Vectors

- Some of the quantities we measure in our daily lives are completely determined by their magnitudes, for example, length, mass, area, temperature, and energy. We call such quantities scalar quantities.
- Quantities such as displacement, velocity, acceleration, and other forces that have magnitude as well as direction are called vector quantities.

Directed line segment

A directed line segment in the plane is called a vector

Two vectors that have the same direction and length are called equal vectors.

Addition of Vectors

The Polygon Method

$$\vec{u} + \vec{v} + \vec{w} + \vec{x} = \overrightarrow{AE}$$
.

The Parallelogram Method

Example Find $\vec{u} + \vec{v} + \vec{w}$ in the figure

Example 2

In a triangle \overrightarrow{ABC} , P is the midpoint of \overrightarrow{AB} . Express \overrightarrow{CP} in terms of \overrightarrow{CA} and \overrightarrow{CB} .

Solution

$$\overrightarrow{CP} = \overrightarrow{CA} + \overrightarrow{AP}$$

$$+ \overrightarrow{CP} = \overrightarrow{CB} + \overrightarrow{BP}$$

$$2 \cdot \overrightarrow{CP} = \overrightarrow{CA} + \overrightarrow{CB} + \overrightarrow{AP} + \overrightarrow{BP}$$

$$\overrightarrow{CP} = \frac{1}{2} \cdot (\overrightarrow{CA} + \overrightarrow{CB})$$

Subtraction of Vectors

$$(\overrightarrow{u} - \overrightarrow{v} = \overrightarrow{u} + (-\overrightarrow{v}))$$

Example 3

In a triangle ABC, G is the centroid. Find $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}$.

Multiplication of a Vector by a Scalar

For a real number a and a vector \overrightarrow{u} ,

- **1.** if a > 0 then vector $a \cdot \vec{u}$ has the same direction as \vec{u} and the length $|a \cdot \vec{u}| = a \cdot |\vec{u}|$.
- **2.** if a < 0 then vector $a \cdot \vec{u}$ has the opposite direction to \vec{u} and the length $|a \cdot \vec{u}| = |a| \cdot |\vec{u}|$.
- 3. if a = 0 then $a \cdot \vec{u} = \vec{0}$.

Example 4

Points A, B, C, and M are on the same line. M is between A and C. $\overrightarrow{AB} = 2 \cdot \overrightarrow{AC}$. Express the vector \overrightarrow{MC} in terms of the vectors \overrightarrow{MA} and \overrightarrow{MB} .

Answers

$$\overrightarrow{MC} = \frac{1}{2} \cdot (\overrightarrow{MA} + \overrightarrow{MB})$$

Parallel Vectors

Let \vec{a} and \vec{b} be two vectors. \vec{a} and \vec{b} are called **parallel vectors** if and only if $\vec{a} = k \cdot \vec{b}$ where $k \neq 0$ and $k \in \mathbb{R}$. We write $\vec{a} \parallel \vec{b}$ to show that two vectors are parallel.

Example 5

Prove that the diagonals of a parallelogram intersect at their midpoints

by using vectors.

Practice

Point *O* is in the plane of a triangle *ABC*. Point *G* is the centroid of triangle *ABC*. Show that $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 3 \cdot \overrightarrow{OG}$.

In a triangle
$$\overrightarrow{ABC}$$
, $|BD| = |DE| = |EC|$, and $E, D \in [BC]$. If $|\overrightarrow{AD} + \overrightarrow{AE}| = 9$ cm, find $|\overrightarrow{AB} + \overrightarrow{AC}|$.

In a quadrilateral ABCD, E and F are the midpoints of the diagonals AC and BD respectively.

Show that
$$\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD} = 4 \cdot \overrightarrow{EF}$$
.

Position Vector

A vector \overrightarrow{OP} whose initial point is at the origin of the rectangular coordinate plane and which is parallel to a vector \overrightarrow{AB} is called the **position vector** of \overrightarrow{AB} in the plane.

$$\overrightarrow{OP} = \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (x, y) = (x_2 - x_1, y_2 - y_1).$$

$$\vec{u} = (u_1, u_2)$$
 $|\vec{u}| = \sqrt{u_1^2 + u_2^2}.$

Addition of Vectors

If
$$\overrightarrow{u}=(u_1,\,u_2)$$
 and $\overrightarrow{v}=(v_1,\,v_2)$, then
$$\overrightarrow{u}+\overrightarrow{v}=(u_1+v_1,\,u_2+v_2).$$

Subtraction of Vectors

If
$$\overrightarrow{u}=(u_1,\,u_2)$$
 and $\overrightarrow{v}=(v_1,\,v_2)$ then
$$\overrightarrow{u}-\overrightarrow{v}=(u_1-v_1,\,u_2-v_2).$$

Multiplication of a Vector by a Scalar

Let
$$\overrightarrow{v} = (v_1, v_2)$$
 and $c \in \mathbb{R}$, then $c \cdot \overrightarrow{v} = (c \cdot v_1, c \cdot v_2)$.

