

SEQUENCE LISTING

5 <110> Porro, Danilo
 Sauer, Michael
10 <120> Ascorbic Acid Production from Yeast
15 <130> 2028.594000
20 <140>
 <141>
 <160> 26
25 <170> PatentIn Ver. 2.1
 <210> 1
 <211> ~~610~~
 <212> PRT
20 <213> Arabidopsis thaliana
 <400> 1
Met Leu Arg Ser Leu Leu Leu Arg Arg Ser Val Gly His Ser Leu Gly
 1 5 10 15
25 Thr Leu Ser Pro Ser Ser Ser Thr Ile Arg Ser Ser Phe Ser Pro His
 20 25 30
30 Arg Thr Leu Cys Thr Thr Gly Gln Thr Leu Thr Pro Pro Pro Pro
 35 40 45
 Pro Pro Arg Pro Pro Pro Pro Ala Thr Ala Ser Glu Ala Gln
 50 55 60
35 Phe Arg Lys Tyr Ala Gly Tyr Ala Ala Leu Ala Ile Phe Ser Gly Val
 65 70 75 80
 Ala Thr Tyr Phe Ser Phe Pro Phe Pro Glu Asn Ala Lys His Lys Lys
 85 90 95
40 Ala Gln Ile Phe Arg Tyr Ala Pro Leu Pro Glu Asp Leu His Thr Val
 100 105 110
45 Ser Asn Trp Ser Gly Thr His Glu Val Gln Thr Arg Asn Phe Asn Gln
 115 120 125
 Pro Glu Asn Leu Ala Asp Leu Glu Ala Leu Val Lys Glu Ser His Glu
 130 135 140
50 Lys Lys Leu Arg Ile Arg Pro Val Gly Ser Gly Leu Ser Pro Asn Gly
 145 150 155 160
 Ile Gly Leu Ser Arg Ser Gly Met Val Asn Leu Ala Leu Met Asp Lys
 165 170 175
55 Val Leu Glu Val Asp Lys Glu Lys Lys Arg Val Thr Val Gln Ala Gly
 180 185 190

	Ile Arg Val Gln Gln Leu Val Asp Ala Ile Lys Asp Tyr Gly Leu Thr			
	195	200	205	
5	Leu Gln Asn Phe Ala Ser Ile Arg Glu Gln Gln Ile Gly Gly Ile Ile			
	210	215	220	
	Gln Val Gly Ala His Gly Thr Gly Ala Arg Leu Pro Pro Ile Asp Glu			
	225	230	235	240
10	Gln Val Ile Ser Met Lys Leu Val Thr Pro Ala Lys Gly Thr Ile Glu			
	245	250	255	
	Leu Ser Arg Glu Lys Asp Pro Glu Leu Phe His Leu Ala Arg Cys Gly			
15	260	265	270	
	Leu Gly Gly Leu Gly Val Val Ala Glu Val Thr Leu Gln Cys Val Ala			
	<u>275</u>	280	285	
20	Arg His Glu Leu Val Glu His Thr Tyr Val Ser Asn Leu Gln Glu Ile			
	290	295	300	
	Lys Lys Asn His Lys Lys Leu Leu Ser Ala Asn Lys His Val Lys Tyr			
	305	310	315	320
25	Leu Tyr Ile Pro Tyr Thr Asp Thr Val Val Val Val Thr Cys Asn Pro			
	325	330	335	
	Val Ser Lys Trp Ser Gly Pro Pro Lys Asp Lys Pro Lys Tyr Thr Thr			
30	340	345	350	
	Asp Glu Ala Val Gln His Val Arg Asp Leu Tyr Arg Glu Ser Ile Val			
	355	360	365	
35	Lys Tyr Arg Val Gln Asp Ser Gly Lys Lys Ser Pro Asp Ser Ser Glu			
	370	375	380	
	Pro Asp Ile Gln Glu Leu Ser Phe Thr Glu Leu Arg Asp Lys Leu Leu			
	385	390	395	400
40	Ala Leu Asp Pro Leu Asn Asp Val His Val Ala Lys Val Asn Gln Ala			
	405	410	415	
	Glu Ala Glu Phe Trp Lys Lys Ser Glu Gly Tyr Arg Val Gly Trp Ser			
45	420	425	430	
	Asp Glu Ile Leu Gly Phe Asp Cys Gly Gly Gln Gln Trp Val Ser Glu			
	435	440	445	
50	Ser Cys Phe Pro Ala Gly Thr Leu Ala Asn Pro Ser Met Lys Asp Leu			
	450	455	460	
	Glu Tyr Ile Glu Glu Leu Lys Lys Leu Ile Glu Lys Glu Ala Ile Pro			
	465	470	475	480
55	Ala Pro Ala Pro Ile Glu Gln Arg Trp Thr Ala Arg Ser Lys Ser Pro			
	485	490	495	

	Ile Ser Pro Ala Phe Ser Thr Ser Glu Asp Asp Ile Phe Ser Trp Val			
	500	505	510	
5	Gly Ile Ile Met Tyr Leu Pro Thr Ala Asp Pro Arg Gln Arg Lys Asp			
	515	520	525	
	Ile Thr Asp Glu Phe Phe His Tyr Arg His Leu Thr Gln Lys Gln Leu			
	530	535	540	
10	Trp Asp Gln Phe Ser Ala Tyr Glu His Trp Ala Lys Ile Glu Ile Pro			
	545	550	555	560
15	Lys Asp Lys Glu Glu Leu Glu Ala Leu Gln Ala Arg Ile Arg Lys Arg			
	565	570	575	
	Phe Pro Val Asp Ala Tyr Asn Lys Ala Arg Arg Glu Leu Asp Pro Asn			
	580	585	590	
20	Arg Ile Leu Ser Asn Asn Met Val Glu Lys Leu Phe Pro Val Ser Thr			
	595	600	605	
	Thr Ala			
	610			
25	<210> 2			
	<211> 1833			
	<212> DNA			
30	<213> Artificial Sequence			
	<220>			
	<223> Description of Artificial Sequence: A. thaliana			
35	<400> 2			
	atgctccggc cacttcttct ccgacgctcc gtcggccatt ctctcgaaac cctatctccg 60			
	tcttcatcca ccatccgttc ctcatttcg cctcatcgta ctctctgcac caccggtaa 120			
	acattgacac caccacccgccc gccaccgcca cgccctccac ctccgcctcc ggccaccgccc 180			
	tcagaagctc aattccgtaa atacgcccga tacgcagcac tcgctatctt ctctggagtt 240			
40	gctacctatt tctcatttcc attcccttag aatgctaaac acaagaaggc tcaaatttcc 300			
	cgttacgctc ctttacctga agatcttcac actgtctcta attggagtgg tactcatgag 360			
	gtacagacta ggaactttaa tcaaccggag aatcttgctg atctcgaagc tcttgttaag 420			
	aatctctatg agaagaagtt aaggattcgt cccgttggat cgggtctctc gcctaatggg 480			
	atgggtttgt ctcgctctgg gatggtaat ctggcgctta tggataaagt tctagaggtg 540			
45	gataaaagaga agaagagagt tacggtgca gctgggatta gggtccagca attgggttgc 600			
	gcccattaaag actatggct tactcttcag aactttgcct ccattagaga gcagcagatt 660			
	ggtgttatta ttcaagggttgg ggcacatggg acaggtgcta gattgcctcc tattgatgag 720			
	caggtgatca gtatgaagct gtttactcct gccaaggaa caattgaact ttcaagagag 780			
50	aaagatccgg agctcttca tctagctcga tgtggcctt gttgacttgg agttgttgct 840			
	gaggtcaccc tccaaatgcgt tgcaagacat gaacttggg aacacacata cgtctcaaac 900			
	ttgcaagaaa tcaaaaaaaa tcacaaaaaa ttgctctctg caaacaagca tgttaagtac 960			
	ctatatatttc cttataccga cacagtctgt gttgtAACAT gcaatcctgt atcaaaatgg 1020			
	agtggggccac ctaaggacaa accaaagtac actacagatg aggctgtaca gcatgtccgt 1080			
	gatctctaca gagagagcat tgtgaagttt agggtccagg actctggtaa gaagtctcct 1140			
55	gacagcagtg agccagacat acaggagctt tcatttacag agttgagaga caaactactt 1200			
	gcccttgcatt ctctcaatga cgttcacgtt gcaaaagtta atcaagctga ggcagagttt 1260			
	tggaaaaat cagaaggata tagagtaggg tggagtgtt aaattctggg ctttgactgt 1320			

ggtggtcagc agtgggtgtc agaatcttgt tttccctgctg gaaccctcgca acccttagc 1380
 atgaaagacc ttgaatacat agaagagctg aaaaaactaa tagaaaagga agcaatacca 1440
 gcacctgctc caatagagca gcgatggaca gctcgaagta agagccccat tagtcctgca 1500
 5 ttcagcactt cagaggatga tattttctca tgggttggta taatcatgta cctccgaca 1560
 gcagaccctc gccagagaaaa ggacatcaca gatgaatttt tccactatacg acatttgaca 1620
 cagaaacaat tgtggatca attttctgcg tatgaacatt gggctaaaat tgagatacca 1680
 aaagacaaag aagaacttga agccttacag gcaagaataa gaaaacgttt cccagtggat 1740
 gcatacaaca aagcacgtag ggagctggac ccaaataaaaa tcctctccaa caacatggtg 1800
 gaaaagctct tcccagtctc caccactgct taa 1833

10

<210> 3
 <211> 600
 <212> PRT
 15 <213> Brassica oleracea

<400> 3
 Met Leu Arg Ser Leu Leu Leu Arg Arg Ser Asn Ala Arg Ser Leu Arg
 1 - - - 5 10 15

20 Pro Pro Phe Pro Pro Leu Arg Thr Leu Cys Thr Ser Gly Gln Thr Leu
 20 25 30

Thr Pro Ala Pro Pro Pro Pro Pro Pro Pro Pro Ile Ser Ser
 25 35 40 45

Ser Ala Ser Glu Lys Glu Phe Arg Lys Tyr Ala Gly Tyr Ala Ala Leu
 50 55 60

30 Ala Leu Phe Ser Gly Ala Ala Thr Tyr Phe Ser Phe Pro Phe Pro Glu
 65 70 75 80

Asn Ala Lys His Lys Lys Ala Gln Ile Phe Arg Tyr Ala Pro Leu Pro
 85 90 95

35 Glu Asp Leu His Thr Val Ser Asn Trp Ser Gly Thr His Glu Val Gln
 100 105 110

Thr Arg Asn Phe Asn Gln Pro Glu Thr Leu Ala Asp Leu Glu Ala Leu
 40 115 120 125

Val Lys Glu Ala His Glu Lys Lys Asn Arg Ile Arg Pro Val Gly Ser
 130 135 140

45 Gly Leu Ser Pro Asn Gly Ile Gly Leu Ser Arg Ser Gly Met Val Asn
 145 150 155 160

Leu Ala Leu Met Asp Lys Val Leu Glu Val Asp Lys Glu Lys Lys Arg
 165 170 175

50 Val Arg Val Gln Ala Gly Ile Arg Val Gln Gln Leu Val Asp Ala Ile
 180 185 190

Gln Glu Tyr Gly Leu Thr Leu Gln Asn Phe Ala Ser Ile Arg Glu Gln
 55 195 200 205

Gln Ile Gly Gly Ile Ile Gln Val Gly Ala His Gly Thr Gly Ala Arg

	210	215	220
	Leu Pro Pro Ile Asp Glu Gln Val Ile Gly Met Lys Leu Val Thr Pro		
	225	230	235
5	Ala Lys Gly Thr Ile Glu Leu Ser Lys Asp Asn Asp Pro Glu Leu Phe		
	245	250	255
	His Leu Ala Arg Cys Gly Leu Gly Gly Leu Gly Val Val Ala Glu Val		
10	260	265	270
	Thr Leu Gln Cys Val Glu Arg Gln Glu Leu Leu Glu His Thr Tyr Val		
	275	280	285
15	Ser Thr Leu Glu Glu Ile Lys Lys Asn His Lys Lys Leu Leu Ser Thr		
	290	295	300
	Asn Lys His Val Lys Tyr Leu Tyr Ile Pro Tyr Thr Asp Thr Val Val		
20	305	310	315
	320		
	Val Val Thr Cys Asn Pro Val Ser Lys Trp Ser Gly Ala Pro Lys Asp		
	325	330	335
	Lys Pro Lys Tyr Thr Glu Glu Ala Leu Lys His Val Arg Asp Leu		
25	340	345	350
	Tyr Arg Glu Ser Ile Val Lys Tyr Arg Val Gln Asp Ser Ser Lys Lys		
	355	360	365
30	Thr Pro Asp Ser Arg Glu Pro Asp Ile Asn Glu Leu Ser Phe Thr Glu		
	370	375	380
	Leu Arg Asp Lys Leu Ile Ala Leu Asp Pro Leu Asn Asp Val His Val		
35	385	390	395
	400		
	Gly Lys Val Asn Gln Ala Glu Ala Glu Phe Trp Lys Lys Ser Glu Gly		
	405	410	415
40	Tyr Arg Val Gly Trp Ser Asp Glu Ile Leu Gly Phe Asp Cys Gly Gly		
	420	425	430
	Gln Gln Trp Val Ser Glu Thr Cys Phe Pro Ala Gly Thr Leu Ala Lys		
	435	440	445
45	Pro Ser Met Lys Asp Leu Glu Tyr Ile Glu Gln Leu Lys Glu Leu Ile		
	450	455	460
	Gln Lys Glu Ala Ile Pro Ala Pro Ser Pro Ile Glu Gln Arg Trp Thr		
50	465	470	475
	480		
	Gly Arg Ser Lys Ser Pro Met Ser Pro Ala Phe Ser Thr Ala Glu Glu		
	485	490	495
55	Asp Ile Phe Ser Trp Val Gly Ile Ile Met Tyr Leu Pro Thr Ala Asp		
	500	505	510
	Pro Arg Gln Arg Lys Asp Ile Thr Asp Glu Phe Phe His Tyr Arg His		

