Tax avoidance and evasion in a dynamic setting

Duccio Gamannossi degl'Innocenti¹ Rosella Levaggi² Francesco Menoncin²

¹Università Cattolica del Sacro Cuore, Milano, Italy

²Università di Brescia, Brescia, Italy

Table of contents

1. Introduction

2. Model

3. Analysis

4. Conclusion

Intro

Introduction

- · Tax avoidance and evasion alter effective tax rates
- Tax systems differentiate between (legal) avoidance and (illegal) evasion but they both reduce revenues collected
- Evasion leads to sizeable revenue losses: 20% of GDP in Europe (Murphy 2019) (13% in Italy, Albarea et al. 2020) under-reporting is \approx 18% in US with a tax gap of 500 billion
- Avoidance also significant: 4% of GDP in Europe (EPRS, 2015), latest IRS and Treasury claim figures up to 500 billion
- We develop a model to study the optimal evasion and avoidance decision in an inter-temporal setting

Related Literature

- · Contributions in a static framework (joint avoidance/evasion):
 - Cross and Shaw (1981; 1982) point out importance of joint analysis of avoidance-evasion
 - Alm (1988) and Alm and McCallin (1990) study the case of risk-less and risky avoidance
 - · Cowell (1990) investigates distributional impacts
 - · Neck (1990) studies interactions with labour supply
 - Gamannossi and Rablen (2016;2017) explore the cases of bounded rationality and optimal enforcement
- Contributions in a dynamic framework (only evasion):
 - Wen-Zhung and Yang (2001) and Dzhumashev and Gahramanov (2011) first models considering just evasion
 - Levaggi and Menoncin (2012; 2013) identify determinants of Yitzhaki puzzle
 - · Bernasconi et al. (2015; 2019) study roles of uncertainty and habit

Research Goals

- · Characterize optimal avoidance and evasion
- Analyze how deterrence instruments affect compliance and revenues
- Characterize optimal fiscal parameters for the government under various objectives
 - minimizing evasion
 - · minimizing non-compliance
 - maximizing revenues
 - maximizing growth

Model

Modelling features and assumptions

Avoidance and evasion differ in their level of sophistication

- Evasion is cost-less and carries a fine η if detected
- Avoidance costs f(a) but entails a reduced fine $\eta(1-\beta)$ if detected
 - f(a) increasing, convex and f(0) = 0
 - We call the fine reduction β the avoidance premium

Both f and β depend on the fiscal and tax administration specifics

- · High avoidance cost and low avoidance premium when:
 - Tax code is simpler and less-ambiguous
 - Legal/investigatory resources of tax authorities are higher
 - Courts have higher effectiveness

Avoidance and evasion are both correctly detected upon audit

The agent suffers from fiscal illusion

· The effect of compliance on revenues is overlooked

Consumer's preferences

The agent's utility increases in the consumption of a **privately** produced good c_t and a publicly produced good g_t

The agent utility function is:

$$U = \frac{\left(c_t - c_m\right)^{1-\delta}}{1-\delta} + v\left(g_t\right)$$

- c_m is a minimum consumption level
- δ drives concavity of utility from c_t
- · $v(\bullet)$ is an increasing and concave function

Absolute risk-aversion $\frac{\delta}{C_t - C_m}$

- Lower risk aversion when c_t is higher (DARA)
- Higher risk aversion when either δ or c_m is higher

Capital Accumulation

The capital accumulated dk_t is equal to production minus expenses:

$$dk_{t} = [y_{t} - c_{t} - \tau y_{t} (1 - e_{t} - a_{t}) - f(a_{t}) y_{t}] dt -$$

$$\eta \tau y_{t} [e_{t} + (1 - \beta) a_{t}] d\Pi_{t}$$

Production, y_t

• Deterministic function $y_t = Ak_t$, 0 < A < 1 TFP

Expenses:

- · Consumption, ct
- Linear taxes on declared income $\tau y_t (1 e_t a_t)$
 - Share of income avoided a_t and evaded e_t
- Avoidance costs $f(a_t)$
- Fine costs
 - Fine in case of detection is $\eta \tau y_t [e_t + (1 \beta) a_t]$
 - · Audits follow a Poisson jump process $d\Pi_t$ with frequency λ

The optimization problem

$$\max_{\{c_t,e_t,a_t\}_{t\in[t_0,\infty[}}\mathbb{E}_{t_0}\left[\int_{t_0}^{\infty}\frac{\left(c_t-c_m\right)^{1-\delta}}{1-\delta}e^{-\rho(t-t_0)}dt\right]$$

under the capital dynamics:

$$dk_{t} = [y_{t} - c_{t} - \tau y_{t} (1 - e_{t} - a_{t}) - f(a_{t}) y_{t}] dt -$$

$$\eta \tau y_{t} [e_{t} + (1 - \beta) a_{t}] d\Pi_{t}$$

•

Analysis

Optimal solution

$$a^* = (f')^{-1} \tau \beta,$$
 $e_t^* = \frac{k_t - H}{\tau \eta A k_t} \left[1 - (\lambda \eta)^{\frac{1}{\delta}} \right] - (1 - \beta) a^*,$

$$C_{t}^{*} = C_{m} + (k_{t} - H) \left(\frac{\rho + \lambda}{\delta} + \frac{\delta - 1}{\delta} \left\{ \frac{1}{\eta} + A \left[(1 - \tau) + \tau \beta a^{*} - f(a^{*}) \right] \right\} - \frac{1}{\eta} (\lambda \eta)^{\frac{1}{\delta}} \right)$$

