Submission Form

Fill up the following slots with appropriate content. You must submit the content of this document from this page only.

1. Your Name: Mohammad Shafkat Hasan

Your ID: 19101077
 Your Section: 04
 Experiment No: 01

- 5. Experiment Title: Verifying the inverse square nature of Coulomb's law and determining the value of Coulomb's constant, "k".
- 6. You must write your ID in each of the graphs you insert here.

7. Table 1: both charges are positive

$$Q_I = 10 \,\mu C$$

$$Q_2 = 10 \,\mu C$$

Sl:	Distance r (meter)	log(r)	$\frac{1}{r^2}$	Electrostatic force F_E	$log(F_E)$
1.	0.014	-1.853871964	5102.040816	4585.485	3.661385277
2.	0.02	-1.698970004	2500	2246.888	3.351581425
3.	0.03	-1.522878745	1111.111111	998.617	2.999398955
4	0.04	-1.397940009	625	561.722	2.749521433
5	0.05	-1.301029996	400	359.502	2.555701311
6.	0.06	-1.22184875	277.7777778	249.654	2.397338529
7.	0.07	-1.15490196	204.0816327	183.419	2.263444321
8.	0.08	-1.096910013	156.25	140.43	2.147459896
9.	0.09	-1.045757491	123.4567901	110.957	2.045154706
10	0.1	-1	100	89.876	1.953643736

8. **Table 2:** one of the charges are positive and another is negative.

$$Q_3 = 1\mu C$$

$$Q_4 = -1\mu C$$

Sl:	Distance r (meter)	log(r)	$\frac{1}{r^2}$	Electrostatic force F_E	$log(F_E)$
1.	0.014	-1.853871964	5102.040816	45.855	1.661386698
2.	0.02	-1.698970004	2500	22.469	1.351583744
3.	0.03	-1.522878745	1111.111111	9.986	0.999391562
4	0.04	-1.397940009	625	5.617	0.749504424
5	0.05	-1.301029996	400	3.595	0.555698895
6.	0.06	-1.22184875	277.7777778	2.497	0.397418542
7.	0.07	-1.15490196	204.0816327	1.834	0.263399331
8.	0.08	-1.096910013	156.25	1.404	0.147367108
9.	0.09	-1.045757491	123.4567901	1.11	0.045322979
10	0.1	-1	100	0.899	-0.046240308

9. Draw F_E vs r graph that is you plot r along the x axis and F_E along the y axis. For two tables you will get two curves. You can draw into one curve if you want. Insert the **graph-1** as image here:

10.Draw $log(F_E)$ vs log(r) graph that is you plot log(r) along the x axis and $log(F_E)$ along the y axis. For two tables you will get two lines. Find the slope from both of the straight lines you get.

Slope from line 1: 1.61246

Slope from line 2: -0.387517

Mean slope: 0.6124715

Insert the **graph-2** here:

11.Draw the Electrostatic Force, F_E vs inverse square distance, $1/r^2$ curve. You plot $1/r^2$ along the x axis and F_E along the y axis. You will get two straight lines for each table. Find the slope of each line.

Slope from line 1: 0.898755

Slope from line 2: 0.00898757

For each table you have different Q_1 and Q_2 . Calculate k for each table:

$$k = slope / (Q_1Q_2)$$

k from line 1: 8987550000

k from line 2: 8987570000

Mean k: 8987560000

Insert the **graph-3** here:

12. **Please briefly** discuss how the process of taking logs allows to find the inverse squared nature of Coulomb force and anything related to this experiment that you found interesting.

You are *strongly* encouraged to use your **own words** to describe your thoughts. However, any kind of plagiarism (such as copying and pasting from other students' lab-reports) will not be tolerated and will be subject to disciplinary action according to BracU policy.

Discuss here:

Coulombs' law is,

$$|\mathbf{F}| = k_e rac{|q_1 q_2|}{r^2}$$

By taking logs, we got a graph of straight lines.

In my experiment k of line 01 and 02 is almost similar witch is really easy to calculate.

Making graph through Desmos is also very fun.