PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4:

H04J 15/00, H01S 3/103

(11) International Publication Number:

WO 88/ 10037

A1

(43) International Publication Date:

15 December 1988 (15.12.88

(21) International Application Number:

PCT/GB88/00460

(22) International Filing Date:

13 June 1988 (13.06.88)

(31) Priority Application Number:

8713794

(32) Priority Date:

12 June 1987 (12.06.87)

(33) Priority Country:

GB

(71) Applicant (for all designated States except US): BRIT-ISH TELECOMMUNICATIONS PUBLIC LIMIT-ED COMPANY [GB/GB]; 81 Newgate Street, London EC1A 7AJ (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only): HILL, Alan, Michael [GB/GB]; The Cottage, The Street, Stonham Aspal, Stowmarket, Suffolk (GB).

(74) Agent: GREENWOOD, John, David; Intellectual Property Unit, British Telecommunications plc, 151 Gower Street, London WC1E 6BA (GB).

(81) Designated States: AU, JP, US.

Published

With international search report.

Before the expiration of the time limit for amending th claims and to be republished in the event of the receip of amendments.

(54) Title: OPTICAL MULTIPLEXING

(57) Abstract

An optical signal is multiplexed for use in a network including a control station (1), a high data rate optical path (2 connecting the control station (1) to a node (3, 4) and low data rate optical paths (8, 20) extending from the node (3, 4) to receiving stations (5). The method of multiplexing includes repeatedly sweeping the source (6) of the optical signal through a wide wavelength range such that a distinct wavelength channel is provided for each receiving station (5). The repetition rate is equal to the low data rate. At the node (3, 4) the signal is resolved into constituent wavelength channels occupying distinct time slots and transmitted via respective low data rate optical paths (8, 20) to the receiving stations (5).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT AU BB BE BG BJ BR CF CG CH CM DE DK FI	Austria Australia Barbados Belgium Bulgaria Benin Brazil Central African Republic Congo Switzerland Cameroon Germany, Federal Republic of Denmark Finland	GA GB HU II JP KP KR LI LK LU MC MG	and the second s	ML MR MW NL NO RO SD SE SN TD TG US	Mali Mauritania Malawi Netherlands Norway Romania Sudan Sweden Senegal Soviet Union Chad Togo United States of America
---	---	--	--	--	--

10

15

20

25

-1-

OPTICAL MULTIPLEXING

The present invention relates to a method of dividing an optical signal into a number of distinct channels for transmission to different receiving stations and a network employing such a system. Such a method may be used for telephony or for other forms of data transmission.

A typical network to which the present invention might be applied comprises a central control station, a single fibre transmission line linking the control station to a node and a large number of fibre transmission lines extending from the node to individual subscriber stations. To spread the capital cost of the optical system up to and including the node as widely as possible it is desirable to spread the equipment cost between users and where necessary maximise the number of subscribers connected to a given node. In practice time division multiplexing can be used to connect as many as a thousand subscribers to one node. As a result even though the data transmission rates between one subscriber and the node may be comparatively low the data transmission rate between the node and the control station needs to be very much higher if the node is not to act as a data "bottleneck". With conventional methods of time division multiplexing the complexity of the equipment required at the node and/or at each subscriber station to cope with the assembly/disassembly of many multiplexed channels and the conversion between high and low data rates is such that it brings severe disadvantages in terms of cost and reliability. This significantly reduces and in some cases

30

10

15

20

25

30

eliminates altogether the advantages achieved in the first place by connecting many customers to a single node.

According to one aspect of the present invention an optical encoder for an optical communications system comprises an optical source for generating an optical signal corresponding to a received time-domain multiplexed signal of two or more information channels having a tuning means arranged to vary the wavelength of the optical signal so that those portions of the optical signal corresponding to a respective distinct channel are generated at a distinct wavelength.

