ЛАБОРАТОРНАЯ РАБОТА №2 «ЛИНЕЙНЫЕ И ЦИКЛИЧЕСКИЕ СПИСКИ»

1.1 Цель работы

Целью работы является изучение структур данных «линейный список» и «циклический список», а также получение практических навыков их реализации.

1.2 Цель работы

Целью работы является изучение структур данных «линейный список» и «циклический список», а также получение практических навыков их реализации.

1.3 Задание на лабораторную работу

Реализовать структуры данных «линейный список» и «циклический список» в соответствии с заданным вариантом. Дополнительно программа должна осуществлять следующие операции:

- 1) Добавление/удаление элемента в список (с клавиатуры);
- 2) Вывод исходного и результирующего списков на экран;
- 3) Если списки являются многочленами, в выводе должна быть отражена степень каждого элемента.

Варианты задания приведены в таблице 2. Элементы последовательности, или коэффициенты многочлена (в зависимости от варианта) – числовые значения элемента списка, количество таких элементов списка равно длине последовательности, или количеству коэффициентов многочлена.

Таблица 1

No	Задача	Вид списка
ва		
р.		
1	Дана последовательность повторяющихся целых чисел $a_1, a_2, \ldots a_n$. Получить последовательность $k_1, k_2, \ldots k_m$, содержащую повторяющиеся в исходной последовательности элементы (c) в порядке убывания частоты их повторения в исходной последовательности (count). Неповторяющиеся элементы не включать. k_1 =max(count(c)), k_2 =min(max(count(c), k_1)	Линейный односвязный
2	Дана последовательность неповторяющихся чисел a_1, a_2, a_m . Получить две последовательности. Первая — список целых частей каждого числа в исходной последовательности. Вторая — список дробных частей, если элемент исходной последовательности является целым числом, такой элемент не включается в результирующие последовательности. $K = \text{fract}(a_1), \text{fract}(a_2)$	Линейный односвязный
3	Даны натуральное число n и символы $s_1, s_2,, s_n$. Получить символы, принадлежащие последовательности $s_1, s_2,, s_n$, которые входят в нее по одному разу	Линейный односвязный
4	Даны 2 многочлена. Каждый многочлен $P(x)=a_nx^n+a_{n-1}x^{n-1}++a_1x+a_0$ с целыми коэффициентами можно представить в виде списка, причем если $a_i=0$, то соответствующее звено не включать в список. Определить процедуру, которая строит многочлен p — сумму многочленов q и r	Линейный односвязный
5	Дано натуральное число n и целые числа $a_1, a_2,, a_n$. Вычислить $\min_{1 \le i \le n} a_i - \overline{a} $, где \overline{a} среднее арифметическое чисел $a_1, a_2,, a_n$	Линейный односвязный
6	Дано натуральное число n и целые числа a_1 , a_2 ,, a_n . Требуется получить последовательность x_1 , x_2 ,, x_k , y_1 , y_2 ,, y_k , где x_1 ,, x_k — взятые в порядке следования (слева на право) четные члены последовательности a_1 ,, a_n , а y_1 ,, y_k — нечетные члены	Линейный односвязный
7	Дана последовательность неповторяющихся целых чисел $a_1, a_2, \ldots a_n$. Получить последовательность, содержащую наименьший элемент исходной последовательности, и все предшествующие ему. $K=\min(a_1, a_2, \ldots a_n), a_{\min-1}, a_{\min-2}, \ldots a_1$	Линейный двусвязный
8	Дана последовательность неповторяющихся целых чисел a_1, a_2 , a_n , где $n>4$. Получить последовательность, содержащую элементы исходной последовательности с удаленными двумя наименьшими и двумя наибольшими элементами. $K=A-(\max(a),\min(a),\max(a-\max),\min(a-\min))$	Линейный двусвязный
9	Дана последовательность латинских букв, оканчивающаяся точкой. Среди букв есть специальный символ, появление которого означает отмену предыдущей буквы; <i>п</i> знаков подряд отменяют <i>п</i> предыдущих букв, если такие есть. Учитывая вхождение этого символа преобразовать последовательность.	Линейный двусвязный

