LIMITE SPECTRALE

Soit G un groupe réductif connexe (dans la suite G sera G_{2n} , SO_{2n+1} ou un quotient, sous-groupe de Levi de ces groupes). On note Temp(G) l'ensemble des classes d'isomorphismes de représentations irréductibles tempérées de G. On note Z_G le centre de G et A_G le tore déployé maximal dans Z_G . On équipe F avec la mesure de Haar dx qui est autoduale par rapport à ψ . On équipe alors A_M par la mesure $(d^{\times}x)^{\wedge \dim(A)}$ où $d^{\times}x = \frac{dx}{|x|_F}$ est la mesure de Haar sur F^{\times} .

Soit M un sous-groupe de Levi de G et $\sigma \in \Pi_2(M)$. On note W(G,M) le groupe de Weyl associé au couple (G,M) et $W(G,\sigma)$ le sous-groupe de W(G,M) fixant σ . Soit $\widehat{A_M}$ le dual unitaire de A_M et $d\widetilde{\chi}$ la mesure de Haar duale de celle de A_M . On équipe alors $\widehat{A_M}$ de la mesure $d\chi$ défini par

(1)
$$d\chi = \gamma^*(0, 1, \psi)^{-\dim(A_M)} d\widetilde{\chi},$$

où $\gamma^*(0,1,\psi)=\lim_{s\to 0^+}\frac{\gamma(s,1,\psi)}{s\log(q_F)}.$ Il existe une unique mesure $d\sigma$ sur $\Pi_2(M)$ tel que l'isomorphisme local $\sigma\in\Pi_2(M)\mapsto\omega_\sigma\in\widehat{A_M}$ préserve localement les mesures. On définit alors la mesure $d\pi$ sur $\mathsf{Temp}(\mathsf{G})$ localement autour de $\pi\simeq\mathsf{Ind}_M^\mathsf{G}(\sigma)$ par la formule

(2)
$$d\pi = |W(G, M)|^{-1} (Ind_{M}^{G})_{*} d\sigma.$$

La mesure $d\pi$ est choisie pour vérifier la relation 5.

On note $PG_{2n}=G_{2n}(F)/Z_{2n}(F)$. Soit $f\in S(PG_{2n})$, pour $\pi\in Temp(PG_{2n})$, on définit f_π par

(3)
$$f_{\pi}(q) = \operatorname{Tr}(\pi(q)\pi(f^{\vee})),$$

pour tout $g \in PG_{2n}$, où $f^{\vee}(x) = f(x^{-1})$.

Proposition 0.1. Il existe une unique mesure $\mu_{\mathsf{PG}_{2n}}$ sur $\mathsf{Temp}(\mathsf{PG}_{2n})$ telle que

$$\mathsf{f}(\mathsf{g}) = \int_{\mathsf{Temp}(\mathsf{PG}_{2n})} \mathsf{f}_{\pi}(\mathsf{g}) d\mu_{\mathsf{PG}_{2n}}(\pi),$$

pour tous $f \in S(PG_{2n})$ et $g \in PG_{2n}$. De plus, on a l'égalité de mesure suivante :

$$d\mu_{\mathsf{PG}_{2\pi}}(\pi) = \frac{\gamma^*(0,\pi,\overline{Ad},\psi)}{|\mathsf{S}_\pi|}d\pi,$$

 $\begin{array}{ll} \text{où } \gamma^*(0,\pi,\overline{Ad},\psi) = \lim_{s \to 0} (slog(q_F)^{-n_{\pi,\overline{Ad}}} \gamma(s,\pi,\overline{Ad},\psi), \text{ avec } n_{\pi,\overline{Ad}} \text{ l'ordre } \text{ du } \\ \text{z\'ero } \text{ de } \gamma(s,\pi,\overline{Ad},\psi) \text{ en } s = 0. \text{ Pour } \pi \in \text{Temp}(\mathsf{PG}_{2n}) \text{ sous-repr\'esentation } \text{ de } \\ \pi_1 \times ... \times \pi_k, \text{ avec } \pi_i \in \Pi_2(\mathsf{G}_{n_i}), \text{ le facteur } |S_\pi| \text{ est le produit } \prod_{i=1}^k n_i. \end{array}$

On note $\Phi(G)$ l'ensemble des paramètres de Langlands tempérés de G et Temp(G)/Stab le quotient de Temp(G) par la relation d'équivalence $\pi \equiv \pi' \iff \phi_{\pi} = \phi_{\pi'}$, où ϕ_{π} est le paramètre de Langlands associé à π .

