

MONASH INFORMATION TECHNOLOGY

A peak into... Artificial Intelligence (AI) and Machine Learning (ML)

Ian Wern Han Lim lim.wern.han@monash.edu

Referencing materials by Chern Hong LIM

Ready?

Agenda

- What is?
 - Artificial Intelligence
 - Machine learning

Agenda

- What is?
 - Artificial Intelligence
 - Machine learning
 - Supervised learning
 - Unsupervised learning
 - Semi-supervised
 - Reinforced learning
 - Deep learning

Let us begin...

Wern Han LIM (lan)

- Wern Han LIM (lan)
 - B. Comp Science graduate 2009
 - PhD Comp Science graduate 2018

- Wern Han LIM (lan)
 - B. Comp Science graduate 2009
 - PhD Comp Science graduate 2018
- Teaching since 2014
 - FIT1008 Introduction to Comp Science
 - FIT2004 Algorithms and Data Structures
 - FIT3155 Advanced Algorithms and Data Structures
 - FIT3152 Data Science/ Analytics
 - FIT2014 Theory of Computation
 - And a number of supervisions (FYP and Honours)

- My main area?
 - Information retrieval (IR)
 - User Generated Content (UGC)

- My main area?
 - Information retrieval (IR)
 - User Generated Content (UGC)
- My PhD Research?

- My main area?
 - Information retrieval (IR)
 - User Generated Content (UGC)

My PhD Research?

- Finding good #tags that describe documents, images etc.
- Predict the best answer on QnA platforms (StackOverflow)
- Organizing comments on Reddit
- Profiling users on all 3 platforms
 - Expertise
 - Reliability

- I do have speech impairment
 - Pronunciation can be GG at times
 - Ask me to repeat
 - Ask me to spell
 - Ask me to write

- I do have speech impairment
 - Pronunciation can be GG at times
 - Ask me to repeat
 - Ask me to spell
 - Ask me to write
 - Feel free to interrupt me anytime
 - Keep it casual =)

Questions?

What is it?

Mimic the cognitive functions of human

- Mimic the cognitive functions of human
 - Perception
 - Reasoning
 - Learning and knowledge organization

- Mimic the cognitive functions of human
 - Perception
 - Natural language
 - Vision
 - Reasoning
 - Learning and knowledge organization

- Mimic the cognitive functions of human
 - Perception
 - Natural language
 - Vision
 - Reasoning
 - Cause-and-effect
 - Xs affecting the Y
 - Learning and knowledge organization

- Mimic the cognitive functions of human
 - Perception
 - Natural language
 - Vision
 - Reasoning
 - Cause-and-effect
 - Xs affecting the Y
 - Learning and knowledge organization
 - Using observations/ empirical data
 - Make a set of rules
 - Generalize what is learnt

What is it?

- Mimic the cognitive functions of human
 - Perception
 - Natural language
 - Vision
 - Reasoning
 - Cause-and-effect
 - Xs affecting the Y
 - Learning and knowledge organization
 - Using observations/ empirical data
 - Make a set of rules
 - Generalize what is learnt
 - Make the best decisions

General AI (strong AI)

What is it?

"Al is a fundamental risk to the existence of human civilization."

- Elon Musk

What is it?

"Al is a fundamental risk to the existence of human civilization."

- Elon Musk

What is it?

"Al is a fundamental risk to the existence of human civilization."

- Elon Musk

What is it?

People with no idea about AI, telling me my AI will destroy the world

Me wondering why my neural network is classifying a cat as a dog...

Dangerous?

Thing is, we are still very far...

Dangerous?

Thing is, we are still very far...

BUSINESS TECH ARTIFICIAL INTELLIGENCE

This AI startup claims to automate app making but actually just uses humans

Who could have seen that coming?

By Nick Statt | @nickstatt | Aug 14, 2019, 1:58pm EDT

Dangerous?

Thing is, we are still very far...

BUSINESS TECH ARTIFICIAL INTELLIGENCE

This AI startup claims to automate actually just uses humans

Who could have seen that coming?

By Nick Statt | @nickstatt | Aug 14, 2019, 1:58pm EDT

Dangerous?

Thing is, we are still very far...

