```
# Common EDA and plotting libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Allowing plots to appear in the notebook
%matplotlib inline
## Models
from sklearn.linear model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
## Model evaluators
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.model selection import RandomizedSearchCV, GridSearchCV
from sklearn.metrics import confusion matrix, classification report
from sklearn.metrics import precision score, recall score, f1 score
FDA
df = pd.read csv("heart-disease.csv")
df.shape
(303, 14)
# Let's check the top 5 rows of our dataframe
df.head()
   age sex cp trestbps chol fbs
                                       restecg thalach exang
                                                                 oldpeak
slope \
0
    63
          1
              3
                      145
                             233
                                    1
                                             0
                                                     150
                                                              0
                                                                     2.3
0
1
    37
              2
                      130
                             250
                                    0
                                             1
                                                    187
                                                              0
                                                                     3.5
          1
0
2
    41
          0
              1
                      130
                             204
                                    0
                                             0
                                                    172
                                                              0
                                                                     1.4
2
3
                             236
                                                                     0.8
    56
          1
              1
                      120
                                    0
                                             1
                                                     178
                                                              0
2
4
                                             1
                                                                     0.6
    57
          0
              0
                      120
                             354
                                    0
                                                    163
                                                              1
2
       thal
             target
   ca
0
                  1
    0
          1
                  1
1
    0
          2
2
    0
          2
                  1
3
          2
    0
                  1
          2
    0
                  1
```

The top 10 rows df.head(10)

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak
slo	ope	\								
0 0	63	1	3	145	233	1	0	150	0	2.3
1	37	1	2	130	250	0	1	187	0	3.5
0 2	41	0	1	130	204	0	0	172	0	1.4
2	56	1	1	120	236	0	1	178	Θ	0.8
2 4	57	0	0	120	354	0	1	163	1	0.6
2 5	57	1	0	140	192	0	1	148	0	0.4
6	56	0	1	140	294	0	Θ	153	Θ	1.3
1 7	44	1	1	120	263	0	1	173	Θ	0.0
2 8	52	1	2	172	199	1	1	162	Θ	0.5
2 9 2	57	1	2	150	168	0	1	174	0	1.6
_										

	ca	thal	target
0	0	1	1
1	0	2	1
2	0	2	1
2 3 4	0	2	1
4	0	2	1
5	0	1	1
6 7	0	2	1
7	0	3	1
8	0	3	1
9	0	2	1

The bottom 10 Rows df.tail(10)

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang
oldpo	eak 67	1	2	152	212	0	0	150	0
0.8 294	44	1	0	120	169	0	1	144	1
2.8	63	1	0	140	187	0	Θ	144	1
4.0 296 0.0	63	0	0	124	197	0	1	136	1

```
297
      59
                         164
                               176
                                                0
                                                         90
                                                                 0
            1
                0
                                       1
1.0
298
                 0
                         140
                               241
      57
            0
                                       0
                                                1
                                                        123
                                                                 1
0.2
299
                               264
                                                1
                                                        132
      45
            1
                 3
                         110
                                       0
                                                                 0
1.2
300
      68
            1
                 0
                         144
                               193
                                                1
                                                        141
                                                                 0
                                       1
3.4
301
      57
            1
                 0
                         130
                               131
                                       0
                                                1
                                                        115
                                                                 1
1.2
                                                0
302
      57
            0
                 1
                         130
                               236
                                       0
                                                        174
                                                                 0
0.0
     slope
                 thal
                       target
            ca
293
         1
             0
                    3
294
             0
                    1
                            0
         0
295
             2
                    3
         2
                            0
296
         1
             0
                    2
                            0
             2
297
         1
                    1
                            0
                    3
             0
298
         1
                            0
             0
                    3
299
         1
                            0
                    3
300
             2
         1
                            0
         1
             1
                    3
                            0
301
302
         1
             1
                    2
                            0
# Let's see how many positive (1) and negative (0) samples we have in
our dataframe
df.target.value_counts()
1
     165
0
     138
Name: target, dtype: int64
# Normalized value counts
df.target.value counts(normalize=True)
1
     0.544554
     0.455446
Name: target, dtype: float64
# Plot the value counts with a bar graph
df.target.value_counts().plot(kind="bar", color=["salmon",
"lightblue"]);
```


