Übungsblatt 1 - Lösung

Aufgabe 1

Sei (G,\cdot) eine Gruppe. Zeige: Gilt $g_1g_2g_1g_2=1$ für alle $g_1,g_2\in G$, so ist $g=g^{-1}$ für alle $g\in G$.

Lösung:

Da $g_1g_2g_1g_2 = 1$ für alle $g_1, g_2 \in G$, gilt dies insbesondere auch für $g_1 = 1$ (=neutrales Element). Das heisst, für alle $g_2 \in G$ gilt $1g_21g_2 = g_2g_2 = 1$, und wegen der Eindeutigkeit der Inversen $g_2 = g_2^{-1}$.

Aufgabe 2

Sei (G,*) eine Gruppe und sei h ein Element von G. Zeigen Sie, dass die Teilmenge $U = \{g \in G | g * h = h * g\}$ eine Untergruppe von (G,*) ist.

Lösung:

Zeige zunächst Abgeschlossenheit. Für beliebige $g_1, g_2 \in U$ gilt

$$(g_1 * g_2) * h = g_1 * (g_2 * h) = g_1 * (h * g_2) = (g_1 * h) * g_2 = (h * g_1) * g_2 = h * (g_1 * g_2) \implies g_1 * g_2 \in U$$

Überprüfe nun ob das Inverse Element enthalten ist. Sei $q \in U$ und q^{-1} sein Inverses. Dann

$$g^{-1}*h = g^{-1}*h*(g*g^{-1}) = g^{-1}*(h*g)*g^{-1} = g^{-1}*(g*h)*g^{-1} = (g^{-1}g)*(h*g^{-1}) = h*g^{-1} \Rightarrow g^{-1} \in U$$

Damit ist U eine Untergruppe von G.

Aufgabe 3

- (a) Sei $\sigma := (i_1, ..., i_r) \in S_n$ ein Zykel der Länge r. Zeigen Sie, dass σ ein Produkt von r-1 Transpositionen (also $(l_1, j_1)...(l_{r-1}, j_{r-1})$) ist und bestimmen sie das Vorzeichen $\operatorname{sgn}(i_1, ..., i_r)$.
- (b) Beweisen Sie, dass sich jede Permutation $\sigma \in S_n$ eindeutig als Produkt von Zykeln schreiben lässt, so dass jedes $i \in \{1, ..., n\}$ hochstens in einem Zykel vorkommt. (*Hinweis:* Induktion nach $n \ge 2$)
- (c) Sei folgende Permutaion gegeben

$$\sigma = (3, 5, 2, 1)(4, 6)$$

Bestimmen Sie σ in Tabellenschreibweise, und berechnen Sie σ^{-1} , σ^{2021}

Lösung:

(a) Beweise konstruktiv. Man überlege sich $\sigma(i_r) = i_1$, als Ansatz demnach (i_1, i_r) . Da aber $\sigma(i_1) = i_2$, erweitere Ansatz zu $(i_2, i_r)(i_1, i_r)$. Fährt man fort, so ist folgende Permutation ein naheliegender Kandidat:

$$\hat{\sigma} = (i_{r-1}, i_r) \dots (i_2, i_r)(i_1, i_r)$$

Nachdem $\hat{\sigma}$ gefunden wurde, lässt sich leicht verifizieren, dass $\hat{\sigma} = \sigma$:

$$\sigma(i_r) = i_1 = \hat{\sigma}(i_r)$$

Für $1 \le j < r$:

$$\hat{\sigma}(i_j) = (i_{r-1}, i_r) \dots (i_{j+1}, i_r)(i_j, i_r) \dots (i_1, i_r)(i_j)$$
$$= (i_{r-1}, i_r) \dots (i_{j+1}, i_r)(i_r) = i_{j+1} = \sigma(i_j)$$

Jede Transposition entspricht einer Fehlstelle. Daher gilt $\operatorname{sgn}(i_1,...i_r) = (-1)^{r-1}$

(b) Führe einen Induktionsbeweis durch.

