实变函数简明教程 解答

https://github.com/InnocentFIVE/Concise-Real-Variables-DDG

小飞舞子 INNOCENT 2023 | 11 | 11

摘要

正如标题所述,是邓东皋,常心怡所编《实变函数简明教程》的一些解答.

限于时间只故,本解答不求大而全,大多数繁琐无用的验证型题目将会跳过. 带★号的是笔者认为自己想复杂了的题目,但临时没有更好的解法;带!号的是笔者认为可能有错误的题目,亦有可能是笔者用了比较老的版本,总之多留心一下无妨.

解答部署情况见目录. (带[,]的点击均可跳转,当然,青色的文字也可以用来 跳转)

以下是笔者写的一篇朴素的实分析科普文.

广告

https://github.com/InnocentFIVE/I-Measure

这篇文章的本意是想要把一些测度的构造说清楚,诚然,测度的构造有许多种路径,本文只是选取笔者最熟悉的一种路径,同时对构造中所遇障碍以及对测度的积分进行一些阐述:第一到第六节循序渐进地阐述了标准的实分析内容:测度的构造,延拓和 Lebesgue 测度;第七节按照惯例阐述对测度的积分,但自然而然地,对积分的介绍不可避免地变得相当冗长,几乎用了全文的一半内容才堪堪完成任务.本文另一个特殊的点是注释繁多:主要用于介绍测度相关的其余内容和一些对积分,求导的处理,终究是实分析的主干内容之一,但因各种原因含量远超预算,此主要由于笔者写作风格随性所致.虽言"写科普要做减法",但笔者无法合理地处理注释的删减,因此在此版本中保留了所有注释,并将其置于文末以便提升正文阅读体验.虽然,但笔者仍然认为注释是本文中相当有趣的一部分,笔者在此记录了不少自身的理解以及某些板块之间的联系(以及可爱猫猫的图片),某种意义上也算是(超大量的)饭后甜品,食之无妨.

广 告(续)

(a) 笃行数研组的广告, 公众号二维码可见 (b)

(b) 笃学编辑部二维码

(c) 八云的魔法书交流群

图 1: (b) 是笃学编辑部公众号的二维码. (c) 是东方 Project × 数学的同人社团「八云的魔法书」的粉丝群, 力求为东方众 × 数学爱好者 / 学生党提供一个自由良好的东方及数学交流环境. >>

目 录

饱含魔力的土地下.....

```
第一章 集合与点集
                                  \begin{bmatrix} 1^6 \end{bmatrix} \begin{bmatrix} 1^{13} \end{bmatrix} \begin{bmatrix} 1^{14} \end{bmatrix} \begin{bmatrix} 1^{16} \end{bmatrix} \begin{bmatrix} 1^{20} \end{bmatrix} \begin{bmatrix} 1^{41} \end{bmatrix} \begin{bmatrix} 1^{48} \end{bmatrix} \begin{bmatrix} 1^{54} \end{bmatrix}^{*} \begin{bmatrix} 1^{55} \end{bmatrix}
第二章 LEBESGUE 测度
                                   \begin{bmatrix} 2^1 \end{bmatrix} \begin{bmatrix} 2^3 \end{bmatrix} \begin{bmatrix} 2^4 \end{bmatrix} \begin{bmatrix} 2^6 \end{bmatrix}^! \begin{bmatrix} 2^7 \end{bmatrix} \begin{bmatrix} 2^8 \end{bmatrix} \begin{bmatrix} 2^9 \end{bmatrix} \begin{bmatrix} 2^{11} \end{bmatrix}^! \begin{bmatrix} 2^{12} \end{bmatrix} \begin{bmatrix} 2^{13} \end{bmatrix} \begin{bmatrix} 2^{14} \end{bmatrix}
                                   \begin{bmatrix} 2^{16} \end{bmatrix} \begin{bmatrix} 2^{18} \end{bmatrix} \begin{bmatrix} 2^{19} \end{bmatrix}^{*} \begin{bmatrix} 2^{21} \end{bmatrix} \begin{bmatrix} 2^{24} \end{bmatrix} \begin{bmatrix} 2^{26} \end{bmatrix} \begin{bmatrix} 2^{27} \end{bmatrix} \begin{bmatrix} 2^{30} \end{bmatrix}
第三章 可测函数
                                                                                                                                                                                                                                                                                                                                       11
                                 \begin{bmatrix} 3^4 \end{bmatrix} \begin{bmatrix} 3^5 \end{bmatrix} \begin{bmatrix} 3^6 \end{bmatrix} \begin{bmatrix} 3^7 \end{bmatrix} \begin{bmatrix} 3^8 \end{bmatrix} \begin{bmatrix} 3^9 \end{bmatrix} \begin{bmatrix} 3^{10} \end{bmatrix} \begin{bmatrix} 3^{12} \end{bmatrix} \begin{bmatrix} 3^{13} \end{bmatrix} \begin{bmatrix} 3^{15} \end{bmatrix}^! \begin{bmatrix} 3^{16} \end{bmatrix}
                                   \begin{bmatrix} 3^{17} \end{bmatrix} \quad \begin{bmatrix} 3^{18} \end{bmatrix} \quad \begin{bmatrix} 3^{19} \end{bmatrix} \quad \begin{bmatrix} 3^{20} \end{bmatrix} \quad \begin{bmatrix} 3^{21} \end{bmatrix} \quad \begin{bmatrix} 3^{22} \end{bmatrix} \quad \begin{bmatrix} 3^{23} \end{bmatrix} \quad \begin{bmatrix} 3^{24} \end{bmatrix} \quad \begin{bmatrix} 3^{25} \end{bmatrix} \quad \begin{bmatrix} 3^{26} \end{bmatrix} \quad \begin{bmatrix} 3^{27} \end{bmatrix}
                                   [3^{28}] [3^{29}] [3^{30}] [3^{31}]! [3^{32}]
第四章 LEBESGUE 积分
                                                                                                                                                                                                                                                                                                                                       18
                                   \begin{bmatrix} 4^2 \end{bmatrix} \begin{bmatrix} 4^3 \end{bmatrix} \begin{bmatrix} 4^4 \end{bmatrix} \begin{bmatrix} 4^5 \end{bmatrix} \begin{bmatrix} 4^6 \end{bmatrix} \begin{bmatrix} 4^7 \end{bmatrix} \begin{bmatrix} 4^8 \end{bmatrix} \begin{bmatrix} 4^{12} \end{bmatrix} \begin{bmatrix} 4^{13} \end{bmatrix} \begin{bmatrix} 4^{17} \end{bmatrix} \begin{bmatrix} 4^{18} \end{bmatrix}
                                   \begin{bmatrix} 4^{20} & \begin{bmatrix} 4^{21} & \begin{bmatrix} 4^{22} & \begin{bmatrix} 4^{23} & \begin{bmatrix} 4^{24} & \begin{bmatrix} 4^{25} & \begin{bmatrix} 4^{26} & \begin{bmatrix} 4^{27} & \begin{bmatrix} 4^{28} & \begin{bmatrix} 4^{30} & \begin{bmatrix} 4^{31} & \end{bmatrix} \end{bmatrix} \end{bmatrix}
                                   [4^{32}]! [4^{33}] [4^{34}]
第五章 微分与不定积分
                                                                                                                                                                                                                                                                                                                                       29
                                 \begin{bmatrix} 5^1 \end{bmatrix} \begin{bmatrix} 5^2 \end{bmatrix} \begin{bmatrix} 5^3 \end{bmatrix} \begin{bmatrix} 5^4 \end{bmatrix} \begin{bmatrix} 5^5 \end{bmatrix} \begin{bmatrix} 5^6 \end{bmatrix} \begin{bmatrix} 5^7 \end{bmatrix} \begin{bmatrix} 5^8 \end{bmatrix} \begin{bmatrix} 5^9 \end{bmatrix} \begin{bmatrix} 5^{10} \end{bmatrix} \begin{bmatrix} 5^{11} \end{bmatrix}^!
                                 \begin{bmatrix} 5^{12} \end{bmatrix}^! \begin{bmatrix} 5^{13} \end{bmatrix} \begin{bmatrix} 5^{14} \end{bmatrix} \begin{bmatrix} 5^{15} \end{bmatrix} \begin{bmatrix} 5^{16} \end{bmatrix} \begin{bmatrix} 5^{17} \end{bmatrix} \begin{bmatrix} 5^{18} \end{bmatrix} \begin{bmatrix} 5^{19} \end{bmatrix} \begin{bmatrix} 5^{22} \end{bmatrix}
第六章 LEBESGUE 空间
                                                                                                                                                                                                                                                                                                                                        39
                                   \begin{bmatrix} 6^1 \end{bmatrix} \begin{bmatrix} 6^2 \end{bmatrix} \begin{bmatrix} 6^3 \end{bmatrix} \begin{bmatrix} 6^4 \end{bmatrix} \begin{bmatrix} 6^5 \end{bmatrix}^! \begin{bmatrix} 6^6 \end{bmatrix} \begin{bmatrix} 6^7 \end{bmatrix} \begin{bmatrix} 6^8 \end{bmatrix} \begin{bmatrix} 6^9 \end{bmatrix} \begin{bmatrix} 6^{10} \end{bmatrix} \begin{bmatrix} 6^{11} \end{bmatrix}
                                   [6^{12}] [6^{14}] [6^{15}] [6^{16}] [6^{17}]
```

总有那么一秒钟, 你回到这里的时候会认为这本小册子里充满了陷阱, 但事实上这里是最安全的地方

1. 记 $\mathcal{P}(X)$ 为 X 的幂集, A^{c} 为 A 的补集, 函数的原像以 $^{-1}$ 记之:

$$f^{-1}(A) = \{ x \mid f(x) \in A \}.$$

- 2. 必要时用 或·来代替宗量: $f(\cdot) = [x \mapsto f(x)] = f(-)$. 指标类型过多时可能会用 来代替指标: $A_n \mapsto A_{\bullet}$. 此类情形下, \sum_{i} , \prod_{j} , \bigcap_{i} , \bigcup_{j} 等巨算符默认对 指标处理. diam E 是集合 E 的直径: diam E = sup{ $d(x,y) \mid x,y \in E$ }. 令 {f > a} $_E$ 代表 { $x \in E \mid f(x) > a$ }, 无歧义时 E 省略.
- 3. 特征函数的定义是:

$$\mathbb{1}_{E}(x) = \begin{cases} 1, & x \in E; \\ 0, & x \notin E. \end{cases}$$

 $\mathcal{M}(A)$ 代表用 A 生成的 σ -代数, 其中 $A \in \mathcal{P}(X)$, 则

$$\mathcal{M}(A) = \bigcap_{\substack{A \subset M \\ M : \sigma \text{-algebra}}} M.$$

4. 用 $\mathfrak{L}^0(E)$ 记 E 上的可测函数. im f 代表 f 的值域. card 是集合的计数函数. $\|\cdot\|_1$ 表函数的 1-范数: $\|f\|_1 = \int |f|, C_c^{\infty}$ 代表的是光滑紧支函数空间. f*g 是 卷积:

$$f * g(x) = \int f(x - y)g(y) dy = \int f(x)g(x - y) dy = g * f(x).$$

id 是单位函数: id(x) = x.

5. 用 q 表 p 的共轭指标 P/p-1. 用 $\operatorname{ind}(p_{\bullet})$ 表示 $1/\sum_{1/p_{\bullet}}$. 正交族的 Hilbert 直和 $\bigoplus \phi_{\bullet} = \{ \sum a_{\bullet}\phi_{\bullet} \mid \sum |a_{\bullet}|^2 < \infty \}$. 其余情形与书中基本一致.

集合与点集 第一章

基于距离这个概念的基础, 例如收敛点列的 概念及其定义的极限, 我们可以选择这些思想作为点 集理论中的基础,从而消除距离的概念......第三点、 我们可以将集合中的每个点与空间中的某些称为"邻 域"部分相关联,这可以在再次消除距离概念的同时将 其作为理论的构建基石. 此乃考虑了元素和子集之间 联系的集合绘景.

> Grundzüge der Mengenlehre FELIX HAUSDORFF

练习 $\mathbf{1}^6$ 令 $f_n \to f$, 则 $\lim_n \{ f_n > c - 1/k \}$ 存在且 $\{ f \ge c \} = \bigcap_{k \ge 1} \lim_n \{ f_n > c - 1/k \}$ c - 1/k }.

解答 $\mathbf{1}^6$ $\lim_n \{ f_n > c - 1/k \}$ 存在性由以下讨论显而易见:

$$\begin{split} \lim\inf_n \Big\{ \, f_n > c - \frac{1}{k} \, \Big\} &= \bigcup_{m \geqslant 1} \bigcap_{n \geqslant m} \Big\{ \, f_n > c - \frac{1}{k} \, \Big\} \\ &= \bigcup_{m \geqslant 1} \Big\{ \inf_{n \geqslant m} f_n > c - \frac{1}{k} \, \Big\} \\ &= \Big\{ \sup_{m \geqslant 1} \inf_{n \geqslant m} f_n > c - \frac{1}{k} \, \Big\} \\ &= \Big\{ \liminf_n f_n > c - \frac{1}{k} \, \Big\} = \Big\{ \, f > c - \frac{1}{k} \, \Big\}. \end{split}$$

 $\limsup_{n} \{ f_n > c - 1/k \}$ 同理. 故 $\bigcap_{k > 1} \lim_{n} \{ f_n > c - 1/k \} = \bigcap_{k > 1} \{ f > c - 1/k \} =$ $\{ f > c \}.$

练习 1^{13} 令 $f, g: E \to \mathbb{R}$, 证明 $\{f > g\} = \bigcup_{n>0} (\{f > r_n\} \cap \{g < r_n\})$. 其中 $\{r_n\}_{n\geq 0}$ 是 Q 的排列.

解答 $\mathbf{1}^{13}$ $f(x) > g(x) \iff (g(x), f(x)) \neq \emptyset \iff \exists r \in \mathbb{Q} \in (g(x), f(x)).$ 故 $\{f > g\} \iff \{\exists r \in \mathbb{Q}, \ g < r < f\} = \bigcup_{n > 0} (\{f > r_n\} \cap \{g < r_n\}).$

练习 $\mathbf{1}^{14}$ 令 $f_n \to f$, $|f| < \infty$, 则 $\lim_{n \to \infty} \{|f_n - f| > \varepsilon\} = \emptyset$.

解答 $\mathbf{1}^{14}$ 由 $[\mathbf{1}^6]$, $\lim_{n\to\infty} \{|f_n - f| > \varepsilon\}$ 存在且为空.

练习116 是否可以把[0,1]连续映射成开区间或者两个不交闭区间? 解答 116 不能. 由于 [0,1] 紧致连通, 故其连续像亦然, 故也是有界闭区间.

练习 $\mathbf{1}^{20}$ 令 $E \subset \mathbb{R}^2$ 目 E 中任意两点 (Euclidean) 距离为有理数, 求证 E 可数. 解答 1^{20} 不妨设 E 含两个不相同的点 x, y, y

$$E \subset \bigcup_{(r_1,r_2) \in \mathbb{Q}^2} C_{r_1}(x) \cap C_{r_2}(x), \quad C_r(a) = \{b \in \mathbb{R}^2 \mid |b-a| = r\}.$$

其中 $C_{r_1}(x) \cap C_{r_2}(x)$ 至多相交于两点,故可数.

注. \mathbb{R}^n 情形可对维数归纳: $C_{r,x}(x) \cap C_{r,x}(x)$ 属于某个超平面, 由归纳原理可数, 因此 E 可数.

练习 1^{41} 假定连通的定义是其内的既开又闭集为空或自身,证明 \mathbb{R}^n 连通,且 $E \subset \mathbb{R}$ $\mathscr{P}(\mathbb{R}^n) \setminus \{\mathbb{R}^n, \varnothing\}, \, \bigcup \partial E \neq \varnothing.$

解答 1^{41} 若不然, 令 A 非空既开又闭且 A^{c} 非空既开又闭, 则令直线 $l: \mathbb{R} \to \mathbb{R}^{n}$ 过 A 中一点和 A^c 中一点. 不妨令其为 x 轴, 则 $A \cap \text{im } l$ 和 $A^c \cap \text{im } l$ 是 \mathbb{R} 上不交开 集、故由 $(A \cap \operatorname{im} l) \cup (A^c \cap \operatorname{im} l) = \mathbb{R}$ 得到 \mathbb{R} 不连通、矛盾. $\partial E = (E^c \cup (E^c)^c)^c$ 、若为 空,则 E° 和 (E°)°均既开又闭,故只能是 Ø 和 \mathbb{R}^{n} .

练习 1^{48} 令 $f: \mathbb{R} \to \mathbb{R}$, 定义振幅函数:

$$w(x; f) := \inf_{\delta > 0} \Big(\sup \{ |f(x_1) - f(x_2)| \mid x_1, x_2 \in (x - \delta, x + \delta) \} \Big).$$

证明 $\{w(\neg; f) \ge \varepsilon\}$ 闭,且 f 的连续点集为 $w(\neg, f)^{-1}(\{0\})$.

解答 1^{48} 先证明 $E = \{w(-; f) \ge \varepsilon\}$ 闭, 令 $x_0 \in \overline{E} \setminus E, x_n \to x_0$. 则 $w(x_0; f) < \varepsilon$, 其 某邻域 N 满足 $x_1, x_2 \in N \implies |f(x_1) - f(x_2)| < \varepsilon$. 令 n 足够大, 满足 $x_n \in N$ 则 矛盾,后一个论述显然,

长小于 1 的内部非空闭矩形组成的集合, 证明 $\mathbb D$ 不能表为 $\mathcal E_{\rm o} \cup \mathcal E_{\rm c}$ 中子族的不交 并.

