Probability Theory a rigorous treatment to probability theory and its applications to stochastic processes Khanh Nguyen August 2024

Chapter 0

Preliminaries

0.1 Linear Algebra

Proposition 1. Let $A \in \mathbb{R}^{n \times n}$, then A and A^T have the same eigenvalues

Chapter 1

Probability Theory

1.1 Minimal measure theory to fulfil this

1.1.1 Measurable Space

Definition 1 (σ -algebra, measurable space). Let X be a set. A σ -algebra Σ on X is a collection of subsets of X such that:

- 1. $\varnothing, X \in \Sigma$
- 2. $A \in \Sigma \implies X A \in \Sigma$
- 3. $E_1, E_2, \ldots \in \Sigma \implies \bigcup_{i=1}^{\infty} E_i \in \Sigma$

The pair (X, Σ) is called measurable space, and elements of Σ are called measurable set.

Definition 2 (σ -algebra generated by basis). Let X be a set and \mathcal{B} be a collection of subsets of X. Define $\sigma(B)$ by the smallest σ -algebra containing \mathcal{B} , that is, the intersection of all σ -algebras containing \mathcal{B} . (since intersection of arbitrary collection of σ -algebras is another σ -algebra, the definition is well-defined)

Definition 3 (product of measurable spaces, product σ -algebra). Let $\{(X_i, \Sigma_i)\}_{i \in I}$ be a collection of measurable spaces. Define the product of measurable spaces (X, Σ) by

$$X := \prod_{i \in I} X_i$$

$$\Sigma := \sigma \left(\prod_{i \in I} \Sigma_i \right)$$

where products are cartesian products. Σ is called product σ -algebra.

Definition 4 (measurable function, the category of measurable spaces). Let $(X, \Sigma_X), (Y, \Sigma_Y)$ be measurable spaces. A function $f: X \to Y$ is called measurable if for every measurable set E_Y in (Y, Σ_Y) , the preimage $f^{-1}E_Y$ is measurable in (X, Σ_X) . The pair measurable space, measurable function form a category called the category of measurable spaces denoted by Meas, the product in this category is precisely the product of measurable spaces.

Definition 5 (subspace). Let (X, Σ) be a measurable space and $A \in \Sigma$ be a measurable set. Then A induces a measurable space (A, Σ_A) defined by

$$\Sigma_A = \{ A \cap E : E \in \Sigma \}$$

1.1.2 Measure Space

Definition 6 (measure, measure space). Let (X, Σ) be a measurable space. A measure μ on (X, Σ) is a function $\mu : X \to [0, +\infty]$ such that

- 1. $\mu(\emptyset) = 0$
- 2. $\mu(\coprod_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$

where \coprod denotes the disjoint union. The triplet (X, Σ, μ) is called measure space.

Definition 7 (subspace). Let (X, Σ, μ) be a measure space and $A \in \Sigma$ be a measurable set. Then A induces a measure space (A, Σ_A, μ_A) defined by

$$\mu_A(E_A) = \mu(E \cap A)$$

where $E_A = E \cap A$

Definition 8 (measure-preserving map, the category of measure spaces). Let $f:(X, \Sigma_X, \mu_X) \to (Y, \Sigma_Y, \mu_Y)$ be a measurable function, f is called measure preserving-map if

 $\mu_X(f^{-1}E) = \mu_Y(E)$

for all $E \in \Sigma_Y$. The pair measure space and measure-preserving map form a category called the category of measure space.

Definition 9 (pushforward measure). Let $f:(X,\Sigma_X)\to (Y,\Sigma_Y)$ be a measurable function, and $\mu_X:\Sigma_X\to [0,+\infty]$ be a measure on X. The pushforward measure of μ_X by f is the unique measure μ_Y such that f is a measure-preserving map

Theorem 1 (change of variables). Let $\phi: (X, \Sigma_X, \mu_X) \to (Y, \Sigma_Y, \mu_Y)$ be a measure-preserving map. A measurable function $f: Y \to \mathbb{R}$ is integrable with respect to μ_Y if and only if the composition $f\phi$ is integrable with respect to μ_X , in that case, the integrals coincide

$$\int_{Y} \phi d\mu_{Y} = \int_{X} f \phi d\mu_{X}$$

$$(X, \Sigma_{X}, \mu_{X}) \xrightarrow{\phi} (Y, \Sigma_{Y}, \mu_{Y})$$

$$\downarrow^{f}$$

$$\mathbb{R}$$

Equivalently, ϕ induces an isomorphism ϕ_* in L^1 spaces that preserves integral, i.e. $\int_Y f d\mu_Y = \int_X \phi_*(f) d\mu_X$ defined by

$$\phi_*: L^1(Y, \Sigma_Y, \mu_Y) \to L^1(X, \Sigma_X, \mu_X)$$
$$f \mapsto \phi_*(f) = f\phi$$

1.2 Probability Spaces and Random Variables

1.2.1 Probability Space

Definition 10 (probability space). A probability space (Ω, \mathcal{F}, P) is a measure space such that $P(\Omega) = 1$. Ω is called sample space, measurable sets in \mathcal{F} are called events, P is called probability measure.

Definition 11 (independence of events). Let (Ω, \mathcal{F}, P) be a probability space, $\{E_i\}_{i \in I}$ be a collection of events. The collection is called independent if for any finite subcollection $J \subseteq I$

$$P\left(\bigcap_{j\in J} E_j\right) = \prod_{j\in J} P(E_j)$$

1.2.2 Random Variables

Definition 12 (pushforward probability space, random variable). Let (Ω, \mathcal{F}, P) be a probability space, $(\mathcal{X}, \mathcal{F}_X)$ be a measurable space, and $X : \Omega \to \mathcal{X}$ be a measurable function. Let $P_X : \mathcal{F}_X \to \mathbb{R}$ be the pushforward measure of X, then $(\mathcal{X}, \mathcal{F}_X, P_X)$ is another probability space. $(\mathcal{X}, \mathcal{F}_X, P_X)$ is called pushforward probability space, the measurable function X is called random variable, and the pushforward measure P_X is called probability distribution.

$$P_X: \mathcal{F}_X \to \mathbb{R}$$

 $E_X \mapsto P(X^{-1}E_X)$

If \mathcal{X} is the codomain of the random variable $X:\Omega\to\mathcal{X}$, we call X a random variable on \mathcal{X} .

Remark 1. :

• In probability theory, we usually start with the unique probability space (Ω, \mathcal{F}, P) , namely, abstract probability space, and all random variables are measurable functions from Ω . Denote the collection of all random variables $\Omega \to X$ by

$$RV[\mathcal{X}] := Hom((\Omega, \mathcal{F}), (\mathcal{X}, \mathcal{F}_X))$$

• Without confusion, we identify the two events $E_X \in \mathcal{F}_X$ with $E = X^{-1}E_X \in \mathcal{F}$ and write

$$P(E_X) := P_X(E_X)$$

Definition 13 (joint distribution). Let $\{X_i : \Omega \to \mathcal{X}_i\}_{i \in I}$ be a collection of random variables. Then, $X : \Omega \to \mathcal{X}$ is a random variable on the product of measurable spaces $\mathcal{X} = \prod_{i \in I} \mathcal{X}_i$ defined by

$$X(\omega) := \prod_{i \in I} X_i(\omega)$$

X is called the joint random variable, the probability distribution on X is called joint distribution.

Remark 2. Let $\{X_i : \Omega \to \mathcal{X}_i\}_{i \in I}$ be a collection of random variables, and X be the joint random variable. An $\tilde{E}_j = \prod_{i \in I} E_i$ be an event in X such that $E_i = \mathcal{X}_i$ for all but index j, that is, projections of \tilde{E}_j on all coordinates are the whole space except coordinate j. Then, we identify \tilde{E}_j by E_j .

Definition 14 (independence of random variables). Let $\{X_i : \Omega \to \mathcal{X}_i\}_{i \in I}$ be a collection of random variables, and X be the joint random variable. The collection is called (mutually) independent if every collection of events $\{E_i \in X_i\}_{i \in I}$ is independent.

Definition 15 (function on random variables). Let \mathcal{X}, \mathcal{Y} be measurable spaces, $X : \Omega \to \mathcal{X}$ be a random variable on X. Let $f : \mathcal{X} \to \mathcal{Y}$ be a measurable function. Then, f induces f a random variable on f defined by

$$f_* : \mathrm{RV}[\mathcal{X}] \to \mathrm{RV}[\mathcal{Y}]$$

 $X \mapsto f_*X = fX$

Conditioning should be introduced here, however, it is a difficult topic and I did not have enough maturity to write an abstract introduction to conditioning, so I will put conditioning after real-valued random variables. In short, conditioning on an event is to induce new probability measure

1.3 Real-Valued Random Variables

Assume \mathbb{R} is equipped with the Borel-algebra: the σ -algebra generated by open sets of the usual topology.

Definition 16 (real-valued random variable). A real-valued random variable $X:\Omega\to\mathbb{R}$ is a random variable on the measurable space \mathbb{R} . The collection of real-valued random variables is denoted by $\mathrm{RV}[\mathbb{R}]$

Proposition 2 (algebra over field). Since \mathbb{R} is a field, $RV[\mathbb{R}]$ is an algebra over \mathbb{R} with vector addition, and scalar multiplication, vector multiplication are defined by

- vector addition: $(X + Y)(\omega) = X(\omega) + Y(\omega)$
- scalar multiplication: $(cX)(\omega) = cX(\omega)$
- vector multiplication: $(XY)(\omega) = X(\omega)Y(\omega)$

Definition 17 (distribution function, absolutely continuous random variable). Let $X : \Omega \to \mathbb{R}$ be a real-valued random variable, define $F_X : \mathbb{R} \to [0,1]$ by

$$F_X(a) = P(X \le a)$$

 F_X is called distribution function of random variable X. X is called (absolutely) continuous if F_X is an absolutely continuous function. When X is continuous, there exists a L^1 function $f_X : \mathbb{R} \to \mathbb{R}$ so that

$$P(X \le a) = F_X(a) = \int_{-\infty}^a f_X(x)dx$$

 f_X is called density function.

From now, whenever we write f_X , we assume that X is continuous.

