Algebraic Geometry I

read by Prof. Dr. Maksim Zhykhovich

notes by Stefan Albrecht

 $Ludwig-Maximilians-Universit \"{a}t\ M\"{u}nchen-winter\ term\ 2025/26$

Contents

1	Alge	braic Sets and Affine Varieties	2	
2	Morphisms of Affine Varieties			
	2.1	Regular Morphisms	6	
	2.2	Rational Maps of Varieties	8	

Lecture 1 Oct 13, 2025

Roughly speaking, the goal of algebraic geometry is to study systems of polynomial equations $F_1(X) = \ldots = F_n(X) = 0$ for polynomials $F_i \in K[X_1, \ldots, X_m]$ over a field (or ring) K. The set of solutions of this system is a geometric object, which we try to understand using algebraic methods, for example considering the ideal $I = (F_1, \ldots, F_n)$ in $K[X_1, \ldots, X_m]$ or the quotient $K[X_1, \ldots, X_m]/I$.

There is a very strong relation between these objects in the case that $K = \overline{K}$ is algebraically closed (e.g. \mathbb{C}). If K is not algebraically closed, or some generic ring, things get more complicated: For example, there are many equations over \mathbb{R} with no solutions, like $x^2 + y^2 + 1 = 0$, which behave differently when considered over \mathbb{C} . The wish to still study these equations geometrically leads to the idea of spectra (the set of all prime ideals of a ring), and later the theory of sheaves and schemes.

1 Algebraic Sets and Affine Varieties

Let *K* be an algebraically closed field.

Definition 1.1. For $n \in \mathbb{N}$ define affine n-space over K as

$$\mathbb{A}^n := \mathbb{A}^n_K := K^n$$
.

Definition 1.2. Let $I \subset K[x_1, \dots, x_n]$ be a subset. The associated (affine) algebraic set is

$$V(I) := \{ x \in \mathbb{A}_K^n \mid f(x) = 0 \text{ for all } f \in I \}.$$

A subset $X \subset \mathbb{A}^n$ is called *algebraic* if X = V(I) for some $I \subset K[x_1, \dots, x_n]$.

Remark 1.3. By definition $V(I) = V(\langle I \rangle) = V(f_1, \ldots, f_m)$ where $\langle I \rangle = (f_1, \ldots, f_m)$ is finitely generated because $K[x_1, \ldots, x_n]$ is Noetherian. Therefore, $X \subseteq \mathbb{A}^n$ is algebraic if and only if X = V(I) for some ideal I if and only if $X = V(f_1, \ldots, f_m)$ for a finite number of polynomials f_i .

Example 1.4. The following sets are algebraic:

- A parabola $\{(x, x^2) \mid x \in K\} = V(y x^2)$
- $\emptyset = V(K[x_1, \dots, x_n])$
- $\mathbb{A}^n = V(0)$
- Points: $\{(a_1,\ldots,a_n)\}=V(x_1-a_1,\ldots,x_n-a_n)$

Lemma 1.5. Let $I, J \triangleleft K[x_1, \ldots, x_n]$ be ideals. Then

- (a) If $I \subseteq J$, then $V(I) \supseteq V(J)$.
- (b) $V(I \cap J) = V(IJ) = V(I) \cup V(J)$
- (c) For any family $(I_t)_{t\in T}$ of ideals, $\bigcap_t V(I_t) = V(\bigcup_t I_t) = V(\sum_t I_t)$

Proof. (a) is clear.

For (b), part (a) yields $V(I \cap J) \subseteq V(IJ)$ and $V(I), V(J) \subseteq V(I \cap J)$, so it remains to show $V(IJ) \subseteq V(I) \cup V(J)$. Let $a \in V(IJ)$. Assume $a \notin V(I)$, i.e. there is $f \in I$ such that $f(a) \neq 0$. Let $g \in J$. Then $fg \in IJ$, so 0 = (fg)(a) = f(a)g(a). Since $f(a) \neq 0$, we conclude g(a) = 0.

