APA 格式 M11323002 陳杰龍 10/11

碩士論文:優化採樣技術以挑選關鍵特徵與提升模型預測能力 作者:蕭伊伶

	Origin	APA
1.	在大數據時代, (Chamlal et al., 2021) 指 出,	在大數據時代, Chamlal et al. (2021) 指出,
2.	SMOTE 是由 (Chawla et al., 2002) 提出的一種用於解決機器學習中類別不平衡問題的過採樣方法。	SMOTE 是由 Chawla et al. (2002) 提出的一種用於解決機器學習中類別不平衡問題的過採樣方法。
3.	Borderline-SMOTE 是 SMOTE 的改進版本,由 (Han et al., 2005) 提出,它專注於使用位於邊界的少數類樣本合成新樣本,以改善類分佈。	Borderline-SMOTE 是 SMOTE 的改進版本,由 Han et al. (2005) 提出,它專注於使用位於邊界的少數類樣本合成新樣本,以改善類分佈。
4.	ADASYN 方法是由 (He et al., 2008) 提出的,	ADASYN 方法是由 He et al. (2008) 提出的。
5.	由 (Batista et al., 2003) 提出的 SMOTETomek 方法結合了兩種技術:	由 Batista et al. (2003) 提出的 SMOTETomek 方法結合了兩種技術:
6.	由 (Batista et al., 2004) 提出的 SMOTEENN 方法結合了兩種技術: SMOTE 和 Edited Nearest Neighbors (ENN)。	由 Batista et al. (2004) 提出的 SMOTEENN 方法結合了兩種技術: SMOTE 和 Edited Nearest Neighbors (ENN)。
7.	参考 (Belaid et al., 2022) 的研究和分析 結果,該研究使用了多維度的評估標準來 衡量不同的解釋性人工智慧 (XAI) 方法。	參考 Belaid et al. (2022) 的研究和分析結果,該研究使用了多維度的評估標準來衡量不同的解釋性人工智慧 (XAI) 方法。
8.	圖 1 Borderline-SMOTE 的分類方法示意 圖	圖 1 Borderline-SMOTE 的分類方法示意圖
9.	圖 2 ADASYN 的計算方法	圖 2 ADASYN 的計算方法
10.	圖 3 Tomek Link 方法示意圖	圖 3 Tomek Link 方法示意圖
11.	■ 4 ENN 欠採樣方法示意圖	圖 4 ENN 欠採樣方法示意圖
12.	圖 5 沙普計算公式	圖 5 沙普計算公式
13.	圖 6 排列重要性計算公式	圖 6 排列重要性計算公式

1.4	157 15 or who has 144 v.h. ora	
14.	圖 7 研究架構流程	
		研究架構流程
15.	圖 8 資料集切割流程圖	圖 8
		資料集切割流程圖
16.	圖 9 Borderline-SMOTEENN 演算法	圖 9
		Borderline-SMOTEENN 演算法
17.	圖 10 特徵屬性選擇方法流程和示意圖	圖 10
		特徵屬性選擇方法流程和示意圖
18.	圖 11 特徵屬性選擇演算法	圖 11
		特徵屬性選擇演算法
19.	圖 12 優化歷史圖	圖 12
		優化歷史圖
20.	圖 13 超參數重要性圖	圖 13
		超參數重要性圖
21.	圖 14 超參數組合和目標值關係的平行座	圖 14
	標圖	超參數組合和目標值關係的平行座標圖
22.	圖 15 消融實驗方法流程示意圖	圖 15
		消融實驗方法流程示意圖
23.	圖 16 Statlog 資料集的挑選最佳特徵組合	圖 16
	過程	Statlog 資料集的挑選最佳特徵組合過程
24.	■ 17 Pima 資料集的挑選最佳特徵組合過	圖 17
	程	Pima 資料集的挑選最佳特徵組合過程
25.	■ 18 CDC-DHI 資料集的挑選最佳特徵組	圖 18