Induktionsanfang "n = 2": $S_2 = \{id, (1, 2)\}$, offensichtlich paarweise elementfremd für jedes $\sigma \in S_2$. Induktionsschritt " $n \mapsto n+1$ ": Sei $\sigma \in S_{n+1}$ beliebig. Falls $\sigma(n+1) = n+1$ ist nichts zu tun, da $\sigma|_{\{1,2,\ldots,n\}}$ nach Induktionsvoraussetzung in paarweise elementfreme Zykel zerfällt. Sei also $\sigma(n+1) = k \neq n+1$. Da σ bijektiv, gibt es ein $l \neq n+1$ mit $\sigma(l)=n+1$. Definiere nun $\pi \in S_n$ so, dass $\pi(i)=\sigma(i) \ \forall i \neq j$ $l, 1 \le i \le n$ und $\pi(l) = k$ (d.h. es gilt $\pi = (k, n+1) \circ \sigma|_{\{1,2,\ldots,n\}}$). Nach I.V. ist π nun aber als Produkt von $r \geq 1$ Zyklen darstellbar:

$$\pi = (i_{1,1}, i_{1,2}, \dots) \dots (\dots, l, k, \dots) \dots (i_{r,1}, i_{r,2} \dots)$$

Damit ist σ einfach bestimmtbar:

$$\sigma = (i_{1,1}, i_{1,2}, \dots) \dots (\dots, l, n+1, k, \dots) \dots (i_{r,1}, i_{r,2} \dots)$$

Leicht ist einsehbar, dass n+1 wieder nur (höchstens) in einem Zykel vorkommt.

(c) $\sigma = (3,5,2,1)(4,6) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 5 & 6 & 2 & 4 \end{pmatrix}$ $\sigma^{-1} = (1, 2, 5, 3)(4, 6) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 1 & 6 & 3 & 6 \end{pmatrix}$ $\sigma^{2021} = \sigma^{4.505+1} = (\sigma^4)^{505} \sigma = (\mathrm{id})^{505} \sigma =$

Aufgabe 4

Gegeben sei die Menge

$$G := \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} | a, b, c \in \mathbb{R} \right\}$$

- (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe ist. Ist diese Kommutativ?
- (b) Bestimmen Sie alle $Z \in G$ mit der Eigenschaft

$$Z \cdot M = M \cdot Z \quad \forall M \in G$$

Lösung:

Vorbemerkung. Für $a_1, a_2, b_1, b_2, c_1, c_2 \in \mathbb{R}$ gilt

$$\begin{pmatrix} 1 & a_1 & c_1 \\ 0 & 1 & b_1 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & a_2 & c_2 \\ 0 & 1 & b_2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a_1 + a_2 & c_1 + a_1b_2 + c_2 \\ 0 & 1 & b_1 + b_2 \\ 0 & 0 & 1 \end{pmatrix}$$

(a) Überprüfe zunächst auf Untergruppenkriterien. Offenbar ist $I_3 \in G$, also $G \neq \emptyset$. Nach Vorbemerkung ist (a) Uberprüfe zunachst auf Untergruppenkinterien. Onenda ist $A_1, A_2 \in G$ auch $A_1 \cdot A_2 \in G$. Inverse ist für eine beliebige Matrix $A = \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}$ einfach durch die

Vorbemerkung feststellbar : $A^{-1} = \begin{pmatrix} 1 & -a & -c + ab \\ 0 & 1 & -b \\ 0 & 0 & 1 \end{pmatrix}$.

(b) Sei nun $Z = \begin{pmatrix} 1 & a_1 & c_1 \\ 0 & 1 & b_1 \\ 0 & 0 & 1 \end{pmatrix}$ und $M = \begin{pmatrix} 1 & a_2 & c_2 \\ 0 & 1 & b_2 \\ 0 & 0 & 1 \end{pmatrix}$ Da die Addition von reellen Zahlen kommutativ ist, ist

die Forderung, dass $Z \cdot M = M \cdot Z$ gilt, einzig durch die Gleichheit des Matrixeintrags "rechtsoben" festgelegt, also ob

$$c_2 + a_1b_2 + c_1 = c_1 + a_2b_1 + c_2 \ (\iff a_1b_2 = a_2b_1)$$

gilt. Damit die letzte Gleichung immer erfüllt scheint es naheliegend, dass $a_1 = b_1 = 0$ gilt, Vermutung ist also

$$Z(G) := \left\{ Z \in G \mid Z \cdot M = M \cdot Z \ \forall M \in G \right\} = \left\{ \begin{pmatrix} 1 & 0 & c \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid c \in \mathbb{R} \right\}$$

"⊃": folgt direkt aus den Vorüberlegungen.