The first equation of (c) is tautological, the second one is remark 1.3,

Definition 1.6. The *Zariski topology* on \mathbb{A}^n is the topology whose closed subsets are exactly the algebraic sets. That is, $U \subseteq \mathbb{A}^n$ is open iff its complement is algebraic.

Remark 1.7. This is indeed a topology by example 1.4 and lemma 1.5. Note that the Zariski topology induces (via the subspace topology) a topology on any algebraic set $X \subseteq \mathbb{A}^n$, which is also called the Zariski topology.

Recall from general topology that a topological space $X \neq \emptyset$ is called irreducible if $X \neq X_1 \cup X_2$ with $X_i \subseteq X$ closed. \emptyset is not considered irreducible.

For example, $V(xy) = V(x) \cup V(y)$ (the union of the coordinate axes in \mathbb{A}^2) is not irreducible, while a parabola $V(y-x^2)$ is irreducible (we will see how to check this later).

Definition 1.8. An *affine algebraic variety* is an irreducible closed subset of \mathbb{A}^n .

Definition 1.9. Let $X \subseteq \mathbb{A}^n$ be an arbitrary set. We define the *vanishing ideal* of X as

$$I(X) := \{ f \in K[x_1, \dots, x_n] \mid f(x) = 0 \text{ for all } x \in X \}$$

Lemma 1.10. Let $X \subseteq \mathbb{A}^n$ and $S \subseteq K[x_1, \dots, x_n]$. Then

- (a) $X \subseteq V(I(X))$ and $S \subseteq I(V(S))$.
- (b) $V(I(X)) = \overline{X}$ is the closure of X (w.r.t. the Zariski topology).

Proof. (a) is clear, (b) is left as an exercise.

Proposition 1.11. An affine algebraic set $X \subseteq \mathbb{A}^n$ is a variety if and only if I(X) is a prime ideal.

Proof. Let X be a variety and let $fg \in I(X)$ for $f,g \in K[x_1,\ldots,x_n]$. We have $X \subseteq V(fg) \stackrel{1.5}{=} V(f) \cup V(g)$. Hence we can write $X = (X \cap V(f)) \cup (X \cap V(g))$ as the union of two closed subsets. By irreducibility, wlog we have $X = X \cap V(f)$, i.e. $X \subseteq V(f)$, which is equivalent to $f \in I(X)$.

Conversely, suppose that $X=A\cup B$ is not irreducible. Choose points $a\in A\setminus B$ and $b\in B\setminus A$. By Lemma 1.10 and since A,B are closed, we get V(I(A))=A and V(I(B))=B. Hence there exist $f\in I(A)$ and $g\in I(B)$ with $f(b)\neq 0$ and $g(a)\neq 0$. Thus $fg\in I(X)$, but both $f,g\notin I(X)$

Remark 1.12. If X = V(I) is an affine variety, this does not necessarily imply that I is prime: Consider $V((x^2)) \subseteq \mathbb{A}^1$: $V((x^2)) = \{0\}$ is irreducible, but (x^2) is not prime.

Lecture 2 Oct 15, 2025

Note that \mathbb{A}^n is irreducible since K is infinite. However, this is no longer true if one considers finite fields, since then \mathbb{A}^n is the union of its finitely many points. For example, $I(A^1_{\mathbb{F}_p}) = (X^p - X)$ is not prime.

We use the following result from commutative algebra without proof:

Theorem 1.13 (Hilbert Nullstellensatz). Let $J \triangleleft K[x_1, \ldots, x_n]$. Then

- (a) $V(J) = \emptyset$ if and only if $J = K[x_1, \dots, x_n]$.
- (b) $I(V(J)) = \sqrt{J} = \{ f \in K[x_1, \dots, x_n] \mid f^n \in J \text{ for some } n \}$
- (c) If J is a maximal ideal, then $J = (x_1 a_1, \dots, x_n a_n)$ for some $a_i \in K$.

