Exercise Sheet No. 3

Task 2.2: Matrices

- 1. Prove the following: Let $\|\cdot\|_M$ be a matrix-norm induced by a vector-norm $\|\cdot\|_V$. Show the following:
 - a) $\|\mathbf{A}x\|_{V} \leq \|\mathbf{A}\|_{M} \cdot \|\mathbf{x}\|_{V}$
 - b) $\|AB\|_{M} \le \|A\|_{M} \cdot \|B\|_{M}$
 - c) $\|\mathbf{I}\|_{M} = 1$
- 2. Prove the following. Let $\mathbf{A} = (a_{ij})_{i,j=1}^n \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix. Prove the following:
 - a) $a_{ii} > 0 \forall 1 \leq i \leq n$
 - b) $a_{ij}^2 < a_{ii}a_{jj}$ with $i \neq j$ and $1 \leq i, j \leq n$ c) $\exists k \in \{1, ..., n\} : \max_{1 \leq i, j \leq n} |a_{ij}| = a_{kk}$
- 3. Consider the $n \times n$ matrix used to approximate a second derivative via centered difference quotient:

Let n=3:

- a Find the eigenvalues of D
- b Compute the spectral radius $\varrho(D + 2I)$
- c Determine the condition number $\kappa_2(D)$

Now perform the computations when D is an $n \times n$ matrix. Discuss the behavior of the condition number $\kappa_2(D)$ as $n \to \infty$.

Subtask 1: Remember the induced matrix-norm:

$$\|\mathbf{A}\|_{M} = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} \Leftrightarrow \|\mathbf{A}\|_{M} = \inf \{r \geq 0 \colon \mathbf{A}\mathbb{S}^{n-1} \subseteq \mathcal{B}_{r}(\mathbf{0})\}$$

Where for any set $M \subseteq V$, we define $AM = \{Ax, x \in M\}$. From the definition of $\|A\|_M$ we get, that $\|\mathbf{A}\boldsymbol{x}\| \leq r\|\boldsymbol{x}\| = \|\mathbf{A}\|_{M} \cdot \|\boldsymbol{x}\|$. Since $\|\mathbf{A}\boldsymbol{x}\| \leq \|\mathbf{A}\|_{M} \cdot \|\boldsymbol{x}\|$, we further get

$$\|\mathbf{A}\mathbf{B}\|_{M} = \sup_{\boldsymbol{x} \in \mathbb{S}^{n-1}} \|\mathbf{A}\mathbf{B}\boldsymbol{x}\| \le \sup_{\boldsymbol{x} \in \mathbb{S}^{n-1}} \|\mathbf{A}\|_{M} \cdot \|\mathbf{B}\boldsymbol{x}\| = \|\mathbf{A}\|_{M} \cdot \|\mathbf{B}\|_{M}$$

For $\|\mathbf{I}\|_M$:

$$\|\mathbf{I}\|_{M} = \sup_{\boldsymbol{x} \in \mathbb{S}^{n-1}} \|\mathbf{I}\boldsymbol{x}\| = \sup_{\boldsymbol{x} \in \mathbb{S}^{n-1}} \|\boldsymbol{x}\| = 1$$

Subtask 2: Since A is positive definite, $\forall x \in \mathbb{R}^n : x^T A x > 0$, i.e. for e_k , we get:

$$e_k^T \mathbf{A} e_k = a_{kk} > 0$$

by the definiteness of A.

Let $\alpha \subseteq \{1, \dots, n\}$ be an index family and $A[\alpha]$ be the submatrix with columns and rows labelled by the indices in α . Let $\boldsymbol{x} \in \mathbb{R}^n$ with $\boldsymbol{x}[\alpha] \neq \boldsymbol{0}_{|\alpha|}$ and $\boldsymbol{x}[\alpha^C] = \boldsymbol{0}_{n-|\alpha|}$, thus $\boldsymbol{x}[\alpha]^T \boldsymbol{A}[\alpha] \boldsymbol{x}[\alpha] = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} > 0$. Hence $\boldsymbol{A}[\alpha] > 0$. For $\alpha = \{i, j\}$, we get

$$\det(\mathbf{A}[\alpha]) = a_{ii}a_{jj} - a_{ij}^2 > 0 \Leftrightarrow a_{ii}a_{jj} > a_{ij}^2$$

Let $\mathbf{x} = s\mathbf{e}_i - \mathbf{e}_j$, where $s \in \mathbb{R}$, then:

$$\boldsymbol{x}^T \mathbf{A} \boldsymbol{x} = s^2 a_{ii} + 2s a_{ij} + a_{jj}$$

If we assume that $a_{ji} = a_{ij}$ is the largest entry of A for $i \neq j$, we can set s = 1 and receive:

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = a_{ii} - 2a_{ij} + a_{jj} = (a_{ii} - a_{ij}) + (a_{jj} - a_{ij}) < 0$$

which is a contradiction.

Subtask 3:

Subtask a: The eigenvalues of D solve the equation $\det(\lambda \mathbf{I} - \mathbf{D}) = 0$:

$$\chi_{\mathbf{D}}(\lambda) = \lambda^3 + 6\lambda^2 + 10\lambda + 4$$
$$\lambda_1 = -2$$
$$\lambda_{2,3} = -2 \pm \sqrt{2}$$

Subtask b: The spectral radius of a matrix $\mathbf{M} \in \mathbb{K}^{n \times n}$ is given by $\max_{i=1,\dots,n} |\lambda_i|$. Computing the eigenvalues of $\mathbf{D} + 2\mathbf{I}$ yields $\lambda_1 = 0$, $\lambda_2 = -\sqrt{2}$ and $\lambda_3 = \sqrt{2}$, therefore $\varrho(\mathbf{D} + 2\mathbf{I}) = \sqrt{2}$.

Subtask c: The condition number κ_2 of a given definite¹ matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is given by:

$$\kappa_2(\mathbf{A}) = \frac{\max_{i=1,\dots,n} \lambda_i}{\min_{i=1,\dots,n} \lambda_i}$$

Therefore we get:

$$\kappa_2(\mathbf{D}) = \frac{-2 - \sqrt{2}}{-2 + \sqrt{2}} = \frac{2 + \sqrt{2}}{2 - \sqrt{2}} = \frac{(2 + \sqrt{2})^2}{(2 - \sqrt{2})(2 + \sqrt{2})}$$
$$= \frac{4(1 + \sqrt{2}) + 2}{2} = 3 + 2\sqrt{2}$$

Notice that D is a tridiagonal Töplitz-matrix. The eigenvalues are thus given by:

$$\lambda_k = -2 + 2\cos\left(\frac{\pi k}{n+1}\right)$$

The spectral radius of $\varrho(D + 2I)$ is thus given by:

$$\varrho(\mathbf{D} + 2\mathbf{I}) = \cos\left(\frac{\pi}{n+1}\right)$$

The condition number becomes:

$$\kappa_2(\mathbf{D}) = \frac{\cos\left(\frac{\pi}{n+1}\right) - 1}{\cos\left(\frac{n\pi}{n+1}\right) - 1}$$

Since $\lim_{n\to\infty} \frac{n\pi}{n+1} = \pi \lim_{n\to\infty} \frac{1}{1+\frac{1}{n}} = \pi$ and $\lim_{n\to\infty} \frac{\pi}{n+1} = 0$ we get:

$$\lim_{n\to\infty} \kappa_2(\mathbf{D}) = \frac{\cos(0) - 1}{\cos(\pi) - 1} = 0$$

¹either negative or positive, *not* indefinite or semidefinite