NAME (printed): * SOLUTIONS * Program: _____

You have 50 minutes to complete this examination. You are allowed your calculator, a 3x5" card and the provided formulas/tables from the text.

- M/C Questions
 - o Circle the best alternative that answers the question
 - NO partial credit will be awarded
- Work the Problem Questions
 - SHOW ALL your work in the space provided
 - BOX-IN your final answer
 - Partial credit may be awarded

 $\mathbf{E} = 20 V_{RMS} < 0$ °

For the circuit shown above, answer the following questions:

- 1. Calculate Zтн:
- (1.39k + j5.08k) Ω
- B) 5.26 k Ω < -74.7°
- C) $(2k j3k) \Omega$
- D) $(2k + j3k) \Omega$

- 2. Determine V_{TH} :
- A) 16.6 Vrms < +33.7°
- B) 8.3 Vrms < +33.7°
- C) 20 Vrms < 0°
- (D) 16.6 Vrms < -33.7°

 $I = 2A_{RMS} < 30$ °

For the circuit shown above, answer the following questions:

3. Find **Z**_L for maximum power transfer to the load:

A) $(1.51 + i0.39) \Omega$

B) $5\Omega < 53.1^{\circ}$

C) (1.51 - j0.39) Ω \leftarrow

D) $(3-i4) \Omega$

to the load:

$$\vec{z}_1 = (3+j4)_{n}$$
 $\vec{z}_2 = 2_{n}$
 $\vec{z}_3 = (3+j4)_{n}$
 $\vec{z}_4 = (1.51+j9.39)_{n}$

4. Find the power transferred to the load assuming $Z_L = Z_{TH}^*$:

A) 1.93 W

B))1.61 W

C) 3.12 W

D) 1.31 W

5. A power level of 50 W is 6 dB above what power level?

- A) 3.98 W
- B) 25.1 W
- C) 35.4 W
- D))12.6 W

-				\
G dB	= 10	60910	200	
G WID		20/10	PI	

P, = 12.56W

6. Determine the power level in dBm corresponding to a power of 20 mW:

- A) 7.07 dBm
- B)) 13.0 dBm
- C) 20.0 dBm
- D) 26.0 dBm

7. Find the output voltage for an amplifier with an input voltage of 10 mV and voltage gain of 22 dB:

- A) 252 mV
- B) 330 mV
- C) 12.6 mV
- D) 126 mV

$$22dB = 20log_{10}(\frac{l_{10}}{10MV})$$
 $l_{10} = 126mV$

$$\mathbf{E} = 12 V_{RMS} < 0$$
 °

For the circuit shown above, answer the following questions:

RMS < 0°

Asswer the following questions: $Q_s = \frac{XL}{RL} = \frac{XC}{R} = \frac{2000L}{100L}$ CAT fs)

8. Determine the quality factor of the circuit:

9. If the resonant frequency is 5 kHz, find the value of L:

10. Find the bandwidth of the circuit if the resonant frequency is 5 kHz:

$$BW = \frac{f_s}{Q_s} = \frac{5kHz}{20}$$
$$= \frac{250Hz}{20}$$

The load on a 240 VRMS, 60 Hz supply is 5kW (resistive), 8 kVAR (inductive) and 2kVAR (capacitive). Determine the following:

11. The total apparent power

$$P = 5kW$$

$$Q = + i8000 - i2000 = +i6000 VAR$$

$$S = 5000 W + i6000 VAR$$

$$7,810 VA 4 50.19°$$

12. The power factor of the system

The power factor of the system
$$PF = Ces(\Theta) = Cos(50.19^{\circ}) = 0.64$$

$$LAGGING$$

$$IWOUTIVE : I LAGIV$$

13. Find the amount of current drawn from the supply

$$\mathbf{E} = 100 V_{pk} < 0$$
 °

For the circuit shown above, answer the following questions:

14. Find the resonant frequency (in Hz):

Find the resonant frequency (in Hz):

$$f_p \sim f_s = \frac{1}{2\pi\sqrt{LC}} = \frac{102.73kHz}{102.73kHz}$$

$$Q_e = \frac{10.2.73kHz}{Re} = \frac{34.4}{Re} = \frac{34.4}{Re} = \frac{34.4}{Re} = \frac{10.2.73kHz}{Re}$$

15. Find the quality factor of the inductor, QL:

16. Find the peak voltage across the capacitor at resonance, |Vc|:

