Capítulo 3

Acurácia de um sistema de medição em regime permanente

Aula 3: Erro de medição de sistemas ideais e não ideais

Prof. Fernando C. Guimarães — ENE — FT — UnB

Slides: Prof. Lélio R. Soares Júnior – ENE – FT – UnB

Conceito

- Acurácia (exatidão) é normalmente uma característica do sistema e não individualmente dos elementos.
- Acurácia é quantificada a partir do erro de medição do sistema:

E = valor medido – valor verdadeiro E = saída do sistema – entrada do sistema

 Se analisará como, a partir dos modelos dos elementos, se pode chegar ao erro de medição do sistema como um todo.

Erro de medida de um sistema com elementos ideais

Para um sistema com n elementos (ideais) em série e com a = 0:

$$O_i = K_i I_i$$

logo:
$$O_2 = K_2I_2 = K_2K_1I$$
, $O_3 = K_3I_3 = K_3K_2K_1I$.

Para todo sistema

$$O = O_n = K_1 K_2 K_3 \dots K_i \dots K_n I$$

Como E = O - I, $E = (K_1 K_2 ... K_n - 1).I$, então para $K_1 K_2 ... K_n = I$ o sistema tem perfeita acurácia.

Erro de medida de um sistema com elementos ideais

Ex. Sistema simples para medida de temperatura.

Bobina móvel

Tem-se: $K_1 K_2 K_3 = 1$

Na realidade nenhum dos 3 elementos é ideal, devido à:

- Não linearidades
- Efeitos ambientais

Não se pode assegurar que $K_1K_2K_3 = 1 \rightarrow \text{Erro de medição}$

NOTAS E COMENTÁRIOS

Elementos não ideais:

$$I = I_1$$

$$O_1 = K_1 I_1 + N(I_1) = I_2$$

$$O_2 = K_2 I_2 + K_{M_2} I_{M_2} I_2 = I_3$$

$$O_3 = K_3 I_3 + K_{I_3} I_3 = 0$$

$$I = I_1$$

$$O_1 = K_1 I + N(I) = I_2$$

$$O_2 = (K_2 + K_{M_2} I_{M_2})(K_1 I + N(I)) = I_3$$

$$O_3 = K_3 (K_2 + K_{M_2} I_{M_2})(K_1 I + N(I)) + K_{I_3} I_{I_3} = 0$$

Erro de medida de um sistema com elementos ideais

Ex. Sistema simples para medida de temperatura.

Bobina móvel

Tem-se: $K_1 K_2 K_3 = 1$

Na realidade nenhum dos 3 elementos é ideal, devido à:

- Não linearidades
- Efeitos ambientais

Não se pode assegurar que $K_1K_2K_3 = 1 \rightarrow \text{Erro de medição}$

Função densidade de probabilidade do erro com elementos não ideais

Vimos que (para cada elemento)

$$p(O) = \frac{1}{\sigma_0 \sqrt{2\pi}} \exp\left[\frac{-(O - \bar{O})^2}{2\sigma_0^2}\right]$$

$$\bar{O} = \bar{K}\bar{I} + \bar{N}(\bar{I}) + \bar{a} + \bar{K}_M\bar{I}_M\bar{I} + \bar{K}_I\bar{I}_I$$

$$\sigma_0 = \sqrt{\left(\frac{\partial O}{\partial I}\right)^2 \sigma_I^2 + \left(\frac{\partial O}{\partial I_M}\right)^2 \sigma_{I_M}^2 + \left(\frac{\partial O}{\partial I_I}\right)^2 \sigma_{I_I}^2 + \left(\frac{\partial O}{\partial K}\right)^2 \sigma_K^2 + \left(\frac{\partial O}{\partial a}\right)^2 \sigma_a^2 + \dots}$$

