In the Claims

Replace claims 1, 3, 5 and 14 with the following amended claims:

1. (amended) Process for preventing migration of the oxidised developer in a colour photographic material from one colour sensitive layer to another by incorporating a compound of the formula I into said material

$$\begin{bmatrix} R_2 & R_5 & R_1 & R_1 & R_1 & R_2 & R_3 & R_4 & R_5 & R_4 & R_5 & R_4 & R_5 & R_5 & R_4 & R_5 & R_$$

wherein, if n = 1,

 R_1 is a cyclic residue selected from naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-2-naphthyl, 5,6,7,8-tetrahydro-1-naphthyl, thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxathiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyr dazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, biphenyl, terphenyl, fluorenyl or phenoxazinyl, each of which is unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkylthio, hydroxy, halogen, amino, C_1 - C_4 alkylamino, phenylamino or di(C_1 - C_4 -alkyl)amino; or R_1 is a radical of formula II

and, if n = 2,

 R_1 is unsubstituted/or C_1 - C_4 alkyl- or hydroxy-substituted phenylene or naphthylene; or $-R_{12}$ -X- R_{13} -;

09/806,360

-2-

II/2-21851/A/PCT

K A

 R_2 , R_3 , R_4 and R_5 are each independently of one another hydrogen; chloro; hydroxy; C_1-C_{25} -alkyl; C_7-C_9 phenylalkyl; unsubstituted or C_1-C_4 alkyl-substituted phenyl; unsubstituted or C_1-C_4 alkyl-substituted C₅-C₈cycloalkyl; C_1-C_{18} alkoxy; C_1-C_{18} alkylthio; C_1-C_4 alkylamino; di(C_1-C_4 -alkyl)amino; C_1-C_{25} alkanoyloxy; C_1-C_{25} alkanoyloxy; C_1-C_{25} alkanoyloxy which is

interrupted by oxygen, sulphur or $N-R_{14}$; C_6-C_9 cycloalkylcarbonyloxy; benzoyloxy or C_1 -

 C_{12} alkyl-substituted benzoyloxy; or R_2 and R_3 , or R_3 and R_4 , or R_4 and R_5 , together with the linking carbon atoms, form a benzene ring;

or R_4 is $-C_mH_{2m}$ - $-COR_{15}$, $-O-(C_vH_{2v})-COR_{15}$, $-O-(CH_2)_q-OR_{32}$, $-OCH_2-CH(OH)-CH_2-R_{15}$, $-OCH_2-CH(OH)-CH_2-OR_{32}$, or $-(CH_2)_qOH$;

or, if R_3 , R_5 and R_6 are hydrogen, R_4 is additionally a fadical of formula III

$$R_{2}$$

$$R_{16}$$

$$R_{17}$$

$$R_{17}$$

$$R_{17}$$

$$R_{17}$$

wherein R_1 is as defined above for n = 1;

 R_6 is hydrogen or, when R_4 is hydroxy, R_6 /can also be C_1 - C_{25} alkyl or C_3 - C_{25} alkenyl;

 R_7 and R_9 , are each independently of one another hydrogen; halogen; C_1 - C_{25} alkyl; C_2 - C_{25} alkyl

which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1-C_{25} alkylthio; C_3-C_{25} -alkenyl; C_3 -

 C_{2s} alkenyloxy; C_3 - C_{2s} alkynyl; C_3 - C_{2s} alkynyloxy; C_7 - C_9 phenylalkyl; C_7 - C_9 phenylalkoxy; unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkoxy; C_1 - C_4 alkylamino; C_1 - C_4 alkyl)amino; C_1 - C_2 -alkanoyl; C_3 -

 C_{25} alkanoyl which is interrupted by oxygen, sulphur or $N - R_{14}$; $C_1 - C_{25}$ alkanoylamino; C_3 -

