Quantum Mechanics

Wang Yapeng

2025 年 9 月 5 日

preface

量子力学诞生于 19 世纪,是物理学的一个重要分支。它主要研究微观粒子的行为和性质,如电子、原子、分子等。量子力学的基本原理包括波粒二象性、不确定性原理、量子叠加态等,这些原理与经典力学有很大的不同。

PREFACE

目录

pr	eface	9		i				
1	Fundamental Concepts							
	1.1	Bra , Ket & Operators						
		1.1.1	Inner Product & Outer Product	3				
		1.1.2	Hermitian Operators	4				
		1.1.3	Eigenvalues & Eigenstates	4				
		1.1.4	measurement	4				
		1.1.5	commutation of operators & uncertainty principle	4				
	1.2	Positio	on & Momentum Operators	5				
		1.2.1	Representation in Position Space	5				
		1.2.2	Representation in Momentum Space	5				
		1.2.3	the translation operator	5				
2	Quantum Dynamics							
	2.1	Time I	Time Evolution					
	2.2	Schrodinger Picture and Heisenberg Picture						
	2.3	partile	in one-dimensional potential	7				
		2.3.1	free particle	7				
		2.3.2	infinite-deep potential well	7				
		2.3.3	finite potential well	7				
		2.3.4	potential barrier & tunneling effect	7				
		2.3.5	delta potential well & barrier	7				
	2.4	harmo	nic oscillator	7				

2			目录

9

Glossary

Chapter 1

Fundamental Concepts

量子力学(Quantum Mechanics) 有以下几个基本假设:

- 1. 系统的状态由希尔伯特空间(Hilbert Space)中的矢量描述。
- 2. 可观测量由厄米算符表示,测量结果为该算符的本征值。
- 3. 态矢量的演化由薛定谔方程描述。

1.1 Bra, Ket & Operators

在量子力学中,系统的状态由希尔伯特空间中的矢量表示,通常称为右矢(\ker),记作 $|\psi\rangle$ 。

右矢的复共轭称为左矢 (bra) ,记作 $\langle \psi |$ 。

算符(operator)是作用在希尔伯特空间上的线性映射,通常用花体字母表示,如 A。算符的作用是将一个右矢映射到另一个右矢,即 $A|\psi\rangle = |\phi\rangle$ 。

1.1.1 Inner Product & Outer Product

左矢与右矢可以相乘得到一个复数,称为内积,记作 $\langle \phi | \psi \rangle$ 。内积满足以下性质:

- $\langle \psi | \psi \rangle \ge 0$, 且当且仅当 $| \psi \rangle = 0$ 时取等号。
- $\langle \phi | \psi \rangle = \langle \psi | \phi \rangle^*$
- $\langle \phi | (\alpha | \psi_1 \rangle + \beta | \psi_2 \rangle) \rangle = \alpha \langle \phi | \psi_1 \rangle + \beta \langle \phi | \psi_2 \rangle$

右矢与左矢相乘得到一个算符,称为外积,记作 $|\psi\rangle\langle\phi|$ 。外积的作用是将 $|\phi\rangle$ 映射到 $|\psi\rangle$,即 $(|\psi\rangle\langle\phi|)|\phi\rangle = |\psi\rangle$ 。

1.1.2 Hermitian Operators

算符 A 的厄密共轭记作 A^{\dagger} , 定义为满足以下关系的算符:

$$\langle \phi | \mathcal{A}\psi \rangle = \langle \mathcal{A}^{\dagger} \phi | \psi \rangle \tag{1.1}$$

如果 $A = A^{\dagger}$, 则称 A 为厄米算符。厄米算符具有以下性质:

- 本征值为实数。
- 不同本征值对应的本征矢量正交。
- 可以构成完备归一化的本征矢量组。

1.1.3 Eigenvalues & Eigenstates

对于算符 A, 如果存在非零矢量 $|\psi\rangle$ 和标量 a, 使得

$$\mathcal{A} |\psi\rangle = a |\psi\rangle \tag{1.2}$$

则称 $|\psi\rangle$ 为 A 的本征态, a 为对应的本征值。

在量子力学中,可观测量由厄米算符表示,测量结果为该算符的本征值。

1.1.4 measurement

测量一个可观测量 A 时,系统的状态 $|\psi\rangle$ 会坍缩到 A 的某个本征态 $|a\rangle$,测量结果为对应的本征值 a。测量结果 a 出现的概率为

$$P(a) = |\langle a|\psi\rangle|^2 \tag{1.3}$$

测量后系统的状态变为 $|a\rangle$ 。

1.1.5 commutation of operators & uncertainty principle

两个算符 A 和 B 的对易子定义为

$$[\mathcal{A}, \mathcal{B}] = \mathcal{A}\mathcal{B} - \mathcal{B}\mathcal{A} \tag{1.4}$$

