Laplacian Edge Detection

이진영

Laplacian Filter

Zero crossing edge detection using the second derivatives of an image

Gradual Change

Edge

No Edge

Second Derivative of Discrete Signal

Assuming that the first derivative is represented by difference between two consecutive pixel values

$$f'(x) = \frac{df}{dx} = \frac{f(x+1) - f(x)}{x+1-x} = f(x+1) - f(x) \approx f(x) - f(x-1)$$

Second derivative calculating the rate at which the first derivative changes

$$f''(x) = \frac{d^2f}{dx^2} = \frac{df(x+1)}{dx} - \frac{df(x)}{dx} = (f(x+1) - f(x)) - (f(x) - f(x-1))$$
$$= f(x+1) - 2 \cdot f(x) + f(x-1)$$

Second Derivatives of an Image

$$f''(x,y) = \frac{d^2f}{dx^2} + \frac{d^2f}{dy^2}$$

$$\frac{d^2f}{dx^2} = f(x+1,y) - 2 \cdot f(x,y) + f(x-1,y)$$

$$\frac{d^2f}{dx^2} = f(x,y+1) - 2 \cdot f(x,y) + f(x,y-1)$$

Laplacian Filter Coefficients

$$f''(x,y) = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4 \cdot f(x,y)$$

Only One Kernel

Second Derivatives in Single Pass

0	-1	0
-1	4	-1
0	-1	0

1	-2	1
-2	4	-2
1	-2	1

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

Noise

- Sudden changes of intensity in an image, which is same as edge
- Points that image intensity has discontinuities, which is same as edge

 $AlCenter Y_Combined Noise.bmp\\$

Sobel

Prewitt

Roberts

Noise Removal

- Image restoration, and then edge detection
- Median filter, mean filter, Gaussian filter, weighted average filter... for noise removal

Canny Edge Detection

- Accurate edge detection with low error rate
- Three steps
 - Noise removal with Gaussian filter
 - Calculation of gradient magnitude with Sobel filter
 - Edge detection with thresholding

-1	0	1
-2	0	2
-1	0	1

-1	-2	-1
0	0	0
1	2	1

Sobel Filter

2/159	4/159	5/159	4/159	2/159
4/159	9/159	12/159	9/159	4/159
5/159	12/159	15/159	12/159	5/159
4/159	9/159	12/159	9/159	4/159
2/159	4/159	5/159	4/159	2/159

Gaussian Filter