On peut définir une application $\Phi(SO(2m+1)) \to \Phi(G_{2m})$, rappelons qu'un élément de $\Phi(SO(2m+1))$ est un morphisme admissible $\phi: W_F' \to {}^LSO(2m+1)$. Or ${}^LSO(2m+1) = Sp_{2m}(\mathbb{C})$, l'application $\Phi(SO(2m+1)) \to \Phi(G_{2m})$ est définie par l'injection de $Sp_{2m}(\mathbb{C})$ dans $GL_{2m}(\mathbb{C})$. La correspondance de Langlands locale pour

SO(2m+1) nous permet de définir une application de transfert $T: Temp(SO(2m+1))/Stab \to Temp(G_{2m})$. On sait caractériser l'image de l'application de transfert. Plus exactement,

$$(6) \qquad \pi \in \mathsf{T}(\mathsf{Temp}(\mathsf{SO}(2n+1))/\mathsf{Stab}) \iff \pi = \left(\bigvee_{i=1}^k \tau_i \times \widetilde{\tau_i} \right) \times \bigvee_{j=1}^l \mu_i$$

 $\mathrm{avec}\ \tau_i \in \Pi_2(\mathsf{G}_{\mathfrak{n}_i})\ \mathrm{et}\ \mu_j \in \mathsf{T}(\mathsf{Temp}(\mathsf{SO}(2\mathfrak{m}_j+1))/\mathsf{Stab}) \cap \Pi_2(\mathsf{G}_{2\mathfrak{m}_j}).$

Proposition 0.2. *Soit* $\phi \in S(Temp(PG_{2n}))$, on a

$$(7) \qquad \begin{aligned} &\lim_{s\to 0^+} n\gamma(s,1,\psi) \int_{\mathsf{Temp}(\mathsf{PG}_{2\pi})} \varphi(\pi)\gamma(s,\pi,\Lambda^2,\psi)^{-1} d\mu_{\mathsf{PG}_{2\pi}} = \\ &\int_{\mathsf{Temp}(\mathsf{SO}_{2\pi+1})/\mathsf{Stab}} \varphi(\mathsf{T}(\sigma)) \frac{\gamma^*(0,\sigma,\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma}|} d\sigma. \end{aligned}$$

 $\begin{array}{l} \textit{Pour} \ \sigma \in \ \mathsf{Temp}(\mathsf{SO}(2n+1)) \ \textit{sous-représentation} \ \textit{de} \ \pi_1 \times ... \times \pi_l \times \sigma_0, \ \textit{avec} \\ \pi_i \in \Pi_2(\mathsf{G}_{\mathfrak{n}_i}) \ \textit{et} \ \sigma_0 \in \Pi_2(\mathsf{SO}(2m+1)), \ \textit{le facteur} \ |\mathsf{S}_{\pi}| \ \textit{est le produit} \ |\mathsf{S}_{\pi_1}| ... |\mathsf{S}_{\pi_l}| |\mathsf{S}_{\sigma_0}| \ ; \\ \textit{où} \ |\mathsf{S}_{\sigma_0}| = 2^k \ \textit{tel que} \ \mathsf{T}(\sigma_0) \simeq \tau_1 \times ... \times \tau_k \ \textit{avec} \ \tau_i \in \Pi_2(\mathsf{G}_{\mathfrak{m}_i}). \end{array}$

Démonstration. D'après la relation 5, on a

(8)

$$\int_{\mathsf{Temp}(\mathsf{PG}_{2n})} \varphi(\pi) \gamma(s,\pi,\Lambda^2,\psi)^{-1} d\mu_{\mathsf{PG}_{2n}}(\pi) = \int_{\mathsf{Temp}(\mathsf{PG}_{2n})} \varphi(\pi) \frac{\gamma^*(0,\pi,\overline{Ad},\psi)}{|S_\pi| \gamma(s,\pi,\Lambda^2,\psi)} d\pi.$$