¹composition of measurable functions is measurable

1.3.1 Expectation and Variance of Real-Valued Random Variables

Expectation of Real-Valued Random Variables

Definition 18 (expectation). Let (Ω, \mathcal{F}, P) be a probability space and $X : \Omega \to \mathcal{X} = \mathbb{R}$ be a real-valued random variable. Define the expectation $\mathbb{E}[-] : \mathrm{RV}[\mathbb{R}] \to \mathbb{R}$ by

$$\mathbb{E}[X] := \int_{\Omega} X dP$$

$$:= \int_{\Omega} (\operatorname{id} X) dP \qquad \qquad (\operatorname{id} : \mathcal{X} = \mathbb{R} \to \mathbb{R})$$

$$= \int_{\mathbb{R}} \operatorname{id} dP_X \qquad \qquad (by \ change \ of \ variables \ w.r.t \ pushforward \ X)$$

$$= \int_{\mathbb{R}} x dP_X(x)$$

Proposition 3 (linearity of expectation). Expectation is a linear map $RV[\mathbb{R}] \to \mathbb{R}$. That is,

- $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- $\mathbb{E}[cX] = c\mathbb{E}[X]$

Proposition 4 (expectation of function on real-valued random variables). Let $f : \mathbb{R} \to \mathbb{R}$ be a real-valued measurable function, then

$$\mathbb{E}[fX] = \int_{\Omega} (fX)dP$$

$$= \int_{\mathbb{R}} f(x)dP_X(x) \qquad (by \ change \ of \ variables \ w.r.t \ pushforward \ X)$$

Proposition 5 (expectation of product of two independent random variables). Let X, Y be independent real-valued random variables, then

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

Proposition 6 (inner product space). RV[\mathbb{R}] is an inner product space over \mathbb{R} where the inner product is defined by

$$\langle X, Y \rangle = \mathbb{E}[XY]$$

Theorem 2 (Cauchy-Schwarz inequality). Since $RV[\mathbb{R}]$ is an inner product space over \mathbb{R} , then if X, Y are real-valued random variables, then

$$\mathbb{E}[XY]^2 < \mathbb{E}[X^2]\mathbb{E}[Y^2]$$

Theorem 3 (Markov inequality). Let $X: \Omega \to [0, +\infty)$, then for any a > 0, we have

$$P({X > a}) \le \frac{\mathbb{E}[X]}{a}$$

Proposition 7 (expectation as a sum of tail probabilities). If $X: \Omega \to \mathbb{N}$, then

$$\mathbb{E}[X] = \sum_{n=0}^{\infty} nP(X=n) = \sum_{n=0}^{\infty} P(X>n)$$

If $X: \Omega \to \mathbb{R}$, then

$$\mathbb{E}[X] = \int_{\mathbb{R}} x = \int_{0}^{\infty} P(X > a) da$$

Variance of Real-Valued Random Variables

Definition 19 (variance, p-th moment). Let $X: \Omega \to \mathbb{R}$. Define $\text{Var}: \text{RV}[\mathbb{R}] \to \mathbb{R}$ by

$$Var(X) := \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

 $\operatorname{Var}(X)$ is called variance of X, $\mathbb{E}[X^p]$ is called p-th moment of X, and $\mathbb{E}[|X|^p]$ is called p-th absolute moment of X

Definition 20 (Chebyshev inequality). Let $X : \Omega \to \mathbb{R}$, then for any a > 0

$$P(\{|X - \mathbb{E}[X]| > a\}) \le \frac{\operatorname{Var}(X)}{a^2}$$

Definition 21 (covariance, correlation). Let X,Y be real-valued random variables. Define the covariance $Cov : RV[\mathbb{R}] \times RV[\mathbb{R}] \to \mathbb{R}$ by

$$Cov(X,Y) := \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

Define the correlation Corr: $RV[\mathbb{R}] \times RV[\mathbb{R}] \rightarrow [-1, +1]$ by

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X) Var(Y)}}$$

Proposition 8. Given a collection $\{X_1, X_2, ..., X_n\}$ of real-valued random variables with finite second moments, i.e $\mathbb{E}[X_i^2] < \infty$, then

$$Var(X_1 + X_2 + ..., +X_n) = \sum_{i=1}^n \sum_{j=1}^n Cov(X_i, X_j) = \sum_{i=1}^n Var(X_i) + 2 \sum_{i,j \in [n] \times [n]: i < j} Cov(X_i, X_j)$$

START FROM HERE

1.3.2 Limit Theorems

Definition 22 (convergence). Let $(X_n)_{n\in\mathbb{N}}$ and X be real-valued random variables defined on the same probability space (Ω, F, P) with probability distribution $(\nu_n)_{n\in\mathbb{N}}$ and ν respectively.

1. $X_n \to X$ almost surely if there exists a subset $\Omega_1 \subseteq \Omega$ with $P(\Omega_1) = 1$ such that for all $\omega \in \Omega_1$, as $n \to \infty$

$$X_n(\omega) \to X(\omega)$$

2. $X_n \to X$ in probability if for all $\epsilon > 0$, as $n \to \infty$

$$P(|X_n - X| \ge \epsilon) \to 0$$

3. $X_n \to X$ in distribution (or $\nu_v \to \nu$ weakly) if for all a < b with $\nu(\{a\}) = \nu(\{b\}) = 0$

$$\nu_n(a,b) \to \nu(a,b)$$

Remark 3. Some remarks on convergence

- 1. almost surely convergence \implies convergence in probability \implies convergence in distribution
- 2. for any constant $c \in \mathbb{R}$, $X_n \to c$ in probability $\iff X_n \to c$ in distribution.
- 3. weak convergence of $\nu_n \to \nu$ is equivalent to

$$\int_{\mathbb{R}} f(x)d\nu_n \to \int f(x)d\nu$$

as $n \to \infty$ for all bounded (absolutely) continuous function $f : \mathbb{R} \to \mathbb{R}$. f is called test function.

4. $X_n \to X$ in distribution means exactly $\nu_n \to \nu$ weakly, and hence $(X_n)_{n \in \mathbb{N}}$ and X need not to be defined on the same probability space.

Theorem 4 (weak law of large numbers). Let $(X_i)_{i\in\mathbb{N}}$ be a sequence of i.i.d (independent and identically distributed) real-valued random variables. Assume that the mean $\mu = \mathbb{E}[X_1]$ finite. Let $\sigma = \sqrt{\operatorname{Var}(X_1)}$ and $S_n = \sum_{i=1}^n X_i$. Then the empirical average $\frac{S_n}{n} \to \mu$ in probability, i.e. for all $\epsilon > 0$, as $n \to \infty$

$$P\left(\left|\frac{S_n}{n} - \mu\right| > \epsilon\right) \to 0$$

Proof. Assume $\sigma < \infty^2$, by Chebyshev inequality for real-valued random variable $\frac{S_n}{n}$,

$$\begin{split} P\bigg(\bigg|\frac{S_n}{n}-\mu\bigg|>\epsilon\bigg) &\leq \frac{1}{\epsilon^2}\operatorname{Var}\bigg(\frac{S_n}{n}\bigg) \\ &= \frac{1}{\epsilon^2}\mathbb{E}\left[\bigg(\frac{S_n}{n}-\mu\bigg)^2\right] \\ &= \frac{1}{\epsilon^2}\mathbb{E}\left[\bigg(\frac{X_1+\ldots+X_n}{n}-\mu\bigg)^2\right] \\ &= \frac{1}{\epsilon^2}\mathbb{E}\left[\bigg(\frac{(X_1-\mu)+\ldots+(X_n-\mu)}{n}\bigg)^2\right] \\ &= \frac{1}{n^2\epsilon^2}\mathbb{E}\left[((X_1-\mu)+\ldots+(X_n-\mu))^2\right] \\ &= \frac{1}{n^2\epsilon^2}\bigg(\sum_{i=1}^n\mathbb{E}[(X_i-\mu)^2] + \sum_{(i,j)\in[n]\times[n]:i\neq j}\mathbb{E}[(X_i-\mu)(X_j-\mu)]\bigg) \\ &= \frac{1}{n^2\epsilon^2}\bigg(\sum_{i=1}^n\mathbb{E}[(X_i-\mu)^2] + \sum_{(i,j)\in[n]\times[n]:i\neq j}\mathbb{E}[X_i-\mu]\mathbb{E}[X_j-\mu]\bigg) \\ &= \frac{1}{n^2\epsilon^2}\sum_{i=1}^n\mathbb{E}[(X_i-\mu)^2] \\ &= \frac{1}{n^2\epsilon^2}\sum_{i=1}^n\mathbb{E}[(X_i-\mu)^2] \\ &= \frac{\operatorname{Var}(X_1)}{n\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \to 0 \end{split}$$

Theorem 5 (strong law of large numbers). Let $(X_i)_{i\in\mathbb{N}}$ be a sequence of i.i.d real-valued random variables with finite mean $\mu: \mathbb{E}[X_1] \in \mathbb{R}$. Then, almost surely

 $\left(\frac{S_n}{n}\right)_{n\in\mathbb{N}}\to\mu$

Lemma 1 (Borel-Cantelli). Let (Ω, F, P) be a probability space and $A_n \in F$ is a sequence of events. Then

- 1. if $\sum_{i=1}^{\infty} P(A_n) < \infty$ then almost surely A_n eventually stops occurring, i.e. there is $\Omega_0 \subseteq \Omega$ with $P(\Omega_0) = 1$ such that for all $\omega \in \Omega_0$, $\omega \notin A_n$ for all but finitely many n $P(A_n) \to 0$ as $n \to \infty$
- 2. if $(A_n)_{n\in\mathbb{N}}$ are independent and $\sum_{n=1}^{\infty}P(A_n)=\infty$ then almost surely A_n occur infinitely often, i.e. there is $\Omega_0\subseteq\Omega$ with $P(\Omega_0)=1$ such that for all $\omega\in\Omega_0$, $\omega\notin A_n$ for finitely many n

