Grundlegendes zur Konvergenz von Reihen

Jendrik Stelzner

4. Dezember 2014

Inhaltsverzeichnis

1	Vor	bereitung	1
2	Defi	nition	2
3	Gru	ndlegende Eigenschaften	2
4	Konvergenzkriterien		
	4.1	Majoranten- und Minorantenkriterium	4
	4.2	Quotientenkriterium	5
	4.3	Wurzelkriterium	5
	4.4	Cauchysches Verdichtungskriterium	6
	4.5	Leibniz-Kriterium	6
5	Beispiele		7
	5.1	Endliche Reihen	7
	5.2	Die geometrische Reihe	7
	5.3	Die allgemeine harmonische Reihe	7
	5.4	Die (alternierende) harmonische Reihe	7
	5.5	Weitere Beispiele	7
6	Potenzreihen		7
	6.1	Definition	7
	6.2	Konvergenzradius	7
	6.3	Beispiele	7
7	Lösungen der Aufgaben		7

Vorbereitung 1

Wir werden einige grundlegende Eigenschaften über die Konvergenz von Folgen nutzen, die bisher nicht gezeigt wurden. Wir überlassen die entsprechenden Beweise den

geneigten Lesern als Übung. Üb. 1 — Konvergiert die Folge $(a_n)_{n\in\mathbb{N}}$, so konvergiert auch die Folge der Beträge $(|a_n|)_{n\in\mathbb{N}}$ und es gilt

$$\lim_{n \to \infty} |a_n| = \left| \lim_{n \to \infty} a_n \right|.$$

Üb. 2 — Für eine Folge $(a_n)_{n\in\mathbb{N}}$ und $C\in\mathbb{R}$ gilt: Es gibt genau dann y< C und $N \in \mathbb{N}$ mit $a_n \leq y$ für alle $n \geq N$, falls $\limsup_{n \to \infty} a_n < C$.

2 Definition

Definition 1. Für eine Folge $(a_n)_{n\in\mathbb{N}}$ ist die Folge der *Partialsummen* $(s_n)_{n\in\mathbb{N}}$ als

$$s_n \coloneqq \sum_{k=0}^n a_k$$

definiert; s_n heißt die n-te Partialsumme (der Folge (a_n)). Diese Folge der Partialsummen bezeichnet man als *Reihe* und schreibt man als $\sum_{k=0}^{\infty} a_k$. Konvergiert die Reihe $\sum_{k=0}^{\infty} a_k$, d.h. konvergiert die Folge der Partialsummen (s_n) , so bezeichnet man den Grenzwert $\lim_{n\to\infty} s_n = \lim_{n\to\infty} \sum_{k=0}^n a_k$ ebenfalls als $\sum_{k=0}^{\infty} a_k$ und nennt dies den $\mathit{Wert der Reihe}$. Die Folge (a_n) heißt dann summierbar. Für $N \in \mathbb{N}$ ist die Reihe $\sum_{k=0}^{\infty} a_k$ als die Reihe $\sum_{k=0}^{\infty} a_{k+N}$ definiert.

Bemerkung 2. Die Reihe $\sum_{k=N}^{\infty} a_k$ wird nach dieser Definition als die Folge der Partialsummen $(s_n)_{n\in\mathbb{N}}$ mit $s_n=\sum_{k=0}^n a_{k+N}$ verstanden. Alternativ kann man die Reihe auch als die Folge der Partialsummen $(s'_n)_{n\in\mathbb{N}}$ mit

$$s'_n \coloneqq \sum_{k=N}^{\infty} a_k$$

definieren. Dies macht praktisch keinen Unterschied, da dann

$$s'_n = \begin{cases} 0 & \text{falls } n < N, \\ s_{n-N} & \text{falls } n \ge N. \end{cases}$$

Die Folge (s'_n) ist also die Folge (s_n) mit Nullen aufgefüllt.

