Computing Club Presentation

Safiya Sirota

October 15, 2024

Introduction

Now that we've explored some basics with Lupe, we can see how it works in R Markdown. If you haven't before, you will want to install tinytex::install_tinytex() in order for RMarkdown documents to be rendered as .pdfs using LATFX.

Let's pretend to do some work on the tidyverse dataset diamonds. This was we can also show how to incorporate nice tables and plots into our RMarkdown document.

Formatting

- When working in an R Markdown file, there are multiple ways to produce the same formatting. For example, I use section{} above, but I could also use a hashtag, like I did to make the introduction header. Similarly subsection{} will correlate to a double hashtag, and so on.
- There are also multiple way to italicize and bold your text. You can either do *this*, or you can use the *R Markdown* way. And for boldface, you can use the *LATEX* way or the *R Markdown* way.
- Finally, there are 2 ways to bullet point. One if by using the asterisk, and the other is by using an \itemize{} environment, as is done above.

Just be careful when trying to use R Markdown conventional formatting *inside* LATEX environments! This can lead to issues you may have to troubleshoot.

Tables and Plots

Plots

```
library(tidyverse)
library(gtsummary)
```

Including plots into your homework is easy enough and you may already know how to do it. One way is to simply just print the plot out from an R Markdown chunk.

```
diamonds %>%
  ggplot() +
  geom_point(aes(x = carat, y = price))
```


However, you may not know that you can form at your plot using LATEX-ish commands in the code chunk header...

```
diamonds %>%
  ggplot() +
  geom_point(aes(x = carat, y = price))
```

And if I take a screenshot of my plot, or have a different picture. I can include it using this technique as well And there's even one more technique!

```
library(knitr)
include_graphics("plot_pic.png")
```


Figure 1: Diamonds by carat and price

Figure 2: Diamonds by carat and price

Tables

```
diamonds %>% head() %>% gt::gt()
```

carat	cut	color	clarity	depth	table	price	х	У	Z
0.23	Ideal	\mathbf{E}	SI2	61.5	55	326	3.95	3.98	2.43
0.21	Premium	\mathbf{E}	SI1	59.8	61	326	3.89	3.84	2.31
0.23	Good	\mathbf{E}	VS1	56.9	65	327	4.05	4.07	2.31
0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63
0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75
0.24	Very Good	J	VVS2	62.8	57	336	3.94	3.96	2.48

```
dim(diamonds)

## [1] 53940    10

diamonds_data <- diamonds %>%
    mutate(
    quality2 = case_when(
        cut %in% c("Fair", "Good") & carat < 3 ~ "okay",
        cut %in% c("Good", "Very Good") & carat > 3 & carat <= 4.5 ~ "good",
        cut %in% c("Very Good", "Premium", "Ideal") & carat > 4.5 ~ "great",
        TRUE ~ "neither"
    )
    )
}
```

carat	cut	color	clarity	depth	table	price	X	у	\mathbf{z}	quality2
0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43	neither
0.21	Premium	\mathbf{E}	SI1	59.8	61	326	3.89	3.84	2.31	neither
0.23	Good	\mathbf{E}	VS1	56.9	65	327	4.05	4.07	2.31	okay
0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63	neither
0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75	okay
0.24	Very Good	J	VVS2	62.8	57	336	3.94	3.96	2.48	neither

group_by() and summarise()

diamonds_data %>% head() %>% gt::gt()

```
diamonds %>%
  group_by(clarity) %>% # group_by has to come before summarise to get group-level summary statistics
  summarise(
    mean_price = mean(price),
    count = n()
)  %>% # I can create +1 summary statistics at a time
  gt::gt()
```

clarity	mean_price	count
I1	3924.169	741
SI2	5063.029	9194
SI1	3996.001	13065
VS2	3924.989	12258
VS1	3839.455	8171
VVS2	3283.737	5066
VVS1	2523.115	3655
IF	2864.839	1790

gtsummary

Here I am making a table one using gtsummary's tbl_summary function. I am grouping by cut and adding an overal column and p values. The bolded labels are just to make it look pretty.

diamonds %>% tbl_summary(by = cut) %>% # calling the table one summary compand add_overall() %>% # adding overall column bold_labels() %>% # making labels look nice add_p() # adding p values