 R_{a} , R_{10} and R_{11} are each independently of one another hydrogen; halogen; hydroxy; C_1 - C_{25} alkyl; C_2 - C_{25} alkyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_{25} alkoxy; C_2 - C_{25} alkoxy which is interrupted by oxygen sulphur or $N-R_{14}$; C_1 - C_{25} alkylthio; C_3 - C_{25} -alkenyl; C_3 - C_{25} alkynyloxy; C_3 - C_{25} alkynyloxy; C_3 - C_{25} alkynyloxy; C_3 - C_4 - C_5 - C_5 -phenylalkyl; C_5 - C_5 -phenylalkoxy; unsubstituted or C_1 - C_4 alkyl-substituted phenoxy; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_6 -cycloalkyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_6 -cycloalkyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_6 -cycloalkoxy; C_1 - C_4 -alkylamino; di(C_1 - C_4 -alkyl)amino; C_1 - C_{25} alkanoyl; C_3 - C_{25} alkanoyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_{25} alkanoyloxy; C_3 - C_{25} alkenoyl; C_3 - C_{25} alkenoyl; C_3 - C_{25} alkenoyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_{25} alkanoylamino; C_3 - C_{25} alkenoyl; C_3 - C_{25} alkenoyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_{25} alkanoylamino; C_3 - C_{25} alkenoyl; C_3 - C_{25} alkenoyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_4 - C_{25} alkenoyloxy; C_3 - C_{25} alkenoyloxy which is interrupted by oxygen, sulphur or $N-R_{14}$; C_4 - C_{25} alkenoyloxy; C_3 - C_{25} alkenoyloxy which is interrupted by oxygen, sulphur or $N-R_{14}$; C_4 - C_{25} alkenoyloxy; C_3 - C_{25} alkenoyloxy which is interrupted by oxygen, sulphur or $N-R_{14}$; C_6 - C_6

benzoyloxy or
$$C_1$$
- C_{12} alkyl-substituted benzoyloxy; $\left\langle \begin{array}{ccc} R_{18} & O \\ -O & C & C \\ R_{19} \end{array} \right\rangle$ or

$$R_{20}$$
 R_{21} R_{21} R_{22} or, in formula II, R_{22} and R_{8} , or R_{8} and R_{11} , together with the linking

carbon atoms, form a benzene ring;

 R_{12} and R_{13} are each independently of the other unsubstituted or C_1 - C_4 alkyl-substituted phenylene or naphthylene;

 R_{14} is hydrogen or C_1 - C_8 alkyl;

$$R_{1s}$$
 and R'_{1s} independently are hydroxy; $\left[--0^{-\frac{1}{r}}M^{r+}\right]$; C_1 - C_{20} alkoxy; C_3 - C_{20} alkoxy

interrupted by O and/or substituted by a radical selected from OH, phenoxy, C_7 - C_{15} alkylphenoxy, C_7 - C_{15} alkoxyphenoxy; or are C_5 - C_{12} cycloalkoxy; C_7 - C_{17} phenylalkoxy; phenoxy;

$$-N$$
 R_{24}
; or a group of the formula IIIa or IIIb

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

(Illa);

 R_{16} and R_{17} are each independently of the other hydrogen, CF_3 , C_1 - C_{12} alkyl or phenyl, or R_{16} and R_{17} , together with the linking carbon atom, are a C_5 - C_9 cycloalkylidene ring which is unsubstituted or substituted by 1 to 3 C_1 - C_4 alkyl;

 R_{18} and R_{19} are each independently of the other hydrogen, C_1 - C_4 alkyl or phenyl; R_{20} is hydrogen or C_1 - C_4 alkyl;

 R_{21} is hydrogen; unsubstituted or C_1 - C_4 alkyl-substituted phenyl; C_1 - C_{25} alkyl; C_2 - C_{25} alkyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_7 - C_9 phenylalkyl which is unsubstituted or substituted at the phenyl moiety by 1 to 3 C_1 - C_4 alkyl; C_7 - C_{25} phenylalkyl which is interrupted by oxygen, sulphur or $N-R_{14}$ and which is unsubstituted or substituted at the phenyl moiety

by 1 to 3 C_1 - C_4 alkyl; or R_{20} and R_{21} , together with the linking carbon atoms, form a C_5 - C_{12} cycloalkylene ring which is unsubstituted or substituted by 1 to 3 C_1 - C_4 alkyl;

R₂₂ is hydrogen or C₁-C₄alkyl;