Man bemerke, dass man mit der Notation $\sum_{k=0}^{\infty} a_k$ sowohl die Folge der Partialsummen $(\sum_{k=0}^{n} a_k)_{n \in \mathbb{N}}$ als auch der Grenzwert dieser Folge bezeichnet. Soll also gezeigt werden, dass die Reihe $\sum_{k=0}^{\infty} a_k$ konvergiert, so ist damit gemeint, dass die Folge der Partialsummen $(\sum_{k=0}^{n} a_k)_{n \in \mathbb{N}}$ konvergieren soll. Soll der Wert der Reihe $\sum_{k=0}^{\infty} a_k$ bestimmt werden, so soll der Grenzwert $\lim_{n\to\infty} \sum_{k=0}^n a_k$ ermittelt wer-

Definition 3. Eine Reihe $\sum_{k=0}^{\infty} a_k$ heißt *absolut konvergent*, wenn die Reihe der Beträge $\sum_{k=0}^{\infty} |a_k|$ konvergiert. Die Folge (a_n) heißt dann absolut summierbar.

Bemerkung 4. Ist $\sum_{k=0}^{\infty} a_k$ eine Reihe und $(s_n)_{n\in\mathbb{N}}$ die Folge der Partialsummen, also $s_n=\sum_{k=0}^n a_k$, so schreibt man für $\lim_{n\to\infty} s_n=\infty$ und $\lim_{n\to\infty} s_n=-\infty$ ebenfalls $\sum_{k=0}^{\infty} a_k=\infty$, bzw. $\sum_{k=0}^{\infty} a_k=-\infty$. Die Reihe $\sum_{k=0}^{\infty} a_k$ bezeichnet man aber in diesen Fällen nicht als konvergent.

Grundlegende Eigenschaften 3

Lemma 5. Konvergiert für eine Folge $(a_n)_{n\in\mathbb{N}}$ die Reihe $\sum_{k=0}^n a_k$, so ist (a_n) eine Nullfolge, d.h. $\lim_{n\to\infty} a_n = 0$.

Beweis. Wir betrachten die Folge der Partialsummen $(s_n)_{n\in\mathbb{N}}$, also $s_n\coloneqq\sum_{k=0}^n a_k$. Dass die Reihe $\sum_{k=0}^\infty a_k$ konvergiert bedeutet gerade, dass die Folge (s_n) konvergiert. Es sei

$$s \coloneqq \lim_{n \to \infty} s_n$$
.

Wir bemerken nun, dass für alle $n \ge 1$

$$s_n - s_{n-1} = \left(\sum_{k=0}^n a_k\right) - \left(\sum_{k=0}^{n-1} a_k\right) = a_n.$$

Durch die üblichen Rechenregeln konvergenter Folgen ergibt sich daher, dass

$$a_n = s_n - s_{n-1} \rightarrow s - s = 0$$

für $n \to \infty$. Also ist (a_n) konvergent und $\lim_{n \to \infty} a_n = 0$.

Proposition 6. 1. Konvergieren die Reihen $\sum_{k=0}^{\infty} a_k$ und $\sum_{k=0}^{\infty} b_k$, so konvergiert auch die Reihe $\sum_{k=0}^{\infty} (a_k + b_k)$ und es gilt

$$\sum_{k=0}^{\infty} (a_k + b_k) = \left(\sum_{k=0}^{\infty} a_k\right) + \left(\sum_{k=0}^{\infty} b_k\right).$$

2. Konvergiert die Reihe $\sum_{k=0}^{\infty} a_k$ so konvergiert für jedes $\lambda \in \mathbb{R}$ auch die Reihe $\sum_{k=0}^{\infty} (\lambda a_k)$ und es gilt

$$\sum_{k=0}^{\infty} (\lambda a_k) = \lambda \sum_{k=0}^{\infty} a_k.$$

3. Für eine Reihe $\sum_{k=0}^{\infty} a_k$ gilt für jedes $N \in \mathbb{N}$: Die Reihe $\sum_{k=0}^{\infty} a_k$ konvergiert genau dann, wenn die Reihe $\sum_{k=N}^{\infty} a_k$ konvergiert. Es ist dann

$$\sum_{k=0}^{\infty} a_k = \sum_{k=0}^{N-1} a_k + \sum_{k=N}^{\infty} a_k.$$

Beweis. Die Aussagen ergeben sich direkt aus den bekannten Rechenregeln für endliche Summen und konvergente Folgen. Ein genaues Formulieren bleibt den Lesern als Übung überlassen. \Box

Korollar 7. Die Menge der summierbaren Folgen

$$\Sigma := \{(a_n)_{n \in \mathbb{N}} \mid (a_n) \text{ ist summierbar}\}$$

bildet unter punktweiser Addition und Skalarmultiplikation einen \mathbb{R} -Vektorraum, und die Abbildung

$$\Sigma \to \mathbb{R}, (a_n)_{n \in \mathbb{N}} \mapsto \sum_{k=0}^{\infty} a_k$$

ist \mathbb{R} -linear.