Sketch proof of strong law of large numbers. We will show that for each $\epsilon > 0$, let A_n be the event $\left\{ \left| \frac{S_n}{n} - \mu \right| > \epsilon \right\}$, then $\sum_{n=1}^{\infty} P(A_n) < \infty$. By Borel-Cantelli, for almost every $\omega \in \Omega$, the event A_n eventually stops occurring, hence

$$\limsup_{n \to \infty} \left| \frac{S_n(\omega)}{n} - \mu \right| \le \epsilon$$

for almost every $\omega \in \Omega$. Let $\Omega_{\epsilon} \subseteq \Omega$ be the set where it holds, $P(\Omega_{\epsilon}) = 1$. Choose a sequence $(\epsilon_i)_{i \in \mathbb{N}} \to 0$, take $\Omega_0 = \bigcap_{i=1}^{\infty} \Omega_{\epsilon_i}$

Theorem 6 (central limit theorem). Let $(X_i)_{i\in\mathbb{N}}$ be i.i.d random variables with finite mean μ and finite variance σ^2 and let $S_n = \sum_{i=1}^n X_i$ and $W_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$. Then W_n converges in distribution to a standard Gaussian random variable Z, that is, for all a < b, as $n \to \infty$

$$P(W_n \in [a, b]) \to P(Z \in [a, b]) = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

Theorem 7 (Poisson limit theorem - law of small numbers). For $n \in \mathbb{N}$, let $X_1, X_2, ..., X_n$ be independent Bernoulli random variables with $P(X_i = 1) = \frac{\lambda}{n}$ for some $\lambda > 0$ modelling the occurrence of n independent rare events Then, $S_n = \sum_{i=1}^n X_i$ is a random variable modelling the number of occurrences

As $n \to \infty$, S_n converges in distribution to $Pois(\lambda)$, i.e. for each $k = 0, 1, ..., as n \to \infty$

$$P(S_n = k) \to \left(e^{-\lambda} \frac{\lambda^k}{k!}\right)$$

²this simple proof is only for the case of finite second moment

Proof.

$$P(S_n = k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^k e^{(n-k)\log(1-\frac{\lambda}{n})}$$

$$= \left(\frac{n(n-1)...(n-k-1)}{n^k}\right) \left(\frac{\lambda^k}{k!} e^{(n-k)\left(-\frac{\lambda}{n} + o\left(\frac{\lambda}{n}\right)\right)}\right)$$

$$\to \frac{\lambda^k}{k!} e^{-\lambda}$$

Definition 23 (Fourier transform). Let X be a real-valued random variable with probability distribution μ . The Fourier transform of X is also called its characteristic function, is defined by

$$\phi(t) = \mathbb{E}[e^{itX}] = \int_{\mathbb{R}} e^{itx} d\mu(x)$$

Theorem 8. The Fourier transform satisfies the following properties

- 1. $\phi(t) \in \mathbb{C}$ with $|\phi(t)| \in [0,1]$ for all $t \in \mathbb{R}$ and $\phi(0) = 1$
- 2. ϕ determines the distribution of X with $\phi^{(k)}(0) = i^k \mathbb{E}[X^k]$
- 3. if $\phi_n(t) = \mathbb{E}[e^{itX_n}]$ and $\phi(t) = \mathbb{E}[e^{itX}]$, then $\phi_n \to \phi$ pointwise on [-a, +a] for some a > 0 implies $X_n \to X$ in distribution

Proof of central limit theorem. Suppose $\mu = 0, \sigma = 1$, let $\psi(t) = \mathbb{E}[e^{itX_1}]$. Then $\psi(0) = 1, \psi'(0) = 0$ and $\psi''(0) = -1$, Taylor theorem,

$$\psi(t) = 1 - \frac{t^2}{2} + o(t^2)$$

where $\frac{o(f(\epsilon))}{f(\epsilon)} \to 0$ as $\epsilon \to 0$ for any function f For any $t \in \mathbb{R}$,

$$\phi_n(t) = \mathbb{E}[e^{itW_n}]$$

$$= \mathbb{E}\left[e^{i\frac{t}{\sqrt{n}}\sum_{i=1}^n X_i}\right]$$

$$= \mathbb{E}\left[e^{i\frac{t}{\sqrt{n}}X_1}...e^{i\frac{t}{\sqrt{n}}X_n}\right]$$

$$= \mathbb{E}\left[e^{i\frac{t}{\sqrt{n}}X_1}\right]...\mathbb{E}\left[e^{i\frac{t}{\sqrt{n}}X_n}\right]$$

$$= \psi\left(\frac{t}{\sqrt{n}}\right)^n$$

$$= \left(1 - \frac{t^2}{2n} + o\left(\frac{1}{n}\right)\right)^n$$

$$= e^{n\log\left(1 - \frac{t^2}{2n} + o\left(\frac{1}{n}\right)\right)}$$

$$= e^{n\left[\left(-\frac{t^2}{2n} + o\left(\frac{1}{n}\right)\right) + o\left(-\frac{t^2}{2n} + o\left(\frac{1}{n}\right)\right)\right]}$$

$$\to e^{-\frac{t^2}{2}}$$

 $(X_i \text{ are independent})$

Since $\mathbb{E}[e^{itZ}] = e^{-\frac{t^2}{2}}$ is the characteristic function of standard Gaussian Z. So, $W_n \to Z$ in distribution.

Definition 24 (Laplace transform). Let X be non-negative real-valued random variable with probability distribution μ . Then the Laplace transform of X (or μ) is defined to be

$$\Lambda(\lambda) = \mathbb{E}[e^{-\lambda X}] = \int_0^\infty e^{-\lambda x} d\mu(x)$$

Definition 25 (generating function). Let X be a non-negative \mathbb{N} -valued random variable with probability mass function $p_n = P(X = n)$ for $n \in \{0, 1, ...\}$. Then the generating function of X (or p_n) is defined to be

$$G(s) = \mathbb{E}[s^X] = \sum_{n=0}^{\infty} s^n p_n$$

for $s \geq 0$ so that the sum converges

CONTINUE FROM HERE

1.4 Conditioning

1.4.1 Conditioning on Event

Definition 26 (conditioning on event, conditional probability, conditional probability space, conditional probability distribution). Let (Ω, \mathcal{F}, P) be a probability space and E be an event such that P(E) > 0, then E induces another probability space $(\Omega, \mathcal{F}, P(\cdot|E))$ where the probability measure $P(\cdot|E)$ is defined by

$$P(A|E) = \frac{P(A \cap E)}{P(E)}$$

P(A|E) is call conditional probability, $P(\cdot|E)$ is called conditional probability measure and $(\Omega, \mathcal{F}, P(\cdot|E))$ is called conditional probability space. If $X : \Omega \to \mathcal{X}$ is a random variable, conditioning on event E yields a new probability distribution, namely, conditional probability distribution $P_{X|E} = P(\{X \in \cdot\}|E) : \mathcal{F}_X \to \mathbb{R}$

$$P_{X|E}(E_X) = P(\{X \in E_X\}|E) = P(X^{-1}E_X|E) = \frac{P(X^{-1}E_X \cap E)}{P(E)}$$

Definition 27 (conditional expectation on event, conditional variance). Let X be a real-valued random variable on (Ω, F, P) and E is a event with P(E) > 0. Define the conditional expectation of X conditioned by event E by

$$\mathbb{E}[X|E] = \int_{\Omega} X dP(\cdot|E) = \frac{\mathbb{E}[X1_E]}{P(E)}$$

Define the conditional variance of X conditioned by event E by

$$Var(X|E) = \mathbb{E}[X^2|E] - \mathbb{E}[X|E]^2 = \mathbb{E}[(X - \mathbb{E}[X|E])^2|E]$$

1.4.2 Conditioning on Discrete Random Variable

Definition 28 (conditioning on discrete random variable). Let $X : \Omega \to \mathcal{X}$ be a random variable, $Y : \Omega \to \mathcal{Y}$ be a discrete random variable. Define $P(X|Y) : \mathcal{Y} \to \text{Hom}(\mathcal{F}_X, \mathbb{R})$ as a function from value in \mathcal{Y} to a distribution on \mathcal{X} by

$$P(X|Y): \mathcal{Y} \to \operatorname{Hom}(\mathcal{F}_X, \mathbb{R})$$

 $y \mapsto P(\{X \in \cdot\} | \{Y = y\})$

Definition 29 (conditional expectation on discrete random variable). Let $f : \text{Hom}(\mathcal{F}_X \to \mathbb{R}) \to \mathbb{R}$ be a real-valued function on distribution on \mathcal{X} (e.g expectation, variance). Then, the composition of $f \circ P(X|Y)$ is a function $\mathcal{Y} \to \mathbb{R}$. When f is expectation, we have

$$\mathbb{E}[X|Y]: \mathcal{Y} \to \mathbb{R}$$
$$y \mapsto \mathbb{E}[X|\{Y=y\}]$$

Proposition 9 (tower property of conditional expectation). When X is a real-valued random variables and Y is a discrete random variable, let $A \subseteq \mathcal{X}$ be an event, then $P(X \in A)$ can be recovered from P(X|Y) by

$$P(X \in A) = \sum_{y \in \mathcal{Y}} P(X \in A|Y = y)P(Y = y) = \mathbb{E}_Y[P(X \in A|Y)]$$

 $\mathbb{E}[X]$ can be recovered from $\mathbb{E}[X|Y]: \mathcal{Y} \to \mathbb{R}$ by

$$\mathbb{E}[X] = \sum_{y \in \mathcal{V}} \mathbb{E}[X1_{\{Y=y\}}] = \sum_{y \in \mathcal{V}} \mathbb{E}[X|Y]P(Y=y) = \mathbb{E}[\mathbb{E}[X|Y]]$$

More generally, let $f: \mathcal{X} = \mathbb{R} \to \mathbb{R}$, then

$$\mathbb{E}[f(X)] = \sum_{y \in \mathcal{Y}} \mathbb{E}[f(X) \mathbf{1}_{\{Y = y\}}] = \sum_{y \in \mathcal{Y}} \mathbb{E}[f(X)|Y] P(Y = y) = \mathbb{E}[\mathbb{E}[f(X)|Y]]$$

 $P(X \in -)$ is a mixture of conditional distributions $P(X \in -|Y = y)$ with mixture coefficients P(Y = y). $\mathbb{E}[X]$ is a mixture of conditional expectation $\mathbb{E}[X|Y = y]$ with mixture coefficients P(Y = y)