Função densidade de probabilidade do erro com elementos não ideais

Valor médio do erro de medida: \bar{E}

Função densidade de probabilidade do erro com elementos não ideais

Desvio padrão do erro de medida: σ_E

$$\sigma_{I_{1}}^{2} = 0$$

$$\sigma_{I_{2}}^{2} = \sigma_{O_{1}}^{2} = \left(\frac{\partial O_{1}}{\partial I_{1}}\right)^{2} \sigma_{I_{1}}^{2} + \left(\frac{\partial O_{1}}{\partial I_{M_{1}}}\right)^{2} \sigma_{I_{M_{1}}}^{2} + \left(\frac{\partial O_{1}}{\partial I_{I_{1}}}\right)^{2} \sigma_{I_{I_{1}}}^{2} + \left(\frac{\partial O_{1}}{\partial K_{1}}\right)^{2} \sigma_{K_{1}}^{2} + \dots$$

$$\sigma_{I_{3}}^{2} = \sigma_{O_{2}}^{2} = \left(\frac{\partial O_{2}}{\partial I_{2}}\right)^{2} \sigma_{I_{2}}^{2} + \left(\frac{\partial O_{2}}{\partial I_{M_{2}}}\right)^{2} \sigma_{I_{M_{2}}}^{2} + \left(\frac{\partial O_{2}}{\partial I_{I_{2}}}\right)^{2} \sigma_{I_{I_{2}}}^{2} + \left(\frac{\partial O_{2}}{\partial K_{2}}\right)^{2} \sigma_{K_{2}}^{2} + \dots$$

$$\vdots \qquad \vdots$$

$$\sigma_{I_{l+1}}^{2} = \sigma_{O_{l}}^{2} = \left(\frac{\partial O_{l}}{\partial I_{l}}\right)^{2} \sigma_{I_{l}}^{2} + \left(\frac{\partial O_{l}}{\partial I_{M_{l}}}\right)^{2} \sigma_{I_{M_{l}}}^{2} + \left(\frac{\partial O_{l}}{\partial I_{I_{l}}}\right)^{2} \sigma_{I_{I_{l}}}^{2} + \left(\frac{\partial O_{l}}{\partial K_{l}}\right)^{2} \sigma_{K_{l}}^{2} + \dots$$

$$\sigma_{O}^{2} = \sigma_{O_{n}}^{2} = \left(\frac{\partial O_{n}}{\partial I_{n}}\right)^{2} \sigma_{I_{n}}^{2} + \left(\frac{\partial O_{n}}{\partial I_{M_{n}}}\right)^{2} \sigma_{I_{M_{n}}}^{2} + \left(\frac{\partial O_{n}}{\partial I_{I_{n}}}\right)^{2} \sigma_{I_{I_{n}}}^{2} + \left(\frac{\partial O_{n}}{\partial K_{n}}\right)^{2} \sigma_{K_{n}}^{2} + \dots$$

$$\sigma_{E}^{2} = \sigma_{O}$$

Função densidade de probabilidade do erro com elementos não ideais

Função densidade de probabilidade do erro (assumindo distribuição gaussiana)

$$p(E) = \frac{1}{\widehat{\sigma_E} \sqrt{2\pi}} \exp \left[-\frac{1}{2\widehat{\sigma_E^2}} (E - \widehat{E})^2 \right]$$

Variância e valor esperado obtidos segundo os procedimentos mostrados nos dois últimos slides.

Função densidade de probabilidade do erro com elementos não ideais

Exemplo: Sistema de medição de temperatura (com resistor de platina)

Função densidade de probabilidade do erro com elementos não ideais

(a) Platinum resistance temperature detector

Model equation

$$R_T = R_0(1 + \alpha T + \beta T^2)$$

Individual mean values

$$\bar{R}_0 = 100.0 \ \Omega, \ \bar{\alpha} = 3.909 \times 10^{-3}, \ \bar{\beta} = -5.897 \times 10^{-7}$$
 (between 100 and 130 °C)

Individual standard deviations

$$\sigma_{R_0} = 4.33 \times 10^{-2}, \ \sigma_{\alpha} = 0.0, \ \sigma_{\beta} = 0.0$$

