$Ax \rightarrow$ Recall: If Anxn is a real Symmetric $A^{2\times2}$, RSM, λ_1 , λ_2 \overrightarrow{u} . \overrightarrow{v} \overrightarrow{u} . \overrightarrow{u} \overrightarrow{v} = 1 $\overrightarrow{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$, $\overrightarrow{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ $\overrightarrow{v} \cdot \overrightarrow{v} = 1$. matrix with distinct eigenvalues, then the corresponding eigenvectors are Orthogonal to each other A = PDPT. Ax = (\land + \land 2 U v T) &. P; Matrix with Orthonormal u, v Orthonormal vectors. eigenvectors uu^T = 2x2 Matrix → Rank 1. VVT = 2x2 Matrix -> Rank 1.

2×2 RSM of rank 1. L·C· of 2 Rank 1 Rank 1 2x2 Rank 2 (u, u_2) 4,42

SVD in the Sum form $C = \sum_{i=1}^{N} \sigma_i u_i v_i^T$ $C = \sum_{i=1}^{N} \sigma_i u_i^2 v_i^T$ $C = \sum_{i=1}^{N} \sigma_i u_i^T v_i^T v_i^T v_i^T v_i^T$ $C = \sum_{i=1}^{N} \sigma_i u_i^T v_i^T v_i^T v_i^T v_i$

Amm real matrix How do we interpret the action of $A^{m\times n}$ on an n-component vector α ? A = 2 0; UiViT Pseudo inverse of t: $A^{\dagger} = (A^{T}A)^{-1}A^{T} \qquad (A^{m\times n}, \text{ Rank } n).$ $\chi^{\dagger} = (A^{T}A)^{T}A^{T}b$ when $b \notin col Sp(A)$.

