

A decision tree is a very specific type of probability tree that enables you to make a decision about some kind of process. It is used to break down complex problems or branches. Each branch of the decision tree could be a possible outcome.

A decision tree is a very specific type of probability tree that enables you to make a decision about some kind of process. It is used to break down complex problems or branches. Each branch of the decision tree could be a possible outcome.

- Supervised
- Classification
- Entropy
- Information Gain (IG)
- Gini Index

Problem Data Set

Class

Days	Outlook	Temperature	Routine	Wear Jacket?
1	Sunny	Cold	Indoor	No
2	Sunny	Warm	Outdoor	No
3	Cloudy	Warm	Indoor	No
4	Sunny	Warm	Indoor	No
5	Cloudy	Cold	Indoor	Yes
6	Cloudy	Cold	Outdoor	Yes
7	Sunny	Cold	Outdoor	Yes

All about Decision Tree in Machine Learning

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

$$IG(Y,X) = E(Y) - E(Y|X)$$

Gini index =
$$1 - \sum_{i=1}^{n} p_i^2$$

Or, You can follow:
$$\frac{\log_2 4}{\log_2 2} = \frac{\log_2 4}{\log_2 2} = \frac{\log_2 4}{\log_2 2} = \frac{\log_2 4}{\log_2 6} = \frac{\log_2 4}{\log_2 6}$$

$$= 2$$
Base change
$$\frac{\log_2 4}{\log_2 6} = \frac{\log_2 4}{\log_2 6}$$

In Freaction Number:
$$\frac{1}{1} \log \left(\frac{1}{4}\right) = \frac{\log \left(\frac{1}{4}\right)}{\log 2}$$
 $\frac{\log \left(\frac{1}{4}\right)}{\log 2} = \frac{\log \left(\frac{1}{4}\right)}{\log 2}$
 $\frac{\log \left(\frac{1}{4}\right)}{\log 2} = \frac{\log \left(\frac{1}{4}\right)}{\log 2}$
 $\frac{\log \left(\frac{1}{4}\right)}{\log 2} = \frac{\log \left(\frac{1}{4}\right)}{\log 2}$
 $\frac{\log 2}{\log 2}$

Wear Jacket?				
1	YES	3 Times		
2	NO	4 Times		

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

E(Y) = Entropy Before Partition E(Y|X) = Entropy After Partition Target, E(Y) >> E(Y|X)

Entropy Before Partition:

Entropy of Wear Jacket:

- = Entropy (4, 3)
- = Entropy (- (Pi log₂ Pi) + (- Pi log₂ Pi))
- $= (-4/7 \log_2 4/7) + (-3/7 \log_2 3/7)$
- = (-.57 log₂ .57) + (-.43 log₂ .43)
- = .985 (Entropy Before Partition)

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Outlook

E (Outlook, Sunny) = -(1/4 log₂ ¼ + ¾ log₂ ¾) = .812

E (Outlook, Cloudy) = -(2/3 log₂ 2/3 + 1/3 log₂ 1/3) = .918

Info Gain (S, Outlook) = E(S) - (4/7 * .812) - (3/7 * .918) = .985 - (4/7 * .812) - (3/7 * .918) = .127

Days	Outlook	Temperature	Routine	Wear Jacket?
1	Sunny	Cold	Indoor	No
2	Sunny	Warm	Outdoor	No
3	Cloudy	Warm	Indoor	No
4	Sunny	Warm	Indoor	No
5	Cloudy	Cold	Indoor	Yes
6	Cloudy	Cold	Outdoor	Yes
7	Sunny	Cold	Outdoor	Yes

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Temperature

E (Temperature, Cold) = $-(1/4 \log_2 \frac{1}{4} + \frac{3}{4} \log_2 \frac{3}{4})$ = .812

E (Temperature, Warm) = $-(0/3 \log_2 0/3 + 3/3 \log_2 3/3)$ = 0.00

Info Gain (S, Temperature) = E(S) - (4/7 * .812) - (3/7 * 0) = .985 - (4/7 * .812) - (3/7*0) = .520

Days	Outlook	Temperature	Routine	Wear Jacket?
1	Sunny	Cold	Indoor	No
2	Sunny	Warm	Outdoor	No
3	Cloudy	Warm	Indoor	No
4	Sunny	Warm	Indoor	No
5	Cloudy	Cold	Indoor	Yes
6	Cloudy	Cold	Outdoor	Yes
7	Sunny	Cold	Outdoor	Yes

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Routine
E (Routine, Indoor) = -(1/4 log ₂ ¼ + ¾ log ₂ ¾) = .812
E (Routine, Outdoor) = -(2/3 log ₂ 2/3 + 1/3 log ₂ 1/3) = .918
Info Gain (S, Routine) = E(S) - (4/7*.812) - (3/7 * .918) = .985 - (4/7*.812) - (3/7 * .918) =.127

