Names	IDs			
yahia ashraf	20200636			
yahia mahmoud	20201222			
hamza abdel hamid	20200162			
ziad ibrahim	20200193			
omar tarek	20200348			
import numpy as	np			
import pandas as				
import matplotli	b.pyplot			
import seaborn a	s sns			
from sklearn.model_selectio				
from sklearn.linear_model				
from sklearn.metrics impo				
from sklearn.preprocessing				

data = pd.read_csv('_/content/drive/MyDrive/loan_old.csv')
data

 $from \ sklearn.preprocessing \ import \ StandardScaler$

\Rightarrow		Loan_ID	Gender	Married	Dependents	Education	Income	Coapplicant_Income	Loan_Tenor	Credit_History	Property_Area	Max_Loan_Aı
_	0	LP001002	Male	No	0	Graduate	5849	0.0	144.0	1.0	Urban	
	1	LP001003	Male	Yes	1	Graduate	4583	1508.0	144.0	1.0	Rural	2
	2	LP001005	Male	Yes	0	Graduate	3000	0.0	144.0	1.0	Urban	
	3	LP001006	Male	Yes	0	Not Graduate	2583	2358.0	144.0	1.0	Urban	1
	4	LP001008	Male	No	0	Graduate	6000	0.0	144.0	1.0	Urban	2
	609	LP002978	Female	No	0	Graduate	2900	0.0	144.0	1.0	Rural	
	610	LP002979	Male	Yes	3+	Graduate	4106	0.0	72.0	1.0	Rural	
	611	LP002983	Male	Yes	1	Graduate	8072	240.0	144.0	1.0	Urban	3
	612	LP002984	Male	Yes	2	Graduate	7583	0.0	144.0	1.0	Urban	3
	613	LP002990	Female	No	0	Graduate	4583	0.0	144.0	0.0	Semiurban	1
•												>

Data Analysis

```
data.isna().sum()
     Loan_ID
     Gender
     Married
                           15
     Dependents
     Education
     Coapplicant_Income
Loan_Tenor
                           0
                            15
     Credit_History
     Property_Area
Max_Loan_Amount
                             0
                             25
     Loan_Status
     dtype: int64
data.dtypes
```

Loan_ID	object
Gender	object
Married	object
Dependents	object
Education	object
Income	int64
Coapplicant_Income	float64
Loan_Tenor	float64
Credit History	float64

11/16/23, 5:56 PM

Property_Area object
Max_Loan_Amount float64
Loan_Status object
dtype: object

for col in data:
 if data[col].dtype != 'object':
 sns.boxplot(data = data,x=col)
 plt.show()

 $sns.pairplot(data,\ diag_kind='kde') \ \ \# \ 'kde' \ for \ kernel \ density \ estimation \\ plt.show()$

Preprocessing

```
def sanitize_data(path):
    data = pd.read_csv(path)
# data.info()

# dropping rows with missing values
data.dropna(inplace=True)

# replacing coapplicant_income with values 0 with the mean value
data['Coapplicant_Income'] = data['Coapplicant_Income'].replace(0, data[data['Coapplicant_Income'] == 0]['Coapplicant_Income'].mean())

# removing outliers in the income
data.drop(data[data['Income']>25000].index,axis=0,inplace=True)

return data

clean_data = sanitize_data("/content/drive/MyDrive/loan_old.csv")
clean_data
```

```
Loan_ID Gender Married Dependents Education Income
                                                                       Coapplicant_Income Loan_
          LP001003
                        Male
                                                     Graduate
                                                                 4583
                                                                                     1508.0
         LP001005
                        Male
                                  Yes
                                                0
                                                     Graduate
                                                                 3000
                                                                                        0.0
                                                          Not
                                                0
                                                                                     2358.0
       3 LP001006
                        Male
                                  Yes
                                                                 2583
                                                     Graduate
# separating targets and features
features = ['Gender', 'Married', 'Dependents', 'Education', 'Income', 'Coapplicant_Income', 'Loan_Tenor', 'Credit_History', 'Property_Area']
targets = ['Max_Loan_Amount']
x = clean data[features]
y = clean_data[targets]
# shuffling and splitting data in testing and training sets
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=0)
# categorical features are encoded using one-hot encoding
categorical_columns = x.select_dtypes(include=['object']).columns
X_train_encoded = pd.get_dummies(X_train, columns=categorical_columns, drop_first=True)
\textbf{X\_test\_encoded} = \texttt{pd.get\_dummies}(\textbf{X\_test}, \texttt{columns=categorical\_columns}, \texttt{drop\_first=True})
# numerical features are standardized
numerical_columns = X_train.select_dtypes(include=['float64', 'int64']).columns
scaler = StandardScaler()
X_{train\_encoded[numerical\_columns]} = scaler.fit_transform(X_{train\_encoded[numerical\_columns]})
X_test_encoded[numerical_columns] = scaler.transform(X_test_encoded[numerical_columns])
```

