Correction des exercices

a.
$$\log(100) = 2$$
; **b.** $\log(1000) = 3$; **c.** $\log(10\ 000) = 4$; **d.** $\log(1\ 000\ 000) = 6$.

a.
$$\log(0.1) = -1$$
; b. $\log(0.001) = -3$; c. $\log(0.0001) = -4$; d. $\log(0.0000001) = -7$

a.
$$\log(10^2 \times 10^{-1}) = 1$$
; **b.** $\log(10^6 \times 10^{-4}) = 2$; **c.** $\log(10^{-5} \times 10^{-2}) = -7$; **d.** $\log(0.1 \times 0.001) = -4$.

5 a.
$$\log(0,003) < \log(0,03)$$
; **b.** $\log(3 \times 10^{-1}) > \log(30 \times 10^{-3})$; **c.** $\log\left(\frac{5}{7}\right) > \log\left(\frac{5}{11}\right)$; **d.** $\log(2) > \log\left(\frac{2}{3}\right)$.

a.
$$\log(0.2) > \log(0.004)$$
; **b.** $\log(0.25) > \log(0.205)$; **c.** $\log(0.0039) < \log(0.039)$.

7 a.
$$\log(0.015) < 0$$
; b. $\log(1.001) > 0$; c. $\log(0.9999) < 0$; d. $\log(1.00 \times 10^{-3}) < 0$.

8 a.
$$-2 < \log(0.02) < -1$$
; **b.** $-1 < \log(0.25) < 0$; **c.** $0 < \log(7.5) < 1$; **d.** $3 < \log(2021) < 4$.

a.
$$\log(200) = 2 + \log(2)$$
; **b.** $\log(400) = 2 + 2\log(2)$; **c.** $\log(80) = 3\log(2) + 1$; **d.** $\log(32) = 5\log(2)$.

10 a.
$$\log(0,2) = -1 + \log(2)$$
; **b.** $\log(0,004) = -3 + 2\log(2)$; **c.** $\log(0,08) = -2 + 3\log(2)$; **d.** $\log(0,032) = -3 + 5\log(2)$.

a.
$$\log(25) = 2\log(5)$$
; **b.** $\log(125) = 3\log(5)$; **c.** $\log(50) = 2\log(5) + \log(2)$; **d.** $\log(25\ 000) = 3 + 2\log(5)$.

12 a.
$$\log(0.5) = -1 + \log(5)$$
; **b.** $\log(0.0025) = -4 + 2\log(5)$; **c.** $\log(0.625) = -3 + 4\log(5)$; **d.** $\log(0.005) = -3 + \log(5)$

a.
$$\log(6) = \log(2) + \log(3)$$
; **b.** $\log(24) = 3\log(2) + \log(3)$; **c.** $\log(18) = \log(2) + 2\log(3)$;

|14| **a.**
$$\log(500) = 2 + \log(5)$$
; **b.** $\log(0.05) = -2 + \log(5)$; **c.** $\log(50\,000) = 4 + \log(5)$; **d.** $\log(0.25) = -2 + 2\log(5)$.

15 a.
$$\log(9) = 2\log(3)$$
; b. $\log(27) = 3\log(3)$; c. $\log(0.3) = -1 + \log(3)$; d. $\log(30) = 1 + \log(3)$.

d. $\log(1200) = 2 + 2\log(2) + \log(3)$.

20 a.
$$x = 0$$
; **b.** $x = -3$; **c.** $x = 7$; **d.** $x = 2 - \frac{2}{\log(5)}$;

21 a.
$$x = -4 - \log(3)$$
; **b.** $x = 1$; **c.** $x = \frac{\log(3)}{\log(5)}$; **d.** $x = 1 + \frac{\log(3)}{\log(2)}$.

22 a.
$$x < 5$$
; **b.** $x < \frac{1}{\log(0.3)}$; **c.** $x \le 3$; **d.** $x \le \frac{\log(5)}{\log(0.8)}$

23 a.
$$x < 2$$
; **b.** $x \ge \frac{-2\log(5)}{\log(2)}$; **c.** $x > \frac{\log(5)}{\log(1,2)}$; **d.** $x \le \frac{\log(2)}{\log(0,8)}$.

