Evaluacion final - Escenario 8

Fecha de entrega 10 de mayo en 23:55

Puntos 100

Preguntas 10

Disponible 7 de mayo en 0:00 - 10 de mayo en 23:55 4 días

Límite de tiempo 90 minutos

Intentos permitidos 2

Instrucciones

Apreciado estudiante, presenta tus exámenes como SERGIO EL ELEFANTE, quien con honestidad, usa su sabiduría para mejorar cada día.

Lee detenidamente las siguientes indicaciones y minimiza inconvenientes:

- Tienes dos intentos para desarrollar tu evaluación.
- 2. Si respondiste uno de los intentos sin ningún inconveniente y tuviste problemas con el otro, el examen no será habilitado nuevamente.
- 3. Cuando estés respondiendo la evaluación, evita abrir páginas diferentes a tu examen. Esto puede ocasionar el cierre del mismo y la pérdida de un intento.
- **4.** Asegúrate de tener buena conexión a internet, cierra cualquier programa que pueda consumir el ancho de banda y no utilices internet móvil.
- 5. Debes empezar a responder el examen por lo menos dos horas antes del cierre, es decir, máximo a las 9:55 p. m. Si llegada las 11:55 p. m. no lo has enviado, el mismo se cerrará y no podrá ser calificado.
- El tiempo máximo que tienes para resolver cada evaluación es de 90 minutos.

- 7. Solo puedes recurrir al segundo intento en caso de un problema tecnológico.
- 8. Si tu examen incluye preguntas con respuestas abiertas, estas no serán calificadas automáticamente, ya que requieren la revisión del tutor.
- 9. Si presentas inconvenientes con la presentación del examen, puedes crear un caso explicando la situación y adjuntando siempre imágenes de evidencia, con fecha y hora, para que Soporte Tecnológico pueda brindarte una respuesta lo antes posible.
- Podrás verificar la solución de tu examen únicamente durante las 24 horas siguientes al cierre.
- 11. Te recomendamos evitar el uso de teléfonos inteligentes o tabletas para la presentación de tus actividades evaluativas.
- **12.** Al terminar de responder el examen debes dar clic en el botón "Enviar todo y terminar" de otra forma el examen permanecerá abierto.

Confiamos en que sigas, paso a paso, en el camino hacia la excelencia académica!

;Das tu palabra de que realizarás esta actividad asumiendo de corazón nuestro

Volver a realizar el examen

Historial de intentos

	Intento	Hora	Puntaje
MÁS RECIENTE	Intento 1	33 minutos	100 de 100

Las respuestas correctas ya no están disponibles.

Puntaje para este intento: 100 de 100

Entregado el 8 de mayo en 12:07

Este intento tuvo una duración de 33 minutos.

Pregunta 1	10 / 10 pts
------------	-------------

Ecopetroleos es una empresa petrolera que tiene una refinería en la costa norte del país. La refinería procesa petróleo nacional e importado, produciendo gasolina, diésel, y lubricantes.

Los dos crudos se diferencian en su composición química, por lo que producen diferentes cantidades de cada producto como se muestra a continuación en la tabla:

Tipo de	P		
petróleo	Gasolina	Diésel	Lubricantes
Nacional	0.35	0.4	0.15
Importado	0.4	0.15	0.35

El restante 10% del crudo, en los dos casos, se pierde en el proceso de refinación.

Los crudos también difieren en precio y disponibilidad. Ecopetroleos puede comprar hasta 15 000 barriles de crudo nacional por día a un precio de \\$50 por barril. Por otra parte, puede comprar un máximo de 8 000 barriles importados por día a un precio de \\$55 por barril.

Los contratos establecidos por Ecopetroleos lo obligan a producir 3 000 barriles diarios de gasolina y 1 500 barriles diarios de lubricantes. Sin embargo, por legislación no puede producir más de 2 000 barriles diarios de diésel.

El gerente de la compañía desea saber cómo se pueden cumplir estos requerimientos al menor costo posible.

Si se plantea un modelo lineal, definiendo las variables de decisión como:

Pregunta 2	10 / 10 pts
Que aspectos se deben considerar para la creación de un proprimal y dual:	oblema
El criterio de optimización en los dos problemas es contrario	
Los lados derechos de las restricciones del primal se convierten coeficientes de la función objetivo del problema dual	en los
Los lados derechos de la función objetivo del primal se convierte lados derechos de las restricciones del problema dual	n en los
Por cada restricción del primal se definirá una función objetivo de problema dual	el

Pregunta 3 10 / 10 pts

Asuma que está solucionando un problema de programación lineal de maximización por medio del método Simplex en formato Tableau y llega al siguiente tablero:

	ν	W	x	у	s1	s2	s3	z	
s1						0.5			l
x	-0.5	0	1	0	0	-0.5	-0.5	0	11
W	0	1	0	-1	0	0	-1	0	12
z	-1.25	0	0	-7	0	-0.25	-4.25	1	53.5

¿Cuál es el valor de la función objetivo en este tablero?

