INFORMATION RETRIEVAL - SHORT EXERCISES II - VECTOR SPACE MODEL AND LATENT SEMANTIC INDEXING

I. Consider a set of terms $\mathbf{T} = \{t_1, t_2, t_3, t_4\}$ and the following collection of two documents: $\mathbf{D1} = \{t_1 \ t_2 \ t_1 \ t_2 \ t_3\}$ and $\mathbf{D2} = \{t_4 \ t_2 \ t_3\}$. Consider query $\mathbf{Q} = \{t_1 \ t_4\}$. Represent D1, D2, and Q using TF (normalized Bag-Of-Words).

TF	t ₁	t ₂	t ₃	t ₄
D1	2/2	2/2	1/2	0
D2				
Q				

Compute IDFs for all four terms (note that only D1 and D2 are included in the collection).

	t ₁	t ₂	t ₃	t ₄
IDF	log2	log1=0	log1=0	

II. Consider the below term-document matrix \mathbf{C} for the bag-of-words representation of five documents $\mathbf{D1}$ - $\mathbf{D5}$ in the space of six terms $\mathbf{t_1}$ - $\mathbf{t_6}$. Using the SVD factorization method, matrix \mathbf{C} has been decomposed into matrices \mathbf{K} , \mathbf{S} , and $\mathbf{D^T}$ given below. The rank of \mathbf{C} is 4 (4 \leq min{6,5}), so 4 concepts (semantic dimensions) were discovered.

		D1	D2	D3	D4	D5
	t ₁	5	5	0	0	1
_	t ₂	4	5	1	1	0
C =	t ₃	5	4	1	1	0
	t ₄	0	0	4	4	4
	t ₅	0	0	5	5	5
	t ₆	1	1	4	4	4

	-0.27	0.55	-0.78	0
	-0.29	0.47	0.44	-0.71
K =			0.44	0.71
κ-	-0.45	-0.29	-0.01	0
	-0.56	-0.36	-0.02	0
	-0.50	-0.18	-0.05	0

S =	13.74	0	0	0
	0	10.88 0		0
	0	0	1.36	0
	0	0	0	1

	-0.32	-0.32	-0.52	-0.52	-0.5
) ^T =	0.63	0.63	-0.25	-0.25	-0.29
, –	-0.02	-0.02	0.41	0.41	-0.82
	0.71	-0.71	0	0	0

Answer the following questions:

- What is the informativeness value of the most important concept? Answer:
- Based on the informativeness values of all concepts, which seems the most obvious value for the reduced number of dimensions k? Answer: k =
- What is the (numerical value of the) mapping of term t₆ to the most important (informative) concept? Answer:
- What is the vector representing document D3 in the space of four discovered concepts?
 Answer: [, , ,]