	515	520	525
5	Leu Thr Gln Ala Lys Leu Trp Asp Gln Tyr Ser Ala Tyr Glu His Trp 530	535	540
10	Ala Lys Ile Glu Ile Pro Lys Asp Lys Glu Glu Leu Glu Ala Leu Gln 545	550	555
15	Glu Arg Leu Arg Lys Arg Phe Pro Val Asp Ala Tyr Asn Lys Ala Arg 565	570	575
20	Arg Glu Leu Asp Pro Asn Arg Ile Leu Ser Asn Asn Met Val Glu Lys 580	585	590
25	Leu Phe Pro Val Ser Lys Thr Ala 595	600	
30	<210> 4 <211> 2064 <212> DNA <213> Brassica oleracea		
35	<400> 4		
40	aattcggcac gagcttcgc tggctcaggt ttcatcgcc ctgaactaaa acaaaatgct 60 ccgatcaatt ctcctccgccc gtcaccaacgc ccgttcgctt cgaccggcat ttccccctct 120 ccgactcta tgcaattccg gtcagacccctt gactccagcc cctccaccgc cgcctctcc 180 tccaccggccg atttcattccct ccgcctcaga aaaggagttc cgtaaatacg ccggataacgc 240 agcactcgct ctcttcgttccg ggcggcaac ttacttctcc ttcccccttcc ccggagaacacgc 300 caaacacaag aaggctcaga tcttccgata cgctcctctc cccgaagatc tccacacccgt 360 ctctaactgg agtggtactc acgaggcca gaccaggaac tttaaccagc cggagactct 420 cgccgatctc gaagctctcg tcaaggaagc tcatgagaag aagaacagga tccgaccgt 480 tggatcccggt ctttccccca atggatcgg ttgtctcgc tcggggatgg tgaatttgc 540 gctcatggac aaggtectcg aggtggataa agagaagaag agagtccgtg tgcaggctgg 600 gatttagggtt cagcagcttgc ttgacgccat tcaagagttt ggtctcaactc tccagaacctt 660 tgcttccatt agagagcago agattgggtt catcatttcag gttggggcac atgggacagg 720 tgcttagatttgc ctccttatcg atgagcaagt gattggcatg aagctgtca ctccctgtctaa 780 ggaaactatt gagcttctca aggataatga tccggagctc tttcatcttgc tctcgatgtgg 840 ccttgggttgc ctggagtttgc ttgcttaggtt caccctccatg tgcgtgaaa gacaggagct 900 tttggagcac acttacgtcttgc ccaccttgc agagatcaag aaaaatcaca aaaagtgtct 960 ctctacaaat aagcatgtca agtacctgttgc tattccatatttactgacacgg tcgtgggttgc 1020 tacatgcaac cctgttatcaa aatggagtgg ggcacccataag gacaaaccaa agtacactac 1080 agaggaggct ttaaaggatcg tccgtgacccat gtatagagag agcattgtta agtataagggt 1140 ccaggactct agtaagaaga ctccctgacag tagggagccaa gacattaacgc agctttcatt 1200 tacagagtttgc agagataagc tgattggccat agatccctctc aatgacgttc acgttggaaa 1260 agtgaatcaa gctgaggctg agttttggaa aaaaatcgaaa ggatacagag taggggtggag 1320 tgatgaaatc ctgggctttgc actgtgggtt tcaacagtgg gtatcgaaaa cttgttttcc 1380 tgctggaaact ctcgtctaaac ctgcgttgc agacccatgttgc tacatagaac agctgaaaga 1440 gttgatcaca aaaaaggccaa taccaggacc ttctccatgttgc gagcagcggtt ggacaggccg 1500 aagtaagagc cctatgagtc ctgcatttcg cactgcagag gaggacattt tctcatgggt 1560 tggatataatc atgtatctcc ctgcgttgc agacccatgttgc agaaaggaca tcacggatgt 1620 atttttccac tatagacatt tgacacaggc aaaaattgtgg gaccgttatttctgcgtatgt 1680 acattgggttgc aaaaattgttgc taccggatgttgc aaaaaggccaa cttgaagccc tacaaga 1740 actcagaaaaa cgattcccggttggatgcata caacaaagca cgaaggggagc tggacccaaa 1800 cagaatttctc tcaaaacaaca tggatggaaaa gctcttccct gtctccaaga ctgctttaaaa 1860 acattttcat caatagtttgc ttgtctcatttgc gaaatgttgc aaaaaggccaa ttttggatc ctataacgtt 1920 gcattctacaa gtgtttgttgc gaaatgttgc gccgtatgttgc tggtcacaaa aaaaaggccaa 1980		
55			

attgagttt actactattt ttttttcgc agttccctg aataaatata cttgttgtc 2040
tattccaaaa aaaaaaaaaaaa aaaa 2064

5 <210> 5
<211> 526
<212> PRT
<213> *Saccharomyces cerevisiae*

10 <400> 5
Met Ser Thr Ile Pro Phe Arg Lys Asn Tyr Val Phe Lys Asn Trp Ala
1 5 10 15

15 Gly Ile Tyr Ser Ala Lys Pro Glu Arg Tyr Phe Gln Pro Ser Ser Ile
20 25 30

Asp Glu Val Val Glu Leu Val Lys Ser Ala Arg Leu Ala Glu Lys Ser
35 40 45

20 Leu Val Thr Val Gly Ser Gly His Ser Pro Ser Asn Met Cys Val Thr
50 55 60

Asp Glu Trp Leu Val Asn Leu Asp Arg Leu Asp Lys Val Gln Lys Phe
25 65 70 75 80

Val Glu Tyr Pro Glu Leu His Tyr Ala Asp Val Thr Val Asp Ala Gly
85 90 95

30 Met Arg Leu Tyr Gln Leu Asn Glu Phe Leu Gly Ala Lys Gly Tyr Ser
100 105 110

Ile Gln Asn Leu Gly Ser Ile Ser Glu Gln Ser Val Ala Gly Ile Ile
115 120 125

35 Ser Thr Gly Ser His Gly Ser Ser Pro Tyr His Gly Leu Ile Ser Ser
130 135 140

Gln Tyr Val Asn Leu Thr Ile Val Asn Gly Lys Gly Glu Leu Lys Phe
40 145 150 155 160

Leu Asp Ala Glu Asn Asp Pro Glu Val Phe Lys Ala Ala Leu Leu Ser
165 170 175

45 Val Gly Lys Ile Gly Ile Ile Val Ser Ala Thr Ile Arg Val Val Pro
180 185 190

Gly Phe Asn Ile Lys Ser Thr Gln Glu Val Ile Thr Phe Glu Asn Leu
195 200 205

50 Leu Lys Gln Trp Asp Thr Leu Trp Thr Ser Ser Glu Phe Ile Arg Val
210 215 220

Trp Trp Tyr Pro Tyr Thr Arg Lys Cys Val Leu Trp Arg Gly Asn Lys
55 225 230 235 240

Thr Thr Asp Ala Gln Asn Gly Pro Ala Lys Ser Trp Trp Gly Thr Lys
245 250 255

	Leu	Gly	Arg	Phe	Phe	Tyr	Glu	Thr	Leu	Leu	Trp	Ile	Ser	Thr	Lys	Ile
				260					265				270			
5	Tyr	Ala	Pro	Leu	Thr	Pro	Phe	Val	Glu	Lys	Phe	Val	Phe	Asn	Arg	Gln
				275			280			285						
	Tyr	Gly	Lys	Leu	Glu	Lys	Ser	Ser	Thr	Gly	Asp	Val	Asn	Val	Thr	Asp
				290			295			300						
10	Ser	Ile	Ser	Gly	Phe	Asn	Met	Asp	Cys	Leu	Phe	Ser	Gln	Phe	Val	Asp
				305			310			315			320			
15	Glu	Trp	Gly	Cys	Pro	Met	Asp	Asn	Gly	Leu	Glu	Val	Leu	Arg	Ser	Leu
				325				330					335			
	Asp	His	Ser	Ile	Ala	Gln	Ala	Ala	Ile	Asn	Lys	Glu	Phe	Tyr	Val	His
				340				345			350					
20	Val	Pro	Met	Glu	Val	Arg	Cys	Ser	Asn	Thr	Thr	Leu	Pro	Ser	Glu	Pro
				355				360			365					
	Leu	Asp	Thr	Ser	Lys	Arg	Thr	Asn	Thr	Ser	Pro	Gly	Pro	Val	Tyr	Gly
				370				375			380					
25	Asn	Val	Cys	Arg	Pro	Phe	Leu	Asp	Asn	Thr	Pro	Ser	His	Cys	Arg	Phe
				385			390			395			400			
30	Ala	Pro	Leu	Glu	Asn	Val	Thr	Asn	Ser	Gln	Leu	Thr	Leu	Tyr	Ile	Asn
				405				410			415					
	Ala	Thr	Ile	Tyr	Arg	Pro	Phe	Gly	Cys	Asn	Thr	Pro	Ile	His	Lys	Trp
				420				425			430					
35	Phe	Thr	Leu	Phe	Glu	Asn	Thr	Met	Met	Val	Ala	Gly	Gly	Lys	Pro	His
				435				440			445					
	Trp	Ala	Lys	Asn	Phe	Leu	Gly	Ser	Thr	Thr	Leu	Ala	Ala	Gly	Pro	Val
				450			455			460						
40	Lys	Lys	Asp	Thr	Asp	Tyr	Asp	Asp	Phe	Glu	Met	Arg	Gly	Met	Ala	Leu
				465			470			475			480			
45	Lys	Val	Glu	Glu	Trp	Tyr	Gly	Glu	Asp	Leu	Lys	Lys	Phe	Arg	Lys	Ile
				485				490			495					
	Arg	Lys	Glu	Gln	Asp	Pro	Asp	Asn	Val	Phe	Leu	Ala	Asn	Lys	Gln	Trp
				500				505			510					
50	Ala	Ile	Ile	Asn	Gly	Ile	Ile	Asp	Pro	Ser	Glu	Leu	Ser	Asp		
				515				520			525					
55	<210>	6														
	<211>	1581														
	<212>	DNA														
	<213>	Saccharomyces cerevisiae														

<400> 6
 atgtctacta tcccatttag aaagaactat gtgttcaaaa actgggccgg aatttattct 60
 gcaaaaccag aacgttactt ccaaccaagt tcaattgatg aggttgcga gtttagtaaag 120
 5 agtgcgcaggc tagctgaaaa aagcttagtt actgttggtt cggccatc tcctagtaac 180
 atgtgcgtta ctgatgaatg gcttgcgttac tttagacagat tggacaaagt acaaaagttt 240
 gttgaatatc ctgagttaca ttatgccat gtcacagttt atgcggat gaggctttac 300
 caattgaatg aattttggg tgcgaaaggat tactctatcc aaaatttagg ctctatctca 360
 gaacaaagtg ttgctggcat aatctctact ggttagtcatg gttcctcacc ttatcacgg 420
 10 ttgatttctt ctcataatcgtaa aacttgcactt attgttaatg gtaaggcga attgaagttc 480
 ttggatgcgg aaaacgatcc agaagtctt aaagctgtt tactttcagt tggaaaaatt 540
 ggtatcatg tctctgtac tacagggtt gttccggct tcaatattaa atccactcaa 600
 gaagtgatta cttttgaaaa cctttgaag caatggata ccctatggac ttcatctgaa 660
 tttatcagag ttgggtggta cccttataact agaaaatgtt ttctatggag gggtaacaaa 720
 15 actacagatg cccaaaatgg tccagccaag tcatgggtt gtagccaagct gggtagattt 780
 ttctacgaaa ctctattatg gatctctacc aaaatctatg cgccattaaac cccatttg 840
 gaaaagttcg tttcaacag gcaatatggg aaatggaga agagctctac tggtgatgtt 900
 aatgttaccc attctatcag cgatttaat atggactgtt tggatgttca 960
 20 gaatgggggt gccctatgga taatggttt gaaatcttac gttcatttgc tcattctatt 1020
 gcgaggctg ccataaaca 1080
 aatactacat taccttctga acccttggat actagcaaga gaacaaacac cagccccgtt 1140
 cccgttatg gcaatgtgtt ccggccatc ctggataaca caccatccca ttgcagattt 1200
 gctccgttgg aaaatgttac caacagtcag ttgacgttgtt acataaatgc taccatttt 1260
 25 aggccgttgg gctgtatatac tccaatttcat aaatggttt cccttttga aaatactatg 1320
 atggtagccg gaggttggcc acattggcc aagaacttcc taggctcaac cactctagct 1380
 gctggaccag tgaaaaagga tactgattac gatgactttt aatgagggg gatggattt 1440
 aaggttgaag aatggatgg cgaggattt aaaaagttcc ggaaaataag aaaggagcaa 1500
 gatcccgata atgtattttt ggcaaaacaaa cagttggcta tcataaatgg tattatagat 1560
 30 ccttagtgatg tgtccgacta g 1581

<210> 7
 <211> 526
 <212> PRT
 35 <213> *Saccharomyces cerevisiae*

<400> 7
 Met Ser Thr Ile Pro Phe Arg Lys Asn Tyr Val Phe Lys Asn Trp Ala
 1 5 10 15

