Bridges

What are bridges?

Bridges in ngspice define the transitions between the analog and digital domain. There are three different types of bridges:

Bridge Type	Purpose	Description
dac_bridge	Digital-to- Analog	Node bridge at outputs of digital blocks
adc_bridge	Analog-to- Digital	Node bridge at inputs of digital blocks
bidi_bridg e	Bidirectional	Allows two-way communication between analog and digital domains

These bridges have a variety of configurable parameters, such as trigger voltage levels, rise/fall times and delays.

Automatically placed Bridges

By default, ngspice inserts some bridges automatically between analog and digital domains based on the circuit topology. The default bridges are:

- Digital-to-Analog: .model auto_dac dac_bridge(out_low = 0 out_high = 'VCC')
- Analog-to-Digital: .model auto_adc adc_bridge(in_low = 'VCC/2' in_high = 'VCC/2')
- Bidirectional: .model auto_bidi bidi_bridge(out_high='VCC' in_low='VCC/2' in_high='VCC/2')

But they can be overwritten. I suggest using bidirectional bridges for all of them, since they have the most flexible parameters. You can change the default bridges as follows:

```
.model adc_buff_clk adc_bridge(in_low = 'vdd/2' in_high = 'vdd/2')
.control
.model adc_buff_clk adc_bridge(in_low='vdd/2' in_high='vdd/2')

.control
pre_set auto_bridge_d_out =
+ ( \".model auto_bridge_out bidi_bridge(direction=0 out_high='vdd' t_rise=0.2n t_fall=0.2n)\"
+ \"auto_bridge_out%d [ %s ] [ %s ] null auto_bridge_out\" )
pre_set auto_bridge_d_in =
+ ( \".model auto_bridge_in bidi_bridge(direction=1 in_low='vdd/3' in_high='vdd/3*2')\"
+ \"auto_bridge_in%d [ %s ] [ %s ] null auto_bridge_in\" )
.endc
```

This defines the following models:

- auto_bridge_out: A bidirectional bridge for analog-to-digital conversion.
- auto_bridge_in : A bidirectional bridge for digital-to-analog conversion.
- adc_buff_clk: A bridge for clock signals in ADCs. If you have a hysteresis on the digital
 inputs, your signal may be undefined for some duration of the clock edge. Since one may not
 want this behavior in their clock inputs, we define a bridge model specifically for clock inputs.

Manually placing Bridges

Bridges can also be placed manually. The components for the bridges are located in the generic library and are called <code>adc_bridge.sym</code> and <code>dac_bridge.sym</code>.

We can take our clock buffer above as an example. Place the <code>adc_bridge.sym</code> directly in front of the clock pin of a digital design. Double-click on the bridge and change the model from <code>adc_buff</code> to <code>adc_buff_clk</code> . Now, the clock input should use the properties as described in the

adc_buff_clk model.