	合過程	CDC-DHI 資料集的挑選最佳特徵組合過
		程
26.	圖 19 Adult 資料集的挑選最佳特徵組合過	圖 19
	程	Adult 資料集的挑選最佳特徵組合過程
27.	■ 20 OSPI 資料集的挑選最佳特徵組合過	圖 20
2,.	程	OSPI 資料集的挑選最佳特徵組合過程
28.	■ 21 BM 資料集的挑選最佳特徵組合過	B 21
20.	程	BM 資料集的挑選最佳特徵組合過程
29.	■ 22 BCW 資料集的挑選最佳特徵組合過	B 22
2).	程	BCW 資料集的挑選最佳特徵組合過程
30.	■ 23 Statlog 資料集挑選最佳特徵組合前	B 23
50.		回 23 Statlog 資料集挑選最佳特徵組合前後的資
	後的資料筆數	料筆數
31.	图 24 Dima 咨判作业职具化社侧加入六位	
31.	圖 24 Pima 資料集挑選最佳特徵組合前後	圖 24 Dima 咨别作业器具体特徵和人前级的咨
	的資料筆數	Pima 資料集挑選最佳特徵組合前後的資

		料筆數
32.	圖 25 CDC-DHI 資料集挑選最佳特徵組合	圖 25
	前後的資料筆數	CDC-DHI 資料集挑選最佳特徵組合前後
		的資料筆數
33.	圖 26 Adult 資料集挑選最佳特徵組合前後	圖 26
	的資料筆數	Adult 資料集挑選最佳特徵組合前後的資
		料筆數
34.	■ 27 OSPI 資料集挑選最佳特徵組合前後	圖 27
	的資料筆數	OSPI 資料集挑選最佳特徵組合前後的資
		料筆數
35.	■ 28 BM 資料集挑選最佳特徵組合前後	圖 28
	的資料筆數	BM 資料集挑選最佳特徵組合前後的資料
		筆數
36.	圖 29 BCW 資料集挑選最佳特徵組合前後	圖 29
	的資料筆數	BCW 資料集挑選最佳特徵組合前後的資
		料筆數
37.	圖 30 資料集 Statlog 探索模型最佳超參數	圖 30
	100 回合過程	資料集 Statlog 探索模型最佳超參數 100
		回合過程
38.	圖 31 資料集 Pima 探索模型最佳超參數	圖 31
	100 回合過程	資料集 Pima 探索模型最佳超參數 100 回
		合過程
39.	圖 32 資料集 CDC-DHI 探索模型最佳超	圖 32
	參數 100 回合過程	資料集 CDC-DHI 探索模型最佳超參數
		100 回合過程
40.	圖 33 資料集 Adult 探索模型最佳超參數	圖 33
	100 回合過程	資料集 Adult 探索模型最佳超多數 100 回
4.1		合過程
41.	圖 34 資料集 OSPI 探索模型最佳超參數	圖 34 次则 # OCDI 加去时则图从加杂地 100 一
	100 回合過程	資料集 OSPI 探索模型最佳超多數 100 回
42	回 25 次则住 DN 6 远去此 111 日 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	合過程 図 25
42.	圖 35 資料集 BM 探索模型最佳超參數	圖 35 ※糾集 DM
	100 回合過程	資料集 BM 探索模型最佳超多數 100 回
43.	■ 36 資料集 BCW 探索模型最佳超參數	合過程 圖 36
43.	回 30 貝科集 BCW 抹紧模型取住超多数 100 回合過程	回 30 資料集 BCW 探索模型最佳超參數 100 回
	100 日日型性	自州采 DCW 休息供坐取住起参数 100 凹 合過程
44.	圖 37 消融實驗中實驗 2 的資料集 Statlog	高 37
77.	■ J//AM环具·MX T 具·MX Z 时 具 竹 示 Statiog	

	四七世期目从如众山 100 一人四个	沙口 隐虫人上 隐虫人 为 1/2 地山 经 (1/1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	探索模型最佳超參數 100 回合過程	消融實驗中實驗 2 的資料集 Statlog 探索 模型最佳超參數 100 回合過程
45.	圖 38 消融實驗中實驗 2 的資料集 Pima	圖 38
	探索模型最佳超參數 100 回合過程	消融實驗中實驗 2 的資料集 Pima 探索模
		型最佳超參數 100 回合過程
46.	圖 39 消融實驗中實驗 2 的資料集 CDC-	圖 39
	DHI 探索模型最佳超參數 100 回合過程	消融實驗中實驗 2 的資料集 CDC-DHI 探
		索模型最佳超參數 100 回合過程
47.	圖 40 消融實驗中實驗 2 的資料集 Adult	圖 40
	探索模型最佳超參數 100 回合過程	消融實驗中實驗 2 的資料集 Adult 探索模
		型最佳超多數 100 回合過程
48.	圖 41 消融實驗中實驗 2 的資料集 BM 探	圖 41
	索模型最佳超參數 100 回合過程	消融實驗中實驗 2 的資料集 BM 探索模
		型最佳超參數 100 回合過程
49.	圖 42 消融實驗中實驗 2 的資料集 BCW	圖 42
	探索模型最佳超參數 100 回合過程	消融實驗中實驗 2 的資料集 BCW 探索模
		型最佳超多數 100 回合過程
50.	圖 43 消融實驗中實驗 3 的 Statlog 資料	圖 43
	集的挑選最佳特徵組合過程	消融實驗中實驗 3 的 Statlog 資料集的挑
		選最佳特徵組合過程
51.	圖 44 消融實驗中實驗 3 的 Pima 資料集	圖 44
	的挑選最佳特徵組合過程	消融實驗中實驗 3 的 Pima 資料集的挑選
		最佳特徵組合過程
52.	圖 45 消融實驗中實驗 3 的 CDC-DHI 資	圖 45
	料集的挑選最佳特徵組合過程	消融實驗中實驗 3 的 CDC-DHI 資料集的
52		挑選最佳特徵組合過程
53.	圖 46 消融實驗中實驗 3 的 Adult 資料集	圖 46
	的挑選最佳特徵組合過程	消融實驗中實驗 3 的 Adult 資料集的挑選
E 1	同 47 业司虚成五虚成 2 儿 OODI 空间 #	最佳特徵組合過程
54.	圖 47 消融實驗中實驗 3 的 OSPI 資料集	圖 47
	的挑選最佳特徵組合過程	消融實驗中實驗 3 的 OSPI 資料集的挑選
55	■ 40 冰品每版 中岛版 7 14 DM 次则年儿	最佳特徵組合過程 图 40
55.	圖 48 消融實驗中實驗 3 的 BM 資料集的	圖 48 冰引擎脸力敏眨 2 44 DM 姿料佳好地震
	挑選最佳特徵組合過程	消融實驗中實驗 3 的 BM 資料集的挑選
56	图 40 冰引导版中导版 2 14 DOW 次州 4	最佳特徵組合過程 图 40
56.	圖 49 消融實驗中實驗 3 的 BCW 資料集	圖 49 冰岛安阪山安阪 3 44 DCW 咨判住从地源
	的挑選最佳特徵組合過程	消融實驗中實驗 3 的 BCW 資料集的挑選
		最佳特徵組合過程

57.	圖 50 消融實驗中實驗 3 的資料集 Statlog	圖 50
	探索模型最佳超參數 100 回合過程	消融實驗中實驗 3 的資料集 Statlog 探索
		模型最佳超參數 100 回合過程
58.	圖 51 消融實驗中實驗 3 的資料集 Pima	圖 51
	探索模型最佳超參數 100 回合過程	消融實驗中實驗 3 的資料集 Pima 探索模
		型最佳超參數 100 回合過程
59.	圖 52 消融實驗中實驗 3 的資料集 CDC-	圖 52
	DHI 探索模型最佳超參數 100 回合過程	消融實驗中實驗 3 的資料集 CDC-DHI 探
		索模型最佳超多數 100 回合過程
60.	圖 53 消融實驗中實驗 3 的資料集 Adult	圖 53
	探索模型最佳超參數 100 回合過程	消融實驗中實驗 3 的資料集 Adult 探索模
		型最佳超參數 100 回合過程
61.	圖 54 消融實驗中實驗 3 的資料集 OSPI	圖 54
	探索模型最佳超參數 100 回合過程	消融實驗中實驗 3 的資料集 OSPI 探索模
		型最佳超參數 100 回合過程
62.	圖 55 消融實驗中實驗 3 的資料集 BM 探	圖 55