解答 154 假设存在覆盖 $\{T_{\alpha}\}_{\alpha\in A}$. 易知 A 有限时不能覆盖 $\mathbb D$ 和 $\overline{\mathbb D}_{\sqrt{2}/2}=\{x\in A\}$ $\mathbb{R}^2 \mid \mid x \mid \leq \sqrt{2}/2$ }: 若能, 则不妨设 $0 \in T_0$, $x \in \mathbb{D}$ 是 T_0 在 $\overline{\mathbb{D}}_{\sqrt{2}/2}$ 中的某个角, 令 $r < \min_{T_{\alpha} \text{ closed, } \alpha \neq 0} d(x, T_{\alpha})$. 则 $B_r(x) \setminus T_0$ 是完全由开矩形覆盖. 容易知道其不能 用一个开矩形覆盖, 因此假定 T_1, \ldots, T_N 交 $B_r(x) \setminus T_0$ 非空, 那么 $\overline{T_1} \cap \bigcup_{i=2}^N T_i \cap T_i$ $(B_r(x) \setminus T_0) = \emptyset$. 即 $\partial T_1 \cap (B_r(x) \setminus T_0) = \emptyset$ 矛盾!

若 $\bigcup_{\alpha \in A} T_\alpha$ 不交覆盖 \mathbb{D} , 则 A 是无限集, { $B_\alpha \mid T_\alpha \cap \overline{\mathbb{D}}_{\sqrt{2}/2} \neq \emptyset$ } 是一个 $\overline{\mathbb{D}}_{\sqrt{2}/2}$ 的覆盖, 故也是无限多个. 将 $\overline{\mathbb{D}}_{\sqrt{2}/2}$ 分解, 每次分解选取覆盖族无限的一方, 则存在 紧集 $K_{\bullet} \downarrow \text{且 diam } K_{\bullet} \to 0$. 故 $\bigcap K_{\bullet} = \{x_0\} \subset \overline{\mathbb{D}}_{\sqrt{2}/2}$. 由于含 x_0 的矩形内部非空, 故n极大时 K_n 完全含于某矩形内,与覆盖数无限矛盾,若覆盖数有限则不能覆盖 $\overline{\mathbb{D}}_{\sqrt{2}/2}$. 故不能覆盖 D.

练习 155 若 f 在闭集 $\{F_n\}_{n\geq 0}$ 的限制都连续, 是否有 $f|_{\sqcup F_n}$ 连续?

图 2: 魔鬼的阶梯. 出自 BARRY SIMON, Real Analysis, A Comprehensive Course in Analysis, Part 1, 2015. 该描述用 来形容 CANTOR 函数. >>

第二章 LEBESGUE 测度

我们可以令它的点包含在有限或者可数多的区间内,这些区间的点集的测度是.....它们长度之和,这个和是E的测度的一个上界.所有这种和的集合有一个下极限 $m_e(E)$,这就是E的外测度.

Leçons sur l'Intégration et la Recherche des Fonctions Primitives HENRI LEBESGUE

练习 2^1 令 $E \subset \mathbb{R}$, $m^*(E) = 0$, 证明 $m^*(\{x^2 \mid x \in E\}) = 0$.

解答 $\mathbf{2}^1$ 此处证明个稍强的结论: 令 $f: \mathbb{R} \to \mathbb{R}$ 连续可微, 则 $m^*(E) = 0 \implies f(E) = 0$.

若 E 有界 [-N,N] 则情形显然: $m^*(E) \implies E \in \bigcup_{n \geq 0} (a_n,b_n)$, 其中 $\sum_{n \geq 0} (b_n - a_n) < \varepsilon$. 故

$$\begin{split} m^*(f(E)) &\leqslant m^* \Big(\bigcup_{n \geqslant 0} f(a_n, b_n) \Big) \leqslant \sum_{n \geqslant 0} m^*(f(a_n, b_n)) \\ &\leqslant \sum_{n \geqslant 0} (b_n - a_n) \sup_{[-N, N]} |f'| \\ &\leqslant \varepsilon \sup_{[-N, N]} |f'|. \end{split}$$

E 无界时,有 $m^*(f(E)) \leq \sum_{n>0} m^*(f(E \cap [-n, n])) = 0.$

练习 2^3 设 $E \subset [0,1]$ 可测, 若 m(E) = 1, 证明 $\overline{E} = [0,1]$; 若 m(E) = 0, 证明 $E^\circ = \varnothing$.

解答 2^3 $[0,1] \setminus \overline{E}$ 是 [0,1] 中开集, 若非空测度恒正, 与 m(E) = 1 矛盾. $m(E) = 0 \implies E^{\circ} = \emptyset$ 证明同理.

练习 2^4 若 $m^*(A) = 0$, 则 $\forall B \in \mathbb{R}$, $m^*(A \cup B) = m^*(B)$.

解答 $\mathbf{2}^4$ $m^*(B) \leq m^*(A \cup B) \leq m^*(A) + m^*(B) = m^*(B)$.

! 练习 2⁶ 若 $E_1 \subset E_2 \subset \mathbb{R}^n$, 且 E_1 可测, $m(E_1) = m^*(E_2)$, 证明 E_2 可测.

 $\mathbf{m} \stackrel{\mathbf{E}}{\mathbf{E}}_{1}$ 此题大概只在 \mathbf{E}_{1} 测度有限时成立:

$$m^*(E_2 \setminus E_1) + m^*(E_2 \cap E_1) = m^*(E_2) \implies m^*(E_2 \setminus E_1) = 0.$$

故 $E_2 \setminus E_1$ 和 E_2 均可测.

练 $\mathbf{7}$ 2⁷ 有界集 E 可测的充要条件是对任意开集 G 恒有

$$m(G) = m^*(G \cap E) + m^*(G \setminus E).$$

解答 2^7 用此诱导 CARATHÉODORY 条件: $\forall A$ 满足 $m^*(A) < \infty$, 令 G 是满足 $m(G) < m^*(A) + \varepsilon$ 的开集, 则

$$m^*(A) + \varepsilon > m(G) = m^*(G \cap E) + m^*(G \setminus E).$$

由于 ε 任意得到 CARATHÉODORY 条件. 反之显然.

练习 2^8 令 A, B 外测度有限, 证明

$$|m^*(A) - m^*(B)| \leq m^*(A \setminus B) + m^*(B \setminus A).$$

解答 2^8 $m^*(A) - m^*(B) \le m^*(A \setminus B) + m^*(B \setminus A)$ 由 $m^*(A) \le m^*(A \setminus B) + m^*(B \cap B)$ A) 得到, 其余情形同理.

练习 2⁹ 令 $A, B \in \mathbb{R}^n$, 且前者可测, $m^*(B) < \infty$. 证明

$$m^*(A \cap B) + m^*(A \cup B) = m^*(A) + m^*(B).$$

解答 29 由 $m^*(A \cup B) = m^*(A) + m^*(B \setminus A)$ 和 $m^*(B) - m^*(A \cap B) = m^*(B \setminus A)$ 得到.

! 练习 2^{11} 令 $A, B \in \mathbb{R}^n$ 可测, 证明 $m(A \cup B) = m(A) + m(B) \iff m(A \cap B) = 0$. **解答 2¹¹** 此题大概只在 A, B 测度有限时成立. 由 $[2^9]$ 得到 $m(A) + m(B) = m(A \cap A)$ $B) + m(A \cup B)$. 测度均有限即得.

练习 2^{12} 令 $f: \mathbb{R} \to \mathbb{R}$ 连续,则 $E = \{(x, y) \in \mathbb{R}^2 \mid y = f(x)\}$ 是 Lebesgue 零测 的.

解答 2¹² 此题对 (局部) RIEMANN 可积函数或者 LEBESGUE 可测函数也是成立的, 此处证明局部 RIEMANN 可积函数的版本. 只需证明 $m^*(E \cap ([-N, N] \times \mathbb{R})) = 0$ 即 可. f 在 [-N, N] 上 RIEMANN 可积, 故存在分划 P 满足

$$\sum_{i=0}^{n} (M_i - m_i)(x_{i+1} - x_i) < \varepsilon, \quad M_i = \sup_{(x_i, x_{i+1}]} f, \quad m_i = \inf_{(x_i, x_{i+1}]} f.$$

故 $E \cap ([-N,N] \times \mathbb{R}) \subset \bigcup_{i=0}^n [x_i,x_{i+1}] \times [m_i,M_i]$,而后者测度小于 ε .

注. 一般 LEBESGUE 可测函数情形要用到 FUBINI 定理: $m(E) = \int_{\mathbb{R}} \int_{\mathbb{R}} \mathbb{1}_E \, \mathrm{d}y \, \mathrm{d}x =$ $\int_{\mathbb{R}} 0 \, \mathrm{d}x = 0$. 判断其可测性需另外处理.

练习 2^{13} 令 $E \subset \mathbb{R}^n$, $\alpha \in [0, m(E)]$, 则存在 $F \subset E$, $m(F) = \alpha$.

解答 2^{13} 这是测度连续性和 Lebesgue 测度正则性的体现. 考虑 $\overline{\mathbb{D}}_r = \{x \in \mathbb{R}^n \mid$ $|x| \leq r$ }. 则令 $f(r) = m(\overline{\mathbb{D}}_r \cap E)$. 由测度下半连续有 f 单增且 $\lim_{r \to \infty} f(r) = r$ m(E). 由 $m(\overline{\mathbb{D}}_{r+\Delta r}\setminus\overline{\mathbb{D}}_r)\xrightarrow{\Delta r\to 0}0$ 得到 f 连续, 故由介值定理得.

练习 2^{14} 令 $\{E_n\}_{n\geq 0}$ 是 \mathbb{R}^n 中的集列, 且 $\sum_{n\geq 0} m^*(E_n) < \infty$, 证明

$$m^*\left(\limsup_n E_n\right) = m^*\left(\liminf_n E_n\right) = 0.$$

解答 2^{14} 只需证明 $m^*(\limsup_n E_n) = 0$. 易见

$$m^* \left(\bigcap_{k \geqslant 0} \bigcup_{n \geqslant k} E_n \right) \leqslant \inf_{k \geqslant 0} m^* \left(\bigcup_{n \geqslant k} E_n \right) \leqslant \inf_{k \geqslant 0} \sum_{n \geqslant k} m^* (E_n).$$

由 CAUTHY 收敛定理即得.

对 \mathbb{R}^n 中任意点集 A, B, 若 $d(A, B) = \inf\{|x, y| \mid x \in A, y \in B\} > 0$, 证明 练习 216

$$m^*(A \cup B) = m^*(A) + m^*(B).$$

解答 216 满足这条件的玩意被称为度量外测度, 若外测度是度量的, 则必然是 BOREL 的. LEBESGUE 外测度的情形由可选取开集分离 A 和 B 得到: 令 $A \subset G$ $B \subset H$. 其中 G, H 是不交开集且 $|m^*(A \cup B) - m^*(G \cup H)| < \varepsilon$ (外测度无限情形显 然),则

$$m^*(A \cup B) \geqslant m^*(G) + m^*(H) - \varepsilon \geqslant m^*(A) + m^*(B) - \varepsilon.$$

由ε任意得到.

集合与点集 [Lebesgue 测度] 可测函数 Lebesgue 积分 微分与不定积分 Lebesgue 空间

练习 218 \mathbb{R}^n 中集合 E 可测 \iff $E \cap \partial E$ 可测.

解答 218 ∂E 闭、故 E 可测 $\Longrightarrow E \cap \partial E$ 可测. 反之、 $E = E^{\circ} \cup (E \cap \partial E)$ 故后者可测 得到E可测.

★ 练习 2^{19} 令 $f:[0,1] \to \mathbb{R}$ 可微,令 $E=\{f'=0\}$,证明 m(f(E))=0.

由于涉及到的集合可测性未知 (不过 E 是可测的), 因此需要用外测度, 由于 Lebesgue 外测度的外正则性 (也就是存在外测度相等的可测超集), 讨论中 以构造上升集列为佳,故考虑(导数的)极大估计

$$g_n(x) = \sup_{|y-x| \le 1/n} \left| \frac{f(y) - f(x)}{y - x} \right|.$$

则由 $g_n \downarrow_n |f'|$, 故 $E = \bigcap_{k \ge 1} \bigcup_{n \ge 1} \{g_n \le 1/k\}$. 故

$$f(E) \subset \bigcap_{k \ge 1} \bigcup_{n \ge 1} f\left(\left\{g_n \le \frac{1}{k}\right\}\right).$$

只需估计 $\bigcup_{n\geq 1} f(\{g_n \leq 1/k\})$ 即可. 为简便, 固定 k, 不妨设 $\{g_n \leq 1/k\} = E_n$, 则令

$$E_n \subset \bigcup_{m>0} (a_m, b_m), \quad b_m - a_m < \frac{1}{n}, \quad \bigcup_{m>0} (b_m - a_m) < m^*(E_n) + \varepsilon.$$

其中 b_m – a_m < 1/n 是为了令 $x_1, x_2 \in E_n \cap (a_m, b_m)$, 则依赖 E_n 定义有 $|f(x_1)$ – $|f(x_2)| < |x_1 - x_2|/k$. 故

$$\operatorname{diam}(f(E_n \cap (a_m, b_m))) \leq \frac{b_m - a_m}{k}.$$

故

$$m^*(f(E_n)) \leq \sum_{m \geq 0} \frac{b_m - a_m}{k} < \frac{m^*(E_n) + \varepsilon}{k}.$$

也即是 $m^*(f(E_n)) \leq m^*(E_n)/k$. 接下来是利用外正则性估计 $\bigcup_{n\geq 1} f(E_n)$ 的外测度. 令 G_n 可测且 $f(E_n) \subset G_n$, $f(E_n)$ 和 G_n 外测度相等 (只需令 A_m 是包含 $f(E_n)$ 的 开集且 $m(A_m) < m^*(f(E_n)) + 1/m$, 令 $G_n = \bigcap_{m \ge 1} A_m$ 即可), 令 $H_n = \bigcap_{k \ge n} G_k$, 由 $f(E_n)$ 随 n 上升, 故 $f(E_n) \leq H_n$, 且 $m^*(f(E_n)) = m^*(H_n)$. 故

$$\sup_{n} m^{*}(f(E_{n})) = \sup_{n} m(H_{n}) = m\left(\bigcup_{n\geqslant 1} H_{n}\right) \geqslant m^{*}\left(\bigcup_{n\geqslant 1} f(E_{n})\right).$$

反向的不等式显然, 故 $m^*(\bigcup_{n\geq 1} f(E_n)) = \sup_n m^*(f(E_n)) \leqslant \sup_n m^*(E_n)/k \leqslant 1/k$. 故 $m^*(f(E)) \leq m^*(\bigcup_{n>1} f(E_n)) \leq 1/k$ 得到 f(E) 零测.

注. 一个更直接的想法是考虑开球族 $\{B_r\}_{r\in P_r}$ 其中 B_r 满足

$$y \in B_x \setminus \{x\} \implies \left| \frac{f(y) - f(x)}{y - x} \right| \le \frac{1}{k}.$$

这样直观地, $E \subset \bigcup_{x \in E} B_x$, $f(E) \subset \bigcup_{x \in E} B_{f(x)}/k$. B_x/k 是球心不变, 半径变为原来的 1/k 得到的. 但是此球族不一定可数, 测度也不好估计, 因此需要用到一些覆盖定理.

引理 (VITALI). 令 牙 是一组 \mathbb{R}^n 中的闭球, 且满足 $a=\sup\{\dim B\mid B\in \mathcal{F}\}$ 有限, 则存在可数不交球族 $\{B_n\}_{n\geq 0}$ 满足

$$\bigcup_{B\in\mathcal{F}}B\subset\bigcup_{n\geqslant 0}5B_n.$$

证明. 各种各样覆盖定理的证明都可以尝试从先选大球再选小球,首先将球半径分层:

$$\mathcal{F}_n = \left\{ B \in \mathcal{F} \mid \operatorname{diam} B \in \left(\frac{a}{2^n}, \frac{a}{2^{n-1}} \right] \right\}, \quad n \geqslant 1.$$

令 $g_1 \in \mathcal{F}_1$ 是其某极大不交组; g_n 是和 $\bigcup_{j=1}^{n-1} g_j$ 中元素不交的某极大不交组 (可以对所有有理数, 选取含其的不交球然后并起来得到), 令 $g \coloneqq \bigcup_{n \ge 1} g_n$, 9 可数, 记其为 $\{B_n\}_{n \ge 0}$. 给定 $B \in \mathcal{F}$, 则不妨令 $B \in \mathcal{F}_k$, 故存在 $B_n \in \bigcup_{j=1}^k g_j$ 满足 $B_n \cap B \neq \emptyset$, 由于 diam $B_n \ge a/2^k$, diam $B \le a/2^{k-1}$, 故可以得到 $B \in \mathcal{S}_n$.

现在考虑新的 B_x 满足

$$y \in 5B_x \setminus \{x\} \implies \left| \frac{f(y) - f(x)}{y - x} \right| \le \frac{1}{k}.$$

其由一个可数族 $\{B_n\}_{n\geq 0}$ 满足 $E\subset \bigcup_{x\in E}B_x\subset \bigcup_{n\geq 0}5B_n$. 故

$$m^*(f(E)) \leqslant \sum_{n \geq 0} m^*(f(5B_n)) \leqslant \sum_{n \geq 0} \frac{m(5B_n)}{k} \leqslant \frac{10}{k}.$$

最后一个等式是由于 $\sum_{n\geq 0} m(5B_n) \subset \sum_{n\geq 0} 5m(B_n) \leq 10$ (由于 B_n 的球心在 [0,1] 中).

练习 $\mathbf{2}^{21}$ 若 $E \subset \mathbb{R}^n$ 有界且 $m^*(E) = \sup\{m(F) \mid F \subset E, F \text{ closed}\}$, 证明 E 可测.

解答 2^{21} 这是 Lebesgue 测度的内正则性, F 闭可以换成 F 紧致. 令 G_n , F_n 满足 $F_n \subset E \subset G_n$, 且

$$m(G_n) - \frac{1}{n} \le m^*(E) \le m(F_n) + \frac{1}{n}.$$

故 $m(G_n \setminus F_n) \leq 2/n$. 即

$$\bigcup_{n\geqslant 1}F_n\in E\subset \bigcap_{n\geqslant 1}G_n.$$

且前后两者测度相等, E 仅与可测集差了一个零测集, 故可测.