24 1. $\log (10^n) = n$; 2. $\log (0.0001) > \log (10^{-6})$.

a. $\log(0,1) = -1$; **b.** $\log(100) = 2$; **c.** $\log(0,000\ 000\ 001) = -9$; **d.** $\log(1\ 000\ 000\ 000) = 9$.

a. $\log(10^6) = 6$; **b.** $\log(10^{121}) = 121$; **c.** $\log(10^{-12}) = -12$; **d.** $\log(10) = 1$.

a. $\log(100\ 000) = 5$; **b.** $\log(10\ 000\ 000) = 7$; **c.** $\log(10^{21}) = 21$; **d.** $\log(10^{2021}) = 2021$.

a. $\log(0,000\ 1) = -4$; **b.** $\log(0,000\ 01) = -5$; **c.** $\log(0,000\ 000\ 01) = -8$; **d.** $\log(10^{-9}) = -9$.

29

x	2	3	4	5	6
log(x)	0,3	0,5	0,6	0,7	0,8

 $\log (0,001) < \log (0,01) < \log (1,001) < \log (1,1).$

 $\log (0,003 9) < \log(0,004) < \log(0,039) < \log(0,199) < \log(0,2) < \log(0,205) < \log(0,25).$

 $\log(2\times10^{-5}) < \log(204\times10^{-5}) < \log(2,4\times10^{-3}) < \log(0,24\times10^{-1}) < \log(25\times10^{-2})$

2. La fonction f semble croissante sur]0; $+\infty[$.

3. $f(x) = 2\log(x)$; or, la fonction logarithme décimal est croissante sur]0; $+\infty[$. f est également croissante sur]0; $+\infty[$.

34 1. Erratum fenêtre graphique: ymin = -5; ymax = 0; scale = 1.

2. La fonction f semble décroissante sur]0; $+\infty[$.

3. $f(x) = -\log(x)$; or, la fonction logarithme décimal est croissante sur]0; $+\infty[$. f est donc décroissante sur]0; $+\infty[$.

 $f(0,5) = \log(2,5)$ et $g(0,5) = \log(1) = 0$. La courbe de couleur rose représente la fonction g.

36 1. $f(1) = \log(2)$ et g(1) = 0. La courbe de couleur orange représente la fonction g.

2. $f(5) \approx 1,4$ et $g(6) \approx 1,6$.

3. x = 2.

37 1. $\log(a \times b) = \log(a) + \log(b)$; 2. $\log(\frac{1}{a}) = -\log(a)$.

38 a. $\log(1000) = 3$; b. $\log(100 \times 10^{-8}) = -6$; c. $\log(10^{-9} \times 10^{7}) = -2$; d. $\log(0,000 \ 1) = -4$.

39 **a.** $\log(0.5) = \log(5) + (-1) \approx -0.3$.

b. $\log (0.05) = \log(5) + \log(10^{-2}) \approx -1.3.$

c. $\log (25) = 2 \log(5) \approx 1,4.$

d. $\log(500) = \log(5) + 2 \approx 2.7$.

a. $\log(0.2) \approx -0.7$; **b.** $\log(2.000) \approx 3.3$; **c.** $\log(8) \approx 0.9$; **d.** $\log(20) \approx 1.3$.

41 a. $\log(a^3) = 3 \times \log(a)$; **b.** $\log(a^5) - \log(a^2) = 3 \log(a)$; **c.** $\log(a^{-3}) + \log(a^2) = -\log(a)$; **d.** $\log(10a^5) = 1 + 5\log(a)$.

42 a. $-\log(a)$; **b.** $-2\log(a)$; **c.** $3\log(a)$; **d.** $1-\log(a)$.