A vector of length 1 is called a unit vector.

For example, the vector
$$\overrightarrow{w} = (\frac{3}{5}, \frac{4}{5})$$
 is a unit vector.

Parallel Vectors

for any $c \neq 0$, $\overrightarrow{u} \neq 0$, and $\overrightarrow{v} \neq 0$, $\overrightarrow{u} \mid \mid \overrightarrow{v}$ if and only if $\overrightarrow{u} = c \cdot \overrightarrow{v}$. It follows that if $\overrightarrow{u} = (u_1, u_2)$ and $\overrightarrow{v} = (v_1, v_2)$, then $(u_1, u_2) = (c \cdot v_1, c \cdot v_2)$. So $\overrightarrow{u} \mid \mid \overrightarrow{v}$ if and only if $\frac{u_1}{v_2} = \frac{u_2}{v_2} = c$.

Linear Combination of Vectors (optional)

Let \vec{u}_1 , \vec{u}_2 , ..., \vec{u}_k be vectors in the plane and let c_1 , c_2 , ..., c_k be scalars.

The expression $c_1 \cdot \vec{u}_1 + c_2 \cdot \vec{u}_2 + \dots + c_k \cdot \vec{u}_k$ is called a linear combination of the vectors.

Express $\vec{v} = (12, 5)$ as a linear combination of the vectors $\vec{u}_1 = (2, 1)$ and $\vec{u}_2 = (3, 2)$.

Let
$$c_1, c_2 \in \mathbb{R}$$
. Then $\overrightarrow{v} = c_1 \cdot \overrightarrow{u}_1 + c_2 \cdot \overrightarrow{u}_2$. $c_2 = -2$
 $(12, 5) = c_1 \cdot (2, 1) + c_2 \cdot (3, 2)$ $c_1 = 5 + 4 = 9$
 $(12, 5) = (2 \cdot c_1, c_1) + (3 \cdot c_2, 2 \cdot c_2)$
 $(12, 5) = (2 \cdot c_1 + 3 \cdot c_2, c_1 + 2 \cdot c_2)$ $\overrightarrow{v} = 9 \cdot \overrightarrow{u}_1 - 2 \cdot \overrightarrow{u}_2$.

DOT PRODUCT (Scalar Product)

Let $\overrightarrow{u} = (u_1, u_2)$ and $\overrightarrow{v} = (v_1, v_2)$ be two vectors in the plane.

The **dot product** of \overrightarrow{u} and \overrightarrow{v} , denoted by $\overrightarrow{u} \cdot \overrightarrow{v}$, is defined by

$$\overrightarrow{u} \cdot \overrightarrow{v} = u_1 \cdot v_1 + u_2 \cdot v_2.$$

The definition of the dot product gives us the following properties.

1.
$$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$$

(commutative property)

2.
$$\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$$

(associative property)

3.
$$c \cdot (\overrightarrow{u} \cdot \overrightarrow{v}) = (c \cdot \overrightarrow{u}) \cdot \overrightarrow{v}$$

4.
$$\overrightarrow{u} \cdot \overrightarrow{u} = |\overrightarrow{u}|^2$$

5.
$$\vec{u} \cdot \vec{v} \ge 0$$
, and $\vec{u} \cdot \vec{u} = 0$ if and only if $\vec{u} = \vec{0}$.

Angle Between Two Vectors

Let θ be the angle measure between two non-zero vectors \vec{u} and \vec{v} . Then $\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cdot \cos \theta$.

Prove by using the law of cosines.

Perpendicular and Parallel Vectors

Two non-zero vectors \vec{u} and \vec{v} are perpendicular if and only if $\vec{u} \cdot \vec{v} = 0$.

Let θ be the angle measure between nonzero vectors \vec{u} and \vec{v} .

