Aufgabe 1 (4 Points).

Definition 1 (T-Forward-Measure). Let $(B_t)_{t \leq T}$, $B_t = e^{\int_0^t r_s ds}$ be the bank account/numeraire in a financial market. If \mathbb{Q} is a risk-neutral measure, then the forward measure \mathbb{Q}^T on \mathscr{F}_T is defined via the Radon Nikodym density process Z with respect to \mathbb{Q} , given by

$$Z_t = \frac{P_t(T)}{P_0(T)B_t} \,.$$

Aufgabe 1 (4 Points). Let $F_t(T, S)$ be the simple forward rate for [T, S] prevailing at t which is given by

$$F_t(T,S) = \frac{1}{S-T} \left(\frac{P_t(T)}{P_t(S)} - 1 \right), \quad t \in [0,T].$$

Show that $(F_t(T,S))_{t\in[0,T]}$ is a martingale with respect to some forward measure Q^U ; that is

$$F_t(T,S) = E_{O^U}[F_T(T,S)|\mathscr{F}_t]$$
 für alle $t \in [0,T]$.

What is U?

HINT. Use the identity

$$P_t(T) = B_t E_Q \left[\frac{1}{B_T} \middle| \mathscr{F}_t \right], \quad t \in [0, T].$$

Solution. this is Exercise 1 from sheet 13 form Probability Theory 2. We claim that U = S. According to Definition 1, the forward measure \mathbb{Q}^S with respect to \mathbb{Q} is given by

$$Z = \frac{1}{P_0(S)} \frac{P(S)}{B} \,. \tag{1}$$

We use the definition of $F_T(T, S)$ to get

$$E_{Q^S}[F_T(T,S)|\mathscr{F}_t] = \frac{1}{S-T} \left(E_{Q^S} \left[\frac{1}{P_T(S)} \middle| \mathscr{F}_t \right] - 1 \right) \,.$$

By measure change with Z from equation (1) we get

$$= \frac{1}{S-T} \left(\frac{1}{Z_t} E_Q \left[\frac{1}{P_T(S)} \middle| \mathscr{F}_t \right] - 1 \right) \,.$$

Employing the definition of Z in equation (1) we get

$$= \frac{1}{S-T} \left(\frac{B_t}{P_t(S)} E_Q \left[\frac{1}{B_T} \middle| \mathscr{F}_t \right] - 1 \right) .$$

Finally, we use the hint to arrive at

$$= \frac{1}{S-T} \left(\frac{P_t(T)}{P_t(S)-1} \right) = F_t(T,S).$$

Literatur

[BM06] BRIGO, Damiano; MERCURIO, Fabio: Interest rate models-theory and practice: with smile, inflation and credit. Bd. 2. Springer, 2006