SLIM 🔂

ML4Seismic

Fracture risk

w/o pressure control

- Initial injection rate: $q = 0.05 \text{m}^3/\text{s}$
- Leads to *over* pressure after 1920 days of injection
- Seal fractures due to over pressure denoted by red areas
- Unacceptable risk

Saturation at current time

$$\mathbf{x}_4 \sim p(\mathbf{x}_4 \,|\, \bar{\mathbf{y}}_4^{\mathrm{o}})['S']$$

$$\mathbf{x}_4 \sim p(\mathbf{x}_4 | \bar{\mathbf{y}}_4^{\mathrm{o}})['\delta p']$$

Ringrose, Philip. "How to store CO2 underground: Insights from earlymover CCS projects." (2020): 978-3.

Saturation at current time

Fracture risk w/o pressure control

- Initial injection rate: $q = 0.05 \text{m}^3/\text{s}$
- Leads to *over* pressure after 1920 days of injection
- Seal *fractures* due to *over* pressure denoted by red areas
- ► Unacceptable risk

Controlled injection rates

k=3

Compute controlled injection rates

- ► for N = 128 samples of $\mathbf{K} \sim p(\mathbf{K})$ and $\mathbf{x}_3 \sim p(\mathbf{x}_3 | \bar{\mathbf{y}}_3^{\mathrm{o}})$
- ▶ by finding injectivities, q_3 , that maximize the total CO_2 injected volume while **not** exceeding the fracture pressure via

$$\max_{q_3} \Delta t$$
 subject to $\mathbf{x}_4['p'] < \mathbf{p}_{\max}$
 $\mathbf{x}_4 = \mathcal{M}_3(\mathbf{x}_3, \mathbf{K}; q_3)$

- use Gaussian kernel density estimation
- approximate the probability density function of the controlled injection rates