43 a. $\log(20) = 2\log(2) + \log(5)$; **b.** $\log(40) = 3\log(2) + \log(5)$; **c.** $\log(200) = 3\log(2) + 2\log(5)$; **d.** $\log(250) = \log(2) + 3\log(5)$.

44 1. Faux; 2. Faux; 3. Vrai.

45 1. $x = \log(3)$; 2. $x = \frac{\log(2)}{\log(3)}$; 3. Non, car $3^2 > 4$.

46 1. d. 2. b 3. b.

a. $x = \frac{1}{\log(5)}$; **b.** Il n'y a pas de solution réelle car pour tout x réel, $2^x > 0$.

48 a. $3^x = 0$ n'admet pas de solution dans \mathbb{R} car, pour tout x réel, $3^x > 0$. b. $x = \frac{1}{\log(3)}$

49 a. $x = 10^{-1}$ **b.** x = 1000.

50 a. $x = 10^{0.5}$; **b.** $x = 10^{-1}$.

51 a. $x \le \frac{1}{\log(5)}$; **b.** $x > \frac{1}{\log(2)}$.

52 **a.** $x \le 2$; **b.** $x \ge \frac{\log(5)}{\log(3)}$.

53 a. x < 10; **b.** $x > 10^2$.

1. Vrai car $\log(100) + 1 = 2 + 1 = 3$; **2.** Vrai car $2\log(0,1) - 1 = 2 \times (-1) - 1 = -3$;

3. Faux car $3\log(10) + 1 = 3 \times 1 + 1 = 4$; 4. Vrai car $\log(10^2) + \log(10) = 2 + 1 = 3$.

55

x	0,1	1	100	0,001	10 ⁻⁵
$\log(x)$	-1	0	2	-3	-5

56

x	0,01	10	0,01	0,000 1	0,1
log(x)	-2	1	-2	-4	-1

57

x	1	5	25	125	625	
log(x)	0	0,7	1,4	2,1	2,8	

58

a. $-4 < \log(0,000\ 2) < -3$; **b.** $5 < \log(201\ 000) < 6$; **c.** $3 < \log(2500) < 4$; **d.** $-2 < \log(0,05) < -1$

59

x	1	2	5	10	20	
$\log(x)$	0	0,3	0,7	1	1,3	

 $\log(20) = \log(10 \times 2) = 1 + \log(2) \approx 1.3$; $\log(5) = \log(10 \div 2) = \log(10) - \log(2) \approx 0.7$.

a. 0, 00147 = 147 × 10⁻⁵ =
$$3 \times 7^2 \times 10^{-5}$$
. D'où $\log(0, 00147) = \log(3) + 2\log(7) - 5$.

b. 11 907 = $81 \times 147 = 3^5 \times 7^2$. D'où $\log (11 907) = 5\log(3) + 2\log(7)$.

c. 2700×490 . On a donc: $\log (2700 \times 490) = 3\log(3) + 2\log(7) + 3$.

61 1.
$$M = 0$$
 donc $k = 2,5\log(E_0)$.

2. M = -2,5log (E) + 2,5 log(E₀) = -2,5 (log(E) - log(E₀)) = -2,5 log
$$\left(\frac{E}{E_0}\right)$$
.

3. a. Si l'étoile est perçue comme plus brillante que l'étoile Véga, son éclat est donc plus grand que celui de Véga. On a donc $E > E_0$. $\frac{E}{E_0} > 1$ donc $\log \left(\frac{E}{E_0} \right) > 0$, d'où M < 0. La magnitude apparente est donc négative.

b. La magnitude de l'étoile Véga est nulle donc la magnitude de l'étoile observée est inférieure à celle de Véga.

4. Magnitude de Vénus : -4,6 à 0,1 près.

Magnitude de Mars: -2,3 à 0,1 près.

Magnitude de Neptune: 7,9 à 0,1 près.

5. Éclat du soleil : environ $10^{10,72} \times E_0$.

Éclat de la pleine lune : environ $10^{5,04} \times E_0$.

Éclat d'Uranus : environ $10^{-2,28} \times E_0$.

