Northeastern University, Department of Mathematics

MATH 5110: Applied Linear Algebra and Matrix Analysis.

• Instructor: He Wang Email: he.wang@northeastern.edu

§4. Bases

Contents

1. Linear Independence

2. Basis of a vector space 3

3. The Dimension of a Subspace

4. Basis of Null space and range

Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_t$ be vectors in a vector space V.

1

5

7

Definition 1. • The set of vectors $\vec{v}_1, \ldots, \vec{v}_p$ in V is said to be (linearly) independent if

$$(X)$$
 $(X, \overline{V_1} + \cdots + X_p \overline{V_p} = \overline{O})$ only has table solution $X_1 = \cdots = X_p = 0$

• The set $\{\vec{v}_1,\ldots,\vec{v}_p\}$ is said to be (linearly) dependent if

An infinite subset W of a vector space V is said to be <u>linearly independent</u> if all finite subsets of W are linearly independent.

$$\{1, t, t^2, t^3, \dots, t^n, \dots\}$$

We say a vector $(\vec{v_i})$ (for $i \geq 2$) is **redundant** if it is a linear combination of the preceding vectors $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_{i-1}}\}$.

Solete it

Proposition 2. Suppose \vec{v}_i is redundant in $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$. Then

 $\overrightarrow{\chi} = a_1 \overrightarrow{V_1} + \cdots + a_p \overrightarrow{V_p} \leq$

Proposition 3. • Suppose $\vec{v}_1 \neq \vec{0}$. The set $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is independent if and only if none of them is redundant.

- If the set $\{\vec{v}_1, \ldots, \vec{v}_p\}$ of vectors contains the zero vector $\vec{0}$ then it is linearly dependent.
- If a subset of the set $\{\vec{v}_1, \ldots, \vec{v}_p\}$ is linearly dependent, then $\{\vec{v}_1, \ldots, \vec{v}_p\}$ is dependent.

Example 4. (1) A set $\{\vec{v}\}$ is linearly dependent if and only if $\vec{v} = \vec{o}$

(2) A set $\{\vec{u}, \vec{v}\}$ is linearly dependent if and only if $\vec{\mathcal{U}} = c\vec{\mathcal{V}}$ or $\vec{\mathcal{V}} = c\vec{\mathcal{U}}$

$$(*) \iff \overrightarrow{A} \overrightarrow{X} = \overrightarrow{O} \iff [A | \overrightarrow{O}]$$

A=[1] ... 7]

Proposition 5. The set $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\} \subset \mathbb{F}^n$ is independent if and only if

Proposition 6. If p > n, then a set $\{\vec{v}_1, \dots, \vec{v}_p\}$ of vectors in \mathbb{F}^n is linearly dependent.

2. Basis of a vector space

Let V be vector space over \mathbb{F} .

Definition 7. A subset $B = \{\vec{b}_1, \dots, \vec{b}_n\}$ of V is called a **basis** for V if

Example 8. Standard basis for \mathbb{R}^n .

Example 9. Find a basis for the vector space M_2 of all 2×2 matrices.

Example 10. Find a basis for the vector space P_2 of all polynomials of degree ≤ 2 .

$$\{1, t, t^2\}$$

Theorem 11. If $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is independent, and $V = \operatorname{Span}\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_m\}$, then

$$n \leq m$$

$$\overrightarrow{U_1} = \underbrace{\alpha_{11}}_{V_1} \overrightarrow{W_1} + \underbrace{\alpha_{11}}_{V_2} \overrightarrow{W_2} + \dots + \underbrace{\alpha_{1m}}_{V_n} \overrightarrow{W_n}$$

$$\overrightarrow{V_1} = \underbrace{\alpha_{11}}_{V_1} - \dots - \underbrace{\alpha_{2m}}_{V_{n-1}} - \dots - \underbrace{\alpha_{2m}}_{V_{n-1}}$$

$$\overrightarrow{V_n} = \underbrace{\alpha_{n_1}}_{Q_{n_1}} - \dots - \underbrace{\alpha_{n_m}}_{Q_{n_m}}$$

 $\frac{[\vec{v}_1 \cdots \vec{v}_n]}{[\vec{v}_1 \cdots \vec{v}_n]} = [\vec{v}_1 \cdots \vec{v}_n] \wedge A$

Theorem 12 (Spanning Set Theorem). Let V be a vector space and let $S = \{\vec{v}_1, \ldots, \vec{v}_p\}$ be a subset of V with $\mathrm{Span}\{\vec{v}_1, \ldots, \vec{v}_p\} = H$.

