

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Ethyl (2*Z*)-3-oxo-2-(3,4,5-trimethoxy-benzylidene)butanoate

Julio Zukerman-Schpector, a* Camila Lury Hino, a
Paulo J. S. Moran, Bruno R. S. de Paula, Seik Weng Ng^{c,d}
and Edward R. T. Tiekink^c

^aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, ^bInstituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas, SP, Brazil, ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: julio@power.ufscar.br

Received 29 July 2013; accepted 19 August 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean $\sigma(C-C) = 0.002$ Å; R factor = 0.034; wR factor = 0.095; data-to-parameter ratio = 15.2.

In the title compound, $C_{16}H_{20}O_6$, the conformation about the C=C double bond [1.344 (2) Å] is Z. With respect to this bond, the ketone is almost coplanar [C-C-C-O torsion angle = $-179.60~(10)^\circ$] and the ester is almost perpendicular [C-C-C-O = $78.42~(13)^\circ$]. The methoxy substituents of the central benzene ring are either almost coplanar [C-C-O-C = 3.54~(15) and $177.70~(9)^\circ$] or perpendicular [C-C-O-C = $80.08~12)^\circ$ for the central substituent]. In the crystal, the three-dimensional architecture features C-H···O and π - π [intercentroid distance = 3.6283~(6)~Å] interactions.

Related literature

For background to the study, see: Rodrigues *et al.* (2004); Zukerman-Schpector *et al.* (2011). For the synthesis of the title compound, see: de Paula (2012).

Experimental

Crystal data

$$\begin{array}{lll} {\rm C_{16}H_{20}O_6} & & c = 10.4543 \ (5) \ {\rm \mathring{A}} \\ M_r = 308.32 & & \alpha = 61.130 \ (5)^\circ \\ {\rm Triclinic}, \ P\bar{\rm I} & & \beta = 77.450 \ (4)^\circ \\ a = 8.3432 \ (4) \ {\rm \mathring{A}} & & \gamma = 82.534 \ (4)^\circ \\ b = 10.2446 \ (5) \ {\rm \mathring{A}} & & V = 763.48 \ (7) \ {\rm \mathring{A}}^3 \end{array}$$

Z = 2Cu $K\alpha$ radiation $\mu = 0.86 \text{ mm}^{-1}$ T = 100 K $0.35 \times 0.30 \times 0.25 \text{ mm}$

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer Absorption correction: multi-scan ($CrysAlis\ PRO$; Agilent, 2013) $T_{\min} = 0.631,\ T_{\max} = 1.000$

5294 measured reflections 3101 independent reflections 2943 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.012$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.095$ S = 1.053101 reflections

204 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
$\begin{array}{c} \hline \\ C12-H12b\cdots O5^{i} \\ C14-H14a\cdots O4^{ii} \\ C16-H16c\cdots O2^{iii} \\ \end{array}$	0.97 0.96 0.96	2.47 2.52 2.55	3.4390 (16) 3.3295 (16) 3.4863 (15)	174 142 165
Symmetry codes: $-x+1, -y+1, -z+1$.	. /	-x, -y+1, -z;	(ii) $-x, -y$	+2, −z; (iii)

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq: 306532/2009–3,to JZ-S), Coordenação de Aperfeicoamento de Pessoal de Nível Superior (CAPES: 808/09 to JZ-S and scholarship to CLH) and FAPESP for financial support. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2231).

References

Agilent (2013). CrysAlis PRO. Agilent Technologies, Santa Clara, CA, USA.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C.,
Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J.
Appl. Cryst. 32, 115–119.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. ChemAxon (2010). *Marvinsketch*. http://www.chemaxon.com.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Paula, B. R. S. de (2012). MSc thesis, Universidade de Campinas, UNICAMP, Brazil.

Rodrigues, J. A. R., Moran, P. J. S., Conceicão, G. J. A. & Fardelone, L. C. (2004). Food Technol. Biotechnol. 42, 295–303.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Zukerman-Schpector, J., Abd Salim, S. N., Moran, P. J. S., de Paula, B. R. S., Rodrigues, J. A. R. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1044.