Remark 4 (marginal distribution on many variables). Let $\phi(X,Y)$ be a function of random variables which is itself another random variable. We can write

$$\mathbb{E}[\phi] = \mathbb{E}[\mathbb{E}[\phi|X]]$$

Now, $\psi = \mathbb{E}[\phi|X]$ is a random variable, then

$$\mathbb{E}[\phi] = \mathbb{E}[\mathbb{E}[\phi|X]] = \mathbb{E}[\psi] = \mathbb{E}[\mathbb{E}[\psi|Y]] = \mathbb{E}[\mathbb{E}[\mathbb{E}[\phi|X]|Y]]$$

1.4.3 Conditioning on Continuous Random Variable

Definition 30 (conditioning on continuous random variable). When both X, Y are continuous random variables on \mathbb{R} , define $P(X \in A|Y = y_0)$ and $E[X|Y = y_0]$ by the conditional density

$$f_X(x|Y = y_0) = \frac{f(x, y_0)}{\int_{\mathbb{R}} f(x, y_0) dx}$$

1.4.4 Conditioning on σ -Algebra

Definition 31 (conditioning on σ -algebra). Let $\mathcal{G} \subseteq \mathcal{F}$ be a sub- σ -algebra 3 in (Ω, \mathcal{F}, P) and $X : \Omega \to \mathcal{X}$ be a random variable. Define $P(X|\mathcal{G}) : \mathcal{G} \to \operatorname{Hom}(\mathcal{F}_X, \mathbb{R})$ as a function from events in \mathcal{G} to a distribution on \mathcal{X} by

$$P(X|\mathcal{G}): \mathcal{G} \to \operatorname{Hom}(\mathcal{F}_X, \mathbb{R})$$

 $E_{\mathcal{G}} \mapsto P(\{X \in \cdot\} | E_{\mathcal{G}})$

When \mathcal{G} is countable (discrete random variable), the set function $P(X|\mathcal{G}):\mathcal{G}\to \mathrm{Hom}(\mathcal{F}_X,\mathbb{R})$ can be characterized by a function

$$\Omega \to \operatorname{Hom}(\mathcal{F}_X, \mathbb{R})$$

 $g \mapsto P(\{X \in \cdot\} | G)$

where $G \in \mathcal{G}$ is the smallest set in \mathcal{G} containing g, the smallest set in \mathcal{G} containing g is the intersection of all events in \mathcal{G} containing g. This is coincide with the discrete random variable case.

Remark 5 (conditional expectation on σ -algebra). When X is a real-valued random variable, we have the conditional expectation

$$\mathbb{E}[X|\mathcal{G}]: \mathcal{G} \to \mathbb{R}$$
$$G \mapsto \mathbb{E}[X|G]$$

If \mathcal{G} is countable, then the set function $\mathbb{E}[X|\mathcal{G}]:\mathcal{G}\to\mathbb{R}$ can be characterized by a function

$$\Omega \to \mathbb{R}$$
$$g \mapsto \mathbb{E}[X|G]$$

where $G \in \mathcal{G}$ is the smallest set in \mathcal{G} containing g

Proposition 10 (tower property of conditional expectation). Let $\mathcal{H} \subseteq \mathcal{G}$ be sub- σ -algebras in (Ω, \mathcal{F}, P) and $X : \Omega \to \mathbb{R}$ be a real-valued random variable. Then,

$$\mathbb{E}[X|\mathcal{H}] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}]$$

 $^{^3 \}mathrm{a}~\sigma\text{-algebra}$ that is a subset

Chapter 2

Time-Homogeneous Markov Chain

In this chapter, all Markov chains are time-homogeneous

2.1 Markov Chain Basics

Definition 32 (time-homogeneous Markov chain). A stochastic process $X = (X_n)_{n \in \mathbb{N}_0}$ with countable state space S is called a Markov chain if

$$P(X_{n+1} = y | X_0 = x_0, ..., X_n = x_n) = P(X_{n+1} = y | X_n = x_n)$$

for all $n \in \mathbb{N}_0$. If $P(X_{n+1} = y | X_n = x_n) = P(X_1 = y | X_0 = x)$ for all $n \in \mathbb{N}_0$, then X is called time-homogeneous, in that case we define $\Pi: S \times S \to \mathbb{R}$

$$\Pi(x,y) = P(X_1 = y | X_0 = x)$$

 Π is called transition probability matrix. When S is finite, Π is a right stochastic matrix, that is, all elements are non-negative and sum of every row is 1

Remark 6 (n-step). Let $\Pi^n: S \times S \to \mathbb{R}$ be defined by

$$\Pi^{n}(x,y) = P(X_{n} = y | X_{0} = x) = \sum_{(x=z_{0}, z_{1}, \dots, z_{n} = y)} \Pi(z_{0}, z_{1}) \Pi(z_{1}, z_{2}) \dots \Pi(z_{n-1}, z_{n})$$

where the sum is over all possible path $(x = z_0, z_1, ..., z_n = y)$ of length n. Π^n is also a right stochastic matrix.

Proposition 11 (Π acting on row vector). Let X be a time-homogeneous Markov chain with countable state space S and $\mu: S \to \mathbb{R}$ be a distribution for X_0 , then the distribution of X_n , denoted by $\mu_n: S \to \mathbb{R}$ is

$$\mu_n(y) = P(X_n = y) = \sum_{x \in S} P(X_n = y, X_0 = x) = \sum_{x \in S} \mu_0(x) \Pi^n(x, y)$$

If S is finite, we can write it in matrix form $\mu_n = \mu_0 \Pi^n$

$$\operatorname{Hom}(S,\mathbb{R}) \times \operatorname{Hom}(S \times S,\mathbb{R}) \to \operatorname{Hom}(S,\mathbb{R})$$

 $(\mu_0,\Pi^n) \mapsto \mu_n = \mu_0 \Pi^n$

Proposition 12 (Π acting on column vector). Let $f: S \to \mathbb{R}$ be a function on random variable X which is also a linear function on S. Let $\Pi^n f: S \to \mathbb{R}$ be defined by

$$(\Pi^n f)(x) = \mathbb{E}[f(X_n)|X_0 = x] = \sum_{y \in S} \Pi^n(x, y) f(y)$$

If S is finite, we can write it in matrix form $\Pi^n f$

$$\operatorname{Hom}(S \times S, \mathbb{R}) \times \operatorname{Hom}(S, \mathbb{R}) \to \operatorname{Hom}(S, \mathbb{R})$$

$$(\Pi^n, f) \mapsto \Pi^n f$$

Proposition 13 (stationary measure). Since $1: S \to \mathbb{R}$ is a right eigenvector of Π with eigenvalue 1, Π also has a left eigenvector with eigenvalue 1. In other words, there exists a measure $\nu: S \to \mathbb{R}$ such that $\nu\Pi = \nu$, such ν is called stationary measure

Proposition 14 (spectrum of Π). All complex eigenvalues of Π have norm less than or equal 1

Proof. Let (λ, g) be a right eigenvalue eigenvector of Π where $\lambda \in \mathbb{C}$, $g: S \to \mathbb{C}$. Suppose S is finite and |g(x)| achieves maximum at x_0 , then

$$|\lambda||g(x_0)| = |\lambda g(x_0)| = |(\Pi g)(x_0)| = \left| \sum_{y \in S} \Pi(x_0, y) g(y) \right| \le \left| \sum_{y \in S} \Pi(x_0, y) \right| |g(x_0)| = |g(x_0)|$$

That is, $|\lambda| \leq 1$

Proposition 15 (intercommunicating states). Let S be the state space, two states $x, y \in S$ are called intercommunicate, denoted by $x \sim y$ if there exist $m, n \in \mathbb{N}_0$ such that

$$P(X_m = y | X_0 = x) > 0$$

 $P(X_n = x | X_0 = y) > 0$

The relation is an equivalence relation that partitions the state space S into equivalence classes of intercommunicating.

Definition 33 (irreducible Markov chain). A time-homogeneous Markov chain is irreducible if S is a single equivalence class with respect to intercommunicating intercommunicating equivalence relation \sim

2.2 Recurrence Transience

Remark 7 (notation). Given a stochastic process $X = (X_0, X_1, ...)$, let E be any event and Y be a random variable, then we write

$$P_x(E) = P(E|X_0 = x)$$

$$\mathbb{E}_x[Y] = \mathbb{E}[Y|X_0 = x]$$

Definition 34 $(T_x^k, f_{xy}, N_x, G(x, y))$. Let X be a stochastic process with countable state space S, define the following:

1. Let $T_x^0 = 0$, for any k > 0, let T_x^k be the random variable modelling the time when X visits x at the k-th time, that is,

$$T_x^k = \min\{n \in \mathbb{N}_0 : n > T_y^{k-1}, X_n = x\}$$

2. Let f_{xy} be the probability that X visits y in finite time given $X_0 = x$, that is,

$$f_{xy} = P_x(T_y^1 < \infty)$$

3. Let N_x be the random variable modelling the number of visiting state x, that is

$$N_x = \sum_{n=0}^{\infty} 1_{\{X_n = x\}}$$

4. Let G(x,y) be the expected number of visiting y given $X_0 = x$, that is

$$G(x,y) = \mathbb{E}_x[N_y]$$

Definition 35 (recurrence transience). Let X be a stochastic process with countable state space S. A state $x \in X$ is called recurrent if $f_{xx} = 1$ and called transient if $f_{xx} < 1$

Proposition 16 (expected number of visits for irreducible Markov chain). Let X be a time-homogeneous irreducible Markov chain with countable state space S. Let $X_0 = x$, the the expected number of visiting x is

$$G(x,x) = \frac{1}{1 - f_{xx}}$$

Proof. We will show that N_x is a geometric random variable with parameter $p = 1 - f_{xx}$. For each k > 0, we have

$$P_x(N_x = k) = P_x(T_x^{k-1} < \infty, T_x^k = \infty)$$

$$P_x(N_x \ge k) = P_x(T_x^{k-1} < \infty)$$

We have

$$\begin{split} &P_x(N_x \geq k) - P_x(N_x \geq k + 1) \\ &= P_x(N_x = k) \\ &= P_x(T_x^{k-1} < \infty, T_x^k = \infty) \\ &= \sum_{n=0}^{\infty} P_x(T_x^{k-1} = n, T_x^k = \infty) \\ &= \sum_{n=0}^{\infty} P_x(T_x^{k-1} = n) P_x(T_x^k = \infty | T_x^{k-1} = n) \\ &= \sum_{n=0}^{\infty} P_x(T_x^{k-1} = n) P_x(T_x^1 = \infty | T_x^0 = n) \\ &= \sum_{n=0}^{\infty} P_x(T_x^{k-1} = n) P(T_x^1 = \infty | X_0 = x) \\ &= \sum_{n=0}^{\infty} P_x(T_x^{k-1} = n) (1 - f_{xx}) \\ &= (1 - f_{xx}) \sum_{n=0}^{\infty} P_x(T_x^{k-1} = n) \\ &= (1 - f_{xx}) P_x(T_x^{k-1} < \infty) \\ &= (1 - f_{xx}) P_x(N_x \geq k) \end{split}$$
 (time-homogeneous)

