Estimación Puntual

Cristopher Morales Ubal e-mail: c.m.ubal@gmail.com

Supongamos que deseamos estudiar la familia de probabilidades $P = \{\mathbb{P}_{\underline{\theta}} : \underline{\theta} \in \Theta\}$ donde \mathbb{P}_{Θ} es de forma conocida solo que se desconoce el valor parámetrico $\underline{\theta} \in \Theta$. Un procedimiento para resolve este problema es elegir un vector $\underline{\theta} \in \Theta$ utilizando algun criterio conveniente basado en una muestra de tamaño n seleccionada.

<u>Nota</u>: Estos apuntes estan basados en el libro [1] con el cual aprendi estadistica durante mi epoca de estudiante en la Universidad Técnica Federico Santa María (UTFSM). Han sido escritos en LATEX 2_{ε} de manera de tener un apunte personal para recordar conceptos importantes de estadistica.

Definición: Sea $P = \left\{ \mathbb{P}_{\underline{\theta}}^X : \underline{\theta} \in \Theta \right\}$ donde \mathbb{P}_{Θ} una familia de probabilidades. Se dice que x_1, x_2, \ldots, x_n es una muestra aleatoria (m.a.) proveniente de la familia P ssi X_1, X_2, \ldots, X_n son variables aleatorias independientes e idénticamente distribuidas.

<u>Definición</u>: Sea $\chi = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : x_1, x_2, \dots, x_n \text{ es m.a proveniente de } P\}$ entonces χ se llama espacio de información.

<u>Definición</u>: Sea $\underline{T}:\chi\longrightarrow\tau$ una función medible que no depende del parámetro $\underline{\theta}\in\Theta$. Entonces se dice que $\underline{T}=t\left(\underline{x}\right)$ es una estadistica basada en la información χ . Observación: se denota $\underline{x}=(x_1,x_2,\ldots,x_n)$ m.a. de la población.

<u>Definición</u>: Dada una información en un espacio χ se define como estimador de $\underline{\theta} \in \Theta$ a toda estadística $\underline{T} = t(\underline{x})$, tal que

$$\mathbb{P}(t(x) - \theta) = 0 , \forall \theta \in \Theta$$

Observaciones:

- 1. Si $R(\underline{T}) \subset \Theta \Longrightarrow \underline{T} = t(\underline{x})$ es un estimador de $\underline{\theta}$.
- 2. Si x_1, x_2, \ldots, x_n es una m.a. se tiene que la función de densidad conjunta de \underline{x} es $f_{\underline{\theta}}(\underline{x}) = \prod_{i=1}^n f_{\underline{\theta}}(x_i)$
- 3. m.a. \Leftrightarrow m.a.s.

<u>Definición</u>: Sea x_1, x_2, \dots, x_n m.a. proveniente de una familia de densidad $f(\bullet, \underline{\theta})$. Se llama momento muestral de orden r-ésimo con respecto al origen a la expresión

$$m_r = \frac{1}{n} \sum_{i=1}^n x_i^r$$

Teorema: Sea x_1, x_2, \ldots, x_n m.a. proveniente de una familia de densidad $f(\bullet, \underline{\theta})$ y sea $\overline{x}_n = m_1$ (media muestral). Supongamos además que la población tiene varianza finita σ^2 . Entonces

$$\sigma_{\overline{x}_n}^2 = \mathbb{E}\left[\left(\overline{x}_n - \mathbb{E}\left(\overline{x}_n\right)\right)^2\right] = \frac{\sigma^2}{n}$$

<u>Definición</u>: Sea $\widehat{\underline{\theta}} = T(\underline{x})$ estadística basada en χ . Se dice que $\widehat{\underline{\theta}}$ es una estadística suficiente de $\underline{\theta} \in \Theta$ si $\forall \underline{\theta}^* = T^*(\underline{x})$ estadística de $\underline{\theta}$ se tiene que $f(\widehat{\underline{\theta}} \mid \underline{\theta}^*)$ es independiente de $\underline{\theta}$.

Obs: una estadística es suficiente cuando tenemos la misma capacidad informativa en χ que en $\hat{\underline{\theta}} = t(\underline{x})$.

