Arke

Scalable and Byzantine Fault Tolerant Privacy-Preserving Contact Discovery

Web2 Needs

• 10 Million requests / day

Web3 Needs

Decentralisation

- O(1) independent of the total number of users
- Byzantine Fault Tolerant

req/s

50 nodes

req/s

50 nodes < 0.5s latency

What about blockchains?

blockchain

blockchain

derive shared key

More than private chats

- Decentralised messaging
- Bootstrap multi-user gaming sessions
- Airdrops / payments even before recipient has an account

Paper

alberto@mystenlabs.com

alberto@mystenlabs.com

L-Graphs

Performance

Performance

The Crypto

Setup

 $s, pk_{s_1} \in G_1, pk_{s_2} \in G_2$ Blockchain $\sigma_1 = t_1^a , \ m_1 = H_1(n_A)^a$

 $\overline{k_1 = H_1(n_A)^s} = (m_1^s)^{-a}$

 $k_2 = H_2(n_A)^s = (m_2^s)^{-a}$

 \overline{BLS} . $\overline{vrfy}(\sigma_1, m_1, pk_{w_1})$

 $SLB.vrfy(\sigma_2, m_2, pk_{w_2})$

Key Derivation

$$S_{AB} = e(k_1, H_2(n_B)) = e(H_1(n_A)^s, H_2(n_B))$$

 $S_{BA} = e(H_1(n_B), k_2) = e(H_1(n_B), H_2(n_A)^s)$

$$k_{AB} = KDF(S_{AB} \ XOR \ S_{BA})$$

$$key = g_1^{t_{AB}}, t_{AB} = H(s_{AB})$$

$$val = c_{AB} = AEAD_k(pk_A)$$

$$S_{AB} = e(H_1(n_A), k_2) = e(H_1(n_A), H_2(n_B)^s)$$

 $S_{BA} = e(k_1, H_2(n_A)) = e(H_1(n_B)^s, H_2(n_A))$

$$k_{AB} = KDF(S_{AB} \ XOR \ S_{BA})$$

$$key = g_1^{t_{BA}}, t_{BA} = H(s_{BA})$$

$$val = c_{BA} = AEAD_k(pk_B)$$

Sui is special

$$S_{AB} = e(k_1, H_2(n_B)) = e(H_1(n_A)^s, H_2(n_B))$$

 $S_{BA} = e(H_1(n_B), k_2) = e(H_1(n_B), H_2(n_A)^s)$

$$k_{AB} = KDF(S_{AB} \ XOR \ S_{BA})$$

$$key = g_1^{t_{AB}}, t_{AB} = H(s_{AB})$$

$$val = c_{AB} = AEAD_k(addr_A)$$

- 1. Create a new owned object with owner hash(key)
- 2. The object/event contains a single field: val
- 3. Readers gather all objects owned by a public key
- 4. Single-owner object structure remains because there is a single writer for every key