Then $\vec{u} \parallel \vec{v}$ if and only if $\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}|$ or $\vec{u} \cdot \vec{v} = -|\vec{u}| \cdot |\vec{v}|$.

Example 6

Find the area of the triangle with vertices A(2, 3), B(0, 1), C(3, 2).

Solution
$$A(\overrightarrow{ABC}) = \frac{|\overrightarrow{AH}| \cdot |\overrightarrow{BC}|}{2}$$

$$\overrightarrow{AH} = (x_0 - 2, y_0 - 3)$$

$$\overrightarrow{BC} = (3, 1)$$

$$\overrightarrow{AH} \cdot \overrightarrow{BC} = 3 \cdot (x_0 - 2) + (y_0 - 3) = 0$$

$$3x_0 + y_0 - 6 - 3 = 0$$

$$3x_0 + y_0 = 9$$

$$\overrightarrow{BH} = k \cdot \overrightarrow{HC}$$

$$\overrightarrow{BH} = (x_0, y_0 - 1)$$

$$\overrightarrow{HC} = (3 - x_0, 2 - y_0)$$

$$B$$

$$\frac{x_0}{3 - x_0} = \frac{y_0 - 1}{2 - y_0}$$

$$B$$
 $H(x_o, y_o)$ C

$$x_0 = 2.4$$
 and $y_0 = 1.8$.

$$A(\widehat{ABC}) = \frac{1}{2} \cdot \frac{4}{\sqrt{10}} \cdot \sqrt{10} = 2$$

Practice 2

Write the equation of the line passing through A(-1, -1) which is perpendicular to $\overrightarrow{u} = (3, 4)$.

Find the area of a rhombus with vertices A(2, 0), B(-3, 3), C(-8, 0), and D(-3, -3).

In a rectangle \overrightarrow{ABCD} , $\overrightarrow{DC} = 3 \cdot \overrightarrow{AD}$ and point E is on \overrightarrow{DC} . Find the quantity $\overrightarrow{AE} \cdot \overrightarrow{BE}$ given $\overrightarrow{DE} = 2 \cdot \overrightarrow{EC}$ and $|\overrightarrow{AD}| = 3$ cm.

Show that the altitudes of an acute-angled triangle are concurrent using vectors.

Vector (cross) product

$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin(\theta) \mathbf{n}$$

n is the <u>unit vector</u> at right angles to both **a** and **b**

The magnitude of the cross product equals the <u>area of a parallelogram</u> with vectors **a** and **b** for sides:

Direction of the cross product is determined By "Right Hand Rule".

PROPERTIES of Cross Product

Anticommutative Property	$\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}$
Distributive Property	$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$
Multiplication by a Constant	$c(\mathbf{u} \times \mathbf{v}) = (c\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (c\mathbf{v})$
Cross Product of the Zero Vector	$\mathbf{u} \times 0 = 0 \times \mathbf{u} = 0$
Cross Product of a Vector with Itself	$\mathbf{v} \times \mathbf{v} = 0$

Component Form of Vector Product

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Example 7

Find the cross product of $\vec{v}=(3,6,8)$ and $\vec{w}=(2,-4,7)$.

$$\begin{vmatrix} i & j & k \\ 3 & 6 & 8 \\ 2 & -4 & 7 \end{vmatrix} = (6(7) - 8(-4))i - (3(7) - 2(8))j + (3(-4) - (6)(2))k$$
$$= 74i - 5j - 24k$$
$$= (74, -5, -24).$$

Practice 3

If $\vec{w}=\langle 1,6,-8 \rangle$ and $\vec{v}=\langle 4,-2,-1 \rangle$ compute $\vec{w} imes \vec{v}$.

A=(3,4,0), B=(3,6,3) and C=(1,2,1) are the three vertices of a triangle.

Calculate the area of the triangle.

. Find a vector that is orthogonal to the plane containing the points P=(3,0,1), Q=(4,-2,1) and R=(5,3,-1).

Are the vectors $\vec{u}=\langle 1,2,-4\rangle$, $\vec{v}=\langle -5,3,-7\rangle$ and $\vec{w}=\langle -1,4,2\rangle$ are in the same plane?

