Multiplication

$$2^n \cdot 2^m = 2^{n+m}$$
 e.g. $2^{12} \cdot 2^{20} = 2^{12+20} = 2^{32} = 4G$

Division

$$\frac{2^n}{2^m} = 2^{n-m}$$
 e.g.
$$\frac{2^{32}}{2^{12}} = 2^{32-12} = 2^{20} = 1M$$

Useful Tables

$$2^{0} = 1$$
 $2^{1} = 2$
 $2^{2} = 4$
 $2^{3} = 8$
 $2^{4} = 16$
 $2^{5} = 32$
 $2^{6} = 64$
 $2^{7} = 128$
 $2^{8} = 256$
 $2^{9} = 512$
 $2^{10} = 1024$

$$2^{20} = 1M$$
 (Mega)
 $2^{30} = 1G$ (Giga)
 $2^{40} = 1T$ (Tera)
 $2^{50} = 1P$ (Peta)
 $2^{60} = 1E$ (Exa)
 $(2^{70} = 1Z$ (Zetta))
 $(2^{80} = 1Y$ (Yotta))

 $2^{10} = 1K$ (Kilo)

Binary	Hex	Decimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	Α	10
1011	В	11
1100	C	12
1101	D	13
1110	E	14
1111	F	15

Hex is sometimes prefixed 0x and binary is sometimes prefixed 0b, try to google 0xB5 in decimal

or

Ob10110101 in decimal

We use b for bit and B for byte (a byte is eight bits). Each address into memory goes to a byte, NOT a bit. A byte is the smallest unit we can reference/address in memory.

ErikH, November 11, 2022