МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа №6 по курсу «Методы машинного обучения»

Тема: «Ансамбли моделей машинного обучения»

исполнитель.

ricito, il irit E, ib.					
	ФИО				
группа ИУ5-22М					
	подпись				
	" "	2020 г.			
ПРЕПОДАВАТЕЛЬ:					
• •	ФИО				
	подпись				
	" "	2020 г.			

Бабин В F

Москва - 2020

Задание:

- 1. Выберите набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите две ансамблевые модели. Оцените качество моделей с помощью одной из подходящих для задачи метрик. Сравните качество полученных моделей.
- 5. Произведите для каждой модели подбор значений одного гиперпараметра. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- 6. Повторите пункт 4 для найденных оптимальных значений гиперпараметров. Сравните качество полученных моделей с качеством моделей, полученных в пункте 4.

lab6

May 19, 2020

```
[1]: import pandas as pd
import numpy as np
import io
import requests
from sklearn.impute import SimpleImputer

# mushrooms dataset
url = "https://www.wolframcloud.com/obj/d0c0084e-0b60-46db-a4d9-beb33412905e"
s = requests.get(url).content
data = pd.read_csv(io.StringIO(s.decode('utf-8')))
data.head()
[1]: CapShape CapSurface CapColor ... Population Habitat Class
```

```
convex
             smooth
                     brown ... scattered
                                        urban poisonous
1
   convex
             smooth yellow ... numerous grasses
                                                   edible
2
             smooth white ... numerous meadows
    bell
                                                   edible
3
            scaly white ... scattered urban poisonous
   convex
             smooth
                                                   edible
   convex
                     gray ... abundant grasses
```

[5 rows x 23 columns]

Dataset preparation

```
'green']
    Bruises: [ True False]
    Odor: ['pungent' 'almond' 'anise' 'none' 'foul' 'creosote' 'fishy' 'spicy'
     'musty']
    GillAttachment: ['free' 'attached']
    GillSpacing: ['close' 'crowded']
    GillSize: ['narrow' 'broad']
    GillColor: ['black' 'brown' 'gray' 'pink' 'white' 'chocolate' 'purple' 'red'
    'buff'
     'green' 'yellow' 'orange']
    StalkShape: ['enlarging' 'tapering']
    StalkRoot: ['equal' 'club' 'bulbous' 'rooted' 'Missing[]']
    StalkSurfaceAboveRing: ['smooth' 'fibrous' 'silky' 'scaly']
    StalkSurfaceBelowRing: ['smooth' 'fibrous' 'scaly' 'silky']
    StalkColorAboveRing: ['white' 'gray' 'pink' 'brown' 'buff' 'red' 'orange'
    'cinnamon' 'yellow']
    StalkColorBelowRing: ['white' 'pink' 'gray' 'buff' 'brown' 'red' 'yellow'
    'orange' 'cinnamon']
    VeilType: ['partial']
    VeilColor: ['white' 'brown' 'orange' 'yellow']
    RingNumber: [1 2 0]
    RingType: ['pendant' 'evanescent' 'large' 'flaring' 'none']
    SporePrintColor: ['black' 'brown' 'purple' 'chocolate' 'white' 'green' 'orange'
    'yellow'
     'buff']
    Population: ['scattered' 'numerous' 'abundant' 'several' 'solitary' 'clustered']
    Habitat: ['urban' 'grasses' 'meadows' 'woods' 'paths' 'waste' 'leaves']
    Class: ['poisonous' 'edible']
[3]: """
     on initial viewing it seems that we have single column
     with absence of values in rows: this column is StalkRoot and
     absence of values is indicated like Missing[]
     11 11 11
     # Take a look at columns more precisely to ensure that this column is single_
     →with absence of values
     for col in data.columns:
         # Missing[] amount
         temp_null_count = data[data[col] == 'Missing[]'].shape[0]
         dt = str(data[col].dtype)
         if temp_null_count>0 and (dt=='object'):
             temp_perc = round((temp_null_count / rows) * 100.0, 2)
             print('Column {}. Data type {}. amount of Missing[] values {}, {}%.'.
      →format(col, dt, temp_null_count, temp_perc))
```

CapColor: ['brown' 'yellow' 'white' 'gray' 'red' 'pink' 'buff' 'purple'

'cinnamon'

```
Column StalkRoot. Data type object. amount of Missing[] values 2480, 30.53%.
```

/usr/local/lib/python3.6/dist-packages/pandas/core/ops/array_ops.py:253:
FutureWarning: elementwise comparison failed; returning scalar instead, but in
the future will perform elementwise comparison
res_values = method(rvalues)

```
[4]: data['StalkRoot'].unique()
```

```
[4]: array(['equal', 'club', 'bulbous', 'rooted', 'Missing[]'], dtype=object)
```

```
[5]: # impute data with most frequent values
imputation = SimpleImputer(missing_values='Missing[]', strategy='most_frequent')
data_imputed = imputation.fit_transform(data[['StalkRoot']])
np.unique(data_imputed)
```

