

Mark Scheme (Results) January 2008

GCE

GCE Mathematics (6684/01)

January 2008 Statistics S2 Mark Scheme

Question Number	Scheme	Marks
1. (a)	A census is when <u>every member</u> of the <u>population</u> is investigated.	B1
(b)	There would be no cookers left to sell.	B1
(c) (d)	A list of the unique identification numbers of the cookers. A cooker	B1 B1
Notes 1. (a)	B1 Need one word from each group (1) Every member /all items / entire /oe (2) population/collection of individuals/sampling frame/oe enumerating the population on its own gets B0	(4)
(b) (c)	 B1 Idea of Tests to destruction. Do not accept cheap or quick B1 Idea of list/ register/database of cookers/serial numbers 	
(d)	B1 cooker(s) / serial number(s) The sample of 5 cookers or every 400 th cooker gets B1	

Let X be the random variable the number of faulty bolts	M1
$P(X \le 2) - P(X \le 1) = 0.0355 - 0.0076$ or $(0.3)^2 (0.7)^{18} \frac{20!}{18!2!}$	A1 (2)
= 0.0279 = 0.0278	M1
	A1 (2)
$1 - P(X \le 3) = 1 - 0.1071$ = 0.8929	(2)
or $1 - (0.3)^3 (0.7)^{17} \frac{20!}{17!3!} - (0.3)^2 (0.7)^{18} \frac{20!}{18!2!} - (0.3)(0.7.)^{19} \frac{20!}{19!1!} - (0.7)^{20}$	M1A1√A1
$\frac{10!}{4!6!}(0.8929)^6(0.1071)^4 = 0.0140.$	(3)
M1 Either attempting to use $P(X \le 2) - P(X \le 1)$	
or attempt to use binomial and find $p(X=2)$. Must have $(p)^2(1-p)^{18}\frac{20!}{10!2!}$,	
with a value of p	
A1 awrt 0.0278 or 0.0279.	
M1 Attempting to find $1 - P(X \le 3)$	
A1 awrt 0.893	
${}^{\rm n}{\rm C}_6 p^6 (1-p)^{{\rm n}-6}$	
A1 awrt 0.014	
	B1 B1 (2)
	P($X \le 2$) - P($X \le 1$) = 0.0355 - 0.0076 or $(0.3)^2(0.7)^{18} \frac{20!}{18!2!}$ = 0.0279 = 0.0278 1 - P($X \le 3$) = 1 - 0.1071 = 0.8929 or 1 - $(0.3)^3(0.7)^{17} \frac{20!}{17!3!}$ - $(0.3)^2(0.7)^{18} \frac{20!}{18!2!}$ - $(0.3)(0.7.)^{19} \frac{20!}{19!1!}$ - $(0.7)^{20} \frac{10!}{4!6!}(0.8929)^6(0.1071)^4$ = 0.0140. M1 Either attempting to use P ($X \le 2$) - P ($X \le 1$) or attempt to use binomial and find p($X = 2$). Must have $(p)^2(1-p)^{18} \frac{20!}{18!2!}$, with a value of p A1 awrt 0.0278 or 0.0279. M1 Attempting to find 1 - P($X \le 3$) A1 awrt 0.893 M1 for X (X) (X) (X) They may use any value for X and X can be any number or X) X (X) (X

3. (a)	Events occur at a constant rate. any two of the 3	
(b)	Events occur independently or randomly. Events occur singly. Let <i>X</i> be the random variable the number of cars passing the	M1
(i)	observation point. Po(6)	A1 M1
	$P(X \le 4) - P(X \le 3) = 0.2851 - 0.1512 \qquad \text{or } \frac{e^{-6} 6^4}{4!}$ $= 0.1339$	A1 (5)
(ii)	$1 - P(X \le 4) = 1 - 0.2851$ or $1 - e^{-6} \left(\frac{6^4}{4!} + \frac{6^3}{3!} + \frac{6^2}{2!} + \frac{6}{1!} + 1 \right)$ $= 0.7149$	B1 M1 A1
(c)	P (0 car and 1 others) + P (1 cars and 0 other)	A1 (4)
	$= e^{-1} \times 2e^{-2} + 1e^{-1} \times e^{-2}$ $= 0.3679 \times 0.2707 + 0.3674 \times 0.1353$ $= 0.0996 + 0.0498$ $= 0.149$	
Notes 3(a)	B1 B1 Need the word events at least once. Independently and randomly are the same reason. Award the first B1 if they only gain 1 mark Special case. If they have 2 of the 3 lines without the word events they get B0 B1	
	B1 Using Po(6) in (i) or (ii) M1 Attempting to find $P(X \le 4) - P(X \le 3)$ or $\frac{e^{-\lambda} \lambda^4}{4!}$	
(b) (i)	$\frac{1}{4!}$	

	A1 awrt 0.134	
(ii)	M1 Attempting to find $1 - P(X \le 4)$ A1 awrt 0.715	
(c)	B1 Attempting to find both possibilities. May be implied by doing $e^{-\lambda_1} \times \lambda_2 e^{-\lambda_2} + e^{-\lambda_2} \times \lambda_1 e^{-\lambda_1}$ any values of λ_1 and λ_2 M1 finding one pair of form $e^{-\lambda_1} \times \lambda_2 e^{-\lambda_2}$ any values of λ_1 and λ_2 A1 one pair correct A1 awrt 0.149 Alternative. B1 for Po(3)	
	M1 for attempting to find P(X=1) with Po(3) A1 3e ⁻³ A1 awrt 0.149	

4. (a)	$K(2^4 + 2^2 - 2) = 1$ $K = 1/18$	M1 A1	
	$1 - F(1.5) = 1 - \frac{1}{18}(1.5^4 + 1.5^2 - 2)$		(2)
(0)	$\frac{1 - F(1.3) - 1 - \frac{1}{18}(1.3 + 1.3 - 2)}{18}$	M1	
	$= 0.705$ or $\frac{203}{288}$	A1	(2)
(c)	$f(y) = \begin{cases} \frac{1}{9}(2y^3 + y) & 1 \le y \le 2\\ 0 & otherwise \end{cases}$	M1 A1	
	0 otherwise	B1	(3)
Notes			
4. (a)	M1 putting $F(2) = 1$ or $F(2) - F(1) = 1$ A1 cso. Must show substituting $y = 2$ and the $1/18$		
(b)	M1 either attempting to find $1 - F(1.5)$ may write and use $F(2) - F(1.5)$ A1 awrt 0.705		
(c)	M1 attempting to differentiate. Must see either a $y^n \rightarrow y^{n-1}$ at least once		
	A1 for getting $\frac{1}{9}(2y^3 + y)$ o.e and $1 \le y \le 2$ allow $1 < y < 2$		
	B1 for the 0 otherwise. Allow 0 for $y < 1$ and 0 for $y > 2$		
	Allow them to use any letter		

5	$H_0: p = 0.3; H_1: p > 0.3$	B1 B1
	Let X represent the number of tomatoes greater than 4 cm : $X \sim B(40, 0.3)$	B1
	$P(X \ge 18) = 1 - P(X \le 17)$ $= 0.0320$ $P(X \ge 18) 1 - P(X \le 17) = 0.0320$ $P(X \ge 17) = 1 - P(X \le 16) = 0.0633$ $CR X \ge 18$	M1 A1
	0.0320 < 0.05	
	no evidence to Reject H ₀ or it is significant	M1
	New fertiliser has <u>increased</u> the probability of a <u>tomato</u> being greater than 4 cm Or Dhriti's claim is true	B1d cao (7)
5	B1 for correct H ₀ must use p or pi	
	B1 for correct H ₁ must use p and be one tail.	
	B1 using B(40, 0.3). This may be implied by their calculation	
	M1 attempt to find $1 - P(X \le 17)$ or get a correct probability. For CR method must attempt to find $P(X \ge 18)$ or give the correct critical region	
	A1 awrt 0.032 or correct CR.	
	$\mathbf{M1}$ correct statement based on their probability , H_1 and 0.05 or a correct contextualised statement that implies that.	
	B1 this is not a follow through .conclusion in context. Must use the words increased, tomato and some reference to size or diameter. This is dependent on them getting the previous M1	
	If they do a <u>two tail test</u> they may get B1 B0 B1 M1 A1 M1 B0 For the second M1 they must have accept Ho or it is not significant or a correct contextualised statement that implies that.	

6a (i)	Let <i>X</i> represent the number of sunflower plants more than 1.5m high	
00 (1)		
	$X \sim \text{Po}(10)$ $\mu=10$	
	$P(8 \le X \le 13) = P(X \le 13) - P(X \le 7)$	
	=0.8645-0.2202	B1
	= 0.6443 awrt 0.644	M1
ii)	<i>X</i> ∼ N(10,7.5)	
	$P(7.5 \le X \le 13.5) = P\left(\frac{7.5 - 10}{\sqrt{7.5}} \le X \le \frac{13.5 - 10}{\sqrt{7.5}}\right)$	A1
		B1
	$= P(-0.913 \le X \le 1.278)$	
	= 0.8997 - (1 - 0.8186)	M1 M1
	= 0.7183 awrt 0.718 or 0.719	A1 A1
b)		M1
	Normal approx /not Poisson since (n is large) and p close to half.	A1
	or $(np = 10 \text{ npq} = 7.5)$ mean \neq variance or	(10)
	np (= 10) and nq (= 30) both $>$ 5. or exact binomial = 0.7148	B1
		B1dep (2)
6a (i)	B1 mean = 10 May be implied in (i) or (ii)	
	M1 Attempting to find $P(X \le 13) - P(X \le 7)$	
	A1 awrt 0.644	
::\	B1 $\sigma^2 = 7.5$ May be implied by being correct in standardised formula	
ii)	M1 using 7.5 or 8.5 or 12.5 or 13.5.	
	M1 standardising using 7.5 or 8 or 8.5 or 12.5 or 13 or 13.5 and their mean and standard deviation.	

