1.2.5 Solved Problems: Review of Set Theory

Problem 1

Let A, B, C be three sets as shown in the following Venn diagram. For each of the following sets, draw a Venn diagram and shade the area representing the given set.

- a. $A \cup B \cup C$
- b. $A \cap B \cap C$
- c. $A \cup (B \cap C)$
- d. $A (B \cap C)$
- e. $A \cup (B \cap C)^c$

Solution

Figure 1.15 shows Venn diagrams for these sets.

Fig.1.15 - Venn diagrams for different sets.

Problem 2

Using Venn diagrams, verify the following identities.

a.
$$A = (A \cap B) \cup (A - B)$$

b. If A and B are finite sets, we have

$$|A \cup B| = |A| + |B| - |A \cap B| \tag{1.2}$$

Solution

Figure 1.16 pictorially verifies the given identities. Note that in the second identity, we show the number of elements in each set by the corresponding shaded area.

Fig.1.16 - Venn diagrams for some identities.

Problem 3

Let $S=\{1,2,3\}.$ Write all the possible partitions of S.

Solution

Remember that a partition of S is a collection of nonempty sets that are disjoint and their union is S. There are 5 possible partitions for $S=\{1,2,3\}$:

- $2. \{1,2\},\{3\};$
- 3. $\{1,3\},\{2\}$;
- 4. {2,3}, {1};
- 5. {1, 2, 3}.

Problem 4

Determine whether each of the following sets is countable or uncountable.

- a. $A = \{x \in \mathbb{Q} | -100 \le x \le 100\}$
- b. $B = \{(x, y) | x \in \mathbb{N}, y \in \mathbb{Z}\}$
- c. C = (0, 0.1]
- d. $D = \{\frac{1}{n} | n \in \mathbb{N}\}$

Solution

- a. $A = \{x \in \mathbb{Q} | -100 \le x \le 100\}$ is **countable** since it is a subset of a countable set, $A \subset \mathbb{Q}$.
- b. $B = \{(x,y)|x \in \mathbb{N}, y \in \mathbb{Z}\}$ is **countable** because it is the Cartesian product of two countable sets, i.e., $B = \mathbb{N} \times \mathbb{Z}$.
- c. C = (0, .1] is **uncountable** since it is an interval of the form (a, b], where a < b.
- d. $D=\{\frac{1}{n}|n\in\mathbb{N}\}$ is **countable** since it is in one-to-one correspondence with the set of natural numbers. In particular, you can list all the elements in the set D, $D=\{1,\frac{1}{2},\frac{1}{3},\cdots\}$.

Problem 5

Find the range of the function $f: \mathbb{R} \to \mathbb{R}$ defined as $f(x) = \sin(x)$.

Solution

For any real value x, $-1 \le \sin(x) \le 1$. Also, all values in [-1,1] are covered by $\sin(x)$. Thus, Range(f) = [-1,1].