Лабораторная работа №8

Шифрование (кодирование) различных исходных текстов одним ключом

Доборщук В.В., НФИбд-01-18 18 декабря 2021

Цель работы

Цель работы

Освоить на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Выполнение лабораторной

работы

Выполнение лабораторной работы

Два текста кодируются одним ключом (однократное гаммирование). Требуется не зная ключа и не стремясь его определить, прочитать оба текста. Необходимо разработать приложение, позволяющее шифровать и дешифровать тексты P_1 и P_2 в режиме однократного гаммирования. Приложение должно определить вид шифротекстов C_1 и C_2 обоих текстов P_1 и P_2 при известном ключе.

Реализация функционала

Создали дополнительную функцию для генерации случайного ключа:

```
def gen_key(text):
    rn = np.random.randint(0, 255, len(text))
    key = [hex(e)[2:] for e in rn]
    return key
```

Реализация функционала

```
print(f"P1: {p1}")
print(f"P2: {p2}")
hex p2 = []
    hex_p1.append(p1[i].encode("cp1251").hex())
    hex p2.append(p2[i].encode("cp1251").hex())
print("Hex P1: ", hex p1)
print("Hex P2: ", hex p2)
print("Hex key: ", key)
    hex c1.append("{:02x}".format(int(key[i], 16) ^ int(hex p1[i], 16)))
    hex c2.append("{:02x}".format(int(key[i], 16) ^ int(hex p2[i], 16)))
print("Hex C1: ", hex_c1)
print("Hex C2: ", hex c2)
c1 = bytearray.fromhex("".join(hex c1)).decode("cp1251")
c2 = bytearray.fromhex("".join(hex c2)).decode("cp1251")
print(f"C1: {c1}")
```

Реализация функционала

Рис. 2: Функция нахождения второго исходного текста

Проверка функционала

Создали два текста равной длины.

```
p1 = "moamormo будет так"

p2 = "или может бить так"

print(len(p1), len(p2))

18 18
```

Рис. 3: Исходные P_1 и P_2

Проверка функционала

Попробовали, используя два исходных текста, получить два шифротекста, при случайной генерации ключа, что у нас успешно получилось.

```
In [1]: key, cl, c2 = encrypt(pl, p2)

Pl: mosmoomo Gyder Yax
Pl: nnn Mower Gorts Tax
Hex Pl: ['e2', 'ee', 'e2', 'ee', 'e6', 'e6', 'ed', 'ee', 'e1', 'e1', 'e1', 'e4', 'e5', 'f2', '20', 'f2', 'e
Hex Pl: ['e2', 'ee', 'e8', '20', 'ec', 'ee', 'e6', 'e5', 'f2', '20', 'e1', 'f2', 'f2', 'f2', 'f2', 'e6', 'e2', 'e6', 'e5', 'f2', '20', 'e1', 'f2', 'f2', 'f2', 'f2', 'e6', 'e8', '
```

Рис. 4: Получение C_1 и C_2

Проверка функционала

Использовали C_1 , C_2 и P_1 для получения P_2 . Функция отрабатывает корректно.

```
In [14]: pl_mew, pl_mew = decrypt(ci, c2, pi)

C1: _9w=3lmN/NSH70bc
C2: UVT=2lmNumwrXm70bc
Pl: Rosshooms Object Tak
Hex C1: ['5f', '39', 'bb', 'e5', 'b3', 'lf', 'd8', 'd3', '2f', 'lf', '4b', 'ad', 'dd', '6c', '83', '15', '4
4', 'ea']
Hex C2: ['55', '3c', 'b4', '29', 'b1', '17', 'd3', 'd8', 'fd', 'de', '59', 'b2', 'ca', '62', '83', '15', '4
4', 'ea']
Hex P2: ['e2', 'ee', 'e7', 'ec', 'ee', 'e6', 'ed', 'ee', 'e1', 'f3', 'e4', 'e5', 'f2', '20', 'f2', 'e
6', 'ea']
Hex P2: ['e8', 'eb', 'e8', '20', 'ec', 'ee', 'e6', 'e5', 'f2', '20', 'e1', 'fb', 'f2', 'fc', '20', 'f2', 'e
6', 'ea']
P2: NM MORET GWTS TAK
```

Рис. 5: Получение P_2 через два шифротекста и P_1

Заключение

Заключение

Мы освоили на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.