PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY ARKUSZ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 9 stron (zadania 1 3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

STYCZEŃ 2012

XXXXDD A NIC.

WIDKANE:						
(środowisko)						
(kompilator)						
(program użytkowy)						

Czas pracy: 90 minut Liczba punktów do uzyskania: 20

PESEL										

Polskie Towarzystwo Informatyczne Oddział Kujawsko-Pomorski Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

Zadanie 1. Test (5 pkt)

a)	Różnica BABA ₁₆ – ABA ₁₆ równa się:
	\square AC0C ₁₆
	□ 130000 ₈
	\square B ₁₆
	\square 1011000100100010 ₂
b)	Zasady kompresji danych najlepiej uzasadnia przekształcenie napisu AAABBBCCC do postaci:
	☐ 3A3B3C
	☐ trzy A trzy B trzy C
	☐ ABC po trzy sztuki
	☐ ABC każdego po trzy
c)	Który matematyk nie kojarzy się z żadnym algorytmem:
	☐ Euklides
	□ Newton
	☐ Horner
	☐ Pascal
d)	Który algorytm sortujący (standardowo) nie działa <i>in situ</i> , czyli wymaga dodatkowej tablicy w czasie działania:
	☐ Algorytm bąbelkowy (Bubble Sort)
	☐ Sortowanie przez scalanie (Merge Sort)
	☐ Sortowanie szybkie (Quick Sort)
	☐ Sortowanie przez wstawianie (Insertion Sort)

Polskie Towarzystwo Informatyczne Oddział Kujawsko-Pomorski Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

- e) Uporządkuj poniższe złożoności algorytmów w kolejności rosnącej:
 - 1. *n* złożoność liniowa
 - 2. n^2 złożoność kwadratowa
 - 3. log(n) złożoność logarytmiczna
 - 4. $n \log(n)$ złożoność liniowo-logarytmiczna
 - \Box 1, 2, 3, 4
 - \Box 3, 1, 4, 2
 - \Box 4, 3, 2, 1
 - \Box 3, 4, 1, 2

Punktacja:

Wypełnia egzaminator	Podpunkt:	a)	b)	c)	d)	e)	Razem
	Maksymalna liczba punktów:	1	1	1	1	1	5
cgzummutor	Uzyskana liczba punktów:						

Zadanie 2. Liczby Fibonacciego (6 pkt)

Liczby Fibonacciego są definiowane w następujący sposób:

$$F_1 = 1,$$
 $F_2 = 1,$

$$F_n = F_{n-1} + F_{n-2}$$
 dla $n = 3, 4, ...$

a) W wybranej przez siebie notacji (schemat blokowy, lista kroków, wybrany przez Ciebie język programowania) podaj opis rekurencyjnego algorytmu, który służy do obliczania wartości liczby F_n dla dowolnego n.

b) W wybranej przez siebie notacji (schemat blokowy, lista kroków, wybrany przez Ciebie język programowania) podaj opis algorytmu, który służy do obliczania wartości liczby F_n dla dowolnego n, ale nie korzysta z rekurencji.

Polskie Towarzystwo Informatyczne Oddział Kujawsko-Pomorski Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

c) Chcesz obliczyć wartość F_7 . Ile razy podczas obliczania wartości F_7 jest obliczana wartość liczby F_4 , gdy stosujesz algorytm z punktu a), a ile gdy stosujesz algorytm z punktu b)?

d) Jak zinterpretujesz wyniki otrzymane w punkcie c)? Porównaj działanie algorytmów z punktów a) i b).

Punktacja:

	Podpunkt:	a)	b)	c)	d)	Razem
Wypełnia egzaminator	Maksymalna liczba punktów:	1	2	2	1	6
cg2ummuto1	Uzyskana liczba punktów:					

Zadanie 3. Progi i schody (9 pkt)

W ciągu liczb naturalnych, parę sąsiednich liczb nazywamy **progiem**, jeśli następna liczba jest mniejsza od poprzedniej.

W ciągu liczb naturalnych, **schody do dołu** tworzy jego podciąg złożony z przynajmniej dwóch liczb, w którym kolejna liczba nie jest większa od poprzedniej i tego ciągu nie można rozszerzyć w jedną albo w drugą stronę do innych schodów do dołu. Liczba elementów w takim podciągu jest **długością schodów**.

Przykład:

Ciąg: 3, 9, 7, 7, 6, 4, 4, 5 zawiera schody do dołu 9, 7, 7, 6, 4, 4, 4 o długości 7. Te schody do dołu zawierają 3 progi: 9 7, 7 6 i 6 4.

Dane: n i ciąg złożony z n liczb naturalnych

a) Dla następującego ciągu liczb:

wypisz kolejno wszystkie występujące w nim schody do dołu i obok każdych schodów podaj ich długości i liczbę progów, jakie zawierają.

Polskie Towarzystwo Informatyczne Oddział Kujawsko-Pomorski Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

b)

Dane: n – liczba naturalna

ciąg złożony z n liczb naturalnych

W wybranej przez siebie notacji (schemat blokowy, lista kroków, wybrany przez Ciebie język programowania) podaj opis algorytmu, który oblicza, ile progów znajduje się w danym ciągu.

Polskie Towarzystwo Informatyczne Oddział Kujawsko-Pomorski Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

c)

Dane: n – liczba naturalna

ciąg złożony z n liczb naturalnych

W wybranej przez siebie notacji (schemat blokowy, lista kroków, wybrany przez Ciebie język programowania) podaj opis algorytmu, który dla danego ciągu liczb znajduje największą liczbę progów w schodach do dołu tego ciągu.

Polskie Towarzystwo Informatyczne Oddział Kujawsko-Pomorski Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

d)

Podaj, ile porównań między elementami ciągu danych w zależności od *n* wykonuje Twój algorytm podany w punkcie c).

Punktacja:

	Podpunkt:	a)	b)	c)	d)	Razem
Wypełnia egzaminator	Maksymalna liczba punktów:	1	2	5	1	9
ogzanimutor	Uzyskana liczba punktów:					

