Chapter 2: Simple Linear Regression

Linear Regression:

- ☐ It is a statistical method for predictive analysis.
- ☐ It can make prediction for continuous/real or numeric variables such as price, salary, etc.
- ☐ Linear regression is used to find out how the value of dependent variable is changing according to the value of independent variable.

Types of relationship:

- ☐ Regression line can show two types of relationship:
 - ☐ Positive Linear Relationship:
 - \Box In this the value of y increases as the value of x increases.
 - ☐ Negative Linear Relationship:
 - \Box In this the value of y decreases as the value of x increases.

Simple Linear Regression:

- ☐ Simple Linear Regression models the relationship between a dependent variable and a single independent variable.
- ☐ SLR has two objectives:
 - Model the relationship between the two variables:
 - ☐ House area and house price
 - ☐ Experience and salary
 - ☐ Forecasting new observations:
 - ☐ Predict price as per area
 - ☐ Predict salary as per experience

Area	Price
2.6	5.5
3	5.65
3.2	6.1
3.6	6.8
4	7.2

$$\Sigma x = 2.6 + 3 + 3.2 + 3.6 + 4 =$$

$$\Sigma y = 5.5 + 5.65 + 6.1 + 6.8 + 7.2 =$$

$$\sum x^2 = 2.6^2 + 3^2 + 3.2^2 + 3.6^2 + 4^2 =$$

$$\sum y^2 = 5.5^2 + 5.65^2 + 6.1^2 + 6.8^2 + 7.2^2 =$$

$$\sum xy = (2.6x5.5) + (3x5.65) + (3.2x6.1) + (3.6x6.8) + (4x7.2) =$$

$$\beta_1 = (n(\sum xy) - (\sum x)(\sum y)) / (n\sum x^2 - (\sum x)^2)$$

$$\beta_1 =$$

$$\beta_1 =$$

$$\beta_1 =$$

$$\beta_1 =$$

$$x' = 16.4 / 5 =$$

$$y' = 31.25 / 5 =$$

$$\beta_0 = y' - \beta_1 x'$$

$$\beta_0 =$$

$$\beta_0 =$$

$$y = \beta_0 + \beta_1 x$$

$$y =$$

Model Evaluation:

- ☐ It is necessary to obtain the accuracy on training data
- ☐ But it is also important to get a genuine and approximate result on unseen data otherwise Model is of no use.
- ☐ So to build and deploy a generalized model we require to Evaluate the model on different metrics which helps us to better optimize the performance.

Model Score:

- score() / r2_score() provides an indication of goodness of fit and therefore a measure of how well unseen samples are likely to be predicted.
- \square It is also called \mathbb{R}^2 score, the coefficient of determination.
- ☐ Best possible score is 1.0 and worst would be some –ve value.

Score Calculation:

1 – u / v

total sum of squares ((y_true - y_true.mean()) ** 2).sum()

Score Calculation:

$$y = 2.02 + 1.28 * x$$

Area	Price
X	y_true
3.6	6.8
3.2	6.1

Price
y_pred

(y	_tr	ue -	y_	pred	d) ²

(y_true - y_	true.mean()) ²
v =	

Score:

Experience	Salary
1	10
3	21
4	45
5	41
7	50
8	72
10	90
11	95
12	120
1 5	150

$$\sum x = 1 + 3 + 4 + 5 + 7 + 8 + 10 + 11 + 12 + 15 =$$

$$\sum y = 10 + 21 + 45 + 41 + 50 + 72 + 90 + 95 + 120 + 150 =$$

$$\sum x^2 = 1^2 + 3^2 + 4^2 + 5^2 + 7^2 + 8^2 + 10^2 + 11^2 + 12^2 + 15^2 =$$

$$\sum$$
y2 = 10² + 21² + 45² + 41² + 50² + 72² + 90² + 95² + 120² + 150² =

$$\sum xy = (1x10) + (3x21) + (4x45) + (5x41) + (7x50) + (8x72) + (10x90) + (11x95) + (12x120) + (15x150) =$$

$\beta_1 = 0$	$(n(\Sigma xy))$	$-(\sum x)(\sum y)$	/ (n Σx^2 –	$(\Sigma x)^2$
Pı ($(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(\Delta^{\prime\prime})(\Delta JJJJ)$	/ (11 \(\) 112	(Δ^{A})

$$\beta_1 =$$

$$\beta_1 =$$

$$\beta_1 =$$

$$\beta_0 = y' - \beta_1 x'$$

$$\beta_0 =$$

$$\beta_0 =$$

$$y = \beta_0 + \beta_1 x$$

Score Calculation:

$$y = -1.22 + 9.19 * x$$

Ехр	Sal
X	y_true
15	150
8	72
3	21

Pred. Sal
y_pred

(y_tr	ue -	y_	pred) ²	

Score: