2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

+5/1/36+

THLR Contrôle (35 questions), Septembre 2016

Nom et prénom, lisibles : Identifiant (de haut en bas) :							
□0 □1 ■2 □3 □4 □5 □6 □7 □8 □9 ■0 □1 □2 □3 □4 □5 □6 □7 □8 □9							
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. Il j'ai lu les instructions et mon sujet est complet: les 5 entêtes sont +5/1/xx+···+5/5/xx+.							
Q.2 Soit L un langage sur l'alphabet Σ . Si $\overline{L} = \emptyset$ alors							
\square $L = \{\varepsilon\}$ \square $L = \Sigma^*$ \square $L = \emptyset$							
Q.3 Pour $L_1 = (\{a\}\{b\})^*, L_2 = \{a, b\}^*$:							
$\blacksquare L_1 \subseteq L_2 \qquad \square L_1 = L_2 \qquad \square L_1 \not\subseteq L_2 \qquad \square L_1 \supseteq L_2$							
Q.4 Que vaut $\emptyset \cdot L$?							
\square L \square ε \square $\{\varepsilon\}$ \blacksquare \emptyset							
Q.5 Que vaut Fact(L) (l'ensemble des facteurs):							
Q.6 Que vaut $\overline{\{a\}\{b\}^*} \cap \{a\}^*$							
Q.7 Pour toutes expressions rationnelles e , f , on a $e + f \equiv f + e$.							
■ vrai ☐ faux							
Q.8 Pour toutes expressions rationnelles e , f , on a $(ef)^*e \equiv e(ef)^*$.							
iii faux □ vrai							
Q.9 Pour $e = (ab)^*$, $f = a^*b^*$:							
$\Box L(e) \supseteq L(f) \qquad \Box L(e) = L(f) \qquad \blacksquare L(e) \not\subseteq L(f) \qquad \Box L(e) \subseteq L(f)$							
Q.10 Soit Σ un alphabet. Pour tout $A, L_1, L_2 \subseteq \Sigma^*$, on a $A \cdot L_1 = A \cdot L_2 \implies L_1 = L_2$.							
faux 🖂 vrai							

+5/2/35+

Q.11 Ces deux expressions rationnelles :

$$(a^* + b)^* + c((ab)^*(bc))^*(ab)^*$$
 $c(ab + bc)^* + (a + b)^*$

- - Q.12 Pour qu'un mot soit accepté par un automate fini non-déterministe il faut qu'il mène l'automate
 - d'un état initial à un état final
 - de tous les états initiaux à tous les états finaux
 - d'un état initial à tous les états finaux
 - de tous les états initiaux à un état final
 - Q.13 &

2/2

2/2

Cet automate est

- □ complet
- ☐ émondé
- Aucune de ces réponses n'est correcte.

Q.14 Combien d'états n'a pas l'automate de Thompson de l'expression rationnelle à laquelle je pense?

- **2/2** 2481 □ 8124 □ 1248 □ 4812
 - Quel est le résultat d'une élimination arrière des transitions spontanées?

 Quel est le résultat d'une élimination arrière des transitions spontanées?

Q.16 & Parmi les 3 automates suivants, lesquels sont équivalents?

correcte.

- Q.17 Le langage $\{ \stackrel{\bullet}{\mathbf{r}}^n \stackrel{\bullet}{\mathbf{r}}^n \mid \forall n \in \mathbb{N} \}$ est
- 2/2 ☐ fini ☐ non reconnaissable par automate ☐ vide ☐ rationnel
 - Q.18 A propos du lemme de pompage
 - ☐ Si un langage ne le vérifie pas, alors il n'est pas forcement rationnel
- 2/2 ☐ Si un langage le vérifie, alors il est rationnel
 - Si un langage ne le vérifie pas, alors il n'est pas rationnel
 - **Q.19** Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ dont la n-ième lettre avant la fin est un a (i.e., $(a + b)^*a(a + b)^{n-1}$):
- 2/2 \square 2^n \square $\frac{n(n+1)}{2}$ \square n+1 \square Il n'existe pas.

Q.29 Si L et L' sont rationnels, quel langage ne l'est pas nécessairement?

2/2

$\{u \in \Sigma^* \mid u \in L\}$		$\{u\in\Sigma^*\mid u\in L\wedge u\in L'\}$
	$ \{u^nv^n \mid u \in L, v \in L', n \in \mathbb{N}\} $	

Combien d'états a l'automate minimal qui accepte le langage {a, ab, abc}? Q.30

2/2

	Ш	ii n'existe pas.	4	□ 6	□ /	
O 21	Considérons Pl'enser	mble des nalindrome	e (mot 11 éa	al à con tra	nosé/image	miroir 1

les palindromes (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}.$

0/2

```
\square Il existe un NFA qui reconnaisse \mathcal{P}
\square Il existe un ε-NFA qui reconnaisse \mathcal{P}
                                              \square Il existe un DFA qui reconnaisse \mathcal P
```

Q.32

Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :

2/2

$$\Box$$
 $a^* + b^* + c^*$

$$\Box$$
 $(a+b+c)^*$

Quels états peuvent être fusionnés sans changer le langage reconnu.

☐ 2 avec 4

1 avec 2

3 avec 4

☐ 1 avec 3

□ 0 avec 1 et avec 2

☐ Aucune de ces réponses n'est correcte.

Q.34

Quel est le résultat de l'application de BMC en éliminant

1, puis 2, puis 3 et enfin 0?

 $(ab^+ + a + b^+)(a(a + b^+))^*$

Q.35 Sur $\{a,b\}$, quel est le complémentaire de

2/2

0/2

Q.36 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de

2/2

 $\Box \bigcirc \xrightarrow{a} \stackrel{b}{\downarrow} \stackrel{b}{\downarrow} \stackrel{b}{\downarrow}$ a,b

$$\Box \longrightarrow \bigcirc b \bigcirc a \bigcirc b$$

Fin de l'épreuve.

29

+5/6/31+