练习 2²⁴ 令 $E \subset [0,1]$ 且正测,则存在 $x \in E$ 满足 $\forall \delta > 0, m(E \cap (x - \delta, x + \delta)) > 0$. 解答 2^{24} 若不然,则 $\forall x, \exists \delta_x > 0, m(E \cap (x - \delta_x, x + \delta_x)) = 0$. 由于 [0, 1] 紧致,选 取有限个覆盖 [0,1] 则有 $m(E) \leq \sum_{n=1}^{N} m(E \cap (x_n - \delta_{x_n}, x_n + \delta_{x_n})) = 0$ 矛盾.

练习 2^{26} 今 $E \subset \mathbb{R}$ 可测, $A \subset \mathbb{R}$ 零测, 证明 $E \times A$ 零测.

解答 2^{26} 令 $\{J_n\}_{n\geq 0}$ 覆盖 E, $\{I_m\}_{m\geq 0}$ 覆盖 A, 则 $\bigcup_{n m\geq 0} J_n \times I_m$ 覆盖 $E \times A$. 且

$$\sum_{n,m \geqslant 0} m(J_n \times I_m) = \sum_{n,m \geqslant 0} m(J_n) m(I_m) = \sum_{n \geqslant 0} m(J_n) \sum_{m \geqslant 0} m(I_m).$$

故当 E 有界时可令 $\sum_{m\geq 0} m(I_m) < \varepsilon$ 得到 $E \times A$ 零测. E 无界情形由有界情形可数 并得到.

注. 依赖乘积测度的定义、 $m(A \times B) = m(A)m(B)$ 、此与 2 维上的 LEBESGUE 测度 基本一致, 差异在于由可测矩形生成的 σ -代数 $\mathcal{M}(\{A \times B \mid A, B \in \mathcal{L}\})$ 并非是 2 维 Lebesgue 可测集的 σ -代数, 差了一个完备化.

用可数个有界测度上的讨论得到无穷情形上的讨论是一种标准技巧、依 赖的是 LEBESGUE 测度的 σ-有限性: 无穷测度集可以表示为可数个有限测度集 的并.

练习 2^{27} 给定 $E \subset \mathbb{R}^n$ 有界,则证明:

- 存在含 E 的最小闭矩形 I_E;
- 定义内测度 $m_*(E) = m(I_F) m^*(I_F \setminus E)$; 证明 I_F 可以换成任意含 E 矩形 I;
- E 可测 $\iff m_*(E) = m^*(E)$.

解答 2^{27} 第一款只需将所有含 E 矩形交起来得到; 第二款只需注意到 $I \setminus I_E$ 是可 测的,故

$$m^*((I \setminus I_E) \cap (I \setminus E)) + m^*((I \setminus I_E)^c \cap (I \setminus E)) = m^*(I \setminus E).$$

故 $m(I \setminus I_E) + m^*(I_E \setminus E) = m^*(E \setminus E)$,即为所求.

练习 2^{30} 设 E 有界 Lebesgue 可测,则 E Jordan 可测 $\iff m(\partial E) = 0$.

解答 2^{30} 令多边形 P, Q 满足 $P \subset E \subset Q$, 故 $\partial E \subset \overline{Q \setminus P}$. 后者是测度小于等于 $m(P \setminus Q) + m(\partial(P \setminus Q))$. 由于 $\partial(P \setminus Q)$ 零测, $m(P \setminus Q)$ 可以任意小得到 $m(\partial E) = 0$; 反之, 令 $\{I_n\}_{n\geq 0}$ 是覆盖 ∂E 的矩形且 $\sum_{n\geq 0} m(I_n) < \varepsilon$, 不妨设其都是开的, 由于 ∂E

紧致故存在有限子覆盖 $\{I_n\}_{n=0}^N$,则 $Q=\overline{\bigcup_{n=0}^N I_n}$ 和 $P=\overline{E\setminus\bigcup_{n=0}^N I_n}$ (可能是空)即为所求多边形.

图 3: Wolfram Research 公司的 Logo 和八云蓝 >>>

https://www.wolfram.com/

https://thwiki.cc/%E5%85%AB%E4%BA%91%E8%93%9D

第三章 可测函数

很遗憾.....RIEMANN 可积函数对序列极限 不封闭,但是如果我们要考虑包括连续函数的序列极 限封闭函数族,那么 BOREL 可测函数就自然而然地出 现了.

练习 3^4 令 $f \in \mathcal{L}^0(E)$, 则证明 $f^{-1}(\{a\})$ 可测, 且讨论逆否情形, 和再加上 im f 可 数的情形.

解答 3^4 $f^{-1}(\{a\}) = \bigcap_{m \ge 1} \{|f - a| < 1/m\}$ 可测; 反之不成立, 令 F 不可测, 故 $\operatorname{card} F = \operatorname{card} \mathbb{R}$, 随意给出一个双射即可. 若 im f 可数则 f 显然可测: { f > a } = $\bigcup_{b>a} f^{-1}(\{a\})$ 可测.

练习 \mathfrak{Z}^5 已知 $f: E \to \mathbb{R}$, 若 $|f|^2$ 可测, 则 f 是否可测?

解答 3^5 显然不是,除非 E 零测. 令 $F \subset E$ 不可测, $f = \mathbb{1}_F - \mathbb{1}_{E \setminus E}$ 即满足题意且不 可测. 若 $\{f > 0\}$ 可测, 则 $\{f \ge 0\}$ 可测. 且 $\{f > a\} = E \setminus (\{|f|^2 \le a\} \cup \{f \ge 0\})$ 可测 (a > 0), (a < 0) 同理, 故 f 可测. 正测集中不可测集的存在性可见 [3¹⁰].

练习 3^6 若 $f: E \to \mathbb{R}$, 且紧集上可测, 证明 $f \in \mathfrak{L}^0(E)$.

解答 3^6 易见 E 与其内的一个 F_{σ} 集相差一个零测集, 而 f 在 F_{σ} 可测 (由于闭集 可以认为是可数个紧集的并), 故 $f \in \mathfrak{L}^0(E)$.

练习 $\mathbf{3}^7$ 令 $f \in \mathfrak{L}^0(E)$ 且几乎处处有限. 证明 $\forall \delta > 0$, $\exists E_\delta \subset E$, $m(E \setminus E_\delta) < \delta$, $||f \mathbf{1}_{E_s}||_{\sup} \leq M.$

解答 3^7 令 $g(r) = m(\{|f| \le r\})$, 则 $\lim_{r \to \infty} g(r) = m(E) < \infty$. 由 g 单增可以得到 $r \ge M$ 时 $m(E) - q(r) < \delta$, 故以此确定 M 和 E_{δ} .

练习 3^8 令 $f: [a,b] \to \mathbb{R}$ 可微,证明 f' 可测.

解答 3⁸ 只需注意到 $f'(x) = \lim_{n \to \infty} n(f(x + 1/n) - f(x))$ 是可测函数的极限即 可(端点的左右导数不用讨论,因为端点零测).

练习 3^{10} 设 $f \in C(\mathbb{R}), g \in \mathfrak{L}^0([a,b])$,证明 $f \circ g \in \mathfrak{L}^0([a,b])$,若 $\operatorname{im} f \subset [a,b]$,找 到 $g \circ f$ 不一定可测的反例.

解答 310 第一问只需注意到开集的原像是开集即可, 第二问仅阐述一个构造思路 (重点是零测集打到正测集的构造(比如空间填充曲线),其余是通用的):

- 1. 考虑 $V = [0,1)/\mathbb{Q}$, 其代表元的集合是 VITALI 不可测集 (仍即为 V). 若 $E \subset V$ 可测,则 $(E+r)_{\text{mod}\mathbb{Z}}$ 可测且 $\bigcup_{r\in\mathbb{O}}(E+r)_{\text{mod}\mathbb{Z}}\subset[0,1)$,故m(E)=0.因此若 m(E) > 0(不妨令 $E \subset [0,1]$), 则 $E = \bigcup_{r \in \mathbb{N}} E \cap (\mathbb{V} + r)_{\text{mod } \mathbb{Z}}$, 若 $E \cap (\mathbb{V} + r)_{\text{mod } \mathbb{Z}}$ 均可测,则必然零测,故m(E) = 0,因此矛盾,故正测集中存在不可测集;
- 2. 考虑 CANTOR 函数 C(x), 则 h(x) = C(x) + x 是 $[0,1] \to [0,2]$ 的严格单调连续 函数, 故其逆 f 亦连续. 令 $A \subset [0,1]$ 零测且满足 h(A) 正测 (可令 A 为 CANTOR 集). 则 h(A) 含不可测集 V. 故 $f(V) \in A$ 零测, 故 Lebesgue 可测, 且非 Borel 可测 (若 BOREL 可测则 h(f(V)) BOREL 可测矛盾);
- 3. $\Leftrightarrow g = \mathbb{1}_{f(V)}$, 则 $(g \circ f)^{-1}(\{1\}) = V$ 不可测.

注. 这么弯弯绕主要是因为若 f 连续,则必然是 Borel 可测的,故 $g^{-1}(E)$ 必然 是 LEBESGUE 可测集而非 BOREL 可测集,此情形判断是不容易的,因此可以将 f 上升为连续同胚来诱导 BOREL 可测集之间的关系: 诱导一个可测集打到不可 测集,则前面的可测集必然是非 BOREL 可测的. 因此只需令 $q^{-1}(E)$ 是那个可测 集即可,剩下的由同胚对应就显然了.

练习 3^{12} 令 $f \in \mathcal{L}^0((0,1))$ 处处有限恒正, 探讨存在 y_0 满足 $m(\{f > y_0\}) \ge 1/2$, 且 $y > y_0$ 时 $m(\{f > y\}) < 1/2$ 的充要条件.

解答 3^{12} 令 $g(r) = m(\{f > r\})$,则由于是有限测度,由测度的连续性:

$$g(r) - g(r^{+}) = m(\emptyset) = 0;$$

 $g(r^{-}) - g(r) = m(g^{-1}(r)).$

令 $y_0 = \sup(g^{-1}([1/2,1]))$, 若 $g(y_0) < 1/2$ 则题设不满足, 若 $g(y_0) \ge 1/2$ 则由 g 右 连续同样不满足题设, 故须有 $g(y_0) = 1/2$ 才行. 也即 $\exists y_0$ 满足 $m(\{f > y_0\}) = 1/2$.

练习 3^{13} 令 $E \subset \mathbb{R}^n$ 测度有限, $\{f_n\}_{n\geq 0} \subset \mathfrak{L}^0(E)$, $g_m = \sup_{n\geq m} |f_n|$, 证明 $f_{\bullet} \xrightarrow{\text{a.e.}}$ $0 \iff g_{\bullet} \xrightarrow{\text{mea.}} 0.$

解答 3^{13} 若 $g_m \stackrel{\text{mea.}}{\longrightarrow} 0$,则 g_m 有几乎处处收敛子列,由于 g_m 随 m 单调,故等价 于 g_m 几乎处处收敛到 0, 故 f_n 亦然. 反之, 若 f 几乎处处收敛到 0, 当 n 极大时, $|f_n| < \varepsilon$, 故 m > n 时 $|g_m| < \varepsilon \implies g_m$ 几乎处处收敛, 由有限测度得到依测度 收敛.

! 练习 3^{15} 令 E 上的可测函数列 $\{f_{\bullet}\}, \{g_{\bullet}\}$ 依测度收敛到 f 和 g, 证明 $f_{\bullet}g_{\bullet} \xrightarrow{\text{mea.}}$ f q.

解答 315 此题大概只在 E 有限测度时成立.

由于 f_{\bullet} 依测度收敛到 f_{\bullet} 故存在几乎处处收敛子列 $f_{\bullet \bullet}$, g_{\bullet} 在此子列上亦依测 度收敛故也存在几乎处处收敛子列 $f_{\bullet\bullet\bullet}q_{\bullet\bullet\bullet}$ (由 f 和 q 几乎处处有限得到), 也既是 f_{aa} , 存在几乎处处收敛到 f_{a} 的子列, 由有限测度故是依测度收敛子列. 若整个序 列不依测度收敛,则存在子序列 (仍记为 $f_{\bullet}g_{\bullet}$) 和某个 δ 满足

$$m(\{|f_{\bullet}g_{\bullet} - fg| > \varepsilon\}) \ge \delta.$$

则由于新的 f_{\bullet} 和 g_{\bullet} 仍依测度收敛到 f 和 g_{\bullet} 故存在依测度收敛子列 $f_{\bullet \bullet}g_{\bullet \bullet} \xrightarrow{\text{mea.}}$ f_a ,与 $m(\{|f_a a_a - f_a| > \varepsilon\})$ 恒 $\geq \delta$ 矛盾.

注. 无穷测度情形的反例可以利用 $\mathbb{I}_{[n,n+1)}$ 来做文章, 比如 $f_n(x) = g_n(x) = x + 1$ $1_{[n,n+1)}/n$.

练习 3^{16} 令 $f_{\bullet} \xrightarrow{\text{mea.}} f$, 证明 $|f_{\bullet}| \xrightarrow{\text{mea.}} |f|$, 若 $f_{\bullet} \overset{\text{a.e.}}{\leqslant} g$, 则 $f \overset{\text{a.e.}}{\leqslant} a$.

解答 3^{16} 第一问由 $||f_{\bullet}| - |f|| \le |f_{\bullet} - f|$ 得到; 第二问由存在几乎处处收敛子列 得到.

练习 3^{17} 令非负 $\{f_{\bullet}\} \cup \{f\} \subset \mathcal{L}^{0}(E)$,且 $f_{\bullet}^{2} \xrightarrow{\text{mea.}} f^{2}$,证明 $f_{\bullet} \xrightarrow{\text{mea.}} f$.

解答 3^{17} 令 $E_1 = \{ f \ge 1 \}$, $E_0 = f^{-1}([0,1))$. 则在 $E_1 \perp$, $|f_{\bullet} - f| \le |f_{\bullet}^2 - f^2|$, 故在 E_1 上依测度收敛. 对 E_0 (令 ε < 1):

 $|f_{\bullet} - f| > \varepsilon \iff |f_{\bullet}^2 - f^2| > \varepsilon |f_{\bullet} + f| \implies |f_{\bullet}^2 - f^2| > 2\varepsilon f + \varepsilon^2 \implies |f_{\bullet}^2 - f^2| > 3\varepsilon.$

故 $\{|f_{\bullet} - f| > \varepsilon\} \subset \{|f_{\bullet}^2 - f^2| > \varepsilon\}$,故依测度收敛.

练习 3^{18} 令 $f_{\bullet} \xrightarrow{\text{mea.}} f \perp f_{\bullet} \leqslant f_{\bullet+1}$, 证明 $f_{\bullet} \xrightarrow{\text{a.e.}} f$.

解答 318 由存在几乎处处收敛列直接得到.

练习 3^{19} 令 $\{f_{\bullet}\} \subset \mathcal{L}^{0}([a,b])$,满足 $f_{\bullet} \xrightarrow{\text{mea.}} f_{\bullet}$ 令 $g \in C(\mathbb{R})$ 一致连续,证明 $g \circ$ $f_{\bullet} \xrightarrow{\text{mea.}} g \circ f.$

解答 3^{19} 由一致连续, $|f_{\bullet} - f| \le \delta_{\circ} \Longrightarrow |g \circ f_{\bullet} - g \circ f| \le \varepsilon$. 故 $\{|g \circ f_{\bullet} - g \circ f| > \varepsilon\} \subset \{|f_{\bullet} - f| > \varepsilon\}.$

取极限即得.

练习 3^{20} 令 $m(E) < \infty$, 几乎处处有限 $\{f_{\bullet}\} \cup \{f\} \subset \mathfrak{L}^{0}(E)$. 则

$$f_{\bullet} \xrightarrow{\text{mea.}} f \iff \forall \{f_{\bullet \bullet}\} \exists f_{\bullet \bullet \bullet} (f_{\bullet \bullet \bullet} \xrightarrow{\text{a.e.}} f).$$

解答 3²⁰ 一个方向由 RIESZ 定理直接得到. 另一个方向见 [3¹⁵] 的证明.

练习 3^{21} 令 $f: E \to \mathbb{R}$ 几乎处处有限, 证明 $\forall \varepsilon, \exists E_{\varepsilon}$ 满足 $m(E \setminus E_{\varepsilon}) < \varepsilon \perp f|_{E_{\varepsilon}}$ 连 续,则 *f* 可测.

解答 3^{21} 令 $g = f \mathbb{1}_{\lfloor \frac{1}{1-s} \rfloor}$. 则 g 是可测函数的极限且 $\{f \neq g\}$ 零测, 故 f 可测.

练习 3^{22} 令 E 测度有限, $f \in \mathcal{L}^0(E)$ 几乎处处有限, 则存在 E 上的连续函数列几 乎处处收敛与 f.

解答 3²² 见原书定理 3.14; 同样地或利用 LUSIN 定理和 TIETZE 延拓定理, 定理 3.14 就是 **R**ⁿ 上的 Tietze 延拓定理.

引理 (原书定理 3.14). 若 f 是可测集 $E \subset \mathbb{R}^n$ 上的可测函数,则对任意正数 ε , 存在 \mathbb{R}^n 上的连续函数 a, 使得

$$m(\{f \neq g\}) < \varepsilon$$
.

若 f(x) 还有界: $|f(x)| \leq M$, $(\forall x \in E)$. 则连续函数 g 还可以满足 $|g(x)| \leq M$, $(\forall x \in E)$ \mathbb{R}^n).

练习 3^{23} 令 $f \in \mathcal{L}^0([a,b])$ 几乎处处有限, 证明存在递减函数 g 满足

$$m(\{\,f>r\,\})=m(\{\,g>r\,\}).$$

解答 3^{23} 令 $R(r) = m(\{f > r\})$, 则 g 满足

$$R(r) \stackrel{\text{a.e.}}{=} \sup\{x - a \mid g(x) > r\}.$$

令 $q(x) = \sup\{r \mid x - a < R(r)\}$. 则易见单减上半连续. 由测度连续性知 $x \in (a,b)$ 时 $|g(x)| < \infty$. 且

$$\{g>r\}=[a,R(r)+a).$$

即得所求.

练习 3^{24} 令 f 可测,证明存在实数列 $\{a_{\bullet}\}$ 和可测集列 $\{E_{\bullet}\}$ 满足

$$f = \sum a_{\bullet} \mathbb{1}_{E_{\bullet}}.$$

解答 3²⁴ 令简单函数逼近 f:

$$\phi_0=0,\quad \phi_\bullet\to f,\quad \phi_\bullet=\sum_\circ a_{\bullet\circ}\mathbb{1}_{E_{\bullet\circ}},\quad \phi_{\bullet+1}-\phi_\bullet=\sum_\circ (a_{\bullet+1,\circ}-a_{\bullet\circ})\mathbb{1}_{E_{\bullet\circ}\cap E_{\bullet+1,\circ}}.$$

故 $f = \sum_{\bullet, \circ} (a_{\bullet+1, \circ} - a_{\bullet \circ}) \mathbb{1}_{E_{\bullet} \cap E_{\bullet, \bullet}}$. 收敛性易见.

练习 \mathfrak{z}^{25} 令 $f \in C([a,b])$, 令 $g(x) = \text{card } f^{-1}(\{x\})$, 证明 g 可测.

解答 3^{25} 不妨设 [a,b] = [0,1], 考虑 2 进分解: $[0,1/2^n),[1/2^n,2/2^n),\dots,[2^{n-1}/2^n,1]$. 记为 $I_{n(k)}, k \in 1, ..., 2^n$. 则

$$\{g \le r\} \subset \{x \mid x \text{ is contained in } r \ f(I_{n(k)})s\} = \left(\sum_{k} \mathbb{1}_{f(I_{n(k)})}\right)^{-1}([0,r]).$$

而 $\sum_{k} \mathbb{1}_{f(I_{r(k)})}$ 易见是可测且随 n 上升的, 故 $\lim_{m} \sum_{k} \mathbb{1}_{f(I_{r(k)})}$ 存在且可测. 若 x 满 足 card $f^{-1}(\{x\}) \leq r$, 那么当 n 很大时, $I_{n(k)}$ 能分隔 $f^{-1}(\{x\})$, 此时有 $\{g \leq r\}$ = $\left(\sum_{k} \mathbf{1}_{f(I_{n(k)})}\right)^{-1}([0,r]).$ 故

$$\{g \leq r\} = \bigcap_{n} \left(\sum_{k} \mathbb{1}_{f(I_{n(k)})}\right)^{-1} ([0, r]).$$

即 g 可测.

注. g 的积分值恰好是函数 f 在 [a,b] 上的全变差, 见 $[5^{18}]$ 的注.

练习 3^{26} 令 $x \in [0,1]$.

$$f(x) = \max \left\{ a_n \mid x = \sum_{n \ge 1} \frac{a_n}{10^n}, \lim a_{\bullet} \ne 9 \right\}.$$

证明 f 可测.

解答 3^{26} 令 $F_k = \{x \mid f(\lfloor 10^k x \rfloor/10^k) \le 8\}$,则 F_k 是前 k 位中不含 9 代表的 x, 归纳 讨论得到

$$F_k = [0,1) \setminus \bigcup_{j=1}^k \bigcup_{m=1}^{10^{j-1}} \left[\frac{10m-1}{10^j}, \frac{m}{10^{j-1}} \right), \quad m(F_k) = \left(\frac{9}{10} \right)^k, \quad f^{-1}(\{9\}) = \bigcup_{k \geqslant 1} F_k^c.$$

故 f = 9 可测.

练习 3^{27} 同上题, 考虑 x 和 y 的极限非 9 的十进制展开 $\sum a_{\bullet}/_{10^{\bullet}}$, $\sum b_{\bullet}/_{10^{\bullet}}$, 令 $f: [0,1]^2 \to \mathbb{Z}_{\geq 1}$, $f(x,y) = \inf\{n \mid a_n = b_n\}$. 则 f 可测且几乎处处有限. 解答 3^{27} 为了方便仅讨论 $f|_{[0,1)^2}$, 讨论得到

$$f^{-1}([1,n]) = \bigcup_{k=1}^{n} \bigcup_{k_1, k_2 = 0}^{10^{k-1}} \bigcup_{m=1}^{10} \left[\frac{10k_1 + m - 1}{10^{k+1}}, \frac{10k_1 + m}{10^{k+1}} \right) \times \left[\frac{10k_2 + m - 1}{10^{k+1}}, \frac{10k_2 + m}{10^{k+1}} \right).$$

故可测, 几乎处处有限亦得.

练习 3^{28} 在 Lusin 定理中, 令容差递降, 得到对应的闭集 F_{\bullet} , 可测函数 f 在 F_{\bullet} 连续, 那么是否 f 在 $\bigcup F_{\bullet}$ 上连续? 解答 3^{28} 否. 考虑以下思路.

- 1. 不妨将命题加强为任意零测集 N, $f|_{N^c}$ 都不连续, 为方便记零测集集合为 \mathcal{N} ;
- 2. 考虑一个特殊的集合 A, 令 $f = \mathbb{1}_A$, A 满足

$$m(A) > 0$$
, $\forall N \in \mathcal{N}, x \in A \setminus N, \delta > 0$, $(x - \delta, x + \delta) \cap A^{c} \cap N^{c} \neq \emptyset$.

而这样的反例有很多,以下是一个例子:

令 $\mathbb{Q} = \{r_n\}_{n>0}$ 是有理数的一个排列, 考虑

$$A = \left(\bigcup_{n>0} \left(r_n - \frac{\varepsilon}{2}, r_n + \frac{\varepsilon}{2}\right)\right)^{c}.$$

 $f = 1_A$. A 显然正测, 故考虑 $x \in A \setminus N$, 其任意邻域 I 中含有有理数 r, 因此存在某区间 J 不含 x 含 r 作为 A^c 的补集, 故择 $y \in J$ 即可. 以上的选取槽测度均为正, 因此不因零测度集 N 改变.

练习 3^{29} 设 $E \subset \mathbb{R}^n$ 测度有限,几乎处处有限的可测函数列 $\{f_{\bullet}\}$ 在 E 上几乎处处收敛于 f,试证存在 E 的可测子集列 $\{E_{\bullet}\}$ 使得 $m(E \setminus \bigcup E_{\bullet}) = 0$,而 $\{f_{\bullet}\}$ 在每个 E_{\bullet} 上一致收敛于 f;能不能在 $\bigcup E_{\bullet}$ 上一致收敛呢?

解答 3^{29} 第一个是 EGOROV 定理的直接推论; 第二个显然是不行, 例子是 $f_n(x) = x^n \mathbbm{1}_{[0,1)}(x)$, 易见其在 N^c 上都非一致收敛, 其中 $N \in \mathcal{N}$ 是任意零测集.

练习 $3^{3^{\circ}}$ 设 f, f_{\bullet} 是区间 [a,b] 上处处有限且可测的函数, 还满足 $|f_{\bullet}| < M_{\bullet}$, $\lim f_{\bullet} \stackrel{\text{a.e.}}{=} f$. 证明对 $\forall \delta > 0$, 存在 E_{δ} 满足 $m([a,b] \setminus E_{\delta}) < \delta$, $\exists M$, $\sup |f_{\bullet} \mathbb{1}_{E_{\delta}}| + |f \mathbb{1}_{E_{\delta}}| < M$.

解答 3^{30} 随意找一个近一致收敛子集 F 交上一个令 f 在其上有界的集合 G, 容 易保证 $m([a,b] \setminus (F \cap G)) < \delta$: 令 $F(x) = m(|f|^{-1}([0,x]))$, 其单增且极限为 b-a, 故 考虑令 $F(n) > b - a - \delta/2$ 的 x 即可, M 的存在性由一致收敛得到.

! 练习 3^{31} 设 $f \in C(\mathbb{R})$, $\{g_{\bullet}\} \subset \mathfrak{L}^{0}(E)$ 且 $\{\sup |g_{\bullet}|\}$ 一致有界. 试证明 $f \circ g_{\bullet} \xrightarrow{\text{mea.}}$ $f \circ g$. 去掉一致有界能否成立?

解答 3³¹ 此题第二问大概只在 E 测度有限时成立:

第一问见[319],第二问见[320],由几乎处处收敛子列立即得到.

练习 3³² 构建一个处处不收敛但依测度收敛的函数列.

解答 3^{3^2} 只需令 f_{\bullet} 在扫遍定义域的小区间里乱跑就行,令 f_{\bullet} : $[0,1] \to \mathbb{R}$, $I_{m(k)}$ 是 [0,1] 的二进分解,令 f_{\bullet} 与 $\mathbb{1}_{I_{m(k)}}$ 随意一一对应即可.

图 4: 宇佐见莲子(右一)和玛艾露贝莉·赫恩. 出自四面 楚歌,いよいん。,夢現,2008. >>

第四章 LEBESGUE 积分

这并非我偏爱复杂事物, 而是为解决已有的问题, 我在书中引进一个积分定义, 该定义比 RIEMANN 积分更具普遍性, 并把 RIEMANN 积分作为一个特例.

Leçons sur l'Intégration et la Recherche des Fonctions Primitives HENRI LEBESGUE

练习 4^2 令 $m(E) < \infty$, $f \in \mathcal{L}^0_{\geq 0}(E)$ 且几乎处处有限,则

$$\int f < \infty \iff \sum_{k \ge 1} km(\{k \le f < k+1\}) < \infty.$$

解答 4² 显然, $\sum_{k \ge 1} km(\{k \le f < k+1\}) \le \int f \le \sum_{k \ge 1} (k+1)m(\{k \le f < k+1\})$. 后者的测度不大于 $\sum_{k \ge 1} km(\{k \le f < k+1\}) + m(E)$, 因此两者同时有限.

练习 4^3 令 $m(E) < \infty$, $f \in \mathfrak{L}^0_{\geq 0}(E)$, 则

$$\int f < \infty \iff \sum_{k \ge 1} m(\{f \ge k\}) < \infty.$$

解答 4^3 几乎处处有限时,有 $\sum_{k\geqslant 1} m(\{f\geqslant k\}) = \sum_{k\geqslant 1} km(\{k\leqslant f< k+1\}),$ $f^{-1}(\{\infty\})$ 测度非零时两边都发散.

练习 4^4 令 $f \in \mathfrak{L}^0(E)$, $g, h \in \mathfrak{L}^1(E)$, $g \stackrel{\text{a.e.}}{\leqslant} f \stackrel{\text{a.e.}}{\leqslant} h$, 证明 $f \in \mathfrak{L}^1(E)$.

解答 4^4 不妨考虑均非负,则 $|f| \leq |g| + |f|$,故 $||f||_1 \leq ||g||_1 + ||h||_1$ 有限.

练习 4^5 设 $f \in \mathfrak{L}^1([0,1])$, 证明对任意正整数 $k \neq x^k f(x) \in \mathfrak{L}^1([0,1])$, 并且

$$\lim_{n\to\infty}\int_{[0,1]}x^nf(x)\,\mathrm{d}x=0.$$

解答 45 由控制收敛定理直接得到.

练习 4^6 令 $f \in \mathfrak{L}^1(E)$,则

$$\int g \text{ exists } \Longrightarrow \int (f+g) \text{ exists and } = \int f + \int g.$$

解答 4^6 不妨令 $\int g^- < \infty$, 则 $(f+g)^- \le f^- + g^-$, 因此 $\int (f+g)$ 存在, 若 $\int g^+ = \infty, \, \mathbb{M}(-f)^+ + (f+g)^+ \ge g^+ \implies (f+g)^+ \ge g^+ - (-f)^+, \, \text{id} \, \int (f+g) = \infty.$ $\int g^+ < \infty$ 时显然成立.

练 \mathbf{J} 4⁷ 若 f 是有界可测集 E 上的非负可测函数, 并且它的积分具有绝对连续 性, 试证 $f \in \mathfrak{L}^1(E)$.

解答 4^7 存在 δ 满足 $m(F) < \delta \implies \int_{F} |f| < 1$, 故考虑 $E \cap [n\delta, (n+1)\delta]$, 则 $\int |f| < \operatorname{diam} E/\delta + 1.$

练习 4^8 如果把 Levi 定理的条件改为, $\{f_n\}_{n\geq 0}$ 是 E 上的可积函数的单调列 $(f_n$ 不 必非负, 但对于 n 递增或递减), 证明: 这时极限函数 $f(x) = \lim_{n\to\infty} f_n(x)$ 的积分 仍有意义, 定理结论仍能成立 (积分与极限可交换).

解答 4^8 由于 f_1 可积, 减去 f_1 即可.

练习 4^{12} 设 $f \in \mathbb{R}^n$ 上的 Lebesgue 可积函数, 试证对任意 $\varepsilon > 0$, 存在下列类型 函数 q, 使 $||f - q||_1 < \varepsilon$.

- 有界可测函数;
- 简单函数;
- 连续函数:
- 阶梯函数:

解答 412 一步一步来.

- 令 $A_n = \{|f| < n\}, f_n = f\mathbb{1}_{A_n},$ 则由控制收敛定理, $\|f_n f\|_1 \to 0$;
- 定义;
- 用简单函数逼近 ϕ 后是一些有界可测函数,设界为M, $\|\phi f\|_1 < \epsilon$. 由原书定理 3.14, 存在连续函数 q 与 ϕ 在一个测度小于 ϵ 的集合上相等. 那么

$$||g - f||_1 \le ||g - \phi||_1 + ||\phi - f||_1 \le 2M\varepsilon + \varepsilon.$$

故逼近成立.

- 用阶梯函数逼近上文的 g 即可, 由于其 RIEMANN 可积, 这是可行的.
- 注. 下面是一个光滑紧支版本的命题:

命题. 设 f 是 \mathbb{R}^n 上的 Lebesgue 可积函数, 试证对任意 $\varepsilon > 0$, 存在 $g \in C^\infty_c(\mathbb{R}^n)$, 使 $||f-g||_1 < \varepsilon.$

证明. 这个比较麻烦,稍微需要点简单的估计:不妨只在某个大圆里讨论,大圆 D 满 足 $\int_{D^c} |f| < \varepsilon$, 用简单函数 ϕ 逼近 f, 再用有限个开矩形控制与 ϕ 的支集的对称差得 到 $\|\Phi-f\|_1<\epsilon/2$, 其中 Φ 是某个底集合都是开矩形 (可以相交) 的有界简单函数 $\sum_{i=0}^N a_i \mathbb{1}_{E_i}$. 令 $k(x) = \exp(^{-1}/_{1-|x|^2})\mathbb{1}_{\mathbb{D}}$ 作为卷积核:

这个卷积核是 C_c^{∞} 的, 同时也是良好的单位逼近. 考虑 $k_n(x) = c_n k(nx)$, 其中 c_n 满足

$$c_n \int k(nx) \, \mathrm{d}x = 1.$$

$$\left| \frac{g_n(x + \Delta x) - g_n(x)}{\Delta x} - \Phi * k'_n(x) \right|$$

$$\leq \sup |\Phi| \int_D \left| \frac{k_n(x + \Delta x - y) - k_n(x - y)}{\Delta x} - k'_n(x - y) \right| dy$$

$$\leq \sup |\Phi| \cdot \sup |k''_n| \cdot m(D) \Delta x.$$

因此 $(\Phi * k_n)' = \Phi * k_n'$, 多元偏导情形亦然, 故均是光滑的. 由于 supp $\Phi \subset D$, 故 $supp(\Phi * k_n)$ ⊂ $\{x + y \mid x \in D, y \in supp k_n\}$ 也是有界 (故紧致的). 而

$$\begin{split} \|\Phi - \Phi * k_n\|_1 &= \int_D \left|\Phi(x) - \int_D \Phi(x - y) k_n(x - y) \,\mathrm{d}y\right| \,\mathrm{d}x \\ &\leq \int_D \int_D |\Phi(x) - \Phi(x - y)| k_n(x - y) \,\mathrm{d}y \,\mathrm{d}x. \end{split}$$

考虑 Φ 底集合的开矩形边长最小值 d: $d = \min \operatorname{diam} E_{\bullet}$, 则当 n > 114514/d 时, 考虑

$$J_n := \bigcup B_{1/n}(x) \in E_{\bullet}, \quad B_r(x) = \{ \ y \ | \ |y-x| < r \}.$$

 $x \in J_n$ 的好处是 $supp(y \mapsto k_n(x - y)) \subset E_{\bullet}$, 也就是 Φ 的值不会发生变化, 虽然这是一 个粗糙的估计, 但是很直观. Jn 带来的误差是:

$$m\left(\bigcup_{i=0}^{N} E_j \setminus J_n\right) \leqslant \sum_{j=0}^{N} m(E_j \setminus J_n) \leqslant (N+1) \left(\left(\operatorname{diam} D + \frac{1}{n}\right)^2 - \operatorname{diam}^2 D\right).$$

因此

$$\begin{split} &\int_D \int_D |\Phi(x) - \Phi(x - y)| k_n(x - y) \, \mathrm{d}y \, \mathrm{d}x \\ &\leqslant \int_D \left(\int_{J_n} + \int_{\bigcup_{j=0}^N E_j \setminus J_n} \right) |\Phi(x) - \Phi(x - y)| k_n(x - y) \, \mathrm{d}y \, \mathrm{d}x \\ &= \int_D \int_{\bigcup_{j=0}^N E_j \setminus J_n} |\Phi(x) - \Phi(x - y)| k_n(x - y) \, \mathrm{d}y \, \mathrm{d}x \\ &\leqslant 2M(N+1) \operatorname{diam}^2 D\left(\left(\operatorname{diam} D + \frac{1}{n} \right)^2 - \operatorname{diam}^2 D \right). \end{split}$$

(这玩意看上去有点吓人,但实际上只需要直到其随 n 增大趋向于 0 即可) 故由

$$||g_n - f||_1 \le ||g_n - \Phi||_1 + ||\Phi - f||_1.$$

得到 $\|g_n - f\|_1 \to \varepsilon$, 令 $\varepsilon \to 0$ 即可.