Problem Data Set

Outdoor

Yes

Cold

Sunny

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Root Node Selection Table

Outlook	Temperature	Routine
E (Outlook, Sunny) =	E (Temperature, Cold) =	E (Routine, Indoor) =
-(1/4 log ₂ ¼ + ¾ log ₂ ¾)	-(1/4 log ₂ ¼ + ¾ log ₂ ¾)	-(1/4 log ₂ ¼ + ¾ log ₂ ¾)
= .812	= .812	= .812
E (Outlook, Cloudy) =	E (Temperature, Warm) =	E (Routine, Outdoor) =
-(2/3 log ₂ 2/3 + 1/3 log ₂ 1/3)	-(0/3 log ₂ 0/3 + 3/3 log ₂ 3/3)	-(2/3 log ₂ 2/3 + 1/3 log ₂ 1/3)
= .918	= 0.00	= .918
Info Gain (S, Outlook) = E(S) - (4/7 * .812) - (3/7 * .918) = .985 - (4/7 * .812) - (3/7 * .918) = .127	Info Gain (S, Temperature) = E(S) - (4/7 * .812) - (3/7 * 0) = .985 - (4/7 * .812) - (3/7*0) =.520	Info Gain (S, Routine) = E(S) - (4/7*.812) - (3/7 * .918) = .985 - (4/7*.812) - (3/7 * .918) =.127

Days	Outlook	Temperature	Routine	Wear Jacket?
1	Sunny	Cold	Indoor	No
2	Sunny	Warm	Outdoor	No
3	Cloudy	Warm	Indoor	No
4	Sunny	Warm	Indoor	No
5	Cloudy	Cold	Indoor	Yes
6	Cloudy	Cold	Outdoor	Yes
7	Sunny	Cold	Outdoor	Yes

Days	Outlook	Temperature	Routine	Wear Jacket?
1	Sunny	Cold	Indoor	No
2	Sunny	Warm	Outdoor	No
3	Cloudy	Warm 💥	Indoor	No
4	Sunny	Warm 💥	Indoor	No
5	Cloudy	Cold	Indoor	Yes
6	Cloudy	Cold	Outdoor	Yes
7	Sunny	Cold	Outdoor	Yes

Entropy of New Subset:

S2 = Entropy(1,3)

= Entropy (- (Pi log₂ Pi) + (- Pi log₂ Pi))

 $= (-1/4 \log_2 1/4) + (-3/4 \log_2 3/4)$

 $= (-.25 \log_2 .25) + (-.75 \log_2 .75)$

= .812 (Entropy for New Subset)

Days	Outlook	Temperature	Routine	Wear Jacket?
1	Sunny	Cold	Indoor	No
2	Sunny	Warm	Outdoor	No
3	Cloudy	Warm	Indoor	No
4	Sunny	Warm	Indoor	No
5	Cloudy	Cold	Indoor	Yes
6	Cloudy	Cold	Outdoor	Yes
7	Sunny	Cold	Outdoor	Yes

E (Routine, Indoor) = -(1/2 log₂ ½ + 1/2 log₂ 1/2) = 1

E (Routine, Outdoor) = $-(2/2 \log_2 2/2 + 0/2 \log_2 0/2)$ = 0

Info Gain (S2, Routine) = E(S2) - 2/4 * 1 - 2/4 * 0 = .812 - 2/4 * 1 - 2/4 * 0 = .312

Days	Outlook	Temperature	Routine	Wear Jacket?
1	Sunny	Cold	Indoor	No
2	Sunny	Warm	Outdoor	No
3	Cloudy	Warm 💥	Indoor	No
4	Sunny	Warm 🜟	Indoor	No
5	Cloudy	Cold	Indoor	Yes
6	Cloudy	Cold	Outdoor	Yes
7	Sunny	Cold	Outdoor	Yes

E (Outlook, Sunny) = -(1/2 log₂ ½ + 1/2 log₂ 1/2) = 1

E (Outlook, Cloudy) = -(2/2 log₂ 2/2 + 0/2 log₂ 0/2) = 0

Info Gain (S2, Outlook) = E(S2) - 2/4 * 1 - 2/4 * 0 = .812 - 2/4 * 1 - 2/4 * 0 = .312

Days	Outlook	Temperature	Routine	Wear Jacket?
1	Sunny	Cold	Indoor	No
2	Sunny	Warm	Outdoor	No
3	Cloudy	Warm 💥	Indoor	No
4	Sunny	Warm 🗱	Indoor	No
5	Cloudy	Cold	Indoor	Yes
6	Cloudy	Cold	Outdoor	Yes
7	Sunny	Cold	Outdoor	Yes

Sunny, Cold , Indoor= ??

Days	Outlook	Temperature	Routine	Wear Jacket?
1	Sunny	Cold	Indoor	No
2	Sunny	Warm	Outdoor	No
3	Cloudy	Warm 💥	Indoor	No
4	Sunny	Warm 💥	Indoor	No
5	Cloudy	Cold	Indoor	Yes
6	Cloudy	Cold	Outdoor 💥	Yes
7	Sunny	Cold	Outdoor 💥	Yes