Dataframe Summary
df.info()

df.describe()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 303 entries, 0 to 302 Data columns (total 14 columns):

#	Column	Non	-Null Count	Dtype
0	age	303	non-null	int64
1	sex	303	non-null	int64
2	ср	303	non-null	int64
3	trestbps	303	non-null	int64
4	chol	303	non-null	int64
5	fbs	303	non-null	int64
6	restecg	303	non-null	int64
7	thalach	303	non-null	int64
8	exang	303	non-null	int64
9	oldpeak	303	non-null	float64
10	slope	303	non-null	int64
11	ca	303	non-null	int64
12	thal	303	non-null	int64
13	target	303	non-null	int64
	67 .6	4/11		

dtypes: float64(1), int64(13)

memory usage: 33.3 KB

age	sex	ср	trestbps	chol
fbs \ count 303.000000	303.000000	303.000000	303.000000	303.000000
303.000000 mean 54.366337	0.683168	0.966997	131.623762	246.264026
0.148515 std 9.082101	0.466011	1.032052	17.538143	51.830751
0.356198	0.000000	0.000000	94.000000	126.000000
0.000000				
25% 47.500000 0.000000	0.000000	0.000000	120.000000	211.000000
50% 55.000000 0.000000	1.000000	1.000000	130.000000	240.000000
75% 61.000000 0.000000	1.000000	2.000000	140.000000	274.500000
max 77.000000 1.000000	1.000000	3.000000	200.000000	564.000000
restecg	thalach	exang	oldpeak	slope
ca \ count 303.000000	303.000000	303.000000	303.000000	303.000000
303.000000 mean 0.528053	149.646865	0.326733	1.039604	1.399340
0.729373 std 0.525860	22.905161	0.469794	1.161075	0.616226
1.022606 min 0.000000	71.000000	0.000000	0.000000	0.000000
0.000000 25% 0.000000 0.000000	133.500000	0.000000	0.000000	1.000000
50% 1.000000 0.000000	153.000000	0.000000	0.800000	1.000000
75% 1.000000 1.000000	166.000000	1.000000	1.600000	2.000000
max 2.000000 4.000000	202.000000	1.000000	6.200000	2.000000
thal count 303.000000 mean 2.313531 std 0.612277 min 0.000000 25% 2.000000 50% 2.000000 75% 3.000000 max 3.000000	target 303.000000 0.544554 0.498835 0.000000 1.000000 1.000000 1.000000			

Gender(Sex) variable counts
df.sex.value_counts()

```
207
1
0
      96
Name: sex, dtype: int64
# Compare target column with sex column
pd.crosstab(df.target, df.sex)
sex
         0
              1
target
0
        24
            114
        72
1
             93
# Sex vs Target Plot
pd.crosstab(df.target, df.sex).plot(kind="bar", figsize=(10,6),
color=["salmon", "lightblue"])
# Plot attributes
plt.title("Heart Disease Frequency for Sex")
plt.xlabel("0 = No Disease, 1 = Disease")
plt.ylabel("Amount")
plt.legend(["Female", "Male"])
plt.xticks(rotation=0); # keep the labels on the x-axis vertical
                          Heart Disease Frequency for Sex
                                                            Male
```


Age Histograms
df.age.plot.hist();

Find the correlation between each pair variables
corr_matrix = df.corr()
corr_matrix