Corollary 1.14. There are inclusion-reversing bijections

$$\{ \text{affine algebraic sets } X \subseteq \mathbb{A}^n \} \overset{I}{\underset{V}{\rightleftarrows}} \{ \text{radical ideals in } K[x_1, \ldots, x_n] \}$$

$$\{ \text{affine algebraic varieties } X \subseteq \mathbb{A}^n \} \overset{I}{\underset{V}{\rightleftarrows}} \{ \text{prime ideals in } K[x_1, \ldots, x_n] \}$$

$$\{ \text{points } a \in \mathbb{A}^n \} \overset{I}{\underset{V}{\rightleftarrows}} \{ \text{maximal ideals in } K[x_1, \ldots, x_n] \}$$

Proof. Clear from 1.13, 1.10 and 1.11.

Example 1.15. Let f be irreducible in $K[x_1, \ldots, x_n]$. Then V(f) is an affine variety. Varieties of this form are called hypersurfaces in \mathbb{A}^n (curves for n=2, surfaces for n=3).

Remark 1.16. If $X \subseteq \mathbb{A}^n$ is a variety, by proposition 1.11 I(X) is prime, and $K[x_1, \dots, x_n]/I$ is an integral domain. We can consider its fraction field $\operatorname{Frac}(K[x_1, \dots, x_n]/I)$.

Theorem 1.17. Any affine algebraic set can be uniquely written as a finite union of affine varieties.

For the proof, we need some preparations.

Definition 1.18. A topological space X is called *Noetherian* if any chain of descending closed subsets $X \supseteq X_1 \supseteq X_2 \supseteq \dots$ becomes stationary, i.e. there exists n s.t. $X_m = X_n$ for all m > n.

Lemma 1.19. Affine space \mathbb{A}^n is Noetherian.

Proof. Let $\mathbb{A}^n\supseteq X_1\supseteq X_2\supseteq \ldots$ be a chain of closed subsets. Applying I(-) yields an ascending chain $(0)\subseteq I(X_1)\subseteq I(X_2)\subseteq \ldots$ of ideals in $K[x_1,\ldots,x_n]$. This is a Noetherian ring, so there is some m such that $I(X_n)=I(X_{n+1})$ for all $n\geq m$. By corollary 1.14(a), I is injective on closed subsets, so we are done.

More generally,

Corollary 1.20. Any affine algebraic space $X \subseteq \mathbb{A}^n$ is Noetherian.

Proof. Any chain in X is also a chain in \mathbb{A}^n .

Proposition 1.21. *Let* $X \neq \emptyset$ *be a Noetherian topological space.*

- (a) Then X can be written as a finite union of irreducible closed subspaces.
- (b) Moreover, if we assume that $X_i \not\subseteq X_j$ for $i \neq j$, then the above decomposition is unique up to permutation. In this case, the X_i are called irreducible components of X.

Proof. Assume that (a) fails for X. Consider $S = \{Y \subseteq X \mid Y \text{ closed, cannot be written as a finite union of irreducible closed subsets}\}$. Since X is Noetherian, S must have some minimal element Y w.r.t. inclusion. Y is not irreducible, so we can write $Y = Y_1 \cup Y_2$ with $Y_{1,2}$ proper closed subspaces. By minimality, Y_1 and Y_2 can be written as finite unions of irreducible closed subsets, thus so can Y, contradicting $Y \in S$.

To check uniqueness, assume we have two decompositions $X = X_1 \cup \ldots X_r = X_1' \cup \ldots X_s'$ as in (b). Then $X_1' = \bigcup_i (X_i \cap X_1')$. Since X_1' is irreducible, wlog $X_1' \subseteq X_1$. By the same argument, $X_1 \subseteq X_i'$ for some i. If $i \neq 1$, then $X_1' \subseteq X_i'$, contradicting our assumption. Hence i = 1 and $X_1 = X_1'$. Proceed inductively with $X \setminus X_1 = X_2 \cup \ldots \cup X_r = X_2' \cup \ldots \cup X_s'$.

Combining 1.20 and 1.21 yields theorem 1.17.

