Math 415 - Lecture 31

Markov matrices and Google

Monday November 9th 2015

Textbook reading: Chapter 5.3

Suggested practice exercises: Chapter 5.3: 8, 9, 12, 14, 10.

Khan Academy video: Finding Eigenvectors and Eigenspaces example

Strang lecture: Lecture 21: Eigenvalues and eigenvectors Lecture 24: Markov Matrices and Fourier Series.

1 Review

1.1 Properties of eigenvectors and eigenvalues

- If $A\mathbf{x} = \lambda \mathbf{x}$ then \mathbf{x} is an **eigenvector** of A with **eigenvalue** λ . All eigenvectors (plus $\mathbf{0}$) with eigenvalue λ form **eigenspace** of λ .
- λ is an eigenvalue of $A \iff \det(A \lambda I) = 0$. Why? Because $A\mathbf{x} = \lambda \mathbf{x} \iff (A \lambda I)\mathbf{x} = \mathbf{0}$. By the way: this means that the eigenspace of

 $A\mathbf{x} = \lambda \mathbf{x} \iff (A - \lambda I)\mathbf{x} = \mathbf{0}$. By the way: this means that the eigenspace of λ is just $\text{Nul}(A - \lambda I)$.

• E.g. if
$$A = \begin{bmatrix} 3 & 2 & 3 \\ 0 & 6 & 10 \\ 0 & 0 & 2 \end{bmatrix}$$
 then $\det(A - \lambda I) = (3 - \lambda)(6 - \lambda)(2 - \lambda)$.

If
$$A = \begin{bmatrix} 3 & 2 & 3 \\ 0 & 6 & 10 \\ 0 & 0 & 2 \end{bmatrix}$$
 then the eigenvalues are 2, 3, 6 with corresponding eigen-

vectors

$$\begin{bmatrix} 2 \\ -5/2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2/3 \\ 1 \\ 0 \end{bmatrix}.$$

These three vectors are independent. By the next result, this is always so.

1.2 Independent eigenvectors

Theorem 1. If $\mathbf{x}_1, \dots, \mathbf{x}_m$ are eigenvectors of A corresponding to different eigenvalues, then they are independent.

Proof. Suppose, for contradiction, that $\mathbf{x}_1, \ldots, \mathbf{x}_m$ are dependent. By kicking out some vectors, we may assume that there is (up to multiples) only one linear relation: $c_1\mathbf{x}_1 + \ldots + c_m\mathbf{x}_m = \mathbf{0}$. In other words, the matrix with columns $\mathbf{x}_1, \ldots, \mathbf{x}_m$ has one-dimensional null space. Now multiply this relation with A:

$$A(c_1\mathbf{x}_1 + \ldots + c_m\mathbf{x}_m) = c_1\lambda_1\mathbf{x}_1 + \ldots + c_m\lambda_m\mathbf{x}_m = \mathbf{0}$$

This is a second independent relation! In other words, two independent vectors living in a one-dimensional vector space. Contradiction. \Box

2 Relations between eigenvalues

2.1 Product of Eigenvalues

If A is $n \times n$ get in principle n eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. How are these eigenvalues related?

Theorem 2. The product of eigenvalues $\lambda_1 \lambda_2 \dots \lambda_n$ is equal to the determinant of A.

Proof. The characteristic polynomial $p(\lambda) = \det(A - \lambda I)$ has constant term $\det(A)$. On the other hand $p(\lambda)$ factors, because the roots are the eigenvalues we get $p(\lambda) = (\pm 1)(\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_n)$, which has constant term $\lambda_1 \lambda_2 \dots \lambda_n$.

Example 1. Let $A = \begin{bmatrix} \lambda_1 & b \\ 0 & \lambda_2 \end{bmatrix}$. Then the eigenvalues are λ_1, λ_2 and $\det(A) = \lambda_1 \lambda_2$.

2.2 Sum of Eigenvalues

What other relations are there between the eigenvalues?

Definition 2. Let $A = \begin{bmatrix} a_{11} & a_{12} & \dots \\ a_{21} & a_{22} & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$ be $n \times n$. Then the **TRACE** of A is

the sum of the diagonal entries: $Tr(A) = a_{11} + a_{22} + \cdots + a_{nn}$.

