SCRUM Company Optimization Model From Entities, Relationships, Goals, Conditions, and Decision Variables

Generated Model

August 12, 2025

Contents

1	1. Sets (Entities)	2
2	2. Indices	3
3	3. Goals	4
4	4. Conditions	5
5	5. DecisionVariables	6

1 1. Sets (Entities)

• Entity Sets (from Entities.csv):

- -P (Project): projects.
- -T (Team): teams.
- -W (Worker): workers (note: Relationships used "Employee"; here, $Employee \equiv Worker$).
- -F (Feature): features.
- -S (Skill): skills.
- -R (Role): roles.
- PO (ProductOwner): product owners.
- -SM (ScrumMaster): scrum masters.
- PB (ProductBacklog): product backlogs.
- -SP (Sprint): sprints.
- SPP (SprintPlanning): sprint planning events.
- -DS (DailyScrum): daily scrums.
- -SR (SprintReview): sprint reviews.
- -SRE (SprintRetrospective): sprint retrospectives.
- *SBL* (SprintBacklog): sprint backlogs.
- SG (SprintGoal): sprint goals.
- -E (Epic): epics.
- -US (UserStory): user stories.
- -TSK (Task): tasks.
- DEV (DevelopmentSnapshot): development snapshots.
- -BL (Blocker): blockers.
- SH (Stakeholder): stakeholders.
- VEL (Velocity): velocity records (per team).
- -REP (ReleasePlan): release plans.
- -RM (Roadmap): roadmaps.
- *SCB* (ScrumBoard): scrum boards.
- FED (FeatureDocumentation): feature documentation entries.

• Relationship Sets (from Relationships.csv; normalized names):

- $-\ R_T^P \subseteq T \times P \ (\mathsf{is_assigned_to_project})$
- $-\ R_W^T \subseteq W \times T \ (\mathsf{belongs_to_team})$
- $-R_W^S \subseteq W \times S \text{ (has_skill)}$
- $-R_W^R \subseteq W \times R \text{ (takes_on_role)}$
- $-R_{PO}^{PB} \subseteq PO \times PB \text{ (manages_backlog)}$
- $-\ R_T^{SM} \subseteq T \times SM \ (\mathsf{is_supported_by})$
- $-\ R^F_{PB} \subseteq PB \times F \ ({\sf contains_feature})$
- $-R_{PB}^{E} \subseteq PB \times E \text{ (contains_epic)}$
- $-\ R_E^{US} \subseteq E \times US \ ({\sf contains_user_story})$

- $R_{US}^{TSK} \subseteq US \times TSK \text{ (consists_of_tasks)}$
- $-R_{US}^{SBL} \subseteq US \times SBL \text{ (is_in_sprint_backlog)}$
- $-R_{SBL}^{SP} \subseteq SBL \times SP \text{ (belongs_to_sprint)}$
- $-R_{SP}^{SG} \subseteq SP \times SG \text{ (pursues_goal)}$
- $-R_{SCB}^{TSK} \subseteq SCB \times TSK$ (contains_tasks)
- $-R_{FED}^F \subseteq FED \times F \text{ (documents_feature)}$
- $-R_{TSK}^{BL} \subseteq TSK \times BL \text{ (is_blocked_by)}$
- $-R_{SH}^{SR} \subseteq SH \times SR \text{ (participates_in)}$
- $-R_{SM}^{SRE} \subseteq SM \times SRE \text{ (moderates_retrospective)}$
- $-R_T^{VEL} \subseteq VEL \times T \text{ (refers_to_team)}$
- $-\ R^F_{REP} \subseteq REP \times F \ (\mathsf{plans_release})$
- $-\ R_{REP}^{RM} \subseteq REP \times RM \ (\mathsf{is_part_of_roadmap})$
- $-R_{SP}^{DEV} \subseteq SP \times DEV$ (generates_snapshot)

• Parameters (from entity attributes; treated as given data):

- $budget(p) \in \mathbb{R}_+ \text{ for } p \in P.$
- $priority(f) \in \mathbb{R}_+, eff_est(f) \in \mathbb{R}_+ \text{ for } f \in F.$
- $totalEff(sbl) \in \mathbb{R}_+, numTasks(sbl) \in \mathbb{N} \text{ for } sbl \in SBL.$
- $ag(sp) \in \{0,1\} (achievement_of_goal) \text{ for } sp \in SP.$
- $sev(bl) \in \mathbb{R}_+, activeBL(bl) \in \{0, 1\} \text{ for } bl \in BL.$
- $avail(w) \in \mathbb{R}_+, active W(w) \in \{0, 1\} \text{ for } w \in W.$
- $cards(scb) \in \mathbb{N} \text{ for } scb \in SCB.$
- $rel(sh) \in \mathbb{R}_+ \text{ for } sh \in SH.$
- $vel \ avg(t) \in \mathbb{R}_+ \text{ for } t \in T \text{ (via } VEL).$
- $-included(rep) \in \mathbb{N} \text{ for } rep \in REP.$
- Indicator $hasDoc(f) \in \{0,1\}$ from FED linking (via R_{FED}^F).