 R_{23} is hydrogen; C_1 - C_{25} alkanoyl; C_3 - C_{25} alkenoyl; C_3 - C_{25} alkanoyl which is interrupted by oxygen, sulphur or $N - R_{14}$; C_2 - C_{25} alkanoyl which is substituted by a di(C_1 - C_6 alkyl)phosphonate group; C_6 - C_9 cycloalkylcarbonyl; thenoyl; furoyl; benzoyl or C_1 - C_{12} alkyl-substituted benzoyl;

$$-C - C_{s}H_{2s} - C - C_{h_{3}}C - C_{h_{3}}C - C - C_{h_{3}}C - C_$$

 R_{24} and R_{25} are each independently of the other hydrogen or C_1 - C_{18} alkyl;

R₂₆ is hydrogen or C₁-C₈alkyl;

R₂₇ is a direct bond; C₁-C₁₈alkylene; C₂-C₁₈alkylene which is interrupted by oxygen, sulphur or

 $N-R_{14}$; C_2-C_{18} alkenylene; C_2-C_{20} alkylidene; C_7-C_{20} phenylalkylidene; C_5-C_8 cycloalkylene; C_7-C_{20} phenylalkylidene; C_8-C_8 cycloalkylene; C_7-C_{20} phenylalkylidene; C_8-C_8 cycloalkylene; C_7-C_8 cycloalkylene; C_7-C_8 cycloalkylene; C_8-C_8 cycloalkylene;

C₈bicycloalkylene; unsubstituted or C₁-C₄a/kyl-substituted phenylene;

or

s

 R_{28} is hydroxy, $\left[--0^{-\frac{1}{r}}M^{r+}\right]$, C_1-C_{18} alkoxy or -N R_{25}

R₂₉ is oxygen or -NH-;

R₃₀ is C₁-C₁₈alkyl or phenyl;

R₃₁ is hydrogen or C₁-C₁₈alkyl;

 R_{32} is C_1 - C_{18} alkanoyl; C_1 - C_{18} alkanoyl substituted by phenyl or C_7 - C_{15} alkylphenyl; C_3 - C_{18} alkenoyl; cyclohexylcarbonyl; or naphthylcarbonyl;

L is a linking group of valency (k+1) and is as a divalent group

-O-;

Q-C₂-C_{1,2}alkylene-Q₂

-O-CH₂-CH(OH)-¢H₂-O-;

-Q-C₂-C₁₂alkylene-Q-CO-C₂H₂-O-;

-O-C₂-C₁₂alkylene-O-CH₂-CH(OH)-CH₂-O-;

Q-phenylene-Q or

Q-phenylene-Q with D being C₁-C₄alkylene, O, S, SO or SO₂;

L as a trivalent group is Q-capped C_3 - C_{12} alkanetriyl, a trivalent residue of a hexose or a hexitol, or a group/(-O-CH₂)₃C-CH₂OH; -Q-C₃H_{2a}-N(C_bH_{2b}-Q-)-C_cH_{2c}-Q-;

 $-Q-C_3-C_{12}$ alkanetriyl(-Q-CO-C_vH_{2v}-O-)₂;

-O-C₃-C_{1/2}alkanetriyl(-O-CH₂-CH(OH)-CH₂-O-)₂; and

L as a tetravalent group is a tetravalent residue of a hexose or a hexitol;

 $-Q-C_4-C_{1,2}$ alkanetetryl($-Q-CO-C_vH_{2v}-O-)_3$;

 $-O-C_4-C_{12}$ alkanetetryl($-O-CH_2-CH(OH)-CH_2-O-)_3$; Q-capped/ C_4-C_{12} alkanetetryl; a group

or a group

M is an r-valent metal cation;

Q is oxygen or -NH-;

X is a direct bond, oxygen, sulphur or -NR₃₁-;

Z is a linking group of valency (k+1) and is as a divalent group C_2 - C_{12} alkylene; Q-interrupted C_4 - C_{12} alkylene; phenylene or phenylene-D-phenylene with D being C_1 - C_4 alkylene, O, S, SO or SO₂; Z as a trivalent group is C_3 - C_{12} alkanetriyl, a trivalent residue of a hexose or a hexitol, a group (-