Remark 1.22. The proof strategy for (a) can be summarized as follows: Let X be a Noetherian space and P a property of closed subsets. To show that P holds for all subsets of X (thus in particular for X), it suffices to show that for all $Y \subseteq X$ closed, if P holds for all proper closed subsets of Y, then it also holds for Y. This is called *Noether induction* (a special case of wellfounded induction).

Example 1.23. Let $f \in K[x_1, \dots, x_n]$. This is a factorial ring, so we may write $f = g_1^{k_1} \cdots g_r^{k_r}$ Oct 22, 2025 with g_i irreducible and pairwise different. Then with g_i irreducible and pairwise different. Then

$$V(f) = V(g_1^{k_1}) \cup \cdots \cup V(g_r^{k_r}) = V(g_1) \cup \cdots \cup V(g_r)$$

is the decomposition of V(f) into irreducible subsets: $V(g_i)$ is irreducible by proposition 1.11, since $I(V(g_i)) = (g_i)$ is prime.

In general, finding this composition for $V(f_1, \ldots, f_r)$ is not easy.

Example 1.24. What is the Zariski topology on \mathbb{A}^1 ? By definition, a closed/algebraic set is of the form V(I) for some ideal $I \subseteq K[x]$. Since K[x] is a PID, I = (f) for some f = (x - f) $(a_1)^{k_1}\cdots (x-a_r)^{k_r}\in K[x].$ If f is not constant, we see as in example 1.23 that

$$X = V(f) = \bigcup_{i} V(x - a_i) = \{a_1, \dots, a_r\}.$$

Hence the closed sets are exactly $V(0) = \mathbb{A}^1, V(1) = \emptyset$, and finite unions of points. In other words, the Zariski topology coincides with the cofinite topology on \mathbb{A}^1 . The affine varieties on \mathbb{A}^1 are therefore either \mathbb{A}^1 itself or a single point.

We also see that any two non-empty open subsets have nontrivial intersection, so \mathbb{A}^1 with the Zariski topology is not Hausdorff.

Definition 1.25. Let X be a nonempty topological space. We define the dimension of X as the supremum of all $n \in \mathbb{N}$ such that there is a chain of irreducible subspaces $\emptyset \neq Y_0 \subseteq Y_1 \subseteq \ldots \subseteq$ $Y_n \subseteq X$

Example 1.26. By example 1.24, a maximal chain of affine varieties in \mathbb{A}^1 is $\{0\} \subseteq \mathbb{A}^1$, hence $\dim \mathbb{A}^1 = 1$.

Definition 1.27. Let R be a (commutative) ring. The Krull dimension of R is the supremum over all l such that there is a chain of prime ideals $\mathfrak{p}_l \subsetneq \mathfrak{p}_{l-1} \subsetneq \ldots \subsetneq \mathfrak{p}_0 \subsetneq R$.

Recall from corollary 1.14 that there is an inclusion-reversing correspondence between prime ideals of $K[x_1,\ldots,x_n]$ and affine algebraic varieties in \mathbb{A}^n . Fixing some variety X, it follows that subvarieties correspond bijectively to prime ideals that contain I(X), i.e. prime ideals of $K[x_1,\ldots,x_n]/I(X)$. Hence

Proposition 1.28. If X is an affine algebraic variety, then dim $X = \dim K[x_1, \dots, x_n]/I(X)$.

2 Morphisms of Affine Varieties

2.1 Regular Morphisms

Definition 2.1. Let $X \subseteq \mathbb{A}^n_K$ be an algebraic set. A function $f: X \to K$ is *regular* if there is a polynomial $F \in K[x_1, \dots, x_n]$ such that $f: F|_X$, i.e. f(x) = F(x) for all $x \in X$. Write A(X) for the set of regular functions on X.

Remark 2.2. A(X) is a ring (and even a K-algebra) in a natural way, with addition and multiplication defined pointwise. Moreover, there is a homomorphism of K-algebras

$$K[x_1,\ldots,x_n] \twoheadrightarrow A(X), \qquad F \mapsto F|_X.$$

The kernel of this morphism is exactly I(X), so that $A(X) \cong K[x_1, \dots, x_n]/I(X)$ canonically.

