WaveGlow (Flow-Based Generative Model)

WaveGlow는 TTS의 두가지 task Text-to-Mel과 Mel-to-RawAudio중 두번째에 해당하는 task를 처리하는 Vocoder이다.

WaveGlow는 <u>WaveNet</u>과 <u>Glow</u>에서 영감을 받아 만들어졌다고 한다. 이 중 WaveNet은 깊게 다루지 않는다. Glow는 <u>Generative Model</u>에서 다룬 세가지 모델중 Flow-Based Generative Model을 사용했다. 우선 Flow-Based Generative Model에 대해 좀 더 자세히 알아보자.

Flow-Based Generative Model

Flow-Based Generative Model은 원래의 데이터 x의 분포를 찾기 위해 x를 latent feature z (multivariate normal distribution 가정)로 transform하는 함수 f를 학습하고 해당 f의 역함수를 사용해 generate하는 모델이다. x분포의 likelihood를 maximize하도록 optimize가 진행된다.

이를 수식으로 나타내면 다음과 같다.

Likelihood

$$egin{aligned} x \sim p(x) \ z \sim \mathcal{N}(0,I) \ x = f(z) = f_0 \circ f_1 \circ \cdots \circ f_k(z) \end{aligned}$$

이를 통해 x의 log-likelihood를 정리하면 다음과 같다.

$$\log p_{ heta}(x) = \log p_{ heta}(z) + \sum_{i=1}^k \log \left| \det(J(f_i^{-1}(z_i)))
ight|$$

결국 이 값을 최대화 하는 함수 f를 찾고 해당 f의 역함수를 이용해 generate를 수행하면 된다. 우선 위 x의 log-likelihood 수식을 이해해보자. p(x)를 x의 PDF, $\pi(z)$ 를 z의 PDF로 생각하면 데이터 x가 주어졌을 때의 likelihood를 다음과 같이 유도하여 정리 할 수 있다.

$$x \sim p(x)$$
 $z \sim \pi(z)$ $x = f(z)$ $z = f^{-1}(x)$
$$\int p(x) dx = \int \pi(z) dz = 1$$

$$\int p(x) dx = \int \pi(f^{-1}(x)) df^{-1}(x) = 1$$

$$\frac{d}{dx} \int p(x) dx = \frac{d}{dx} \int \pi(f^{-1}(x)) df^{-1}(x)$$

$$p(x) = \pi(f^{-1}(x)) \left| \det \frac{df^{-1}(x)}{dx} \right|$$

$$p(x) = \pi(f^{-1}(x)) \left| \det J(f^{-1}(x)) \right|$$

(절대값은 transformation에서의 기울기 부호 변화를 고려해서 필요, \det 은 x와 z가 벡터이기 때문에 필요하다.)

라고 하면 h_i 에 대해 다음과 같은 일반화가 가능하다.

$$egin{aligned} p_i(h_i) &= p_{i-1}(h_{i-1}) igg| \det J(f_i^{-1}(h_i)) igg| \ \log p_i(h_i) &= \log p_{i-1}(h_{i-1}) + \log igg| \det J(f_i^{-1}(h_i)) igg| \ \log p_i(h_i) &= \log p_{i-2}(h_{i-2}) + \log igg| \det J(f_{i-1}^{-1}(h_{i-1})) igg| + \log igg| \det J(f_i^{-1}(h_i)) igg| \ igg(\because \log p_{i-1}(h_{i-1}) &= \log p_{i-2}(h_{i-2}) + \log igg| \det J(f_{i-1}^{-1}(h_{i-1})) igg| \ igg) \ & dots \ \log p_i(h_i) &= \log p_0(h_0) + \sum_{i=1}^i \log igg| \det J(f_j^{-1}(h_j)) igg| \end{aligned}$$

이를 이용하여 $\log p(x)$ 를 다시 정리하면 아래와 같다.

$$\log p(x) = \log \pi(z) + \sum_{i=1}^k \log \left| \det(J(f_i^{-1}(h_i)))
ight|$$

위와 같이 데이터 분포의 likelihood를 z를 통해 단순하게 표현할 수 있다. 그리고 위 과정을 **Normalizing Flow**라고 부른다.

전혀 단순해 보이지 않을 수 있는데, x분포의 likelihood를 생으로 계산하는건 사실상 불가능이지만 위식은 계산이 가능하다.

어떻게 계산이 가능한지 알아보자.

제약조건

우선 딥러닝 모델에서의 backpropagation과 generate를 위해서는 제약조건 두가지가 필요하다.

- f는 invertible해야한다. (역함수가 존재해야한다.) $(f^{-1}$ 을 사용해 generation을 수행할 예정이기 때문에 해당 조건이 필요하다.)
- f의 $\det J$ 는 계산하기 쉬워야한다. (Jacobian matrix의 determinant를 계산하는 것은 computational cost측면에서 요구량이 많기 때문에 계산이 단순해야한다.)

