MAL516: Algebra

Major, May, 2010

Time: 2 hours

Total Marks: 50

All questions are compulsory. No credit will be given unless appropriate argument is provided.

- 1. Determine whether the following statements are True or False. Justify your answer in each case. $2 \times 5 = 10$
 - (a) In an integral domain every prime is an irreducible element.
 - (b) The ring $\frac{\mathbb{R}[X]}{\langle X^2-a\rangle}$ is a field for every $a \in \mathbb{R}$.
 - (c) The polynomial $\sum_{i=0}^{6} x^i$ is irreducible over \mathbb{Z} .
 - (d) Suppose that K is a normal extension over \mathbb{Q} . Then every subfield of K is a normal extension of \mathbb{Q} .
 - (e) Suppose that L is an algebraic extension of a field F. Then every element of L belongs to a finite extension of F.
- 2. Let H be a p-group. Recall that H acts on itself by conjugation. Use this action to show that the center Z(H) is a nontrivial normal subgroup of H.
- 3. Assume that a cyclic group G of order n has a unique subgroup of order d if d divides n. Determine the number of elements in G of order $m \in \mathbb{N}$. Use it to compute the following sum:

$$\sum_{d|n} \varphi(d)$$

where $\varphi(d)$ is the number of positive integers less than d which are co-prime to d. 2+2=4

4

- 4. Determine the splitting field of $X^6 1$ over \mathbb{Q} in the form $\mathbb{Q}[\alpha]$. What is its extension degree? Describe its Galois group. 2 + 2 = 4
- 5. Let $n \geq 5$. Show that the group S_n is not solvable.

6. Let I be an ideal of the ring $M(3,\mathbb{Z})$ of 3×3 matrices over \mathbb{Z} . If $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in I$, then show that $I = M(3,\mathbb{Z})$.

- 7. Let F be a field. Suppose $f(X) \in F[X]$. Show that there is an extension of F which contains a zero of f(X).
- 8. Let K be a finite field having m elements. What are all possible values of m? Justify your answer. Is there a field having 64 elements?
- 9. Define 'solvable by radicals'. Suppose F is a field containing all the roots of unity. Use fundamental theorem of Galois theory to prove that $p(X) \in F[X]$ is solvable by radicals then the Galois group of p(X) is a solvable group. You may use (without proof) the following results: If u is a root of $X^n a$ for $n \in \mathbb{N}$ and $a \in F \{0\}$, then F(u) is its spitting field and the Galois group is abelian. State results that you use.