Theorem 3. Let A be $n \times n$. Then the trace of A is the **sum** of eigenvalues:

$$Tr(A) = \lambda_1 + \lambda_2 + \dots + \lambda_n$$

Example 3. Let $A = \begin{bmatrix} \lambda_1 & b \\ 0 & \lambda_2 \end{bmatrix}$. What are the eigenvalues and what is Tr(A)?

Solution. The eigenvalues are λ_1, λ_2 and $Tr(A) = \lambda_1 + \lambda_2$.

2.3 The Characteristic Polynomial for 2×2

 2×2 matrices are easy.

Theorem 4. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then the characteristic polynomial is

$$p(\lambda) = \lambda^2 - (a+d)\lambda + ad - bc = \lambda^2 - \text{Tr}(A)\lambda + \det(A).$$

Example 4. Let $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. What are the eigenvalues and what is the characteristic polynomial?

Solution. $\operatorname{Tr}(A) = 6$, $\det(A) = 8$, so $p(\lambda) = \lambda^2 - 6\lambda + 8$. Also in terms of eigenvalues $\operatorname{Tr}(A) = \lambda_1 + \lambda_2$ and $\det(A) = \lambda_1 \lambda_2$. So $\lambda_1 = 2, \lambda_2 = 4$

3 Practice problems

Example 5. Find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$.

Example 6. What are the eigenvalues of $A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ -1 & 3 & 0 & 0 \\ -1 & 1 & 3 & 0 \\ 0 & 1 & 2 & 4 \end{bmatrix}$. No calculations!

Example 7. Find the eigenvalues of A as well as a basis for the corresponding eigenspaces, where

$$A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}.$$

Solution. • The characteristic polynomial is:

$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ -1 & 3 - \lambda & 1 \\ -1 & 1 & 3 - \lambda \end{vmatrix}$$
$$= (2 - \lambda) \begin{vmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix}$$
$$= (2 - \lambda)[(3 - \lambda)^2 - 1]$$
$$= (2 - \lambda)(\lambda - 2)(\lambda - 4)$$

• A has eigenvalues 2, 2, 4 $\left(A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix} \right)$ Since $\lambda = 2$ is a double root, it has (algebraic) multiplicity 2.

•
$$\lambda_1 = 2$$
:

$$(A - \lambda_1 I)\mathbf{x} = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix} \mathbf{x} = \mathbf{0}$$

Two independent solutions: $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$ In other words, the eigenspace for $\lambda_1 = 2$ is Span $\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \right\}$.

•
$$\lambda_2 = 4$$
:
$$\begin{pmatrix} A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix} \end{pmatrix}$$
$$(A - \lambda_2 I) \mathbf{x} = \begin{bmatrix} -2 & 0 & 0 \\ -1 & -1 & 1 \\ -1 & 1 & -1 \end{bmatrix} \mathbf{x} = \mathbf{0} \implies \mathbf{x}_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

- ullet In summary, A has eigenvalues 2 and 4:
 - $\text{ eigenspace for } \lambda_1 = 2 \text{ has basis } \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix},$
 - eigenspace for $\lambda_2 = 4$ has basis $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

4 Markov matrices

Definition 8. An $n \times n$ matrices A is **Markov matrix** if has non negative entries, and the entries in each column add to 1.

Theorem 5. Let A be a Markov matrix. Then

- (i) 1 is an eigenvalue of A and any other eigenvalue λ satisfies $|\lambda| \leq 1$.
- (ii) If A has only positive entries, then any other eigenvalue satisfies $|\lambda| < 1$. Example 9. Let A be

$$\left[\begin{array}{cc} .9 & .2 \\ .1 & .8 \end{array}\right].$$

Is A a Markov matrix?

Theorem 6. Let A be an $n \times n$ -Markov matrix with only positive entries and let $\mathbf{v} \in \mathbb{R}^n$. Then

$$v_{\infty} := \lim_{k \to \infty} A^k v \text{ exists},$$

and $Av_{\infty} = v_{\infty}$. In this case v_{∞} is often called the **steady state**.

Proof. If \mathbf{x} is any vector and $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ is an eigenbasis for a Markov matrix $(A\mathbf{v_1} = 1\mathbf{v_1})$:

$$\mathbf{x} = c_1 \mathbf{v_1} + \dots + c_n \mathbf{v_n},$$

then

$$A^k \mathbf{x} = c_1 \lambda_1^k \mathbf{v_1} + \dots + c_n \lambda_n^k \mathbf{v_n} \to c_1 \mathbf{v_1},$$

if the eigenspace of $\lambda = 1$ is 1-dimensional.