• Global policy parameters (model constants):

 $-B^{\text{max}}$ (budget cap), PR^{min} (minimum epic priority), EXP^{min} (min SM experience indicator), E^{max} (task effort cap), ENT^{max} (max backlog entries), DUR^{max} (max sprint planning duration).

2 2. Indices

- $p \in P$, $t \in T$, $w \in W$, $f \in F$, $s \in S$, $r \in R$, $po \in PO$, $sm \in SM$,
- $pb \in PB$, $sp \in SP$, $spp \in SPP$, $ds \in DS$, $sr \in SR$, $sre \in SRE$,
- $sbl \in SBL$, $sg \in SG$, $e \in E$, $us \in US$, $tsk \in TSK$, $dev \in DEV$, $bl \in BL$,
- $sh \in SH$, $vel \in VEL$, $rep \in REP$, $rm \in RM$, $scb \in SCB$, $fed \in FED$.

3 3. Goals

We employ a weighted multi-objective approach with weights $w_i > 0$ from Goals.csv. The composite objective is

$$\max \sum_{i \in \mathcal{G}^{max}} w_i \, \Phi_i \, - \, \sum_{j \in \mathcal{G}^{min}} w_j \, \Phi_j,$$

where each Φ term corresponds to an item below. Logical intent is stated alongside the mathematical form.

• G0: maximize average velocity

Logical: Maximize the team's average story points per sprint.

Mathematical:
$$\Phi_0 = \sum_{t \in T} vel_avg(t)$$
.

• G1: minimize blocker severity

Logical: Minimize cumulative severity of all active blockers.

Mathematical:
$$\Phi_1 = \sum_{bl \in BL} activeBL(bl) \cdot sev(bl)$$
.

• G2: minimize feature effort

Logical: Prefer features with lower estimated effort among those selected into releases.

Mathematical:
$$\Phi_2 = \sum_{rep \in REP} \sum_{f \in F} eff_est(f) \cdot u_{f,rep}$$
.

• G3: maximize feature priority

Logical: Emphasize higher-priority features selected into releases.

Mathematical:
$$\Phi_3 = \sum_{rep \in REP} \sum_{f \in F} priority(f) \cdot u_{f,rep}$$
.

• G4: minimize sprint backlog total effort

Logical: Keep total sprint effort manageable across all sprint backlogs. Mathematical:
$$\Phi_4 = \sum_{sbl \in SBL} total Eff(sbl)$$
.

• G5: maximize sprint goal achievement

Logical: Maximize rate of sprint goal achievement.

Mathematical:
$$\Phi_5 = \sum_{sp \in SP} ag(sp)$$
.

• G6: minimize task effort

Logical: Prefer smaller tasks to improve flow. Mathematical:
$$\Phi_6 = \sum_{tsk \in TSK} e_{tsk}$$
.

• G7: maximize worker availability

Logical: Maximize usable capacity through assignments to teams. Mathematical:
$$\Phi_7 = \sum_{w \in W} \sum_{t \in T} avail(w) \cdot y_{w,t}$$
.

• G8: minimize number of tasks

Logical: Reduce number of tasks in the sprint backlogs overall. Mathematical:
$$\Phi_8 = \sum_{sbl \in SBL} numTasks(sbl)$$
.

• G9: maximize release plan coverage

Logical: Maximize the number of features covered by release plans.

Mathematical:
$$\Phi_9 = \sum_{rep \in REP} \sum_{f \in F} u_{f,rep}$$
.

• G10: minimize wip on board

Logical: Reduce work-in-progress on scrum boards.

Mathematical:
$$\Phi_{10} = \sum_{scb \in SCB} cards(scb)$$
.

• G11: maximize stakeholder relevance

Logical: Maximize focus on what is relevant to stakeholders.

Mathematical:
$$\Phi_{11} = \sum_{sh \in SH} rel(sh)$$
.

4 4. Conditions

Each condition Ck from Conditions.csv is given with logic and mathematical form. Unless otherwise stated, \Rightarrow implications are linearized via big-M/binary gating using parameter indicators provided by data (so the right-hand side is effectively enforced only when the left-hand side is relevant).

• C0: limit total budget

Logical: The sum of allocated project budgets must not exceed the cap.

Mathematical:
$$\sum_{p \in P} b_p \leq B^{\max}$$
.