Teorema (criterio de factorización de Neyman-Fisher)

Sea $\left\{\left(\chi\;,\;\mathcal{B}_{\chi}\;,\;\mathbb{P}_{\underline{\theta}}^{\underline{X}}\right):\underline{\theta}\in\Theta\right\}$ una familia de espacios de probabilidad y sea $f_{\underline{\theta}}$ función de densidad (cuantía) correspondiente a $P_{\underline{\theta}}^{\underline{X}}$. Sea $\underline{T}=t\left(\underline{x}\right)$ una estadistica. Si existe una factorización del tipo:

$$f_{\theta}(\underline{x}) = g(\underline{\theta}, t(\underline{x})) \cdot h(\underline{x}) \quad \forall \ (\underline{\theta}, \underline{x}) \in \Theta \times \chi$$

 $AT_{FX} 2_{\varepsilon}$

entonces T es una estadística suficiente para $\theta \in \Theta$ (suficiente para la familia).

Ejemplo: Sea x_1, x_2, \dots, x_n m.a. de tamaño n proveniente de una familia $N(\mu, 1)$. luego

$$f(x_1, x_2, \dots, x_n, \mu) = \prod_{i=1}^n f(x_i, \mu)$$

$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{x_i - \mu}{1}\right)^2\right)$$

$$= \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2} \sum_{i=1}^n (x_i - \mu)^2\right)$$

$$= \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2} \left(\sum_{i=1}^n x_i^2 - 2\mu \sum_{i=1}^n x_i + n\mu^2\right)\right)$$

$$= \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2} \left(n\mu^2 - 2\mu \sum_{i=1}^n x_i\right)\right) \exp\left(-\frac{1}{2} \sum_{i=1}^n x_i^2\right)$$

$$= \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{n\mu}{2} \left(\mu - 2 \cdot \frac{\sum_{i=1}^n x_i}{n}\right)\right) \exp\left(-\frac{1}{2} \sum_{i=1}^n x_i^2\right)$$

definiendo

$$\widehat{\mu} = \frac{\sum_{i=1}^{n} x_i}{n}$$

podemos escribir

$$f(x_1, x_2, ..., x_n, \mu) = g(\mu, \widehat{\mu}) \cdot h(x_1, x_2, ..., x_n)$$

donde

$$g(\mu, \widehat{\mu}) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{n\mu}{2} (\mu - 2\widehat{\mu})\right) \wedge h(x_1, x_2, \dots, x_n) = \exp\left(-\frac{1}{2} \sum_{i=1}^n x_i^2\right)$$

por lo tanto

$$\widehat{\mu} = \frac{\sum_{i=1}^{n} x_i}{n}$$

es una estadistica suficiente para μ .

Método de los Momentos

Sea $\left\{\left(\chi\;,\;\mathcal{B}_{\chi}\;,\;\mathbb{P}_{\underline{\theta}}^{\underline{X}}\right):\underline{\theta}\in\Theta\right\}$ espacio de probabilidad y sea $f_{\underline{\theta}}\left(\underline{x}\right)$ una función de densidad asociada a $\mathbb{P}_{\underline{\theta}}^{\underline{x}}$. El método de estimación de los momentos consite en igualar los momentos muestrales con los poblacionales:

$$\mu_r = m_r \iff \mathbb{E}(X^r) = \frac{\sum_{i=1}^n x_i^r}{n}, \ r = 1, 2,, k$$

donde $\underline{\theta} = (\theta_1, \theta_2, \dots, \theta_k)$ es el vector parametrico a determinar, resultando de esta forma un sistema de k ecuaciones y k incognitas $(\theta_1, \theta_2, \dots, \theta_k)$

<u>Ejemplo</u>: Sea x_1, x_2, \ldots, x_n una m.a. de tamaño n proveniente de una familia $N(\mu, \sigma^2)$. en este caso

$$\underline{\theta} = \left(\mu, \sigma^2\right)$$

 $AT_{F}X 2_{\varepsilon}$

luego aplicando el métodos de los momentos se tiene que:

$$\mu_1 = m_1 \implies \mathbb{E}(X) = \frac{\sum_{i=1}^n x_i}{n} \iff \mu = \frac{\sum_{i=1}^n x_i}{n}$$
 (1)

$$\mu_2 = m_2 \implies \mathbb{E}\left(X^2\right) = \frac{\sum_{i=1}^n x_i^2}{n} \iff \sigma^2 + \mu^2 = \frac{\sum_{i=1}^n x_i^2}{n} \tag{2}$$

asi resolviendo las ecuaciones (1) y (2) para μ y σ^2 se obtiene

$$\widehat{\mu} = \frac{\sum_{i=1}^{n} x_i}{n} = \overline{X}_n$$

$$\widehat{\sigma^2} = \frac{\sum_{i=1}^{n} x_i^2}{n} - \left(\frac{\sum_{i=1}^{n} x_i}{n}\right)^2 = \overline{X^2}_n - \left(\overline{X}_n\right)^2$$

los cuales son los estimadores obtenidos por el método de los momentos para μ y σ^2 .