- Thing is, we are still very far...
- Al can do many things better than us
- Al can't do many things better than us

- Thing is, we are still very far...
- Al can do many things better than us
 - Mundane task
 - Identify patterns
 - Anomaly detection
- Al can't do many things better than us

- Thing is, we are still very far...
- Al can do many things better than us
 - Mundane task
 - Identify patterns
 - Anomaly detection
- Al can't do many things better than us
 - Make decision with a lot of variables
 - Take risks

- Thing is, we are still very far...
- Al can do many things better than us
 - Mundane task
 - Identify patterns
 - Anomaly detection
 - ... and many more
- Al can't do many things better than us
 - Make decision with a lot of variables
 - Take risks
 - ... and many more

Questions?

Machine Learning (ML)

What is it?

Subset of AI

What is it?

Subset of AI

- Focus on the brain of the machine
- Enable machine to evolve based on empirical data

- Subset of Al
 - Focus on the brain of the machine
 - Enable machine to evolve based on empirical data

What is it?

- Subset of Al
 - Focus on the brain of the machine
 - Enable machine to evolve based on empirical data

– More data = better

- Subset of Al
 - Focus on the brain of the machine
 - Enable machine to evolve based on empirical data

- More data = better
- Especially today with big data
 - Volume
 - Variety
 - Velocity

- Subset of Al
 - Focus on the brain of the machine
 - Enable machine to evolve based on empirical data

- Use data to gain knowledge
 - More data = better
 - Especially today with big data
 - Volume
 - Variety
 - Velocity
 - Quality do matter
 - "Drowning in the information and starving for knowledge" John Nisbitt

- Subset of Al
 - Focus on the brain of the machine
 - Enable machine to evolve based on empirical data

- Use data to gain knowledge
 - More data = better
 - Especially today with big data
 - Volume
 - Variety
 - Velocity
 - Quality do matter
 - "Drowning in the information and starving for knowledge" John Nisbitt

- Subset of Al
 - Focus on the brain of the machine
 - Enable machine to evolve based on empirical data
- Use data to gain knowledge
 - More data = better
 - Especially today with big data
 - Volume
 - Variety
 - Velocity
 - Quality do matter
 - "Drowning in the information and starving for knowledge" John Nisbitt

Questions?

Types?

Types?

- Supervised learning
- Unsupervised learning
- Semi-supervised learning
- Reinforced learning
- Deep learning?

Questions?

What is it?

Given a set of observations

- Given a set of observations
 - Features/ variables
 - Values/ measures

- Given a set of observations
 - Features/ variables
 - Values/ measures
- ... that is labelled
 - Predefined classes
 - Predefined values

- Given a set of observations
 - Features/ variables
 - Values/ measures
- ... that is labelled
 - Predefined classes
 - Predefined values
- Are we able to map the observations to their label?

- Given a set of observations
 - Features/ variables
 - Values/ measures
- ... that is labelled
 - Predefined classes
 - Predefined values
- Are we able to map the observations to their label?
 - 2 legs
 - Have feathers
 - Fly

What is it?

- Given a set of observations
 - Features/ variables
 - Values/ measures
- ... that is labelled
 - Predefined classes
 - Predefined values

- Are we able to map the observations to their label?
 - 2 legs
 - Have feathers

– Fly

Is this a bird?

What is it?

- Given a set of observations
 - Features/ variables
 - Values/ measures
- ... that is labelled
 - Predefined classes
 - Predefined values
- Are we able to map the observations to their label?
 - 2 legs
 - Have feathers
 - Fly
 - Breathes
 - Sleep

Is this a bird?

What is it?

- Given a set of observations
 - Features/ variables
 - Values/ measures
- }

We want useful features only

- ... that is labelled
 - Predefined classes
 - Predefined values
- Are we able to map the observations to their label?
 - 2 legs
 - Have feathers
 - Fly
 - Breathes
 - Sleep

Is this a bird?

- Given a set of observations
 - Features/ variables
 - Values/ measures
- ... that is labelled
 - Predefined classes
 - Predefined values
- Are we able to map the observations to their values?
 - 700 square feet
 - 2 bed room
 - 2 bath room
 - LRT in 100 meter

What is it?

- Given a set of observations
 - Features/ variables
 - Values/ measures
- ... that is labelled
 - Predefined classes
 - Predefined values
- Are we able to map the observations to their values?
 - 700 square feet
 - 2 bed room
 - 2 bath room
 - LRT in 100 meter

RM 500,000.00?

Can you think of some applications?

