SU update:

We have two-point measurements with two streamwise spacings

JMO Massey † , F Cabrera-Booman, JC Klewicki, T Jaroslawski, BJ McKeon

Center for Turbulence Research Stanford University

October 21, 2025

Thanks to DARPA for funding this work.

• $\delta \approx 0.035 [\mathrm{m}]$, $U_\mathrm{e} \approx 14 [\mathrm{m/s}]$, $T^+ \equiv T u_\mathrm{T}^2 / \nu = 10$

Pressure (psi)	0	50	100
$u_{ au}[m/s]$	0.58	0.47	0.52
ν/u_{τ} [m]	27×10^{-6}	7.5×10^{-6}	3.7×10^{-6}
$\nu \ [\mathrm{m^2/s}]$	$15.7{ imes}10^{-6}$	3.52×10^{-6}	$1.92{ imes}10^{-6}$
$Re_{ au}$	1,300	4,700	9,500
$f(T^+ = 10) \text{ [Hz]}$	2,100	4,700	14,100

Pinhole diameters

- ► Testing pinhole diameters of d=2300, 700, 400 μm
 - ► Corresponds to $d^+ \approx 85$, 93, 108
- lacktriangle Under the frozen turbulence assumption, these sit around $\mathit{T}^+ \sim 10$

Picture of spaced pinholes

- \blacktriangleright We have two-point measurements at two streamwise spacings: 3.2δ and 2.8δ
 - ► Herein, we refer to these as 'far' and 'close' spacings
- ▶ The spectra are plotted in voltage and haven't yet been converted to pressure

Raw Data

 $Re_{ au} pprox$ 1,300 (700 μ m) - Far-spaced

Spec. 10-21 [†]masseyj@stanford.edu 5/12

 $Re_{\tau}\approx 4{,}700~(700\mu\mathrm{m})$ - Far-spaced

 $Re_{ au} pprox 4,700 \ (700 \mu m)$ - Close-spaced

Spec. 10-21 [†]masseyj@stanford.edu 6/12

 $Re_{\tau}\approx 9{,}500~(700\mu\mathrm{m})$ - Far-spaced

 $Re_{\tau} \approx$ 9,500 (700 μ m) - Close-spaced

Spec. 10-21 [†]masseyj@stanford.edu 7/12

Transfer Functions

- Received data last night
- Plotting transfer functions for cali1, cali2, and in-situ noflow now
- ▶ and incorporating into a single robust estimate, (will have if all goes well)

 $Re_{ au}pprox$ 1,300 (d=700 μ m)

Spec. 10-21 [†]masseyj@stanford.edu 9/12

 $Re_{ au}pprox$ 4,700 (d=700 μ m)

 ${\tt Spec.} \quad {\tt 10-21} \qquad \qquad {\tt ^{\dagger}masseyj@stanford.edu} \qquad \qquad {\tt 10/12}$

 $Re_{ au}pprox$ 9,500 (d=700 μ m)

Spec. 10-21 $$^\dagger $$ masseyj@stanford.edu 11/12

Ongoing work on incorporating the 3 separate transfer functions

- ▶ The transfer functions appear to be similar, but not identical.
- Small discrepancies can lead to large differences in the final spectra
- We are working on methods to combine the 3 transfer functions into one robust estimate

Spec. 10-21 [†]masseyj@stanford.edu 12/12