这解答虽然长了些, 但本质上不难. 这题是想说, 光滑紧支函数空间 C_c^{∞} 在 \mathcal{L}^1 空间稠密, 这是测度正则性所决定的. 解答中用到的卷积核技术非常 (古 老且经典) 重要, 这样的 kn 我们会称之为光滑单位逼近. 其在一般的拓扑空间 (比如拓扑群,此时当然不是光滑的)也是一种重要的标准技术,解答中给的卷 积核的例子是没有计算意义的、只需要知道其光滑紧支即可, 这一题花了好多 纸,又浪费纸子.

不太清楚上课的安排,也许作业做到此题的时候还没有上 FUBINI 定理,因 此没用.

练习 413 证明:

- 1. LEVI 定理 (MCT, Monotone Convergence Theorem), 逐项积分定理 (TIT, Termwise Integration Theorem), FATOU 引理 (FL, FATOU's Lemma) 和控制收敛定理 (Dct, Dominated Convergence Theorem) 互相等价;
- 2. 控制收敛定理中的几乎处处收敛可以改为依测度收敛;
- 3. 用 EGOROV 定理证明有界收敛定理.

解答 4^{13} 易见 $MCT \iff TIT$, 因此下文不再区分.

1. 1. МСТ \iff DСТ. (\implies): 用 $g_n = \inf_{k \geqslant n} f_k$ 得到上升列和 $h_n = \sup_{k \geqslant n} f_k$ 得 到下降列. 考虑 $F + g_n$ 或 $h_n - F$ 得到:

$$\int \lim g_{\bullet} + \int F = \lim \int (F + g_{\bullet}) \leq \int F + \lim \sup \int f_{\bullet},$$
$$\int \lim h_{\bullet} - \int F = \lim \int (h_{\bullet} - F) \geq \lim \inf \int f_{\bullet} - \int F.$$

由 $\lim_{n \to \infty} q_{\bullet}$ a.e. $\lim_{n \to \infty} h_{\bullet}$ a.e. f 得到 $\lim_{n \to \infty} \int_{0}^{\infty} f_{\bullet} \leq \inf_{n \to \infty} f \leq \lim_{n \to \infty} \inf_{n \to \infty} \int_{0}^{\infty} f_{\bullet} = \lim_{n \to \infty} h_{\bullet}$ 即证. (\longleftarrow) : 由 DcT 只需考虑 $\int f = \infty$ 的情形. 存在非负简单函数 $\phi = \sum_{i=1}^{N} a_i \mathbb{1}_{E_i}$ 满足 $M<\int \phi<\infty$ (小于无穷可以直接从原书引理 4.1 得到: $\int \phi\leqslant\lim_{n}\int \phi\mathbb{1}_{\mathbb{D}_{n}}$). 令 $A_n = \{f_n > \phi/2\}$, 故 $A_n \to \bigcup_{i=1}^N E_i$, 考虑 n 很大时, $m(\bigcup_{i=1}^N E_i - A_n) < \varepsilon$.

$$\int f_n \geqslant \int_{A_n} f_n \geqslant M - \sup |\phi| \varepsilon.$$

故 $\int f_{\bullet} \to \infty$.

2. DCT \iff FL. (\implies): 用 $g_n = \inf_{k \ge n} f_k$ 得到上升列, 记 $\lim g_{\bullet} = g$. 易 见 $\liminf \int f_{\bullet} \ge \lim \int \inf_{k \ge \bullet} f_k = \lim \int g_{\bullet}$, 故 $\lim \int g_{\bullet} = \infty$ 时 FL 平凡成 立. 只考虑 $\lim \int g_{\bullet} < \infty$ 的版本. 存在 $\{\phi_n\}_{n \ge 0}$ 简单函数族, 且 $\int \phi_n < \infty$, $\int \phi_n \to \int g$. 由第一款中 A_n 处理得到

$$\sup \int g_{\bullet} \geqslant \lim \int \phi_{\bullet} = \int g.$$

故 $g \in \mathfrak{L}^1(E)$. 故

$$\int \liminf f_{\bullet} = \int \lim g_{\bullet} \stackrel{\text{DCT}}{==} \lim \int g_{\bullet} \leqslant \liminf \int f_{\bullet}.$$

(←): 见原书定理 4.15.

3. $FL \iff MCT. (\Longrightarrow): f_{\bullet} \uparrow f.$ 故 $\int f \ge \sup \int f_{\bullet}.$ 另一个方向由 FL:

$$\int f = \int \liminf f_{\bullet} \leqslant \liminf \int f_{\bullet} = \sup \int f_{\bullet}.$$

(←): 见原书定理 4.14.

- 2. 仅需证明依测度收敛下的 FL. 若 $\int f$ > $\liminf \int f_{\bullet}$, 故选取子列 $\lim \int f_{\bullet \bullet} \leq$ $\int f - \varepsilon$. 但此子列下有几乎处处收敛子列, 与寻常的 FL 矛盾.
- 3. 对 $\delta > 0$, $\exists E_\delta \in E$, $m(E \setminus E_\delta) < \delta$ 且 $f_\bullet|_{E_\delta} \Rightarrow f|_{E_\delta}$. 因此 $\int_{E_\delta} f_\bullet \to \int_{E_\delta} f$, 剩余的 误差由于有界 M 得到

$$\left| \int f_{\bullet} - \int f \right| \leqslant \left| \int_{E_{\delta}} f_{\bullet} \to \int_{E_{\delta}} f \right| + 2M\delta.$$

练习 4^{17} 若 f 在 E 上可积, 并且在 E 的任意可测子集 A 上有 $\int_A f = 0$, 证明在 E $\pm f \stackrel{\text{a.e.}}{=} 0.$

解答 4^{17} 只需考虑 $E_n = \{ f > 1/n \}$ 得到 $m(E_n) = 0$. 故 $f^+ = 0$. f^- 同理.

练习 4^{18} 若 $f \in \mathcal{L}^1(E)$, 并且 f > 0, 存在可测集 $A \subset E$, 使得 $\int_A f = 0$, 证明 m(A) = 0.

解答 4^{18} 若 m(A) > 0, f 在其上几乎处处 > 0, 则令 $E_n = \{x \in A \mid f(x) > 1/n\}$, 由 测度连续性必然存在n满足其>0.故

$$\int_A f = \int_{E_n} f + \int_{A \setminus E_n} f \ge \int_{E_n} f \ge \frac{m(E_n)}{n}.$$

矛盾.

练习 4^{20} 令 $\{r_n\}_{n\geq 0}$ 是有理数的一个排列, $\sum_{n\geq 0} a_n$ 绝对收敛, 证明: $[0,1] \to \mathbb{R}$, $x \mapsto \sum [a_{\bullet}/|x-r_{\bullet}|]$ 几乎处处收敛.

解答 4^{20} 不妨假设 $a_* \ge 0$. 只需证明其几乎处处有限,即

$$\sum \int \frac{a_{\bullet}}{|x-r_{\bullet}|^{1/2}} dx \xrightarrow{\underline{\mathsf{MCT}}} \int \sum \frac{a_{\bullet}}{|x-r_{\bullet}|^{1/2}} dx < \infty.$$

即可. 而易见 $\sum \int [a_{\bullet}/|x-r_{\bullet}|] dx \leq \sum \int_{[-1,1]} [a_{\bullet}/|x|^{1/2}] dx = 4 \sum a_n < \infty$. 故证毕.

练习 4^{21} 设 $\{E_i\}_{i=1}^N$ 是区间 [0,1] 的 N 个可测子集, 而 [0,1] 的每一个点至少属于 这N个点集中的q个, 试证这N个点集至少有一个点集的测度不小于q/N.

解答 4^{21} 即 $\sum \mathbb{1}_{E_{\bullet}} \ge q$ (在 [0,1] 上), 故 $\sum m(E_{\bullet}) = \int \sum \mathbb{1}_{E_{\bullet}} \ge q \int \mathbb{1}_{[0,1]}$. 因此至 少有一个点集测度不小于 9/N.

练习 4^{22} 令 $f \in \mathfrak{L}^1_{>0}(E)$, E 测度有限, $a \in (0, m(E))$, 则

$$\inf_{F\subset E,\,m(F)=a}\int_F f>0.$$

解答 4^{22} 由测度连续性: $m(\{f < 1/n\}) \xrightarrow{n \to \infty} 0$. 择 n 满足 $m(\{f < 1/n\}) < a/2$, 故

$$\int_F f = \int_{\{f < 1/n\}_F} f + \int_{F \setminus \{f \geqslant 1/n\}_F} f \geqslant \frac{a}{2n}.$$

练习 4^{23} 设 $f \in \mathcal{L}^1_{\geq 0}([0,1])$ 是区间 [0,1] 上的非负可测函数, 试作 $\phi \in \mathcal{L}^0_{\geq 0}([0,1])$, 使得

$$\phi(0^+) = \infty, \quad \phi f \in \mathfrak{L}^1([0,1]).$$

解答 4^{23} 此题归根结底是寻找可积函数在 0 处发散得比 f 快, 为方便不妨设 f 积分为 1. 考虑以下划分:

$$E_1=\Big\{\,x\,\,\Big|\,\int_{[x,1]}f\leqslant\frac{1}{2}\,\Big\},\quad E_n=\Big\{\,x\,\,\Big|\,\int_{[x,1]}f\leqslant1-\frac{1}{2^n}\,\Big\}\setminus E_{n-1}.$$

因此 $\int_{E_n} f = 1/2^n$. 令 $\phi = \sum_{n \geq 1} 2^{n/2} \mathbb{1}_{E_n}$. 则易见 $\phi(0^+) = \infty$, $\int \phi f \leq \sum 2^{-n/2} < \infty$. 故 $\phi f \in \mathfrak{L}^1([0,1])$.

练习 4^{24} 设 $f \in \mathfrak{L}^1(\mathbb{R})$, 对任意 h > 0 定义 $\phi_h(x) = \int_{x-h}^{x+h} [f/_{2h}]$, 证明 $\|\phi_h\|_1 \le \|f\|_1$.

解答 424 由 TONELLI 定理直接得到:

$$\begin{split} \|\phi_h\|_1 &= \left\| f * \frac{\mathbb{1}_{[-h,h]}}{2h} \right\|_1 &\leqslant \frac{1}{2h} \iint |f(x-y)\mathbb{1}_{[-h,h]}(y)| \, \mathrm{d}y \, \mathrm{d}x \\ &\leqslant \frac{1}{2h} \iint |f(x-y)\mathbb{1}_{[-h,h]}(y)| \, \mathrm{d}x \, \mathrm{d}y \\ &\leqslant \|f_1\| \left\| \frac{\mathbb{1}_{[-h,h]}}{2h} \right\|_1 = \|f\|_1. \end{split}$$

练习 4^{25} 令 $f \in \mathfrak{L}^1([0,1]), F(x) = \int_{[x,1]} [f(t)/t] dt$, 证明 $F \in \mathfrak{L}^1([0,1])$ 且

$$\lim_{x \to 0^+} x F(x) = 0, \quad \int_0^1 F = \int_0^1 f.$$

解答 4^{25} $\int |F| \le \int_0^1 \int_{[x,1]} |f(t)/t| \, dt \, dx = \int_0^1 \int_0^t |f(t)/t| \, dx \, dt = \int |f|$. 故由 Fubini 定理:

$$\int F = \int_0^1 \int_{[x,1]} \frac{f(t)}{t} dt dx = \int_0^1 \int_0^t \frac{f(t)}{t} dx dt = \int f.$$

若 xF(x) o 0,则存在 $\{x_{\bullet}\}, x_{\bullet} o 0$ 且 $|x_{\bullet}F(x_{\bullet})| > \varepsilon$,但由 DCT:

$$g_{\bullet}(t) = \frac{x_{\bullet}f(t)\mathbb{1}_{[x_{\bullet},1]}}{t}, \quad \int_{[x_{\bullet},1]} \frac{x_{\bullet}|f(t)|}{t} dt = \int |g_{\bullet}| dt \xrightarrow{\sup |g_{\bullet}| \leq |f|} 0.$$

矛盾.

练习 4^{26} 令 $m(E) < \infty$,则

$$f_{\bullet} \xrightarrow{\text{mea.}} f \iff \rho(f_{\bullet}, f) \coloneqq \int \frac{|f_{\bullet} - f|}{1 + |f_{\bullet} - f|} \to 0.$$

解答 4^{26} 令 $E_n = \{|f_\bullet - f| > \varepsilon\}, 则易见$

$$\rho(f_{\bullet}, f) \leq m(E_n) + \varepsilon m(E) \implies \lim \rho(f_{\bullet}, f) \leq \varepsilon m(E).$$

另一个方向:

$$0 = \lim \rho(f_{\bullet}, f) \ge \lim \int_{E_n} \frac{|f_{\bullet} - f|}{1 + |f_{\bullet} - f|} \ge \lim \frac{\varepsilon m(E_n)}{1 + \varepsilon}.$$

故反之成立.

练习 4^{27} 设 $\{f_{\bullet}\} \subset \mathfrak{L}^{0}(E)$ 且, $|f_{\bullet}| \leq F, F \in \mathfrak{L}^{1}(E)$, 证明:

$$\int \liminf f_{\bullet} \leqslant \liminf \int f_{\bullet} \leqslant \limsup \int f_{\bullet} \leqslant \int \limsup f_{\bullet}.$$

解答 4^{27} 中间的等号显然,第一,第三个等号分别对 $f_{\bullet}+F$ 和 $F-f_{\bullet}$ 应用 FL 即得.

练习 4^{28} 证明对补集测度有限的闭集 $F \subset \mathbb{R}$ 有

$$I_{\lambda} \colon F \to \mathbb{R}, \quad x \mapsto \int_{\mathbb{R}} \frac{d(y, F)^{\lambda}}{|x - y|^{\lambda + 1}} \, \mathrm{d}y \stackrel{\text{a.e.}}{<} \infty, \quad \lambda > 0.$$

解答 4^{28} 只需证明 $\int_F I_{\lambda} < \infty$ 即可,注意到 $y \in F$ 时, d(y,F) = 0:

$$\int_F \int_{\mathbb{R}} \frac{d(y,F)^{\lambda}}{|x-y|^{\lambda+1}} \,\mathrm{d}y \,\mathrm{d}x = \int_{F^c} \int_F \frac{d(y,F)^{\lambda}}{|x-y|^{\lambda+1}} \,\mathrm{d}x \,\mathrm{d}y.$$

这样就用 F 和 F^c 分离 x 和 y. 此时 $|x-y| \ge d(y,F)$. 因此

$$\int_F I_{\lambda} \leq \int_{F^c} d(y, F)^{\lambda} \int_{|r| \geq d(y, F)} \frac{\mathrm{d}r}{r^{\lambda + 1}} \, \mathrm{d}y = \int_{F^c} d(y, F)^{\lambda} \frac{2d(y, F)^{-\lambda}}{\lambda} \, \mathrm{d}y = \frac{2m(F^c)}{\lambda}.$$

练习 4^{30} 令 $m(E) < \infty$, $E \subset \mathbb{R}$. 证明

$$\int_E f = \lim_{\Delta(\mathcal{P}) \to 0} \sum_{p_{\bullet} \in \mathcal{P}} \xi_{\bullet} m(f^{-1}([p_{\bullet}, p_{\bullet + 1}))).$$

其中 $\mathcal{P} = \{p_{\bullet}\}$ 是 \mathbb{R} 的一个单调分划, $\Delta(\mathcal{P}) = \sup(p_{\bullet+1} - p_{\bullet}), \xi_{\bullet} \in [p_{\bullet}, p_{\bullet+1}).$ 解答 4^{30} 令 $E_n = f^{-1}([p_{\bullet}, p_{\bullet+1}))$,则易见

$$\xi_{\bullet}m(E_{\bullet}) \not \approx \int_{E_{\bullet}} f \in \big(p_{\bullet}m(E_{\bullet}), p_{\bullet+1}m(E_{\bullet})\big).$$

故

$$\sum \xi_{\bullet} m(E_{\bullet}) \not To \int f \in \bigg(\sum p_{\bullet} m(E_{\bullet}), \sum p_{\bullet+1} m(E_{\bullet})\bigg).$$

而 $\sum p_{\bullet+1}m(E_{\bullet}) - \sum p_{\bullet}m(E_{\bullet}) \leq \Delta(\mathcal{P})m(E)$, 因此 $|\sum \xi_{\bullet}m(E_{\bullet}) - \int f| \to 0$.

故 $f \in \mathfrak{L}^1(E)$ 情形成立. $\int f = \infty$ 时, $\sum p_{\bullet} m(E_{\bullet}) = \sum p_{\bullet+1} m(E_{\bullet}) = \infty$. 因此亦成立.

注. 这个定义有点令人烦躁 (即使书中也是这样定义的). 比较严格的定义需要用到 "网"(而不是函数极限). 给定两个分划 P_1 , P_2 . 定义 $P_1 \leq P_2$ 为 $\Delta(P_1) \geq \Delta(P_2)$. 因此全体 (令 $\Delta(P)$ 有限的) 分划构成一个偏序集 (同时还满足对任意 P_1 , P_2 , 存在 P_3 满足 P_1 , $P_2 \leq P_3$). 这样的特殊偏序集称为 "定向集". 将其映往 拓扑空间的函数称为定向集上的网.

直观上来说,序列是可数的单分支网,一元函数极限也是单(或双)分支的,但一般的定向集可以是多分支的.一个网 $\{x_{\alpha}\}_{\alpha\in A}$ 收敛与x可以认为是在某个分支上收敛:对x的邻域U, $\exists \beta \in A$,满足

$$\gamma \geq \beta \implies x_{\gamma} \in U.$$

上面这个积分定义的例子可以诠释为,对误差函数:

$$\mathcal{E}(\mathcal{P}) = \sum_{p_{\bullet} \in \mathcal{P}} (p_{\bullet+1} - p_{\bullet}) m(f^{-1}([p_{\bullet}, p_{\bullet+1}))).$$

的网收敛.

