Functionaal Analysis Stein: Chapter 1. Exercises.

Kelvin Hong kh.boon2@gmail.com

Xiamen University Malaysia, Asia Pacific University Malaysia — November 20, 2024

1 Problems

1. Consider $L^p = L^p(\mathbb{R}^d)$ with Lebesgue measure. Let $f_0(x) = |x|^{-\alpha}$ if |x| < 1. $f_0(x) = 0$ for $|x| \ge 1$, also let $f_{\infty}(x) = |x|^{-\alpha}$ if $|x| \ge 1$, $f_{\infty}(x) = 0$ when |x| < 1.

Show that

(a) $f_0 \in L^p$ if and only if $p\alpha < d$.

Solution: Let S_{d-1} be the surface area of the open unit ball $B_d = \{|x| < 1 : x \in \mathbb{R}^d\}$ in \mathbb{R}^d , then if $f_0 \in L^p$ we can write

$$||f_0||_{L_p}^p = \int_{B_d} |x|^{-p\alpha} dx = S_{d-1} \int_0^1 \frac{1}{r^p \alpha} \cdot r^{d-1} dr = S_{d-1} \int_0^1 \frac{1}{r^{1-d+p\alpha}} dr.$$

Since the integral converges, we must have $1-d+p\alpha<1$ so $p\alpha< d.$ We saw that the converse is also true. \qed

(b) $f_{\infty} \in L^p$ if and only if $d < p\alpha$.

Solution: Similar to the previous part, we have

$$||f_{\infty}||_{L_p}^p = S_{d-1} \int_1^{\infty} \frac{1}{r^{1-d+p\alpha}} dr$$

which is finite iff $d < p\alpha$.

(c) What happens if in the definitions of f_0 and f_∞ we replace $|x|^{-\alpha}$ by $|x|^{-\alpha}/(\log(2/|x|))$ for |x| < 1, and $|x|^{-\alpha}/(\log(2|x|))$ for $|x| \ge 1$?

Solution: If the definition of f_0 changed to

$$f_0(x) = \begin{cases} |x|^{-\alpha} / \log(2/|x|) & \text{if } |x| < 1, \\ 0 & \text{if } |x| \ge 1, \end{cases}$$

Then we want to show that $f_0 \in L^p$ iff $p\alpha < d$, or $p\alpha = d$ with p > 1, which is a little bit more nuanced than the previous part. When $p\alpha < d$, we see that $|f|_0 \le \frac{1}{\log 2} |x|^{-\alpha}$, so that $f_0 \in L^p$ as it is absolutely bounded above by another function in L^p .

When $p\alpha = d$, we have

$$S_{d-1}^{-1} \|f_0\|_p^p = \int_0^1 \frac{dr}{r(\log(2/r))^p}.$$

Using substitution $u = \log(2/r)$, the RHS becomes $\int_{\log 2}^{\infty} \frac{du}{u^p}$, which converges when p > 1 and diverges when $p \leq 1$.

1

When $p\alpha > d$, we want to prove $f_0 \notin L^p$. We have

$$S_{d-1}^{-1} \int_{\mathbb{R}^d} |f_0|^p dx = \int_0^1 \frac{r^{-p\alpha} r^{d-1}}{(\log(2/r))^p} dr$$

$$\geq \int_0^{1/2} \frac{dr}{r^{1+p\alpha-d} (\log(2/r))^p}$$

$$\geq \int_0^{1/2} \frac{dr}{r^{1+p\alpha-d} 2^p (\log(1/r))^p}.$$

The last step is because $2/r \le 1/r^2$ whenever 0 < r < 1/2. We now using u = 1/r, RHS can be

$$RHS \ge \int_2^\infty \frac{du}{2^p u^{1-p\alpha+d} (\log u)^p}.$$

By assumption, $1-p\alpha+d<1$, we can now choose $\theta>0$ so that $1-p\alpha+d+\theta<1$, then choose K>2 big enough such that $(\log u)^p< u^\theta$ for all $u\geq K$, hence

$$RHS \ge \int_{K}^{\infty} \frac{du}{2^{p}u^{1-p\alpha+d+\theta}} = +\infty,$$

hence $f_0 \notin L^p$.

