

Runtime randomization and perturbation for virtual machines.

JAVIER CABRERA ARTEAGA

Licentiate Thesis in [Research Subject - as it is in your ISP]
School of Information and Communication Technology
KTH Royal Institute of Technology
Stockholm, Sweden [2022]

TRITA-ICT XXXX:XX ISBN XXX-XXX-XXXX-X KTH School of Information and Communication Technology SE-164 40 Kista SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av licentiatexamen i [ämne/subject] [veckodag/weekday] den [dag/day] [månad/month] [år/2022] klockan [tid/time] i [sal/hall], Electrum, Kungl Tekniska högskolan, Kistagången 16, Kista.

© Javier Cabrera Arteaga, [month] [2022]

Tryck: Universitetsservice US AB

Abstract

Write your abstract here... $\textbf{Keywords:} \ \, \textbf{Keyword1}, \, \textbf{keyword2}, \, \dots$

Sammanfattning

Write your Swedish summary (popular description) here... $\bf Keywords : Keyword1, \, keyword2, \, ...$

Acknowledgements

Write your professional acknowledgements here...

Acknowledgements are used to thank all persons who have helped in carrying out the research and to the research organizations/institutions and/or companies for funding the research.

 $Name\ Surname,$ Place, Date

Contents

C	onten	its						vi
List of Figures					viii			
Li	\mathbf{st} of	Tables	5					ix
Li	st of	Acron	yms					x
1	Vari	iant's	generation					1
	1.1	CROV	V					. 1
		1.1.1	Example					. 3
	1.2	Evalua	ation					4
		1.2.1	Corpora					5
		1.2.2	Setup					5
	1.3	Result	s					6
		1.3.1	Challenges for automatic diversification					7
		1.3.2	Properties for large diversification using CROW					8
		1.3.3	Variant properties					8
	1.4	Conclu	asions					9
2	Vari	iant's	assessment					10
	2.1	Metric	::::::::::::::::::::::::::::::::::::::					10
		2.1.1	Static					10
		2.1.2	Program traces and execution times					11
		2.1.3	Variants preservation					11
	2.2	Evalua	ation					12
		2.2.1	Static comparison					13
		2.2.2	Dynamic comparison					13
		2.2.3	Preservation					13
	2.3	Result	S					14
		2.3.1	Static					14
		2.3.2	Dynamic					14
		2.3.3	Preservation					14

CONTENTS			vii		
	2.4	Conclusions	15		
3	3.1	iant's application Security MTD			
Aı	Appended papers				

List of Figures

1.1	CROW workflow to generate program variants. CROW takes C/C++	
	source codes or LLVM bitcodes to look for code blocks that can be	
	replaced by semantically equivalent code and generates program variants	
	by combining them	2

List of Tables

1.1	Corpora description. The table is composed by the name of the corpus,	
	the selection criteria and the stats the programs in each corpus	6
1.2	CROW tweaking for variants generation. The table is composed by the	
	name of the corpus, the timeout parameter and the maximum number	
	of instructions allowed in the synthesis process	6
1.3	General diversification results. The table is composed by the name of the	
	corpus, the number of functions, the number of successfully diversified	
	functions, the number of non-diversified functions and the number of	
	unique variants	7
2.1	Wasm engines used during the diversification assessment study. The	
	table is composed by the name of the engine and the description of the	
	compilation process for them	13

List of Acronyms

Wasm WebAssembly

DTW Dynamic Time Warping