fbs \	age	sex	ср	trestbps	chol	
age	1.000000	-0.098447	-0.068653	0.279351	0.213678	0.121308
sex	-0.098447	1.000000	-0.049353	-0.056769	-0.197912	0.045032
ср	-0.068653	-0.049353	1.000000	0.047608	-0.076904	0.094444
trestbps	0.279351	-0.056769	0.047608	1.000000	0.123174	0.177531
chol	0.213678	-0.197912	-0.076904	0.123174	1.000000	0.013294
fbs	0.121308	0.045032	0.094444	0.177531	0.013294	1.000000
restecg	-0.116211	-0.058196	0.044421	-0.114103	-0.151040	-0.084189
thalach	-0.398522	-0.044020	0.295762	-0.046698	-0.009940	-0.008567
exang	0.096801	0.141664	-0.394280	0.067616	0.067023	0.025665
oldpeak	0.210013	0.096093	-0.149230	0.193216	0.053952	0.005747
slope	-0.168814	-0.030711	0.119717	-0.121475	-0.004038	-0.059894

```
0.276326 \quad 0.118261 \quad -0.181053 \quad 0.101389 \quad 0.070511 \quad 0.137979
ca
thal
          0.068001
                   0.210041 -0.161736  0.062210  0.098803 -0.032019
         -0.225439 -0.280937
                               0.433798 -0.144931 -0.085239 -0.028046
target
                     thalach
                                          oldpeak
                                                       slope
           restecg
                                  exang
ca \
age
         -0.116211 -0.398522
                               0.096801
                                         0.210013 -0.168814
                                                              0.276326
         -0.058196 -0.044020
                               0.141664
                                         0.096093 -0.030711
                                                              0.118261
sex
          0.044421 0.295762 -0.394280 -0.149230 0.119717 -0.181053
ср
trestbps -0.114103 -0.046698
                               0.067616
                                         0.193216 -0.121475
                                                              0.101389
         -0.151040 -0.009940
                                         0.053952 -0.004038
chol
                               0.067023
                                                              0.070511
         -0.084189 -0.008567
fbs
                               0.025665
                                         0.005747 -0.059894
                                                              0.137979
restecg
          1.000000
                    0.044123 -0.070733 -0.058770 0.093045 -0.072042
thalach
          0.044123
                    1.000000 -0.378812 -0.344187
                                                   0.386784 -0.213177
         -0.070733 -0.378812
                               1.000000
                                         0.288223 -0.257748
                                                              0.115739
exang
         -0.058770 -0.344187
                               0.288223
                                         1.000000 -0.577537
oldpeak
                                                              0.222682
slope
                    0.386784 -0.257748 -0.577537
                                                   1.000000 -0.080155
          0.093045
         -0.072042 -0.213177
                               0.115739
                                         0.222682 -0.080155
                                                              1.000000
ca
thal
         -0.011981 -0.096439
                               0.206754 0.210244 -0.104764
                                                              0.151832
          0.137230 0.421741 -0.436757 -0.430696 0.345877 -0.391724
target
              thal
                      target
          0.068001 -0.225439
age
          0.210041 -0.280937
sex
         -0.161736
                   0.433798
ср
          0.062210 -0.144931
trestbps
chol
          0.098803 -0.085239
         -0.032019 -0.028046
fbs
         -0.011981
restecq
                    0.137230
thalach
         -0.096439
                    0.421741
          0.206754 - 0.436757
exang
```

```
oldpeak 0.210244 -0.430696

slope -0.104764 0.345877

ca 0.151832 -0.391724

thal 1.000000 -0.344029

target -0.344029 1.000000

# Correlation Heatmap

corr_matrix = df.corr()

plt.figure(figsize=(15, 10))

sns.heatmap(corr_matrix,

annot=True,
```

linewidths=0.5,
fmt= ".2f",

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

df = pd.read_csv("heart-disease.csv") # 'DataFrame' shortened to 'df'
df.shape # (rows, columns)
(303, 14)

