1 이차부등식

유형의 이해에 띠	라 ─ 안에 O,×표시를 하고 반복하여 학습합니다.	1st	2nd
필수유형 01	이차부등식과 이차함수의 관계		
필수유형 02	이차부등식의 풀이		
필수유형 03	해가 주어진 이차부등식		
필수유형 04	이차부등식이 해를 가질 조건		
필수유형 05	이차부등식이 항상 성립할 조건		
필수유형 06	두 그래프의 위치 관계와 이차부등식		
필수유형 07	제한된 범위에서 항상 성립하는 이차부등식		
필수유형 08	이차부등식의 활용		
필수유형 09	연립이차부등식의 풀이		
필수유형 10	해가 주어진 연립이차부등식		
발전유형 11	연립이차부등식의 활용		
필수유형 12	이차방정식의 근의 판별과 이차부등식		
필수유형 13	이차방정식의 실근의 부호		
필수유형 14	이치방정식의 근의 분리		

필수유형 (01) 이차부등식과 이차함수의 관계

두 이차함수 y=f(x), y=g(x)의 그래프가 오른쪽 그림과 같을 때, 다음 부등식의 해를 구하여라.

- (1) f(x) > g(x)
- (2) f(x)g(x) > 0

풋쌤 POINT

(1) f(x) > g(x)는 y = f(x)의 그래프가 y = g(x)의 그래프보다 위쪽에 있는 부분 (2) f(x)g(x) > 0는 f(x) > 0. g(x) > 0 또는 f(x) < 0. g(x) < 0을 만족시키는 부분 \Rightarrow 주어진 이차함수의 그래프에서 각각의 경우를 만족시키는 x의 값의 범위를 구해.

풀이 \leftarrow \odot (1) STEP1 주어진 부등식을 만족시키는 x의 값의 범위 파악하기 부등식 f(x) > g(x)의 해는 y = f(x)의 그래프가 y = g(x)의 그래프보다 위쪽에 있는 부분의 x의 값의 범위 $^{\bullet}$ 이다.

STEP2 부등식의 해 구하기

따라서 구하는 해는

x < -2 또는 x > 7

② y=f(x)의 그래프에서 x축보

의 범위를 구한다.

(2) STEP1 주어진 부등식을 만족시키는 두 함수의 부호 정하기 부등식 f(x)g(x)>0의 해는 f(x)>0. g(x)>0 또는 f(x) < 0, g(x) < 0을 만족시키는 x의 값의 범위이다.

STEP2 부등식의 해 구하기

 $(i) f(x) > 0^{2}$, g(x) > 0을 만족시키는 x의 값의 범위는

g(x) > 0에서 -3 < x < 8

....(L)

 \bigcirc 이 고통부분을 구하면 -3 < x < -1 또는 6 < x < 8

(ii) f(x) < 0, g(x) < 0을 만족시키는 x의 값의 범위는

$$f(x) < 0$$
에서 $-1 < x < 6$

....(E)

$$g(x) < 0$$
에서 $x < -3$ 또는 $x > 8$

····· (2)

ⓒ, ②의 공통부분이 없으므로 해는 없다.

(i), (ii)에 의하여 부등식 f(x)g(x) > 0의 해는

-3<x<-1 또는 6<x<8

답 (1) x < -2 또는 x > 7 (2) -3 < x < -1 또는 6 < x < 8

풍쌤 강의 NOTE

함수의 그래프를 이용하여 이차부등식을 풀 때는 주어진 함수의 그래프에서 조건을 만족시키는 위치. 관계를 찾고, 그 부분의 x의 값의 범위를 구한다.

이때 함수의 그래프에서 교점의 x좌표, x축과 만나는 점의 x좌표를 이용한다.

두 이차함수 y=f(x), y=g(x)의 그래프가 오른 쪽 그림과 같을 때, 다음 부 등식의 해를 구하여라.

- (1) f(x) < g(x)
- (2) f(x)g(x) < 0

01-4 e 변형

이차함수

 $y=ax^{2}+bx+c$ 의 그래 프와 직선 y=mx+n이 오른쪽 그림과 같을 때, 이차부등식

 $ax^2+(b-m)x+c-n\leq 0$ 의 해를 구하여라.

(단, a, b, c, m, n은 상수이다.)

01-2 (유사)

두 이차함수 y=f(x), y=g(x)의 그래프가 오른 쪽 그림과 같을 때, 부등식 $f(x)-g(x)\geq 0$ 의 해를 구하여라.

01-5 ⊚ 변형)

세 함수 y=f(x), y=g(x), y=h(x)의 그래프가 오른쪽 그림과 같을 때, 부등식 $f(x) \ge h(x) \ge g(x)$ 의 해를 구하여라.

01-3 인유사

두 이차함수 y=f(x), y=g(x)의 그래프가 오른쪽 그림과 같을 때, 부등식 0< g(x)< f(x)의 해는 $\alpha< x< \beta$ 이다. 이때 $\alpha+\beta$ 의 값을 구하여라.

01-6 ● 실력

0이 아닌 실수 p에 대하여 이차 함수 $f(x) = x^2 + px + p$ 의 그 래프의 꼭짓점을 A, 이 이차함 수의 그래프가 y축과 만나는 점 을 B라고 할 때, 두 점 A, B 를 지나는 직선 l의 방정식을

y=g(x)라고 하자. 부등식 $f(x)-g(x)\leq 0$ 을 만족시키는 정수 x의 개수가 3이 되도록 하는 정수 p의 최 댓값을 M, 최솟값을 m이라고 할 때, M-m의 값을 구하여라.

필수유형 (02)

이차부등식의 풀이

다음 이차부등식을 풀어라.

(1)
$$x^2 - 2x - 15 > 0$$

(2)
$$x^2 + 2x + 1 \le 0$$

(3)
$$x^2 - 4x + 4 > 0$$

(4)
$$2x+1 > x^2+6x$$

(5)
$$-x^2 - 1 \le x$$

(6)
$$-9x^2+6x-1>0$$

풍쌤 POINT

a>0일 때

- $a(x-\alpha)(x-\beta) > 0$ $(\alpha < \beta)$ 이면 해는 $x < \alpha$ 또는 $x > \beta$
- $a(x-\alpha)(x-\beta) < 0$ ($\alpha < \beta$)이면 $\alpha < x < \beta$
- $a(x-\alpha)^2 > 0$ 이면 해는 $x \neq \alpha$ 인 모든 실수
- $a(x-p)^2+q>0$ (q>0)이면 해는 모든 실수

풀이 •• (1) $x^2-2x-15>0$ 에서 (x+3)(x-5)>0∴ x<-3 또는 x>5

 $(2) x^2 + 2x + 1 \le 0$ 에서 $(x+1)^2 \le 0$

- 인수분해가 되면 인수분해하여 해를 구한다.
- 그런데 $(x+1)^2 \ge 0$ 이므로 주어진 부등식의 해는 x=-1 $(3) x^2 - 4x + 4 > 0$ 에서 $(x-2)^2 > 0$
- 그런데 $(x-2)^2 \ge 0$ 이므로 주어진 부등식의 해는 $x \ne 2$ 인 모든 실수이다
- ② $ax^2+bx+c=a(x-p)^2$ 꼴은 부등식의 등호 포함 여부에 따 라 근이 달라지므로 주의한다
- (4) $2x+1 \ge x^2+6x$ 에서 $x^2+4x-1 \le 0$ 이차방정식 $x^2+4x-1=0$ 의 해는 $x=-2\pm\sqrt{5}$ 이므로 \bigcirc 에서 $(x+2+\sqrt{5})(x+2-\sqrt{5})\leq 0$ $\therefore -2-\sqrt{5} < x < -2+\sqrt{5}$
- 짝수 근의 공식을 이용하면 $x = -2 \pm \sqrt{(-2)^2 - 1 \times (-1)}$ $=-2\pm\sqrt{5}$

 $(5) - x^2 - 1 \le x$ 에서 $x^2 + x + 1 \ge 0$

좌변을 완전제곱식 꼴로 변형하면

$$x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\geq \frac{3}{4}$$

따라서 주어진 부등식의 해는 모든 실수이다.

- $(6) -9x^2 + 6x 1 > 0$ 에서 $9x^2 6x + 1 < 0$
 - $\therefore (3x-1)^2 < 0$

그런데 $(3x-1)^2 \ge 0$ 이므로 주어진 부등식의 해는 없다.

됩 (1)
$$x < -3$$
 또는 $x > 5$ (2) $x = -1$ (3) $x \ne 2$ 인 모든 실수 (4) $-2 - \sqrt{5} \le x \le -2 + \sqrt{5}$ (5) 모든 실수 (6) 해는 없다.

풍쌤 강의 NOTE

- 이차방정식 f(x)=0의 판별식을 D라고 할 때. 이차부등식의 해는 다음과 같이 구한다.
- (1) D > 0이면 f(x)를 인수분해하거나 근의 공식을 이용한다.
- (2) D=0 또는 D<00 $| D f(x) = a(x-p)^2 + q$ 꼴로 변형한다.