40 Gly Ile Tyr Ser Ala Lys Pro Glu Arg Tyr Phe Gln Pro Ser Ser Ile
 20 25 30

Asp Glu Val Val Glu Leu Val Lys Ser Ala Arg Leu Ala Glu Lys Ser
 45 35 40 45

Leu Val Thr Val Gly Ser Gly His Ser Pro Ser Asn Met Cys Val Thr
 50 55 60

50 Asp Glu Trp Leu Val Asn Leu Asp Arg Leu Asp Lys Val Gln Lys Phe
 65 70 75 80

Val Glu Tyr Pro Glu Leu His Tyr Ala Asp Val Thr Val Asp Ala Gly
 85 90 95

55 Met Arg Leu Tyr Gln Leu Asn Glu Phe Leu Gly Ala Lys Gly Tyr Ser
 100 105 110

Ile Gln Asn Leu Gly Ser Ile Ser Glu Gln Ser Val Ala Gly Ile Ile
 115 120 125

5 Ser Thr Gly Ser His Gly Ser Ser Pro Tyr His Gly Leu Ile Ser Ser
 130 135 140

Gln Tyr Val Asn Leu Thr Ile Val Asn Gly Lys Gly Glu Leu Lys Phe
 145 150 155 160

10 Leu Asp Ala Glu Asn Asp Pro Glu Val Phe Lys Ala Ala Leu Leu Ser
 165 170 175

Val Gly Lys Ile Gly Ile Ile Val Ser Ala Thr Ile Arg Val Val Pro
 180 185 190

Gly Phe Asn Ile Lys Ser Thr Gln Glu Val Ile Thr Phe Glu Asn Leu
 195 200 205

20 Leu Lys Gln Trp Asp Thr Leu Trp Thr Ser Ser Glu Phe Ile Arg Val
 210 215 220

Trp Trp Tyr Pro Tyr Thr Arg Lys Cys Val Leu Trp Arg Gly Asn Lys
 225 230 235 240

25 Thr Thr Asp Ala Gln Asn Gly Pro Ala Lys Ser Trp Trp Gly Thr Lys
 245 250 255

Leu Gly Arg Phe Phe Tyr Glu Thr Leu Leu Trp Ile Ser Thr Lys Ile
 30 260 265 270

Tyr Ala Pro Leu Thr Pro Phe Val Glu Lys Phe Val Phe Asn Arg Gln
 275 280 285

35 Tyr Gly Lys Leu Glu Lys Ser Ser Thr Gly Asp Val Asn Val Thr Asp
 290 295 300

Ser Ile Ser Gly Phe Asn Met Asp Cys Leu Phe Ser Gln Phe Val Asp
 305 310 315 320

40 Glu Trp Gly Cys Pro Met Asp Asn Gly Leu Glu Val Leu Arg Ser Leu
 325 330 335

Asp His Ser Ile Ala Gln Ala Ala Ile Asn Lys Glu Phe Tyr Val His
 45 340 345 350

Val Pro Met Glu Val Arg Cys Ser Asn Thr Thr Leu Pro Ser Glu Pro
 355 360 365

50 Leu Asp Thr Ser Lys Arg Thr Asn Thr Ser Pro Gly Pro Val Tyr Gly
 370 375 380

Asn Val Cys Arg Pro Phe Leu Asp Asn Thr Pro Ser His Cys Arg Phe
 385 390 395 400

55 Ala Pro Leu Glu Asn Val Thr Asn Ser Gln Leu Thr Leu Tyr Ile Asn
 405 410 415

Pro Thr Ile Tyr Arg Pro Phe Gly Cys Asn Thr Pro Ile His Lys Trp
 420 425 430
 5 Phe Thr Leu Phe Glu Asn Thr Met Met Val Ala Gly Gly Lys Pro His
 435 440 445
 Trp Ala Lys Asn Phe Leu Gly Ser Thr Thr Leu Ala Ala Gly Pro Val
 450 455 460
 10 Lys Lys Asp Thr Asp Tyr Asp Asp Phe Glu Met Arg Gly Met Ala Leu
 465 470 475 480
 Lys Val Glu Glu Trp Tyr Gly Glu Asp Leu Lys Lys Phe Arg Lys Ile
 485 490 495
 15 Arg Lys Glu Gln Asp Pro Asp Asn Val Phe Leu Ala Asn Lys Gln Trp
 500 505 510
 20 Ala Ile Ile Asn Gly Ile Ile Asp Pro Ser Glu Leu Ser Asp
 515 520 525
 25 <210> 8
 <211> 2138
 <212> DNA
 <213> *Saccharomyces cerevisiae*
 30 <400> 8
 cccatgtcta ctatccccatt tagaaagaac tatgtgttca aaaactgggc cggaatttt 60
 tctgcaaaac cagaacgtta cttccaaacca agttcaattt atgagggttg cgagttgt 120
 aagagtgccca ggcttagctga aaaaagctta gtactgttg gttcgggcca ttctcctagt 180
 aacatgtgcg ttactgtatga atggctgtt aacttagaca gattggacaa agtacaaaag 240
 tttgttgaat atcctgagtt acattatgcc gatgtcacag ttgatgccgg tatgaggctt 300
 35 taccatgtatga atgaattttt ggggtcgaaaa ggttaactcta tccaaaattt aggctctatc 360
 tcagaacaaa gtgttgctgg cataaatctct actggtagtc atggttcctc accttatcac 420
 ggtttgatt ctcttcataa cgtaaaacctg actattgtt atggtaaggg cgaattgaag 480
 ttcttggatg ccgaaaacga tccagaagtc tttaaagctg cttaacttcc agttggaaaa 540
 atcggatataca ttgtctctgc tactatcagg gtgttcccg gcttcaatat taaatccact 600
 40 caagaagtga ttacttttga aaacctttt aagcaatggg ataccctatg gacttcatct 660
 gaattttatca gagtttggtg gtacccttat actagaaaaat gtgttctatg gaggggtaac 720
 aaaactacag atgcccaaaa tggtccagcc aagtcatggt ggggtaccaa gctgggtaga 780
 tttttctacg aaactcttatt atggatctct accaaaaatct atgcgccatt aacccctatt 840
 gtggaaaagt tcgtttcaa caggcaatac gggaaattgg agaagagctc tactggtgat 900
 45 gttaatgtta ccgattctat cagcgattt aatatggact gtttggtttca acaatttgg 960
 gatgaatggg ggtgccctat ggataatggt ttggaaagtct tacgttcatt gatcattct 1020
 attgcgcagg ctgccataaa caaagaattt tatgtccacg tgcctatgga agtccgttgc 1080
 tcaaatacta cattaccttc tgaacccttg gatacttagca agagaacaaa caccagtccc 1140
 ggtcccgaaaatggcaatgt gtgccgccc ttccctggata acacaccatc ccattgcaga 1200
 50 tttgctccgt tgaaaaatgt taccaacagt cagttgacgt tgtacataaa tcctaccatt 1260
 tataggccgt ttggctgtaa tactccaatt cataaaatggt ttacccttt tgaaaatact 1320
 atgatggtag cgggaggtaa gccacattgg gccaagaact tccttaggctc aaccactcta 1380
 gctgctggac cagtggaaaaa ggatactgat tacgatgact ttgaaatgag ggggatggca 1440
 ttgaagggtt aagaatggta tggcgaggat ttggaaaaatg tccggaaaat aagaaaggag 1500
 55 caagatcccg ataatgtatt ctggccaaac aaacagtggg ctatcataaa tggtattata 1560
 gatcctagtg agttgtccga ctgtctt tttgtctcaa taatcttat atttactaa 1620
 aaaagaatataatataatataat aqcaqtgtqa tqactqttca tqatcattt 1680

aataactatt cctagctgcc tatcaaagac ttttttttga attagagctt ttttagtaatc 1740
 atgggacct tttttcttt cattatcctt actatagttt tttttgaa aagccgaacg 1800
 cggtaatgtat tggtcgtata agcaaaaacg aaacatcgcc atggcataac gtagatccta 1860
 5 tctacaggga agttttaga aatcagatag aaatgtat ttgagtgcgt atatattgca 1920
 gtacttttt tctctctagg atttaagtat gtttagtatt aactcatatc acatttttc 1980
 tttgtaaaaaa gcaaccattc gcaacaatgt cgatagtaga gacatgcata tcgtttgaaa 2040
 cgacaaaatcc gtttatcca ttttgtactg gattgctct gaattgtgtg gttacaccgc 2100
 tttactttt gaaaacgcaa aatggtagaa tcgtggtc 2138

10 <210> 9
 <211> 440
 <212> PRT
 <213> Rattus norvegicus

15 <400> 9
 Met Val His Gly Tyr Lys Gly Val Gln Phe Gln Asn Trp Ala Lys Thr
 1 - 5 10 15