Therefore,

$$P_x(N_x \ge k) = f_{xx}^k \text{ and } P_x(N_x = k) = f_{xx}^k(1 - f_{xx})$$

Proposition 17 (recurrence transience as a class property). Let $x, y \in S$ be two inter-communicating states. Then, x, y are either both transient or both recurrent

Proof. It suffices to show that $G(x,x)=\infty$ if and only if $G(y,y)=\infty$. By assuming $x\sim y$, there exists $k,l\in\mathbb{N}$ such that

$$\Pi^{k}(x,y) > 0 \text{ and } \Pi^{l}(y,x) > 0$$

Note that, for all $n \in \mathbb{N}_0$, we have the probability of starting from x then coming back to x after k+n+l steps is greater than probability of starting from x, going to y in k steps, staying in y in n steps, then coming back to x in l steps, that is

$$\Pi^{k+l+n}(x,x) \ge \Pi^k(x,y)\Pi^n(y,y)\Pi^l y, x$$

Summing over $n \in \mathbb{N}_0$, we have

$$\begin{split} G(x,x) &= \mathbb{E}_x \Bigg[\sum_{m=0}^\infty \mathbf{1}_{\{X_m = x\}} \Bigg] \\ &= \sum_{m=0}^\infty \Pi^m(x,x) \\ &\geq \sum_{m=k+l}^\infty \Pi^m(x,x) \\ &\geq \sum_{n=0}^\infty \Pi^k(x,y) \Pi^n(y,y) \Pi^l(y,z) \\ &= \Pi^k(x,y) \Pi^l(y,z) \sum_{n=0}^\infty \Pi^n(y,y) \\ &= \Pi^k(x,y) \Pi^l(y,z) G(y,y) \end{split}$$

Therefore, $G(y,y) = \infty$ implies $G(x,x) = \infty$

Definition 36 (recurrent transient Markov chain). A time-homogeneous irreducible Markov chain with countable state space is called recurrent/transient if its states are recurrent/transient

Corollary 1 (irreducible finite state Markov chain). A time-homogeneous irreducible Markov chains with finite state space are recurrent

Proof. Since Markov chain is finite, there is at least one state with expected number of visits being infinity, that state is recurrent. Moreover, irreducibility implies every other state is inter-communicating with the recurrent state, therefore, all states are recurrent.

Proposition 18. Let X be a time-homogeneous irreducible Markov chain with countable state space S. Then,

- 1. If X is recurrent, then $P(N_x = \infty) = 1$ for all $x \in S$ and $G(x, y) = \infty$ for all $x, y \in S$.
- 2. If X is transient, then $P(N_x < \infty) = 1$ for all $x \in S$ and $G(x,y) < \infty$ for all $x,y \in S$

Proof. Since the distribution of $X = (X_n)_{n \in \mathbb{N}_0}$ is a mixture with different starting position, i.e. for any event E

$$P(E) = \sum_{x \in S} \mu(x) P_x(E)$$

It suffices to prove for the case when X starts from any state $s \in S$.

1. X is recurrent

For any $y \in S$, since X returns to x infinitely many times, let $X_n = x$, by irreducibility, there exists $m \in \mathbb{N}$ such that

$$P(X_{n+m} = y | X_n = x) = \Pi^m(x, y) \ge 0$$

Therefore, everytime X visits x, there is a positive probability X visits $y \in S$, that is, visiting y is a sequence of i.i.d Bernoulli random variables of positive parameter. Hence, number of visits y is infinite. Then, $G(x, y) = \infty$

2. X is transient

Probability of starting from x, going to y in m steps, then going back to x in p steps is less than probability of starting from x and going back to x in n = m + p steps.

$$G(x,x) = \sum_{n=0}^{\infty} \Pi^n(x,x)$$

$$\geq \sum_{n=m}^{\infty} \Pi^n(x,x)$$

$$\geq \sum_{p=0}^{\infty} \Pi(x,y)^m \Pi^p(y,x)$$

$$= \Pi(x,y)^m \sum_{p=0}^{\infty} \Pi^p(y,x)$$

$$= \Pi(x,y)^m G(y,x)$$

Hence, G(x,x) is finite implies G(y,x) is finite. G(y,x) finite implies $P_y(N_x=\infty)=0$

Remark 8 (transient - escape to infinity). In the transient case, X escape to infinity with probability 1 in the following sense: For any finite set of states F, with probability 1

$$\max\{n \in \mathbb{N} : X_n \in F\} < \infty$$

Proposition 19 (escaping from a finite set). Let X be an irreducible Markov chain with countable state space S. Let $F \subseteq S$ be a finite, and $T_{F^c} = T_{F^c}(X) = \min\{n \geq 0 : X_n \notin F\}$ be the first time X exits from F. Then there exists C > 0 and $\rho \in (0,1)$ such that for all $n \in \mathbb{N}_0$ and all initial distributions

$$P(T_{F^c}(X) > n) \le C\rho^n$$

Proof. Let $\rho \in [0,1]$ be defined by

$$\rho = \max\{P(X_1 = y | X_0 = x) : y \in F, x \in F\}$$

We can assume $\rho < 1$ since if $P(X_1 = y | X_0 = x) = 1$, as F is finite, we can merge two states x, y into a new state and the merging process terminates with $\rho < 1$ and a finite set of states F. Then

$$P(T_{F^c}(X) > n) = P(X_0 \in F, X_1 \in F, ..., X_n \in F)$$

$$= P(X_0 \in F) \prod_{i=0}^{n} P(X_{i+1} \in F | X_i \in F)$$

$$\leq P(X_0 \in F) \rho^{n-1}$$

Theorem 9 (Pólya 1921). The symmetric random walk on \mathbb{Z}^d is recurrent in dimension d=1,2 and transient in $d\geq 3$

CONTINUE FROM HERE

2.3 Stationary Measure

Proposition 20 (limiting distribution of transient Markov chain). Let X be an irreducible transient Markov chain. Then for all $x, y \in S$,

$$\Pi^n(x,y) \to 0$$

as $n \to \infty$. Consequently, for any initial distribution, $P(X_n = y) \to 0$ for all $y \in S$

Proof. Since X is transient, for any $x, y \in S$

$$G(x,y) = \sum_{n=0}^{\infty} \Pi^{n}(x,y) < \infty$$

Then, $\Pi^n(x,y) \to 0$ as $n \to \infty$.

Definition 37 (stationary distribution, stationary measure). Let X be a Markov chain with countable state space S and transition matrix Π . A probability distribution μ on S is called stationary distribution for X if

$$\sum_{x \in S} \mu(x)\Pi(x,y) = \mu(y)$$

for all $y \in S$. That is, $\mu\Pi = \mu$. In other words, if X_0 has distribution μ , then X_1 also has distribution μ , hence so do X_2, X_3, \ldots In general, any $\nu : S \to [0, +\infty)$ with $\nu\Pi = \nu$ and $\sum_{x \in S} \nu(x) \in (0, +\infty]$ is called stationary measure for X

2.4 Positive Recurrence, Null Recurrence, Existence of Stationary Measure

Definition 38 (positive recurrent Markov chain, null recurrent Markov chain). Let X be an irreducible Markov chain with countable state space S. Let $T_x = T_x^1$, we call X positive recurrent if $\mathbb{E}_x[T_x] < \infty$ for all $x \in S$ and null recurrent if $\mathbb{E}_x[T_x] = \infty$ for all $x \in S$.

Proposition 21 (positive recurrence and positive recurrence as a class property). If x and y are two intercommunicating recurrent states, then they are either both positive recurrent or both null recurrent.

Theorem 10 (existence of stationary measure for recurrence Markov chain). Let X be an irreducible recurrent Markov chain with state space S. For each $x \in S$,

$$\nu(y) = \mathbb{E}_x \left[\sum_{n=0}^{T_x - 1} 1_{\{X_n = y\}} \right] = \mathbb{E}_x \left[\sum_{n=0}^{\infty} 1_{\{X_n = y\}} 1_{\{n < T_x\}} \right] = \sum_{n=0}^{\infty} \mathbb{E}_x [1_{\{X_n = y, n < T_x\}}] = \sum_{n=0}^{\infty} P_x(X_n = y, n < T_x)$$

is a stationary measure. If X is positive recurrent, then we can normalize ν to a stationary distribution.