	索模型最佳超參數 100 回合過程	消融實驗中實驗 3 的資料集 BM 探索模
		型最佳超參數 100 回合過程
63.	圖 56 消融實驗中實驗 3 的資料集 BCW	圖 56
	探索模型最佳超參數 100 回合過程	消融實驗中實驗 3 的資料集 BCW 探索模
		型最佳超參數 100 回合過程
64.	圖 57 消融實驗中實驗 4 的資料集 Statlog	圖 57
	探索模型最佳超參數 100 回合過程	消融實驗中實驗 4 的資料集 Statlog 探索
		模型最佳超參數 100 回合過程
65.	■ 58 消融實驗中實驗 4 的資料集 Pima	圖 58
	探索模型最佳超參數 100 回合過程	消融實驗中實驗 4 的資料集 Pima 探索模
		型最佳超參數 100 回合過程
66.	圖 59 消融實驗中實驗 4 的資料集 CDC-	圖 59
	DHI 探索模型最佳超參數 100 回合過程	消融實驗中實驗 4 的資料集 CDC-DHI 探
		索模型最佳超參數 100 回合過程
67.	■ 60 消融實驗中實驗 4 的資料集 Adult	圖 60
	探索模型最佳超參數 100 回合過程	消融實驗中實驗 4 的資料集 Adult 探索模
		型最佳超參數 100 回合過程
68.	■ 61 消融實驗中實驗 4 的資料集 OSPI	圖 61
	探索模型最佳超參數 100 回合過程	消融實驗中實驗 4 的資料集 OSPI 探索模
		型最佳超參數 100 回合過程
69.	■ 62 消融實驗中實驗 4 的資料集 BM 探	圖 62
57.	索模型最佳超參數 100 回合過程	消融實驗中實驗 4 的資料集 BM 探索模
	小万土私工个多数100 日日也住	内mp只见 I 只见 I HI 只们不 DIII 外示例

		型最佳超參數 100 回合過程
70.	圖 63 消融實驗中實驗 4 的資料集 BCW	圖 63
	探索模型最佳超參數 100 回合過程	消融實驗中實驗 4 的資料集 BCW 探索模型最佳超參數 100 回合過程
71.	Aizul Faiz Iswafaza and Siti Rochimah, "Software Defect Prediction Using a Combination of Oversampling and Undersampling Methods," Dec. 2022, doi: https://doi.org/10.1109/icitisee57756.2022.10 057798.	Iswafaza, A. F., & Rochimah, S. (2022, December). Software Defect Prediction Using a Combination of Oversampling and Undersampling Methods. In 2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE) (pp. 127-132). IEEE.
72.	A. X. Wang, S. S. Chukova, and B. P. Nguyen, "Synthetic minority oversampling using edited displacement-based k-nearest neighbors," Applied Soft Computing, vol. 148, p. 110895, Nov. 2023, doi: https://doi.org/10.1016/j.asoc.2023.110895.	Wang, A. X., Chukova, S. S., & Nguyen, B. P. (2023). Synthetic minority oversampling using edited displacement-based k-nearest neighbors. Applied Soft Computing, 148, 110895.