"C": Angenommen für $Z \in Z(G)$ gilt $a_1 \neq 0$. Wähle M mit $a_2 = 0, b_2 \neq 0$ und c_2 beliebig. Dann ist $0 \neq a_1b_2 \neq 0$ $a_2b_1=0.$ und damit $ZM\neq MZ.$ Widerspruch. Analog bei dem Fall $b_1\neq 0.$

Aufgabe 5

Sei q eine natürliche Zahl, sodass $\sqrt{q} \notin \mathbb{Q}$ ist und definiere

$$\mathbb{Q}[\sqrt{q}] := \{ a + b\sqrt{q} \mid a, b \in \mathbb{Q} \}$$

Zeigen Sie, dass die oben definierte Menge einen Unterkörper von \mathbb{R} darstellt. Verifizieren Sie also, dass die Körpereigenschaften eingeschränkt auf die obere Menge mit den üblichen Verknüpfungen + und \cdot gelten.

Lösung:

Distributivgesetze/ Assoziativgesetze bzgl. + und · erbt $\mathbb{Q}[\sqrt{q}]$ vom Oberkörper \mathbb{R} . Zu zeigen ist also noch, dass jeweils $(\mathbb{Q}[\sqrt{q}], +)$, $(\mathbb{Q}[\sqrt{q}] \setminus \{0\}, \cdot)$ abelsche Gruppen darstellen. Seien im Folgenden $a, b, c, d \in \mathbb{Q}$ beliebig:

 $(\mathbb{Q}[\sqrt{q}], +)$ ist abelsche Gruppe.

- $0 \in \mathbb{Q}[\sqrt{q}]$
- Abgeschlossenheit

$$(a+b\sqrt{q})+(c+d\sqrt{q})=(a+b)+(b+d)\sqrt{q}\in\mathbb{Q}[\sqrt{q}]$$

• Existenz des Inversen Elements

$$(a+b\sqrt{q}) + (-a-b\sqrt{q}) = 0$$

 $(\mathbb{Q}[\sqrt{q}], \{0\}, \cdot)$ ist abelsche Gruppe.

- $1 \in \mathbb{Q}[\sqrt{q}] \setminus \{0\}$
- Abgeschlossenheit

$$(a+b\sqrt{q})\cdot(c+d\sqrt{q}) = (ac+bdq) + (ad+bc)\sqrt{q} \in \mathbb{Q}[\sqrt{q}] \setminus \{0\}$$

• Existenz des Inversen Elements

$$(a + b\sqrt{q}) \cdot \underbrace{\left(\frac{a}{a^2 - b^2 q} - \frac{b}{a^2 - b^2 q}\sqrt{q}\right)}_{\in \mathbb{Q}[\sqrt{q}], \{0\}, \text{ da } q \neq a^2/b^2} = \frac{(a + b\sqrt{q})(a - b\sqrt{q})}{a^2 - b^2 q} = 1$$

Damit weist $(\mathbb{Q}[\sqrt{q}], +, \cdot)$ selber Körpereigenschaften auf, und ist somit ein Unterkörper von \mathbb{R} .

Aufgabe 6

Betrachten Sie den Vektorraum V der reellen stetigen Funktionen auf dem Intervall $(0, \infty)$. Zeigen Sie, dass die Funktionen in der Menge

$$\{1, 1/x, 1x^2, \dots 1/x^n\}$$

eine linear unabhängig sind.

Lösung:

Berechne für Koeffizienten $\lambda_i \in \mathbb{R}$:

$$0 = \sum_{i=0}^{n} \lambda_i / x^i = \frac{1}{x^n} \sum_{i=0}^{n} \lambda_i x^{n-i}$$

Da $1/x^n \neq 0 \ \forall x \in \mathbb{R}^+$, muss das Polynom n-ten Grades das Nullpolynom sein:

$$\lambda_0 x^n + \dots + \lambda_{n-1} x + \lambda_n = 0$$

Koeffizientenvergleich ergibt, dass $\lambda_i = 0, \ \forall 0 \le i \le n$

Aufgabe 7

Es sei V ein endlich dimensionaler Vektorraum und $B \subset V$. Zeigen Sie, dass folgende Aussagen äquivalent sind

- (a) B ist eine Basis von V.
- (b) B ist maximal linear unabhängig.
- (c) B ist minimal erzeugend.

