MTH 435: Analysis HW 1

Evan Fox (efox20@uri.edu)

September 26, 2022

Question 1.

Show that there doesn't exist a rational number s such that $s^2 = 6$.

Proof. First we prove that $6|a^2 \implies 6|a$. Suppose that 6 does not divide a and let $a = p_1p_2 \dots p_n$ be the prime factorization of 6, then we know that 3 and 2 cannot both be common factors, But then since 2 and 3 are prime they cannot be the square of a prime number, hence 2 and 3 cannot both appear in $a^2 = p_1^2p_2^2 \dots p_n^2$, hence 6 does not divide a^2 . It now follows by contrapositive that if $6|a^2$ then 6|a.

Now assume there exists $a, b \in \mathbb{Z}$ such that

$$6 = \left(\frac{a}{b}\right)^2$$

If a and b have any common factors we may cancel them out, so we assume (a,b)=1. Then $6b^2=a^2$ implies 6|a so we may fix $m\in\mathbb{Z}$ such that 6m=a. Then $6b^2=(6m)^2$ implies $b^2=6m^2$ and 6|b; thus a and b share a common factor, a contradiction.

Question 2.

If $a, b \in \mathbb{R}$ show that |a + b| = |a| + |b| iff $ab \ge 0$.

Proof. For the forward direction we use contrapositive, assume ab < 0 then without loss of generality assume a > 0 and b < 0, we show that

$$|a+b| \neq |a| + |b|$$

we have by our assumptions on a and b that |a| + |b| = a - b. Now there are three cases (by tricotomy) for what |a + b| can map to, if |a + b| = 0 we

are done since |a| + |b| > 0. If a + b is positive |a + b| = a + b, but then a + b = a - b would imply b = 0, contradicting our assumption on b. If a + b is negative |a + b| = -a - b, but now -a - b = a - b would force a = 0, contradicting our assumption on a. Hence, in every case equality does not hold. This proves the first direction.

Now assume $ab \ge 0$, if either is equal to zero we are done. If they are both positive it follows since a + b will be positive giving

$$|a + b| = a + b = |a| + |b|.$$

Then if they are both negative, their sum will be negative so,

$$|a+b| = -a - b = |a| + |b|$$

completing the opposite direction.

Question 3.

Find all $x \in \mathbb{R}$ that satisfy the inequality

$$4 < |x+2| + |x-1| < 5.$$

Proof. The terms x + 2, x - 1 have different signs only if $x \in (-2, 1)$ but it is clear no such x is a solution, so assume $x \notin (-2, 1)$, then the terms have the same sign and by the above we may add them to get

$$4 < |2x + 1| < 5$$

which we may split into 4 < |2x + 1| and |2x + 1| < 5. For the first case we have

$$4 < |2x+1| \implies 4 < 2x+1 \lor 2x+1 < -4$$

which gives 3/2 < x and x < -5/2; written in interval notation as $(-\infty, -5/2) \cup (3/2, \infty)$. Now for

$$|2x+1| < 5 \implies -5 < 2x+1 < 5 \implies -6/2 < x < 4 = (-3,2)$$

We need both conditions to be satisfied so we must take the intersection over our two solutions,

$$(-\infty, -5/2) \cup (3/2, \infty) \cap (-3, 2) = (-3, -5/2) \cup (3/2, 2)$$

Question 4.

(a) Proof. Assume without loss of generality that b < a, then |a-b| = a-b. Thus

$$\frac{1}{2}(a+b+|a-b|) = \frac{1}{2}(a+b+a-b) = \frac{1}{2}(2a) = a$$

We also have

$$\frac{1}{2}(a+b-|a-b|) = \frac{1}{2}(a+b-(a-b)) = \frac{1}{2}(2b) = b$$

and we are done.

(b) Prove $\min\{a, b, c\} = \min\{\min\{a, b\}, c\}$

Proof. Note $\min\{a,b\}$ is either a or b, then if c where such that c < a and c < b, it is clear. Now suppose a < b and a < c. then

$$\min\{a, b, c\} = a = \min\{a, c$$

$$= \min\{\min\{a,b\},c\}.$$

Then b < a and b < c is the same as above.