Wir erhalten aus dem Lemma auch, dass $\lim_{n \to \infty} \sum_{k=n}^{\infty} a_k = 0$, denn wir haben

$$\sum_{k=n}^{\infty} a_k = \sum_{k=0}^{\infty} a_k - \sum_{k=0}^{n-1} a_k \xrightarrow{n \to \infty} \sum_{k=0}^{\infty} a_k - \sum_{k=0}^{\infty} a_k = 0.$$

Lemma 8. Ist die Reihe $\sum_{k=0}^{\infty} a_k$ konvergent, so ist

$$\left| \sum_{k=0}^{\infty} a_k \right| \le \sum_{k=0}^{\infty} |a_k|.$$

Beweis des Lemmas. Ist die Reihe $\sum_{k=0}^{\infty} a_k$ nicht absolut konvergent, so haben wir $\sum_{k=0}^{\infty} |a_k| = \infty$ und die Aussage ist klar. Ansonsten gilt für alle $n \in \mathbb{N}$ nach der Dreiecksungleichung für endliche Summen

$$\left| \sum_{k=0}^{n} a_k \right| \le \sum_{k=0}^{n} |a_k|,$$

so dass wir im Grenzwert

$$\left| \sum_{k=0}^{\infty} a_k \right| = \left| \lim_{n \to \infty} \sum_{k=0}^n a_k \right| = \lim_{n \to \infty} \left| \sum_{k=0}^n a_k \right| \le \lim_{n \to \infty} \sum_{k=0}^n |a_k| = \sum_{k=0}^{\infty} |a_k|$$

haben.

Wir wollen nun auf den Zusammenhang zwischen konvergenten und absolut konvergenten Reihen zurückkommen.

Proposition 9. Ist eine Reihe $\sum_{k=0}^{\infty} a_k$ absolut konvergent, so ist sie auch konvergent.

Beweis. Es sei $(s_n)_{n\in\mathbb{N}}$ die Folge der Partialsummen, also $s_n=\sum_{k=0}^n a_k$. Wir wollen zeigen, dass (s_n) eine Cauchy-Folge ist. Sei hierfür $\varepsilon>0$ beliebig aber fest. Für alle $n\in\mathbb{N}$ haben wir für alle $m,m'\geq n$

$$|s_m - s_{m'}| = \left| \sum_{k = \min\{m, m'\}}^{\max\{m, m'\}} a_k \right| \leq \sum_{k = \min\{m, m'\}}^{\max\{m, m'\}} |a_k| \leq \sum_{k = n}^{\infty} |a_k|.$$

Da $\lim_{n \to \infty} \sum_{k=n}^{\infty} |a_k| = 0$ gibt es ein $N \in \mathbb{N}$ mit $\sum_{k=N}^{\infty} |a_k| < \varepsilon$. Aus der obigen Ungleichung ergibt sich damit, dass $m, m' \ge N$ ist dann $|s_m - s_{m'}| < \varepsilon$.

Lemma 10. Es seien $\sum_{k=0}^{\infty} a_k$ und $\sum_{k=0}^{\infty} b_k$ Reihen mit $0 \le a_n \le b_n$ für alle $n \in \mathbb{N}$. Dann ist $\sum_{k=0}^{\infty} a_k \le \sum_{k=0}^{\infty} b_k$.

Beweis. Für die Partialsummen gilt für jedes $n \in \mathbb{N}$

$$\sum_{k=0}^{n} a_k \le \sum_{k=0}^{n} b_k.$$

Die Aussage ergibt sich damit direkt daraus, dass Monotonie von Folgen unter Grenzwerten erhalten bleibt. \Box

4 Konvergenzkriterien

4.1 Majoranten- und Minorantenkriterium

Lemma 11. Es sei $\sum_{k=0}^{\infty} a_k$ und eine Reihe reeller Zahlen und $(b_n)_{n\in\mathbb{N}}$ eine Folge mit $b_n \geq 0$ für alle $n \in \mathbb{N}$.

