

Bài tập Giải tích phức: Một số ứng dụng của lý thuyết thặng dư

> Sinh viên thực hiện: 20173520 – Nguyễn Đức Hùng

Mục lục

1	Chuỗi Laurent và thặng dư	2
2	Một số ứng dụng của thặng dư	3
	2.1 Phân tích lớp hàm hữu tỉ	. 3
	2.2 Nội suy đa thức	. 4
	2.3 Biến đổi Laplace ngược	. 6

1 Chuỗi Laurent và thặng dư

Khai triển Laurent của hàm f(z) quanh điểm z_0 là chuỗi lũy thừa:

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n \tag{1}$$

Trong đó a_n được xác định bởi:

$$a_n = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz$$
 (2)

Với γ là đường cong kín bao quanh z_0 sao cho: tồn tại đường tròn β tâm z_0 , bán kính r > 0, f(z) giải tích trên miền được giới hạn bởi $\beta \cap \gamma$.

Hình 1: Đường cong γ

Đặc biệt, khi n=-1, ta có:

$$a_{(-1)} = \frac{1}{2\pi i} \oint_{\gamma} f(z)dz \tag{3}$$

 a_{-1} được gọi là thặng dư (residue) của f(z) tại điểm z_0 . Ký hiệu:

$$\operatorname{Res}_{z=z_0} f(z) = \frac{1}{2\pi i} \oint_{\gamma} f(z) dz \tag{4}$$

Với một hàm f(z) bất kì giải tích trên miền $D \setminus \{z_0\}$, z_0 là cực điểm cấp n của f(z), ta có thể tìm thặng dư của f(z) tại z_0 bằng cách:

$$\operatorname{Res}_{z=z_0} f(z) = \frac{1}{(n-1)!} \cdot \frac{d^{n-1}}{dz^{n-1}} \left[(z-z_0)^n f(z) \right]_{z=z_0}$$
 (5)

Trong trường hợp z_0 là cực điểm đơn giản:

$$\operatorname{Res}_{z=z_0} f(z) = \left. \frac{p(z)}{q'(z)} \right|_{z=z_0} \text{ v\'oi } f(z) = \frac{p(z)}{q(z)}$$
 (6)

2 Một số ứng dụng của thặng dư

2.1 Phân tích lớp hàm hữu tỉ

Cho đa thức $p, q \in \mathbb{C}[z]$ với $\deg(p) + 1 \leq \deg(q)$. Giả sử p có các không điểm z_1, \dots, z_n có các cấp tương ứng là m_1, m_2, \dots, m_n . Khi đó hàm f(z) = p(z)/q(z) có thể được viết

$$\frac{p(z)}{q(z)} = \sum_{i=0}^{n} \sum_{j=1}^{m_i} \frac{a_{i,j}}{(z - z_i)^j}$$
 (7)

với các hằng số $a_{i,j} \in \mathbb{K}$. Trong bài viết này, kết quả trên sẽ được thừa nhận không chứng minh.

Xét hàm phụ $f(z) \cdot (z - z_{\alpha})^{\beta - 1}$ với $0 \le \alpha \le n$ và $1 \le \beta \le m_{\alpha}$, ta có:

$$f(z) \cdot (z - z_{\alpha})^{\beta - 1} = \sum_{i=0}^{n} \sum_{j=1}^{m_i} \frac{a_{i,j}}{(z - z_i)^j} \cdot (z - z_{\alpha})^{\beta - 1}$$
 (8)

$$= \dots + \frac{a_{\alpha,\beta}}{z - z_{\alpha}} + \dots \tag{9}$$

Dựa vào công thức (9) ta thấy hệ số $a_{i,j}$ ở trên có thể được tính theo công thức:

$$a_{i,j} = \underset{z=z_i}{\text{Res}} \left[f(z) \cdot (z - z_i)^{j-1} \right]$$
 (10)

Thay công thức (10) vào (7) ta được:

$$f(z) = \sum_{i=0}^{n} \sum_{j=1}^{m_i} \frac{1}{(z-z_i)^j} \cdot \operatorname{Res}_{z=z_i} \left[f(z) \cdot (z-z_i)^{j-1} \right]$$
 (11)

Trong trường hợp f(z) chỉ có cực điểm đơn giản, (10) trở thành:

$$f(z) = \sum_{i=0}^{n} \frac{1}{z - z_i} \cdot \underset{z=z_i}{\text{Res}} f(z)$$
 (12)

Ví dụ 2.1. Phân tích hàm $f(z) = \frac{1}{z^2(z-i)}$. Các cực điểm của f(z) bao gồm:

$$z = i$$
 (Cực điểm đơn giản)
 $z = 0$ (Cực điểm cấp 2)

