EEDG/CE 6303: Testing and Testable Design

Mehrdad Nourani

Dept. of ECE Univ. of Texas at Dallas

Session 10

Built-In Self-Test (BIST)

Logic BIST Architectures

Logic BIST Architectures

- Without Scan Chains
 - —Centralized and Separate board-level BIST (CSBL)
 - —Built-In Evaluation and Self-Test (BEST)
- With Scan Chains (test-per-scan)
 - —LSSD on-chip self-test (LOCST)
 - —Self-testing using MISR and parallel SRSG (STUMPS)
- Using Register Reconfiguration (test-per-clock)
 - —Built-In Logic Block Observer (BILBO)
 - —Modified BILBO (MBILBO)
 - —Concurrent BILBO (CBILBO)
 - —Circular self-test path (CSTP)
- Using Concurrent Checking Circuit
 - —Concurrent self verification (CSV)

Centralized and Separate Board-Level BIST (CSBL)

- Two LFSRs and two multiplexers are added to the circuit.
 - —The first LFSR acts as a PRPG, the second serves as a SISR.
 - —The first multiplexer selects the inputs, another routes the PO to the SISR.

Built-In Evaluation and Self-Test (BEST)

- Use a PRPG and a MISR.
 - Pseudo-random patterns are applied in parallel from the PRPG to the chip primary inputs (PIs)
 - —An MISR is used to compact the chip output responses

LSSD On-chip Self-Test (LOCST)

- In addition to the internal scan chain, an external scan chain comprising all primary inputs and primary outputs is required.
- The external scan-chain input is connected to the scan-out point of the internal scan chain.

Self-Testing Using MISR & Parallel SRSG (STUMPS)

- The only BIST architecture widely used in industry.
- Contains a PRPG (SRSG) and a MISR.
- The scan chains are loaded in parallel from the PRPG.
- The system clocks are then pulsed and the test responses are scanned out to the MISR for compaction.
- New test patterns are scanned in at the same time when the test responses are being scanned out.

Built-In Logic Block Observer (BILBO)

- Complex systems with multiple chips demand elaborate logic BIST architectures
- BILBO and test / clock system
 - Shorter test length, more BIST hardware
 - Combined functionality of D flip-flop, pattern generator,
 response compacter, & scan chain
 - Reset all FFs to 0 by scanning in zeros

Example BILBO Usage

- SI Scan In
- SO Scan Out
- Characteristic polynomial: $1 + x + ... + x^n$
- CUTs A and C: BILBO1 is MISR, BILBO2 is LFSR
- CUT B: BILBO1 is LFSR, BILBO2 is MISR

BILBO Modes

• 1. Serial Scan Mode - *B*1 *B*2 = "00"

• 2. LFSR Pattern Generator Mode - B1 B2 = "01"

BILBO Modes (cont.)

• 3. D-FF Normal Mode - *B*1 *B*2 = "10"

• 4. MISR Mode - *B*1 *B*2 = "11"

Modified BILBO (MBILBO)

- Example of a 3-stage BILBO using a slightly different structure
 - A NOR gate is added to each input path of D-FF
 - Useful for testing pipelined blocks

Concurrent Built-In Logic Block Observer (CBILBO)

- Three modes of operation
 - $-B_1B_2=01$: the upper D-FFs act as a MISR, the lower two-port D-FFs form a TPG (exhaustive or pseudo-exhaustive TPG possible)

Exhaustive (or pseudoexhaustive) pattern generation is possible which means 100% s-a-f coverage.

$\mathbf{B_1}$	$\mathbf{B_2}$	Operation mode			
-	0	Normal			
1	1	Scan			
0	1	Test Generation and Signature Analysis			

Circular Self-Test Path (CSTP)

(a) The CSTP architecture

- All PIs and POs are reconfigured as external scan cells.
 - They are connected to the internal scan cells to form a circular path. During self-test, all primary inputs (PIs) are connected as a shift register (SR), whereas all internal scan cells and primary outputs (POs) are reconfigured as a MISR.
 - If the entire circular path has n scan cells then it corresponds to a MISR with polynomial $\phi(x) = 1+x^n$
 - Since $\varphi(x) = 1 + x^n$ is non-linear, it may lead to low fault coverage.

Concurrent Self-Verification (CSV)

- A PRPG is applied to the CUT (functional circuit) and the duplicate circuit and the result is checked.
 - To reduce design and common-mode fault, the duplicate circuit is realized in complementary form.
 - As we compare two modules, this technique avoids aliasing problem and loss of effective fault coverage.

