

Development of an Aerial Air Quality Monitoring Platform Based on Vertical Takeoff and Landing (VTOL) Unmanned Aerial Vehicle (UAV)

18/03/2022

ME FYP Group 29: Cheung Hiu Ching, Athena
Fung Ka Chun, Tim
Liu Sum Yin, Kylie

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

Contents

- 1. Project Background (Gantt chart)
- 2. Current progress
 - 1. Flight log analysis
 - 2. Reinforcement composited wings
 - 3. Simulation CFD
- 3. Future plan
 - 1. Final report
 - 2. Final demonstration video(s)

Project background

Introduction

Background

- Referring to the Innovation and Technology Fund (ITF) project
- Air pollution monitoring in the Great Bay Aera by a VTOL UAV
- Airframe selection of the VTOL UAV
- Reinforcement of the mechanical structure of a VTOL UAV

Objectives

- Complete the flight task with the requirements
- Redesign the wings
- Manufacturing the wings with composited materials

Department of **MECHANICAL ENGINEERING**

機械工程學系

	Fixed Wing UAV	FWR-Hybrid UAV	Quadcopter	
		TOP		
Flying Mechanism	Take-off and Landing,	0.		
	and Flying: A pair of	rotors besides the fuselage	and Flying: Four rotors	
	wings & a pusher rotor	Flying: A pair of wings, a	as VTOL part	
		pusher rotor & VTOL part		
Shape	Streamlined shape	Hybrid of drone and fixed	X shape or Plus shape	
		wing UAV		
Type(s) of motors	DC brushless motors &	DC brushless motors &	DC brushless motors	
	servo motors	servo motors		
Duration	Very High	High	Low	
Speed	Very High	High	Low	
Maneuverability	Low	High	Very High	

Aseem Saini and Mukul Chhabra, "Hybrid VTOL-UAV for Air Delivery and Sampling Purposes", B.Tech dissertation, Dept. Elect & Com. Eng., Indraprastha Institute of Information Technology,. New Delhi, 2018. Chika Yinka-Banjo and Olasupo Ajayi, "Sky-Farmers: Applications of Unmanned Aerial Vehicles (UAV) in Agriculture," IntechOpen, 2019.

D. Baek, Y. Chen, A. Bocca, A. Macii, E. Macii, and M. Poncino, "Battery-Aware Energy Model of Drone Delivery Tasks," in Proceedings of the International Symposium on low power electronics and design, 2018, pp. 1–6, doi: 10.1145/3218603.3218614.

MECHANICAL ENGINEERING

機械工程學系

Methodology: Design flowchart of building a VTOL UAV

機械工程學系

Project schedule (updated)

Description	Start date	End date	Duration (days)
Planning	01/08/2021	22/08/2021	22
Understanding the requirements of the flight mission	01/08/2021	01/08/2021	1
Self-learning of VTOL UAV and quadcopters	08/08/2021	22/08/2021	15
VTOL UAV Design	23/08/2021	31/12/2021	131
Do simulation and calculation of VTOL Skywalker X8	22/08/2021	22/09/2021	32
Building VTOL Skywalker X8	23/08/2021	05/11/2021	75
Fly test & data analysis with CFD's results of VTOL Skywalker X8	10/11/2021	31/12/2021	52
Interim report	01/09/2021	22/11/2021	83
Composited VTOL UAV Design	22/09/2021	05/03/2022	165
Do simulation and calculation of our composited VTOL UAV	22/09/2021	31/12/2021	101
Draw 3D CAD drawing of our composited VTOL UAV	01/11/2021	04/12/2021	34
Design the CF mold and manufacturing the composited VTOL UAV	04/12/2021	05/04/2022	123
Fly test & data analysis with CFD's results of composited VTOL UAV	04/02/2022	12/04/2022	68
Final report	05/03/2022	19/04/2022	46

Gantt chart (updated)

Planning

Understanding the requirements of the flight mission

Self-learning of VTOL UAV and quadcopters

VTOL UAV Design

Do simulation and calculation of VTOL Skywalker X8

Building VTOL Skywalker X8

Interim report

Composited VTOL UAV Design

Do simulation and calculation of our composited VTOL UAV

Gantt chart (updated)

Current progress Flight log analysis

The speed during the flight:

Altitude during the flight:

Estimation of the motor before flight

Motor	Propeller	Voltage (V)	Weight (g) (4 motors)	Weight (g) (4 propellers)		
T-motor 4006 (KV380)	T-motor 15*5CF	24	272	106		
			Thrust (g)	Current (A)	T-motor 4006 (KV380) 24V T-motor 15*5CF	
			0	0	16	
			805	3.1	y = 2E-06x ² + 0.0022x + 0.0243	
			959	4.1	12	
			1093	4.8		
			1236		(X) 10 10.7 10.7 8.3	
			1561	8.3	E 8	
			1823			
			2228	15	4 4.1 4.8	
Required equation	n: ax^2+bx+c				2 3.1	
a	b	С			0 4000 4500 3000 3500	
2.00E-06	0.0022	0.0243			0 500 1000 1500 2000 2500 Thrust (g)	
					Till dat (B)	
Assume total weight (g)	3567.9					
Assume total current (A)	14.31					
Assumed Depth of discharge (DOD)	0.70					
Required energy capacity (mAh)	20445.05029					
Hovering time (min)	64.56330413					
Weight/Thrust (%)	40.03478456					

