

INTRODUCTION À LA VISION PAR ORDINATEUR

Année universitaire: 2018-2019

Objectifs du Chapitre:

À l'issue de ce cours, l'étudiant sera capable de :

- Comprendre la représentation d'une image numérique.
- Comprendre les étapes d'acquisition d'une image numérique.
- Identifier les caractéristiques d'une image numérique
- Lister les étapes d'une chaine de traitement d'images

Plan:

- 1. Vision par ordinateur
- 2. Traitement d'image
- 3. Intérêt du traitement d'images
- 4. Domaine d'application
- 5. Historique de traitement d'image
- 6. Définition d'une image
- 7. Type d'image
- 8. Systèmes de couleur
- 9. Acquisition/formation des images numériques
- 10. Représentation d'une image
- 11. Caractéristiques des images
- 12. Processus de traitement et d'analyse d'images

Vision par ordinateur

- Traitement automatisé par ordinateur des informations visuelles.
- Connaissances et technologies qui permettent de concevoir des machines qui peuvent « voir ».
- Compréhension d'une scène à partir d'informations « image »
- Lien important entre:
 - Perception
 - Comportement
 - Contrôle

- Premier niveau: vision
 - acquiert une image grâce à une chaîne intégrant des éléments optiques et un capteur
- Deuxième niveau : traitement de l'image
 - modifie le contenu de l'image afin de mettre en évidence des éléments d'intérêt (objets, contours)
- Troisième niveau : *analyse / reconnaissance*
 - utilise des techniques d'intelligence artificielle pour identifier reconnaissance des formes connues dans l'image

Mieux que la perception humaine?

Non

- Moins « intelligent » que l'humain
 - Même si les images initiales sont parfois très riches, le résultat de leur traitement par un système de VA reste souvent basique.
- Connaissance et reconnaissance
 - Nous exploitons nos connaissances pour interpréter le contenu de l'image : on reconnaît parfois des objets alors qu'ils ne sont pas visibles

Extension de la perception humaine? Oui

- Capteurs meilleurs que l'œil humain
 - voient ce que nous ne voyons pas directement, du fait de la limitation de notre système visuel
- Autres propriétés optiques
 - problème d'échelle, de résolution, de point de vue (ex : images satellitaires)
- Autres gammes de longueurs d'onde
 - caméras multi spectrales, infrarouge proche, thermiques (infrarouge lointain)
- Autres cadences
 - caméras à haute cadence, plusieurs milliers d'images par seconde.

Système de vision par machine

- Un "système de vision" a pour fonction d'acquérir et de traiter des images
- Il combine un système d'acquisition (caméra numérique ou autre capteur capable de reconstituer une image) et un système de traitement d'image.

Exemple schématique: Imagerie médicale, aorte abdominale

Traitement d'images

Du traitement d'images à la vision par ordinateur

1. Analyse de bas niveau : Traitement d'images

- Extraction de différentes primitives pour obtenir une description de l'image plus exploitable
- Traitements de bas niveau opèrent sur des données de type numérique

2. Analyse de haut niveau

• Se consacre à 1 'interprétation syntaxique voire sémantique de l'image

Historique de Traitement d'Images

1950-1970: Traitementd'images:

- Des images de mauvaise qualité et très volumineuses
- Deux domaines ont été explorés :
 - Restauration d'images (correction des défauts et réduction du bruit)
 - Compression (réduire le volume de l'image)

1970-1980: Vers l'interprétation:

- Les systèmes ont évolué pour commencer à extraire automatiquement les informations
 - Interprétation des Images
 - Nouveaux thèmes : segmentation, extraction des ROIs, Morphologie Mathématique, Quantification ...
 - Apparition des premiers systèmes experts.

1980...: La vision par ordinateur:

- De l'image 2D vers 3D,
- Détection du mouvement, outils pour la robotique (mvt, détection d'obstacles, trajectoire..), Transmission (codage et Réseaux..)

Pourquoi le traitement d'images ?

