

Term Project

MultiStage BJT Audio Amplifier With Volume Control

ECE 131: Electronic Engineering

1st year Electrical Engineering

Spring 2017

Submitted By:

Nada Ihab Ahmed Mohamed Abdelgawad

Submitted To:

Dr/Hesham Omran

2017/2018

Cairo, Egypt

Table Of Contents

Page No.	Content
3	1.DC and Ac load line
4	2.Determination of components values
7	3.A table summarizing the component values
8	4.Simulation Results
10	5.Comparison between simulation & hand result
12	6.Prototype photograph
13	7.Maximum and Minimum Frequency
14	8. Power supply

1.Dc and Ac load lines

DC Analysis:

Applying output KVL:

$$IE = \frac{Vcc - VcE}{RE2}$$
 ; $IE \approx Ic$,

$$Ic = \frac{Vcc - VcE}{RE2}$$
 \Longrightarrow DC load line

AC Analysis:

Applying output KVL:

$$IE = \frac{-VcE}{RE2//Rin3}$$
; $IE \approx Ic$,

$$Ic = \frac{-VcE}{RE2//Rin3} \longrightarrow AC load line.$$

Get Vpk:

Slope=
$$\frac{1}{RE2//Rin3} = \frac{IcQ}{Vpk}$$

Vpk = IcQ.(RE2//Rin3); IcQ =
$$\frac{VE2}{RE2}$$
,

$$Vpk = \frac{VE2}{RE2}.(RE2//Rin3)$$

$$Vpk = VE2. = \frac{Rin3}{Rin3 + RE2}$$

2 . Determination of components values

Power Amplifier AB Class

DC Analysis:

Assume Rin3=0.1k Ω Since Rin3=RB3a//RB3b// β RL \approx RB3a//RB3b Since this stage is symmetric : RB3a=RB3b=0.2k Ω Av3=1

Common Collector Analysis

DC Analysis:

Vpk =VE2. =
$$\frac{Rin3}{Rin3+RE2}$$

2 = 6 $\frac{0.1k}{RE2+0.1k}$ RE2=0.2Ω

$$IE2 = \frac{VE2}{RE2} = 30\text{mA}$$
, $IB2 = \frac{VE2}{RE2}$
= 0.297mA

Applying input KVL:

-9+IB RB2 + 0.7+6=0

RB2= 7.67kΩ

GET Small Signal Parameters:

gm=
$$\frac{IC}{VT}$$
= $\frac{IC}{26m}$ =1.15 S
r π = $\frac{\beta}{gm}$ =86.9 Ω

AC Analysis:

Rin2 =
$$\frac{Vin}{Ix}$$
 = $\frac{V \pi + (\frac{V \pi}{r \pi} + gV\pi)(RE2//Rin3)}{\frac{V \pi}{r \pi}}$ = $r \pi (1 + (RE2//Rin3)) = 6.72k$
Rout2= $\frac{Vout}{Ix}$ = $\frac{V \pi + (\frac{V \pi}{r \pi} + gV\pi)(RE2//Rin3)}{(\frac{V \pi}{r \pi} + gV\pi)}$ = $\frac{1 + gm(RE2//Rin3)}{gm}$ = 99.58 Ω
Vin= $V \pi + (\frac{V \pi}{r \pi} + gV\pi)(RE2//Rin3)$
Vout = $(\frac{V \pi}{r \pi} + gV\pi)(RE2//Rin3)$
Av2 = $\frac{Vout}{Vin}$ = $\frac{(\frac{V \pi}{r \pi} + gV\pi)(RE2//Rin3)}{V \pi + (\frac{V \pi}{r \pi} + gV\pi)(RE2//Rin3)}$ = $\frac{gm(RE2//Rin3)}{1 + gm(RE2//Rin3)}$ = 0.987

Common Emmiter Analysis

DC Analysis:

Ibiase=
$$\frac{Ic}{5}$$
 \Longrightarrow Ibiase=2m/5A
Rc1= $\frac{9-Vc}{Ic}$ = $\frac{9-4}{2m}$ = 2.5k Ω
RE1= $\frac{VE}{Ic\approx IE}$ = 0.1k Ω
GET RB1b & RB1a:
VB=VE1+0.7=1.7 V
VB=9 $\frac{RB1a}{RB1b+RB1a}$ \Longrightarrow 1
I= $\frac{9}{RB1b+RB1a}$ = 2m/5 \Longrightarrow 2
RB1a=4.25k Ω
RB1b=18.2k Ω
gm= $\frac{IC}{VT}$ = $\frac{IC}{26m}$ = 0.0769 S
r Π = $\frac{\beta}{gm}$ = 1300 Ω

