19 de septiembre de 2014

Grado en Ingeniería de Tecnologías de Telecomunicación

Nombre: _____

Instrucciones para la realización del examen:

- Es obligatorio entregar el enunciado del examen. Escribir el nombre en todos los folios, y enumerarlos.
- Sólo está permitido el uso de bolígrafo y calculadora no programable.
- No se permite almacenar material debajo de la mesa. No se permite pedir prestada la calculadora.
- Empezar las "cuestiones teóricas" y los "problemas" en un folio en blanco.

Duración: 2 horas y media

CUESTIONES TEÓRICAS (10 PUNTOS)

- 1. (2.5 puntos) Sea x(t) la entrada a un modulador/moduladores e y(t) su salida, represente gráficamente con el mayor detalle posible la Transformada de Fourier de y(t), para los siguientes casos:
 - a. Modulador AM ($f_c=10^5$ Hz)
 - b. Modulador SSB-USB ($f_c=10^3$ Hz) y a continuación un Modulador DSB ($f_c=10^5$ Hz)
 - c. Modulador AM ($f_c=10^3$ Hz) y a continuación un Modulador SSB-LSB ($f_c=10^5$ Hz)

Nota: considere X(f) según la siguiente figura:

- 2. (2.5 puntos) ¿Cómo se puede distinguir la distorsión lineal de la no lineal?
- 3. (2.5 puntos) Considere la cuantización PCM de una señal. Para el caso de una señal sinusoidal de amplitud igual al máximo del rango de cuantización, utilizando 8 bits por muestra, los valores de la SNR son 49.76 dB para cuantización uniforme y 37.89 dB para cuantización Ley-mu (μ = 255). Siendo claramente mejor el caso uniforme, ¿cuál es el motivo de que el estándar para telefonía especifique ley-mu en lugar de cuantización uniforme?
- 4. (2.5 puntos) Dibuje y explique el diagrama de bloques de un receptor superheterodino AM. ¿Cómo se elimina el canal imagen?

PROBLEMAS (10 PUNTOS)

1. (5 puntos) Sea $\mathbf{x}(t)$ una señal modulada en frecuencia (FM): $x(t) = A_c \cos\left(\omega_c t + k_f \int_{-\infty}^t m(\tau) d\tau\right)$, con una constante de modulación $k_f = 2\pi \cdot 150$, y $\mathbf{m}(t)$ una señal de información en banda base compuesta de dos tonos puros: $m(t) = m_1(t) + m_2(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t) = \cos(2\pi 150 t) + 1,1\cos(2\pi 1600 t)$

La señal modulada **x(t)** se puede expresar usando una desarrollo en serie con coeficientes las funciones de Bessel, pudiendo expresarse como:

$$x(t) = A_c \sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} J_n(\beta_1) J_m(\beta_2) \cos(2\pi f_c t + 2\pi n f_1 t + 2\pi m f_2 t)$$

donde $\beta_i = \frac{\Delta f_i}{B_i} = \frac{k_f m_{p_i}/2\pi}{B_i}$, siendo B_i el ancho de banda de la señal $m_i(t)$, i=1,2.

- a) (0.5p) Calcule β_1 y β_2 .
- **b)** (2 p) De acuerdo a la tabla siguiente, ¿cuál sería el ancho de banda de la señal **x(t)**?

	Amplitudes de las funciones de Bessel.										
B	0,1	0,2	0,4	0,5	1	2	3	4	5	10	
0	0,9975	0,9900	0,9604	0,9385	0,7652	0,2239	-0,2601	-0,3971	-0,1776	-0,2459	
1	0,0499	0,0995	0,1960	0,2423	0,4401	0,5767	0,3391	-0,0660	-0,3276	0,0435	
2	0,0012	0,0050	0,0197	0,0306	0,1149	0,3528	0,4861	0,3641	0,0466	0,2546	
3			0,0013	0,0026	0,0196	0,1289	0,3091	0,4302	0,3648	0,0584	
4					0,0025	0,0340	0,1320	0,2811	0,3912	-0,2196	
5						0,0070	0,0430	0,1321	0,2611	-0,2341	
6						0,0012	0,0114	0,0491	0,1310	-0,0145	
7							0,0025	0,0152	0,0534	0,2167	
8								0,0040	0,0184	0,3179	
9									0,0055	0,2919	
10										0,2075	
11	1									0,1231	
12										0,0634	
13										0,0290	
14										0,0120	
	-									0.0045	

