Girish Chandar G

Master of Science Electrical and Computer Engineering (Computer Vision) University of Michigan - Ann Arbor

girishg@umich.edu Personal Webpage GitHub ID: girish1511

Education			
Degree	Institute	GPA/%	Year
M.S	University of Michigan - Ann Arbor	4/4	2023
B.Tech	Indian Institute of Technology Gandhinagar	8.98/10	2020

Positions

Research Assistant, Architecture and Artificial Intelligence Laboratory.

September 2021 - Present

Research Intern, Zentron Labs

September 2020 - August 2021

Industrial Internships

Auto Shape Detection in Machine Vision, R&D, Zentron Labs

September 2020 - August 2021

- o Implemented an algorithm to detect arcs in the parts with an accuracy of 100% for simulated part images and 80% for actual part images. The algorithm gives a 100% precision for both simulated and actual part images.
- Integrated existing LabVIEW programs for Circle and Line Detection with python by creating DLLs.

Academic Internships

 Optimization based Inverse Rendering, University of Texas at Dallas, TX, USA Advisor: Dr. Xiaohu Guo, Professor, Department of Computer Science

May 2019-July 2019 [GitHub]

- Implemented an algorithm to address the problem of dense 3D face reconstruction from a single 2D image for text/speech to facial expression conversion.
- Implementation done on PyTorch, MXNet and Numpy and the code open sourced in GitHub.
- Microscopic Image Analysis, Micro and Nano Fluids Lab, Clemson University, SC, USA Advisor: Dr. Konstantin G Korney, Professor, Department of Materials Science and Engineering

May 2018-July 2018 [GitHub]

- Primarily developed LabView scripts for analyzing images from Magnetic Rotational Spectroscopy (MRS) experiment.
- o Developed a generic script for microscopic image analysis in LabView that can be extended to cater various needs of different experiments.

Research Projects

Forensic Camera Model Classification using Local Binary Pattern

January 2018 - April 2018

Advisor: Dr. Nitin Khanna, Assistant Professor, Department of Electrical Engineering

- Implemented one vs all machine learning model in MATLAB to classify the images based on the type of source camera by leveraging the Local Binary Pattern(LBP) features.
- o Created dataset of images, taken from different types and models of phones to train our model.

Projects

Co-Tuning for Transfer Learning on TACO Dataset

September 2021 - December 2021

Advisor: Dr. Clayton Scott, Professor, Electrical Engineering and Computer Science Department

[GitHub]

- o Implemented and verified the algorithm proposed in the paper "Co-tuning for Transfer Learning" on TACO (Trash Annotations in Context) dataset.
- First team to work with Co-tuning on TACO dataset.

• Patch based Multi-View Stereopsis

January 2020 - April 2020

Advisor: Dr. Shanmuganathan Raman, Associate Professor, Department of Electrical Engineering

[GitHub]

- Implementation of the algorithm proposed by Furukawa et al, titled "Accurate, Dense and Robust Multi-View Stereopsis".
- Develop a 3D scene from multi-view stereo images without an apriori mesh model.
- Classfication of Cancer Progression by Structuring Clinical Data

August 2019 - December 2019

Advisor: Dr. Mayank Singh, Assistant Professor, Department of Computer Science Engineering

- Developed a novel model to predict the probability of cancer by structuring Electronic Health Records using Natural Language Processing techniques.
- Explored MIMIC-III dataset extensively and verified its potential to be used for cancer prediction.
- o Implemented the model in Keras Tensorflow by structuring the clinical data using CliNER, and BioBERT embedding.
- Unsupervised Cross-Domain Image Transfer using GAN

January 2019 - April 2019

Advisor: Dr. Nipun Batra, Assistant Professor, Department of Computer Science Engineering

[GitHub]

- Generated images in the domain of MNIST and Bitmoji by the method of style transfer from the domain of SVHN dataset and MS-Celeb dataset respectively.
- Implemented modified Generative Adverserial Network to achieve domain transfer in unsupervised manner.
- Acoustics 3-D Sound Source Localization

January 2019 - February 2019

(IEEE Signal Processing Cup 2019)

Advisor: Dr. Nithin V. George, Associate Professor, Department of Electrical Engineering

- Developed an algorithm to determine the azimuth angle and elevation of the direction of the sound source based on the data received from 8 microphones mounted on a drone.
- o Implemented available models on 3D sound source localization to verify its performance on the task assigned.
- Designed an 8 microphone array to mimic the test setup of the competition and created our own dataset to test the robustness of our algorithm.

Research Interests and Relevant Courses

- Research Interests: Computer Vision, Computer Graphics, Image Processing, Machine Learning,
- Relevant Courses: 3D Computer Vision, Mathematical Foundation for Computer Vision and Graphics, Machine Learning,
 Digital Image Processing, Probability and Random Processes, Natural Language Processing, Signals and Systems.

Skills

- Languages:- Python, C and C++, Verilog(VDHL)
- Python Libraries:- PyTorch, Keras, Tensorflow, Scikit-learn, MXNet, Pandas, Numpy, Django
- Softwares/Tools:- MATLAB, LabView, Arduino, Mathematica(Basics)

Academic Achievements

- Secured **Highest Grade** awarded in the following courses: Matrix Methods for Signal Processing and Machine Learning (A+: 4.3/4), Machine Learning (A: 4/4), Digital Image Processing (A: 10/10), Digital Signal Processing (A: 10/10), Mathematical Foundation for Computer Vision and Graphics (A: 10/10), and Probability and Random Processes (A-: 9/10).
- <u>Dean's List Awardee</u> for five semesters in my undergraduate degree; awarded by the institute for **outstanding performance** in each semester.