	A1 award for either $\frac{7.5-10}{\sqrt{7.5}}$ or awrt -0.91	
	A1 award for either $\frac{13.5-10}{\sqrt{7.5}}$ or awrt 1.28	
	M1 Finding the correct area. Following on from their 7.5 and 13.5. Need to do a $Prob > 0.5 - prob < 0.5$ or $prob < 0.5 + prob < 0.5$	
	A1 awrt 0.718 or 0.719 only. Dependent on them getting all three method marks.	
	No working but correct answer will gain all the marks	
	first B1 normal	
b)	second B1 p close to half, or mean ≠ variance or np and nq both > 5. They may use a number bigger than 5 or they may work out the exact value 0.7148 using the binomial distribution.	
	Do not allow np> 5 and npq>5	

		1	
7 ai)	A hypothesis test is a mathematical procedure to examine a value of a population parameter proposed by the null hypothesis compared with an alternative hypothesis.	B1	
ii)	The critical region is the <u>range of values</u> or <u>a test statistic or region where the test is significant</u> that would lead <u>to the rejection of H_0.</u>	B1g B1h	(2)
(b)	Let X represent the number of incoming calls : $X \sim Po(9)$	B1	(3)
	From table $P(X \ge 16) = 0.0220$	M1 A1	
	$P(x \le 3) = 0.0212$	A1 B1	
	Critical region ($x \le 3$ or $x \ge 16$)		(5)
(c)	Significance level = 0.0220 + 0.0212 = 0.0432 or 4.32%	B1	(1)
(d)	$H_0: \lambda = 0.45; H_1: \lambda < 0.45$ (accept: $H_0: \lambda = 4.5; H_1: \lambda < 4.5$) Using $X \sim Po(4.5)$	B1 M1 A1	
	$P(X \le 1) = 0.0611$ $CR X \le 0$ awrt 0.0611	M1	
	$0.0611 > 0.05$. $1 \ge 0$ or 1 not in the critical region	B1cao	(5)
	There is evidence to Accept H ₀ or it is not significant		(3)
	There is no evidence that there are less calls during school holidays.		
Notes 7 ai)	B1 Method for deciding between 2 hypothesis.		
ii)	B1 range of values. This may be implied by other words. Not region on its own B1 which lead you to reject H_0		

Give the first B1 if only one mark awarded. B1 using $P_0(9)$ (b) M1 attempting to find $P(X \ge 16)$ or $P(x \le 3)$ A1 0.0220 or P(X>16)A1 0.0212 or $P(x \le 3)$ These 3 marks may be gained by seeing the numbers in part c B1 correct critical region A completely correct critical region will get all 5 marks. Half of the correct critical region eg $x \le 3$ or $x \ge 17$ say would get B1 M1 A0 A1 B0 if the M1 A1 A1 not already awarded. B1 cao awrt 0.0432 (c) B1 may use λ or μ . Needs both H₀ and H₁ (d) M1 using $P_o(4.5)$ A1 correct probability or CR only M1 correct statement based on their probability, H_1 and 0.05 or a correct contextualised statement that implies that. **B1** this is not a follow through .Conclusion in context. Must see the word calls in conclusion If they get the correct CR with no evidence of using $P_0(4.5)$ they will get M0 A0 SC If they get the critical region $X \le 1$ they score M1 for rejecting H₀ and B1 for concluding the rate of calls in the holiday is lower.

Notes 8.	B1 the graph must have a maximum of 2 which must be labelled	
(a)	B1 the line must be between 2 and 3 with not other line drawn except patios. They can get this mark even if the patio cannot be seen.	
	B1 the line must be straight and the right shape.	
	B1 Only accept 3	
(b)		
	M1 attempt to find $\int x f(x) dx$ for attempt we need to see $x^n \to x^{n+1}$. ignore limits	
(c)	A1 correct integration ignore limits	
	A1 accept $2\frac{2}{3}$ or awrt 2.67 or 2.6	
	M1 using $\int f(x)dx = 0.5$	
	A1 $m^2 - 4m + 4 = 0.5$ oe	
(d)	M1 attempting to solve quadratic.	
	A1 awrt 2.71 or $\frac{4+\sqrt{2}}{2}$ or $2+\frac{\sqrt{2}}{2}$ oe	
(e)	First B1 for negative Second B1 for mean < median< mode. Need all 3 or may explain using diagram.	