german_credit_gradient_descent

June 9, 2018

Demostration of Gradient Descent using R:

Kumar Rahul

In this exercise, we will use the German Credit Rating data to demostrate Gradient Descent Algorithm. The Dataset can be dowloaded from:

https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

1 Code starts here

We are going to use below mentioned libraries for demonstrating plot the cost function:

```
In [1]: library(ggplot2)
```

1.1 Data Import and Manipulation

1.1.1 1. Import a data set

1.1.2 2. Create dummy variable for factors

```
In [3]: n <- ncol(filter_data)
    #for creating XO variable
    processed_data <- cbind(rep(1, nrow(filter_data)))
    for (i in 1:n ) {
        if (is.factor(filter_data[,i])) {
            #creating dummies for the factors and storing in temp
            temp <- model.matrix(~filter_data[,i])
            #removing the first column which is an intercept term in dummy coding
        temp <- subset(temp, select = -c(1))
        #loop through to rename the column names appropriately
        for (c in 1:ncol(temp)) {
            str <- colnames(temp)[c]</pre>
```

```
colnames(temp)[c] <- sub("filter_data\\[, i\\]"," ",colnames(temp)[c])
    colnames(temp)[c] <- paste(colnames(filter_data)[i], "- ", colnames(temp)[c])
}
#the factors after dummy variable creation is appeneded to the processed_data
processed_data <- cbind(processed_data,temp)
}
#in case not a factor, store the variable in processed_data directly
else {
    processed_data <- cbind(processed_data,filter_data[,i])
    len <- ncol(processed_data)
    colnames(processed_data) [len] <- colnames(filter_data[i])

#standardize the numeric variable for faster descent. (Feature scaling)
    processed_data[,len] <- scale(processed_data[,len])
}</pre>
```

1.1.3 3. Seperate x and y variable and converting to matrix form

```
In [4]: x <- processed_data
    y <- as.matrix(x[,ncol(x)])
    colnames(y)[1] <- colnames(x)[ncol(x)]
    x <- x[,c(-ncol(x))]
    colnames(x)[1] <- "XO"
    x <- as.matrix(x)</pre>
```

1.2 Create functions

}

1.2.1 1. Define Sigmoid function

```
In [5]: sigmoid <- function(z) {
     1/(1 + exp(-z))
}</pre>
```

1.2.2 2. Define Hypothesis function

```
In [6]: hypothesisLr <- function(theta, x) {
      sigmoid(x %*% theta) #matrix multiplication (x is 1000*75 and theta is 75*1, result 75
}</pre>
```

1.2.3 3. Define Cost function

```
In [7]: computeCost <- function(theta, x, y) {
    m <- length(y)
    s <- sapply(1:m, function(i)
    y[i]*log(hypothesisLr(theta,x[i,])) + (1 - y[i])*log(1 - hypothesisLr(theta,x[i,]))
    )
    j <- -1/m * sum(s)</pre>
```

```
return(j)
}
```

1.2.4 4. Define Gradient Descent function

```
In [8]: gradAlgo <- function(theta, x, y) {
         m <- length(y)
         g <- 1/m * t(x) %*% (hypothesisLr(theta,x) - y)
         return(g)
    }</pre>
```

1.3 Call functions

1.3.1 1. Initialize α , θ and compute cost

Run normal gradient descent to compute theta and cost function J for each iteration

```
In [9]: alpha <- 1 #learning rate 1
    iter <- 1000 #no of interations for descent 5000
    #m <- length(y)
    theta <- rep(0, ncol(x))

#cost at intial theta
    computeCost(theta, x, y)
    j <- rep(0,iter) #to maintain log of cost
    for (c in 1:iter) {
        theta <- theta - alpha * gradAlgo(theta,x,y)
        j[c] <- computeCost(theta,x,y)
    }

0.693147180559945</pre>
```

1.3.2 2. Plot Cost Value

Plot cost as a function of no of iterations to converge

1.3.3 3. Build Classification matrix

	Bad	Good	Sum
Bad	158	142	300
0000	73	627	700
Sum	231	769	1000

1.3.4 4. Score new cases

Scoring new profile pass all X's

```
In [12]: \#new\_score \leftarrow (sigmoid(c(1, \lt all X's\gt)) \%*\% theta))
```