- Amélioration : augmenter la qualité de la perception visuelle qu'on a d'une image
- Restauration : compenser les dégradations (bruit, flou, ...)
- Compression : stocker et transférer efficacement
- Segmentation : délimiter les "objets"
- Reconstruction 3D : obtenir un volume à partir de plans (images)
- Représentation : modéliser:
 - Bas niveau : texture, couleur, forme, etc.
 - Haut niveau : caractéristiques (features), apprentissage statistiques, graphes
- Analyse : convertir en informations
- Reconnaissance / Compréhension : identifier le contenu

Amélioration de la qualité de l'image

- 1. Réduction des informations inutiles
- 2. Restauration d'images,
- 3. Rehaussement du contraste, des petits détails,

Amélioration de la qualité de l'image

• Améliorer les contours d'une image pour la rendre plus nette:

• Notez comment la seconde image apparaît plus «claire», c'est une image plus agréable

Amélioration de la qualité de l'image: Réduction des informations inutiles

 Notez comment la seconde image apparaît plus «nette», c'est une image plus claire

Amélioration de la qualité de l'image: Restauration d'une image

- Correction du l'effet visuel de flou
- Retrouver la qualité de l'image d'origine

Amélioration de la qualité de l'image: Rehaussement d'images médicales:

1^{ère} colonne: images originales 2^{ème} colonne: images rehaussées

2. Rendre l'image plus adaptée

2. Rendre l'image plus adaptée

- Extraction/suppression des détails d'une image: Pour des raisons de mesure ou de comptage
- La deuxième image présente une version floue dans laquelle des détails non-pertinentes ont été supprimés.
- Les petits détails sont disparus, alors, on peut mesurer la taille et la forme de l'animal sans être «influencé» par les détails inutiles.

Reconstruction 3D

3. Reconstruction 3D

 Reconstruction 3D d'Images Médicales

- Domaines d'applications du traitement d'images
- Médecine: apporter une bonne aide au diagnostic
- Biométrie: contrôle d'accès, identification
- Surveillance: Télésurveillances des aéroports, des lieux publics, contrôle des personnes âgées à domicile
- Industrie: robots, contrôle qualité, inspection.
- Agriculture: collecte des informations(zone urbaine, zone rurale..)
- Télédétection: cartographie, océanographie, climatologie, contrôle des productions agricoles...
- Géologie: étude des nappes d'eau, des réserves pétrolières...
- Traitement automatique des documents: reconnaissance de l'écriture, distribution automatique des enveloppes...
- Art: restauration des tableaux

Définition d'une image

Définition d'une image réelle

- Une image est la projection sur un plan d'une scène 3D
- Elle peut être définie comme une fonction à deux variables f (x, y):
 - (x, y) est la position d'un point de l'espace sur le plan de projection.
 - f (x, y) est l'intensité (ou brillance) au point de coordonnées (x, y).

Définition d'une image numérique

- Une image numérique est définie comme un signal fini 2D, bidimensionnel (x,y), échantillonné à valeurs quantifiées dans un certain espace de couleurs. Elle est constituée de points (pixels).
- Un signal fini: une image possède des dimensions finies, exemple : 640x480, 800x600 points...
- Signal bidimensionnel : une image possède deux dimensions : largeur, hauteur.
- **Signal échantillonné** : les pixels d'une image sont régulièrement espacés sur une grille carrée.
- Valeurs quantifiées : les valeurs des pixels appartiennent à un intervalle borné connu.
- Espace de couleur : il existe de nombreuses façon de percevoir les couleurs d'une image, l'espace de représentation le plus connu est l'espace rgb (rouge-vertbleu).

A chaque pixel (i,j), on associe la valeur I(i,j).

Cette valeur correspond à la quantité de lumière transmise par le point correspondant à ce pixel dans le monde réel.

L'information contenue dans l'image caractérise l'intensité de la lumière (notion de la couleur ou de niveaux de gris).

Qu'est ce qu'une image numérique

Représentation des images numériques

- Matrice de dimension *M*N*.
- Chaque élément a une valeur entière I dans l'intervalle $[L_{min}, L_{max}]$.
- Le nombre de «bits» requis pour représenter les niveaux dans l'intervalle «L» est «K».
- La relation entre «K» et «L» est: $L=2^k$.
- Le nombre de bit pour entreposer une image est donc: $b = M \times N \times K$.
- La valeur I(i, j) d'un pixel s = (i, j) représente son intensité lumineuse

Les types d'images:

Les types d'images:

- Images binaires (noir ou blanc):
- Une image binaire est une image où chaque point peut prendre uniquement la valeur 0 ou 1.
- Les pixels sont noirs (0) ou blancs (1).
- $I = \{0,1\}$

Les types d'images:

- Images niveau de gris
- cas où $I = \{0, ..., P-1\}$, avec P = 28 = 256: codage sur 8 bits
- 0=noir, 255=blanc, les autres=teintes de gris

Les types d'images:

- à chaque pixel on associe plus qu'une valeur.
- Codage dans l'espace RGB : trois intensités lumineuses rouge, vert, bleu.
- codage 24 bits : IR(i, j) = 0, ..., 255 ; IV(i, j) = 0, ..., 255 ; IB(i, j) = 0, ..., 255
- Chaque couleur est obtenue par addition du rouge, vert et bleu.
- La diagonale principale représente les niveaux de gris. Elle correspond aux valeurs égales de RVB.