Linear Regression

```
def linear_train(X_train, y_train):
    model = LinearRegression()
    model.fit(X_train, y_train)
    return model
def linear predict(model, x):
    predictions = model.predict(x)
    return predictions
def r2_evaluate(yhat, y):
    r2 = r2\_score(yhat, y)
    print('r2 score for this linear regression model is', r2)
# load old data
# train model on train part of old data
model = linear_train(X_train_encoded, y_train)
# test model on test part of old data
predictions_test = linear_predict(model, X_test_encoded)
# evaluate the model
r2_evaluate(predictions_test, y_test)
     r2 score for this linear regression model is 0.8830709822697137
#load new data and preprocess it (encoding and standardization)
new_data = sanitize_data("/content/drive/MyDrive/loan_new.csv")
X_new = new_data[features]
X_new = pd.get_dummies(X_new, columns=categorical_columns, drop_first=True)
X_new[numerical_columns] = scaler.transform(X_new[numerical_columns])
# predict for new data
predictions_new = linear_predict(model, X_new)
print(predictions_new)
```

```
[ 145.1894//01]
[ 277.96633746]
[ 322.04823387]
[ 192.79888542]
  263.95693209]
[ 193.50102678]
  70.25978301]
  200.01436622]
[ 154.93824526]
  152.28259857]
  203.75051286]
[ 161.02160319]
[ 102.82685972]
  73.33248398]
[ 852.86432862]
  209.45270863]
 122.8891609
[ 213.90920677]
  333.99514718]
[ 216.92041333]
[ 387.53679738]
 228.62916953]
 173.26420761]
[ 123.00379103]
  67.3350113
[ 132.18695431]
 124.05494315]
 [ 232.88379239]
[ 140.25403571]
[ 309.09048841]
  -6.93085992]
[ 179.46963204]
  266.64367928]
 329.61965579]
[ 196.2360654 ]
  89.11600248]
[ 171.37606785]
  53.72891259]
 349.09235147]
 256.75780122]
 345.7548415
  70.00059912]
[ 345.39244788]
[ 215.57824287]
  73.40047045]
[ 248.50363799]
 168.49334542]
[ 214.75501751]
[ 178.61299625]
[ 287.6290075 ]
[ 225.20449016]]
```

