Największy plus

XV OIJ, zawody II stopnia

13 marca 2021

Kod zadania:

Limit czasu: 0.5 s (C++) / 15 s (Python)

Limit pamięci: 256 MB

Wzdłuż ulicy Bajtockiej znajduje się N wieżowców ustawionych po kolei w rzędzie bez przerw. Wysokość i-tego od lewej wieżowca to T_i bajtometrów, a szerokość każdego wieżowca to jeden bajtometr.

Bajtazar jest szefem marketingu w firmie Bajtplus. W ramach działań marketingowych Bajtplusa postanowił umieścić na ścianie frontowej wieżowców jak największą reklamę w formie plakatu w kształcie plusa (logo firmy Bajtplus): cztery ramiona (wychodzące w lewo, w prawo, w górę i w dół, prostopadle do krawędzi wieżowców) o jak największej możliwej długości L wychodzące ze środka kwadratu o boku jednego bajtometra. Oczywiście cała reklama musi być przyklejona do wieżowców, nie może nigdzie odstawać, bo wiatr mógłby ją uszkodzić, a więc również wyrządzić szkody marketingowe

Rysunek poniżej przedstawia sytuację z testu przykładowego 0a dla $T_1=6$, $T_2=5$, $T_3=4$, $T_4=6$, $T_5=3$, $T_6=5$, $T_7 = 2$ oraz położenie (największej możliwej) reklamy o L = 2:

Jak duże L można osiągnąć? To już nie jest zadanie dla Bajtazara, tylko dla Ciebie. Napisz program, który wczyta wysokości kolejnych wieżowców T_i , wyznaczy największą możliwą długość ramienia reklamy w kształcie plusa na nich przyklejonej i wypisze wynik na standardowe wyjście.

Wejście

W pierwszym wierszu standardowego wejścia znajduje się jedna liczba naturalna N ($1 \le N \le 400\,000$) określająca liczbę wieżowców. W drugim (ostatnim) wierszu znajduje się ciąg N liczb T_i ($1 \le T_i \le 400\,000$) pooddzielanych pojedynczymi odstępami. Są to wysokości kolejnych wieżowców od lewej do prawej.

Wyjście

W pierwszym (jedynym) wierszu wyjścia powinna się znaleźć jedna nieujemna liczba całkowita – największa możliwa długość ramienia L reklamy w kształcie plusa rozpiętej na wieżowcach, zgodnie z zasadami opisanymi powyżej.

Ocenianie

Możesz rozwiązać zadanie w kilku prostszych wariantach – niektóre grupy testów spełniają pewne dodatkowe ograniczenia. Poniższa tabela pokazuje, ile punktów otrzyma Twój program, jeśli przejdzie testy z takim ograniczeniem.

Dodatkowe ograniczenia	Liczba punktów
$T_i \leq 3$	10
$N \le 100$	25
$N \le 1000$	40
$N \le 30000$	85

Przykłady

Wejście dla testu plu0a:	_	Wyjście dla testu plu0a:
7		2
6 5 4 6 3 5 2		

Wyjaśnienie do przykładu: Zgodnie z rysunkiem w treści zadania możemy wybrać czwarty wieżowiec jako oś pionową plusa, a następnie ustawić reklamę z ramieniem długości dwóch bajtometrów.

Wejście dla testu plu0b:	Wyjście dla testu plu0b:
4	0
2 1 2 1	

Wyjaśnienie do przykładu: Nie możemy nigdzie postawić plusa z ramieniem dodatniej długości, więc wybieramy dowolny wieżowiec i ustawiamy na nim reklamę z ramieniem dlugości zero bajtometrów.

Pozostałe testy przykładowe

- test plu0c: N = 100, wysokości budynków T_i równe 100.
- test plu0d: N = 1000, wysokości budynków $T_i \le 3$.
- test plu0e: $N=400\,000$, wysokości budynków T_i wynoszą kolejno $1,2,\ldots,N$.