1.4 Compare the Gradient Descent with GLM

```
In [13]: lg_glm <- glm(filter_data$Credit.classification ~ .,data = filter_data, family = "bin-
         summary(lg_glm)
        lg_predict_prob <- predict(lg_glm, filter_data[,1:20],"response")</pre>
        m <- length(filter_data[,21])</pre>
         actual_y <- filter_data[,21]</pre>
        predicted_y = rep("Bad", m);
        predicted_y[lg_predict_prob >= 0.5] = "Good";
         addmargins(table(actual_y, predicted_y))
Call:
glm(formula = filter_data$Credit.classification ~ ., family = "binomial",
    data = filter_data)
Deviance Residuals:
                  Median
                               3Q
   Min
             1Q
                                       Max
                  0.3752
                           0.6994
                                    2.3410
-2.6116 -0.7095
Coefficients:
                                   Estimate Std. Error z value Pr(>|z|)
(Intercept)
                                  2.353e+00 1.330e+00
                                                         1.769 0.076938 .
                                  3.749e-01 2.179e-01 1.720 0.085400 .
CHK_ACCTless-200DM
                                  1.712e+00 2.322e-01 7.373 1.66e-13 ***
CHK_ACCTno-account
CHK_ACCTover-200DM
                                  9.657e-01 3.692e-01 2.616 0.008905 **
Duration
                                 -2.786e-02 9.296e-03 -2.997 0.002724 **
                                 -1.434e-01 5.489e-01 -0.261 0.793921
History bank-paid-duly
History critical
                                  1.436e+00 4.399e-01 3.264 0.001099 **
                                  8.532e-01 4.717e-01 1.809 0.070470 .
History delay
History duly-till-now
                                  5.861e-01 4.305e-01 1.362 0.173348
Purpose.of.credit domestic-app
                                 -2.173e-01 8.041e-01 -0.270 0.786976
Purpose.of.credit education
                                 -7.764e-01 4.660e-01 -1.666 0.095718 .
Purpose.of.credit furniture
                                  5.152e-02 3.543e-01 0.145 0.884391
                                 -7.401e-01 3.339e-01 -2.216 0.026668 *
Purpose.of.credit new-car
Purpose.of.credit others
                                  7.487e-01 7.998e-01 0.936 0.349202
                                  1.515e-01 3.370e-01 0.450 0.653002
Purpose.of.credit radio-tv
Purpose.of.credit repairs
                                 -5.237e-01 5.933e-01 -0.883 0.377428
Purpose.of.credit retraining
                                  1.319e+00 1.233e+00 1.070 0.284625
Purpose.of.credit used-car
                                  9.264e-01 4.409e-01 2.101 0.035645 *
Credit.Amount
                                 -1.283e-04 4.444e-05 -2.887 0.003894 **
Balance.in.Savings.A.C less100DM -3.761e-01 4.011e-01 -0.938 0.348476
```

```
Balance.in.Savings.A.C less500DM -1.833e-02 4.656e-01 -0.039 0.968595
Balance.in.Savings.A.C over1000DM 9.631e-01 6.425e-01
                                                        1.499 0.133868
Balance.in.Savings.A.C unknown
                                  5.706e-01 4.492e-01
                                                        1.270 0.203940
Employment one-year
                                 -1.159e-01 2.423e-01 -0.478 0.632415
Employment over-seven
                                  9.379e-02 2.510e-01
                                                        0.374 0.708653
Employment seven-years
                                  6.482e-01
                                            2.684e-01
                                                        2.415 0.015734 *
Employment unemployed
                                -1.828e-01 4.105e-01 -0.445 0.656049
Install rate
                                 -3.301e-01 8.828e-02 -3.739 0.000185 ***
Marital.status male-divorced
                                 -2.755e-01 3.865e-01 -0.713 0.476040
Marital.status married-male
                                  9.162e-02 3.118e-01 0.294 0.768908
Marital.status single-male
                                  5.406e-01 2.102e-01
                                                        2.572 0.010113 *
Co.applicant guarantor
                                  1.415e+00 5.685e-01
                                                        2.488 0.012834 *
Co.applicant none
                                  4.360e-01 4.101e-01
                                                        1.063 0.287700
Present.Resident
                                 -4.776e-03 8.641e-02 -0.055 0.955920
Real.Estate car
                                  8.690e-02 2.313e-01
                                                        0.376 0.707115
                                 -4.490e-01 4.130e-01 -1.087 0.277005
Real.Estate none
Real.Estate real-estate
                                  2.814e-01 2.534e-01
                                                        1.111 0.266630
                                  1.454e-02 9.222e-03
                                                        1.576 0.114982
Age
                                  6.463e-01 2.391e-01
Other.installment none
                                                        2.703 0.006871 **
Other.installment stores
                                  1.232e-01 4.119e-01
                                                        0.299 0.764878
Residence own
                                 -2.402e-01 4.503e-01 -0.534 0.593687
                                 -6.839e-01 4.770e-01 -1.434 0.151657
Residence rent
                                 -2.721e-01 1.895e-01 -1.436 0.151109
Num_Credits
                                 -7.524e-02 2.845e-01 -0.264 0.791419
Job skilled
Job unemployed-non-resident
                                  4.795e-01 6.623e-01 0.724 0.469086
Job unskilled-resident
                                 -5.666e-02 3.501e-01 -0.162 0.871450
                                 -2.647e-01 2.492e-01 -1.062 0.288249
No..dependents
Phone yes
                                 -3.000e-01 2.013e-01 -1.491 0.136060
                                 -1.392e+00 6.258e-01 -2.225 0.026095 *
Foreign yes
```

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1221.73 on 999 degrees of freedom Residual deviance: 895.82 on 951 degrees of freedom

AIC: 993.82

Number of Fisher Scoring iterations: 5

	Bad	Good	Sum
bad.	160	140	300
good.	74	626	700
Sum	234	766	1000

End of Document