Solutions to Math 51 Quiz 3 Practice A

1. (10 points) The best line of fit through the 6 data points $(x_1, y_1), \ldots, (x_6, y_6)$

$$(4,-2), (2,-1), (2,0), (1,5), (-1,7), (-2,9)$$

is

$$y = mx + b$$
.

Find m and b.

• We first write down explicit 6-vectors \mathbf{X} and \mathbf{Y} so that for the 6-vector $\mathbf{1}$ whose entries are all equal to 1, the projection of \mathbf{Y} into the plane $V = \operatorname{span}(\mathbf{X}, \mathbf{1})$ in \mathbf{R}^6 is $m\mathbf{X} + b\mathbf{1}$. The vectors are

$$\mathbf{X} = \begin{bmatrix} 4 \\ 2 \\ 2 \\ 1 \\ -1 \\ -2 \end{bmatrix}, \quad \mathbf{Y} = \begin{bmatrix} -2 \\ -1 \\ 0 \\ 5 \\ 7 \\ 9 \end{bmatrix}.$$

(Note: entries can be rearranged, provided that both **X** and **Y** are rearranged in the same way.)

• We next compute an orthogonal basis of $V = \operatorname{span}(\mathbf{X}, \mathbf{1})$ having the form $\{\mathbf{1}, \hat{\mathbf{X}}\}$ for a 6-vector \mathbf{v} , and find scalars r and s so that $\operatorname{\mathbf{Proj}}_V(\mathbf{Y}) = r\hat{\mathbf{X}} + s\mathbf{1}$. The vector $\hat{\mathbf{X}}$ can be taken to be $\mathbf{X} - \operatorname{\mathbf{Proj}}_1(\mathbf{X}) = \mathbf{X} - \overline{x}\mathbf{1}$ with \overline{x} equal to the average of the entries x_i in \mathbf{X} . This average is

$$\bar{x} = \frac{4+2+2+1-1-2}{6} = \frac{6}{6} = 1,$$

SO

$$\hat{\mathbf{X}} = \mathbf{X} - \bar{x}\mathbf{1} = \begin{bmatrix} 3\\1\\1\\0\\-2\\-3 \end{bmatrix}.$$

The projection of \mathbf{Y} into V is then given by

$$\frac{\mathbf{Y} \cdot \hat{\mathbf{X}}}{\hat{\mathbf{X}} \cdot \hat{\mathbf{X}}} \hat{\mathbf{X}} + \frac{\mathbf{Y} \cdot \mathbf{1}}{\mathbf{1} \cdot \mathbf{1}} \mathbf{1} = \left(\frac{-48}{24}\right) \hat{\mathbf{X}} + \left(\frac{18}{6}\right) \mathbf{1} = (-2)\hat{\mathbf{X}} + (3)\mathbf{1}.$$

Hence, r = -2 and s = 3.

• By expressing $\hat{\mathbf{X}}$ as a linear combination of \mathbf{X} and $\mathbf{1}$, use your answer to (b) to find m and b so that the equation y = mx + b gives the line of best fit. We have $\hat{\mathbf{X}} = \mathbf{X} - \mathbf{1}$, so

$$\mathbf{Proj}_{V}(\mathbf{Y}) = (-2)\mathbf{v} + (3)\mathbf{1} = (-2)(\mathbf{X} - \mathbf{1}) + (3)\mathbf{1}$$
$$= (-2)\mathbf{X} + (-(-2) + 3)\mathbf{1}$$
$$= (-2)\mathbf{X} + (5)\mathbf{1}.$$

Hence, the line of best fit is y = -2x + 5; so m = -2 and b = 5.

2. (2 points) Let

$$f(x,y) = (y^2 + 1)\cos(x) + x\cos(y) + x$$

Compute $\frac{\partial^2 f}{\partial x \partial y}$. At which points (a, b) is the value

$$\frac{\partial^2 f}{\partial x \partial y}(a, b) > 0?$$

Select all that apply.

- (a,b) = (0,0)
- $(a,b) = (0,-\pi/2)$
- $(a,b) = (-\pi/2,\pi)$
- $(a,b) = (\pi/2,\pi/2)$
- None of the these four

We have

$$\frac{\partial f}{\partial x} = -(y^2 + 1)\sin(x) + \cos(y) + 1,$$

so

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$
$$= \frac{\partial}{\partial y} \left(-(y^2 + 1)\sin(x) + \cos(y) + 1 \right)$$
$$= -2y\sin(x) - \sin(y)$$

Among the points given, this quantity is greater than zero at $(a,b)=(0,-\pi/2)$ and $(a,b)=(-\pi/2,\pi)$:

- At (a,b) = (0,0), $\frac{\partial^2 f}{\partial x \partial y}(a,b) = 0 \sin(0) = 0$.
- At $(a,b) = (0, -\pi/2)$, $\frac{\partial^2 f}{\partial x \partial y}(a,b) = -2(-\pi/2)\sin(0) \sin(-\pi/2) = 0 + 1 > 0$.
- At $(a,b) = (-\pi/2,\pi)$, $\frac{\partial^2 f}{\partial x \partial y}(a,b) = -2(\pi)\sin(-\pi/2) \sin(\pi) = 2\pi 0 > 0$.
- At $(a,b) = (\pi/2, \pi/2)$, $\frac{\partial^2 f}{\partial x \partial y}(a,b) = -2(\pi/2)\sin(\pi/2) \sin(\pi/2) = -\pi 1 < 0$.
- 3. (2 points) Below is a contour plot of a function g(x,y) over the region of points (x,y) where $-2.5 \le x \le 2.5$ and $-2.5 \le y \le 2.5$.