- 1. Ist $|a_n| \leq b_n$ für alle $n \in \mathbb{N}$ und $\sum_{k=0}^{\infty} b_k < \infty$, so ist $\sum_{k=0}^{\infty} a_k$ absolut konvergent. (Dies ist das Majorantenkriterium.)
- 2. Ist $b_n \leq |a_n|$ für alle $n \in \mathbb{N}$ und $\sum_{k=0}^{\infty} a_k = \infty$, so ist $\sum_{k=0}^{\infty} a_k$ nicht absolut konvergent. (Dies ist das Minorantenkriterium.)

Beweis. 1. Für alle $n \in \mathbb{N}$ ist

$$\sum_{k=0}^{n} |a_k| \le \sum_{k=0}^{n} b_k \le \sum_{k=0}^{\infty} b_k,$$

also die Folge von Partialsummen $(\sum_{k=0}^n |a_k|)_{n\in\mathbb{N}}$ monoton steigend und nach oben beschränkt, und somit konvergent.

2. Wäre $\sum_{k=0}^{\infty} a_k$ absolut konvergent, so würde die Reihe der Beträge $\sum_{k=0}^{\infty} |a_k|$ konvergieren, und nach dem Majorantenkriterium würde auch $\sum_{k=0}^{\infty} b_k$ konvergieren, im Widerspruch zu Annahme.

4.2 Quotientenkriterium

Proposition 12. Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge mit $a_n\neq 0$ für alle $n\in\mathbb{N}$ und es gebe $0\leq y<1$ und $N\in\mathbb{N}$ mit $|a_{n+1}/a_n|< y$ für alle $n\geq N$. Dann ist die Reihe $\sum_{k=0}^\infty a_k$ absolut konvergent.

Beweis. Wir haben

$$\sum_{k=N}^{\infty} |a_k| = \sum_{k=N}^{\infty} |a_N| \prod_{j=N}^{k-1} \frac{|a_{j+1}|}{|a_j|} = |a_N| \sum_{k=N}^{\infty} \prod_{j=N}^{k-1} \frac{|a_{j+1}|}{|a_j|}$$

$$\leq |a_N| \sum_{k=N}^{\infty} y^{k-N} = |a_N| \sum_{k=0}^{\infty} y^k = \frac{|a_N|}{1-y},$$

und somit

$$\sum_{k=0}^{\infty} |a_k| = \sum_{k=0}^{N-1} |a_k| + \sum_{k=N}^{\infty} |a_k| \le \sum_{k=0}^{N-1} |a_k| + \frac{|a_N|}{1-y} < \infty.$$

4.3 Wurzelkriterium

Proposition 13. Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge und es gebe y<1 und $N\in\mathbb{N}$, so dass $|a_n|^{1/n}< y$ für alle $n\geq N$. Dann konvergiert die Reihe $\sum_{k=0}^\infty a_k$ absolut.

Beweis. Für alle $n \geq N$ gilt $|a_n|^{1/n} < y$ und damit $|a_n| < y^n$. Daher ist

$$\sum_{k=N}^{\infty} |a_k| \leq \sum_{k=N}^{\infty} y^k = y^N \sum_{k=N}^{\infty} y^{k-N} = y^N \sum_{k=0}^{\infty} y^k = \frac{y^N}{1-y},$$

und somit

$$\sum_{k=0}^{\infty} |a_k| = \sum_{k=0}^{N-1} |a_k| + \sum_{k=N}^{\infty} |a_k| \le \sum_{k=0}^{N-1} |a_k| + \frac{y^N}{1-y} < \infty.$$

4.4 Cauchysches Verdichtungskriterium

Proposition 14. Es sei $(a_n)_{n\geq 1}$ eine monoton fallende Folge mit $a_n\geq 0$ für alle $n\in\mathbb{N}$. Dann konvergiert die Reihe $\sum_{k=0}^{\infty}a_k$ genau dann, wenn die Reihe $\sum_{\ell=0}^{\infty}2^{\ell}a_{2^{\ell}}$ konvergiert.