위 방법을 어떻게 실현할 것인가가 Glow의 사실상 핵심 내용이다.

WaveGlow

WaveGlow가 위의 제약조건에 어떻게 대처했는지 network 아키텍쳐 그림에서 데이터의 흐름과 함께 자세히 살펴보자.

Fig. 1: WaveGlow network

squeeze to vectors

우선 위 아키텍쳐에서 가장처음(왼쪽 아래) x는 raw audio를 나타낸다.

squeeze to vectors에서는 (batch, time) 의 shape을 가진 raw audio를 (batch, n_group, time//n_group) 의 shape으로 바꾸는 역할을 한다. time//n_group 의 sequence 길이를 가지는 n_group 차원 벡터들로 단순히 reshape 하는 과정이라고 생각하면 된다.

앞으로는 이 reshape된 raw audio를 x로 표기한다.

invertible 1x1 convolution

1x1 convolution이라고 표현했지만 정확히말하면 in_channels 와 out_channels 가 같은 kernel_size=1, bias=False 인 conv1d 이다.

잘 생각해보면 kernel_size=1인 Convld 는 작용하는 dim을 제외하면 Linear 와 완전히 같은 방식으로 작동함을 알 수 있다.

이를 수식으로 나타내보면

$$h = f_{conv}(x) = Wx \ x = f_{conv}^{-1}(h) = W^{-1}h$$

where h denotes outputs of invertible 1×1 convolution.

이때 $in_{channels}$ 와 $out_{channels}$ 가 같으므로 W가 invertible하다면 그 자체로 해당 layer의 inverse를 명시적으로 구할 수 있다.

W를 invertible하게 만드는 방법은 임의의 orthogonal(orthonormal) matrix를 이용해 init하면 된다. (임의의 matrix에 대한 QR Decomposition을 이용한다.)

해당 방법을 이용하면 본 layer의 제약 조건 두가지를 모두 해결 할 수 있다. 이유는 orthogonal matrix의 다음 특징들 때문이다.

- 모든 orthogonal matrix Q에 대해 $Q^{-1}=Q^T$ 가 성립한다.
- orthogonal transformation의 $\det J$ 는 1이다. (-1일 수도 있지만 \det 의 기호를 바꾸는게 어렵지 않다.)
- 모든 square matrix A에 대해 $\det A^T = \det A$ 가 성립한다.
- linear transformation의 Jacobian은 해당 가중치 행렬과 같다.

따라서 해당 레이어를 f, 가중치 행렬을 W라 했을 때 다음이 성립하고, 이에 대한 계산이 쉽다.

$$\det J(f_{conv}^{-1}(h)) = \det W$$

affine coupling layer

조금 복잡하므로 세부적으로 살펴본다.

우선은 invertible 1x1 convolution을 통과하기 전과 후의 data shape은 같음을 기억하고 있자.

위 그림을 수식으로 보자면 다음과 같다.

$$egin{aligned} \mathbf{x}_a, \mathbf{x}_b &= split(h) \ \ (log~\mathbf{s}, \mathbf{t}) &= WN(\mathbf{x}_a, ~mel~spectrogram) \ \ \mathbf{x}_b' &= \mathbf{s} \odot \mathbf{x}_b + t \ \ \ \ z &= concat(\mathbf{x}_a, \mathbf{x}_b') \end{aligned}$$

affine coupling layer에서 가장 중요한 점은 WN이 어떤 형태의 transform이든 상관 없이 $z=f^{-1}(x)$ 는 쉽게 구할 수 있다는 점이다.

이유는 결국 역함수를 구하는 과정에서 WN이 개입하지 않고 s와 t만 사용하기 때문이다.

split

x를 dim 1(n_group) 기준으로 절반씩 split하여 하나는 x_a 다른 하나는 x_b 로 칭한다.

WN

이건 WaveNet의 사상을 빌려온 layer로 컨셉 이해만을 위해서는 dilated convolutional layer를 적용하여 mel-spectrogram과 연산한다 정도만 알고 있어도 된다.

좀 더 자세히는 다음과 같다. (해당 내용도 완전한 설명은 아님.)

- ConvTranspose1d 를 적용하여 mel-spectrogram의 sequence 길이를 raw audio와 같게 맞춘다.
- x_a 를 dilated convolutional layer를 사용하여 변환하고 upsampled mel-spectrogram과 element wise product를 수행한다.
- 위 값을 dim 1기준 절반씩 split, 하나는 sigmoid, 다른 하나는 tanh를 적용하여 둘을 곱한다.
- 해당 값을 1d conv를 이용, n_group 의 채널 수를 가지도록 한다.