Acta Cryst. (2013). E69, o1474 [doi:10.1107/S1600536813023374]

Ethyl (2Z)-3-oxo-2-(3,4,5-trimethoxybenzylidene)butanoate

Julio Zukerman-Schpector, Camila Lury Hino, Paulo J. S. Moran, Bruno R. S. de Paula, Seik Weng Ng and Edward R. T. Tiekink

1. Comment

As part of the continuing interest in the bio-reduction of α -haloketones and enones (Rodrigues *et al.*, 2004; Zukerman-Schpector *et al.*, 2011), the title compound, (I), was synthesized by means of a Knoevenagel condensation reaction between ethylacetoacetate and 3,4,5-trimethoxybenzaldehyde to afford a mixture of *E* and *Z* isomers that were separated by column chromatography (hexane/ethyl acetate, gradient from pure hexane to 95% hexane/5% ethyl acetate). The crystallized isomer, obtained by slow evaporation from a dichloromethane/hexane mixture, was shown by X-ray crystallography to be the *Z* isomer.

In (I), Fig. 1, the conformation about the C7=C8 bond [1.3444 (15) Å] is Z. The O1-O3 methoxy groups are approximately planar, perpendicular and co-planar, respectively, with the benzene ring to which they are attached as seen in the C2—C3—O1—C14, C3—C4—O2—C15 and C4—C5—O3—C16 torsion angles of 3.54 (15), 80.08 (12) and 177.70 (9)°, respectively. With respect to the ethylene bond, the ketone group is co-planar [C7—C8—C9—O4 = -179.60 (10)°] but the ester is almost perpendicular [C7—C8—C11—O6 = 78.42 (13)°]. With the exception of the ester-carbonyl-O5 atom, the two perpendicularly orientated groups lie to the same side of the central plane.

In the crystal packing, C—H···O, Table 1, and π — π [inter-centroid distance = 3.6283 (6) Å for symmetry operation: 1 - x, 2 - y, -z] combine to link molecules into a three-dimensional architecture. Globally, molecule pack in layers in an ···ABA···fashion running parallel to the (2,0,-1) lattice planes, Fig. 2.

2. Experimental

The description of the synthesis of compound (I) together with spectra and HRMS analyses can be found in de Paula (2012); *M*.pt: 381.2—381.7 K.

3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H) = 1.2 U_{eq}(C)$ and $1.5 U_{eq}(methyl-C)$.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO* (Agilent, 2013); data reduction: *CrysAlis PRO* (Agilent, 2013); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012), *DIAMOND* (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2010); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1The molecular structure of compound (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Figure 2 View in projection down the b axis of the unit-cell contents of (I). The π - π and C-H···O interactions are shown as purple and orange dashed lines, respectively.

Ethyl (2Z)-3-oxo-2-(3,4,5-trimethoxybenzylidene)butanoate

~ .	
Crystal	data
Crystat	aaia

$C_{16}H_{20}O_6$	Z = 2
$M_r = 308.32$	F(000) = 328
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.341 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Melting point = $381.2-381.7 \text{ K}$
a = 8.3432 (4) Å	Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$
b = 10.2446 (5) Å	Cell parameters from 3721 reflections
c = 10.4543 (5) Å	$\theta = 5.1-75.8^{\circ}$
$\alpha = 61.130 (5)^{\circ}$	$\mu = 0.86 \text{ mm}^{-1}$
$\beta = 77.450 \ (4)^{\circ}$	T = 100 K
$\gamma = 82.534 (4)^{\circ}$	Irregular, colourless
$V = 763.48 (7) \text{ Å}^3$	$0.35 \times 0.30 \times 0.25 \text{ mm}$

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas)

diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

Detector resolution: 10.4041 pixels mm⁻¹

 ω scans

Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2013)

 $T_{\min} = 0.631, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$

 $wR(F^2) = 0.095$

S = 1.05

3101 reflections

204 parameters 0 restraints

Primary atom site location: structure-invariant

direct methods

5294 measured reflections 3101 independent reflections

2943 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.012$

 $\theta_{\text{max}} = 76.0^{\circ}, \ \theta_{\text{min}} = 5.1^{\circ}$

 $h = -10 \rightarrow 8$

 $k = -12 \rightarrow 12$

 $l = -13 \rightarrow 12$

Secondary atom site location: difference Fourier

map

Hydrogen site location: inferred from

neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0524P)^2 + 0.2494P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} < 0.001$