62 a.
$$x = \frac{\log(5)}{\log(2)}$$
; **b.** $x = \frac{1}{\log(3)}$; **c.** $x = 1$

63 a.
$$x = 50$$
; **b.** $x = 999$.

64 a.
$$x = 4.5$$
; **b.** $x = 1$.

65 **a.**
$$x > 0$$
; **b.** $x \le 0$.

66 a.
$$x > 5$$
: **b.** $-\frac{1}{3} < x \le 0$ x vérifie à la fois $3x + 1 > 0$ et $3x + 1 \le 1$.

71 1.
$$N = 70 \text{ dB}$$
.

$$2. \ N \le 120 \Leftrightarrow 10 \log \left(\frac{I}{10^{-12}}\right) \le 120 \Leftrightarrow \log \left(\frac{I}{10^{-12}}\right) \le 12 \Leftrightarrow \log \left(\frac{I}{10^{-12}}\right) \le \log(10^{12}) \Leftrightarrow I \le 10^{12} \times 10^{-12}$$
 D'où $I \le 1 \text{ W.m}^{-2}$.

3.
$$N + 20 = 10 \log \left(\frac{I}{10^{-12}}\right) + 20 = 10 \left[\log \left(\frac{I}{10^{-12}}\right) + 2\right] = 10 \log \left(\frac{100I}{10^{-12}}\right)$$
. Si N augmente de 20 dB, l'intensité I est multipliée par 100.

4.
$$N-10=10 \log \left(\frac{I}{10^{-12}}\right)-10=10 \left[\log \left(\frac{I}{10^{-12}}\right)-1\right]=10 \log \left(\frac{0.1I}{10^{-12}}\right)$$
. Si N diminue de 10 dB, l'intensité I est divisée par 10.

5. Le niveau sonore des deux enceintes est égal à
$$10 \log \left(\frac{2I}{10^{-12}}\right)$$
;

 $10 \log \left(\frac{2I}{10^{-12}}\right) = N + 10 \log(2) = 80 + 10 \log(2) \approx 83 \text{ dB}$. Les parents de Jade ont donc tort, les niveaux sonores ne

s'ajoutent pas. Le son reste en dessous du seuil de douleur de l'oreille humaine.

$$\boxed{\textbf{74}} \ \textbf{1.} \ \ N' = 10 \log \left(\frac{2I}{10^{-12}}\right) = 10 \ (\log \left(\frac{I}{10^{-12}}\right) + \log(2)) \ = N + 10 \log(2). \ \ 10 \log(2) \approx 10 \times 0.3 \approx 3.$$

2. a. Niveau sonore de deux tondeuses côte à côte: environ 70 + 3 soit 73 dB.

b.
$$N' = 10 \log \left(\frac{10I}{10^{-12}} \right) = 10 \left(\log \left(\frac{I}{10^{-12}} \right) + \log(10) \right) = N + 10.$$

Si N = 120, alors N' = 130. C'est donc vrai.

105 1. $r_{n+1} = 1,03 \times r_n$, la raison est donc égale à 1,03.

2. Il s'agit de calculer le nombre de séances au bout d'une année, soit 4 trimestres.

 $r_4 = r_1 \times 1,03^3 = 598 \times 1,03^3 \approx 653,$ résultat arrondi à l'unité près.

3.
$$598 \times 1,03^{x-1} \ge 800 \Leftrightarrow 1,03^{x-1} \ge \frac{800}{598} \Leftrightarrow (x-1)\log(1,03) \ge \log\left(\frac{800}{598}\right) \Leftrightarrow x-1 \ge \frac{\log\left(\frac{800}{598}\right)}{\log(1,03)} \quad (\log(1,03) > 0)$$

$$\Leftrightarrow x \geq 1 + \frac{\log\left(\frac{800}{598}\right)}{\log(1{,}03)} \; ; \; \text{la calculatrice donne} \quad 1 + \frac{\log\left(\frac{800}{598}\right)}{\log(1{,}03)} \; \approx 10{,}84 \; \text{à 0,}01 \; \text{près.}$$

4. Il faut résoudre l'inéquation $598 \times 1,03^{x-1} \ge 800$

D'après la question 3., x ≥10,84. Le nombre trimestriel de séances dépassera 800 après 11 trimestres.