Battery log graph:

Current progress Reinforcement – composited wing

Mold design for testing:

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

Manufacturing (test):

Adding releaser

Ply cutting

Department of **MECHANICAL ENGINEERING**

機械工程學系

200g "WS 105" Resin + 54.35g "WS 209" hardener (Referring to "Matrix Ratio Guide" in IC)

Department of

MECHANICAL ENGINEERING

機械工程學系

Vacuum bagging

De-bagging

Department of

MECHANICAL ENGINEERING

機械工程學系

1 layer of 3K CF sheet

Modified mold design:

6 parts (PLA)

Modified mold design:

Modified mold design:

MECHANICAL ENGINEERING

THE HONG KONG
POLYTECHNIC UNIVERSITY
香港理工大學

機械工程學系

Design flowchart of structure reinforcement by manufacturing a composited VTOL UAV (updated)

MECHANICAL ENGINEERING

機械工程學系

Design flowchart of structure reinforcement by manufacturing a composited VTOL UAV (updated)

Current progress Simulation – CFD

Ansys Fluent

Steps:

- 1. Import CAD & draw wind tunnel (Geometry)
- 2. Create mesh (Mesh)
- 3. Launch FLUENT (Setup)

1. Import CAD & draw wind tunnel (Geometry)

 Import UAV from SolidWorks (.STEP) to "DesignModeler"

 Wind Tunnel created by "Enclosure" function

 Do subtraction by "Boolean" function

Import1 → Generate (right click)

MUST import 1 body ONLY (SW: combine all parts into 1 part by "Combine → Add" function)

1. Import CAD & draw wind tunnel (Geometry)

 Import UAV from SolidWorks (.STEP)

 Wind Tunnel created by "Enclosure" function

 Do subtraction by "Boolean" function

1. Import CAD & draw wind tunnel (Geometry)

 Import UAV from SolidWorks (.STEP)

 Wind Tunnel created by "Enclosure" function

 Do subtraction by "Boolean" function

D	Details View 4				
-	Details of Boolean1				
	Boolean	Boolean1			
	Operation	Subtract			
	Target Bodies	1 Body			
	Tool Bodies	1 Body			
	Preserve Tool Bodies?	No			

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

2. Create mesh (Mesh)

Mesh creation

 Inlet, Outlet, Walls (wall left, wall right, wall up, wall down) and the aircraft are defined

2. Create mesh (Mesh)

Mesh creation

Name Selections creation:
 Inlet, Outlet, Walls (wall left, wall right, wall up, wall down) and the aircraft are defined

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

2. Create mesh (Mesh)

Mesh creation

 Inlet, Outlet, Walls (wall left, wall right, wall up, wall down) and the aircraft are defined

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

3. Launch FLUENT (Setup)

- 1. Scale Mesh: unit = m
- 2. Model: Energy On
- 3. Set K-epsilon model
- 4. Air as fluid
- 5. Inlet velocity: 15m/s
- 6. Set report Definitions
- 7. Set Solution Methods
- 8. Set Residual Monitors
- 9. Set Initialization

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

3. Launch FLUENT (Setup)

- 1. Scale Mesh: unit = m
- 2. Model: Energy On
- Set K-epsilon model (Common model for Turbulent flow (Re ~=4.3 x 10^5))
- 4. Air as fluid
- 5. Inlet velocity: 15m/s
- 6. Set report Definitions
- 7. Set Solution Methods
- 8. Set Residual Monitors
- 9. Set Initialization

3. Launch FLUENT (Setup)

- 1. Scale Mesh: unit = m
- 2. Model: Energy On
- 3. Set K-epsilon model
- 4. Air as fluid
- 5. Inlet velocity: 15m/s
- 6. Set report Definitions
- 7. Set Solution Methods
- 8. Set Residual Monitors
- 9. Set Initialization

- 1. Scale Mesh: unit = m
- 2. Model: Energy On
- 3. Set K-epsilon model
- 4. Air as fluid
- 5. Inlet velocity: 15m/s
- 6. Set report Definitions
- 7. Set Solution Methods
- 8. Set Residual Monitors
- 9. Set Initialization

- 1. Scale Mesh: unit = m
- 2. Model: Energy On
- 3. Set K-epsilon model
- 4. Air as fluid
- 5. Inlet velocity: 15m/s
- 6. Set report Definitions (lift force, drag force, c_l , c_d)
- 7. Set Solution Methods
- 8. Set Residual Monitors
- 9. Set Initialization

