Math 151 Lab 8

Use Python to solve each problem.

- 1. Let $f(x) = 2\sin^{-1}(x)$ and $g(x) = \cos^{-1}(1 2x^2)$ (with domain $x \ge 0$)
 - a) Find and simplify the derivative of f(x) g(x).
 - b) In a print statement, explain what your answer to part a) tells you about f(x) g(x).
 - c) Evaluate f(0) g(0) and give further detail about the explanation in part b).
- 2. Given $g(x) = -5x^4 20x^3 + 18$:
 - a) Find the critical values of q.
 - b) By observing a graph of g' OR by testing numerically, find the intervals on which g is increasing and the intervals on which g is decreasing. Give your answers using interval notation (use "oo" for infinity and "U" for union where applicable).
 - c) Find the x-values where g''(x) = 0 (basically, the critical values of g')
 - d) By observing a graph of g'' OR by testing numerically, find the intervals on which g is concave up and the intervals on which g is concave down. Give your answers using interval notation (use "oo" for infinity and "U" for union where applicable).
 - e) Plot the function g in an appropriate domain and range to graphically confirm your answers to parts (b) and (d). All local extrema and inflection points should be clearly visible in your graph.
- 3. Given $f(x) = \frac{x^2(x+1)^3}{(x-2)^2(x-4)^4}$:
 - a) Plot f on the domain $x \in [-10, 10]$. In a print command, indicate how many local extrema and how many inflection points there appear to be.
 - b) Find f'(x) and the critical values of f (approximate real values only).
 - c) Determine the intervals where f is increasing and decreasing (you may try to do this graphically or numerically as discussed in the Overview and described in #2 above).
 - d) Find f''(x) and the intervals of concavity (approximate real x-values only. As with part c), you may determine the intervals graphically or numerically.)

1

e) How many local extrema and inflection points actually exist? (#4 on the next page...)

- 4. Given $y = (1 6x)^{1/x}$:
 - a) By hand, write ln(y) as a fraction $\frac{f(x)}{g(x)}$. Define f and g in Python.
 - b) Find the limits of f and g as $x \to 0$.
 - c) If the answers in part (b) allow for it, use L'Hospital's Rule to compute $\lim_{x\to 0} \ln(y)$ and state the resulting $\lim_{x\to 0} y$.
 - d) Evaluate $\lim_{x\to 0} y$ directly in Python to verify your answer in part (c).