

القسم: 1ج م ع4

التمرين(1)

كرتان حديديتان لهما نفس الكتلة m=650 موضوعتان على سطح أفقى تفصل بينهما المسافة

- 1) أحسب شدة ثقل إحدى الكرتين . نعطى شدة الجاذبية :
 - 2) ما شدة قوة الجذب العام المطبقة من طرف إحدى الكرتين على الأخرى ؟
- 3) لماذا عندما ندرس توازن إحدى الكرتين لا نأخذ بعين الاعتبار قوة الجذب العام المطبقة من طرف إحدى الكرتين على الأخرى ؟

التمرين(2)

توجد مراكز كل من الأرض والقمر ومركبة فضائية على استقامة واحدة لتكن d المسافة بين مركزي الأرض والمركبة mو القصائية ذات الكتلة m=1800kg و المسافة بين مركزي الأرض والقمر

- 1) أكتب عبارتي شدة قوة الجذب العام التي يطبقها كل من القمر والأرض على المركبة.
 - 2) حدد d_0 حيث تكون لهاتين القوتين نفس الشدة. حيث

التمرين(3)

في المعلم المركزي الأرضى ، ينجز ساتل كتلته $m_{\rm S}$ مدارا دائريا نصف قطره $r_{\rm S}$ ومركزه هو مركز الأرض التي R كتلتها ونصف قطرها

- عبر بدلالة G و M_T و m_S عن الشدة المشتركة و F_0 لقوتى التأثير الجاذبي بين (1
 - الأرض والساتل عندما يكون هذا الأخير على سطحها. عبر بدلالة G و M_T و $m_{
 m S}$ عن الشدة المشتركة F لقوتى التأثير الجاذبي بين $T_{
 m S}$
 - $F = \frac{0}{2}$ حدد العلو h الذي يوجد عليه الساتل عندما يكون (3

الأرض والساتل عندما يكون في مداره.

التمرين(4)

- 1) أحسب شدة قوتي التأثير المتبادل الجاذبي بين الشمس والأرض ، مثل شعاعي القوتين بسلم
 - 2) أحسب شدة القوة التي تؤثر بها الشمس ثم الأرض على شخص كتلته على سطح الأرض . ماذا تستنتج ؟

نعطى:

المسافة بين مركزي الشمس و الأرض

ثابت الجذب العام:

<u>التمرين (5)</u>

مكن تلسكوب هابل من عدت اكتشافات مهمة في مجال الفضاء . يتحرك هذا التلسكوب في مدار دائري حول الأرض و على ارتفاع km

- 2) أحسب شدة الجاذبية عند هذا الارتفاع.
- 3) قارن بين هذه الجاذبية و شدة الجاذبية على سطح الأرض . ماذا تستنتج ؟
 - 4) كتلة التلسكوب m=12t ، أحسب ثقله على ارتفاع
 - 5) لماذا لا يسقط هذا التلسكوب على الأرض؟

نعطي:

التمرين(6)

أرسل قمر اصطناعي كتلته

لدراسة حركة الكواكب في النظام الشمسي . يقع هذا القمر

بين الأرض و الشمس و على استقامة واحدة و على بعد km

kgو كتلة الأرض و الشمس $D=15\times 10^7\,km$ و كتلة الأرض

2) أعطي العبارة الحرفية للقوة الجاذبة المطبقة من الشمس على القمر. أحسب قيمتها.

التمرين (7)

Pفي مكان على سطح الأرض حيث شدة الجاذبية هي صعد نفس الشخص إلى قمة 1) شخص ثقله جبل التي علوها ، فصارت شدة ثقله هي

أ- أحسب m كتلة هذا الشخص.

ب-جد عبارة P شدة الثقل بدلالة m و g_0 و أو ونصف قطر الأرض

 $\left(\sqrt{rac{P_0}{1}}-1
ight)$: استنتج أن عبارة h تكتب على الشكل التالي h

h أحسب قيمة

نصف قطر الأرض 6400 km

2) نعتبر الأبعاد التالية:

، طول شجرة 3,7m ، نصف قطر كوكب المريخ قطر کریة دم حمراء

جدرتبة الأعداد السابقة.

التمرين(8)

المسافة المتوسطة بين مركز القمر (L) و مركز الارض (T) تتغير من (L) و مركز القمر (S) كتألته يتحرك بين الأرض و القمر عندما يصل القمر إلى أوجه تكون مراكز كل من الارض و القمر و الجسم (S) على نفس الاستقامة

. (S) المسافة بين سطح الارض و مركز الجسم $d=2000 {
m Km}$

المسافة بين سطح القمر و مركز الجسم (ك) (أنظر الشكل) .