Where:

$$(f')^{-1}$$

$$H := \frac{c_m}{A[\tau \beta a^* - f(a^*) + (1 - \tau)]}$$

Inverse of the marginal cost of avoidance

PDV of future c_m discounted by

TFP corrected by tax and avoidance

Evasion dynamics

Consumption dynamics

Capital dynamics

Comparative Statics

	a*	e_t^*	$E_t^* = a^* + e_t^*$	$\mathbb{E}\left[dT_{t}\right]$
λ	0	_	_	+
η	0	_	_	+
β	+	(+/-)	+	_
τ	+	_	+/-	+/-

 $\frac{\partial Col}{\partial Row}$ Derivatives of column with respect to row

Where:

$$\mathbb{E}\left[dT_{t}\right] = \tau y_{t}\left(1 - e_{t}^{*} - a_{t}^{*}\right)dt + \lambda \eta \tau y_{t}\left[e_{t}^{*} + \left(1 - \beta\right)a_{t}^{*}\right]dt$$

are expected revenues collected:

- · Revenues from declaration
- · Expected revenues from enforcement

Comparative Statics - Remarks on β

The sign of $\frac{\partial e_t^*}{\partial \beta}$ is complex to study when $c_m > 0$

The case $c_m = 0$ offers some insights:

$$\frac{\partial e_t^*}{\partial \beta} \gtrless 0 \iff \frac{\partial a^*}{\partial \beta} \frac{1}{a^*} \lessgtr \frac{1}{1-\beta}.$$

- The sign of the derivative depends on the semi-elasticity $\frac{\partial a^*}{\partial \beta} \frac{1}{a^*}$
 - If the semi-elasticity is higher than a threshold, \emph{e} is decreasing in β
- \cdot The semi-elasticity is higher when eta is bigger

Avoidance deterrence increases evasion in economies with higher avoidance premium

• When $c_m > 0$ the increase in evasion is more likely than if $c_m = 0$

Comparative Statics - Remarks on au

Also for the sign of $\frac{1}{dt} \frac{\partial \mathbb{E}_t[dT_t]}{\partial \tau}$ assuming $c_m = 0$ provides some insights:

$$\frac{1}{dt} \frac{\partial \mathbb{E}_t \left[dT_t \right]}{\partial \tau} \gtrless 0 \iff \tau \leqslant \frac{1 - \beta a_t^*}{\beta \frac{\partial a_t^*}{\partial \tau}}.$$

Tax revenues display a Laffer curve behaviour

- When au is <u>low</u>, raising au <u>increases</u> revenues
- When au is <u>high</u>, raising au <u>decreases</u> revenues
- \cdot The higher the β , the lower the revenue-maximizing tax rate

An increase of τ has three impacts on revenues:

- 1. Positive Marginal tax increase
- 2. Positive Reduction of evasion
- 3. Negative Increase in avoidance

Conclusion

Tax avoidance deterrence

Fines and audits are ineffective against tax avoidance \Rightarrow focus on f, β, τ

Avoidance costs *f*

- Increasing both f' and f lowers avoidance and evasion
- · Two components of avoidance costs:
 - Knowledge costs: Effort/Expertise to identify the "loophole" to exploit
 - · Set-up costs: To meet law requirements (e.g., creation of legal entities)
 - · Cannot be told apart from those of "intended" economic activities

Avoidance deterrence need to focus on knowledge costs alone

Measures to deter avoidance through β and f

- Simplifying the tax system
 - Reducing the extent of variation of tax treatments
 - $\boldsymbol{\cdot}$ deductions, exemptions and preferential treatments
- Increasing the litigation budget of the tax administration
- · Implementing anti-avoidance reforms at (multi)national level

Tax avoidance deterrence

Avoidance deterrence might increase evasion:

- 1. Avoidance premium:
 - Decreasing a <u>low</u> β reduces both avoidance and evasion
 - Decreasing a high β entails an increase of evasion
 - Evasion increase is more likely when $c_m > 0$
- 2. Tax rate:

Decreasing au reduces avoidance but the increasing effect on evasion eventually lowers compliance and revenues

Negative effects can be sterilized using audit probability or fines

$$a^* = (f')^{-1} \tau \beta,$$

$$e_t^* = \frac{k_t - H}{\tau \eta A k_t} \left[1 - (\lambda \eta)^{\frac{1}{\delta}} \right] - (1 - \beta) a^*.$$

Concluding Remarks

We develop the first dynamic model with joint avoidance/evasion Interaction of avoidance and evasion is of crucial importance:

- · Lead to the emergence of a Laffer curve
- · Provide a possible interpretation for the Yitzhaki puzzle

Avoidance deterrence requires specific policies:

- Reduction of β or increase of f
 - · Long-run: Fiscal/judiciary reforms
 - Short-run: Increase of tax administration resources (legal)
 - Recent investments in data collection/analytics likely effective on evasion
 - · Reduction of evasion might bolster avoidance
 - · Need to balance deterrence activities
- Reduction of τ

Avoidance deterrence might entail unintended consequences

Thank you! **Questions?**