다음 이차부등식을 풀어라.

- (1) $x^2 6x + 9 > 0$
- (2) $x^2 + 4x + 4 \le 0$
- (3) $9x^2 \ge 6x 1$
- (4) $12x-9>4x^2$
- (5) $x^2 + 2x 3 \le 0$
- (6) $x^2 < 8x 18$

02-2 ● 변형

|보기| 이차부등식 중 해가 없는 것을 모두 골라라.

| 보기|

$$\exists x^2 + 12x + 12 > 0$$

$$-10 > 0$$

 $= 4x \ge x^2 + 7$

 $= -x^2 + 8x - 16 > 0$

02-3 ● 변형

이차부등식 $x^2-7x+1\geq 0$ 의 해가 $x\leq \alpha$ 또는 $x\geq \beta$ 일 때, $\beta-\alpha$ 의 값을 구하여라.

02-4 (변형)

부등식 $x^2-2x-4<4|x-1|$ 을 만족시키는 정수 x의 개수를 구하여라.

02-5 (변형)

이차부등식 $x^2-x-8>2|x-2|$ 의 해가 $x<\alpha$ 또는 $x>\beta$ 일 때, $\beta-2\alpha$ 의 값을 구하여라.

02-6 인실력

x에 대한 이차부등식 $x^2-2(a-3)x+a^2-6a\leq 0$ 을 만족시키는 모든 정수 x의 값의 합이 7일 때, 정수 a의 값을 구하여라.

필수유형 (03) 해가 주어진 이차부등식

다음 물음에 답하여라.

- (1) 이차부등식 $x^2 + ax + b > 0$ 의 해가 x < -3 또는 x > 4일 때, 실수 a, b의 값을 각각 구하여라
- (2) 이차부등식 $ax^2 + (b-1)x + 1 > 0$ 의 해가 -1 < x < 5일 때, 실수 a, b의 값을 각각 구하여라

풍쌤 POINT

 x^2 의 계수가 1이고

- •해가 $\alpha < x < \beta$ 인 이차부등식 $\Rightarrow (x-\alpha)(x-\beta) < 0$
- 해가 $x < \alpha$ 또는 $x > \beta$ $(\alpha < \beta)$ 인 이차부등식 \Rightarrow $(x \alpha)(x \beta) > 0$

풀() (1) STEP1 주어진 해를 이용하여 이차부등식 구하기

해가 $x \le -3$ 또는 $x \ge 4$ 이고 x^2 의 계수가 1인 이차부등식 a 이차방정식 $a^2 + ax + b = 0$ 의 $(x+3)(x-4) \ge 0$: $x^2-x-12 \ge 0$ STEP2 a, b의 값 구하기

이 부등식이 $x^2+ax+b \ge 0$ 과 같으므로 a = -1. b = -12

두 근이 -3과 4이므로 근과 계 수의 관계에 의하여 -3+4=-a $(-3) \times 4 = b$

 $\therefore a = -1, b = -12$

(2) STEP1 주어진 해를 이용하여 이차부등식 구하기

해가 -1 < x < 5이고 x^2 의 계수가 1인 이차부등식은

$$(x+1)(x-5) < 0$$

$$x^2 - 4x - 5 < 0$$

.....

 \bigcirc 과 주어진 이차부등식 $ax^2 + (b-1)x + 1 > 0$ 의 부등호의 방 향이 다르므로

a < 0

 \bigcirc 의 양변에 a를 곱하면 $ax^2-4ax-5a>0^2$

② 음수인 a를 곱하면 부등호의 방 향이 바뀜을 주의한다.

STEP2 a. b의 값 구하기

이 부등식이 $ax^2+(b-1)x+1>0$ 과 같으므로

$$-4a=b-1, -5a=1$$

$$\therefore a = -\frac{1}{5}, b = \frac{9}{5}$$

 \blacksquare (1) a=-1, b=-12 (2) $a=-\frac{1}{5}$, $b=\frac{9}{5}$

풍쌤 강의

주어진 이차부등식에서 x^2 의 계수가 $a(a \neq 1)$ 일 때는

- **①** 주어진 해를 이용하여 x^2 의 계수가 1인 이차부등식을 작성한다.
- ② 이 이차부등식과 주어진 부등식의 부등호의 방향을 비교하여 a의 부호를 구한다.
- ③ 두 부등식이 일치하도록 양변에 a를 곱한다. 이때 a<0이면 부등호의 방향이 바뀌는 것에 주의 하다

이차부등식 $3x^2 - (a+1)x + b > 0$ 의 해가 x < 2 또는 x > 3일 때, 실수 a, b에 대하여 b - a의 값을 구하여라.

03-2 ্ন৸)

이차부등식 $ax^2+6x+b>0$ 의 해가 $-\frac{1}{3} < x < \frac{7}{3}$ 이 되도록 하는 실수 a, b에 대하여 ab의 값을 구하여라.

03-3 ●변형

이차부등식 $x^2+ax+b\leq 0$ 의 해가 x=4일 때, 이차부 등식 $bx^2-ax+1\leq 0$ 의 해를 구하여라.

(단. a. b는 실수이다.)

03-4 (변형)

x에 대한 이치부등식 f(x)>0의 해가 -3< x<5일 때, 부등식 $f(400-x)\leq 0$ 을 만족시키는 x의 값의 범위를 구하여라.

03-5 (변형

이차부등식 $ax^2+bx+c>0$ 의 해가 x<-3 또는 x>6일 때, 부등식 $ax^2+cx-24b<0$ 을 만족시키는 정수 x의 최댓값을 구하여라. (단. a, b, c는 실수이다.)

03-6 인 실력

두 부등식 5-x<3|x+1|, $ax^2+7x+b>0$ 의 해가 일치하도록 a, b의 값을 정할 때, 두 실수 a, b에 대하여 ab의 값을 구하여라.

필수유형 (04)

이차부등식이 해를 가질 조건

다음 물음에 답하여라

- (1) 이차부등식 $ax^2 + 8x + a > 0$ 이 해를 갖도록 하는 실수 a의 값의 범위를 구하여라.
- (2) 이차부등식 $x^2 6x + a + 3 < 0$ 의 해가 오직 한 개 존재할 때, 실수 a의 값을 구하여라

풍쌤 POINT

이차부등식 $ax^2 + bx + c > 0$ 이 해를 가질 조건

- (i) a > 0이면 이차부등식은 항상 해를 갖게 돼
- (ii) a < 0이면 이차방정식 $ax^2 + bx + c = 0$ 의 판별식을 D라고 할 때, D > 0이어야 해.

- 풀이 \bullet (1) STEP1 α 가 양수일 때와 음수일 때로 나누어 해 구하기
 - (i) a>0일 때.

이차함수 $y=ax^2+8x+a$ 의 그래프는 아래로 볼록하므로 $^{\bullet}$ 주어진 이차부등식은 항상 해를 갖는다.

(ji) a < 0일 때

이차부등식 $ax^2 + 8x + a > 0$ 이 해를 가지려면 이차방정식 $ax^2+8x+a=0$ 이 서로 다른 두 실근을 가져야 하므로^② 이 이차방정식의 판별식을 D라고 하면

$$\frac{D}{4} = 4^2 - a^2 > 0, \ a^2 - 16 < 0$$

$$(a+4)(a-4) < 0$$

$$\therefore -4 < a < 4$$

그런데 a < 0이므로 -4 < a < 0

STEP2 a의 값의 범위 구하기

(i). (ii)에 의하여 a의 값의 범위는

- **③** a = 0이면 주어진 부등식은 이차부등식이 아니므로 $a \neq 0$
- (2) 이차부등식 $x^2 6x + a + 3 \le 0$ 의 해가 오직 한 개 존재하므로⁴ 이차방정식 $x^2-6x+a+3=0$ 의 판별식을 D라고 하면
 - $\frac{D}{4} = (-3)^2 (a+3) = 0, 9-a-3=0$

 $\therefore a=6$

4 해가 오직 한 개존재하려면 이 이차방정식이 중근을 가져야 한다.

풍쌤 강의 NOTE

이차방정식 $ax^2+bx+c=0$ 의 판별식을 D라고 할 때. 이차부등식의 해가 한 개일 조건

- ① $ax^2+bx+c \ge 0$ 의 해가 한 개이다. $\Rightarrow a < 0$, D=0
- ② $ax^2+bx+c \le 0$ 의 해가 한 개이다. $\Rightarrow a > 0$, D=0

04-1 인유사)

이차부등식 $2ax^2 + ax - 3 > 0$ 이 해를 갖도록 하는 실수 a의 값의 범위를 구하여라.

04-2 ্ন৸

이차부등식 $x^2-(k-6)x+2k\leq 0$ 의 해가 오직 한 개 존재할 때, 실수 k의 값을 구하여라.

04-3 (변형)

두 함수

 $f(x)=x^2+2x+a+2$, $g(x)=2x^2-2ax+a+6$ 에 대하여 부등식 f(x)>g(x)이 해를 갖도록 하는 실수 a의 값의 범위를 구하여라.

