Assumptions:

```
h(s) is an admissible heuristic \Rightarrow 0 \le h(s) \le length(path(s,s_g))
All actions have a positive cost
```

Let $path(s_i, s_g)$ be the path returned by A*.

Assume for the sake of contradiction that there exists a second path, path(s_i,s_g')' such that

```
cost(path(s_i, s_g')') < cost(path(s_i, s_g))
```

Note that it we do not exclude the case where $s_g = s_g'$, in which case path(s_i, s_g')' would be a shorter path to the same goal.

We first observe that the path length from a node to itself is 0.

$$length(path(s,s)) = 0$$

and thus the length of the shortest path from a goal state to a goal state must be 0.

$$path(s_g,s_g)=0$$

And because h is an admissible heuristic

$$h(s_g)=0$$

Therefore

$$g(s_g) = cost(path(s_i, s_g)) + h(s_g) = cost(path(s_i, s_g))$$

Because $cost(path(s_i,s_g')') \le cost(path(s_i,s_g))$ we know that $g(s_g') \le g(s_g)$

Let s_j be the first node on path $(s_i, s_g')'$ that was not expanded by A*. Because s_j 's predecessor on path path $(s_i, s_g')'$ has been expanded we know that s_i must be on the priority queue when the A* algorithm returns. We next observe that

$$g(s_j) = path(s_i, s_j) + h(s_j)$$

Because h is admissible we know that $h(s_i) \le path(s_i, s_i)$ which means that

$$\begin{split} g(s_j) &= path(s_i,s_j) + h(s_j) \leq path(s_i,s_j) + path(s_i,s_j) \\ \\ and \ path(s_i,s_j) + path(s_i,s_j) &= path(s_i,s_g')', \ so \\ \\ g(s_j) &\leq \ path(s_i,s_g')' \end{split}$$

We also know that
$$\begin{split} g(s_g) &= cost(path(s_i,s_g)) \text{ and } \\ cost(path(s_i,s_g')') &< cost(path(s_i,s_g)), \text{ so } \\ g(s_j) &\leq g(s_g) \end{split}$$

Because A^* selects nodes from a priority queue ordered by g(s), we know that s_j cannot be on the priority queue when A^* returns s_g because A^* would have selected s_j instead of s_g . By contradiction path $(s_i, s_g')'$ cannot exist. Thus the path returned by A^* must be the shortest path