The Bias-Variance Tradeoff: A Deep Dive

Nipun Batra and teaching staff

IIT Gandhinagar

August 21, 2025

Table of Contents

- 1. Understanding the Problem Setup
- 2. Source 1: Noise The Irreducible Error
- 3. Source 2: Bias Systematic Model Limitations
- 4. Variance: Sensitivity to Data
- 5. Mathematical Decomposition
- 6. Summary and Applications

Understanding the

Problem Setup

The Learning Problem: A Real-World Example

Definition: Our Scenario

Goal: Predict housing prices based on house area

Example: The True Relationship

Unknown to us: There exists a true function $f_{\theta_{\mathrm{true}}}$ that perfectly relates area to price:

$$y_t = f_{\theta_{\mathsf{true}}}(\mathbf{x}_t)$$

The Learning Problem: A Real-World Example (contd.)

Key Points:

Key Challenge: We never know $f_{\theta_{true}}$ - we must estimate it from data!

The Three Sources of Prediction Error

Important: Fundamental Question

Why do our predictions fail? What causes the difference between our predictions and reality?

Definition: Three Universal Sources of Error

Every machine learning prediction suffers from:

- 1. Noise Irreducible randomness in the data
- 2. Bias Systematic errors from model assumptions
- 3. Variance Sensitivity to particular training sets

Key Points:

The Tradeoff: We can often reduce bias OR variance, but not both simultaneously!

Preview: Error Decomposition

Example: Preview

Coming up: We'll see exactly how these three components combine mathematically and how to balance them.

6 4 51 .

Source 1: Noise - The Irreducible Error

Understanding Noise: The Fundamental Limitation

Definition: What is Noise?

 $\ensuremath{\text{\textbf{Noise}}}$ represents factors affecting the target that we cannot observe or control

Example: Real-World Noise Sources

In housing prices:

- · House condition (hard to measure precisely)
- Neighborhood market dynamics
- Buyer's personal preferences

Noise: Why It's Irreducible

Example: More Noise Sources

Additional factors we cannot control:

- Economic conditions on sale day
- · Unmeasurable aesthetic factors
- Random market fluctuations
- Measurement errors in data collection

Important: Key Insight

Irreducible Error: No matter how sophisticated our model, noise cannot be eliminated!

Noise: Mathematical Formulation

Key Points: Under the Noisy conditions

True relationship becomes:

$$y_t = f_{\theta_{\mathsf{true}}}(x_t) + \epsilon_t$$

where $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$ is the noise term

Noise: Mathematical Properties

Definition: Key Properties of Noise

- **Zero mean:** $E[\epsilon_t] = 0$ (unbiased)
- Constant variance: $Var(\epsilon_t) = \sigma^2$
- · Independent: Each observation's noise is independent

Key Points: Why These Properties Matter

- Zero mean: Noise doesn't systematically bias our target
- Constant variance: Prediction uncertainty is consistent
- Independence: One data point's noise doesn't affect others

Visualizing Noise: Data Distribution

Visualizing Noise: Data Distribution (contd.)

Key Points:

Key Observation:

- · Data points scatter around the true function
- The spread (variance) is constant: σ^2
- · This randomness cannot be removed by better modeling

Important: Implication for ML

Lower bound on error: Any model will have at least σ^2 error due to noise

Source 2: Bias - Systematic Model Limitations

Understanding Bias: Model Flexibility

Definition: What is Bias?

Bias measures how well our model class can represent the true function

Example: Extreme Example: Constant Function

Model choice: $\hat{f}(x) = c$ (constant, regardless of house size)

Question: Can this model capture the true price-size relationship?

Bias: Visualizing the Problem

Important:

Obvious Problem: A constant function cannot capture any relationship with house size!

Bias: Fitting a Constant Model (contd.)

Key Points:

Best Constant Fit:

- · The optimal constant is the average of all prices
- · But this completely ignores the size information!
- · Large systematic errors remain

Bias: Visualizing the Systematic Error

Bias: Visualizing the Systematic Error (contd.)