04-4 (변형)

이차부등식 $(a+2)x^2-8x+2a \ge 0$ 의 해가 오직 한 개 존재할 때, 실수 a의 값을 구하여라.

04-5 (변형)

이차부등식 $(a-3)x^2+2(a-3)x-5>0$ 이 해를 갖도록 하는 실수 a의 값의 범위를 구하여라.

04-6 인실력

이차부등식 $-ax^2 + 24x - 4a < 0$ 을 만족시키지 않는 x의 값이 오직 m뿐일 때, am의 값을 구하여라. (단, a는 실수이다.)

필수유형 (05)

이차부등식이 항상 성립할 조건

다음 물음에 답하여라.

- (1) 모든 실수 x에 대하여 이차부등식 $ax^2+2ax+5\geq 0$ 이 성립하도록 하는 실수 a의 값 의 범위를 구하여라.
- (2) 이차부등식 $-x^2+2(n+2)x+2(n+2)>0$ 의 해가 존재하지 않도록 하는 실수 n의 값의 범위를 구하여라.

풍쌤 POINT

이차방정식 $ax^2+bx+c=0$ 의 판별식을 D라고 할 때, 모든 실수 x에 대하여

- 이차부등식 $ax^2+bx+c>0$ 이 항상 성립하려면 a>0. D<0
- 이차부등식 $ax^2 + bx + c > 0$ 이 항상 성립하려면 a > 0 D < 0

풀이 \bullet (1) 모든 실수 x에 대하여 이차부등식 $ax^2 + 2ax + 5 \ge 0$ 이 성립하 려면 이차함수 $y = ax^2 + 2ax + 5$ 의 그래프가 아래로 볼록해야 하므로 a>0

이차방정식 $ax^2 + 2ax + 5 = 0$ 의 판별식을 D라고 하면

$$\frac{D}{4} = a^2 - 5a \le 0$$

$$a(a-5) \le 0$$
 $\therefore 0 \le a \le 5$

.... (L)

- \bigcirc . \bigcirc 의 공통부분을 구하면 $0 < a \le 5$
- 축에 접하거나 x축보다 위쪽에 있어야 한다

① 모든 실수 x에 대하여 $f(x) \ge 0$ 이려면 y=f(x)의 그래프가 x

으로 바꾼다.

D라고 하면 $D = \{-(n+2)\}^2 + 2(n+2) \le 0$

$$\frac{D}{4} = \{-(n+2)\}^2 + 2(n+2) \le 0$$

 $n^2 + 6n + 8 \le 0$, $(n+4)(n+2) \le 0$

 $\therefore -4 \le n \le -2$

 \blacksquare (1) $0 < a \le 5$ (2) $-4 \le n \le -2$

풍쌤 강의 NOTE

이차부등식의 해가 존재하지 않을 조건이 주어진 경우에는 다음과 같이 이차부등식이 항상 성립할 조 건으로 바꾸어 이해한다.

- 이차부등식 $ax^2 + bx + c > 0$ 을 만족시키는 실수 x의 값이 없다.
 - \Rightarrow 모든 실수 x에 대하여 이차부등식 $ax^2 + bx + c \le 0$ 이 성립한다.
- 이차부등식 $ax^2 + bx + c \ge 0$ 을 만족시키는 실수 x의 값이 없다.
- \Rightarrow 모든 실수 x에 대하여 이차부등식 $ax^2 + bx + c < 0$ 이 성립한다.

05-1 (7본)

이차부등식 $x^2 - 2kx + 2k + 8 > 0$ 이 실수 x의 값에 관계없이 항상 성립할 때. 실수 k의 값의 범위를 구하여라.

05-4 ●변형

모든 실수 x에 대하여 $\sqrt{x^2+2(k-1)x-k+30}$ 실수가 되도록 하는 실수 k의 값의 범위를 구하여라.

05-2 (유사)

모든 실수 x에 대하여 이차부등식 $ax^2-2(2a-1)x+2a-1\geq 0$ 이 성립할 때, 실수 a의 값의 범위를 구하여라.

05-5 ⊚ 변형)

부등식 $(k-3)x^2-2(k-3)x-4>0$ 의 해가 존재하지 않도록 하는 실수 k의 값의 범위를 구하여라.

05-3 ●유사

이차부등식 $x^2 - (k+3)x + 2(k+3) \le 0$ 의 해가 존재하지 않을 때, 실수 k의 값의 범위를 구하여라.

05-6 인 실력

모든 실수 x에 대하여 $ax^2 + 7ax + 10$ 2(3ax + 1)보다 항상 작기 위한 실수 a의 값의 범위를 구하여라.

필수유형 (06) 두 그래프의 위치 관계와 이차부등식

다음 물음에 답하여라.

- (1) 이차함수 $y=x^2-2x+4$ 의 그래프가 직선 y=ax-5보다 항상 위쪽에 있을 때. 실수 a의 값의 범위를 구하여라.
- (2) 이차함수 $y = -x^2 + 3x + 2$ 의 그래프가 직선 y = ax + 6보다 항상 아래쪽에 있을 때. 실수 a의 값의 범위를 구하여라.

풍쌤 POINT

- 함수 y=f(x)의 그래프가 함수 y=g(x)의 그래프보다 항상 위쪽에 있으면
 - \Rightarrow 모든 실수 x에 대하여 부등식 f(x) > g(x), 즉 f(x) g(x) > 0이 성립해.
- 함수 y=f(x)의 그래프가 함수 y=g(x)의 그래프보다 항상 아래쪽에 있으면
 - \Rightarrow 모든 실수 x에 대하여 부등식 f(x) < g(x), 즉 f(x) g(x) < 0이 성립해.

풀() • ● (1) STEP1 두 그래프의 위치 관계를 부등식으로 나타내기

이차함수 $y=x^2-2x+4$ 의 그래프가 직선 y=ax-5보다 항상 위쪽¹에 있으므로 모든 실수 x에 대하여 $x^2-2x+4>ax-5$. 즉 $x^2 - (a+2)x + 9 > 0$ 이 성립한다.

STEP2 a의 값의 범위 구하기

이차방정식 $x^2 - (a+2)x + 9 = 0$ 의 판별식을 D라고 하면 $D = \{-(a+2)\}^2 - 36 < 0$

$$a^2+4a-32<0$$
. $(a+8)(a-4)<0$

$$\begin{array}{c} u + 4u - 32 < 0, \ (u + 8)(u - 4) \\ \vdots - 8 < a < 4 \end{array}$$

이차함수 $y = -x^2 + 3x + 2$ 의 그래프가 직선 y = ax + 6보다 항상 아래쪽 2 에 있으므로 모든 실수 x에 대하여 $-x^2+3x+2 < ax+6$. 즉 $x^2+(a-3)x+4 > 0$ 이 성립한다.

STEP2 a의 값의 범위 구하기

이차방정식 $x^2 + (a-3)x + 4 = 0$ 의 판별식을 D라고 하면

$$D=(a-3)^2-16<0$$

$$a^2-6a-7<0$$
, $(a+1)(a-7)<0$

$$\therefore -1 \le a \le 7$$

 \blacksquare (1) -8 < a < 4 (2) -1 < a < 7

풍쌤 강의 NOTE

두 함수 y=f(x)와 y=g(x)의 그래프가 만날 때, y=f(x)의 그래프가 y=g(x)의 그래프보다 위 쪽에 있는 부분의 x의 값의 범위는 f(x)>g(x), 즉 f(x)-g(x)>0의 해이다.

이차함수 $y=x^2+(k+1)x+3$ 의 그래프가 직선 y=x-1보다 항상 위쪽에 있도록 하는 실수 k의 값의 범위를 구하여라.

06-2 ৄ ন্ম

이차함수 $y=ax^2-8x-3$ 의 그래프가 직선 y=2ax-1보다 항상 아래쪽에 있을 때, 실수 a의 값 의 범위를 구하여라.

06-3 ⊚ 변형)

이차함수 $y=-x^2+2(a-2)x+a^2-5a$ 의 그래프가 직선 y=4x+1과 만나지 않도록 하는 정수 a의 최댓 값을 구하여라.

06-4 (변형)

이차함수 $y=-x^2+ax+b$ 의 그래프가 직선 y=2x+1보다 위쪽에 있는 부분의 x의 값의 범위가 1< x<4일 때, 상수 a,b의 값을 각각 구하여라.

06-5 (변형)

이차함수 $y=2x^2-3x-7$ 의 그래프가 이차함수 $y=x^2+2ax+b$ 의 그래프보다 위쪽에 있는 부분의 x의 값의 범위가 x<-3 또는 x>2일 때, 상수 a, b에 대하여 ab의 값을 구하여라.

06-6 인력

이차함수 $y=mx^2+2x-5$ 의 그래프가 이차함수 $y=x^2+2mx-8$ 의 그래프보다 항상 위쪽에 있을 때, 모든 정수 m의 값의 합을 구하여라.

기출

필수유형 ()7) 제한된 범위에서 항상 성립하는 이차부등식

다음 물음에 답하여라.