 CH_2)₃C- CH_2OH , or a group $-C_aH_{2a}-N(C_bH_{2b}-)/C_cH_{2c}-$; and

Z as a tetravalent group is a tetravalent, carbon-ended residue of a hexose or a hexitol, C4-

C₁₂alkanetetryl, a group

or a group

a, b, c and k independently are 1, 2/or 3;

m is 0 or a number from the range 1-12;

n is 1 or 2;

q is 1, 2, 3, 4, 5 or 6;

r is 1, 2 or 3; and

s is 0, 1 or 2;

v is 1, 2, 3, 4, 5, 6, 7 or 8;

provided that, when R_7 is hydroxy, alkanoyloxy or alkanoyloxy interrupted by O, S or N(R_{14}) and R_9 is hydroxy, alkanoyloxy or alkanoyloxy interrupted by O, S or N(R_4) and R_7 is hydrogen, R_8 is not identical with R_4 .

ſν

3. (amended) Process according to claim 1 wherein in the compound of formula I R₁ is naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-2-naphthyl, 5,6,7,8-tetrahydro-1-naphthyl, thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxathiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, -carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, biphenyl, terphenyl, fluorenyl or phenoxazinyl, each of which is unsubstituted or substituted by C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, hydroxy, halogen, amino, C₁-C₄alkylamino, phenylamino or di(C₁-C₄-alkyl)amino, or R₁ is a radical of formula II

$$\begin{array}{c}
R_9 \\
R_7
\end{array}$$

$$R_{10}$$

$$R_{11}$$

$$R_{11}$$

and, if n = 2,

 R_1 is unsubstituted or C_1 - C_4 alkyl- or hydroxy-substituted phenylene or naphthylene; or $-R_{12}$ -X- R_{13} -,

 R_2 , R_3 , R_4 and R_5 are each independently of one another hydrogen, chloro, hydroxy, C_1 - C_{25} -alkyl, C_7 - C_9 phenylalkyl, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; C_1 - C_{18} alkoxy, C_1 - C_{18} alkylthio, C_1 - C_4 alkylamino, di(C_1 - C_4 -alkyl)amino, C_1 - C_{25} alkanoyloxy, C_1 - C_{25} alkanoyloxy which is

interrupted by oxygen, sulphur or $N-R_{14}$; C_6-C_9 cycloalkylcarbonyloxy, benzoyloxy or C_1 -

 C_{12} alkyl-substituted benzoyloxy; or R_2 and R_3 , or R_3 and R_4 , or R_4 and R_5 , together with the linking carbon atoms, form a benzene ring; or R_4 is

 $-C_mH_{2m}-COR_{1s}$ or $-(CH_2)_qOH$ or, if R_3 , R_s and R_s are hydrogen, R_4 is additionally a radical of formula III

$$R_{2}$$

$$R_{16}$$

$$C-R_{17}$$

$$(III),$$

wherein R_1 is as defined above for n = 1;

 R_s is hydrogen or, when R_s is hydroxy, R_s can also be C_1 - C_{23} alkyl or C_3 - C_{25} alkenyl; R_y , R_y , R_y , R_y , R_{10} and R_{11} are each independently of one another hydrogen, halogen, hydroxy, C_1 - C_{25} alkyl; C_2 - C_{25} alkyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_{25} alkoxy; C_2 - C_{25} alkoxy which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_{25} alkylthio, C_3 - C_{25} -alkenyl, C_3 - C_{25} alkenyloxy, C_3 - C_{25} alkynyloxy, C_7 - C_9 phenylalkyl, C_7 - C_9 phenylalkoxy, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkoxy; C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, C_1 - C_2 3alkanoyl; C_3 - C_2 3alkanoyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_2 3alkanoyloxy; C_3 - C_3 3alkanoyloxy which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_2 3alkanoylamino, C_3 - C_3 3alkenoyl; C_3 - C_3 3alkenoyl; C_3 - C_3 3alkenoyl; C_3 - C_3 3alkenoyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_2 3alkanoylamino, C_3 - C_3 3alkenoyl; C_3 - C_3 3alkenoyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_2 3alkanoylamino, C_3 - C_3 3alkenoyl; C_3 - C_3 3alkenoyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_2 3alkanoylamino, C_3 - C_3 3alkenoyl; C_3 - C_3 3alkenoyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_3 3alkanoyloxy