- Can you think of some applications?
 - Organizing email

- Can you think of some applications?
 - Organizing email
 - What is important
 - What is spam

- Can you think of some applications?
 - Organizing email
 - What is important
 - What is spam
 - Classifying document
 - News
 - Sports
 - Social media

- Can you think of some applications?
 - Organizing email
 - What is important
 - What is spam
 - Classifying document
 - News
 - Sports
 - Social media
 - High risk transactions
 - Credit card
 - Loan application

- Can you think of some applications?
 - Organizing email
 - What is important
 - What is spam
 - Classifying document
 - News
 - Sports
 - Social media
 - High risk transactions
 - Credit card
 - Loan application
 - High potential clients
 - Based on their spending
 - Based on their income etc.

Questions?

Questions?

Algorithms

- Decision Tree
- Regression
- Naïve Bayes (NB)
- K-nearest Neighbour (kNN)
- Support Vector Machine (SVM)
- Artificial Neural Network (ANN)

Algorithms

Decision Tree

Algorithms

Decision Tree

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Algorithms

Decision Tree

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Algorithms

Decision Tree

Algorithms

Algorithms

Algorithms

Algorithms

Algorithms

Naïve Bayes (NB)

- Naïve Bayes (NB)
 - Probability-based using the Bayesian Theorem

$$P(C_j|A_1 \cap A_2 \cap A_3 \dots \cap A_n) = \frac{P(C_j) \cdot P(A_1 \cap A_2 \cap A_3 \dots \cap A_n | C_j)}{P(A_1 \cap A_2 \cap A_3 \dots \cap A_n)}$$

- Naïve Bayes (NB)
 - Probability-based using the Bayesian Theorem
 - Assuming variable independence

$$P(C_j|A_1 \cap A_2 \cap A_3 \dots \cap A_n) = \frac{P(C_j) \cdot P(A_1 \cap A_2 \cap A_3 \dots \cap A_n | C_j)}{P(A_1 \cap A_2 \cap A_3 \dots \cap A_n)}$$

Algorithms

K-nearest Neighbour (kNN)

- K-nearest Neighbour (kNN)
 - When k=5, we look for the 5 closest points

- Support Vector Machine (SVM)
- Artificial Neural Network (ANN)
- We will skip these 2...

- Support Vector Machine (SVM)
- Artificial Neural Network (ANN)
- We will skip these 2...
- And even more complex ones
 - Ensemble methods for example

Questions?

- Let us try out a few simple examples
 - Decision tree
 - Regression

Questions?

Sentiment Analysis

In the real world, it is more complex on how we do things... for example sentiment analysis

Sentiment Analysis

Given a text, we pre-process it:

- Given a text, we pre-process it:
 - Convert case
 - Tokenization
 - Stop words removal
 - Stemming and Lemmatization
 - N-gram

- Given a text, we pre-process it:
 - "My dog eat my HomeWorK"
 - Convert case
 - Tokenization
 - Stop words removal
 - Stemming and Lemmatization
 - N-gram

Sentiment Analysis

- Given a text, we pre-process it:
 - "My dogs eated a HomeWorK"

Convert case

= my dogs eated a homework

Tokenization

= {my, dogs, eated, a, homework}

Stop words removal

= {my, dogs, eated, homework}

— Stemming and Lemmatization = {my, dog, eat, homework}

N-gram

- Given a text, we pre-process it:
 - "My dogs eated a HomeWorK"
 - Convert case= my dogs eated a homework
 - Tokenization = {my, dogs, eated, a, homework}
 - Stop words removal = {my, dogs, eated, homework}
 - Stemming and Lemmatization = {my, dog, eat, homework}
 - N-gram
 - 2-gram = {my dog} {dog eat} {eat homework}
 - 3-gram = {my dog eat} {dog eat homework}

- Given a text, we pre-process it:
 - "My dogs eated a HomeWorK"
 - Convert case= my dogs eated a homework
 - Tokenization = {my, dogs, eated, a, homework}
 - Stop words removal = {my, dogs, eated, homework}
 - Stemming and Lemmatization = {my, dog, eat, homework}
 - N-gram
 - 2-gram = {my dog} {dog eat} {eat homework}
 - 3-gram = {my dog eat} {dog eat homework}
- These are used as features...

