

Computer Fundamentals

Dr. Safdar Nawaz Khan Marwat DCSE, UET Peshawar

Lecture 7

Number System Conversion

- > Direct conversions possible for
 - ☐ Binary to octal and vice versa
 - Binary to hexadecimal and vice versa
 - Decimal to octal and vice versa
 - □ Decimal to hexadecimal and vice versa
- > Numbers with other bases
 - □ >>>

Decimal - Octal Conversion

 \triangleright Convert (75)₁₀ to octal

 $(113)_8$

Decimal - Octal Conversion (cont.)

> Convert 113 from octal to decimal

$$(113)_{8} = 1 \times 8^{2} + 1 \times 8^{1} + 3 \times 8^{0}$$
$$= 64 + 8 + 3$$
$$= (75)_{10}$$

Decimal - Hexadecimal Conversion

 \triangleright Convert (75)₁₀ to hexadecimal

 $(4B)_{16}$

Decimal - Hexadecimal Conversion (cont.)

> Convert 4B from hexadecimal to decimal

$$(4B)_{16} = 4 \times 16^{1} + 11 \times 16^{0}$$
$$= 64 + 11$$
$$= (75)_{10}$$

Numbers with Other Bases

- ➤ Numbering systems possible with other bases

 □ Base 3, 4, 5 etc.
- > Conversion to decimal or any other base possible

Base-3 System

Base 3 numbers expressed in positional notation

The right-most is the least significant digit

$$1202 = 1 \times 3^3 + 2 \times 3^2 + 0 \times 3^1 + 2 \times 3^0$$

The left-most is the most significant digit

Base 3 - Decimal Conversion

> Convert 75 from decimal to base 3

 $(2210)_3$

Base 3 - Decimal Conversion (cont.)

> Convert 2210 from base 3 to decimal

$$(2210)_3 = 2x3^3 + 2x3^2 + 1x3^1 + 0x3^0$$
$$= 54 + 18 + 3 + 0$$
$$= 75$$

 \triangleright Convert (95)₁₀ to base 2, base 3 and base 16 numbers

Logical Operations Revisited

- > Truth table for three or more input variables
 - ☐ Follow stepwise approach

X	y	Z	$x \oplus y$	$(x \oplus y).z$	
0	0	0	0	0	
0	0	1	0	0	
0	1	0	1	0	
0	1	1	1	1	
1	0	0	1	0	
1	0	1	1	1	
1	1	0	0	0	
1	1	1	0	0	

Diagrammatic Representation

> Graphical depiction of boolean expression

Diagrammatic Representation (cont.)

> Draw diagram for representation of boolean expression

$$(x \oplus y).z$$

Exercise

ightharpoonup Derive truth table for $(x+y) \oplus z$

\mathcal{X}	y	Z	X+>	K+YA Z
0	0	0		O
0	0	1		
0	1	0		
0	1	1		. 0
1	0	0		
1	0	1		Ó
1	1	0		
1	1	1		O

> Draw diagram of boolean expression

$$(x+y)\oplus z$$

ightharpoonup Derive truth table for $(x+y) \oplus \overline{z}$

x	y	Z	スナス	<u></u> <u><u></u><u><u></u><u></u> <u></u> <u> </u> </u></u>	Z	Z+Y=
0	0	0	0			0
0	0	1	0		0	
0	1	0		0		
0	1	1	1	0	D	٥
1	0	0		0		1
1	0	1		D	0	Ò
1	1	0		Ó		
1	1	1	1	0	0	0

> Draw diagram for representation of boolean expression

$$\overline{(x+y)} \oplus \overline{z}$$

- Label the diagram
- > Write the boolean expression for this diagram
- > Determine truth table for the following logic diagram