Método de Máxima Verosimilitud

<u>Definición</u>: sea x_1, x_2, \ldots, x_n m.a.de tamaño n, proveniente de la familia de espacios de probabilidades $\left(\chi , \mathcal{B}_{\chi} , \mathbb{P}^{\underline{X}}_{\underline{\theta}}\right)$, $\underline{\theta} \in \Theta$ se llama *Función de Verosimilitud* a $L_{\underline{x}} : \Theta \longrightarrow \mathbb{R}$ definida por:

$$L_{\underline{x}}(\underline{\theta}) = f_{\underline{\theta}}(x_1, x_2, \dots, x_n) = \prod_{i=1}^{n} f(x_i, \theta), \underline{\theta} \in \Theta$$

<u>Definición</u>: Sea x_1, x_2, \dots, x_n una m.a. de tamaño n, proveniente de una familia $f(\underline{x}, \underline{\theta})$ y $L_{\underline{x}}(\underline{\theta})$ su función de verosimilitud.

Se llama Estimador de Maxima Verosimilitud de $\underline{\theta}$ y se denota por $\widehat{\underline{\theta}}$ al $\widehat{\underline{\theta}} = t(x_1, x_2, \dots, x_n)$ que maximiza a $L_{\underline{x}}(\underline{\theta})$. Es decir $\widehat{\theta}$ es el estimador de máxima verosimilitud de θ ssi

i) $\widehat{\underline{\theta}}$ es un estimador de $\underline{\theta}$.

ii)
$$L_{\underline{x}}\left(\widehat{\underline{\theta}}\right) = \sup_{\theta \in \Theta} L_{\underline{x}}\left(\underline{\theta}\right) , \ \forall \underline{x} \in \chi$$

Obs:

1. En general si se satisfacen cierta condiciones de regularidad $L_{\underline{x}}(\underline{\theta})$ es maximo ssi $\nabla L_{\underline{x}}(\underline{\theta}) = \overrightarrow{0}$. es decir

$$\frac{\partial L_{\underline{x}}(\underline{\theta})}{\partial \theta_1} = 0 , \forall i = 1, 2, \dots, k$$

2. El problema de maximización

$$\max_{\underline{\theta}\in\Theta}L_{\underline{x}}\left(\underline{\theta}\right)\ ,\ (*)$$

es equivalente al problema de maximización

$$\max_{\theta \in \Theta} \ln(L_{\underline{x}}\left(\underline{\theta}\right)) \;, \; (**)$$

asi en general, se resuelve el problema (**) pues es más facil de manejar algebraicamente.

Propiedades de los Estimadores

- 1. Sea $\widehat{\underline{\theta}} = t\left(\underline{x}\right)$ un estimador de $\underline{\theta}$. Se dice que $\underline{\theta}$ es un *Estimador Insesgado* de $\widehat{\underline{\theta}}$ ssi $\mathbb{E}\left(\widehat{\underline{\theta}}\right) = \underline{\theta}$.
- 2. Sea $\widehat{\underline{\theta}} = t(\underline{x})$ un estimador de $\underline{\theta}$. Se dice que $\underline{\theta}$ es un *Estimador Asintoticamente Insesgado* de $\widehat{\underline{\theta}}$ ssi $\lim_{n\to\infty} \mathbb{E}\left(\widehat{\underline{\theta}}\right) = \underline{\theta}$.
- 3. Sea $\left\{\widehat{\underline{\theta}}_n\right\}_{n\in\mathbb{N}}$ una sucesión de estimadores de $\underline{\theta}$. Esta sucesión se dice Consistente en Error Cuadratico Medio ssi

$$\lim_{n \to \infty} \mathbb{E}\left[\left(\widehat{\underline{\theta}}_n - \underline{\theta}\right)^2\right] = 0$$

Proposición:

$$\lim_{n \to \infty} \mathbb{E}\left[\left(\widehat{\underline{\theta}}_n - \underline{\theta}\right)^2\right] = 0 \iff \lim_{n \to \infty} \mathbb{V}\left(\widehat{\underline{\theta}}_n\right) = 0 \ \land \ \lim_{n \to \infty} \mathbb{E}\left(\widehat{\underline{\theta}}_n\right) = 0$$