73.	C. Chen, W. Shen, C. Yang, W. Fan, X. Liu, and Y. Li, "A New Safe-Level Enabled Borderline-SMOTE for Condition Recognition of Imbalanced Dataset," IEEE transactions on instrumentation and measurement, vol. 72, pp. 1–10, Jan. 2023, doi: https://doi.org/10.1109/tim.2023.3289545.	Chen, C., Shen, W., Yang, C., Fan, W., Liu, X., & Li, Y. (2023). A New Safe-Level Enabled Borderline-SMOTE for Condition Recognition of Imbalanced Dataset. IEEE Transactions on Instrumentation and Measurement, 72, 1-10.
74.	D. L. Wilson, "Asymptotic Properties of Nearest Neighbor Rules Using Edited Data," IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-2, no. 3, pp. 408–421, Jul. 1972, doi: https://doi.org/10.1109/tsmc.1972.4309137.	Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics, (3), 408-421.
75.	D. Patel, Amit Kumar Saxena, S. Laha, and Gulame Mustafa Ansari, "A Novel Scheme For Feature Selection Using Filter Approach," Nov. 2022, doi: https://doi.org/10.1109/icccs55188.2022.1007	Patel, D., Saxena, A. K., Laha, S., & Ansari, G. M. (2022, November). A novel scheme for feature selection using filter approach. In 2022 7th International Conference on Computing, Communication and Security

	9604.	(ICCCS) (pp. 1-4). IEEE.
76.	G. E. A. P. A. Batista, A. Bazzan, and M. C. Monard, "Balancing Training Data for Automated Annotation of Keywords: a Case Study," Semantic Scholar, 2003. https://www.semanticscholar.org/paper/Balan cing-Training-Data-for-Automated-Annotation-of-Batista-Bazzan/c1a95197e15fa99f55cd0cb2ee14d2f0 2699a919	Batista, G. E., Bazzan, A. L., & Monard, M. C. (2003). Balancing training data for automated annotation of keywords: a case study. Wob, 3, 10-18.
77.	G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, "A study of the behavior of several methods for balancing machine learning training data," ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 20 – 29, Jun. 2004, doi: https://doi.org/10.1145/1007730.1007735.	Batista, G. E., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD explorations newsletter, 6(1), 20-29.
78.	Hasna Chamlal, Tayeb Ouaderhman, and Fadwa Aaboub, "Preordonance correlation filter for feature selection in the high dimensional classification problem," Oct. 2021, doi: https://doi.org/10.1109/icds53782.2021.9626705.	Chamlal, H., Ouaderhman, T., & Aaboub, F. (2021, October). Preordonance correlation filter for feature selection in the high dimensional classification problem. In 2021 Fifth International Conference On Intelligent Computing in Data Sciences (ICDS) (pp. 1-5). IEEE.
79.	H. Han, WY. Wang, and BH. Mao, "Borderline-SMOTE: A New Over- Sampling Method in Imbalanced Data Sets Learning," Lecture Notes in Computer Science, vol. 3644, pp. 878 – 887, 2005, doi: https://doi.org/10.1007/11538059_91.	Han, H., Wang, W. Y., & Mao, B. H. (2005, August). Borderline-SMOTE: a new oversampling method in imbalanced data sets learning. In International conference on intelligent computing (pp. 878-887). Berlin, Heidelberg: Springer Berlin Heidelberg.
80.	Haibo He, Yang Bai, E. A. Garcia, and Shutao Li, "ADASYN: Adaptive synthetic sampling approach for imbalanced learning," IEEE Xplore, Jun. 01, 2008. https://ieeexplore.ieee.org/abstract/document/4633969?casa_token=J_CENnbbg04 AAAAA:H66LkaQgQseWdiBmYNy3Puy0nr	He, H., Bai, Y., Garcia, E. A., & Li, S. (2008, June). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1322-1328). Ieee.

	HpFfZ7OA3Io7ZXVSCE-	
81.	O_bXwpmblGkrE7HoIISMjkQqG7Ng I. Dey and V. Pratap, "A Comparative Study of SMOTE, Borderline-SMOTE, and ADASYN Oversampling Techniques using Different Classifiers," Mar. 2023, doi: https://doi.org/10.1109/icsmdi57622.2023.000 60.	Dey, I., & Pratap, V. (2023, March). A comparative study of SMOTE, borderline-SMOTE, and ADASYN oversampling techniques using different classifiers. In 2023 3rd international conference on smart data intelligence (ICSMDI) (pp. 294-302). IEEE.
82.	J. Liu and J. Leu, "Enhancing Short-Term Load Forecasting with Technical Indicators and Tree-structured Parzen Estimator," Oct. 2023, doi: https://doi.org/10.1109/smartgridcomm57358. 2023.10333876.	Liu, J. X., & Leu, J. S. (2023, October). Enhancing Short-Term Load Forecasting with Technical Indicators and Tree-structured Parzen Estimator. In 2023 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm) (pp. 1-6). IEEE.
83.	J. Zhao, Z. Zhang, C. Han, and L. Sun, "Experiments with Feature-Prior Hybrid Ensemble Method for Classification," Nov. 2014, doi: https://doi.org/10.1109/cis.2014.108.	Zhao, J., Zhang, Z., Han, C., & Sun, L. (2014, November). Experiments with feature-prior hybrid ensemble method for classification. In 2014 Tenth International Conference on Computational Intelligence and Security (pp. 223-227). IEEE.
84.	L. Feng, "Research on Customer Churn Intelligent Prediction Model based on Borderline-SMOTE and Random Forest," IEEE Xplore, Jul. 01, 2022. https://ieeexplore.ieee.org/document/9873702 (accessed Dec. 09, 2022).	Feng, L. (2022, July). Research on customer churn intelligent prediction model based on borderline-smote and random forest. In 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS) (pp. 803-807). IEEE.
85.	M. Abujazoh, Duha Al-Darras, N. A. Hamad, and Saleh Al-Sharaeh, "Feature Selection for High-Dimensional Imbalanced Malware Data Using Filter and Wrapper Selection Methods," Aug. 2023, doi: https://doi.org/10.1109/icit58056.2023.10226 049.	Abujazoh, M., Al-Darras, D., Hamad, N. A., & Al-Sharaeh, S. (2023, August). Feature Selection for High-Dimensional Imbalanced Malware Data Using Filter and Wrapper Selection Methods. In 2023 International Conference on Information Technology (ICIT) (pp. 196-201). IEEE.
86.	M. K. Belaid, E. Hüllermeier, M. Rabus, and R. Krestel, "Do We Need Another Explainable AI Method? Toward Unifying Post-hoc XAI Evaluation Methods into	Belaid, M. K., Hüllermeier, E., Rabus, M., & Krestel, R. (2022). Do we need another explainable AI method? Toward unifying post-hoc XAI evaluation methods into an

	an Interactive and Multi-dimensional Benchmark," arXiv.org, Oct. 04, 2022. https://arxiv.org/abs/2207.14160	interactive and multi-dimensional benchmark. arXiv preprint arXiv:2207.14160.
87.	M. B. Kursa and W. R. Rudnicki, "The All Relevant Feature Selection using Random Forest," arXiv.org, Jun. 25, 2011. https://arxiv.org/abs/1106.5112 (accessed May 26, 2023).	Kursa, M. B., & Rudnicki, W. R. (2011). The all relevant feature selection using random forest. arXiv preprint arXiv:1106.5112.
88.	N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE: Synthetic Minority Over-sampling Technique," Journal of Artificial Intelligence Research, vol. 16, no. 16, pp. 321 – 357, Jun. 2002, doi: https://doi.org/10.1613/jair.953.	Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
89.	Q. Ning, X. Zhao, and Z. Ma, "A novel method for Identification of Glutarylation sites combining Borderline-SMOTE with Tomek links technique in imbalanced data," IEEE/ACM Transactions on Computational Biology and Bioinformatics, pp. 1 – 1, 2021, doi: https://doi.org/10.1109/tcbb.2021.3095482.	Ning, Q., Zhao, X., & Ma, Z. (2021). A novel method for Identification of Glutarylation sites combining Borderline-SMOTE with Tomek links technique in imbalanced data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(5), 2632-2641.