Partial derivatives

$$\frac{\partial R_T}{\partial R_0} = 1.449$$
 at $T = 117 \,^{\circ}\text{C}$

Overall mean value

$$\bar{R}_T = \bar{R}_0(1 + \bar{\alpha}\bar{T} + \bar{\beta}\bar{T}^2)$$

Overall standard deviation

$$\sigma_{R_T}^2 = \left(\frac{\partial R_T}{\partial R_0}\right)^2 \sigma_{R_0}^2$$

Para a RTD (elemento sensor):

$$\frac{\partial R_T}{\partial R_0}(T) = (1 + \alpha T + \beta T^2)$$

$$\frac{\partial R_T}{\partial R_0}(117^\circ) = (1 + \alpha \cdot 117^\circ + \beta \cdot (117^\circ)^2) = 1,449$$

Função densidade de probabilidade do erro com elementos não ideais

(a) Platinum resistance temperature detector

Model equation

$$R_T = R_0(1 + \alpha T + \beta T^2)$$

Individual mean values

$$\bar{R}_0 = 100.0 \ \Omega, \ \bar{\alpha} = 3.909 \times 10^{-3}, \ \bar{\beta} = -5.897 \times 10^{-7}$$
 (between 100 and 130 °C)

Individual standard deviations

$$\sigma_{R_0} = 4.33 \times 10^{-2}, \ \sigma_{\alpha} = 0.0, \ \sigma_{\beta} = 0.0$$

Partial derivatives

$$\frac{\partial R_T}{\partial R_0} = 1.449$$
 at $T = 117 \,^{\circ}\text{C}$

Overall mean value

$$\bar{R}_T = \bar{R}_0(1 + \bar{\alpha}\bar{T} + \bar{\beta}\bar{T}^2)$$

Overall standard deviation

$$\sigma_{R_T}^2 = \left(\frac{\partial R_T}{\partial R_0}\right)^2 \sigma_{R_0}^2$$

Função densidade de probabilidade do erro com elementos não ideais

(b) Current transmitter

Model equation

4 to 20 mA output for 138.5 to 149.8 Ω input (100 to 130 °C)

modificadora e de interferência

 ΔT_a = deviation of ambient temperature from 20 °C

Reta
$$\longrightarrow i = KR_T + K_M R_T \Delta T_a + K_I \Delta T_a + a$$

Individual mean values

$$\bar{K} = 1.4134$$
, $\bar{K}_M = 1.4134 \times 10^{-4}$, $\bar{K}_I = -1.637 \times 10^{-2}$
 $\bar{a} = -191.76$, $\Delta \bar{T}_a = -10$

Individual standard deviations

$$\sigma_{K} = 0.0, \ \sigma_{K_{M}} = 0.0, \ \sigma_{K_{I}} = 0.0$$
 $\sigma_{a} = 0.24, \ \sigma_{\Delta T_{a}} = 6.7$

Partial derivatives

$$\frac{\partial i}{\partial R_T} = 1.413, \frac{\partial i}{\partial \Delta T_a} = 4.11 \times 10^{-3}, \frac{\partial i}{\partial a} = 1.00$$

Overall mean value

$$\bar{i} = \bar{K}\bar{R}_T + \bar{K}_M\bar{R}_T\Delta\bar{T}_a + \bar{K}_I\Delta\bar{T}_a + \bar{a}$$

Overall standard deviation

$$\sigma_{i}^{2} = \left(\frac{\partial i}{\partial R_{T}}\right)^{2} \sigma_{R_{T}}^{2} + \left(\frac{\partial i}{\partial \Delta T_{a}}\right)^{2} \sigma_{\Delta T_{a}}^{2} + \left(\frac{\partial i}{\partial a}\right)^{2} \sigma_{a}^{2}$$

