Algebra III Práctica 1 - Anillos y Cuerpos

2do cuatrimestre 2015

Nota: En esta materia, anillo significa anillo conmutativo con $1 \neq 0$ y todo morfismo de anillo $f: A \rightarrow B$ manda el 1_A en el 1_B .

Ejercicio 1. Sea A un anillo. Probar que:

- 1. A tiene ideales maximales y todo ideal propio I está contenido en un ideal maximal.
- 2. P es ideal primo si y sólo si A/P es dominio íntegro.
- 3. A es cuerpo si y sólo si tiene exactamente dos ideales.
- 4. M es ideal maximal si y sólo si A/M es cuerpo.

Ejercicio 2. Probar que:

- 1. Si K es cuerpo y $f: K \to B$ es morfismo de anillos, entonces f es inyectivo.
- 2. Si A es anillo tal que todo morfismo de anillos $f:A\to B$ es inyectivo, entonces A es cuerpo.

Ejercicio 3. Sea D un dominio íntegro finito. Probar que D es un cuerpo.

Ejercicio 4. Dado $b \in \mathbb{C}$ se define $\mathbb{Q}[b] = \{\sum_{i=0}^n a_i b^i / a_i \in \mathbb{Q}\}$. Probar que $\mathbb{Q}[\sqrt{2}]$, $\mathbb{Q}[\sqrt{3}]$, $\mathbb{Q}[i]$ y $\mathbb{Q}[\sqrt[3]{2}]$ son cuerpos.

Ejercicio 5. Sea K un cuerpo y sea A una K-álgebra de dimensión finita. Probar que si A es un dominio íntegro, entonces es un cuerpo.

Ejercicio 6. Determinar el grupo de unidades $\mathcal{U}(A)$ de los siguientes anillos A:

$$\mathbb{Z}$$
, K (cuerpo), $\mathbb{Z}[i]$, $\mathbb{Z}[\sqrt{-5}]$, $D[X]$ con D dominio integro, $\mathbb{Z}/n\mathbb{Z}$.

Ejercicio 7. Caracterizar los siguientes conjuntos:

- 1. $\{f: \mathbb{R} \to \mathbb{C}, f \text{ isomorfismo de cuerpos}\}.$
- 2. $\{f: \mathbb{C} \to \mathbb{R}, f \text{ morfismo de cuerpos}\}.$
- 3. $\{f: \mathbb{Q} \to \mathbb{Z}/p\mathbb{Z}, f \text{ morfismo de cuerpos}\}, p \text{ primo.}$
- 4. $\{f: \mathbb{Q} \to \mathbb{K}, f \text{ morfismo de cuerpos}\}, \mathbb{K} \text{ cuerpo fijo.}$
- 5. $\{f: \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{3}], f \text{ morfismo de cuerpos}\}.$
- 6. $\{f: \mathbb{C} \to \mathbb{C}, f \text{ morfismo de cuerpos tal que } f(a) = a \ \forall a \in \mathbb{R} \}.$
- 7. $\{f: \mathbb{Q}[i] \to \mathbb{Q}[i], f \text{ morfismo de cuerpos}\}.$
- 8. $\{f: \mathbb{Q}[i] \to \mathbb{Q}[i], \ f \text{ isomorfismo de cuerpos}\}.$
- 9. $\{f: \mathbb{Q}[i] \to \mathbb{R}, f \text{ morfismo de cuerpos}\}.$
- 10. $\{f: \mathbb{R} \to \mathbb{R}, f \text{ morfismo de cuerpos}\}.$

Ejercicio 8. Sea A un dominio íntegro y sea K su cuerpo de cocientes.

- 1. Probar que $f:A\to K$ dada por $a\mapsto \frac{a}{1}$ es un monomorfismo de anillos.
- 2. Sea D un anillo. Probar que son equivalentes:
 - a) D es dominio íntegro.
 - b) Existe $f: D \to K$ monomorsfismo de anillos para algún cuerpo K.

Ejercicio 9. Caracterizar el cuerpo de cocientes de los siguientes dominios íntegros:

$$\mathbb{Z}$$
, $\mathbb{Z}[i]$, $\mathbb{Z}[\sqrt{2}]$, $A[X]$ (A dominio integro), K (K cuerpo).

Ejercicio 10. Sea A un dominio íntegro y sea $a \in A$. Probar que:

- 1. Si a es primo entonces es irreducible.
- 2. Si A es DFU, entonces todo irreducible es primo.
- 3. Dar ejemplos en $\mathbb{Z}[\sqrt{-5}]$ de elementos que sean irreducibles pero no primos.

Ejercicio 11. Sea A un dominio íntegro. Probar que valen las siguientes implicaciones pero no las recíprocas:

A es euclideano $\implies A$ es principal $\implies A$ es DFU.

Ejercicio 12. Probar que \mathbb{Z} , $\mathbb{Z}[i]$, K y K[X] (K cuerpo) son anillos euclideanos.

Ejercicio 13. Sea $p \in \mathbb{N}$ primo. Probar que:

- 1. -1 es un cuadrado en $\mathbb{Z}/p\mathbb{Z}$ si y sólo si p=2 o $p\equiv 1$ mód 4.
- 2. p es irreducible en $\mathbb{Z}[i]$ si y sólo si p no es suma de dos cuadrados (en \mathbb{Z}).
- 3. p es primo en $\mathbb{Z}[i]$ si y sólo si $p \equiv 3 \mod 4$.
- 4. p es suma de dos cuadrados (en \mathbb{Z}) si y sólo si p=2 o $p\equiv 1$ mód 4.

Ejercicio 14. Sea A un DFU, K su cuerpo de cocientes y $f \in A[X]$ con $gr(f) \ge 1$. Probar que:

- 1. A[X] es DFU.
- 2. f es irreducible (en A[X]) si y sólo si f es irreducible en K[X] y cont(f) = 1.

Ejercicio 15. Sea K un cuerpo y sea $f \in K[X]$.

- 1. Probar que $K[X]/\langle f \rangle$ es un cuerpo si y sólo si f es irreducible.
- 2. Construir un cuerpo de 9 elementos.
- 3. Probar que $\mathbb{R}[X]/\langle X^2+1\rangle\simeq\mathbb{C}$.
- 4. Supongamos que $f = \prod_{i=1}^{n} (X \alpha_i)$ con los $\alpha_i \in K$ todos distintos. Sea $g_j := \prod_{i \neq j} (X \alpha_i)$, $1 \leq j \leq n$. Probar que $\{\overline{g_1}, \ldots, \overline{g_n}\}$ es base de $K[X]/\langle f \rangle$, y para un $h \in K[X]$, calcular las coordenadas de \overline{h} en esa base.

Ejercicio 16. Sea $p \in \mathbb{N}$ primo. Definimos $\Phi : \mathbb{Z}[X] \to (\mathbb{Z}/p\mathbb{Z})[X]$ mediante:

$$\Phi(a_n X^n + \dots + a_1 X + a_0) = \overline{a_n} X^n + \dots + \overline{a_1} X + \overline{a_0}.$$

Probar que:

- 1. Φ es un morfismo de anillos.
- 2. Para un $f \in \mathbb{Z}[X]$ tal que $\Phi(f) \neq 0$ y $\operatorname{gr}(\Phi(f)) = \operatorname{gr}(f)$, si $\Phi(f)$ es irreducible en $(\mathbb{Z}/p\mathbb{Z})[X]$, entonces f no se factoriza en $\mathbb{Z}[X]$ como producto de polinomios de grado positivo.

Ejercicio 17. Criterio de irreducibilidad de Eisenstein. Sea A un DFU y sea K su cuerpo de cocientes. Sea $f = \sum_{i=0}^{n} a_i X^i \in A[X]$ con n > 0. Probar que si existe un primo $p \in A$ que satisface $p \nmid a_n, p \mid a_i \forall 0 \le i < n \text{ y } p^2 \nmid a_0$, entonces f es irreducible en K[X].

Ejercicio 18. Sea $p \in \mathbb{N}$ primo. Probar que:

- 1. $(X+1)^p-1$ es divisible por X y $\frac{(X+1)^p-1}{X}=\sum_{i=0}^{p-1}\binom{p}{i}X^{p-i-1}\in\mathbb{Z}[X]$ es irreducible.
- 2. $1 + X + X^2 + \cdots + X^{p-1}$ es irreducible.
- 3. $X^n p$ es irreducible $\forall n \in \mathbb{N}$.

Ejercicio 19. Sea K un cuerpo y sea $a \in K$. Probar que $X^4 - a$ es reducible en K[X] si y solo si $a = b^2$ para algún $b \in K$ o $a = -4c^4$ para algún $c \in K$.

Ejercicio 20. Teorema de Gauss. Sea A un DFU y sea K su cuerpo de cocientes. Sea $f = \sum_{i=0}^{n} a_i X^i \in A[X]$ con $a_0 a_n \neq 0$. Demostrar que si $p, q \in A$ son irreducibles coprimos tales que f(p/q) = 0, entonces $p \mid a_0 y q \mid a_n$.

Ejercicio 21. Sea K un cuerpo. Sea $f \in K[X]$ y sea $a \in K$ una raíz de f. Probar que:

- 1. a es raíz múltiple de f si y sólo si f'(a) = 0.
- 2. Si $K = \mathbb{C}$, \mathbb{R} o \mathbb{Q} entonces $\frac{f}{\operatorname{mcd}(f,f')} \in K[X]$ tiene las mismas raices que f pero todas simples.

Ejercicio 22. Probar que si $f \in \mathbb{Q}[X]$ es irreducible, entonces no tiene raices múltiples en \mathbb{C} .

Ejercicio 23. Probar que $\sum_{i=0}^{n} X^{i}$ y $\sum_{i=0}^{n} \frac{X^{i}}{i!}$ no tienen raices múltiples en \mathbb{C} para todo $n \in \mathbb{N}$.

Ejercicio 24. Determinar todos los polinomios irreducibles en $(\mathbb{Z}/2\mathbb{Z})[X]$ de grado < 6.

