

FOUNDATIONS OF STATISTICAL ANALYSIS & MACHINE LEARNING

Amric Trudel amric.trudel@epita.fr

COURSE PROGRAM

Structure

PREPARATION	Data exploration
	Data preprocessing
REGRESSION	Linear regression with one variable
	Multiple and polynomial regression
CLASSIFICATION	Logistic regression
	Classification model assessment
	k-NN, Decision Tree, SVM
CLUSTERING	k-means, hierarchical clustering
DIMENSIONALITY REDUCTION	Principal Components Analysis
ALL NOTIONS	Final assignment

Problem statement

Unsupervised

- No associated responses to check
- Unknown number of clusters

General approach

- 1. Get some intuition from **data inspection** (dimension reduction, visualization, etc.)
- 2. Choose a model
- 3. Fine-tune the model based on a cost function

Data inspection

Dimensionality reduction

Visualization

Model choice

- k-Means
- Hierarchical Clustering
- Gaussian Mixtures
- Density-based Clustering
- •

Model fine-tuning

- Iterative process (on the data set, on the number of clusters, etc.)
- Cost functions:
- Intra-cluster proximity to center
- Inter-cluster distance
- Likelihood
- Intra-cluster density
- The cost functions can be used for model comparison

Principle

Principle

Principle

Principle

Principle

Principle

Principle

Principle

Principle

Process

- Choose the number k of clusters
- Attribute random positions to the k centroids
- Assign each data point to the closest centroid
- Recalculate the position of each centroid
- Repeat steps 3 and 4 until the centroids do not change position

Process

- Choice of distance: Euclidian, etc.
- Choice of k: e.g. through the Elbow Method:
- Compute the final WCSS (within-cluster sums of squares) a.k.a inertia distances between each point and its centroid for increasing values of k
- Stop increasing k when it stops providing significative WCSS reduction

Python implementation

Training a k-Means model for clustering:

```
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters = 5)
kmeans.fit(X)
```

• Predicting cluster attribution:

```
y_pred = kmeans.predict(X)
```

• Getting the coordinates of the cluster centers:

```
kmeans.cluster_centers_
```

Getting the WCSS of that model:

```
kmeans.inertia_
```

Principle

Construction of hierarchical clusters

- Dendrogram (agglomerative): starting from the leaves (the data points) and combining clusters up to the trunk
- Criteria of cluster similarity/proximity

- Dendrogram (agglomerative): starting from the leaves (the data points) and combining clusters up to the trunk
- Criteria of cluster similarity/proximity

- Dendogram (agglomerative): starting from the leaves (the data points) and combining clusters up to the trunk
- Criteria of cluster similarity/proximity

- Dendogram (agglomerative): starting from the leaves (the data points) and combining clusters up to the trunk
- Criteria of cluster similarity/proximity

- Dendogram (agglomerative): starting from the leaves (the data points) and combining clusters up to the trunk
- Criteria of cluster similarity/proximity

- Dendogram (agglomerative): starting from the leaves (the data points) and combining clusters up to the trunk
- Criteria of cluster similarity/proximity

- Dendogram (agglomerative): starting from the leaves (the data points) and combining clusters up to the trunk
- Criteria of cluster similarity/proximity

- Dendogram (agglomerative): starting from the leaves (the data points) and combining clusters up to the trunk
- Criteria of cluster similarity/proximity

- Dendogram (agglomerative): starting from the leaves (the data points) and combining clusters up to the trunk
- Criteria of cluster similarity/proximity

- Dendogram (agglomerative): starting from the leaves (the data points) and combining clusters up to the trunk
- Criteria of cluster similarity/proximity

Principle

• Horizontal cut to define k hierarchical clusters

Process

- Build the dendrogram:
 - Create one cluster for each data point
 - Compute the proximity matrix of the distances between each pair of clusters
 - Merge the two closest clusters
 - Update the proximity matrix
 - Repeat the two previous steps until only a single cluster remains
- Make a horizontal cut across the dendrogram (max value of intercluster distance). The distinct sets of observation beneath the cut can be interpreted as clusters.

Process

- Distance between clusters:
- Single linkage: minimum of the distances between all observations of the two sets
- Complete linkage: maximum distances between all observations of the two sets
- Average linkage: average of the distances of each observation of the two sets
- Centroid linkage: distance between cluster centroids
- Ward linkage: variance of the clusters being merged

Python implementation

Training a Hierarchical Clustering:

```
from sklearn.cluster import AgglomerativeClustering
hc = AgglomerativeClustering(n_clusters = 5, affinity = 'euclidean',
    linkage = 'average')
hc.fit(X)
```

Predicting cluster attribution:

```
y_pred = hc.predict(X)
```

• Plotting the dendogram:

```
from scipy.cluster import hierarchy
dendrogram = hierarchy.dendrogram(hierarchy.linkage(X, method = 'ward'))
```

K-MEANS & HIERARCHICAL CLUSTERING

Implementation

- Data set: mall customer information
- Objectives:
 - Use unsupervised techniques to find segments of customers
 - Check visually the results

K-MEANS & HIERARCHICAL CLUSTERING

Student practice

- Data set: Iris data set: characteristics of three species of iris.
- Objectives:
 - Train a k-Means and Hierarchical Clustering
 - Visualize the results
- Check all previous lectures and practices and list your questions.

