Logic 2

白永乐

202011150087

202011150087@mail.bnu.edu.cn

2024年4月24日

 \mathbb{R}^{OBEM} I 设 p 的真值为真, q 的真值为假, 求 $\neg p, p \land q, p \lor q, p \to q, p \leftrightarrow q$ 的真值。

SOUTION. 显然有如下真值表:

$$\begin{array}{ccc}
\neg p & F \\
p \wedge q & F \\
p \vee q & T \\
p \rightarrow q & F \\
p \leftrightarrow q & F
\end{array}$$

 \mathbb{R}^{O} BEM II 设 p 为 T (真) q 为 T, r 为 F (假), 下列公式中哪些公式取值为 T?

- 1. $q \wedge r$
- 2. $\neg p \land \neg r$
- 3. $p \leftrightarrow \neg q \lor r$
- 4. $q \vee \neg r \rightarrow p$
- 5. $(q \to p) \to ((p \to \neg r) \to (\neg r \to q))$

SOLTION. 1. 显然 $q \wedge r$ 为假。

- 2. 显然有 $\neg p$ 为假, 故 $\neg p \wedge \neg r$ 为假。
- 3. 由 $\neg q$ 和 r 均为假可知 $\neg q \lor r$ 为假, 但 p 为真, 故 $p \leftrightarrow \neg q \lor r$ 为假。
- 4. 由于 p 为真, 故 $q \lor \neg r \to p$ 为真。
- 5. 易于得到以下真值表:

П

故4,5为真。

INOBEM III 用真值表判定下列各组公式哪些表示相同的真值函项 (即哪些是等值的)?

- 1. $p \to q, \neg p \lor q$
- 2. $\neg p \lor \neg q, \neg (p \lor q)$

SOUTION . 1. 显然有如下真值表:

故逻辑等值。

2. 显然有如下真值表:

,故不逻辑等值。

ROBEM IV 列出下列公式的真值表,并指出它们分别为重言式、矛盾式或协调式。

- 1. $p \leftrightarrow p \lor p$
- 2. $p \wedge (q \wedge \neg q)$

SOUTION: 1. 显然有如下真值表:

$$\begin{array}{cccc} p & p \lor p & p \leftrightarrow p \lor p \\ T & T & T \\ F & F & T \end{array}$$

- , 故为重言式。
- 2. 显然有如下真值表:

, 故为矛盾式。

限^{OBIEM V} 用命题的自然推理, 证明下列公式是否为有效式 (为系统中之定理)?

1. $p \wedge p \rightarrow p$

2.
$$(q \to r) \to (p \lor q \to p \lor r)$$

SOUTION. 1.

2.

[1]		$q \rightarrow r$			hyp
[2]			$p \vee q$		hyp
[3]				p	hyp
[4]				$p \vee r$	$\vee I:[3]$
[5]				q	hyp
[6]				r	$\to E:[5][1]$
[7]				$p \vee r$	$\vee I:[6]$
[8]			$p \vee r$		$\vee E:[3]-[7]$
[9]		$p\vee q\to p\vee r$			$\rightarrow I:[2]-[8]$
[10]	$(q \to r) \to (p \lor q \to p \lor r)$				$\to I: [1] - [9]$

IPOBEM VI 请用简化真值表方法判定以下命题是否为重言式。

- 1. $((p \to q) \land (r \to s)) \lor (p \lor r) \to q \lor s$
- 2. $((p \to q) \land (r \to s)) \land (p \land r) \to q \land s$
- 3. $(p \land (q \lor j)) \land (p \to (q \to k \land t)) \land (p \land j \to \neg(k \lor t)) \to (k \land t) \lor (\neg k \land \neg t)$
- SOLTION . 1. 反设 $((p \to q) \land (r \to s)) \lor (p \lor r) \to q \lor s$ 不成立,则得到 $((p \to q) \land (r \to s)) \lor (p \lor r)$ 和 $\neg q$ 以及 $\neg s$ 。观察发现当 p,r 为真,q,s 为假时上述条件成立,原表达式为假。故不是重言式。
 - 2. 反设 $((p \to q) \land (r \to s)) \land (p \land r) \to q \land s$ 不成立,则得到 $((p \to q) \land (r \to s)) \land (p \land r)$ 和 $\neg q \lor \neg s$ 。从而有 $p \to q, r \to s, p, r, \neg q \lor \neg s$ 。由 $p, p \to q$ 得到 q,同样由 $r, r \to s$ 得到 s,从而得到 $q \land s$,与 $\neg q \lor \neg s$ 矛盾! 故原式是重言式。

3. 反设 $(p \land (q \lor j)) \land (p \to (q \to k \land t)) \land (p \land j \to \neg(k \lor t)) \to (k \land t) \lor (\neg k \land \neg t)$ 为假,则有 $p,q \lor j,p \to (q \to k \land t),p \land j \to \neg(k \lor t),\neg(k \land t),\neg(\neg k \land \neg t)$ 。由 $p,p \to (q \to k \land t)$ 可得 $q \to k \land t$,再由 $\neg(k \land t)$ 得到 $\neg q$,进一步由 $q \lor j$ 得到 j,从而得到 $p \land j$,再结合 $p \land j \to \neg(k \lor t)$ 得到 $\neg(k \lor t)$,从而得到 $\neg k \land \neg t$ 。但是我们已经由假设得到了 $\neg(\neg k \land \neg t)$,故产生矛盾。从而原式是重言式。