 $\Delta \rho_{\text{max}} = 0.32 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -0.25 \text{ e Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$	
O1	0.40766 (10)	1.13778 (8)	0.21253 (9)	0.01963 (18)	
O2	0.49401 (9)	0.85742 (8)	0.39679 (8)	0.01745 (18)	
O3	0.43618 (10)	0.62786 (8)	0.36141 (8)	0.01846 (18)	
O4	0.01540 (10)	0.84612 (9)	-0.28318 (9)	0.02070 (19)	
O5	0.21960 (10)	0.62520 (9)	-0.04434(9)	0.02128 (19)	
O6	-0.00196(9)	0.68398 (8)	0.08761 (8)	0.01854 (18)	
C1	0.27109 (12)	0.93633 (12)	0.04388 (11)	0.0146 (2)	
C2	0.29899 (13)	1.05493 (11)	0.06585 (12)	0.0157 (2)	
H2	0.2687	1.1516	0.0010	0.019*	
C3	0.37188 (13)	1.02961 (12)	0.18421 (12)	0.0155 (2)	
C4	0.41592 (12)	0.88409 (12)	0.28284 (11)	0.0150(2)	
C5	0.38756 (13)	0.76540 (12)	0.26071 (11)	0.0150(2)	
C6	0.31599 (13)	0.79048 (11)	0.14221 (11)	0.0154(2)	
Н6	0.2979	0.7110	0.1282	0.019*	
C7	0.19873 (13)	0.97298 (12)	-0.08589(11)	0.0153 (2)	
H7	0.1953	1.0738	-0.1538	0.018*	

C8	0.13656 (13)	0.88232 (12)	-0.12120 (11)	0.0154 (2)
C9	0.07048 (13)	0.93638 (12)	-0.26035 (12)	0.0165 (2)
C10	0.07124 (14)	1.10044 (13)	-0.36880 (12)	0.0202 (2)
H10A	-0.0035	1.1534	-0.3250	0.030*
H10B	0.0377	1.1158	-0.4574	0.030*
H10C	0.1800	1.1366	-0.3931	0.030*
C11	0.12582 (13)	0.71652 (12)	-0.02458 (12)	0.0160 (2)
C12	-0.02291 (16)	0.52685 (12)	0.19624 (13)	0.0229 (2)
H12A	0.0831	0.4771	0.2147	0.027*
H12B	-0.0786	0.4773	0.1600	0.027*
C13	-0.12367 (17)	0.52221 (14)	0.33569 (14)	0.0299 (3)
H13A	-0.0675	0.5722	0.3699	0.045*
H13B	-0.1397	0.4203	0.4105	0.045*
H13C	-0.2284	0.5712	0.3160	0.045*
C14	0.35859 (15)	1.28797 (12)	0.11817 (13)	0.0206 (2)
H14A	0.2415	1.2946	0.1251	0.031*
H14B	0.4105	1.3162	0.0174	0.031*
H14C	0.3909	1.3537	0.1488	0.031*
C15	0.38159 (15)	0.85960 (13)	0.52181 (12)	0.0225 (2)
H15A	0.3099	0.7769	0.5667	0.034*
H15B	0.3175	0.9512	0.4887	0.034*
H15C	0.4424	0.8522	0.5932	0.034*
C16	0.40407 (16)	0.50278 (12)	0.34655 (13)	0.0224 (2)
H16A	0.4662	0.5097	0.2548	0.034*
H16B	0.2890	0.5020	0.3470	0.034*
H16C	0.4354	0.4125	0.4279	0.034*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0258 (4)	0.0150(4)	0.0227 (4)	0.0009(3)	-0.0105 (3)	-0.0103 (3)
O2	0.0190(4)	0.0215 (4)	0.0152 (4)	0.0011(3)	-0.0063(3)	-0.0103 (3)
O3	0.0262 (4)	0.0133 (4)	0.0173 (4)	0.0027(3)	-0.0109(3)	-0.0062(3)
O4	0.0226 (4)	0.0245 (4)	0.0189 (4)	-0.0029(3)	-0.0050(3)	-0.0122(3)
O5	0.0254 (4)	0.0182 (4)	0.0237 (4)	0.0029(3)	-0.0066(3)	-0.0124(3)
O6	0.0205 (4)	0.0147 (4)	0.0180(4)	-0.0011(3)	-0.0032(3)	-0.0056(3)
C1	0.0137 (5)	0.0164 (5)	0.0140 (5)	0.0005 (4)	-0.0028(4)	-0.0074(4)
C2	0.0161 (5)	0.0140 (5)	0.0160 (5)	0.0013 (4)	-0.0039(4)	-0.0062(4)
C3	0.0153 (5)	0.0160(5)	0.0168 (5)	-0.0009(4)	-0.0018(4)	-0.0093(4)
C4	0.0142 (5)	0.0187 (5)	0.0136 (5)	0.0005 (4)	-0.0039(4)	-0.0083(4)
C5	0.0152 (5)	0.0146 (5)	0.0135 (5)	0.0014 (4)	-0.0030(4)	-0.0055 (4)
C6	0.0173 (5)	0.0151 (5)	0.0158 (5)	0.0001 (4)	-0.0042(4)	-0.0084(4)
C7	0.0161 (5)	0.0145 (5)	0.0136 (5)	0.0017 (4)	-0.0033(4)	-0.0056(4)
C8	0.0156 (5)	0.0161 (5)	0.0137 (5)	0.0015 (4)	-0.0029(4)	-0.0069(4)
C9	0.0148 (5)	0.0211 (5)	0.0145 (5)	0.0008 (4)	-0.0023(4)	-0.0095(4)
C10	0.0242 (6)	0.0209 (5)	0.0157 (5)	0.0013 (4)	-0.0077(4)	-0.0075 (4)
C11	0.0183 (5)	0.0174 (5)	0.0163 (5)	0.0000(4)	-0.0077(4)	-0.0091 (4)
C12	0.0308 (6)	0.0144 (5)	0.0215 (6)	-0.0050(4)	-0.0061(5)	-0.0054(4)
C13	0.0343 (7)	0.0240(6)	0.0234 (6)	-0.0062(5)	-0.0003(5)	-0.0056(5)
C14	0.0254 (6)	0.0139 (5)	0.0244 (6)	0.0007 (4)	-0.0072 (4)	-0.0097 (4)