Example 10. Consider a fixed population of people with or without job. Suppose that each year, 50% of those unemployed find a job while 10% of those employed lose their job. What is the unemployment rate in the long term equilibrium?

Solution. x_t : proportion of population employed at time t (in years) y_t : proportion of population unemployed at time t

$$\begin{bmatrix} x_{t+1} \\ y_{t+1} \end{bmatrix} = \begin{bmatrix} 0.9x_t + 0.5y_t \\ 0.1x_t + 0.5y_t \end{bmatrix} = \begin{bmatrix} 0.9 & 0.5 \\ 0.1 & 0.5 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix}$$

The matrix $\begin{bmatrix} 0.9 & 0.5 \\ 0.1 & 0.5 \end{bmatrix}$ is a **Markov matrix**. Its columns add to 1 and it has no negative entries. $\begin{bmatrix} x_{\infty} \\ y_{\infty} \end{bmatrix}$ is an equilibrium if $\begin{bmatrix} x_{\infty} \\ y_{\infty} \end{bmatrix} = \begin{bmatrix} 0.9 & 0.5 \\ 0.1 & 0.5 \end{bmatrix} \begin{bmatrix} x_{\infty} \\ y_{\infty} \end{bmatrix}$. In other words, $\begin{bmatrix} x_{\infty} \\ y_{\infty} \end{bmatrix}$ is an eigenvector with eigenvalue 1. Eigenspace of $\lambda = 1$: Nul $\begin{pmatrix} \begin{bmatrix} -0.1 & 0.5 \\ 0.1 & -0.5 \end{bmatrix} \end{pmatrix} = \operatorname{Span} \left\{ \begin{bmatrix} 5 \\ 1 \end{bmatrix} \right\}$ Since $x_{\infty} + y_{\infty} = 1$, we conclude that $\begin{bmatrix} x_{\infty} \\ y_{\infty} \end{bmatrix} = \begin{bmatrix} 5/6 \\ 1/6 \end{bmatrix}$. Hence, the unemployment rate in the long term equilibrium is $\begin{bmatrix} x_{\infty} \\ y_{\infty} \end{bmatrix} = \begin{bmatrix} 5/6 \\ 1/6 \end{bmatrix}$.

5 Page rank (or: the 25000000000 \$ eigenvector)

Google's success is based on an algorithm to rank webpages, the **Page rank**, named after Google founder Larry Page. The idea is to determine how likely it is that a web user randomly gets to a given webpage. The webpages are ranked by these probabilities.

Suppose the internet consisted of the only four webpages A, B, C, D linked as

in the following graph.

Imagine a surfer following these links at random. For the probability $PR_n(A)$ that she is at A (after n steps), we need to think about how she could have reached A. We add:

- the probability that she was at B (at exactly one step before), and left for A,(that's $PR_{n-1}(B) \cdot \frac{1}{2}$)
- the probability that she was at C, and left for A,
- the probability that she was at D, and left for A.

Hence: $PR_n(A) = PR_{n-1}(B) \cdot \frac{1}{2} + PR_{n-1}(C) \cdot \frac{1}{1} + PR_{n-1}(D) \cdot \frac{0}{1}$.

Encode the probabilties at step n in a state vector with four entries. $\begin{bmatrix} PR_n(A) \\ PR_n(B) \\ PR_n(C) \\ PR_n(D) \end{bmatrix} = \frac{1}{n} \left(\frac{1}{n} \right) \left(\frac{1}{$

$$\begin{bmatrix} 0 & \frac{1}{2} & 1 & 0 \\ \frac{1}{3} & 0 & 0 & 0 \\ \frac{1}{3} & 0 & 0 & 1 \\ \frac{1}{3} & \frac{1}{2} & 0 & 0 \end{bmatrix} \begin{bmatrix} PR_{n-1}(A) \\ PR_{n-1}(B) \\ PR_{n-1}(C) \\ PR_{n-1}(D) \end{bmatrix}$$

Definition 11. The PageRank vector is the long-term equilibrium. It is an eigenvector of the Markov matrix with eigenvalue 1.

