MA281: Introduction to Linear Algebra

Baker University — Fall 2023

Exam 1: Vectors and Matrices

date	day	section	$\mathrm{topic}(\mathrm{s})$
			o vector notation
8/23	W	§1.1: Vectors in Euclidean Space	o vector algebra
			o properties of vectors
	F	§1.2: The Norm and the Dot Product	o vector magnitude
8/25			o unit vectors
6/29			o vector dot product
			\circ angles between vectors

date	day	section	topic(s)
			o matrix addition
8/28	$_{ m M}$	\$1.2. Matrices and Their Alcebra	o matrix multiplication
0/20	IVI	§1.3: Matrices and Their Algebra	o scalar multiplication
			o matrix transposition
		§1.4: Solving Systems of Linear Equations	• elementary row operations
0/20	Tu		o row-echelon form
8/29			o reduced row-echelon form
			o Gaussian Elimination
o /20	137	W §1.4: Solving Systems of Linear Equations	o elementary matrices
8/30	VV		o row equivalence
0 /1	F	E C15 I	o invertible matrices
9/1	F	§1.5: Inverses of Square Matrices	o computation of inverses

date	day	section	$\mathrm{topic}(\mathrm{s})$
9/4	M	Labor Day	
			o vector subspaces
9/5	Tu	§1.6: Homogeneous Systems, etc.	\circ span and linear combinations
			\circ basis of a vector space
			o row space of a matrix
9/6	W	W §1.6: Homogeneous Systems, etc.	o column space of a matrix
			\circ null space of a matrix
			o span
9/8	F	§2.1: Independence and Dimension	\circ linear independence
			• determination of bases

date	day	section	topic(s)
			o row rank
9/11	M	§2.2: The Rank of a Matrix	o column rank
			• Rank-Nullity Theorem
			o determinants
9/12	Tu	§4.1: Areas, Volumes, and Cross Products	o area of a parallelogram
			• the vector cross product
0/13	9/13 W §4.1: Areas, Volume	§4.1: Areas, Volumes, and Cross Products	o volume of a box
9/10		y4.1. Areas, volumes, and Cross Froducts	o properties of cross product
			o determinants
9/15	$_{ m F}$	§4.2: The Determinant of a Square Matrix	o minors of a matrix
9/10	I I		o cofactors of a matrix
			o adjugate of a matrix

date	day	section	$\mathrm{topic}(\mathrm{s})$
9/18	M	§4.3: Computations of Determinants, etc.	o properties of determinants
9/10	101	34.5. Computations of Determinants, etc.	• computing determinants
9/19	Tu	§4.3: Computations of Determinants, etc.	• computing the adjugate
9/19 10	l Iu	§4.5. Computations of Determinants, etc.	o computing matrix inverses
9/20	W	Exam I Review	
9/22	F	Exam I Review	

date	day	section	$\mathrm{topic}(\mathrm{s})$
9/25	M	Exam I Review	
9/26	Tu	Exam I	

Exam 2: Eigenvalues, Eigenvectors, and Canonical Forms

date	day	section	topic(s)
			o characteristic matrix
9/27	W	Characteristic and Minimal Polynomials	o characteristic polynomial
			o minimal polynomial
9/29	F Characteristic and Minimal Polynomia		o computing the polynomials
9/29	Г	Characteristic and Minimal Polynomials	o relating the polynomials

date	day	section	$\mathrm{topic}(\mathrm{s})$
10 /9	M	§5.1: Eigenvalues and Eigenvectors	o properties of eigenvalues
10/2	101		o computing eigenvalues
10/3	Tu	§5.1: Eigenvalues and Eigenvectors	o properties of eigenvectors
10/3	l Iu	§5.1. Eigenvalues and Eigenvectors	o computing eigenvectors
10 / 4	W	\$5.9. Diagonalization	o diagonalizability
10/4	10/4 W	§5.2: Diagonalization	o form of a diagonalizable matrix
10/6	10/6 F §5.2: Diagonalization	o orthogonal matrices	
10/6		F §5.2: Diagonalization	o orthonormal matrices