- ## Table printed with 'knitr::kable()', not {gt}. Learn why at
 ## https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
 ## To suppress this message, include 'message = FALSE' in code chunk header.
- Overall, N Fair, N =Good. N Very Good. Premium. Ideal. N =p-Characteristic 53,940 = 4.906N = 12,082N = 13,7911,610 21,551 value carat 0.70(0.40,1.00 (0.70, 0.82(0.50,0.71(0.41,0.86(0.41,0.54 (0.35,< 0.001 1.04)1.20) 1.01) 1.02) 1.01) 1.20) color < 0.001 163 (10%) D 6,775 (13%) 662 (13%) 1,513 (13%) 1,603 (12%) 2,834 (13%) \mathbf{E} 9,797 (18%) 224 (14%) 933 (19%) 2,400 (20%) 2,337 (17%) 3,903 (18%)F 9,542 (18%) 312 (19%) 909 (19%) 2,164 (18%) 3,826 2,331 (17%) (18%)G 11,292 314 (20%) 871 (18%) 2,299 (19%) 4,884 2,924 (21%) (21%)(23%)Η 8,304 (15%) 303 (19%) 702 (14%) 1,824 (15%) 2,360 (17%) 3.115 (14%)Ι 5,422 (10%) 1,204 2,093 175 (11%) 522 (11%) 1,428 (10%) (10.0%)(9.7%)J 2,808 (5.2%) 119 (7.4%) 307 (6.3%) 678 (5.6%) 808 (5.9%) 896 (4.2%) clarity < 0.001 I1 741 (1.4%) 210 (13%) 96 (2.0%) 84 (0.7%) 205 (1.5%) 146 (0.7%) SI29,194 (17%) 466 (29%) 1,081 2,100 (17%) 2,949 (21%) 2,598 (22%)(12%)SI1 1,560 13,065 4,282 408 (25%) 3,240 (27%) 3,575 (26%) (24%)(32%)(20%)VS212,258 5,071 261 (16%) 978 (20%) 2,591 (21%) 3,357 (24%) (23%)(24%)VS18,171 (15%) 170 (11%) 648 (13%) 1,775 (15%) 1,989 (14%) 3,589 (17%)VVS25,066 (9.4%) 69 (4.3%) 286 (5.8%) 1,235 (10%) 870 (6.3%) 2,606 (12%)VVS1 3,655 (6.8%) 17 (1.1%) 186 (3.8%) 789 (6.5%) 616 (4.5%) 2,047 (9.5%) $_{
 m IF}$ 1,790 (3.3%) 9 (0.6%) 71 (1.4%) 268 (2.2%) 230 (1.7%) 1,212 (5.6%)depth 61.80 65.0063.4062.10 (60.90, 61.4061.80 < 0.001 (64.40,62.90)(61.00,(61.30,(60.50,(61.30,62.50) 65.90) 63.80) 62.20) 62.20)table 57.00 58.00 58.00 58.00 (56.00, 59.00 56.00 < 0.001 (56.00,(56.00,(56.00,59.00) (58.00,(55.00,59.00) 61.00) 61.00) 60.00) 57.00)

Charact	Overall, N eristic 53,940	Fair, N = 1,610	Good , N = 4,906	Very Good, N = 12,082	Premium , N = 13,791	Ideal, $N = 21,551$	p- value
price	2,401 (950, 5,324)	3,282 (2,050, 5,206)	3,051 (1,145, 5,028)	2,648 (912, 5,373)	3,185 (1,046, 6,296)	1,810 (878, 4,679)	< 0.001
x	5.70 (4.71, 6.54)	6.18 (5.63, 6.70)	5.98 (5.02, 6.42)	5.74 (4.75, 6.47)	6.11 (4.80, 6.80)	5.25 (4.54, 6.44)	< 0.001
у	5.71 (4.72, 6.54)	6.10 (5.57, 6.64)	5.99 (5.02, 6.44)	5.77 (4.77, 6.51)	6.06 (4.79, 6.76)	5.26 (4.55, 6.45)	< 0.001
${f z}$	3.53 (2.91, 4.04)	3.97 (3.61, 4.28)	3.70 (3.07, 4.03)	$3.56 \ (2.95, 4.02)$	3.72 (2.94, 4.16)	3.23 (2.80, 3.98)	< 0.001

This is a more complex gt summary example. Here we are controlling the type of statistic variables that are going to be displayed.

Table printed with 'knitr::kable()', not {gt}. Learn why at

https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html

To suppress this message, include 'message = FALSE' in code chunk header.