If the definition of f_{∞} changed to

$$f_{\infty}(x) = \begin{cases} \left|x\right|^{-\alpha}/\log(2|x|) & \text{if } |x| \ge 1, \\ 0 & \text{if } |x| < 1, \end{cases}$$

then by a similar argument, we have $f_\infty \in L^p$ whenever $d < p\alpha$. When $p\alpha = d$, we can similarly prove that $f_\infty \in L^p$ iff p > 1. Moreover, $f_\infty \notin L^p$ when $p\alpha < d$.

- 2. Consider the spaces $L^p(\mathbb{R}^d)$, when 0
 - (a) Show that if $||f + g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}$ for all f and g, then necessarily $p \ge 1$.

Solution: We only need to show there are $f,g \in L^p$ such that $||f+g||_{L^p} > ||f||_{L^p} + ||g||_{L^p}$ when $0 . Let <math>K_1 = \{x \in \mathbb{R}^d : x_i \in (0,1) \forall 1 \le i \le d\}$ be a unit square in \mathbb{R}^d , and also $K_{-1} = \{x \in \mathbb{R}^d : x_i \in (-1,0) \forall 1 \le i \le d\}$ be its mirror.

We then have $||f||_{L^p} = ||g||_{L^p} = 1$, but then $||f + g||_{L^p} = 2^{1/p} > 2 = ||f||_{L^p} + ||g||_{L^p}$.

(b) Consider $L^p(\mathbb{R})$ where $0 . Show that there are no bounded linear functionals on this space. In other words, if <math>\ell$ is a linear functional $L^p(\mathbb{R}) \to \mathbb{C}$ that satisfies

$$|\ell(f)| \leq M \|f\|_{L^p(\mathbb{R})}$$
 for all $f \in L^p(\mathbb{R})$ and some $M > 0$,

then $\ell = 0$.

Solution: For each x > 0, we let χ_x be the characteristic function of [0, x] on \mathbb{R} , then extends it naturally to $x \le 0$ where it is the characteristic function of [x, 0]. Let $F(x) = \ell(\chi_x)$.

Suppose ℓ is a bounded linear functional with the constant M as stated in the question, then for any $x,y\in\mathbb{R}$ we must have

$$|F(x) - F(y)| = |\ell(\chi_x - \chi_y)| \le M ||\chi_x - \chi_y||_{L^p(\mathbb{R})} = M |x - y|^{1/p}.$$

This means that F is a continuous function, but then since

$$\left| \frac{F(x) - F(y)}{x - y} \right| \le M|x - y|^{1/p - 1},$$

F is then differentiable and has derivative 0 everywhere, hence F is a constant function, and must be zero too because $F(0) = \ell(\chi_0) = 0$. This shows ℓ can only be zero.

3. If $f \in L^p$ and $g \in L^q$, both not identically equal to zero, show that equality holds in Hölder's inequality if and only if there exist two non-zero constants $a,b \ge 0$ such that $a|f(x)|^p = b|g(x)|^q$ for almost every x.

Solution: Since we have to prove $a|f(x)|^p = b|g(x)|^q$, we assume p,q are both finite, that means if $\theta = 1/p$, then $\theta \in (0,1)$. From the proof of Hölder's inequality, we also write $\hat{f} = f/\|f\|_p$ and $\hat{g} = g/\|g\|_q$, these are well-defined because f,g are not identically zero (we assume it means not equal to zero almost everywhere).

Again from the proof of Hölder's inequality, we have an inequality $A^{\theta}B^{1-\theta} \leq \theta A + (1-\theta)B$ when A,B are non-negative numbers. Since $\theta \in (0,1)$, the inequality is strict iff $A \neq B$, thus by assumption we must have A=B, which means $\left|\hat{f}(x)\right|^p = \left|\hat{g}(x)\right|^q$. Since the equality $\|fg\|_1 = \|f\|_p \|g\|_q$ only holds when the above mentioned inequality holds for almost every x, we must have $\left|\hat{f}(x)\right|^p = \left|\hat{g}(x)\right|^q$ for almost every x.

Unnormalize we have $\|g\|_q^q |f(x)|^p = \|f\|_p^p |g(x)|^q$, which proves the statement because $\|f\|_p$ and $\|g\|_q$ are both positive.