• If one of the vectors in S, say \vec{v}_k , is a linear combination of the remaining vectors in S, then the set $S - \{\vec{v}_k\}$ still spans H,

$$H = \text{Span}\{\vec{v}_1, \dots, \vec{v}_{k-1}, \vec{v}_{k+1}, \dots, \vec{v}_p\}$$

• If $H \neq \{\vec{0}\}$ then some subset of S is a basis for H.

Proposition 13. (1) Every spanning set of a finite-dimensional vector space can be reduced to a basis.

- (2) Any finite-dimensional vector space has a basis.
- (3) Any independent set in a finite-dimensional vector space can be extended to a basis.

$$\frac{\{\vec{e}_1, \vec{e}_2\}}{\{[i], [i]\}}$$

3. The Dimension of a Subspace

For a finite-dimensional vector space V, it has many different bases. However, they contain some common properties.

Theorem 14. If $\mathscr{B} = \{\vec{b}_1, \dots, \vec{b}_p\}$ and $\mathscr{D} = \{\vec{d}_1, \dots, \vec{d}_m\}$ are two bases for V, then

$$\{ ec{b}_p \}$$
 and $\mathscr{D} = \{ ec{d}_1, \ldots, ec{d}_m \}$

m < p

Definition 15 (The Dimension of a Vector Space). The dimension of a vector space V is defined as

4 1/2 [8]

dint = cardinality of a besis of V.

Lemma 16. Suppose $\mathscr{B} = \{\vec{b}_1, \dots, \vec{b}_p\}$ is a basis for V.

- (1) Any set of more than p vectors is linearly dependent.
- (2) Any set of less than p vectors can not span V.

(independent set) < p

{1, t, t' | i) a bens for P?

Page 5

⇒ U10U2= 53]

Page 6

4. Basis of Null space and range

Let $T: V \to W$ be a linear transformation.

· renk(T) := dim (imT)

· nullity (7):= dim (kerT)

Rank-Nulling Thm.

Theorem 22. Let $T: V \to W$ be a linear transformation. Then

dim V = dim (kert) + dim (in T)

PHM

P

Suppose {\vec{u}_1 \cdots \vec{u}_p} is a besi for best, extend it to be a besis for V

{ \vec{u_i} \cdots \vec{v_k} \vec{t_j} \cdots \vec{t_n}

Chin: {T(h) -- , T(h2)) is abon for (in T)

Let A be an $m \times n$ matrix. The linear transformation defined by A is

 $T_A: \mathbb{R}^n \to \mathbb{R}^m$ $\overrightarrow{x} \longrightarrow A\overrightarrow{x}$

Theorem 23 (Basis for im(A)). A basis for the image im(A) is given by the pivot columns of A. In particular, $\dim(\operatorname{im} A) = \operatorname{rank} A$.

> mef A 0 000 $A = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 1 & 6 & 2 & 3 \end{bmatrix}$

Theorem 24 (Basis for ker(A)). Let A be an $m \times n$ matrix. Solve the matrix equation $A\vec{x} = \vec{0}$. Write \vec{x} as a linear combination of vectors $\vec{v}_1, \ldots, \vec{v}_p$ with the weights corresponding to the free variables.

Then $\{\vec{v}_1,\ldots,\vec{v}_p\}$ is a basis for $(\ker(A))$. = { ell solu of AX=3

T. D. Page 7

Proposition 25 (The Dimensions of ker(A) and im(A)). Let A be an $m \times n$ matrix. Then,

 $\frac{\dim(\ker(A)) + \dim(\operatorname{im}(A))}{\operatorname{renk} A} = 0 = 0 = 0$

Proposition 26. Let A be an $n \times n$ square matrix.

A is **invertible**, if and only if

In A= (0), then R=

berA = ImA = Spe