Übung

1 Hilberträume

Aufgabe 1.1 (Hilberträume). Sei \mathcal{H} ein Hilbertraum und $V \subset \mathcal{H}$ ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen:

- \Box Die durch das Skalarprodukt induzierte Norm $\|\cdot\|:=\sqrt{\langle\cdot,\cdot\rangle}$ erfüllt die Parallelogrammgleichung $\|x+y\|^2+\|x-y\|^2=2\,(\|x\|^2+\|y\|^2).$
- $\square \mathcal{H} = V \oplus V^{\perp}$
- \square In V gilt der Projektionssatz.
- \square In V^{\perp} gilt der Projektionssatz.
- \square Jede Cauchyfolge in V konvergiert in V.
- $\square V^{\perp}$ ist ein Hilbertraum.
- $\square |\langle x, y \rangle| \le ||x|| ||y||$ für alle $x, y \in \mathcal{H}$.

Sei nun $(e_n)_{n\in\mathbb{N}}$ eine Orthonormalbasis von \mathcal{H} .

- $\Box \ \overline{\operatorname{span}\{e_n\}_{n\in\mathbb{N}}}^{\perp} = \{0\}.$
- \square Die Folge $(e_n)_{n\in\mathbb{N}}$ konvergiert.

Aufgabe 1.2 (Abgeschlossenheit des orthogonalen Komplements). Sei $M \subset \mathcal{H}$ Teilmenge eines Hilbertraumes, $V \subset \mathcal{H}$ ein Unterraum. Zeigen Sie:

(a) Das orthogonale Komplement M^{\perp} von M ist abgeschlossen. Nehmen Sie sich dazu eine in \mathcal{H} konvergente Folge $(x_n)_{n\in\mathbb{N}}$ mit Elementen aus M^{\perp} und zeigen Sie, dass der Grenzwert $x:=\lim_{n\to\infty}x_n$ wieder in M^{\perp} liegt.

HINWEIS: Verwenden Sie an geeigneter Stelle die Cauchy-Bunjakowski-Schwarz Ungleichung oder die Stetigkeit des Skalarprodukts.

- (b) $M^{\perp} = (\overline{M})^{\perp}$
- (c) $(V^{\perp})^{\perp} = \overline{V}$

HINWEIS: Benutzen Sie den Projektionssatz.

(d) Seien $A, B \subset \mathcal{H}$ mit $A \subset B$. Dann ist $B^{\perp} \subset A^{\perp}$.

Aufgabe 1.3 (Polarisierungsgleichung). Sei X ein \mathbb{K} -Vektorraum mit Skalarprodukt. Beweisen Sie die Polarisierungsgleichung

$$\langle x, y \rangle = \frac{1}{4} \sum_{\{\zeta \in \mathbb{K}: \zeta^4 = 1\}} \zeta \|\zeta x + y\|^2$$

für

(a)
$$\mathbb{K} = \mathbb{R}$$
 (b) $\mathbb{K} = \mathbb{C}$

Aufgabe 1.4. Sei \mathcal{H} ein separabler Hilbertraum.

- 1. Geben Sie eine konvergente Orthogonalfolge in \mathcal{H} an. Überlegen Sie sich dazu, was die Separabilität von \mathcal{H} impliziert.
- 2. Die eben gefundene Folge werde mit $(a_n)_{n\in\mathbb{N}}$ bezeichnet. Geben Sie $\|\sum_{k=0}^N a_k\|$ an.

2 Funktionentheorie

Aufgabe 2.1 (Komplexe Konjugation). Zeigen Sie, dass die komplexe Konjugation $\Sigma(z) = \overline{z}$ nirgends komplex differenzierbar ist, indem Sie

- (a) die Funktion direkt in Definition der komplexen Differenzierbarkeit einsetzen
- (b) die Cauchy-Riemann-Differentialgleichungen darauf anwenden.

Aufgabe 2.2 (Komplexe Differentierbarkeit). Untersuchen Sie, in welchen Punkten $z = x + iy \in \mathbb{C}$ mit reellen Koordinaten x, y die folgenden Funktionen komplex differenzierbar sind, die durch die folgenden Abbildungsvorschriften gegeben werden. Geben Sie den maximalen Definitionsbereich $U \subseteq C$ an, auf dem die Funktionen holomorph sind.

(a)
$$f_1(z) := x^2 + iy^2$$

(b)
$$f_2(z) := 2xy - i(x^2 - y^2)$$

Aufgabe 2.3 (Kurvenintegral einer reellen positiven Funktion). Sei $Q \subset \mathbb{C}$ das Quadrat mit den Eckpunkten 0, 1, i, 1 + i. Berechnen sie das Kurvenintegral über die Funktion $f(z) = |z|^2$ entlang der Kanten des Quadrats.

Hinweis: Achten Sie auf die richtige Orientierung des Integrationswegs.

Aufgabe 2.4 (Komplexes Kurvenintegral und Flächeninhalt). Berechnen Sie das komplexe Kurvenintegral

$$\frac{1}{2i} \int_{\partial M} \overline{z} \ dz$$

wobei ∂M der Rand der zwei nachfolgend angegebenen Teilmengen von $\mathbb C$ ist. Es gelten die Orientierungsvereinbarungen aus der Vorlesung. Vergleichen Sie anschließend den Realteil Ihrer Lösung mit dem Flächeninhalt des von γ berandeten Gebietes.

- (a) $M_1 = K_r(c), c \in \mathbb{C}, r > 0$
- (b) $M_2 = \{z \in \mathbb{C} \mid 1 < |z| < 2, \Im(z) > 0\}$ (Halbring).