CS 325: Project 3, Question 3

Cera Olson, Robert Erick, Jacob Mastel

25 May 2015

1 Part A

One alternative to the least squares line is the Least Absolute Deviations (LAD). Formulate a linear program whose optimal solution minimizes the sum of the absolute deviations of the data from the line. That is formulate

$$min \sum_{i=1}^{n} |y_i - (a_1 x_i + a_0)|$$

as an LP and solve for the a_0 and a_1 that minimize the sum of absolute deviations.

1.1 i: Write the linear program for the general problem written as an objective and set of constraints

The goal is to minimize $min \sum_{i=1}^{n} |y_i - (a_1x_i + a_0)|$. In order to create an objective, we drop the sum and set it equal to z_i for all values i = 1, ..., n. We can reduce that by dropping the absolute values and set it as an inequality.

$$-z_i \le y_i - (a_1 x_i + a_0) \le z_i$$

After that it gets simplified down to the following objectives and constraints.

$$y_i - (a_1x_i + a_0) \le z_i$$
 for all values $i = 1, ..., n$

$$y_i - (a_1x_i + a_0) \ge -z_i$$
 for all values $i = 1, ..., n$

1.2 ii: Use the linear program to find the LAD regression line for the data set (x,y) = (1,5), (1,3), (2,13), (3,8), (4,10), (5,14), (6,18) What was the sum of absolute deviations?

The absolute deviation is calculated by taking the least squares values for y and finding the difference between that and the calculated actual value of y using the data. See the chart below.

Table 1: Part A (ii)

X	y: Data Points	Trendline	Differences	Squared
1	5	3.93	1.07	1.15
1	3	3.93	0.93	0.87
2	13	5.99	7.01	49
3	8	8.07	0.07	0.01
4	10	10.14	0.14	0.02
5	14	12.21	1.79	3.2
6	18	14.29	3.72	13.84