C15 C16	0.0297 (6) 0.0350 (6)	0.0238 (6) 0.0140 (5)	0.0158 (5) 0.0201 (5)	-0.0010 (5) 0.0014 (4)	-0.0029 (4) -0.0129 (5)	-0.0110 (5) -0.0067 (4)
	0.0000 (0)	0,01.0 (0)	0.0201 (0)	0.0011(1)	010125 (0)	0.0007 (1)
Geometr	ic parameters (Å	?, °)				
C1—C2		1.3962	(15)	C11—O5		1.2068 (13)
C1—C6		1.4030	(14)	C11—O6		1.3397 (13)
C1—C7		1.4667	(14)	C12—O6		1.4605 (13)
C2—C3		1.3944	(15)	C12—C13		1.4984 (17)
C2—H2		0.9300		C12—H12A		0.9700
C3—O1		1.3586	(13)	C12—H12B		0.9700
C3—C4		1.3995	(14)	C13—H13A		0.9600
C4—O2		1.3765	(12)	C13—H13B		0.9600
C4—C5		1.3993	` '	C13—H13C		0.9600
C5—O3		1.3649	` '	C14—O1		1.4332 (13)
C5—C6		1.3898	` '	C14—H14A		0.9600
С6—Н6		0.9300		C14—H14B		0.9600
C7—C8		1.3444		C14—H14C		0.9600
C7—H7		0.9300	` ′	C15—O2		1.4418 (13)
C8—C9		1.4893		C15—H15A		0.9600
C8—C1		1.5022	` '	C15—H15B		0.9600
C9—O4		1.2224		C15—H15C		0.9600
C9—C1		1.5066	` '	C16—O3		1.4274 (13)
C10—H		0.9600				0.9600
C10—H		0.9600				0.9600
C10—H		0.9600		C16—H16C		0.9600
C2—C1		119.68		O6—C11—C8		110.49 (9)
C2—C1-		117.10	* *	O6—C12—C13		106.84 (9)
C6—C1		123.19	* *	O6—C12—H12A		110.4
C3—C2		120.53	(9)	C13—C12—H12A	L	110.4
C3—C2		119.7		O6—C12—H12B		110.4
C1—C2		119.7		C13—C12—H12B		110.4
O1—C3		124.84	* *	H12A—C12—H12		108.6
O1—C3		115.31	* *	C12—C13—H13A		109.5
C2—C3		119.84		C12—C13—H13B		109.5
O2—C4		119.72	` '	H13A—C13—H13		109.5
O2—C4		120.69	* *	C12—C13—H13C		109.5
C5—C4		119.51	(9)	H13A—C13—H13	BC	109.5
O3—C5		123.90	* *	H13B—C13—H13	BC	109.5
O3—C5		115.35	` '	O1—C14—H14A		109.5
C6—C5		120.74	(10)	O1—C14—H14B		109.5
C5—C6		119.69	(10)	H14A—C14—H14	4B	109.5
C5—C6		120.2		O1—C14—H14C		109.5
C1—C6	—Н6	120.2		H14A—C14—H14	4C	109.5
C8—C7	—C1	129.55	(10)	H14B—C14—H14	łC	109.5
C8—C7	—Н7	115.2		O2—C15—H15A		109.5
C1—C7	—Н7	115.2		O2—C15—H15B		109.5
C7—C8-	—C9	123.31	(10)	H15A—C15—H15	5B	109.5
C7—C8-	—C11	123.66	(0)	O2—C15—H15C		109.5