Soit $\pi \in \mathsf{Temp}(\mathsf{PG}_{2n})$. En prenant des partitions de l'unité, on peut supposer que φ est à support dans un voisinage U suffisamment petit de π . On écrit la représentation π sous la forme

$$(9) \hspace{1cm} \pi = \left(\bigotimes_{i=1}^t \tau_i^{\times m_i} \times \widetilde{\tau_i}^{\times n_i} \right) \times \left(\bigotimes_{j=1}^u \mu_j^{\times p_j} \right) \times \left(\bigotimes_{k=1}^\nu \nu_k^{\times q_k} \right),$$

οù

- $\tau_i \in \Pi_2(G_{d_i})$ vérifie $\tau_i \not\simeq \widetilde{\tau_i}$ pour tout $1 \leqslant i \leqslant t$. De plus, pour tous $1 \leqslant i < i' \leqslant t$, $\tau_i \not\simeq \tau_{i'}$ et $\tau_i \not\simeq \widetilde{\tau_{i'}}$.
- $\mu_j \in \Pi_2(G_{e_j})$ vérifie $\mu_j \simeq \widetilde{\mu_j}$ et $\gamma(0, \mu_j, \Lambda^2, \psi) \neq 0$ pour tout $1 \leqslant j \leqslant u$. De plus, pour tous $1 \leqslant j < j' \leqslant u$, $\mu_j \not\simeq \mu_{j'}$.
- $\nu_k \in \Pi_2(\mathsf{G}_{\mathsf{f}_k})$ vérifie $\gamma(0,\nu_k,\Lambda^2,\psi) = 0$ (et donc $\nu_k \simeq \widetilde{\nu_k}$) pour tout $1 \leqslant k \leqslant \nu$. De plus, pour tous $1 \leqslant k < k' \leqslant \nu, \, \nu_k \not\simeq \nu_{k'}$.

$$(10) \qquad \qquad M = \left(\prod_{i=1}^t G_{d_i}^{\mathfrak{m}_i + \mathfrak{n}_i} \times \prod_{j=1}^u G_{e_j}^{\mathfrak{p}_j} \times \prod_{k=1}^{\nu} G_{f_k}^{\mathfrak{q}_k}\right) / Z_{2n}$$

le sous-groupe de Levi de PG_{2n} qui apparait dans la définition de π . Alors $\pi = \operatorname{Ind}_{M}^{PG_{2n}}(\tau)$ pour une certaine représentation τ de M. On note $X^*(M)$ le groupe des caractères algébriques de M, alors $X^*(M) \otimes \mathbb{R}$ est en correspondance avec l'espace de ces exposants $\mathcal{A} \subset \prod_{i=1}^t (i\mathbb{R})^{m_i+n_i} \times \prod_{j=1}^u (i\mathbb{R})^{p_j} \times \prod_{k=1}^v (i\mathbb{R})^{q_k} = (i\mathbb{R})_M$ qui est l'hyperplan définit par la condition que la somme des coordonnées est nulle. On équipe $(i\mathbb{R})_M$ du produit des mesures de Lebesgue sur $i\mathbb{R}$ et \mathcal{A} de la mesure de Haar telle que la mesure quotient de $(i\mathbb{R})_M/\mathcal{A} \simeq i\mathbb{R}$ soit la mesure de Lebesgue. L'isomorphisme local $\chi \otimes \alpha \in X^*(M) \otimes \mathbb{R} \mapsto |\chi|_F^\alpha \in \widehat{A}_M$ préserve localement les

mesures, où l'on équipe $\widehat{A_M}$ de la mesure $\left(\frac{2\pi}{\log(q)}\right)^{\dim(A_M)}$ d χ . Dans la suite, on rotera les coordonnées de la manière suivante :

$$-- x_i(\lambda) = (x_{i,1}(\lambda),...,x_{i,\mathfrak{m}_i}(\lambda),\widetilde{x_{i,1}}(\lambda),...,\widetilde{x_{i,\mathfrak{n}_i}}(\lambda)) \in (i\mathbb{R})^{\mathfrak{m}_i} \times (i\mathbb{R})^{\mathfrak{n}_i},$$