Ejercicio 25. Sea K un cuerpo finito de q elementos. ¿Cuantos polinomios irreducibles mónicos de grado 2 hay en K[X]? ¿Y de grado 3?

Ejercicio 26. Sea $f = \sum_{i=0}^n a_i X^i \in \mathbb{C}[X]$ con $a_n \neq 0$. Definimos $M = 1 + \left|\frac{a_{n-1}}{a_n}\right| + \cdots + \left|\frac{a_0}{a_n}\right|$. Probar que:

- 1. Si $\alpha \in \mathbb{C}$ es raíz de f, entonces $|\alpha| < M$.
- 2. Si $f \in \mathbb{R}[X]$, entonces: $f(M) > 0 \iff a_n > 0$ y $f(-M) > 0 \iff (-1)^n a_n > 0$.

Ejercicio 27. Sea $f = \sum_{i=0}^{n} a_i X^i = a_n \prod_{i=1}^{n} (X - \alpha_i) \in \mathbb{C}[X]$ con $a_n \neq 0$ y $n \geqslant 2$. Se define el discriminante de f mediante:

$$\Delta(f) = a_n^{2n-2} \prod_{i < j} (\alpha_i - \alpha_j)^2.$$

Probar que:

- 1. Si $f = aX^2 + bX + c$, entonces $\Delta(f) = b^2 4ac$.
- 2. Si $f = X^3 + pX + q$, entonces $\Delta(f) = -4p^3 27q^2$.
- 3. $\operatorname{Res}_X(f, f') = a_n^{n-1} \prod_{i=1}^n f'(\alpha_i) = (-1)^{\frac{n(n-1)}{2}} a_n \Delta(f)$.

Ejercicio 28. Sea K un cuerpo. Para un polinomio

$$f = \sum_{|\boldsymbol{a}| \le d} f_{\boldsymbol{a}} \boldsymbol{X}^{\boldsymbol{a}} \in K[\boldsymbol{X}] := K[X_1, \dots, X_n],$$

donde $\mathbf{a} = (a_1, \dots, a_n), |\mathbf{a}| = a_1 + \dots + a_n, \mathbf{X} = (X_1, \dots, X_n)$ y $\mathbf{X}^{\mathbf{a}} = X_1^{a_1} \cdots X_n^{a_n}$, se define el grado de f como gr $(f) = \max\{|\mathbf{a}| : f_{\mathbf{a}} \neq 0\}$. Probar las siguientes afirmaciones:

- 1. f + g = 0 o gr $(f + g) \leq \max\{\operatorname{gr}(f), \operatorname{gr}(g)\}, \forall f, g \in K[X].$
- 2. $fg = 0 \implies f = 0 \text{ o } g = 0, \forall f, g \in K[X].$
- 3. Si $f \neq 0$ y $g \neq 0$ entonces $\operatorname{gr}(fg) = \operatorname{gr}(f) + \operatorname{gr}(g), \forall f, g \in K[\boldsymbol{X}].$
- 4. $\mathcal{U}(K[X]) = K \{0\}.$
- 5. K[X] es un K-espacio vectorial. Exhibir una base.
- 6. $K[X]_{\leq d} = \{f : f = 0 \text{ o } gr(f) \leq d\}$ es un subespacio de K[X]. Calcular su dimensión.

Ejercicio 29. Probar que $X^2 + Y^2 - 1$ y XT - YZ son irreducibles en $\mathbb{Q}[X,Y]$ y $\mathbb{Q}[X,Y,Z,T]$ respectivamente.

Ejercicio 30. Sea $f \in \mathbb{C}[X_1, \dots, X_n]$ de grado $\leq d$. Probar que:

- 1. Si f se anula en \mathbb{Z}^n , entonces f=0.
- 2. Lo mismo si f se anula en $\{(x_1,\ldots,x_n)\in\mathbb{Z}^n:0\leqslant x_i\leqslant d\}$.

Ejercicio 31. Sean f = XY - 1 y $g = X^2 + Y^2 - 2$. Calcular $\operatorname{Res}_X(f,g)$ y decidir si f y g tienen un factor común en $\mathbb{Q}(Y)[X]$ y en $\mathbb{Q}[X,Y]$. ¿En que puntos de \mathbb{C}^2 se anulan simultaneamente ambos polinomios?

Ejercicio 32. Sean
$$f = \prod_{i=1}^n (X - \alpha_i) \in \mathbb{C}[X]$$
 y $g = \prod_{j=1}^m (X - \beta_j) \in \mathbb{C}[X]$.

- i) ¿Cuáles son las raices del polinomio $\mathrm{Res}_Y(f(X-Y),g(Y))\in\mathbb{C}[X]$?
- ii) ¿Y cuáles las de $\operatorname{Res}_Y(Y^n f(X/Y), g(Y)) \in \mathbb{C}[X]$?
- iii) Probar que $a = \prod (\pm \sqrt{1} \pm \sqrt{2} \pm \sqrt{3} \pm \cdots \pm \sqrt{n})$ es entero.
- iv) (Difícil) Probar que a de (iii) es un cuadrado perfecto para todo $n \ge 2$.