C9—C8—C11	113.03 (9)	H15A—C15—H15C	109.5
O4—C9—C8	118.94 (10)	H15B—C15—H15C	109.5
O4—C9—C10	121.50 (9)	O3—C16—H16A	109.5
C8—C9—C10	119.56 (9)	O3—C16—H16B	109.5
C9—C10—H10A	109.5	H16A—C16—H16B	109.5
C9—C10—H10B	109.5	O3—C16—H16C	109.5
H10A—C10—H10B	109.5	H16A—C16—H16C	109.5
C9—C10—H10C	109.5	H16B—C16—H16C	109.5
H10A—C10—H10C	109.5	C3—O1—C14	117.31 (8)
H10B—C10—H10C	109.5	C4—O2—C15	112.44 (8)
O5—C11—O6	124.60 (10)	C5—O3—C16	117.32 (8)
O5—C11—C8	124.91 (10)	C11—O6—C12	116.84 (9)
C6—C1—C2—C3	0.35 (16)	C1—C7—C8—C11	1.85 (18)
C7—C1—C2—C3	-178.10 (9)	C7—C8—C9—O4	-179.60 (10)
C1—C2—C3—O1	178.28 (9)	C11—C8—C9—O4	0.17 (14)
C1—C2—C3—C4	-0.69 (16)	C7—C8—C9—C10	-0.22 (16)
O1—C3—C4—O2	-1.71 (14)	C11—C8—C9—C10	179.55 (9)
C2—C3—C4—O2	177.36 (9)	C7—C8—C11—O5	-101.11 (13)
O1—C3—C4—C5	-178.50 (9)	C9—C8—C11—O5	79.13 (13)
C2—C3—C4—C5	0.57 (16)	C7—C8—C11—O6	78.42 (13)
O2—C4—C5—O3	2.47 (14)	C9—C8—C11—O6	-101.35 (10)
C3—C4—C5—O3	179.28 (9)	C2—C3—O1—C14	3.54 (15)
O2—C4—C5—C6	-176.93 (9)	C4—C3—O1—C14	-177.45(9)
C3—C4—C5—C6	-0.11 (16)	C5—C4—O2—C15	-103.14 (11)
O3—C5—C6—C1	-179.57 (9)	C3—C4—O2—C15	80.08 (12)
C4—C5—C6—C1	-0.22 (16)	C6—C5—O3—C16	-2.92(15)
C2—C1—C6—C5	0.11 (15)	C4—C5—O3—C16	177.70 (9)
C7—C1—C6—C5	178.46 (10)	O5—C11—O6—C12	2.89 (15)
C2—C1—C7—C8	-168.73 (11)	C8—C11—O6—C12	-176.64 (8)
C6—C1—C7—C8	12.88 (18)	C13—C12—O6—C11	157.95 (10)
C1—C7—C8—C9	-178.41 (10)		

Hydrogen-bond geometry (Å, o)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
C12—H12b····O5 ⁱ	0.97	2.47	3.4390 (16)	174
C14—H14a···O4 ⁱⁱ	0.96	2.52	3.3295 (16)	142
C16—H16c···O2 ⁱⁱⁱ	0.96	2.55	3.4863 (15)	165

Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+2, -z; (iii) -x+1, -y+1, -z+1.