Tính các thặng dư cần thiết:

$$\operatorname{Res}_{z=i} f(z) = \frac{1}{[z^{2}(z-i)]'} \Big|_{z=i}$$

$$= -1$$

$$\operatorname{Res}_{z=0} f(z) = \frac{1}{1!} \frac{d}{dz} [f(z) \cdot z^{2}] \Big|_{z=0}$$

$$= 1$$

$$\operatorname{Res}_{z=0} f(z)(z-0) = \frac{1}{[z(z-i)]'} \Big|_{z=0}$$

$$= i$$

Sử dụng công thức (11) ta được:

$$f(z) = \frac{-1}{z - i} + \frac{1}{z} + \frac{i}{z^2}$$

2.2 Nội suy đa thức

Định nghĩa 2.1 (Đa thức nội suy). Cho tập dữ liệu $\{(z_i, y_i)\}_{i=0}^n \subset \mathbb{C}^2$, trong đó không có z_i nào trùng nhau. Một đa thức $p \in C[z]$ với $\deg(p) \leq n$ thỏa mãn

$$p(z_i) = y_i$$

được gọi là đa thức nội suy từ tập dữ liệu đã cho.

Định lý 2.1 (Nghiệm duy nhất). Với mỗi tập dữ liệu như trên, tồn tại duy nhất một đa thức nội suy p. (Chỉ thừa nhận không chứng minh)

Định nghĩa 2.2 (Đa thức nội suy Lagrange). Cho tập dữ liệu $\{(z_i, y_i)\}_{i=0}^n \subset \mathbb{C}^2$. Da thức nội suy Lagrange từ tập dữ liệu trên được định nghĩa:

$$L(z) = \sum_{i=0}^{n} y_i \cdot l_i(z) \tag{13}$$

 $v\acute{\sigma}i\ l_i(z)\ l\grave{a}$:

$$l_i(z) = \prod_{\substack{0 \le k \le n \\ k \ne i}} \frac{z - z_k}{z_i - z_k} \tag{14}$$

Đặt hàm phụ w(z):

$$w(z) = (z - z_0) \cdot (z - z_1) \cdot (z - z_2) \cdots (z - z_{n-1}) \cdot (z - z_n)$$
 (15)

Nhận xét:

$$w'(z_i) = \frac{w(z)}{z - i} \bigg|_{z = z_i} \tag{16}$$

Dựa vào (15), (16) viết lại (14):

$$l_i(z) = \frac{w(z)}{w'(z)(z - z_i)} \tag{17}$$

Xét hàm F(t) và G(t) định nghĩa bởi:

$$F(t) = \frac{w(z) - w(t)}{(z - t)} \tag{18}$$

$$G(t) = w(t) \tag{19}$$

Vì $\frac{F}{G}(t)$ có các cực điểm đơn giảm tại z_i , ta có:

$$\operatorname{Res}_{t=z_{i}} \frac{F(t)}{G(t)} = \frac{F(z_{i})}{G'(z_{i})}$$

$$= \frac{w(z)}{(z-z_{i})w'(z_{i})}$$
(20)

Dựa vào (15), (16), (17) và (20), ta có công thức mới cho đa thức nội suy Lagrange:

$$L(z) = \sum_{i=0}^{n} y_i \cdot \operatorname{Res}_{z=z_i} \frac{F}{G}(z)$$
 (21)

Gọi γ là đường tròn đủ lớn sao cho $z_i \in \text{int}(\gamma)$, $i = \overline{0, n}$; f là hàm đơn trị giải tích trên $\text{int}(\gamma)$ thỏa mãn $f(z_i) = y_i$. Dựa vào (21) có dạng khác của đa thức nội suy Lagrange:

$$L(z) = \frac{1}{2\pi i} \oint_{\gamma} \frac{w(z) - w(t)}{(z - t) \cdot w(t)} f(t) dt$$
 (22)

2.3 Biến đổi Laplace ngược

Định nghĩa 2.3. [Biển đổi Laplace] Cho f(t) là hàm xác định với $t \in [0; +\infty)$. Biến đổi Laplace của hàm f(t) được định nghĩa:

$$\mathcal{L}{f}(s) = F(s) = \int_0^\infty f(t)e^{-st}dt, \quad s \in \mathbb{I}$$
 (23)

Khi đó hàm f(t) được gọi là biến đổi Laplace ngược của hàm F(s), ký hiệu

$$\mathcal{L}^{-1}\lbrace F\rbrace(t) = f(t) \tag{24}$$

Định lý 2.2 (Sự tồn tại của biến đổi Laplace). Một hàm f(t) tồn tại biến đổi Laplace F(s)khi:

$$(\forall t \ge 0), \ (\exists M, k), \ |f(t)| < Me^{kt}$$
 (25)

Hệ quả:

$$|F(s)| = \left| \int_0^\infty f(t)e^{-st}dt \right|$$

$$\leq \int_0^\infty |f(t)|e^{-st}dt$$

$$\leq \int_0^\infty Me^{kt-st}dt$$

$$= \frac{M}{s-k}$$
(26)

Định nghĩa 2.4. [Công thức Fourier – Mellin] Cho hàm f(t) xác định với t > 0, f(t) có biến đổi Laplace

$$F(s) = \int_0^\infty f(t)e^{-st}dt$$

 $v\acute{o}i\ s = \sigma + i\omega$. Khi đó F(s) có biến đổi Laplace ngược:

$$f(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} F(s)e^{st}dt$$
 (27)

Từ công thức (27) ta sẽ đi tìm cách biến đổi Laplace ngược sử dụng lý thuyết thặng dư. Xét hàm $F(s)e^{st}$ với các cực điểm $\{s_k\}$. Gọi C_1 là nửa bên trái đường tròn tâm σ bán kính R, d là đường thẳng $Re(s) = \sigma$. Đặt $C = d \cup /C_1$. Chọn σ và R sao cho C chứa toàn bộ cực điểm của $F(s)e^{st}$.