$$--y_{\mathbf{j}}(\lambda) = (y_{\mathbf{j},1}(\lambda), ..., y_{\mathbf{j},p_{\mathbf{j}}}(\lambda)) \in (i\mathbb{R})^{p_{\mathbf{j}}},$$

$$-z_{\mathbf{k}}(\lambda)=(z_{\mathbf{k},1}(\lambda),...,z_{\mathbf{k},q_{\mathbf{k}}}(\lambda))\in(i\mathbb{R})^{q_{\mathbf{k}}},$$

pour tout $\lambda \in \mathcal{A}$.

On dispose alors d'une application $\lambda \in \mathcal{A} \mapsto \pi_{\lambda} \in \mathsf{Temp}(\mathsf{PG}_{2n})$, où

$$(11) \begin{array}{c} \pi_{\lambda} = \left(\mathop{\times}\limits_{i=1}^{t} \left(\mathop{\times}\limits_{l=1}^{m_{i}} \tau_{i} \otimes |\det|^{\frac{x_{i,l}(\lambda)}{d_{i}}} \right) \times \left(\mathop{\times}\limits_{l=1}^{n_{i}} \widetilde{\tau_{i}} \otimes |\det|^{\frac{x_{i,l}(\lambda)}{d_{i}}} \right) \right) \\ \times \left(\mathop{\times}\limits_{j=1}^{u} \mathop{\times}\limits_{l=1}^{p_{j}} \mu_{j} \otimes |\det|^{\frac{y_{j,l}(\lambda)}{e_{j}}} \right) \times \left(\mathop{\times}\limits_{k=1}^{v} \mathop{\times}\limits_{l=1}^{q_{k}} \nu_{k} \otimes |\det|^{\frac{z_{k,l}(\lambda)}{f_{k}}} \right). \end{array}$$

Cette dernière induit un homéomorphisme $U \simeq V/W(PG_{2n},\tau)$, où V est un voisinage de 0 dans $\mathcal A$ et $W(PG_{2n},\tau)$ est le sous-groupe de $W(PG_{2n},M)$ fixant la représentation τ . Alors

$$(12) \qquad \int_{\Pi} \varphi(\pi) \gamma(s,\pi,\Lambda^2,\psi)^{-1} d\mu_{\mathsf{PG}_{2\pi}}(\pi) = \int_{\Pi} \varphi(\pi) \frac{\gamma^*(0,\pi,\overline{\mathrm{Ad}},\psi)}{|S_{\pi}| \gamma(s,\pi,\Lambda^2,\psi)} d\pi$$

d'après la relation 5. Du choix des mesures $d\pi$ sur $Temp(PG_{2n})$ et $d\lambda$ sur \mathcal{A} , cette intégrale est égale à

$$(13) \qquad \frac{1}{|W(\mathsf{PG}_{2n},\tau)|} \left(\frac{\log(\mathsf{q})}{2\pi}\right)^{\dim(\mathcal{A})} \int_{V} \varphi(\pi_{\lambda}) \frac{\gamma^{*}(0,\pi_{\lambda},\overline{\mathsf{Ad}},\psi)}{|S_{\pi_{\lambda}}|\gamma(s,\pi_{\lambda},\Lambda^{2},\psi)} d\lambda.$$

De plus, on a

(14)
$$|S_{\pi_{\lambda}}| = \prod_{i=1}^{t} d_{i}^{m_{i} + n_{i}} \prod_{j=1}^{u} e_{j}^{p_{j}} \prod_{k=1}^{v} f_{k}^{q_{k}}.$$

On notera ce produit P dans la suite.

