MAT0206/MAP0216 - Análise Real - IME - 2007

Prof. Gláucio Terra

2^a Lista de Exercícios

Para entregar: exercícios 6, 7, 10 e 12.

1-) Demonstre que:

(a)
$$\forall p > 0, \sqrt[n]{p} \to 1$$

SUGESTÃO. Para p > 1, defina $(\forall n \in \mathbb{N}) x_n \doteq \sqrt[n]{p} - 1$, de modo que $(\forall n \in \mathbb{N}) x_n \geqslant 0$ e $\sqrt[n]{p} = 1 + x_n$, donde $p = (1 + x_n)^n$. Agora use a desigualdade de Bernoulli para estudar o que ocorre com a seqüência $(x_n)_{n \in \mathbb{N}}$. Se $0 , use o caso anterior para estudar a seqüência <math>\sqrt[n]{1/p}$, e se p = 1 a tese é trivial.

(b)
$$\sqrt[n]{n} \to 1$$

SUGESTÃO. Como no item anterior, defina $(\forall n \in \mathbb{N}) x_n \doteq \sqrt[n]{n} - 1$, de modo que $(\forall n \in \mathbb{N}) x_n \geqslant 0$ e $\sqrt[n]{n} = 1 + x_n$, donde $n = (1 + x_n)^n$. Agora use o teorema do binômio para concluir que $(\forall n \in \mathbb{N}) (1 + x_n)^n \geqslant \frac{n(n-1)}{2} x_n^2$, e use isto para estudar a seqüência $(x_n)_{n \in \mathbb{N}}$.

2-) Sejam $\mathbb{N}_1, \ldots, \mathbb{N}_k$ subconjuntos infinitos de \mathbb{N} tais que $\mathbb{N} = \mathbb{N}_1 \cup \mathbb{N}_2 \cup \cdots \cup \mathbb{N}_k$. Prove que, se $(x_n)_{n \in \mathbb{N}}$ é uma seqüência de números reais tal que $\lim_{n \in \mathbb{N}_1} x_n = \cdots = \lim_{n \in \mathbb{N}_k} x_n = a$, então $\lim x_n = a$.

OBSERVAÇÃO. Em particular, segue-se que, se $(x_n)_{n\in\mathbb{N}}$ é uma seqüência tal que as subseqüências $(x_{2n-1})_{n\in\mathbb{N}}$ e $(x_{2n})_{n\in\mathbb{N}}$ são ambas convergentes para $a\in\mathbb{R}$, então $x_n\to a$.

- 3-) (a) Se $(x_n)_{n\in\mathbb{N}}$ é uma seqüência de números reais que converge para $a\in\mathbb{R}$, mostre que, para todo $k\in\mathbb{N}, \lim_{n\to\infty}x_n^k=a^k$. (Sugestão: por indução sobre k)
 - (b) Se $(x_n)_{n\in\mathbb{N}}$ é uma seqüência de números positivos que converge para $a\in\mathbb{R}$, mostre que, para todo $k\in\mathbb{N}$, $\lim_{n\to\infty}x_n^{1/k}=a^{1/k}$.

SUGESTÃO. Substitua $y = x^{1/k}$ e $b = a^{1/k}$ na identidade $y^k - b^k = (y - b) \cdot \sum_{n=0}^{k-1} y^{k-1-n} b^n$.

- (c) Conclua a partir dos dois ítens anteriores que, se $(x_n)_{n\in\mathbb{N}}$ é uma seqüência de números positivos que converge para $a\in\mathbb{R}$, então, para todo $r\in\mathbb{Q}$, $\lim_{n\to\infty}x_n^r=a^r$.
- **4-)** Sejam $k \in \mathbb{N}$ e a > 0. Se $(\forall n \in \mathbb{N})$ $a \leqslant x_n \leqslant n^k$, então $\sqrt[n]{x_n} \to 1$.
- 5-) Sejam $(x_n)_{n\in\mathbb{N}}$ e $(a_n)_{n\in\mathbb{N}}$ seqüências de números reais. Suponha que $a_n\to a$ e que, para cada $n\in\mathbb{N}$, a_n é um valor de aderência de $(x_n)_{n\in\mathbb{N}}$. Então a é valor de aderência de $(x_n)_{n\in\mathbb{N}}$.
- 6-) Sejam $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$ sequências limitadas de números reais. Mostre que:
 - (a) $\overline{\lim}(x_n + y_n) \leqslant \overline{\lim} x_n + \overline{\lim} y_n e \underline{\lim}(x_n + y_n) \geqslant \underline{\lim} x_n + \underline{\lim} y_n$
 - (b) $\overline{\lim}(-x_n) = \underline{\lim} x_n \in \underline{\lim}(-x_n) = \overline{\lim} x_n$

(c) se
$$(\forall n \in \mathbb{N}) x_n \ge 0$$
 e $y_n \ge 0$, então $\overline{\lim}(x_n \cdot y_n) \le \overline{\lim} x_n \cdot \overline{\lim} y_n$ e $\underline{\lim}(x_n \cdot y_n) \ge \underline{\lim} x_n \cdot \underline{\lim} y_n$.

OBSERVAÇÃO. As desigualdades podem ser, de fato, estritas (i.e. em geral não vale a igualdade nos ítens (a) e (c)). Além disso, a hipótese de serem as seqüências limitadas pode ser retirada, se: (1) colocarmos, por definição, $\overline{\lim} x_n = +\infty$ se $(x_n)_{n \in \mathbb{N}}$ tiver uma subseqüência que diverge para $+\infty$ (ou, equivalentemente, se $(x_n)_{n \in \mathbb{N}}$ não for limitada superiormente) e $\underline{\lim} x_n = -\infty$ se $(x_n)_{n \in \mathbb{N}}$ tiver uma subseqüência que diverge para $-\infty$ (ou, equivalentemente, se $(x_n)_{n \in \mathbb{N}}$ não for limitada inferiormente); (2) no item (a) o segundo membro não for da forma $\infty - \infty$.

- 7-) Sejam $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$ seqüências de números reais. Se $(\forall n\in\mathbb{N})$ $x_n\leqslant y_n$, então $\overline{\lim}\,x_n\leqslant \overline{\lim}\,y_n$ e $\underline{\lim}\,x_n\leqslant \underline{\lim}\,y_n$.
- 8-) Seja $(x_n)_{n\in\mathbb{N}}$ uma seqüência de números estritamente positivos. Prove que:

$$\underline{\lim} \, \frac{x_{n+1}}{x_n} \, \leqslant \underline{\lim} \, \sqrt[n]{x_n} \leqslant \overline{\lim} \, \sqrt[n]{x_n} \leqslant \overline{\lim} \, \frac{x_{n+1}}{x_n}$$

Em particular, se existir $\lim \frac{x_{n+1}}{x_n}$, então existe $\lim \sqrt[n]{x_n}$ e os limites coincidem.

SUGESTÃO. Está demonstrado no Elonzão ou no Rudin, *Principles of Mathematical Analysis*, mas tente um pouco antes de olhar a demonstração.

- **9-)** Sejam $a \ge 0$, $b \ge 0$. Mostre que $\sqrt[n]{a^n + b^n} \to \max\{a, b\}$.
- 10-) Diz-se que uma seqüência $(x_n)_{n\in\mathbb{N}}$ tem variação limitada se a seqüência $(\nu_n)_{n\in\mathbb{N}}$ dada por $(\forall n \in \mathbb{N}) \nu_n = \sum_{i=1}^n |x_{i+1} x_i|$ for limitada. Prove que, neste caso, $(\nu_n)_{n\in\mathbb{N}}$ converge. Prove também que: (a) Se $(x_n)_{n\in\mathbb{N}}$ for de variação limitada, então $(x_n)_n$ é convergente.

SUGESTÃO. Verifique, por indução, que $(\forall n \in \mathbb{N})$ $\sum_{i=1}^{n} (x_{i+1} - x_i) = x_1 - x_{n+1}$. Ora, a condição de ser $(x_n)_{n \in \mathbb{N}}$ de variação limitada é equivalente a ser a série $\sum (x_{n+1} - x_n)$ absolutamente convergente, portanto convergente.

- (b) Se $(\forall n \in \mathbb{N}) |x_{n+2} x_{n+1}| \leq c|x_{n+1} x_n|$, com $0 \leq c < 1$, então $(x_n)_{n \in \mathbb{N}}$ tem variação limitada.
- (c) $(x_n)_{n\in\mathbb{N}}$ tem variação limitada se, e somente se, $(\forall n\in\mathbb{N})$ $x_n=y_n-z_n$, onde $(y_n)_{n\in\mathbb{N}}$ e $(z_n)_{n\in\mathbb{N}}$ são seqüências crescentes e limitadas.

SUGESTÃO. Verifique que, se uma seqüência é crescente e limitada, então é de variação limitada; a seguir, verifique que a soma/diferença de seqüências de variação limitada é uma seqüência de variação limitada. Então segue-se que, se uma seqüência se escreve como a diferença entre duas seqüências crescentes e limitadas, ela é de variação limitada.

Para demonstrar a outra implicação: dado $a \in \mathbb{R}$, sejam $a^+ \doteq \frac{|a|+a}{2} = \max\{a,0\}$ e $a^- \doteq \frac{|a|-a}{2} = \max\{-a,0\}$; assim, $a = a^+ - a^-$ e $|a| = a^+ + a^-$. Para cada $n \in \mathbb{N}$, ponha $\xi_n \doteq \sum_{i=0}^n (x_{i+1} - x_i)^+$, e $\mu_n \doteq \sum_{i=0}^n (x_{i+1} - x_i)^-$, e verifique que $\nu_n = \xi_n + \mu_n$ e $\xi_n - \mu_n = \sum_{i=1}^n (x_{i+1} - x_i) = x_1 - x_{n+1}$.

- 11-) Seja $x_1 = 1$ e $x_{n+1} = 1 + \frac{1}{x_n}$. Verifique que $|x_{n+2} x_{n+1}| \leq \frac{1}{2} |x_{n+1} x_n|$. Conclua que $(x_n)_{n \in \mathbb{N}}$ é convergente e calcule seu limite.
- 12-) Seja $(x_n)_{n\in\mathbb{N}}$ a seqüência de números reais dada por $x_1=1$ e $(\forall n\in\mathbb{N})$ $x_{n+1}=1+\sqrt{x_n}$. Verifique que $(x_n)_{n\in\mathbb{N}}$ é de variação limitada e calcule o seu limite.
- 13-) Exercícios 4.5 e 4.6 do capítulo 3 do Elonzinho.

14-) Suponha $a_1 \geqslant a_2 \geqslant \cdots \geqslant 0$. Então a série $\sum_{n=1}^{\infty} a_n$ converge se, e somente se, a série:

$$\sum_{k=0}^{\infty} 2^k a_{2^k} = a_1 + 2a_2 + 4a_4 + 8a_8 + \cdots$$

converge.

SUGESTÃO. (a) Lembre-se que a seqüência das reduzidas de uma série de termos positivos é crescente; portanto, uma tal série é convergente se, e somente se, sua seqüência das reduzidas for limitada superiormente.

- (b) Sejam $s_n = \sum_{i=1}^n a_i$ e $t_k = \sum_{i=0}^k 2^i a_{2^i}$ as reduzidas de cada uma das séries; verifique que $(s_n)_{n \in \mathbb{N}}$ é limitada se, e somente se, $(t_k)_{k \geqslant 0}$ for limitada. Para tal, verifique que: (1) dado $n \in \mathbb{N}$, tomando-se k tal que $2^{k+1} > n$, tem-se $s_n \leqslant t_k$; (2)dado $k \in \mathbb{N}$, tomando n tal que $n \geqslant 2^k$, tem-se $s_n \geqslant \frac{1}{2} t_k$, i.e. $t_k \leqslant 2s_n$.
- (c) Se a sugestão não ajudar, veja a demonstração no Rudin, *Principles of Mathematical Analysis*, página 61.
- **15-**) Prove que $\sum \frac{1}{n^p}$ converge se p > 1 e diverge se $p \leqslant 1$.

SUGESTÃO. Se $p\leqslant 0$, o termo geral da série não converge para zero. Se p>0, o termo geral é positivo e decrescente, portanto podemos aplicar o exercício anterior. Neste caso, pondo $a_n=1/n^p$, tem-se $\sum_{k=0}^{\infty} 2^k a_{2^k} = \sum_{k=0}^{\infty} 2^k \frac{1}{2^{kp}} = \sum_{k=0}^{\infty} 2^{(1-p)k}$ i.e. é uma série geométrica de razão 2^{1-p} .

16-) Seja $(\forall n \in \mathbb{N}) s_n = \sum_{k=0}^n \frac{1}{k!}$. Mostre que, para todo $n \in \mathbb{N}$, $0 < e - s_n < \frac{1}{n!n}$. Use esta desigualdade para mostrar que e é irracional.

SUGESTÃO. Só leia o que segue depois de tentar um pouco, pois esta sugestão praticamente resolve o problema. Tem-se $e-s_n=\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\frac{1}{(n+3)!}+\cdots<\frac{1}{(n+1)!}\left(1+\frac{1}{n+1}+\frac{1}{(n+1)^2}+\cdots\right)$, e isto prova a segunda desigualdade. Para provar que e é irracional: (1) já sabemos que e não é inteiro, pois 2< e<3, conforme foi demonstrado em aula. (2) Suponha e=p/q, com $p,q\in\mathbb{N}$ e $q\geqslant 2$; use $0< e-s_n<\frac{1}{n!n}$ com n=q, multiplique tudo por q! e mostre que isto leva a uma contradição.

17-) Seja $(a_n)_{n\geqslant 0}$ uma seqüência de números reais. A série:

$$\sum_{n=0}^{\infty} a_n x^n$$

chama-se uma série de potências. Os números a_n chama-se coeficientes da série; x é um número real. A convergência/divergência da série depende do valor de x.

Seja $\sum a_n x^n$ uma série de potências, e defina:

$$\alpha \doteq \overline{\lim} \sqrt[n]{|a_n|}, \qquad R \doteq \frac{1}{\alpha}$$

(se $\alpha = 0$, pomos $R = +\infty$; se $\alpha = +\infty$, pomos R = 0). Prove que $\sum a_n x^n$ converge absolutamente se |x| < R e diverge se |x| > R.

OBSERVAÇÃO. R chama-se raio de convergência da série. O estudo da convergência da série para $x=\pm R$ é mais delicado (a série pode convergir ou não nestes pontos, dependendo de como forem os coeficientes da mesma).

SUGESTÃO. Ponha $b_n = a_n x^n$ e aplique o teste da raiz para esta seqüência.

18-) Dados $m \in \mathbb{R}$ e $k \in \mathbb{Z}_+$, define-se:

$$\binom{m}{k} \doteq \frac{m(m-1)\cdots(m-k+1)}{k!}$$

Calcule o raio de convergência (vide observação da questão anterior) da série de potências $\sum_{k=0}^{\infty} a_k x^k$, onde $a_k = {m \choose k}$.

OBSERVAÇÃO. Esta série chama-se binomial. Conforme veremos mais adiante no curso, ela é a série de Taylor centrada no zero da função $x \mapsto (1+x)^m$; se $m \in \mathbb{N}$, a série é finita (i.e. $a_k = 0$ para k > m) e coincide com a expansão de $(1+x)^m$ pelo teorema do binômio.

SUGESTÃO. Use o exercício 8 para calcular lim $\sqrt[n]{|a_n|}$.

- 19-) Sejam $\sum a_n$ e $\sum b_n$ séries de termos estritamente positivos. Prove que: (1) se $\frac{a_n}{b_n} \to 0$ e $\sum b_n$ converge, então $\sum a_n$ converge; (2) se $\frac{a_n}{b_n} \to c \neq 0$, então $\sum a_n$ converge se, e somente se, $\sum b_n$ converge. Sugestão. Use o critério de comparação.
- **20-)** (a) Para todo polinômio p(x) com grau maior que 1 a série $\sum \frac{1}{p(n)}$ converge. (b) Se $\sum a_n$ converge e $(\forall n) a_n > 0$, então $\sum (a_n)^2$ e $\sum \frac{a_n}{1+a_n}$ convergem. SUGESTÃO. Use o exercício anterior.

21-) Se $\sum (a_n)^2$ converge, então $\sum \frac{a_n}{n}$ converge.

SUGESTÃO. Aplique a desigualdade de Cauchy-Schwartz à seqüencia das reduzidas desta última série.

22-) Prove o *critério de Abel*: se $\sum a_n$ é convergente e $(b_n)_{n\in\mathbb{N}}$ é uma seqüência decrescente de termos positivos, então $\sum a_n b_n$ é convergente.

SUGESTÃO. Existe $c \ge 0$ tal que $b_n \to c$ (por quê?). Aplique o critério de Dirichlet para $\sum a_n$ e $(b_n - c)$ para concluir que $\sum a_n(b_n - c)$ é convergente (por que podemos aplicar o tal critério?) e conclua a demonstração.

23-) Exercícios 2.8 e 4.3 do capítulo 4 do Elonzinho.