Let's call the Markov matrix with the probabilities T:

$$\bullet \ T - 1I = \begin{bmatrix} -1 & \frac{1}{2} & 1 & 0 \\ \frac{1}{3} & -1 & 0 & 0 \\ \frac{1}{3} & 0 & -1 & 1 \\ \frac{1}{3} & \frac{1}{2} & 0 & -1 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & -\frac{2}{3} \\ 0 & 0 & 1 & -\frac{5}{3} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 \implies eigenspace of $\lambda = 1$ is spanned by $\begin{bmatrix} 2\\ \frac{2}{3}\\ \frac{3}{3} \end{bmatrix}$.

• Now we need to make the entries add up to 1.

$$\begin{bmatrix} PR(A) \\ PR(B) \\ PR(C) \\ PR(D) \end{bmatrix} = \frac{3}{16} \begin{bmatrix} \frac{2}{3} \\ \frac{5}{3} \\ \frac{1}{1} \end{bmatrix} = \begin{bmatrix} 0.375 \\ 0.125 \\ 0.313 \\ 0.188 \end{bmatrix}.$$

6

This is the PageRank vector.

• The corresponding ranking of the webpages is A, C, D, B.

Remark. In practical situations the system might be too large for finding the eigenvalues by row operations.

- Google reports having met 60 trillion webpages. Google's search index is over 100,000,000 gigabytes. Number of Google's servers is secret: about 2,500,000 More than 1,000,000,000 websites (i.e. hostnames; about 75% not active)
- Thus we have a gigantic but very sparse matrix.

An alternative to row operations is the **power method** (see Theorem 2):

Power method

If T is an (acyclic and irreducible) Markov matrix, then for any \mathbf{v}_0 the vectors $T^n\mathbf{v}_0$ converge to an eigenvector with eigenvalue 1

Here:

$$T = \begin{bmatrix} 0 & \frac{1}{2} & 1 & 0 \\ \frac{1}{3} & 0 & 0 & 0 \\ \frac{1}{3} & 0 & 0 & 1 \\ \frac{1}{3} & \frac{1}{2} & 0 & 0 \end{bmatrix}.$$

Start with an arbitrary state vector, hit it with powers of T.

$$\begin{pmatrix}
\begin{bmatrix} PR(A) \\ PR(B) \\ PR(C) \\ PR(D) \end{bmatrix} = \begin{bmatrix} 0.375 \\ 0.125 \\ 0.313 \\ 0.188 \end{bmatrix}, T \begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \end{bmatrix} = \begin{bmatrix} 0.375 \\ 0.083 \\ 0.333 \\ 0.208 \end{bmatrix}$$

. Note that the ranking of the webpages is already A, C, D, B if we stop here.

$$T\begin{bmatrix} 1/4\\1/4\\1/4\\1/4 \end{bmatrix} = \begin{bmatrix} 0.375\\0.083\\0.333\\0.208 \end{bmatrix}, \qquad T^2\begin{bmatrix} 1/4\\1/4\\1/4 \end{bmatrix} = \begin{bmatrix} 0.375\\0.125\\0.333\\0.167 \end{bmatrix}, \qquad T^3\begin{bmatrix} 1/4\\1/4\\1/4 \end{bmatrix} = \begin{bmatrix} 0.396\\0.125\\0.292\\0.188 \end{bmatrix}$$

Remark. • If all entries of T are positive (no zero entries!), then the power method is guaranteed to work.

ullet In the context of PageRank, we can make sure that this is the case by replacing T with

$$(1-p) \cdot \begin{bmatrix} 0 & \frac{1}{2} & 1 & 0 \\ \frac{1}{3} & 0 & 0 & 0 \\ \frac{1}{3} & 0 & 0 & 1 \\ \frac{1}{3} & \frac{1}{2} & 0 & 0 \end{bmatrix} + p \cdot \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix} .$$

Just to make sure: still a Markov matrix, now with positive entries Google used to use p=0.15.

6 Practice problems

Problem 12. Can you see why 1 is an eigenvalue for every Markov matrix?

Problem 13 (just for fun). The real web contains pages which have no outgoing links. In that case, our random surfer would get "stuck" (the transition matrix is not a Markov matrix). Do you have an idea how to deal with this issue?