Função densidade de probabilidade do erro com elementos não ideais

(c) Recorder

Model equation

Individual standard deviations

$$T_M = Ki + a$$

$$\bar{K} = 1.875, \, \bar{a} = 92.50$$

(100 to 130 °C record for 4 to 20 mA input)

$$\sigma_k = 0.0, \, \sigma_a = 0.10$$

$$\frac{\partial T_M}{\partial i} = 1.875, \frac{\partial T_M}{\partial a} = 1.00$$

$$\bar{T}_M = \bar{K}\bar{i} + \bar{a}$$

$$\sigma_{T_M}^2 = \left(\frac{\partial T_M}{\partial i}\right)^2 \sigma_i^2 + \left(\frac{\partial T_M}{\partial a}\right)^2 \sigma_a^2$$

Função densidade de probabilidade do erro com elementos não ideais

Cálculo de \overline{E} e $\sigma_{\scriptscriptstyle
m E}$

Mean
$$\bar{E}$$

 $\bar{T} = 117$ °C $\bar{R}_T = 144.93$ Ω
 $\bar{i} = 13.04$ mA $\bar{T}_M = 116.95$ °C
 $\bar{E} = \bar{T}_M - \bar{T} = -0.005$ °C

Standard deviation σ_E

$$\sigma_T^2 = 0$$

$$\sigma_{R_T}^2 = \left(\frac{\partial R_T}{\partial R_0}\right)^2 \sigma_{R_0}^2 = 39.4 \times 10^{-4}$$

$$\sigma_i^2 = \left(\frac{\partial i}{\partial R_T}\right)^2 \sigma_{R_T}^2 + \left(\frac{\partial i}{\partial \Delta T_a}\right)^2 \sigma_{\Delta T_a}^2 + \left(\frac{\partial i}{\partial a}\right)^2 \sigma_a^2$$

$$= 78.7 \times 10^{-4} + 8.18 \times 10^{-4} + 5.76 \times 10^{-2}$$

$$= 6.62 \times 10^{-2}$$

$$\sigma_{T_M}^2 = \left(\frac{\partial T_M}{\partial i}\right)^2 \sigma_i^2 + \left(\frac{\partial T_M}{\partial a}\right)^2 \sigma_a^2 = 24.3 \times 10^{-2}$$

$$\sigma_E = \sigma_{T_M} = 0.49 \, ^{\circ}\text{C}$$

Função densidade de probabilidade do erro com elementos não ideais

Modelagem utilizando bandas de erro

Incertezas relacionadas a não linearidades, resolução, histerese, efeitos ambientais podem ser representados conjuntamente por bandas de erro.

Função densidade de probabilidade do erro com elementos não ideais

Seja uma variável aleatória x e sua função densidade de probabilidade p(x) como sendo retangular de largura $2h_i$

Valor esperado (médio) de x, E(x), é dado por

$$E(x) = \int_{-\infty}^{+\infty} xp(x)dx = \int_{\mu-h_i}^{\mu+h_i} xp(x)dx = \mu$$

Variância de x, $\sigma^2(x)$, é dada por

$$\sigma^{2}(x) = E\{(x - E(x))^{2}\} = \int_{-\infty}^{+\infty} (x - E(x))^{2} p(x) dx = \int_{\mu - h_{i}}^{\mu + h_{i}} (x - \mu)^{2} p(x) dx = \frac{h_{i}^{2}}{3}$$

Verificar esses resultados

Função densidade de probabilidade do erro com elementos não ideais

Observações a respeito da propagação de incertezas:

Seja a variável depentente y dada como uma combinação linear de variáveis aleatórias independentes x_1 , x_2 e x_3 e sejam os respectivos desvios-padrão σ_{x1} , σ_{x2} e σ_{x3} (assumidos como pequenos).

$$y = a_1 x_1 + a_2 x_2 + a_3 x_3$$
 Obs. $E\{x_i x_j\} = E\{x_i\} E\{x_j\} = \bar{x}_i \bar{x}_j \text{ p/ } i \neq j$

Para p(y), independente do tipo: $\sigma_y^2 = a_1^2 \sigma_{x1}^2 + a_2^2 \sigma_{x2}^2 + a_3^2 \sigma_{x3}^2$