[5]: array(['bulbous', 'club', 'equal', 'rooted'], dtype=object)

```
[6]: # put imputed data in our dataset
for i in range(rows):
   data['StalkRoot'][i] = data_imputed[i][0]
   data['StalkRoot'].unique()
```

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3:
SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

This is separate from the ipykernel package so we can avoid doing imports until

[6]: array(['equal', 'club', 'bulbous', 'rooted'], dtype=object)

```
[7]: # now we'll transform categorical columns to columns with values in [0, 1]
    object_columns = []

# initially, find amount of unique values for each column
# and add categorical columns to object_columns
for column in data.columns:
    dt = str(data[column].dtype)
    amount_unique = len(pd.unique(data[column]))
    print('{}: {}, {}'.format(column, amount_unique, dt))
    if dt == 'object':
        object_columns.append({'column': column, 'amount': amount_unique})
```

CapShape: 6, object
CapSurface: 4, object

```
Bruises: 2, bool
    Odor: 9, object
    GillAttachment: 2, object
    GillSpacing: 2, object
    GillSize: 2, object
    GillColor: 12, object
    StalkShape: 2, object
    StalkRoot: 4, object
    StalkSurfaceAboveRing: 4, object
    StalkSurfaceBelowRing: 4, object
    StalkColorAboveRing: 9, object
    StalkColorBelowRing: 9, object
    VeilType: 1, object
    VeilColor: 4, object
    RingNumber: 3, int64
    RingType: 5, object
    SporePrintColor: 9, object
    Population: 6, object
    Habitat: 7, object
    Class: 2, object
[0]: from sklearn.preprocessing import OneHotEncoder
     ohe = OneHotEncoder()
[0]: """
     after oneHot encoding for single value we'll have something like this [0.0, 1.
      \hookrightarrow 0, 0.0, 0.0, \ldots ]
     but we need to have just a number - so this function will normalize it with \sqcup
     \hookrightarrow next formula:
     norm_val = (N - i) / N, where
     N - amount of unique values for our column
     i - index of 1.0 in values [0.0, 1.0, 0.0, 0.0, ...] before normalizing
     so for example if we'll have 10 different values - then in normalized view it_{\sqcup}
      \hookrightarrow will variating
     from 0.1 (if index = 9) to 1.0 (if index = 0)
     def from_bytes_to_num(col_in_arr, uniquie_amount):
         normalized_col = []
         for value in col_in_arr:
             normalized_value = (uniquie_amount - np.where(value == 1.0)[0][0]) /__
      →uniquie_amount
             normalized_col.append(float("{0:.4f}".format(normalized_value))) #_
      \rightarrow digits after float point
         return normalized_col
```

CapColor: 10, object

```
normalized_data = []
for col in object_columns:
    uniquie_amount = col['amount']
    col_name = col['column']

#encode with oneHot
    column_after_encoding = ohe.fit_transform(data[[col_name]])

#fetch it to array
    col_in_arr = column_after_encoding.toarray()

#normilizing column values
    normalized_col = from_bytes_to_num(col_in_arr, uniquie_amount)

normalized_data.append({'column': col_name, 'data': normalized_col})
```

```
[10]: #set normalized values for general dataset
for col in normalized_data:
        col_in_dataFrame = pd.DataFrame(data={col['column']: col['data']})
        data[col['column']] = col_in_dataFrame

data
```

[10]:	CapShape	CapSurface	${\tt CapColor}$		Population	Habitat	Class
0	0.6667	0.25	1.0		0.5000	0.4286	0.5
1	0.6667	0.25	0.1		0.6667	1.0000	1.0
2	1.0000	0.25	0.2		0.6667	0.7143	1.0
3	0.6667	0.50	0.2		0.5000	0.4286	0.5
4	0.6667	0.25	0.7		1.0000	1.0000	1.0
•••	•••	•••				•••	
8119	0.3333	0.25	1.0	•••	0.8333	0.8571	1.0
8120	0.6667	0.25	1.0		0.3333	0.8571	1.0
8121	0.5000	0.25	1.0		0.8333	0.8571	1.0
8122	0.3333	0.50	1.0		0.3333	0.8571	0.5
8123	0.6667	0.25	1.0	•••	0.8333	0.8571	1.0

[8124 rows x 23 columns]