90.	"Two Modifications of CNN," IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-6, no. 11, pp. 769 – 772, Nov. 1976, doi: https://doi.org/10.1109/tsmc.1976.4309452.	Ivan, T. (1976). Two modifications of CNN. IEEE transactions on Systems, Man and Communications, SMC, 6, 769-772.
91.	T. Chen and C. Guestrin, "XGBoost: a Scalable Tree Boosting System," Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ' 16, pp. 785 – 794, 2016, doi: https://doi.org/10.1145/2939672.2939785.	Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
92.	Tala Talaei Khoei, S. Ismail, and Naima	Khoei, T. T., Ismail, S., & Kaabouch, N.

	Kaabouch, "Boosting-based Models with	(2021, December). Boosting-based models
	Treestructured	with tree-structured parzen estimator
	Parzen Estimator Optimization to Detect	optimization to detect intrusion attacks on
	Intrusion Attacks on Smart	smart grid. In 2021 IEEE 12th Annual
	Grid," Dec. 2021, doi:	Ubiquitous Computing, Electronics & Mobile
	https://doi.org/10.1109/uemcon53757.2021.96	Communication Conference (UEMCON) (pp.
	66607.	0165-0170). IEEE.
93.	T. Zhu, Y. Zhang, Y. Li, C. Tao, Z. Cao, and	Zhu, T., Zhang, Y., Li, Y., Tao, C., Cao, Z., &
	H. Cheng, "Assessment of organic	Cheng, H. (2023). Assessment of organic
	micropollutants rejection by forward osmosis	micropollutants rejection by forward osmosis
	system using interpretable machine	system using interpretable machine learning-
	learning-assisted approach: A new perspective	assisted approach: A new perspective on
	on optimization of multifactorial	optimization of multifactorial forward
	forward osmosis process," Journal of	osmosis process. Journal of Environmental
	Environmental Chemical Engineering, vol.	Chemical Engineering, 11(5), 110847.
	11, no. 5, pp. 110847 - 110847, Oct. 2023,	
	doi:	
	https://doi.org/10.1016/j.jece.2023.110847.	
94.	U. Das and B. Ahmed, "An Explainable ML	Das, U., & Ahmed, B. (2023, December). An
	Approach for Diabetes Detection Using the	Explainable ML Approach for Diabetes
	Influential Features," Dec. 2023, doi:	Detection Using the Influential Features.
	https://doi.org/10.1109/iccit60459.2023.1044	In 2023 26th International Conference on
	1134.	Computer and Information Technology
		(ICCIT) (pp. 1-5). IEEE.
95.	W. Qin, Z. Zhuang, L. Guo, and YN. Sun,	Qin, W., Zhuang, Z., Guo, L., & Sun, Y.
	"A hybrid multi-class imbalanced learning	(2022). A hybrid multi-class imbalanced
	method for predicting the quality level of	learning method for predicting the quality
	diesel engines," Journal of	level of diesel engines. Journal of
	Manufacturing Systems, vol. 62, pp. 846 -	Manufacturing Systems, 62, 846-856.
	856, Jan. 2022, doi:	
	https://doi.org/10.1016/j.jmsy.2021.03.014.	
96.	Y. Zhang, C. Xie, L. Xue, Y. Tao, G. Yue, and	Zhang, Y., Xie, C., Xue, L., Tao, Y., Yue, G.,
	J. Bin, "A Post-Hoc Interpretable	& Jiang, B. (2021). A post-hoc interpretable
	Ensemble Model to Feature Effect Analysis in	ensemble model to feature effect analysis in
	Warfarin Dose Prediction for	warfarin dose prediction for Chinese
	Chinese Patients," IEEE Journal of	patients. IEEE Journal of Biomedical and
	Biomedical and Health Informatics, vol. 26,	Health Informatics, 26(2), 840-851.
	no.	

2, pp. 840 - 851, Feb. 2022, doi:
https://doi.org/10.1109/jbhi.2021.3092170.