UQ Version of 'openbeacon-tracker'

Packet Formats: Tag-to-Reader formats

Protocol BEACONTRACKER (0x18) Packet Format

Protocol PROXREPORT_EXT (0x46) Packet Format

This remainder of this document details the data structures used in the Redis database.

Reader Statistics

KEY: reader:<reader_id>
EXAMPLE: reader:130.102.86.87

This structure is used to record data about each reader in the Openbeacon network. At this stage, it is just statistical information. The static information about each reader is held separately (for now).

reader: <reader_id></reader_id>	hash
reader_id	 <reader_id></reader_id>
tag_id	<tag_id></tag_id>
sighting_count	integer
reader_name	string
description	JSON string
x	integer
у	integer
crc_ok	integer
crc_error	integer
last_seen	time

reader_id The id of the reader for this sighting. Uses the IP

address, e.g., 130.102.86.87

tag_id The id of the tag sighted by the reader, unique to each

tag, e.g., 1122.

sighting_count This is a counter, used to generate a unique key when we

enter the signal strength the tag transmitted with.
Remember, nRF24L01+ chips do not supply RSSI. The solution is to have the tag transmit four separate messages each at a different power level. We record the level of the received message in an ordered set, where the score is the timeout on the life of the reading. The id of the entry is the sighting_count, as we may have more than one sighting in the same time period (not observed in

practice though).

reader name This is a printable name of the reader, rather than its IP

address, e.g., 'openbeacon1' or 'marksOffice'.

description This is a string contain JSON data, whatever you want

here. The end application can make use of the data, but

not this particular application.

x X-coordinate of the reader, based on some external

mapping.

y Y-coordinate of the reader, based on some external

mapping.

crc_ok Count of the number of valid packets received by this

reader.

crc_error Count of the number of invalid packets (including CRC

errors) sighted by this reader.

last_seen Last time this reader sighted anything. This was used in

the original system in conjunction with the timeout

READER_TIMEOUT_SECONDS (default value of 60*15 seconds) to remove the reader the 'reader_list, and so

suppress any reporting.

The 'crc_ok' and 'crc_error' allow us to calculate packet statistics, of a sort. 'crc_error' records both the packet which cannot be decoded and the decoded packet which has a checksum error. The XXTEA algorithm does not give an error while decoding unless there are invalid characters in the string to be decoded - these are what we count here and call 'CRC errors'. These sort of errors were not observed with anywhere near the frequency as the CRC errors.

Typical calculation:

Percent CRC errors = crc_error / (crc_ok + crc_error) * 100

KEY: reader list

EXAMPLE: [reader:130.102.86.87 1373240802, reader:130.102.86.141 1373240822]

EXPIRES: READER_TIMEOUT_SECONDS via helper process

zset
expire_time_1
expire_time_2
expire_time_3

reader_i This is a set of all the readers defined as in use by the

system, regardless of how long since a reader was last sighted, i.e., it is a static set. reader_ids take the form of

IP addresses, e.g., 130.102.86.87

expire_time_i Time at which reader_i is to move from this list to the

'unsighted_reader' list.

KEY: unsighted reader list

EXAMPLE: [reader:130.102.86.87 1373240902, reader:130.102.86.141 1373240922]

EXPIRES: 10 * **READER_TIMEOUT_SECONDS** via helper process

	zset
expire_time_1	
expire_time_2	
expire_time_3	J
	expire_time_2

reader_i This is the reader_id of an unsighted tag,, e.g.,

130.102.86.87

expire_time_*i* Time at which reader_*i* is to move from 'unsighted_reader'

list permanently. NOTE: For now, let's never do this!!!

Reader-Tag Relationships

KEY: reader:<reader_id>:tag:<tag_id> EXAMPLE: reader:130.102.86.87:tag:1122

EXPIRES: READER_TIMEOUT_SECONDS (default: 60*15), software determined

reader_id The id of the reader for this sighting. Uses the IP

address, e.g., 130.102.86.87

tag_id The id of the tag sighted by the reader, unique to each

tag, e.g., 1122.

sighting_count This is a counter, used to generate a unique key when we

enter the signal strength the tag transmitted with. Remember, nRF24L01+ chips do not supply RSSI. The solution is to have the tag transmit four separate

messages each at a different power level. We record the level of the received message in an ordered set, where the score is the timeout on the life of the reading. The id of the entry is the sighting_count, as we may have more than one sighting in the same time period (not observed in

practice though).

KEY: reader:<reader_id>:tag:<tag_id>:strength:<0..3>

EXAMPLE: reader:130.102.86.141:tag:975:strength:3

ENTRY EXAMPLE: [10023 1373240802, 10026 1373240842] EXPIRES: MAX_AGGREGATION_SECONDS via helper process.

There are four of these strings (ending in 0 to 3) for each reader-tag pair. This structure records the number of sightings that have been made in the current time window. After MAX_AGGREGATION_SECONDS, each sighting is deleted.

The number of sightings in the current time window is given by the cardinality of each set (ZCARD) for each transmit power ('strength').

reader: <reader_id>:tag:<tag_id>:</tag_id></reader_id>	strength:<03> zset
sighting_1	expire_time1
sighting_2	expire_time1
sighting_3	expire_time1

sighting_1 This is a unique identifier, generated from the corresponding 'sighting_count' held in the reader-tag pair record. Each 'sighting_n' is unique, as we may have more than one sighting from the same tag expire at the same time (due to the granularity of the expire_time value).

expire_time_1 The time at which the sighting expires and is removed from the ordered set, e.g., 1373240802.

KEY: reader_tag_list

This is an ordered set of all the reader-tag pairs that are currently active; reader-tag pairs that have not been active for MAX_AGGREGATION_SECONDS are removed from this ordered set.

reader_tag_list	zset
reader: <reader_id1>:tag:<tag_id1></tag_id1></reader_id1>	expire_time1
reader: <reader_id2:tag:<tag_id1></reader_id2:tag:<tag_id1>	expire_time1
reader: <reader_id2>:tag:<tag_id2></tag_id2></reader_id2>	expire_time2

KEY: tag_id:<tag_id>

EXAMPLE: tag:1112

This records all the information about a tag that is in current use. Tags that have not been sighted for RESET_TAG_POSITIONS_SECONDS are removed.

tag: <tag_id></tag_id>	hash
tag_id	dag_id>
last_reader_id	<reader_id></reader_id>
last_reader_statistics	<time></time>
last_seen	<time></time>
seq_number	<integer></integer>
last_reftag_id	<tag_id></tag_id>

tag_id The id of the tag (duplicate from the key for ease of use),

e.g., 1112

last_reader_id last reader to sight this tag, e.g., 130.102.86.87

last seen This is the time this tag was last seen by a reader or a

reference tag. Somewhat obsolete now that we age out the records with a helper process, which searches the tag_list ordered set every 200 ms for entries to remove

(well, to move to the 'unsighted_tags_list').

description This is a string contain JSON data, whatever you want

here. The end application can make use of the data, but

not this particular application.

seg number Records the sequence number of the meesage reporting

the sighting. Not used in any UQ project at the moment.

last_reftag_id The ID of the last reference tag to sight this tag.

KEY: tag: <tag_id>:power:<strength>:reader EXAMPLE: tag:1112:power:1:reader</strength></tag_id>
tag: <tag_id>:power<strength>:reader string</strength></tag_id>
<reader_id></reader_id>
KEY: tag: <tag_id>:power:<strength>:count EXAMPLE: tag:1112:power:1:count</strength></tag_id>
tag: <tag_id>:power<strength>:count string</strength></tag_id>
<integer></integer>
These two keys are used to record the information about the 'nearest' reader at each transmission level; the nearest reader should be able to hear the signal at the lowest level, so the count should be greatest for that reader.
KEY: tag: <tag_id>:button KEY:tag:1122:button EXPIRES: TAGSIGHTING_BUTTON_TIME_SECONDS by Redis key xpire</tag_id>
This key is set when the button on a badge is pressed. It remains present for TAGSIGHTING_BUTTON_TIME_SECONDS and is then expired.
tag: <tag_id>:button string</tag_id>