alkenoyloxy; C_3 - C_{25} alkenoyloxy which is interrupted by oxygen, sulphur or $N - R_{14}$; C_6 - C_9 cycloalkylcarbonyloxy, benzoyl or C_1 - C_{12} alkyl-substituted benzoyl;

benzoyloxy or C_1 - C_{12} alkyl-substituted benzoyloxy; $--O-C_1$ - $C-R_{15}$ or R_{19}

$$-O - \stackrel{R_{20}}{C} - \stackrel{R_{21}}{C} - O - R_{23}$$
 or, in formula II, R_7 and R_8 , or R_8 and R_{11} , together with the linking H R_{22}

N

carbon atoms, form a benzene ring,

 R_{12} and R_{13} are each independently of the other unsubstituted or C_1 - C_4 alkyl-substituted phenylene or naphthylene,

R, is hydrogen or C,-C,alkyl,

$$R_{15}$$
 is hydroxy, $\left[-0^{-\frac{1}{r}M^{r+}}\right]$, C_1 - C_{20} alkoxy, $-N$
 R_{25} , or a group of the formula Illa

$$-Q-z = \begin{bmatrix} O & R_3 & R_2 \\ O & C_m H_{2m} & O \\ R_5 & R_1 & H \end{bmatrix}$$
 (IIIa);

 R_{16} and R_{17} are each independently of the other hydrogen, CF_3 , C_1 - C_{12} alkyl or phenyl, or R_{16} and R_{17} , together with the linking carbon atom, are a C_5 - C_8 cycloalkylidene ring which is unsubstituted or substituted by 1 to 3 C_1 - C_4 alkyl;

 R_{18} and R_{19} are each independently of the other hydrogen, C_1 - C_4 alkyl or phenyl, R_{20} is hydrogen or C_1 - C_4 alkyl,

 R_{21} is hydrogen, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; C_1 - C_{25} alkyl; C_2 - C_{25} alkyl which is interrupted by oxygen, sulphur or $N - R_{14}$; C_7 - C_9 phenylalkyl which is unsubstituted or substituted at the phenyl moiety by 1 to 3 C_1 - C_4 alkyl; C_7 - C_{25} phenylalkyl which is interrupted by oxygen, sulphur or $N - R_{14}$ and which is unsubstituted or substituted at the phenyl moiety

09/806,360 - 11 - II/2-21851/A/PCT

by 1 to 3 C_1 - C_4 alkyl, or R_{20} and R_{21} , together with the linking carbon atoms, form a C_5 - C_{12} cycloalkylene ring which is unsubstituted or substituted by 1 to 3 C_1 - C_4 alkyl; R_{22} is hydrogen or C_1 - C_4 alkyl,

R₂₃ is hydrogen, C₁-C₂₅alkanoyl, C₃-C₂₅alkenoyl; C₃-C₂₅alkanoyl which is interrupted by oxygen,

sulphur or $N - R_{14}$; $C_2 - C_{2s}$ alkanoyl which is substituted by a di($C_1 - C_6$ alkyl)phosphonate

group; C_6 - C_9 cycloalkylcarbonyl, thenoyl, furoyl, benzoyl or C_1 - C_{12} alkyl-substituted benzoyl;

 R_{24} and R_{25} are each independently of the other hydrogen or C_1 - C_{18} alkyl,

 R_{26} is hydrogen or C_1 - C_8 alkyl,

 R_{27} is a direct bond, C_1 - C_{18} alkylene; C_2 - C_{18} alkylene which is interrupted by oxygen, sulphur or

 $N - R_{14}$; $C_2 - C_{18}$ alkenylene, $C_2 - C_{20}$ alkylidene, $C_7 - C_{20}$ phenylalkylidene, $C_5 - C_8$ cycloalkylene, $C_7 - C_{20}$

 C_8 bicycloalkylene, unsubstituted or C_1 - C_4 alkyl-substituted phenylene, or

$$R_{28}$$
 is hydroxy, $\left[-O^{-\frac{1}{r}M}^{f+}\right]$, C_1 - C_{18} alkoxy or $-N$
 R_{25}

