

Licence de Mathématiques et Informatique 2020-2021

Analyse 3

TD1

Exercice 1.

- **1.** Soient $x, y \in \mathbb{R}$. Montrer que x < y si et seulement si il existe $\varepsilon > 0$, $x + \varepsilon < y$.
- **2.** Soient $x, y \in \mathbb{R}$. Montrer que $x \leq y$ si et seulement si pour tout $\varepsilon > 0$, $x < y + \varepsilon$.
- **3.** Donner un énoncé semblable pour l'assertion $x \geq y$.
- **4.** Soit $x \in \mathbb{R}$. Montrer l'assertion :

$$(\forall \varepsilon > 0, |x| < \varepsilon) \Leftrightarrow x = 0$$

Exercice 2. Le maximum de deux nombres x, y (c'est-à-dire le plus grand des deux) est noté $\max(x, y)$. De même on notera $\min(x, y)$ le plus petit des deux nombres x, y. Démontrer que :

$$\max(x,y) = \frac{x+y+|x-y|}{2}$$
 et $\min(x,y) = \frac{x+y-|x-y|}{2}$.

Trouver une formule pour $\max(x, y, z)$.

Exercice 3. Soient a et b deux réels strictement positifs. Déterminer, s'ils existent, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément des ensembles suivants :

1.
$$A_1 =]-1,1] \cup \{2\}$$

2.
$$A_2 = \{a + nb, n \in \mathbb{N}\}$$

3.
$$A_3 = \{a + (-1)^n b, n \in \mathbb{N}\}$$

4.
$$A_4 = \{a + \frac{b}{n}; n \in \mathbb{N}^*\}$$

5.
$$A_5 = \{(-1)^n a + \frac{b}{n}; n \in \mathbb{N}^*\}$$

6.
$$A_6 = \{a + (-1)^n \frac{b}{n}; n \in \mathbb{N}^*\}$$

Exercice 4. Déterminer, s'ils existent, un majorant, un minorant, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément de l'ensemble :

$$A = \left\{ \frac{2x - 1}{x + 2}, \ x \in \mathbb{R}_+ \right\}$$

Exercice 5. Déterminer la borne supérieure et inférieure (si elles existent) de : $A = \{u_n | n \in \mathbb{N}\}$ en posant $u_n = 2^n$ si n est pair et $u_n = 2^{-n}$ sinon.

Exercice 6. Soient A et B deux parties non vides de \mathbb{R} telles que :

$$\forall (x,y) \in A \times B, x \leqslant y$$

Montrer que:

- **1.** $\forall y \in B, \sup A \leqslant y$
- **2.** $\sup A \leqslant \inf B$
- 3. On regarde le cas d'égalité dans l'inégalité précédente. Montrer l'équivalence :

$$\sup(A) = \inf(B) \iff (\forall \varepsilon > 0)(\exists x \in A)(\exists y \in B)(|x - y| < \varepsilon)$$

Exercice 7. Soient A et B deux parties non vides et majorées de \mathbb{R} . Montrer que :

- **1.** Si $A \subset B$ alors $\sup A \leqslant \sup B$
- **2.** $A \cup B$ est majorée puis que $\sup A \cup B = \sup (\sup A, \sup B)$
- **3.** Supposons $A \cap B \neq \emptyset$, alors $A \cap B$ est majorée puis que sup $A \cap B \leq \inf$ (sup A, sup B). Donner un exemple pour lequel l'inégalité est stricte.
- **4.** Soit $A+B=\{x\in\mathbb{R}/\exists a\in A,\exists b\in B,x=a+b\}$. Montrer que $\sup(A+B)=\sup A+\sup B$
- **5.** Soit $A \cdot B = \{x \in \mathbb{R}/\exists a \in A, \exists b \in B, x = a \times b\}$. A t-on : $\sup (A \cdot B) = \sup A \times \sup B$?

Exercice 8. Soit A une partie de \mathbb{R} non vide et minorée.

1. On note -A l'ensemble :

$$-A = \{ y \in \mathbb{R} / \exists a \in A, y = -a \}$$

Montrer que -A est non vide, -A est majorée et que : $\sup(-A) = -\inf A$

2. Soit B l'ensemble des minorants de A. Montrer que $B \neq \emptyset$, B est majorée et que sup $B = \inf A$

Exercice 9. Soit $(a_{ij})_{(i,j)\in I\times J}$ une famille non vide et bornée de réels ; comparer :

$$\inf_{i}(\sup_{j}a_{ij}) \quad \text{avec} \quad \sup_{j}(\inf_{i}a_{ij}).$$

Exercice 10. Soit A une partie majorée de \mathbb{R} d'au moins deux éléments et x un élément de A.

- **1.** Montrer que si $x < \sup A$, alors $\sup(A \setminus \{x\}) = \sup A$.
- **2.** Montrer que si $\sup(A \setminus \{x\}) < \sup A$, alors $x = \sup A$.

Exercice 11.

1. Dans cet exercice, A est une partie non vide et bornée de \mathbb{R} (i.e. il existe M>0 tel que pour tout $x\in A, |x|\leq M$). On pose

$$B = \{ |x - y|, x, y \in A \}$$
.

Ainsi, B est l'ensemble de toutes les distances entre deux points quelconques de A.

- **2.** Montrer que $\sup(B)$ existe. On appelle ce réel diamètre de A et on notera $\operatorname{Diam}(A) = \sup(B)$.
- **3.** Montrer que $\operatorname{Diam}(A) = 0$ si et seulement si A est un singleton $(A = \{x\}, \text{ pour } x \in \mathbb{R}).$
- **4.** Justifier que $\inf(A)$ et $\sup(A)$ existent puis montrer que $\operatorname{Diam}(A) \leq \sup(A) \inf(A)$.
- **5.** Montrer que pour tout $\varepsilon > 0$, il existe $x, y \in A$ tels que $\sup(A) \inf(A) \varepsilon < x y$.
- **6.** En déduire que $Diam(A) = \sup(A) \inf(A)$.