- (1) $0 \le x \le 5$ 에서 이차부등식 $x^2 4x + a 1 \ge 0$ 이 항상 성립하도록 하는 실수 a의 값의 범위를 구하여라.
- (2) $0 \le x \le 2$ 에서 이차부등식 $x^2 ax + a^2 4 \le 0$ 이 항상 성립하도록 하는 실수 a의 값의 범위를 구하여라.

풍쌤 POINT

이차항의 계수가 양수인 이차식 f(x)에 대하여

- $\alpha \le x \le \beta$ 에서 이차부등식 f(x) > 0이 항상 성립 \Rightarrow (f(x)의 최솟값) > 0
- $\alpha \le x \le \beta$ 에서 이차부등식 f(x) < 0이 항상 성립 \Rightarrow (f(x)의 최댓값) < 0

풀이 ← (1) STEP1 이차부등식의 조건에 맞는 그래프 그리기

 $f(x) = x^2 - 4x + a - 1$ 이라고 하면

 $f(x) = (x-2)^2 + a - 5$

 $0 \le x \le 5$ 에서 $f(x) \ge 0$ 이 항상 성립 하려면 이차함수 y = f(x)의 그래프는

오른쪽 그림과 같아야 한다.

STEP2 a의 값의 범위 구하기

즉, $f(2) \ge 0$ 이어야 하므로 $a-5 \ge 0$ $\therefore a \ge 5$

- 0 ≤x≤5에서 f(x)≥0이려면
 (f(x)의 최솟값)≥0
 이어야 한다.
- (2) STEP1 이차부등식의 조건에 맞는 그래프 그리기

 $f(x) = x^2 - ax + a^2 - 4$ 라고 하면

 $0 \le x \le 2$ 에서 $f(x) \le 0$ 이 항상 성립 하려면 이차함수 y = f(x)의 그래프가

오른쪽 그림과 같아야 한다. STEP2 α 의 값의 범위 구하기

즉, $f(0) \le 0$, $f(2) \le 0$ 이어야 하므로

(i) $f(0) \le 0$ 에서 $a^2 - 4 \le 0$

$$(a+2)(a-2) \le 0$$
 $\therefore -2 \le a \le 2$

y = f(x) y = f(x) x

(f(x)의 최댓값) ≤ 0 이어야 한다.

(0), f(2)의 대소 관계를 알

② $0 \le x \le 2$ 에서 $f(x) \le 0$ 이 항상

수는 없다. 따라서 f(0) f(2)의 값

성립하려면

따라서 f(0), f(2)의 값이 모두 음수이면 조건을 만족시킨다.

(ii) $f(2) \le 0$ 에서 $4 - 2a + a^2 - 4 \le 0$

 $a^2 - 2a \le 0$, $a(a-2) \le 0$: $0 \le a \le 2$

 \bigcirc , \bigcirc 의 공통부분을 구하면 $0 \le a \le 2$

····· ù

..... ¬

 $(1) a \ge 5$ $(2) 0 \le a \le 2$

풍쌤 강의 NOTE

 $\alpha \le x \le \beta$ 에서 이차부등식 f(x) > 0 또는 f(x) < 0이 항상 성립하려면

- ightharpoonup 이차함수 y=f(x)의 그래프를 그려서 $a \le x \le \beta$ 에서의 f(x)의 최솟값 또는 최댓값의 부호를 확인한다.
- \Rightarrow 꼭짓점의 y좌표 또는 범위의 양 끝 값에서의 함숫값, 즉 $f(\alpha)$, $f(\beta)$ 의 부호를 확인한다.

 $2 \le x \le 4$ 에서 이차부등식 $x^2 - 2x - 3a + 2 > 0$ 이 항상 성립하도록 하는 실수 a의 값의 범위를 구하여라.

07-4 (유사)

 $-1 \le x \le 2$ 에서 이차부등식 $x^2 - 2(a-3)x - a < 0$ 이 항상 성립하도록 하는 실수 a의 값의 범위가 $a < a < \beta$ 일 때. $a\beta$ 의 값을 구하여라.

07-2 인유사

 $3 \le x \le 5$ 인 실수 x에 대하여 이차부등식 $x^2 - 4x - 4k + 3 \le 0$ 이 항상 성립하도록 하는 상수 k의 최솟값을 구하여라.

07-5 ⊚ ਥੋਰੇ

기출

 $1 \le x \le 3$ 에서 이치부등식 $x^2 + a^2 - 5 \le 2x^2 + 6x + a$ 가 항상 성립할 때, 실수 a의 값의 범위를 구하여라.

07-3 ੍ਜਮ

 $-1 \le x \le 3$ 에서 이차부등식 $-x^2 + 4x + a^2 - 20 < 0$ 이 항상 성립하도록 하는 정수 a의 개수를 구하여라.

07-6 인 실력

함수 $f(x)=x^2-4ax+4a+30$ 이 $0\le x\le 4$ 인 어떤 x의 값을 대입해도 f(x)>0이 성립하도록 하는 실수 a의 값의 범위를 구하여라.

필수유형 (18) 이차부등식의 활용

가로의 길이가 30 m, 세로의 길이가 15 m인 직사각형 모양의 땅에 오른쪽 그림과 같이 폭이 x m인 도로를 만들려고 한다. 이때 도로를 제외한 땅의 넓이가 250 m^2 이상이 되도록 하는 도로의 폭의 범위를 구하여라.

풍쌤 POINT

이차부등식의 활용 문제는 다음의 순서로 해결한다.

- 미지수를 정하고, 주어진 조건에 맞게 이차부등식을 세운다.
- ❷ 부등식을 풀어 해를 구한다. 이때 미지수의 범위에 유의한다.

풀이 ◆ ● STEP1 이차부등식 세우기

도로의 폭을 x m라고 하면 도로를 제외한 땅의 넓이는 가로의 길이가 (30-x) m, 세로의 길이가 (15-x) m인 직사각형의 넓이와 같으므로 $^{lacktrel{0}}$

$$(30-x)(15-x) \text{ m}^2$$

폭과 길이가 같을 도로는 도로의 위치와 관계없이 넓이가 일 정하다.

따라서 길은 한쪽으로 몰아서 생각한다.

이 땅의 넓이가 250 m^2 이상이 되어야 하므로

$$(30-x)(15-x) \ge 250$$

STEP2 이차부등식의 해 구하기

$$x^2 - 45x + 200 \ge 0$$

$$(x-5)(x-40) \ge 0$$

STEP3 주어진 조건에 맞는 값 구하기

그런데 0<*x*<15²이어야 하므로

 $0 < x \le 5$

따라서 조건을 만족시키는 도로의 폭의 범위는 0 m 초과 5 m 이하이다.

② 도로의 폭이 가로 또는 세로의 길이보다 작으므로 x는 항상 양 수이고 길이가 짧은 15보다는 작아야 한다.

目 0 m 초과 5 m 이하

이차부등식의 활용 문제에서는 구해야 하는 것이 무엇인지 파악하는 것이 중요하다. 이때 구해야 하는 것이 금액, 길이, 넓이, 부피, 시간 등의 값이면 항상 0보다 크다는 조건을 기억하자.

08-1 인유사)

가로, 세로의 길이가 각각 50 cm, 20 cm인 직사각형 이 있다. 다음 그림과 같이 가로의 길이를 x cm만큼 줄이고 세로의 길이를 x cm만큼 늘여서 만든 직사각 형의 넓이가 600 cm^2 이상이 되도록 하는 x의 최댓값을 구하여라.

08-2 (유사)

한 모서리의 길이가 k cm인 정육면체의 가로의 길이는 3 cm 줄이고, 높이는 6 cm 늘여서 새로운 직육면체를 만들었다. 이때 직육면체의 부피가 정육면체의 부피보다 작게 되도록 하는 모든 자연수 k의 값의 합을 구하여라.

08-3 e 변형

좌표평면 위의 네 점 $A(m, m^2 + 3m + 2)$.

B(m, -2), C(m+2, -2), $D(m+2, m^2+2)$ 에 대하여 사각형 ABCD의 넓이가 28 이하가 되도록 하는 실수 m의 값의 범위를 구하여라.

08-4 ●변형

어느 라면 전문점에서 라면 한 그릇의 가격이 2000원 이면 하루에 200그릇이 판매되고, 라면 한 그릇의 가격을 100원씩 내릴 때마다 하루 판매량이 20그릇씩 늘어난다고 한다. 하루의 라면 판매액의 합계가 442000원이상이 되기 위한 라면 한 그릇의 가격의 최댓값을 구하여라.

08-5 (변형)

지면에서 던져 올린 공이 t초 후에 지면으로부터 y m 높이에 도달한다고 할 때, $y = -6t^2 + 17t$ 의 관계가 성립한다고 한다. 공의 지면으로부터의 높이가 5 m 이상인 시간은 몇 초 동안인지 구하여라.

