Лабораторный практикум по курсу «Математическая статистика»

Лабораторная работа № 1 «Проверка статистических гипотез»

студента _	<u>Шамаева Сер</u>	<u>гея</u> группы	Б21-514	Дата
сдачи:	16.11.2023			
Ведущий	преподаватель:	Трофим	ов А. Г.	оценка:
подпись:_				
		Вариант №	4(19)	

Цель работы: изучение функций Statistics and Machine Learning ToolboxTM MATLAB / Python SciPy.stats для проверки статистических гипотез.

1. Исходные данные

Характеристики наблюдаемых случайных величин:

СВ	Распределение	Параметры	Математическое ожидание, m_i	Дисперсия, σ_i^2
X_1	R(5, 15)	5, 15	10	8.333
X_2	N(10, 5)	10, 5	10	25

Указание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

СВ	Среднее, \overline{x}_i	Оценка дисперсии, s_i^2	Оценка с.к.о., s_i	Объем выборки, <i>n</i> _i
X_1	9.808	7.890	2.809	300
X_2	9.503	22.746	4.769	100
Pooled	9.732	11.651	3.413	400

Указание: для расчета использовать функции mean, var, std (scipy.stats: describe)

2. Однопараметрические критерии

Для случайной величины X_1 :

Тест	Стат. гипотеза, H_0	Выборочное значение статистики критерия	p-value	Стат. решение при $\alpha = 0.05$	Ошибка стат. решения
z-test	m = 10	-1.184	0.236	H0 принимается	нет
t-test	m = 10	-1.184	0.237	Н0 принимается	нет
χ2-test (m – изв)	std = 2.887	285.374	0.562	Н0 принимается	нет
χ2-test (m – не изв)	std = 2.887	284.423	0.563	Н0 принимается	нет

Указание: для проверки гипотез использовать функции ztest, ttest, vartest (scipy.stats: ttest_1samp, chisquare)

3. Двухвыборочные критерии

Для случайных величин X_1, X_2 :

Тест	Стат. гипотеза, H_0	Выборочное значение статистики критерия	p-value	Стат. решение при $\alpha = 0.05$	Ошибка стат. решени я
2-sample t-test	m1 = m2	0.601	0.549	H0 принимается	нет
2-sample F-test (m – изв)	$\sigma_1 = \sigma_2$	0.344	4.152e-09	H0 не принимается	нет
2-sample F-test (m – не изв)	$\sigma_1 = \sigma_2$	2.901	2.699e-12	H0 не принимается	нет

Лабораторный практикум по курсу «Математическая статистика»

Указание: для проверки гипотез использовать функции **ttest2**, **vartest2** (**scipy.stats: ttest_ind, chisquare**)

4. Исследование распределений статистик критерия

Статистическая гипотеза: H0: $m1 = m2(\sigma 1, \sigma 2 - \text{не изв.})$

Формула расчёта статистики критерия $Z = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{S_1^2/n_1 + S_2^2/n_2}}$

Формула расчёта статистики P-value: 2 * min(1 - F(Z), F(Z))

Число серий экспериментов N = 1500

Теоретические характеристики:

теоретические характериетики.						
СВ	Распределение в условиях H_0	Параметры	Математическо е ожидание	Дисперсия	С.к.о.	
Z	T(n)	n = 121	0	121/119 = 1.017	1.009	
P-value	R(a, b)	a = 0, b = 1	0.5	0.083	0.29	

Выборочные характеристики:

СВ	Среднее	Оценка дисперсии	Оценка с.к.о.
Z	0.043	1.050	1.023
P-value	0.497	0.083	0.288

Указание: при расчете выборочных значений статистики критерия использовать функции norminv, tinv, chi2inf, finv (scipy.stats: norm.ppf, t.ppf, chi2.ppf, f.ppf)

Указание: для построения гистограмм и теоретических функций плотности использовать функции hist, normpdf, tpdf, chi2pdf, fpdf (scipy.stats: norm.pdf, t.pdf, chi2.pdf, f.pdf, histogram; matplotlib.pyplot: hist)