Gruppövning 4 - Grupp A
19 $\,$

Max Hagman, Felix Bjerhem Aronsson, Fabian Forsman, Zoé Opdendries, Daniel Malmgren

February 28, 2022

Teoriövning 3

- (a) Vi definierar A som $A = \begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix}$ där a_1, a_2, a_3 är kolonnvektorer. Vi definierar \boldsymbol{x} som följande $\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ Då blir linjärkombinationen $A\boldsymbol{x} = \boldsymbol{a}_1 \cdot x_1 + \boldsymbol{a}_2 \cdot x_2 + \boldsymbol{a}_3 \cdot x_3$
- (b)
- Fall a_1 : För att $A\boldsymbol{x}=a_1$ behöver $\boldsymbol{x}=\begin{pmatrix} 1\\0\\0 \end{pmatrix}$
- Fall a_2 : För att $A\boldsymbol{x} = a_2$ behöver $\boldsymbol{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$
- Fall a_3 : För att $A\mathbf{x} = a_3$ behöver $\mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
- (c) Vi kallar mängden för alla \boldsymbol{b} sådana att $A\boldsymbol{x} = \boldsymbol{b}$ för \mathbb{M} . Mängden \mathbb{M} består av alla \boldsymbol{b} som löser $A\boldsymbol{x} = \boldsymbol{b}$ och är en 3×1 -matris.
- (d) Vi kallar mängden för alla \boldsymbol{b} sådana att $A\boldsymbol{x} = \boldsymbol{b}$ för \mathbb{M} . Mängden \mathbb{M} består av alla \boldsymbol{b} som löser $A\boldsymbol{x} = \boldsymbol{b}$ och är en $n \times 1$ -matris.

Datorövning 3

- (a) Vi får en lösning då vi kör en slumpad $(n+c) \times n$ -matris där $c \in \mathbb{N}_+$. Dubbelkollar man att det svaret matlab ger för $A\boldsymbol{x} = \boldsymbol{b}$ så stämmer det inte. Ifall men ger det en felmarginal så inser man att det är en approximation. Det givna svaret är inte exakt men med minsta-kvadrat metoden har matlab kommit fram till en approximation för $A\boldsymbol{x} = \boldsymbol{b}$. Det blir bara en lösning då vi har ett överbestämt ekvationssystem (eller snarare en approximation).
 - Se upg3.m för färdig test funktion
- (b) Matlab ger en lösning då vi kör en slumpad $n \times (n+c)$ -matris där $c \in \mathbb{N}_+$. Dubbelkollar man att det svaret matlab ger är en lösning på Ax = b så stämmer det. Enligt hjälpinformationen från mldivide-funktionen kan man läsa att matlab använder minsta-kvadrat metoden för att komma fram till sitt svar.

Det borde vara en approximation men det blir exakt.

Se upg3.m för färdig test funktion