Characte	Overall, N	Fair, N = 1,610	Good, N = 4,906	Very Good, N = 12,082	Premium, $N = 13,791$	Ideal, $N = 21,551$	p- value
	2113016 00,040	1,010	_ +,500	17 - 12,002	11 - 10,731	21,001	
carat							< 0.001
Mean	0.80 (0.47)	1.05 (0.52)	0.85 (0.45)	0.81 (0.46)	0.89 (0.52)	0.70(0.43)	
(SD)							
Median	0.70 (0.40,	1.00 (0.70,	0.82 (0.50,	0.71 (0.41,	0.86(0.41,	0.54 (0.35,	
(IQR)	1.04)	1.20)	1.01)	1.02)	1.20)	1.01)	
Range	0.20, 5.01	0.22, 5.01	0.23, 3.01	0.20, 4.00	0.20, 4.01	0.20, 3.50	
color	,	,	,	,	•	•	< 0.001
D	6,775 /	163 /	662 /	1,513 /	1,603 /	2,834 /	
	53,940	1,610	4,906	12,082 (13%)	13,791	21,551	
	(13%)	(10%)	(13%)	, , ,	(12%)	(13%)	
E	9,797 /	224 /	933 /	2,400 /	2,337 /	3,903 /	
	53,940	1,610	4,906	12,082 (20%)	13,791	21,551	
	(18%)	(14%)	(19%)	, , ,	(17%)	(18%)	
F	9,542 /	312 /	909 /	2,164 /	2,331 /	3,826 /	
	53,940	1,610	4,906	12,082 (18%)	13,791	$21,\!551$	
	(18%)	(19%)	(19%)	, (==,0)	(17%)	(18%)	
	(/	(/	(/		(/	/	

Characte	Overall, N	Fair, N = 1,610	Good, N = 4,906	Very Good , N = 12,082	Premium , N = 13,791	Ideal, N = 21,551	p- value
G	11,292 /	314 /	871 /	2,299 /	2,924 /	4,884 /	
	53,940	1,610	4,906	12,082 (19%)	13,791	$21,\!551$	
	(21%)	(20%)	(18%)	, , ,	(21%)	(23%)	
H	8,304 /	303 /	702 /	1,824 /	2,360 /	3,115 /	
	53,940	1,610	4,906	12,082 (15%)	13,791	$21,\!551$	
	(15%)	(19%)	(14%)	, , ,	(17%)	(14%)	
I	5,422 /	175 /	522 /	1,204 /	1,428 /	2,093 /	
	53,940	1,610	4,906	12,082	13,791	$21,\!551$	
	(10%)	(11%)	(11%)	(10.0%)	(10%)	(9.7%)	
J	2,808 /	119 /	307 /	678 / 12,082	808 / 13,791	896 /	
	53,940	1,610	4,906	(5.6%)	(5.9%)	21,551	
	(5.2%)	(7.4%)	(6.3%)	(0.070)	(3.070)	(4.2%)	
clarity	(0.270)	(1.170)	(0.070)			(1.270)	< 0.001
I1	741 / 53,940	210 /	96 / 4,906	84 / 12,082	205 / 13,791	146 /	<0.001
11	(1.4%)	1,610	(2.0%)	(0.7%)	(1.5%)	21,551	
	(1.470)	(13%)	(2.070)	(0.170)	(1.070)	(0.7%)	
SI2	0.104 /	, ,	1 001 /	2,100 /	2.040 /	(0.776) $2,598$ /	
512	9,194 /	466 /	1,081 /	' '	2,949 /	. ,	
	53,940	1,610	4,906	$12,082 \ (17\%)$	13,791	21,551	
CT1	(17%)	(29%)	(22%)	0.040 /	(21%)	(12%)	
SI1	13,065 /	408 /	1,560 /	3,240 /	3,575 /	4,282 /	
	53,940	1,610	4,906	$12,082\ (27\%)$	13,791	21,551	
	(24%)	(25%)	(32%)		(26%)	(20%)	
VS2	$12,\!258$ /	261 /	978 /	2,591 /	$3,\!357$ /	$5{,}071 /$	
	53,940	1,610	4,906	$12,082 \ (21\%)$	13,791	$21,\!551$	
	(23%)	(16%)	(20%)		(24%)	(24%)	
VS1	8,171 /	170 /	648 /	$1{,}775$ /	1,989 /	$3{,}589$ /	
	53,940	1,610	4,906	$12,082 \ (15\%)$	13,791	$21,\!551$	
	(15%)	(11%)	(13%)		(14%)	(17%)	
VVS2	5,066 /	69 / 1,610	286 /	1,235 /	870 / 13,791	2,606 /	
	53,940	(4.3%)	4,906	$12,082 \ (10\%)$	(6.3%)	$21,\!551$	
	(9.4%)		(5.8%)			(12%)	
VVS1	3,655 /	17 / 1,610	186 /	789 / 12,082	616 / 13,791	2,047 /	
	53,940	(1.1%)	4,906	(6.5%)	(4.5%)	$21,\!551$	
	(6.8%)	, ,	(3.8%)	, ,	, ,	(9.5%)	
IF	1,790 /	9 / 1,610	71 / 4,906	268 / 12,082	230 / 13,791	1,212 /	
	53,940	(0.6%)	(1.4%)	(2.2%)	(1.7%)	$21,\!551$	
	(3.3%)	,	,	,	,	(5.6%)	
depth	(, -,					(, -,	< 0.001
Mean	61.75 (1.43)	64.04	62.37	61.82 (1.38)	61.26 (1.16)	61.71	
(SD)	02170 (2120)	(3.64)	(2.17)	01.02 (1.00)	0-1-0 (-1-0)	(0.72)	
Median	61.80	65.00	63.40	62.10 (60.90,	61.40	61.80	
(IQR)	(61.00,	(64.40,	(61.30,	62.90)	(60.50,	(61.30,	
(1&10)	62.50)	65.90)	63.80)	02.00)	62.20)	62.20)	
Range	43.00, 79.00	43.00,	54.30,	56.80, 64.90	58.00, 63.00	43.00,	
rtange	40.00, 70.00	79.00	67.00	90.00, 04.90	00.00, 00.00	66.70	
table		13.00	07.00			00.70	< 0.001
Mean	57.46 (2.23)	50.05	58.69	57.96 (2.12)	58.75 (1.48)	55.05	√0.001
	01.40 (2.20)	59.05		31.30 (2.12)	00.10 (1.40)	55.95 (1.25)	
(SD)	57.00	(3.95)	(2.85)	50 00 (56 00	£0.00	(1.25)	
Median	57.00	58.00	58.00	58.00 (56.00,	59.00	56.00	
(IQR)	(56.00,	(56.00,	(56.00,	59.00)	(58.00,	(55.00,	
	59.00)	61.00)	61.00)		60.00)	57.00)	