- 4. Suppose X is a measure space and 0
 - (a) Prove that $||fg||_{L^1} \ge ||f||_{L^p} ||g||_{L^q}$. Note that q, the conjugate exponent of p, is negative.

Solution: If either $||f||_{L^p} = 0$, $||g||_{L^q} = 0$, or $fg \notin L^1$, then there is nothing to prove. Thus we may assume $fg \in L^1$ and that $||f||_{L^p} > 0$, $||g||_{L^q} > 0$, and that $||g||_{L^q}$ is finite, from here we note that it is easier to assume $g \neq 0$ a.e.

By taking p' = 1/p > 1 and let q' be the conjugate exponent of p', we have

$$\int |f|^{p} = \int |fg|^{p}|g|^{-p}
\leq \left(\int |fg|^{pp'}\right)^{1/p'} \left(\int |g|^{-pq'}\right)^{-1/q'}
= \left(\int |fg|\right)^{p} \left(\int |g|^{q}\right)^{p-1}
\therefore (|fg|)^{p} \geq (|f|^{p}) \left(\int |g|^{q}\right)^{1-p}
\|fg\|_{L^{1}} \geq \|f\|_{L^{p}} \|g\|_{L^{q}}.$$

(b) Suppose f_1 and f_2 are non-negative. Then $||f_1 + f_2||_{L^p} \ge ||f_1||_{L^p} + ||f_2||_{L^p}$.

Solution: We have

$$\int |f_1 + f_2|^p = \int f_1(f_1 + f_2)^{p-1} + \int f_2(f_1 + f_2)^{p-1}$$

$$\geq ||f_1||_{L^p} ||(f_1 + f_2)^{p-1}||_{L^q} + ||f_2||_{L^p} ||(f_1 + f_2)^{p-1}||_{L^q}$$

$$= (||f_1||_{L^p} + ||f_2||_{L^p})||(f_1 + f_2)||_{L^p}^{p-1}$$

which proves the statement.

(c) The function $d(f,g) = ||f - g||_{L^p}^p$ for $f,g \in L^p$ defines a metric on $L^p(X)$.

Solution: The function d obviously satisfies d(f,g)=0 iff f=g a.e., and that it is symmetric. If a,b are non-negative numbers, then we have $a^p+b^p \geq (a+b)^p$ for $0 . This means that for <math>f,g,h \in L^p$, we have

$$d(f,h) = \|f - g + g - h\|_{L^p}^p \le \|f - g\|_{L^p}^p + \|g - h\|_{L^p}^p = d(f,g) + d(g,h),$$
 hence d defines a metric on $L^p(X)$.

5. Let X be a measure space. Using the argument to prove the completeness of $L^p(X)$, show that if the sequence $\{f_n\}$ converges to f in the L^p norm, then a subsequence of $\{f_n\}$ converges to f almost everywhere.

Solution: Let $\{f_n\}$ be a sequence in $L^p(X)$ that converges to f in the L^p norm. We can choose a subsequence $\{f_{n_k}\}$ such that $\|f_{n_{k+1}} - f_{n_k}\|_{L^p} < 2^{-k}$ for each $k \ge 1$.

Now we define

$$g(x) = f_{n_1}(x) + \sum_{k=1}^{\infty} (f_{n_{k+1}}(x) - f_{n_k}(x))$$

$$h(x) = |f_{n_1}(x)| + \sum_{k=1}^{\infty} |f_{n_{k+1}}(x) - f_{n_k}(x)|,$$

following a similar argument when proving the completeness of $L^p(X)$, we see $f_{n_k} \to g$ a.e. on X.

Now we want to show $||g - f||_{L^p} = 0$, which could in turn proves that g = f a.e. on X.

Given $\varepsilon>0$, we choose K_0 such that $2^{-K_0}<\varepsilon$. Then for any $K>K_0$ we have $\|g-f_{n_K}\|_{L^p}\leq \sum_{k=K}^\infty \|f_{n_{k+1}}(x)-f_{n_k}(x)\|_{L^p}\leq 2^{-K_0}<\varepsilon$. By letting K to also be big enough to satisfies $\|f-f_{n_K}\|_{L^p}<\varepsilon$, we have $\|g-f\|_{L^p}<2\varepsilon$. Subsequently we have $f_{n_k}\to f$ a.e. on X.