11

9 53.5

12

17

Pregunta 4 10 / 10 pts

Un pequeño taller metalmecánico fabrica dos tipos de engranajes para una ensambladora automotriz. Para la fabricación de los engranajes la compañía cuenta con tres estaciones de trabajo y los tiempos de cada tipo de engranaje en cada estación se muestran en la tabla a continuación:

	Tiempo (min)		
Estación	Engranaje A	Engranaje B	
1	18	8	
2	15	11	
3	12	14	

Finalmente, el taller trabaja 12 horas al día, pero se deben hacer mantenimientos diarios a cada estación, lo que consume 30 minutos de la estación uno, 45 minutos de la estación dos y 25 minutos de la estación tres.

Si el gerente de producción desea minimizar el tiempo muerto total de las tres estaciones y se plantea un modelo lineal para hallar la cantidad óptima de cada tipo de engranaje a fabricar, definiendo las variables de decisión como:

X: Cantidad de engranajes tipo A a fabricar

Y: Cantidad de engranajes tipo B a fabricar

De los siguientes puntos, ¿cuál corresponde a un punto extremo de la región factible del problema? (Se redondearon los resultados a una cifra decimal)

Pregunta 5 10 / 10 pts

Un pequeño taller metalmecánico fabrica dos tipos de engranajes para una ensambladora automotriz. Para la fabricación de los engranajes la compañía cuenta con tres estaciones de trabajo y los tiempos de cada tipo de engranaje en cada estación se muestran en la tabla a continuación:

	Tiempo (min)			
Estación	Engranaje A	Engranaje B		
1	18	8		
2	15	11		
3	12	14		

Finalmente, el taller trabaja 12 horas al día, pero se deben hacer mantenimientos diarios a cada estación, lo que consume 30 minutos de la estación uno, 45 minutos de la estación dos y 25 minutos de la estación tres.

Si el gerente de producción desea minimizar el tiempo muerto total de las tres estaciones y se plantea un modelo lineal para hallar la cantidad óptima de cada tipo de engranaje a fabricar, definiendo las variables de decisión como:

- X: Cantidad de engranajes tipo A a fabricar
- Y: Cantidad de engranajes tipo B a fabricar
- ¿Cuál es el valor óptimo de la función objetivo? (Se redondearon los resultados a una cifra decimal)

2077.5	
2160	
2060.0	
2025.0	

Pregunta 6 10 / 10 pts

Un pequeño taller metalmecánico fabrica dos tipos de engranajes para una ensambladora automotriz. Para la fabricación de los engranajes la compañía cuenta con tres estaciones de trabajo y los tiempos de cada tipo de engranaje en cada estación se muestran en la tabla a continuación:

	Tiempo (min)			
Estación	Engranaje A	Engranaje B		
1	18	8		
2	15	11		
3	12	14		

Finalmente, el taller trabaja 12 horas al día, pero se deben hacer mantenimientos diarios a cada estación, lo que consume 30 minutos de la estación uno, 45 minutos de la estación dos y 25 minutos de la estación tres.

Si el gerente de producción desea minimizar el tiempo muerto total de las tres estaciones y se plantea un modelo lineal para hallar la cantidad óptima de cada tipo de engranaje a fabricar, definiendo las variables de decisión como:

X: Cantidad de engranajes tipo A a fabricar

Y: Cantidad de engranajes tipo B a fabricar

¿Cuál sería una función objetivo adecuada para este problema?

$$\bigcirc$$
 $Max30X + 45Y + 25Z$

$$MinZ = 45X + 33Y$$

 \bigcirc Min30X + 45Y + 25Z

MaxZ = 45X + 33Y

Pregunta 7 10 / 10 pts

Ecopetroleos es una empresa petrolera que tiene una refinería en la costa norte del país. La refinería procesa petróleo nacional e importado, produciendo gasolina, diésel, y lubricantes.

Los dos crudos se diferencian en su composición química, por lo que producen diferentes cantidades de cada producto como se muestra a continuación en la tabla:

Tipo de	P		
petróleo	Gasolina	Diésel	Lubricantes
Nacional	0.35	0.4	0.15
Importado	0.4	0.15	0.35

El restante 10% del crudo, en los dos casos, se pierde en el proceso de refinación.

