The University of Azad Jammu and Kashmir Muzaffarabad, AJK

Name	Feeza Kulsoom
Roll No	2024-SE-03
Course	CALD
Semester	SE_2 nd Semester
Lab No	02
Title	Verification of Basic Logic Gates
Submitted to	Engr. Sidra Rafique
Submission Date	28 th April ,2025

Department of Software Engineering

Digital Logic Gates Lab Task

Title: Implementation of Basic Logic Gates in EWB

Aim:

To design, simulate, and verify the outputs of basic logic gates (AND, OR, NOT, NAND, NOR, XOR) using Electronics Workbench (EWB).

Components Required:

- Logic Gates (ICs)
- Logic Switches
- LEDs
- Resistors
- Power Source (+5V)
- Ground

Procedure for Each Gate:

1. AND Gate

- I placed the AND Gate IC (e.g., 7408) on the EWB workspace.
- I connected two logic switches to the two inputs (A and B).
- I connected the output to an LED through a resistor.
- I attached the power supply (+5V) and ground to the IC.
- I simulated by toggling the switches and observed the output LED.

Truth Table:

Input 1	Input 2	Output
0	0	0
0	1	0
1	0	0
1	1	1

Figure 1: circuit diagram & truth table of AND gate

2. OR Gate

- I placed the OR Gate IC (e.g., 7432) on the EWB workspace.
- I connected two switches to the two inputs.
- I connected the output to an LED via a resistor.
- I provided +5V to VCC and ground to GND pins.
- I simulated by changing switch inputs and checked the LED.

Truth Table:

Input 1	Input 2	Output
0	0	0
0	1	1
1	0	1
1	1	1

Figure 2: circuit diagram & truth table of OR gate

3. NOT Gate

- I placed the NOT Gate IC (e.g., 7404) in the workspace.
- I connected a single switch to the input.
- I connected the output to an LED using a resistor.
- I properly powered the IC with +5V and ground connections.
- I simulated and observed the inverted output on the LED.

Truth Table:

Input	Output
0	1
1	0

Implementation:

Figure 3: circuit diagram & truth table of NOT gate

4. NAND Gate

- I placed the NAND Gate IC (e.g., 7400) in the workspace.
- I connected two switches to the input pins.
- I connected the output to an LED through a resistor.
- I connected VCC and GND to the IC.
- I simulated different inputs and checked the output LED.

Truth Table:

Input 1	Input 2	Output

0	0	1
0	1	1
1	0	1
1	1	0

Implementation:

Figure 4: circuit diagram & truth table of NAND gat

5. NOR Gate

- I placed the NOR Gate IC (e.g., 7402) on the workspace.
- I attached two switches to the input terminals.
- I connected the output to an LED with a resistor.

- I supplied +5V and ground properly to the IC.
- I simulated by toggling the switches and verified the output.

Truth Table:

Input 1	Input 2	Output
0	0	1
0	1	0
1	0	0
1	1	0

Figure 5: circuit diagram & truth table of NOR gate

6. XOR Gate

- I placed the XOR Gate IC (e.g., 7486) on the EWB workspace.
- I connected two logic switches to the two input terminals.
- I connected the output to an LED through a resistor.
- I connected VCC (+5V) and GND.
- I toggled switches and checked the LED output accordingly.

Truth Table:

Input 1	Input 2	Output
0	0	0
0	1	1
1	0	1
1	1	0

Figure 6: circuit diagram & truth table of XOR gate