Exercice 1.— Pour $T \in \mathcal{S}'(\mathbb{R}^d)$, on définit $\mathcal{J}(T) = \check{T}$ par

$$\langle \check{T}, \varphi \rangle_{\mathcal{S}', \mathcal{S}} := \langle T, \check{\varphi} \rangle_{\mathcal{S}', \mathcal{S}}$$
 pour tout $\varphi \in \mathcal{S}(\mathbb{R}^d)$, où $\mathcal{J}(\varphi) = \check{\varphi} : x \mapsto \varphi(-x)$,

et on dit que T est paire (resp. impaire) si $\check{T} = T$ (resp. $\check{T} = -T$).

- 1. Montrer que $\mathcal{F} \circ \mathcal{J} = \mathcal{J} \circ \mathcal{F}$ et que $(2\pi)^d \operatorname{Id} = \mathcal{J} \circ \mathcal{F} \circ \mathcal{F}$ sur $\mathcal{S}(\mathbb{R}^d)$ et sur $\mathcal{S}'(\mathbb{R}^d)$.
- 2. Montrer que si T est paire (resp. impaire) si, et seulement si, \widehat{T} l'est.
- 3. Soit $a \in \mathbb{R}$. Déterminer les transformées de Fourier de e^{iax} et de δ_a .

Exercice 2.— Justifier que les fonctions suivantes appartiennent à $\mathcal{S}'(\mathbb{R})$ puis calculer leur transformée de Fourier :

$$\cos(x)$$
, $x\sin(x)$, $e^{-b|x|}$ $(b>0)$, $\frac{x}{1+x^2}$.

Exercice 3.—

- 1. On veut ici calculer la transformée de Fourier de $T := \operatorname{vp}(\frac{1}{x}) \in \mathcal{S}'(\mathbb{R})$.
 - (a) Montrer que $i(\widehat{T})' = 2\pi\delta_0$ puis qu'il existe $C \in \mathbb{C}$ t.q. $\widehat{T} = -2i\pi H + C$ dans $\mathcal{S}'(\mathbb{R})$.
 - (b) Montrer que $C = i\pi$.
- 2. En déduire la transformée de Fourier de H dans $\mathcal{S}'(\mathbb{R})$.
- 3. En utilisant le même type de raisonnement qu'à la question 1, retrouver sinc dans $\mathcal{S}'(\mathbb{R})$.

Exercice 4.— Soit $f \in L^1(\mathbb{R}^3)$ une fonction à support compact telle que $\int_{\mathbb{R}^3} f(x) dx = 0$.

- 1. Montrer que $\widehat{f}(\xi) = \mathcal{O}(\|\xi\|)$ au voisinage de 0.
- 2. En déduire l'existence d'une unique fonction $u \in L^2(\mathbb{R}^3)$ telle que $-\Delta u = f$ dans $\mathcal{S}'(\mathbb{R}^3)$.
- 3. Cela reste-t-il vrai sans l'hypothèse $\int_{\mathbb{R}^3} f(x)\,dx = 0$?

Exercice 5.— Dans cet exercice, μ est une mesure de probabilité sur $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$.

- 1. Montrer que $T_{\mu}: \varphi \in \mathcal{S}(\mathbb{R}^d) \longmapsto \int_{\mathbb{R}^d} \varphi \, d\mu$ définit un élément de $\mathcal{S}'(\mathbb{R}^d)$, puis que sa transformée de Fourier $\widehat{\mu} := \widehat{T_{\mu}} \in \mathcal{S}'(\mathbb{R}^d)$ est donnée par la fonction $\xi \mapsto \int_{\mathbb{R}^d} e^{-ix\cdot\xi} \, d\mu(x)$.
- 2. On dit qu'une suite de mesures de probabilité $(\mu_n)_{n\in\mathbb{N}}$ sur $(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$ converge étroitement vers μ si :

$$\forall f \in \mathcal{C}^0(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d), \quad \int_{\mathbb{R}^d} f d\mu_n \underset{n \to +\infty}{\longrightarrow} \int_{\mathbb{R}^d} f d\mu.$$

On veut montrer que cela équivaut à la convergence de $(T_{\mu_n})_{n\in\mathbb{N}}$ vers T_{μ} dans $\mathcal{S}'(\mathbb{R}^d)$ et on suppose dans la suite de cette question que cette dernière convergence a lieu.