№	Задача	Вид списка
ва		
p.		
10	Даны натуральные числа k , m , n и последовательности символов s_1 , s_2 ,, s_k , t_1 , t_2 ,, t_m , u_1 , u_2 ,, u_n . Получить по одному разу те символы, которые входят во все три последовательности, но расположить их по возрастанию.	Линейный двусвязный
11	Дана последовательность неповторяющихся чисел a_1, a_2, a_n и некое число c , принадлежащее данной последовательности. Составить 2 последовательности. Первая — все числа, находящиеся до указанного числа в обратном порядке. Вторая — все числа после указанного числа в прямом порядке.	Линейный двусвязный
12	Дана последовательность неповторяющихся чисел a_1, a_2, a_n . Получить последовательность, содержащую все числа в заданном диапазоне $[fk]$, которые встречаются в исходной последовательности.	Линейный двусвязный
13	Дана последовательность повторяющихся целых чисел a_1, a_2, a_n . Получить последовательность, содержащую среднее арифметическое п элементов исходной последовательности, затем n - I элементов и т.д. $K = \operatorname{average}(a_1a_n)$, $\operatorname{average}(a_1a_n)$, $\operatorname{average}(a_1, a_2)$, a_1	Циклический односвязный
14	Дана последовательность неповторяющихся чисел a_1, a_2, a_n . Получить 3 последовательности. Первая содержит элементы исходной последовательности, делящиеся без остатка на 3. Вторая – элементы, делящиеся без остатка на 2. Третья последовательность содержит элементы первой и второй полученных последовательностей, за исключением элементов, которые в них дублируются. Пример: $A=1,3,6,7,4,2$; $K=3,6$; $B=6,4,2$; $Res=3,4,2$	Циклический односвязный
15	Дана последовательность неповторяющихся целых чисел a_1, a_2 , a_n . Получить последовательность, содержащую $n/2$ элементов. Первый элемент такой последовательности — минимальный элемент исходной последовательности $b1$, второй ближайшее число к b_1*2 , третий — ближайшее к $b2*3$ и т.д. $b_1=\min(a), \min(a_1-b_1*2, a_2-b_1*2,, a_n-b_1*2),$	Циклический односвязный
16	Многочлен $P(x)=a_nx^n+a_{n-1}x^{n-1}++a_1x+a_0$ с целыми коэффициентами можно представить в виде списка, причем если $a_i=0$, то соответствующее звено не включать в список. Определить процедуру, которая строит многочлен q – производная многочлена p . Многочлен $P(x)=a_nx^n+a_{n-1}x^{n-1}++a_1x+a_0$ с целыми	Циклический односвязный
17	Многочлен $P(x)=a_nx^n+a_{n-1}x^{n-1}++a_1x+a_0$ с целыми коэффициентами можно представить в виде списка, причем если $a_i=0$, то соответствующее звено не включать в список. Определить логическую функцию $Equal(p, q)$, проверяющие на равенство многочлены p и q	Циклический односвязный
18	Проверить, удовлетворяют ли элементы списка (базовый тип integer) закону $x=f(x_0, h)$, где x — элемент списка, h — шаг, x_0 — начальный элемент списка. Пример: $x_0=5$, $h=1$. $x_1=6$, $x_2=7$, $x_3=8$ Элементы списка удовлетворяют закону $x=h(5,1)$	Циклический односвязный

№	Задача	Вид списка
ва		
p.		
19	Дана последовательность неповторяющихся целых чисел $a_1, a_2, \ldots a_n$. Получить последовательность, содержащую поочередно каждый четный элемент исходной последовательности слева — направо, и каждый нечетный элемент последовательности справа - налево. Если n-четное, то: $a_1, a_m, a_2, a_{n-1}, \ldots$	Циклический двусвязный
20	Дана последовательность чисел a_1, a_2, a_n и число K . Необходимо суммировать элементы исходной последовательности, пока сумма не будет больше или равна K , после чего выводятся все просуммированные элементы.	Циклический двусвязный
21	Дана последовательность неповторяющихся целых чисел $a_1, a_2, \dots a_n$. Получить последовательность длиной, содержащую разность между первым и последним элементом, вторым и предпоследним и т.д. Если n - нечетное, центральный элемент копируется без изменений.	Циклический двусвязный
22	Дана последовательность неповторяющихся чисел $a_1, a_2, \dots a_n$. Получить 2 последовательности, первая из которых является зеркальным отображением исходной. Вторая — поэлементная разница между исходной и второй последовательностью.	Циклический двусвязный
23	Дана последовательность неповторяющихся чисел $a_1, a_2, \dots a_n$. Получить 3 последовательности. Первая — копия исходной последовательности с инвертированными знаками. Вторая — копия исходной последовательности со взятыми по модулю значениями. Третья — поэлементная сумма первой и второй последовательностей, с удаленными из неё нулевыми значениями.	Циклический двусвязный

1.4 Порядок выполнения работы

- 1) выбрать вариант задания из подраздела 1.3 в соответствии с требованиями;
- 2) изучить теоретический материал, изложенный в учебном пособии;
- 3) разработать на языке программирования высокого уровня программу, выполняющую поставленную задачу с использованием заданной структуры данных;
- 4) написать отчет о работе;
- 5) защитить отчет.