Los crudos también difieren en precio y disponibilidad. Ecopetroleos puede comprar hasta 15 000 barriles de crudo nacional por día a un precio de \\$50 por barril. Por otra parte, puede comprar un máximo de 8 000 barriles importados por día a un precio de \\$55 por barril.

Los contratos establecidos por Ecopetroleos lo obligan a producir 3 000 barriles diarios de gasolina y 1 500 barriles diarios de lubricantes. Sin embargo, por legislación no puede producir más de 2 000 barriles diarios de diésel.

El gerente de la compañía desea saber cómo se pueden cumplir estos requerimientos al menor costo posible.

Si se plantea un modelo lineal, definiendo las variables de decisión como:

X: Cantidad de barriles de crudo nacional a comprar diariamente

Y: Cantidad de barriles de crudo importado a comprar diariamente

¿Cuántos puntos extremos tiene la región factible del problema?

O 14	
O 6	
O 5	
a 4	

Pregunta 8	10 / 10 pts
------------	-------------

Un pequeño taller metalmecánico fabrica dos tipos de engranajes para una ensambladora automotriz. Para la fabricación de los engranajes la compañía cuenta con tres estaciones de trabajo y los tiempos de cada tipo de engranaje en cada estación se muestran en la tabla a continuación:

	Tiempo (min)		
Estación	Engranaje A	Engranaje B	
1	18	8	
2	15	11	
3	12	14	

Finalmente, el taller trabaja 12 horas al día, pero se deben hacer mantenimientos diarios a cada estación, lo que consume 30 minutos de la estación uno, 45 minutos de la estación dos y 25 minutos de la estación tres.

Si el gerente de producción desea minimizar el tiempo muerto total de las tres estaciones y se plantea un modelo lineal para hallar la cantidad óptima de cada tipo de engranaje a fabricar, definiendo las variables de decisión como:

- X: Cantidad de engranajes tipo A a fabricar
- Y: Cantidad de engranajes tipo B a fabricar

De los siguientes puntos, ¿cuál no corresponde a un punto extremo de la región factible del problema? (Se redondearon los resultados a una cifra decimal)

(38.3, 0.0)
(0.0, 0.0)
(26.3, 27.1)
(28.1, 23.1)

Pregunta 9 10 / 10 pts

Considere la siguiente región factible (espacio en blanco) de un problema MAXIMIZACIÓN de dos variables (X, Y) de programación lineal. Asuma que la función objetivo es Z = 2X + 3Y.

Pregunta 10 10 / 10 pts

Ecopetroleos es una empresa petrolera que tiene una refinería en la costa norte del país. La refinería procesa petróleo nacional e importado, produciendo gasolina, diésel, y lubricantes.

Los dos crudos se diferencian en su composición química, por lo que

producen diferentes cantidades de cada producto como se muestra a continuación en la tabla:

Tipo de	Producción (barriles)		
petróleo	Gasolina	Diésel	Lubricantes
Nacional	0.35	0.4	0.15
Importado	0.4	0.15	0.35

El restante 10% del crudo, en los dos casos, se pierde en el proceso de refinación.

Los crudos también difieren en precio y disponibilidad. Ecopetroleos puede comprar hasta 15 000 barriles de crudo nacional por día a un precio de \\$50 por barril. Por otra parte, puede comprar un máximo de 8 000 barriles importados por día a un precio de \\$55 por barril.

Los contratos establecidos por Ecopetroleos lo obligan a producir 3 000 barriles diarios de gasolina y 1 500 barriles diarios de lubricantes. Sin embargo, por legislación no puede producir más de 2 000 barriles diarios de diésel.

El gerente de la compañía desea saber cómo se pueden cumplir estos requerimientos al menor costo posible.

Si se plantea un modelo lineal, definiendo las variables de decisión como:

- X: Cantidad de barriles de crudo nacional a comprar diariamente
- Y: Cantidad de barriles de crudo importado a comprar diariamente
- ¿Cuál sería una función objetivo adecuada para este problema?
 - \bigcirc MaxZ=50X+55YMax Z = 50X + 55Y
 - \bigcirc MinZ=15000X+8000YMin Z = 15000X + 8000Y
 - MinZ=50X+55YMin Z = 50X + 55Y
 - \bigcirc MaxZ=15000X+8000YMax Z = 15000X + 8000Y

Puntaje del examen: 100 de 100