Multi-Objective Reinforcement Learning using Sets of Pareto Dominated Policies

Hasan Mert Gökalp

December 12, 2022

Overview

- Introduction
- Reinforcement Learning
 - Background
 - Single-objective
 - Multi-Objective
- Pareto Q-Learning
 - Algorithm
 - Set Evaluation Mechanisms
 - Tracking a Policy

Introduction

- Many real-life problems involve dealing with multiple objectives.
- No single optimal solution
- We want to obtain the best trade-off solutions(pareto front)
- Single-policy algorithms and multi-policy algorithms
- Reinforcement learning for multi-objective problems.

Markov Decision Process A Markov decision process is a 4-tuple (S, A, T_a, R_a) where:

- $S = (s_1, ..., s_N)$ the state space
- $A = (a_1, ..., a_r)$ the action set
- T(s'|s,a) the transition probability
- R(s,a) the expected immediate reward

Policies

- ullet The goal is to learn a deterministic stationary policy π
- The state-dependent value function:

$$V^{\pi}(s) = E_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} | s_{t} = s\right]$$

• The action value function: $Q^{\pi}(s,a)$ stores the expected return starting from state s, taking action a, and thereafter following π again

Q-Learning

• The optimal Q^* -values:

$$Q^*(s, a) = R(s, a) + \gamma \sum_{s'} T(s' \mid s, a) \max_{a'} Q^*(s', a)$$

• Each entry contains a value for $\hat{Q}(s,a)$ which is the learner's current estimate about the actual value of $Q^*(s,a)$

$$\hat{Q}(s, a) \leftarrow (1 - \alpha_t) \, \hat{Q}(s, a) + \alpha_t \left(r + \gamma \max_{a'} \hat{Q}(s', a') \right)$$

Algorithm 1 Single-objective Q-learning algorithm

- 1: Initialize $\hat{Q}(s, a)$ arbitrarily 2: **for** each episode t **do**
- 3: Initialize s
- 4: repeat
- 5: Choose a from s using a policy
- 6: Take action a and observe s'

7:
$$\hat{Q}(s, a) \leftarrow (1 - \alpha_t) \hat{Q}(s, a) + \alpha_t \left(r + \gamma \max_{a'} \hat{Q}(s', a') \right)$$

- 8: $s \leftarrow s'$
- 9: **until** s is terminal
- 10: end for

Multi Objective

• In the case of MORL, MDP provide a vector of rewards

$$R(s, a) = (R_1(s, a), ...R_m(s, a))$$

• the state-dependent value function of a state s is vectorial

$$V^{\pi}(s) = E_{\pi}[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} | s_{t} = s]$$

 Since the environment now consists of multiple objectives, different policies can be optimal w.r.t. different objectives

Pareto front

Definition

A policy π_1 is said to strictly dominate another solution π_2 , that is $\pi_2 \prec \pi_1$, if each objective in V^{π_1} is not strictly less than the corresponding objective of V^{π_2} and at least one objective is strictly greater. A policy π is Pareto optimal if V^{π} either strictly dominates or is incomparable with the value functions of the other policies. The set of Pareto optimal policies is referred to as the Pareto front.

Single-policy Algorithms

Most approaches of reinforcement learning on multi-objective tasks rely on single-policy algorithms

• employ scalarization functions

$$v_w = f(v, w)$$

ullet scalar \hat{Q} -values are extended to \hat{Q} -vectors

$$\hat{Q}(s,a) = (\hat{Q}_1(s,a),...\hat{Q}_m(s,a))$$

ullet scalarization of \hat{Q} vector for using traditional strategies:

$$\hat{SQ}(s,a) \leftarrow f(\hat{Q}(s,a),w)$$

Scalarization Algorithms

Selecting an action in a certain state of the environment

Algorithm 2 Scalarized ϵ -greedy strategy

- 1: $SQList \leftarrow \{\}$
- 2: for each action a in A do
- 3: $v \leftarrow \hat{Q}_1(s, a), ..., \hat{Q}_m(s, a)$
- 4: $\hat{SQ}(s,a) \leftarrow f(v,w)$
- 5: Append $\hat{SQ}(s, a)$ to SQList
- 6: end for
- 7: **return** ϵ -greedy(SQList)

