- 1.
- (a) False Set A has just elements however Set B has sets as elements
- **(b)** True Because C has the set {1,2,3} while A is the set {1,2,3}
- (c) True every element in A is also in C
- (d) True Set C has the set {1, 2, 3}
- (e) False Set A has just elements, but Set B has sets as elements. $a \in A$ but $a \notin B$
- (f) False 1, 2, 3 elements are not in Set D
- (g) True Every element within B is within D
- (h) False Because B is a set that contains the sets {1},{2},{3} while
- (i) True Because in Set D it has an element {1, 2, 3} different from 1, 2, 3

2.

(a)

Reflexive – False because **a** can't run faster than **a**, also **b** can't ran faster than **b**

Symmetric – False because if a run faster than b then b can't run faster than a

Antisymmetric – True, because this relationship never shows symmetry and therefore never shows symmetry on two elements that are different

Transitive – True, because **a** run faster than **b** and **b** runs faster than $\mathbf{c} \rightarrow \mathbf{a}$ run faster than \mathbf{c}

(b)

Reflexive – True because **a** and **a** would still have the same fur color. Also, **b** and **b** would have the same fur color

Symmetric – True, because **a** and **b** have the same fur color as **b** and **a** has the same fur color.

Antisymmetric – False, **a** and **b** are symmetric.

Transitive – True, because **a** and **b** have the same fur color and **b** and **c** have the same fur color \rightarrow **a** and **c** have the same fur color.

(c)

Reflexive – True, because **a** ate from the same bowl as **a**. Also, **b** and **b** would have eaten from the same bowl.

Symmetric – True, because **a** ate from same bowl as **b** and **b** ate from the same bowl as **a**

Antisymmetric – False, **a** and **b** are symmetric

Transitive – True, because **a** and **b** ate from the same bowl and **b** and **c** ate from the same bowl \rightarrow **a** and **c** ate from the same bowl.

3.

(a)

A = [0, 2) Set of real numbers between 0 to 2 but not including 2

B = (-5, 0) Set of real numbers between -5 to 0 but not including -5 and 0

C = [1, 3] Set of real numbers between 1 to 3 including 1 and 3

$$D = A \cup B = (-5, 2)$$

$$E = B \cup C = (-5,0) \cup [1,3]$$

$$F = A \cup C = [0, 3]$$

$$G = A \cap B = B \cap C = \emptyset$$

$$H = A \cap C = [1, 2)$$

(b)

Relation 'P' = { (A,A), (B,B), (C,C), (D,D), (E,E), (F,F), (G,G), (H,H), (A,D), (A,F), (B,D), (B,E), (C,E), (C,F), (G,A), (G,B), (G,C), (G,D), (G,E), (G,F), (G,H), (H,A), (H,C), (H,D), (H,E), (H,F) }

(c)

	A	В	C	D	E	F	G	Н
A	Α	D	E	D	Е	NULL	Α	А
В		В						
C			С					
D				D				

E			E			
F				F		
G					G	
Н						Н

No, because a poset in which every pairs of elements have both least upper bound and greatest lower bound is called lattice. However, there isn't a relationship between A and F. No (A, F)

(d)

The least upper bound of set {A, B, C} is G but the set {A, B, C} does not have greatest lower bound.

4.

(a)

(b)

Reflective – False, because there is not (e,e)

Symmetric – False, because there isn't (b,a), (d,e) and (f,d)

Transitive – False, because there isn't (d,e). Also there isn't a (b,a) and (e,e) to make it transitive.

(a,a), (b,b), (c,c), (d,d), (e,e), (f,f), (a,b), (b,a), (a,c), (c,a), (b,c), (c,b), (e,d), (d,e), (d,f), (e,f), (f,e)

 $[a] = {a, b, c,}$

 $[b] = \{b, a, c\} = [a]$

 $[c] = \{c, a, b\} = [a] = [b]$

 $[d] = \{d, e, f\}$

 $[e] = \{e, d, f\} = [d]$

 $[f] = \{f, e\}$

$$[a] = [b] = [c]$$

$$[d] = [e]$$

[f]

5.

6. i)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
= 2 3 1 1 3 1 1 2 1 1 2 3 0 -3 - 4 1 -0 -1 - 4 1 +0 -1 - 3 1 -5 -1 - 3 - 4 2 3 2 1 3 2 1 2 2 1 2 3
$ \begin{bmatrix} 1 & 2 & 3 \\ -1 & -3 & -4 \\ 1 & 2 & 3 \end{bmatrix} = 1 \begin{bmatrix} -3 & -4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} -1 & -4 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} -1 & -3 \\ 1 & 2 \end{bmatrix} $
= 1(-9-(-8)) - 2(-3-(-9)) + 3(-2-(-3)) = 0 $det A = 0 - 0 + 0 - 5(0) = 0$

Det = 1 x 11 x 0 x 22 = 0

ii)

A= 1231 Reduce to echelon form
1 3 41
1232 R2+R1 [1230]
6 1 1 0 R1+(-2)R2
70001
0-1-12 R3+C-DR1
222
0005
6001
[1231] [0000]
0-1-12 R2 X-1
0001
0005
[1010]
1231
011-2 Ru+(-5)R3 0001
0001 / [6000]
0005
Rante=3
1231
011-2 R2+(2)R3
0001
[0000]
1231
0110 R1+C-1)R3
0001
0000

1-3-24	
0 1 1-1 001 (3) 1-	
1 181+(8)02	
[0000]	
[1011]	
0 1 1 - 1	
0000	
0000	
110117	
0011-1	
8000	
0 0 0 0	
Rank=Z	

7.

$A = \begin{bmatrix} 2 \times 0 \end{bmatrix} \begin{bmatrix} + - + \\ - + - \end{bmatrix}$						
x 2 x + - +						
$-2 \cdot 2 \cdot$						
$= 5 \times 5 \times - \times \times \times + 0 \times 5$						
$= 2(4-x^{2})-x^{2} \times 2x+0 \times x^{2}$ $= -4x^{2}+8$						
$det \Delta = -ux^2 + 8$						
1.310-0						
$-4x^{2}+8=0$ $-4x^{2}=-8$						
-x2 = 2						
$x = \sqrt{2}, -\sqrt{2}$						

$B = \begin{bmatrix} x - 1 & 0 & 4 \\ 0 & x + 1 & 3 \\ 0 & 3 & x + 1 \end{bmatrix}$						
= x - 1 x + 1 3 - 0	0 3	+ 4	0 x+1			
3 X+1 L	0 X+1		03			
$= (x-1)(x^{2}+2x-8) - 0 \times 0 + 4 \times 0$ $= (x-1)(x^{2}+2x-8)$ $= x^{3}+x^{2}-10x+8$						
$(x-1)(x^2+2x-8)=0$						
(x-1)(x-2)(x+4) = 0						
x = 1, x = 2, x = -u						