Example 2

A satellite based mobile phone communications system operates at 1.6 GHz. Calculate the transmit power required from a handset of the system and comment on the result.

System parameters are:

Satellite antenna diameter 1 m

Satellite antenna efficiency 80%

Satellite receiver antenna noise figure 500 K

Signal bandwidth 150 kHz

Satellite receiver noise figure 3 dB

Boltzman's constant k 1.38 x 10⁻²³ J/K

Operating margin 15 dB

Uplink C/N 10 dB

Handset antenna gain 0 dBi

Path length 800 km

Solution

$$\left(\frac{\mathbf{C}}{\mathbf{N}}\right)_{\mathrm{II}} = \mathbf{E}_{\mathrm{e}} - \mathbf{L}_{\mathrm{U}} - \mathbf{M} + \mathbf{G}_{\mathrm{s}} - \mathbf{N}_{\mathrm{U}}$$

- E_e = earth station eirp = P_e x G_e
- L_U = uplink path loss
- M = operating margin
- G_s = satellite antenna gain
- N_U = uplink thermal noise = k T_s B_{RF}
- = $-228.6 + 10\log T_e + 10\log B_{RF}$ dB
- $B_{RF} = bandwidth$
- T_s = satellite transponder noise temperature (antenna + receiver)

$$E_e = P_e + 0 dB$$

$$L_u = 92.5 + 20\log_{10}800 + 20\log_{10}1.6 = 92.5 + 58.06 + 4.08 = 154.64 dB$$

Satellite antenna gain = $4\pi A\eta/\lambda^2 = 4\pi$. $\pi.0.5.0.5.0.8/0.1875^2 = 225 = 23.52 dBi$

Receiver noise = kTB = N_u Temp T = antenna noise temp + (F-1)290 = 500 + 290 = 790 K N_u = kTB = 1.38 x 10^{-23} x 790 x 150000 = 1.63 x 10^{-15} W = -147.9 dBW

Hence uplink equation gives $10 = P_e - 154.64 - 15 + 23.52 + 147.9 = P_e + 1.78$ $\underline{P}_e = 8.22 \text{ dBw} = 6.6 \text{ W}$

Large power from handset so battery will deteriorate rapidly.