

General information

Designation

Acer saccharum (L)

Typical uses

Lumber; veneer; sleepers; pulpwood; flooring; furniture; boxes; pallets & crates; shoe lasts; handles; woodenware; novelties; spools & bobbins.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O			
Material family	Natural		
Base material	Wood (hardwoo	d)	
Renewable content	100	%	
Composition detail (polymers and natural materials	s)		
Wood	100	%	

Price				
Price	* 1.34	-	2.01	USD/kg
Price per unit volume	* 858	-	1.57e3	USD/m^3

Physical properties

Density	640	- 780	kg/m^3	

Mechanical properties

and a state of the state of				
Young's modulus	* 12.5	-	15.3	GPa
Yield strength (elastic limit)	* 50	-	61.1	MPa
Tensile strength	* 91.2	-	111	MPa
Elongation	* 1.97	-	2.4	% strain
Compressive strength	48.6	-	59.4	MPa
Flexural modulus	11.4	-	13.9	GPa
Flexural strength (modulus of rupture)	98	-	120	MPa
Shear modulus	* 0.93	-	1.13	GPa
Shear strength	14.5	-	17.7	MPa
Bulk modulus	* 1.08	-	1.2	GPa
Poisson's ratio	* 0.35	-	0.4	
Shape factor	5.2			
Hardness - Vickers	* 6.78	-	8.28	HV
Hardness - Brinell	* 52.6	-	64.3	НВ
Hardness - Janka	* 6.78	-	8.28	kN

BEDUPILK	
Fatigue strength at 10^7 cycles	* 29.4 - 35.9 MPa
Mechanical loss coefficient (tan delta)	* 0.0067 - 0.0082
Differential shrinkage (radial)	0.17 - 0.23 %
Differential shrinkage (tangential)	0.25 - 0.32 %
Radial shrinkage (green to oven-dry)	4.3 - 5.3 %
Tangential shrinkage (green to oven-dry)	8.9 - 10.9 %
Volumetric shrinkage (green to oven-dry)	13.2 - 16.2 %
Work to maximum strength	102 - 125 kJ/m^3
Impact & fracture properties	
Fracture toughness	* 5.8 - 7.1 MPa.m^0.5
Thermal properties	
Glass temperature	77 - 102 ℃
Maximum service temperature	120 - 140 ℃
Minimum service temperature	* -7323 °C
Thermal conductivity	* 0.31 - 0.37 W/m.°C
Specific heat capacity	1.66e3 - 1.71e3 J/kg.℃
Thermal expansion coefficient	* 2 - 11 µstrain/℃
Electrical properties	0.4.44
Electrical resistivity	3.1e14 - 3.79e14 µohm.cm
Dielectric constant (relative permittivity)	* 6.95 - 8.5
Dissipation factor (dielectric loss tangent)	* 0.082 - 0.1
Dielectric strength (dielectric breakdown)	* 0.4 - 0.6 MV/m
Magnetic properties	
Magnetic type	Non-magnetic
Optical properties	
Transparency	Opaque
Critical materials risk	
Contains >5wt% critical elements?	No
Durability	
Water (fresh)	Limited use
Water (salt)	Limited use
Weak acids	Limited use
Strong acids	Unacceptable
Weak alkalis	Acceptable
Strong alkalis	Unacceptable
-	

Maple (acer saccharum) (I)

Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	11.6	- 12.8	MJ/kg	
-------------------------------------	------	--------	-------	--

Sources

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	kg/kg	
-----------------------------------	-------	---	-------	-------	--

Sources

0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe, 2010)

Water usage	* 665 -	735	l/kg
-------------	---------	-----	------

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 1.2	-	1.32	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.0898	-	0.0993	kg/kg
Fine machining energy (per unit wt removed)	* 7.7	-	8.51	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.577	-	0.638	kg/kg
Grinding energy (per unit wt removed)	* 14.9	-	16.5	MJ/kg
Grinding CO2 (per unit wt removed)	* 1.12	-	1.24	kg/kg

Recycling and end of life

Recycle	×
Recycle fraction in current supply	8.55 - 9.45 %
Downcycle	✓
Combust for energy recovery	✓
Heat of combustion (net)	* 19.8 - 21.3 MJ/kg
Combustion CO2	* 1.69 - 1.78 kg/kg
Landfill	✓
Biodegrade	✓

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

ProcessUniverse	
Reference	
Shape	

