Mean Value Theorem

lf:

- f is continuous on [a,b]
- f is differentiable on [a,b]

Then there exists a c in (a,b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Proof. Assume f is continuous and differentiable on [a,b]. Let:

$$h(x) = f(x) - f(a) - \left[\frac{f(b) - f(a)}{b - a}\right](x - a)$$

Since f is continuous on [a,b], so is k.

Since f is differentiable on (a,b), so is h.

$$h(a) = F(a) - f(a) - \left[\frac{f(b) - f(a)}{b - a}\right](a - a) = 0$$

$$h(b) = F(b) - F(a) - \left[\frac{F(b) - F(a)}{b - a}\right] (b - a) = 0$$

Rolle's theorem states that if a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b) such that f(a) = f(b), then f'(x) = 0 for some x with $a \le x \le b$.

Therefore, h satisfies Rolle's theorem, and there exists a c in (a,b) such that h'(c) = 0.

But h'(c) =
$$\frac{d}{dc}$$
f(c) - f(a) - $\frac{f(b) - f(a)}{b - a}$ (c-a)

$$0 = f'(c) - \frac{f(b) - f(a)}{b - a} \rightarrow f'(c) = \frac{f(b) - f(a)}{b - a}$$

MVT exa	ample														
If $f(x) = x$	x^2 +	2x + 1	, find t	the c's	that co	ome fro	m the	MVT or	1,2]						
٥٠			Poly	nomic	x1 >	cont	Mou	~s a	νq	diffe	renti	able			
Ъ	= 7														
<u> </u>	(2)	- fl -1	<u>1)</u> =	5											
Antideri	ivativ	es													
F(x) is a	n antic	derivat	ive of	f(x) is	F'(x) =	f(x)									
Antideri	vative	s are N	IOT ui	nique s	since th	ney take	e the fo	rm of (antide	rivative) + C				
Two anti	ideriva	atives o	of the	same	functio	n will al	lways o	differ by	y a coi	nstant					
Constar	nt Fun	ction T	heore	m_											
If f'(x) =		all x ov	rer an		al I, the	n there	exists	a real r	numbe	er a suc	h that f	(x) = a	for all	x in I	
Proof. A	ssum	e f'(x)	= 0 for	all x i	n I; let :	k1 be ir	1 l.								
Say f(x1) = a.	Let x2	be in	I and	x2 ≠ x1										
Since f'	exists	on I, v	we car	n appl	y MVT	to f bet	ween x	1 and	x2. As	such,	there ex	kists a	c betw	een x1	
and x2 s	such t	hat		۲1~	\ _ \										
		f'(c) =	+ (x2		(x,)									
But	F'	(c) =	= 0,	(o)	7 ~,										
		ł	(4, \	- f	(×,)										
) = -	χ_{γ}	· ~,											
	ł	(x2)	- 4	(×,)	= 0										
				ر ۲۰۰ _۱ ا											

F(x,) - d, s	o \(\(\chi_2 \) = &						
Since x2 was arbitrary,	$f(x) = \alpha \text{ for all } x \text{ in } I$						
Recall definition - QED							
Antiderivative Theorem							
f f'(x) = g'(x) for all x in	$1, \text{ then } f(x) = g(x) + \alpha$	for some real r	number a				
Proof. Assume f'(x) = g	g'(x). So $f'(x) - g'(x) =$	0					
Consider $h(x) = 1$ So $h'(x) = F'(x)$	F(x) - g(x).						
So $h'(x) = f'(x)$	x) - g'(x) = 0						
By the Const	ant Function	Theorem, 1	n(x) = x	for s	ome d	e R	
f(x) - g(x) = f(x) = g(x)	4						
7 (1) - 9(7)	T 6						