Proof. The technique is called cycle trick (need to redo). It suffices to show that $\sum_{z \in S} \nu(z) \Pi(z, y) = \nu(y)$ for all $y \in S$. We have

Case 1: $y \neq x$

$$\begin{split} \nu(y) \\ &= \sum_{n=0}^{\infty} P_x(X_n = y, n < T_x) \\ &= \sum_{n=1}^{\infty} P_x(X_n = y, n < T_x) \\ &= \sum_{n=1}^{\infty} \sum_{z \in S} P_x(X_{n-1} = z, X_n = y, n < T_x) \\ &= \sum_{n=1}^{\infty} \sum_{z \in S} P_x(X_{n-1} = z, X_n = y, n < T_x) \\ &= \sum_{z \in S} \sum_{n=1}^{\infty} P_x(X_{n-1} = z, X_n = y, n < T_x) \\ &= \sum_{z \in S} \sum_{n=1}^{\infty} P_x(X_{n-1} = z, X_n = y, n - 1 < T_x) \\ &= \sum_{z \in S} \sum_{n=1}^{\infty} P_x(X_{n-1} = z, n - 1 < T_x) P_x(X_n = y | X_{n-1} = z, n - 1 < T_x) \\ &= \sum_{z \in S} \sum_{n=1}^{\infty} P_x(X_{n-1} = z, n - 1 < T_x) P_x(X_n = y | X_{n-1} = z) \\ &= \sum_{z \in S} \prod_{n=1}^{\infty} P_x(X_{n-1} = z, n - 1 < T_x) \\ &= \sum_{z \in S} \prod_{n=1}^{\infty} P_x(X_{n-1} = z, n - 1 < T_x) \\ &= \sum_{z \in S} \prod_{n=1}^{\infty} P_x(X_{n-1} = z, n - 1 < T_x) \\ &= \sum_{z \in S} \prod_{n=1}^{\infty} P_x(X_{n-1} = z, n - 1 < T_x) \end{aligned}$$

Case 2: y = x

$$\begin{split} \nu(x) \\ &= \sum_{n=0}^{\infty} P_x(X_n = x, n < T_x) \\ &= 1 \\ &= \sum_{n=1}^{\infty} P_x(n = T_x) \\ &= \sum_{n=1}^{\infty} \sum_{z \in S} P_x(X_{n-1} = z, n = T_x) \\ &= \sum_{z \in S} \sum_{n=1}^{\infty} P_x(X_{n-1} = z, n = T_x) \\ &= \sum_{z \in S} \sum_{n=1}^{\infty} P_x(X_{n-1} = z, x_n = x, n - 1 < T_x) \\ &= \sum_{z \in S} \sum_{n=1}^{\infty} P_x(X_{n-1} = z, x_n = x, n - 1 < T_x) \\ &= \sum_{z \in S} \sum_{n=1}^{\infty} P_x(X_{n-1} = z, n - 1 < T_x) P_x(X_n = x | X_{n-1} = z, n - 1 < T_x) \\ &= \sum_{z \in S} \sum_{n=1}^{\infty} P_x(X_{n-1} = z, n - 1 < T_x) P_x(X_n = x | X_{n-1} = z) \\ &= \sum_{z \in S} \prod_{n=1}^{\infty} (z, x) \sum_{n=1}^{\infty} P_x(X_{n-1} = z, n - 1 < T_x) \\ &= \sum_{z \in S} \prod_{n=1}^{\infty} (z, x) \sum_{n=1}^{\infty} P_x(X_{n-1} = z, n - 1 < T_x) \\ &= \sum_{z \in S} \prod_{n=1}^{\infty} (z, x) \nu(z) \end{split}$$

Hence, ν is stationary.

Theorem 11 (uniqueness of stationary measure for recurrent Markov chain). Let X be a recurrent Markov chain and $\nu: S \to \mathbb{R}$ be defined by

$$\nu(y) = \mathbb{E}_x \left[\sum_{n=0}^{T_x - 1} 1_{\{X_n = y\}} \right] = \sum_{n=0}^{\infty} P_x(X_n = y, n < T_x)$$

Then if $\tilde{\nu}: S \to \mathbb{R}$ is another stationary measure for X, then there exists $C \in \mathbb{R}$ such that $\tilde{\nu}(y) = C\nu(y)$ for all $y \in S$ Proof. Without loss of generality, assume $\tilde{\nu}(x) = 1$ we will prove that $\tilde{\nu}(y) = \nu(y)$. By stationary of $\tilde{\nu}$, we have

$$\tilde{\nu}(y) = \sum_{z_1 \in S} \tilde{\nu}(z_1) \Pi(z_1, y) = \Pi(x, y) + \sum_{z_1 \neq x} \tilde{\nu}(z_1) \Pi(z_1, y)$$

Apply the same decomposition for z_1

$$\begin{split} &\tilde{\nu}(y) \\ &= \Pi(x,y) + \sum_{z_1 \neq x} \tilde{\nu}(z_1) \Pi(z_1,y) \\ &= \Pi(x,y) + \sum_{z_1 \neq x} \left(\Pi(x,z_1) + \sum_{z_2 \neq x} \tilde{\nu}(z_2) \Pi(z_2,z_1) \right) \Pi(z_1,y) \\ &= \Pi(x,y) + \sum_{z_1 \neq x} \Pi(x,z_1) \Pi(z_1,y) + \sum_{z_1 \neq x} \sum_{z_2 \neq x} \tilde{\nu}(z_2) \Pi(z_2,z_1) \Pi(z_1,y) \\ &= \Pi(x,y) + P_x(X_2 = y, X_1 \neq x) + \sum_{z_1 \neq x} \sum_{z_2 \neq x} \tilde{\nu}(z_2) \Pi(z_2,z_1) \Pi(z_1,y) \end{split}$$

TODO - finish this later

2.5 Long Time Limit of Markov Chain

Remark 9. For transient Markov chain, we have shown that $\Pi^n(x,y) = P_x(X_n = y) \to 0$ as $n \to \infty$ for all $x,y \in S$

Definition 39 (period of an irreducible Markov chain). Let X be an irreducible Markov chain with state space S and transition matrix Π . The period $r_x \in \mathbb{N}$ of a state x is defined by

$$\gcd\{n \in \mathbb{N} : \Pi^n(x,x) > 0\}$$

It can be shown that $r_x = r_y$ for all $x, y \in S$. Hence, the period $r \in \mathbb{N}$ of X is defined by the period of any $x \in S$. A Markov chain is called periodic if $r \geq 2$ and aperiodic if r = 1

Remark 10 (cyclic structure of periodic Markov chain). For a periodic Markov chain with period r, we can divide the state space S into r equivalence classes $S_1, S_2, ..., S_r$. Let $i \in [r]$, for any state in S_i , the only transition possible is to another state in S_{i+1} (where $S_{r+1} = S_1$). If we define $Y_n = X_{nr}$, then Y is an aperiodic Markov chain with state space S_i where $Y_0 \in S_i$. Therefore, any periodic Markov chain can be broken down to aperiodic Markov chains.

Theorem 12 (long time limit of aperiodic positive recurrent Markov chain). Let X be a aperiodic positive recurrent Markov chain with state space S and transition matrix Π . Let μ denote the unique stationary distribution. Then for any initial distribution μ_0 , X_n converges to μ in distribution, that is

$$P_{\mu_0}(X_n = y) \to \mu(y)$$

as $n \to \infty$ for all $y \in S$

Proof. TODO- coupling

Theorem 13 (long time limit of null recurrent Markov chain). Let X be a null recurrent Markov chain with state space S, then

$$\Pi^n(x,y) \to 0$$

as $n \to \infty$ for any $x, y \in S$. Hence, for any initial distribution μ_0 ,

$$P_{\mu_0}(X_n=y)\to 0$$

as $n \to \infty$ for any $y \in S$

2.6 Renewal Process

Definition 40 (discrete renewal process). A discrete renewal process τ is a sequence of \mathbb{N}_0 -valued random variable $(\tau_n)_{n\in\mathbb{N}_0}$ where $\tau_0 = 0$ and $(\tau_n - \tau_{n-1})_{n\in\mathbb{N}}$ are i.i.d $\mathbb{N} \cup \{\infty\}$ -valued random variables with probability mass function $f(k) = P(\tau_1 = k)$ for $k \in \mathbb{N} \cup \{\infty\}$. That is, the distribution of increments is fixed.

Remark 11. The natural interpretation of $(\tau_n)_{n\in\mathbb{N}_0}$ is the collection of times when we change the light bulb such that light bulbs have i.i.d random lifetimes with probability mass function f

Remark 12. Given a Markov chain $(X_n)_{n\in\mathbb{N}_0}$ with $X_0=x$, the sequence T_x^m for $m\in\mathbb{N}_0$ is a renewal process where $f(\infty)>0$ if and only if x is transient.

Remark 13 (discussion on the Markov chain of renewal process). $\Pi(n, n-1) = 1$, $\Pi(0, k-1) = f(k)$

Theorem 14 (renewal theorem). Let τ be a discrete renewal process, if τ is transcient, that is, $f(\infty) > 0$ or null recurrent that is $f(\infty) = 0$ and $\sum_{k \in \mathbb{N}} k f(k) = \infty$, then

$$P(n \in \tau) = P(n \in \{\tau_1, \tau_2, ...\}) \to 0$$

as $n \to \infty$. If τ is positive recurrent that is $f(\infty) = 0$ and $\sum_{k \in \mathbb{N}} k f(k) < \infty$, and τ is aperiodic, that is, $r = \gcd(n : f(n) > 0) = 1$, then

$$P(n \in \tau) = P(n \in \{\tau_1, \tau_2, ...\}) \to \frac{1}{\sum_{k \in \mathbb{N}} k f(k)}$$

 $as n \to \infty$

2.7 Reversible Measure, Reversible Markov Chain

Definition 41 (reversible measure, reversible Markov chain). Let X be a Markov chain with state space S and transition matrix Π . A measure $\nu: S \to \mathbb{R}$ is a reversible measure of X if

$$\nu(x)\Pi(x,y) = \nu(y)\Pi(y,x)$$

for all $x, y \in S$. The condition is called detailed balance. A Markov chain is called reversible if it has a reversible measure.

Remark 14. A reversible measure ν must be stationary, since

$$\nu(x) = \sum_{y \in S} \nu(x) \Pi(x,y) = \sum_{y \in S} \nu(y) \Pi(y,x)$$

If we interpret a distribution as the distribution of masses over all states, then each time step, masses are transferred. Stationary means for each state, the in-mass equals the out-mass. Reversibility means for each pair of state x, y, the mass $x \to y$ equals the mass $y \to x$

Proposition 22 (time reversibility). Let ν be a reversible distribution of a Markov chain X. If X_0 has distribution ν , then $(X_0,...,X_n)$ has the same distribution as its time reversal $(X_n,...,X_0)$, that is

$$P_{\nu}(X_0 = x_0, ..., X_n = x_n) = P_{\nu}(X_0 = x_n, ..., X_n = x_0)$$

Moreover, if given a stationary measure ν , $(X_0,...,X_n)$ has the same distribution as its time reversal $(X_n,...,X_0)$, then ν is reversible.