如果 [A, B] = 0,则称 A 和 B 对易。对易的算符可以同时具有确定的测量值。

如果 $[A, \mathcal{B}] \neq 0$,则称 A 和 \mathcal{B} 不对易。根据不确定性原理,两个不对易的可观测量不能同时具有确定的测量值。具体地,对于两个可观测量 A 和 \mathcal{B} ,它们的测量结果的不确定性满足以下关系:

$$\Delta A \Delta B \ge \frac{1}{2} |\overline{[\mathcal{A}, \mathcal{B}]}| \tag{1.5}$$

其中 ΔA 和 ΔB 分别表示测量结果的标准差, · 表示期望值。

1.2 Position & Momentum Operators

在一维空间中,位置算符 \hat{x} 和动量算符 \hat{p} 定义如下:

$$\hat{x} |x\rangle = x |x\rangle \tag{1.6}$$

$$\hat{p} | p \rangle = p | p \rangle \tag{1.7}$$

其中 $|x\rangle$ 和 $|p\rangle$ 分别为位置和动量的本征态。

位置本征态和动量本征态满足正交归一化条件:

$$\langle x'|x\rangle = \delta(x'-x) \tag{1.8}$$

$$\langle p'|p\rangle = \delta(p'-p) \tag{1.9}$$

其内积为

$$\langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}}e^{ipx/\hbar} \tag{1.10}$$

进而可以得到位置和动量算符的对易关系:

$$[\hat{x}, \hat{p}] = i\hbar \tag{1.11}$$

1.2.1 Representation in Position Space

1.2.2 Representation in Momentum Space

1.2.3 the translation operator

平移算符 $\mathcal{I}(a)$ 定义为将位置平移 a 的算符,即

$$\mathcal{T}(a)|x\rangle = |x+a\rangle \tag{1.12}$$

Chapter 2

Quantum Dynamics

2.1 Time Evolution

量子态的时间演化由薛定谔方程描述:

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \mathcal{H} |\psi(t)\rangle$$
 (2.1)

其中 H 是系统的哈密顿算符。

2.2 Schrodinger Picture and Heisenberg Picture

2.3 partile in one-dimensional potential

- 2.3.1 free particle
- 2.3.2 infinite-deep potential well
- 2.3.3 finite potential well
- 2.3.4 potential barrier & tunneling effect
- 2.3.5 delta potential well & barrier

2.4 harmonic oscillator

术语表

- **右矢** 在量子力学中,右矢(ket)是希尔伯特空间中的一个元素,通常表示为 $|\psi\rangle$,它描述了量子系统的状态。右矢可以与左矢(bra)结合形成内积,用于计算量子态之间的关系和测量结果。. 3, 4
- **左矢** 在量子力学中,左矢(bra)是希尔伯特空间中的一个元素,通常表示为 $\langle \psi |$,它是一个线性函数,可以作用于右矢(ket)以产生一个复数。左矢与右矢一起构成了内积的基础,用于描述量子态之间的关系和测量结果。. 3, 4
- **希尔伯特空间** 希尔伯特空间(Hilbert Space)是量子力学中用于描述量子态的数学结构。它是一个完备的内积空间,允许定义向量的长度和角度,从而可以进行正交化和归一化等操作。希尔伯特空间中的每个向量对应一个量子态,而线性算符则作用于这些向量以描述物理量的测量和系统的演化。. 3
- **算符** 在量子力学中,算符(operator)是作用在希尔伯特空间中的线性映射,用于描述物理量的测量和量子态的演化。常见的算符包括位置算符、动量算符和哈密顿算符等。算符通常表示为大写字母,如 A、B 等,并且可以通过对易关系来描述它们之间的相互作用。. 3
- **量子力学** 量子力学 (Quantum Mechanics) 是研究微观粒子行为和性质的物理学分支, 是现代物理学体系的重要基石。. 3

10 术语表