第一章 流形上的分析

1.1 重积分的换元

1.1.1 单位分解

引理 1.1.1. 对 \mathbb{R}^n 中的矩形,存在 \mathbb{C}^{∞} 的函数恰以之为支撑。

证明. 设 $f(x) = e^{-1/x} \chi_{\mathbb{R}^+}$, 则 f(x) f(1-x) 为 C^{∞} 且以 [0,1] 为支撑。 \square

引理 1.1.2. 设 \mathscr{A} 是 \mathbb{R}^n 的一族开集,其并为 A。存在矩形的可数族 $\{Q_i\}$ 覆盖之,而诸矩形在诸集内,且局部有限。

证明. 取覆盖 A 的严格递增紧子集列 $\{D_i\}$ 并设其差分为 $\{B_i\}$,知为紧致,故可以有限多矩形覆盖至且诸矩形在 D_{i-2} 外。易知此矩形族满足条件。 \square

定义 1.1.1. $\phi: \mathbb{R}^n \to \mathbb{R}$ 的支撑为使其非零的定义域子集的闭包。

定理 1.1.1 (单位分解的存在性). 在前开引理的条件下,存在诸矩形控制的 C^{∞} 可数单位分拆。

证明.参考前二引理,注意由局部有限性,各点处均有邻域使可数分拆仅为有限和,故和收敛且为 C^{∞} ,故可加和后归一。

例 1.1.1. 将 $f(x) = \chi_{[-2\pi,2\pi]} (1 + \cos x) / 2$ 逐次移动 π ,可以得到 $\mathbb R$ 的 C^1 单位分解。

引理 1.1.3. $f:A \to \mathbb{R}$ 连续且在紧集 $C \subset A$ 外为零,则 $\int_A f = \int_C f$ 。

证明. 存在性由 C 的有界性和极值定理推出 f 的有界性可得。取覆盖 A 的严格增紧集列 C_i ,其亦覆盖 C,故 C 在某 C_M 内。

$$\int_C f = \lim_{N \to \infty} \int_C f = \int_A f.$$

定理 1.1.2. $f:A\to\mathbb{R}$ 连续, $\{\varphi_i\}$ 为 A 的具有紧支撑的单位分解,则 $\int_A f$ 存在当且仅当

$$\sum \left[\int_A \varphi_i \, | \, f \, | \right]$$

收敛,此时

$$\int_A f = \sum \left[\int_A \varphi_i f \right].$$