Algorithm 3 Scalarized multi-objective Q-learning algorithm

```
1: Initialize \hat{Q}_o(s, a) arbitrarily
 2: for each episode t do
          Initialize state s
 3:
          repeat
 4:
              Choose action a from s using the policy derived from \hat{SQ}-values
 5:
              Take action a and observe s'
 6:
              a' \leftarrow greedy(s')
 7:
              for each objective o do
 8.
                   \hat{Q}_{o}(s, a) \leftarrow (1 - \alpha_{t}) \hat{Q}_{o}(s, a) + \alpha_{t} \left(r + \gamma \hat{Q}_{o}(s', a')\right)
 g.
              end for
10:
              s \leftarrow s'
11:
12:
          until s is terminal
13: end for
```

Multi-Policy MORL

- In contrast to single-policy MORL, multi-policy algorithms do not reduce the dimensionality of the objective space but aim to learn a set of optimal solutions at once
- dynamic programming (DP) function:

$$\hat{Q}_{\mathsf{set}}(s, a) = \mathsf{R}(s, a) \oplus \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}\left(s' \mid s, a\right) \, V^{\mathsf{ND}}\left(s'\right)$$

 The ND operator is a function that removes all Pareto dominated elements of the input set and returns the set of non-dominated elements

$$V^{ND}\left(s'\right) = ND\left(\cup_{a'}\hat{Q}_{\mathsf{set}}\left(s', a'\right)\right)$$

Pareto Q-Learning

- Assumption:Problem is episodic
- It does not assume any model
- 3 set evaluation mechanisms
- The set-based bootstrapping problem(lack of correspondence)
- Learning Immediate And Future Reward Separately
- $\bar{\Re}(s,a) :=$ average observed immediate reward vector of (s, a) $ND_t(s,a) :=$ set of non-dominated vectors in the next state of s that is reached through action a at time step t.

$$\hat{Q}_{set}(s, a) \leftarrow \bar{\Re}(s, a) \oplus \gamma \textit{ND}_t(s, a)$$

Pareto Q-Learning

Algorithm 4 Pareto Q-learning algorithm

- 1: Initialize $\hat{Q}_{set}(s, a)$'s as empty sets
- 2: for each episode t do
- 3: Initialize state s
- 4: repeat
- 5: Choose action a using a policy derived from the $\hat{Q}_{set}(s, a)$'s
- 6: Take action a and observe state s' and reward vector r

7:
$$ND_t(s, a) \leftarrow ND\left(\bigcup_{a'} \hat{Q}_{set}\left(s', a'\right)\right)$$

8:
$$\bar{\Re}(s,a) \leftarrow \bar{\Re}(s,a) + \frac{\mathbf{r} - \bar{\Re}(s,a)}{n(s,a)}$$

- 9: $s \leftarrow s'$
- 10: **until** s is terminal
- 11: end for

Set Evaluation Mechanisms

- The hypervolume measure is a quality indicator that evaluates a particular set of vectorial solutions by calculating the volume with respect to its elements and a reference point
- The only quality indicator to be strictly monotonic with the Pareto dominance relation

Algorithm 5 Hypervolume Q_{set} evaluation

- 1: Retrieve current state s
- 2: evaluations = { }
- 3: for each action a do
- 4: $hv_a \leftarrow HV(\hat{Q}_{set}(s,a))$
- 5: Append hv_a to evaluations
- 6: end for
- 7: return evaluations

Set Evaluation Mechanisms

- consider the number of Pareto dominating \hat{Q} -vectors of the \hat{Q} -set of each action
- the action that relates to the largest number of Pareto dominating Q[^]
 -vectors over all actions in s is selected.

Algorithm 6 Cardinality Q_{set} evaluation

- 1: Retrieve current state s
- 2: $allQs = \{ \}$
- 3: for each action a in s do
- 4: **for** each \hat{Q} in $\hat{Q}_{set}(s, a)$ **do**
- 5: Append $[a, \hat{Q}]$ to all Qs
- 6: end for
- 7: **end for** $NDQs \leftarrow ND(allQs)$
- 8: return NDQs

Tracking a Policy

 one needs to select actions consistently in order to retrieve a desired policy

Algorithm 7 Track policy given the expected reward vector

```
1: target \leftarrow V^{\pi}(s)
 2: repeat
         for each a in A do
 3:
             Retrieve \Re(s,a)
 4.
 5:
              Retrive ND_t(s, a)
             for each Q in ND_t(s, a) do
 6:
                  if \gamma Q + \bar{\Re}(s, a) = \text{target then}
 7:
                       s \leftarrow s' : T(s'|s,a) = 1
 8:
                       target \leftarrow Q
 9:
                  end if
10:
             end for
11:
         end for
12:
```