Modelling

```
# Dataset processing
# Everything except target variable
X = df.drop("target", axis=1)
```

```
# Target variable
v = df.target.values
# Random seed for reproducibility
np.random.seed(42)
# Split into train & test set
X train, X test, y train, y test = train test split(X, # independent
variables
                                                     v. # dependent
variable
                                                     test size = 0.2) #
percentage of data to use for test set
# Put models in a dictionary
models = {"KNN": KNeighborsClassifier(),
          "Logistic Regression": LogisticRegression(),
          "Random Forest": RandomForestClassifier()}
# Create function to fit and score models
def fit and score(models, X train, X test, y train, y test):
    Fits and evaluates given machine learning models.
    models : a dict of different Scikit-Learn machine learning models
    X train : training data
    X test: testing data
    y train : labels assosciated with training data
   y\_{test} : labels assosciated with test data
    # Random seed for reproducible results
    np.random.seed(42)
    # Make a list to keep model scores
    model scores = {}
    # Loop through models
    for name, model in models.items():
        # Fit the model to the data
        model.fit(X_train, y_train)
        # Evaluate the model and append its score to model scores
        model scores[name] = model.score(X test, y test)
    return model scores
# Model Score Comparision
model scores = fit and score(models=models,
                             X train=X train,
                             X test=X test,
                             y train=y train,
                             y test=y test)
model scores
```

```
C:\Users\zhizh\anaconda3\lib\site-packages\sklearn\linear model\
logistic.py:458: ConvergenceWarning: lbfgs failed to converge
(status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as
shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-
regression
  n iter i = check optimize result(
{'KNN': 0.6885245901639344,
 'Logistic Regression': 0.8852459016393442,
 'Random Forest': 0.8360655737704918}
# Model Score Comparision Plot
model_compare = pd.DataFrame(model_scores, index=['accuracy'])
model compare.T.plot.bar();
```



```
Logistic Regression have the best result
#Try improving the KNN model to produce better result
# Create a list of train scores
train_scores = []

# Create a list of test scores
test_scores = []

# Create a list of different values for n_neighbors
neighbors = range(1, 21) # 1 to 20

# Setup algorithm
knn = KNeighborsClassifier()

# Loop through different neighbors values
for i in neighbors:
    knn.set_params(n_neighbors = i) # set neighbors value
    # Fit the algorithm
```

```
knn.fit(X train, y train)
    # Update the training scores
    train scores.append(knn.score(X train, y train))
    # Update the test scores
    test scores.append(knn.score(X test, y test))
train scores
[1.0,
 0.8099173553719008,
 0.7727272727272727,
 0.743801652892562,
 0.7603305785123967.
 0.7520661157024794,
 0.743801652892562,
 0.7231404958677686.
 0.71900826446281.
 0.6942148760330579,
 0.72727272727273,
 0.6983471074380165,
 0.6900826446280992,
 0.6942148760330579,
 0.6859504132231405,
 0.6735537190082644,
 0.6859504132231405,
 0.6652892561983471,
 0.6818181818181818,
 0.6694214876033058]
# Train Scores vs Test Scores Plot
plt.plot(neighbors, train_scores, label="Train score")
plt.plot(neighbors, test_scores, label="Test score")
plt.xticks(np.arange(1, \overline{2}1, 1))
plt.xlabel("Number of neighbors")
plt.ylabel("Model score")
plt.legend()
print(f"Maximum KNN score on the test data: {max(test scores)*100:.2f}
%")
Maximum KNN score on the test data: 75.41%
```



```
rs log reg.best params
{'solver': 'liblinear', 'C': 0.23357214690901212}
rs log reg.score(X test, y test)
0.8852459016393442
# Setup random seed
np.random.seed(42)
# Setup random hyperparameter search for RandomForestClassifier
rs rf = RandomizedSearchCV(RandomForestClassifier(),
                           param distributions=rf grid,
                           cv=5,
                           n iter=20,
                           verbose=True)
# Fit random hyperparameter search model
rs_rf.fit(X_train, y_train);
Fitting 5 folds for each of 20 candidates, totalling 100 fits
# Find the best parameters
rs rf.best params
{'n estimators': 210,
 'min_samples_split': 4,
 'min samples leaf': 19,
 'max depth': 3}
# Evaluate the randomized search random forest model
rs rf.score(X test, y test)
0.8688524590163934
# Different LogisticRegression hyperparameters
log reg grid = {"C": np.logspace(-4, 4, 20),}
                "solver": ["liblinear"]}
# Setup grid hyperparameter search for LogisticRegression
gs log reg = GridSearchCV(LogisticRegression(),
                          param grid=log reg grid,
                          cv=5.
                          verbose=True)
# Fit grid hyperparameter search model
gs log reg.fit(X train, y train);
Fitting 5 folds for each of 20 candidates, totalling 100 fits
```

```
# Check the best parameters
gs log reg.best params
{'C': 0.23357214690901212, 'solver': 'liblinear'}
# Evaluate the model
gs log reg.score(X test, y test)
0.8852459016393442
# Make preidctions on test data
y_preds = gs_log_reg.predict(X_test)
y preds
array([0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1,
0,
       0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1,
1,
       1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0],
dtype=int64)
y_test
array([0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1,
0,
       0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
1,
       1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0],
dtype=int64)
from sklearn.metrics import roc curve, roc auc score
import matplotlib.pyplot as plt
# Predict the probabilities of the positive class
y probs = gs log reg.predict proba(X test)[:, 1]
# Compute the ROC curve
fpr, tpr, thresholds = roc curve(y test, y probs)
# Compute the AUC
auc = roc auc score(y test, y probs)
# Plot the ROC curve
plt.figure(figsize=(10, 6))
plt.plot(fpr, tpr, label='ROC curve (area = %.2f)' % auc)
plt.plot([-.1, 1.1], [-.1, 1.1], 'k--') # random predictions curve
plt.xlim([-0.1, 1.1])
plt.ylim([-0.1, 1.1])
plt.xlabel('False Positive Rate or (1 - Specificity)')
plt.ylabel('True Positive Rate or (Sensitivity)')
plt.title('Receiver Operating Characteristic')
```

```
plt.legend(loc="lower right")
plt.show()
```



```
# Display confusion matrix
print(confusion_matrix(y_test, y_preds))
[[25 4]
 [ 3 29]]
# Import Seaborn
import seaborn as sns
sns.set(font scale=1.5) # Increase font size
def plot_conf_mat(y_test, y_preds):
    Plots a confusion matrix using Seaborn's heatmap().
    fig, ax = plt.subplots(figsize=(3, 3))
    ax = sns.heatmap(confusion_matrix(y_test, y_preds),
                     annot=True, # Annotate the boxes
                     cbar=False)
    plt.xlabel("true label")
    plt.ylabel("predicted label")
plot_conf_mat(y_test, y_preds)
```



```
# Show classification report
print(classification_report(y_test, y_preds))
```