Systèmes de couleur

- Des expériences psychovisuelle sont montré qu'il est possible de synthétiser toutes les couleurs en combinant 3 longueurs d'ondes particulières (couleurs de base, couleurs primaires)
- Deux types de systèmes de reproduction de couleurs Additif ou Soustractif
- Système additif: pondération de 3 couleurs primaires A, B et C et sont projetées sur écran noir avec un certain recouvrement:
- La nouvelle couleur X=aA+bB+cC.

Systèmes de couleur

Système additif RVB ou RGB (Red, Green, Blue):

- L'addition de 3 couleurs de base se fait sur fond noir (L'arrièreplan est absorbant pour toutes les couleurs)
 - Une couleur est définie par 3 coordonnées (r,g,b). L'origine (0,0,0)= couleur noir.
 - Le blanc: r=g=b (valeurs égales et maximales).
- La synthèse additive est utilisée dans les écrans

Espace HSV

- Le passage à RGB a HSV se fait par une transformation non linéaire.
- Plusieurs opérateurs ont été proposés pour la conversion. Voici une exemple:

$$v = \frac{r+g+b}{3}$$

$$s = 1 - \frac{3\min(r,g,b)}{r+g+b}$$

$$h = \begin{vmatrix} \theta & si & b \le g \\ 2\pi - \theta & si & b > g \end{vmatrix} \theta = \arccos\left(\frac{(r-g) + (r-b)}{2\sqrt{(r-g)^2 + (r-b)(g-b)}}\right)$$

Acquisition/formation des images numériques

- Acquisition = Formation d'image
- Le sujet est l'acquisition d'images : numériser une vue réelle en une image bidimensionnelle, mettre l'image en mémoire, la traiter.

- L'éclairage: Il influence beaucoup la qualité des images selon sa stabilité (e.g., variation temporelle des images alors que l'objet observé ne varie pas), sa disposition (e.g. plus ou moins d'ombres),...
- Les conditions environnementales (température, poussière, humidité, vapeurs corrosives, etc.).
- Elles peuvent affecter le bon fonctionnement du système d'acquisition et de traitement.

Conditions du prise d'image

- la variabilité des objets observés : (couleur, contraste, position, orientation, etc.).
- la rapidité du traitement d'image.

Ceci est surtout important lors de traitements en temps réel.

Le temps de traitement tend à croître avec le volume des données (images) à traiter et la complexité de la procédure mise en œuvre pour obtenir l'information recherchée. Ainsi, les objets observés peuvent se déplacer à une vitesse de plusieurs m/s ou survenir avec une cadence très rapide

Principe de l'acquisition d'images

- Des sources lumineuses éclairent une scène composée d'objets.
- Chaque objet absorbe et renvoie cette énergie lumineuse.
- Le capteur d'images transforme l'énergie lumineuse renvoyée dans sa direction en un signal électrique.

Comment numériser une image:

- L'image se formant sur le capteur est un signal bidimensionnel continu.
- Le capteur réalise une numérisation spatiale de ce signal.

Etapes de Numérisation:

Echantillonnage:

- consiste en la discrétisation de l'image dans le domaine spatial(et temporale_)
- consiste à déterminer la résolution spatiale: nombre de pixels par unité métrique.
- Va définir la Taille d'un pixel
- L'échantillonnage est limité par la capacité du capteur, donc le nombre de pixels disponible

Image Avec différentes résolutions spatiales

Etapes de Numérisation:

échantillonnage

Etapes de Numérisation:

Quantification

- Consiste à affecter à chaque échantillon analogique la valeur numérique la plus proche.
- Résolution en intensité
- Ce paramètre détermine le nombre de niveaux de gris (ou de Couleur).

Échantillonnage/Quantification

- Résolution (taille des pixels, échantillonnage)
- Nb de niveaux de gris (quantification)

Résolution des images

- Résolution spatiale: Nombre de pixels par unité métrique (définie en dpi(dots per inches)ou ppp (pixel par pouce)).
- Plus le nombre de pixels par unité métrique est grand plus la quantité d'information de la structure est importante
- Plus la résolution est grande plus la qualité de l'image est bonne.

Résolution des images

- Résolution tonale (de tons de gris)
 Le plus petit changement discernable.
- Une image a une résolution spatiale de $M \times N$ pixels et une résolution de tons de gris de K bits ou de L niveaux du tons.

Résolution des images

Résolution...

