江西理工大学

《局等数字》第八里元测试卷				
	班级	学号	姓名	
一、填空	题(每小题3分, 共30分			
1. 己知 🔞	ヺ $ec{b}$ 垂直,且 $ ec{a} =5$, $\left ec{b}\right $	$=$ 12,则 $\left ec{a}-ec{b} ight =$		
2. 一向量	与 ox轴和 oy轴成等角	,而与 <i>oz</i> 轴组成的角是 ·	它们的两倍, 那么这个向量	的方向角为
$3.~\left(ec{a}+ec{b}~+ ight.$	$-\vec{c}\left) imes \vec{c}+\left(\vec{a}+\vec{b}+\vec{c} ight) imes ar{b}$	$\dot{ec{b}} + \left(ec{b} - ec{c} ight) imes ec{a} = $	·	
4. 若两平		x+y-2z=0互相垂直,	则 $k =$	
5. 通过两户	点(1,1,1)和(2,2,2)且生	ラ平面 x-y-z=0垂直的	的平面方程是	·
6. 已知从几	京点到某平面所作的垂:	线的垂足为点(-2, -2, 1)),则该平面方程为	·
7. 一平面	i过点(6, -10,1), 它在	E ox 轴上的截距为 - 3	,在 oz 轴上的截距为2, 则]该平面的方程是
	210 10 1 2	,,,	$\frac{2}{2}$ 垂直,则 $k =$.	
9. 设 $(\vec{a} \times \vec{b})$	$\left(egin{aligned} egin{aligned} \dot{c} &= 2 , \; \mathbb{M} \left[\left(ec{a} + ec{b} ight) imes \left(ec{a} + ec{b} ight) \end{aligned} \end{aligned} ight.$	$\left(ec{b} + ec{c} ight) ight] \cdot \left(ec{c} + ec{a} ight) = $	·	
10. 过点 /	M(1,2,−1)且与直线·	$\begin{cases} x = -t+2 \\ y = 3t-4 垂直的平成 z = t-1 \end{cases}$	面方程是	
二、选择是	题(每小题3分, 共30分	•)		
1. 若直线	$\frac{x-1}{1} = \frac{y+1}{2} = \frac{z-1}{\lambda}$	和直线 $\frac{x+1}{1} = \frac{y-1}{1} =$	z 相交,则 $\lambda = ($).	
(A) 1	(B) 3/2	(C) $-5/4$	(D) $5/4$	
2. 母线平	行于 x 轴且通过曲线	$(2x^2 + y^2 + z^2 = 16)$ 的柱	面方程是().	
(A) x^2	$+2y = 16$ (B) $3y^2 - 3y^2 = 16$	$z^2 = 16$ (C) $3x^2 + 2z^2$	$= 16 \text{(D)} -y^2 + 3z^2 = 16$	
3. 旋转曲	面 $\frac{x^2}{2} + \frac{y^2}{2} - \frac{z^2}{3} = 0$ 的]旋转轴是().		
$(A) oz^{\frac{1}{2}}$	轴 (B) oy 轴	(C) ox轴 (D)	直线 $x = y = z$	
4. 两平面	$A_1x + B_1y + C_1z + D_1 =$	$= 0 = A_2 x + B_2 y + C_2 z -$	$+D_2=0$ 重合的充分必要条 f	牛是().

- (A) $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$ (B) $A_1 = A_2, B_1 = B_2, C_1 = C_2$

- (C) $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \frac{D_1}{D_2}$ (D) $A_1 = A_2, B_1 = B_2, C_1 = C_2, D_1 = D_2$
- 5. 设 $\vec{D} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$ (其中均为非零向量),则 $|\vec{D}| = ($).
 - (A) 0

- (B) 非零常数
- (C) $\sqrt{\left|\overrightarrow{AB}\right| + \left|\overrightarrow{BC}\right| + \left|\overrightarrow{CA}\right|}$ (D) $\sqrt{\left|\overrightarrow{AB}\right|^2 + \left|\overrightarrow{BC}\right|^2 + \left|\overrightarrow{CA}\right|^2}$
- 6. 设有直线 L_1 : $\frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+8}{1}$, L_2 : $\begin{cases} x-y=6 \\ 2y+z=3 \end{cases}$, 则 L_1 与 L_2 的夹角为().
 - (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$

- 7. 设有直线 L: $\begin{cases} x+3y+2z+1=0 \\ 2x-y-10z+3=0 \end{cases}$ 及平面 π : 4x-2y+z-2=0, 则直线 L().
 - (A) 平行于π
- (B) 在π上
- (C) 垂直于π
- (D) 与π斜交
- 8. 设一平面经过原点及(6, -3, 2), 且与平面4x y + 2z + 8 = 0垂直, 则此平面方程为().
 - (A) 2x + 2y 3z = 0

(B) 2x - 2y - 3z = 0

- (C) 2x + 2y + 3z = 0
- (D) 2x + 2y 3z = 1
- 9. 已知向量 \vec{a} , \vec{b} 的模分别为 $|\vec{a}| = 4$, $|\vec{b}| = 2$, 且 $\vec{a} \cdot \vec{b} = 4\sqrt{2}$, 则 $|\vec{a} \times \vec{b}| = ($).
 - (A) $\frac{\sqrt{2}}{2}$ (B) $2\sqrt{2}$ (C) $4\sqrt{2}$

- 10. 设有非零向量 \vec{a} , \vec{b} , 若 $\vec{a} \perp \vec{b}$, 则必有().
 - (A) $\left| \vec{a} + \vec{b} \right| = \left| \vec{a} \right| + \left| \vec{b} \right|$ (B) $\left| \vec{a} + \vec{b} \right| = \left| \vec{a} \vec{b} \right|$
 - (C) $\left| \vec{a} + \vec{b} \right| < \left| \vec{a} \vec{b} \right|$ (D) $\left| \vec{a} + \vec{b} \right| > \left| \vec{a} \vec{b} \right|$
- 三、解答题(每小题8分,共40分)
- 1. 试求点 A(1,2,-4)的关于直线 $x = \frac{y}{2} = z$ 的对称点.

- 2. 求过点(-1,0,4), 平行于平面 3x-4y+z=10, 且与直线 $x+1=y-3=\frac{z}{2}$ 相交的直线方程.
- 4. 求平行于平面 6x+y+6z+5=0,而与三坐标面所构成的四面体体积为 1的平面.

3. 求过直线 $\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z-2}{2}$ 且垂直于平面 3x + 2y - z - 5 = 0 的平面方程.

5. 求通过两平面 π_1 : 2x+y-z-2=0和 π_2 : 3x-2y-2z+1=0的交线, 且与平面 π_3 : 3x+2y+3z-6=0垂直的平面方程.