AC Analysis:

Rin1= RB1b //RB1a//Rx

$$Rx = \frac{Vin}{Ix} = \frac{V\pi + \left(\frac{V\pi}{r\pi} + gmV\pi\right)Re}{\frac{V\pi}{r\pi}}$$

 $=r\pi(1+gmRe)$

Note that Re is a part of RE,

If Re =0; Rin1=943 Ω

If Re=500
$$\Omega$$
; Rin1=3226.19 Ω
Av1= $\frac{Vout}{Vin} = \frac{-gmV\pi(Rc//Rin2)}{V\pi + \left(\frac{V\pi}{r\pi} + gmV\pi\right)Re}$

$$=\frac{-gm(Rc//Rin2)}{2}$$

If Re =0 : Av1=-140

If Re=500 Ω ; Av1=-3.55

Rout1=Rc//Rin2=1822 Ω

Over All Gain

$$Av = \frac{Vout}{Vout1} \cdot \frac{Vout1}{Vin} \cdot \frac{Vin}{Vsig} \cdot 1 = Av2 \cdot Av1 \cdot \frac{Rin1}{Rin1 + Rsig} \cdot 1$$
If RE = 0 \longrightarrow $Av = 0.987 \times 140 \times \frac{943}{943 + 50} = 131.22$
If RE = $0.5k\Omega$ \longrightarrow $AV = 0.987 \times 3.55 \times \frac{3226.19}{3226.19 + 50} = 3.45$

3.A table summarizing the component values

	T	
First Stage	Common Emmiter	
RB1a	0.85kΩ	
RB1b	3.65kΩ	
Rc1	0.5kΩ	
RE1	0.1kΩ	
Rin1	943 Ω; If Re =0;	
	3226.19Ω;If Re=500 Ω	
Av1	-140; If Re =0 ;	
	-3.55;If Re=500 Ω;	
Second Stage	Common Collector(Emmiter	
	Follower)	
RB2	7.67kΩ	
RE2	0.2kΩ	
Rin2	6.72kΩ	
Av2	0.987	
Third Stage	Power Amplifier (Class AB)	
RB3a	0.2kΩ	
RB3b	0.2kΩ	
Rin3	0.1kΩ	
Av3	1	
Over All Gain		
Av	131.22 If RE =0	
	3.45 If RE =500 Ω	
Rout1	1822 Ω	
Rout2	99.58 Ω	

4. Simulation Results

4.a wattmeter reading

This figure shows the schematic with wattmeter reading.

The wattmeter reading is nearly 278mw which is greater than 250mw.

4.b Oscilloscope reading

Output signal of 1st stage

Output signal of 2nd stage

4.c Voltage gain from the simulation

1ST stage :

Av1 =
$$\frac{channel\ B}{channel\ A}$$
 = $\frac{-2.287}{19.14}$ = -0.123

2nd stage:

Av2 =
$$\frac{channel\ B}{channel\ A} = \frac{1,266}{1.587} = 0.8$$

5.Comparison between The Voltage Gain Obtained from the simulation & hand result

Stage	Simulation	Hand result
1 st	-0.123	-3.55
2 nd	0.8	0.98

6.Prototype photograph

7. Maximum and Minimum Frequency

Frequency	Simulation	Circuit
Min	245 HZ	
	Power=139.2885mW	
Nominal	1 KHZ	
	Power=278.577mW	
Max	1205 KHZ	
	Power=139.2mW	
Band width	960 HZ	

8. Bonus Project
Regulated Power Supply

Analysis of the power supply

From the simulation of the amplifier

project:

We get: IL=178mA

From the data sheet of zener diode:

We get: Iz=150mA

I Total=IL+Iz

=178m+150m=328m

Vc=Vp-2Vdeon

=12√2-2x0.8=15.37v

I Total= $\frac{Vc - Vz}{R}$

 $R=19.42\Omega$