Hình 2: Hai nửa đường cong C

Xét tích phân của $F(s)e^{st}$ trên đường cong C:

$$\oint_C F(s)e^{st}ds = \int_{C_1} F(s)e^{st}ds + \int_d F(s)e^{st}ds$$

$$= \int_{C_1} F(s)e^{st}ds + \int_{\sigma-iR}^{\sigma+iR} F(s)e^{st}ds$$

$$= 2\pi i \sum_{\forall s_k} \underset{s=s_k}{\operatorname{Res}} F(s)e^{st}$$
(28)

Trên nửa đường tròn C_1 , s được cho bởi công thức $s = \sigma + Re^{i\phi}, \ \pi/2 \le \phi \le 3\pi/2$.

Theo hệ quả (26):

$$|F(s)| < \frac{M}{s - k}$$

$$\implies |F(\sigma + Re^{i\phi})| < \frac{M}{\sigma - k + Re^{i\phi}} \to 0 \text{ khi } R \to \infty$$

$$\implies \lim_{R \to \infty} |F(\sigma + Re^{i\phi})| = 0$$

hay:

$$\implies \forall \ \varepsilon > 0, \ \exists \ R, \ \left| F(\sigma + Re^{i/phi} \right| < \varepsilon$$
 (29)

Áp dụng (29) cho tích phân ở trên, ta có:

$$\left| \int_{C_1} F(s)e^{st}ds \right| \leq \left| \int_{\pi/2}^{3\pi/2} F(\sigma + Re^{i\phi})e^{(\sigma + Re^{i\phi})t}d(\sigma + Re^{i\phi}) \right|$$

$$\leq \int_{\pi/2}^{3\pi/2} \left| F(\sigma + Re^{i\phi})e^{(\sigma + Re^{i\phi})t}iRe^{i\phi} \right| d\phi$$

$$\leq R\varepsilon \int_{\pi/2}^{3\pi/2} \left| e^{(\sigma + R\cos\phi + Ri\sin\phi)t} \right| d(\phi)$$

$$= R\varepsilon e^{\sigma t} \int_{\pi/2}^{3\pi/2} e^{Rt\cos\phi}d(\phi)$$

$$= R\varepsilon e^{\sigma t} \int_{0}^{\pi/2} e^{-Rt\sin\phi}d(\phi)$$

Vì trên đoạn $(0, \pi/2)$, $\sin(\phi) \le 2\phi/\pi$ nên:

$$\left| \int_{C_1} F(s)e^{st}ds \right| \le R\varepsilon e^{\sigma t} \int_0^{\pi/2} e^{-Rt2\phi/\pi} d(\phi)$$

$$\le \frac{\varepsilon Re^{\sigma t}}{t} \left(1 - e^{-Rt} \right) \tag{30}$$

Do đó với mọi t > 0 ta có:

$$\lim_{s \to \infty} \int_{C_1} F(s)e^{st}ds = 0$$

$$\lim_{R \to \infty} \int_{\sigma - iR}^{\sigma + iR} F(s)e^{st}ds = \int_{\sigma - i\infty}^{\sigma + i\infty} F(s)e^{st}ds$$

$$\implies \int_{\sigma - i\infty}^{\sigma + i\infty} F(s)e^{st}ds = 2\pi i \sum_{\forall s_k} \underset{s = s_k}{\text{Res }} F(s)e^{st}$$
(31)

Từ (31) và định nghĩa (2.4) thu được công thức biến đổi Laplace ngược dựa trên thặng dư của $F(s)e^{st}$:

$$f(z) = \sum_{\forall s_k} \underset{s=s_k}{\text{Res }} F(s)e^{st}$$
 (32)

Ví dụ 2.2. Tìm biến đổi Laplace ngược của hàm $F(s) = \frac{1}{s(s+4)}$.

F(s) có các cực điểm đơn giản s=0 và s=-4. Dễ thấy cực điểm của $F(s)e^{st}$ cũng chính là cực điểm của F(s). Ta tìm các thặng dư tương ứng:

Res
$$F(s)e^{s}t = \frac{e^{st}}{s+4}\Big|_{s=0} = \frac{1}{4}$$

Res $F(s)e^{s}t = \frac{e^{st}}{s}\Big|_{s=-4} = \frac{e^{-4t}}{-4}$

Dùng công thức (32) ta thu được biến đổi Laplace ngược:

$$f(t) = \frac{1}{4} - \frac{e^{-4t}}{4} \tag{33}$$