R₂₀ is oxygen or -NH-,

R₃₀ is C₁-C₁₈alkyl or phenyl,

R₃₁ is hydrogen or C₁-C₁₈alkyl,

M is an r-valent metal cation,

Q is oxygen or -NH-,

X is a direct bond, oxygen, sulphur or -NR₃₁-,

Z is a linking group of valency (k+1) and is as a divalent group C_2 - C_{12} alkylene, Q-interrupted C_{4} - C_{12} alkylene, phenylene or phenylene-D-phenylene with D being C_1 - C_4 alkylene, O, S, SO or SO_2 ; Z as a trivalent group is C_3 - C_{12} alkanetriyl, a trivalent residue of a hexose or a hexitol, a group (- C_4)₃C- C_4 CH₂OH, or a group C_4 CH₂- C_4 CH₂- C_5 CH₂

Z as a tetravalent group is a tetravalent residue of a hexose or a hexitol, C₄-C₁₂alkanetetryl, a

a, b, c and k independently are 1, 2 or 3,

m is 0 or a number from the range 1-12,

n is 1 or 2,

q is 1, 2, 3, 4, 5 or 6,

r is 1, 2 or 3, and

s is 0, 1 or 2;

provided that, when R_7 is hydroxy, alkanoyloxy or alkanoyloxy interrupted by O, S or N(R_{14}) and R_9 is hydrogen, R_{10} is not identical with R_4 .

5. (amended) Process according to claim 1 wherein the compound of formula I corresponds to the formula IV

(2)

wherein

R, is H or C₁-C₂₀alkyl;

R, is H or C,-C, alkyl;

 R_4 is C_1 - C_8 alkyl, H, C_1 - C_6 alkoxy or a group - C_m H_{2m}- COR_{15} ; -O- $(C_v$ H_{2v})- COR_{15} , -O- $(CH_2)_q$ - OR_{32} ; - OCH_2 -CH(OH)- CH_2 - R_{15} ; - OCH_2 -CH(OH)- CH_2 - OR_{32} ; or a group of the formula III

$$R_{2}$$

$$R_{16}$$

$$R_{17}$$

$$R_{16}$$

$$R_{17}$$

$$R_{17}$$

$$R_{18}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

R_s is H or C₁-C₁₈alkyl;

 R_7 and R_9 are each independently of one another hydrogen; halogen; C_1-C_{2s} alkyl; C_3-C_{2s} -alkenyl; C_3-C_{2s} alkynyl; C_7-C_9 phenylalkyl; unsubstituted or C_1-C_4 alkyl-substituted phenyl; unsubstituted or C_1-C_4 alkyl-substituted C_5-C_8 cycloalkyl;

 R_8 , R_{10} and R_{11} independently are H, OH, chloro, C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, di(C_1 - C_4 alkyl)amino, C_7 - C_9 phenylalkyl; unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; C_2 - C_{18} alkanoyloxy, C_3 - C_{18} -alkoxycarbonylalkoxy or

 R_{15} is C_1 - C_{18} alkoxy; C_3 - C_{20} alkoxy interrupted by O; or are cyclohexyloxy; C_7 - C_{17} phenylalkoxy; phenoxy; or a group of formula IIIa or IIIb;

()

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

 R_{16} and R_{17} independently are H, C_1 - C_{12} alkyl or phenyl; or R_{16} and R_{17} together with the bonding carbon atom form a C_5 - C_8 cycloalkylidene ring;

R₂₀, R₂₁ and R₂₂ independently are H or C₁-C₄alkyl;

$$R_{23}$$
 is H, C_2 - C_{18} alkanoyl or a group C_sH_{2s} C_sH_{2s} C_sH_{2s}

R₂₆ is C₁-C₄alkyl;

 R_{32} is C_1 - C_{18} alkanoyl; C_1 - C_8 alkanoyl substituted by phenyl or C_7 - C_{15} alkylphenyl; C_3 - C_{18} alkenoyl; cyclohexylcarbonyl; or naphthylcarbonyl;

L is a divalent group -O-; Q-C₂-C₁₂alkylene-Q; -O-CH₂-CH(OH)-CH₂-O-;

