Mid-sem: CS 754, Advanced Image Processing, 24th February

Instructions: There are 120 minutes for this exam. This exam is worth 10% of your final grade. Attempt all questions. Write brief answers - lengthy answers are not expected. Each question carries 10 points.

- 1. State the advantages and disadvantages of mutual coherence over the restricted isometry property (RIP) for a sensing matrix in compressed sensing.
- 2. For successful reconstruction of a k-sparse signal $\theta \in \mathbb{R}^n$ from compressive measurements $y = A\theta$, $A \in \mathbb{R}^{m \times n}$, $m \ll n$, what is the smallest number of measurements required in terms of k and/or n using L_0 minimization? If you switched over to L_1 minimization, what is the smallest number of measurements required in terms of k and/or n?
- 3. We have seen the following theorem (Theorem 3) in class: Consider compressive measurements of the form $\mathbf{y} = \mathbf{A}\boldsymbol{\theta} + \boldsymbol{\eta}$ where $\mathbf{y} \in \mathbb{R}^m$, $\boldsymbol{\theta} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $m \ll n$. Suppose \mathbf{A} obeys the Restricted isometry property with restricted isometry constant δ_{2s} (of order 2s) such that $\delta_{2s} < \sqrt{2} 1 \approx 0.414$. Let $\boldsymbol{\theta}^{\star}$ be the solution to the following optimization problem (P1): $\min \|\boldsymbol{\theta}\|_1$ such that $\|\mathbf{y} \mathbf{A}\boldsymbol{\theta}\|_2 \leq \varepsilon$ where $\|\boldsymbol{\eta}\|_2 \leq \varepsilon$. Then, we have the following error bound: $\|\boldsymbol{\theta} \boldsymbol{\theta}^{\star}\|_2 \leq \frac{C_1}{\sqrt{s}} \|\boldsymbol{\theta} \boldsymbol{\theta}_s\|_1 + C_2\varepsilon$ where C_1, C_2 are monotonically increasing functions of δ_{2s} (in the range [0,1]). Also the vector $\boldsymbol{\theta}_s$ is defined such that $\forall i \in \mathcal{S}, \theta_s(i) = \theta_i, \forall i \notin \mathcal{S}, \theta_s(i) = 0$ where the set \mathcal{S} consists of indices of the s largest absolute-value elements of $\boldsymbol{\theta}$.
 - Now consider that I gave you another theorem (called Theorem 3A), which is the same as Theorem 3 except that it requires that $\delta_{2s} < 0.6246$. Out of Theorem 3 and Theorem 3A, which is the more powerful theorem? Why?
- 4. Given Q noiseless tomographic projections of a 2D image f, each in a different angle, explain how you can determine the zero-th and first order moments of the image directly without reconstruction. Recall that the moment of image f of order (a,b) is given by $M_{ab} = \int \int f(x,y)x^ay^bdxdy$, and the r-order moment of the tomographic projection $R_{\theta}f(\rho) = \int \int f(x,y)\delta(x\cos\theta + y\sin\theta \rho)dxdy$ is given by $m_r^{(\theta)} = \int R_{\theta}f(\rho)\rho^rd\rho = \int \int f(x,y)\delta(x\cos\theta + y\sin\theta \rho)\rho^rdxdyd\rho$. Here $\delta(.)$ denotes the Dirac delta function.
- 5. State the Fourier slice theorem for a 3D image f(x, y, z). In the tomography under unknown angles problem, what is the additional source of information available if the underlying image is a 3D image instead of a 2D image?
- 6. State whether true or false and justify: In orthogonal matching pursuit for estimating sparse $\theta \in \mathbb{R}^n$ from measurements of the form $y = A\theta$ where $y \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$, the same column of the matrix A never gets selected in more than one iteration.
- 7. The Hitomi video compressive camera acquires a coded snapshot image of the form $Y = \sum_{t=1}^{T} X_t \cdot \Phi_t$ where $Y \in \mathbb{R}^{n_1 \times n_2}$; $\{X_t\}_{t=1}^{T}$ are the T consecutive frames of the underlying unknown video and $\forall t, X_t \in \mathbb{R}^{n_1 \times n_2}$; and $\{\Phi_t\}_{t=1}^{T}$ are the corresponding modulation functions and $\forall t, \Phi_t \in \{0, 1\}^{n_1 \times n_2}$. The operation " \cdot " denotes an entry-wise multiplication. To recover $\{X_t\}_{t=1}^{T}$ from Y and $\{\Phi_t\}_{t=1}^{T}$, we need to solve problem (P1) as defined in Q3 of this paper. Clearly state the relationship between y, A, θ on one hand as defined in (P1), with the quantities $Y, \{X_t\}_{t=1}^{T}, \{\Phi_t\}_{t=1}^{T}$.