Lösung:

Sei $B = \{v_1, \ldots, v_n\}$. Zeige Implikationskette

- (a) \Rightarrow (b): Da B eine Basis ist, ist B linear unabhängig. Da B außerdem Erzeugendensystem, existiert für jedes $v \in V \setminus \{0\}$ eine Linearkombination $v = \sum_{i=1}^{n} \lambda_i v_i$ mit mindestens einem $\lambda_i \neq 0$. Damit ist aber $\sum_{i=1}^{n} \lambda_i v_i 1 \cdot v = 0$ eine Linearkombination mit nichtttrivialen Koeffizienten und damit linear abhängig. Damit ist B maximal linear unabhängig.
- (b) \Rightarrow (c): Da B maximal unabhängig existiert für jedes $v_{n+1} \in V \setminus \{0\}$ eine nichttriviale Linearkombination mit $\lambda_{n+1} \neq 0$ sodass $\sum_{i=1}^{n+1} \lambda_i v_i = \sum_{i=1}^n \lambda_i v_i + \lambda_{n+1} v_{n+1} = 0$, also $v_{n+1} = -\sum_{i=1}^n \frac{\lambda_i}{\lambda_{n+1}} v_i$. Damit ist B erzeugend. Da B linear unabhängig, ist B minimal erzeugend, denn wegen der lin. Unabhängigkeit kann kein $v_i \in B$ als nichttriviale Linearkombination aus den Vektoren $B \setminus \{v_i\}$ gebildet werden.
- (c) \Rightarrow (a): Nach Voraussetzung ist sowieso B Erzeugendensystem. Es muss also noch lineare Unabhängigkeit gezeigt werden. Angenommen B ist linear abhängig. Dann gibt es eine Linearkombination $\sum_{i=1}^{n} \lambda_i v_i = 0$ mit $\lambda_j \neq 0$ für mindestens ein $1 \leq j \leq n$. Dann kann v_j dargestellt werden als $v_j = -\sum_{i \neq j} \frac{\lambda_i}{\lambda_j} v_i$. Dann ist aber $B \setminus \{v_j\}$ auch ein Erzeugendensystem im Widerspruch zur Minimalitaät von B. Also ist B linear unabhängig und damit eine Basis.

Aufgabe 8

Es seien $U, V \subset \mathbb{R}^5$ die von den Vektoren $(1, 1, 1, 0, 1)^T$, $(2, 1, 0, 0, 1)^T$, $(0, 0, 1, 0, 0)^T \in \mathbb{R}^5$, bzw. $(1, 1, 0, 0, 1)^T$, $(3, 2, 0, 0, 2)^T$, $(0, 1, 1, 1, 1)^T \in \mathbb{R}^5$ aufgespannten Unterräume.

- (a) Bestimmen Sie eine Basis von $U \cap V$.
- (b) Berechnen Sie die Dimension und eine Basis von U+V

Lösung:

(a) Vorüberlegung: U und V von je drei Vektoren aufgespannt werden, gilt $\dim(U) \leq 3$ und $\dim(V) \leq 3$. Weiterhin bemerken wir, dass $U \neq V$ gilt, da alle Vektoren in U von der Form $(a,b,c,0,d)^T$ mit $a,b,c,d \in \mathbb{R}$ sind, also $v_3 = (0,1,1,1,1)^T \in V \setminus U$. Insbesondere gilt $U \cap V \neq V$ und daher $\dim(U \cap V) < \dim(V) \leq 3$. Um eine Basis von $U \cap V$ zu bestimmen reicht es also, zwei linear unabhangige Vektoren $U \cap V$ zu finden. Behauptung: Die Vektoren $v_1 = (1,1,0,0,1)^T, v_2 = (3,2,0,0,2)^T$ bilden eine Basis von $U \cap V$. Beweis der Behauptung: Da v_1 und v_2 keine Vielfachen voneinander sind, sind sie linear unabhangig. Bleibt also zu zeigen, dass sie in $U \cap V$ liegen. Offensichtlich gilt $v_1, v_2 \in V$. Weiter sind

$$v_1 = (1, 1, 0, 0, 1)^T = (1, 1, 1, 0, 1)^T - (0, 0, 1, 0, 0)^T \in U$$

$$v_2 = (3, 2, 0, 0, 2)^T = (1, 1, 1, 0, 1)^T + (2, 1, 0, 0, 1)^T - (0, 0, 1, 0, 0)^T \in U$$

also sind $v_1, v_2 \in U \cap V$.