- c) (1p) Represente gráficamente el espectro de x(t).
- d) (0.5p) Si $A_c = 10 \text{ V}$, ¿cuál es la potencia de x(t)?
- e) (1p) Si la señal **x(t)** pasa por un filtro paso-banda con ancho de banda de 2600 Hz centrado a la frecuencia portadora, ¿cuál será la potencia y el ancho de banda de la señal **x(t)** filtrada?
- 2. (5 puntos) Se desea diseñar un sistema de comunicaciones en la banda de microondas terrestres. La figura adjunta muestra el diagrama de bloques del sistema de comunicaciones. El mensaje está normalizado en amplitud (m_p =1), tiene media 0, potencia 0.5 W y tienen un ancho de banda de 5 MHz. La distancia máxima entre transmisor y receptor es de 5 km. Se ha decidido utilizar una frecuencia de portadora de 6 GHz, con un ancho disponible de canal de [5.9 6.1] GHz. El canal introduce una atenuación en espacio libre de L (dB). Suponga que el sistema está afectado por ruido blanco, cuya densidad de potencia espectral, $S_n(f)$, justo a la entrada del filtro paso banda en el receptor, es de 10^{-12} W/Hz. Se va a realizar el estudio considerando 3 esquemas de modulación/demodulación: SSB (USB), AM (μ =0.8) y FM (β =2). Nota: cuando corresponda, compruebe que está trabajando en zona no umbral.

- a) (2.5p) Para cada una de las técnicas, indique el ancho de banda de canal utilizado y la potencia de transmisión necesaria, S_{TX} , para tener una SNR_0 de al menos 40dB.
- b) (1p) Indique qué técnica de modulación/demodulación emplearía (SSB, AM o FM) en función de la S_{TX} . $\stackrel{.}{\varepsilon}Y$ en función del ancho de banda del canal ocupado?
- c) (1.5p) Si la S_{TX} no puede ser superior a 1KW, ¿qué técnica modificaría (SSB, AM o FM) para cumplir el requisito de que la SNR_0 sea de al menos 40dB. Si es necesario modifique el ancho de banda de la señal modulada.

$$B_i = \frac{\Delta f_i}{B_i} = \frac{K_4 \text{ mpi/277}}{B_i}$$

$$C = 3, 2$$

a) Para el caso del problema, milti tonos peros,

Bi=fi: i=1,2 a de acuerdo a las expresiones

b) Pe acuerdo a los valores de pi y a la expresión de x(4) en f-visón de ormatorios y a la tabla de valores de las forciones In(Bi), se observa que para

 $\beta_1 = 3$ exister, 5 valores de $S_n(\beta_3)$ distintos de $S_n(\beta_3) \neq 0$ com para n = 0, 1, 2, 3, 4

y para $\beta_2 = 0,3$ existen 3 valores de $S_m(\beta_2)$ distintos de cero $S_m(\beta_2) \neq 0$ para m = 0, 3, 2

El espectro (ancho de banda) de x(t) está centrado en f_c (w_c) y trene componentes desde f_c - n f_s - m f_z

hasta for n for t m for

utilizando los valores máximos de my n por tanto el ancho banda estaria en el orguiento intervalo de fremencias

fc-2fz-4fs, fc+2fz+4fs

fc-2f2-4f3 f fc+2f2+4f3 f

y el aucho de banda seria BFM = 2 (2fz + 4fs) = 1000 mm = 2 (2fz + 4fs

$$B_{FM} = 2 \left(2 f_z + 4 f_s \right) = z \left(2 \times 1600 + 4 \times 150 \right) =$$

$$= 7600 \text{ Hz} = 7.6 \text{ KHz}$$

4) Espectro en valor absoluts (modula) y fremencias positivas

1		
	S	
- fc-3800	_0_	
•	٤	
+	8	
- 1	uda rian	
fc-3200		
Pr - 3050	Don	
fc-2750	,	
fc-2600	え	
to the	Juse	P -2600
	8	fc-2600=
\$ 100 miles	ncesenlau	fc-2750
		fc-2900 · · ·
	e.	
	Es	f _c -3050 ····
		NATURE TO A TO
	ş	fc+3200+150
fc-2200	3	fc+3200+300 · · · ·
- fr-2050	wen	fc+3700+450
fr-1400		fit3800 = fit3200+600=
Z \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	es	fit3800 = tit3200 + 600
2 E 1600 11 11 20 fc-1450	3	× .
fr - 3300	gara	-
fc-1150	71	»:
fc-1000	5	
	W ! - 3	
	×	
	S	
	٤	
	21.2	1
,	10	

e) si la señal modulada pasa por un filtro paso-bunda
centrado a fe y con ancho de 2,6 KHz dejará
pasar aquellas componentes comprendidas entre
fe-1300Hz y fe+1300H

observando el espectro del apartado c) remos que por ancima de fe el filtro dejaria pasar hanta la componente fe + 1300 que ocurre para m=1 y n=-2