- 1) ذكر بنص قانون الذب العام.
- . (S) على الجسم المطبقة من الأرض على الجسم (2) حدد مميز ات
- 3) مثل على الشكل بعد نقله إلى ورقة الإجابة شعاع القوة $ec{F}_{T/S}$ بسنتمترين .ما السلم المستعمل ؟
 - $\overline{(R_T+d)}$: هو (S) بين أن عبارة g شدة الجاذبية الأرضية عند موضع الجسم g
- عند موضع الجسم (S) ، اكتب عبارة النسبة بدلالة d و R_T حيث g_0 شدة الجاذبية الأرضية على سطح الارض.
 - ان علما آن g_0 علما آن السبة g_0 علما آن
 - 7) نسمي المسافة d_0 بين سطح الأرض و الجسم (S) حيث تكون للقوة المطبقة من طرف الأرض على الجسم (S) نسمي المسافة (S) و للقوة المطبقة من طرف القمر على الجسم (S) نفس الشدة، احسب قيمة

معطيات:

، كتلة القمر ، نصف قطر

كتلة الأرض

القمر

التمرين(9)

- 1) نعتبر أبعاد المقادير التالية : عرض باب قاعة 1,20m ، قد نملة 4mm ، إرتفاع صومعة 180m ، إرتفاع جبل ، قطر كرية دم حمراء 7um ، قطر كرية دم حمراء 7um ، قطر كرية دم حمراء 7um ، قطر كوكب الأرض
 - أكتب الأعداد السابقة كتابة علمية وحدد رتب قدرها (على شكل جدول)
 - 2) نعتبر قمر اصطناعيا كتلته m، يوجد على ارتفاع h=300 mمن سطح الأرض نصف قطر ها . تتغير شدة الجاذبية الأرضية مع تغير قيمة الارتفاع
 - أ- أكتب عبارة g شدة الجاذبية الأرضية بدلالة G ثابتة التجاذب الكوني و M_T كتلة الأرض و R . ثم استنتج عبارة R عند سطح الأرض .
 - . في الأرضية g عند الارتفاع عند هذا الارتفاع g عند هذا الارتفاع g
 - ج- أحسب ثقل القمر P_0 عند سطح الأرض ، ماذا تستنتج أي كيف يتغير P مع الإرتفاع ؟

. $P=rac{0}{2}$ عندما تأخذ P (ثقل القمر الاصطناعي) التعبير التالى: R_T عندما تأخذ P (ثقل القمر الاصطناعي) التعبير التالى:

: نعطى الجذب العام ، M_T $6 imes 10^{24} \ kg$ نعطى نعطى

التمرين (10)

1- ألسات 1 (Alsat1) قمر اصطناعي جزائري متعدد الاستخدامات كتلته $m_s = 90 Kg$ ، أرسل إلى الفضاء بتاريخ 2002 أيدور حول الأرض بفرض ان المسار دائري ويبعد عن سطح الأرض $600 \, km$

1-1 - أكتب العبارة النظرية: لشدة قوة جذب الأرض للقمر الصناعي.

1 -2- أحسب شدة قوة جذب الأرض للقمر الصناعي .

2- في اللحظة التي يتواجد فيها القمر الصناعي بين الأرض و القمر و على استقامة مع مركزيهما ، حيث يبعد مسافة d_1 عن مركز القمر .

1-2 - اعط العبارة النظرية: لشدة قوة جذب القمر للقمر الصناعي.

2-2- _ أحسب شدة قوة جذب القمر للقمر الصناعي .

3 ـ ما هي المسافة بين القمر الصناعي والأرض لكي تتساوى شدتا القوتين (قوة جذب الأرض للقمر الصناعي و قوة جذب القمر الصناعي).

 $M_T = 5.97 \times 10^{24} kg$: * كتلة الأرض * كتلة الأرض

r = 6400km خصف قطر الأرض *

 $M_L = 7.36 \times 10^{22} kg$: كتلة القمر

 $m_{S} = 90 kg$: كتلة القمر الصناعى *

 $d=3.84\times10^8 m$: المسافة بين مركزي الأرض و القمر *

 $G = 6.67 \times 10^{-11} SI$: الجذب العام *

التمرين (11)

في نقطتين A و B نثبت بواسطة خيطين عازلين و غير قابلين للإمتطاط كرتين فو لاذيتين مشحونتين حيث و $d_1=25cm$. (أنظر الشكل) .

