Projekt

Sterowniki robotów

Założenia projektowe

Wykrywacz kradzieży WK

Skład grupy: Sylwester Kozieja, 235798 Paula Langkafel, 235373

Termin: środa TN 13

 $\begin{array}{c} Prowadzący:\\ \text{mgr inż. Wojciech Domski} \end{array}$

Spis treści

1 O _I	ois projektu					
2 Założenia projektowe						
3 На	rmonogram pracy					
3.1	Zakres prac					
	Kamienie milowe					
3.3	Diagram Gantta					
3.4	Podział pracy					

1 Opis projektu

Celem projektu jest stworzenie urządzenia, które poprzez komunikację z akcelerometrem wykrywa niepożądany ruch. Użytkownik będzie miał możliwość wybrania sposobu otrzymywania komunikatów. Jednym z założeń projektu jest wybór opcjonalnego interfejsu audio. Urządzenia ma zawierać menu dające możliwość podstawowej konfiguracji, takiej jak załączenie alarmu i wybór sposobu komunikowania się oraz ustawianie poziomu załączania alarmu. Dodatkową opcją jest wizualizowanie poziomu rejestrowanych przyspieszeń.

Na zakres prac składa się oprogramowanie zewnętrznej pamięci Flash , skonfigurowanie akcelerometru, a także realizacja komunikacji z interfejsami.

2 Założenia projektowe

- 1. Projekt będzie wykonywany w oparciu o płytkę STM32L476 Discovery wypożyczoną od prowadzącego kurs
- 2. Pomiar przyspieszenia będzie odbywał się przez wbudowany moduł z akcelerometrem
- 3. W przypadku wykrycia alarmu urządzenie podejmie określone kroki.
- 4. Menu sterowane z joystick'iem zapewni możliwość wybór ustawień sygnalizacji alarmu(dioda oraz głośnik).
- 5. Zbieranie danych o alarmach i przechowywanie w pamięci Flash.
- 6. Wykorzystanie zegara RTC do umiejscowienia zdarzenia alarmu w jego lokalnym czasie.
- 7. Badania dotyczące wykrywania progu alarmu i sprawdzenie funkcjonalności zaprojektowanego urządzenia.

3 Harmonogram pracy

3.1 Zakres prac

Zapoznanie się z mikrokontrolerem, konfiguracja peryferiów. Implementacja obsługi zarówno pamięci Flash, jak i akcelerometru. Skonfigurowanie zegara RTC w celu późniejszej implementacji przekazywania godziny nieplanowanego ruchu. Zapoznanie z literaturą i poruszanym problemem. Przeprowadzenie badań na temat progów i optymalizacji działania urządzenia.

3.2 Kamienie milowe

- 1. Oddanie I etapu projektu. Projekt powinien zawierać założenia oraz plan co będzie podstawą do rozpoczęcia prac.
- 2. Oddanie II etapu projektu. Konfiguracja peryferiów powinna być już sfinalizowana, a przynajmniej na etapie pozwalającym rozpoczęcie kolejnego etapu związanego z badaniem przyspieszeń które powinny aktywować alarm.
- 3. Oddanie III etapu gdzie projekt powinien być już kompletny. Wg planu projekt powinien zakończyć się tydzień przed ostatecznym terminem złożenia pracy u prowadzącego.

3.3 Diagram Gantta

Rysunek 1: Diagram Gantta

3.4 Podział pracy

Oboje uczestnicy projektu zajmą się wstępną konfiguracją peryferiów odbywającą się za pomocą programu CubeMx. Zostanie zaimplementowana obsługa pamięci Flash, a także akcelerometru. W tym czasie opracowany zostanie również sposób przechowywania danych na zewnętrznej pamięci Flash. Projekt menu ma zakładać możliwość wyboru sygnału uruchamiającego alarm.

Sylwester Kozieja	%	Paula Langkafel	%
Wstępna konfiguracja peryferiów w		Wstępna konfiguracja peryferiów w	
programie CubeMx		programie CubeMx	
Implementacja obsługi pamięci Flash		Implementacja obsługi akcelerometru	
Opracowanie sposobu przechowywania		Wstępny projekt menu	
danych na zewnętrznej pamięci FLASH		wstępny projekt menu	
Sygnalizacja audiowizualna za pomocą Audio		Konfiguracja zegara RTC	
DAC oraz diody LED		Romiguracja zegara 1010	

Tabela 1: Podział pracy – Etap II

Sylwester Kozieja	%	Paula Langkafel	%
Oprogramowanie zewnętrznej pamięci Flash		Opracowanie kryteriów wykrywania alarmu	
Implementacja opracowanych rozwiązań wykrywania alarmu		Wykonanie testów urządzenia	

Tabela 2: Podział pracy – Etap III

Literatura

- [1] User manual Getting started with STM32L476G discovery kit software development tools, Sierpień 2015
- [2] UM1928 User manual Getting started with STM32L476G discovery kit software development tools, Wrzesień 2018.
- [3] W. Domski. Sterowniki robotów, Laboratorium Wprowadzenie, Wykorzystanie narzędzi STM32CubeMX oraz SW4STM32 do budowy programu mrugającej diody z obsługą przycisku. Marzec 2017.
- [4] Marius Bazu, Lucian Galateanu, Virgil Emil Ilian, Jerome Loicq, Serge Habraken, Jean-Paul Collette. Quantitative accelerated life testing of mems accelerometers. *Sensors*, Listopad 2007.
- [5] J. L. Suryadiputra Liawatimena. Vehicle Tracker wih a GPS and Accelerometer Sensor System in Jakarta. *Internetworking Indonesia Journal*, Styczeń 2017.