...spatiale:

256x256

128x128

64x64

32x32

...tonale:

Quantification

6 bits

4 bits

3 bits

2 bits

1 bit

- Poids ou taille mémoire: C'est l'espace mémoire qu'occupe une image sur un support de stockage numérique (disque dur, CD...).
- Poids = nombre de bits par pixel x nombre total de pixels

Exemple: Taille de l'image : 200 x 300 pixels, chaque pixel est codé sur 8 bits,

- Poids = $200 \times 300 \times 1 \text{ octet} = 60 \text{ ko}$
- **Dimension:** C'est la taille de l'image = n (lignes) x m (colonnes) = nombre total de pixels dans une image.

• Moyenne : moyenne des niveaux de gris de l'image (on l'appelle aussi brillance ou luminance).

Moy =
$$\frac{1}{NM} \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} I(x, y)$$

• Contraste: C'est la différences des niveaux de gris entre deux régions voisines d'une image.

$$C = \frac{\max I(x,y) - \min I(x,y)}{\max I(x,y) + \min I(x,y)}$$

- Bruit: signal parasite= brusque variation de la valeur d'un pixel par rapport à ses voisins:
 - Sources de bruit: conditions de prise de vue, capteur...

- Texture : répartition statistique ou géométrique des intensités dans l'image
- Contour : limite entre deux (ou un groupe de) pixels dont la différence de niveaux de gris (ou de couleurs) est significative
- **Région :** groupe de pixels présentant des caractéristiques similaires (intensité, mouvement, etc.)
- Objet: région (groupe de régions) entièrement délimitée par un contour, possédant une indépendance dans l'image →description sémantique: on peut donner un nom à un objet

Les différents types d'images numériques

- 2D.L'image est une matrice bidimensionnelle de valeurs (luminance, couleurs,...)
- 3D.Les valeurs sont définies sur une grille 3D. Ces images sont généralement données par un Système d'Imagerie Médicale.
- 2D+ t. t représente le temps, les images 2D+ t désignent une animation, une séquence vidéo ou les images d'un film.
- 3D+ t. Les images de type 3D+ t sont des images tridimensionnelles animées. Il s'agit par exemple d'images de synthèse 3D animées.

Représentation matricielle:

- Formée d'une grille de points ou pixels. Chacun pouvant avoir une couleur différente.
- Le pixel au croisement de la ligne i et de la colonne j désigné par I(i, j).
- Une image matricielle est caractérisée par:
 - Sa dimension en pixels
 - sa résolution
 - Son mode colorimétrique
- Les images vues sur un écran de télévision ou une photographie sont des images matricielles.

Représentation matricielle:

- On obtient les images matricielles à l'aide d'un appareil photo numérique, d'une caméra vidéo numérique ou d'un scanner.
- Une image contient un nombre fixe de pixels en hauteur et en largeur.
- Sa dimension en pixels correspond au nombre total de pixels qui la constituent.
- Plus la résolution est élevée, plus l'image a de pixels

<u>Représentation matricielle:</u>

• Plus la densité des points ou pixels « constituant » une image matricielle est élevée, plus le nombre d'informations est grand et donc plus l'image est nette, précise, définie.

Représentation matricielle:

- Avantages:
 - ✓ adaptable aux images complexes
 - ✓ format proche du matériel
- Inconvénients :
 - ✓ Taille importante indépendante de l'information de l'image

Représentation vectorielle:

- Image numérique composée d'objets géométriques individuels (segments de droite, polygones, arcs de cercle, etc.) définis chacun par divers attributs de forme, de position, de couleur, etc.
- N'est pas composée de pixels mais définie par des fonctions mathématiques qui décrivent des lignes, des courbes etc.
- Dans ce cas on manipule des objets et non des pixels.
- Lignes de l'image juxtaposées : vecteur $\mathbf{v} = [0 \dots, \mathbf{M} \times \mathbf{N} 1]$
- Exemple
- Un cercle est décrit par une fonction du type (cercle, position du centre, rayon).
- Ces images sont essentiellement utilisées pour réaliser des schémas ou des plans.

Représentation vectorielle:

- Avantages
- Occupe peu de place en mémoire.
- indépendance par rapport la résolution
- écriture fine et lisible
- Peut être redimensionnée sans perte d'informations et sans effet d'escalier.

Observation:

lorsqu' on zoom sur l'image, la ligne de bord reste lisse, il n'y a pas d'effet d'escalier.

Formats

- Image vectorielle: Illustrator.ai, Flash.swf, Illustrator.eps, SVG.svg, Autocad.dwg
- Image matricielle: JPEG.jpg, GIF.gif, PNG .png, TIFF .tif, Bitmap .bmp, Photoshop .psd, PictMacintosh .pict

Image vectorielle image matricielle

Processus de traitement et d'analyse d'images