Comparing Logic BIST Architectures

Architecture	Level	TPG	ORA	Circuit	BIST
CSBL	B or C	PRPG	SISR	C or S	Test-Per-Clock
BEST	B or C	PRPG	MISR	C or S	Test-Per-Clock
LOCST	C	PRPG	SISR	С	Test-Per-Scan
STUMPS	B or C	PRPG	MISR	C	Test-Per-Scan
BILBO	C	PRPG	MISR	C	Test-Per-Clock
CBILBO	C	EPG/PEPG	MISR	С	Test-Per-Clock
CSTP	С	PRPG	MISR	C or S	Test-Per-Clock
CSV	С	PRPG	Checker	C or S	Test-Per-Clock

B: board-level testing

C: combinational circuit

S: sequential circuit

Other BIST Structures/Improvements

LFSR Reseeding

- The LFSR seeds (initial values) and polynomial are stored to generate both pseudo-random or deterministic patterns.
 - —Multiple-polynomial LFSR (MP-LFSR)
 - —Using variable-length seeds

Embedding Deterministic Patterns

- A bit-flipping function detects useless patterns and maps them to deterministic patterns through an XOR gate that feeds the scan chain.
- The decimation problem causes the sequence of patterns in scan chain to be short (much shorter than the sequence of LFSR).

Clocking PRPG in Scan-Based BIST

- A good n-bit PRPG generates 2ⁿ-1 patterns.
- If the length of chain is SCL, every SCL clocks we have one new vector in the chain.
- PRPG goes back to its initial state after (2ⁿ-1)/SCL clocks.
- The reduction of number of vectors is called decimation.
- The decimation problem can be eliminated if 2ⁿ-1 and SCL are co-prime.

Clocking PRPG in Scan-Based BIST (cont.)

 In this example, n=4, SCL=5, there will be only 2ⁿ-1/SCL= 15/5=3 distinct vectors.

 You can verify that if SCL=7, then 15 distinct 7-bit vectors are applied to the scan chain before the vectors repeat.

```
D_3D_2D_1D_0 \rightarrow F_1F_2F_3F_4F_5
1000 \rightarrow 00000
0.100 \rightarrow 0.0000
0.010 \rightarrow 0.0000
1001 \rightarrow 10000
1\ 1\ 0\ 0 \rightarrow 0\ 1\ 0\ 0\ 0
0.110 \rightarrow 0.0100
1011 \rightarrow 10010
0.101 \rightarrow 1.1001
1010 \rightarrow 01100
1101 \rightarrow 10110
1110 \rightarrow 01011
1111 \rightarrow 10101
0.111 \rightarrow 1.1010
0.011 \rightarrow 11101
0.001 \rightarrow 1.1110
```


Reducing Switching Activity in BIST

- As the vectors are random, they have low correlation and thus the number of transitions between consecutive vectors can be high.
 - Excessive heat dissipation and damage during test
 - Excessive power/ground noise results in failing a fault-free circuit
- Dual-speed LFSR (DS-LFSR) can be used. For an n-input CUT:
 - n_s stages slow-speed LFSR
 - n-n_s stages normal-speed LFSR
 - For having N_v vectors $(N_v < 2^n)$, we need clock-ratio=clk_n/clk_s= $N_v/2^{ns}$)
 - Example: For n=4 and $N_v=16$, we have 3 choices: (i) clock-ratio=8, $n_s=1$, (ii) clock-ratio=4, $n_s=2$ and (iii) clock-ratio=2, $n_s=3$

Low-Transition PRPG

- A weighted pseudorandom signal (e.g. output of the AND gate in LT-RPG) drives the toggle input of a T-flip-flop.
 - —If the output of AND gate is 0 for m consecutive cycles, then identical values are applied at ScanIn for m clocks. So, the switching among $y_1...y_k$ is reduced.

Detectability & Estimation of Test Length

Importance of Testability Metrics

- The relationship between test length and test quality depends on the nature of the CUT.
 - —If all the faults in the CUT have a large number of tests, then a short sequence can provide high fault coverage.
 - —In contrast, if many faults in the CUT have very few tests, then a long sequence is required to obtain high fault coverage.
- Controllability and Observability metrics (similar to SCOAP) can be defined to find problematic (weak) points.
- In BIST analysis, we prefer the metrics to be in [0-1] as we deal with probability analysis.

