

Data Visualisation CSE613

Introduction to Voronoi Partitic

- It is an another approach to assign the available data points to clusters and partitioning the whole input space.
- Voronoi diagram: It is induced by a set of points (called sites): Subdivision of the plane where the faces correspond to the regions where one site is closest

Given ambulance posts in a country, in case of an emergency somewhere, where should the ambulance come from?

Suppose we measured the lead concentration at a number of sample points

o For Visualization, 2-D slice through space.

VORONOI PARTITIONING CLUSTER

Neighborhood Graphs:

- Algorithm developed by Leisch (2006)
- Assumption, each centroid forms a node
- two nodes are connected by an edge if there is atleast one data point for which those two are the closest and second-closest nodes.
- The formula for second-closest node is $A_{ij} = \left\{ \mathbf{x}_n \middle| c(\mathbf{x}_n) = \mathbf{c}_i, \tilde{c}(\mathbf{x}_n) = \mathbf{c}_j \right\}$
- A_{i,j} is a set of all points where c_i is the closest centroid and c_j is the second-closest centroid.
- The shadow value is $s(x) = \frac{2d(x, c(x))}{d(x, c(x)) + d(x, \tilde{c}(x))}$
- if s_{i,j} ¿ 0 then at least one data point in segment i has c_j as its second-closest centroid, and segments i and j have common border.