A variância da saída do elemento i é dada por

$$\sigma_{O_i}^2 = \sigma^2$$
 devida à entrada + σ^2 devida ao elemento

Dada a entrada com desvio-padrão σ_{li} a contribuição à variância da saída será $K_i^2 \sigma_{li}^2$. Para um elemento com banda de erro (densidade retangular) de largura $2h_i$, a contribuição à variância vale $h_i^2/3$, então

$$\sigma_{O_i}^2 = K_i^2 \sigma_{I_i}^2 + h_i^2 / 3$$

Função densidade de probabilidade do erro com elementos não ideais

Modelagem do erro de medição utilizando bandas de erro para os elementos

$$\bar{O}_{i} = K_{i}\bar{I}_{i}$$

$$\bar{O} = K_{1}K_{2} \dots K_{i} \dots K_{n}\bar{I}$$

$$\bar{E} = \bar{O} - \bar{I} \quad [= 0, \text{ if } K_{1}K_{2} \dots K_{n} = 1]$$

$$\sigma_{I_{1}}^{2} = 0$$

$$\sigma_{I_{2}}^{2} = \sigma_{O_{1}}^{2} = \frac{h_{1}^{2}}{3}$$

$$\sigma_{I_{3}}^{2} = \sigma_{O_{2}}^{2} = K_{2}^{2}\sigma_{I_{2}}^{2} + \frac{h_{2}^{2}}{3}$$

$$\vdots \qquad \vdots$$

$$\sigma_{I_{t+1}}^{2} = \sigma_{O_{t}}^{2} = K_{i}^{2}\sigma_{I_{t}}^{2} + \frac{h_{i}^{2}}{3}$$

$$\vdots \qquad \vdots$$

$$\sigma_{O}^{2} = \sigma_{O_{n}}^{2} = K_{n}^{2}\sigma_{I_{n}}^{2} + \frac{h_{n}^{2}}{3}$$

$$\sigma_{E} = \sigma_{0}$$

Obs. p(E) é dada pela combinação de n distribuições retangulares. Para n > 3, a distribuição de p(E) se aproxima da normal. Quanto maior n, mais próxima p(E) estará da distribuição normal (teorema do limite central).

Desvio padrão final:

$$\sigma_0^2 = \sigma_n^2 = K_n^2 \left(K_{n-1}^2 \left(\dots \left(K_3^2 \left(K_2^2 \frac{h_1^2}{3} + \frac{h_2^2}{3} \right) + \frac{h_3^2}{3} \right) \dots \right) \right) + \frac{h_n^2}{3}$$

Função densidade de probabilidade do erro com elementos não ideais

Modelagem do erro de medição utilizando bandas de erro para os elementos

$$\bar{O}_{i} = K_{i}\bar{I}_{i}$$

$$\bar{O} = K_{1}K_{2} \dots K_{i} \dots K_{n}\bar{I}$$

$$\bar{E} = \bar{O} - \bar{I} \quad [= 0, \text{ if } K_{1}K_{2} \dots K_{n} = 1]$$

$$\sigma_{I_{1}}^{2} = 0$$

$$\sigma_{I_{2}}^{2} = \sigma_{O_{1}}^{2} = \frac{h_{1}^{2}}{3}$$

$$\sigma_{I_{3}}^{2} = \sigma_{O_{2}}^{2} = K_{2}^{2}\sigma_{I_{2}}^{2} + \frac{h_{2}^{2}}{3}$$

$$\vdots \qquad \vdots$$

$$\sigma_{I_{t+1}}^{2} = \sigma_{O_{t}}^{2} = K_{i}^{2}\sigma_{I_{t}}^{2} + \frac{h_{i}^{2}}{3}$$

$$\vdots \qquad \vdots$$

$$\sigma_{O}^{2} = \sigma_{O_{n}}^{2} = K_{n}^{2}\sigma_{I_{n}}^{2} + \frac{h_{n}^{2}}{3}$$

$$\sigma_{E} = \sigma_{0}$$

Obs. p(E) é dada pela combinação de n distribuições retangulares. Para n > 3, a distribuição de p(E) se aproxima da normal. Quanto maior n, mais próxima p(E) estará da distribuição normal (teorema do limite central).

Continua...