Por dépajo de fa déjaria pasar las componentes hasta M=-1 y n=2 ó "fa- 5300 Hz"

Par tanto el ancho de banda de Xfiltrada (t) sería 2600 Hz

La seval filtrada tendría como expresión

$$\times$$
 filtrada (t) = $\times_g (t) = \sum_{N=-4}^{4} J_N(\beta_3) J_0(\beta_2)$ (or $\left(2\pi f_c + t 2\pi n f_s + t\right)$

$$+\sum_{N=-4}^{-2} J_n(\beta_s) J_s(\beta_z) \omega_n \left(znf_c t + znf_z t + znf_s n t \right)$$

$$+\frac{4}{2}$$
 $\frac{4}{5n}$ (β_1) $\frac{5}{5}$ (β_2) cos ($2nf_ct - 2nf_zt + 2nnf_st$)

$$P_{xy} = \frac{A_c^2}{2} J_o^2(o_1 s) J_o^2(s) + 2 \frac{A_c^2}{2} \sum_{N=1}^{2} J_N^2(\beta_1) J_o^2(o_1 s) + 2 \frac{A_c^2}{2} J_N^2(s) = 12$$

$$= \frac{10^{2}}{2} \left[0.5826 + 2*(0.9975)^{2} \left(0.19369 + 0.001320 + 0.00038 + 6.8.10^{6} \right) + 2*(0.0499)^{2} \left(0.0132 + 0.00038 + 6.8.10^{6} \right) \right] =$$

= 4(9,76 W

o rea contience el 99,57% de la reval sin filtrar

$$\frac{1}{\binom{5}{N}} \stackrel{\circ}{\circ} \frac{1}{\binom{5}{N}} \stackrel{\circ}{\circ} \frac{1}{\binom{5}{N}} \stackrel{\circ}{\circ}$$

La atenuación máxima del conclosera:

(dB) = 32'44 + 20log 5 + 20log 6100 = 122'126 dB

a)

Ancho banda canal otilizado: 5 MHZ

$$\left(\frac{5}{N}\right)_{0} = N = \frac{5!}{NB} = 10^{4}$$
; $5! = 10^{4}$ 2. 10^{4} 5. $10^{6} = 1000$

STX + GTX - L + GAX + G/1/40

-10dBW - 40dB + 122'126dB - 25dB - 0dB = 47'126dBW

Ancho de bonda

cond utilizado: 10 MHZ

$$\left(\frac{5}{N}\right)_{0} = \frac{\mu^{2} R_{m}}{1 + \mu^{2} R_{m}} Y = \frac{10^{4}}{1 + 0^{4}} Y = \frac{10^{4}}{1 + 0^{4}} \left(\frac{1 + 0^{4} + 0^{4} + 0^{4}}{0^{4} + 0^{4}} \right) = \frac{5}{NB}$$

 $S_i = 2.15^{-12}$ 5. 10^6 $10^4 \left(\frac{1 + 0^2 \cdot 0^4 \cdot 0^4}{0^6 \theta^2 \cdot 0^4 \cdot 0^4} \right) = 0^4 4725 W \left(-3^4 8886 BW \right)$

STX = Si + 57'126 dB = 53'2802 dBW

7=2. Usanob regle de Carson: Bond = 2B (p+1) = 2.5.10 (2+1) = 30 MHZ 26) 30 MHz.

8=104/6

8th=20(p+1):60

8>78th = 20ne

no

unbrote

5: $(\frac{5}{N})_{0} = 3\beta^{2} \cdot \frac{m^{2}c(5)}{mp^{2}} \cdot \delta = 69$, $\delta = 409/6 = \frac{5}{NB}$ Si = 2.10". 5. 106. 104/6 = 0'T W (-17'7815 (BW) STX = S: + 57'126 dB = 39'3445 dBW FM la técnica con menor gotencia de transcision (vayor BW) C) Ahore la Six = 1KW (30 dBW)

Solo podemos tocar FM. Carbicado el antho de bende (3)

-1 El valor max de p para ajustarnos al cond seria:

Becnel: 2001442 = 2B(B+1) > B = 19 (B menor que este valor para)

Proced: 2001442 = 2B(B+1) > B = 19 (B menor que este valor para) $S_{TX} = 30 \, dBW \rightarrow S_{i} = S_{TX} - 57'126 = -27'126 \, c(BW)$ $S = \frac{S_{i}}{NB} = \frac{10^{-27'126/10}}{2.10^{-17} \, 5.106} = \frac{193'8206}{i}$ (5) = 3 p2. mich . 8 = 104 -> p= 5'8648 (<79) 8th = 20(3+1) = 137/2963 8>8th (Zonce no)