(a) Soit $f \in \mathcal{C}_c^0(\mathbb{R}^d)$. En régularisant f par une approximation de l'unité, montrer que

$$\int_{\mathbb{R}^d} f d\mu_n \underset{n \to +\infty}{\longrightarrow} \int_{\mathbb{R}^d} f d\mu.$$

- (b) Soit $f \in \mathcal{C}^0(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$. Pour R > 0, on définit $\chi_R := \chi(\frac{\cdot}{R})$, où $\chi \in \mathcal{C}^\infty(\mathbb{R}^d; [0; 1])$ vaut 1 sur B(0, 1) et 0 sur $\mathbb{R}^d \setminus B(0, 2)$.
 - i. Montrer que, pour tout R > 0,

$$\limsup_{n \to +\infty} \Big| \int_{\mathbb{R}^d} f(1-\chi_R) d\mu_n \Big| \le ||f||_{\infty} \int_{\mathbb{R}^d} (1-\chi_R) d\mu.$$

ii. En déduire la relation ci-dessous pour tout R>0, puis conclure,

$$\limsup_{n \to +\infty} \Big| \int_{\mathbb{R}^d} f d\mu_n - \int_{\mathbb{R}^d} f d\mu \Big| \le 2 ||f||_{\infty} \int_{\mathbb{R}^d} (1 - \chi_R) d\mu.$$

3. Soit $(\mu_n)_{n\in\mathbb{N}}$ une suite de mesures de probabilité sur $(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$. Montrer le théorème de convergence de Lévy : $(\mu_n)_{n\in\mathbb{N}}$ converge étroitement vers μ si, et seulement si, $(\widehat{\mu_n})_{n\in\mathbb{N}}$ converge simplement vers $\widehat{\mu}$.

Il existe un énoncé plus fort : $(\mu_n)_{n\in\mathbb{N}}$ converge étroitement vers une mesure de probabilité si, et seulement si, $(\widehat{\mu_n})_{n\in\mathbb{N}}$ converge simplement vers une fonction continue en 0.

Exercice 6.— Soient $\varphi \in \mathcal{S}(\mathbb{R}^d, \mathbb{R}^+)$ vérifiant $\int_{\mathbb{R}^d} \varphi(x) dx = 1$ et $(\varphi_{\varepsilon} = \varepsilon^{-d} \varphi(\frac{\cdot}{\varepsilon}))_{\varepsilon > 0}$ l'approximation de l'identité associée.

- 1. Montrer que $\varphi_{\varepsilon} \xrightarrow[\varepsilon \to 0^+]{} \delta_0$ dans $\mathcal{S}'(\mathbb{R}^d)$.
- 2. (a) Soit $f \in \mathcal{C}(\mathbb{R}^d)$ vérifiant $\lim_{\|x\| \to +\infty} f(x) = 0$. Montrer que f est uniformément continue et que $f \star \varphi_{\varepsilon} \underset{\varepsilon \to 0^+}{\longrightarrow} f$ uniformément.
 - (b) Soient $f, g \in \mathcal{S}(\mathbb{R}^d)$. Montrer que, pour tout $\alpha \in \mathbb{N}^d$,

$$x^{\alpha}(f \star g) = \sum_{\beta \in \mathbb{N}^d, \ \beta \le \alpha} {\alpha \choose \beta} (x^{\alpha - \beta} f) \star (x^{\beta} g).$$

- (c) En déduire que $f \star \varphi_{\varepsilon} \underset{\varepsilon \to 0^+}{\longrightarrow} f$ dans $\mathcal{S}(\mathbb{R}^d)$ pour tout $f \in \mathcal{S}(\mathbb{R}^d)$. Indication. Si $f \in L^{\infty}(\mathbb{R}^d)$ et $g \in L^1(\mathbb{R}^d)$, alors $||f \star g||_{\infty} \leq ||f||_{\infty} ||g||_1$.
- 3. Soit $T \in \mathcal{S}'(\mathbb{R}^d)$.
 - (a) Montrer que $T \star \varphi_{\varepsilon} \xrightarrow[\varepsilon \to 0^+]{} T$ dans $\mathcal{S}'(\mathbb{R}^d)$.
 - (b) Soit $(\chi_{\varepsilon} := \chi(\varepsilon \cdot))_{\varepsilon > 0}$, où $\chi \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ vaut 1 sur B(0,1) et 0 sur $\mathbb{R}^d \setminus B(0,2)$. Montrer que $\chi_{\varepsilon} (T \star \varphi_{\varepsilon}) \underset{\varepsilon \to 0^+}{\longrightarrow} T$ dans $\mathcal{S}'(\mathbb{R}^d)$.
- 4. Soient $p \in [1, +\infty[$ et $f \in L^p(\mathbb{R}^d)$. Montrer que $f \star \varphi_{\varepsilon} \xrightarrow[\varepsilon \to 0^+]{} f$ dans $L^p(\mathbb{R}^d)$. Indication. On rappelle que $h \in \mathbb{R}^d \mapsto \tau_h f := f(\cdot h) \in L^p(\mathbb{R}^d)$ est continue.