Logistic Regression

```
clean_data = sanitize_data('/content/drive/MyDrive/loan_old.csv')
# separating targets and features
features = ['Gender', 'Married', 'Dependents', 'Education', 'Income', 'Coapplicant_Income', 'Loan_Tenor',
            'Credit_History', 'Property_Area']
targets = ['Loan_Status']
x = clean_data[features]
y = clean_data[targets]
# shuffling and splitting data in testing and training sets
X_train, X_test, y_train, y_test = train_test_split(
    x, y, test_size=0.3, random_state=0)
label_encoder = LabelEncoder()
# categorical data are encoded
for col in X_train.columns:
    if X_train[col].dtype == 'object':
        X_train[col] = label_encoder.fit_transform(X_train[col])
for col in y_train.columns:
    if y_train[col].dtype == 'object':
        y_train[col] = label_encoder.fit_transform(y_train[col])
for col in X test.columns:
    if X_test[col].dtype == 'object':
        X_test[col] = label_encoder.fit_transform(X_test[col])
for col in y_test.columns:
    if y_test[col].dtype == 'object':
        y_test[col] = label_encoder.fit_transform(y_test[col])
# numerical features are standardized
numerical_columns = X_train.select_dtypes(include=['float64', 'int64']).columns
scaler = StandardScaler()
X_train[numerical_columns] = scaler.fit_transform(X_train[numerical_columns])
X_test[numerical_columns] = scaler.transform(X_test[numerical_columns])
def get z(x, w, b):
    return np.dot(x, w) + b
def get_sigmoid(z):
    return 1/(1+np.exp(-z))
def get_cost(y, predictions):
   m = len(y)
    cost = (-1/m) * np.sum(-y * np.log(predictions) -
                           (1-y)*np.log(1-predictions))
def logistic_regression(x, y):
    x = x.to_numpy()
   y = y.to_numpy()
    m, features = x.shape[0], x.shape[1]
    # fx1
    w = np.zeros((features, 1))
   b = 0
    # gradient descent
    alpha = 0.001
    max_iterations = 100
    for i in range(max_iterations):
       \# mxf \cdot fx1 = mx1
        z = get_z(x, w, b)
        predictions = get_sigmoid(z)
        \# fxm \cdot mx1 = fx1
        dw = (1/m) * np.dot(x.T, predictions - y)
        db = (1/m) * np.sum(predictions - y)
        new w = w - alpha * dw
```

```
new_b = b - alpha * db
       w = new_w
       b = new_b
    return w, b
def predict(x, w, b):
   # x . W
   # mxf . fx1
    z_{hat} = get_z(x, w, b)
    sigmoid_hat = get_sigmoid(z_hat)
    threshold = 0.5
   y_hat = (sigmoid_hat > threshold).astype(int)
   return y_hat
def model_accuracy(y, y_hat):
   m = y.shape[0]
   wrong_predictions = np.sum(np.abs(y - y_hat))
   return (m - wrong_predictions) / m
w, b = logistic_regression(X_train, y_train)
predictions = predict(X_test, w, b)
accuracy = model_accuracy(predictions, y_test)
print("model accuracy is " + str(accuracy), end="")
     model accuracy is Loan_Status
                                     0.75974
     dtype: float64
#load new data and preprocess it (encoding and standardization)
new_data = sanitize_data("/content/drive/MyDrive/loan_new.csv")
new_data.drop(columns='Loan_ID',inplace = True)
X_new = new_data
scaler = StandardScaler()
for col in X new.columns:
    if X_new[col].dtype != 'object':
        X_new[col] = scaler.fit_transform(X_new[[col]])
for col in X_new.columns:
  if X_new[col].dtype == 'object':
   X_new[col] = label_encoder.fit_transform(X_new[col])
```

X_new

	Gender	Married	Dependents	Education	Income	Coapplicant_Income	Loan_Tenor C
0	1	1	0	0	0.431977	-0.657881	0.252027
1	1	1	1	0	-0.516183	-0.015406	0.252027
2	1	1	2	0	0.173779	0.113089	0.252027
4	1	0	0	1	-0.444461	-0.657881	0.252027
5	1	1	0	1	-0.842875	0.807820	0.252027
361	1	1	1	0	-0.805580	0.270282	0.252027
362	1	1	3	1	-0.181601	0.103238	0.252027
363	1	1	0	0	-0.128169	-0.354204	0.252027
365	1	1	0	0	0.173779	0.367081	0.252027
366	1	0	0	0	1.679934	-0.657881	-2.875550
313 rows × 9 columns							

```
# predict for new data
predictions_new = predict(X_new, w, b)
print(predictions_new)
```

[1] [1] [1] [1] [1] [1] [1] [1] [1] [0] [1] [0] [1] [1]

[1] [1] [1]

[1] [1] [1]

[0] [1] [1]

[1] [1] [1]

[1] [1] [1]

[1] [1] [0] [1]

[1] [1] [0] [1] [1]

[1] [0] [0] [1]