08-6 인력

올해 어떤 상품의 가격을 x % 올렸더니 판매량이 $\frac{x}{2}$ % 감소하였다. 하지만 매출은 작년 대비 12 % 이상 증가하였다. x의 값의 범위를 $\alpha \le x \le \beta$ 라고 할 때, $\alpha + \beta$ 의 값을 구하여라.

필수유형 0) 연립이차부등식의 풀이

다음 연립부등식을 풀어라.

(1)
$$\begin{cases} x^2 + 10x + 24 \ge 0 \\ x^2 + 4x - 5 \le 0 \end{cases}$$

해 구하기

(2)
$$4x+12 < x^2 \le 10x-21$$

풍쌤 POINT

연립이차부등식은 다음과 같은 순서로 풀어.

각 이차부등식의

구한 해를 수직선 위에 나타내기

구한 해의 공통부분 구하기

풀() ← (1) STEP1 각 이차부등식의 해 구하기

$$x^2+10x+24 \ge 0$$
에서 $(x+6)(x+4) \ge 0$

 \Rightarrow

$$x^2+4x-5 \le 0$$
에서 $(x+5)(x-1) \le 0$

$$\therefore -5 \le x \le 1$$

STEP2 연립부등식의 해 구하기

①, ②을 수직선 위에 나타내면 오른쪽 그림과 같으므로

①. ①의 공통부분을 구하면

(2) STEP1 각 이차부등식의 해 구하기

$$4x+12 < x^2 \le 10x-21$$
에서 $\left\{ \begin{array}{l} 4x+12 < x^2 \\ x^2 \le 10x-21 \end{array} \right.$

 $4x+12 < x^2$ 에서 $x^2-4x-12 > 0$

$$4x+12 < x \le ||x|| x = 4x-12 > 0$$

$$(x+2)(x-6)>0$$
 $\therefore x<-2$ 또는 $x>6$ \cdots \odot 과 같이 풀면 안 된다.

$$\begin{array}{l}
\bullet \begin{cases} 4x + 12 < x^{2} \\ 4x + 12 < 10x - 21 \end{cases} \\
\begin{cases} 4x + 12 < 10x - 21 \\ x^{2} \le 10x - 21 \end{cases}
\end{array}$$

$$x^2 \le 10x - 21$$
에서 $x^2 - 10x + 21 \le 0$

$$(x-3)(x-7) \le 0$$
 $\therefore 3 \le x \le 7$

STEP2 연립부등식의 해 구하기

①. ①을 수직선 위에 나타내면 오른쪽 그림과 같으므로

①. ①의 공통부분을 구하면

 $6 < x \le 7$

 \Box (1) $-4 \le x \le 1$ (2) $6 < x \le 7$

풍쌤 강의

• 연립부등식 ${f(x)>0 \brack g(x)>0}$ 의 풀이는 두 부등식 f(x)>0, g(x)>0의 해를 각각 구한 후, 수직선 위에

나타내어 공통부분을 구한다.

• 부등식 f(x) < g(x) < h(x)는 연립부등식 $\left\{ egin{aligned} f(x) < g(x) \\ g(x) < h(x) \end{aligned}
ight.$ 로 나타낸 후 (1)과 같은 방법으로 푼다.

다음 연립부등식을 풀어라.

(1)
$$\begin{cases} x^2 - x - 2 \le 0 \\ x^2 + 2x - 15 < 0 \end{cases}$$

(2)
$$2x^2 - 4x + 2 \le x^2 + 3x + 10 < 3x^2 - 9x + 26$$

09-2 환자

연립부등식 $\left\{ egin{array}{ll} x^2-x-56\leq 0 \\ 2x^2-3x-2>0 \end{array}
ight\}$ 만족시키는 정수 x의 개수를 구하여라.

09-3 @ 큐사)

부등식 $2x^2 - 4x - 1 \le x^2 + 3x + 7 \le 3x^2 - 11x + 27$ 을 만족시키는 모든 자연수 x의 값의 합을 구하여라.

09-4 ⊚ 변형)

연립부등식 $\left\{ egin{array}{l} x^2+3x-10>0 \\ x^2-7|x|+12\leq 0 \end{array}
ight.$ 때, lphaeta의 값을 구하여라.

09-5 ●변형

a<0일 때, x에 대한 연립부등식 $\left\{ egin{array}{l} (x-a)^2 < a^2 \\ x^2 + a < (a+1)x \end{array}
ight.$ 의 해가 b< x < b+1이다. a+b의 값을 구하여라. (단, a, b는 상수이다.)

09-6 인 실력

연립부등식 $\left\{ egin{array}{ll} x^2+x-12\leq 0 \\ x^2+12\geq 2x^2+4x \end{array}
ight.$ 의 해가 이차부등식 $ax^2+bx+16\geq 0$ 의 해와 같을 때, 상수 a, b에 대하여 a+b의 값을 구하여라.

다음 물음에 답하여라.

- (1) 연립부등식 $\left\{ egin{array}{l} x^2 6x + 8 \geq 0 \\ x^2 (a + 6)x + 6a < 0 \end{array}
 ight.$ 의 해가 $4 \leq x < 6$ 일 때, 실수 a의 값의 범위를 구 하여라
- (2) 연립부등식 $\begin{cases} x^2 6x 7 > 0 \\ x^2 2ax + a^2 4 \le 0 \end{cases}$ 을 만족시키는 정수 x의 값이 8뿐일 때, 실수 a의 값의 범위를 구하여라

풍쌤 POINT

연립부등식을 이루는 각 부등식의 해를 구하고 연립부등식의 주어진 해 또는 해에 대한 조건을 만족시 키도록 각 부등식의 해를 하나의 수직선 위에 나타내 봐!

풀() ← (1) STEP1 각 이차부등식의 해 구하기

$$x^2-6x+8 \ge 0$$
에서 $(x-2)(x-4) \ge 0$

$$\therefore x \le 2$$
 또는 $x \ge 4$

$$x^2 - (a+6)x + 6a < 0$$
에서 $(x-a)(x-6) < 0$ © a 의 값에 따라 해가 달라지므로

- (i) a < 6일 때. a < x < 6
- (ii) a=6일 때, <u>해는 없다.</u> ∵(x-6)²≥0
- (iii) a>6일 때, 6<x<a

6과 9를 비교하여 세 가지 경우 를 생각한다.

STEP2 조건을 만족시키는 a의 값의 범위 구하기

이때 ③. ⓒ의 공통부분이 4≤x<6이 되려면 오른쪽 그림 ◆ ⑤ 과 같아야 하므로 \bigcirc 의 해는 a < x < 6이어야 한다.

따라서 a의 값의 범위는 $2 \le a < 4$

(2) STEP1 각 이차부등식의 해 구하기

$$x^2-6x-7>0$$
에서 $(x+1)(x-7)>0$

$$\therefore x < -1 \, \text{\Xi} \vdash x > 7$$

$$x^2-2ax+a^2-4 \le 0$$
에서 $\{x-(a-2)\}\{x-(a+2)\} \le 0$

$$\therefore a-2 \le x \le a+2$$

STEP2 조건을 만족시키는 a의 값의 범위 구하기

 \bigcirc , \bigcirc 을 동시에 만족시키는 정수 x의 값이 8뿐이려면 오른쪽 그림과 같아야 하므로

$$8 \le a + 2 < 9$$
 : $6 \le a < 7$

 \blacksquare (1) $2 \le a < 4$ (2) $6 \le a < 7$

풍쌤 강의 NOTE

실수 a의 값의 범위를 구할 때 경계가 되는 값의 포함 여부가 헛갈리는 경우에는 그 값을 부등식에 대 입하여 주어진 조건을 만족시키는지 확인한다.

(1)번 문제에서 a=4일 때. \mathbb{Q} 의 해는 4 < x < 6이므로 연립부등식의 해는 $4 \le x < 6$ 을 만족시키지 않 는다.

인 한 학자 전 전 한 학자 전 한 일 때. 실수 a의 값의 범위를 구하여라.

10-2 ⊚ਜਮ)

연립부등식 ${x^2-3x>0 \choose x^2-(a+2)x+2a<0}$ 을 만족시키는 정수 x의 값이 4뿐일 때, 실수 a의 값의 범위를 구하 여라.

10-3 (변형)

x에 대한 두 이차부등식 $x^2 + ax + b \ge 0$. $x^2 + cx + d \le 0$ 을 동시에 만족시키는 x의 값의 범위가 $2 \le x \le 3$, x = 4일 때, 이차부등식 $x^2 + ax - d < 0$ 의 해를 구하여라. (단, a, b, c, d는 상수이다.)

10-4 ● 변형)

두 이차함수

 $f(x) = 3x^2 + ax + b$, $g(x) = x^2 + (b-a)x + b + 5$ 에 대하여 연립부등식 $\left\{egin{aligned} f(x) < 0 \\ arrho(x) \leq 0 \end{aligned}
ight.$ 의 해가 $-1 \leq x < 3$ 일 때, 부등식 4f(x) - 9g(x) < 0을 만족시키는 실수 x의 값의 범위를 구하여라. (단. a. b는 상수이다.)