(b) Zunachst bemerken wir, dass $U \cap V \neq U$ gilt, da $(0,0,1,0,0)^T \in U \setminus V$ (das Argument ist analog zu dem im ersten Absatz : Alle Vektoren in V sind von der Form (a,b,c,c,d) mit $a,b,c,d \in \mathbb{R}$). Da $\dim(U \cap V) = 2$ und $U \cap V \neq V$ sowie $U \cap V \neq U$, gilt $\dim(U) > \dim(U \cap V) = 2$ und $\dim(V) > \dim(U \cap V) = 2$. Da U und V hochstens 3-dimensional sind, schließen wir $\dim(U) = \dim(V) = 3$. Nach Vorlesung gilt somit $\dim(U + V) = \dim(U) + \dim(V) - \dim(U \cap V) = 3 + 3 - 2 = 4$. Da $\dim(U) = 3$, sind die drei Erzeuger $u_1 = (1,1,1,0,1)^T, u_2 = (2,1,0,0,1)^T, u_3 = (0,0,1,0,0)^T$ linear unabhangig. Wie im ersten Absatz von (i) bemerkt, ist $v_3 \in U$, also insbesondere linear unabhängig von u_1, u_2, u_3 . Daher sind die Vektoren u_1, u_2, u_3, v_3 linear unabhangig. Da sie in U + V liegen und $\dim(U + V) = 4$ gilt, bilden u_1, u_2, u_3, v_3 eine Basis von U + V.

Aufgabe 9

Es seien V ein reeller Vektorraum, $n \in \mathbb{N}$ mit $n \geq 3$ und $x_1, \dots x_n \in V$ paarweise verschiedene Vektoren.

- (a) Beweisen Sie, dass die Mengen $\{x_1, \dots, x_n\}$ und $\{x_i + x_j | 1 \le i < j \le n\}$ denselben Untervektorraum von V erzeugen.
- (b) Erzeugen die Mengen $\{x_1, \ldots, x_n\}$ und $\{x_i x_j | 1 \le i < j \le n\}$ denselben Untervektorraum von V? (Beweis oder Gegenbeispiel!)

Lösung:

- (a) Setze $A := \{x_1, \dots, x_n\}$ sowie $B := \{x_i + x_j | 1 \le i < j \le n\}$. Um Gleichheit von A, B zu zeigen, zeige beide Inklusionen.
 - $\operatorname{span}(B) \subset \operatorname{span}(A)$: Klar, denn jedes Element aus B ist eine Linearkombination aus A nach Konstruktion.
 - $\operatorname{span}(A) \subset \operatorname{span}(B)$: Es reicht zu zeigen, dass $A \subset \operatorname{span}(B)$ ist, da dann $\operatorname{span}(A) \subset \operatorname{span}(\operatorname{span}(B)) = \operatorname{span}(B)$ folgt. Sei also $x_i \in A$ beliebig. Da $n \geq 3$, gibt es paarweise verschiedene $1 \leq j, k \leq n; j, k \neq i$ mit

$$x_i = \frac{1}{2}(x_i + x_i) + \frac{1}{2}(x_j - x_j) + \frac{1}{2}(x_k - x_k) = \frac{1}{2}(x_i + x_j) + \frac{1}{2}(x_i + x_k) - \frac{1}{2}(x_j + x_k) \in \operatorname{span}(B)$$

Damit ist $A \subset \text{span}(B)$, wie gewünscht.

(b) Nein, im Allgemeinen nicht. Wähle zum Beispiel $A = \{(1,0)^T, (0,1)^T, (2,-1)^T\}$. Dann ist $B = \{(1,-1)^T, (-1,1)^T, (-2,2)^T\}$ und offenbar ist B linear abhängig, sodass $\operatorname{span}(B) = \operatorname{span}((1,-1)^T) \neq \operatorname{span}(A) = \mathbb{R}^2$.