On en déduit l'égalité suivante :

$$(15) \quad \begin{split} \int_{\mathsf{Temp}(\mathsf{PG}_{2\pi})} & \varphi(\pi) \gamma(s,\pi,\Lambda^2,\psi)^{-1} d\mu_{\mathsf{PG}_{2\pi}}(\pi) = \\ & \frac{1}{|W(\mathsf{PG}_{2\pi},\tau)|\mathsf{P}} \left(\frac{\log(\mathsf{q})}{2\pi}\right)^{\dim(\mathcal{A})} \int_{\mathcal{A}} \phi(\lambda) \frac{\gamma^*(0,\pi_\lambda,\overline{Ad},\psi)}{\gamma(s,\pi_\lambda,\Lambda^2,\psi)} d\lambda, \end{split}$$

où $\varphi(\lambda) = \varphi(\pi_{\lambda})$ si $\lambda \in V$ et 0 sinon.

Décrivons maintenant la forme des facteurs γ , on aura besoin des propriétés de ces derniers.

Propriété 0.1. Les facteurs γ vérifient les propriétés suivantes :

- $\gamma(s, \pi_1 \times \pi_2, Ad) = \gamma(s, \pi_1, Ad)\gamma(s, \pi_2, Ad)\gamma(s, \pi_1 \times \widetilde{\pi_2})\gamma(s, \widetilde{\pi_1} \times \pi_2),$
- $--\gamma(s,\pi|\det|^x,Ad)=\gamma(s,\pi,Ad),$
- $-\gamma(s, \pi, Ad)$ a un zéro simple en s=0,
- $\gamma(s, \pi_1 \times \pi_2, \Lambda^2) = \gamma(s, \pi_1, \Lambda^2) \gamma(s, \pi_2, \Lambda^2) \gamma(s, \pi_1 \times \pi_2),$
- $-\gamma(s,\pi|\det|^{x},\Lambda^{2})=\gamma(s+2x,\pi,\Lambda^{2}),$
- $\gamma(s, \pi, \Lambda^2)$ a au plus un zéro simple en s = 0 et $\gamma(0, \pi, \Lambda^2) = 0$ si et seulement si π est dans l'image de l'application de transfert T,

pour tous $x \in \mathbb{C}$, $\pi \in \Pi_2(G_m)$ et $\pi_1, \pi_2 \in \mathsf{Temp}(G_m)$.

On en déduit que

(16)

$$\begin{split} \gamma^*(0,\pi_{\lambda},\overline{Ad},\psi) &= \left(\prod_{i=1}^t \prod_{1\leqslant l\neq l'\leqslant m_i} (\frac{x_{i,l}(\lambda)-x_{i,l'}(\lambda)}{d_i}) \prod_{1\leqslant l\neq l'\leqslant n_i} (\frac{\widetilde{x_{i,l}}(\lambda)-\widetilde{x_{i,l'}}(\lambda)}{d_i}) \right) \\ &\left(\prod_{j=1}^u \prod_{1\leqslant l\neq l'\leqslant p_j} (\frac{y_{j,l}(\lambda)-y_{j,l'}(\lambda)}{e_j}) \right) \left(\prod_{k=1}^v \prod_{1\leqslant l\neq l'\leqslant q_k} (\frac{z_{k,l}(\lambda)-z_{k,l'}(\lambda)}{f_k}) \right) F(\lambda), \end{split}$$

où F est une fonction C^{∞} qui ne s'annule pas sur le voisinage V, il s'agit d'un produit de facteur γ ne s'annulant pas. De même, on a (17)

$$\begin{split} \gamma(s,\pi_{\lambda},\Lambda^{2},\psi)^{-1} &= \left(\prod_{i=1}^{t} \prod_{\substack{1 \leqslant l \leqslant m_{i} \\ 1 \leqslant l' \leqslant n_{i}}} (s + \frac{x_{i,l}(\lambda) + \widetilde{x_{i,l'}}(\lambda)}{d_{i}})^{-1} \right) \\ \left(\prod_{j=1}^{u} \prod_{\substack{1 \leqslant l < l' \leqslant p_{j}}} (s + \frac{y_{j,l}(\lambda) + y_{j,l'}(\lambda)}{e_{j}})^{-1} \right) \left(\prod_{k=1}^{\nu} \prod_{\substack{1 \leqslant l \leqslant l' \leqslant q_{k}}} (s + \frac{z_{k,l}(\lambda) - z_{k,l'}(\lambda)}{f_{k}})^{-1} \right) G(2\lambda + s), \end{split}$$