Controllability Metric

- The overall framework for computation of controllability values can be used to compute the probabilistic controllability values.
- For each primary input x_i , $CC_p^0(x_i)$ and $CC_p^1(x_i)$ are initialized to 0.5.
 - PRPG generates logic 0 and logic 1 at each input with equal probabilities.
- The controllability transfer function provides the rule for computing the controllability values at a gate's output given their values at its inputs.
- For a NAND gate with inputs c₁ and c₂ and output c₃, assuming the logic values in two inputs are independent:

$$-CC_p^0(c_3) = CC_p^1(c_1) CC_p^1(c_2)$$

$$-CC_p^1(c_3) = 1 - CC_p^1(c_1) CC_p^1(c_2)$$

Controllability Metric (cont.)

- The breadth-first (forward traversal level based) approach is used to compute the probabilistic controllability values for each line in the circuit
- Example:
 - The circuit has a fanout at x_2 that reconverges at G_4 .
 - The above approach is used to compute the probabilistic controllability values for circuit lines
 - 0-controllability values, CCp0 values are shown in the figure below.
 - For any line c_i , $CC_p^1(c_i) = 1 CC_p^0(c_i)$

Order of

- AND (z=x.y)
 - $CC_p^1(z) = CC_p^1(x) CC_p^1(y)$
 - $CC_p^0(z) = 1 CC_p^1(z)$
- NAND $(z=\overline{x.y})$
 - $CC_p^0(z) = CC_p^1(x) CC_p^1(y)$
 - $CC_n^1(z) = 1 CC_n^0(z)$

Observability Metric

- We define the probabilistic observability of a line c_i in an n-input combinational circuit as the probability that a randomly selected vector will sensitize one or more paths from line c_i , to one or more of the circuit outputs.
- The observability of each primary output z is $O_p(z_i) = 1$. The probabilistic observability is computed for the other circuit lines via a breadth-first, backward traversal of the circuit lines starting at the primary output.
- For a 2-input NAND gate, assuming the controllability values are known for each lines and the probabilistic observability is known only for the gate output, c_3 .

$$O_p(c_1) = CC_p^{1}(c_2)O_p(c_3)$$

• At a fanout system with stem c_1 and branches $c_2, c_3, ..., c_n$: $O_p(c_1) = \max[O_p(c_2), O_p(c_3), ..., O_p(c_n)]$

Observability Metric (cont.)

- The backward analysis approach is used
- Example:
 - The circuit has an output at z.
 - $O_{D}(z) = 1.0$
 - $O_p(c_4) = CC_p^1(c_5)O_p(z) = 0.75*1.0 = 0.75$
 - $O_p(c_5) = CC_p^1(c_4)O_p(z) = 0.25*1.0=0.25$
 - $O_p(c_1) = CC_p^1(x_1)O_p(c_4) = 0.5*0.75 = 0.375$
 - $O_p(x_1) = CC_p^1(c_1)O_p(c_4) = 0.5*0.75 = 0.375$
 - $O_p(c_3) = CC_p^1(x_3)O_p(c_5)=0.5*0.25=$ **0.125**
 - $O_p(x_3) = CC_p^1(c_3)O_p(c_5)=0.5*0.25=$ **0.125**
 - $O_p(c_2) = O_p(c_3) = 0.125$
 - $O_p(x_2) = MAX\{O_p(c_1),O_p(c_2)\} = 0.375$ 0.3

Legend: (CC⁰, CC¹) O

Detectability Metrics

- Once CC⁰(), CC¹() and O() values are known for all points of a circuit, the probabilistic detectability of a fault f at line c_i can be defined:
 - $-D_p(f)=CC_p^1(c_i)O_p(c_i)$, if f is an SA0 fault at c_i
 - $-D_p(f)=CC_p^0(c_i)O_p(c_i)$, if f is an SA1 fault at c_i
- The detectability of a fault f in an n-input CUT, κ_f , is the number of vectors that can detect the fault.
- Example: Let f be the stuck-at 1 (SA1) fault at the output of a circuit comprised of a single two-input AND gate. Since f has three tests, {00, 01, 10}, the detectability of f, κ_f=3.

Escape Probability

- If PRPG generates all possible 2^n vectors then, $\kappa_f = 2^n \cdot D_p(f)$.
 - —If we apply N vectors, N- κ_f vectors do not detect the fault f.
- Escape probability of a fault is the probability that a fault f with detectability κ_f will escape detection.
- Detectability Profile: The frequency distribution of the detectabilities of all faults within the circuit. $H=\{h_{kmin}, h_{kmin+1}, ..., h_{kmax}\}$
 - —Example: If in a 2-input AND gate, all 6 SAFs are targeted, then: $H=\{h_1=5,h_3=1\}$.

Escape Probability – Random Testing

- Escape probability of a fault is the probability that a fault f with detectability κ_f will escape detection. Assume N=2^{n:}
 - —after application of one vector: $Q_{\kappa}^{r}(1)=(N-\kappa)/N$
 - —after application of L vectors: $Q_{\kappa}^{r}(L) = [(N-\kappa)/N]^{L}$
- If we use well-known inequality $\ln(a) \le a-1$, we will get: $[(N-\kappa)/N]^L \le e^{-\kappa L/N} \rightarrow Q_{\kappa}^{r}(L) \le e^{-\kappa L/N}$
- In practice $\kappa/N \le 0.1$ and the bound in above inequality is tight (\le can be changed to approximately equal). So, we have: $Q_{\kappa}^{r}(L) \approx e^{-\kappa L/N}$

Test Length – Random Testing

- Assume in a circuit:
 - $-N_v$ random vectors (out of total N=2ⁿ) are applied
 - —The hardest-to-detect-faults have detectability of h_{kmin}
 - —The total number of target faults: $n_f = \sum_{\kappa = \kappa \min}^{\kappa \max} h_{\kappa}$
 - —We want to ensure that each target fault is detected with a probability exceeding 1- ϵ , where the level of confidence (escape probability) is ϵ .
- Using probabilistic analysis, we can show:
 - —The expected fault coverage:

$$E(C^r(N_v)) \approx 1 - (1/n_f \sum_{\kappa = \kappa \min}^{\kappa \max} h_{\kappa} e^{-\kappa N v/N})$$

The minimum test length required to achieve level of confidence of ε (i.e. should guarantee $Q_{\kappa min}^{r}(N_{v}) \leq \varepsilon$). This results in: $N_{v} \geq -\ln(\varepsilon)N/\kappa_{min}$

```
(Q_{\kappa min}{}^{r}(N_{v}) \le \epsilon \rightarrow e^{-\kappa minNv/N} \le \epsilon \rightarrow -\kappa_{min}N_{v}/N \le ln(\epsilon) \rightarrow N_{v} \ge -ln(\epsilon)N/\kappa_{min})_{\bf 37}
```

Escape Probability – Pseudo-Random Testing

- Similar probabilistic analysis shows that:
 - —after application of one vector: $Q_{\kappa}^{pr}(1) = (N-\kappa)/N$
 - —after application of L vectors: $Q_{\kappa}^{pr}(L) = \Pi_{i=1}^{L}[(N-\kappa-i+1)/(N-i+1)]$
- Typically, L<<N and κ <<N, and we will get: $Q_{\kappa}^{pr}(L) \le e^{-\kappa L/N}$ (similar to case of random patterns)

Test Length – Pseudo-Random Testing

- Similar to the random case, probabilistic analysis show that:
 - —The expected fault coverage:

$$E(C^{pr}(N_v)) \le 1 - (1/n_f \sum_{\kappa = \kappa \min}^{\kappa \max} h_{\kappa} e^{-\kappa N v/N})$$

The minimum test length required to achieve level of confidence of ε (i.e. should guarantee $Q_{\kappa min}^{pr}(N_{\nu}) \leq \varepsilon$). This results in N_{ν} that satisfies this relation:

$$[(N-\kappa_{\min}-N_{v}+1)/(N-N_{v}+1)]^{Nv} \leq \epsilon$$

Fault Coverage Enhancement

Test Points

- When the expected fault coverage for a given CUT is less than that desired under the given constraint on test length, one is faced with two alternatives
 - The CUT can be made more testable via insertion of test points to improve the detectabilities of hard-todetect faults.
 - 2. The PG can be customized to generate vectors that are more suitable for the given CUT.
- Two categories of test point improvements
 - Control points
 - Observation points

Test Points (cont.)

- By enabling control of the value at its site, a control
 point also, alters controllabilities of the lines in its
 fanout.
 - A control point also alters the observabilities of lines.
- An observation point enhances the observability of its site by enabling observation of the value at the line.
 - An observation point also enhances observabilities of lines in the fanin of its site.
- Example: Improve detecting Y SA0 in this 6-input AND.

Examples of Test Point Insertion

 Typical test point insertion uses MUX/gates to inject values from PIs and connects wires to POs.

- (a) Test point with a multiplexer
- (b) Test point with AND-OR gates

Examples of Test Point Insertion (cont.)

Various types of test points:

(d) Inversion-Control Point

(c) 1-Control Point

(f) Observation Point