Lecture 15

Aakash Jog

Thursday 18^{th} December, 2014

Contents

1	Circular Motion Dynamics	2
2	Rigid Body Mechanics	3

1 Circular Motion Dynamics

Example 1. Find condition on m_1 and m_2 so that the loop will not jump up when the beads are released from rest from the top.

Solution.

The loop will

jump up if

 $2N\cos\theta > m_1g$

Therefore, for the loop to not jump up,

$$2N\cos\theta - m_1g > 0$$

$$\therefore \frac{m_1}{m_2} < 4\cos\theta - 6\cos^2\theta$$

2 Rigid Body Mechanics

Example 2. A ladder is kept between 2 walls as shown. Find the maximum angle for which the ladder does not slide.

Solution.

$$\sum \overrightarrow{F_{\rm ext}} = 0$$

Therefore,

$$N_1 = mg$$
$$N_2 = f_s$$

$$\sum \overrightarrow{\tau_{\mathrm{ext},C}} = 0$$

Therefore,

$$\frac{L}{2}\cos\theta mg - L\sin\theta N_2 = 0$$

Solving,

$$\cot \theta \le 2\mu_s$$

Example 3. A box is kept on a surface and a force F is applied to the top corner. Assuming the box does not slide, find the force required for the box to topple.

Solution.

$$\sum \overrightarrow{F_{\rm ext}} = 0$$

Therefore,

$$N = mg$$
$$F = f$$

$$\sum \overrightarrow{\tau_{\text{ext},A}} = 0$$

Therefore,

$$-Nx + \frac{b}{2}mg - hF = 0$$

Solving,

$$F = \frac{mg}{h} \left(\frac{b}{2} - x \right)$$

The box will topple when x = 0, i.e. when

$$F = \frac{mgb}{2h}$$