Table of contents

- Neural Networks and Deep Learning
 - o Course summary
 - Introduction to deep learning
 - What is a (Neural Network) NN?
 - Machine learning vs Deep learning
 - Why is deep learning taking off?
 - Deep learning Basics
 - Cost function
 - Classification
 - Binary/multi
 - Regression
 - Softmax
 - Logistic/Linear
 - eq: Cross-entropy
 - active function
 - Linear vs non-Linear, Why do you need non-linear activation functions?
 - Derivatives of activation functions
 - Sigmod
 - RELU & *RELU
 - Gradient Descent
 - Derivatives
 - Chain rule
 - Modular backprop & automatic differentiation
 - More examples
 - Layers
 - Neural Networks Overview
 - Shallow/Deep
 - [Forward and Backward Propagation]
 - Deep learning train
 - Parameters vs Hyperparameters
 - Regularizing
 - Random Initialization
 - Normalization
 - Generation
 - Efficience
 - train/eval/test
 - EORROr meter
 - Visualization

- Data
 - Data augment
 - <u>i.i.d</u>
 - Zero/One shooting learning
- $\circ \ \underline{Optimization \ Algorithms}$
 - Algorithms
 - Gradient Descent and Stochastic GradientDescent
 - Mini-Batch Stochastic GradientDescent
 - Momentum
 - RMSProp
 - Adam
- o CNN
 - Convolutions for Images
 - CNN Architecture
 - Alexnet
 - VGG
 - Inception net
 - Resnet/Resnext/Desenet
 - Understanding and Visualizing CNN
 - Transfer Learning and Fine-tuning
- $\circ \ \underline{Deep \ learning \ frameworks}$
 - Tensorflow/Keras
 - Pytorch
 - PaddlePaddle/ Mxnet/CNTK/Caffe
- o RNN
 - Memory
 - Attention
 - One/Sequence to one/sequence
- Application
 - Image-net classify
 - GAN/style transfer
 - Auto Drive
 - What does this have to do with the brain
- $\circ \ \underline{Summary \ \& \ Thanks}$
- Extra: Ian Goodfellow(xxx) interview