Q is oxygen;

Z is C,-C,, alkylene;

k is 1;

m is 1, 2, 3, 4, 5 or 6;

v is 1 or 2; and

s is 0, 1 or 2.

$$R_2$$
 R_3
 R_4
 R_5
 R_7
 R_8
 R_{10}
 R_{11}
 R_{11}

$$H_5C_2$$
 H_3C
 CH_3
 CH_3

wherein

$$R_4$$
 is -O-(C_vH_{2v})-COR₁₅; -O-(CH_2)_q/OR₃₂;

R', is C_1 - C_4 alkyl and R'₈ is hydrogen or C_1 - C_4 alkyl;

 R_{1s} is hydroxy, $\left[--0^{-\frac{1}{r}}M^{r+}\right]$, C_1 - C_{20} alkoxy; C_3 - C_{20} alkoxy interrupted by O and/or

substituted by a radical selected from OH, phenoxy, C₇-C₁₅alkylphenoxy, C₇-C₁₅alkoxyphenoxy;

or
$$R_{1s}$$
 is C_s - C_{12} cycloalkoxy; C_7 - C_{17} phenylalkoxy; phenoxy; $-N$
 R_{25} ; or a group of formula

Illa or IIIb;

as

 R_{32} is C_1 - C_{18} alkanoyl; C_1 - C_8 alkanoyl substituted by phenyl or C_7 - C_{18} alkylphenyl; C_3 - C_{18} alkenoyl; cyclohexylcarbonyl; or naphthylcarbonyl;

L is a linking group of valency (k+1) and is, as a divalent group,

-0-;

Q-C₂-C₁₂alkylene-Q;

-O-CH₂-CH(OH)-CH₂-O-;

-Q-C₂-C₁₂alkylene-Q-CO-C₂H_{2v}-O-;

 $-O-C_2-C_{12}$ alkylene- $O-CH_2-CH(OH)-CH_2'-O-;$

Q-phenylene-Q or

Q-phenylene-D-phenylene-Q with D being C1-C4alkylene, O, S, SO or SO2;

L, as a trivalent group, is Q-capped C_3 - C_{12} alkanetriyl, a trivalent residue of a hexose or a hexitol, or a group $(-O-CH_2)_3C-CH_2OH_2$, $-Q-C_aH_{2a}-N(C_bH_{2b}-Q-)-C_cH_{2c}-Q-$;

 $-Q-C_3-C_{12}$ alkanetriyl $(-Q-CO-C_v)_{12}$

 $-O-C_3-C_{12}$ alkanetriyl $(-O-CH_2-QH(OH)-CH_2-O-)_2$; and

L, as a tetravalent group, is a' tetravalent residue of a hexose or a hexitol;

 $-Q-C_4-C_{12}$ alkanetetryl($-Q-C_9O-C_7H_{2v}-O-O_3$;

 $-O-C_4-C_{12}$ alkanetetryl $(-O-C_1H_2-CH(OH)-CH_2-O-)_3$; Q-capped C_4-C_{12} alkanetetryl; a group

or a group

Q is oxygen or -NH-,

Z is a linking group of valency (k+1) and is as a divalent group C_2 - C_{12} alkylene, Q-interrupted C_4 - C_{12} alkylene, phenylene or phenylene-D-phenylene with D being C_1 - C_4 alkylene, O, S, SO or SO₂;

09/806,360

Z, as a trivalent group, is C_3 - C_{12} alkanetriyl, a trivalent residue of a hexose or a hexitol, a group (- CH_2)₃C- CH_2OH , or a group $-C_2H_{2a}$ - $N(C_bH_{2b}$ -)- C_cH_{2c} -; and

Z, as a tetravalent group, is a tetravalent residue of a hexose or a hexitol, C₄-C₁₂alkanetetryl, a

a, b, c and k independently are 1, 2 or 3,

m is 0 or a number from the range 1-12,

s is 1 or 2,

v is 1, 2, 3, 4, 5, 6, 7 or 8;

and all other residues are as defined in claim 1 for formula I if n is 1.

Cancel claims 11, 13 and 16.

- 18 -