ESEMSA

Elettroacustica e Sistemi Elettroacustici - Master in Sonic Arts 2014

ESEMSA 2014

Introduzione ai sistemi di amplificazione e diffusione

FINALITÀ DELL'AMPLIFICAZIONE

- Amplificazione per necessità
- Amplificazione come rinforzo
- · Amplificazione come linguaggio
- Amplificazione come componente artistica

AMPLIFICAZIONE PER NECESSITÀ

 Quando occorre elevare il suono di strumenti che in situazioni ambientali differenti non avrebbe bisogno di amplificazione

AMPLIFICAZIONE COME COMPONENTE ARTISTICA

• Quando l'amplificazione e la sua architettura fanno parte del processo compositivo

POTENZA

• Watt: unità di misura della potenza del Sistema Internazionale.

$$W = \frac{V^2}{R}$$

GUADAGNO DI POTENZA

• Watt: unità di misura della potenza nel Sistema Internazionale.

DIFFERENTI INDICAZIONI DI POTENZA

- Potenza continua
- Potenza di picco
- Potenza musicale

POTENZA CONTINUA

 Potenza massima in regime sinusoidale applicabile con continuità

POTENZA DI PICCO

 Potenza massima in regime sinusoidale relativa a transienti < I sec

POTENZA MUSICALE

· Potenza massima in regime non sinusoidale

DIFFERENZATRA POTENZA E INTENSITÀ SONORA

- Potenza = capacità di irradiamento in ogni direzione
- Intensità sonora = potenza del suono in relazione ad una superficie

INTENSITÀ DEL SUONO (SOUND INTENSITY)

$$I = Watt / m^2$$

LA PROPAGAZIONE DEL SUONO E LA LEGGE QUADRATICA INVERSA

$$I_2 = \frac{I_1}{4}$$

$$I_3 = \frac{I_1}{Q}$$

IL RAPPORTO DI POTENZA

$$dB = 10 \log \left(\frac{I_1}{I_n}\right)$$

CALCOLO DELLA DIMINUZIONE DI POTENZA AL RADDOPPIO DELLA DISTANZA

$$dB = 10 \log \left(\frac{1}{4}\right) = -10 \log 4 = -6,02$$

 La potenza diminuisce di 6 dB ad ogni raddoppio di distanza

IL DB SPL (SOUND PRESSURE LEVEL)

$$\emptyset dB_{SPL} = 2^{-5} N / m^2 = 2^{-5} Pa$$

• Soglia di udibilità

VALORI DI PRESSIONE SONORA

Fonte	mt	SPL
Esplosione nucleare	5	250
Motore di razzo	30	180
Motore di jet	30	150
Fucilata	1	140
Soglia del dolore		130
Sirena di nave	30	130
Motore a reazione	61	120
Martello pneumatico	2	100
Grosso autotreno	1	90
Aspirapolvere	1	80
Traffico pesante	5	70
Conversazione media	1	60
Traffico leggero		50
Quartiere residenziale di notte		40
Silenzio in teatro		30
Fruscìo di foglie		20
Respiro umano	3	10
Soglia di udibilità		O

LA CATENA DELL'AMPLIFICAZIONE

L'AMPLIFICATORE DI POTENZA

- Ha il compito di elevare i valori di corrente e di tensione del segnale audio per poter pilotare gli altoparlanti.
- Questa operazione si traduce in un aumento della potenza.

LE CLASSI PRINCIPALI

- Amplificatori in classe A
- Amplificatori in classe B
- Amplificatori in classe AB
- Amplificatori in classe D

CLASSEA

• Angolo di flusso = 2π (360°)

CLASSE B

• Angolo di flusso = π (180°)

CLASSE AB

• Angolo di flusso compreso tra π e 2π (ovvero tra 180° e 360°)

CIRCUITO PUSH-PULL IN CLASSE B

CIRCUITO IN CLASSE D

MODULAZIONE A LARGHEZZA DI IMPULSO PWM

ARCHITETTURA DEL CONO ALTOPARLANTE

BAFFLE

INFINITE BAFFLE

BASS-REFLEX

CARICAMENTO ATROMBA

TROMBA RIPIEGATA

DOMETWEETER

CROSSOVER PASSIVO

CROSSOVERATTIVO

SALA REGOLARE

SALA LUNGA

SALA LARGA

SIDE MONITOR

LINEARRAY

interferenze costruttive e onda emicilindrica

ESEMSA 2014

Oltre la stereofonia

TECNOLOGIE MULTICANALE PER LA SPAZIALIZZAZIONE

- · Cenni storici e configurazioni: l'audio nel cinema
- · La percezione del suono nell'audio multicanale
- Configurazioni di ripresa per il surround

IL DOLBY SURROUND

LA MATRICE DOLBY

LA CATENA DOLBY

IL SURROUND 5.1

IL SURROUND 7.1

ITU-RBS 775

PERCEZIONE DEL SUONO NELL'AUDIO MULTICANALE

HRTF - HEAD RELATED TRANSFER FUNCTIONS

- · ITD
- · 11D
- Conformazione dell'orecchio esterno
- Conformazione dell'orecchio interno

PRO E CONTRO

	Analogico	Digitale
Qualità sonica	Ottima a costi elevati	Ottima (pre e convertitori)
Completezza di funzioni	;-(:-)
Manovrabilità	:-)	(
Ergonomicità	:-)	(
Ingombro fisico	:-(:-)
Memorizzazione	;-(:-)
Tempi di setup	;-)	:-(
Connettività	Statica	Espandibile
Scelta per lo Studio		:-)
Scelta per il Live	:-)	:-)

PHANTOM IMAGES

CONFIGURAZIONI DI RIPRESA SURROUND

FUKADATREE

CHRISTENSEN

COREY & MARTIN

SCHOEPS KFM360

SCHOEPS DOUBLE MS

RISING SUN HOMOPHONE H SERIES

SOUNDFIELD

microfono tetraedrico

ABMODULE

•
$$X = 0.5 ((LF - LB) + (RF - RB))$$

•
$$Y = 0.5 ((LF - RB) - (RF - LB))$$

•
$$Z = 0.5 ((LF - LB) + (RB - RF))$$

• W =
$$0.5 (LF + LB + RF + RB)$$