Il faudra donc recruter un-e collègue au bout de 2 ans et 3 trimestres donc au cours du 3^e trimestre de l'année 2021.

106 1.660 × 0,85^t ≤ 115
$$\Leftrightarrow \log(0.85) \times t \le \log\left(\frac{115}{660}\right) \Leftrightarrow t \ge \frac{\log\left(\frac{115}{660}\right)}{\log(0.85)}$$
 car log(0,85) < 0.

La calculatrice donne $\frac{\log\left(\frac{115}{660}\right)}{\log(0.85)} \approx 10,75 \text{ à } 0,01 \text{ près.}$

2. Il faut résoudre l'inéquation $660 \times 0.85^t \le 115$; la question 1 donne $t \ge 10.75$.

Le temps de récupération doit donc être supérieur à 10 minutes et 45 secondes.

3. On calcule l'écart du nombre de battements entre la 8^e et la 9^e minute : $g(8) - g(9) \approx 27$. La diminution n'est pas anormale ici puisqu'elle est supérieure à 12.

107 1. a.
$$u_1 = 256 \times 0.8 = 204.8$$
.

b. $u_{n+1} = 0.8u_n$ d'après l'énoncé.

2. a.
$$C3 = C2*0.8$$

b. On résout l'inéquation $256 \times 0.8^n \le 50$.

Elle équivaut à :
$$n \times \log(0.8) \le \log\left(\frac{50}{256}\right) \iff n \ge \frac{\log\left(\frac{50}{256}\right)}{\log(0.8)}$$
. La calculatrice donne $\frac{\log\left(\frac{50}{256}\right)}{\log(0.8)} \approx 7.3$.

Le marché physique sera inférieur à 50 millions d'euros en 2018 + 8 = 2026.

109 1. Prix de l'article au 1^{er} janvier 2021 : $f(1) \approx 78$ euros à 1 unité près.

Prix de l'article au 1 er juillet 2021 : $f(1,5) \approx 82$ euros à 1 unité près.

2. On résout l'inéquation $72 \times 1,087^x > 200$;

elle équivaut à : 1,087^x >
$$\frac{200}{72}$$
 $\Leftrightarrow x \log(1,087) > \log\left(\frac{200}{72}\right)$ $\Leftrightarrow x > \frac{\log\left(\frac{200}{72}\right)}{\log(1,087)}$.

La calculatrice donne $\frac{\log\left(\frac{200}{72}\right)}{\log(1.087)} \approx 12,24$. Ce sera dans le courant de l'année 2032, au 1^{er} avril.

110 1.
$$u_1 = 800 \times 1,025 = 820.$$

2. La suite (u_n) est une suite géométrique de raison 1,025 et de 1^{er} terme 800.

$$u_n = 800 \times 1,025^n$$
.

$$u_n = 800 \times 1,025^n.$$
3. $800 \times 1,025^n \ge 1000 \Leftrightarrow 1,025^n \ge \frac{1000}{800} \Leftrightarrow n\log(1,025) \ge \log\left(\frac{1000}{800}\right) \Leftrightarrow n \ge \frac{\log\left(\frac{1000}{800}\right)}{\log(1,025)}$.

La calculatrice donne $\frac{\log\left(\frac{1000}{800}\right)}{\log(1,025)}\approx 9,03.$

4. Cela revient à déterminer le plus petit entier n tel que $800 \times 1,025^n \ge 1000$, inéquation résolue à la question **3**

$$\operatorname{avec} n \geq \frac{\log \left(\frac{1000}{800}\right)}{\log(1,025)} \ .$$

La calculatrice donne
$$\frac{\log\left(\frac{1000}{800}\right)}{\log(1,025)}\approx 9,03.$$

Le capital acquis dépassera pour la première fois 1000 € en 2029.