10-5 ⊚ 변형)

연립부등식 $\begin{cases} 2|x-2| < a \\ x^2 + 8x + 15 < 0 \end{cases}$ 이 해를 갖지 않도록 하 는 양수 a의 값의 범위를 구하여라.

10-6 ● 실력

연립부등식 $\left\{ egin{array}{l} x^2+x-30>0 \\ |x-a|\leq 2 \end{array}
ight.$ 이 항상 해를 갖기 위한 실수 a의 값의 범위를 구하여라.

발전유형 🕕 연립이차부등식의 활용

오른쪽 그림과 같이 가로의 길이가 9 m. 세로의 길이가 5 m인 화단 의 둘레에 폭이 x m인 길을 만들려고 한다. 길의 넓이가 120 m^2 이 상 176 m^2 이하가 되도록 할 때. x의 값의 범위를 구하여라.

9 m ----

화단

 $30 \le x^2 + 7$ $x^2 + 7 \le 44$ $2x \, \mathrm{m}$

풍쌤 POINT

연립이차부등식의 활용 문제는 다음과 같은 순서로 해결한다.

- ① 구하는 것을 x로 놓고, x에 대한 연립부등식을 세운다.
- ② 연립부등식을 풀고 구한 해가 문제의 뜻에 맞는지 확인한다.

풀() ← ⑤ STEP1 길을 한쪽으로 몰아서 식 세우기

오른쪽 그림과 같이 길을 한쪽으로 몰아서 생각하면 길의 넓이는

$$(2x+9)(2x+5)-9\times 5=4x^2+28x(m^2)$$

길의 넓이가 120 m² 이상 176 m² 이하이어야 하므로

$$120 \le 4x^2 + 28x \le 176$$

$$30 \le x^2 + 7x \le 44^{\bullet}$$

STEP 2 연립부등식의 해 구하기

(i) $30 \le x^2 + 7x$ 에서 $x^2 + 7x - 30 \ge 0$

$$(x+10)(x-3) \ge 0$$

$$\therefore x \leq -10 \, \text{\Xi} = x \geq 3$$

그런데 x>0이므로 $x\geq 3$

....

5 m

 $2x \, \mathrm{m}$

(ii) $x^2 + 7x \le 44$ 에서 $x^2 + 7x - 44 \le 0$

$$(x+11)(x-4) \le 0$$
 $\therefore -11 \le x \le 4$

..... (L)

 \bigcirc , \bigcirc 의 공통부분을 구하면 $3 \le x \le 4$

다른 풀이

오른쪽 그림과 같이 길을 네 개의 직사각형으로 나누어 길의 넓 이를 구할 수도 있다.

$$2 \times x(x+9) + 2 \times x(x+5)$$

$$=4x^2+28x(m^2)$$

 $3 \le x \le 4$

풍쌤 강의

금액, 길이, 넓이, 부피, 시간 등은 음의 값을 가질 수 없는 것에 주의한다.

기출

11-1 (유사)

둘레의 길이가 60 m이고, 넓이가 144 m² 이상 216 m² 이하인 직사각형 모양의 화단을 만들려고 한다. 직사각형 모양의 화단의 짧은 변의 길이의 최댓값과 최솟값의 합을 구하여라. (단, 길이의 단위는 m이다.)

11-2 (유사)

길이가 40 cm인 끈으로 직사각형을 만들려고 한다. 넓이를 36 cm^2 이상 75 cm^2 이하로 하려고 할 때, 짧은 변의 길이를 얼마로 하면 되는지 구하여라.

11-3 ● 변형

세 수 x^2 , 3x+1, 2x+10] 삼각형의 세 변의 길이를 나타내도록 하는 정수 x의 개수를 구하여라.

11-4 (변형)

세 변의 길이가 각각 3x-1, x, 3x+1인 삼각형이 둔 각삼각형이 되도록 하는 정수 x의 개수를 구하여라.

11-5 인 실력

다음 그림과 같이 $\overline{AC} = \overline{BC} = 12$ 인 직각이등변삼각형 ABC가 있다. 빗변 AB 위의 점 P에서 변 BC와 변 AC에 내린 수선의 발을 각각 Q, R라고 할 때, 직사각 형 PQCR의 넓이는 두 삼각형 APR와 PBQ의 각각 의 넓이보다 크다. $\overline{QC} = a$ 일 때, 모든 자연수 a의 값의 합을 구하여라.

필수유형 (12) 이차방정식의 근의 판별과 이차부등식

이차방정식 $2x^2-2(a-1)x-a^2+3=0$ 은 실근을 갖고, 이차방정식 $x^2+(a+1)x-a+2=0$ 은 허근을 갖도록 하는 실수 a의 값의 범위를 구하여라.

풍쌤 POINT

계수가 실수인 이차방정식이 서로 다른 두 실근, 중근, 서로 다른 두 허근을 가질 조건은 판별식을 이 용하면 알 수 있어

풀이 $\leftarrow \hat{\bullet}$ STEP1 $2x^2 - 2(a-1)x - a^2 + 3 = 0$ 이 실근을 가질 조건 구하기 이차방정식 $2x^2-2(a-1)x-a^2+3=0$ 의 판별식을 D_1 이라고 하면

$$\frac{D_1}{4} = (a-1)^2 - 2(-a^2 + 3) \ge 0^{\bullet}$$

$$3a^2 - 2a - 5 \ge 0$$

$$(a+1)(3a-5) \ge 0$$

$$\therefore a \le -1$$
 또는 $a \ge \frac{5}{3}$

● 실근을 갖는다는 것은 서로 다 른 두 실근 또는 중근을 갖는 것 이므로 판별식 D가 $D \ge 0$ 이어 야 한다.

STEP2 $x^2 + (a+1)x - a + 2 = 0$ 이 허근을 가질 조건 구하기 이차방정식 $x^2+(a+1)x-a+2=0$ 의 판별식을 D_2 라고 하면

$$D_2 = (a+1)^2 - 4(-a+2) < 0$$

$$a^2 + 6a - 7 < 0$$

$$(a+7)(a-1) < 0$$

$$\therefore -7 < a < 1$$

....(L)

....

STEP3 각 조건의 공통부분 구하기

- ①. ①을 수직선 위에 나타내면 오른쪽 그림과 같으므로
- ①. ①의 공통부분을 구하면

$$-7 < a \le -1$$

 $\blacksquare -7 < a \le -1$

풍쌤 강의 NOTE

계수가 실수인 x에 대한 이차방정식 $ax^2+bx+c=0$ 의 판별식을 D라고 하면

- ① 서로 다른 두 실근을 가질 조건 $\Rightarrow D>0$
- ② 중근(서로 같은 두 실근)을 가질 조건 $\Rightarrow D=0$
- ③ 서로 다른 두 허근을 가질 조건
- $\Rightarrow D < 0$

12-1 《7본》

이차방정식 $x^2+2(k-3)x+k-1=0$ 의 근이 다음 조건을 만족시킬 때. 실수 k의 값의 범위를 구하여라.

- (1) 실근을 갖는 경우
- (2) 허근을 갖는 경우

12-2 인유사)

이차방정식 $x^2 - kx + 1 = 0$ 은 실근을 갖고, 이차방정식 $x^2 + 2kx + 4k + 5 = 0$ 은 허근을 갖도록 하는 실수 k의 값의 범위를 구하여라.

12-3 《변형》

이차방정식 $x^2+2(a-1)x+a^2+2a-3=0$ 은 중근을 갖고, 이차방정식 $x^2-(b+4)x+5a+2b=0$ 은 허근을 가질 때, 자연수 b의 최솟값을 구하여라.

12-4 (변형)

이차방정식 $x^2 + 2\sqrt{2}x - m(m+1) = 0$ 은 실근을 갖고, 이차방정식 $x^2 - (m-2)x + 4 = 0$ 은 허근을 갖도록 하는 실수 m의 값의 범위를 구하여라.

12-5 (변형)

두 이차방정식

기출

 $x^{2}-2ax+5a=0$, $x^{2}+ax-a^{2}+5a=0$

중 적어도 하나가 실근을 가질 때, 실수 a의 값의 범위를 구하여라.

12-6 (변형)

이차방정식 $x^2+4kx+k^2+k=0$ 이 허근을 가질 때, 이 차방정식 $x^2-2kx+k^2+2k+1=0$ 의 근을 판별하여라. (단. k는 실수이다.)

필수유형 🔞 이치방정식의 실근의 부호

이차방정식 $x^2+2(m-1)x+m+5=0$ 의 두 근의 조건이 다음과 같을 때, 실수 m의 값의 범위를 구하여라.

- (1) 두 근이 모두 음수
- (2) 두 근이 서로 다른 부호
- (3) 두 근이 모두 양수

풍쌤 POINT

계수가 실수인 이차방정식이 두 실근을 가질 때, 판별식 D의 값의 부호, 두 근의 합의 부호, 두 근의 곱의 부호를 조사하여 얻은 각 부등식의 공통부분을 찾아야 해.