- 1. Scale Mesh: unit = m
- 2. Model: Energy On
- 3. Set K-epsilon model
- 4. Air as fluid
- 5. Inlet velocity: 15m/s
- 6. Set report Definitions (lift force, drag force, c_l , c_d)
- 7. Set Solution Methods
- 8. Set Residual Monitors
- 9. Set Initialization

- 1. Scale Mesh: unit = m
- 2. Model: Energy On
- 3. Set K-epsilon model
- 4. Air as fluid
- 5. Inlet velocity: 15m/s
- 6. Set Report Definitions
- 7. Set Solution Methods
 Second Order → more accurate solution
- 8. Set Residual Monitors
- 9. Set Initialization (Compute from inlet)

- 1. Scale Mesh: unit = m
- 2. Model: Energy On
- 3. Set K-epsilon model
- 4. Air as fluid
- 5. Inlet velocity: 15m/s
- 6. Set Report Definitions
- 7. Set Solution Methods
- 8. Set Residual Monitors
- 9. Set Initialization

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

- 1. Scale Mesh: unit = m
- 2. Model: Energy On
- 3. Set K-epsilon model
- 4. Air as fluid
- 5. Inlet velocity: 15m/s
- 6. Set Report Definitions
- 7. Set Solution Methods
- 8. Set Residual Monitors
- 9. Set Initialization (Compute from inlet)

Results

Run Calculation
 Number of iterations: 1000

Generate Report

Results

- Run Calculation
 Number of iterations: 1000
- Generate Report → Export Report

MECHANICAL ENGINEERING

CF (Clark Y)

Department of

MECHANICAL ENGINEERING

機械工程學系

Skywalker X8

CF (Clark Y)

Department of **MECHANICAL ENGINEERING**

THE HONG KONG
POLYTECHNIC UNIVERSITY
香港理工大學

Skywalker X8

CF (Clark Y)

Contours of Static Pressure (Pa)

Department of

MECHANICAL ENGINEERING

Skywalker X8

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

CF (Clark Y)

Lift coefficient

CF (Clark Y)

Drag force

CF (Clark Y)

Drag coefficient

THE HONG KONG
POLYTECHNIC UNIVERSITY
香港理工大學

機械工程學系

Skywalker X8

CF (Clark Y)

Residuals

Residuals

Residuals

Simulation Report

MECHANICAL ENGINEERING

機械工程學系

Skywalker X8

CF (Clark Y)

lift-force	-7.458751 N
lift-co	-12.17755
drag-force	-0.01678963 N
drag-co	-0.02741164

lift-force	17.51005 N
drag-force	0.03366275 N
lift-co	28.58784
drag-co	0.0549596

機械工程學系

Skywalker X8

CF (Clark Y)

Iterations: 1000 Iterations: 1000

	Value	Absolute Criteria	Convergence Status
continuity	0.008320905	1e-06	Not Converged
x-velocity	1.437123e-07	1e-06	Converged
y-velocity	1.486843e-07	1e-06	Converged
z-velocity	7.396273e-07	1e-06	Converged
energy	1.545174e-16	1e-06	Converged
k	0.001218344	1e-06	Not Converged
epsilon	4.562565e-05	1e-06	Not Converged

	Value	Absolute Criteria	Convergence Status
continuity	0.0008046752	1e-06	Not Converged
x-velocity	2.879304e-08	1e-06	Converged
y-velocity	3.068185e-08	1e-06	Converged
z-velocity	5.979942e-08	1e-06	Converged
energy	1.564403e-16	1e-06	Converged
k	0.001199351	1e-06	Not Converged
epsilon	6.687712e-05	1e-06	Not Converged

Department of **MECHANICAL ENGINEERING** 機械工程學系

Future plan Final report

Department of **MECHANICAL ENGINEERING**

機械工程學系

Things will be added in Final Report

Acknowledgement:

Prof. Wen

Jeremy, Patrick, Bailun Jiang, Yurong Feng (UAV)

IC instructor, Dr Mabel Ho (Composites)

ME Senior Instructor, Ir Elsa Tang (CFD)

- Summary of Contribution
- Abstract
- Aerodynamics calculations
- Flight log analysis
- CFD
- Manufacturing of the composited wing(s)
- Possible recommendations for future work

Future plan Final demonstration – video(s)

Brief ideas of the video(s) for online oral presentation

- C.G. test with payload & composited wings (if possible)
- Hovering test in CF005 (without payload)
- Flying test in Yuen Long in Dec 2021 (without payload)

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

機械工程學系

Brief ideas of the video(s) for online oral presentation

- C.G. test with payload & composited wings (if possible)
- Hovering test in CF005 (without payload)
- Flying test in Yuen Long in Dec 2021 (without payload)

MECHANICAL ENGINEERING

機械工程學系

Brief ideas of the video(s) for online oral presentation

- C.G. test with payload & composited wings (if possible)
- Hovering test in CF005 (without payload)
- Flying test in Yuen Long in Dec 2021 (without payload)

Gantt chart (updated)

Department of

MECHANICAL ENGINEERING

機械工程學系

Thank you