Case Study: Nanowire Biosensing

Ben Yang & Kamila Kunes

Analyte Transport to Sensor Surface: Model System

Solution with target concentration c_0 flows with velocity U and volumetric flow rate $Q \sim HW_cU$ through a channel of height H and width W_c over a sensor of length L and width W_s that is functionalized with b_m receptors per unit area. The kinetic rate constants for the binding reaction are k_{op} and k_{off} , and the diffusivity of the target molecules is D.

Field Effect Transistors

3 Channel Device:

- 1. Apply constant V_{SD}
- 2. Apply V_G (field)
- 3. Yellow region's conductance changed
- 4. Current between source & drain changes

Think of gate & ground as a capacitor

Nanowire FET

Replace doped channels & gates w/ nanowires & receptors, dielectric layer stays

Why Nanowires – A new realm of biomarker diagnostics

Amplifies Signal & Robust

→ Sensitivity much higher

high dynamic range

- → Easily integrated
- → Robust

real time monitoring

Operating Principle

IV Curves at different concentrations

Operating Principle

Nanowire Type	∆ Charge (Q _i - Q _f)	
	Positive	Negative
N type (- dominant)	Attracts e-, σ up, R down → current <u>UP</u>	e- away, σ down, R up → current <u>DOWN</u>
P type (+ dominant)	How does current change?	

Fabrication → 2 approaches

Bottom Up

Top Down

Bottom Up

- 1. Grow Si nanowires w/ CVD
- 2. Suspension \rightarrow deposit on Si
- 2.5 Photoresist spin coating
- 3. Metal electrodes patterned w/ lift-off
 - a. stay or not stay
- 4. Passivation & surface modification

High quality BUT

Random nanowire orientation so

Low Yield

Top Down

- Dope low density boron/phosphorus on insulator layer (SOI)
- 2. Heavy doping for source & drain
- 3. Reactive Ion Etching $\rightarrow \mu m$ bar
- Electron beam lithography for Si nanowires
- 5. Thermal Evaporation for metal contact leads
- 6. Passivation & surface modification

Compatible w/ CMOS techniques BUT

Larger nanowires than bottom up

Challenges & Problems

Analyte Problem

Debye Problem

Aptamers and potential solution...

Aptamers and potential solution...

In-Vivo Potential

Injectable Electronics

SOURCES

- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771379/
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591029/
- https://www.science.org/doi/10.1126/science.aao6750
- https://www.science.org/doi/10.1126/sciadv.abk0967