

Overview

System Design I

- ✓ Overview of System Design
- ✓ Design Goals
- ✓ Subsystem Decomposition
 - ✓ Architectural Styles

System Design II

- Hardware/Software Mapping
- Persistent Data Management
- Global Resource Handling and Access Control
- Software Control
- Boundary Conditions

Hardware Software Mapping

- This system design activity addresses two questions:
 - How shall we realize the subsystems: With hardware or with software?
 - How do we map the object model onto the chosen hardware and/or software?
 - Mapping the Objects:
 - Processor, Memory, Input/Output
 - Mapping the Associations:
 - Network connections

Mapping Objects onto Hardware

- Control Objects -> Processor
 - Is the computation rate too demanding for a single processor?
 - Can we get a speedup by distributing objects across several processors?
 - How many processors are required to maintain a steady state load?
- Entity Objects -> Memory
 - Is there enough memory to buffer bursts of requests?
- Boundary Objects -> Input/Output Devices
 - Do we need an extra piece of hardware to handle the data generation rates?
 - Can the desired response time be realized with the available communication bandwidth between subsystems?

Two New UML Diagram Types

- Deployment Diagram:
 - Illustrates the distribution of components at run-time.
 - Deployment diagrams use nodes and connections to depict the physical resources in the system.
- Component Diagram:
 - Illustrates dependencies between components at design time, compilation time and runtime

Deployment Diagram

- Deployment diagrams are useful for showing a system design after these system design decisions have been made:
 - Subsystem decomposition
 - Concurrency
 - Hardware/Software Mapping

- A deployment diagram is a graph of nodes and connections ("communication associations")
 - Nodes are shown as 3-D boxes
 - Connections between nodes are shown as solid lines
 - Nodes may contain components
 - Components can be connected by "lollipops" and "grabbers"
 - Components may contain objects (indicating that the object is part of the component).

UML Component Diagram

- Used to model the top-level view of the system design in terms of components and dependencies among the components. Components can be
 - Source code, linkable libraries, executables
- The dependencies (edges in the graph) are shown as dashed lines with arrows from the client component to the supplier component:
 - The lines are often also called connectors
 - The types of dependencies are implementation language specific
- Informally also called "software wiring diagram" because they show how the software components are wired together in the overall application.

UML Interfaces: Lollipops and Sockets

- A UML interface describes a group of operations used or created by UML components.
 - There are two types of interfaces: provided and required interfaces.
 - A provided interface is modeled using the lollipop notation
 - A required interface is modeled using the socket notation.
- A port specifies a distinct interaction point between the component and its environment.
 - Ports are depicted as small squares on the sides of classifiers.

Component Diagram Example Dependency. 皂 0 **Scheduler** reservations **UML Component** 毛 **Planner** update 电 GUI **UML** Interface

Deployment Diagram Example

Data Management

- Some objects in the system model need to be persistent:
 - Values for their attributes have a lifetime longer than a single execution
- A persistent object can be realized with one of the following mechanisms:
 - Filesystem:
 - If the data are used by multiple readers but a single writer
 - Database:
 - If the data are used by concurrent writers and readers.

Data Management Questions

- How often is the database accessed?
 - What is the expected request (query) rate? The worst case?
 - What is the size of typical and worst case requests?
- Do the data need to be archived?
- Should the data be distributed?
 - Does the system design try to hide the location of the databases (location transparency)?
- Is there a need for a single interface to access the data?
 - What is the query format?
- Should the data format be extensible?

Mapping Object Models

- UML object models can be mapped to relational databases
- The mapping:
 - Each class is mapped to its own table
 - Each class attribute is mapped to a column in the table
 - An instance of a class represents a row in the table
- Methods are not mapped

Global Resource Handling

- Discusses access control
- Describes access rights for different classes of actors
- Describes how object guard against unauthorized access.

Defining Access Control

- In multi-user systems different actors usually have different access rights to different functionality and data
- How do we model these accesses?
 - During analysis we model them by associating different use cases with different actors
 - During system design we model them determining which objects are shared among actors.

Global Resource Questions

- Does the system need authentication?
- If yes, what is the authentication scheme?
 - User name and password? Access control list
 - Tickets? Capability-based
- What is the user interface for authentication?
- Does the system need a network-wide name server?
- How is a service known to the rest of the system?
 - At runtime? At compile time?
 - By Port?
 - By Name?

Control Flow

- How does the system sequence operations?
- Is the system event driven?
- Can it handle more than one user interaction at a time?
- The choice of control flow has an impact on the interfaces of subsystems.
 - If an event-driven control is selected, subsystems will provide event handlers.
 - If threads are selected, subsystems must guarantee mutual exclusion in critical sections.

Centralized vs. Decentralized Designs

Centralized Design

- One control object or subsystem ("spider") controls everything
 - Pro: Change in the control structure is very easy
 - Con: The single control object is a possible performance bottleneck

Decentralized Design

- Not a single object is in control, control is distributed;
 That means, there is more than one control object
 - Con: The responsibility is spread out
 - Pro: Fits nicely into object-oriented development

Boundary Conditions

Initialization

 The system is brought from a non-initialized state to steady-state

Termination

 Resources are cleaned up and other systems are notified upon termination

Failure

- Possible failures: Bugs, errors, external problems
- Good system design foresees fatal failures and provides mechanisms to deal with them.

Boundary Condition Questions

Initialization

- What data need to be accessed at startup time?
- What services have to be registered?
- What does the user interface do at start up time?

Termination

- Are single subsystems allowed to terminate?
- Are subsystems notified if a single subsystem terminates?
- How are updates communicated to the database?

Failure

- How does the system behave when a node or communication link fails?
- How does the system recover from failure?.

Modeling Boundary Conditions

- Boundary conditions are best modeled as use cases with actors and objects
- We call them boundary use cases or administrative use cases
- Actor: often the system administrator
- Interesting use cases:
 - Start up of a subsystem
 - Start up of the full system
 - Termination of a subsystem
 - Error in a subsystem or component, failure of a subsystem or component.

ManageServer Boundary Use Case

Summary

- System design activities:
 - Concurrency identification
 - Hardware/Software mapping
 - Persistent data management
 - Global resource handling
 - Software control selection
 - Boundary conditions
- Each of these activities may affect the subsystem decomposition
- Two new UML Notations
 - UML Component Diagram: Showing compile time and runtime dependencies between subsystems
 - UML Deployment Diagram: Drawing the runtime configuration of the system.