

I. Définition d'un polynôme – les opérations sur les polynômes

Activité 0:

Soient (x-1) et (x+1) et (x+4) les dimensions d'un parallélépipède tel que x un nombre réel supérieure strictement à 1 et soit P(x) son volume. Calculer P(x).

- O L'expression $x^3 + 3x^2 x 3$ s'appelle un polynôme de degré 2 (haute puissance).
- o Les expressions x^3 , $3x^2$, -x et -3 s'appellent les monômes de P(x).
- Le nombre 3 est appelé le coefficient du monôme de deuxième degré, -1 est le coefficient du monôme de premier degré et -3 son terme constant.

PP Définitions :

- O Un *monôme* de la variable x est une expression de la forme ax^n où $a \in IR$ et $n \in IN$, a est appelé le *coefficient* et n le *degré* du monôme.
- O Un *polynôme* de la variable x est une somme de monômes de la variable x.
- o Le *degré* d'un polynôme P(x), noté deg(P(x)) ou $d^{\circ}(P(x))$, est celui de son monôme de plus haut degré.

Application O:

Compléter le tableau suivant :

Les expressions	Polynôme ?		10((D())	Coef de monôme de degré	
	Oui	Non	$d^{\circ}((P(x))$	2	3
$x^{6} + 24x^{2} + \frac{\sqrt{2}}{5}$ $x^{4} - x + 4$					
$x^4 - x + 4$					
$2x^2 + \sqrt{x} + 2$					
6					
$2\left(\frac{1}{x}\right)^2 + x$					

O Remarque:

Le polynôme nul (P(x) = 0)n'a pas de degré.

II. Les opérations sur les polynômes

Activité 2:

- 1) Est-ce que les polynômes P(x) et Q(x) sont égaux dans les cas suivants?
 - $P(x) = x^4 + 2x^2 + x$ et $Q(x) = 2x^2 + x$
 - $P(x) = x(x+1)^2 x^2 + 1$ et $Q(x) = x^3 x^2 + x + 1$
- 2) Donner la forme générale d'un polynôme de second degré.

Propriété :

Deux polynômes sont égaux si ont le même degré et si leurs coefficients respectifs des

monômes de même degré sont égaux.

Application Q:

On considère P(x) et Q(x) deux polynômes tels que : $P(x) = 4x^2 - (b-3)x$ et $Q(x) = ax^2 + 2x + c$.

Déterminer les réels a, b et c pour que les polynômes P(x) et Q(x) soient égaux.

Activité 3:

On considère P(x) et Q(x) deux polynômes tels que : $P(x) = 4x^2 - 3x + 1$ et $Q(x) = -3x^3 + x$.

1) Calculer P(x) + Q(x) et P(x) - Q(x).

2) Calculer $P(x) \times Q(x)$, puis comparer $d^{\circ}(P(x) \times Q(x))$ et $d^{\circ}(P(x)) + d^{\circ}(Q(x))$

Propriété :

Soient P(x) et Q(x) deux polynômes non nuls. On a :

$$d^{\circ}(P(x) \times Q(x)) = d^{\circ}(P(x)) + d^{\circ}(Q(x))$$

Application 3

Déterminer le degré du polynôme Q(x) puis déterminer sa forme sachant que : $x^4 - 2x^3 + x^2 - 2x = (x^2 + 1)Q(x)$.

III. Racine d'un polynôme – divisibilité par x-a

Activité @:

On considère P(x) un polynôme tel que : $P(x) = 5x^3 + 5x^2 - 10x$.

1) Parmi les nombres -1, $\sqrt{2}$ et 1 trouver ceux qui vérifient P(a) = 0.

Soit a un nombre réel. On dit que le nombre a est une racine ou un zéro d'un polynôme Q(x) si Q(a) = 0.

2) Vérifier que 0 est une racine de P(x).

Application

Déterminer la valeur du nombre $\it a$ pour que $\it 2$ soit une racine du polynôme

$$P(x) = x^3 - 2x^2 + ax + 6$$

Activité 🕭:

On considère le polynôme $P(x) = x^3 - x - 6$.

1) Calculer P(1).

2) Déterminer le polynôme Q(x) tel que P(x) - P(1) = (x-1)Q(x).

Propriété :

Soit P(x) un polynôme non nul de degré n et a un nombre réel.

o Il existe un polynôme Q(x) de degré (n-1) tel que P(x) = (x-a)Q(x) + P(a).

o P(x) est divisible par (x-a) si a est une racine de P(x).

A-Q(x) est appelé le polynôme quotient de la division euclidienne de P(x) sur (x-a)

ذ لعرش عبد هبیر

et le nombre P(a) est *le reste* de cette division.

O Exemple:

La division euclidienne de $P(x) = 2x^4 + 3x^3 - 2x^2 - x + 1$ par x - 2.

Le quotient de cette division euclidienne est $2x^3 + 7x^2 + 12x + 23$ et le reste est P(2) = 47.

Application 5:

On considère P(x) et Q(x) deux polynômes tels que :

$$P(x) = 2x^3 - x^2 + x + 4$$
 et $Q(x) = x^3 + 3x^2 + x + 7$.

1) G-Est-ce que P(x) est divisible par x+1?

b-Faire la division euclidienne de P(x) sur x+1.

2) a-Est-ce que Q(x) est divisible par x-3?

b-Faire la division euclidienne de Q(x) sur x-3.

Exercice de synthèse:

On considère P(x) un polynôme tel que : $P(x) = x^3 - 2x^2 - 5x + 6$.

1) Montrer que P(x) est divisible par x-1.

2) Déterminer par deux méthodes différentes le polynôme Q(x) tel que :

$$P(x) = (x-1)Q(x).$$

3) Montrer que 3 est une racine de Q(x).

4) Factoriser Q(x).

5) En déduire une factorisation de P(x).

6) Résoudre l'équation P(x) = 0.

Exercice (Devoir maison):

On considère le polynôme $P(x) = (x-2)^{3n} + (x-1)^{2n} - 1$ avec $n \in IN^*$.

1) Montrer qu'il existe un polynôme Q(x) qui vérifie P(x) = (x-2)Q(x).

2) Quel est le degré de Q(x)? justifier votre réponse.

3) Calculer P(1) en fonction de n.

41 Déterminer les valeurs de n pour lesquels P(x) soit divisible par (x-1).

ذ لعرش عبد هبیر