The present invention provides a time division multiplexed optical signal in which each channel is encoded into a wavelength multiplex using only one optical source for all the channels avoiding the requirement for multiple optical sources, i.e. one per channel as required, for example, in the system described by Miller in US patent 4,467,468. A further advantage of the present invention is that it does not require the channels to be interleaved bit by bit but can be employed to wavelength encode asynchronous channels of variable bit length section.

An encoder according to the first aspect of the present invention finds application in an optical communications system according to the second aspect of the present invention, namely in an optical communications system having a control station, a first optical path connecting the control station to a node and secondary optical paths connecting the node to two or more receiving stations including an optical encoder: according to the first aspect of the present invention; a first transmitting means for transmitting the optical signal from the control station via the first optical path to the node; a passive wavelength analyser at the node arranged

to direct respective wavelength channels via the secondary optical paths to the receiving stations.

Where the time domain multiplex signal has channels which are bit interleaved the encoder is preferably arranged to repeatedly sweep the optical frequency through a preselected wavelength range. The rate of sweep is chosen each channel bit is coded to a distinct wavelength, the process being repeated each set of interleaved channel bits. However, the present invention in its broader aspect does not require the wavelengths for each successive channel to be in any order the tuning means may select wavelength in any order as will be required in the move for the more general asynchronous time domain multiplex described above.

15

20

25

30

10

5

For the bit interleaved time domain multiplex signal using a combination of time division multiplexing and wavelength division multiplexing the present invention can provide a high data rate between the control station and the node through the use of a wide bandwidth with many wavelength channels and a low data rate between the node and each receiving station through the use of a narrow optical bandwidth and a single wavelength channel without requiring active processing to convert between different sampling rates. Since the time division multiplexing/demultiplexing occurs at the control station and the time slots are wavelength encoded the node need only have passive wavelength resolving equipment. The use of a method in accordance with the present invention therefore allows the construction of an optical network with significant advantages in terms of cost and reliability. It can be used simply to provide each receiving station with a signal for modulation and retransmission but may readily be adapted to transmit data to the receiving stations in addition.

10

15

20

25

30

Preferably the system further comprises modulating the received signal at one or more of the receiving stations at the low data rate and returning the modulated signal via the node through the high data rate optical path to the control station. Preferably one or more of the channels is pulse code modulated at the control station with non-zero logic levels and at the respective subscriber station the received optical power is split, part of the power being directed to a demodulator and part of the power being modulated and retransmitted by the receiving station. Alternatively the method may further comprise transmitting a signal from one or more of the receiving stations to the node to modulate the respective one or more wavelength channels at the node for retransmission from the node to the control station.

By modulating the signal to be retransmitted at the node rather than at the receiving station the present invention not only reduces the complexity and cost of the equipment required by each receiving station but also eliminates the difficulty of retaining different channels in their correct time slots when different receiving stations are at different distances from the node. This problem does not arise when the channels are modulated and reflected at the node at a single fixed distance from the controlling station. The present invention offers further advantages in terms of data security since each receiving station has access only to the data intended for it.

According to a further aspect of the present invention a method of optically encoding a received time domain multiplexed signal of two or more information channels comprising generating an optical signal corresponding to the received signal by means of a wavelength tunable optical source while varying the wavelength of the optical

10

15

20

25

30

signal so that those portions of the optical signal corresponding to respective distinct channels are generated at distinct wavelengths.

According to a yet further aspect of the present invention a method of communication comprises

optically encoding a time domain multiplexed signal of two or more information channels as an optical signal by a method as claimed in any one of claims 8 and 9 at a control station;

transmitting the optical signal to a node, resolving the optical signal into its constituent wavelength portions at the node,

transmitting the different wavelength portions to respective receiving stations.

Preferably the node further includes a spatial light modulator and a mirror arranged in the passive wavelength analyser to modulate and reflect back to the control station one or more wavelength channels in response to signals from the respective one or more receiving stations. Preferably the source of light is a semiconductor laser and the means to sweep the light periodically through a wide wavelength range includes a tunable external optical cavity.