1) مثل القوى الكهربائية التي تتأثر بها الكرية B . ثم أحسب شدتها؟

2) هل تتأثر الكرية A بقوة ? . مثلها بدقة ،ثم استنتج شدتها.

(3) نقرب من الكرية الفولاذية B كرية فولاذية أخرى C مشحونة حيث . علما أن الكريات الفولاذية الثلاثة تكون على استقامة واحدة و تبعد الكرية B عن الكرية C بمسافة (الشكل 2).

أ- مثل في هذه الحالة القوى الكهربائية التي تتأثر بها الكرية B ، ثم استنتج شدتها؟

ب-أحسب محصلة هذه القوى.

ج- على أي مسافة يجب أن نثبت الكرية C كي تصبح محصلة القوى التي تتأثر بها B معدومة.

ملاحظة :نعتبر الكريات الفولاذية شحن نقطية يعطى:

من

 $q_A \bigoplus$

الشكل - 2 الشكل — 1

التمرين(12)

يدور قمر اصطناعي (S) حول الأرض على مسار دائري وبسرعة ثابته في القيمة وعلى ارتفاع سطح الأرض ، كتلته m_{S} وكتلة الأرض M_{T} فاذا كانت قيمة الجاذبية الأرضية عند هذا الارتفاع

- 1) ما طبيعة حركة القمر الاصطناعي ؟ .
- 2) مثل على الشكل قوة ثقل القمر الاصطناعي \vec{P} ثم أكتب عبارتها الحرفية .
 - (3 مثل على الشكل القوة $\vec{F}_{S/T}$ التي يطبقها القمر على الأرض
 - ب استنتج العلاقة بين القوتين $ec{F}_{S/T}$ و استنتج العلاقة بين القوتين $ec{P}$
 - . $\vec{F}_{S/T}$ اكتب العبارة الحرفية لشدة القوة (5
 - 6) أحسب كتلة الأرض

، نصف قطر الأرض

التمرين(13)

نثبت ثلاث شحن A و B و C على رؤوس مثلث متساوي الساقين .

مثل القوة التي تخضع لها الشحنة q_c . ثم احسب شدتها .

التمرين (14)

مربع طول ضلعه : أربع شحنات نقطية كما في الشكل حيث $C \cdot B \cdot$

 $|q_A| = |q_B| = |q_C| = |q_D|$

- 1) مثل على الشكل جميع القوى المؤثرة على الشحنة q
- و q_B و q_A من طرف الشحنات q_C و و q_B و q_B

التمرين(15)

جسمان $m{B}$ ، $m{A}$ مشحونان بشحنتین کهربائیتین q_A و q_B تبعدان عن بعضهما مسافة

 q_c

- 1) أحسب شدة القوة الكهربائية التي يتأثر بها الجسم B ثم مثلها.
- 2) استنتج شدة القوة الكهربائية التي يتأثر بها الجسم A ثم مثلها.
- (3) نضع جسم α شحنته $\alpha_{C}=-5\mu$ بين الجسمين $\alpha_{C}=-5\mu$ بين الجسمين $\alpha_{C}=-5\mu$ بين الجسم عن الجسم $\alpha_{C}=-5\mu$ مسافة $\alpha_{C}=-5\mu$ مسافة $\alpha_{C}=-5\mu$ ما هي القوة الإجمالية التي يخضع لها الجسم $\alpha_{C}=-5\mu$.

<u>الحلول</u>

التمرين(1)

1) أحسب شدة ثقل إحدى الكرتين .

2) ما شدة قوة الجذب العام المطبقة من طرف إحدى الكرتين على الأخرى ؟

 (20.10^{-2})

3) لماذا عندما ندرس توازن إحدى الكرتين لا نأخذ بعين الاعتبار قوة الجذب العام المطبقة من طرف إحدى الكرتين على الأخرى ؟

. P و F لنقارن بين

____ _ ومنه

وبالتالي قيمة قوة الجذب العام المطبقة من طرف إحدى الكرتين على الأخرى مهملة أمام قيمة ثقل إحدى الكرتين ، لذلك عندما ندرس توازن إحدى الكرتان لا نأخذ بعين الاعتبار قوة الجذب العام المطبقة من طرف إحدى الكرتين على الأخرى.

<u>التمرين(2)</u>

1) أكتب عبارتي شدة قوة الجذب العام التي يطبقها كل من القمر والأرض على المركبة.

. $F_{T/}$

$. \qquad _{/S} = \frac{}{(D-d)}$

2) حدد حيث تكون لهاتين القوتين نفس الشدة.

$$. \quad _{T/S}=F_{L/S}$$

$$\overline{(D)}$$

$$\sqrt{()}$$

التمرين(3)

- عبر بدلالة و و R_T عن الشدة المشتركة والمؤتي التأثير الجاذبي بين الأرض والساتل عندما يكون هذا الأخير على سطحها.
 - (R)
- عبر بدلالة و m_S و m_S عن الشدة المشتركة F لقوتي التأثير الجاذبي بين الأرض والساتل عندما يكون في في مداره.
 - (r_s) (h
 - . $F=rac{0}{2}$ حدد العلو الذي يوجد عليه الساتل عندما يكون
 - $\frac{1}{(h)}$ $\frac{1}{(R)}$
 - $\overline{(h)}$ $\overline{16(R_T)}$
 - (h) 16(R)

التمرين (4)

1) أحسب شدة قوتي التأثير المتبادل الجاذبي بين الشمس والأرض ، مثل شعاعي القوتين بسلم مناسب .

$$T/S = F_{S/T}$$
 ———

T/S S/T (1

 $F_{T/}$ S/T

2) أحسب شدة القوة التي تؤثر بها الشمس ثم الأرض على شخص كتلته على سطح الأرض ماذا تستنتج ؟

$$\begin{array}{c|cccc}
\cdot & T/P & \hline \hline (R_T) & \hline \hline (6 &) \\
\hline
S/P & \hline (d &) & \hline (1 &) \\
\end{array}$$

نستنتج أن القوة التي تؤثر بها الشمس أقل من القوة التي تؤثر بها الأرض.

التمرين (5)

 $\frac{1}{(R_T+h)}$ بين أن شدة الجاذبية الأرضية على ارتفاع h من سطح الأرض تعطى بالعلاقة

. $F_{T/}$ $\frac{}{(R \quad h)}$

T/S

(R h)

 $(R \quad h)$

2) أحسب شدة الجاذبية عند هذا الارتفاع.

 $(6,4\times10^6+6\times10^5)$

3) قارن بين هذه الجاذبية و شدة الجاذبية على سطح الأرض . ماذا تستنتج ؟

على سطح الأرض.

 $\overline{(R_T)}$

4) كتلة التلسكوب

، أحسب ثقله على ارتفاع

5) لماذا لا يسقط هذا التلسكوب على الأرض؟

لأن له سرعة كافية توازنه في مساره الدائري .

<u>التمرين (7)</u>

- P شخص ثقله P في مكان على سطح الأرض حيث شدة الجاذبية هي معد نفس الشخص إلى قمة جبل التي علوها ، فصارت شدة ثقله هي .
 - أ) أحسب m كتلة هذا الشخص.

_-5

ب) جد عبارة شدة الثقل بدلالة m و g_0 و h و ونصف قطر الأرض

 $\overline{(R\ h)}$

 $\frac{}{(R+h)}$ وبالتالي $\frac{}{(R+h)}$

 $(R \ h)$

 $(R \ h)$

 $\left(\sqrt{rac{P_0}{}}-1
ight)$: استنتج أن عبارة h تكتب على الشكل التالي h

 $\overline{(R \ h)}$ $\overline{(R \ h)}$

(R h)

 $\sqrt{rac{P_0}{2}}=rac{R+h}{2}$ وبالتالي $\sqrt{rac{P_0}{2}}=\sqrt{rac{(R+h)^2}{2}}$ ومنه -

$$R\sqrt{-}$$
 منه

 $R\sqrt{-}$

أحسب قيمة

$$\left(\sqrt{---}-1\right)$$

2) جد رتبة الأعداد السابقة.

طول شجرة 3,7m رتبة العدد هي 1.

نصف قطر كوكب المريخ m رتبة العدد هي 10

التمرين(11)

1) مثل القوى الكهربائية التي تتأثر بها الكرية B . ثم أحسب شدتها؟

$$\cdot A/B \qquad \frac{K|q_A||q_B|}{(25\times 10^{-2})}$$

 $F_{A/}$

2) هل تتأثر الكرية A بقوة ؟ . مثلها بدقة ،ثم استنتج شدتها.

. تتأثر الكرية A بقوة $\vec{F}_{A/B}$ حسب مبدأ الفعلين المتبادلين . تساوي القوة $\vec{F}_{A/B}$ في الشدة

. $F_{B/}$

3) نقرب من الكرية الفولاذية B كرية فولاذية أخرى C مشحونة حيث الفولاذية الثلاثة تكون على استقامة واحدة و تبعد الكرية B عن الكرية C بمسافة

مثل في هذه الحالة القوى الكهربائية التي تتأثر بها الكرية B ، ثم استنتج شدتها؟

الشكل – 1

علما أن الكريات

d (الشكل 2).

الشكل – 2

. $F_{A/}$. C/B . $K|q_C||q_B|$. (45×10^{-2})

أحسب محصلة هذه القوى.

. $\vec{F} = \vec{F}_{A/B} + \vec{F}_{C/B}$

 $F = F_{A/B} - F_{C/B}$

على أي مسافة يجب أن نثبت الكرية C كي تصبح محصلة القوى التي تتأثر بها B معدومة.

 $. F_{A/B} = F_{C/}$

 $K|q_A||q_B|$ $K|q_C||q_B|$

 $|q_A|$ $|q_C|$

$$\sqrt{\frac{|q_C| \times}{|q_A|}} \qquad \sqrt{\frac{\times (25 \times 10^{-2})}{}}$$

التمرين (12)

- 1) ما طبيعة حركة القمر الاصطناعي ؟ .
- حركة القمر الاصطناعي دائرية منتظمة.
- 2) مثل على الشكل قوة ثقل القمر الاصطناعي \vec{P} ثم أكتب عبارتها الحرفية .
 - (3) مثل على الشكل القوة $\vec{F}_{S/T}$ التي يطبقها القمر على الأرض
 - . $ec{F}_{S/T}$ و $ec{P}$ استنتج العلاقة بين القوتين (4

$F_{S/}$

. $\vec{F}_{S/T}$ اكتب العبارة الحرفية لشدة القوة (5

$$_{/T}=\frac{}{(}$$

6) أحسب كتلة الأرض

 $h+R_T$

 $\frac{g(h+R_T)}{(h+R_T)}$ ومنه $\frac{g(h+R_T)}{(h+R_T)}$

×(6)

التمرين(13<u>)</u>

مثل القوة التي تخضع لها الشحنة q_{C} . ثم احسب شدتها .

 $B/C \qquad \frac{K|q_B||q_C|}{(10\times 10^{-2})}$

 $F_{B/}$

. $F_{A/}$ $\frac{K|q_C||q_C|}{}$

بتطبيق نظرية فيتاغورس.

.

$$A/C$$
 $\frac{K|q||q_C|}{-B/C}$

· A/C

$$\vec{F}$$
 $\vec{F}_{B/C} + \vec{F}_{A/C}$

$$F = \sqrt{\left(F_{B/C}\right)^2 + \left(F_{A/C}\right)} \qquad B/C F_{A/C}$$

$$F = \sqrt{(32,4)^2 + (16,2)}$$

التمرين (14)

- q مثل على الشكل جميع القوى المؤثرة على الشحنة q
- و q_B و q_A أحسب شدة كل قوة مطبقة على q_C من طرف الشحنات q_A و

$$\cdot B/C \frac{K|q_B||q_C|}{}$$

· B/C (10)

. *B/C*

D/C $\frac{K|q_D||q_C|}{|q_C|}$

· D/C

. $F_{A/}$ $\frac{K|q_A||q_C|}{}$

بتطبيق نظرية فيتاغورس

.

 $K|q_A||q_C|$

- A/C

· A/C

التمرين(15)

1) أحسب شدة القوة الكهربائية التي يتأثر بها الجسم B ثم مثلها.

A/B $K|q_A||q_B|$

 $F_{A/}$ $\overline{\qquad}$ (2×10^{-1})

2) استنتج شدة القوة الكهربائية التي يتأثر بها الجسم A ثم مثلها.

. $F_{B/A}=F_{A/}$ المتبادلين N

C ما هي القوة الإجمالية التي يخضع لها الجسم C .

A/C

A/C (5)

 $B/C \qquad \frac{K|q||q_C|}{(d x)}$

 $K|q||q_C|$

B/C (15)

. $\vec{F} = \vec{F}_{/C} + \vec{F}_{B/C}$

 $. F = F_{A/} \qquad _{B/C}$

