Aluffi, Algebra: Chapter 0

Danny Nygård Hansen 17th January 2022

I • Preliminaries: Set theory and categories

II • Groups, first encounter

1. Definition of group

EXERCISE 1.4

Suppose that $g^2 = e$ for all elements g of a group G; prove that G is commutative.

SOLUTION. The hypothesis implies that $g = g^{-1}$ for all $g \in G$. For $g, h \in G$ we thus have

$$gh = (gh)^{-1} = h^{-1}g^{-1} = hg$$

as desired.

EXERCISE 1.8

Let *G* be a finite abelian group with exactly one element *f* of order 2. Prove that $\prod_{g \in G} g = f$.

SOLUTION. Every element g in G different from e and f has order greater than two, hence $g \neq g^{-1}$. The product $\prod_{g \in G \setminus \{e, f\}} g$ therefore contains all such elements along with their inverses, and thus equals e. The claim follows. \square

EXERCISE 1.9

Let G be a finite group, of order n, and let m be the number of elements $g \in G$ of order exactly 2. Prove that n - m is odd. Deduce that if n is even, then G necessarily contains elements of order 2.

SOLUTION. Let G' denote the set of elements in G with order greater than 2. We claim that |G'| is even, and we give two arguments for this fact. First, simply notice that the elements of G' come in pairs $\{g, g^{-1}\}$ with $g \neq g^{-1}$.

For a more precise argument (using group theory language we haven't seen yet), consider the inversion map $g \mapsto g^{-1}$. This restricts to a well-defined map $\iota \colon G' \to G'$, and ι is a permutation of G'. Letting the cyclic group $\langle \iota \rangle \leq S_{G'}$ act on G' splits G' into orbits of size two, and since these orbits determine a partition of G', |G'| must be even.

Now notice that G' contains n-m-1 elements since e has order 1, hence n-m is odd. If n is even, then m must be odd and thus at least 1.

EXERCISE 1.11

Prove that for all g, h in a group G, |gh| = |hg|.

SOLUTION. Let $a, g \in G$, and let n = |g|. Then

$$(aga^{-1})^n = ag^na^{-1} = e$$
,

so the order of aga^{-1} divides the order of g. Substituting $g \to aga^{-1}$ and $a \to a^{-1}$ shows that |g| also divides $|aga^{-1}|$, so $|g| = |aga^{-1}|$. Finally substituting $g \to gh$ and $a \to h$ proves the claim.

Alternatively, the conjugation map $g \mapsto aga^{-1}$ is an isomorphism, so it preserves orders.

2. Examples of groups

EXERCISE 2.1

One can associate an $n \times n$ matrix M_{σ} with a permutation $\sigma \in S_n$ by letting the entry at $(i, \sigma(i))$ be 1 and letting all other entries be 0. Prove that, with this notation,

$$M_{\sigma}M_{\tau}=M_{\tau\sigma}$$

for all σ , $\tau \in S_n$, where the product on the right is the ordinary product of matrices.

SOLUTION. Notice that, for $1 \le i, j \le n$,

$$(M_{\sigma}M_{\tau})_{ij} = \sum_{k=1}^{n} (M_{\sigma})_{ik} (M_{\tau})_{kj},$$

 $^{^{\}rm 1}$ Contrary to Aluffi, we prefer to let permutation act on the left.

3

and that the summand $(M_{\sigma})_{ik}(M_{\tau})_{kj}$ is 1 just when $\sigma(i) = k$ and $\tau\sigma(i) = j$, and 0 otherwise. Thus,

$$(M_{\sigma}M_{\tau})_{ij} = \begin{cases} 1, & \tau\sigma(i) = j, \\ 0, & \text{otherwise,} \end{cases}$$

which is just the definition of the matrix $M_{\tau\sigma}$.

EXERCISE 2.13

Prove that if gcd(m, n) = 1, then there exist integers a and b such that

$$am + bn = 1$$
.

Conversely, prove that if am+bn=1 for some integers a and b, then gcd(m,n)=1.