date	day	section	$\mathrm{topic}(\mathrm{s})$
			• the characteristic polynomial
10/9	M	The Cayley-Hamilton Theorem	\circ the minimal polynomial
			o a proof of Cayley-Hamilton
10/10	Tu	The Smith Normal Form	• the characteristic matrix
10/10	1 u	The Simul Normal Form	o computing the Smith Normal Form
10/11	117	The Craith Newsel Ferre	o elementary divisors
10/11	W	The Smith Normal Form	o invariant factors
10/13	F	Fall Break	

date	day	section	$\mathrm{topic}(\mathrm{s})$
10/16	М	M The Rational Canonical Form	o invariant factors
10/10	101		o companion matrices
10/17	Tu	The Rational Canonical Form	o computing Rational Canonical Form
10/18	W	The Jordan Canonical Form	• elementary divisors
10/10	W The Jordan Canonical Form		 Jordan blocks
10/20	F	The Jordan Canonical Form	o computing Jordan Canonical Form

date	day	section	$\mathrm{topic}(\mathrm{s})$
			o diagonalizability
10/23	M	Review of Canonical Forms	o diagonal matrices
			o block-diagonal matrices
			o Smith Normal Form
			o invariant factors
10/24	Tu	Review of Canonical Forms	∘ elementary divisors
			• Rational Canonical Form
			o Jordan Canonical Form
10/25	W	Exam II Review	
10/27	F	Exam II Review	

date	day	section	$\mathrm{topic}(\mathrm{s})$
10/30	M	Exam II Review	
10/31	Tu	Exam II	

Exam 3: Vector Spaces and Linear Transformations

date	day	section	$\mathrm{topic}(\mathbf{s})$
11/1			\circ functions
	\mathbf{W}	§2.3: Linear Transformations of Euclidean Spaces	o linearity
	VV	g2.5. Emeal Transformations of Euclidean Spaces	o properties
			o subspaces
11/3			o rank and nullity
	F	§2.3: Linear Transformations of Euclidean Spaces	o matrices
			o invertibility

date	day	section	topic(s)
11/6	М	§3.1: Vector Spaces	o vector space definition
11/0	101		o vector space examples
11/7	Tu §3.1: Vector Spaces	o vector space properties	
11/1	Tu	go.1. vector spaces	o vector subspaces
	W §3.2: Basic Concepts of Vector Spaces	82 2: Regia Concepts of Vector Spaces	o span
11/8			o linear independence
11/0		o subspace tests	
			o vector space dimension
11/10	F	§3.3: Coordinatization of Vector Spaces	o ordered bases
11/10			o coordinate vectors

date	day	section	topic(s)
			o matrix representation
11/13	M	§7.2: Matrix Representations and Similarity	• similarity of matrices
			• change of basis
			o properties
		§3.4: Linear Transformations	o injectivity
11/14	Tu		\circ surjectivity
			\circ subspaces
			\circ further examples
	W	§3.5: Inner Product Spaces	Vector Dot Product
11/15			o Matrix Dot Product
			\circ further examples
11/17	F	§3.5: Inner Product Spaces	o properties
			• Triangle Inequality
			o Cauchy-Schwarz

date	day	section	$\mathrm{topic}(\mathrm{s})$
11/20	M	Exam III Review	
11/21	Tu	Exam III Review	
11/22	W	Thanksgiving Break	
11/25	F	Thanksgiving Break	

date	day	section	$\mathrm{topic}(\mathrm{s})$
11/28	M	Exam III Review	
11/29	Tu	Exam III	

Final Exam Review

date	day	section	$\mathrm{topic}(\mathrm{s})$
11/30	W	Final Exam Review	
12/1	F	Final Exam Review	

date	day	section	$\mathrm{topic}(\mathrm{s})$
12/4	M	Final Exam Review	
12/5	Tu	Final Exam Review	
12/6	W	Final Exam Review	
12/8	F	Final Exam Review	

Final Exam: DATE; TIME to TIME; LOCATION