A method and a system in accordance with the present invention are now described in detail with reference to the accompanying drawings, in which:-

Figure 1 is a diagram illustrating a method and system in accordance with the present invention;

Figure 2 is a diagram illustrating modulation/demodulation methods for use in a method or system in accordance with the present invention; and,

Figure 3 is a diagram illustrating modulators/analysers for use in a method or system in accordance with the present invention.

In the system shown in Figure 1; a controlling station 1 is connected via a wide bandwidth optical fibre 2 to a node 3. The node 3 is in turn connected to a series of further nodes 4 from which fibres carrying narrow optical bandwidths 20 extend to receiving stations 5.

The control station 1 includes a semiconductor laser 6 which provides the optical power for the system. The semiconductor laser 6 is modulated to provide time-division multiplexed channels in a conventional

fashion. In addition an external optical cavity is used to sweep the output of the laser 6 through a range of frequencies such that each successive time-division channel occupies a distinct wavelength channel (λ_1 , λ_2 ... λ_n). The frequency sweep is repeated at a rate equal to the data rate desired for transmission along the low bit rate fibres, 64 KHz in the case of the system illustrated. Although handling only a narrow optical bandwidth the low bit rate fibres have a sufficiently 10 broad electrical bandwidth to transmit narrow pulses without significant spreading. A delay may be included before each successive sweep to allow for differential delays within the system as a result of dispersion : a 15 nsec delay is sufficient for a total signal path of 7 km. It is found to be possible to resolve channels with a wavelength spacing of 0.1 nanometers: sweeping the laser through a wavelength range of 100 nanometers can therefore provide more than 1000 distinct wavelength channels. Thus although the system uses a relatively low sampling rate of 64 KHz the output from the control station 1 which is joined to the fibre 2 by an optical coupler 7 can have a data rate as high as 65.5 Mbit/s $(1,024 \times 64 \text{ kbit/s})$ in the case of a 1,024 channel system.

Since each channel in the data stream leaving the 25 control station 1 occupies a distinct wavelength channel the data stream may be demultiplexed using a simple passive wavelength analyser and without the use of active stage shows Figure 1 electronic devices. high data rate The system. demultiplexing bandwidth) data stream on the fibre 2 is taken first to the node 3 which analyses the wide-bandwidth signal into eight reduced bandwidth groups each containing 128 of the original channels. Each of the eight groups is output from the node 3 to one of eight reduced bandwidth fibres 8. Each of the reduced bandwidth fibres 8 leads to a further node 4 (all but two of the reduced bandwidth fibres 8 and the nodes 4 are omitted from Figure 1 for clarity). Each of the nodes 4 contains an analyser which splits the reduced bandwidth group into its constituent wavelength channels and outputs each channel along a separate narrow bandwidth (low data rate) fibre 20 to one of 1,024 receiving stations 5 (all but one of the receiving stations 5 are omitted for clarity).

Each of the receiving stations is arranged both to 10 detect a signal modulated on its respective channel using operating at the low data rate and to a receiver impose further modulation on the respective channel for control station. transmission back the to illustrated is 15 modulation/demodulation used scheme diagrammatically in Figure 2. A signal is imposed upon one or more of the channels at the control station using binary pulse code modulation techniques. receiving stations do not themselves contain any source 20 of optical power it is necessary to maximise the power To this end the pulse code transmitted to them. modulation uses two non-zero logic levels rather than conventional "on-off" coding to avoid the loss of power which would otherwise occur as a result of the modulation 25 to the zero level. Each receiving station 5 includes an additional fibre coupler 9 which splits the light in two, part of the light being used for detection of the modulated signal using a threshold detector 10 remaining optical power being used for modulation by a mirror а reflection by 12, 30 modulator retransmission to the control station 1. At the control station 1 the optical signal is received by a detector 11 having a and the signal decoded by a receiver rate of at least 65.5 Mbit/s. This use of pulse code 35 modulation followed by splitting at the receiving station 5 results in a 6 dB power loss in the path from the

- '9 -

control station 1 to the receiving station detector 10: 3 dB due to the use of the half power level for the "off" state plus a further 3 dB loss at the coupler. control station signal reflected to the receiving station there are two passes through the extra coupler 9 and hence a 9 dB loss overall assuming a 50:50 This additional loss of 9 dB may be coupler ratio. reduced by employing a coupler with an unequal coupling ratio since less attenuation is incurred in the path from the receiving station 5 to the control station 1 and the 10 receiving station has in any case higher sensitivity. Other elements of the system also contribute to power losses: tables 1 and 2 show overall power budgets for transmission from the control station 1 to the receiving 15 station 5 and transmission from the control station I to the receiving station 5 and back to the control station 1respectively.

TABLE 1

20	DOWNSTREAM POWER BUDGE	<u>T</u>	
	Launch Power		0 dB
	Sensitivity at 64 kbit/sec		-70 dB
	Available system loss		70 dB
	coupler (50:50)	3 dB	
25	Fibre (3.5 km)	2.5 dB	
	1st stage MUX	6 dB	
	2nd stage MUX	6 dB	
	Coupler (90:10)	10 dB	
	Penalty for non-zero off-state	3 dB	
30	Signal reduction through 64KHz filter	30 dB	
	System loss	60.5 dB	60.5 dB
	System margin		9.5 dB

TABLE 2

UPSTREAM POWER BUDGET (INDIVIDUAL MODULATORS PER
CUSTOMER)

	Launch power			0 dB
5	Sensitivity at 65.5 Mbit/sec			-49 dB
	Available system loss			49 dB
	Coupler (50:50)	3	đΒ	
	Fibre	2.5	dB	
	Ist stage MUX	6	đВ	
10	2nd stage MUX	6	đВ	
	Coupler (90:10)	0.5	dΒ	
	Modulator/Reflector	2	đВ	
£	2nd stage MUX	6	đВ	
f.	1st stage MUX	6.	dВ	
15	Fibre	2.5	dB	
	Coupler (50:50)	3	dB	
	Penalty for non-zero off-state	3	đВ	
	System loss	40.5	đВ	40.5 dB
	System margin			8.5 dB

In an alternative embodiment of the present invention modulation of the light for retransmission to the control station 1 takes place not at the individual receiving stations 5 but at the nodes 4. In this case the wavelength analysers in the nodes 4 include optical modulators as shown in Figure 3. In common with the simple analysers discussed above the analyser/modulators include a reflection diffraction grating 14 and a concave mirror 15 arranged to direct each distinct wavelength to a unique point in space for coupling to a particular fibre. However in addition the analyser/modulator of Figure 3 includes a spatial light modulator (SLM) 18. The SLM 18 may be transmissive (eg. a magneto-optic cell or liquid crystal structure) in which case a mirror (not shown) is positioned adjacent its rear surface to reflect

the incident light. Alternatively the SLM 18 may be inherently reflective (e.g. a silicon micro-machined surface). A beam splitter 19 directs part of the light to fibres connected to the receiving stations and the remainder of the SLM 18. Incoming rays from the control station 1 are analysed and directed to the appropriate receiving stations as normal. However instead of the receiving stations being arranged to modulate and retransmit a portion of the light received each receiving station is connected electrically to the point on the array of the SLM 18 corresponding to its wavelength channel and as a result controls the modulation of that portion of the light which is reflected back to the control station 1 from the SLM 18.

The network can be upgraded easily to continuous wave wideband operation in the same customer wavelength channels by coupling in additional multiplexed laser signals.

where the present invention is to be used to optically encode an asynchronous time domain multiplexed signal the tuning of the optical source 6 is controlled to vary with the timing of the various channels which may be irregular both in the periods of time the optical source is set to a given wavelength and in the order the wavelengths are set which order will depend on the order of the channels in the received time domain multiplex.

The secondary optical paths may be replaced by electrical connections between the node and the receiving stations.