20 Tyr Gly Cys Ser Pro Glu Val Tyr Tyr Gln Pro Thr Ser Val Glu Glu
 20 25 30

Val Arg Glu Val Leu Ala Leu Ala Arg Glu Gln Lys Lys Lys Val Lys
 35 40 45

25 Val Val Gly Gly His Ser Pro Ser Asp Ile Ala Cys Thr Asp Gly
 50 55 60

30 Phe Met Ile His Met Gly Lys Met Asn Arg Val Leu Gln Val Asp Lys
 65 70 75 80

Glu Lys Lys Gln Ile Thr Val Glu Ala Gly Ile Leu Leu Ala Asp Leu
 85 90 95

35 His Pro Gln Leu Asp Glu His Gly Leu Ala Met Ser Asn Leu Gly Ala
 100 105 110

Val Ser Asp Val Thr Val Ala Gly Val Ile Gly Ser Gly Thr His Asn
 115 120 125

40 Thr Gly Ile Lys His Gly Ile Leu Ala Thr Gln Val Val Ala Leu Thr
 130 135 140

45 Leu Met Thr Ala Asp Gly Glu Val Leu Glu Cys Ser Glu Ser Arg Asn
 145 150 155 160

Ala Asp Val Phe Gln Ala Ala Arg Val His Leu Gly Cys Leu Gly Ile
 165 170 175

50 Ile Leu Thr Val Thr Leu Gln Cys Val Pro Gln Phe Gln Leu Gln Glu
 180 185 190

Thr Ser Phe Pro Ser Thr Leu Lys Glu Val Leu Asp Asn Leu Asp Ser
 195 200 205

55 His Leu Lys Arg Ser Glu Tyr Phe Arg Phe Leu Trp Phe Pro His Thr
 210 215 220

Glu Asn Val Ser Ile Ile Tyr Gln Asp His Thr Asn Lys Ala Pro Ser
 225 230 235 240

5 Ser Ala Ser Asn Trp Phe Trp Asp Tyr Ala Ile Gly Phe Tyr Leu Leu
 245 250 255

Glu Phe Leu Leu Trp Thr Ser Thr Tyr Leu Pro Cys Leu Val Gly Trp
 10 260 265 270

Ile Asn Arg Phe Phe Trp Met Leu Phe Asn Cys Lys Lys Glu Ser
 275 280 285

Ser Asn Leu Ser His Lys Ile Phe Thr Tyr Glu Cys Arg Phe Lys Gln
 15 290 295 300

His Val Gln Asp Trp Ala Ile Pro Arg Glu Lys Thr Lys Glu Ala Leu
 305 310 315 320

20 Leu Glu Leu Lys Ala Met Leu Glu Ala His Pro Lys Val Val Ala His
 325 330 335

Tyr Pro Val Glu Val Arg Phe Thr Arg Gly Asp Asp Ile Leu Leu Ser
 25 340 345 350

Pro Cys Phe Gln Arg Asp Ser Cys Tyr Met Asn Ile Ile Met Tyr Arg
 355 360 365

30 Pro Tyr Gly Lys Asp Val Pro Arg Leu Asp Tyr Trp Leu Ala Tyr Glu
 370 375 380

Thr Ile Met Lys Lys Phe Gly Gly Arg Pro His Trp Ala Lys Ala His
 385 390 395 400

35 Asn Cys Thr Gln Lys Asp Phe Glu Glu Met Tyr Pro Thr Phe His Lys
 405 410 415

Phe Cys Asp Ile Arg Glu Lys Leu Asp Pro Thr Gly Met Phe Leu Asn
 40 420 425 430

Ser Tyr Leu Glu Lys Val Phe Tyr
 435 440

45 <210> 10
 <211> 2120
 <212> DNA
 <213> Rattus norvegicus

50 <400> 10
 ggatcctcct gatcaactggaa atcatggtcc atgggtacaa aggggtccag ttccaaaatt 60
 gggcaaagac ctatggttgc agtccagagg tgtactacca gcccacctcc gtggaggagg 120
 tcagagaggt gctggccctg gcccgggagc agaagaagaa agtgaaggtg gtgggtggtg 180
 gccactcgcc ttcagacatt gcctgcactg acgtttcat gatccacatg ggcaagatga 240
 accgggttct ccaggtggac aaggagaaga agcagataac agtggaaagcc ggtatcctcc 300
 tggctgacct gcacccacag ctggatgagc atggcctggc catgtccaat ctgggagcag 360
 tgtctgtatgt gacagttgct ggtgtcattt gatccggaac acataacaca gggatcaagc 420

acggcatcct ggccactcag gtggtggccc tgaccctgat gacagctgat ggagaagtgc 480
 tggaatgttc tgagtcaga aatgcagatg tgcccgaggc tgcacgggtg cacctgggt 540
 gcctggcat catcctcacc gtcaccctgc agtgtgtgcc tcagtttcag cttcaggaga 600
 catccttccc ttgcaccctc aaagagggtcc ttgacaacct agacagccac ctgaagaggt 660
 5 ctgagtaett ccgccttc tgggttc tgcactgatc acactgagaa cgtcagcatc atctaccaag 720
 accacaccaa caaggcccccc tcctctgcat ctaactgggtt ttgggactat gccatcggt 780
 tctacctact ggagttcttgc ctctggacca gcacccatc gccatgcctc gtgggctgga 840
 tcaaccgcctt cttcttctgg atgctgttca actgcaagaa ggagagcgc aacccatc 900
 acaagatctt cacctacgag tgctcgcttca agcagcatgt acaagactgg gccatcccta 960
 10 gggagaagac caaggaggcc ctactggagc taaaggccat gctggaggcc caccggaa 1020
 tggtagccca ctaccccgta gaggtgcgc tcaaccggagg cgatgacatt ctgctgagcc 1080
 cctgcttcca gaggacacgc tgctacatga acatcattat gtacaggccc tatgaaagg 1140
 acgtgcctcg gctagactac tggctggct atgagaccat catgaagaag tttggagggaa 1200
 15 gaccccaactg ggcaaaaggcc cacaattgca cccagaagga ctttgaggaa atgtacccca 1260
 cctttcacaa gttctgtgac atccgtgaga agctggaccc cactggaatg ttcttgaatt 1320
 cgtacctgga gaaagtcttc tactaaagca ggagtggaaa caaaccaccc tgaccctca 1380
 cacttctgtc gccccgggg gtctggggag cagagaagtgc cctcacaagc acaatggaa 1440
 20 ctgacccatc ctccctgacca caaagaaagg ctggctctg ggccgggtcc tctctgcctt 1500
 cgccatcatt tcccttacat ccaggcgaag aagtggctc tcactcaaatt tcctgttagc 1560
 atttccatgg gtcacacata aactgcaatc ctctcaggag aagggggatc cctgatacat 1620
 catatctatc cagactaagg atgtggttct tcctagattc tatggctcca ccaggtata 1680
 agagattctt gggccctgca gttctccatc cctcttcaga agggagggtt cccttggcga 1740
 gagtttggct cagaggtggc atgaagcatg ctctgctctc tcttaccctt gaaggtcctt 1800
 25 cgatgccccca gagatgtctg ctggctctgg gcaagccatc attcaaacgg gtccaaacctg 1860
 gccttctgtc tgccatggcc tgaccctcgc agtgtcttt ccagaggtgt ttagagtgg 1920
 actcgcttca acctcttaac cagttgtga tccctgtgtt tctctccctt ctccctggag 1980
 actactttg gagggggatc ccaccatgtc cttggcttcc cctgggtatt gtttcctct 2040
 tccttcttacaa aatatgatt tcagtttgc ttgtggcctt tctggaggtt tccttggaga 2100
 accaagatgt tccagctacc 2120

30

<210> 11
 <211> 319
 <212> PRT
 35 <213> Arabidopsis thaliana

<400> 11
 Met Thr Lys Ile Glu Leu Arg Ala Leu Gly Asn Thr Gly Leu Lys Val
 1 5 10 15

40 Ser Ala Val Gly Phe Gly Ala Ser Pro Leu Gly Ser Val Phe Gly Pro
 20 25 30

Val Ala Glu Asp Asp Ala Val Ala Thr Val Arg Glu Ala Phe Arg Leu
 45 35 40 45

Gly Ile Asn Phe Phe Asp Thr Ser Pro Tyr Tyr Gly Gly Thr Leu Ser
 50 55 60

50 Glu Lys Met Leu Gly Lys Gly Leu Lys Ala Leu Gln Val Pro Arg Ser
 65 70 75 80

Asp Tyr Ile Val Ala Thr Lys Cys Gly Arg Tyr Lys Glu Gly Phe Asp
 85 90 95

55 Phe Ser Ala Glu Arg Val Arg Lys Ser Ile Asp Glu Ser Leu Glu Arg
 100 105 110

Leu Gln Leu Asp Tyr Val Asp Ile Leu His Cys His Asp Ile Glu Phe
 115 120 125
 5 Gly Ser Leu Asp Gln Ile Val Ser Glu Thr Ile Pro Ala Leu Gln Lys
 130 135 140
 10 Leu Lys Gln Glu Gly Lys Thr Arg Phe Ile Gly Ile Thr Gly Leu Pro
 145 150 155 160
 15 Leu Asp Ile Phe Thr Tyr Val Leu Asp Arg Val Pro Pro Gly Thr Val
 165 170 175
 20 Asp Val Ile Leu Ser Tyr Cys His Tyr Gly Val Asn Asp Ser Thr Leu
 180 185 190
 25 Leu Asp Leu Leu Pro Tyr Leu Lys Ser Lys Gly Val Gly Val Ile Ser
 195 200 205
 30 Ala Ser Pro Leu Ala Met Gly Leu Leu Thr Glu Gln Gly Pro Pro Glu
 210 215 220
 Trp His Pro Ala Ser Pro Glu Leu Lys Ser Ala Ser Lys Ala Ala Val
 225 230 235 240
 35 Ala His Cys Lys Ser Lys Gly Lys Lys Ile Thr Lys Leu Ala Leu Gln
 245 250 255
 40 Tyr Ser Leu Ala Asn Lys Glu Ile Ser Ser Val Leu Val Gly Met Ser
 260 265 270
 Ser Val Ser Gln Val Glu Glu Asn Val Ala Ala Val Thr Glu Leu Glu
 275 280 285
 45 Ser Leu Gly Met Asp Gln Glu Thr Leu Ser Glu Val Glu Ala Ile Leu
 290 295 300
 Glu Pro Val Lys Asn Leu Thr Trp Pro Ser Gly Ile His Gln Asn
 305 310 315
 50 <210> 12
 <211> 960
 <212> DNA
 55 <213> Arabidopsis thaliana
 <400> 12
 atgacgaaaa tagagcttcg agctttgggg aacacagggc ttaaggtag cgccgttggt 60
 tttgggtcct ctccgcttcg aagtgtctc ggtccagtcg ccgaatgtga tgccgtcgcc 120
 accgtgcgcg aggcttccg tctcggtatc aacttctcg acacccccc gtattatgga 180
 ggaacactgt ctgagaaaat gcttggtaag ggactaaagg ctttgcagaat ccctagaatgt 240
 gactacattg tggctactaa gtgtggtaa tataaagaag gttttgattt cagtgctgag 300
 agagtaagaa agagtttgcgagagcttgcgagggcttc agcttgatcata ttgtgacata 360
 cttcattgcc atgacattgc gttcggtct cttgtatcata ttgtgatcata aacaattcc 420
 gctcttcaga aactgaaaca agagggaaag acccggtca ttggtatcac tggcttccg 480
 ttagatattt tcacttatgt tcttgatcga gtgcctccag ggactgtcga tgtgatattg 540
 tcatactgtc attacggcgt taatgattcg acgttgctgg atttactacc ttacttgaag 600

agcaaagggtg tgggtgtat aagtgccttcc ccat tagcaa tgggcctcct tacagaacaa 660
 ggtcctccctg aatggcaccc tgcttcccct gagctaagt ctgc aagcaa agccgcagg 720
 gctcaactgca aatcaaaggaa caagaagatc acaaaggtag ctctgc aata cagtttagca 780
 aacaaggaga tttcgctcggt gttgggttggg atgagctctg tctcacaggt agaagaaaat 840
 gttgcagcag ttacagagct tgaaaggctg gggatggatc aagaaactct gtctgagg 900
 gaagctattc tcgagcctgt aaagaatctg acatggccaa gtggaatcca tcagaactaa 960

5 <210> 13
 10 <211> 18
 <212> PRT
 <213> Artificial Sequence

15 <220>
 <223> Description of Artificial Sequence: motif I of
 aldo-keto reductase superfamily

20 <400> 13
 Gly Xaa Arg Xaa Xaa Asp Xaa Ala Xaa Xaa Xaa Xaa Glu Xaa Xaa
 1 5 10 15

25 Xaa Gly

30 <210> 14
 <211> 30
 <212> DNA
 <213> Artificial Sequence

35 <220>
 <223> Description of Artificial Sequence: Forward PCR
 Primer for L-galactono-1,4-lactone dehydrogenase
 from A. thaliana

40 <400> 14
 caagaaggcc taaatgttcc gttacgctcc 30

45 <210> 15
 <211> 30
 <212> DNA
 <213> Artificial Sequence

50 <220>
 <223> Description of Artificial Sequence: Reverse PCR
 Primer for L-galactono-1,4-lactone dehydrogenase
 from A. thaliana

55 <400> 15
 atgggcctt aagcagtggt ggagactggg 30

60 <210> 16
 <211> 26
 <212> DNA
 <213> Artificial Sequence

```

      )
      )

<220>
<223> Description of Artificial Sequence: Forward PCR
      Primer for L-gulono-1,4-lactone oxidase from R.
      norvegicus
5

<400> 16
tgaggggtca gggtggttg tttcca
26

10
<210> 17
<211> 28
<212> DNA
<213> Artificial Sequence

15
<220>
<223> Description of Artificial Sequence: Reverse PCR
      _Primer for L-gulono-1,4-lactone oxidase from R.
      ~norvegicus
20

<400> 17
tggaatcatg gtccatgggt acaaagg
28

25
<210> 18
<211> 22
<212> DNA
<213> Artificial Sequence

30
<220>
<223> Description of Artificial Sequence: Forward PCR
      Primer for D-arabinono-1,4-lactone oxidase from S.
      cerevisiae

35
<400> 18
tttcaccata tgtctactat cc
22

40
<210> 19
<211> 22
<212> DNA
<213> Artificial Sequence

45
<220>
<223> Description of Artificial Sequence: Reverse PCR
      Primer for D-arabinono-1,4-lactone oxidase from S.
      cerevisiae

50
<400> 19
aaggatccta gtcggacaac tc
22

55
<210> 20
<211> 344
<212> PRT
<213> Saccharomyces cerevisiae

```

<400> 20
 Met Ser Ser Ser Val Ala Ser Thr Glu Asn Ile Val Glu Asn Met Leu
 1 5 10 15

5 His Pro Lys Thr Thr Glu Ile Tyr Phe Ser Leu Asn Asn Gly Val Arg
 20 25 30

Ile Pro Ala Leu Gly Leu Gly Thr Ala Asn Pro His Glu Lys Leu Ala
 10 35 40 45

Glu Thr Lys Gln Ala Val Lys Ala Ala Ile Lys Ala Gly Tyr Arg His
 50 55 60

Ile Asp Thr Ala Trp Ala Tyr Glu Thr Glu Pro Phe Val Gly Glu Ala
 15 65 70 75 80

Ile Lys Glu Leu Leu Glu Asp Gly Ser Ile Lys Arg Glu Asp Leu Phe
 85 90 95

20 Ile Thr Thr Lys Val Trp Pro Val Leu Trp Asp Glu Val Asp Arg Ser
 100 105 110

Leu Asn Glu Ser Leu Lys Ala Leu Gly Leu Glu Tyr Val Asp Leu Leu
 25 115 120 125

Leu Gln His Trp Pro Leu Cys Phe Glu Lys Ile Lys Asp Pro Lys Gly
 130 135 140

Ile Ser Gly Leu Val Lys Thr Pro Val Asp Asp Ser Gly Lys Thr Met
 30 145 150 155 160

Tyr Ala Ala Asp Gly Asp Tyr Leu Glu Thr Tyr Lys Gln Leu Glu Lys
 165 170 175

35 Ile Tyr Leu Asp Pro Asn Asp His Arg Val Arg Ala Ile Gly Val Ser
 180 185 190

Asn Phe Ser Ile Glu Tyr Leu Glu Arg Leu Ile Lys Glu Cys Arg Val
 40 195 200 205

Lys Pro Thr Val Asn Gln Val Glu Thr His Pro His Leu Pro Gln Met
 210 215 220

Glu Leu Arg Lys Phe Cys Phe Met His Asp Ile Leu Leu Thr Ala Tyr
 45 225 230 235 240

Ser Pro Leu Gly Ser His Gly Ala Pro Asn Leu Lys Ile Pro Leu Val
 245 250 255

50 Lys Lys Leu Ala Glu Lys Tyr Asn Val Thr Gly Asn Asp Leu Leu Ile
 260 265 270

Ser Tyr His Ile Arg Gln Gly Thr Ile Val Ile Pro Arg Ser Leu Asn
 275 280 285

55 Pro Val Arg Ile Ser Ser Ser Ile Glu Phe Ala Ser Leu Thr Lys Asp
 290 295 300

Glu Leu Gln Glu Leu Asn Asp Phe Gly Glu Lys Tyr Pro Val Arg Phe
 305 310 315 320

5 Ile Asp Glu Pro Phe Ala Ala Ile Leu Pro Glu Phe Thr Gly Asn Gly
 325 330 335

Pro Asn Leu Asp Asn Leu Lys Tyr
 340

10

<210> 21
 <211> 1509
 <212> DNA
 15 <213> *Saccharomyces cerevisiae*

<400> 21
 taacaatttc gtttactgaa aatgctacta gtatataatc attaagtatc taactatcac 60
 tcaataaaaa tattatagat cgcttaaaaa ctcgtttatt gccgattata aatccaccaa 120
 20 aagccgcctc acccttacct ccgcctggaa aaattataat atataaagtg agcctcgtaa 180
 tacaggggta aaaaggaaag agggggatat caagcatctg gacttatttg cactatctcc 240
 gccttcaatt gataaaaagcg tcttgattt aatcaactgc tatcatgtct tcttcagtag 300
 cctcaaccga aaacatagtc gaaaatatgt tgcatccaaa gactacagaa atatacttt 360
 cactcaacca tggtgttcgt atcccagcac tgggtttggg gacagcaaat cctcacgaaa 420
 25 agttagctga aacaaaacaa gccgtaaaag ctgcaatcaa agctggatac aggacatgg 480
 atactgctg ggcctacgag acagagccat tcgttaggtga agccatcaag gagttattag 540
 aagatggatc tatcaaaagg gaggatctt tcataaccac aaaagtgtgg ccgggttctat 600
 gggacgaagt ggacagatca ttgaatgaat ctggaaaagc tttaggcttg gaatacgtcg 660
 30 acttgcttt gcaacattgg ccgcctatgtt ttgaaaagat taaggaccct aaggggatca 720
 gcggactggt gaagactccg gttgatgatt ctggaaaac aatgtatgtc gccgacggtg 780
 actattnaga aacttacaag caattggaaa aaatttacct tgatcctaact gatcatcg 840
 tgagagccat tggtgtctca aattttcca ttgagtattt ggaacgtctc attaaggaat 900
 gcagagttaa gccaacggtg aaccaagtgg aaactcaccc tcacttacca caaatggAAC 960
 35 taagaaagt ctgccttatg cacgacattc tggtaacagc atactcacca tttagttccc 1020
 atggcgcacc aaacttggaa atcccactag tggaaaagct tgccgaaaag tacaatgtca 1080
 cagggaaatga cttgtaatt tcttaccata ttgacaagg cactatcgta attccgagat 1140
 ccttgaatcc agttaggatt tcctcgagta ttgaattcgc atctttgaca aaggatgaat 1200
 tacaagagtt gaacgacttc ggtggaaaat acccagttagt attcatcgat gagccatttg 1260
 40 cagccatcct tccagagttt actggtaacg gaccaactt ggacaattta aagtattaag 1320
 acaacgactt tattttact ttatttagtt cgcttcttaa tcttgtcaaa aacaagat 1380
 tgtgtaatcg cctcaagtaa acaatatgtt tttcatactgt gatttgaatg ttttaagtt 1440
 ctgaaataca tacgcgcgcg tatgcatacg tattagttaa attactcgaa tgtccttat 1500
 ataatatta 1509

45

<210> 22
 <211> 23
 <212> DNA
 <213> Artificial Sequence

50 <220>
 <223> Description of Artificial Sequence: Forward PCR
 Primer for L-galactose dehydrogenase from A.
 thaliana

55 <400> 22
 atgacgaaaa tagagcttcg agc

5 <210> 23
<211> 24
<212> DNA
<213> Artificial Sequence

10 <220>
<223> Description of Artificial Sequence: Reverse PCR
Primer for L-galactose dehydrogenase from A.
thaliana

15 <400> 23
ttagttctga tggattccac ttgg 24

20 <210> 24
<211> 24
<212> DNA
<213> Artificial Sequence

25 <220>
<223> Description of Artificial Sequence: Saccharomyces
cerevisiae

30 <400> 24
atgtcttctt cagtagccctc aacc 24

35 <210> 25
<211> 29
<212> DNA
<213> Artificial Sequence

40 <220>
<223> Description of Artificial Sequence: Reverse PCR
Primer for D-arabinose dehydrogenase from S.
cerevisiae

45 <400> 25
ttaataacttt aaattgtcca agtttggtc 29

50 <210> 26
<211> 4
<212> PRT
<213> Artificial Sequence

55 <220>
<223> Description of Artificial Sequence: motif II of
aldo-keto reductase superfamily

<400> 26
Gly Xaa Xaa Asn

—