Remark: One will note that if f is skew-self-adjoint, then $if_{\mathbb{C}}$ is self-adjoint w.r.t. $\langle -, - \rangle_{\mathbb{C}}$. By Proposition 17.5, the map $if_{\mathbb{C}}$ has real eigenvalues, which implies that the eigenvalues of $f_{\mathbb{C}}$ are pure imaginary or 0.

Finally we consider orthogonal linear maps.

Theorem 17.16. Given a Euclidean space E of dimension n, for every orthogonal linear map $f: E \to E$ there is an orthonormal basis (e_1, \ldots, e_n) such that the matrix of f w.r.t. this basis is a block diagonal matrix of the form

$$\begin{pmatrix}
A_1 & \dots & \\
& A_2 & \dots & \\
\vdots & \vdots & \ddots & \vdots \\
& & \dots & A_p
\end{pmatrix}$$

such that each block A_i is either 1, -1, or a two-dimensional matrix of the form

$$A_j = \begin{pmatrix} \cos \theta_j & -\sin \theta_j \\ \sin \theta_j & \cos \theta_j \end{pmatrix}$$

where $0 < \theta_j < \pi$. In particular, the eigenvalues of $f_{\mathbb{C}}$ are of the form $\cos \theta_j \pm i \sin \theta_j$, 1, or -1.

Proof. The case where n=1 is trivial. It is immediately verified that $f \circ f^* = f^* \circ f = \operatorname{id}$ implies that $f_{\mathbb{C}} \circ f_{\mathbb{C}}^* = f_{\mathbb{C}}^* \circ f_{\mathbb{C}} = \operatorname{id}$, so the map $f_{\mathbb{C}}$ is unitary. By Proposition 17.7, the eigenvalues of $f_{\mathbb{C}}$ have absolute value 1. As a consequence, the eigenvalues of $f_{\mathbb{C}}$ are of the form $\cos \theta \pm i \sin \theta$, 1, or -1. The theorem then follows immediately from Theorem 17.12, where the condition $\mu > 0$ implies that $\sin \theta_j > 0$, and thus, $0 < \theta_j < \pi$.

It is obvious that we can reorder the orthonormal basis of eigenvectors given by Theorem 17.16, so that the matrix of f w.r.t. this basis is a block diagonal matrix of the form

$$\begin{pmatrix} A_1 & \dots & & & \\ \vdots & \ddots & \vdots & & \vdots \\ & \dots & A_r & & \\ & & & -I_q & \\ \dots & & & I_p \end{pmatrix}$$

where each block A_j is a two-dimensional rotation matrix $A_j \neq \pm I_2$ of the form

$$A_j = \begin{pmatrix} \cos \theta_j & -\sin \theta_j \\ \sin \theta_j & \cos \theta_j \end{pmatrix}$$

with $0 < \theta_j < \pi$.