Homework 2

Benjamin Noland

- 1. (Boyd & Vandenberghe, Exercise 2.12)
 - (e) This set is not necessarily convex. As a counterexample, define the sets S and T by $S = (-\infty, -2] \cup [2, \infty)$ and T = [-1, 1]. Then the set

$$\{x \in \mathbb{R} : \operatorname{dist}(x, S) \le \operatorname{dist}(x, T)\} = (-\infty, -3/2] \cup [3/2, \infty)$$

is not convex.

(f) For every $s \in S_2$, define the set

$$C_s = \{ x \in \mathbb{R}^n : x + s \in S_1 \}.$$

To see that these sets are convex, let $s \in S_2$, let $x_1, x_2 \in C_s$, and let $0 \le \theta \le 1$. Then since $x_1 + s, x_2 + s \in S_1$, convexity of S_1 implies that

$$\theta x_1 + (1 - \theta)x_2 + s = \theta(x_1 + s) + (1 - \theta)(x_2 + s) \in S_1.$$

Thus $\theta x_1 + (1 - \theta)x_2 \in C_s$, so that C_s is convex. Therefore

$$\{x \in \mathbb{R}^n : x + S_2 \subseteq S_1\} = \bigcap_{s \in S_2} C_s$$

is convex, since set intersection preserves convexity.

(g) Let

$$C = \{x \in \mathbb{R}^n : ||x - a||_2 \le \theta ||x - b||_2\}.$$

Then $x \in C$ if and only if

$$(x-a)^T(x-a) \le \theta^2(x-b)^T(x-b),$$

or equivalently (after rearrangement),

$$(1 - \theta^2)x^T x + 2(\theta^2 b - a)^T x + a^T a - \theta^2 b^T b \le 0.$$

Thus, letting $A = (1 - \theta^2)I$, $\beta = 2(\theta^2b - a)$, and $\gamma = a^Ta - \theta^2b^Tb$, the set in question becomes

$$C = \{x \in \mathbb{R}^n : x^T A x + \beta^T x + \gamma \le 0\}.$$

Thus, since $A \in S_+^n$, Exercise 2.10 (a) implies that C is convex.

- 2. (Boyd & Vandenberghe, Exercise 3.20)
 - (c) Recall from Exercise 3.18 (a) that the map $g(X) = \text{Tr}(X^{-1})$ on S_{++}^m is convex. In addition, the map $h(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$ on \mathbb{R}^n is affine. The map f in question is the composition $f = g \circ h$, with domain dom $f = \{x \in \mathbb{R}^n : h(x) \in \text{dom } g\}$. A composition of this form is convex, and therefore f is convex.
- 3. (Boyd & Vandenberghe, Exercise 3.21)
 - (a) For every $1 \leq i \leq k$, define the map $f_i(x) = ||A^{(i)}x b^{(i)}||$ on \mathbb{R}^m . Since norms are convex, and each of the maps f_i is the composition of a norm with an affine map, we see that each f_i is convex. Since the map f in question is the pointwise maximum of f_1, \ldots, f_k , we conclude that f itself is convex.