	Overall, N	$\mathbf{Fair}, N =$	Good, N	Very Good,	Premium,	Ideal, $N =$	p-
Characte	erist ic 53,940	1,610	=4,906	N = 12,082	N = 13,791	$21,\!551$	value
Range	43.00, 95.00	49.00,	51.00,	44.00, 66.00	51.00, 62.00	43.00,	
		95.00	66.00			63.00	
price							< 0.001
Mean	3,933	4,359	3,929	3,982 (3,936)	4,584	3,458	
(SD)	(3,989)	(3,560)	(3,682)	,	(4,349)	(3,808)	
Median	2,401 (950,	$3,\!282$	3,051	2,648 (912,	3,185	1,810 (878,	
(IQR)	5,324)	(2,050,	(1,145,	5,373)	(1,046,	4,679)	
, ,	,	5,206)	5,028)	,	6,296)	,	
Range	326, 18,823	337,	327,	336, 18,818	326, 18,823	326, 18,806	
		18,574	18,788				
X							< 0.001
Mean	5.73(1.12)	6.25(0.96)	5.84(1.06)	5.74(1.10)	5.97(1.19)	5.51(1.06)	
(SD)	, ,	` ,	, ,	, ,	` ,	` ,	
Median	5.70(4.71,	6.18 (5.63,	5.98 (5.02,	5.74(4.75,	6.11 (4.80,	5.25 (4.54,	
(IQR)	6.54)	6.70)	6.42)	6.47)	6.80)	6.44)	
Range	0.00, 10.74	0.00, 10.74	0.00, 9.44	0.00, 10.01	0.00, 10.14	0.00, 9.65	
\mathbf{y}							< 0.001
Mean	5.73(1.14)	6.18(0.96)	5.85(1.05)	5.77(1.10)	5.94(1.26)	5.52(1.07)	
(SD)	, ,	` ,	, ,	, ,	` ,	` ,	
Median	5.71(4.72,	6.10 (5.57,	5.99 (5.02,	5.77(4.77,	6.06(4.79,	5.26 (4.55,	
(IQR)	6.54)	6.64)	6.44)	$6.\overline{51}$)	6.76)	6.45)	
Range	0.00, 58.90	0.00, 10.54	0.00, 9.38	0.00, 9.94	0.00, 58.90	0.00, 31.80	
\mathbf{z}							< 0.001
Mean	3.54(0.71)	3.98(0.65)	3.64(0.65)	3.56(0.73)	3.65(0.73)	3.40(0.66)	
(SD)	` '	` ,	, ,	` ,	` '	` ,	
Median	3.53(2.91,	3.97 (3.61,	3.70 (3.07,	3.56 (2.95,	3.72(2.94,	3.23(2.80,	
(IQR)	4.04)	4.28)	4.03)	4.02)	4.16)	3.98)	
Range	0.00, 31.80	0.00, 6.98	0.00, 5.79	0.00, 31.80	0.00, 8.06	0.00, 6.03	