où la fonction G est une fonction méromorphe sur $\mathcal{A} \otimes \mathbb{C}$ et n'a pas de pôle sur $V + \mathcal{H}$; ici $\mathcal{H} = \{z \in \mathbb{C}, Re(z) > 0\} \cup \{0\}$ et s'injecte dans $\mathcal{A} \otimes \mathbb{C}$ par l'application $s \in \mathcal{H} \mapsto \lambda_s \in \mathcal{A} \otimes \mathbb{C}$ dont les coordonnées sont $x_i(\lambda_s) = d_i(s,...,s), y_j(\lambda_s) = e_j(s,...,s)$ et $z_k(\lambda_s) = f_k(s,...,s)$.

On énonce maintenant le résultat fondamental de Raphaël Beuzart-Plessis, qui permet d'obtenir la proposition dans le cas unitaire. En reprenant les notations de Beuzart-Plessis, on écrit (18)

$$\phi(\lambda)\frac{\gamma^*(0,\pi_\lambda,\overline{Ad},\psi)}{\gamma(s,\pi_\lambda,\Lambda^2,\psi)} = \phi_s(\lambda)\prod_{i=1}^t P_{\mathfrak{m}_i,\mathfrak{n}_i,s}(\frac{x_i(\lambda)}{d_i})\prod_{i=1}^u Q_{\mathfrak{p}_j,s}(\frac{y_j(\lambda)}{e_j})\prod_{i=1}^v R_{\mathfrak{q}_k,s}(\frac{z_k(\lambda)}{f_k}),$$

où $\phi_s(\lambda) = \phi(\lambda)F(\lambda)G(2\lambda + s)$ et les lettres P,Q,R désignent des polynômes qui apparaissent dans le quotient des facteurs γ (voir Beuzart-Plessis, Section 3).

Proposition 0.3 (Beuzart-Plessis, Proposition 3.3.1). La limite

$$(19) \quad \lim_{s\to 0^+} \frac{ns}{|W|} \int_{\mathcal{A}} \phi_s(\lambda) \prod_{i=1}^t P_{\mathfrak{m}_i,\mathfrak{n}_i,s}(\frac{x_i(\lambda)}{d_i}) \prod_{j=1}^u Q_{\mathfrak{p}_j,s}(\frac{y_j(\lambda)}{e_j}) \prod_{i=1}^v R_{\mathfrak{q}_k,s}(\frac{z_k(\lambda)}{f_k}) d\lambda$$

est nulle si $m_i \neq n_i$ pour un certain i ou si l'un des p_j est impair. De plus, dans le cas contraire, elle est égale à

(20)

$$\frac{D(2\pi)^{N-1}2^{-c}}{|W'|}$$

$$\int_{\mathcal{A}'} \lim_{s \to 0^+} \phi_s(\lambda') s^N \prod_{i=1}^t P_{\mathfrak{m}_i,\mathfrak{n}_i,s}(\frac{x_i(\lambda')}{d_i}) \prod_{j=1}^u Q_{\mathfrak{p}_j,s}(\frac{y_j(\lambda')}{e_j}) \prod_{i=1}^v R_{\mathfrak{q}_k,s}(\frac{z_k(\lambda')}{f_k}) d\lambda';$$

$$\begin{array}{c} o\grave{u} \\ - D = \prod_{i=1}^t d_i^{n_i} \prod_{j=1}^u e_j^{\frac{p_j}{2}} \prod_{k=1}^v f_k^{\lceil \frac{q_k}{2} \rceil}, \end{array}$$

- c est le cardinal des $1 \leq k \leq t$ tel que $q_k \equiv 1 \mod 2$,
- $W \ \mathit{est isomorphe} \ \grave{a} \ W(PG_{2n}, \tau) \ \mathit{et} \ W' \ \mathit{est isomorphe} \ \grave{a} \ W(SO(2n+1), \sigma)$ (defini après 24).

