

Lecture 1: Introduction to ML and Data Manipulation

Slides based off of Machine Learning at Berkeley https://github.com/mlberkeley/Machine-Learning-Decal-Fall-2018

Overview

Who are we?

What is machine learning?

Class Logistics

General Overview and Context

Machine Learning Pipeline

Python/Numpy/Scikit-Learn

Questions

Who are we?

The Instructors

U4 Electrical Eng.

- Former Data Science/ML Intern at Splunk (Incoming Full-Time)
- Former Software Engineering
 Intern at Ericsson

Isaac Chan

U4 Electrical Eng.

- Current ML Research Intern at HuaWei Technologies
- Former Research Intern at the Graphics & Imaging Lab

The Teaching Assistants (TAs)

Aanika

John

Tiff

Claudia

Jenny

David

Hisham

Meg

Nabil

Ketan

Daoud

Josh

What is Machine Learning?

Age Old Question

Can AI Compose Music

Can AI Paint A Canvas?

FAKE NEWS!

10

Post Tracking!

Superhuman Reasoning!

Self-Driving Cars

Our View Of Intelligence

Our Distorted View of Intelligence

What Intelligence Is Actually Like

Class Logistics

Goals

Understand major concepts in machine learning

Understand trade-offs between different approaches (what do I use - when and why?)

Gain familiarity to solve ML problems

Develop the skills for your first data science/machine learning internship

Build a community and have fun!

How we accomplish this

Lectures (8 total)

- 2 hours/week
- Theoretical introduction
- Hands on coding tutorial

Homework (5 total)

- 3-6 hours/week
- Practice implementing material taught in lecture
- Due before the next lecture after being assigned

Office Hours

- 2 hours per week
- Dedicate time for in person support

How we accomplish this

Final Project

- 3 deliverables + final presentation
- Find a dataset on kaggle and create any real life application using the data (web app, mobile app, IoT, robot, etc)

Final Blog

- Submit on medium at end of course
- Summarize project and reflect on learning

Guest Lectures and Social Events (Optional)

- Gain extra insight from industry professionals
- Work hard and play hard!

Logistical

Join the slack

https://slack-link-here.com

Clone the github

https://github.com/McGillAISociety/mais-bootcamp-w2019

Share your repository

All assignments and deliverables will be marked from your github repository. Learning git is crucial for your career!

Attendance

Attendance is mandatory and will be taken at every lecture.

You may miss up to 1 lecture (there are only 9!) if you have midterms or other commitments.

"Studying for midterms or busy with assignments" is not an excuse. Conflicting schedule with midterm time is excusable.

We have put in a HUGE COMMITMENT to be here for YOU.

If you are not gaining value out of lectures, tell us why!

Evaluation

Homeworks and deliverables are marked based on completion with feedback given to help you improve.

You may have up to 1 incompletion for homework assignments, but all deliverables must be completed.

Final project and blogs must be completed for certificate.

We aren't paid for teaching and you do not need this for graduation. We all get out what we put into it.

We will not be enforcing plagiarism and we encourage collaboration, because learning together helps AND you get to make new friends!

General Overview And Context

3 different classes of machine learning problems

1) Supervised Learning

Regression

Learning a function for a **continuous** output

Eg. Predicting sales price of house.

Classification

Learning a function for a categorical output
Eg. Classifying cats vs dogs in images.

Some Basic Terminology

Features/ Attributes

Target Variable

	Sepal.Length	Sepal.Width +	Petal.Length [‡]	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa
9	4.4	2.9	1.4	0.2	setosa
10	4.9	3.1	1.5	0.1	setosa
11	5.4	3.7	1.5	0.2	setosa
12	4.8	3.4	1.6	0.2	setosa
13	4.8	3.0	1.4	0.1	setosa
14	4.3	3.0	1.1	0.1	setosa
15	5.8	4.0	1.2	0.2	setosa

2) Unsupervised Learning

3) Reinforcement Learning

Machine Learning Pipeline

The ML Process

1 Identify Problem

Carefully define the problem you want to solve. What specific question are you trying to answer?

2 Gather Data

Figure out what data is needed and where to retrieve it. Does similar data exist or do we need to generate it?

3 Process Data

Format data that can be interpreted by a computer. That includes cleaning, manipulating and extracting important features to feed into the training model.

Train-test Split

		Sepal.Length *	Sepal.Width [‡]	Petal.Length [‡]	Petal.Width	Species	
	1	5.1	3.5	1.4	0.2	setosa	
	2	4.9	3.0	1.4	0.2	setosa	
	3	4.7	3.2	1.3	0.2	setosa	
	4	4.6	3.1	1.5	0.2	setosa	
	5	5.0	3.6	1.4	0.2	setosa	
	6	5.4	3.9	1.7	0.4	setosa	
	7	4.6	3.4	1.4	0.3	setosa	
	8	5.0	3.4	1.5	0.2	setosa	
	9	4.4	2.9	1.4	0.2	setosa	
	10	4.9	3.1	1.5	0.1	setosa	
	11	5.4	3.7	1.5	0.2	setosa	
	12	4.8	3.4	1.6	0.2	setosa	
	13	4.8	3.0	1.4	0.1	setosa	
	14	4.3	3.0	1.1	0.1	setosa	
٠.	15	5.8	4.0	1.2	0.2	setosa	

Overfitting vs Underfitting

How Overfitting affects Prediction

The ML Process (Continued)

4 Train Model

Training the dataset on your selected model. In practice, datasets are split into train, validation and test sets in order to measure model performance.

5 Evaluate Results

Does the trained model solve your initial problem? Does it satisfy your performance requirements?

6 Repeat!

Improve your model by reiterating the process!

Choosing A Model

K-Fold Cross Validation

Python and Numpy Introduction/Demo

Scikit Learn Introduction/Demo

Thanks!

Any questions?

Reminders:

Homework 1 and deliverable 1 due before next lecture.

