MECHTRON 2MD3

Data Structures and Algorithms for Mechatronics
Winter 2022

31 Sorting Continued, Graphs

Department of Computing and Software

Instructor:

Omid Isfahanialamdari

April 7, 2022

Overview

Sorting: What we have seen so far?

Sorting Algorithm	Time Complexity	Properties
Insertion sort	O(n ²)	slowin-placeSuitable for small datasets (< 1K)
Selection sort	O(n²)	slowin-placeSuitable for small datasets (< 1K)
Heap sort	O(nlogn)	fastin-placeSuitable for large datasets (1K - 1M)
Merge sort	O(nlogn)	fastsequential data accessSuitable for for huge datasets (>1M)

We will talk about Quick sort

Quicksort

- Quicksort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
 - Divide: pick a random element
 x (called pivot) and partition S
 into:
 - L elements less than x
 - E elements equal x
 - *G* elements greater than *x*
 - Recur: sort L and G
 - Conquer: join L, E and G

Pivot Selection

Partition, recursive call, pivot selection

Partition, recursive call, base case

Recursive call, ..., base case, join

Recursive call, pivot selection

Partition, ..., recursive call, base case

join, join

Quicksort Tree

- An execution of quicksort is depicted by a binary tree
 - Each node represents a recursive call of quicksort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1

Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element y
 from S and
 - We insert y into L, E or G,
 depending on the result of the
 comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- Thus, the partition step of quicksort takes O(n) time.


```
Algorithm partition(S, p)
     Input sequence S, position p of pivot
    Output subsequences L, E, G of the elements of S less than, equal to, or greater than the pivot, resp.
     L, E, G \leftarrow empty sequences
     x \leftarrow S.erase(p)
     while \neg S.empty()
         y \leftarrow S.eraseFront()
         if y < x
             L.insertBack(v)
         else if y = x
              E.insertBack(y)
         else // y > x
              G.insertBack(v)
     return L, E, G
```

Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- One of L and G has size n-1 and the other has size 0
- The running time is proportional to the sum

$$n + (n-1) + ... + 2 + 1$$

• Thus, the worst-case running time of quick-sort is $O(n^2)$

depth time

Expected Running Time (This slide is not a course content)

- Consider a recursive call of quick-sort on a sequence of size s
 - \circ Good call: the sizes of L and G are each less than 3s/4
 - $_{\circ}$ Bad call: one of *L* and *G* has size greater than 3s/4

- A call is good with probability 1/2
 - 1/2 of the possible pivots cause good calls:

Expected Running Time (This slide is not a course content)

- Probabilistic Fact: The expected number of coin tosses required in order to get k heads is 2k
- For a node of depth i, we expect
 - ∘ *i*/2 ancestors are good calls
 - o The size of the input sequence for the current call is at most $(3/4)^{i/2}n$
- Therefore, we have
 - For a node of depth $2\log_{4/3} n$, the expected input size is one
 - The expected height of the quick-sort tree is $O(\log n)$
- The amount or work done at the nodes of the same depth is O(n)
- Thus, the expected running time of quick-sort is $O(n \log n)$

total expected time: $O(n \log n)$

Recall

Sorting Algorithm	Time Complexity	Properties
Insertion sort	O(n ²)	slowin-placeSuitable for small datasets (< 1K)
Selection sort	O(n ²)	slowin-placeSuitable for small datasets (< 1K)
Heap sort	O(nlogn)	fastin-placeSuitable for large datasets (1K - 1M)
Merge sort	O(nlogn)	fastsequential data accessSuitable for for huge datasets (>1M)
Quicksort	O(nlogn) expected	in-place, randomizedfastest (good for large inputs)

Graphs

Graphs

- A graph is a pair (V, E), where
 - V is a set of nodes, called vertices
 - E is a collection of pairs of vertices, called edges
 - Vertices and edges are positions and store elements

Example:

- A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the mileage of the route

Edge Types

- Directed edge
 - o ordered pair of vertices (u,v)
 - first vertex u is the origin
 - second vertex v is the destination
 - o e.g., a flight
- Undirected edge
 - unordered pair of vertices (u,v)
 - e.g., a flight route
- Directed graph
 - all the edges are directed
 - e.g., route network
- Undirected graph
 - all the edges are undirected
 - e.g., flight network

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
 - Social Networks

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
 - Social Networks

(b) Oriented graph

Fig. 5.19

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
 - Social Networks

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
 - Social Networks

Terminology

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - o a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - X has degree 5
- Parallel edges
 - h and i are parallel edges
- Self-loop
 - ∘ j is a self-loop

Terminology (cont.)

Path

- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are distinct
- Examples
 - $_{\circ}$ P₁=(V,b,X,h,Z) is a simple path
 - P₂=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple

Terminology (cont.)

Cycle

- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints
- Simple cycle
 - cycle such that all its vertices and edges are distinct
- Examples

 - C₂=(U,c,W,e,X,g,Y,f,W,d,V,a,

) is a

 cycle that is not simple

Properties

Property 1

$$\sum_{v} \deg(v) = 2m$$

Proof: each edge is counted twice

Property 2

In an undirected graph with no self-loops and no multiple edges

$$m \le n (n-1)/2$$

Proof: each vertex has degree at most (n-1)

Notation

n

m

deg(v)

number of vertices number of edges degree of vertex *v*

$$= n = 4$$

$$\mathbf{m} = 6$$

$$\bullet \deg(v) = 3$$

Main Methods of the Graph ADT

- Vertices and edges
 - are positions
 - store elements
- Accessor methods
 - e.endVertices(): a list of the two endvertices of e
 - e.opposite(v): the vertex opposite of v on e
 - u.isAdjacentTo(v): true iff u and v are adjacent
 - *v: reference to element associated with vertex v
 - *e: reference to element associated with edge e

- Update methods
 - insertVertex(o): insert a vertex storing element o
 - insertEdge(v, w, o): insert an edge (v,w) storing element o
 - eraseVertex(v): remove vertex v (and its incident edges)
 - eraseEdge(e): remove edge e
- Iterable collection methods
 - incidentEdges(v): list of edges incident to v
 - vertices(): list of all vertices in the graph
 - edges(): list of all edges in the graph

Edge List Structure

- Vertex object
 - element
 - reference to position in vertex sequence
- Edge object
 - element
 - origin vertex object
 - destination vertex object
 - reference to position in edge sequence
- Vertex sequence
 - sequence of vertex objects
- Edge sequence
 - sequence of edge objects

Adjacency List Structure

- Edge list structure
- Incidence sequence for each vertex
 - sequence of references to edge objects of incident edges
- Augmented edge objects
 - references to associated positions in incidence sequences of end vertices

University

Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
 - Integer key (index) associated with vertex
- 2D-array adjacency array
 - Reference to edge object for adjacent vertices
 - Null for non nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge

What next?

- We will see the BFS and DFS algorithms next
 - We will only consider the algorithms and not the implementation

Questions?

Please evaluate this course! https://evals.mcmaster.ca/
Thank you