	precision	recall	f1-score	support
0	0.89	0.86	0.88	29
1	0.88	0.91	0.89	32
accuracy			0.89	61
macro avg	0.89	0.88	0.88	61
weighted avg	0.89	0.89	0.89	61

```
scoring="accuracy") # accuracy as scoring
cv_acc
array([0.81967213, 0.90163934, 0.8852459 , 0.88333333, 0.75
                                                                  ])
cv acc = np.mean(cv acc)
cv acc
0.8479781420765027
# Cross-validated precision score
cv precision = np.mean(cross val score(clf,
                                       у,
                                       cv=5, # 5-fold cross-validation
                                       scoring="precision")) #
precision as scoring
cv precision
0.8215873015873015
# Cross-validated recall score
cv recall = np.mean(cross val score(clf,
                                    Χ,
                                    у,
                                    cv=5, # 5-fold cross-validation
                                    scoring="recall")) # recall as
scoring
cv recall
0.92727272727274
# Cross-validated F1 score
cv f1 = np.mean(cross val score(clf,
                                Χ.
                                у,
                                cv=5, # 5-fold cross-validation
                                scoring="f1")) # f1 as scoring
cv_f1
0.8705403543192143
# Visualizing cross-validated metrics
cv_metrics = pd.DataFrame({"Accuracy": cv_acc,
                            "Precision": cv precision,
                            "Recall": cv_recall,
                            "F1": cv f1},
                          index=[0]
cv_metrics.T.plot.bar(title="Cross-Validated Metrics", legend=False);
```

Cross-Validated Metrics


```
# Fit an instance of LogisticRegression (taken from above)
clf.fit(X_train, y_train);
# Check coef_
clf.coef
array([[ 0.00369922, -0.90424089, 0.67472826, -0.0116134 , -
0.00170364,
         0.04787688, 0.33490195, 0.02472938, -0.63120405, -
0.57590942,
         0.47095136, -0.65165348, -0.69984206])
# Match features to columns
features_dict = dict(zip(df.columns, list(clf.coef_[0])))
features_dict
{'age': 0.003699220351664148,
 'sex': -0.9042408930260735,
 'cp': 0.6747282624694215,
 'trestbps': -0.011613401789010375,
 'chol': -0.0017036441780094993,
```

```
'fbs': 0.047876883382302414,
'restecg': 0.3349019539205334,
'thalach': 0.024729383396378347,
'exang': -0.6312040510578483,
'oldpeak': -0.5759094230155162,
'slope': 0.47095135616471195,
'ca': -0.6516534832909596,
'thal': -0.6998420628111434}

# Visualize feature importance
features_df = pd.DataFrame(features_dict, index=[0])
features_df.T.plot.bar(title="Feature Importance", legend=False);
```



```
pd.crosstab(df["sex"], df["target"])

target 0 1
sex
0 24 72
1 114 93

# Contrast slope (positive coefficient) with target
pd.crosstab(df["slope"], df["target"])
```

target	0	1
slope		
0	12	9
1	91	49
2	35	107