4. Sea $\left\{\widehat{\underline{\theta}}_n\right\}_{n\in\mathbb{N}}$ una sucesión de estimadores de $\underline{\theta}$. Esta sucesión se dice Consistente Simple ssi

$$\lim_{n \to \infty} \mathbb{P}\left(\left| \widehat{\underline{\theta}}_n - \underline{\theta} \right| > \epsilon \right) = 0$$

- 5. Sea $\widehat{\underline{\theta}} = t(\underline{x})$ un estimador de $\underline{\theta}$. Se dice que $\widehat{\underline{\theta}}$ es un Estimador Insesgado de Varianza Minima ssi
 - i) $\mathbb{E}\left(\widehat{\underline{\theta}}\right) = \underline{\theta}$
 - ii) $\mathbb{V}\left(\widehat{\underline{\theta}}\right) \leq \mathbb{V}\left(\widehat{\underline{\theta}}^*\right)$, $\forall \ \widehat{\underline{\theta}}^*$ estimador de $\underline{\theta}$.

<u>Definición</u>: Sean $\widehat{\underline{\theta}}$ y $\widetilde{\underline{\theta}}$ dos estimadores de $\underline{\underline{\theta}}$. Se define como *Eficiencia Relativa* de $\widehat{\underline{\theta}}$ c/r a $\widetilde{\underline{\theta}}$ a la cantidad

$$e\left(\widehat{\underline{\theta}}\;,\; \widetilde{\underline{\theta}}\right) = \frac{\mathbb{E}\left[\left(\widehat{\underline{\theta}} - \underline{\theta}\right)^2\right]}{\mathbb{E}\left[\left(\widetilde{\underline{\theta}} - \underline{\theta}\right)^2\right]}$$

obs: si $e\left(\underline{\widehat{\theta}}, \underline{\widetilde{\theta}}\right) < 1 \implies \underline{\widehat{\theta}}$ es mas eficiente que $\underline{\widetilde{\theta}}$.

Definición: Se llama Cantidad de Información de Fisher dada por \underline{x} sobre el parametro $\underline{\theta}$ a la cantidad

$$I_n(\underline{\theta}) = \mathbb{E}\left[\left(\frac{\partial \ln\left(L_{\underline{x}}(\underline{\theta})\right)}{\partial \underline{\theta}}\right)^2\right]$$

Proposición:

$$I_{n}\left(\underline{\theta}\right) = \mathbb{V}\left(\frac{\partial \ln\left(L_{\underline{x}}\left(\underline{\theta}\right)\right)}{\partial \underline{\theta}}\right) \ \lor \ I_{n}\left(\underline{\theta}\right) = -\mathbb{E}\left[\frac{\partial^{2} \ln\left(L_{\underline{x}}\left(\underline{\theta}\right)\right)}{\partial \underline{\theta}^{2}}\right]$$

<u>Teorema</u>: Si los valores muestrales son independientes y $I(\underline{\theta})$ es la cantidad de información de Fisher dada para cada x_i sobre el parametro $\underline{\theta}$, entonces

$$I_n\left(\underline{\theta}\right) = nI\left(\underline{\theta}\right) , \text{ Donde } I_n\left(\underline{\theta}\right) = \mathbb{E}\left[\left(\frac{\partial \ln\left(L_{\underline{x}}\left(\underline{\theta}\right)\right)}{\partial \underline{\theta}}\right)^2\right]$$

Teorema(Cota de Cramer-Rao): Si el dominio de χ de \underline{x} no depende del parametro $\underline{\theta}$, para todo estimador $\widehat{\underline{\theta}}$ $de \underline{\theta}$ se tiene que:

$$\mathbb{V}\left(\widehat{\underline{\theta}}\right) \geq \frac{\left(1 + b'\left(\widehat{\underline{\theta}}\right)\right)^2}{I_n\left(\underline{\theta}\right)}$$

Donde $b\left(\widehat{\underline{\theta}}\right) = \mathbb{E}\left(\widehat{\underline{\theta}}\right) - \underline{\theta}$ es el sesgo de $\widehat{\underline{\theta}}$ Obs: Si $\widehat{\underline{\theta}}$ alcanza la cota de Cramer-Rao, luego se dice que $\widehat{\underline{\theta}}$ es <u>Eficiente</u>.

References

 $[1] \;\;$ H. Allende. $Probabilidades \; y \; estadística.$ Universidad Técnica Federico Santa María, 1982.

 $\mathbb{E} \mathbb{T}_{\mathbb{E}} \mathbb{X} \, 2_{\varepsilon}$