МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа № __7_ по дисциплине «Разработка нейросетевых систем»

Тема: «Спутниковые снимки»

исполнитель:	<u>Журавлев Н.В.</u>		
группа ИУ5-24М	ФИО подпись		
	"23" <u>04</u> 2024 г.		
ПРЕПОДАВАТЕЛЬ:	<u> Канев А.И.</u> _{ФИО}		
	подпись		
	""202_ г.		

Москва - 2024

Задание

- 1. Создать и сравнить три вида ансамблей (Average, WeightedAverageLayer, Stacking Ensemble) на основе моделей бинарной сегментации поврежденных областей леса.
- 2. Попробуйте разные комбинации моделей в ансамбле, поменяйте их количество
- 3. Подберите лучшие веса для WeightedAverageLayer
- 4. Поменяйте выходную часть в Stacking Ensemble (количество слоёв, их параметры)

Часть 1. Попробуйте разные комбинации моделей в ансамбле, поменяйте их количество

Точность для каждой модели, представлены в табл. 1.

Таблица 1 – Точность всех моделей

Модель	Точность
Model1	0.7865361
Model2	0.72723323
Model3	0.7729393
Model4	0.7673297
Model5	0.6782828

После запуска с 2 моделями в ансамбле получалась точность 0.75699323. После запуска с 5 моделями в ансамбле получалась точность 0.7477745. После запуска с 3 моделями в ансамбле получалась точность 0.74152607.

Часть 2. Подберите лучшие веса для WeightedAverageLayer

После выбора лучших весов получалась точность 0.7806448, при коэффициентах 0.9 и 0.1.

Данные результат можно объяснить тем, что первая модель показывает наилучшую точность и, следовательно, чем больше у неё веса, тем больше точность.

Часть 3. Поменяйте выходную часть в Stacking Ensemble (количество слоёв, их параметры)

Для базовой версии точность составляет 0.78459495, что можно увидеть на рис. 1.

Рисунок 1 – Точность и ошибка для базовой модели

Добавили один слой, после чего получалась точность 0.78796345. Результат представлен на рис. 2.

Рисунок 2 – Точность и ошибка для модели с ещё одним слоем

Точность повысилась, т.к. добавление слоя позволяет нейросети изучать более сложные зависимости в данных

После увеличения страйда получалась точность 0.78686655. Результат представлен на рис. 3.

Рисунок 3 – Точность и ошибка для модели с увеличенным страйдом

Точность возросла, т.к. более крупные шаги могут позволить сети более эффективно выделять ключевые особенности входных данных

После уменьшения страйда получалась точность 0.7821905. Результат представлен на рис. 4.

Рисунок 4 – Точность и ошибка для модели с уменьшенным страйдом

Точность возросла, т.к. маленький страйд позволяет учесть больше деталей изображения при формировании признаков, что может привести к более точному извлечению информации

Итоговая таблица с результатами для всех вариантов обучения

На табл. 2 представлены результаты обучения.

Таблица 2 - Итоговая таблица с результатами для всех вариантов обучения

Конфигурация	Гиперпараметры	Точность	Комментар
нейросети			ий
model1, model2,	-	Dice for ensemble = 0.7477745	В ансамбле
model3, model4,			5 модели
model5			
model1, model2	-	Dice for ensemble = 0.75699323	В ансамбле
			2 модели
model3, model4,	-	Dice for ensemble = 0.74152607	В ансамбле
model5			3 модели
model1, model2	-	Dice for ensemble = 0.7806448	Подбор
			лучших
			весов
model1, model2,	lr=4e-3	Dice for ensemble = 0.78459495	Базовый
CL(16),	batch_size = 8		вариант
CL(1)	epoch = 5		
model1, model2,	lr=4e-3	Dice for ensemble = 0.78796345	Добавление
CL(16),	batch_size = 8		слоя
CL(4),	epoch = 5		
CL(1)			
model1, model2,	lr=4e-3	Dice for ensemble = 0.78686655	Увеличение
CL(16),	batch_size = 8		страйда
CL(1)	epoch = 5		
model1, model2,	lr=4e-3	Dice for ensemble = 0.7821905	Уменьшение
CL(16),	batch_size = 8		страйда
CL(1)	epoch = 5		

Вывод

В теории точность при выборе наиболее точных сетей при усреднении прогнозов моделей точность должна увеличиваться. В текущий лабораторной работе это подтверждается.

В теории точность при выборе для наиболее точных сетей большего веса точность должна увеличиваться. В текущий лабораторной работе это подтверждается.

В теории при обучении мета-ученика точность должна быть выше, чем у моделей, которые при его обучении используется. В текущий лабораторной работе это не подтверждается. Точность у ученика больше, чем у всех моделей, кроме той, у которой она самая большая среди всех. Это можно объяснить тем, что используется слишком большое количество сетей, у которых точность значительно ниже, чем у максимальной.