WN을 지난 값을 acts 라고 칭하도록 하자.

affine

$$x_b' = \exp(\log s) \odot x_b + b$$

concat

 x_a 와 x_b' 를 concat한다.

본 값이 z가 된다.

affine은 element wise로 연산을 수행했기 때문에 각 scalar에 대해 다음 식이 성립함을 알 수 있다.

$$\log \left| \det(J(f_{coupling}^{-1}(z))) \right| = \log |s|$$

반복

invertible 1x1 convolution과 **affine coupling layer**를 통과하는 본 과정을 12번 반복한다. (skip connection과 early outputs등 자세한 내용은 생략.)

Loss

Flow-Based Generative Model에 대한 첫 설명에서 언급했듯이 x데이터 분포의 likelihood를 maximize 하도록 optimize를 진행한다.

따라서 Loss는 Likelihood 그 자체를 사용한다.

앞서 z와 f로 표현한 Likelihood를 위에서 유도한 수식과 함께 다시 정리해보면 다음과 같다.

$$egin{aligned} \log p(x) = &\log \pi(z) + \sum \log \left| \det(J(f_i^{-1}(h_i)))
ight| \ = &-rac{\mathbf{z}^T \mathbf{z}}{2\sigma^2} \ &+ \sum_{\substack{\#layers \ players}} \log \mathbf{s}_j \ &+ \sum_{\substack{\parallel layers \ players}} \log \det \left| W_k
ight| \end{aligned}$$

because

$$egin{aligned} \log \pi(z) &= -rac{\mathbf{z}^T \mathbf{z}}{2\sigma^2} & \because \mathbf{z} \sim \mathcal{N}(0, I) \ &\sum \log \left| \det(J(f_i^{-1}(h_i)))
ight| &= \sum^{\#layers} \log \mathbf{s}_j + \sum^{\#layers} \log \det \left| W_k
ight| \end{aligned}$$

위 수식에 음수를 취해 해당 값을 minimize하도록 학습을 진행한다.

Inference

Vocoder(WaveGlow)의 최종 목적은 결국 Mel-spectrogram을 raw audio로 잘 만들어내는 것이다. 이는 z를 만들기 위한 과정을 그대로 역으로 수행하면 된다.

invertible 1x1 convolution과 affine coupling layer 둘을 되돌리는 방법을 중점적으로 살펴보자.

input

우선 z는 multivariate normal distribution을 만족하기 때문에 random sampling을 수행하여 해당 값을 역함수에 집어 넣게 된다.

invertible 1x1 convolution

$$h = f_{conv}(x) = Wx \ x = f_{conv}^{-1}(h) = W^{-1}h$$

where h denotes outputs of invertible 1×1 convolution.

위에 써놓은 수식을 그대로 다시 가져왔다. 여기서 W^{-1} 을 구하면 되는데, 설명했다시피 W가 orthogonal 이기 때문에 w.inverse() 와 같이 역함수를 명시적으로 구할 수 있다. 해당 값으로 연산을 진행한다.

affine coupling layer

(a) Forward propagation

(b) Inverse propagation

위 그림을 보면 쉽게 이해 된다. affine coupling layer 그대로 역 연산을 하면 된다.

$$\mathbf{x}_b' = \mathbf{s} \odot \mathbf{x}_b + t$$
 $\mathbf{x}_b = (\mathbf{x}_b' - t) \oslash \mathbf{s}$

위 식의 \mathbf{s} 를 구하는 과정에서 Mel-spectrogram을 condition으로써 사용한다. (이는 역연산이 필요없다.)

위 내용을 한번에 모아서 수식으로 정리하면 다음과 같다.

$$egin{aligned} x_a, \ x_b' &= split(\mathrm{z}) \ x_b &= (x_b' - t) \oslash s \ h &= concat(x_a, \ x_b) \ \mathrm{x} &= f_{conv}^{-1}(h) &= W^{-1}h \end{aligned}$$

이렇게 만들어진 \mathbf{x} 를 1d array형태로 reshape을 해주면 raw audio가 생성된다.

정리

한국말로 다시 풀어보자면 다음과 같다.

- 1. $\mathcal{N}(0,I)$ 에서 random sampling을 통해 z를 뽑는다.
- 2. 이를 dim 1 기준 절반으로 나누고, 하나는 x_a , 다른 하나는 x_b' 로 명명한다.
- 3. x_a 와 Mel-spectrogram을 이용하여 t와 s를 계산한다.
- 4. 계산된 t와 s를 이용하여 $x_b=(x_b'-t)/s$ 를 계산한다.
- 5. x_a 와 x_b 를 concat하여 h를 만든다.
- 6. w.inverse() 를 이용하여 W의 역행렬을 추출, 이를 이용하여 x를 계산한다.
- 7. 2~6을 반복한다.
- 8. 계산된 x를 1d array 형태로 reshape하면 raw audio가 나온다.