30

15

20

25

30

CLAIMS

- 1. An optical encoder for an optical communications system comprising an optical source for generating an optical signal corresponding to a received time-domain multiplexed signal of two or more information channels having a tuning means arranged to vary the wavelength of the optical signal so that those portions of the optical signal corresponding to a respective distinct channel are generated at a distinct wavelength.
- 2. An optical encoder as claimed in claim 1 in which the optical source is a semiconductor laser including a tunable external optical cavity.
 - 3. An optical encoder as claimed in either of claims 1 and 2 in which the tuning means is arranged to repeatedly sweep the optical signal through a preselected wavelength range.
 - 4. An optical communications system having a control station, a first optical path connecting the control station to a node and secondary optical paths connecting the node to two or more receiving stations including: an optical encoder as claimed in any one of claims 1 to 3; a first transmitting means for transmitting the optical signal from the control station via the first optical path to the node; a passive wavelength analyser at the node arranged to direct respective wavelength channels via the secondary optical paths to the receiving stations.

 5. An optical communications system as claimed in claim 4
 - in which one or more of the receiving stations includes a modulating means whereby the optical signal received from the node can be modulated and returned to the control station via the node.

20

25

30

- 6. An optical communications system as claimed in claim 5 in which the optical encoder generates a pulse code modulated optical signal with non-zero logic levels.
- 7. An optical communications system according to any one of claims 4 to 6 further comprising means to transmit a signal from one or more of the receiving stations to the node and node modulating means at the node for modulating the respective one or more wavelength channels at the node for retransmission from the node to the control station.
- 8. A method of optically encoding a received time domain multiplexed signal of two or more information channels comprising generating an optical signal corresponding to the received signal by means of a wavelength tunable optical source while varying the wavelength of the optical signal so that those portions of the optical signal corresponding to respective distinct channels are generated at distinct wavelengths.
 - 9. A method of optically encoding a signal as claimed in claim 8 in which the wavelength of the optical signal is repeatedly swept through a preselected wavelength range.
 - 10. A method of communication comprising:

optically encoding a time domain multiplexed signal of two or more information channels as an optical signal by a method as claimed in any one of claims 8 and 9 at a control station;

transmitting the optical signal to a node, resolving the optical signal into its constituent wavelength portions at the node,

transmitting the different wavelength portions to respective receiving stations.

11. A method of communication as claimed in claim 10 further comprising modulating the signal received at one or more of the receiving stations and returning the modulated signal via the node to the control station.

10

15

20

25

12. A method of communication as claimed in claim 11 in which the portion of the optical signal corresponding to the information channels is pulsed code modulated at the control station with non-zero logic levels and the or each corresponding receiving station includes a demodulator.

13. A method of communication as claimed in claim 12, in which at the or each corresponding receiving station the received optical power is split, part of the power being directed to the demodulator and part of the power being demodulated and retransmitted by the receiving station to the control station via the node.

14. A method of communication as claimed in any one of claims 10 to 13 further comprising transmitting a signal from one or more of the receiving stations to the node to modulate the respective one or more wavelength channels returned to a the node for retransmission via the node to the control station.

15. An optical communications system having a control station, a first optical path connecting the control station to a node and secondary electrical paths connecting the node to two or more receiving stations including: an optical encoder as claimed in any one of claims 1 to 3; a first transmitting means for transmitting the optical signal from the control station via the first optical path to the node; a passive wavelength analyser at the node arranged to direct respective wavelength channels to optical detectors this electrical outputs of which are transmitted to the receiving stations.

SUBSTITUTE SHEET

23

DEMULTIPLE XED DOWNSTREAM SIGNAL

AT THRESHOLD

AT 12 13

ADDITIONAL FIBRE

SECTION SIGNAL

ADDITIONAL FIBRE

5 5 6

Fig. 2.