For the points labeled O, P, Q, determine whether the following is negative, positive or 0.

a)
$$\frac{\partial g}{\partial x}(O) = g_x(O)$$

a)
$$\frac{\partial g}{\partial x}(O) = g_x(O)$$
 b) $\frac{\partial g}{\partial y}(O) = g_y(O)$ c) $\frac{\partial g}{\partial x}(P) = g_x(P)$ d) $\frac{\partial g}{\partial y}(Q) = g_y(Q)$

c)
$$\frac{\partial g}{\partial x}(P) = g_x(P)$$

d)
$$\frac{\partial g}{\partial u}(Q) = g_y(Q)$$

As we move through O horizontally from left to right the line of motion is tangent to the level curve through O, this indicates that $g_x(O) = 0$. Likewise, as we move up through O vertically the numerical labels on the contour lines are decreasing, so $g_y(O) < 0$.

As we move through P horizontally from left to right, the numerical labels on the contour lines are decreasing, so $g_x(P) < 0$.

Finally, as we move up through Q vertically the line of motion is tangent to the level curve through Q, and this indicates that $g_y(Q) = 0$.

4. (3 points) Define the functions f(x,y) and g(x,y) on \mathbb{R}^2 by

$$f(x,y) = e^x(x\cos(y) - y\sin(y)), \qquad g(x,y) = e^x(y\cos(y) + x\sin(y)).$$

Compute $\frac{\partial f}{\partial x}$, $\frac{\partial g}{\partial y}$, $\frac{\partial g}{\partial x}$, and $\frac{\partial g}{\partial y}$. Answer each of the following two questions:

- 1. Which among a, b, c, d below equals $\frac{\partial f}{\partial x}$?
- 2. Which among a, b, c, d below equals $\frac{\partial f}{\partial y}$?

a)
$$\frac{\partial g}{\partial x}$$

b)
$$\frac{\partial g}{\partial y}$$

c)
$$-\frac{\partial g}{\partial x}$$

$$\mathrm{d}) - \frac{\partial g}{\partial y}$$

Compute $\frac{\partial f}{\partial x} = f_x$ and $\frac{\partial g}{\partial y} = g_y$, and confirm that these are equal. By the product rule in terms of x (regarding y as "constant") we have

$$f_x = e^x(x\cos(y) - y\sin(y)) + e^x\cos(y) = e^x((x+1)\cos(y) - y\sin(y)),$$

and by treating x as "constant" we have

$$g_y = e^x(\cos(y) - y\sin(y) + x\cos(y)) = e^x((x+1)\cos(y) - y\sin(y)).$$

By inspection, these are the same.

Compute $\frac{\partial f}{\partial y} = f_y$ and $-g_x = -\frac{\partial g}{\partial x}$, and confirm that these are equal. Using the product rule in terms of y now (treating x as "constant") we have

$$f_y = e^x(-x\sin(y) - \sin(y) - y\cos(y)) = -e^x((x+1)\sin(y) + y\cos(y)),$$

and by treating y as "constant" we have

$$g_x = e^x(y\cos(y) + x\sin(y)) + e^x\sin(y) = e^x((x+1)\sin(y) + y\cos(y)).$$

By inspection we see that $f_y = -g_x$.

5. (3 points) Consider a function f(x,y) satisfying

$$\left| \frac{\partial f}{\partial y}(a,b) \right| = \left| \frac{\partial f}{\partial y}(a,-b) \right| = \left| \frac{\partial f}{\partial y}(-a,b) \right|$$

for all $(a, b) \in \mathbf{R}^2$. Which contour plot is most likely to correspond to f(x, y)?

Note that the contour plots below all have uniform increments in f-values: the gaps between f-values for successive level curves are the same.

The answer is (B). The the level curves exhibited in graph (B) have symmetry with respect to x-axis and y-axis, so

$$|f_y(a,b)| = |f_y(a,-b)| = |f_y(-a,b)| = |f_y(-a,-b)|$$

for all $(a, b) \in \mathbb{R}^2$.

In (A), there is symmetry in the x-axis but not the y-axis, so $|f_y(a,b)| \neq |f_y(-a,b)|$; in (C), there is no symmetry in the x-axis or the y-axis, so $|f_y(a,b)| \neq |f_y(a,-b)|$ and $|f_y(-a,b)| \neq |f_y(a,b)|$.