练习 4^{31} 试证当 $m(E) = \infty$ 时, 若补充规定在上题的和式中, $0 \in (p_{\bullet}, p_{\bullet+1})$ 时 $\xi_{\bullet} = 0$, 则上题结论仍然是正确的.

解答 4^{31} $f \in \mathfrak{L}^1(E)$ 时,由于 $f|_{\{f \geqslant p_{\bullet+1}\}}$ 和 $f|_{\{f \leqslant p_{\bullet+1}\}}$ 均测度有限,故

$$\int_{\{f\notin[p_\bullet,p_{\bullet+1})\}}f=\lim_{\Delta(\mathcal{P})\to 0}\Biggl(\sum_{p_\bullet\in\mathcal{P}\setminus[p_\bullet,p_{\bullet+1})}\xi_\bullet m(f^{-1}([p_\bullet,p_{\bullet+1})))\Biggr).$$

因此只需证明

$$\lim_{\Delta(\mathcal{P})\to 0} f|_{f^{-1}([p_{\bullet},p_{\bullet+1}))} = 0.$$

即可. 由 DCT 立马得到. 若 $\int f = \infty$, 则 $\lim_{\Delta(\mathcal{P})\to 0} f|_{f^{-1}([p_{\bullet},p_{\bullet+1}))} \ge 0$. 因此同样成立.

! 练习 4³² 用 Lebesgue 和证明

$$\int_a^b f = \int_{f(a)}^{f(b)} g' \text{ id.}$$

其中 f 是 [a,b] 上的严格单增光滑函数, $g = f^{-1}$.

解答 4^{32} 此情形大概只在 $m(\{f'=0\})=0$ 的情形下成立.

不妨设 $[a,b] = [f(a), f(b)] = [0,1], E = \{f' = 0\}. 则 [0,1] \setminus E$ 为开集, 故为 可数个开区间交上 [0,1] 得到, 设其为 $[](c_{\bullet},d_{\bullet})$. 故

$$f\left(\bigcup(c_{\bullet},d_{\bullet})\right)=\bigcup(f(c_{\bullet}),f(d_{\bullet})).$$

易见 m(f(E)) = 0 (用 $\bigcup (a_{\bullet}, b_{\bullet})$ 套住 E, 则 $m(f((a_{\bullet}, b_{\bullet}))) \leq (b_{\bullet} - a_{\bullet}) \sup_{(a_{\bullet}, b_{\bullet})} |f'|)$, 因此 f(E) 是 [0,1] 上的几乎处处开集. 且由基本的广义 RIEMANN 积分 (的微积分 基本定理) 得到 $\int_{f(c_{\bullet})}^{f(d_{\bullet})} g' = d_{\bullet} - c_{\bullet}$. 故

$$\int_{f(c_{\bullet})}^{f(d_{\bullet})} g' \operatorname{id} = \int_{f(c_{\bullet})}^{f(d_{\bullet})} ((g \operatorname{id})' - g)$$

$$= d_{\bullet}g(d_{\bullet}) - c_{\bullet}g(c_{\bullet}) - \int_{f(c_{\bullet})}^{f(d_{\bullet})} g$$

$$= \int_{c_{\bullet}}^{d_{\bullet}} f.$$

因此

$$\int_{f(a)}^{f(b)} g' \operatorname{id} = \sum \int_{f(c_{\bullet})}^{f(d_{\bullet})} g' \operatorname{id} = \sum \int_{c_{\bullet}}^{d_{\bullet}} f = \int_{[0,1] \setminus E} f.$$

注. 反例只需找到一个严格单增光滑函数且导数并非几乎处处非零即可. 考虑 $\{r_n\}_{n\geq 0}$ 是有理数的排列,则 $\bigcup_{n\geq 0}(r_n-\varepsilon/2^n,r_n+\varepsilon/2^n)$ 是一些可数开集的不交并 | $|(a_{\bullet},b_{\bullet})$. 令光滑函数 ϕ 在 $[0,1]\setminus |(a_{\bullet},b_{\bullet})$ 为 0, 在其余地方恒正. 则 $\Phi: x \mapsto$ $\int_{0}^{x} \phi$ 即为所求的反例:

$$x < y \implies \exists r \in (x, y) \implies \int_{x}^{y} \phi > 0 \implies \Phi(y) > \Phi(x).$$

练习 4^{33} 令 $f \in \mathfrak{L}^0_{\geq 0}(E)$, 则

$$\int_{E} f = \sup \left\{ \int_{A} f \mid \|f \mathbb{1}_{A}\|_{\sup} < \infty, m(A) < \infty \right\}.$$

解答 4^{33} 令 $A_n = \{ f \leq n \} \cap \mathbb{D}_n$. 则由 MCT:

$$\int_{A_n} f \to \int_E f.$$

故 $\int_E f \leq \sup\{\int_A f \mid \|f\|_A\|_{\sup} < \infty, m(A) < \infty\}$, 反向不等式显然.

练习 4^{34} 令 $f \in \mathcal{L}^{0}_{>0}(E)$, 则

$$\int_{F} f = \sup \left\{ \int \phi \mid \phi \text{ simple, } \phi \stackrel{\text{a.e.}}{\leq} f \right\}.$$

解答 4^{34} >方向是显然的. 考虑 $\phi_{\bullet} \to f$. 故

$$\int_{E} f = \lim \int \phi_{\bullet} \leq \sup \left\{ \int \phi \mid \phi \text{ simple, } \phi \stackrel{\text{a.e.}}{\leq} f \right\}.$$

15. Si des fonctions sommables f_n forment une suite convergente et sont toutes, en valeur absolue, inférieures à une fonction sommable positive F, la limite f des f_n est sommable et son intégrale est la limite de l'intégrale de f_n .

图 5: Lebesgue 对一般的控制收敛定理的描述,出自 Sur l'intégration des fonctions discontinues, 1904. 同时, 他在此文章中对此定理作出了证明. >>>

第五章 微分与不定积分

连续函数的微分会带来一个奇异的部分, 这 个部分我们可以用测度去描述,但如果是高阶微分呢?

练习51 证明:

• 若 f 在 [a,b] 上 RIEMANN 可积,则存在 $\eta \in (\inf_{[a,b]} f, \sup_{[a,b]} f)$ 使得

$$\int_{[a,b]} f = \eta(b-a).$$

• 令 f 在 [a,b] 上 RIEMANN 可积, f 在 x_0 连续, 令 $F(x) = \int_a^x f$. 则 F 在 x_0 可导且 $F'(x_0) = f(x_0).$

解答 \mathfrak{z}^1 均是数学分析的基本结论, 令 $\eta=\int_a^b [f/_{b-a}]$ 即可; 第二点: 当 δ 很小 时有:

$$\frac{1}{\delta} \int_{x_0}^{x_0 + \delta} f \in (f(x_0) - \varepsilon, f(x_0) + \varepsilon).$$

即得.

练习 5^2 令 $\{x_a\} \subset [a,b]$, 试作 [a,b] 上的连续函数, 其不连续点恰好为 $\{x_a\}$.

解答 5^2 令 $f = \sum_{r \le x} 2^{-n}$. 易见其在 $\{x_{\bullet}\}$ 上不连续, 令 $x \in [a,b] \setminus \{x_{\bullet}\}$, 则要么 x邻域内恒为常值要么x是 $\{x_{\bullet}\}$ 聚点,考虑 $\sum_{n>N} 2^{-n} < \varepsilon$ 的N,有

$$|y-x| < \min_{i=0}^N |x-x_i| \implies |f(y)-f(x)| < \varepsilon.$$

练习 5^3 证明 Fubini 微分定理: $\{f_{\bullet}\}$ 是单增函数列, $\sum f_{\bullet}$ 收敛, 证明 $(\sum f_{\bullet})^{\prime} \stackrel{\text{a.e.}}{=}$ $\sum f_{\bullet}'$.

解答 \mathfrak{z}^3 令 $F=\sum f_{ullet}$ 显然几乎处处可导,且 $F-\sum_{j=0}^n f_j$ 单增,故 $F'\geqslant\sum f_{ullet}'$. 反 之, $\int_a^b F' \leq \int_a^b (F' - \sum_{j=0}^n f'_j) + \int_a^b \sum_{j=0}^n f'_j \leq (F - \sum_{j=0}^n f_j) \Big|_a^b + \int_a^b \sum_{j=0}^n f'_j$. 那么

$$\int_a^b F' \leq \left(F - \sum_{j=0}^n f_j\right) \bigg|_a^b + \int_a^b \sum_{j=0}^n f_j' \leq \varepsilon + \int_a^b \sum f_\bullet'.$$

故 $\int F' \leq \int_a^b \sum f_a'$, 与 $F' \geq \sum f_a'$ 对比得到 $F' = \sum f_a'$.

练习 5^4 试在 [0,1] 上作一个严格单调上升的函数 f, 使得 $f' \stackrel{\text{a.e.}}{=} 0$.

解答 5^4 在 $[5^2]$ 中, 若 $\{x_{\bullet}\}$ 是稠密的, 则 f 严格单增. 导数几乎处处为 0 由 Fubini 微分定理得到.

练习 5^5 设 f 和 g 是区间 [a,b] 上的有界变差函数,证明 $\alpha f + \beta g$ 和 fg 亦然. 若 $\inf |g| > 0$,则 f/g 亦然.

解答 5^5 由于有界, $\alpha f + \beta g$ 和 f g 有界变差显然.

$$\left|\frac{1}{g(x)} - \frac{1}{g(y)}\right| \leq \frac{|g(x) - g(y)|}{\inf|g|^2} \implies \bigvee_{[a,b]} \frac{1}{g} \leq \frac{1}{\inf|g|^2} \bigvee_{[a,b]} g.$$

因此 1/g 和 f/g 是有界变差的.

练习 5^7 设 f 是区间 [0,1] 上的函数, 存在递减且趋于 0 的数列 $\{a_{\bullet}\}$ 满足 $f|_{[a_{\bullet+1},a_{\bullet}]}$ 单调, 则

$$f\in \mathbb{BV} \iff \sum |f(a_{\bullet+1})-f(a_{\bullet})|<\infty.$$

解答 $\mathbf{5}^7$ (\Longrightarrow) 由定义直接得到, 反之令 $\sum |f(b_{\bullet+1}) - f(b_{\bullet})| > \sum |f(a_{\bullet+1}) - f(a_{\bullet})|$, 与 $\{a_{\bullet}\} \cup \{b_{\bullet}\}$ 的子有限分划对应变差不超过 $\sum |f(a_{\bullet+1}) - f(a_{\bullet})|$ 矛盾.

练习 5^8 证明区间 [a,b] 上的函数 f 是有界变差函数的充分必要条件是, 存在 [a,b] 上的增函数 ϕ 满足

$$a \le x \le y \le b \implies |f(x) - f(y)| \le |\phi(x) - \phi(y)|.$$

解答 5^8 令 $\phi(x) = V_{[a,x]} f$ 即可得到一个方向. 另一个方向由 $V_{[a,b]} f \leq V_{[a,b]} \phi$ 得到.

练习 5^{9} 证明 [a,b] 上的单调函数 f 是绝对连续的充分必要条件是

$$\int_a^b f' = f(b) - f(a).$$

若函数 f 在区间 [a,b] 上绝对连续且 $f'(x) \stackrel{\text{a.e.}}{\geqslant} 0$, 试证它是增函数.

解答 59 一个方向是 Newton – Leibniz 公式. 反之, 由 $g(x) = f(x) - f(a) - \int_a^x f'$ 单增显见 $\int_a^x f' = f(x) - f(a)$. 故

$$\sum |f(a_{\bullet}) - f(b_{\bullet})| \leqslant \sum \int_{a_{\bullet}}^{b_{\bullet}} |f'|.$$

由可积函数的绝对连续性得到.

练习 510 证明在绝对连续的定义中,有限多个不交区间可以改为可数多个.

解答 510 只需证明满足"有限绝对连续"的函数也满足"可数绝对连续"即可, 而 可数求和是有限求和情形的上确界,因此命题证毕.

注. 单增绝对连续函数可以生成一个测度, 称为 Lebesgue - Stieltjes 测度:

$$\mu_f(E) = \inf \bigg\{ \sum (f(b_\bullet) - f(a_\bullet)) \ \bigg| \ E \subset \bigcup (a_\bullet, b_\bullet) \ \bigg\}.$$

满足 $m(E)=0 \implies \mu_f(E)=0$. 因此此题由测度可数可加性可以得到两个定义 是一致的. 因此导数另一个几何意义是 LEBESGUE - STIELTJES 测度与 LEBESGUE 测度的比值极限. 对于性质良好的测度, 也有从中还原处比值极限 (即测度导 数)的方法: RADON-NIKODYM 定理, 考虑由绝对连续函数是单调函数的线性 组合、因此可以考虑符号测度或者复测度:

$$\mu_f(E) = \int_E f', \quad \mu_{f \text{ in } \underline{\mathfrak{T}} \underline{\mathscr{E}}} = \int_E |f'|.$$

分部积分无非是

$$\int_a^b f \, \mathrm{d}\mu_g + \int_a^b g \, \mathrm{d}\mu_f = f(b)g(b) - f(a)g(a).$$

!练习 5¹¹ 证明区间 [a, b] 上的实值函数 f 是绝对连续的必要条件是将零测集映往 零测集.

解答 5¹¹ 此题大概只在 f 连续有界变差时成立.

由微积分基本定理

$$\int_{c}^{d} f' = f(c,d) \implies m(f(c,d)) = \sup_{x \in [c,d]} \int_{c}^{x} f' \le \int_{c}^{d} |f'|.$$

由绝对连续(比如上题给出的可数情形)和δ测度开覆盖得到:

$$f(E) \subset \bigcup f((a_{\bullet}, b_{\bullet})) \implies m(f(E)) \leqslant \sum \int_{(c, d_{\bullet})} |f'| \leqslant \varepsilon.$$

反之若 f 将零测集映往零测集,则用反证: 若 f 非绝对连续,故对某个 ε 存在开集 $E_i = \bigcup_{n \geq 0} (a_{in}, b_{in})$ 满足 (不妨设 f 单调)

$$m(E_j) = \sum_{n \geq 0} (b_{jn} - a_{jn}) < \frac{1}{2^m}, \quad \sum_{n \geq 0} |f(b_{jn}) - f(a_{jn})| > \varepsilon.$$

故 $m(f(E_j)) > \varepsilon$. 令 $F = \limsup_{i} E_j = \bigcap_{k \ge 0} \bigcup_{j \ge k} E_j$. 则 m(F) = 0 且

$$m(f(F)) \stackrel{\text{finde}}{=\!\!\!=\!\!\!=\!\!\!=} \inf_k m \left(\bigcup_{i \geq k} f(E_j) \right) \geq \varepsilon.$$

矛盾!

! 练习 5^{12} 假定函数 f 处处可微导数有界 M, 或者函数一致 LIPSCHITZ 连续 (常数为 M), 亦或是函数是上凸的, 则此三种情形在 [a,b] 上都是绝对连续的.

解答 512 此题第三款大概只对连续函数 (或是在端点处连续函数成立).

第一款和第二款只需注意到 $|f(a)-f(b)| \le M|a-b|$, 故只需 $\sum (b_{\bullet}-a_{\bullet}) < \varepsilon/M$ 即可. 对第三款而言, 由数学分析的基本知识知道其在 (a,b) 上连续, 以下是一个思路. 令 $a \le c < x < y < d \le b$, 则

$$\frac{f(x)-f(a)}{x-a} \leq \frac{f(y)-f(x)}{y-x} \leq \frac{f(b)-f(y)}{b-y}.$$

令 $y \to x$ 得到函数是连续的. 设 |f(x) - f(y)| = V(x, y), 则由上式有

$$V(x, y) \leq \max(V(c, c + y - x), V(d - x + y, d)).$$

因此对不交的区间 $(a_{\bullet}, b_{\bullet}), \sum (b_{\bullet} - a_{\bullet}) < \delta$ 有 (直观上就是切线的斜率先减后增, 因此只需将区间往左 / 右堆积即得)

$$\sum V(a_{\bullet}, b_{\bullet}) \leqslant \bigvee_{[a, a+\delta]} f + \bigvee_{[b-\delta, b]} f.$$

因此只需 f 在两端点连续即可.

练习 5^{13} 证明 [0,1] 上的实值函数 f 满足 Lipschitz 条件的充分必要条件是, 存在有界可测函数 ϕ 使得对任意的 $x \in [0,1]$ 有

$$f(x) = f(0) + \int_0^x \phi.$$

解答 5^{13} Lipschitz 函数是绝对连续的, 因此 $\phi = f'$ 即满足题意, 有界性由极限 直接得到. 反之, $|f(x) - f(y)| \le \int_x^y |\phi|$, 因此是 Lipschitz 连续的.

练习 5^{14} 设 f Lipschitz 连续, 则 $(g: [a,b] \rightarrow \mathbf{R}) \mapsto f \circ g$ 保有限变差与绝对连 续.

解答 5^{14} $|f(g(x))-f(g(y))| \leq M|g(x)-g(y)|$ 直接得到 $V_{[a,b]} g \leq M(V_{[a,b]} f \circ g)$. 绝对连续性同理.

练习 5^{15} 可微函数 f 的导数 f' 如果是有界变差的, 证明 f' 一定处处连续.

解答 515 有界变差函数最多只有第一类不连续点,因此若不连续则与导数介值性 矛盾.

练习 5^{16} 设 $\{f_{\bullet}\}$ 是[a,b]上的有界变差函数列,并且 $V_{[a,b]}f_{\bullet} \leq M, f_{\bullet} \rightarrow f$,试证 $V_{[a,b]} f \leq M$.

解答 5^{16} 只需注意到 $\sum |f(a_{\bullet}) - f(b_{\bullet})| \leq \limsup_{a \to \infty} \sum |f_{a}(a_{\bullet}) - f_{a}(b_{\bullet})| \leq M$ 即可.

