

Multivariate Normal Maximum Likelihood

1 Why

What of the generalization to a multivariate normal.

2 Result

Proposition 1. Let $(x^1, ..., x^n)$ be a dataset in \mathbb{R}^d . Let f be a multivariate normal density with mean

$$\frac{1}{n} \sum_{k=1}^{d} x^k$$

and covariance

$$\frac{1}{n} \sum_{k=1}^{n} \left(x^k - \frac{1}{n} \sum_{k=1}^{n} x^k \right) \left(x^k - \frac{1}{n} \sum_{k=1}^{n} x^k \right)^{\top}.$$

Then f is a maximum likelihood multivariate normal density.

Proof. We express the log likelihood

$$\sum_{k=1}^{n} -\frac{1}{2} (x - \mu)^{\top} \Sigma^{-1} (x - \mu) - \frac{1}{2} \log(2\pi)^{d} - \frac{1}{2} \log \det \Sigma$$

Let $P = \Sigma^{-1}$. The $\log \det \Sigma$ is $\log \det P^{-1}$ is $\log (\det P)^{-1}$ is $-\log \det P$. Use matrix calculus to get

$$\frac{\partial \ell}{\partial P} = \sum_{k=1}^{n} (x^k - \mu)(x^k - \mu)^{\top} - P^{-1}.$$

We call these two objects the maximum likelihood mean and maximum likelihood covariance of the dataset.