Definition: Bias Definition

$$Bias(x) = f_{\theta_{true}}(x) - E[\hat{f}(x)]$$

The systematic difference between truth and average prediction

Important: Key Insight

High bias = Underfitting: Model assumptions are too restrictive

Multiple Datasets: Understanding Variability

Key Points:

 $\begin{tabular}{ll} \textbf{Crucial Insight:} & Many different datasets are possible from the same true relationship! \end{tabular}$

Why Datasets Differ

Example:

Same underlying relationship, different data points due to:

- · Random sampling of houses
- · Different noise realizations
- Natural variation in the population

Fitting Models to Different Datasets

Key Points:

Question: If we fit the same model type (constant) to different datasets, what happens?

Different Predictions from Different Datasets

Important:

Key Observation: Even with the same model type, we get different predictions!

Prediction Variability: Concepts

Definition:

This variability leads us to two concepts:

- Average prediction: What happens "on average" across all possible datasets
- Prediction variance: How much predictions vary across datasets

Many Datasets: The Full Picture

Key Points:

Multiple Datasets: Each gives a slightly different constant fit

Expected Prediction: The Big Question

Example:

The Big Question: What is the "typical" or "expected" prediction our model makes?

The Average Model: Expected Prediction

Expected Prediction: Definition

Definition: Expected Prediction

 $E[\hat{f}(x)] = \text{Average prediction across all possible training sets}$

Key Points:

For constant models: The expected prediction is the expected value of the target variable

Bias: The Final Definition

Definition: Bias Formula

$$\mathsf{Bias}(x) = f_{\theta_{\mathsf{true}}}(x) - E[\hat{f}(x)]$$

Difference between truth and expected prediction

Model Complexity vs Bias: The Relationship

Key Points:

Universal Pattern: As model complexity increases, model become flexible enough to approximate true function, hence bias decreases

Variance: Sensitivity to

Data

From Bias to Variance: The Other Side

Important:

We've seen: High-complexity models have low bias

Question: If low bias is good, why not always use high-complexity

models?

Definition: Enter Variance

Variance measures how much predictions change when we train on different datasets

Key Points:

Intuition: Simple models are Stable, consistent predictions, while Complex models are highly sensitive to specific training data

Understanding Variance: Prediction Consistency

Definition: Variance Definition

Variance = How much do predictions vary across different training sets?

$$\mathsf{Var}(\hat{\mathit{f}}(\mathit{x})) = \mathit{E}[(\hat{\mathit{f}}(\mathit{x}) - \mathit{E}[\hat{\mathit{f}}(\mathit{x})])^2]$$

Low Complexity: Low Variance

Key Points:

Simple Models (e.g., linear): Simple model have few parameters to estimate which leads to consistent predictions across different training sets.

High Complexity: The Variance Problem Emerges

High Complexity: Extreme Variance

Key Points:

Complex Models (e.g., high-degree polynomials): Complex models have many parameters to estimate which leads to dramatic different predictions across different training sets.

The Bias-Variance Tradeoff: The Central Tension

The Bias-Variance Tradeoff: The Central Tension

Important: The Fundamental Tradeoff

- · Simple models: High bias, low variance
- Complex models: Low bias, high variance
- Optimal complexity: Balance between the two

Key Points:

Key Insight: We cannot minimize both bias and variance simultaneously!

Mathematical Decomposition

Why Mathematical Analysis Matters

Definition: The Goal

Can we mathematically prove that prediction error can be expressed as a function of bias, variance, and noise?

Specifically, can we show:

error
$$= E\left[(y - \hat{\mathbf{f}}(\mathbf{x}))^2\right] = \text{function of bias, variance, and noise}$$

Key Points: Why This Matters

- · Understand the fundamental limits of learning
- · Make informed model and algorithm choices
- · Explicitly balance bias and variance

Bias-Variance Decomposition: The Goal

Definition: What We Want to Prove

error
$$= E\left[\left(y - \hat{\mathbf{f}}(\mathbf{x})\right)^2\right] = \text{function of bias, variance, and noise}$$

Key Points: Strategy

- 1. Start with squared error at a single point
- 2. Take expectation over all randomness (training set and noise)
- 3. Use algebraic tricks to separate terms
- 4. Identify noise, bias, and variance

Step 1: The Squared Error

Definition: Squared Loss at x

Prediction error: $(y - \hat{f}(x))^2$

Key Points: Taking Expectations

Expected error:

$$E_{\mathcal{D},y}[(y-\hat{f}(x))^2]$$

where:

- \mathcal{D} : Random training set
- y: Random target (includes noise)

Step 2: Add and Subtract the True Function

Example: The Trick

Add and subtract $f_{true}(x)$ inside the square:

$$\textit{E}[(\textit{y} - \textit{f}_{\mathsf{true}}(\textit{x}) + \textit{f}_{\mathsf{true}}(\textit{x}) - \hat{\textit{f}}(\textit{x}))^2]$$

Key Points: Earlier seen: Under Noisy conditions

True relationship becomes:

$$y_t = f_{\theta_{\mathsf{true}}}(x_t) + \epsilon_t$$

Definition: Grouping Terms

$$E\left[\underbrace{(y-f_{\mathsf{true}}(x))}_{\epsilon} + \underbrace{(f_{\mathsf{true}}(x) - \hat{f}(x))}_{\mathsf{prediction error}}\right]$$

Step 3: Expand the Square

Example: Algebraic Expansion

Let
$$a = \epsilon$$
, $b = f_{\text{true}}(x) - \hat{f}(x)$:
 $(a + b)^2 = a^2 + 2ab + b^2$

So,

$$\textit{E}[\epsilon^2 + 2\epsilon(\textit{f}_{\mathsf{true}}(\textit{x}) - \hat{\textit{f}}(\textit{x})) + (\textit{f}_{\mathsf{true}}(\textit{x}) - \hat{\textit{f}}(\textit{x}))^2]$$

Key Points: Linearity of Expectation

$$\textit{E}[\epsilon^2] + 2\textit{E}[\epsilon(\textit{f}_{\mathsf{true}}(\textit{x}) - \hat{\textit{f}}(\textit{x}))] + \textit{E}[(\textit{f}_{\mathsf{true}}(\textit{x}) - \hat{\textit{f}}(\textit{x}))^2]$$

Step 4: Identify the Three Terms

Definition: Three Terms

- Term 1: $E[\epsilon^2]$ (noise)
- Term 2: $2E[\epsilon(f_{\text{true}}(x) \hat{f}(x))]$ (cross-term)
- Term 3: $E[(f_{true}(x) \hat{f}(x))^2]$ (prediction error)

Key Points: Next Steps

Analyze each term separately to reveal noise, bias, and variance.

Step 5: Analyzing Term 1 (Noise)

Definition: Term 1

 $\epsilon = y - f_{\text{true}}(x)$ is the noise.

Recall how variance is defined:

$$\begin{aligned} \mathsf{Var}(\epsilon) &= \mathbb{E}\left[\left(\epsilon - \mathbb{E}[\epsilon]\right)^2\right] \\ &= \mathbb{E}\left[\epsilon^2 - 2\epsilon \,\mathbb{E}[\epsilon] + (\mathbb{E}[\epsilon])^2\right] \\ &= \mathbb{E}[\epsilon^2] - 2\mathbb{E}[\epsilon]\mathbb{E}[\epsilon] + (\mathbb{E}[\epsilon])^2 \\ &= \mathbb{E}[\epsilon^2] - (\mathbb{E}[\epsilon])^2 \end{aligned}$$

So, $\mathbb{E}[\epsilon^2] = \mathsf{Var}(\epsilon) + (\mathbb{E}[\epsilon])^2$.

For our noise, $\mathbb{E}[\epsilon]=0$ and $\mathrm{Var}(\epsilon)=\sigma^2$, so $\mathbb{E}[\epsilon^2]=\sigma^2+0^2=\sigma^2$.

Term $1 = \sigma^2$, This is the irreducible error (noise)!

Step 6: Analyzing Term 2 (Cross-Term)

Definition: Term 2

$$2E[\epsilon(f_{\mathsf{true}}(x) - \hat{f}(x))]$$

Key Points: Key Insight

 ϵ (noise) is independent of $\hat{\it f}(\it x)$ (model prediction), so:

$$E[\epsilon(f_{\mathsf{true}}(x) - \hat{f}(x))] = E[\epsilon] \cdot E[f_{\mathsf{true}}(x) - \hat{f}(x)] = 0$$

Important: Result

Term 2 = 0

The cross-term vanishes!

Step 7: Analyzing Term 3 (Prediction Error)

Definition: Term 3

$$E[(f_{\text{true}}(x) - \hat{f}(x))^2]$$

This is the mean squared error of the model's prediction.