练习5¹⁷ 设 f 在 [a, b] 上绝对连续, 试证:

- $\dot{\pi}[\alpha,\beta] \subset [a,b], \ \mathcal{M}(f([\alpha,\beta])) \leq \int_{\alpha}^{\beta} |f'|;$
- 令 G 为开集,则 f(G) 可测且 $m(f(G)) \leq \int_G |f'|$;
- 若 $E \subset [a,b]$ 为任意点集,则 $m^*(f(E)) \leq \inf\{\int_G |f'| \mid G \text{ open, } E \subset G\};$
- 若 $E \subset [a,b]$ 可测,则 f(E) 也可测且 $m(f(E)) \leq \int_{E} |f'|$.

解答 5^{17} 第一款由 $m(f([\alpha,\beta])) = \sup_{x,y \in [\alpha,\beta]} |\int_x^y f'|$ 直接得到. 第二款考虑将 G分解为可数个开区间的并 $\lfloor | (a_a, b_a) \rangle$,每个开区间都补上端点然后用第一款的结论 得到:

$$m(f(G)) \leq \sum m(f([a_{\bullet},b_{\bullet}])) \leq \sum \int_{[a_{\bullet},b_{\bullet}]} |f'| = \int_{G} |f'|.$$

(可测性由可数闭区间并的情形减去端点对应的零测集 = f(G) 得到). 第三款用开 集 G 覆盖 E 再用第二款得到. 第四点由于 f 保零测集, 故仅需考虑 F_{σ} 集 $\bigcup F_{\bullet}$ 即 可, 由于 F_{\bullet} 紧致, 故 $f(F_{\bullet})$ 亦然, 因此 $f(\bigcup F_{\bullet}) = \bigcup f(F_{\bullet})$ 可测. 令开集列 $O_{\bullet} \supset E$, 且 $m(O_{\bullet} \setminus E) \rightarrow 0$. 故由 Dct 有

$$m(f(E)) \le \inf \left\{ \int_G |f'| \mid G \text{ open, } E \subset G \right\} \le \inf \int_{O_*} |f'| = \int_E |f'|.$$

练习 5^{18} 设 f 在 [a,b] 有界变差,令 $V(x) = \bigvee_{[a,x]} f$,证明在 f 的连续点,V 也连续. 又若 V 在 [a,b] 为绝对连续的,试证 f 也是绝对连续的.

解答 5^{18} 以下只证明 V 右连续, 左连续情形同理. 由 $|V(x+\delta)-V(x)| \leq V_{[x,x+\delta]} f$,考虑 f 在 x 处连续, 且 $\inf_{\delta>0} V_{[x,x+\delta]} f > 0$,令极限为 a. 则考虑 δ 满足

$$x < y < x + \delta \implies |f(x) - f(y)| < \varepsilon, \quad |V(y) - V(x^+)| < \varepsilon.$$

则 $V_{[x,x+\delta]} f < a + \varepsilon$. 对 $\forall k \in (0,1)$, 存在分划 $\mathcal{P}_1 = \{x_0 = x, x_1, \dots, x_n = x + \delta\}$ 满足其对应的变差 $\sum_{\mathcal{P}_i} |f(x_{\bullet+1} - f(x_{\bullet}))| > a - \varepsilon$ (同时自然 $< a + \varepsilon$).

因此 $a-\varepsilon<|f(x_1)-f(x)|+\bigvee_{[x_1,x+\delta]}f<\varepsilon+\bigvee_{[x_1,x+\delta]}f.$ 即 $\bigvee_{[x_1,x+\delta]}>a-2\varepsilon$. 但 $\bigvee_{[x_x,x_1]}\geqslant a$, 故

$$2a - 2\varepsilon \leqslant \bigvee_{[x,x_1]} f + \bigvee_{[x_1,x+\delta]} f = \bigvee_{[x,x+\delta]} f < a + \varepsilon \implies a \leqslant 3\varepsilon.$$

故连续性得证.

第二款中 f 的绝对连续性可以由 $|f(x) - f(y)| \leq V_{[x,y]} f = |V(y) - V(x)|$ 得到.

注. 现在来寻求 $V_{[a,b]}$ f 的积分表示. 假定 f 连续, 由 [3²⁵]. $g(x) = \operatorname{card} f^{-1}(\{x\})$ 是可测的.

$$g = \lim_n \sum_k \, 1_{f(I_{n(k)})} = \sup_n \sum_k \, 1_{f(I_{n(k)})}.$$

由单调收敛定理:

$$\int g = \sup_{n} \sum_{k} m(I_{n(k)}).$$

由定义可以得到 $\sup_n \sum_k m(I_{n(k)}) \leq \bigvee_{[a,b]} f$. 但给定分划 x_0,\ldots,x_N 和正数 ε ,则由 f 一致连续可以得到当 n 很大时有

$$\sum_k m(I_{n(k)}) \geq \sum_{i=1}^N |x_i - x_{i-1}| - 2N\varepsilon.$$

故 $\int \operatorname{card} f^{-1}(\{\cdot\}) = V_{[a,b]} f$.

练习 5¹⁹ 设 f 在 [a,b] 有界变差,证明 $\int_a^b |f'| \leq V_{[a,b]} f$,又若 f 使此式成为等式,证明它是绝对连续的.

$$\int_{a}^{b} |f'| \le \int_{a}^{b} V' \le V(b) - V(a) = \bigvee_{[a,b]} f.$$

若等式成立,则 $\int_a^b V' = V(b) - V(a)$,由 V 单增得到其绝对连续,因此 f 亦绝对 连续.

注. 由于 f 绝对连续 \iff V 绝对连续, 因此在绝对连续的情形下有 $V' \stackrel{\text{a.e.}}{=} |f'|$ 成立. 但仅仅在有界变差的时候也成立.

考虑 $E = \{V' \ge |f'|\}$, 只需证明 m(E) = 0 即可. 考虑若 $x \in E$, 则 v 很靠近 x时应有

$$\frac{V(y) - V(x)}{y - x} \ge \left| \frac{f(y) - f(x)}{y - x} \right| + \varepsilon.$$

因此令

$$E_m = \left\{ \left. x \; \left| \; \left| \; y - x \right| < \frac{1}{m} \right. \right. \Longrightarrow \left. \frac{V(y) - V(x)}{y - x} \geqslant \left| \frac{f(y) - f(x)}{y - x} \right| + \frac{1}{m} \right. \right\}.$$

则 $E = \bigcup_{m \geq 1} E_m$. 这玩意是直观的, 而且容易用在有界变差函数的分划上, 因为:

$$x \in E_m \cap (c,d), \ d-c < \frac{1}{m} \implies \frac{V(d)-V(c)}{d-c} \geqslant \left|\frac{f(d)-f(c)}{d-c}\right| + \frac{1}{m}.$$

故可以考虑包含 E_m 的分划子区间. 令分划 P 满足 $(\Delta(P)$ 是分划的最大区间 长度)

$$\sum_{\mathcal{P}} |f(x_{\bullet+1}) - f(x_{\bullet})| \leq \bigvee_{[a,b]} f - \varepsilon, \quad \Delta(\mathcal{P}) < \frac{1}{m}.$$

考虑Q是P中含 E_m 中点的区间.因此:

$$[c,d) \in \mathcal{Q} \implies \bigvee_{[c,d]} f \ge f(d) - f(c) + \frac{d-c}{m}.$$

故

$$\begin{split} \bigvee_{[a,b]} f &= \left(\sum_{I \in \mathcal{Q}} + \sum_{I \notin \mathcal{Q}}\right) \bigvee_{I} f \geqslant \sum_{\mathcal{P}} |f(x_{\bullet+1}) - f(x_{\bullet})| + \sum_{\mathcal{Q}} \frac{x_{\bullet+1} - x_{\bullet}}{m} \\ &\geqslant \bigvee_{[a,b]} f - \varepsilon + \frac{m(E_m)}{m}. \end{split}$$

故 $m(E_m) = 0$. 另一个更简短 (但是要使用 FUBINI 微分定理) 的证明如下:

不妨令 f 连续,则由于不能用积分得到 V' 与 |f'| 的关系,因此需要一步到位获得 V'. 由 V 单增故考虑 Fubini 微分定理. 令 g_n 对应分划 \mathcal{P}_n 满足

$$\sum_{\mathcal{P}_n} |f(x_{\bullet+1}) - f(x_{\bullet})| \le \bigvee_{[a,b]} f - \frac{1}{2^n}, \quad \mathcal{P}_{\bullet} \subset \mathcal{P}_{\bullet+1}.$$

 g_n 的行为是: 在 \mathfrak{P}_n 的子区间 $[x_{\bullet}, x_{\bullet+1}]$ 上, 若 $f(x_{\bullet+1}) < f(x_{\bullet})$ 则将 f 在此区间内上下翻转, 反之不变, 在每个子区间这样做之后首尾连接得到 g_n (设 $g_0 = f$).则 $g_{\bullet+1} - g_{\bullet}$ 单增且 $|g_n - V| \leq 1/2^n$ (易证明 $V - g_{\bullet}$ 单增), 因此 $g_{\bullet} \to V$. 由 Fubini 微分定理得到 $\lim g_{\bullet}'$ a.e. V'. 由 $V' \geq 0$ 得到 |f'| a.e. $\lim |g_{\bullet}'|$ a.e. V'.

练习5²² 证明∀E ⊂ ℝ 可测,则

$$m\left(E\setminus\left\{x\mid\lim_{h\to 0}\frac{m(E\cap(x-h,x+h))}{2h}=1\right\}\right)=0.$$

解答 5^{22} 这是 Lebesgue 微分定理的直接推论, 在不使用的情形下我们考虑 $\mathbb{1}_E$ 作为可积函数的情形:

$$\left(x \mapsto \int_{-\infty}^{x} \mathbb{1}_{E}\right)' \stackrel{\text{a.e.}}{=} \mathbb{1}_{E}.$$

因此 $\lim_{h\to 0} m(E\cap(x-h,x+h))/_{2h} = \lim_{h\to 0} \int_{x-h}^{x+h} \left[\mathbb{1}_E/_{2h} \right] \stackrel{\text{a.e.}}{=} \mathbb{1}_E$. 因此测度有限的情形得到,测度无限的情形由测度有限的可数并得到.

注. 以下将给出 LEBESGUE 微分定理的一个证明.

定理 (Lebesgue 微分定理). 对 $f \in \mathfrak{L}^1_{loc}(\mathbb{R}^n)$, 有

$$\lim_{r\to 0} \frac{1}{m(B(x))} \int_{B(x)} f \stackrel{a.e.}{=} f(x).$$

证明. 此定理证明是非常经典的极大函数估计. 首先有以下事实:

- $f \in C_c^{\infty}(\mathbb{R}^n)$ 的情形是显然成立的;
- C_c[∞](ℝⁿ) 在 L¹(ℝⁿ) 中稠密;
- 由于微分是局部性质,因此可以将 ℒ¹_{loc}(ℝⁿ) 换成 ℒ¹(ℝⁿ).

我们需要证明的是

$$m\bigg(\bigg\{x\in\mathbb{R}^n\ \bigg|\ \limsup_{r\to 0}\bigg|\frac{1}{m(B_r(x))}\int_{B_r(x)}f-f(x)\bigg|>\lambda\bigg\}\bigg)=0,\quad\forall\lambda>0.$$

记 $\int_{B_{c}(x)} [f/_{m(B_r(x))}] = \mathsf{A}_r f(x), g \in C^\infty_{\mathsf{c}}(\mathbb{R}^n), \|f-g\|_1 < \varepsilon$, 则由经典 $\varepsilon/_3$ 讨论有

$$\limsup_{r\to 0}|\mathsf{A}_rf-f|\leqslant \limsup_{r\to 0}|\mathsf{A}_rf-\mathsf{A}_rg|+\limsup_{r\to 0}|\mathsf{A}_rg-g|+\limsup_{r\to 0}|f-g|.$$

由于 g 性质良好, 故 $\limsup_{r\to 0} |A_r g - g| = 0$. 同时 $|f - g| > \varepsilon$ 的测度可以被 $||f - g||_1$ 控制 (Сневузнеv 不等式), 故只需讨论 $\limsup_{r\to 0} |A_r f - A_r g|$.

"极大函数"的主要作用是通过考虑估计最差的情形来对一些在稠密集上的命题 推广到整个空间,只需该极大函数具有某种弱有界性.以下是考虑以上均值过程的极 大函数弱有界性的证明:

定理 (HARDY – LITTLEWOOD 极大不等式). 记号如上, 令 $Mf(x) = \sup_{r>0} A_r |f|(x)$. 则

- Mf是可测的;
- $m(\{Mf > \lambda\}) < 5^n ||f||_1/\lambda$.

证明. 证明分为两步:

• 先证明 $\forall r > 0$, $A_r f(x)$ 都对 $x \in \mathbb{R}^n$ 连续. 令 $x \to x_0$, 则

$$\mathbb{1}_{B_r(x)}(y) \to \mathbb{1}_{B_r(x_0)}(y), \quad |y - x| \neq r.$$

因此由 Dcr 得到

$$\lim \int_{B_r(x)} f \xrightarrow{\sup |\mathbb{1}_{B_r(x)} f| \leqslant |f|} \int_{B_r(x_0)} f.$$

故 $A_r f(x) \rightarrow A_r(x_0)$.

由 $A_r f(x)$ 连续得到 $\{Mf > a\} = \bigcup_{r>0} \{A_r | f| > a\}$ 是开集, 因此可测.

• 令 $E = \{ Mf > \lambda \}$. 则 $\forall x \in E, \exists r_x$ 满足 $A_{r_x} |f| > \lambda$. 故

$$E \subset \bigcup_{x \in E} B_{r_x}(x).$$

由 [VITALI 覆盖定理] 可以得到可数不交球族 $\{B_{\bullet}\}$, 且 $\bigcup_{x \in E} B_{r_{\bullet}}(x) \subset \bigcup 5B_{\bullet}$. 故

$$m(E) \le 5^n \sum m(B_{\bullet}) \le \frac{5^n}{\lambda} \sum \int_{\mathcal{B}} |f| \le \frac{5^n ||f||_1}{\lambda}.$$

HARDY - LITTLEWOOD 极大函数 Mf 是 LEBESGUE 微分定理中均值过程的最坏 描述,上述不等式则是弱有界性的体现. 由之前的讨论:

$$m^*\Big(\Big\{\limsup_{r\to 0}|\mathsf{A}_rf-f|>\lambda\Big\}\Big)\leqslant m(\{|f-g|>\lambda\})+m(\{\mathsf{M}(f-g)>\lambda\}).$$

前者由 Chebyshev 不等式: $\leq m(\{|f-g| > \lambda\}) \leq \|f-g\|_1/\lambda$, 后者由极大不等式: $m(\{M(f-g) > \lambda\}) \leq 5^n \|f-g\|_1/\lambda$. 由 $\|g-f\|_1 < \varepsilon$ 即得.

LEBESGUE 微分定理可以证明一些看上去非常刁钻的结论:

• 若 $f \in \mathcal{L}^1_{loc}(\mathbb{R}^n)$ 满足 $\forall \phi \in C^\infty_c(\mathbb{R}^n)$ 都有 $\int f \phi = 0$, 则 $f \stackrel{\text{a.e.}}{=} 0$. 只需考虑令 ϕ 逼 近 $\mathbb{1}_{B_{r}(x)}$ 即可: $\diamondsuit \phi|_{B_{r}(x)} \equiv 1$, supp $\phi \in B_{r+\varepsilon}(x)$, 则

$$\frac{1}{m(B_r(x))}\left|\int f\phi - \int_{B_r(x)} f\right| \leq \frac{1}{m(B_r(x))}\int_{B_{r+s}(x)\setminus B_r(x)} |f|.$$

由积分的绝对连续性知其 \rightarrow 0, 故 $\int_{B_r(x)} f = 0 \implies f \stackrel{\text{a.e.}}{=} 0$. 这意味这我们可以将 \mathfrak{L}^p 空间嵌入到分布空间中去.

• 令 $f: \mathbb{R} \to \mathbb{C}$ 可测, 且 $\{a_{\bullet}\}$ 是递减于 0 的列, $f(\cdot + a_{\bullet}) \stackrel{\text{a.e.}}{=} f$, 证明 f 几乎处处是常数. 直接可以得到

$$\exists y \in \mathbb{R}, \quad \int_{x-a_{\bullet}}^{x+a_{\bullet}} f \overset{\text{a.e. } x}{=} \int_{y-a_{\bullet}}^{y+a_{\bullet}} f.$$

然后由微分定理得到.

图 6: 枕头 >>

https://www.ikea.com/in/en/p/skogsfraeken-pillow-high-70460531/

第六章 LEBESGUE 空间

数学分析中有一个类似于先有鸡先有蛋的难 题: LEBESGUE 积分和 LEBESGUE 测度到底哪个先出现? 于我而言都不是;首先出现的是 \mathcal{L}^1 空间.

> Functional Analysis PETER LAX

练习 6^1 设 $f_{\bullet} \in \mathfrak{L}^{p_{\bullet}}$ 并且 $\operatorname{ind}(p_{\bullet}) \leq 1$, 则证明

$$\left\| \prod f_{\bullet} \right\|_{\operatorname{ind}(p_{\bullet})} \leq \prod \left\| f_{\bullet} \right\|_{p_{\bullet}}.$$

解答 6^1 只有两个 f_{\bullet} 时,有

$$f^{\mathrm{ind}(p_{\bullet})}_{\bullet} \in \mathfrak{L}^{p_{\bullet}/\mathrm{ind}(p_{\bullet})} \implies \prod f_{\bullet} \overset{\mathrm{H\"{o}}\mathrm{LDER}}{\leqslant} \prod \|f^{\mathrm{ind}(p_{\bullet})}_{\bullet}\|_{p_{\bullet}/\mathrm{ind}(p_{\bullet})} = \prod \|f_{\bullet}\|_{p_{\bullet}}.$$

假定 k 个函数的情形已经证明完毕, 则 k + 1 个的情形:

$$\left\| \prod_{j=1}^k f_j \cdot f_{k+1} \right\|_{\operatorname{ind}(p_1, \dots, p_{k+1})} \leqslant \| f_{k+1} \|_{p_{k+1}} \left\| \prod_{j=1}^k f_j \right\|_{\operatorname{ind}(p_1, \dots, p_k)}.$$

因此归纳即得.

