Intro to Recommendations Systems

Data Science and Machine Learning Workshop' 2017

Habib University

Acknowledgement

- Slides of this lecture have been taken from following online resources:
 - https://www.slideshare.net/stanleywanguni/overv iew-of-recommender-system
 - http://katbailey.github.io/post/matrixfactorization-with-tensorflow/

Amazon

Grant, Welcome to Your Amazon.com (If you're not Grant Ingersoll, click here.)

Today's Recommendations For You

Here's a daily sample of items recommended for you. Click here to see all recommendations.

Principles of Data Mining (A...

by David J....

ANA (17) \$52.00

Python in a Nutshell, Secon...
by Alex Mart...

********* (40) \$26.39

Introductory Statistics wit...
by Peter Dal...

全体 (20) \$48.56

Booking.com

Coursera

Data Science

Python for Everybody

Applied Data Science with Python

Duke University

Excel to MySQL:
Analytic
Techniques for
Business

Java Programming and Software Engineering Fundamentals

Data

- Item Data
- User Data
- Sales Data
- Ranking Data (Implicit/Explicit)

Content Based Recommendations

Collaborative Filtering (CF)

Collaborative Filtering

User Based Collaborative Filtering

what people with similar tastes seem to like

Item Based Collaborative Filtering

what other items are similar to what user liked

Nearest Neighbor CF

	Item1	Item2	ltem3	Item4	Item5	
Alice	5	3	4	4	?	sim = 0,85
User1	3	1	2	3	3	sim = 0,70 sim = -0,79
User2	4	3	4	3	5	3,13
User3	3	3	1	5	4	
User4	1	5	5	2	1	

Item Based CF

Basic idea:

- Use the similarity between items (and not users) to make predictions
 Example:
- Look for items that are similar to Item5
- Take Alice's ratings for these items to predict the rating for Item5

	ltem1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

K- Nearest Neighbor

Measuring Similarity

Jaccard coefficient:

$$sim(a,b) = \frac{(1+1)}{(1+1+1)+(1+1+1)-(1+1)}$$

Cosine similarity: $sim(a,b) = cos(\vec{a},\vec{b}) = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|_{2} + \|\vec{b}\|_{2}} = \frac{(1*1+0.5*1)}{\sqrt{(1^{2}+0.5^{2}+1^{2})*(1^{2}+0.5^{2}+1^{2}+1^{2})}}$

Pearson Correlation:

$$corr(a,b) = \frac{\sum_{i} (r_{ai} - \overline{r_{a}})(r_{bi} - \overline{r_{b}})}{\sqrt{\sum_{i} (r_{ai} - \overline{r_{a}})^{2} \sum_{i} (r_{bi} - \overline{r_{b}})^{2}}} = \frac{m \sum_{i} a_{i} b_{i} - \sum_{i} a_{i} \sum_{i} b_{i}}{\sqrt{m \sum_{i} a_{i}^{2} - (\sum_{i} a_{i})^{2} \sqrt{m \sum_{i} b_{i}^{2} - (\sum_{i} b_{i})^{2}}}}$$

$$= \frac{match_{-} cols * Dotprod(a,b) - sum(a) * sum(b)}{\sqrt{match_{-} cols * sum(a^{2}) - (sum(a))^{2} \sqrt{match_{-} cols * sum(b^{2}) - (sum(b))^{2}}}}$$

Latent Factor Model

 Users and items are connect by latent features.

User-Item Rating

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	°2	3	°?	3	°2
User 2	4	°?	°?	2	°?
User 3	°?	°?	3	°?	°2
User 4	3	0.3	4	°?	3
User 5	4	3	⁰ ?	4	⁰ ?

Matrix Factorization

	Feature 1	Feature 2
User 1	?	?
User 2	?	?
User 3	?	?
User 4	?	?
User 5	?	?

	Item 1	Item 2	Item 3	Item 4	Item 5
Feature 1	?	?	?	?	?
Feature 2	?	?	?	?	?

	Item '	Item 2	Item (Item ,	Item (
User 1	°2	3	°?	3	°?
User 2	4	°?	°?	2	°?
User 3	°?	°?	3	⁰ ?	°?
User 4	3	0.3	4	°?	3
User 5	4	3	0.5	4	0.5

Libraries for Recommendations

- Python
 - GraphLab
 - Crab.
 - Surprise
 - Python Recsys
 - MRec
- Java
 - Mahout

Challenges

- Sparsity
- Synonymy
- Scalability
- Gray Sheep
 - refers to the users whose opinions do not consistently agree or disagree with any group of people
- Privacy