풀이 • ● STEP1 이치방정식의 판별식 구하기

이차방정식 $x^2+2(m-1)x+m+5=0$ 의 두 근을 α . β 라 하

고, 판별식을 D라고 하면

$$\frac{D}{4} = (m-1)^2 - (m+5)$$

$$=m^2-3m-4=(m+1)(m-4)$$

STEP 2 두 근의 부호에 따른 m의 값의 범위 구하기

(1) 두 근이 모두 음수이므로

$$(i)\frac{D}{4} = (m+1)(m-4) \ge 0^{\bullet}$$

$$\therefore m \le -1$$
 또는 $m \ge 4$

(ii)
$$\alpha + \beta = -2(m-1) < 0$$
 $\therefore m > 1$

(iii)
$$\alpha\beta = m+5>0$$
 $\therefore m>-5$

(i)~(iii)에서 공통부분을 구하면 *m*≥4^②

(2) 두 근의 부호가 서로 다르므로 $\alpha\beta$ <0에서 m+5<0 $\therefore m$ <-5

(3) 두 근이 모두 양수이므로

$$(i)\frac{D}{4} = (m+1)(m-4) \ge 0^{\bullet}$$

$$\therefore m \le -1$$
 또는 $m \ge 4$

(ii)
$$\alpha + \beta = -2(m-1) > 0$$
 $\therefore m < 1$

(iii)
$$\alpha\beta = m+5>0$$
 $\therefore m>-5$

(i)~(iii)에서 공통부분을 구하면 −5<*m*≤−1

① 두 실근 α , β 에 '서로 다른'이라는 조건이 없으면 판별식 D는 $D \ge 0$ 이다.

풍쌤 강의 NOTE

이처방정식 $ax^2+bx+c=0$ (a,b,c는 실수)의 두 실근을 a,β 라 하고, 판별식을 D라고 하면

① 두 실근이 모두 양수 $\Rightarrow D \ge 0$. $\alpha + \beta > 0$. $\alpha \beta > 0$

② 두 실근이 모두 음수 $\Rightarrow D \ge 0$, $\alpha + \beta < 0$, $\alpha \beta > 0$

③ 두 실근이 서로 다른 부호 ⇒ $\alpha\beta$ < 0

이차방정식 $x^2 + 2ax + 2 - a = 0$ 의 두 근의 조건이 다음과 같을 때, 실수 a의 값의 범위를 구하여라.

- (1) 두 근이 모두 음수
- (2) 두 근이 서로 다른 부호
- (3) 두 근이 모두 양수

13-2 (유사)

이차방정식 $x^2+2(k+2)x+(k+4)=0$ 의 두 근이모두 양수가 되도록 하는 실수 k의 최댓값을 구하여라.

13-3 ⊚ ਥੋਰੇ)

x에 대한 이차방정식

 $3x^2 + (a^2 + a - 12)x + a^2 - 16 = 0$

의 두 근의 부호가 서로 다르고 절댓값이 같도록 하는 실수 a의 값을 구하여라.

13-4 (변형)

이처방정식 $x^2 + (a-3)x - a + 1 = 0$ 이 서로 다른 부호의 근을 갖고 두 근의 합이 양수가 되도록 하는 정수 a의 값을 구하여라.

13-5 (변형)

x에 대한 이처방정식 $x^2 - (k^2 - 5k + 4)x - 3k + 6 = 0$ 의 두 근의 부호가 서로 다르고 음수인 근의 절댓값이 양수인 근보다 크도록 하는 실수 k의 값의 범위를 구하여라.

13-6 인 실력

x에 대한 이차방정식 $x^2-2kx+k+6=0$ 의 두 근 중 적어도 하나는 음수가 되도록 하는 실수 k의 값의 범위를 구하여라.

다음 물음에 답하여라.

- (1) 이차방정식 $x^2 2kx + k + 6 = 0$ 의 두 근이 -2보다 클 때. 실수 k의 값의 범위를 구하여라
- (2) 이차방정식 $x^2 (3+k)x + k^2 2k 8 = 0$ 의 두 근 사이에 1이 있을 때, 실수 k의 값의 범위를 구하여라

풍쌤 POINT

이차방정식의 근의 위치가 주어지면 판별식의 부호. 함숫값의 부호. 그래프의 축의 위치를 조사하면 돼.

풀() ← (1) STEP1 조건에 맞는 그래프 그리기

 $f(x)=x^2-2kx+k+6$ 이라고 하면 이차방정식 f(x)=0의 $\mathbf{0} f(x)=(x-k)^2-k^2+k+6$ 두 근이 모두 -2보다 크므로 이차함수 y=f(x)의 그래프는 오른쪽 그림과 같아야 한다.

STEP 2 조건을 만족시키는 k의 값의 범위 구하기 (i) 이차방정식 f(x)=0의 판별식을 D라고 하면

$$\frac{D}{4} = (-k)^2 - (k+6) \ge 0$$

$$k^2-k-6\geq 0$$
, $(k+2)(k-3)\geq 0$

- (ii) f(-2) = 4 + 4k + k + 6 > 0 에서 k > -2
- (iii) 축의 방정식이 x=k이므로 k>-2
- $(i)\sim(iii)$ 에서 공통부분을 구하면 $k\geq 3$
- (2) STEP1 조건에 맞는 그래프 그리기

 $f(x)=x^2-(3+k)x+k^2-2k-8$ 이라고 하면 이차방정식

f(x)=0의 두 근 사이에 1이 있으므로 이차함수 y=f(x)의 그래프는 오른쪽 그림과 같아야 한다.

STEP2 조건을 만족시키는 k의 값의 범위 구하기

즉. f(1) < 0이어야 하므로

$$1-(3+k)+k^2-2k-8<0, k^2-3k-10<0$$

$$(k+2)(k-5) < 0$$
 : $-2 < k < 5$

 \blacksquare (1) $k \ge 3$ (2) -2 < k < 5

풍쌤 강의

이차방정식 $ax^2+bx+c=0$ (a>0)의 판별식을 D라 하고 $f(x)=ax^2+bx+c$ 라고 할 때

① 두 근이 모두 p보다 크다. \Rightarrow $D \ge 0$, f(p) > 0 , $-\frac{b}{2a} > p$ 의 공통부분

② 두 근이 모두 p보다 작다. \Rightarrow $D \ge 0$, f(p) > 0, $-\frac{b}{2a} < p$ 의 공통부분

③ 두 근 사이에 p가 있다. $\Rightarrow f(p) < 0$

다음 물음에 답하여라.

- (1) 이차방정식 $x^2 2kx + 2k + 3 = 0$ 의 두 근이 1 보다 작을 때, 실수 k의 값의 범위를 구하여라.
- (2) 이차방정식 $x^2 2kx + 2k + 3 = 0$ 의 두 근 사이에 2가 있을 때, 실수 k의 값의 범위를 구하여라.

14-2 (유사)

이차방정식 $x^2 + 4px + 4p - 1 = 0$ 의 두 근이 모두 -2보다 크도록 하는 정수 p의 최댓값을 구하여라.

14-3 ﴿ 변형〉

이차방정식 $3x^2 - 2(k-1)x + 3k - 1 = 0$ 의 한 근은 1과 2 사이에 있고 다른 한 근은 2보다 클 때, k의 값의 범위를 구하여라.

14-4 (유사)

x에 대한 이차방정식 $ax^2-3x+a-3=0$ 의 두 근을 a, β 라고 할 때, $-1<\alpha<0$, $1<\beta<2$ 가 되도록 하는 실수 a의 값의 범위를 구하여라.

14-5 (변형)

이차방정식 $x^2 + ax - 8 = 0$ 의 두 근 중에서 한 근만이 이차방정식 $x^2 - 6x + 8 = 0$ 의 두 근 사이에 있도록 하는 실수 a의 값의 범위를 구하여라.

14-6 ● 실력)

기출

두 다항식

$$P(x) = 3x^3 + x + 11, Q(x) = x^2 - x + 1$$

에 대하여 x에 대한 이차방정식

 $P(x)-3(x+1)Q(x)+mx^2=0$ 이 2보다 작은 한 근과 2보다 큰 한 근을 갖도록 하는 정수 m의 개수를 구하여라.

실전 연습 문제

01

두 이차함수 y=f(x), y=g(x)의 그래프가 오 른쪽 그림과 같을 때, 부 등식 $0 < f(x) < \varrho(x)$ 의 해는 $\alpha < x < \beta$ 이다. 이때 $\alpha + \beta$ 의 값은?

③ 12

- ① 10
- (2) 11
- ④ 13
- ⑤ 14

02

x에 대한 부등식 $ax^2 - 4ax + 10a \le 0$ 에 대하여 옳은 것만을 |보기|에서 있는 대로 고른 것은?

⊣보기├──

- ¬. *a*>0이면 해는 없다.
- L. *a*=0이면 해는 1개이다.
- с. *a*<0이면 해는 모든 실수이다.
- ① ¬
- 27, L 37, E
- (4) L. C
- ⑤ 7. L. ㄷ

03 서술형 //

정희는 이차부등식 $ax^2+bx+c<0$ 에서 c를 잘못 보 고 풀었더니 -6 < x < 3의 해가 나왔고. 효빈이는 a를 잘못 보고 풀었더니 x < 2 또는 x > 4의 해가 나왔다. 윤 아는 이 부등식을 바르게 보고 풀었더니 $\alpha < x < \beta$ 의 해 가 나왔다고 할 때, $\alpha + \beta$ 의 값을 구하여라.

