acy

bac

for

- 14. (12 points) We showed that there is a worst-case linear time SELECT algorithm that selects the *i*-th order statistic from n numbers with $T(n) = \Theta(n)$ comparisons. But the constant hidden by the Θ -notation is subroutine but makes fewer comparisons in the worst case.
 - (a) (9 points) Describe an algorithm that uses $U_i(n)$ comparisons to find the *i*-th smallest of n elements, where

$$U_{i}(n) = \begin{cases} T(n) & \text{if } i \geq \frac{n}{2}; \\ \lfloor \frac{n}{2} \rfloor + U_{i}(\lceil \frac{n}{2} \rceil) + T(2i) & \text{if } i < \frac{n}{2}. \end{cases}$$

Briefly explain why your algorithm is correct. (Hint: Begin with $\lfloor \frac{n}{2} \rfloor$ disjoint pairwise comparisons, and recurse on the set containing the smaller element from each pair.)

- (b) (3 points) Show that, if $i < \frac{n}{2}$, then $U_i(n) = n + O\left(T(2i)\log \frac{n}{i}\right)$.
 - a) if $i < \frac{n}{2}$, we can find the median of n as pivot with $\lfloor \frac{n}{2} \rfloor$ comparisons, and only look into that partition of elements that are smaller or equal to the pivot, and "i" will still be in that partition.

 Recursively, if each time i is in the smaller half of the partition (i.e., i.e., we can go into the faster subroutine, with less comparisons.

 So it finds the # i-th the order element faster.

b) divide-and-conquer: partition times tree for $U_i(t_{\overline{z}})$ has height $\log \frac{n}{i} = \log n - \log i$ each combine step takes: $T(z_i)$ n is to loop through the n elements

So $U_i(n) = n + O(\log \frac{n}{i}) \cdot T(z_i) = n + O(T(z_i)\log \frac{n}{i})$