5%, para testar a afirmativa de que a proporção de imunizados é maior do que 50%.

Figura 9. Foto de cottonbro no Pexels.

- 1. Hipóteses: $H_0: p = 0.5$ vs $H_a: p > 0.5$ (teste unilateral à direita).
- 2. Estatística de teste

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.92 - 0.5}{\sqrt{\frac{0.5(1 - 0.5)}{726}}} = 22.633.$$

- 3. Nível de significância $\alpha = 0.05 \rightarrow RC = \{z > 1.645\}$.
- 4. Conclusão do teste:
 - $ightharpoonup z \in RC$, portanto **rejeita** H_0 .
 - **p-valor** = $P(Z > 22.633) \approx 0$: a probabilidade de ocorrência **ao acaso** de uma proporção tão ou mais extrema do que essa é praticamente nula. Portanto, existem fortes evidências de que a vacina imuniza mais que 50%.

Figura 10. Região de rejeição da hipótese nula e nível descritivo.

Exemplo (cont.)

- Ainda no contexto da vacina, acredita-se que, devido ao seu alto custo, seu uso só seria viável se pelo menos 90% das pessoas forem imunizadas.
- Neste caso, qual seria a decisão sobre a adoção da vacina, com um nível de significância de 5%.

Figura 11. Foto de cottonbro no Pexels.

- 1. Hipóteses: $H_0: p = 0.9$ vs $H_a: p > 0.9$ (teste unilateral à direita).
- 2. Estatística de teste

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.92 - 0.9}{\sqrt{\frac{0.9(1 - 0.9)}{726}}} = 1.796.$$

- 3. Nível de significância $\alpha = 0.05 \rightarrow RC = \{z > 1.645\}$.
- 4. Conclusão do teste:
 - $ightharpoonup z \in RC$, portanto **rejeita** H_0 .
 - **p-valor** = P(Z > 1.796) = 0.036: portanto, existe evidência, a este nível de significância, de que a adoção da vacina seria viável.

OBS: E se fosse adotado $\alpha = 0.01$ (RC = {z > 2.326})?

Figura 12. Região de rejeição da hipótese nula e nível descritivo.

Condições para o teste

Quando temos os seguintes requisitos:

- ► Temos uma AAS.
- A população tem distribuição Normal (essa é uma exigência mais estrita).

Então, usamos a **estatística de teste**

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

em que σ_0^2 é o valor de variância na hipótese nula.

Etapas do teste

Procedimentos gerais para um teste de hipótese para a variância σ^2

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir o nível de significância α .
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- 4. Calcular a estatística de teste

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

- 5. Determinar a região crítica (região de rejeição), com base no nível de significância α .
- 6. Conclusão.

Exemplo: concentração de princípio ativo

Na indústria, baixa variabilidade é sinônimo de qualidade. Para isso, constantemente monitora-se e corrige-se a produção para manter níveis aceitáveis de qualidade.

Uma amostra de frascos de medicamento foi inspecionada em relação à concentração (m/m) de princípio ativo na solução. O lote é rejeitado se claramente ultrapassar o limite de $\sigma^2 = 0.0009$. Os dados estão abaixo.

0.15 0.18 0.18 0.20 0.21 0.22 0.25 0.18 0.19 0.20 0.21 0.22 0.26

Faça um teste para verificar se a variância é maior do que 0.0009. com $\alpha = 5\%$.

Figura 13. Foto de Karolina Grabowska no Pexels

- 1. Hipóteses: $H_0: \sigma^2 = 0.0009$ vs $H_a: \sigma^2 > 0.0009$ (teste unilateral à direita).
- 2. Estatística de teste

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{(16-1)0.0013}{0.0009} = 21.667.$$

- 3. Nível de significância $\alpha = 0.05 \rightarrow RC = \{\chi^2 > 24.996\}.$
- 4. Conclusão do teste:
 - $\rightarrow \chi^2 \notin RC$, portanto **não rejeita** H_0 .
 - **p-valor** = $P(x^2 > 21.667) = 0.117$: portanto, ao nível de 5% de significância. **não se reieita** a hipótese de que a variância seja igual a 0.0009.

Figura 14. Região de rejeição da hipótese nula.