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 88/00460

	TION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 4	
CLASSIFICA	TION OF SUBJECT MATTER (if Levels Closed) Finational Patent Classification (IPC) or to both National Classification and IPC	
PC :	H 04 J 15/00; H 01 S 3/103	
I. FIELOS SEA		
	Minimum Documentation Searched 7 Classification Symbols	
lassification Sys	tem : Classification Symbols	
rpc ⁴	H 04 J; H 04 B; H 01 S	
<u>.</u>	Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched s	
		_
	1	Relevant to Claim No. 12 ,
III. DOCUMEN	NTS CONSIDERED TO BE RELEVANT 6 Citation of Document, 13 with indication, where appropriate, of the relevant passages 12	Relevant to Claim No.
Category * 1	Citation of Document, 11 with indication, where appropriate	\
A :	EP, A, 0164652 (STANDARD ELEKTRIK LORENZ) 18 December 1985 see page 13, line 7 - page 14, line 7; page 17, lines 1-5; page 19, lines 22-	1,7,8
	30	1-3,7
	US, A, 4467468 (S.E. MILLER)	1-2//
A	21 August 1984 see column 1, lines 25-45; column 1, line 55 - column 2, line 6	1
		1-3,7,10,
7	EP, A, 0033237 (SPERRY CORP.)	11
A	see page 3, line 15 - page 4, line 8; page 5, line 32 - page 6, line 23	1-3,5-7
A	GB, A, 2181921 (PLESSEY CO.) 29 April 1987 see page 1, line 116 - page 2, line 73	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		1,4
	Electronics Letters, volume 20, no. 10,	_ , -
A	1 A Matr 1 4 X 4 . \ 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2	
"E" earls filing "L" docs	categories of cited documents: 10 Iment defining the general state of the srt which is not indered to be of particular relevance indered to be of particular relevance godes If the comment of particular relevance in the cited to establish the publication date of another in is cited to establish the publication date of another or other special reason (as specified) If the comment of particular relevance involve an inventive step in the state of another comment of the same of the s	vance: the claimed inventio or cannot be considered it vance: the claimed inventio live an inventive step when to one or more other such doc- ting obvious to a person saille
otne	r than the priority date claimed	
"P" doc	I than the piners	al Search Report
"P" doc	r than the priority date claimed IFICATION e Actual Completion of the International Search 0.7, 10,	ai Search Report 88
"P" doc late	IFICATION e Actual Completion of the International Search 0.7, 10,	88
IV. CERT	September 1988 Date of Mailing of this International Search Signal of Authorized Officer	88 .G. VAN DER PUTTEN

legary *	NTS C INSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
		•
	N.A. Olsson et al.: "2 Gbit/s operation of single-longitudinal-	
:	mode 1.5, um double-channel planar buried-heterostructure C3 lasers", pages 395-397	; ;
	see page 395, right-hand column, line 6 - page 396, right-hand column, line 6	
A :	Summaries of Technical Papers of the Optical Fiber Communication Conference, 24-26 February 1986, (Atlanta, Georgia, US),	1,9
:	WT. Tsang: "Single-frequency semiconductor lasers?", pages 14-16 see page 15, left-hand column, lines 37-56	
A ,	Technical Digest - Western Electric, no. 72, October 1983, (New York, US), P.S. Henry et al.: "Multiplexer using coupled-cavity laser", page 19 see the whole document	1,7
:		:
:		
:		
.		
1		;

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

GB 8800460

22789 SA

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 27/09/88. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Paten men	Publication date	
EP-A- 0164652	18-12-85	DE-A- AU-A- JP-A- DE-A-	3422219 4286385 61069294 343777 <u>2</u>	19-12-85 19-12-85 09-04-86 24-04-86
US-A- 4467468	21-08-84	FR-A- JP-A- GB-A- DE-A- NL-A- CA-A-	2519216 58115951 ' 2113049 3247479 8205000 1186078	01-07-83 09-07-83 27-07-83 07-07-83 18-07-83 23-04-85
EP-A- 0033237	05-08-81	US-A-	4302835	24-11-81
GB-A- 2181921	29-04-87	WO-A- EP-A- JP-T-	8702531 0241527 63501756	23-04-87 21-10-87 14-07-88