Remark 2.3. By corollary 1.14, A(X) is always reduced, A(X) is integral iff X is a variety, and A(X) is a field iff X is a point (in which case $A(X) \cong K$).

Definition 2.4. Let $X \subseteq \mathbb{A}^n$, $Y \subseteq \mathbb{A}^m$ be affine algebraic sets. A map $\varphi : X \to Y$ is called *regular* if $\varphi = (f_1, \ldots, f_m)$ for some regular $f_1, \ldots, f_m \in A(X)$. A regular map φ is an isomorphism if it has in anyerse which is also regular.

Example 2.5. (i) $f: \mathbb{A}^1 \to V(y-x^2) \subseteq \mathbb{A}^2$, $t \mapsto (t,t^2)$ is a regular map. It has inverse $(x,y) \mapsto x$, which is also regular, hence $\mathbb{A}^1 \cong V(y-x^2)$.

(ii) $\varphi: \mathbb{A}^1 \to V(y^2 - x^3) \subseteq \mathbb{A}^2$, $t \mapsto (t^2, t^3)$ is regular and bijective as well, but its inverse $(x, y) \mapsto \frac{y}{x}$ is not regular, so φ is not an isomorphism.

Proposition 2.6. Let $X \subseteq \mathbb{A}^n$ and $Y \subseteq \mathbb{A}^m$ be algebraic sets, and let $\varphi : X \to Y$ be a regular map. Then φ is continuous (w.r.t. the Zariski topology on X and Y).

Proof. Let
$$\varphi = (f_1, \dots, f_m)$$
 and $J = \langle F_1, \dots, F_k \rangle \subseteq K[x_1, \dots, x_m]$ with $V(J) \subseteq Y$. Then

$$\varphi^{-1}(V(J)) = \varphi^{-1}(V(F_1, \dots, F_k)) = \{x \in X \mid F_j(f_1(x), \dots, f_m(x)) = 0, \ j = 1, \dots, k\}$$

Now $F_j(f_1(x), \ldots, f_m(x))$ is a composition of polynomials, hence a polynomial, call it \widetilde{F}_j . We conclude $\varphi^{-1}(V(J)) = X \cap V(\widetilde{F}_1, \ldots, \widetilde{F}_k)$ as desired.

Remark 2.7. The converse is false. For example, one easily concludes from example 1.24 that every bijective map $\mathbb{A}^1 \to \mathbb{A}^1$ is continuous, but there are way more bijections than polynomials (say because polynomials are defined by their values on any infinite subset). On the other hand, if K is finite (loosing algebraic closedness), then every function $\mathbb{A}^1 \to \mathbb{A}^1$ is regular.

Lecture 4 Oct 27, 2025

Remark 2.8. Let X be an algebraic set, and let $f: X \to \mathbb{A}^1$. Then f is a regular map if and only if f is a regular function. Note that the composition of regular maps is regular, since compositions of polynomials are polynomials.

Definition 2.9. Let X, Y be algebraic sets and $F: X \to Y$ be regular. Then we set $F^*: A(Y) \to A(X)$, $g \mapsto g \circ F$. This is well-defined by remark 2.8, and F^* clearly preserves addition and multiplication, so it is a morphism of K-algebras.

Remark 2.10. Let $F = (f_1, \ldots, f_m) : X \to Y$, $f_i \in K[x_1, \ldots, x_n]$, then F^* is given by the K-algebra homomorphism $A(Y) \cong K[y_1, \ldots, y_m]/I(Y) \to K[x_1, \ldots, x_n]/I(X) \cong A(X)$ (see remark 2.2) defined by $y_i \mapsto f_i$. Hence $F(x) = (F_1^*(y_1), \ldots, F_m^*(y_m))$.

Theorem 2.11. (i) There is a bijection $\operatorname{Mor}(X,Y) \to \operatorname{Hom}_{K\text{-}Alg}(A(Y),A(X))$ given by $F \mapsto F^*$.

