	金	金沢大学大学院自然科学研究科		博士前期課程入学試験		問題用紙
対象		機械科学専攻,	電子情報科學	き専攻,環境デ	ザイン学	専攻
試験科目	名	数	华	P. 1	1	1

2014年8月26日(火)10:00-11:00

[注意] 1. 問題 1, 2, 3, 4 のうち、2題を選択して解答すること. 2. 解答は各題ごとに分けて、1題を1枚の答案用紙の表に書くこと.

1 次の微分方程式を解け.

$$(1) \quad \frac{dy}{dx} = xe^{-x}(y+1)^2$$

(1)
$$\frac{dy}{dx} = xe^{-x}(y+1)^2$$
 (2) $\frac{d^2y}{dx^2} + ay = 0$ (a: 実数の定数)

(3)
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = x^2 + x$$

[2] 領域 $V: x^2 + y^2 + \frac{z^2}{4} \le 1$ とベクトル場 $A = \left(x, y, \frac{z}{4}\right)$ を考える. $S \in V$ の境界とする. 次の問いに答えよ.

- (1) Vの体積を求めよ.
- (2) S 上の点 (x,y,z) における外向き単位法線ベクトル n と内積 $A \cdot n$ を求めよ.

(3) 面積分
$$\iint_S \sqrt{x^2 + y^2 + \frac{z^2}{16}} dS$$
 の値を求めよ.

3 複素関数
$$f(z) = \frac{\cos z}{\sin z} - \frac{1}{z}$$
 について、次の問いに答えよ.

- (1) 関数 f(z) の特異点を全て求めよ.
- (2) 関数 f(z) の極における留数を求めよ.

$$\int_{|z|=\frac{5}{2}\pi} f(z) \, dz$$

4 関数 f(t) $(0 \le t < \infty)$ のラプラス変換

$$\mathscr{L}[f(t)](s) = \int_0^\infty f(t)e^{-st}dt$$

について、次の問いに答えよ. ただし、a は実数の定数とする.

- (1) $\mathscr{L}[e^{at}f(t)](s) = \mathscr{L}[f(t)](s-a)$ であることを示せ.
- (2) $\mathscr{L}[\cos at](s) = \frac{s}{s^2 + a^2}$, $\mathscr{L}[\sin at](s) = \frac{a}{s^2 + a^2}$ であることを示せ.
- (3) $\mathscr{L}[f(t)](s) = \frac{2s-3}{s^2+2s+5}$ となる f(t) を求めよ.