Key Points: Next Step

Decompose this term into bias and variance using another add-and-subtract trick.

Step 8: Add and Subtract the Expected Prediction

Example: The Trick

Add and subtract $E[\hat{f}(x)]$:

$$\textit{E}[(\textit{f}_{\mathsf{true}}(\textit{x}) - \textit{E}[\hat{\textit{f}}(\textit{x})] + \textit{E}[\hat{\textit{f}}(\textit{x})] - \hat{\textit{f}}(\textit{x}))^2]$$

Key Points: Grouping

(bias) + (variance deviation)

Step 9: Expand and Separate Terms

Example: Expand the Square

Let
$$\alpha = f_{\text{true}}(x) - E[\hat{f}(x)]$$
 (bias)
 $\beta = E[\hat{f}(x)] - \hat{f}(x)$ (variance deviation)

$$E[(\alpha + \beta)^2] = E[\alpha^2] + 2E[\alpha\beta] + E[\beta^2]$$

Step 10: Analyze Each Term

Definition: Three Terms

- $E[\alpha^2]$ (bias squared)
- $2E[\alpha\beta]$ (cross-term)
- $E[\beta^2]$ (variance)

Step 11: Bias Squared

Key Points: Bias Term

α is deterministic (not random)!

- $f_{\text{true}}(x)$ is a fixed function value
- $E[\hat{f}(x)]$ is the expected prediction (will become a constant after the distribution is defined)

so
$$E[\alpha^2] = (f_{true}(x) - E[\hat{f}(x)])^2 = [Bias(x)]^2$$

Important: Result

$$E[\alpha^2] = [Bias(x)]^2$$

Step 12: Cross-Term

Key Points: Cross-Term

 α is constant, so $\textit{E}[\alpha\beta] = \alpha \cdot \textit{E}[\beta].$ But $\textit{E}[\beta] = \textit{E}[\textit{E}[\hat{\textit{f}}(x)] - \hat{\textit{f}}(x)] = 0$,the expected deviation of a random variable from its mean is zero, so the cross-term is zero.

Important: Result

 $2\textit{E}[\alpha\beta]=0$, the cross-term vanishes!

Step 13: Variance Term

Key Points: Variance

$$\textit{E}[\beta^2] = \textit{E}[(\textit{E}[\hat{\textit{f}}(\textit{x})] - \hat{\textit{f}}(\textit{x}))^2] = \textit{E}[(\hat{\textit{f}}(\textit{x}) - \textit{E}[\hat{\textit{f}}(\textit{x})])^2] = \mathsf{Variance}(\hat{\textit{f}}(\textit{x}))$$

Important: Result

$$E[\beta^2] = Variance(\hat{f}(x))$$

Step 14: The Complete Decomposition

Important: Putting It All Together

$$\mathsf{error} = \mathit{E}[(\mathit{y} - \hat{\mathit{f}}(\mathit{x}))^2] = \sigma^2 + [\mathsf{Bias}(\mathit{x})]^2 + \mathsf{Variance}(\hat{\mathit{f}}(\mathit{x}))$$

Definition: Component Summary

- σ^2 = Irreducible error (noise)
- $[Bias(x)]^2 =$ Systematic error (model assumptions)
- Variance $(\hat{f}(x)) =$ Random error (training set sensitivity)

The Fundamental Tradeoff

Key Points: The Fundamental Tradeoff

- Reduce bias: Use more complex models ightarrow Increase variance
- Reduce variance: Use simpler models \rightarrow Increase bias
- Optimal complexity: Minimize bias² + variance

Summary and Applications

Summary: The Bias-Variance Tradeoff

Definition: What We've Proven

Every prediction error can be decomposed as:

Total Error = $Noise + Bias^2 + Variance$

Key Points: Key Takeaways

- Noise: Cannot be reduced (irreducible)
- Bias: Reduced by increasing model complexity
- · Variance: Reduced by decreasing model complexity
- Optimal model: Balances bias and variance

Bias-Variance Tradeoff: Practical Applications

Important: Practical Applications

- Model selection: Choose complexity to minimize total error
- Ensemble methods: Reduce variance while maintaining low bias
- Regularization: Explicitly control the bias-variance tradeoff
- Cross-validation: Estimate the full error decomposition