Proof. TODO

Theorem 15 (loop condition for reversibility). An irreducible Markov chain is reversible if and only if the transition matrix Π satisfies the loop condition, that is, given $x \in S$,

$$\frac{\Pi(x_0, x_1)}{\Pi(x_1, x_0)} \cdots \frac{\Pi(x_{n-1}, x_n)}{\Pi(x_n, x_{n-1})} = 1$$

for all path $(x = x_0, x_1, ..., x_{n-1}, x_n = x)$. In that case, we can construct a stationary measure by

$$\nu(y) = \nu(x) \frac{\Pi(y_0, y_1)}{\Pi(y_1, y_0)} ... \frac{\Pi(y_{n-1}, y_n)}{\Pi(y_n, y_{n-1})}$$

for a path $(y = y_0, y_1, ..., y_{n-1}, y_n = x)$

Proof. TODO

Remark 15 (reversible Markov chain as random walk on electric network). Any reversible MC can be seen as a random walk on a graph G = (V, E) with V = S and $(x, y) \in E$ if $\Pi(x, y) > 0$ with conductance C(x, y) where

$$C(x,y) = \nu(x)\Pi(x,y)$$

with $\nu: S \to \mathbb{R}$ is a stationary measure

$$\nu(x) = \sum_{(x,z) \in E} C(x,z)$$

2.8 Hitting Probability, Expected Hitting Time

Given a Markov chain X with state space S, let $A, B \subseteq S$ be two disjoint subsets of S, let $T_A = \min(n \ge 0 : X_n \in A)$, $T_B = \min(n \ge 0 : X_n \in B)$ be the first times the Markov chain visiting A and B.

2.8.1 Hitting Probability

Let

$$f(x) = P_x(T_A < T_B)$$

be the probability of hitting A before B. The boundary conditions are for every $x \in A$, f(x) = 1, for every $x \in B$, f(x) = 0. If $x \notin A \cup B$, then

$$\begin{split} f(x) &= P_x(T_A < T_B) \\ &= \sum_{y \in S} P_x(X_1 = y, T_A < T_B) \\ &= \sum_{y \in S} P_x(X_1 = y) P_x(T_A < T_B | X_1 = y) \\ &= \sum_{y \in S} P_x(X_1 = y) P_y(T_A < T_B) \\ &= \sum_{y \in S} \Pi(x, y) f(y) = (\Pi f)(x) \end{split}$$
 (one step analysis)

Hence, $(\Pi - I)f = 0$. f is called a harmonic function of the operator Π . (related to Laplace equation)

2.8.2 Expected Hitting Time

Let

$$g(x) = \mathbb{E}_x[T_A]$$

be the expected hitting time for A. The boundary condition is for every $x \in A$, g(x) = 0. If $x \notin A$, then

$$g(x) = \mathbb{E}_x[T_A]$$

$$= \mathbb{E}_x \left[\sum_{y \in S} T_A 1_{\{X_1 = y\}} \right]$$

$$= \mathbb{E}_x \left[1 + \sum_{y \in S} (T_A - 1) 1_{\{X_1 = y\}} \right]$$

$$= 1 + \sum_{y \in S} \mathbb{E}_x[(T_A - 1) 1_{\{X_1 = y\}}]$$

$$= 1 + \sum_{y \in S} P_x(X_1 = y) \mathbb{E}_x[T_A - 1 | X_1 = y]$$

$$= 1 + \sum_{y \in S} P_x(X_1 = y) \mathbb{E}_y[T_A]$$

$$= 1 + \sum_{y \in S} \Pi(x, y) g(y) = 1 + (\Pi g)(x)$$

Hence, $(\Pi - I)g = 1$ (related to Poisson equation)

2.9 Monte Carlo, Metropolis, Gibbs sampling

SKIP - NOT IN EXAM

Chapter 3

Martingale

3.1 Martingale basics

Definition 42 (σ -algebra filtration). A filtration on (Ω, F, P) is an increasing sequence of σ -algebras $(F_n)_{n>0}$ with

$$F_0 \subseteq F_1 \subseteq \dots$$

Remark 16. Let $X = (X_n)_{n \in \mathbb{N}_0}$ be a stochastic process, then the filtration defined by $F_n = \sigma(X_0, X_1, ..., X_n)$ is called the canonical filtration generated by X

Definition 43 (martingale). Given a filtration $G_0 \subseteq G_1 \subseteq G_2 \subseteq ...$, a real-valued stochastic process $X = (X_n)_{n \in \mathbb{N}_0}$ is called a martingale adapted to the filtration G. if

- 1. For all $n \in \mathbb{N}_0$, $\mathbb{E}[|X_0|] < \infty$ and $\mathbb{E}[X_n|G_n] = X_n$. That is, G_n contains all information of X_n , $\sigma(X_n) \subseteq G_n$
- 2. For all $n \in \mathbb{N}_0$, $\mathbb{E}[X_{n+1}|G_n] = X_n$. This is the notion of fair game, that is, given the past information (G_n) , the expectation $(\mathbb{E}[X_{n+1} X_n|G_n])$ of $X_{n+1} X_n$ is zero.

we have, $\mathbb{E}[X_{n+2}|G_{n+1}] = X_{n+1}$, then $X_n = \mathbb{E}[X_{n+1}|G_n] = \mathbb{E}[\mathbb{E}[X_{n+2}|G_{n+1}]|G_n] = \mathbb{E}[X_{n+2}|G_n]$. hence, for any n < m, then $\mathbb{E}[X_m|G_n] = X_n$

Remark 17 (sub-martingale, super-martingale). If we replace the second condition for martingle by $\mathbb{E}[X_{n+1}|G_n] \geq X_n$, it is called sub-martingale and $\mathbb{E}[X_{n+1}|G_n] \leq X_n$, it is called super-martingale

3.1.1 Doob Decomposition, Doob Martingale

Given a stochastic process $(X_n)_{n\in\mathbb{N}_0}$ and let $F_n=\sigma(X_0,X_1,...,X_n)$ be the canonical filtration generated by X. Let $D_n=X_n-X_{n-1}$. Then, let $M_0=0$ and

$$M_n = M_{n-1} + D_n - \mathbb{E}[D_n|F_{n-1}] = \sum_{i=1}^n (D_i - \mathbb{E}[D_i|F_{i-1}])$$

Proposition 23. $(M_n)_{n\in\mathbb{N}_0}$ is a martingale

Let $A_n = \sum_{i=1}^n \mathbb{E}[D_i|F_{i-1}]$, note that, A_n is not a random variable but a sequence of real numbers

Theorem 16 (Doob decomposition). Every stochastic process $(X_n)_{n\in\mathbb{N}_0}$ can be decomposed into

$$X_n = X_0 + M_n + A_n$$

where M_n is a martingale and A_n is a sequence of real numbers.

Proposition 24 (Doob martingale, martingale decomposition). If Y is a random variable and $G_0 \subseteq G_1 \subseteq G_2 \subseteq ...$ is a filtration in (Ω, F, P) , then $Z_n = \mathbb{E}[Y|G_n]$ is a martingale. This is a direct application of tower property

$$\mathbb{E}[Z_n|G_{n-1}] = \mathbb{E}[\mathbb{E}[Y|G_n]|G_{n-1}] = \mathbb{E}[Y|G_{n-1}] = Z_{n-1}$$

If $G_n = F$, then $Z_0 = \mathbb{E}[Y]$ and $Z_n = Y$, martingale decomposition

$$Y = \mathbb{E}[Y] + (Z_n - Z_0) = \mathbb{E}[Y] = \sum_{i=1}^{n} (Z_i - Z_{i-1})$$

TODO - generalize this

3.1.2 Martingale in Markov chain

Let X be a Markov chain with state space S and transition matrix Π . Let $f: S \to \mathbb{R}$ be a bounded function on S, then Doob decomposition gives

$$f(X_n) = f(X_0) + M_n + A_n$$

where M_n is a martingale adapted to the canonical filtration of X and

$$A_n = \sum_{i=1}^n \mathbb{E}[f(X_i) - f(X_{i-1})|F_{i-1}]$$

$$= \sum_{i=1}^n \mathbb{E}[f(X_i) - f(X_{i-1})|X_0, X_1, ..., X_{i-1}]$$

$$= \sum_{i=1}^n \mathbb{E}[f(X_i) - f(X_{i-1})|X_{i-1}]$$

$$= \sum_{i=1}^n \mathbb{E}[f(X_i)|X_{i-1}] - f(X_{i-1})$$

$$= \sum_{i=1}^n (\Pi - I)f(X_{i-1})$$

Hence, if $(\Pi - I)f = 0$ (f is harmonic) then $f(X_n)$ is a martingale, if $(\Pi - I)f = -1$, then $f(X_n) + n$ is a martingale. Now let $A, B \subseteq S$ be disjoint and $T_A = \{n \ge 0 : X_n \in A\}$ be the first time hitting A, we want to compute

$$f(x) = P_x(T_A < T_B)$$
 and $g(x) = \mathbb{E}_x[T_A]$

Through one step analysis, we have shown that

$$(\Pi - I)f = 0$$
 and $(\Pi - I)g = 1$

Then, $f(X_n)$ is a martingale before time $T_A \wedge T_B = \min\{T_A, T_B\}, g(X_n) + n$ is a martingale before time T_A

3.2 Azuma-Hoeffding Inequality

Theorem 17 (Azuma-Hoeffding). Let $(X_n)_{0 \le n \le N}$ be a martingale with X_0 and its increments $D_i = X_i - X_{i-1}$ satisfy $|D_i| \le K$ for all $1 \le i \le N$ almost surely (true for a set $\Omega_0 \subseteq \Omega$ of realizations with $P(\Omega_0) = 1$). Then, for all a > 0,

$$P\left(\frac{X_N}{\sqrt{N}} \ge +a\right) \le e^{-\frac{a^2}{2K}} \text{ and } P\left(\frac{X_N}{\sqrt{N}} \le -a\right) \le e^{-\frac{a^2}{2K}}$$

Proof. TODO

TODO - generalize to the case where $|D_i| \leq K_i$

3.3 Stopped Martingale

Definition 44 (stopping time). A random variable τ on $\mathbb{N}_0 \cup \{\infty\}$ is called stopping time with respect to the filtration $(F_n)_{n \in \mathbb{N}_0}$ if $\{\tau = n\} \in F_n$ for all $n \geq 0$ (I am kinda get it but not really get it. at least I don't do probability so just know enough to pass the exam). τ models the stopping time, that is, to decide when to stop a martingale, we only have the information available up to that time. (sub- σ -algebra is information)

Proposition 25. If τ_1 and τ_2 are stopping time with respect to the filtration $(F_n)_{n \in \mathbb{N}_0}$, then $\tau_1 \wedge \tau_2 = \min\{\tau_1, \tau_2\}$ and $\tau_1 \vee \tau_2 = \max\{\tau_1, \tau_2\}$ are stopping times.