Example 8

Show that the cross product $\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})$ is equal to the volume of of the parallelepiped.

$$ext{A}_{ ext{base}} = \left\| ec{a} imes ec{b}
ight\|.$$

Height =
$$\|\vec{c}\|\cos\theta$$
.

$$egin{aligned} \mathbf{A} &= \mathbf{A}_{\mathrm{base}} imes \mathbf{Height} \ &= \left\| ec{a} imes ec{b}
ight\| \| ec{c} \| \cos heta \ &= \left(ec{a} imes ec{b}
ight) \cdot ec{c}. \ \Box \end{aligned}$$

Mixed product of Vectors

$$\mathbf{a}\cdot(\mathbf{b} imes\mathbf{c})=\detegin{bmatrix} a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ c_1 & c_2 & c_3 \end{bmatrix}$$

PROPERTIES

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$$

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = -\mathbf{a} \cdot (\mathbf{c} \times \mathbf{b})$$

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

PROPERTIES That Relate The Cross Product And The Dot Product

A)
$$\vec{a} \cdot (\vec{a} \times \vec{b}) = 0$$

B)
$$\vec{b} \cdot (\vec{a} \times \vec{b}) = 0$$

C)
$$ec{a} imes \left(ec{b} imes ec{c}
ight) = (ec{a}\cdotec{c})ec{b} - \left(ec{a}\cdotec{b}
ight)ec{c}$$

D)
$$\left(ec{a} imes ec{b}
ight) imes ec{c} = (ec{a} \cdot ec{c}) ec{b} - \left(ec{b} \cdot ec{c}
ight) ec{a}$$

E)
$$\left\| \vec{a} imes \vec{b}
ight\|^2 = \left\| \vec{a} \right\|^2 \left\| \vec{b} \right\|^2 - \left(\vec{a} \cdot \vec{b} \right)^2$$

The coplanarity condition of three vectors.

Coplanar vectors are defined as vectors that are lying on the same in a three-dimensional plane.

If there are three vectors in a 3d-space and their scalar triple product (mixed product) is zero, then these three vectors are coplanar.

Practice 4

Does the notation $\overrightarrow{U} \cdot \overrightarrow{V} \times \overrightarrow{W}$ make sense? Why? How about the notation $\overrightarrow{U} \times \overrightarrow{V} \times \overrightarrow{W}$?

Show that $x = \{1; 1; 1\}$, $y = \{1; 3; 1\}$ and $z = \{2; 2; 2\}$ are three coplanar vectors.

Find the volume of the parallelepiped formed by the vectors $\mathbf{a}=3\mathbf{i}+4\mathbf{j}-\mathbf{k},\,\mathbf{b}=2\mathbf{i}-\mathbf{j}-\mathbf{k},$ and $\mathbf{c}=3\mathbf{j}+\mathbf{k}.$

In the figure,

 d_1 : x + y = 0, $A(\sqrt{6}, 0)$, and $d_1 || d_2$ are given. If ΔABC is an equilateral triangle, find its area.

Find the lengths of the altitudes of the triangle bounded by the lines x - y = 1, 4x + 3y = 4, and x + y = 2.

 $A(2, 5), B(-1, 3), C(m, 6), \text{ and } \overrightarrow{AB} \perp \overrightarrow{BC} \text{ are given.}$ Find m.

In the figure, ABCD is a parallelogram and

$$\begin{split} |BC| &= 1, \\ |DC| &= 2, \\ |DE| &= |EC|. \text{ Find} \\ (\overrightarrow{BC} + \overrightarrow{CE}) \cdot (\overrightarrow{AD} + \overrightarrow{DE}). \end{split}$$

Show that the centroid of a triangle divides a median in the ratio 1:2 using vectors.

If $\mathbf{u} + \mathbf{v} + \mathbf{w} = \mathbf{0}$, show that $\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{w} = \mathbf{w} \times \mathbf{u}$.

Find a unit vector perpendicular to the vectors $\mathbf{i} + \mathbf{j}$ and j + 2k.

Find the volume of tetrahedron whose vertices are A(1,1,0) B(-4,3,6) C(-1,0,3) and D(2,4,-5).

$$rac{1}{6} imes |\left\{\left(\overrightarrow{AB} imes\overrightarrow{AC}
ight).\overrightarrow{AD}
ight\} \qquad \qquad rac{1}{6} imes |-36| = rac{36}{6} = 6$$

$$\frac{1}{6} \times |-36| = \frac{36}{6} = 6$$

Exercise Find all
$$2 \times 2$$
 matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that $AB = BA$, where $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

Show that

$$\begin{vmatrix} x-2 & x-3 & x-4 \\ x+1 & x-1 & x-3 \\ x-4 & x-7 & x-10 \end{vmatrix} = 0.$$