- Given a text, we pre-process it:
 - "My dogs eated a HomeWorK"
 - Convert case= my dogs eated a homework
 - Tokenization = {my, dogs, eated, a, homework}
 - Stop words removal = {my, dogs, eated, homework}
 - Stemming and Lemmatization = {my, dog, eat, homework}
 - N-gram
 - 2-gram = {my dog} {dog eat} {eat homework}
 - 3-gram = {my dog eat} {dog eat homework}
- These are used as features...
 - Can we weighted such as TF-iDF

Sentiment Analysis

Then we do the same with supervised learning

- Then we do the same with supervised learning
 - Positive sentiment sentences
 - Neutral sentences
 - Negative sentiment sentences

- Then we do the same with supervised learning
 - Positive sentiment sentences
 - Neutral sentences
 - Negative sentiment sentences
- Build a model which we can use!

Sentiment Analysis

Let us try it out now!

- Let us try it out now!
- Of course real world is more complex
 - We bring in concepts as well

- Let us try it out now!
- Of course real world is more complex
 - We bring in concepts as well
 - For a hotel review
 - Food?
 - Location?
 - Room?
 - Price?

Sentiment Analysis

 Another usage is to understand important concepts in text such as word cloud

Questions?

Have a break

Questions?

Unsupervised Learning

What is it?

Very similar with supervised learning...

Unsupervised Learning

What is it?

- Very similar with supervised learning...
- Except we are not giving
 - Predefined labels
 - Predefined values

Unsupervised Learning

What is it?

- Very similar with supervised learning...
- Except we are not giving
 - Predefined labels
 - Predefined values
- Then why do we do unsupervised learning?

What is it?

- Very similar with supervised learning...
- Except we are not giving
 - Predefined labels
 - Predefined values
- Then why do we do unsupervised learning?
 - Find association or relation
 - Features
 - Observations
 - Dimension reduction

What is it?

- Very similar with supervised learning...
- Except we are not giving
 - Predefined labels
 - Predefined values
- Then why do we do unsupervised learning?
 - Find association or relation
 - Features
 - Observations
 - Dimension reduction

Can you think of applications?

Given a collection of food, how would you group it?

What is it?

Given a collection of food, how would you group it?

What is it?

Given a collection of human, how would you group it?

What is it?

Given a collection of human, how would you group it?

Do be careful, it isn't always predefined...

What is it?

Do be careful, it isn't always predefined...

What is it?

Do be careful, it isn't always predefined...

Family School

Questions?

What is it?

What is it?

Questions?

- K-means
- Gaussian Mixture Model (GMM)
- Mean Shift
- Hierarchical

Algorithms

K-means

Algorithms

K-means

We want 5 cluster

Algorithms

K-means

- We want 5 cluster
- The process is more complex with calculations required

Algorithms

Gaussian Mixture Model (GMM)

- Gaussian Mixture Model (GMM)
 - When it is more complex

- Gaussian Mixture Model (GMM)
 - When it is more complex

Algorithms

Hierarchical

- Mean Shift
 - We will skip this

- Mean Shift
 - We will skip this
- And there are more clustering algorithms out there, all grouping data in different way

- Mean Shift
 - We will skip this
- And there are more clustering algorithms out there, all grouping data in different way
 - For example the Latent Dirichlet Allocation (LDA) for topics

Questions?

Hands on...

Our last hands-on

- Our last hands-on
- Basically we are teaching the computer how to see things and recognize things

- Our last hands-on
- Basically we are teaching the computer how to see things and recognize things

- Our last hands-on
- Basically we are teaching the computer how to see things and recognize things

- Let us try some simple ones
 - Face
 - Eye
 - Smile

- Let us try some simple ones
 - Face
 - Eye
 - Smile
- But first, we need to learn how to extract features for the machine to recognize shapes
 - Edge detection as a simple example

Questions?

Summary

It is useful

- It is useful
- Still untap potential

- It is useful
- Still untap potential
 - Good training?
 - Good features?
 - More features?

- It is useful
- Still untap potential
 - Good training?
 - Good features?
 - More features?
- Still a challenge

- It is useful
- Still untap potential
 - Good training?
 - Good features?
 - More features?
- Still a challenge
 - Overfitting
 - Underfitting

- It is useful
- Still untap potential
 - Good training?
 - Good features?
 - More features?
- Still a challenge
 - Overfitting
 - Imbalanced datasets
 - Underfitting

Questions?

Thank You