Example 1: Following table shows the amount of money paid by women for reparing of their cars. Conduct a test of hypothesis whether if the mean of spent money by women for reparing of their cars equals to 900 or not using α =0.05.

women 871 684 795 838 1033 917 1047 723 1179 707 817 846 975 868 1323 791 1157 932 1089 770

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean	
spent_women	20	918,1000	173,01929	38,68829	

One-Sample Test

			Te	est Value = 900								
					95% Confidence	e Interval of the						
					Difference							
	t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper						
spent_women	,468	19	,645	18,10000	-62,8755	99,0755						

 H_0 : $\mu = 900$

H₁: $\mu \neq 900$

 σ^2 is not known and n<30 so for the test, test statistic is $t=\frac{\overline{X}-900}{S/\sqrt{n}}=0.468$ and critical value using t distribution with 19 degrees of freedom, $t_{0.025,19}=2.093$. When

comparing the test value and critical value at level 0.05, 0.468 < 2.093 is found and we say that H₀ cannot be rejected. In addition this decision can be taken by using the p value(sig. (2 tailed)) given in the table. Since $p \ value = 0.645 > \alpha = 0.05$, H₀ cannot be rejected at the significance of level α =0.05.

Example 2: Following table shows the amount of money paid by women and men for reparing of their cars. Conduct a test of hypothesis comparing the two means of spent money for women and men's car repairs using α =0.05.

women	871	684	795	838	1033	917	1047	723	1179	707	817	846	975	868	1323	791	1157	932	1089	770
men	792	765	511	520	618	447	548	720	899	788	927	657	851	702	918	528	884	702	839	878

1. Step 2. step

ed1 [DataSet(0] - SPSS Data Ed	ditor							
View Dat	ta Transform	Analyze	Graphs	Utilities	Window		Help		
<u> </u>	→ ‱ [?		oorts scriptive St	atistics		>			
money	gender	Tal	Tables •					Mar	vor
871,00	1,00	Co	mpare Me	ans		▶	Me	ans	
684,00	1,00	Ger	neral Linea	r Model		▶	On	e-Sample T T	Test
795,00	1,00	Ger	neralized L	inear Mod	els	▶	Ind	lependent-Sa	mples T Test
838,00	1,00	Mix	ed Model	s		▶	Pai	red-Samples	T Test
1033,00	1,00	Co	relate			▶		e-Way ANOV	
917,00	1,00		ression				-	1	1 1
1047,00	1,00								
723,00	1,00		linear			•			
1179,00	1,00	Cla	ssify			•			
707,00	1,00	Dat	a Reductio	on		▶ .			
817,00	1,00	Sca	le			▶			
846,00	1,00	No	nparametr	ic Tests		•			
975,00	1,00		ne Series						
868,00	1,00								
1323,00	1,00	Sur	vival			•			
791,00	1,00	Mu	Itiple Resp	onse		•			
1157,00	1,00	Mis	sing Value	e Analysis.					

1)
$$H_0$$
: $\mu_1 - \mu_2 = 0$
 H_1 : $\mu_1 - \mu_2 \neq 0$

For the these hypotheses test we need to decide whether $\sigma_1^2 = \sigma_2^2$ or not.

2)
$$H_0: \sigma_1^2 = \sigma_2^2$$

 $H_1: \sigma_1^2 \neq \sigma_2^2$

From the output

 $f = \frac{S_1^2}{S_2^2} = 1.2686 \text{ critical value by using f distribution } f_{0.025,(df 1=19,df 2=19)} = 2.53 \text{ and comparing the test value and critical value at level 0.05, } 1.2686 < 2.53 \text{ is found and we say that H}_0 \text{ cannot be rejected at the significance of level } \alpha = 0.05.$

NOTE: Moreover, we can also test the hypothesis given in 2) by using "Levene's Test for Equality of Variances" at the table entitled "Independence Samples Test". For the Levene's Test the significance value $p = 0.732 > \alpha = 0.05$ as a result H₀: $\sigma_1^2 = \sigma_2^2$ hypothesis cannot be rejected at the significance of level α =0.05.

For the hypothesis given 1) we use first line of the table entitled "Independence Samples Test". Here t test statistic's value t = 3.738 and t = 0.001 < 0.05 H₀ is rejected at the significance of level t = 0.05. We can say that the amount of money paid by women and men for reparing of their cars are not same. Women pay more money then men for reparing the their car.

Group Statistics

						Std. Error
	gender	N	Mean	Std	Deviation	Mean
money	women	20	918,1000	1	73,01929	38,68829
	men	20	724,7000	1	53,61370	34,34907

Independent Samples Test

		Levene's Equality of	1			t-test fo	r Equality of M	eans		
							Mean	Std. Error	Interva	nfidence al of the rence
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
money	Equal variances assumed	,119	732	3,738	38	,001	193,40000	51,73627	88,66539	298,13461
	Equal variances not as sumed			3,738	37,475	,001	193,40000	51,73627	88,61715	298,18285

Example 3: In the research of a psychology department, to compare two methods of solving problem in group, two problems sets 10 groups of each having 4 persons: one was solved by using face to face method; other was solved by using teleconference method. Groups' scores were recorded.

- a) Conduct a test of hypothesis comparing the two methods efficiencies using α =0.05.
- b) Use a 95 % confidence interval to estimate the difference between the mean of test scores for two methods.
- c) Compare parts a) and b).

Face to face	65	82	54	69	40	98	35	85	70
teleconference	75	80	60	65	55	98	40	89	80

1. Step 2. step

 H_0 : $\mu_1 - \mu_2 = 0$

 $H_1: \mu_1 - \mu_2 \neq 0$

The samples are dependent since two problem sets were asked same 10 groups of each having 4 persons.

 σ_D^2 is not known and n<30 so for the test, test statistic is $t=\frac{\overline{d}-0}{S_d/\sqrt{n}}=-2.653$ and critical value using t distribution with 9 degrees of freedom, $t_{0.025,9}=2.262$. When

comparing the test value and critical value at level 0.05, $|-2.653| \ge 2.262$ is found and we say that H₀ is rejected. In addition this decision can be taken by using the p value(sig. (2 tailed)) given in the table. Since $p_1 value = 0.026 < \alpha = 0.05$ H₀ is rejected at the significance of level $\alpha = 0.05$.

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair	face	68,3000	10	20,42901	6,46022
1	teleconf	73,2000	10	18,00494	5,69366

Paired Samples Test

			Paire	d Difference	S				
				Std. Error	95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	face - teleconf	-4,90000	5,83952	1,84662	-9,07734	-,72266	-2,653	9	.026

NOTE: Since there is no test using z statistic in SPSS, these tests related to z statistic are also done with respect to t statistic. Because the distribution of t statistic approximates to standard normal distribution for large sample sizes.

NOTE: In all of these examples alternative hypotheses are two sided tests since the p-value (Sig.2-tailed) are given in the tables. So that we directly compare the p values with significance level α . However, if we are conducting one-sided test, taking half of the p-value (p-value /2) is compared with significance level α and the decision about the null hypothesis H_0 is taken.