Data splitting

```
[11]: from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import cross_val_score, train_test_split
    dcopy = data.copy()

X = dcopy.drop("Class", axis=1)
```

```
y = dcopy["Class"]
      print(X.head(), "\n")
      print(y.head())
                  CapSurface CapColor ... SporePrintColor Population
        CapShape
                                                                           Habitat
     0
          0.6667
                         0.25
                                    1.0 ...
                                                      1.0000
                                                                   0.5000
                                                                            0.4286
          0.6667
                         0.25
     1
                                    0.1 ...
                                                      0.8889
                                                                   0.6667
                                                                            1.0000
                                    0.2 ...
          1.0000
                         0.25
                                                      0.8889
                                                                   0.6667
                                                                            0.7143
                                    0.2 ...
     3
          0.6667
                         0.50
                                                      1.0000
                                                                   0.5000
                                                                            0.4286
          0.6667
                         0.25
                                    0.7 ...
                                                      0.8889
                                                                   1.0000
                                                                            1.0000
     [5 rows x 22 columns]
          0.5
     0
          1.0
     1
          1.0
     3
          0.5
          1.0
     Name: Class, dtype: float64
[12]: # divide train and test selections
      X_train, X_test, y_train, y_test = train_test_split(X, y,
                                   test_size=0.25, random_state=1)
      print(X_train.shape)
      print(X_test.shape)
      print(y_train.shape)
      print(y_test.shape)
     (6093, 22)
     (2031, 22)
     (6093,)
     (2031,)
```

Model training

Random forest

```
[29]: from sklearn.ensemble import RandomForestRegressor
      ran_80 = RandomForestRegressor(n_estimators=80)
      ran_80.fit(X_train, y_train)
[29]: RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',
                            max_depth=None, max_features='auto', max_leaf_nodes=None,
                            max_samples=None, min_impurity_decrease=0.0,
                            min_impurity_split=None, min_samples_leaf=1,
                            min_samples_split=2, min_weight_fraction_leaf=0.0,
                            n_estimators=80, n_jobs=None, oob_score=False,
                            random_state=None, verbose=0, warm_start=False)
[30]: test model(ran 80)
     mean_absolute_error: 0.0
     median absolute error: 0.0
     r2_score: 1.0
     Gradient Boost
[31]: from sklearn.ensemble import GradientBoostingRegressor
      gr_80 = GradientBoostingRegressor(n_estimators=80)
      gr_80.fit(X_train, y_train)
[31]: GradientBoostingRegressor(alpha=0.9, ccp_alpha=0.0, criterion='friedman_mse',
                                init=None, learning_rate=0.1, loss='ls', max_depth=3,
                                max_features=None, max_leaf_nodes=None,
                                min_impurity_decrease=0.0, min_impurity_split=None,
                                min_samples_leaf=1, min_samples_split=2,
                                min_weight_fraction_leaf=0.0, n_estimators=80,
                                n_iter_no_change=None, presort='deprecated',
                                random_state=None, subsample=1.0, tol=0.0001,
                                validation_fraction=0.1, verbose=0, warm_start=False)
[32]: test_model(gr_80)
     mean_absolute_error: 0.006802494393104271
     median_absolute_error: 0.0010510475336632519
     r2_score: 0.9900409523010036
```

Hyperparameter n selection

Random forest

```
[46]: param_range = np.arange(50, 170, 10)
      tuned_parameters = [{'n_estimators': param_range}]
      tuned_parameters
[46]: [{'n estimators': array([ 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150,
      160])}]
[47]: from sklearn.model_selection import GridSearchCV
      from sklearn.model_selection import ShuffleSplit
      gs = GridSearchCV(RandomForestRegressor(), tuned_parameters,
                        cv=ShuffleSplit(n_splits=10), scoring="r2",
                        return train score=True, n jobs=-1)
      gs.fit(X, y)
      gs.best_estimator_
[47]: RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',
                            max_depth=None, max_features='auto', max_leaf_nodes=None,
                            max_samples=None, min_impurity_decrease=0.0,
                            min_impurity_split=None, min_samples_leaf=1,
                            min_samples_split=2, min_weight_fraction_leaf=0.0,
                            n estimators=80, n jobs=None, oob score=False,
                            random_state=None, verbose=0, warm_start=False)
[48]: import matplotlib.pyplot as plt
      %matplotlib inline
      plt.plot(param_range, gs.cv_results_["mean_train_score"]);
[48]:
```


[49]:


```
[50]: reg = gs.best_estimator_
reg.fit(X_train, y_train)
test_model(reg)
```

mean_absolute_error: 6.154603643525363e-05

median_absolute_error: 0.0 r2_score: 0.9999753811019957

Gradient Boost

[28]: GradientBoostingRegressor(alpha=0.9, ccp_alpha=0.0, criterion='friedman_mse', init=None, learning_rate=0.1, loss='ls', max_depth=3, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=200, n_iter_no_change=None, presort='deprecated', random_state=None, subsample=1.0, tol=0.0001, validation_fraction=0.1, verbose=0, warm_start=False)

```
[33]: plt.plot(param_range, gs.cv_results_["mean_train_score"]);
```



```
[34]: plt.plot(param_range, gs.cv_results_["mean_test_score"]);
[34]:
              1.000
              0.975
              0.950
              0.925
              0.900
              0.875
              0.850
              0.825
              0.800
                                         75
                                  50
                          25
                                                                     175
                                                100
                                                       125
                                                              150
                                                                             200
[35]: reg = gs.best_estimator_
      reg.fit(X_train, y_train)
      test_model(reg)
```

mean_absolute_error: 0.0028189626630988947
median_absolute_error: 0.0005545827653701263

r2_score: 0.9980449702667502

[0]: