Нормализация лямбда-выражения

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 15 секунд Ограничение по памяти: 1024 мегабайта

Дано лямбда-выражение, требуется провести m ($m \in \mathbb{N}_0$) бета-редукций этого выражения используя нормальный порядок редукции и мемоизацию, при этом выводить на печать требуется каждое k-е выражение ($k \in \mathbb{N}_0, k < m$). Формулы нумеруются с 0, если нормальная форма была достигнута на формуле с некратным k номером — на формуле δ_s , где $k \cdot (n-1) < s < k \cdot n$, — то выдача должна завершиться формулой δ_s . Например, редуцирование выражения ($\lambda x.x \times x \times x$) (($\lambda x.x$)) в данных условиях пройдёт через следующие стадии (редуцируемые бета-редексы подчёркнуты):

обозначение (номер) формула

occome remire (memep)	q oping view
δ_0	$(\lambda x.x \ x \ x \ x) \ ((\lambda x.x) \ (\lambda x.x))$
δ_1	$\overline{((\lambda x.x)\ (\lambda x.x))\ ((\lambda x.x)\ (\lambda x.x))\ ((\lambda x.x)\ (\lambda x.x))\ ((\lambda x.x)\ (\lambda x.x))}$
δ_2	$(\lambda x.x) (\lambda x.x) (\lambda x.x) (\lambda x.x)$
δ_3	$\overline{(\lambda x.x)} \ (\lambda x.x) \ (\lambda x.x)$
δ_4	$\overline{(\lambda x.x) \ (\lambda x.x)}$
δ_5	$\overline{(\lambda x.x)}$

Если при этом k=2, то на печать должны быть выведены формулы δ_0 , δ_2 , δ_4 , δ_5 .

Гарантируется, что суммарная длина всех выражений, которые будут получены в результате s бета-редукций, не превышает 100 миллионов лексем.

Для точного определения условий задачи, давайте напомним два важных определения— нормальный порядок редукций и мемоизацию.

- 1. Рассмотрим лямбда-выражение, расставим все необязательные скобки в нём. Назовём нормальным порядком редукции такой порядок, при котором всегда редуцируется самый левый редекс: то есть редекс, первый символ которого находится левее всего в выражении.
- 2. Чтобы определить мемоизацию, определим некоторое расширенное лямбда-исчисление. Помимо обычных выражений будем рассматривать отложенные подстановки: это переменные с указанием заменяемого выражения в угловых скобках $x_{\langle A \rangle}$.

При этом подстановка A[x := B] раскрывается так:

$$A[x := B] = \begin{cases} t_{\langle B \rangle}, & A = x \\ y, & A = y, y \neq x \\ \lambda x.P, & A = \lambda x.P \\ \lambda y.(P[x := B]), & A = \lambda y.P, y \neq x \\ (P[x := B]) (Q[x := B]), & A = P Q \end{cases}$$

3десь t — некоторая новая отложенная переменная, ранее в выражении не встречавшаяся.

Естественным образом мы можем определить <u>плоское</u> лямбда-выражение для данного выражения, рассматривая каждую переменную вида $x_{\langle P \rangle}$ как P.

Тогда шаг редукции с мемоизацией устроен так:

- Выберем редекс ($\lambda x.A$) B например, найдём самый левый редекс в плоском лямбдавыражении, соответствующем данному.
- Если $(\lambda x.A)$ содержит вхождение отложенной подстановки $y_{\langle P \rangle}$, в которую входит заменяемая переменная x, перед редукцией заменим данное вхождение $y_{\langle P \rangle}$ на P. Обратите внимание, случай $\lambda x.A = y_{\langle P \rangle}$ также надо учитывать.
- Все остальные отложенные подстановки в редексе оставим без изменений рассматриваем, как переменные. Производим редукцию.

• Если редекс целиком находится внутри какой-то отложенной подстановки — редукцию производим во всех отложенных подстановках по той же переменной.

Формат входных данных

В первой строке приведены числа m и k через пробел. Во второй строке дано лямбда-выражение δ_0 в грамматике из предыдущего задания.

Формат выходных данных

Выведите формулы $\delta_0,\,\delta_k,\,\delta_{k\cdot 2},\,...,\,\delta_{k\cdot (n-1)},\,\delta_s,$ по формуле на новой строке.

Примеры

стандартный ввод	стандартный вывод
10 1	((\x.x) z)
(\x.x) z	z
100 1	((\x.y) z)
(\x.y) z	У
100 1	((\a.(\a.b)) c)
(\a.\a.b) c	(\v0.b)
100 1	((\a.(\x.a)) (x y))
(\a.\x.a) (x y)	(\v0.(x y))