RELATIVE MOTION

 \vec{v}_{AB} (velocity of A with respect to B) = $\vec{v}_{A} - \vec{v}_{B}$

 \bar{a}_{AB} (acceleration of A with respect to B) = $\bar{a}_{A} - \bar{a}_{B}$

Relative motion along straight line - $\vec{x}_{BA} = \vec{x}_{B} - \vec{x}_{A}$

CROSSING RIVER

A boat or man in a river always moves in the direction of resultant velocity of velocity of boat (or man) and velocity of river flow.

Shortest Time: 1.

Velocity along the river, $v_x = v_R$. Velocity perpendicular to the river, $V_f = V_{mR}$

The net speed is given by $v_m = \sqrt{v_{mR}^2 + v_{R}^2}$

Shortest Path:

velocity along the river, $v_x = 0$

and velocity perpendicular to river $v_v = \sqrt{v_{mR}^2 - v_R^2}$

The net speed is given by $v_m = \sqrt{v_{mR}^2 - v_R^2}$

at an angle of 90° with the river direction. velocity v_v is used only to cross the river,

therefore time to cross the river, $t = \frac{d}{v_y} = \frac{d}{\sqrt{v_m^2 - v_p^2}}$

and velocity v_x is zero, therefore, in this case the drift should be zero.

$$\Rightarrow$$
 $v_R - v_{mR} \sin \theta = 0$

or
$$v_R = v_{mR} \sin \theta$$

or $\theta = \sin^{-1} \left(\frac{v_R}{v_{mR}} \right)$

RAIN PROBLEMS

$$\vec{v}_{Rm} = \vec{v}_{R} - \vec{v}_{m}$$

or
$$v_{Rm} = \sqrt{v_R^2 + v_m^2}$$