Algorithm 1 Action-Free Guide

Input: states s, returns-to-go \hat{R} , time steps t# get positional embedding for each time step $f_t = \operatorname{Embed}_t(t)$ # compute the state and return-to-go embeddings f_s , $f_{\hat{R}} = \operatorname{Embed}_s(s) + f_t$, $\operatorname{Embed}_R(\hat{R}) + f_t$ # send to transformer in the order $(s_0, \hat{R}_0, s_1, \hat{R}_1, ...)$ $f_{output} = \operatorname{Transformer}(\operatorname{stack}(f_s, f_{\hat{R}}))$ # predict the state change $\Delta s = \operatorname{Pred}_s(\operatorname{unstack}(f_{output}.\operatorname{states}))$ Output: $\Delta s + s$

Embed_t: a single-layer temporal encoder Embed_t: a single-layer state encoder Embed_R: a single-layer return-to-go encoder stack: operation to stack state features f_s and return-to-go features $f_{\hat{R}}$ Pred_s: state decoder converting output state features to the state change Δs

Algorithm 2 Compute Guiding Reward

Input: states $s_{1:t}$, return-to-go $\hat{R}_{1:t}$, policy π , state standard deviation σ_s , environment env, AFDT with context length K repeat # get AFDT's prediction of the next state $\widetilde{s}_{t+1} = AFDT(s_{t-K+1:t}, R_{t-K+1:t})$ # apply the policy in the environment for one step $a_t = \pi(s_t)$ $s_{t+1}, r_e = env.step(a_t)$ # compute current guiding reward using Eq.4 $r_q = -\|\frac{1}{\sigma} \odot (\widetilde{s}_{t+1} - s_{t+1})\|_2$ # update return-to-go (same as DT) and time step $\hat{R}_{t+1} = \hat{R}_t - r_e$ t = t + 1until Episode is finished

 $ilde{s}_{t+1}$: planned next state from AFDT r_e : environment reward r_g : intrinsic guiding reward