EEL7052-Sistemas Lineares

Avaliação 2 - Semestre 2015/2 - 05/11/2015

Departamento de Engenharia Elétrica e Eletrônica – UFSC Profs. Bartolomeu F. Uchôa Filho e Márcio Holsbach Costa

1) Para o seguinte sistema linear e invariante no tempo:

$$H(s) = \frac{10000s + 100000}{s^3 + 20s^2 + 10000s}$$

- a) Apresente as equações de magnitude (dB) e fase associadas ao diagrama de Bode;
- b) Desenhe as assíntotas do diagrama de Bode, apresentando valores/inclinações de frequência/amplitude/fase para todos os pontos de quebra, valores máximos e mínimos e pontos importantes para a caracterização das curvas;
- c) Esboce o diagrama de Bode real a partir de suas assíntotas.
- 2) Seja x(t) expresso em termos de sua série exponencial de Fourier:

$$x(t) = \sum_{k=-\infty}^{\infty} \frac{3}{4 + (k\pi)^2} e^{j\pi kt}$$

Determine, justificando: (a) O período fundamental T_o (se existir); (b) O valor médio de x(t); (c) Se o sinal é par, ímpar ou nenhum dos dois; (d) Se o sinal x(t) é uma função real ou complexa do tempo; (e) Uma fórmula numérica para o cálculo da potência do sinal x(t).

- 3) Seja ret(t) uma função do tempo caracterizada por ret(t)=1 para lt|<1/2 e ret(t)=0 para lt|>1/2, determine:
 - a) A transformada de Fourier de x(t)=sen $(1000\pi t)$ ret(t-1/2) por integração;
- b) A transformada de Fourier de x(t)=sen $(1000\pi t)$ ret(t-1/2) utilizando tabela + propriedades.

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Aperiodic signal	Fourier transform	ax
$x(t)$ $y(t)$ $ax(t) + by(t)$ $x(t - t_0)$ $e^{j \cos t} x(t)$ $x^{\bullet}(t)$ $x(-t)$ $x(at)$ $x(t) \cdot y(t)$	$X(\omega)$ $Y(\omega)$ $aX(\omega) + bY(\omega)$ $e^{-j\omega t_0}X(\omega)$ $X(\omega - \omega_0)$ $X^{\bullet}(-\omega)$ $X(-\omega)$ $\frac{1}{ a }X(\frac{\omega}{a})$ $X(\omega)Y(\omega)$	$\int e^{ax} dx = \frac{e^{ax}}{a}$ $\int sen(ax) dx = -\frac{1}{a} \cos(ax)$ $\int \cos(ax) dx = \frac{1}{a} sen(ax)$ $e^{i\theta} = \cos(\theta) + i sen(\theta)$
x(t)y(t)	$\frac{1}{2\pi}X(\omega) * Y(\omega)$	
$\frac{d}{dt}x(t)$	$j\omega X(\omega)$	

Tabela 7.1 Transformadas de Fourier

Nº	x(t)	$X(\omega)$	
1.	$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	a > 0
2 ·	$e^{at}u(-t)$	$\frac{a+j\omega}{1}$ $\frac{1}{a-j\omega}$	a > 0
		/JFN	
3	$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$	a > 0
4	$te^{-nt}u(t)$	$\frac{1}{(a+j\omega)^2}$	u > 0
5	$t^n e^{-at}u(t)$	$\frac{n!}{(a+j\omega)^{n+1}}$	<i>a</i> > 0
6	$\delta(t)$	1	
7	1	$2\pi\delta(\bar{\omega})$	
7	ejwar	$2\pi\delta(\omega-\omega_0)$	
9	$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	
10	$sen \omega_0 t$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	
11	u(t)	$\pi\delta(\omega) + rac{1}{i\omega}$	
12	sgn t	$\frac{2}{j\omega}$	
13	$\cos \omega_0 t u(t)$	$\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{j\omega}{\omega_0^2-\omega^2}$	
14	sen $\omega_0 t u(t)$	$\frac{\pi}{2j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]+\frac{\omega_0}{\omega_0^2-\omega^2}$	
15	e^{-at} sen $\omega_0 t u(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$	a > 0
16	$e^{-at}\cos\omega_0 t u(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	a > 0
17	$ret\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}\left(\frac{\omega \tau}{2}\right)$	
18	$\frac{W}{\pi}$ sinc (Wt)	$ret\left(\frac{\omega}{2W}\right)$	
19	$\Delta\left(\frac{t}{\tau}\right)$	$\frac{\tau}{2}$ sinc ² $\left(\frac{\omega\tau}{4}\right)$	
20	$\frac{W}{2\pi}\operatorname{sinc}^2\left(\frac{Wt}{2}\right)$	$\Delta\left(\frac{\omega}{2W}\right)$	
21		$\omega_0 \sum_{n=0}^{\infty} \delta(\omega - n\omega_0)$	$\omega_0 = \frac{2\pi}{T}$
22	$e^{-t^2/2\sigma^2}$	$n=-\infty$ $\sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$	

Séries de Fourier:
$$x(t)$$
 periódico com período fundamental T_0 e $\omega_0 = 2\pi/T_0$
$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} = a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t) + \sum_{k=1}^{\infty} b_k \sin(k\omega_0 t)$$

$$c_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt$$

$$a_k = \frac{2}{T_0} \int_{T_0} x(t) \cos(k\omega_0 t) dt$$
, $b_k = \frac{2}{T_0} \int_{T_0} x(t) \sin(k\omega_0 t) dt$, ambos para $k \ge 1$.