Exploring complex systemsFrom RoboCup to computational neuroscience

Emanuele Crosato

Centre for Complex Systems, Faculty of Engineering and IT

Oliver M Cliff

Australian Centre for Field Robotics, Faculty of Engineering and IT

Dr. Joseph T Lizier

Centre for Complex Systems, Faculty of Engineering and IT

Prof. Mikhail Prokopenko

Director, Centre for Complex Systems, Faculty of Engineering and IT

Complex systems

Introduction to Complex Systems: Patterns in Nature. YouTube, 2013.

Definition

Systems of many interacting components from which non-trivially global behaviour may emerge

Characteristics

Emergence, Self-organisation, Autonomy, Adaptability, Robustness, Scalability, Unpredictability...

Does Nature compute?

3. Brains process information

But in a very different way:

- Computations are distributed over many "agents"
- Processing self-organised
- Use of coherent information structures

- 1. Bruno de Giusti; CC BY SA 2.5 IT license
- 2. kodomut @ flickr; CC BY 2.0 license
- 3. aboutmodafinil.com @ flickr; CC BY 2.0 license

Our research

- 1. Uses information theory
- 2. To provide "information sunglasses"
- 3. That reveal information flows in complex systems
- 4. Which we use to design self-organisation

1st example: fish schooling

Schools of Fish. YouTube, 2015.

- When moving in groups, animals collectively process information to coordinate their moves
- Our study quantifies dynamic information flows across a school of fish during collective turns
- We provide the first quantification of information dynamics in a biological swarm
 - We show that directional changes are related to specific signatures of information-processing

1st example: fish schooling

- Hemigrammus rhodostomus placed in a ring-shaped tank
- To move freely for 10 hours, with 455 observed **U-turns**

Trajectories recorded with HD cameras

1st example: fish schooling

2nd example: simulated swarms

Reveal emergent information cascades

Nearest neighbour interactions

X.R. Wang, J.M. Miller, J.T. Lizier, M. Prokopenko and L.F. Rossi. Quantifying and Tracing Information Cascades in Swarms. PLoS ONE, vol. 7, no. 7, e40084, 2012.

Coherent information waves

3rd example: brain regions

Infer hidden directed relationships

fMRI recordings during visual tracking task

J.T. Lizier, J. Heinzle, A. Horstmann, J.-D. Haynes, M. Prokopenko. *Multivariate information-theoretic measures* reveal directed information structure and task relevant changes in fMRI connectivity. Journal of Computational Neuroscience (in Special issue on "Methods of Information Theory in Neuroscience Research"), vol. 30, pp. 85-107, 2011.

4th example: brain stimuli

Identify spatiotemporal fluctuations in information flow

Recording visual cortex under stimuli of dots moving in different directions

Identifies stimulus change \uparrow and different directions of movement \downarrow

M. Wibral, J.T. Lizier, S. Voegler, V. Priesemann and R. Galuske. Local active information storage as a tool to understand neural information processing. Frontiers in Neuroinformatics, vol. 8, no. 1, 2014;

5th example: Autism Spectrum Disorder

Contrast information flow under different conditions

C. Gomez, J.T. Lizier, M. Schaum, P. Wollstadt, C. Gruetzner, P. Uhlhaas, C. Freitag, S. Schlitt, S. Boelte, R. Hornero and M. Wibral. *Reduce Predictable Information in Brain Signals in Autism Spectrum Disorder*. Frontiers in Neuroinformatics, vol. 8, no. 9, 2014.

6th example: multi-agent dynamics

Sink Diagrams via Information Theory

We build a network of interactions by determining which player is most

responsive to which other player

O.M. Cliff, J.T. Lizier, X.R. Wang, P. Wang, O. Obst and M. Prokopenko. Quantifying long-range interactions and coherent structure in multi-agent dynamics. Forthcoming in Artificial Life 23:1.

6th example: multi-agent dynamics

Base Diagrams via Information Theory

We build a network of interactions by determining which player each player

drives the most

O.M. Cliff, J.T. Lizier, X.R. Wang, P. Wang, O. Obst and M. Prokopenko. Quantifying long-range interactions and coherent structure in multi-agent dynamics. Forthcoming in Artificial Life 23:1.

Thank you