Question 5.

Proof. inf $S_4 = \frac{1}{2}$, $\frac{1}{2}$ is an element of S_4 that occurs for n = 2, for $n \neq 2$, if n is odd we will be adding to 1 which gives $\frac{1}{2} < 1 + 1/n$. If n > 2 is even we have 1/n < 1/2 which implies 1 - 1/2 < 1 - 1/n, so 1/2 is the minimal element of S_4 . It follows that if a set contains a minimal element it is the infinium since we have 1/2 < x for all $x \in S_4$ it is a lower bound and since it is an element of S_4 , given any lower bound l, we must have $l \leq 1/2$.

sup $S_4 = 2$, I proceed with a very similar argument as above, 2 appears in S_4 when n = 1, for any n > 1 either we are subtracting from 1, or adding a number smaller than 1 to 1, in either case we get something less than 2. Thus 2 is the maximal element of the set and hence it must be the supremum. \square

Question 6.

Let A and B be bounded nonempty subsets of \mathbb{R} , and let $A + B = \{a + b : a \in A, b \in B\}$. Prove that $\sup(A + B) = \sup(A) + \sup(B)$

Proof. Let $\alpha = \sup(A)$ and $\beta = \sup(B)$. Then for all a, b we have $a \leq \alpha$ and $b \leq \beta$, thus

$$a + b \le \alpha + \beta, \forall a \in A, b \in B.$$

So $\alpha + \beta$ is an upper bound for the set A + B. But then for $\epsilon > 0$ there exists $b_0 \in B$ such that $\beta - \frac{1}{2}\epsilon < b_0$ and $a_0 \in A$ such that $a - \frac{1}{2}\epsilon < a_0$, so $\alpha + \beta - \epsilon < a_0 + b_0$, Thus $\alpha + \beta = \sup(A + B)$. A very similar argument works for infinium. Let $a = \inf(A)$ and $b = \inf(B)$. Then a + b is a lower bound for A + B for the same reasons stated above. But then given $\epsilon > 0$, I can find elements a_0, b_0 in A and B respectively such that $a + b + \epsilon > a_0 + b_0$, so $a + b = \inf(A + B)$.

Question 7.

I first reprove a result from class. If every element of a set B is an upper bound for a set A, then $\inf(B)$ is an upper bound for A.

Proof. Assume every element of B is an upper bound for A, then if $\inf(B) < a$ for some $a \in A$, there exists $\epsilon = a - \inf(B) > 0$ such that $\inf(B) + \epsilon = a$, but by the epsilon formulation of infinium, we have there exists an element of b with b < a, a contradiction.

Proof. We prove that every element of $F = \inf\{f(x)|x \in X\}$ is an upper bound for the set $G = \{g(y)|y \in Y\}$, then it will follow $\sup(G) \leq \inf(F)$. Let $y_0 \in Y$ be arbitrary, then for all $x \in X$ we have

$$g(y_0) \le h(x, y_0) \le f(x).$$

The first inequality holds since g(y) is the infinium over all choices of x and the second holds since for each $x \in X$ we have defined f(x) to be the supremum over $y \in Y$. Then for each $g(y) \in G$, we have $g(y) \leq f(x)$ for all $x \in X$, thus each element of F is an upper bound for G and by the above, the result follows.

Question 8.

If u > 0 and x < y show there exists a rational number x < ru < y.

Proof. Let $x,y \in \mathbb{R}$ with x < y. Then fix $n \in \mathbb{N}$ such that $\frac{1}{n} < y - x$, from this we immediately get 0 < 1 + xn < yn. Now choose $m \in \mathbb{N}$ to be the integer such that $xn < m \le xn + 1$. Then we have

$$xn < m \leq xn + 1 < yn \implies xn < m < yn \implies x < \frac{m}{n} < y.$$

Now note $\frac{x}{u},\frac{y}{u}\in\mathbb{R}$ so there exists $s,t\in\mathbb{Z}$ such that

$$\frac{x}{u} < \frac{s}{t} < \frac{y}{u} \implies x < \frac{su}{t} < y$$

and we are done.