De plus, \mathcal{A}' est le sous-espace de \mathcal{A} défini par les relations :

- $-x_{i,l}(\lambda)+\widetilde{x_{i,l}}(\lambda)=0 \ \text{pour tous} \ 1\leqslant i\leqslant t \ \text{et} \ 1\leqslant l\leqslant n_i,$
- $\begin{array}{l} \ y_{j,l}(\lambda) + y_{j,p_j+1-l}(\lambda) = 0 \ pour \ tous \ 1 \leqslant j \leqslant u \ et \ 1 \leqslant l \leqslant \lfloor \frac{p_j}{2} \rfloor, \\ \ z_{k,l}(\lambda) + z_{k,q_k+1-l}(\lambda) = 0 \ pour \ tous \ 1 \leqslant j \leqslant v \ et \ 1 \leqslant l \leqslant \lceil \frac{q_k}{2} \rceil. \end{array}$

On équipe A' de la mesure Lebesgue provenant de l'isomorphisme

(21)
$$\mathcal{A}' \simeq \prod_{i=1}^t (i\mathbb{R})^{n_i} \prod_{j=1}^u (i\mathbb{R})^{\frac{p_j}{2}} \prod_{k=1}^{\nu} (i\mathbb{R})^{\lfloor \frac{q_k}{2} \rfloor}.$$

Supposons tout d'abord que π n'est pas de la forme $T(\sigma)$ pour un certain $\sigma \in$ Temp(SO(2n+1))/Stab. D'après la caractérisation 6, il existe $1 \le i \le r$ tel que $m_i \neq n_i$ ou p_i est impair (on vérifie aisément que les autres cas se mettent sous la forme qui apparait dans 6). Alors en prenant U suffisamment petit, on peut supposer que U ne rencontre pas l'image de l'application de transfert T. Autrement dit, le terme de droite de la proposition est nul; d'après 0.3, le terme de gauche l'est aussi.

Supposons maintenant qu'il existe $\sigma \in \text{Temp}(SO(2n+1))/\text{Stab}$ tel que $\pi = T(\sigma)$. Alors $m_i = n_i$ pour tout $1 \le i \le t$ et les p_i sont pairs. De plus, peut écrire

(22)
$$\sigma = \left(\underset{i=1}{\overset{t}{\times}} \tau_i^{\times n_i} \times \underset{j=1}{\overset{u}{\times}} \mu_j^{\times \frac{p_j}{2}} \times \underset{k=1}{\overset{v}{\times}} \nu_k^{\times \lfloor \frac{q_k}{2} \rfloor} \right) \times \sigma_0,$$

où σ_0 est une représentation de SO(2m+1) pour un certain m tel que

(23)
$$\mathsf{T}(\sigma_0) = \sum_{\substack{k=1 \text{mod } 2}}^{\nu} \nu_k.$$

On voit apparaître le sous-groupe de Levi

$$(24) \qquad \qquad L = \prod_{i=1}^t G_{d_i}^{n_i} \prod_{i=1}^u G_{e_i}^{\frac{p_j}{2}} \prod_{k=1}^{\nu} G_{f_k}^{\lfloor \frac{q_k}{2} \rfloor} \times SO(2m+1).$$

De plus, $\sigma=\text{Ind}_L^{SO(2n+1)}(\Sigma),$ où $\Sigma\in\Pi_2(L).$ Le groupe W' de la proposition 0.3est isomorphe à $W(SO(2n+1), \sigma)$, où $W(SO(2n+1), \sigma)$ est le sous-groupe de W(SO(2n+1), L) fixant σ .

Comme précédemment, $X^*(L) \otimes \mathbb{R}$ est isomorphe à \mathcal{A}' . On en déduit une application $\lambda' \in \mathcal{A}' \mapsto \sigma_{\lambda'} \in \mathsf{Temp}(\mathsf{SO}(2n+1))$, avec

$$(25) \qquad \sigma_{\lambda'} = \left(\bigotimes_{i=1}^{t} \bigvee_{l=1}^{n_{i}} \tau_{i}^{\times n_{i}} \otimes |\det|^{\frac{x_{i,l}(\lambda')}{d_{i}}} \right) \times \left(\bigotimes_{j=1}^{u} \bigvee_{l=1}^{p_{j}} \mu_{j}^{\times \frac{p_{j}}{2}} \otimes |\det|^{\frac{y_{j,l}(\lambda')}{e_{j}}} \right) \\ \times \left(\bigotimes_{k=1}^{v} \bigvee_{l=1}^{q_{k}} \nu_{k}^{\times \lfloor \frac{q_{k}}{2} \rfloor} \otimes |\det|^{\frac{z_{k,l}(\lambda')}{f_{k}}} \right) \times \sigma_{0}.$$

