FCT/Unesp – Presidente Prudente

Projeto e Análise de Algoritmos Prof. Danilo Medeiros Eler

Exercícios Aula 03 – Parte II

https://daniloeler.github.io/teaching/PAA2020/index.html

1) Complete a tabela abaixo com SIM ou NÃO, onde k, c e m são constantes. Indique para cada par de expressões (A, B) se A é O, o, Ω , ω , e Θ de B. Mostre como chegou na solução.

	A	В	О	0	Ω	ω	Θ
(a)	n^k	c^n					
(b)	2 ⁿ	$2^{n/2}$					
(c)	$C \cdot n^{\log_2 m}$	$k \cdot n^{\log_2 m}$					
(d)	k ^c	$\log_2 n$					

Deve-se, para cada item, verificar se A = O(B); A = O(B)

- 2) Verifique se as afirmações abaixo são verdadeiras.
- a) $n = O(n^2)$
- b) $n = \Omega(n^2)$
- c) $n = \Theta(n^2)$
- d) $n^2 = O(n^2)$
- e) $n^2 = \Omega(n^2)$
- f) $n^2 = \Theta(n^2)$
- g) $n^3 = O(n^2)$
- h) $n^3 = \Omega(n^2)$
- i) $n^3 = \Theta(n^2)$
- j) $nlog n = O(n^2)$
- k) $nlogn = \Omega(n^2)$
- $1) nlogn = \Theta(n^2)$
- m) $logn = O(n^2)$
- n) $logn = \Omega(n^2)$
- o) $logn = \Theta(n^2)$
- $p) n^2 log n = O(n^2)$
- q) $n^2 \log n = \Omega(n^2)$
- r) $n^2 \log n = \Theta(n^2)$
- s) $5 = O(n^2)$
- t) $5 = \Omega(n^2)$
- $u) 5 = \Theta(n^2)$