Table 1: Cox PH Model

	Dependent variable:	
	Relative mortality risk	
	male	female
1000-1999 Eur/month	1.078*** (1.040, 1.116)	1.113 (0.960, 1.265)
500-999 Eur/month	1.084*** (1.046, 1.122)	1.096 (0.944, 1.248)
< 500 Eur/month	1.066* (1.014, 1.118)	1.055 (0.900, 1.209)
Secondary/Tertiary Ed.	0.930*** (0.910, 0.950)	0.906*** (0.862, 0.950)
< 20 y. contrib.	1.039* (1.001, 1.078)	1.014 (0.978, 1.050)
> 40 y. contrib.	0.939*** (0.922, 0.955)	1.083* (1.011, 1.154)
in time ret.	0.856*** (0.840, 0.872)	0.849*** (0.804, 0.894)
late ret.	0.820*** (0.783, 0.856)	0.832*** (0.778, 0.886)
birth year (cohort)	0.997 (0.991, 1.002)	1.005 (0.995, 1.016)
not married	1.218*** (1.198, 1.238)	1.058*** (1.025, 1.092)
own house/apt.	0.858*** (0.832, 0.883)	0.906*** (0.858, 0.953)
couple hh	0.993 (0.976, 1.009)	1.024 (0.993, 1.055)
Observations	442,010	199,965
\mathbb{R}^2	0.003	0.001
Log Likelihood	-719,035.400	-177,535.300
Wald Test ($df = 12$)	1,247.080***	134.650***
LR Test $(df = 12)$	1,220.861***	131.028***
Score (Logrank) Test ($df = 12$)	1,250.712***	134.848***

Note:

*p<0.1; **p<0.05; ***p<0.01