令 m(E) < ∞, 证明 $\mathfrak{L}^p(E)$ 收敛可以推出 $\mathfrak{L}^1(E)$ 收敛, $p \ge 1$.

解答 62 由 HÖLDER 不等式:

$$\int \|f\| \leq \|f\|_p \|1\|_q = \|f\|_p m(E)^q.$$

练习 6³ 当 $m(E) < \infty$, 对于 $f \in \mathfrak{L}^p(E)$, 试证存在实数 c_f 使得

$$||f - c_f||_p = \inf\{ ||f - c||_p | c \in \mathbb{C} \}.$$

证明 p = 2 时, c_f 唯一.

解答 6^3 不妨令 $m(E) \neq 0$. 则令 $g(c) = \|f - c\|_p$, 由于

$$|\|f - c\|_p - \|f - d\|_p| \le \|c - d\|_p.$$

故 g 连续, 由 $g \ge 0$, $g(\infty) = \infty$, 故有最小值因此存在性证得. 现证明 p = 2 情形的唯一性, 令 c_0 , c_1 均满足题意, 则直接计算得到

$$\left\| f - \frac{c_0 + c_1}{2} \right\|_2^2 + \left\| \frac{c_0 - c_1}{2} \right\|_2^2 = \| f - c_0 \|_2^2.$$

(将 $\|f\|_2^2$ 拆成 $\int f\bar{f}$ 计算) 因此 $c_0-c_1=0$, 否则 $c_0+c_1/2$ 是更优常数, 矛盾!

注. 对 $1 和 <math>0 < m(E) < \infty$, 唯一性是成立的. 对于上面的问题, 我们做单位化后可以这样描述:

$$\|f - c_0\|_p = \|f - c_1\|_p = 1, \quad c_0 \neq c_1, \quad \left\|f - \frac{c_0 + c_1}{2}\right\|_p < 1.$$

由 MINKOWSKI 不等式, $\|f - c_0 + c_1/2\|_p \le 1$, 由于 MINKOWSKI 不等式取等当且仅当 (可以从其证明和 HÖLDER 不等式等号的成立性得到):

- 1. $p \in (1, \infty), \|f + g\|_{p} \neq 0$ 时, 需要下面两者同时成立.
 - 1. |f|和|q|线性相关;
 - 2. $\bigcup_{a\geq 0} \{g = af\} \cup \bigcup_{b\geq 0} \{bg = f\} \cup \{g + f = 0\}$ 几乎处处;

也即是 f,g 非负线性相关.

- 2. p = 1, $||f + g||_1 \neq 0$ 时, 仅需 $\bigcup_{a \geq 0} \{g = af\} \cup \bigcup_{b \geq 0} \{bg = f\}$ 几乎处处;
- 3. $p \in [1, \infty), \|f + g\|_p = 0$ 时, 须有 $\|f\|_p + \|g\|_p = 0$.

因此对1 ,有

$$2 \left\| f - \frac{c_0 + c_1}{2} \right\|_p = \left\| f - c_0 \right\|_p + \left\| f - c_1 \right\|_p \iff f$$
 几乎处处为常数或 $c_0 = c_1$.

因此唯一性证毕.

练习 6^4 假定 $p \in (1, \infty)$, 举例说明下面集合非空:

- 1. $\mathfrak{L}^p(\mathbb{R}_{\geqslant 1}) \setminus \bigcup_{\delta > 0} L^{p+\delta}(\mathbb{R}_{\geqslant 1});$
- **2.** $\mathfrak{L}^p(\mathbb{R}_{\geqslant 1}) \setminus \bigcup_{0 < \delta \leqslant p-1} \mathfrak{L}^{p-\delta}(\mathbb{R}_{\geqslant 1});$
- 3. $\bigcap_{0<\delta\leqslant p-1}\mathfrak{L}^{p-\delta}(\mathbb{R}_{\geqslant 1})\setminus\mathfrak{L}^p(\mathbb{R}_{\geqslant 1}).$

解答 64 关键思路是利用 log 来诱导 p 积分.

1.
$$f(x) = \left(\frac{\mathbb{1}_{(1, 3/2)}(x)}{(x-1)\log^2(x-1)}\right)^{1/p}$$
.

2.
$$f(x) = \left(\frac{1}{x \log^2(x+1)}\right)^{1/p}$$
.

3.
$$f(x) = \frac{\mathbb{1}_{(1,2)}(x)}{(x-1)^{1/p}}$$
.

! 练习 6⁵ 今 $f \in \mathcal{L}^p(E)$, $E \subset \mathbb{R}^n$, $p \in (1, \infty)$. 若定义等价类

$$[f] = \{ g \in \mathfrak{L}^p(E) \mid f \stackrel{\text{a.e.}}{=} g \}.$$

试证:

- 每个等价类中至多含有一个连续函数;
- 有的等价类中不含连续函数.

解答 6^5 第一款大概只在 E 中不存在零测非空开集的情形下成立, 也即:

$$\forall U \stackrel{\text{open}}{\subset} \mathbb{R}^n, \quad U \cap E \neq \emptyset \implies m(E \cap U) > 0.$$

最显然的反例无非是 E 中含孤立点. 若这样的 U 存在, 只需考虑 0 和 $x \mapsto \inf\{|x - y|\}$ $y||y \in U^{c}$ }即可. 反之由于

第二款仅需考虑对连续函数 g, {g > a} 必然是 E 中开集, 只需找一个集合 $F \subset R$ 与任何 E 中开集的对称差都恒正再令 $f = \mathbb{1}_{E}$ 即可. 另一个简明的例子如 $E = \mathbb{R}^n$, $f = \mathbb{1}_{[0,1]^n}$.

练习 6^6 试证当 $m(E) < \infty$ 时,任意一个在 $\mathfrak{L}^p(E)$ 中收敛的函数列,在 $\mathfrak{L}^r(E)$ 中也 收敛,并且极限函数相同.其中 $1 \le r < p$.

解答 66 见[62].

练习 6^7 若 $\{f_{\bullet}\}$ 是 $\mathcal{L}^p([0,1])$ 中的函数列, 且依测度收敛于 $0, \|f_{\bullet}\|_p \leq 1$. 证明:

$$r \in [1, p) \implies \int |f_{\bullet}|^r \to 0.$$

解答 6^7 令 $E_{\bullet} = \{|f_{\bullet}| > \varepsilon\}$,则 $m(E_{\bullet}) \to 0$.估计 $\int |f_{\bullet}|^r$ 有:

$$\int |f_{\bullet}|^r = \int_{E_{\bullet}} |f_{\bullet}|^r + \int_{E^{\varsigma}_{\bullet}} |f_{\bullet}|^r \leq m(E_{\bullet})^{p-r/p} + \varepsilon.$$

由 ε \rightarrow 0 得到.

练习 6^8 若 $\{f\} \cup \{f_{\bullet}\} \subset \mathfrak{L}^p(\mathbb{R})$,并且 $f_{\bullet} \xrightarrow{\text{a.e.}} f$,证明

$$f_{\bullet} \xrightarrow{\mathfrak{L}^p} f \iff \|f_{\bullet}\|_p \to \|f\|_p.$$

解答 68 (⇐=)定义.

(\Longrightarrow) 假令 $\lim \|f_{\bullet \bullet} - f\|_p > \varepsilon$. 为了利用 FL, 我们需要借用控制函数 $2^p (|f_{\bullet}|^p + |f|^p)$:

$$\begin{split} 2^{p+1} \|f\|_{p}^{p} &= \int \lim \left(2^{p} (|f_{\bullet \bullet}|^{p} + |f|^{p}) - |f_{\bullet \bullet} - f|^{p} \right) \\ &\leq \lim \inf \int \left(2^{p} (|f_{\bullet}|^{p} + |f|^{p}) - |f_{\bullet \bullet} - f|^{p} \right). \end{split}$$

由于 $\|f_{\bullet}\|^p \to \|f\|^p$, 两端相减可以得到 $\limsup \|f_{\bullet \bullet} - f\|_p \le 0$, 即证所欲.

练习 69 设 $K \in \mathfrak{L}^0(\mathbb{R}^2)$, 且 $\int |K(x,y)| \, \mathrm{d} x \leq M$, $\int |K(x,y)| \, \mathrm{d} y \leq M$ 对几乎处处的 x 和 y 都成立. 证明算子:

$$Tf(x) = \int K(x, y)f(y) dy.$$

是强 (p,p) 的,即 $\sup_{\|f\|^p\neq 0}\|Tf\|^p/\|f\|^p<\infty$. 其中 $p\in [1,\infty]$.

解答 6^9 先证明 $p \in (1, \infty)$ 的版本.

先凑出 HÖLDER 不等式:

$$\begin{split} \int |K(x,-)f| &= \int |K(x,-)|^{1/q} (|K(x,-)|^{1/p}|f|) \leq \|K(x,-)^{1/q}\|_q \||K(x,-)|^{1/p}f\|_p \\ &\leq M^{1/q} \||K(x,-)|^{1/p}f\|_p. \end{split}$$

(对几乎处处的 x 成立), 直接积分:

$$\int \left(\int |K(x,y)f(y)| \, \mathrm{d}y \right)^p \, \mathrm{d}x \le M^{p/q} \int \|K(x,-)f^p\|_1 \, \mathrm{d}x \le M^{1+p/q} \|f\|_p^p.$$

 $\mathbb{P} \|Tf\|_p \leqslant M \|f\|_p.$

p=1 时. $\int \left[\int |K(x,y)f(y)| \,\mathrm{d}y\right] \,\mathrm{d}x \leqslant \int \left[\int |K(x,y)f(y)| \,\mathrm{d}x\right] \,\mathrm{d}y \leqslant M \int |f| = M\|f_1\|.$ $p=\infty$ 时, $\left|\int K(x,y)f(y) \,\mathrm{d}y\right| \leqslant Mf(x)$ 对几乎处处的 x 成立, 因此 $\|Tf\|_{\infty} \leqslant M\|f\|_{\infty}.$

练习 6¹⁰ 若 $f_{\bullet} \xrightarrow{\mathfrak{L}^2} f, g_{\bullet} \xrightarrow{\mathfrak{L}^2} g$, 证明 $f_{\bullet}g_{\bullet} \xrightarrow{\mathfrak{L}^1} fg$.

解答 610 只需注意到

$$\int |f_{\bullet}g_{\bullet} - fg| \leqslant \int |f_{\bullet}||g - g_{\bullet}| + \int |g||f - f_{\bullet}| \leqslant M(\|f - f_{\bullet}\|_{2} + \|g - g_{\bullet}\|_{2}).$$
 即可.

练习 6ⁿ 设 $\{f_{\bullet}\}$ $\subset \mathfrak{L}^{2}$, 并且存在 $g \in \mathfrak{L}^{2}$ 满足 $|f_{\bullet}| \leq g$. 证明

$$f_{\bullet} \xrightarrow{\mathfrak{L}^2} f \iff f_{\bullet} \xrightarrow{\text{mea.}} f.$$

解答 $\mathbf{6}^{11}$ (\Longrightarrow)由 $\|f_{\bullet} - f\|^2 \le 4g^2 \in \mathfrak{L}^1$ 和依测度控制收敛定理得到. (\Longrightarrow) 由 0 $\leftarrow \int |f_{\bullet} - f| \ge \varepsilon^2 m(\{|f_{\bullet} - f| > \varepsilon\})$ 得到.

练习 6^{12} 令 $f \in \mathfrak{L}^0$, $p \in (1, \infty)$, 若:

$$\forall g \in \mathfrak{L}^p(E), \quad \int |fg| < \infty \iff f \in \mathfrak{L}^q.$$

且

$$||f||_q = \sup_{||g||_p \le 1} \left| \int fg \right|.$$

解答 612 先证后者:

$$\forall f \in \mathfrak{L}^q, \quad \|f\|_q = \sup_{\|g\|_p \leqslant 1} \left| \int fg \right|.$$

令 $g = (\overline{\operatorname{sgn}} f)|f|^{q-1}||f||_q^{1-q}$. 故 $||g||_p^p = \int |(\overline{\operatorname{sgn}} f)|f|^{q-1}||f||_q^{1-q}|^p = 1$. 且

$$\left| \int fg \right| = \int \frac{f^q}{\|f\|_q^{q-1}} = \|f\|_q.$$

若题意中 $f \notin \mathfrak{L}^q$, 但 $\forall g \in \mathfrak{L}^p(E)$, $\int |fg| < \infty$. 令 E_n 满足:

$$4^n < \int_{E_n} |f|^q < \infty, \quad f_n = f \mathbb{1}_{E_n}, \quad g_n = \frac{(\overline{\operatorname{sgn}} f_n)|f_n|^{q-1}}{\|f_n\|_a^{q-1}}.$$

因此 $\int |fg_n| \ge \int |f_ng_n| = \|f_n\|_q = 2^n$. 令 $g = \sum_{n \ge 1} 2^{-n}|g_n|$, 则

$$\|g\|_p \le \sum_{n\ge 1} \frac{\|g_n\|_p}{2^n} = 1, \quad \int |fg| \ge \frac{1}{2^n} \int |fg_n| = 2^n.$$

矛盾!

练习 6¹⁴ 设 $f \in \mathfrak{L}^2([0,1])$, 令 $Tf(x) = \int_0^x f$, 证明:

$$||Tf||_2 < ||f||_2$$
, 除非 $f = 0$.

解答 6^{14} 假如令 f $\stackrel{\text{a.e.}}{\neq}$ 0,则存在 $z \in [0,1)$, $m(\{f \neq 0\}_{[0,z]}) > 0$. 在 $[6^9]$ 中利用 $K_c(x,t) = \mathbb{1}_{\{(a,b)\mid 0 \leq a \leq b \leq c\}}(x,t)$ 得到

$$||T(f\mathbb{1}_{[0,z]})||_2 \le z||f\mathbb{1}_{[0,z]}||_2, \quad ||T(f\mathbb{1}_{[z,1]})||_2 \le ||f\mathbb{1}_{[z,1]}||_2.$$

故 $||Tf||_2 \le ||T(f\mathbb{1}_{[0,z]})||_2 + ||T(f\mathbb{1}_{[z,1]})||_2 < ||f||_2$.

练习 6^{15} 证明: 若 $f \in \mathfrak{L}([0,1])$, 则 $f \in \mathfrak{L}^2([0,1])$ 当且仅当, 存在增函数 g 使得

$$\forall [a,b] \in [0,1], \quad \left| \int_a^b f \right|^2 \leq (g(b)-g(a))(b-a).$$

解答 6^{15} (\Longrightarrow) 由 Hölder 不等式, $\left| \int_a^b f \right|^2 \le \int_a^b |f|^2 \int_a^b 1 = (b-a) \int_a^b |f|^2$. 只需令 $g(x) = \int_0^x |f|^2$ 即可.

(\leftarrow) 由上, 容易猜想 g 应当就是 $|f|^2$ 的变上限积分, 因此考虑凑微分的变形:

$$\frac{\left|\int_{a}^{b} f\right|}{b-a} \leqslant \sqrt{\frac{g(b)-g(a)}{b-a}}.$$

令 $b \rightarrow a$ 得到 $|f(a)| \leq \sqrt{g'(a)}$ 对几乎所有 a 成立. 因此

$$\int |f|^2 \leqslant \int |g'| \leqslant g(b) - g(a).$$

练习 6¹⁶ 假定 $\{\varphi_{\bullet}\}$ 是 \mathfrak{L}^2 上的标准正交基, $\{\psi_{\bullet}\}$ 是正交族且满足 $\sum \|\varphi_{\bullet} - \psi_{\bullet}\|_2^2 < 1$, 证明 $\{\psi_{\bullet}\}$ 也是完备的.

解答 6^{16} 假定 $f \perp \bigoplus \psi_{\bullet}$. 那么 $\langle f, \varphi_{\bullet} \rangle = \langle f, \varphi_{\bullet} - \psi_{\bullet} \rangle$. 由 Parseval 等式:

$$\begin{split} \|f\|_2^2 &= \sum |\langle f, \varphi_\bullet \rangle|^2 = \sum |\langle f, \varphi_\bullet - \psi_\bullet \rangle|^2 \\ &\leq \sum \|f\|_2^2 \|\varphi_\bullet - \psi_\bullet\|_2^2 \implies \sum \|\varphi_\bullet - \psi_\bullet\|_2^2 \geq 1. \end{split}$$

矛盾!

练习 6^{17} 设 $\{\varphi_{\bullet}\}$ 是 $\mathfrak{L}^2([a,b])$ 的标准正交基, $f\in\mathfrak{L}^2([a,b])$. 试证明对 (a,b) 的任一个可测子集 E 有

$$\int_{E} f = \sum \langle f, \varphi_{\bullet} \rangle \int_{E} \varphi_{\bullet}.$$

解答 6^{17} 由 $f = \sum \langle f, \varphi_{\bullet} \rangle \varphi_{\bullet}$ 只需证明

$$\lim_{N\to\infty}\int \sum\nolimits_{\geqslant N}\langle f,\varphi_{\bullet}\rangle \varphi_{\bullet}\to 0.$$

即可. 由 HÖLDER 不等式: $|\int \sum_{\geqslant N} \langle f, \varphi_{ullet} \rangle \varphi_{ullet}| \le \left(\int |\sum_{\geqslant N} \langle f, \varphi_{ullet} \rangle \varphi_{ullet}|^2\right)^{1/2} \sqrt{m(E)}$. 积 分号里的东西可以直接用 PARSEVAL 等式估计:

$$\int \left| \sum\nolimits_{\geqslant N} \langle f, \varphi_\bullet \rangle \varphi_\bullet \right|^2 = \sum\nolimits_{\geqslant N} \int \left| \langle f, \varphi_\bullet \rangle \varphi_\bullet \right|^2 \xrightarrow{f \in \mathfrak{L}^2} 0.$$

因此 $\int_{F} f = \sum \langle f, \varphi_{\bullet} \rangle \int_{F} \varphi_{\bullet}$.

图 7: 感谢您翻到最后一页,该图是用于反馈的二维码. >>