Beweis. Wir haben

$$\sum_{k=1}^{\infty} a_k = \sum_{\ell=0}^{\infty} \sum_{k=2^{\ell}}^{2^{\ell+1}-1} a_k.$$

Da (a_n) monoton fallend ist, ist für alle $\ell \in \mathbb{N}$

$$\sum_{k=2^{\ell}}^{2^{\ell+1}-1} a_k \le 2^{\ell} a_{2^{\ell}}$$

sowie

$$\sum_{k=2^{\ell}}^{2^{\ell+1}-1} a_k \ge 2^{\ell} a_{2^{\ell+1}}.$$

Konvergiert die Reihe $\sum_{\ell=0}^{\infty} 2^{\ell} a_{2^{\ell}}$, so konvergiert wegen

$$\sum_{k=1}^{\infty} a_k \le \sum_{\ell=0}^{\infty} 2^{\ell} a_{2^{\ell}}$$

dann auch die Reihe $\sum_{k=1}^\infty a_k$. Konvergiert die Reihe $\sum_{k=1}^\infty a_k$, so konvergiert wegen

$$\sum_{k=1}^{\infty} a_k \ge \sum_{\ell=0}^{\infty} 2^{\ell} a_{2^{\ell+1}}$$

dann auch die Reihe $\sum_{\ell=0}^{\infty} 2^{\ell} a_{2^{\ell+1}},$ und wegen

$$\sum_{\ell=0}^{\infty} 2^{\ell} a_{2^{\ell+1}} = \frac{1}{2} \sum_{\ell=1}^{\infty} 2^{\ell} a_{2^{\ell}}$$

damit auch die Reihe $\sum_{\ell=0}^{\infty} 2^{\ell} a_{2^{\ell}}$.

4.5 Leibniz-Kriterium

Proposition 15. Es sei $(a_n)_{n\in\mathbb{N}}$ eine monoton fallende Folge mit $a_n\geq 0$ für alle $n\in\mathbb{N}$ und $\lim_{n\to\infty}a_n=0$. Dann konvergiert die alternierende Reihe $\sum_{k=0}^{\infty}(-1)^na_n$.

5 Beispiele

- 5.1 Endliche Reihen
- 5.2 Die geometrische Reihe
- 5.3 Die allgemeine harmonische Reihe
- 5.4 Die (alternierende) harmonische Reihe
- 5.5 Weitere Beispiele

6 Potenzreihen

- 6.1 Definition
- 6.2 Konvergenzradius
- 6.3 Beispiele

7 Lösungen der Aufgaben

Lösung (Üb. 1) — Sei $a\coloneqq \lim_{n\to\infty} a_n$ und $\varepsilon>0$ beliebig aber fest. Dann gibt es ein $N\in\mathbb{N}$ mit $|a-a_n|<\varepsilon$ für alle $n\ge N$. Für alle $n\ge N$ gilt nach der umgekehrten Dreiecksungleichung

$$||a| - |a_n|| \le |a - a_n| < \varepsilon.$$

Wegen der Beliebigkeit von $\varepsilon > 0$ zeigt dies, dass $|a_n| \to |a|$ für $n \to \infty$.

Lösung (Üb. 2) — Gibt es solche y und N, so ist $\sup_{k > N} a_k \le y$ und somit

$$\limsup_{n \to \infty} a_n = \inf_{n \in \mathbb{N}} \sup_{k \geq n} a_k \leq \sup_{k \geq N} a_k \leq y < 1.$$

Sei andererseits $x\coloneqq \limsup_{n\to\infty}a_n < C$. Da $\limsup_{n\to\infty}a_n=\inf_{n\in\mathbb{N}}\sup_{k\geq N}a_k$ gibt es wegen der ε -Charakterisierung des Infimums für alle $\varepsilon>0$ ein $N'\in\mathbb{N}$ mit $\sup_{k>N'}a_k< x+\varepsilon$. Für $\varepsilon\coloneqq (C-x)/2$ gibt es daher ein $N\in\mathbb{N}$ mit

$$\sup_{k \geq N} a_k < x + \varepsilon = \frac{C+x}{2} < C.$$

Wählen wir $y := x + \varepsilon = (C + x)/2$ so ist also y < C und $a_k \le y$ für alle $k \ge N$.