Argumentação

Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

03 de junho de 2014

Plano de Aula

- Pensamento
- 2 Avisos
- Revisão
 - Argumentação
- 4 Argumentação

Sumário

- Pensamento
- 2 Avisos
- 3 Revisão
 - Argumentação
- 4 Argumentação

Pensamento

Pensamento

Frase

O método da não-violência pode parecer demorado, muito demorado, mas eu estou convencido de que é o mais rápido.

Quem?

Mohandas Gandhi (1869-1948) Advogado e pacifista indiano.

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Argumentação
- 4 Argumentação

Avisos

Datas importantes

• Teste 2: 10 de junho;

Notícias do Santa Cruz

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Argumentação
- 4 Argumentação

Silogismo Disjuntivo (*SD*)

- (1) $A \vee B$
- $(2) \neg A$
- (3) B

SD(1),(2)

$$(A \lor B) \land \neg A \models B$$

Introdução do Condicional (o i)

- (1) A
- (2) B
- (3) $A \rightarrow B$

 $\rightarrow i$ (1),(2)

$$A \wedge B \models A \rightarrow B$$

Sumário

- Pensamento
- 2 Avisos
- 3 Revisão
 - Argumentação
- 4 Argumentação

Modus Ponens (\rightarrow *e* ou MP)

- (1) $A \rightarrow B$
- (2) A
- (2)

(3) B MP (1), (2)

$oxed{Modus Ponens} (ightarrow e ext{ ou MP})$

- (1) $A \rightarrow B$
- (2) A
- (3) B MP (1), (2)

$$(A \rightarrow B) \land A \models B$$

Modus Tollens (MT)

- (1) $A \rightarrow B$
- (2) ¬*B*
- ____
- (3) $\neg A$ MT(1), (2)

$$(A \rightarrow B) \land \neg B \models \neg A$$

Silogismo Hipotético (SH)

- (1) $A \rightarrow B$
- (2) $B \rightarrow C$
- (3) $A \to C$ SH(1), (2)

Silogismo Hipotético (*SH*)

- (1) $A \rightarrow B$
- (2) $B \rightarrow C$
- (3) $A \rightarrow C$ SH(1), (2)

$$(A \rightarrow B) \land (B \rightarrow C) \models A \rightarrow C$$

Contradição (¬e)

- (1) A
- (2) ¬*A*
 - ____
- $(3) \qquad \perp \qquad \qquad \neg e \ (1), (2)$

$$A \wedge \neg A \models \perp$$

Întrodução da Negação $(\lnot i)$

- (1) A
- (2) ⊥
- (3) ¬A

 $\neg i$ (1), (2)

Introdução da Negação $(\neg i)$

- (1) A
- (2) ⊥
 - _____
- (3) $\neg A$ $\neg i$ (1), (2)

$$A \land \bot \models \neg A$$

De Morgan (DM_{\lor})

(1)
$$\neg (A \lor B)$$

(2)
$$\neg A \wedge \neg B$$
 DM_{\vee} (1)

De Morgan (DM_{\lor})

(1)
$$\neg (A \lor B)$$

(2)
$$\neg A \wedge \neg B$$
 DM_{\vee} (1)

$$\neg (A \lor B) \models \neg A \land \neg B$$

De Morgan (DM_{\wedge})

(1)
$$\neg (A \land B)$$

(2)
$$\neg A \lor \neg B$$
 DM_{\land} (1)

De Morgan (DM_{\wedge})

(1)
$$\neg (A \land B)$$

(2)
$$\neg A \lor \neg B$$
 DM_{\land} (1)

$$\neg (A \land B) \models \neg A \lor \neg B$$

Definição

Utilizada como uma alternativa à demonstração direta. Consiste em apresentar um absurdo diante da negação da conclusão como premissa.

Argumento

$$p \models p \lor q$$

$$(1) p (2) \neg (p \lor q)$$

Argumento

$$p \models p \lor q$$

(2)
$$\neg (p \lor q)$$

(3)
$$\neg p \wedge \neg q$$
 DM_{\wedge} (2)

Argumento

$$p \models p \lor q$$

(2)
$$\neg (p \lor q)$$

(3)
$$\neg p \land \neg q$$

$$DM_{\wedge}$$
 (2)

$$(4) \neg p$$

$$\wedge e$$
 (3)

Argumento

$$p \models p \lor q$$

$$(1)$$
 p

(2)
$$\neg (p \lor q)$$

(3)
$$\neg p \land \neg q$$

$$DM_{\wedge}$$
 (2)

$$(4) \neg p$$

$$\wedge e$$
 (3)

$$\neg e (1), (4)$$

Onde estudar mais...

Seção 1.3: Lógica Proposicional

GERSTING, J. L. Fundamentos Matemáticos para a Ciência da Computação: um tratamento moderno de matemática discreta. Rio de Janeiro: LTC, 2004.

Argumentação

Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

03 de junho de 2014