Definition 45 (stopped σ -field 1). Let τ be a stopping time with respect to the filtration $(F_n)_{n\geq 0}$, the stopped σ -field F_{τ} associated with the stopping time τ is defined by

$$F_{\tau} = \{ A \in F : A \cap \{ \tau = n \} \in F_n \text{ for all } n \ge 0 \}$$

that is, the collection of measurable events A in which we can determine whether it will occur or not based on the available information up time time τ

 $^{^{1}\}sigma$ -algebra is also called σ -field

Lemma 2 (stopped martingale is a martingale). Let $(X_n)_{n\geq 0}$ be a martingale adapted to a filtration $(F_n)_{n\geq 0}$ and τ be a stopping time with respect to $(F_n)_{n\geq 0}$. Then $Y_n = X_{n\wedge \tau}$, the martingale X_n stopped at time τ , is also a martingale with respect to $(F_n)_{n\geq 0}$. More generally, if θ is another stopping time with $\theta \leq \tau$ almost surely, then $X_{n\wedge \tau} - X_{n\wedge \theta}$ is also a martingale.

Proof. TODO

3.3.1 Upcrossing Inequality, Martingale Convergence Theorem, Backward Martingale

Definition 46 (upcrossing). Let $(X_n)_{n\geq 0}$ be a super-martingale adapted to the filtration $(F_n)_{n\geq 0}$. An upcrossing by X of the interval (a,b) with a < b consists of a pair of times k < l with $X_k \leq a$ and $X_l \geq b$. Let U_n be the number of complete upcrossings X makes before (before and at) time n and define

$$\begin{split} \tau_1 &= \min\{i \geq 0: X_i \leq a\} \\ \tau_2 &= \min\{i \geq \tau_1: X_i \geq b\} \\ \dots \\ \tau_{2k+1} &= \min\{i \geq \tau_{2k}: X_i \leq a\} \\ \tau_{2k+2} &= \min\{i \geq \tau_{2k+1}: X_i \geq b\} \end{split}$$

where the minimum of an empty set is taken to be ∞ . Note that, τ_i is a stopping time and $U_n = \max\{k : \tau_{2k} \leq n\}$

Lemma 3 (upcrossing inequality). Let $(X_n)_{n\geq 0}$ be a super-martingale and U_n be the number of complete upcrossings over (a,b) before time n, then

$$\mathbb{E}[U_n] \le \frac{\mathbb{E}[(a - X_n)^+]}{b - a} \le \frac{|a| + \mathbb{E}[|X_n^-|]}{b - a}$$

where $x^+ = \max\{x, 0\}, x^- = \min\{x, 0\}$

Proof. TODO

Theorem 18 (martingale convergence theorem). If $(X_n)_{n\geq 0}$ is a super-martingale and $\sup_{n\in\mathbb{N}}\mathbb{E}[|X_n^-|]<\infty$, then there exists a random variable X_∞ such that almost surely $X_n\to X_\infty$ as $n\to\infty$ and $\mathbb{E}[|X_\infty|]<\infty$. For sub-martingale, the condition is $\sup_{n\in\mathbb{N}}\mathbb{E}[|X_n^+|]<\infty$.

Proof. TODO

Corollary 2. If $(X_n)_{n>0}$ is a non-negative super-martingale then $X_\infty = \lim_{n\to\infty} X_n$ exists almost surely and $\mathbb{E}[X_\infty] \leq \mathbb{E}[X_0]$

Corollary 3. Let $(X_n)_{n\geq 0}$ be a martingale with $|X_{n+1}-X_n|\leq M<\infty$ almost surely for all $n\geq 0$, then almost surely either $\lim_{n\to\infty}X_n$ exists and finite or $\limsup_{n\to\infty}X_n=+\infty$ and $\liminf_{n\to\infty}X_n=-\infty$. That is, either X_n converges or osscilates between $-\infty$ and $+\infty$

Definition 47 (backward martingale). $(X_n)_{n\geq 0}$ is called a backward martingale adapted to the decreasing filtration $F_0\supseteq F_1\supseteq ...$ if

$$\mathbb{E}[X_n|F_{n+1}] = X_{n+1}$$

Note that, $X_n = \mathbb{E}[X_0|F_n]$ for all $n \geq 0$, and $(..., X_2, X_1, X_0)$ is a martingale adapted to the filtration $... \subseteq F_2 \subseteq F_1 \subseteq F_0$

Theorem 19. Let $(X_n)_{n\geq 0}$ be a backward martingale adapted to a decreasing filtration $(F_n)_{n\geq 0}$, then almost surely $X_n \to X_\infty$ and $\mathbb{E}[X_\infty] = \mathbb{E}[X_0]$

Lemma 4 (when does martingale limit preserve mean). If for some K > 0, the martingale $(X_n)_{n \ge 0}$ is bounded, that is, $P(|X_n| \le K) = 1$ for all large n, then almost surely $X_n \to X_\infty$ and $\mathbb{E}[X_\infty] = \mathbb{E}[X_0]$

Proof. TODO

3.4 Uniform Integrable Martingale, Optional Stopping Theorem

Definition 48 (uniform integrability). A sequence of random variables $(X_n)_{n\geq 0}$ is called uniformly integrable if for each $\epsilon > 0$, there exists K > 0 such that

$$\sup_{n>0} \mathbb{E}[|X_n|1_{|X_n|>K}] \le \epsilon$$

Remark 18 (L^p (p > 1) implies uniformly integrable). If $\sup_n \mathbb{E}[|X_n|^p] < \infty$ for some p > 1, then Markov inequality implies that $(X_n)_{n \ge 0}$ is uniformly integrable.

Theorem 20. Let $(X_n)_{n\geq 0}$ be a martingale that is uniformly integrable, then almost surely $X_n \to X_\infty$ and $\mathbb{E}[X_\infty] = \mathbb{E}[X_0]$

Proof. TODO

Theorem 21 (optional stopping theorem). Let $(X_n)_{n\geq 0}$ be a martingale and τ a finite stopping time adapted to the same filtration $(F_n)_{n\geq 0}$. If the sequence $(X_{n\wedge \tau})_{n\geq 0}$ is uniformly integrable, then $\mathbb{E}[X_\tau] = \mathbb{E}[X_0]$ $(X_\infty = X_\tau)$

Remark 19. Doob martingale is uniformly integrable. If X_n is a martingale with $\mathbb{E}[|X_n|] < \infty$, then for any convex function ϕ , $\phi(X_n)$ is a sub-martingale.

3.5 Doob Maximal Inequality

Theorem 22 (Doob maximal inequality). Let $(X_i)_{i\in\mathbb{N}}$ be a sub-martingale with respect to filtration $(F_i)_{i\in\mathbb{N}}$. Let $S_n = \max_{1\leq i\leq n} X_i$ be the running maximum of X_i , then for any l>0,

$$P(S_n \ge l) \le \frac{1}{l} \mathbb{E}[X_n^+ 1_{\{S_n \ge l\}}] = \frac{1}{l} \mathbb{E}[X_n^+]$$

where $X_n^+ = X_n \vee 0 = \max\{X_n, 0\}$. In particular, if $(X_i)_{i \in \mathbb{N}}$ is a martingale and the absolute value function is convex, then $|X_i|$ is a sub-martingale, then let $M_n = \max_{1 \leq i \leq n} |X_i|$,

$$P(M_n \le l) \le \frac{1}{l} \mathbb{E}[|X_n| 1_{\{M_n \le l\}} \le \frac{1}{l} \mathbb{E}[|X_n|]]$$

Corollary 4. For any p > 1, $x \mapsto (x^+)^p$ and $x \mapsto |x|^p$ are convex functions, then

$$P(S_n \le l) \le \frac{1}{l^p} \mathbb{E}[(X_n^+)^p 1_{\{S_n \ge l\}}] \le \frac{1}{l^p} \mathbb{E}[(X_n^+)^p]$$

$$P(M_n \le l) \le \frac{1}{l^p} \mathbb{E}[|X_n|_{\{S_n \ge l\}}] \le \frac{1}{l^p} \mathbb{E}[|X_n|^p]$$

where X_n being sub-martingale and martingale correspondingly.

Theorem 23 (Doob L^p maximal inequality). For any p > 1,

$$\mathbb{E}[(S_n^+)^p] \le \left(\frac{p}{p-1}\right)^p \mathbb{E}[(X_n^+)^p]$$

$$\mathbb{E}[M_n^p] \le \left(\frac{p}{p-1}\right)^p \mathbb{E}[|X_n|^p]$$

3.6 Square-Integrable Martingale and Quadratic Variation

Definition 49 (square-integrable martingale, quadratic variation process). A martingale $(X_n)_{n\geq 0}$ is called square-integrable if $\mathbb{E}[X_n^2] < \infty$. If $(X_n)_{n\geq 0}$ is a square-integrable martingale, then X_n^2 is a sub-martingale with Doob decomposition

$$X_n^2 = M_n + \langle X \rangle_n$$

where M_n is a martingale and $\langle X \rangle_n$ is a monotone increasing sequence

$$\langle X \rangle_n = \sum_{n=2}^n \mathbb{E}[(X_i - X_{i-1})^2 | F_{i-1}]$$

 $\langle X \rangle_n$ is called quadratic variation process of X

Theorem 24. Let $(X_n)_{n\in\mathbb{N}}$ be a square-integrable martingale and $\langle X\rangle_n$ its quadratic variation process. Then

- 1. on the event $\{\langle X \rangle_{\infty} < \infty\}$, almost surely $\lim_{n \to \infty} X_n$ exists and finite.
- 2. on the event $\{\langle X \rangle_{\infty} = \infty\}$, almost surely $\lim_{n \to \infty} \frac{X_n}{\langle X \rangle_n} = 0$

3.7 Martingale from Change of Measure

SKIP - I JUST DON'T WANT TO DO THIS