(단, a, b, c는 상수이다.)

04

이차부등식 $(a-1)x^2+4x+a+2>00$ 해를 갖도록 하는 정수 a의 최솟값을 구하여라.

05

이차함수 $f(x)=x^2-2ax+9a$ 에 대하여 이차부등식 f(x) < 0을 만족시키는 해가 없도록 하는 정수 a의 개 수는?

- ① 9
- ② 10
- ③ 11

- (4) 12
- (5) 13

06

기축

모든 실수 x에 대하여 $\sqrt{(k+1)x^2-(k+1)x+5}$ 의 값이 실수가 되게 하는 정수 k의 개수를 구하여라.

09

기출

 $-1 \le x \le 1$ 에서 이차부등식 $x^2 - 2x + 3 \le -x^2 + k$ 가 항상 성립할 때, 실수 k의 최솟값을 구하여라.

07

이차함수 $y=x^2+7x+a$ 의 그래프가 직선 y=x+3보다 아래쪽에 있는 부분의 x의 값의 범위가 b<x<1일때, a-b의 값을 구하여라. (단. a는 상수이다.)

1 서술형 //

오른쪽 그림과 같은 직 각삼각형 ABC에서 직 각을 낀 두 변의 길이의 합은 13 cm이다.

 $\overline{AB} = x$ cm라고 할 때, 삼각형 ABC의 넓이가 11 cm^2 이상이 되도록 하는 x의 값의 범위를 구하여라.

80

부등식 $x^2-7x+10<0$ 을 만족시키는 모든 실수 x에 대하여 이치부등식 $x^2-2x+k^2-3>0$ 이 성립하도록 하는 실수 k의 값의 범위는 $k\le \alpha$ 또는 $k\ge \beta$ 이다. 두 상수 α , β 에 대하여 $\alpha\beta$ 의 값은?

- \bigcirc -1
- (2) -2
- $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$

- (4) 4
- (5) -5

11

7출

연립부등식 $\left\{ egin{array}{ll} |x-1| \leq 3 \\ x^2 - 8x + 15 > 0 \end{array}
ight\}$ 만족시키는 정수 x으 개수는?

- ① 1
- 2 2
- ③ 3

- (4) 4
- (5) **5**

12

두 부등식 $x^2-4x>0$, $2x^2+(4a+3)x+6a<0$ 을 동 시에 만족시키는 정수인 해가 x=-1뿐일 때, 실수 a의 값의 범위를 구하여라.

13

다음 조건을 모두 만족시키는 정수 t의 개수는?

- (개) 이차부등식 $6tx^2 2tx + 1 \ge 0$ 이 모든 실수 x에 대하여 성립한다.
- (내) 이차방정식 $x^2+2(t-4)x+1=0$ 은 서로 다른 두 근이 모두 양수이다.
- ① 0
- ② 1
- (3) 2

- (4) 3
- (5) 4

14 서술형 //

x에 대한 이차방정식 $x^2-kx+k(k-2)=0$ 의 두 실 근을 a, β 라고 할 때, $a^2+\beta^2$ 의 최솟값을 구하여라.

(단, k는 상수이다.)

15

이차방정식 $x^2-2(a+1)x+2a-3=0$ 의 한 근이 -3과 -1 사이에 있고, 다른 한 근은 2와 4 사이에 있도록 하는 실수 a의 값의 범위를 구하여라.

16

폭이 40 cm인 철판의 양쪽을 구부려 단면이 등변사다 리꼴 모양인 물받이용 통의 밑면과 옆면을 만들었다. 이때 옆면의 폭은 x cm이고, 단면의 윗변의 길이는 아랫 변의 길이보다 옆면의 폭만큼 길다고 한다. 단면의 넓이가 $100\sqrt{3} \text{ cm}^2$ 이하가 되도록 하려면 x의 값의 범위를 얼마로 해야 하는지 구하여라. (단. x>3)

상위권 도약 문제

01

기출

이차항의 계수가 음수인 이차함수 y=f(x)의 그래프와 직선 y=x+1이 두 점에서 만나고 그 교점의 y좌표가 각각 3과 8이다. 이때 이차부등식 f(x)-x-1>0을 만족시키는 모든 정수 x의 값의 합은?

- ① 14
- ⁽²⁾ 15
- ③ 16

- 4 17
- ⑤ 18

02

다음 조건을 만족시키는 이차함수 f(x)에 대하여 f(3)의 최댓값을 M, 최솟값을 m이라고 할 때, M-m의 값은?

(가) 부등식
$$f\left(\frac{1-x}{4}\right) \le 0$$
의 해가 $-7 \le x \le 9$ 이다.

- (나) 모든 실수 x에 대하여 부등식 $f(x) \ge 2x \frac{13}{2}$ 이 성립한다.
- ① $\frac{7}{4}$ ② $\frac{11}{6}$
- $3\frac{23}{12}$

- 4) 2

03

이처함수 $y=x^2+(2k+1)x+k+7$ 의 그래프가 직선 y=x+1과 제1사분면의 서로 다른 두 점에서 만나기 위한 조건이 $\alpha < k < \beta$ 이다. 이때 $\alpha\beta$ 의 값은?

- $\bigcirc 12$
- (2) 9
- ③ 3

- **4** 9
- (5) 12

04

그림과 같이 일직선 위의 세 지점 A. B. C에 같은 제 품을 생산하는 공장이 있다. A와 B 사이의 거리는 10 km, B와 C 사이의 거리는 30 km, A와 C 사이의 거리는 20 km이다. 이 일직선 위의 A와 C 사이에 보 관창고를 지으려고 한다. 공장과 보관창고와의 거리가 x km일때. 제품 한 개당 운송비는 x^2 원이 든다고 한 다. 세 지점 A. B. C의 공장에서 하루에 생산되는 제품 이 각각 100개, 200개, 300개일 때, 하루에 드는 총 운 송비가 155000원 이하가 되도록 하는 보관창고는 A지 점에서 최대 몇 km 떨어진 지점까지 지을 수 있는가? (단, 공장과 보관창고의 크기는 무시한다.)

-----20 km ----

- ① 9 km
- ② 11 km
- ③ 13 km

- ④ 15 km
- ⑤ 17 km

05

기출

x에 대한 이차부등식 $(2x-a^2+2a)(2x-3a)\leq 0$ 의 해가 $\alpha \le x \le \beta$ 이다. 두 실수 α . β 가 다음 조건을 만족 시킬 때, 모든 실수 a의 값의 합을 구하여라.

(7) $\beta - \alpha$ 는 자연수이다.

(내) $\alpha \le x \le \beta$ 를 만족시키는 정수 x의 개수는 3이다.

06

x에 대한 연립부등식 $\left\{ egin{array}{ll} 15x^2 > 2x + 1 \\ x^2 - (3+a)x + 3a < 0 \end{array}
ight.$ 에 대하

여 보기에서 옳은 것만을 있는 대로 고른 것은?

(단. a는 실수이다.)

⊣보기⊢

- $\neg . a = 3$ 이면 주어진 연립부등식을 만족시키는 실 + x가 존재하지 않는다.
- ㄴ. 5< a≤6이면 주어진 연립부등식을 만족시키 는 정수 *x*의 값이 3, 4뿐이다.
- \Box . 주어진 연립부등식을 만족시키는 정수 x의 값 이 -1, 1, 2만 존재하도록 하는 실수 a의 값의 범위는 $-2 \le a < -1$ 이다.
- (1) ¬
- ② L ③ ¬, L
- 4 7, E
- 5 7. L. E

07

기출

x에 대한 연립부등식 $\left\{egin{array}{l} x^2-a^2x\geq 0 \\ x^2-4ax+4a^2-1<0 \end{array}
ight.$

시키는 정수 x의 개수가 1이 되기 위한 모든 실수 a의 값의 합은? (단. $0 < a < \sqrt{2}$)

- ① $\frac{3}{2}$ ② $\frac{25}{16}$ ③ $\frac{13}{8}$
- $4\frac{27}{16}$ $5\frac{7}{4}$

08

기출

다음 그림과 같이 이차함수

 $f(x) = -x^2 + 2kx + k^2 + 4 (k > 0)$ 의 그래프가 y축 과 만나는 점을 A라 하자. 점 A를 지나고 x축에 평행한 직선이 이차함수 y=f(x)의 그래프와 만나는 점 중 A 가 아닌 점을 B라 하고, 점 B에서 x축에 내린 수선의 발 을 C라고 하자. 사각형 OCBA의 둘레의 길이는 g(k)라고 할 때, 부등식 $14 \le g(k) \le 78$ 을 만족시키는 모든 자연수 k의 값의 합을 구하여라. (단. O는 원점이다.)