К защите отчета по лабораторной работе, включающую демонстрацию работы программы, необходимо сформировать два или более контрольных примера.

1.5 Содержание отчета

Отчет должен содержать:

- 1) титульный лист;
- 2) цель работы;
- 3) вариант задания;
- 4) листинг программы, реализующей поставленную задачу с использованием заданных структур данных;
- 5) контрольные примеры;
- 6) выводы по работе.

1.6 Пример выполнения работы

Предположим, что необходимо выполнить следующий вариант задания:

№	Задача	Вид списка
вар.		
24	Дано натуральное число n и целые числа $a_1, a_2,, a_n$. Требуется	Линейный
	получить последовательность $x_1, x_2,, x_k, y_1, y_2,, y_k$, где $x_1,, x_k$ –	
	взятые в порядке следования (слева на право) четные члены	
	последовательности $a_1,,a_n$, а $y_1,,y_k$ – нечетные члены	

Для выполнения поставленного задания потребуется организовать два списка:

- линейный список A, состоящий из n элементов и содержащих исходные целые числа;
- линейный список X, состоящий из n элементов и содержащих в первых k элементах числа $x_1, x_2,..., x_k$, а в последующих элементах числа $y_1, y_2,..., y_k$.

Элементы обоих списков описываются одинаково.

Теперь можно разработать программу, которая должна выполнять следующие шаги:

Содержимое структуры:

```
struct LinearList
{
  int coeff;
```

```
LinearList *next;
};
```

1) создание и заполнение линейного списка А:

```
void AddListElem(int NewListElem, LinearList *&First)
{
   LinearList *NewElem = new LinearList;
   NewElem->next = NULL;
   NewElem->coeff = NewListElem;
   if (First == NULL)
     First = NewElem;
   else
   {
    LinearList *tmp = First;
    while (tmp->next != NULL)
    {
      tmp = tmp->next;
   }
   tmp->next = NewElem;
}
```

создание и заполнение линейного списка X;
 Perv – указатель на первый элемент списка.
 FinalSequence – указатель на первый элемент результирующего списка

```
void GetSequence(LinearList *Perv, LinearList *&FinalSequence)
 LinearList *ResultCarriage = new LinearList;
 LinearList *Carriage = new LinearList;
 Carriage = Perv;
//Участок с обходом четных элементов
  if (Carriage->next != NULL)
  Carriage = Carriage->next;
  FinalSequence = new LinearList;
  FinalSequence->coeff = Carriage->coeff;
   ResultCarriage = FinalSequence;
   while (Carriage->next != NULL)
     if (Carriage->next->next != NULL)
     Carriage = Carriage->next->next;
     ResultCarriage->next = new LinearList;
      ResultCarriage->next->coeff = Carriage->coeff;
     ResultCarriage = ResultCarriage->next;
     else break;
  }
  else
  FinalSequence = new LinearList;
```

```
FinalSequence->coeff = Carriage->coeff;
return;
}
//Участок с обходом нечетных элементов
Carriage = Perv;
ResultCarriage->next = new LinearList;
ResultCarriage->next->coeff=Carriage->coeff;
ResultCarriage = ResultCarriage->next;
while (Carriage->next != NULL)
{
   if (Carriage->next->next != NULL)
   {
      Carriage = Carriage->next;
      ResultCarriage->next = new LinearList;
      ResultCarriage->next->coeff = Carriage->coeff;
      ResultCarriage = ResultCarriage->next;
   }
   else break;
}
ResultCarriage->next = NULL;
}
```

Для выполнения поставленной задачи совершается последовательный обход исходного линейного списка сначала по чётным элементам, затем по нечётным. При этом необходимо проверять наличие элемента в участке памяти, в который происходит обращение программы при очередной итерации. При значении NULL происходит выход из цикла. Такой подход позволит сохранить исходный список, а так же не выполнять лишние итерации при обходе.

1.7 Контрольные вопросы

- 1) Что такое список?
- 2) Назовите основные характеристики линейного однонаправленного списка.
- 3) На какой элемент линейного однонаправленного списка необходимо обеспечивать позиционирование какого-либо указателя? Обоснуйте ответ.
- 4) Назовите основные характеристики линейного двунаправленного списка.
- 5) Сравните линейный однонаправленный список и линейный двунаправленный список.
- 6) Назовите основные характеристики циклического однонаправленного списка.

- 7) Сравните линейный однонаправленный список и циклический однонаправленный список.
- 8) Назовите основные характеристики циклического двунаправленного списка.
- 9) Сравните линейный двунаправленный список и циклический двунаправленный список.