KEY: tag_list

EXAMPLE: [1112 1373240902, 1122 1373240922]

EXPIRE: MAX_AGGREGATION_SECONDS via helper process

tag_id_i This is the tag_id of a tag,, e.g., 1112

expire_time_i Time at which tag_id_i is to move to the 'unsighted_tag_

list'.

KEY: unsighted_tag_list

EXAMPLE: [1112 1373240902, 1122 1373240922]

EXPIRE: REMOVE_UNSIGHTED_TAGS_SECONDS via helper process

Tags are permanently removed from any list by this time. Is a tag is re-sighted before expiration, then the tag_id needs to be removed from this list and a new entry made in the 'tag_list'.

tag_list	zset
tag_id_1	expire_time_1
tag_id_2	expire_time_2
tag_id_3	expire_time_3

tag_id_i This is the tag_id of a tag,, e.g., 1112

expire_time_i Time at which tag_id_i is to move to the 'unsighted_tag_

list'.

PROXIMITY INFORMATION

On a side channel, the tags broadcast their identity and listen for other badges nearby. The tags have a much smaller and weaker antenna, so can only do this over a short range, as opposed to the lang range detection that readers can perform.

KEY: prox:tag_id_1>:<tag_id_2> EXAMPLE: prox:1112:1122

tag1_id The id of the tag sighted by this tag. The tags IDs are

ordered in the key, with the lowest ID first, e.g., 1112.

tag2_id The id of the tag sighted by the first tag, with the larger ID

second, e.g., 1122.

sighting_count This is a counter, used to generate a unique key when we

enter the signal strength reported between the tags.

KEY: proximity_list

EXAMPLE: [prox:975:1127, prox:1112:1122]

This ordered set contains the set of all currently active pairs of tags reporting proximity relationships. Proximity keys are valid only for PROXAGGREGATION_TIME, after which they are removed from the set. The expiry time is used as the score used to order the items.

prox_key_i This is the key identify the two tags which reported a

proximity sighting.

expire_time*i* This is the time at which the sighting will expire, unless a

new sighting occurs which restarts the expiry time.

KEY: prox:<tag_id_1>:<tag_id_2>:strength:<0..3>

EXAMPLE: prox:975:1127:strength:1

This ordered set records the most recent sighting strengths. Sightings older than PROXAGGREGATION_TIME are removed from the set. The number of sightings at a particular strength is given by the cardinality of the ordered set (ZCARD)

	zset
expire_time1	
expire_time2	
expire_time3	J
	expire_time1 expire_time2

sighting_1 This is a unique identifier, generated from the corresponding 'sighting_count' held in the proximity-tag pair record. Each 'sighting_n' is unique, as we may have more than one sighting from the same tag expire at the same time (due to the granularity of the expire_time

value).

expire_time_1 The time at which the sighting expires and is removed from the ordered set, e.g., 1373240802.

These entries take the form of KEY:<sighting><expire_time_score>, e.g., [10023 1373240902, 10024 1373240922]

REFERENCE TAGS

The UQ version of the Openbeacon system introduces the concept of Reference Tags. Reference tags are normal tags placed around a space, but the tags do not move. These tags report any tags that are then 'proximate'. A typical use would be to put tags on paintings in an art gallery and then record the time spent at each painting (the dwell time) and the number of distinct visitors to each painting; this information can then be used to rank the popularity of each painting, which may then suggest an alternative layout of paintings in the gallery.

