Machine Learning and Financial Applications

Lecture 1 Introduction to Machine Learning

Liu Peng

liupeng@smu.edu.sg

Pre-class, in-class, and after-class activities

Pre-class reading materials & recordings

Self-paced learning, covering essential contents to be covered in class

Group homework

Takeaway homework to be completed as a group and submitted before the next class

In-class quiz

Reinforce understanding via practice and discussion

Student reflections

Open forum for Q&A and discussions

TA: WANG Jun Xian jxwang.2024@cis.smu.edu.sg
To create telegram group for ease of discussion

Weekly lesson plan

Session	Topics	Assignments/Activities
1	Introduction to Machine Learning	
2	Quantitative Trading Strategies	Group assignment
3	Modern Portfolio Management	Project guideline release
4	Reinforcement Learning in Portfolio Optimization	Group assignment
5	Linear Regression in Finance	
6	Logistic Regression in Finance	Group assignment
7	Generalization in Deep Learning	
8	Deep Neural Networks	Project presentation
9	Robust in Portfolio Optimization	Project presentation
10	Advanced Topics in Finance and ML	Project presentation
11	FINAL EXAM (Closed book)	

Course assessment rubics

Class participation

- 20%
- Engagement in discussion, critical thinking

Group assignment

- 40%
- Team work, problem solving, oral communication

Final exam

- 40%
- Problem solving, decision making

References and resources

- Books:
- Bayesian Optimization: Theory and Practice Using Python, Liu Peng, Apress
- Quantitative Trading Strategies with Python, Liu Peng, Apress
- The Statistics and Machine Learning with R Workshop, Liu Peng, Packt
- Deep Reinforcement Learning in Portfolio Optimization, Liu Peng, CRC (upcoming)
- Deep Learning Generalization, Liu Peng, CRC (upcoming)
- Quantitative Risk Management with Python, Liu Peng, Apress (upcoming)
- Papers: See reference papers for each session

Grading curve

Not drawn to scale

Exact distribution is class-specific and confidential

Office consultation hours

10am-12pm, Friday

Please send me an email before you come

Room 5118, LKCSB

Alternatively, can send me an email to book other slots

Quick self-introduction

Your name and hobby

Form class groups

Learning outcomes

Course outlook overview

Ways to engage in learning and discussion

Getting to know machine learning

Understand major ML applications

Python basics

Video tutorials

- Introduction to machine learning https://youtu.be/00t53nPpbnU
- Python programming basics https://youtu.be/u5mSDRCoaEo
- Downloading and visualizing stock prices with Python https://youtu.be/ngPjj93B5kE

What is Machine Learning?

perfect interpolation

- 1. do we need 3 pts?
- 2. how to make f more complex?

Artificial Intelligence

A technique which enables machines to replicate human's intelligent behaviours

- Data Science
- Artificial Intelligence
- Machine Learning
- Deep Learning

e.g. y = f(x) = 2x + 1

Machine Learning

Subset of AI technique to enable machines to learn from data with statistical methods (x, y)

Deep Learning
Subset of ML
with multi-layer
neural network

too much 3 pts Data Science

(1, 3) (2, 5)

parameters for f: intercept, slope

Different types of machine learning models

Supervised learning

- Given a data set of input-output pairs, learn a function to map inputs to outputs
- Classification: supervised learning task of learning a function mapping an input point to a discrete category
- Regression: supervised learning task of learning a function mapping an input point to a continuous value

Unsupervised learning

 Given input data without any additional feedback, learn patterns

Reinforcement learning

 Given a set of rewards or punishments, learn what actions to take in the future

Flavors of Machine Learning: Supervised

Discussion: How is ML used in Quant Finance?

Mathematical Foundation of Supervised Learning

Model training workflow

Flavors of Machine Learning: Unsupervised

Market segmentation

Organize computing clusters

Flavors of Machine Learning: Reinforcement

In-class quiz

```
_________ modifier_ob
mirror object to mirror
mirror_mod.mirror_object
peration == "MIRROR_X":
irror_mod.use_x = True
irror_mod.use_y = False
irror_mod.use_z = False
 _operation == "MIRROR_Y"
Irror_mod.use_x = False
lrror_mod.use_y = True
lrror_mod.use_z = False
 _operation == "MIRROR_Z";
 lrror_mod.use_y = False
 lrror_mod.use_z = True
 melection at the end -add
   ob.select= 1
  er ob.select=1
  ntext.scene.objects.action
  "Selected" + str(modified
  irror ob.select = 0
  bpy.context.selected_obje
  ata.objects[one.name].se
 int("please select exactle
  OPERATOR CLASSES ----
    vpes.Operator):
    X mirror to the selected
   ject.mirror_mirror_x"
 ext.active_object is not
```

Coding session

Homework

Watch/review video tutorials and class recording for week 1 lecture (if you have not done so)

Post learning reflections and questions if any

Get to know your teammates and discuss ideas for final project