- (ii) If $F: X \to Y$ and $H: Y \to Z$ are regular, then $(H \circ F)^* = F^* \circ H^*$. Further, $\mathrm{id}_X^* = \mathrm{id}_{A(X)}$.
- (iii) Let $F: X \to Y$ be regular. Then F is an isomorphism of affine sets if and only if F^* is an isomorphism of K-algebras

Proof. Injectivity in (i) follows from remark 2.10. For surjectivity, let $\varphi:A(Y)\to A(X)$ be a K-algebra homomorphism and define $F:X\to Y$ by $F=(\varphi(y_1),\ldots,\varphi(y_m))$. We need to check that this is well-defined, i.e. that the image of F lies in Y. Then it is clear that F is regular and that $F^*=\varphi$, again by remark 2.10.

So let $g \in I(Y)$, we need to show $g \circ F = 0$. But this is exactly the statement $\varphi([g]) = \varphi(0) = 0$.

For (ii), $\operatorname{id}_X^* = \operatorname{id}_{A(X)}$ is clear, and for $f \in A(Z)$ one has

$$(H \circ F)^*(f) = f \circ H \circ F = H^*(f) \circ F = (F^* \circ H^*)(f),$$

so
$$(H \circ F)^* = F^* \circ H^*$$
. Then (iii) follows from (i) and (ii).

Example 2.12. Looking again at the maps from example 2.5, we see that $f: \mathbb{A}^1 \to V(y-x^2), t \mapsto (t,t^2)$ is an isomorphism, because $f^*: K[x,y]/(y-x^2) \to K[t], x \mapsto t, y \mapsto t^2$ clearly is. On the other hand, let $\varphi: \mathbb{A}^1 \to V(y^2-x^3), t \mapsto (t^2,t^3)$. We saw that this is a bijective regular map and gave intuitive reasoning for why this map isn't an isomorphism. But now we can prove it: We have

$$f^*: K[x,y]/(y^2 - x^3) \to K[t], \quad x \mapsto t^2, y \mapsto t^3$$

is not surjective, for the image does not contain t.

Remark 2.13. In categorical terms, theorem 2.11 says that

$$\begin{cases} \text{algebraic sets} \\ \text{regular maps} \end{cases} \rightarrow \begin{cases} \text{finitely generated reduced K-algebras} \\ K\text{-algebra homomorphisms} \end{cases}$$

$$X \mapsto A(X)$$

$$F \mapsto F^*$$

is a contravariant functor, and even an equivalence of categories: For essential surjectivity, note that every finitely generated K-algebra can be written as a quotient $K[x_1,\ldots,x_n]/I$ by choosing generators. Then consider X=V(I).

Proposition 2.14. Let X, Y be algebraic sets, and let $f: X \to Y$ be a regular map. Then

- (i) $f^*: A(Y) \to A(X)$ is surjective if and only if $\overline{f(X)} = Y$, i.e. if the image of f is dense in Y.
- (ii) f^* is injective if and only if $f(X) \subseteq Y$ is closed and $f: X \to f(X)$ is an isomorphism.

2.2 Rational Maps of Varieties

Let $X \subseteq \mathbb{A}^n$ be an affine algebraic variety. Then I(X) is prime, so $A(X) \cong K[x_1, \dots, x_n]/I(X)$ is an integral domain. Hence we can define its field of fractions $K(X) := \operatorname{Frac} A(X)$.

Definition 2.15. An element $\varphi \in K(X)$ is called regular at $x \in X$ if there exist $f, g \in A(X)$ with $\varphi = \frac{f}{g}$ and $g(x) \neq 0$.

Example 2.16. Let $X=V(x^2-yz)\subseteq \mathbb{A}^3$ and x=(0,0,1). Consider $\varphi=\frac{y}{x}\in K(X)$. Even though it may look like φ might not be regular at x, one can note that $\frac{y}{x}=\frac{x}{z}$ in K(X), so actually $\varphi(x)$ can be defined and φ is regular at x.