Les identités remarquables

La première identité remarquable

L'égalité $(a+b)^2=a^2+2ab+b^2$ est la **première identité remarquable**.

Démonstration

Si a et b sont 2 nombres, nous pouvons <u>développer</u> (a+b)²:

$$(a+b)^{2} = (a+b)(a+b)$$

$$= \underline{a \times a} + \underline{a \times b} + \underline{b \times a} + \underline{b \times b}$$

$$= \underline{a^{2} + ab + \underline{ab} + \underline{b^{2}}}$$

$$= a^{2} + 2ab + \underline{b^{2}}$$

Exemple

Développement de $(2x+3)^2$.

Avec nos connaissances de quatrième, on aurait :

$$(2x+3)^2 = (2x+3)(2x+3)$$
$$= 4x^2 + 6x + 6x + 9$$
$$= 4x^2 + 12x + 9$$

En utilisant la première identité remarquable, on obtient directement le résultat.

Attention!

Le carré de 2x c'est 2x fois 2x, donc $2 \times x \times 2 \times x$ donc $2 \times 2 \times x \times x$ donc $4x^2$. Une erreur fréquente est d'écrire que le carré de 2x est $2x^2$! Pour éviter cette erreur, **on utilise des parenthèses**.

Exemple

$$(7x+1)^2 = (7x)^2 + 2 \times 7 \times x + 1^2$$

= 49x² + 14x + 1

Développe directement $(x+9)^2$.

La deuxième identité remarquable

L'égalité (a-b)²=a²-2ab+b² est la **deuxième identité remarquable**.

Démonstration

$$(a-b)^{2} = (a-b)(a-b)$$

$$= \underline{a \times a} - \underline{a \times b} - \underline{b \times a} + \underline{b \times b}$$

$$= \underline{a^{2}} - \underline{ab} - \underline{ab} + \underline{b^{2}}$$

$$= a^{2} - 2ab + b^{2}$$

Exemple

$$(3x-4)^2=(3x)^2-2\times 3x\times 4+4^2=9x^2-24x+16$$

Développe directement $(x-7)^2$.

La troisième identité remarquable

L'égalité (a+b)(a-b)=a²-b² est la **troisième identité remarquable**.

Démonstration

$$(\overrightarrow{a+b})(\overrightarrow{a-b}) = \underline{a \times a} - \underline{a \times b} + \underline{b \times a} - \underline{b \times b}$$
$$= \underline{a^2 - ab} + \underline{ab} - \underline{b^2}$$
$$= \underline{a^2 - b^2}$$

Exemple

$$(2x+3)(2x-3)=(2x)^2-3^2=4x^2-9$$
.

Développe directement (x-10)(x+10).

Exercice 1

Quelle est la forme développée de $(x+1)^2$?

Exercice 2

Quelle est la forme développée de $(x-7)^2$?

Exercice 3

Quelle est la forme développée de (3x-4)(3x+4)?

Exercice 4

Quelle est la forme développée de $(5x+2)^2$?

Exercice 5

Quelle est la forme développée de $\left(\frac{5}{2} + \frac{2}{5}x\right)\left(\frac{5}{2} - \frac{2}{5}x\right)$

Exercice 6

Développe puis réduis l'expression $(x-2)^2-(2x+2)(2x-2)$.

Exercice 7

Quelle est la forme <u>factorisée</u> de l'expression 100-x²?

Exercice 8

Quelle est la forme factorisée de 2-x²?

Exercice 9

Factorise l'expression $(x+7)^2-(3x-2)^2$.

Exercice 10

Développe $(n+1)^2-n^2$.

La <u>somme</u> de deux nombres entiers <u>consécutifs</u> est-elle toujours égale à la différence de leurs carrés?

Factoriser avec les identités remarquables

Parfois, on ne trouve pas de facteur commun. Dans ce cas, on peut essayer de factoriser en utilisant une <u>identité remarquable</u>.

Exemple

On doit factoriser x^2 -4.

Il n'y a pas de facteur commun, mais on sait que $a^2-b^2=(a+b)(a-b)$.

On a donc $x^2-4=x^2-2^2=(x+2)(x-2)$.

Remarque

Les expressions littérales ne sont pas toujours factorisables. Par exemple, pour x^2+2x+3 , on ne peut pas trouver de facteur commun ni utiliser d'identité remarquable.

On souhaite factoriser $9x^2+6x+1$.

Quelle identité remarquable doit-on utiliser?

Exercice 10

Factorise l'expression $1-81x^2+1-9x+(1-9x)^2$.

Exercice 12

En utilisant une <u>identité remarquable</u>, écris la forme factorisée de x²+4x+4.

Exercice 13

Quelle est la forme factorisée de $x^2 - 4$?

Exercice 14

Quelle est la forme factorisée de $(1+2x)(1-4x)+1-4x^2$?

Exercice 15

Quelle est la forme factorisée de $4x^2 - 9 - (4x - 9)(2x + 3)$?