• C1: require active backlog

Logical: Any backlog that is managed must be active/usable.

Mathematical: $o_{po,pb} \leq activePB(pb) \quad \forall po \in PO, pb \in PB$, where $activePB(pb) \in \{0,1\}$ is derived from backlog status.

• C2: require high_priority_epics

Logical: Epics under consideration must meet a minimum priority.

Mathematical: $priority(e) \geq PR^{\min} \quad \forall e \in E$.

• C3: exclude resolved blockers

Logical: Resolved blockers do not count as active scope.

Mathematical: $activeBL(bl) \in \{0,1\}$, activeBL(bl) = 0 if status = "resolved", $\forall bl \in BL$.

• C4: require scrum master experience

Logical: A team can be supported by a SM only if the SM meets minimum experience.

Mathematical: $m_{sm,t} \leq eligibleSM(sm) \quad \forall sm \in SM, \ t \in T$, where $eligibleSM(sm) = \mathbb{I}[experience(sm) \geq EXP^{min}].$

• C5: team size within bounds

Logical: Configured team size bounds and assignment consistency.

Mathematical:
$$3 \le sz_t \le 15$$
, $\sum_{w \in W} y_{w,t} = sz_t \quad \forall t \in T$.

• C6: workers must be active

Logical: Only active workers are assignable to a team.

Mathematical: $y_{w,t} \leq activeW(w) \quad \forall w \in W, t \in T.$

• C7: limit_task_effort

Logical: Each task's effort must not exceed the threshold.

Mathematical: $e_{tsk} \leq E^{\max} \quad \forall tsk \in TSK$.

• C8: require sprint_goal

Logical: Each sprint must pursue exactly one defined sprint goal (per R_{SP}^{SG}).

Mathematical:
$$\sum_{sg \in SG} \mathbb{I}[(sp, sg) \in R_{SP}^{SG}] = 1 \quad \forall sp \in SP.$$

• C9: cap backlog entries

Logical: The entries in a product backlog must not exceed a maximum. Mathematical: $entries(pb) \leq ENT^{\max} \quad \forall pb \in PB$.

• C10: require feature documentation

Logical: Features included in any release plan must have documentation. Mathematical: $u_{f,rep} \leq hasDoc(f) \quad \forall f \in F, \ rep \in REP$.

• C11: limit_sprint_planning_duration

Logical: Sprint Planning duration must stay within its timebox. Mathematical: $duration(spp) \leq DUR^{max} \quad \forall spp \in SPP$.

- Relationship cardinalities (reference):
 - Team-Project (R1): each t may map to multiple p but each $(t,p) \in R_T^P$ is at most one assignment: encoded via binary $x_{t,p} \in \{0,1\}$; many-to-one/one-to-many respected by sums.
 - Worker-Team (R2): $\sum_{t \in T} y_{w,t} \leq 1$ (at most one team per worker).
 - SprintBacklog–Sprint (R12): each sbl belongs to exactly one $sp: \sum_{sp \in SP} \mathbb{I}[(sbl, sp) \in R_{SBL}^{SP}] = 1$ (data linkage).

5 5. DecisionVariables

- DV0: assign_team_to_project $x_{t,p} \in \{0,1\}$ indicates whether team t is assigned to project p.
- DV1: assign_worker_to_team $y_{w,t} \in \{0,1\}$ indicates whether worker w is assigned to team t.
- DV2: assign_user_story_to_sprint_backlog $z_{us,sbl} \in \{0,1\}$ indicates whether user story us is in sprint backlog sbl.
- DV3: select_feature_for_release $u_{f,rep} \in \{0,1\}$ indicates whether feature f is included in release plan rep.
- DV4: choose scrum master for team $m_{sm,t} \in \{0,1\}$ indicates whether scrum master sm is linked to team t.
- DV5: choose_product_owner_for_backlog $o_{po,pb} \in \{0,1\}$ indicates whether product owner po manages backlog pb.
- DV6: prioritize_user_story $p_{us} \in \{1, 2, 3, 4, 5\}$ is the discrete priority assigned to user story us.
- DV7: allocate_budget_to_project $b_p \in [0, 1,000,000]$ is the budget allocated to project p.
- DV8: set_task_effort $e_{tsk} \in \{1, 2, 3, 5, 8, 13, 21\}$ is the estimated effort for task tsk.
- DV9: set_sprint_number $sn_{sp} \in \{1, 2, ..., 100\}$ is the identifier for sprint sp.
- DV10: set_team_size $sz_t \in \{3, 4, ..., 15\}$ is the configured size for team t.

• DV11: set_story_points $sp_{us} \in \{1, 2, 3, 5, 8, 13\}$ are the story points for user story us.