SOLUTION. By Corollary 2.5, the class $[m]_n$ generates $\mathbb{Z}/n\mathbb{Z}$. Hence there exists an $a \in \mathbb{Z}$ such that $a[m]_n = [1]_n$. But then qn = am - 1 for some $q \in \mathbb{Z}$, i.e. am + (-q)n = 1.

Conversely, if am + bn = 1 and d divides both m and n, then d also divides 1 and hence $d = \pm 1$.

3. The category **Grp**

4. Group homomorphisms

EXERCISE 4.1

Check that the function π_m^n defined in §4.1 is well-defined and makes the diagram commute. Verify that it is a group homomorphism.

SOLUTION. Recall that $\pi_m^n \colon \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ is defined by $\pi_m^n([a]_n) = [a]_m$, assuming that $m \mid n$. To show that this is well-defined, let $a, b \in \mathbb{Z}$ with $a \equiv b \pmod{n}$. This means that $n \mid a - b$, and hence that $m \mid a - b$, i.e. that $a \equiv b \pmod{m}$. In other words, $[a]_n = [b]_n$ implies that $[a]_m = [b]_m$, and thus π_m^n is well-defined. It is also obvious that the diagram

$$\begin{array}{c|c}
\mathbb{Z} & \pi_m \\
\pi_n & & \\
\mathbb{Z}/n\mathbb{Z} & \xrightarrow{\pi_m^n} \mathbb{Z}/m\mathbb{Z}
\end{array}$$

commutes, since $\pi_n(a) = [a]_n$ and $\pi_m(a) = [a]_m$.

5. Free groups 4

Finally we show that π_m^n is a homomorphism. For $a, b \in \mathbb{Z}$ we have

$$\pi_m^n([a]_n + [b]_n) = \pi_m^n([a+b]_n) = [a+b]_m = [a]_m + [b]_m$$
$$= \pi_m^n([a]_n) + \pi_m^n([b]_n)$$

as desired.

EXERCISE 4.9

Prove that if m, n are positive integers such that gcd(m, n) = 1, then $C_{mn} \cong C_m \times C_n$.

SOLUTION. The map $\pi = (\pi_m^{mn}, \pi_n^{mn})$ is a group homomorphism, and since the sets C_{mn} and $C_m \times C_n$ have the same cardinality, it suffices to show that π is injective. Using additive notation, if $\pi([a]_{mn}) = \pi([b]_{mn})$ then $[a]_m = [b]_m$, i.e. $m \mid a-b$. Similarly $n \mid a-b$, and since $\gcd(m,n) = 1$ we have $mn \mid a-b$. It follows that $[a]_{mn} = [b]_{mn}$ as desired.

- 5. Free groups
- 6. Subgroups

EXERCISE 6.6

Prove that the union of a family of subgroups of a group *G* is not necessarily a subgroup of *G*. In fact:

- (a) Let H, H' be subgroups of a group G. Prove that $H \cup H'$ is a subgroup of G only if $H \subseteq H'$ or $H' \subseteq H$.
- (b) On the other hand, let $H_0 \subseteq H_1 \subseteq H_2 \subseteq \cdots$ be subgroups of a group G. Prove that $\bigcup_{i>0} H_i$ is a subgroup of G.

SOLUTION. (a) Assume that $H \cup H'$ is a subgroup of G and let $h \in H$ and $h' \in H'$. Then $hh' \in H \cup H'$, say $hh' \in H$. But then $h' = h^{-1}(hh') \in H$, so $h' \in H$ and hence $H' \subseteq H$. Similarly if $hh' \in H'$.

(b) Write $H = \bigcup_{i \ge 0} H_i$. If $g, h \in H$, then $g \in H_i$ and $h \in H_j$ for some $i, j \in \mathbb{N}$. Hence $g, h \in H_i \cup H_j = H_{i \lor j} \subseteq H$. We furthermore have $g^{-1} \in H_i \subseteq H$.

² The natural numbers include zero.