KEY: reftag:<tag_id>

reftag: <reftag_id>-</reftag_id>	hash
reader_id	<reader_id></reader_id>
tag_id	<tag_id></tag_id>
sighting_count	integer
reader_name	string
description	JSON string
x	integer
у	integer
crc_ok	integer
crc_error	integer
last_seen	time

reader_id The id of the reference tag for this sighting. Uses the ID

of the reference tag, e.g., 954

tag_id The id of the tag sighted by the reference tag, unique to

each tag, e.g., 1122.

sighting_count This is a counter, used to generate a unique key when we enter the signal strength the tag transmitted with.

Remember, nRF24L01+ chips do not supply RSSI. The solution is to have the tag transmit four separate messages each at a different power level. We record the level of the received message in an ordered set, where the score is the timeout on the life of the reading. The id of the entry is the sighting_count, as we may have more than one sighting in the same time period (not observed in

practice though).

reader_name This is a printable name of the reference tag, rather than

its IID, e.g., 'frontdoorsouth' or 'marksOffice'.

description This is a string contain JSON data, whatever you want

here. The end application can make use of the data, but

not this particular application.

x X-coordinate of the reference tag, based on some

external mapping.

y Y-coordinate of the reference tag, based on some external

mapping.

crc_ok Count of the number of valid packets received by this

reference tag. NOTE: we can't measure 'crc_error', because this is only performed by readers, and not in

proximity sightings.

last_seen Last time this reference tag was sighted anything. In

terms of readers, this was used in the original system in

conjunction with the timeout

READER_TIMEOUT_SECONDS (default value of 60*15 seconds) to remove the reader the 'reader_list, and so

suppress any reporting.

KEY: reftag_list

EXAMPLE: [reftag:975 1373240902, reftag:1112, 1373240922] EXPIRED: MAX_AGGREGATION_SECONDS by a helper process

The reftag_list is an ordered set containing all the currently active reftags. Reftags which have not been sighted for more than MAX_AGGREGATION_SECONDS are removed from this list and placed in the 'unsighted_reftag_list'.

reftag_list		zset
reftag_key_1	expire_time1	
reftag_key_2	expire_time1	
reftag_key_3	expire_time2	J

reftag_key_i This is a set of all the reference tags defined as in use by

the system, e.g., 954.

expire_time_i Time at which reftag_i is to move from this list to the

'unsighted_reader' list.

KEY: unsighted_reftag_list

EXAMPLE: [reftag:975 1373240902, reftag:1112, 1373240922] EXPIRED: READER_TIMEOUT_SECONDS by a helper process

The reftag_list is an ordered set containing all the currently active reftags. Reftags which have not been sighted for more than MAX_AGGREGATION_SECONDS are removed from this list and placed in the 'unsighted_reftag_list'.

unsighted_reftag_list	zset
reftag_1	expire_time_1
reftag_2	expire_time_2
reftag_3	expire_time_3

reftag_key_*i* This is a set of all the reference tags defined as in use by the system, e.g., 954.

expire_time_*i* Time at which reftag_*i* is to move from this list to the 'unsighted_reader' list.

KEY: reftag:<tag_id>:tag:<tag_id> EXAMPLE: reftag:1131:tag:1127

EXPIRES: MAX_AGGREGATION_SECONDS via a helper process

reader_id The id of the reference tag for this sighting. Uses the tag

ID, e.g., 1131

tag_id The id of the tag sighted by the reader, unique to each

tag, e.g., 1127.

sighting_count This is a counter, used to generate a unique key when we

enter the signal strength that the tags are sighted with.

KEY: reftag:<reftag_id>:power:<strength>:reader

EXAMPLE: reftag:1112:power:1:reader

EXPIRES: MAX_AGGREGATION_SECONDS via a helper process

KEY: reftag:<tag_id>:power:<strength>:count

EXAMPLE: reftag:1112:power:1:count

EXPIRES: MAX AGGREGATION SECONDS via a helper process

These two keys are used to record the information about the 'nearest' reference tag at each transmission level; the nearest reference tag should be able to hear the signal at the lowest level, so the count should be greatest for that reference tag.

STATISTICS

We record some statistics of the overall system performance. These are held under the following keys in Redis.

KEY: statistics