De plus, d'après 6, pour $\lambda \in \mathcal{A}$, $\pi_{\lambda} \in \mathsf{T}(\mathsf{SO}(2n+1)/\mathsf{Stab})$ si et seulement si $\lambda \in \mathcal{A}'$, dans ce cas $\pi_{\lambda} = T(\sigma_{\lambda})$.

En utilisant cette caractérisation et la définition de la fonction φ (équation 15), on obtient

De plus.

$$|S_{\sigma_{\lambda'}}| = \prod_{i=1}^t d_i^{n_i} \prod_{i=1}^u e_j^{\frac{p_j}{2}} \prod_{k=1}^v f_k^{\lfloor \frac{q_k}{2} \rfloor} |S_{\sigma_0}| = 2^c \frac{P}{D},$$

d'après les notations de la proposition 0.3 et la relation 23. D'autre part, d'après la proposition 0.3 et l'équation 15, on a

(28)

$$\begin{split} &\lim_{s\to 0^+} n\gamma(s,1,\psi) \int_{\text{Temp}(PG_{2\pi})} \varphi(\pi)\gamma(s,\pi,\lambda^2,\psi)^{-1} d\mu_{PG_{2\pi}}(\pi) = \frac{D(2\pi)^{N-1}2^{-c}\gamma^*(0,1,\psi)log(q_F)}{|W'|P} \\ &\left(\frac{log(q)}{2\pi}\right)^{\text{dim}(\mathcal{A})} \int_{\mathcal{A}'} \lim_{s\to 0^+} \phi_s(\lambda') s^N \prod_{i=1}^t P_{\mathfrak{m}_i,\mathfrak{n}_i,s}(\frac{x_i(\lambda')}{d_i}) \prod_{i=1}^u Q_{p_j,s}(\frac{y_j(\lambda')}{e_j}) \prod_{i=1}^\nu R_{q_k,s}(\frac{z_k(\lambda')}{f_k}) d\lambda'. \end{split}$$

Cette dernière intégrale est égale à

(29)
$$\int_{A'} \varphi(\lambda') \lim_{s \to 0^+} s^{N} \frac{\gamma^*(0, \pi_{\lambda'}, \overline{Ad}, \psi)}{\gamma(s, \pi_{\lambda'}, \Lambda^2, \psi)} d\lambda'.$$

De plus, on remarque que $s\mapsto \gamma(s,\pi_{\lambda'},\Lambda^2,\psi)^{-1}$ a un pôle d'ordre N en s=0. Notre membre de gauche est donc égal à

$$(30) \qquad \frac{D\left(2\pi\right)^{N-1}2^{-c}log(q_{F})}{|W'|P}\left(\frac{log(q)}{2\pi}\right)^{\dim(\mathcal{A})}\int_{\mathcal{A}'}\phi(\lambda')\frac{\gamma^{*}(0,\sigma_{\lambda'},Ad,\psi)}{log(q_{F})^{N}}d\lambda';$$

On a utilisé les relations $\gamma^*(0,1,\psi)\gamma^*(s,\pi_{\lambda'},\overline{Ad},\psi)=\gamma^*(s,\pi_{\lambda'},Ad,\psi)$ et

$$\frac{\gamma(s,T(\sigma_{\lambda'}),Ad,\psi)}{\gamma(s,T(\sigma_{\lambda'}),\Lambda^2,\psi)} = \gamma(s,\sigma_{\lambda'},Ad,\psi).$$

Dans l'expression 30, le facteur $\frac{\log(q_F)}{2\pi}$ apparait avec un exposant $\dim(\mathcal{A}) - N + 1 = \dim(\mathcal{A}')$; on en déduit que 30 est égal au membre de droite 26, d'après l'égalité 27.